Setul 2

de probleme și exerciții de matematică

(cu privire la structuri algebrice, mulțimi de numere, ordinali, cardinali și inegalități numerice)

- **S2.1** Să se dovedească unicitatea elementului neutru și a inversului unui element (când există) în cadrul unui monoid (M,\cdot) cu $U(M) \neq \emptyset$.
- **S2.2** Să se arate că dacă M, M' și M'' sunt monoizi în raport cu operațiile algebrice ϕ_1 , ϕ_2 și respectiv ϕ_3 , iar $f \in Hom(M, M')$ și $g \in Hom(M', M'')$, atunci $g \circ f \in Hom(M, M'')$.
 - **S2.3** Să se arate că dacă M este o mulțime nevidă, atunci $(\mathcal{P}(M), \cup)$ este un monoid comutativ.
- **S2.4** Să se arate că, oricare ar fi monoidul (M, \circ) , dubletul $(U(M), \circ)$ este grup. Când $(U(M), \circ)$ este comutativ?
- **S2.5** Fie (M, \circ) un monoid cu unitatea e. Să se arate că $e \in U(M)$ şi că dacă $x, y \in U(M)$, cu $x \circ y \in U(M)$, atunci $(x \circ y)^{-1} = y^{-1} \circ x^{-1}$ (unde x^{-1} şi y^{-1} sunt inversele elementelor x şi respectiv y).
- **S2.6** Fie (M, \circ) un monoid comutativ cu simplificare și ' \sim ' o relație binară definită pe $M \times M$ prin $(x, y) \sim (x', y') \iff xy' = x'y$. Să se arate că ' \sim ' este o relație de echivalență pe $M \times M$.
- **S2.7** Fie (G, \circ) şi (G', *) două grupuri şi $f: G \to G'$ un morfism de grupuri. Să se arate că f(e) = e' şi $f(x^{-1}) = (f(x))^{-1}$, $\forall x \in G$, unde e şi e' sunt elementele neutre din G şi G' respectiv.
 - **S2.8** i) Să se arate că următoarele operații algebrice definite pe \mathbb{Z} sunt asociative:

$$a \circ b = a + b - ab$$
, $a * b = a + b + ab$, $\forall a, b \in \mathbb{Z}$

- ii) Sunt $(\mathbb{Z}, +, \circ)$ şi $(\mathbb{Z}, +, *)$ inele?
- **S2.9** Fie $(A, +, \cdot)$ un inel unitar și comutativ, iar $\emptyset \neq S \subseteq A$ un sistem multiplicaitv fără divizori ai lui zero. Să se arate că funcția $i_S: A \to A_S$, unde A_S este inelul fracțiilor lui A relativ la S, definită prin $i_S(a) = \frac{a}{1} = [(a, 1)]_{\sim}$, este un monomorfism de inele.
 - **S2.10** Fie axiomele lui Peano, pentru N, sub următoarea formă:
 - a1) Există un număr natural numit 0.
 - a2) Orice număr natural n are un unic succesor s(n).
 - a3) Numărul 0 nu este succesorul nici unui număr natural.
 - a4) Dacă s(m) = s(n), cu $m, n \in \mathbb{N}$, atunci m = n.
 - a5) Dacă $M \subseteq \mathbb{N}$ este așa încât $0 \in M$ și, $\forall n \in M$, avem $s(n) \in M$, atunci $M = \mathbb{N}$.

Pentru oricare patru dintre aceste axiome, excluzând-o pe cea de-a cincea, găsiți un model de mulțime (dacă este posibil) ce le satisface. Indicați succesiunea elementelor din model în maniera $0 \to 1 \to 2 \to \dots$

- **S2.11** Arătați că dacă M este o mulțime ce satisface cele cinci axiome ale lui Peano (v. **S2.10**) și $n \in M$, atunci $s(n) \neq n, \forall n \in M$.
 - **S2.12** Să se demonstreze că dacă m și n sunt din \mathbb{N} și m+n=0, atunci m=n=0.
 - **S2.13** Să se arate că $n < s(n), \forall n \in \mathbb{N}^*$.
- **S2.14** Folosind principiul inducției transfinite să se arate că, pentru orice ordinal α , este adevărată relația: $1 \cdot \alpha = \alpha$.
 - **S2.15** Dacă ω reprezintă notația pentru cel mai mic ordinal infinit, să se constate că

$$2 \cdot \omega = \sup \{2n \mid n < \omega\} = \omega < \omega + \omega = \omega \cdot 2.$$

deducându-se astfel că înmulțirea ordinalilor nu este comutativă.

- **S2.16** Fie α și β ordinali. Să se demonstreze că $\alpha + \beta$ este ordinal limită dacă și numai dacă fie β este un ordinal limită diferit de 0, fie $\beta = 0$ și α este ordinal limită.
- **S2.17** Să se dovedească că pentru orice $a, b \in \mathbb{R}$, cu a < b, intervalele deschise $\left(-\frac{b-a}{2}, \frac{b-a}{2}\right)$ şi (a,b) au aceeași cardinalitate. Se poate spune același lucru şi în legătură cu două intervale deschise, (a,b) şi (c,d), din \mathbb{R} ?
- **S2.18** Fiecare dintre mulțimile specificate mai jos are cardinalul egal cu \aleph_0 sau 2^{\aleph_0} ori $2^{2^{\aleph_0}}$. Determinați, argumentat, ce se potrivește și unde:
 - a) $\{0, 1, 4, 9, 16, \ldots\};$
 - b) $\mathbb{Z}[X]$ (multimea polinoamelor cu coeficienți întregi);
 - c) Multimea numerelor reale transcendente;
 - d) Multimea punctelor unui plan;
 - e) Multimea funcțiilor de la \mathbb{R} la \mathbb{N} .
 - S2.19 Să se arate că mulțimea $\mathbb N$ a numerelor naturale înzestrată cu operațiile

$$n_1 \wedge n_2 = (n_1, n_2)$$
 și $n_1 \vee n_2 = [n_1, n_2], \forall n_1, n_2 \in \mathbb{N}$,

unde (n_1, n_2) semnifică cel mai mare divizor comun al numerelor n_1 şi n_2 , iar $[n_1, n_2]$ înseamnă cel mai mic multiplu comun al numerelor n_1 şi n_2 , are o structură algebrică de latice. Ce atribute are această latice? (Este ea completă, distributivă sau/şi modulară?)

S2.20 Dacă A și B sunt "mpo" (mulțimi parțial ordonate), fie $\mathcal{F}(A;B)$ mulțimea funcțiilor de la A la B, pe care se definește relația de parțială-ordine următoare

$$f <_{\mathcal{F}} q \iff f(x) <_{B} q(x), \ \forall \ x \in A,$$

unde \leq_B este notația pentru relația de ordine parțială pe B.

Să se demonstreze că, dacă B este o latice în raport cu operațiile

$$y_1 \wedge y_2 = \min\{y_1, y_2\} = \begin{cases} y_1, & \text{când } y_1 \leqslant_B y_2 \\ y_2, & \text{când } y_2 \leqslant_B y_1 \end{cases}$$
 și

$$y_1 \lor y_2 = \max\{y_1, y_2\} = \begin{cases} y_2, & \text{când } y_1 \le_B y_2 \\ y_1, & \text{când } y_2 \le_B y_1 \end{cases}, \ \forall \ y_1, y_2 \in B,$$

atunci și $\mathcal{F}(A;B)$ este o latice față de două operații ușor deductibile în context.

- **S2.21** (G, \circ) fiind un grup, să se vadă că mulțimea $\mathcal{S}(G)$, a tuturor subgrupurilor lui G, este o latice față de ordinea parțială " \subset ".
- **S2.22** Arătați că mulțimea tuturor relațiilor de echivalență pe o mulțime A, notată cu $\mathcal{E}q(A)$, este o latice completă în raport cu ordinea parțială " \subseteq ".
 - **S2.23** Să se arate că $(\mathcal{P}(X), \cup, \cap, \mathcal{C}(X), \varnothing, X)$ este o algebră Boole.
- **S2.24** Fie $(B, \lor, \land, ', 0, 1)$ o algebră Boole. Să se demonstreze că, dacă x și y sunt elemente ale algebrei B, astfel încât

$$x \wedge y = 0$$
 si $x \vee y = 1$.

S2.25 Să se demonstreze inegalitatea lui Holder:

$$\sum_{k=1}^{n} |a_k| |b_k| \leqslant \left(\sum_{k=1}^{n} |a_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |b_k|^q\right)^{1/q},$$

$$\forall a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n \in \mathbb{R}, n \in \mathbb{N}^*, p, q \in (1, \infty), \frac{1}{p} + \frac{1}{q} = 1.$$

S2.26 Să se arate că, $\forall a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n \in \mathbb{R}$ și $p \geq 1$, are loc inegalitatea lui Minkowski:

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{1/p} \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{1/p} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{1/p}.$$

S2.27 Să se arate că, $\forall x_1, x_2, \dots, x_n \in \mathbb{R}_+^*, t_1, t_2, \dots, t_n \in [0, 1], \text{ cu } t_1 + t_2 + \dots + t_n = 1, \text{ avem:}$

$$x_1^{t_1} \cdot x_2^{t_2} \cdot \ldots \cdot x_n^{t_n} \leqslant t_1 x_1 + t_2 x_2 + \ldots + t_n x_n$$

(inegalitatea generalizată a mediilor)

S2.28 Să se demonstreze că, $\forall n \in \mathbb{N}^*$ şi $a_1, a_2, \dots, a_n \in \mathbb{R}_+$, are loc inegalitate lui Carleman

$$\sum_{k=1}^{n} (a_1 a_2 \dots a_k)^{1/k} \leqslant e \sum_{k=1}^{n} a_k,$$

unde e e un coeficient optimal când $n \to \infty$. Egalitatea are loc dacă și numai dacă $a_1 = a_2 = \ldots = a_n = 0$.

S2.29 Să se arate că, pentru orice $n \in \mathbb{N}^*$, $a_1, a_2, \ldots, a_n \in \mathbb{R}_+^*$ şi $x_1, x_2, \ldots, x_n \in \mathbb{R}$, are loc inegalitatea (Titu Andreescu):

$$\frac{x_1^2}{a_1} + \frac{x_2^2}{a_2} + \ldots + \frac{x_n^2}{a_n} \ge \frac{(x_1 + x_2 + \ldots + x_n)^2}{a_1 + a_2 + \ldots + a_n}.$$

S2.30 Să se demonstreze că, $\forall n \in \mathbb{N}^*$ și $a_1, a_2, \dots, a_n \in \mathbb{R}_+^*$, avem:

$$\min(a_1, a_2, \dots, a_n) \le \sqrt[n]{a_1 a_2 \dots a_n} \le \frac{\sum_{k=1}^n a_k}{n} \le \left(\frac{\sum_{k=1}^n a_k^2}{n}\right)^{1/2} \le \max(a_1, a_2, \dots, a_n).$$

Bibliografie orientativă

- 1. D. Bușneag, D. Pîrv Lecții de algebră, Ed. Universitaria, Craiova, 2002.
- 2. I. D. Ion, R. Nicolae Algebră, E. D. P., București, 1982.
- 3. F. L. Ţiplea Introducere în teoria mulțimilor, Ed. Univ. "Al. I. Cuza", Iași, 1998.
- **4.** B. Poonen *Infinity: Cardinal Numbers*, 2002.
- 5. S. Burris, H. P. Sankappanavar A course in Universal Algebra, 2000, (cap. I + cap. IV).
- 6. M. O. Drâmbe Inegalități. Idei și metode., Ed. GIL, Zalău, 2003.