Contents

	0.1	Required knowledge	2
1	Abstract Fourier series		3
	1.1	Complete Orthogonal System	3
	1.2	Abstract Fourier series	3
	1.3	Orthogonal projections of Hilbert space	6

0.1 Required knowledge

- 1. Inner product (\cdot, \cdot) , norm $||\cdot||$.
- 2. Hilbert space H, Banach space.

Chapter 1

Abstract Fourier series

1.1 Complete Orthogonal System

1.1 Definition: Let H be a Hilbert space equiped with norm $||\cdot||_H = \sqrt{(\cdot,\cdot)_H}$ and $\{\Phi_\alpha\}_{\alpha\in I}$ be a system of it's elements where I is a set of indicies.

- We say that $\{\Phi_{\alpha}\}_{\alpha\in I}$ is an orthogonal system if $\forall \alpha\in I: \Phi_{\alpha}\neq 0$ and $\forall \alpha,\beta,\ \alpha\neq\beta: (\Phi_{\alpha},\Phi_{\beta})_{H}=0$.
- We say that $\{\Phi_{\alpha}\}_{{\alpha}\in I}$ is an *orthonormal system* if it's an orthogonal system and $\forall \alpha: (\Phi_{\alpha}, \Phi_{\alpha})_H = 1$.
- We say that $\{\Phi_{\alpha}\}_{\alpha\in I}$ is an *complete system* if $\forall \alpha\in I, \ \forall \Phi\in H: (\Phi,\Phi_{\alpha})_{H}=0 \Leftrightarrow \Phi=0.$

1.2 Definition: A subset *A* of a normed topological space $(X, ||\cdot||_X)$ is called *dense* in *X* if $\forall \epsilon > 0$, $\forall x \in X, \forall y \in A : ||y - x|| \le \epsilon$.

1.3 Definition: We say that $(X, ||\cdot||_X)$ is a *separable set* if $\exists A \subset X$, where A countable and dense in X.

1.4 Definition: We say that Hilbert or Banach space H is a *separable* if $\exists \{\Phi_n\}_{n=1}^{\infty}, \forall \epsilon > 0, \forall \Phi \in H, \exists \Phi_n : ||\Phi - \Phi_n||_H < \epsilon$, where $\exists \{\Phi_n\}_{n=1}^{\infty}$ is a counable system in X.

1.2 Abstract Fourier series

1.5 Theorem (About the best approximation): Let H be a Hilbert space, $\{\Phi_k\}_{k=1}^{\infty} \subset H$ be an orthonormal system, $f \in H$, $\{c_k\}_{k=1}^{\infty} := \{(f, \Phi_k)_H\}_{k=1}^{\infty} \text{ and } \{a_k\}_{k=1}^{\infty} \subset \mathbb{R}. \ \forall n \in \mathbb{N} \text{ let } s_n := \sum_{k=1}^n c_k \Phi_k \text{ and } t_n := \sum_{k=1}^n a_k \Phi_k. \text{ Then}$

- 1. $\forall n \in N : ||f s_n||_H \le ||f t_n||_H$,
- 2. For given $n \in N : ||f s_n||_H \le ||f t_n||_H \Leftrightarrow \forall k \in \{1, ..., n\} : a_k = c_k$
- 3. $\forall n \in \mathbb{N} : ||f s_n||_H \le ||f t_n||_H \Leftrightarrow \forall k \in \mathbb{N} : a_k = c_k$.

Proof:

$$\begin{aligned} ||f - t_n||_H^2 &= \left(f - \sum_{k=1}^n a_k \Phi_k, f - \sum_{k=1}^n a_k \Phi_k \right)_H \\ &= (f, f)_H - \left(\sum_{k=1}^n a_k \Phi_k, f \right)_H - \left(f, \sum_{k=1}^n a_k \Phi_k \right)_H + \sum_{k=1}^n \sum_{l=1}^n a_k \bar{a}_l \left(\Phi_k, \Phi_l \right)_H \\ &= ||f||_H^2 - \sum_{k=1}^n a_k \bar{c}_k - \sum_{k=1}^n \bar{a}_k c_k + \sum_{k=1}^n |a_k|^2 \\ &= ||f||_H^2 - \sum_{k=1}^n |c_k|^2 + \sum_{k=1}^n |c_k|^2 - \sum_{k=1}^n a_k \bar{c}_k - \sum_{k=1}^n \bar{a}_k c_k + \sum_{k=1}^n |a_k|^2 \\ &= ||f - s_n||_H^2 + \sum_{k=1}^n |c_k - a_k|^2 \end{aligned}$$

1.6 Definition: Let H be a Hilbert space, $\{\Phi_k\}_{k=1}^{\infty} \subset H$ be an orthonormal system, $f \in H$ and $\{c_k\}_{k=1}^{\infty} := \{(f, \Phi_k)_H\}_{k=1}^{\infty}$. Then

$$\sum_{k=1}^{\infty} c_k \Phi_k$$

is called an *abstract Fourier series* with respect to the othonormal system $\{\Phi_k\}_{k=1}^{\infty}$. Number c_k is called k-th Fourier coeficient. Abstract Fourier series constructed by this fenition will be denoted as

$$f \sim \sum_{k=1}^{\infty} c_k \Phi_k.$$

1.7 Theorem (Bessel inequality and Parseval equality): Let H be a Hilbert space, $\{\Phi_k\}_{k=1}^{\infty} \subset H$ be an orthonormal system, $f \in H$, $f \sim \sum_{k=1}^{\infty} c_k \Phi_k$ and $s_n := \sum_{k=1}^n c_k \Phi_k$ for all $n \in \mathbb{N}$. Then

$$\sum_{k=1}^{\infty} |c_k|^2 < \infty \text{ and } \sum_{k=1}^{\infty} |c_k|^2 \le ||f||_H^2 \qquad \text{(Bessel inequality)},$$

and

$$\sum_{k=1}^{\infty} |c_k|^2 = ||f||_H^2 \Leftrightarrow \lim_{n \to \infty} ||f - s_n||_H = 0 \qquad \text{(Parseval equality)}.$$

Proof: Let $n \in \mathbb{N}$. In the proof of theorem about the best approximation let $a_k = c_k$, then

$$0 \le ||f - s_n||_H^2 = ||f||_H^2 - \sum_{k=1}^{\infty} |c_k|^2.$$

Therefore the series $\sum_{k=1}^{\infty} |c_k|^2$ is bounded by $||f||_H^2$ and by Bolzano-Weierstrass theorem is convergent¹. From the equation $||f - s_n||_H^2 = ||f||_H^2 - \sum_{k=1}^{\infty} |c_k|^2$ we have Parseval equality.

1.8 Riesz-Fischer theorem (reversed Parseval equality): Let H be a Hilbert space, $\{\Phi_k\}_{k=1}^{\infty} \subset H$ be an orthonormal system and $\{c_k\}_{k=1}^{\infty} \in \ell^2$. Then

- 1. $\sum_{k=1}^{\infty} c_k \Phi_k$ converges in H (in other words $\exists f \in H$ such that $f = \lim_{n \to \infty} \sum_{k=1}^n c_k \Phi_k$),
- 2. $c_k = (f, \Phi_k),$
- 3. $\sum_{k=1}^{\infty} |c_k|^2 = ||f||_H^2$

Proof: Basically, we want to show that for $c \in \ell^2$, $\exists f \in H$ such, that $c_k = (f, \Phi_k)$ and $||f - s_n||_H^2 \to 0$ where $s_n = \sum_{k=1}^n c_k \Phi_k$. However s_n is Cauchy sequence², becasue

$$||s_{n+p} - s_n||_H^2 = \left\| \sum_{k=n+1}^{n+p} c_k \Phi_k \right\|_H^2 = \sum_{k=n+1}^{n+p} |c_k|^2 < \epsilon$$

and H is also a Banach space, hence s_n converges to $f \in H$. Now we will show that $c_k = (f, \Phi_k)$. But

$$|c_k - (f, \Phi_k)| = |(s_n, \Phi_k) - (f, \Phi_k)| = |(s_n - f, \Phi_k)| \le ||s_n - f||_H ||\Phi_k||_H = ||s_n - f||_H \to 0,$$

where we used Cauchy-Schwarz inequality and orthonormality of $\{\Phi_k\}_{k=1}^{\infty}$. Now we have all the requirements for the Parseval equality, hence third statement holds.

¹This is not right, it's more like nonegative bounded sequence is convergent while Bolzano-Weierstrass theorem says that every bounded sequence has a convergent subsequence.

² s_n is Cauchy sequence $\Leftrightarrow \forall \epsilon > 0, \exists n_0, \forall m, n > n_0 : |s_m - s_n| < \epsilon$.

1.9 Characteristic of complete orthonormal system: Let H be a Hilbert space and $\{\Phi_k\}_{k=1}^{\infty} \subset H$ an orthonormal system. Then following statements are equivalent

- 1. $\{\Phi_k\}_{k=1}^{\infty}$ is complete system,
- 2. $\forall f \in H : ||f s_n||_H \to 0 \text{ where } s_n := \sum_{k=1}^{\infty} c_k \Phi_k$,
- 3. $\forall f \in H: \sum_{k=1}^{\infty} |c_k|^2 = ||f||_H^2$,
- 4. span $\{\Phi_1, \ldots, \Phi_n\}$ for $n \in \mathbb{N}$ is dense in H,

where $c_k := (f, \Phi_k)$.

Proof: First let's prove 1. \Rightarrow 2.: We already disscused that s_n is Cauchy sequence in Banach space, hence $||s_n - z||_H \rightarrow 0$.. However

$$(z, \Phi_k) = \lim_{n \to \infty} (s_n, \Phi_k) = c_k = (f, \Phi_k) \quad \forall k \in \mathbb{N}$$

therefore $(z-f,\Phi_k)=0$ and because of system $\{\Phi_k\}_{k=1}^\infty$ is complete we have f=z, what means $||s_n-f||_H\to 0$. $2.\Leftrightarrow 3$. we have from Parselval equality. Now we will show that $3.\Rightarrow 1$.: Consider $f\in H$ such, that $c_k=(f,\Phi_k)=0, \forall k\in\mathbb{N}$. Hence from Parseval equality we have $||f||_H=0$ and $\{\Phi_k\}_{k=1}^\infty$ is complete system. Statement $2.\Rightarrow 4$. is true, because s_n is a countable linear combination of elemetrs from $\{\Phi_k\}_{k=1}^\infty$ and if $\forall f\in H: ||f-s_n||_H\to 0$ then $\{\Phi_k\}_{k=1}^\infty$ has to be dense in H. Finally $4.\Rightarrow 1$.: Let $z\in H$ be such that $(z,\Phi_k), \forall k\in\mathbb{N}$ and we want to show that z=0. From our assumption there exists $\{t_n\}_{n=1}^\infty$, $t_n\in \operatorname{span}\{\Phi_1,\ldots,\Phi_n\}$ for given $n\in\mathbb{N}$ such that $t_n\to z$ in H. Therefore

$$||z||_H^2 = (z,z) = \left(\lim_{n\to\infty} t_n, z\right) = \lim_{n\to\infty} (t_n,z) = 0.$$

П

1.10 Corollary: Every Hilbert space in which exists a complete ortonormal system is separable.

Proof: From charakteristic of complete orthonormal systems, statement 1. \Rightarrow 4.. As a countable, dense subset of H we can take linear combinations of $\{\Phi_k\}_{k=1}^{\infty}$ with rational coefficients.

1.11 Theroem (On the existence of a complete system in a separable Hilbert space): In every separable Hilbert space there exists a complete ortonormal system.

Proof: We will distinguish two cases. First, let H be Hilbert's space of finite dimension. Then just take any orthonormal basis. Now let H have an infinite dimension. Due to the assumed separability, there is a large dense subset in it. Let's arrange its elements in the sequence $\{x_j\}_{j=1}^{\infty}$ and remove all trivial and lineary dependent elements. Complete ortonormal system will be now constructed by using Gram-Schmidt ortogonalization process. Let $\Phi_1 := x_j/||x_j||_H$. Next we will take

$$y_2 = x_2 - (x_2, \Phi_1) \Phi_1$$
 and $\Phi_2 = \frac{y_2}{||y_2||_H}$.

Rest of elemetns will be constructed by indution.

$$y_{n+1} = x_{n+1} - \sum_{j=1}^{n} (x_{n+1}, \Phi_j) \Phi_j$$
 and $\Phi_{n+1} = \frac{y_{n+1}}{||y_{n+1}||_H}$.

We can see that $(x_1, x_2, ..., x_n) \subset \text{span}(\Phi_1, \Phi_2, ..., \Phi_n)$, hecne span $(\Phi_1, \Phi_2, ..., \Phi_n)$ is dense in H and orthonormal. Therefore by statement 4. \Rightarrow 1. of theorem "characteristic of complete orthonormal system" $\{\Phi_k\}_{k=1}^{\infty}$ is also complete.

1.12 Solved problem: Consider a Hilert space ℓ^2 defined as

$$\ell^2 := \Big\{ \{x_k\}_{k=1}^{\infty} \subset \mathbb{R} \, \Big| \, \sum_{k=1}^{\infty} x_k < \infty \Big\},\,$$

with an inner product $(\{x_k\}_{k=1}^{\infty}, \{y_k\}_{k=1}^{\infty}) = \sum_{k=1}^{\infty} x_k y_k$. For every $n \in \mathbb{N}$ we define $\Phi_n \in \ell^2$ by enumeration as $(\Phi_n)_k = \delta_{nk}$. Then system $\{\Phi_n\}_{n=1}^{\infty}$ is a complete ortonormal system in ℓ^2 . Therefore ℓ^2 is also separable.

1.13 Definition: Let (P_1, ρ_1) , (P_2, ρ_2) be metric spaces and $I : P_1 \to P_2$ a map between them. We say that I is *isometry* if $\forall x, y \in P_1 : \rho_2 (I(x), I(y)) = \rho_1(x, y)$. Furthemore, we say that spaces (P_1, ρ_1) , (P_2, ρ_2) are *isometric*, if there exists an isometry mapping P_1 onto P_2 .

Isometries of the plane are linear transformations preserving length such as rotation, translation or reflection.

1.14 Corollary: An isometry is always one-to-one by the following argument

$$\forall x, y \in P_1, x \neq y \Rightarrow \rho_1(x, y) \neq 0 \Rightarrow \rho_2(I(x), I(y)) \neq 0 \Rightarrow I(x) \neq I(y).$$

Isometry I is always "one-to-one" and if (P_1, ρ_1) , (P_2, ρ_2) are isometric, it is also "onto". Then exists $I^{-1}: P_2 \to P_1$ mapping P_2 onto P_1 .

1.15 Theroem (On the relation of separable Hilbert spaces and ℓ^2): Every infinitely dimensional separable Hilbert space is isometric to ℓ^2 .

Proof: We know that in the separable Hilbert space H there exists a complete orthonormal system. Let I be a map that assigns to every $f \in H$ a sequence of its Fourier coefficients $\{c_k\}_{k=1}^{\infty}$ with respect to the given system. Such I is defined on the whole H, and is mapping whole H onto ℓ^2 (if $f \in H$ is finite we have that $\sum_{k=1}^{\infty} |c_k|^2 < \infty$). Therefore, from Parseval's equality

$$||f||_H^2 = \sum_{k=1}^{\infty} |c_k|^2 = ||\{c_k\}_{k=1}^{\infty}||_{\ell^2} = ||I(f)||_{\ell^2}^2.$$

Finally, because of linearity of the inner product we have

$$\forall f,g \in H: ||I(f)-I(g)||_{\ell^2}^2 = ||I(f-g)||_{\ell^2}^2 = ||f-g||_H^2.$$

1.3 Orthogonal projections of Hilbert space

- **1.16 Definition:** We say that M is a closed subspace of H if
 - 1. $M \subset H$
 - 2. $\forall \alpha, \beta \in \mathbb{C}, \ \forall u, v \in M : \alpha u + \beta v \in M$
 - 3. $\{u_n\}_{n=1}^{\infty} \subset M \text{ and } ||u_n-u||_H \to 0 \implies u \in M$
- **1.17** Solved problem: Let $\Omega \subset \mathbb{R}^N$ be a non-empty open set such, that $\lambda_N(\Omega) < \infty$. Define set

$$M = \left\{ f \in L^2(\Omega) \middle| \int_{\Omega} f \, \mathrm{d}x \right\},\,$$

then M is a subspace $L^2(\Omega)$. Furthemore if $\{f_n\}_{n=1}^{\infty} \subset M$ and $f_n \to f$ in $L^2(\Omega)$ we have from Holder inequality

$$\left| \int_{\Omega} f dx \right| \le \left| \int_{\Omega} (f - f_n) dx \right| + \left| \int_{\Omega} f_n dx \right| = \left| \int_{\Omega} (f - f_n) dx \right| \le \int_{\Omega} |f - f_n| dx$$

$$\le ||f - f_n||_{L^2(\Omega)} |1||_{L^2(\Omega)} \to 0.$$

Hence $f \in M$ and M is closed subspace of $L^2(\Omega)$.

1.18 Theorem (About orthogonal projection): Let *H* be a Hilber space and *M* it's closed subspace.

Then $\forall f \in M$, $\exists ! f_M \in M : ||f - f_M||_H = \inf_{z \in M} ||f - z||_H$. We define map $P : H \to M$ such, that $P(f) = f_M$. Then following holds:

- 1. P(H) = M
- 2. $P \circ P = P$
- 3. for every $z \in M$ holds $z \in P(f) \Leftrightarrow (f z, y)_H = 0, \forall y \in M$
- 4. $\forall f \in H : ||f||_H^2 = ||P(f)||_H^2 + ||f P(f)||_H^2$

Proof: