CPSC 359 Assignment 1 Report

Summary:

This sequential circuit simultaneously controls a system including a set of Red, Yellow and Green "Car lights" and a set of Red and Green "pedestrian lights" based on the ticks 0-11 of a clock. Initially, at tick 0, the state of the lights is at state "Car Green (CG)" and "Pedestrian Red (PR)", and then moves through a series of light combinations. After tick 11, the clock and circuit reset back to the initial state - tick 0.

Final Circuit

Car Green: CG Car Yellow: CY Car Red: CR

Pedestrian Green: PG Pedestrian Red: PR

Controller

Controller Truth Table:

no.	х	У	Z	w	Car CR CY CG	Pedestrian PG PR
0	0	0	0	0	0 0 1	0 1
1	0	0	0	1	0 0 1	0 1
2	0	0	1	0	0 0 1	0 1
3	0	0	1	1	0 0 1	0 1
4	0	1	0	0	0 0 1	0 1
5	0	1	0	1	0 0 1	0 1
6	0	1	1	0	0 1 0	0 1
7	0	1	1	1	0 1 0	0 1
8	1	0	0	0	1 0 0	1 0
9	1	0	0	1	1 0 0	1 0
10	1	0	1	0	1 0 0	1 0
11	1	0	1	1	1 0 0	0 1

Car Green: 001 Car Yellow: 010 Car Red: 100

Pedestrian Green: 10 Pedestrian Red: 01

Controller Boolean Sum of Products & Simplification

Car:

For Car Red (CR):

CR is positive at ticks 8, 9, 10 and 11 therefore the Boolean Sum of Products is: = xy'z'w' + xy'z'w + xy'zw' + xy'zw

Simplification with K-Map

m0	m1	m3	m2
m4	m5	m7	m6
m12	m13	m15	m14
m8	<mark>m9</mark>	m11	<mark>m10</mark>

Using adjacency of m8,m9,m11,m10:

For Car Yellow (CY):

CY is positive at ticks 6 and 7. Therefore the Boolean Sum of Products is:

$$= x'yzw' + x'yzw$$

Simplification with K-Map

m0	m1	m3	m2
m4	m5	<mark>m7</mark>	<mark>m6</mark>
m12	m13	m15	m14
m8	m9	m11	m10

Using adjacency of m7,m6:

$$= x'yz(w'+w)$$

$$CY = x'yz$$

For Car Green (CG):

CG is positive at ticks 0, 1, 2, 3, 4, 5. Therefore the Boolean Sum of Products is: = x'y'z'w' + x'y'z'w + x'y'zw' + x'y'zw + x'yz'w' + x'yz'w

Simplification with K-Map

m0	<mark>m1</mark>	m3	<mark>m2</mark>
<mark>m4</mark>	<mark>m5</mark>	m7	m6
m12	m13	m15	m14
m8	m9	m11	m10

Using adjacency of m0,m1,m3,m2 and m4,m5, m0, m1:

$$= x'y'(z'w' + z'w + zw' + zw) + x'z'(yw'+yw+y'w'+y'w)$$

$$CG = x'y' + x'z'$$

Pedestrian:

For Pedestrian Green (PG):

PG is positive at ticks 8, 9, and 10. Therefore the Boolean Sum of Products is:

$$= xy'z'w' + xy'z'w + xy'zw'$$

Simplification with K-Map

m0	m1	m3	m2
m4	m5	m7	m6
m12	m13	m15	m14
<mark>m8</mark>	<mark>m9</mark>	m11	<mark>m10</mark>

Using adjacency of m8,m9 and m8, m10:

$$= xy'z'w' + xy'z'w + xy'zw' + xy'z'w'$$

$$= xy'z'(w'+w) + xy'w'(z'+z)$$

PG = xy'z' + xy'w'

For Pedestrian Red (PR):

PR is positive at ticks 0, 1, 2, 3, 4, 5, 6, 7, 11. Therefore the Boolean Sum of Products is:

= x'y'z'w' + x'y'z'w + x'y'zw' + x'y'zw + x'yz'w' + x'yz'w + x'yzw' + x'yzw + x'yzw + x'yzw' + x'yzw

Simplification with K-Map

m0	<mark>m1</mark>	m3	<mark>m2</mark>
<mark>m4</mark>	<mark>m5</mark>	<mark>m7</mark>	<mark>m6</mark>
m12	m13	m15	m14
m8	m9	m11	m10

Using adjacency of m0,m1,m3,m2 and m4,m5, m7, m6 and m3, m11:

$$= x'y'(z'w' + z'w + zw' + zw) + x'y(z'w' + z'w + zw' + zw) + xy'zw + x'y'zw$$

= $x'y' + x'y + y'zw$

$$PR = x' + y'zw$$

Controller Combinational Circuit:

Counter

Finite State Machine:

Counter Truth Table:

x	у	Z	w	Jx	Kx	Jy	Ку	Jz	Kz	Jw	Kw
0	0	0	0	0	X	0	Х	0	X	1	Х
0	0	0	1	0	Х	0	Х	1	Х	X	1
0	0	1	0	0	Х	0	Х	Х	0	1	Х
0	0	1	1	0	X	1	X	Х	1	X	1
0	1	0	0	0	Х	Х	0	0	Х	1	Х
0	1	0	1	0	X	Х	0	1	Х	X	1
0	1	1	0	0	Х	Х	0	Х	0	1	X
0	1	1	1	1	X	Х	1	Х	1	Х	1
1	0	0	0	Х	0	0	Х	0	Х	1	X
1	0	0	1	Х	0	0	Х	1	X	X	1
1	0	1	0	Х	0	0	Х	Х	0	1	X
1	0	1	1	X	1	0	х	X	1	X	1

Controller Boolean Sum of Products & Simplification

Jx: x'yzw Kx: xy'zw

Jy: <mark>x'y'zw</mark> Ky: <mark>x'yzw</mark> Jz: w Kz: w

Jw: x'y'z'w' + x'y'zw' + x'yz'w' + x'yzw' + xy'z'w' + xy'zw'

<mark>m0</mark>	m1	m3	<mark>m2</mark>		
<mark>m4</mark>	m5	m7	<mark>m6</mark>		
m12	m13	m15	m14		
m8	m9	m11	<mark>m10</mark>		

Jw after simplification: y'w' + x' w'

Kw: 1

Counter Sequential Circuit:

