

Land cover and land accounting in Vanuatu – Day 2 Components 1 (cont.) & 2

Blanca Perez-Lapena, PhD April 1, 2025

Pipeline for Agile Estimation of Land Accounts (PAELA)

	Dense_Forest	Open_Forest	Forest_plantations	Mangroves	Agriculture	Coconut_Plantation	Grassland	Built-up_Infrastr	Water_body	Shrubs	Bareland	Total
Opening area	274316.9	13137.4	10666.8	752.5	375.6	60.0	1453.4	37753.4	16096.2	9720.2	20416.3	387577.9
Expansions	11301.9	24893.4	5267.3	652.0	173.9	69.1	865.7	12010.2	11082.0	10793.9	7446.6	86209.8
Regressions	18946.6	3582.7	4458.4	430.2	284.3	31.6	663.1	33856.4	9637.2	3494.5	9476.7	86209.8
Net change	7644.7	-21310.7	-808.9	-221.8	110.4	-37.5	-202.6	21846.1	-1444.8	-7299.3	1724.4	0.0
Closing area	266672.3	34448.1	11475.7	974.4	265.2	97.5	1656.1	15907.3	17541.0	17019.6	18691.9	387577.9

Yesterday – Component 1 (2020)

Today - Component 1 cont. (2020)

Today - Component 1: From vROIs2 (2020) to vROIs3 (2020)

Today – Component 1: Output Refined ROIs (2020)

Today – Your turn

- 1) Component 1: Create the refined ROIs dataset for 2020
- Continue with Step 1.2:
 - FROM 'Z_Visit_Vanuatu_April2025\Component_1\output\2020\vROIs2'
 - > TO 'D:\Z_Visit_Vanuatu_April2025\Component_1\output\2020\vROIs3'
 - > Edit the kml in Google Earth Pro
- Go through Step 1.3

This training

Component 2: Satellite data extraction & RF model training & prediction

- Input:
 - ROIs dataset
 - Imagery stack

- Output:
 - Trained Random Forest model (e.g., Opening year)

Component 2: Input

Component 2: Input

```
    Parameters

 # Define the year as a variable
     the year = 2020
     # Define desired resolution (e.g., 20 meters)
     target resolution = 20
     # Define parameters
     collections = "COPERNICUS/S2 SR HARMONIZED"
     bbox small = ee.Geometry.BBox(168.12, -17.85, 168.6, -17.4)
1. Stack for model training
Yearly Median
 datetime range selectedmonths = ee.DateRange(f"{the year}-01-01", f"{the year}-12-31")
     # Load Sentinel-2 collection in GEE
     collection raw = (
         ee.ImageCollection(collections)
         .filterBounds(bbox small)
         .filterDate(datetime_range_selectedmonths)
         .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE", 100)) # No cloud filter here
     # Instead of trying to extract the EPSG code directly, use the entire crs string
     common projection = ee.Projection(collection raw.first().select(0).projection().crs())
     #Set desired resolution and resampling method
     collection = collection raw.map(
         lambda image: image.resample('bilinear').reproject(
             crs=common projection,
             scale=target_resolution
```

```
NDVI Wet season
[ ] ee.Authenticate(auth_mode='notebook')
     ee.Initialize()
     # Define NDVI calculation function
     def doNDVI(image):
         # Calculate NDVI using bands B4 (Red) and B8 (NIR)
         ndvi = image.normalizedDifference(["B8", "B4"]).rename("NDVI")
         return ndvi
     # Apply NDVI calculation for each image in the collection
     ndvi_collection = collection_scaled_wet.map(doNDVI)
     # Calculate the median NDVI across all dates
     median_ndvi = ndvi_collection.reduce(ee.Reducer.median()).rename("median_NDVI")
     # Check the projection of the resulting NDVI composite
     ndvi_projection = median_ndvi.projection().getInfo()
     print("NDVI Projection:", ndvi_projection)
     ## To reproject it to the original CRS:
     #To keep the original (e.g., 10m)
     #median ndvi = median ndvi.reproject(crs=original crs, scale=projection["nominalScale"])
     #To set it to the same as the other bands in the stack (e.g., 20m)
     median ndvi reprojected wet = median ndvi.reproject(crs=original crs, scale=target resolution)
     projection = median_ndvi_reprojected_wet.projection().getInfo()
     print("NDVI Wet Projection information:", projection)
     ndvi_back2original_crs = projection["crs"]
     print("NDVI Wet Projection:", ndvi back2original crs)
```


Component 2: Model training -> Output trained model

```
# ------ MODEL TRAINING -----
print("Before dropping:")
print(data.columns)
columns_to_remove = ['class', 'x', 'y', 'geometry', 'crs']
data features = data.drop(columns=columns to remove)
print("\nAfter dropping:")
print(data features.columns)
X = data_features.values
y = data['class'].values # Labels (class IDs)
# Inspect the data
print("Features (X):", X.shape)
print("Labels (y):", y.shape)
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
# Define the Random Forest classifier
rf classifier = RandomForestClassifier()
# Parameter grid for hyperparameter tuning
param_grid = {
    'n_estimators': [100], # Number of trees in the forest
    'criterion': ['gini'], # Function to measure the quality of a split
     'max_depth': [13], # Maximum depth of the tree
    'min_samples_split': [2], # Minimum samples required to split an internal node
    'min_samples_leaf': [1], # Minimum samples at a leaf node
    'max features': ['sqrt'], # Features to consider when looking for the best split
    'bootstrap': [True], # Whether to bootstrap samples
    'random_state': [42] # Seed for reproducibility
grid_search = GridSearchCV(estimator=rf_classifier, param_grid=param_grid, scoring='accuracy', cv=5, n_jobs=-1)
grid_search.fit(X_train, y_train)
print("Unique labels in training set:", np.unique(y_train))
print("Unique labels in test set:", np.unique(y_test))
# Retrieve the best model
best rf classifier = grid search.best estimator
```

```
Model evaluation
 # Model evaluation on the test set
 v pred = best rf classifier.predict(X test)
 print("Test Set Results:")
 print(classification report(y test, y pred))
 # Get the classification report
  report = classification report(y test, y pred, output dict=True)
 # Print only the accuracy and confusion matrix
 print("Accuracy:", report['accuracy'])
 print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
 #Construct the file name dynamically
 drive folder = "/content/drive/My Drive/GEE exports COMPONENT 2"
 model filename = f"VANmodel {the year} vROIs{version num ROIs}.joblib"
 model path = os.path.join(drive folder, model filename)
  # Save model to Colab first
  dumn(model metadata, model Tilename)
   # Copy the model to Google Drive folder
   import shutil
  shutil.copy(model_filename, model_path)
```


Component 2: Satellite data extraction & RF model training & prediction

• Input:

- Trained Random Forest model
- Imagery stack (e.g., Opening year)

• Output:

 Land cover classified raster map (e.g., Opening year)

Component 2: Output Land cover classified raster map

```
Land cover classification
 import rasterio
 from rasterio.plot import show
 import matplotlib.pyplot as plt
 import numpy as np
 # Load the raster stack for prediction
 with rasterio.open(f"stacked image {the year} {target resolution}m.tif") as src:
     raster data = src.read()
     raster profile = src.profile
 # Reshape the raster data for prediction
 raster data = raster data.reshape(raster data.shape[0], -1).transpose()
 # **Handle NaN values before prediction**
 # Replace NaN with a specific value (e.g., 0)
 raster data = np.nan to num(raster data)
 # Make predictions using the loaded model
 predictions = rf_model.predict(raster_data)
 # Reshape predictions back to the original raster shape
 predictions = predictions.reshape(src.height, src.width)
 # Update raster profile for the output GeoTIFF
 raster profile.update({
     'dtype': rasterio.uint8, # Assuming your labels are integers
     'count': 1, # Single band for the classification
     'nodata': 0 # Set nodata value if needed
 # Save predictions as a GeoTIFF
 with rasterio.open(f"predicted landcover {the year} {target resolution}m.tif".tif', 'w',
     det unito(prodictions actumo(pastonio uint8) 1)
```


Today - Component 2 (2020)

Today – Your turn

- 1) Run Component 2 to obtain the land cover classified raster for 2020
- Use the already provided ROIs dataset for 2020 (vROIs2)
- Go through Step 2.1
- Go through Step 2.2
- Go through Step 2.3

Today – Component 2 in R

