Tafel 5.11 Wert der Integrale $\int f_i \cdot f_k dx = l \cdot \text{Tafelwert}$

7	Rechteck	Dreieck	Dreieck	Dreieck	6.	Kubische Parabel	Kubische Parabel	$\int f_{\mathbf{i}} \cdot f_{\mathbf{i}} \mathrm{d}x$
•	f_{k} f_{k}	f_k	1/2 1/2	yl ol	f_{k1} f_{k2}	f_k	f_{k}	$\int J_1 \cdot J_1 dx$
f _i	$f_{\rm i}f_{ m k}$	$\frac{1}{2} f_{\mathbf{i}} f_{\mathbf{k}}$	$\frac{1}{2}f_{\mathrm{i}}f_{\mathrm{k}}$	$\frac{1}{2}f_{\mathbf{i}}f_{\mathbf{k}}$	$\frac{1}{2}f_{\rm i}(f_{\rm k1} + f_{\rm k2})$	$\frac{1}{4} f_i f_k$	$\frac{1}{4}f_if_k$	$f_{\rm i}^2$
rck f _i	$\frac{1}{2} f_{\mathbf{i}} f_{\mathbf{k}}$	$\frac{1}{3} f_{\rm i} f_{\rm k}$	$\frac{1}{4} f_{\rm i} f_{\rm k}$	$\frac{1}{6}(1+\gamma)f_{\rm i}f_{\rm k}$	$\frac{1}{6}f_{\mathbf{i}}(f_{\mathbf{k}1} + f_{\mathbf{k}2})$	$\frac{2}{15}f_1f_k$	$\frac{1}{5}f_if_k$	$\frac{1}{3}f_{\mathrm{i}}^{2}$
ck	$\frac{1}{2}f_{\mathbf{i}}f_{\mathbf{k}}$	$\frac{1}{6} f_{\rm i} f_{\rm k}$	$\frac{1}{4}f_1f_k$	$\frac{1}{6}(1+\delta)f_{i}f_{k}$	$\frac{1}{6}f_{\rm i}(2f_{\rm k1}+f_{\rm k2})$	$\frac{7}{60} f_{\rm i} f_{\rm k}$	$\frac{1}{20} f_{\rm i} f_{\rm k}$	$\frac{1}{3}f_{\mathrm{i}}^{2}$
ck	$\frac{1}{2}f_{\mathbf{i}}f_{\mathbf{k}}$	$\frac{1}{4} f_{\rm i} f_{\rm k}$	$\frac{1}{3}f_{i}f_{k}$	$\frac{1}{12} \frac{3 - 4\gamma^2}{\delta} f_i f_k$ für $\gamma \le \delta$	$\frac{1}{4}f_{\rm i}(f_{\rm k1} + f_{\rm k2})$	$\frac{5}{32} f_i f_k$	$\frac{3}{32} f_i f_k$	$\frac{1}{3}f_i^2$
ck f _i βl	$\frac{1}{2}f_{\mathrm{i}}f_{\mathrm{k}}$	$\frac{1}{6}(1+\alpha)f_{\rm i}f_{\rm k}$	$\frac{1}{12} \frac{3 - 4\alpha^2}{\beta} f_i f_k$ $\text{für } \alpha \le \beta$	$\frac{1}{6} \frac{2\alpha - \alpha^2 - \gamma^2}{\alpha \cdot \delta} f_i f_k$ $\text{für } \alpha \ge \gamma$	$\frac{1}{6}f_{\mathbf{i}}[(1+\beta)f_{\mathbf{k}1} + (1+\alpha)f_{\mathbf{k}2}]$	$\frac{1}{20}(1+\alpha)\cdot\left(\frac{7}{3}-\alpha^2\right)\cdot f_i f_k$	$\frac{1}{20}(1+\alpha)\cdot(1+\alpha^2)\cdot f_if_k$	$\frac{1}{3}f_i^2$
f_{i2}	$\frac{1}{2}(f_{i1} + f_{i2})f_k$	$\frac{1}{6}(f_{i1} + 2f_{i2})f_k$	$\frac{1}{4} f_{\mathbf{k}} (f_{\mathbf{i}1} + f_{\mathbf{i}2})$	$\frac{1}{6} f_{\mathbf{k}}[(1+\delta) f_{i1} + (1+\gamma) f_{i2}]$	$\frac{1}{6}[(2f_{k1} + f_{k2})f_{i1} + (f_{k1} + 2f_{k2})f_{i2}]$	$\frac{1}{60} (7f_{i1} + 8f_{i2}) \cdot f_{k}$	$\frac{1}{20}(f_{i1} + 4f_{i2}) \cdot f_k$	$\frac{1}{3}(f_{i1}^2 + f_{i2}^2 + f_{i1}f_{i2})$
atische Parabel	$\frac{2}{3} f_{\rm i} f_{\rm k}$	$\frac{1}{3} f_{\rm i} f_{\rm k}$	$\frac{5}{12} f_{\rm i} f_{\rm k}$	$\frac{1}{3}(1+\gamma\delta)\cdot f_{\rm i}f_{\rm k}$	$\frac{1}{3}(f_{k1} + f_{k2})f_i$	Beispiel:	gesucht: w	
ratische Parabel	$\frac{2}{3}f_{\rm i}f_{\rm k}$	$\frac{5}{12}f_{\rm i}f_{\rm k}$	$\frac{17}{48} f_{\rm i} f_{\rm k}$	$\frac{1}{12}(5-\delta-\delta^2)f_{\mathbf{i}}f_{\mathbf{k}}$	$\frac{1}{12}f_{\mathbf{i}}(3f_{\mathbf{k}1} + 5f_{\mathbf{k}2})$	+ / / /	$M = -q \frac{l^2}{6} = f_k$	
ratische Parabel	$\frac{2}{3}f_{\rm i}f_{\rm k}$	$\frac{1}{4}f_{\rm i}f_{\rm k}$	$\frac{17}{48} f_{\rm i} f_{\rm k}$	$\frac{1}{12}(5-\gamma-\gamma^2)f_{\mathbf{i}}f_{\mathbf{k}}$	$\frac{1}{12}f_{\mathbf{i}}(5f_{\mathbf{k}1} + 3f_{\mathbf{k}2})$	kubische Parabel	$\overline{M} = -1 \cdot l = f_{i}$	
ratische Parabel	$\frac{1}{3} f_{\rm i} f_{\rm k}$	$\frac{1}{4}f_{i}f_{k}$	$\frac{7}{48} f_{\rm i} f_{\rm k}$	$\frac{1}{12}(1+\gamma+\gamma^2)f_if_k$	$\frac{1}{12}f_{\rm i}(f_{\rm k1} + 3f_{\rm k2})$	1	$m = -1 \cdot t = f_i$	
atische Parabel	$\frac{1}{3} f_{\rm i} f_{\rm k}$	$\frac{1}{12} f_{\mathbf{i}} f_{\mathbf{k}}$	$\frac{7}{48} f_{\rm i} f_{\rm k}$	$\frac{1}{12}(1+\delta+\delta^2)f_{\rm i}f_{\rm k}$	$\frac{1}{12}f_{\rm i}(3f_{\rm k1}+f_{\rm k2})$	$E \cdot J \cdot w = \text{Tafelwert} \cdot l \cdot f_i \cdot f_k$ $E \cdot J \cdot w = \frac{1}{5} \cdot l \cdot \left(-q \frac{l^2}{6}\right) \cdot (-l) = q \frac{l^4}{30}$		

