# W261-Fall 2018 Final Project

**Click Through Rate Prediction on Display Ads** 

Ben Thompson, Kevin Gifford, Dan VanLunen, Matt Prout

### Intro

- Click-through Rate (CTR) = \$
- Scalability of problem solving
  - Work locally when possible
  - Work with smaller datasets to iterate faster
  - Divide and conquer
- Balance choosing a model we can implement vs. best predictions
- Balance creating a pipeline that can scale vs. perfect transformations



## **Logistic Regression**

Parameters have easy interpretation

Better for estimating binary class probability than linear model because fixed between (0,1)

Log odds are a linear function of the parameters

Linear separability assumption likely incorrect so worse predictions, but with many features can still do well





# **Logistic Regression**

No closed form solution for the maximum likelihood

Gradient ascent works for log likelihood

Embarrassingly parallel sum made of independent pieces

Can add in regularization easily as well

$$L(\beta) = \prod_{i=1}^N p(x_i)^{y_i} (1-p(x_i))^{1-y_i}$$

$$l(\beta) = \sum_{i=1}^{N} y_i \ln p(x_i) + (1 - y_i) \ln(1 - p(x_i))$$
$$= \sum_{i=1}^{N} y_i \beta x_i - \beta x_i - \ln(1 + e^{-\beta x_i})$$

$$\nabla_{\beta} l = \sum_{i=1}^{N} x_i (y_i - \frac{1}{1 + e^{-\beta x_i}})$$

$$J = l(\beta) - \lambda \sum_{j=1}^{m} \beta_j^2$$

$$\nabla_{\beta} J = \sum_{i=1}^{N} x_i (y_i - \frac{1}{1 + e^{-\beta x_i}}) - 2\lambda \beta_j$$

$$\hat{p} = \frac{1}{1 + e^{-\hat{\beta}x_i}}$$

# **Logistic Regression**

**Predictions and Loss** 

Logloss takes into account confidence



$$logloss = \frac{1}{N} \sum_{i=1}^{N} -y_i \log \hat{p_i} - (1 - y_i) \log(1 - \hat{p_i})$$



#### **EDA**

- Examined the class balance
  - Noticed that is subsampled (approximately 1 click: 3 no clicks), so it is more balanced for training.
- Looked at the correlation between the numerical features and label
  - This can indicate whether a feature is predictive of the outcome, also help us avoid features that are collinear in our final model.
- Examined every feature that we were given
  - There are 13 numerical fields, 26 categorical fields, 1 label
  - Missing values needed to be handled, as logistic regression cannot handle missing data
    - We looked at the number of null values for each feature
    - We dropped the column if there were too many (> 5%) missing values
    - If the number of missing values was small, we imputed if the field was numeric, or dropped the observations if the field was categorical

## **EDA**, continued

- Examined every feature that we were given, cont
  - Categorical fields needed to be encoded so they could be used by logistic regression
    - We looked at the number of unique values for each field
    - If the field had a small number of unique values, we would one-hot-encode (OHE) using the top 10 most frequent values
    - If the field had a large number of unique values, we would use the 'hash trick'
- Created histograms and boxplots for click/no click conditions
  - They gave a visual picture of the distribution of the data, and also whether there was any obvious difference for when the user clicked the data v. when they did not.

## **Data Cleaning**

- The data cleaning was guided by the EDA
- We used DataFrames as the data came as a table, and it made it easier to manage the fields to be transformed
- Dropping fields was a matter of calling a function in the DataFrame API call for each column
- Since we are using gradient descent, the numerical data needed to be scaled to a common range or normalized.
- We wrote the normalizing and imputation code, which required several passes on the data
  - The first pass determined the means and standard deviations of the selected features
  - For each field with null values to impute, we impute with the mean
  - A final pass normalized the features

## Data Cleaning, continued

- We wrote the code to encode the categorical data which required two passes on the data
  - The first pass through the data determined the top N values for each OHE category, and stored these values in a dictionary
  - The second pass converted categories to their respective OHE or feature hashed representation
  - The final form was a numpy array which could be used by the model for training / testing

# **Training**

- Initial training conducted on 1% sample of the data to establish preliminary coefficients, using both L1 and L2 regularization.
- Preliminary coefficients used as priors for training the full dataset. Using this method, training the full model required many fewer iterations to converge than training the sampled dataset.
- Using L2 regularization yielded better log loss performance, faster convergence, and easier tuning than L1 regularization.



## Conclusion:

- Divide and conquer works very well!
- Cross-check everything
  - Runtime on cluster vs. local
  - Loss vs. accuracy
  - Transformations on 1% vs. 100%
- Think ahead
  - What can I cache
  - How can I reuse, or piggy back on, functions
  - What is easiest path to deciding my next step