GEOMETRIA OBLICZENIOWA - ĆWICZENIA

Adrian Mucha 236526, Politechnika Wrocławska WPPT

06.06.2020

Zadanie 15

Załóżmy, że kolejne n wierzchołków wielokąta wypukłego zostały podane w tablicy. Pokazać, że w czasie $O(\log n)$ można sprawdzić, czy dany punkt leży wewnątrz tego wielokąta.

Rozwiązanie

Ustalmy punkt z najmniejszą składową x. Jeżeli istnieje kilka, wybieramy tę z najmniejszą składową y. Oznaczmy ten punkt jako p_0 . Reszta punktów to p_1, \ldots, p_n w kolejności według ich kąta od ustalonego punktu (wielokąt jest numerowany przeciwnie do ruchu wskazkówek zegara).

Jeżeli punkt należy do wielokąto, to należy do jakiegoś trójkąta p_0, p_i, p_{i+1} (lub dwóch, jeśli leży na brzegu trójątów). Rozważmy trójkąt p_0, p_i, p_{i+1} , taki że p należy do tego trójkąta, oraz i jest największe spośród takich trójkątów.

Istnieje specjalny przypadek, że p leży na odcinku (p_0,p_n) , ale będzie on rozważany osobno. W pozostałych przypadkach, wszystkie punkty p_j dla których $j \leq i$ są po lewej stronie p (przeciwnie do ruchu wskazkówek zegara) w stosunku do p_0 oraz wszystkie pozostałe, które nie leżą przeciwnie do ruchu wskazówek w stosunku do p_0 . Dzięki tej własności można stosować przeszukiwanie binarne by znaleźć punkt p_i , taki że p_i nie leży przeciwnie do ruchu wskazówek zegara od p_0 w stosunku do p_0 oraz p_0 jest największe spośród tych punktów. Na sam koniec sprawdzane jest czy rzeczywiście punkt p_0 leży wewnątrz znalezionego trójkąta.

Znak $(a-c) \times (b-c)$ mówi o tym, czy punkt a jest po lewej (przeciw wskazówkom zegara) lub po prawej (zgodnie ze wskazówkami zegara) od punktu b w stosunku do punktu c.

- 1. $(a-c)\times(b-c)>0$ punkt a leży na prawo od wektora biegnącego z c do b, co oznacza ruch zgodny ze wskazówkami zegara od b w stosunku do c.
- 2. $(a-c)\times(b-c)<0$ punkt a leży na lewo od wektora biegnącego z c do b, co oznacza ruch przeiwny do wskazówkek zegara

Rozważmy zapytanie o punkt p. Najpierw sprawdzamy czy punkt leży między p_1 a p_n . W przeciwnym wypadku, będziemy wiedzieć że nie może być częścią wielokąta. Można to sprawdzić sprawdzając iloczyn wektorowy $(p_1-p_0)\times(p-p_0)=0$ lub ma ten sam znak co $(p_1-p_0)\times(p_n-p_0)$ oraz że $(p_n-p_0)\times(p-p_0)=0$ lub ma ten sam znak co $(p_n-p_0)\times(p_1-p_0)$. Następnie sprawdzamy specjalny przypadek gdy p leży na (p_0,p_1) . Ostatecznie szukamy ostatniego punktu z p_1,\ldots,p_n , który nie jest przeciwny do ruchu wskazówek zegara od p w stosunku

do p_0 . Dla punktu p_i sprawdzamy to za pomocą $(p_i-p_0)\times(pip_0)\leq 0$. Po znalezieniu takiego punktu p_i , sprawdzamy czy p leży wewnątrz trójkąta p_0,p_i,p_{i+1} .