



## Chapter 12

Message Authentication Codes

Problems occours When Two porties

## Communicating Authentication Requirements

MESSAGE

- - Release of message contents to any person or process not possessing the appropriate cryptographic key
- Traffic analysis
  - Discovery of the pattern of traffic between parties
- Masquerade
  - Insertion of messages into the network from a fraudulent source
- Content modification
  - Changes to the contents of a message, including insertion, deletion, transposition, and modification

- Sequence modification
  - Any modification to a sequence of messages between parties, including insertion, deletion, and reordering
- Timing modification
  - Delay or replay of messages
- Source repudiation
  - Denial of transmission of message by source
- **Destination repudiation** 
  - Denial of receipt of message by destination

Mac ko hash (alculot karnay k Jiga 2 Impul Chary DMess-27 (2) Secycl Kay

## Authentication Functions

#### Two levels of

#### Lower level

 There must be some sort of function that produces an authenticator



### Higher-level

 Uses the lower-level function as a primitive in an authentication protocol that enables a receiver to verify the authenticity of a message

- A function that maps a message of any length into a fixed-length hash value which serves as the authenticator
- Message encryption
  - The ciphertext of the entire message serves as its authenticator
- Message authentication code (MAC)
  - A function of the message and a secret key that produces a fixed-length value that serves as the authenticator





(b) Public-key encryption: confidentiality



(c) Public-key encryption: authentication and signature



(d) Public-key encryption: confidentiality, authentication, and signature

Figure 12.1 Basic Uses of Message Encryption





Figure 12.2 Internal and External Error Control

# Public-Key Encryption Message ki Authentication ki beat ho Rhi Han

- The straightforward use of public-key encryption provides confidentiality but not authentication
- To provide both confidentiality and authentication, A can encrypt M first using its private key which provides the digital signature, and then using B's public key, which provides confidentiality
- Disadvantage is that the public-key algorithm must be exercised four times rather than two in each communication



Figure 12.4 Basic Uses of Message Authentication Code (MAC)

## Requirements for MACs

Taking into account the types of attacks, the MAC needs to satisfy the following:



### Motory

The first requirement deals with message replacement attacks, in which an opponent is able to construct a new message to match a given MAC, even though the opponent does not know and does not learn the key

Collision Find Karts Mani The second requirement deals with the need to thwart a brute-force attack based on chosen plaintext

### P Kobable Message Attack:

The final
requirement
dictates that the
authentication
algorithm should
not be weaker with
respect to certain
parts or bits of the
message than
others



- Requires known message-tag pairs
  - A brute-force method of finding a collision is to pick a random bit string y and check if H(y) = H(x)

### Two lines of attack:

- Attack the key space
  - If an attacker can determine the MAC key then it is possible to generate a valid MAC value for any input x

togestay, itag

- Attack the MAC value
  - Objective is to generate a valid tag for a given message or to find a message that matches a given tag

### Cryptanalysis

- Cryptanalytic attacks seek to exploit some property of the algorithm to perform some attack other than an exhaustive search
- An ideal MAC algorithm will require a cryptanalytic effort greater than or equal to the brute-force effort
- There is much more variety in the structure of MACs than in hash functions, so it is difficult to generalize about the cryptanalysis of MACs



## Authenticated Encryption (AE)

- A term used to describe encryption systems that simultaneously protect confidentiality and authenticity of communications
- Approaches:
  - Hashing followed by encryption
  - Authentication followed by encryption
  - Encryption followed by authentication
  - Independently encrypt and authenticate
- Both decryption and verification are straightforward for each approach
- There are security vulnerabilities with all of these approaches

### Summary

- Message authentication requirements
- Message authentication functions
  - Message encryption
  - Message authentication code



Requirements for message authentication codes

- Security of MACs
  - Brute-force attacks
  - Cryptanalysis
- MACS based on block ciphers: DAA and CMAC
- Authentication encryption