

BÀI TẬP ÁP DỤNG ĐỊNH LUẬT CU-LÔNG

I. DẠNG 1: XÁC ĐỊNH CÁC ĐẠI LƯỢNG LIÊN QUAN ĐẾN LỰC TƯƠNG TÁC GIỮA HAI ĐIỆN TÍCH ĐIỂM ĐỨNG YÊN

Áp dụng công thức:

$$F = \frac{k|q_1q_2|}{\epsilon r^2} = \frac{9.10^9.|q_1q_2|}{\epsilon r^2}$$

- Ta có thể áp dụng định luật bảo toàn điện tích: $q_1 + q_2 + ... + q_n = hằng số$
- Khi chạm tay vào quả cầu nhỏ đã tích điện thì quả cầu mất điện tích và trở thành trung hòa.

→ Bài 1.1

Hai quả cầu mang điện tích dương $q_1 = 2q_2$, đặt tại A và B trong không khí (AB = 10 cm). Chúng đẩy nhau một lực 72.10^{-5} N.

- a. Tính điện tích mỗi quả cầu.
- b. Nhúng hệ thống vào trong dầu có ε = 4, muốn lực tương tác điện giữa hai quả cầu vẫn là 72.10⁻⁵ N thì khoảng cách giữa chúng là bao nhiêu?

→ Bài 1.2

Hai quả cầu nhỏ giống hệt nhau lần lượt mang các điện tích $q_1=3.10^{-6}$ C, $q_2=10^{-6}$ C. Cho hai quả cầu tiếp xúc nhau rồi tách ra và đặt trong chân không cách nhau 5 cm. Tính:

- a. Điện tích mỗi quả cầu sau khi tiếp xúc.
- b. Lực tương tác giữa hai quả cầu sau khi tiếp xúc.

II. DẠNG 2: XÁC ĐỊNH LỰC TỔNG HỢP TÁC DỤNG LÊN MỘT ĐIỆN TÍCH

- ◆ Lực tổng hợp tác dụng lên một điện tích q: $\vec{F} = \vec{F_1} + \vec{F_2} + ...$
- F có thể được xác định theo hai cách sau:
 - >>> Cách 1: Cộng lần lượt hai vectơ theo quy tắc cộng hình học

$$\overrightarrow{F_1} \uparrow \uparrow \overrightarrow{F_2} : F = F_1 + F_2$$
 $q_2 \qquad q_3 \qquad \overrightarrow{F_1} \qquad q_1$

$$(\vec{F_1}, \vec{F_2}) = \alpha \text{ và } F_1 = F_2$$

$$F = 2F_1 \cos \frac{\alpha}{2}$$

$$q_3$$

$$\vec{F_1}$$

$$q_2$$

$$\overrightarrow{F_1} \perp \overrightarrow{F_2} : F = \sqrt{F_1^2 + F_2^2} \qquad q_3 \qquad \overrightarrow{F_1} - - - q_1$$

$$(\overrightarrow{F_1}, \overrightarrow{F_2}) = \alpha$$

$$F^2 = F_1^2 + F_2^2 + 2F_1F_2\cos\alpha$$

$$\overrightarrow{F_2}$$

$$q_3$$

$$\overrightarrow{F_1}$$

$$q_1$$

$$q_2$$

Cách 2: Phương pháp hình chiếu

Chọn hệ trục Oxy vuông góc và chiếu các vectơ lực lên các trục tọa độ.

» Trục Ox:
$$F_x = F_{1x} + F_{2x} + ...$$

» Trục Oy:
$$F_y = F_{1y} + F_{2y} + ...$$

$$\Rightarrow$$
 F = $\sqrt{F_x^2 + F_y^2}$

◆ Bài 2

Cho hai điện tích $q_1 = 8.10^{-8}$ C, $q_2 = -8.10^{-8}$ C đặt tại A, B trong không khí (AB = 6 cm). Xác định lực tác dụng lên $q_3 = 8.10^{-8}$ C đặt tại C. Nếu:

a.
$$CA = 4 \text{ cm}$$
, $CB = 2 \text{ cm}$.

b.
$$CA = 4 \text{ cm}$$
, $CB = 10 \text{ cm}$.

c.
$$CA = CB = 6 cm$$
.

III. DẠNG 3: KHẢO SÁT SỰ CÂN BẰNG CỦA MỘT ĐIỆN TÍCH

Khi một điện tích cân bằng đứng yên thì lực tổng tác dụng lên điện tích thỏa điều kiện:

$$\vec{F} = \vec{F_1} + \vec{F_2} + ... = \vec{0}$$

▶ Bài 3.1

Đặt hai điện tích $q_1 = 2.10^{-8}$ C, $q_2 = -8.10^{-8}$ C tại hai điểm A, B cách nhau một đoạn 8 cm trong không khí. Một điện tích q₃ đặt tại C. Hỏi C ở đâu để q₃ nằm cân bằng?

◆ Bài 3.2

Hai quả cầu nhỏ giống nhau cùng khối lượng 2,5 g, mang điện tích $q = 5.10^{-7}$ C được treo tại cùng một điểm bằng hai sợi dây mảnh cách điện. Do lực đẩy tĩnh điện, hai quả cầu tách ra xa nhau một đoạn a = 60 cm. Xác định góc lệch của các sợi dây so với phương thẳng đứng.

IV. DẠNG 4: XÁC ĐỊNH VỊ TRÍ ĐIỂM ĐẶT ĐIỆN TÍCH THỎA ĐIỀU KIỆN CHO TRƯỚC

Xác định vị trí điểm M thỏa điều kiện : $\overline{F_{1M}} = k\overline{F_{2M}}$

Nếu k > 0 thì:
$$\begin{cases} \overrightarrow{F_{1M}} \uparrow \uparrow \overrightarrow{F_{2M}} \\ F_{1M} = kF_{2M} \end{cases}$$

Nếu k > 0 thì:
$$\begin{cases} \overrightarrow{F_{1M}} \uparrow \uparrow \overrightarrow{F_{2M}} \\ F_{1M} = kF_{2M} \end{cases}$$
Nếu k < 0 thì:
$$\begin{cases} \overrightarrow{F_{1M}} \uparrow \downarrow \overrightarrow{F_{2M}} \\ F_{1M} = |k|F_{2M} \end{cases}$$

Bài 4

Đặt hai điện tích $q_1 = -4.10^{-8}$ C; $q_2 = -32.10^{-8}$ C tại hai điểm A, B cách nhau một đoạn 12 cm trong không khí. Một điện tích q₃ đặt tại C. Xác định vị trí điểm C sao cho $\vec{F}_{13} = 2.\vec{F}_{23}$.