

UiO • Department of Informatics University of Oslo

Mandatory exercise 2

High resolution beamforming on farfield monochromatic signals, MATLAB version

Table of contents

- Problem statement
- 2 Incoherent sources
 - Spatial correlation matrix
 - Standard DAS beamforming
 - CAPON's/minimum-variance beamformer
 - MUSIC method
 - Eigenvector method
- 3 Coherent sources
 - Standard algorithm
 - EV and MUSIC algorithms for correlated sources
 - Modified MUSIC algorithm
- 4 Additional slides

Problem statement [1]

Geometry:

- We consider $N_s = 2$ monochromatic farfield sources
- We use a linear array with M=10 isotropic sensors with element distance $d=0.5\lambda$ and $\lambda=1$ m
- We recorded N = 100 time samples with sampling frequency $\frac{1}{T}$

Figure: Linear array geometry

2 / 21

Signal model:

■ Phase matrix:
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ \vdots & \vdots \\ e^{-jMkd\sin\theta_1} & e^{-jMkd\sin\theta_2} \end{pmatrix} \in \mathbb{C}^{M\times 2}$$

■ Signal matrix:
$$\mathbf{S}(t) = \begin{pmatrix} a_1 e^{j2\pi\Phi_{11}} & \dots & a_1 e^{j2\pi\Phi_{1N}} e^{jN\omega_1 T} \\ a_1 e^{j2\pi\Phi_{21}} & \dots & a_2 e^{j2\pi\Phi_{2N}} e^{jN\omega_2 T} \end{pmatrix} \in \mathbb{C}^{2\times N}$$
 where Φ_1 and Φ_2 are two Gaussian random vectors $(\mathcal{N}(0,1))$

- Noise vector: $\mathbf{N}(t)$, we assume AWGN
- \blacksquare Received signal vector: $\mathbf{Y}(t)$

$$\mathbf{Y}(t) = \mathbf{AS}(t) + \mathbf{N}(t) \tag{1}$$

- Weights vector¹: $\mathbf{w} = (w_1 \dots w_M)^H$
- Steering vector: $\mathbf{a}(\theta) = \begin{pmatrix} 1 & \dots & e^{-jMkd\sin\theta} \end{pmatrix}^H$

¹Why is there an ^H ? To be coherent with the the output signal calculation: $z(t) = \langle \mathbf{w} | \mathbf{Y}(t) \rangle = \sum_{i=1}^{M} w_i y_i(t)$

Spatial correlation matrix estimation [1, 3, 4]

- In this first part, we consider incoherent sources: $\omega_1 \neq \omega_2$
- One of beamforming challenges is to **estimate** the spatial correlation matrix $\mathbf{R} = \mathbb{E}\{\mathbf{Y}Y^H\}$ where $r_{ij} = \mathbb{E}\{y_i(t)y_j(t)^*\}$
- What estimator should we use? First, we will use $\hat{\mathbf{R}} = \frac{1}{N} \mathbf{Y} \mathbf{Y}^H$ (note that we assume W.S.S and ergodicity)
- Let's check some properties of R
- $\hat{\mathbf{R}}$ amplitude is symmetric, its phase is anti-symmetric $\implies \hat{\mathbf{R}}$ is hermitian : $\hat{\mathbf{R}} = \hat{\mathbf{R}}^H$

Spatial correlation matrix estimate amplitude (dB) Sensor 8 9 10

150 -100 Ē -150

Figure: Spatial correlation matrix phase estimate arg R, incoherent

9 10

Spatial correlation matrix estimate phase

Figure: Spatial correlation matrix amplitude estimate $|\hat{\mathbf{R}}|$, incoherent signals

■ Reduced correlation outside the diagonal (brighter colours²): incoherent signals

signals

²Using Fabio CRAMERI's colormaps [2]

DAS power estimate [1, 3, 4]

- For slides 4 to 10, we use the following spatial correlation matrix estimate: $\hat{\mathbf{R}} = \frac{1}{N}\mathbf{Y}\mathbf{Y}^H$
- Through DAS beamforming, we can get the 'easiest' power estimate

$$P(\mathbf{a}(\theta))_{DAS} = \mathbf{a}(\theta)^H \mathbf{Ra}(\theta)$$
 (2)

■ Is this a 'good' estimate? \longleftrightarrow Is $P(\mathbf{a}(\theta))_{DAS}$ unbiased, consistent³?

- Obviously, DAS beamforming is not a good choice here!
- The constructed array is unable to distinguish the two signals sources... The ideal spectrum should be two DIRACs @ 0 ° and −10°
- The two sources are merged into one source
- \blacksquare Some side lobes (level $\approx -6~\text{dB})$ around the (large) main lobe
- It only requires two matrix multiplication (complexity $\mathcal{O}(N^{2.4})$)
- Can we do better?

Figure: Classical DAS beamforming power estimate, incoherent signal

³To estimate the variance, we need to run this experiment several times

CAPON's/minimum-variance beamformer [1, 3, 4]

- Adaptive beamforming: let the weights be a function of the incoming signal
- Idea: minimizing the noise power while conserving a unity gain in the steering direction

$$\begin{cases} \min P_{MV}(\mathbf{w}) = \mathbf{w}^H \mathbf{R} \mathbf{w} \\ \text{s.t } \mathbf{w}^H \mathbf{a}(\theta) = 1 \end{cases} \implies \mathbf{w} = \frac{\mathbf{a}(\theta)^H \mathbf{R}^{-1}}{\mathbf{a}(\theta)^H \mathbf{R}^{-1} \mathbf{a}(\theta)} \text{ and } P_{MV}(\mathbf{a}(\theta)) = \frac{1}{\mathbf{a}(\theta)^H \mathbf{R}^{-1} \mathbf{a}(\theta)}$$

This constrained optimization problem has a closed solution! Which requires a matrix inversion...

Figure: Minimum variance power estimate, incoherent signal

- Some improvements: we have two distinguishable peaks @ 0 ° and −10°
- Lower side lobes levels
- Lower ML widths
- Lower side lobes
- The beamformer can distinguish the two signals
- But only 10 dB between the peaks and the noise level
- Inverting a matrix is costly (Complexity: $\mathcal{O}(N^3)$)!
- Here, matrix inversion and two matrix multiplication
- Can we do better?

Eigenvalues distribution [1, 3, 4]

- Main idea: 'Find a new base such that R is a diagonal matrix, get rid of some data and compute its inverse. Then, go back to the standard base.'
- lacktriangled R being hermitian and positive semi-definite, it is diagonalizable and it has a positive spectrum $\operatorname{Sp}(\mathbf{R}) \subset \mathbb{R}^+$

$$\mathbf{R} = \mathbf{V}^H \mathbf{\Lambda} \mathbf{V} = \underbrace{\mathbf{V_s}^H \mathbf{\Lambda_s} \mathbf{V_s}}_{\text{signal} + \text{noise}} + \underbrace{\mathbf{V_n}^H \mathbf{\Lambda_n} \mathbf{V_n}}_{\text{noise}}$$
(3)

Figure: Eigenvalues distribution for two incoherent sources

- Two eigenvalues are larger than the other ($\lambda_1 = 26$ and $\lambda_2 = 20$): we can identify both the signal+noise and noise only subspaces
- Moreover, we get the number of sources $N_s = 2$
- Same number of sources as in the simulation parameters
- Note that if we have *a priori* knowledge about the noise power (σ_n^2) , we can easily estimate the number of sources: $\lambda_{i < N_S} > \sigma_n^2 = 1$ and $\lambda_{i > N_S} = \sigma_n^2 = 1$

MUSIC algorithm [1, 3, 4]

■ We estimate the beamformer power output using only the **normalized** noise part in the previous eigendecomposition

$$\mathbf{R} = \mathbf{V}^{H} \mathbf{\Lambda} \mathbf{V} = \underbrace{\mathbf{V_{s}}^{H} \mathbf{\Lambda_{s}} \mathbf{V_{s}}}_{\text{signal + noise}} + \underbrace{\mathbf{V_{n}}^{H} \mathbf{\Lambda_{n}} \mathbf{V_{n}}}_{\text{noise}} \approx \mathbf{V_{n}}^{H} \mathbf{\Lambda_{n}} \mathbf{V_{n}} \implies \underbrace{\mathbf{R}^{-1} \approx \mathbf{V_{n}} \mathbf{\Lambda_{n}^{-1}} \mathbf{V_{n}}^{H} \approx \mathbf{V_{n}} \mathbf{V_{n}}^{H}}_{\text{normalized } \mathbf{\Lambda_{n}^{-1}} = I_{n}}$$
(4)

■ Why is it efficient? **\(\Lambda \)** is a diagonal matrix so its inverse is easy to compute

$$P(\mathbf{a}(\theta))_{MUSIC} = \frac{1}{\mathbf{a}(\theta)\mathbf{V_n}\mathbf{V_n}^H \mathbf{a}(\theta)^H}$$
(5)

- Lower ML widths than the MV beamformer!
- We can clearly distinguish the two sources ⇒ DOA estimation
- No more side lobes, outside the peaks the spectrum is flat with a mean level of -25 dB
- Altough having the same SNR, the two sources do not have the same level in the spectrum
- Not a reliable power (level) estimate X

---- $P_{MUSIC}(a(\theta))$ ---- $\theta_1 = 0^{\circ}$ ---- $\theta_2 = -10^{\circ}$ ----

Figure: MUSIC power estimate

Eigenvector method [1, 3, 4]

■ We estimate the beamformer power output using only the non-normalized noise part in the previous eigendecomposition

$$\mathbf{R} = \mathbf{V}^{H} \mathbf{\Lambda} \mathbf{V} = \underbrace{\mathbf{V_s}^{H} \mathbf{\Lambda_s} \mathbf{V_s}}_{\text{signal + noise}} + \underbrace{\mathbf{V_n}^{H} \mathbf{\Lambda_n} \mathbf{V_n}}_{\text{noise}} \approx \mathbf{V_n}^{H} \mathbf{\Lambda_n} \mathbf{V_n} \implies \mathbf{R}^{-1} \approx \mathbf{V_n} \mathbf{\Lambda_n}^{-1} \mathbf{V_n}^{H}$$
(6)

■ Why is it efficient? **\(\Lambda \)** is a diagonal matrix so its inverse is easy to compute

$$P(\mathbf{a}(\theta))_{EV} = \frac{1}{\mathbf{a}(\theta)\mathbf{V_n}\mathbf{\Lambda_n}^{-1}\mathbf{V_n}^H\mathbf{a}(\theta)^H}$$
(7)

- Both MUSIC and EV power estimates have low ML widths ✓
- They suffer from the same problem on power peak level estimation X
- The MUSIC algorithm gives thinner peaks (@-10 dB)
- The MUSIC power estimate seems more flat outside the peaks region

Thomas Aussaguès

Incorrect number of sources N_s

- Using MUSIC and EV algorithm provides better results but a the cost of some a priori knowledge: the number of sources N_s must be known!
- What happens when using an incorrect number of sources?

Figure: MUSIC & EV power estimates, $N_s = 0$ Figure: MUSIC & EV power estimates, $N_s = 1$ Figure: MUSIC & EV power estimates, $N_s = 3$

■ Note that for $N_s = 0$, the EV power estimate perfectly fits the MV estimate:

$$P_{MUSIC}(\mathbf{a}(\theta)) = \left(\sum_{i=N_S+1}^{M} \|\mathbf{a}(\theta)^H \mathbf{v_i}\|^2\right)^{-1} = \left(\sum_{i=1+0}^{M} \|\mathbf{a}(\theta)^H \mathbf{v_i}\|^2\right)^{-1} = P_{MV}(\mathbf{a}(\theta))$$
(8)

- \blacksquare N_s < 2: we take into account noise and noise + signal subspaces, larger eigenvalues dominate the others
- \blacksquare $N_s > 2$: we take into account only the noise subspace so we 'respect' the philosophy of eigendecomposition methods

■ It seems that the EV method is more robust than the MUSIC one for wrong N_s values

Summary

Figure: DAS, MV, MUSIC & EV power estimates

Method	Power estimate	Side lobes	DOA
DAS	×	×	×
MV	✓	×	\sim
MUSIC	×	✓	~
EV	×	✓	~

Table: Characteristics of beamforming algorithms

- To make our simulation more realistic, we can use coherent sources
- Similar to a multipath propagation environment: echoic signal propagation model

Table of contents

- Problem statement
- 2 Incoherent sources
 - Spatial correlation matrix
 - Standard DAS beamforming
 - CAPON's/minimum-variance beamformer
 - MUSIC method
 - Eigenvector method
- 3 Coherent sources
 - Standard algorithm
 - EV and MUSIC algorithms for correlated sources
 - Modified MUSIC algorithm
- 4 Additional slides

Spatial correlation matrix for coherent sources [1, 3, 4]

- Same problem as before but two sources with the same frequencies and phase terms
- We also made the angle between the two sources smaller: $\theta_1 = 0$ ° and $\theta_2 = 10$ °

Spatial correlation matrix amplitude

Figure: Spatial correlation matrix amplitude estimate $|\hat{\mathbf{R}}|$, coherent signals

Spatial correlation matrix phase

Figure: Spatial correlation matrix phase estimate $\arg \hat{\mathbf{R}}$, coherent signals

EV and MUSIC algorithms for correlated sources [1, 3, 4]

■ Let's try both EV and MUSIC algorithm on correlated sources

Figure: Eigenvalues distribution, coherent sources

Figure: DAS, MV, MUSIC and EV spectrums for coherent sources

■ Only 1 eigenvalue for the signal + noise subspace ⇒ wrong number of sources...

Thomas Aussaguès Mandatory exercise 2 3rd April 2022 13 / 21

How to improve performances

- We can apply some transformations to **R** to suppress or reduce the correlation between sources
 - Spatial averaging or smoothing
 - Forward-backward transformation
 - Both the previous transformations
- Spatial averaging: compute the correlation matrices of all subarrays with size L (L = 5 here). It reduces the cross-correlation terms but also reduces the number of sensors: smaller aperture \implies poorer resolution (similar to WELCH's periodogram)

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & \dots & r_{1M-1} & r_{1M} \\ r_{12}^* & r_{22} & \dots & r_{2M-1} & r_{2M} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ r_{1M-1}^* & r_{2M-1}^* & \dots & r_{M-1M-1} & r_{M-1M} \\ r_{1M}^* & r_{2M}^* & \dots & r_{M-1M}^* & r_{MM} \end{pmatrix} \implies \mathbf{R_S} = \underbrace{\frac{1}{M+L-1}}_{=K} \sum_{i=1}^{K} \mathbf{R_i} \text{ where } \mathbf{R_i} = \mathbf{Y} [i:L*i] \mathbf{Y} [i:L*i]^H$$
(9)

Forward-backward: let $\mathbf{J} = \begin{pmatrix} 0 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 0 \end{pmatrix}$ be the exchange matrix. Then, the forward-backward spatial correlation

matrix is defined as:

$$\mathbf{R}_{\mathsf{FB}} = \frac{1}{2} \left(\mathbf{R} + \mathbf{J} \mathbf{R}^* \mathbf{J} \right) \tag{10}$$

What transformation should we apply to R? [1, 3, 4]

Figure: Standard R Forward-backward smoothed spatial

Figure: FB + smoothed: RFBS

Smoothed spatial correlation matrix amplitude

Figure: Smoothed: Re Smoothed forward-backward spatial

Figure: Smoothed + FB: RSER

Forward-backward spatial correlation matrix amplitude sens 10

6 Sensor Figure: Forward-backward: RFR

8 9 10

15 / 21

- Spatial averaging: reduces correlation outside the diagonal but lower number of sensors ⇒ lower resolution
- Lower aperture size

3 4

What is the best choice here?

Thomas Aussaguès Mandatory exercise 2 3rd April 2022

What transformation should we apply to R?

Figure: Standard R

Figure: FB + smoothed: RFBS

Figure: Smoothed: Rs

Figure: Smoothed + FB: RSFB

Figure: Forward-backward: RFB

- FB, FB + smoothed and smoothed FB techniques provide the best results here
- Acceptable DOA estimates and ML width
- We can not judge the resolution...
- To do it, we will to need run the previous experiment for multiple DOA θ and see what is the smallest angle difference such that two sources can be resolved

Thomas Aussaguès Mandatory exercise 2 3rd April 2022 16 / 21

Bias and ML width

- We have seen that using EV/MUSIC algorithms combined with a forward-backward smoothed (or smoothed forward-backward) spatial correlation matrix improved the 'quality' of the power estimate
- Since both EV and MUSIC methods have similar results, we focus on assessing MUSIC performances
- What is the 'right' choice for the correlation matrix estimate? Let's compare the bias and the ML width

R estimate	θ ₁ (°)	ML width $\Delta \theta_1$ (°)	θ ₂ (°)	ML width $\Delta\theta_2$ (°)	Min level (dB)
Standard	-14.390	26.770	-0.090	27.600	-3.136
Smoothed	-2.850	1.985	7.820	7.925	-25.319
FB	-0.120	0.620	9.770	0.650	-23.244
FB + smoothed	-1.260	0.310	8.880	0.415	-41.971
Smoothed + FB	-1.220	0.375	9.020	0.900	-40.113

Table: DOA estimation, resolution and minimum power level for the MUSIC algorithm

R estimate	Mean error (°)	Mean ML width (°)	
Standard	12.240	27.185	
Smoothed	2.515	4.955	
FB	0.175	0.635	
FB + smoothed	1.190	0.362	
Smoothed + FB	1.100	0.637	

Table: Mean DOA estimation error and mean resolution for the MUSIC algorithm

- Standard and smoothed R estimates provide poor results...
- According to these tables, FB, FB + smoothed and smoothed + FB correlation matrices give the best results
- FB provides an excellent DOA estimation but with a acceptable ML width whereas FB + smoothed and smoothed + FB give an higher bias but better ML width
- \blacksquare Trade-off...Here, we focus on the FB \boldsymbol{R} estimate

SNR

■ How are performances affected when decreasing the SNR?

Figure: Estimated DOAs vs. SNR, FB + smoothed

Figure: Mean error and ML width vs. SNR, FB + smoothed

- Decreasing the SNR leads to poor performances as expected (better to use other methods such as root MUSIC)
- Optimal SNR value: 6 dB

 ${f Y}$ amplitude and phase as 2D images

Time t

Figure: Y amplitude and phase as 2D-images

Stationarity

- If Y is an stationary process then its statistical properties are constant with time
- So if we look at two vertical cuts of both images at two time instants, then the mean along these cuts should be the same
- Stationarity ✓

Ergodicity

- If Y is an ergodic process then its time average is equal to its ensemble average
- So if we take two horizontal cuts of both images at two time instants, then the mean along these cuts should be the same
- Ergodicity ✓

⁴Note that this is only a first order test...

Diagonal loading and rotary averaging

- Diagonal loading: $\mathbf{R}_{DL} = \mathbf{R}(1 \delta \mathbf{I_M}), \delta \in \mathbb{R}$
- Rotary averaging: $\mathbf{R}_{\mathbf{R}\mathbf{A}} = \frac{1}{4} \left(\mathbf{R} + \mathbf{J} \mathbf{R}^T + \mathbf{J} \mathbf{R} + \mathbf{R} \mathbf{J} \right)$

Figure: R_{DL} squared magnitude

Figure: R_{RA} squared magnitude

DAS, MV, MUSIC and EV spectrums for coherent sources rooten yeare and the spectrum of the spec

■ Does not work...

Figure: RRA phase

Figure: Power estimates, RRA

References

- [1] H. Krim and M. Viberg. 'Two decades of array signal processing research: the parametric approach'. In: IEEE Signal Processing Magazine 13.4 (1996), pp. 67–94. DOI: 10.1109/79.526899.
- [2] Fabio Crameri, Grace E. Shephard and Philip J. Heron. 'The misuse of colour in science communication'. In: Nature Communications 11.1 (2020), p. 5444. DOI: 10.1038/s41467-020-19160-7. URL: https://doi.org/10.1038/s41467-020-19160-7.
- [3] Aurelio Uncini. Fundamentals of Adaptive Signal Processing. Springer Publishing Company, Incorporated, 2014. ISBN: 3319028065.
- [4] Don H. Johnson and Dan E. Dudgeon. 'Array Signal Processing: Concepts and Techniques'. In: 1993.

UiO **Department of Informatics**University of Oslo

Thomas Aussaguès

Mandatory exercise 2High resolution beamforming on farfield monochromatic signals, MATLAB version

