Claims

1. A composition comprising a synergistically effective active compound combination of anthranilamides of the formula (I)

in which

 \mathbb{R}^3

A¹ and A² independently of one another represent oxygen or sulfur,

 X^1 represents N or CR^{10} ,

R¹ represents hydrogen or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₄-alkoxycarbonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino and R¹¹, represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₄-C₆-alkynyl, C₅-C₆-cycloalkyl, C₄-C₆-alkynyl, C₅-C₆-cycloalkyl, C₄-C₆-alkynyl, C₅-C₆-cycloalkyl, C₄-C₆-alkynyl, C₅-C₆-cycloalkyl, C₄-C₆-alkynyl, C₅-C₆-cycloalkyl, C₅-C₆-alkynyl, C₅-C₆-cycloalkyl, C₄-C₆-alkynyl, C₅-C₆-cycloalkyl, C₅-C₆-alkynyl, C₅-C₆-cycloalkyl, C₅-C₆-cycloalkyl, C₅-C₆-alkynyl, C₅-C₆-cycloalkyl, C₅-C₆-cycloalkyl, C₅-C₆-alkynyl, C₅-C₆-cycloalkyl, C₅-C₆-alkynyl, C₅-C₆-cycloalkyl, C

represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₂-C₆-alkoxycarbonyl or C₂-C₆-alkylcarbonyl,

represents hydrogen, R¹¹ or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl, R¹¹, phenyl, phenoxy and a 5- or 6-membered heteroaromatic ring, where each phenyl, phenoxy and 5- or 6-membererd heteroaromatic ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or

R² and R³ may be attached to one another and form the ring M,

5

10

15

20

 R^4 represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-trialkylsilyl or represents phenyl, benzyl or phenoxy, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of C1-C4-alkyl, C2-C4-alkenyl, C2-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-(alkyl)cycloalkylamino, C_2-C_4 alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl, C3-C8dialkylaminocarbonyl and C₃-C₆-trialkylsilyl,

R⁵ and R⁸ in each case independently of one another represent hydrogen, halogen or represent in each case optionally substituted C₁-C₄-alkyl, C₁-C₄-haloalkyl, R¹², G, J, -OJ, -OG, -S(O)_p-J, -S(O)_p-G, -S(O)_p-phenyl, where the substituents independently of one another may be selected from one to three radicals W or from the group consisting of R¹², C₁-C₁₀-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₄-alkoxy and C₁-C₄-alkythio, where each substituent may be substituted by one or more substituents independently of one another selected from the group consisting of G, J, R⁶, halogen, cyano, nitro, amino, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-trialkylsilyl, phenyl and phenoxy, where each phenyl or phenoxy ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,

in each case independently of one another represent a 5- or 6-membered non-aromatic carbocyclic or heterocyclic ring which may optionally contain one or two ring members from the group consisting of C(=O), SO and S(=O)₂ and which may optionally be substituted by one to four substituents independently of one another selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy, or independently of one another represent C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₇-cycloalkyl, (cyano)-C₃-C₇-cycloalkyl, (C₁-C₄-alkyl)-C₃-C₆-cycloalkyl, (C₃-C₆-cycloalkyl, where each cycloalkyl, (alkyl)cycloalkyl and (cycloalkyl)-alkyl may optionally be substituted by one or more halogen atoms,

15

10

5

20

25

30

G

	· J	in each case independently of one another represent an optionally substituted 5- or 6-
		membered heteroaromatic ring, where the substituents independently of one another
		may be selected from one to three radicals W or one or more radicals R ¹² ,
	R ⁶	independently of one another represent $-C(=E^1)R^{19}$, $-LC(=E^1)R^{19}$, $-C(=E^1)LR^{19}$,
5		-LC(= E^1)LR ¹⁹ , -OP(=Q)(OR ¹⁹) ₂ , -SO ₂ LR ¹⁸ or -LSO ₂ LR ¹⁹ , where each E^1
		independently of one another represents O, S, N-R ¹⁵ , N-OR ¹⁵ , N-N(R ¹⁵) ₂ , N-S=O, N-
	,	CN or N-NO ₂ ,
	R ⁷	represents hydrogen, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl, halogen, C ₁ -C ₄ -alkoxy, C ₁ -C ₄ -
		haloalkoxy, C ₁ -C ₄ -alkylthio, C ₁ -C ₄ -alkylsulfinyl, C ₁ -C ₄ -alkylsulfonyl, C ₁ -C ₄ -halo-
10		alkylthio, C ₁ -C ₄ -haloalkylsulfinyl, C ₁ -C ₄ -haloalkylsulfonyl,
	R ⁹	represents C ₁ -C ₄ -haloalkyl, C ₁ -C ₄ -haloalkoxy, C ₁ -C ₄ -haloalkylsulfinyl or halogen,
	. R ¹⁰	represents hydrogen, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl, halogen, cyano or C ₁ -C ₄ -
		haloalkoxy,
	R ¹¹	in each case independently of one another represents in each case optionally mono-
15		to trisubstituted C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfenyl, C_1 - C_6 -haloalkythio, C_1 - C_6 -
	•	haloalkylsulfenyl, phenylthio or phenylsulfenyl, where the substituents
		independently of one another may be selected from the list W, -S(O) _n N(R ¹⁶) ₂ ,
	•	$-C(=O)R^{13}$, $-L(C=O)R^{14}$, $-S(C=O)LR^{14}$, $-C(=O)LR^{13}$, $-S(O)_nNR^{13}C(=O)R^{13}$,
٠		$-S(O)_{n}NR^{13}C(=O)LR^{14} \text{ or } -S(O)_{n}NR^{13}S(O)_{2}LR^{14},$
20	L	in each case independently of one another represents O, NR ¹⁸ or S,
	R ¹²	in each case independently of one another represents -B(OR ¹⁷) ₂ , amino, SH,
		thiocyanato, C_3 - C_8 -trialkylsilyloxy, C_1 - C_4 -alkyl disulfide, -SF ₅ , -C(= E^1) R^{19} ,
		$-LC(=E^{1})R^{19}$, $-C(=E^{1})LR^{19}$, $-LC(=E^{1})LR^{19}$, $-OP(=Q)(OR^{19})_{2}$, $-SO_{2}LR^{19}$ or $-LSO_{2}LR^{19}$,
	Q	represents O or S,
25	. R ¹³	in each case independently of one another represent hydrogen or represent in each
-	•	case optionally mono- or polysubstituted C ₁ -C ₆ -alkyl, C ₂ -C ₆ -alkynyl
		or C ₃ -C ₆ -cycloalkyl, where the substituents independently of one another may be
٠		selected from the group consisting of R ⁶ , halogen, cyano, nitro, hydroxyl, C ₁ -C ₄ -
		alkoxy, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -
30		dialkylamino, C ₃ -C ₆ -cycloalkylamino or (C ₁ -C ₄ -alkyl)-C ₃ -C ₆ -cycloalkylamino,
•	R ¹⁴	in each case independently of one another represent in each case optionally mono- or
		polysubstituted C ₁ -C ₂₀ -alkyl, C ₂ -C ₂₀ -alkenyl, C ₂ -C ₂₀ -alkynyl or C ₃ -C ₆ -cycloalkyl,
		where the substituents independently of one another may be selected from the group
		consisting of R ⁶ , halogen, cyano, nitro, hydroxyl, C ₁ -C ₄ -alkoxy, C ₁ -C ₄ -alkylsulfinyl,
35		C ₁ -C ₄ -alkylsulfonyl, C ₁ -C ₄ -alkylamino, C ₂ -C ₈ -dialkylamino, C ₃ -C ₆ -cycloalkylamino
٠		and (C ₁ -C ₄ -alkyl)-C ₃ -C ₆ -cycloalkylamino or represent optionally substituted phenyl,

5

10

15

20

25

30

35

 R^{19}

where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R^{12} ,

- in each case independently of one another represent hydrogen or represent in each case optionally mono- or polysubstituted C₁-C₆-haloalkyl or C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₆-dialkylamino, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or N(R¹⁵)₂ represents a cycle which forms the ring M,
- R^{16} represents C_1 - C_{12} -alkyl or C_1 - C_{12} -haloalkyl, or $N(R^{16})_2$ represents a cycle which forms the ring M,
- R¹⁷ in each case independently of one another represent hydrogen or C₁-C₄-alkyl, or B(OR¹⁷)₂ represents a ring in which the two oxygen atoms are attached via a chain having two to three carbon atoms which are optionally substituted by one or two substituents independently of one another selected from the group consisting of methyl and C₂-C₆-alkoxycarbonyl,
 - R^{18} in each case independently of one another represent hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -haloalkyl, or $N(R^{13})(R^{18})$ represents a cycle which forms the ring M,
 - in each case independently of one another represent hydrogen or represent in each case mono- or polysubstituted C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, C_1 - C_4 -haloalkylamino, C_2 - C_6 -alkylamino, C_2 - C_6 -dialkylamino, C_2 - C_6 -dialkylamino, C_3 - C_6 -trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals C_1 - C_6 -haloalkyl, C_3 - C_6 -cycloalkyl or phenyl or pyridyl, each of which is optionally mono- to trisubstituted by C_1 - C_6 -haloalkyl, C_3 - C_6 -cycloalkyl or phenyl or pyridyl, each of which is
 - M in each case represents an optionally mono- to tetrasubstituted ring which, in addition to the nitrogen atom attached to the substituent pair R¹³ and R¹⁸, (R¹⁵)₂ or (R¹⁶)₂, contains two to six carbon atoms and optionally additionally a further nitrogen, sulfur or oxygen atom, where the substituents independently of one another may be

5

10

15

20

25

selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy,

in each case independently of one another represent C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, CO₂H, C₂-C₆-alkylaminocarbonyl, C₃-C₈-dialkylaminocarbonyl or C₃-C₆-trialkylsilyl,

in each case independently of one another represent 0 or 1,

p in each case independently of one another represent 0, 1 or 2,

where, if (a) R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio or halogen and (b) R⁸ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, halogen, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl or C₃-C₈ dialkylaminocarbonyl, (c) at least one substituent selected from the group consisting of R⁶, R¹¹ and R¹² is present and (d) if R¹² is not present, at least one of the radicals R⁶ and R¹¹ is different from C₂-C₆-alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl and C₃-C₈-dialkylaminocarbonyl, and where the compound of the general formula (I) may also be an N-oxide or salt,

and at least one insecticidally active compound of groups 2 and 3 below selected from

- A) (thio)phosphates (group 2), preferably
 - (2-1) azinphos-methyl (known from US 2,758,115)

and/or

(2-2) chlorpyrifos (known from US 3,244,586)

30 and/or

(2-3) diazinon (known from US 2,754,243)

$$\begin{array}{c|c} H_3C \\ N \\ N \\ - O - P - OC_2H_5 \\ OC_2H_5 \end{array}$$

(2-4) dimethoate (known from US 2,494,283)

and/or

(2-5) disulfoton (known from DE-A 91 76 68)

$$\begin{array}{c|c} & & & \\ H_5C_2O & & & \\ P & & \\ I & \\ OC_2H_5 & & \\ \end{array} \\ \begin{array}{c} CH_3 \\ \end{array}$$

and/or

(2-6) ethion (known from US 2,873,228)

$$H_5C_2O_1$$
 S_5 S_1 OC_2H_5 OC_2H_5

and/or

(2-7) fenitrothion (known from BE-A 0 594 669)

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_3
 O_3
 O_4
 O_5
 O_5

ad/or

(2-8) fenthion (known from DE-A 11 16656)

and/or

(2-9) isoxathion (known from DE-A 15 67 137)

20

5

10

15

and/or

(2-10) malathion (known from US 2,578,562)

$$\begin{array}{c|c} H_3CO & \\ \hline \\ OCH_3 & C \\ OC_2H_5 \\ \end{array}$$

(2-11) methidathion (known from DE-A 16 45 982)

5

and/or

(2-12) oxydemeton-methyl (known from DE-A 94 73 68)

and/or

(2-13) parathion (known from DE-A 81 41 52)

$$H_5C_2O$$
 $P > S$
 H_5C_2O
 $O - NO_2$

10

15

and/or

(2-14) parathion-methyl (known from DE-A 81 41 42)

and/or

(2-15) phenthoate (known from GB-A 834 814)

and/or

(2-16) phorate (known from US 2,586,655)

20

and/or

(2-17) phosalone (known from DE-A 24 31 192)

$$\begin{array}{c|c} S \\ H_5C_2O - P \\ H_5C_2O \\ O = O \end{array}$$

(2-18) phosmet (known from US 2,767,194)

and/or

(2-19) phoxim (known from DE-A 12 38 902)

$$\begin{array}{c|c} \mathbf{S} & \mathbf{N} \\ \mathbf{H_5C_2O} - \mathbf{P} - \mathbf{O} & \mathbf{CN} \\ \mathbf{OC_2H_5} & \mathbf{CN} \end{array}$$

and/or

(2-20) pirimiphos-methyl (known from DE-A 14 45 949)

U

and/or

(2-21) profenophos (known from DE-A 22 49 462)

and/or

(2-22) prothiophos (known from DE-A 21 11 414)

$$\begin{array}{c|c} H_3C & S & S \\ & I & O \\ & I & I \\ & I & O \end{array}$$

and/or

(2-23) tebupirimphos (known from DE-A 33 17 824)

10

15

(2-24) triazophos (known from DE-A 12 99 924)

$$\begin{array}{c|c} H_5C_2O & \\ \hline \\ H_5C_2O & \\ \hline \end{array} \begin{array}{c} S \\ O \\ N \end{array} \begin{array}{c} N \\ N \end{array} \begin{array}{c} \\ \end{array}$$

and/or

(2-25) chlorfenvinphos (known from US 2,956,073)

$$H_5C_2O$$
 P
 CI
 CI

and/or

(2-26) dichlorphos (known from GB-A 775 085)

10

and/or

(2-27) dicrotophos (known from BE-A 55 22 84)

and/or

(2-28) mevinphos (known from US 2,685,552)

15

and/or

(2-29) monocrotophos (known from DE-A 19 64 535)

and/or

(2-30) phosphamidon (known from US 2,908,605)

$$\begin{array}{c} \text{H}_3\text{CO} \nearrow \text{O} \\ \text{H}_3\text{CO} \nearrow \text{O} \\ \text{H}_3\text{C} \nearrow \text{CI} \\ \end{array} \begin{array}{c} \text{C}_2\text{H}_5 \\ \text{C}_2\text{H}_5 \end{array}$$

(2-31) acephate (known from DE-A 20 14 027)

and/or

5

(2-32) methamidophos (known from US 3,309,266)

and/or

(2-33) trichlorfon (known from US 2,701,225)

and/or

B) carbamates (group 3), preferably

(3-1) carbaryl (known from US 2,903,478)

and/or

(3-2) fenoxycarb (known from EP-A 0 004 334)

and/or

(3-3) formetanate (known from DE-A 11 69 194)

15

20

(3-4) formetanate hydrochloride (known from DE-A 11 69 194)

and/or

(3-5) methiocarb (known from DE-A 11 62 352)

$$\mathsf{H_{3}C} \overset{\mathsf{H}}{\underset{\mathsf{O}}{\bigvee}} \overset{\mathsf{O}}{\underset{\mathsf{CH_{3}}}{\bigvee}} \overset{\mathsf{CH_{3}}}{\underset{\mathsf{CH_{3}}}{\bigvee}}$$

and/or

(3-6) methomyl (known from US 3,639,620)

and/or

(3-7) oxamyl (known from DE-A 17 68 623)

and/or

(3-8) pirimicarb (= Pirimor) (known from GB-A 1 181 657)

and/or

(3-9) propoxur (known from DE-A 11 08 202)

and/or

(3-10) thiodicarb (known from DE-A 25 30 439)

$$\begin{array}{c|c} CH_3 & O & O & CH_3 \\ S & N & O & N & CH_3 \\ CH_3 & CH_3 & CH_3 & CH_3 \end{array}$$

5

2. The composition as claimed in claim 1 comprising at least one active compound from the group of the anthranilamides of the formula (I-1) in which

in which

R² represents hydrogen or C₁-C₆-alkyl,

R³ represents C₁-C₆-alkyl which is optionally substituted by one R⁶,

R⁴ represents C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

R⁵ represents hydrogen, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

R⁶ represents -C(=E²)R¹⁹, -LC(=E²)R¹⁹, -C(=E²)LR¹⁹ or -LC(=E²)LR¹⁹, where each E² independently of one another represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, and each L independently of one another represents O or NR¹⁸,

R⁷ represents C₁-C₄-haloalkyl or halogen,

 R^9 represents C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy, $S(O)_p$ - C_1 - C_2 -haloalkyl or halogen,

in each case independently of one another represent hydrogen or represent in each case optionally substituted C₁-C₆-haloalkyl or C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfinyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfinyl,

20 R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,

R¹⁹ in each case independently of one another represent hydrogen or C₁-C₆-alkyl,

p independently of one another represent 0, 1, 2.

- 3. The composition as claimed in claim 1 or 2 comprising at least one active compound from group 2 and/or group 3 selected from
 - (2-2) chlorpyrifos,
 - (2-31) acephate,
 - (2-32) methamidophos,
 - (3-1) carbaryl,
- 30 (3-5) methiocarb,
 - (3-10) thiodicarb.

25

15

- 4. The composition as claimed in claim 1, 2 or 3 comprising anthranilamides of the formula (I) and at least one active compound from group 2 and/or group 3 in a ratio of 50:1 to 1:50.
- 5 5. The use of a synergistically effective mixture as defined in claim 1, 2, 3 or 4 for controlling animal pests.
 - 6. A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claim 1, 2, 3 or 4 is mixed with extenders and/or surfactants.
 - 7. A method for controlling animal pests, characterized in that synergistically effective mixtures as defined in claim 1, 2, 3 or 4 are allowed to act on animal pests and/or their habitat.