

AquaFauna

Tim, Sai, Sam, Bruno

Disease Detection

Disease detection is important.

Figure 3. The surface and internal tissues as well as behavioral changes that may result from fish disease.

Is a fishes eye diseased or healthy?

Automatic Seamentatinon with SAM Mask 1, Score: 1.000

- Identify common location of the fish on the image
- Prompted segmentation
- This was used to generate a yolov11 fish detection model

Autoannotate() for segmentation model

auto_annotate(
 data,
 det_model="yolo11x.pt",
 sam_model="sam_b.pt",
 device="",
 conf=0.25,
 iou=0.45,
 imgsz=640,
 max_det=300,
 classes=None,
 output_dir=None,
)

Train on approx. 400 autoannotated images of fishes from all datasets

Can be used to extract detailed mask

Create eye estimator prompt from fish detection

Use diseased and healthy fisheyes as input

Comparison: ZHAW Biocam_00_20240325112303.jpg

Original Image

Prediction Image

Comparison: ZHAW Biocam_00_20240325112402.jpg

Original Image

Prediction Image

Comparison: ZHAW Biocam_00_20240603080334.jpg

Prediction Image

Also works on unseen data and different position

Does it work in real-life?

Pain points

- Working with "agile" code
- What does the model actually learn
- Rapid finetuning capabilities

Future work

- Create a reference object correction for underwater images
- Process the images before detection
- Finetune on underwater images

Fish bleeding gills clustering

'90976'

Fish weight extraction

Fish label extraction

How to cluster?

Results

