

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 17.1

Zwei ideale Gase ($M_1 = 16.043 \,\mathrm{kg/kmol}$, $M_2 = 31.9988 \,\mathrm{kg/kmol}$) werden in einem Rohr adiabatisch im Massenverhältnis $m_1/m_2 = 1/3.9891$ bei $T_1 = 300 \,\mathrm{K}$ und $p_1 = 1 \,\mathrm{bar}$ vermischt (Ideales Mischverhalten).

- a) Wie groß sind die Massen- und Molanteile?
- b) Wie groß sind die molare innere Energie der Komponenten und der Mischung?
- c) Welcher Entropiezuwachs erfolgt bei einem Massenstrom von $\dot{m}_1 + \dot{m}_2 = 1 \, \text{kg/s}$?

Stoffdaten:

 $c_{v,1} = 26.2522 \,\mathrm{kJ/(kmol\,K)}, \ c_{v,2} = 20.9578 \,\mathrm{kJ/(kmol\,K)}, \ R_{\mathrm{m}} = 8.314 \,472 \,\mathrm{J/(mol\,K)}$ Normierungszustand:

$$T_0 = 273.15 \,\mathrm{K}, \, p_0 = 1.01325 \,\mathrm{bar}, \, u_0 = u(T_0, p_0) = 0 \,\mathrm{kJ/kmol}, \, s_0 = s(T_0, p_0) = 0 \,\mathrm{kJ/(kmol \, K)}$$

Aufgabe 17.2

Ein Gasgemisch besteht aus trockener Luft und Wassergas mit folgender Zusammensetzung in Vol-%: 60% Luft (a), 20% CO (b) und 20% H₂ (c). Für dieses ideale Gasgemisch sind zu bestimmen:

- a) die Dichte im Normzustand ($T = 273.15 \,\mathrm{K}, \, p = 1.01325 \,\mathrm{bar}$),
- b) die Massenanteile,
- c) die Masse von 1 kmol des Gemisches,
- d) die spezifische Wärmekapazität c_p im Normzustand.

Stoffdaten:

Stoff	Molmasse	Molares Normvolumen	spezifische Wärmekapazität c_p
	[kg/kmol]	$[m^3/kmol]$	$[\mathrm{kJ/(kgK)}]$
Luft	28.9626	22.401	1.0043
Kohlenmonoxid	28.010	22.398	1.0403
Wasserstoff	2.0159	22.428	14.2003

Thermo
Prof. Dr.-Ing. habil. Jadran Vrabec
Fachgebiet Thermodynamik

Fakultät III - Prozesswissenschaften

Aufgabe 17.3

In einem Mischer werden die Flüssigkeiten Benzol und Aceton von jeweils $0.1\,\mathrm{kg/s}$ adiabat und isobar gemischt. Die Temperatur von Benzol ist $T_\mathrm{B}=50\,^\circ\mathrm{C}$, die von Aceton $T_\mathrm{A}=20\,^\circ\mathrm{C}$. Die Molmassen und die konstant angenommenen spezifischen Wärmekapazitäten sind für Benzol $M_\mathrm{B}=78.11\,\mathrm{kg/kmol}$ und $c_\mathrm{B}=1.77\,\mathrm{kJ/(kg\,K)}$, für Aceton $M_\mathrm{A}=58.08\,\mathrm{kg/kmol}$ und $c_\mathrm{A}=2.2\,\mathrm{kJ/(kg\,K)}$. Das gebildete Gemisch sei ideal. Die Flüssigkeitsdichten seien konstant.

Bestimmen Sie:

- a) die Temperatur des Gemisches,
- b) die Molmasse des Gemisches,