Сьогодні 07.05.2025

Υροκ №19

Валентність хімічних елементів. Складання формул бінарних сполук за валентністю

Повідомлення мети уроку

Сьогодні на уроці ви зможете:

- зрозуміти сутність поняття валентності;

- навчитися складати формули бінарних сполук за валентністю елементів;

- називати елементи з постійною валентністю.

Сьогодні

Актуалізація опорних знань

Ділова гра «Попрацюємо економістами».

Найбільш важливі мінерали міді є мідний блиск Cu_2S , мідний колчедан (халькопірит) $CuFeS_2$ і куприт Cu_2O . Визначити, який з мінералів економічно вигідніше використати для добування міді в промисловості.

Mr (Cu₂S) = 2·64+32 = 160
W (Cu) =
$$\frac{2·64}{160}$$
 = 0.8 = 80%

Mr (CuFeS2) =
$$64 + 56 + 2.32 = 184$$

W (Cu) = $\frac{1.64}{184}$ = $0.35 = 35\%$

Mr (Cu2O) = 2.64 + 16 = 144
W (Cu) =
$$\frac{2.64}{144}$$
 = 0.89 = 89%

Актуалізація опорних знань

Хімічна розминка

Що таке хімічна формула?

Що таке індекс?

Записати на дошці сполуки, що складаються з:

одного атома Гідрогену та одного атома Хлору;

двох атомів Гідрогену та одного атома Оксисену;

одного атома Нітрогену та трьох атомів Гідрогену;

одного атома Карбону та чотирьох атомів Гідрогену.

Мотивація навчальної діяльності

Більше трьох сотень років тому атоми уявляли у вигляді кульок, на поверхні яких є «гачки», за їх допомогою атоми поєднуються один з одним, як ланки одного ланцюга. Тільки на початку XX ст. була встановлена істинна природа утворення молекул. Сьогодні і ми про це дізнаємося...

Поміркуй

Як скласти формулу хімічної речовини?

Розгляньте формули речовин, що складаються з $HCI H_2S NH_3 CH_4$

Чому атоми хімічних елементів утворюють молекули в суворо визначеному співвідношенні?

Що спільного і що відмінного у формулах цих речовин?

Поняття «валентність» було введено в хімію в середині XIX ст. англійським ученим Едуардом Франкландом.

Валентність – це здатність атома приєднувати або заміщувати певну кількість інших елементів.

Формування поняття «валентність»

Валентність - це властивість атомів хімічного елемента приєднувати певне число атомів інших елементів. Термін походить від латинського слова <u>valentia</u>.

За одиницю валентності прийнято валентність Гідрогену і валентність елемента визначається кількістю приєднаних атомів Гідрогену.

Запам'ятайте! Гідроген завжди одновалентний – І.

За валентністю можна складати формули бінарних сполук.

Класифікація валентності

Деякі елементи мають сталу валентність:

I H, Li, Na

II O, Mg, Ca, Ba, Zn

III B, Al, Ga

Більша частина елементів мають змінну валентність.

Валентності деяких хімічних елементів					
Валентність	Хімічні елементи	Приклади речовин			
	Валентність стала				
1	H, Li, Na, K, Rb, Cs, Fr, F	H ₂ O, Na ₂ O, HF			
II	Be, Mg, Ca, Sr, Ba, Ra, Zn, O	CaO, MgO, ZnO			
III	B, Al, Ga	Al_2O_3 , B_2O_3			
	<u>Валентність змінна</u>				
l i II	Cu	Cu ₂ O, CuO			
II i III	Fe, Co, Ni	FeO, Fe ₂ O ₃			
II i IV	C, Sn, Pb	CO, CO ₂			
III i V	Р	PH ₃ , P ₂ O ₅			
II, III i VI	Cr	CrO, Cr ₂ O ₃ , CrO ₃			
II, IV i VI	S	H ₂ S, SO ₂ , SO ₃			

Запам'ятай

- А. Для атомів елементів І, ІІ, ІІІ груп головної підгрупи валентність завжди дорівнює номеру групи.
- В. Для атомів елементів IV, V, VI, VII груп головної підгрупи валентність у сполуках з Оксисеном дорівнює номеру групи.
- С. Для атомів елементів IV, V, VI, VII груп головної підгрупи валентність у сполуках з Гідрогеном дорівнює 8 мінус номер групи.
- Для атомів елементів зі змінною валентністю валентність указується в дужках поряд з назвою або хімічним символом елемента (наприклад, C(II), C(IV).
- E. Валентність можна розрахувати за валентністю атома з відомою валентністю в бінарних сполуках.

Мозковий штурм

Розгляньте формули речовин: HCI, H_2O , NH_3 , CH_4

Із скількох елементів складається кожна із запропонованих вам складних речовин?

Подвійний — той, що складається із двох частин, латинською мовою буде BINARIUS. Сполуки, які складаються із атомів двох елементів називаються БІНАРНИМИ сполуками.

Складання формули бінарних сполук за валентністю

Алгоритм складання формул за валентністю

1. Записуємо поряд два елементи.

Fe O Si O H O P H

2. Над елементом вказуємо його валентність (римськими цифрами).

3. Знаходимо найменше спільне кратне між числами валентностей елементів.

III(6)II IV(4)II I(2)II III(3)I

Fe O Si O H O P H

4. Ділимо найменше спільне кратне почергово на валентність кожного елемента і знаходимо індекси, які записуємо внизу біля символа даного елемента (індекс «1» не пишуть).

III(6)II IV(4)II I(2)II III(3)I

 Fe_2O_3 Si O_2 H_2O P H_3

Первинне застосування набутих знань

Напишіть формули сполук із Бромом, знаючи, що він одновалентний, елементів: Натрій, Кальцій, Алюміній, Магній, Арґентум(I), Ферум (III), Гідроген.

Знаючи валентності елементів, складіть формули таких речовин:

1 11	I	VI	III I	VIII	1 1
Cu S	Na Cl	P Cl	NΗ	wo	Ag I

Робота в зошиті

Робота в зошиті

За складеними у завданні 5 формулами обчисліть відносні молекулярні маси сполук і масові частки елементів у них.

Mr
$$(I_2O_5) = 2 \cdot 127 + 5 \cdot 16 = 334$$
, W(I)= $\frac{2 \cdot 127}{334} = 0.76 = 76\%$, W(O)=24%.

Mr (Cu₂O) = 2·64+1·16=144, W (Cu)=
$$\frac{2\cdot64}{144}$$
=0,88=88%, W(O)=12%

Створюємо моделі молекул.

Модель атома Томсона

Формулюємо висновки

Валентність дорівнює числу зв'язків, які певний атом може утворити з іншими атомами. При складанні графічних формул зв'язки позначають рисками, отже, валентність дорівнює числу рисок у графічній формулі.

Деякі елементи виявляють сталу валентність в усіх сполуках: Гідроген завжди одновалентний, Оксиген — двовалентний тощо. Деякі елементи виявляють змінну валентність, валентність таких елементів обов'язково вказують у назвах сполук.

При складанні формул за валентністю необхідно дотримуватися принципу, що загальне число зв'язків усіх атомів одного елемента в сполуці дорівнює загальному числу зв'язків усіх атомів іншого елемента.

Узагальнення і систематизація знань

Від якої властивості атомів залежить склад сполук?

Визнач валентність атомів елементів у таких сполуках: PbO_2 , P_2O_3 .

Визнач валентність атомів елементів у сполуках із Хлором, знаючи, що він одновалентний: CuCl₂, KCl, FeCl₃, CCl₄, ZnCl₂, PCl₅;

В якій із наведених формул речовин валентність сполученого з Оксигеном елемента найвища: SO₂, K₂O₃, P₂O₅, BaO?

Гра «Хрестики-нулики»

Виграшний шлях: одновалентні метали.

K_2O	Fe ₂ O ₃	Al_2O_3
SO_3	Na ₂ O	CO_2
СО	SiO ₂	Cu ₂ O

Застосування знань

Виберіть з переліку сполуки Оксигену з атомами хімічних елементів з валентністю I, II, III, IV, V, VI, VII: P_2O_5 Li_2O Cr_2O_3 CrO_3 PbO_2 FeO As_2O_5 Fe_2O_3 SiO_2 HgO K_2O Mn_2O_7 SO_3 Cl_2O_7

I	II	III	IV	V	VI	VII
Li ₂ O	FeO	Cr ₂ O ₃	SiO ₂	As ₂ O ₅	SO ₃	Cl ₂ O ₇
K ₂ O	HgO	Fe ₂ O ₃	PbO ₂	P ₂ O ₅	CrO ₃	Mn ₂ O ₇

Хімічні перегони

Що таке валентність?

Що прийнято за одиницю валентності?

Де використовується це поняття?

Які сполуки називають бінарними?

Які ви знаєте елементи з постійною валентність?

Домашнє завдання

1. Виготовити з пластиліну моделі молекул.