What if we generalize from "frequency" to "point weight"?

Up "general tornstile model" (x, v,), ... (x, v) where

V; $\in \mathbb{Z}$ (so v; \in 0 possible)

 $n_x = \sum_{(x_i, v_i) \in S} v_i \in \mathbb{Z}$ $(x_i, v_i) \in S$ $(x_i, v$

then can't use $\hat{n}_{x} = \min_{i \in TES} \{\hat{n}_{x}\}$ as a reliable estimator

Instrano: use \hat{N}_{k} = median $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$ $\{\hat{N}_{k}\}$

(to see this, recall that if all vi>0, then IE[12;1]=

IE[2:] < \(\frac{N}{m} \); and similarly if all vi<0 then

IE[12:1] = - IE[2:] < \(\frac{N}{m} \). So if some vi>0 and

Some vi<0, the expected value must still satisfy

IE[12:1] < N/m.)

Let Bi=1 (1/1 - nx1 = 3EN. Then: E[Bi] < 1/8.

Let B = \frac{k}{2} B_1, then \(\mathbb{E} \B \) \(\frac{k}{8} \). Now, recall that \hat{N}_{x} = median $\{\hat{N}_{x}^{1},...,\hat{N}_{x}^{2}\}$.

then R(Iñ,-n,1>3EN)

= Pr (B > 1) by the "Median trick"

Note that the B; ove i.i.d., so Cherroff bounds apply to B = ZBi.

Pr (B>2) - Pr(B>4(1/8))

4 Pr (B > 4(2))

where $\tilde{B} = \sum_{i=1}^{N} \tilde{B}_{i}$ and the \tilde{B}_{i} are such that

Pr (B; =1) (E) \(\frac{1}{8}\) rather than Pr (B; \(\text{E} \) \(\frac{1}{8}\) \(\frac

 $Pr(B>\frac{e}{2}) \in Pr(B>4\mu) \in \left(\frac{c^3}{44}\right)^n$

Now, some "trickery"; 44 = em4+ = 4m4

so c3 = el3-4m4) < e^2

R(B> 2) < e- 6/4 so with the c ln(1/8)

 $(\frac{1}{1000})^{1/4} = 6.178, (\frac{1}{1000})^{1/2} = 0.03$ k = 7 k = 14