2024近世代数期中小测

最懒得切换输入法的一集)

- 1.(7p) Assume that $M \triangleleft G, N \triangleleft G$,then $G/(M \cap N)$ is isomorphic to a subgroup of $(G/M) \times (G/N)$.
- 2.(7p) Prove that a non-abelian group of order 6 is S_3 .
- 3.(8p) Prove that a non-trivial group with non-trivial subgroups must be a cyclic group with a prime order.
- 4.(8p) Prove that for any $n \in \mathbb{Z}_{\leq 0}$, there are only finitely many mutually non-isomorphic groups of order n.
- 5.(10p) Assume that R is a ring. If for any element $a \in R$, $a^2 = a$ holds, then we call R a $Boole\ Ring$. Prove that a $Boole\ Ring$ must be a commutative ring, and a+a=0 holds for any $a \in R$.
- 6.(10p) Assume that G is a finite non-abelian simple group, and p is a prime number with $p \mid |G|$. Prove that G has more than one $Sylow\ p$ -subgroup.
- 7.(10p) Assume that K,H are two subgroup of G, use [K,H] to denote the group generated by $\{[k,h]|k\in K,h\in H\}$. Use $\langle K,H\rangle$ to denote the group generated by $K\cup H$. Try to prove that: (1) If $H\lhd G$ and $H\leq K$, then $K/H\leq Z(G/H)\iff [K,G]\leq H$. (2) $[K,H]\lhd\langle K,H\rangle$.
- 8.(10p) Assume that p is a factor of the order of G as G is a finite group, and N is a normal subgroup of G. If p and |G/N| are coprime, then N contains all $Sylow\ p$ -subgroups of G.
- 9.(10p) Assume that N is a normal subgroup of G, and G act transitively on Ω , prove that under this action, all orbits of N acts on Ω has the same length.
- 10.(10p) Find all the maximal ideals and prime ideals of ring $2\mathbb{Z}$.
- 11.(10p) Prove that if R is a integral domain but not a field, then R contains a ideal which is not a principal ideal.