Object Classification For Autonomous Driving

Machine Learning

Ηρακλής Σπύρου Αλέξανδρος Νταγιάντας

Εισαγωγή-Στόχοι

⋄ Σημαντικότητα της Αυτόνομης Οδήγησης:

Η ακριβής ταξινόμηση αντικειμένων είναι κρίσιμη για την αυτόνομη οδήγηση, καθώς μέσω της αντίληψης και της αλληλεπίδρασης τα οχήματα λαμβάνουν αποφάσεις που βελτιώνουν την ασφάλεια, αυξάνουν την αποδοτικότητα και προσφέρουν μεγαλύτερη άνεση στις μεταφορές.

♦ Χρήση του KITTI Dataset:

Το report βασίζεται στο ΚΙΤΤΙ dataset, το οποίο παρέχει έγχρωμες εικόνες με αντικείμενα μαζί με τα αντίστοιχα labels, προσφέροντας μια αξιόπιστη βάση δεδομένων για την ανάλυση.

Στόχος της εργασίας:

Η σύγκριση τεσσάρων μοντέλων ταξινόμησης (SVM, KNN, GNB, RF) ως προς την ικανότητα ταξινόμησης των κλάσεων Car, Pedestrian, Cyclist, Tram.

Workflow

KITTI Dataset

Train+Test Dataset:

- data_object_image_2.zip:
 Περιέχει έγχρωμες
 εικόνες για το 2D-object
 dataset, συνολικού
 μεγέθους 12GB.
- data_object_label.zip:
 Περιέχει τα labels για το training set, συνολικού μεγέθους 5MB.
- Συνολικά 7481 εικόνες (πρώτο sub-folder)

Παράμετρος	Περιγραφή
Object Type	Η κλάση του αντικειμένου.
Truncation	Το επίπεδο περικοπής του αντικειμένου.
Occlusion	Το επίπεδο απόκρυψης του αντικειμένου από άλλα αντικείμενα.
Alpha	Ο παρατηρούμενος προσανατολισμός του αντικειμένου.
Bounding Box	Οι συντεταγμένες του ορθογώνιου περιγράμματος (xmin, ymin, xmax, ymax).
3D Dimensions	Οι διαστάσεις του αντικειμένου στο 3D χώρο (height, width, length).
3D Location	Η θέση του αντικειμένου στο 3D χώρο (x, y, z).
Rotation Y	Ο προσανατολισμός του αντικειμένου γύρω από τον κάθετο άξονα.

Cropping

δ Σκοπός του Cropping:

- ο Απομόνωση αντικειμένων ενδιαφέροντος
- ο Μείωση background noise

♦ Διαδικασία:

- ο Ανάγνωση εικόνων & labels (bounding boxes)
- Εξαγωγή Bounding Boxes (xmin, ymin, xmax, ymax)
- Εφαρμογή Cropping με OpenCV
- ο Αποθήκευση cropped εικόνων σε ξεχωριστό φάκελο

♦ Κριτήρια Φιλτραρίσματος:

- 。 Αγνόηση πολύ κομμένων ή ελάχιστα ορατών αντικειμένων
- ο Συμπερίληψη μόνο των κλάσεων: Car, Pedestrian, Cyclist, Tram
- ♦ Συνολικά: μετά το cropping: 24614 εικόνες

Εξαγωγή Χαρακτηριστικών

♦ Διαδικασία:

- ο Μετατροπή σε Grayscale
- Resize (128×64 pixels)
- Εφαρμογή HOG (από OpenCV) για υπολογισμό της κλίσης και του προσανατολισμού των άκρων
- 。 Αποθήκευση σε αρχείο .csv
- ♦ **Τελικά:** Feature vector (3780 χαρακτηριστικά)×24614 instances

Διαδικασία Εκπαίδευσης

- ♦ **Διαχωρισμός Δεδομένων:** training+validation και testing.
- ♦ **Scaling:** Standard Scaler (mean=0, std=1).
- Εξισορρόπηση Δεδομένων:
 Χρήση τεχνικών SMOTE για δημιουργία συνθετικών δεδομένων και Undersampling για την αφαίρεση δεδομένων με ομοιόμορφο τρόπο.
- ♦ Μείωση Διαστατικότητας (PCA): (n_components=300).
- Hypereparameter tuning:
 Εκπαίδευση των μοντέλων με 5-fold cross validation και επιλογή βέλτιστων υπερπαραμέτρων.
- ♦ **Επανάληψη της διαδικασίας:** αλλά χωρίς dataset balancing για σύγκριση αποτελεσμάτων.
- Τελική εκπαίδευση: σε όλο το train+val dataset (χρησιμοποιώντας τη βέλτιστη υπερπαράμετρο) και αξιολόγηση στο test dataset.

Ταξινομητής	Default Τιμές	Πλέγμα Τιμών
SVM	C=1.0	[0.1, 0.3, 0.5, 1.0, 2.0, 5.0] [3, 5, 7, 9, 11, 13, 15, 17, 19] logspace(-5, -14, num=10)
KNN	n_neighbors=5 var_smoothing=ie-9	[3, 5, 7, 9, 11, 13, 15, 17, 19]
GNB	var_smoothing=1e-9	logspace(-5, -14, num=10)
Random Forest	n_estimators=100	[100, 150, 200, 250, 300]

Αποτελέσματα Hyperparameter Tuning

(c) GNB (Balanced)

(b) KNN (Balanced)

(d) Random Forests (Balanced)

(a) SVM (Unbalanced)

(c) GNB (Unbalanced)

(b) KNN (Unbalanced)

(d) Random Forests (Unbalanced)

Μοντέλο	Τελική Τιμή Υπερπαραμέτρου	Balanced
SVM	C = 2.0	NAI
KNN	$n_neighbors = 3$	OXI
GNB	$var_smoothing = 10^{-11}$	OXI
RF	$n_estimators = 300$	NAI

Τελικά αποτελέσματα (Classification Report & Confusion Matrices)

Table 6: Classification Report – **SVM**

	Prec.	Rec.	F1	Sup.
Car	1.00	0.99	1.00	3890
Cyclist	0.94	0.91	0.92	241
Pedestrian	0.95	0.99	0.97	734
Tram	1.00	1.00	1.00	58
Accuracy	_	-	0.99	4923
Macro avg	0.97	0.97	0.97	4923
Weighted avg	0.99	0.99	0.99	4923

Table 7: Classification Report – KNN

	Prec.	Rec.	F1	Sup.
Car	1.00	0.99	1.00	3890
Cyclist	0.89	0.91	0.90	241
Pedestrian	0.96	0.97	0.96	734
Tram	0.97	1.00	0.98	58
Accuracy	_	-	0.99	4923
Macro avg	0.95	0.97	0.96	4923
Weighted avg	0.99	0.99	0.99	4923

Table 8: Classification Report - GNB

	Prec.	Rec.	F1	Sup.
Car	0.98	0.99	0.98	3890
Cyclist	0.80	0.70	0.75	241
Pedestrian	0.91	0.87	0.89	734
Tram	1.00	0.79	0.88	58
Accuracy	-	-	0.96	4923
Macro avg	0.92	0.84	0.88	4923
Weighted avg	0.96	0.96	0.96	4923

Table 9: Classification Report – **RF**

	Prec.	Rec.	F1	Sup.
Car	0.98	1.00	0.99	3890
Cyclist	0.94	0.68	0.79	241
Pedestrian	0.90	0.95	0.93	734
Tram	1.00	0.79	0.88	58
Accuracy	_	-	0.97	4923
Macro avg	0.96	0.86	0.90	4923
Weighted avg	0.97	0.97	0.97	4923

(a) Confusion Matrix – SVM (Test Set) (b) Confusion Matrix – KNN (Test Set)

22

(c) Confusion Matrix - GNB (Test Set)

(d) Confusion Matrix - Random Forest (Test Set)

Τελικά αποτελέσματα (ROC & AUC)

(a) Καμπύλη ROC για το SVM

(b) Καμπύλη ROC για το KNN

Μοντέλο	Car	Cyclist	Pedestrian	Tram
SVM	0.9997	0.9956	0.9987	1.0000
KNN	0.9968	0.9772	0.9954	1.0000
GNB	0.9966	0.9850	0.9912	0.9999
RF	0.9978	0.9879	0.9954	0.9999

Table 10: AUC Scores για κάθε κλάση ανά μοντέλο.

Τελικά Συμπεράσματα

SVM:

- Εμφάνισε υψηλή ακρίβεια και σταθερότητα είτε στο balanced είτε στο unbalanced dataset.
- Είχε το
 μεγαλύτερο recall
 σε όλες τις κλάσεις
 και τα πήγε
 εξαιρετικά καλά
 στην κλάση cyclist.

KNN

- Είχε αρκετά καλύτερη απόδοση στο unbalanced dataset
- Παρουσιάζει
 ανταγωνιστική
 απόδοση, με
 ελαφρώς μειωμένη
 ακρίβεια συγκριτικά
 με το SVM.

GNB

- Αρκετά καλύτερη απόδοση στο unbalanced
- Εμφανίζει χαμηλότερη ακρίβεια σε σχέση με τα υπόλοιπα μοντέλα, κυρίως στις κατηγορίες Cyclist και Tram

RF

- Αρκετά καλύτερη απόδοση στο balanced dataset
- Αντιμετωπίζει
 προκλήσεις στην
 ταξινόμηση Cyclist
 και Tram, πιθανότατα
 λόγω της
 πολυπλοκότητας του
 dataset.

Ερωτήσεις;