Za) Rational amendeal Form R=F[x], Fa field, V a fin.-gen. R-medule, T:V->V the lin. trans. determined T(v)=x.y.

Invariant Factor decomp:

a,,..., a, EF (x), deg (a;) ≥ 1, a, laz !... laz.

Observations:

- If we assume all 9;15 are manic, then they are unique.
- · V is a fin-dlm. v.s over F, but R=FCxJ 73 inf-gen-over F.

=> r=0 => V is a topsion R-medule

i.e. YveV, 3feFCxJ s.t. f.v=f(7)(x)=0

· Ann(V)= {feF(x]: f.y=0, Y veV]

is an ideal in R

⇒ Ann(Y)= (m7) for some monte m7 ∈ F(x).

my is called the minimal polynamial for I.

From the inv. fact. decom, m=al,
and q:/m, HI=i=l.

· Each invariant factor corresponds to a 7-invariant
subspace (submodule obtained by projection onto
Mat coordinate).
Now write
$a'(x) = \sum_{i=0}^{i=0} p' x_i (p^{k-1}).$
Then [1, x,, x=1] is an F-basis for
F[x]/(a,). W.r.t. Mrs broks, the matrix
for multi. by x is: Suraboh work
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$C_{\alpha} = 0.1.$
1 ; ; o ' xk-2 xk-1
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Companton materix of q.
Chasing bases in an analogous way for each invariant factor,
and reinterpretting this in terms of Y and T, we can choose
a basis for V s.f. the matrix for Tis
(Ca, OOO) Rational commical form for T.
Toursell Constitution I are

By interpreness of inv. fact. decemps, it is not difficult to show that rat. con. form associated to a lin. trong. is unique. Important facts:

- · The rational consumed form is computable and has entires in F.
- The rational cumentral forms of two lin. transformations on V are the some if they are outlar transformations.

 2b) Jordan commical form

Some sutrop, but use he use he elem. div. decomps. to write

p; EF(x) irreduable.

Assume for simplicity Next each invortant factor from before factors in F(x) as a product of linear factor. Suppose $a_i(x) = \prod_{i=1}^{s} (x - \lambda_i)^{q_i}$, $\lambda_i \in F$, $q_i \in M$, $\lambda_i \neq \lambda_j$ for $i \neq j$.

(side note: Mis is how you get the elem. div. decomp.)

Consider one of these factors, P/(x-2,)~,
and choose the F-basts
$(x-\lambda_1)^{\alpha_1-1}(x-\lambda_1)^{\alpha_1-2}(x-\lambda_1)^{\alpha_1}$
for the F-4.5. P/(x-x,)41.
The matrix for mult. by x = 2,+ (x-2,) w.r.t. this
book is:
Santon mark;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Tordon block of size $\alpha_1, \omega.r.t. \lambda_1$ $(x-\lambda_1)^{\alpha_1-1} \mapsto \lambda_1(x-\lambda_1)^{\alpha_1-1}$ $(x-\lambda_1)^{\alpha_1-1} \mapsto \lambda_2(x-\lambda_1)^{\alpha_1-1}$
Doing this for each factor allows us to choose in P/(x-2/31
a busis for Y w.r.t. which the matrix for 1 is:
Ji here each J; is a Jirdon block. This mat is unique up to reordering blocks.
Jordan canonical form for T

One neve result:

Thun (Cayley-Hamilton Mun): my X7

Pf: Choose basis s.d. T is in Jordon can. form.

Note Mat det (x-x, (*)) = (x-2;)^q; B)

() x-x;