INE5607 – Organização e Arquitetura de Computadores

Hierarquia e Gerência de Memória

Aula 27: Memória virtual

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

Sumário

- Princípios da memória primária
- Memória virtual
- Tabela de páginas
- TLB
- Considerações finais
- Exercícios

PRINCÍPIOS DA MEMÓRIA PRIMÁRIA

- Problemas a serem tratados na memória principal
 - –O que fazer se eu posso endereçar 4 GB mas tenho apenas 2 GB de memória no meu computador?
 - Escrevo programas que usam apenas 2 GB?
 - E se eu trocar de computador?

- Problemas a serem tratados na memória principal
 - Como fazer para rodar programas diferentes ao mesmo tempo?
 - Dados não devem se misturar/sobrescrever!
 - Programas de usuários diferentes?
 - Dividir a memória para cada programa/usuário?

- Soluções
 - Como ver mais memória principal do que existe?
 - Memória principal como cache da memória secundária!
 - Princípio da localidade também se aplica
 - Paralelos entre cache e memória principal

Memória Cache	Memória principal
Blocos	Páginas/segmentos
Falha de cache	Falta de página

- Soluções
 - Como rodar programas diferentes ao mesmo tempo?
 - Cada programa enxerga endereços "virtuais" na memória
 - Endereços virtuais são mapeados para endereços reais
 - Assim como endereços de blocos são mapeados para posições na cache

MEMÓRIA VIRTUAL

- Memória virtual
 - Técnica de usar a memória principal como cache da memória secundária
 - Programas enxergam endereços virtuais que são mapeados para endereços físicos
 - Tradução e mapeamento feitos de forma automática
 - Anteriormente cabia ao programador o controle do que trazer para a memória

Requisitos

Eficiência

- Degradação de desempenho aceitável
 - Busca de dados em disco pode levar 100.000x mais tempo do que em memória

-Segurança

- Garantia de não interferência
 - Um processo n\u00e3o enxerga e n\u00e3o altera dados de outro processo

- Propriedades
 - Cada processo tem seu próprio espaço de endereçamento (virtual)
 - Proteção dos espaços de endereçamento
 - Espaço de endereçamento pode ser maior do que a memória física

- Propriedades
 - Localidade
 - Somente porções em uso precisam estar na memória
 - Porções inativas ficam em disco
 - Relocação de programas e dados
 - Simplifica carregar programas para execução

Tradução de endereço

- Transformação de endereço virtual para endereço físico
- Exemplo
 - Páginas de 4KB (2¹²)
 - 4GB endereçáveis (2³²)
 - 1GB de memória física (2³⁰)

Tradução de endereço

- Transformação de endereço virtual para endereço físico
- Exemplo
 - Páginas de 4KB (2¹²)
 - 4GB endereçáveis (2³²)
 - 1GB de memória física (2³⁰)

Virtual: 0001 0010 0100 1000 0000 1110 1101 1011

Físico: 11 0011 1111 0000 0101 1110 1101 1011

- Tradução de endereço
 - Memória virtual de 2^v bytes
 - Memória física de 2^f bytes
 - Páginas de 2^p bytes
 - Bits do offset de página = p
 - Bits do número de página virtual = v-p
 - -Bits do número de página física = f-p

Mapeamento virtual para físico

Mapeamento virtual para físico

- Memória primária cheia Dados armazenados na mem. física 0 5 4 4 m 3 3 2 2 1 1 0 0 Espaço de end. Memória física Espaço de end. virtual do Processo 2 virtual do Processo 1 Swapping INE5607 - Prot. Laercio Lima Pilla

- Características
 - Mapeamento completamente associativo
 - Remover faltas de páginas por conflitos
 - Mapeamento gerenciado em software
 - Sobrecusto é pequeno comparado ao custo de ter uma página na memória secundária

- Como saber o mapeamento de cada página?
 - Tentar bater todas as posições da memória com o endereço virtual base?
 - -Usar uma tabela de tradução
 - Uma por processo
 - Gerenciada pelo SO

Tabela de tradução

Tabela do Processo 1

TABELA DE PÁGINAS

- Estrutura de dados usada para a tradução de endereços
- Indexada pelo número de página virtual
- Contém o número de página física
- Uma por processo
- -Não é uma cache!
 - Todas posições são mapeadas por ela

- Exemplo
 - Páginas de 1KB
 - Memória virtual de 8KB
 - Memória física de 4KB

 Índice
 End. físico

 0

 1
 3

 2

 3
 2

 páginas
 4
 0

 5

 6

 7

Endereço virtual 0 0100 1001 1000 Endereço físico?

- Componentes da tabela de páginas
 - -Bit de validade (1)
 - Indica se a página está na memória principal ou memória secundária
 - Bits de proteção (2)
 - Indica se página pode ser lida, escrita, ou ambos
 - -Bit de modificado (1)
 - Indica se dados foram escritos na página
 - Bit de referenciado (1)
 - Indica se a página foi acessada recentemente
 - Número de página física (f-p)

- Exemplo
 - Páginas de 1KB
 - Memória virtual de 8KB
 - Memória física de 4KB

	Índice	Validade	Proteção (r/w)	Modificado	Referenciado	End. físico
Tabela de páginas	0	0				-
	1	1	11	1	1	3
	2	0				-
	3	1	10	0	1	2
	4	1	11	0	0	0
	5	0				-
	6	0				-

- Tamanho da tabela de páginas
 - −2^v endereços virtuais, 2^f físicos
 - -2^p bytes em uma página
 - b bits extras (validade, proteção, etc.)
 - -2^{v-p} linhas na tabela
 - Linhas de b+f-p bits
 - -Tamanho total = $2^{v-p*}(b+f-p)$ bits

Exemplo

- -512KB endereçáveis (2¹⁹), 64KB físicos (2¹⁶)
- Páginas de 2KB (2¹¹)
- -5 bits de controle
- $-N^{\circ}$ de linhas = $2^{19-11} = 2^{8} = 256$
- -Tamanho das linhas = 5+16-11 = 10
- Tamanho da tabela de página = 256 * 10 = 2560 bits = 320 bytes

- Processo de tradução
 - Programa tenta acessar dado em memória
 - Sistema obtém o número de página virtual a partir do endereço
 - Sistema verifica entrada na tabela de páginas
 - Se válida, retorna nº de página física
 - Se inválida, traz página do disco e retorna nº de página física
 - -Sistema busca o dado na memória principal

- Quem é esse sistema?
 - -Memory Management Unit
 - Unidade de gerenciamento de memória
 - Parte do processador
 - Desempenho!
 - Sistema responsável pela tradução de endereços
 - Envolve o hardware e o sistema operacional

- Processo de tradução
 - Programa tenta acessar dado em memória
 - MMU obtém o número de página virtual a partir do endereço
 - MMU verifica entrada na tabela de páginas
 - Se válida, retorna nº de página física
 - Se inválida, traz página do disco e retorna nº de página física
 - MMU busca o dado na memória principal

- Problema de desempenho
 - Cada acesso à memória principal vira dois acessos!
 - Um para obter o número de página física
 - Outro para obter o dado da memória principal
 - Como acelerar isso?
 - E se tivéssemos uma cache para a tabela de páginas?

TLB

TLB

- Translation Look-aside Buffer
 - Cache de tradução
 - Cache da tabela de páginas de um programa
 - Se o endereço para traduzir não está na TLB
 - Busca na tabela de páginas
 - Coloca endereço na TLB para casos futuros
 - Se o endereço está na TLB, traduz automaticamente

TLB

 Se o endereço que o programa usa é virtual, a cache usa endereços virtuais ou físicos?

Cache fisicamente endereçada

- Todo acesso à cache passa primeiro pela TLB
- TLB tem que ser supermegaextra rápida

Cache virtualmente endereçada

- TLB só é necessária quando se sai da cache
- Precisa identificar de qual thread é o endereço...

CONSIDERAÇÕES FINAIS

Considerações finais

- Memória virtual permite
 - Compartilhar a memória com outros processos e usuários

- Prover um espaço de endereçamento ao programador maior do que a memória física
- Proteção dos dados

Considerações finais

- Características principais da memória virtual
 - Divisão da memória em páginas
 - Tradução de endereços virtuais para físicos
 - Através da tabela de páginas
 - Tabela na memória principal
 - Acelerada através da TLB
 - Cache da tabela

EXERCÍCIOS

 Dada um sistema que endereça 16 GB de memória física com palavras de 64 bits e uma cache 4-associativa com 256 blocos de 16 bytes cada, apresente o tamanho efetivo da cache.

 Sabendo que a tabela de páginas ocupa 64KB em um sistema que endereça 64MB de memória virtual com páginas de 8KB, qual é o tamanho da memória principal se apenas 1 bit é usado para controle na tabela?

 Utilizando a tabela de páginas abaixo, traduza os seguintes endereços virtuais: 0xDCDC, 0x0220, 0xFAFA

Índice	Validade	Proteção (r/w)	Modificado	Referenciado	End. físico
0	1	11	0	0	0x00
1	1	11	1	1	0x13
2	1	10	1	0	0x26
3	1	10	0	1	0x39
4	1	11	0	0	0x52
5	1	11	1	0	0x65
6	1	10	1	0	0x78
7	1	10	0	1	0x91

 Calcule quantos ciclos a tradução de endereços adiciona ao CPI de um processador tendo em vista as informações abaixo.

-TLB

• Hit rate: 95%

• Hit time: 1 ciclo

• Miss penalty: 100 ciclos

INE5607 – Organização e Arquitetura de Computadores

Hierarquia e Gerência de Memória

Aula 27: Memória virtual

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

