Alpha Test Plan – Prototroller

Merrick R., Britton M., Caleb O., Evan Z., Yu-yang H.

Expected Behavior

Master ⇔ Module SPI Communication Expected Behaviors

SPI Communication Behavior

USB Communication Behavior

Module Rescanning / Data Verification Expected Behaviors

Additionally, most logical blocks of source-code are documented with functional purpose, parameters, edge-cases, etc.

Test Procedures

Firmware Behavioral Testing (Debug Firmware)

Master Device		
Test	Expected Result	
Device Boots and outputs serial (console) data	Visible COM Port when using debug firmware	
	version	
Device completes initial scan	Console output of connected modules	
Device Rescan Button begins scan	Console output of rescanned modules	
Device receives correct data packets	Console output displays proper data/state of	
	module device	
Device maintains module connection	Console does not display disconnect messages	
Module Device		
Test	Expected Result	
Device Boots and outputs serial (console) data	Visible COM Port when using debug firmware	
	version	
Device reads ADC/GPIO data	Console output of raw data	
Device calculates computation of data	Console output of computed data	
Device sends data when requested	Console output of successful transmission	
Device blocks when data not requested	Console does not display additional messages	
Data read is within accurate bounds	Console outputs acceptable data value (tolerance	
	differs based on module type)	

<u>Verification of Average Power Draw by Software Measurement</u>

Test Procedures	Expected Results (0 Modules)	Expected Results (n Modules)
1. Choose USB port to plug	N/A	N/A
Prototroller into on Windows		
host		
2. Measure power consumption	Consuming 0mA	Consuming 0mA
for this port using USBDeview		
3. Plug Prototroller into host	N/A	Windows does not report
		"Power Limit Exceeded"
4. Measure power consumption	Consuming ≤ 50mA	Consuming ≤ 500mA (following
for port using USBDeview		n*20mA line)

Verification of Module Rescanning

Test Procedures	Expected Results
1. Ensure Prototroller is plugged into host with no	N/A
connected modules	
2. Establish a serial connection to the master	Output is displayed on serial console
board with a console such as PuTTY	
3. Press and release the rescan button	Module rescan initiated and all modules
	identified as disconnected on serial console
4. Plug-in a module with an invalid ID to a random slot <i>k</i>	No change on serial console
5. Press and release the rescan button	Module rescan initiated, no change on serial
	console (module <i>k</i> shown as disconnected).
6. Plug-in a module with a valid ID to another	No change on serial console
random slot <i>m</i>	
7. Press and release the rescan button	Module rescan initiated, only module <i>m</i> shown as
	connected with corresponding ID
8. Observe serial console	Data from module in slot <i>m</i> is output
9. Disconnect the module in slot <i>m</i>	No output on serial console
10. Press and release the rescan button	Module rescan initiated; all modules shown as
	disconnected
11. Disconnect the module in slot <i>k</i>	No change on serial console
12. Repeat 6-9 until every slot has been	See 6-9 expected results
evaluated	

<u>Verification of SPI Communication</u>

Test	Expected Result
Probe Rx and Tx bus lines for master board with	Handshake is sent, and data is correctly received
oscilloscope triggers	
Probe CS bus lines for master board with	All modules currently connected are visibly
oscilloscope triggers	shown on the oscilloscope

<u>Verification of HID Drivers</u>

Test	Expected Result
Use Device Monitoring Studio to view HID reports	All data packets via reports are correct, and are
	consistent with module board inputs

Verification of Latency Constraints

Measuring the latency of controllers in general is difficult, but not impossible with the right hardware. In our case, the methodology is to aim a high-speed camera at our host display and a LED connected to a button module mapped to a left-click schema. Then we can compare – in editing software - the delta time between the LED lighting and a UI element on the display changing in response to the left-click. Preferably, use a monitor with 144+Hz refresh rate for a more accurate measurement.

Test Procedures	Expected Results
1. Plug in Prototroller to host with one module	N/A
connected: button, with left-click schema.	
Connect Switch => LED => Resistor => +3V3	
2. Press and release the rescan button	N/A
3. Set up mouse on element to be left-clicked	N/A
(action must modify UI in some way)	
4. Start recording with 240fps, giving smallest	N/A
possible increment of 4.16ms	
5. Press and release the button	LED flashes for as long as the button is pressed.
6. Stop recording	N/A
7. In post-processing software, find the frame the	N/A
LED lights up and the frame the UI responds.	
8. Convert the difference in frames to a response	Response time should be ≤ 10 ms
time: #frames * (1/240)	