SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

ACADEMIC YEAR 2019-2020 SEMESTER 1 DIGITAL SIGNAL PROCESSING

TUTORIAL 14

- 1. To design a lowpass digital filter with $\omega_p = 0.24\pi$, $\omega_s = 0.68\pi$, $\alpha_p = 1$ dB, and $\alpha_s = 24$ dB using bilinear transformation $s \to k \left(\frac{1-z^{-1}}{1+z^{-1}}\right)$, we have to first design a prototype lowpass analog filter.
- (a) If the lowpass analog filter has a passband edge $F_p = 10$ Hz, determine the value of k, and the stopband edge F_S of the analog prototype filter.
- (b) Using k = 10 in the bilinear transformation, determine F_p and F_s of the analog prototype filter.
- 2. A chebyshev lowpass analog filter meeting the analog specification of question 1(b) is given by

$$H_a(s) = \frac{15.4035s^{-2}}{1 + 4.3463s^{-1} + 17.2830s^{-2}}$$

Use bilinear transformation to transform the analog filter into the lowpass digital filter.

- 3. Let $H_{LP}(z)$ be an IIR lowpass transfer function with a zero (pole) at $z=z_k$. Let $H_D(\hat{z})$ denote the lowpass transfer function obtained by lowpass-to-lowpass transformation given by $z^{-1}=\frac{\hat{z}^{-1}-\alpha}{1-\alpha\hat{z}^{-1}}$, which moves the zero (pole) at $z=z_k$ of $H_{LP}(z)$ to a new location $\hat{z}=\hat{z}_k$. Express \hat{z}_k in terms of z_k . If $H_{LP}(z)$ has a zero at z=-1, show that $H_D(\hat{z})$ also has a zero at z=-1.
- 4. A second-order lowpass IIR digital filter with a 3-dB cutoff frequency at $\omega_c = 0.55\pi$ has a transfer function

$$G_{LP}(z) = \frac{0.34(1+z^{-1})^2}{1+0.1842z^{-1}+0.1776z^{-2}}$$

Design a second-order highpass filter $H_{HP}(z)$ with a 3-dB cutoff frequency at $\hat{\omega}_c = 0.45\pi$ by the lowpass-to-highpass spectral transformation.

5. A third-order elliptic highpass filter with a passband edge at $\omega_p = 0.52\pi$ has a transfer function

$$G_{HP}(z) = \frac{0.2397(1 - 1.5858z^{-1} + 1.5858z^{-2} - z^{-3})}{1 + 0.3272z^{-1} + 0.7459z^{-2} + 0.179z^{-3}}.$$

Design a highpass filter $H_{HP}(z)$ with a passband edge at $\widehat{\omega}_p = 0.48\pi$ by transforming the above highpass transfer function using the lowpass-to-lowpass spectral transformation.

6. Let $h_d[n]$, $-\infty < n < \infty$, denote the impulse response samples of an ideal zero-phase lowpass filter with a frequency response $H_d(e^{j\omega})$. It has been shown that the frequency response $H(e^{j\omega})$ of the zero-phase FIR filter h[n], -M < n < M, obtained by multiplying $h_d[n]$ with a rectangular window $w_R[n]$, -M < n < M,

has the least integral-squared error $E_R = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| H(e^{j\omega}) - H_d(e^{j\omega}) \right|^2 d\omega$. Let E_{Hann} denote the

integral-squared error if a length-(2M + 1) Hanning window is used to develop the FIR filter. Determine an expression for the excess error $E_{excess} = E_R - E_{Hann}$.

- 7. Design causal FIR filters with the smallest length meeting the following specification using the approach based on fixed window function.
 - (a) Lowpass filter, $\omega_p = 0.65\pi$, $\omega_s = 0.76\pi$, $\delta_p = 0.002$, $\delta_s = 0.004$.
 - (b) Highpass filter, $\omega_p = 0.58\pi$, $\omega_s = 0.42\pi$, $\delta_p = 0.008$, $\delta_s = 0.01$.
 - (c) bandpass filter, $\omega_{p1}=0.4\pi$, $\omega_{p2}=0.55\pi$, $\omega_{s1}=0.25\pi$, $\omega_{s2}=0.75\pi$, $\delta_p=0.02$, $\delta_{s1}=0.006$, $\delta_{s2}=0.008$, where δ_{s1} and δ_{s2} are, respectively, the ripple in the lower and upper stopbands.
 - (d) bandstop filter $\omega_{p1}=0.33\pi$, $\omega_{p2}=0.8\pi$, $\omega_{s1}=0.5\pi$, $\omega_{s2}=0.7\pi$, $\delta_{p1}=0.04$, $\delta_{p2}=0.04$, $\delta_{s}=0.03$, where δ_{p1} and δ_{p2} are, respectively, the ripple in the lower and upper passbands.
- 8. A lowpass FIR filter of order N=71 is to be designed with a transition band given by $\omega_s \omega_p = 0.04\pi$ with minimax criteria. Determine the approximate value of the stopband attenuation α_s in dB and the corresponding stopband ripple δ_s of the designed filter if the filter order is estimated using each of the following formulas: (a) Kaiser's formula, (b) Bellanger's formula. Assume the passband and stopband ripples to be the same.
- 9. Repeat Problem 8 if the filter is designed using the Kaiser's window-based method.