Москва 2022

H&M Personalized Fashion Recommendations

Проект выполнили: Денисова Кристина Шелованова Татьяна Команда Economizers

Описательная статистика данных

Период с 20.09.2018 по 22.09.2020

Три типа данных:

- Articles: данные, определяющие товары H&M. Всего есть 25 параметров, но мы выбрали 9 из них
- Customers: данные о покупателей Н&М. Мы посмотрели распределение по 1) возрасту, 2) является ли участником клуба, 3) подписан ли на новостную рассылку
- Transactions: информация о покупке: id клиента, id товара, цена и источник

1 362 281

Уникальных id покупателей

104 547

Уникальных id товаров

Задача: сформировать рекомендации покупателям на основе базы данных по покупках

R

Описательная статистика данных. Articles

Описательная статистика данных. **Customers**

Proportion of club members

Анализ данных

Proportion of news subscribers

Описательная статистика данных. Transactions

B

Описательная статистика данных. Самые популярные типы проданной одежды

Kmeans

Данные для кластеризации

Название Значение price Цена product_code Название продукта product_type_no Тип продукта colour_group_code Цвет

Метод локтя

Базовая модель

Рекомендации по популярности

- Создание дополнительной переменной, отвечающей за частоту покупки данного товара у конкретного пользователя
- Создание нормированных показателей по данной переменной
- Оценивание score каждого потребителя относительного самого популярного товара среди потребителей

Недостатки:

- Не учитываем особенности пользователей
- Насколько релевантен показатель «частота покупки»?
- Проблема холодного старта

Название	Тип	Категория	Score
Long Leggings	Leggings/Ti ghts	Garment Lower body	0.15
Delphine Shirt	Shirt	Garment Upper body	0.14
Billie	T-shirt	Garment Upper body	0.13
Ronny Reg T-shirt	T-shirt	Garment Upper body	0.12
Nicky long	Vest top	Garment Upper body	0.11

Mean Precision: 0.017

H&M Personalized Fashion

Recommendations

Item-item collaborative filtering

Рекомендуем товары относительно тех, что похожи на данный

- Строим коэффициент показатель похожести (через косинус) между товарами
- Строим рекомендации, основанные на товарах, которые понравились или потреблялись пользователем

Недостатки:

- Проблема холодного старта
- Большие размеры данных
- Нет рекомендаций для нетипичных товаров
- Рекомендация одинаковых товаров

Название	Тип	Категория	Score
Jade HW Skinny Denim TRS	Trousers	Garment Lower body	0.10
Skinny Ankle R.W Brooklyn	Trousers	Garment Lower body	0.08
Jade HW Skinny Denim TRS	Trousers	Garment Lower body	0.07
Jade HW Skinny Denim TRS	Trousers	Garment Lower body	0.06
The Low Line Highwaist	Trousers	Garment Lower body	0.05

Mean Precision: 0.11

Collaborative filtering with KNN

Объединяем схожих покупателей

- Смотрим на сходство между пользователями
- Найдем тех, что больше всего похожи на конкретного пользователя
- Рекомендуем товары на основе их предпочтений

Недостатки:

- Проблема холодного старта
- Хранение большого объема данных в матрице

Название	Тип	Категория	Score
Hazelnut Push Melbourne	Bra	Underwear	
Shenzi LP	Тор	Garment Upper body	0.71
Long leggings update	Leggings	Garment Lower Body	0.73
Clarence Push Wireless	Bra	Underwear	0.82
Therese tee	T-shirt	Garment Upper body	0.86

ALS

- Возьмем большую матрицу и разложим её на некоторое меньшее представление исходной матрицы.
- Меньшее представление возможно благодаря выделению скрытых общих факторов между потребителями и товарами

$$X_{mn}pprox P_{mk} imes Q_{nk}^T=\hat{X}$$

Этапы построения модели:

- Шаг 1: оставляем неизменной user-factor matrix и решаем для item-factor matrix
- Шаг 2: оставляем неизменной itemfactor matrix и решаем для user-factor matrix
- Чередуем первый и второй шаг до тех пор, пока произведение матриц не будет равно исходной user-item matrix

ALS

12

ALS

Преимущества:

- Решают проблему холодного старта
- Дают адекватные оценки сходства покупателей и товаров
- Сокращают объем хранимых данных (за счет сжатия матрицы)

Название	Тип	Категория	Score
Tara top	Sweater	Garment Upper body	
Sheinzi LP	Тор	Garment Upper body	0.45
Hazelnut Push Melbourne	Bra	Underwear	0.36
Twenty HW taperd	Trousers	Garment Lower body	0.27
Noa skinny trouser	Trousers	Garment Lower body	0.25

Mean Precision: 0.33

Light FM – гибридная модель коллаборативной фильтрации

Light FM позволяет учитывать фичи продуктов и юзеров

Метод: Стохастический градиентного спуск

Функция потерь: WARP: Weighted Approximate-Rank Pairwise 2 loss

Метрика качества: ROC AUC

	Model without features	Model with features
AUC	0.70	0.29

Критерии выбора модели

Рекомендательные системы можно охарактеризовать с помощью нескольких критериев:

- Разнообразие: учитывает количество различных категорий
- Новизна: количество новых товар, ранее не рассматриваемых потребителем
- Покрытие: доля объектов, которую рекомендует наша система
- Догадливость: способность учесть нетривиальные предпочтения

