Introduction
Multi-carrier modulation
Problem statement
Equalization methoc
Results
Conclusion

Study on channel equalization for OFDM/OQAM

TANGUY Philippe supervised by P. Siohan and J-P. Javaudin

France Telecom, Orange Labs

Presentation IFSIC DIIC3 TST

August 30, 2008

▶ Multi-carrier modulation: OFDM (the reference) => Wifi, DVB-T, ADSL

▶ Multi-carrier modulation: OFDM (the reference) => Wifi, DVB-T, ADSL

Multi-carrier modulation: OFDM/OQAM.

Multi-carrier modulation: OFDM (the reference) => Wifi, DVB-T, ADSL

Multi-carrier modulation: OFDM/OQAM.

Problem: multipath channels.

► Multi-carrier modulation: OFDM (the reference) => Wifi, DVB-T, ADSL

Multi-carrier modulation: OFDM/OQAM.

► Problem: multipath channels.

▶ Equalization: counteract the channel effects.

Outline

- Multi-carrier modulation
 - Principle
 - Modulation OFDM
 - Modulation OFDM/OQAM
- Problem statement
- Equalization method
 - Zero forcing (ZF)
 - Equalization with Interference cancellation
 - Equalization with Interference cancellation: computational complexity
- Results
 - Over PLC channel
 - Over test channel

Outline

- Multi-carrier modulation
 - Principle
 - Modulation OFDM
 - Modulation OFDM/OQAM
- 2 Problem statement
- 3 Equalization method
- Results

Multi-carrier modulation: principle

- Parallel data transmission.
- ► Low data rate in each subchannel.
- ▶ Well-suited for frequency selective channels.

Frequency selective channel

B: bandwidth, A: attenuation and M: carrier number. \bigcirc

OFDM/QAM

Baseband signal:

$$s(t) = \frac{1}{\sqrt{T_0}} \sum_{m=0}^{M-1} \sum_{n=-\infty}^{+\infty} c_{m,n} \Pi(t - nT_0) e^{j2\pi mF_0 t}$$

with
$$\Pi(t)=\left\{ egin{array}{ll} 1 & \emph{si} & -rac{T_0}{2} \leq t < rac{T_0}{2}, \\ 0 & \emph{sinon}. \end{array}
ight.$$

 $c_{m,n}$: complex symbols (M-QAM).

$$F_0 = \frac{1}{T_0}$$
: subcarrier spacing.

 T_0 : duration of complex symbols.

Modulation CP-OFDM

 $\underline{Problem} \colon multipath \ channel => intersymbol \ interference.$

Solution: insertion of a guard interval => CP-OFDM (Cyclic Prefix).

<u>Drawback</u>: loss of spectral efficiency.

OFDM/OQAM

- ► OFDM/OQAM: another choice.
- Pulse shape: well-localized in time-frequency.
- No guard interval.
- No loss of spectral efficiency.
- Transmission of real valued symbols.

Modulation

 $c_{m,n}$: complex symbols (M-QAM).

 T_0 : duration of complex symbols.

 F_0 : subcarrier spacing.

g(t): pulse shape.

The baseband continous-time OFDM/OQAM signal:

$$s(t) = \sum_{m=0}^{N-1} \sum_{n} \left(c_{2m,n}^{\mathcal{R}} g(t - nT_0) + j c_{2m,n}^{\mathcal{I}} g(t - (nT_0 + \frac{T_0}{2})) \right) e^{j2\pi(2m)F_0 t}$$

$$+ \left(c_{2m+1,n}^{\mathcal{R}} g(t - (nT_0 + n\frac{T_0}{2})) + j c_{2m+1,n}^{\mathcal{I}} g(t - nT_0) \right) e^{j2\pi(2m+1)F_0 t}$$

Demodulation

$$\hat{c}_{2m,n}^{\mathcal{R}} = \mathcal{R}e \left\{ \int_{-\infty}^{+\infty} s(t) \times g^*(t - nT_0) e^{-j2\pi(2m)F_0 t} dt \right\}$$

$$\hat{c}_{2m,n}^{\mathcal{I}} = \mathcal{I}m \left\{ \int_{-\infty}^{+\infty} s(t) \times g^*(t - (nT_0 + \frac{T_0}{2})) e^{-j2\pi(2m)F_0 t} dt \right\}$$

OFDM/OQAM: general expression

The baseband continous-time OFDM/OQAM signal:

$$s(t) = \sum_{m=0}^{M-1} \sum_{n \in \mathbf{Z}} a_{m,n} \underbrace{g(t - n\tau_0) e^{j2\pi mF_0 t}}_{g_{m,n}(t)} e^{j\phi_{m,n}}$$

with,

- $ightharpoonup a_{m,n}$: real symbols being transmitted = real or imaginary part of QAM constellation symbols.
- $au_0 = \frac{T_0}{2}$.
- ▶ Phase term: $\Phi_{m,n} = \Phi_0 + \frac{\pi}{2}(m+n)$ with Φ_0 arbitrarily chosen.
- ▶ g: prototype filter.

Demodulated symbols:

Discret-time OFDM/OQAM: modem

Digital modem OFDM/OQAM

Outline

- Multi-carrier modulation
- Problem statement
- 3 Equalization method
- Results

Multipath channel

Received signal : $y(t) = (h \otimes s)(t)$.

Demodulated symbol y_{m_0,n_0} at the (m_0,n_0) position:

$$y_{m_0,n_0} = \int_{\mathbb{R}} y(t) g_{m_0,n_0}^* dt$$

$$= \sum_{m} \sum_{n} a_{m,n} e^{j(\Phi_{m,n} - \Phi m_0,n_0)} \int_{\mathbb{R}} \int_{0}^{\Delta} g(t - n\tau_0 - \tau) g(t - n_0 \tau)^* \times e^{j2\pi(m - m_0)F_0 t} h(t,\tau) e^{j2\pi mF_0 \tau} d\tau dt$$

Problems & solutions

Problems:

- Intersymbol interferences.
- Intercarrier interferences.

Solutions: channel equalization

- Zero forcing (ZF).
- ▶ Interferences cancellation: EIC method [1] (Equalization with Interference Cancellation).

Outline

- Multi-carrier modulation
- 2 Problem statement
- Equalization method
 - Zero forcing (ZF)
 - Equalization with Interference cancellation
 - Equalization with Interference cancellation: computational complexity
- 4 Results

ZF equalization (1/2)

Assumptions:

- ▶ A flat fading happens over each sub-carrier.
- $g(t-\tau-n\tau_0)\approx g(t-n\tau_0)$ sur $\tau\in[0,\Delta]$.

Demodulated signal y_{m_0,n_0} at the (m_0,n_0) position:

$$y_{m_0,n_0} = H_{m_0} a_{m_0,n_0} + \underbrace{\sum_{(m,n) \neq (m_0,n_0)} a_{m,n} H_m < g_{m_0,n_0}, g_{m,n} >}_{I_{m_0,n_0}}$$

ZF equalization (2/2)

Equalized signal y_{m_0,n_0} at the (m_0,n_0) position:

$$\frac{y_{m_0,n_0}}{H_{m_0}} = a_{m_0,n_0} + \sum_{(m,n)\neq(m_0,n_0)} a_{m,n} \frac{H_m}{H_{m_0}} < g_{m_0,n_0}, g_{m,n} >$$

Estimated symbol:

$$\hat{a}_{m_0,n_0} = a_{m_0,n_0} + \mathcal{R}e\{I_{m_0,n_0}\}$$

If the prototype filter is well-localized [2]: $\mathcal{R}e\{I_{m_0,n_0}\}\approx 0$

Equalization with Interference cancellation (EIC)

The approximations are no longer satisfied when :

- ► Large delay spread.
- ► Large QAM constellation.

=>Equalization with Interference cancellation developed by Hao LIN [1].

Now, we take into account:

▶
$$\Re\{I_{m_0,n_0}\} \neq 0$$
.

Demodulated signal

The demodulated signal:

$$y_{m_0,n_0} = a_{m_0,n_0} \int_0^{\Delta} h(\tau) e^{-j2\pi m_0 F_0 \tau} A_g(-\tau,0) d\tau + J_{m_0,n_0}$$

with J_{m_0,n_0} the interference term:

$$\begin{array}{lcl} J_{m_0,n_0} & = & \displaystyle \sum_{(m,n) \neq (m_0,n_0)} a_{m,n} e^{j(\Phi_{m,n}-\Phi m_0,n_0)} e^{j\frac{\pi}{2}(m-m_0)(m_0+n)} \\ \\ & \times \int_0^\Delta h(\tau) e^{-j\pi(m_0+m)F_0\tau} A_g[(n_0-n)\tau_0-\tau,(m-m_0)F_0] d\tau \end{array}$$

where A_g is the ambiguity function:

$$A_g[au,\mu] = \int_{\mathbb{R}} g(t+rac{ au}{2})g(t-rac{ au}{2})e^{j2\pi\mu t}dt$$

Step 1

$$\hat{a}_{m,n}^{(1)} = HD \left[\mathcal{R}e \left\{ rac{y_{m_0,n_0}}{\hat{H}_{m_0}}
ight\}
ight]$$

Step 2

$$\hat{a}_{m_0,n_0}^{(2)} = \mathcal{R}e\left\{\frac{y_{m_0,n_0} - \hat{J}_{m_0,n_0}}{\int_0^{\Delta} \hat{h}(\tau)e^{-j2\pi m_0 F_0 \tau} A_g(-\tau,0)d\tau}\right\}$$

Interference term: calculation

$$\hat{J}_{m_0,n_0} = \sum_{(p,q)\in\Omega_{(1,1)}^*} \hat{a}_{m_0+p,n_0+q}^{(1)} e^{jrac{\pi}{2}(p+q)} imes e^{jrac{\pi}{2}p(2n_0+q)} \ imes \int_0^{\Delta} \hat{h}(au) e^{-j\pi(2m_0+p)F_0 au} imes A_g[-q au_0- au,pF_0]d au$$

Example IOTA4

IOTA (Isotropic Orthogonal Transform Algorithm) prototype filter of length $4T_o$.

Time/frequency response:

Inter-carrier spacing

Ambiguity function:

Computational complexity

- ▶ A reduced neighborhood around (m_0, n_0) position.
- ► A_g computed off-line.
- ▶ Interference term computed with FFT algorithm.
- ► Complexity for 1-tap neighborhood $\Omega^*_{(1,1)}$:
 - ▶ On-line: O(M).
 - ▶ Off-line: $\frac{9}{2}M \times log_2(L_h)$.

Outline

- Multi-carrier modulation
- 2 Problem statement
- 3 Equalization method
- Results
 - Over PLC channel
 - Over test channel

Simulations parameters

Parameters	Values
Sampling frequency	10 Mhz
FFT size	M = 128
Symbol duration	$T_0=12.8~\mu s$
Frame length	20 T ₀
Prototype function	IOTA4.
Real estimation	IAM2 [2]
Convolutional coding	rate = $1/2$; $K = 7$; $(133, 177)_o$
CP-OFDM	$GI=9$ samples $(0,9~\mu s)$

Zimmermann channel [3] (4 paths):

- ▶ Delays (μs) : 0;0,4;0,6;0,7.
- ▶ Power profile (linear): 0,2;0,1;0.02;0.01.

BER: CP-OFDM & OFDM/OQAM over PLC channel

Simulation parameters

Parameters	Values
Central frequency	1 Ghz
Bandwidth	10 Mhz
Sampling frequency	10 <i>Mhz</i>
FFT size	M = 128
Symbol duration	$T_0=12.8~\mu s$
Frame length	20 T ₀
Prototype filter	IOTA4.
Estimation	perfect.
Constellation	64 QAM.
Convolutional coding	rate = $1/2$; $K = 7$; $(133, 177)_o$

BER results (1/2)

Delay spread M/2

- ▶ Delays (μs): 0;1,6.
- Power profile (in dB): -4;-15.

Delay spread M/4

- ▶ Delays(μs): 0;2,2.
- Power profile (in dB): -4;-15.

BER results (2/2)

Delay spread M/8

- ▶ Delays(μs): 0;6,4.
- Power profile (in dB): -4;-15.

Delay spread M/6

- ▶ Delays(μs): 0;3,2.
- Power profile(in dB): -4;-15.

Conclusion

- => We have checked the efficiency of an equalization procedure with interference cancellation (EIC).
 - Good efficiency of EIC over PLC channel with large constellations (64 QAM, 256QAM).
 - ► EIC uses fast algorithm (FFT).
- => A comparison between OFDM/OQAM with EIC and CP-OFDM with ZF has been made.
 - ► EIC removes totally the interference like CP-OFDM
 - No loss of spectral efficiency.

Introduction
Multi-carrier modulation
Problem statemen
Equalization method
Result

Questions?

Référence

Equalization with interference cancellation for hermitian symmetric ofdm/oqam systems

ISPLC 2008.

[2] C. Lélé and P. Siohan and R. Legouable and J.-P. Javaudin

Preamble-based channel estimation techniques for ${\sf OFDM/OQAM}$ over the powerline

ISPLC 07.

[3] M. Zimmermann and K. Dostert

A multipath model for the powerline channel

Communication, IEEE Transactions on, 50(4):553-559, Apr 2002.

