Riemann Surface

李想

本结题报告主要包含讨论班上讨论过的一些内容,以及在 Donaldson 这本书 [1] 与 b 站印度理工那个视频 [2] 学到的一点东西。限于水平,这里只是对黎曼曲面比较基础内容做一个总结。

1 定义与例子

1.1 定义

黎曼面,实际上就是一维复流形,满足相容性条件。

- 所谓一维复流形 S,就是局部"长得像" $\mathbb C$ 的拓扑空间。严格来说,拓扑空间 S (一般 设为第二可数与 Hausdorff 的)上每个点都有一个包含它的开集 U,使得 U 与 $\mathbb C$ 的某个开集 V 同胚。假如说该同胚映射是 ϕ 的话, (U,ϕ) 就被称为一个 chart。而当 U_{α} 构成了 S 的一个覆盖时,这些 charts $\{(U_{\alpha},\phi_{\alpha})\}$ 就构成了一个 atlas。
- 所谓相容性条件,就是说转换函数 $\phi_{\alpha} \circ \phi_{\beta}^{-1} : \phi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ 是全纯的。 注意,定义域与像都在 \mathbb{C} 中,所以这里全纯的含义是明白的。

对于两个黎曼曲面 S_1 , S_2 以及它们之间的映射 $f:S_1\to S_2$,说它是全纯的,意思是拉回到复平面间的映射(称为局部表示)是全纯的,详细写写就是: 对于每个 $x\in S_1$,都存在包含 x 的一个开集 U_α 与 S_2 中包含 f(x) 的一个开集 V_β ,使得 $f(U_\alpha)\subseteq V_\beta$ 并且 $\psi\circ f\circ \varphi^{-1}:\varphi(U_\alpha)\to \psi(V_\beta)$ 是全纯映射,这里 (U_α,φ) 和 (V_β,ψ) 是两个 charts。进一步,如果 f 是双射且 f,f^{-1} 都是全纯映射,则说 f 是全纯同构,说黎曼面 S_1,S_2 等价。

从范畴论的角度来看,可以定义一个黎曼面范畴 **Rie**,里面的对象是黎曼面,态射是全纯映射。而全纯同构实际上就是 **Rie**里面的同构,即我们想要的两个黎曼面等价的概念。一个重要的问题就是黎曼面在全纯同构下如何被分类,它被解决于单值化定理。对单值化定理的探索也是贯穿学习黎曼面的主线,其表述在本报告的后文给出。

1.2 例子

例子 1.1 (复平面). ℂ 是非常平凡的黎曼面, 不赘述。

例子 1.2 (黎曼球面). 黎曼球面有很多不同的看法,比如可以看成嵌入 \mathbb{R}^3 中的球面 \mathbb{S}^2 ,用两个 chart 覆盖 (分别盖住北极点和南极点);或者 \mathbb{C} 添一个无穷远点 ∞ 使其紧化, ∞ 附近的邻域定义为 |z| > C;或者可以看成投影空间 $\mathbb{CP}^1 = \mathbb{C}^2 \setminus \{0\} / \sim$,其中等价关系 \sim 定义为 $(z_1, z_2) \sim (z_1', z_2') \Leftrightarrow (z_1, z_2), (z_1', z_2')$ 复线性相关,拓扑赋予商拓扑。这些黎曼面都是等价的。

例子 1.3 (柱面). 柱面的构造是复平面 \mathbb{C} 模掉 \mathbb{Z} , 这样基本区域就是一个条带,并且对边认为是等价的。把这对边粘起来就形成了圆柱。事实上,柱面等价于 $\mathbb{C}\setminus\{0\}$.

例子 1.4 (环面). 环面的构造是复平面 \mathbb{C} 模掉 $\mathbb{Z} \times \mathbb{Z}$, 这样基本区域就是一个平行四边形,并且对边认为是等价的。先把一对边粘起来就是一个有限的圆柱,再把圆柱两个底面粘起来(相当于另一条对边)就形成了环面 \mathbb{T}^2 。

由于椭圆函数是 C 上的双周期函数, 所以它实际上可以看成是在平行四边形上定义的, 并且对边上函数值是相等的。由于平行四边形对边粘起来就是环面, 因此可以在环面上研 究椭圆函数。

2 一些代数拓扑常识:覆盖

2.1 基本群

设 X 是拓扑空间。从闭区间 [0,1] 映到 X 中的连续映射被称为 X 中的曲线(道路)。 如果 X 中的两条曲线 γ_1,γ_2 起始点相同,并且能从一条曲线连续变化到另一条曲线,则说这两条曲线在 X 中是定端同伦的(严格写就是一个连续函数 $F:[0,1]\times[a,b]\to X$ 满足一定的条件)。实际上复变函数中的柯西定理就可以写成同伦形式的:设 f 在区域 $D\subseteq\mathbb{C}$ 内全纯,则 f 沿两条在 D 中定端同伦的曲线的积分相等。

可以发现定端同伦实际上是一个等价关系,因此可以考察每条曲线所在的等价类 $[\gamma]$ 。 对两个等价类 $[\alpha]$, $[\beta]$,可以定义运算·使得 $[\alpha]$ · $[\beta] = [\alpha * \beta]$,其中 * 表示曲线 α , β 首尾 连接形成的新曲线(因此要求 α 的终点是 β 的起点)。

对拓扑空间 X 中的某个点 $a \in X$,将所有起点终点位于 a 的闭合曲线的等价类组成的集合记成 $\pi_1(X,a)$,上面赋予刚才定义的运算 · ,并且要求单位元是点 a 处的常值曲线 [a],曲线等价类的逆元是反方向的曲线所在的等价类。则 $\pi_1(X,a)$ 在运算 · 下组成一个群,称为 X 在 a 处的基本群。可以证明,如果 X 是道路连通的,那么基本群与 a 在哪无关,因此可以简记为 $\pi_1(X)$,称为 X 的基本群。由于单连通空间里任何曲线都可以收缩于一点,所以单连通空间的基本群是平凡的。

实际上,基本群是拓扑空间的不变量,也即两个同胚的道路连通的拓扑空间的基本群是同构的。因此基本群提供了一个分类连通黎曼曲面的视角。

下表列出了刚才举的四个黎曼曲面例子的基本群:

X	$\pi_1(X)$
\mathbb{C},\mathbb{S}^2	平凡群
$\mathbb{C}\setminus\{0\}$	\mathbb{Z}
\mathbb{T}^2	$\mathbb{Z} \times \mathbb{Z}$

2.2 覆叠映射与万有覆盖空间

通过上表知柱面 $\mathbb{C}/\mathbb{Z} \simeq \mathbb{C}\setminus\{0\}$ 的基本群是 \mathbb{Z} ,环面 $\mathbb{T}^2 \simeq \mathbb{C}/\mathbb{Z} \times \mathbb{Z}$ 的基本群是 $\mathbb{Z} \times \mathbb{Z}$,似乎基本群与商群的构造有某种联系。这种联系由覆叠映射与万有覆盖空间所揭示。

对拓扑空间 P,Q,所谓覆叠映射 $F:P\to Q$,是指对 Q 中任一点 y,存在它的一个邻域 V 使得 $F^{-1}(V)$ 是 P 中若干无交开集 U_{α} 的并,且每个 $F|_{U_{\alpha}}$ 都是 $U_{\alpha}\to V$ 的同胚。此

时 P 称为覆盖空间。如果 U_{α} 只有有限个,则数量被称为覆叠映射的叶数。由代数拓扑的知识知道,proper(proper 是指紧集的原像还是紧集的映射)且局部同胚的映射是覆叠映射。举一个例子:从复平面到柱面就有一个自然的覆叠映射 $\mathbb{C} \to \mathbb{C}/\mathbb{Z} : z \mapsto [z]$.(想象柱面上的一个小邻域,它映回去就是复平面上无数个小邻域的并,这些小邻域彼此恰好差个平移)。

设 $p:P\to Q$ 是覆盖。假若 P 是单连通的,则称 p 是万有覆盖,P 称为万有覆盖空间。有万有覆盖空间的唯一性定理:任何 Q 的单连通覆盖空间都是同胚的。因此万有覆盖空间在同胚下是唯一的。"万有"的含义是指满足"万有覆盖能覆盖住所有覆盖":即对万有覆盖 $\tilde{p}:\tilde{P}\to Q$ 与任何覆盖 $p:P\to Q$ (其中覆盖空间 P 是连通的),都存在唯一的覆盖 $f:\tilde{P}\to P$ 使得如下交换图成立:

对于黎曼面而言,任何黎曼面都是其万有覆盖模掉其基本群。因此回忆之前柱面 \mathbb{C}/\mathbb{Z} 的例子,实际上这就意味着柱面的万有覆盖空间是 \mathbb{C} ,由 \mathbb{C} 模掉基本群 \mathbb{Z} 给出。同理,环面 \mathbb{T}^2 的万有覆盖空间也是 \mathbb{C} . 而对于单连通的黎曼曲面,其万有覆盖空间显然是自身。

2.3 分歧覆盖

现在再给出一个覆叠映射例子。设 k 是正整数,复平面上单位圆盘到自身的全纯映射 $f: z \mapsto z^k$ 在 $z \neq 0$ 附近是一一对应,而在 z = 0 附近(去掉 0)是叶数为 k 的覆叠映射。

更一般地,有如下引理:如果 0 的邻域 $U\subseteq\mathbb{C}$ 内有一个全纯函数 f 满足 f(0)=0,但不全为 0,那么存在唯一的 k 使得在更小的邻域 U' 内会有全纯函数 g 使得 $f=g^k$ 并且 $g'(0)\neq 0$ 。实际上这个 k 就是 f 在 0 处零点的阶数。应用到连通的黎曼面 X,Y 上,对于非常值全纯映射 $F:X\to Y$ 及 $x\in X$,将 F 拉回到 \mathbb{C} 上的局部表示就可以应用刚才的引理,得出存在唯一的整数 k_x 使得找到 X 中 x 周围的 chart 与 Y 中 f(x) 周围的 chart,使得 F 被恰好表示为 $z\mapsto z^{k_x}$ 。

由此可引入分歧覆盖的概念: 设 $f:X\to Y$ 是拓扑空间的连续映射,如果对 $p\in X$,存在 p 的邻域使得 $f:U\setminus\{p\}\to f(U)\setminus\{f(p)\}$ 是有限叶数 k 的覆叠映射,则称 f 是分歧覆盖,称 p 覆盖 f(p) k 次。根据刚才的讨论,黎曼面之间的非常值全纯映射就是覆叠映射,且每个 $x\in X$ 覆盖 f(x) k_x 次。

回到黎曼面 X,Y 上的非常值 proper 全纯映射 $F:X\to Y$ 。设 $R\subseteq X$ 是满足 $k_x>1$ (相当于零点有重数了)的点 x 的集合,则因为非常值全纯函数导数不能全为 0,其零点具有孤立性,因此 R 是 X 中的离散子集。并且由 proper 映射把离散子集映到离散子集知 F(R) 在 Y 中离散,并且对任何 $y\in Y$,其原像组成的集合 $f^{-1}(y)$ 是 X 的有限子集(因为 $f^{-1}(y)$ 是紧集)。这个集合 R 中的点被称为 F 的分歧点,其像集 F(R) 中的点被称为 critical values。对 $y\in Y$,定义 $d(y)=\sum_{x\in F^{-1}(y)}k_x$,由于 $F^{-1}(y)$ 是有限集所以 d 是良定义的,它的意义是原像的个数(计重数)。可以证明 d(y) 是局部常值的,因此在 Y 连通的条件下,d(y) 就是常值函数,该不变量就被称为 F 的 degree。

运用 degree 的概念,甚至可以证明代数基本定理。设 $P: \mathbb{C} \to \mathbb{C}$ 是非常值多项式,利用球极投影转到 $\tilde{P}: \mathbb{S}^2 \to \mathbb{S}^2$,这样定义域就是紧的,因此 \tilde{P} 自动 proper。再由于映到的 \mathbb{S}^2 是连通的,故 \tilde{P} 的 degree 是常数,并且显然不为 0 (因为 $f^{-1}(\mathbb{S}^2) \neq \emptyset$)。所以每个点都有原像,故 \tilde{P} 是满射,推出 P 是满射,特别地 P(z) = 0 有根。

3 在黎曼面上做微积分

3.1 微分形式及其积分

为了能在黎曼面(一般地,在流形)上做微积分,我们需要精心定义微分形式、切空间、外微分、外积及微分形式的积分等各种概念,粗略地总结如下表:

0 -形式 $f \in \Omega_S^0$	$f: S \to \mathbb{R}$,光滑
切空间 TS_p	S 在 p 处的局部线性化
f 余切空间 T^*S_p	TS_p 的对偶空间
余切丛 T*S	$\bigcup_{p \in S} T^* S_p$
1 -形式 $\alpha \in \Omega^1_S$	$\alpha: S \to T^*S$,光滑
0-形式的外微分 df	$d:\Omega^0_S o \Omega^1_S$
1 -形式沿曲线 γ 的积分 $\int_{\gamma} \alpha$	$\int_0^1 \alpha_1 \frac{d\gamma_1}{dt} + \alpha_2 \frac{d\gamma_2}{dt}$
$\Lambda^2 E^*$	反对称双线性映射 $E \times E \to \mathbb{R}$ 的集合
外积 ∧	$\wedge: E^* \times E^* \to \Lambda^2 E^*$
2 -形式 $\rho \in \Omega^2_S$	$ \rho: S \to \bigcup_{p \in S} \Lambda^2 T^* S_p, $ 光滑
1-形式的外微分 dα	$d:\Omega^1_S o\Omega^2_S$
2 -形式沿曲面 S 的积分 $\int_S \rho$	$\int_{\mathbb{R}^2} R(x_1, x_2) \mathrm{d}x_1 \mathrm{d}x_2$

下面补充一下上表没有讲清楚的细节:

- 切空间 TS_p : S 在点 p 处的切空间定义为曲线 $\gamma: (-\epsilon, \epsilon) \to S$ $(\gamma(0) = p)$ 的等价类,等价关系 \sim 定义为 $\gamma_1 \sim \gamma_2 \Leftrightarrow \gamma_1$ 与 γ_2 的局部表示在 p 处的一阶导数相等。
- 余切空间 T^*S_p : 代数上可以直接定义为切空间的对偶空间。Donaldson 书上将 p 处的与切空间定义为 p 的邻域内光滑函数(0-形式)的等价类 $[df]_p$,等价关系 \sim 定义为 $f_1 \sim f_2 \Leftrightarrow f_1, f_2$ 的局部表示在 p 处的邻域内差为常数。如果选取局部坐标 x_1, x_2 ,那 么 $[df]_p = \frac{\partial f}{\partial x_1}[dx_1]_p + \frac{\partial f}{\partial x_2}[dx_2]_p$,因此 $[dx_1]_p$ 与 $[dx_2]_p$ 构成了 T^*S_p 的一组基,即赋予了 T^*S_p 线性空间结构。由此可以证明 $T^*S_p \simeq \mathbf{Hom}(TS_p, \mathbb{R})$,即与代数上对偶空间那个定义是一样的。
- 1-形式 $\alpha \in \Omega_S^1$: 由于 $[dx_1]_p, [dx_2]_p$ 构成了 T^*S_p 的一组基,所以存在 $\alpha_1(p)$, $\alpha_2(p)$ 使得 $\alpha(p) = \alpha_1(p)[dx_1]_p + \alpha_2(p)[dx_2]_p$. 现在让 p 在 S 上变动,则上式可以表示为 $\alpha = \alpha_1 dx_1 + \alpha_2 dx_2$ (其中 dx_i 定义为 $dx_i(p) = [dx_i]_p$, i = 1, 2)
- 0-形式的外微分 df: 定义 $df(p) = [df]_p$. 它满足性质: d(fg) = fdg + gdf. 这个定义与刚才 dx_i 的定义是兼容的,并且在局部坐标下 $df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2$.
- 1-形式沿曲线 γ 的积分 $\int_{\gamma} \alpha$: 局部坐标下可以写 $\alpha = \alpha_1 dx_1 + \alpha_2 dx_2$,代入曲线 γ 就 给出了拉回映射 $\alpha_1 \frac{d\gamma_1}{dt} + \alpha_2 \frac{d\gamma_2}{dt}$,然后定义 1-形式 α 沿 γ 的积分是其拉回映射在 [0,1] 上的积分。
- 外积 \wedge : 它需要满足 $(\alpha \wedge \beta)(e, f) = \alpha(e)\beta(f) \beta(e)\alpha(f)$. 这可以看成一个行列式,因此自然满足反对称性质 $\alpha \wedge \beta = -\beta \wedge \alpha$.

- 1-形式的外微分 $d\alpha$: 在局部坐标下写出 $\alpha = \alpha_1 dx_1 + \alpha_2 dx_2$. 定义 $d(\alpha) = (\frac{\partial \alpha_2}{\partial x_1} \frac{\partial \alpha_1}{\partial x_2})$. 它满足性质: 若 $f \in \Omega_S^0$ 且 $\alpha \in \Omega_S^1$,则 $d^2f = 0$ 且 $d(f\alpha) = df \wedge \alpha + fd\alpha$.
- 2-形式沿曲面 S 的积分 $\int_S \rho$: 如同刚才定义 1-形式的积分一样,在局部坐标下将 ρ 写成其拉回映射 $R(x_1,x_2)dx_1dx_2$,然后定义 ρ 在 S 上的积分是 $R(x_1,x_2)dx_1x_2$ 在 \mathbb{R}^2 (的某一紧支集)上的(勒贝格)积分。转换局部坐标则拉回映射将会差一个雅可比行列式。

外微分算子 d 与边界 ∂ 事实上是有对应关系的。比如 $d^2=0$ 的含义,其实就对应于 $\partial^2=0$,即边界的边界为空。事实上,这层对应关系在积分中被 Stokes 定理所概括: $\int_{\partial S} \alpha = \int_S d\alpha$,即微分形式沿 S 边界的积分等于其外微分沿 S 的积分。

3.2 de Rham 上同调与 Poincare 引理

如果 $d\omega=0$,则称微分形式 ω 是闭形式; 如果存在微分形式 η 使得 $\omega=d\eta$,则称 ω 是恰当形式。设 $\omega\in\Omega^i_S$,则显见 ω 是闭形式当且仅当 $\omega\in\ker(d:\Omega^i_S\to\Omega^{i+1}_S)$, ω 是恰当形式当且仅当 $\omega\in\operatorname{im}(d:\Omega^{i-1}_S\to\Omega^i_S)$ 。由于 $d^2=0$,所以所有恰当形式都是闭形式,故 $\operatorname{im}(d:\Omega^{i-1}_S\to\Omega^i_S)\subseteq\ker(d:\Omega^i_S\to\Omega^{i+1}_S)$,因此可以考虑后者对前者的商群,这就引出了 de Rham 上同调群。

对 i = 0, 1, 2,定义黎曼面 S 的 i 次 de Rham 上同调群是

$$H^{i}(S) = \ker(d: \Omega_{S}^{i} \to \Omega_{S}^{i+1})/\operatorname{im}(d: \Omega_{S}^{i-1} \to \Omega_{S}^{i}).$$

首先非常清楚, $H^0(\mathbb{C})=\mathbb{R}$,因为 $H^0(\mathbb{C})$ 就是那些 d 以后是 0 的函数,即常函数。而 Poincare 引理告诉我们,当 i=1,2 时, $H^1(\mathbb{C})=0$,也就是说, \mathbb{C} 上的闭形式与恰当形式 其实就是一回事。而这个结论对一般的黎曼曲面未必成立。比如,借助 Stokes 定理,我们可以计算 $\mathbb{C}\setminus\{0\}$ 的 1 次 de Rham 上同调群 $H^1(\mathbb{C}\setminus\{0\})=\mathbb{R}\neq 0$.

4 单值化定理

最后陈述一下单值化定理,在 Donaldson 这本书的 10.1 节,作为报告的总结(具体的证明限于水平不包含在本报告之内)。它给出了黎曼曲面在全纯同构下的分类。

定理 4.1. 连通、单连通且非紧的黎曼面等价于 ℂ 或上半平面 Ⅲ。

推论 4.1. 任何黎曼曲面都等价于以下之一:

- 黎曼球面 S²;
- \mathbb{C} , \mathbb{C}/\mathbb{Z} , \mathbb{C}/Λ , 其中 Λ 是 *lattice*;
- \mathbb{H}/Γ , 其中 Γ 是 $PSL(2,\mathbb{R})$ 的离散子群。

References

- [1] S K Donaldson. Riemann surfaces. Oxford University Press, 2011.
- [2] Night1611. An Introduction to Riemann Surfaces and Algebraic Curve. www.bilibili.com. URL: https://www.bilibili.com/video/BV14t4y1k7ua.