Electric circuit: a interconnection of circuit elements linked together in a closed loop

Network topology: node (n), branch (b), loop (l)

branch: a single element

node: point of connection between 2 or more branches

loop: a closed path independent loop (mesh)

$$n=4$$
, $b=6$, $Q=3$, $b=n+Q-1$
6 4 3

I changes w.r.t. time

D.C.

current
$$1 = \frac{dQ}{dt}$$

$$V = \frac{dW}{dd}$$

power.
$$P = \frac{dW}{dt} = VI$$

$$V = V_a - V_b$$

power absorbed by the element.

power supplied by the element

$$V = 4V = V\alpha - V_b$$

$$V = -4V = V\alpha - V_b$$

$$\Rightarrow V_b - V_{\alpha} = 4V$$

which end has the higher potential/

an circuit clonent supplies or absorbs energy

Kirchhoff's law:

note:

- 2. In DC, act as open circuit (i=0)
- 3. in AC, act as resistor with values varying as frequency
- 4. actual capacitor has high resistivity (over Mohm)
- 5. in eelctric circuit, C is in uF ~pF megaohm

not perfectly linear, only upon a specific I mfern

capacitor 1, internal property in transistor	
2 widly used in the design of amplifier and filter.	
inductor (energy storage) Etal store energy as magnetic field B	
a 10000 vet)= Li diet in general, not used in electronic circuit for its size	linear
\rightarrow i dt	
notrient. element	
notinear, element diode on the transistor of operational amplifier (OPAMP)	nonlinear
relationship bw V and I?	

Octive element (supply energy) = Independent or dependent voltage or current source

dep,

vit)

Tit)

Tit)

Tit)

Tit.

Rependent voltage or current source

(CCVS)

KVc voltage controlled voltage source (VCVS)

Tind.

ACTIVE

PASSIVE

Transistor

Diode

LDR

LED

Thermistor

Photodiode

Capacitor

Integrated Circuit

Inductor

Operational Amplifier

Switch

Seven Segment Display

Variable Resistor

Battery

Transformer

Series,
$$OMOOMOO$$
 $OMOO$ OMO

$$\begin{cases} \begin{cases} \frac{1}{2} & \frac{1}{2} = \frac{R_1}{R_1 + R_2} & \frac{1}{2} = \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} = \frac{1}{4} \end{cases}$$

equivalent capacitor?

voltage in series

current source In parallel

$$\frac{1}{12} + \frac{1}{12} + \frac{1}{12}$$

$$\sqrt{3} = \frac{18}{6t(8)}(-V_1) = \frac{(8)}{24}(-4) = -3V$$