无穷级数

Didnelpsun

目录

1	1 常数项级数												
	1.1	概念 .			1								
		1.1.1	基本概念		1								
		1.1.2	性质		1								
	1.2		2										
		1.2.1	正项级数		2								
			1.2.1.1	概念	2								
			1.2.1.2	收敛原则	2								
			1.2.1.3	比较判别法	2								
			1.2.1.4	比较判别法极限性质	3								
			1.2.1.5	比值判别法	3								
			1.2.1.6	根值判别法	4								
		1.2.2	交错级数		4								
			1.2.2.1	概念	4								
			1.2.2.2	莱布尼兹判别法	4								
		1.2.3	任意项级	数	5								
			1.2.3.1	概念	5								
			1.2.3.2	绝对收敛	5								
			1.2.3.3	条件收敛	5								
2	幂级	.数			6								
	2.1	概念 .			6								
		211	定义		6								

		2.1.2	阿贝尔定	理									7
		2.1.3	收敛域.										7
			2.1.3.1	具体型									7
			2.1.3.2	抽象型									8
	2.2	幂级数	求和函数										9
		2.2.1	概念										9
		2.2.2	运算法则	J									9
		2.2.3	性质										10
		2.2.4	重要展开	式									10
	2.3	函数展	开为幂级	数									11
		2.3.1	概念										11
		2.3.2	求法										11
			2.3.2.1	直接法									11
			2.3.2.2	间接法									11
0	借田	□上 <i>4</i> ㄲ 米৮											
3	博里	叶级数											11
	3.1	* 三角	级数										11
	3.2	函数展	开为傅里	叶级数.									12

1 常数项级数

1.1 概念

级数的经典悖论为芝诺悖论。

1.1.1 基本概念

定义: 给定义一个无穷数列 $u_1, u_2, \dots, u_n, \dots$, 将其各项用加号连起来的得到的记号 $\sum_{n=1}^{\infty} u_n$, 即 $\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$ 叫做**无穷级数**,简称**级数**,其中 u_n 称为该级数的**通项**。

若 u_n 是常数而不是函数,则 $\sum\limits_{n=1}^{\infty}u_n$ 就被称为**常数项无穷级数**,简称**常数项** 级数。

 $S_n = u_1 + u_2 + \cdots + u_n$ 称为级数的部分和, $\{S_n\}$ 是级数的部分和数量。

定义: 若 $\lim_{n\to\infty} S_n = S$, 则 $\sum_{n=1}^{\infty} u_n$ 收敛, 并称 S 为该收敛级数 $\sum_{n=1}^{\infty} u_n$ 的和;

若 $\lim_{n\to\infty} S_n$ 不存在或为 $\pm \infty$,则 $\sum_{n=1}^{\infty} u_n$ 发散。

研究 $\sum_{n=1}^{\infty} u_n$ 收敛还是发散, 就是研究级数 $\sum_{n=1}^{\infty} u_n$ 的敛散性。

在级数 $\sum_{n=1}^{\infty} u_n$ 去掉前 m 项,得 $\sum_{n=m+1}^{\infty} u_n = u_{m+1} + u_{m+2} + \cdots$,称为级数 $\sum_{n=1}^{\infty} u_n$ 的 m 项后余项

1.1.2 性质

- 1. 线性性质: 若级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 均收敛,且其和分别为 S, T, 则任给常数 a,b, 有 $\sum_{n=1}^{\infty} (au_n + bv_n)$ 也收敛,且其和为 aS + bT,即 $\sum_{n=1}^{\infty} (au_n + bv_n) = a\sum_{n=1}^{\infty} u_n + b\sum_{n=1}^{\infty} v_n$ 。
- 2. 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则其任意 m 项后余项 $\sum_{n=m+1}^{\infty} u_n$ 也收敛;若存在 m 项后余项 $\sum_{n=m+1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛。
- 3. 级数收敛必要条件: 若级数 $\sum_{n=1}^{\infty} u_n$ 首先,则 $\lim_{n\to\infty} u_n = 0$ 。

证明性质三: $u_n = S_n - S_{n-1}$,所以 $\lim_{n \to \infty} = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0$ 。极限为 0 不一定收敛。

1.2 级数敛散性判别

1.2.1 正项级数

1.2.1.1 概念

定义:若通项 $u_n \geqslant 0$, $n = 1, 2, \cdots$,则 $\sum_{n=1}^{\infty} u_n$ 为正项级数。

1.2.1.2 收敛原则

定理: 正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充要条件是其部分和数列 $\{S_n\}$ 有界。(某一函数在固定区间内变化率是有界的,则变化范围是有界的)

证明:必要性:由于 $u_n \ge 0$, $\therefore S_n = u_1 + u_2 + \dots + u_n \ge 0$,且 $S_1 \le S_2 \le \dots \le S_n \le \dots$, $\{S_n\}$ 单调不减且下界为0。当 $\sum_{n=1}^{\infty} u_n$ 收敛时, $\lim_{n\to\infty} S_n$ 存在,则 $\{S_n\}$ 必有上界。有上界下界则 $\{S_n\}$ 有界。(某一函数在固定区间内变化率是有界的,则变化范围是有界的)

充分性: 由于 $\{S_n\}$ 单调不减,所以根据单调有界准则, $\{S_n\}$ 收敛,即 $\lim_{n\to\infty}S_n$ 存在,于是 $\sum_{n=0}^{\infty}u_n$ 收敛。

 $\frac{n=1}{2}$ 基本就是使用放缩法判断是否有界。

定理: 等比级数 (几何级数):
$$\sum_{n=21}^{\infty} \frac{1}{a} q^{n-1} \begin{cases} |q| < 1, 收敛 \\ |q| \ge 1, 发散 \end{cases}$$

例题: 判断级数 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ 的敛散性。

解: $S_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > n \frac{1}{\sqrt{n}} = \sqrt{n}$, 当 $n \to \infty$ 时 $\sqrt{n} \to \infty$, 无上界所以发散。

1.2.1.3 比较判别法

定理: 给出两个正项级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$, 若从某项开始有 $u_n \leqslant v_n$ 成立, 则:

①若 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛;②若 $\sum_{n=1}^{\infty} u_n$ 发散,则 $\sum_{n=1}^{\infty} v_n$ 也发散。即大的收敛小的也收敛,小的发散大的也发散。

例题: 判断调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 的敛散性。

$$\mathfrak{M}: : x > 0, \quad x > \ln(1+x), \quad \frac{1}{n} > \ln\left(1+\frac{1}{n}\right).$$

又对于
$$\ln\left(1+\frac{1}{n}\right) = \ln\frac{n+1}{n} = \ln(n+1) - \ln n$$
。

$$S_n = \ln \frac{2}{1} + \ln \frac{3}{2} + \dots + \ln \frac{n+1}{n} = \ln 2 - \ln 1 + \ln 3 - \ln 2 + \dots + \ln (n+1) - \ln n = \ln (n+1)$$
. $\stackrel{\text{def}}{=} \ln (n+1)$ $\stackrel{\text{def}}{=} \ln (n+1)$ $\stackrel{\text{def}}{=} n \to \infty$ $\stackrel{\text{def}}{=} n \to \infty$.

所以
$$\sum\limits_{n=1}^{\infty}\ln\left(1+\frac{1}{n}\right)$$
 发散,则 $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ 也发散。
定理: p 级数: $\sum\limits_{n=1}^{\infty}\frac{1}{n^p}\left\{\begin{array}{l} p>1,$ 收敛 $p\leqslant1,$ 发散 。

1.2.1.4 比较判别法极限性质

是比较判别法的推论,利用极限的阶数来比较。

给出两个正项级数
$$\sum\limits_{n=1}^{\infty}u_n$$
, $\sum\limits_{n=1}^{\infty}v_n$, $v_n\neq 0$, 且 $\lim\limits_{n\to\infty}\dfrac{u_n}{v_n}=A$:

1. 若
$$A=0$$
,则当 $\sum\limits_{n=1}^{\infty}v_n$ 收敛时, $\sum\limits_{n=1}^{\infty}u_n$ 也收敛。

2. 当
$$A = +\infty$$
, 当 $\sum_{n=1}^{\infty} v_n$ 发散时, $\sum_{n=1}^{\infty} u_n$ 也发散。

3. 若
$$0 < A < +\infty$$
,则 $\sum_{n=1}^{\infty} v_n$ 与 $\sum_{n=1}^{\infty} u_n$ 具有相同敛散性。

例题: 判断
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \sin\frac{1}{n}\right)$$
 敛散性。

解: 令 $\frac{1}{n} = x$, $n \to \infty$ 所以 $x \to 0^+$ 。当 $x \to 0^+$, $x - \sin x \sim \frac{1}{6}x^3$ 。
$$\therefore \lim_{n \to \infty} \frac{\frac{1}{n} - \sin\frac{1}{n}}{\frac{1}{n^3}} = \frac{1}{6} \neq 0$$
,所以 $\frac{1}{n} - \sin\frac{1}{n}$ 与 $\frac{1}{n^3}$ 具有相同敛散性。

根据 p 级数定理, p=3>1, 所以 $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \sin \frac{1}{n}\right)$ 收敛。

1.2.1.5 比值判别法

也称为达朗贝尔判别法。

定理: 给出一正项级数 $\sum_{n=1}^{\infty} u_n$,若 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$,则: ①若 $\rho < 1$,则 $\sum_{n=1}^{\infty} u_n$ 收敛; ②若 $\rho > 1$,则 $\sum_{n=1}^{\infty} u_n$ 发散。

注意: $\rho=1$ 时无法根据此判断 $\sum\limits_{n=1}^{\infty}u_n$ 敛散性,如 $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ 发散,但 $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ 收敛。

适用于含有 a^n , n!, n^n 的通项。

例题: 判断级数 $\sum_{n=1}^{\infty} \frac{|a|^n n!}{n^n}$ 的敛散性,其中 a 为非零常数。

$$\Re \colon \stackrel{\text{id}}{\text{id}} u_n = \frac{|a|^n n!}{n^n}, \quad \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = |a| \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = |a| e^{\lim_{n \to \infty} n \ln \frac{n}{n+1}} = |a| e^{\lim_{n \to \infty} n (\frac{n}{n+1} - 1)} = |a| e^{\lim_{n \to \infty} n (\frac{n}{n+1} - 1)} = |a| e^{-1} = \frac{|a|}{e}.$$

若 0 < |a| < e,所以收敛;若 |a| > e,所以发散;若 |a| = e,则回代得到 比值 $e\left(\frac{n}{n+1}\right)^n = \frac{e}{(1+\frac{1}{n})^n} \to 1^+$,且 $u_1 = e$,∴ $u_n > u_1 > 0$,所以发散。

1.2.1.6 根值判别法

也称为柯西判别法。

定理: 给出正项级数 $\sum_{n=1}^{\infty} u_n$,若 $\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$,则①若 $\rho < 1$,则 $\sum_{n=1}^{\infty} u_n$ 收 敛;若 $\rho > 1$,则 $\sum_{n=1}^{\infty} u_n$ 发散。 适用于含有 a^n , n^n 的通项。

同理 $\rho = 1$ 也会失效。

例题: 判断级数
$$\sum_{n=1}^{\infty} \left(n \sin \frac{1}{n} \right)^{n^3}$$
 的敛散性。
$$\text{解: 记 } u = \left(n \sin \frac{1}{n} \right)^{n^3}, \text{则 } \lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \left(n \sin \frac{1}{n} \right)^{n^2} = e^{\lim_{n \to \infty} n(n \sin \frac{1}{n} - 1)} = e^{\lim_{n \to \infty} \frac{1}{n} - \frac{1}{n}} = e^{-\frac{1}{6}} < 1, \text{ 所以收敛。}$$

1.2.2 交错级数

1.2.2.1 概念

定义: 若级数各项正负相间出现,则这样的级数是交错级数,一般写为 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n = u_1 - u_2 + u_3 - u_4 + \dots + (-1)^{n-1} u_n + \dots, \ \, \sharp \, \forall \, u_n > 0.$

1.2.2.2 莱布尼兹判别法

定义: 给出一交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$, $u_n > 0$, $n = 1, 2, \cdots$, 若 $\{u_n\}$ 单调 不增 $u_n \geqslant u_{n+1}$ 且 $\lim_{n \to \infty} = 0$,则该级数收敛。

例题: 判断交错调和级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ 的敛散性。

解:
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{n} = 0$$
。
且 $\frac{1}{n} > \frac{1}{n+1}$,所以级数收敛。

例题: 判断级数 $\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + a^2})$ 的敛散性,其中 a 为非零常数。

解:
$$\because \sin(\alpha + n\pi) = (-1)^n \sin \alpha$$
。 $\therefore \sin(\pi \sqrt{n^2 + a^2}) = \sin(\pi \sqrt{n^2 + a^2} - n\pi + n\pi) = (-1)^n \sin\left(\frac{a^2\pi}{\sqrt{n^2 + a^2} + n}\right)$ 。

记 $u_n = \sin\left(\frac{a^2\pi}{\sqrt{n^2+a^2}+n}\right)$,又 $n\to\infty$ 时 $\frac{a^2\pi}{\sqrt{n^2+a^2}+n}\to 0^+$ 且单调不增, $\sin x$ 在 $x\to 0^+$ 时也是单调函数,所以 $\lim_{n\to\infty}u_n=0$ 且单调不增。 所以收敛。

例题: 判断级数
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln(1+n)}{1+n}$$
) 的敛散性。

解:
$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{\ln(1+n)}{1+n} = \lim_{x \to +\infty} \frac{\ln(1+x)}{1+x} = \lim_{x \to +\infty} \frac{1}{1+x} = 0$$
。 对 $\frac{\ln(1+n)}{1+n}$) 进行比较有些麻烦,所以令 $f(x) = \frac{\ln(1+x)}{1+x}$)。

 $f'(x) = \frac{1 - \ln(1+x)}{(1+x)^2}$,当 $x \to +\infty$ 时,f'(x) < 0, $\{u_n\}$ 单调减少,所以收敛。

1.2.3 任意项级数

1.2.3.1 概念

定义: 若级数 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 各项可为正可为负,可为零,则这种级数就是任意项级数。

给任意项级数每一项加上绝对值 $\sum_{n=1}^{\infty} (-1)^{n-1} |u_n|$,就得到了正项级数,称为原级数的**绝对值级数**。

1.2.3.2 绝对收敛

定义:设 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 为任意项级数,若 $\sum_{n=1}^{\infty} (-1)^{n-1} |u_n|$ 收敛,则称 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 绝对收敛。

1.2.3.3 条件收敛

定义: 设 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 为任意项级数,若 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 收敛,但 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 发散,则称 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 条件收敛。

定理: 若 $\sum_{n=1}^{\infty} (-1)^{n-1} |u_n|$ 收敛,则 $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ 必收敛。(绝对收敛则收敛)

定理: 收敛级数的项任意加括号后所得的新级数仍收敛,且其和不变。

定理:若原级数绝对收敛,不论将其项如何排列,则所得的新级数也收敛, 且其和不变。(绝对收敛的级数具有可交换性)

例题: 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则下面级数必收敛的是 ()。

$$A. \sum_{n=1}^{\infty} (-1) \frac{u_n}{n} B. \sum_{n=1}^{\infty} u_n^2 C. \sum_{n=1}^{\infty} (u_{2n-1} - u_{2n}) D. \sum_{n=1}^{\infty} (u_n + u_{n+1})$$

解: 对于 A,取 $u_n = (-1)^n \frac{1}{\ln n}$,则原来 $\frac{u_n}{n} = (-1)^n \frac{1}{\ln n}$ 收敛,但是乘上 $(-1)^n$ 就不一定收敛,得到 $\frac{1}{n \ln n}$ 。

定理: 广义 p 级数: $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \begin{cases} p > 1, 收敛 \\ p \leqslant 1, 发散 \end{cases}$ 。 (n = 1 无意义,从 n = 2)

开始不影响其敛散性)

所以 A 发散。

对于 B, 取 $u_n = (-1)^n \frac{1}{\sqrt{n}}$, 则 $u_n^2 = \frac{1}{n}$, 调和级数不收敛。

对于 C,取 $u_n = (-1)^{n-1} \frac{1}{n}$,则得到 $u_{2n-1} - u_{2n} = \frac{1}{n}$,调和级数不收敛。

对于 D, 由于 u_n 收敛,则 u_{n+1} 也收敛,所以相加也收敛,选 D。

定理: 若 u_n^2 收敛,则 $\frac{u_n}{n}$ 绝对收敛。

证明: 因为不等式 $|a||b| \leqslant \frac{|a|^2 + |b|^2}{2}$, $\therefore 0 \leqslant |u_n \frac{1}{n}| \leqslant \frac{u_n^2 + \frac{1}{n^2}}{2}$ 。

且 u_n^2 收敛,则 $\frac{u_n^2 + \frac{1}{n^2}}{2}$ 也收敛,根据性质得证。

2 幂级数

2.1 概念

2.1.1 定义

定义: 设函数列 $\{u_n(x)\}$ 定义在区间 I 上,称 $u_1(x)+u_2(x)+\cdots+u_n(x)+\cdots$ 为定义在区间 I 上的**函数项级数**,记为 $\sum_{n=1}^{\infty}u_n(x)$,当 x 取确定的值 x_0 时, $\sum_{n=1}^{\infty}$ 成为常数项级数 $\lim_{n\to 1}^{\infty}u_n(x_0)$ 。

定义: 若 $\sum_{n=1}^{\infty} u_0(x)$ 的一般项 $u_0(x)$ 为 n 次幂函数,则称 $\sum_{n=1}^{\infty} u_0(x)$ 为幂级数,是一种常用的函数项级数,一般形式为 $\sum_{n=0}^{\infty} a_n(x-x_0)^n = a_0 + a_1(x-x_0) + a_2(x-x_0)^2 + \cdots + a_n(x-x_0)^n + \cdots$,其标准形式为 $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^x + \cdots$,其中 a_n $(n=0,1,2,\cdot)$ 为幂级数的系数。

幂级数也称为泰勒级数,与泰勒展开式一样的结构。

定义: 若给定 $x_0 \in I$,有 $\sum_{n=1}^{\infty} u_0(x)$ 收敛,则称点 x_0 为幂级数 $\sum_{n=1}^{\infty} u_0(x)$ 的**收**敛点;若给定 $x_0 \in I$,有 $\sum_{n=1}^{\infty} u_0(x)$ 发散,则点 x_0 为幂级数 $\sum_{n=1}^{\infty} u_0(x)$ 的**发散点**。

2.1.2 阿贝尔定理

定义: 当幂级数 $\sum\limits_{n=0}^{\infty}a_nx^n$ 在点 $x=x_1$ $(x_1\neq 0)$ 处收敛时,对于满足 $|x|<|x_1|$ 的一切 x,幂级数**绝对收敛**; 当幂级数 $\sum\limits_{n=0}^{\infty}a_nx^n$ 在 $x=x_2$ $(x_2\neq 0)$ 处发散时,对于满足 $|x|>|x_2|$ 的一切 x,幂级数**发散**。

所以一定存在一个点 R,在 |x| < |R| 中绝对收敛,在 |x| > |R| 中发散,R 称为**收敛半径**。对于点 $\pm R$ 需要代入幂级数变成常数项级数进行计算,判别其敛散性。

2.1.3 收敛域

定义: 函数项级数 $\sum_{n=1}^{\infty} u_0(x)$ 的所有收敛点的集合就是其**收敛域**。

2.1.3.1 具体型

收敛域的求法:

1. 若
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$$
,则 $\sum_{n=0}^{\infty} a_n x^n$ 收敛半径 R 的表达式为
$$\begin{cases} \frac{1}{\rho}, & \rho \neq 0 \\ +\infty, & \rho = 0 \\ 0, & \rho = +\infty \end{cases}$$

- 2. 开区间 (-R,R) 为幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛区间。
- 3. 代入 R 判断该点的敛散性, 最后组合得到收敛域。

但是这种方法有一点不方便,如若只知道 a_n 和 a_{n+2} 的关系则求 $\rho = \frac{1}{R}$ 比较麻烦。

收敛域的统一求法:

- 1. 取绝对值 $|u_0(x)| \ge 0$,从而可以使用正项级数的判别法。
- 2. 根据比值判别法或根值判别法,求 $\lim_{n\to\infty} \frac{|u_{n+1}(x)|}{|u_n(x)|} = \rho$ 或 $\lim_{n\to\infty} \sqrt[n]{|u_n(x)|} = \rho$,令其小于 1,得到收敛区间 $x \in (a,b)$ 。
- 3. 单独讨论 x = a, x = b 处的敛散性,得到收敛域。

例题: 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的收敛域。 解: 令 $|u_n(x)| = \left|\frac{x^n}{n}\right|$ 。 由于含有 x^n ,所以使用比值判别法。

2.1.3.2 抽象型

定理:根据阿贝尔定理,已知 $\lim_{n=0}^{\infty} a_0(x-x_0)^n$ 在某点 x_1 $(x_1 \neq x_0)$ 的敛散性,确定该幂级数的收敛半径可分为三种情况:

- 1. 若在 x_1 处收敛,则收敛半径 $R \ge |x_1 x_0|$ 。
- 2. 若在 x_1 处发散,则收敛半径 $R \leq |x_1 x_0|$ 。
- 3. 注意: 若在 x_1 处条件收敛,则 $R = |x_1 x_0|$ 。

定理: 已知 $\sum a_n(x-x_1)^n$ 的敛散性, 讨论 $\sum b_n(x-x_2)^m$ 的敛散性:

- 1. $(x-x_1)^n$ 与 $(x-x_2)^m$ 的转换一般通过初等变形来完成,包括①平移收敛 区间;②提出或乘以因式 $(x-x_0)^k$ 等。
- 2. a_n 与 b_n 的转换一般通过微积分变形来完成,包括①对级数逐项求导;②对级数逐项积分等。
- 3. 以下三种情况,级数收敛半径不变,收敛域要具体代入点讨论:
 - (a) 对级数提出或乘以因式 $(x-x_0)^k$ 或进行平移等,收敛半径不变。
 - (b) 对级数逐项求导,收敛半径不变,收敛域可能缩小。
 - (c) 对级数逐项积分,收敛半径不变,收敛域可能扩大。

例题: 设 $\sum_{n=1}^{\infty} a_n(x+1)^n$ 在点 x=1 处条件收敛,则幂级数 $\sum_{n=1}^{\infty} na_n(x-1)^n$ 在点 x=2 处 ()。

A. 绝对收敛 B. 条件收敛 C. 发散 D. 敛散性不确定解: $\sum_{n=1}^{\infty} a_n (x+1)^n = \sum_{n=1}^{\infty} a_n (x-(-1))^n$,所以 $x_0 = -1$ 。

又 x=1 处条件收敛,所以 R=1-(-1)=2。从而 $\sum\limits_{n=1}^{\infty}a_n(x+1)^n$ 的收敛 区间为 (-3,1)。

 $\sum_{n=1}^{\infty} a_n(x+1)^n$ 要转换为 $\sum_{n=1}^{\infty} na_n(x-1)^n$,则首先中心点要从-1 移动到 1, $a_n(x+1)^n \to a_n(x-1)^n$,由于平移不改变收敛半径,所以 $a_n(x-1)^n$ 收敛区间为 (1,3)。

然后要将 $a_n(x-1)^n$ 变为 $na_n(x-1)^n$,需要进行求导得到 $na_n(x-1)^{n-1}$,求导收敛半径不变,所以收敛区间依然为 (1,3)。最后还要乘上 (x-1) 得到 $na_n(x-1)^n$ 就是所求,收敛区间依然为 (1,3)。

而在 x=2 在收敛区间内,必然绝对收敛,所以选 A。

2.2 幂级数求和函数

2.2.1 概念

定义: 在收敛域上,记 $S(x) = \sum_{n=1}^{\infty} u_n(x)$,并称 S(x)为 $\sum_{n=1}^{\infty} u_n(x)$ 的和函数。

2.2.2 运算法则

若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 与 $\sum_{n=0}^{\infty} b_n x^n$ 的收敛半径分别为 R_a 和 R_b ($R_a \neq R_b$),则:

•
$$k \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} k a_n x^n$$
, $|x| < R$, k 为常数。

•
$$\sum_{n=0}^{\infty} a_n x^n \pm \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n \pm b_n) x^n$$
, $|x| < R = \min\{R_a, R_b\}$.

实际运算中,可能运算法则要求的起始 n 值不同, a_nb_n 不为不包含 x 的常数, x^n 的幂次不同,恒等变形方法如下:

1. 通项,下标一起变化:
$$\sum_{n=k}^{\infty} a_n x^n = \sum_{n=k+l}^{\infty} a_{n-l} x^{n-l}$$
, 其中 l 为整数。

2. 只变下标,只变通项:
$$\sum_{n=0}^{\infty} a_n x^n = a_k x^k + a_{k+1} x^{k+1} + \dots + a_{k+l-1} x^{k+l-1} + \sum_{n=k+l}^{\infty} a_n x^n$$
。

3. 只变通项,不变下标:
$$\sum_{n=0}^{\infty} a_n x^n = x^l \sum_{n=0}^{\infty} a_n x^{n-l}$$
。

2.2.3 性质

收敛域的扩大和缩小在于其端点是否通过求导或积分变得可取了。

- 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数 S(n) 在其收敛区间 I 上连续,且如果幂级数在收敛区间的端点 $x = \pm R$ 处收敛,则和函数 S(x) 在 (-R,R] 或 [-R,R) 上连续。
- 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数 S(x) 在其收敛域 I 上可积,且有逐项积分公式 $\int_0^x S(t) dt = \int_0^x (\sum_{n=0}^{\infty} a_n t^n) dt = \sum_{n=0}^{\infty} a_n \int_0^x t^n dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} \ (x \in I)$,逐 项积分后得到的幂级数和原级数有相同收敛半径,但是收敛域可能扩大。
- 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数 S(x) 在其收敛区间 (-R,R) 内可到,且有逐项求导公式 $S'(x) = (\sum_{n=0}^{\infty} a_n x^n)' = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1}$ (|x| < R),逐项求导后得到的幂级数和原级数有相同收敛半径,但是收敛域可能缩小。

2.2.4 重要展开式

x 的取值指其幂指数的收敛域。第七个幂函数问题较复杂,收敛区间与 α 取值有关。

1.
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^n}{n!} + \cdots$$
, $-\infty < x < +\infty$.

2.
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots, -1 < x < 1$$

3.
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots, -1 < x < 1.$$

4.
$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots, -1 < x \le 1$$

5.
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2x+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \cdots, -\infty < x < +\infty$$

6.
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + (-1)^n \frac{x^{2n}}{(2n)!} + \cdots, -\infty < x < +\infty$$

7.
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{a(a-1)\cdots(a-n+1)}{n!}x^n + \dots,$$

$$\begin{cases} x \in (-1,1), \, \stackrel{\omega}{\to} \alpha \leqslant -1 \\ x \in (-1,1], \, \stackrel{\omega}{\to} -1 < \alpha < 0 \\ x \in [-1,1], \, \stackrel{\omega}{\to} \alpha > 0 \end{cases}$$

2.3 函数展开为幂级数

2.3.1 概念

定义: 若函数 f(x) 在 $x = x_0$ 处存在任意阶导数,则称 $f(x_0) + f'(x_0)(x - x_0)$ x_0) + $\frac{f''(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \dots$ 为函数 f(x) 在 x_0 处的泰 勒级数,则 $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ 。 当 $x_0 = 0$ 时,称 $f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$ 为函数 f(x)的**麦克劳林级数**, 若收敛,则 $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ 。

都是函数展开成幂级数。

2.3.2 求法

2.3.2.1 直接法

逐个计算
$$a_n = \frac{f^{(n)}(x_0)}{n!}$$
 并代入,但是一般很麻烦。

2.3.2.2 间接法

利用已知的七个幂级数展开式,通过变量代换、四则运算、逐项求导、逐项 积分和待定系数等得到。

例题: 求函数 $f(x) = \arctan x$ 在 x = 0 处的幂级数展开。

解:
$$f'(x) = (\arctan x)' = \frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, |-x^2| < 1$$
。
已经求得求导后的函数的幂级数展开,所以求原函数的幂级数展开只需

要积分,利用先导后积公式: $f(x) = f(0) + \int_0^x f'(t) dt = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt =$

$$\sum_{n=0}^{\infty} (-1)^n \frac{t^{2n+1}}{2n+1} \bigg|_0^x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \,.$$

 $\sum_{n=0}^{\infty} (-1)^n \frac{t^{2n+1}}{2n+1} \bigg|_0^x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \circ$ 求导的级数要求 |x| < 1,代入 $x = \pm 1$ 到最后结果得到两个交错级数,所以 收敛域其实为[-1,1](可以不写)。

傅里叶级数 3

3.1 * 三角级数

定义: 将正弦函数 $A_n \sin(n\omega t + \varphi_n)$ 按三角公式变形得到 $A_n \sin \varphi_n \cos n\omega t +$ $A_n\cos\varphi_n\sin n\omega t$, $\diamondsuit \frac{a_0}{2}=A_0$, $a_n=A\sin\varphi_n$, $b_n=A_n\cos\varphi_n$, $\omega=\frac{\pi}{I}$, \mathbb{N}

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi t}{l} + b_n \sin \frac{n\pi t}{l} \right)$$
。这个级数就是**三角级数**。

3.2 函数展开为傅里叶级数

定义:设 f(x) 在 [-l,l] 上连续或只有有限个第一类间断点,且至多只有有限个真正的极值点,则 f(x) 的傅里叶级数处处收敛,记起和函数为 S(x),有 $S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x \right)$ 。

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x \, \mathrm{d}x, \quad b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x \, \mathrm{d}x, \quad n = 1, 2, \cdots.$$

其中三角函数也可以展开为幂级数,所以最后都能通过幂级数展开

例题: 将
$$f(x) = 1 - x^2$$
 $(-\pi \leqslant x \leqslant \pi)$ 展开为傅里叶级数。

解:
$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x \right)$$
。

其中
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} (1 - x^2) dx = \frac{2}{\pi} \int_{0}^{\pi} (1 - x^2) dx = 2 - \frac{2}{3} \pi^2$$
。

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (1 - x^2) \cos nx \, dx = \frac{2}{\pi} (\int_{0}^{\pi} \cos nx \, dx - \int_{0}^{\pi} x^2 \cos nx \, dx) = \frac{4}{n^2} (-1)^{n+1}.$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (1 - x^2) \sin nx \, dx = 0$$
(奇函数乘偶函数为奇函数,且上下限对称)

$$f(x) \sim S(x) = 1 - \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} (-1)^{n+1} \cos nx$$

定义: 当 f(x) 是偶函数,则 sin 被消去, $f(x)\sim S(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\cos\frac{n\pi}{l}x$,称为余弦级数。

定义: 当 f(x) 是奇函数,则 cos 被消去, $f(x) \sim S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{l} x$,称为正弦级数。

若 f(x) 因为定义区间不对称导致无奇偶性,则补充定义域,使其称为奇偶函数。

迪利克雷定理**定义**:
$$f(x) \sim S(x) = \begin{cases} f(x), & x$$
为连续点
$$\frac{f(x-0) + f(x+0)}{2}, & x$$
为间断点
$$\frac{f(-l+0) + f(l-0)}{2}, & x = \pm l \end{cases}$$