What is claimed is:

1. A compound of the formula I

$$O = P Z - B$$

$$\downarrow L^{2}$$

or a physiologically acceptable salt thereof, wherein

 L^1 and L^2 are independently an amino acid or polypeptide residue bonded to the phosphorus atom of the compound by an amidate bond, or L^1 and L^2 are independently an oxyester, thioester, a substituted or unsubstituted amine, or hydroxy, provided that one or both of L^1 and L^2 is an amino acid or polypeptide residue and provided that any carboxyl group that is linked by less than 5 atoms to the amidate N is esterified or amidated and the dotted lines represent facultative bonds;

 $Z \ is \ -CHR^7-R^{11}-(CH_2)_{m1}-C^\#(R^8)((CH^2)_{m2}(R^9))-(CH_2)_{m3}-R^{10}-(CH_2)_{m4}-, \ -Q-C_6H_4-CH_2-, \ -CHR^7-O-CHR^7-O-CHR^7-, \ -CHR^7-(CHR^{13})_{m1}-CHR^{14}-R^{10}-, \ -Q-C_6H_4-CH_2-, \ -Q-C_6H_4-CH_2-$

$$R^{29}$$
 R^{25}
 R^{29}
 R^{25}
 R^{28}
 R^{27}
 R^{28}
 R^{29}
 R^{25}
 R^{28}

20

5

10

R²⁹ R²⁵

or VIII

5

10

 R^7 is H or C_1 - C_4 alkvl;

 $R^8 = R^7$ or C_2 - C_4 alkenyl, azidomethyl or azidoethyl;

R⁹ is halogen (F, Cl, Br or I), H or OH;

R¹⁰ is O, CH₂ or a chemical bond;

R¹¹ is O, S, CH₂, CHF, CF₂;

Q is $-C(R^{12})_2$ - CH_2 -, $-C(R^{12})_2$ -O-, $-CR^{12}$ = CR^{12} -, or -C=C-, wherein each R^{12} is independently H, or halogen;

R¹³ is H, halogen, OH, CH₃, CH₂OH, or C₃-C₁₂ acyloxymethyl;

 R^{14} is independently H, halogen, OH, CH₃, CH₂OH, C₃-C₁₂ acyloxymethyl, or C₂-C₁₂ acyloxy;

 R^{25} is CH₂, CHF or O;

R²⁶ is CH or S, provided that when R²⁵ is CH, R²⁶ is not S;

 R^{27} is H, OH, halogen, N_3 , C_1 - C_4 alkyl, C_1 - C_4 alkoxy or when, R^{26} is S,

15 R^{27} is absent;

R^{27a} is H, OH, halogen, N₃, C₁-C₄ alkyl, C₁-C₄ alkoxy;

 $R^{28} = R^{27a}$ and is independently chosen;

R²⁹ is O, S, CH₂, CHF, CF₂;

R³² is O;

m1 = m2 = m3 = m4 is an integer having a value from 0 to 4 wherein each is independently chosen;

the carbon atom designated C# has linked substituents that are in the R, S or RS configuration; and

B is a heterocyclic base.

25

30

2. A compound of the formula Ib

$$\begin{bmatrix} L^1 & & & \\ & & &$$

and stereoisomers and salts of such compounds wherein X^1 is O or S:

5

10

15

L¹ is an amino acid, a polypeptide residue, a substituted or unsubstituted amine, an oxyester or a thio ester; and

the carbon atom designated # has linked substituents that are in the R, S or RS configuration, provided that L^1 is not a C_1 - C_4 alkyl ester or, when when B is cytosin-1-yl, then L^1 is not OCH₂C(O)NR^{5a}₂, OCH₂C(O)OR^{5a}, OCH₂C(O)R^{5a}, OCH(R^{5a})OC(O)R^{5a} (R, S or RS stereochemistry), OCH₂C(R^{5a})₂CH₂OH, OCH₂OR^{5a}, OR^{5a}, NHR^{5a} or NR^{5a}₂ wherein R^{5a} is C_1 - C_{20} alkyl, aryl or aryl-alkyl which may be substituted or unsubstituted by substituents independently selected from the group consisting of hydroxy and halogen, and provided that when X^1 is O and B is adenine, cytosine, guanine, thymine, uracil, 2,6-diamino purine, hypoxanthine, or Z^2 ; wherein Z^2 is

Q is independently chosen from H, Cl, NHR^X, NR^X₂, NHC(O)R^X, N(C(O)R^X)₂, OH or NCHN(R^X)₂, then L¹ is not OR^Y, NH₂, NHR^X, or N(R^X)₂ where R^Y represents a physiologically hydrolyzable ester group selected from the group consisting of CH₂C(O)N(R^X)₂, CH₂C(O)OR^X, CH₂OC(O)R^X, CH(R^X)OC(O)R^X, CH₂C(R^X)₂CH₂OH, or CH₂OR^X; R^Y may also be R^X provided that R^Y and R^X are not simultaneously alkyl;

 R^X represents C_1 - C_{20} alkyl, aryl or aryl-alkyl which may be substituted or unsubstituted by substituents independently selected from the group consisting of hydroxy, oxygen, nitrogen and halogen.

3. The compound of claim 2 wherein L^1 is NHR^{40} or OR^{31} wherein R^{40} is C_{1-20} alkyl;

 R^{31} is 2,3-dihydro-6-hydroxyindene; sesamol; catechol monoester; -CH₂-C(O)-N(R^7)₂ wherein each R^7 the same or different; -CH₂-S(O)(R^7); -CH₂-S(O)₂(R^7); -O-CH₂-CH(OC(O)CH₂ R^7)-CH₂(OC(O)CH₂ R^7); cholesteryl; a monosaccharide; a disaccharide; an oligosaccharide (3 to 9 monosaccharide residues), enolpyruvate; glycerol; an α -D- β -diglyceride; trimethoxybenzyl; triethoxybenzyl; 2-alkyl pyridinyl (C₁₋₄ alkyl);

$$-CH_2C(O)N O \longrightarrow N \longrightarrow R^7C(O)O \longrightarrow N$$

 C_3 - C_6 aryl substituted by 3, 4 or 5 halogen atoms or 1 or 2 atoms or groups selected from halogen, C_1 - C_{12} alkoxy, cyano, nitro, OH, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl or C_2 - C_{12} alkynyl; or

 C_1 - C_4 alkylene- C_3 - C_6 aryl substituted in the aryl moiety by 3 to 5 halogen atoms or 1 to 2 atoms or groups selected from halogen, C_1 - C_{12} alkoxy, cyano, nitro, OH, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl or C_2 - C_{12} alkynyl.

4. The compound of claim 3 wherein B is

$$R^{15}$$
 R^{18}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}
 R^{20}

25

5

10

15

wherein R¹⁵ is H, OH, F, Cl, Br, I, OR¹⁶, SH, SR¹⁶, NH₂, or NHR¹⁷;

 R^{16} is $C_1 - C_6$ alkyl

 R^{17} is $C_1 - C_6$ alkyl;

5

10

20

R¹⁸ is N, CF, CCl, CBr, CI, CR¹⁹ or CSR¹⁹, COR¹⁹;

 R^{19} is H, C_1 - C_9 alkyl, C_2 - C_9 alkenyl, C_2 - C_9 alkynyl or C_7 - C_9 arylalkyl unsubstituted or substituted by OH, O, N, F, Cl, Br or I;

 R^{20} is N or CH;

 R^{21} is N, CH, CCN, CCF3, CC=CH or CC(O)NH2;

R²² is H, OH, NH₂, SH, SCH₃, SCH₂CH₃, SCH₂CCH, SCH₂CHCH₂, SC₃H₇, NH(CH₃), N(CH₃)₂, NH(CH₂CH₃), N(CH₂CH₃)₂, NH(CH₂CCH), NH(CH₂CHCH₂), NH(C₃H₇) or halogen;

 R^{23} is H, OH, F, Cl, Br, I, SCH3, SCH2CH3, SCH2CCH, SCH2CHCH2, SC3H7, OR 16 , NH2, or NHR 17 ; and R^{24} is O, S or Se.

- 5. The compound of claim 4 wherein B is cytosin-1-yl, 6-azacytosin-1-yl, 5-fluorocytosin-1-yl, adenin-9-yl, guanin-9-yl or 2, 6-diaminopurin-9-yl.
- 6. The compound of claim 4 wherein R³¹ is 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-ethoxy-5-hydroxyphenyl, 2-ethoxy-4-hydroxyphenyl 3,5-dimethoxyphenyl, 2,4-difluorophenyl, 2-(haloalkyl)-phenyl, 3-(haloalkyl)phenyl, 4-(haloalkyl)-phenyl, 2-cyanophenyl, 3-cyanophenyl, 4-cyanophenyl, 2-ethoxyphenyl, 3-ethoxyphenyl, 4-ethoxyphenyl, 2-carboethoxyphenyl, 3-carboethoxyphenyl, 4-carboethoxyphenyl, or 2-haloalkylbenzyl, 3-haloalkylbenzyl or 4-haloalkylbenzyl.

7. The compound of claim 2 of the formula IIa

$$\mathbb{R}^4$$
 \mathbb{R}^4
 \mathbb{R}^3
 \mathbb{R}^2
 \mathbb{R}^1
 \mathbb

5 wherein

10

15

20

25

n is 1, 2, 3, 4 or 5, wherein for n > 1, each $-C(\mathbb{R}^2)(\mathbb{R}^3)$ is the same or different;

n1 is an integer;

 R^1 is H or C_1 - C_9 alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N, COOR⁴ and halogen, C_3 - C_6 aryl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N, COOR⁴ and halogen or C_3 - C_9 aryl-alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N, COOR⁴ and halogen;

 $R^2 = R^1$ and is independently chosen;

 R^3 is C(O)- OR^4 , amino, C_1 - C_3 alkylamino, C_1 - C_3 alkyldiamino, C_1 - C_6 alkenylamino, hydroxy, thiol, C_1 - C_3 alkoxy, C_1 - C_3 alkthiol, $(CH_2)_nCOOR^4$, C_1 - C_6 alkyl which is unsubstituted or substituted with OH, halogen, SH, NH₂, phenyl, hydroxyphenyl or C_7 - C_{10} alkoxyphenyl; C_2 - C_6 alkenyl which is unsubstituted or substituted with OH, halogen, SH, NH₂, phenyl, hydroxyphenyl or C_7 - C_{10} alkoxyphenyl; C_6 - C_{12} aryl which is unsubstituted or substituted with OH, halogen, SH, NH₂, phenyl, hydroxyphenyl or C_7 - C_{10} alkoxyphenyl; and

 R^4 is H provided that n1 greater than 1, or is C_3 - C_9 alkyl which is substituted by substituents independently selected from the group consisting of OH, O, N and halogen, C_3 - C_6 aryl which is substituted by substituents independently selected from the group consisting of OH, O, N and halogen or

 C_3 - C_9 aryl-alkyl which is substituted by substituents independently selected from the group consisting of OH, O, N and halogen.

8. The compound of claim 7 wherein n and n1 are 1;
R1 is H, methyl, phenyl or benzyl;
R2 is H:

5

10

15

20

25

 R^3 is H, -CH₃, -CH(CH₃)₂, -CH₂-CH(CH₃)₂, -CHCH₃-CH₂-CH₃, -CH₂-C₆H₅, -CH₂-CH₂-S-CH₃, -CH₂OH, -CH(OH)-CH₃, -CH₂-SH, -CH₂-C₆H₄OH, -CH₂-CO-NH₂, -CH₂-COOH, -CH₂-COOH, -(CH₂)₄-NH₂, -(CH₂)₃-NH-C(NH₂)-NH₂, 1-guanidinoprop-3-yl, benzyl, 4-hydroxybenzyl, imidazol-4-yl, indol-3-yl, methoxyphenyl or ethoxyphenyl; and

R⁴ is methyl, ethyl, propyl, isopropyl, butyl, t-butyl, phenyl, benzyl, 1-pyridyl, 3-pyridyl, 1-pyrimidinyl, pivaloyloxymethyl, N-ethylmorpholino, N-2-propylmorpholino, methoxyethyl, 4-N-methylpiperidyl, 3-N-methylpiperidyl, 2-, 3-, or 4-N,N-dimethylaminophenyl, 2-, 3-, or 4-N,N-diethylaminophenyl or 1-ethylpiperazinyl.

- 9. The compound of claim 8 wherein B is cytosin-1-yl, 6-azacytosin-1-yl, adenin-9-yl, guanin-9-yl or 2, 6-diaminopurin-9-yl, and X¹ is O.
 - 10. The compound of claim 1 of the formula Id

11. The compound of claim 10 wherein L^1 is of the formula III

wherein

5

10

15

20

25

30

35

n is 1, 2, 3, 4 or 5, wherein for n > 1, each $-C(R^2)(R^3)$ is the same or different;

n1 is an integer;

 R^1 is H or C_1 - C_9 alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N, COOR⁴ and halogen, C_3 - C_6 aryl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N, COOR⁴ and halogen or C_3 - C_9 aryl-alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N, COOR⁴ and halogen;

 $R^2 = R^1$ and is independently chosen;

 R^3 is C(O)-OR⁴, amino, C_1 - C_3 alkylamino, C_1 - C_3 alkyldiamino, C_1 - C_6 alkenylamino, hydroxy, thipl, C_1 - C_3 alkoxy, C_1 - C_3 alkthiol, $(CH_2)_nCOOR^4$, C_1 - C_6 alkyl which is unsubstituted or substituted with OH, halogen, SH, NH₂, phenyl, hydroxyphenyl or C_7 - C_{10} alkoxyphenyl; C_2 - C_6 alkenyl which is unsubstituted or substituted with OH, halogen, SH, NH₂, phenyl, hydroxyphenyl or C_7 - C_{10} alkoxyphenyl; C_6 - C_{12} aryl which is unsubstituted or substituted with OH, halogen, SH, NH₂, phenyl, hydroxyphenyl or C_7 - C_{10} alkoxyphenyl; and

R⁴ is H provided that n1 greater than 1, or is C_3 - C_9 alkyl which is substituted by substituents independently selected from the group consisting of OH, O, N and halogen, C_3 - C_6 aryl which is substituted by substituents independently selected from the group consisting of OH, O, N and halogen or C_3 - C_9 aryl-alkyl which is substituted by substituents independently selected from the group consisting of OH, O, N and halogen;

L² is OR, SR or is the same as L¹ wherein,

R is H,

C₃-C₂₄ acyloxyalkyl,

C6-C24 acvloxvarvlalkvl,

C₃-C₂₄ acyloxyalkoxyalkyl,

C₃-C₂₄ acyloxyhaloalkyl,

 C_1 - C_{20} alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (F, Cl, Br, I),

 C_3 - C_{20} aryl which is unsubstituted or substituted by substituents independently selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl (1 to 3 halogen atoms), cyano, nitro, OH, O, N and halogen, or C_4 - C_{20} aryl-alkyl which is unsubstituted or substituted in the aryl moiety by substituents independently selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl (1 to 3 halogen atoms), cyano, nitro, OH, O, N and halogen.

12. The compound of claim 11 wherein n and n1 are 1;

5

10

15

20

25

30

35

R is N-ethylmorpholino, pivaloyloxymethyl, phenyl, benzyl, isopropyl, t-butyl, ethyl, isopropyl, butyl, adamantoyloxymethyl, 3-methoxyphenyl, 2-carboethoxyphenyl, 4-fluorophenyl, 2,4-difluorophenyl, 3,5-dimethoxyphenyl, 2,4-dichlorophenyl, 2-ethoxyphenyl, 3-dimethylaminophenyl, 4-trifluoromethylbenzyl, 2-ethylsalicyl, -O-CH₂-O-C(O)-C₁₀H₁₅, -C₆H₄-CH₂-N(CH₃)₂, -CH₂-CH₂F, -CH₂-CH₂Cl, -CH₂-CF₃, -CH₂-CCl₃, R⁵, NHR⁶ or N(R⁶)₂ wherein,

R⁵ is CH₂C(O)N(R⁶)₂, CH₂C(O)OR⁶, CH₂OC(O)R⁶, CH(R⁶)OC(O)R⁶, CH₂C(R⁶)₂CH₂OH, or CH₂OR⁶, and R⁶ is C₁-C₂₀ alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms), C₆-C₂₀ aryl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms) or C₇-C₂₀ aryl-alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms);

R¹ is H, methyl, ethyl, isopropyl, phenyl or benzyl; R² is H;

 $R^3 \text{ is H, -CH}_3, -\text{CH}(\text{CH}_3)_2, -\text{CH}_2\text{-CH}(\text{CH}_3)_2, -\text{CHCH}_3\text{-CH}_2\text{-CH}_3, -\text{CH}_2\text{-}\\ \text{C}_6\text{H}_5, -\text{CH}_2\text{CH}_2\text{-S-CH}_3, -\text{CH}_2\text{OH, -CH}(\text{OH)-CH}_3, -\text{CH}_2\text{-SH, -CH}_2\text{-C}_6\text{H}_4\text{OH, -CH}_2\text{-CO-NH}_2, -\text{CH}_2\text{-COOH, -CH}_2\text{-COOH, -CH}_2\text{-COOH, -(CH}_2)_4\text{-NH}_2, -\text{(CH}_2)_3\text{-NH-C(NH}_2)\text{-NH}_2, 1\text{-guanidinoprop-3-yl, benzyl, 4-hydroxybenzyl, imidazol-4-yl, indol-3-yl, methoxyphenyl or ethoxyphenyl; and}$

R⁴ is methyl, ethyl, propyl, isopropyl, butyl, t-butyl, phenyl, benzyl, 1-pyridyl, 3-pyridyl, 1-pyrimidinyl, pivaloyloxymethyl, N-ethylmorpholino, N-

2-propylmorpholino, methoxyethyl, 4-N-methylpiperidyl, 3-N-methylpiperidyl, 2-, 3-, and 4-N,N-dimethylaminophenyl and 2-, 3-, and 4-N,N-diethylaminophenyl or 1-ethylpiperazinyl.

13. The compound of claim 12 wherein Z is -CHR⁷-R¹¹-(CH₂)_{m1}- $C(R^8)((CH^2)_{m2}(R^9))-(CH_2)_{m3}-R^{10}-(CH_2)_{m4}-$,

$$R^{29}$$
 R^{25}
 R^{29}
 R^{29}

14. The compound of claim 13 wherein

 $Z is \text{-}CH_2\text{-}O\text{-}CH_2\text{-}CH_2\text{-}O\text{-}CH_2\text{-}CH(CH_2OH)\text{-}, \text{-}CH_2\text{-}O\text{-}CH_2\text{-}}\\ CH(CH_2F)\text{-}, \text{-}CH_2\text{-}O\text{-}CH_2\text{-}CH(CH_3)\text{-}, \text{-}CH_2\text{-}O\text{-}CH_2\text{-}CH(CH=CH_2)\text{-} or \text{-}CH_2\text{-}O\text{-}}\\ CH_2\text{-}CH(CH_2N_3)\text{-}, \text{ or is of formula IV or V}$

$$R^{29}$$
 R^{25}
 R^{25}
 R^{27}
 R^{28}
 R^{28}
 R^{29}
 R^{29}
 R^{25}
 R^{29}
 R^{25}
 R^{29}
 R^{25}

wherein

5

10

15

20

25

 R^{25} and R^{29} are O;

R²⁶ is CH;

 R^{27} and R^{28} are H; and

B is adenin-9-yl, 1-deazaadenin-9-yl, 3-deazaadenin-9-yl, 7-deaza-8-azaadenin-9-yl, 8-azaadenin-9-yl, guanin-9-yl, 2, 6-diaminopurin-9-yl, 2-aminopurin-9-yl, thymin-1-yl, cytosin-1-yl, 5-fluorocytosin-1-yl, 6-azacytosin-1-yl, 5-methylcytosin-1-yl, 5-bromovinyluracil-1-yl, 5-fluorouracil-1-yl or 5-trifluoromethyluracil-1-yl.

$$L^{2} \xrightarrow{P} Z \longrightarrow B$$
In

16. The compound of claim 15 of the formula IIc

5

Пс

wherein L^2 is OR, SR ρr

10

wherein

R is H,

C3-C24 acyloxyalkyl,

C₆-C₂₄ acyloxyarylalkyl,

C₃-C₂₄ acyloxyalkoxyalkyl,

C₃-C₂₄ acvloxvhaloalkvl,

 C_1 - C_{20} alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (F, Cl, Br, I),

 C_3 - C_{20} aryl which is unsubstituted or substituted by substituents independently selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl (1 to 3 halogen atoms), cyano, nitro, OH, O, N and halogen, or

 C_4 - C_{20} aryl-alkyl which is unsubstituted or substituted in the aryl moiety by substituents independently selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl (1 to 3 halogen atoms), cyano, nitro, OH, O, N and halogen; and

 R^1 is O-C₆H₄-CH̄₂-N(CH₃)₂, OR⁵, NHR⁶ or N(R⁶)₂ wherein R⁵ is CH₂C(O)N(R⁶)₂, CH₂C(O)OR⁶, CH₂OC(O)R⁶, CH(R⁶)OC(O)R⁶, CH₂C(R⁶)₂CH₂OH, or CH₂OR⁶, and wherein R⁶ is C₁-C₂₀ alkyl, C₆-C₂₀ aryl or C₇-C₂₀ aryl-alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen.

17. A compound of the formula $(OR^{31})_2P(O)$ - Z^1 -B or $(OR)(OR^{31})P(O)$ - Z^1 -B, wherein;

B is a heterocyclic base;

 Z^1 is selected from the group consisting of -CH₂-O-CH₂-CH₂-, -CH₂-O-C#H(CH₂OH)-CH₂-, -CH₂-O-C#H(CH₃)-CH₂-, -CH₂-O-C#H(CH₂F)-CH₂-, -CH₂-O-C#H(CH₂CH₂CH₂-)-CH₂-, -CH₂-O-C#H(CH₂N₃)-CH₂-;

R is H.

5

10

15

20

25

30

 C_3 C_{24} 1-acyloxy-1-alkyl,

C6-C24 1-acvloxy-1-arvl-1-alkyl,

C₃-C₂₄ 1-acyloxy-2-alkoxy-1-alkyl,

C3-C24 1-acyloxy-2-halo-1-alkyl,

 C_1 - C_{20} alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (F, Cl, Br, I),

 C_3 - C_{20} aryl which is unsubstituted or substituted by substituents independently selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl, cyano, nitro, OH, O, N and halogen, or

 C_4 - C_{20} aryl-alkyl which is unsubstituted or substituted in the aryl moiety by substituents independently selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl, cyano, nitro, OH, O, N and halogen;

R³¹ is 2,3-dihydro-6-hydroxyindene; sesamol; catechol monoester; -CH₂-C(O)-N(R⁷)₂ wherein each R⁷ is hydrogen or C₁₋₄ alkyl and is the same or different; -CH₂-S(O)(R⁷); -CH₂-S(O)₂(R⁷); -O-CH₂-CH(OC(O)CH₂R⁷)-CH₂(OC(O)CH₂R⁷); cholesteryl; a monosaccharide; a disaccharide; an oligosaccharide (3 to 9 monosaccharide residues), enolpyruvate; glycerol; an α -D- β -diglyceride; trimethoxybenzyl; triethoxybenzyl; 2-alkyl pyridinyl (C₁₋₄ alkyl);

C₃-C₆ aryl substituted by 3, 4 or 3 halogen atoms or 1 or 2 atoms or groups selected from halogen, C_1 - C_{12} alkoxý, cyano, nitro, OH, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl or C_2 - C_{12} alkynyl; or

C₁-C₄ alkylene-C₃+C₆ aryl substituted in the aryl moiety by 3 to 5 halogen atoms or 1 to 2 atoms or groups selected from halogen, C₁-C₁₂ alkoxy, cyano, nitro, OH, C₁-C₁₂ haloalkyl, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl or C₂-C₁₂ alkynyl, provided that when Z¹ is -CH₂-O-CH₂-CH₂- and B is adenin-9-yl, both R³¹ are not 4-nitrobenzyl or 4-trifluoromethyl-benzyl, and provided that when Z¹ is -CH₂-O-CH₂-CH₂-, -CH₂-O-C#H(CH₂OH)-CH₂-, -CH₂-O-C#H(CH₃)-CH₂-, -CH₂-O-C#H(CH₂F)-CH₂- or -CH₂-O-C#H(CH₂CH₂)-CH₂- and B is adenine, cytosine, guanine, thymine, uracil, 2,6-diamino purine, hypoxanthine, or Z²; wherein Z² is

25

5

10

15

Q is independently chosen from H, Cl, NHR^X, NR^X₂, NHC(O)R^X, N(C(O)R^X)₂, OH or NCHN(R^X)₂, then L¹ is not OR^Y, NH₂, NHR^X, or N(R^X)₂ where R^Y represents a physiologically hydrolyzable ester group selected from the group consisting of CH₂C(O)N(R^X)₂, CH₂C(O)OR^X, CH₂OC(O)R^X, CH₂C(O)R^X, CH₂C

 $CH(R^X)OC(O)R^X$, $CH_2C(R^X)_2CH_2OH$, or CH_2OR^X ; R^Y may also be R^X provided that R^Y and R^X are not simultaneously alkyl;

 R^X represents C_1 - C_{20} alkyl, aryl or aryl-alkyl which may be substituted or unsubstituted by substituents independently selected from the group consisting of hydroxy, oxygen, nitrogen and halogen.

10

15

18. The compound of claim 17 wherein R³¹ is 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-ethoxy-5-hydroxyphenyl, 2-ethoxy-4-hydroxyphenyl 3,5-dimethoxyphenyl, 2,4-difluorophenyl, 2-(haloalkyl)-phenyl, 3-(haloalkyl)phenyl, 4-(haloalkyl)-phenyl, 2-cyanophenyl, 3-cyanophenyl, 4-cyanophenyl, 2-ethoxyphenyl, 2-carboethoxyphenyl, 3-carboethoxyphenyl, 4-carboethoxyphenyl, or 2-haloalkylbenzyl, 3-haloalkylbenzyl or 4-haloalkylbenzyl.

20

19. The compound of claim 18 wherein B is cytosin-1-yl, 6-azacytosin-1-yl, 5-fluorocytosin-1-yl, ademin-9-yl, guanin-9-yl or 2, 6-diaminopurin-9-yl.

25

30

20. A compound of the formula $(L^1)_2 P(O) - Z - B^1$ or

wherein

substituents linked to the carbon atom designated # are in the R, S or RS configuration;

L¹ is independently an amino acid, a polypeptide, an oxyester, a thioester or a substituted or unsubstituted amine;

 B^{1} is a protected heterocyclic base; and

Z-B1 is

wherein

5

10

15

 R^{27} is H, OH, halogen, N_{3} , C_1 - C_4 alkyl, C_1 - C_4 alkoxy or when, R^{26} is S, R^{27} is absent;

 R^{28} is H, OH, halogen, N₃, C₁-C₄ alkyl or C₁-C₄ alkoxy;

 R^{29} is O, S, CH₂, CHF or CF₂;

 R^{33} is H, OH, TBSO, halogen, cyano, CH2N3, C1-C4 alkyl, C1-C4 alkoxy, CH2OH or azido; and

 R^{34} is H, CH₂CN or CF₃, with the proviso that, for structure XXX, when R^{25} is O or CH₂ and R^{29} CH₂ or O, L¹ is not H or C₁-C₆ alkyl, provided that for compounds of structure

$$O = P \qquad B$$

$$L^{1}$$

when B1 is

wherein Q is independently chosen from H, Cl, NHR^X, NR^X₂, NHC(O)R^X, N(C(O)R^X)₂, OH or NCHN(R^X)₂, then L¹ is not OR^Y, NH₂, NHR^X, or N(R^X)₂ where R^Y represents a physiologically hydrolyzable ester group selected from the group consisting of CH₂C(O)N(R^X)₂, CH₂C(O)OR^X, CH₂OC(O)R^X, CH(R^X)OC(O)R^X, CH₂C(R^X)₂CH₂OH, or CH₂OR^X; R^Y may also be R^X provided that R^Y and R^X are not simultaneously alkyl;

 R^X represents C_1 - C_{20} alkyl, aryl or aryl-alkyl which may be substituted or unsubstituted by substituents independently selected from the group consisting of hydroxy, oxygen, nitrogen and halogen;

provided that when R^{25} is O, R^{29} is CH_2 , R^{26} is CH, R^{27} is OH, R^{28} is H or F, and B is adenine, thymine, guanine, cytosine or protected adenine, protected guanine or protected dytosine, both L^1 are not H, methyl or phenyl.

21. The compound of claim 20 wherein B^1 is

10

$$R^{39}$$
 R^{18}
 R^{20}
 R^{20}

wherein

R¹⁸ is N, CF, CCI, CBr, CI, CR¹⁹ or CSR¹⁹, COR¹⁹;

5 R^{20} is N or CH;

R²¹ is N, CH, CCN, CCF₃, CC≢CH or CC(O)NH₂;

 R^{22A} is R^{39} or R^{22} provided that R^{22} is not NH₂;

R²² is H, OH, NH₂, SH, SCH₃, SCH₂CH₃, SCH₂CCH, SCH₂CHCH₂,

 SC_3H_{7} , $NH(CH_3)$, $N(CH_3)_2$, $NH(CH_2CH_3)$, $N(CH_2CH_3)_2$, $NH(CH_2CCH)$,

10 NH(CH2CHCH2), NH(C3H7) or halogen (F, Cl, Br or I);

 R^{23A} is R^{39} or R^{23} provided that R^{23} is not NH₂;

 R^{23} is H, OH, F, Cl, Br, I, SCH3, SCH2CH3, SCH2CCH, SCH2CHCH2, SC3H7, OR 16 , NH2, or NHR 17 ;

R²⁴ is O, S or Se; and

 R^{39} is NHR⁴⁰, NHC(O)R³⁶ or NCR⁴¹N(R³⁸)₂ wherein,

 R^{36} is C_1 - C_{19} alkyl, C_1 - C_{19} alkenyl, C_3 - C_{10} aryl, adamantoyl, alkylanyl, or C_3 - C_{10} aryl substituted with 1 or 2 atoms or groups selected from halogen, methyl, ethyl, methoxy, ethoxy, hydroxy and cyano;

 R^{38} is C_1 - C_{10} alkyl, or both R^{38} together are 1-morpholino, 1-piperidine or 1-pyrrolidine;

 R^{40} is C_{1-20} alkyl; and

R⁴¹ is hydrogen or CH₃.

- 22. The compound of claim 21 wherein L^1 is R or R^{31} wherein
- 25 R is

15

C₃-C₂₄ 1-acyloxy-1-alkyl,

C6-C24 1-acyloxy-1-aryl-1-alkyl,

 C_3 - C_{24} 1-acyloxy-2-alkoxy-1-alkyl,

C₃-C₂₄ 1-acvloxy-2-halo-1-alkyl,

 C_1 - C_{20} alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (F, Cl, Br, I),

 C_3 - C_{20} aryl which is unsubstituted or substituted by substituents independently selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl (1 to 3 halogen atoms), cyano, nitro, OH, O, N and halogen,

5

10

15

20

25

30

 C_4 - C_{20} aryl-alkyl which is unsubstituted or substituted in the aryl moiety by substituents independently selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl (1 to 3 halogen atoms), cyano, nitro, OH, O, N and halogen,

 C_3 - C_6 aryl substituted by 3 to 5 halogen atoms or 1 to 2 atoms or groups independently selected from the group consisting of halogen, C_1 - C_{12} alkoxy, cyano, nitro, hydroxy, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl or C_2 - C_{12} alkynyl, or

 C_1 - C_4 alkylene- C_3 - C_6 aryl substituted in the aryl moiety by 3 to 5 halogen atoms or 1 to 2 atoms or groups independently selected from the group consisting of halogen, C_1 - C_{12} alkoxy, cyano, nitro, hydroxy, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl or C_2 - C_{12} alkynyl; and

 R^{31} is 2,3-dihydro-6-hydroxyindene; sesamol; catechol monoester; -CH₂-C(O)-N(R^7)₂ wherein each R^7 the same or different; -CH₂-S(O)(R^7); -CH₂-S(O)₂(R^7); -O-CH₂-CH(OC(O)CH₂ R^7)-CH₂(OC(O)CH₂ R^7); cholesteryl; a monosaccharide; a disaccharide; an oligosaccharide (3 to 9 monosaccharide residues), enolpyruvate; glycerol; an α -D- β -diglyceride; trimethoxybenzyl; triethoxybenzyl; 2-alkyl pyridinyl (C₁₋₄ alkyl);

$$-CH_2C(O)N O \longrightarrow N \\ O$$

 C_3 - C_6 aryl substituted by 3, 4 or 5 halogen atoms or 1 or 2 atoms or groups selected from halogen, C_1 - C_{12} alkoxy, cyano, nitro, OH, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkvl, C_2 - C_{12} alkenyl or C_2 - C_{12} alkvnyl; or

 C_1 - C_4 alkylene- C_3 - C_6 aryl substituted in the aryl moiety by 3 to 5 halogen atoms or 1 to 2 atoms or groups selected from halogen, C_1 - C_{12} alkoxy, cyano, nitro, OH, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl or C_2 - C_{12} alkynyl.

- 23. The compound of claim 21 wherein L^1 is ethylglycine or N-methylglycine.
 - 24. A compound of the formula $(OR^{35})(OR^{35})P(O)$ -Z-B, wherein; B is a heterocyclic base;

 R^{35} is independently R or R^{31} , wherein R is independently

H,

5

10

15

20

25

30

35

C₃-C₂₄ 1-acyloxy-1-alkyl,

 C_6 - C_{24} 1-acyloxy-1-aryl-1-alkyl,

C₃-C₂₄ 1-acvloxy-2-alkoxy-1-alkyl,

C3-C24 1-acvloxy-2-halo-1-alkyl,

 C_1 - C_{20} alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (F, Cl, Br, I),

 C_3 - C_{20} aryl which is unsubstituted or substituted by substituents independently selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl (1 to 3 halogen atoms), cyano, nitro, OH, O, N and halogen,

 C_4 - C_{20} aryl-alkyl which is unsubstituted or substituted in the aryl moiety by substituents independently selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl (1 to 3 halogen atoms), cyano, nitro, OH, O, N and halogen,

 C_3 - C_6 aryl substituted by 3 to 5 halogen atoms or 1 to 2 atoms or groups independently selected from the group consisting of halogen, C_1 - C_{12} alkoxy, cyano, nitro, hydroxy, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl or C_2 - C_{12} alkynyl, or

 C_1 - C_4 alkylene- C_3 - C_6 aryl substituted in the aryl moiety by 3 to 5 halogen atoms or 1 to 2 atoms or groups independently selected from the group consisting of halogen, C_1 - C_{12} alkoxy, cyano, nitro, hydroxy, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl or C_2 - C_{12} alkynyl;

 R^{31} is 2,3-dihydro-6-hydroxyindene; sesamol; catechol monoester; -CH₂-C(O)-N(R^7)₂ wherein each R^7 the same or different; -CH₂-S(O)(R^7); -CH₂-S(O)₂(R^7); -O-CH₂-CH(OC(O)CH₂ R^7)-CH₂(OC(O)CH₂ R^7); cholesteryl; a monosaccharide; a disaccharide; an oligosaccharide (3 to 9 monosaccharide residues), enolpyruvate; glycerol; an α -D- β -diglyceride; trimethoxybenzyl; triethoxybenzyl; 2-alkyl pyridinyl (C₁₋₄ alkyl);

 C_3 - C_6 aryl substituted by 3, 4 or 5 halogen atoms or 1 or 2 atoms or groups selected from halogen, C_1 - C_{12} alkoxy, cyano, nitro, OH, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl or C_2 - C_{12} alkynyl; or

 C_1 - C_4 alkylene- C_3 - C_6 aryl substituted in the aryl moiety by 3 to 5 halogen atoms or 1 to 2 atoms or groups selected from halogen, C_1 - C_{12} alkoxy, cyano, nitro, OH, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl or C_2 - C_{12} alkynyl;

Z-B is selected from the group consisting of

15 wherein

20

5

substituents linked to the carbon atom designated # are in the R, S or RS configuration,

and

 R^{25} is CH_2 , CHF or O;

R²⁶ is CH or S, provided that when R²⁵ is CH, R²⁶ is not S;

 R^{27} is H, OH, halogen, N $_{\!\!3,}$ $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy or when, R^{26} is S, R^{27} is absent;

 R^{28} is H, OH, halogen, N_3 , C_1 - C_4 alkyl or C_1 - C_4 alkoxy;

 R^{29} is O, S, CH₂, CHF or CF₂; R^{33} is H, OH, TBSO, halogen, cyano, CH₂N₃, C₁-C₄ alkyl, C₁-C₄

alkoxy, CH2OH or azido; and

5

10

15

20

25

30

35

 R^{34} is H, CH₂CN or CF₃, with the proviso that, for structure XXX, when R^{25} is O or CH₂ and R^{29} CH₂ or O, R^{35} is not H or C₁-C₆ alkyl; and provided that when R^{25} is CH₂, R^{29} is CH₂, R^{26} is CH, R^{27} is H, R^{28} is H, and B is adenine, R^{35} are not both H or C₃H₇; and

provided that when R^{25} is O, R^{29} is CH_2 , R^{26} is S, R^{28} is H, and B is cytosine or protected cytosine, R^{35} are not both H or ethyl; and

provided that when R^{25} is CH_2 , R^{29} is O, R^{26} is CH, R^{27} is H, R^{28} is H, and B is adenine, guanine, hypokanthine, cytosine, uracil or thymine, R^{35} are not both H or C_3H_7 ; and

provided that when R^{25} is O, R^{29} is CH_2 , R^{26} is CH, R^{27} is N_3 , R^{28} is H, and B is thymine, R^{35} is not H or phenyl; and

provided that when R^{25} is CH_2 , R^{29} is O, R^{26} is CH, R^{27} is H, R^{28} is H, and B is thymine, R^{35} is not H or C_1 - C_6 alkyl; and

provided that when R²⁵ is O, R²⁹ is CH₂, R²⁶ is CH, R²⁷ is OH, R²⁸ is H or F, and B is adenine, thymine, guartine, cytosine or protected adenine, protected guartine or protected cytosine, both R³⁵ are not H, methyl or phenyl; and

provided that when R^{25} is O, R^{29} is O, R^{26} is CH, R^{27} is H, OH or C_1 - C_4 alkyl, R^{28} is H, OH or C_1 - C_4 alkyl, and B is xanthine, substituted xanthine, guanine, substituted guanine, purine, substituted purine, cytosine, substituted cytosine, thymine, uracil, substituted uracil, adenine or substituted adenine, R^{35} is not H or C_1 - C_6 alkyl.

25. The compound of claim 24 wherein R³⁵ is independently phenyl, benzyl, adamantoyl oxymethyl, pivaloyloxymethyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-ethoxy-5-hydroxyphenyl, 2-ethoxy-4-hydroxyphenyl 3,5-dimethoxyphenyl, 2,4-difluorophenyl, 2-(haloalkyl)-phenyl, 3-(haloalkyl)phenyl, 4-(haloalkyl)-phenyl, 2-cyanophenyl, 3-cyanophenyl, 4-cyanophenyl, 2-ethoxyphenyl, 2-carboethoxyphenyl, 3-carboethoxyphenyl, 4-carboethoxyphenyl, or 2-haloalkylbenzyl, 3-haloalkylbenzyl or 4-haloalkylbenzyl.

- 26. The compound of claim 25 wherein B^1 is N^4 -benzoylcytosin-1-yl, N^4 -(6-aminohexyl)cytosin-1-yl, N^4 -(10-aminodecyl)cytosin-1-yl, N^4 -(14-aminolauryl)cytosin-1-yl.
- 5 27. The compound of claim 1 where L^1 or L^2 is an immunogenic peptide or protein.
 - 28. An antibody capable of binding specifically to a compound of claim 27.
 - 29. A compound of claim 2 for oral administeration of an antivirally-effective dose to a subject.

- 30. The compound of claim 29 wherein the compound is enriched or resolved at the phosphate atom chiral center.
 - 31. A compound of claim 20 having the structure

$$O = P$$

$$L^{1}$$

$$B^{1}$$

- 20 for oral administeration of antivirally-effective dose to a subject.
 - 32. The compound of claim 31 wherein the compound is enriched or resolved at the phosphate atom chiral center.
- 25 33. A compound of formula I, wherein the compound is labeled with a detectable moiety selected from the group of an enzyme, radioisotope, stable free radical, fluorophor, and a chemiluminescent group.
- 34. A compound of the formula $(R^{31}O)_2P(O)$ -CH₂-OH or $(R^{31}O)_2P(OSi(CH_3)_3) \text{ wherein}$ R^{31} is trimethoxybenzyl; triethoxybenzyl; 2-alkyl pyridinyl (C₁₋₄ alkyl);

R⁷C(O)O

5

10

15

20

wherein R^7 is hydrogen or C_{1-4} alkyl; or

 C_3 - C_6 aryl substituted by 3, 4 or 5 halogen atoms or 1 or 2 atoms or groups selected from halogen, C_1 - C_{12} alkoxy, cyano, nitro, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl or C_2 - C_1 2 alkynyl, provided that for compound ($R^{31}O$)₂P(O)-CH₂-OH, R^{31} is not phenyl.

35. A method to synthesize a compound of structure $(R^{31}O)_2P(O)$ -CH₂-OH comprising silylating a compound of structure $(R^{31}O)_2P(O)H$ with about 1 equivalent of bis(trimethylsilyl)trifluoroacetamide, drying the resulting compound and reacting the resulting compound with paraformaldehyde containing catalytic amounts of a lewis acid, wherein R^{31} is trimethoxybenzyl; triethoxybenzyl; 2^1 -alkyl pyridinyl $(C_{1-4}$ alkyl);

R⁽C(0)0

wherein \mathbb{R}^7 is hydrogen or \mathbb{C}_{1-4} alkyl;

C₃-C₆ aryl substituted by 3, 4 or 5 halogen atoms or 1 or 2 atoms or groups selected from halogen, C₁-C₁₂ alkoxy, cyano, nitro, C₁-C₁₂ haloalkyl, C₁-C₁₂ alkyl or C₂-12 alkynyl.

36. A method to synthesize a compound of structure

 $(R^{35}O)_2P(O) \sim R^{29} \sim R^{25} \sim B^{25}$

by reacting a compound of structure

 R^{25} B^2

with iodine and $(R^{31}O)_2P(O)$ -CH₂-OH at high temperature, wherein B² is a heterocyclic base or a protected heterocyclic base; R³¹ is trimethoxybenzyl; triethoxybenzyl; 2-alkyl pyridinyl (C₁₋₄ alkyl);

R⁷C(O)O

wherein R^7 is hydrogen or C_{1-4} alkyl;

 C_3 - C_6 aryl substituted by 3, 4 or 5 halogen atoms or 1 or 2 atoms or groups selected from halogen, C_1 - C_{12} alkoxy, cyano, nitro, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkyl or C_2 -12 alkynyl; and R^{44} is iodine or fluorine.

37. A compound having the formula

and stereoisomers and salts of such compounds wherein

B is a purine or pyrimidine base;

 R^{35} is R or R^{31} ;

5

10

15

20

25

30

R is 2-alkoxyphenyl, 3-alkoxyphenyl, 4-alkoxyphenyl (C₁-C₁₂ alkyl), 2halophenyl, 3-halophenyl, 4-halophenyl, 2,3-dihalophenyl, 2,4-dihalophenyl, 2,5-dihalophenyl, 2,6-dihalophenyl, 3,4-dihalophenyl, 3,5-dihalophenyl, 4haloalkylphenyl (1-5 halogens, C₁-C₁₂ alkyl), carboalkoxyphenyl (C₁-C₄ alkyl), 2-haloalkylbenzyl, 3-haloalkylbenzyl, 4-haloalkylbenzyl (1 to 5 halogen atoms, C₁-C₁₂ alkyl), alkylsalicylphenyl (C₁-C₄ alkyl), alkoxy ethyl (C₁-C₆ alkyl), aryloxy ethyl (C6-C9 aryl optionally substituted by OH, NH2, halo, C1-C4 alkyl or C1-C4 alkyl substituted by OH or by 1 to 3 halo atoms), 2-pyrrolyl, 3-pyrrolyl, 2-thienyl, 3-thienyl, 2-imidazolyl, 4-imidazolyl, 2-oxazolyl, 4-oxazolyl, 5oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-ethoxyphenyl, 3ethoxyphenyl, 4-ethoxyphenyl, 2-fluorophenyl, 3-fluorophenyl, 4fluorophenyl, 2,4-difluorophenyl, 2,4-dichlorophenyl, 2trifluoromethylphenyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 2trichloromethylphenyl, 3-trichloromethylphenyl, 4-trichloromethylphenyl, 2cyanophenyl, 3-cyanophenyl, 4-cyanophenyl, 2-carboethoxyphenyl, 3carboethoxyphenyl, 4-carboethoxyphenyl (-C₆H₄-C(O)-OC₂H₅), 2,3dicarboethoxyphenyl, 2,4-dicarboethoxyphenyl, 2,5-dicarboethoxyphenyl, 2,6dicarboethoxyphenyl, 3,4-dicarboethoxyphenyl, 3,5-dicarboethoxyphenyl, 1-

pyridinyl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl (-C₅H₄N), 2-nitrophenyl, 3-

nitrophenyl, 4-nitrophenyl, 4-trifluoromethylbenzyl, 2-ethylsalicylphenyl, 3-ethylsalicylphenyl, 4-ethylsalicylphenyl, 2-acetylphenyl, 3-acetylphenyl, 4-acetylphenyl, 1,8-dihydroxy-naphthyl (-O-C₁₀H₆-OH or -O-C₁₀H₆-O-), 2,2'-dihydroxybiphenyl (-O-C₆H₄-C₆H₄-O-), methoxy ethyl (-CH₂-CH₂-O-CH₃), phenoxymethyl, phenoxy ethyl , -C₆H₄-CH₂-N(CH₃)₂ or N-ethylmorpholino -(CH₂)₂-N[(CH₂)₂(CH₂)₂]O);

 R^{31} is 2,3-dihydro-6-hydroxyindene, sesamol, catechol monoester, -CH₂-C(O)-N(R^7)₂ wherein each R^7 is the same or different, -CH₂-S(O)(R^7), -CH₂-S(O)₂(R^7), -O-CH₂-CH(OC(O)CH₂ R^7)-CH₂(OC(O)CH₂ R^7), cholesteryl, enolpyruvate, glycerol, an α -D- β -diglyceride, trimethoxybenzyl, triethoxybenzyl or 2-alkyl pyridinyl (C₁₋₄ alkyl);

 R^7 is H or C_1 - C_4 alkvl; and

the carbon atom designated # has linked substituents that are in the R, S or RS configuration.

15

10

5

- 38. The compound of claim 37 wherein R^{35} is R.
- 39. The compound of claim 37 wherein R is 2-alkoxyphenyl, 3-alkoxyphenyl, 4-alkoxyphenyl (C₁-C₁₂ alkyl), 2-halophenyl, 3-halophenyl, 4-20 halophenyl, 2,3-dihalophenyl, 2,4-dihalophenyl, 2,5-dihalophenyl, 2,6-dihalophenyl, 3,4-dihalophenyl, 3,5-dihalophenyl, 4-haloalkylphenyl (1-5 halogens, C₁-C₁₂ alkyl), carboalkoxyphenyl (C₁-C₄ alkyl), 2-haloalkylbenzyl, 3-haloalkylbenzyl, 4-haloalkylbenzyl (1 to 5 halogen atoms, C₁-C₁₂ alkyl), alkylsalicylphenyl (C₁-C₄ alkyl), alkoxy ethyl (C₁-C₆ alkyl) or aryloxy ethyl (C₆-C₉ aryl optionally substituted by OH, NH₂, halo, C₁-C₄ alkyl or C₁-C₄ alkyl substituted by OH or by 1 to 3 halo atoms).
- 40. The compound of claim 39 wherein B is cytosine, 5-fluorocytosine, 5-methylcytosine, adenine, guanine, 2,6-diaminopurine, 2-aminopurine, hypoxanthine or thymine.
 - 41. The compound of claim 39 wherein R is alkylsalicylphenyl.
 - 42. The compound of claim 41 wherein B is cytosine.

- The compound of claim 37 wherein R is 2-pyrrolyl, 3-pyrrolyl, 2-43. thienyl, 3-thienyl, 2-imidazolyl, 4-imidazolyl, 2-oxazolyl, 4-oxazolyl, 5oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-pyridinyl, 5 3-pyridinyl, 4-pyridinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-ethoxyphenyl, 3ethoxyphenyl, 4-ethoxyphenyl, 2-fluorophenyl, 3-fluorophenyl, 4fluorophenyl, 2,4-difluorophenyl, 2,4-dichlorophenyl, 2trifluoromethylphenyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 2trichloromethylphenyl, 3-trichloromethylphenyl, 4-trichloromethylphenyl, 2-10 cyanophenyl, 3-cyanophenyl, 4-cyanophenyl, 2-carboethoxyphenyl, 3carboethoxyphenvl, 4-carboethoxyphenvl (-C₆H₄-C(O)-OC₂H₅), 2,3dicarboethoxyphenyl, 2,4-dicarboethoxyphenyl, 2,5-dicarboethoxyphenyl, 2,6dicarboethoxyphenyl, 3,4-dicarboethoxyphenyl, 3,5-dicarboethoxyphenyl, 1pyridinyl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl (-C₅H₄N), 2-nitrophenyl, 3-15 nitrophenyl, 4-nitrophenyl, 4-trifluoromethylbenzyl, 2-ethylsalicylphenyl, 3ethylsalicylphenyl, 4-ethylsalicylphenyl, 2-acetylphenyl, 3-acetylphenyl, 4acetylphenyl, 1,8-dihydroxy-naphthyl (-O-C10H6-OH or -O-C10H6-O-), 2,2'dihydroxybiphenyl (-O-C6H4-C6H4-O-), methoxy ethyl (-CH2-CH2-O-CH3), phenoxymethyl, phenoxy ethyl, -C6H4-CH2-N(CH3)2 or N-ethylmorpholino 20 $(-(CH_2)_2-N[(CH_2)_2(CH_2)_2]O)$.
 - 44. The compound of claim 43 wherein B is cytosine, 5-fluorocytosine, 5-methylcytosine, adenine, guanine, 2,6-diaminopurine, 2-aminopurine, hypoxanthine or thymine.
 - 45. The compound of claim 37 wherein B is cytosine, 5-fluorocytosine, 5-methylcytosine, adenine, guanine, 2,6-diaminopurine, 2-aminopurine, hypoxanthine or thymine.

46. The use a of compound having the formula

25

$$R^{35}O$$
 P
 O
 B

and salts of such compounds wherein the carbon atom designated # has linked substituents that are in the R, S or RS configuration, B is cytosine and R^{35} is alkylsalicylphenyl (C_1 - C_4 alkyl) in the preparation of a medicament for treating a viral infection by administering an antivirally-effective dose of the compound to an infected subject.

- 47. The use of the compound in accordance with claim 46 wherein the compound is enriched or resolved at the phosphate atom chiral center.
- 48. The use of a compound of claim 2 in the preparation of a medicament for treating a viral infection by administering an antivirally-effective dose of the compound to an infected subject.

10

20

25

- 15 49. The use of the compound in accordance with claim 48 wherein the compound is enriched or resolved at the phosphate atom chiral center.
 - 50. The use of a compound of claim 20 having the structure

in the preparation of a medicament for treating a viral infection by administering an antivirally-effective dose of the compound to an infected subject.

51. The use of the compound in accordance with claim 50 wherein the compound is enriched or resolved at the phosphate atom chiral center.