NOTA BENE

Le seguenti slide contengono una serie di esempi di quelli che sono gli esercizi pratici più frequenti all'esame scritto. Esse <u>non sono esaustive</u>. Il compito scritto può contenere anche esercizi più teorici, del genere:

- Dire su quale tecnica algoritmica si basa un determinato algoritmo
- Domande (teoriche) con risposta vero/falso e motivazione
- Modifica di algoritmi noti

Dato il seguente grafo orientato, se ne effettui una visita in profondità di tutti i vertici, considerando 0 come vertice sorgente e con l'ipotesi che i vertici siano memorizzati nelle liste di adiacenza in ordine alfabetico. Per ogni vertice, si indichino il tempo di inizio e fine visita. Etichettare inoltre ogni arco con T (dell'albero), B (all'indietro), F (in avanti) e C (di attraversamento).

Dire se il grafo è aciclico

Dato il grafo orientato con 6 nodi e i seguenti archi:

$$\langle 0,3\rangle, \langle 0,4\rangle, \langle 1,5\rangle, \langle 2,3\rangle, \langle 3,1\rangle, \langle 3,5\rangle, \langle 4,1\rangle, \langle 5,2\rangle$$

Utilizzando una qualsiasi tecnica vista, calcolare la componente fortemente connessa contenente il vertice 2. Descrivere il procedimento.

Scrivere (in pseudocodice) un algoritmo che, dato un grafo non pesato orientato G ed un vertice t di G, restituisca un vettore contenente in posizione i-esima, con i = 0..n-1:

- V (di Vicino) se il vertice i è a una distanza compresa tra 0 e 1 da t
- M (di Media distanza) se il vertice i è a una distanza compresa tra 2 e
 3 da t
- L (di Lontano) se il vertice i è a una distanza di 4 o più da t

Ad esempio, dato il seguente grafo, e considerando t = 0,

l'algoritmo deve restituire

Dato il grafo orientato con 6 nodi e i seguenti archi: (0,3), (0,4), (1,5), (2,3), (2,4), (3,1), (3,5), (4,1)

Utilizzando una qualsiasi tecnica vista, calcolarne un ordinamento topologico. Descrivere il procedimento.

Si consideri la seguente tabella che associa ad ogni oggetto i un peso p_i ed un costo c_i . Dato uno zaino di capienza P=80, si trovi una soluzione ottima per il problema dello zaino frazionario.

i	1	2	3	4	5	6
p_i	10	20	30	10	10	20
c_i	60	100	120	70	10	60

Dato l'alfabeto composto dai caratteri **a, b, c, d, e, f, g** e la seguente tabella delle frequenze, si calcoli una codifica binaria a lunghezza variabile dell'alfabeto secondo l'algoritmo di Huffman. (Si mostri come la struttura mantenuta dall'algoritmo cambia ad ogni iterazione)

Carattere	а	b	С	d	e	f	g
Frequenza	0.20	0.08	0.12	0.15	0.10	0.10	0.25

1. Si applichi l'algoritmo di Moore al seguente insieme di lavori, dove dx è la durata del lavoro Lx e sx è la scadenza del lavoro Lx.

L1: d1: 3 s1: 6 |

L2: d2: 3 s2: 5 |

L3: d3: 1 s3: 5

L4: d4: 3 s4: 8 |

L5: d5: 3 s5: 10 |

L6: d6: 2 s6: 8

Dati i seguenti intervalli, con tempi di inizio e fine, trovarne un sottoinsieme costituito da intervalli tutti disgiunti e tale che il numero di intervalli sia il massimo.

- I1: [5,10)
- 12: [6,9)
- I3: [8,13)
- I4: [10,15)
- I5: [17,20)
- 16: [21,30)
- 17: [24,25)
- I8: [21,23)

Si applichi l'algoritmo di **Dijkstra** al seguente grafo, con vertice di partenza A e considerando le liste di adiacenza ordinate in ordine alfabetico. In particolare, per ogni ciclo dell'algoritmo (0 indica la condizione prima di entrare nel ciclo)

- a. compilate la tabella d delle distanze stimate dei vertici da A
- b. compilate la tabella dei vertici inclusi nella soluzione (per cui d[v] = $\delta(A, v)$)
- c. disegnate (sul foglio protocollo) l'albero dei predecessori mantenuto dall'algoritmo (o equivalentemente, compilate una matrice π).

d	Α	В	С	D	E	F
0						
1						
2						
3						
4						
5						
6						

	Vertici (neri) inclusi nella soluzione
0	
1	
2	
3	
4	
5	
6	

Si consideri una struttura **Union Find** di tipo Quick Union con ottimizzazione by-size e le seguenti operazioni. Si mostri la struttura (con eventuali variabili vicine ai nodi) dopo ogni operazione e gli eventuali output delle operazioni:

- makeSet(A)
- 2. makeSet(B)
- makeSet(C)
- 4. union(A,B)
- 5. union(C,A)
- 6. makeSet(D)
- 7. find(B)
- 8. makeSet(E)
- 9. union(E,D)
- 10. union(D,B)
- 11. find(D)

Si applichi l'algoritmo di **Prim** al seguente grafo, con vertice di partenza A e e considerando le liste di adiacenza ordinate in ordine alfabetico. Dopo ogni iterazione del ciclo (la riga 0 corrisponde alla situazione iniziale, prima di entrare nel ciclo) si compili la tabella delle distanze d e quella dei vertici ("definitivi") inclusi nella soluzione

d	А	В	С	D	E	F
0						
1						
2						
3						
4						
5						
6						

	Vertici (neri) inclusi nella soluzione
0	
1	
2	
3	
4	
5	
6	

Si applichi l'algoritmo di **Kruskal** al seguente grafo. Si mostri come la foresta e la union find mantenute dall'algoritmo cambiano ad ogni iterazione (non è necessario rappresentare le union find come alberi, basta una rappresentazione grafica/insiemistica).

Utilizzando l'algoritmo visto a lezione, trovare la più lunga sottosequenza comune (**LCS**) tra le stringhe "ETUTZE" e "TZUETE".

Per la matrice LCS, utilizzare l'ottimizzazione delle frecce vista a lezione.

matrice LCS

	T	Z	U	E	T	E
E						
Т						
U						
Т						
Z						
E						

matrice L

	Т	Z	U	Е	Т	E
E						
Т						
U						
Т						
Z						
E						

Utilizzando l'algoritmo visto a lezione, trovare la più lunga sottosequenza comune (**LCS**) tra le stringhe "AGCCGGATCGAGT" e "TCAGTACGTTA".

Per la matrice LCS, utilizzare l'ottimizzazione delle frecce vista a lezione.

matrice LCS

matrice L

	Α	G	С	С	G	G	Α	Т	С	G	Α	G	Т		Α	G	С	С	G	G	Α	Т	С	G	Α	G	Т
Т														Т													
С														С													
Α														Α													
G														G													
Т														Т													
Α														Α													
С														С													
G														G													
Т														Т													
Т														Т													
Α														Α													

Si applichi l'algoritmo di **Bellman-Ford** al seguente grafo, considerando gli archi nel seguente ordine:

(A,B) (A,C) (C,D) (C,B) (E,D) (B,E) (B,D)

Si utilizzi la tabella d, se ne compili una per ogni ciclo dell'algoritmo.

d	init	(A,B) 5	(A,C) 3	(C,D) -1	(C,B) 1	(E,D) -4	(B,E) -1	(B,D) -2
Α	0							
В	∞							
С	8							
D	8							
E	8							

Si applichi l'algoritmo di **Bellman-Ford** al seguente grafo, utilizzando **l'ottimizzazione per DAG**

Dato il grafo rappresentato con la seguente matrice di adiacenza, trovare i cammini minimi (ed i loro pesi) tra tutte le coppie di vertici, applicando l'algoritmo di Floyd-Warshall.

Si mostrino le matrici D (dei pesi) e P (dei predecessori) dopo ogni ciclo esterno dell'algoritmo (0 è la situazione iniziale, prima di entrare nel ciclo).

Se I cammini minimi non esistono, si dica il perché.

D ⁰	А	В	С
Α	0	1	-2
В	-1	0	8
С	5	2	0

Utilizzando l'algoritmo approssimato visto a lezione, si trovi un ciclo Hamiltoniano di peso al più 2 volte il peso del cammino Hamiltoniano di peso minimo.

Altro possibile esercizo

Dati un grafo ed un ciclo Hamiltoniano contenuto in esso, generare il vicinato con la tecnica dei k-scambi con k=2

Costruzione di algoritmi

Un ladro entra in un magazzino e trova n oggetti. L'i-esimo oggetto ha un valore di v_i euro e pesa p_i chilogrammi (i pesi sono numeri **interi positivi**).

Gli oggetti NON sono frazionabili. Quindi il ladro può o prendere l'intero oggetto i, o non prenderlo.

Il ladro ha solo uno zaino, che può contenere oggetti per un massimo di *P* chilogrammi.

Scrivere un algoritmo di programmazione dinamica che restituisca il massimo valore che il ladro può prendere, sapendo che tale valore è dato dall'equazione ricorsiva

$$V(i,j) = \begin{cases} V(i-1,j) & \text{se } j < p_i \\ \max(V(i-1,j), V(i-1,j-p_i) + v_i) & \text{altrimenti} \end{cases}$$

Con V(i,j) che è la soluzione ottima del sottoproblema limitato agli oggetti $1 \dots i$ e con zaino di capienza massima j.

Costruzione di algoritmi – II

In particolare,

- 1. Si descriva la struttura dati necessaria per la memoizzazione
- 2. Si definiscano i casi base, e le loro soluzioni
- 3. Si scriva in pseudocodice un algoritmo di programmazione dinamica che risolva il problema

Costruzione di algoritmi – SOLUZIONE

Struttura di memoizzazione.

V(i,j) ha due parametri:

- i è l'ultimo oggetto che consideriamo
- j è la capienza

Visto che ci sono 2 parametri, possiamo usare una matrice V[]. Di quali dimensioni?

Il problema richiede di trovare la soluzione con n oggetti e P di capienza massima. Quindi la soluzione sarà contenuta in V[n,P].

Ci servono però anche i casi base. In particolare, ci serviranno i V[i,j] tali che i = 0 (nessun oggetto considerato) e/o j = 0 (peso massimo 0).

Quindi la matrice sarà grande $(n + 1) \times (P + 1)$.

Costruzione di algoritmi – SOLUZIONE

Valori casi base.

i = 0 (nessun oggetto considerato) – dato che non abbiamo considerato nessun oggetto, V[0,j] = 0 per ogni $0 \le j \le P$.

j = 0 (peso massimo 0) – dato che non possiamo prendere nessun oggetto, il valore massimo raggiungibile sarà 0. Quindi V[i,0] = 0 per ogni $0 \le i \le n$.

Costruzione di algoritmi – SOLUZIONE Algoritmo.

```
Zaino(n,P,v[],p[]) // v[] e p[] sono i vettori dei valori e dei pesi
V[] \leftarrow \text{nuova matrice (n+1)} \times (P+1)
%inizializzazione
for i=0..n do
  V[i,0] = 0
for j=0..P do
  V[0,j] = 0
%riempimento matrice
for i=1...n
  for j=1..P do
     if(j<p[i]) then</pre>
       V[i,j] = V[i-1,j]
     else
       V[i,j] = max(V[i-1,j], V[i-1,j-p[i]]+v[i])
%soluzione
return V[n,P]
```

Si consideri la seguente tabella che associa ad ogni oggetto i un peso p_i ed un valore v_i . Dato uno zaino di capienza P=10, si trovi una soluzione ottima per il problema dello zaino 0-1.

i	1	2	3	4
p_i	2	7	6	4
v_i	12.7	6.4	1.7	0.3

Soluzione:

Matrice V											
	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	12,7	12,7	12,7	12,7	12,7	12,7	12,7	12,7	12,7
2	0	0	12,7	12,7	12,7	12,7	12,7	12,7	12,7	19,1	19,1
3	0	0	12,7	12,7	12,7	12,7	12,7	12,7	14,4	19,1	19,1
4	0	0	12,7	12,7	12,7	12,7	13	13	14,4	19,1	19,1

Extra – è possible anche sapere quali oggetti appartengono alla soluzione dello zaino 0-1?

Sì, si deve utilizzare una matrice ausiliaria K (delle stesse dimensioni di V), che conterrà 1 se l'oggetto i-esimo fa parte della soluzione ottima che ha valore complessivo V[i,j]

```
Zaino(n,P,v[],p[]) // v[] e p[] sono i vettori dei valori e dei pesi V[] \leftarrow nuova matrice (n+1) x (P+1) K[] \leftarrow nuova matrice (n+1) x (P+1)
%inizializzazione
for i=0..n do
   V[i,0] = 0
    K[i,0] = 0
for j=0...P do
%riempimento matrice
for i=1...n
   for j=1...P do
       V[i,j] = V[i-1,j]
       if V[i,j] < V[i-1,j-p[i]]+v[i] then V[i,j] = V[i-1,j-p[i]]+v[i]
%soluzione
return V[n,P]
```

Extra – è possible anche sapere quali oggetti appartengono alla soluzione dello zaino 0-1?

Per sapere quali oggetti appartengono alla soluzione, visito K partendo dall'ultima cella (in fondo a destra)

```
d = P
i = n
while( i>0 ) do
    if K[i,d] = 1 then
        stampa "Seleziono oggetto" i
        d = d-p[i]
        i = i-1
```

	Matrice K (in verde le celle visitate)										
	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1	1
2	0	0	0	0	0	0	0	0	0	1	1
3	0	0	0	0	0	0	0	0	1	0	0
4	0	0	0	0	0	0	1	1	0	0	0