END SEMESTER EXAMINATION, DECEMBER-2015 CALCULUS-I (MTH-1001)

Programme: B. Tech Full Marks: 60

Semester:1st
Time: 3 Hours

C. L	Time: 3 Hours		
Subject/Course Learning Outcome	*Taxonomy	Ques.	Marks
	Level	Nos.	
Use limit laws and Squeeze Theorem to evaluate the limit	(L3)	l(a),	2
of a function and analyse it and demonstrate the existence	(L3)	1(b)	2
of limit and continuity of functions by ε . δ approach. CO-1	(L4)	1(c)	2
Compute slope of tangent lines using numerical data and	(L3)	2(a)	2
compute derivatives by different techniques such as	(23)	2(11)	-
product and quotient rules, logarithmic differentiation and			
implicit differentiation. CO-2			
Interpret derivative as rate of change to find tangents and	(L3)	2(b)	2
velocities and comply rates of change in time and distance	(L3)	2(c)	2
problem, Newton's law of cooling problem, radioactive	()	\ \	
decay problem, profit loss problem, marginal revenue			
problem. CO-3			
Applications of differentiation to the Mean Value	(L2)	3(a)	2
Theorems and to study maximum and minimum values of a	(L3)	3(b)	2
function. CO-4	(L3)	3(c)	2
Apply L' Hospital's rule to evaluate limits of functions in	(L3)	4(a)	2
indeterminate forms. Sketch curves of functions with the	(L3)	4(b)	2 2 2
knowledge of domain, intercepts, maxima and minima,	(L3)	4(c)	2
concavity.CO-5	(L3)	5(c)	
Compute indefinite integrals using techniques of	(L3)	5(a)	2 2 2 2 2
integration. Apply The Net Change Theorem to find the	(L3)	5(b)	2
mass of a segment of a rod, change in volume of water in a	(L3)	6(a)	2
reservoir, change in concentration of the product of a	(L3)	6(b)	2
chemical reaction, change of the population in a given time	(L3)	6(c)	2
interval CO-6	(1.2)	7(-)	
Apply the concept of integration to find volume, work	(L3)	7(a)	2 2 2
done, surface area and average value of an integral.CO-7	(L3)	7(b)	2
•	(L3)	7(c)	1
	(L3)	8(c)	2
Use mid-point, trapezoidal and Simpson's rule to compute	(L3)	8(a)	2
approximate value of integrals and compute improper	(L3)	8(b)	2
integrals and study their convergence.CO-8	(1.2)	0(2)	1-2
Apply the concepts of integration to Physics and	(L2)	9(a)	2
Engineering CO-9	(1.3)	9(b)	2
	(L3)	9(c)	2 2 2 2
Apply the principles of calculus to study and calculate	(L1)	10(a)	2
areas, arc lengths etc. of parametric and polar curves.CO-	(L3)	10(b)	2
10	(T.A)	10/2)	2
Analyze infinite series and sequences and discuss their	(L4)	10(c)	2
convergences using comparison test, root test and ratio test			
CO-11			

Answer all questions. Each question carries equal mark. Answer all three bits of particular questions in one place only.

- 1. (a) Compute $\lim_{x\to 4} f(x)$ If $4x-9 \le f(x) \le x^2 4x + 7$ for $x \ge 0$.
 - Apply ε , δ definition of limit to prove that $\lim_{x \to -2} (3x + 5) = -1$.
 - Examine the continuity of the function $f(x) = \begin{cases} \frac{1}{x+2} & \text{if } x \neq -2 \\ 1 & \text{if } x = -2 \end{cases} \text{ at a=-2}$
- 2. (a) Use g(x) = xf(x), where f(3) = 4 and f'(3) = -2, to find 2 the tangent line to g(x) at point x = 3.
 - (b) Compute the linear approximation of the 2 function $g(x) = \sqrt[3]{1+x}$. Use it to approximate $\sqrt[3]{1.1}$.
 - (c) A bottle of soda pop at room temperature 22°C is placed in a refrigerator where the temperature is 7°C. After half an hour the soda pop has cooled to 16°C. Compute the temperature of the soda pop after another half an hour.
- 3. (a) Identify the intervals on which $f(x) = 2x^3 3x^2 12x$ is increasing.
 - (b) Show that the function $f(x) = x^3 x^2 6x + 2$ satisfies Rolle's theorem on the interval [0,3].
 - (c) Use the concept of derivatives to find local maximum and 2 minimum values for the function $h(x) = 5x^3 3x^5$.
- 4. (a) Use L'Hospital rule to calculate $\lim_{x\to\infty} x^3 e^{-x^2}$.
 - Apply Newton's method to compute $\sqrt[6]{2}$ correct to two decimal places.
 - (c) Sketch the curve $y = x^3 + x$.

- (b) If f is continuous and $\int_{0}^{4} f(x)dx = 10$, compute $\int_{0}^{2} f(2x)dx$.
- (c) Show that $2 \le \int_{-1}^{1} \sqrt{1 + x^2} dx \le 2\sqrt{2}$.
- 6. (a) Compute average value of the function $g(x) = \sqrt[3]{x}$ on the interval [1, 8].
 - (b) Compute the work done in moving a particle from x = 1 2 to x = 2 if a force of $\cos(\pi x/3)$ Newton acts on the particle when it is located at a distance of x meters from origin.
 - (c) Use the method of cylindrical shells to find the volume generated 2 by rotating a region bounded by the curves $y = x^3$, y = 8, x = 0 about x-axis.
- 7. (a) Compute the integral $\int_{1}^{3} r^3 \ln r dr$.
 - (b) Apply Simpson's rule to approximate the 2 integral $\int_{1}^{4} \sqrt{\ln x} dx$ with n=2.
 - Show that the integral $\int_{0}^{\infty} \frac{x^2}{\sqrt{1+x^3}} dx$ is divergent.
- 8. (a) Estimate M_x and M_y and the center of mass of the system with masses $m_1 = 6$, $m_2 = 5$ and $m_3 = 10$ which are located at the points $p_1(1,5)$, $p_2(3,-2)$ and $p_3(-2,-1)$ respectively.
 - (b) Compute the length of the curve y = 2x 5, $-1 \le x \le 3$.
 - (c) Show that the centroid of the region bounded by the 2 curves $y = x^2$, $x = y^2$ is (9/20,9/20).

- 9. (a) Compute the area of the region that is bounded by the curve $r = e^{\theta/2}$ lies in the sector $\pi \le \theta \le 2\pi$.
 - (b) Convert the parametric curve $x = \frac{1}{2}\cos\theta$, $y = 2\sin\theta$, $0 \le \theta \le \pi$ to its Cartesian form.
 - (c) Compute the equation of the tangent line to the curve 2 $x = 1 + \sqrt{t}$, $y = e^{t^2}$ at (2,e).
- List the first four partial sums of the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$ correct to three decimal places.
 - (b) Write the Maclaurian series expansion of the function $f(x) = \ln(1+x)$.
 - Examine the series $\sum_{n=1}^{\infty} \frac{n}{5^n}$ for absolute convergence and conditional convergence.

End of Questions

2