Comparaisons et combinaisons d'extracteurs d'entités spatiales sur un corpus multilingue.

Zijian Wang¹, Yoann Dupont², Tian Tian², Gaël Lejeune² Sorbonne Université, STIH,

- ¹ wangzijian1994@hotmail.com
- 2 prenom.nom@sorbonne-universite.fr
- 24 Juin 2020

Plan

Contexte : Humanités Numériques et TAL

EN en humanité numérique : données

Extracteurs d'entités nommées existants

Résultats et discussion

Contexte : Humanités

Numériques et TAL

Projet Antonomaz

ANalyse auTOmatique et NumérisatiOn des MAZarinades ¹
 DIM STCN

^{1.} http://lejeunegael.fr/antonomaz.html

Projet Antonomaz

- ANalyse auTOmatique et NumérisatiOn des MAZarinades ¹ DIM STCN
- Le Traitement Automatique des Langues
- Les Humanités Numériques
- → leur interaction

Deux axes de réflexion :

- Input : Documents numérisés, quelles contraintes? (thèse de JB Tanguy 2019-...)
- Output : Adaptation/combinaison de systèmes de détection d'Entités Nommées (thèse de Caroline Parfait 2020-...)

^{1.} http://lejeunegael.fr/antonomaz.html

Contraintes sur l'Input

Gérer la variation :

- Multilinguisme
- Hétérogénéité
- Bruitage

VIS QVE Babillard on me nomme JnlEftP le ne veux efpargner nul homme, WjfftSL le fuis fous & remply de vin Icvcuxrparlcr deTabarin DeTabarin ce Mazinique, . Cefthomrnepcruers & inique, Qiii n'any Dieu, nyFoy.nyLoy Quiaenleuénoftre Roy, . Et fait affieger noftre Ville : Commcrvn Mefchant & C Malhabille Par ce grand Prince de Condé Qu'il a enchanté fans tarde* J Qui a fille, chofe certaine. Les yeux de noftre bonne Rey ne,

Figure 1 – Source : Abiven et Lejeune 2019

Contraintes sur l'Output

Question des "conditions de laboratoire"

- Applicabilité des Systèmes état de l'art
- Évaluation/Interprétation
- Valeur ajoutée pour l'utilisateur

Focus aujourd'hui : Entités Nommées de lieu en Allemand (CLEF-HIPE 2020 P.Ortiz, Y.Dupont, G.Lejeune, T.Tian ²)

^{2.} https://impresso.github.io/CLEF-HIPE-2020/

Les entités nommées : définitions

Enrichir les données textuelles avec une couche "sémantique" pour permettre de "raisonner" automatiquement.

- Noms d'organisation, noms de personne
- Noms de fêtes, noms de films/chansons,
- Noms de protéines . . .

Les entités nommées : définitions

Enrichir les données textuelles avec une couche "sémantique" pour permettre de "raisonner" automatiquement.

- Noms d'organisation, noms de personne
- Noms de fêtes, noms de films/chansons,
- Noms de protéines . . .
- Noms de lieux

Les entités nommées : définitions

```
À (Boncourt)<sub>lieu</sub> (en 1886)<sub>date</sub>:
La boulangerie de (M. Staempfli)<sub>personne</sub>, (rue du parc, 68)<sub>lieu</sub>.
la (confédération du (Rhin)<sub>lieu</sub>)<sub>lieu</sub>??
```

Adaptation au domaine

 $\label{lem:def} \mbox{Adapter les systèmes d'extraction d'entités nommées standard sur}:$

- des corpus anciens
- non nativement numériques
- multilingues

EN en humanité numérique : données

Textes anciens : problèmes

transcription à la main -> données bruités segmentation des textes initiaux -> tiret séparant les mots tâches, espace en trop -> caractères en trop, OOV (out-of-vocabulary)

Corpus

Corpus d'apprentissage et d'évaluation de la tâche CLEF-HIPE En français et allemand, annotés en entités de type *Personne*, *Organisation*, *Location*, *Product et Time*

	tokens	nb doc	nb seg	nb d'entités nommées annotées				
	LOKEIIS			Pers	Loc	Org	Time	Prod
train Fr	166217	158	19183	3067	2513	833	273	198
dev Fr	37592	43	4423	771	677	158	69	48
train De	86960	104	10353	1747	1170	358	118	112
dev De	36175	40	4186	664	428	172	73	53

Extrait du corpus français

```
# language = fr
# newspaper = EXP
# date = 1918-04-22
# document id = EXP-1918-04-22-a-i0077
# segment \overline{i}iif link = https://iiif.dhlab.epfl.ch/.../1186.1881.474.79/full/0/default.jpg
Lettre
de
l a
                B-loc
                        NoSpaceAfter
Su
                I-loc
                I-loc
                        NoSpaceAfter
                I-loc
SSS
allemands
                I-loc
                        EndOfline
# segment iiif link = https://iiif.dhlab.epfl.ch/.../1190,1967,493,52/full/0/default.jpg
                        NoSpaceAfter
Nous
serons
heureux
de
publier
de
temps
                        EndOfLine
# segment iiif link = https://iiif.dhlab.epfl.ch/.../1165,1995,517,53/full/0/default.jpg
autre
                        NoSpaceAfter
SOUS
cette
                        NoSpaceAfter
rubrique
des
                                                                                        11
```

Extrait du corpus français - Exemple de bruit

Lettre	0	
de	0	_
la	0	_
Su	B-loc	NoSpaceAfter
	I-loc	_
_	I-loc	NoSpaceAfter
SSS	I-loc	_
allemands	I-loc	EndOfLine
		_ EndOfLine

Forme non-standard:

[&]quot;Su. _sss allemands" -> "Suisse allemande"

Extracteurs d'entités nommées existants

Extracteurs multilingues d'entités nommées

- Modèles appris et configurés sur une langue "standard" (la langue journalistique).
- Adaptation avec apprentissage automatique à partir de données annotées dans la langue/le domaine cible

nom	langue initiale	algorithme	corpus d'apprentissage
SpaCy	anglais	CNN	Conll2003 (journal)
Standford NLP	anglais	CRFs	Conll2003 (journal)
SEM	français	CRFs	French Treebank

SpaCy

Présentation :

- réseau de neurones avec CNN.
- multilingue, mais qualité variable.

SpaCy

Présentation :

- réseau de neurones avec CNN.
- multilingue, mais qualité variable.

Adaptation:

- entraînement depuis zéro (blank).
- adaptation depuis modèle existant (de_core_web_sm).

SEM

Présentation :

- SEM : outil utilisant CRF, Wapiti.
- Enrichissements textuels, gestion de format.
- Uniquement pour le français.

SEM

Présentation :

- SEM : outil utilisant CRF, Wapiti.
- Enrichissements textuels, gestion de format.
- Uniquement pour le français.

Adaptation:

- Enrichissement des lexiques existants.
- Entraînement sur le corpus.
- Beaucoup de travail manuel.

Bi-LSTM-CRF

Présentation :

- architecture état-de-l'art pour l'étiquetage de séquences.
- LSTM bi-directionnel (contextes gauche et droit) + CRF (cohérence des étiquettes).
- "plug and play" : utiliser des embeddings pré-entraînés et adapter reste du réseau sur données.

Bi-LSTM-CRF

Présentation :

- architecture état-de-l'art pour l'étiquetage de séquences.
- LSTM bi-directionnel (contextes gauche et droit) + CRF (cohérence des étiquettes).
- "plug and play": utiliser des embeddings pré-entraînés et adapter reste du réseau sur données.

Adaptation:

- Concaténation de 3 représentations : FastText original, Flair + FrELMo (ELMo entraîné sur OSCAR-fr).
- Entraînement sur le corpus (représentations figées).

Résultats et discussion

Résultats

système	Р	R	F	
Spacy (blank)	64,8%	53%	58,3	
Spacy (pré-entraîné)	70,9%	59,1%	64,42	
SEM	64,4%	43,8%	52,1	
Bi-LSTM-CRF	63.1%	66,6%	64,8	

Quelques observations

- Réseaux de neurones meilleurs que CRF (métriques)
- RN plus facilement adaptables que CRF (pré-entrainement vs ré-entraînement)
- adapter un modèle pré-entrainé améliore les résultats (divers papiers)

Plafond de verre?