

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчет по лабораторной работе №3

«Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей»

по дисциплине «Технологии машинного обучения»

Выполнил: студент группы ИУ5Ц-84Б Падалко К.Р. подпись, дата

Проверил: к.т.н., доц., Ю.Е. Гапанюк подпись, дата

СОДЕРЖАНИЕ ОТЧЕТА

1.	Цель лабораторной работы	3
2.	Задание	3
3.	Основные характеристики датасета	3
4.	Листинг	4
4.1.	Изучение данных	4
4.2.	Преобразование данных	6
4.3.	Описательная статистика	7
4.4.	Предобработка данных	8
4.4.	1. Пропущенные значения	8
4.4.	2. Дубликаты	9
4.5.	Отсев до определенного количества уникальных значений	9
4.6.	Машинное обучение1	0
4.6.	1. Деление на обучающей и тестовой выборки	0
4.7.	Кодирование признаков – прямое кодирование (One-Hot Encoding) . 1	0
4.8.	Обучение модели1	1
4.8.	1. KNeighborsRegressor	1
4.9.	Итог1	2
4.9.	1. Анализ моделей	2
5.	Вывол	2

1. Цель лабораторной работы

Изучение способов подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей.

2. Задание

- 1) Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2) В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3) С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4) Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик.
- 5) Произведите подбор гиперпараметра К с использованием GridSearchCV и RandomizedSearchCV и кросс-валидации, оцените качество оптимальной модели. Используйте не менее двух стратегий кросс-валидации.
- 6) Сравните метрики качества исходной и оптимальной моделей.

3. Основные характеристики датасета

Название датасета: Набор данных о видах ирисов.

Ссылка: https://www.kaggle.com/datasets/uciml/iris

О датасетах

Этот набор данных содержит информацию о различных аспектах ирисов (цветков) из трех видов: Setosa, Versicolor и Virginica. В наборе представлены характеристики, такие как длина и ширина чашелистика и лепестка для 150 образцов ирисов. Данные используются для классификации видов ирисов на основе этих характеристик.

Набор данных включает 150 строк, каждая из которых представляет один ирис, и 5 столбцов.

Этот датасет использован для задач классификации и обучения моделей

машинного обучения, таких как k-ближайших соседей, дерева решений, логистической регрессии и других методов классификации.

Структура данных

sepal length (длина чашелистика) — измеряется в сантиметрах. sepal width (ширина чашелистика) — измеряется в сантиметрах. petal length (длина лепестка) — измеряется в сантиметрах. petal width (ширина лепестка) — измеряется в сантиметрах. species (вид) — категориальная переменная, указывающая на вид ириса, который представлен в строке (Setosa, Versicolor или Virginica).

Выбор признаков для машинного обучения

Для машинного обучения выберем целевой признак — вид ирисов. Сопоставим с остальными признаками, а именно, характеристики цветов, вывялим примерный вид ириса.

4. Листинг

4.1.Изучение данных

```
[11]: df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 150 entries, 0 to 149
      Data columns (total 6 columns):
           Column
                         Non-Null Count Dtype
                         -----
           -----
       0
           Ιd
                         150 non-null
                                         int64
           SepalLengthCm 150 non-null float64
SepalWidthCm 150 non-null float64
       1
       2
         PetalLengthCm 150 non-null float64
       3
           PetalWidthCm 150 non-null float64
       4
       5
           Species
                         150 non-null
                                         object
      dtypes: float64(4), int64(1), object(1)
      memory usage: 7.2+ KB
```

В датасете содержатся 150 строки, имеются 3 различные типы: object, int64 и float64.

Просмотр названий столбцов.

Первые и последние пять строк датасета.

```
[13]: display(df.head())
  display(df.tail())
```

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

Приведем к нижнему регистру и удаление лишних пробелов в названиях столбцов.

```
[14]: #Приведение к нижнему регистру и удаление лишних пробелов в названиях столбцов df.columns = df.columns.str.strip().str.lower()
```

4.2.Преобразование данных

```
[15]: # Проверим объем занимаемой памяти в Мбайтах до преобразования
       \texttt{print(f'06bem dataceta do npeo6pasobahus: \{df.memory\_usage(deep=True).sum() / 1024 / 1024:.3f\} M6aŭt') }  
      Объем датасета до преобразования: 0.016 Мбайт
[16]: original_memory = df.memory_usage(deep=True).sum()
[17]: # Автоматизируем
      def change_type_variable(dateframe, show_print_report=False):
         for name_column in dateframe:
            if(dateframe[name_column].dtype == 'int64'):
                 dateframe[name_column] = dateframe[name_column].astype('int32')
                 if(show print report):
                    print(f'Успешно, преобразовали в другой тип INT32 колонки: {name_column}')
             if(dateframe[name_column].dtype == 'float64'):
                 dateframe[name_column] = dateframe[name_column].astype('float32')
                 if(show print report):
                    print(f'Успешно, преобразовали в другой тип FLOAT32 колонки: {name_column}')
             \textbf{if}(\mathsf{name\_column}\ \textbf{in}\ [\, \mathsf{'accidents\_or\_damage'},\ \mathsf{'one\_owner'},\ \mathsf{'personal\_use\_only'}\,]):
                 dateframe[name_column] = dateframe[name_column].astype(bool)
          if not(show_print_report):
             print('Успешно, преобразованы в другой тип')
[18]: # Преобразуем их
      change_type_variable(df)
      Успешно, преобразованы в другой тип
[19]: # Проверим объем занимаемой памяти в Мбайтах до преобразования
      print(f'Объем датасета после преобразования: {df.memory_usage(deep=True).sum() / 1024 / 1024:.3f} Мбайт')
      Объем датасета после преобразования: 0.013 Мбайт
[21]: optimized_memory = df.memory_usage(deep=True).sum()
[22]: # Узнаем, сколько сэкономили памяти
        savings_percentage = (original_memory - optimized_memory) / original_memory * 100
       print(f"Сэкономлено {savings_percentage:.2f}% памяти")
        Сэкономлено 17.99% памяти
[23]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 6 columns):
         # Column
                             Non-Null Count Dtype
          0 id
                                150 non-null int32
          1 sepallengthcm 150 non-null float32
          2 sepalwidthcm 150 non-null float32
          3 petallengthcm 150 non-null float32
          4 petalwidthcm 150 non-null float32
          5 species
                                 150 non-null object
        dtypes: float32(4), int32(1), object(1)
        memory usage: 4.2+ KB
```

4.3.Описательная статистика

[24]:	df.des	cribe()				
24]:		id	sepallengthcm	sepalwidthcm	petallengthcm	petalwidthcm
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	75.500000	5.843333	3.054000	3.758667	1.198667
	std	43.445368	0.828066	0.433594	1.764420	0.763161
	min	1.000000	4.300000	2.000000	1.000000	0.100000
	25%	38.250000	5.100000	2.800000	1.600000	0.300000
	50%	75.500000	5.800000	3.000000	4.350000	1.300000
	75%	112.750000	6.400000	3.300000	5.100000	1.800000
	max	150.000000	7.900000	4.400000	6.900000	2.500000

id: Это уникальные идентификаторы записей в данных. Каждая строка представляет отдельный образец ириса, и этот столбец не несет дополнительной информации о характеристиках цветов. Он служит лишь для идентификации строки в наборе данных.

sepallengthcm: Это длина чашелистика цветка ириса, измеренная в сантиметрах. Среднее значение длины чашелистика составляет 5.84 см. Диапазон значений от 4.3 см до 7.9 см, что указывает на разнообразие в длине чашелистика среди разных видов ирисов.

sepalwidthcm: Это ширина чашелистика цветка ириса, измеренная в сантиметрах. Средняя ширина чашелистика составляет 3.05 см. Значения варьируются от 2.0 см до 4.4 см, что показывает, что ширина чашелистика также имеет значительные колебания среди ирисов.

petallengthcm: Это длина лепестка цветка ириса, измеренная в сантиметрах. Средняя длина лепестка составляет 3.76 см. Длина лепестков варьируется от 1.0 см до 6.9 см, с большими различиями между образцами, что может указывать на разнообразие форм лепестков в зависимости от вида ириса.

petalwidthcm: Это ширина лепестка цветка ириса, измеренная в сантиметрах. Средняя ширина лепестка составляет 1.20 см. Значения варьируются от 0.1 см до 2.5 см, что также указывает на значительный разброс в характеристиках лепестков среди разных видов ирисов.

4.4.Предобработка данных

4.4.1. Пропущенные значения

```
# Создаем список с именами столбцов и количеством пропущенных значений missing_counts = [df[column].isnull().sum() for column in df.columns]

# Сортируем столбцы в порядке убывания количества пропущенных значений sorted_columns, sorted_missing_counts = zip(*sorted(zip(df.columns, missing_counts), key=lambda x: x[1], reverse=False))

# Создаем горизонтальную столбчатую диаграмму
plt.figure(figsize=(10, 6))

# Используем barh для горизонтальных столбцов
plt.barh(sorted_columns, sorted_missing_counts)
plt.xlabel('Количество пропущенных значений')
plt.ylabel('Название столбцов')
plt.title('Количество пропущенных значений в каждом столбце')
plt.tight_layout()

# Отображаем график
plt.show()
```


В диаграмме отсутствуют пропуски в столбцах.

```
[26]: columns_isnull = [col for col, count in zip(sorted_columns, sorted_missing_counts) if count > 0]
      print(f'Названий столбцов, у которых пропуски:')
      for col in columns_isnull:
          print('\t' + col)
      Названий столбцов, у которых пропуски:
[27]: # Проверим наличие пустых значений
      # Цикл по колонкам датасета
      for col in df.columns:
          # Количество пустых значений - все значения заполнены
          temp_null_count = df[df[col].isnull()].shape[0]
          print('{} - {}'.format(col, temp_null_count))
      sepallengthcm - 0
      sepalwidthcm - 0
      petallengthcm - 0
      petalwidthcm - 0
      species - 0
```

4.4.2. Дубликаты

2.4.2. Дубликаты

```
[28]: # Количество дублирующих значений df.duplicated().sum()
```

Дубликатов нет, это говорит о том, что датасет был хорошо сделан.

4.5.Отсев до определенного количества уникальных значений

Для кодирования признаков ОНЕ или ОН будет черевато, если оставить много уникальных названий, т.к. это приведет к созданию много новых признаков. Поэтому отсеиваем до небольших количеств, так чтобы создали максимум небольших новых закодированных признаков.

```
[30]: # Сделаем копию датасета
       df_copy = df.copy()
[31]: df_copy.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 150 entries, 0 to 149
       Data columns (total 6 columns):
                       Non-Null Count Dtype
       # Column
                            -----
       0 id
                            150 non-null int32
           sepallengthcm 150 non-null
                                             float32
           sepalwidthcm 150 non-null
                                             float32
           petallengthcm 150 non-null
                                             float32
                                             float32
        4 petalwidthcm 150 non-null
                            150 non-null
        5 species
                                             object
       dtypes: float32(4), int32(1), object(1)
       memory usage: 4.2+ KB
[32]: # Функция, которая разделяет численные и категориальные признаки \mathbf{def} divide_features(\mathbf{df}):
          numerical_features = df.select_dtypes(include=['number']).columns
          categorical_features = df.select_dtypes(exclude=['number']).columns
          return numerical_features, categorical_features
[33]: numerical_features, categorical_features = divide_features(df)
[34]: print("Численные признаки:", numerical_features.to_list())
      Численные признаки: ['id', 'sepallengthcm', 'sepalwidthcm', 'petallengthcm', 'petalwidthcm']
[35]: print("Нечисленные признаки:", categorical_features.to_list())
      Нечисленные признаки: ['species']
[36]: # Можно закодировать
      df_copy['species'].value_counts()
[36]: Iris-setosa
       Iris-versicolor
      Iris-virginica 50
Name: species, dtype: int64
```

4.6. Машинное обучение

```
[39]: # Здесь сохраняем результаты машинного обучения results = pd.DataFrame()

# Счетчтик для нумераций count_model = 0
```

4.6.1. Деление на обучающей и тестовой выборки

```
[41]: # Получаем признаки и целевую переменную
features = df.drop(['id', 'species'], axis=1) # Удаляем ненужные столбцы
target = df['species'] # Используем species как целевую переменную

[45]: # Применяем LabelEncoder для кодирования целевой переменной 'species'
encoder = LabelEncoder()
target_encoded = encoder.fit_transform(target)

# Разделяем на тренировочную и тестовую выборки
features_train, features_test, target_train, target_test = train_test_split(features, target_encoded, test_size=0.2, random_state=12345)
```

4.7. Кодирование признаков – прямое кодирование (One-Hot Encoding)

```
[49]: # Просматриваем первые несколько строк
display(features_train.head())
display(features_test.head())
```

	sepallengthcm	sepalwidthcm	petallengthcm	petalwidthcm
19	5.1	3.8	1.5	0.3
48	5.3	3.7	1.5	0.2
146	6.3	2.5	5.0	1.9
121	5.6	2.8	4.9	2.0
60	5.0	2.0	3.5	1.0

	sepallengthcm	sepalwidthcm	petallengthcm	petalwidthcm
69	5.6	2.5	3.9	1.1
42	4.4	3.2	1.3	0.2
56	6.3	3.3	4.7	1.6
35	5.0	3.2	1.2	0.2
16	5.4	3.9	1.3	0.4

4.8. Обучение модели

4.8.1. KNeighborsRegressor

```
[53]: from sklearn.neighbors import KNeighborsRegressor
                                                                                                                                                                   □ ↑ ↓
        encoder = LabelEncoder()
        target_encoded = encoder.fit_transform(target)
        # Разделяем на тренировочную и тестовую выборки
        features_train, features_test, target_train, target_test = train_test_split(features, target_encoded, test_size=0.2, random_state=12345)
        # Задаем значения гиперпараметров для GridSearchCV
        parameters = {
            'kneighborsregressor_n_neighbors': [1, 2, 5, 10, 20],
'kneighborsregressor_weights': ['uniform', 'distance'],
'kneighborsregressor_p': [1, 2] # p = 1 (Манхэттенское расстояние), p = 2 (Евклидово расстояние)
        # Инициализируем модель (включая масштабирование) и GridSearchCV
       pipeline_scale = make_pipeline(StandardScaler(), KNeighborsRegressor())
        model = GridSearchCV(pipeline_scale, param_grid=parameters, cv=5, scoring='neg_mean_absolute_error')
       display(model)
      GridSearchCV(cv=5,
                       estimator=Pipeline(steps=[('standardscaler', StandardScaler()),
                                                         ('kneighborsregressor'
                                                          KNeighborsRegressor())]),
                       param_grid={'kneighborsregressor__n_neighbors': [1, 2, 5, 10, 20],
                                       'kneighborsregressor_p': [1, 2],
'kneighborsregressor_weights': ['uniform',
                       scoring='neg_mean_absolute_error')
        model.fit(features_train, target_train)
       # Результаты обучения
time_train = model.refit_time_
       params = model.best_params_
result_MAE_t = -model.best_score_ # MAE на тренировочной выборке
       print('MAE TRAIN:', result_MAE_t)
       print('TIME TRAIN [s]:', round(time_train, 2))
       [56]: from sklearn.metrics import mean_absolute_error
        # Оценка на тестовой выборке
       start_time = timeit.default_timer()
       predictions = model.predict(features_test) # Предсказания на тестовой выборке elapsed = round(timeit.default_timer() - start_time, 3) # Время предсказания
        # МАЕ на тестовой выборке
       result_MAE_v = mean_absolute_error(target_test, predictions)
print('MAE TEST:', result_MAE_v)
print('Предсказание:', predictions.mean())
       MAE TEST: 0.0666666666666667
       Предсказание: 0.866666666666667
```

```
[59]: # Зафиксируем результаты
       results = pd.DataFrame() # Создаем пустой DataFrame для результатов
       count_model = 0 # Счётчик для моделей
       results[count_model] = pd.Series({
           'NAME': pipeline_scale.named_steps[pipeline_scale.steps[-1][0]].__class__.__name__,
           'MAE TRAIN': result_MAE_t,
           'MAE TEST': result_MAE_v,
           'PREDICTIONS': predictions.mean(),
           'TIME TRAINING [s]': model.refit_time_,
'TIME PREDICTION [s]': elapsed,
           'PARAMETERS': model.best_params_
       # Выводим результаты
      display(results)
       # Увеличиваем счётчик модели
      count_model += 1
                    NAME
                                                  KNeighborsRegressor
               MAE TRAIN
                                                           0.058333
                 MAE TEST
                                                            0.066667
             PREDICTIONS
                                                            0.866667
        TIME TRAINING [s]
                                                            0.012998
      TIME PREDICTION [s]
             PARAMETERS {'kneighborsregressor_n_neighbors': 1, 'kneig...
```

4.9.Итог

4.9.1. Анализ моделей

5. Вывод

В ходе лабораторной работы изучили способы подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей.