TECHNISCHE UNIVERSITÄT DORTMUND

Anfängerpraktikum Physik Sommersemester 2014

V702 Aktivierung mit Neutronen

27.05.2014

1.Abgabe: 03.06.2014

Christopher Hasenberg Joshua Luckey

christopher.hasenberg@udo.edu joshua.luckey@udo.edu

1 Einleitung

2 Theorie

3 Durchführung

4 Auswertung

Im folgenden Abschnitt sind die während des Versuchs aufgenommenen Messwerte, sowie die daraus berechneten Ergebnisse tabellarisch und graphisch dargestellt. Die erhaltenen Fehler der Ergebnisse wurden mit Hilfe der in Abschnitt 4.2 aufgestellten Fehlergleichungen berechnet.

4.1 Bestimmung der Halbwertszeiten der zwei möglichen Zerfälle von Rhodium

Die bei der Messung des Zerfalls von Rhodium aufgenommenen Messwerte für die Zeit t und die Anzahl der gemessenen Zerfälle N in Tabelle 1 eingetragen. Auch die um den, vor dem Versuch bestimmte Nulleffekt

$$N_0 = \frac{306}{900} \,\mathrm{s}^{-1} \cdot \Delta t \tag{1}$$

$$=0.34\,\mathrm{s}^{-1}\cdot\Delta t\tag{2}$$

verringerte Anzahl an Zerfällen ist zusammen mit dem natürlichen Logarithmus aus diesen Werten in Tabelle 1 zu finden.

In ?? ist die logarithmierten Anzahl der Zerfälle $\ln(N-N_0)$ aus Tabelle 1 gegen die Zeit t aufgetragen.

Der Zeitpunkt ab dem nur noch der Zerfall mit der höheren Halbwertzeit messbar ist wurde für die folgenden Berechnungen $t^*=400\,\mathrm{s}$ gewählt. Die Messwerte für t>t* sind noch einmal in Tabelle 2 gelistet und in Abbildung 2 graphisch dargestellt. Diese Darstellung ist um die Regressiongerade dieser Messwerte ergänzt dir mittels SciPy [1] berechnet wurde. Die lineare Regression für den Ansatz

$$ln(N) = \lambda_l \cdot t + c_l,$$
(3)

ergibt die Parameter

$$\lambda_l = (0.003 \pm 0.002) \,\mathrm{s}^{-1} \quad \text{und}$$
 (3a)

$$c_l = 4.4 \pm 0.9.$$
 (3b)

Zeit	Zerfälle	Zerfälle	ln der Zerfälle
t [s]	N	$N-N_0$	$\ln(N-N_0)$
$\frac{[v]_{[S]}}{20}$	195 ± 10	188 ± 10	$\frac{11(11 + 110)}{5,24 \pm 0,07}$
40	160 ± 10	153 ± 10	$5,03 \pm 0,08$
60	150 ± 10 151 ± 10	133 ± 10 144 ± 10	$4,97 \pm 0,08$
80	93 ± 10	86 ± 9	4.5 ± 0.08
100	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	107 ± 10	4.7 ± 0.1
120	84 ± 9	77 ± 9	$4,7 \pm 0,1$ $4,3 \pm 0,1$
140	96 ± 10	89 ± 9	4.5 ± 0.1
160	75 ± 9	68 ± 8	4.2 ± 0.1
180	61 ± 8	54 ± 7	4.0 ± 0.1
200	76 ± 9	69 ± 8	4.2 ± 0.1
$\frac{200}{220}$	10 ± 3 48 ± 7	41 ± 6	3.7 ± 0.2
240	62 ± 8	55 ± 7	4.0 ± 0.1
260	46 ± 7	39 ± 6	3.7 ± 0.2
280	49 ± 7	42 ± 6	$3,7 \pm 0,2$ $3,7 \pm 0,2$
300	52 ± 7	45 ± 7	3.8 ± 0.1
320	55 ± 7	48 ± 7	3.9 ± 0.1
340	51 ± 7	44 ± 7	$3,8 \pm 0,2$
360	45 ± 7	38 ± 6	$3,6 \pm 0,2$
380	36 ± 6	29 ± 5	$3,4 \pm 0,2$
400	48 ± 7	41 ± 6	3.7 ± 0.2
420	36 ± 6	29 ± 5	$3,4 \pm 0,2$
440	43 ± 7	36 ± 6	$3,6 \pm 0,2$
460	30 ± 5	23 ± 5	3.1 ± 0.2
480	38 ± 6	31 ± 6	3.4 ± 0.2
500	29 ± 5	22 ± 5	3.1 ± 0.2
520	27 ± 5	20 ± 4	$3,0 \pm 0,2$
540	32 ± 6	25 ± 5	$3,2 \pm 0,2$
560	22 ± 5	15 ± 4	2.7 ± 0.3
580	20 ± 4	13 ± 4	2.6 ± 0.3
600	35 ± 6	28 ± 5	$3,3 \pm 0,2$
620	33 ± 6	26 ± 5	$3,3 \pm 0,2$
640	21 ± 5	14 ± 4	$2,7 \pm 0,3$
660	14 ± 4	7 ± 3	$2,0 \pm 0,4$
680	19 ± 4	12 ± 3	$2,5 \pm 0,3$
700	24 ± 5	17 ± 4	2.8 ± 0.2
720	22 ± 5	15 ± 4	2.7 ± 0.3

Tabelle 1: Gemessene Anzahl der Zerfäll, Anzahl der Zerfälle nach Subtraktion des Nulleffekts und Werte des natürlichen Logarithmusses von diesen

Dabei gilt $c_l = \ln \left(N_a (1 - \mathrm{e}^{-\lambda_l \Delta t}) \right)$ und somit erhält man hieraus die gesuchte Konstante

$$e^{c_l} = N_a (1 - e^{-\lambda_l \Delta t}) = (70 \pm 70)$$
 (4)

Aus der erhaltenen Steigung λ_l der Regressionsgerade, welche der Zerfallskonstante des

Abbildung 1: Graphische Darstellung der logarithmierten Zerfälle ohne den Nulleffekt

Zeit	Zerfälle	ln der Zerfälle
t [s]	N_l	$\ln(N-N_0)$
420	29 ± 5	3.4 ± 0.2
440	36 ± 6	3.6 ± 0.2
460	23 ± 5	$3,1 \pm 0,2$
480	31 ± 6	$3,4 \pm 0,2$
500	22 ± 5	$3,1 \pm 0,2$
520	20 ± 4	$3,0 \pm 0,2$
540	25 ± 5	$3,2 \pm 0,2$
560	15 ± 4	2.7 ± 0.3
580	13 ± 4	2.6 ± 0.3
600	28 ± 5	$3,3 \pm 0,2$
620	26 ± 5	$3,3 \pm 0,2$
640	14 ± 4	2.7 ± 0.3
660	7 ± 3	2.0 ± 0.4
680	12 ± 3	2.5 ± 0.3
700	17 ± 4	2.8 ± 0.2
720	15 ± 4	$2,7 \pm 0,3$

Tabelle 2: Messwerte zur Bestimmung der Halbwertszeit des langlebigen Zerfalls für t > t*

langlebigeren Zerfalls entspricht, lässt sich mit Hilfe von ?? dessen Halbwertzeit zu

$$t_{1/2} = (277 \pm 168) \,\mathrm{s}$$
 (5)

Abbildung 2: Graphische Darstellung der logarithmierten Zerfälle für $t>t^*$

bestimmen.

4.2 Fehlerrechnung

5 Diskussion

Literatur

[1] SciPy. URL: http://docs.scipy.org/doc/ (besucht am 21.04.2014).