ANALITICA DE DATOS Y
HERRAMIENTAS DE INTELIGENCIA
ARTIFICIAL II

REGRESIÓN DATAFORGE NO LINEAL

10 OCT, 2025

TEAM MEMBERS (DATAFORGE)

JESÚS EDUARDO VALLE
VILLEGAS

FINANZAS A01770616

DIEGO ANTONIO OROPEZA
LINARTE
BGB
A01733018

MANUEL EDUARDO
COVARRUBIAS RODRÍGUEZ

ITC A01737781

ITHANDEHUI JOSELYN ESPINOZA

ITC A01734547

MAURICIO GRAU GUTIERREZ
RUBIO

LEM A01734914

Analizar la relación entre las variables TaxonName, TaxonCode, SamplingOperations_code, CodeSite_SamplingOperations, Date_SamplingOperation, Abundance_nbcell, TotalAbundance_SamplingOperation y Abundance_pm del conjunto de datos O1_DiatomInventories_GTstudentproject_B.csv, aplicando y comparando dos modelos de regresión no lineal para determinar el grado de correlación y la capacidad explicativa de cada modelo mediante los coeficientes de determinación (R²) y correlación.

METODOLOGÍA

Dataset1: 01_DiatomInventories_GTstudentproject_B.csv

Dataset2: proyectos_forvia.csv

LIMPIEZA Y PREPARACIÓN

Revisión de estructura y nulos; codificación numérica de TaxonName, TaxonCode, SamplingOperations_code, CodeSite_SamplingOperations; Date_SamplingOperation → numérico (ordinal/continuo).

VARIABLES ANALIZADAS

TaxonName, TaxonCode,
SamplingOperations_code,
CodeSite_SamplingOperations,
Date_SamplingOperation,
Abundance_nbcell,
TotalAbundance_SamplingOperation,
Abundance_pm
(combinaciones diversas).

MODELOS NO LINEALES:

- Polinómico (grados 2–3) para capturar curvatura.
- Exponencial/Potencial para explorar patrones de crecimiento/decrecimiento.

ANÁLISIS COMPARATIVO DE RESULTADOS

- Evaluación del ajuste: se calcularon R² y correlaciones (Pearson/Spearman según el tipo de variable) para medir fuerza y dirección de la relación; además, se revisaron residuales para verificar la adecuación del modelo y detectar desviaciones.
- Comparativo de resultados: se elaboró una tabla resumen con R² y correlaciones por cada relación evaluada, identificando el mejor desempeño.

Transformacion de variables

Mapeo con un ciclo for

Index	TaxonName_num	TaxonCode_num	SamplingOperatio ns_code_num	CodeSite_SamplingO perations_num	Date_SamplingOp eration_num
0	1	1	1	1	1
1	1	1	2	2	2
2	2	2	2	3	3
3	2	2	3	4	4
4	2	2	4	5	5
5	2	2	5	6	6
6	2	2	6	7	7
7	2	2	7	8	8
8	2	2	8	9	9
9	2	2	9	10	10

Fue necesario transformar las variables categóricas en variables numéricas. Para ello, se utilizó la jerarquía de frecuencias, asignando valores más bajos a las categorías con mayor frecuencia de aparición.

Transformacion de variables

Mapeo con un ciclo for

Index	Project Type	Geographical scope	Project manager	State	Project size	Project Org	BG	Project Health	On-Hold
0	1	63	2	1	3	1	1	1	1
1	1	62	15	1	2	1	2	2	2
2	1	51	20	1	1	1	2	2	1
3	1	51	15	1	3	1	2	1	2
4	1	61	2	1	1	1	2	1	1
241	6	43	119	1	2	9	3	1	1
242	8	126	27	1	1	4	3	1	1
243	8	42	27	1	1	4	3	1	1
244	1	42	120	1	3	4	3	1	1
245	12	127	121	4	4	35	11	3	3

ANALITICA DE DATOS Y HERRAMIENTAS
DE INTELIGENCIA ARTIFICIAL II

ACTIVIDAD 3.1

DATATHON

Total de modelos analizados:	16
Correlación lineal promedio:	0.2344
Correlación no lineal promedio:	0.2325
Modelos que mejoraron:	11/16 (68.8%)
TOP 3 MODELOS CON MAYOR MEJORA:	 Date_SamplingOperation vs SamplingOperations (Logarítmica) Lineal: 0.1207 → No Lineal: 0.1580 (Mejora: +0.0373) Date_SamplingOperation vs SamplingOperations (Exponencial) Lineal: 0.1207 → No Lineal: 0.1580 (Mejora: +0.0373) SamplingOperations vs CodeSite (Exponencial) Lineal: 0.3836 → No Lineal: 0.4105 (Mejora: +0.0269)

Total de modelos analizados:	16		
Mejor R²:	0.9783		
Mejor Correlación:	0.9891		
R ² Promedio:	0.1451		
Correlación Promedio:	0.2325		
TOP 5 MEJORES MODELOS:	Abundance_pm vs Abundance_nbcell (Cuadrática) Abundance_pm vs Abundance_nbcell (Exponencial) SamplingOperations vs CodeSite (Exponencial) SamplingOperations vs CodeSite (Logarítmica) Date_SamplingOperation vs SamplingOperations (Logarítmica)		
ANÁLISIS POR TIPO DE FUNCIÓN	Exponencial: R² promedio = 0.2004 (6 modelos)		

TaxonName vs Abundance_nbcell

- Distribución discreta
- Alta dispersión
- Concentración de datos

TaxonCode vs Abundance_pm

- Bandas discretas más pronunciadas
- Distribución uniforme
- Mayor dispersión horizontal

SamplingOperations_code vs CodeSite_SamplingOperetions_num

- Líneas verticales marcadas
- Distribución escalonada
- Patrón estructurado

Correlacion L (r)	r = 0.3836
Correlacion No Lineal (r)	r = 0.2558

Correlacion L (r)	r = 0.3836
Correlacion No Lineal (r)	r = 0.4105

CodeSite_SamplingOperations vs Date_SamplingOperation_num

- Distribución triangular
- Mayor dispersión
- Concentración en valores bajos

Correlacion L (r)	r = 0.1269
Correlacion No Lineal (r)	r = 0.1409

Correlacion L (r)	r = 0.1269	
Correlacion No Lineal (r)	r = 0.1360	

Date_SamplingOperation_num vs SamplingOperations_code_num

- Bandas horizontales discretas
- Concentración masiva
- Expansión gradual

Correlacion L (r)	r = 0.1207		
Correlacion No Lineal (r)	r = 0.1580		

Correlacion L (r)	r = 0.1207	The same of the same of
Correlacion No Lineal (r)	r = 0.1580	

Abundance_nbcell vs SamplingOperations_code_num

- Distribución horizontal dominante
- Patrón de bandas discretas
- Concentración extrema en la base

Correlacion L (r)	r = 0.0395
Correlacion No Lineal (r)	r = 0.0395

Correlacion L (r)	r = 0.0395
Correlacion No Lineal (r)	r = 0.0015

TotalAbundance_SamplingOperation vs CodeSite_SamplingOperations_num

- Distribución rectangular densa
- Concentración superior
- Banda principal dominante

Correlacion L (r)	r = 0.0146
Correlacion No Lineal (r	r = 0.0211

Correlacion L (r)	r = 0.0146	Contract of the contract of
Correlacion No Lineal (r)	r = 0.0174	

Abundance_pm vs Abundance_nbcell

- Correlación lineal muy fuerte:
- Dispersión creciente
- Concentración en origen

ANÁLISIS DE INSIGHTS

Cada diatomea
está correctamente
identificada y
codificada

Hay guerra ecológica entre especies por los recursos

Las diatomeas viven en ambientes muy predecibles, estables y consistente a lo largo del tiempo

La abundancia total es independiente de qué especies hay

ACTIVIDAD 3.2 FORVIA faurecia

BG - Project Type

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCIÓN EXPONENCIAL: Y = A*EXP(-BX) + C

- Resultados:
- Cuadrático: $R^2 = 0.1502$, r = 0.3876
- Exponencial: $R^2 = 3.3306$, r = 1.8250
- La función cuadrática es la mejor ya que a pesar que esta no crece mucho los datos de la formula exponencial son exagerados para una correlación.
- Visualmente: alta dispersión sin tendencia clara ni agrupamientos definidos.

Funcion R2	0.1502
Correlacion (r)	0.386
Correlacion Final (r)	0.3876

Project manager - Geographical scope

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCIÓN COCIENTE ENTRE POLINOMIOS: Y = (A*X**2 + B)/ C*X**2

- Resultados:
- Cuadrático: $R^2 = 0.0365$, r = 0.1912
- Co entre Polinomios: R² = 0.0407, r = 0.2018
- Interpretación: La correlación en ambas es la mejor entre las demás ambas mejoran.
- Visualmente: alta dispersión con tendencia clara y determinada con agrupamientos definidos.

Funcion R2	0.0407
Correlacion (r)	0.0999
Correlacion Final (r)	0.2018

Project organization - Project manager

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- LOGARITMICA: Y=AE-BX+CY = A E^{-BX} + CY=AE-BX+C

- Resultados:
- Cuadrático: R² = 0.2723, r = 0.5219
- Logaritmica: $R^2 = 0.2885$, r = 0.5371
- Interpretación: Las correlaciones mejoran en ambos casos.
- Visualmente: alta dispersión con tendencia clara y agrupamientos mejorados.

Funcion R2	0.2885
Correlacion (r)	0.5022
Correlacion Final (r)	0.5371

Project Health - State

- FUNCIÓN SENOIDAL: Y = A*NP.SIN(X) + B
- FUNCION VALOR ABSOLUTO: Y = A*NP.ABS(X) + B*X + C

- Resultados:
- Senoidal: $R^2 = 0.4473$, r = 0.6688
- Val. Absoluto: $R^2 = 0.2438 r = 0.4937$
- Interpretación: De las dos mayores correlaciones la senodial es la unica coherente ya que es la unica que supera a la correlación inicial.
- Visualmente: alta dispersión sin tendencia clara ni agrupamientos definidos.

Funcion R2	0.4473
Correlacion (r)	0.4937
Correlacion Final (r)	0.6688

On-hold - Project size

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCION VALOR ABSOLUTO: Y = A*NP.ABS(X) + B*X + C

- Resultados:
- Cuadrático: $R^2 = 0.0379$, r = 0.1949
- Valor A.: $R^2 = 0.0188$, r = 0.1374
- Interpretación: La correlacion de la regresion cuadratica es considerablemente mejor.
- Visualmente: alta dispersión sin tendencia clara ni agrupamientos definidos.

Funcion R2	0.0379
Correlacion (r)	0.1375
Correlacion Final (r)	0.1949

Project manager - Project organization

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCION VALOR ABSOLUTO: Y = A*NP.ABS(X) + B*X + C

- Resultados:
- Cuadrático: $R^2 = 0.2579$, r = 0.5078
- Valor A.: $R^2 = 0.2522$, r = 0.5022
- Interpretación: Ambas regresiones ayudaron a crecer la correlación considerablemente siendo estas muy similares.
- Visualmente: alta dispersión con tendencia clara y agrupamientos definidos.

Funcion R2	0.2579
Correlacion (r)	0.5022
Correlacion Final (r)	0.5078

Project Type - BG

- FUNCIÓN COCIENTE ENTRE POLINOMIOS: Y = (A*X**2 + B)/ C*X**2
- FUNCIÓN LOGARITMICA: Y = A*NP.LOG(X) + B

- Resultados:
- Cociente: $R^2 = 0.2128$, r = 0.4613
- Logaritmica: $R^2 = 0.2039$, r = 0.4515
- Interpretación: La correlacion mejora en ambos casos y tienen resultados similares respecto a la correlación
- Visualmente: alta dispersión con tendencia clara ni agrupamientos definidos.

Funcion R2	0.2128
Correlacion (r)	0.3869
Correlacion Final (r)	0.4613

Project Health - On-hold

- CUADRÁTICO: Y=AX2+BX+CY = AXA2 + BX + CY=AX2+BX+C
- FUNCION VALOR ABSOLUTO: Y = A*NP.ABS(X) + B*X + C

- Resultados:
- Cuadrático: $R^2 = 0.1178$, r = 0.3433
- Exponencial: $R^2 = 0.1118$, r = 0.3343
- Interpretación: Parecida R2 y correlación mejoran por lo mínimo.
- Visualmente: alta dispersión con tendencias claras pero no hay agrupamientos definidos.

Funcion R2	0.1178
Correlacion (r)	0.3344
Correlacion Final (r)	0.3433

Project Health - Percent complete

MODELOS NO LINEALES:

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCIÓN POLINOMIAL INVERSA: Y = A/B*X**2 + C*X

• Resultados:

- Cuadrático: $R^2 = 0.0709$, r = 0.2663
- Exponencial: $R^2 = 0.0707$, r = 0.2660
- Interpretación: Similares correlaciones y R", ambas subieron considerablemente.
- Visualmente: alta dispersión con tendencias nada claras y no hay agrupamientos definidos.

Funcion R2	0.0709
Correlacion (r)	-0.1784
Correlacion Final (r)	0.2663

State - Project Health

MODELOS NO LINEALES:

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCIÓN COCIENTE ENTRE POLINOMIOS: Y = (A*X**2 + B)/ C*X**2

• Resultados:

• Cuadrático: $R^2 = 0.3045$, r = 0.5518

• Polinomios: $R^2 = 0.3154$, r = 0.5616

• Interpretación: relación extremadamente débil (~1% de variabilidad explicada) con ligera pendiente negativa casi nula.

 Visualmente: alta dispersión sin tendencia clara ni agrupamientos

definidos.

Funcion R2	0.3154
Correlacion (r)	0.4938
Correlacion Final (r)	0.5616

ANÁLISIS DE INSIGHTS

Patrones de Registro

Estandarización de Procesos

Campos No Independientes Correlación #1:
Project Manager ↔
Project
Organization
(0.505)

GRACIAS POR SUATENCION