DATA COLLECTION ¶

In [1]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt

import seaborn as sns

In [2]: # To Import Dataset sd=pd.read_csv(r"c:\Users\user\Downloads\8_dataset.csv") sd

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_
0	842302	М	17.99	10.38	122.80	1001.0	0.
1	842517	М	20.57	17.77	132.90	1326.0	0.0
2	84300903	M	19.69	21.25	130.00	1203.0	0.
3	84348301	M	11.42	20.38	77.58	386.1	0.
4	84358402	M	20.29	14.34	135.10	1297.0	0.
564	926424	М	21.56	22.39	142.00	1479.0	0.
565	926682	М	20.13	28.25	131.20	1261.0	0.0
566	926954	М	16.60	28.08	108.30	858.1	0.0
567	927241	М	20.60	29.33	140.10	1265.0	0.
568	92751	В	7.76	24.54	47.92	181.0	0.0

569 rows × 33 columns

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
_	842302	M	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.10(
5	843786	М	12.45	15.70	82.57	477.1	0.127
6	844359	М	18.25	19.98	119.60	1040.0	0.094
7	8 4458202	М	13.71	20.83	90.20	577.9	0.118
8	844981	М	13.00	21.82	87.50	519.8	0.127
ç	84501001	М	12.46	24.04	83.97	475.9	0.118

DATA CLEANING AND PRE_PROCESSING

In [4]: | sd.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

#	Column	Non-Nul	l Count	Dtype		
0	id	569 non		int64		
1	diagnosis	569 non		object		
2	radius_mean	569 non		float64		
3	texture_mean	569 non	-null	float64		
4	perimeter_mean	569 non	-null	float64		
5	area_mean	569 non	-null	float64		
6	smoothness_mean	569 non	-null	float64		
7	compactness_mean	569 non	-null	float64		
8	concavity_mean	569 non	-null	float64		
9	concave points_mean	569 non	-null	float64		
10	symmetry_mean	569 non	-null	float64		
11	fractal_dimension_mean	569 non	-null	float64		
12	radius_se	569 non	-null	float64		
13	texture_se	569 non	-null	float64		
14	perimeter_se	569 non	-null	float64		
15	area_se	569 non	-null	float64		
16	smoothness_se	569 non	-null	float64		
17	compactness_se	569 non	-null	float64		
18	concavity_se	569 non	-null	float64		
19	concave points_se	569 non	-null	float64		
20	symmetry_se	569 non	-null	float64		
21	<pre>fractal_dimension_se</pre>	569 non	-null	float64		
22	radius_worst	569 non	-null	float64		
23	texture_worst	569 non	-null	float64		
24	perimeter_worst	569 non	-null	float64		
25	area_worst	569 non	-null	float64		
26	smoothness_worst	569 non	-null	float64		
27	compactness_worst	569 non	-null	float64		
28	concavity_worst	569 non	-null	float64		
29	concave points_worst	569 non	-null	float64		
30	symmetry_worst	569 non	-null	float64		
31	<pre>fractal_dimension_worst</pre>	569 non	-null	float64		
32	Unnamed: 32	0 non-n	ull	float64		
<pre>dtvpes: float64(31), int64(1), object(1)</pre>						

dtypes: float64(31), int64(1), object(1)

memory usage: 146.8+ KB

```
In [5]: # to display summary of statistics
         sd.describe()
Out[5]:
                          id radius_mean texture_mean perimeter_mean
                                                                      area_mean smoothness_mea
          count 5.690000e+02
                               569.000000
                                           569.000000
                                                          569.000000
                                                                      569.000000
                                                                                       569.00000
          mean 3.037183e+07
                               14.127292
                                            19.289649
                                                           91.969033
                                                                      654.889104
                                                                                         0.09636
            std 1.250206e+08
                                3.524049
                                             4.301036
                                                           24.298981
                                                                      351.914129
                                                                                         0.01406
           min 8.670000e+03
                                6.981000
                                             9.710000
                                                           43.790000
                                                                      143.500000
                                                                                         0.05263
           25% 8.692180e+05
                                11.700000
                                            16.170000
                                                           75.170000
                                                                      420.300000
                                                                                         0.08637
           50% 9.060240e+05
                               13.370000
                                            18.840000
                                                           86.240000
                                                                      551.100000
                                                                                         0.09587
           75% 8.813129e+06
                                            21.800000
                                                           104.100000
                                                                      782.700000
                               15.780000
                                                                                         0.10530
           max 9.113205e+08
                                28.110000
                                            39.280000
                                                          188.500000 2501.000000
                                                                                         0.16340
         8 rows × 32 columns
In [6]: #to display colums heading
         sd.columns
Out[6]: Index(['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean',
                 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
                 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
                 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
                 'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
                 'fractal_dimension_se', 'radius_worst', 'texture_worst',
                 'perimeter_worst', 'area_worst', 'smoothness_worst',
                 'compactness_worst', 'concavity_worst', 'concave points_worst',
                 'symmetry_worst', 'fractal_dimension_worst', 'Unnamed: 32'],
                dtype='object')
```

EDA and visualization

In [7]: sns.pairplot(sd)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1fe0b9a1700>

In [8]: sns.distplot(sd['id'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='id', ylabel='Density'>


```
In [10]: sns.heatmap(sd1.corr())
```

Out[10]: <AxesSubplot:>

TO TRAIN THE MODEL MODEL BUILDING

we are goint train Liner Regression model; we need to split out the data into two varibles x and y where x is independent on x (output) and y is dependent on x(output) adress coloumn as it is not required our model

```
In [15]:
          coeff= pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
          coeff
Out[15]:
                                 Co-efficient
                            id -7.275029e-13
                                2.359848e-03
                   radius_mean
                  texture_mean
                               -3.835585e-05
                perimeter_mean -9.105100e-04
                                2.293524e-05
                    area_mean
              smoothness_mean
                                1.062458e-01
                                1.274090e-01
             compactness_mean
                concavity_mean
                                2.183405e-02
           concave points_mean -3.596351e-02
                symmetry_mean -2.274711e-03
          prediction = lr.predict(x_test)
In [16]:
          plt.scatter(y_test,prediction)
Out[16]: <matplotlib.collections.PathCollection at 0x1fe3d22ab80>
           0.085
           0.080
           0.075
           0.070
           0.065
           0.060
           0.055
           0.050
                           0.06
                                     0.07
                                              0.08
                                                        0.09
                 0.05
          print(lr.score(x_test,y_test))
In [17]:
          0.8051790757596247
In [18]: |lr.score(x_train,y_train)
```

Out[18]: 0.8573984183638158

In [19]: | from sklearn.linear_model import Ridge,Lasso

```
In [20]: dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_ridge.py:14
         7: LinAlgWarning: Ill-conditioned matrix (rcond=1.77528e-18): result may not
         be accurate.
           return linalg.solve(A, Xy, sym_pos=True,
Out[20]: Ridge(alpha=10)
In [21]: dr.score(x_test,y_test)
Out[21]: 0.6407306311892114
In [22]: |dr.score(x_train,y_train)
Out[22]: 0.6409438575361175
In [23]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[23]: Lasso(alpha=10)
In [24]: la.score(x_test,y_test)
Out[24]: -0.0007503043252665709
In [25]: la.score(x_train,y_train)
Out[25]: 8.337709747452404e-05
In [ ]:
```