Robust Blockwise Random Pivoting (RBRP): Fast and Accurate Adaptive Interpolative Decomposition

Yijun Dong 1 , Chao Chen 2 , Per-Gunnar Martinsson 3 , Katherine Pearce 3

¹Courant Institute, New York University

²Department of Mathematics, North Carolina State University

³Oden Institute, University of Texas at Austin

SIAM Conference on Parallel Processing for Scientific Computing (PP24)

Interpolative Decomposition (ID)

- Given a data matrix $X = [x_1, \dots, x_n]^\top \in \mathbb{R}^{n \times d}$
- A target rank $1 \le r \le \operatorname{rank}(X)$
- A distortion constant $\epsilon > 0$
- Aim to construct a (r, ϵ) -ID of $X - X \approx WX_S$ such that

$$||X - WX_S||_F^2 \le (1 + \epsilon)||X - X_{\langle r \rangle}||_F^2$$

- $S = \{s_1, \dots, s_k\} \subseteq [n]$ contains indices for a skeleton subset of size |S| = k (usually $k \ll n$)
- $X_S = [x_{s_1}, \cdots, x_{s_k}]^{\top} \in \mathbb{R}^{k \times d}$ is the row skeleton submatrix corresponding to S
- $W \in \mathbb{R}^{n \times k}$ is an interpolation matrix for the given skeleton subset S
- ullet $X_{\langle r
 angle}$ denotes the optimal rank-r approximation of X (given by the truncated SVD)

Two Stages of ID Constructions

Stage I: Skeleton selection

• Find a good skeleton subset S:

$$\min_{S \subset [n]} \min_{W \in \mathbb{R}^{n \times |S|}} ||X - WX_S||_F^2$$

- Skeletonization error: $\mathscr{E}_X(S) := \|X XX_S^\dagger X_S\|_F^2 = \min_{W \in \mathbb{R}^{n \times |S|}} \|X WX_S\|_F^2$
 - Naive construction of XX_S^\dagger (e.g., via QR) takes O(ndk) time (i.e., k=|S| additional passes through X)

Stage II: Interpolation matrix construction

- ullet For some O(ndk)-time selection algorithms, W can be evaluated/approximated a posteriori in $O(nk^2)$ time
- Interpolation error: $\mathcal{E}_X(W|S) := ||X WX_S||_F^2$

What are Fast & Accurate ID Algorithms?

- Skeleton complexity: the minimum number of skeletons k = |S| that an ID algorithm needs to select in order to form a (r, ϵ) -ID (in expectation), i.e., $\mathscr{C}_X(S) \leq (1 + \epsilon) \|X X_{\langle r \rangle}\|_F^2$
- Asymptotic complexity: the asymptotic FLOP counts of the skeleton selection stage in an ID algorithm
- **Parallelizability**: whether the dominant cost of the skeleton selection stage in an ID algorithm can be casted as matrix-matrix (fast), instead of matrix-vector (slow), multiplications with X (i.e., applicability of Level 3 BLAS)
- **Error-revealing property**: the ability of an ID algorithm to evaluate $\mathscr{C}_X(S)$ efficiently on the fly so that the target rank k does not need to be given a priori.
 - <u>Definition</u>: An ID algorithm is **error-revealing** if after selecting any skeleton subset S, it can evaluate the corresponding skeletonization error $\mathscr{E}_X(S)$ efficiently in at most O(n) time.
- ID-revealing property: if the skeleton selection stage of an ID algorithm extracts sufficient information so that
 - Exact/inexact-ID-revealing: $W=XX_S^\dagger$ can be evaluated exactly/approximated in $O(nk^2)$ time
 - Non-ID-revealing otherwise

Adaptiveness & Randomness

Adaptiveness

- Each new skeleton selection is aware of the previously selected skeleton subset
- By selecting according to the residual
- Common adaptive residual updates:
 - Gram-Schmidt (QR)
 - Gaussian elimination (LU)

- Randomness (in contrast to greedy)
 - Intuition: balance exploitation with exploration
 - Effectively circumvent adversarial inputs for greedy methods
 - Achieve appealing skeleton complexities in expectation
 - Common randomness: sampling, sketching

Skeleton Selection: A General Framework

A framework for (blockwise adaptive) skeleton seletion

- Inputs: $X \in \mathbb{R}^{n \times d}$, $\tau = (1 + \epsilon)\eta_r \in (0,1)$
- $X^{(0)} \leftarrow X$, $S^{(0)} \leftarrow \emptyset$, $t \leftarrow 0$
- while $\mathscr{E}(S^{(t)}) > \tau ||X||_F^2$ do
 - $t \leftarrow t + 1$
 - Select $|S_t| = b$ skeletons S_t based on $\left(p_i\left(X^{(t-1)}\right)\right)$

 - $S^{(t)} \leftarrow S^{(t-1)} \cup S_t$ $X^{(t)} \leftarrow X^{(t-1)} \left(I_d X_{S_t}^{\dagger} X_{S_t} \right)$
- $S \leftarrow S^{(t)}, k = |S|$

Skeleton Selection: Other Methods

Sampling methods

- DPP/volume sampling [HKPV06, BW09, DR10, KT11, GS12]
 - Pro: nearly optimal expected skeleton complexity: $k \geq \frac{r}{\epsilon} + r 1 \text{ is sufficient for } (r, \epsilon) \text{-ID in expectation}$
 - Con: expensive to compute
- Leverage score sampling [MD09, DMMW12]
 - Pro: can be estimated efficiently for large-scale problems (e.g., tensor Khatri-Rao product)
 - Con: expensive to compute
- Uniform sampling [CLMMPS15]
 - Pro: linear time
 - Con: require/depend on matrix incoherence

Sketchy pivoting

- Inputs: $X \in \mathbb{R}^{n \times d}$, $k \leq \operatorname{rank}(X)$,
- Draw JLT $\Omega \in \mathbb{R}^{d \times k}$ (e.g., $\Omega_{ij} \sim \mathcal{N}(0,1/k)$ i.i.d.)
- Sketching $Y = X\Omega \in \mathbb{R}^{n \times k}$
- Greedy pivoting: for $t = 1, \dots, k$
 - Column (row) pivoted QR (**CPQR**) [VM17]: $s_t \leftarrow \underset{i}{\operatorname{argmax}} \|Y_{i,:}^{(t-1)}\|_2^2 + \text{Gram-Schmidt}$
 - LU with partial pivoting (**LUPP**) [**D**M23]: $s_t \leftarrow \underset{i}{\operatorname{argmax}} |Y_{i,t}^{(t-1)}| + \text{Gaussian Elimination}$
- Pro: fast, accurate, robust to adversarial inputs
- Con: require prior knowledge of k

ID Algorithms with Adaptiveness & Randomness

Randomness

Sampling: uniform, squared-norm, leverage score, volume/DPP, etc.

Adaptive sampling (random pivoting): squared-norm sampling on QR residual

Sketchy pivoting: sketching + (greedy) pivoting

Greedy pivoting: column-pivoted QR (CPQR), (strong) rank-revealing QR, etc.

Adaptiveness

Algorithm	Skeleton Complexity	Asymp. Cost + Parallelizability	Error- reveal	ID- reveal
Greedy Pivoting	$k \ge (1 + (1 + \epsilon)\eta_r)n$	O(ndk) sequential		Exact
Squared- norm Sampling	$k \ge \frac{r-1}{\epsilon \eta_r} + \frac{1}{\epsilon}$	O(nd) parallel		Non
Random Pivoting	$k \ge k_{RP} := \frac{r}{\epsilon} + r \log \left(\min \left\{ \frac{1}{\epsilon \eta_r}, \frac{2^{r+1}}{\epsilon} \right\} \right)$	O(ndk) sequential		Exact
Sketchy Pivoting	Conjecture: $k \gtrsim k_{RP}$	O(ndk) parallel		Inexact
RBRP	Conjecture: $k \gtrsim k_{RP}$	O(ndk) parallel		Exact

^{*} $\eta_r = \|X - X_{< r>}\|_F^2 / \|X\|_F^2$ quantifies the relative optimal rank-r approximation error of X

<u>Question</u>: How to parallelize random pivoting? <u>Answer</u>: Blockwise random pivoting

Pitfall of Plain Blockwise Greedy/Random Pivoting

k = 100 clusters centered at $\{10j \cdot e_j\}_{j \in [k]}, n = 20k, d = 500, b = 30$

- Sequential pivoting (CPQR & SRP) is nearly optimal
- Plain blockwise pivoting (BRP/BGP, especially BGP) suffers from suboptimal skeleton complexities (up to b times)
- Squared-norm sampling (SqNorm) tends to fail

Robust Blockwise Random Pivoting

Robust Blockwise Random Pivoting (RBRP)

- Inputs: $X \in \mathbb{R}^{n \times d}$, $\tau = (1 + \epsilon)\eta_r \in (0,1)$
- $X^{(0)} \leftarrow X$, $S^{(0)} \leftarrow \emptyset$, $t \leftarrow 0$
- while $\mathcal{E}(S^{(t)}) > \tau ||X||_F^2$ $(t \leftarrow t+1)$ do
 - Select $|S_t| = b$ skeletons S_t based on $\left(p_i\left(X^{(t-1)}\right)\right)_{i \in [n]}$
 - Robust blockwise filtering (RBF)
 - $\pi \leftarrow \operatorname{CPQR}\left(X_{S_t}^{(t-1)}\right) \in S_b$ (SRP and CPQR both work)
 - $\min_{S'_t = S_t(\pi(1:b'))} b' \text{ s.t. } ||X_{S_t} X_{S'_t}||_F^2 < \tau_b ||X_{S_t}||_F^2 \text{ (e.g., } \tau_b = \frac{1}{b})$
 - $S^{(t)} \leftarrow S^{(t-1)} \cup S'_t$ and $X^{(t)} \leftarrow X^{(t-1)} \left(I_d X_{S'_t}^\dagger X_{S'_t} \right)$
- $S \leftarrow S^{(t)}, k = |S|$

Robust Blockwise Random Pivoting: Robustness

- GMM with k=100 clusters centered at $\{10j \cdot e_j\}_{j \in [k]}$, $\Sigma = I_d$, n=20k, d=500, b=30
- Robust blockwise filtering (RBRP and RBGP) brings nearly optimal skeleton complexities

Robust Blockwise Random Pivoting: Efficiency

- Robust blockwise filtering (RBRP and RBGP) brings nearly optimal skeleton complexities
- RBGP tends to be slowed down much more significantly than RBRP by robust blockwise filtering
- For ID: RBRP-ID is almost as fast as sketchy pivoting (SkLUPP-ID/SkCPQR-ID), while enjoying much better interpolation error $\mathscr{C}_X(W|S) = \mathscr{C}_X(S)$ thanks to its exact-ID-revealing property.

Exact- v.s. Inexact- ID-revealing Algorithms

Exact-ID-revealing algorithms

- Sequential/blockwise random/greedy pivoting algorithms (SRP, CPQR, BRP, BGP, RBRP, RBGP)
- The skeleton selection process generates sufficient information for solving the least square problem $\min_{W \in \mathbb{R}^{n \times k}} ||X WX_S||_F^2$ in $O(nk^2)$ time

• Inexact-ID-revealing algorithms

- Sketchy pivoting algorithms (SkLUPP, SkCPQR)
- The skeleton selection process generates sufficient information for solving the **sketched** least square problem $\min_{W \in \mathbb{R}^{n \times k}} \|X\Omega WX_S\Omega\|_F^2 \text{ in } O(nk^2) \text{ time}$
- Oversampled sketchy ID (**OSID**): for |S| = k
 - Sketching with oversampling $Y = X\Omega \in \mathbb{R}^{n \times l}$ such that l = O(k)
 - $W = YY_S^{\dagger}$ can be computed in $O(nlk) = O(nk^2)$ time
- Suboptimal interpolation error: $\mathscr{C}_X(W|S) \mathscr{C}_X(S) = O(k/l)$

More Numerical Comparisons: MNIST

More Numerical Comparisons: CIFAR-10

Summary

- A fast & accurate ID algorithm that finds $||X WX_S||_F^2 \le (1 + \epsilon)||X X_{\langle r \rangle}||_F^2$
 - With nearly optimal skeleton complexity in practice
 - Computationally efficient in terms of both asymptotic complexity and parallelizability
 - Error-revealing without requiring prior knowledge of the target skeleton subset size
 - Exact-ID-revealing where the optimal interpolation matrix can be computed efficiently
- Combining adaptiveness and randomness is a key for designing robust skeleton selection algorithms with competitive skeleton complexity
- A critical challenge is to relax the sequential natural of adaptive selection
- We introduced **Robust Blockwise Random Pivoting (RBRP)**, a parallelizable blockwise adaptive selection scheme that achieves comparable skeleton complexity as its sequential counterpart

Thank You! Happy to take any questions

arXiv: https://arxiv.org/abs/2309.16002

GitHub: https://github.com/dyjdongyijun/ Robust Blockwise Random Pivoting