VERMES MIKLÓS Fizikaverseny 2015. április 17. II. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

X. osztály

I. feladat

- 1.) Igazoljátok, hogy egy állandó hőmérsékletű légkörben, a rugalmas falú léggömbre ható felhajtóerő állandó, függetlenül a magasságtól függő nyomásváltozástól! 3 p
- 2.) Egy zárt tartályban T hőmérsékletű gáz található, a tartály fala pedig (kezdetben) T_1 hőmérsékletű. Mikor nyomja jobban a gáz a tartály falát, ha $T_1 < T$, vagy ha $T_1 > T$?
- 3.) Az ábrán látható kapcsolásban az A és B pontok közötti kapocsfeszültség 300 V, az ellenállások egyenként 100 Ω -osak. Mit mutatnak az M-el jelölt mérőműszerek, ha ezek:
 - a) ideális voltmérők,
 - b) ideális ampermérők.

4 p

4 p

3 p

II. feladat

- 1.) Idealis gáz olyan folyamaton megy át, amelynek grafikonja P-V koordinátákban egy egyenes. A kezdőállapotban $V_1 = 2 \ dm^3$, $P_1 = 10^5 \ Pa$, $T_1 = 300 \ K$, a végállapotban $V_2 = 8 \ dm^3$ és $P_2 = 2.5 \cdot 10^4 \ Pa$. Mekkora a gáz legmagasabb hőmérséklete a folyamat során, és ezt melyik állapotban éri el?
- 2.) Az ábrán látható *végtelen* négyzetrács minden éle azonos R ellenállású. Mekkora két szomszédos rácspont között az eredő ellenállás?

III. feladat

Adott az ábrán megrajzolt körfolyamat V-T diagrammja.

- a.) Ábrázoljátok a körfolyamatot P-V és P-T koordinátákban!
- b.) Számítsátok ki a körfolyamat hatásfokát az $\varepsilon = \frac{V_3}{V_1}$ sűrítési arány és a $\gamma = \frac{C_P}{C_V}$ adiabatikus tényező függvényében!
- c.) Hasonlítsátok össze a körfolyamat hatásfokát annak a Carnot ciklusnak a hatásfokával, amely az adott körfolyamat szélső hőmérsékletei között működne!

Adottak: $\varepsilon = 2 \operatorname{\acute{e}sy} = 1,4$.