mail: ibotca52@gmail.com

COLLE 1 = SOMMES, PRODUITS ET FONCTIONS USUELLES

Sommes:

Exercice 1.

On pose pour tout $n \in \mathbb{N}^*$

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

Montrer que:

$$\forall n \in \mathbb{N}^*, \sum_{i=1}^n H_i = (n+1)H_n - n$$

Exercice 2.

Calculer $\sum_{k=1}^{n} k \ln \left(1 + \frac{1}{k}\right)$ pour tout $n \in \mathbb{N}^*$ en faisant apparaître un téléscopage.

Montrer en raisonnant par récurrence que pour tout $n\in \mathbb{N}^*$

$$\sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{n} \frac{1}{n+k}$$

Exercice 4. Calculer $\sum\limits_{k=2}^{n-1} \frac{3^k}{2^{2k-1}}$ pour tout $n\in\mathbb{N},\;n\geq 3$

En déduire :

$$\lim_{n \to +\infty} \sum_{k=2}^{n-1} \frac{3^k}{2^{2k-1}}$$

Produits:

Exercice 5.

1. Montrer que pour tout $n \in \mathbb{N}$

$$\frac{(2n+1)!}{(n+1)!} \ge (n+1)^n$$

2. En déduire par récurrence que pour tout $n \in \mathbb{N}^*$:

$$\prod_{k=0}^{n-1} (2k+1)! \ge (n!)^n$$

Exercice 6.

Simplifier les produits suivants :

1.
$$\prod_{k=1}^{n} \sqrt{k(k+1)}$$
 2. $\prod_{k=1}^{n} (-5)^{k^2-k}$

2.
$$\prod_{k=1}^{n} (-5)^{k^2-k}$$

Exercice 7.

1. Montrer que:

$$\forall x > 0, \ x - \frac{x^2}{2} \le \ln(1+x) \le x$$

2. Déterminer la limite de :

$$u_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right)$$

Exercice 8.

1

- 1. Factoriser (k^3-1) par (k-1) et (k^3+1) par (k+1) pour tout $k \geq 2$
- 2. En déduire une simplification du produit

$$\prod_{k=2}^{n} \frac{k^3 - 1}{k^3 + 1}$$

3. En déduire l'existence et la valeur de

$$\lim_{n\to +\infty} \prod_{k=2}^n \ \frac{k^3-1}{k^3+1}$$

que l'on notera aussi $\prod_{k=2}^{+\infty} \frac{k^3 - 1}{k^3 + 1}$

Fonctions usuelles:

Exercice 9.

Suivant la valeur de x déterminer le signe de

1.
$$f(x) = \sqrt{x-1} - \sqrt{2x-3}$$

2.
$$g(x) = \sqrt{|x-1|} - \sqrt{|2x-3|}$$

3.
$$h(x) = \ln(x+3) + \ln(x+2) - \ln(x+11)$$

Exercice 10. Montrer que pour tout $x \neq 0$,

$$\sum_{k=0}^{n} \cosh(kx) = \frac{\cosh\left(\frac{nx}{2}\right) \sinh\left(\frac{(n+1)x}{2}\right)}{\sinh\left(\frac{x}{2}\right)}$$

Exercice 11.

1. Déterminer les réels a et b tels que :

$$\forall x \in \mathbb{R} \backslash \{-1; 0\}, \ \frac{1}{x(x+1)} = \frac{a}{x} + \frac{b}{x+1}$$

2. Pour n dans \mathbb{N}^* , calculer la dérivée n-ième de

$$f: x \in \mathbb{R} \setminus \{-1; 0\} \longmapsto \frac{1}{x(x+1)}$$

3. Trouver les nombres réels x tels que :

$$f^{(n)}(x) = 0$$

Exercice 12. Démontrer que, pour tout $x \in \mathbb{R}$ et tout $n \geq 1$, on a

$$\left(\frac{1+\tanh(x)}{1-\tanh(x)}\right)^n \ = \ \frac{1+\tanh(nx)}{1-\tanh(nx)}$$

Exercice 13. Résoudre l'équation cosh(x) = 2.

Exercice supplémentaire :

Soient $n \in \mathbb{N}^*$ et $a_1, ..., a_n, b_1, ..., b_n$ des nombres réels. On définit la fonction f par :

$$\forall x \in \mathbb{R} , f(x) = \sum_{i=1}^{n} (a_i x + b_i)^2$$

Montrer l'inégalité de Cauchy-Schwarz:

$$\left| \sum_{i=1}^n a_i b_i \right| \, \leq \, \sqrt{\sum_{i=1}^n a_i^2} \times \sqrt{\sum_{i=1}^n b_i^2}$$

(*Indication*: remarquer que la fonction f est à valeur dans \mathbb{R}^+)