P1 de Álgebra Linear I – 2001.2 Sábado, 15 de setembro de 2001. Gabarito

- 1) Sejam $u \in v$ vetores unitários de \mathbb{R}^3 .
- a) Suponha que $(u+v)\cdot(u+v)=(u-v)\cdot(u-v)$. Calcule o ângulo formado pelos vetores u e v.
- **b)** Suponha que $(u+v)\cdot(u+v)=(u-v)\cdot(u-v)+2\sqrt{2}$. Calcule o ângulo formado pelos vetores $u\in v$.
- c) Suponha que $u \times v = \bar{0} = (0, 0, 0)$. Calcule $|u \cdot v|$.
- d) Considere um vetor n. Sabendo que $n \cdot (u \times v) = 5$, calcule $v \cdot (n \times u)$
- e) Considere um vetor não nulo n. Calcule $u \cdot (n \times n)$.

Resposta:

a) Pelas propriedades do produto escalar, $(u+v) \cdot (u+v) = u \cdot (u+v) + v \cdot (u+v) = u \cdot u + u \cdot v + v \cdot u + v \cdot v$. Como $u \in v$ são vetores unitários, $u \cdot u = v \cdot v = 1$. Lembre também que $u \cdot v = v \cdot u$. Logo,

$$(u+v)\cdot(u+v)=2+2\,u\cdot v.$$

Analogamente, $(u-v)\cdot(u-v)=u\cdot(u-v)-v\cdot(u-v)=u\cdot u-u\cdot v-v\cdot u+v\cdot v$. Como u e v são vetores unitários, $u\cdot u=v\cdot v=1$. Lembre também que $u\cdot v=v\cdot u$. Logo,

$$(u-v)\cdot(u-v) = 2 - 2u\cdot v.$$

Usando que $(u+v)\cdot(u+v)=(u-v)\cdot(u-v)$, temos

$$2+2u\cdot v=2-2\,u\cdot v,\quad 4\,u\cdot v=0,\quad u\cdot v=0$$

Como $u \cdot v = |u||v|\cos\alpha = \cos\alpha$, onde α é o ângulo formado pelos vetores, temos que $\cos\alpha = 0$, e os vetores são ortogonais (ângulo $\pi/2$ ou $-\pi/2$).

b) Pelos cálculos já feitos, $(u+v)\cdot(u+v) = 2+2u\cdot v$ e $(u-v)\cdot(u-v) = 2-2u\cdot v$. Logo a igualdade pode ser reescrita como

$$2 + 2u \cdot v = 2 - 2u \cdot v + 2\sqrt{2}, \quad 2u \cdot v = -2u \cdot v + 2\sqrt{2}, \quad 4u \cdot v = 2\sqrt{2}.$$

Isto é,

$$u \cdot v = \sqrt{2}/2$$
.

Novamente, $u \cdot v = |u||v|\cos\alpha = \cos\alpha = \sqrt{2}/2$, onde α é o ângulo formado pelos vetores, temos que $\cos\alpha = \sqrt{2}/2$, e os vetores formão um ângulo de $\pm \pi/4$.

- c) Observe que $|u \times v| = |u||v| \mathrm{sen}\alpha = \mathrm{sen}\alpha = 0$, onde α é o ângulo formado pelos vetores. Logo $\alpha = \pi$ ou $\alpha = 0$, e os vetores são paralelos. Portanto, $|u \cdot v| = |u||v||\cos(0) = 1$.
- d) Pelas propriedades do produto vetorial:

$$v \cdot (n \times u) = -n \cdot (v \times u) = -(-n \cdot (u \times v)) = n \cdot (u \times v) = 5.$$

- e) Observe $n \times n = \overline{0}$, pois $|n \times n| = |n||n| \operatorname{sen}(0) = 0$. Logo $u \cdot (n \times n) = u \cdot \overline{0} = 0$.
 - **2)** Considere o plano π : x y + z = 2.
- a) Determine a equação cartesiana do plano ρ paralelo a π que contém a origem.
- b) Determine as equações paramétricas de π .
- c) Calcule a distância entre os planos π e ρ .
- d) Calcule o ponto de ρ mais próximo do ponto (1,0,1) de π .
- e) Determine um triângulo retângulo com dois vértices em π e um vértice em ρ .

Resposta:

a) O vetor normal de π é (1,-1,1). Como ρ é paralelo a π , π e ρ têm o mesmo vetor normal, logo é da forma, x-y+z=d. Para determinar d usamos que (0,0,0) pertence ao plano ρ , logo d=0 e ρ : x-y+z=0.

b) Para determinar as equações paramétricas de π devemos encontrar um ponto P de π e dois vetores u e v paralelos a este plano, isto é, ortogonais a (1, -1, 1), e não paralelos entre si.

Podemos tomar P = (1, 0, 1), u = (1, 1, 0) (verifica $u \cdot n = 0$) e v = (0, 1, 1) (verifica $v \cdot n = 0$).

Uma equação paramétrica é

$$x=1+t, \quad y=0+t+s, \quad z=1+s, \qquad t,s\in\mathbb{R}.$$

Observe que existem outras equações paramétricas de π : o ponto Q=(2,1,1) pertence a π e os vetores (1,2,1) e (1,7,6) são paralelos a π (veja que o produto escalar destes vetores por n é zero). Logo, outra equação paramétrica de π é

$$x = 2 + t + s$$
, $y = 2 + 2t + 7s$, $z = 1 + t + 6s$, $t, s \in \mathbb{R}$.

Outra forma de resolver a questão é escolher x e y como parâmetros (t e s) e escrever z, em função destes parâmetros: x-y+z=2, logo t-s+z=2, z=2-t+s,

$$x = t$$
, $y = s$, $z = 2 - t + s$, $t, s \in \mathbb{R}$.

c) A distância entre os planos é igual a distância de qualquer ponto Q (por exemplo a origem) de ρ a π . Calcularemos esta distância usando dois métodos.

Método 1: Considere o ponto P=(1,0,1) de π . A distância é o módulo da projeção do vetor $\overline{QP}=(1,0,1)$ no vetor normal do plano π , $m=(1/\sqrt{3},-1/\sqrt{3},1/\sqrt{3})$. O vetor projeção é

$$[(1,0,1)\cdot(1/\sqrt{3},-1/\sqrt{3},1/\sqrt{3})](1/\sqrt{3},-1/\sqrt{3},1/\sqrt{3}) = 2/\sqrt{3}(1/\sqrt{3},-1/\sqrt{3},1/\sqrt{3}) = (2/3,-2/3,2/3).$$

Este vetor tem módulo $\sqrt{12}/3 = 2/\sqrt{3}$.

Método 2: Calcularemos o ponto T de interseção do plano π e da reta r perperdicular a π contendo $(0,0,0) \in \rho$. A distância é comprimento do segmento $\overline{0T}$.

A reta $r \notin (t, -t, t), t \in \mathbb{R}$. Logo para obter o ponto de interseção resolvemos,

$$t - (-t) + t = 2$$
, $t = 2/3$, $T = (2/3, -2/3, 2/3)$.

Observe agora que o tamanho do segmento já foi calculado no item anterior.

d) Para calcular o ponto mais próximo de A=(1,0,1) do plano ρ consideramos a interseção da reta s perpendicular a ρ contendo A e o próprio plano ρ . A reta s tem equação, $(1+t,-t,1+t), t \in \mathbb{R}$. O ponto de interseção de s e ρ é obtido resolvendo

$$(1+t)-(-t)(1+t)=0$$
, $3t=-2$, $t=-2/3$.

Logo o ponto é (1/3, 2/3, 1/3).

Existe outro método diferente. É suficiente observar que o vetor projeção de \overline{QP} em (1,-1,1) é (2/3,-2/3,2/3). Portanto, dado qualquer ponto B de π se verifica que $C=B-(2/3,-2/3,2/3)\in\rho$ e que C é o ponto de ρ mais próximo de B. No nosso caso, (1,0,1)-(2/3,-2/3,2/3)=(1/3,-2/3,1/3). e) Observe que o triângulo com vértices $B=(1/3,2/3,1/3)\in\rho$, $A=(1,0,1)\in\pi$ e C (onde C é qualquer ponto de π , $C\neq A$) é um triângulo retângulo: o vetor \overline{AB} é paralelo ao vetor normal do plano π e o vetor \overline{AC} é paralelo a π , logo ortogonal a \overline{AB} . Portanto, escolhemos qualquer ponto de

- 3) Considere a reta r_1 dada como intersecção dos planos x-z=1 e x-y=1. Seja a reta r_2 : $(t,-t,t), t \in \mathbb{R}$.
- a) Determine um vetor diretor de r_1 .

 π differente de (1,0,1), por exemplo (2,2,2).

- b) Determine uma equação paramétrica de r_1 .
- **c)** Escreva a reta r_2 como intersecção de dois planos π e ρ dados em equações paramétricas.
- d) Calcule a distância entre as retas r_1 e r_2 .
- e) Determine a posição relativa das retas r_1 e r_2 .

Resposta:

a) Sejam n = (1, 0, -1) e m = (1, -1, 0) os vetores normais dos planos que definem r_1 . O vetor diretor de r_1 é $v = n \times m = (1, 0, -1) \times (1, -1, 0) = (-1, -1, -1)$. Logo podemos tomar como vetor diretor (1, 1, 1).

b) Existem dois métodos. Primeiro é encontrar um ponto de r_1 , por exemplo (1,0,0), e a equação é (1+t,t,t), $t \in \mathbb{R}$.

Outro método é resolver o sistema. Temos z=x-1 e y=x-1. Escolhendo x como parâmetro temos, $(t,-1+t,-1+t), t \in \mathbb{R}$. Observe que as duas equações paramétricas definem a mesma reta.

Outra forma de resolver os itens anteriores é a seguinte: resolvemos o sistema

$$x - z = 1, \quad x - y = 1,$$

temos

$$z = x - 1$$
, $y = x - 1$.

Tomando x como parâmetro temos $(t, t-1, t-1), t \in \mathbb{R}$. Assim temos a equação paramétrica e sabemos que o vetor diretor é (1, 1, 1).

c) Devemos escolher dois planos ρ e π que não sejam paralelos e contenham a r_2 . Como o ponto $A=(1,1,1) \not\in r_2$, o ponto A e r_2 determinam um plano que contém a r_2 . Dois vetores paralelos a este plano são $\overline{0A}=(1,1,1)$ e (1,-1,1), e um ponto é a origem, logo a equação paramétrica de π é

$$x = s + t$$
, $y = s - t$, $z = s + t$, $s, t \in \mathbb{R}$.

Para determinar o plano ρ escolhemos um ponto B que não pertença a π , por exemplo, B=(1,0,0). Observe que se $B\in\pi$ então

$$1 = s + t$$
, $0 = s - t$, $0 = s + t$,

logo, das duas últimas equações, s = t e 2t = 0, logo s = t = 0, e $1 \neq 0 + 0$.

Raciocinanco como no caso de π , Como $B=(1,0,0) \not\in r_2$, o ponto B e r_2 determinam um plano que contém a r_2 . Dois vetores paralelos a este plano são $\overline{0B}(1,0,0)$ e (1,-1,1), e um ponto é a origem, logo a equação paramétrica de π é

$$x = s + t$$
, $y = -t$, $z = +t$, $s, t \in \mathbb{R}$.

d) Para calcular a distância entre as retas escolhemos um ponto P = (1, 0, 0) de r_1 , um ponto Q = (0, 0, 0) de r_2 e os vetores diretores das duas retas, (1, 1, 1) e (1, -1, 1). Sabemos que a distância d é dada por

$$d = \frac{|\overline{OP} \cdot ((1,1,1) \times (1,-1,1))|}{||(1,1,1) \times (1,-1,1)||} = \frac{|(1,0,0) \cdot ((1,1,1) \times (1,-1,1))|}{||(1,1,1) \times (1,-1,1)||}.$$

Temos

$$(1,1,1)\times(1,-1,1)=(2,0,-2), \quad ||(2,0,-2)||=\sqrt{2^2+0^2+2^2}=\sqrt{8}=2\sqrt{2}.$$

Também,

$$(1,0,0) \cdot (2,0,-2) = 2.$$

Logo a distância é $d = 1/\sqrt{2} = \sqrt{2}/2$

- e) As retas são reversas: não são paralelas (vetores diretores não paralelos) e a distância é não nula.
 - 4) Considere os planos

$$\pi_1$$
: $x+y-z=1$, π_2 : $2x+y+z=2$, π_3 : $2x+2y-2z=2$, π_4 : $x+2z=3$, e a reta

$$r:(t,2t,3t), t \in \mathbb{R}$$
.

- a) Determine a posição relativa de π_1 e π_2 .
- **b)** Determine a posição relativa de π_1 e π_3 .
- c) Determine a posição relativa de π_1 , π_2 e π_4 .
- d) Determine a posição relativa de π_1 e r.

Resposta:

- a) O vetor normal n_1 de π_1 é (1,1,-1). O vetor normal n_2 de π_2 é (2,1,1). Como estes vetores não são paralelos (veja que $n_1 \neq \sigma n_2$ para todo $\sigma \in \mathbb{R}$ ou que $n_1 \times n_2 \neq \overline{0}$), os planos se intersectam ao longo de uma reta r.
- **b)** O vetor normal n_1 de π_1 é (1, 1, -1). O vetor normal n_3 de π_3 é (2, 2, -2). Observe que $n_2 = 2n_1$. Logo os vetores normais são paralelos e os planos também. Falta ver se são iguais (mesmo plano) ou disjuntos. Como o ponto (1,0,0) pertence aos dois planos, estes são iguais. Observe que a equação de π_3 é obtida multiplicando por 2 a equação de π_1 .
- c) O vetor normal n_1 de π_1 é (1,1,-1). O vetor normal n_2 de π_2 é (2,1,1). O vetor normal n_4 de π_4 é (1,0,2).

Observe que n_1 não é paralelo a n_2 , que n_1 não é paralelo a n_4 , e que n_2 não é paralelo a n_4 . Logo nenhum plano é paralelo ao outro.

Calculemos $n_1 \cdot (n_2 \times n_4)$,

$$(1,1,-1) \cdot [(2,1,1) \times (1,0,2)] = (1,1,-1) \cdot (2,-3,-1) = 2-3+1 = 0.$$

Logo os vetores são coplanares. Existem duas possibilidades:

- (I) se o sistema admite solução, os planos se intersectam ao longo de uma reta,
- (II) se o sistema não admite solução, os planos se intersectam dois a dois ao longo de três retas paralelas entre si.

Para ver se o sistema tem solução escalonaremos os sistema, considerando a segunda equação menos duas vezes a primeira e a terceira menos a primeira,

$$x + y - z = 2$$
, $-y + 3z = 0$, $-y + 3z = 2$.

Considerando, a terceira menos a segunda, temos,

$$x + y - z = 2$$
, $-y + 3z = 0$, $0 = 2$.

Logo o sistema não tem solução, e a resposta é (II).

Outra forma de resolver a questão é a seguinte: O determinante cujas linhas são os vetores normais aos planos é

$$\begin{vmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ 1 & 0 & 2 \end{vmatrix} = 1(2-0) - 1(4-1) - 1(0-1) = 2 - 3 + 1 = 0.$$

Por outra parte o determinante obtido susbtituindo a primeira linha pelos coeficientes sem incógnitas é:

$$\begin{vmatrix} 1 & 1 & -1 \\ 2 & 1 & 1 \\ 3 & 0 & 2 \end{vmatrix} = 1(2-0) - 1(4-3) - 1(0-3) = 2 - 1 + 3 \neq 0.$$

Logo o sistema não admite solução, e portanto os planos não tem intersecção común.

Por outra parte, como já vimos, os planos não são paralelos, logo se intersectam dois a dois em retas paralelas.

d) O vetor normal n_1 de π_1 é (1,1,-1). O vetor vetor diretor v de r é (1,2,3). Observe que $v \cdot n_1 = 1 + 2 - 3 = 0$. Logo n_1 e v são ortogonais. Isto significa que r e π_1 são paralelos. Como a origem $(0,0,0) \in r$ e não pertence a π_1 , a reta e o plano são paralelos e disjuntos.