Interrogation 3 Intégrales impropres

NOM	Prénom	Classe		

Durée 45 minutes

Pas de document, ni calculatrice, ni téléphone portable

Inscrire les réponses sur la feuille d'énoncé, sans râture ni surcharge (utiliser un brouillon!)

1. Soit α un réel strictement positif.

Compléter par « VRAI », « FAUX » ou « On ne sait pas » (bonne réponse +0.5, mauvaise réponse -0.5).

Si ↓	Alors →	l'intégrale $\int_0^1 \frac{dt}{t^{\alpha}}$ converge	l'intégrale $\int_{1}^{\infty} \frac{dt}{t^{\alpha}}$ converge		
α	< 1	VRAI	FAUX		
α	= 1	FAUX	FAUX		
α	>1	FAUX	VRAI		

2. Soient [a,b[un intervalle et f et g des fonctions continues sur [a,b[et dont l'intégrale sur [a,b[converge . Compléter par « VRAI » , « FAUX » ou « On ne sait pas » (bonne réponse +0.5, mauvaise réponse -0.5).

$\int_{a}^{b} f(t) dt \leq \left \int_{a}^{b} f(t) dt \right $	FAUX
$\int_{a}^{b} f(t)g(t)dt = \left(\int_{a}^{b} f(t)dt\right)\left(\int_{a}^{b} g(t)dt\right)$	FAUX
$\int_{a}^{b} \lambda f(t) dt = \lambda \int_{a}^{b} f(t) dt \ (\lambda \in \mathbb{R})$	VRAI
si $\forall t \in [a,b[f(t) \leq g(t) \text{ alors } \int_a^b f(t)dt \leq \int_a^b g(t)dt$	VRAI

3. Soient [a,b[un intervalle et f et g des fonctions continues et positives sur [a,b[. Compléter par « VRAI » , « FAUX » ou « On ne sait pas » (bonne réponse +0.5, mauvaise réponse -0.5).

si $\forall t \in [a,b[f(t) \leq g(x)]$ et que $\int_a^b f(t)dt$ converge alors $\int_a^b g(t)dt$ converge	On ne sait pas
si $\forall t \in [a,b[f(t) \leq g(x)]$ et que $\int_a^b f(t)dt$ diverge alors $\int_a^b g(t)dt$ diverge	VRAI
si $\int_{a}^{b} f(t)dt$ et $\int_{a}^{b} g(t)dt$ convergent alors $\int_{a}^{b} (f(t) + g(t))dt$ converge	VRAI
si $\int_{a}^{b} f(t)dt$ et $\int_{a}^{b} g(t)dt$ divergent alors $\int_{a}^{b} (f(t)+g(t))dt$ diverge	On ne sait pas

4. (3 points) Écrire en français la signification du signe " = " dans les formules suivantes :

$$\mathbf{a} / \int_{a}^{b} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du \quad (f \text{ continue sur } [a, b[, \varphi \text{ bijection de classe } C^{1} \text{ de } [\alpha, \beta[\text{ dans } [a, b[)$$

L'intégrale à gauche converge si et seulement si l'intégrale à droite converge et dans ce cas les deux intégrales ont la même valeur (changement de variable)

$$\mathbf{b} / \int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt \quad (f \text{ continue sur }]\mathbf{a}, \mathbf{b}[, c \in]\mathbf{a}, \mathbf{b}[)$$

L'intégrale à gauche converge si et seulement si <u>les deux</u> intégrales à droite convergent et dans ce cas l'intégrale à gauche a comme valeur la somme des deux intégrales à droite (par définition)

5. (3 points) Soient $I = \int_0^\infty \sin t \, e^{-t} \, dt$ et $J = \int_0^\infty \cos t \, e^{-t} \, dt$ (on admet qu'elles convergent) Faire 2 intégrations par parties différentes sur I pour trouver 2 relations différentes entre I et J. Conclure.

$$u = \sin t \quad v' = e^{-t} \\ u' = \cos t \quad v = -e^{-t} \\ I = \left[\sin t \left(-e^{-t} \right) \right]_0^{\infty} - \int_0^{\infty} \cos t \left(-e^{-t} \right) dt = 0 - 0 + J$$

$$u = e^{-t} \quad v' = \sin t \\ u' = -e^{-t} \quad v = -\cos t \\ I = \left[\left(-\cos t \right) e^{-t} \right]_0^{\infty} - \int_0^{\infty} \left(-\cos t \right) \left(-e^{-t} \right) dt = 0 - (-1) - J$$

$$I = J \text{ et } I = 1 - J \text{ donc } I = J = \frac{1}{2}$$

6. (3 points) Faire le changement de variable $u = -\ln(t)$ dans l'intégrale impropre $K = \int_0^1 \sin(\ln(t)) dt$. Conclure. $u = -\ln t$, $t = e^{-u}$, $dt = -e^{-u}du$, $K = \int_0^1 \sin(\ln(t)) dt = \int_{+\infty}^0 \sin(-u)(-e^{-u}) du = -\int_0^\infty \sin u \ e^{-u}du$ On retrouve au signe près l'intégrale I du 5. Donc K converge vers $-\frac{1}{2}$

7. (6 points) Déterminer la valeur éventuelle : (entourer la réponse correcte)

$\int_0^1 \frac{dt}{t^{3/4}} = \dots$	4	2	$\frac{3}{4}$	$\frac{4}{3}$	0	autre résultat	ne converge pas
$\int_{-\infty}^{\infty} \frac{t \ dt}{1+t^2} = \dots$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	0	1	-1	autre résultat	ne converge pas
$\int_0^\infty \frac{dt}{t^2 + 1} = \dots$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	0	1	-1	autre résultat	ne converge pas
$\int_{-1}^{1} \frac{dt}{\sqrt{1-t^2}} = \dots$	0	$\frac{\pi}{2}$	π	$\frac{1}{2}$	1	autre résultat	ne converge pas
$\int_0^\infty e^{-t/2} dt = \dots$	-2	-1	0	1	2	autre résultat	ne converge pas
$\int_0^\infty \cos(t) dt = \dots$	$\frac{\sqrt{2\pi}}{4}$	$-\frac{\sqrt{2\pi}}{4}$	$\frac{\pi}{4}$	$-\frac{\pi}{4}$	0	autre résultat	ne converge pas

