

Welcome to

Aakash DBYJU'S LIVE

Chemical Bonding and Molecular Structure

The substances are formed as a result of combination of atoms or molecules or ions.

So Many Why?

Why do some atoms combine while certain others do not?

What is the nature of the force that exists between combining atoms?

Why does definite number of various atoms constitute a particular molecule?

Why is it easy for some elements to lose electrons while it is harder for others?

Chemical Bond

The attractive force which holds various constituents (atoms, ions, etc.) together, in different chemical species.

A chemical bond forms in order to reduce the energy of the chemical species involved in bonding, thereby increasing their stability.

Potential Energy Curve

Observed bond distance in H₂

Electrostatic force of attraction between oppositely charged ions.

To attain stable electronic configuration

Elements lose or gain electron(s) in order to have a stable electronic configuration in their valence shell

Formation of Ionic Bond

Elements involved in the ionic bond should possess

The element losing electron should have LOW ionisation enthalpy.

(3)

Large difference in electronegativity of two elements

(2) The element accepting electron should have HIGH electron gain enthalpy.

(4)

High Lattice enthalpy

Covalent Bond and Coordinate Bond

A Covalent bond is formed by sharing electrons.

A bond in which the shared pair of electrons originate from one atom and none from the other is called coordinate bond.

Shared pair of electrons

Covalent Bond

Coordinate Bond

Metallic Bonds

Electrostatic force of attraction between a metal kernel and valence electrons.

Kernel

Nucleus plus the inner electrons

Valence electrons

Mobile or free electrons

Lattice Energy

Energy required to completely separate one mole of solid ionic compound into gaseous constituent ions.

NaCl (s)
$$\longrightarrow$$
 Na⁺ (g) + Cl⁻ (g)

AB(s)
$$\longrightarrow$$
 A⁺(g) + B⁻(g); Lattice Energy = Positive

$$A^+(g) + B^-(g) \longrightarrow AB(s)$$
; Lattice Energy = Negative

Factors Affecting Lattice Energy

Lattice Energy (L.E.)

 ∞

Lattice Energy (L.E.)

 ∞

 $Z^+ \times Z^-$

- Interionic distance
- **r**+ Radius of the cation
- **r** Radius of the anion

Z[†] Charge on the cation

Z Charge on the anion

Lattice Energy

Charge is the deciding factor

lonic compound	r (Å)	Z + × Z ⁻	L.E. (kJ mol ⁻¹)
LiF	2.01	1.	1004 kJ mol ^{–1}
MgO	2.10	4	3933 kJ mol ^{–1}

Order of Lattice Energy

NaF | < | MgF₂ | < | AlF₃

Properties of Ionic Compounds

Different ionic compounds having similar crystal structure are called isomorphs and this phenomenon is called isomorphism.

Isomorphous compounds have the same type of formula.

FeSO₄.7H₂O Green vitriol

MgSO₄.7H₂O Epsom salt

> ZnSO₄.7H₂O White vitriol

Polymorphism

Occurence of a particular substance in more than one crystalline form is called polymorphism

For example, ZnS exist as

(1) Sphalerite

(2) Wurtzite

Energy released when one mole of a gaseous ion is hydrated in large amount of water to form an aqueous ion.

Size of ion 1

Hydration energy ↓

As the dielectric constant of solvent increases, more energy is released on solvation.

Charge of ion ↑

Hydration energy 🕇

Solvation

The interaction of the solute and the solvent molecules which stabilizes the solute in the solution

If the solvent is water, then it is known as Hydration

Dissolution of solute in water depends on Lattice energy and Hydration energy

sharing of electrons between two atoms.

Types of Covalent Bond

(1) One pair of electrons is shared

Single Covalent bond

(2) Two pairs of electrons are shared

Double Covalent bond

(3) Three pairs of electrons are shared

Triple Covalent bond

Kossel Lewis Electronic Theory

Atoms can combine by the transfer of valence electrons from one atom to another or by sharing of electrons.

Covalent Bond

Attains noble gas configuration

Shared pair of electrons (e⁻)

Octet complete

Shared pair of electrons

Lewis Dot Structures

Formal Charge

F.C. on O (1) = -1

F.C. on O (2) = +1

F.C. on O (3) = 0

Used to give the relative stability of possible Lewis structures

Lowest energy structure:
Smallest formal charge on the
atoms

Limitations of Octet Rule

1

Molecules with incomplete octet of the central atom

Hypovalent compound

Electrons around central atom < 8

4 valence electrons

Limitations of Octet Rule

Molecules with odd electrons

NO, NO₂, ClO₂, ClO₃

• N === 0

Molecules with expanded octet

Hypervalent compound

Electrons around central atom > 8

10 valence electrons

Formation of Xe & Kr compounds

5

Doesn't account for the shape of the molecules

Xe and Kr form compounds with F and O even though their octet is already complete.

6

Doesn't explain about the relative stability of the molecules

Valence Bond Theory

Linus Pauling

J.C. Slater

A covalent bond is formed by the overlap of half filled atomic orbitals that yield a pair of electrons shared between the two bonded atoms.

Orbital Overlap

Directional Properties of Bonds

Coordinate or Dative Bond

Bond formed by sharing of electrons between two atoms. Shared pair of electrons is contributed by only one of the two atoms. Co ordinate bond once formed cannot be distinguished from covalent bond. Covalent and coordinate bond are same with respect to bond properties.

How to Identify Coordinate Bond?

Different covalency than usual

Presence of coordinate bond

Fourth bond formed by N is always coordinate

Third bond formed by O is always coordinate

Example: N₂O

Example: [H₃O⁺]

Lewis Acid and Lewis Base

Lone pair acceptors are called Lewis acids

Co-ordinate Bond or Dative Bond

Sigma and pi-bonds

Covalent Bond

Sigma (σ) bond

Pi (π) bond

Sigma bond is formed when overlapping takes place along the internuclear axis of orbitals or when an axial overlap takes place.

Pi (π) bond is formed when axes of combining orbitals are perpendicular to the internuclear axis i.e., lateral or sidewise overlapping takes place.

Axial or Head-on Overlapping

Cylindrically
symmetrical about the
internuclear axis

Can undergo rotation about the internuclear axis

Generally, π bond between two atoms is formed in addition to a σ bond

Axial or Head-on Overlapping

Bond Strength

In general, order of strength of bond

 π < σ

- Greater the extent of overlapping, more will be the bond strength.
- For same value of n,
 s-s sigma overlap < s-p sigma overlap
- Strength of π bonds: 3p-3p π overlap < 2p-2p π overlap

Bonding in H₂ Molecule

B

Bonding in O₂ Molecule

Bonding in N₂ Molecule

Limitations of VBT

Paramagnetic nature of O₂ could not be explained.

Fails to account for the geometry and shapes of various molecules.

Largest size 01 Select the central atom Least electronegative SO₃ - Sulphur Central atom Less in number Can form maximum bonds

Draw a symmetrical skeleton of atoms.

0

S

0 0

O3 Calculate the total number of valence electrons

Valence electrons in $SO_3 = 6 + (3 \times 6)$ = 24

Electron pairs =
$$\frac{24}{2}$$
 = 12

04

Make a single bond using the electron pairs. Then complete the octet of the side atoms. If any electron pair is left, assign it to the central atom.

05

If the octet of central atom is not complete, use the lone pairs of side atoms to make the bonds and complete the octet.

Assign formal charge on each atom

Used to provide shape and electronic geometry of covalent compounds.

1. Shape of a molecule depends upon the number of valence shell electron pairs around the central atom

2. Valence shell is taken as a sphere with the electron pairs localising on the spherical surface

3. Electron pairs in the valence shell repel one another since, they are all negatively charged

4. Electron pairs occupy positions in space that tend to minimise repulsion.

5. Lone pair occupies more space on the sphere. So, the order of repulsion is:

lp-lp > lp-bp > bp-bp
(lp: Lone pair,
bp: Bonding pair)

6. A multiple bond is treated as a single bonding pair.

There is **no effect** of **pi bond** on geometry and shape

Compound	Shape	π bond(s)
Cl - Be - Cl	Linear	0
0 = Č - H	Linear	1 1
O = C = O	Linear	2
H - C ≡ N	Linear	2

Point to Remember!!

For electronic geometry

Both bond pairs and lone pairs are considered

For shape

Only bond pairs are considered

Lone pairs are not a part of the shape

but they can alter the shape

General Formula: AB₂

(A: Central atom, B: Side atom)

Electron	Bonding	Lone	Electronic	Shape
pairs	pairs	pairs	Geometry	
2	2	0	Linear	Linear

Bond Angle = 180°

Example: CO₂, BeCl₂

General Formula: AB₃

(A: Central atom, B: Side atom)

Electron	Bonding	Lone	Electronic	Shape
pairs	pairs	pairs	Geometry	
3	3	0	Trigonal Planar	Trigonal Planar

Bond Angle

= | 120°

Example: BF₃, SO₃

General Formula: AB₂L

(A: Central atom, B: Side atom, L: Lone pair)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
3	2	1	Trigonal Planar	Bent/ V-Shape

Bond Angle

<

120°

Example: SO₂, SnCl₂

Steric Number: 4 (sp³) (AB₄)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
4	4	0	Tetrahedral	Tetrahedral

Bond Angle = 109.5°

Example: CH_4 , $[NH_4]^+$, XeO_4

General Formula: AB,L

(A: Central atom, B: Side atom, L: Lone pair)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
4	3	1	Tetrahedral	Pyramidal

Bond Angle <

Example: NH₃, XeO₃, PCl₃

General Formula: AB₂L₂

(A: Central atom, B: Side atom, L: Lone pair)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
4	2	2	Tetrahedral	Bent or V-Shape

Bond Angle

<

109.5°

Example: H_2O , OF_2

General Formula: AB₅

(A: Central atom, B: Side atom)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
5	5	O	Trigonal Bipyramidal (T.B.P.)	Trigonal Bipyramidal (T.B.P.)

Bond Angle

=

90°, 120°, 180°

Example: PCI₅, SOF₄

Valence Shell Electron Pair Repulsion Theory (VSEPR)

Steric Number: 5 (sp³d) (AB₄L)

Bond Angle

90°, 120°

Example: SF_4 , XeO_2F_2

General Formula: AB₃L₂ (A: Central atom, B: Side atom, L: Lone pairs)

Electron Pairs	Bonding Pairs	Lone Pairs	Electronic Geometry	Shape
5	3	2	Trigonal Bipyramidal (T.B.P.)	T-Shape

Bond Angle

90°, 180°

Example: CIF₃

General Formula: AB₂L₃

(A: Central atom, B: Side atom, L: Lone pairs)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
5	2	3	Trigonal Bipyramidal (T.B.P.)	Linear

AB_2L_3

Bond Angle

=

180°

Example: XeF₂, I₃⁻

Steric Number: 6 (sp³d²) (AB₆)

Bond Angle

=

90°

Example: SF₆

General Formula	Electron Pairs	Bonding Pairs	Lone Pairs	Electronic Geometry	Shape
AB ₅ L	6	5	1	Octahedral	Square Pyramidal
AB ₄ L ₂	6	4	2	Octahedral	Square Planar

(A: Central atom, B: Side atom, L: Lone pairs)

AB₅L

Bond Angle

90°, 180°

Example: BrF₅, XeOF₄

AB_4L_2

Bond Angle

=

90°, 180°

Example: XeF₄

Steric Number: 7 (sp³d³) (AB₇)

Bond Angle

=

72°, 90°

Example: IF₇

Need for Hybridisation

Shape of CH₂ Molecule

Electronic configuration of carbon is:

On excitation,

 $C_{\text{Excited state}}: [\text{He}] \ 2s^1 \ 2p^3$ $1 \mid 1 \mid 1 \mid 1 \mid 1$ $1s^2 \ 2s^1 \ 2p^3$

Release of energy due to overlap between the orbitals of C and H

Shape of CH₄ Molecule

4th C-H Bond will be formed by s (C)-s (H) overlap

Shape of CH₄ Molecule

s-orbital overlap can be in any direction

Direction of fourth C–H bond cannot be determined

Shape of CH₄ Molecule

Expected observations

All H-C-H bond angles are not certain

3 C-H bonds formed by s-p overlap are stronger than 1C-H bond formed by s-s overlap

Experimental observations

All H-C-H bond angles are identical with a value of 109.5°

All C-H bond lengths and bond strengths are identical

Limitations of VBT

Formation of diatomic molecules are satisfactorily explained (except the paramagnetic nature of \bigcirc_2)

VBT fails to explain the bond properties in polyatomic molecules

Hybridization

+

VBT

More complete theory to explain polyatomic molecules

Hybridisation

Pauling

J.C. Slater

(1)

Intermixing of atomic orbitals of equal or slightly different energies, results in the formation of new set of orbitals of equivalent energies and shape.

(2)

The orbitals present in the valence shell (and sometimes penultimate shell also) of the atom can hybridise.

Hybridisation and Shape of Hybrid Orbitals

Number of hybrid orbitals (H.O.)

Number of atomic orbitals intermixing

Larger lobe of H.O. takes part in bond formation (σ-bond)

Did you Know?

Hybrid Orbital

Actual Shape

Shape used for representation

Naming of Hybrid Orbitals

On the basis of atomic orbitals participating in hybridization:

Types of Hybridisation

Important Conditions for Hybridisation

Salient Features of Hybridisation

Promotion of electron is **not an essential condition** prior to hybridisation.

Orbitals undergo hybridisation and not the electrons.

Hybrid orbitals generally form σ bond.

Participating atomic orbitals	Number of hybridised orbitals	Hybridisation
One s + One p	2	sp

% s Character

% s character

=

 $\frac{\text{Number of s orbitals}}{\text{Number of (s+p) orbitals}} \times 100$

Decreasing order of s character

Percentage Character of Orbitals

Features of Hybridisation

% s character in hybrid orbital

Stability of hybrid orbital

Bond Strength

sp - p $> sp^2 - p$ $> sp^3 - p$ > p - p

Decreasing order of bond strength

Hybrid orbitals are directed in space in a way to have minimum repulsion between the electron pairs

in order to obtain a stable arrangement

Steric Number

Type of hybridisation is estimated by steric number

Steric Number = || ^

Number of σ bonds of central atom

+

Number of lone pairs on central atom

Steric Number =

Type of hybridization indicates the geometry of the molecule

Steric number	Hybridization	Geometry	Involving Orbitals
2	sp	Linear	s, $p_x/p_z/p_y$
3	sp ²	Trigonal Planar	s, p _x , p _z /p _y , p _z /p _x , p _y
4	sp ³	Tetrahedral	s, p _x , p _z , p _y
5	sp ³ d	Trigonal bipyramidal	s, p _x , p _z , p _y , d _z ²
6	sp ³ d ²	Octahedral	s, p _x , p _z , p _y , d _z ² , d _{x-y} ²
7	sp ³ d ³	Pentagonal bipyramidal	s, p_x , p_z , p_y , d_z^2 , d_{x-y}^2 , d_{xy}

Methods for Finding Hybridisation

sp Hybridisation

Participating atomic orbitals	Number of hybridised orbitals	Hybridisation
One s + One p	2	sp

sp² Hybridisation

Atomic orbitals participating in hybridisation	Number of hybridised orbitals	Hybridisation
One s + two p	3	sp ²

3 new sp² hybridised orbitals

Trigonal planar

sp² Hybridisation

sp³ Hybridisation

Atomic orbitals participating in hybridisation	Number of hybridised orbitals	Hybridisation
One s + three p	4	sp ³

sp³ Hybridisation

4 new sp³ hybridised orbitals

Tetrahedral

Bonding of CH₄ Molecule

Here, electronic configuration of carbon is

Needs energy

2s² 2p²

1 1 1

C_{Ground State}: [He] 2s² 2p²

 $C_{\text{Excited state}}$: [He] $2s^{1} 2p_{x}^{1} 2p_{y}^{1} 2p_{z}^{1}$

1 1 1 1

Bent's Rule

In T.B.P. geometry,

Equatorial position

High % s character

Occupied by lone pair, multiple bond

Axial position

Low % s character

Occupied by more electronegative element

Berry Pseudorotation

Fluxional behaviour of PF₅ due to fast exchange between axial and equatorial F atoms

Energy difference b/w T.B.P. and square pyramidal geometry

<

Thermal energy at room temperature

All P-F bonds are observed to be equivalent

Examples of sp³d Hybridisation

SF₄

XeF₂

XeOF₂

sp³d² Hybridisation

 $S_{Ground state} : [Ne] 3s^2 3p^4$

 $S_{\text{Excited state}}$: [Ne] $3s^13p^3$ $3d^2$

No equatorial & no axial bonds

All Bond lengths are observed to be identical

XeOF₄

XeF₄

Hybridisation in Odd Electron Species

Did you Know?

$$PCl_5(s) \longrightarrow [PCl_4]^+[PCl_6]^-$$

 $sp^3 sp^3d^2$

$$PBr_{5}(s) \longrightarrow [PBr_{4}]^{+}[Br]^{-}$$

$$sp^{3}$$

$$PI_{5}(s) \longrightarrow Does not exist$$

P cannot accomodate 6 large sized Br & I. So, it cannot form PX₆⁻.

Resonance

Phenomenon of delocalisation of π electrons

Most important parameter to explain the stability of certain molecule

If a single Lewis structure cannot represent a molecule

Resonance structures describe the molecule accurately

Resonance

Localised electrons Delocalised electrons Restricted **Spread** between 2 across several adjacent atoms atoms

Need of the theory

Resonance Structures of O₃

Resonance Hybrid of O₃

Resonance

Molecules having Resonance

Resonance Structures (R.S.)

Resonance Hybrid (R.H.)

Similar or degenerate Energy

Actual structure of different possible structures

Identical positions of nuclei

Does not violate the rules of covalence maxima

Same number of bonding & nonbonding electron pairs

Most stable R.S. contributes maximum towards Resonance hybrid (R.H.)

Resonance Structures (R.S.) and Resonance Hybrid (R.H.)

Resonance Structures of O₃

Resonance hybrid of O₃

Characteristics of Resonance

Resonance structures (R.S.) are hypothetical

Resonance hybrid (R.H.) has its individual identity

Bond lengths of R.H. are intermediate to those of R.S.

Conditions of Resonance

Structure should be planar

Occurs in adjacent parallel p-orbitals

Rules for Resonance Structures

A Must have proper Lewis structures

- Only π electrons or lone pairs can be moved
- Overall charge of the system must remain the same
- Bonding framework of a molecule must remain intact

Benzene

 C_6H_6

C_{Ground state}: 1s² 2s² 2p²

 C_6H_6 $C_{\text{Excited state}}: 1s^2 2s^1 2p^3$ Hybridize 1 1 1 1 1 1 1 1 $2s^2$ $2p^3$

¦ 2p √Unhybridized p-orbital

Benzene

Each carbon of benzene has one unhybridised p-orbital

Unhybridised p-orbitals of each carbon are parallel to each other

$$\begin{array}{c|c} & & & \\ &$$

Benzene

Localised π bonds

Delocalised π bonds

B

Resonance Structures and Resonance Hybrid of Benzene

Bond order of Resonance Structures

For degenerate resonating structures:

Bond Order between two atoms

Total
no. of bonds
between 2
atoms in all
structures

÷

Total no. of resonance structures

$$[o = c = o]$$

C = O bond length in CO₂ is less than expected because of resonance

Drago's Rule

- Hybridization does not take place for compounds of elements of 3rd period onwards, bonded to a less electronegative element like hydrogen.
- It is because energy difference between participating orbitals is very high.

Lewis Acid and Lewis Base

Lewis Acids

BF₃, AlCl₃, BCl₃

Incomplete octet

SiF₄, PCI₅, PF₅

Central atom has vacant d-orbitals

Mg²⁺, Al³⁺, Fe²⁺, Zn²⁺

Metal cations

CO₂, SO₂

Central atom is attached to a more E.N. atom with multiple bonds

Lewis Bases

NH₃, H₂O, ROH, RNH₂

Central atom has at least one lone pair and is surrounded by less E.N. atom

Cl⁻, F⁻, OH⁻, NH₂⁻

Anions

Coordinate Bond

σ - Coordinate Bond

Back bonding

Back bond forms between

Kind of coordinate π bonding

Atom having non bonded electron pair

Partial double bond character

8

Atom having vacant orbital

π - Coordinate Bond

Back Bonding

Because Hydrogen has no Ione pairs

Back Bonding

Because F has lone pairs and can donate to one empty p-orbital of P

$$CHF_3 \quad \rightleftharpoons \quad H^+ \quad + \quad \bar{C}F_3$$

Cl atom have vacant d -orbital to accommodate electron pair

IIIII

F atom does not have vacant d -orbital

Vacant orbital

Back bonding

 $2p\pi$ - $3d\pi$

BF₃

Species	Bond Length (pm)
BF ₄	130.7
BF ₃	139.6

B-F bond in

BF₃ is found to

be shorter and

stronger than

expected due

to back

bonding.

Order of Accepting Tendency

Lone pairs are present already

Si

>

P

>

S

>

When lone pairs are absent

Si

<

P

<

S

<

CL

Factors for Coordinate π -Bonding

Stability of π -bond

Stability <mark>∝ 1</mark>
Size of orbitals

Size of orbital increases

Weak π bond

Size of orbital decreases

Strong π bond

Relative Stability of π -Bond

No. of lone pairs on the atom having vacant orbital

Extent of back bonding

Backbonding

Lewis acidic strength decreases.

Lewis basic strength decreases.

Bond length decreases.

Bond angle may or may not change.

Hybridisation may or may not change.

Point to Remember!!

One atom involved in back bonding must be of 2nd period

Electron Deficient Compounds

Insufficient no. of electrons to complete octet.

Examples: BH₃, BeCl₂, BF₃

Case 1: Electron Deficiency in BH₃

- Those bonds which has insufficient number of electrons and makes them stable are known as electron deficient bonds.
- BH₃ is electron deficient compound. That's why it undergoes dimerisation by means of 3c-2e⁻ bonds also known as banana bonds.
 - Diborane (B_2H_6) is a dimer of BH_3 .
 - In B₂H₆ there are two 3c-2e⁻ bond which are known as banana bonds. In B₂H₆ there are four 2c-2e⁻ bond which are known as terminal bonds.
 - The hybridization of boron in B_2H_6 is sp^3 .

Electron Deficient Bonds

Those bonds which has insufficient number of electrons and makes them stable are known as electron deficient bonds.

BH₃ is electron deficient compound. That's why it undergoes dimerisation by means of 3c-2e⁻ bonds also known as banana bonds.

Case 2: Electron Deficiency in AICI₃

Incomplete octet of Al form dimer

In Vapour Phase - Dimer of AICI₃ (AI₂CI₆)

Case 3: Electron Deficiency in BeCl₂

In Vapour Phase - Dimer of BeCl₂ (Be₂Cl₄)

In Solid Phase Polymer of BeCl₂ (BeCl₂)_n

Case 4: Electron Deficiency in BeH₂

Incomplete octet of Be Forms dimer & polymer to get stabilized

In Vapour Phase - Dimer of BeH₂(Be₂H₄)

In Solid Phase - Polymer of BeH₂ (BeH₂)_n

Case 5: Electron Deficiency in ICl₃

Forms dimer to minimize repulsion between lone pairs

In Solid Phase - Dimer of $ICl_3(l_2Cl_6)$

Bond Angle

Angle between the orbitals containing bonding electron pairs around the central atom in a molecule/complex ion

Expressed in degrees & is spectroscopically determined

Gives ideas about distribution of orbitals around the central atom which helps in determination of shape.

As % s character

Bond angle

(2) Steric Repulsions

Steric Repulsions

Bond angle

Same central atom (2nd period), same hybridisation (sp³) & side atoms are of 3rd period & onwards

(3) Number of lone pairs on the central atom

As number of lone pairs

Bond angle

Same hybridisation of the central atom

(4) Electronegativity of the central atom

E.N. of central atom

Bond angle

Same hybridization and number of lone pairs on central atom

(5) Electronegativity of the side atoms

E.N. of side atom

 \uparrow

Bond angle

Same central atom, same hybridization & same number of lone pairs

Point to Remember!!

Regular geometry

All the side atoms are identical and no lone pair on central atom

Bond angle not affected by electronegativity

BF₃

Due to back bonding

Bond order

But net effect in repulsion is zero

Bond angle = 120°

 $N(SiH_3)_3$

Due to back bonding

Hybridization changes from sp³ to sp²

Bond angle 1

Bond Length

Equilibrium distance
between the nuclei of two
bonded atoms in a molecule

Factors Affecting Bond Length

Size of the bonded atom

Multiplicity of Bonds

% s-character

Number of lone pairs on bonded atoms

Electronegativity difference

Amount of energy required to break 1 mole of particular type of bonds between two atoms in gaseous state.

Unit: kJ mol⁻¹

Multiplicity of bond ↑

Magnitude of Bond energy

Bond	Energy (kJ mol ⁻¹)
c — c	347
c = c	611
C≡C	837

Bond Energy

Bond length (for same bonded atom)

Bond energy

Bond	Bond length (pm)	Energy (kJ mol ⁻¹)
CI — CI	199	243
Br—Br	228	192
1-1	267	151

In group 15, 16 and 17 single bonds between 2nd period elements are exceptionally weaker due to l.p - l.p. repulsions

Example:

$$\left(CI - CI \right) > \left(Br - Br \right) > \left(F - F \right) > \left(I - I \right)$$

Bond Energy

Larger bond enthalpy

Stronger bond

$$H_2$$
 (g) \rightarrow H (g) + H (g); $\Delta_a H^o = 435.8 \text{ kJ mol}^{-1}$

$$O_2$$
 (O = O) (g) \rightarrow O (g) + O (g); $\Delta_a H^o = 498 \text{ kJ mol}^{-1}$

For polyatomic molecules,
Enthalpy needed to break each bond between the same atoms is different.

Average Bond Enthalpy

Average bond enthalpy =
$$\frac{502 + 427}{2}$$
$$= 464.5 \text{ kJ mol}^{-1}$$

Bond Order

The number of bonds between the two atoms in a molecule.

Shared pairs of electrons

Lone pair of electrons

What We Know?

What Exists in Reality?

There exists some covalent character in an ionic bond and some ionic character in a covalent bond!

Covalent Bond

Non-polar Covalent When Δ E.N. \leq 0.4 between the bonded atoms

Polar Covalent When Δ E.N. > 0.4 between the bonded atoms

Non-polar & Polar Covalent Bond

E.N. of A \leq B

Symmetrical electron cloud

Asymmetrical electron cloud

H₂, Cl₂, N₂, F₂...

HF, HCl, HBr, HI ...

Polarisation

Due to polarisation

Charged ends develop

Act as an electric dipole

Dipole Moment

- Dipole moment is a measure of the separation of charges(polarity) between the two ends of a dipole.
- 2. It's magnitude is equal to the product of charge and the distance of separation.
- 3. It a vector quantity.
- 4. It is denoted by <code>u.</code>

Dipole Moment

Formula of dipole moment is given as:

$$\mu = q \times d$$

Unit = Debye

d = Distance of separation (Å)

q = Magnitude of charge (e.s.u.)

Direction and Representation

Represented by a small arrow with tail on the positive centre and head pointing towards the negative centre.

Dipole Moment (µ)

In diatomic molecules, μ depends upon

Difference in electronegativities & bond length

In polyatomic molecules,

µ depends upon

Bond dipole and spatial arrangement

Resultant Dipole Moment (R)

$$R = \sqrt{(P^2 + Q^2 + 2PQ \cos \theta)}$$

Dipole Moment

Generally, out of 'q' and 'd', 'q' is the dominant factor.

q depends on △.E.N.

For a non-polar molecule,

$$\mu_{\text{net}} = 0$$

For a polar molecule,

$$\mu_{\text{net}} \mid \downarrow \downarrow$$

Dipole Moment

It can be zero as the two oppositely acting bond dipoles can cancel each other

Net dipole moment(μ_{net})

0

Regular Geometries

$$\left(\begin{array}{c}\mu_{\mathsf{net}}\end{array}\right)\left(\begin{array}{c}=\end{array}\right)\left(\begin{array}{c}\mathsf{O}\end{array}\right)$$

$$\mu_{\text{net}}$$
 = 0

Dipole Moment

Lone pair contributes in dipole moment, but its contribution can't be quantified as size of lone pair is not known.

Dipole Moment = 0

Symmetrical Molecule

Dipole Moment ≠ 0

Asymmetrical Molecule

Predicting Geometry Using Dipole Moment

CCI₄

 $\mu = 0$

CH₄

 $\mu = 0$

CHCl₃

$$\mu$$
 = 1.04 D

Some Important Order of Dipole Moment

Δ E.N. in C - D

>

Δ E.N. in C - H

Dipole Moment of Dichlorobenzene

Orthodichlorobenzene > Metadichlorobenzene

> Paradichlorobenzene

What are Cis and Trans?

Cis: Similar groups on same side

Trans: Similar groups on opposite sides

$$\mu_{\text{net}}$$
 \neq 0

$$\mu_{\text{net}}$$
 $=$ 0

Effect of Dipole Moment on Boiling Point

Generally,

Dipole moment | Boiling point |

B.P. of cis is greater than trans

Dipole Moment and Percentage Ionic Character

$$\frac{\mu_{\text{Observed}}}{\mu_{\text{Theoretical}}} \times 100$$

 μ_{Observed}

Experimental value of μ

 $\mu_{\mathsf{Theoretical}}$

Assuming 100% ionic compound

Covalent Character in Ionic Compounds

When an anion and a cation approach each other

Valence shell of the anion is pulled towards the nucleus of the cation

The shape of the anion is deformed

Polarisation

Phenomenon of deformation of an anion by a cation

Polarising power of the cation

The ability of a cation to polarise a nearby anion

Polarisability of the anion

Ability of an anion to get polarised

Fajan's Rule

Greater is the polarisation of an anion in a molecule, more is the covalent character in the molecule.

Charge on Cation

1

Size of Cation

Charge on Anion

Size on Anion

Covalent character

(As size of cation increases from left to right, polarisation decreases)

Example: BeCl₂ > MgCl₂ > CaCl₂ > SrCl₂ > BaCl₂

Factors affecting polarisation

For the cations of nearly the same size and charge,

Order of polarizing power:

Pseudo inert gas Inert gas configuration

Eg: CuCl > NaCl (Covalent character)

Cu⁺

[Ne] 3s² 3p⁶ 3d¹⁰ Pseudo inert gas configuration

Na⁺

1s² 2s² 2p⁶

Inert gas configuration

Fajan's Rule

Cations with pseudo inert gas configuration: (n-1)d¹⁰ ns⁰

More Z_{eff} due to poor shielding effect of d and f electrons.

01

02

Polarising power increases

Polarisability of Anion

Polarisability ∝ Charge on the anion

Oxyanions are generally less polarisable because charge is present on O atom which is very small and we need to consider only the element which acquires the charge (and not the other elements)

Determination of Covalent Character in an Ionic Compound

Variation in Melting Point

Melting point of ionic solids depends upon **01**) Lattice energy

02

Extent of polarisation

Fluorides (F⁻) of s-block metals (except BeF₂) & Al³⁺ and Cl⁻, Br⁻, l⁻ of alkali metals (except Li⁺) are dominantly ionic.

Melting point

 ∞

Lattice Energy

For Cl⁻, Br⁻, l⁻ of Li⁺, all alkaline earth metals & Al³⁺, extent of polarisation is high.

As covalent character in an ionic compound increases, the melting point decreases.

Melting point

 ∞

Extent of polarisation

M.P. of covalent compound < M.P. of ionic compound

Variation in Melting Point

Colour of some compounds can be explained by Polarisation of their bigger negative ions.

Bigger anions are more polarised & hence their electrons get excited by

Partial absorption of visible light.

Solubility in Water

Solubility of p-block/d-block salts & halides of Be is low

Extent of polarisation is high

Solubility in Water

 ∞

Extent of polarisation

Covalent character

Solubility in water

AgCl | > | AgBr | > | Agl

 $Fe(OH)_2$ | $Fe(OH)_3$

Solubility in Water

Thermal Stability of Ionic Compounds

- For uniatomic anion, as interionic distance increases, lattice energy decreases, hence thermal stability decreases.
- Be₂N₂ > MgN₂ > CaN₂ > Sr₂N₂ > Be₃N₂
- For multiatomic anion (for compounds having the same anion) thermal stability increases down the group.

Features of MOT

01

Electrons in a molecule are present in the molecular orbitals (MO's)

Atomic orbitals (AO's) of comparable energies & proper symmetry combine to form MO's

02

03

AO is monocentric whereas a MO is polycentric

Number of MO's formed is equal to the number of combining AO's

04

Features of MOT

There are two types of molecular orbitals: **Bonding**Molecular Orbitals (BMO) and antibonding Molecular
Orbitals (ABMO).

BMO has lower energy and hence greater stability than the corresponding ABMO

07

06

Electron probability distribution around a group of nuclei in a molecule is given by a MO

MO's are filled according to Aufbau principle, Pauli's exclusion principle & Hund's rule

08

Linear Combination of Atomic Orbitals (LCAO)

BMO (Bonding Molecular Orbitals)

Constructive interference

 Ψ_{BMO} = $\Psi_{A} + \Psi_{B}$

ABMO (Anti Bonding Molecular Orbitals)

Destructive interference

$$\Psi_{ABMO} = \Psi_{A} - \Psi_{B}$$

Where, A and B are atoms

Linear Combination of Atomic Orbitals (LCAO)

Electron density **increases** in the **internuclear** region

Electron density **decreases** in the **internuclear** region

Molecular Orbitals

Bonding Molecular Orbital

AntiBonding Molecular Orbital

Linear Combination of Atomic Orbitals

Difference between BMO and ABMO

Bonding	Antibonding
Molecular	Molecular Orbital
Orbital (BMO)	(ABMO)
MO formed by the addition of Atomic orbitals	MO formed by the subtraction of atomic orbitals
Ψ_{BMO} = Ψ_{A} + Ψ_{B}	Ψ_{ABMO} = Ψ_{A} - Ψ_{B}
Formed by	Formed by
constructive	destructive
interference	interference
(Stabilized MO)	(Destabilized MO)

Difference between BMO and ABMO

Bonding Molecular Orbital (BMO)	Antibonding Molecular Orbital (ABMO)
Lower in energy as compared to atomic orbital	Higher in energy as compared to atomic orbital
Electron density increases in the internuclear region	Electron density decreases in the internuclear region
May or may not have a nodal plane	Always has a nodal plane
Represented by σls, σ2p _z , π2p _y	Represented by σ*1s, σ*2p _z , π*2p _x , π*2p _y

σ and π Molecular Orbitals

Shapes of MOs Formed by s-orbitals

When two orbitals combine in same phase then constructive interference take place.

When two orbitals combine out of the phase then destructive interference take place.

Molecular Orbital Energy Diagram

H₂ molecule

Shapes of MO's: σ2p_z

Shapes of MO's

Gerade & Ungerade Molecular Orbitals

Molecular Orbital Diagram for > 14 Electron System

For molecules having > 14 electrons

Energy

$$(\sigma ls) < (\sigma^* ls) < (\sigma 2s) < (\sigma^* 2s)$$
 $< (\sigma 2p_z) < [\pi 2p_x = \pi 2p_y] <$
 $[\pi^* 2p_x = \pi^* 2p_y] < (\sigma^* 2p_z)$

Molecular Orbital Diagram for ≤ 14 Electron System

For molecules having ≤ 14 electrons

Energy

$$(\sigma 1s) < (\sigma^* 1s) < (\sigma 2s) < (\sigma^* 2s)$$

$$< [\pi 2p_x = \pi 2p_y] < (\sigma 2p_z)$$

$$< [\pi^*2p_x = \pi^*2p_y] < (\sigma^*2p_z)$$

Modifications in the energies of MO's due to s and p - mixing.

Also known as symmetry contribution.

Electronic Configuration (E.C.)

For B₂ molecule, 10 electrons (< 14 electrons)

E.C. of B₂
$$(\sigma ls)^2 (\sigma^* ls)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 [(\pi 2p_x)^1 = (\pi 2p_y)^1]$$

What Does MOT Tell?

Bond Order

One half the difference between the number of electrons present in the BMO & the ABMO

Bond Order (B.O.)

$$\frac{1}{2}$$
 (N_b)

$$\frac{1}{2}$$
 (N_a)

 N_{a}

Number of electrons in ABMO

N_b

Number of electrons in BMO

Calculation of Bond Order

Shortcut to find the bond order of homonuclear diatomic molecules

Number of electrons	10	11	12	13	14	15	16	17	18
Bond order	1	1.5	2	2.5	3	2.5	2	1.5	1

-0.5

-0.5

Bond Order and Stability of Molecules

Species with the Same Bond Order

Generally,

If the total number of electrons present in the species is odd, the species is paramagnetic

Examples: O_3^- , NO_2 , NO_3 , CIO_2

Magnetic Nature One or more MO's All the MO's are are singly occupied doubly occupied Diamagnetic Paramagnetic

O₂ molecule

Point to Remember!!

An unpaired electron acts as a magnetic dipole

Magnetic Moment (μ)

=

$$\sqrt{n(n+2)}$$
 B.M.

n = Number of unpaired electrons

B.M. = Bohr Magneton

HOMO and LUMO

Highest Occupied Molecular Orbital

Lowest
Unoccupied
Molecular
Orbital

НОМО

LUMO

MO Diagram
of
Heteronuclear
Diatomic
Molecules

MO Diagram of Heteronuclear Diatomic Molecules

Heteronuclear Diatomic Molecules

Experimentally the bond orders of NO and O₂ are the same.

Paramagnetic

Experimentally the bond orders of CN⁻ and N₂ are the same.

Diamagnetic

Heteronuclear Diatomic Molecules

Experimentally the bond orders of CO and N_2 are the same.

Diamagnetic

Isoelectronic molecules and ions have identical bond order.

Examples:

 N_2 & CO: Bond order = 3

Formed between metal (electropositive element) and metal (electropositive element).

Electron sea model: Metal kernels occupy lattice positions in the crystal structure of a metal and are embedded is a gas of free valence electrons.

Point to Remember!!

Many mechanical properties of metals can be related to the strength of metallic bond

Melting point (M.P.) & hardness

M.P. & hardness of metals

 ∞

Strength of metallic bond

Overlap of atomic orbitals in solids gives rise to bands of energy levels

Band of Orbital In Crystal of Sodium

Highest energy electrons of the metallic crystals occupy either a partially filled band or a filled band that overlaps with an empty band.

These filled/ partially filled bands and empty bands are known as valence band and conduction band respectively.

Band Gap

Energy difference between the valence band and the conduction band.

For conductors: No energy gap

For insulators: Large energy gap

For semiconductors: Small energy gap

van Der Waals Forces

Weak chemical forces

Forces holding two or more molecules together

Dipole-dipole forces

Keesom forces

Dipole-induced dipole forces

van der Waals forces

Debye forces

Dispersion forces

London forces

Dipole-Dipole Attraction

Exists between oppositely charged ends of permanent dipoles

Attraction Repulsion

Dipole -Induced Dipole Attraction

It is a weak attraction, when a polar molecule induces a dipole in an atom or in a nonpolar molecule by disturbing the arrangement of electrons in the non-polar species.

Factors Affecting Boiling Point

Boiling Point ∝ van der Waals forces

Boiling Point ∝ Molecular mass

If molecular mass is same, then factor responsible is molecular surface area.

van der Waals Force ∝ Surface area.

Note!!

Ion-Dipole Attraction

Ion

Electrostatic Force Polar Molecule (Dipole)

Strength of attraction is directly proportional to

(1)

Charge density on the ion

(2)

Dipole moment of the polar molecule

Ionic Compounds in Polar Solvents

Ion-Induced Dipole Attraction

Ion

Electrostatic
Force

Non-Polar Molecule
(Induced Dipole)

Formation of Polyhalide Ions (X₃⁻)

Dispersion Forces

molecules like

H₂, O₂, Cl₂, etc,. in solid or liquid states

Which are electrically symmetrical & have no permanent dipole

Momentary
imbalance in the
electronic charge
distribution in the
molecule

polarization in adjacent species

Called instantaneous dipole-induced dipole interactions

Dispersion Forces

Magnitude of **London forces**

 ∞

Polarizability of the particle

Interaction energy

 ∞

1 r⁶

ľ

Distance between two molecules

Interaction Energy v/s Distance

Type of interaction	Interaction energy ∞ 1/r ^x	Type of interaction	Inte
lonic bond	1 r	lonic-Induced Dipole	
Ion-dipole	<u>1</u> r ²	Dipole-Induced dipole	
Dipole-dipole	$\frac{1}{r^3}$	London Forces	ń

Type of interaction	Interaction energy $\propto \frac{1}{r^x}$
Ionic-Induced	1
Dipole	r ⁴
Dipole-Induced	<u>1</u>
dipole	r ⁶
London Forces	<u> </u>

Strength of Intermolecular Forces

Ion-dipole attraction

Dipole-dipole attraction

Ion-induced dipole attraction

Dipole-induced dipole attraction

Instantaneous dipole - induced dipole attraction

Strength

Strongest Dipole-Dipole interaction

Hydrogen Bonding

Hydrogen Bond

Displacement of electrons towards X

Polar molecule having electrostatic force of attraction

Represented by a dotted line

$$H^{\delta^{+}}$$
 $X^{\delta^{-}}$ $X^{\delta^{-}}$ $X^{\delta^{-}}$ $X^{\delta^{-}}$ $X^{\delta^{-}}$

Hydrogen Bond

(1)

Special case of dipole-dipole attraction

(2)

Molecules with H atom attached to a highly electronegative atom

Strength of the H bond is determined by the coulombic interaction b/w the lone pair of the E.N. atom & H atom.

Factors Affecting Strength of H - bonding

Factors Affecting Strength of H - bonding

Ease of donation of lone pair of E.N. atom

Strength of H-bonding

Decreasing tendency to donate lone pair

Point to Remember!!

To compare strength of H-bond

First check \triangle E.N. and then tendency to donate lone pair

Symmetrical Hydrogen Bonding

Very strong H-bonding occurs in the alkali metal hydrogen fluorides of formula M[HF₂]

$$\begin{bmatrix} \mathbf{K}^{+} \begin{bmatrix} \mathbf{F} & \mathbf{---} & \mathbf{H} & \mathbf{---} & \mathbf{F} \\ \mathbf{x} & \mathbf{y} \end{bmatrix}^{-} \end{bmatrix}$$

Bond lengths: x = y = 113 pm

Bond energy of both H-F

=

163 kJ/mol

Types of Hydrogen Bonding

Examples of Intermolecular Hydrogen Bonding

Acetic Acid

Intermolecular H - Bonding

Homo Untermolecular

Water

Hetero Intermolecular

Alcohol in Water

Conditions for the Formation of Intramolecular Hydrogen Bond

(1)

Ring formed as a result of H bonding should be planar

(2)

5 or 6 membered ring should be formed

(3)

Minimum strain should be there during ring closure

Intramolecular H-Bonding

Examples

o-Nitrophenol

Point to Remember!!

CI usually doesn't form H - bond due to their low charge density

$$\begin{array}{c|c}
\delta^{\dagger} \\
H \\
O \\
CI - C - C - H \\
\delta^{-} \\
O \\
\delta^{\dagger} \\
H
\end{array}$$

Chloral hydrate (CCl₃CH(OH)₂)

H-Bonding Dependency on Physical State of Compounds

Extent of H-bonding depends on the physical state of the compound.

Gaseous state (<) Liquid state (<) Solid state

01

Few organic compounds (Non-polar)
are soluble in water (Polar solvent)
due to H-bonding.
Example: Alcohol in water.

Solubility

02

C₂H₂ is **highly soluble** in **acetone** due to H-bonding but not in water.

03

Intramolecular hydrogen bonding leads to chelate formation, so the solubility of that species involved in intramolecular H-bonding in water decreases.

Order of Boiling Point

Why does Ice Floats over Water?

Extensive network of H bonds

Ice has cage like structure with vacant space

H₂O (s) is less dense than H₂O (l)

Did You Know?

 D_2O (s) sinks in H_2O (I)

E.N. of D is less than H

D forms stronger H-bond

Density: $\left(D_2O(s) \right) \left(> \right) \left(H_2O(l) \right)$

Clathrates

Species formed by entrapment of

gas molecules (e.g.: Xe, Kr etc.)

into the voids of ice

Clathrates

Ar.6H₂O