태양광 발전량 예측 AI 경진대회

Human_Learning 62등(상위 14%)

주최: 한국원자력연구원(KAERI) / 주관: DACON

2020.12.09 ~ 2021.01.26

- 목적
- 모델은 7일(Day 0~ Day6) 동안의 데이터를 인풋으로 활용
- 향후 2일(Day7 ~ Day8) 동안의 30분 간격의 발전량(TARGET)을 예측
- 채점 방식
- Pinball Loss
- Public Score & Private Score
- 1차 평가(Public Score): 테스트 데이터 중 랜덤 샘플 된 50 %로 채점, 대회 기간 중 공개
- 2차 평가(Private Score): 나머지 테스트 데이터로 채점, 대회 종료 직후 공개

Pinball Loss

• 심사 기준: Pinball Loss

$$egin{aligned} L_{ au}(y,z) &= (y-z) au & ext{if } y \geq z \ &= (z-y)(1- au) & ext{if } z > y \end{aligned}$$

τ: 퀀타일 값 (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)

y: 실제 값

z: 퀀타일 예측값

Lτ: pinball loss 함수

• Pinball Loss가 작아지는 상황

- 퀀타일 값이 작을수록 실제 값보다 작게 예측
- 퀀타일 값이 클수록 실제 값보다 크게 예측

Total Lower Pinball Loss = 0.8e

Pinball Loss

• 심사 기준: Pinball Loss

$$egin{aligned} L_{ au}(y,z) &= (y-z) au & ext{if } y \geq z \ &= (z-y)(1- au) & ext{if } z > y \end{aligned}$$

τ: 퀀타일 값 (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)

y: 실제 값

z: 퀀타일 예측값

Lτ: pinball loss 함수

• Pinball Loss가 커지는 상황

- 퀀타일 값이 작을수록 실제 값보다 크게 예측
- 퀀타일 값이 클수록 실제 값보다 작게 예측

Total Higher Pinball Loss = 1.2e

Pinball Loss

• 심사 기준: Pinball Loss

$$egin{aligned} L_{ au}(y,z) &= (y-z) au & ext{if } y \geq z \ &= (z-y)(1- au) & ext{if } z > y \end{aligned}$$

τ: 퀀타일 값 (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)

y: 실제 값

z: 퀀타일 예측값

Lτ: pinball loss 함수

- 앞의 사례에서 보았듯이 똑같은 오차를 보이더라도 아래의 조건을 만족시키면 더 적은 Loss가 나옴
 - 퀀타일 값이 작을수록 실제 값보다 크게 예측
 - 퀀타일 값이 클수록 실제 값보다 작게 예측

Total Higher Pinball Loss = 1.2e Total Lower Pinball Loss = 0.8e

Total Higher Pinball Loss – Total Lower Pinball Loss = 같은 오차를 가졌지만, Pinball Loss의 특성으로 나타난 차이 = 1.2e – 0.8e = 0.4e

(예시를 두 퀀타일만 들어 설명했지만, 0.1부터 0.9까지 계산을 하면 위의 Pinball Loss차이는 더 커짐)

• 다시 말해, 이 대회에서 Loss를 줄이기 위해서는 보수적으로 예측을 하는 것이 중요.

2. 주어진 데이터

- train.csv : 훈련용 데이터 (1개 파일)
 - 3년(Day 0~ Day1094) 동안의 기상 데이터, 발전량(TARGET) 데이터
- test.csv : 정답용 데이터 (81개 파일)
 - 2년 동안의 기상 데이터, 발전량(TARGET) 데이터 제공
 - 각 파일(*.csv)은 7일(Day 0~ Day6) 동안의 기상 데이터, 발전량(TARGET) 데이터로 구성
 - 파일명 예시: 0.csv, 1.csv, 2.csv, ..., 79.csv, 80.csv (순서는 랜덤이므로, 시계열 순서와 무관)
 - 각 파일의 7일(Day 0~ Day6) 동안의 데이터 전체 혹은 일부를 인풋으로 사용
 - 향후 2일(Day7 ~ Day8) 동안의 30분 간격의 발전량(TARGET)을 예측 (1일당 48개씩 총 96개 타임스텝에 대한 예측)
- sample_submission.csv : 정답제출 파일

3. Columns

- Day 날짜
- Hour+Minute 시간
- DHI(Diffuse Horizontal Irradiance) 수평면 산란일사량
- DNI(Direct Normal Irradiance) 직달 일사량 (대기에 산란, 흡수되지 않고, 지표면까지 수직으로 도달되는 일사량)
- WS(Wind Speed) 풍속
- T(Tempertature)- 기온
- RH(Relative Humidity)- 상대습도

데이터 분석 설명

1. Train의 자료 전체를 target에 대해 시각화 해보았을 때, 3년의 연속된 자료를 받았음을 인식

2. 임의로 365일씩 끊어서 시각화 했을 때, 1월부터 시작하는 데이터를 받았음을 인식

3. T & Target은 어느 정도 양의 상관관계 존재

• T가 낮을 수록, T의 증가에 따라 Target의 상한선이 가파르게 올라가는 모습 관찰

Corr Tai	rget aND Oth	er Columns
TARGET	1.000000	
DNI	0.833547	
DHI	0.666908	
T	0.561990	
WS	0.238521	
RH	-0.677178	

4. DHI & Target은 어느 정도 양의 상관관계 존재

• DHI가 Target의 하한선을 이끌어 주는 듯한 모습

Corr 1	Target	aND	0ther	Columns
TARGET	Γ 1.	.0006	900	
DNI	0.	.8335	547	
DHI	0.	.6669	908	
T	0.	.5619	990	
WS	0.	.2385	521	
RH	-0	6771	178	

4. DNI & Target은 강한 양의 상관관계 존재• Target이 DHI보다 DNI의 움직임에 더 민감한 모습

Corr Targe	et aND	Other	Columns
TARGET	1.0000	900	
DNI	0.8339	547	
DHI	0.6669	908	
T	0.5619	990	
WS	0.2389	521	
RH ·	-0.6771	178	
WS	0.238	521	

5. WS & Target은 약한 양의 상관관계 존재태양광 발전량에 큰 영향은 없는 듯함.

Corr Targ	et aND	0ther	Columns
TARGET	1.0000	999	
DNI	0.833	547	
DHI	0.6669	908	
T	0.5619	990	
WS	0.238	521	
RH	-0.677	178	

6. RH & Target은 어느 정도 음의 상관관계 존재

- RH가 높아질수록 Target의 상한선이 떨어지는 것을 관찰
 RH가 습도이고, 이는 강수와 관련이 있어서 그렇다고 생각

Corr Tar	get aND	0ther	Columns
TARGET	1.0000	900	
DNI	0.833	547	
DHI	0.6669	908	
T	0.5619	990	
WS	0.238	521	
RH	-0.677	178	

• 파생 피쳐 생성

1. 두 일사량의 합

• DHI + DNI 피쳐 생성 – 두 변수가 동시에 높을 경우, Target에 큰 영향을 줄 것

2. 태양의 유무

- 태양이 떠있다는 것을 알려줄 명목형 변수로 만듦.
- 원래 값이 0이라면 return 0, 값이 0이 아니라면 return 1
- Sun_TARGET → Target == 0 or Target > 0
- Sun_DHI → DHI == 0 or DHI > 0
- Sun_DNI → DNI == 0 or DNI > 0
- Sun_DHI_DNI → DHI_DNI == 0 or DHI_DNI > 0

3. 하루동안 해가 얼마나 떠있는가?

- 하루 데이터 중 태양의 유무 변수가 1인 행의 개수를 셈
- Sun_TARGET_hour
- Sun_DHI_hour
- Sun_DNI_hour
- Sun_DHI_DNI_hour

4. DNI_DHI_plus변수 생성

- DHI와 DNI가 0이 아닌 행의 개수의 누적으로 해당 시점에 해가 떠있는 시간을 구하고 싶었음.
- 하지만 낮 시간동안 두 값이 0인 행이 존재하여 중간에 처리가 애매해짐.
- DHI와 DNI이 동시에 0인 경우는 TARGET이 0인 경우를 제외하면 없음
- 따라서 Sun_DHI와 Sun_DNI를 더하여 Sun_DHI_DNI_plus를 만들고 이것의 누적합을 구하면 문제가 해결

5. Sun_DHI_DNI_plus_hour

- 하루동안 해가 떠있는 시간을 DHI와 DNI로 측정해 합친 시간
- DHI와 DNI가 어느 시점에 모두 1이라면 Sun_DHI_DNI_plus_hour는 2 의 값을 가질 수 있음

6. Accumulate

- 해가 뜨기 시작해서 해당 시점이 몇 번째 시점인가?
- 태양의 고도와 관련이 있어 보였음
- Sun_TARGET_accumulate, Sun_DNI_accumulate, Sun_DHI_accumulate, Sun_DHI_DNI_accumulate, Sun_DHI_DNI_plus_accumulate

7. Acculmuate를 이용한 변수 생성

- 해당 시점이 해가 뜬 시점으로부터 몇 시간 후인가/하루 동안 해가 뜬 시간
- 같은 오후 3시에 해가 떠있더라도, 해가 일찍 지는 겨울과 해가 긴 여름의 일사량이 다를 것이라고 생각
- Sun_TARGET_per, Sun_DNI_per, Sun_DHI_per, Sun_DHI_DNI_per, Sun_DHI_DNI_plus_per

8. 데이터 재구조화

- 7일간의 데이터로 향후 2일을 예측해야함
- 데이터를 최대한 활용하기 위해, 하나의 row에 7일간의 피쳐 + Target(8,9일)을 넣음

	He mata							
	한 시청의 Features.	Z	册建 加					
Day 0, 60:00	Feature Dar, 00:00	<u></u>	Dto Feature	DHI Feature	Dt2 Feature	 	D+17 target	128 taget.
Day (, 0070	Feature Day 1.00,00	Day 0,0000	Feature DayD, 00:00	Feature Dayl, coirco	Feature Pay2,00:00		Das/target	Das taget.
;	, course by	•						
Day 2,00100	Feature Day 2,00:00	Day 1086.					 	
<u> </u>			•	1	•	•	'	

8. 데이터 재구조화

OLL OF

- 이를 통해 더 많은 데이터를 학습에 사용
- →성능 향상과 generalization의 향상을 기대

	ZEI NOTO
	한 시청의 Features.
Day 0, 00:00	Feature Daro, 00:00
۰۰۰ ۵	
Day 1,0000	Feature Day 1.00100
Day2,0000	Feature Day 2,00100
Day 1694	

1. 데이터 불균형 해결을 위한 Trick

```
1 print("데이터에서 TARGET이 0인 비율 :",len(train[train.TARGET==0])/len(train)*100,"%")
데이터에서 TARGET이 0인 비율 : 50.722983257229835 %
```

- 데이터에서 TARGET이 0을 차지하는 비율은 50%
- → TARGET이 0이 아니면 0이외의 양수의 실수임으로 심한 불균형 데이터
- → 이러한 상황에서 train_test_split을 이용해 랜덤으로 학습세트를 나누면,
 Target이 0인 경우와 0이 아닌 경우를 골고루 학습할 수 없을 가능성이 높음

1. 데이터 불균형 해결을 위한 Trick

- TARGET을 카테고리 변수로 바꾸기(Target_cate)
 - TARGET을 0에서부터 1단위로 끊어 **카테고리 변수로 Labeling** ex) Target = 0 → Target_cate = 0

```
Target = 1.2 \rightarrow Target\_cate = 1 \dots
```

- train_test_split의 stratified옵션 사용
 - Stratified 옵션은 원래 분류 문제를 해결할 때, Target이 클래스별로 골고루 train과 test세트에 포함되게 만들 때 사용
 - 하지만 이 경우에 위처럼 **회귀 문제에서도 Target을 분류문제의 정답처럼 만들고 stratified옵션을 사용하면,** train과 test세트에 골고루 target값들이 들어갈 수 있다고 생각함
 - → 이 방법을 사용하여 성능 향상을 이끌어냄

2. Quantile Regression

- 앞서 언급한 Pinball Loss에 맞는 예측을 위해 Quantile Regression 사용
- 기존의 Regression → 예측값을 점으로 출력
- Quantile Regression → 예측값의 범위 출력
 - 점으로 출력한 예측값이 의미없는 경우

Ex) 주가 예측치 → 점으로 정확히 맞추기 어려우며, 몇 퍼센트의 가능성으로 범위를 예측하는 것이 더욱 의미있음.

(90%확률로 코스피 →2800~300사이)

3. Train 데이터 분할, 하이퍼 파리미터 최적화, 모델링 및 앙상블

- (LGBM도 아래와 동일 방법으로 LGBM 3year Ensemble Output을 얻음)
 각기 다른 Train 세트를 학습한 모델의 예측값 앙상블, 다른 모델로 학습한 3년 앙상블 값의 앙상블
- → 더 강건하고, 이상치에 강한 모델을 만들기 위해 사용
 - + LGBM의 성능과 CatBoost의 카테고리변수의 특화 이점을 누리기 위함

3. Train 데이터 분할, 하이퍼 파리미터 최적화, 모델링 및 앙상블

- (LGBM도 아래와 동일 방법으로 LGBM 3year Ensemble Output을 얻음)
 각기 다른 Train 세트를 학습한 모델의 예측값 앙상블, 다른 모델로 학습한 3년 앙상블 값의 앙상블
- → 더 강건하고, 이상치에 강한 모델을 만들기 위해 사용
 - + LGBM의 성능과 CatBoost의 카테고리변수의 특화 이점을 누리기 위함

4. 최종 성능 및 순위

Public Score

#	팀		팀 멤버	점수	제출수	등록일
39	휴먼러닝	hk		1.82341	66	10달 전

Private Score

#	티		팀 멤버	최종점수	제출수	등록일
62	휴먼러닝	hk		2.08297	66	10달 전