COMMERCE MENTORSHIP PROGRAM

MIDTERM REVIEW SESSION

COMM 204

PRACTICE QUESTION 1: FLOW CHART, CAPACITY RATE, BOTTLENECK ANALYSIS

PRACTICE QUESTION 1 ANSWER KEY:

Place order Toast buns Sear meat patty Add dressings Packaging D	Place order	Toast bu	s >	Sear meat patty		Add dressings	•	Packaging	•	Deliver	
--	----------------	----------	---------------	-----------------	---------	------------------	---	-----------	---	---------	--

Resource	Cashier	Worker 1/Toaster	Worker 2	Worker 3	Worker 4	Worker 5
Flow time	12 sec	16 sec	15 sec	12 sec	12 sec	5 sec
Capacity Rate	300/hour	225/hour	240/hour	300/hour	300/hour	720/hour

- a) Flow Time: 12+16+15+12+12+5 = 72 seconds
- b) Bottleneck activity: Toasting buns flowtime: 16 seconds
- c) Capacity rate of worker 4: 1/12*60*60 = 300 units/hour
- d) Capacity rate of process = Capacity rate of bottleneck activity = 1/16*60*60 = 225 units/hour
- e) He needs to adjust the bottleneck activity by either:
 - i) Adding more toasters (increasing resources)
 - ii) Reducing unit load of the toaster
 - iii) By adding one more toaster
 - 1) New capacity rate of toasting buns: 225*2 = 450 unit/hour
 - 2) New bottleneck: Searing meat patty (240 units/hour)
 - 3) New Flowtime: 72 seconds
 - (a) Increasing resources does not affect Flowtime
- f) Shortening non-bottleneck tasks decreases flow time but does not affect capacity rate of the whole process, therefore, the bottleneck would still be bun toasting
- g) He is incorrect, because increasing resources does not affect Flowtime

PRACTICE QUESTION 2: THROUGHPUT RATE & UTILIZATION PRACTICE QUESTION 2 ANSWER KEY:

Resource	Cashier	Worker 1/Toaster	Worker 2	Worker 3	Worker 4	Worker 5
Flow time	12 sec	16 sec	15 sec	12 sec	12 sec	5 sec
Capacity Rate	300/hour	225/hour	240/hour	300/hour	300/hour	720/hour

6pm

o Input rate: 250 students/hour

Capacity rate of the process: 225/hour

■ Throughput rate of the process: 225 students/hour

Utilization rate: 225/225 = 100%

• 9am

o Input rate: 200 students/hour

Capacity rate of the process: 225/hour

■ Throughput rate of the process: 200 students/hour

Utilization rate: 200/225 = 88.88%

http:// cmp.cus.ca

PRACTICE QUESTION 3: THROUGHPUT RATE, UTILIZATION & INVENTORY BUILDUP DIAGRAM, LITTLE'S LAW

Practice Question 3 Answer key:

- a) Time stamps!
 - i) 9:30am 10am:
 - 1) Customers started lining up at 9:30am, inventory at 9:30am is 0
 - 2) Arrival rate: 20/hour; Service rate: 0/hour,
 - 3) Inv @ 10am = 20 (customers/hour) * 0.5 (hour) = 10 customers
 - ii) 10am 10:30am
 - 1) Arrival rate: 20/hour; Service rate: 10/hour,
 - 2) $I(10:30am) = I(10am) + \Delta R \cdot (10:30am 10am)$
 - 3) $\Delta R = 20 10 = 10$ customers/hour
 - 4) Inv @10:30am = 10 + 10*0.5(hour) = 15 customers
 - iii) 10:30am 11:30am:
 - 1) Arrival rate: 15 customers/hour; service rate: 10 customers/hour
 - 2) $I(11:30am) = I(11am) + \Delta R \cdot (11:30am 10:30am)$
 - 3) $\Delta R = 15 10 = 5$
 - 4) Inv = 15 + 5*1(hour) = 20 customers
 - iv) 11:30 onwards:
 - 1) Arrival rate: 0 customers/hour; service rate: 10 customers/hour
 - 2) Draw a line with a slope of -10/hour
 - 3) Since there were 20 customers waiting from 11:30, it would take 20/10 = 2 hours to process

v) Inventory build-up Diagram

Inventory Buildup Diagram

- vi) Average Inventory = Area under curve
 - 1) 9:30am 10:00am: 0.5(hour) * 10 * 0.5 = 2.5
 - 2) 10:00am 10:30am: 0.5 (hour) * (10+15)/2 = 6.25
 - 3) 10:30am 11:30am: 1 (hour) * (15+20)/2 = 17.5
 - 4) 11:30am 13:30pm: 2 (hour) * 20/2 = 10
 - 5) Avg Inv = (2.5 + 6.25 + 17.5 + 10)/4 = appox. 9 customers
- b) Between 9:30 am 13:30pm, there are 20 + 15 = 35 customers Throughput rate = 35 customers / 4 hour = 8.75 (customers/hour)

Little's Law tells us: I = R * T

Average Flow Time = Avg Inventory / Throughput rate = 9/8.75 = 1.02 (hours)

PRACTICE QUESTION 4: CRITICAL PATH ANALYSIS

PRACTICE QUESTION 4 ANSWER KEY

Node	Activity	Time (days)	Precedence
Α	Planning	20	None
В	Purchasing location	60	А
С	Excavation	100	Α
D	Purchasing Materials	30	В
E	Building the frame	20	C,D
F	Assembly	10	Е
G	Painting walls	20	F
Н	Interior placements	10	F
1	Decorations	30	G,H

- A-C-E-F-G-I = 20 + 100 + 20 + 10 + 20 + 30 = 200 (days)
- A-B-D-E-F-G-I: 190 days
- A-B-D-E-F-H-I: 180 days
- A-C-E-F-H-I: 180 days

PRACTICE QUESTION 5: COSTING, CRASHING ACTIVITIES (continued from last question)

PRACTICE QUESTION 5 ANSWER KEY

Node	Activity	Time (days)	Precedence	Cost	Crash time	Crash Cost	Crashable time (Time – Crash time)	Cost increase (Crash cost – Cost)	Cost/day (Cost increase / Crashable Time)
Α	Planning	20	None	\$300	15	\$450	5	\$150	\$30/day
В	Purchasing location	60	Α	\$2,100	50	\$2,140	10	\$40	\$4/day
С	Excavation	100	Α	\$4,000	75	\$4,500	25	\$500	\$20/day
D	Purchasing Materials	30	В	\$2,850	20	\$3,000	10	\$150	\$15/day
E	Building the frame	20	C,D	\$500					
F	Assembly	10	E	\$200					
G	Painting walls	20	F	\$400	Cannot be crashed				
Н	Interior placements	10	F	\$600					
1	Decorations	30	G,H	\$1,350					

Using the scorecard:

Step 1: Identify all paths (4 options):

- G > H -> Pick G
- B + D < C -> Pick C
- A-C-E-F-G-I = 20 + 100 + 20 + 10 + 20 + 30 = 200 (days)
- A-B-D-E-F-G-I: 190 days
- A-B-D-E-F-H-I: 180 days
- A-C-E-F-H-I: 180 days

Step 2: Identify Critical path

Step 3: Identify Crashable Activities based on Critical Paths

A (\$30/day) and C (\$20/day)

Step 4: Crash the cheapest activity to match the second longest path

• Choose C and crash 10 days

• Note: If there are multiple critical paths in this step, must crash all critical paths

Step 5: Update the total cost

• 10*20 = 200 => \$12,300 + \$200 = \$12,500

Step 6: Calculate the remaining crashable days of the activity

• Activity C: 25 - 10 = 15 (days remaining to crash)

Step 7: Repeat from step 1 until you reach the desired # of days!

Step 5: Cost	Step 6: # Days	Step 2: Critical Paths	Step 3: Crashable Task	Step 4: Best option	Step 1: All paths
\$12,300	200	A-C-E-F-G-I	A (5 days @ \$30/day) & C (25 days @ \$20/day)	C for 10 days	A-C-E-F-G-I: 200 days A-B-D-E-F-G-I: 190 days A-B-D-E-F-H-I: 180 days A-C-E-F-H-I: 180 days
\$12,500	190	A-B-D-E-F-G-I and A-C-E-F-G-I	A (5 days @ \$30/day) & B (10 days @ \$4/day) & C (15 days @ \$20/day) & D (10 days @ \$15/day)	B & C for 10 days	A-C-E-F-G-I: 190 days A-B-D-E-F-G-I: 190 days A-B-D-E-F-H-I: 180 days A-C-E-F-H-I: 180 days
\$12,740	180	A-B-D-E-F-G-I and A-C-E-F-G-I	A (5 days @ \$30/day) & B (0 days @ \$4/day) & C (5 days @ \$20/day) & D (10 days @ \$15/day)	A for 5 days	A-C-E-F-G-I: 180 days A-B-D-E-F-G-I: 180 days A-B-D-E-F-H-I: 170 days A-C-E-F-H-I: 170 days
\$12,890	175				A-C-E-F-G-I: 175 days A-B-D-E-F-G-I: 175 days A-B-D-E-F-H-I: 165 days A-C-E-F-H-I: 165 days

PRACTICE QUESTION 6: P-K FORMULA

PRACTICE QUESTION 6 ANSWER KEY

A)
$$\lambda = 50$$
/hour $\mu = 60$ /hour $q = 7$ $q = 7$

For exponential distributions, mean = std dev

This is a M/M/1 queue, therefore:

$$Iq = 50^2 / 60(60-50) = 25/6$$

$$Tq = Iq / \lambda = (25/6)/50 = 1/12$$

B)
$$\lambda = 4/\text{hour}$$
 $E[a] = Tq = \frac{1}{4} \text{ hour}$ $\sigma[a] = \frac{5}{60} = \frac{1}{12} \text{ (hour)}$ $\mu = \frac{6}{\text{hour}} = \frac{1}{\text{Ts}}$ $E[s] = Ts = \frac{1}{6} \text{ (hour)}$ $\sigma[s] = \frac{3}{60} = \frac{1}{20} \text{ (hour)}$

$$\rho = \lambda / \mu = 4/6 = 2/3$$

Ca =
$$\sigma$$
[a] / E[a] = (1/12) / (1/4) = 1/3

$$Cs = \sigma[s] / E[s] = (1/20) / (\%) = 3/10$$

This is a G/G/1 queue, therefore:

$$I_q \cong \frac{\rho^2}{1-\rho} \times \frac{C_a^2 + C_s^2}{2} = \frac{(2/3)^2}{1/3} \times \frac{(1/3)^2 + (3/10)^2}{2}$$
 Iq = 0.1340

$$Tq = Iq / \lambda = 0.1340 / 4 = 0.0335$$

C)
$$\lambda = 4/\text{hour}$$

Ts =
$$\frac{1}{4}$$
 (hour) -> μ = $\frac{6}{hour}$

This is an M/D/1 queue as inter-arrival times follow an exponential distribution, and service time is contant

$$Iq = 4^2/(2*6(6-4)) = \frac{2}{3}$$

$$Tq = (2/3)/4 = \%$$

$$T = Tq + Ts = \frac{1}{3}$$