Практическое занятие 4

Схема Бернулли

Литература

- 1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистики. М.: Издательство «Юрайт», 2016.
- 2. Решетов С.В., Суслина И.А. Задачи для самостоятельного решения по теории вероятностей и математической статистике СПб: НИУ ИТМО, 2014.

Схема Бернулли

Несколько экспериментов называются независимыми, если любые события, возникающие в разных экспериментах, независимы в совокупности.

Схемой Бернулли (повторными независимыми испытаниями, биномиальной схемой) называют последовательность экспериментов, удовлетворяющих следующим условиям:

- эксперименты независимы;
- в каждом эксперименте возможны только два исхода появилось случайное событие \overline{A} (ycnex) или \overline{A} (неудача);
- вероятность A в каждом эксперименте одна и та же и равна p.

Вероятность \overline{A} в каждом эксперименте q=1-p.

Задача:

найти вероятность события — в n экспериментах событие A появится ровно m раз.

Имеем:

n экспериментов,

 $0 \le m \le n$ раз появляется событие A $\omega = (A, A, ..., A, \overline{A}, \overline{A}, ..., \overline{A})$ – один из

n-m

благоприятствующих исходов,

$$P(\omega) = p^m q^{n-m}$$

причем:

- все исходы равновероятны
- события, соответствующие этим исходам, несовместны
- число таких исходов равно $\, \mathcal{C}_n^m \,$

Теорема 1

Вероятность того, что в n экспериментах по схеме Бернулли событие A появится ровно m раз, вычисляется по формуле:

$$P_n(m) = C_n^m p^m q^{n-m}$$
 (1)

где
$$C_n^m = \frac{n!}{m!(n-m)!}$$
, $m = 0 \div n$

(1) – формула Бернулли (биномиальная формула).

Замечание

$$P_n(0) + P_n(1) + \ldots + P_n(m) =$$
 $= \sum_{m=0}^n \mathcal{C}_n^m p^m q^{n-m} = (p+q)^n = 1$, T.e.

сумма вероятностей всех исходов равна 1:

$$\sum_{\omega \in \Omega} P(\omega) = 1$$

Вывод: получаем вероятностное пространство (Ω , Σ , $P_n(m)$)

Следствие

вероятность появления события A в n испытаниях не более m_2 раз и не менее m_1 раз равна:

$$P_n(m_1 \le m \le m_2) = \sum_{m=m_1}^{m_2} C_n^m p^m q^{n-m}$$
 (2)

Вероятность появления хотя бы одного события

Пусть события A_1, A_2, \dots, A_n независимы в совокупности,

A — осуществление хотя бы одного из этих событий.

Обозначения:

 p_i = $P(A_i)$ — вероятность A_i , q_i = 1— p_i — вероятность неосуществления A_i .

Теорема 2

Вероятность появления хотя бы одного из независимых событий A_1, A_2, \ldots, A_n вычисляется по формуле:

$$P(A) = 1 - q_1 \cdot q_2 \cdot \dots \cdot q_n. \tag{3}$$

Следствие

Если все A_i равновероятны с вероятностью p, то

$$P(A) = 1 - q^n$$

где n — число экспериментов.

Число экспериментов, в которых событие A произойдет хотя бы один раз

Если событие A в каждом эксперименте может наступить с вероятностью p, то число экспериментов, которые нужно провести, чтобы событие A произошло хотя бы один раз, с вероятностью, не меньшей P, вычисляется по формуле:

$$n \ge \frac{ln(1-P)}{ln(1-p)} \tag{4}$$

Полиномиальная (мультиноминальная) схема

Эксперимент:

- *n*-кратное повторение одинаковых независимых испытаний,
- в каждом из испытаний может произойти только одно из событий A_1, A_2, \ldots, A_k ,
- события $A_1, A_2, ..., A_k$ несовместны,
- вероятность A_i равна p_i .

Теорема 3

Вероятность $P(m_1, m_2, ..., m_k)$ того, что в n экспериментах событие A_1 произойдет ровно m_1 раз, событие A_2 произойдет ровно m_2 раз,..., событие A_k произойдет ровно m_k раз, причем $m_1+m_2+...+m_k=n$, вычисляется по формуле:

$$P(m_1, m_2, ..., m_k) = \frac{n!}{m_1! m_2! ... m_k!} p_1^{m_1} p_2^{m_2} ... p_k^{m_k}$$
 (5)

Формула Пуассона

Теорема 4

Пусть число испытаний n по схеме Бернулли велико, а вероятность события A (ycnexa) p в одном испытании мала, причем мало также произведение $\lambda = np$.

Тогда вероятность $P_n(m)$ вычисляется по формуле:

$$P_n(m) \approx \frac{\lambda^m}{m!} e^{-\lambda}, \quad m = 0, 1, ...n$$
 (6)

Формула (6) называется формулой Пуассона.

Замечание:

- 1. формула (6) справедлива также для числа появлений события \overline{A} (*неудачи*) в том случае, когда мало $\lambda = nq$;
- 2. Значения функции $P(m, \lambda)$ для некоторых λ табулированы.

ПРИЛОЖЕНИЕ

Таблица П.1

Значения функции
$$P(m;\lambda) = \frac{\lambda^m}{m!} e^{-\lambda}$$

m	λ									
	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
0 1 2 3 4 5 6 7 8	0,90484 09048 00452 00015	81873 16375 01637 00109 00005	74082 22225 03334 00333 00025 00002	III had be the physical in	60653 30327 07582 01264 00158 00016 00001		49659 34761 12166 02839 00497 00070 00008 00001	00123 00016	40657 36591 16466 04940 01111 00200 00030 00004	36788 36788 18394 06131 01533 00307 00051 00007

m	λ									
	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0,22313 33470 25102 12551 04707 01412 00353 00076 00014 00002	13534 27067 27067 18045 09022 03609 01203 00344 00086 00019 00004 00001	08208 20521 25652 21376 13360 06680 02783 00994 00311 00086 00022 00005 00001	04979 14936 22404 22404 16803 10082 05041 02160 00810 00270 00081 00022 00006 00001	03020 10569 18496 21579 18881 13217 07710 03855 01687 00656 00230 00073 00021 00006 00001	01832 07326 14653 19537 19537 15629 10420 05954 02977 01323 00529 00192 00064 00020 00006	01111 04999 11248 16872 18981 17083 12812 08236 04633 02316 01042 00426 00160 00055 00018	00674 03369 08422 14037 17547 17547 14622 10444 06528 03627 01813 00824 00343 00132 00047 00016 00005 00001	00409 02248 06181 11332 15582 17140 15712 12345 08487 05187 02853 01426 00654 00277 00109 00040 00014 00004	00248 01487 04462 08924 13385 16062 13768 10326 06884 04130 02253 01126 00520 00223 00089 00033 00012 00004 00001