Recitation #1 (Section 03)

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

Subspaces: recall & practice

Subspace S

If V is a vector space, we say that S is a subspace $S \subseteq V$ if S is closed by the sum and multiplication by a scalar, i.e. $\bullet \text{ if } u,w\in S \text{ then } u+w\in S$

- if $w \in S$ and $\lambda \in \mathbb{R}$ then $\lambda \cdot w \in S$

Exercise 1

Show that any subspace S contains the zero vector $\vec{0}$

Span

Let $v_1, v_2, ..., v_k \in V$ be elements of a vector space V. The $Span(v_1, v_2, ..., v_k)$ is a subspace that contains all possible linear combinations involving $v_1, v_2, ..., v_k$

Exercise 2

We will work in \mathbb{R}^2 . Let v = (1,2) and w = (-3,1)Sketch the following sets and identify which are subsets

Exercise 3

We will work in \mathbb{R}^2 . Let v = (1,2) and w = (-3,1)Sketch the following sets and identify which are subsets

• $Span(v) \cap Span(w)$ (intersection)

Exercise 4

We will work in \mathbb{R}^2 . Let v = (1,2) and w = (-3,1)Sketch the following sets and identify which are subsets

• $Span(v) \cup Span(w)$ (all of them)

Exercise 5

We will work in \mathbb{R}^2 . Let v = (1,2) and w = (-3,1)

Exercise 6

We will work in \mathbb{R}^2 . Let v=(1,2) and w=(-3,1)Sketch the following sets and identify which are subsets

$$\bullet \{(1-t)\cdot v \not| t\cdot w \mid t \in \mathbb{R}\}$$

Exercise 7

We will work in \mathbb{R}^2 . Let v = (1,2) and w = (-3,1)Sketch the following sets and identify which are subsets

• $\{(1-t)\cdot v + t\cdot w \mid t\in [0,1]\}$

Exercise 8

We will work in \mathbb{R}^2 . Let v = (1,2) and w = (-3,1)Sketch the following sets and identify which are subsets

•
$$\{\alpha \cdot \mathbf{v} + \beta \cdot \mathbf{w} \mid \alpha, \beta \in \mathbb{R}\} = Span (\mathbf{v}, \mathbf{v})$$

Practice doing proofs

Exercise 9

Subspaces are closed by linear combinations.

Linear combination: V1, ..., VK ESCV Spubspace and V1+...+ KVK d1,..., dxtR linear comb By the definition alsubspace

By the definition of subspace

of Vn ES

or VK ES

So the sumation of Vn + ... + or KVK ES II