Dilatação

Dilatação dos sólidos e dos líquidos

Agitação térmica

Já sabemos que a temperatura de um corpo está relacionada ao estado de agitação das partículas que o constituem.

Maior temperatura Maior agitação

Dilatação dos sólidos e dos líquidos

Agitação térmica

Maior agitação

Maior espaçamento

Dilatação dos sólidos e dos líquidos

Agitação térmica

Dilatação térmica linear: $\Delta L = L - L_0$

Dilatação térmica superficial: $\Delta A = A - A_0$

Dilatação térmica volumétrica: $\Delta V = V - V_0$

Essas três formas de dilatação **sempre ocorrem simultaneamente**.

Dilatação térmica linear dos sólidos

A variação ΔL no comprimento inicial L_0 depende:

- da variação de temperatura $\Delta\theta \rightarrow \Delta L \propto \Delta\theta$;
- do comprimento inicial $L_0 \rightarrow \Delta L \propto L_0$;
- do material de que o corpo é feito.

Matematicamente: $\Delta L = L_0 \cdot \alpha \cdot \Delta \theta$

Dilatação térmica linear dos sólidos

$$\Delta L = L_0 \cdot \alpha \cdot \Delta \theta$$

$$L = L_0 (1 + \alpha \cdot \Delta \theta)$$

A grandeza α é o coeficiente de dilatação linear do material (em ${}^{\circ}C^{-1}$).

Significado físico de α : indica a dilatação que o comprimento de 1m, 1dm, 1cm, etc. sofrerá quando sua temperatura variar de 1° C.

Dilatação térmica superficial dos sólidos

A variação ΔA na área de superfície inicial A_0 depende:

- da variação de temperatura $\Delta\theta \rightarrow \Delta A \propto \Delta\theta$;
- da área de superfície inicial $A_0 \rightarrow \Delta A \propto A_0$;
- do material de que o corpo é feito.

Matematicamente:
$$\Delta A = A_0 \cdot \beta \cdot \Delta \theta$$
 e $\beta = 2 \cdot \alpha$

Dilatação térmica superficial dos sólidos

$$\Delta A = A_0 \cdot \beta \cdot \Delta \theta$$

$$A = A_0 (1 + \beta \cdot \Delta \theta)$$

A grandeza β é o coeficiente de dilatação superficial do material (em ${}^{\circ}C^{-1}$).

Dilatação térmica volumétrica dos sólidos

A variação ΔV no volume inicial V_0 depende:

- da variação de temperatura $\Delta\theta \to \Delta V \propto \Delta\theta$;
- do volume inicial $V_0 \rightarrow \Delta V \propto V_0$;
- do material de que o corpo é feito.

Matematicamente:
$$\Delta V = V_0 \cdot \gamma \cdot \Delta \theta$$
 e $\gamma = 3 \cdot \alpha$

$$\Delta V = V_0 \cdot \gamma \cdot \Delta \theta$$

$$e \gamma = 3 \cdot o$$

Dilatação térmica volumétrica dos sólidos

$$\Delta V = V_0 \cdot \gamma \cdot \Delta \theta$$

$$V = V_0 (1 + \gamma \cdot \Delta \theta)$$

A grandeza γ é o coeficiente de dilatação volumétrica do material (em ${}^{\circ}C^{-1}$).

Obs.: O furo de uma placa dilatará na mesma proporção que o material ao seu redor. Tudo se passa como se o furo tivesse o mesmo coeficiente que o material.

Dilatação térmica dos líquidos

Consideramos, neste caso, apenas a dilatação volumétrica.

Em geral, os líquidos dilatam-se muito mais que os sólidos.

Assim, se um recipiente totalmente cheio de líquido for aquecido, parte do líquido transbordará.

$$\Delta V_{\text{líquido}} = \Delta V_{\text{aparente}} + \Delta V_{\text{recipiente}}$$

Dilatação térmica dos líquidos

A lei que descreve a dilatação volumétrica dos líquidos é a mesma que a dos sólidos:

$$\Delta V = V_0 \cdot \gamma \cdot \Delta \theta$$

A grandeza γ é o coeficiente de dilatação volumétrica (real) do líquido (em ${}^{\circ}C^{-1}$).

$$\Delta V_{\text{líquido}} = \Delta V_{\text{aparente}} + \Delta V_{\text{recipiente}}$$

$$V_0 \cdot \gamma_{\text{líquido}} \cdot \Delta \theta = V_0 \cdot \gamma_{\text{aparente}} \cdot \Delta \theta + V_0 \cdot \gamma_{\text{recipiente}} \cdot \Delta \theta$$

$$\gamma_{liquido} = \gamma_{aparente} + \gamma_{recipiente}$$

A água, o líquido mais abundante em nosso planeta, é constituída por moléculas com dois átomos de hidrogênio e um átomo de oxigênio: H₂O.

A água líquida tem uma estrutura <u>parcialmente ordenada</u>, na qual pontes de hidrogênio estão constantemente sendo formadas e rompidas.

Entretanto, quando a água está no estado sólido (gelo), todas as suas moléculas se estruturam de modo a formar pontes de hidrogênio.

O efeito dessas pontes é aumentar o espaçamento entre as moléculas, o que torna o gelo menos denso que a água. Por isso o gelo flutua na água.

Água no estado líquido

Água no estado sólido (gelo)

E o que acontece com o volume quando o gelo derrete?
À temperatura de 0 °C, ao passar do estado sólido para o estado líquido, a água diminui de volume devido ao rompimento das pontes de hidrogênio.

No entanto, no aquecimento de 0 °C a 4 °C, o rompimento das pontes de hidrogênio ainda prevalece sobre o afastamento das moléculas devido ao aumento da temperatura.

Nessa faixa de temperatura, o aquecimento da água ainda provoca uma diminuição em seu volume.

O volume da água só aumenta a partir de 4 °C, quando ocorre a predominância do afastamento das moléculas pelo aumento da temperatura.

Como consequência da variação de volume da água, verifica-se que sua densidade atinge um valor máximo quando sua temperatura se encontra em 4 °C.

