U01 GTP ASS - 2021

1. Unidad 1: Funciones de Variable Compleja

Objetivos: Adquirir dominio en el manejo de funciones de variable compleja. Aplicar los teoremas correspondientes a límites y continuidad. Determinar las condiciones de analiticidad de una función de variable compleja, dominios y regiones.

PROPIEDADES DE FUNCIONES

1. Exprese w(z) en términos de sus partes real e imaginaria, w(z) = u(x,y) + Jv(x,y), para las siguientes funciones:

a)
$$w(z) = z^2 + 6z + 10$$
;

b)
$$w(z) = \frac{z}{z+1}$$
;

c)
$$w(z) = e^{z^2}$$
;

d)
$$w(z) = \overline{z} e^z$$
.

2. En cada caso, evalúe la función en los puntos indicados y represente los correspondientes valores en los planos \mathcal{Z} y \mathcal{W} :

a)
$$w(z) = z(2-z)$$
 en $z_1 = 1 + J$ y $z_2 = 2 - J2$;

b)
$$w(z) = \frac{(1+z)}{(1-z)}$$
 en $z_1 = J$ y $z_2 = 1 - J$;

c)
$$w(z) = \frac{(1+z)}{(1-\overline{z})}$$
 en $z_1 = 1 - J$, $z_2 = w(z_1)$ y $z_3 = w(z_2)$.

d)
$$w(z) = \frac{Re(z) \ Im(z)}{z}$$
 en $z_1 = 1$ y $z_2 = 1/w(z_1)$.

Sugerencia: Comience expresando cada función en términos de sus partes real e imaginaria.

3. Sea

$$f(z) = \frac{2z+1}{3z-2}, \quad z \in \mathbb{C} \setminus \{\frac{2}{3}\}.$$

Calcule las siguientes funciones:

a)
$$g(z) = f(1/z)$$
;

b)
$$h(z) = f(f(z));$$

c)
$$r(z) = f(g(z));$$

d)
$$t(z) = g(1/g(z))$$
.

En cada caso determine el dominio maximal de definición.

LIMITE DE FUNCIONES

4. Calcule los siguientes límites:

a)
$$\lim_{z\to J} (z^2 + 2z)$$
;

b)
$$\lim_{z\to 1+J} \frac{z^2-z+1-J}{z^2-2z+2}$$
;

c)
$$\lim_{z \to J/2} \frac{(2z-3)(4z+J)}{(Jz-1)^2}$$
;

d)
$$\lim_{z\to J_2} (Jz^4 + 3z^2 - J_{10});$$

e)
$$\lim_{z\to 2+J} \frac{1-z}{1+z}$$
;

f)
$$\lim_{z \to e^{J\frac{\pi}{4}}} \frac{z^2}{z^4 + z + 1}$$
;

g)
$$\lim_{z \to e^{J\frac{\pi}{3}}} \frac{(z - e^{J\frac{\pi}{3}})z}{z^3 + 1}$$
;

h)
$$\lim_{z\to J} \frac{z^2+1}{z^6+1}$$
.

Sugerencia: En los casos de cocientes con límites indeterminados, determine las factorizaciones apropiadas del numerador y el denominador. Use la regla de L'Hôpital, para verificar los resultados.

5. Evalue los siguientes límites usando la regla de L'Hôpital:

a)
$$\lim_{z\to J} \frac{(z-J)+(z^2-1)}{z^2-3Jz-2}$$
;

b)
$$\lim_{z\to J} \frac{z^3+J}{(z^2+1)z}$$
;

a)
$$\lim_{z \to J} \frac{(z-J)+(z^2-1)}{z^2-3Jz-2}$$
; b) $\lim_{z \to J} \frac{z^3+J}{(z^2+1)z}$;
c) $\lim_{z \to m\pi} (z-m\pi) \frac{e^z}{\mathrm{sen}(z)}$, $m \in \mathbb{Z}$; d) $\lim_{z \to 0} \frac{z-\mathrm{sen}(z)}{z^3}$.

d)
$$\lim_{z\to 0} \frac{z-\sin(z)}{z^3}$$

6. Demuestre los siguientes límites:

a)
$$\lim_{z\to\infty} \frac{z+1}{z^2-1} = 0$$
;

b)
$$\lim_{z\to\infty} \frac{z^2+z}{Jz^2-(1-J)z-1} = -J;$$

c)
$$\lim_{z \to J^{\frac{\pi}{2}}} \frac{1}{e^z - J} = \infty$$
;

d)
$$\lim_{z\to\infty} (e^{1/z} - 1)^{-1} = \infty$$
.

Recuerde que $\lim_{z\to\infty} f(z) = \lim_{z\to 0} f(1/z)$ (si el límite existe), en tanto $\lim_{z\to z_0} f(z) =$ ∞ es equivalente a $\lim_{z\to z_0} (1/f(z)) = 0$.

7. Demuestre que los siguientes límites no existen:

a)
$$\lim_{z\to 0} \frac{\overline{z}}{z}$$
;

b)
$$\lim_{z\to\infty} e^{-z}$$
;

c)
$$\lim_{z\to 0} \left(\frac{x^2+x}{x+y} + J \frac{y^2+y}{x+y} \right);$$

d)
$$\lim_{z \to J} \frac{\operatorname{sen}(z+J)}{\operatorname{sen}(z-J)}$$
.

DERIVADA Y ANALITICIDAD DE FUNCIONES

8. Recordando que

$$f'(z) := \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

(cuando el límite existe y es finito), calcule la derivada de las siguientes funciones en los puntos indicados:

a)
$$f(z) = \frac{1+z}{1-z}$$
, $z = -1$; b) $f(z) = z^3$, $z = 0$;

b)
$$f(z) = z^3$$
, $z = 0$:

c)
$$f(z) = 3z^2 - 4Jz - 5 + J$$
, $z = 2$; d) $f(z) = 3z^{-2} - 2$, $z = 1 + J$.

d)
$$f(z) = 3z^{-2} - 2$$
, $z = 1 + J$

9. Para cada una de las siguientes funciones determine los puntos del plano complejo z = x + Jy donde son derivables, obtenga la expresión de f'(z) y diga cuáles de ellas son analíticas en algún dominio:

a)
$$f(z) = z \ Im(z)$$
;

b)
$$f(z) = x^2 + Jy^2$$
;

c)
$$f(z) = 1/\bar{z}$$
;

d)
$$f(z) = (x^2 - y^2) + J(2xy + x^2 - y^2)$$
;

e)
$$f(z) = x^3 + J(1 - 3y + 3y^2 - y^3)$$
; f) $f(z) = e^x \cos(y) + Je^x \sin(y)$;

f)
$$f(z) = e^x \cos(y) + Je^x \sin(y)$$
;

g)
$$f(z) = (z + \overline{z})^2 + J(z - \overline{z});$$
 h) $f(z) = (z^2 - 2)e^{-z};$

h)
$$f(z) = (z^2 - 2)e^{-z}$$
:

i)
$$f(z) = z \overline{z}$$
;

j)
$$f(z) = z^3 + 3z^2 - 6z - 6$$
.

- 10. Usando las ecuaciones de CAUCHY-RIEMANN, verifique que las siguientes funciones **no** son derivables en los puntos z = x + Jy del plano complejo indicados en cada
 - a) $f(z) = z \overline{z}$, para todo $z \in \mathbb{C}$;
 - b) $f(z) = |z|^2$, para todo $z \neq 0$ (¿qué sucede en z = 0? Explique);
 - c) $f(z) = 2Re(z) + JRe(z)[Im(z)]^2$, para todo $z \in \mathbb{C}$;
 - d) $f(z) = \overline{z}^2$, para todo $z \neq 0$ (explique qué sucede en z = 0).
 - e) $f(z) = e^{\overline{z}}$, para todo $z \in \mathbb{C}$.

Sugerencia: Exprese cada función en términos de sus partes real e imaginaria.

11. Considerando la función

$$f(z) = [Re(z)]^2 + J[Im(z)]^2$$
,

determine el conjunto de puntos en donde:

- (a) satisface las ecuaciones de Cauchy-Riemann;
- (b) es derivable;
- (c) es analítica. Explique.
- 12. Recordando que

$$\cos(z) := \frac{1}{2}[e^{Jz} + e^{-Jz}] \ \ \text{y} \ \ \sin(z) := -\frac{J}{2}[e^{Jz} - e^{-Jz}]$$

- (a) Calcular la derivada f'(z);
- (b) Determinar las componentes armónicas conjugadas f(z+Jy)=u(x,y)+Jv(x,y);
- (c) Verificar $\begin{cases} f'(z) = \frac{\partial u}{\partial x}(x,y) + J\frac{\partial v}{\partial x}(x,y) \\ f'(z) = -J\left[\frac{\partial u}{\partial y}(x,y) + J\frac{\partial v}{\partial y}(x,y)\right] \end{cases}$

para las siguientes funcione

a)
$$f(z) = e^z$$
:

b)
$$f(z) = \operatorname{sen}(z)$$
;

a)
$$f(z) = e^z$$
; b) $f(z) = \text{sen}(z)$; c) $f(z) = \cos(z)$; d) $f(z) = \tan(z)$;

d)
$$f(z) = \tan(z)$$

13. Similarmente, sabiendo que

$$\cosh(z) := \frac{1}{2}[e^z + e^{-z}], \text{ y } \operatorname{senh}(z) := \frac{1}{2}[e^z - e^{-z}]$$

- (a) Calcular la derivada f'(z);
- (b) Determinar las componentes armónicas conjugadas f(x+Jy) = u(x,y)+Jv(x,y);
- (c) Verificar las identidades $\begin{cases} f'(z) = \frac{\partial u}{\partial x}(x,y) + J \frac{\partial v}{\partial x}(x,y) \\ f'(z) = -J \left[\frac{\partial u}{\partial y}(x,y) + J \frac{\partial v}{\partial y}(x,y) \right] \end{cases}$

para las siguientes funciones:

a)
$$f(z) = \operatorname{senh}(z)$$
;

b)
$$f(z) = \cosh(z)$$
;

c)
$$f(z) = \tanh(z)$$
;

En cada caso determine el correspondiente dominio de analiticidad.

14. Verificar las siguientes identidades:

a)
$$\begin{cases} \cos^2(z) + \sin^2(z) = 1\\ \cosh^2(z) - \sinh(z)^2 = 1 \end{cases}$$

b)
$$\begin{cases} \cos^2(z) = \frac{1}{2} + \frac{1}{2}\cos(2z) \\ \sin^2(z) = \frac{1}{2} - \frac{1}{2}\cos(2z) \end{cases}$$

c)
$$\begin{cases} sen(-z) = -sen(z) \\ senh(-z) = -senh(z) \end{cases}$$

d)
$$\begin{cases} \cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w) \\ \cosh(z+w) = \cosh(z)\cosh(w) - \sinh(z)\sinh(w) \end{cases}$$

e)
$$\begin{cases} \cos(-z) = \cos(z) \\ \cosh(-z) = \cosh(z) \end{cases}$$

f)
$$\begin{cases} sen(z+w) = sen(z)\cos(w) + \cos(z)sen(w) \\ senh(z+w) = senh(z)\cosh(w) + \cosh(z)senh(w) \end{cases}$$

15. Halle todos los valores de z para cada una de las siguientes igualdades:

a)
$$\cos(z) = 2$$
;

b)
$$sen(z) = cosh(4)$$

c)
$$\cos(z) = \sinh(4)$$

d)
$$senh(z) = -J$$

FUNCIONES DE TIPO LOGARITMO Y ARMONICAS

Nota: Recuerde que una rama de la función logaritmo se define como

$$\log_{\alpha}(z) := \ln|z| + J \arg_{\alpha}(z)$$

para $z \neq 0$ y $\arg_{\alpha}(z) \in (\alpha, 2\pi + \alpha)$ en donde $\alpha \in \mathbb{R}$. Así definida, \log_{α} es analítica en plano cortado $\mathbb{C} \setminus \{r e^{J\alpha} : r \geq 0\}$. La **rama principal del logaritmo** corresponde (usualmente, y así se hará en este curso, aunque hay variantes en la literatura) a elegir $\alpha = -\pi$ y se denota Log. Dicho de otro modo,

$$Log(z) = \ln r + J\theta$$
 tal que $z = r e^{J\theta}; r > 0; \theta \in (-\pi, \pi).$

16. Calcule todos los valores posibles de $log_{\alpha}(z)$ y determine el (único) valor de Log(z) (si existe) cuando es evaluada en los siguientes puntos:

a)
$$z = -10$$
;

b)
$$z = -J4$$
;

c)
$$z = 1/2$$
.

d)
$$z = e + J\pi$$
;

U01 GTP ASS - 2021

17. Determine el dominio maximal de analiticidad de las siguientes funciones:

- a) f(z) = Log(z (3 + J4));
- b) $f(z) = Log(e^{J\frac{\pi}{4}}z J)$;
- c) $f(z) = Log(z^2 + 1)$;
- d) f(z) = Log(Log(z)).

Nota: Determine el conjunto maximal $\mathbb{F}\subset\mathbb{C}$ del plano complejo en el cual se cumple la identidad

$$log_{\alpha}(e^z) = z, \quad z \in \mathbb{F},$$

en donde $\log_{\alpha}(w)$ es la rama del logaritmo correspondiente a $\arg_{\alpha}(w) \in (\alpha, 2\pi + \alpha)$. ¿Bajo cuáles condiciones se cumple la identidad $\exp(\log_{\alpha}(z)) = z$? Explique.

La **potencia compleja** de $z, w \in \mathbb{C}$ se define como

$$z^w := e^{w \log_{\alpha}(z)}$$

Como tal, es multivaluada salvo que cuando se restringe log_{α} a una rama, en cuyo caso $f_{\alpha}(z) = z^c$ deviene analítica en el dominio de analiticidad de la rama del logaritmo elegida. El **valor principal** de z^c corresponde a elegir la rama principal del logaritmo; es decir,

$$z^w := e^{w \ Log(z)} \text{ con } \arg(z) \in (-\pi, \pi).$$

18. Calcule todos los valores de las siguientes potencias complejas y determine el valor principal:

a) 1^{J2} ;

b) $(\sqrt{3} + J)^{1-J2}$;

c) $(e^{J})^{J}$;

d) $(Log(J))^{\pi/2}$.

19. Calcule todos los valores de las siguientes formulas:

a) $z^{1+J} - 3 + J4 = 0$;

- b) $(\sqrt{3} + J)^{1-J2}$:
- c) $z^{J/5} + 16 J16\sqrt{3} = 0$;
- d) $z^{J/6} + J27 = 0$.

20. Usando la rama principal del logaritmo en cada caso, calcule la derivada de las siguientes funciones y evalúe el resultado en el punto indicado:

- a) $f(z) = z^{1/3+J}$, z = -J8;
- b) $f(z) = z^z$, z = J;
- c) $f(z) = J^{e^z}, \quad z = 1 + J;$
- d) $f(z) = z^{sen(z)}, \quad z = J.$

21. Para cada una de las siguientes funciones, determine la región en la cual cada una es armónica, y en cada caso encuentre una función armónica conjugada:

- a) u(x,y) = 2x(1-y);
- b) $u(x,y) = 2x x^3 + 3xy^2$;
- c) $u(x, y) = \operatorname{senh}(x)\operatorname{sen}(y)$;
- d) $u(x,y) = y/(x^2 + y^2)$.