ALMA reveals the early dust enrichment in a z = 8.3 galaxy (YT+, submitted; arXiv:1806.04132v1)

Yoichi Tamura (Nagoya U.)

Galaxy-IGM Workshop 2018 08 Aug 2018

Target: Frontier Field LBG "MACS0416_Y1"

- ullet The best among > 100 LBGs at z > 8
- \bullet Bright ($H_{160} = 26.0 \text{ AB}, \mu_g = 1.4$)
- Well-constrained redshift (z_ph ~ 8.3–8.7)
- Accessible from ALMA (Cycle 4)

MACS J0416-24

Critical line

for z = 9

(Kawamata+16)

Results: "Blind" Redshift Identification with [OIII]

- Spectroscopic redshift $z = 8.3118 \pm 0.0003$
- Blind detection with submillimeter spectroscopy
 - Failed to detect Lya and other bright UV lines with X-Shooter/VLT

Results: Detections of Dust and [OIII] 88 um

YT+18, submitted

- $lue{}$ Second detection of dust at z > 8
- Spatially resolved, tracing UV emission
 - \bullet Size: 0".36 × 0".10 = 1.7 × 0.5 kpc
- Large dust mass
 - $M_{\text{dust}} = (3.6 \pm 0.7) \times 10^6 M_{\odot} (T_{\text{dust}} = 50 \text{ K}, \beta = 1.5)$

[O III]-FIR Luminosity Ratio

MACS0416_Y1 is (surprisingly!) similar to dusty starbursts.

Motivations

- SED modeling: How does "dust" coexist with UV SED?
 - How can the red [3.6] [4.5] color be explained?
 - TIR + [OIII]88 should be a key (A.K. Inoue+16; Mawatari+18, in prep.)
- Dust budget crisis: How did a galaxy get dust so quickly?
 - Type II SNe is the major contributors to dust mass at z > 8
 - Grain growth in dense ISM plays an important role?

Purpose:

How and when metal enrichment happened? Why dust exists in the earliest universe?

Stellar Population Synthesis Analysis

- Rest-frame UV-optical and FIR [OIII] + dust continuum
- Based on Mawatari+2016
 - Stellar: Bruzual Charlot 2003 (BC03)
 - Dust (FIR): Local LIRGs (Rieke+09)
 - Nebular: SFR -> N_ion -> H β -> [OIII] (Inoue+11)
- Three extinction curves are used
 - Calzetti, Milky Way (MW), Small Magellanic Cloud (SMC)
 - 2175 A bump (carbon) is evident in the MW law

Fitting parameters

```
Dust attenuation A_V (mag)
 \text{Age } \tau_{\text{age}} \text{ (Gyr)} 
 \text{SFH } \tau_{\text{SFH}} \text{ (Gyr)} 
 \text{Metallicity } Z 
 \text{LyC escape fraction } f_{\text{esc}} 
 \text{Stellar mass } M_{\text{star}} \text{ (}10^9 M_{\odot}\text{)}^{\dagger} 
 \text{SFR } (M_{\odot} \text{ yr}^{-1})^{\dagger} 
 L_{\text{IR}} \text{ (}10^{11} L_{\odot}\text{)}^{\dagger}
```

SED Fits: Calzetti Extinction Law

SED Fits: Milky-Way Extinction Law

SED Fits: SMC Extinction Law

SED Fits: Results

Table 5. The best-fitting parameters of the rest-frame ultraviolet to far-infrared spectral energy distribution of MACS0416_Y1.

	Extinction law		
Items	Calzetti	SMC	MW
χ^2	10.1	12.2	8.0
DOF	3	3	3
Dust attenuation A_V (mag)	$0.50^{+0.07}_{-0.06}$	$0.20^{+0.10}_{-0.01}$	$0.50^{+0.04}_{-0.05}$
Age $\tau_{\rm age}$ (Gyr)	$0.18^{+0.39}_{-0.05}$	$0.0014^{+0.0004}_{-0.0005}$	$0.18^{+0.07}_{-0.05}$
SFH $\tau_{\rm SFH}^{-1} \left({\rm Gyr}^{-1} \right)^{\sharp}$	$10.0^{+90.0}_{-17.2}$	-100^{+200}_{-0}	$10.0^{+43.7}_{-11.6}$
Metallicity Z	$0.0040^{+0.0084}_{-0.0037}$	$0.0001^{+0.0059}_{-0.0000}$	$0.0040^{+0.0160}_{-0.0024}$
LyC escape fraction $f_{\rm esc}$	$0.50^{+0.20}_{-0.24}$	$0.30^{+0.41}_{-0.19}$	$0.50^{+0.15}_{-0.27}$
Stellar mass $M_{\rm star} \left(10^9 M_{\odot}\right)^{\dagger}$	$4.8^{+6.8}_{-4.7}$	$0.26^{+7.01}_{-0.09}$	$5.1^{+7.1}_{-4.9}$
$\mathrm{SFR} \left(M_{\odot} \ \mathrm{yr}^{-1} \right)^{\dagger}$	$13.2^{+255.2}_{-8.8}$	199^{+355}_{-194}	$13.7^{+225.6}_{-10.1}$
$L_{\rm IR} \left(10^{11} L_{\odot}\right)^{\dagger}$	$1.37^{+0.68}_{-0.48}$	$1.35^{+0.67}_{-0.63}$	$1.50^{+0.55}_{-0.52}$

SED Fits: Results

- UV-bright stellar component with luminous dust component
 - Can be explained consistently in terms of energy budget if the dust mass pre-exists.
- The SMC extinction law is not likely
 - Extremely young populations of stars with bright nebular emission
 - Seems to be difficult to explain the dust mass.
- Formation epoch dates back to z ~ 11
 - ullet Age of ~180 Myr indicates the onset of star-formation happened at z ~ 11

Purpose:

How and when metal enrichment happened? Why dust exists in the earliest universe?

Interstellar grain growth divides the populations?

- Asano-Takeuchi model (Asano & Takeuchi+13)
- Dust mass evolution in MACS0416_Y1
 - SF timescale tau_SF = 0.3 Gyr
 - Roughly scaled so that predicted M_star and SFR match the observed ones

Predicted extinction curve has the 2175A bump

- Extinction curve established in galaxy age = $0.18^{+0.07}_{-0.05}$ Gyr
- Roughly consistent with MW/Calzetti law

Summary

- ullet ALMA reveals early dust enrichment in a z > 8 galaxy
 - UV-to-FIR SED modeling reveals (surprisingly) relatively-mature stellar component with enriched ISM (gas and dust).
 - \bullet Formation epoch dates back to z = 11.
 - Dust enrichment can naturally be explained by a dust evolution model in which grain growth and destruction are reasonably considered.
- Future prospects with ALMA
 - Cycle 5: [C II] measurements with band 5 + deep [OIII] imaging
 - Cycle 6: 500-pc imaging of multi-phase ISM in dust (GMCs) and [OIII] (HII regions)
 - Cycle 6: Further [OIII] search