#### Chapter 10

Group IA (1)

Alkali Metals

Lithium, Sodium, Potassium, Rubidium and Cesium

Similar to  $H^+$  in that they form  $M^+$ . (other cations that are related are  $NH_4^+$  (like  $K^+$ ) and  $Tl^+$  ( $Rb^+$ ).

Na<sup>+</sup> and K<sup>+</sup> are very important physiologically. Cells differentiate between them by specific complexation reactions.

Li<sup>+</sup> salts are used to treat manic depressive disorders.

K<sup>+</sup>NO<sub>3</sub> is used in fertilizers.

Na<sup>+</sup> as NaOH, Na<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>SO<sub>4</sub> are among the top 50 chemicals in terms of production.

### What Dictates the Chemistry of Alkali Metals?

- Low ionization energies to make +1 cations
- M<sup>+</sup> ions are spherical and hard (low polarizability)
- High 2<sup>nd</sup> ionization energies prevent the +2 oxidation state
- Most bonding interactions are ionic due to low polarizability (Li<sup>+</sup> is strongest in terms of polarizing ability due to size/charge ratio in other words it forms the most covalent compounds)
- Li is least reactive, Cs is most reactive

Preparation of alkali metals is mainly by electrolysis of fused salts

$$NaCl_{(s)} \xrightarrow{Electrolysis} Na_{(s)} + 1/2 Cl_{2(g)}$$

### **Reactivity Comparisons**

$$Li_{(s)} + H_2O \xrightarrow{slow} LiOH + \frac{1}{2} H_2$$

$$Na_{(s)} + H_2O \xrightarrow{vigorous} NaOH + \frac{1}{2} H_2$$

$$K_{(s)} + H_2O \xrightarrow{\text{flames}} KOH + \frac{1}{2} H_2$$

$$Rb_{(s)}$$
 or  $Cs_{(s)} + H_2O \xrightarrow{explodes} MOH + \frac{1}{2} H_2$ 

$$6\text{Li} + \text{N}_2 \xrightarrow{\text{slow}} 2\text{Li}_3\text{N}$$
 ruby-red crystals unique among the alkali metals

## A Fundamental Difference Can Be Observed in O<sub>2</sub> Reactions

(main products in bold)

- (1)  $\underline{Li} + O_2 \rightarrow \underline{Li_2O} + \text{trace } \underline{Li_2O_2}$
- (2)  $\underline{Na} + O_2 \rightarrow \mathbf{Na_2O_2} \xrightarrow{O_2}$  you get  $NaO_2$  (if you force it) (3)  $\underline{K, Rb \ or \ Cs} + O_2 \rightarrow \mathbf{MO_2}$

$$M_2O$$
  $M_2O_2$   $MO_2$  oxide peroxide superoxide  $O^{2-}$   $O-O^-(O_2^{-2-})$   $O_2^-$ 

- Q Why differences?
- <u>A</u> The differences in reactivity with  $O_2$  can be attributed to cation size.

### Solutions of Alkali Metals in Ammonia NH<sub>3(1)</sub>

 $Na_{(s)}$  (finely divided)  $\Longrightarrow$  Na (in NH<sub>3</sub> solution)

$$Na^{+} + e^{-}$$
(dilute solutions)

- Q What do these equilibria mean?
- A That the NH<sub>3</sub> medium is able to "solvate" an electron. The solvated electron occupies a "cavity" in the NH<sub>3</sub>(1) where it is somewhat delocalized over a large volume so that the surrounding molecules are polarized. The polarized NH<sub>3</sub> molecules form the cavity due to NH<sub>3</sub> lone pair e<sup>-</sup> repulsions.

$$Na + NH_{3(1)} = Na^{+} + e^{-}$$

is stable without air or water, but eventually can react further to give:

NaNH<sub>2</sub> (sodium amide) + 
$$\frac{1}{2}$$
 H<sub>2</sub>

This reaction is facilitated by photochemical and catalytic routes

 $\frac{Binary\ Compounds}{oxides-M_2O,\ M_2O_2,\ MO_2}$   $\frac{hydroxides-MOH}{are\ viewed\ as\ metal\ oxides\ as\ well)}$   $\frac{arc\ viewed\ as\ metal\ oxides\ as\ well)}{salts-MX\ (X=halide\ for\ example)}$ 

## Oxides, Peroxides and Superoxides of Alkali Metals are Easily Hydrolyzed $M_2O + H_2O \implies 2M^+ + 2OH^-$

$$M_2O_2 + 2H_2O \implies 2M^+ + 2OH^- + H_2O_2$$

$$2MO_2 + 2H_2O \rightleftharpoons O_2 + 2M^+ + 2OH^- + H_2O_2$$

#### **Hydroxides**

- NaOH etc., white, very hygroscopic (deliquescent) solids (means they literally dissolve in the moisture from the air)
- solids also absorb CO<sub>2</sub> from the atmosphere (solutions do as well)

#### Salts

 $MX X^{-} = many types of anions most give colorless, crystalline ionic compounds$ 

Anomalies arise with lithium compounds – Why? Mainly due to its small size and its effect on lattice energies!

#### compare:

- (1) LiH stable to 900 °C NaH decomposes at 350 °C
- (2) Li<sub>3</sub>N stable Na<sub>3</sub>N does not exist at 25 °C
- (3) LiOH  $\xrightarrow{\Delta}$  Li<sub>2</sub>O i.e. it decomposes MOH<sub>(s)</sub>  $\xrightarrow{\Lambda}$  MOH<sub>(g)</sub> i.e. they sublime
- (4) LiOH is much less stable than the other MOH compounds
- (5)  $\text{Li}_2\text{CO}_3 \xrightarrow{\Delta} \text{Li}_2\text{O} + \text{CO}_2$ , thermally unstable carbonate (not so much for others)
- (6) LiF is not very soluble (more covalent)LiCl is soluble in pyridine(unlike NaCl which is very soluble in water)

## Solvation of M<sup>+</sup> alkali metal ions issues:

- first coordination sphere (How many waters are directly bound to M<sup>+</sup>?)
- total coordination sphere (How many total water molecules?)



 $Li(H_2O)_4^+$  is considered the first coordination sphere

$$Li(H_2O)_4^+ + 21 H_2O$$
additional was

additional water in the solvation shell

In other words Li<sup>+</sup> in H<sub>2</sub>O exerts an influence on 25 H<sub>2</sub>O molecules!

|                                                       | $\underline{Li}^+$ | $\underline{Na}^+$ | $\underline{K}^+$ | $\underline{Rb}^+$ | $Cs^+$ |
|-------------------------------------------------------|--------------------|--------------------|-------------------|--------------------|--------|
| <u>Ionic</u><br><u>Radii (Å)</u>                      | 0.90               | 1.16               | 1.52              | 1.66               | 1.81   |
| Approximate Hydrated Radii (Å)                        | 3.40               | 2.76               | 2.32              | 2.28               | 2.28   |
| Approximate Hydration Numbers (# of H <sub>2</sub> O) | 25.3               | 16.6               | 10.5              | 10.0               | 9.9    |
| Hydration Enthalpies (kJ/mol)                         | 519                | 406                | 322               | 293                | 264    |

Note that  $Li^+$ , the smallest ion, exerts the most influence on water  $\rightarrow$  it has the highest total hydration number.

Q Why?

A greater charge density

As a consequence, Li<sup>+</sup>, with its 25 hydration sphere H<sub>2</sub>O molecules, will not associate with anions in ion-exchange resins very well!

# Complexation of Cations by Crown Ethers and Cryptates

M<sup>+</sup> alkali metals are not easily dissolved in their salts into non-aqueous solvents. They need polar (usually H<sub>2</sub>O molecules) to stabilize them in their solvated forms. To circumvent this, chemists have used the two types of molecules shown below.



<u>crown ethers</u> - (cyclic ethers)



the number of O atoms and the total number of atoms in the ring are specified in the name:

"18-crown-6"

dicyclohexyl 18-crown-6

Binding is largely electrostatic in the cavity of the cyclic ether.

Important to have a close size match of the cavity and the ion if you want binding to be tight.

18-crown-6

 $Li^{+} < Na^{+}, Cs^{+} < Rb^{+} < K^{+}$ 

Binding

is less

Best size

match!



More potent and selective agents for binding alkali cations (and others). Both N and O atoms are present; they are polycyclic which means they can fully surround a cation.

Rb<sup>+</sup>(2,2,2-crypt)

These are very important reagents in organometallic chemistry for getting salts to dissolve in non-polar or low polarity solvents.



Figure 10-2 Part of the unit cell of the crystalline sodide [Na(2,2,2-crypt)] 'Na' showing a single sodium cation at the center of the 2,2,2-crypt ligand and the six nearest neighbor Na' (sodide) anions. [Reprinted in part with permission from F. J. Tehan, B. L. Barnett, and J. L. Dye, J. Am. Chem. Soc., 96, 7203–7208 (1974). Copyright © (1974) American Chemical Society.]

# Biological systems use a similar strategy for transporting alkali metals

Nature uses cyclic peptides like the ones shown below to transport M<sup>+</sup> across membranes.

#### For example:



Figure 10-3 The structure of the nonactin complex of K\*. [Reproduced by permission from D. A. Fenton, *Chem. Soc. Rev.*, 1977, 6, 325–343.]

#### Alkali Metal Organometallics

Li<sup>+</sup>R<sup>-</sup> R = Me, Bu, etc., are used to deliver R<sup>-</sup> groups in reactions. They react very swiftly with  $O_2$ ,  $H_2O$  and are pyrophoric which means that they burn in air.

Other Common Compounds Often Used In Organometallic Chemistry Alcohols, amines, and other X-H bonds are highly reactive towards the neutral alkali metals M.

Alkoxides 
$$M^{+}(OR)^{-}$$
 $M + ROH \rightarrow MOR + \frac{1}{2} H_{2}$ 
Same type of reaction as  $Li + H_{2}O \rightarrow LiOH + \frac{1}{2} H_{2}$ 

Amides 
$$M + NR_2H \rightarrow M^+(NR_2)^-$$
  
(from amines)  $M + NRH_2 \rightarrow M^+(NRH)^-$   
 $M + NH_3 \rightarrow M^+(NH_2)^-$ 

What is happening here? Redox chemistry of course. M is oxidized, H<sup>+</sup> is reduced





#### Chapter 11

# Group IIA (2) Elements Alkaline Earth Elements

Beryllium, Magnesium, Calcium, Strontium, Barium, Radium

Be important element in a negative sense – very toxic if its compounds are inhaled (destroys lungs) minor element in terms of technical importance

Mg, Ca, Sr, Ba are in many common minerals and in the ocean

- *e.g.* limestone which is CaCO<sub>3</sub> dolomite which is CaCO<sub>3</sub> · MgCO<sub>3</sub>
- Ra all isotopes of this element are radioactive

| Group IA Alkali Metals          | $\overset{\longrightarrow}{\longrightarrow}$ | Group IIA Alkaline Earth Metals                                 |
|---------------------------------|----------------------------------------------|-----------------------------------------------------------------|
| larger atomic radii             | $\rightarrow$                                | smaller atomic radii<br>(increased effective<br>nuclear charge) |
| lower melting and boiling point | $\longrightarrow$                            | higher melting and boiling point                                |
| lower densities                 | $\longrightarrow$                            | higher densities                                                |
| lower ionization energies       | $\longrightarrow$                            | higher ionization energies                                      |
| lower hydration energies        | $\longrightarrow$                            | higher hydration energies                                       |
| lower lattice<br>energies       | $\longrightarrow$                            | higher lattice<br>energies                                      |

## Chemistry of Group IIA (some highlights)

Be very small ionic radius

Be<sup>2+</sup> 0.31 Å compared to:

(Li<sup>+</sup> is 0.60 Å; Na<sup>+</sup> is 0.96 Å; K<sup>+</sup> is 1.33 Å;

Mg<sup>2+</sup> is 0.65 Å; Ca<sup>2+</sup> is 0.99 Å; etc.)

Due to the very small size of Be<sup>2+</sup>, it cannot exist as a simple cation in its compounds. Consequently, even BeF<sub>2</sub> and BeO are more covalent than they are ionic unlike other M<sup>2+</sup> species.

- linear
- coordinatively
unsaturated
- exists only in the gas
phase

Polymerization of  $BeX_2$  compounds is common  $[BeF_2]_n$ ,  $[BeCl_2]_n$ , etc.,



a portion of [BeCl<sub>2</sub>]<sub>n</sub> is above

Since BeX<sub>2</sub> compounds are so coordinatively unsaturated, they are useful as Lewis acids in many reactions

$$BeF_2 + 2F \rightarrow [BeF_4]^{2}$$

$$BeCl_2 + 2 R_2O \rightarrow BeCl_2(OR_2)_2$$
 (ether)

assumes tetrahedral coordination