CAP 5610: Machine Learning

Lecture 7: Support Vector Machines II

Instructor: Dr. Gita Sukthankar

Email: gitars@eecs.ucf.edu

Timeline

- Homework due today---no extensions
- Next homework on SVMs: due on Oct 15
 - No class on Oct 15th
- Midterm exam on Oct 22nd
 - Topics covered thus far plus:
 - Neural networks + CNNs
 - Dimensionality reduction
 - Decision trees and ensembles
 - Review session on Oct 17
- Final project proposal due on Oct 24
- Topics transition into deep learning
- Deep RL assignment (due early November)
- Final project (due during exam period)

Linear SVM

margin classifier.

Robust to the small changes (noises) in non-support

vectors

This is the simplest kind of SVM (Called an LSVM)

Linear SVM Mathematically

Goal: 1) Correctly classify all training data

$$wx_i + b \ge 1$$
 if $y_i = +1$ $wx_i + b \le -1$ if $y_i = -1$ $y_i(wx_i + b) \ge 1$ for all i $M = \frac{2}{|w|}$ same as minimize $\frac{1}{2}w^tw$

- We can formulate a Quadratic Optimization Problem and solve for w and b
- Minimize $\Phi(w) = \frac{1}{2} w^t w$ subject to $y_i(wx_i + b) \ge 1$ $\forall i$

Solving the Optimization Problem

- Need to optimize a quadratic function subject to linear constraints.
- Use Lagrange multiplier α_i is associated with every constraint : $y_i(wx_i + b) \ge 1$, dual problem

Find $\alpha_1 \dots \alpha_N$ such that

 $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j x_i^T x_j \text{ is maximized and}$

- (1) $\sum \alpha_i y_i = 0$
- (2) $\alpha_i \ge 0$ for all α_i

Refer: Christopher J. C. Burges: A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

Lagrange Multipliers

$$y = f(x_1, x_2)$$

$$g(x_1, x_2) = 0$$

$$y_{\lambda} = f(x_1, x_2) + \lambda (g(x_1, x_2))$$

$$\frac{\partial y_{\lambda}}{\partial x_{1}} = f_{1} + \lambda g_{1} = 0$$

$$\frac{\partial y_{\lambda}}{\partial x_{2}} = f_{2} + \lambda g_{2} = 0$$
Solve simultaneously for critical values
$$\frac{\partial y_{\lambda}}{\partial \lambda} = g(x_{1}, x_{2}) = 0$$

KKT conditions extend Lagrange conditions to handle inequalities.

The Optimization Problem Solution

The solution has the form:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$
 $b = y_k - \mathbf{w}^T \mathbf{x}_k$ for any \mathbf{x}_k such that $\alpha_k \neq 0$

- α_i must satisfy Karush-Kuhn-Tucker conditions: $\alpha_i [y_i(\mathbf{w}^T\mathbf{x}_i + b) 1] = 0$, for any i
 - If $\alpha_i > 0$, $y_i(\mathbf{w}^T\mathbf{x}_i + b) 1 = 0$, \mathbf{x}_i is on the margin
 - If $y_i(\mathbf{w}^T x_i + b) > 1$, $\alpha_i = 0$
- Each non-zero α_i indicates that corresponding x_i is a support vector.

Maximum Margin

The Optimization Problem Solution

To classify the new test point x, we use

$$f(\mathbf{x}) = \mathbf{w}\mathbf{x} + \mathbf{b} = \sum \alpha_i \mathbf{y}_i \mathbf{x}_i^{\mathrm{T}} \mathbf{x} + \mathbf{b}$$

Find $\alpha_1 ... \alpha_N$ such that $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_i x_i^T x_j$ is maximized and

- $(1) \quad \sum \alpha_i y_i = 0$
- (2) $\alpha_i \ge 0$ for all α_i

Soft Margin Classification

Previous constraints

$$y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$$

Slack variables ξ_i to allow misclassification:

$$y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \boldsymbol{\xi}_i \qquad \boldsymbol{\xi}_i \ge 0$$

What should our quadratic optimization criterion be?

We expect ξ_i to be small.

$$\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum \xi_{i}$$

Hard Margin vs. Soft Margin

The old formulation:

Find w and b such that
$$\Phi(w) = \frac{1}{2} w^T w$$
 is minimized and for all $\{(x_i, y_i)\}$ $y_i(w^T x_i + b) \ge 1$

The new formulation incorporating slack variables:

```
Find w and b such that \Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \Sigma \xi_{i} \quad \text{is minimized and for all } \{(\mathbf{x}_{i}, y_{i})\}y_{i}(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} + b) \geq 1 - \xi_{i} \quad \text{and} \quad \xi_{i} \geq 0 \text{ for all } i
```

- Similar solution can be obtained to that of hard margin
- Parameter C can be viewed as a way to control overfitting.

Non-linear SVMs

If every data point is mapped into high-dimensional space via some transformation $\Phi: x \to \phi(x)$, optimization problem is similar:

Find
$$\alpha_1 ... \alpha_N$$
 such that
$$Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_j)$$
 is maximized (1) $\sum \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

Classifying function is:

$$f(\mathbf{x}) = \sum \alpha_i y_i \, \varphi(\mathbf{x}_i)^{\mathrm{T}} \varphi(\mathbf{x}) + b$$

• But relies on inner product $\varphi(x_i)^T \varphi(x)$

The "Kernel Trick"

- SVM relies on
 - Linear: $K(x_i, x_j) = x_i^T x_j$
 - Non-linear: $K(\mathbf{x}_i, \mathbf{x}_i) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_i)$
- Feature mapping is time-consuming.
- Use a kernel function that directly obtains the value of inner product
- Feature mapping φ is not necessary in this case.
- Example:

2-dimensional vectors
$$\mathbf{x} = [x_{l} \ x_{2}]; \ \text{let } K(\mathbf{x}_{i}, \mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j})^{2},$$

It is inner product of $\varphi(\mathbf{x}) = [1 \ x_{l}^{2} \ \sqrt{2} \ x_{l} x_{2} \ x_{2}^{2} \ \sqrt{2} x_{l} \ \sqrt{2} x_{2}]$
Verify: $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j})^{2}$
 $= 1 + x_{il}^{2} x_{jl}^{2} + 2 x_{il} x_{jl} x_{i2} x_{j2} + x_{i2}^{2} x_{j2}^{2} + 2 x_{il} x_{jl} + 2 x_{i2} x_{j2}$
 $= [1 \ x_{il}^{2} \ \sqrt{2} \ x_{il} x_{i2} \ x_{i2}^{2} \ \sqrt{2} x_{il} \ \sqrt{2} x_{i2}]^{\mathsf{T}} [1 \ x_{jl}^{2} \ \sqrt{2} \ x_{jl} x_{j2} \ x_{j2}^{2} \ \sqrt{2} x_{jl} \ \sqrt{2} x_{j2}]$
 $= \varphi(\mathbf{x}_{i})^{\mathsf{T}} \varphi(\mathbf{x}_{i}),$

The "Kernel Trick"

Examples of Kernel Functions

- Linear: $K(x_i, x_j) = x_i^T x_j$
- Polynomial of power $p: K(x_i,x_j) = (1 + x_i^T x_j)^p$
- Gaussian (radial-basis function network):

$$K(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\frac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2})$$

• Sigmoid: $K(x_i,x_j) = \tanh(\beta_0 x_i^T x_j + \beta_1)$

Kernel Requirements

```
The function k(x,y) is a valid kernel, if there exists a
mapping f into a vector space (with a dot-product)
such that k can be expressed as k(x,y)=f(x) \cdot f(y)
Theorem: k(x,y) is a valid kernel if k is positive definite
and symmetric (Mercer Kernel)
A function is P.D. if \int K(\mathbf{x}, \mathbf{y}) f(\mathbf{x}) f(\mathbf{y}) d\mathbf{x} d\mathbf{y} \ge 0 \quad \forall f \in L_2
In other words, the Gram matrix \mathbf{K} (whose elements are k(x_i,x_i))
must be positive definite for all x_i, x_i of the input space
```

Gram Matrix

With KM-based learning, the <u>sole</u> information used from the training data set is the Kernel Gram Matrix

$$K_{training} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & k(\mathbf{x}_1, \mathbf{x}_2) & \dots & k(\mathbf{x}_1, \mathbf{x}_m) \\ k(\mathbf{x}_2, \mathbf{x}_1) & k(\mathbf{x}_2, \mathbf{x}_2) & \dots & k(\mathbf{x}_2, \mathbf{x}_m) \\ \dots & \dots & \dots & \dots \\ k(\mathbf{x}_m, \mathbf{x}_1) & k(\mathbf{x}_m, \mathbf{x}_2) & \dots & k(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

If the kernel is valid, K is symmetric definitepositive.

Choosing a Kernel

- Assume a categorization task: the ideal Kernel matrix is
 - k(x_i,x_i)=+1 if x_i and x_i belong to the same class
 - k(x_i,x_i)=-1 if x_i and x_i belong to different classes
 - concept of target alignment (adapt the kernel to the labels), where alignment is the similarity between the current gram matrix and the ideal one ["two clusters" kernel]
- A certainly bad kernel is the diagonal kernel
 - $\mathbf{k}(\mathbf{x}_i,\mathbf{x}_j)=+1 \text{ if } \mathbf{x}_i=\mathbf{x}_j$
 - $\mathbf{k}(\mathbf{x}_i,\mathbf{x}_i)=0$ elsewhere
 - All points are orthogonal : no more cluster, no more structure

Creating Kernels

$$K(\mathbf{x}, \mathbf{y}) = \lambda K_1(\mathbf{x}, \mathbf{y}) + (1 - \lambda)K_2(\mathbf{x}, \mathbf{y}) \quad 0 \le \lambda \le 1$$

$$K(\mathbf{x}, \mathbf{y}) = a.K_1(\mathbf{x}, \mathbf{y}) \quad a > 0$$

$$K(\mathbf{x}, \mathbf{y}) = K_1(\mathbf{x}, \mathbf{y}).K_2(\mathbf{x}, \mathbf{y})$$

$$K(\mathbf{x}, \mathbf{y}) = f(x).f(y) \quad f \text{ is real - valued function}$$

$$K(\mathbf{x}, \mathbf{y}) = K_3(\varphi(\mathbf{x}), \varphi(\mathbf{y}))$$

$$K(\mathbf{x}, \mathbf{y}) = \mathbf{x}'P\mathbf{y} \quad P \text{ symmetric definite positive}$$

$$K(\mathbf{x}, \mathbf{y}) = \frac{K_1(\mathbf{x}, \mathbf{y})}{\sqrt{K_1(\mathbf{x}, \mathbf{x})} \sqrt{K_1(\mathbf{y}, \mathbf{y})}}$$

Non-linear SVMs Mathematically

Dual problem formulation:

Find $\alpha_1...\alpha_N$ such that $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j K(x_i, x_j)$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

The solution is:

$$f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$

Optimization techniques for finding α_i 's remain the same!

Weighted SVMs

To handle unbalanced training datasets, you can weight the datasets to apply more weight to the class that has fewer training instances.

The sample weighting rescales the C parameter.

Result: classifier puts more emphasis on getting these points right.

SVM Multiclass

- SVMs only work for 2 classes!
- How to overcome this limitation:
- Train N SVMs for each class
 - One vs. all
 - Pick the classification that has the strongest positive prediction (furthest from the margin)
- Train N(N-1)/2 classifiers for every pair of classes
 - One vs. one
 - Choose the class with the most votes
 - More classifiers but training dataset for each of classifier is smaller
 - Preferred method

SVM Regression

SVM can be used as a replacement for linear regression (outputting continuous values rather than classes) by replacing LSE with epsilon insensitive error.

Least Squares Error (used in linear regression)

$$1/2\sum_{i=1}^N (t_i-y_i)^2 + 1/2\lambda ||w||^2$$

Epsilon Insensitive Error (returns 0 if the difference between the target and predicted value is less than epsilon)

$$\sum_{i=1}^N E_\epsilon(t_i-y_i) + 1/2\lambda ||w||^2$$

Prediction (mu and alpha are constraint variables)

$$f(x) = \sum_{i=1}^n (\mu_i - lpha_i K(x_i,z) + b)$$

Loss Functions

Hinge loss is used by the SVM; logistic loss is used by logistic regression.

Platt Scaling

- Method of interpreting margin distances as probabilities
- A and B are estimated from data using MLE
- f(x) is the output of the SVM

$$P(y = 1|x) = \frac{1}{1 + \exp(Af(x) + B)}$$

Sequential Minimal Optimization

Replacement for the quadratic programming techniques previously used that relies on selected pairs of constraints

$$0 \le \alpha_1, \alpha_2 \le C, \ y_1\alpha_1 + y_2\alpha_2 = k,$$

- 1. Find a Lagrange multiplier that violates the Karush–Kuhn–Tucker (KKT) conditions for the optimization problem.
- 2. Pick a second multiplier and optimize the pair
- 3. Repeat steps 1 and 2 until convergence.
- 4. Process can be accelerated by selecting pairs intelligently

cvxopt

Python toolkit for convex optimization that can be used to program SVMs

- 1. Create H where $H_{i,j} = y^{(i)}y^{(j)} < x^{(i)}, x^{(j)} >$
- 2. Calculate w
- 3. Determine the set of support vectors
- 4. Calculate the intercept term
- 5. For each new point x' classify using w and b

Active Learning using SVM

"Incremental Relabeling for Active Learning with Noisy Crowdsourced Annotations". Liyue Zhao*, Gita Sukthankar and Rahul Sukthankar. *IEEE International Conference on Social Computing*. 2011. pp. 728--733.

Idea of active learning is reduce the amount of initial data and have the classifier "ask" for the most informative data samples

https://youtu.be/wuc8lq9XhFE

Summary

- SVMs were developed as a way to handle high dimensional feature vectors which k-NN and many other methods performed badly on.
- Main limitation: difficult to scale to large datasets because of the reliance on quadratic programming
- Next assignment will be on SVMs