L1 Physique-chimie

Feuille d'exercices 2

Attention: Dans la plupart des exercices, la notation j représente le nombre complexe i t.q. $i^2 = -1$. Les énoncés ont été en effet écrits avec la notation physicienne du nombre complexe i. Donc, si cela n'est pas précisé, il faut interpréter j comme étant le nombre complexe i.

Exercice 1. Rappeler les racines *n*-ièmes de l'unité. Calculer j^n (où $j = \exp(2i\pi/3)$), i^n . Faire un dessin des racines 8-ièmes de l'unité.

Exercice 2. 1) Trouver la forme algébrique des nombres complexes suivants : z = (2 - 3j)(5 + 2j), $z = (1 + j)(1 - j)^2$, $z = \frac{1}{1 + j}$, $z = \frac{3 + j}{1 - j}$, $z = ((1 - j)/(1 + j))^2$.

2) Module et argument de $z = \frac{1+j\sqrt{3}}{\sqrt{3}+j}$.

Exercice 3. Calculer j^2 , j^3 , j^4 , j^{76} et plus généralement j^n pour tout $n \in \mathbb{Z}$.

Exercice 4. Effectuer le produit

$$(z-1-j)(z-1+j)(z+1+j)(z+1-j).$$

En déduire les solutions dans \mathbb{C} de l'équation $z^4 + 4 = 0$.

Exercice 5. 1) Représenter les nombres $J=\frac{-1+j\sqrt{3}}{2}$ et J^2 . Montrer que $J^2=\bar{J},\,J^3=1,$ et $1+J+J^2=0.$ 2) Résoudre $(z-j)^3=1.$

Exercice 6. Résoudre $z^3 = \bar{z}$ (regarder si z = 0 ou $z \neq 0$; regarder la valeur possible pour |z|...)

Exercice 7. Déterminer l'argument principal des nombres complexes non nuls suivants , et trouver leur forme exponentielle :

$$z=3+3j,$$
 $z=-1,$ $z=-1+\sqrt{3}j,$ $z=\pi,$ $z=2j,$ $z=-j-\sqrt{3}$

Exercice 8. Trouver la forme algébrique pour $z = \frac{1+\alpha j}{2\alpha + (\alpha^2 - 1)j}$ où $\alpha \in \mathbb{R}$.

Exercice 9. Déterminer le module et l'argument du nombre complexe $\left(\frac{1+j\sqrt{3}}{1-j}\right)^{19}$.

Exercice 10. Résoudre les équations suivantes :

1.
$$z^3 = \frac{1+j}{1-j}$$
 2. $z^3 = -8$ 3. $z^4 = -2$

Exercice 11. Calculer $(1+2j)^4$. Résoudre dans \mathbb{C} l'équation $z^4=-7-24j$.

Exercice 12. Déterminez les racines dans $\mathbb C$ des polynômes suivants :

$$P(z) = z^2 - 2z + 20$$
, $P(z) = z^3 + z^2 + 3z - 5$.

Exercice 13. En utilisant les formules d'Euler

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
 et $\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$,

a) montrer les formules suivantes :

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}, \qquad \qquad \sin^2 \theta = \frac{1 - \cos 2\theta}{2}.$$

b) Obtenir des formules pour $\cos^3 \theta$, $\sin^3 \theta$ et $\cos^4 \theta$.

Exercice 14. Trouver la forme algébrique des nombres complexes suivants :

$$z = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}j\right)^3, \qquad z = -\left(\frac{1}{2} + \frac{\sqrt{3}}{2}j\right)^{-2}.$$

Exercice 15. Soit z et z' deux nombres complexes de module 1. Montrer que si $zz' \neq -1$, alors $Z := \frac{z+z'}{1+zz'}$ est réel (penser au conjugué).

Exercice 16. Soit

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$$

un polynôme à coefficients réels (c'est-à-dire que $a_i \in \mathbb{R}$ pour tout i = 0, 1, ..., n). Montrer que $z \in \mathbb{C}$ est une racine de P si et seulement si \bar{z} l'est aussi.

Exercice 17. A l'aide la formule de Moivre déterminer la forme trigonométrique de $(1+i)^n$ et $(1-i)^n$, puis en déduire une expression simple de $(1+i)^n + (1-i)^n$.

Exercice 18. Résoudre les équations $z^4 - 4z^2 + 5 = 0$, $z^4 + 10z^2 + 169 = 0$ (un peu long pour le 2ème; poser $Z = z^2$).

Exercice 19. Déterminer $\alpha \in \mathbb{R}$ pour que $z = (\alpha - j)(10 - \alpha + j(2 + \alpha))$ soit réel.

Exercice 20. [plus dur] On cherche à trouver 3 nombres complexes z, z', z'' tels que

$$z + z' + z'' = 1$$
; $zz'z'' = 1$; $|z| = |z'| = |z''| = 1$.

1) En divisant par zz'z'', montrer que

$$zz' + zz'' + z'z'' = \frac{1}{z} + \frac{1}{z'} + \frac{1}{z''} = \bar{z} + \bar{z}' + \bar{z}'',$$

et en déduire que zz' + zz'' + z'z'' = 1.

2) On admet le résultat suivant : soit $S,\,P,\,$ et D trois nombres complexes. Alors $z,\,z',\,z''$ sont solutions de

$$z + z' + z'' = S$$
; $zz' + zz'' + z'z'' = D$; $zz'z'' = P$

si et seulement si z, z', z'' sont les racines du polynôme $Z^3 - SZ^2 + DZ - P = 0$. En utilisant ce résultat, montrer que z, z', z'' sont solutions de l'équation $Z^3 - Z^2 + Z - 1 = 0$. En déduire toutes les valeurs possible de $\{z, z', z''\}$.

Exercice 21. [en lien avec le chapitre suivant]

- 1) Soit $f(t) = e^{(1+j)t}$. Trouver les deux solutions de l'équation $z^2 2z + 2 = 0$. Calculer f'(t), f''(t) puis montrer que f'' 2f' + 2f = 0.
- 2) Ecrire f(t), f'(t), f''(t) sous forme exponentielle. En déduire l'écriture algébrique de f(t), f'(t), f''(t). A quoi sont égales Re(f(t)) et Im(f(t))?
- 3) En déduire deux fonctions réelles solutions de y'' 2y' + 2y = 0