Метод k ближайших соседей

М. Кореневская, гр. 23641/3

18 октября 2017 г.

Стандартные типы задач

- Обучение с учителем
 - Классификация
 - Регрессия
 - Ранжирование
 - Прогнозирование
- Обучение без учителя
- Частичное обучение и др.

Метод k ближайших соседей использует расстояния (метрики) в пространстве объектов.

Гипотезы компактности и непрерывности

Гипотеза непрерывности (для регрессии): близким объектам соответствуют близкие ответы Гипотеза компактности (для классификации): близкие объекты, как правило, лежат в одном классе Формализация понятия "близости": задана функция расстояния $\rho: X \times X \to [0, \infty)$. Пример. Евклидово расстояние и его обобщение:

$$\rho(x, x_i) = \left(\sum_{j=1}^n |x^j - x_i^j|^2\right)^{1/2} \quad \rho(x, x_i) = \left(\sum_{j=1}^n w_j |x^j - x_i^j|^p\right)^{1/p}$$

 $x=\left(x^1,\ldots,x^n\right)$ — вектор признаков объекта x_i $x_i=\left(x_i^1,\ldots,x_i^n\right)$ — вектор признаков объекта x_i .

Другие примеры расстояний

- между текстами (редакционное расстояние Левенштейна): GCTAAAGGTCAGCC . .TTTAGAAA .GGGCCATTAGGAAATTGC GACTAA AGCCTATTTACAAATGGGCCATTAGG . . .TTGC
- между сигналами (энергия сжатий и растяжений):

Обобщенный метрический классификатор

Для произвольного $x \in X$ отранжируем объекты x_1, \dots, x_l :

$$\rho\left(x, x^{(1)}\right) \le \rho\left(x, x^{(2)}\right) \le \ldots \le \rho\left(x, x^{(l)}\right),$$

 $x^{(i)} - i$ -й сосед объекта x среди x_1, \dots, x_l ; $y^{(i)}$ — ответ на i-м соседе объекта x.

Метрический алгоритм классификации:

$$a\left(x,X^{l}\right) = \arg\max_{y \in Y} \sum_{i=1}^{l} \left[y^{(i)} = y\right] w\left(i,x\right),$$

 $w\left(i,x\right)$ — вес, оценка сходства объекта x с его i-м соседом, неотрицательная, не возрастающая по i.

 $\Gamma_{y}\left(x
ight)=\sum_{i=1}^{I}\left[y^{(i)}=y
ight]w\left(i,x
ight)$ — оценка близости объекта x к классу y.

Mетод k ближайших соседей (k nearest neighbors, kNN)

 $w\left(i,x\right)=\left[i\leq k\right].\ w\left(i,x\right)=\left[i\leq k\right]$ — метод ближайшего соседа. Преимущества:

- простота реализации (lazy learning);
- параметр k можно оптимизировать по критерию скользящего контроля (leave-one-out):

LOO
$$(k, X^I) = \sum_{i=1}^I \left[a\left(x_i; X^I \setminus \{x_i\}, k\right) \neq y_i \right] \to \min_k.$$

Проблемы:

- возможны ситуации, когда классификация не однозначна: $\Gamma_y\left(x\right) = \Gamma_s\left(x\right)$ для пары классов $y \neq s$
- учитываются не значения расстояний, а только их ранги

Пример зависимости LOO от числа соседей **П**ример.

Задача Iris.

- смещённое число ошибок, когда объект учитывается как сосед самого себя
- несмещённое число ошибок LOO