This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Claims

 A glucose-solaeodine conjugate of the general formula I or a derivative thereof

wherein each of R_1 and R_2 are the same or different and represent, is a benzoyl or a pivaloyl group.

2. A method for the preparation of the glucose-solasodine conjugate as defined in claim 1, comprising the reaction of solasodine with a glucopyranosyl donor of general formula il

1

wherein each R3 independently represents a benzoyl, acetyl or pivaloyl group,

wherein R₄ is halogen selected from Ci, Br or I and R₅ is hydrogen or

R4 Is hydrogen and R5 Is SEt or SPh,

followed by optionally de-protecting the obtained glycoside to yield a compound of the formula V

and reestentication of the most reactive hydroxyl groups (OH-3 and OH-6) to yield a compound of the formula lia . .

wherein R2 is a group selected from pivaloyl or acetyl.

A method for the preparation of solamargine comprising the glycosylation 3. of the diol of formula lia

wherein $\rm R_2$ is defined as in claim 1 with an $\alpha\text{-L-rhamnopyranosyl}$ donor

to yield protected solamargine of formula III (1) which is de-esterified to yield solamargine of formula III (2)

$$R_{2}O \xrightarrow{H} R_{2}O \xrightarrow{H} R_{2$$

- (1) R1=Piv and R2= Benzoyl or Acetyl
- (2) R1=R2=H
- 4. The method according to claim 2, wherein the D-glucosepyranosyl donor is tetra-O-benzoyl-α-D-glucopyranosyl bromide, tetra-O-acetyl-α-D-glucopyranosyl bromide or tetra-O-plvaloyl-α-D-glucopyranosyl bromide.
- 5. The method according to claim 2 or 4, wherein the glycosylation reaction is carried out in the presence of a promoter selected from silver trifluoromethane sulfonate (silver triflate), boron trifluoride diethyl etherate, trimethylsilyl triflate bromide, N-jodosuccinimide or dimethyl thiomethyl sulfonium triflate, silver trifluoromethyltriflate.
- 6. The method of claim 2, wherein the protected glycoside is deprotected in methanol-dichloromethane solution by treatment with sodium methoxide, followed by neutralization with solid CO₂ or mild acid ion-exchange resin.
- 7. The method of claim 2, wherein the most reactive hydroxyl groups (OH-3 and OH-6) are protected by reesterification with pivaloyl chloride in pyridine solution.

8. The method of claim 3, wherein the rhamnose donor is tri-O-benzoyl-α-L-rhamnopyranosyl bromide, tri-O-pivaloyl-α-L-rhamnopyranosyl trichloro-acetimidate or a glyooside of the general formula IV

wherein R₆ is Br, Cl, I, SEt or SPh and R₇ is benzoyl, acetyl or pivaloyl.

9. The method of claim 3, wherein the protected solamargine is de-esterified by treatment with a base selected from sodium methoxide or sodium hydroxide in methanol-dichloromethane solution or a methanol-tetrahydrofuran-water mixture followed by neutralization with solid CO₂ or mild acid ion-exchange resin.