Association Rule Mining: **Basic Concepts and Methods** CDS6314 LECTURE 4

Outline

- Basic Concepts
- Frequent Itemset Mining Methods
- Pattern Interestingness Evaluation Methods
- Summary

Did you notice this?

What Is Association Mining?

- Association rule mining:
 - Other terms: Affinity Analysis; Market Basket Analysis
 - Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
 - Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a database

Motivation of Association Mining

- Finding regularities in data
 - What products were often purchased together?
 - Bread and Milk? Bread and Butter? Bread and Rice?
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?

Why Association Mining?

- Broad applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - Web log (click stream) analysis, DNA sequence analysis, etc.
- Example:
 - buys(x, "Bread") \rightarrow buys(x, "Milk")[0.5%,50%]
 - major(x, "CS")^takes $(x, "DB") \rightarrow grade(x, "A")[1\%, 75\%]$

Basic Concepts

- Association rules show attribute value conditions that occur frequently together in a given dataset.
- More specific applications:
 - * ⇒ Chicken Rice (What the shop should do to boost Chicken Rice sales)
 - Laptop ⇒ * (What other products related to laptop should the store stocks up?)

Basic Concepts

- Given:
 - 1) database of transactions
 - 2) each transaction is a list of items (purchased by a customer in a visit)
- Find: ALL rules that correlate the presence of one set of items with that of another set of items
 - E.g., 98% of people who purchase tires and auto accessories also get automotive services done

Antecedent

Consequent

(IF a person buys bread, THEN they will buy chocolates)

Basic Concept: Frequent Itemsets (Patterns)

- Itemset: A set of one or more items
- k-itemset: $X = \{x_1, \dots, x_k\}$
- (absolute) support (count) of X: Number of occurrences (frequency) of an itemset X (i.e., number of transactions that contain X)
- (relative) support, s: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if the support of X is no less than a min_sup threshold (denoted as σ)

TID	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Let min_sup = 50%
- Freq. 1-itemsets:
 - Beer: 3 (60%); Nuts: 3 (60%)
 - Diaper: 4 (80%); Eggs: 3 (60%)
- Freq. 2-itemsets:
 - {Beer, Diaper}: 3 (60%)

Basic Concept: Association Rules

- Association rules: $X \to Y(s,c)$
 - Support, s: The probability that a transaction contains
 X ∪ Y
 - Confidence, c: The conditional probability that a transaction containing X also contains Y
 - $c = \sup(X \cup Y) / \sup(X)$
- **Association rule mining**: Find all of the rules, $X \to Y$, with *minimum support and confidence*
- Frequent itemsets: Let min_sup = 50%
 - Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - Freq. 2-itemsets: {Beer, Diaper}: 3
- Association rules: Let min_conf = 50%
 - Beer → Diaper (60%, 100%)(Q: Are these all rules?)
 - *Diaper* → *Beer* (60%, 75%)

TID	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Mining Association Rules: An Example

Transaction ID	Items Bought
2000	A, B, C
1000	A, C -
4000	A, D
5000	B, E, F

Min. support = 50% Min. confidence = 50%

Frequent Itemset	Support
{A}	75%
· {B}	50%
{C}	50%
{A, C}	50%

• For rule $A \Rightarrow C$:

• Support = support(
$$\{A \cup C\}$$
) = $\frac{1}{2}$ = 50%

• Confidence =
$$\frac{\text{support}(\{A \cup C\})}{\text{support}(\{A\})} = \frac{2}{3} = 66.6\%$$

Interestingness Measurements

- Pattern-mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting
- Interestingness measures: Objective vs. subjective
 - Objective interestingness measures: Based on threshold values controlled by the user.
 - Support, confidence, correlation, ...
 - Subjective interestingness measures: Often based on earlier user experiences and beliefs
 - Query-based: Relevant to a user's particular request
 - Actionable: User can do something with the patterns
 - Against one's knowledge-base: unexpected, freshness, timeliness

The Challenge

- A long pattern contains a combinatorial number of sub-patterns
- For example, a frequent itemset of length 100, such as $\{a_1, a_2, \dots, a_{100}\}$, will contain:

 - and so on till $\binom{100}{100}$.
 - The total number of frequent itemset in total:

$$\binom{100}{1} + \binom{100}{2} + \dots + \binom{100}{100} = 2^{100} - 1 \approx 1.27 \times 10^{30} \text{ sub-patterns}$$

- There are too many frequent patterns from a large dataset
 - Especially if the minimum support is set low
 - Sets of sub-patterns too huge for any computer to compute or store

Outline

- Basic Concepts
- Frequent Itemset Mining Methods
- Pattern Interestingness Evaluation Methods
- Summary

Pattern Mining Methods

- The Downward Closure Property of Frequent Patterns (Apriori Algorithm)
 - Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- FPGrowth: A Frequent Pattern-Growth Approach

Mining Frequent Itemsets: The Key Step

- Find the frequent itemsets: the sets of items that must have minimum support
- Frequent patterns have a downward closure property (Apriori)
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
- A subset of a frequent itemset must also be a frequent itemset
- Iteratively find frequent itemsets with cardinality from 1 to k (kitemset)
- Use the frequent itemsets to generate association rules
 - If any subset of an itemset S is infrequent, then there is no chance for S to be frequent (no need to consider S rules, more efficient mining)

Apriori: A Candidate Generation-and-test Approach

- Apriori property: Any subset of a frequent itemset must be frequent
- Apriori pruning principle: If there is ANY itemset that is infrequent, its superset should not be generated/tested
- Method: level-wise, candidate generation and test (Apriori outline)
 - Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm

- Join Step: C_k is generated by joining F_{k-1} with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset
- Pseudo-code:

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
k=1;
F_k=\{\text{frequent items}\}; \quad //\text{frequent 1-itemset}
\text{while } (F_k!=\emptyset) \text{ do} \{ \qquad //\text{when } F_k \text{ is non-empty} \}
C_{k+1}=\text{candidates generated from } F_k; \qquad //\text{candidate generation}
F_{k+1}=\text{candidatest } C_{k+1} \text{ above min \_sup; } //\text{candidate pruning}
k=k+1
\}
\text{Return } \bigcup_k F_k \qquad //\text{return } F_k \text{ generated at each level}
```


The Apriori Algorithm: An example

Important Details of Apriori

- How to generate candidates?
 - Step 1: self-joining F_k
 - Step 2: pruning
- Example of candidate-generation
 - $F_3 = \{abc, abd, acd, ace, bcd\}$
 - Self-joining: $F_3 * F_3$
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in F_3
 - $C_4 = \{abcd\}$

Challenges in Frequent Pattern Mining

- Challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Equivalence Class Transformation (ECLAT)

- Vertical data format to improve database scanning
- ECLAT is a depth-first search algorithm using set intersection
- For each item, store a list of transaction ids (tids)

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	Е
1	1	2	2	1
4	2	3	4	3 6
5	5	4	2 4 5 9	6
4 5 6 7 8 9	1 2 5 7 8 10	2 3 4 8	9	
7	8	9		
8	10			
9				
+				
TID-I	ist			

ECLAT

- Determine the support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets
- Advantage: very fast support counting
- Disadvantage: intermediate tid-lists may become too large for memory

Frequent Pattern Tree (FP-Tree)

- Method to mine frequent pattern without candidate generation
- Compress a large database into a compact structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only

FP-Growth Method: Construction of FP-Tree

- 1. Create the root of the tree, labeled with "null"
- 2. Scan database to create 1-itemset, and then list in *L* order according to support counts.
- 3. Remove items lower than minimum support
- 4. Scan the database D a second time and sort the items in each transaction in L order (i.e. sorted order).
- 5. A branch is created for each transaction with items having their support count separated by colon.
- 6. Whenever the same node is encountered in another transaction, just increment the support count of the common node or Prefix.
- 7. To facilitate tree traversal, an item header table is built so that each item points to its occurrences in the tree via a chain of node-links.
- 8. Now, The problem of mining frequent patterns in database is transformed to that of mining the FP-Tree.

FP-tree Construction: An example

TID	Items in the Transaction
100	$\{f,a,c,d,g,i,m,p\}$
200	$\{a,b,c,f,l,m,o\}$
300	$\{b,f,h,j,o,w\}$
400	$\{b,c,k,s,p\}$
500	$\{a,f,c,e,l,p,m,n\}$

- 1. Scan DB once, find single item frequent pattern: Let min_sup = 3 f:4, a:3, c:4, b:3, m:3, p:3
- 2. Sort frequent items in frequency descending order, f-list

$$F$$
-list = f-c-a-b-m-p

3. Scan DB again, construct FP-tree

Constructing the FP-tree

TID	Items in the Transaction	Ordered, frequent items
100	$\{f,a,c,d,g,i,m,p\}$	$\{f,c,a,m,p\}$
200	$\{a,b,c,f,l,m,o\}$	$\{f,c,a,b,m\}$
300	$\{b,f,h,j,o,w\}$	{ <i>f</i> , <i>b</i> }
400	$\{b,c,k,s,p\}$	$\{c,b,p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f,c,a,m,p\}$

Item	Frequency	Header
f	4	
С	4	
а	3	
b	3	
m	3	
p	3	

Constructing the FP-tree

TID	Items in the Transaction	Ordered, frequent items
100	$\{f,a,c,d,g,i,m,p\}$	$\{f,c,a,m,p\}$
200	$\{a,b,c,f,l,m,o\}$	$\{f,c,a,b,m\}$
300	$\{b,f,h,j,o,w\}$	{ <i>f</i> , <i>b</i> }
400	$\{b,c,k,s,p\}$	$\{c,b,p\}$
500	$\{a,f,c,e,l,p,m,n\}$	$\{f,c,a,m,p\}$

Item	Frequency	Header
f	4	
С	4	
а	3	
b	3	
m	3	
p	3	

Constructing the FP-tree

TID	Items in the Transaction	Ordered, frequent items
100	$\{f,a,c,d,g,i,m,p\}$	$\{f,c,a,m,p\}$
200	$\{a,b,c,f,l,m,o\}$	$\{f,c,a,b,m\}$
300	$\{b,f,h,j,o,w\}$	{ <i>f</i> , <i>b</i> }
400	$\{b,c,k,s,p\}$	$\{c,b,p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f,c,a,m,p\}$

Item	Frequency	Header
f	4	
С	4	
а	3	
b	3	
m	3	
p	3	

Conditional Pattern-Base

- Divide and conquer based on patterns and data
- Pattern mining can be partitioned according to current patterns
 - Patterns containing p: p's conditional database: f cam: 2, cb: 1
 - Patterns having m but no p:m's conditional database: fca: 2, fcab: 1
 - •
- p's conditional pattern base: transformed prefix paths of item p

Conditional pattern bases

Item	Conditional pattern base
С	<i>f</i> :3
a	<i>fc</i> :3
b	fca: 1, f: 1, c: 1
m	fca: 2, fcab: 1
p	fcam: 2, cb: 1

Mining Conditional Pattern-Base

Conditional pattern bases

FP-tree

- For each conditional pattern-base
 - Mine single-item patterns
 - Construct its conditional FP-tree & mine it

```
p-conditional PB: fcam: 2, cb: 1 \rightarrow c: 3
```

Conditional FP-tree (CFT) is only $\{c:3\}$, because you see it in both prefix paths.

The rest are not included as their support count is less than 3.

```
m-conditional PB: fca: 2, fcab: 1 \rightarrow fca: 3 b-conditional PB: fca: 1, f: 1, c: 1 \rightarrow \emptyset
```

Actually, for single branch FP-tree, all frequent patterns can be generated in one shot

```
f:3
```

```
m: 3
fm:,cm: 3, am: 3
fcm: 3, fam: 3, cam: 3
fcam: 3
```


Improving Apriori Efficiency

- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Transaction reduction: A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- Sampling: mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic itemset counting: add new candidate itemsets only when all of their subsets are estimated to be frequent

Outline

- Basic Concepts
- Frequent Itemset Mining Methods
- Pattern Interestingness Evaluation Methods
- Summary

Support and Confidence

- If confidence gets a value of 100 % the rule is an exact rule
- Even if confidence reaches high values the rule is not useful unless the support value is high as well
- Rules that have both high confidence and support are called strong rules
- But strong rules are not necessarily interesting

Limitation of Support-Confidence

- Are s and c interesting in association rules: " $A \Longrightarrow B$ " [s, c]?
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)	
eat-cereal	400	350	750	2-way
not eat-cereal	200	50	250	contingency
sum (col.)	600	400	1000	table

- Association rule mining may generate the following:
 - play-basketball \Rightarrow eat-cereal [40%, 66.7%] (higher s & c)
 - Looks good. But if you generate another rule
 - lacktriangledown ¬ play-basketball \Longrightarrow eat-cereal [35%, 87.5%] (high s & c)
- These two rules are confusing

Interestingness Measure: Lift

Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \to C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

- lift(B, C) may tell how B and C are correlated
 - lift(B, C) = 1: B and C are independent
 - > 1: positively correlated
 - < 1: negatively correlated

• For our example,
$$lift(B, C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$$

lift(B,
$$\neg C$$
) = $\frac{200/1000}{600/1000 \times 250/1000} = 1.33$

- Thus, B and C are negatively correlated since lift(B,C) < 1;
 - B and $\neg C$ are positively correlated since lift $(B, \neg C) > 1$

Lift is more	telling	than s &	С

	В	$\neg B$	Σ_{row}
С	400	350	750
¬ <i>C</i>	200	50	250
Σ_{col}	600	400	1000

Lift Ratio

Benchmark Confidence = P(Consequent)= $\frac{no. transactions with consequent itemset}{no. transactions in database}$ Lift ratio = $\frac{Confidence}{Benchmark Confidence}$

- A lift ratio is greater than 1.0 suggest that there is some usefulness to the rule
- The level of association between the antecedent and consequent item sets is higher than would be expected if they are independent
- The larger the lift ratio, the greater the strength of the association

Interestingness Measure: χ^2

Another measure to test correlated events: χ^2

$$\chi^2 = \sum \frac{\text{(Observed-Expected)}^2}{\text{Expected}}$$

	B	$\neg B$	Σ_{row}
С	400 (450)	350 (300)	750
$\neg C$	200 (150)	50 (100)	250
Σ_{col}	600	400	1000

Observed value

Expected value

- General rules
 - $\chi^2 = 0$: independent
 - $\chi^2 > 0$: correlated, either positive or negative, so it needs additional test

• Now,
$$\chi^2 = \frac{(400-450)^2}{450} + \frac{(350-300)^2}{300} + \frac{(200-150)^2}{150} + \frac{(50-100)^2}{100} = 55.56$$

- χ^2 shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- ullet χ^2 is also more telling than the support-confidence framework

Lift and χ^2 : Limitations

- Null transactions: Transactions that contain neither *B* nor *C*
- Let's examine the dataset D
 - BC (100) is much rarer than $B \neg C$ (1000) and $\neg BC$ (1000), but there are many $\neg B \neg C$ (100000)
 - Unlikely B & C will happen together
- Lift(B, C) = 8.44 >> 1
 - Lift shows B and C are strongly positively correlated
- $\chi^2 = 670$: Observed(B, C) >> expected value (11.85)
- Too many null transactions may spoil interestingness indication

	В	$\neg B$	Σ_{row}				
С	100	1000	1100				
$\neg C$	1000	100000	101000				
Σ_{col}	1100	101000	102100				
null transactions							

Contingency table with expected values added									
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$								
С	100 (11.85)	1000	1100						
¬ <i>C</i>	1000 (988.15)	100000	101000						
Σ_{col}	1100	101000	102100						

Interestingness Measures & Null-Invariance

- *Null invariance*: Value does not change with the # of null-transactions
- A few interestingness measures: Some are null invariant

Measure	Definition	Range	Null-Invariant]	
$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No		χ^2 and <i>lift</i> are not
Lift(A,B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No		null-invariant
AllConf(A, B)	$\frac{s(A \cup B)}{\max\{s(A), s(B)\}}$	[0, 1]	Yes		
Jaccard(A,B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes		Jaccard, cosine,
Cosine(A,B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes		AllConf, MaxConf, and Kulczynski are
Kulczynski(A,B)	$\frac{1}{2}\left(\frac{s(A\cup B)}{s(A)} + \frac{s(A\cup B)}{s(B)}\right)$	[0, 1]	Yes		null-invariant measures
MaxConf(A, B)	$max\{\frac{s(A)}{s(A\cup B)}, \frac{s(B)}{s(A\cup B)}\}$	[0, 1]	Yes		

ExKulc: 0- negatively correlated, 0.5- neutral, 1- positively correlated

Importance of Null Invariance

Dataset	тс	$\neg mc$	$m \neg c$	$\neg m \neg c$	
D_1	10,000	1,000	1,000	100,000	
D_2	10,000	1,000	1,000	100	
D_3	100	1,000	1,000	100,000 100,000	
D_4	1,000	1,000	1,000		
D_5	1,000	100	10,000	100,000	
D_6	1,000	10	100,000	100,000	

- Let's look at another ex. Check the first 4 data sets.
 - m and c are positively associated in D1 and D2
 - $mc(10,000) >> \overline{m}c(1000)$ and $m\overline{c}(1000)$
 - ullet m and c are negatively associated in D3
 - $mc(100) << \overline{m}c(1000)$ and $m\bar{c}(1000)$
 - m and c are neutral in D4
 - $mc(1000) = \overline{m}c(1000)$ and $m\overline{c}(1000)$

milk vs. coffee
contingency table

	milk	¬milk	Σ_{row}
coffee	mc	$\neg mc$	С
¬coffee	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

Importance of Null Invariance

- Why is null invariance crucial for the analysis of massive transaction data?
 - Many transactions may contain neither milk nor coffee
- Lift and χ^2 are not null-invariant: not good to evaluate data that contain too many (D1) or too few (D2) null transactions
- Many measures are not null-invariant

Dataset	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9 26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

		contingency table					
	milk	¬milk	Σ_{row}				
coffee	mc	$\neg mc$	С				
¬coffee	m - c	$\neg m \neg c$	$\neg c$				

m

 Σ_{col}

Null-transactions w.r.t. m and c

 $\neg m$

Comparison of Null-Invariant Measures

- Not all null-invariant measures are created equal
- $D_4 D_6$ differentiate the null-invariant measures
- So, which one is better?
 - We use Imbalance Ratio (IR) to measure.

2-variable contingency table							
	milk \neg milk Σ_{row}						
coffee	mc	$\neg mc$	С				
¬coffee	$m \neg c$	$\neg m \neg c$	$\neg c$				
Σ_{col}	m	$\neg m$	Σ				

All 5 are null-invariant

Dataset	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConf
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100,000	0.01	0.01	0.10	0.5	0.99

Subtle: They disagree on most cases

Imbalance Ratio with Kulczynski Measure

						, , , , , , , , ,			
Dataset	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConf
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100,000	0.01	0.01	0.10	0.5	0.99

- D_5 (and D_6) presents a "balanced" skewness:
 - The ratio of mc to c is greater than 0.9 (1000/1,100)
 - ullet c occurs strongly suggest that m occurs
 - The ratio of mc to m is less than 0.1 (1000/11,000)
 - c is quite unlikely to occur due to the occurrence of m
- Diverse results:
 - All confidence & cosine measures view both cases as negatively associated.
 - The max confidence measure claims strong positive associations for these cases.
 - But the Kulc measure views both as neutral

Imbalance Ratio with Kulczynski Measure

ullet IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications

$$IR(A,B) = \frac{|s(A) - s(B)|}{s(A) + s(B) - s(A \cup B)}$$

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D_4 through D_6
 - D_4 is neutral & balanced; D_5 is neutral but imbalanced; D_6 is neutral but very imbalanced
 - For such "balanced" skewness:
 - treat it as neutral and indicate its skewness using the imbalance ratio (IR)

Dataset	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_1	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_2	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_3	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_4	1,000	1,000	1,000	100,000	0.33	0.5	0.5	0
D_5	1,000	100	10,000	100,000	0.09	0.29	0.5	0.89
D_6	1,000	10	100,000	100,000	0.01	0.10	0.5	0.99

Measures Selection

- For effective pattern evaluation, some key points can be referred to select the appropriate measure
- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets
 - neither Mike nor Jim is an author in most of the papers; etc.
- Null-invariance is an important property
- Lift, χ^2 and cosine are good measures if null transactions are not predominant
 - Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern for large datasets with significant amount of null value cases

Summary

- Basic Concepts
 - Frequent Patterns, Association Rules
- Frequent Itemset Mining Methods
 - The Downward Closure Property and The Apriori Algorithm
 - Challenges and Improvements of Apriori
 - ECLAT & FP-tree
- Pattern Interestingness Evaluation Measures:
 - Interestingness Measures: Lift and χ^2
 - Null-Invariant Measures
 - Comparison of Interestingness Measures

References

• Jiawei Han and Micheline Kamber, *Data Mining: Concepts and Techniques*, Morgan Kaufmann Publishers, 2001 (ISBN:1-55860-489-8).