

Triangles Ex 4.5 Q15

Answer:

Given:

ABCD is a parallelogram and APQ is a straight line meeting BC at P and DC produced at Q.

To Prove:

The rectangle obtained by BP and DQ is equal to the rectangle contained by AB and BC. We need to prove that $BP \times DQ = AB \times BC$

Proof:

In $\triangle ABP$ and $\triangle QCP$, we have

∠ABP = ∠QCP

(Alternate angles as AB || DC)

∠BPA = ∠QPC

(Vertically opposite angles)

By AA similarity, we get

ΔABP ~ ΔQCP

We know that corresponding sides of similar triangles are proportional.

$$\Rightarrow \frac{AB}{QC} = \frac{BP}{CP} = \frac{AP}{QP}$$

$$\Rightarrow \frac{AB}{QC} = \frac{BP}{CP}$$

$$\Rightarrow AB \times CP = QC \times BP$$

Adding $AB\times BP$ in both sides, we get

$$\Rightarrow$$
 AB \times CP + AB \times BP = QC \times BP + AB \times BP

$$\Rightarrow$$
 AB \times (CP + BP) = (QC + AB) \times BP

$$\Rightarrow$$
 AB \times (CP + BP) = (QC + CD) \times BP

(ABCD is a parallelogram, AB = CD)

$$\Rightarrow AB \times BC = DQ \times BP$$

$$\Rightarrow BP \times DQ = AB \times BC$$

Triangles Ex 4.5 Q16

Answer:

(i). In \triangle OMA and \triangle OLC,

 $\angle AOM = \angle COL$ [Vertically opposite angles]

 \angle OMA = \angle OLC [90° each]

 $\Rightarrow \Delta \, OMA \, \text{-} \, \Delta \, OLC \, \, [AA \, \, similarity]$

(ii). Since $\Delta\,\text{OMA}$ - $\Delta\,\text{OLC}$ by AA similarity, then

 $\frac{OM}{OL} = \frac{OA}{OC} = \frac{MA}{LC}$ [Corresponding sides of similar triangles are proportional] $\Rightarrow \frac{OA}{OC} = \frac{OM}{OL}$

******* END *******