NAME:		
T ALTAINING		

1. Acme's Research Institute, discovers that a computer company wants a new tape drive for a proposed new computer system. Since the company does not have research people available to develop the new drive, it will subcontract the development to an independent research firm. The computer company has offered a fee of \$250,000 for the best proposal for developing the new tape drive. The contract will go to the firm with the best technical plan and the highest reputation for technical competence. Acme wants to enter the competition. Management estimates a cost of \$50,000 to prepare a proposal with a fifty-fifty chance of winning the contract. However, Acme's engineers are uncertain about how they will develop the tape drive if they are awarded the contract.

Three alternative approaches can be tried. The first approach is a mechanical method with a cost of \$120,000, and the engineers are certain they can develop a successful model with this approach. A second approach involves electronic components. The engineers estimate that the electronic approach will cost only \$50,000 to develop a model of the tape drive, but with only a 50 percent chance of satisfactory results. A third approach uses magnetic components; this costs \$80,000, with a 70 percent chance of success.

Acme engineers are restricted to working on only one approach at a time and they have time to try only two approaches. If it tries either the magnetic or electronic method and the attempt fails, the second choice must be the mechanical method to guarantee a successful model. The management of Acme needs help in incorporating this information into a decision to proceed or not.

- 2. Joe's Service Station operates with a single gas pump. Cars arrive according to a Poisson distribution at an average rate of 15 cars per hour. On average, Joe takes 3 minutes to service a car, service times follow an exponential distribution.
 - a. What fraction of the time is Joe busy servicing cars?
 - b. How many cars can Joe expect to find, on average, in his station?
 - c. What's the probability that there are at least 2 cars in the station?
 - d. How long can a driver expect to wait before his car can get gas?
 - e. Joe is planning to set up an area near the garage, where cars can wait to be serviced. If each car requires 200 sq. ft., on average, how much space would be required?
- 3. Suppose we want to fill a backpack by selecting some objects among various items. There are n different items available and each item j has a weight of w_j and a profit of p_j . The backpack can hold a weight of at most W. Using a genetic algorithm, describe an appropriate representation and crossover strategy to find an optimal subset of items to maximize the total profits subject to the backpack's weight capacity. (Assume that the profits, weights, and capacity are positive integers.)

4. Biggie's Investments, Inc., is a brokerage firm that manages stock portfolios for a number of clients. One particular portfolio consists of U shares of U.S. Oil and H shares of Huber Steel. The annual return for U.S. Oil is \$3 per share and the annual return for Huber Steel is \$5 per share. U.S. Oil sells for \$25 per share and Huber Steel sells for \$50 per share. The portfolio has \$80,000 to be invested. The portfolio risk index (0.5 per share of U.S. Oil and 0.25 per share for Huber Steel) has a maximum of 700. In addition, the portfolio is limited to a maximum of 1000 shares of U.S. Oil. The linear programming formation that will maximize the total annual return of the portfolio is as follows:

Maximize 3U + 5H

subject to:

 $25U + 50H \le 80,000$ $0.5U + 0.25H \le 700$ $1U \le 1000$

U, H ≥ 0

The computer solution of this problem is shown below:

Original Problem w/answers			All Commence		
	(untitled) Solution				
	U	Н		RHS	Dual
Maximize	3	5			
Available Budget	25	50	<=	80000	.0933
Portfolio Risk Index	.5	.25	<=	700	1.3333
Limit to # of U.S. Oil	1	0	<=	1000	0
Solution->	800	1200	Optimal Z->	8400	

Ranging			(untitled)	Solution		
		(untitled) Solution				
Variable	Value	Reduced Cost	Original Val	Lower Bound	Upper Bound	
U	800	0	3	2.5	10	
H	1200	0	5	1.5	6	
Constraint	Dual Value	Slack/Surplus	Original Val	Lower Bound	Upper Bound	
Available Budget	.0933	0	80000	65000	140000	
Portfolio Risk Index	1.3333	0	700	400	775	
Limit to # of U.S. Oil	0	200	1000	800	Infinity	

	(untitled) Solution					
Original Problem						
Maximize	U	H				
Available Budget	25	50	<=	80000		
Portfolio Risk Index	0.5	0.25	<=	700		
Limit to # of U.S. Oil	1	0	<=	1000		
Dual Problem						
	Available	Portfolio Risk	Limit to # of			
Minimize	80000	700	1000			
U	25	0.5	1	>=		
Н	50	0.25	0	>=		

- a) What is the optimal solution, and what is the value of the total annual return?
- b) Which constraints are binding? What is your interpretation of these constraints in terms of the problem?
- c) What are the shadow prices for the constraints? Interpret each shadow price and state clearly what it means.
- d) Would it be beneficial to increase the maximum amount invested in U.S. Oil? If yes, what is the limit of the increase? If not, why not?

- 5. A farmer in the Midwest has 1000 acres of land on which she intends to plant corn, wheat, and soybeans. Each acre of corn costs \$100 for preparation, 7 worker-days of labor, and yields a profit of \$30. An acre of wheat costs \$120 to prepare, requires 10 worker-days of labor, and yields \$40 profit. An acre of soybeans costs \$70 to prepare, requires 8 worker-days, and yields \$20 profit. The farmer has taken out a loan of \$80,000 for crop preparation and has contracted with a union for 6,000 worker days of labor. A midwestern granary has agreed to purchase200 acres of corn, 500 acres of wheat and 300 acres of soybeans. The farmer has established the following goals in the order of their importance:
- 1) To maintain good relations with the union, the labor contract must be honored; that is, the full 6,000 hours of labor contracted for must be used.
- 2) Preparation costs should not exceed the loan amount, so that additional loans will not have to be secured.
- 3) The farmer desires a profit of at least \$105,000 to remain in good financial condition.
- 4) Contracting for excess labor should be avoided.
- 5) The farmer would like to use as much of the available acreage as possible.

Formulate a model to determine the number of acres of each crop the farmer should plant to satisfy the goals in the best possible way.