Modelo de reconhecimento de imagens alimentar

Principais alimentos que causam alergias:

- Frutos do Mar
- Embutidos
- Leite
- Ovo
- Trigo , Aveia , Centeio
- Aditivos Alimentares

Sintomas de alergias alimentares

- Espirros;
- Dificuldade em respirar com chiado;
- Coceira e vermelhidão na pele;
- Nariz entupido ou escorrendo;
- Inchaço da boca, olhos e nariz;
- Diarreia;
- Dor abdominal, náuseas e vômitos;
- Aumento dos batimentos cardíacos;
- Tonturas e sensação de desmaio;
- Suores intensos;

A Cada 100 entradas em um pronto de socorro, 3 a 4 casos são referentes à Alergia Alimentar

Pessoas com Deficiência Visual possuem um risco maior, por não conseguirem com facilidade saber quais ingredientes estão consumindo

Alimentos **SEM** Camarão:

Alimentos **SEM** Salsicha:

Modelo

Um modelo que realiza o reconhecimento de Imagem, para identificar ingredientes que possam ser prejudiciais a saúde do usuário. Com o objetivo de salvar vidas.

Imagem meramente ilustrativa Keras **TensorFlow** CAMADAS CAMADA DE CAMADA INTERMEDIÁRIAS DE SAÍDA ENTRADA **OU OCULTAS**

Desenvolvimento

Uma Rede Neural Convolucional (CNN)

As redes neurais
convolucionais (CNN) se
utilizam de uma arquitetura
especial que é
particularmente bem
adequada para classificar
imagens

Foram coletadas 28.550
imagens de diversos bancos
de imagens tais como
Google, Bing e Pinterest.
Coletamos estas imagens
através da Extensão Fatkun
Bacth. As imagens extraídas
estão nos seguintes
formatos: .gif, .jpg, .jiff, .html,
.png, .webp

Foi realizada a limpeza das imagens permanecendo somente com imagens. JPG e excluindo imagens desnecessárias. Restando 25.500 imagens.

Imagem meramente ilustrativa

Com o intuito de melhorar o algoritmo e o tempo, foi levantado um estudo com **novos hiperparâmetros:**

- Quantidade apropriada de Épocas
- Tamanho do Batch
- Tamanho das Imagens
- Quantidade necessária de imagens em cada dataset

Comparativos Épocas e Acurácia

Tabela 1 Variaveis de Entrada e Acuracia								
Batch	Épocas	Qtd de Img Treino	Qtd de Img Validação	Qtd de Img Teste	Acúracia			
64	1	11000	4000	2000	64,23%			
64	10	11000	4000	2000	74,45%			
64	25	11000	4000	2000	77,30%			
64	100	11000	4000	2000	81,29%			

Tabela 2 Variaveis de Entrada e Acuracia								
Batch	Épocas	Qtd de Img Treino	Qtd de Img Validação	Qtd de Img Teste	Acúracia			
96	1	11000	4000	2000	59,96%			
96	10	11000	4000	2000	73,49%			
96	25	11000	4000	2000	75,36%			
96	100	11000	4000	2000	82,13%			