

PRODUCT-DEFECTS-DETECTOR REPORT

数据增强-迁移学习-React-微信小程序-完成检测任务

△ □ 汇报人: 吴学深 殷梓淇 曲志久

校内指导老师: 王政

校外指导老师: 张建宇、郑艳飞

项目介绍

本节对项目进行简要介绍,包括项目要求、项目成员及分工、项目结构、技术路线、项目完成情况等。

项目要求

在大规模生产中,工业品组装缺陷的自动化检测能够高效发现不合格产品,提高生产质量。本项目针对工业品组装后可能出现缺陷(缺螺丝)这一问题,训练AI模型进行快速缺陷检测。

正常零件,能清晰看到 四角的4个螺丝

缺陷零件,缺失至少 1个螺丝

缺角零件,无法完全看到四 角,需要改正拍摄角度

项目成员分组

项目管理组

成员: 部文潇 董书玮 李秋慧 任钰洁 曾泽环 邹蕙蔓 熊炜

小程序开发组

成员: 殷梓淇 侯广曜

算法设计组

成员: 吴学深(队长)

付娆(副队长)

徐熙 (副队长)

推理优化组

成员: 曲志久 叶郅祺 李鑫鑫

主要成员工作内容

吴学深: 前端逻辑与样式; 后端开发、推理加速对接; 小程序对接;

算法模型开发

徐熙:可解释算法模型;算法模型开发;后端对接;小程序对接

付烧: 前端设计与开发; 数据预处理; 数据增强

曲志久: Intel推理加速; 模型压缩

殷梓淇: 微信小程序开发

部文潇:模型训练;项目文档编写;答辩PPT制作

02
PART TWO

项目演示

目前,项目已能成功在web端和小程序端运行。 请看实机演示。

02

Web端流程图

Web端服务流程图

03
PART THREE

开发历程

21天的工作中,针对缺陷检测这一核心任务,我们不断提出新思路、尝试新方案,提高检测正确率,增加项目新功能,优化用户使用体验。

数据增强

由于提供的数据较少,只有一百多张,其中的好件(无缺陷零件)只有16张,为避免过拟合等问题,我们采用数据增强方法来扩充数据集。

原图

旋转90°

旋转180°

旋转270°

左右翻转

上下翻转

数据增强

考虑到实际检测中,由于天气、时间、拍摄工具等因素影响,图片质量可能与测试集中给出的图片不同,增加了下述数据。

欠曝光

过曝光

高斯噪声

椒盐噪声

反复训练发现VGG16的迁移学习效果最好。

VGG16/19+MLP
VGG16+CNN+weighted BCE

VGG16+Global Average Pooling

VGG16+RFB+focal loss

VGG16+ViT+focal loss

ResNet50+MLP

分类器: RFB

- 对Inception的改进
- 有效对人类视觉感受野进行模拟,能够 提取深层视觉语义信息
- 采用了多分支卷积获取不同尺寸的感受 野(Reception Fields)
- 采用残差连接方式缓解梯度消失

Reception Field Block

Mixed Dilated Convolution

分类器: ViT

- 将图像网格化以得到具有语义的Image Patch
- 基于多头注意力机制,能够有效对感兴趣的 像素区域加以关注
- 使用Position Embedding获取时序依赖信息
- 使用与Transformer相似的编码器-解码器结构

Self- product Attention

Vision Transformer

可解释的AI

- 取出Conv5-3 layer
- 512 个 feature maps (14*14)
- 乘以Dense layer对应的weight
- Upsample heatmap 到原图片
- Bilinear Upsampling

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

模型对比

	正确率	平均推理时间(ms)	模型大小(M)
全连接	94.25%	320	60.2
vgg_vit	96.17%	380	60.8
vgg_rfb	97.12%	330	60.3
avgpool	98.56%	160	59.9
推理加速	96.17%	6	15.05

经过推理加速后的模型在推理时间、模型大小等方面有显著优势,更符合应用需求。

使用量化方法实现对模型的推理加速

低精度推理和量化

FP32 - INT8

	FP32 - 32 bits	INT8 - 8 bits	Benefit (Theory)
Memory and Bandwidth	4	1	-75%
Computing (MulAdd)	4	1	-75%
Precision	1	<1	-x%

工作流程

- **High efficiency** for quantization with automatic accuracy-driven tuning strategy.
 - Less time to achieve the quantization goals comparing with handcraft work.
 - Tuning strategy: basic, Bayesian, random, sigopt.
- Flexible workflow.
 - Dataset & metric & evaluation function not only support built-in but also customized one.

感谢观看

THANK YOU FOR LISTENING

鸣谢:王政老师、张建宇老师、郑艳飞老师

