ESERCIZI DI MDP PER IL 6 OTTOBRE 2021

- (1) Quanti sono i numeri tra 0 e 700 che non sono divisibili né per 2 né per 5, né per 7?
- (2) Quante sono le disposizioni di lunghezza 5 in $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ in cui compaiono almeno due cifre minori di 5?
- (3) Quante sono le disposizioni di lunghezza 6 in $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ in cui compaiono 3 cifre pari e 3 cifre dispari?
- (4) Quante sono le sequenze in $\{1, 2, 3, 4, 5, 6\}$ di lunghezza 4? Quelle in cui la somma delle cifre è pari? Quelle in cui la somma delle cifre è multiplo di 3?
- (5) Quanti sono i sottoinsiemi di $\{1,2,3,4,5,6\}$ che contengono almeno uno tra 5 e 6?
- (6) Quanti sono i sottoinsiemi di $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ che se contengono i allora non contengono 11 i? (cioè non possono contenere ad esempio sia 1 che 10, non possono contenere sia 2 che 9, ecc.)
- (7) Stabilire la cardinalitá del seguente insieme:

$$A = \{(a, b, c) : a, b, c \in \mathbb{Z}, 0 < a < 6, b + a = 4, -3 < c - a < 3\}$$

(8) Stabilire la cardinalitá del seguente insieme:

$$B = \{(a, b, c) : a, b, c \in \mathbb{Z}, 0 < a < 6, b + a = 4, -3 < 2c - a < 3\}$$

- (9) Determinare quante sono le sequenze strettamente crescenti di lunghezza 5 in {1, 2, 3, 4, 5, 6, 7, 8}. E quante sono quelle debolmente crescenti?
- (10) Determinare quanti sono gli anagrammi della parola CAPPALLACCA. Stabilire in quanti di questi anagrammi le lettere A non compaiono mai in posti vicini.

Cenni di soluzioni.

(1) Siccome 0 non fa parte di questo insieme possiamo considerare i seguenti insiemi: A=multipli di 2 tra 1 e 700, B=multipli di 5 tra 1 e 700 e C=multipli di 7 tra 1 e 700 e l'insieme di cui dobbiamo calcolare la cardinalità è il complementare dell'unione tra A,B e C nell'insieme dei numeri tra 1 e 700. Abbiamo quindi

$$|A| = 350, |B| = 140, |C| = 100,$$

$$|A \cap B| = 70, |A \cap C| = 50, |B \cap C| = 20, |A \cap B \cap C| = 10$$

Per il principio di inclusione esclusione abbiamo quindi

$$|(A \cup B \cup C)^C| = 700 - 350 - 140 - 100 + 70 + 50 + 20 - 10 = 240.$$

(2) Contiamo quelle in cui ci sono zero o una cifra minore di 5. Quelle senza cifre minori di 5 sono le disposizioni dil unghezza 5 in $\{5,6,7,8,9\}$ e sono quindi

$$(5)_5 = 120.$$

Quelle con esattamente una cifra le contiamo con scelte successive che determinano in modo univoco la disposizione. Scelgo prima l'unica cifra minore di 5 da inserire: 4 scelte. Scelgo la posizione dove inserire questa cifra: 5 scelte. Scelgo la disposizione di lunghezza 4 in $\{5,6,7,8,9\}$ da inserire nei rimanenti quattro posti: $(5)_4$ scelte. Le disposizioni in cui compare esattamente una cifra minore di 5 sono quindi $4 \cdot 5 \cdot (5)_4 = 2400$. In tutto le disposizioni con almeno due cifre minori di 5 sono quindi

$$(9)_5 - 120 - 2400 = 15120 - 120 - 2400 = 12600.$$

(3) Procediamo anche in questo caso per scelte successive: scegliamo le tre cifre pari: $\binom{4}{3} = 4$ scelte; scegliamo le cifre dispari: $\binom{5}{3} = 10$ scelte; scelgo come permutare fra di loro i 6 numeri selezionati nei primi due punti; 6! scelte. In tutto ho

$$4 \cdot 10 \cdot 6! = 28800.$$

- (4) le sequenze di lunghezza 4 sono $6^4 = 1296$. Possiamo stabilire una corrispondenza biunivoca tra le sequenze con somma pari e quelle con somma dispari. Basta infatti sostituire l'ultimo coefficiente seguendo questa regola: al posto di 1 metto 2 e viceversa, al posto di 3 metto 4 e viceversa, al posto di 6 metto 6 e viceversa. Ne segue che le sequenze lunghe 4 con somma pari sono esattamente la metá, cioé 1296/2 = 648. In alternativa si puó pensare ad un prodotto condizionato: 6 scelte per ciascuno dei primi 3 coefficienti. L'ultimo coefficiente puó essere scelta in 3 modi sia se la somma dei precedenti é pari (e in questo caso le scelte possibili sono 2,4,6), sia se la somma dei precedenti é dispari (e in questo caso le scelte possibili sono 1,3,5). Analogamente si puó procedere se si vuole che la somma dei coefficienti sia un multiplo di 3: l'ultima coordinata puó sempre essere scelta in 2 modi, quali che siano le prime tre coordinate.
- (5) Un sottoinsieme che contiene almeno uno tra 5 e 6 lo possiamo ottenere in questo modo: scegliamo un qualsiasi sottoinsieme dei numeri da 1 a 4 (2^4 possibili scelte) e poi aggiungiamo solo il 5, oppure solo il 6 oppure entrambi: abbiamo quindi in tutto $2^4 \cdot 3 = 48$. Oppure utilizzando il principio di inclusione esclusione: sia A l'insieme dei sottoinsiemi che contengono 5 e

B l'insieme sei sottoinsiemi che contengono 6. Abbiamo $|A|=|B|=2^5$ e $|A\cap B|=2^4$ da cui

$$|A \cup B| = 2^5 + 2^5 - 2^4 = 48.$$

Oppure, basta considerare il numero totale di sottoinsiemi di $\{1, 2, 3, 4, 5, 6\}$ meno il numero di sottoinsiemi di $\{1, 2, 3, 4\}$: abbiamo quindi $2^6 - 2^4 = 48$.

(6) Per ogni coppia $\{1,10\}$, $\{2,9\}$, $\{3,8\}$, $\{4,7\}$, $\{5,6\}$ abbiamo 3 possibilità: scegliamo solo il primo, scegliamo solo il secondo, non scegliamo nessuno dei 2. I sottoinsiemi cercati sono quindi $3^5 = 243$.

In alternativa possiamo procedere in questo modo: abbiamo cinque coppie di numeri e possiamo selezionare solo un numero per ogni coppia. Procediamo quindi in questo modo: per ogni $k=0,\ldots,5$ selezioniamo un sottoinsieme di cardinalitá k delle 5 coppie: $\binom{5}{k}$ scelte. Per ogni coppia scelta selezioniamo solo uno dei due elementi corrispondenti: ho 2^k scelte. Complessivamente abbiamo quindi

$$\sum_{k=0}^{5} \binom{5}{k} 2^k = 1 + 5 \cdot 2 + 10 \cdot 2^2 + 10 \cdot 2^3 + 5 \cdot 2^4 + 1 \cdot 2^5 = 1 + 10 + 40 + 80 + 80 + 32 = 243.$$

- (7) Abbiamo un prodotto condizionato di tipo (5,1,5) e quindi abbiamo 25 soluzioni. Infatti a é un numero in $\{-2,-1,0,1,2\}$: 5 scelte. Scelto a abbiamo b=4-a e quindi abbiamo una sola scelta. Infine, scelti a e b abbiamo $c \in \{a-2,a-1,a,a+1,a+2\}$.
- (8) In questo caso non abbiamo un prodotto condizionato perché il numero di scelte per c dipende dalle scelte precedenti. Dividiamo quindi il problema in due casi, caso a pari e caso a dispari. Se a é pari abbiamo $a \in \{2,4\}$ quindi due scelte per a, una scelta per b e $c \in \{\frac{a}{2}-1,\frac{a}{2},\frac{a}{2}+1\}$ quindi tre scelte per c: abbiamo quindi 6 soluzioni. Se A é dispari abbiamo $a \in \{1,3,5\}$ quindi tre scelte per a, una scelta per b e $c \in \{\frac{a-1}{2},\frac{a+1}{2}\}$, quindi due scelte per c: in tutto abbiamo quindi 6 soluzioni.

Complessivamente ci sono 12 soluzioni.

(9) Le sequenze strettamente crescenti di lunghezza 5 sono in corrispondenza biunivoca con i sottoinsiemi dicardinalità 5: sono quindi $\binom{8}{5} = 56$.

Per determinare le sequenze debolmente crescenti possiamo procedere nel seguente modo: sia (a_1, \ldots, a_5) con $1 \le a_1 \le a_2 \le \cdots \le a_5 \le 8$. Allora la sequenza $(a_1+1, a_2+2, a_3+3, a_4+4, a_5+5)$ è una sequenza strettamente crescente di numeri in $\{2, 3, \ldots, 13\}$. Questa è una corrispondenza biunivoca e quindi concludiamo che il numero di sequenze debolmente crescenti è $\binom{12}{5} = 792$.

In alternatica si può procedere nel seguente modo. Per ogni k = 0, ..., 4 scelgo un sottoinsieme di $\{1, 2, 3, 4\}$ dato dai posti i in cui $a_i = a_{i+1}$. Ad esempio se scelgo il sottoinsieme $\{2, 4\}$ vorrò $a_2 = a_3$ e $a_4 = a_5$. Una volta effettuata questa scelta dovrò scegliere i 5 - k numeri distinti da inserire in ordine crescente. Abbiamo quindi

$$\sum_{k=0} 4 \binom{4}{k} \binom{8}{5-k} = 792.$$

4

 $(10)\,$ Nel primo caso abbiamo gli anagrammi di tipo (4,3,2,2) che sono

$$\binom{11}{4322} = 69300.$$

Per la seconda parte dobbiamo prima scegliere i posti dove inserire le 4 A: questi li possiamo scegliere in $\binom{11-(4-1)}{4}=70$ modi: come visto a lezione questo è il numero di sequenze binarie lunghe 11, con quattro 1 in cui non cisono due 1 consecutivi. Le altre 7 lettere le possiamo anagrammare in $\binom{7}{322}=210$ modi per cui in tutto abbiamo 14700 anagrammi.