Solutions for sample_questions.pdf

Here are the solutions to the extracted questions, with step-by-step reasoning:

Q1. Sample Questions

This is a heading and does not require a solution.

Q2. 1. What is 7 + 5?

Step-by-step reasoning:

- 1. Identify the operation: This is an addition problem.
- 2. Add the two numbers together.

```
**Answer:**
```

7 + 5 = 12

- **Q3. 2. Explain the difference between speed and velocity.**
- **Step-by-step reasoning:**
- 1. Define speed: Focus on its nature as a scalar quantity.
- 2. Define velocity: Focus on its nature as a vector quantity.
- 3. Highlight the key distinguishing factor: direction.

Answer:

The fundamental difference between speed and velocity lies in whether they include a direction component:

- * **Speed** is a **scalar quantity** that measures how fast an object is moving. It only has magnitude (a numerical value). For example, a car traveling at 60 km/h.
- * **Velocity** is a **vector quantity** that measures how fast an object is moving *and* in what direction. It has both magnitude and direction. For example, a car traveling at 60 km/h North.

In summary:

- * **Speed = Magnitude only** (e.g., 60 km/h)
- * **Velocity = Magnitude + Direction** (e.g., 60 km/h North)

Q4. 3. Solve: If $f(x) = x^2 + 3x + 2$, find f(2).

- **Step-by-step reasoning:**
- 1. Understand the notation f(2): This means we need to substitute the value x = 2 into the given function f(x).
- 2. Replace every instance of `x` in the function with `2`.
- 3. Perform the arithmetic operations in the correct order (exponents first, then

multiplication, then addition).

Answer:

Given the function: $f(x) = x^2 + 3x + 2$

To find f(2), substitute x = 2 into the function:

1.
$$f(2) = (2)^2 + 3(2) + 2$$

2.
$$f(2) = 4 + 6 + 2$$

3. $f(2) = 12$

3.
$$f(2) = 12$$

Therefore, f(2) = 12.