Interrupts in ATmega2560

e-Yantra Team Embedded Real-Time Systems Lab Indian Institute of Technology-Bombay

> IIT Bombay February 26, 2020

Agenda for Discussion

- Interrupt
 - What is an Interrupt
- 2 Interrupt-Handling in ATmega2560
 - Sources of Interrupt
 - SREG-Register
 - ISR

Any signal that causes break in continuity of some ongoing process

- Any signal that causes break in continuity of some ongoing process
- In microcontrollers interrupt signal halts the execution of main program and dedicates processor to another task

Main program exceution

```
while ( ) {
    Instruction 1
    Instruction 2
    Instruction 3
    Instruction 4
    Instruction 5
    Instruction 6
    }
```


While main program is running, if an interrupt occurs, execution of main program is stopped, and program counter goes to address of ISR

- While main program is running, if an interrupt occurs, execution of main program is stopped, and program counter goes to address of ISR
- Interrupt Service Routine: Program that needs to be executed when interrupt occurs

After program inside ISR is executed completely, program counter returns back to point where main program was interrupted

ATmega 2560 has **Fifty-Seven** different sources for Interrupt generation

• RESET Interrupt - [1]

- RESET Interrupt [1]
- ② External hardware Interrupt [8]

- RESET Interrupt [1]
- 2 External hardware Interrupt [8]
- Open Pin Change Interrupt Request [3]

- RESET Interrupt [1]
- 2 External hardware Interrupt [8]
- Open Pin Change Interrupt Request [3]
- Timer/Counter Interrupts

- RESET Interrupt [1]
- ② External hardware Interrupt [8]
- Open Pin Change Interrupt Request [3]
- Timer/Counter Interrupts
 - Timer/Counter0 [3]
 - Timer/Counter1 [5]
 - Timer/Counter2 [3]
 - Timer/Counter3 [5]
 - Timer/Counter4 [5]
 - Timer/Counter5 [5]

- RESET Interrupt [1]
- ② External hardware Interrupt [8]
- Open Pin Change Interrupt Request [3]
- Timer/Counter Interrupts
 - Timer/Counter0 [3]
 - Timer/Counter1 [5]
 - Timer/Counter2 [3]
 - Timer/Counter3 [5]
 - Timer/Counter4 [5]
 - Timer/Counter5 [5]
- Serial Interrupts

ATmega 2560 has Fifty-Seven different sources for Interrupt generation

Outline

- RESET Interrupt [1]
- 2 External hardware Interrupt [8]
- Open Pin Change Interrupt Request [3]
- Timer/Counter Interrupts
 - Timer/Counter0 [3]
 - Timer/Counter1 [5]
 - Timer/Counter2 [3]
 - Timer/Counter3 [5]
 - Timer/Counter4 [5]
 - Timer/Counter5 [5]
- Serial Interrupts
 - USART0 [3]
 - USART1 [3]
 - USART2 [3]
 - USART3 [3]

ATmega 2560 has Fifty-Seven different sources for Interrupt generation

Outline

- RESET Interrupt [1]
- ② External hardware Interrupt [8]
- Open Pin Change Interrupt Request [3]
- Timer/Counter Interrupts
 - Timer/Counter0 [3]
 - Timer/Counter1 [5]
 - Timer/Counter2 [3]
 - Timer/Counter3 [5]
 - Timer/Counter4 [5]
 - Timer/Counter5 [5]
- Serial Interrupts
 - USART0 [3]
 - USART1 [3]
 - USART2 [3]
 - USART3 [3]
- Others [7] such as Analog Comparator, ADC Conversion Complete and so on.

Sources of Interrup SREG-Register ISR

SREG- AVR Status Register

This register is used to Globally Enable all Interrupt

This register is used to Globally Enable all Interrupt

Bit	Symbol	Description	Bit Value
7	1	Global Interrupt Enable bit	1
6	Т	Bit Copy Storage bit	0
5	Н	Half Carry Flag	0
4	S	Sign Bit	0
3	V	Two's Complement Overflow Flag	0
2	N	Negative Flag	0
1	Z	Zero Flag	0
0	С	Carry Flag	0

Firebird ATmega2560 Robotics Research Platform

This register is used to Globally Enable all Interrupt

Bit	Symbol	Description	Bit Value
7	1	Global Interrupt Enable bit	1
6	Т	Bit Copy Storage bit	0
5	Н	Half Carry Flag	0
4	S	Sign Bit	0
3	V	Two's Complement Overflow Flag	0
2	N	Negative Flag	0
1	Z	Zero Flag	0
0	С	Carry Flag	0

Note:

• cli() is used to clear global interrupt

This register is used to Globally Enable all Interrupt

Bit	Symbol	Description	Bit Value
7	1	Global Interrupt Enable bit	1
6	Т	Bit Copy Storage bit	0
5	Н	Half Carry Flag	0
4	S	Sign Bit	0
3	V	Two's Complement Overflow Flag	0
2	N	Negative Flag	0
1	Z	Zero Flag	0
0	С	Carry Flag	0

Note:

- cli() is used to clear global interrupt
- sei() is used to set global interrupt

This register is used to Globally Enable all Interrupt

Bit	Symbol	Description	Bit Value
7	1	Global Interrupt Enable bit	1
6	Т	Bit Copy Storage bit	0
5	Н	Half Carry Flag	0
4	S	Sign Bit	0
3	V	Two's Complement Overflow Flag	0
2	N	Negative Flag	0
1	Z	Zero Flag	0
0	С	Carry Flag	0

Note:

- cli() is used to clear global interrupt
- sei() is used to set global interrupt

(defined in <avr/interrupt.h> header file)

ISR-Interrupt Service Routine

ISR-Interrupt Service Routine

The format of ISR is

ISR-Interrupt Service Routine

The format of ISR is

```
ISR Format

ISR(<interupt_name>_vect)
{
    code
}
```


The format of ISR (ADC Conversion complete interrupt source) is

The format of ISR (ADC Conversion complete interrupt source) is

```
ISR Format

ISR(ADC_vect)
{
    code
}
```


The format of ISR (Timer/Counter0 Overflow interrupt source) is

Firebird ATmega2560 Robotics Research Platform

The format of ISR (Timer/Counter0 Overflow interrupt source) is

```
ISR Format

ISR(TIMERO_OVF_vect)
{
    code
}
```


Sources of Interru SREG-Register ISR

Thank You!

Firebird ATmega2560 Robotics Research Platform