| Date         | 01 November 2022                     |
|--------------|--------------------------------------|
| Team ID      | PNT2022TMID52144                     |
| Project Name | Natural Disasters Intensity Analysis |
|              | and Classification using Artificial  |
|              | Intelligence                         |

## **Project Planning Phase**

# Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

#### **Product Backlog, Sprint Schedule, and Estimation (4 Marks):**

Use the below template to create product backlog and sprint schedule

| Sprint   | Function al<br>Requirement<br>(Epic) | User story<br>Number | User story / Task                                                                         | Story<br>points | Priority | Team members                                                       |
|----------|--------------------------------------|----------------------|-------------------------------------------------------------------------------------------|-----------------|----------|--------------------------------------------------------------------|
| Sprint-1 | Registration                         | USN – 1              | As a user,<br>registering into the<br>product using a<br>valid email address              | 5               | High     | P.Selin Prabavathy A.Sivalakshmi T.Sivamartin R.Sornamala          |
| Sprint-2 | Registration                         | USN – 2              | As a user,<br>registering into the<br>product using<br>avalid username<br>and<br>password | 3               | Medium   | P.Selin Prabavathy<br>A.Sivalakshmi<br>T.Sivamartin<br>R.Sornamala |
| Sprint-1 | Authentication                       | USN - 3              | As a user, I adept to logging into the system with credentials                            | 4               | High     | P.Selin Prabavathy A.Sivalakshmi T.Sivamartin R.Sornamala          |
| Sprint-2 | Authentication                       | USN - 4              | As a user, I adept to logging into the system with OTP                                    | 2               | High     | P.Selin Prabavathy<br>A.Sivalakshmi<br>T.Sivamartin<br>R.Sornamala |
| Sprint-1 | Designation of<br>Region             | USN – 5              | selecting the region<br>of interest to be<br>monitored and<br>analyzed                    | 3               | High     | P.Selin Prabavathy A.Sivalakshmi T.Sivamartin R.Sornamala          |

| Sprint-2 | Analysis of | USN - 6 | Regulating certain  | 3 | High | P.Selin Prabavathy |  |
|----------|-------------|---------|---------------------|---|------|--------------------|--|
|          | Required    |         | factors influencing |   |      | A.Sivalakshmi      |  |
|          | Phenomenon  |         | the actions of the  |   |      | T.Sivamartin       |  |
|          |             |         | phenomenon          |   |      | R.Sornamala        |  |

| Sprint   | Functional<br>Requirement<br>(Epic) | User story<br>Number | User story / Task                                                        | Story points | Priority | Team members                                                       |
|----------|-------------------------------------|----------------------|--------------------------------------------------------------------------|--------------|----------|--------------------------------------------------------------------|
| Sprint-2 | Accumulation of required Data       | USN – 7              | Gathering data<br>and detailed<br>report on past<br>event analysis       | 3            | Low      | P.Selin Prabavathy<br>A.Sivalakshmi<br>T.Sivamartin<br>R.Sornamala |
| Sprint-4 | Organizing<br>Unstructured<br>data  | USN – 8              | Choosing a required algorithm for specific analysis                      | 2            | High     | P.Selin Prabavathy A.Sivalakshmi T.Sivamartin R.Sornamala          |
| Sprint-2 | Algorithm selection                 | USN - 9              | Choosing a required algorithm for specific analysis                      | 6            | High     | P.Selin Prabavathy A.Sivalakshmi T.Sivamartin R.Sornamala          |
| Sprint-3 | Prediction and analysis of data     | USN – 10             | Predicting and visualizing the data effectively                          | 36           | High     | P.Selin Prabavathy A.Sivalakshmi T.Sivamartin R.Sornamala          |
| Sprint-4 | Report generation                   | USN – 11             | Generating a clear<br>and detailed<br>report on product<br>data analysis | 3            | High     | P.Selin Prabavathy A.Sivalakshmi T.Sivamartin R.Sornamala          |

### **Project Tracker, Velocity & Burndown Chart: (4 Marks)**

| Sprint   | Total Story<br>Points | Duration | Sprint Start<br>Date | Sprint End<br>Date<br>(Planned) | Story Points<br>Completed<br>(as on<br>Planned End<br>Date) | Sprint<br>Release Date<br>(Actual) |
|----------|-----------------------|----------|----------------------|---------------------------------|-------------------------------------------------------------|------------------------------------|
| Sprint-1 | 12                    | 6 days   | 24 Oct 2022          | 29 Oct 2022                     | 12                                                          | 30 Oct 2022                        |
| Sprint-2 | 14                    | 6 days   | 31 Oct 2022          | 5 Nov 2022                      | 14                                                          | 6 Nov 2022                         |
| Sprint-3 | 6                     | 6 days   | 07 Nov 2022          | 12 Nov 2022                     | 6                                                           | 8 Nov 2022                         |
| Sprint-4 | 6                     | 6 days   | 14 Nov 2022          | 19 Nov 2022                     | 6                                                           | 20 Nov 2022                        |

#### **Velocity**:

#### Sprint - 1

Average Velocity = Sprint duration / Velocity

$$= 12 / 6$$

Average Velocity = 2

#### Sprint - 2

Average Velocity = Sprint duration / Velocity

$$= 14 / 6$$

Average Velocity = 2.3

#### Sprint - 3

Average Velocity = Sprint duration / Velocity

$$= 6 / 6$$

Average Velocity = 1

#### Sprint - 4

Average Velocity = Sprint duration / Velocity

$$= 6 / 6$$

Average Velocity = 1

#### **Burndown Chart:**

A burn down chart is a graphical representation of work left to do versus time. It isoften used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

#### An approximate work plan in burndown

