इकाई दस पारिस्थितिकी

अध्याय 11 जीव और समष्टियाँ

अध्याय 12 पारितंत्र

अध्याय 13 जैव-विविधता एवं संरक्षण विविधता ही जीवित जीवों का केवल लक्षण नहीं है; बल्क जीव विज्ञान पाठ्यपुस्तक का भी अंश है। जीव विज्ञान का प्रस्तुतीकरण या तो वनस्पित विज्ञान, प्राणि विज्ञान तथा सूक्ष्म जीव विज्ञान अथवा चिर प्रतिष्ठित तथा आधुनिक रूप में किया गया है। इसका पिछला भाग जीव विज्ञान के आणविक पहलुओं की प्रियोक्ति (युफिमज्म) है। भाग्यवश हमारे पास बहुत से सूत्र हैं, जिनका प्रयोग हम जीव-विज्ञानीय सूचना को एक से सिद्धांत के अनुरूप विभिन्न क्षेत्रों में बुनते हैं। पारिस्थितिकी भी एक ऐसा ही सूत्र है जो जीव विज्ञान को समग्रात्मक दृष्टिकोण प्रदान करता है। जीव विज्ञान संबंधी ज्ञान का सार यह है कि जीव व्यष्टि के रूप में किस प्रकार रहते हैं, अन्य जीवों को किस प्रकार प्रभावित करते हैं तथा समूह के रूप में इनका भौतिक वास किस प्रकार का है। यह किस प्रकार संगठित होकर समष्टि, सामुदायिक पारिस्थितिक तंत्र; यहाँ तक कि संपूर्ण जीव मंडल का निर्माण करते हैं, इन सभी के बारे में पारिस्थितिकी हमें ज्ञान प्राप्त कराती है। इसका विशेष पहलू मानवजनिक पर्यावरणीय विघटन तथा इससे उत्पन्न सामाजिक, राजनैतिक मामलों का अध्ययन कराना है। इस इकाई में उपर्युक्त पहलुओं पर विशेष ध्यान देते हुए वर्णन किया गया है।

रामदेव मिश्रा (1908-1998)

भारतवर्ष में रामदेव मिश्रा पारिस्थितिकी के जनक के रूप में जाने जाते हैं। इनका जन्म 26 अगस्त 1908 में हुआ था। इन्होंने यूनाइटेड किंगडम में लीड्स विश्वविद्यालय से प्रोफेसर डब्ल्यू एच पीयरसाल, एफ आर एस के आधीन वर्ष 1937 में पारिस्थितिकी में डॉक्टर ऑफ फिलासफी की उपाधि ग्रहण की। इन्होंने बनारस हिंदू विश्वविद्यालय, वाराणसी के वनस्पित विभाग में पारिस्थितिकी विषय में शिक्षण तथा अनुसंधान के विभाग की स्थापना की। इनके अनुसंधान ने उष्णकटिबंधी समुदायों तथा उनके अनुक्रमण-पादप समिष्ट की पर्यावरणीय अनुक्रिया तथा उष्णकटिबंधीय वन में पोषक चक्रण तथा उत्पादनशीलता और चारागाह पारिस्थितिक तंत्र आदि विषयों पर ज्ञान की आधार शिला रखी। मिश्रा जी ने भारतवर्ष में पारिस्थितिको पर प्रथम स्नात्कोत्तर पाठयक्रम की शुरुआत की। इनके शिष्यत्व में रहकर 50 से भी अधिक विद्यार्थियों ने पीएच डी की उपाधि प्राप्त की और उन्होंने देश के अन्य विश्वविद्यालयों तथा अनुसंधान संस्थानों में जाकर पारिस्थितिकी शिक्षण एवं अनुसंधान का सूत्रपात किया। इन्हें इंडियन नेशनल साइंस ऐकेडमी तथा वर्ल्ड ऐकेडमी ऑफ आर्ट्स एंड साइंस ने फैलोशिप से तथा पर्यावरण तथा पारिस्थितिको के लिए, संजय गांधी जैसे प्रतिष्ठित पुरस्कार से सम्मानित किया गया। इन्हों के प्रयासों से, भारत सरकार ने नेशनल कमेटी फार इनवॉयरमेंटल प्लानिंग तथा कोऑरडिनेशन (1972) की स्थापना की। बाद में जिसने पर्यावरण तथा वन मंत्रालय को स्थापित (1984) करने का मार्ग प्रशस्त किया।

अध्याय 11

जीव और समष्टियाँ

11.1 समष्टियाँ

हमारे जैविक विश्व में लुभावनी विविधता और आश्चर्यजनक जटिलता है। हम जीव विज्ञानीय संगठन के विभिन्न स्तरों पर अन्वेषी प्रक्रमों से इसकी जटिलता को समझने का प्रयास कर सकते हैं। ये जीव विज्ञानीय संगठन स्तर हैं— बृहतअणु, कोशिकाएँ, ऊतक, अंग, व्यष्टि जीव, समष्टियाँ, समुदाय, पारितंत्र और जीवोम। इस संगठन के किसी भी स्तर पर हमारे मन में दो प्रकार के प्रश्न उठ सकते हैं— उदाहरण के लिए जब हम बाग में सुबह बुलबुल को गाते सुनते हैं तो प्रश्न उठता है 'पक्षी कैसे गाता है?' या 'पक्षी क्यों गाता है?' 'कैसे प्रकार' के प्रश्नों में प्रक्रम के पीछे क्रियाविधि जानने की जिज्ञासा है जबकि 'क्यों प्रकार' के प्रश्नों में प्रक्रम का **महत्त्व** तलाशा जाता है। इस उदाहरण में पहले प्रश्न का उत्तर पक्षी में वाक् यंत्र और कंपमान अस्थि का प्रचालन हो सकता है जबिक दूसरे प्रश्न के उत्तर में कहा जा सकता है कि प्रजनन ऋतु के दौरान पक्षी को अपने साथी से बात करने की आवश्यकता हो सकती है। जब आप अपने चारों ओर प्रकृति को वैज्ञानिक दुष्टिकोण से देखेंगे तो आपके मन में निश्चित रूप से दोनों प्रकार के अनेक दिलचस्प प्रश्न उठेंगे— रात को खिलने वाले फुल आमतौर पर सफोद क्यों होते हैं? भ्रमर को कैसे पता चलता है कि किस फल में मकरंद है? कैक्टस में इतने सारे काँटे क्यों होते हैं? चूज़े कैसे अपनी माँ को पहचान लेते हैं? आदि-आदि।

जीव और समष्टियाँ

आप पिछली कक्षाओं से सीख चुके हैं कि पारिस्थितिकी ऐसा विषय है जिसमें जीवों के बीच या जीवीय तथा भौतिक (अजीवीय/अबायोटिक) पर्यावरण के बीच होने वाली पारस्परिक क्रियाओं का अध्ययन किया जाता है।

मूलरूप से पारिस्थितिकी जीवीय संगठन के चार स्तरों से संबंधित है- जीव, समिष्टियाँ, समुदाय और जीवोम। इस अध्याय में हम पारिस्थितिकी के समिष्ट स्तरों के बारे में अध्ययन करेंगे।

11.1 समष्टियाँ

11.1.1 समिष्ट गुण

प्रकृति में, हमें किसी भी जाित के पृथक, एकल व्यष्टि के दर्शन बिरले ही होते हैं; उनमें से अधिकांश सुपिरभाषित भौगोलिक क्षेत्र में समूह में रहते हैं, समान संसाधनों का साझा उपयोग करते हैं अथवा उनके लिए स्पर्धा करते हैं, संकरण (इनब्रीड) करते हैं और इस प्रकार वे समिष्ट की रचना करते हैं। हालाँकि संकरण शब्द में लैंगिक जनन कार्य अंतर्निहित है, अलैंगिक जनन से भी जन्म लेने वाले व्यष्टियों का समूह को भी पारिस्थितिक अध्ययन के लिए आमतौर से समष्टि मान लिया जाता है। आई भूमि में सभी जलकाक, वन क्षेत्र के सागवान (टीकवूड) के पेड़, संवर्धन प्लेट के जीवाणु, त्याग दिए गए आवास में चूहे, और तालाब में कमल के पौधे, आदि समिष्ट के कुछ उदाहरण हैं। पहले अध्यायों में आपने यह सीखा कि हालाँकि व्यष्टि जीव वह है जो परिवर्तित पर्यावरण का सामना करे, प्राकृतिक वरण द्वारा वांछित विशेषकों (ट्रेट) को विकसित करने का कार्य समष्टि स्तर पर ही होता है। इसलिए समष्टि पारिस्थितिकी, पारिस्थितिकी का एक महत्त्वपूर्ण क्षेत्र है क्योंकि यह पारिस्थितिकी को समष्टि आनुवंशिकी (जेनेटिक्स) और विकास से जोड़ता है।

समिष्ट में कुछ ऐसे गुण होते हैं जो व्यष्टि जीव में नहीं होते। व्यष्टि जन्मता और मरता है लेकिन समिष्ट में जन्म दरें और मृत्यु दरें होती हैं। समिष्ट में इन दरों को क्रमश: प्रित व्यक्ति जन्म दर और मृत्यु दर कहते हैं। इसिलए दर को समिष्ट के सदस्यों के संबंधों में संख्या में परिवर्तन (वृद्धि या हास) के रूप में प्रकट किया उदाहरण के लिए अगर किसी ताल में पिछले साल कमल के 20 पौधे थे और जनन द्वारा 8 नए पौधे और हो जाते हैं जिससे वर्तमान समिष्ट 28 हो जाती है, तो हम जन्म दर को 8/20 = 0.4 संतित प्रित कमल प्रतिवर्ष के हिसाब से परिकलन (कैल्कुलेट) करते हैं। अगर प्रयोगशाला समिष्ट में 40 फलमिक्खयों में से 4 व्यष्टि किसी विशिष्टीकृत समय अंतराल में, मान लीजिए एक सप्ताह के दौरान मर जाते हैं, तो उस समय के दौरान समिष्ट में मृत्यु दर 4/40= 0.1 व्यष्टि प्रति फलमक्खी प्रति सप्ताह कहलाएगी।

समिष्ट का दूसरा विशिष्ट गुण **लिंग अनुपात** यानि नर एवं मादा का अनुपात है। व्यिष्ट या तो नर है या मादा है, लेकिन समिष्ट का लिंग अनुपात होता है (जैसे कि समिष्ट का 60 प्रतिशत स्त्री हैं और 40 प्रतिशत नर हैं)।

Y

चित्र 11.1 मानव समष्टि के लिए आयु पिरैमिडों का निरूपण

किसी दिए गए समय में समिष्ट भिन्न आयु वाले व्यष्टियों से मिलकर बनती है। अगर समिष्ट के लिए आयु वितरण (दी गई आयु अथवा आयु वर्ग के व्यष्टियों का प्रतिशत) आलेखित (प्लॉटेड) किया जाता है तो बनने वाली संरचना आयु पिरैमिड कहलाती है (चित्र 11.1)। मानव समिष्ट के लिए आयु पिरैमिड आमतौर पर नर और स्त्रियों का आयु वितरण संयुक्त आरेख को दर्शाता है। पिरैमिड का आकार समिष्ट की स्थित प्रतिबिंबित करता है - (क) क्या यह बढ़ रहा है, (ख) स्थिर है या (ग) घट रहा है।

समिष्ट का साइज आवास में उसकी स्थिति के बारे में बहुत कुछ बताता है। समिष्ट हम कैसे भी पारिस्थितिक प्रक्रम अन्वेषण (इन्वेस्टिगेट) करना चाहें, भले ही यह दूसरी जातियों से स्पर्धा का परिणाम हो, परभक्षी का प्रभाव हो, या पीडकनाशी (पेस्टिसाइड) अनुप्रयुक्त (एप्लाइड) करने का प्रभाव हो, हम उनका मुल्यांकन हमेशा ही समष्टि के साइज में कोई परिवर्तन के संदर्भ में करते हैं। प्रकृति में समष्टि के साइज की इतनी कम संख्या में भी (10 से कम भरतपुर आई,भूमि क्षेत्रों में) साइबेरियाई सारस या किसी साल लाखों में हो सकती है (तालाब में क्लेमिडोमोनास)। यह आवश्यक नहीं है कि समष्टि को, जो अधिक तकनीकी रूप से समष्टि घनत्व कहलाती है। (N के रूप में अभिहित)। हालाँकि समिष्ट घनत्व की सबसे उपयुक्त माप आमतौर पर कुल संख्या है, कुछ मामलों में यह अर्थहीन होती है अथवा इसका निर्धारण कठिन होता है। किसी क्षेत्र में, अगर 200 गाजर घास (पार्थेनियम हिस्टेरोफोरस) पादप हैं. लेकिन केवल एक अकेला बडे वितान (कैनोपी) वाला बरगद का विशाल वृक्ष है तो यह कहना कि पार्थेनियम के सापेक्ष बरगद का समष्टि घनत्व कम है उस समुदाय में बरगद की महत्त्वपूर्ण भूमिका को अवांकलन करने के बराबर है। ऐसे मामलों में, समष्टि साइज के माप के लिए प्रतिशत आवरण अथवा जीव भार (बायोमास) अधिक अर्थपूर्ण है। अगर समष्टि बहुत बड़ी है और गणना असंभव है अथवा बहुत समय लेने वाली है तो कुल संख्या को अपनाने का आधार भी सरल नहीं है। अगर आपके पास प्रयोगशाला में पेट्रीडिश में जीवाणुओं का घना संवर्ध (कल्चर) है तो उसका घनत्व बताने की सर्वोतम माप क्या है? कभी-कभी. पारिस्थितिक अन्वेषणों के लिए निरपेक्ष समष्टि घनत्व जानने की आवश्यकता नहीं है; आपेक्षिक घनत्वों से भी उद्देश्य की पूर्ति भली भाँति हो जाती है। उदाहरण के लिए प्रति पाश (ट्रैप) पकड़ी गई मछलियों की संख्या, झील में कुल समष्टि घनत्व की काफी ठीक माप है। हम बहुधा समष्टि के साइज के बिना वास्तव में गिने अथवा बिना देखे अप्रत्यक्ष रूप

से आकलन करते हैं। हमारे राष्ट्रीय उद्यानों और बाघ आरक्षितियों (रिजर्ब्स) में बाघ गणना प्राय: पग चिह्नों और मल गुटिकाओं (पैलेट) आधारित होती है।

11.1.2 समष्टि वृद्धि

किसी जाति के लिए समिष्ट की साइज स्थैतिक प्राचल नहीं है। यह समय-समय पर बदलता रहता है जो विभिन्न कारकों पर आहार उपलब्धता, परभक्षण दाब, और मौसमी पिरिस्थितियों पर निर्भर करता है। वास्तव में ये पिरवर्तन हमें समिष्ट में क्या घटित हो रहा है, इसका कुछ बोध कराते हैं। क्या समिष्ट घनत्व बढ़ रहा है या घट रहा है। अंतिम कारण कुछ भी रहे हों, परंतु दी गई अविध के दौरान दिए गए आवास में समिष्ट का घनत्व चार मूलभूत प्रक्रमों (प्रोसेस) में घटता-बढ़ता है। इन चारों में से दो (जन्मदर और आप्रवासन) समिष्ट घनत्व को बढ़ाते हैं। और दो (मृत्युदर तथा उत्प्रवासन) इसे घटाते हैं।

(क) जन्मदर— जन्मदर से मतलब समष्टि में जन्मी उस संख्या से है जो दी गई अवधि के दौरान आंरिभक घनत्व में जुड़ती है।

चित्र 11.2

- (ख) *मृत्युदर* यह दी गई अवधि समष्टि में होने वाली मौतों की संख्या है।
- (ग) **आप्रवासन** उसी जाति के व्यष्टियों की वह संख्या है जो दी गई समय अवधि के दौरान आवास में कहीं और से आए हैं।
- (घ) **उत्प्रवासन** समष्टि के व्यष्टियों की वह संख्या है जो दी गई समयाविध के दौरान आवास छोड़कर कहीं और चले गए हैं।

इसलिए अगर समय t पर समष्टि घनत्व N है तो समय t+1 पर इसका घनत्व $N_{t+1}=N_t+[(B+I)-(D+E)]$ है

ऊपर दिए गए समीकरण चित्र (11.2) से आप देख सकते हैं कि अगर जन्म लेने वालों की संख्या जमा आप्रवासियों की संख्या (B+I) मरने वालों की संख्या जमा उत्प्रवासियों की संख्या (D+E) से अधिक है तो समष्टि घनत्व बढ़ जाएगा अन्यथा यह घट जाएगा। सामान्य परिस्थितियों में, समष्टि घनत्व को प्रभावित करने वाले कारकों में जन्म और मृत्यु सबसे महत्त्वपूर्ण है, दूसरे दो कारक विशेष परिस्थितियों में ही महत्त्वपूर्ण बन जाते हैं। उदाहरण के लिए, अगर आवास की बस्ती अभी बनी है, तो जन्म दरों की अपेक्षा आप्रवासन समष्टि की वृद्धि में अधिक महत्त्वपूर्ण है।

वृद्धि मॉडल — क्या किसी समिष्ट की वृद्धि समय के साथ कोई विशिष्ट और प्रागुिकत योग्य प्रतिरूप दर्शाती है? हम अपने देश में मानव समिष्ट की अनियंत्रित वृद्धि और इससे जन्मी समस्याओं से चिंतित हैं और इसिलए अगर प्रकृति में भिन्न प्राणी समिष्टियाँ इसी तरह वृद्धि करती हैं अथवा वृद्धि पर कुछ नियंत्रण दर्शाती हैं। इस बारे में हमारी जिज्ञासा स्वाभाविक है। समिष्ट वृद्धि को कैसे नियंत्रित रखा जा सकता है इस बारे में शायद हम प्रकृति से एक दो बातें सीख सकते हैं।

चित्र 11.3 समष्टि वृद्धि वक्र

- (अ) जब अनुक्रियाएँ वृद्धि को सीमित करने वाली नहीं हैं तब आरेख चरघातांकी है,
- (ब) जब अनुक्रियाएँ वृद्धि के लिए सीमाकारी हैं तब आरेख लॉजिस्टिक है,
- (K) पोषण क्षमता है

(क) चरघातांकी वृद्धि— किसी समिष्ट की अबिधित वृद्धि के लिए स्पष्टतः संसाधन (आहार और स्थान) उपलब्ध होना अत्यावश्यक है। आदर्शतः आवास में जब संसाधन असीमित होते हैं तो प्रत्येक जाति में संख्या में वृद्धि कर सकने की अपनी जन्मजात शिक्त को पूरी तरह अनुभव करने की योग्यता होती है जैसा कि डार्विन ने अपने प्राकृतिक वरण के सिद्धांत को प्रतिपादित करते हुए प्रेक्षित किया। तब समिष्ट चरघातांकी (एक्सपोनेन्शियल) अथवा ज्यामितीय (ज्योमेट्रिकल) शैली में वृद्धि करती है। अगर N साइज की समिष्ट में, जन्म दरें (कुल संख्या नहीं, बिल्क प्रति व्यक्ति जन्म) b के रूप में और मृत्यु दरें (प्रति व्यक्ति मृत्यु दर) d के रूप में निरूपित की जाती हैं तब इकाई समय अविध t (dN/dt) के दौरान वृद्धि या कमी निम्नलिखित होगी—

dN/ dt = (b - d) x N मान लीजिए (b-d) = r, तब **dN/ dt= rN**

इस समीकरण में r' 'प्राकृतिक वृद्धि की इंट्रोन्जिक दर' कहलाती है और समिष्ट वृद्धि पर किसी भी जैविक अथवा अजीवीय कारक के प्रभाव को निर्धारित करने के लिए बहुत महत्त्वपूर्ण प्राचल है।

r मूल्यों के परिणाम (मैग्निट्यूड) के बारे में आपको कुछ बोध कराने के लिए, नार्वे चूहे के लिए r 0.015 है और आटा भृंग के लिए यह 0.12 है। 1981 में भारतवर्ष में मानव समिष्ट के लिए r मान 0.0205 थी। वर्तमान r मान क्या है पता कीजिए। इसके परिकलन के लिए आपको जन्म दरों और मृत्युदरों का पता होना जरूरी है।

ऊपर दिया गया समीकरण समष्टि के चरघातांकी अथवा ज्यामितीय वृद्धि बताता है (चित्र 11.3) और जब N को समय के संदर्भ में आरेखित करते हैं तो इसका नतीजा

Y

J- आकार का वक्र है। अगर आपको मूलभूत कलन आता है तो आप चरघातांकी वृद्धि समीकरण के समाकलित रूप को निम्न प्रकार से दिखा सकते हैं-

 $N^t = No^{ert}$

Nt = समय t में समष्टि घनत्व

N = समय शून्य में समष्टि घनत्व

r = प्राकृतिक वृद्धि की इंट्रोन्जिक दर

e = प्राकृतिक लघुगणकों (लॉगेरिथ्मों) का आधार (2.71828)

असीमित संसाधन परिस्थितियों में चरघातांकी रूप से वृद्धि करने वाली कोई भी जाति थोड़े समय में ही विशाल समष्टि घनत्वों तक पहुँच सकती है। डार्विन ने दर्शाया कि हाथी जैसा धीमे बढ़ने वाला प्राणी, रोक न होने पर विशाल संख्या तक पहुँच सकता है। चरघातांकी रूप से वृद्धि करने पर विशाल समष्टि कितनी जल्दी निर्मित हो जाती है। इसके बारे में निम्नलिखित किस्सा लोकप्रिय है-

(राजा और मंत्री शतरंज खेलने बैठे। अपनी जीत के प्रति आश्वस्त राजा मंत्री द्वारा प्रस्तावित किसी शर्त को स्वीकार करने के लिए तैयार था। मंत्री ने नम्रतापूर्वक कहा कि अगर वह जीत गया तो वह गेहूँ के केवल कुछ दाने लेगा जिसकी मात्रा शतरंज की बिसात के पहले खाने (वर्ग) में एक दाना, तब दूसरे खाने में 2, तीसरे में 4, चौथे में 8 और इस प्रकार दानों को पिछली मात्रा से दुगना करते हुए अगले खानों में रखते जाना है जब तक कि सभी 64 खाने भर नहीं जाते। राजा ने मूर्खतापूर्ण लगने वाली शर्त मान ली और खेल शुरू किया लेकिन राजा के दुर्भाग्यवश मंत्री जीत गया। राजा को लगा कि मंत्री की शर्त पूरी करना बहुत आसान था। उसने पहले खाने में एक दाना रखकर शुरुआत की और मंत्री द्वारा सुझाई गई प्रक्रिया के अनुसार अन्य खानों को भरता गया लेकिन बिसात के आधे खाने भरने तक राजा ने अनुभव किया कि उसके राज्य में उत्पादित सारे गेहूँ मिलकर भी सभी 64 वर्गों को नहीं भर पाएँगे। अब छोटे से पैरामीशियम के बारे में सोचिए जो केवल एक व्यष्टि से आरंभ करके द्वि-विभाजन (बाइनरीफिशन) द्वारा प्रतिदिन संख्याओं को दुगुना करता रहता है और कल्पना कीजिए कि 64 दिनों में इसकी समष्टि साइज दिमाग को चकरा देने वाली हो जाएगी। बशर्ते असीमित आहार और स्थान उपलब्ध होता रहे)।

(ख) संभार तंत्र (लॉजिस्टिक) वृद्धि प्रकृति में किसी भी समष्टि के पास इतने असीमित संसाधन नहीं होते कि चरघातांकी वृद्धि होती रहे। इसके कारण सीमित संसाधनों के लिए व्यष्टियों में प्रतिस्पर्धा होती है। आखिर में 'योग्यतम्' व्यष्टि जीवित बना रहेगा और जनन करेगा। अनेक देशों की सरकारों ने भी इस तथ्य को समझा है और मानव समष्टि वृद्धि को सीमित करने के लिए विभिन्न प्रतिबंध लागू किए हैं। प्रकृति में, दिए गए आवास के पास अधिकतम संभव संख्या के पालन — पोषण के लिए पर्याप्त संसाधन होते हैं इससे आगे और वृद्धि संभव नहीं है। उस आवास में उस जाित के लिए इस सीमा को प्रकृति की पोषण क्षमता (k) मान लेते हैं।

किसी आवास में सीमित संसाधनों के साथ वृद्धि कर रही समष्टि आरंभ में पश्चता प्रावस्था (लैग फेस) दर्शाती है। उसके बाद त्वरण और मंदन और अंतत: अनंतस्पर्शी प्रावस्थाएँ आती हैं, जब समष्टि घनत्व पोषण क्षमता तक पहुँच जाती है। समय (t) के संदर्भ में N का आरेख (प्लॉट) से सिग्मॉइड वक्र बन जाता है। इस प्रकार की समष्टि वृद्धि विर्हुस्ट-पर्ल लॉजिस्टिक वृद्धि (चित्र 11.2) कहलाता है और निम्नलिखित समीकरण द्वारा वर्णित है—

 $dN/dt = \frac{rN(K - N)}{K}$

जहाँ N =समय t पर समिष्ट घनत्व r =प्राकृतिक वृद्धि की (इंट्रीन्जिक) दर K =पोषण क्षमता

अधिकांश प्राणियाँ की समष्टियों में वृद्धि के लिए संसाधन परिमित (फाइनाइट) हैं और देर-सबेर सीमित होने वाले हैं, इसलिए लॉजिस्टिक वृद्धि मॉडल को अधिक यथार्थपूर्ण माना जाता है।

सरकारी (जन) गणना से भारतवर्ष के लिए पिछले 100 वर्षों के समिष्ट आँकड़े एकत्रित कीजिए उन्हें आरेखित कीजिए और जाँचिए कि कौन सा वृद्धि प्रतिरूप स्पष्ट है।

11.1.3 जीवन-वृत्त विभिन्नता

समिष्टियाँ जिस आवास में रहती हैं उसमें अपनी जनन योग्यता, जिसे डार्विनी योग्यता (डार्विनियन फिटनेस)भी कहा जाता है (उच्च r मान), को अधिकतम बनाने के लिए विकसित होती हैं। खास प्रकार के वरण दबाव-सेट में जीव सर्वाधिक दक्ष जनन-युक्ति की ओर विकास करते हैं कुछ अपने जीवन काल में केवल एक बार प्रजनन करती हैं (प्रशांत महासागरीय सामन मछली और बाँस) जबिक अन्य अपने जीवन काल में कई बार प्रजनन करती हैं (अधिकांश पक्षी और स्तनधारी), कुछ छोटी साइज की संतित बहुत बड़ी संख्या में उत्पन्न करती हैं (ऑयस्टर और पैलेजीक मछलियाँ) जबिक दूसरी बड़ी साइज की संतित कम संख्या में उत्पन्न करती हैं (पक्षी और स्तनधारी)। इसलिए योग्यता को अधिकतम करने के लिए कौन वांछनीय है? पारिस्थितिकिवज्ञों का सुझाव है कि जीवों के जीवन-वृत्त विशेषक (ट्रेट) जिस आवास में वे रहते हैं; उसके अजीवीय और जीवीय घटकों द्वारा लगाए गए प्रतिबंधों के संदर्भ में विकसित होते हैं। भिन्न जातियों में जीवन वृत्त विशेषकों का विकास इस समय अनुसंधान का महत्त्वपूर्ण क्षेत्र है और पारिस्थितिकीविज्ञ अनुसंधान में लगे हुए हैं।

11.1.4 समष्टि पारस्परिक क्रियाएँ

क्या आप पृथ्वी पर किसी ऐसे प्राकृतिक आवास के बारे में सोच सकते हैं जहाँ केवल एक ही जाति का वास हो? ऐसा कोई आवास है ही नहीं और इसलिए ऐसी परिस्थिति अकल्पित है। किसी भी जाति के लिए न्यूनतम आवश्यकता एक और जाति की है जिसको वह भोजन के रूप में ले सके। पादप जाति भी जो अपना आहार स्वयं बनाती

है, अकेली जीवित नहीं रह सकती; इसे मृदा के कार्बनिक पदार्थ को तोड़ने और अकार्बनिक पोषकों को इसके अवशोषण के लिए लौटने के लिए मृदा के सूक्ष्मजीवों की जरूरत पड़ती है। इसके अलावा बिना प्राणी एजेंट के पादप परागण की व्यवस्था कैसे करेगा? यह स्पष्ट है कि प्रकृति में प्राणी, पादप और सूक्ष्मजीव न तो पृथक रह सकते हैं और न ही रहते हैं, बल्कि जैव समुदाय बनाने के लिए विभिन्न तरीकों से परस्पर क्रिया करते हैं। न्यूनतम समुदायों में भी, अनेक परस्पर क्रियाशील अनुबंधताएँ होती हैं, हालाँकि सभी बंधताएँ आसानी से दिखाई नहीं देती।

अंतराजातीय पारस्परिक क्रियाएँ दो भिन्न जातियों की समिष्टियों की पारस्परिक क्रिया से उत्पन्न होती हैं। वे क्रियाएँ एक जाति या दोनों जातियों के लिए हितकारी, हानिकारक या उदासीन (न हानिकारक न लाभदायक) हो सकती हैं। लाभदायक पारस्परिक क्रियाओं के लिए '+' चिह्न तथा हानिकारक के लिए '-' चिह्न और उदासीन के लिए '0' चिह्न से दर्शाएँ। आइए! अंतराजातीय पारस्परिक क्रियाओं के सभी संभावित परिणामों पर विचार करें। (सारणी 11.1)

 जाति अ
 जाति ब
 पारस्परिक क्रिया का नाम

 +
 +
 सहोपकारिता

 स्पर्धा

 +
 परभक्षण

 +
 परजीविता

 +
 0
 सहभोजिता (कमन्सेलिज्म)

 अंतरजातीय परजीविता (एमेन्सेलिज्म)

सारणी 11.1 समष्टियों की पारस्परिक क्रिया

एक दूसरे से पारस्परिक क्रिया में सहोपकारिता में दोनों जातियों को लाभ होता है और स्पर्धा में दोनों को हानि होती है। परजीविता और परभक्षण दोनों में केवल एक जाति को लाभ होता है (क्रमश: परजीवी और परभक्षी को) और पारस्परिक क्रिया दूसरी जाति (क्रमश: परपोषी और शिकार) के लिए हानिकारक है। ऐसी पारस्परिक क्रिया जिसमें एक जाति को लाभ होता है और दूसरी को न लाभ होता है न हानि। उसे सहभोजिता कहते हैं। दूसरी ओर, अंतरजातीय परजीविता में एक जाति को हानि होती है जबिक दूसरी जाति–अप्रभावित रहती है। परभक्षण, परजीविता और सहभोजिता इन तीनों की एक साझा विशेषता है — पारस्परिक क्रिया करने वाली जातियाँ निकटता से साथ-साथ रहती हैं।

(क) परभक्षण — यदि किसी समुदाय में पादपों को खाने के लिए प्राणी ही न हों तो स्वपोषी जीवों द्वारा स्थिर की गई उस सारी ऊर्जा का क्या होगा? परभक्षण को आप प्रकृति का ऐसा तरीका सोच सकते हैं जिसमें पादपों द्वारा स्थिर की गई ऊर्जा उच्चतर पोषी स्तरों को स्थानांतरित होती है। जब हम परभक्षी और

शिकार के बारे में सोचते हैं तो शायद बाघ और हरिण का उदाहरण सहज ही हमारे दिमाग में आता है, लेकिन बीज को खाने वाली गोरैया भी परभक्षी से कम नहीं। हालाँकि पौधों को खाने वाले प्राणियों को शाकाहारी के रूप में अलग श्रेणी में रखा जाता है, लेकिन सामान्य पारिस्थितिक संदर्भ में वे भी परभक्षी से ज्यादा भिन्न नहीं हैं।

पोषी स्तरों तक ऊर्जा स्थानांतरण के लिए संनाल ('कंड्यूट') के रूप में कार्य करने के अलावा, परभक्षी एक दूसरी महत्त्वपर्ण भिमका भी निभाते हैं। वे शिकार समिष्ट को नियंत्रण रखते हैं। अगर परभक्षी नहीं होते तो शिकार जातियों का समष्टि घनत्व बहुत ज्यादा हो जाता और परितंत्र में अस्थिरता आ जाती । जब किसी भौगोलिक क्षेत्र में कुछ विदेशज जातियाँ लाई जाती हैं तो वे आक्रामक हो जाती हैं और तेजी से फैलने लगती हैं क्योंकि आक्रांत भूमि में उसके प्राकृतिक परभक्षी नहीं होते। 1920 के आरंभ में आस्टेलिया में लाई गई नागफनी ने वहाँ लाखों हेक्टेयर प्रक्षेत्र में तेजी से फैलकर तबाही मचा दी। अंत में नागफनी खाने वाले परभक्षी (एक प्रकार का शलभ) को उसके प्राकृतिक आवास ऑस्ट्रेलिया लाए जाने के बाद ही आक्रामक नागफनी को नियंत्रित किया जा सका। कृषि पीडकनाशी के नियंत्रण (पेस्ट कंट्रोल) में अपनाए गए जैव नियंत्रण विधियाँ परभक्षी की समष्टि नियमन की योग्यता पर आधारित हैं। परभक्षी, स्पर्धी शिकार जातियों के बीच स्पर्धा की तीव्रता कम करके किसी समुदाय में जातियों की विविधता (डाइवर्सिटी) बनाए रखने में भी सहायता करता है। अमेरीकी प्रशांत तट की चट्टानी अंतराज्वारीय (इंटरटाइडल) समुदायों में पाइसैस्टर तारामीन एक महत्त्वपूर्ण परभक्षी है। प्रयोगशाला के बाहर किए गए एक प्रयोग में जब एक बंद अंतराज्वारीय क्षेत्र से सभी तारामीन हटा दी गई तो अंतराजातीय स्पर्धा के कारण एक साल में ही अकशेरूकियों की 10 से अधिक जातियाँ विलुप्त हो गई।

अगर परभक्षी ज्यादा ही दक्ष है और अपने शिकार का अतिदोहन करता है तो हो सकता है शिकार विलुप्त हो जाए और इसके बाद खाने के अभाव में परभक्षी भी विलुप्त हो जाएगा। यही कारण है कि प्रकृति में परभक्षी 'विवेकी' हैं। परभक्षण के प्रभाव को कम करने के लिए शिकारी जातियों ने विभिन्न रक्षा विधियाँ विकसित कर ली हैं। कीटों और मेंढकों की कुछ जातियों परभक्षी द्वारा आसानी से पहचान लिए जाने से बचने के लिए गुप्तरूप से रंगीन (छद्मावरण) होती हैं। कुछ शिकार जातियाँ विषैली होती हैं और इसलिए परभक्षी उन्हें नहीं खाते। मॉनार्क तितली के शरीर में विशेष रसायन होने के कारण यह अपने परभक्षी (पक्षी) के लिए बहुत की अरूचिकर, यानी स्वाद में खराब है। यह दिलचस्प है कि तितली इस रसायन को अपनी इल्ली (कैटरिपलर) अवस्था में विषैली खरपतवार खाकर प्राप्त करती है।

पौधों के लिए शाकाहारी प्राणी परभक्षी हैं। लगभग 25 प्रतिशत कीट पादपभक्षी (फाइटोफैंगस) हैं अर्थात् वे पादप रस और पादपों के अन्य भाग

Y

खाते हैं। पादपों के लिए यह समस्या विशेष रूप से गंभीर है; क्योंकि वे अपने परभिक्षयों से दूर नहीं भाग सकते जैसा कि प्राणी कर सकते हैं। इसलिए पादपों ने शाकाहारियों से बचने के लिए आश्चर्यजनक रूप से आकारिकीय और रासायनिक रक्षाविधियाँ विकसित कर ली हैं। रक्षा के सबसे सामान्य आकारिकीय साधन कांटे (ऐकेशिया, कैक्टस)। बहुत से पादप ऐसे रसायन उत्पन्न और भंडारित करते हैं जो खाए जाने पर शाकाहारियों को बीमार कर देते हैं, पाचन का संदमन करते हैं, उनके जनन को भंग कर देते हैं या मार तक देते हैं। आपने परित्यक्त खेतों में उग रही कैलोट्रोपिस खरपतवार अवश्य देखी होगी। यह पौधा अत्यधिक विषैला हृदय ग्लाइकोसाइड उत्पन्न करता है और इसी कारण आपने कभी भी किसी पशु या बकरी को इस पौधे को चरते हुए नहीं देखा होगा। रासायनिक पदार्थों की व्यापक किसमें; जिन्हें हम पौधों से व्यापारिक पैमाने पर निष्कर्षित करते हैं (निकोटीन, कैफीन, क्वीनीन, स्ट्रिकनीन, अफीम, आदि)। वे पादपों द्वारा उत्पन्न होते हैं। वास्तव में ये रसायन चारकों (ग्रेजर) से बचने की रक्षाविधियाँ हैं।

(ख) स्पर्धा — जब डार्विन ने प्रकृति में जीवन-संघर्ष और योग्यतम की उत्तरजीविता के बारे में कहा तो वह निश्चयी (कायल) था कि जैव विकास में अंतरजातीय स्पर्धा एक शक्तिशाली बल है। आमतौर पर यह माना जाता है कि स्पर्धा उस समय शरू होती है जब निकट रूप से संबंधित जातियाँ उन्हीं संसाधनों के लिए स्पर्धा करती हैं जो सीमित हैं, लेकिन यह पूरी तरह से सच नहीं है। पहली बात तो यह है कि ये असंबंध जातियाँ भी एक ही संसाधन के लिए स्पर्धा कर सकती हैं। उदाहरण के लिए दक्षिण अमेरीका की कुछ उथली झीलों में आगंतुक फ्लेमिंगो और वहीं की आवासी मछलियाँ साझा आहार. झील में प्राणिप्लवक के लिए स्पर्धा करती हैं। दसरी बात है, स्पर्धा के संसाधनों का सीमित होना आवश्यक है। बाधा स्पर्धा में एक जाति की अशनदक्षता दूसरी जाति की बाधाकारी और संदमनी उपस्थिति के कारण घट सकती है। भले ही संसाधन (आहार और स्थान) पर्याप्त मात्रा में उपलब्ध हों। इसलिए. स्पर्धा को एक ऐसे प्रक्रम के रूप में परिभाषित किया जा सकता है. जिसमें एक जाति की योग्यता (वृद्धि की इंट्रींजिक दर 'r' के रूप में मापित) दूसरी जाति की उपस्थिति में महत्त्वपूर्ण रूप से घट जाती है। प्रयोगशाला में किए गए प्रयोगों में यह दर्शाना अपेक्षाकृत आसान है, जैसा कि गाँसे और दसरे पारिस्थिकविज्ञों ने किया. कि जब संसाधन सीमित होते हैं तो स्पर्धीरूप से उत्तम जातियाँ अंतत: दूसरी जातियों को विलुप्त कर देगी, लेकिन प्रकृति में इस प्रकार के स्पर्धी बहिष्कार के साक्ष्य हमेशा निर्णायक नहीं होते। लेकिन कुछ मामलों में ठोस और स्वीकार्य परिस्थितिजन्य साक्ष्य मिलते तो हैं। गैलापैगो द्वीप में बकरियाँ लाई जाने के बाद एबिंग्डन कुछ एक दशक (10 वर्ष) में ही विलुप्त हो गए जिसका स्पष्ट कारण था। बकरियों की

गॉसे 'स्पर्धी अपवर्जन नियम' यह बतलाता है कि एक ही तरह के संसाधनों के लिए स्पर्धा करने वाली दो निकटतम से संबंधित जातियाँ अनंतकाल तक साथ-साथ नहीं रह सकती और स्पर्धीरूप से घटिया जाति अंतत: विलुप्त कर दी जाएगी। ऐसा तभी होगा जब संसाधन सीमाकारी होंगे अन्यथा नहीं। अधिक वर्तमान अध्ययन स्पर्धा के ऐसे घोर सामान्यीकरण की पुष्टि नहीं करते। वे प्रकृति में अंतराजातीय स्पर्धा होने को नकारते तो नहीं पर वे इस ओर ध्यान दिलाते हैं स्पर्धा सामना करने वाली जातियाँ ऐसी क्रियाविधि विकसित कर सकती हैं जो बहिष्कार की बजाय सह-अस्तित्व को बढ़ावा दे। ऐसी एक क्रियाविधि 'संसाधन विभाजन' है। अगर दो जातियाँ एक ही संसाधन के लिए स्पर्धा करती हैं तो उदाहरण के लिए वे अशन (आहार) के लिए भिन्न समय अथवा भिन्न चारण प्रतिरूप चुनकर स्पर्धा से बच सकती हैं। मैक आर्थर ने दिखाया कि एक ही पेड़ पर रह रहीं फुदकी (वार्बलर) की पाँच निकटत: संबंधित जातियाँ स्पर्धा से बचने में सफल रहीं और पेड़ की शाखाओं और वितान पर कीट शिकार के लिए तलाशने की अपनी चारण गतिविधियों में व्यावहारिक भिन्ताओं के कारण साथ – साथ रह सकीं।

परजीविता — यह मानते हुए कि जीवन के परजीवी प्रणाली में रहने और खाने की मुफ्त व्यवस्था है तो यह आश्चर्य की बात नहीं है कि परजीविता, पादपों से लेकर उच्चकोटि कशेरूिकयों तक इतने अधिक वर्गिकीय समूहों में विकसित हुआ है। अनेक परजीवी परपोषी-विशिष्ट के रूप में विकसित हुए हैं (वे परपोषी की केवल एक ही जाित पर परजीवी जीवन बिताते हैं), इस प्रकार परपोषी और परजीवी दो सह-विकसित होते हैं; अर्थात् एक ही परपोषी जाित के साथ सफल होने के लिए अगर परपोषी परजीवी को अस्वीकार करने या प्रतिरोध करने के विशेष साधन विकसित करता है तो परजीवी को उन साधनों को निष्प्रभावी और व्यर्थ करने के लिए साधन विकसित करने होंगे। अपनी जीवन शैली के अनुरूप परजीवी ने विशेष अनुकूल विकसित किए जैसे कि अनावश्यक संबंधी अंगों का अभाव परपोषी से चिपकने के लिए आसंजी अंगों या चूषकों की उपस्थिति पाचन तंत्र का लोप तथा उच्च

जनन क्षमता। परजीवियों का जीवन चक्र प्राय: जिटल होता है जिसमें एक या दो मध्यस्थ पोषक अथवा रोगवाहक होते हैं जो इसके प्राथमिक परपोषी के परजीवीकरण को सुगम बनाते हैं। मानव यकृत पर्णाभ (लिवर फ्लूक) (पर्णाभ कृमि परजीवी — ट्रिमेटोड पैरासाइट) अपने जीवन चक्र को पूरा करने के लिए दो मध्यस्थ पोषकों जैसे घोंघा और मछली पर निर्भर करता है। मलेरिया परजीवी को दूसरे परपोषियों पर फैलने के लिए रोगवाहक (मच्छर) की आवश्यकता पड़ती है। अधिकांश परजीवी, परपोषी को हानि पहुँचाते हैं; परपोषी की उत्तरजीविता, वृद्धि और जनन को कम कर सकते हैं और उसके समष्टि घनत्व को घटा सकते हैं। वे परपोषी को कमजोर बनाकर उसे, परभक्षण के लिए अधिक असुरक्षित बना देते हैं। क्या आप ऐसा मानते हैं कि एक आदर्श परजीवी, परपोषी को हानि पहुँचाए बिना, पनप सकने योग्य होना चाहिए? तब प्राकृतिक वरण ने ऐसे पूरी तरह से अहानिकारक परजीवियों का विकास क्यों नहीं किया?

परपोषी जीव की बाह्य पृष्ठ पर अशन (आहार पूर्ति) करने वाले परजीवी, बाह्य परजीवी (एक्टोपैरासाइट) कहलाते हैं। इसके प्रसिद्ध उदाहरण मानवों पर जूँ के समूह और कुत्तों पर चिचिंडियाँ (टिक्स) हैं। अनेक समुद्री मीन बाह्य परजीवी अरित्रपादों (कॉपिपोड्स) द्वारा ग्रस्त हैं। कस्कुटा (अमरबेल) एक परजीवी पौधा है जो सामान्यत: बाड़ पादपों पर वृद्धि करता है। विकास प्रक्रिया के दौरान इसका पर्णहरित और पत्तियाँ समाप्त हो जाती हैं। यह जिस पोषी पादप पर रहता है उसी से अपना पोषण लेता है। मादा मच्छर को परजीवी नहीं माना जाता हालाँकि जनन के लिए इसको हमारे रक्त की आवश्यकता पडती है। क्या आप बता सकते हैं क्यों?

इसके विपरीत, अंत: परजीवी (एंडोपैरासाइट) वे हैं जो परपोषी के शरीर में भिन्न स्थलों यकृत, वृक्क, फुप्फुस, लाल रुधिर कोशिका, आदि पर रहते हैं। उनके आकारिकीय और शारीरिक लक्षण अत्यधिक सरलीकृत होते हैं जबिक उनके जनन शिक्त को बल देते हैं।

पक्षियों में अंड परजीविता (ब्रूड पैरासिटिज्म), परजीविता का लुभावना उदाहरण है जिसमें परजीवी पक्षी अपने अंडे परपोषी के घोंसले में देता है और परपोषी को उन अंडों को सेने (इंक्युबेट) देता है। विकास प्रक्रिया के दौरान, परजीवी पक्षी के अंडे साइज और रंग में परपोषी के अंडों के सदृश विकसित हो गए तािक परपोषी पक्षी द्वारा विजातीय अंडों को पहचान लिए जाने और घोंसले से उन्हें निकाल दिए जाने की संभावना कम हो जाए। अपने आस पास के पार्क में प्रजनन ऋतु (बसंत से ग्रीष्म ऋतु) के दौरान कोयल की गतिविधियों का पीछा कीजिए और अंड परजीविता को होते हुए देखिए।

 (घ) सहभोजिता — यह ऐसी पारस्परिक क्रिया है जिसमें एक जाति को लाभ होता है और दूसरी को न हानि न लाभ होता है। आम की शाखा पर अधिपादप Y

(एपीफाइट) के रूप में उगने वाला ऑर्किड और ह्वेल की पीठ को आवास बनाने वाले बार्नेकल को फायदा होता है जबिक आम के पेड़ और ह्वेल को उनसे कोई लाभ नहीं होता। पक्षी बगुला और चारण पशु निकट साहचर्य में रहते हैं। यदि आप कृषि फार्म वाले ग्रामीण क्षेत्र में रहते हैं तो आपको यह दृश्य देखने को मिलेगा। सहभोजिता का यह उत्कृष्ट उदाहरण है। जहाँ पशु चरते हैं उसके पास ही बगुले भोजन प्राप्ति के लिए रहते हैं क्योंकि जब पशु चलते हैं तो वनस्पित को हिलाते हैं और उसमें से कीट बाहर निकालते हैं। बगुले उन कीटों को खाते हैं अन्यथा वनस्पितक कीटों को ढूँढ़ना और पकड़ना बगुले के लिए कठिन होता। सहभोजिता का दूसरा उदाहरण समुद्री ऐनिमोन दंशन स्पर्शक (स्टिंगिंग टेंटेकल) होते हैं, जिसमें उनके बीच रहने वाली क्लाउन मछली का है। मछली को परभिक्षयों से सुरक्षा मिलती है जो दंशन स्पर्शकों से दूर रहते हैं। क्लाउन मछली से ऐनिमोन को कोई लाभ मिलता हो ऐसा नहीं लगता।

(ङ) सहोपकारिता — इस पारस्परिक क्रिया से परस्पर क्रिया करने वाली दोनों जातियों को लाभ होता है। कवक और प्रकाश संश्लेषी शैवाल या सायनोबैक्टीरिया के बीच घनिष्ठ सहोपकारी (म्यूच्युऑलिस्टिक) संबंध का उदाहरण लाइकेन में देखा जा सकता है। इसी प्रकार कवकों और उच्चकोटि पादपों की जड़ों के बीच कवकमूल (माइकोराइजी) साहचर्य है। कवक, मृदा से अत्यावश्यक पोषक तत्वों के अवशोषण में पादपों की सहायता करते हैं जबिक बदले में पादप, कवकों को ऊर्जा-उत्पादी कार्बोहाइडेट देते हैं।

सहोपकारिता के सबसे शानदार और विकास की दृष्टि से लुभावने उदाहरण पादप-प्राणी संबंध में पाए जाते हैं। पादपों को अपने पृष्प परागित करने और बीजों के प्रकीर्णन के लिए प्राणियों की सहायता चाहिए। स्पष्ट है कि पादप को जिन सेवाओं की अपेक्षा प्राणियों से है उसके लिए 'शुल्क' तो देना होगा। पुरस्कार अथवा शुल्क के रूप में परागणकारियों (पॉलिनेटर) को पराग (पॉलन) और मकरंद (नेक्टर) तथा प्रकीर्णकों को रसीले और पोषक फल देते हैं। लेकिन परस्पर लाभकारी तंत्र की 'धोखेबाजी' से रक्षा होनी चाहिए, उदाहरण के लिए, ऐसे प्राणी जो परागण में सहायता किए बिना ही मकरंद चराते हैं। अब आप देख सकते हैं कि पादप-प्राणी पारस्परिक क्रिया में सहोपकारियों के लिए प्राय: 'सह-विकास' क्यों शामिल है, अर्थात् पुष्प और इसके परागणकारी जातियों के विकास एक दूसरे से मजबूती से जुड़े हुए हैं। अंजीर के पेडों की अनेक जातियों में बर्र की परागणकारी जातियों के बीच मजबृत संबंध है (चित्र 11.4)। इसका अर्थ यह है कि कोई दी गई अंजीर जाति केवल इसके 'साथी' बर्र की जाति से ही परागित हो सकती है, बर्र की दुसरी जाति से नहीं। मादा बर्र फल को न केवल अंडनिक्षेपण (अंडे देने) के लिए काम में लेती है; बल्कि फल के भीतर ही वृद्धि कर रहे बीजों को

जीव और समष्टियाँ

चित्र 11.4 अंजीर और बर्र के बीच पारस्परिक-क्रिया दिखाते हुए (अ) बर्र द्वारा परागित अंजीर पुष्प (ब) अंजीर के फल में बर्र द्वारा दिए गए अंडे

डिंबकों (लार्वी) के पोषण के लिए प्रयोग करती है। अंडे देने के लिए उपयुक्त स्थल की तलाश करते हुए बर्र अंजीर पुष्पक्रम (इनफ्लोरेसेंस) को परागित करती है। इसके बदले में अंजीर अपने कुछ परिवर्धनशील बीज, परिवर्धनशील बर्र के डिंबकों को, आहार के रूप में देती है।

आर्किड पुष्प प्रतिरूपों की आश्चर्यचिकत कर देने वाली विविधता दर्शाते हैं जिसमें से अनेक सही परागणकारी कीट (भ्रमरों और गुंज मिक्षकाओं) को आकर्षित करने के लिए विकसित हुए हैं तािक इसके द्वारा निश्चितरूप से परागण हो सके (चित्र 11.5)। सभी आर्किड यह पुरस्कार पेश नहीं करते। ऑफ्रिस नाम भूमध्य सागरीय मेडिटेरेनियन आर्किड मिक्षका (बी) के एक जाित परागण कराने के लिए 'लैंगिक कपट' (सेक्सुअल डिसीट) का सहारा लेता है। इस पुष्प की एक पंखुड़ी साइज, रंग और चिह्नों में मादा मिक्षका से मिलती-जुलती है। नर मिक्षका इसे मादा समझकर इसकी ओर

चित्र 11.5 आर्किड पुष्प का मक्खी द्वारा परागण

सारांश

पारिस्थितिको (इकोलॉजी) जीवों की अपने पर्यावरण के अजीवी (भौतिक-रासायनिक कारकों) और जैविक घटकों (अन्य जातियों) के संबंधों का अध्ययन है। यह जीव विज्ञान की शाखा है और जीव विज्ञानीय संगठन के चार स्तरों से संबंधित है - जीव, समिष्ट, समुदाय और जीवोम (बायोम)।

प्राकृतिक वरण द्वारा विकासीय परिवर्तन समष्टि स्तर पर होता है और इसलिए समष्टि पारिस्थितिकी, पारिस्थितिकी का एक महत्त्वपूर्ण क्षेत्र है। समष्टि किसी दी गई जाति के व्यष्टियों का समह है जो सीमांकित भौगोलिक क्षेत्र में समान संसाधनों के लिए स्पर्धा करते हैं या उन संसाधनों में जन्म और मृत्यु-दरें, लिंग अनुपात और आयु-वितरण, आदि गुण होते हैं जो व्यष्टियों में नहीं होते। समष्टि में नरों और मादाओं के भिन्न आयु वर्ग का अनुपात प्राय: आयु पिरामिड के रूप में भौगोलिकत: दर्शाया जाता है। इसका आकार यह बताता है कि क्या समिष्ट स्थिर है, बढ़ रही है या घट रही है।

समिष्ट पर किसी भी कारक का पारिस्थितिक प्रभाव आमतौर पर उसकी साइज में प्रतिबिंबित होता है, जिसे जाति के अनुसार विभिन्न तरीकों (संख्या, जीवभार, आवरण प्रतिशत, आदि) से व्यक्त किया जा सकता है।

समिष्टयाँ जन्म और आप्रवासन से बढती हैं तथा मृत्यू और उत्प्रवासन से घटती हैं। जब संसाधन असीमित होते हैं तो वृद्धि प्राय: चरघातांकी है लेकिन जब संसाधन उत्तरोत्तर सीमाकारी होते जाते हैं तब वृद्धि प्रतिरूप लॉजिस्टिक (संभार तंत्रीय) हो जाती है। दोनों मामले में, वृद्धि अंतत: पर्यावरण की पोषण क्षमता से सीमित होती है। प्राकृतिक वृद्धि की इंट्रोनिजक दर (r) किसी समष्टि का वृद्धि करने की जन्मजात शक्ति की माप है।

प्रकृति में भिन्न जातियों की समष्टियाँ आवास में पृथक नहीं रहती; बल्कि कई तरह से पारस्परिक क्रिया करती हैं। दो जातियों के बीच पारस्परिक इन क्रियाओं को परिणाम के आधार पर स्पर्धा (दोनों जातियों को हानि होती है), परभक्षण और परजीविता जिसमें एक जाति को लाभ होता है जबिक दूसरी को हानि, सहभोजिता जिसमें एक को लाभ पहुँचता है और दूसरी अप्रभावित रहती है अंतरजातीय परजीविता जिसमें एक को हानि होती है और दूसरा अप्रभावित रहता है तथा सहोपकारिता जिसमें दोनों जातियों को लाभ होता है। परभक्षण एक बहुत महत्त्वपूर्ण प्रक्रम है जिसके द्वारा पोषी ऊर्जा अंतरण सुगम होता है और कुछ परभक्षी अपनी शिकार समष्टियों को नियंत्रित करने में सहायक होते हैं। पादपों ने शाकाहार के विरूद्ध आकारिकीय और रासायनिक विविध रक्षाविधियाँ विकसित की हैं। स्पर्धा में, ऐसा समझा जाता है कि उत्तम स्पर्धी घटिया स्पर्धी को विलुप्त कर देता है (स्पर्धी बहिष्कार सिद्धांत). लेकिन अनेक निकट संबंधित जातियों ने विभिन्न क्रियाविधियाँ विकसित कीं, जो उनके सह-अस्तित्व को सुगम बनाती हैं। कुछ प्रकृति में सहोपकारिता के कुछ सबसे आकर्षक मामले पादप-परागणकारी पारस्परिक क्रिया में देखे जा सकते हैं।

अभ्यास

- 1. उन गुणों को बताइए जो व्यष्टियों में तो नहीं पर समष्टियों में होते हैं।
- 2. अगर चरघातांकी रूप से (एक्पोनेन्शियली) बढ़ रही समष्टि 3 वर्ष दोगुने साइज की हो जाती है, तो समष्टि की वृद्धि की इंट्रीनिजक दर (r) क्या है?
- 3. पादपों में शाकाहारिता (हर्बिवोरी) के विरूद्ध रक्षा करने की महत्त्वपूर्ण विधियाँ बताइए।
- 4. ऑर्किड पौधा, आम के पेड़ की शाखा पर उग रहा है। ऑर्किड और आम के पेड़ के बीच पारस्परिक क्रिया का वर्णन आप कैसे करेंगे?
- 5. कीट पीड़कों (पेस्ट/इंसेक्ट) के प्रबंध के लिए जैव-नियंत्रण विधि के पीछे क्या पारिस्थितिक सिद्धांत है?
- 6. समष्टि (पॉपुलेशन) और समुदाय (कम्युनिटी) की परिभाषा दीजिए।
- 7. निम्नलिखित की परिभाषा दीजिए और प्रत्येक का एक-एक उदाहरण दीजिए
 - (क) सहभोजिता (कमेंसेलिज्म)
 - (ख) परजीविता (पैरासिटिज्म)
 - (ग) छद्मावरण (कैमुफ्लॉज)
 - (घ) सहोपकारिता (म्युचुऑलिज्म)
 - (च) अंतरजातीय स्पर्धा (इंटरस्पेसिफिक कंपीटीशन)
- 8. उपयुक्त आरेख (डायग्राम) की सहायता से लॉजिस्टिक (संभार तंत्र) समष्टि (पॉपुलेशन) वृद्धि का वर्णन कीजिए।
- 9. निम्नलिखित कथनों में परजीविता (पैरासिटिज्म) को कौन सा सबसे अच्छी तरह स्पष्ट करता है -
 - (क) एक जीव को लाभ होता है।
 - (ख) दोनों जीवों को लाभ होता है।
 - (ग) एक जीव को लाभ होता है दूसरा प्रभावित नहीं होता है।
 - (घ) एक जीव को लाभ होता है दूसरा प्रभावित होता है।
- 10. समष्टि (पॉपुलेशन) की कोई तीन महत्वपूर्ण विशेषताएँ बताइए और व्याख्या कीजिए।