Examen parcial 2 - Soluciones

13 de mayo de 2020

- 1. (3 puntos) Una urna que contiene un número determinado de bolas negras. Iniciamos el siguiente proceso. En cada paso extraemos una única bola de la urna. Si la urna contiene exactamente k bolas, entonces con probabilidad p_k apartamos la bola que hemos extraído y con probabilidad $1-p_k$ la devolvemos a la urna. Repetimos este procedimiento hasta que la urna quede vacía y llamamos N_m a la variable que cuenta el número de extracciones que hemos tenido que realizar hasta que la urna queda vacía si inicialmente contiene m bolas negras.
 - (a) (1.5 puntos) Calcular la esperanza de N_1 , es decir, el número esperado de extracciones hasta que la urna queda vacía si inicialmente hay una única bola en la urna.
 - (b) (1.5 puntos) Para $m \in \mathbb{N}$, calcular la esperanza de N_m .

Solución (a-1): Es claro que la distribución de N_1 es

$$P(N_1 = k) = p_1(1 - p_1)^{k-1}, \quad k = 1, 2, ...,$$

es decir, N_1 tiene distribución geométrica (trasladada) de parámetro p_1 . Por tanto,

$$EN_1 = \sum_{k=1}^{\infty} k p_1 (1 - p_1)^{k-1} = \frac{1}{p_1}.$$

Solución (a-2): Llamemos A_1 al suceso que indica que hemos apartado la primera bola que hemos extraído. Por la regla de la esperanza total, tenemos que

$$EN_1 = P(A_1)E(N_1|A_1) + P(A_1^c)E(N_1|A_1^c) = p_1 \cdot 1 + (1 - p_1)(1 + EN_1).$$

Despejando el valor de EN_1 obtenemos que $EN_1 = 1/p_1$.

Solución (b-1): Similar al ejercicio 13 de la Hoja 5 (El coleccionista de cromos). Llamemos T_j al número de pasos o extracciones que tenemos que hacer para pasar de la urna con j bolas a la urna con j-1 bolas. Tenemos que $N_m = T_m + T_{m-1} + \cdots + T_2 + T_1$ y además T_j tiene distribución geométrica trasladada (como en el apartado anterior) de parámetro p_j . Por tanto,

$$EN_m = \frac{1}{p_m} + \frac{1}{p_{m-1}} + \dots + \frac{1}{p_1} = \sum_{j=1}^n \frac{1}{p_j}.$$

Solución (b-2): Podemos encontrar una recurrencia similar a la obtenida en (a-1). Llamamos A_m al suceso 'eliminar una bola de la urna con m bolas'. Por la regla de la esperanza total, tenemos que

$$EN_m = P(A_m)E(N_1|A_m) + P(A_m^c)E(N_1|A_m^c) = p_m(1 + EN_{m-1}) + (1 - p_m)(1 + EN_m).$$

Despejando el valor de EN_m obtenemos que $EN_m = 1/p_m + EN_{m-1}$. Usando inducción matemática, obtenemos que

$$EN_m = \frac{1}{p_m} + \frac{1}{p_{m-1}} + \dots + \frac{1}{p_1} = \sum_{j=1}^n \frac{1}{p_j}.$$

2. (4 puntos) Consideramos

$$S_N = \sum_{j=1}^N X_j,$$

donde N, X_1, X_2, \ldots son v.a. independientes, N tiene distribución de Poisson de parámetro $\lambda > 0$ y las X_i son integrables con media μ , tienen función de distribución F y función característica φ .

- (a) (2 puntos) Halla la función característica de S_N . Sugerencia: Puedes usar la regla de la doble esperanza.
- (b) (2 puntos) Estudia la convergencia en distribución de S_N/λ , cuando $\lambda \to \infty$.

Solución (a): Llamemos $S_n = X_1 + \cdots + X_n$. Como las variables son independientes, $\varphi_{S_n}(t) = \varphi(t)^n$. Seguimos la sugerencia y usamos la regla de la doble esperanza. Tenemos,

$$\begin{split} \varphi_{S_N}(t) &= \mathbf{E} e^{itS_N} \overset{\text{sug}}{=} \mathbf{E} \left(\mathbf{E} \left(e^{itS_N} | N \right) \right) \\ &= \sum_{k=0}^{\infty} \mathbf{P}(N=n) \cdot \mathbf{E} \left(e^{itS_N} | N=n \right) \\ &= \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^n}{n!} \cdot \varphi_{S_n}(t) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^n}{n!} \varphi(t)^n \\ &= e^{-\lambda} e^{\lambda \varphi(t)} = e^{-\lambda(1-\varphi(t))}. \end{split}$$

En definitiva, hemos demostrado que $\varphi_{S_N}(t) = e^{-\lambda(1-\varphi(t))}$.

Solución (b): Queremos calcular el límite (cuando $\lambda \to \infty$) de

$$\varphi_{S_N/\lambda}(t) = e^{-\lambda(1-\varphi(t/\lambda))}.$$

Para eliminar la indeterminación del tipo $\infty \cdot 0$ en el exponente podemos usar el desarrollo de primer orden de φ . Sabemos que X es integrable con media μ , luego $\varphi(t) = 1 + i\mu t + o(t)$, cuando $t \to \infty$. Por consiguiente,

$$\varphi(t) = 1 + i\mu t/\lambda + o(t/\lambda)$$
, cuando $\lambda \to \infty$.

Finalmente,

$$\varphi_{S_N/\lambda}(t) = e^{i\mu t + \lambda o(t/\lambda)} \to e^{i\mu t}$$
, cuando $\lambda \to \infty$.

Hemos demostrado que $S_N/\lambda \xrightarrow{\mathcal{D}} \mu$, cuando $\lambda \to \infty$.

3. (3 puntos) Sean X_1, X_2, \ldots , v.a. independientes, con la misma media μ y tales que $Var(X_n) \leq C$ (constante positiva), para cada n. Consideramos la variable

$$Y_n = \frac{2}{n(n+1)} \sum_{k=1}^{n} kX_k.$$

- (a) (2.5 puntos) Mostrar que $Y_n \xrightarrow{\text{m-2}} \mu$.
- (b) (0.5 puntos) ¿Se puede generalizar de alguna manera este resultado?

Solución (a): Primeramente, por la linealidad de la esperanza tenemos que

$$EY_n = \frac{2}{n(n+1)} \sum_{k=1}^{n} k\mu = \mu.$$

Por tanto,

$$E(Y_n - \mu)^2 = Var(Y_n)$$

$$\stackrel{\text{ind}}{=} \frac{4}{n^2(n+1)^2} \sum_{k=1}^n k^2 Var(X_k)$$

$$\leq \frac{4C}{n^2(n+1)^2} \sum_{k=1}^n k^2.$$

Ahora podemos usar la usar la conocida identidad $1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n-1)}{6}$ o simplemente acotar $\sum_{k=1}^n k^2 \le n \cdot n^2 = n^3$. En definitiva, tenemos que

$$E(Y_n - \mu)^2 \le \frac{4Cn^3}{n^2(n+1)^2} = \frac{4Cn}{(n+1)^2} \to 0$$
, cuando $n \to \infty$,

lo que concluye la prueba.

Solución (b): Evidentemente, este resultado se puede mejorar/extender de muchas maneras. Por ejemplo, podemos sustituir la independencia por la incorrelación. También sería suficiente que las covarianzas entre las variables no sean positivas. Incluso bastaría que $Var(X_k) \leq Ck^{\delta}$, para algún $0 < \delta < 1$.