1 Lezione del 12-11-24

1.1 Flusso di costo minimo capacitato

In realtà, il modello di flusso di costo minimo prevede, su ogni arco, un'altra quantità: la **portata** (o **capacità**) massima dell'arco. Avremo quindi che, oltre oltre agli n bilanci b_i e agli m costi c per n nodi e m archi, dovremo introdurre un nuovo vettore u di dimensione m per le **capacità superiori** di ogni arco.

Porremo quindi il nostro sistema come:

$$\begin{cases} \max c^T x \\ Ex = b \\ 0 \le x \le u \end{cases}$$

dove l'ultimo vincolo è l'espressione in forma vettoriale di $0 \le x_{ij} \le u_{ij} \ \forall (i,j) \in A$.

Avevamo notato che un problema di flusso di costo minimo *non capacitato* si esprime agilmente in forma duale standard. Convverrà quindi esprimere il vincolo delle capacità superiori come uguaglianza, per ricondursi allo stesso formato:

$$\begin{cases} \max c^T x \\ Ex = b \\ x + w = u \\ x \ge 0 \\ w \ge 0 \end{cases}$$

Questa forma, con $w \in \mathbb{R}^m$, intende $x_{ij} + w_{ij} = u_{ij}$, cioè gli w_{ij} di ogni arco sono gli **scarti** dal valore di capacità massima. A w negativi si avranno x > u, ergo saremo oltre la portata massima, mentre a w = 0 avremo "fissato" la capacità al massimo per la x corrispondente.

Se volessimo restare nella forma matriciale, potremmo riscrivere il vincolo di capacità come:

$$Ix + Iw = u$$

sulla matrice identità I, e quindi esprimere a blocchi:

$$\begin{pmatrix} E & 0 \\ I & I \end{pmatrix} \begin{pmatrix} x \\ w \end{pmatrix} = \begin{pmatrix} b \\ u \end{pmatrix}$$

dove la prima matrice ha dimensioni $(m+n) \times 2n$. Denotiamo questa matrice M. Se avevamo dimostrato che il rango di Ex=b è n-1, cioè quello delle matrici di base (che danno alberi di copertura), sarà abbastanza intuitivo che il rango di questa nuova matrice sarà m+n-1. In particolare, caratterizzare una base di questa matrice significherà trovare m+n-1 colonne da selezionare per formare un minore invertibile.

Teorema 1.1: Caratterizzazione di base di matrici di incidenza capacitate

Presa la matrice M di vincoli data da un problema di flusso di costo minimo capacitato, espressa in forma:

$$M = \begin{pmatrix} E & 0 \\ I & I \end{pmatrix}$$

si suppone di avere una **tripartizione** T, L, U degli archi del grafo (cioè delle colonne della matrice), dove T è un *albero di copertura*. Si chiamano poi T', L', U' le colonne corrispondenti alle variabili di scarto w.

A questo punto, $B = T \cup U \cup T' \cup L'$ sarà un base.

Abbiamo che la tripartizione T, L, U, T', L', U' è effettivamente una *esapartizione* negli insiemi di colonne T, L, U, e T', L', U' con le w associate. Notiamo che M ha 2m colonne per definizione, e che queste sono distribuite ugualmente fra T, L, U e T', L', U', con il numero di colonne di T pari a quello di T', e via dicendo. Si ha quindi che scegliendo U + Tì + L' dà m colonne, a cui aggiungiamo le n-1 di T (lo stesso ragionamento vale invertendo T e T'), la dimensione della base è m+n-1, come volevamo.

Vediamo quindi come calcolare il flusso di base corrispondente a una base:

$$(x(T, L, U), w(T', L', U')) = \left(E_T^{-1}(b - E_U u_U), 0, u_U, u_T - x_T, u_L, 0\right)$$

dove la notazione indica che x è composto dalle componenti in T, L, U, e w dalle componenti in T', L', U'.