Funções polinomiais

Nivelamento em Estatística e Matemática

Apresentação

As atividades desenvolvidas usando o software de planilha são reproduzidos aqui utilizando a linguagem R

Exemplo de cálculo e gráfico para função polinomial

No exemplo foi considerada a seguinte função polinomial:

$$f(x) = x^3 - 2x^2 + x$$

e para avaliar o comportamento da função considerou-se preencher a seguinte tabela

```
x <- -3:3
vazio <- rep("",length(x))
tabela <- data.frame(x=x, y=vazio)
kable(tabela)</pre>
```

x y
-3
-2
-1
0
1
2
3

Para calcular os valores de y basta aplicar as operações da função polinomial sobre o conjunto de valores de x

```
y <- x^3-2*x^2+x
tabela <- data.frame(x=x,y=y)
kable(tabela)</pre>
```

X	У
-3	-48
-2	-18
-1	-4
0	0
1	0
2	2
3	12
_	

E finalmente para exibir o comportamento da função de forma gráfica tem-se:

plot(x=tabela\$x,y=tabela\$y,type="1")

Note que o desenho da função não ficou suave devido ao pequeno número de pontos utilizados para traçar a função. Para melhorar esse aspecto e fazer com que o gráfico represente o comportamento da função de forma mais adequada pode-se criar os pontos da tabela para um conjunto maior de pontos dentro do intervalo considerado entre -3 e 3. Serão considerados os pontos: $\mathbf{x} = (-3, 0, -2, 9, ..., 0, ..., 2.9, 3)$ de forma que o número de pontos é dado por:

```
x1 <- seq(-3,3,by=.1)
length(x1)</pre>
```

[1] 61

mas pode-se calcular o valor de y para esses pontos de forma simples aplicando as operações da função polinomial

```
y1 <- x1^3-2*x1^2+x1
```

e observar o comportamento mais suave da função

```
plot(x=x1,y=y1,type="l")
```


caso se deseje suavisar ainda mais o comportamento do gráfico, observando a variação de 0.01 entre os valores de x, como poderia ser realizado? Como exercício tente fazer as adapatções necessárias e observe o resultado.