ENGINEERING DESIGN HANDBOOK

EXPLOSIVES SERIES PROPERTIES OF EXPLOSIVES OF MILITARY INTEREST

ABBREVIATIONS AND SYMBOLS

```
approximately. This symbol is used before numbers.
AC
                Advisory Council on Scientific Research and Develop-
                     ment, Great Britain.
ACS
                American Chemical Society.
                American Iron and Steel Institute.
AISI
                Liebig's Annalen der Chemie.
Ann
                Annales de chimie et de physique.
Ann chim phys
                armor-piercing.
AΡ
APG
                Aberdeen Proving Ground.
                atmosphere; atmospheric pressure.
atm
                Beilstein Organische Chemie, 4th Edition.
Bei1
                Berichte der Deutschen Chemischen Gesellschaft.
BIOS GP2-HEC
                British Intelligence Overseas Service or Objective
                      Subcommittee, Group 2, Halstead Exploiting Center.
                Bureau of Mines, United States Department of Interior.
BM
Bull Soc chim
                Bulletin de la societé chimique de France.
CA
                Chemical Abstracts.
calc
                calculated.
                Chemical and Metallurgical Engineering.
Chem Met Eng
                Chimie et Industrie.
Chim et Ind
Comp rend
                Comptes rendus hebdomadaires des seances de
                      l'Academie des Sciences (Paris).
                centipoise.
ср
CR
                Comptes rendus hebdomadaires des seances de
                      l'Academie des Sciences (Paris).
                decomposes.
dec
Λн
                difference in heat (i.e., heat evolved) by decomposition.
DRP
                Deutsches Reichspatent.
                modulus of elasticity or "Young's modulus"; longitudinal
F.
                      stress/change in length; (force/area)/(elongation/
                      length); expressed in 1b/inch2.
                same as E, but expressed in dynes/cm^2.
                Gazzetta Chimica Italiana.
Gazz chim ital
GP
                 general purpose.
HE.
                high explosive.
HEAT
                high explosive antitank.
                Industrial & Engineering Chemistry.
Ind Eng Chem
                Journal of the American Chemical Society
J Am Chem Soc
J Chem Ind
                The Journal of the Society of Chemical Industry (London).
J Chem Soc
                Journal of the Chemical Society (London).
J Frank Inst
                Journal of the Franklin Institute.
J Ind Explo-
 sives Soc
                Journal of the Industrial Explosives Society (Japan).
                Journal für praktische Chemie.
J prakt Chem
LA
                 lead azide
Land-Bornst
                Landolt-Bornstein Physikalish-Chemische Tabellen,
                      5th Edition (Berlin).
M
                molar.
                Monatshefte für Chemie (Wein).
Mem poudr
                Mémorial des poudres et salpêtres (Paris).
                milligram.
```

ABBREVIATIONS AND SYMBOLS (cont'd)

```
min
                minimum.
m1
                milliliter.
m/s
                meters per second.
MW
                molecular weight.
                Bureau of Ordnance (U. S. Navy)
NAVORD
NC
                nitrocellulose.
n D 2 O
                index of refraction, with D band of sodium as light
                     source, at twenty degrees centigrade.
                National Defense Research Committee.
NDRC
NFOC
                National Fireworks Ordnance Corporation.
NG
                nitroglycerin.
NOL
                U. S. Naval Ordnance Laboratory, White Oak, Silver
                     Spring, Maryland.
NOTS
                U. S. Naval Ordnance Test Station, China Lake, Calif.
NRC
                National Research Council.
OB
                oxygen balance.
OCM
                Ordnance Committee Minutes.
                Office of Scientific Research and Development
OSRD
                Picatinny Arsenal.
PATR
                Picatinny Arsenal Technical Report.
Phil Trans
                Philosophical Transactions of the Royal Society of
                     London.
                Poggendorf's Annalen der Physik.
Pogg Ann
Proc Roy Soc
                Proceedings of the Royal Society of London.
Rec trav chim
                Recueil des travaux chimiques des Pays-Bas.
                relative humidity.
RH
RΙ
                Report of Investigation.
SAE
                Society of Automotive Engineers.
SAP
                semi-armor-piercing.
sol
                solution.
                Specifications.
Spec
std dev
                standard deviation.
TM
                Technical Manual, Department of the Army.
TM/TO
                joint publication, as a TM and as a Department of the
                     Air Force Technical Order.
Trans Farad Soc Transactions of the Faraday Society
                vacuum stability.
vac stab
                Zeitschrift für angewandte Chemie.
Z angew Chem
                Zeitschrift für anorganische und allgemeine Chemie.
Z anorg Chem
Z ges Schiess- Zeitschrift für das gesamte Schiess und Sprengstoff-
Sprengstoffw
                     wessen (Munchen).
Z/sec
                atoms of oxygen per second.
```

AMCP 706-177

PREFACE

The Engineering Design Handbook Series of the Army Materiel Command is a coordinated series of handbooks containing basic information and fundamental data useful in the design and development of Army materiel and systems. The handbooks are authoritative reference books of practical information and quantitative facts helpful in the design and development of Army materiel so that it will meet the tactical and technical needs of the Armed Forces.

AMCP 706-177, Properties of Explosives of Military Interest, is one of a series on Explosives. One hundred and ten explosive compounds or mixtures are listed herein, alphabetically, with their properties, including composition variations. These explosives were selected because of their current or probable application to military use.

The tabulated data reflect the results of tests, and were first compiled for publication at Picatinny Arsenal, Dover, New Jersey, by W. R. Tomlinson, Jr. These data were later revised by Oliver E. Sheffield, also of Picatinny Arsenal, for the Engineering Handbook Office of Duke University, prime contractor to the Army Materiel Command.

The Handbooks are readily available to all elements of AMC, including personnel and contractors having a need and/or requirement. The Army Materiel Command policy is to release these Engineering Design Handbooks to other DOD activities and their contractors and to other Government agencies in accordance with current Army Regulation 70-31, dated 9 September 1966. Procedures for acquiring these Handbooks follow:

a. Activities within AMC and other DOD agencies order direct on an official form from:

Commanding Officer Letterkenny Army Depot, ATTN: AMXLE-ATD Chambersburg, Pennsylvania 17201

- b. Contractors who have Department of Defense contracts should submit their requests through their contracting officer with proper justification to the address listed in par. a.
- c. Government agencies other than DOD having need for the Handbooks may submit their requests directly to the address listed in par. a or to:

Commanding General U. S. Army Materiel Command ATTN: AMCAM-ABS Washington, D. C. 20315

d. Industries not having Government contracts (this includes colleges and Universities) must forward their requests to:

Commanding General U. S. Army Materiel Command ATTN: AMCRD-TV Washington, D. C. 20315

e. All foreign requests must be submitted through the Washington, D. C. Embassy to:

Assistant Chief of Staff for Intelligence Foreign Liaison Office Department of the Army Washington, D. C. 20310

All requests, other than those originating within DOD, must be accompanied by a valid justification.

Comments and suggestions on this handbook are welcomed and should be addressed to Army Research Office-Durham, Box CM, Duke Station, Durham, North Carolina 27706.

HEADQUARTERS UNITED STATES ARMY MATERIEL COMMAND WASHINGTON, D. C. 20315

AMC PAMPHLET No. 706-177*

29 January 1971

ENGINEERING DESIGN HANDBOOK PROPERTIES OF EXPLOSIVES OF MILITARY INTEREST

	Page
PREFACE	. v
ABBREVIATIONS AND SYMBOLS	vii
INTRODUCTION	. 1
Amatol, 80/20	. 12
Amatol, 60/40	. 14
Amatol, 50/50	. 16
Ammonal	. 19
Ammonium Nitrate	. 21
Ammonium Perchlorate	. 26
Ammonium PicrateSee: Explosive D	
Baratol	. 29
Baronal	. 33
Black Powder	. 36
1,2,4-Butanetriol Trinitrate (BTTN) Liquid	. 40
Composition A-3	. 43
Composition B	. 46
Composition B, Desensitized	. 51
Composition C	. 53
Composition C-2	. 55
Composition C-3	. 57
Composition C-4	. 59
Copper Chlorotetrazole	. 63
Cyanuric Triazide	. 66
Cyclonite (RDX)	. 69
Cyclotol, 75/25	. 76
Cyclotol, 70/30	. 79
Cyclotol, 65/35	. 81
Cyclotol, 60/40	. 83
Cyclotrimethylene Trinitrosamine	. 86
DBX (<u>Depth Bomb Explosive</u>)	. 91
1,3-Diamino-2,4,6-Trinitrobenzene (DATNB)	. 95
Diazodinitrophenol	. 99
Diethylene Glycol Dinitrate (DEGN) Liquid	.103
Bis(2,2-Dinitropropy1) Fumarate (DNPF)	.107
Bis(2,2-Dinitropropy1) Succinate (DNPS)	.110
2,2-Dinitropropyl-4,4,4-Trinitrobutyrate (DNPTB)	.113

^{*}This pamphlet supersedes AMCP 706-177, 22 March 1967, including Change 1, 20 December 1967.

TABLE OF CONTENTS (cont'd)

<u>Page</u>
2,4-Dinitrotoluene (DNT)
Dipentaerythritol Hexanitrate (DPEHN)119
Dynamite, Low Velocity, Picatinny Arsenal (LVD)122
Dynamite, Medium Velocity, Hercules (MVD)125
EC Blank Fire128
EDNASee: Haleite
Ednatol, 55/45130
Ethylene Glycol Di-Trinitrobutyrate (GTNB)133
Explosive D (Ammonium Picrate)
Glycerol Monolactate Trinitrate (GLTN) Liquid140
Glycol Dimitrate (GDN) Liquid
Н-6146
Haleite (Ethylene Dinitramine) (EDNA)
HBX-1156
HBX-3159
HEX-24
HEX-48
2,4,6,2',4',6'-Hexanitro-oxanilide (HNO)
beta-HMX
HTA-3178
Lead Azide
Lead 2,4-Dinitroresorcinate (LDNR)187
Lead 4,6-Dinitroresocrinol Basic (LDNR Basic)190
Lead Styphnate193
Mannitol Hexanitrate (Nitromannite)197
Mercury Fulminate
Metriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate)206
Minol-2
MOX-1213
MOX-2B
MOX-3B
MOX-4B
MOX-6B
Nitrocellulose, 12.6% N (NC)
Nitrocellulose, 13.45% N (NC)227
Nitrocellulose, 14.14% N (NC)228

TABLE OF CONTENTS (cont'd)

-	Page
Nitroglycerin (Liquid)2	233
Nitroguanidine	239
Nitroisobutylglycerol Trinitrate (NIBTN) Liquid)2	243
NitromethaneSee: PLX Liquid	
Nitrostarch Demolition Explosive (NSX)2	246
Octol, 70/302	249
Octol, 75/25	254
PB-RDX2	259
Pentaerythritol Trinitrate (PETRIN)	265
Pentaerythritol Trinitroacrylate (PETRIN Acrylate) (Trinitroxypentaerythritol Acrylate)	269
Pentolite, 50/50; 10/902	
PETN (Pentaerythritol Tetranitrate)	
Picramide (TNA) (2,4,6-Trinitroaniline)	
Picratol, 52/482	
Picric Acid	
PIPE	294
Plumbatol	296
PLX (Liquid)	298
Potassium Dinitrobenzfuroxan (KDNBF)	
PTX-1	306
PTX-2	
PVA-4	
PVN (Polyvinyl Nitrate)	315
RDXSee: Cyclonite; Compositions A-3; B; C-2; C-3; C-4	
RIPE	318
Silver Azide	320
Tetracene	324
Tetranitrocarbazole (TNC)	327
2,4,2',4'-Tetranitro-oxanilide (TNO)	331
Tetry1	
Tetrytol, 80/20	
Tetrytol, 75/25	
Tetrytol, 70/30	
Tetrytol, 65/35	347
TNT (Trinitrotoluene)	

AMCP 706-177

TABLE OF CONTENTS (cont'd)

	Page
Torpex	.359
1,3,5-Triamino-2,4,6-Trinitrobenzene (TATNB)	.364
Triethylene Glycol Dinitrate (TEGN) Liquid	.367
Trimonite	.370
2,2,2-Trinitroethyl-4,4,4-Trinitrobutyrate (TNETB)	.373
Trinitro Triazodibenzene	.378
Tripentaerythritol Octanitrate (TPEON)	.381
Tritonal, 80/20	.386
Veltex No. 448	.391

PROPERTIES OF EXPLOSIVES OF MILITARY INTEREST

INTRODUCTION

- 1. PREDOMINANTLY A REPORT OF STANDARD TESTS. No effort was made to cover all the existing literature, either open or classified security information, on any explosive. Rather, the main resource has been reports from facilities using standard or well-known test procedures.
- 2. ORIGIN. Compilation of data resulting in this handbook was undertaken by Picatinny Arsenal personnel who desired to provide a manual tabulating the characteristics of explosives, based on tests, with regard to current, and possible future, interest. The first resulting Picatinny Arsenal publication was dated 20 June 1949. Revision 1, PA Technical Report No. 1740, dated April 1958, with revisions, provides the data used herein.
- 3. SCOPE. Tabulated data of tests on one hundred and ten explosive compounds or mixtures include sensitivity to friction, impact, heat; performance characteristics or effectiveness in weapons; physical and chemical properties; and method of preparation, synthesis or manufacture, with comments on historical origin, and supplementary references.
- 4. REFERENCE NOTATIONS AND SOURCES. The references, as to sources of data or for more details in methods of testing, have been listed, when available, at the end of each section devoted to a given explosive compound, explosive mixture, or explosive ingredient. Where no reference is given, it can be assumed that these data represent typical values obtained by standard procedures. When available any reference should be consulted for more details in interpreting test data.

Also there are listed Picatinny Arsenal Technical Reports which contain additional information on the particular explosive. These report numbers are given in ascending order, in columns corresponding to their terminal digits, and in accordance with the "Uniterm Index" prepared for Picatinny Arsenal by Documentation Incorporated under Contract DAI-36-034-501-ORD-(P)-42 (1955).

5. EXPLANATION OF TERMS AND METHODS OF TESTING. Data are tabulated herein on three form-type pages, in the following sequence of headings. Many of these terms are self-explanatory.

a. First tabular page.

- (1) Name of the explosive in each instance.
- (2) "Composition."
- (3) "Impact Sensitivity, 2 Kg Wt."
 - (a) Impact sensitivity test for solids. (a)*

A sample (approximately 0.02 gram) of explosive is subjected to the action of a falling weight, usually 2 kilograms. A 20-milligram sample of explosive is always used in the Bureau of Mines (BM) apparatus when testing solid explosives. The weight of sample used in the Picatinny Arsenal (PA) apparatus is indicated in each case. The impact test value is the minimum

^{*}Reference publications (a through q), applying to this introduction, are listed at the end of the introduction.

height at which at least one of 10 trials results in explosion. For the EM apparatus, the unit of height is the centimeter; for the PA apparatus, it is the inch. In the former, the explosive is held between two flat, parallel hardened ($C = 63 \pm 2$) steel surfaces; in the latter case, it is placed in the depression of a small steel die-cup, capped by a thin brass cover, in the center of which is placed a slotted-vented-cylindrical steel plug, slotted side down. In the BM apparatus, the impact impulse is transmitted to the sample by the upper flat surface, in the PA, by the vented plug. The main differences between the two tests are that the PA test (1) involves greater confinement, (2) distributes the translational impulse over a smaller area (due to the inclined sides of the die-cup cavity), and (3) involves a frictional component (against the inclined sides).

The test value obtained with the PA apparatus depends, to a marked degree, on the sample density. This value indicates the hazard to be expected on subjecting the particular sample to an impact blow, but is of value in assessing a material's inherent sensitivity only if the apparent density (charge weight) is recorded along with the impact test value. The values tabulated herein were obtained on material screened between 50 and 100 mesh, U. S. Standard Screens where single component explosives are involved, and through 50 mesh for the mixtures.

(b) Impact sensitivity test for liquids. (b)

The PA Impact Test for liquids is run in the same way as for solids. The die-cup is filled and the top of the liquid meniscus adjusted to coincide with the plane of the top rim of the die-cup. To date, this visual observation has been found adequate to assure that the liquid does not wet the die-cup rim after the brass cap has been set in place. Thus far the reproducibility of data obtained in this way indicate that variations in sample size obtained are not significant.

In the case of the BM apparatus, the procedure that was described for solids is used with the following variations:

- 1. The weight of explosive tested is 0.007-gm.
- 2. A disc of desiccated filter paper (Whatman No. 1) 9.5-millimeter diameter, is laid on each drop, on the anvil, and then the plunger is lowered on the sample absorbed in the filter paper.
 - (4) "Friction Pendulum Test." (c)

A 7.0-gm sample of explosive, 50-100 mesh, is exposed to the action of a steel, or fiber, shoe swinging as a pendulum at the end of a long steel rod. The behavior of the sample is described qualitatively to indicate its reaction to this experience, i.e., the most energetic reaction is explosion, and in decreasing order of severity of reaction: snaps, cracks, and unaffected.

(5) "Rifle Bullet Impact Test." (d)

Approximately 0.5-pound of explosive is loaded in the same manner as it is loaded for actual use: that is, cast, pressed, or liquid in a 3-inch pipe nipple (2-inch inside diameter, 1/16-inch wall) closed on each end by a cap. The loaded item, in the standard test, contains a small air space which can, if desired, be filled by inserting a wax plug. The loaded item is subjected to the impact of a caliber .30 bullet fired perpendicularly to the long axis of the pipe nipple, from a distance of 90 feet.

(6) "Explosion Temperature." (a)

A 0.02-gm sample (0.01-gm in the case of initiators) of explosive, loose loaded in a No. 8 blasting cap, is immersed for a short period in a Wood's metal bath. The temperature determined is that which produces explosion, ignition or decomposition of the sample in 5 seconds, and the behavior of the sample is indicated by "Explodes" or "Ignites" or "Decomposes" placed beside the value. Where values were available for times other than 5 seconds, these have been included. For 0.1-second values, no cap was used, but the explosive was placed directly on Wood's metal bath, immediately after cleaning. The value 0.1 second is estimated, not determined, and represents an interval regarded as instantaneous to the observer's eye. Dashes indicate no action.

(7) "75°C International Heat Test." (a)

A 10-gm sample is heated for 48 hours at 75°C. The sample after this exposure is observed for signs of decomposition or volatility.

(8) "100°C Heat Test." (a)

A 0.6-gm sample is heated for two 48-hour periods at 100°C. It is also noted whether exposure at 100°C for 100 hours results in explosion.

(9) "Flammability Index." (h)

The measure of the likelihood that a bare charge will catch fire when exposed to flames is the index of flammability. The test is made by bringing an oxyhydrogen flame to bear on the explosive. The maximum time of exposure which gives no ignition in 10 trials and the minimum exposure which gives ignition in each of 10 trials are determined. The index of flammability is 100 divided by the mean of the two times in seconds. The most flammable substances have high indices, e.g., 250.

(10) "Hygroscopicity."

A 5- to 10-gm sample is exposed for hygroscopicity under the stated conditions, until equilibrium is attained, or in cases where either the rate is extremely low, or very large amounts of water are picked up, for the stated time. The sample, if solid, is prepared by sieving through a 50 and on a 100 mesh screen.

(11) "Volatility."

A 10-gm sample is exposed for volatility under the stated conditions. The sample if solid is prepared by sieving through a 50 and on a 100 mesh sieve.

(12) "Molecular Weight."

The molecular weight (MW) of a mixture can be calculated from the equation

MW of mixture =
$$\frac{a}{\frac{a}{mw_1} + \frac{b}{mw_2} + \frac{c}{mw_3} + \frac{n}{mw_n}}$$

where a, b, c and n are the weight percents of the components, and \mathtt{mw}_1 , \mathtt{mw}_2 , \mathtt{mw}_3 and \mathtt{mw}_n their corresponding molecular weights.

AMCP 706-177

(13) "Oxygen Balance."

The oxygen balance (OB) is calculated from the empirical formula of a compound in percentage of oxygen required for complete conversion of carbon to carbon dioxide (or carbon monoxide) and hydrogen to water. When metal is present the reactions are assumed to occur in the following order:

Procedure for calculating oxygen balance is to determine the number of gramatoms of oxygen which are excess or deficient for 100 grams of a compound. This number multiplied by the atomic weight of oxygen gives

the oxygen balance: 1600 (2X +
$$\frac{Y}{2}$$
 - Z)

 \div molecular weight of compound = oxygen balance to CO₂ and H₂O, where X = atoms of carbon, Y = atoms of hydrogen, Z = atoms of oxygen. The oxygen balance of a mixture is equal to the sum of the percent composition times the oxygen balance for each component.

The carbon/hydrogen (C/H) ratio is calculated as follows:

Number of C atoms (%C + %H) =
$$C/H$$
 ratio

- (14) "Density."
- (15) "Melting Point."
- (16) "Freezing Point."
- (17) "Boiling Point."
- (18) "Refractive Index."
- (19) "Vacuum Stability Test." (a)

A 5.0-gm sample (1.0 gm for initiators), after having been carefully dried, is heated for 40 hours, in vacuo at the desired temperature.

- (20) "200 Gram Bomb Sand Test."
 - (a) Sand test for solids. (a)

A 0.4-gm sample of explosive, pressed at 3000 pounds per square inch into a No. 6 cap, is initiated by lead azide, or mercury fulminate (or, if necessary, by lead azide and tetryl), in a sand test bomb containing 200 gm of "on 30 mesh" Ottawa sand. The amount of azide, or of tetryl, that must be used, to insure that the sample crushes the maximum net weight of sand, is designated as its sensitivity to initiation and the net weight of sand crushed, finer than

30 mesh, is termed the sand test value. The net weight of sand crushed is obtained by subtracting from the total the amount crushed by the initiator when shot alone.

(b) Sand test for liquids. (b)

The sand test for liquids is made in accordance with the procedure given for solids except that the following procedure for loading the test samples is substituted:

Cut the closed end from a No. 6 blasting cap and load one end of the resulting cylinder with 0.20 gm of lead azide and 0.25 gm of tetryl, using a pressure of 3000 psi for consolidating each charge. With a pin, prick the powder train in one end of a piece of miner's black powder fuse 8 or 9 inches long. Crimp to the pricked end a loaded cylinder, taking care that the end of the fuse is held firmly against the charge in the cap. Crimp near the mouth of the cap so as to avoid squeezing the charge. Transfer a weighed portion of 0.400 gm of the test explosive to an aluminum cap, taking precautions when the explosive is liquid to insert the sample in such a manner that as little as possible adheres to the side walls of the cap, and when a solid material is being tested use material fine enough to pass through a No. 100 U. S. Standard Sieve. The caps used shall be of the following dimensions: length 2.00 inches, internal diameter 0.248-inch, wall thickness 0.025-inch. Press solid explosives, after insertion into the aluminum cap, by means of hand pressure to an apparent density of approximately 1.2 gm per cubic centimeter. This was done by exerting hand pressure on a wooden plunger until the plunger had entered the cap to a depth of 3.93 centimeters. Following are the dimensions of the interior of the cap: height 5.00 cm, area of cross section 0.312 square centimeters. Insert the cylinder containing the fuse and explosive charge of tetryl and lead azide into the aluminum cap containing the test explosive for the determination of sand crushed.

(21) "Sensitivity to Initiation."

This is sensitivity to initiation as described under the preceding heading. The minimum detonating charge, in grams, required to detonate the explosive sample, is given.

The amount of sample under test which is necessary to raise the heavy ballistic mortar to the same height to which it is raised by 10 gm of trinitrotoluene (INT) is determined. The sample is then rated, on a proportionate basis, as having a certain INT value, i.e., as being a certain percent as effective as INT in this respect. The formula is

TNT value =
$$\frac{10}{\text{sample weight}}$$
 x 100.

The ballistic mortar consists of a long compound supporting rod, at the end of which is supported a heavy short-nosed mortar. The mortar contains a chamber about 6 inches in diameter and 1 foot long. A projectile occupies about 7 inches of the chamber and the sample to be tested occupies a small portion of the remainder of the chamber. When the sample is detonated, the projectile is driven into a sand bank, and the mortar swings through an angle which is marked on paper by a pencil attached to the mortar. The angle thus indicates the height to which the pendulum is raised by the explosion, and this latter represents the energy measured by this test procedure.

A sample of the explosive to be tested (of the order of 10 gm) is exploded in a cavity, or borehole, 25-mm in diameter and 125-mm deep, in a lead block 200-mm in diameter and 200-mm in height. The borehole is made centrally in the upper face of each block, which is cast in a mold from desilverized lead of the best quality. Although these tests have been made under a variety

of conditions, where possible the data have been taken from or related to those of Reference f (Naoum). Here a No. 8 blasting cap was used for initiation of the sample contained in glass. The weight of sample used was adjusted to give, with the initiator, a total expansion of 250 to 300 cc, since within this range expansion and sample weight were linearly related under the conditions of Naoum's test. Thus expansions for equivalent weights were readily calculated, and the test value expressed in percent of the expansion of an equivalent weight of TNT.

(24) "Plate Dent Test." (d)

Two methods were used for plate dent tests.

- (a) Method A The charge is contained in a copper tube, having an internal diameter of 3/4-inch and 1/16-inch wall. This loaded tube is placed vertically on a square piece of cold-rolled steel plate, 5/8-inch thick; 4-inch and 3-1/4-inch square plate gave the same results. The steel plate is in a horizontal position and rests in turn on a short length of heavy steel tubing 1-1/2 inches ID and 3 inches OD. The charge rests on the center of the plate, and the centers of the charge, plate, and supporting tube are in the same line. A 20-gm charge of the explosive under test is boostered by a 5-gm pellet of tetryl, in turn initiated by a No. 8 detonator.
- (b) Method B A 1-5/8-inch diameter, 5-inch long uncased charge is fired on a 1-3/4-inch thick, 5-square inch cold-rolled steel plate, with one or more similar plates as backing. The charge is initiated with a No. 8 detonator and two 1-5/8-inch diameter, 30-gm tetryl boosters.

Plate dent test value, or relative brisance = $\frac{\text{Sample Dent Depth}}{\text{Dent Depth for TNT at 1.61 gm/cc}} \times 100.$

(25) "Detonation Rate." (g)

The detonation rates reported in the tables contained herein were determined principally by using the rotating drum camera, under the conditions stated, e.g., usually charges 1 inch in diameter, 20 inches long, wrapped in cellulose acetate sheet, and initiated by a system designed to produce high order stable detonation at the maximum rate under the particular conditions. A typical initiating system for this consisted of four tetryl pellets 0.995 inch in diameter, 0.75 inch long, pressed to 1.50 gm/cc, with a Corps of Engineers special blasting cap placed in a central hole in the end pellet.

b. Second tabular page.

(1) "Booster Sensitivity Test." (p)

The booster sensitivity test procedure is a scaled up modification of the Bruceton method (unconfined charge). The source of the shock consists of two tetryl pellets, each 1.57 inches diameter by 1.60 inches high, of approximately 100 gm total weight. The initial shock is degraded through wax spacers of cast Acrawax B, 1-5/8 inches diameter. The test charges are 1-5/8 inches diameter by 5 inches long. The value given is the thickness of wax in inches at the 50% detonation point. The weight of tetryl pellet noted is the minimum which will produce detonation with the spacer indicated.

(2) "Heat of" (calorimetric tests). (i)

Heats of combustion and explosion are generally determined on samples weighing of the order of 1 to 2 gm, in standard calorimeter bombs such as the Parr or Emerson, approximately 400 cc (for low loading density), or the Boas, approximately 45 cc (for high loading density). For

heats of combustion the sample is burned under about 40 atmospheres of oxygen; for heats of explosion, nitrogen, or one atmosphere of air is used.

- (3) "Specific Heat."
- (4) "Burning Rate."
- (5) "Thermal Conductivity."
- (6) "Coefficient of Expansion."
- (7) "Hardness, Mohs' Scale."
- (8) "Young's Modulus."
- (9) "Compressive Strength."
- (10) "Vapor Pressure."
- (11) "Decomposition Equation."
- (12) "Armor Plate Impact Test." (j)
 - (a) 60-mm Mortar Projectile.

A modified 60-mm, M49A2, mortar projectile is loaded with the explosive to be tested, drilled to the proper depth (about 1/2 inch), and a flat-based steel plug screwed into the projectile to give a smooth close-fit between the plug base and the charge. The part of the plug outside the projectile is rounded off in the form of a spherical section. The loaded projectile with fins attached is fired from a five foot length of 2-3/8 inches ID x 3-3/8 inches OD Shelby steel tubing. The igniter and propelling charge, consisting of an igniter for a 2.36-inch rocket (bazooka), 5 gm of 4F black powder, and a quantity of shotgun propellant sufficient to give the desired velocity (read from a calibration chart) are conveniently loaded into the "gun" through a simple breech plug. The velocities are measured electronically, and the reaction, inert or affected, is determined by observation (e.g., whether or not flash occurs on impact). Within the range of flight stability of the projectile, 200-1100 ft/sec, the 50% point is located.

- (b) 500-1b General Purpose Bombs.
- (13) "Bomb Drop Test."

Bomb drops are made using bombs assembled in the conventional manner, as for service usage, but containing either inert or simulated fuzes. The target is usually reinforced concrete.

c. Third tabular page.

(1) "Fragmentation Test." (1)

The weight of each empty projectile and weight of water displaced by the explosive charge is determined, and from this the specific gravity of the charge is calculated. All 3-inch and 90-mm projectiles are initiated by M2O Booster pellets, and those used with 3-inch HE, M42Al, Lot KC-5 and 90-mm HE, M71, Lot WC-91 projectiles are controlled in weight and height as follows: 22.50 ± 0.10 gm, and 0.480 to 0.485 inch.

The projectile assembled with fuze, actuated by a Blasting Cap, Special, Type II (Spec 49-20) placed directly on a lead of comparable diameter, and booster, are placed in boxes constructed of half-inch pine. The 90-mm projectiles are fragmented in boxes $21 \times 10^{-1}/2 \times 10^{-1}/2$ inches and the 3-inch projectiles in boxes $15 \times 9 \times 9$ inches outside dimensions. The box with projectile is placed on about 4 feet of sand in a steel fragmentation tub, the detonator wires are connected, and the box covered with approximately 4 feet more of sand. The projectile is fired and the sand run onto a gyrating 4-mesh screen on which the fragments are recovered.

(2) "Fragment Velocity."

Charges 10-1/8 inches long and 2 inches in diameter, containing a booster cavity, filled by a 72-gm tetryl pellet (1-3/8 inches diameter, 2 inches long, average density 1.594) are fired in a model projectile of Shelby seamless tubing, 2 inches ID, 3 inches OD, SAE 1020 steel, with a welded-on cold rolled steel base. The projectile is so fired in a chamber, connected to a corridor containing velocity stations, that a desired wedge of projectile casing fragments can be observed. The fragment velocities are determined by shadow photographs, using flash bulbs, and rotating drum cameras, each behind three slits. The drum cameras have a writing speed of 30 meters per second.

(3) "Blast (Relative to TNT)."

The blast pressures and impulses given were determined almost exclusively with tourmaline gages, and the usual necessary specialized electrical circuits, shielded co-axial cables, oscillographs, etc. In general, the data represent results of tests with large cased charges.

(4) "Shaped Charge Effectiveness, TNT = 100." (k, m)

Unconfined charges 2 inches in diameter and 6 inches long, boostered by a 10-gm pressed tetryl pellet, set in a 20-mm pellet (truncated cone) of cast 60/40 cyclotol, are shot against 3-inch homogeneous armor plate at a 1-3/16 inches standoff. The cones used are commercial Pyrex glass funnels, sealed off at the start of the stem, 2 inches in diameter, 0.110 to 0.125 inch wall thickness.

Unconfined charges 1.63 inches in diameter and 6 inches long are tested at a standoff of 1.63 inches against stacks of $4 \times 4 \times 1$ inch mild steel plates. M9Al steel cones are used. Results are averages of 4 trials.

- (5) "Color."
- (6) "Principal Uses."
- (7) "Method of Loading."
- (8) "Loading Density."
- (9) "Storage."

Ammunition and bulk explosives in storage represent varying degrees of hazard and compatibility. This has led to their being divided into a number of hazard classes and compatibility groups as indicated in subparagraphs (b) and (c) below.

- (a) Method: Wet or dry.
- (b) Hazard Class (Quantity-Distance).

Ammunition and bulk explosives are divided into quantity-distance classes, Class 1 through 12, according to the damage expected if they explode or ignite (Reference: Army Materiel Command Regulation, AMCR 385-100, AMC Safety Manual, chapter 17). All standard explosives in bulk are included in four of these classes: Class 2, 2A, 9, and 12 (TM 9-1910/TO 11A-1-34).

(c) Compatibility Group.

Explosives and ammunition are grouped for compatibility with respect to the following factors:

- 1. Effects of explosion of the item.
- 2. Rate of deterioration.
- 3. Sensitivity to initiation.
- 4. Type of packing.
- 5. Effects of fire involving the item.
- 6. Quantity of explosive per unit.
- (d) Exudation.

d. Miscellaneous entries.

Where available and appropriate, the following or related data are given, in space at the bottom of the third form, or on plain pages.

- (1) Solubility.
- (2) Methods of manufacture.
- (3) Historical information.
- (4) Bulk compressibility modulus. (q)

The direct experimental measurement of the dynamic bulk modulus of a solid is difficult, and few such measurements have been made. One apparatus has been developed at the Naval Ordnance Laboratory and is described in detail in Reference q. Bulk modulus (its reciprocal is the compressibility) is defined as the ratio of stress to strain when the stress is a pressure applied equally on all surfaces of the sample and the strain is the resulting change in volume per unit volume.

(5) Hydrolysis tests. (o)

The 240-hour hydrolysis test is conducted as follows: A 5-gm sample of the dry nitrocellulose is weighed accurately in a tare-weighed 250-cc Pyrex flask having a ground glass connection for a Pyrex condenser. Then 100 cc of distilled water is added to the nitrocellulose in the flask and the flask fitted to the condenser. The flask is placed in a steam bath in which the water is kept boiling constantly by means of electric hotplates. At the end of 240 hours the amount of solid developed by the hydrolysis of the nitrocellulose is measured by an electromatic pH method.

(6) Sensitivity to initiation by electrostatic discharge. (n)

AMCP 706-177

The samples are tested under two amounts of confinement, designated as unconfined and confined. In the unconfined test, a sample of approximately 0.05 gm is dumped into a shallow depression in a steel block and flattened out with a spatula. In the confined tests (partly confined), the sample of approximately 0.05 gm is introduced into soft-glass tube (\sim 7 mm ID x 18 mm long) which fits over a metal peg. The volume of the space around the charge at zero gap is \sim 0.15 cc; at a gap of 0.6 mm, it is \sim 0.4 cc. In addition to providing moderate confinement, this system also minimizes dispersion of the sample by the test spark, and reduces the effect of material being repelled from the needle point by electrostatic field effect.

When a test is to be made, the needle point electrode is screwed up until the gap between electrodes is greater than the critical gap discharge at the test voltage. The sample is then placed in position, the high-voltage terminal of the charged condensor is switched to the point electrode by means of a mercury switch, and the electrode is screwed down until discharge occurs.

The spark energy (in joules), for zero probability of ignition, is determined.

(7) Destruction by chemical decomposition.

Burning is the preferred method of destroying explosives. Initiating type explosives (in quantity) are usually destroyed by detonation with demolition blocks. Destruction of explosives by chemical decomposition can be effectively used where small laboratory quantities are involved. Procedures given are standard for only lead azide, mercury fulminate and nitroglycerin.

- (8) Other information.
- (9) References.

6. REFERENCES CITED IN INTRODUCTION. 1

- a. W. H. Rinkenbach and A. J. Clear, Standard Laboratory Procedures for Sensitivity, Brisance, and Stability of Explosives, PATR No. 1401, 18 March 1944, Revised 28 February 1950.
- b. W. R. Tomlinson, Jr. and A. J. Clear, <u>Development of Standard Tests -- Application of the Impact and Sand Tests to the Study of Nitroglycerin and Other Liquid Explosives</u>, PATR No. 1738, 13 June 1949.
 - c. J. H. McIvor, Friction Pendulum, PA Testing Manual 7-1, 8 May 1950.
- d. Departments of the Army and the Air Force Joint Technical Manual and Technical Order, TM 9-1910/TO 11A-1-34, Military Explosives, April 1955.
 - e. J. H. McIvor, Ballistic Mortar Test, PA Testing Manual 7-2, 8 May 1950.
 - f. Ph. Naoum, Z ges Schiess-Sprengetoffw, pp. 181, 229, 267 (27 June 1932).
- g. G. J. Mueller, Equipment for the Study of the Detonation Process, PATR No. 1465, 4 July 1945.
- h. NDRC Interim Report, Preparation and Testing of Explosives, Nos. PT-19 and PT-20, February-April 1944.
 - i. Linnie E. Newman, PA Chemical Laboratory Report Nos. 127815 and 134476, 11 January 1951.
 - j. Report AC-2983/Org Expl 179.

¹For information regarding source of references, inquiries should be made to the Commander, U.S. Army Research Office--Durham, ATTN: CRDARD-EH, Box CM, Duke Station, Durham, North Carolina 27706.

- k. Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, <u>Section III</u>, <u>Variation of Cavity Effect with Composition</u>, <u>NDRC Contract W-672-ORD-5723</u>.
 - 1. J. H. McIvor, Fragmentation Test Procedures, PA Testing Manual 5-1, 24 August 1950.
- m. Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, 18 September 1943, NDRC Contract W-672-ORD-5723.
- n. F. W. Brown, D. H. Kusler, and F. C. Gibson, Sensitivity of Explosives to Initiation by Electrostatic Discharges, U. S. Department of Interior, Bureau of Mines, R. I. 3852, 1946.
- o. D. Sager, Study of Acid Adsorption and Hydrolysis of Cellulose Nitrate and Cellulose Sulphate, PATR No. 174, 12 January 1932.
- p. L. C. Smith and E. H. Eyster, Physical Testing of Explosives, Part III, Miscellaneous Sensitivity Tests, Performance Tests, OSRD Report No. 5746, 27 December 1945.
- q. C. S. Sandler, An Acoustic Technique for Measuring the Effective Dynamic Bulk Modulus of Elasticity and Associated Loss Factor of Rubber and Plastics, NAVORD Report No. 1524, 1 September 1950.
- W. S. Cramer, <u>Bulk Compressibility Data on Several Explosives</u>, NAVORD Report No. 4380, 15 September 1956.

AMCP 706-177

Amatol, 80/20

Composition:		Molecular Weight:		92
%	0-	Oxygen Balance:		
Ammonium Nitrate TNT	80 20	CO ₂ % CO %		+1 11
		Density: gm/cc Ca	st l.	46
		Melting Point: "C		
C/H Ratio		Freezing Point: °C		
Impact Sensitivity, 2 Kg Wt:		Boiling Point: °C		
Bureau of Mines Apparatus, cm Sample Wt 20 mg	90	Refractive Index, no		
Picatinny Arsenal Apparatus, in.	15	n ₂₅		
Sample Wt, mg	17	n ₃₀		
Friction Pendulum Test:		Vacuum Stability Test:		
Steel Shoe Unaffe	eted	cc/40 Hrs, at		
Fiber Shoe Unaffe	eted	90°C		١
Rifle Bullet Impact Test: 5 Trials		100°C		45
%		135°C	0.	95
Explosions 0		150°C	6.	8
Partials 0		150 C		
Burned 0		200 Gram Bomb Sand Test:		
Unaffected 100		Sand, gm	35.	5
Explosion Temperature: °C		Sensitivity to Initiation:		
Seconds, 0.1 (no cap used)		Minimum Detonating Ch	arge, gm	
1 5 Decomposes 280		Mercury Fulminate		_
_		Lead Azide		20
10		Tetryl	0.	07
15 20		Ballistic Mortar, % TNT:	(a) 13	30
		Trauzi Test, % TNT:	(b) 12	23
75°C International Heat Test: % Loss in 48 Hrs	0.06	Plate Dent Test:		
% Loss in 46 Firs	0.00	Method		
100°C Heat Test:		Condition		
% Loss, 1st 48 Hrs	0.03	Confined		
% Loss, 2nd 48 Hrs	0.05	Density, gm/cc		
Explosion in 100 Hrs	None	Brisance, % TNT		
		— Detonation Rate:		
Flammability Index:		Confinement	None	None
		— Condition	Cast	Cast
Hygroscopicity: %		Charge Diameter, in.	1.0	1.0
30°C, 90% RH, 2 days	_61	Density, gm/cc	1.46	1.50
Volatility:	Nil	Rate, meters/second	4500	5100

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:				
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth				
Total No. of Fragments: For TNT	Color: Buff-yellow				
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc	Principal Uses: Bombs, HE projectiles				
Charge Wt, Ib					
Total No. of Fragments: For TNT	Method of Loading: Cast				
For Subject HE	Loading Density: gm/cc 1.46				
Fragment Velocity: ft/sec (f) At 9 ft 1900 At 25½ ft 1750	Storage:				
Density, gm/cc	Method Dry				
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9				
Air: Peak Pressure Impulse Energy	Compatibility Group I Exudation Does not exude at 65°C				
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Density, gm/cc Pressed 100 0.83 1.65 Heat of: Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm 930*				
	*Calculated from composition of mixture.				

Amatol, 60/40

Composition:		Molecular Weight:	108			
Ammonium Nitrate TNT	60 40	Oxygen Balance: CO ₂ % CO %	-18 + 2			
		Density: gm/cc Cast	1.60			
		Melting Point: °C				
C/H Ratio		Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	95	Boiling Point: °C				
Sample Wt 20 mg		Refractive Index, no				
Picatinny Arsenal Apparatus, in. Sample Wt, mg	16 17	n ₂₅				
		n ₃₀				
Friction Pendulum Test:		Vacuum Stability Test:				
Steel Shoe		cc/40 Hrs, at				
Fiber Shoe		90°C - 100°C				
Rifle Bullet Impact Test: Trials		120°C				
%		135°C				
Explosions		150°C				
Partials		130 €				
Burned		200 Gram Bomb Sand Test:				
Unaffected		Sand, gm	41.5			
Explosion Temperature: °C		Sensitivity to Initiation:				
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	1			
1 5 Page 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990		Mercury Fulminate				
5 Decomposes 270		Lead Azide	0.20			
10		Tetryl	0.06			
15 20		Ballistic Mortar, % TNT: (a)	128			
		Trauzi Test, % TNT:				
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:				
/U LUSS III 40 I II S		Method				
100°C Heat Test:		Condition				
% Loss, 1st 48 Hrs		Confined				
% Loss, 2nd 48 Hrs		Density, gm/cc				
Explosion in 100 Hrs		Brisance, % TNT				
		Detonation Rate:				
Flammability Index:		Confinement	None			
H		Condition	Cast			
Hygroscopicity: %		Charge Diameter, in.	1.0			
Volatility:	Nil	Density, gm/cc	1.50			
volutions,	143-T	Rate, meters/second	5760			

Fragmentation Test:		Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot	WC-91:	Glass Cones Steel Cones		
Density, gm/cc	1.49	Hole Volume		
Charge Wt, Ib	1.971	Hole Depth		
Total No. of Fragments:		Color: Ruff-vellow		
For TNT	703	Buff-yellow		
For Subject HE	583	Principal Uses: Bombs, HE projectiles		
3 inch HE, M42A1 Projectile, Lo	t KC-5:	Somes, in progression		
Density, gm/cc	1.57	•		
Charge Wt, Ib	0.827			
Total No. of Fragments:		Method of Loading: Cast		
For TNT	514	, manual or account.		
For Subject HE	408	Loading Density: gm/cc 160		
Fragment Velocity: ft/sec		Loading Density: gm/cc 160		
At 9 ft At 25½ ft		Storage:		
Density, gm/cc				
Benshy, gin, co		Method Dry		
Blast (Relative to TNT);	· · · · · · · · · · · · · · · · · · ·	Hazard Class (Quantity-Distance) Class 9		
Air:		Compatibility Group Group I		
Peak Pressure	95	Exudation Does not exude at 65°C		
Impulse	85	Exudation Does not exude at 65°C		
Energy	84			
Air, Confined:		Heat of: (d, e)		
Impulse		Combustion, cal/gm 1658*		
		Explosion, cal/gm 633*		
Under Water: Peak Pressure		Gas Volume, cc/gm 880*		
Impulse				
Energy		f		
Underground: Peak Pressure				
Impulse				
Energy				
		*Calculated from composition of mixture.		

Amatol, 50/50

Composition:	Molecular Weight:	118			
%	Oxygen Balance:				
Ammonium Nitrate 50	CO ₂ %	-27			
TNT 50	CO %	- 3			
	Density: gm/cc Cast	1.59			
	Melting Point: °C				
C/H Ratio	Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 95	Boiling Point: °C				
Sample Wt 20 mg	Refractive Index, n20				
Picatinny Arsenal Apparatus, in. 16	n ₂₅				
Sample Wt, mg 17	n ₃₀				
Friction Pendulum Test:	Vacuum Stability Test:				
Stee! Shoe Unaffected	cc/40 Hrs, at				
Fiber Shoe Unaffected	90°C				
	100°C	0.2			
Rifle Bullet Impact Test: Trials	120°C	1.0			
% Explosions 0	135°C				
Partials 0	150°C				
Burned 0	200 Come Book Soud Took				
Unaffected 100	200 Gram Bomb Sand Test: Sand, gm	42. 5			
	Juliu, gill	72.)			
Explosion Temperature: °C	Sensitivity to Initiation:				
Seconds, 0.1 (no cap used)	Minimum Detonating Charge,	gm			
1 5 Decomposes 265	Mercury Fulminate				
	Lead Azide	0.20			
10	Tetryl	0.05			
15	Ballistic Mortar, % TNT: (a)	124			
20	Trauzi Test, % TNT:				
75°C International Heat Test:	Plate Dent Test:				
% Loss in 48 Hrs	Method	В			
100°C Heat Test:	Condition	Cast			
	Confined	No			
% Loss, 1st 48 Hrs	Density, gm/cc	1.55			
% Loss, 2nd 48 Hrs	Brisance, % TNT	52			
Explosion in 100 Hrs					
Elementility Index:	Detonation Rate:	·			
Flammability Index:	_	one None			
Hygroscopicity: % Nil	-	ast Cast			
iii ii		.0 1.0			
Volatility:		.55			
·	Rate, meters/second 6	430 6230			

ragmentation Test:		Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot	WC-91:	Glass Cones Steel Cones (g)
Density, gm/cc	1.55	Hole Volume 53
Charge Wt, Ib	2.053	Hole Depth 69
Total No. of Fragments:		Color: Buff-yellow
For TNT	703	Coor: Bull-yellow
For Subject HE	630	Principal Uses: Bombs, HE projectiles
3 inch HE, M42A1 Projectile, L	ot KC-5:	Principal Oses: Domos, In projectives
Density, gm/cc	1.54	
Charge Wt, Ib	0.819	
Total No. of Fragments:		Made of Lordina Cont
For TNT	514	Method of Loading: Cast
For Subject HE	385	
		Loading Density: gm/cc 1.59
agment Velocity: ft/sec At 9 ft		
At 25½ ft		Storage:
Density, gm/cc		Method Dry
ast (Relative to TNT):		Hazard Class (Quantity-Distance) Class 9
Air:		Compatibility Group Group I
Peak Pressure	97	
Impulse	87	Exudation Does not exude at 65°C
Energy		
		Booster Sensitivity Test: (a)
Air, Confined:		Condition Cast
Impulse		Tetryl, gm 100
		Wax, in. for 50% Detonation 0.60
Under Water:		Density, gm/cc 1.55
Peak Pressure		Heat of: (d, e) Combustion, cal/gm 1990
Impulse	-0	Combustion, cal/gm 1990 Explosion, cal/gm 703*
Energy	98	Gas Volume, cc/gm 855*
Underground:		*Calculated from composition of mixture.
Peak Pressure	104	Specific Heat: cal/gm/°C (i)
Impulse	104	Specific Heat: $cal/gm/^{\circ}C$ (i) Temp, 20° to 80°C 0.383
Energy	104	Bomb Drop Test: T7, 2000-1b Semi-Armor-Piercing Bomb vs Concrete:
		Max Safe Drop, ft 4000-5000

Compatibility with Metals:

Dry - Metals unaffected are zinc, iron, tin, brass, brass tin plated, brass NRC coated, brass shellac coated, nickel aluminum, steel, steel plated with nickel, zinc or tin, stainless steel, Parkerized steel, and steel coated with acid-proof black paint. Metals slightly affected are copper, bronze, lead and copper plated steel.

Preparation:

In preparing amatols the proper granulation of ammonium nitrate is required if the maximum density of the cast amatol is desired. The ammonium nitrate should be dried so as to contain not more than 0.25% moisture. It should be heated to about 90°C before being added to the appropriate weight of molten TNT contained in a melting vessel equipped with an agitator. Continue mixing to insure uniformity and load by pouring into shell or bombs.

Origin:

Developed by the British during World War I in order to conserve INT.

References: 2

- (a) L. C. Smith and E. H. Eyster, Physical Testing of Explosives, Part III, Miscellaneous Sensitivity Tests, Performance Tests, OSRD Report 5746, 27 December 1945.
 - (b) Report AC-17/Phys Ex 1.
 - (c) D. P. McDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
- (d) Committee of Div 2 and 8, NDRC, Report on HBX and Tritonal, OSRD Report No. 5406, 31 July 1945.
- (e) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.
- (f) R. W. Drake, Fragment Velocity and Panel Penetration of Several Explosives in Simulated Shells, OSRD Report No. 5622, 2 January 1946.
- (g) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, 18 September 1943, NDRC Contract W-672-ORD-5723.
 - (h) Also see the following Picatinny Arsenal Technical Reports on Amatols:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	2
240 350 630 950 1300 1530	681 731 901 1051 1311 1451 1651	132 182 1302 1352 1372 1552	743 1173 1373 1323 1493 1783	364 694 734 874 1344	65 425 695 715 735 1145 1225 1345 1455 1885	266 556 666 986 1376 1446 1636 1796	1207 1457 1797 1827 2167	548 638 838 1098 1148 1388 1568	549 799 929 1129 1219 1369 1559

(i) TM 9-1910/TO 11A-1-34, Military Explosives, April 1955.

²See footnote 1, page 10.

Ammonal

Composition:		Molecular Weight:	102
%		Oxygen Balance:	
Ammonium Nitrate	22 67	CO ₂ %	- 55
TNT Aluminum	11	CO %	-22
		Density: gm/cc Cast	1.65
		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	03	Boiling Point: °C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	91	Refractive Index, no	
Picatinny Arsenal Apparatus, in.	11	n ₂₅	
Sample Wt, mg	19		
		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe		cc/40 Hrs, at	
Fiber Shoe		90°C	
Rifle Bullet Impact Test: Trials		100°C	
%		120°C	4.4
Explosions		135°C	
Partials		150°C	
Burned		200 Gram Bomb Sand Test:	
Unaffected		Sand, gm	47.8
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	0.20
5 Decomposes 265		Lead Azide	
10		Tetryl	
15		Political Advances (/ Thirty / a)	100
20		Ballistic Mortar, % TNT: (a)	122
75°C International Heat Test:		Trauzi Test, % TNT:	
% Loss in 48 Hrs		Plate Dent Test:	
		Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.00	Confined	
% Loss, 2nd 48 Hrs	0.10	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index:		Detonation Rate: Confinement	
		- Condition	
Hygroscopicity: %			
		Charge Diameter, in.	
Volatility:		Density, gm/cc	
-		Rate, meters/second	

Ammonal

Shaped Charge Effectiveness, TNT = 100: Fragmentation Test: Glass Cones Steel Cones 90 mm HE, M71 Projectile, Lot WC-91: Hole Volume Density, gm/cc Hole Depth Charge Wt, Ib Total No. of Fragments: Color: For TNT For Subject HE Principal Uses: Projectile filler 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc 1.65 Charge Wt, Ib **Total No. of Fragments:** Method of Loading: Cast 655 For TNT 550 For Subject HE Loading Density: gm/cc 1.65 Fragment Velocity: ft/sec At 9 ft At 251/2 ft Storage: Density, qm/cc Dry Method Class 9 Hazard Class (Quantity-Distance) Blast (Relative to TNT): Compatibility Group Air: Peak Pressure Exudation Impulse Energy Origin: Air, Confined: Impulse Castable mixture developed in United States during World War I. Under Water: References: Peak Pressure (a) W. R. Tomlinson, Jr., Physical and Ex-Impulse plosive Properties of Military Explosives, PATR No. 1372, 29 November 1943. Energy Underground: (b) Also see the following Picatinny Ar-Peak Pressure senal Technical Reports on Ammonals: 1108, 1286, 1292, 1308 and 1783. Impulse Energy Preparation: Procedure same as described under Amatols, except aluminum is added to the ammonium nitrate-TNT molten mixture under agitation until uniformity in composition is obtained. Loading is accomplished by pouring into the appropriate projectile.

Composition:		Molecular Weight: (H4 N2C	80	
% 		Oxygen Balance:		
N 35		CO ₂ %	+20 +20	
Н 5	$NH_{4}NO_{3}$			—
0 60		Density: gm/cc Crysta	1.73	
		Melting Point: °C	170	
C/H Ratio		Freezing Point: °C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cr	n 100+	Boiling Point: °C		
Sample Wt 20 mg		Refractive Index, n20		
Picatinny Arsenal Apparatus, Sample Wt, mg	in. 31 17	n ₂₅		
Sample Wt, mg	4 .1	n ₃₀		
Friction Pendulum Test:	-	Vacuum Stability Test:		
Steel Shoe	Unaffected	cc/40 Hrs, at		
Fiber Shoe	Unaffected	90°C	0.3	
Rifle Bullet Impact Test: Tric	ıls	100°C	0.3 0.3	
9	, b	135°C	0.5	
Explosions)	150°C	0.3	
Partials (130 €	0.5	
Burned C)	200 Gram Bomb Sand Test:		
Unaffected 100)	Sand, gm	Nil	
Explosion Temperature:	°C	Sensitivity to Initiation:		
Seconds, 0.1 (no cap used)		Minimum Detonating Cha	arge, gm	
l E Tanitae	465	Mercury Fulminate		
5 Ignites	405	Lead Azide	0.20	
10 15		Tetryl	0.25	
20		Ballistic Mortar, % TNT:	(a) 56	
		Trauzi Test, % TNT:		
75°C International Heat Test: (% Loss in 48 Hrs	· •	Plate Dent Test:	- 5	
70 LOSS IN 40 MTS	0.0	Method		
100°C Heat Test:		Condition		
% Loss, 1st 48 Hrs	0.74	Confined		
% Loss, 2nd 48 Hrs	0.13	Density, gm/cc		
Explosion in 100 Hrs	None	Brisance, % TNT		
		— Detonation Rate:	(b)	
Flammability Index:		Confinement	None Strong	
M		- Condition	Solid Liquid	
Hygroscopicity: % 30°C, 90% RH	Extreme	Charge Diameter, in.	1.25 4.5	
Volatility:		Density, gm/cc	0.9 1.4	
Decompos	ses at 210°C	Rate, meters/second	1000 2500	

Ammonium Nitrate

Booster Sensitivity Test:	Decomposition Equation: (f) Oxygen, otoms/sec 10 ¹ 3.8 (h) 10 ¹ 2.3
Condition	Oxygen, didnis/see
Tetryl, gm	(Z/sec) Heat, kilocalorie/mole 40.5 38.3
Wax, in. for 50% Detonation	(AH, kcal/mol)
Wax, gm	Temperature Range, °C 243-261 217-267
Density, gm/cc	Phose Liquid
Heat of:	Armor Plate Impact Test:
Combustion, cal/gm 346	
Explosion, cal/gm 346	60 mm Mortar Projectile:
Gas Volume, cc/gm 980	50% Inert, Velocity, ft/sec
Formation, cal/gm 1098	Aluminum Fineness
Fusion, cal/gm 18.23	500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C (e)	
oc oc	Plate Thickness, inches
-150 0.189 0 0.397	
-100 0.330 50 0.414	1
-50 0.364 100 0.428	11/4
	11/2
	134
Burning Rate: cm/sec	
	Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C 2.9-3.9 x 10 ⁻¹	T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:	Max Safe Drop, ft
Linear, %/°C	500-lb General Purpose Bomb vs Concrete:
Volume, %/°C	Height, ft
	Trials
Hardness, Mohs' Scale:	Unaffected
	Low Order
Young's Modulus:	High Order
E', dynes/cm²	
E, lb/inch²	1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc	Lis:_L. 64
Compressive Strength: Ib/inch²	Height, ft Trials
Compressive Strength: 10/ mon	1
	Unaffected
Vapor Pressure: (g)	Low Order
°C mm Mercury	High Order
188 3.25	
205 7.45 216 11.55	
223 15.80	
223 15.80 237 27.0 249 41.0	

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:					
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth					
Total No. of Fragments: For TNT	Color: Colorless					
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Explosive ingredient of mixtures used in bombs or large caliber projectiles					
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed or cast depending on composition of mixture Loading Density: gm/cc Variable					
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method Dry					
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 12					
Air: Peak Pressure Impulse Energy	Compatibility Group Group D Exudation None					
Air, Confined: Impulse	Effect of Temperature on Impact Sensitivity (Chemically pure grade): (b) Temp. PA Impact Test					
Under Water: Peak Pressure Impulse Energy	25 2 Kg Wt, inches 25 31 75 28 100 27					
Underground: Peak Pressure Impulse Energy	150 27 175 12 Compatibility with Metals: (a) In the presence of moisture, ammonium nitrate reacts with copper, iron steel, brass, lead and cadmium.					
	Entropy: (g)					
	cal/mol at 25°C 36.0					

Solubility of ammonium nitrate, grams in 100 grams (%) of: (e)

Wa	ter	Alco	ohol	Aceti	c Acid		Nitric	Acid	Pyr	idine
0 20 40 60 80 100	½ 118 192 297 421 580 871	°C 20 40 60 78	2.5 5 7.5 10.5	°C 16.6 27.0 80.9 101.0 120.0	% 0.0 0.39 5.8 20.7 125	°c 0 15 30 75	45.1 73.0 106 201	% Nitric Acid 30.0 21.7 20.8 31.6	°c 25	~ 2 0−2 5

Preparation:

Ammonium nitrate is prepared by the neutralization of an aqueous solution of ammonia with nitric acid and evaporation of the solution. The product which is very pure is dried in a graining kettle.

Origin:

First prepared by Glauber in 1659 and first used as an explosive ingredient in 1867 when a Swedish patent was granted to Ohlsson and Norrbin for a composite dynamite.

Destruction by Chemical Decomposition:

Ammonium nitrate is decomposed by strong alkalies with the liberation of ammonia, and by sulfuric acid with the formation of ammonium sulfate and nitric acid.

References: 3

- (a) Departments of the Army and the Air Force TM 9-1910/TO lla-1-34, Military Explosives, April 1955.
- (b) P. F. Macy, T. D. Dudderar, E. F. Reese and L. H. Eriksen, <u>Investigation of Sensitivity</u> of Fertilizer Grade Ammonium Nitrate to Explosion, PATR No. 1658, 11 July 1947.
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (e) International Critical Tables, McGraw-Hill Book Co., N. Y., Land-Bornst.
- G. D. Clift and B. T. Federoff, <u>A Manual for Explosives Laboratories</u>, Vol. II, Lefax Society, Inc., Philadelphia, 1943.
- (f) R. J. Finkelstein and G. Gamow, Theory of the Detonation Process, NAVORD Report No. 90-46, 20 April 1947.
- (g) George Feick, The Dissociation Pressure and Free Energy of Formation of Ammonium Nitrate, Arthur D. Little, Inc., J Am Chem Soc, 76, 5858-60 (1954).
- (h) M. A. Cook and M. Taylor Abegg, Isothermal Decomposition of Explosives, University of Utah, Ind Eng Chem, June 1956, pp. 1090 to 1095.

³See footnote 1, page 10.

Ammonium Nitrate

(i) Also see the following Picatinny Arsenal Technical Reports on Ammonium Nitrate:

<u>o</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	<u>9</u>
240 350 630 1290 1720	681 731 1051 1241 1311 1391 1431	182 1302 1682	7 ⁴ 3 1323 1783 2183	364 984 1094 1214 1234 1304	695 1145 1225 1455 1635 1675 1725	596 666 676 946 1106 1696	907 1117 1947 2167	548 638 938 1008 1038	799 1369 1409

Composition:		Molecular Weight: (ClH ₄ NO ₄)	117.5			
%		Oxygen Balance:				
C1 30.2		CO ₂ %	+27·3 +27·3			
N 11.9		CO %	+2(.3			
н 3.4	NH ₄ ClO ₄	Density: gm/cc	1.95			
0 54.5		Melting Point: °C				
C/H Ratio		Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt:	67	Boiling Point: °C				
Bureau of Mines Apparatus, cm Sample Wt 20 mg	67	Refractive Index, n20				
Picatinny Arsenal Apparatus, in.	2 ¹ 4	n ₂₅				
Sample Wt, mg	24	n ₃₀				
P B. 11 = .						
Friction Pendulum Test:	om a	Vacuum Stability Test:				
	aps	cc/40 Hrs, at 90°C				
Fiber Shoe Un	affected ————————	100°C	0.13			
Rifle Bullet Impact Test: Trials		120°C	0.20			
%		135°C				
Explosions		150°C	0.32			
Partials		130 €	U• JE			
Burned		200 Gram Bomb Sand Test:				
Unaffected		Sand, gm	6.0			
Explosion Temperature: °C		Sensitivity to Initiation:				
Seconds, 0.1 (no cap used)		Minimum Detonating Charge,	gm			
1 .	25	Mercury Fulminate				
	35	Lead Azide	0.20			
10		Tetryl	0.25			
15		Ballistic Mortar, % TNT:				
20		Trouzi Test, % TNT:				
75°C International Heat Test:		Plate Dent Test:				
% Loss in 48 Hrs		Method				
1000011 . 7		Condition				
100°C Heat Test:	0.00	Confined				
% Loss, 1st 48 Hrs	0.02	Density, gm/cc				
% Loss, 2nd 48 Hrs	0.00	Brisance, % TNT				
Explosion in 100 Hrs	None					
Flammability Index:		Detonation Rate: Confinement				
y mack.		Condition				
Hygroscopicity: %		Charge Diameter, in.				
		Density, gm/cc				
Volatility:		Rate, meters/second				
		Kate, meters/second				

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:					
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth					
Total No. of Fragments: For TNT	Color: Colorless					
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Explosive ingredient of mixtures used in pyrotechnics and as projectile filler					
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed or cast depending on composition of mixture					
	Loading Density: gm/cc Variable					
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:					
Density, gm/cc	Method Dry					
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9					
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None					
Air, Confined: Impulse	Solubility in Water gm/100 cc saturated solution:					
Under Water: Peak Pressure Impulse	0°C 12 25°C 20 60°C 39 100°C 88					
Energy	Preparation:					
Underground: Peak Pressure Impulse Energy	The perchlorates are prepared by the action of the acid on a suitable base; by the thermal decomposition of certain chlorates; and by the electrolysis of chlorates (see origin). Heat of:					
	Formation, cal/gm 665					

Origin: (c)

E. Mitscherlich first prepared, in 1832, crystals of ammonium perchlorate from barium perchlorate and ammonium sulfate (Pogg Ann 25, 300). T. Schlosing treated a hot solution of sodium perchlorate with ammonium chloride, and on cooling, crystals of ammonium perchlorate were obtained (Comp rend, 73, 1269, [1871]). U. Alvisi treated a mixture of 76 parts of ammonium nitrate with 213 parts of sodium perchlorate, and obtained a crop of small crystals of ammonium perchlorate which were purified by recrystallization from hot water (German Patent, 103,993, 1898). A. Miolati mixed magnesium or calcium perchlorate with ammonium chloride and crystals of ammonium perchlorate deposited from the solution of very soluble magnesium or calcium chloride (German Patent, 112, 682, 1899).

References: 4

- (a) W. R. Tomlinson, Jr., Physical and Explosive Properties of Military Explosives, PATR No. 1372, 29 November 1943.
- (b) T. L. Davis, The Chemistry of Powder and Explosives, John Wiley and Sons, Inc., New York, 1943.
- (c) J. W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. II, Longmanns, Green and Co., London, 1922, p. 396.
 - (d) Also see the following Picatinny Arsenal Technical Reports on Ammonium Perchlorate:

<u>o</u>	<u>1</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>9</u>
100	321	843 1783	354 604 854	1095 1725 2205	1726	1049 1969

⁴See footnote 1, page 10.

Copyrighted Materials U.S. Army Material Command Retrieved from www.knovel.com

Baratol

Composition:	Molecular Weight:	125
% Barium nitrate 67	Oxygen Balance: CO ₂ % CO %	-3 +13
TNT 33	Density: gm/cc Cast	2.55
	Melting Point: °C	
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 35	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 11 Sample Wt, mg 24	Refractive Index, n ^O ₂₅ n ^O ₂₅	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Fiber Shoe	cc/40 Hrs, at 90°C 100°C	
Rifle Bullet Impact Test: Trials %	120°C 135°C	
Explosions Partials	150°C	
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm	2 6.8
Explosion Temperature: °C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonating Charge, g Mercury Fulminate	m
5 Ignites 385	Lead Azide	0.20
10	Tetryl	0.10
15 20	Ballistic Mortar, % TNT:	
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: (a) Method	73/27 B
100°C Heat Test:	Condition	Cast
% Loss, 1st 48 Hrs	Confined	No
% Loss, 2nd 48 Hrs	Density, gm/cc	2.52
Explosion in 100 Hrs	Brisance, % TNT	61
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: % 30°C, 90% RH 0.00	Condition Charge Diameter, in.	
Volatility:	Density, gm/cc Rate, meters/second	

Baratol

Booster Sensitivity Test:	an art	Decomposition Equation:
Condition	Cast	Oxygen, atoms/sec (Z/sec)
Tetryl, gm	100	Heat, kilocalorie/mole
Wax, in. for 50% Detonation	0.32	(ΔH, kcal/mol)
Wax, gm		Temperature Range, °C
Density, gm/cc	2.55	Phase
Heat of: Combustion, cal/gm		Armor Plate Impact Test:
Explosion, cal/gm		60 mm Mortar Projectile:
Gas Volume, cc/gm		50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Fineness
	2.8 (d)	, tidilinion i moness
73 75/05	D4-3	500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C (d) 75/25 °C °C	Baratol	Plate Thickness, inches
- 75 0.152 75 0.280		1
0 0.147 85 0.213		11/4
25 0.180 90 0.201		11/2
50 0.229 100 0.171		13/4
Burning Rate:		
cm/sec		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C		500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
		Low Order
Young's Modulus:		High Order
E', dynes/cm²		
E, lb/inch²		1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc		Heista 6
Compressive Strength: Ib/inch ²		_∖ Height, ft Trials
Compressive Strength: 10/ mon-		
		Unaffected
Vapor Pressure:		Low Order
°C mm Mercury		High Order

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:				
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cones Hole Volume				
Density, gm/cc	11010 1101				
Charge Wt, Ib	Hole Depth				
Total No. of Fragments:	Color:				
For TNT	Color:				
For Subject HE	Principal Uses: Bomb filler				
3 inch HE, M42A1 Projectile, Lot KC-5:	Domo Tiller				
Density, gm/cc					
Charge Wt, Ib					
Total No. of Fragments:	Method of Loading: Cast				
For TNT	Method of Lodding: Cast				
For Subject HE	Loading Density: gm/cc 2.55				
Fragment Velocity: ft/sec					
At 9 ft At 25½ ft	Storoge:				
Density, gm/cc	Siorege.				
Delisity, gilly ee	Method Dry				
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9				
Air:	Compatibility Group Group I				
Peak Pressure					
Impulse	Exudation				
Energy					
Air, Confined:	Preparation:				
Impulse	The appropriate weight of barium nitrate				
11 t N/ .	heated to about 90°C is added to molton TNT				
Under Water: Peak Pressure	contained in a melting vessel equipped with an agitator. Continue mixing until uniform				
Impulse	and load by pouring at the lowest practical				
Energy	temperature.				
Underground:	Origin:				
Peak Pressure	Baratol, an explosive containing barium				
Impulse	nitrate and TNT, the proportions varied to				
Energy	suit the required purposes, was developed during World War I.				
	·				

Baratol

References: 5

- (a) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (b) L. C. Smith and E. G. Fyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (c) Also see the following Picatinny Arsenal Technical Reports on Baratol:

<u>o</u>	<u>3</u>	<u>6</u>	<u>8</u>
2010 2160	1783 2233	2226	2138

(d) C. Lenchitz, W. Beach and R. Valicky, Enthalpy Changes, Heat of Fusion and Specific Heat of Basic Explosives, PATR No. 2504, January 1959.

⁵See footnote 1, page 10.

Baronal

Composition:	Molecular Weight:	111		
%	Oxygen Balance:			
Barium nitrate 50	CO ₂ %	- 24		
TNT 35	CO %	- 7		
Aluminum 15	Density: gm/cc	2.32		
	Melting Point: °C			
C/H Ratio	Freezing Point: °C			
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 30	Boiling Point: °C			
Sample Wt 20 mg	Refractive Index, no			
Picatinny Arsenal Apparatus, in. 12	n ₂₅			
Sample Wt, mg 22	n ₃₀			
Friction Pendulum Test:	Vacuum Stability Test:			
Steel Shoe	cc/40 Hrs, at			
Fiber Shoe	90°C			
DV4 D 11 - 1	100°C			
Rifle Bullet Impact Test: Trials	120°C			
% Explosions	135°C			
Partials	150°C			
Burned	200 Gram Bomb Sand Test:			
Unaffected		39. 8		
Unarrected	Sand, gm	39.0		
Explosion Temperature: °C	Sensitivity to Initiation:			
Seconds, 0.1 (no cap used)	Minimum Detonating Charge	, gm		
1	Mercury Fulminate			
5 Ignites 345	Lead Azide	0.20		
10	Tetryl	0.10		
15 20	Ballistic Mortar, % TNT: (a) 96		
	Trauzi Test, % TNT:	·		
75°C International Heat Test:	Plate Dent Test;			
% Loss in 48 Hrs	Method			
1000C II	Condition			
100°C Heat Test:	Confined			
% Loss, 1st 48 Hrs	Density, gm/cc			
% Loss, 2nd 48 Hrs	Brisance, % TNT			
Explosion in 100 Hrs	2.133.130, 70 1111			
Plane At Production	Detonation Rate:	(b)		
Flammability Index:	Confinement	None		
U	Condition	Cast		
Hygroscopicity: %	Charge Diameter, in.	1.0		
Volatility:	Density, gm/cc	2.32		
volutinity;	Rate, meters/second	5450		

Baronal

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color:		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments: For TNT For Subject HE Fragment Velocity: ft/sec At 9 ft At 25½ ft	Principal Uses: Bomb filler Method of Loading: Cast Loading Density: gm/cc 232 Storage:		
Density, gm/cc	Method Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9		
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Exudation		
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Preparation: Procedure same as described under Baratol except aluminum is added to the barium nitrate-TNT molton mixture under agitation until uniformity in comparison is obtained. Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Density, gm/cc Combustion, cal/gm Explosion, cal/gm Cast Occupant 2099 Explosion, cal/gm Explosion, cal/gm Gas Volume, cc/gm 410		

Baronal

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
- (b) G. H. Messerly, <u>The Rate of Detonation of Various Explosive Compounds</u>, OSRD Report No. 1219, 22 February 1943.
- M. D. Hurwitz, <u>The Rate of Detonation of Various Compounds and Mixtures</u>, OSRD Report No. 5611, 15 January 1946.
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) Arthur D. Little Report, Study of Pure Explosive Compounds, Part III, Correlation of Composition of Mixture with Performance, Contract No. DA-19-020-ORD-12, 1 May 1950.
- (e) S. J. Lowell, Propagation of Detonation in Long and Narrow Columns of Explosives, PATR No. 2138, February 1955.

⁶See footnote 1, page 10.

Black Powder

Composition:	Molecular Weight: 84
Potassium nitrate 74.0	Oxygen Balance: CO. % CO % -22 -22 -2
Sulfur 10.4	
Charcoal 15.6	Melting Point: °C
C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C
Bureau of Mines Apparatus, cm 32 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 16	Refractive Index, n_{2s}^D
Sample Wt, mg 16	n ₃₀
Friction Pendulum Test: Steel Shoe Snaps Fiber Shoe Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C
Rifle Bullet Impact Test: Trials % Explosions	100°C 0.5 120°C 0.9 135°C
Partials Burned	150°C 200 Gram Bomb Sand Test:
Unaffected	Sand, gm 8
Explosion Temperature: °C Seconds, 0.1 (no cap used) 510 1	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Sensitive to igniting fuse Ballistic Mortar, % TNT: 50
20	Trouzi Test, % TNT: (a) 10
75°C International Heat Test: % Loss in 48 Hrs 0.31	Plate Dent Test: Method
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: % 26°C, 75% RH 0.75 25°C, 90% RH 1.91 30°C, 90% RH 2.51	Condition Charge Diameter, in.
Volatility:	Density, gm/cc 1.6 Rate, meters/second 400

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Black
For Subject HE 3 inch HE, M42A1 Projectile, Lat KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: 1. Igniter powder 2. Time rings (fuzes)
Total No. of Fragments: For TNT	Method of Loading: 1. Loose (granulated) 2. Pressed
For Subject HE	Loading Density: gm/cc psi x 10 ³ 25 50 60 65 70 75
Fragment Velocity: ft/sec At 9 ft At 25½ ft	1.74 1.84 1.86 1.87 1.88 1.89 Storage:
Density, gm/cc	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group Group Group O Exudation None
Air, Confined: Impulse Under Water:	100°C Vacuum Stability Test, cc gas/40 hrs: Initial Value 0.5 After 2 hours at 65°C 0.86 After 2 hours at 65°C, 75% RH
Peak Pressure Impulse Energy	Sensitivity to Electrostatic Discharge, Joules: Unconfined >12.5
Underground: Peak Pressure Impulse Energy	Confined 0.8 Compatibility with Metals: Dry - Compatible with all metals when moisture content is less than 0.20%.
Initiating Efficiency:	Wet - Attacks all common metals except stainless steel.
Grams Required to Initiate Igniter Comp K-31 2.0 Igniter Comp K-29 2.3	Heat of: Explosion, cal/gm 684 Gas Volume, cc/gm 271

Black Powder

Preparation:

Willow or alder charcoal, flour of sulphur and 2-3% of water are placed in a tumbling barrel and mixed for a short period (about 1/2 hour). The mixture is transferred to a "wheel mill" and crystalline potassium nitrate containing 3-4% moisture is added and the mixture is incorporated for several hours. During the incorporation period the mixture is kept damp (2-3% moisture) by adding water at intervals. The mill cake is then pressed at 6000 psi between aluminum plates. The pressed cakes are broken up between rubber or wood rolls. The material is screened and the various particle sizes are separated as desired. The screened material is then transferred to canvas trays and dried in hot air ovens at 60° C. If it is desired to glaze the black powder, the material before drying is polished by rotation in a tumbling barrel to give it a smooth surface. It is next screened to remove the dust. The smooth particles are then placed in a wooden barrel and rotated with graphite. The material is again screened to remove the excess graphite, and dried. Material finer than #40 U. S. Sieve is not graphited.

WARNING

The batches of black powder must be of sufficient size to cover the bed of the "wheel mill." If the wheels run off on the bare bed, explosions usually result.

Origin:

The exact date of the discovery of black powder is unknown. Historians attribute its discovery to the Chinese, Hindus or Arabs. The Greeks used it during the 7th Century. Marcus Graecus in the 9th Century and Roger Bacon in the 13th Century described compositions similar to the present powder. Beginning with the 16th Century, the composition of black powder containing potassium nitrate, charcoal and sulfur has remained unchanged with respect to the proportionality (75/15/10) of the ingredients.

Destruction by Chemical Decomposition:

Black powder can be desensitized by leaching with water to dissolve the potassium nitrate. The washings must be disposed of separately because the residue of sulfur and charcoal is combustible but not explosive.

- (a) Ph. Naoum, Nitroglycerine and Nitroglycerine Explosives, Baltimore, 1928.
- (b) F. W. Brown, D. H. Kusler and F. C. Gibson, Sensitivity of Explosives to Initiation by Electrostatic Discharges, U. S. Department of the Interior, Bureau of Mines RI 3852, 1946.
 - (c) Also see the following Picatinny Arsenal Technical Reports on Black Powder:

See footnote 1, page 10.

Black Powder							AMCP 706-177		
<u>o</u>	<u>1</u>	2	<u>3</u>	14	<u>5</u>	<u>6</u>	7	<u>8</u>	2
250 710 850 1010 1450	91 471 661 901 1111 1241 1451 1541 1711 1911 1951 2051	222 272 322 472 492 582 762 872 1022 1622 1712 1802 1912	163 363 453 843 1043 1153 1243 1333 1493 1643 1843 1973	354 454 554 574 554 654 774 844 1154 1244 1504	65 415 545 605 1145 1275 1815 1885 1905 1915	56 176 356 686 746 1256 1316 1536 1576 1586 1946	347 407 437 547 757 847 1097 1737 1797 1807 1827	188 318 428 558 598 608 618 698 838 1068 1388 1528 1778 1808 1838	379 819 839 849 859 899 1259 1309 1339 1349 1589 1739 1869

1,2,4-Butanetriol Trinitrate (BTTN) Liquid

Composition:		Molecular Weight: (C4H7N309)	241		
% C 19.9		Oxygen Balance:			
H 2.9 $\frac{\text{H}_2\text{C-ONO}_2}{\text{H}_2}$		CO ₂ %	-17 10		
N 17.5 Hc-0N0 ₂		Density: gm/cc Liquid	1.52		
0 59.7 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Melting Point: °C			
C/H Ratio 0.13		Freezing Point; °C			
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	58	Boiling Point: °C	······		
Sample Wt 20 mg	7-	Refractive Index, no	1.4738		
Picatinny Arsenal Apparatus, in. Sample Wt, mg	≦ 1	n _{zs} ^D			
Sumple Wit, mg		n ₃₀			
Friction Pendulum Test:		Vacuum Stability Test:			
Steel Shoe		cc/40 Hrs, at			
Fiber Shoe		90°C			
Diff. Pullet Innest Test. Trick		100°C	2.33		
Rifle Bullet Impact Test: Trials		120°C			
% Explosions		135°C			
Partials		150°C			
Burned		200 Gram Bomb Sand Test:			
Unaffected		Sand, gm	48.6		
Explosion Temperature: °C		Sensitivity to Initiation:			
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm			
1		Mercury Fulminate			
5 Decomposes 230		Lead Azide	0.20		
10		Tetryl	0.10		
15					
20		Ballistic Mortar, % TNT:			
75°C International Heat Test:		Trouzi Test, % TNT:			
% Loss in 48 Hrs		Plate Dent Test: Method			
100°C Heat Test:		Condition			
% Loss, 1st 48 Hrs	1.5	Confined			
% Loss, 2nd 48 Hrs	1.2	Density, gm/cc			
Explosion in 100 Hrs	None	Brisance, % TNT			
Pr 1 10		Detonation Rate:			
Flammability Index:		Confinement			
Hygroscopicity: % (a)		Condition			
100°F, 95% RH, 24 hrs	0.14	Charge Diameter, in.			
Volatility:		Density, gm/cc			
60°C, mg/cm ² /hr	46	Rate, meters/second			

agmentation Test:	gmentation Test: Shaped Charg			Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb		G Hole Volume Hole Depth				
Total No. of Fragments: For TNT		Color:	Yellow	oil		
For Subject HE 3 inch HE, M42A1 Projectile, Lot K0 Density, gm/cc Charge Wt, Ib	For Subject HE ch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc		Principal Uses: Explosive plasticizer for nitrocellulose			
Total No. of Fragments: For TNT For Subject HE		Method of Loadin	g:			
Tor Subject FIE		Loading Density: 9	gm/cc	1.52		
agment Velocity: ft/sec At 9 ft At 25½ ft		Storage:	<u>.</u>			
Density, gm/cc		Method				
ast (Relative to TNT):		— Hazard Class ((Quantity-Distanc	e)		
Air: Peak Pressure Impulse Energy		Compatibility G	iroup			
Air, Confined: Impulse		Solubility in gm/100 gm, at:		(a) 0.08		
Under Water: Peak Pressure Impulse		60°C Solubility of gm/100 gm:	Water in,	0.15 (a) 0.04		
Energy		Solubility, gm	n/100 gm,			
Underground: Peak Pressure		at 25°C, in: Ether Alcohol		∞ ∞		
Impulse Energy		2:1 Ether:Al Acetone	cohol	∞ ∞		
Heat of:	(a)	Viscosity, cer	ntipoises:	(a)		
Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm	2168 1457 840	Temp, 25°C		59		

Preparation (Laboratory Procedure):

To a cooled mixture of 73.8 gm of 100% nitric acid, 46.2 gms of 106.2% sulfuric acid and 60.0 gm of 96.1% sulfuric acid, 30 gms of the original (or redistilled) 1,2,4-butanetriol was added dropwise with agitation for a period of thirty minutes. The temperature of the reaction mixture was kept at 0°-5°C. When the agitation was completed, stirring was continued for one and one-half hours. The mixture was poured into ice water, and the resulting oil suspension was extracted with three 100 milliliter portions of ether. The combined ether extracts were washed with water, then with a 5% sodium bicarbonate solution and finally with water. The neutralized extract was dried with anhydrous calcium chloride and then the ether was evaporated. The yellow oil was dried in a vacuum desiccator over anhydrous calcium chloride until the material was brought to constant weight.

Origin:

1,2,4-butanetriol was first synthesized by Wagner and Ginsberg in 1894 by oxidizing allyl carbinol with potassium permanganate under mild conditions (Ber 27, 2437). Recently the U. S. Rubber Laboratory, under the direction of P. Tawney, devised a new synthesis carried out with allyl acetate and formaldehyde to give 1,2,4-butane triacetate which was readily hydrolysed to butanetriol (U. S. Rubber Company Quarterly Report, May 1948). Working with pure 1,2,4-butanetriol prepared by an improved technique of the Wagner method, the U. S. Naval Laboratory in 1948 nitrated the butanetriol on a laboratory and a pilot plant scale (Reference a).

- (a) J. A. Gallaghan, F. Macri, J. Bednarik, and F. McCollum, The Synthesis of 1,2,4-Butanetriol and the Evaluation of Its Trinitrate, U. S. Naval Powder Factory Technical Report No. 19, 10 September 1948.
- (b) Also see the following Picatinny Arsenal Technical Reports on Butanetriol Trinitrate: 1755 and 1786.

 $^{^{8}}$ See footnote 1, page 10.

Copyrighted Materials U.S. Army Materiel Command Retrieved from www.knovel.com

Composition:		Molecular Weight:		227
% RDX 91		Oxygen Balance: CO ₂ % CO %		-48 -23
Wax 9		Density: gm/cc 12,0	000 psi	1.65
		Melting Point: °C		
C/H Ratio		Freezing Point: °C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	100+	Boiling Point: °C		
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	16 17	Refractive Index, n_{20}^D n_{25}^D n_{30}^D		
Friction Pendulum Test:		Vacuum Stability Test:		
Steel Shoe Unaffe Fiber Shoe Unaffe		cc/40 Hrs, at 90°C		0.3
Rifle Bullet Impact Test: Trials		100°C 120°C		0.6
Explosions 0 Partials 0		135°C 150°C		
Partials 0 Burned 0 Unaffected 100		200 Gram Bomb Sand Te	est:	51.5
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Decomposes 250 10 15		Sensitivity to Initiation: Minimum Detonating Mercury Fulminate Lead Azide * Alternative initi	ating charg	0.22* 0.25*
20		Ballistic Mortar, % TN	r : (a)	135
7500		Trauzl Test, % TNT:		
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	(b) B	В
100°C Heat Test:		Condition	Pressed	Pressed
% Loss, 1st 48 Hrs	0.15	Confined	No 1.61	No 1.20
% Loss, 2nd 48 Hrs	0.15	Density, gm/cc Brisance, % TNT	1.61 126	75
Explosion in 100 Hrs	None			
Flammability Index:	195	Detonation Rate: Confinement	(c)	None
Hygroscopicity: % 30°C, 90% RH	0.0	Condition Charge Diameter, in.		Pressed 1.0
Volatility: 50°C, 15 days	0.03	Density, gm/cc Rate, meters/second		1.59 81 00

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot	WC-91:	Glass Cones Steel Cones		
Density, gm/cc	1.62	Hole Volume		
Charge Wt, Ib	2.102	Hole Depth		
Total No. of Fragments:		Color: White-buff		
For TNT	703	will be buil		
For Subject HE	1138	Principal Uses: HE, SAP, AP projectiles;		
3 inch HE, M42A1 Projectile, Lo	t KC-5:	Shaped Charges		
Density, gm/cc	1.64			
Charge Wt, Ib	0.861			
Total No. of Fragments:	514	Method of Loading: Pressed		
For TNT				
For Subject HE	710	Loading Density: gm/cc psi x 10 ³		
Fragment Velocity: ft/sec		3 12 1.47 1.65		
At 9 ft At 25½ ft	2800 2530	Storage:		
Density, gm/cc	1.61	Method Dry		
Blast (Relative to TNT):		Hazard Class (Quantity-Distance) Class 9		
Air:		Compatibility Group Group I		
Peak Pressure		7 (50%)		
impulse		Exudation Does not exude at 65°C when waxes melting sharply at or above 75°C are used.		
Energy		Preparation:		
Air, Confined:				
Impulse		A water slurry of RDX is heated to 100°C with agitation. Wax and a wetting agent are added and the mixture, under agitation, is		
Under Water: Peak Pressure		cooled below the melting point of the wax. The wax coated RDX is collected on a filter		
Impulse		and air dried at 75°C.		
Energy		Effect of Temperature on Rate of Detonation: (e)		
Underground: Peak Pressure		16 hrs at, °C -54 21 Density, gm/cc 1.51 1.51 Rate, m/sec 7600 7620		
impulse				
Energy		Booster Sensitivity Test: (d)		
		Condition Pressed Tetryl, gm 100 Wax, in. for 50% Detonation 1.70 Density, gm/cc 1.62		
		Heat of: Combustion, cal/gm 1210		

Compatibility with Metals:

Dry - Aluminum, stainless steel, mild steel, mild steel coated with acid-proof black paint and mild steel plated with nickel or zinc are unaffected. Copper, magnesium, magnesium-aluminum alloy, brass and mild steel plated with cadmium or copper are slightly affected.

Wet - Stainless steel is unaffected. Copper, aluminum, magnesium, brass, mild steel, mild steel coated with acid-proof black paint and mild steel plated with copper, cadmium, nickel or zinc are slightly affected.

Origin:

Developed by the British during World War II as RDX and beeswax. Subsequent changes in the United States replaced beeswax with synthetic waxes, changed the granulation of RDX and improved the method of manufacture.

Destruction by Chemical Decomposition:

RDX Composition A-3 (RDX/wax, 91/9) is decomposed by adding it slowly to 25 times its weight of boiling 5% sodium hydroxide. Boiling of the solution is continued for one-half hour.

- (a) L. C. Smith and E. G. Fyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (c) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.
- M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.
- (d) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, dated 15 June 1949.
- (e) W. F. McGarry and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different Temperatures, PATR No. 2383, November 1956.
 - (f) Also see the following Picatinny Arsenal Technical Reports on RDX Composition A-3:

<u>o</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	8	<u>9</u>
1380 1910	1451 1761	1492 2112	1493	1424 1614 1634 2154	1325 1585 1595 1715 1885 2235	1556 19 3 6	1687 1787 1797	1338 1388 1728 1838	1639 2179

⁹See footnote 1, page 10.

Composition:		Molecular Weight:	224			
		Oxygen Balance:				
rdx 60		CO ₂ %	-43			
TNT 40			10			
Wax, added 1		Density: gm/cc Cast	1.65			
ŕ		Melting Point: °C (1)	78-80			
C/H Ratio		Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt:	75	Boiling Point: °C				
Bureau of Mines Apparatus, cm Sample Wt 20 mg	17	Refractive Index, no				
Picatinny Arsenal Apparatus, in.	14	n ₂₅				
Sample Wt, mg	19	n ₃₀				
Friction Pendulum Test:		Vacuum Stability Test:	· · · · · · · · · · · · · · · · · · ·			
Steel Shoe Unaffected	Į.	cc/40 Hrs, at				
Fiber Shoe Unaffected	ļ	90°C				
DV D H . 1		- 100°C	0.7			
Rifle Bullet Impact Test: Trials		120°C	0.9			
% Explosions 3		135°C				
Partials 13	•	150°C	11+			
Burned 4		200 Gram Bomb Sand Test:				
Unaffected 80		Sand, gm	54.0			
		-	·			
Explosion Temperature: °C Seconds, 0.1 (no cap used) 526		Sensitivity to Initiation: Minimum Detonating Charge, gm				
1 368		Mercury Fulminate	0.22*			
5 Decomposes 278		Lead Azide	0.20*			
10 255						
15 > 250		Tetryl * Alternative initiating charges				
2 0 ➤ 250		Ballistic Mortar, % TNT: (a)	133			
		Trauzi Test, % TNT: (b)	130			
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: (c)				
		Method	В			
100°C Heat Test:		Condition	Cast			
% Loss, 1st 48 Hrs	0;2	Confined	No			
% Loss, 2nd 48 Hrs	0.2	Density, gm/cc	1.71			
Explosion in 100 Hrs	None	Brisance, % TNT	132			
		Detonation Rate:				
Flammability Index:	177	Confinement	None			
2	· · · · · · · · · · · · · · · · · · ·	Condition	Cast			
Hygroscopicity: % 30°C, 90% RH	0.02	Charge Diameter, in.	1.0			
		Density, gm/cc	1.68			
Volatility:		Rate, meters/second	78 40			

oms/sec		
ilorie/mole		
mol)		
e Range, °C		
npact Test:	((e)
tar Projectile: rt, Velocity, ft/sec	3	209
m Fineness	•	 /
11 1 111011035		
eral Purpose Bombs	:	
ckness, inches	_ ,	
Tria		Inert
14	-	100
6		50
2		0
0		
Semi-Armor-Pierc	ing Boml	b vs Concrete:
e Drop, ft		
eral Purpose Bomb No Ses		rete: Seal
t 4000)	4000
65	5	3 9
red 58	3	3 6
•	2	2
	5	1
ŕ		
neral Purpose Boml	b vs Cond	crete:
ft		
ted		
er		
der		
d	eted der rder	der

ragmentation Test:		Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot \	∀ C-91:	(g) (h) Glass Cones Steel Cones		
Density, gm/cc	1,65	Hole Volume 178 162		
Charge Wt, Ib	2.187	Hole Depth 125 148		
Total No. of Fragments:		C.L.		
For TNT	703	Color: Yellow-brown		
For Subject HE	998	Principal Uses: Fragmentation bombs, HE		
3 inch HE, M42A1 Projectile, Lot	KC-5:	projectiles, grenades, she		
Density, gm/cc	1.67	charges		
Charge Wt, Ib	0.882			
Total No. of Fragments:		Method of Loading: Cast		
For TNT	514	Method of Louding.		
For Subject HE	701			
AN I I I II II I		Loading Density: gm/cc 1.68		
ragment Velocity: ft/sec At 9 ft	2940			
At 251/2 ft	2680	Storage:		
Density, gm/cc	1.68	Method Dry		
last (Relative to TNT):	(f)	Hazard Class (Quantity-Distance) Class		
Air:		Compatibility Group Group		
Peak Pressure	110			
Impulse	110	Exudation Very slight when stored at 7		
Energy	116			
Air, Confined:		Origin:		
Impulse	75	RDX Composition B was developed by the		
·	• •	British between World War I and World Wa		
Under Water:		It was standardized by the United State:		
Peak Pressure	110	early in World War II.		
Impulse	108	Effect of Temperature on		
Energy	121	Rate of Detonation: (i)		
Underground:		16 hrs at, ^O C -54 21 Density, gm/cc 1.69 1.69		
Peak Pressure	104	Rate, m/sec 7720 7660		
Impulse	97	Bulk Modulus at Room (j)		
Energy		Temperature (25°-30°C):		
Crater radius cubed	107	% Wax in Comp B 1 2 Dynes/cm ² x 10 ⁻¹⁰ 5.10 3.56 2 Density, gm/cc 1.72 1.70 1		
		Viscosity, poises: Temp, 83°C 3 95°C 2		

Compatibility with Metals:

Dry - Magnesium, aluminum, magnesium-aluminum alloy, mild steel, stainless steel, mild steel coated with acid-proof black paint and mild steel plated with zinc or nickel are unaffected. Copper, brass and mild steel plated with copper or cadmium are slightly affected.

Wet - Aluminum and stainless steel are unaffected. Copper, brass, mild steel, mild steel coated with acid-proof black paint and mild steel plated with cadmium, copper, nickel or zinc are slightly affected. Magnesium and magnesium-aluminum alloy are more heavily affected.

Preparation:

Water wet RDX is added slowly with stirring to molten TNT melted in a steam-jacketed kettle at a temperature of 100°C. Some water is poured off and heating and stirring are continued until all moisture is evaporated. Wax is then added and when thoroughly mixed, the composition is cooled to a satisfactory pouring temperature. It is cast directly into ammunition components or in the form of chips when Composition B is to be stored.

Destruction by Chemical Decomposition:

RDX Composition B is decomposed in 12 parts by weight of technical grade acetone heated to 45°C. While this is stirred vigorously, there is added 12 parts of a solution, heated to 70°C, of 1 part sodium sulfide (Na₂S·9H₂O) in 4 parts water. The sulfide solution is added slowly so that the temperature of the acetone solution does not rise above 60°C. After addition is complete, stirring is continued for one-half hour.

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
- (b) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
- (e) Committee of Divisions 2 and 8, NDRC, Report on HBX and Tritonal, OSRD Report No. 5406, 31 July 1945.
- (f) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.
- (g) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, <u>Sec III</u>, <u>Variation of Cavity Effect with Explosive Composition</u>, <u>NDRC Contract W672-ORD-5723</u>.
- (h) Eastern Laboratory du Pont, <u>Investigation of Cavity Effect</u>, Final Report, E Lab du Pont, Contract W-672-ORD-5723, 18 September 1943.
- (i) W. F. McGarry and T. W. Stevens, <u>Detonation Rates of the More Important Military Explosives at Several Different Temperatures</u>, <u>PATR No. 2383</u>, November, 1956.

 $^{^{10}}$ See footnote 1, page 10.

(j) W. S. Cramer, Bulk Compressibility Data on Several High Explosives, NAVORD Report No. 4380, 15 September 1956.

(k) Also see the following Picatinny Arsenal Technical Reports on RDX Composition B:

<u>o</u>	<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	9
1360 1530 2100 2160 2190	1211 1451 2131 2151	1402 1482 1592	1313 1433 1803 1983 2053 2063 2103 2233	1224 1424 1944 2004 2104	1325 1435 1585 1595 1865 1885 2055 2125 2155 2175 2235	1466 1476 1556 1756 1956 2236	1207 1437 1457 1737 1737 1797 2007 2147	1338 1388 1438 1458 1688 1728 1828 1838 1978 2008 2138 2168	1339 1379 1469 1819 2019

⁽¹⁾ C. Lenchitz, W. Beach and R. Valicky, Enthalpy Changes, Heat of Fusion and Specific Heat of Basic Explosives, PATR No. 2504, January 1959.

Composition:	*	II**	Molecular Weight:	<u>I*</u>	<u>II**</u>
"			See_	Cyclonite	See Comp B
RDX 6	60 10	55.2 40.0	Oxygen Balance: CO ₂ % See	Cualonita	Coo Comm B
Wax, added,(Stanolind				Cyclonite Cyclonite	See Comp B See Comp B
or Aristowax, 1650/ 1700F)	5		50 /5		
Vinylseal (MA28-14),	2		Density: gm/cc Cast	1.65	1.65
added Vistanex (Bl2O)	2	1.2	Melting Point: °C		
Albacer Wàx		1.2 3.6	Mening roint: C		
C/H Ratio			Freezing Point: °C		
	* 95	II**	Boiling Point: °C		
Sample Wt 20 mg	,		Refractive Index, no		
,	.4	13 16	n ₂₅		
Sample Wt, mg	.7	10	n ₃₀		
			1130		
Friction Pendulum Test:	_		Vacuum Stability Test:	<u> I*</u>	II**
Steel Shoe Unaffecte			cc/40 Hrs, at		
Fiber Shoe Unaffecte	ed		90°C		
Rifle Bullet Impact Test: Trials			100°C		
_	<u>*</u>	II**	120°C	0.99	0.92
% $\frac{1}{2}$ Explosions	0	0	135°C		
Partials	0	0	150°C	11+	11+
Burned	5	0	200 Gram Bomb Sand Test:	<u>I*</u>	II **
Unaffected 9	95	100	Sand, gm	<u>=</u> 52.7	55.0
	*	II**	Sensitivity to Initiation:	<u> </u>	<u>11**</u>
Seconds, 0.1 (no cap used)			Minimum Detonating Char	ge, gm	
1 5 Decomposes 26	ío	270	Mercury Fulminate		
10	,0	210	Lead Azide	0.22	0 .2 6
15			Tetryl		
20			Ballistic Mortar, % TNT:		
20			Trauzi Test, % TNT:		
75°C International Heat Test:			Plate Dent Test:	 	
% Loss in 48 Hrs			Method		
100°C Heat Test:	*	II**	Condition		
-	 0.05	0.12	Confined		
	.19	0.18	Density, gm/cc		
	•		Brisance, % TNT		
Explosion in 100 mrs	Ione	None			
Flammability Index:			Detonation Rate:		
			Confinement		
Hygroscopicity: %			Condition		
	.00	0.00	Charge Diameter, in.		
	Til	Nil	Density, gm/cc		
,-		****	Rate, meters/second		

^{*}Desensitized Comp B, designated I, uses emulsified wax.
**Desensitized Comp B, designated II, uses coated RDX.

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Yellow-brown
For Subject HE	Principal Uses: Bombs
3 inch HE, M42A1 Projectile, Lot KC-5:	
Density, gm/cc $1*$ $1:65$ 1.65	
Charge Wt, Ib 0.87 0.80	
Total No. of Fragments:	Method of Loading: Cast
For TNT 514 514	, mained or measure.
For Subject HE 609 659	Loading Density: gm/cc 1.65
Fragment Velocity: ft/sec	
At 9 ft At 25½ ft	Storage:
Density, gm/cc	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure	Compatibility Group Group I
Impulse	Exudation
Energy	
Air, Confined:	Viscosity, poises: I* II**
Impulse	Temp, 83°C 3.5 3.1 95°C 2.6 2.7
Under Water: Peak Pressure	References:
Impulse	(a) See the following Picatinny Arsenal
Energy	Technical Reports on RDX Composition B, Desensitized:
Underground: Peak Pressure	<u>1</u> <u>3</u> <u>5</u> <u>6</u>
impuls e	2151 1313 1435 1756
Energy	2053 1865
*Desensitized Comp B, designated I, uses emulsified wax. **Desensitized Comp B, designated II, uses	
coated RDX.	

Composition:	Molecular Weight:	
RDX 88.3	Oxygen Balance: CO ₂ % CO %	
Plasticizer, non- explosive 11.7*	Density: gm/cc	
*Nonexplosive oily plasticizer con 0.6% lecithin.	Melting Point: °C	
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 10	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, no	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	n ₂₅	
	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C 100°C	0.3
Rifle Bullet Impact Test: Trials	120°C	0.7
%	135°C	0.1
Explosions 0	150°C	
Partials 0		
Burned 0	200 Gram Bomb Sand Test:	16.7
Unaffected 100	Sand, gm	46.5
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge	, gm
1	Mercury Fulminate	
5 Decomposes 285	Lead Azide	0.25
10	Tetryl	0.11
15	Ballistic Mortar, % TNT: (a) 120
20	Trauxi Test, % TNT:	,
75°C International Heat Test:	Plate Dent Test:	
% Loss in 48 Hrs	Method	A
	Condition	Hand Tamped
100°C Heat Test:	Confined	Yes
% Loss, 1st 48 Hrs 0.	Dansitu am (ac	1.58
% Loss, 2nd 48 Hrs 0.	Brisance % TNT	112
Explosion in 100 Hrs No		
Flammability Index:	Detonation Rate: Confinement	
,	Condition	
Hygroscopicity: % 30°C, 95% RH 0.		
	Density, gm/cc	
Volatility: 25°C, 5 days 0.	Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91:	(f) (g) Glass Cones Steel Cones		
Density, gm/cc	Hole Volume 113 114		
Charge Wt, Ib	Hole Depth 101 11 ¹ 4		
Total No. of Fragments:	Color: White		
For TNT			
For Subject HE	Principal Uses: Plastic demolition explosive		
3 inch HE, M42A1 Projectile, Lot KC-5:	<i>'</i>		
Density, gm/cc			
Charge Wt, Ib			
Total No. of Fragments: For TNT	Method of Loading: Hand tamped		
For Subject HE			
	Loading Density: gm/cc 1.49		
Fragment Velocity: ft/sec At 9 ft			
At 25½ ft	Storage:		
Density, gm/cc	Method Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9		
Air:	Compatibility Group Group I		
Peak Pressure			
Impulse	Exudation Exudes above 40°C		
Energy			
Air, Confined:	Plasticity:		
Impulse	Below O ^O C Brittle (O ^O C)		
11 1 34 .	0-40°C Plastic		
Under Water: Peak Pressure	Above 40°C Exudes (40°C)		
Impulse	References:		
Energy	See references for Composition C-4.		
Underground: Peak Pressure			
Impulse			
Energy			

Composition:		Molecular Weight:	
% RDX 78.7 TNT 5.0 DNT 12.0		Oxygen Balance: CO ₂ % CO %	
MNT 2.7 NC 0.6		Density: gm/cc	
Solvent 1.0		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	90	Boiling Point: °C	
Sample Wt 20 mg	,,	Refractive Index, no	
Picatinny Arsenal Apparatus, in. Sample Wt, mg		n ₂₅	
· · · · · · · · · · · · · · · · · · ·		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe		cc/40 Hrs, at 90°C	
Fiber Shoe		100°C	2.0
Rifle Bullet Impact Test: Trials		120°C	9.0
%		135°C	, · ·
Explosions 0		150°C	
Partials 20			
Burned 0		200 Gram Bomb Sand Test:	
Unaffected 80		Sand, gm	47.5
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Ch	arge, gm
1 5 Decomposes 285		Mercury Fulminate	0.05
10		Lead Azide	0.25
15		Tetryl	0.10
20		Ballistic Mortar, % TNT:	(a) 126
		Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	(c) B
100°C Heat Test:		Condition	Hand tamped
% Loss, 1st 48 Hrs	1.8	Confined	No
% Loss, 2nd 48 Hrs	1.4	Density, gm/cc	1.52
Explosion in 100 Hrs	None	Brisance, % TNT	111
Flammability Index:	178	Detonation Rate: Confinement	(d) None
		Condition	Hand tamped
Hygroscopicity: % 30°C, 95% RH	0.55	Charge Diameter, in.	1.0
Volatility: 25°C, 5 days	0.00	Density, gm/cc	1.57
Volatility: 25°C, 5 days	0.00	Rate, meters/second	7660

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Color: White			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Plastic demolition explosive			
Total No. of Fragments: For TNT	Method of Loading: Hand tamped			
For Subject HE	Loading Density: gm/cc 1.57			
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Method Dry			
Blast (Relative to TNT):	- Hazard Class (Quantity-Distance) Class 9			
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Exudation Volatilizes above 52°C			
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure	Plasticity: Below 0°C Plastic (-30°C) 0-40°C Plastic above 40°C Hard (52°C)* *Due to volitalization of plasticizer. References: See references for Composition C-4.			
Impulse Energy				

Composition:		Molecular Weight:	
% RDX Tetryl TNT	77 3 4	Oxygen Balance: CO ₂ % CO %	
DNT MNT	10 5	Density: gm/cc	
NC	1	Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	100+	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	14 33	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe Unaff Fiber Shoe Unaff		cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials		- 100°C	1.21
%		120°C	11+
Explosions		135°C	
Partials 40		150°C	
Burned 0		200 Gram Bomb Sand Test:	
Unaffected 60		Sand, gm	53.1
Explosion Temperature: °C Seconds, 0.1 (no cap used)		Sensitivity to Initiation: Minimum Detonating Charg Mercury Fulminate	e, gm
5 Decomposes 280		Lead Azide	0.20
10		Tetryl	0.08
15			
20		Ballistic Mortar, % TNT: (a)) 126
7500 100 000 000	***	Trauzi Test, % TNT: (b)) 117
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: (c) Method) B
100°C Heat Test:		Condition	Hand tamped
% Loss, 1st 48 Hrs	3.20	Confined	No
% Loss, 2nd 48 Hrs	1.63	Density, gm/cc	1.57
Explosion in 100 Hrs	None	Brisance, % TNT	118
Flammability Index:		Detonation Rate: (d) Confinement	None
Hygroscopicity: % 30°C, 95% RH	2.4	Condition Charge Diameter, in.	Hand tamped
Volatility: 25°C, 5 days	1.15	Density, gm/cc Rate, meters/second	1.60 7625

ragmentation Test:		Shaped Charge Effectiveness, TNT $=$ 100:
90 mm HE, M71 Projectile, Lot	WC-91;	Glass Cones Steel Cones
Density, gm/cc	158	Hole Volume
Charge Wt, Ib	2045	Hole Depth
Total No. of Fragments:		Color: Yellow
For TNT	703	Color: Yellow
For Subject HE	944	Principal Uses: Plastic demolition explosive
3 inch HE, M42A1 Projectile, Lo	ot KC-5:	Flastic demotition expressive
Density, gm/cc	1.60	
Charge Wt, Ib	0.842	
Total No. of Fragments:		Method of Loading: Hand tamped
For TNT	514	
For Subject HE	671	Loading Density: gm/cc 1.58
ragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:
Density, gm/cc		Storage.
Density, gilly co		Method Dry
last (Relative to TNT):		Hazard Class (Quantity-Distance) Class 9
Air:		Compatibility Group Group I
Peak Pressure	105	
Impulse	109	Exudation Exudes at 77°C
Energy		
Air, Confined:		Plasticity:
Impulse		Below O ^O C Hard (-29 ^o C)
		O-40°C Plastic
Under Water: Peak Pressure		Above 40°C Exudes (77°C)
Impulse		Booster Sensitivity Test: (h)
Energy		
g,		Condition Pressed Tetryl, gm 100
Underground: Peak Pressure		Wax, in. for 50% Detonation 1.36 Density, gm/cc 1.62
Impulse		Dofemen
Energy		References:
		See references for Composition C-4.
		1

Composition:	Molecular Weight:	
RDX	91 Oxygen Balance:	
	CO ₂ %	
Plasticizer, non-	CO %	
explosive	Density: gm/cc	
* Contains polyisobutylene 2.1%; 1.6% and di(2-ethylhexyl) sek	motor oil acate 5.3%. Melting Point: °C	
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, n	D 20
Picatinny Arsenal Apparatus, in.	19 27 n ½	D
Sample Wt, mg	27 "a	
		30
Friction Pendulum Test:	Vacuum Stability Te	st:
Steel Shoe Unaffecte	cc/40 Hrs, dt	
Fiber Shoe Unaffecte	_	0.26
Rifle Bullet Impact Test: Trials	100°C	0.26
%	120°C	
Explosions 0	135°C	
Partials 0	150°C	
Burned 20	200 Gram Bomb Sand	d Test:
Unaffected 80	Sand, gm	55.7
Explosion Temperature: °C	Sensitivity to Initiation	on:
Seconds, 0.1 (no cap used)	Minimum Detonat	ing Charge, gm
1	Mercury Fulmin	nate
5 290	Lead Azide	0.20
10	Tetryl	0.10
15		
20	Ballistic Mortar, %	TNT: (a) 130
75°C International Heat Terr	Trauzi Test, % TNT	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:	(c)
	Method	В
100°C Heat Test:	Condition	Hand tamped
% Loss, 1st 48 Hrs	0.13 Confined	No
	0.00 Density, gm/cc	1.60
	None Brisance, % TNT	115
•	Detonation Rate:	(d)
Flammability Index:	Confinement	(d) None
•	Condition	Hand tamped
		mana campea
Hygroscopicity: % 30°C, 95% RH	****	in 1.0
Hygroscopicity: % 30°C, 95% RH	<u> </u>	in. 1.0 1.59

ragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Color: Light brown			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Plastic demolition explosive			
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Hand tamped			
roi subject ric	Loading Density: gm/cc 1.60			
ragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Method Dry			
last (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9			
Air: Peak Pressure	Compatibility Group Group I			
Impulse Energy	Exudation None at 77°C			
Air, Confined: Impulse	Effect of Temperature on (i) Rate of Detonation:			
Under Water: Peak Pressure	16 hrs at, °C -54 21 Density, gm/cc 1.36 1.35 Rate, m/sec 7020 7040			
Impulse Energy	Plasticity:			
Underground:	Below O ^O C Plastic (-57 ^O C) O-40 ^O C Plastic Above 40 ^O C Plastic (77 ^O C)			

Preparation:

In manufacturing Composition C-3, the mixed plasticizing agent is heated in a melting kettle at 100° C. Water-wet RDX is added and heating and stirring are continued until all the water is evaporated. This mixture is then cooled and hand pressed into demolition blocks or special item ammunition.

Composition C-4 is prepared by hand kneading and rolling, or in a Schrader Bowl mixer, RDX of 44 micron size or less with the polyisobutylene-plasticizer previously made up in ether. The thoroughly blended explosive is dried in air at 60°C and loosely packed by hand tamping to its maximum density.

Origin:

Developed by the British during World War II as a plastic explosive which could be hand shaped. It was standardized in the United States during World War II and subsequent development led to mixtures designated C-2, C-3 and C-4.

Destruction by Chemical Decomposition:

Composition C-3 is decomposed by adding it slowly to a solution composed of 1 1/4 parts sodium hydroxide, 11 parts water, and 4 parts 95% alcohol, heated to 50° C. After addition of Composition C-3 is complete, the solution is heated to 80° C and maintained at this temperature for 15 minutes.

- (a) Committee of Div 2 and 8, NDRC, Report on HBX and Tritonal, OSRD No. 5406, 31 July 1945.
- (b) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
- (d) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.
- M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.
- (e) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.
- (f) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, <u>Sec III</u>, <u>Variation of Cavity Effect with Explosive Composition</u>, <u>NDRC Contract W672-ORD-5723</u>.
- (g) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, 18 September 1943, NDRC Contract W-672-ORD-5723.
- (h) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.

¹¹See footnote 1, page 10.

Compositions C, C-2, C-3, C-4

(i) W. F. McGarry and T. W. Stevens, <u>Detonation Rates of the More Important Military Explosives at Several Temperatures</u>, PATR No. 2383, November 1956.

(j) Also see the following Picatinny Arsenal Technical Reports on RDX Composition C:

	<u>o</u>	<u>1</u>	<u>3</u>	4	<u>5</u>	<u>6</u>	7	8	<u>9</u>
Comp C	1260		1293					1518 18 3 8	
Comp C-2 Comp C-3		1611	1293 1713	2154	1595 1695 1885	1416 1416 1556 1766	1797	1518 1518 2028	
Comp C-4					2007	1766	1907	1828 1958	1819

Composition:		Molecular Weight: (CuC2N8C)	L2) 271
C 8.9 N - N C C C 26.2 N - N C	Cl	Oxygen Balance: CO ₂ % CO %	-30 -18
C1 26.2 N N	u	Density: gm/cc	2.04
Cu 23.4	Cl	Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 1; (1 1b wt) 3 Sample Wt, mg		Refractive Index, n_{20}^D n_{25}^D n_{30}^D	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe Fiber Shoe	Exploded Exploded	cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials		100°C 120°C	
% Explosions Partials		135°C 150°C	
Burned Unaffected		200 Gram Bomb Sand Test: (f Sand, gm Black, powder fuse	· .
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1		Sensitivity to Initiation: Minimum Detonating Charge Mercury Fulminate	
5 30 10	5	Lead Azide 0.1	•
15		Ballistic Mortar, % TNT:	
20		Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	2.67	Confined	
% Loss, 2nd 48 Hrs	0.10	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index:		Detonation Rate: Confinement	
Hygroscopicity: % 30°C, 90% F	H 3.11	Condition Charge Diameter, in.	
Volatility:		Density, gm/cc Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT For Subject HE	Color: Blue			
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Primary explosive			
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed			
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Loading Density: gm/cc psi x 10 ³ (c) 10 20 40 70 1.49 1.63 1.74 1.86 Storage:			
Blast (Relative to TNT):	Method Wet Hazard Class (Quantity-Distance) Class 9			
Air: Peak Pressure Impulse Energy	Compatibility Group Group M Exudation None			
Air, Confined: Impulse	Stab Sensitivity: (c) Density Firing Point (inch-ounces) gm/cc 0% 50% 100%			
Under Water: Peak Pressure Impulse Energy	1.49 9 11 15 1.63 8.5 10 12 1.74 6 7 9 1.86 4 5 6			
Underground: Peak Pressure Impulse Energy	Heat of: Explosion, cal/gm 432 Specific Heat, cal/gm/°C Temmo range 0°-30°C 0.155			
	Temp range 0°-30°C 0.155 Wt of sample, gm 0.8910			

Preparation: (a)

Five grams of 5-aminotetrazole are dissolved in a mixture of 200 ml of water and 70 ml of concentrated HCl. Enough kerosene or nujol (which gives a slightly cleaner product) is added to provide a layer of oil approximately 1/4" thick on the surface. With only moderate stirring and external cooling to 10°-15°C, a solution of 5 grams of sodium nitrite in 70 cc of water is added rapidly by means of a burette extending below the oil layer. Immediately after this addition, a solution of 5 gms of cupric chloride in a minimum amount of water is added all at once, and stirring is continued for about 1 hour. The reaction mixture is allowed to stand for a few minutes till the bright blue copper salt separates. The oil is removed by decantation and may be reused. The salt is filtered; washed with water, alcohol, and ether; and dried - giving a yield of 6 grams or 74%.

Origin:

The copper salt of 5-chlorotetrazole was first described in 1929 by R. Stolle (with E. Schick, F. Henke-Stark and L. Krauss) who prepared the compound by reaction of the diazonium chloride of 5-aminotetrazole with copper chloride (Ber 62A, 1123).

References: 12

- (a) R. J. Gaughran and J. V. R. Kaufman, Synthesis and Properties of Halotetrazole Salts, PATR No. 2136, February 1955.
- (b) A. M. Anzalone, J. E. Abel and A. C. Forsyth, <u>Characteristics of Explosive Substances</u> for Application in Ammunition, PATR No. 2179, May 1955.
- (c) A. C. Forsyth, Pfc, S. Krasner and R. J. Gaughran, Development of Optimum Explosive Trains. An Investigation Concerning Stab Sensitivity versus Loading Density of Some Initiating Compounds, PATR No. 2146, February 1955.

¹²See footnote 1, page 10.

Cyanuric Triazide

Composition:	Molecular Weight: (C3N12)	204
c 17.6 N ₃	Oxygen Balance:	l.a.s
N 82.4	CO ₂ %	-47.1 -23.5
N N	Density: gm/cc Crystal	1.54
$N_3 \subset C - N_3$	Melting Point: °C	94
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 1 kg wt 7	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, no	
Picatinny Arsenal Apparatus, in.	n ⁰ ₂₅	
Sample Wt, mg -	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	
Rifle Bullet Impact Test: Trials	100°C	
%	120°C	
Explosions	135°C	
Partials	150°C	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	32.2
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 252	Minimum Detonating Charge,	gm
1	Mercury Fulminate	-
5	Lead Azide	0.20
10	Tetryl	0.10
15 20	Ballistic Mortar, % TNT:	
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:	
	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
	Detonation Rate:	
Flammability Index:	Confinement	-
L	Condition	-
Hygroscopicity: %	Charge Diameter, in.	0.3
Volatility: Decomposes above 100°C	Density, gm/cc	1.15
recomposes above 100 C	Rate, meters/second	5550 - 5600

Cyanuric Triazide

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color: Colorless		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Not used because of difficulty in controlling sensitivity.		
Total No. of Fragments: For TNT	Method of Loading: Pressed		
For Subject HE	Loading Density: gm/cc At 200 atmospheres 1.4		
Fragment Velocity: ft/sec At 9 ft At 25½ ft	At 800 atmospheres 1.5 Storage:		
Density, gm/cc	Method		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9		
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None		
Air, Confined: Impulse			
Under Water: Peak Pressure			
Impulse Energy			
Underground: Peak Pressure			
Impulse Energy			

Cyanuric Triazide

Preparation:

By the reaction of cyanuric chloride with an aqueous solution of sodium azide:

Recrystallization should be avoided as it leads to very large crystals which explode when broken.

Origin:

Cyanuric Triazide was prepared in 1847 by Cahours from chlorine and methyl cyanate. Later James improved the process (JCS 51, 268 (1887) and in 1921 E. Ott patented the preparation from cyanuric chloride and sodium azide (Ref b) Taylor and Rinkenbach prepared cyanuric triazide in a pure state and determined its properties (Ref c).

Initiating Efficiency:

Reported to be more efficient than lead azide. Capable of initiating Explosive D.

Solubility:

Insoluble in water; readily soluble in hot ethanol, acetone, benzene, and ether.

Heat of:

Formation, cal/gm -1090 to -1138

References: 13

- (a) A. H. Blatt, Compilation of Data on Organic Explosives, OSRD Report No. 2014, 29 February 1944.
 - (b) Ott and Ohse, Ber 54, 179 (1921).
 - (c) Taylor and Rinkenbach, Bureau of Mines, RI 2513 (1923). Taylor and Rinkenbach, J Frank Inst 204, 369 (1927).

¹³See footnote 1, page 10.

Composition: CH2	- /	Molecular Weight: (C3H6N6O6)	555
% C 16.3 O ₂ N-N N-1	100	Oxygen Balance:	
-		CO ₂ %	-22 0.0
н 2.7 н ₂ с сн ₂			
n 37.8 'n		Density: gm/cc Crystal	1.82
0 43.2 NO ₂		Melting Point: °C	204
C/H Ratio 0.095		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	32	Boiling Point: °C	
Sample Wt 20 mg	-	Refractive Index, no	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	8 18	n ₂₅	
Sumple Wit, mg		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe Explode		cc/40 Hrs, at	
Fiber Shoe Unaffec	ted	90°C — 100°C	0.7
Rifle Bullet Impact Test: Trials		120°C	0.9
%		135°C	0. 9
Explosions 100		150°C	2.5
Partials 0		,30 €	
Burned 0		200 Gram Bomb Sand Test:	(0.0
Unaffected 0		Sand, gm	60.2
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 405		Minimum Detonating Charge, gm	ı
1 316		Mercury Fulminate	0.19 *
5 Decomposes 260		Lead Azide	0.05*
10 240		Tetryl * Alternative initiating char	≠ ges.
15 235 20 -		Ballistic Mortar, % TNT: (a)	150
20 -		Trauzi Test, % TNT: (b)	157
75°C International Heat Test:	2 22	Plate Dent Test: (c)	
% Loss in 48 Hrs	0.03	Method	A
100°C Heat Test:		Condition	Pressed
% Loss, 1st 48 Hrs	0.04	Confined	Yes
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	1.50
Explosion in 100 Hrs	None	Brisance, % TNT	135
T	•-0	— Detonation Rate:	
Flammobility Index: (d)	27 8	Confinement	None
Hygroscopicity: % 25°C, 100% RH	0.00	Condition	Pressed
, g. cacopien, 70 25°C, 100% RH	0.02	Charge Diameter, in.	1.0
Volatility:	Nil	Density, gm/cc	1.65
	*1**	Rate, meters/second	8180

^{*}Name given by Clarence J. Bain of Picatinny Arsenal. Germans call it Hexogen; Italians call it T4; British, RDX.

Booster Sensitivity Test:	Decomposition Equation:	(i) 10 ¹⁸ .5
Condition	Oxygen, atoms/sec	1010.5
Tetryl, gm	(Z/sec) Heat, kilocalorie/mole	47.5
Wax, in. for 50% Detonation	(ΔH, kcal/mol)	71.7
Wax, gm	Temperature Range, °C	213-299
Density, gm/cc	Phase	Liquid
Heat of:	Armor Plate Impact Test:	
Combustion, cal/gm 2285		
Explosion, cal/gm 1280	60 mm Mortar Projectile:	
Gas Volume, cc/gm 908	50% Inert, Velocity, ft/sec	
Formation, cal/gm -96	Aluminum Fineness	
Solution, cal/mol (28-55% HNO ₃) 7.169* *Assuming cyclonite unimolecular	500-ib General Purpose Bombs:	
Specific Heat: cal/gm/°C		
°c	Plate Thickness, inches	
20 0.298 100 0.406	1	
40 0.331 120 0.427	11/4	
60 0.360 140 0.446	11/2	
80 0.384	134	
Burning Rate:	7-4	
cm/sec	Bomb Drop Test:	
Thermal Conductivity: (h) cal/sec/cm/°C 1.263 6.91 x 10 ⁻¹ Density, gm/cc 1.533 6.98 x 10 ⁻¹	T7, 2000-lb Semi-Armor-Piercin	g Bomb vs Concrete:
Coefficient of Expansion:	Max Safe Drop, ft	
Linear, %/°C	500-lb General Purpose Bomb v	s Concrete:
Volume, %/°C	Height, ft	
	Trials	
Hardness, Mohs' Scale: 2.5	Unaffected	
Young's Modulus:	Low Order	
•	High Order	
E', dynes/cm² E, lb/inch²		
Density, gm/cc	1000-lb General Purpose Bomb v	s Concrete:
Density, girl/ ec	— Height, ft	
Compressive Strength: Ib/inch ²	Trials	
• · · · · · · · · · · · · · · · · · · ·	Unaffected	
Vapor Pressure:	Low Order	
°C mm Mercury	High Order	
,	, ngn older	

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Color: White			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Detonator base charge, and ingredient for projectile and bomb fillers			
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed			
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Loading Density: gm/cc psi x 10 ³ 3 5 10 12 15 20 1.46 1.52 1.60 1.63 1.65 1.68 Storage:			
Density, gm/cc	Method Wet			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9			
Air: Peak Pressure Impulse Energy	Compatibility Group Group M (wet) Group L (dry) Exudation None			
Air, Confined: Impulse	Effect of Temperature on Rate of Detonation: (k) 16 hrs at. OC -54 21			
Under Water: Peak Pressure Impulse	Density, gm/cc 1.61 1.62 Rate, m/sec 8100 8050			
Energy	Effect of Temperature on Impact Sensitivity:			
Underground: Peak Pressure Impulse Energy	Temp. PA Impact Test 2Kg Wt, inches			

Water	Alcohol	Acetone	Benzene	Toluene
0c % 30 0.005 50 0.025 70 0.076 90 0.19 100 0.28	0 0.040 20 0.105 40 0.240 60 0.579 78 1.195	°C % 0 4.4 20 7.3 40 11.5 60 18.	°C	0 % 0 0.015 20 0.02 40 0.05 60 0.13 80 0.30 100 0.65
Ethyl acetate	<u>Carbon</u> tetrachloride	<u>Methanol</u>	Ether	TNT
°c 4 28 2.9 94 18.	°c <u>4</u> , 50 0.005 60 0.007 70 0.009	°C	°C	80 4.4 85 5.0 90 5.55 95 6.2 100 7.0 105 7.9
Isoamyl alcohol	Methyl acetate	<u>B-Ethoxyethyl</u> acetate	Chlorobenzene	Trichloro- ethylene
°C % 0 0.02 20 0.03 40 0.065 60 0.22 80 0.54 100 1.35	90 % 20 2.9 30 3.3 40 4.1 50 5.6	°C % 20 0.15 30 0.16 40 0.19 50 0.25	°C	°C
Tetra- chloroethane	Isopro- panol	Isobutanol	Chloroform	Mesityloxide
°C	°C	°C	°C	°C 46 27 3.2 97 12.2
Cyclo- hexanone	Nitro- benzene	Nitro- ethane	Cyclo- pentanone	Acetonitrile
°c <u>4</u> 25 12.7 97 25	oc 9 25 1.5 97 12.4	o _c 4 28 3.6 93 19	oc 4 28 11.5 90 37	o _C <u>4</u> , 28 11 82 33
	Methy	l ethyl ketone		
	°c 28 95	% 5.6 14		

Solubility of Cyclonite, Holston Lot E-2-5 in Various Solvents:

Solubility gm/100 gm Solvent

	Boiling Point,	Grade or			
Solvent	o _C	Source*	28°c	<u>Heated</u>	Crystalline Form
Acetone	56	CP	8.2	16.5 at 60°C	hexagonal-thick
Cyclohexanone	155.6	CP	13.0	24.0 at 93°C	cubic (massive form)
Nitromethane	100.8		1.5	12.4 at 97°C	plates
Acetonitrile	81.6	Miacet Chem. Co.	11.3	33.4 at 93°C	plates
1-Nitropropane	126.5	EK Pract	1.4	10.6 at 93°C	short needles
2-Nitropropane	120	EK Pract	2.3	11.6 at 93°C	short needles
2,4-Pentanedione	140.5	Carbide & Carbon	2.9	18.3 at 93°C	flat prisms
Methylisobutylketone	115.8		2.4	9.6 at 93°C	long prisms
n-Propylacetate	101.6	EK Red Label	1.5	6.0 at 93°C	long prisms, some cubic
n-Butylformate	105.6	EK Red Label	1.4	4.6 at 93°C	long prisms
Ethyl acetate	77.1	Baker's CP	2.0	6.1 at boil.	hexagonal plates
n-Propylpropionate	121	EK Red Label	0.8	1.6 at 93°C	short prisms, some cubic
Butylacetate	126.5	EK Technical	1.1	4.0 at 93°C	long prisms
Methylethylketone	79.6		5.6	13.9 at boil.	coarse plates
Nitroethane	114.2	EK Red Label	3.6	19.5 at 93°C	plates
Isopropylacetate	88 -90	CP	1.1	3.2 at boil.	long prisms
Mesityloxide	128	EK Red Label	4.8	14.5 at 93°C	plates
n-Amylacetate	146	CP	1.0	2.1 at 93°C	prisms
Dimethylcarbonate	88-91	EK Red Label	1.4	6.6 at boil.	plates
Diethylcarbonate	125-126.5	EK Red Label	0.7	3.2 at 93°C	prisms
Isoamylacetate	132	CP	1.2	3.6 at 93°C	prisms
Ethylpropionate	98-100	EK Red Label	3.0	10.7 at 93°C	fairly thick hex
Methyl-n-butyrate	101.5-103.5	EK Red Label	1.2	4.9 at 93°C	needles
Cyclopentanone	130.6	EK Red Label	11.5	39.0 at 93.50	
Acrylonitrile	77.3	Cyanamid Co.	4.0	16.4 at boil.	flat plates
Methylcellosolveacetat		Carbide &	1.6	8.8 at 93°C	massive hexagons and
,	,	Carbon		210 20 75 0	prisms

^{*} EK, Eastman Kodak; Pract, practical.

Preparation:

(Summary Technical Report of the NDRC, Div 8, Vol 1)

Ammonium nitrate and acetic anhydride are placed in a flask and, while the mixture is stirred at 75°C, the following three liquids are introduced concurrently and proportionately: acetic anhydride, concentrated nitric acid, and a solution of hexamine in glacial acetic acid. The final mixture is held for a short time at 75°C, diluted with water to 30% acetic acid, and simmered to hydrolyze unstable reaction by-products, which are a mixture of various nitrated and acetylated derivatives of hexamine fragments. After simmering, the slurry is cooled and the precipitated cyclonite removed by filtration. The yield is 78% of the theoretical amount (2 moles) of cyclonite melting at 199°C. By dissolving the ammonium nitrate in the nitric acid, a continuous process, based on 3 liquids, is possible.

The product is recrystallized from acetone, or cyclohexanone, to (a) remove acidity, (b) control particle size and (c) to produce stable β -HMX. The preparative procedure described above, the Bachmann or Combination process, yields cyclonite containing 3-8% HMX.

Origin:

First prepared by Henning in 1899 (German Patent 104,280) and later by von Hertz (U. S. Patent 1, 402,693) in 1922 who recognized its value as an explosive. Not used on a large scale in explosive ammunition until World War II.

Destruction by Chemical Decomposition:

Cyclonite (RDX) is decomposed by adding it slowly to 25 times its weight of boiling 5% sodium hydroxide. Boiling should be continued for one-half hour.

References: 14

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) Ph. Naoum, Z. ges Schiess Sprengstoffw, pp. 181, 229, 267 (27 June 1932).
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.

¹⁴See footnote 1, page 10.

- (e) Armament Research Department (Woolwich), Solubility of RDX in Nitric Acid (ARD Expl Rpt 322/43 September 1943).
 - (f) Report AC-2587.
 - (g) International Critical Tables
 Land. Bornst.
- B. T. Fedoroff et al, \underline{A} Manual for Explosives Laboratories, Lefax Society Inc, Philadelphia, 1943-6.
- (h) E. Hutchinson, The Thermal Sensitiveness of Explosives. The Thermal Conductivity of Explosive Materials, AC 2861, First Report, August 1942.
- (i) R. J. Finkelstein and G. Gamow, <u>Theory of the Detonation Process</u>, NAVORD Report No. 90-46, 20 April 1947.
 - (j) International Critical Tables.
- (k) W. F. McGarry and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different Temperatures, PATR No. 2383, November 1956.
 - (1) Also see the following Picatinny Arsenal Technical Reports on Cyclonite:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u> .	5	<u>6</u>	<u>7</u>	8	2
1170 1290 1360 1450 1760 1980 2100	1211 1241 1311 1421 1481 1561 1651 1741 1751 1761 2131 2151	582 1342 1352 1372 1402 1452 1452 1532 2062 2112	863 1193 1293 1433 1483 1503 1693 1713 1793 1923	1184 1414 1454 1614 1634 2024 2154 2204	65 1175 1185 1435 1445 1715 1855 1885 1915 1935 2095 2125 2205	1236 1316 1416 1446 1466 1516 1556 1756 1766 1796 1836 1936 2056 2056	857 1207 1427 1437 1517 1617 1687 1737 1747 1787 1797 1957 2147 2227	1438 1458 1498 1578 1838 1958 1958 2008 2028 2178 2198	709 1379 1429 1449 1469 1709 1909 2059 2179

Composition:	Molecular Weight:	224		
%	Oxygen Balance:			
RDX 75	CO ₂ %	-3 5		
TNT 25	CO %	- 6		
1112	Density: gm/cc Cast	1.71		
	Melting Point: °C			
C/H Ratio	Freezing Point: °C			
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C			
Bureau of Mines Apparatus, cm Sample Wt 20 mg	Refractive Index, no			
Picatinny Arsenal Apparatus, in.	n ₂₅			
Sample Wt, mg	n ₃₀			
The Building Trans				
Friction Pendulum Test: Steel Shoe Unaffected	Vacuum Stability Test:			
	cc/40 Hrs, at 90°C			
Fiber Shoe Unaffected	100°C	0.23		
Rifle Bullet Impact Test: Trials	120°C	0.41		
%	135°C	-		
Explosions 30	150°C	_		
Partials Smokes 40	130 €			
Burned 0	200 Gram Bomb Sand Test:			
Unaffected 30	Sand, gm			
Explosion Temperature: °C	Sensitivity to Initiation:			
Seconds, 0.1 (no cap used)	Minimum Detonating Charge,	gm		
1	Mercury Fulminate			
5	Lead Azide			
10	Tetryl			
15	Ballistic Mortar, % TNT:	······································		
20	Trauzi Test, % TNT:			
75°C International Heat Test:	Plate Dent Test;			
% Loss in 48 Hrs	Method			
	Condition			
100°C Heat Test:	Confined			
% Loss, 1st 48 Hrs	Density, gm/cc			
% Loss, 2nd 48 Hrs	Brisance, % TNT			
Explosion in 100 Hrs				
Elementility Indov	Detonation Rate: Confinement None	e None		
Flammability Index:				
Hygroscopicity: %				
,g	Charge Diameter, in. 1.0	1.0		
Volatility:	Density, gm/cc 1.70			
	Rate, meters/second 8035	5 79 3 8		

Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm Density, gm/cc		Decomposition Equation: Oxygen, atoms/sec (Z/sec) Heat, kilocalorie/mole (ΔH, kcal/mol) Temperature Range, °C Phase
Heat of: Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm Formation, cal/gm Fusion, cal/gm (h) *Calculated from composition of mix* Specific Heat: cal/gm/°C (h) OC	2625* 1225* 862	Armor Plate Impact Test: 60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec Aluminum Fineness 500-lb General Purpose Bombs: Plate Thickness, inches 1 11/4 11/2
Burning Rate: cm/sec Thermal Conductivity: cal/sec/cm/°C		Bomb Drop Test: T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion: Linear, %/°C		Max Safe Drop, ft 500-lb General Purpose Bomb vs Concrete:
Volume, %/°C Hardness, Mohs' Scale:		Height, ft Trials Unaffected
Young's Modulus: E', dynes/cm²		Low Order High Order
E, lb/inch² Density, gm/cc		1000-lb General Purpose Bomb vs Concrete: Height, ft
Compressive Strength: Ib/inch²		Trials Unaffected Low Order
Vapor Pressure: °C mm Mercury		High Order

Cyclotol, 75/25

Fragmentation Test: Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, L	ot WC-91:	Glass Cones St	eel Cones
Density, gm/cc	1.72	Hole Volume	
Charge Wt, Ib	2.22	Hole Depth	
Total No. of Fragments:		Color: Voltar but	
For TNT	703	Yellow-buf	T'
For Subject HE	1514	Principal Uses: Shaped charge	bomb especially
3 inch HE, M42A1 Projectile,	Lot KC-5:		; HE projectiles;
Density, gm/cc) B1 0.112 0.00	
Charge Wt, Ib			
Total No. of Fragments: For TNT		Method of Loading:	Cast
For Subject HE		Loading Density: gm/cc	
			1.71
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:	
Density, gm/cc		Method	Dry
Blast (Relative to TNT):	(d)	Hazard Class (Quantity-Distance	c) Class 9
Air:		Compatibility Group	Group I
Peak Pressure	111		
Impulse	126	Exudation	
Energy			
Air, Confined:		Preparation: See Composition	
Impulse		Origin: Developed by the Bri Wars I and II and standar States early in World War	dized in the Unite
Under Water: Peak Pressure		Black Modulus at Room Temperature (25°-30°C):	
Impulse		Dynes/cm ² x 10-10	3.09
Energy		Density, gm/cc	1.74
Underground: Peak Pressure		Absolute Viscosity, poises:* Temp, 85°C	210**
Impulse		90°C	
Energy		Efflux Viscosity, Saybolt Se	
. ,		Temp, 85°C	9-14
		* Compositions using Spec Gr Class A RDX. ** Composition prepared using particle size.	

Cyclotol, 70/30

Composition:	Molecular Weight:	224	
%	Oxygen Balance:		
RDX 70	CO ₂ %	-37	
TNT 30	CO %	- 8	
	Density: gm/cc Cast	1.71	
	Melting Point: °C		
C/H Ratio	Freezing Point: °C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 60	Boiling Point: °C		
Sample Wt 20 mg	Refractive Index, no		
Picatinny Arsenal Apparatus, in. 14 Sample Wt, mg 20	n²5		
	n ₃₀		
Friction Pendulum Test:	Vacuum Stability Test:		
Steel Shoe Unaffected	cc/40 Hrs, at		
Fiber Shoe Unaffected	90°C		
Rifle Bullet Impact Test: Trials	120°C	0.86	
%	135°C	0.00	
Explosions 30	150°C		
Partials 30	130 €		
Burned 0	200 Gram Bomb Sand Test:		
Unaffected 40	Sand, gm	56.6	
Explosion Temperature: °C	Sensitivity to Initiation:		
Seconds, 0.1 (no cap used) -	Minimum Detonating Charge, q		
<u> </u>	Mercury Fulminate	0.21*	
5 Decomposes 265	Lead Azide	0.20*	
10	Tetryl *Alternative initiating cha	rges.	
15 20	Ballistic Mortar, % TNT: (a)	135	
	Trouzi Test, % TNT:		
75°C International Heat Test:	Plate Dent Test: (b)		
% Loss in 48 Hrs	Method	В	
100°C Heat Test:	Condition	Cast	
% Loss, 1st 48 Hrs 0.07	Confined	No	
% Loss, 1st 46 Hrs 0.08	Density, gm/cc	1.725	
Explosion in 100 Hrs None	Brisance, % TNT	136	
Explosion in 100 Fits - None	Detonation Rate:		
Flammability Index:	Confinement	None	
·	Condition	Cast	
Hygroscopicity: % Nil	l Charge Diameter in.	1.0	
Hygroscopicity: % Nil	Charge Diameter, in. Density, gm/cc	1.0 1.73	

ragmentation Test:		Shaped Charge Effectiveness, TNT = 1	100:
90 mm HE, M71 Projectile, Lo	WC-91:	Glass Cones Steel	Cones (e)
Density, gm/cc	1.71	Hole Volume	
Charge Wt, Ib	2.213	Hole Depth 13	30
Total No. of Fragments:		Color: Yel	llow-buff
For TNT	703	- COIO?.	2011
For Subject HE	1165	Principal Uses: Shaped charge bon	nhs•
3 inch HE, M42A1 Projectile, L	ot KC-5:	especially fragme	entation HE
Density, gm/cc	1.72	projectiles, gren	ades
Charge Wt, Ib	0.923		
Total No. of Fragments:		Method of Loading:	Cast
For TNT	514	Method of Locality.	0020
For Subject HE	828		
		Loading Density: gm/cc	1.71
ragment Velocity: ft/sec At 9 ft			
At 251/2 ft		·Storage:	
Density, gm/cc		Method	Dry
last (Relative to TNT):	(d)	Hazard Class (Quantity-Distance)	Class 9
Air:		Compatibility Group	Group I
Peak Pressure	110		
Impulse	120	Exudation	
Energy			
Air, Confined:		Preparation: See Composition B	
Impulse		Origin: Developed by the Britis World Wars I and II and state the United States early in	nd ar dized in
Under Water: Peak Pressure		Absolute Viscosity, poises:*	
		Temp, 85°C	
Impulse		90°C	53.2
Energy		Efflux Viscosity, Saybolt Seco	nds:
Underground:		Temp, 85°C	5
Peak Pressure		Heat of:	**
Impulse		Combustion, cal/gm	2685
Energy		Explosion, cal/gm	1213
		Gas Volume, cc/gm	854
		* Composition using Spec Grade Class A RDX.	
		** Calculated from composition	of mixture.

Composition:	Molecular Weight:	224
% RDX 55	Oxygen Balance:	
NDA	CO ₂ %	-40
TNT 35	CO %	- 9
	Density: gm/cc Cast	1.71
	Melting Point: °C	
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, no	
Picatinny Arsenal Apparatus, in.	n ₂₅	
Sample Wt, mg	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Unaffected	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
	— 100°C	
Rifle Bullet Impact Test: Trials	120°C	
%	135°C	
Explosions	150°C	
Partials		
Burned	200 Gram Bomb Sand Test:	cc).
Unaffected	Sand, gm	55.4
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge,	gm
1	Mercury Fulminate	
5 Decomposes 270	Lead Azide	
10	Tetryl	
15	Ballistic Mortar, % TNT: (a)	7 al.
20		134
75°C International Heat Test:	Trauzi Test, % TNT:	
% Loss in 48 Hrs	Plate Dent Test:	
	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
	Detonation Rate:	
Flammability Index:	Confinement	None
11	Condition	Cast
Hygroscopicity: % Nil	Charge Diameter, in.	1.0
Volenija Na 1	Density, gm/cc	1.72
Volatility: Nil	Rate, meters/second	7975

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot	WC-91:	Glass Cones Stee	l Cones (e)	
Density, gm/cc	1.71	Hole Volume		
Charge Wt, Ib	2.253	Hole Depth 13	30	
Total No. of Fragments:		Color: Vallay h		
For TNT	703	Yellow-h	oull	
For Subject HE	1153	Principal Uses: Shaped charge bo	ombs;	
3 inch HE, M42A1 Projectile, Lo	ot KC-5:	especially fragr projectiles, gre		
Density, gm/cc	1.71	, , , , , , , , , , , , , , , , , , ,		
Charge Wt, Ib	0.922			
Total No. of Fragments:		Method of Loading:	Cast	
For TNT	514			
For Subject HE	769	Loading Density: gm/cc	1.71	
P		Loading Density: gm/cc	1.11	
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:		
Density, gm/cc		Method	Dry	
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure		Compatibility Group	Group I	
		Exudation		
Impulse				
Energy		Drangustian, Coo Composition	D	
Air, Confined:		<u>Preparation:</u> See Composition	Đ	
Împulse		Origin: Developed by the Brit. World Wars I and II and star the United States early in	ndardized in	
Under Water:		one onroca poaces earry in	HOLIG MAI II.	
Peak Pressure		Eutectic Temperature, OC:	7 9	
Impulse		gm RDX/100 gm TNT		
Energy		79°C	4.16	
Underground:		95°C	5.85	
Peak Pressure		Absolute Viscosity, poises:*		
Impulse				
Energy		Temp, 85°C 90°C	30.2 26.0	
Heat of:	*			
Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm * Calculated from composi	2755 1205 845 tion of mixture.	* Composition using Spec Grad Class A RDX.	e type n,	

Composition:	Molecular Weight:	224
%		
RDX 60	Oxygen Balance: CO ₂ %	-43
	CO %	10
TNT 40	Density: gm/cc Cast	1.68
	Melting Point: °C	1.00
C/H Ratio	Freezing Point: °C	-
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 75	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 14	Refractive Index, no	
Sample Wt, mg 19	n ₂₅	
	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Unaffected	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
Rifle Bullet Impact Test: Trials	100°C	
%	120°C	0.29
Explosions 5	135°C	
Partials 55	150°C	
Burned 25	200 Gram Bomb Sand Test:	
Unaffected 15	Sand, gm	54.6
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, g	m
1	Mercury Fulminate	0.22*
5 Decomposes 280	Lead Azide	0.20*
10	Tetryl *Alternative initiating cha	waan
15	Ballistic Mortar, % TNT: (a)	
20		1.33
75°C International Heat Test:	Trauzi Test, % TNT:	
% Loss in 48 Hrs	Plate Dent Test: (b)	T)
	Method	В
100°C Heat Test:	Condition	Cast
% Loss, 1st 48 Hrs	Confined	No
% Loss, 2nd 48 Hrs	Density, gm/cc	1.72
Explosion in 100 Hrs	Brisance, % TNT	132
Elementility Inday.	Detonation Rate:	
Flammability Index:	Confinement	None
Hygroscopicity: % Nil	Condition	Cast
,gpiony. //	Charge Diameter, in.	1.0
Volatility: Nil	Density, gm/cc	1.72
, nil	Rate, meters/second	7900

Fragmentation Test:		Shaped Charge Effectiveness, TNT =	100:
90 mm HE, M71 Projectile, Lot	WC-91:	Glass Cones Stee	l Cones (e)
Density, gm/cc	1.65	Hole Volume 178	162
Charge Wt, Ib	2.187	Hole Depth 125	148
Total No. of Fragments:		Color: Yel	low-buff
For TNT	703	Color:	10w-bull
For Subject HE	998	Principal Uses: Shaped charge b	omb:
3 inch HE, M42A1 Projectile, La	t KC-5:	especially frag	mentation HE
Density, gm/cc	1.67	projectice, gr	Chades
Charge Wt, Ib	0.882		
Total No. of Fragments:		Method of Loading:	Cast
For TNT	514	motion of Looding.	0450
For Subject HE	701	Landing Daniles are for	7 60
Fragment Velocity: ft/sec	(c)	Loading Density: gm/cc	1.68
At 9 ft At 251/2 ft	2965 2800	Storage:	
Density, gm/cc			_
		Method	Dry
Blast (Relative to TNT):	(d)	Hazard Class (Quantity-Distance)	Class 9
Air:	7.0).	Compatibility Group	Group I
Peak Pressure	104 116	Exudation	
Impulse		Exaddion	
Energy			
Air, Confined:		Preparation: See Composition	В
Impulse		Origin: Developed by the Brit	ish between
Hada Water		World Wars I and II and sta	ndardized in
Under Water: Peak Pressure		the United States early in	World War II.
Impulse		Bulk Modulus at Room	
Energy		Temperature (25°-30°C):	
		Dynes/cm ² \times 10 ⁻¹⁰	4.14
Underground: Peak Pressure		Density, gm/cc	1.72
Impulse		Absolute Viscosity, poises:*	
Energy		Temp, 85°C	12.3
Heat of:	*	90°C	~
Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm	2820 1195 845	* Compositions using Spec Grad Class A RDX.	e Type A,
Compressive Strength: 1b/i	nch ² 2200-3000		

^{*} Calculated from composition of mixture.

References: 15

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (c) R. W. Drake, Fragment Velocity and Panel Penetration of Several Explosives in Simulated Shells, OSRD Report No. 5622, 2 January 1946.
- (d) V. Philipchuk, Free Air Blast Evaluation of RDX-TNT-Al, RDX-TNT, and TNT-Metal Systems, National Northern Summary Report, NN-P-34, April 1956.
- (e) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>. Section III, Variation of <u>Cavity Effect</u> with <u>Composition</u>, NDRC <u>Contract W-672-ORD-5723</u>.
- (f) W. S. Cramer, Bulk Compressibility Data on Several High Explosives, NAVORD Report No. 4380, 15 September 1956.
 - (g) Also see the following Picatinny Arsenal Technical Reports on Cyclotols:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>
1290 1530	1651 1741	1482	1483 1793 1983	1824 1834 1944 2004	1435 1585	1476 1756 1796 1876	1427 1507 1747	1398 1488 1838	1469 1509 1709

(h) C. Lenchitz, W. Beach and R. Valicky, Enthalpy Changes, Heat of Fusion and Specific Heat of Basic Explosives, PATR No. 2504, January 1959.

¹⁵See footnote 1, page 10.

Composition: H)	Molecular Weight: (C3H6N6O3)	174
% C 20.6 C C C C C C C C C C C C C C C C C C C	N-N=0	Oxygen Balance: CO ₂ % CO %	-55 -28
N 48.3 H ₂ C	CH2	Density: gm/cc	
0 27.6 N	2	Melting Point: °C 10	05 to 107
C/H Ratio 0.12		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	15 to 22 17 to 20	Refractive Index, n_{20}^D n_{25}^D n_{30}^D	
Friction Pendulum Test: Steel Shoe Fiber Shoe	Unaffected Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C 0.20	(c)
Rifle Bullet Impact Test: Trials Explosions Partials		- 100°C 9.19 3. *Average value of 5 gm sample twice lized from isoamyl alcohol.	.71* ce recrystal-
Burned Unaffected		200 Gram Bomb Sand Test: Sand, gm 59-2	2 54.1
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 220		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide **Alternative initiating charges.	0.200** 0.100**
15 20		Ballistic Mortar, % TNT:	130
75°C International Heat Test: % Loss in 48 Hrs		Trauzi Test, % TNT: Plate Dent Test: Method	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	8.79 2.98 None	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:		Detonation Rate: Confinement	(b) None
Hygroscopicity: % 30°C, 90% RH	0.02	Condition Charge Diameter, in.	Cast 1.2
Volatility:		Density, gm/cc Rate, meters/second 7000	1.42 to 7300

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$	100:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel	Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Color:	Yellow
For TNT		
For Subject HE	Principal Uses: Ingredient of pro	jectile filler
3 inch HE, M42A1 Projectile, Lot KC-5:		
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments:	Method of Loading: Pressed or ca	ast with added
For TNT	melting point	t depressants
For Subject HE	Loading Density: gm/cc Se	ee below
Fragment Velocity: ft/sec		
At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air:	Compatibility Group	Group M
Peak Pressure	Exudation	Mana
Impulse	Exudation	None
Energy	Density at Various Pressures:	(b)
Air, Confined:		(5)
Impulse	<u>lb/inch²</u>	gm/cc
Under Water:	2,420	1.10
Peak Pressure	4,830 9,650	1.23 1.37
Impulse	14,500	1.44
Energy	24,200	1.53
	33,800 42,500	1.57 1.59
Underground: Peak Pressure	Heat of:	⊥• J₹
Impulse		_
Energy	Combustion, cal/gm Explosion, cal/gm Formation, cal/gm	3158 876 - 914

Preparation of Hexahydro-1, 3, 5-Trinitroso-s-triazine Cyclotrimethylene Trinitrosamine:

An ammoniacal solution of an amine is prepared by adding aqueous formaldehyde to ammonium hydroxide. The rate of addition of formaldehyde is regulated to maintain a solution temperature of 30° to 35° C.

Sodium nitrite is dissolved in water and the solution or slurry is then poured into the previously prepared amine-ammonia solution and totally dissolved by stirring. This solution is chilled to below 0°C.

Into a mixed acid solution, previously prepared by dissolving concentrated nitric acid in water and adding concentrated sulfuric acid, all chilled to -9° C, there is added the cold amine-nitrite solution below the surface of the acid mixture. The addition is regulated to take 20 to 30 minutes.

The resulting foamy head of cyclotrimethylene trinitrosamine is allowed to sit over the icy spent liquor for 1/2 hour and is then collected on a sintered glass funnel and washed to neutrality. The moist cyclotrimethylene trinitrosamine is removed from the funnel and airdried on filter paper. The dry crude product melts at 106° to 107° C. Recrystallization from isoamyl alcohol gives a pure compound melting at 105° to 107° C.

Origin:

Cyclotrimethylene trinitrosamine was discovered in 1888 simultaneously by Griess and Harrow (Ber 21 (1888), p. 2737) and by Mayer (Ber 21 (1888), p. 2883) when sodium nitrite was allowed to react with hexamethylene tetramine in acid solution. This compound was later studied by Duden and Scharff (Ann 288 (1895), p. 218) and by Delépine who determined its heat of formation, which was negative (Bull Soc chim (3) 15 (1896), p. 1199). Because cyclotrimethylene trinitrosamine could be made at first in very poor yield only, it was a long time before it received consideration for practical application as an explosive. However, the study of cyclotrimethylene trinitrosamine was continued and investigations were made as to its behavior in mixtures with other substances (Prof. D. G. Römer "Report on Explosives," BIOSGP 2-HEC 5742).

Destruction by Chemical Decomposition:

Cyclotrimethylene trinitrosamine is easily decomposed by acid or alkali and even by boiling in water.

(b)

High Temperature Decomposition, 0.02 gm in 10 ml Test Tube:

	Immersed 10 minutes in bath heated at 50/minute				
		Temp. °C			
(1)	Melting begins Decomposition begins Nitrous gas Entire decomposition	105 150 160 170			
(2)	Some bubbles Very slow decomposition Decomposes in 2 minutes Decomposes in 40 seconds Immediate decomposition	110 150 200 250 300			

Long Term Stability: (b)

Cyclotrimethylene Trinitrosamine loosely packed in covered wooden boxes for six years at ambient temperature and protected from the sun:

- 1. Explosive showed no color change.
- 2. Melting point decreased from 104.5° to 104°C.
- 3. Coefficient of "Utilisation Practique" decreased from 125.5 to 123.5.
- 4. An Abel Test at 110°C gave no color to iodine starch paper in 15 minutes.

Fusion Tests, Mixtures of Cyclotrimethylene Trinitrosamine and TNT: (b)

Cyclotrimethylene	Melting
Trinitrosamine, %	Point, C
10 20 30 40 42 50 60 70	74 68 62 55 55 (Eutectic) 61 69 77 95

Eutectic Composition With TNT: (b) Rate of Detonation, meters/second

42% Cyclotrimethylene Trinitrosamine 58% TNT

7,000

Cyclotrimethylene Trinitrosamine

Reaction of Cyclotrimethylene Trinitrosamine With Other Materials: (b)

1.	Iron powder	Slight reaction	
2.	Copper powder	Slight reaction	
3.	Aluminum powder	Slight reaction	
4.	2 parts picric acid + 1 part R-Salt	 a. Violent decomposition after 2 hours at 10°C b. Violent decomposition after 10 to 15 minutes at 100°C 	
5.	2 parts nitroglycerin + 1 part R-Salt	No evidence of decomposition after 5 days at $90^{\circ}\mathrm{C}$	

Detonation Rate: (b)

Confinement	Paper cartridge
Condition	Pressed
Charge Diameter, in.	1.18
Rate, meters/second	Density, gm/cc
5180 5760 6600 7330 7600 7800	0.85 1.00 1.20 1.40 1.50 1.57

References: 16

- (a) Arthur D. Little, Inc. Progress Report No. 106, Fundamental Development of High Explosives, April 1955, Contract No. DAI-19-020-501-ORD(P)-33.
- (b) Louis Médard and Maurice Dutour, "Étude Des Proprietés De La Cyclotriméthyléne Trinitrosamine," Mém poudr, 37, 1924 (1954).
- (c) H. A. Bronner and J. V. R. Kaufman, "Synthesis and Properties of R-Salt," PATR in preparation 1959.
- (d) Also see the following Picatinny Arsenal Technical Reports on Cyclotrimethylene Trinitrosamine: 1174, 2179.

¹⁶See footnote 1, page 10.

DBX (Depth Bomb Explosive)

AMCP 706-177

Molecular Weight:	83
Oxygen Balance:	- 46
CO %	- 26
Density: gm/cc Cast	1.68
Melting Point: °C	
n ₃₀	
Vacuum Stability Test:	
cc/40 Hrs, at	
1	
	6.15
	0.19
130 €	
200 Gram Bomb Sand Test:	
Sand, gm	58.5
Sensitivity to Initiation: Minimum Detonating Charge, g	m
Mercury Fulminate	
Lead Azide	0.20
Tetryl	0.10
Ballistic Mortar, % TNT: (a)	146
Trauzi Test, % TNT:	
Plate Dent Test: (b)	
Method	В
Condition	Cast
	No
	1.76
Brisance, % TNT	102
Detonation Rate: (c)	
Confinement	None
Condition	Cast
	- /
Charge Diameter, in. Density, gm/cc	1.6 1.65
_	Oxygen Balance: CO2 % CO % Density: gm/cc Cast Melting Point: °C Freezing Point: °C Refractive Index, n20 n25 n25 n30 Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C 120°C 135°C 150°C 200 Gram Bomb Sand Test: Sand, gm Sensitivity to Initiation: Minimum Detonating Charge, g Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT: Plate Dent Test: (b) Method Condition Confined Density, gm/cc Brisance, % TNT

DBX (Depth Bomb Explosive)

Booster Sensitivity Test: Condition	(e) Cast	Decomposition Equation: Oxygen, atoms/sec
Tetryl, gm	100	(Z/sec)
Wax, in. for 50% Detonation	1.35	Heat, kilocalorie/mole
·	1.00	(ΔH, kcal/mol) Temperature Range, °C
Wax, gm	1.76	Phase
Density, gm/cc	1.10	Friuse
Heat of: Combustion, cal/gm	(d)	Armor Plate Impact Test:
Explosion, cal/gm Gas Volume, cc/gm	1700	60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Fineness
Fusion, cal/gm		
		500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C -5°C, density 1.75 gm/cc	(d) 0.25	Plate Thickness, inches
] 1
		11/4
		1½
		134
Burning Rate:		
cm/sec		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C Density 1.75 gm/cc	13.2 x 10 ⁻¹⁴	T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C -73°-75°C	4.5 x 10 ⁻⁵	500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
		Low Order
Young's Modulus:	(d) 10.4 x 10 ¹⁰	High Order
E', dynes/cm²	10.4 x 10 ⁻⁵	
E, Ib/inch²		1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc	1.72	Height, ft
Compressive Strength: Ib/inch² (d)	3210-3380	Trials
Density 1.78 gm/cc	J== : 55	Unaffected
		Low Order
Vapor Pressure: °C mm Mercury		High Order
C IIIII Mercury		nigh Older
		1

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones Stee	I Cones	
Density, gm/cc		Hole Volume		
Charge Wt, Ib		Hole Depth		
Total No. of Fragments:		Color:	Gray	
For TNT			μ = ··υ	
For Subject HE		Principal Uses:	Depth charge	
3 inch HE, M42A1 Projectile, I	Lot KC-5:			
Density, gm/cc				
Charge Wt, lb		ł		
Total No. of Fragments: For TNT		Method of Loading:	Cast	
For Subject HE				
		Loading Density: gm/cc	1.61-1.69	
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:		
Density, gm/cc		Method	Dry	
Blast (Relative to TNT):	(d)	Hazard Class (Quantity-Distance)	Class 9	
Air:	_	Compatibility Group	Group I	
Peak Pressure	118			
Impulse	127	Exudation		
Energy	138			
Air, Confined:		Preparation:		
Impulse		DBX can be manufactured by	slowly adding	
Under Water:		water-wet RDX to molten TNT m jacketed kettle equipped with		
Peak Pressure	••	all the water has evaporated,		
impulse -	106	is added and with heating and tinued, grained aluminum is a		
Energy	136	ture is cooled with stirring maintain uniformity and when	continued to	
Underground: Peak Pressure		ing the mixture is cast. DBM by adding 21% ammonium nitrat	can also be mad	
Impulse		num to 42% cyclotol or Compos	ition B of 50/50	
Energy		RDX/TNT content plus 19% of T melted at about 100 C.	NT previously	

DBX (Depth Bomb Explosive)

Origin:

DBX was developed and used by the United States and Great Britain during World War II.

References: 17

- (a) I. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (c) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.
- M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.
- (d) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.
- (e) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
 - (f) Also see the following Picatinny Arsenal Technical Reports on DBX: 1585 and 1635.

¹⁷See footnote 1, page 10.

Composition:		Molecular Weight: (C6H5N	₅ 0 ₆)	243
% C 29.6	NH ₂	Oxygen Balance:		
O_N	NO ₂	CO ₂ %		
H 2.1 2	1	CO 76		
N 28.8	NH ⁵	Density: gm/cc	Crystal	1.83
0 39.5	NO ₂	Melting Point: °C	(a)	290
C/H Ratio 0.380		Freezing Point: °C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	1	Boiling Point: °C		
Sample Wt 20 mg		Refractive Index, no		
Picatinny Arsenal Apparatus, ii Sample Wt, mg	n. 18 9	n ₂₅		
Sumple 111, mg	,	n ₃₀		
Friction Pendulum Test:		Vacuum Stability Test:		
Steel Shoe		cc/40 Hrs, at		
Fiber Shoe		90°C		
Rifle Bullet Impact Test: Tria		100°C		
·		120°C		
% Explosions		135°C		
Partials		150°C		
Burned		200 Gram Bomb Sand Test:		
Unaffected		Sand, gm		46.6
Explosion Temperature:	·C	Sensitivity to Initiation:		
Seconds, 0.1 (no cap used)		Minimum Detonating Cha	rge, gm	
1		Mercury Fulminate		
5		Lead Azide		0.20
10		Tetryl		0.10
15 20		Ballistic Mortar, % TNT:		100
		Trauzi Test, % TNT:		
75°C International Heat Test:		Plate Dent Test:		
% Loss in 48 Hrs		Method		
100°C Heat Test:		Condition		
% Loss, 1st 48 Hrs	0.00	Confined		
% Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs	0.4	Density, gm/cc		
Explosion in 100 Hrs		Brisance, % TNT		
Explosion in 100 mrs	None			
Flammability Index:		Detonation Rate: Confinement		None
-		Condition		Pressed
Hygroscopicity: %		Charge Diameter, in.		0.5
				•
	<u> </u>	Density, gm/cc		1.65

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones St Hole Volume Hole Depth	eel Cones	
Total No. of Fragments: For TNT	Color:	Yellow	
For Subject HE	Principal Uses:		
3 inch HE, M42A1 Projectile, Lat KC-5: Density, gm/cc Charge Wt, Ib			
Total No. of Fragments: For TNT	Method of Loading:	Pressed	
For Subject HE	Loading Density: gm/cc At 50,000 psi	1.65	
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:		
Density, gm/cc	Method	Dry	
Blast (Relative to TNT):	Hazard Class (Quantity-Distanc	e)	
Air: Peak Pressure	Compatibility Group	None	
Impulse Energy			
Air, Confined: Impulse	Cook-Off Temperature: OC Time, minutes	320 8	
Under Water: Peak Pressure	Heat of: Explosion, cal/gm	2876	
lmpulse Energy			
Underground: Peak Pressure			
impulse Energy			

Preparation:

Fifty grams (50 gm) of dry styphnic acid was added to 200 gm of anhydrous pyridine with stirring. The resulting slurry was stirred for an additional 30 minutes. The yellow product, dipyridinium styphnate, was collected by filtration and washed with approximately 100 milliliters of diethyl ether. The product was dried over phosphorus (V) oxide, at room temperature, for 5 hours. Yield of 77 gm (94%), melting point 168° to 170° C (literature melting point 173° C).

To 50 milliliters of phosphorus oxytrichloride, 29.8 gm of the dipyridinium styphnate were added in small portions, with stirring. The reaction mixture was then warmed on a steam bath for 15 minutes. This solution was quenched in 500 gm of ice water. The light yellow precipitate was separated by filtration and washed with water until the washing was neutral to litmus. Yield of 1,3-dichloro-2,4,6-trinitrobenzene 20.4 gm (98%), MP 130° to 131°C (literature MP 128°C).

A suspension of 3 gm of 1,3-dichloro-2,4,6-trinitrobenzene in 9 milliliters of absolute methanol was prepared. This slurry was cooled to 0°C, and dry ammonia was bubbled into the stirred suspension. After 20 minutes the reaction mixture was allowed to warm to room temperature, filtered by suction and washed with methanol and ether until a negative Beilstein test for chloride ion was obtained on the washings. Yield of 1,3-diamino-2,4,6-trinitrobenzene 2.5 gm (97%), MP 288° to 290°C (literature MP 285°C).

Origin:

DATNB, also called 2,4,6-trinitro-1,3-diamino-benzol or 2,4,6-trinitro-phenylenediamine-(1,3), was first obtained by Noelting and Collin in 1884 (Ber 17, 260) and also by Barr in 1888 (Ber 21, 1546) from 2,4,6-trinitroresorcin dimethylether in contact with ammoniacal alcohol for several days. J. J. Blanksma obtained the same product in 1902 by reacting either 2-chloro-2,4,6-trinitroanisole or 3-chloro-2,4,6-trinitrophenetol with ammoniacal alcohol (Rec trav chim 21, 324) and from 2,4,6-trinitroresorcin methylethyl ether with ammoniacal alcohol (Rec trav chim 27, 56 (1908)).

Meisenheimer and Patzig in 1906 prepared DATNB in the form of yellow needles, MP 280° C from 1,3,5-trinitrobenzene hydroxylamine and sodium methylate in methyl alcohol (Ber 39, 2540). The product was slightly soluble in glacial acetic acid but poorly soluble in other solvents. It decomposed into NH₃ and 2,4,6-trinitroresorcin when boiled with dilute NaOH or KOH (Beil 13,60).

Körner and Contardi prepared DATNB by the reaction of either 2,4-dichloro-1,3,5-trinitro-benzene or 2,4-dibromo-1,3,5-trinitrobenzene with ammoniacal alcohol at room temperature or better by heating to 100°C (Atti R. Accad Lincei (5), 171, 473 (1908)); (5) 18 I, 101 (1909)). A method of preparation by prolonged reaction of N-nitro-N-methyl-2,3,4,6-tetranitroaniline with a saturated ammonia solution was reported in 1913 by van Romburgh and Schepers (Akad Amsterdam Versl 22, 297).

C. F. Van Duin obtained DATNB melting at 301°C by reacting a concentrated aqueous ammonia solution with N-nitro-N,N,N-trimethyl-2,4,6-trinitrophenylenediamine-(1,3) or with N-nitro-N-methyl-N-phenyl-2,4,6-trinitrophenylenediamine-(1,3) (Rec trav chim 38, 89-100 (1919)). Later Van Duin and Van Lennep reacted concentrated aqueous ammonia with 2,4,6-trinitro-3-aminoanisole or 2,4,6-trinitro-3-aminophenetol to obtain DATNB melting at 287° to 288°C (Rec trav chim 39, 147-77 (1920)). In 1927 Lorang prepared the same compound by boiling 2,4,6-trinitro-1,3-bis (-nitroethyl ureido) benzene with water or by heating it with ammoniacal alcohol in a tube at 100°C (Rec trav chim 46, 649) (Beil E 17, E II 33).

1,3-Diamino-2,4,6-Trinitrobenzene (DATNB)

A recent report describes the preparation of DATNB in two steps from commercially available starting materials. First m-nitroaniline was nitrated with $\rm H_2SO_4-HNO_3$ acid mixture to tetranitroaniline. The crude tetranitroaniline was converted by methanolic ammonia to diaminotrinitro-benzene in a high degree of purity. A conversion of 100 parts of m-nitroaniline into 110 parts of DATNB was obtained by this method, which can easily be carried out on a commercial scale.

Composition:	Ŋ	Molecular Weight: (C6H2N4O	₅) 210
% N C 34.3 N	N N	Oxygen Balance:	<i>7</i> -
н 0.9 or*		CO ₂ %	-61 -15
N 26.7 02N NO2 02N	NO	Density: gm/cc Crystal	1.63
0 38.1	0	Melting Point: °C	157
C/H Ratio 1.056		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:		Boiling Point: °C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg		Refractive Index, no	
Picatinny Arsenal Apparatus, in. 4; (n ^D ₂₅	
Sample Wt, mg	15	n _{so}	
Friction Pendulum Test:		Vacuum Stability Test:	· · · · · · · · · · · · · · · · · · ·
Steel Shoe	Detonates	cc/40 Hrs, at	
Fiber Shoe I	Detonates	90°C	
Rifle Bullet Impact Test: Trials		100°C	7.6
%		120°C	
Explosions		135°C	
Partials		150°C	
Burned		200 Gram Bomb Sand Test:	
Unaffected		Sand gm Black powder fuse	47.5 45.6
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charg	e, gm
1 200		Mercury Fulminate	
5 195		Lead Azide	0.20
10 180		Tetryl	0.10
15		Ballistic Mortar, % TNT: (a) 97
20		Trauzi Test, % TNT:	, , , , , , ,
75°C International Heat Test:		Plate Dent Test:	
% Loss in 48 Hrs		Method	
100°C Heat Test:		Condition	
	2.10	Confined	
•	2.20	Density, gm/cc	
	Ione	Brisance, % TNT	
		Detonation Rate:	
Flammability Index:		Confinement	
Hygroscopicity: % 30°C, 90% RH C	.04	Condition	Pressed
	· · · · · ·	Charge Diameter, in.	
Volatility: 50°C, 30 months U	naffected	Density, gm/cc 0.	·
		Rate, meters/second 440	0 6600 6900

^{*}Until it is established which picramic acid (melting point 169°C) isomer is involved (Ref: J Chem Soc, 2082, August 1949).

Diazodini trophenol

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT For Subject HE	Color: Yellow needles		
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Percussion caps		
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed		
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	At 3000 psi 1.14 Storage: Method Under wate		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9		
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None		
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Solubility: Soluble in nitroglycerin, nitrobenzene, aniline, pyridine, concentrated hydrochlor acid, and in most common organic solvents. Heat of: Combustion, cal/gm 3243 Explosion, cal/gm 820 Gas Volume, cc/gm 865 Sensitivity to Electrostatic Discharge, Joules: (b) 0.012		

Solubility: gm/100 gm of the following substances: (c)

Solubility at 50°C

Solvent	<u>4</u>
Ethyl acetate	2.45
Methanol	1.25
Ethanol	2.43
Ethylenedichloride	0.79
Carbon tetrachloride	trace
Chloroform	0.11
Benzene	0.23
Toluene	0.15
Petroleum ether	Insoluble (at 20°C)
Ethyl ether	0.08 (30°C)
Carbon disulfide	trace (30°C)

Preparation: (Chemistry of Powder and Explosives, Davis)

Ten gm of picramic acid is suspended in 120 cc of 5% hydrochloric acid, and under efficient agitation at about 0°C. 3.6 gm sodium nitrite in 10 cc water is dumped into the suspension. Stirring is continued for 20 minutes, the product filtered off and washed thoroughly with ice water. The dark brown product, if dissolved in acetone and precipitated in water, turns brilliant yellow.

Origin:

Discovered by Griess in 1858 (Annalen 106, 123; 113, 205 (1860) and studied extensively by L. V. Clark (Ind Eng Chem 25, 663 (1933). Developed for commercial use in 1928. This compound was patented in the United States by Professor William M. Dane.

Destruction by Chemical Decomposition:

Diazodinitrophenol is decomposed by adding the water-wet material to 100 times its weight of 10% sodium hydroxide. Nitrogen gas is evolved.

- (a) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.
 - (b) F. W. Brown, D. H. Kusler and F. C. Gibson, Sensitivity of Explosives to Initiation by

¹⁸See footnote 1, page 10.

Diazodinitrophenol

Electrostatic Discharges, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

(c) L. V. Clark, "Diazodinitrophenol, A Detonating Explosive," Ind Eng Chem 25, 663 (1933).

Seidell, Solubilities of Inorganic and Organic Compounds, Van Nostrand and Co., N. Y.

(d) Also see the following Picatinny Arsenal Technical Reports on Diazodinitrophenol:

<u>o</u>	2	14	<u>5</u>	<u>7</u>	8	<u>9</u>
150 610 2120	1352	34 214	355	827	318 1838	2179

Composition:	Molecular Weight: (C4H8N2O7)	196
C 24.5 $H_2^{C} \longrightarrow ONO_2$ $H_2^{C} \longrightarrow ONO_2$	Oxygen Balance; CO ₂ % CO %	-41 - 8
N 14.3 H ₂ C 0	Density: gm/cc Liquid	1.38
0 57.1 H ₂ C — ONO ₂	Melting Point: °C	2
C/H Ratio 0.143	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 100+	Boiling Point: °C Decomposes	160
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 9 Sample Wt, mg	Refractive Index, n ₂₀ n ₂₅ n ₃₀	1.4498
Friction Pendulum Test: Steel Shoe Explodes Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C	0.3cc/20 hr/gm
Rifle Bullet Impact Test: Trials % Explosions Partials	100°C 120°C 135°C 150°C	0. Sec/ 20 Hr/gm
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm	42.2
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 237 10 15	Sensitivity to Initiation: Minimum Detonating Charge, go Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:	m 90
20	Trauzi Test, % TNT:	77
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	11
100°C Heat Test: % Loss, 1st 48 Hrs 4.0 % Loss, 2nd 48 Hrs 3.0 Explosion in 100 Hrs None	Condition Confined Density, gm/cc Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	· · · · · · · · · · · · · · · · · · ·
Hygroscopicity: %	Condition Charge Diameter, in.	z 60
Volatility: 60°C, mg/cm ² /hr 193	Density, gm/cc Rate, meters/second	1.38 6760

Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm Density, gm/cc		Decomposition Equation: Oxygen, atoms/sec (Z/sec) Heat, kilocalorie/mole (ΔΗ, kcal/mol) Temperature Range, °C Phase
Heat of: Combustion, cal/gm	2792	Armor Plate Impact Test:
Explosion, cal/gm Gas Volume, cc/gm	841 796	60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec
Formation, cal/gm Fusion, cal/gm	2020	Aluminum Fineness
		500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C		Plate Thickness, inches
		1
		11/4
		11/2
Burning Rate:		134
cm/sec		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C		500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
Hardness, Mohs' Scale:		Trials
		Unaffected
Young's Modulus:		Low Order
E', dynes/cm²		High Order
E, lb/inch²		1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc		Height, ft
Compressive Strength: Ib/inch²		Trials
Complessive ottengen. 10/ men		Unaffected
		Low Order
Vapor Pressure: °C mm Mercury		High Order
20 0.0036 60 0.130		Trigit Order

Fragmentation Test:	Shaped Charge Effectiveness, TNT == 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Colorless
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Propellant compositions
Total No. of Fragments: For TNT For Subject HE	Method of Loading:
	Loading Density: gm/cc
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:
Density, gm/cc	Method Liquid
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation
Air, Confined: Impulse Under Water: Peak Pressure Impulse	Preparation: DEGN can be prepared with approximately 85% yield by adding diethyleneglycol to mixed acid (50% HNO ₃ , 45% H ₂ SO ₄ , and 5% H ₂ O). The temperature is kept at 30°C or lower. The separated DEGN is purified by washing with successive portions of water, dilute sodium carbonate solution and water until neutral.
Energy Underground: Peak Pressure Impulse Energy	Hydrolysis, % Acid: 10 days at 22°C
Viscosity, centipoises: Temp, 20°C 8.1	Solubility, gm/100 gm, at 25°C, in: Ether 00 Alcohol 00 2:1 Ether:Alcohol 00 Acetone 00

Origin:

First prepared and studied by Wm. H. Rinkenbach in 1927 (Ind Eng Chem 19, 925 (1927) and later by Rinkenbach and H. A. Aaronson (Ind Eng Chem 23, 160 (1931)) both of Picatinny Arsenal. Used in propellant compositions by the Germans during World War II.

Destruction by Chemical Decomposition:

DEGN is decomposed by adding it slowly to 10 times its weight of 18% sodium sulfide (Na₂S·9H₂O). Heat is liberated by this reaction but this is not hazardous if stirring is maintained during the addition of DEGN and continued until solution is complete.

References: 19

See the following Picatinny Arsenal Technical Reports on DEGN:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>1</u> +	<u>6</u>	7	<u>9</u>
50 180 620 1490 1990	231 551 1391 1421	72 602 1282 1392	673 1443	494 1624	346 1516 1616 1786	487 1427 1487 1817	279 579 1439

¹⁹See footnote 1, page 10.

Composition:	Molecular Weight: (C ₁₀ H ₁₂ N ₄ O ₁₂)	380
c 31.6	Oxygen Balance:	
CHCOSCHSC(NOS)SCH3	CO ₂ %	-59 -17
н 3.2	CO 70	- <u>+</u> (
CHCO ₂ CH ₂ C(NO ₂) ₂ CH ₃ H 3.2	Density: gm/cc Crystal	1.60
0 50.5	Melting Point: °C Form I Form II	89 86
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 100+	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 18	Refractive Index, n ^D _{zo}	
Picatinny Arsenal Apparatus, in. 18 Sample Wt, mg 18	n ₂₅	
	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Unaffected	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
Rifle Bullet Impact Test: Trials	100°C	0.66
%	120°C	
Explosions	135°C	0.91
Partials	150°C	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1 4 Smokes 250	Mercury Fulminate	
4 Smokes 250 10	Lead Azide	
15	Tetryl	
20	Ballistic Mortar, % TNT:	
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:	
75 2555 H. 10 1115	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
P6 100-11	— Detonation Rate:	
Flammability Index:	Confinement	
Hygnocenicity: 0/	Condition	
Hygroscopicity: %	Charge Diameter, in.	
Volatility:	Density, gm/cc	1.49
	Rate, meters/second	6050

Bis(2,2-Dinitropropyl) Fumarate (DNPF)

Fragmentation Test:	Shaped Charge Effectiveness, T	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Hole Volume Hole Depth	Steel Cones		
Total No. of Fragments: For TNT	Color:	White		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments:	Principal Uses:			
For TNT For Subject HE	Method of Loading: Loading Density: gm/cc	1.50		
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc Blast (Relative to TNT):	Storage: Method Hazard Class (Quantity-Dista	Dry nce)		
Peak Pressure Impulse Energy	Exudation	None		
Air, Confined: Impulse Under Water: Peak Pressure	Heat of: Combustion, cal/gm Detonation, cal/gm Viscosity, poises:	3070 (calculated) 767 (calculated)		
Impulse Energy	Temp, 98.9°C 106.5°C	0.586 0.435		
Underground: Peak Pressure Impulse Energy	Liquid Density, gm/cc: Temp, 98.9°C 106.5°C Origin: Synthesized in 1952 by U.S. Naval Ordnance Labor Maryland.			

(a, b)

Dinitropropanol was mixed with chloroform (1320 milliliters) and the mixture heated to boiling. The distillate was collected in a water separator. At first the distillate was cloudy and this was dried with calcium chloride before being returned to the system. When no more water was collected in the water separator, the mixture was cooled to room temperature and the separator removed. Fumaryl chloride was introduced, followed by the aluminum chloride which was added in four equal portions. Air was blown into the flask for a minute to effect mixing, and the reaction sustained itself without the addition of heat for one hour. Steam was gradually introduced so that the reflux temperature was reached 2-1/2 hours after the beginning of the reaction. After 3 hours of reflux, the hot liquid was poured into a bucket. As cooling took place the slurry was vigorously agitated until it finally set up at room temperature. This material was broken up and mixed with dilute ice cold HCl. The solid product was collected on a sintered funnel, washed with water and with hexane. The crude material was recrystallized from methanol to give a product melting at 86°C (uncorrected), but after storage for several days the melting point was 89°C.

- (a) M. E. Hill, Preparation and Properties of 2,2-Dinitropropanol Esters, NAVORD Report No. 2497, 3 July 1952.
- (b) D. L. Kouba and H. D. McNeil, Jr., Hercules Report on High Explosives, Navy Contract Nord-11280, Task A, 26 May 1954.

²⁰See footnote 1, page 10.

Composition:	Molecular Weight: (C ₁₀ H ₁ ,N ₁ O ₁₂)	382
% C 31.4	Oxygen Balance:	(2
н 3.7	CO ₂ %	-63 -21
CH ₂ CO ₂ CH ₂ C(NO ₂) ₂ CH ₃ N 14.7 CH ₂ CO ₂ CH ₂ C(NO ₂) ₂ CH ₃	Density: gm/cc Crystal	1.51
0 50.2 CH ₂ CO ₂ CH ₂ C(NO ₂) ₂ CH ₂	Melting Point: °C	86
C/H Ratio 0.250	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	Refractive Index, no	
Picatinny Arsenal Apparatus, in.	n ₂₅	
Sample Wt, mg	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	0.10
Rifle Bullet Impact Test: Trials	100°C	0.10
%	120°C 135°C	
Explosions	150°C	
Partials	130 C	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1	Mercury Fulminate	
5 >400	Lead Azide	
10	Tetryl	
15 20	Ballistic Mortar, % TNT:	
	Trauxi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:	
70 LOSS III 40 FIIS	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
	Detonation Rate:	
Flammability Index:	Confinement	
Hygroscopicity: %	Condition	
Trygroscopicity. //	Charge Diameter, in.	
Volatility:	Density, gm/cc	
	Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cor Hole Volume Hole Depth	nes	
Total No. of Fragments: For TNT	Color:	White	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses:		
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Cast	
ror subject no	Loading Density: gm/cc		
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:		
Density, gm/cc	Method	Dry	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)		
Air: Peak Pressure	Compatibility Group		
Impulse Energy	Exudation	None	
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Origin: Synthesized in 1953 by M. E. U.S. Naval Ordnance Laboratory, Maryland.	Hill of the White Oak,	

Bis(2,2-Dinitropropyl) Succinate (DNPS)

Preparation:

(a)

A methylene chloride solution of dinitropropanol (0.02 mol in 15 milliliters) was mixed with 0.01 mol of succinyl chloride. To this solution 0.003 mol of crushed anhydrous aluminum chloride was added. It was necessary to cool the reaction vessel due to the vigorousness of the reaction. After 25 minutes at room temperature the reaction solution was refluxed 1-1/2 hours. Fine needle-like crystals formed upon cooling and adding hexane. The crystals were slurried in dilute hydrochloric acid and on recrystallization from methanol gave a 93% yield of DNPS (melting point 85° to 85.6° c).

References: 21

(a) M. E. Hill, Synthesis of New High Explosives, NAVORD Report No. 2965, 1 April 1953.

²¹See footnote 1, page 10.

Composition:	Molecular Weight: (C7H9N5012) 355
% c 23.6	Oxygen Balance:
	CO ₂ % -29 +2.3
2 2 2 2 3	Density: gm/cc Crystal 1.68
N 19.7 C 0	Form T 11 Form IT Q5
o 54.2 CH ₂ CH ₂ C(NO ₃)	Melting Point: °C Form III 59
C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C
Sample Wt 20 mg	Refractive Index, n ^D ₂₀
Picatinny Arsenal Apparatus, in. Sample Wt, mg	n ^D ₂₅
	n ₃₀
Friction Pendulum Jest:	Vacuum Stability Test:
Steel Shoe	cc/40 Hrs, at
Fiber Shoe	90°C
Rifle Bullet Impact Test: Trials	100°C 0.5
%	120°C
Explosions	135°C 150°C
Partials	130 C
Burned	200 Gram Bomb Sand Test:
Unaffected	Sand, gm
Explosion Temperature: °C	Sensitivity to Initiation:
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm
1 5 300	Mercury Fulminate
10	Lead Azide
15	Tetryl
20	Ballistic Mortar, % TNT:
	Trouzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:
	Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs	Confined
% Loss, 2nd 48 Hrs	Density, gm/cc
Explosion in 100 Hrs	Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: %	Condition
пудгозсорісту: %	Charge Diameter, in.
Volatility:	Density, gm/cc 1.67
	Rate, meters/second 7600

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: White
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses:
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Cast
Fragment Velocity: ft/sec	Loading Density: gm/cc 1.67
At 9 ft At 25½ ft	Storage:
Density, gm/cc	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None
Air, Confined: Impulse	Heat of: (c) Solvent Transition, cal/gm $CCl_{J_{\downarrow}}$ DMF $I \longrightarrow III$ 6.2 4.8
Under Water: Peak Pressure	II → I -16.6 -22.0
Impulse Energy	Heat of Solution, 30°C: ΔH Solution, cal/gm Material CCl _{J,} DMF
Underground: Peak Pressure Impulse Energy	Form III 29.5 8.1 Form I 35.6 12.8 Form II 19.1 -9.1
	Origin: Synthesized in 1952 by M. E. Hill of the U.S. Naval Ordnance Laboratory, White Oak, Maryland.

Preparation: (a, b) CH3C(NO2)2OH + (NO2)3CCH2CH2COCl AlCl3 trinitrobutyryl aluminum chloride chloride

dinitropropyl trinitrobutyrate

 $CH_3C(NO_2)_2CH_2COOCH_2C(NO_2)_3 + HCl$

Dinitropropanol, trinitrobutyryl chloride and aluminum chloride were slowly mixed in carbon tetrachloride at 60° C. This mixture was refluxed at 75° C for two hours. After the reaction was completed, the mixture was cooled and the crystalline product separated and purified. Water in the dinitropropanol was removed by azeotropic distillation before the acid chloride was added. The purified product had a melting point of 95° to 96° C.

Crystallographic Data: (c)

Three distinct crystallographic modifications of DNPTB have been observed. These polymorphs have been characterized by means of X-ray diffraction and microscopic observation. Form I crystallizes from solution in carbon tetrachloride, chloroform, acetone, chloroform-hexane, acetone-water, or methanol-water at room temperature. Prolonged standing of Form I at room temperature under the mother liquor promotes a transition to Form II. Upon solidification of molten DNPTB, Form II is always observed.

	Elliegt 1000 of 110101	CIMACION OF TOTAL IT	- 00 TOTM I
Temperature,	Average Rate, sq inch/hour	Standard Deviation	Average Rate, mm/hour
15	0.347	0.036	0.012
20	0.435	0.025	0.128
25	0.452	0.048	0.133
30	0.475	0.049 0.140	
35	0.253	0.037 0.075	

Linear Rate of Transformation of Form II to Form I (c)

Both Forms I and III gave very erratic sensitivity values. The high temperature polymorph, Form II of DNPTB, gave consistent sensitivity values.

- (a) M. E. Hill, <u>Preparation and Properties of 2,2-Dinitropropanol Esters</u>, NAVORD Report No. 2497, 3 July 1952.
- (b) W. B. Hewson, Hercules Report on High Explosives, Navy Contract NOrd-11280, Task A, 18 October 1954.
- (c) J. R. Holden and J. Wenograd, <u>Physical Properties of an Experimental Castable Explosive 2,2-Dinitropropyl 2,4,4-Trinitrobutyrate DNPTB</u>, NAVORD Report No. 4427, 11 December 1956.

²²See footnote 1, page 10.

2,4-Dinitrotoluene (DNT)

Composition:	Molecular Weight: (C7H6N2O4)	1.82
c 46.3	Oxygen Balance:	-114
н 3.3	CO ₂ % CO %	- 53
N 15.4	Density: gm/cc	1.521
<u> </u>	Melting Point: °C	71
0 35.0 NO ₂ C/H Ratio 0.579	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C Decomposes	300
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, n ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test:		
Steel Shoe Unaffected Fiber Shoe Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials	─ 100°C 120°C	0.04
Explosions 0 Partials 0	135°C 150°C	
Burned 0	200 Gram Bomb Sand Test:	
Unaffected 100	Sand, gm	19.3
Explosion Temperature: °C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate	
5 Decomposes 310	Lead Azide	0.20
10	Tetryl	0.25
15	Ballistic Mortar, % TNT: (a)	71
20	Trauzi Test, % TNT: (b)	64
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: % 25°C, 100% RH 0.00	Condition Charge Diameter, in.	
Volatility:	Density, gm/cc Rate, meters/second	

ragmentation Test:	Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Ste Hole Volume Hole Depth	el Cones		
Total No. of Fragments: For TNT	Color:	Yellow		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of propellant powder, dynamites and plastic explosives			
Total No. of Fragments: For TNT	Method of Loading: Pressed, e: composition			
For Subject HE	Loading Density: gm/cc	Variable		
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Method	Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance	Class 12		
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group D		
Air, Confined: Impulse	65.5°C KI Test: Minutes	60+		
Under Water: Peak Pressure Impulse Energy	Heat of: Combustion, cal/gm (b) Thermal Conductivity:) 1545		
Underground: Peak Pressure Impulse Energy	cal/sec/cm/°C Density 1.322 gm/cc	6.28 x 10 ⁻¹ 4		

2,4-Dinitrotoluene (DNT)

Preparation:

See TNT.

Solubility: gm/100 gm of the following substances:

30% Ethyl Alcohol		<u>Ni t</u>	Nitroglycerin			
°C	<u> </u>	<u>°c</u>	<u>%</u>	<u>°c</u>	<u>%</u>	
25 35 45 55 60	0.16 0.29 0.49 0.77 1.03	20	30	22 50 100	0.027 0.037 0.254	

Solubility at 15°C, in:

Solvent	<u>%</u>	Solvent	<u>%</u>
CHC1 ₃	65.076	C ₂ H ₅ OH (absolute)	3.039
CC1 ₁₄	2.431	Ether (absolute)	9.422
C ₆ H ₆	60.644	Acetone	81.901
Toluo1	45.470	Ethyl acetate	57.929
CH ₃ OH	5.014	CS ₂	2.306
C ₂ H ₅ OH (96%)	1.916	Pyridine	76.810

Origin:

Occurs as 75% of the products obtained on the nitration of toluene, the remaining 25% being mainly 2,6-DNT and other isomers of DNT. Also occurs as an impurity in crude TNT obtained by standard manufacturing process. Used in explosive mixtures at least since 1931.

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
- (b) A. H. Blatt, Compilation of Data on Organic Explosives, OSRD Report No. 2014, 29 February 1944.
 - (c) Report AC-2861.
 - (d) Also see the following Picatinny Arsenal Technical Reports on DNT:

<u>o</u>	<u>1</u>	2	<u>3</u>	14	<u>5</u>	<u>6</u>	7	<u>8</u>	<u>9</u>
810 1830	1351 1501 1651 1781 1821 2031 2221	72 372 922 1142 1672 1692	43 233 343 673 1023 1663 1743 2013	394 804 1044 1084 1094 1164 1324 1464 1524 1674 1754 2094	1615 2125	186 1556 1816 1896	97 817 837	768 938 1538	69 149 249 279 779 1749

²³See footnote 1, page 10.

Compesition:	Molecular Weight: (C ₁₀ H ₁₆ N ₆ O ₁₉)	554
% C 21.7 H 2.9 N 15.2 ONO ONO	Oxygen Balance: CO ₂ % CO %	-26 + 3
N 15.2 ONO ₂ ONO ₂ ONO ₂ I 2	Density: gm/cc Crystal	1.63
on ₂ och ₂ c-ch ₂ -o-ch ₂ -cch ₂ ono ₂	Melting Point: °C	73.7
C/H Ratio 0.154 ONO ONO ONO	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt;	Boiling Point: °C	
Bureau of Mines Apparatus, cm 14 Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 4 Sample Wt, mg 10	Refractive Index, n_{20}^D n_{25}^D n_{30}^D	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Explodes Fiber Shoe Unaffected	cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials	100°C 120°C	3.7 11+
% Explosions Partials	135°C 150°C	
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm	57.4
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 300 5 Explodes 255 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	
20	Ballistic Mortar, % TNT: (a)	142
the state of the s	Trauzi Test, % TNT: (b)	128
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 0.11	Confined	
% Loss, 2nd 48 Hrs 0.10	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs None		
Flemmability Index:	Detonation Rate: (c) Confinement	Copper tube
Hygroscopicity: % 0,03	Condition Charge Diameter, in.	Pressed 0.39
Voletility:	Density, gm/cc Rate, meters/second	1.59 7410

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:				
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth				
Total No. of Fragments: For TNT	Color: White				
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of priming compositions				
Total No. of Fragments: For TNT	Method of Loading: Pressed				
For Subject HE	Loading Density: gm/cc				
Fragment Velocity: ft/sec At 9 ft At 25½ ft	At 3000 to 4000 psi 1.59 Storage:				
Density, gm/cc	Method Dry				
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9				
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation				
Air, Confined: Impulse	Preparation: (Chemistry of Powder and Explosives, Davis)				
Under Water: Peak Pressure Impulse Energy	2(HO-CH ₂) ₄ C Dehydration (HO-CH ₂) ₃ C-O-C(CH ₂ -OH) ₃ (O ₂ NO-CH ₂) ₃ C-O-C(CH ₂ -ONO ₂) ₃ Dipentaerythritol Hexanitrate is procured in the pure state (melting point 72°C) by				
Underground: Peak Pressure Impulse Energy	fractional crystallization of crude PETN from moist acetone. Origin: Formed as an impurity in the preparation of PETN. Properties first described by W. Frederick and W. Brun in 1930 (Berichte 63, 2861 (1930); Z. ges Schiess-Sprengstoffw 27, 73-6, 125-7, 156-8 (1932)) Heat of:				
	Combustion, cal/gm 2260				

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) A. Stettbacher, Die Schiess und Sprengstoffe, Leipsiz, p. 363.
- (c) T. L. Davis, The Chemistry of Powder and Explosives, John Wiley and Sons, Inc., New York (1943) pp. 218-283.
- (d) S. Livingston, Characteristics of Explosives HMX and DPEHN, PATR No. 1561, 6 September 1945.

²⁴See footnote 1, page 10.

Composition: 99.5/0.5 RDX/1-MA dye* 17.5	Molecular Weight:
%	miniman in signi.
TWT 67.8	Oxygen Balance:
Tripentaerythritol 8.6 68/32 Vistac No 1/DOS binders** 4.1	CO ₂ %
Cellulose acetate, LH-1 2.0	CO 16
*RDX, Class E; 1-MA is 96% pure 1-methylamino-anthraquinone.	Density: gm/cc Loading 0.9
**Vistac No 1 is low MW polybutene; DOS is	Melting Point: °C
dioctylsebacate. C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C
Bureau of Mines Apparatus, cm Sample Wt 20 mg	Refractive Index, No.
Picatinny Arsenal Apparatus, in. 22	N ₂₅
Sample Wt, mg 19	n ₃₀
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Unaffected	cc/40 Hrs, at
Fiber Shoe Unaffected	90°C
Rifle Bullet Impact Test: Trials	100°C
%	120°C 0.90
Explosions	135°C
Partials	150°C
Burned	200 Gram Bomb Sand Test:
Unaffected	Sand, gm 40.5
Explosion Temperature: °C	Sensitivity to Initiation:
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm
1	Mercury Fulminate
5 Ignites 480	Lead Azide 0.20
10	Tetryl 0.15
15	Ballistic Mortar, % TNT:
20	72
TEOC Independent Lines Took	Trauzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:
	Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs	Confined
% Loss, 2nd 48 Hrs	Density, gm/cc
Explosion in 100 Hrs	Brisance, % TNT
	Detonation Rate:
Flammability Index:	Confinement None
	Condition Hand tamped
Hygroscopicity: % 0.31	Charge Diameter, in. 1.25
71°C, 95% RH, 30 days Satisfactory	Density, gm/cc 0.9
Volatility:	Rate, meters/second 4397; or 14400 ft/sec

frogmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:				
90 mm HE, M71 Projectile, Lat WC-91:	Glass Cones Steel Cones				
Density, gm/cc	Hole Volume				
Charge Wt, Ib	Hole Depth				
Total No. of Fragments:	Color: Pink				
For TNT	11111				
For Subject HE	Principal Uses: Excavation, demolition,				
3 inch HE, M42A1 Projectile, Lot KC-5:	and cratering				
Density, gm/cc					
Charge Wt, Ib					
Total No. of Fragments: For TNT	Method of Loading: Hall Packer machine loaded				
For Subject HE	Loading Density: gm/cc 0.9				
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Tamped cartridge 1-1/2" diameter, 8" long Storage:				
Density, gm/cc	2.0.030				
School, gail, co	Method Dry				
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9				
Air:	Compatibility Group Group A				
Peak Pressure	Exudation				
Impulse -	Exagation				
Energy	Canadidation to Tuitiation				
Air, Confined: Impulse	Stick dry, No. 6 Electric cap Stick dry, Corps of Engineers Stick wet, Corps of Engineers Positive Positive				
Under Water: Peak Pressure	Air Gap Propagation: Max distance will, inch 2-1/2				
Impulse	min distance will not, inch 3				
Energy	Stick Water Immersion: Weight gain, % 9-16				
Undergraund: Peak Pressure	Heat of: Explosion, cal/gm 625 Gas Volume, cc/gm 611				
Impulse	Cold Storage: Plastic to -65°F				
Energy					
	Low Temperature Usage: -65°F, 1 day, M2 cap				
	crimper Satisfactory				

To date this dynamite has been prepared on a laboratory scale, the details of which are classified. It has been shown, however, to be machine loadable on a Hall packing machine.

Origin:

Nobel invented the original dynamite in 1866 and gave the name dynamite to mixtures of nitroglycerin and kieselguhr. The strength of a dynamite was indicated by the percentage of NG in the mixture. Later oxidants and combustibles were substituted for the kieselguhr, and ammonium nitrate and/or nitrostarch replaced the NG, bringing into existence new types of dynamites. World War II military operations required special demolition and cratering explosives free from the objectionable characteristics of NG and many "dynamite substitutes" were developed for specific applications. The subject low velocity dynamite was developed in 1956 by Picatinny Arsenal (Ref a).

References: 25

(a) H. W. Voigt, Development of Low-Velocity Military Explosives Equivalent to Commercial Dynamites, PA Technical Report 2374, March 1957.

(b) Also see the following Picatinny Arsenal Technical Reports on Dynamites:

<u>o</u>	<u>1</u>	<u>2</u>	4	<u>5</u>	<u>6</u>	7	8	2
1260 1360 1720 1760	1381 1611	782 15 3 2	864 1464	1285	1416 1436 1506 2056	507 957	848 1828	1819

²⁵See footnote 1, page 10.

Composition:	Molecular Weight:
% RDX 75	Oxygen Balance:
INT i5	CO ₂ % -51
Starch 5 SAE No. 10 Oil 4 Vistanex oil gel* 1	Density: gm/cc Loading 1.1
*80/15/5, SAE No. 10 weight oil/Vistanex B-	Melting Point: °C
120XC/Navy D2 wax. C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt:	Nitroglycerin Equivalent, % 60
Bureau of Mines Apparatus, cm >100 Sample Wt 20 mg 18	Refractive Index, NZO
Picatinny Arsenal Apparatus, in. 25 Sample Wt, mg	n ₂₅
	n ₃₀
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Crackles	cc/40 Hrs, at 90°C
Fiber Shoe Unaffected	100°C 0.80
Rifle Bullet Impact Test: Trials	120°C 0.94
%	135°C
Explosions 0	150°C
Partials 0 Burned 10	200 C D 1 C 17
Burned 10 Unoffected 90	200 Gram Bomb Sand Test: Sand, gm 52.6
Explosion Temperature: °C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonating Charge, gm
Seconds, 0.1 (no cap used)	Mercury Fulminate
5	Lead Azide 0.20
10	Tetryl 0.10
15	
20	Ballistic Mortar, % TNT: 122
	Trauzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:
	Method Condition
100°C Heat Test:	Confined
% Loss, 1st 48 Hrs 0.62	Density, gm/cc
% Loss, 2nd 48 Hrs 0.12	Brisance, % TNT
Explosion in 100 Hrs None	
Flammability Index:	— Detonation Rate: Confinement None
	— Condition Machine tamped
Hygroscopicity: %	Charge Diameter, in. 1.50
71°C, 95% RH, 30 days Satisfactory	Density, gm/cc 1.1
Volatility:	Rate, meters/second 6000-6600; or 20,000 ft/sec

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color: Buff		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Excavation, demolition, and cratering		
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Hall Packer machine loaded		
Fragment Velocity: ft/sec At 9 ft	Loading Density: gm/cc 1.1 Cartridge 1-1/2" diameter, 8" long		
At 25½ ft Density, gm/cc	Storage: Method Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9		
Air: Peak Pressure Impulse Energy	Compatibility Group Group A Exudation		
Air, Confined: Impulse	Sensitivity to Initiation: Stick dry, No. 6 Electric cap Positive Stick dry, Corps of Engineers Positive Stick wet, Corps of Engineers > 50% Positive		
Under Water: Peak Pressure Impulse Energy	Air Gap Propagation: Max distance will, inch l Min distance will not, inch 2-1/2 Quarry Performance: 4 tons rock/ton		
Underground: Peak Pressure Impulse Energy	explosive Stick Water Immersion: Weight gain, % 25-27 Heat of: Explosion, cal/gm 935 Gas Volume, cc/gm 945 Cold Storage: Plastic to -70°F Low Temperature Usage: -65°F, 1 day, M2 cap crimper Satisfactory		

Manufactured on standard dynamite line and packaged on a Hall packing machine. Details of handling materials and techniques of manufacture are classified.

Origin:

Military forces frequently require excavation, demolition, and cratering operations for which standard high explosives are unsuitable. Commercial blasting explosives, except black powder, are called dynamites although they may contain no nitroglycerin. The subject dynamite substitute was developed in 1952 by the Hercules Powder Company (Ref a).

- (a) W. R. Baldwin, Jr., Blasting Explosives (Dynamite Substitute), Hercules Powder Company Formal Progress Report, RI 2086, 15 August 1952, Army Contract DA-36-034-ORD-110.
- (b) H. W. Voigt, <u>Development of Low-Velocity Military Explosives Equivalent to Commercial Dynamites</u>, PA Technical Report No. 2374, March 1957.

²⁶See footnote 1, page 10.

AMCP 706-177

EC Blank Fire

Composition:	Molecular Weight: Approximately 503
Nitrocellulose, 13.25% N 80 Barium Nitrate 8 Potassium Nitrate 8 Starch 3	Oxygen Balance: CO. % +5 CO % -25
Diphenylamine 0.75 Aurine 0.25	Density: gm/cc
	Melting Point: °C
C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 19	Boiling Point: °C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, n_{20}^D n_{30}^D
Friction Pendulum Test: Steel Shoe Snaps Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C
Rifle Bullet Impact Test: Trials % Explosions Partials	100°C 120°C 135°C 150°C
Burned	200 Gram Bomb Sand Test:
Unaffected	Sand, gm 46.8
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Decomposes 200 10	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl
15 20	Ballistic Mortar, % TNT:
	Trauzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs 1.8	Plate Dent Test: Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs 2.0	Confined
% Loss, 2nd 48 Hrs 0.2	Density, gm/cc
Explosion in 100 Hrs None	Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: % 30°C, 90% RH 6.2	Condition Charge Diameter, in.
Volatility:	Density, gm/cc Rate, meters/second

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel C Hole Volume Hole Depth	ones		
Total No. of Fragments: For TNT	Color:			
For Subject HE	Principal Uses: Grenades; caliber	.30 blank		
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib				
Total No. of Fragments: For TNT	Method of Loading:	Loose		
For Subject HE	Loading Density: gm/cc	0.40		
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Method	Wet		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class O		
Air: Peak Pressure Impulse Energy Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy References: 27(a) See the following Picatinny Arsenal Technical Reports on EC Blank Fire: 891, 901, 372, 512, 822, 233, 1373, 854, 65, 667, 817, 69, 579 and 1399.	Preparation: EC Blank Fire is a partially colloided propellant manufactured by a process using either acetone and ethanol or a mixture of butyl acetate and benzene to gelatinize only a part of the nitrocellulose. The process is controlled so that the product passes through a No. 12 sieve and is retained on a No. 50 sieve. Origin: Invented in 1882 as bulk sporting (smokeless) powder by W. F. Reid and D. Johnson at the Explosive Company (whence the name "EC") in England (British Patent 619). 120°C Heat Test: Salmon Pink Red Fumes 300+ Explodes 300+			

²⁷See footnote 1, page 10.

Edna tol, 55/45

Composition:	Molecular Weight:	178
Haleite (Ethylene Dinitramine) 55	Oxygen Balance:	
INT 45	CO ₂ %	-51 -17
11/1	Density: gm/cc Cast	1.62
	Melting Point: °C Eutectic	80
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C	
Bureau of Mines Apparatus, cm 95 Sample Wt 20 mg	Refractive Index, n20	
Picatinny Arse nal Apparatus, in.	n ₂ ;	
Sample Wt, mg 20	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Unaffected	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
Rifle Bullet Impact Test: Trials	100°C	1.0
%	120°C	11+
Explosions 0	135°C	
Partials 0	150°C	
Burned 7	200 Grum Borrib Said Test:	
Unaffected 93	Sand, gm	49.4
Explosion Temperature: * °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 435	Minimum Detonating Charge, gr	n
1 248 5 Decomposes 190	Mercury Fulminate	0.22*
10 183	Lead Azide	0.26*
15 176	*Alternative initiating char	ges.
20 168	Sallistic Morter, % TNT: (a)	119
*Composition Haleite/TNT, 60/40.	Trauzi Test, % TNT: (b)	120
75°C International Heat Test:		
% Loss in 48 Hrs	Plate Dent Test: Method	52/48
	- Method Condition	B
100°C Heat Test:	Confined	Cast
% Loss, 1st 48 Hrs 0.2	Density, gm/cc	No 1.62
% Loss, 2nd 48 Hrs 0.1	Brisance, % TNT	112
Explosion in 100 Hrs None		
Flommability Index: Will not continue to burn	Detonation Rate:	DT
riomingoliny vadex: will not continue to burn	Confinement	None
Hygroscopicity: % None	Condition	Cast
, , , , , , , , , , , , , , , , , , , ,	Charge Diameter, in.	1.0
Volatility:	Density, gm/cc	1.63
<u> </u>	Rate, meters/second	7340

Fragmentation Test:			Shaped Charge Effectives	ioss, TNT = 10	10: 50/50
90 mm HE, M71 Projectile, I	Lot WC-91:		Glass Co	nes Steel C	ones
Density, gm/cc	1.56	1.62	Hole Volume 126	123	
Charge Wt, Ib	2.065	2.092	Hole Depth 117	121	
Total No. of Fragments:			Color:		Yellow
For TNT	703	703	Color:		10110#
For Subject HE	842	902	Principal Uses: Proje	ectiles, bom	bs; special
3 inch HE, M42A1 Projectile,	Lot KC-5:		ammur	nition compo	nents
Density, gm/cc		1.60			
Charge Wt, Ib		0.845			
Total No. of Fragments:			Method of Loading:		Cast
For TNT		514	Method of modeling.		Casc
For Subject HE		5 3 6	la Parkania		
_			Loading Density: gm/cc		1.65
Fragment Velocity: ft/sec At 9 ft		2730		,,,	
At 251/2 ft		2430	Storage:		
Density, gm/cc		1.62			
			Method		Dry
Blast (Relative to TNT);		(d, e)	Hazard Class (Quantity	y-Distance)	Class 9
Air:			Compatibility Group		Group I
Peak Pressure		10 8			
Impulse		110	Exudation	Does not	exude at 65°C
Energy		10 8			
Air, Confined:			Eutectic Temperature		79.8
Impulse			gm Haleite/100 gm 79.8°C	TNT	0.48
			95.0°C		1.12
Under Water: Peak Pressure			Compatibility with N	Metals.	
Impulse		-	Dry: Brass, alumi		ess cteel
Energy		113	mild steel, mild steeproof black paint, a	eel coated w	ith acid-
Underground:			with cadmium or nick		
Peak Pressure			per, magnesium, magr mild steel plated wi		
Impulse			slightly affected.		
Energy			Wet: Copper, bras	ss. magnesiu	m. maonesium.
Booster Sensitivity Test	t:	(d)	aluminum alloy, mild	d steel, mil	d steel coated
Condition	•	Cast	With acid-proof blace		
Tetryl, gm		100	plated with copper, are heavily attacked		
Wax, in. for 50% Detor Density, gm/cc	ation	1.28 1.62	affected and stainle	ess steel is	unaffected.
2		1.02			

Wet Haleite is added slowly to molton TNT heated at about 100° C in a steam jacketed melting kettle equipped with a stirrer. Heating and stirring are continued until all moisture is evaporated. Loading is done by pouring the mixture cooled to 85° C.

Origin:

Mixtures of Haleite (EDNA) and TNT, designated Ednatol, were developed at Picatinny Arsenal just prior to World War II.

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
- (b) Philip C. Keenan and Dorothy C. Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
- (e) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.
- (f) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, <u>Sec III</u>, <u>Variation of Cavity Effect</u> with Composition, NDRC Contract W-672-ORD-5723.
- (g) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, 18 September 1943, NDRC Contract W-672-ORD-5723.
 - (h) Also see the following Picatinny Arsenal Technical Reports on Ednatol:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	2
1290 1400 1420 1530	1291 1451 1651	1162 1372 1482	1193 1363 1493	1294 1434	1325 1395 1885	1796	1457 1477 1737 1797	1198 1388 1838	1 2 79 1469

²⁸See footnote 1, page 10.

Composition:	Molecular Weight: (C ₁₀ H ₁₂ N ₆ O ₁₆)	468
% c 25.6	Oxygen Balance:	
•	CO ₂ %	~3 ¹ 4 0
H 2.6 CH_CO_CH_CH_C(NO_)		
CH ₂ CO ₂ CH ₂ CH ₂ C(NO ₃) CH ₂ CO ₂ CH ₂ CH ₂ C(NO ₃)	Density: gm/cc Crystal	1.63
сн ₂ со ₂ сн ₂ сн ₂ с (No ₃)	Melting Point: °C	96
C/H Ratio 0.235	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, n20	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	n ₂₅	
Sample Wi, mg	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	
Rifle Bullet Impact Test: Trials	100°C	
wife builer impact test: Trials	120°C	
Explosions	135°C	
Partials	150°C	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
]	Mercury Fulminate	
5 50% point 230 10	Lead Azide	
15	Tetryl	·- <u>-</u>
20	Ballistic Mortar, % TNT:	
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
Elementiin Indon	Detonation Rate:	
Flammability Index:	Confinement	
	Condition	
Hygroscopicity: %	l Cha Diana in	
Hygroscopicity: %	Charge Diameter, in. Density, gm/cc	1.63

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 190:	-
90 mm HE, M71 Projectile, Lat WG-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments; For TNT	Color:	
For Subject HE	Principal Uses: Casting medium for HE	compounds
3 inch HE, M42A1 Projectile, Let KC-5; Density, gm/cc Charge Wt, Ib	333316 333311	
Tatal No. of Fragments: For TNT	Method of Loading: Cas	t
For Subject HE	Loading Density: gm/cc 1.6	0
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method Dry	
Riest (Relative to TNT):	Hazard Class (Quantity-Distance)	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation Non	e
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy	Preparation: (a) By the addition of nitroform to glycol diacrylate. As the method o ration often leads to products diff purify, a preparation from ethylene and pure trinitrobutyric acid is in Origin:	f prepa- icult to glycol
Underground: Peak Pressure Impulse Energy	First synthesized in 1951 by the Rubber Company, Research and Develo General Laboratories, Passaic, New Viscosity, poises: Temp, 98.9°C 0.2 106.5°C 0.1	pment J erse y. 46
	Liquid Density, gm/cc: Temp, 98.9°C 1.4 106.5°C 1.4	67

- (a) U. S. Rubber Company Progress Report No. 14, Navy Contract Nord-10129, 1 February 1951 to 1 May 1951.
- (b) U. S. Naval Ordnance Laboratory, Silver Spring, Maryland, Letter from Dr. O. H. Johnson to Commanding Officer, Picatinny Arsenal, 8 April 1955 (ORDBB 471.86/44-3, Registry No. 39815); and NOL Letter from Dr. D. V. Sickman to Commanding Officer, Picatinny Arsenal, 29 November 1955 (ORDBB 471.86/159-1; Serial No. 02894).

²⁹See footnote 1, page 10.

Composition;	Molecular Weight: (C6H6N4O7) 246		
C 29.3 O-NH ₁	Oxygen Balance: CO ₂ %	- 52		
H 2.4 0 ₂ N NO ₂	CO %	-13		
N 22.7	Density: gm/cc Crystal	1.72		
0 45.6	Melting Point: °C Decompose	s 265		
C/H Ratio 0.317	Freezing Point: °C			
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C			
Sample Wt 20 mg	Refractive Index, no a	1 .50 8		
Picatinny Arsenal Apparatus, in. 17 Sample Wt, mg 18	bo	1.870		
Sample 171, mg	c _o	1.907		
Friction Pendulum Test:		_ >-1		
Steel Shoe Unaffected	Vacuum Stability Test: cc/40 Hrs, at			
Fiber Shoe Unaffected	90°C			
	— 100°C	0.2		
Rifle Bullet Impact Test: Trials	120°C	0.4		
% 0	135°C			
Explosions 0	150°C	0.4		
Partials 0 Burned 30				
-	200 Gram Bomb Sand Test:			
Unaffected 70	Sand, gm	39.5		
Explosion Temperature: °C	Sensitivity to Initiation:			
Seconds, 0.1 (no cap used) 405	Minimum Detonating Charge, gm			
1 367 5 Decomposes 318	Mercury Fulminate			
- <u>-</u> ,	Lead Azide	0.20		
10 314 15 299	Tetryl	0.06		
20 295	Ballistic Mortar, % TNT: (a)	99		
	Trauzi Test, % TNT:			
75°C International Heat Test:	Plate Dent Test:			
% Loss in 48 Hrs	Method	A		
100°C Heat Test:	Condition	Pressed		
% Loss, 1st 48 Hrs 0.1	Confined	Yes		
% Loss, 2nd 48 Hrs 0.1	Density, gm/cc	1.50		
Explosion in 100 Hrs None	Brisance, % TNT	91		
	Detonation Rate:			
Flammability Index:	Confinement	None		
	Condition	Pressed		
Hygroscopicity: % 100% RH 0.1	Charge Diameter, in.	1.0		
	Density, gm/cc	1.55		
Volatility:	Rate, meters/second	685 0		

Fragmentation Test:		Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot	WC-91:	Glass Cones Steel Cones		
Density, gm/cc	1.50	Hole Volume		
Charge Wt, Ib	1.94	Hole Depth		
Total No. of Fragments:		Color Waller		
For TNT	703	Color: Yellow-orange		
For Subject HE	649	Principal Uses: AP projectiles and bombs		
3 inch HE, M42A1 Projectile, La	ot KC-5:	Al projectives and somes		
Density, gm/cc	1.55			
Charge Wt, Ib	0.82			
Total No. of Fragments:		Method of Loading: Pressed		
For TNT	514	Tiegsed		
For Subject HE	50 8			
		Loading Density: gm/cc psi x 103		
Fragment Velocity: ft/sec		3 5 10 12 15 1.33 1.41 1.47 1.49 1.51 1	20 •53	
At 9 ft At 251/ ₂ ft		Storage:	.• / _	
Density, gm/cc		Method Dry		
last (Relative to TNT):		Hazard Class (Quantity-Distance) Class 9		
Air:		Compatibility Group Group I		
Peak Pressure				
Impulse		Exudation None at 65°C		
Energy				
Air, Confined:		Sensitivity to Electrostatic		
Impulse		Discharge, Joules: (d)		
Under Water:		Through 100 Mesh:		
Under Water: Peak Pressure		Confined 6.0		
Impulse		Unconfined 0.025		
Energy		Booster Sensitivity Test: (c)		
٠,		Condition Pressed Tetryl, gm 100		
Underground:		Wax, in. for 50% Detonation 1.27		
Peak Pressure		Density, gm/cc 1.54		
Impulse -		Heat of:		
Energy		Combustion, cal/gm 2890 Explosion, cal/gm 800 Formation, cal/gm 395		
		377		

Preparation:

Explosive D is manufactured by suspending picric acid in hot water and neutralizing it with gaseous or liquid ammonia. As the picrate is formed, it goes into solution; on cooling, it precipitates. An excess of ammonia leads to formation of the red form of ammonium picrate. This should be avoided. The separated crystals are washed with cold water and dried.

Effect of Storage on Sand Test Values:

Minimum Detonating Charge

Stor Years	rage O _C	Mercury Fulminate (gm)	Tetryl (gm)	Sand Crushed (gm)
o 3•5	50	0.25	0.06	23 23
2 * 4 * 2 **	Normal Normal 50	0.24	0.03 0.04	23 23 23

^{*} After 3.5 years at 50°C,

Solubility: gm/100 gm (%), of: (e)

Wa	ter	<u> </u>	lcohol	Ethy	l Acetate
°C	<u>%</u>	°c	<u>%</u>	°C	26
20	1.1	0	0.515	0	0.290
100	7 5	10	0.690	10	0.300
		30	1.050	30	0.38 0
		5 0	1.890	50	0.450
		8 o	3.620	80	0.560

Origin:

First prepared by Marchand in 1841 and used by Brugere in admixture with potassium nitrate as a propellant in 1869. Used as a high explosive after 1900.

Destruction by Chemical Decomposition:

Explosive D (ammonium picrate) is decomposed by dissolving in 30 times its weight of a solution made from 1 part of sodium sulfide (Na₂S·9H₂O) in 6 parts of water.

References: 30

(a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III - Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.

^{**} After 3.5 years at 50°C and 2 years at magazine temperature.

³⁰See footnote 1, page 10.

Explosive D (Ammonium Picrate)

- (b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (c) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
- (d) F. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by Electrostatic <u>Discharges</u>, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.
 - (e) Various sources in the open literature.
 - (f) Also see the following Picatinny Arsenal Technical Reports on Explosive D:

<u>o</u>	<u>1</u>	<u>2</u>	<u>3</u>	4	5	<u>6</u>	1	8	2
340 870 1380	1441 1651	132 582 1172 1352 1372 1492	843	694 704 874 1234 1724	65 425 1585 1655 1725 1885 1895	266 556 796 986 1466 1796	1737 1797	328 838 1838	1 72 9 1 7 59

AMCP 706-177

Glycerol Monolactate Trinitrate (GLTN) Liquid

Composition:	Molecular Weight: (C6H9N3O11) 299
с 24.1 0 0NO ₂ н 3.0 сн ₂ -о-с-сн-сн ₃	Oxygen Balance: CO ₂ % -30 CO % 3
N 14.1 CH—ONO ₂	Density: gm/cc Liquid 1.47
с́н ₂ — омо ₂ о 58.8	Melting Point: °C
C/H Ratio 0.180	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 15 (1 1b wt); 42	Boiling Point: °C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, n ^D ₂₀ n ^D ₂₅ 1.464
Friction Pendulum Test: Steel Shoe Unaffected Fiber Shoe Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C 100°C 5.9
Rifle Bullet Impact Test: Trials % Explosions Partials	- 100°C 5.9 120°C 135°C 150°C
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 13.1
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 223 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:
20	Trauzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test: % Loss, 1st 48 Hrs 2.5 % Loss, 2nd 48 Hrs 1.8	Condition Confined Density, gm/cc Brisance, % TNT
Explosion in 100 Hrs None Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: %	Condition Charge Diameter, in.
Volatility: 60°C, mg/cm ² /hr 28	Density, gm/cc Rate, meters/second

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:			
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel Cones			
Density, gm/cc	Hole Volume			
Charge Wt, Ib	Hole Depth			
Total No. of Fragments:	Color:			
For TNT				
For Subject HE	Principal Uses: Gelatinizer for nitrocellul	lose		
3 inch HE, M42A1 Projectile, Lot KC-5:				
Density, gm/cc				
Charge Wt, Ib				
Total No. of Fragments: For TNT	Method of Loading:			
For Subject HE				
	Loading Density: gm/cc			
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Storage:			
Density, gm/cc	Method Liquid			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class	9		
Air:	Compatibility Group			
Peak Pressure				
Impulse	Exudation			
Energy				
Air, Confined:	Hydrolysis, % Acid:			
Impulse	10 days at 22°C 0.021 5 days at 60°C 0.014			
Under Water: Peak Pressure	Solubility in Water, gm/100 gm, at:			
Impulse	25°C			
Energy				
Underground:	Solubility, gm/100 gm, at 25°C, in:			
Peak Pressure	Ether ∞			
Impulse Energy	2:1 Ether:Alcohol			
	Heat of:			
	Combustion, cal/gm 2407			

Glycerol Monolactate Trinitrate (GLTN) Liquid

Preparation:

Glycerol monolactate (GML) is prepared by heating a glycerol lactic acid mixture containing 4% excess lactic acid at 116°C for 112 hours with dry air bubbling through the liquid. The product which contains 0.67% free acid is carefully mixed with 6 parts of 40/60 HNO₃/H₂SO₄ maintained at 20°C, stirred for 1 hour, cooled to 5°C, and poured on ice. It is extracted with ether, water-washed, adjusted to pH 7 by shaking with a sodium bicarbonate solution, and again water-washed three times. It is then dried with calcium chloride, filtered and freed of ether by bubbling with air until minimal loss in weight is obtained. The product has a nitrate-nitrogen content of 13.43% (theoretical 14.1% N). Another batch, prepared from GML obtained from glycerol-lactic acid containing 6.5% excess glycerol, had a nitrate-nitrogen content of 14.30%, corresponding to a mixture containing 5.5% nitroglycerin. It is not considered practicable to prepare the pure GLTN.

Origin:

The preparation of a nitrated ester of lactic acid and glycerol, by nitrating a glyceryl lactate with nitric and sulfuric acids, for use in explosives, was reported in 1931 by Charles Stine and Charles Burke (U. S. Patent 1,792,515).

The preparation of glycerol monolactate by heating glycerol with equimolar proportions of a lactic acid ester of an alcohol boiling below 100°C (ethyl lactate) was patented by Richie H. Locke in 1936 (British Patent 456,525 and U. S. Patent 2,087,980).

Reference: 31

(a) P. F. Macy and A. A. Saffitz, <u>Explosive Plasticizers for Nitrocellulose</u>, PATR No. 1616, 22 July 1946.

³¹See footnote 1, page 10.

Oxygen Balance: CO ₂ % CO % Density: gm/cc Liquid, 25 Melting Point: °C Freezing Point: °C Boiling Point: °C Refractive Index, n ₂₀ n ₂₅ n ₃₀ Vacuum Stability Test; cc/40 Hrs, at 90°C	0.0 21 °C 1.48 -20
CO % Density: gm/cc Liquid, 25 Melting Point: °C Freezing Point: °C Boiling Point: °C Refractive Index, n ₂₀ n ₂₅ n ₃₀ Vacuum Stability Test; cc/40 Hrs, at	21 °C 1.48 -20
Melting Point: °C Freezing Point: °C Boiling Point: °C Refractive Index, n ₂₀ n ₂₅ n ₃₀ Vacuum Stability Test; cc/40 Hrs, at	-20
Melting Point: °C Freezing Point: °C Boiling Point: °C Refractive Index, n ₂₀ n ₂₅ n ₃₀ Vacuum Stability Test; cc/40 Hrs, at	-20
Freezing Point; °C Boiling Point; °C Refractive Index, n ₂₀ n ₂₅ n ₃₀ Vacuum Stability Test; cc/40 Hrs, at	
Boiling Point: °C Refractive Index, n ₂₀ n ₂₅ n ₃₀ Vacuum Stability Test; cc/40 Hrs, at	1.4452
Refractive Index, n_{20}^D n_{25}^D n_{30}^D Vacuum Stability Test; $cc/40$ Hrs, at	1.4452
Vacuum Stability Test; cc/40 Hrs, at	1.4452
Vacuum Stability Test; cc/40 Hrs, at	1.4452
Vacuum Stability Test; cc/40 Hrs, at	
cc/40 Hrs, at	
1 90°C	
· ·	
100°C	
120°C	
135°C	
150°C	
200 Gram Bomb Sand Vest:	
Sand, gm	
Sensitivity to Initigation:	
Minimum Detonating Charge	, gm
Mercury Fulminate	
Lead Azide	
Tetryl	_
Ballistic Mortar, % TNT:	
_ Trauzi Test, % TNT:	
Plate Dent Test:	
Method	
Condition	
Confined	
1	
Brisance, % TNT	
Detonation Rate:	01a 43-
	Glass tube
l l	Liquid
I (horge Diameter in	10
Density, gm/cc	1.485
	Sand, gm Sensitivity to Initiation: Minimum Detonating Charge Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT: Trauzl Test, % TNT: Plate Dent Test: Method Condition Confined Density, gm/cc Brisance, % TNT

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:				
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth				
Total No. of Fragments: For TNT	Color: Yellow				
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of nonfreezing dynamite				
Total No. of Fragments: For TNT For Subject HE	Method of Loading:				
•	Loading Density: gm/cc				
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:				
Density, gm/cc	Method Liquid				
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9				
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation				
Air, Confined: Impulse	Solubility in 1000 cc Water: Temp, OC Grams				
Under Water: Peak Pressure	15 6.2 20 6.8 50 9.2				
Impulse Energy	Viscosity, centipoises: Temp, 20°C 4.2				
Underground: Peak Pressure Impulse Energy	Vapor Pressure: oc mm Mercury 0 0.0044 20 0.038 40 0.26 60 1.3 80 5.9 100 22.0				
	Heat of: Combustion, cal/gm 1764 Formation, cal/gm (b) 366				

Preparation:

Glycol dinitrate (ethylene glycol dinitrate, dinitroglycol, nitroglycol, dinitrodimethyleneglycol) may be prepared by nitration of ethylene glycol, HOCH2CH2OH, with a mixed nitric acid in the same apparatus that is used for the preparation of nitroglycerin. The glycol is prepared by synthesis from ethylene, and ethylene chlorohydrin:

$$\mathsf{CH}_2 = \mathsf{CH}_2 \xrightarrow{\mathsf{HOCl}} \mathsf{HOCH}_2 \mathsf{CH}_2 \mathsf{Cl} \xrightarrow{\mathsf{H}_2 \mathsf{O}} \mathsf{HOCH}_2 \mathsf{CH}_2 \mathsf{OH}$$

Origin:

Henry was the first to prepare and identify glycol dinitrate (Ber 3, 529 (1870) and Ann chim phys [4]27, 243 (1872) but Kekulé had previously nitrated ethylene and obtained an unstable oil which he supposed to be glycol nitrate-nitrate. No immediate practical use was made of glycol dinitrate because glycol itself was relatively rare and expensive at the time. It was 1904 before a patent was granted covering the use of GDN as an explosive (DRP 179,789), but it was seven years later before its actual use as an explosive was recorded (Mém poudr 16 (1911) p. 214). The principal physical properties of GDN were determined or recorded by Rinkenbach (Ref b).

- (a) Ph. Naoum, Nitroglycerin and Nitroglycerin Explosives, translation, E. M. Symmes, The Williams and Wilkins Company, Baltimore (1928), p. 224.
 - (b) Wm. H. Rinkenbach, "The Properties of Glycol Dinitrate," Ind Eng Chem 18, 1195 (1926).
- (c) Wm. H. Rinkenbach, "Glycol Dinitrate in Dynamite Manufacture," Chem Met Eng, 34, 296 (1927).
- (d) Wm. H. Rinkenbach, Application of the Vacuum Stability Test to Nitroglycerin and Nitroglycerin Explosives, PATR 1624, 27 August 1946.

³²See footnote 1, page 10.

AMCP 706-177

<u>H-6</u>

Composition:		Molecular Weight:	93
% RDX 45		Oxygen Balance;	
TNT 30		CO ₂ %	- 66
Aluminum 20		CO %	-3 6
D-2 Wax 5		Density: gm/cc Cast	1.74
Calcium Chloride,		Density, grifice Cast	1.14
added 0.5		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:		Boiling Point: °C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg		Refractive Index, n20	
Picatinny Arsenal Apparatus, in. (c)	14		
Sample Wt, mg	18	n ^D ₂₅	
		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe		90°C	
Rifle Bullet Impact Test: Trials	(b)	100°C	0.47
•	(6)	120°C	
% Explosions 80		135°C	
Partials		150°C	
			
		200 Gram Bomb Sand Test:	,
Unaffected 20		Sand, gm	49.5
Explosion Temperature: °C	(a)	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1 5 610/mi	.n) (c)	Mercury Fulminate	
10	.11) (0)	Lead Azide	0.20
15		Tetryl	0.10
		Ballistic Mortar, % TNT: (d)	135
20		Trauzi Test, % TNT:	+37
75°C International Heat Test:		Plate Dent Test:	
% Loss in 48 Hrs		Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.78	Confined	
		Density, gm/cc	
% Loss, 2nd 48 Hrs	0.00	Brisance, % TNT	
Explosion in 100 Hrs	None		
Flammability Index:		Detonation Rate:	(a, b)
riominability index:		Confinement	None
Hyprogenicity, 04 200g OEd Dy	20.00	Condition	Cast
	days 2.01 days 1.77	Charge Diameter, in.	1.0
Volatility:	y	Density, gm/cc	1.71
Y CIGCILITY:		Rate, meters/second	7191

Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Wax, gm Density, gm/cc		Decomposition Equation: Oxygen, atoms/sec (Z/sec) Heat, kilocalorie/mole (ΔΗ, kcal/mol) Temperature Range, °C Phase
Heat of: Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm Formation, cal/gm Fusion, cal/gm 18°C (b)	3972 923 733 10.25	Armor Plate Impact Test: 60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec Aluminum Fineness 500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C 30°C 50°C	(b) 0.269 0.268	Plate Thickness, inches 1 11/4 11/2 13/4
Burning Rate: cm/sec Thermal Conductivity: cal/sec/cm/°C 35°C	(b) -3	Bomb Drop Test: T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion: Linear, Al/inch 0°C 35°C 70°C Hardness, Mohs' Scale:	40 x 10 ⁻⁴ 83 x 10 ⁻⁴ 131 x 10 ⁻⁴	Max Safe Drop, ft 500-lb General Purpose Bomb vs Concrete: Height, ft Trials Unaffected
Young's Modulus: E', dynes/cm² E, lb/inch² Density, gm/cc	(b) 9.0 x 10 ⁹ 1.30 x 10 ⁵ 1.71	Low Order High Order 1000-lb General Purpose Bomb vs Concrete:
Compressive Strength: Ib/inch² Vapor Pressure:	See below	Height, ft Trials Unaffected Low Order High Order
Compressive Strength: lb/inch Density, gm/cc Ultimate deformation, %	1083 1.71 1.32	

Fragmentation Test:	(b)	Shaped Charge Effectiveness, TNT $=$ 1	00:
90 mm HE, M71°Projectile, Lot EGS-1-1 Density, gm/cc Charge Wt, lb	L7:	Glass Cones Steel (Hole Volume Hole Depth	Cones
Total No. of Fragments: For Composition B	99 8	Color:	Gray
For Subject HE For 80/20 Tritonal	714 616	Principal Uses:	HE charge
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib			
Total No. of Fragments: For TNT		Method of Loading:	Cast
For Subject HE		Loading Density: gm/cc	1.71
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:	
Density, gm/cc		Method	Dry
Blast (Relative to TNT):	(a)	Hazard Class (Quantity-Distance)	Class 9
Air: 3.25" diameter sphere Peak Pressure Δ psi Catenary Impulse NFOC Pendulum Energy Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	25.4 19.8 	Compatibility Group Exudation	Group I

Effect of Altitude, Charge Diameter and Degree of Confinement on Detonation Velocity*

(Reference e)

		One-Inch Column		Two-Inch Column	
Explosive	Simulated Altitude, Feet	Confined m/s	Unconfined m/s	Confined m/s	Unconfined m/s
int,	Ground	6820	6720	6670	5270
density, gm/cc 1.59	30,000	6660	6930(2)	6610	6760(4)
	60,000	6800	-	6520	6400(4)
:	90,000	6810	6720	6550	6610(1)
Average	!	6798	6790	6588	6260
н-6,	Ground	7190	7360	7340	6870
density, gm/cc 1.69	30,000	7300(2)	7430	7360	7980
	60,000	7280	7490	7550	7010
	90,000	7300(3)	7270	7500	7000
Average		7268	73 85	7438	7215

^{*}Confined charge in 1/4" steel tube, AISI 1015 seamless, 1" diameter 18" long, and 2" diameter 7" long. All means were determined from sets of five values unless otherwise indicated by (). A 26 gm tetryl booster was used to initiate each charge.

Average Fragment Velocities at Various Altitudes* (e)

		Sir	nulated Alt:	itude, Feet	
Explosive	Charge Diameter, Inches	Ground m/s	30,000 m/s	60,000 m/s	90,000 m/s
INT,	1	2940	2991	3119	2868
density, gm/cc 1.51	2	3623	4191	5077	4980
н-6,	1	3461	3405	3467	3563
density, gm/cc 1.71	2	4603	4726	4998	5288

^{*}Outside diameter 2.54"; inside diameter 2.04"; length 7".

References:

See HBX-1; HBX-3 reference list.

Haleite (Ethylene Dinitramine) (EDNA)

(In recognition of its development as a military explosive by the late Dr. G. C. Hale of Picatinny Arsenal.)

<u>lat</u>	e Dr. G. C. Hale o	f Picatinny Arsenal.)		
Composition:	NO	Molecular Weight: (C2H6	5N4O4)	150
76.0	N NO ²	Oxygen Balance:		20
н 4.0		CO ₂ %		-32 -10.5
	Н	Density: gm/cc Cryst	7	7.73
N 37.3	NO ₂		ar	1.71
о 42.7 н ₂ с—	N 2	Melting Point: °C Decon	mposes	175+
C/H Ratio 0.066	'Н	Freezing Point: °C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	48	Boiling Point: °C		
Sample Wt 20 mg		Refractive Index, no		
Picatinny Arsenal Apparatus, in.	14	n ₂₅		
Sample Wt, mg	17			
		n ₃₀		
Friction Pendulum Test:	True age of 2	Vacuum Stability Test:		
Steel Shoe	Unaffected	cc/40 Hrs, at 90°C		
Fiber Shoe	Unaffected	100°C		0.5
Rifle Bullet Impact Test: Trials		120°C		1.5
%				-
Explosions 0		135°C		
Partials 60		150°C		11+
Burned 20		200 Gram Bomb Sand Test	:	
Unaffected 20		Sand, gm		52.3
Explosion Temperature: °C		Sensitivity to Initiation:		
Seconds, 0.1 (no cap used) 265		Minimum Detonating Ch	narge, gm	
1 216		Mercury Fulminate		0.21
5 Decomposes 189		Lead Azide		0.13
10 178		Tetryl		
15 173 20 170		Ballistic Mortar, % TNT:	(a)	139
20 170		Trauzi Test, % TNT:	(b)	122
75°C International Heat Test:		Plate Dent Test:	(c)	
% Loss in 48 Hrs	0.01	Method	(-)	А
100°C Hara Task		Condition		Pressed
100°C Heat Test:	0.0	Confined		Yes
% Loss, 1st 48 Hrs	0.2	Density, gm/cc		1.50
% Loss, 2nd 48 Hrs	0.3	Brisance, % TNT		122
Explosion in 100 Hrs	None			
Flammability Index:	1 28	Detonation Rate: Confinement		Unconfined
	138	- Continement		Pressed
Hygroscopicity: %	0.01			
		Charge Diameter, in. Density, gm/cc		1.0
Volatility:	Nil	7, 3		1.49 7570
-		Rate, meters/second		1710

Booster Sensitivity Test: Condition	(d) Pressed	Decomposition Equation: (e) (e) (f) (f) (12.1 1011.
Tetryl, gm	100	(Z/sec) Heat, kilocalorie/mole 30.5 37.3 30.8
Wax, in. for 50% Detonation	2.09	Heat, kilocalorie/mole 30.5 37.3 30.8 (ΔH, kcal/mol)
Wax, gm		Temperature Range, °C 184-254 144-164
Density, gm/cc	1.42	Phase Liquid Solid Solid
Heat of:		Armor Plate Impact Test:
Combustion, cal/gm	2477	Action Flate Impact Feet.
Explosion, cal/gm	1276	60 mm Mortar Projectile:
Gas Volume, cc/gm	908	50% Inert, Velocity, ft/sec
Formation, cal/gm	134	Aluminum Fineness
Fusion, cal/gm		500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C		
-,· · · · · · · · · · · · · · · · · · ·		Plate Thickness, inches
		1
		11/4
		1½
		134
Burning Rate:		
cm/sec		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C		500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
		Low Order
Young's Modulus:		High Order
E', dynes/cm²		
E, lb/inch²		1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc		
C		Height, ft
Compressive Strength: Ib/inch ²		Trials
		Unaffected
Vapor Pressure:		Low Order
°C mm Mercury		High Order

Haleite (Ethylene Dinitramine) (EDNA)

Fragmentation Test:	Shaped Charge Effectiveness, TNT =	100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc 1.61 Charge Wt, lb	Glass Cones Steel Hole Volume Hole Depth	Cones
Total No. of Fragments: For TNT	Color:	White
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, lb	Principal Uses:	Booster
Total No. of Fragments: For TNT 514 For Subject HE 600	Method of Loading:	Pressed
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Loading Density: gm/cc psi x 5 10 12 15 1.28 1.38 1.41 1.44 Storage: Method	20 1.49 Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	None
Air, Confined: Impulse		
Under Water: Peak Pressure Impulse Energy		
Underground: Peak Pressure Impulse		
Energy		

Compatibility with Metals:

<u>Dry</u> - Copper, brass, aluminum, mild steel, stainless steel, mild steel coated with acidproof black paint, and mild steel plated with copper nickel, cadmium or zinc are unaffected. Magnesium and magnesium-aluminum alloy are slightly affected.

Wet - Copper, brass, mild steel coated with acid-proof black paint, and mild steel plated with copper, cadmium, nickel or zinc are heavily corroded. Aluminum is slightly affected and stainless steel is unaffected.

Impact Sensitivities of Various Crystal Habits:

Bureau	of	Mines	Impact	Test,	2	Kg	Wt:
<u>Habit</u>							en
lst pla 2nd pla Bi-pyra Bracydo Sphenos	ate amio ome	i					55 71 66 46

Solubility: gm/100 gm (%) of:

Wat	ter	Alc	ohol
°C	<u> %</u>	°C	<u> </u>
20 40 60 80 100	0.25 0.75 2.13 6.38 >20	20 40 60 78	1.00 2.46 5.29 10.4

Preparation:

(Summary Technical Report of the NDRC, Div 8, Vol 1)

$$\begin{array}{c} \text{CH}_2\text{O} + \text{HCN} & \longrightarrow \text{HO CH}_2\text{CN} \\ & (98\% \text{ yield}) \\ \text{HO CH}_2\text{CN} + \text{NH}_3 & \longrightarrow \text{NH}_2\text{CH}_2\text{CN} + \text{H}_2\text{O} \\ & (82\% \text{ yield}) \\ \\ \text{NH}_2\text{CH}_2\text{CN} + 2\text{H}_2 & \longrightarrow \text{H}_2\text{N CH}_2\text{CH}_2\text{NH}_2 \\ & (88\% \text{ yield}) \\ \\ \text{CH}_2 & \longrightarrow \text{NH}_2 \\ \\ \text{CH}_2 & \longrightarrow \text{NH}_2 \\ \end{array}$$

Haleite (Ethylene Dinitramine) (EDNA)

$$\begin{array}{c} \text{CH}_2 - \text{NH} \\ \text{CH}_2 - \text{NH} \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 - \text{N} - \text{NO}_2 \end{array} \longrightarrow \begin{array}{c} \text{CH}_2 - \text{N} - \text{NO}_2 \\ \text{CH}_2 -$$

The raw materials used in this process are cheap and available; the first three reactions proceed smoothly, rapidly and in good yield (70% overall), and only the third requires high pressures. The reaction of ethylenediamine with carbon dioxide at about 220° C and 820 atmospheres has been worked out and is more satisfactory for the preparation of ethyleneurea than the use of chlorethyl carbonate or urea and better than the reaction of acetic anhydride and ethylenediamine to yield N,N'-diacetyl-ethylenediamine which can be treated in a way similar to the above to yield Haleite.

Ethyleneurea is very easily nitrated, with strong nitric acid (98%), at ordinary temperature, and in a very short time, and the dinitroethyleneurea produced appears to hydrolyze, yielding Haleite, immediately after solution in water at 95°C. Both the nitration and hydrolysis are practically quantitative.

Origin:

First described in 1877 by Franchimont and Klobbie (Rec trav chim 7, 17 and 244) but it was 1935 before its value as an explosive was recognized. Standardized during World War II as a military explosive.

Destruction by Chemical Decomposition:

Haleite is decomposed by addition to hot, dilute sulfuric acid. Nitrous oxide, acetaldehyde and ethylene glycol are evolved. Haleite is also decomposed by addition to 5 times its weight of 20% sodium hydroxide.

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) Report AC-2983/Org Ex 179.
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
- (e) R. J. Finkelstein and G. Gamow, <u>Theory of the Detonation Process</u>, NAVORD Report No. 90-46, 20 April 1947.
- (f) M. A. Cook and M. Taylor Abbeg, "Isothermal Decomposition of Explosives," University of Utah, Ind Eng Chem (June 1956) pp. 1090-1095.

³³See footnote 1, page 10.

(g) Also see the following Picatinny Arsenal Technical Reports on Haleite:

<u>o</u>	1	2	<u>3</u>	1+	5	<u>6</u>	7	<u>8</u>	2
1200 1290 1360 1380 1400 1600	1231 1451 1651	1162 1232 1252 1352 1372	1113 1493 1923	414 1294 1434	1255 1325 1395 1885	786 1796	897 1737 1797 1937	1198 1288 1378 1388 1838	1279 1319 1379 1469 1489 2179

Composition:		Molecular Weight:	102
RDX 40 INT 38		Oxygen Balance: CO ₂ % CO %	-68 -35
Aluminum 17			
D-2 Wax 5		Density: gm/cc Cast	1.72
Calcium Chloride, added 0.5		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	-	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 1	L6	Refractive Index, No	
The state of the s	21	n ₂₅	
		n ₃₀	
Friction Pendulum Test: (b)		Vacuum Stability Test:	(a, b)
Steel Shoe	Inaffected	cc/40 Hrs, at	
Fiber Shoe		90°C	
Rifle Bullet Impact Test: Trials ((b)	100°C	0.47
%	.~/	120°C	0.98
Explosions 73		135°C	
Partials		150°C	11+
Burned		200 Gram Bomb Sand Test:	
Unaffected 28		Sand, gm	48.1
Explosion Temperature: °C (Seconds, 0.1 (no cap used)	(a)	Sensitivity to Initiation: Minimum Detonating Charge, gm	
1		Mercury Fulminate	
5 480		Lead Azide	0.20
10		Tetryl	0.10
15	:	Ballistic Mortar, % TNT: (d)	7 22
20			133
75°C International Heat Test:	· · · · · · · · · · · · · · · · · · ·	Trauzi Test, % TNT:	
% Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat Test: (b)	Condition	
	0.058	Confined	
	0.00	Density, gm/cc	
	Ione	Brisance, % TNT	
Plana Little Ladan		Detonation Rate:	(a, b)
Flammability Index:		Confinement	None
Hygroscopicity: % 30°C, 95% RH, 7 d	lays 2.98	Condition	Cast
71°C, 95% RH, 7 d	lays 1.13	Charge Diameter, in.	1.0
Volatility:	· ········	Density, gm/cc	1.69
· violity.		Rate, meters/second	7224

Booster Sensitivity Test: Condition	(c) Cast	Decomposition Equation: Oxygen, atoms/sec
	100	(Z/sec)
Tetryl, gm		Heat, kilocalorie/mole
Wax, in. for 50% Detonation	1.25	(ΔH, kcal/mol)
Wax, gm		Temperature Range, °C
Density, gm/cc	1.73	Phase
Heat of:	(b)	Armor Plate Impact Test:
Combustion, cal/gm	3882	
Explosion, cal/gm	919	60 mm Mortar Projectile:
Gas Volume, cc/gm		50% Inert, Velocity, ft/sec
Formation, cal/gm	758	Aluminum Fineness
Fusion, cal/gm 78°C	9.25	500-lb General Purpose Bombs:
	(h)	Journ General Larpose Donnes.
Specific Heat: cal/gm/°C 30°C	(b) 0.249	Plate Thickness, inches
50°C	0.264	1
<i>)</i> 0 C	0.201	11/4
		11/2
		134
Burning Rote:		- 74
cm/sec		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C 35°C	(b) 0.97 x 10 ⁻³	T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:	(b)	Max Safe Drop, ft
Linear, Alanch		500-lb General Purpose Bomb vs Concrete:
0°C 35°C	46 x 10 ⁻⁴	Soo-in delicial Parpose Bottle 13 Control
35°C 70°C	95 x 10 ⁻⁴	Height, ft
70°0	159 x 10	- Trials
Hardness, Mohs' Scale:		Unaffected
		Low Order
Young's Modulus:	(b)	High Order
E', dynes/cm²	10.3 x 10 ⁹	Trigit Order
E, Ib/inch²	1.49 x 10 ⁻⁷	1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc	1.69	
	0 3. 3	_ Height, ft
Compressive Strength: Ib/inch ²	See below	Trials
		Unaffected
Vapor Pressure:		Low Order
°C mm Mercury	(b)	High Order
Compressive Strength: lb/inch2	1303	
Density, gm/cc	1.69	
Ultimate deformation, %	1.38	1

Fragmentation Test:	(b)	Shaped Charge Effectiveness, TNT = 1	100:
90 mm HE, M71 Projectile, Lot EGS-1	17:	Glass Cones Steel	Cones
Density, gm/cc		Hole Volume	
Char ge Wt, Ib		Hole Depth	
Total No. of Fragments:		Color:	Gray
For Composition B	9 9 8	Color:	Gray
For Subject HE For 80/20 Tritonal	910 616	Principal Uses:	HE charge
3 inch HE, M42A1 Projectile, Lot KC-5:			
Density, gm/cc			
Charge Wt, Ib			
Total No. of Fragments: For TNT		Method of Loading:	Cast
For Subject HE		Loading Density: gm/cc	1.69
Fragment Velocity: ft/sec			/
At 9 ft At 25½ ft		Storage:	
Density, gm/cc		Method	Dry
Blast (Relative to TNT);	(a)	Hazard Class (Quantity-Distance)	Class 9
Air: 3.25" diameter sphere Peak Pressure Δ psi Catenary	24.7	Compatibility Group	Group I
Impulse NFOC Pendulum	19.6	Exudation	None
Energy			
Air, Confined: Impulse			
Under Water: Peak Pressure			
Impulse			
Energy			
Underground: Peak Pressure			
Impulse			
Energy			

Composition:		Molecular Weight:	64
RDX 31		Oxygen Balance:	
TNT 29		CO ₂ %	-75
Aluminum 35		CO %	-49
D-2 Wax 5		Density: gm/cc Cast	1.84
Calcium Chloride, added 0.5		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg		Refractive Index, nº0	
Picatinny Arsenal Apparatus, in.	15	n ₂₃	
Sample Wt, mg	23	n _{so}	
Friction Pendulum Test:		Vacuum Stability Test:	(a, b)
Steel Shoe	Unaffected	cc/40 Hrs, at	(-, ,
Fiber Shoe		90°C	
Rifle Bullet Impact Test: Trials	(b)	100°C	0.45
, , , , , , , , , , , , , , , , , , ,	(5)	120°C	
% Explosions 78		135°C	
Partials		150°C	
Burned		200 Gram Bomb Sand Test:	(b)
Unaffected 22		Sand, gm	44.9
Explosion Temperature: °C	(a)	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1 5 500		Mercury Fulminate	0.00
10		Lead Azide	0.20 0.10
15		Tetryl	0.10
20		Ballistic Mortar, % TNT: (đ)	111
	· · · · · · · · · · · · · · · · · · ·	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	•
100°C Heat Test:	(b)	— Condition	
% Loss, 1st 48 Hrs	0.70	Confined	
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
		Detonation Rate:	(a, b)
Flammability Index:		Confinement	None
Hygroscopicity: % 30°C, 95% RH,	days 2.01	— Condition	Cast
Hygroscopicity: % 30°C, 95% RH, 71°C, 95% RH, 7		Charge Diameter, in.	1.0
	<u> </u>	Density, gm/cc	1.81
Volatility:		Rate, meters/second	6917

Booster Sensitivity Test:		Decomposition Equation:
Condition		Oxygen, atoms/sec
Tetryl, gm		(Z/sec)
Wax, in. for 50% Detonation		Heat, kilocalorie/mole (ΔΗ, kcal/mol)
Wax, gm		Temperature Range, °C
Density, gm/cc		Phase
Heat of:	(b) 4495	Armor Plate Impact Test:
Combustion, cal/gm	**	
Explosion, cal/gm	877	60 mm Mortar Projectile:
Gas Volume, cc/gm	1.07	50% Inert, Velocity, ft/sec
Formation, cal/gm	491	Aluminum Fineness
Fusion, cal/gm	9.30	500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C		,
30°C	0.254	Plate Thickness, inches
50°C	0.254	1
		11/4
		11/2
		134
Burning Rate:		
cm/sec		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C 35°C	(b) 1.70 x 10 ⁻³	T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:	(b)	Max Safe Drop, ft
Linear, A 2 / inch		500-lb General Purpose Bomb vs Concrete:
0°C	40 x 10 ⁻⁴	
35°C 70°C	83 x 10 ⁻¹ 4 130 x 10 ⁻¹ 4	Height, ft
10 C	130 K 10	Trials
Hardness, Mohs' Scale:		Unaffected
	(1.)	Low Order
Young's Modulus:	(b)	High Order
E', dynes/cm²	11.5 x 10 ⁹	
E, lb/inch²	1.67 x 10 ⁵	1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc	1.81	11.1.6
Community Campusk 11. /imsk9	See below	Height, ft
Compressive Strength: Ib/inch ²	DEE DETOM	Trials
		Unaffected
Vapor Pressure:		Low Order
°C mm Mercury	_	High Order
Compressive Strength: lb/inch ²	1610 1.81	
Density, gm/cc		
Ultimate deformation, %	1.37	

Fragmentation Test: 90 mm HE, M71 Projectile, Lot EGS-1-17: Density, gm/cc Charge Wt, lb		Shaped Charge Effectiveness, TNT = 100: Glass Cones Steel Cones Hole Volume Hole Depth		
476 616	Principal Uses:	HE charge		
	Method of Loading:	Cast		
	Loading Density: gm/cc	1.81		
	Storage:	,		
	Method	Dry		
(a)	Hazard Class (Quantity-Distance)	Class 9		
25.5 20.6	Compatibility Group Exudation	Group I		
	998 476 616 (a) 25.5 20.6	Hole Volume Hole Depth Color: Principal Uses: Method of Loading: Loading Density: gm/cc Storage: Method (a) Hazard Class (Quantity-Distance) Compatibility Group Exudation		

The Stability of HBX Compositions Made With and Without Desiccants and Containing Added Moisture *

HBX-1; HBX-3

Explosive	Moisture,	Acidity,	100°C Vac	Stab Test Hours	Hygrosco 95%	picity, %
Composition		_			30°C	71 ⁰ C
Standard HBX-1 +0.2% moisture +0.4% moisture +0.6% moisture	0.73	0.011	0.47 0.68 0.62 0.50	40 40 40 40	+2.98	+1.13
HBX-1 without CaCl ₂ +0.2% moisture +0.4% moisture +0.6% moisture	0.00	0.029	0.36 0.25 0.23 0.27	40 40 40 40	-0.0 6	- 0.25
HBX-1 with silica gel	0.06	0.031	0.73	40	+0.08	+0.04
Standard HBX-3 +0.2% moisture +0.4% moisture +0.6% moisture	0.54	0.012	0.45 0.47 0.43 0.41	40 40 40 40	+2.01	+0.31
HBX-3 without CaCl ₂ +0.2% moisture +0.4% moisture +0.6% moisture	0.02	0.049	0.46 0.26 0.26 0.20	40 40 40 40	-0.06	-0.29
HBX-3 with silica gel	0.04	0.100	0.45	40	+0.09	+0.05
Standard H-6 +0.2% moisture +0.4% moisture +0.6% moisture	0.71	0.017	0.47 0.88 0.63 0.65	40 40 40 40	+2.01	+1.77
H-6 without CaCl ₂ +0.2% moisture +0.4% moisture +0.6% moisture	0.03	0.082	0.40 0.10 0.25 0.23	40 40 40 40	-0.06	-0.25
H-6 with silica gel	0.05	0.028	0.43	40	+0.09	+0.06

^{*} All samples were ground to 20/100 mesh size, 7 days before tests. Silica gel used was Fisher Scientific Company, Lot 541492, through 100 mesh U. S. Standard Sieve.

HBX-1; HBX-3

Preparation:

HBX explosive mixtures are prepared by melting TNT in a steam-jacketed melt kettle equipped with a mechanical stirrer. Water-wet RDX is added slowly with stirring and heating until all the water is evaporated. Aluminum is added, and the composition is stirred until uniform. D-2 wax and calcium chloride are then added. The desensitizer wax, also known as Composition D-2, consists of 84% paraffin and other waxes, 14% nitrocellulose and 2% lecithin. The mixture is cooled from approximately 95° to 100° C to a temperature considered suitable for casting (the lowest practicable pour temperature). HBX can also be made by adding the calculated amount of TNT to Composition B to obtain the desired proportion of RDX/TNT. The appropriate weights of the other ingredients are added to complete the mixture.

Origin:

Developed during World War II, as relatively insensitive mixtures, by adding 5% desensitizer to Torpex II, for high blast explosive applications.

- (a) O. E. Sheffield, <u>Blast Properties of Explosives Containing Aluminum or Other Metal</u> Additives, PATR No. 2353, November 1956.
- (b) S. D. Stein, G. J. Horvat and O. E. Sheffield, <u>Some Properties and Characteristics</u> of HBX-1, HBX-3 and H-6, PATR No. 2431, June 1957.
- (c) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo. 10,303, 15 June 1949.
- (d) S. R. Walton, Report on the Program to Develop an Improved HBX-Type Explosive, NAVORD Report No. 1502, 26 July 1950.
- (e) A. W. O'Brien, Jr., C. W. Plummer, R. P. Woodburn and V. Philipchuk, <u>Detonation</u> Velocity Determinations and Fragment Velocity <u>Determinations</u> of Varied Explosive Systems and Conditions, National Northern Corporation Final Summary Report NNC-F-13, February 1958 (Contract DAT-19-020-501-ORD-(P)-58).
- (f) Also see the following Picatinny Arsenal Technical Reports on HBX Explosives: 1756, 2138, 2169.

³⁴See footnote 1, page 10.

	Molecular Weight:	47.6
32	Oxygen Balance:	
), Q		-42 -34
40		
16	Density: gm/cc Apparent Pressed at 20,000 psi	1.39 2.1
4	Melting Point: °C	
	Freezing Point: °C	
	Boiling Point: °C	
	Refractive Index. nº	
16		
24	1	
		
	Vacuum Stability Test:	
Detonates	cc/40 Hrs, at	
Unaffected		
		1.25
	150°C	
	200 Gram Bomb Sand Test:	
	Sand, gm	12.5
	Sensitivity to Initiation:	
	Minimum Detonating Charge, gm	
	Mercury Fulminate	
	Lead Azide	0.20
	Tetryl	0.25
	Rellistic Mortar % TNT:	·····
		
	•	
	l l	
None		<u>.</u>
None		
	_	
None	Rate, meters/second	
	16 14 Detonates Unaffected 0.15 0.00 None	16 16 19 19

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Ste Hole Volume Hole Depth	el Cones	
Total No. of Fragments: For TNT	Color:	Gray	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: HE filler for projectiles	small caliber	
Total No. of Fragments: For TNT	Method of Loading:	Pressed	
For Subject HE Fragment Velocity: ft/sec	Loading Density: gm/cc Pressed at 20,000 psi	2.1	
At 9 ft At 25½ ft Density, gm/cc	Storage:		
	Method Hazard Class (Quantity-Distance	Dry	
Blast (Relative to TNT):	Fluzura Class (Quantity-Distance	,	
Air: Peak Pressure Impulse	Compatibility Group Exudation	Non e	
Energy	Static Tests:		
Air, Confined: Impulse Under Water:	20 mm T215El Projectile: PA Peak Pressure, psi NFOC 20" Blast Cube APG 24" Blast Cube	55 44 44	
Peak Pressure Impulse	Static Tests: 20 mm M97 Projectile:		
Energy Underground: Peak Pressure	Foxboro psi 19 Catenary psi 46 Duration, microsec 533	Tritonal Torpex 12.4 13.0	
Impulse Energy	APG 24" Blast Cube 36 Heat of:	24 32	
Flame Temperature, OK 2552 Activation Energy, kcal 20.4 Temp, OC 450 to 570 Specific reaction rate, k 1.64 x 10 ⁻⁵	Combustion, cal/gm Explosion, cal/gm Gas volume, cc/gm	4197 1858 159	

Composition:	Molecular Weight:	47.6
% Potassium Perchlorate 32 (17 microns) Aluminum, flaked (1 micron) 48	Oxygen Balance: CO ₂ % CO %	-42 -34
RDX (through 325 mesh) 16 Asphaltum (through 100 mesh) 4	Density: gm/cc Apparent Pressed at 20,000 psi	0.69 1.62
	Melting Point: °C	
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, n20	
Picatinny Arsenal Apparatus, in.	n ₂₅ ^D	
Sample Wt, mg	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Partially detonates	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	
Rifle Bullet Impact Test: Trials	- 100°C	1.52
%	120°C	
Explosions	135°C 150°C	
Partials	150°C	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	23.7
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1 5 545	Mercury Fulminate	
	Lead Azide	0.20
10 15	Tetryl	0.25
20	Ballistic Mortar, % TNT:	
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:	
70 LOSS III 40 1 II S	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
	Detonation Rate:	
Flammability Index:	Confinement	
	Condition	
Hygroscopicity: %	Charge Diameter, in.	
V L ch	Density, gm/cc	
Volatility:	Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color: Gray		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: HE filler for small caliber projectiles		
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed	1	
Fragment Velocity: ft/sec	Loading Density: gm/cc Pressed at 20,000 psi 1.62		
At 9 ft At 25½ ft Density, gm/cc	Storage: Method Dry		
Blast (Relative to TNT);	Hazard Class (Quantity-Distance)		
Air: Peak Pressure Impulse	Compatibility Group Exudation None		
Energy Air, Confined: Impulse Under Water:	Static Tests: 20 mm T215El Projectile: PA Peak Pressure, psi 77 NFOC 20" Blast Cube 45 APG 24" Blast Cube 42		
Peak Pressure Impulse Energy	Static Tests: 20 mm M97 Projectile: HEX-48 INT Tet Fosboro psi 17.3 2.8 3. Catenary psi 43 28 28		
Underground: Peak Pressure Impulse Energy Flame Temperature, OK 2382	APG 24" Blast Cube 29 10 Heat of: Combustion, cal/gm 4119	30)	
Temp, OC 450 to 470 Specific reaction rate, k 7.84 x 10	Explosion, cal/gm 1735 Gas Volume, cc/gm 200		

Cook-Off Tests: (c)

20 mm T215El HEX-48 Loaded Projectiles With Dye-Coated RDX Top-Off

Projectile No.	Cut-Off Temp. OC	Cook-Off
1	170	Yes (198)
2	150	No
3	155	Yes (190)
4	150 to 175	No

National Northern Projectile Load:

MOX-2B (no top-off)	195
MOX-2B (Tetryl top-off)	150
MOX-2B (97/3, RDX/wax top-off)	175
MOX-2 (no top-off)	175

Fragment Penetration Tests: (c)

				of Penetra in Zone 65	
Projectile	Filler	Altitude, Feet	0.020"	0.040"	0.051"
T215E1	HEX-48	Ground	352	264	282
	;	60,000	676	432	388
T282E1	MOX-2B	Ground	634	290	235
	i i	60,000	807	367	250
EX8 Mod 0	MOX-2B	Ground	476	268	224
		60,000	672	264	256

The fragment penetration test records numbers of complete penetrations of aluminum panels of various thicknesses at 2.5 feet from the static detonation. The total penetrations recorded on the 24ST-3 aluminum panels occurred with the projectile nose always pointed toward C^{O} and the base toward 180^{O} .

The test data indicate that on the thicker panels, 0.040" and 0.051," the HEX-48 loaded T215El projectile produced more complete fragment penetrations at ground and altitude than MOX-2B loaded T282El and EX8 Mod 0 projectiles.

HEX-24; HEX-48

Preparation:

The HEX compositions were prepared by blending the appropriate weight of the dry ingredients in a Patterson-Kelly twin-shell blender for at least 30 minutes.

An alternate procedure for 100 to 200 gram batches used a "Cradle-Roll" mixing device. This device consisted of a half-barrel type container constructed of wood and lined with an electrical conductive material. A plastic roll was allowed to move over the ingredients by remote control action of the container. The roll action prevented caking of the mix but had no adverse effect on the particle size of the ingredients. The period of time required to obtained a uniform and intimate mixture was approximately fifteen minutes.

Origin:

The development of "slow-burning" explosive mixtures which would produce increased blast effects in enclosed or nearly enclosed spaces directed attention to their use for possible military application. In 1950 Picatinny Arsenal developed a high capacity filler for 20mm projectiles consisting of 85/10/5 RDX/aluminum/desensitizer which was more powerful than standard tetryl filler. However, in comparison with MOX type explosives, there was little doubt as to the superior performance of the MOX mixture. HEX (high energy explosive) mixtures were developed at Picatinny Arsenal in 1953 (Ref a) as superior high blast compositions suitable for use in small caliber projectiles.

- (a) O. E. Sheffield and E. J. Murray, <u>Development of Explosives—Metallized Explosives—High Blast Fillers for Small Caliber Shell</u>, <u>Picatinny Arsenal Memorandum Report No. MR-49</u>, 21 <u>December 1953</u>.
- (b) O. E. Sheffield, <u>Properties of MOX-Type Explosive Mixtures</u>, PATR No. 2205, October 1955.
- (c) National Northern Corporation, Letter from Dr. C. M. Saffer, Jr., to Commanding Officer, Picatinny Arsenal, 12 June 1957.

³⁵See footnote 1, page 10.

Composition:	Molecular Weight: $({ t C}_{1}{ t \mu}{ t H}_6{ t N}_8{ t O}_{1}{ t \mu})$
%	Oxygen Balance: CO:: % -53.4
H 1.2 NH NH	CO ₂ % -53.4 CO % - 9.4
N 21.9 0 ₂ N 10 ₂ 0 ₂ N N0 ₂	Density: gm/cc
0 43.9	Melting Point: °C Decomposes 302
C/H Ratio 0.797 NO ₂ NO ₂	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C
Sample Wt 20 mg	Refractive Index, no
Picatinny Arsenal Apparatus, in. 15 Sample Wt, mg 12	n ₂₅ ^D
Sample VVI, mg	n ₃₀
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Unaffected	cc/40 Hrs, at
Fiber Shoe Unaffected	90°C 100°C
Rifle Bullet Impact Test: Trials	100°C 0.40
%	135°C
Explosions	150°C
Partials	130 G
Burned	200 Gram Bomb Sand Test:
Unaffected	Sand, gm 52.1
Explosion Temperature: °C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonating Charge, gm
1	Mercury Fulminate
5 384	Lead Azide 0.30
10	Tetryl 0.25
15	But at Ad a C/ Thirt.
20	Ballistic Mortar, % TNT:
75°C International Heat Test:	Trauzi Test, % TNT:
% Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs 0.07	Confined
% Loss, 2nd 48 Hrs 0.05	Density, gm/cc
Explosion in 100 Hrs None	Brisance, % TNT
	Detonation Rate:
Flammability Index:	Confinement
	Condition
Hygroscopicity: % 25°C, 90% RH 0.19	Charge Diameter, in.
W L allia	Density, gm/cc
Volatility:	Rate, meters/second

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color: Almost white		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Igniter powder; pyrotechnic compositions		
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed and extruded		
For Subject FIE	Loading Density: gm/cc		
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:		
Density, gm/cc	Method Dry		
Blast (Relative to TNT):	Hozard Class (Quantity-Distance) Class 9		
Air: Peak Pressure	Compatibility Group		
Impulse Energy	Exudation None		
Air, Confined: Impulse			
Under Water: Peak Pressure			
Impulse Energy			
Underground: Peak Pressure			
Impulse Energy			

Solubility in the following substances:

Solvent

Nitrobenzene $\langle 3 \text{ gm in } 100 \text{ cc}, \text{ at } 23^{\circ}\text{C} \sim 5 \text{ gm in } 100 \text{ cc}, \text{ at } 210^{\circ}\text{C}$

Water 0.10 gm in 100 cc, at 100°C

Alcohol (Ethyl) Insoluble Insoluble Acetone Benzene Insoluble Insoluble Butyl acetate Carbon tetrachloride Insoluble Dimethylformamide Very soluble Ether (Ethyl) Insoluble Acetic Acid Insoluble Nitric Acid Soluble

Crystalline form Long rectangular glistening plates from nitrobenzene

Preparation:

To prepare hexanitro-oxanilide, first prepare tetranitro-oxanilide as described herein under the entry "2,4,2',4'-Tetranitro-oxanilide (TNO)."

A 1.5 liter round bottom flask is equipped with a stirrer of the type which causes a downward swirl. The flask is jacketed for hot and cold water. 187 grams of nitric acid of specific gravity 1.49 (commercial grade) is placed into the flask and 100 grams of sulphuric acid is added to the nitric acid under agitation. The mixed acid is cooled to 10°C. 29.2 grams of tetranitro-oxanilide is slowly added to the mixed acid under rapid agitation maintaining the temperature at 8°-10°C. After the addition of the TNO is completed (approximately 25 minutes) the temperature is raised to 85°C over a period of 2 hours and held at 85°-90°C for one hour. The hexanitro-oxanilide (HNO) "slurry" is filtered on a Buchner funnel and purified as explained under "Tetranitro-oxanilide."

Origin:

A. G. Perkin in 1892 obtained hexanitro-oxanilide directly by heating to boiling a solution of tetranitro-oxanilide in a mixture of sulfuric and nitric acids. He also prepared the same compound from oxanilide by the action of a boiling mixture of fuming nitric and sulfuric acids (J Chem Soc $\underline{61}$, 462 (1892)).

- (a) L. Gowen and R. Dwiggens, Case Gun Ignition Studies, NAVORD Report No. 2321, 13 June 1952.
- (b) D. Dubrow and J. Kristal, Substitution of Tetranitro Oxanilide and Hexanitro Oxanilide for Tetranitro Carbazole, PA Pyrotechnic Research Laboratory Report 54-TF1-88, 20 December 1954.
- (c) S. Livingston, <u>Preparation of Tetranitro Carbazole</u>, PA Chemical Research Laboratory Report 136,330, ll April 1951.
 - (d) S. Livingston, Development of Improved Ignition Type Powders, PATR No. 2267, July 1956.

³⁶See footnote 1, page 10.

Composition:	Molecular Weight: (C ₄ H ₈ N ₈ 0	₃) 296
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Oxygen Balance: CO ₂ % CO %	-21.6 0.0
H 2.7 H ₂ C CH ₁₂		
$N \qquad 37.9 \qquad {}^{\circ}2^{N-N} \qquad \dot{N}-N{}^{\circ}2$	Density: gm/cc Crystal	1.90
o 43.2 CH ₂	Melting Point: °C Capillary Koffer Micro Hot	method 273 Stage 280
C/H Ratio 0.095	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 32	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 9	Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus, in. 9 Sample Wt, mg 23	n ₂₅	
	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Explodes	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	0.07
Rifle Bullet Impact Test: Trials	100°C	0.37
%	120°C	0.45
Explosions	135°C	
Partials	150°C	0.62
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	60.4
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 380	Minimum Detonating Charge,	gm
1	Mercury Fulminate	
5 327	Lead Azide	0.30
10 306	Tetryl	
15 20	Ballistic Mortar, % TNT:	150
	Trauzi Test, % TNT:	145
75°C International Heat Test:	Plate Dent Test:	-
% Loss in 48 Hrs	Method	
100°C Heat Test:	 Condition	
% Loss, 1st 48 Hrs 0.05	Confined	
% Loss, 2nd 48 Hrs 0.03	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
Explosion in 100 ths Notte	Determine B-4-	
Flammability Index:	Detonation Rate: Confinement	
	Condition	
Hygroscopicity: %	Charge Diameter, in.	
30°C, 95% RH (c) 0.00	Density, gm/cc	1.84
Volatility:	,, 3,	

beta-HMX

Booster Sensitivity Test:			Decomposition Equation:	(e) 10 ¹ 9.7
Condition			Oxygen, atoms/sec (Z/sec)	10-7-1
Tetryl, gm			Heat, kilocalorie/mole	52.7
Wax, in. for 50% Det	onation		(ΔH, kcal/mol)	
Wax, gm			Temperature Range, °C	271-314
Density, gm/cc			Phase	Liquid
Heat of:		2362	Armor Plate Impact Test:	· · · · · · · · · · · · · · · · · · ·
Combustion, cal/gm	(e)	1356		
Explosion, cal/gm		1350	60 mm Mortar Projectile:	
Gas Volume, cc/gm	(e)	-60.5	50% Inert, Velocity, ft/sec	
Formation, cal/gm	(e)	-00.5	Aluminum Fineness	
Fusion, cal/gm			500-lb General Purpose Bomb	••
Specific Heat: cal/gm/°(Recry	stallized	g)	•
oc	<u>°c</u>		Plate Thickness, inches	
-75 0.153	85	0.288	, , , , , , ,	
0 0.228	90	0.290	1	
25 0.248	100	0.295	11/4	
50	125 150	0.307 0.315	1½	
1) 0.202	100	0.273	134	
Burning Rate:				
cm/sec			Bomb Drop Test:	
Thermal Conductivity: cal/sec/cm/°C			T7, 2000-lb Semi-Armor-Piero	ing Bomb vs Concrete:
Coefficient of Expansion:			Max Safe Drop, ft	
Linear, %/°C			500-lb General Purpose Bomb	vs Concrete:
Volume, %/°C			Height, ft	
·	, ,		Trials	
Hardness, Mohs' Scale:	(e)	2.3	Unaffected	
			Low Order	
Young's Modulus:			High Order	
E', dynes/cm²			_	
E, Ib/inch²			1000-lb General Purpose Bom	b vs Concrete:
Density, gm/cc				
	/: I 9		Height, ft	
Compressive Strength: Ib,	rinch²		Trials	
			Unaffected	
Vapor Pressure:			Low Order	
°C m	m Mercury		High Order	

Two men are required to regulate the addition of reagents and control the temperature during the initial stage addition; one man can complete the procedure. A 1-liter 5-necked flask is used, the center neck for an efficient stirrer, one side neck for a thermometer, and the other necks for burrettes and a gas outlet (to water trap). The flask is placed in a pan with steam and cold water inlets, for temperature control.

Five cc of acetic anhydride and 250 cc glacial acetic acid are poured into the flask and the temperature brought to $45 \pm 1^{\circ}\text{C}$, and held there for the duration of the entire reaction. The reagents (a solution of 33.6 gm hexamine in 55 gm of glacial acetic acid, 100 cc of acetic anhydride and 40 cc of a solution of 42.3/57.7-ammonium nitrate/98% nitric acid) are then added simultaneously, continuously and equivalently over a 25-minute period. The reaction mixture is aged 15 minutes.

The second stage reagents (60 cc of 42.3/57.7, ammonium nitrate/98% nitric acid and 150 cc acetic anhydride) are then added simultaneously, continuously and equivalently over a 25-minute period. The mixture is aged 65 minutes, poured into 1.5 liter of water and simmered on a steam bath for 12 hours. Cool, filter and dry the RDX-HMX precipitate (yield 73% HMX).

The RDX is destroyed, leaving HMX, as follows: 1025 gm of the crude product are placed in a solution of 15 gm sodium tetraborate decahydrate in 5 liters of water, heated to boiling with agitation, and 5 N NaOH added at the rate of 3 cc/min. When about 730 cc have been added the pH increases sharply from a little over 8.7 to over 9.7 which corresponds to complete destruction of the RDX. Filter the HMX from the hot mixture; yield 612 gm, mp 279.5°-280.5°C. Recrystallization from nitromethane yields material melting at 281°-282°C.

Origin:

Was discovered as an impurity (by-product) in the nitration of hexamethylene-tetramine to form RDX. It is now manufactured directly by the process described above and has valuable use in explosive systems.

Removal of RDX from HMX-RDX Mixtures and Recovery of a RDX-HMX Mixture (This procedure appears suitable for use with mixtures containing 80% or more HMX):

beta-HMX

Procedure:

500 grams of HMX containing 12.25% RDX are placed in a 1500 cc beaker, 500 cc of acetone is added and the slurry is agitated for several minutes at room temperature. Before complete settling, the RDX-HMX-acetone solution is decanted.

To the residual HMX-RDX, another 500 cc of acetone is added. The slurry is heated on the steambath and while boiling, agitated for several minutes. The boiling RDX-HMX-acetone solution is decanted. The residual HMX is now washed with cold acetone into a funnel. This HMX is now taken up in 95% alcohol, filtered and dried. Yield 353.9 gm or 70.78%.

All the acetone extracts are combined and evaporated to dryness. Yield 137.5 gm or 26.5%.

Yield Balance:

Pure HMX obtained - 353.9 gm	70.78%
Total RDX-HMX mixture recovered - 137.5 gm	26.50%
Samples taken during process - 2.4 gm	0.48%
Loss during process	2.24%
Total	100.00%

Various samples were analyzed for RXD content:

1.	Crude	HMX	12.25% RDX
2.	After	first acetone washing	6.0% RDX
3.	After	second acetone washing	2.0% RDX
4.	After	third acetone washing	0.0% RDX
RDX	-HMX sa	ample recovered	54.5% RDX

Preparation of Fine Particle-size HMX by the Aspirator Method:

- 1. Dissolve 1100 gm HMX in 4400 cc of dimethyl sulfoxide.
- 2. Filter the HMX solution.
- 3. Connect a clean aspirator to the water line.4. Place a 55 gallon clean drum under the aspirator.
- 5. Fasten a polyethylene tubing, long enough to reach easily to the bottom of the HMXdimethyl sulfoxide container, to the side intake of the aspirator.
- 6. Fasten to the bottom of the aspirator another polyethylene tube long enough to reach to the bottom of the 55 gallon drum.
- 7. Open the water faucet and then place the polyethylene tube in the HMX container.
- 8. White milky fine HMX separates out in the drum. Total duration of run is approximately 7 minutes.
- 9. After all the HMX solution is sucked out of the container, the water is turned off.
- 10. The material is filtered and water washed.
- 11. If dry HMX is required, the material can be alcohol and ether washed.

A more efficient method to recover the RDX-HMX mixture:

- 1. Filter the combined hot acetone extracts.
- 2. Pour while agitating the filtered extracts into at least 4 times its volume of water.
- 3. Filter and dry, etc.

Color:

White

Storage:

Method Dry

Hazard Class (Quantity-Distance) Class 9

Compatibility Group Group L (dry)
Group M (wet)

Exudation None

References: 37

- (a) 0. E. Sheffield, E. J. Murray, A. L. Rosen and B. W. Kanouse, <u>Properties of HMX</u>, PA Chemical Research Laboratory Report No. 52-TM1-23, 7 April 1952.
 - (b) W. E. Bachmann, The Preparation of HMX, OSRD Report No. 1981, 3 November 1943.
- (c) S. Livingston, Characteristics of Explosives HMX and DPEHN, PATR No. 1561, 6 September 1945.
- (d) R. J. Finkelstein and G. Gamow, Theory of the Detonation Process, NAVORD Report No. 90-46, 20 April 1947.
 - (e) O. H. Johnson, HMX as a Military Explosive, NAVORD Report No. 4371, 1 October 1956.
 - (f) Also see the following Picatinny Arsenal Technical Reports on HMX:

<u>1</u>	<u>3</u>	<u>6</u>	7	2
1741	2183	2016	1737	1709 2059

(g) C. Lenchitz, W. Beach and R. Valicky, Enthalpy Changes, Heat of Fusion and Specific Heat of Basic Explosives, PATR No. 2504, January 1959.

³⁷See footnote 1, page 10.

Composition: %		Molecular Weight:	91
HMX	49	Oxygen Balance:	. 57
TNT	29	CO ₂ % CO %	-51 -27
	-	Density: gm/cc Cast	1.90
Aluminum	22		1.90
		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	17	Refractive Index, no	
Sample Wt, mg	25	n ₂₅	
· -		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Un affected	90°C	
Rifle Rullet Impact Tests 10 Tricle of		— 100°C	
Rifle Bullet Impact Test: 10 Trials , % 3/16" Stee1	1/8" A <u>1</u>	120°C	0.37
Explosions 90	50 AT	135°C	
Partials		150°C	
Burned 10		200 C P S T	
	 FO	200 Gram Bomb Sand Test:	61.3
Unaffected 0	50	Sand, gm	01.3
Explosion Temperature:	°c	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
J	270	Mercury Fulminate	
5 Flames erratically	370	Lead Azide	0.30
10		Tetryl	
15		Ballistic Mortar, % TNT:	120
20			120
75°C International Heat Test:		Trauzi Test, % TNT:	
% Loss in 48 Hrs		Plate Dent Test:	
<u></u>		Method Continue	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisance, % TNT	
Pl Little I I		Detonation Rate:	_
Flammability Index:		Confinement	None
Liverage in the Column		— Condition	Cast
Hygroscopicity: %		Charge Diameter, in.	1.0
Valatilita		Density, gm/cc	1.90
Volatility:		Rate, meters/second	7866

Booster Sensitivity Test:		Decomposition Equation:	
Condition		Oxygen, atoms/sec (Z/sec)	
Tetryl, gm		Heat, kilocalorie/mole	
Wax, in. for 50% Detonation		(ΔH, kcal/mol)	
Wax, gm		Temperature Range, °C	
Density, gm/cc		Phase	
Heat of:		Armor Plate Impact Test:	
Combustion, cal/gm	3687	Administration of the second	
Explosion, cal/gm	1190	60 mm Mortar Projectile:	
Gas Volume, cc/gm	680	50% Inert, Velocity, ft/sec	
Formation, cal/gm		Aluminum Fineness	
Fusion, cal/gm		500-lb General Purpose Bombs:	
Specific Heat: cal/gm/°C		300-ib General Furpose bumbs:	
32° to 74°C	0.245	Plate Thickness, inches	
		1	
		11/4	
		11/2	
Burning Rate:		7	
cm/sec		Bomb Drop Test:	
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-lb Semi-Armor-Piercing Bor	nb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft	
Linear, %/°C		500-lb General Purpose Bomb vs Cor	ncrete:
Volume, %/°C		Height, ft	
		Trials	
Hardness, Mohs' Scale:		Unaffected	
		Low Order	
Young's Modulus:		High Order	
E', dynes/cm²		i ligit Older	
E, lb/inch²		1000-lb General Purpose Bomb vs Co	ncrete:
Density, gm/cc			
		— Height, ft	
Compressive Strength: Ib/inch ²	2260	Trials	
	See below	Unaffected	
Vapor Pressure:		Low Order	
°C mm Mercury		High Order	
Compressive Strength: lb/inch	*		
	2260	Ultimate Deformation: %	
Average (10 tests)			
Average (10 tests) High Low	25 3 0 1910	Average (10 tests)	2.81 3.22

^{*} Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color:	Gray	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: HE projectile and bomb	filler	
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Cast	
Fragment Velocity: ft/sec	Loading Density: gm/cc	1.90	
At 9 ft At 25½ ft Density, gm/cc	Storage:		
Density, griffee	Method	Dry	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group I	
Air, Confined: Impulse Under Water:	Work to Produce Rupture: ft-lb/inch ³ Average (10 tests) 2.7 High 3.3 Low 2.4	7	
Peak Pressure Impulse Energy	Efflux Viscosity, Saybolt Seconds:	24.8	
Underground: Peak Pressure Impulse Energy			
	*Test specimen 1/2" x 1/2" cylinder mately 3 gm) pressed at 3 tons (6,0 total load or 30,000 psi with a 2 m time of dwell.	00 lb)	

Modulus of Elasticity: *

	lb/inch ²	
Average	89,200	
High	97,400	Section Spinster
Low	76,300	-

^{*} Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Setback Sensitivity Test: (a)

Critical Pressure	119,000 psi *
Density, gm/cc	1.92

^{*} Pressure below which no initiation is obtained and above which an increasing percentage of initiations can be expected as the setback pressure increases.

Preparation:

Procedure similar to that used for Torpex.

- (a) 1st Indorsement from Chief, Explosives Development Section, to Chief, Explosives Research Section, Picatinny Arsenal, dated 12 May 1958. Subject: "Properties of Octols and HTA-3."
- (b) R. Brown and R. Velicky, <u>Heat Capacity of HTA-3</u>, Picatinny Arsenal General Laboratory Report No. 58-H1-509, 5 May 1958.

³⁸See footnote 1, page 10.

AMCP 706-177

Lead Azide

	T	
Composition:	Molecular Weight: (PbN ₆) 291	
n 28.8 n=n-rb-n=n=n	Oxygen Balance: CO ₂ % -5.5 CO % -5.5	
Pb 71.2	Density: gm/cc Crystal 4.80 Dextrinated 4.38	
	Melting Point: °C Decomposes	
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Pure Dextrinated Bureau of Mines Apparatus, cm 10 17	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, n20	
Picatinny Arsenal Apparatus, in. 3 5 Sample Wt, mg 30 28	n ₂₅	
	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test: Dextrinated	
Steel Shoe Explodes	cc/40 Hrs, at 90°C	
Fiber Shoe Explodes	- 100°C 1.0	
Rifle Bullet Impact Test: Trials	120°C 0.07	
%	135°C	
Explosions	150°C	
Partials		
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand am Black powder fuse 19.0	
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 396	Minimum Detonating Charge, gm	
1 356 5 Explodes 340	Mercury Fulminate	
	Lead Azide	
33)	Tetryl	
15 335 20 335	Ballistic Mortar, % TNT:	
	Trauzi Test, % TNT: (a) 39	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	- Condition	
% Loss, 1st 48 Hrs 0.34	Confined	
% Loss, 2nd 48 Hrs 0.05	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
	- Detonation Rate: Pure Lead Azide	
Flammability Index:	Confinement	
Hyprocenicity % Dextrinated Not Dextrinated	- Condition Pressed	
Hygroscopicity: % Dextrinated 0.8 Not Dextrinated 0.03	Charge Diameter, in.	
Volatility:	Density, gm/cc 2.0 3.0 4.0	
	Rate, meters/second 4070 4630 5180	

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones S Hole Volume Hole Depth	iteel Cones	
Total No. of Fragments: For TNT	Color:	White-buff	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Detonators, pand commercia	oriming compositions,	
Total No. of Fragments: For TNT	Method of Loading:	Pressed	
For Subject HE	3 5 10	x 10 ³	
Fragment Velocity: ft/sec At 9 ft At 25½ ft	2.62 2.71 2.96 Storage:	3.07	
Density, gm/cc	Method	Wet	
Blast (Relative to TNT):	Hazard Class (Quantity-Distan	ce) Class 9	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group M (wet) None	
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy	Compatibility with Metals: Dry lead azide does not react with or corrode steel, iron, nickel, aluminum, lead, zinc, copper, tin or cadmium. It does not affect coatings of acid-proof black paint, oil, NRC compound or shellac. Lead azide the presence of moisture corrodes zinc and copper; and with copper, it forms the extra ly sensitive and dangerous copper azide.		
Underground: Peak Pressure Impulse Energy Heat of: Combustion, cal/gm 630 Explosion, cal/gm 367	Specific Heat: cal/gm/°C °C -50 0 25 50	0.110 0.110 0.110 0.110	
Gas Volume, cc/gm 308 Formation, cal/gm -346	Thermal Conductivity: cal/sec/cm/°C (Pure)	1.55 x 10 ⁻⁴	

Lead Azide

Compatibility with Metals:

<u>Dry:</u> Steel, iron, nickel, aluminum, lead, zinc, copper, tin, stainless steel, brass and bronze were unaffected by six years' contact with dry lead azide at ambient temperature and 50°C. Monel, chrome-nickel and Inconel were unaffected under the same conditions in two and one-half years.

Wet: Copper and zinc are rapidly attacked by moist lead azide, while aluminum is not attacked in 24 hours. Monel, chrome-nickel and Inconel are not attacked by lead azide (½% moisture) after 29 months' exposure at ambient temperature and 50°C, and J-1 magnesium-aluminum alloy is very slightly corroded.

Sample Tested Friction Pendulum Tes	Lead Azide Dry	P	Azide lus Water	Lead A plu 20% Wa	s	Lead Azide plus 20% Ethyl Alco- hol (95%)
(All LA dextrinated)						
Shoe	Fiber	Fiber	Steel	Fiber	Steel	Fiber
No. of Trials Explosions Cracklings Unaffected	1 1 0	10 0 0 10	12 0 2 10	10 0 0 10	4 1 2 1	1 1 0 0
Impact Sensitivity, 2	Kg Wt:					
(All IA dextrinated)						
PA Apparatus, inch	nes 4	9)		9	4
Activation Energy: (e)					
Kcal/mole Induction Period,	seconds	23.74 0.5-10				
Initiating Efficiency	y, Grams Re	quired to Gi	ve Comple	te Initiat	ions of:	
		Dextrinat	ed Azide	(gm)		
INT Tetryl RDX PEIN			0.25 0.10 0.05 0.02			

0.0070

Sensitivity to Static Discharge, Joules (Pure Lead Azide) (b)

Lead Azide

Compatibility of Dextrinated Lead Azide with Black Powder: 100°C Vacuum Stability Test, cc/40 hr:

Sample Wt (gm)	Material	cc
1.0	Lead Azide	0.50
1.0	Black Powder	0.38
2.0	50/50, Lead Azide/Black Powder	1.26

Solubility of Pure Lead Azide; gm/100 gm of Water:

<u>°C</u>	<u> %</u>
20	0.05

Preparation of Lead Azide (Dextrinated): (du Pont procedure)

2 Na - N = N = N + Pb
$$(NO_3)_2 \rightarrow Pb(N_3)_2 + 2 NaNO_3$$

Lead nitrate solution: This is prepared by dissolving 164 lbs lead nitrate and 8.25 lbs dextrine in deionized water, the solution allowed to settle, and sodium hydroxide added to bring the solution to a pH of 5.4. The final concentration of the solution is then adjusted to 7.4% lead nitrate, 0.375% dextrine by addition of deionized water.

The lead azide is precipitated at a solution temperature of 160°F, using 60 parts lead nitrate and 50 parts sodium azide solution. The latter is added to the former in 23 minutes, under agitation (no baffles are used in the precipitation vessel), the mixture cooled to room temperature in 12 minutes, and allowed to settle 10 minutes. The mother liquor is decanted and the remaining slurry washed before packing.

Origin:

First prepared in 1891 by T. Curtius (Ber 24, 3345-6) by adding lead acetate to a solution of sodium or ammonium azide. F. Hyronimus (French Patent 384,792) should be credited with the first attempt in 1907 to use lead azide with some success in the explosive industry. Its commercial manufacture started in Europe before World War II and in the United States since 1931 as military or commercial grade "dextrinated" lead azide.

Destruction by Chemical Decomposition:

Lead azide can be decomposed by

- (1) mixing with at least five times its weight of a 10% solution of sodium hydroxide and allowing the mixture to stand for 16 hours. Decant the supernatant solution of sodium azide and drain into the soil.
- (2) dissolving in a 10% solution of ammonium acetate and adding a 10% solution of sodium or potassium bichromate until no more lead chromate is precipitated.
- (3) wetting with 500 times its weight of water, slowly adding 12 times its weight of 25% sodium mitrite, stirring, and then adding 14 times its weight of 36% nitric or glacial acetic acid. A red color produced by the addition of ferric chloride solution indicates Lead Azide is still present.

Lead Azide

(4) dissolving in 50 times its weight of 15% ceric ammonium nitrate. The azide is decomposed with the evolution of nitrogen.

- (a) Ph. Naoum, Z ges Schiess Sprengstoffw, 181, 229, 267 (27 June 1932).
- (b) F. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by <u>Electrostatic Discharges</u>, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.
- (c) C. Lenchitz, <u>Ice Calorimeter Determination of Enthalpy and Specific Heat of Eleven Organometallic Compounds</u>, PATR #2224, November 1955.
 - (d) Also see the following Picatinny Arsenal Technical Reports on Lead Azide:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	<u>9</u>
550 580 600 760 1450	561 861 1451 1651	832 852 882 932 1132 1152 1352	393 1393 1493 2093 2133	534 784 824 944 2164 2204	255 525 1325 1485	326 856 866 1316 1486 1556	567 637 657 707 1737 2227	628 708 748 788 838 1388 1528 1838 2198	609 719 749 769 849 999 2179

³⁹See footnote 1, page 10.

Composition:	Molecular Weight: (PbC6H2N2O6) 405
% C 17.8 H 0.5 N 6.9 N 0 ₂	Oxygen Balance: CO ₂ % -32 CO % - 8
0 23.7 Pb 51.1	Density: gm/cc Crystal 3.2
	Melting Point: °C
C/H Ratio 0.549	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 1 kg wt 30	Boiling Point: °C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg 20	Refractive Index, n_{20}^D n_{25}^D n_{30}^D
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C
Rifle Bullet Impact Test: Trials % Explosions Partials	- 100°C 120°C (73 minutes) Explodes 135°C 150°C
Burned Unaffected	200 Gram Bomb Sand Test: Sand am Black powder fuse 20
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Explodes 265 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:
	Trauzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs 100°C Heat Test:	Plate Dent Test: Method Condition Confined
% Loss, 1st 48 Hrs 0.20 % Loss, 2nd 48 Hrs 0.02	Density, gm/cc
Explosion in 100 Hrs None	Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: % 30°C, 90% RH 0.73	Condition Charge Diameter, in.
Volatility:	Density, gm/cc Rate, meters/second

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$	Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Hole Volume Hole Depth	Cones		
Total No. of Fragments: For TNT	Color: Red	or yellow		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Electric	detonators		
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Pressed		
Fragment Velocity: ft/sec	Loading Density: gm/cc			
At 9 ft At 25½ ft Density, gm/cc	Storage: Method	Wet		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9		
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	None		
Air, Confined: Impulse	Initiating Efficiency: 0.4 gm initiate tetryl pressed at	LDNR does not 3000 psi.		
Under Water: Peak Pressure Impulse Energy	Heat of: Explosion, cal/gm	270		
Underground: Peak Pressure Impulse Energy				

$$\begin{array}{c|c}
 & \text{OH} \\
 & \text{NO}_2 \\
 & \text{OH} \\
 & \text{NO}_2
\end{array}$$

$$\begin{array}{c|c}
 & \text{NO}_2 \\
 & \text{NO}_2
\end{array}$$

$$\begin{array}{c|c}
 & \text{Pb} + 2 \text{HNO}_3
\end{array}$$

To a solution of 5 grams of purified dinitroresorcin and 2.65 grams of anhydrous sodium carbonate in 500 cc of boiling water is added slowly a solution of 10 grams of lead nitrate dissolved in 60 cc of boiling water. The reaction mixture is constantly stirred during the addition of the lead salt and for about an hour afterward while the solution is allowed to cool to room temperature. The precipitate is filtered and washed thoroughly first with water and then with alcohol and ether. It is dried in a steam oven.

Origin:

2,4-dinitroresorcin was described in the 1881 edition of Beilstein (Beil VII, 885). The same compound was described in more detail by Weselsky, Benedikt and Hübl in 1882 (M II, 323). The lead salt of 2,4-dinitroresorcinol appears to have been prepared between World War I and World War II by treating resorcinol with nitrous acid and oxidizing the resulting dinitrosoresorcinol to dinitroresorcinol. Lead nitrate solution was then added to a solution of the 2,4-dinitroresorcinol to which sodium carbonate had been added to form the soluble sodium salt (J. D. Hopper, PATR No. 480, March 1934). The LDNR exists in two forms differing in physical characteristics but possessing similar explosive properties. These forms are red and orange in color (K. S. Warren, PATR 1448, September 1944).

References: 40

(a) See the following Picatinny Arsenal Technical Reports on Lead 2,4-Dinitroresorcinate:

<u>o</u>	<u>3</u>	<u>4</u>	<u>8</u>	<u>9</u>
480 580	453	1004	1328 1448	859 10 79

⁴⁰See footnote 1, page 10.

Composition:	Molecular Weight: (Pb2C6H4N2O8) 646
% 0—Pb—OH C 11.2 H 0.6 N 4.3	Oxygen Balance: CO ₂ % -20 CO % - 5
0 19.8 Pb 64.1	Density: gm/cc
Y NO ₂	Melting Point: °C 213
C/H Ratio 0.177	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 1 kg wt 60	Boiling Point: °C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg 20	Refractive Index, n ₂₀ n ₂₅ n ₅₀
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Fiber Shoe	cc/40 Hrs, at 90°C 100°C
Rifle Bullet Impact Test: Trials % Explosions	120°C 135°C 150°C
Partials	
Burned Unaffected	200 Gram Bomb Sand Test: Sand om Black powder fuse 15
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Explodes 295 10 15 20	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:
20	Trauzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs 0.4	Confined
% Loss, 2nd 48 Hrs 0.0	Density, gm/cc Brisance, % TNT
Explosion in 100 Hrs None	
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: %	Condition Charge Diameter, in.
Volotility:	Density, gm/cc Rate, meters/second

ragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 1	00:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel (Hole Volume Hole Depth	Cones
Total No. of Fragments: For TNT	Color: Red	or yellow
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc	Principal Uses: Electri	c detonators
Charge Wt, Ib Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Pressed
	Loading Density: gm/cc	
ragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method	Wet
last (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	None
Air, Confined: Impulse	Initiating Efficiency: 0.4 gm does not initiate tetryl pre	
Under Water: Peak Pressure Impulse Energy		
Underground: Peak Pressure		
Impulse Energy		

- (a) One hundred grams of pure resorcin is fused in a porcelain casserole and immediately poured on a glass plate. After cooling, the cake is ground in a mortar to pass a U. S. Standard No. 6 mesh screen. Four hundred grams of 98 percent nitric acid in a one pint capacity Dewar jar is stirred mechanically while carbon dioxide snow is added in small pieces. When the temperature falls to -20°C, 40 grams of the granulated resorcin is added in small quantities. Simultaneous addition of solid carbon dioxide as required prevents a rise of temperature of more than 5 degrees throughout the entire experiment. Five minutes after the last portion of resorcin is introduced, the mixture is further cooled to minus 50°C, and finally drowned with vigorous stirring in five times its volume of cracked ice, in water. This mixture is allowed to stand for one hour and the product then filtered, washed, and partially dried, weight 43.6 grams. The crude 4,6-DNR is purified by first dissolving the product in an aqueous 5 percent sodium hydroxide solution (17.4 grams of sodium hydroxide in 340 cc of water). The resulting solution is then neutralized by gradually adding it to a boiling solution of 21.4 grams of 98 percent sulphuric acid in 150 cc of water. The resulting precipitate of 4,6-DNR is filtered hot on a suction filter and air-dried. Yield, 27.5 grams (37.8 percent of the theoretical).
- (b) Five hundredths (0.05) mole (18.96 grams) of lead acetate is dissolved in 67 cc of warm water, into which is gradually stirred 0.10 mole (4.0 grams) of sodium hydroxide dissolved in 67 cc of water. Stirring is continued for five minutes. After settling, the white lead hydroxide is washed by decantation three times with 100 cc portions of distilled water, and used immediately for the next operation.
- (c) A 0.0278 mole (5.56 grams) quantity of the 4,6-DNR prepared under (a) above, is dispersed in 270 cc of water by vigorously beating with a motor stirrer. After heating this dispersion to 90°C, the 0.05 mole of lead hydroxide prepared above in slurry form is introduced in small portions. Agitation is continued for three hours at 90°C. The basic lead 4,6-DNR is washed once by decantation, and again on the filter with alcohol. After drying overnight in a desiccator charged with calcium chloride, the product weighs 15.6 grams.

Origin:

Both the 2,4- and 4,6-dinitroresorcin were described in some detail by Weselsky, Benedikt and Hübl in 1882 (M II, 323). Typke prepared the 4,6-dinitroresorcin in 1883 by hydrolyzing the nitration product of resorcin diacetate (Ber 16, 551). A more direct and economical method of preparation suitable for production scale manufacture was developed during World War II by the British (Ministry of Supply Pouch Item W-154-2la, "Manufacture of 4,6-Dinitroresorcin and Lead 4,6-Dinitroresorcinate"). This procedure consisted of preparing 4,6-dinitroresorcinol by direct nitration of granulated resorcin and allowing the product in slurry to react with an excess of lead hydroxide at 90°C. This basic salt can be prepared in two forms: (1) a micro-crystalline, yellow, low-density form and (2) a denser, brick-red form. Both products have the same chemical composition and the same sensitivity to impact (PATR 1448, September 1944).

Composition:	Molecular Weight: (PbC6H3N3O9)	468
% C 15.4 H 0.6 N 9.0 O ₂ N NO ₂ PbH ₂ O	Oxygen Balance: CO ₂ % CO %	-19 2
0 30.8 Pb 44.2	Density: gm/cc Crystal	3.02
NO ₂	Melting Point: °C Explodes	260-310
C/H Ratio 0.320	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 17	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 3; (8 oz wt) 8 Sample Wt, mg 22	Refractive Index, n ₂₀ n ₂₅ n ₅₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Detonates Fiber Shoe Detonates	cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials	- 100°C 120°C	0.4
% Explosions Partials	135°C 150°C	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm Black powder fuse	24 11.1
Explosion Temperature: °C Seconds, 0.1 (no cap used)	Sensitivity to Initiation: Minimum Detonating Charge, gm	
1 5 Explodes 282 10 276	Mercury Fulminate Lead Azide	Trace* Trace*
15 272	* <.001 gm, alternative	
20 267	Ballistic Mortar, % TNT:	
75°C International Heat Test:	Trauzi Test, % TNT: (a)	40
% Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 0.38	Confined	
% Loss, 2nd 48 Hrs 0.73	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: % 25°C, 100% RH 0.05 	Condition Charge Diameter, in.	
Volatility:	Density, gm/cc	2.9
	Rate, meters/second	5200

ragmentation Test:	Shaped Charge Effectiveness, TNT :	= 100:		
90 mm HE, M71 Projectile, Lat WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Ste Hole Volume Hole Depth	el Cones		
Total No. of Fragments: For TNT	Color: Orange-reddish	brown		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Igniting charg of priming com	Principal Uses: Igniting charge, and ingredient of priming compositions		
Total No. of Fragments: For TNT	Method of Loading:	Pressed		
For Subject HE	Loading Density: gm/cc			
ragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:			
Density, gm/cc	Method	Wet		
last (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9		
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group M (wet)		
Air, Confined: Impulse Under Water: Peak Pressure	Activation Energy: kcal/mol Induction Period, sec Specific Heat: cal/cm/°C	75·39 0·5-10 (c)		
Impulse Energy	°C	(6)		
Underground: Peak Pressure Impulse Energy Heat of:	-50 0 25 50	0.141 0.158 0.164 0.167		
Combustion, cal/gm 1251 Explosion, cal/gm 457 Gas Volume, cc/gm 368 Formation, cal/gm -92				

$$O_{2}N \xrightarrow{NO_{2}} Pbh(CH_{3}COO)_{2} \longrightarrow O_{2}N \xrightarrow{NO_{2}} Pbh_{2}O + 2CH_{3}COOH$$

Dissolve 14.4 gm lead nitrate and 1 cc of 36% acetic acid in 320 cc distilled water. Dissolve 4 gm 2,4,6-trinitroresorcinol and 1.73 gm sodium carbonate in 80 cc distilled water. Add the lead acetate solution to the trinitroresorcinol solution, under agitation, keeping the temperature at 70° - 75° C and continue stirring for 3 hours at this temperature. Cool to 20° C in 5 hours. Evaporate the solution to 1/3 its volume, cool, filter and wash the product well with water (to neutrality).

Sensitivity to Static Discharge, joules: (b)	0.0009
Loss in Weight at 105°C: %	
3 hours 6 hours 9 hours	0.02 0.23 0.23
Effect of Storage for 2 Months at 80°C, on:	
Explosion Temperature Test Value Sand Test Value Sensitivity to Initiation	Nil Nil Nil

Solubility, gm/100 gm (%) in:

Glycol	Diacetate
^	

°C ½ 20-25 0.1

Origin:

First described in 1914 by von Hurtz and found to be a relatively poor initiator by Wallbaum in comparison to other primary explosives. (Z ges Schiess Sprengstoffw 34, 126, 161, 197 (1939)). Moisak showed that lead styphnate could be used as an insulating (cover) material for lead azide providing protection from mechanical and chemical influences and, at the same time, increasing the detonating ability of the total charge (Transactions of Butlerov Inst Chem Tech Kasan (Russia) 2, 81-5 (1935).

Destruction by Chemical Decomposition:

Lead styphnate is decomposed by dissolving it in at least 40 times its weight of 20% sodium hydroxide or 100 times its weight of 20% ammonium acetate and adding a solution of sodium dichromate, equal to half the weight of styphnate and 10 parts of water.

- (a) Report AC-956/Org Ex 74.
- (b) F. W. Brown, D. H. Kusler and F. C. Gibson, Sensitivity of Explosives to Initiation by Electrostatic Discharges, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.
- (c) C. Lenchitz, <u>Ice Calorimeter Determination of Enthalpy and Specific Heat of Eleven Organometallic Compounds</u>, PATR No. 2224, November 1955.
 - (d) Also see the following Picatinny Arsenal Technical Reports on Lead Styphnate:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>6</u>	7	8	<u>9</u>
1450 2220	11	1352 2032	453 2093	2164	1316	407 1737 2077	318	2179

⁴¹See footnote 1, page 10,

Mannitol Hexanitrate (Nitromannite)

Composition: CH2ONO2	Molecular Weight: $(c_6H_8N_6o_{18})$ 452
%	Oxygen Balance: CO ₂ % 7.1 CO % 28.3
N 18.6 HCONO ₂	Density: gm/cc 1.73
HCONO 2 0 63.8 1 0NO	Melting Point: °C 112-113
C/H Ratio 0.133	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 11	Boiling Point: °C Decomposes 150
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 4 Sample Wt, mg 11	Refractive Index, n_{20}^{D} n_{30}^{D}
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Detonates Fiber Shoe Unaffected	cc/40 Hrs, at 90°C — 100°C
Rifle Bullet Impact Test: Trials % Explosions	120°C 135°C 150°C
Partials Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 68.5
Explosion Temperature: °C Seconds, 0.1 (no cap used) 160-170 (a)	Sensitivity to Initiation: Minimum Detonating Charge, gm
1 232 (b) 5 175 (c)	Mercury Fulminate Lead Azide 0.06
15	Tetryl Ballistic Mortar, % TNT:
20	
75°C International Heat Test: % Loss in 48 Hrs 0.4	Plate Dent Test: Method
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs (Frothed) 48 hours	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rate: (d) Confinement Yes
Hygroscopicity : % 30°C, 90% RH 0.17	Condition Pressed Charge Diameter, in. 0.5
Volatility:	Density, gm/cc 1.73 Rate, meters/second 8260

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color:
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Secondary charge in detonators (ref i), and in blasting caps designed to be initiated by a fuse (ref j)
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed
Fragment Velocity: ft/sec	Loading Density: gm/cc
At 9 ft At 25½ ft Density, gm/cc	Storage: Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None
Air, Confined: Impulse	65.5°C KI Test: Minutes 6
Under Water: Peak Pressure Impulse Energy	Heat of: (e, f, g) Combustion, cal/gm 1515 1525 Explosion, cal/gm 1390 1454 1468 1520 Formation, cal/gm 337 345 366
Underground: Peak Pressure Impulse Energy	

Solubility:

- a. Insoluble in water.
- b. Slightly soluble in cold alcohol (2.9 gm at 13°C).
- c. Slightly soluble in ether (4 gm at 9°C).
- d. Very soluble in hot alcohol.

Preparation: (Laboratory Method) (k)

- a. Cool to below 0° C, 50 gm of 98%-100% nitric acid placed in a 300 milliliter Erlenmeyer Pyrex flask provided with a thermometer and immersed in an ice-salt mixture.
- b. Introduce in small portions, 10 gm of d-mannitol, while swirling the flask to break up any lumps of mannite which might form. Keep the temperature below 0°C.
- c. After solution is complete, add 100 gm of concentrated sulfuric acid from a dropping funnel, swirling the flask in an ice-salt mixture to keep the temperature below 0°C.
- d. Filter the resulting porridge-like slurry through a filter paper previously hardened by treatment with mixed acid.
- e. Rinse the precipitate directly on the filter with water followed by dilute aqueous sodium carbonate and finally with water. (The resulting crude mannitol hexanitrate gives 18.2% N as determined by the nitrometer.)
- f. Dissolve the crude mannitol hexanitrate in boiling alcohol and filter through a water-heated funnel.
- g. Bring the filtrate to boiling and gradually add hot water until the appearance of the first turbidity.
- h. Cool in an ice-salt bath, separate and dry the crystals. (Yield should be about 23 gm of material, melting at 112° - 113° C and having 18.58% N, the nitrogen being determined by the nitrometer. Theoretical yield would be 24.8 gm.)

Origin:

Mannitol hexanitrate was discovered in 1847 by Ascanio Sobrero who recommended it as a substitute for mercury fulminate in percussion caps (Comp rend, 1847, 121). It is the hexanitric ester of d-mannitol which is widely distributed in nature, particularly in the plant Fraxinus ornus. N. Sokoloff, a Russian chemist, investigated the explosive properties of HM and recommended in 1878 a method of preparation. Mannitol hexanitrate was thoroughly studied by Berthelot, Sarran and Vieille, Domonte, Menard, Strecker, Tichanowich (Ph. Naoum, Nitroglycerin and Nitroglycerin Explosives, Baltimore, 1928, pp. 156, 247-250), and particularly by J. H. Wigner (Ber 36, 796 (1903)). More recent data have been reviewed by Guastalla and Racciu ("Modern Explosives," Industria Chimica 8, 1093-1102 (1933)).

References:42

(a) G. C. Hale, Abstract of Available Information on the Preparation and Explosive Properties of Hexanitromannite, PA Special Report No. 238, 30 July 1925.

⁴²See footnote 1, page 10.

AMCP 706-177

Mannitol Hexanitrate (Nitromannite)

- (b) C. A. Taylor and W. H. Rinkenbach, "Sensitiveness of Detonating Compounds to Frictional Impact, Impact, and Heat," J. Frank Inst 204, 369-76 (1927).
 - (c) Ph. Naoum, Z ges Schiess Sprengstoffw (Munich), pp. 181, 229, 267 (27 June 1932).
 - (d) H. Kast, Z angew Chem, 36, 74 (1923).
 - (e) A. Schmidt, Z ges Schiess Sprengstoffw 29, 262, (1934).
 Landolt and Börnstein, E III, p. 2914.
- (f) A. Marshall, Explosives, Their Manufacture, Properties, Tests, and History, Vol III, London (1932) p. 39. Ph. Naoum, <u>Nitroglycerin and Nitroglycerin Explosives</u>, Baltimore, (1928), pp. 156, 247-250.
- (g) A. Schmidt, Z ges Schiess Sprengstoffw 29, 262 (1934) G. Fleury, L. Brissand and P. Lhoste, "Structure and Stability of Nitric Esters," Comp rend 224, 1016-18 (1947).
 W. R. Tomlinson, Jr., Fundamental Properties of High Explosives. Thermodynamic Relations for Use in the Estimation of Explosive Properties, PATR No. 1651, 22 April 1947.
 - (h) Sarran and Vielle, Mém poudr 2, 161 (1884-1889).
 - (i) E. von Hurtz, U. S. Patent 1,878,652 (20 September 1932).
 - (j) L. A. Burrows, U. S. Patent 2,427,899 (23 September 1947).
- (k) B. T. Fedoroff, <u>Handbook of Explosives and Related Items</u>, Picatinny Arsenal (unpublished).
- (1) O. E. Sheffield, <u>Literature Survey on Mannitol Hexanitrate</u>, PA Chemical Research Laboratory Report No. 52-TML-16, 23 January 1952.
 - (m) Also see the following Picatinny Arsenal Technical Reports on Mannitol Hexanitrate:

<u>2</u>	<u>4</u>	<u>5</u>	<u>6</u>
1352	24 64	85	6

Composition:	Molecular Weight: (HgC ₂ N ₂ O ₂) 285
$C \qquad 8.4 \qquad O-N=C$	Oxygen Balance: CO ₂ % -17
N 9.8 Hg	CO % -5.5
0 11.2 0 - N = C	Density: gm/cc Crystal 4.43
Hg 70.6	Melting Point: °C Decomposes
C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 5; (1 kg wt) 35	Boiling Point: °C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 2; (1 1b wt) 4	Refractive Index, n20
Sample Wt, mg	n ₂₅
	n ₃₀
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe Explodes	cc/40 Hrs, at 90°C
Fiber Shoe Explodes	100°C Explodes
Rifle Bullet Impact Test: Trials	120°C
%	135°C
Explosions	150°C
Partials	
Burned	200 Gram Bomb Sand Test:
Unaffected	Sand, gm Black powder fuse 23.4
Explosion Temperature: °C	Sensitivity to Initiation:
Seconds, 0.1 (no cap used) 263	Minimum Detonating Charge, gm
1 239	Mercury Fulminate
5 Explodes 210	Lead Azide
10 199	Tetryl
15 194	Ballistic Mortar, % TNT:
20 190	Trauzi Test, % TNT: (a) 51
75°C International Heat Test:	Plate Dent Test:
% Loss in 48 Hrs 0.18	Method
100°C Heat Test: Exploded in 16 hours	Condition
% Loss, 1st 48 Hrs	Confined
% Loss, 2nd 48 Hrs	Density, gm/cc
Explosion in 100 Hrs	Brisance, % TNT
	Detonation Rate:
Flammability Index:	Confinement
	Condition Pressed
Hygroscopicity: % 30°C, 90% RH 0.02	Charge Diameter, in.
V 1-a:10a	Density, gm/cc 2.0 3.0 4.0
Volatility:	Rate, meters/second 3500 4250 5000

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: White to gray
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Detonators and ingredient of priming compositions
Total No. of Fragments: For TNT For Subject HE	Method of Loading: psi x 10 ³ 3 5 10 12 15 20 3.00 3.20 3.60 3.70 3.82 4.00 Loading Density: gm/cc
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage:
Blast (Relative to TNT):	Method Wet Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group M (wet) Exudation None
Air, Confined: Impulse	Stab Sensitivity: Density Firing Point (inch-ounces) gm/cc 0% 50% 100% 3.91 3.2 4.3 5.5
Under Water: Peak Pressure Impulse Energy	4.26 1.6 2.6 5.5 4.32 1.6 2.6 4.0 4.50 1.6 2.5 4.0
Underground: Peak Pressure Impulse Energy	Activation Energy: kcal/mol 29.81 Induction Period, sec 0.5-10 Heat of: Combustion, cal/gm 938 Explosion, cal/gm 427 427 Cas Volume, cc/gm 243 427 Formation, cal/gm -226
	Specific Heat: cal/gm/°C 1.1 Thermal Conductivity: cal/sec/cm/°C 1 x 10 ⁻⁴

Mercury Fulminate

Initiating Efficiency; Grams Required to Give Complete Initiation of:

	Fulminate, gm
INT	0.25
Tetryl	0.20
RDX	0.19
PEIN	0.17

Compatibility with Metals:

Dry: Reacts rapidly with aluminum and magnesium. Reacts slowly with copper, zinc, brass and bronze. Iron and steel are not affected.

Wet: Reacts immediately with aluminum and magnesium. Reacts rapidly with copper, zinc, brass and bronze. Iron and steel are not affected.

Sensitivity to Static Discharge, Joules: (b)

0.025

The Effect of Storage at 50°C (Dry) on the Purity of Mercury Fulminate

Months Storage	<u>979</u>	Recrystalli 980	ized Lots <u>981</u>	<u>982</u>	Uncrystall 505.6-7/31	ized Lots 505.3-5/11
O 1 ₄	99•75	99•77	99•79	99.79	98.86	98.7
6 8	99 . 3 8	99•45	99•54	99•47	95•95	98.7
9					94.95	97.4
10 12 13 14	98.74 98.26 98.22	99.56	97.49	99.06 98.79	90.65	94.9
15 16 17	97.52 97.00 95.70	99•30 98•66	99.30 99.01	98.19 97.75 96.69	83.76	
18 23 26	94.81	98.58	98.46	95.90	79•99 7 4•52 63.80	

Chemistry:

Mercuric fulminate readily decomposes in the presence of aqueous solutions, chlorides, carbonate and many other materials. Due to the presence of small amounts of mercury, formed by exposure to light or elevated temperatures, it readily forms amalgams with copper, brass and bronze, thus components containing these metals must be protectively coated if used with fulminate.

Solubility, Grams of Mercury Fulminate in 100 Grams of Water (%):

<u>°C</u>	<u>%</u>
12	0.07
49	0.18

(Chemistry of Powder and Explosives, Davis)

Five gm mercury is dissolved in 25 cc of nitric acid (sp gr 1.42) without agitation, and this solution poured into 50 cc of 90% ethyl alcohol, resulting in a vigorous reaction, attended by evolution of white fumes and subsequent appearance of fulminate crystals. Red fumes then appear as precipitation of the product accelerates, and then white fumes again are evolved as the reaction moderates. After about 20 minutes the reaction is over; water is added, and the crystals are repeatedly washed, by decantation, with water to remove all acidity. The product is purified, rendered white, by solution in strong ammonium hydroxide, followed by reprecipitation with 30% acetic acid.

Origin:

Mercury fulminate was first prepared by John K. von Lowenstern (1630-1703) and in 1800 its preparation and properties were first described in detail by Edward Howard in a paper presented to the Royal Society of London (Phil Trans, 204 (1800). It was 1867 before the compound was used as an initiating agent, when Alfred Nobel invented the blasting cap and used mercury fulminate to detonate nitroglycerin (British Patent 1345 (1867)).

Destruction by Chemical Decomposition:

Mercury fulminate is decomposed by adding it, while stirring, to at least 10 times its weight of 20% sodium thiosulfate. Some poisonous cyanogen gas may be evolved.

- (a) Ph. Naoum Z ges Schiess-Sprengstoffw (Munich), pp. 181, 229, 267 (27 June 1932).
- (b) F. W. Brown, D. H. Kusler, and F. C. Gibson, <u>Sensitivity of Explosives to Initiation by Electrostatic Discharges</u>, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.

⁴³See footnote 1, page 10.

Mercury Fulminate

(c) Also see the following Picatinny Arsenal Technical Reports on Mercury Fulminate:

<u>o</u>	<u>1</u>	2	<u>3</u>	1+	5	<u>6</u>	7	8	<u>9</u>
250 480 510 550 610 680 760 1220 1450	301 381 561 1651	132 452 522 582 782 882 932 1192 1352 1372 1722 2032	23 203 393 433 833 1183 1393 2093	144 294 534 624 694 784 874 1104	65 105 255 285 365 415 425 1325 1365	266 366 556 566 866 986 1316 1486 1556 2146	277 297 407 537 567 637 857 1737	28 78 278 318 788 1838	199 609 749 849 999 1079 1389 2179

AMCP 706-177 Metriol Trinitrate (MTN) Liquid (or Trimethylolethane Trinitrate)

Composition:	Molecular Weight: (C5H9N3O9) 255
% C 23.5 O ₂ NO—CH ₂ H 3.5 O ₂ NO—CH ₂	Oxygen Balance: -35 CO % - 3
H 3.5 $0_2 \text{NO} - \text{CH}_2$ $C - \text{CH}_3$ N 16.6 $0_2 \text{NO} - \text{CH}_2$	Density: gm/cc Liquid 1.47
0 56.4 02NO-CH2	Melting Point: °C -3
C/H Ratio 0.150	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 47; (1 1b wt) 4	Boiling Point: °C
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg 20	Refractive Index, n_{z0}^{D} n_{z0}^{D} n_{30}^{D} 1.4752
Friction Pendulum Test: Steel Shoe Explodes Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C
Rifle Bullet Impact Test: Trials Explosions Partials	100°C cc/gm 1.9 120°C 135°C 150°C
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm 43.7
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Ignites 235 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl
20	Ballistic Mortar, % TNT: (a) 136
75°C laterarchina d Mark Trati	Trauzi Test, % TNT: (b) 140
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs 2.5	Confined
% Loss, 2nd 48 Hrs 1.8	Density, gm/cc Brisance, % TNT
Explosion in 100 Hrs None	
Flammability Index:	- Detonation Rate: Confinement
Hygroscopicity: % 30°C, 90% RH 0.07	– Condition Charge Diameter, in.
Volotility: 60°C, mg/cm²/hr 24	Density, gm/cc Rate, meters/second

ragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Hole Volume Hole Depth	Steel Cones
Total No. of Fragments: For TNT	Color: Oily, slightly turbid Principal Uses: Ingredient of rocket and double base propellants	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib		
Total No. of Fragments: For TNT	Method of Loading:	
For Subject HE	Loading Density: gm/cc	
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method	Liquid
Blast (Relative to TNT):	Hazard Class (Quantity-Dista	ance)
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	- Alice - Inc.
Air, Confined: Impulse	Solubility in Water, gm/100 gm, at:	40.015
Under Water: Peak Pressure Impulse	25°C 60°C Heat of:	<0.015 <0.015
Energy	Combustion, cal/gm	2642
Underground: Peak Pressure	Hydrolysis, % Acid:	2
Impulse Energy	10 days at 22 [°] C 5 days at 60 [°] C	0.018 0.115
•		

Metriol (trimethylolmethylmethane) is obtained by the following procedure, based on work by Hosaeus (Annalen 276, 76 (1893):

Into a 5 liter round bottom flask is weighed 2700 gms of water. To this are added 267 gms of 36% formaldehyde and 60 gms of propionaldehyde. The mixture is stirred for a few seconds. To the mixture is added 150 gms of calcium oxide previously slaked with 600 gms of water. The mixture is heated in boiling water for four hours, and then allowed to cool spontaneously overnight. After filtering off the insoluble calcium hydroxide, the solution is heated and treated with a saturated aqueous solution of oxalic acid to precipitate all the calcium. The precipitated calcium oxalate is filtered off, and the pale-yellow filtrate concentrated as much as possible on the steam bath to a thick lemon-yellow syrup. After dissolving in absolute alcohol, the solution is filtered and concentrated in the steam bath to about twice the volume of the concentrated syrup. The solution is then chilled in a cold box to hasten crystallization. After allowing it to warm up to just above O°C, the mixture is filtered. The resulting product is not sufficiently pure and is recrystallized from absolute alcohol. The melting point of the product (40.3 gm) is then about 196°C (Hosaeus gives 199°C).

Metricl is nitrated by carefully mixing it with 3.5 parts of $65/35~{\rm HNO_3/H_2SO_1}$ maintained at 20°C, stirring for 30 minutes, cooling to 5°C, and pouring the reaction mixture on ice. It is extracted with ether, water-washed, and adjusted to pH 7 by shaking with a sodium bicarbonate solution and again water-washed three times. It is then dried with calcium chloride, filtered, and freed of ether by bubbling with dry air until minimal rate of loss in weight is attained. The yield is 88% of the theoretical. The product has a nitrate-nitrogen content of 16.35% (calculated: 16.47%). Its refractive index at 25°C is 1.4752.

Origin:

MIN, according to Italian sources, was first prepared and patented by Bombrini-Parodi-Delfino Company of Italy under the name "metriolo." A German Patent of 1927 also describes the preparation and gives some properties. This compound was known in France before World War II under the name of "Nitropentaglycerin" and Burlot and Thomas determined its heat of combustion (Ref b).

- (a) A. H. Blatt, Compilation of Data on Organic Explosives, OSRD Report No. 2014, 29 February 1944.
 - (b) E. Burlot and M. Thomas, Mém poudr 29, 262 (1939).
- (c) Also see the following Picatinny Arsenal Technical Reports on Metriol Trinitrate: 1616 and 1817.

⁴⁴See footnote 1, page 10.

Composition:	Molecular Weight:	71	
Ammonium Nitrate 40	Oxygen Balance: CO ₂ % CO %	- 38 -20	
	Density: gm/cc	1.62-1.68	
Aluminum 20	Melting Point: °C		
C/H Ratio	Freezing Point: °C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 35	Boiling Point: °C		
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 13 Sample Wt, mg 17	Refractive Index, n ^D ₂₀ n ^D ₂₅		
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C		
Rifle Bullet Impact Test: Trials	100°C 120°C 2.1 135°C 150°C		
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm		
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Ignites 435 10 15	Sensitivity to Initiation: Minimum Detonating Charge, Mercury Fulminate Lead Azide Tetryl	gm	
20	Ballistic Mortar, % TNT: (a)	143	
	Trauzi Test, % TNT: (b)	165	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: (c) Method	В	
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT	Pressed No 1.73 66	
Flammability Index: 100	Detonation Rate: (d) Confinement	None	
Hygroscopicity: %	Condition Charge Diameter, in.	Cast	
Volatility:	Density, gm/cc Rate, meters/second	1.68 58 20	

Minol-2

Booster Sensitivity Test:	(e)	Decomposition Equation:	
Condition	Pressed	Oxygen, atoms/sec (Z/sec)	
Tetryl, gm	100	Heat, kilocalorie/mole	
Wax, in. for 50% Detonation	1.46	(ΔH, kcal/mol)	
Wax, gm	,	Temperature Range, °C	
Density, gm/cc	1.74	Phase	
Heat of: Combustion, cal/gm	(f) 3160	Armor Plate Impact Test:	(f)
Explosion, cal/gm	1620	60 mm Mortar Projectile:	
Gas Volume, cc/gm		50% Inert, Velocity, ft/sec	828
Formation, cal/gm		Aluminum Fineness	
Fusion, cal/gm			
		500-lb General Purpose Bombs:	
Specific Heat: cal/gm/°C		Plate Thickness, inches	
At -5°C	0.30	Figure Trilectriess, menes	
Density, gm/cc	1.74	1	
		11/4	
		1½	
		134	
Burning Rate:			
cm/sec		Bomb Drop Test:	
Thermal Conductivity: cal/sec/cm/°C	(b) 16.5 x 10 ⁻¹	T7, 2000-lb Semi-Armor-Piercin	g Bomb vs Concrete:
Density, gm/cc	1.74	Max Safe Drop, ft	
Coefficient of Expansion: Linear, %/°C		500-lb General Purpose Bomb v	s Concrete:
Volume, %/°C		Height, ft	
M. dans Ataba' Saala		Trials	
Hardness, Mohs' Scale:		Unaffected	
Young's Modulus:	(b)	Low Order	
E', dynes/cm²	5.03 x 10	High Order	
E, lb/inch ²	0.73 x 10 ⁶	1000 Ib Concert Burners Provide	ra Comercator
Density, gm/cc	1.66	1000-lb General Purpose Bomb	s Concrete:
Deliaity, griff de	1.00	Height, ft	
Compressive Strength: Ib/inch² (b)	1910-2070	Trials	
Density, gm/cc	1.68	Unaffected	
		Low Order	
Vapor Pressure: °C mm Mercury		High Order	
C IIIII Mercury		I light Order	
		1	

Fragmentation Test:		Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb		Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT		Color: Gray		
For Subject HE		Principal Uses: Bombs and depth charges		
3 inch HE, M42A1 Projectile, Lot Density, gm/cc Charge Wt, Ib	KC-5:			
Total No. of Fragments: For TNT		Method of Loading: Cast		
For Subject HE		Loading Density: gm/cc 1.62-1.68		
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:		
Density, gm/cc		Method Dry		
Blast (Relative to TNT):		Hazard Class (Quantity-Distance) Class 9		
Air: Peak Pressure Impulse	115 116	Compatibility Group Group I Exudation		
Energy Air, Confined: Impulse	133 90	Preparation: Minol is a castable mixture consisting of		
Under Water: Peak Pressure Impulse Energy	108 126 140	40 percent TNT, 40 percent ammonium nitrate, and 20 percent powdered aluminum and therefore can be prepared by adding the dry ingredients to molten TNT at 90°C under agitation. Minol also can be prepared by adding 25 perts of aluminum to 100 perts of 50/50		
Underground: Peak Pressure Impulse Energy	134 139 147	amatol previously prepared.		

Origin:

Minols are British ternary explosives developed during World War II. There are three formulations:

Composition, %:	Minol-l	Minol-2	Minol-3
TNT	48	40	142
Ammonium Nitrate	42	40	38
Aluminum	10	20	20

References: 45

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
- (b) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.
- M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.
- (e) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
 - (f) Committee of Div 2 and 8, NDRC, Report on HBX and Tritonal, OSRD No. 5406, 31 July 1945.
- (g) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Technical Div Lecture, 9 April 1948.
 - (h) Also see the following Picatinny Arsenal Technical Reports on Minol-2: 1585 and 1635.

⁴⁵See footnote 1, page 10.

Composition:		Molecular Weight:	40.6
% Oxidizing agent (Ammonium Perchlorate) Aluminum, atomized	35.0 26.2	Oxygen Balance: CO ₂ % CO %	-44 -37
Cupric Oxide Magnesium, atomized Other ingredient (Tetryl)	26.2 9.7	Density: gm/cc Pressed	2.0
Calcium Stearate Graphite, artificial	1.9 1.0	Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	13 22	Refractive Index, n ₂₀ n ₂₅ n ₃₀	
Friction Pendulum Test: Steel Shoe Fiber Shoe	Detonates Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: Trials % Explosions Partials		100°C 120°C 135°C 150°C	0.47
Burned Unaffected		200 Gram Bomb Sand Test: Sand, gm	10.6
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl	0.20 0.25
20		Ballistic Mortar, % TNT:	
		Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs Discoloration, fumes, odor	None	Plate Dent Test: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.10	Confined	
% Loss, 2nd 48 Hrs	0.01	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs	None		
Flammability Index:		Detonation Rate: Confinement	
Hygroscopicity: %		Condition Charge Diameter, in.	
Volatility:	710	Density, gm/cc Rate, meters/second	

MOX-1

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Co Hole Volume Hole Depth	ones	
Total No. of Fragments: For TNT For Subject HE	Color: Gray powder mixture		
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Small caliber anti projectiles	aircraft	
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Pressed	
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Loading Density: gm/cc At 30,000 psi Storage:	~ 2.0	
Density, gm/cc	Method	Dry	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure Impulse Energy	Compatibility Group Bureau of Explosives Classification Class Exudation		
Air, Confined: Impulse Under Water:	Heat of: Combustion, cal/gm Explosion, cal/gm Gas volume, cc/gm	4087 2087 212	
Peak Pressure Impulse Energy	Performance Tests: 20 mm T215E1 Projectile:	95	
Underground: Peak Pressure Impulse	NFOC Pressure Cube APG Blast Cube Activation Energy:	35 40	
Energy	kcal/mol Temp, ^O C Time to ignition, seconds	12.5 300 to 380 1.78 x 10 ⁻⁴	
		1.78 x 10 ⁻⁴	

Composition:		Molecular Weight:	42
% Oxidizing agent (Ammonium		Oxygen Balance:	
Perchlorate)	35.0	CO ₂ %	-49
Aluminum, atomized	52.4	CO %	-43
Cupric Oxide Magnesium, atomized		Density: gm/cc Pressed	2.0
Other ingredients*	9.7	Density, gill/ce	
Calcium Stearate	í.9	Melting Point: °C	
Graphite, artificial	1.0		
*5.8% RDX and 3.9% TNT coated	n Ammonium rchlorate.	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg		Refractive Index, no	
Picatinny Arsenal Apparatus, in.	12	n ^o ₂₅	
Sample Wt, mg	24		
		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Un affe cted	90°C	
Rifle Bullet Impact Test: Trials		100°C	0.21
•		120°C	
%		135°C	
Explosions		150°C	
Partials			
Burned		200 Gram Bomb Sand Test:	
Unaffected		Sand, gm	11.5
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	
5 375		Lead Azide	0.20
10		Tetryl	0.20
15			
20		Ballistic Mortar, % TNT:	
		Trauzi Test, % TNT:	
75°C International Heat Test:		Plate Dent Test:	
% Loss in 48 Hrs Discoloration, fumes, odor	None	Method	
	110116	Condition	
100°C Heat Test:			
% Loss, 1st 48 Hrs	0.27	Confined	
% Loss, 2nd 48 Hrs	0.12	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
		Detonation Rate:	
Flammability Index:		Confinement	
		— Condition	
Hygroscopicity: %		Charge Diameter, in.	
		Density, gm/cc	
Volatility:			
-		Rate, meters/second	

Fragmentation Test:			Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectil	e, Lot WC-97	l:	Glass Cones Steel Cones		
Density, gm/cc			Hole Volume		
Charge Wt, Ib			Hole Depth		
Total No. of Fragments:	:			 -	
For TNT			Color:	Gray	
For Subject HE			B	. 7. / 7	
3 inch HE, M42A1 Project	ila Lat KC-5		Principal Uses: HE filler for small caprojectiles	aliber	
•	ne, Lot KC-3	•			
Density, gm/cc					
Charge Wt, Ib					
Total No. of Fragments:			Method of Loading:	Pressed	
For TNT					
For Subject HE					
			Loading Density: gm/cc	2.0	
Fragment Velocity: ft/sec					
At 9 ft At 25½ ft			Storage:		
· -			Storage.		
Density, gm/cc			Method	Dry	
Blast (Relative to TNT):			— Hazard Class (Quantity-Distance)	Class 9	
Air: Bare Charge:	EW* 1.02	EV* 1.34	Compatibility Group Bureau of Explosives Class A	Group]	
Impulse	1.08	1.41	Exudation	None	
Energy					
Density, gm/cc		1.96	Heat of:	_	
Air, Confined:					
Impulse			Combustion, cal/gm	4484	
Cased Charge in Air:*	*		Explosion, cal/gm Gas volume, cc/gm	1472 221	
Peak Pressure	1.09	1.44			
Impulse	1.16	1.53	Performance Tests: 20 mm T215E1 Projectile:		
Energy Density, gm/cc		1.98		22	
Underground:		1.70	NFOC Pressure Cube APG Blast Cube	29 30	
Peak Pressure				50	
Impulse			Aviation Energy:		
Energy			kcal/mol	7.6	
	as compar	ed to TNT;	Temp, OC 340 t Time to ignition, seconds 1.39	to 470 x 10 ⁻²	

Effect of Altitude, Charge Diameter and Degree of Confinement on Detonation Velocity*

(Reference g)

	One-I	nch Column	Two-Incl	n Column
Simulated Altitude,	Confined	Unconfined	Confined	Unconfined
Feet	m/s	m/s	m/s	m/s
Ground			4730	and a company
30,000	Charge would not		4530(3)	Charge would not propa-
60,000	propagate detonation.		4430	gate detona-
90,000			4290	
Average			4495	

^{*}Confined charge in 1/4" steel tube, AISI 1015 seamless, 1" diameter 18" long, and 2" diameter 7" long. All means were determined from sets of five values unless otherwise indicated by (). A 26 gm tetryl booster was used to initiate each charge.

Average Fragment Velocity at Various Altitudes* (g)

		Simulated Altitude, Feet			t
Explosive	Charge Diameter,	Ground	30,000	60,000	90,000
	Inches	m/s	m/s	m/s	m/s
MOX-2B, density,	1	2012	**	**	**
gm/cc 207	2	3314	3351	3247	**

^{*}Outside diameter 2.54"; inside diameter 2.04"; length 7".

^{**}Charge would not propagate detonation.

Composition:		Molecular Weight:	45.6	
Oxidizing agent (Potassium Ni		Oxygen Balance:		
Aluminum, atomized	50	CO ₂ %	- 52	
Cupric Oxide Magnesium, atomized		CO %	-43	
Other ingredients*	32	Density: gm/cc Pressed	2.0	
Calcium Stearate**	2.0	Density: gm/cc Pressed	2.0	
Graphite, artificial**	1.0	Melting Point: °C		
*29.1% RDX, 0.9% wax, and 2. **Per cent added.	0% TNT.	Freezing Point: °C	· · · · · · · · · · · · · · · · · · ·	
		-		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C		
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	17	Refractive Index, N20		
Sample Wt, mg	24	n ₂₅		
		n ₃₀		
Friction Pendulum Test:		Vacuum Stability Test:		
Steel Shoe	Unaffected	cc/40 Hrs, at		
Fiber Shoe	Unaffected	90°C		
Diffe Bullet Language Total		— 100°C	0.57	
Rifle Bullet Impact Test: Trials		120°C		
%		135°C		
Explosions		150°C		
Partials				
Burned		200 Gram Bomb Sand Test:		
Unaffected		Sand, gm	33.2	
Explosion Temperature: °C		Sensitivity to Initiation:		
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm		
1		Mercury Fulminate		
5 540		Lead Azide	0.20	
10		Tetryl	0.15	
15				
20		Ballistic Mortar, % TNT:		
75°C International Heat Test:	White was	Trauzi Test, % TNT:		
% Loss in 48 Hrs		Plate Dent Test:		
Discoloration, fumes, odor	None	Method		
100°C Heat Test:		Condition		
% Loss, 1st 48 Hrs	0.35	Confined		
% Loss, 2nd 48 Hrs	0.13	Density, gm/cc		
Explosion in 100 Hrs	None	Brisance, % TNT		
		— Detonation Rate:		
Flammability Index:		Confinement		
••		— Condition		
Hygroscopicity: %		Charge Diameter, in.		
X 1		Density, gm/cc		
Volatility:		Rate, meters/second		

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color: Gray powder mixture		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, lb	Principal Uses: Small caliber antiaircraft projectiles		
Total No. of Fragments: For TNT	Method of Loading: Pressed		
For Subject HE Fragment Velocity: ft/sec	Loading Density: gm/cc At 30,000 psi ~2.0		
At 9 ft At 25½ ft Density, gm/cc	Storage:		
Blast (Relative to TNT):	Method Dry Hazard Class (Quantity-Distance) Class 9		
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Bureau of Explosives Class A		
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy	Heat of: Combustion, cal/gm 4331 Explosion, cal/gm 980 Gas volume, cc/gm 232 Performance Tests: 20 mm T215El Projectile:		
Underground: Peak Pressure Impulse Energy	NFOC Pressure Cube 37 APG Blast Cube 52 Activation Energy:		
	kcal/mol Values not included Temp, C due to erratic ig- Time to ignition, nition under condi- seconds tions of test.		

Composition:		Molecular Weight:	48
% Oxidizing agent (Barium Nitra	te) 18	Oxygen Balance:	
Aluminum, atomized	50	CO ₂ %	- 53
Cupric Oxide		CO %	-43
Magnesium, atomized	20		_
Other ingredients* Calcium Stearate**	32 2.0	Density: gm/cc Pressed	2.0
Graphite, artificial**	1.0	Melting Point: °C	
*29.1% RDX, 0.9% wax, and 2.	O% TNT.	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:		Boiling Point: °C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	78	Refractive Index, no	
Picatinny Arsenal Apparatus, in.	18	n ₂ s	
Sample Wt, mg	2 6	-	
		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Sparks	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
PICE POLICE AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AD		100°C	0.67
Rifle Bullet Impact Test: Trials		120°C	
% Fundaniana		135°C	
Explosions		150°C	
Partials			
Burned		200 Gram Bomb Sand Test:	
Unaffected		Sand, gm	33.6
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	
5 610		Lead Azide	0.20
10		Tetryl	0.15
15			
20		Ballistic Mortar, % TNT:	
		Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:	
Discoloration, fumes, odor	None	Method	
100°C Heat Test:		Condition	
	0.22	Confined	
% Loss, 1st 48 Hrs		Density, gm/cc	
% Loss, 2nd 48 Hrs	0.12	Brisance, % TNT	
Explosion in 100 Hrs	None		
Flammability Index:		Detonation Rate:	
. Idminarimy index.		Confinement	
Hygrasopieity, 94		— Condition	
Hygroscopicity: %		Charge Diameter, in.	
Valatilitus		Density, gm/cc	
Volatility:		Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TNT == 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Color: Gray powder mixture			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments:	Principal Uses: Small caliber antiaircraft projectiles			
For TNT For Subject HE	Method of Loading: Pressed			
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Loading Density: gm/cc At 30,000 psi ~2.0 Storage:			
Blast (Relative to TNT):	Method Dry Hazard Class (Quantity-Distance) Class 9			
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Bureau of Explosive Class A			
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy	Heat of: Combustion, cal/gm 4392 Explosion, cal/gm 709 Gas volume, cc/gm 208 Performance Tests: 20 mm T215El Projectile:			
Underground: Peak Pressure Impulse Energy	NFOC Pressure Cube 43 APG Blast Cube 53 Aviation Energy: kcal/mol Values not included Temp, °C due to erratic ignitime to ignition, tion under conditions seconds of test.			

Composition:		Molecular Weight:	43
% Oxidizing agent Aluminum, atomized Cupric Oxide Magnesium, atomized	49.2 19.7	Oxygen Balance: CO.: % CO %	-50 -42
Other ingredients* Calcium Stearate	29.6	Density: gm/cc	
Graphite, artificial *28.7% RDX coated, 0.9% wax.	1.5	Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	78	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	19 27	Refractive Index, n ₂₀ n ₂₅ n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe Fiber Shoe	Unaffected Unaffected	cc/40 Hrs, at 90°C	0.43
Rifle Bullet Impact Test: Trials %		- 100°C 120°C 135°C	0.43
Explosions Partials		150°C	
Burned Unaffected		200 Gram Bomb Sand Test: Sand, gm	10.8
Explosion Temperature: °C Seconds, 0.1 (no cap used)		Sensitivity to Initiation: Minimum Detonating Charge, ym	
5 510		Mercury Fulminate Lead Azide	0.20
10		Tetryl	0.16
15 20		Ballistic Mortar, % TNT:	
		Trouzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs Discoloration, fumes, odor	0.02/10 gm None	Plate Dent Test: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.00	Confined	
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index:		Detonation Rate: Confinement	
Hygroscopicity: % 30°C, 90% RH, two weeks	0.79	Charge Diameter, in.	
Volatility:		Density, gm/cc Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Color: Gray powder mixture			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments:	Principal Uses: Small caliber antiaircraft projectiles Method of Loading: Presse			
For TNT For Subject HE	Method of Loading: Pressed			
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	At 30,000 psi ~2.0 Storage:			
Blast (Relative to TNT):	Method Dry Hazard Class (Quantity-Distance) Class 9			
Air: Peak Pressure Impulse Energy	Compatibility Group Bureau of Explosives Class A			
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Heat of: Combustion, cal/gm 4293 Explosion, cal/gm 750 Gas volume, cc/gm 204 Activation Energy: kcal/mol Values not included Temp, C due to erratic ignitime to ignition, tion under conditions of test.			

Preparation:

The various ingredients used in the preparation of MOX explosives are coated separately as follows:

Dichromated Atomized Aluminum - Seventy-five grams of chemically pure grade sodium dichromate is dissolved in 1500 milliliters of water at 100°C under mechanical agitation. Six hundred grams of the atomized aluminum powder is added gradually (2 to 3 minutes) and stirring is continued for half an hour. The dichromated metal is filtered, washed with water (15 to 20 times) until the washings show only a slight cloudiness with silver nitrate. The water-wet product is then dried in an oven at 50°C. The dried material is hand-rolled to reduce any conglomerates, and blended before use.

Wax-Coated RDX - Eighteen grams of molten Be Square Special Wax (manufacturer's 180° to 185° Fahrenheit grade amber) is added to 582 grams of finely divided RDX (water precipitated from acetone solution) in a water slurry under mechanical agitation. The temperature of the wax-RDX slurry is maintained above the melting point of the wax (about 90°C). The stirring is continued for half an hour. After cooling to 50°C, the wax-coated RDX is recovered by filtration in a Büchner funnel and dried in air. The RDX thus coated and presumed to be 3% waxed RDX or a 97/3 RDX/wax mixture is hand-rolled to crush any conglomerates formed, and blended by hand before use.

INT-Coated Barium Nitrate - Thirty grams of INT in alcohol solution is added to 270 grams of barium nitrate in an alcohol slurry under agitation. The temperature of the INT-barium nitrate mixture is maintained at 80°C and stirring is continued until most of the alcohol is evaporated. The coated material is spread in a thin layer on a tray to dry in air overnight. The barium nitrate thus coated with 10% INT is reduced to an intimate mixture by hand-rolling and blending before use.

INT-Coated Potassium Nitrate - The TNT-coated potassium nitrate is prepared by the same procedure as is used for coating barium nitrate.

RDX/TNT-Coated Ammonium Perchlorate - The ammonium perchlorate is coated by dissolving the appropriate weights of RDX and TNT in hot alcohol. After adding the ammonium perchlorate, the slurry is stirred until most of the solvent is evaporated. The treated ammonium perchlorate is spread on a tray to dry overnight. Agglomerates formed during the process are crushed by hand-rolling and blending the mixture before use.

INT-Coated RDX - Sixty grams of molten TNT are added to a water slurry of 540 grams of finely divided RDX (water precipitated from acetone solution) under mechanical agitation. The temperature of the TNT-RDX slurry is maintained at about 90°C and stirring is continued for half an hour. After cooling to about 50°C, the TNT-coated RDX is recovered by filtration. The RDX thus treated, and presumed to be 10% coated or a 90/10 RDX/TNT mixture, is further blended by hand after rolling to crush any aggregates formed during the process.

The MOX explosive mixtures are prepared by blending the appropriate weights of the dry ingredients in a Patterson-Kelly twin-shell blender for at least 30 minutes.

Origin:

MOX type explosive mixtures were developed beginning in 1950 by National Northern, technical division of the National Fireworks Ordnance Corporation, West Hanover, Massachusetts.

References: 46

- (a) A. O. Mirarchi and A. T. Wilson, Development of MOX Explosives for Improved 20 mm Ammunition, Navy Contract Nord-10975, Task 1, National Fireworks Ordnance Corporation, First Yearly Summary, August 1950 to August 1951.
- (b) A. T. Wilson, Development of MOX Explosives: Various Oxidants in MOX, First Progress Report NFOC-6, Navy Contract NOrd-12382, National Fireworks Ordnance Corporation, December 1952.
- (c) A. O. Mirarchi, Properties of Explosives: Theory of the MOX Explosion, First Progress Report NFOC-10, Navy Contract NOrd-11393, National Fireworks Ordnance Corporation, December 1952.
- (d) A. O. Mirarchi, Properties of Explosives: MOX Explosives in Various Atmospheres, First Progress Report NFOC-9, Navy Contract NOrd-11393, National Fireworks Ordnance Corporation, 1952.
- (e) A. T. Wilson, Development of MOX Explosives: Composition Variations, First Progress Report NFOC-7, Navy Contract NOrd-12382, National Fireworks Ordnance Corporation, 1952.
- (f) A. T. Wilson, <u>Development of MOX Explosives: Various Oxidants in MOX</u>, Second Progress Report NFOC-14, Nevy Contract NOrd-13684, National Fireworks Ordnance Corporation, October 1953.
- (g) A. W. O'Brien, Jr., C. W. Plummer, R. P. Woodburn and V. Philipchuk, <u>Detonation Velocity Determinations and Fragment Velocity Determinations of Varied Explosive Systems and Conditions</u>, National Northern Corporation Final Summary Report NNC-F-13, February 1958 (Contract DAI-19-020-501-ORD-(P)-58).
- (h) P. Z. Kalanski, Air Blast Evaluation of MOX-2B Cased and Bare Charges, NAVORD Report No. 3755, 5 April 1956.
- (i) Also see the following Picatinny Arsenal Technical Reports on MOX Explosives: 1935, 1969, 2204, 2205.

⁴⁶See footnote 1, page 10.

AMCP 706-177

Nitrocellulose, 12.6% N (NC)

Composition: / H O	Molecular Weight: (272.39) _n
C 26.46 H 2.78 N 12.60	Oxygen Balance: CO ₂ % -35 CO % 0.6
0 58.16 X=0NO ₂ x	Density: gm/cc
L I	Melting Point: °C Decomposes
C/H Ratio 0.23	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 8	Boiling Point: °C
Sample Wt 20 mg	Refractive Index, No
Picatinny Arsenal Apparatus, in. 3 Sample Wt, mg 5	n ₂₅
	n ₃₀
Friction Pendulum Test:	Vacuum Stability Test:
Steel Shoe	cc/40 Hrs, at
Fiber Shoe	90°C 0.17
Rifle Bullet Impact Test: Trials	1.00°C 1.0
%	135°C
Explosions	150°C
Partials	
Burned	200 Gram Bomb Sand Test:
Unaffected	Sand, gm 45.0
Explosion Temperature: °C	Sensitivity to Initiation:
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm
l 5 Decomposes 170	Mercury Fulminate
10	Lead Azide 0.10
15	Tetryl
20	Ballistic Mortar, % TNT:
	Trauzi Test, % TNT:
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:
	Method
100°C Heat Test:	Condition
% Loss, 1st 48 Hrs	Confined
% Loss, 2nd 48 Hrs	Density, gm/cc Brisance, % TNT
Explosion in 100 Hrs	
Flammability Index:	Detonation Rate:
	Confinement
Hummobility index.	
	Condition
Hygroscopicity: % 30°C, 90% RH 3 Volatility: 60°C, mg/cm²/hr 0.0	Condition Charge Diameter, in. Density, gm/cc

Composition: H O	Molecular Weight:	(286.34) _n
C 25.29 H 2.52 N 13.45 H X H X	Oxygen Balance: CO ₂ % CO %	-29 4.7
0 58.74 0 X=0NO ₂	Density: gm/cc	
	Melting Point: °C	Decomposes
C/H Ratio 0.23	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 9	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, n20	
Picatinny Arsenal Apparatus, in. 3 Sample Wt, mg 5	n ₂₅	
	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at 90°C	0.42
Fiber Shoe	——————————————————————————————————————	1.5
Rifle Bullet Impact Test: Trials	120°C	11.+
%	135°C	
Explosions	150°C	
Partials		
Burned	200 Gram Bomb Sand Test:)
Unaffected	Sand, gm	49.0
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charg	e, gm
1 5 230	Mercury Fulminate	
10	Lead Azide	0.10
15	Tetryl	
20	Ballistic Mortar, % TNT:	125
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
	Condition	
100°C Heat Test:	Confined	
% Loss, 1st 48 Hrs 0.3 % Loss, 2nd 48 Hrs 0.0	Density, gm/cc	
	Brisance, % TNT	
Explosion in 100 Hrs None	Detonation Rate:	
Flammability Index:	Confinement	
<u> </u>	— Condition	
Hygroscopicity: % 30°C, 90% RH ~ 2	Charge Diameter, in.	
	Density, gm/cc	1.20
Volatility: 60°C, mg/cm ² /hr 0.0	Rate, meters/second	7300

Composition:	Molecular Weight:	(297.15) _n
% C 24.25 H 2.37 N 14.14 H2C H X	Oxygen Balance: CO ₂ % CO %	-2 4 8
0 59.24 0 H	Density: gm/cc	1.65-1.70
X=ONO ₂	Melting Point: °C	Decomposes
C/H Ratio 0.23	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 8	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 3 Sample Wt, mg 5	Refractive Index, n ^D ₂₀ n ^D ₂₅	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Fiber Shoe	cc/40 Hrs, at 90°C	1.46
Rifle Bullet Impact Test: Trials %	100°C 14 hours 120°C 16 hours 135°C	11.+
Explosions Partials	150°C	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	52.3
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5	Sensitivity to Initiation: Minimum Detonating Char Mercury Fulminate Lead Azide	ge, gm 0.10
10 15	Tetryl	0.10
20	Ballistic Mortar, % TNT:	
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined Density, gm/cc	
% Loss, 2nd 48 Hrs	Brisance, % TNT	
Explosion in 100 Hrs		
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: % 30°C, 90% RH ~ 1	Condition Charge Diameter, in.	
Volatility: 60°C, mg/cm²/hr 0.0	Density, gm/cc Rate, meters/second	

Fragmentation Test: Shaped Charge Effectiveness, TNT = 100:					
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth				
Total No. of Fragments: For TNT	Color: White				
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Pyroxylin (12% N), blasting explosives; pyrocellulose (12.60% N), smokeless powder; guncotton (13.35% N minimum), propellants				
Total No. of Fragments: For TNT For Subject HE	Method of Loading:				
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method Wet (8% to 30% water)				
Blast (Relative to TNT): Air:	Hazard Class (Quantity-Distance) Class 12 Compatibility Group Group M				
Peak Pressure Impulse Energy	(wet) Exudation None				
Air, Confined: Impulse Under Water: Peak Pressure	Heat of: Combustion, cal/gm 2409* 2313** 2228*** Explosion, cal/gm 855* 965** 1058*** Gas Volume, cc/gm 919* 883** 853*** Formation, cal/gm 617* 561** 513***				
Impulse Energy	* 12.6% N ** 13.45% N *** 14.14% N				
Underground: Peak Pressure	Vapor Pressure:				
Impulse Energy	OC mm Mercury 25 0.00 60 0.00				

Solubility in Water, gm/100 gm, at:	12.6% N	13.45% N	14.0% N
25°c 60°c	Insoluble Insoluble	Insoluble Insoluble	Insoluble Insoluble
Solubility, gm/100 gm, 25°C, in:			
Ether Alcohol	Insoluble Very slight- ly soluble	Insoluble Practically insoluble	Insoluble Insoluble
2:1-Ether:Alcohol	Soluble	Slightly soluble (6%-11%)	Practically insoluble (1 + %)
Acetone	Soluble	Soluble	Soluble
240-Hour Hydrolysis Test, Nitric Acid	1.22	1.03	

Preparation of Nitrocellulose from Cotton Linters:
(Laboratory Procedure)

Nitration: Second cut cotton linters, previously dried to a moisture content of less than 0.5%, are nitrated by immersion in mixed acid under the following conditions:

Ratio of Mixed Acid to cotton 55 to 1

Composition of Mixed Acid (approximate)

- a. for 12.6% N: H₂SO₄ 63.5%, HNO₃ 21%, H₂O 15.5%
- b. for 13.4% N: $\rm H_2SO_4$ 68%, $\rm HNO_3$ 22%, $\rm H_2O$ 10.0%

Temperature of acid at the start

34⁰C

Time of nitration

24 minutes

During the nitration period the mixture is turned over occasionally to keep the acid homogeneous. The mixture is then filtered on a Buchner funnel with suction for about three minutes and then drowned rapidly with strong hand stirring in at least 50 volumes of cold water. After the nitrocellulose has settled, most of the water is decanted and fresh water added. The nitrocellulose-water mixture is boiled and the acidity adjusted to 0.25% to 0.50% as $\rm H_2SO_4$. The sour boil is continued for at least 24 hours for pyrocellulose and at least 40 hours for gun-cotton. Additional boiling with changes of water are made in accordance with the governing specification (JAN-N-244).

<u>Pulping:</u> The nitrocellulose is then pulped in a laboratory Holland-type paper beater. Enough sodium carbonate is added to keep the reaction faintly alkaline to phenolphthalein. Pulping is continued to the desired degree of fineness.

Poaching: After washing the nitrocellulose from the beater, the mixture is filtered and the product boiled for 4 hours with fresh water while stirring mechanically. From time to time a little sodium carbonate solution is added to maintain the mixture faintly alkaline to phenolphthalein. The water is decanted and the boiling continued. According to the specification, the total boiling treatment with poaching is as follows:

- 4 hours boiling with or without sodium carbonate
- 2 hours boiling without sodium carbonate
- 1 hour boiling without sodium carbonate
- 1 hour boiling without sodium carbonate.

Each boil is followed by settling and change of water.

<u>Washing:</u> The nitrocellulose is then washed by mechanical agitation with water. A minimum of two washes are given. If a sample taken after the water washes gives a minimum test of 35 minutes in the 65.5° C Heat Test and 30 minutes in the 134.5° C Heat Test, the nitrocellulose is satisfactorily stabilized. Otherwise additional washes should be given.

Origin:

Cellulose occurs in nature. It is wood fiber, cell wall and the structural material of all plants. Cotton fiber is pure cellulose. Nitrocellulose was discovered about 1847 by C. F. Schonbein at Basel and R. Bottger at Frankfort-on-the-Main independently of each other when cotton was nitrated. T. J. Pelouze had nitrated paper earlier (1838) and was probably the first to prepare nitrocellulose.

Pyroxylin or collodion, which is soluble in a mixture of ether and ethanol, contains from 8% to 12% nitrogen. It is used in the manufacture of celluloid and in composite blasting explosives.

Pyrocellulose, a type of nitrocellulose of 12.6% nitrogen content, completely soluble in a mixture of 2 parts ether and one part ethanol, was developed by Mendeleev (1891-1895). This material, when colloided, formed the first smokeless powder for military use in the United States (1898).

Guncotton for military purposes today contains a minimum of 13.35% nitrogen. It is only slightly soluble in ether-ethanol, but completely soluble in acetone. Principal use is in flashless powders and as flame carriers. 14.14% N nitrocellulose represents a theoretical limit.

In the manufacture of propellants, there is used a mixture of pyrocellulose and guncotton (blended nitrocellulose) of 13.15% to 13.25% nitrogen content.

Destruction by Chemical Decomposition:

Nitrocellulose is decomposed by adding it, with stirring, to 5 times its weight of 10% sodium hydroxide heated to 70° C. Stirring is continued for 15 minutes after all the nitrocellulose has been added.

References: 47

(a) See the following Picatinny Arsenal Technical Reports on Nitrocellulose:

⁴⁷See footnote 1, page 10.

<u>o</u>	<u>1</u>	2	<u>3</u>	14	<u>5</u>	<u>6</u>	7	<u>8</u>	<u>9</u>
10 390 420 660 730 960 1020 1150 1150 1210 1240 1320 1350 1410 1430 1430 1580 1810 1830 1990 2210	41 101 231 351 551 831 971 1041 1151 1221 1231 1351 1401 1501 1541 1691 1781 1841 1851 1961 1991 2101 2101 2101	72 332 402 422 542 652 752 662 752 802 1032 1142 1282 1392 1642 1912 1992 2022 2102	13 33 43 133 253 273 653 673 673 793 1023 1273 1443 1663 1753 1863 1973	4 114 174 134 3794 10574 10574 10574 10574 10574 10574 10574 11314 11395 11675 11824 11824 11824	125 475 485 555 7065 1025 1265 1275 1375 1745 1755 1845 19955	86 576 586 796 916 1026 1266 1276 1316 1516 1516 2056	167 327 407 717 787 987 1197 1267 1297 1407 1427 1487 1587 1717 1817 1827 1847 2137	8 198 208 388 408 588 718 778 808 838 1058 1238 1248 1348 1478 1678 1838 1918 2098	19 29 69 169 279 659 669 739 779 809 1159 1349 1399 1449 1619 1869 2189

2201

Composition:	Molecular Weight: (C3H5N3O9) 227			
% C 15.9 H ₂ C — ONO ₂ H 2.2 HC — ONO ₂	Oxygen Balance: CO2 % 3.5 CO % 24.5 Density: gm/cc 25°C, Liquid 1.591			
N 18.5 H ₂ c — ONO ₂ O 63.4	Melting Point: °C Labile form 2.2 Stable form 13.2			
0 63.4 C/H Ratio 0.109	Freezing Point: °C			
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 15	Boiling Point: °C Decomposes 145			
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 1 lb wt 1 Sample Wt, mg	Refractive Index, n ^D ₂₀ 1.4732 n ^D ₂₅ 1.4713 n ^D ₃₀			
Friction Pendulum Test: Steel Shoe Explodes Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C cc/gm/6 hrs 1.6			
Explosions 100 Partials 0 Burned 0 Unaffected 0	100°C cc/gm/16 hrs 11+ 120°C 135°C 150°C 200 Gram Bomb Sand Test: Sand, gm Liquid method 51.5			
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Explodes 222 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl			
20	Ballistic Mortar, % TNT: (a) 140			
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method			
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs None	Condition Confined Density, gm/cc Brisance, % TNT			
Flammability Index:	Detonation Rate: Confinement Glass Steel			
Hygroscopicity: % 30°C, 90% RH 0.06	Condition Liquid Liquid Charge Diameter, in. 0.39 1.25			
Volatility: 60°C, mg/cm ² /hr 0.11	Density, gm/cc 1.6 1.6 Rate, meters/second 1600-1900 7700			

Nitroglycerin (Liquid)

Booster Condi	Sensitivity Test: ition			Decomposition Equation: Oxygen, atoms/sec	1017.3	1019.2
Tetry	i, gm			(Z/sec)	1. m. 1.	1. = 0
Wax,	in. for 50% Detonat	ion		Heat, kilocalorie/mole (ΔΗ, kcal/mol)	41.4	45.0
Wax,	gm			Temperature Range, °C	9 0- 135	125-150
Densi	ity, gm/cc			Phase	Liquid	Li q uid
Heat of			-/-/	Armor Plate Impact Test:		
	oustion, cal/gm		1616 1600	·		
•	sion, cal/gm			60 mm Mortar Projectile:		
	is Volume, cc/gm		715	50% Inert, Velocity, ft	/sec	
	ation, cal/gm		400	Aluminum Fineness		
Fusio Deto	n, cal/gm onation, cal/gm		1486	500-lb General Purpose Bo	ombs:	
Specific	Heat: cal/gm/°C					
Liqu	-		o . 356	Plate Thickness, inches	;	
0.7.			0 215	1		
Soli	ıa		0.315	11/4		
				11/2		
				134		
Burning	Rate:					
cm/s	ec			Bomb Drop Test:		
	I Conductivity: ec/cm/°C			T7, 2000-lb Semi-Armor-	Piercing Bomb	vs Concrete:
Coeffici	ient of Expansion:			Max Safe Drop, ft		
	ar, %/°C			500-lb General Purpose E	Bomb vs Conci	ete:
Volu	me, %/°C			Height, ft		
				Trials		
Hardne	ss, Mohs' Scale:			Unaffected		
	- 14 - 1 - 1			Low Order		
	s Modulus:			High Order		
	ynes/cm²					
	/inch² sity, gm/cc			1000-lb General Purpose	Bomb vs Conci	rete:
				Height, ft		
Compre	essive Strength: Ib/inc	h²		Trials		
				Unaffected		
Vapor	Pressure:			Low Order		
°C	mm Mercury	°c	mm Mercury	High Order		
 20	0.00025	60	0.0188			
20 30	0.00025	70	0.043			
40	0.0024	80	0.098			
50	0.0073	90	0.23	1		

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Colorless			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Propellant ingredient, demolition explosive ingredient, grenade burster ingredient			
Total No. of Fragments: For TNT For Subject HE	Method of Loading:			
To Subject the	Loading Density: gm/cc			
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method With acetone or other desensitizer generally not stored			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9			
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation			
Air, Confined: Impulse	Heat of Transition, cal/gm: Transition:			
Under Water: Peak Pressure Impulse Energy	Liquid → labile 5.2 Labile → stable 28.0 Liquid → stable 33.2 Hydrolysis, % Acid:			
Underground: Peak Pressure	10 days at 22°C			
Impulse Energy	82.1°C KI Test: Minutes 10+			

Nitroglycerin (Liquid)

Gas Evolved at Atmospheric Pressure, cc:

Sample Wt, gm		1.6	
Temperature, °C	65		75
Time, hours	20		40
Volume of gas, cc	nil		nil

Viscosity: (c)

°C	Centipoises
10	69.2
20	36.0
30	21.0
40	13.6
50	9.4
60	6.8

Fragmentation Test:

20 mm HE, Mark 1, Projectile, Total No. of Fragments for:

Nitroglycerin 22 Tetranitromethane 17

Minimum Propagating Diameter: (d)

% Dimethylphthalate in NG	Min. Propagating Diameter, inches	Maximum Diameter for 2 Failures in 2 Trials, inches
0	(3/16 Cairns)	1/16
5	~=	1/8
10	1/8	3/16
15	1/4	3/8
20	3/4	7/8
22.5	ı 1	1-1/2
25	1.55	2

Sensitivity to Electrostatic Discharge, Joules (test condition, unconfined; no value given for confinement): > 12.5

Solubility, grams of nitroglycerin/100 gm (%) of:

Wa	ter	Alo	cohol	Trichlor	ethylene	Carbon Tetr	achloride
°C	<u>%</u>	<u>∘</u> C	<u>%</u>	°C	<u>%</u>	<u>°c</u>	<u>%</u>
15 20 50	0.16 0.18 0.25	0 20	37•5 54•0	Rm	22	Rm	2

Nitroglycerin (Liquid)

Carbon Di	sulfide	gm/100 gm (%), at	25 ⁰ C in
°C	<u> 1</u>	Ether 2:1,Ether:Alcohol	» > 100
Ambient	1	Acetone	× 100

Soluble in all Proportions in:

Methanol. Phenol Acetone Pyridine Ether Xvlene Nitrobenzene Ethvl acetate Amyl acetate p-Nitrotoluene Methyl nitrate Liquid DNT Chloroform Ethyl nitrate Ethyl chloride Nitroglycol Tetranitrodiglycerine Ethyl bromide Tetrachloroethylene Acetic acid Benzene Dichloroethylene Trimethyleneglycol Dinitrate Toluene

Solubility in NG, of:

Alc	ohol	D	NT	T	TM	Wa	ter
°c	2	°C	<u>%</u>	°c	<u> %</u>	°C	<u>%</u>
0 20 50	3.4 5.4 ∞	20	35	20	30	25	0.06

Preparation:

Glycerine is usually nitrated at 25°C, or below, by adding it very slowly to a well agitated mixture of nitric and sulfuric acids, e.g., 40/59.5/0.5, nitric acid/sulfuric acid/water, using an acid/glycerine ratio of approximately 6. Agitation of the reaction mixture is accomplished by use of compressed air. A rapid temperature rise, or appearance of red fumes, automatically requires dumping of the charge, immediately, into a drowning vessel filled with water. After all the glycerine has been added to the nitrator, agitation and cooling are continued until the temperature drops to about 15°C, and the charge is then run into a separator where the NG rises to the top, and is run off to the neutralizer. The nitroglycerin is washed first with water, then with sodium carbonate, and finally with water. The resultant NG when washed with water, produces washings which do not color phenolphthalein, and itself is neutral to litmus paper.

Origin:

Nitroglycerin was first prepared in 1846 or 1847 by Ascanio Sobrero, an Italian chemist (Mem Acad Torino (2) $\underline{10}$, 195 (1847)). For several years after this discovery, nitroglycerin attracted little interest as an explosive until Alfred Nobel in 1864 patented improvements in its manufacture and method of initiation (British Patent $\underline{1813}$). Nobel gave the name dynamite to mixtures of nitroglycerin and non-explosive absorbents, such as charcoal, siliceous earth or Kieselguhr (British Patent $\underline{1345}$ (1867)). Later developments led to gelatine dynamites, ammonia dynamites, and so called straight dynamites. The first propellants using nitroglycerin were called Ballistite (Nobel, British Patent $\underline{1471}$ (1888)) and Cordite (Abel and Dewar, British Patents 5614 and 11,664 (1889)).

Destruction by Chemical Decomposition:

Nitroglycerin is decomposed by adding it slowly to 10 times its weight of 18% sodium sulfide ($Na_2S \cdot 9H_2O$). Heat is liberated by this reaction; but this is not hazardous if stirring is maintained during the addition of nitroglycerin and continued until solution is complete.

References: 48

- (a) A. H. Blatt, Compilation of Data on Organic Explosives, OSRD Report No. 2014, 29 February 1944.
 - (b) Ph. Naoum, Z ges Schiess-Sprengstoffw, pp. 181, 229, 267 (27 June 1932).
 - (c) Landolt Bornstein, Physikalisch-Chemische Tabellen, 5th Ed. (1923).

International Critical Tables.

- B. T. Fedoroff et al, A Manual for Explosive Laboratories, Vol I-IV, Lefax Society, Inc., Philadelphia, 1943, 1946.
- (d) H. A. Strecker, Initiation, Propagation and Luminosity Studies of Liquid Explosives, OSRD Report No. 5609, 3 December 1945.
 - (e) Also see the following Picatinny Arsenal Technical Reports on Nitroglycerin:

0	<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	<u>9</u>
620 660 800 1020 1150 1210 1410 1620 1680	511 551 701 891 911 1031 1041 1151 1221 1611 1651 1691 1731 1781 1851 1931 2021 2181 2201	652 672 792 922 1142 1282 1362 1542 1662 1742 1752 1992	233 343 673 903 1023 1443 1663 1863 1993	454 494 1024 1074 1084 1454 1624 1674 1754	1155 1235 1955 2015	1206 1456 1496 1556 1616 1786 1816 1896 2056	817 837 1197 1297 1637 1817 1847	768 1348 1398 1738 1918 2098	69 249 579 709 1349 1359 2119

⁴⁸See footnote 1, page 10.

Composition:		Molecular Weight: (CH ₄ N ₄ O ₂)	104
C 11.5 NH		Oxygen Balance:	
	!	CO ₂ %	-31 -15.4
NIV.			
N 53.8 NO		Density: gm/cc Crystal	1.72
0 30.8	•	Melting Point: °C	232
C/H Ratio 0.038		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	47	Boiling Point: °C	
Sample Wt 20 mg	,	Refractive Index, no	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	26 7	n ₂₅ ^D	
	·	n ₃₀	
Friction Pendulum Test:	(e)	Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	0.07
Rifle Bullet Impact Test: 5 Trials	(e)	100°C	0.37
%		120°C	0.44
Explosions 0		135°C 150°C	
Partials 0		130 C	
Burned 0		200 Gram Bomb Sand Test:	
Unaffected 100		Sand, gm	36.0
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge,	gm
l 5 Decomposes 275		Mercury Fulminate	
5 Decomposes 275		Lead Azide	0.20
15		Tetryl	0.10
20		Ballistic Mortar, % TNT: (a)	104
		Trauzi Test, % TNT: (b)	101
75°C International Heat Test: % Loss in 48 Hrs	0.04	Plate Dent Test: (c)	
% LOSS IN 40 Mrs	0.04	Method	A
100°C Heat Test:		Condition	Pressed
% Loss, 1st 48 Hrs	0.18	Confined	No
% Loss, 2nd 48 Hrs	0.09	Density, gm/cc	1.50
Explosion in 100 Hrs	None	Brisance, % TNT	95
		Detonation Rate: (e)	
Flammability Index:		Confinement	
Hygroscopicity: % 30°C, 90% RH	DT	Condition	
riygroscopicity: % 30 C, 90% RH	None	Charge Diameter, in.	
Volatility:	None	Density, gm/cc	1.55
	MOHE	Rate, meters/second	7650

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100	:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Color: Colorl	ess		
For Subject HE	Principal Uses:			
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, 1b	Propellant composition ingredient, bursting charge ingredient Method of Loading:			
Total No. of Fragments: For TNT				
For Subject HE	Loading Density: gm/cc			
Fragment Velocity: ft/sec At 9 ft	At 3000 psi	0.95		
At 25½ ft Density, gm/cc	Storage: Method	Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9		
Air: Peak Pressure	Compatibility Group Exudation	Group I		
Impulse Energy	Solubility, gm/100 gm (%), in:			
Air, Confined: Impulse	Water 25	0.44		
Under Water: Peak Pressure Impulse	1.0 N Potassium Hydroxide 25 40% Sulfuric Acid 25	5 1.2 3.4*		
Energy Underground: Peak Pressure Impulse	* gm/100 cc solution Booster Sensitivity Test: Condition Tetryl, gm Wax, in. for 50% Detonation Density, gm/cc	(d) Pressed 100 0.67 1.41		
Energy	Heat of: Combustion, cal/gm Explosion, cal/gm Gas Volume, cc/gm Formation, cal/gm	1995 721 1077 227		

Preparation:

(Chemistry of Powder and Explosives, Davis)

Four hundred gms of dry guanidine nitrate is added in small portions to 500 cc concentrated sulfuric acid at 10°C, or below. As soon as all crystals have disappeared the milky solution is poured into 3 liters of ice-water, and allowed to stand until crystallization is complete. The product is filtered, rinsed with water, and recrystallized from about 4 liters of boiling water, yield about 90%.

Origin:

Nitroguanidine was first prepared in 1877 by Jousselin, but it was 1900 before it found use in propellant compositions. During World War I, nitroguanidine was used by the Germans as an ingredient of bursting charge explosives.

Destruction by Chemical Decomposition:

Nitroguanidine is decomposed by dissolving in 15 times its weight of 45% sulfuric acid at room temperature and warming the solution until gas is evolved. Heating is continued for one-half hour.

References: 49

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) Canadian Report, CE-12, 1 May-15 August 1941.
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
- (e) Departments of the Army and the Air Force TM 9-1910/TO 11A-1-34, Military Explosives, April 1955.

⁴⁹See footnote 1, page 10.

Nitroguanidine

(f) Also see the following Picatinny Arsenal Technical Reports on Nitroguanidine:

<u>o</u>	1	2	<u>3</u>	<u>6</u>	7	8	9
1490	1391 2181 2201	1282 1392 2142	1183 1423 2193	1336	907 2177	758	1439 1749

Composition:	Molecular Weight: (C4H6N4O11)	286		
c 16.8 0 ₂ NO-CH ₂	Oxygen Balance:			
0 -	CO ₂ % CO %	0.0		
$ \begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & &$	Density: gm/cc 20°C	1.64		
0 61.5 0 ₂ NO-CH ₂	Melting Point: °C			
C/H Ratio 0.126	Freezing Point: °C	- 39		
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C			
Bureau of Mines Apparatus, cm 25 Sample Wt 20 mg	Refractive Index, n ^D ₂₀			
Picatinny Arsenal Apparatus, in.		10.6		
Sample Wt, mg	n ₂₅	1.4896		
	n ₅₀	1.4874		
Friction Pendulum Test:	Vacuum Stability Test:			
Steel Shoe	cc/40 Hrs, at			
Fiber Shoe	90°C			
Rifle Bullet Impact Test: Trials	— 100°C			
•	120°C			
% Explosions	135°C			
Partials	150°C			
Burned	200 Gram Bomb Sand Test:			
Unaffected	Sand am 0.2 am semple shearhed			
		28		
Explosion Temperature: °C	Sensitivity to Initiation:			
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm			
1 5 Ignites 185	Mercury Fulminate			
10	Lead Azide			
15	Tetryl			
20	Ballistic Mortar, % TNT:			
77.01	Trauxi Test, % TNT:			
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method			
100°C U T	Condition			
100°C Heat Test:	Confined			
% Loss, 1st 48 Hrs	Density, gm/cc			
% Loss, 2nd 48 Hrs	Brisance, % TNT			
Explosion in 100 Hrs				
Flammability Index:	Detonation Rate:			
rammasility index:	i	lass (1 mm wall		
Hygroscopicity: %	Condition	Liquid		
, 3-	Charge Diameter, in.	0.39		
Volatility:	Density, gm/cc	1.64		
25°C, mg/cm 2 /24 hrs 0.127 x 10 ⁻³	Rate, meters/second	7860		

Shaped Charge Effectiveness, TNT = 100: Fragmentation Test: Glass Cones Steel Cones 90 mm HE, M71 Projectile, Lot WC-91: Hole Volume Density, gm/cc Hole Depth Charge Wt, Ib Total No. of Fragments: Color: Yellow oil For TNT For Subject HE Principal Uses: Gelatinizing agent for nitrocellulose 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib Total No. of Fragments: Method of Loading: For TNT For Subject HE Loading Density: gm/cc Fragment Velocity: ft/sec At 9 ft At 251/2 ft Storage: Density, gm/cc Method Liquid Hazard Class (Quantity-Distance) **Blast (Relative to TNT):** Compatibility Group Peak Pressure Exudation Impulse Energy Solubility: Air, Confined: Soluble in methyl and ethyl alcohols, ace-Impulse tone, ether, ethylenedichloride, chloroform and benzene. Under Water: Peak Pressure Insoluble in water, carbon disulphide, Impulse and petroleum ether. Energy Toxicity: Slight, decidedly less than nitroglycerin. Underground: Peak Pressure Gelatinizing Action: Impulse Slight on nitrocellulose. Energy 82.2°C KI Test: Minutes 2

A total of 675 gm 37% formalin is added to 150 gm nitromethane containing 2 gm potassium carbonate hemi-hydrate. The first 200 gm formalin is added slowly, keeping the temperature below 30°C, and then the heat of reaction is allowed to raise the temperature to 80°C, and the mixture then heated two hours at 90°C. The reaction mixture is then concentrated at reduced pressure and diluted, and this process repeated several times to remove formaldehyde. After the final concentration the cooled mixture is filtered and the crystalline product recrystallized from alcohol and then several times from ether and dried.

The nitrated product is then obtained by nitrating 50 gm nitroisobutylglycerol with 300 gm mixed acid (60/38/2, sulfuric acid/nitric acid/water) below 15°C for 1.5 hours.

Origin:

This explosive (also called Trimethylolnitromethane Trinitrate, Nitroisobutanetriol Trinitrate, Nitroisobutylglycerin Trinitrate and incorrectly but widely used Nitroisobutylglycerol Trinitrate) was first described in 1912 by Hofwimmer (Z ges Schiess - Sprengstoffw 7, 43 (1912). Hofwimmer prepared the compound by the condensation of 3 moles of formaldehyde with 1 mole of nitromethane in the presence of potassium bicarbonate, the subsequent nitration of the product. The explosive can now be produced from coke, air, and natural gas.

- (a) H. A. Aaronson, Study of Explosives Derived from Nitroparaffins, PATR No. 1125, 24 October 1941.
 - (b) M. Aubry, Mém poudr, 25, 197-204 (1932-33); CA 27, 4083 (1933).
 - (c) A. Stettbacher, Nitrocellulose 5, 159-62, 181-4, 203-6 (1934); CA 29, 1250 (1935).
 - (d) W. de C. Crater, U.S. Patent 2,112,749 (March 1938); CA 32, 3964 (1938).
- (e) H. J. Hibshman, E. H. Pierson, and H. B. Haas, Ind Eng Chem 32, 427-9 (1940); CA 34, 3235 (1940).
 - (f) A. Stettbacher, Z ges Schiess Sprengstoffw 37, 62-4 (1942); CA 38, 255 (1944).

 $^{^{50}}$ See footnote 1, page 10.

Composition:		Molecular Weight:	325
% Nitrostarch (12.50% N) Barium Nitrate Mononitronaphthalene	49 40 7	Oxygen Balance; CO ₂ % CO %	-19 8
Paranitroaniline	3	Density: gm/cc	
Oil	1	Melting Point: °C	_ _
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	21	Boiling Point: °C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	8	Refractive Index, n_{20}^D n_{25}^D n_{30}^D	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe Crackl Fiber Shoe Unaffe	es, snaps	cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: 10 Trials	8 Trials*	100°C 120°C	11+
Explosions 90 Partials 0	% 0 13	135°C 150°C	
Burned 0	0	200 Gram Bomb Sand Test:	
Unoffected 10 *Packed in paper	87	Sand, gm	39.5
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 Decomposes 195		Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide	0.2 6
10		Tetryl	
15 20		Ballistic Mortar, % TNT: (a)	96
		Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	0.2	Plate Dent Test: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.3	Confined	
% Loss, 2nd 48 Hrs	0.3	Density, gm/cc Brisance, % TNT	
Explosion in 100 Hrs	None		·
Flammability Index:		Detonation Rate: Confinement	
Hygroscopicity: % 30°C, 90% RH	2.1	Condition Charge Diameter, in.	
Volatility:		Density, gm/cc Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color:		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, lb	Principal Uses: Demolition, bursting charges, and priming compositions		
Total No. of Fragments: For TNT	Method of Loading: Hand tamped		
For Subject HE Fragment Velocity: ft/sec	Loading Density: gm/cc Apparent 0.92		
At 9 ft At 25½ ft	Storage:		
Density, gm/cc	Method Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9		
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Exudation None		
Air, Confined: Impulse Under Water:	220°C Heat Test: Salmon Pink Red Fumes Minutes 70 255		
Peak Pressure Impulse Energy	Explodes 256		
Underground: Peak Pressure Impulse Energy			

Preparation: (b)

The nitration of starch proceeds with the formation of hexanitro starch according to the following equation:

$$2C_6H_{10}O_5 + 6HNO_3 \rightarrow C_{12}H_{14}O_4(ONO_2)_6 + 6H_{2}O_5$$

Tapioca starch is considered the best for nitration purposes, although other starches give fairly stable products. The starch, pretreated to remove oils, fats and water soluble impurities, is dried and screened. Feeding of the dried starch into stainless steel nitrators containing mixed acid (62%-63% $\rm HNO_3$ and 37%-38% $\rm H_2SO_4$) is done slowly with constant agitation of the mixture. The heat evolved must be controlled by cooling coils. The nitrated starch is separated from the spent acid, washed with a large amount of water and centrifuged. Final drying is on trays heated to 35°-40°C with air. This product is so sensitive even a static discharge might cause explosion.

Nitrostarch demolition explosives contain a high percentage of nitrostarch, an oxidizing agent, mineral oil, a stabilizer and/or other ingredients.

Origin:

Nitrostarch was first prepared in 1833 by Branconnot, who called it xyloidine (Ann chim phys [2] 52, 290 (1833)). T. J. Pelouze studied xyloidine further and reported its explosive properties (Compt rend 7, 713 (1838). It found military use in the United States during World Wars I and II as blasting explosives and as an ingredient of bursting charges and priming compositions.

- (a) W. R. Tomlinson, Jr., Physical and Explosive Properties of Military Explosives, PATR No. 1372, 29 November 1943.
- (b) G. D. Clift and B. T. Fedoroff, A Manual for Explosives Laboratories, Vol I, Lefax Society, Inc., Philadelphia (1942).
 - (c) Also see the following Picatinny Arsenal Technical Reports on Nitrostarch Explosives:

⁵¹See footnote 1, page 10.

Octol, 70/30

Composition:		Molecular Weight:	265
% HMX	70	Oxygen Balance:	
III-III	10	CO ₂ %	-3 8 - 7•5
TNT	30	Density: gm/cc Cast	
			1.00
		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	18	Refractive Index, n ^D ₂₀	
Sample Wt, mg	2 6	n ₂₅	
		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: Trials		100°C	0.37
%		135°C	0.31
Explosions		150°C	
Partials		150 C	
Burned		200 Gram Bomb Sand Test:	0.1
Unaffected		Sand, gm Exploratory	58.4
Explosion Temperature:	°C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
l 5 Flames erratically	335	Mercury Fulminate	
10	337	Lead Azide	0.30
15		Tetryl	
20		Ballistic Mortar, % TNT:	115
	····	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:	
70 LOSS IN 40 FITS		Method	
100°C Heat Test:	<u></u>	Condition	
% Loss, 1st 48 Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisance, % TNT	
		Detonation Rate:	
Flammability Index:		Confinement	None
		— Condition	Cast
Hygroscopicity: %		Charge Diameter, in.	1.0
Valatilita		Density, gm/cc	1.80
Volatility:		Rate, meters/second	8377

Booster Sensitivity Test:		Decomposition Equation:
Condition		Oxygen, atoms/sec (Z/sec)
Tetryl, gm		Heat, kilocalorie/mole
Wax, in. for 50% Detonation		(ΔH, kcal/mol)
Wax, gm		Temperature Range, °C
Density, gm/cc		Phase
Heat of:	0700	Armor Plate Impact Test:
Combustion, cal/gm	2722	
Explosion, cal/gm	1074	60 mm Mortar Projectile:
Gas Volume, cc/gm	847	50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Fineness
Fusion, cal/gm		500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C		Plata Thickness inches
		Plate Thickness, inches
		1
		11/4
		11/2
D		134
Burning Rote: cm/sec		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C	-	T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Europeins		Max Safe Drop, ft
Coefficient of Expansion: Linear, %/°C		500-ib General Purpose Bomb vs Concrete:
· Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
		Low Order
Young's Modulus:		High Order
E', dynes/cm²		,g., 5.22.
E, lb/inch²		1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc		
	255	— Height, ft
Compressive Strength: Ib/inch ²	1510 See below	Trials
	TOCC DOTOM	Unaffected
Vapor Pressure:		Low Order
°C mm Mercury		High Order
Compressive Strength: lb/inch2	*	
Average (10 tests)	1510	Ultimate Deformation: %
High	1740 1330	Average (10 tests) 2.26
Low	±220	High 2.58

^{*}Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT	Color:	Buff
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: HE projectile and bomb	filler
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	Cast
roi subject ne	Loading Density: gm/cc	1.80
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group I
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy	Work to Produce Rupture: ft-lb/inch ³ Average (10 tests) High Low Efflux Viscosity, Saybolt Seconds:	* 1.55 1.87 1.10 5.9
Underground: Peak Pressure Impulse Energy	*Test specimen 1/2" x 1/2" cylinder (mately 3 gm) pressed at 3 tons (6,000 total load or 30,000 psi with a 2 mitime of dwell.	0 lb)

Effect of Altitude, Charge Diameter and Degree of Confinement on Detonation Velocity*
(Reference b)

		One-Inc	h Column	Two-Inc	h Column
Explosive	Simulated Altitude,	Confined	Unconfined	Confined	Unconfined
	<u>Feet</u>	m/s	m/s	m/s	m/s
70/30, RDX/INT; density, gm/cc 1.62	Ground	7900	8100	7660	8030
density, gm/ce 1.02	30,000	8020	8120	7900(4)	7800
	60,000	8040	8140	8010	7950
	90,000	8060	7980	8010	7710
Average		8005	8085	7895	7873
70/30, HMX/INT;	Ground	7960	7900(4)	7870	7640(4)
density, gm/cc 1.61	30,000	8050	8060	7930	7710
	60,000	8020	7930	7890	7650
;	90,000	7950	8000	7940	7650
Average	; ;	7995	7973	7908	7663

^{*70/30} Octol confined charge in 1/4" steel tube, AISI 1015 seamless, 1" diameter 18" long, and 2" diameter 7" long. All means were determined from sets of five values unless otherwise indicated by (). A 26 gm tetry booster was used to initiate each charge.

Average Fragment Velocities at Various Altitudes* (g)

		5	Simulated Altitude, Feet		
Explosive	Charge Diameter, Inches	Ground	30,000	60,000	90,000
	Inches	m/s	m/s	m/s	m/s
70/30, RDX/INT	1	3415	3672	3666	3685
	2	4647	5192	5236	6011
70/30, HMX/INT	1	3366	3680	4014	3617
•	2	4703	5464	6089	6111

^{*}Outside diameter 2.54"; inside diameter 2.04"; length 7".

Tensile Strength:*

	lb/inch ²
Average (8 tests)	169
High	204
Low	128

^{*}Test specimen as per Picatinny Arsenal sketch XL-076B, at 21°C.

Modulus of Elasticity:*

	lb/inch ²
Average (10 tests)	73,200
High	79,300
Low	63,000

^{*}Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Setback Sensitivity Test: (a)

DC UDG CIK DC	TIBY OT VI OF TEB	γ. (α)	
Critic	al Pressure	92,000 psi*	\mathbb{I}
Densit	y, gm/cc	1.72	

^{*}Pressure below which no initiation is obtained and above which an increasing percentage of initiations can be expected as the setback pressure increases.

Pit Fragmentation Test:

105 mm Ml HE Projectile:

Weight Group, grains	No. of Fragments
1/2 - 2	1297
2 - 5	665
5 - 10	497
10 - 25	661
25 - 50	471
50 - 75	247
75 - 150	322
150 - 750	295
750 - 2500	12
Total Number	4467

Composition:		Molecular Weight:	276
HMX	75	Oxygen Balance:	
		CO ₂ %	-35 -6.3
INT	25		
		Density: gm/cc Cast	1.81
		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg	200	Refractive Index, no	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	17 25	n ^D ₂₅	
sumple VVI, mg	2)	n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
D (1) D		— 100°C	
Rifle Bullet Impact Test: 10Trials % 3/16" Stee1	1/8 <u>"</u> Al	120°C	0.39
		135°C	-
Explosions 70	70	150°C	
Partials			
Burned		200 Gram Bomb Sand Test:	_
Unaffected 30	30	Sand, gm Exploratory	62.1
Explosion Temperature:	°C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	
5 Flames erratically	350	Lead Azide	0.30
10		Tetryl	
15		B. History Advances Of Water	35/
20		Ballistic Mortar, % TNT:	116
75°C International Heat Test:		Trouzi Test, % TNT:	
% Loss in 48 Hrs		Plate Dent Test:	
	···	Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisance, % TNT	
Flammability Index:		Detonation Rate:	
· community index:		Confinement	None
Hygroscopicity: %		Condition	Cast
, g. 0300 picky. /0		Charge Diameter, in.	1.0
Volatility:		Density, gm/cc	1.81
· viacinty.		Rate, meters/second	8643

	Oxygen, atoms/sec (Z/sec) Heat, kilocalorie/mole (ΔH, kcal/mol) Temperature Range, °C
	Heat, kilocalorie/mole (ΔH, kcal/mol)
i.	(ΔH, kcal/mol)
į	Temperature Range °C
!	remperature range,
	Phase
0(5(Armor Plate Impact Test:
2676	•
-	60 mm Mortar Projectile:
830	50% Inert, Velocity, ft/sec
	Aluminum Fineness
29.4*	
	500-lb General Purpose Bombs:
**	
	Plate Thickness, inches
0.323	1
	11/4
	11/2
	13⁄4
	Bomb Drop Test:
	T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
	Max Safe Drop, ft
	500-lb General Purpose Bomb vs Concrete:
	Height, ft
·· ·· ····	Trials
	Unaffected
	Low Order
	High Order
	1000-lb General Purpose Bomb vs Concrete:
	Height, ft
1340	Trials
ee below	Unaffected
	Low Order
	High Order

	Ultimate Deformation: %
	Average (10 tests) 2.43
1040	High 2.89
	** 0.200 0.240 0.245 0.323 T. 1340 ee below *** 1340 1560

^{***}Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:					
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth					
Total No. of Fragments: For TNT	Color: Buff					
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: HE projectile and bomb filler	r				
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Cast					
For Subject HE	Loading Density: gm/cc 1.81					
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:					
Density, gm/cc	Method Dry					
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class	9				
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	I				
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy	Work to Produce Rupture: ft-lb/inch ³ * Average (10 tests) 1.31 High 1.57 Low 1.07 Efflux Viscosity, Saybolt Seconds: 9.0					
Underground: Peak Pressure Impulse Energy	*Test specimen 1/2" x 1/2" cylinder (approx mately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.	:1 -				

Fragment Velocity Test:

(a)

M26 Hand Grenade:

Explosive	Average Fragment Velocity, ft/sec over lst 6 feet
Composition B	4948
75/25 Cyclotol	4908
75/25 Octol	5124

Tensile Strength:*

	lb/inch ²
Average (10 tests)	266
High	330 226
Low	226

^{*}Test specimen as per Picatinny Arsenal sketch XL-076B, at 21°C.

Modulus of Elasticity:*

	lb/inch ²
, Average (10 tests)	62,100
High	75,900
Low	45,200

^{*}Test specimen 1/2" x 1/2" cylinder (approximately 3 gm) pressed at 3 tons (6,000 lb) total load or 30,000 psi with a 2 minute time of dwell.

(a)

Critical Density,	Pressure gm/cc	76,000 1.80	psi*	-

^{*}Pressure below which no initiation is obtained and above which an increasing percentage of initiations can be expected as the setback pressure increases.

Pit Fragmentation Test:

(a)

105 mm Ml HE Projectile:

Weight Group, grains	No. of Fragments
1/2 - 2	1611
2 - 5	777
5 - 10	535
10 - 25	719
25 - 50	480
50 - 75	246
75 - 150	339
150 - 750	293
750 - 2500	8
Total Number	5008

Water-wet HMX is added slowly to molten TNT in a steam-jacketed kettle at a temperature of 100° C. The mixture is heated and stirred until all moisture is evaporated. The composition is cooled to a satisfactory pouring temperature and cast directly into ammunition components or prepared in the form of chips to be stored for later use.

- (a) 1st Indorsement from Chief, Explosives Development Section, to Chief, Explosives Research Section, Picatinny Arsenal, dated 12 May 1958. Subject: "Properties of Octols and HTA-3."
- (b) A. W. O'Brien, Jr., C. W. Plummer, R. P. Woodburn and V. Philipchuk, Detonation Velocity Determinations and Fragment Velocity Determinations of Varied Explosive Systems and Conditions, National Northern Corporation Final Summary Report NNC-F-13, February 1958 (Contract DAI-19-020-501-ORD-(P)-58).

⁵²See footnote 1, page 10.

Copyrighted Materials U.S. Army Material Command Retrieved from www.knovel.com

PB-RDX

Composition:		Molecular Weight:	245
RDX	90	Oxygen Balance:	(0
Dolyatymana (yamadifiad)	8.5	CO ₂ % CO %	-62 -18
Polystyrene (unmodified)	0.)	77	0.81
Dioctylphthalate	1.5	Density: gm/cc Unpressed Pellet pressed at 30,000 psi	1.62
		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Unpressed 28	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	15	Refractive Index, no	
Sample Wt, mg	20	n ₂₅	
		n ₃₀	
Friction Pendulum Test:	-	Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: 10 Trials	*	— 100°C	
·		120°C	0.41
% Explosions 10		135°C	
Partials 90		150°C	
Burned 0		200 Gram Bomb Sand Test:	
Unaffected 0		Sand, gm	
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	
5 Smokes 275		Lead Azide	
10		Tetryl	
15 20		Ballistic Mortar, % TNT:	
		Trauxi Test, % TNT:	*****
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:	
		Method	
100°C Heat Test:	-	Condition	
% Loss, 1st 48 Hrs	0.00	Confined	
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Indo-		Detonation Rate:	
Flammability Index:		Confinement	
Hygroscopicity: %		— Condition	
		Charge Diameter, in.	
* Test procedure described in	n PATR No. 2247,	Density, gm/cc	
May 1956.		Rate, meters/second	

Oxygen, atoms/sec (Z/sec)
\—/ JV-/
Heat, kilocalorie/mole
(ΔH, kcal/mol)
Temperature Range, °C
Phase
Armor Plate Impact Test:
60 mm Mortar Projectile:
50% Inert, Velocity, ft/sec
Aluminum Fineness
500-lb General Purpose Bombs:
Plate Thickness, inches
1
11/4
11/2
Bomb Drop Test:
T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Max Safe Drop, ft
500-lb General Purpose Bomb vs Concrete:
Height, ft
Trials
Unaffected
Low Order
High Order
1000-lb General Purpose Bomb vs Concrete:
11 :- 1- 10
Height, ft
Trials
Unaffected
Low Order
High Order

^{*}Pellets (Lot OAC-596-55) 0.750 inch diameter by 0.750 inch long, pressed at 30,000 psi with 30-second dwell.

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: White
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: High mechanical strength explosive
Total No. of Fragments: For TNT	Method of Loading: Pressed
For Subject HE	Loading Density: gm/cc Pressed, psi x 10 ³ 0 10 20 30
Fragment Velocity: ft/sec At 9 ft At 25½ ft	1.10 1.49 1.59 1.62 Storage:
Density, gm/cc	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group I Exudation None
Air, Confined: Impulse	Rockwell Hardness, "R" Scale: (a) 1/2 inch diameter Penetrator, 60 Kg Load:
Under Water: Peak Pressure	Pellet Specific No.* Gravity Hardness
Impulse Energy	1 1.624 84 2 1.623 90 3 1.611 84
Underground: Peak Pressure	1.600 80 5 1.590 75 6 1.571 73
Impulse Energy	7 1.548 62 8 1.524 49
	*Pellets (Lot HOL-E-93) were 1-1/2 inches in diameter and 3/4 inch high.

PB-RDX

Sensitivity of PB-RDX and 98/2 RDX/Stearic Acid Pellets* to Initiation by Type II Special Blasting Caps (a)

		Distance					nches
Pellets	0.250	0.300	0.350	0.400	0.450	0.500	0.750
PB-RDX with Pellet Density 1.55 gm/cc	-						
No. of Trials	1	8	5	6	2	1	1
Average Depth of Plate Indentation, inches **	0.082	0.090	0.087	0.080	0.080		
No. of Failures	0	1	3	4	1	1	1
PB-RDX with Pellet Density 1.60 gm/cc	-						
No. of Trials	3	8	9	4	3	5	2
Average Depth of Plate Indentation, inches **	0.090	0.089	0.087	0.084	0.087	0.075	_
No. of Failures	0	0	2	3	2	3	2
98/2 RDX/Stearic Acid With Pellet Density 1.63 gm/cc	_						
No. of Trials	5	3	5	5	5	5	5
Average Depth of Plate Indentation, inches **	0.109	0.096	0.095	0.092	0.097	0.087	
No. of Failures	0	1	0	3	4	4	5

^{*} Pellets 0.92 inch diameter, 0.375 inch height.

Performance of PB-RDX as Booster: (b, d)

Ten 2.75 inch HEAT M1 Rocket Heads were unaffected in performance by storage at 71°C for 28 days. Thus, PB-RDX was not desensitized by contact with TNT-bearing explosives. Tetryl, similarly used, becomes desensitized when stored in bursting charges at elevated temperatures.

In addition, 108 modified M307Al 57 mm projectiles were fired for performance against armor. Each round contained a PB-RDX booster pellet. There was no evidence in these firings that the projectiles were inadequately boostered.

^{**} Mild steel plate 5" x 5" x 1".

The purchase description sheet for polystyrene-bonded RDX (X-PA-PD-1088, 25 October 1956) requires that the PB-RDX shall be a mixture of RDX, coated and surrounded by a homogeneous mixture of polystyrene and dioctylphthalate. The specified percentage of RDX shall consist of a mixture of 75% Type B, Class A RDX and 25% Type B, Class E RDX. The granulation of the unpressed composition shall be as follows:

Through U. S. Standard Sieve No.	Minimum %	Maximum %	
6	100 60		
20 35		2	!

Two methods have been reported for the preparation of PB-RDX (Reference: Los Alamos Scientific Laboratory, Contract W-7405-Eng 36 with U.S. Atomic Energy Commission, Report No. IA-1448). The earlier method employed a Baker-Perkins type mixer to blend the components. This procedure gave a product with good pressing characteristics. However, the molding composition was nonuniform in granulation and tended to be dusty. The slurry method of PB-RDX preparation gave a product which was uniform, free-flowing and dustless. In addition, PB-RDX granulated by the slurry method exhibited satisfactory drying, handling and pressing characteristics.

The final procedure incorporating the better features found from the study of such variables as solvents, solvent/plastic ratios, lacquer addition and temperature, agitation, RDX particle size distribution, dispersants and rosin additive, was as follows (Reference c):

Forty-two and five-tenths grams (42.5 gm) of polystyrene and 8 cc dioctylphthalate were dissolved in 200 cc toluene in a lacquer dissolver. Steam was introduced into the jacket until the temperature reached 65°C. The lacquer was agitated constantly until it was ready to be added to the granulator. This lacquer contained a 1:4 ratio of plastic-plasticizer to toluene.

Four hundred and fifty grams (450 gm) of RDX and 4500 grams of H_2O (ratio 1:10) were added to the granulator. The agitator was set for 400 rpm and the temperature was raised to $75^{\circ}C$ by introducing steam into the jacket. The temperature differential between the lacquer solution and the RDX/water slurry was 5° to $10^{\circ}C$.

The lacquer solution was poured through the charging funnel into the granulator. As soon as the lacquer was added, a solution of gelatin in water was added, and the mixture was agitated until the lacquer was well dispersed in the RDX slurry (approximately 5 minutes). Granulation took place at this point. Steam was introduced again into the jacket to distill the solvent until the temperature reached 98°C. Cooling water was then run into the jacket to cool the batch to 40°C. The coated material from the granulator was collected on a Buchner funnel and dried in a tray at 70°C for 24 hours. Temperatures below 70°C did not furnish enough heat, but a temperature of 80°C produced stickiness and caking of PB-RDX.

Origin:

An explosive consisting of RDX coated with polystyrene plasticized with dioctyphthalate was initially developed in 1952 for the Atomic Energy Commission by Los Alamos Scientific Laboratory of the University of California (Contract W-7405-Eng 36 with U. S. Atomic Energy

PB-RDX

Commission, Report No. IA-1448). The specific formulation of 90/8.5/1.5 RDX/polystyrene/dioctylphthalate was subsequently standardized by Ios Alamos. This explosive, originally designated PBX, has been redesignated PB-RDX. The detailed requirements for the present polystyrene-bonded RDX(PB-RDX) are given in purchase description X-PA-PD-1088, 25 October 1956.

- (a) B. J. Zlotucha, T. W. Stevens and C. E. Jacobson, <u>Characteristics of Polystyrene-Bonded RDX(PB-RDX)</u>, PATR No. 2497, April 1958.
- (b) A. J. Pascazio, The Suitability of a Bare PBX Booster Pellet in the 2.75 Inch Ml HEAT Rocket Head, PATR No. 2271, November 1955.
- (c) J. L. Vermillion and R. C. Dubberly, <u>Plastic-Bonded RDX</u>, Its Preparation by the Slurry <u>Method</u>, Holston Defense Corporation, Control No. 20-T-16 Series A (PAC 1081), 5 March 1953.
- (d) C. J. Eichinger, Report on Cartridge HEAT 57 mm M307Al (Mod) with Modified Copper Liner, Aberdeen Proving Ground, Development and Proof Services, First Report on OC Project TA3-5204, October 1957.

⁵³See footnote 1, page 10.

Composition:	Molecular Weight: (C5H9N3O10)	271
C 22.1	Oxygen Balance: CO ₂ %	-27
H 3.3	CO %	3
HOCH ₂ —C—CH ₂ ONO ₂	Density: gm/cc	1.54
CH ₂ ONO ₂ 0 59.1	Melting Point: °C	2 6 to 2 8
C/H Ratio 0.141	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C 4 mm Hg Decompose	es 130
Sample Wt 20 mg	Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus, in. 5 to 10	n ₂₅	
Sample Wt, mg 38	n _∞	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	2.54 to 5.69
Rifle Bullet Impact Test: Trials	100°C	2.54 (0).05
%	120°C 135°C	
Explosions	150°C	
Partials	130 C	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
]	Mercury Fulminate	
5	Lead Azide	
10	Tetryl	
15 20	Ballistic Mortar, % TNT:	
	Trauxi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:	
	Method Condition	
100°C Heat Test:	Confined	
% Loss, 1st 48 Hrs	Density, gm/cc	
% Loss, 2nd 48 Hrs	Brisance, % TNT	
Explosion in 100 Hrs		
Flammability Index:	Detonation Rate: Confinement	
	Condition	
Hygroscopicity: %	Charge Diameter, in.	
	Density, gm/cc	
Volatility:		

Pentaerythritol Trinitrate (PETRIN)

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: White
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Explosive, propellant or igniter ingredient
Total No. of Fragments: For TNT For Subject HE	Method of Loading:
Fragment Velocity: ft/sec	Loading Density: gm/cc
At 9 ft At 25½ ft	Storage:
Density, gm/cc	Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)
Air: Peak Pressure Impulse	Compatibility Group Exudation None
Energy Air, Confined: Impulse	PETRIN esters are listed in reference (b) and most of these esters have been shown to have explosive properties.
Under Water: Peak Pressure Impulse Energy	An infrared spectrophotometric procedure was developed for the determination of the acetone content of PETRIN (ref c). A 2.5 gm sample of PETRIN is dissolved in chloroform and the volume increased to 25 milliliters in a volumetric flask. The acetone content of
Underground: Peak Pressure Impulse Energy Absolute Viscosity, poises: Temp, 17°C 14.8 23°C 4.8 28°C 3.0 38°C 1.2	the PETRIN solution is determined by its infra red absorption at 5.82 μ in a 0.5 mm cell. A double beam method is used with a reference cell containing chloroform and acetone-free PETRIN. The quantity of the latter must be carefully adjusted to give a good balance between the test sample and reference cells for the strong PETRIN peak at 6.02 μ maximum. Heat of: Explosion, cal/gm 1204

The earliest procedure used for the manufacture of PETRIN was that developed at Alleghany Ballistics Laboratory. In this process, called the "A process," 80% HNO3 and the solid pentaerythritol were charged to the reactor and 80% $\rm H_2SO_1$ was added slowly at a rate to permit control of temperature at 0° to $5^{\circ}C$. This mixture was held for a 2-1/2-hour reaction period, then drowned in water and filtered to give a cake containing both the tri- and tetra-nitrates of pentaerythritol. The cake was dissolved in acetone and neutralized in solution with ammonium carbonate, after which the PETN was precipitated by the addition of water. After filtration, the PETRIN was recovered from the filtrate by stripping off the solvent under vacuum. Yields by this process averaged about 40%.

An improved process, called the "B process," used the same primary reaction procedure but a different work-up procedure. After the reaction holding period, water was added to dilute the mixed acid and the batch was extracted in situ with methylene chloride. The organic layer was separated, neutralized with aqueous sodium bicarbonate, and stripped of methylene chloride under vacuum to yield the product directly. Yields by this process were about 50% and quality of the product was much improved over that of the "A process."

The "C process," currently in use, involves essentially the simultaneous synthesis and extraction of PETRIN from the reaction mixture. Methylene chloride approximately equal to the total weight of the other components is added to the reaction mixture before the sulfuric acid. After a suitable time following the addition of sulfuric acid, the solvent is removed and replaced by fresh solvent one or more times. The combined extracts are neutralized and concentrated. Because of their initially relatively large volume, PETN must be removed by filtration from the concentrated PETRIN solution before the final solvent is stripped. Yields by this process have been 60% to 65%.

Origin:

The nitration products of pentaerythritol or its derivatives containing not more than three NO_2 groups were patented for use as explosives, propellants or ignition materials in 1936 (German Patents 638,432 and 638,433; CA $\underline{31}$, 1212 (1937)).

A process in which pentaerythritol monoacetate was converted to pentaerythritol trinitrate monoacetate, which was then saponified under carefully controlled conditions to PETRIN, was reported in 1954 (N. S. Marans, D. E. Elrick and R. F. Preckel, J Am Chem Soc 76, 1304). PETRIN was also prepared by the nitration of pentaerythritol with a mixture of 80% HNO3 and 80% H₂SO_{$\frac{1}{4}$} in 1955 (A. T. Camp, N. S. Marans, D. E. Elrick and R. F. Preckel, J Am Chem Soc 77, 751).

Pentaerythritol Trinitrate (PETRIN)

- (a) Rohm and Haas Company, Redstone Arsenal Division, Process for the Manufacture of Pentaerythritol Trinitrate Monoacrylate and Petrin Acrylate Propellants, 12 March 1956.
- (b) E. Berlow, R. H. Barth and J. E. Snow, <u>The Pentaerythritols</u>, ACS Monograph No. 136, p. 65, Reinhold Publishing Corporation, New York, 1958.
- (c) R. H. Pierson, An Infrared Spectrophotometric Method for Determination of Acetone Content of Pentaerythritoltrinitrate, U.S. Naval Ordnance Test Station Report NOTS 1877, NAVORD Report No. 5649, 3 February 1958.

⁵⁴See footnote 1, page 10.

Composition:	Molecular Weight: (C8H11N3O11)	325			
с 29.5 сн ₂ оло ₂ н 3.4	Oxygen Balance: CO ₂ % -54 CO % -12 Density: gm/cc				
CH ₂ = CH-CO ₂ CH ₂ C-CH ₂ ONO ₂					
o 54.2	Melting Point: °C	78 to 79			
C/H Ratio 0.239	Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C				
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	Refractive Index, n_{20}^D n_{25}^D n_{30}^D				
Friction Pendulum Test: Steel Shoe Fiber Shoe	Vacuum Stability Test: cc/40 Hrs, at 90°C				
Rifle Bullet Impact Test: Trials Explosions Partials	100°C 120°C 135°C 150°C				
Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm				
Explosion Temperature: °C Seconds, 0.1 (no cap used) 1 5 10 15	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl Ballistic Mortar, % TNT:				
	Trauzi Test, % TNT:				
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method Condition Confined Density, gm/cc Brisance, % TNT				
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs					
Flammability Index:	Detonation Rate: Confinement				
Hygroscopicity: % Nil	Condition Charge Diameter, in.				
Volatility:	Density, gm/cc Rate, meters/second				

Pentaerythritol Trinitroacrylate (PETRIN Acrylate)

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:			
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth			
Total No. of Fragments: For TNT	Color: White			
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of composite rocket propellants			
Total No. of Fragments: For TNT	Method of Loading:			
For Subject HE Fragment Velocity: ft/sec	Loading Density: gm/cc			
At 9 ft At 25½ ft Density, gm/cc	Storage: Method Dry at temperatures below			
Blast (Relative to TNT):	melting point Hazard Class (Quantity-Distance)			
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None			
Air, Confined: Impulse Under Water:	Heat of: Combustion, cal/gm 2923 Explosion, cal/gm 791			
Peak Pressure Impulse Energy				
Underground: Peak Pressure Impulse Energy				

The original synthesis for PETRIN acrylate employed trifluoroacetic anhydride and glacial acrylic acid as the acrylation agent for PETRIN. These two materials were charged to a reaction vessel and the initial reaction was controlled by the slow addition of PETRIN at a temperature of 10° to 15°C. Following a period of one hour, the batch was drowned in water, precipitating the PETRIN acrylate. This solid was separated by filtration, dissolved in chloroform, and neutralized in solution with sodium bicarbonate. The product was then crystallized during a period of 16 hours at 0°C and dried under vacuum to remove traces of solvent. The yield for this process was about 60%.

A significant improvement in yield (to about 74%) and purity (approximately 98%) was realized by the substitution of methanol for chloroform and crystallization of the product from the solution without neutralization, residual acid being removed by washing the filter cake with water.

Because of the high cost and hygroscopic nature of trifluoroacetic anhydride, a new process, based on dimethylaniline and acrylyl chloride, was considered. This process is currently under development in the Rohm and Haas Chemical Processing facilities and is not considered optimum. Yields averaged 46% and product purities averaged 93.5%.

PETRIN Acrylate Propellants:

PETRIN acrylate could be used as a monopropellant because it has a specific impulse of 214 lb-sec/lb and a burning rate of 0.2 in/sec. The addition of an oxidizer increases both the impulse and burning rate.

A composition which presently appears most promising is as follows:

	Composi	tion NM
PETRIN acrylate (> 97% purity), %	34.3	(binder)
Triethylene glycol trinitrate, %	11.8	(plasticizer)
Glycol diacrylate, %	2.9	(crosslinker)
Ammonium perchlorate, %	51.0	(oxidizer)
Hydroquinone, %	0.014	(polymerization inhibitor)

Measured specific impulse 238 lb-sec/lb, at density of 1.3.

Reference:55

(a) Rohm and Haas Company, Redstone Arsenal Division, Process for the Manufacture of Pentaerythritol Tetranitrate Monoacrylate and Petrin Acrylate Propellants, 12 March 1956.

⁵⁵See footnote 1, page 10.

Composition:			Molecular Weight:	50/50 265	10/90 234
PETN 50		10	Oxygen Balance: CO ₂ % CO %	-42 - 5	-68 -21
INT 50		90	Density: gm/cc	1.65	1.60
			Melting Point: °C		76
C/H Ratio			Freezing Point: °C		<u> </u>
Impact Sensitivity, 2 Kg Wt: 50/50 10/90 Bureau of Mines Apparatus, cm 34 65		Boiling Point: °C			
Sample Wt 20 mg Picatinny Arsenal Apparat Sample Wt, mg	,	14 18	Refractive Index, n ^D ₂₀ n ^D ₂₅		
Friction Pendulum Test: Steel Shoe Fiber Shoe		Unaffected Unaffected	Vacuum Stability Test: cc/40 Hrs, at 90°C	<u>50/50</u>	10/90
Rifle Bullet Impact Test: 25			100°C 120°C	3.0 11+	3.0 11+
Explosions Partials	% 72 20		135°C 150°C		
Burned Unaffected	o 8		200 Gram Bomb Sand Test	t: 55.6	49.5
Explosion Temperature: Seconds, 0.1 (no cap used	°C, 50/5	0	Sensitivity to Initiation: Minimum Detonating C	- 	50/50
1 5 Decomposes 10	266 220 204		Mercury Fulminate Lead Azide		0.19* 0.13*
15 20	197 > 190		Tetryl *Alternative initiat Ballistic Mortar, % TNT:	ing charges. (a)	126
	7190		Trauzi Test, % TNT:	(b)	122
75°C International Heat Test % Loss in 48 Hrs	:		Plate Dent Test: Method	(c)	В
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs	5	0/50 0.0 0.2	Condition Confined Density, gm/cc		Cast No 1.66
Explosion in 100 Hrs		None	Brisance, % TNT	·····	121
Flammability Index: Will r	not continue	to burn	Detonation Rate: Confinement		None
Hygroscopicity: % 30°C, 90% RH	50/50 None	10/90 None	Condition Charge Diameter, in.		Cast 1.0
Volatility:		***	Density, gm/cc Rate, meters/second		1.66 7465

Booster Sensitivity Test: (d)	50/50	Decomposition Equation:	
Condition Pressed	Cast	Oxygen, atoms/sec (Z/sec)	
Tetryl, gm 100	100	Heat, kilocalorie/mole	
Wax, in. for 50% Detonation 2.36	2.08	(ΔH, kcal/mol)	
Wax, gm		Temperature Range, °C	
Density, gm/cc 1.60	1.65	Phase	
Heat of: Combustion, cal/gm		Armor Plate Impact Test:	50/50
Explosion, cal/gm	1220	60 mm Mortar Projectile:	
Gas Volume, cc/gm		50% Inert, Velocity, ft/sec	170
Formation, cal/gm		Aluminum Fineness	
Fusion, cal/gm			
		500-lb General Purpose Bombs:	
Specific Heat: cal/gm/°C		Plate Thickness, inches	
		1	
		11/4	
		11/2	•
		134	
Burning Rate:		. 74	
cm/sec		Bomb Drop Test:	***************************************
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-lb Semi-Armor-Piercing Bom	b vs Concrete:
		Max Safe Drop, ft	
Coefficient of Expansion: Linear, %/°C		500-lb General Purpose Bomb vs Con	crete:
Volume, %/°C		Height, ft	
		Trials	
Hardness, Mohs' Scale:		Unaffected	
		Low Order	
Young's Modulus:		High Order	
E', dynes/cm²		High Order	
E, Ib/inch²		1000-lb General Purpose Bomb vs Con	crete:
Density, gm/cc			
**************************************		— Height, ft	
	0-2200	Trials	
Density, gm/cc	1.68	Unaffected	
Vapor Pressure:		Low Order	
°C mm Mercury		High Order	
•			

Fragmentation Test:	<u>50/50</u>	Shaped Charge Effectiveness, TNT = 100: 50/50 10/90 50/50 25/75
90 mm HE, M71 Projectile, Lot WC-91	:	Glass Cones(f) Steel Cones (g)
Density, gm/cc	1.65	Hole Volume 157 105 149 119
Charge Wt, Ib	2.147	Hole Depth 116 116 131 119
Total No. of Fragments:		Color: Yellow-white
For TNT	703	Color:
For Subject HE	968	Principal Uses: Shaped charges, bursting
3 inch HE, M42A1 Projectile, Lot KC-5:		charges, demolition blocks
Density, gm/cc	1.65	-
Charge Wt, Ib	0.872	
Total No. of Fragments:		Method of Loading: Cast
For TNT	514	Cast
For Subject HE	650	Loading Density: gm/cc 50/50 10/90
Fragment Velocity: ft/sec		1.65 1.60
At 9 ft At 251/ ₂ ft	2810 2580	Storage:
Density, gm/cc	1.66	Method Dry
Blast (Relative to TNT):	(e)	Hazard Class (Quantity-Distance) Class 9
Air:		Compatibility Group Group I
Peak Pressure	105	
Impulse	107	Exudation
Energy		0
Air, Confined:		Compatibility with Metals:
Impulse		Dry: Copper, brass, aluminum, magnesium, magnesium-aluminum alloy, mild steel coated
Under Water:		with acid-proof black paint, and mild steel plated with copper, cadmium or nickel are not
Peak Pressure		affected. Zinc plated steel is only slightly
Impulse		affected.
Energy		Wet: Stainless steel, aluminum and mild steel coated with acid-proof black paint are
Underground:		not affected. Copper, brass, magnesium, magnesium-aluminum alloy, mild steel and mild
Peak Pressure		steel plated with copper, cadmium, zinc or
Impulse		nickel are slightly affected.
Energy		Effect of Temperature on (h)
Eutectic Temperature, OC:	76	Rate of Detonation: 50/50
gm PETN/100 gm TNT		16 hrs at, °C -54 21 Density, gm/cc 1.67 1.66
76°C	13.0	Rate, m/sec 7470 7440
95 ° C	28.3	

Pentolite is manufactured by either the slurry method or coprecipitation of PETN and TNT. In the slurry method PETN, in water, is stirred and heated above 80°C. TNT is added and when molten, it coats the particles of PETN. The slurry is cooled with rapid stirring and the separated granules are collected on a filter and dried below 75°C.

In coprecipitation, PETN and TNT are dissolved separately in acetone. The solutions are mixed and the explosives are precipitated simultaneously by pouring the mixed solution into cold water under vigorous agitation. The precipitated solid is collected on a filter and dried in air.

Origin:

Standardized during World War II, with the 50-50 PETN/INT mixture being the more important for bursting charges and booster-surround charges.

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
- (b) Philip C. Keenan and Dorothy Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
- (e) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.
- (f) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, <u>Sec III</u>, <u>Variation of Cavity Effect with Explosive Composition</u>, <u>NDRC Contract W672-ORD-5723</u>.
- (g) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, Contract W-672-ORD-5723, E. Lab, du Pont, 18 September 1943.
- (h) W. F. McGarry and T. W. Stevens, <u>Detonation Rates of the More Important Military Explosives at Several Different Temperatures</u>, <u>PATR No. 2383</u>, <u>November 1956</u>.
 - (i) Also see the following Picatinny Arsenal Technical Report on Pentolite:

<u>o</u>	<u>1</u>	<u>2</u>	<u>3</u>	14	<u>5</u>	<u>6</u>	7	8
1360 1420 1570	1291 1451 1651	1212 1262 1372	1133 1193 1213 1363	1284 2004	1325	1436 1466 1796	1477 1677 1737	1388 1598 1668 1838

⁵⁶See footnote 1, page 10.

Composition:		Molecular Weight: (C5H8N4O12)	316
C 19.0 ONO CH.		Oxygen Balance: CO ₂ % CO %	-10
H 2.5 2 2 2 2 2 2 2 2 2	· ONO		15
II II	2	Density: gm/cc Crystal	1.77
o 60.8 CH ₂		Melting Point: °C	141
C/H Ratio 0.134		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	17	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	6	Refractive Index, N ^D ₂₀ n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
5.001 5.100	ckles ffected	cc/40 Hrs, at 90°C	
Rifle Bullet Impact Test: 5 Trials *		- 100°C 120°C	0.5 11+
<u> </u>		135°C	
Explosions 100		150°C	
Partials 0 Burned 0		200 Coop Book Soul Took	
		200 Gram Bomb Sand Test: Sand, gm	62.7
Unoffected 0 *4.86% moisture in samples			02.1
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 272		Minimum Detonating Charge, gm	0.174
1 244 5 Decomposes 225		Mercury Fulminate	0.17*
10 211		Lead Azide	0.03*
15		Tetryl *Alternative initiating charge	s
20		Ballistic Mortar, % TNT: (a)	145
Lange Control of the		Trauzi Test, % TNT: (b)	173
75°C International Heat Test: % Loss in 48 Hrs	0.02	Plate Dent Test: (c)	
		Method	A
100°C Heat Test:		Condition	Pressed
% Loss, 1st 48 Hrs	0.1	Confined	Yes
% Loss, 2nd 48 Hrs	0.0	Density, gm/cc Brisance, % TNT	1.50 129
Explosion in 100 Hrs	None	prisurice, 70 TIVI	147
		Detonation Rate:	
Flammability Index: Will not continue	to burn	Confinement	None
Hygroscopicity: % 30°C, 90% RH	0.0	Condition	Pressed
riygioscopicity: 70 30 C, 90% tu	0.0	Charge Diameter, in.	1.00
Volatility:	0.0	Density, gm/cc	1.70
	- · -	Rate, meters/second	8300

Booster Sensitivity Test: Condition	(c) Pressed	Decomposition Equation: (e) (e) (f) Oxygen, atoms/sec 10 ^{19.8} 10 ^{20.6} 10 ^{23.1}
Tetryl, gm	5	(Z/sec)
Wax, in. for 50% Detonation		Heat, kilocalorie/mole 47·0 50·9 52·3 (ΔΗ, kcal/mol)
Wax, gm	3	Temperature Range, °C 161-233 108-120 137-157
Density, gm/cc	1.6	Phase Liquid Solid At melt-
		ing poin
Heat of:	7.0(0	Armor Plate Impact Test:
Combustion, cal/gm	1960	
Explosion, cal/gm	1385	60 mm Mortar Projectile:
Gas Volume, cc/gm	790	50% Inert, Velocity, ft/sec
Formation, cal/gm	383	Aluminum Fineness
Fusion, cal/gm		
6	(d)	500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C	(α)	Plate Thickness, inches
Room Temperature	0.26	Trace Tribotrisso, institut
·		1
		11/4
		1½
Burning Rate:		**
cm/sec		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C		500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:	1.9	Unaffected
Year of Madalas		Low Order
Young's Modulus:		High Order
E', dynes/cm²		
E, Ib/inch²		1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc		Hainha fa
Compressive Strength: Ib/inch ²		— Height, ft Trials
Compressive strongen, 10/ IIICII		1
		Unaffected
Vapor Pressure: °C mm Mercury		Low Order
mm Mercury		High Order

PETN (Pentaerythritol Tetranitrate)

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 1	00:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel (Cones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Color:	
For TNT	Color:	White
For Subject HE	Principal Uses:	
3 inch HE, M42A1 Projectile, Lot KC-5:	Class A - Detonating fuse an	
Density, gm/cc	Class B - Priming composition	ns
Charge Wt, Ib		
Total No. of Fragments: For TNT	Method of Loading:	
For Subject HE		
•	Loading Density: gm/cc psi x	: 103
Fragment Velocity: ft/sec	3 5 10 20 3	0 40
At 9 ft At 25½ ft	1.37 1.58 1.64 1.71 1.7 Storage:	3 1.74
Density, gm/cc		
,,,	Method	Wet
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air:	Compatibility Group	Group M (wet)
Peak Pressure	E Lui	NT
Impulse	Exudation	None
Energy		
Air, Confined:	Bulk Modulus at Room Temperature (25°-30°C):	(i)
Impulse		
Under Water: Peak Pressure	Dynes/cm ² x 10 ⁻¹⁰ Density, gm/cc	4.60 1.77
Impulse		
Energy		
Underground: Peak Pressure		
Impulse		;
Energy		
		,
		ļ

Compatibility with Metals:

Dry: Copper, brass, aluminum, magnesium, magnesium-aluminum alloy, stainless steel, mild steel, mild steel coated with acid-proof black paint and mild steel plated with copper, cadmium, nickel or zinc are not affected.

Wet: Stainless steel is unaffected and aluminum only vary slightly so after prolonged storage. Copper, brass, magnesium, magnesium-aluminum alloy, mild steel, mild steel coated with acid-proof black paint and mild steel plated with cadmium, copper, nickel or zinc are affected.

Sensitivity of PETN to electrostatic discharge, joules; Through 100 Mesh: (g)

Unconfined 0.06 Confined 0.21

Solubility, grams of PETN per 100 grams (%) of: (h)

Trichlorethylene or Alcohol		Ac	Acetone		Benzene		Toluene	
°C	<u>%</u>	° _C	<u>%</u>	°C	<u>%</u>	°c	<u> %</u>	
0 20 40 60	0.070 0.195 0.415 1.205	0 20 40 60	14.37 24.95 30.56 42.68	0 20 40 80	0.150 0.450 1.160 7.900	0 20 40 60 80 100	0.150 0.430 0.620 2.490 5.850 15.920 30.900	
Methyl acetate		<u>E</u> t	her		oxy-ethyl- cetate	Chlor	obenzene	
°c	<u>%</u>	<u>°C</u>	<u>%</u>	°c	<u>%</u>	<u>°C</u>	<u>%</u>	

Methyl acetate		<u>Ether</u>		acetate		Chlorobenzene	
°c	<u>%</u>	<u>°C</u>	<u>%</u>	°c	<u>%</u>	o _C	<u>%</u>
20 30 40 50	13 17 22 31	0 2 0 3 ¹ 4•7	0.200 0.340 0.450	20 30 40 50 60	1.5 4.1 7.6 11.2 14.2	20 30 40 50 60	0.35 2.8 6.1 9.2 12.2

Ethylenedichloride		Methanol		Tetrachloroethane		<u>Carbon</u> tetrachloride	
°C	<u>%</u>	°C	<u>%</u>	°C	<u>%</u>	°C	<u>%</u>
10 30 50	0.9 1.5 2.6	20 40 60	0.46 1.15 2.6	20 30 40 50	0.18 0.27 0.40 0.58	20 30 40 50	0.096 0.108 0.118 0.121

AMCP 706-177

PETN (Pentaerythritol Tetranitrate)

Isopropanol		Isobu	<u>Isobutanol</u>		Chloroform		TNT	
<u>°с</u>	<u>%</u>	<u>°c</u>	<u>%</u>	<u>°с</u>	<u>%</u>	°C	<u> 2</u>	
	0.02 0.01 0.15 0.36 0.46 Eutetic of the and 87% TNT at		0.27 0.31 0.39 0.52 N-TNT is abo	20 out 13% PET	0.09 N	80 85 90 95 100 105 110 115 120	19.3 25.0 32.1 39.5 48.6 58.2 70.0 87.8 115	

Preparation:

(Nitroglycerin and Nitroglycerin Explosives, Naoum)

8HCHO + CH₃CHO + Ca(OH)₂ \rightarrow 2C(CH₂OH)₄ + Ca(HCOO)₂ C(CH₂OH)₄ + 4HNO₃ \rightarrow C(CH₂ONO₂)₄ + 4H₂O

- 1. In this preparation 1940 gm of formaldehyde and 600 gm of aceteldehyde are dissolved in 90 liters of water containing 1600 gm suspended slaked lime. The reaction is complete in about 3 weeks if agitated several times a day. The solution is filtered, the calcium formate precipitated with oxalic acid, filtered off, and the water removed under reduced pressure. On cooling the mother liquor about 1200 gm crude pentaery-thritol, melting point 235°-240°C are obtained. Purification is readily effected by stirring with a little alcohol, filtering and recrystallization from water.
- 2. To 400 cc of strong white nitric acid, are added 100 gm of pentaerythritol (through 50 mesh), at 5°C or below, under good agitation. After addition is complete stirring, at 5°C, is continued for 15 minutes. The mixture is drowned in 3 liters of ice-water, filtered, the product washed free of acid with water and then digested 1 hour in 1 liter of hot 0.5% sodium carbonate solution. The product is filtered, and recrystallized from acetone.

Origin:

PETN was known as an explosive in 1894 when it was proposed as an addition to smokeless powders to raise their flammability and ease of combustion (German Patent 81,664 (1894). Modern methods of preparation are described by Vignon and Gerin (Compt rend 133, 590 (1901) and German Patent 265,025 (1912) and A. Stettbacher (Z ges Schiess - Sprengstoffw 11, 112, 182 (1916) and 24, 259 (1929)). PETN was not used on a practical basis until after World War I.

Destruction by Chemical Decomposition:

PETN is decomposed by dissolving in 8 times its weight of technical grade acetone and burning the solution in a shallow container. If preferred, warm the acetone solution to 40° C, stir and add 7 parts by weight, to each part of PETN, of a solution of 1 part sodium sulfide (Na₂S·9H₂O) in 2 parts water heated to 80°C. The aqueous solution should be added at such a rate that the acetone solution does not boil. After mixing is complete continue stirring for one-half hour.

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) Ph. Naoum, Z ges Schiess Sprengstoffw, pp. 181, 229, 267 (27 June 1932).
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
 - (d) International Critical Tables.
- (e) M. A. Cook and M. T. Abegg, "Isothermal Decomposition of Explosives," University of Utah, Ind & Eng Chem, (June 1956), pp. 1090-1095.
- (f) A. J. B. Robertson, "The Thermal Decomposition of Pentaerythritol Tetranitrate, Nitroglycerin, Ethylenediamine Dinitrate and Ammonium Nitrate," J Chem Ind 67, 221 (1948).
- (g) F. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by Electrostatic Discharges, U.S. Dept of Int, Bureau of Mines, RI 3852, 1946.
 - (h) Various sources in the open literature.
- (i) W. S. Cramer, Bulk Compressibility Data on Several High Explosives, NAVORD Report No. 4380, 15 September 1956.
 - (j) Also see the following Picatinny Arsenal Technical Reports on PETN:

<u>o</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	<u>9</u>
760 1170 1260 1290 1300 1320 1360 1380 1390 1430 1450	1041 1311 1381 1451 1561 1611 1651	772 922 1182 1192 1212 1262 1342 1352 1372 1452	843 863 1063 1133 1253 1343 1493 1533	904 1274 1284 1414	1305 1325 1445 1705 1885 2125	1246 1276 1316 1376 1446 1456 1466 1556	407 527 857 1247 1517 1617 1737 1797	318 838 1238 1318 1388 1568 1598 1838 2178	1379 1429 1489 1559 2179

⁵⁷See footnote 1, page 10.

Composition:	Molecular Weight: (C6H4N4O6)	22 8
C 31.5	Oxygen Balance:	E/
H 1.8 0 ₂ N NO ₂	CO ₂ % CO %	-56 -14
N 24.5	Density: gm/cc Crysta	1 1.76
0 42.2 NO ₂	Melting Point: °C	189 to 190
C/H Ratio 0.500	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C Decomposes be	fore boiling point
Bureau of Mines Apparatus, cm Sample Wt 20 mg	Refractive Index, no	
Picatinny Arsenal Apparatus, in. 23	n ₂₅	
Sample Wt, mg 20	n ₅₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	
	100°C	0.9
Rifle Bullet Impact Test: Trials	120°C	
%	135°C	
Explosions	150°C	
Partials		
Burned	200 Gram Bomb Sand Test:	10 -
Unaffected	Sand, gm	48.1
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1	Mercury Fulminate	
5	Lead Azide	0.30
10	Tetryl	
15 2 0	Ballistic Mortar, % TNT:	100
	Trauzi Test, % TNT:	107
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test:	
% Loss in 40 Hrs	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
	Density, gm/cc	
% Loss, 2nd 48 Hrs	Brisance, % TNT	
Explosion in 100 Hrs		
Flammability Index:	Detonation Rate:	27
riginingDiffty index;	Confinement	None
Hygroscopicity: %	Condition	Pressed
riygroscopicity: 70	Charge Diameter, in.	0.5
Volatility	Density, gm/cc	1.72
Volatility:	Rate, meters/second	7300

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT	Color: Yel	llow
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: High temperature heat resistant explosive	
Total No. of Fragments: For TNT	Method of Loading:	Pressed
For Subject HE	Loading Density: gm/cc At 50,000 psi	1.72
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:	
Density, gm/cc	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air: Peok Pressure Impulse Energy	Compatibility Group Exudation	Group I None
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy	Solubility: Insoluble in water, slightly so alcohol and ether. Soluble in hot acetic acid, hot ethyl acetate and and acetone. Heat of:	glacial
Underground: Peak Pressure Impulse Energy	Combustion, cal/gm (a) Explosion, cal/gm Formation, cal/gm (a)	2962 564 131

Preparation:

Five grams of picryl chloride were dissolved in 180 milliliters of absolute methanol. The solution was then saturated with anhydrous, gaseous ammonia. The time required was approximately 30 minutes. The amino derivative precipitated in 78% yield (3.6 gm) melting at 190° C (literature MP 189° C).

Origin:

Picramide (2,4,6-trinitroaniline) was first prepared in 1854 by Pisani who treated picryl chloride with ammonium carbonate (CR 39, 853). The use of picramide, as a brisant explosive, was patended by Chemische Fabrik Griesheim 26 May 1894 (German Patent 84,628). Meisenheimer and Patzig reacted trinitrobenzene with hydroxylamine in cold alcohol solution to obtain picramide (Ber 39, 2534 (1906)). Witt and Witte obtained the compound by nitrating a solution of aniline in glacial acetic acid or concentrated $\rm H_2SO_4$ at about 5°C with concentrated $\rm HNO_3$ (Ber $\rm 41$, 3091 (1908)). Holleman gives details of the prep ation from p-nitroaniline and from acetanilide (Rec trav chim $\rm 49$, 112 (1930)).

Reference: 58

(a) William H. Rinkenbach, "The Heats of Combustion and Formation of Aromatic Nitro Compounds," J Am Chem Soc 52, 116 (1930).

⁵⁸See footnote 1, page 10.

Composition:	***************************************	Molecular Weight:	236
% Explosive D 52		Oxygen Balance:	
Explosive D /2		CO ₂ %	-63 -19
TNT 48		CO %	- 19
		Density: gm/cc Cast	1.62
		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	100+	Boiling Point: °C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	100.	Refractive Index, no	
Picatinny Arsenal Apparatus, in.	17	n ₂₅ ^D	
Sample Wt, mg	19	n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, c:	
Fiber Shoe	Unaffected	90°C	
DVI D II.		─ 100°C	0.37
Rifle Bullet Impact Test: Trials		120°C	0.68
% Explosions 0		135°C	÷-
Partials 0		150°C	0.7
Burned 40		200 Gram Bomb Sand Test:	
Unaffected 60		Sand, gm	45.0
Explosion Temperature: °C		Sensitivity to Initiation: Minimum Detonating Charge, gm	
Seconds, 0.1 (no cap used) 456			
5 Decomposes 285		Mercury Fulminate Lead Azide	0.20
10 265			0.05
15 260		Tetryl	0. 0)
20 255		Ballistic Mortar, % TNT: (a)	100
		Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	0.0	Plate Dent Test: (b)	
, <u> </u>		Method	В
100°C Heat Test:		Condition	Cast
% Loss, 1st 48 Hrs	0.0	Confined	No
% Loss, 2nd 48 Hrs	0.05	Density, gm/cc	1.63
Explosion in 100 Hrs	None	Brisance, % TNT	100
El		Detonation Rate: (b)	
Flammability Index:		Confinement	None
Hygroscopicity: % 30°C, 90% RH	0.02	— Condition	Cast
1179103copietty: 70 30 0, 90% rd.	0.02	Charge Diameter, in.	1.0
Volatility:		Density, gm/cc	1.63
		Rate, meters/second	6970

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100):
90 mm HE, M71 Projectile, Lot WC-91	l :	Glass Cones Steel Co	nes
Density, gm/cc	1.61	Hole Volume	
Charge Wt, Ib	2.075	Hole Depth	
Total No. of Fragments:		Color: Brow	m-yellow
For TNT	703	B10.	11-yC110#
For Subject HE	769	Principal Uses: AP, SAP projectiles	and bombs
3 inch HE, M42A1 Projectile, Lot KC-5	:	, 12, 22 projection	
Density, gm/cc	1.61		
Charge Wt, Ib	0.850		
Total No. of Fragments:		Method of Loading:	Cast
For TNT	514		•
For Subject HE	487	Loading Density: gm/cc	1.62
Fragment Velocity: ft/sec			1.02
At 9 ft	2590		
At 25½ ft	2320	Storage:	
Density, gm/cc	1.62	Method	Dry
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9
Air:		Compatibility Group	Group I
Peak Pressure	100		
Impuls e	100	Exudation	None at 65°C
Energy		Preparation:	
Air, Confined:		Picratol is made by heating TW	T to shout
Impulse		90°C in a steam-jacketed melt ke	ttle. Explo-
Under Water:		sive D is added slowly, without and the mixture stirred until unit	
Peak Pressure		position. This slurry is cooled	to about 85°C
Impulse		and poured into the appropriate	ammunition
Energy		component.	
Underground:		Origin: Developed during World War II	as an insensi
Peak Pressure		tive, melt-loaded AP bomb and pro	
impulse		Booster Sensitivity Test:	(c)
Energy			()
Bomb Drop Test:		Condition Tetryl, gm	Cast 100
T7, 2000-1b Semi-Armor-Pierci Bomb vs Concrete:	ing	Wax, in. for 50% Detonation Density, gm/cc	1.00 1.63
Max Safe Drop, ft 10,000	0-12,000		

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (c) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
- (d) R. W. Drake, Fragment Velocity and Panel Penetration of Several Explosives in Simulated Shells, OSRD Report No. 5622, 2 January 1946.
 - (e) Also see the following Picatinny Arsenal Technical Reports on Picratol:

<u>o</u>	<u>5</u>	<u>6</u>	7	8	2
1470	1885	1466 1796 1956	1737 1797	1.838	1729

⁵⁹See footnote 1, page 10.

Oxygen Balance: CO ₂ % CO %		-45 -3.5
	Crystal	1.76
Melting Point: °C		122
Freezing Point: °C		
Boiling Point: °C		
Refractive Index, n_{20}^D n_{20}^D		
		
cc/40 Hrs, at 90°C		
		0.2 0.5
135°C		 ,
150°C		
	l	48.5
	<u> </u>	
•	narae, am	
Mercury Fulminate	3-, 3	0.26*
Lead Azide		0.24*
Tetryl	.~ .h	
		112
		101
Plate Dent Test:	(c)	
Method	, ,	Α
Condition		Pressed
Confined		No
Density, gm/cc		1.50
Brisance, % TNT		107
— Detonation Rate:	(d)	
Confinement		confined
ì		Cast
		1.25
Density, gm/cc	1.04	1.71 7350
	Density: gm/cc Melting Point: °C Freezing Point: °C Boiling Point: °C Refractive Index, non non non non non non non non non no	Density: gm/cc Crystal Melting Point: °C Freezing Point: °C Boiling Point: °C Refractive Index, non non non non non non non non non no

Booster Sensitivity Test: Condition	(c	c) Cast	Decomposition Equation: Oxygen, atoms/sec
Tetryl, gm	10	5	(Z/sec)
* * *	20		Heat, kilocalorie/mole
Wax, in. for 50% Detonation	2	0	(ΔH, kcal/mol)
Wax, gm			Temperature Range, °C
Density, gm/cc	1.6	1.7	Phase
Heat of: Combustion, cal/gm	26	572	Armor Plate Impact Test:
Explosion, cal/gm	10	000	60 mm Mortar Projectile:
Gas Volume, cc/gm	6	575	50% Inert, Velocity, ft/sec
Formation, cal/gm	2	248	Aluminum Fineness
Fusion, cal/gm (e)	20). 4	
Temperature, °C	-	T55	500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C (e)			The state of the s
° <u>c</u>	0	.235	Plate Thickness, inches
		.258	1
30 60		282	
90		.310	11/4
120	0	• 337	11/2
			_ 134
Burning Rate: cm/sec			
			Bomb Drop Test:
Thermal Conductivity: (f) cal/sec/cm/°C Density, gm/cc	6.24 x	10 ⁻⁴ 406	T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:			Max Safe Drop, ft
Linear, %/°C			500-lb General Purpose Bomb vs Concrete:
Volume, %/°C			Height, ft
			Trials
Hardness, Mohs' Scale:	2	.1	Unaffected
			Low Order
Young's Modulus:			High Order
E', dynes/cm²			riigii Older .
E, Ib/inch²			1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc			. 230 in denotal tarpoon bonin to denotate.
			Height, ft
Compressive Strength: Ib/inch ²			Trials
			Unaffected
Vapor Pressure:			Low Order
°C mm Merc	ury		High Order
195 2	•		. iigi. ordai
255 50			

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:					
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth					
Total No. of Fragments: For TNT	Color: Yell	Low				
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, lb	Principel Uses: Formerly projectile now explosive admixture; and i manufacture of Explosive D					
Total No. of Fragments: For TNT	Method of Loading: Pro	essed				
For Subject HE	Loading Density: gm/cc psi x 3 5 10 12 15					
Fragment Velocity: ft/sec At 9 ft At 25½ ft	1.40 1.50 1.57 1.59 1.6 Storage:					
Density, gm/cc	Method	Dry				
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9				
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group I				
Air, Confined: Impulse						
Under Water: Peak Pressure						
Impulse Energy						
Underground: Peak Pressure						
Impulse Energy						

Solubility: 8	rams pe	r 100	grams	(%)	of:	(g)

We	Water		Alcohol		Benzene		Toluene		er
°c	Z	°c	<u> 26</u>	°c	<u>\$</u>	°c	Ŀ	°C	<u></u>
0 20 40 60 80 100	0.85 1.17 1.88 2.98 4.53 7.1	0 20 40	4.5 6.9 12.0	0 20 40 60	~2 9.6 27.5 59	20 60	~13 ~30	20 34•7	~3 3.96
Ch1 or	coform	Ethvi	acetate		bon chloride	Pvr	idin e	Acetone	
°c	<u>1</u> 6	°c	<u> </u>	°C		<u>-71</u>	<u>rume</u> ½	°C	<u> 2</u>
20 60	_	20 30 40 50	42 50 58 69	20 60	~0.07	10 30 50	24 37•5 58	20 30 40 50	125 137 164 208
Methanol Isopropyl			ropyl alc	cohol	Propan	01-1	Carbon d	isulfide	
°C	<u> 2</u>	°c		<u>%</u>	°c	<u> </u>	°c	<u> 2</u>	
0 20 40 50	14 19 31 41	10 30 50		6.4 9.8 15.5	0 20 40 50	2.4 3.3 5.4 7.4	30 30	0.12 0.16	
Prepara	tion: (Sum	mary Rep	ort of NI	ORC, Div 8	, Vol I)				
с6н	5 + Hg(NO3)	2			C6H5HgNO3	+ HNO3		((1)
	HgNO3 + N2					•		(2)
C6H	00 + 200				C6H5N2NO3			(3a)
с6н	5N2NO3 + H2	0			C6H50H + 1	N ₂ + HNO ₃		(3b)
NO.							((3c)	
C6H ₅ NO HNO ₃ O ₂ NC6H ₄ OH (4)								4)	
02110	с _б он + нио ₃		NO ₂	>	(02N)2C6H	30н + н20		(5)
(021	и) ₂ с ₆ н ₃ он +	нло ₃	NOS	-	(0 ⁵ M) ³ C ⁶ H	⁵ он + н ⁵ о		((6)

The two variables of greatest importance in this process are nitric acid concentration and the effective concentration of benzene (i.e., benzene dissolved in the oxynitration solution). The optimal concentration of nitric acid is in the range 10.4 to 11.6 molar (or the equivalent of 50% to 55% by weight for pure acid). The acid concentration greatly influences the over all rate of reaction, below 10.4 molar the rate falls off rapidly, while above 10.4 molar the rates of both the oxynitration reaction and various side reactions, such as direct nitration, increase rapidly. The range mentioned above seems, in general, to give the lowest proportion of neutral nitro-compounds to nitro-phenols with, at the same time, an adequate rate of oxynitration. The oxynitration solution must be fortified frequently, or, preferably, continuously with nitric acid. Strengths of nitric acid between 95% and 98% are best, due to the smaller increase in reaction volume than if weaker acid were used. The use of absolute nitric acid requires that its direct contact with liquid benzene be avoided.

The effective concentration of benzene is probably the most critical variable affecting the proportion of neutral nitro-compounds to nitrophenols and amounts of colored by-products. Saturation of the oxynitration solution with benzene is undesirable and thus in batch processes slow benzene addition is preferable to the addition of it in one portion; in continuous processes where an excess of benzene is used the rate of agitation is important.

The concentration of mercuric nitrate catalyst does not appear to be a critical factor over a fairly wide range. Concentrations of 0.37 to 0.5 mole of mercuric nitrate per liter of oxynitration solution have been found to give satisfactory results in most cases.

A continuous process, known as the continuous solution process, works on the following cycle. The oxynitration solution is saturated with benzene by vigorous agitation with excess benzene at room temperature, the saturated solution is separated from excess benzene and circulated through a heated coil; it is then cooled to room temperature and agitated again, with benzene, which extracts the organic product and resaturates the oxynitration solution. In evaluating this process, the rate of formation of dinitrophenol per liter of reacting solution in the coil is determined; 70 gm of dinitrophenol per liter per hour is representative performance. The dinitrophenol is, of course, nitrated to picric acid.

Origin:

Picric Acid was first prepared in 1771 by Woulff who found the reaction of nitric acid and indigo yielded a dye. Hausmann isolated Picric Acid in 1778 and studied it further (Journal de physique 32, 165 (1788)). The preparation was studied by many chemists but in 1841 Laurent established its identity (Ann chim phys III, 3, 221 (1841)). It was used as a yellow dye until Turpin, in 1885, proposed Picric Acid as a bursting charge for high explosive shell (French Patent 167,512). The British adopted Picric Acid as a military explosive in 1888 under the name of lyddite and other nations soon began to use it as the first melt-loaded high explosive. Mixtures of other explosives and Picric Acid were developed until it was gradually replaced by TNT about 1900. Today Picric Acid is used for the manufacture of Explosive D.

Destruction by Chemical Decomposition:

Picric Acid is decomposed by dissolving in 25 times its weight of a solution made from 1 part sodium hydroxide and 21 parts sodium sulfide ($Na_2S \cdot 9H_2O$) in 200 parts of water. Some hydrogen sulfide and ammonia are evolved.

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) Ph. Naoum, Z ges Schiess-Sprengstoffw, pp. 181, 229, 267 (27 June 1932).
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.
- M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, $15 \ January 1946$.
 - (e) International Critical Tables.
- (f) E. Hutchinson, The Thermal Sensitiveness of Explosives. The Thermal Conductivity Explosive Materials, AC Report No. 2861, First Report, August 1942.
 - (g) Values taken from various sources in the open literature.
 - (h) Also see the following Picatinny Arsenal Technical Reports on Picric Acid:

<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	8	<u>9</u>
1651	132 582 1172 1352 1372	1383	694 764 874	65 425 1585	266 556 926 976 986 1446 1556	1347 1557	1118	1549

⁶⁰See footnote 1, page 10.

Composition:		Molecular Weight:	310
	0-	Oxygen Balance:	
PETN	81	CO ₂ %	-74 -31
Gulf Crown E Oil	19		-2T
		Density: gm/cc Hand tamped	1.35
		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg	11	Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	11 27	n ₂₅	
Sumple 111, mg	— s	n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: Trials		— 100°C	0.48
•		120°C 16 hours	11+
Explosions 0		135°C	
Partials 0		150°C	
Burned 0		200 Gram Bomb Sand Test:	
Unaffected 100		Sand, gm	41.6
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	0.20*
5 Decomposes*		Lead Azide	0.20*
10		Tetryl *Alternative initiating charge	s.
15 20		Ballistic Mortar, % TNT:	
*No value obtained.		Trauzi Test, % TNT:	
75°C International Heat Test:		Plate Dent Test: (a)	
% Loss in 48 Hrs		Method	В
100°C Heat Test:		Condition	Hand tamped
% Loss, 1st 48 Hrs	A 17	Confined	No
% Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs	0.17	Density, gm/cc	1.33
	0.00 None	Brisance, % TNT	76
Explosion in 100 Hrs	моне		
Flammability Index:		— Detonation Rate: Confinement	None
		Condition	
Hygroscopicity: % 30°C, 90% R	H 0.02		Hand tamped
		Charge Diameter, in.	
Volatility:		Density, gm/cc	1.37
<u>-</u>		Rate, meters/second	7075

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100:		
90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones Steel Con	es	
Density, gm/cc	1.33	Hole Volume		
Charge Wt, Ib	1.723	Hole Depth		
Total No. of Fragments:		Color:		
For TNT	703			
For Subject HE	519	Principal Uses: Plastic demolition	explosive	
3 inch HE, M42A1 Projectile, Lot KC-5:				
Density, gm/cc	1.39			
Charge Wt, Ib	0.735			
Total No. of Fragments:		Method of Loading: Hand	tamped	
For TNT	514		-	
For Subject HE	428	Loading Density: gm/cc	1.35	
Fragment Velocity: ft/sec		Loading Density: gill/cc	1. 37	
At 9 ft At 25½ ft		Storage:		
Density, gm/cc		Method	Dry	
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9	
Air:		Compatibility Group	Group I	
Peak Pressure				
Impulse		Exudation		
Energy				
Air, Confined:		Origin:		
Impulse		PIPE, a mechanical mixture of 1	PETN and Gul	
		Crown E Oil, was developed in the during World War II.	United Stat	
Under Water:				
Peak Pressure Impulse		References: 61		
Energy		(a) L. C. Smith and E. G. Eys Testing of Explosives, Part III-M	scellaneous	
Underground: Peak Pressure		Sensitivity Tests; Performance Tesport No. 5746, 27 December 1945.	oco, vonu ne	
Impulse		(b) S. Livingston, Properties		
Energy		RIPE, PIPE and PEP-3, Picatinny A: cal Report 1517, 24 April 1945.	rsenal Techn	
Preparation:		our report o ryal, at right right,		
PIPE is manufactured by simple mixing of PETN in oil.	mechanical			

⁶¹See footnote 1, page 10.

Plumbatol

Composition:		Molecular Weight:	291
•		Oxygen Balance:	
Lead Nitrate	70	CO ₂ %	-5.4
TWT	30	CO %	+9.3
		Density: gm/cc	
		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Bailing Point: °C	
Sample Wt 20 mg		Refractive Index, no	
Picatinny Arsenal Apparatus, in.	13	n ₂₅	
Sample Wt, mg	22	n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe		cc/40 Hrs, at	
Fiber Shoe		90°C	
		100°C	
Rifle Bullet Impact Test: Trials		120°C	
% Explosions		135°C	
Partials		150°C	
Burned		200 Gram Bomb Sand Test:	-
Unaffected		Sand, gm	32.4
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	
5 Decomposes 238		Lead Azide	0.20
10		Tetryl	0.10
15		Ballistic Mortar, % TNT:	
20			
75°C International Heat Test:		Trouxi Test, % TNT:	
% Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisance, % TNT	
		Detonation Rate: (b)	
Flammability Index:		Confinement	
		Condition	
Hygroscopicity: %		Charge Diameter, in.	
V-L-ailia		Density, gm/cc	2.89
Volatility:		Rate, meters/second	4850

ragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume 114 Hole Depth 103	(a)	
Total No. of Fragments: For TNT	Color: Light yello)W	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses:		
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Cast	t	
iragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Loading Density: gm/cc Storage: Method Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Clas	ss 9	
Air: Peak Pressure Impulse Energy Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy Preparation: Plumbatol is manufactured by simple mechanical mixing of lead nitrate in molten TNT.	Compatibility Group Exudation Origin: An explosive containing 70% lead nit; and 30% TNT has been used in Belgium und name of "Marcarite." References: 62 (a) Eastern Laboratory, du Pont, Imgation of Cavity Effect, Sec III, Varia: Cavity Effect with Explosive Composition Contract W-672-ORD-5723. (b) Thorpe's Dictionary of Applied istry, Fourth Edition, Vol IV, Longmans and Company, London - New York - Toronton, 464.	vesti- tion c n, NDF	

 $^{^{62}}$ See footnote 1, page 10.

PLX (Liquid)

Composition:			Molecular Weight:	100 61	<u>95/5</u> 61
% Nitromethane	100	* 95	Oxygen Balance;	<u> </u>	<u> </u>
Ethylenediamine	100	5	CO ₂ %	- 39	-48
•	 	-	CO %	-13	-21
*The mixture 95/5 Nitr is designated PLX (fo sive). See note unde	r Picatinn	y Liquid Explo-	Density: gm/cc	1.14	1.12
bive, to bee hose unde	Doorage.		Melting Point: °C	-29	
C/H Ratio			Freezing Point: °C		
Impact Sensitivity, 2 Kg Wi Bureau of Mines Apparat		100 <u>95/5</u> 100+ 100+	Boiling Point: °C	101	······································
Sample Wt 20 mg Picatinny Arsenal Appare	atus in		Refractive Index, no		
Sample Wt, mg	atus, 171.	20 20	n ₂₅		
			n ₃₀		
Friction Pendulum Test:			Vacuum Stability Test:		
Steel Shoe	Un	affected	cc/40 Hrs, at		
Fiber Shoe	Un	affected	90°C		
			100°C		
Rifle Bullet Impact Test: 1	O Trials	5 Trials	120°C		
F lasiana	%	%	135°C		
Explosions	0		150°C		
Partials -	0	0			/-
Burned	0	0	200 Gram Bomb Sand Test		95/5 50.6
Unaffected	100	100	Sand, gm	8.1	50.6
Explosion Temperature:	°C	°C .	Sensitivity to Initiation:		
Seconds, 0.1	100	<u>95/5</u>	Minimum Detonating Cl	narge, gm	
1	1	,	Mercury Fulminate		
5	430	430	Lead Azide		
10			Tetryl		
15				2.0).	
20			Ballistic Mortar, % TNT:	134	
75°C International Heat Te			Trauzi Test, % PA	127	
% Loss in 48 Hrs	s t:		Plate Dent Test: Method		
100°C Heat Test:			Condition		
% Loss, 1st 48 Hrs			Confined		
% Loss, 2nd 48 Hrs			Density, gm/cc		
Explosion in 100 Hrs			Brisance, % TNT		
	· · · · · · · · · · · · · · · · · · ·		Detonation Rate:	L/32"*	1/32"*
Flammability Index:			Confinement (lass	Glass
			Condition I	Liquid	Li q uid
Hygroscopicity: %			Charge Diameter, in.	L .2 5	0.94
			Density, gm/cc	L.14	1.12
Volatility:			,. -	5210	6165

PLX (Liquid)

Booster Sensitivity Test: Condition Nitromethane	Decomposition Equation: (d) Nitromethane Oxygen, atoms/sec 10 ^{14.0}
Tetryl, gm	(Z/sec) Heat, kilocalorie/mole 56.6
Wax, in. for 50% Detonation	(ΔH, kcal/mol)
Wax, gm	Temperature Range, °C 380-430
Density, gm/cc	Phase Gaseous
Heat of: (a) Combustion, cal/gm 2830	Armor Plate Impact Test:
Explosion, cal/gm	60 mm Mortar Projectile:
Gas Volume, cc/gm	50% Inert, Velocity, ft/sec
Formation, cal/gm - 348	Aluminum Fineness
Fusion, cal/gm Vaporization, cal/gm 149	500-lb General Purpose Bombs:
Specific Heat: cal/gm/°C (b)	
C = 0.4209 - 0.00076t + 0.0000061t ² for 15°C to 70°C	Plate Thickness, inches
for 15°C to 70°C	1
	11/4
	1½
	13/4
Burning Rate:	
cm/sec	Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C	T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:	Max Safe Drop, ft
Linear, %/°C	500-lb General Purpose Bomb vs Concrete:
Volume, %/°C	Height, ft
	Trials
Hardness, Mohs' Scale:	Unaffected
Young's Modulus:	Low Order
E', dynes/cm²	High Order
E, Ib/inch ²	TARRELL CONTRACTOR DE LA CONTRACTOR
Density, gm/cc	1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc	Height, ft
Compressive Strength: Ib/inch²	Trials
	Unaffectea
	Low Order
Vapor Pressure: (c) °C mm Mercury	High Order
70 258	High Order
85 444	
	1

PLX (Liquid)

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color: Light yellow		
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Minefield clearing		
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pumping		
	Loading Density: gm/cc 100 95/5 1.14 1.12		
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:		
Density, gm/cc	Method Components stored separately; mixed only when ready to use		
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)		
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation		
Air, Confined: Impulse	Minimum Propagating 100 95/5 Thickness, in: 0.5 0.063		
Under Water: Peak Pressure Impulse Energy	Viscosity, centipoises: (e) Temp, 10°C 0.748 25°C 0.625 40°C 0.533		
Underground: Peak Pressure Impulse Energy	Compatibility with Metals: Stainless steel, mild steel and duriron not affected; corrodes brass.		

Origin:

Nitromethane has been known since 1872 (Kolbe, J prakt Chem (2) 5, 427 (1872), but was available only as a laboratory product until it appeared as an industrial chemical in 1940. A number of patents have been issued for nitromethane produced as a by-product of the nitration of propane (U. S. Patent 1,967,667 (1934); British Patent 443,707 (1937); and Canadian Patent 371,007 (1938).

The development of nitromethane liquid explosives was based on information that nitromethane is sensitized to initiation and propagation of detonation by the addition of various amines. This study made at Picatinny Arsenal in 1945 indicated that mixtures of nitromethane with 5% of ethylenediamine, n-butyl-amine, or morpholine showed considerable promise for application in mine-field clearance (L. H. Eriksen and J. W. Rowen, PATR No. 1565, 17 September 1945).

- (a) D. E. Holcomb and C. F. Dorsey, "Thermodynamic Properties of Nitroparaffins," Ind Engr Chem 41, 2788 (1949).
- (b) J. W. Williams, "A Study of the Physical Properties of Nitromethane," J Am Chem Soc 47, 2644 (1925).
 - (c) L. Medard, "Explosive Properties of Nitromethane," Mem poudr 33, 125 (1951).
- (d) T. L. Cottrell, T. E. Graham and T. J. Reid, "The Thermal Decomposition of Nitromethanes," Transactions of the Faraday Society 47, 584 (1951).
- (e) F. Bellinger, H. B. Friedman, W. H. Bauer, J. W. Eastes and W. C. Bull, "Chemical Propellants: Stability of Mononitromethane," Ind Engr Chem 40, 1320 (1948).
 - (f) Also see the following Picatinny Arsenal Technical Reports on Nitromethane:

<u>o</u>	<u>1</u>	<u>3</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	2
1660	1681 1831	2113	1565 -	2016	1747	1708	1619

⁶³See footnote 1, page 10.

Potassium Dinitrobenzfuroxan (KDNBF)

Composition:	Molecular Weight: (KC6H4N4O6)	225
% C 27.3 NO ₂ NO	Oxygen Balance; CO ₂ % CO %	-60 -18
0 36.3 0 ₂ N N O K	Density: gm/cc	2.21
к 14.8	Melting Point: °C Explodes	210
C/H Ratio 0.416	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 3; (1 1b wt) 6 Sample Wt, mg	Refractive Index, Π_{20}^{O} Π_{20}^{D}	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Explodes	cc/40 Hrs, at	
Fiber Shoe Explodes	90°C	
Rifle Bullet Impact Test: Trials	100°C	
%	120°C	
Explosions	135°C 150°C	
Partials	130 C	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm 44.8 Black powder fuse 9.5	43.6
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1	Mercury Fulminate 0.30	0.20
5 250	Lead Azide	0.10
10	Tetryl	
15 20	Ballistic Mortar, % TNT:	
20	Trouzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 0.03	Confined	
% Loss, 2nd 48 Hrs 0.05	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
Flammability Index:	Detonation Rate: Confinement	
Hygroscopicity: % 30°C, 75% RH 0.11 30°C, 90% PH 0.27	Condition Charge Diameter, in.	
Volatility:	Density, gm/cc	
· · · · · · · · · · · · · · · · · · ·	Rate, meters/second	

Booster Sensitivity Test:		Decomposition Equation:
Condition		Oxygen, atoms/sec
Tetryl, gm		(Z/sec)
Wax, in. for 50% Detonation		Heat, kilocalorie/mole
Wax, gm		(ΔH, kcal/mol) Temperature Range, °C
. •		Phase
Density, gm/cc		Pridse
Heat of:	2220	Armor Plate Impact Test:
Combustion, cal/gm	2209	
Explosion, cal/gm	725	60 mm Mertar Projectile:
Gas Volume, cc/gm	604	50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Fineness
Fusion, cal/gm		EGO It Ganaval Burnasa Pamba.
Specific Heat: cal/gm/°C (b)		500-lb General Purpose Bombs:
<u>°</u> C		Plate Thickness, inches
-50	0.217	1
0	0.217	11/4
2 5	0.217	1
50	0.217	11/2
Burning Rate:		13/4
cm/sec		Somb Drop Test:
Thermal Conductivity:		
cal/sec/cm/°C		T7, 2000-lb Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:	.,	Max Safe Drop, ft
Linear, %/°C		500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
		Trials
Hardness, Mohs' Scale:		Unaffected
V / 1.1		Low Order
Young's Modulus:		High Order
E', dynes/cm²		
E, Ib/inch ²		1000-lb General Purpose Bomb vs Concrete:
Density, gm/cc		— Height, ft
Compressive Strength: Ib/inch ²		Trials
-		Unaffected
Vones Broomer		Low Order
Vapor Pressure: °C mm Mercury		
Thin Mercury		High Order
		

Potassium Dinitrobenzfuroxan (KDNBF)

Fragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Orange to brown
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Primary explosive
Total No. of Fragments: For TNT	Method of Loading: Pressed
For Subject HE Fragment Velocity: ft/sec At 9 ft	Loading Density: gm/cc psi x 10 ³ 10 20 30 40 80 1.63 1.77 1.81 1.86 1.98
At 25½ ft Density, gm/cc	Storage: Method Wet
Blast (Relative to TNT):	Hazard Class (Quantity-Distance) Class 9
Air: Peak Pressure Impulse Energy	Compatibility Group Group M (wet)
Air, Confined: Impulse	Solubility in Water, gm/100 gm solvent, at: 30°C 0.245
Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Stab Sensitivity: Density gm/cc Firing Point (inch-ounces) 1.63 73 79 84 1.77 66 75 83 1.81 42 48 64 1.86 12 15 18 1.93 11 17 21 1.98 7 11 14 Activation Energy:
	kcal/mol 82.6 Induction Period, sec 0.5-10

Preparation of Potassium Salt of 4,6-dinitrobenzfuroxan: (a)

Benzfuroxan, made by the reaction of ortho-nitroaniline and alkaline sodium hypochlorite, was dissolved in 6 parts of 96% sulfuric acid and nitrated at 5° - 20° C with a 4 to 1 sulfuric-nitric acid mixture. The salt was prepared by neutralization of the 4,6-dinitrobenzfuroxan with potassium bicarbonate followed by recrystallization from hot water. The product forms in small golden orange plates which explode at 210° C.

Origin:

The potassium salt of 4,6-dinitrobenzfuroxan was first prepared in 1899 by von P. Drost (Ann 307, 56 (1899)).

- (a) R. J. Gaughran, J. P. Picard and J. V. R. Kaufman, "Contribution to the Chemistry of Benzfuroxan Derivatives," J Am Chem Soc 76, 2233 (1954).
- (b) C. Lenchitz, Ice Calorimeter Determination of Enthalpy and Specific Heat of Eleven Organometallic Compounds, PATR No. 2224, November 1955.
- (c) Also see the following Picatinny Arsenal Technical Reports on Potassium Dinitrobenzfuroxan:

2	<u>3</u>	<u>6</u>	
2122	2093	2146	2179

⁶⁴See footnote 1, page 10.

Compagition: %	Molecular Weight:	252
~ RDX 30	Oxygen Balance:	١. ح
	CO ₂ %	-45 - 9
Tetnyl 50	Density: gm/cc	1.68
TWT 20		
	Melting Point: °C Eutectic	67
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 44	Boiling Point: °C	
Semple Wt 20 mg	Refractive Index, no	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	n ^D ₂₅	
Amile A trop trop	n ₃₀	
Eggliek Pandalum Test:	Vacuum Stability Test:	
Size Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	
Rifle Bullet Impact Test: Trials	100°C	3.0
%	120°C	
Explosions 20	135°C	
Portiols 20	150°C	
Burned 0	200 Gram Bomb Sand Test:	
Unaffected 60	Sand, gm	54.8
Explacion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1	Mercury Fulminate	0.23*
5	Lead Azide	0.22*
10	Tetryl *Alternative initiating charges.	
15 20	Ballistic Mortar, % TNT: (a)	132
40	Trauzi Test, % TNT:	
75°C International Heat Test:	Plate Dent Test: (b)	
% Loss in 48 Hrs	Method	В
100°F Hank Took.	Condition	Cast
100°C Heat Test: % Loss, 1st 48 Hrs	Confined	No
% Loss, 1st 46 Hrs % Loss, 2nd 48 Hrs	Density, gm/cc	1.68
Explosion in 100 Hrs	Brisance, % TNT	127
Expression an Too rais		· · · · · · · · · · · · · · · · · · ·
Fiampehility Index:	Detonation Rate: Confinement	None
	Confinement	Cast
Hygrescopicity: %	Charge Diameter, in.	1.0
30°C, 90% RH, 15 days 0.00	Density, gm/cc	1.64
	I Density om/cc	I . DA

Fragmentation Test:		Shaped Charge Effectiveness, TNT =	100:
90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones Steel	! Cones
Density, gm/cc	1.64	Hole Volume	
Charge Wt, Ib	2.180	Hole Depth	
Total No. of Fragments:		Color:	<u> </u>
For TNT	703	-	
For Subject HE	999	Principal Uses: Land mines and d	lemoliti <i>o</i> n
3 inch HE, M42A1 Projectile, Lot KC-5:		charges	
Density, gm/cc	1.63		
Charge Wt, Ib	0.864		
Total No. of Fragments:		Method of Loading:	Cast
For TNT	514		
For Subject HE	685	Loading Density: gm/cc	1.68
Fragment Velocity: ft/sec		2000	2.00
At 9 ft At 251/2 ft	2690 2460	Storage:	
Density, gm/cc	1.64	Method	Dry
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9
Air:	(d)	Compatibility Group	Group I
Peak Pressure	111		
Impulse	109	Exudation I	Exudes at 65°C
Energy			
Air, Confined:		Preparation:	
Impulse Under Water:		The ternary explosive system RDX, tetryl and TNT is prepare appropriate weight of water-weight	ed by adding the et RDX to a tetr
Peak Pressure		tol (40/60) previously melted	
Impulse		jacketed melt kettle. Heating are continued until all the wa	
Energy		and the mixture is uniform in PTX-1 is also prepared by addi	composition.
Underground: Peak Pressure		Composition B. Compatibility with Metals:	
Impulse			
Energy		Dry: Aluminum, mild steel	
Booster Sensitivity Test: (c)	······································	Wet: Aluminum, mild steel	not affected.
	ssed Cast		
	00 100 •94 1.82		
	.94 1.82 .61 1.68		

Origin:

The possibility of employing ternary mixtures to obtain explosives having greater power and higher brisance than binary mixtures was suggested by the analysis of Russian 76 mm, armor piercing high explosive rounds (PATR No. 1311, 17 July 1943). The Russian type ternary explosives, based on the composition and laboratory studies of such mixtures, were indicated to be effective pressed fillers. In conducting a preliminary study of castable ternary explosive mixtures suggested by the Russian fillers, a mixture consisting of RDX/tetryl/TNT, designated PTX-1 was developed which had explosive and physical properties offering considerable advantage for military applications (PATR No. 1360, 27 October 1943; and 1379, 11 January 1944).

A PTX-3 composition, prepared by the addition of Haleite to 40/60 tetrytol, also offered promise but limited to applications where the charge would not be required to withstand storage at 65° C without exudation.

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (c) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
- (d) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.
 - (e) Also see the following Picatinny Arsenal Technical Reports on PTX-1:

<u>o</u>	2	<u>3</u>	<u>6</u>	7	9
1530	1402	1623	1466 1506	1437	1379 14 2 9 1469

⁶⁵See footnote 1, page 10.

Composition:	Molecular Weight: 244	243
RDX 44 - 41	Oxygen Balance; CO ₂ % -33	-3 6
petn 28 - 26	CO % - 3	<u> </u>
TNT 28 - 33	Density: gm/cc	1.70
	Melting Point: °C Eutectic	75
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 35	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, n ₂₀	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	n ₂₅	
	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Crackl	ce, 40 / 113, at	
Fiber Shoe	90°C	2.6
Rifle Bullet Impact Test: Trials	120°C	11+
%	135°C	-tt- ·
Explosions 60	150°C	
Partials 0	130 C	
Burned 0	200 Gram Bomb Sand Test:	
Unaffected 40	Sand, gm	56.9
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	_
1	Mercury Fulminate	0.21
5	Lead Azide	0.00
10 15	Tetryl	0.00
20	Ballistic Mortar, % TNT: (a)	138
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: (b)	
,0 1000 III 10 III 10	Method	В
100°C Heat Test:	Condition	Cast
% Loss, 1st 48 Hrs	Confined	No
% Loss, 2nd 48 Hrs	Density, gm/cc	1.71
Explosion in 100 Hrs	Brisance, % TNT	141
Flammability Index:	Detonation Rate:	77
riginingbility ingex:	Confinement	None
Hydroscopicity: %	Condition	Cast
Hygroscopicity: % 30°C, 90% RH, 15 days 0.0		1.0
Volatility:	Density, gm/cc	1.70
	Rate, meters/second	8 0 65

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 10	0:
90 mm HE, M71 Projectile, Lot W	′C-91:	Glass Cones Steel Co	ones
Density, gm/cc	1.68	Hole Volume ~ 130	
Charge Wt, Ib	2.226	Hole Depth	
Total No. of Fragments:		Color:	
For TNT	703		
For Subject HE	1128	Principal Uses: Shaped charges	
3 inch HE, M42A1 Projectile, Lot	KC-5:	Fragmentation cha	rges
Density, gm/cc	1.70		
Charge Wt, Ib	0.897	1	
Total No. of Fragments:		Method of Loading:	Cast
For TNT	514	motinos of Locality.	5
For Subject HE	750	L. Ata Dackton and Inc.	1.70
		Loading Density: gm/cc	1. (0
Fragment Velocity: ft/sec At 9 ft	3020	Storage:	
At 25½ ft	2850	Storage:	
Density, gm/cc	1.70	Method	Dry
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9
Air:	(a)	Compatibility Group	Group I
Peak Pressure	113	-	N at 650a
Impulse	113	Exudation	None at 65°C
Energy	40 40		
Air, Confined:		Preparation:	
Impulse		The ternary explosive system	-
Under Water:		RDX, PETN and TNT is prepared by appropriate weight of water-wet	RDX to a pen-
Peak Pressure		tolite (30/70) previously melted jacketed melt kettle. Heating a	
Impulse		are continued until all the water	
Energy		and the mixture is uniform in co PTX-2 is also prepared by adding	mposition.
Underground:		PETN to RDX Composition B.	
Peak Pressure		Compatibility with Metals:	
Impulse Energy		<u>Dry:</u> Aluminum, mild steel no	t affected.
Booster Sensitivity Test:	(c)	Wet: Aluminum not affected.	•
Condition	Pressed Cast		
Tetryl, gm	100 100		
Wax, in. for 50% Detonation	1.87 2.32		
Density, gm/cc	1.70 1.61		

Origin:

The possibility of employing ternary mixtures to obtain explosives having greater power and higher brisance than binary mixtures was suggested by the analysis of Russian 76 mm, armorpiercing high explosive rounds (PATR No. 1311, 17 July 1943). The Russian type ternary explosives, based on the composition and laboratory studies of such mixtures, were indicated to be effective pressed fillers. In conducting a preliminary study of castable ternary explosive mixtures suggested by the Russian fillers, a mixture consisting of RDX/PETN/TNT, designated PTX-2 was developed which had explosive and physical properties offering considerable advantage for military applications (PATR No. 1360, 27 October 1943; and 1379, 11 January 1944).

A PTX-4 composition, prepared by the addition of Haleite to 30/70 Pentolite, also offered promise but because of border-line stability in accelerated stability tests, PTX-4 must be proven by long term storage to be acceptable for use in standard ammunition.

- (a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III Miscellaneous Sensitivity Tests</u>; <u>Performance Tests</u>, <u>OSRD Report No. 5746</u>, 27 <u>December 1945</u>.
 - (b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (c) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
- (d) W. R. Tomlinson, Jr., Blast Effects of Bomb Explosives, PA Tech Div Lecture, 9 April 1948.
 - (e) Also see the following Picatinny Arsenal Technical Reports on PTX-2:

<u>o</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	<u>8</u>	<u>9</u>
1530	1482	1483 1623	1414	1445	1466	1838	1379 1429 1469

⁶⁶See footnote 1, page 10.

Composition:		Molecular Weight:	217
RDX	90	Oxygen Balance:	
VDV	7 0	CO ₂ %	- 37
Polyvinyl Acetate	8	CO %	-10
Dibutylphthalate	2	Density: gm/cc Pressed	1.60
		Melting Point: °C Sortening Point: °C	92
C/H Ratio		Freezing Point: °C	_
Impact Sensitivity, 2 Kg Wt:	20	Boiling Point: °C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	39	Refractive Index, no	
Picatinny Arsenal Apparatus, in.	9		
Sample Wt, mg	13	n ^D ₂₅	
	·· <u>J</u>	n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Crackles	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: 5Trials *		100°C	0.45
•		120°C	0.88
% Explosions 20		135°C	
Partials 0		150°C	11+
Burned 60		200 Gram Bomb Sand Test:	
		Sand, gm	58.5
Unoffected *100 trials at -46°C - Unaffe	cted		
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1 330		Mercury Fulminate	
5 Decomposes 375		Lead Azide	0.22
10 265		Tetryl	
15		Ballistic Mortar, % TNT:	
20		Trauzi Test, % TNT:	
75°C International Heat Test:		Plate Dent Test:	
% Loss in 48 Hrs		Method	
		Condition	
100°C Heat Test:		Confined	
% Loss, 1st 48 Hrs	0.10	Density, gm/cc	
% Loss, 2nd 48 Hrs	0.06	Brisance, % TNT	
Explosion in 100 Hrs	None		
Flammability Index:		Detonation Rate:	Nama
rummuumy muex;		Confinement	None
Hygroscopicity: % 30°C, 90% RE	0.20	— Condition	Cast
119groscopicity: 70 30 C, 90% RE	0.20	Charge Diameter, in.	1.0
Volatility: 55°C, vacuo, 6 hrs	0.03	Density, gm/cc	1.60
volumnity: 22 C, vacuo, o nrs	0.03	Rate, meters/second	7910

ragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 10	0:
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones Steel C	ones
Density, gm/cc	Hole Volume	
Charge Wt, Ib	Hole Depth	
Total No. of Fragments:	Color:	White
For TNT	C0101.	
For Subject HE	Principal Uses: Demolit	ion charges
3 inch HE, M42A1 Projectile, Lot KC-5:		
Density, gm/cc		
Charge Wt, Ib		
Total No. of Fragments:	Method of Loading: Pressed or	extruded
For TNT		
For Subject HE	Loading Density: gm/cc	1.60
Fragment Velocity: ft/sec		
At 9 ft At 25½ ft	Storage:	
Density, gm/cc		
	Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air:	Compatibility Group	Group I
Peak Pressure		0 ~
Impulse	Exudation No	ne at 71°C
Energy		
Air, Confined:	Plasticity:	
Impulse	-40°C	Cracked
Under Water: Peak Pressure	25 [°] c	0.3
lmpuls e		
Energy		
Underground: Peak Pressure		
Impulse		
Energy		

Preparation:

Explosive FVA-4, a semi-plastic composition of Canadian origin, consists of 90% RDX, 8% polyvinyl acetate and 2% dibutylphthalate (DBP). This formulation was developed by Dr. Sutherland of Shawinigan Chemicals, Ltd. In evaluating various types of polyvinyl acetate commercially available in the United States, a type obtained from Union Carbide and Carbon, under the industrial named or designation "AYAT" was the most promising coating for RDX in the proportions RDX/PVA(AYAT)/DBP 92/6/2.

A practical method of preparing this composition was by the addition of a solution of the coating agent to an aqueous RDX slurry. Based on the quality of the product and the pellet densities obtained, a procedure of adding an acetone solution of PVA + DBP to a hot water slurry of RDX, under agitation, was adopted as standard.

References: 67

(a) See the following Picatinny Arsenal Technical Reports on PVA-4: 1532 and 1634.

⁶⁷See footnote 1, page 10.

Composition:	Molecular Weight: (C2H3NO3) n	(89) _n
c 27	Oxygen Balance: CO ₂ %	- 45
H 3.4 (H ₂ C-CH-ONO ₂) _n	CO %	- 9
N 15.6 (n ₂ 0-ch-cho ₂) _n	Density: gm/cc	
o 5 ¹ 4	Melting Point: °C (Soft Pb)	50
C/H Ratio 0.203	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, no	
Picatinny Arsenal Apparatus, in. 4 Sample Wt, mg	n ₂₅	
	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Crackles	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C 100°C 16 hours	11+
Rifle Bullet Impact Test: Trials	120°C 16 hours	11+
%	135°C	**.
Explosions	150°C	
Partials		
Burned	200 Gram Bomb Sand Test:	49.9
Unaffected	Sand, gm	49.9
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1 5 265	Mercury Fulminate Lead Azide	
10	Tetryl	
15		, ,
20	Ballistic Mortar, % TNT:	
75°C International Heat Test:	Trauxi Test, % TNT:	
% Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 1.9	Confined	
% Loss, 2nd 48 Hrs 2,1	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
Flammability Index:	Condition	
Hygroscopicity: % 30°C, 90% RH 0.62	Condition Charge Diameter, in.	
Volatility:	Density, gm/cc Rate, meters/second	

PVN (Polyvinyl Nitrate)

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT	Color:	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses:	
Total No. of Fragments: For TNT For Subject HE	Method of Loading:	
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method	, >- -
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	
Air, Confined: Impulse	65.5°C KI Test: Minutes 60+	
Under Water: Peak Pressure Impulse Energy	134.5°C Heat Test: Minutes Salmon Pink 20 Red Fumes 25 Explodes 300+	
Underground: Peak Pressure Impulse Energy	240-Hour Hydrolysis Test: % HNO ₃ Heat of: Combustion, cal/gm 2960	
	Explosion, cal/gm 900 Gas Volume, cc/gm 838	

Preparation:

Polyvinyl alcohol is mixed with acetic anhydride. The mixture is cooled to -5° C and the nitric acid is added slowly while the mass is being stirred. The temperature is controlled by the rate of acid addition so that when all the acid has been added the temperature does not rise above 20° C.

When the nitration is complete, the mixture is drowned by allowing a fine stream of the syrupy liquid to flow from the nitrator and mix intimately with a large stream of water. This causes the product to precipitate in a fine state.

The finely divided precipitate is purified by boiling in frequent changes of water.

Origin:

The first preparation of polyvinyl nitrate was reported in 1929 by solution of polyvinyl alcohol in concentrated sulfuric acid and treatment with nitrating acid at a temperature not over 50°C. (German Patent 537,303). Later patents issued relative to polyvinyl nitrate included U. S. Patent 2,118,487 (1938) and German Patent 737,199 (1943).

AMCP 706-177

RIPE

A		At alasada - Maiaka			230
Compatition:		Molecular Weight:			-30
RDX	85	Oxygen Balance: CO ₂ %			-70
		CO %			-10 -35
Gulf Crown E Oil	15	Density: gm/cc Hand to	amped		1.37
		Melting Point: °C	иреч		4.01
C/H Ratio		Freezing Point: °C			
Impact Sensitivity, 2 Kg Wt:		Boiling Point: °C			
Bureau of Mines Apparatus, cm	53	Refractive Index, n ^D ₂₀			
Sample Wt 20 mg Picationy Arsenal Apparatus, in.	13				
Sample Wt, mg	25	n ₂₅			
	······································	n ₃₀			
Fristion Pendulym Test:		Vacuum Stability Test:			
Steel Shoe	Unaffected	cc/40 Hrs, at			
Fiber Shoe	Unaffected	90°C			 0.34
Bifle Bullet Impact Test: Trials		100°C			0.56
%		120°C			0.70
Explosions 0		135°C			
Partials 0		150°C			
Burned 0		200 Gram Bomb Sand Test:			1
Unaffected 100		Sand, gm			40.1
Explosion Temperature: °C		Sensitivity to Initiation:			
Seconds, 0.1 (no cap used)		Minimum Detonating Ch	arge, gm		
j 5 Decomposes; no val	ue obtained	Mercury Fulminate			
	de Obtained	Lead Azide			0.20
10		Tetryl			
15 20		Ballistic Mortar, % TNT:	(a)		118
		Trauzi Test, % TNT:			
75°C lathraptional Heat Test:		Plate Dent Test:	(b)		
% Lass in 48 Hrs		Method			В
MO'C the Ter:		Condition		Hand	t a mped
% Loss, 1st 48 Hrs	0.03	Confined			No
% Loss, 2rid 48 Hrs	0.04	Density, gm/cc			1.37
Explosion in 100 Hrs	None	Brisance, % TNT			85
		— Detonation Rate:			
Flummshility Index:		Confinement			None
100000000000000000000000000000000000000	0.01	- Condition		Hand	tamped
Hygresospicity: % 30°C, 90% RH	0.04	Charge Diameter, in.			1.0
Mahadda.		Density, gm/cc			1.37
Valgetility:		Rate, meters/second			7390

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100;		
90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones Steel Cones		
Density, gm/cc	1.36	Hole Volume		
Charge Wt, Ib	1.766	Hole Depth		
Total No. of Fragments:		Color:	White	
For TNT	703	Color.	WILL OC	
For Subject HE	592	Principal Uses: Plastic d	demolition explosivé	
3 inch HE, M42A1 Projectile, Lot KC-5:				
Density, gm/cc	1.42			
Charge Wt, Ib	0.756			
Total No. of Fragments:		Method of Loading:	Hand tamped	
For TNT	514	, weiner or neuring.	Halla bampoa	
For Subject HE	501	Las Baralan and Jac	1.37	
ragment Velocity: ft/sec		Loading Density: gm/cc	1.31	
At 9 ft	2650			
At 251/2 ft	2370	Storage:		
Density, gm/cc	1.395	Method	Dry	
Blast (Relative to TNT):		Hazard Class (Quantity-Di	stance) Class 9	
Air:		Compatibility Group	Group I	
Peak Pressure		None at 8	85 ⁰ C in 30 hrs	
Impulse		Exudation None at	95°C in 48 hrs t 105°C in 48 hrs	
Energy		Exudes a	t 105 C in 40 nrs	
Air, Confined:		Origin:		
Impulse		RIPE, a mechanical mi	xture of RDX and Gulf	
		Crown E Oil, was develop		
Under Water:		during World War II.		
Peak Pressure		References:68		
Impulse		(a) L. C. Smith and		
Energy		Testing of Explosives, Sensitivity Tests; Perf	Part III - Miscellane	
Underground:		port No. 5746, 27 Decem	ber 1945.	
Peak Pressure		(b) D. P. MacDougall		
Impulse		Testing, OSRD Report No		
Energy				
Preparation:		(c) Also see the fol Technical Reports on RI	lowing Picatinny Arsem PE: 1713, 1695 and 151	
RIPE is manufactured by simple mixing of RDX in oil.	e mechanical	130miles Reports on Mi	دوست محمده ورند اند بسد	
mixing of RDX in oil.				

⁶⁸See footnote 1, page 10.

AMCP 706-177

Silver Azide

Composition:	Molecular Weight: (AgN ₃) 150
И 58.0	Oxygen Balance: CO ₂ % -5 CO % -5
Ag 72.0 Ag-N=N≡N	Density: gm/cc Crystal 5.1
	Melting Point: °C (a) 251 Decomposes rapidly above melting point to silver and nitrogen.
C/H Ratio	Freezing Point: °C
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 6 Sample Wt 20 mg	Boiling Point: °C Refractive Index, no
Picatinny Arsenal Apparatus, in. 3 Sample Wt, mg 18	n₀ n₃o
Friction Pendulum Test: PA Small Apparatus Steel Shoe Detonates Fiber Shoe Detonates	Vacuum Stability Test: cc/40 Hrs, at 90°C
Rifle Bullet Impact Test: Trials Explosions Partials	100°C 120°C 135°C 150°C
Partials Burned Unaffected	200 Gram Bomb Sand Test: Sand, gm (b) Black powder fuse 18.9
Explosion Temperature: °C Seconds, 0.1 (no cap used) 310 1 5 Explodes 290	Sensitivity to Initiation: Minimum Detonating Charge, gm Mercury Fulminate Lead Azide Tetryl
15 20	Ballistic Mortar, % TNT:
	Trauzi Test, % Hg(ONC) ₂ (c) 88
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method
100°C Heat Test: % Loss, 1st 48 Hrs % Loss, 2nd 48 Hrs Explosion in 100 Hrs	Condition Confined Density, gm/cc Brisance, % TNT
Flammability Index:	Detonation Rate: Confinement
Hygroscopicity: % (b) 25°C, 100% RH 0.04	Condition Charge Diameter, in.
Volatility: 75°C, 24 hrs 0.00	Density, gm/cc Rate, meters/second

ragmentation Test:	Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Co Hole Volume Hole Depth	ones	
Total No. of Fragments: For TNT	Color: White	to gray	
For Subject HE	Principal Uses: Ini	tiators	
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib			
Total No. of Fragments: For TNT	Method of Loading: Pres	sed	
For Subject HE	Loading Density: gm/cc Vari	able	
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:		
Density, gm/cc	Method	Wet	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group M	
Air, Confined: Impulse	Initiating Efficiency: Grams Required to Give Complete Initiation of TNT	(c) 0.02-0.05	
Under Water: Peak Pressure Impulse Energy	Solubility in 100 gm Solvent at Room Temperature: Solvent	Grams	
Underground: Peak Pressure	Water (b) Ammonium hydroxide Nitric acid Ether (b)	0.006 Soluble Decomposes 0.017	
Impulse Energy	Ethyl alcohol, 95% Acetone	0.006 0.015	
Explosive Power: (f)	Unaffected by water and CO2.	(d)	
Kilogram meters 192,000 % Mercury Fulminate 1.097	Heat of: Explosion, cal/gm (c, d) Formation, cal/gm (e)	452 67.8	

Silver Azide

Preparation:

Prepare the following aqueous solutions:

- a. 5% NaN₃, sodium azide, 50 cc
- b. 25% AgNO₃, silver nitrate, 25 cc

The silver nitrate solution is placed in a 200 cc conductive rubber beaker equipped with a hard wood stirrer operated by an air motor. The sodium azide solution is placed in a separatory funnel fastened in a ring stand above the beaker containing the silver nitrate. A long cord (10 ft) is fastened to the stopcock of the separatory funnel so that the funnel can be emptied by remote control. The silver nitrate solution is now stirred very rapidly and the sodium azide is slowly run into the nitrate solution. Stirring is continued for 5 minutes. The contents of the beaker are filtered through folded filter paper and washed free of sodium azide and silver nitrate with distilled water.

Silver azide should be stored under water in a conductive rubber container. This preparation will yield approximately 7 grams.

The preparation should be conducted under a hood and behind a barricade. The product obtained by the above procedure has a very fine particle size, almost colloidal. Very fine silver azide is safer to handle and is just as efficient and stable as the large, coarse crystalline material (Ref b). When a thin film of fine silver azide is precipitated on mercury fulminate, tetryl, etc., these substances are as efficient weight for weight as pure silver azide (Ref g). White silver azide is less affected by light than mercury or lead azide (Ref h). Long colorless crystals which explode on breaking are obtained from ammonium hydroxide.

Origin:

Silver azide was first prepared in 1890-1 by T. Curtius (Ber $\underline{23}$, 3032; Ber $\underline{24}$, 3344-5) by passing hydrazoic acid (HN₃) into neutral silver nitrate solution. Taylor and Rinkenbach prepared pure "collodial" aggregates and showed its sensitivity depends upon its particle size (Army Ordnance 5, 824 (1925). Silver azide was found in a detonator of foreign ammunition for the first time in 1945 (Ref i).

- (a) A. R. Hitch, "Thermal Decomposition of Certain Inorganic Trinitrides," J Am Chem Soc 40, 1195 (1918).
- (b) C. A. Taylor and Wm. H. Rinkenbach, "Silver Azide: An Initiator of Detonation," Army Ordnance, Vol 5, p. 824 (1925).
 - (c) E. De W. S. Colver, High Explosives, London and New York, p. 527.
 - (d) A. Stettbacher, Spreng u. Schiesstoffe, Rascher, Zurich, p. 97 (1948).
 - (e) A. Marshall, Explosives, 2nd Ed, Vol II, p. 767, London.
 - (f) A. Stettbacher, Z ges Schiess-Sprengstoffw 10, pp. 193-214 (1915).

⁶⁹See footnote 1, page 10.

Silver Azide

- (g) F. Blechta, Chim et Ind Special No. 921-5 (June 1933); C. A. 28, 646.
- (h) L. Wohler and W. Krupko, Berichte 46, 2047-2050 (1913).
- (1) F. G. Haverlak, Examination of 120/45 MM HE Shell, Italian (FMAM-464), PATR No. 1515, 10 April 1945.

AMCP 706-177

Tetracene

Composition:	Molecular Weight: (C2H8N100)	188
%	Oxygen Balance:	_
C 12.8	CO ₂ %	-60 -43
H 4.3 W C-NH-NH-N ≡ N-C	CO 76	
NT 7),), i	Density: gm/cc At 3000 psi	1.05
0 8.5 NH_NH_NH_NO	Melting Point: °C Explodes	140-160
C/H Ratio 0.068	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus cm	Boiling Point: °C	
Sample Wt 20 mg	Refractive Index, no	
Picatinny Arsenal Apparatus, in.2; (8 oz wt) 8	n ₂₃	
Sample Wt, mg	n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	
Rifle Bullet Impact Test: Trials	100°C	
%	120°C	
Explosions	135°C 150°C	
Partials	130 C	
Burned	200 Gram Bomb Sand Test:	- 0
Unaffected	Sand, gm Black powder fuse 4.0	28.0
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1	Mercury Fulminate	0.40
5 160	Lead Azide	
10 15	Tetryl	
20	Ballistic Mortar, % TNT:	
20	Trauzi Test, % TNT: (a)	61
75°C International Heat Test: % Loss in 48 Hrs 0.5	Plate Dent Test:	
% Loss in 48 Hrs 0.5	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 23.2	Confined	
% Loss, 2nd 48 Hrs 3.4	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
Pl Lilla I. Jan.	Detonation Rate:	
Flammability Index:	Confinement	
Hygroscopicity: % 30°C, 90% RH 0.77	Condition Charge Diameter, in.	
	Density, gm/cc	
Volatility:	Rate, meters/second	

ragmentation Test:	Shaped Charge Effectiveness, TNT = 10	00:	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color: Pale	yellow	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Priming compositions and detonators		
Total No. of Fragments: For TNT	Method of Loading:	Pressed	
For Subject HE	Looding Density: gm/cc At 3000 psi	1.05	
ragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:		
Density, gm/cc	Method	Wet	
last (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation	Group M	
Air, Confined: Impulse Under Water: Peak Pressure	Solubility: Practically insoluble in wate acetone, ether, benzene, carbont or ethylenedichloride. Sensitivity to Electrostatic		
Impulse Energy	Discharge, Joules: Unconfined Confined	(b) 0.010 0.012	
Underground: Peak Pressure Impulse	Heat of: Explosion, cal/gm	658 1190	
Energy	Initiating Efficiency: Tetracene is not efficient in ini		
	Tetracene is not efficient in high explosives.	n initis	

Tetracene

Preparation:

(Rinkenbach and Burton, Army Ordnance 12, 120 (1931)).

Tetracene is prepared by dissolving 5 gms of aminoguanidine dinitrate in 30 cc of water, cooling to 0° C and mixing with a solution of 2.5 gms of sodium nitrate in 15 cc of water. The temperature is maintained at about 10° C and 0.5 gm of acetic acid is added. The tetracene separates out and is washed with water, alcohol and ether. It is then dried.

Tetracene may also be prepared by placing aminoguanidine sulphate and sodium nitrite in a large beaker and adding water heated to 30°C. The heat of reaction causes the mixture to boil; after standing for two or three hours the separated tetracene is filtered off, washed thoroughly and dried.

Origin:

Tetracene was first prepared in 1910 by Hoffman and Roth (Ber 43, 682) who also studied its chemical reactions and determined its structure (Hoffman et al, Ber 43, 1087, 1866 (1910); Ber 44, 2496 (1911); and Ann 380, 131 (1911)). W. H. Rinkenbach and O. Burton made an extensive study of tetracene and described its manufacture and explosive properties (Army Ordnance 12, 120 (1931)).

Destruction by Chemical Decomposition:

Tetracene is decomposed by adding it to boiling water and continuing boiling for some time to insure complete decomposition.

- (a) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III Miscellaneous Sensitivity Tests; Performance Tests, OSRD Report No. 5746, 27 December 1945.
- (b) F. W. Brown, D. H. Kusler and F. C. Gibson, Sensitivity of Explosives to Initiation by Electrostatic Discharges, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.
 - (c) Also see the following Picatinny Arsenal Technical Reports on Tetracene:

<u>o</u>	<u>1</u>	<u>3</u>	<u>4</u>	7	<u>8</u>	<u>9</u>
1450	11	453	1104 2164	407	318	859 2179

⁷⁰See footnote 1, page 10.

Composition:		Molecular Weight: (C12H5N508)	347
% 0 ₂ N H	NO ₂	Oxygen Balance:	
c 41.6		CO ₂ %	-85 -30
H 1.4	NO ₂		- 30
N 20.0 °2N	NO ₂	Density: gm/cc	· · · · · · · · · · · · · · · · · · ·
0 37.0		Melting Point: °C Pure 1,3,6,8-is	omer 296
C/H Ratio 1.032		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	100+	Boiling Point: °C	
Sample Wt 20 mg	_	Refractive Index, no	
Picatinny Arsenal Apparatus, in.	18 14	n ₂₅	
Sample Wt, mg	14	n _{so}	
Friction Pendulum Test:			
	Unaffected	Vacuum Stability Test: cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
		100°C	0.2
Rifle Bullet Impact Test: Trials		120°C	0.2
% Explosions		135°C	
Partials		150°C	
Burned		200 Gram Bomb Sand Test:	
Unaffected		Sand, gm	41.3
Explosion Temperature: °C		Sensitivity to Initiation: Minimum Detonating Charge, gm	
Seconds, 0.1 (no cap used)		Mercury Fulminate	
5 Decomposes 470		Lead Azide	0.20
10		Tetryl	0.25
15		- Terry	0.2)
20		Ballistic Mortar, % TNT:	
		Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:	
		Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.15	Confined	
% Loss, 2nd 48 Hrs	0.05	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index:		Detonation Rate:	
- williaming index.		Confinement	
Hygroscopicity: % 30°C, 90% RH	0.01	Condition	
	-	Charge Diameter, in.	
Volatility:		Density, gm/cc	
		Rate, meters/second	

Tetranitrocarbazole (TNC)

Fragmentation Test:	100:		
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color: Li	ght yellow	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Component of igniter and pyrotechnic compositions		
Total No. of Fragments: For TNT	Method of Loading:	Pressed	
For Subject HE	Loading Density: gm/cc		
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:		
Density, gm/cc	Method	Dry	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation		
Air, Confined: Impulse	Solubility in Water, gm/100 gm (%), at:	0.10	
Under Water: Peak Pressure Impulse	Qualitative Solubilities:		
Energy	Solvent Nitrobenzene	Solubility Very soluble	
Underground: Peak Pressure Impulse	Acetone Benzene Chloroform Carbontetrachloride	Soluble Insoluble Insoluble Insoluble	
Energy	Ether Ether, petroleum	Insoluble Insoluble	

Preparation:

Sulfonation: Fifty-six gms of carbazole is dissolved in 320 gms of $\rm H_2SO_h$ (96%, specific gravity 1.84). The solution is agitated during the addition of the carbazole and the temperature maintained at 25°-35°C. After the addition of the carbazole is completed, the agitation is continued and solution completed by raising the temperature to 80°-85°C and maintaining this temperature for one hour. The sulphate is now cooled to 20°C.

Nitration: The sulfonate solution is slowly added to 168 gms of HNO $_3$ (Plant grade specific gravity 1.525 at 15° C) maintaining the temperature at 30° to 50° C. (Time required - 1 hour 25 minutes). The temperature is then gradually raised to 70° to 75° C and maintained for one hour after which the temperature is raised to 85° to 90° C and held for one hour, then lowered to room temperature before drowning.

<u>Drowning:</u> The nitration mixture is drowned by pouring it into 2 to 3 volumes of ice and water.

Filtering: The separated light yellow product is filtered on a Buchner Funnel and washed with water twice to remove most of the acid.

<u>Purification:</u> The TNC is placed in hot water (95° to 100°C) and boiled for five to ten minutes with rapid agitation, allowed to settle then filtered and washed once. This procedure is repeated twice, making a total of three "boilings." The final wash is acid free.

Drying: The TNC is spread in a thin layer and dried at 100° to 110°C for four hours.

Yield: 73.3%.

Melting Point of TNC as prepared: 280°C (compares to 296°C for pure 1,3,6,8-isomer in preceding data).

Origin:

The preparation of Tetranitrocarbazole (TNC) was first reported in 1880 by C. Graebe (Ann 202, 26 (1880)) who nitrated carbazole with 94% nitric acid. Similar procedures were followed by R. Escales (Ber 37, 3596 (1904)) and P. Zierch (Ber 42, 3800 1909)). However, G. L. Ciamician and P. P. Silber observed the formation of four isomeric TNC's when acetyl carbazole was treated with fuming nitric acid (Gazz chim ital 12, 272 1882). In 1912 and 1913 patents were issued to the dyestuff manufacturer, Casella and Company, covering the preparation of polynitrocarbazoles (German Patent 268,173 and French Patent 464,538). The Casella process of

Tetranitrocarbazole (TNC)

preparing polynitrocarbazoles by dissolving carbazole in sulfuric acid and treating the solution of sulfonic acids with strong nitrating agents is essentially the process used today in the United States. The crude product, thus prepared, contains principally 1,3,6,8-TNC (W. Borsche and B. G. B. Scholten Ber 50, 596 (1917) and about 10% of the 1,2,6,8-TNC isomer (D. B. Murphy et al J Am Chem Soc $\overline{75}$, 4289 (1953). TNC was used in explosives by the Germans during World War II.

- (a) D. B. Murphy, F. R. Schwartz, J. P. Picard and J. V. R. Kaufman, "Identification of Isomers Formed in the Nitration of Carbazole," J Am Chem Soc, 75, 4289-4291 (1953).
- (b) S. Livingston, Preparation of Tetranitrocarbazole, PA Chemical Research Laboratory Report No. 136,330, 11 April 1951.
- (c) D. B. Murphy et al, Long Range Basic Technical Research Leading to the Development of Improved Ignition Type Powders The Chemistry of Tetranitrocarbazole, PA Memorandum Report No. 22, 2 September 1952.
 - (d) S. Livingston, Development of Improved Ignition Type Powders, PATR No. 2267, July 1956.
 - (e) Also see the following Picatinny Arsenal Technical Reports on Tetranitrocarbazole:

<u>o</u>	2	<u>3</u>	<u>4</u>	7
2180	1802	1973	1984	1647 1937

⁷¹See footnote 1, page 10.

Composition:	0	Molecular Weight: (C ₁₄ H ₈ N ₆ O ₁₀)	420
%	Ĭ	Oxygen Balance:	
	(CO ₂ %	-84
н 1.9 ^{ЙН}	ŇH 人	CO %	-31
N 20.0	No	Density: gm/cc	
0 38.1		Melting Point: °C Decomposes	313
C/H Ratio 0.735	NQ ⁵	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm		Boiling Point: °C	
Sample Wt 20 mg		Refractive Index, no	
Picatinny Arsenal Apparatus, in.	30	n ₂₅	
Sample Wt, mg	11	n ₃₀	
Friction Pendulum Test:			
	affected	Vacuum Stability Test: cc/40 Hrs, at	
Steel Shoe	affected	90°C	
Tibel Slice		- 100°C	
Rifle Bullet Impact Test: Trials		120°C	0.11
%		135°C	
Explosions		150°C	
Partials			
Burned		200 Gram Bomb Sand Test:	16.3
Unaffected		Sand, gm	10.3
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
]		Mercury Fulminate	2.00
5 392		Lead Azide	0.20
10		Tetryl	0.25
15 20		Ballistic Mortar, % TNT:	
		Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:	
/U LUSS III 40 I IIS		Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs	0.07	Confined	
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
		Detonation Rate:	
Flammability Index:		Confinement	
11 0/ 000 cod		- Condition	
Hygroscopicity: % 30°C, 90% RH	Trace	Charge Diameter, in.	
Valatitan		Density, gm/cc	
Volatility:		Rate, meters/second	

2,4,2',4'-Tetranitro-oxanilide (TNO)

Fragmentation Test:	Shaped Charge Effectiveness, TNT $= 10$	00:	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth		
Total No. of Fragments: For TNT	Color: Lig	nt yellow	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Component of black powder type and pyrotechnic compositions		
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed and extruded compositions		
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method	Dry	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9	
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation		
Air, Confined: Impulse	Solubility, gm/100 cc Solvent,	<u>°C</u> %	
Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Water Nitrobenzene Qualitative Solubilities: Solvent Ethyl alcohol Benzene Butyl acetate Carbontetrachloride Ethyl ether Acetic acid Nitric acid Caustic potash Dimethyl formamide	Solubility Insoluble Insoluble Insoluble Insoluble Soluble Soluble Soluble Soluble Very soluble	

Method of Preparation:

Oxanilide:

Two parts of oxalic acid are mixed with one part of aniline in a round bottom flask. The mixture is stirred and heated until the reaction is complete as evidenced by the cessation of effervescence. The mass is cooled to room temperature, poured into several volumes of water $(21^{\circ}-24^{\circ}\text{C})$, filtered on a Büchner funnel and washed free of oxalic acid with water and then washed free of aniline with acetone. The oxanilide is air dried to remove the acetone and then dried at $100^{\circ}-110^{\circ}\text{C}$.

Tetranitro-oxanilide (TNO):

A 5 liter round bottom flask is equipped with a stirrer of a type which will produce a downward "swirl." The flask is surrounded with a water jacket for hot and cold water. Fifteen hundred grams (1.5 kilograms) of 98% plant grade nitric acid is placed into the flask. Five hundred (500) grams of oxanilide is slowly added to the acid under rapid agitation while the temperature is maintained below 40° C. After the addition of the oxanilide is completed ($2\frac{1}{2}$ -3 hrs), the agitation is continued 10-15 minutes. The temperature is then raised to 80° C over a period of one hour and maintained at 80° -85°C for 3 hours. The acid slurry is then cooled to room temperature and drowned by pouring over cracked ice. The product is filtered on a Büchner funnel and washed with water until it is almost acid free. The filter cake is placed in a beaker and sufficient water added to form a "slurry." Live steam is run into the "slurry" under agitation for 10 minutes. The slurry is filtered and the residue washed. The latter treatment of the "slurry" is repeated until the wash water is found to be neutral to

2,4,2',4'-Tetranitro-oxanilide (TNO)

litmus paper. The TNO is washed with alcohol, then acetone, air dried and finally dried at 100° - 110° C.

Yield = 90% to 97.5% of theoretical.

Origin:

A. G. Perkin in 1892 obtained tetranitro-oxanilide directly by heating a solution of finely powdered oxanilide in nitric acid. He also obtained the same compound by the action of a cooled mixture of nitric and sulfuric acids on oxanilide and precipitating the product by pouring the solution into water (J Chem Soc $\underline{61}$, $\underline{460}$ (1892).

- (a) S. Livingston, Development of Improved Ignition Type Powders, PATR No. 2267, July 1956.
- (b) D. Dubrow and J. Kristal, Substitution of Tetranitro Oxanilide and Hexanitro Oxanilide for Tetranitro Carbazole, PA Pyrotechnic Research Laboratory Report 54-TF 1-88, 20 December 1954.

⁷²See footnote 1, page 10.

Composition:		Molecular Weight: (C7H5N508)	287
% С 29.3 Н 1.7 О ₂ N	-NO ₂	Oxygen Balance: CO ₂ % CO %	-47 - 8
N 24.4] = 2	Density: gm/cc Crystal	1.73
0 44.6		Melting Point: °C	130
C/H Ratio 0.420	02	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	26	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	8 18	Refractive Index, n ^D ₂₅ n ^D ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Crackles	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: Trials		- 100°C	0.3
%		120°C 135°C	1.0
Explosions 13		150°C	11+
Partials 5 ¹ 4		130 C	
Burned 10		200 Gram Bomb Sand Test:	
Unaffected 23		Sand, gm	54.2
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 340		Minimum Detonating Charge, gm	0.20*
1 314 5 Ignites 257		Mercury Fulminate	
10 238		Lead Azide	0.10*
15 236		*Alternative initiating charges.	
20 234		Ballistic Mortar, % TNT: (a)	130
		_ Trauzi Test, % TNT: (b)	125
75°C International Heat Test: % Loss in 48 Hrs	0.01	Plate Dent Test: (c) Method A	В
100°C Heat Test:		Condition Pressed	Pressed
% Loss, 1st 48 Hrs	0.1	Confined Yes	No
% Loss, 2nd 48 Hrs	0.0	1	59 1.36
Explosion in 100 Hrs	None	Brisance, % TNT 116 13	L5 96
Flammability Index:	244	Detonation Rate: Confinement	None
Hygroscopicity: % 30°C, 90% RH	0.04	Condition Charge Diameter, in.	Pressed
Volatility: 25°C	0.00	Density, gm/cc Rate, meters/second	1.71 7850

Booster Sensitivity Test:	(d) Pressed	Decomposition Equation:	(g) (h) 10 ^{15.4} 10 ^{12.9}
Condition	100	Oxygen, atoms/sec (Z/sec)	10 , 10 ,
Tetryl, gm		Heat, kilocalorie/mole	38.4 34.9
Wax, in. for 50% Detonation	2.01	(ΔH, kcal/mol)	211-260 132-164
Wax, gm	0	Temperature Range, °C	<u> </u>
Density, gm/cc	1.58	Phase	Liquid Liquid
Heat of: Combustion, cal/gm	2925	Armor Plate Impact Test:	
· •	1080-1130		
Explosion, cal/gm	760	60 mm Mortar Projectile:	
Gas Volume, cc/gm	-1 ¹ 4	50% Inert, Velocity, ft/	sec
Formation, cal/gm		Aluminum Fineness	
Fusion, cal/gm O (e) Temperature, C	22.2 127	500-lb General Purpose Bo	mbs:
Specific Heat: cal/gm/°C	(e)	Dieto Thiskness inches	
-100	0.182	Plate Thickness, inches	
- 50	0.200	1	
0	0.212	11/4	
50 100	0.223 0.236	11/2	
100	0.20	13/4	
Burning Rate:		174	
cm/sec		Bomb Drop Test:	
Thermal Conductivity: (f) cal/sec/cm/°C 5.81 x 10-4 at 6.83 x 10-4 at	1.394 gm/cc	T7, 2000-lb Semi-Armor-P	iercing Bomb vs Concrete:
Coefficient of Expansion:	11,720 811,00	Max Safe Drop, ft	
Linear, %/°C		500-ib General Purpose Bo	omb vs Concrete:
Volume, %/°C		Height, ft	
		Trials	
Hardness, Mohs' Scale:		Unaffected	
		Low Order	
Young's Modulus:		High Order	
E', dynes/cm²			
E, lb/inch²		1000-ib General Purpose B	omb vs Concrete:
Density, gm/cc			
		— Height, ft	
Compressive Strength: Ib/inch ²		Trials	
		Unaffected	
Vapor Pressure:		Low Order	
°C mm Mercury		High Order	
		- draw of the case	

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100:				
90 mm HE, M71 Projectile, Lot WC-91:		Glass Cones Steel Cones				
Density, gm/cc	1.58	Hole Volume				
Charge Wt, Ib	2.052	Hole Depth				
Total No. of Fragments:		Color:	Light	vellow		
For TNT	703	Color:	птепто	SETTOM		
For Subject HE	864	Principal Uses: Booste	ers; ingredien	t of explo-		
3 inch HE, M42A1 Projectile, Lot KC-5:		sive m	nixtures, deto ng caps			
Density, gm/cc	1.62	Diasti	.ng capa			
Charge Wt, Ib	0.848					
Total No. of Fragments:		Method of Loading:		Pressed		
For TNT	514	7.101.100 07 2000.113		110000		
For Subject HE	605	Loading Density: gm/cc	See belo			
Fragment Velocity: ft/sec			See pelo	·W		
At 9 ft At 25½ ft		Storage:				
Density, gm/cc						
,, 3 .		Method		Dry		
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)		Class 9		
Air:		Compatibility Group		Group L		
Peak Pressure				n		
Impulse		Exudation	Does not ex	mae at 65 (
Energy						
Air, Confined:		Loading Density: gm/	/ce			
Impulse		Cast 1.62 Pres	ssed psixl	.03		
Under Water:				15 2		
Peak Pressure		0 3 5	1.57 1.60	1.63 1.6		
Impulse				•		
Energy			30 1.71			
Underground:		Effect of Temperature	e on	(j)		
Peak Pressure		Rate of Detonation:				
Impulse		16 hrs at, °C	- 54	21		
Energy		Density, gm/cc	1.52	1.53		
		Rate, m/sec	7150	7170		

Tetryl

Preparation:

(Manufacture of Tetryl by Dinitromonomethylaniline Process, Wannamaker Chemical Co., Inc.)

$$c_{6}H_{3}(NO_{2})_{2}C1 + CH_{3}NH_{2} + NaOH \longrightarrow c_{6}H_{3}(NO_{2})_{2}-NH-CH_{3} + NaC1 + H_{2}O$$

$$c_{6}H_{3}(NO_{2})_{2}-NH-CH_{3} + 2HNO_{3}$$

$$O_{2}N$$

$$H_{3}C-N-NO_{2}$$

$$O_{2}N$$

$$+ 2H_{2}O$$

To a solution of 202.5 gm dinitrochlorbenzene in 200 cc benzene, at 75°C with good agitation, in 15 to 20 minutes, add 112 gm of 30% aqueous monomethylamine. Then add 129 gm of 31% aqueous sodium hydroxide, in 15 to 20 minutes, at such a rate as to cause refluxing; continue agitation for 3 hours at 70°C. The mixture is concentrated to a liquid temperature of 101°-102°C, cooled, filtered and the precipitate washed with distilled water until the washings give no test with silver nitrate, dried at 60°C (melting point 167.2°C).

The dinitromethylaniline is nitrated to tetryl by solution of it in 88% sulfuric acid (197 gm nitroaniline/1190 gm sulfuric) at 25°C, followed by addition of nitric acid. The process is carried out so that the water content remains at 16%. Solution (per 197 gm nitroaniline) requires 5 to 10 minutes, nitration, by addition of the sulfuric acid solution to nitric acid, about 1 hour at 30°C, plus 48 minutes at 50° to 55°C at the end. The mixture is then cooled to 20°C and filtered. The tetryl is dumped into 1 liter water, washed 2 or 3 times with 200 cc cold water, and then stirred 10 to 15 minutes at 50°C with 500 cc water, filtered warm and then washed with water until the washings are neutral to methyl orange. The tetryl dried to constant weight at 70°C weighs about 270 gm.

Tetryl filtered from an acid containing 87% sulfuric acid (or more) -13% water, at 40° C (or over) may fire in 30 minutes to 1 hour and 30 minutes, if not drowned in water. A safe nitration procedure, even on plant scale involves:

- 1. The concentration of sulfuric in the spent acid is maintained at a low level (approx 80/1.8/18.2 sulfuric/nitric/water).
 - 2. Nitration maximum temperature is 50°C.
 - 3. The slurry is cooled to 35°C before filtration.
 - 4. Filtration time prior to drowning, is minimized (15 minutes maximum).

The crude tetryl produced is recrystallized to remove impurities and occluded acid and to control its granulation.

138

Tetryl

Sensitivity of tetryl electrostatic discharge, joules; through 100 mesh: (i)

0.007 Unconfined 4.4 Confined

Solubility of tetryl, grams in 100 grams (%) of:

Wat	er	Carl	oon tetrachlo	oride	Eth	er	25%	Alcohol
°C	<u>4</u>	°C		<u>%</u>	°C	<u> 2</u>	<u>°C</u>	<u>%</u>
0 20 40 80 100	0.0050 0.0075 0.0110 0.0810 0.184	0 20 40 60		0.007 0.015 0.058 0.154	0 10 20 30	0.188 0.330 0.418 0.493	0 10 20 30 50 75	0.320 0.425 0.563 0.76 1.72 5.33
Chlo	roform	Carbon	disulfide	Ethyler	ne dichloride		Acetone	
°C	<u>%</u>	<u>°с</u>	<u> 2</u>	° _C	<u>%</u>	0	<u>c</u>	<u> </u>
0 20 40	0.28 0.39 1.20	0 10 20	0.009 0.015 0.021	25 75	4.5 45	2: 3: 4:	0	75 95 116

Trichloro	ethylene	Ethyl a	acetate	Ben	zene	Tolu	ene
<u>°</u> C	<u>%</u>	<u>°</u> C	<u>%</u>	<u>°C</u>	<u> 2</u>	<u>°</u> C	L
0 20 40 60 80 86	0.07 0.12 0.26 0.67 1.50 1.76	20	~ 40	20 30 40 50	7.8 10.0 12.5 16.0	20	8.5

0.030

Xylene		TT	T
°C	<u> </u>	<u>°</u> C	<u> %</u>
20 30 40 50	3·3 4·4 5·4 6·0	80 100 120	82 149 645

Origin:

60

2.65

30

Tetryl was first described in 1879 by Michler and Meyer (Ber 12, 1792), van Romburgh and Martens studied its properties and proved its structure (Rec trav chim 2, 108 (1883); 6, 215 (1887); and Ber 19, 2126 (1886)). Tetryl was not used as an explosive until World War I.

Destruction by Chemical Decomposition:

Tetryl is decomposed by dissolving in 12 times its weight of a solution prepared from 1 part by weight of sodium sulfite (Na_2SO_2 , TH_2O) in 4 parts water. The sulfite solution may be heated to $80^{\circ}C$ to facilitate decomposition of the Tetryl.

- (a) L. C. Smith and E. G. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III Miscellaneous Sensitivity Tests</u>; <u>Performance Tests</u>, <u>OSRD Report No. 5746</u>, <u>27 December 1945</u>.
 - (b) Ph Naoum, Z ges Schiess---Sprengstoffw, pp. 181, 229, 267 (27 June 1932).
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303; 15 June 1949.
- (e) C. A. Taylor and Wm. H. Rinkenbach, "The Solubility of Trinitro-Phenylmethyl-Nitramine (Tetryl) in Organic Solvents," J Am Chem Soc $\frac{1}{2}$, (1923) p. 104.
- (f) E. Hutchinson, The Thermal Sensitiveness of Explosives. The Thermal Conductivity of Explosive Materials, AC 2861, First Report, August 1942.
- (g) R. J. Finkelstein and G. Gamow, Theory of the Detonation Process, NAVORD Report No. 90-46, 20 April 1947.
- (h) M. A. Cook and M. T. Abegg, "Isothermal Decomposition of Explosives," University of Utah. Ind Eng Chem 1090-1095 (June 1956).
- (i) J. W. Brown, D. H. Kusler and F. C. Gibson, <u>Sensitivity of Explosives to Initiation</u> by <u>Electrostatic Discharges</u>, U. S. Dept of Int, Bureau of Mines, RI 3852, 1946.
- (j) W. F. McGarry and T. W. Stevens, <u>Detonation Rates of the More Important Military Explosives at Several Different Temperatures</u>, PATR No. 2383, November 1956.
 - (k) Also see the following Picatinny Arsenal Technical Reports on Tetryl:

<u>o</u>	<u>1</u>	2	<u>3</u>	4	<u>5</u>	<u>6</u>	7	<u>8</u>	2
30 600 770 810 1180 1290 1350 1360 1400 1450 1500 1670	11 361 381 621 861 1041 1131 1261 1311 1431 1471 1611	132 582 832 882 1192 1352 1372 1402 1452 1592	453 493 623 833 863 1113 2053 2163 2233	84 144 294 314 694 774 784 874 904 1134 1264 2024	65 195 525 5625 635 925 1148 12805 1885 1905 1905 2125	266 556 786 986 1086 1126 1316 1416 1446 1466 1556 1636	117 197 637 707 807 837 857 1047 1137 1287 1367 1437 1737 1797	28 438 628 708 788 838 1418 1788 1828 1838	129 179 319 609 709 849 999 1029 1209 1429 1489 1819 1969

⁷³See footnote 1, page 10.

Composition:		Molecular Weight:	274
70 Tetryl	80	Oxygen Balance:	
·		CO ₂ %	-52 -11
INT	20		
		Density: gm/cc Cast	1.51
		Melting Point: °C	68
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	28	Boiling Point: °C	
Sample Wt 20 mg		Refractive Index, no	
Picatinny Arsenal Apparatus, in. Sample Wt, mg	9 17	n ₂₅	
	<u> </u>	n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe		cc/40 Hrs, at	
Fiber Shoe		90°C	
Rifle Builet Impact Test: Trials		— 100°C	3.0
%		120°C	11+
Explosions 0		135°C	
Partials 20		150°C	
Burned 0		200 Gram Bomb Sand Test:	
Unaffected 80		Sand, gm	54.0
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	0.22*
5 Ignites 290		Lead Azide	0.17*
10		*Alternative initiating charges.	
15 20		Ballistic Mortar, % TNT:	
		Trauzi Test, % TNT:	
75°C International Heat Test:		Plate Dent Test:	
% Loss in 48 Hrs		Method	
100°C Heat Test:		— Condition	
% Loss, 1st 48 Hrs	0.1	Confined	
% Loss, 2nd 48 Hrs	0.5	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
•		Detonation Rate:	
Flammability Index: Will not continu	ue to burn	Confinement	
		— Condition	
Hygroscopicity: %	0.02	Charge Diameter, in.	
		Density, gm/cc	
Volatility:		25, 5, 55	

Tetrytol, 80/20

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:				
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Co Hole Volume Hole Depth	ones			
Total No. of Fragments: For TNT	Color: Light ye	llow to buff			
For Subject HE	Principal Uses: Bursters, demolit	ion blocks			
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib					
Total No. of Fragments: For TNT	Method of Loading:				
For Subject HE	Loading Density: gm/cc				
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:				
Density, gm/cc	Method	Dry			
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9			
Air: Peak Pressure	Compatibility Group	Group I			
Impulse Energy	Exudation Exude	es at 65°C			
Air, Confined: Impulse					
Under Water: Peak Pressure					
Impulse Energy					
Underground: Peak Pressure					
impulse Energy					

Composition:		Molecular Weight:	270
%	7 5	Oxygen Balance:	
Tetryl	75	CO ₂ %	- 54
TNT	25	CO %	-12
		Density: gm/cc Cast	1.59
		Melting Point: °C	68
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	28	Boiling Point: °C	
Sample Wt 20 mg		Refractive Index, n ^D ₂₀	
Picatinny Arsenal Apparatus, in.	10 17	n ^D ₂₅	
Sample Wt, mg	Τ!	. n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	racks	cc/40 Hrs, at	
Fiber Shoe U	naffected	90°C	
Rifle Bullet Impact Test: Trials		100°C	3.0
•		120°C	11+
% Explosions 0		135°C	
Partials 30		150°C	
Burned 0		200 Gram Bomb Sand Test:	
Unaffected 70		Sand, gm	53.7
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	0.23*
5 Ignites 310		Lead Azide	0.19*
10 15		*Alternative initiating charges.	
20		Ballistic Mortar, % TNT: (a)	122
	····	Trouzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: (b)	
/U LUSS III 40 I II'S		Method B	В
100°C Heat Test:		Condition Cast	Cast
% Loss, 1st 48 Hrs		Confined No	Yes
% Loss, 2nd 48 Hrs		Density, gm/cc 1.66	1.62
Explosion in 100 Hrs		Brisance, % TNT 118	114
Pl. 1105 1 1		Detonation Rate:	
Flammability Index: Will not conti	nue to burn	Confinement	None
H	2.00	— Condition	Cast
Hygroscopicity: %	0.03	Charge Diameter, in.	1.0
Volatility:		Density, gm/cc	1.60
· viscinty:		Rate, meters/second	73 85

Tetrytol, 75/25

Fragmentation Test:		Shaped Charge Effectiveness, TNT $=$ 100:		
90 mm HE, M71 Projectile, Lot W	C-91:	Glass Cones Steel (Cones (d)	
Density, gm/cc	1.59	Hole Volume 127		
Charge Wt, Ib	2.101	Hole Depth 120		
Total No. of Fragments:		Color: Light velle	to buff	
For TNT	703	Color: Light yello	DW CO DUIT	
For Subject HE	857	Principal Uses: Bursters, demoli	tion blocks	
3 inch HE, M42A1 Projectile, Lot N	(C-5:			
Density, gm/cc	1.60			
Charge Wt, Ib	0.845			
Total No. of Fragments:		Method of Loading:	Cast	
For TNT	514			
For Subject HE	591	Loading Density: gm/cc	1.59	
Fragment Velocity: ft/sec			***************************************	
At 25½ ft		Storage:		
Density, gm/cc		Method	Dry	
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9	
Air:		Compatibility Group	Group I	
Peak Pressure		Exudation	Exudes at 65°	
Impulse		Exaddition	Litates as of	
Energy		Eutectic Temperature, OC:	67.5	
Air, Confined:			01.7	
Impulse		gm Tetryl/100 gm TNT 67.5°C	54-82	
Under Water: Peak Pressure		Booster Sensitivity Test:	(c)	
lmpuls e		Condition	Cast	
Energy		Tetryl, gm Wax, in. for 50% Detonation	100 1.66	
Underground: Peak Pressure		Density, gm/cc	1.66	
lmpuise				
Energy				

Composition:		Molecular Weight:	2 66
%		Oxygen Balance:	· · · · · · · · · · · · · · · · · · ·
Tetryl	70	CO ₂ %	- 55
TNT	30	CO %	-13
	5-	Density: gm/cc Cast	1.60
		Melting Point: °C	68
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	28	Boiling Point: °C	
Sample Wt 20 mg	20	Refractive Index, n20	
Picatinny Arsenal Apparatus, in.	11	n ₂₅	
Sample Wt, mg	18	1	
	· 	n	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe Unaffe		cc/40 Hrs, at	
Fiber Shoe Unaffe	ected	90°C	
Rifle Bullet Impact Test: Trials		100°C	3.2
%		120°C	11+
Explosions 0		135°C	
Partials 55		150°C	
Burned 0		200 Gram Bomb Sand Test:	
Unaffected 45		Sand, gm	53.2
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) 416		Minimum Detonating Charge, gm	
1 387		Mercury Fulminate	0.23*
5 Ignites 320		Lead Azide	0.22*
10 302		Tetry! *Alternative initiating charges.	
15 289			<u> </u>
20 275		Ballistic Mortar, % TNT: (a)	120
77.00 has a second transfer of the second tran		Trauzi Test, % TNT:	···
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: (b)	_
And the second s		Method	В
100°C Heat Test:		Condition	Cast
% Loss, 1st 48 Hrs	0.1	Confined	Yes
% Loss, 2nd 48 Hrs	0.1	Density, gm/cc	1.60
Explosion in 100 Hrs	None	Brisance, % TNT	117
Pa	· · · · · · · · · · · · · · · · · · ·	Detonation Rate:	
Flommability Index: Will not continue	to burn	Confinement	None
Harmon intervention	0.00	Condition	Cast
Hygroscopicity: %	0.02	Charge Diameter, in.	1.0
Volatility:		Density, gm/cc	1.60

Fragmentation Test:		Shaped Charge Effectiveness, TNT $=$ 100:			
90 mm HE, M71 Projectile, Lot WG	C-91:	Glass Cones Steel	Cones		
Density, gm/cc	1.60	Hole Volume			
Charge Wt, Ib	2.090	Hole Depth			
Total No. of Fragments:		Color: Light ye	ellow to buff		
For TNT	703				
For Subject HE	840	Principal Uses: Bursters, demol:	ition blocks		
3 inch HE, M42A1 Projectile, Lot K	(C-5:				
Density, gm/cc	1.60	,			
Charge Wt, Ib	0.842				
Total No. of Fragments:		Method of Loading:	Cast		
For TNT	514	•			
For Subject HE	585	Loading Density: gm/cc	1.60		
Fragment Velocity: ft/sec			1.00		
At 9 ft At 25½ ft		Storage:	···········		
Density, gm/cc		Method	Dry		
Blast (Relative to TNT):		Hazard Class (Quantity-Distance)	Class 9		
Air:		Compatibility Group	Group I		
Peak Pressure					
Impulse		Exudation Exudes at 65°			
Energy					
Air, Confined: Impulse					
Under Water: Peak Pressure					
Impulse					
Energy					
Underground: Peak Pressure					
Impulse					
Energy					
					

Tetrytol, 65/35

Composition:		Molecular Weight:	264
70 Tetryl	65	Oxygen Balance:	
Tetryl	0)	CO ₂ %	-56 -14
INT	35		3 (0
		Density: gm/cc	1.60
		Melting Point: °C	68
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	28	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in.	11	Refractive Index, no	
Sample Wt, mg	17	n ₂₅	
		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Cracks	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	0 0
Rifle Bullet Impact Test: Trials		100°C	2.8 11+
%		120°C	TT±
Explosions 0		135°C 150°C	
Partials 10		130 C	
Burned 0		200 Gram Bomb Sand Test:	_
Unaffected 90		Sand, gm	52. 6
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	2 22"
l 5 Ignites 32	5	Mercury Fulminate	0.23*
10	,	Lead Azide	0.23*
15		*Alternative initiating charges.	
20		Ballistic Mortar, % TNT:	
		Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test: Method	
100°C Heat Test:		Condition	
% Loss, 1st 48 Hrs		Confined	
% Loss, 2nd 48 Hrs		Density, gm/cc	
Explosion in 100 Hrs		Brisance, % TNT	
Planackiii. Indaa yaas		Detonation Rate:	
Flammability Index: Will not co	ntinue to burn	Confinement	None
Hygroscopicity: %	0.02	— Condition	Cast
		Charge Diameter, in.	1.0
Volatility:		Density, gm/cc	1.60
· , -		Rate, meters/second	7310

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lot WC		(d) (e) Glass Cones Steel Cones Hale Volume 133 126			
Density, gm/cc	1.61	Tible Volume =55			
Charge Wt, Ib	2.010	Hole Depth 120 119			
Total No. of Fragments:		Color:			
For TNT	703	Light yellow	to buff		
For Subject HE	856	Principal Uses: Bursters, demoliti	on blocks		
3 inch HE, M42A1 Projectile, Lot KG	C-5:	Barg series, demorran	OII DIOCKS		
Density, gm/cc	1.60				
Charge Wt, Ib	0.845				
Total No. of Fragments:		Method of Loading:	Cast		
For TNT	514	, total or zeeding.	04.2		
For Subject HE	585		7 (0		
P		Loading Density: gm/cc	1.60		
Fragment Velocity: ft/sec At 9 ft At 25½ ft		Storage:	VII - 17/40 To 0 -		
		Jiorago.			
Density, gm/cc		Method	Dry		
Blast (Relative to TNT):	······································	Hazard Class (Quantity-Distance)	Class 9		
Air:		Compatibility Group	Group I		
Peak Pressure		F 1.0	es at 65°C		
Impulse		Exudation Exud	es at by C		
Energy		**************************************			
Air, Confined: Impulse					
Under Water: Peak Pressure					
Impulse					
Energy					
Underground: Peak Pressure					
Impulse					
Energy					

Compatibility with Metals:

<u>Dry:</u> Copper, brass, aluminum, magnesium, stainless steel, mild steel, mild steel coated with acid proof black paint and mild steel plated with copper, cadmium, zinc or nickel are unaffected. Magnesium-aluminum alloy is slightly affected.

Wet: Stainless steel and mild steel coated with acid-proof black paint are unaffected. Copper, brass, aluminum, magnesium, magnesium-aluminum alloy, mild steel and mild steel plated with cadmium, copper, zinc or nickel are slightly affected.

Preparation:

Tetrytols are manufactured by heating TNT in a melting kettle, equipped with a stirrer, until all the TNT is melted. The necessary amount of tetryl is added and heating and stirring are continued. The temperature is allowed to drop from 100° C until the mixture is of maximum viscosity suitable for pouring. Part of the tetryl dissolves in TNT forming a eutectic mixture which contains 55 percent tetryl. This mixture freezes at 67.5° C.

Origin:

Tetrytols were developed during World War II. The 70/30 tetryl/TNT castable mixture is the most important in military applications.

- (a) L. C. Smith and E. G. Eyster, Physical Testing of Explosives, Part III, Miscellaneous Sensitivity Tests, Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (b) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (c) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
- (d) Eastern Laboratory, du Pont, Investigation of Cavity Effect, Sec III, Variation of Cavity Effect with Explosive Composition, NDRC Contract W672-ORD-5723.
- (e) Eastern Laboratory, du Pont, <u>Investigation of Cavity Effect</u>, Final Report, Eastern Lab, du Pont, 18 September 1943, NDRC Contract W-672-ORD-5723.
 - (f) Also see the following Picatinny Arsenal Technical Reports on Tetrytol:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>5</u>	<u>6</u>	7	8	<u>9</u>
1260 1360 1420 1500 1530	1291 1311 1451 1651 1951	1372	1193 1213 1363 1493	1285 1325 1885 2125	1376 1436 1466 1506	1477 1737 1797	1158 1388 1838	1379

⁷⁴See footnote 1, page 10.

Composition:		Molecular Weight: (C	7 ^H 5 ^N 3 ^O 6	₅)	227
% С 37.0 сн	3	Oxygen Balance; CO ₂ %			-74
H 2.2	NO ₂	CO %	_		- 25
N 18.5	2	Density: gm/cc	Crysta:	Ţ	1.65
0 42.3		Melting Point; °C			81
C/H Ratio 0.549	2	Freezing Point: °C			
Impact Sensitivity, 2 Kg Wt:		Boiling Point: °C			
Bureau of Mines Apparatus, cm Sample Wt 20 mg Picatinny Arsenal Apparatus, in. Sample Wt, mg	95-100+ 14-15 17	Refractive Index, n ^D ₂₀		α β Τ	1.5430 1.6742 1.717
	naffected naffected	Vacuum Stability Test: cc/40 Hrs, at 90°C			
Rifle Bullet Impact Test: Trials		100°C			0.10 0.23
%		120°C			0.23
Explosions 4		150°C			0.65
Partials 0					
Burned 0 Unaffected 6		200 Gram Bomb Sand T Sand, gm	est:		48 . 0
			···		
Explosion Temperature: °C Seconds, 0.1 (no cap used) 570		Sensitivity to Initiation: Minimum Detonating		. am	
•		Mercury Fulminate		, a	0.24*
1 520 5 Decomposes 475		Lead Azide	-		0.27*
10 465		Tetry *Alternative initi		-1	•
15					3 300
20		Ballistic Mortar, % TN	11:	St.	d=100
		_ Trauzi Test, % TNT:		st.	d=100
75°C International Heat Test: % Loss in 48 Hrs	0.04	Plate Dent Test: Method	A	(a) A	В
100°C Heat Test;		Condition	Cast	Pressed	Cast
% Loss, 1st 48 Hrs	0.2	Confined	Yes	Yes	No
% Loss, 2nd 48 Hrs	0.2	Density, gm/cc	1.61	1.50	1.61
Explosion in 100 Hrs	None	Brisance, % TNT	100	100	100
		Detonation Rate:			17
Flammability Index: (b)	100	Confinement		confined	Unconfin
Hygroscopicity: % 30°C, 90% RH	0.03	 Condition Charge Diameter, in 		essed O	Cast 1.0
		Density, gm/cc	1.		1.56
		. DEDSOV. CHITCH	1.	JU	T•)O

Panatan Camalainita, Tanta	(c)		December Ferration	(h)_ ,	(i)
Booster Sensitivity Test: Condition	Pressed	Cast	Decomposition Equation: Oxygen, atoms/sec	1011.4	1012.2
Tetryl, gm	100	100	(Z/sec)		
Wax, in. for 50% Deto	nation 1.68	0.82	Heat, kilocalorie/mole	34.4	43.4
Wax, gm			(ΔH, kcal/mol) Temperature Range, °C	275-310	238-277
Density, gm/cc	1.55	1.60	Phase	Liquid	Liquid
			_		
Heat of:	(a)	3620	Armor Plate Impact Test:		
Combustion, cal/gm		1080			
Explosion, cal/gm			60 mm Mortar Projectile:		(j)
Gas Volume, cc/gm		730	50% Inert, Velocity, ft,	/sec	>1100
Formation, cal/gm _		78.5	Aluminum Fineness		
Fusion, cal/gm Temperature, OC		22.34 79	500-lb General Purpose Bo	ombs:	(j)
Specific Heat: cal/gm/°C					(0)
<u> </u>		0.000	Plate Thickness, inches	Trials	% Inert
0 20		0.309 0.328		_	
50		0.353	1	0	
80		0.374	11/4	0	
			11/2	14	100
					50
Burning Rate:		· · · · · · · · · · · · · · · · · · ·	_ 134	14	
Burning Rate: cm/sec			Bomb Drop Test:	7	
_	See next p	age.			vs Concrete:
Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion:	(b)		Bomb Drop Test:	Piercing Bomb	vs Concrete:
Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -400° t -400° t	(b) o 60°C 5.4 x o 60°C 6.7 x	10 ⁻⁵ (b)	Bomb Drop Test: T7, 2000-lb Semi-Armor-F	Piercing Bomb	00-6000
cm/sec Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t	(b) o 60°C 5.4 x o 60°C 6.7 x o 80°C 16 x	10 ⁻⁵ (b) 10 ⁻⁵ (b)	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft	Piercing Bomb 500 omb vs Concre	00-6000 ete:
cm/sec Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t	(b) o 60°C 5.4 x o 60°C 6.7 x o 80°C 16 x o 70°C 26.3	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (b)	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B	Piercing Bomb 500 omb vs Concre No Seal	00-6000 ete: Seal
cm/sec Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t	(b) o 60°C 5.4 x o 60°C 6.7 x o 80°C 16 x	10 ⁻⁵ (b) 10 ⁻⁵ (b)	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft	Piercing Bomb 500 omb vs Concre No Seal 4,000	00-6000 ete: Seal 4-5,000
cm/sec Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale:	(b) o 60°C 5.4 x o 60°C 6.7 x o 80°C 16 x o 70°C 26.3	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (b)	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials	omb vs Concre No Seal 4,000	00-6000 ete: Seal 4-5,000
cm/sec Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus:	(b) o 60°C 5.4 x o 60°C 6.7 x o 80°C 16 x o 70°C 26.3	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n)	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected	700 Seal 4,000 26 24	00-6000 ete: Seal 4-5,000 20 20
cm/sec Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus: E', dynes/cm²	(b) o 60°C 5.4 x o 60°C 6.7 x o 80°C 16 x o 70°C 26.3	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n) 1.4	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected Low Order High Order	Piercing Bomb 500 omb vs Concre No Sea1 4,000 26 24 2 0	00-6000 Seal 4-5,000 20 20 0
cm/sec Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus: E', dynes/cm² E, lb/inch²	(b) o 60°C 5.4 x o 60°C 6.7 x o 80°C 16 x o 70°C 26.3	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected Low Order	Piercing Bomb 500 omb vs Concre No Seal 4,000 26 24 2 0	00-6000 ete: Seal 4-5,000 20 0 0 0
cm/sec Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus: E', dynes/cm²	(b) o 60°C 5.4 x o 60°C 6.7 x o 80°C 16 x o 70°C 26.3	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n) 1.4	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected Low Order High Order 1000-lb General Purpose E	Piercing Bomb 500 omb vs Concre No Seal 4,000 26 24 2 0 Somb vs Concre No Seal	00-6000 ete: Seal 4-5,000 20 0 0 0 ete: Seal
Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus: E', dynes/cm² E, lb/inch² Density, gm/cc	(b) o 60°C 5.4 x o 60°C 6.7 x o 80°C 16 x o 70°C 26.3	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected Low Order High Order 1000-lb General Purpose E Height, ft	7500 Seal 4,000 26 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00-6000 ete: Seal 4-5,000 20 0 0 ete: Seal 5,000
cm/sec Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus: E', dynes/cm² E, lb/inch² Density, gm/cc Compressive Strength: lb/	(b) o 60°C 5.4 x o 60°C 6.7 x o 80°C 16 x o 70°C 26.3	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected Low Order High Order 1000-lb General Purpose B Height, ft Trials	700 Seal 4,000 26 24 2 0 0 Somb vs Concre No Seal 5,000 21	00-6000 ete: Seal 4-5,000 20 0 0 0 ete: Seal 5,000 26
cm/sec Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus: E', dynes/cm² E, lb/inch² Density, gm/cc Compressive Strength: lb/ Density, gm/cc	(b) o 60°C 5.4 x o 60°C 6.7 x o 80°C 16 x o 70°C 26.3	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected Low Order High Order 1000-lb General Purpose E Height, ft Trials Unaffected	7500 Seal 4,000 26 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00-6000 ete: Seal 4-5,000 20 0 0 ete: Seal 5,000 26 22
cm/sec Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus: E', dynes/cm² E, lb/inch² Density, gm/cc Compressive Strength: lb/ Density, gm/cc Vapor Pressure:	(b) 0 60°C 5.4 x 0 60°C 6.7 x 0 80°C 16 x 0 70°C 26.3 (e) (b)	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected Low Order High Order 1000-lb General Purpose E Height, ft Trials Unaffected Low Order	Piercing Bomb 500 somb vs Concre No Sea1 4,000 26 24 2 0 Somb vs Concre No Sea1 5,000 21 18 0	00-6000 ete: Seal 4-5,000 20 0 0 0 ete: Seal 5,000 26 22 0
Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus: E', dynes/cm² E, lb/inch² Density, gm/cc Compressive Strength: lb/ Density, gm/cc Vapor Pressure: °C mm	(b) 0 60°C 5.4 x 0 60°C 6.7 x 0 80°C 16 x 0 70°C 26.3 (e) (b)	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected Low Order High Order 1000-lb General Purpose E Height, ft Trials Unaffected	Piercing Bomb 500 500 500 500 500 26 24 2 0 600 600 600 600 60	00-6000 ete: Seal 4-5,000 20 0 0 ete: Seal 5,000 26 22
Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus: E', dynes/cm² E, lb/inch² Density, gm/cc Compressive Strength: lb/ Density, gm/cc Vapor Pressure: °C mm 80	(b) 0 60°C 5.4 x 0 60°C 6.7 x 0 80°C 16 x 0 70°C 26.3 (e) (b) (b)	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected Low Order High Order 1000-lb General Purpose E Height, ft Trials Unaffected Low Order	Piercing Bomb 500 somb vs Concre No Sea1 4,000 26 24 2 0 Somb vs Concre No Sea1 5,000 21 18 0	00-6000 ete: Seal 4-5,000 20 0 0 0 ete: Seal 5,000 26 22 0
Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus: E', dynes/cm² E, lb/inch² Density, gm/cc Compressive Strength: lb/ Density, gm/cc Vapor Pressure: °C mm	(b) 0 60°C 5.4 x 0 60°C 6.7 x 0 80°C 16 x 0 70°C 26.3 (e) (b)	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected Low Order High Order 1000-lb General Purpose E Height, ft Trials Unaffected Low Order	Piercing Bomb 500 somb vs Concre No Sea1 4,000 26 24 2 0 Somb vs Concre No Sea1 5,000 21 18 0	00-6000 ete: Seal 4-5,000 20 0 0 0 ete: Seal 5,000 26 22 0
Thermal Conductivity: cal/sec/cm/°C Coefficient of Expansion: Linear, %/°C -40° t -40° t Volume, %/°C 27° t 16° t Hardness, Mohs' Scale: Young's Modulus: E', dynes/cm² E, lb/inch² Density, gm/cc Compressive Strength: lb/ Density, gm/cc Vapor Pressure: °C mrr 80 85	(b) 0 60°C 5.4 x 0 60°C 6.7 x 0 80°C 16 x 0 70°C 26.3 (e) (b) Mercury 0.042 0.053	10 ⁻⁵ (b) 10 ⁻⁵ (b) x 10 ⁻⁵ (n) 1.4 5.45 x 10 ¹⁰ 0.79 x 10 ⁶ 161	Bomb Drop Test: T7, 2000-lb Semi-Armor-F Max Safe Drop, ft 500-lb General Purpose B Height, ft Trials Unaffected Low Order High Order 1000-lb General Purpose E Height, ft Trials Unaffected Low Order	Piercing Bomb 500 somb vs Concre No Sea1 4,000 26 24 2 0 Somb vs Concre No Sea1 5,000 21 18 0	00-6000 ete: Seal 4-5,000 20 0 0 0 ete: Seal 5,000 26 22 0

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lot WC-9	1:	Glass Cones Steel Co	ones		
Density, gm/cc	1.60	Hole Volume 100 100			
Charge Wt, Ib	2.104	Hole Depth 100 100			
Total No. of Fragments:		Color: Light ye	ellow		
For TNT	703	Edior.	2110#		
For Subject HE	703	Principal Uses: GP bombs, HE proj	ectiles,		
3 inch HE, M42A1 Projectile, Lot KC-5	i :	demolition charges, depth grenades, propellant com	n charges,		
Density, gm/cc	1.60	Signature of the state of the s			
Charge Wt, Ib	0.848				
Total No. of Fragments:		Method of Loading: 1. Cast			
For TNT	514	2. Pressed			
For Subject HE	514	Leading Density on /cc Cos	below		
Fragment Velocity: ft/sec	(k)	Loading Density: gm/cc See	s nelow		
At 9 ft	2600	- AND			
At 251/2 ft	2360	Storage:			
Density, gm/cc	1.58	Method	Dry		
Blast (Relative to TNT):		Hozard Class (Quantity-Distance)	Class 9		
Air:		Compatibility Group	Group I		
Peak Pressure	100		. <-0-		
Impulse	100	Exudation None	at 65°C		
Energy	100				
Air, Confined:		Loading Density: gm/cc			
Impulse	100	1. Cast 1.58-1.59 2. Pressed	d psi x 10 ³		
Under Water:		3 5 10 15 20	30 50		
Peak Pressure	100	1.35 1.40 1.45 1.52 1.55			
Impulse	100	Thermal Conductivity:			
Energy	100	cal/sec/cm/°C) .		
Underground:	7.00	Density 1.19 gm/cc (g) 5.28 g 1.51 gm/cc (g) 7.12 g 1.54 gm/cc (b) 5.6 g 1.67 gm/cc (g) 12.21 g	x 10 ⁻⁴ x 10 ⁻⁴		
Peak Pressure	100	1.54 gm/cc (b) 5.6	k 10 ⁻⁴		
Impulse	100	1.67 gm/cc (g) 12.21 s	x 10 ⁻⁴		
Energy	100	Viscosity, poises:			
		Temp, 85°C 100°C	0.139 0.095		
		Bulk Modulus at Room Temperature (25°-30°C):	(m)		
		Dynes/cm ² x 10 ⁻¹⁰ Density, gm/cc	2.92 1.56		

Effect	of	Temperature	on	Rate	of	Detonation:	(1)
D11000	-	TOMPOT WOAT O	0.11	21000	~	De correct or or or	· · · ·

Temperature of Charge, OC	- 54	21	60	60
Hours at Temperature	16	16	24	72
Density, gm/cc	1.63	1.62	1.64	1.64
Rate, meters/second	6700	6820	6770	6510

Sensitivity to Electrostatic Discharge, Joules; Through 100 Mesh:

Unconfined 0.06 Confined 4.4

Impact Sensitivity versus Temperature:

Picatinny Arsenal Apparatus, 2 kg wt, inches:

<u>°c</u>	inches
-40	17
Room	14
80	7
90	3
105-110	2 (5 expl in 20 trials)

Impact Sensitivity versus Loading Method, Large Impact Apparatus, Inches:

Pressed at 1.60 gm/cc 70 Cast at 1.60 gm/cc 26

Rifle Bullet Impact Sensitivity versus Temperature, Confinement:

Standard Iron Bomb:	Room Temperature	105° to 110°C
No Air Space Trials Explosions	10 1 very low order	10 7
Air Space Trials Explosions	10 0	10 0
Tin or Cardboard Bombs:		
With or Without Air Space Trials Explosions	10 0	10 0

Explosion Temperature versus TNT Initial Temperature:

TNT Temperature, Initial	Explosion Temperature, OC
Room	470 (Decomposes)
105°-100°C	480 (Decomposes)

Explosion Temperature versus Confinement, ^OC:

Unconfined	Decomposes	470
Sealed in glass capillary	Explodes	320-335

Viscosity at 80.5°C:

Viscosity, X, cp log X = 0.046 S + 1.26 S = % solid in slurry Particle size effect, small

Density, gm/cc:

<u>°c</u>	State	gm/cc
27 to 70	Flaked	1.65
80	Flaked	1.64
82	Liquid	1.48
87	Liquid	1.48
95	Liquid	1.47

Solubility of TNT, gm/100 gm (%), in: (f)

Wa:	ter	Ace	tone	Ве	nzene	To	luene
°c	<u>%</u>	°C	<u> 1</u>	<u>°c</u>	<u>%</u>	°C	<u> </u>
0 20 40 60	0.0100 0.0130 0.0285 0.0675	0 20 40 60	57 109 228 600	0 20 40 60 80	13 67 180 478 > 2000	0 20 40 60 80	28 55 130 367 >1700
	arbon chloride	<u>E</u> t	her	Chlor	roform		chloro- nylene

	chloride	Eth	ner	Chlore	oform	ethyl	
°C	<u> 1</u>	°c	<u>%</u>	°c	<u>%</u>	°c	<u>%</u>
0 0 40 60 70 75	0.20 0.65 1.75 6.90 17.34 24.35	0 20	1.73 3.29	0 20 40 60	6 19 66 302	25 55	3•5 60

Pyr	idine	Methyl	acetate		ylene loride		hoxy- acetate
°c	<u>%</u>	° <u>c</u>	<u>%</u>	°c	<u>%</u>	°c	<u></u>
20 40 60 70	140 250 640 1250	20 40 50	73 135 280	20 40 60	34 123 460	20 40 50	29•5 49 96
				_	_		

Tetrachloro- ethane		Ar	Aniline Isopropyl alcohol			Ethanol	
°c	<u>%</u>	°c	<u> 2</u>	°c	<u>%</u>	<u>°c</u>	<u>%</u>
20 40 50	18 50 100	10 30 50 70 80	6.1 11.5 29 74 130	20 40 50	0.76 1.96 2.95	0 20 40 60 70	0.62 1.25 2.85 8.4 15

Isobutyl alcohol		Carbon d	Chloro	Chlorobenzene	
°c	<u>%</u>	°c	<u> 2</u>	<u>°с</u>	<u>%</u>
0	0.20	0	0.14	20	3 5
20	0.61	20	0.44	30	51
40	1.41	40	1.4	40	79
50	2.35			50	116

Preparation:

(AC 7258, 7259, 7260 - Nitration Kinetics) (Chemistry of Powder and Explosives, Davis)

In older processes trinitrotoluene (INT) was slowly and laboriously nitrated in three stages using successively stronger acids. Today, however, a single stage nitration is possible, in a short time (less than one hour) producing INT at a cost of a little less than $6\phi/\mathrm{lb}$. In England, a two stage continuous process was developed during World War II; in the first counter current stage, toluene was nitrated to the mono stage mononitrotoluene (MNT); in the second stage, also counter current, MNB was nitrated to INT.

It was the British work, on the kinetics of nitration of toluene to TNT, that first pointed out the basic importance to nitration processes of the nitroxyl ion (NO_2+), on the one hand, and the role of the bisulfate ion (HSO_4-) and unionized sulfuric acid on the other. These concepts were successful in explaining the maximum in nitration rate occurring at a sulfuric acid content of 92%. This work, for instance, leads to the following equation for the rate of formation of TNT from DNT:

$$\frac{d (TNT)}{dt} = K (NO_2+) [K' (HSO_4-) + K'' (H_2SO_4)] (DNT)$$

Three Stage Process: Toluene (100 gm) is nitrated to the mono derivative by slowly adding a mixture of 294 gm sulfuric acid (sp gr 1.84) and 147 gm nitric acid (sp gr 1.42) to it at 30°-40°C, with good agitation. Acid addition requires 1-1.5 hour, and stirring at 30°-40°C is continued 30 minutes longer. The mixture is cooled and the lower layer of spent acid drawn off.

Half the crude mono is dissolved in 109 gm sulfuric acid (sp gr 1.84) with cooling, the solution heated to 50°C and a mixture of 54.5 gm nitric acid (sp gr 1.50) and 54.5 gm sulfuric acid (sp gr 1.84) added, under agitation, at such a rate that the temperature is maintained between 90° and 100°C. Acid addition requires 1 hour, and stirring at 90°-100°C is continued 2 more hours.

While the dinitration mixture is still at 90°C , 145 gm fuming sulfuric acid (oleum containing 15% free SO₃) is added slowly. A mixed acid of 92.5 gm each nitric acid (sp gr 1.50) and 15% oleum is slowly added, under good agitation at $100^{\circ}-115^{\circ}\text{C}$ over $1\frac{1}{2}-2$ hours. The mixture is stirred at $100^{\circ}-115^{\circ}\text{C}$ for 2 more hours, cooled, filtered, and the TNT cake broken up and washed with water. The TNT is washed 3-4 times with hot water $(85^{\circ}-95^{\circ}\text{C})$ with good agitation. The product can be purified either by recrystallization from alcohol or by washing it with 5 times its weight of 5% sodium bisulfite solution at 90°C for $\frac{1}{2}$ hour with vigorous stirring, washing with hot water until the washings are colorless, and cooling slowly with stirring to granulate the product.

Origin:

TNT was first prepared in 1863 by Wilbrand (Ann 128, 178), later by Beilstein and Kuhlberg (Ber 3, 202 (1870) and also Tiemann (Ber 3, 217 (1870), each using different methods of starting materials. It was nearly 30 years later when Hausermann undertook its manufacture on an industrial scale (Z angew Chem, 1891, p. 508; J Chem Ind, 1891, p. 1028). After 1901 TNT began to be used extensively as a military explosive and Germany became the first nation to adopt it as a standard shell filler (1902-1904). During World War I all the major powers of the world were using TNT, with the quantity used limited only by the available supply of toluene. Prior to World War II the development of synthetic toluene from petroleum made available in the United States, an almost unlimited supply of this raw material. Because of the general suitability of TNT for melt-losding and its extensive use in binary and ternary explosive mixtures, TNT is considered the most important military explosive known today.

Destruction by Chemical Decomposition:

TNT is decomposed by adding it slowly, while stirring, to 30 times its weight of a solution prepared by dissolving 1 part of sodium sulfide ($Na_2S \cdot 9H_2O$) in 6 parts of water.

References:75

(a) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.

⁷⁵See footnote 1, page 10.

- (b) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.
- (c) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
- (d) L. C. Smith and E. H. Eyster, Physical Testing of Explosives, Part III, Miscellaneous Sensitivity Tests, Performance Tests, OSRD Report No. 5746, 27 December 1945.
 - (e) Report AC-2587.
 - (f) International Critical Tables and various other sources in the open literature.
- (g) E. Hutchinson, The Thermal Sensitiveness of Explosives. The Thermal Conductivity of Explosive Materials, AC-2861, First Report, August 1942.
 - (h) A. J. B. Robertson, Trans Farad Society, 44, 977 (1948).
- (i) M. A. Cook and M. T. Abegg, "Isothermal Decomposition of Explosives," University of Utah, Ind Eng Chem (June 1956), pp. 1090-1095.
- (j) Committée of Div 2 and 8, NDRC, Report on HBX and Tritonal, OSRD No. 5406, 31 July 1945.
- (k) R. W. Drake, Fragment Velocity and Panel Penetration of Several Explosives in Simulated Shells, OSRD Report No. 5622, 2 January 1946.
- (1) W. F. McGarry and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different Temperatures, PATR No. 2383, November 1956.
- (m) W. S. Cramer, Bulk Compressibility Data on Several High Explosives, NAVORD Report No. 4380, 15 September 1956.
 - (n) Mantrov, Journal of Chemical Industry (Russia) 6, 1929, pp. 1686-1688.
 - (o) Also see the following Picatinny Arsenal Technical Reports on TNT:

<u>o</u>	<u>1</u>	2	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	8	<u>9</u>
10 30 240	291 551 731	132 582 782	43 83 133	364 694 874	65 195 425	86 26 6 556	47 87 507	118 288 638	99 249 269
350 630 760	861 891 901	892 972 1072	273 513 643	904 1094 1104	555 695 735	666 956 986	527 597 707	738 768 838	319 389 499
810 1120 1140	971 1041 1121	1182 1192 1272	673 743 853	1124 1224 1284	805 975	1046 1146	807 817	1088 1098	709 739
1170 1260	1311 1391	1292 1342	863 1063	1294 1304	1145 1155 1225	1276 1376 1446	837 1107 1147	1128 1148 1158	779 799 889
1270 1360 1400	1431 1451 1491	1352 1372 1402	1123 1133 1193	1314 1344 1414	1285 1305	1466 1476	1217 1247	1188 1198	9 2 9 9 3 9
1460 1500	1651 1821	1452 1472	1243 1323	1444 1454	1315 1395 1425	1556 1636 1756	1307 1417 1427	1228 1258 1308	1099 1109 1129

AMCP 706-177

TNT (Trinitrotoluene)

<u>o</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	<u>9</u>
1530 1540 1550 1730 2010 2100 2160	1492 1562 1582 1712 1862	1373 1493 1553 1633 1693 1823 2063 2163	1524 1544 1564 1604 1674 1754 1924 2064 2214	1435 1445 1495 1515 1535 1605 1635 1665 1865 1715 1885 2125 2175	1956 2216	1437 1457 1497 1537 1547 1557 1577 1597 1677 1737 1797 1827 1847 2007 2147 2167	1318 1338 1388 1418 1428 1578 1618 1688 1728 1828 1838 1858 2008 2138 2168	1139 1179 1199 1259 1289 1339 1369 1379 1419 1469 1529 1689 1709 1729 1819 1819 1819 1849 2159 2179

Torpex

Composition:		Molecular Weight:	97
% ·RDX	42	Oxygen Balance:	
RDX	42	CO ₂ %	-55 -26
TNT	40	CO %	
Aluminum	18	Density: gm/cc Cast	1.76-1.81
		Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:		Boiling Point: °C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	42	Refractive Index, no	
Picatinny Arsenal Apparatus, in.	9		
Sample Wt, mg	15	n ₂₅	
		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe		cc/40 Hrs, at	
Fiber Shoe		90°C	
Rifle Bullet Impact Test: Trials		100°C	
%		120°C	1.0
Explosions 20		135°C	
Partials 80		150°C	
Burned 0		200 Gram Bomb Sand Test:	
Unaffected 0		Sand, gm	59•5
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	0.18
5 Decomposes 260		Lead Azide	
10		Tetryl	
15			
20		Ballistic Mortar, % TNT: (a)	138
75°C International Heat Test:		Trauzi Test, % TNT: (b)	164
% Loss in 48 Hrs		Plate Dent Test: (c) Method	В
100°C Heat Test:		Condition	B C as t
	0.00	Confined	No
% Loss, 1st 48 Hrs		Density, gm/cc	1.83
% Loss, 2nd 48 Hrs	0.10	Brisance, % TNT	120
Explosion in 100 Hrs	None		
Flammability Index:	196	Detonation Rate: (d) Confinement	None
-	-	Condition	Cast
Hygroscopicity: % 30°C, 90% RH	0.00		1.0
		Charge Diameter, in.	
Volatility:		Density, gm/cc	1.81
		Rate, meters/second	7495

Torpex

Booster Sensitivity Test: Condition	(c) Pressed	Cast	Decomposition Equation:	
	10	5	Oxygen, atoms/sec (Z/sec)	
Tetryl, gm	_	J	Heat, kilocalorie/mole	
Wax, in. for 50% Detona			(ΔH, kcal/mol)	
Wax, gm	2	0	Temperature Range, °C	
Density, gm/cc	1.64	1.81	Phase	
Heat of:	(a)	071.0	Armor Plate Impact Test:	
Combustion, cal/gm		3740	·	
Explosion, cal/gm		1800	60 mm Mortar Projectile:	(a)
Gas Volume, cc/gm			50% Inert, Velocity, ft/sec	185
Formation, cal/gm			Aluminum Fineness	
Fusion, cal/gm			500-lb General Purpose Bombs:	
Sacrific Heats and /arm /°C	(b)		300-15 Guilleral Laipeau 30.1155.	
Specific Heat: cal/gm/°C At -5°C	(0)	0.22	Plate Thickness, inches	
Density, gm/cc		1.82	1	
At 15 ⁰ C		0.24	11/4	
RU L) U		0.21	11/2	
			13/4	
Burning Rate: cm/sec				
			Bomb Drop Test:	
Thermal Conductivity:	(b)) ,		
cal/sec/cm/°C Density, gm/cc		9.7 x 10 ⁻⁴ 1.82	T7, 2000-Ib Semi-Armor-Piercing Bom	b vs Concrete:
C. (C.)		_	Max Safe Drop, ft	
Linear, %/°C -73 to	75°C 4.7 x	10 ⁻⁵ (b)	500-lb General Purpose Bomb vs Con	crete:
Volume, %/°C			Height, ft	
			Trials	
Hardness, Mohs' Scale:			Unaffected	
			Low Order	
Young's Modulus:	(b)	10	High Order	
E', dynes/cm²	9.5	3 x 10 ¹⁰	riigii Oldei	
E, Ib/inch²	1.3	8 x 10°	1000-lb General Purpose Bomb vs Con	crete:
Density, gm/cc		1.77		
	(>)	00.0000	Height, ft	
Compressive Strength: lb/inc	:h² (b) 21	.00-2300	Trials	
Density, gm/cc		1.77	Unaffected	
Vapor Pressure:			Low Order	
°C mm /	Mercury		High Order	
				

Fragmentation Test:		Shaped Charge Effectiveness, TNT = 100: 50/36.5/13.5		
90 mm HE, M71 Projectile, Lot W	C-91:	Glass Cones Steel Co	•	
Density, gm/cc	1.75	Hole Volume 150 145		
Charge Wt, Ib	2.316	Hole Depth 127 131		
Total No. of Fragments:		Color:	~	
For TNT	703	Color:	Gray	
For Subject HE	891	Principal Uses: Depth charges, bo	mhe	
3 inch HE, M42A1 Projectile, Lot K	(C-5:	Depoir charges, so	mos	
Density, gm/cc	1.79			
Charge Wt, Ib	0.940			
Total No. of Fragments:		Method of Loading:	Cast	
For TNT	514			
For Subject HE	647	Loading Density: gm/cc	1.76-1.81	
Fragment Velocity: ft/sec		Loading Density: gm/cc	1.10-1.01	
At 9 ft At 251/2 ft	2960 2800	Storage:		
Density, gm/cc		Method	Dry	
Blast (Relative to TNT):	(e)	Hazard Class (Quantity-Distance)	Class 9	
Air:		Compatibility Group	Group I	
Peak Pressure	122			
Impulse	125	Exudation		
Energy	146		~	
Air, Confined:		Effect of Temperature on		
Impulse	116	Impact Sensitivity:		
		Temp. PA Impact Test		
Under Water: Peak Pressure	116	OC 2 Kg Wt, inches		
Impulse	127	25 15		
Energy	•	32 7		
Filerdy	153	104 8		
Underground: Peak Pressure		Viscosity, poises:		
Impulse		Temp, 83°C 95°C	4.5	
Energy		95°C	2.3	

Preparation:

Torpex is manufactured by heating TNT to approximately 100°C in a steam-jacketed kettle equipped with a stirrer. Water wet RDX is added slowly to the molten TNT, while mixing and heating, until all the water is evaporated. Aluminum is added and the mixture is stirred until uniform. The mixture is cooled, with continued stirring, until it is suitable for pouring. Torpex can also be made by adding the calculated amount of TNT to Composition B to maintain the desired proportion of RDX/TNT, heating and stirring, and adding 18 percent of aluminum to complete the mixture.

Origin:

Torpex, a castable high explosive, was developed in England during World War II for use as a filler in warheads, mines and depth bombs. Several variations in the composition of torpex have been evaluated but the following are those used in service munitions:

	Torpex 2 unwaxed	Torpex 2 waxed	Torpex 3
	(a)	(b)	(c)
RDX, % TNT, % Aluminum, % Wax, % Calcium chloride, %	42 40 18	41.6 39.7 18.0 0.7	41.4 39.5 17.9 0.7 0.5

- (a) Made from Composition B-2 or 60/40 Cyclotol.
- (b) Made by the addition of aluminum to Composition B.
- (c) Made by the addition of calcium chloride to Torpex 2.

Wax has the undesirable effect of (1) tending to coagulate the aluminum, thus giving a less homogeneous and more viscous product, (2) lowering the density of the cast explosive from 1.72-1.75 to 1.66-1.70 for waxed torpex, and (3) lowering the compressive strength from 3700 psi to 1970 psi for waxed torpex. However, wax is used in service torpex for reasons of safety, since there is evidence that its presence lowers the sensitivity of the explosive to impact as measured by laboratory drop tests and bullet sensitivity tests of small charges (Bureau of Ord Res Memo Rpt No. 24, January 1945).

- (a) Committee of Div 2 and 8, NDRC, Report on HBX and Tritonal, OSRD No. 5406, 31 July 1945.
- (b) Philip C. Keenan and Dorothy C. Pipes, <u>Table of Military High Explosives</u>, Second Revision, NAVORD Report No. 87-46, 26 July 1946.
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- L. C. Smith and E. H. Eyster, <u>Physical Testing of Explosives</u>, <u>Part III</u>, <u>Miscellaneous Sensitivity Tests</u>, <u>Performance Tests</u>, <u>OSRD Report No. 5746</u>, 27 <u>December 1945</u>.

⁷⁶See footnote 1, page 10.

- (d) G. H. Messerly, The Rate of Detonation of Various Explosive Compounds, OSRD Report No. 1219, 22 February 1943.
- M. D. Hurwitz, The Rate of Detonation of Various Compounds and Mixtures, OSRD Report No. 5611, 15 January 1946.
- (e) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.
- (f) Eastern Laboratory, du Pont, Investigation of Cavity Effect, Sec III, Variation of Cavity Effect with Explosive Composition, NDRC Contract W672-ORD-5723.
 - (g) Also see the following Picatinny Arsenal Technical Reports on Torpex:

<u>o</u>	<u>1</u>	<u>2</u>	<u>3</u>	5	<u>6</u>	<u>7</u>	<u>8</u>
1530	1651	1292	2353	1585 1635 1885 2355	1796	1797	1838

1,3,5-Triamino-2,4,6-Trinitrobenzene (TATNB)

Composition:		Molecular Weight: (C6H6N6O6)	2 58			
°C 27.9	NH ₂	Oxygen Balance:				
н 2.3 о2м -	NO ⁵	CO ₂ %	-56 -19			
n 32.6 H ₂ N -	NH ⁵	Density: gm/cc Crystal	1.93			
_	_					
0 37.2	NO_2	Melting Point: °C 330 (b, e)	360 (a)			
C/H Ratio 0.302		Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, ci	m	Boiling Point: °C				
Sample Wt 20 mg	i 13	Refractive Index, no				
Picatinny Arsenal Apparatus, Sample Wt, mg	in. 11 7	n ₂₅				
· •	·	n ₃₀				
Friction Pendulum Test:		Vacuum Stability Test:				
Steel Shoe		cc/40 Hrs, at				
Fiber Shoe		90°C				
Rifle Bullet Impact Test: Tric	als	100°C (a, b)	0.3 6			
9		120°C				
Explosions	•	135°C				
Partials		150°C				
Burned		200 Gram Bomb Sand Test:				
Unaffected		Sand, gm	42.9			
Explosion Temperature:	°C	Sensitivity to Initiation:				
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm				
1 5		Mercury Fulminate				
10		Lead Azide	0.30			
15		Tetryl				
20		Ballistic Mortar, % TNT:				
		Trouzi Test, % TNT:				
75°C International Heat Test: % Loss in 48 Hrs		Plate Dent Test:				
		Method				
100°C Heat Test:		Condition				
% Loss, 1st 48 Hrs	0.00	Confined				
% Loss, 2nd 48 Hrs	0.00	Density, gm/cc				
Explosion in 100 Hrs	None	Brisance, % TNT	·			
Flammability Index:		Detonation Rate:	27			
- waaaaaaaa maca.		Confinement	None			
Hygroscopicity: %		Condition	Pressed			
, <u> </u>		Charge Diameter, in.	0.5			
Volatility:		Density, gm/cc	1.80			
		Rate, meters/second	7500			

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:			
90 mm HE, M71 Projectile, Lot WC-91:	Glass Cones	Steel Cones		
Density, gm/cc	Hole Volume			
Charge Wt, Ib	Hole Depth			
Total No. of Fragments:		Yellow		
For TNT	Color:	Tellow		
For Subject HE	Principal Uses:			
3 inch HE, M42A1 Projectile, Lot KC-5:	Timosper ottos			
Density, gm/cc	1			
Charge Wt, Ib				
Total No. of Fragments:	Method of Loading:	Presse		
For TNT	Weined of Louding.	22323		
For Subject HE				
	Loading Density: gm/cc			
Fragment Velocity: ft/sec	At 50,000 psi	1.80		
At 9 ft				
At 25½ ft	Storage:			
Density, gm/cc	AA dhad	Dense		
	Method	Dry		
Blast (Relative to TNT):	Hazard Class (Quantity-Distan	ce)		
Air:	Compatibility Group			
Peak Pressure				
Impulse	Exudation			
Energy				
	Detonation Velocity:	(a, b. c)		
Air, Confined:				
Impulse	Density, gm/cc	Meters/sec		
Under Water:	1.290	5380		
Peak Pressure	1.345	56 2 8		
Impulse	1.675 1.675	6550 6575		
Energy	1.882	6575 7035		
	1.835	7220		
Underground:	Hoot of			
Peak Pressure	Heat of:			
Impulse	Explosion, cal/gm	2 8 3 1		
Energy				

Preparation: (a)

Absolute alcohol (200 milliliters) was saturated with ammonia and then 12.5 gm (0.028 mol) of 1,3,5-tribromo-2,4,6-trinitrobenzene, prepared according to Hill (NAVORD Report No. 3709, 2 February 1953), was added. The flask was stoppered and allowed to stand at room temperature for a day. Additional ammonia was bubbled into the mixture, which was then heated under reflux for thirty minutes, filtered hot, and the insoluble product collected on a Buchner funnel. The product was washed with water, alcohol, and dried. The 4.7 gm of material recovered was recrystallized from nitrobenzene.

A disadvantage of the above method was that it could not be used for the preparation of large quantities of TATNB. Since it did not seem feasible to develop a new method of preparation, an investigation was made of the reported amination reactions (see <u>Origin</u> below). An attempt was made (Ref f) to find a modification which would produce high yields of a pure product. The process which evolved from this study may be summarized as follows (Ref f): 1,3,5-trichlorobenzene was nitrated "in one step" to 1,3,5-trichloro-2,4,6-trinitrobenzene in 85% yield. The crude nitration product was aminated in benzene with ammonia gas to TATNB, in yields of at least 95%.

Origin:

TATNB was prepared for the first time in 1888 by C. L. Jackson and J. F. Wing, who found the compound insoluble in alcohol, ether, chloroform, benzene, and glacial acetic acid; and soluble in nitrobenzene and aniline (Amer Chem Journal 10, 282 (1888)). B. Flürscheim and E. L. Holmes prepared TATNB from benzene free pentanitroeniline by gradually adding it to 10% aqueous ammonia (J Chem Soc, Pt 2,3045 (1928)). After boiling, an orange-yellow powder melting above 300°C was obtained. This product corresponded to that described by Jackson and Wing. These authors, as well as Palmer (Amer Chem Journal 14, 378 (1892)), attempted to reduce TATNB to hexa-aminobenzene. Either decomposition occurred or a hydrochloride of penta-aminobenzene was formed. Flurscheim and Holmes succeeded in reducing TATNB with phenylhydrazine by heating them together up to 200°C (J Chem Soc, Pt 1,334 (1929)) (Beil 13, 301 and EII, 147).

- (a) F. Taylor, Jr., Synthesis of New High Explosives II, Derivatives of 1,3,5-Tribromo-2,4,6-Trinitrobenzene, NAVORD Report No. 4405, 1 November 1956.
- (b) L. D. Hampton, Small Scale Detonation Velocity Measurements from May 1951 to May 1954, NAVORD Report No. 3731, June 1954.
- (c) E. M. Fisher and E. A. Christian, Explosion Effects Data Sheets, NAVORD Report No. 2986, 14 June 1955.

⁷⁷ See footnote 1, page 10.

Composition: CH2ONO2		Molecular Weight: (C6H12N2O8)	240			
/		Oxygen Balance:	_			
2 0		CO ₂ %	-89 -27			
н 5.4			· · · · · · · · · · · · · · · · · · ·			
N 11.7		Density: gm/cc 20°C 25°C	1.33 1.32			
0 53.0 H ₂ C 0		Melting Point: °C				
C/H Ratio 0.177 H2CCCH2ONO2		Freezing Point: °C				
Impact Sensitivity, 2 Kg Wt:	300	Boiling Point: °C				
Bureau of Mines Apparatus, cm Sample Wt 20 mg	100+	Refractive Index, n20	1.4540			
Picatinny Arsenal Apparatus, in.	43	n ₂₅	•			
Sample Wt, mg		n ₃₀				
Friction Pendulum Test:		Vacuum Stability Test:				
Steel Shoe Unaffe	ected	cc/40 Hrs, at				
Fiber Shoe Unaffe	ected	90°C				
Rifle Bullet Impact Test: Trials		— 100°C	0.45			
The second state of the se		120°C 8 hours	0.8			
% Explosions		135°C				
Partials		150°C				
Burned		200 Gram Bomb Sand Test:				
Unaffected		Sand, gm	14.7			
Explosion Temperature: °C		Sensitivity to Initiation:				
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm				
1		Mercury Fulminate				
5 223		Lead Azide				
10		Tetryl				
15						
20		Ballistic Mortar, % TNT:				
7F°C Labour Mana Tana		Trauzi Test, % TNT:				
75°C International Heat Test: % Loss in 48 Hrs	•	Plate Dent Test:				
		Method				
100°C Heat Test:		Condition				
% Loss, 1st 48 Hrs	1.8	Confined				
% Loss, 2nd 48 Hrs	1.6	Density, gm/cc				
Explosion in 100 Hrs	None	Brisance, % TNT				
Elementii in Indon		— Detonation Rate:	:			
Flammability Index:		Confinement Shelb				
Hygroscopicity: %		— Condition	Liquid			
riygroscopicity. //		Charge Diameter, in.	1.25			
Volatility: 60°C, mg/cm²/hr	<u>1</u> +0	Density, gm/cc	1.33			
volumenty. Oo o, mg/cm / m	70	Rate, meters/second	Fails			

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color:
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: Ingredient of rocket and double base propellants
Total No. of Fragments: For TNT	Method of Loading:
For Subject HE	Loading Density: gm/cc
Fragment Velocity: ft/sec At 9 ft At 25½ ft	Storage:
Density, gm/cc	Method Liquid
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)
Air: Peak Pressure Impulse	Compatibility Group Exudation
Energy Air, Confined: Impulse	Solubility in Water, gm/100 gm, at: 25°C 0.55 60°C 0.68
Under Water: Peak Pressure	Solubility, gm/100 gm, at 25°C, in:
Impulse Energy	Ether Alcohol 2:1 Ether:Alcohol Acetone
Underground: Peak Pressure	Viscosity, centipoises:
Impulse Energy	Temp, 20°C 13.2 Hydrolysis, % Acid:
Heat of:	10 days at 22°C 0.032 5 days at 60°C 0.029
Combustion, cal/gm 3428 Explosion, cal/gm 357 Gas Volume, cc/gm 851	oc mm Mercury
	2)

Origin:

Lourenco prepared triethylene glycol in 1863 by heating glycol with ethylene bromide in a sealed tube at 115° - 120° C (Ann (3) <u>67</u>, 275). Later in the same year Wurtz prepared triethylene glycol by heating ethylene oxide with glycol at 100° C. By action of nitric acid triethylene glycol was oxidized to $(\text{H}_200\text{C}\cdot\text{CH}_2\cdot\text{O}-\text{CH}_2)_2$ (Ann (3) <u>69</u>, 331, 351).

The Germans and Italians were the first to prepare and use TEGN during World War II as an ingredient of rocket and propellant powders. The commercial production of TEGN in quantity is still difficult and its use as a plasticizer for nitrocellulose is being replaced by other liquid nitrates.

Preparation:

Triethylene glycol is purified by fractional distillation under vacuum in an 18-inch Vigeaux fractioning column. The assembly as a whole is equivalent to 4.5 theoretical plates. The distillation is conducted using a 5 to 1 reflux ratio, at a pot temperature of approximately 180°C, and a take-off temperature of approximately 120°C.

The purified triethylene glycol (TEG) is nitrated by carefully stirring it into 2.5 parts of 65/30/5 nitric acid/sulphuric acid/water maintained at 0 \pm 5°C. The rate of cooling is sufficient that 300 gm of TEG can be added within 40 minutes. The mixture is stirred and held at 0 \pm 5°C, for 30 additional minutes. It is then drowned by pouring onto a large quantity of ice and extracted three times with ether. The combined extract is water-washed to a pH of about 4, shaken with an excess of sodium bicarbonate solution, and further washed with 1% sodium bicarbonate solution until the washings are colorless. The ethereal solution is water-washed until it has the same pH value as distilled water. It is carefully separated from excess water, treated with chemically pure calcium chloride to remove dissolved water, and filtered. The ether is removed by bubbling with dry air until a minimal rate of loss in weight is attained. The yield is 1.34 gm per gm TEG (84% of theoretical) and the nitrogen content of different batches range from 11.60 to 11.69% by the nitrometer method (calculated 11.67%).

References: 78

(a) See the following Picatinny Arsenal Technical Reports on TEGN:

<u>3</u>	<u>5</u>	<u>6</u>	7	<u>8</u>
1953 2193	174 5	1786 2056	1767 1817	1638

⁷⁸See footnote 1, page 10.

Trimonite

Composition:	Molecular Weight:	217
%	Oxygen Balance:	<i></i>
Picric Acid 88 - 90	CO <u>.</u> % CO %	-62 -14
Mononitronaphthalene 12 - 10	Density: gm/cc Cast	1.60
	Melting Point: °C	90
C/H Ratio	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 60	Boiling Point: °C Explodes	300
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 10	Refractive Index, no	
Sample Wt, mg	n ₂₅	
	n ₂₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at 90°C	
Fiber Shoe	100°C	
Rifle Bullet Impact Test: Trials	120°C	0.9
%	135°C	0.,
Explosions 0	150°C	
Partials 0		
Burned 0	200 Gram Bomb Sand Test:	
Unaffected 100	Sand, gm	44.2
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
]	Mercury Fulminate	
5 Decomposes 315	Lead Azide	0.20
10 15	Tetryl	0.04
20	Ballistic Mortar, % TNT:	
	Trauzi Test, % TNT:	
75°C International Heat Test:	Plate Dent Test:	
% Loss in 48 Hrs	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
	Detonation Rate:	
Flammability Index:	Confinement	None
	Condition	Cast
Hygroscopicity: %	Charge Diameter, in.	1.0
	Density, gm/cc	1.60
Volatility:	Rate, meters/second	7020

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT	Color:	
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: TNT substitute in proj and bombs	ectiles
Total No. of Fragments: For TNT	Method of Loading:	Cast
For Subject HE	Loading Density: gm/cc	1.60
Fragment Velocity: ft/sec At 9 ft At 25½ ft Density, gm/cc	Storage: Method	Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	Class 9
Air: Peak Pressure Impulse Energy		Group I at 50°C
Air, Confined: Impulse Under Water: Peak Pressure Impulse Energy Underground: Peak Pressure Impulse Energy	Preparation: Picric acid and alpha-mononitrona are melted together in an aluminum of jacketed melt kettle equipped with a Although picric acid alone requires perature for its melt loading (120°C mixture forms a eutectic melting at must be taken to prevent the formating gerous metallic picrates. Trimonite interest as an emergency substitute	r tin steam stirrer. a high tem-), the 49°C. Care on of dan- is of

Origin:

Trimonite, a castable mixture of picric acid/mononitronaphthalene was developed by the British during World War II as an improvement over tridite which is a mixture of 80/20 picric acid/dinitrophenol. Both mixtures are suitable for melt-loading below 100°C and therefore represent an improvement over melt-loading picric acid alone (melting point 122°C). However, tridite is slightly inferior to picric acid as an explosive and dinitrophenol is objectionable because of its toxicity. Trimonite is also slightly inferior to picric acid and TNT as an explosive. Because of the low eutectic temperature of the picric acid-mononitronaphthalene mixture (49°C), Tridite exudes when stored at elevated temperatures. It does not possess the disadvantages of picric acid (corrosive action on metals, ease of decomposition, etc.) and is a comparatively inexpensive substitute for TNT.

References: 79

(a) See the following Picatinny Arsenal Technical Reports on Trimonite:

<u>2</u>	<u>5</u>	<u>6</u>	<u>8</u>
1352	1325	926	1098
1372		976	1838

⁷⁹See footnote 1, page 10.

Composition:	Molecular Weight: $({}^{\circ}_{6}{}^{\circ}_{6}{}^{\circ}_{14})$	3 86
% C 18.6	Oxygen Balance:	
	CO ₂ %	-4.2
H 1.6	CO %	20.8
N 21.8 O-CH ₂ C(NO ₂) ₃	Density: gm/cc Form I	1.78
0 58.0 C = 0	Melting Point: °C	93
C/H Ratio 0.202 CH2CH2C(NO2)3	Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg	Refractive Index, no Form I (e))
Picatinny Arsenal Apparatus, in.	Crystal Axis a	, 1.518
Sample Wt, mg	β	1.527
50% point, cm (a) 20	Υ	1.546
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C	
DVA D H. I T T. I	100°C 48 hrs	0.60
Rifle Bullet Impact Test: Trials	120°C	
% Explosions	135°C	
Partials	150°C	
Burned	200 Complement Sound Took	
Unaffected	200 Gram Bomb Sand Test:	
	Sand, gm	
Explosion Temperature:	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
]	Mercury Fulminate	
5 50% point (Alhot bar) (a) 225	Lead Azide	
10	Tetryl	
15	Ballistic Mortar, % TNT: (b)	126
20	Trauzi Test, % TNT:	136
75°C International Heat Test:		
% Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 2nd 48 Hrs	Density, gm/cc	
•	Brisance, % TNT	
Explosion in 100 Hrs		
Explosion in 100 Hrs	— Detonation Rate:	
Explosion in 100 Hrs Flammability Index:	— Detonation Rate: Confinement	
	Confinement	
Flammability Index: Hygroscopicity: % 30°C, 90% RH 0.00	Confinement Condition	
Flammability Index:	Confinement	1.76

Booster Sensitivity Test:		Decomposition Equation:	4.4 x 10 ²¹
Condition		Oxygen, atoms/sec (Z/sec)	4.4 X 10
Tetryl, gm		Heat, kilocalorie/mole	43.4
Wax, in. for 50% Detonation		(ΔH, kcal/mol)	
Wax, gm		Temperature Range, °C	
Density, gm/cc		Phase	Liquid
Heat of: Combustion, cal/gm	1685	Armor Plate Impact Test:	
Explosion, cal/gm		CO Adama Baninatila.	
Gas Volume, cc/gm		60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec	
Formation, cal/gm	307	Aluminum Fineness	
Fusion, cal/gm	3 .	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Sublimation, cal/gm (est)	804	500-lb General Purpose Bombs	:
Specific Heat: cal/gm/°C		Plate Thickness, inches	
		1	
		11/4	
		11/2	
Burning Rate:			
cm/sec		Bomb Drop Test:	
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-lb Semi-Armor-Pierci	ng Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft	
Linear, %/°C		500-lb General Purpose Bomb	vs Concrete:
Volume, %/°C		Height, ft	
		— Trials	
Hardness, Mohs' Scale:		Unaffected	
		Low Order	
Young's Modulus:		High Order	
E', dynes/cm²			
E, lb/inch ² Density, gm/cc		1000-lb General Purpose Bomb	vs Concrete:
A POINT A NOT A POINT A NOT A POINT A		Height, ft	
Compressive Strength: Ib/inch ²		Trials	
		Unaffected	
Vapor Pressure:	(e)	Low Order	
°C mm Mercury		High Order	
65 3.3 x 10 ⁻²			
75 1.3 x 10_4 85 4.2 x 10_3			
85 4.2 x 10 ⁻⁴ 100 2.3 x 10 ⁻³ 120 1.4 x 10 ⁻²			
120 1.4 x 10 ⁻²		1	

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Colorless
For Subject HE	Principal Uses:
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	
Total No. of Fragments: For TNT	Method of Loading:
For Subject HE Fragment Velocity: ft/sec	Loading Density: gm/cc Form I 1.783 Form II 1.677 Liquid, 99°C, 1.551
At 9 ft At 25½ ft	Storage:
Density, gm/cc	Method Wet
Blast (Relative to H-6;: Sphere Cylinder (h)	Hazard Class (Quantity-Distance)
Air: 1-1b Charge: EW* EV* EW* EV* Peak Pressure 0.91 0.84 0.81 0.75	Compatibility Group
Impulse 0.73 0.67 0.74 0.69 Energy	Exudation
Air, Confined: Impulse Under Water:	Bruceton Safety Test Results: (g) Mean and standard deviation of lengths of 0.300 diameter cylinder across which initiation is possible for 50% certainty:
Peak Pressure Impulse Energy	TNT 0.391 + 0.040 RDX Comp B 0.381 + 0.042 TNETB 0.920 + 0.059
Underground: Peak Pressure	Absolute Viscosity, poises: (e)
Impulse	Temp, 98.9°C 0.173 106.5°C 0.138
Energy *EW, equivalent weight of H-6 for a unit weight of test mixture for equal performance at the same test distance; EW, equivalent volume of H-6 for a unit volume of test mixture for equal performance at the same test distance.	

Solubility	(Room	Temperature):
------------	-------	-------------	----

,		٠
	0	1

Solvent	Solubility
Water	Insoluble
n-Hexane	Insoluble
Carbon tetrachloride	Insoluble
Ethanol	5 gm/100 gm solvent
Chloroform	5 gm/100 gm solvent
Benzene	10 gm/100 gm solvent
Nitromethane	Very soluble
Glacial acetic acid	Very soluble
Ethyl acetate	Very soluble

TNETB Forms Eutectics With the Following Compounds: (a)

BINEN (bis(trinitroethyl) nitramine) TNB (trinitrobenzene) Compound A (ChH6N407 formed by condensation of 1,1-dinitroethane)	57 80+ 68.5 65 77 80.5 (f)
--	---

Crystallographic Data:

(a)

Three polymorphic crystalline forms have been observed. Low temperature Form I goes through a solid-solid transition at 89°C giving Form II. Form II has a melting point of 92.5° to 93°C . On cooling, Form II does not transform reversibly to Form I when 89°C is reached. However, Form II will transform to Form I at room temperature, usually taking a few hours to do so. Form III was observed, which appeared to be stable over a very narrow temperature range on the order of 0.2° to 0.3°C near 92.5°C .

Preparation: (NO₂)₃CCH₂CH₂COCl + (NO₂)₃CH₂OH H₂SO₄ trinitrobutyryl chloride trinitroethanol sulfuric acid (NO₂)₃CCH₂CH₂COOCH₂C(NO₂)₃ + HCl 2,2,2-trinitroethyl-4,4,4-trinitro- hydrochloric butyrate acid

Laboratory experiments indicate that the present slow step involving overnight treatment of 4,4,4-trinitrobutyryl chloride with 2,2,2-trinitroethanol and aluminum chloride can be replaced by a fast and simple esterification in sulfuric acid. Using 100% sulfuric acid or fortified H₂SO₁, the ester can be prepared in yields of 95% to 98% in 24 hours at 25°C, in 5 hours at 50°C, or in 3 hours at 65°C. Above 65°C the reaction time is less, but the yield falls off and a less pure product is obtained. The crude white crystalline product on recrystallization from dilute methanol gives a material melting at 92° to 93°C.

Origin: (e)

TNETB belongs to a new class of explosives characterized by trinitromethyl groups, $-C(NO_2)_3$. The chemistry of this class of compounds was studied in Germany by Drs. Schenck and Schimmelschmidt, who discovered in 1942-1943 that trinitromethane or nitroform, $HC(NO_2)_3$, was the source of new explosive derivatives. Dr. Schenck prepared the stable solid alcohol, 2,2,2-trinitroethanol, from nitroform and formaldehyde. Dr. Schimmelschmidt reacted nitroform with unsaturated organic compounds, such as acrylic acid, and predicted in 1943 that the ester of 4,4,4-trinitrobutyric acid with trinitroethanol would be an interesting explosive.

In 1947 the U.S. Navy began a program to explore these compounds. The initial task of investigating the chemistry of trinitroethanol was undertaken by the Hercules Powder Company (Navy Contract Nord-9925). The U.S. Rubber Company studied the chemistry of nitroform (Navy Contract Nord-10,129). After preparation of the first laboratory samples of TNETB, considerable interest was aroused. In early 1950 the Naugatuck Chemical Division of U.S. Rubber Company was assigned to prepare 100 pounds of TNETB. The Bureau of Ordnance in July 1953 raised the production to 800 pounds with the assistance of the Hercules Powder Company in augmenting the production at Naugatuck (Navy Contract Nord-11,280). TNETB is a high oxygen content explosive.

- (a) J. M. Rosen, <u>Properties of Trinitroethyl Trinitrobutyrate TNETB</u>, NAVORD Report No. 1758, 17 December 1950.
- (b) Bureau of Mines Report No. 3107, Part IX, Ballistic Mortar Tests on Trinitroethyl Trinitrobutyrate, 5 April 1950.
- (c) L. D. Hampton and G. Svadeba, Evaluation of 2,2,2-Trinitroethyl-4,4,4-Trinitrobutyrate as a Constituent of Castable Explosives, NAVORD Report No. 2614, 30 September 1952.
- (d) U.S. Rubber Company Quarterly Progress Report No. 23, Synthesis of New Propellants and Explosives, Navy Contracts Nord-10-129 and -12,663, 19 August 1953.
- (e) M. E. Hill, O. H. Johnson, J. M. Rosen, D. V. Sickman and F. Taylor, Jr., Preparation and Properties of TNETB, a New Castable High Explosive, NAVORD Report No. 3885, 27 January 1955.
 - (f) M. E. Hill, Synthesis of New High Explosives, NAVORD Report No. 2965, 1 April 1953.
- (g) Jacob Savitt, A Sensitivity Test for Castable Liquid Explosives, Including Results for Some New Materials, NAVORD Report No. 2997, 22 October 1953.
- (h) R. W. Gipson, Sensitivity of Explosives, IX: Selected Physico-Chemical Data of Ten Pure High Explosives, NAVORD Report No. 6130, 18 June 1958.

⁸⁰See footnote 1, page 10.

Composition:	Molecular Weight: (C606N ₁₂)	336
NO	Oxygen Balance:	•
C 21.4	CO ₂ % CO %	-29 0.0
N 50.0 N ₃ N ₃	Density: gm/cc Crystal	1.81
0 28.6 0 ₂ N NO ₂	Melting Point: °C Decomposes	131
C/H Ratio	Freezing Point: °C	<u> </u>
Impact Sensitivity, 2 Kg Wt:	Boiling Point: °C	
Bureau of Mines Apparatus, cm (a) ≤ 25 Sample Wt 20 mg	Refractive Index, n20	
Picatinny Arsenal Apparatus, in.		
Sample Wt, mg	n ₂₅	
	n ₃₀	· · · · · · · · · · · · · · · · · · ·
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe	cc/40 Hrs, at	
Fiber Shoe	90°C — 100°C	
Rifle Bullet Impact Test: Trials	120°C	
%	135°C	
Explosions	150°C	
Partials	150 €	
Burned	200 Gram Bomb Sand Test:	
Unaffected	Sand, gm	
Explosion Temperature: °C (a)	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used) +-	Minimum Detonating Charge, gm	
1	Mercury Fulminate	
5 150	Lead Azide	
10	Tetryl	
15 2 0	Ballistic Mortar, % TNT:	
20	Trauzi Test, % PETN:	90
75°C International Heat Test:	Plate Dent Test:	
% Loss in 48 Hrs	Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs	Confined	
% Loss, 1st 46 Hrs % Loss, 2nd 48 Hrs	Density, gm/cc	
Explosion in 100 Hrs	Brisance, % TNT	
Explosion in 100 Firs	Detonation Rate:	
Flammability Index:	Confinement	
	Condition	
Hygroscopicity: % 30°C, 90% RH 0.00	Charge Diameter, in.	
	Density, gm/cc	
Volatility:	Rate, meters/second	

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:	
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth	
Total No. of Fragments: For TNT	Color: Greenish-yellow	
For Subject HE	Principal Uses: (c) Ingredient of primer mix	
3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib		
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Pressed Dead presses at about 42,000 psi	
	Loading Density: gm/cc	
Fragment Velocity: ft/sec At 9 ft At 25½ ft	At 42,000 psi 1.75 Storege:	
Density, gm/cc	Method	
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)	
Air: Peak Pressure	Compatibility Group	
Impulse Energy	Exudation None	
Air, Confined: Impulse	Qualitative Solubilities at Room Temperature: Solvent Solubility	
Under Water: Peak Pressure Impulse	Acetone Readily soluble Chloroform Moderately soluble Alcohol Sparingly soluble Water Insoluble	
Energy	Compatibility with Metals:	
Underground: Peak Pressure	Wet: Does not attack iron, steel, copper or brass.	
Impulse	Heat of:	
Energy	Combustion, cal/gm (a) 2554	
	Burning Rate: (b)	
	cm/sec 0.65	

Trinitro Triazidobenzene

Preparation: (e)

Aniline is chlorinated to form trichloroaniline. The amino group is eliminated by the diazo reaction. The resulting sym-trichlorobenzene is nitrated. This nitration is carried out by dissolving the material in warm 32% oleum, adding strong nitric acid, and heating to 140°-150°C until no trinitro trichlorobenzene (melting point 187°C) precipitates (Ref f). The chlorine groups are then replaced by azo groups. This is accomplished by adding an acetone solution of the trinitro trichlorobenzene, or better, and powdered substance alone, to an actively stirred solution of sodium azide in alcohol. The precipitated trinitro triazidobenzene is collected on a filter, washed with alcohol, water and dried. It may be purified by dissolving in chloroform, allowing the solution to cool, and collecting the greenish yellow crystals (melting point 131°C with decomposition).

Origin:

This initiating explosive was first prepared in 1923 by Turek who also perfected its manufacture.

- (a) S. Helf, Tests of Explosive Compounds Submitted by Arthur D. Little, Inc., PATR 1750, 24 October 1949.
- (b) A. F. Belyaeva and A. E. Belyaeva CR a.s. USSR <u>52</u>, 503-505 (1946) Chemical Abstracts <u>41</u>, 4310.
 - A. E. Belyaeva and A. F. Belyaeva, Doklady Akad Nauk. USSR 56, 491-494 (1947).
 - (c) French Patent 893,941, 14 November 1944 (Chemical Abstracts 47, 8374).
- (d) A. D. Yoffe, "Thermal Decomposition and Explosion of Azides," Proc. Roy Soc A208, 188-199 (1951).
- (e) T. L. Davis, The Chemistry of Powder and Explosives, John Wiley and Sons, Inc., New York (1943), p. 436.
 - (f) 0. Turek, Chim et Ind 26, 781 (1931); German Patent 498,050; British Patent 298,981.

⁸¹See footnote 1, page 10.

Composition:	Molecular Weight: $(C_{15}H_{24}N_8O_{26})$	732
% C 24.6 H 3.3 N 15.3 O 56.8	Oxygen Balance: CO ₂ % CO %	-35 -2.2
chono chono chono	Density: gm/cc Crystal	1.58
O2NOCH2CCH2OCH2CCH2CCH2ONO2	Melting Point: °C 82	to 84
C/H Ratio 0.115	Freezing Point: °C	· · · · · · · · · · · · · · · · · · ·
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm	Boiling Point: °C	
Sample Wt 20 mg Picatinny Arsenal Apparatus, in. 9 Sample Wt, mg 24	Refractive Index, n ₂₀ n ₂₅ n ₃₀	
Friction Pendulum Test:	Vacuum Stability Test:	
Steel Shoe Unaffected	cc/40 Hrs, at	
Fiber Shoe Unaffected	90°C	0.1.5
Rifle Bullet Impact Test: Trials	100°C Pure	2.45 1.94
%	120°C Specially purified	1.94
Explosions	150°C	
Partials		
Burned	200 Gram Bomb Sand Test:	5 0 0
Unaffected	Sand, gm	58.9
Explosion Temperature: °C	Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)	Minimum Detonating Charge, gm	
1 5 225	Mercury Fulminate Lead Azide	0.30
10	Tetryl	
15	Tenyi	
20	Ballistic Mortar, % TNT:	
	Trauzi Test, % TNT:	
75°C International Heat Test: % Loss in 48 Hrs	Plate Dent Test: Method	
100°C Heat Test:	Condition	
% Loss, 1st 48 Hrs 1.15	Confined	
% Loss, 2nd 48 Hrs 0.75	Density, gm/cc	
Explosion in 100 Hrs None	Brisance, % TNT	
Flammability Index:	Detonation Rate:	7.7
	Confinement	None Pressed
Hygroscopicity: %	Condition	
· ·	Charge Diameter, in. Density, gm/cc	0.5 1.56

Booster Sensitivity Test:		Decomposition Equation:	
Condition		Oxygen, atoms/sec (Z/sec)	
Tetryl, gm		Heat, kilocalorie/mole	23.1
Wax, in. for 50% Detonation		(ΔH, kcal/mol)	015 to 050
Wax, gm		Temperature Range, °C	215 to 250
Density, gm/cc		Phase	Liquid
Heat of:	2632	Armor Plate Impact Test:	
Combustion, cal/gm	1085		
Explosion, cal/gm Gas Volume, cc/gm	762	60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec	
Formation, cal/gm	,	Aluminum Fineness	
Fusion, cal/gm		Authinum Fineness	
rusion, cui/ gm		500-lb General Purpose Bombs:	
Specific Heat: cal/gm/°C Specific Impulse:		Plate Thickness, inches	
lb-sec/lb (calculated)	240	1	
In-sectin (catentarea)	240	11/4	
		11/2	
Burning Rate:		· /•	
cm/sec		Bomb Drop Test:	
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-lb Semi-Armor-Piercin	g Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft	
Linear, %/°C		500-lb General Purpose Bomb	rs Concrete:
Volume, %/°C		Height, ft	
	· · · · · · · · · · · · · · · · · · ·	Trials	
Hardness, Mohs' Scale:		Unaffected	
Young's Modulus:		Low Order	
E', dynes/cm ²		High Order	
E, lb/inch ²		1000 It Consul Burness Bomb	us Comercia.
Density, gm/cc		1000-ib General Purpose Bomb	YD CONCIETE:
Deliaity, girry ec		Height, ft	
Compressive Strength: lb/inch²		Trials	
- -		Unaffected	
Vapor Pressure:		Low Order	
°C mm Mercury		High Order	

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, Ib	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: White
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: High explosive and as possible plasticizer for nitrocellulose
Total No. of Fragments: For TNT For Subject HE	Method of Loading: Cast or pressed
Fragment Velocity: ft/sec At 9 ft At .25½ ft Density, gm/cc	Looding Density: gm/cc Pressed at 60,000 psi 1.565 Storage: Method Dry
Blast (Relative to TNT):	Hazard Class (Quantity-Distance)
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None
Air, Confined: Impulse	Hygroscopicity, Gain or Loss in Wt, %: Time, Hrs % RH at 30°C
Under Water: Peak Pressure Impulse Energy	24 -0.008 +0.01 +0.04 48 -0.02 -0.01 +0.02 144 -0.04 -0.03 -0.02
Underground: Peak Pressure	192 -0.04 -0.02 216 -0.004 -0.01 +0.03
Impulse Energy	Solubility: Solvent Solubility
	Water Insoluble Alcohol Soluble Chloroform Soluble Acetone, hot Very soluble Benzene, hot Very soluble

Compatibility With Other High Explosives:

100°C Vacuum Stability Test:

}	NTN	PETN	RDX	TPEON
ml gas/40 hrs, 5 gm sample	0.14	2.15	0.39	2.45
ml gas/40 hrs, 5 gm sample of 50/50, TPEON/HE	1.89	1.71	2.32	_

Dipentaerythritol Hexanitrate (DPEHN)-TPEON Fusions:

% TPEON	% DPEHN	Solidification Time, Days	MP, °C
100	0	_	83
95	. 5	3	68
90	10	3	69
80	20	5	73
50	50	30	60 (Eutectic)
20	80	5	63
10	90	3	69
0	100	<u></u>	73

Preparation:

(a)

Twenty grams (0.054 mol) of nitration grade tripentaerythritol (TPE) (99%) minimum purity) were slowly added, with stirring, to 160 gm (2.55 mol) of 99% nitric acid at a temperature of -25° to 0°C. On equivalent weight basis, this quantity of 99% nitric acid corresponds to an excess of 6.3 times the TPE used. After addition of the TPE, the reaction mixture was stirred for about one hour at 0° to 5°C and poured into eight times its volume of cracked ice. The product, when allowed to stand overnight, was crushed under water; filtered with suction; and washed copiously with water. It was then treated twice with about 5 times its weight of a 1% ammonium carbonate solution, stirred for several hours, filtered and washed with water until the final washings were neutral to litmus. The final product was washed successively with 50 cc each of ethanol and ether. The material dried in air weighed 37.8 gm or 96% of theory based on TPE. It had a melting range of 71° to 74°C. Crystallization of the crude TPEON from chloroform was found to be the most suitable method of obtaining pure TPEON.

Origin:

TPEON prepared by the reaction of tripentaerythritol and 99% nitric acid at 0° to 10°C was reported by Wyler in 1945 (J. A. Wyler to Trojan Powder Company: U.S. Patent 2,389, 228, 20 November 1945).

- (a) J. J. LaMonte, H. J. Jackson, S. Livingston, L. B. Silberman and M. M. Jones, The Preparation and Explosive Properties of Tripentaerythritol Octanitrate, PATR No. 2490, 1958.
- (b) K. Namba, J. Yamashita and S. Tanaka, "Pentaerythritol Tetranitrate," J Ind Explosives Soc (Japan) 15, 282-9 (1954); CA 49, 11283 (1955).
 - (c) S. D. Brewer and H. Henkin, The Stability of PETN and Pentolite, OSRD Report No. 1414.
- (d) E. Berlow, R. H. Barth and J. E. Snow, <u>The Pentaerythritols</u>, ACS Monograph No. 136, Reinhold Publishing Corporation, New York, 1958.

⁸²See footnote 1, page 10.

Composition:	Molecular Weight:	81	
ent 80	Oxygen Balance:		
	CO ₂ %	- 77 -38	
Aluminum 20			
	Density: gm/cc	Cast 1.72	
	Melting Point: °C		
C/H Ratio	Freezing Point: °C		
Impact Sensitivity, 2 Kg Wt: Bureau of Mines Apparatus, cm 85 Sample Wt 20 mg	Boiling Point: °C		
Picatinny Arsenal Apparatus, in. 13	Refractive Index, no		
Sample Wt, mg 16	n ₂₅		
	n _{so}		
Friction Pendulum Test:	Vacuum Stability Test:		
Steel Shoe Unaffected	cc/40 Hrs, at		
Fiber Shoe Unaffected	90°C	• -	
Rifle Bullet Impact Test: Trials	130°C	0.1	
%	120°C	0.2	
Explosions 60	135°C	0.9	
Partials 0	150°C	0.8	
Burned 0	200 Gram Bomb Sand Test:		
Unaffected 40	Sand, gm		
Explosion Temperature: °C	Sensitivity to Initiation:		
Seconds, 0.1 (no cap used) 610	Minimum Detonating Charge	, gm	
1 520 5 Decomposes 1/70	Mercury Fulminate		
5 Decomposes 470	Lead Azide	0.20	
10 465	Tetryl	0.10	
15	Ballistic Mortar, % TNT: (a) 124	
20		<u> </u>	
75°C International Heat Test:		b) 125	
% Loss in 48 Hrs	Plate Dent Test: (c)	
		B	
100°C Heat Test:	Condition	Cast	
% Loss, 1st 48 Hrs	Confined	No	
% Loss, 2nd 48 Hrs	Density, gm/cc	1.75	
Explosion in 100 Hrs	Brisance, % TNT	93	
Flammability Index: 100	Detonation Rate: Confinement	None None	
•		Cast Press	ed.
Hygroscopicity: % 30°C, 90% RH 0.00		1.0	Jeu
	Density, gm/cc	1.71 1.72	

pen, atoms/sec sec) , kilocalorie/mole I, kcal/mol) perature Range, °C e Plate Impact Test: Im Mortar Projectile: I% Inert, Velocity, ft/se uminum Fineness Ib General Purpose Bomi ate Thickness, inches 1 11/4 11/2 13/4 Drop Test: (e	100 bs: Trials 0 6 6 0	>1100 12 % Inert 100 33
, kilocalorie/mole l, kcal/mol) perature Range, °C e Plate Impact Test: Im Mortar Projectile: 1% Inert, Velocity, ft/se uminum Fineness Ib General Purpose Bomi ate Thickness, inches 1 1½ 1½ 1½ 1¾ Prop Test: (e	509 100 bs: Trials 0 6 6 0	12 % Inert 100 33
Plate Impact Test: Im Mortar Projectile: I% Inert, Velocity, ft/se uminum Fineness Ib General Purpose Bom ate Thickness, inches 1 11/4 11/2 13/4 Drop Test: (e	509 100 bs: Trials 0 6 6 0	12 % Inert 100 33
Plate Impact Test: Im Mortar Projectile: 1% Inert, Velocity, ft/se uminum Fineness Ib General Purpose Bomi ate Thickness, inches 1 11/4 11/2 13/4 Prop Test: (e	509 100 bs: Trials 0 6 6 0	12 % Inert 100 33
Plate Impact Test: Im Mortar Projectile: 1% Inert, Velocity, ft/se uminum Fineness Ib General Purpose Bom ate Thickness, inches 1 1½ 1½ 1½ 1¾ Prop Test: (e	509 100 bs: Trials 0 6 6 0	12 % Inert 100 33
Im Mortar Projectile: 1% Inert, Velocity, ft/se uminum Fineness Ib General Purpose Bomate Thickness, inches 1 11/4 11/2 13/4 Drop Test: (ex. 2000-1b Semi-Armor-Pier	509 100 bs: Trials 0 6 6 0	12 % Inert 100 33
Im Mortar Projectile: 1% Inert, Velocity, ft/se uminum Fineness 1b General Purpose Bomate Thickness, inches 1 11/4 11/2 13/4 Drop Test: (ex. 2000-1b Semi-Armor-Pier	100 bs: Trials 0 6 6 0	12 % Inert 100 33
1% Inert, Velocity, ft/se uminum Fineness Ib General Purpose Bomate Thickness, inches 1 11/4 11/2 13/4 Drop Test: (e	100 bs: Trials 0 6 6 0	12 % Inert 100 33
uminum Fineness Ib General Purpose Bom ate Thickness, inches 1 11/4 11/2 13/4 Drop Test: (e	100 bs: Trials 0 6 6 0	12 % Inert 100 33
ib General Purpose Bomate Thickness, inches 1 11/4 11/2 13/4 Prop Test: (e	Trials 0 6 6 0	% Inert
ate Thickness, inches 1 1½ 1½ 1½ 1¾ Drop Test: (e	Trials 0 6 6 0	100
1 11/4 11/2 13/4 Drop Test: (e	0 .6 .6 .0	100
1 11/4 11/2 13/4 Drop Test: (e	0 .6 .6 .0	100
11/4 11/2 13/4 Prop Test: (e	6 6 0	33
1½ 1¾ Drop Test: (e	6 0	33
Prop Test: (e)	
Orop Test: (e)	Concrete:
2000-lb Semi-Armor-Pie	•	Concrete:
2000-lb Semi-Armor-Pie	•	Concrete:
	rcing Bomb vs	Concrete:
ax Safe Drop, ft		
lb General Purpose Bom	b vs Concrete	::
eight, ft	Seal 4,000	Seal 5,000
igls	34	14
naffected	32	14
w Order	0	0
gh Order	2	0
gi. Oldei	-	ŭ
-1b General Purpose Bon	nb vs Concrete):
·		Seal
		5,000
		24
		23
w Order		0
		1
de Γr Jr	10-1b General Purpose Bon Height, ft Frials Jnaffect e d Low Order High Order	Frials Jnaffect e d Low Order

1.71 2.272 703 616 1.73 0.914 514 485	Glass Cones Steel Co Hole Volume Hole Depth Color: Principal Uses: GP bombs Method of Loading:	Gray
2.272 703 616 1.73 0.914 514 485	Color: Principal Uses: GP bombs Method of Loading:	
703 616 1.73 0.914 514 485	Color: Principal Uses: GP bombs Method of Loading:	
616 1.73 0.914 514 485	Principal Uses: GP bombs Method of Loading:	
616 1.73 0.914 514 485	Principal Uses: GP bombs Method of Loading:	
1.73 0.914 514 485	Method of Loading:	Cast
0.914 514 485	Method of Loading:	Cast
0.914 514 485		Cast
514 485		Cast
485		Cast
485		Casc
· · · · · · · · · · · · · · · · · · ·		
2460		
2460	Loading Density: gm/cc 1	.65-1.72
	Storage	-
-	Storage:	
1.12	Method	Dry
(f)	Hazard Class (Quantity-Distance)	Class 9
	Compatibility Group	Group I
110		
115	Exudation	
119		
	Preparation:	
130	Tritonal is prepared by adding	•
105		
118	continued until all the TNT is m	elted. When
119	the viscosity of the mixture is satisfactory (about 85°C), the t	considered ritonal is
	poured into projectiles or bombs	the same as
117		
127		
136		
	2380 1.72 (f) 110 115 119 130 105 118 119 117 127	2380 1.72 Method (f) Hazard Class (Quantity-Distance) Compatibility Group 110 115 Exudation 119 Preparation: 130 Tritonal is prepared by adding aluminum separately to a steam-jackettle equipped with a stirrer. the kettle and mixing of the ing continued until all the TNT is made the viscosity of the mixture is satisfactory (about 85°C), the tagoured into projectiles or bombs TNT.

Origin:

The Addition of aluminum to increase the power of explosives was proposed by Escales in 1899 and patented by Roth in 1900 (German Patent 172,327). Some recent studies, directed towards establishment of the optimum amount of aluminum in the TNT/Aluminum system, have shown that (1) the blast effect increases to a maximum when the aluminum content is 30% (Ref g); the brisance, as measured by the Sand Test, passes through a maximum at about 17% aluminum (Ref h); in Fragmentation Tests, no maximum is observed, additions of aluminum causing a decrease in efficiency over the entire range from 0% to 70% aluminum (Ref i); and (4) the rate of detonation of cast charges is continuously decreased by additions of aluminum up to 40% (Ref j). For all practical purposes it is concluded that the addition of 18% to 20% aluminum to TNT improves its performance to a maximum. This conclusion is in agreement with that of British workers who measured performance of aluminized TNT-mixtures based on extensive Lead Block Test data (Ref k).

Tritonal, consisting of 80% TNT and 20% aluminum, was developed and standardized in the United States during World War II for use in bombs.

- (a) L. C. Smith and E. H. Eyster, Physical Testing of Explosives, Part III, Miscellaneous Sensitivity Tests, Performance Tests, OSRD Report No. 5746, 27 December 1945.
- (b) Philip C. Keenan and Dorothy Pipes, Table of Military High Explosives, Second Revision, NAVORD Report No. 87-46, 26 July 1946.
 - (c) D. P. MacDougall, Methods of Physical Testing, OSRD Report No. 803, 11 August 1942.
- (d) L. C. Smith and S. R. Walton, A Consideration of RDX/Wax Mixtures as a Substitute for Tetryl in Boosters, NOL Memo 10,303, 15 June 1949.
 - (e) Committee of Div 2 and 8, NDRC, Report on HBX and Tritonal, OSRD No. 5406, 31 July 1945.
- (f) W. R. Tomlinson, Jr., <u>Blast Effects of Bomb Explosives</u>, PA Tech Div Lecture, 9 April 1948.
- (g) W. B. Kennedy, R. F. Arentzen and C. W. Tait, <u>Survey of the Performance of TNT/Al on the Basis of Air-Blast Pressure and Impulse</u>, OSRD Report No. 4649, Division 2, Monthly Report No. AES-6, 25 January 1945.
- (h) W. R. Tomlinson, Jr., <u>Develop New High Explosive Filler for AP Shot</u>, PATR No. 1290, First Progress Report, 19 May 1943.
- (i) W. R. Tomlinson, Jr., <u>Develop New High Explosive Filler for AP Shot</u>, PATR No. 1380, Second Progress Report, 12 January 1944.
- (j) L. S. Wise, Effect of Aluminum on the Rate of Detonation of TNT, PATR No. 1550, 26 July 1945.
- (k) Armament Research Dept, The Effect of Aluminum on the Power of Explosives, British Report AC-6437, May 1944 (Explosives Report 577/44).

⁸³See footnote 1, page 10.

(1) Also see the following Picatinny Arsenal Technical Reports on Tritonal:

<u>o</u>	<u>3</u>	14	<u>5</u>	<u>6</u>	7	<u>8</u>
1530 1560	1693 2353	1444	1635	1956	1737 2127	2138

Veltex No. 448*

AMCP 706-177

Composition:		Molecular Weight:	281
% HMX	70.0	Oxygen Balance:	······································
Nitrocellulose (13.15% N)	15.0	CO ₂ %	-2 6
Nitroglycerin	10.7	CO %	-0.5
2-Nitrodiphenylamine	1.3	Density: gm/cc Pressed	1.72
Triacetin	3.0	Melting Point: °C	
C/H Ratio		Freezing Point: °C	
Impact Sensitivity, 2 Kg Wt:		Boiling Point: °C	
Bureau of Mines Apparatus, cm Sample Wt 20 mg		Refractive Index, no	
Picatinny Arsenal Apparatus, in.			
Sample Wt, mg		n ₂₅	
		n ₃₀	
Friction Pendulum Test:		Vacuum Stability Test:	
Steel Shoe	Unaffected	cc/40 Hrs, at	
Fiber Shoe	Unaffected	90°C	
Rifle Bullet Impact Test: Trials			1.29
		120°C 29 hours	11+
% Explosions		135°C	
Partials		150°C	
Burned		200 C P I C I T I	
Unaffected		200 Gram Bomb Sand Test:	(()
Unarrected		Sand, gm	66.4
Explosion Temperature: °C		Sensitivity to Initiation:	
Seconds, 0.1 (no cap used)		Minimum Detonating Charge, gm	
1		Mercury Fulminate	
5		Lead Azide	0.30
10		Tetryl	
15		Ballistic Mortar, % TNT:	· · · · · · · · · · · · · · · · · · ·
20		Trauzi Test, % TNT:	
75°C International Heat Test:			
% Loss in 48 Hrs		Plate Dent Test: Method	
2000		Condition	
90 °C Heat Test:	0	Confined	
% Loss, 1st 48 Hrs	0.28		
% Loss, 2nd 48 Hrs	1.12	Density, gm/cc	
Explosion in 100 Hrs	None	Brisance, % TNT	
Flammability Index:		Detonation Rate:	
		Confinement	
Hygroscopicity: %		Condition	
		Charge Diameter, in.	
Volatility:		Density, gm/cc	
· ototimy.		Rate, meters/second (calculated)	8500

^{*}See footnote on following page.

Booster Sensitivity Test: Condition		Decomposition Equation: Oxygen, atoms/sec
Tetryl, gm		(Z/sec)
Wax, in. for 50% Detonation		Heat, kilocalorie/mole (ΔH, kcał/mol)
Wax, gm		Temperature Range, °C
Density, gm/cc		Phase
Heat of: Combustion, cal/am	2359	Armor Plate Impact Test:
Explosion, cal/gm	1226	
Gas Volume, cc/gm		60 mm Mortar Projectile: 50% Inert, Velocity, ft/sec
Formation, cal/gm		Aluminum Fineness
Fusion, cat/gm		Adminum Fineness
rusion, car, gri		500-lb General Purpose Bombs:
Compression at Rupture: %	8.26	Plate Thickness, inches
Work to Produce Rupture:		1
ft-lb/inch ³	9.62	11/4
10-15/ Inch	,,,, <u>,</u>	1½
		134
Burning Rate:		
cm/sec		Bomb Drop Test:
Thermal Conductivity: cal/sec/cm/°C		T7, 2000-Ib Semi-Armor-Piercing Bomb vs Concrete:
Coefficient of Expansion:		Max Safe Drop, ft
Linear, %/°C		500-lb General Purpose Bomb vs Concrete:
Volume, %/°C		Height, ft
Mandrage Mahai Saulai	······································	Trials
Hardness, Mohs' Scale:		Unaffected
Young's Medulus:		Low Order
E', dynes/cm²	0.24 x 10 ¹⁰	High Order
E, lb/inch²	0.35 x 10 ⁵	1000-ib General Purpose Bomb vs Concrete:
Density, gm/cc		1000 12 Golden Larpona Barris 10 Golden
		Height, ft
Compressive Strength: Ib/inch ²	2720	Trials
		Unaffected
Vapor Pressure:		Low Order
°C mm Mercun	y	High Order
*Name assigned by Dr. Mark of PA; based on original d James H. Veltman.		

Fragmentation Test:	Shaped Charge Effectiveness, TNT = 100:
90 mm HE, M71 Projectile, Lot WC-91: Density, gm/cc Charge Wt, lb	Glass Cones Steel Cones Hole Volume Hole Depth
Total No. of Fragments: For TNT	Color: Orange
For Subject HE 3 inch HE, M42A1 Projectile, Lot KC-5: Density, gm/cc Charge Wt, Ib	Principal Uses: High mechanical strength machinable explosive
Total No. of Fragments: For TNT	Method of Loading: Pressed
For Subject HE Fragment Velocity: ft/sec	Loading Density: gm/cc At 6,700 psi 1.72
At 9 ft At 25½ ft Density, gm/cc	Storage:
	Method Dry Hazard Class (Quantity-Distance)
Air: Peak Pressure Impulse Energy	Compatibility Group Exudation None Machinability Excelle
Air, Confined: Impulse	
Under Water: Peak Pressure Impulse Energy	
Underground: Peak Pressure Impulse Energy	
u ni gy	

Preparation:

The preparation of this class of explosive compositions is illustrated by the method used for Veltex No. 448: Place 675 cc of water in a slurry kettle equipped with an agitator. Add 5.85 gm of 2-nitrodiphenylamine and agitate for several minutes to obtain dispersion. Then add 93.7 gm of water-wet nitrocellulose (dry weight 67.5 gm) in small portions. Raise the temperature to 48°C and maintain this temperature, but continue the agitation. A mixture of 48.2 gm of nitroglycerin and 13.5 gm of triacetin is added over a 5-minute period, with the mixing continuing for an additional 10 minutes at 48°C. The HMX (350 gm) is added over a 5-minute period with agitation continued for 30 minutes at 48°C. The slurry is cooled to room temperature and filtered. The filter cake is dried to a moisture content between 8% and 12%. The incorporation of this mix is completed by rolling 50 gm portions at a temperature of approximately 90°C. The finished colloid is then preheated on a heat table at 66°C. Increments of 25 gm each are pressed at 6700 psi for four minutes at 71°C. A cylinder is then built up by pressing together four 25 gm increments for a dwell time of 15 minutes.

Origin:

Veltex is the name given to a series of closely related nitrocellulose compositions prepared in 1957 at Picatinny Arsenal by the solventless process used for propellants. These compositions all contain a high percentage of solid high explosive. They were investigated to determinate the suitability of the Holtex type explosive developed by Hispano Suiza of Switzerland, France and Spain, but for which the composition was not reported (Ref a). Compositions similar to Veltex No. 448 and containing 60% to 80% HMX, with either nitroglycerin or triethyleneglycol dinitrate as colloiding agent for nitrocellulose, have also been prepared. In general these compositions showed lower heat stability than that of conventional high explosive compositions.

Reference: 84

(a) U.S. Air Intelligence Information Report IR-269-55, Holtex--Hispano Suiza Explosive, 4 May 1955.

⁸⁴See footnote 1, page 10.

(AMCRD-TV)

FOR THE COMMANDER:

OFFICIAL:

CHARLES T. HORNER, JR. Major General, USA Chief of Staff

P. R. HORNE Colonel, GS

Chief, HQ Admin Mgt Ofc

DISTRIBUTION: Special