

# RK3588 EVB User Guide

Releaseversion:V1.0

Releasedate: 2022-1-25

RK3588 EVB User Guide Disclaimer

**Disclaimer** 

This document is provided "status quo", RockchipElectronics Co., Ltd. ("the company", the same below)

does not make any statements, information and content of this document on the accuracy, reliability, completeness,

marketability, or specific purpose and non-infringement provide any express or implied statement or guarantee.

This document is only used as a reference for instructions.

Due to product version upgrades or other reasons, this document will be updated aperiodic. Unless otherwise

agreed, this document is only used as a guide. All statements, information and suggestions in this document do not

constitute any express or implied warranty.

**Brand Statement** 

"Rockchip" and "瑞芯微", "瑞芯"and other Rockchip trademarks are trademarks of Rockchip Electronics

co., ltd., are exclusively owned by Rockchip Electronics Co., Ltd.

All other trademarks or registered trademarks mentioned in this document are owned by their respective

owners.

Copyright © 2022Rockchip Electronics Co., Ltd.

Without the written permission of the company, any unit or individual shall not extract or copy part or all of

the content of this document, shall not disseminate it in any form.

Rockchip Electronics Co., Ltd.

Add: No.18 Building, A District, No.89, software Boulevard Fuzhou, Fujian, PRC

Web: www.rock-chips.com Hotline: +86-591-83991906

Fax: +86-591-83951833

Email: fae@rock-chips.com



.I

RK3588 EVB User Guide Preface

# **Preface**

# **Overview**

This guide mainly introduces the basic functions and hardware features, multi-function hardware configuration, and software debugging operation methodsof RK3588EVB. It aims to help debuggers use RK3588EVB befaster and more accurately, and be familiar with RK3588 chip development and application solutions.

# **Product version**

The product versions corresponding to this document are as follows:

| Product name | Product version                                |  |
|--------------|------------------------------------------------|--|
| RK3588 EVB   | RK_EVB1_RK3588_LP4XD200P232SD10H1_V10_20210818 |  |

# **Intended Audience**

This guide is mainly intended for:

- Hardware development engineers
- Layout engineers
- Technical support engineers
- Test engineers

RK3588 EVB User Guide Revision History

# **Revision History**

This revision history recorded description of each version, and any updates of previous versions are included in the latest one.

| Version<br>No. | Author | Revision Date | Revision Description | Remark |
|----------------|--------|---------------|----------------------|--------|
| V1.0           | Lzx    | 2022-1-6      | Initial release      |        |
|                |        |               |                      |        |
|                |        |               |                      |        |
|                |        |               |                      |        |
|                |        |               |                      |        |

RK3588 EVB Uses Guide Acronyms

# Acronyms

Acronyms include the abbreviations of commonly used phrases in this document:

| Abbreviation | English meaning                                               | Chinese meaning       |
|--------------|---------------------------------------------------------------|-----------------------|
| CPU          | Central Processing Unit                                       | 中央处理器                 |
| NPU          | Neural Network Processing Unit                                | 神经网络处理器               |
| VPU          | Video Processing Unit                                         | 视频处理器                 |
| DDR          | Double Data Rate                                              | 双倍速率同步动态随机存储器         |
| eMMC         | Embedded Multi Media Card                                     | 内嵌式多媒体存储卡             |
| eDP          | Embedded DisplayPort                                          | 嵌入式数码音视讯传输接口          |
| HDMI         | High Definition Multimedia Interface                          | 高清晰度多媒体接口             |
| I2C          | Inter-Integrated Circuit                                      | 内部整合电路(两线式串行通讯总线)     |
| I2S          | Inter-IC Sound                                                | 集成电路内置音频总线            |
| PMIC         | Power Management IC                                           | 电源管理芯片                |
| LDO          | Low Drop Out Linear Regulator                                 | 低压差线性稳压器              |
| DCDC         | Direct Current to Direct Current                              | 直流电转直流电               |
| CAN          | Controller Area Network                                       | 控制器局域网络               |
| SARADC       | Successive Approximation Register Analog to Digital Converter | 逐次逼近寄存器型模数转换器         |
| UART         | Universal Asynchronous Receiver/ Transmitter                  | 通用异步收发传输器             |
| JTAG         | Joint Test Action Group                                       | 联合测试行为组织              |
| PWM          | Pulse Width Modulation                                        | 脉冲宽度调制                |
| MIPI         | Mobile Industry Processor Interface                           | 移动产业处理器接口             |
| LVDS         | Low-Voltage Differential Signaling                            | 低电压差分信号               |
| PMIC         | Power Management IC                                           | 电源管理芯片                |
| PMU          | Power Management Unit                                         | 电源管理单元                |
| RK/Rockchip  | Rockchip Electronics Co.,Ltd.                                 | 瑞芯微电子股份有限公司           |
| USB          | Universal Serial Bus                                          | 通用串行总线                |
| SATA         | Serial Advanced Technology Attachment                         | 串行高级技术附件              |
| PCIe         | Peripheral Component Interconnect Express                     | 外围组件快速互连              |
| RGB          | Red,Green,Blue; RGB color mode is a color                     | 红绿蓝, RGB 色彩模式, 是工业界的一 |
| KUD          | standard in industry                                          | 种颜色标准                 |
| VGA          | Video Graphics Array                                          | 电脑显示视频图像标准接口          |
| ADB          | Android Debug Bridge                                          | 安卓调试桥                 |
| IR           | Infrared Radiation                                            | 红外线                   |
| SPDIF        | Sony/Philips Digital Interface                                | 索尼/飞利浦数字音频接口          |
| RTC          | Real-time clock                                               | 实时时钟                  |
| RGMII        | Reduced Gigabit Media Independent Interface                   | 精简吉比特介质独立接口           |
| WIFI         | Wireless Fidelity                                             | 无线保真                  |
| CIF          | Camera Interface                                              | 摄像头接口                 |

# **Contents**

| P) | reface  |                                 | 11  |
|----|---------|---------------------------------|-----|
| C  | ontents |                                 | V   |
| Fi | igures  |                                 | VII |
| T  | ables   |                                 | IX  |
| 1  | Syste   | em Introduction                 | 1   |
|    | 1.1     | RK3588 Introduction             | 1   |
|    | 1.2     | RK3588 Chip Block Diagram       | 2   |
|    | 1.3     | System Framework                | 2   |
|    | 1.3.1   | System Block Diagram            | 2   |
|    | 1.3.2   | Punction Summary                | 3   |
|    | 1.3.3   | Functional Interface            | 4   |
|    | 1.3.4   | Function Module Layout          | 5   |
|    | 1.4     | Module                          | 6   |
|    | 1.5     | Power on and off and Standby    | 6   |
|    | 1.6     | Firmware Upgrade                | 6   |
|    | 1.6.1   | USB Driver Installation         | 6   |
|    | 1.6.2   | P. Firmware Upgrade Method      | 7   |
|    | 1.7     | Serial Debugging                | 9   |
|    | 1.7.1   | Serial Port Tool                | 9   |
|    | 1.7.2   | 2 ADB Debug                     | 11  |
| 2  | Har     | dware Introduction              | 12  |
|    | 2.1     | The Pictures                    | 12  |
|    | 2.2     | Power Block Diagram             | 13  |
|    | 2.3     | I2C Address                     | 13  |
|    | 2.4     | Extension Connector Information | 14  |
|    | 2.5     | Reference Diagram               | 15  |
| 3  | Mod     | lule Brief                      | 16  |
|    | 3.1     | Power Input                     | 16  |
|    | 3.2     | Memory                          | 16  |
|    | 3.3     | RTC Circuit                     | 18  |
|    | 3.4     | Key Input                       | 18  |
|    | 3.5     | SATA Power Socket               | 19  |
|    | 3.6     | PCIe Socket                     | 19  |
|    | 3.7     | Ethernet Port                   | 20  |
|    | 3.8     | SATA Interface                  | 20  |
|    | 3.9     | VGA Output                      | 21  |
|    | 3.10    | BT/WIFI Interface               | 21  |
|    | 3.11    | Debug Interface                 | 22  |
|    | 3.12    | JTAG Interface                  | 22  |
|    | 3.13    | MIPI D/CPHY Input Interface     | 24  |
|    | 3.14    | MIPI DPHY Input Interface       | 25  |
|    | 3.15    | TYPEC Interface                 | 27  |
|    | 3.16    | USB3.0 Interface                | 28  |
|    | 3.17    | USB2.0 Host Interface           | 29  |

| KK3588 | EVB User Guide          | Contents |
|--------|-------------------------|----------|
| 3.18   | HDMI Output Interface   |          |
| 3.19   | HDMI Input Interface    | 30       |
| 3.20   | Fan Power Connector     | 30       |
| 3.21   | Sensor Module Expansion | 31       |
| 3.22   | Speaker Interface       | 32       |
| 4 Pre  | cautions                | 33       |

# **Figures**

| Figure 1-1 RK3588 Chip Block Diagram                              | 2  |
|-------------------------------------------------------------------|----|
| Figure 1-2 RK3588 EVB1 System Block Diagram                       | 3  |
| Figure 1-3 EVB1 Functional Interface Distribution Diagram (front) | 5  |
| Figure 1-4 EVB1 Functional Interface Distribution Diagram (back)  | 5  |
| Figure 1-5 Schematic Diagram of Successful Driver Installation    | 6  |
| Figure 1-6 Schematic Diagram of Entering Loader Programming Mode  | 7  |
| Figure 1-7 Schematic Diagram of Entering MASKROM Programming Mode | 8  |
| Figure 1-8 Get the Current Port COM Number                        | 9  |
| Figure 1-9 Serial Port Tool Configuration Interface               | 10 |
| Figure 1-10 Serial Port Tool Debug Interface                      | 11 |
| Figure 1-11 ADB Connection is Normal                              | 11 |
| Figure 2-1 RK3588 EVB Picture                                     | 12 |
| Figure 2-2 RK3588 EVB Block Diagram                               | 13 |
| Figure 2-3 Pitch 0.8mm Vertical Double Row 80 PIN PCB Package     |    |
| Figure 3-1 DC12V Input, Front-end Buck Converter and PMIC Chip    | 16 |
| Figure 3-2 Location of LPDDR4x and eMMC                           | 17 |
| Figure 3-3 Reserve Location of SPI Flash                          | 17 |
| Figure 3-4 Key Position of EVB into MASKROM Programming           | 17 |
| Figure 3-5 RTC Circuit                                            | 18 |
| Figure 3-6 Key Position                                           | 18 |
| Figure 3-7 SATA Power 12V/5V Output                               | 19 |
| Figure 3-8 PCIex4 Socket                                          | 19 |
| Figure 3-9 Gigabit Network Interface                              | 20 |
| Figure 3-10 UART Debug Interface                                  | 20 |
| Figure 3-11 VGA Video Output Interface                            | 21 |
| Figure 3-12 BT/WIFI Antenna Interface                             | 21 |
| Figure 3-13 Debug Interface                                       | 22 |
| Figure 3-14 JTAG Socket                                           | 23 |
| Figure 3-15 DIP Switch                                            | 23 |
| Figure 3-16 MIPID/CPHY RX Input Interface                         | 24 |
| Figure 3-17 MIPI DPHY Video Input Interface                       | 26 |
| Figure 3-18 TYPEC Interface                                       | 28 |
| Figure 3-19 USB3.0 OTG Interface                                  | 28 |
| Figure 3-20 USB2.0 Host Interface                                 | 29 |
| Figure 3-21 HDMI TX Interface                                     | 29 |
| Figure 3-22 HDMI RX Interface                                     | 30 |
| Figure 3-23 Fan Power Interface                                   | 30 |

| RK3588 EVB User Guide           | Figures |
|---------------------------------|---------|
| Figure 3-24 IMX415 Module Board | 31      |
| Figure 3-25 SPK Socket          | 32      |

RK3588 EVB User Guide Tables

# **Tables**

| Table 1-1 PCB Functional Interface Introduction Table                                          | 4    |
|------------------------------------------------------------------------------------------------|------|
| Table 2-1 Correspondence Table of Peripheral Address and IO Level Value Mounted on I2C Channel | . 13 |
| Table 3-1 MIPID/CPHY_RX Signal Definition Table                                                | . 24 |
| Table 3-2 MIPI DPHY_RX Signal Definition Table                                                 | . 26 |
| Table 3-3 IMX415 Module Expansion Interface Signal Definition Table                            | . 31 |

# 1 System Introduction

#### 1.1 RK3588 Introduction

RK3588 is a high-performance, low-power application processor chip. It integrates 4 Cortex-A76, 4 Cortex-A55 and independent NEON coprocessor. Suitable for ARM PC, edge computing, personal mobile Internet devices and other multimedia products.

RK3588 has built-in a variety of powerful embedded hardware engines, providing excellent performance for high-end applications. It supports 8K@60fps H.265 and VP9 decoder, 8k@30fps H.264 decoder and 4K@60fps AV1 decoder; it also supports 8K@30fps H.264 and H.265 encoder, high quality JPEG encoder/decoder, dedicated image pre-processor and post-processor.

RK3588 has a built-in 3D GPU that is fully compatible with OpenGL ES1.1/2.0/3.2, OpenCL 2.2 and Vulkan 1.2. The special 2D hardware engine with MMU will maximize the display performance and provide a smooth operating experience.

RK3588 introduces a new generation of ISP with the largest 48M pixels completely based on hardware. It implements many algorithm accelerators, such as HDR, 3A, LSC, 3DNR, 2DNR, sharpening, defogging, fisheye correction, gamma correction, etc.

The NPU embedded in RK3588 supports INT4/INT8/INT16/FP16 mixed operation, and the computing power is up to 6TOP. In addition, with its strong compatibility, network models based on a series of frameworks such as TensorFlow/MXNet/PyTorch/Caffe can be easily converted.

RK3588 has high-performance 4-channel external memory interfaces (LPDDR4/LPDDR4X/LPDDR5), which can support systems with high memory bandwidth requirements, and also provides a complete set of peripheral interfaces to flexibly support various Class application.

### 1.2 RK3588 Chip Block Diagram



Figure 1-1RK3588 Chip Block Diagram

# 1.3 System Framework

#### 1.3.1 System Block Diagram

RK3588 EVB system uses RK3588 as the core chip of the system, and two power supply schemes, RK806-2 dual PMIC or RK806-1 single PMIC can be selected. Use LPDDR4X, eMMC, MIPI TX, and SATA/PCIe and other functional external device interfaces to integrate a stable and mass-produced solution. The detailed system block diagram is as follows:



Figure 1-2RK3588 EVB1 System Block Diagram

#### **1.3.2 Function Summary**

RK3588 EVB includes the following functions:

- DC Power: DC 12V adapter power supply interface;
- TYPEC: One complete TYPEC interface, compatible with system firmware upgrade channel and DP1.4 output interface;
- USB2.0 HOST0/1: Two-way USB2.0standard-A interface, can connect to mouse, U disk, USB HUB and other equipment;
- MIPI DCPHY: Support two channels of 4lane MIPI DPHY or two channels of 3lane MIPICPHY signal input, access via 80pin socket;
- MIPI DPHY: Support two channels of 4lane or four channels of 2lane MIPI signal input, access via 80pin socket;
- HDMI2.1 OUT: Two HDMI2.1 OUT standard-A interfaces, a single channel can support up to 8K@60Hz output;
- MIPI DPHY0/1 TX: Support two channels of 4lane MIPI signal output, access via FPC line;
- VGA OUT: DP signal convert to VAG output
- PCIe Wi-Fi(2T2RWifi6&BT5.0): Wi-Fi model is AP6275P/AP6275PR3, external SMA antenna, support wireless Internet function
- Ethernet: Support two channels RJ45 ports 10/100/1000M Ethernet;

- Audio Interface: Support speaker, earphone output sound, single MIC recording
- SATA3.0Interface: Two 7pin SATA interface
- PCIe3.0 Interface: One standard PCIex4 interface, used to expand PCIe devices;
- UART Debug: User debugging to view the LOG information; support TYPEC and MINI USB interface;
- JTAG: JTAG debug interface of system;
- System Key: Include Reset, MASKROM, PWRON, V+/Recover, V-, MENU, ESC button;
- SPDIF: Support digital audio interface;
- RTC: Using HYM8563TS chip, can be powered by development board or button battery (CR1220-3V)

#### 1.3.3 Functional Interface

Table 1-1PCB Functional Interface Introduction Table

| Function                                       | usable or not       |
|------------------------------------------------|---------------------|
| LPDDR4x(total capacity8GB)                     | YES                 |
| eMMC(total capacity32GB)                       | YES                 |
| SPI Flash                                      | No patch by default |
| DC 12V Input                                   | YES                 |
| USB3.0 OTG(1 Port)                             | YES                 |
| USB2.0 Host(2 Port)                            | YES                 |
| MIPI D/CPHY RX                                 | YES                 |
| MIPI DPHY RX                                   | YES                 |
| HDMI2.0 RX                                     | YES                 |
| HDMI2.1 OUT(2 Port)                            | YES                 |
| MIPI DPHY DSI TX1(2x4lane)                     | YES                 |
| VGA OUT                                        | YES                 |
| BT&PCIe Wifi(2x2 Wifi&BT5.0)                   | YES                 |
| 1000 Mbps Ethernet port 10M/100M/1000M(2 Port) | YES                 |
| Audio(SPK、MIC、Earphone)                        | YES                 |
| SATA3.0 Interface(2 Port)                      | YES                 |
| PCIe3.0 Interface(4Lane)                       | YES                 |
| UART Debug(TPYEC/MINI USB)                     | YES                 |
| JTAG Interface                                 | YES                 |
| System Key                                     | YES                 |
| Maskrom Key                                    | YES                 |

#### 1.3.4 Function Module Layout

EVB1 functional interface distribution diagram:



Figure 1-3EVB1 Functional Interface Distribution Diagram(front)



Figure 1-4EVB1 Functional Interface Distribution Diagram(back)

#### 1.4 Module

The RK3588 EVB kit includes the following items:

- RK3588EVB
- Power adapter, default specification: input 100V AC~240V AC, 50Hz; output 12V DC, 3A
- Display, specification: MIPI; size: 5.5 inches/vertical screen; resolution: 1920\*1080
- One 2.4G/5G dual-band SMA male connector antennas
- IMX415 monocular cameramodule

#### 1.5 Power on and offand Standby

The EVB power on, power off and standby methods are introduced as follows:

- Power on: Use DC 12V power supply, turn on the main power switch; wait to enter the Android interface, it means that the default firmware has been successfully started.
- Power off: Press and hold the power button for 6 seconds to shut down the system.
- Standby: Press the power button, the system will enter the first-level standby state. When there is no USB OTG connection, and there is no other operation (such as key operation), and the software does not have a Wake\_Lock source. After about 3s, it will switch from the first-level standby to the second-level standby state. Standby mode can be launched through the Power button.

#### 1.6 Firmware Upgrade

#### 1.6.1 USB Driver Installation

The driver needs to be installed before the EVB driver is upgraded. The following describes the driver installation processunder Windows system.

Find **DriverAssitant\_v5.1.1** in the provided tool folder, and click **DriverInstall.exe** to pop up the following interface. Click "Install Driver" and wait for the prompt to install the driver successfully. If the old driver has been installed, please click "Uninstall Driver" and reinstall the driver.



Figure 1-5Schematic Diagram of Successful Driver Installation

#### 1.6.2 Firmware Upgrade Method

There are two ways to upgrade RK3588 EVB firmware:

Enter Loader upgrade mode:

Before the system is powered on, SARADC\_IN1 needs to be kept low, and the system will enter the Loader state.

Specific steps are as follows:

- 1) Connect the TYPE\_C port to the computer, press and hold the V+/REC button on the mainboard.
- 2) EVB is powered by 12V. If it has been powered on, press the reset button.
- 3) After the programming tool shows that "a Loader device is found", release the V+/REC button. In the red rectangular area of the tool, right-click and choose "Import Configuration", then find the firmware path, and select the config file
- 4) The programming tool corresponds to selecting Loader, Parameter, Uboot and other files.
- 5) Click Execute to enter the upgrade state. The right side of the tool is the progress display bar, which displays the download progress and verification status.



Figure 1-6Schematic Diagram of Entering Loader Programming Mode

• Enter MASKROM upgrade mode:

Before the system is powered on, SARADC\_IN0 is low and enters the MASKROM state.

Specific steps are as follows:

- 1) Connect the TYPE\_C port to the computer, press and hold the MASKROM button on the board.
- 2) EVB is powered by 12V. If it has been powered on, press the reset button.
- 3) After the programming tool shows that "a MASKROM device is found", release the MASKROM button. In the red rectangular area of the tool, right-click and choose "Import Configuration", then find the firmware path, and select the config.cfg file
- 4) The programming tool correspondingly selects Loader, Parameter, Uboot and other files.
- 5) Click Execute to enter the upgrade state. The right side of the tool is the progress display bar, which displays the download progress and verification status.





Figure 1-7Schematic Diagram of Entering MASKROM Programming Mode

#### 1.7 Serial Debugging

#### 1.7.1 Serial Port Tool

Connect the MINI USB Debug debugging interface of the development board to the the computer, and get the current port COM number in the device manager of the PC end.



Figure 1-8Get the Current Port COM Number

Open the serial port tool, under the "Quick Connect" interface, first select the serial port, then select the corresponding serial port number, change the baud rate to 1.5M (RK3588 supports 1.5M baud rate by default), and close the flow control at Serial, Finally, click the "Open" button to enter the serial port debugging interface.



Figure 1-9Serial Port Tool Configuration Interface



Figure 1-10Serial Port Tool Debug Interface

#### 1.7.2 ADBDebug

- 1) Ensure that the driver is installed successfully, and the PC is connected to the TYPE\_C port on the same side as the power supply of the development board;
- 2) Power on the development board and boot into the system;
- 3) Open the adb toolon the PC side;
- 4) Type "adb shell" to enter adb debugging.



Figure 1-11ADB Connection is Normal

# 2 Hardware Introduction

# 2.1 The Pictures



Figure 2-1RK3588 EVBPicture

#### 2.2 Power Block Diagram



Figure 2-2 RK3588 EVB Block Diagram

#### 2.3 I2CAddress

The development board reserves a wealth of peripheral interfaces. The user debugging I2C peripherals will involve I2C channel multiplexing. Table 2-1 shows the I2C address and level values corresponding to the existing development board devices.

| I2Cchannel  | Device          | I2Caddress | Powerdomain |
|-------------|-----------------|------------|-------------|
| I2C0        | N/A             | N/A        | N/A         |
| I2C1        | N/A             | N/A        | N/A         |
| I2C2        | HYM8563TS(RTC)  | 0xA3       | 1.8V        |
| I2C2        | FUSB302B(TYPEC) | 0xD6       | 1.8V        |
| I2C2        | RTD2166(VGA)    | TBD        | 1.8V        |
| I2C3        | MIPI CSI0       | TBD        | 1.8V        |
| I2C4        | MIPI CSI1       | TBD        | 1.8V        |
| I2C5        | MIPI DCPHY0/1   | TBD        | 1.8V        |
| I2C6        | Touch Panel     | TBD        | 3.3V        |
| I2C7        | ES8388(CODEC)   | TBD        | 1.8V        |
| HDMITX0_I2C | HDMI TX0        | TBD        | 3.3V        |
| HDMITX1_I2C | HDMI TX1        | TBD        | 1.8V        |
| HDMIRX_I2C  | HDMIRX          | TBD        | 1.8V        |

Table 2-1 Correspondence Table of Peripheral Address and IO Level Value Mounted on I2C Channel

Note: When using the expansion board, make sure that the I2C address on the board does not conflict with the I2C address on the development board.

#### 2.4 Extension Connector Information

In actual use, the user may make an expansion board. The model of the development board connector is as follows:

U4600 and U4700 are vertical double-row 80PIN card sockets with 0.3mm pins and 0.8mm spacing. The dimensions are as follows:





Figure 2-3Pitch 0.8mm Vertical Double Row 80 PIN PCB Package

# 2.5 Reference Diagram

The reference diagram and PCB design information corresponding to the EVB are as follows:

- Reference diagram: RK\_EVB1\_RK3588\_LP4XD200P232SD10H1\_V10\_20210818RZF.DSN;
- PCB design: RK\_EVB1\_RK3588\_LP4XD200P232SD10H1\_V10\_20210817\_final\_lint.brd.

#### 3 Module Brief

# 3.1 Power Input

The power adapter inputs 12V/3A power, after passing the front-end buck converter power supply, the system power VCC5V0\_SYS is obtained, and then the system voltage is provided to the PMIC power management chip, and different voltages are output for system use.

Power adapter input port, front-end Buck converter and PMIC chip:





Figure 3-1DC12V Input, Front-end Buck Converter and PMIC Chip

### 3.2 Memory

- eMMC:The storage type on the development board is eMMC FLASH, and the default capacity is 32GB;:
- SPI Flash: The development board reserves the location of the SPI device;
- DDR: The development board DDR adopts two pieces of 4GB LPDDR4x, with a total capacity of 8GB.



Figure 3-2Location of LPDDR4x and eMMC



Figure 3-3Reserve Location of SPI Flash

The key position of EVB into MASKROM programming:



Figure 3-4Key Position of EVB into MASKROM Programming

#### 3.3 RTC Circuit

The RTC circuit adopts the HYM8563TS chip, which can be powered by the development board or its own button battery (not included by default, you need to purchase a CR1220-3V button battery by yourself), to ensure that it can continue to provide accurate time even when the board is powered off, and communicate with master through the I2C signal.



Figure 3-5 RTC Circuit

### 3.4 Key Input

The development board uses SARADC\_IN1 as the RECOVER detection port, supports 12-bit resolution, and can enter the LOADER programming mode through the V+/REC button. In addition, the board also has a RESET button, which is convenient to reset and restart the machine through hardware; and other commonly used several Buttons: V+, V-, ESC, MENU, PWRON.

The key positions are as follows:



Figure 3-6Key Position

#### 3.5 SATA Power Socket

The SATA device power supply ports used by the development board output 12V/5V respectively.



Figure 3-7SATA Power 12V/5V Output

#### 3.6 PCIeSocket

The development board uses a standard PCIe3.0 connector, which can be connected to an external PCIe card for communication.

- Working mode: End Point(EP) &Root Complex(RC).
- The link supports 4 lane data interfaces.
- The 100MHz clock is provided by the external clock chip PI6C557-05BLE.



Figure 3-8PCIex4 Socket

#### 3.7 Ethernet Port

The development board supports two RJ45 ports, which can provide dual Gigabit Ethernet connection function. The internal integrated Gigabit Ethernet MAC and PCIe2.0 are respectively used to connect with the external PHY chip. The PHY model is RTL8211F-CG/RTL8111HS. The characteristics are as follows:

- Compatible with IEEE802.3 standard, support full-duplex and half-duplex operation, support cross detection and self-adaptation.
- Support 10/100/1000M data rate.
- The interface adopts the combination of RJ45 interface with isolation transformer and indicator light.



Figure 3-9Gigabit Network Interface

#### 3.8 SATAInterface

The development board provides two 7P SATA ports.



Figure 3-10UART Debug Interface

#### 3.9 VGAOutput

The development board supports standard VGA interface video output, and is pasted with the RTD2166 chip by default.



Figure 3-11VGA Video Output Interface

#### 3.10 BT/WIFIInterface

The WIFI+BT module on the board adopts AMPAK AP6275P, and the characteristics are as follows:

- Support 2x2WIFI (2.4G and 5G, 802.11 a/b/g/n/ac), BT5.0 function, and 2 external SMA interface antennas.
- BT data adopts UART communication mode.
- BT voice is connected to the master I2S interface.
- WIFI data adopts PCIe data bus.

RK3588 EVB is equipped with two 2.4GHz/5GHz dual-mode antennas by default.



Figure 3-12BT/WIFI Antenna Interface

# 3.11 DebugInterface

The development board supports TYPEC and MINI USB debugging interfaces.



Figure 3-13DebugInterface

#### 3.12 JTAGInterface

The development board reserves 2xJTAG interfaces, and the reserved interface in the figure below is ARM JTAG. The standard JTAG socket supports ARM/MCU JTAG, which can be switched by the DIP switch; when the switch 1/2 is turned on and 3/4 is turned off, it supports ARM JTAG, and when the switch 1/2 is turned off and 3/4 is turned on, it supports MCU JTAG.



Figure 3-14JTAGSocket



Figure 3-15DIP Switch

# 3.13 MIPI D/CPHYInput Interface

The MIPI D/CPHY input interface adopts a vertical 80pin socket (61082-081402LF, see section 2.4 for specifications) with a pitch of 0.8mm, and supports dual MIPI D/CPHY interface input. It can support two-way 4Lane DPHY module input or two-way 3Lane CPHY module input. MIPI DPHY/CPHY supports up to 4.5Gbps/Lane and 5.7Gbps/Trio respectively. The socket model for this 80pin socket is 61083-081402LF. Please refer to Chapter 2.4 for the package size specification. Expansion boards can be made as required.



Figure 3-16MIPID/CPHY RXInput Interface

The MIPID/CPHY\_RX interface signal sequence is as follows:

Table 3-1MIPID/CPHY\_RX Signal Definition Table

| Pin | DPHY(single)       | DPHY(dual)         | CPHY (single)         | CPHY (dual)           | Pin |
|-----|--------------------|--------------------|-----------------------|-----------------------|-----|
| 1   | GND                | GND                | GND                   | GND                   | 2   |
| 3   | MIPI_DPHY0_RX_D0N  | MIPI_DPHY1_RX_D0N  | MIPI_CPHY0_RX_TRIO0_A | MIPI_CPHY1_RX_TRIO0_A | 4   |
| 5   | MIPI_DPHY0_RX_D0P  | MIPI_DPHY1_RX_D0P  | MIPI_CPHY0_RX_TRIO0_B | MIPI_CPHY1_RX_TRIO0_B | 6   |
| 7   | GND                | GND                | GND                   | GND                   | 8   |
| 9   | MIPI_DPHY0_RX_D1N  | MIPI_DPHY1_RX_D1N  | MIPI_CPHY0_RX_TRIO0_C | MIPI_CPHY1_RX_TRIO0_C | 10  |
| 11  | MIPI_DPHY0_RX_D1P  | MIPI_DPHY1_RX_D1P  | MIPI_CPHY0_RX_TRIO1_A | MIPI_CPHY1_RX_TRIO1_A | 12  |
| 13  | GND                | GND                | GND                   | GND                   | 14  |
| 15  | MIPI_DPHY0_RX_CLKN | MIPI_DPHY1_RX_CLKN | MIPI_CPHY0_RX_TRIO1_B | MIPI_CPHY1_RX_TRIO1_B | 16  |
| 17  | MIPI_DPHY0_RX_CLKP | MIPI_DPHY1_RX_CLKP | MIPI_CPHY0_RX_TRIO1_C | MIPI_CPHY1_RX_TRIO1_C | 18  |
| 19  | GND                | GND                | GND                   | GND                   | 20  |
| 21  | MIPI_DPHY0_RX_D2N  | MIPI_DPHY1_RX_D2N  | MIPI_CPHY0_RX_TRIO2_A | MIPI_CPHY1_RX_TRIO2_A | 22  |
| 23  | MIPI_DPHY0_RX_D2P  | MIPI_DPHY1_RX_D2P  | MIPI_CPHY0_RX_TRIO2_B | MIPI_CPHY1_RX_TRIO2_B | 24  |
| 25  | GND                | GND                | GND                   | GND                   | 26  |
| 27  | MIPI_DPHY0_RX_D3N  | MIPI_DPHY1_RX_D3N  | MIPI_CPHY0_RX_TRIO2_C | MIPI_CPHY1_RX_TRIO2_C | 28  |

| Pin | DPHY(single)         | DPHY(dual)           | CPHY (single)        | CPHY (dual)          | Pin |
|-----|----------------------|----------------------|----------------------|----------------------|-----|
| 29  | MIPI_DPHY0_RX_D3P    | MIPI_DPHY1_RX_D3P    | NO_USE               | NO_USE               | 30  |
| 31  | GND                  | GND                  | GND                  | GND                  | 32  |
| 33  | NC                   | NC                   | NC                   | NC                   | 34  |
| 35  | NC                   | NC                   | NC                   | NC                   | 36  |
| 37  | GND                  | GND                  | GND                  | GND                  | 38  |
| 39  | MIPI_CAM1_CLKOUT     | MIPI_CAM2_CLKOUT     | MIPI_CAM1_CLKOUT     | MIPI_CAM2_CLKOUT     | 40  |
| 41  | NC                   | NC                   | NC                   | NC                   | 42  |
| 43  | GND                  | GND                  | GND                  | GND                  | 44  |
| 45  | I2C5_SDA_M0_MIPI     | I2C5_SDA_M0_MIPI     | I2C5_SDA_M0_MIPI     | I2C5_SDA_M0_MIPI     | 46  |
| 47  | I2C5_SCL_M0_MIPI     | I2C5_SCL_M0_MIPI     | I2C5_SCL_M0_MIPI     | I2C5_SCL_M0_MIPI     | 48  |
| 49  | NC                   | NC                   | NC                   | NC                   | 50  |
| 51  | MIPI_DCPHY0_RX_PDN_H | MIPI_DCPHY1_RX_PDN_H | MIPI_DCPHY0_RX_PDN_H | MIPI_DCPHY1_RX_PDN_H | 52  |
| 53  | NC                   | NC                   | NC                   | NC                   | 54  |
| 55  | NC                   | NC                   | NC                   | NC                   | 56  |
| 57  | MIPI_DPHY_FSYNC      | MIPI_DPHY_FSYNC      | MIPI_DPHY_FSYNC      | MIPI_DPHY_FSYNC      | 58  |
| 59  | MIPI_DPHY_HSYNC      | MIPI_DPHY_HSYNC      | MIPI_DPHY_HSYNC      | MIPI_DPHY_HSYNC      | 60  |
| 61  | VCC_1V8_S3           | VCC_3V3_S3           | VCC_1V8_S3           | VCC_3V3_S3           | 62  |
| 63  | NC                   | NC                   | NC                   | NC                   | 64  |
| 65  | MIPI_DCPHY0_PWREN0_H | MIPI_DCPHY0_PWREN1_H | MIPI_DCPHY0_PWREN0_H | MIPI_DCPHY0_PWREN1_H | 66  |
| 67  | IRC_AIN              | NC                   | IRC_AIN              | NC                   | 68  |
| 69  | IRC_BIN              | NC                   | IRC_BIN              | NC                   | 70  |
| 71  | NC                   | NC                   | NC                   | NC                   | 72  |
| 73  | NC                   | NC                   | NC                   | NC                   | 74  |
| 75  | GND                  | GND                  | GND                  | GND                  | 76  |
| 77  | VCC5V0_SYS           | GND                  | VCC5V0_SYS           | GND                  | 78  |
| 79  | VCC5V0_SYS           | VCC12V_DCIN          | VCC5V0_SYS           | VCC12V_DCIN          | 80  |

# 3.14 MIPI DPHYInput Interface

The MIPI DPHY input interface adopts a vertical 80pin socket with a pitch of 0.8mm (61082-081402LF, see section 2.4 for specifications). It can support two-way4Lane MIPI DPHY module inputs or four 2Lane MIPI DPHY signal inputs. MIPI DPHY supports up to 2.5Gbps/Lane respectively. Together with MIPI D/CPHY, it can form a maximum of 6 module inputs. The socket model for this 80pin socket is 61083-081402LF. Please refer to Chapter 2.4 for the package size specification.



Figure 3-17MIPI DPHY Video Input Interface

Table 3-2MIPI DPHY\_RX Signal Definition Table

| Pin | DPHY(single)       | DPHY (dual)        | Pin |
|-----|--------------------|--------------------|-----|
| 1   | GND                | GND                | 2   |
| 3   | MIPI_CSI0_RX_D0N   | MIPI_CSI1_RX_D0N   | 4   |
| 5   | MIPI_CSI0_RX_D0P   | MIPI_CSI1_RX_D0P   | 6   |
| 7   | GND                | GND                | 8   |
| 9   | MIPI_CSI0_RX_D1N   | MIPI_CSI1_RX_D1N   | 10  |
| 11  | MIPI_CSI0_RX_D1P   | MIPI_CSI1_RX_D1P   | 12  |
| 13  | GND                | GND                | 14  |
| 15  | MIPI_CSI0_RX_CLK0N | MIPI_CSI1_RX_CLK0N | 16  |
| 17  | MIPI_CSI0_RX_CLK0P | MIPI_CSI1_RX_CLK0P | 18  |
| 19  | GND                | GND                | 20  |
| 21  | MIPI_CSI0_RX_D2N   | MIPI_CSI1_RX_D2N   | 22  |
| 23  | MIPI_CSI0_RX_D2P   | MIPI_CSI1_RX_D2P   | 24  |
| 25  | GND                | GND                | 26  |
| 27  | MIPI_CSI0_RX_D3N   | MIPI_CSI1_RX_D3N   | 28  |
| 29  | MIPI_CSI0_RX_D3P   | MIPI_CSI1_RX_D3P   | 30  |
| 31  | GND                | GND                | 32  |
| 33  | MIPI_CSI0_RX_CLK1N | MIPI_CSI1_RX_CLK1N | 34  |

| Pin | DPHY(single)       | DPHY (dual)        | Pin |
|-----|--------------------|--------------------|-----|
| 35  | MIPI_CSI0_RX_CLK1P | MIPI_CSI1_RX_CLK1P | 36  |
| 37  | GND                | GND                | 38  |
| 39  | MIPI_CAM3_CLKOUT   | MIPI_CAM4_CLKOUT   | 40  |
| 41  | NC                 | NC                 | 42  |
| 43  | GND                | GND                | 44  |
| 45  | I2C3_SDA_M0_MIPI   | I2C4_SDA_M3_MIPI   | 46  |
| 47  | I2C3_SCL_M0_MIPI   | I2C4_SCL_M3_MIPI   | 48  |
| 49  | NC                 | NC                 | 50  |
| 51  | MIPI_CSI0_PDN0_H   | MIPI_CSI1_PDN0_H   | 52  |
| 53  | NC                 | NC                 | 54  |
| 55  | MIPI_CSI0_PDN1_H   | MIPI_CSI1_PDN1_H   | 56  |
| 57  | MIPI_DPHY_FSYNC    | MIPI_DPHY_FSYNC    | 58  |
| 59  | MIPI_DPHY_HSYNC    | MIPI_DPHY_HSYNC    | 60  |
| 61  | VCC_1V8_S3         | VCC_3V3_S3         | 62  |
| 63  | NC                 | NC                 | 64  |
| 65  | MIPICSI0_PWREN_H   | MIPICSI1_PWREN_H   | 66  |
| 67  | IRC_AIN            | NC                 | 68  |
| 69  | IRC_BIN            | NC                 | 70  |
| 71  | NC                 | NC                 | 72  |
| 73  | NC                 | NC                 | 74  |
| 75  | GND                | GND                | 76  |
| 77  | VCC5V0_SYS         | GND                | 78  |
| 79  | VCC5V0_SYS         | VCC12V_DCIN        | 80  |

# 3.15 TYPECInterface

The development board supports a complete TYPEC interface and supports the following functions:

- TYPEC0\_USB20\_OTG in this interface can be used to download firmware
- Support TYPEC function
- Support DP1.4 output



Figure 3-18TYPEC Interface

#### 3.16 USB3.0Interface

The development board supports one USB3.0 OTG interface; the interface is a standard A port, which is convenient for developers to access USB3.0 U disk and other USB3.0 devices.



Figure 3-19USB3.0 OTGInterface

#### 3.17 USB2.0 HostInterface

The development board supports two channels of USB2.0; it is integrated on a double-layer USB device and can support the connection of USB devices, such as mouse, U disk, and Bluetooth.



Figure 3-20USB2.0 HostInterface

# 3.18 HDMIOutput Interface

The development board supports two HDMI standard A output interfaces, up to HDMI2.1, and up to 8K@60fps video output.



Figure 3-21HDMI TXInterface

# 3.19 HDMI Input Interface

The development board supports one HDMI input interface, up to HDMI2.0 video input.



Figure 3-22HDMI RXInterface

# 3.20 Fan Power Connector

The development board reserves a fan interface, supports 12V/5V fans, and supports adjustable speed. The development board equip with a 12V fan by default.

The interface line sequence from left to right is GND, 12V, SENSOR, CONTROL.



Figure 3-23Fan Power Interface

# 3.21 Sensor Module Expansion

The development board is equipped with an IMX415 module, which can support up to 800W pixels.

- Support automatic white balance, 3D noise reduction, HDR;
- Support RAW10/RAW12 data output;
- Integrated IRCUT switching circuit, which can control the sensor module day and night mode;
- One set of 24pin MIPI interface is reserved on the module, which can be extended to stereo vision application as needed.



Figure 3-24IMX415 Module Board

The IMX415 module expansion interface signal sequence is as follows:

Table 3-3IMX415 Module Expansion Interface Signal Definition Table

| Pin | DPHY                 |
|-----|----------------------|
| 1   | GND                  |
| 2   | GND                  |
| 3   | NC                   |
| 4   | MIPI_DCPHY1_RX_RST_L |
| 5   | I2C5_SDA_M0_MIPI     |
| 6   | I2C5_SCL_M0_MIPI     |
| 7   | GND                  |
| 8   | GND                  |
| 9   | MIPI_DPHY1_RX_D0N    |
| 10  | MIPI_DPHY1_RX_D0P    |
| 11  | MIPI_DPHY1_RX_D1N    |
| 12  | MIPI_DPHY1_RX_D1P    |
| 13  | MIPI_DPHY1_RX_D2N    |
| 14  | MIPI_DPHY1_RX_D2P    |

| Pin | DPHY               |
|-----|--------------------|
| 15  | MIPI_DPHY1_RX_D3N  |
| 16  | MIPI_DPHY1_RX_D3P  |
| 17  | GND                |
| 18  | MIPI_DPHY1_RX_CLKN |
| 19  | MIPI_DPHY1_RX_CLKP |
| 20  | GND                |
| 21  | MIPI_CAM2_CLKOUT   |
| 22  | VCC_3V3_O          |
| 23  | VCC_3V3_D          |
| 24  | VCC_3V3_A          |

# 3.22 Speaker Interface

The development board reserves 2 speaker ports.



Figure 3-25 SPK Socket

RK3588 EVB User Guide Precautions

# 4 Precautions

RK3588 EVB is suitable for laboratory or engineering environment, please read the following precautions before operation:

- Under no circumstances can the screen interface and expansion board be hot-swapped.
- Before unpacking and installing the development board, take necessary anti-static measures to avoid electrostatic discharge (ESD) damage to the development board hardware.
- When holding the development board, please hold the edge of the development board, and do not touch the
  exposed metal parts of the development board, so as to avoid damage to the components of the development
  board caused by static electricity.
- Please place the development board on a dry surface to keep them away from heat sources, electromagnetic interference sources and radiation sources, electromagnetic radiation sensitive equipment (such as medical equipment), etc.