

Named after David Deutsch

(... many-worlds guy)

1. Alice and Bob are in separate locations. Can only communicate by mail.

Bob in New Jersey

Alice in Wonderland

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Alice in Wonderland

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Constant	Balanced
f(0) = 0	f(0) = 0
f(1) = 0	f(1) = 1
f(2) = 0	f(2) = 1
f(3) = 0	f(3) = 1
f(4) = 0	f(4) = 0
f(5) = 0	f(5) = 0
f(6) = 0	f(6) = 0
f(7) = 0	f(7) = 1
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1

Alice in Wonderland

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Constant	Balanced
f(0) = 0	f(0) = 0
f(1) = 0	f(1) = 1
f(2) = 0	f(2) = 1
f(3) = 0	f(3) = 1
f(4) = 0	f(4) = 0
f(5) = 0	f(5) = 0
f(6) = 0	f(6) = 0
f(7) = 0	f(7) = 1
function always	half evaluate to 0,
evaluates to 0 or 1	half evaluate to 1

Alice in Wonderland

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Constant	Balanced
f(0) = 0	f(0) = 0
f(1) = 0	f(1) = 1
f(2) = 0	f(2) = 1
f(3) = 0	f(3) = 1
f(4) = 0	f(4) = 0
f(5) = 0	f(5) = 0
f(6) = 0	f(6) = 0
f(7) = 0	f(7) = 1
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Constant	Balanced
f(0) = 0	f(0) = 0
f(1) = 0	f(1) = 1
f(2) = 0	f(2) = 1
f(3) = 0	f(3) = 1
f(4) = 0	f(4) = 0
f(5) = 0	f(5) = 0
f(6) = 0	f(6) = 0
f(7) = 0	f(7) = 1
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Constant	Balanced
f(0) = 0	f(0) = 0
f(1) = 0	f(1) = 1
f(2) = 0	f(2) = 1
f(3) = 0	f(3) = 1
f(4) = 0	f(4) = 0
f(5) = 0	f(5) = 0
f(6) = 0	f(6) = 0
f(7) = 0	f(7) = 1
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Constant	Balanced
f(0) = 0	f(0) = 0
f(1) = 0	f(1) = 1
f(2) = 0	f(2) = 1
f(3) = 0	f(3) = 1
f(4) = 0	f(4) = 0
f(5) = 0	f(5) = 0
f(6) = 0	f(6) = 0
f(7) = 0	f(7) = 1
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Constant	Balanced
f(0) = 0	f(0) = 0
f(1) = 0	f(1) = 1
f(2) = 0	f(2) = 1
f(3) = 0	f(3) = 1
f(4) = 0	f(4) = 0
f(5) = 0	f(5) = 0
f(6) = 0	f(6) = 0
f(7) = 0	f(7) = 1
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Best Possible Strategies for Alice

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Example $n = 0$	
Constant	Balanced
f(0) = 0	f(0) = 0
f(1) = 0	f(1) = 1
f(2) = 0	f(2) = 1
f(3) = 0	f(3) = 1
f(4) = 0	f(4) = 0
f(5) = 0	f(5) = 0
f(6) = 0	f(6) = 0
f(7) = 0	f(7) = 1
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Best Possible Strategies for Alice

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Example $n = 0$	
Constant	Balanced
f(0) = 0	f(0) = 0
f(1) = 0	f(1) = 1
f(2) = 0	f(2) = 1
f(3) = 0	f(3) = 1
f(4) = 0	f(4) = 0
f(5) = 0	f(5) = 0
f(6) = 0	f(6) = 0
f(7) = 0	f(7) = 1
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Best Possible Strategies for Alice

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Example $n = 0$	balarieee
Constant	Balanced
f(0) = 0	f(0) = 0
f(1) = 0	f(1) = 1
f(2) = 0	f(2) = 1
f(3) = 0	f(3) = 1
f(4) = 0	f(4) = 0
f(5) = 0	f(5) = 0
f(6) = 0	f(6) = 0
f(7) = 0	f(7) = 1
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Best Possible Strategies for Alice

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Example $n = 0$	balance
Constant	Balanced
f(0) = 0	f(0) = 0
f(1) = 0	f(1) = 1
f(2) = 0	f(2) = 1
f(3) = 0	f(3) = 1
f(4) = 0	f(4) = 0
f(5) = 0	f(5) = 0
f(6) = 0	f(6) = 0
f(7) = 0	f(7) = 1
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Best Possible Strategies for Alice

Classical Deterministic	Classical Randomized
$2^{n-1} + 1 = O(2^n)$ exchanges (must try at least half + 1 to be sure)	$3 = O(1)$ exchanges \longrightarrow correct with prob $= \frac{3}{4}$
	$\log_2(n) + 1 = O(\log n) \longrightarrow \text{correct with prob} = \frac{1}{n}$
	"with high probability"

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Example $n = 3$	Dalanced	
Constant	Balanced	
f(0) = 0	f(0) = 0	
f(1) = 0	f(1) = 1	
f(2) = 0	f(2) = 1	
f(3) = 0	f(3) = 1	
f(4) = 0	f(4) = 0	
f(5) = 0	f(5) = 0	
f(6) = 0	f(6) = 0	
f(7) = 0	f(7) = 1	
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1	

- 1. Alice and Bob are in separate locations. Can only communicate by mail.
- 2. Bob initially picks a binary-output function f that is either constant or balanced.
- 3. Alice can send a single value each time in mail for Bob to evaluate. Bob sends back answer.
- 4. Alice's Goal: Determine which kind of function Bob picked in as few exchanges as possible.

Best Possible Strategies for Alice

Bob in New Jersey

$$f: \{0, 1, \dots, 2^n - 1\} \to \{0, 1\}$$

Example n=3

Example $n=3$	Dalanced	
Constant	Balanced	
f(0) = 0	f(0) = 0	
f(1) = 0	f(1) = 1	
f(2) = 0	f(2) = 1	
f(3) = 0	f(3) = 1	
f(4) = 0	f(4) = 0	
f(5) = 0	f(5) = 0	
f(6) = 0	f(6) = 0	
f(7) = 0	f(7) = 1	
function always evaluates to 0 or 1	half evaluate to 0, half evaluate to 1	

Theorem: For any function f, it possible to construct such a matrix that is unitary. (i.e., quantum computers can perform any computation a classical computer can)

Theorem: For any function f, it possible to construct such a matrix that is unitary. (i.e., quantum computers can perform any computation a classical computer can)

Example

(here
$$n=1$$
)

$$f(0) = 1$$

$$f(1) = 0$$

$$|x,y\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

Theorem: For any function f, it possible to construct such a matrix that is unitary. (i.e., quantum computers can perform any computation a classical computer can)

Example

(here
$$n=1$$
)

$$f(0) = 1$$

$$|x,y\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

Theorem: For any function f, it possible to construct such a matrix that is unitary. (i.e., quantum computers can perform any computation a classical computer can)

Example

(here
$$n=1$$
)

$$f(0) = 1$$

$$|x,y
angle = lpha |00
angle + eta |01
angle + \gamma |10
angle + \delta |11
angle \ oxedsymbol{} = lpha |0,0\oplus f(0)
angle + eta |0,1\oplus f(0)
angle + \gamma |1,0\oplus f(1)
angle + \delta |1,1\oplus f(0)
angle$$

$$\rightarrow \alpha|0,0 \oplus f(0)\rangle + \beta|0,1 \oplus f(0)\rangle + \gamma|1,0 \oplus f(1)\rangle + \delta|1,1 \oplus f(1)\rangle$$

$$= 1 \qquad = 0 \qquad = 0$$

Theorem: For any function f, it possible to construct such a matrix that is unitary. (i.e., quantum computers can perform any computation a classical computer can)

Example

(here
$$n=1$$
)

$$f(0) = 1$$

$$J(1) - 0$$

$$|x,y\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

$$\downarrow_{U_f} \rightarrow \alpha|0,0 \oplus f(0)\rangle + \beta|0,1 \oplus f(0)\rangle + \gamma|1,0 \oplus f(1)\rangle + \delta|1,1 \oplus f(1)\rangle$$

$$= 1 \qquad = 0 \qquad = 0$$

$$= \alpha|0,0 \oplus 1\rangle + \beta|0,1 \oplus 1\rangle + \gamma|1,0 \oplus 0\rangle + \delta|1,1 \oplus 0\rangle$$

Theorem: For any function f, it possible to construct such a matrix that is unitary. (i.e., quantum computers can perform any computation a classical computer can)

Example

(here
$$n=1$$
)

$$f(0) = 1$$

$$|x,y\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

$$\downarrow_{U_f} \rightarrow \alpha|0,0 \oplus f(0)\rangle + \beta|0,1 \oplus f(0)\rangle + \gamma|1,0 \oplus f(1)\rangle + \delta|1,1 \oplus f(1)\rangle$$

$$= 1 \qquad = 1 \qquad = 0 \qquad = 0$$

$$= \alpha|0,0 \oplus 1\rangle + \beta|0,1 \oplus 1\rangle + \gamma|1,0 \oplus 0\rangle + \delta|1,1 \oplus 0\rangle$$

$$= 1 \qquad = 0 \qquad = 1$$

Theorem: For any function f, it possible to construct such a matrix that is unitary. (i.e., quantum computers can perform any computation a classical computer can)

f(0) = 1 f(1) = 0(bit flip) $|x,y\rangle = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$ $= \alpha|0,0\rangle + \beta|0,1\rangle + \beta|0,1\rangle + \gamma|1,0\rangle + \delta|1,1\rangle + \delta|1,1\rangle$ $= \beta|00\rangle + \alpha|01\rangle + \gamma|10\rangle + \delta|11\rangle$

Theorem: For any function f, it possible to construct such a matrix that is unitary. (i.e., quantum computers can perform any computation a classical computer can)

$\begin{array}{|c|c|c|} \hline \textbf{Example} \\ (\text{here } n = 1) \\ \hline f(0) = 1 \\ \hline f(1) = 0 \\ (\text{bit flip}) \\ \hline \end{array} \begin{array}{|c|c|c|} \hline (x,y) = \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \\ \hline = \alpha|0,0 \oplus 1\rangle + \beta|0,1 \oplus 1\rangle + \gamma|1,0 \oplus 0\rangle + \delta|1,1 \oplus f(1)\rangle \\ \hline = 1 \\ \hline = 0 \\ \hline = 1 \\ \hline = \alpha|0,1\rangle + \beta|0,0\rangle + \gamma|1,0\rangle + \delta|1,1\rangle \\ \hline = \beta|00\rangle + \alpha|01\rangle + \gamma|10\rangle + \delta|11\rangle \\ \hline \end{array}$

Theorem: For any function f, it possible to construct such a matrix that is unitary. (i.e., quantum computers can perform any computation a classical computer can)

Deutsch's Algorithm (solves n=1 case)

Practice Exercises

(determining what how Alice uses measurement to solve problem)

1. Determine Alice's final quantum state for the following two cases:

$$f(0) = 0$$
 vs
$$f(0) = 1$$

$$f(1) = 1$$

(possibility for balanced)

(possibility for constant)

... based on final state, how does Alice distinguish between two functions after measuring?

2. Follow-up: Design a quantum circuit that implements the U-f gate for each of the functions.

f(0)	= 1
f(1)	=1

$$\begin{array}{c} f(0) = 0 \\ f(1) = 1 \end{array} \qquad \begin{array}{c} \text{Alice Preprocessing} \\ \begin{array}{c} |0\rangle - H \\ \\ |0\rangle - X - H \end{array} \end{array}$$

$$\begin{aligned}
f(0) &= 1 \\
f(1) &= 0
\end{aligned}$$

f(0) = 0
f(1) = 0

$$f(0) = 1$$

$$f(1) = 1$$

$$f(0) = 0$$
$$f(1) = 1$$

$$f(0) = 1$$
$$f(1) = 0$$

Constant

$\int f$	f(0) = $f(1) =$	= 0
f	f(1) =	= 0

$$f(0) = 1$$

$$f(1) = 1$$

$$\begin{aligned}
f(0) &= 1 \\
f(1) &= 0
\end{aligned}$$

Constant

Alice Preprocessing

$$=\frac{1}{2}\left[|00\rangle - |01\rangle + |10\rangle - |11\rangle\right]$$

$$\boxed{ \begin{array}{c} U_f \\ \hline \end{array} } \rightarrow \frac{1}{2} \left[|0,0 \oplus f(0)\rangle - |0,1 \oplus f(0)\rangle + |1,0 \oplus f(1)\rangle - |1,1 \oplus f(1)\rangle \right]$$

Bob Eval

$$f(0) = 1$$
$$f(1) = 0$$

Balanced v_r

f(0) = 0 $f(1) = 0$	f(0) = 1 $f(1) = 1$
$f(0) = 0$ $f(1) = 1$ Alice Preprocessing $ 0\rangle - H\rangle = 0\rangle + 1\rangle = 0\rangle - 1\rangle$	f(0) = 1
$f(0) = 0$ $f(1) = 1$ $= \frac{1}{2} \left[00\rangle - 11\rangle \right]$ $= \frac{1}{2} \left[00\rangle - 01\rangle + 10\rangle - 11\rangle \right]$ $= \frac{1}{2} \left[0,00 \oplus f(0)\rangle - 0,1 \oplus f(0)\rangle + 1,0 \oplus f(1)\rangle - 1,1 \oplus f(1)\rangle \right]$ $= 0$ $= 1$ Bob Eval	f(1) = 0

f(0) = 0	f(0) = 1
f(1) = 0	f(1) = 1
Alice Preprocessing	
f(0) = 0 $ f(1) = 1$	f(0) = 1 $f(1) = 0$
$=\frac{1}{2}\left[00\rangle- 01\rangle+ 10\rangle- 11\rangle\right]$	
$ \begin{array}{c c} & & \\ \hline & v_f \\ \hline \end{array} \rightarrow \frac{1}{2} \begin{bmatrix} 0,0 \oplus f(0)\rangle - 0,1 \oplus f(0)\rangle + 1,0 \oplus f(1)\rangle - 1,1 \oplus f(1)\rangle \\ & = 0 \\ \hline & = 1 \\ \hline \end{array} = 0 $	
$=rac{1}{2}\left[\ket{00}-\ket{01}-\ket{10}+\ket{11} ight]$	

f(0) = 0 $f(1) = 0$		f(0) = 1 $f(1) = 1$
Alice Preprocessing		
$\parallel f(\cap) = \cap \mid$	$\left[\frac{ 0\rangle + 1\rangle}{\sqrt{2}}\right] \left[\frac{ 0\rangle - 1\rangle}{\sqrt{2}}\right]$	f(0) = 1 $f(1) = 0$
$= \frac{1}{2} \left[00\rangle - 01\rangle + 10\rangle - \frac{1}{2} \left[00\rangle + 01\rangle - 01\rangle \right]$	-	
Bob Eval $= \frac{1}{2} \left[00\rangle - 01\rangle - 10\rangle + \right]$	$\left[f(0) \right\rangle + \left 1, 0 \oplus f(1) \right\rangle - \left 1, 1 \oplus f(1) \right\rangle $ $ = 1 \qquad = 0 $ $ \left 111 \right\rangle $	
$= \left[\frac{ 0\rangle - 1\rangle}{\sqrt{2}}\right] \left[\frac{ 0\rangle - 1\rangle}{\sqrt{2}}\right]$		

$ \begin{array}{ c c } \hline f(0) = 0 \\ f(1) = 0 \end{array} $	$ \begin{aligned} f(0) &= 1 \\ f(1) &= 1 \end{aligned} $
	f(0) = 1 $f(1) = 0$
$=rac{1}{2}\left[\ket{00}-\ket{01}+\ket{10}-\ket{11} ight]$	
$ \begin{vmatrix} v_f \\ v_f \end{vmatrix} \rightarrow \frac{1}{2} \begin{bmatrix} 0,0 \oplus f(0)\rangle - 0,1 \oplus f(0)\rangle + 1,0 \oplus f(1)\rangle - 1,1 \oplus f(1)\rangle \end{bmatrix} $ $ = 0 $ $ = 1 $ $ = 0 $	
$=rac{1}{2}\left[\ket{00}-\ket{01}-\ket{10}+\ket{11} ight]$	
$= \left[\frac{ 0\rangle - 1\rangle}{\sqrt{2}}\right] \left[\frac{ 0\rangle - 1\rangle}{\sqrt{2}}\right] \qquad \longrightarrow \qquad $	

_		
	f(0) = 0	f(0) = 1
	f(1) = 0	f(1) = 1
Ī	f(0) = 0 Alice Preprocessing	f(0) 1
- 11	$\begin{array}{c c} f(0) = 0 \\ f(1) = 1 \end{array} \longrightarrow \begin{bmatrix} 0\rangle + 1\rangle \end{bmatrix} \begin{bmatrix} 0\rangle - 1\rangle \end{bmatrix}$	f(0) = 1
L	$f(1) = 1 \qquad \begin{vmatrix} 0\rangle & H \\ 0\rangle - X & H \end{vmatrix} \longrightarrow \left[\frac{ 0\rangle + 1\rangle}{\sqrt{2}} \right] \left[\frac{ 0\rangle - 1\rangle}{\sqrt{2}} \right]$	f(1) = 0
	$=\frac{1}{2}\left\lceil 00\rangle - 01\rangle + 10\rangle - 11\rangle \right\rceil$	
	$ \begin{array}{c} v_f \\ \hline \end{array} \rightarrow \frac{1}{2} \left[0,0 \oplus f(0)\rangle - 0,1 \oplus f(0)\rangle + 1,0 \oplus f(1)\rangle - 1,1 \oplus f(1)\rangle \right] \\ = 0 \\ = 1 \\ \end{array} $	
	$=-1 00\rangle- 01\rangle- 10\rangle+ 11\rangle$	
	-	
	$ \left[\begin{array}{c c}\sqrt{2}\end{array}\right]\left[\begin{array}{c c}\sqrt{2}\end{array}\right]$	
L	Alice Postprocessing	

$$f(0) = 0$$

$$f(1) = 0$$

$$f(0) = 1$$

$$f(1) = 1$$

$$= \frac{1}{2} \left[|0\rangle - |1\rangle + |10\rangle - |11\rangle \right]$$

$$= \frac{1}{2} \left[|00\rangle - |01\rangle + |10\rangle - |11\rangle \right]$$

$$\begin{aligned} f(0) &= 1\\ f(1) &= 0 \end{aligned}$$

$$f(0) = 1$$

$$f(1) = 1$$

$$= \frac{1}{2} \left[|0\rangle - |1\rangle + |1\rangle - |11\rangle \right]$$

$$= \frac{1}{2} \left[|00\rangle - |01\rangle + |10\rangle - |11\rangle \right]$$

$$\begin{array}{c} \begin{array}{c} -1 \\ \hline \\ v_f \end{array} \end{array} \begin{array}{c} -\frac{1}{2} \left[|0,0 \oplus f(0)\rangle - |0,1 \oplus f(0)\rangle + |1,0 \oplus f(1)\rangle - |1,1 \oplus f(1)\rangle \right] \\ = \mathbf{1} \\ = \mathbf{0} \\ = \frac{1}{2} \left[-|00\rangle + |01\rangle - |10\rangle + |11\rangle \right] \end{array}$$

$$f(0) = 1$$
$$f(1) = 0$$

$$f(0) = 0$$

$$f(1) = 0$$

$$f(0) = 1$$

$$f(1) = 1$$

$$= \frac{1}{2} \left[|00\rangle - |11\rangle \right]$$

$$= \frac{1}{2} \left[|00\rangle - |01\rangle + |10\rangle - |11\rangle \right]$$

$$= \frac{1}{2} \left[|0,00 + f(0)\rangle - |0,10 + f(0)\rangle + |1,00 + f(1)\rangle - |1,10 + f(1)\rangle \right]$$

$$= \frac{1}{2} \left[-|00\rangle + |01\rangle - |10\rangle + |11\rangle \right]$$

$$= -\left[\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right]$$

$$f(0) = 1$$
$$f(1) = 0$$

$$|0\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \longleftarrow \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

$$\begin{aligned}
f(0) &= 1 \\
f(1) &= 1
\end{aligned}
\quad
\begin{vmatrix}
0\rangle &\longrightarrow H \\
0\rangle - x &\longrightarrow H
\end{aligned}
\quad
\left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \\
&= \frac{1}{2} \left[|00\rangle - |01\rangle + |10\rangle - |11\rangle\right] \\
v_f &\longrightarrow \frac{1}{2} \left[|0,0 \oplus f(0)\rangle - |0,1 \oplus f(0)\rangle + |1,0 \oplus f(1)\rangle - |1,1 \oplus f(1)\rangle\right] \\
&= 1 &= 0 &= 1 &= 0 \\
&= \frac{1}{2} \left[-|00\rangle + |01\rangle - |10\rangle + |11\rangle\right] \\
&= -\left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \longrightarrow -|0\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]
\end{aligned}$$

$$f(0) = 1$$

$$f(1) = 0$$

$$\left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \longrightarrow \begin{bmatrix} |0\rangle - |1\rangle \\ \end{bmatrix}$$

$$-|1\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \longleftarrow -\left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

$$=rac{1}{2}\left[\ket{00}-\ket{01}+\ket{10}-\ket{11}
ight]$$

Alice's Answer?

 $|0\rangle$

= constant

$$f(0) = 0$$

$$f(1) = 1$$

$$= \frac{1}{2} \left[|00\rangle - |11\rangle - |11\rangle \right]$$
Alice Preprocessing
$$\left[|0\rangle + |1\rangle - |11\rangle \right]$$

$$= \frac{1}{2} \left[|00\rangle - |01\rangle + |10\rangle - |11\rangle \right]$$

$$\begin{array}{c} \boxed{v_f} \\ \rightarrow \frac{1}{2} \left[|0,0 \oplus f(0)\rangle - |0,1 \oplus f(0)\rangle + |1,0 \oplus f(1)\rangle - |1,1 \oplus f(1)\rangle \right] \\ = \mathbf{0} \\ = \mathbf{1} \\ = \mathbf{0} \\ \end{array}$$

$$=\frac{1}{2}\left[|00\rangle-|01\rangle-|10\rangle+|11\rangle\right]\\ =\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right]\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \longrightarrow \begin{bmatrix} |1\rangle\left[\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right] \\ \text{Alice Postprocessing} \end{bmatrix}$$

$$\begin{cases}
f(0) = 1 \\
f(1) = 0
\end{cases}$$

$$\left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \longrightarrow \boxed{U_f}$$

$$-|1\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \longleftarrow \left[\frac{H}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

$$|1\rangle$$

Balanced

$$\begin{array}{ccc}
x & x \\
U_f & \\
y & y \oplus f(x)
\end{array}$$

$$f(0) = 1$$

$$f(1) = 1$$

Alice's Answer?

 $|0\rangle$

= constant

$$f(0) = 0$$

$$\begin{bmatrix} x & x \\ U_f & \end{bmatrix}$$

$$\begin{aligned}
f(0) &= 1 \\
f(1) &= 0
\end{aligned}$$

$$\begin{bmatrix} x & x \\ U_f \\ y & y \oplus f(x) \end{bmatrix}$$

 $|1\rangle$

Balanced

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

f(0) = 1 f(1) = 1

Alice's Answer?

 $|0\rangle$

= constant

$$f(0) = 0$$

$$f(1) = 1$$

$$\begin{array}{ccc}
x & x \\
U_f & \longrightarrow
\end{array}$$

 $y \oplus f(x)$

$$\begin{aligned}
f(0) &= 1 \\
f(1) &= 0
\end{aligned}$$

$$\begin{bmatrix} x & x \\ U_f \\ y & y \oplus f(x) \end{bmatrix} \longrightarrow$$

 $|1\rangle$

Balanced

$$\begin{bmatrix} x & x \\ U_f \\ y & y \oplus f(x) \end{bmatrix} \longrightarrow \begin{bmatrix} x & ---- \\ y & ---- \\ \text{(do nothing)} \end{bmatrix}$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

$$f(0) = 1$$

$$f(1) = 1$$

Alice's Answer?

 $|0\rangle$

= constant

$$f(0) = 0$$

$$f(1) = 1$$

$$|1\rangle$$

Balanced

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

(do nothing)

f(0) = 1f(1) = 1

 $|0\rangle$

= constant

$$\begin{aligned}
f(0) &= 0 \\
f(1) &= 1
\end{aligned}$$

$$\begin{array}{ccc}
x & x \\
U_f \\
y & y \oplus f(x)
\end{array}$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \delta|10\rangle + \gamma|11\rangle$$

f(0) = 1f(1) = 0

Balanced

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

(do nothing)

f(0) = 1f(1) = 1

= constant

$$\begin{cases}
f(0) = 0 \\
f(1) = 1
\end{cases}$$

$$f(1) = 1$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \delta|10\rangle + \gamma|11\rangle$$

$$\begin{vmatrix} f(0) = 1 \\ f(1) = 0 \end{vmatrix}$$

$$\begin{bmatrix} x & x \\ U_f \\ y & y \oplus f(x) \end{bmatrix} \longrightarrow$$

$$|1\rangle$$

 $y \oplus f(x)$

f(0) = 0

f(1) = 1

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

 $\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \delta|10\rangle + \gamma|11\rangle$

$$f(0) = 1$$

$$f(1) = 1$$

$$\begin{aligned}
f(0) &= 1 \\
f(1) &= 0
\end{aligned}$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \beta|00\rangle + \alpha|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

Alice's Answer?

 $|0\rangle$

= constant

f(0) = 0

f(1) = 1

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

f(0) = 1f(1) = 1

$$U_f$$

$$f(0) = 1
 f(1) = 0$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \delta|10\rangle + \gamma|11\rangle$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \beta|00\rangle + \alpha|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

$$|0\rangle$$

$$|1\rangle$$

$$\begin{bmatrix} x & x \\ U_f \\ y & y \oplus f(x) \end{bmatrix} \longrightarrow \begin{bmatrix} x & ---- \\ y & ---- \\ \text{(do nothing)} \end{bmatrix}$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \beta|00\rangle + \alpha|01\rangle + \delta|10\rangle + \gamma|11\rangle$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \delta|10\rangle + \gamma|11\rangle$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \beta|00\rangle + \alpha|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

$$|0\rangle$$

$$|1\rangle$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \beta|00\rangle + \alpha|01\rangle + \delta|10\rangle + \gamma|11\rangle$$

$$f(0) = 0$$

$$f(1) = 1$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \alpha|00\rangle + \beta|01\rangle + \delta|10\rangle + \gamma|11\rangle$$

$$\begin{aligned}
f(0) &= 1 \\
f(1) &= 0
\end{aligned}$$

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle \rightarrow \beta|00\rangle + \alpha|01\rangle + \gamma|10\rangle + \delta|11\rangle$$

Alice's Answer?

 $|0\rangle$

= constant

 $|1\rangle$

3alanced

f(0) = 0

f(1) = 1

$$f(0) = 1$$

$$f(1) = 0$$

$$-\left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

$$-|1\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

$$x=|0\rangle$$
 -> constant

 $x = |1\rangle$

-> balanced

$$\begin{bmatrix} x & x \\ U_f \\ y & y \oplus f(x) \end{bmatrix} \text{ on } |x\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right] = x \in \{0, 1\}$$

f(0) = 0

f(1) = 1

 $\left\lceil \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right\rceil \left\lceil \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right\rceil$

 $|1\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$

$$f(0) = 1$$

$$f(1) = 0$$

$$-\left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

$$-|1\rangle \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

$$x=|0\rangle$$
 -> constant

 $x = |1\rangle$

-> balanced

