

AD-A044 544

NAVAL SURFACE WEAPONS CENTER WHITE OAK LAB SILVER SP--ETC F/G 16/3
A PROGRAM FOR COMPUTING STEADY INVISCID THREE-DIMENSIONAL SUPER--ETC(U)
MAY 77 J M SOLOMON, M CIMENT, R E FERGUSON

UNCLASSIFIED

NSWC/WOL/TR-77-32

NL

1 of 2
ADA044544

AD A 044544

NSWC/WOL TR 77-32

(2) (S)

A PROGRAM FOR COMPUTING STEADY INVISCID THREE-DIMENSIONAL SUPERSONIC FLOW ON REENTRY VEHICLES, VOL. II, USER'S MANUAL

BY: J. M. SOLOMON M. CIMENT R. E. FERGUSON
J. B. BELL A. B. WARDLAW

ADVANCED WEAPONS DEPARTMENT

20 MAY 1977

AD No. _____
DDC FILE COPY
DDC

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER <i>(14) NSWC/WOL/TR-77-32</i>	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) A Program for Computing Steady Inviscid Three-Dimensional Supersonic Flow on Reentry Vehicles, Vol. II, User's Manual	5. TYPE OF REPORT & PERIOD COVERED	
7. AUTHOR(s) J. M. Solomon, M. Ciment, R. E. Ferguson, J. B. Bell, A. B. Wardlaw, Jr.	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center White Oak Laboratory White Oak, Silver Spring, Maryland 20910	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62332N; 0; ZF32-303-001; 0	
11. CONTROLLING OFFICE NAME AND ADDRESS <i>(16) F32393</i>	12. REPORT DATE <i>(D) 20 May 1977</i>	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 98 <i>b2 89P</i>	
15. SECURITY CLASS. (of this report) Unclassified		
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) reentry vehicle, flow fields, three dimensional, supersonic/hypersonic, inviscid flow, control surfaces, pitch/yaw, finite difference methods, hyperbolic systems, boundary conditions		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) <i>A comprehensive computational procedure is presented for predicting the supersonic region of the flow field on advanced reentry vehicle shapes in steady flight at pitch and yaw. The procedure utilizes explicit second order accurate finite difference methods applied to the conservation law form of the steady inviscid flow equations. Improved numerical methods are used at the body surface and the bow shock wave. Provisions for treating body</i> <i>(cont on p 1473 B)</i>		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. (cont.)^{E for P 1473A)}

geometries with discontinuous slopes are also included. Either perfect gas or real gas equilibrium thermodynamic properties can be used.

The computational procedure is implemented as a fortran computer code which provides a practicable representation of the inviscid flow field and the resulting aerodynamic force and moment on the vehicle. *This volume*

In the companion report (Vol. I), the analytical and numerical development of the procedure is presented and the associated computer code is described. This report (Vol. II User's Manual) contains detailed instructions for operating the code and interpreting the output results.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SUMMARY

This report describes the analytical, and computational aspects of a computer program for predicting inviscid flow fields and aerodynamics on realistic reentry configurations. This work was performed by members of the Mathematics and Engineering Analysis Branch of NSWC/WOL. The initial code development was supported by the Naval Sea Systems Command under the Aeroballistic Reentry Technology (ART) program with some of the fundamental analytical and numerical work supported by NSWC Independent Research Funds. Most of the final code development and documentation was supported by the Air Force Space and Missile System Organization under the technical management of the Aerospace Corporation.

The authors gratefully acknowledge the efforts of Mr. R. Feldhuhn, NSWC coordinator for the ART program, who was responsible for initiating the present work and whose continued interest and support throughout the investigation was invaluable. The authors are also indebted to Mr. M. Lyons and Dr. E. Ndefo of the Aerospace Corporation for several stimulating technical discussions which lead to important improvements in the final code.

C. A. Fisher

C. A. FISHER
By direction

ACCESSION for	
NTIS	White Section <input checked="" type="checkbox"/>
DDC	Buff Section <input type="checkbox"/>
UNANNOUNCED <input type="checkbox"/>	
JUSTIFICATION	
BY	
P	

CONTENTS

	Page
1. IDENTIFICATION	1
2. CONFIGURATION	1
3. REFERENCES	1
4. DESCRIPTION	2
5. REQUIREMENTS	4
6. SPECIFICATION OF BODY GEOMETRY	5
7. INPUT	9
7.1 TAPE	9
7.2 DATA CARDS (NAMELISTS)	10
7.3 DATA CARDS (FORMATTED)	17
8. OUTPUT	18
9. RESTART AND REZONE CAPABILITIES	22
10. MESH CLUSTERING	25
11. BENT CONE CALCULATIONS	30
12. PROGRAM STOPS	35
APPENDIX A: Mesh Smoothing Preprocessor	40
APPENDIX B: Sample Run	46
REFERENCES	83

ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	Computational Regions and Cylindrical Coordinate System For Reentry Vehicle Inviscid Flow Calculations.	3
2a,b,c	Uncut Body Geometries	6
2d	Cut and Flap Geometry	7
2e	Nose Section Geometry	8
3	Sign Conventions and Notation Used in Force and Moment Coefficients.	21
4	Restart Using First Option.	23
5	Restart Using Second Option	24
6	Listing of Delivery Version of TRANF.	27
7	Listing of Delivery Version of TRANG.	28
8	Bent Cone Configuration	33
9	Axis Shifting in Bent Cone Region	34
10	Listing of the Error-Mode Update.	37
B-1	Body Geometry for Sample Run.	47

TABLES

<u>Table</u>		<u>Page</u>
1	NAMELIST/INPUT1 (Input in MAIN)	10,13
2	NAMELIST/BODYRD (Input in BODYR, an entry point of BODY).	14,15
3	NAMELIST/OUTRD (input in OUT) NAMELIST/OUTRD/ZREF,AREF,ZC, ZO,IPCID.	16

1. Title

A Program for Computing Steady Inviscid Three-Dimensional Supersonic Flow on Reentry Vehicles; Vol. II: User's Manual

2. Identification

The following user's manual is intended for instruction on how to use the computer program D3CSS (see Ref. 1).

3. Configuration

The computer program was written for use on the CDC 6000 Series or 7000 Series. The program is coded in FORTRAN IV Source language.

4. DESCRIPTION

4.1 Purpose: The D3CSS program computes the inviscid flow field in the supersonic region (c.f., Fig. 1) on arbitrary shaped reentry bodies in pitch and yaw. The program also integrates the surface pressures to determine the aerodynamic force and moment on the body.

4.2 Method: The program uses second order accurate finite difference methods to solve numerically the inviscid flow equations in conservation form. The calculation is performed in a body oriented cylindrical coordinate system shown in Fig. 1. At the bow shock wave the Rankine-Hugoniot conditions are satisfied. The program has provisions for body shapes having discontinuous slopes. For a detailed description of the methods used in the program, see ref. 1.

4.3 Assumptions: The program assumes that:

- (i.) The flow is inviscid and the gas obeys either the perfect gas law with a constant ratio of specific heats, γ (GAMMA), or a real gas equation of state.
- (ii.) The axial component of velocity (i.e., the velocity in the z direction in Fig. 1) is supersonic. (The appearance of subsonic axial velocity anywhere in the shock layer will produce a program halt.).
- (iii.) At some axial location, $z = z_o$, the flow field is completely known. The plane $z = z_o$ is referred to as the initial plane (see, Fig. 1).
- (iv.) The body shape is described in a fixed cylindrical coordinate system shown in Fig. 1; however, there are exceptions in the case of a bent nose cone (see sec. 11 for details).

Fig. 1. Computational regions and cylindrical coordinate system for reentry vehicle inviscid flow calculations.

5. REQUIREMENTS

1. The body geometry must be specified in a separate subroutine (see, Sec. 6).
2. The flow field data on the initial plane $z = z_0$ must be supplied on input TAPE3 (see, Sec. 7).
3. A separate input card deck is required for each case (see, Sec. 7 below).
4. The thermodynamic properties of the gas must be specified in subroutines RGAS, HRGAS, ENTRY ARGAS (see secs. 11.5 and 11.6 of Ref. 1).
5. For a run with more tangential planes than 25 and/or more radial points than 20, the corresponding dimension statements in the COMMON blocks will need to be changed. Also in the MAIN, D3CSS, the DATA statement: DATA (NCMAX=20), (MCMAX=25) will need to be changed.
6. The program requires less than 110K octal locations of memory to run for a maximum of 20 radial points and 25 tangential planes.
7. The program has the special recovery routine called RECOVR which is supported by CDC on their operating systems SCOPE 3.4 and KRONOS 2.1. RECOVR allows the program to continue after an ERROR MODE. Using RECOVR enables the printing of the wall pressures, forces and moments even if there is an ERROR MODE. If the operating system does not support RECOVR, then the RESTART option of using TAPE15 will have to be used. (see Sec. 9) or the Error Mode Update (see Sec. 12) could be used.

6. SPECIFICATION OF BODY GEOMETRY

6.1 The user must specify the body geometry in the subroutine BODY.

In the event that a body is to be computed which is not included in the version of BODY in the delivery package (see, Sec. 6.2), a new BODY subroutine must be written. A description of this subroutine containing a list of all quantities which must be specified is given in Sec. 12.1 of ref. 1.

6.2 The version of BODY contained in the delivery package describes a family of body shapes subject to the following criteria:**

1. The baseline body consists of a nose section followed by a multiple conic with at most 8 conical portions (see Fig. 2a). The nose section is either a sphere (tangent to the first cone portion) or a bent sphere-cone (see Fig. 2e).
2. The rear of the body may be rounded (see Fig. 2b) or it may have an elliptical flare (see Fig. 2c). It may not have both.
3. The body may have a wind ($\phi^* = 0$), side ($0^\circ < \phi^* < 180^\circ$), and lee ($\phi^* = 180^\circ$) cut sequence. By a cut sequence at $\phi = \phi^* = \text{PHIS}$ we mean a sequence of cuts formed by passing as many as four planes, all normal to $\phi = \phi^*$, through the body.* (See Fig. 2d)
4. A finite span flap may be placed on the second part of a cut section; (Note: a flap is modeled as a wedge. At the end of the flap the wedge is continued with zero angle (see Fig. 2d))
5. A cut sequence may not begin after rounding begins nor on the flared section.

The various parameters required to define a specific geometry are read-in from cards (see Sec. 7).

All body shapes are symmetric; hence a side cut at ϕ^ implies the same for $360 - \phi^*$.

**All length dimensions are assumed non-dimensionalized by the radius of the nose (see Fig. 2e).

(a.) Baseline Body

(b.) Rounded Base

Fig. 2, Uncut Body Geometries

Fig. 2d, Cut and Flap Geometry

NSWC/WOL/TR 77-32

Spherical Nose ($IBN=0$)

Bent Nose Cone ($IBN = 1$)

Fig. 2e, Nose Section Geometry

7. INPUT

There are two forms of input to the program.

7.1 Tape Input: The initial flow field data required to begin the calculation is on input TAPE3. This data may be obtained from a previously saved restart file (see, Section 9) or (to begin the calculation) by running a suitable blunt body program (e.g., that of ref. 2). The specific read statement in the program is:

```
9 READ (3) NC,MC,ATTACK,YAW,ACH,GAMMA,PINF,DINF,PHIO,K,Z
A ,NGAS,NTEST,RRX
1 ,FN,FY,FA,MX,MY,MZ,FNZ,FYZ,FAZ,MXZ,MYZ,MZZ
2 ,(PHI(M),C(M),CZ(M),CPHI(M),M=1,MC)
3 ,((R(N,M),U(N,M),V(N,M),W(N,M),P(N,M),D(N,M),M=1,MC),N=1,NC)
```

The variables on TAPE3 are described in sec. 8 of ref. 1. We draw the user's attention to the following:

1. Pressures and densities must have dimensions consistent with subroutine RGAS; i.e., lb_f/ft^2 and $lb_f \cdot sec^2/ft^4$, respectively. Velocities have dimensions of $(pressure/density)^{1/2}$. ATTACK and YAW are in degrees but PHI(M) is in radians. All lengths are nondimensionalized by R_o (a characteristic length). Note that R_o must be the same nondimensionalizing length as used in subroutine BODY.
2. The data points $r = R(N,M)$, $\phi = PHI(M)$ on this tape are not required to coincide with the computational points on the initial plane for the calculation. When they do not coincide REZONE must be used. It is however required that the array $R(N,M)$ be increasing (i.e., $R(N,M) < R(N+1,M)$ for each fixed M) and, also, the array $PHI(M)$ be increasing (i.e., $PHI(M) < PHI(M+1)$).

7.2 Data Cards (Namelist)

The unformatted data input to the program from cards is contained in three data decks using NAMELIST. Tables 1, 2, and 3 below describe the variables in each NAMELIST as well as the default values for the variables not assigned in the data decks. See Appendix B for an example of the input decks needed to run the program. Note that NAMELIST requires that column 1 on all input cards be blank.

TABLE 1 - NAMELIST/INPUT1 (Input in MAIN)

```

NAMELIST /INPUT1/ KA,ZEND,FACTOR,DZPRINT,KOUT,ZPRINT,IZONE,
1  NCNEW,MCNEW,IPC,          K1K1NEG,ISWSMO,ISWMOD,M001,
2  ZMOD1ON,ZMOD1OF,PHI1JD,PHI2JD,ZCFL1,ZCFL2,KCFL,KFAC,
3  NJMPKT,NJMCTS,NTARGET,TARGETZ,IERFPR
4  ,ISTART,KSTART,ELIM,LCNT,IPRCFL,ISWDIF,NSGD,NSFD

```

<u>Variable Name</u>	<u>Description</u>	<u>Default</u>
KA	Maximum number of steps to be taken	2000
ZEND	Last Z value in the calculation	Undef.
FACTOR	Factor is the CFL factor used in computing ΔZ (c.f., Sec. 3.6, ref. 1)	.9
DZPRINT	Controls printing with respect to Z values; e.g., the flow field variables are outputted when the calculation has marched the distance DZPRINT along the Z-axis since the last time the output was triggered.	1.E06
KOUT(I) ZPRINT(I)	KOUT and ZPRINT control printing with respect to the number of steps taken. KOUT(I) is the number of steps between print outs when ZPRINT(I-1) \leq Z \leq ZPRINT(I). Both vectors are of dimension 5.	KOUT(I)=20 for all I ZPRINT(I)= 1.E06 for all I
IZONE	Determines whether or not to rezone. IZONE=0, no rezone; IZONE=1, rezone.	0
NCNEW	If IZONE=1 then, NCNEW is number of points desired in radial direction after rezone	Undef.
MCNEW	If IZONE=1 then, MCNEW is number of planes desired in tangential direction after rezone	Undef.

<u>Variable Name</u>		<u>Description</u>	<u>Default</u>
IPC	IPC	determines order of X differencing (c.f., Sec. 3.2, ref. 1)	0
	IPC=1	then forward differencing is used in the predictor step and backward differencing is used in the corrector step.	
	IPC=0	the differencing is reversed	
K1K1NEG		If the pressure at an interior point becomes negative the conservation vector is smoothed; c.f., Sec. 4.1, ref. 1.	2
ISWSMO		The wall entropy is extrapolated for the first ISWSMO planes (zero means no extrapolation); see Sec. 4.2, ref. 1.	0
ISWMOD		Determines which version of wall boundary condition is to be used. ISWMOD=0 means MOD 0; ISWMOD = 3 means MOD 3. ISWMOD must be 0 or 3 (see Secs. 3.4 and 10.7 of ref. 1)	3
MOD1		Controls the use of second order accuracy at the wall (see, Secs. 3.4 and 10.7 of ref. 1).	1
	MOD1 = 1	means second order accuracy will be used	
	MOD1 = 0	means no second order accuracy will be used at the wall	
ZMOD1ON		When Z first becomes larger than ZMOD1ON, MOD1 is set to 1. It acts independently of the present value of MOD1.	1.E06

<u>Variable Name</u>	<u>Description</u>	<u>Default</u>
ZMOD1OF	When Z first becomes larger than ZMOD1OF, MOD1 is set to 0. It acts independently of the preset value of MOD1.	1.E06
(PHI1JD, PHI2JD)	Defines the <u>open</u> plane interval measured in degrees in which JUMP SUBROUTINE is NOT used (see Secs. 4.1 and 10.4 of ref. 1)	PHI1JD=0 PHI2JD=0
(ZCFL1, ZCFL2)	Defines the <u>open</u> Z interval in which to reduce the CFL factor (see KFAC)	ZCFL1=0 ZCFL2=0
KCFL	Determines the number of steps after an expansion discontinuity in which to reduce the CFL factor (see KFAC) (see Sec. 4.1, ref. 1) KCFL independently of (ZCFL1,ZCFL2)	0
KFAC	When the CFL factor is reduced, KFAC is the factor by which it is reduced, i.e., FACTOR/KFAC becomes the new CFL factor.	3
NJMPKT	NJMPKT is the maximum number of steps after an expansion discontinuity for which X derivatives at the wall are modified (see Sec. 4.1, ref. 1)	0
NJMCTS	NJMCTS is the max. number of steps after a compression discontinuity for which the X derivatives at the wall are modified (see Sec. 4.1, ref. 1)	4
NTARGET	NTARGET is the number of Z target points, (Z values for which printout is desired, see sec. 8). There may be as many as 100 target points.	0
TARGETZ	The array of Z target points.	Undef.
IERRPR	In the event of an error the last IERRPR steps will be printed. If IERRPR < 0, then no printout if an error occurs (see Sec. 12.4, ref. 1).	-1
ISTART	ISTART=0 means do not restart from TAPE15 ISTART=1 means restart from TAPE15 (see, Sec. IX).	0
KSTART	If ISTART=1 then KSTART is the step number to restart from TAPE15	0

<u>Variable Name</u>	<u>Description</u>	<u>Default</u>
ELIM	The error tolerance used in the iterative procedures for real gas calculations	.001
LCNT	Maximum number of iterations for real gas iterative procedures	20
IPRCFL	Number of steps between printouts of CFL information	1
ISWDIF	If ISWDIF=1, the x differencing is switched from step to step. If ISWDIF=0, the x differencing is <u>not</u> switched from step to step	0
NSGD	Number of ϕ values to be inputed in subroutine TRANSD (see sec. 10)	0
NSFD	Number of \bar{x} values to be inputed in subroutine TRANFD (see sec. 10)	0

Note: Where applicable all quantities referring to axial locations are measured from the nose tip.

TABLE 2 - NAMELIST/BODYRD (Input in BODYR, an entry point of BODY)

```

NAMELIST/BODYRD/NCONE,IRND,IEFL,ACONE,ZCONE,ZRND,RRND,ZFLARE,
1 THETAFL,THETAGL,NW,NS,NL,IFW,IFS,IFL,ZW,ZS,ZL,THETAW,THETAS
2 ,PHIS,THETAL,HFW,HFS,HFL,ZFW,ZFS,ZFL,FAW,FAS,FAL
3 ,IBN,THETABN,ALNS,XLV,DELII,CENUF

```

<u>Variable Name</u>	<u>Description</u>	<u>Default</u>
NCONE	Number of cone sections, NCONE ≤ 8	1
IRND	IRND=1, if rear of the body is rounded; IRND=0, if rear is not rounded (see Fig. 2b)	0
IEFL	IEFL=1, if rear of the body has elliptical flare; IEFL=0, if it does not (see Fig. 2c)	0
ACONE(I)	Angle in degrees of cone section I, see Fig. 2a ($I \leq 8$)	Undef. for all I
ZCONE(I)	Z value at end of I-th cone section, see Fig. 2a ($I \leq 8$)	Undef. $I < NCONE$ 1.E08, $I = NCONE$
ZRND	If IRND=1, then ZRND is the Z value where rounding begins (see, Fig. 2b)	1.E08
RRND	If IRND=1, then RRND is the radius of the round (see Fig. 2b)	Undef.
ZFLARE	If IEFL=1, then ZFLARE is Z value where the flare begins (see Fig. 2c)	1.E08
THETAFL, THETAGL	If IEFL=1, THETAFL is the angle (in degrees) of growth of the ($\phi = 0^\circ, 180^\circ$) axis and THETAGL is the angle (in degrees) of growth of the ($\phi = 90^\circ, 270^\circ$) axis (see, Fig. 2c)	both undef.
NW,NS,NL	The number of sections in the wind, side, and lee cut sequences, respectively. Note that NW,NS, and NS ≤ 4	0,0,0
IFW	IFW=1, if there is a flap on second section of wind cut sequence; IFW=0, if not.	0
IFS	IFS=1, if there is a flap on second section of side cut sequence; IFS=0, if not	0
IFL	IFL=1, if there is a flap on second section of lee cut sequence; IFL=0, if not	0

<u>Variable Name</u>	<u>Description</u>	<u>Default</u>
ZW(I),ZS(I), ZL(I)	Z locations of beginning of I-th section for wind, side, and lee cut sequences, respectively. ($I \leq 4$) (see Fig. 2d)	all undef.
THETAW(I), THETAS(I), THETAL(I)	Angles in degrees of I-th cut section for wind, side, and lee cut sequences, respectively. ($I \leq 4$) (see Fig. 2d)	all undef.
PHIS	Angle ϕ^* , in degrees, normal to side cut sequence (see Fig. 2d)	90.
HFW,HFS,HFL	Half-width of wind, side, and lee flaps, respectively (see Fig. 2d)	all undef.
ZFW,ZFS,ZFL	Lengths of wind, side, and lee flaps, respectively along the Z axis (see Fig. 2d)	all undef.
FAW,FAS,FAL	The angle, in degrees, of deflection, for wind, side, and lee flaps respectively (see Fig. 2d)	0,0,0
IBN	IBN=0, spherical nose section IBN=1, bent sphere-cone nose	0
THETABN	Bend angle (see Fig. 2e)	Undef.
XLV	Bent nose length (see Fig. 2e)	Undef.
DELII	Parameter used for restarting on bent nose (see sec. 11)	0
CENUF	Parameter used to test for axis shift in bent nose calc. (see sec. 11)	.5

Note 1: It is not necessary to set undefined variables if they are not used. For instance, if NS=0, THETAS and ZS may be left undefined.

Note 2: All angles are in degrees. The convention used for determining whether an angle is positive or negative is: if it increases the body radius with increasing Z it is positive. If it decreases the body radius with increasing Z it is negative.

Note 3: Cut sequences must begin before the beginning of a rounding or of an elliptic flare. Also, the body cannot be both flared and rounded.

Note 4: All length dimension in this routine are nondimensionalized by the nose radius.

TABLE 3 - NAMELIST/OUTRD (Input in OUT)
 NAMELIST/OUTRD/ZREF,AREF,ZC,Z0,IPCID

<u>Variable Name</u>	<u>Description</u>	<u>Default</u>
ZREF	Reference length used in defining moment coefficients (see Sec. 8 and Fig. 3). Note, ZREF is non-dimensionalized by R_o	ZEND+Z0
AREF	Reference area used in definitions of force and moment coefficients; non-dimensionalized by R_o^2 (see Sec. 8 and Fig. 3)	base area of the uncut, unrounded, unflared body at $z=ZEND$
ZC	Z location of the moment center, non-dimensionalized by R_o (see, Sec. 8 and Fig. 3)	0.
Z0	User selected origin for outputting surface pressure and aerodynamic coefficients (see Sec. 8 and Fig. 3)	0.
IPCID	IPCID=0, the surface pressure ratio is printed IPCID=1, the surface pressure coefficient is printed (see Sec. 8)	0

7.3 Data Cards (Formatted): When the user chooses to use a nonuniform spatial mesh by specifying the discrete spatial points (c.f., sec. 10), the required data is read from cards in a formatted form.

If a nonuniform spacing in the ϕ direction is to be used, NSGD is the number of points in the ϕ direction (see sec. 7.2). The values of $\phi(M)=\text{PHI}(M)$ for $M=1,2,\dots,\text{NSGD}$ in degrees are read with FORMAT(5F10.0) in subroutine TRANGD. Note that $\text{PHI}(1)=0^\circ$ and $\text{PHI}(\text{NSGD})=180^\circ$ or 360° depending on whether the symmetric or nonsymmetric problem is being considered.

If a nonuniform spacing in the normalized r coordinate, $\bar{x} = (r-b)/(c-b)$, is to be used, NSFD is the number of points in the r direction (see sec. 7.2). The values of $\bar{x}(N)$ for $N=1,2,\dots,\text{NSFD}$ are read with FORMAT(5F10.0) in subroutine TRANFD. Note that $\bar{x}(1)=0$ (the body) and $\bar{x}(\text{NSFD})=1$ (the bow shock).

8. OUTPUT

8.1 TAPE OUTPUT: The program generates two unformatted tapes.

The "WRITE" statements for both these tapes are the same, variable for variable, as the READ(3) statement given in section 7.1. The output tapes are:

- 1.) TAPE17 - This tape is written for the last computational step before a normal program stop. It is used to restart the calculation.
- 2.) TAPE16 - This tape is written for every computational step in the run. It is read in subroutine OUT to print out surface pressure distributions and force and moment coefficients. The user may use this tape to interface with other programs such as plotting routines. This tape can also be used for restarting after an error mode termination of the program (see Section 9).

8.2 Printed Output: The printed output generated by the program is in four sections. Example printouts are given in Appendix B.

Section 1 - This section of printout is the heading page (3 copies are printed). The heading page describes the particular run to be made, the body being used, and the various options selected for the calculation.

Section 2 - In this section of output the flow field data is printed at the axial locations specified by the input parameters DZPRINT, KOUT, ZPRINT, and TARGETZ (see Table 1 of Sec. 7.2) Also in this section comments and data associated with the step size determination and various special procedures are printed out

throughout the calculation. If an error mode termination occurs, this section contains the flow field data for the last IERRPR steps when RECOVR is used. The flow field data printed in this section contains the following for each value of the coordinate ϕ at the fixed axial station (note that ϕ is referred to as ANGLE in the printout):

Z	axial location from nose tip
B	radius of body
BZ,BPHI	derivatives of body radius with respect to z and ϕ , respectively
C	radius of the bow shock
CZ,CPHI	derivatives of the shock radius with respect to z and ϕ , respectively
R	radial coordinate
W,U,V	the velocity components in the z, r, and ϕ directions, respectively (ft/sec)
P	pressure (lb_f/ft^2)
RHO	density ($(lb_f \cdot sec^2)/ft^4$)
S	entropy, free stream entropy is zero ($ft^2/(sec^2 \cdot ^\circ R)$)
M	Mach number
GAMMA	effective gamma = $\rho h / (\rho h - p)$, Γ in Ref. 1

Note: Where applicable, all quantities are nondimensionalized as indicated in Sec. 7.1.

Section 3 - In this section of output, either the surface pressure ratio, p/p_∞ , (when IPCID=0) or the surface pressure coefficient, $2(p-p_\infty)/\rho_\infty V_\infty^2$,

(when IPCID=1) are printed as a function of $\xi = z + z^{(0)}$ and ϕ where $z^{(0)} = Z_0$ is the user supplied origin (see Fig. 3). In this section, there is print out for every computational point on the body surface.

Section 4 - The aerodynamic data is printed in two parts, the first of which contains the static stability coefficients shown in Figure 3.

Here CN, CA and CY represent the normal, axial and side force coefficients while CMN, CMM and CML stand for the pitch, yaw and roll moment coefficients taken about $x = 0$, $y = 0$, $z = z_c$. The variable, XCPP and XCPY are the centers of pressure in the pitch and yaw planes respectively, measured from the origin $0^{(0)}$ and normalized by reference length, z_{ref} (see Figure 3).

The printed force and moment coefficients are defined by:

$$\text{force coeff} = (\text{force})/q A_{\text{ref}}$$

$$\text{moment coeff} = (\text{moment})/q A_{\text{ref}} z_{\text{ref}}$$

Here $q = \frac{1}{2} \rho_\infty V_\infty^2$ and A_{ref} and z_{ref} are supplied by the user in NAMELIST OUTRD.

The above quantities are printed at ZEND and the axial locations specified by TARGETZ. In the print out, the axial location are referred to the origin $0^{(0)}$, see Fig. 3.

In the second part of this section, the z derivatives of the force and moment coefficients are printed as a function of $\xi = z + z^{(0)}$ for every axial step in the calculation. The notation in this second part follows that of the first part; e.g., $CNZ = \frac{\partial CN}{\partial z}$, etc.

IMPORTANT NOTE: The user selected origin is used only in the printout of the aerodynamic data. The code always operates in the coordinate system with origin at 0 (see Fig. 3). Therefore, the body geometry and all program controls must be referred to the origin 0.

Fig. 3, Sign Conventions and Notation Used in Force and Moment Coefficients

9. RESTART AND REZONE CAPABILITIES

If desired, the program may be stopped before the end of the body and restarted and/or rezoned. This option is used, for example, to change options to handle a different characteristic of the flow.

Another possible reason for restarting is to change the mesh. This is done through the rezone option (see IZONE in the input data section).

The rezone operation interpolates (linearly) to determine new flow field variables; c.f., Sec. 11.3 of ref. 1. It is inadvisable to rezone after a discontinuity in body slope has been encountered because the large gradients in the flow field which result will make the interpolated data erroneous.

The program allows the user two options for restarting. The steps for the first option are as follows (see Fig. 4):

1. After the first run, save TAPE17.
2. For the next run, use TAPE17 from the previous run as the input tape, TAPE3. Again if desired, TAPE17 can be saved.
3. For further restart runs, repeat step 2.

The steps for the second option are as follows (see Fig. 5):

1. For the first run, REQUEST, TAPE16 as an output tape.
2. For the next run, use TAPE16 from the previous run as the input tape, TAPE15. Read in ISTART=1 and KSTART as the step number at which to restart (see ISTART and KSTART in the input data section). If desired, TAPE16 may again be requested as an output tape.
3. For further restart runs, repeat step 2.

The program also has provisions for the automatic restarting and rezoning required after an axis shift in bent cone calculations (see sec. 11).

Note: In bent cone calculations, the user can restart and rezone without an axis shift using the above options, however, in these cases core must be zeroed before the restart run.

Fig. 4, Restart Using First Option

Fig. 5, Restart Using Second Option

10. MESH CLUSTERING

The program provides two methods for clustering the computational points in the shock layer in either the r or ϕ or both directions. The first uses analytic mapping functions, the other allows the user to directly input the desired mesh points in the shock layer. Both methods are discussed in section 4.3 of Ref. 1. Note that the clustering feature is contained entirely in the subroutines TRANF and TRANG (see sec. 10.5 and 10.6 of Ref. 1 for a description of these routines).

10.1 Analytic Mesh Clustering Functions: At the present time, we have not sufficiently studied the use of analytic mesh clustering functions and therefore cannot make specific recommendations. For the convenience of the user who may wish to experiment with the use of this feature, we include here instructions for incorporating mesh clustering functions into the program. The first step is to select the mapping function $f(X,Y,Z)$ or $g(Y,Z)$, or both, which produce the desired clustering and which are admissible. The restrictions on the functions f and g and an example are given in Sec. 4.3 of ref. 1. If the selected function f is not $f \equiv X$ then the delivery version of TRANF must be modified. If the function g selected is not $g \equiv Y$ then the delivery version of TRANG must be modified. For easy reference, listings of the delivery versions of TRANF and TRANG are given in Figures 6 and 7, respectively.

To modify TRANF, FORTRAN expressions must be written which define the following variables as functions of X(N), Y(M), and Z:

$$SX = f, \quad SFX = f_X, \quad SFY = f_Y, \quad SFZ = f_Z$$

$$SFXX = f_{XX}, \quad SFYX = f_{YX}, \quad SFZY = f_{ZX}$$

TRANF can then be modified using the following UPDATE IDENT:

*IDENT TRANF1

*DELETE TRANF.28,TRANF.29

Insert FORTRAN cards for computing SFX,SFY, etc. which do not depend on X(N)

*DELETE TRANF.40

Insert FORTRAN cards for computing SX and SFX,SFY, etc. which depend on X(N)

*DELETE TRANF.61

3010 FORMAT(11X,*Identification statement for new transformation function f*)

To modify TRANG, FORTRAN expressions must be written which define the following variables as functions of YY(=Y) and Z

$$SG = g, \quad SGY = g_Y, \quad SGZ = g_Z,$$

$$SGYY = g_{YY}, \quad SGYZ = g_{YZ}$$

TRANG can be modified using the following UPDATE IDENT:

*IDENT TRANG1

*DELETE TRANG. 38

SG=	{
SGY=	
SGZ=	
SGYY=	
SGYZ=	

Expressed as functions of YY and Z

*DELETE TRANG. 54

3010 FORMAT(11X,*Identification statement for new transformation g*)

```

SUBROUTINE TRANF(M,J,I)                               TRANF      2
C
C TRANF DEFINES QUANTITIES ASSOCIATED WITH THE CLUSTERING   TRANF      3
C TRANSFORMATION IN THE R DIRECTION (SEE STATEMENTS   TRANF      4
C 1-A BELOW). THE CLUSTERING TRANSFORMATION IS ASSUMED   TRANF      5
C IN THE FORM   TRANF      6
C   SX=SF(X,Y,Z) WHERE SX=(R-B(Z,PHI))/(C(Z,PHI)-B(Z,PHI))   TRANF      7
C THE USER CAN SPECIFY THE FUNCTION SF(X,Y,Z).   TRANF      8
C THE USER MUST DEFINE AS FUNCTIONS OF (X,Y,Z) THE FOLLOWING   TRANF      9
C   SFX, SFY, SFZ, SFXX, SFZA, SFYX   TRANF     10
C SEE USERS MANUAL FOR RESTRICTIONS AND INSTRUCTIONS   TRANF     11
C J=1,2,3 IS A LINE INDEX FOR TRANF QUANTITIES   TRANF     12
C I=1,2 IS A LINE INDEX FOR TRANF QUANTITIES   TRANF     13
C
C COMMON NC,MC,K,PINF,DINF,PHIO,PHYAW,PI,RAD           TRANF     14
C COMMON YZ(3),YPHI(3),C(25),CZ(25),CPHI(25),R(20,25)  NEWCOM    1
C COMMON D(20,25),P(20,25),U(20,25),V(20,25),W(20,25),ASQ(20,25)  NEWCOM    2
C COMMON CU(4,20,25),CUP(4,20,25)                      NEWCOM    3
C
C *** END OF BLANK COMMON ***                         NEWCOM    4
C COMMON /CTRANF/,NSFD,SFD(20),SFXD(20),SFXD(20)        CD3CSS   32
C COMMON /CBODY/,Z,BZZ,BPHPHI,BZPHI,TANCO,DELZ          NEWCOM    8
C   ,PHI(25),B(25),BZ(25),BPHI(25),COSPHI(25),SINPHI(25)  CBODY    2
C COMMON /BLK02/,THETA,DX,TG4(3),TG5(3),TG6(3)         BLK02    3
C   ,X(20),XZ(20,2),XR(20,2),XPsi(20,2),Y(25)          BLK02    2
C   ,TF4(20,2),TF6(20,2),TF7(20,2)                      BLK02    3
C
C   CZM=CZ(M)   $ BM=B(M)   $ BZM=BZ(M)   $ BPHIM=BPHI(M)  TRANF    18
C   CMB=C(M)-BM   $ BZMCZ=BZM - CZM   $ BPMCP=BPHIM - CPHI(M)  TRANF    19
C   YZJ=YZ(J)   $ YPHIJ=YPHI(J)   $ TG6J=TG6(J)             TRANF    20
C **** THIS ROUTINE IS VERSION 1 OF TRANF CORRESPONDING EITHER  TRANF    21
C TO NO CLUSTERING, I.E., SF(X,Y,Z)=X  TRANF    22
C OR THE USER HAS READ IN THE SF(X) DATA POINTS  TRANF    23
C
C SFX=1.0   $ SFXX=0.0   $ SFY=0.0  TRANF    24
C SFZX=0.0   $ SFYX=0.0   $ SFZ=0.0  TRANF    25
C DO 100 N=1,NC  TRANF    26
C IF (NSFD .EQ. 0) GO TO 25  TRANF    27
C
C THE USER READ IN THE SF(X) DATA POINTS  TRANF    28
C
C SX=SFD(N)   $ SFX=SFXD(N)   $ SFXX=SFXD(N)  TRANF    29
C GO TO 50  TRANF    30
C
C CORRESPONDS TO NO CLUSTERING  TRANF    31
C
C 25 SX=X(N)  TRANF    32
C *** THE FOLLOWING STATEMENTS SHOULD APPEAR IN ALL VERSIONS ***  TRANF    33
C 50 SX1=SX-1,  TRANF    34
C FX=1./SFX  TRANF    35
C FTHD=-SFY*FX*YPHIJ  TRANF    36
C FZ=-FX*(SFZ+SFY*YZJ)  TRANF    37
C
C 1 R(N,M)=BM*SX*CMR  TRANF    38
C 2 XR(N,I)=TXR=FX/CMB  TRANF    39
C 3 XZ(N,I)=FZ+TXR*(SX1*BZM-SX*CMR)  TRANF    40
C 4 XPsi(N,I)=FTHD+TXR*(SX1*BPHIM-SX*CPHI(M))  TRANF    41
C 5 TF4(N,I)=SFXX/SFX  TRANF    42
C 7 TF6(N,I)=TG6J +(SFZX+SFYX*YZJ)/SFZ-BZMCZ/CMR  TRANF    43
C 8 TF7(N,I)=SFYX*YPHIJ/SFX-BPMCP/CMR  TRANF    44
C
C 100 CONTINUE  TRANF    45
C RETURN  TRANF    46
C ENTRY TRANFW  TRANF    47
C IVERSON=1  TRANF    48
C WRITE (6,3000) IVERSON  TRANF    49
C IF (NSFD .EQ. 0) WRITE (6,3010)  TRANF    50
C IF (NSFD .NE. 0) WRITE (6,3020)  TRANF    51
C 3000 FORMAT(1H0,20X,*PROGRAM TRANF*,6X,*VERSION*,I4)  TRANF    52
C 3010 FORMAT(11X,*EQUAL SPACING IN RADIAL DIRECTION*)  TRANF    53
C 3020 FORMAT(11X,*SF(X) WAS READ IN AS DATA POINTS*)  TRANF    54
C RETURN  TRANF    55
C END  TRANF    56

```

Fig. 6. Listing of Delivery Version of TRANF

```

SUBROUTINE TRANG(YY,M,J)                                TRANG    2
C
C   TRANG DEFINES QUANTITIES ASSOCIATED WITH THE CLUSTERING      TRANG    3
C   TRANSFORMATION IN THE PHI DIRECTION (SEE STATEMENTS      TRANG    4
C   1-6 BELOW).  THE CLUSTERING TRANSFORMATION IS ASSUMED      TRANG    5
C   IN THE FORM                                              TRANG    6
C     THETA=SG(YY,Z) WHERE THETA=PHI/PHIO                  TRANG    7
C   THE USER CAN SPECIFY THE FUNCTION SG(YY,Z)                  TRANG    8
C   THE USER MUST DEFINE AS FUNCTIONS OF (YY,Z) THE FOLLOWING      TRANG    9
C     SG, SGY, SGZ, SGYY, SGYZ                            TRANG   10
C   SEE USERS MANUAL FOR RESTRICTIONS AND INSTRUCTIONS      TRANG   11
C   M IS THE INDEX FOR THE TANGENTIAL PLANE                 TRANG   12
C   J=1,2,3 IS A LINE INDEX FOR TRANG QUANTITIES            TRANG   13
C
C   COMMON NC,MC,K,PINF,DINF,PHIO,IDXAW,PI,RAD           TRANG   14
C   COMMON YZ(3),YPHI(3),C(25),CZ(25),CPHI(25),R(20,25)      TRANG   15
C   COMMON D(20,25),P(20,25),U(20,25),V(20,25),W(20,25),ASQ(20,25)      NEWCOM  1
C   COMMON CU(4,20,25),CUP(4,20,25)                      NEWCOM  2
C
C   *** END OF RANK COMMON ***                           NEWCOM  3
C   COMMON /CTRANG/ NSGD,SGD(25),SGYD(25),SGYYD(25)      NEWCOM  4
C     1 +GYMDY,GYYMDY,GY1PDY,GYY1POY                   CTRANG  3
C     2 +MCP                                         NEWCOM  7
C   COMMON /CBODY/ Z,BZZ,BPHPHI,BZPHI,TANCO,DELZ        CBODY   2
C     1 .PHI(25),B(25),BZ(25),BPHI(25),COSPHI(25),SINPHI(25)      CBODY   3
C   COMMON /BLK02/ THETA,DY,TG4(3),TG5(3),TG6(3)          BLK02   2
C     1 .X(20),XZ(20,2),XR(20,2),XPHI(20,2),Y(25)       BLK02   3
C     2 .TF4(20,2),TF6(20,2),TF7(20,2)                  BLK02   4
C
C   THIS ROUTINE IS VERSION 1 OF TRANG CORRESPONDING EITHER      TRANG   18
C   TO NO CLUSTERING, I.E., SG(YY,Z)=YY                     TRANG   19
C   OR THE USER HAS READ IN THE PHI'S                         TRANG   20
C
C   IF (NSGD .EQ. 0) GO TO 50                               TRANG   21
C
C   THE USER READ IN THE PHI'S                             TRANG   22
C
C   IF (M .NE. MCP) GO TO 30                               TRANG   23
C   SGY=GY1PDY $ SGYY=GYY1POY $ SGZ=SGYZ=0.             TRANG   24
C   GO TO 2
C 30 IF (M .NE. 0) GO TO 35                               TRANG   25
C   SGY=GYMDY $ SGYY=GYYMDY $ SGZ=SGYZ=0.             TRANG   26
C   GO TO 2
C 35 SG=SGD(M) $ SGY=SGYD(M) $ SGYY=SGYYD(M) $ SGZ=SGYZ=0.      TRANG   27
C   GO TO 1
C
C   CORRESPONDS TO NO CLUSTERING                         TRANG   28
C
C 50 SG=YY $ SGY=1. $ SGZ=SGYY=SGYZ=0.                  TRANG   29
C
C   *** THE FOLLOWING STATEMENTS SHOULD APPEAR IN ALL VERSIONS ***      TRANG   30
C   1 THETA=SG                                         TRANG   31
C   2 YPHI(J)=1.0/(PHIO*SGY)                          TRANG   32
C   3 YZ(J)=-SGZ/SGY                                 TRANG   33
C   4 TG4(J)=SGY                                     TRANG   34
C   5 TG5(J)=SGYY/SGY                               TRANG   35
C   6 TG6(J)=SGYZ/SGY                               TRANG   36
C   RETURN                                         TRANG   37
C   ENTRY TRANGW                                    TRANG   38
C   IVERSON=1                                      TRANG   39
C   WRITE (6,3000) IVERSON                         TRANG   40
C   IF (NSGD .EQ. 0) WRITE (6,3010)                 TRANG   41
C   IF (NSGD .NE. 0) WRITE (6,3020)                 TRANG   42
C 3000 FORMAT(1H0,20X,*PROGRAM TRANG*,6X,*VERSION*,I4)      TRANG   43
C 3010 FORMAT(11X,*EQUAL SPACING IN TANGENTIAL DIRECTION*)      TRANG   44
C 3020 FORMAT(11X,*THE PHI'S WERE READ IN BY THE USER*)      TRANG   45
C   RETURN                                         TRANG   46
C   END                                           TRANG   47

```

Fig. 7. Listing of Delivery Version of TRANG

10.2 Input of Uneven Mesh

In this approach, the user can select an uneven mesh spacing in the ϕ , or r , or both directions by inputting to the program the mesh point coordinates. ϕ and/or \bar{x} where \bar{x} is the normalized radial coordinate

$$\bar{x} = \frac{r-b}{c-b}$$

(b and c are the local radius of the body and bow shock, respectively).

Note that in this method, the clustering in each direction is independent of the other variable and z .

When an uneven spacing is desired in the radial direction, NSFD is read in as the total number of points in the radial mesh (#0) (see, sec. 7.2). The values $\bar{x}(N)$ for $1 \leq N \leq$ NSFD are input from cards (c.f., sec. 7.3). Note that it is required that

$$\bar{x}(N) < \bar{x}(N+1) \quad N=1,2,\dots,NSFD-1$$

and

$$\bar{x}(1) = 0.0, \bar{x}(NSFD) = 1.0.$$

If a uniform mesh in the radial direction is desired, then NSFD is read in as zero.

When an uneven spacing is desired in the ϕ direction, NSGD is read in as the total number of points in the ϕ mesh (#0) (see, sec. 7.2). The values $\phi(M)$ (in degrees) for $1 \leq M \leq$ NSGD are input from cards (c.f., sec. 7.5). Note that it is required that

$$\phi(M) < \phi(M+1), \quad M=1,2,\dots,NSGD$$

and

$$\phi(1) = 0.0$$

$$\phi(\text{NSGD}) = \begin{cases} 180.0, & \text{for the symmetric case } (\text{PHI}0=\pi) \\ 360.0, & \text{for the nonsymmetric case } (\text{PHI}0=2\pi). \end{cases}$$

Further, for the nonsymmetric case it is also required that

$$\phi(\text{NSGD}-1) = 360. - \phi(2).$$

Our experience has shown that in order to obtain accurate results using this method, the data points must, in addition to the above restrictions, have a certain degree of smoothness. We have found that good results are obtained when the numerical second differences of the data are "smooth". The selection of mesh points is primarily by trial and error. We have found that a workable approach is to use a reasonable "eyeball" choice to begin with and then smooth the data using a "mesh-preprocessor" (see Appendix A). Generally the preprocessor must be used several times before the desired smoothness is obtained. This procedure alters the initial mesh array but even after several smoothing operations the final mesh will retain the concentrations in regions where originally desired.

11. BENT CONE CALCULATIONS

11.1 Applicable Body Shapes: The computational approach used in the program is applicable to a family of body shapes depicted in Fig. 8. The body shape is required to satisfy the following restrictions:

- (i.) The complete body shape must be continuous; however, discontinuities in slopes and/or curvature are allowed.

- (ii.) In the bent cone section, the body must be a spherically blunted right circular cone with respect to the bend axis.
- (iii.) The body shape in the transition and aft-body sections can be arbitrary but must be given with respect to the aft-body axis with origin as indicated in Fig. 8.
- (iv.) $z_2 < z_{en} \leq \bar{z}$ (see Fig. 8)

The parameters $\theta_b = \text{THETABN}$, $\alpha_n = \text{ALNS}$, $z_{en} = \text{ZEN}$, $r_n = \text{RN}$, $\bar{z} = \text{ZBAR}$, $H_n = \text{HN}$ (c.f., Fig. 8) are used internally in the code. They must be defined (in ENTRY BODYR, see sec. 12.1 of Ref. 1) either by direct input or in terms of other input parameters. Note that the bent nose section geometry given in the delivery version of BODY is a special case of the above.

11.2 Computational Method - The general approach used for bent nose calculations is to perform the computation along various Z-axes (see Fig. 9). Each Z axis is parallel to the aft-body axis; the first is the axis through the center of the spherical tip. In the course of the calculation in the bent cone region, the axis is shifted down automatically when required. The rezoning required when the axis is shifted is done in subroutines SHFAX and SAFAXD (see sec. 11.7 of Ref. 1). The user can control the shifting of the axes by certain input parameters (see the next paragraph for details). Note, that the axis is always shifted to the aft-body axis before the calculation enters the transition region.

11.3 Use: When a bent cone calculation is to be performed the input variable IBN (see sec. 7.2) must be read in as one (1). The user

must supply the body geometry consistent with section 11.1, above, in BODY and BODYR. The calculation proceeds automatically; however, the user can control the Z axis shifting using the input variable CENUF (see sec. 7.2). The Z axis is shifted when either of the following criteria are met:

- (i.) the z axis becomes closer than CENUF to the body (see Fig. 9)
- (ii.) the axial location is within 0.5 of ZEN (see Fig. 9).

In case (i), the axis is shifted down by the amount $ZMAXS = CENUF * \tan(\text{THETABN})$ but never past the aft-body axis. In case (i), the axis is shifted to the aft-body axis.

Note 1: When starting the calculation from spherical blunt body data, care should be exercised so that the starting value of Z (i.e., the initial plane) should not exceed $1. - \sin(\text{THETABN} + \text{ALNS})$.

Note 2: The calculation can be restarted in the bent cone region but $\Delta_{II} = \text{DELII}$ (see Fig. 9) must be inputted (see sec. 7.2).

Fig. 8, Bent Cone Configuration

Fig. 9, Axis Shifting in Bent Cone Region

12. PROGRAM STOPS

The normal termination of the program is when either $z \geq \text{ZEND}$ or $K \geq \text{KA}$. The program can be prematurely terminated either by programmed stops or by error mode.

12.1 Programmed Stops: The various programmed stops in the code are listed below according to the on-line printed message.

(1) NO DATA ON TAPE3---STOP---

(2) THE LAST K ON TAPE15 IS (value of K) LESS THAN (value of KSTART)

Stops 1 and 2 indicate that the wrong input tape is being used.

(3) DZ IS LESS THAN 1.E-4---STOP---

This stop is caused by the step size becoming too small. Generally, it indicates that the axial flow component is approaching the sonic value.

(4) IN SUBROUTINE SHOCK C1 = (value of C1) L,M,K = (values of L,M,K)

This message is printed in subroutine SHOCK when a change of sign in C1 (see sec. 3.3, ref. 1) has been detected. Generally, it indicates either subsonic axial flow behind the bow shock or an unrealistic bow shock (c.f. Appendix A, ref. 1). Here L = 0 or 1 depending on whether the calculation is in the predictor or corrector step, respectively.

(5) ITERATION LIMIT EXCEEDED

(6) LIMIT ON SHOCK ITERATIONS EXCEEDED

Stops 5 and 6 are executed from subroutine DECODE when the real gas decoding procedure requires more than LCNT iterations (5 is printed when this occurs at an interior point; 6 when this occurs at a bow shock point).

(7) OBLIQUE SHOCK ITERATION EXCEEDS LIMIT

This message is printed in subroutine JUMP when the real gas iterations for the oblique shock exceeds 2*LCNT.

(8) "EXIT CALLED ON TENTH FAILURE"

This message is printed in subroutine RGAS after the thermodynamic properties are out of range 10 times (real gas calculations only).

(9) OUTSIDE GAS TABLES

This message is printed in subroutine HRGAS when the thermodynamic properties are out of range (real gas only).

Note: When the messages 3 or 4 are printed, the program executes subroutine SAVE (see sec. 12.4, ref. 1) before the run is terminated (this does not require inclusion of the system routine RECOVR).

Therefore, the flow field is printed for the last $|IERRPR|$ steps before the stop. Also, the wall pressure and aerodynamic data are printed.

12.2 Error Mode: At various locations in the code, errors can cause the program to terminate. These errors can be located using the system's error message and dump. Many times the cause of the error can be determined using the printout obtained from the recovery routine RECOVR.

A program update is available which provides, for the more common occurring errors, programmed stops consisting of an error message and a call to SAVE (without RECOVR, see the note in the previous subsection) before terminating the program. This update is given in Fig. 10. Most of the stops created by the update are caused by a negative argument in SQRT. In these cases, the error messages are of the same general form; i.e., IN ROUTINE (subr. name) AT CALL NO. (test no. within the subr.) NEGATIVE SQRT ROOT of (value of argument) FOR Z,K,M,N (value of z) (station no.) (Y mesh index) (X mesh index). The stops with this message are:

```

*IDENT DUMP
*INSERT D3CSS+165
IERRPR=IAHS(IERRPR)
*BEFORE EVAL.54
  IF (DUM) .GE. 0.) GO TO 1001
  CALL DMPSQRT(4HEVAL,1+Z,K,M,N,DUM)
1001 CONTINUE
*BEFORE DECODE.21
  IF (CV(1+1,M) .GT. -600. .AND. CV(1+1,M) .LT. 700.) GO TO 2001
  WRITE (6,3456) M,CV(1+1,M)
3456 FORMAT(1H1,*IN SUBROUTINE DECODE THE LOG OF PRESSURE ON PLANE*,I3,
  1  * ON THE BODY IS*,1PE15.6,5X,*--- STOP ---*)
  CALL SAVE(DUM,DUM,DUM)
2001 CONTINUE
*BEFORE DECODE.59
  IF (INTST .LT. 0) CALL SAVE(DUM,DUM,DUM)
*DELETE DECODE.26
  CDUMP=QSG*T3-U3*U3
  IF (CDUMP .GE. 0.) GO TO 1001
  CALL DMPSORT(6HDECODE+1,Z,K,M,1,CDUMP)
1001 WM=SQRT(CDUMP)/A2(J)
*DELETE DECODE.79
  CDUMP=1.-CRAP2
  IF (CDUMP .GE. 0.) GO TO 1002
  CALL DMPSORT(6HDECODE+2,Z,K,M,N,CDUMP)
1002 CRAP3=CRAP2/((1.+SQRT(CDUMP))*GFF)
*DELETE DECODE.173,DECODE.174
  48 CDUMP=CVN2*(CVN2*DINF2+PINF*DINF*(2.+8.*GE*GD/GIM1))
  1  +PINF*PINF*GAMMA*GAMMA
  IF (CDUMP .GE. 0.) GO TO 1003
  CALL DMPSQRT(6HDECODE+3,Z,K,M,NC,CDUMP)
1003 PNM=(PINF+DINF*CVN2+SQRT(CDUMP))/(2.*GE)
*DELETE DECODE.192
  CDUMP=CVN2/CVTN
  IF (CDUMP .GE. 0.) GO TO 1004
  CALL DMPSQRT(6HDECODE+4,Z,K,M,NC,CDUMP)
1004 DN=M=DINF*SQRT(CDUMP)
*DELETE DECODE.216
  CDUMP=CVN2/CVT2
  IF (CDUMP .GE. 0.) GO TO 1005
  CALL DMPSQRT(6HDECODE+5,Z,K,M,NC,CDUMP)
1005 DN=M=DINF*SQRT(CDUMP)
*DELETE WALL.40
  CDUMP=(ETA*(1.+BPHOB**2)+(WW*BZM)**2)/ASQW
  IF (CDUMP .GE. 0.) GO TO 1001
  CALL DMPSQRT(4HWALL+1,Z,K,M,1,CDUMP)
1001 BETT=SQRT(CDUMP)
*DELETE SHOCK.20
  UV=SUS-CPHIC*VS
  COUMP=(ETA*CMU1*UV**2)/ASQS
  IF (COUMP .GE. 0.) GO TO 1001
  CALL DMPSQRT(5HSHOCK+1,Z,K,M,NC,CDUMP)
1001 BETT=SQRT(CDUMP)
*ADDFILE,
*DECK DMPSQRT
  SUBROUTINE DMPSQRT(NAME,KNT,Z,K,M,N,VALUE)
C
C      NAME IS THE NAME OF THE ROUTINE
C      KNT IS THE NUMBER FROM WHICH NAME WAS CALLED
C      Z IS THE Z VALUE
C      K IS THE STATION NO.
C      M IS THE PLANE NO.
C      N IS THE RADIAL POINT NO.
C      VALUE IS THE ARGUMENT OF SQRT ROOT
C
  WRITE (6,3000) NAME,KNT,VALUE,Z,K,M,N
3000 FORMAT(1H1,*IN ROUTINE *,A10,* AT CALL NO.,*+I3,2X,
  1  *NEGATIVE SQRT ROOT OF*,1PE15.6+
  2  * FOR Z,K,M,N*,1PE15.6,3I5)
  CALL SAVE(DUM,DUM,DUM)
  STOP
  END

```

Fig. 10. Listing of the Error-Mode Update

<u>Routine</u>	<u>Call No.</u>	<u>Description</u>
EVAL	1	in evaluation of stability condition (c.f. sec. 3.6, ref. 1), indicates subsonic axial flow or neg. sound speed.
DECODE	1	in eq. for axial velocity component at body surface (see, sec. 3.4, ref. 1), indicates unrealistic surface flow
DECODE	2	in decoding formula for interior pts. (see sec. 3.2, ref. 1), indicates subsonic axial flow
DECODE	3	in eq. for pressure at bow shock wave (see sec. 3.3, ref. 1), can only occur in a real gas run
DECODE	4&5	in real gas iteration formulas at bow shock wave
WALL	1	in eq. for β_1 (see sec. 3.4, ref. 1), indicates subsonic axial flow at body surface
SHOCK	1	in eq. for β_0 (see sec. 3.3, ref. 1), indicates subsonic axial flow at bow shock wave

Two additional stops are created by the update. For one the following message is printed:

IN SUBROUTINE DECODE THE LOG OF PRESSURE ON PLANE (Y index) ON THE BODY IS (value of log of pressure)---STOP---

This message is printed in DECODE when the value of the log of the surface pressure is out of the range of EXP. The other stop, also executed in DECODE, can occur only in a real gas calculation. The printed message is

P STAYS NEGATIVE AFTER AVERAGING Z,N,M,K (value of z) (X mesh index)
(Y mesh index) (station no.)

Note that this message can appear in a perfect gas calculation but the program is not terminated.

12.3 Remark:

When the program terminates prematurely it generally means that either an error has been committed in setting up the run or a nonuniformity has developed in the flow field which the present method can not properly resolve. In either case, inaccurate or non-physical results are present which ultimately produce the error mode or programmed stop. Keep in mind, however, that it is possible that an accurate and physically consistent calculation can still be prematurely terminated. Obviously, there are body shapes and free stream conditions for which the flow field will violate the basic assumptions of the code; viz., that the flow is supersonic in the axial direction and moreover, that it remains attached to the body surface. On the other hand, it should by now be clear that not every calculation can be considered accurate and physically realistic simply because no premature termination occurs. All results, particularly those for new classes of body shapes, should be carefully studied for physical consistency. Good luck!

APPENDIX A

Mesh Smoothing Preprocessor

Identification: DIFF

Important Note: DIFF calls two subroutines TRANGD and TRANFD. These routines bear the same name as two subroutines in D3CSS because they accomplish the same thing. But note, the subroutine structures are different and thus the subroutines should be kept distinct.

Description: DIFF is a separate program which can be used to smooth the mesh coordinate data when the mesh is to be input from cards (see sec. 10.2). The program is used before the flow field calculation and can be used to smooth either ϕ mesh coordinates or \bar{x} mesh coordinates.

The basic smoothing operation used in DIFF is

$$(d_i)_{\text{smoothed}} = (d_{i+1} + 2d_i + d_{i-1})/4$$

where $\{d_i\}$ is the array of mesh point values (either $\phi(M)$ or $\bar{x}(N)$) supplied. The smoothing operation retains the required properties of the mesh arrays given in sec. 10.2. When \bar{x} values are to be smoothed, the last value of \bar{x} does not have to be unity since DIFF normalizes the \bar{x} values after input. The program performs any number of such smoothing operations selected by the user.

Output: After each smoothing operation, DIFF prints on-line the mesh points ϕ_i (or \bar{x}_i) and the numerical approximations to the first and second derivatives of the underlying mesh clustering functions g_Y and g_{YY} (or f_X and f_{XX}) as functions of the mesh index M (or N). Also,

after the last smoothing operation, data cards are punched for use in the flow field program.

Input: Input to DIFF is via data cards.

<u>Card No.</u>	<u>Format</u>	<u>Variable</u>	<u>Description</u>
1	(I5)	N121	No. of smoothing operations desired
2	(2I5)	NXPHI	No. of PHI (or \bar{x} 's) to be read
		IXPHI	=0, PHI are read =1, \bar{x} 's are read
3	(5F10.10)	XPHI(N), N=1,NXPHI	the PHI (or \bar{x})

Sample input data cards for the three typical applications of DIFF are given on page 45. These are: smoothing of ϕ for the symmetric problem, smoothing of \bar{x} , and smoothing of ϕ for the nonsymmetric problem, respectively.

Listings: The listings for DIFF are given on the following pages.

LISTING OF PRE-PROCESSOR PROGRAM

```

PROGRAM DIFF(INPUT,OUTPUT,PUNCH,TAPES=INPUT,TAPE6=OUTPUT)
C
C      THIS PROGRAM DOES 1-2-1 SMOOTHING OF DATA
C
COMMON /CTRAN/ NXPHI,XPHI(200),SGYD(200),SGYYD(200)
1   ,GYMDY,GYYMDY,GY1PDY,GYY1PDY
2   ,MCP,PHIO,RAD,PI
C
C      N121 IS THE NUMBER OF 1-2-1 SMOOTHING OF DATA
C      NXPHI IS THE NUMBER OF PHI'S OR X'S TO BE READ
C      IXPHI = 0 THEN READ IN PHI'S (DEGREES)
C      = 1 THEN READ IN X'S
C
C      NOTE THAT THE X'S DO NOT HAVE TO BE READ IN
C      BETWEEN 0. AND 1. AS THEY ARE NORMALIZED
C
C      PI=4.*ATAN(1.) $ RAD=PI/180.
5  READ (5,2000) N121
  IF (EOF(5)) 999,10
10 READ (5,2000) NXPHI,IXPHI
  READ (5,2100) (XPHI(N),N=1,NXPHI)
2000 FORMAT(10I5)
2100 FORMAT(5F10.0)
  PHI0D=XPHI(NXPHI) $ PHIO=PHI0D*RAD
  DO 25 N=1,NXPHI
25  XPHI(N)=XPHI(N)/XPHI(NXPHI)
  N121P1=N121+1 $ NXPHIM1=NXPHI-1
  DO 100 I=1,N121P1
    IM1=I-1
    WRITE (6,3000) IM1
3000 FORMAT(1H1,*THE DERIVATIVES AFTER*,I3,2X,
1   *1-2-1 SMOOTHINGS ARE AS FOLLOWS*)
  IF (IXPHI .EQ. 0) CALL TRANGD
  IF (IXPHI .NE. 0) CALL TRANFD
  IF (I .EQ. N121P1) GO TO 125
  XPHINM1=XPHI(1)
  DO 50 N=2,NXPHIM1
    XPHIN=XPHI(N)
    XPHI(N)=(XPHINM1+2.*XPHIN+XPHI(N+1))/4.
    XPHINM1=XPHIN
50  CONTINUE
  IF (IXPHI .NE. 0) GO TO 100
  IF (PHIO .LE. 2.*PI-1.E-6) GO TO 100
  XPHI(2)=XPHI(2)*360.-XPHI(NXPHIM1)
  XPHI(NXPHIM1)=360.-XPHI(2)
100 CONTINUE
125 IF (IXPHI .NE. 0) GO TO 200
  DO 150 N=1,NXPHI
150 XPHI(N)=PHI0D*XPHI(N)
200 PUNCH 4100, (XPHI(N),N=1,NXPHI)
4100 FORMAT(5F10.5)
  GO TO 5
999 STOP
END

```

LISTING OF PRE-PROCESSOR PROGRAM (CONTINUED)

```

SUBROUTINE TRANFD
C
C      TRANFD DEFINES QUANTITIES NEEDED BY SUBROUTINE
C      TRANF WHEN THE USER READS IN THE SF(X,Y,Z) DATA POINTS
C
C      COMMON /CTRAN / NSFD,SFD(200),SFXD(200),SFXXD(200)
C
C      NSFDM1=NSFD-1
C      DX=1./FLOAT(NSFDM1)
C      TWODX=1./(2.*DX)  S  DXSQ=1./DX**2
C      DO 50 N=2,NSFDM1
C          SFXD(N)=(SFD(N+1)-SFD(N-1))*TWODX
C          50 SFXXD(N)=(SFD(N+1)-2.*SFD(N)+SFD(N-1))*DXSQ
C
C      SFXXD IS ASSUMED LINEAR ON (0,2DX) AND (1-2DX,1)
C
C      SFXXD(1)=2.*SFXXD(2)-SFXXD(3)
C      SFXXD(NSFD)=2.*SFXXD(NSFDM1)-SFXXD(NSFD-2)
C      SFXD(1)=SFXD(2)-.5*DX*(SFXXD(1)+SFXXD(2))
C      SFXD(NSFD)=SFXD(NSFDM1)+.5*DX*(SFXXD(NSFD)+SFXXD(NSFDM1))
C      WRITE (6,3300)
C 3300 FORMAT(1H0,4X,*N*,15X,*SF*,17X,*SF*.,16X,*SFXX*)
C      DO 125 N=1,NSFD
C      125 WRITE (6,3400) N,SFD(N),SFXD(N),SFXXD(N)
C 3400 FORMAT(1H ,15,1P4E20.6)
C      RETURN
C      END

```

LISTING OF PRE-PROCESSOR PROGRAM (CONTINUED)

```

SUBROUTINE TRANGD
C
C      TRANGD DEFINES QUANTITIES NEEDED BY SUBROUTINE
C      TRANG WHEN THE USER READS IN THE PHI VALUES
C
C      COMMON /CTRAN / NSGD,SGD(200),SGYD(200),SGYYD(200)
1      *GYMDY,GYYMDY,GY1PDY,GYY1PDY
2      *MCP,PHIU,RAD,P1
C
C      NSGD=1=NSGD-1
C      DY=1./FLOAT(NSGDM1)
C      TWODY=1./(2.*DY) $ DYSQ=1./DY**2
C      DO 50 M=2,NSGDM1
C      SGD(M)=(SGD(M+1)-SGD(M-1))*TWODY
50    SGYYD(M)=(SGD(M+1)-2.*SGD(M)+SGD(M-1))*DYSQ
C      IF (PHIU .LE. 2.*PI-1.E-6) GO TO 75
C
C      NOTE THAT SGD(Y+1)=SGD(Y)+1 FOR NON-SYMMETRIC PROBLEM (PHIO=360)
C
C      SGYD()=SGYD(NSGD)=(SGD(2)-SGD(NSGD-1)+1.)*TWODY
C      SGYYD()=SGYYD(NSGD)=(SGD(2)-2.*SGD(1)+SGD(NSGD-1)-1.)*DYSQ
C      GO TO 100
C
C      NOTE THAT FOR SYMMETRIC PROBLEM (PHIO=180)
C      SGYYD IS ASSUMED LINEAR ON (-DY+2DY) AND (1-2DY+1+DY)
C
C      75 SGYYD(1)=2.*SGYYD(2)-SGYYD(3)
C      SGYYD(NSGD)=2.*SGYYD(NSGDM1)-SGYYD(NSGD-2)
C      GYYMDY=2.*SGYYD(1)-SGYYD(2)
C      GYY1PDY=2.*SGYYD(NSGD)-SGYYD(NSGDM1)
C      SGD(1)=SGYD(2)-.5*DY*(SGYYD(1)+SGYYD(2))
C      SGD(NSGD)=SGYD(NSGDM1)+.5*DY*(SGYYD(NSGD)+SGYYD(NSGDM1))
C      GYMDY=SGYD(2)-2.*DY*SGYYD(1)
C      GY1PDY=SGYD(NSGDM1)+2.*DY*SGYYD(NSGD)
100   WRITE (6,3300)
3300  FORMAT(1H0, -X, *M*,15X,*PHI*,18X,*SG*,17X,*SGY*,16X,*SGYY*)
M=0 $ WRITE (6,3350) M,GYMDY,GYYMDY
3350  FORMAT(1H ,15,40X,1P3E20.6)
PHI0D=PHIO/RAD
DO 125 M=1,NSGD
PHIM=SGD(M)*PHI0D
125  WRITE (6,3400) M,PHIM,SGD(M),SGYD(M),SGYYD(M)
3400  FORMAT(1H ,15,1P4E20.6)
M=NSGD+1 $ WRITE (6,3350) M,GY1PDY,GYY1PDY
RETURN
END

```

LISTING OF DATA CARDS FOR PRE-PROCESSOR PROGRAM

10		NUMBER OF 1-2-1 SMOOTHINGS		
33	0	NUMBER OF PHI'S TO READ		
0.	4.	8.	12.	16.
20.	24.	28.	32.	36.
40.	44.	48.	52.	56.
60.	64.	68.	72.	76.
80.	84.	88.	92.	96.
100.	104.	110.	119.	132.
148.	164.	180.		
10		NUMBER OF 1-2-1 SMOOTHINGS		
26	1	NUMBER OF X'S TO READ		
0.	1.	2.	3.	4.
5.	6.	7.	8.	9.
10.	12.	14.	16.	19.
22.	26.	30.	35.	40.
45.	50.	55.	60.	65.
70.				
10		NUMBER OF 1-2-1 SMOOTHINGS		
65	0	NUMBER OF PHI'S TO READ		
0.	4.	8.	12.	16.
20.	24.	28.	32.	36.
40.	44.	48.	52.	56.
60.	64.	68.	72.	76.
80.	84.	88.	92.	96.
100.	104.	110.	119.	132.
148.	164.	180.	196.	212.
228.	241.	250.	256.	260.
264.	268.	272.	276.	280.
284.	288.	292.	296.	300.
304.	308.	312.	316.	320.
324.	328.	332.	336.	340.
344.	348.	352.	356.	360.

APPENDIX B

Sample Run

In this Appendix, a sample calculation is presented to illustrate the use of the code for a realistic reentry configuration. The body shape considered is a spherically blunted $20^\circ - 5^\circ$ biconic with a windside flat and flap (see Fig. B-1). A perfect gas is assumed with $\gamma = 1.4$. The freestream conditions are:

$$M_\infty = 15 \text{ (Mach number)}$$

$$P_\infty = 1.0 \text{ lb}_f/\text{ft}^2 \text{ (pressure)}$$

$$\rho_\infty = 1. \times 10^{-5} \text{ (lb}_f\text{-sec}^2)/\text{ft}^4 \text{ (density)}$$

$$\alpha = 7.5^\circ \text{ (angle of attack)}$$

$$\beta = 0^\circ \text{ (side slip angle)}$$

The blunt body region was determined using the program of ref. 2. The initial plane was placed at the sphere-cone juncture ($z \approx .658$).

In setting up this particular calculation, it is desirable to use the following computational options:

- i.) wall entropy reduction (c.f., sec. 4.2, ref. 1)
- ii.) the Mod 3 version of the wall boundary conditions with second order accuracy (c.f. sec. 3.4 and 10.7, ref. 1)
- iii.) a meridional mesh spacing of $\Delta\phi = 4^\circ$ in the vicinity of the flat and flap but a coarser mesh elsewhere

The other parameters and options used in the calculation can be found from the enclosed input and output which follows. Note that items i.) and ii.) are subject to internal program controls when the body has discontinuous slopes as in the present example (c.f. sec. 4.1, ref. 1).

Fig. B-1, Body Geometry for Sample Run

This calculation is performed in three separate runs; viz.,

Run No. 1 (sphere-cone juncture $\leq z \leq 20^+$): In this run, the meridional mesh is uniform with $\Delta\phi = 15^\circ$. Note that after the biconic juncture ($z = 15$), the option ii.) is automatically modified in the code.

Run No. 2 ($20^+ \leq z \leq 33^+$): The purpose of stopping and restarting the calculation near $z = 20$ is twofold. First, the wall point calculation procedure is changed back to the Mod 3 version with second order accuracy. It was felt that $z = 20$ is sufficiently far downstream of the biconic juncture for this to be done "safely". The other purpose is to perform a preliminary rezone to a uniform meridional mesh with $\Delta\phi = 7.5^\circ$. This is done in anticipation of the final reduction of the mesh to $\Delta\phi = 4^\circ$. Generally it is safer computational practice, when rezoning for a finer mesh, to perform this in stages so that in each rezone the mesh lengths in each direction are reduced by not more than one-half their previous lengths.

Run No. 3 ($33^+ \leq z \leq 60$): In this run, the mesh is rezoned for $\Delta\phi = 4^\circ$ near the flat and flap. The meridional mesh used is nonuniform and input from data cards (c.f., sec. 10.2).. It has $\Delta\phi = 4^\circ$ for $0 \leq \phi \leq 92^\circ$ with a gradual increase to $\Delta\phi \approx 16^\circ$ at $\phi = 180^\circ$.

The input data cards and the printed output (abbreviated) for each run are given in the following pages.

⁺ Note that the run is terminated and subsequently restarted at the first marching step beyond this value of z .

SAMPLE INPUT DECK SETUP FOR D3CSS PROGRAM
RUN 1

```
N999•P5000•T032•CP70.  
ACCOUNT(1 FERGUSON,R. 09827 N999A655044 4270540  
ATTACH(TAPE3•8M15A7P5C20P13) 87000 6320 )  
ATTACH(D3CS•8U3CSN20450)  
REQUEST(TAPE17•PT•  
LDSET(PRESET=INDEF)  
D3CS.  
CATALOG(TAPE17•8M15A7P5C20P13Z220)  
$INPUT1  
7/8/9 END OF FILE  
$END  
ZEND=20.  
ISMSMO=13.  
KOUT(1)=100.  
IERPRR=-1,  
SEND  
$BODYRD  
NCONE=2,  
ACONE(1)=20..ACONE(2)=5..  
ZCONE(1)=15..  
NW=2,  
ZW(1)=35..ZW(2)=50..  
THEТАW(1)=0..THEТАW(2)=0..  
IFW=1.  
ZFW=12..  
FAW=5..  
HFW=4..7..15..  
SEND  
$OUTRD  
$END  
7/8/9 END OF FILE  
6/7/8/9 END OF INFORMATION
```

SAMPLE INPUT DECK SETUP FOR D3CSS PROGRAM
RUN 2
RESTARTS FROM RUN 1 AND HEZONES TO 25 PLANES EQUAL SPACED

```
N999.P50000,0,032,CP70.  
ACCOUNT ( FERGUSON.R. 09827 N999A655044 4270540 87000 6320 1  
ATTACH(TAPE3.8M15A7P5C20P13220)  
ATTACH(D3CS,8D3CSN20M50)  
REQUEST,TAPE17,*PF*  
LDSET(PRESET=INDEF)  
D3CS.  
CATALOG(TAPE17.8M15A7P5C5P25Z33)  
$INPUT1  
7/8/9 END OF FILE  
$END  
ZEND=33.  
IZONE=1,NCNEW=1,3,MCNEW=25,  
ISWSMO=25,  
KOUT(1)=100,  
IERPR=-1,  
$END)  
$BODYRD  
NCONE=2,  
ACONE(1)=20.,ACONE(2)=5.,  
ZCONE(1)=15.,  
NW=2,  
ZW(1)=35.,ZW(2)=50.,  
THEТАW(1)=0.,THEТАW(2)=0.,  
IFW=1,  
ZFW=12.,  
FAW=5.,  
HFW=4.7415,  
$END  
$OUTRD  
$END  
7/8/9 END OF FILE  
6/7/8/9 END OF INFORMATION
```

SAMPLE INPUT DECK SETUP FOR D3CSS PROGRAM
 RUN 3
 RESTARTS FROM RUN 2 AND MEZONES TO 33 PLANES THAT ARE READ

```

N999•P5000•T032•CPT0.
ACCOUNT( FERGUSON,R. 09827 N999A655044 4270540
ATTACH(TAPE3,8M15AP5C5P25Z33) 87000 6320 )
REQUEST•TAPE17•*PF*
LDSET(PRESET=INDEF)
D3CS.

7/8/9   END OF FILE

$INPUT1
ZEND=60..
NSG(=33,
IZONE=1,NCNEW=13,MCNEW=33,
ISWSM0=33,
KOUT(1)=100,
IERRPH=-1,
SEND
$BODYRD
NCONE=2,
ACONE(1)=20..ACONE(2)=5..
ZCONE(1)=15..
NW=2,
ZW(1)=35..ZW(2)=50..
THE TAW(1)=0..THE TAW(2)=0..
IFW=1,
ZFW=12..
FAW=5..
HFW=7415,
SEND
$OUTRD
SEND
0.00000  4.00000  8.00000  12.00000  16.00000
20.00000 24.00000 28.00000 32.00000 36.00000
40.00000 44.00000 48.00000 52.00000 56.00000
60.00000 64.00000 68.00000 72.00000 76.00000
80.00000 84.00000 88.00000 92.00000 96.03125
100.29688 105.37500 112.20313 121.65625 133.95313
148.43750 164.04688 180.00000
7/8/9   END OF FILE
6/7/8/9   END OF INFORMATION

```

```

PROGRAM D3CSS  VERSION 10 DATE 03/21/77   TIME 18.45.40
3-D SUPERSONIC FLOW - FLOW IS NONSYMMETRICAL
MAXIMUM NO. OF STEPS = 2000  LAST Z VALUE = 2.00000E+01  CFL FACTOR = .900
ERROR LIMIT 1.000E-03  MAXIMUM NUMBER OF ITERATIONS 20
PRINT CONTROLS ARE
ZPRINT 100000.00 100000.00 100000.00 100000.00 100000.00
KOUT 100 20 20 20 20
DZPRINT 100000.00
MACH NO. = 15.00 ANGLE OF ATTACK = 7.50  YAW ANGLF = 0.00  VINF ≈ 5612.49
FREE STREAM PROPERTIES , PTNF = 1.000E+00 DINF = 1.000E-05 HINF = 3.500E+05 HO = 1.6100E+07 SINF = 0.
PERFECT GAS (GAMMA = 1.40  GAS CONSTANT = 1.020191F+04)
FLOW IS PERIODIC WITH PERIOD ≈ 180.00
CALC. REGINS AT Z = *6579799E+00
RADIAL INTERVALS NA = 14 TANGENTIAL INTERVALS MA = 12

PROGRAM RODY  VERSION 3
RODY IS SPHERICALLY BLUNTED AND SPHERE ENDS AT Z= *6579799E+00  WITH B= .9396926E+00
AFT RODY IS A MULTIPLE CONIC WITH
ANGLF 20.000 UP TO 15.0000
ANGLE 5.000 UP TO *****
THERE IS A WIND CUT OF
ANGLE 0.000 BEGINNING AT 35.0000
ANGLE 0.000 BEGINNING AT 50.0000
WITH A FLAP OF HALF-WIDTH 4.7415 LENGTH ALONG Z-AXIS 12.0000 AT 5.0000 DEGREES

PROGRAM TPANG  VERSION 1
EQUAL SPACING IN TANGENTIAL DIRECTION

PROGRAM TPANF  VERSION 1
EQUAL SPACING IN RADIAL DIRECTION

```

ADDITIONAL FEATURES

BACKWARD DIFFERENCE FOR PREDICTOR STEP AND FORWARD DIFFERENCE FOR CORRECTOR STEP IN X DIRECTION
 WALL ENTROPY EXTRAPOLATION FOR 13 PLANES UNTIL A COMPRESSION JUMP AND THEN NO EXTRAPOLATION
 MOD 3 FOR WALL POINTS UNTIL A JUMP OCCURS AND THEN MOD 0 IS USED
 SECOND ORDER ACCURACY IS USED AT WALL POINTS FOR Z LESS THAN 1.00000E+06 OR UNTIL JUMP IS CALLED
 IF PRESSURE IS NEGATIVE THEN THE CONSERVATION VECTORS ARE SMOOTHED BY 1-2-1
 USING JUMP WHICH COMPUTES JUMPS CORRESPONDING TO DISCONTS. IN RZ AND/OR RPHI EXCEPT FOR THE PHI INTERVAL (0.00, 0.00)
 TUP CFL FACTOR IS PREDICTED TO *300 WHEN Z IS IN THE INTERVAL (0.00, 0.00)
 USE CFL FACTOR = *300 FOR 0 STEPS AFTER AN EXPANSION JUMP OCCURS
 THE TERMS FOR X DERIVATIVES AT THE WALL ARE MODIFIED FOR
 A STEPS AFTER AN EXPANSION JUMP AND 4 STEPS AFTER A COMPRESSION JUMP

MACH NO IS 1.500000E+01 ANGLE OF ATTACK IS 7.500000F+00 ANGLE OF SIDESLIP IS 0.

ANGLE Y THE X AXIS IS SHIFTED UP 0.0000 DEGREES

ANGLE Z IS 0.00 DEGREES

STATION 0 Z IS 6.5797986E-01 R IS 9.3969262E-01 B7 IS 3.6397023E-01 BPHI IS 0.

C IS 1.25E2299E+00 C7 IS 6.5707226E-01 CPHT IS 0.

	R	V	P	RHO	S	GAMMA
0	3.9035E+03	1.793E+03	-2.0568F-12	1.0135E+02	5.08165E+04	1.4000E+00
1	3.8205E+03	1.737E+03	-2.0161F-12	1.0675E+02	5.01235E+05	1.4000E+00
2	3.7393F+03	1.680E+03	-1.9761F-12	1.0201E+02	4.6408E+05	1.4000E+00
3	3.6611E+03	1.623E+03	-1.9376F-12	9.7815F+01	4.2376E+04	1.4000E+00
4	3.5882E+03	1.571E+03	-1.9017F-12	9.3913E+01	3.8999E+05	1.4000E+00
5	3.5203E+03	1.5205E+03	-1.8685F-12	9.0291F+01	3.6122F+05	1.4000E+00
6	3.4574E+03	1.474E+03	-1.8379F-12	8.6860E+01	3.3653E+05	1.4000E+00
7	3.3999E+03	1.4267E+03	-1.8101E-12	8.3598E+01	3.1452E+05	1.4000E+00
8	3.2479E+03	1.3955E+03	-1.7852F-12	8.0442E+01	2.9517E+05	1.4000E+00
9	3.0924E+03	1.3649E+03	-1.7636F-12	7.7350E+01	2.7779F+05	1.4000E+00
10	2.9325E+03	1.3327E+03	-1.7314F-12	7.4729E+01	2.6149E+05	1.4000E+00
11	2.7621E+03	1.2975E+03	-1.7021F-12	7.1721E+01	2.4729F+05	1.4000E+00
12	2.5921E+03	1.2675E+03	-1.6721F-12	6.8966E+01	2.3349E+05	1.4000E+00
13	2.4245E+03	1.2390E+03	-1.6425F-12	6.6422F+01	2.2021E+05	1.4000E+00
14	2.2580E+03	1.2113E+03	-1.7169F-12	6.1074E+01	2.0722E+05	1.4000E+00

ANGLE Y THE X AXIS IS SHIFTED UP 0.0000 UNITS

STATION 0 Z IS 6.5797986E-01 R IS 9.3969262E-01 B7 IS 3.6397023E-01 BPHI IS 0.

C IS 1.26E553E+00 C7 IS 6.5982145E-01 CPHT IS 1.07283177E-02

	R	V	P	RHO	S	GAMMA
0	3.9037E+03	1.8094E+03	1.5510F+02	1.01129F+02	5.07016E-05	1.4000E+00
1	3.8213F+03	1.7507E+03	1.5204F+02	1.0606E+02	5.01169E-05	1.4000E+00
2	3.7403E+03	1.6928E+03	1.4903E+02	1.0136E+02	4.6305E-05	1.4000E+00
3	3.6625F+03	1.6344E+03	1.4614E+02	9.7087E+01	4.2246E-05	1.4000E+00
4	3.5899E+03	1.5625E+03	1.4344E+02	9.3171F+01	3.8851E-05	1.4000E+00
5	3.5224E+03	1.5314E+03	1.4095E+02	8.9527E+01	3.5960E-05	1.4000E+00
6	3.4600E+03	1.4876E+03	1.3866E+02	8.6098E+01	3.2462E-05	1.4000E+00
7	3.4029E+03	1.4324E+03	1.3656E+02	8.2829E+01	3.1275E-05	1.4000E+00
8	3.3515E+03	1.3942E+03	1.3470E+02	7.9666E+01	2.9334E-05	1.4000E+00
9	3.3065E+03	1.3549E+03	1.3309E+02	7.6566E+01	2.7593E-05	1.4000E+00
10	3.2685E+03	1.3117E+03	1.3117E+02	7.3481E+01	2.6006E-05	1.4000E+00

1.0000E+00
3.2382F+03 1.2743E+03 1.3070E+02 7.0359E+01 2.4536E-05 7.6439E+04 1.7380E+00
3.2167F+03 1.2382E+03 1.2998E+02 6.7151E+01 2.152E-05 7.7321E+04 1.7117E+00
3.2051F+03 1.2025E+03 1.2963E+02 6.3790E+01 2.1820E-05 7.8128E+04 1.6933E+00
3.2053E+03 1.1664E+03 1.2969E+02 6.0221E+01 2.0515E-05 7.8A61E+04 1.6838E+00

PLANE 3 ANGLF IS 30.00 DEGREES
THE X AXIS IS SHIFTED UP 0.0000 UNITS

STATION 0 7 IS 6.5797986E-01 A IS 9.3969262E-01 B7 IS 3.6397023E-01 RPHI IS 0.
C IS 1.2613139E+00 C7 IS 6.6801566E-01 CPHT IS 3.4266074F-02

M

W	U	V	P	RHO	S
3.9044E+03	1.8907E+03	2.9909E+02	1.00939E+02	5.6967E-05	5.7617E+04
3.8251F+03	1.7902E+03	2.9327E+02	1.0407E+02	5.0911E-05	6.0318E+04
3.7434F+03	1.7305E+03	2.8754E+02	9.9299E+01	4.6003E-05	6.2782E+04
3.6666E+03	1.6722E+03	2.8015E+02	9.4981E+01	4.1861E-05	6.5663E+04
3.5950E+03	1.6144E+03	2.7685E+02	9.1028E+01	3.8417E-05	6.8998E+04
3.5265E+03	1.5633E+03	2.7211E+02	8.7357E+01	3.5449E-05	7.0879E+04
3.4675E+03	1.5126E+03	2.6775E+02	8.3905E+01	3.2965E-05	7.0385E+04
3.4114F+03	1.4644E+03	2.6379E+02	8.0616E+01	3.0760E-05	7.1837E+04
3.3620E+03	1.4195E+03	2.6028E+02	7.7425E+01	2.8906E-05	7.3154E+04
3.3188E+03	1.3750E+03	2.5725E+02	7.4316E+01	2.7053E-05	7.4347E+04
3.2828F+03	1.3336E+03	2.5476E+02	7.1208E+01	2.5457E-05	7.5428E+04
3.2543E+03	1.2938E+03	2.5286E+02	6.8059E+01	2.3918E-05	7.6412E+04
3.2384E+03	1.2554E+03	2.5160E+02	6.4815E+01	2.2584E-05	7.7306E+04
3.2273E+03	1.2135E+03	2.5107E+02	6.1407E+01	2.239E-05	7.8121E+04
3.2321E+03	1.1744E+03	2.5137E+02	5.7776E+01	1.9916E-05	7.8861E+04
					1.7113E+00

P

RHO

S

GAMMA

PLANE 4 ANGLF IS 45.00 DEGREES
THE X AXIS IS SHIFTED UP 0.0000 UNITS

STATION 0 7 IS 6.5797986E-01 A IS 9.3969262E-01 B7 IS 3.6397023E-01 RPHI IS 0.
C IS 1.274369E+00 C7 IS 6.8144410E-01 CPHT IS 5.0519113E-02

M

W	U	V	P	RHO	S
3.9053F+03	1.9167E+03	4.2180F+02	1.0643F+02	5.6889E-05	5.6968E+04
3.8260F+03	1.6555E+03	4.1375E+02	1.0099E+02	5.0118E-05	5.9772E+04
3.7421F+03	1.7969E+03	4.0581F+02	9.6118E+01	4.5554E-05	6.2325E+04
3.6731F+03	1.7266E+03	3.9814F+02	9.1729E+01	4.1270E-05	6.4635E+04
3.6031F+03	1.6701E+03	3.9098F+02	8.7725E+01	3.7735E-05	6.6695E+04
3.5295E+03	1.6147E+03	3.8441E+02	8.4016E+01	3.4750E-05	6.8536E+04
3.4794F+03	1.5611E+03	3.7840F+02	8.0535E+01	3.2182E-05	7.0191E+04
3.4259E+03	1.5096E+03	3.7298E+02	7.7222E+01	2.9957E-05	7.1685E+04
					1.9805E+00

P

RHO

S

GAMMA

SIMILAR OUTPUT FOR PLANES 5-13 AT STATION 0 REMOVED

x IS	1	DZ IS	1.7658225E-02	CFL IS	3.6405536E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	6.5797986E-01
x IS	2	DZ IS	1.3061547E-02	CFL IS	3.5592584E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	6.7563808E-01
x IS	3	DZ IS	1.8184873E-02	CFL IS	3.5351204E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	6.9369963E-01
x IS	4	DZ IS	1.8412808E-02	CFL IS	3.4913585E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	7.01188450E-01
x IS	5	DZ IS	1.8703591E-02	CFL IS	3.4370952E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	7.3029731E-01
x IS	6	DZ IS	1.9015425E-02	CFL IS	3.3807141E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	7.4900081E-01
x IS	7	DZ IS	1.9325263E-02	CFL IS	3.3265118E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	7.6801624E-01
x IS	8	DZ IS	1.9626925E-02	CFL IS	3.2753839E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	7.8734150E-01
x IS	9	DZ IS	1.9921950E-02	CFL IS	3.2268785E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	8.0696842E-01
x IS	10	DZ IS	2.0212574E-02	CFL IS	3.1804813E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	8.2689037E-01
x IS	11	DZ IS	2.0499994E-02	CFL IS	3.1359062E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	8.4710295E-01
x IS	12	DZ IS	2.0784086E-02	CFL IS	3.0930259E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	8.6760283E-01
x IS	13	DZ IS	2.1064951E-02	CFL IS	3.0517256E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	8.8338692E-01
x IS	14	DZ IS	2.1342059E-02	CFL IS	3.0121609E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	9.0945167E-01
x IS	15	DZ IS	2.1614904E-02	CFL IS	2.9741383E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	9.3079393E-01
x IS	16	DZ IS	2.1882942E-02	CFL IS	2.9377089E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	9.5240883E-01
x IS	17	DZ IS	2.2145600E-02	CFL IS	2.9028662E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	9.7429177E-01
x IS	18	DZ IS	2.2402290E-02	CFL IS	2.8696046E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	9.9643737E-01
x IS	19	DZ IS	2.2652424E-02	CFL IS	2.8379176E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	1.0168397E+00
x IS	20	DZ IS	2.28953441E-02	CFL IS	2.8077954E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	1.0414921E+00
x IS	21	DZ IS	2.3130818E-02	CFL IS	2.7792236E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	1.0643875E+00
x IS	22	DZ IS	2.3358076E-02	CFL IS	2.7521836E+00	NCFL IS	1	MCFL IS	1	JCFL IS	3	Z IS	1.0875183E+00

SIMILAR OUTPUT FOR K = 23 - 100, REMOVED

MACH NO IS 1.500000E+01 ANGLE OF ATTACK IS 7.500000E+00

PLANE 1 ANGLE IS 0.00 DEGREES
THE AXIS IS SHIFTED UP 0.0000 UNITSSTATION 100 Z IS 2.9896021E+00 R IS 1.7883337E+00
C IS 2.1773909E+00 CZ IS 3.40080704E-01

P	W	U	V	P	RHO	S	M
2.1774E+00	4.9106E+03	1.1859E+03	0.	5.1436E+01	5.3906E-05	4.0344E+04	4.3709E+00
2.1406E+00	4.9004E+03	1.2193E+03	0.	5.2119E+01	5.5113E-05	4.0182E+04	4.3640E+00
2.1214E+00	4.8956E+03	1.2567E+03	0.	5.4154E+01	5.6974E-05	3.9681E+04	4.3815E+00
2.0946E+00	4.8749E+03	1.2895E+03	0.	5.5497E+01	5.7364E-05	4.0062E+04	4.3329E+00
2.0645E+00	4.8215E+03	1.3146E+03	0.	5.6904E+01	5.5032E-05	4.0005E+04	4.1572E+00
2.0326E+00	4.7324E+03	1.3330E+03	0.	5.8157E+01	5.0724E-05	4.5644E+04	3.8804E+00
2.0104E+00	4.6122E+03	1.3395E+03	0.	5.9119E+01	4.5497E-05	4.9951E+04	3.5637E+00
1.9829E+00	4.4744E+03	1.3390E+03	0.	5.9215E+01	4.0407E-05	5.4531E+04	3.2419E+00
1.9551E+00	4.3160E+03	1.3274E+03	0.	6.0491E+01	3.5856E-05	5.9029E+04	2.9382E+00
1.9273E+00	4.1426E+03	1.3103E+03	0.	6.0848E+01	3.1983E-05	6.3295E+04	2.5611E+00
1.8935E+00	3.9593E+03	1.2875E+03	0.	6.1124E+01	2.8789E-05	6.7145E+04	2.4152E+00
1.8717E+00	3.7716E+03	1.2644E+03	0.	6.1266E+01	2.6172E-05	7.0164E+04	2.1967E+00
1.8477E+00	3.5814E+03	1.2302E+03	0.	6.1334E+01	2.4030E-05	7.3682E+04	2.02027E+00
1.8141E+00	3.3823E+03	1.1978E+03	0.	6.1335E+01	2.2263E-05	7.5404E+04	1.8299E+00
1.7803E+00	3.1699E+03	1.1532E+03	0.	6.1296E+01	2.0609E-05	7.9151E+04	1.6531E+00

PLANE 2 ANGLE IS 15.00 DEGREES
THE AXIS IS SHIFTED UP 0.0000 UNITSSTATION 100 Z IS 2.9896021E+00 R IS 1.7883337E+00
C IS 2.1830190E+00 CZ IS 3.4009650E-01

P	W	U	V	P	RHO	S	M
2.1970E+00	4.9185E+03	1.1919E+03	1.5103E+02	5.0640E+01	5.3801E-05	3.9925E+04	4.4185E+00
2.1544E+00	4.9099E+03	1.2241E+03	1.4470E+02	5.1623E+01	5.4905E-05	3.9786E+04	4.4111E+00
2.1246E+00	4.9033E+03	1.2566E+03	1.3746E+02	5.2095E+01	5.6637E-05	4.0005E+04	4.4250E+00
2.0948E+00	4.8807E+03	1.2924E+03	1.3199E+02	5.4271E+01	5.6732E-05	3.9988E+04	4.3639E+00
2.0644E+00	4.8245E+03	1.2954E+03	1.3154E+02	5.5049E+01	5.4096E-05	4.2137E+04	4.1757E+00
2.0321E+00	4.7341E+03	1.3333E+03	1.2954E+02	5.6748E+01	4.9696E-05	4.5754E+04	3.8913E+00
2.0134E+00	4.6173E+03	1.3366E+03	1.3198E+02	5.8152E+01	4.4517E-05	5.0096E+04	3.5712E+00
1.9857E+00	4.4769E+03	1.3380E+03	1.3572E+02	5.8444E+01	3.9532E-05	5.4676E+04	3.2492E+00
1.9575E+00	4.3183E+03	1.3294E+03	1.4078E+02	5.9164E+01	3.5104E-05	5.9164E+04	2.9464E+00
1.9293E+00	4.1644E+03	1.3114E+03	1.4720E+02	5.9791E+01	3.1338E-05	6.3379E+04	2.6714E+00
1.8911E+00	3.9653E+03	1.2894E+03	1.5500E+02	5.9650E+01	2.8232E-05	6.7216E+04	2.4261E+00

SIMILAR OUTPUT FOR PLANES 3-13 AT STATION K = 100, REMOVED
ALSO ALL PRINTOUT TO STATION 444 REMOVED

X TS 444	DZ IS 7.3625537E-02	CFL IS A.7314425E-01	NCFL IS 1	MCFL IS 8	JCFL IS 1	Z IS 1.3225277E+01
X TS 445	DZ IS 7.4318879E-02	CFL IS A.6499844E-01	NCFL IS 1	MCFL IS 8	JCFL IS 1	Z IS 1.3298902E+01
X TS 446	DZ IS 7.5030051E-02	CFL IS A.5679955E-01	NCFL IS 1	MCFL IS 8	JCFL IS 1	Z IS 1.3373221E+01
X TS 447	DZ IS 7.5759490E-02	CFL IS A.4854999E-01	NCFL IS 1	MCFL IS 8	JCFL IS 1	Z IS 1.3448251E+01
X TS 448	DZ IS 7.6212894E-02	CFL IS A.4350192E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.3524011E+01
X TS 449	DZ IS 7.6621418E-02	CFL IS A.3900450E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.3600224E+01
X TS 450	DZ IS 7.7042027E-02	CFL IS A.3442397E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.3676845E+01
X TS 451	DZ IS 7.7474778E-02	CFL IS A.2976313E-01	NCFL IS 1	MCFL IS 9	JCFL IS, 1	Z IS 1.3753887E+01
X TS 452	DZ IS 7.7919959E-02	CFL IS A.2502244E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.3831362E+01
X TS 453	DZ IS 7.8377848E-02	CFL IS A.2020259E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.39092A2E+01
X TS 454	DZ IS 7.8848774E-02	CFL IS A.153n433E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.3987660E+01
X TS 455	DZ IS 7.9332912E-02	CFL IS A.1032843E-01	- NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.4066503E+01
X TS 456	DZ IS 7.9830694E-02	CFL IS A.0527566E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.4145841E+01
X TS 457	DZ IS A.0342396E-02	CFL IS A.0014684E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.4225672E+01
X TS 458	DZ IS 8.0868351E-02	CFL IS 7.9494281E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.4306014E+01
X TS 459	DZ IS 8.1408995E-02	CFL IS 7.8966450E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.4386883E+01
X TS 460	DZ IS 8.1964377E-02	CFL IS 7.8431285E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.4466829E+01
X TS 461	DZ IS 8.2535153E-02	CFL IS 7.7888890E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.4550256E+01
X TS 462	DZ IS 8.3121598E-02	CFL IS 7.7339372E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.4632791E+01
X TS 463	DZ IS 8.3726056E-02	CFL IS 7.6782848E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.4715913E+01
X TS 464	DZ IS 8.4342941E-02	CFL IS 7.6219437E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.4799637E+01
X TS 465	DZ IS 8.4978637E-02	CFL IS 7.56649265E-01	NCFL IS 1	MCFL IS 9	JCFL IS 1	Z IS 1.4883580E+01

K TS 466 D7 IS A.5631551E-02 CFL IS 7.5072463E-01 NCFL IS 1 MCFL IS 9 JCFL IS 1 Z IS 1.4968958E+01
 JUMP IS CALLED FOR PLANE 1 PHI IS 0.00 K IS 466 7 TS 1.505459F+01
 THE INPUT VARIABLEFS ARF AS FCLLOWS
 P.D.1.V.4.S.ASG 7.02733E+01 4.58753E-05 1.58506F+03 0. 4.35491F+03 5.40617E+04 2.14448E+06
 P.R.7.RPH1.DR7.HOT2 6.16454E+00 8.74887E-02 0. 0. 2.76482F-01 3.22000E+07
 SUPERSONIC EXPANSION CORNER WHERE
 THETA.AMACH.OT.QSM 1.5000E+01 3.16470E+00 0. 4.63439E+03
 P.D.1.V.W.C.ASG THF OUTPUT VARIABLEFS ARE AS FOLLOWS
 1.76113E+01 1.70640E+05 4.35565F+02 0. 4.97853E+03 5.40617E+04 1.44491E+06
 JUMP IS CALLED FOR PLANE 2 PHI IS 15.00 K IS 466 7 TS 1.505459F+01
 THE INPUT VARIABLEFS ARE AS FOLLOWS
 P.D.1.V.4.S.ASG 6.8945F+01 4.49370E-05 1.58324F+03 1.78166E+02 4.34939F+03 5.43138E+04 2.14795E+06
 P.R.7.RPH1.DR7.HOT2 6.16446E+00 8.74887E-02 0. 0. 2.76482F-01 3.22000E+07
 SUPERSONIC EXPANSION CORNER WHERE
 THETA.AMACH.OT.QSM 1.5000E+01 3.15853E+00 -1.78166E+02 4.62910E+03
 THF OUTPUT VARIABLEFS ARE AS FOLLOWS
 1.73739E+01 1.67459E+05 4.35139F+02 1.78166E+02 4.97367F+03 5.43138E+04 1.444831E+06
 JUMP IS CALLED FOR PLANE 3 PHI IS 30.00 K IS 466 7 TS 1.505459F+01
 THE INPUT VARIABLEFS ARE AS FOLLOWS
 P.D.1.V.4.S.ASG 6.51614E+01 4.21699E-05 1.57690F+03 3.55358E+02 4.33251F+03 5.51438E+04 2.16330E+06
 P.R.7.RPH1.DR7.HOT2 6.16444E+00 8.74887E-02 0. 0. 2.76482F-01 3.22000E+07
 SUPERSONIC EXPANSION CORNER WHERE
 THETA.AMACH.OT.QSM 1.5000E+01 3.13470E+00 -3.55258E+02 4.61056E+03
 THF OUTPUT VARIABLEFS ARE AS FOLLOWS
 1.65372E+01 1.58272E+05 4.33167F+02 3.55358E+02 4.95608F+03 5.51438E+04 1.446280E+06
 JUMP IS CALLED FOR PLANE 4 PHI IS 45.00 K IS 466 7 TS 1.505459F+01
 THE INPUT VARIABLEFS ARF AS FOLLOWS
 P.D.1.V.4.S.ASG 5.04155F+01 3.77762E-05 1.56189F+03 5.31206F+02 4.29675E+03 5.67185E+04 2.20200F+06
 P.R.7.RPH1.DR7.HOT2 6.16434E+00 8.74887E-02 0. 0. 2.76482F-01 3.22000E+07
 SUPERSONIC EXPANSION CORNER WHERE
 THETA.AMACH.OT.QSM 1.5000E+01 3.08139E+00 -5.31206E+02 4.57751E+03
 THF OUTPUT VARIABLEFS ARE AS FOLLOWS
 1.54177E+01 1.44051E+05 4.30745F+02 5.31206E+02 4.92344F+03 5.67185E+04 1.49841E+06
 JUMP IS CALLED FOR PLANE 5 PHI IS 60.00 K IS 466 7 TS 1.505459F+01
 THE INPUT VARIABLEFS ARF AS FOLLOWS
 P.D.1.V.4.S.ASG 5.02420E+01 3.21564E-05 1.54076E+03 7.03586E+02 4.23319F+03 5.92744E+04 2.28222E+06
 P.R.7.RPH1.DR7.HOT2 6.16454E+00 8.74887E-02 0. 0. 2.76482E-01 3.22000E+07

SIMILAR PRINTOUT FOR PLANES 6-13 AT STATION 466, REMOVED

ALSO ALL PRINTOUT TO STATION 487 REMOVED

MACH NO IS 1.500000E+01 ANGLE OF ATTACK IS 7.500000E+00 ANGLF OF SIDESLIP IS 0.

PLANF 1 ANGLE IS 0.00 DEGREES
THE AXIS IS SHIFTED UP 0.0000 UNITSSTATION 487 Z IS 2.0105917E+01 R IS 6.6064622E+00 B7 IS 8.748P664E-02 PHI IS 0.
C IS 9.1298390E+00 C2 IS 3.4571545E-01 CPHT IS 0.

	R	W	V	P	RHO	S	M	GAMMA
9.1298E+00	4.8961F+03	1.209RE+03	0*	5.2355F+01	5.4002E-05	4.0732E+04	4.3271E+00	1.4000E+00
9.9495E+00	4.8804F+03	1.1144E+03	0*	4.5749F+01	4.4853E-05	4.3920E+04	4.1897E+00	1.4000E+00
8.7654E+00	4.8959F+03	1.0361E+03	0*	3.9751F+01	3.9820E-05	4.5495E+04	4.1785E+00	1.4000E+00
8.5431E+00	4.9331F+03	9.4877F+02	0*	3.4510F+01	3.6884E-05	4.5910E+04	4.2565E+00	1.4000E+00
8.4019E+00	4.9767F+03	8.6344F+02	0*	2.9793F+01	3.1187E-05	4.5957E+04	4.3674E+00	1.4000E+00
8.2286E+00	5.0196F+03	7.7114E+02	0*	2.5524F+01	2.7879E-05	4.6017F+04	4.4855E+00	1.4000E+00
8.0524E+00	5.0629F+03	6.7244E+02	0*	2.1726F+01	2.4872E-05	4.5982E+04	4.6185E+00	1.4000E+00
7.8822E+00	5.1404F+03	5.6800E+02	0*	1.8379F+01	2.0811E-05	4.5966E+04	4.7575E+00	1.4000E+00
7.6505E+00	5.1407F+03	4.6330F+02	0*	1.5549F+01	1.9583F-05	4.5988F+04	4.8955E+00	1.4000E+00
7.5077E+00	5.1727E+03	3.7153E+02	0*	1.33R4F+01	1.7661E-05	4.5552E+04	5.0340E+00	1.4000E+00
7.3274E+00	5.1831F+03	3.2971E+02	0*	1.2362F+01	1.6555E-05	4.6134E+04	5.0795E+00	1.4000E+00
7.1472E+00	5.1745F+03	3.6646E+02	0*	1.2716F+01	1.6223E-05	4.6282E+04	5.0420E+00	1.4000E+00
6.9669E+00	5.1978F+03	4.1442E+02	0*	1.3299F+01	1.8576E-05	4.3887E+04	5.2085E+00	1.4000E+00
6.7857E+00	5.1545F+03	4.2955E+02	0*	1.3359F+01	1.7168E-05	4.6166F+04	4.9555E+00	1.4000E+00
6.6045E+00	5.0966F+03	4.4599E+02	0*	1.3304F+01	1.5454E-05	5.0465E+04	4.6660E+00	1.4000E+00

PLANF 2 ANGLE IS 15.00 DEGREES
THE AXIS IS SHIFTED UP 0.0000 UNITSSTATION 487 Z IS 2.0105917E+01 R IS 6.6064622E+00 B7 IS 8.748P664E-02 PHI IS 0.
C IS 9.1342728E+00 C2 IS 3.4835129E-01 CPHT IS 2.9315860E-02

	R	W	V	P	RHO	S	M	GAMMA
9.1343E+00	4.8947F+03	1.2151E+03	1.8343F+02	5.1887F+01	5.3954E-05	4.0535E+04	4.3495E+00	1.4000E+00
8.9537E+00	4.8809F+03	1.1288E+03	1.7898F+02	4.5316F+01	4.4875F-05	4.3660E+04	4.2162E+00	1.4000E+00
8.7732E+00	4.8981F+03	1.0457E+03	1.7251F+02	3.9329F+01	3.0857E-05	4.5188E+04	4.2100E+00	1.4000E+00
8.5926E+00	4.9361F+03	9.6333E+02	1.6564F+02	3.4095F+01	3.4696E-05	4.5590E+04	4.2901E+00	1.4000E+00
8.4120E+00	4.9800F+03	8.7754F+02	1.5907F+02	3.1157F+01	4.157E-05	4.5649E+04	4.4022E+00	1.4000E+00
8.2315F+00	5.0231F+03	7.8438E+02	1.5333F+02	2.5153F+01	2.7816E-05	4.5723F+04	4.5220E+00	1.4000E+00
8.0509F+00	5.0667F+03	6.8517E+02	1.4784E+02	2.1379F+01	2.4789E-05	4.5691E+04	4.6544E+00	1.4000E+00
7.8704E+00	5.1079E+03	5.7933E+02	1.4297F+02	1.8053F+01	2.1967E-05	4.5693E+04	4.7945E+00	1.4000E+00
7.6998E+00	5.1450F+03	4.7391E+02	1.3863F+02	1.5238F+01	1.9447E-05	4.5719E+04	4.9355E+00	1.4000E+00
7.5093E+00	5.1774F+03	3.7932E+02	1.3430F+02	1.3067F+01	1.7481E-05	4.5606E+04	5.0794E+00	1.4000E+00
7.3297E+00	5.1RR3F+03	3.3419E+02	1.3164F+02	1.20n2F+01	1.6306E-05	4.5924E+04	5.1237E+00	1.4000E+00

SIMILAR OUTPUT FOR PLANES 3-13 AT STATION 487, REMOVED

MACH NO =	15.000	ANGLE OF ATTACK =	SURFACE PRESSURE			ANGLE OF SIDESLIP =	0.000	Z0 = 0.000
			7.500	75.0	90.0			
Z+20	0.0	15.0	30.0	45.0	60.0	75.0	90.0	105.0
*659	61.074	60.221	57.776	54.061	49.526	44.659	39.897	35.576
*676	60.148	59.288	56.830	53.103	48.567	43.715	38.981	34.699
*694	60.695	59.910	57.311	53.522	48.916	43.993	39.198	34.865
*712	60.830	59.956	57.458	53.666	49.049	44.107	39.289	34.934
*730	60.727	59.858	57.375	53.605	49.012	44.090	39.283	34.932
*749	60.521	59.653	57.177	53.423	48.857	43.967	39.192	34.866
*768	60.291	59.421	56.942	53.190	48.637	43.775	39.035	34.742
*787	60.063	59.190	56.704	52.945	48.394	43.547	38.833	34.575
*807	59.937	58.962	56.469	52.703	48.147	43.305	38.609	34.378
*827	59.610	58.733	56.237	52.465	47.905	43.063	38.377	34.166
*847	59.379	58.501	56.003	52.229	47.667	42.825	38.145	33.948
*868	59.142	58.263	55.765	51.992	47.431	42.591	37.916	33.729
*889	58.897	58.018	55.521	51.751	47.194	42.360	37.692	33.514
*909	58.646	57.767	55.271	51.505	46.956	42.131	37.471	33.303
*931	58.389	57.510	55.016	51.255	46.714	41.900	37.253	33.095
*952	58.127	57.249	54.756	51.000	46.469	41.668	37.035	32.890
*974	57.867	56.984	54.493	50.741	46.220	41.434	36.816	32.686
*996	57.598	56.719	54.229	50.481	45.968	41.197	36.597	32.484
1.019	57.333	56.454	53.964	50.219	45.715	40.957	36.376	32.291
1.041	57.070	56.190	53.700	49.958	45.460	40.716	36.153	32.078
1.064	56.811	55.930	53.439	49.698	45.206	40.474	35.929	31.874
1.088	56.556	55.674	53.181	49.440	44.953	40.232	35.703	31.660
1.111	56.306	55.423	52.927	49.185	44.703	39.990	35.477	31.463
1.134	56.062	55.177	52.678	48.935	44.454	39.750	35.252	31.256
1.156	55.825	54.937	52.435	48.699	44.210	39.513	35.027	31.050
1.182	55.594	54.704	52.197	48.447	43.969	39.278	34.804	30.843
1.206	55.372	54.479	51.966	48.212	43.732	39.046	34.593	30.638
1.231	55.158	54.261	51.742	47.982	43.501	38.818	34.365	30.433
1.255	54.952	54.052	51.525	47.758	43.274	38.594	34.149	30.231
1.280	54.755	53.851	51.316	47.540	43.052	38.374	33.937	30.031
1.305	54.568	53.659	51.114	47.330	42.836	38.159	33.728	29.833
1.330	54.390	53.475	50.921	47.126	42.625	37.948	33.522	29.638
1.355	54.221	53.301	50.736	46.929	42.421	37.741	33.321	29.446
1.390	54.060	53.135	50.559	46.740	42.222	37.540	33.123	29.257
1.405	53.909	52.979	50.391	46.559	42.030	37.343	32.929	29.072
1.431	53.769	52.831	50.231	46.384	41.844	37.152	32.740	28.889
1.456	53.635	52.693	50.080	46.218	41.664	36.965	32.554	28.711
1.482	53.511	52.564	49.938	46.059	41.491	36.785	32.373	28.535

SIMILAR PRINTOUT FOR 1.482 < Z+20 < 14.222, REMOVED

MACH NO =	15.000	ANGLE OF ATTACK =	7.500	ANGLE OF SIDESLIP =	0.000	Z0 =	0.000
		SURFACE	PRESSURE	PAT T 0			
		45.0	60.0	90.0	105.0	120.0	135.0
14.226	70.285	68.959	59.178	52.4419	44.944	37.698	31.265
14.306	70.285	68.958	59.177	52.4420	44.945	37.701	31.267
14.327	70.284	68.957	59.176	52.4428	44.945	37.703	31.269
14.464	70.283	68.956	59.175	52.4429	44.946	37.704	31.271
14.550	70.282	68.956	59.174	52.4427	44.946	37.704	31.272
14.673	70.281	68.955	59.172	52.4424	44.947	37.711	31.274
14.716	70.281	68.954	59.171	52.4425	44.947	37.713	31.275
14.800	70.280	68.954	59.170	52.4425	44.947	37.715	31.274
14.874	70.279	68.953	59.169	52.4424	44.947	37.717	31.278
14.960	70.278	68.952	59.168	52.4423	44.947	37.719	31.279
15.055	70.278	68.952	59.167	52.4423	44.947	37.719	31.279
15.125	70.278	68.951	59.167	52.4423	44.947	37.719	31.279
15.244	70.271	68.951	59.167	52.4425	44.947	37.719	31.279
15.367	70.251	68.951	59.159	52.4425	44.947	37.719	31.279
15.466	70.140	68.951	59.150	52.4425	44.947	37.719	31.279
15.539	15.577	16.537	15.418	14.172	12.932	11.744	10.572
15.797	14.775	13.432	12.935	15.667	14.219	12.742	11.318
15.874	14.054	13.705	12.747	11.397	9.929	10.683	9.259
15.171	13.434	13.073	12.079	10.687	9.193	7.832	11.347
15.353	12.991	12.610	11.563	10.101	8.559	7.202	10.562
15.605	12.752	12.348	11.238	9.692	8.079	6.717	5.752
15.640	12.689	12.264	11.092	9.453	7.750	6.342	5.378
15.807	12.750	12.309	11.082	9.355	7.549	6.065	5.065
15.847	12.877	12.425	11.161	9.354	7.446	5.863	4.804
15.521	13.023	12.567	11.283	9.426	7.415	5.722	4.586
15.909	13.153	12.699	11.412	9.525	7.433	5.627	4.405
15.214	13.252	12.803	11.526	9.631	7.480	5.569	4.255
15.539	13.315	12.873	11.613	9.729	7.544	5.540	4.132
15.887	13.346	12.911	11.671	9.809	7.613	5.534	4.033
15.262	13.351	12.923	11.702	9.867	7.680	5.545	3.955
15.659	13.335	12.913	11.710	9.905	7.739	5.570	3.898
15.106	13.304	12.887	11.699	9.922	7.787	5.604	3.860

AERODYNAMIC DATA

MACH NO. = 1.50000E+01 FREE STREAM CONDITIONS
 ANGLE OF ATTACK = 7.50000E+00 ANGLE OF SIDESLIP = 0.
 VINF = 5.612496E+03 TOTAL ANGLE OF ATTACK = 7.50000E+00 AFRO ROLL ANGLE = 0.
 DINF = 1.00000E+00 DINF = 1.00000E-05 STNF = 0.
 DIFFUSE GAS (GAMMA = 1.40000E+00)

REFERENCE LENGTH IS 2.00000E+01 REFERENCE AREA IS 1.36719E+02 Z0 IS 0.

AERODYNAMIC COEFFICIENTS AT TARGE TO LOCATIONS
 FORCE COEFFICIENTS MOMENT COEFFICIENTS ABOUT Z = 0.
 CN CA CY CMN CML
 7.70 2.28039E-01 2.29741E-01 -0. -1.36812E-01 -0.
 29.000 1

AERODYNAMIC DATA

	Z DERIVATIVES OF FORCE AND MOMENT COEFFICIENTS	C _{MN} _Z	C _{MW} _Z
	C _A _Z	C _Y _Z	C _M _N _Z
Z+Z ₀	2.43762E-03	4.04642E-03	-0.
* 65	2.43962E-03	3.98625E-03	-0.
* 67	2.4818E-03	4.0435E-03	-0.
* 69	2.51515E-03	4.07743E-03	-0.
* 71	2.52659E-03	4.10266E-03	-0.
* 73	2.53112E-03	4.12037E-03	-0.
* 74	2.53507E-03	4.13379E-03	-0.
* 75	2.54119E-03	4.14491E-03	-0.
* 76	2.54998E-03	4.15446E-03	-0.
* 80	2.56095E-03	4.16328E-03	-0.
* 82	2.57338E-03	4.17161E-03	-0.
* 84	2.59654E-03	4.17965E-03	-0.
* 86	2.59989E-03	4.18750E-03	-0.
* 88	2.61304E-03	4.19526E-03	-0.
* 90	2.625813E-03	4.20394E-03	-0.
* 93	2.63913E-03	4.21062E-03	-0.
* 95	2.65003E-03	4.21629E-03	-0.
* 97	2.66162E-03	4.22596E-03	-0.
* 99	2.67304E-03	4.23368E-03	-0.
* 001	2.68443E-03	4.24146E-03	-0.
* 004	2.69595E-03	4.24333E-03	-0.
* 004	2.70771F-03	4.25730E-03	-0.
* 008	2.71984E-03	4.26640E-03	-0.
* 011	2.73243E-03	4.27566E-03	-0.
* 014	2.74556E-03	4.28209E-03	-0.
* 018	2.75930E-03	4.29072E-03	-0.
* 020	2.77371F-03	4.2958E-03	-0.
* 023	2.78883E-03	4.30870E-03	-0.
* 025	2.80470E-03	4.31809E-03	-0.
* 028	2.82133E-03	4.32778E-03	-0.
* 030	2.83875E-03	4.33480E-03	-0.
* 031	2.85696E-03	4.3415E-03	-0.
* 035	2.87596E-03	4.35846E-03	-0.
* 039	2.89573E-03	4.36995E-03	-0.
* 040	2.91628E-03	4.38142E-03	-0.
* 041	2.93759E-03	4.39330E-03	-0.
* 045	2.95965E-03	4.40594E-03	-0.
* 049	2.98248E-03	4.41830E-03	-0.

SIMILAR PRINTOUT FOR 1.482 < Z+Z₀ < 14.226, REMOVED

AERODYNAMIC DATA

Z+Z0	CN7	CAY	CY2	CMN7	CMLZ
2.226	2.45044E-02	-0*	-0*	-0*	-0*
14.306	2.3513AE-02	2.46327E-02	-0*	-0*	-0*
14.287	2.36169E-02	2.47611E-02	-0*	-0*	-1.95602E-02
14.468	2.37207E-02	2.48901E-02	-0*	-0*	-1.97354E-02
14.550	2.38252E-02	2.50211E-02	-0*	-0*	-1.99329E-02
14.633	2.39304E-02	2.51522E-02	-0*	-0*	-2.01328E-02
14.714	2.40364E-02	2.52843E-02	-0*	-0*	-2.03351E-02
14.800	2.41431E-02	2.54173E-02	-0*	-0*	-2.05309E-02
14.894	2.42507E-02	2.55512E-02	-0*	-0*	-2.07472E-02
14.969	2.43591E-02	2.56861E-02	-0*	-0*	-2.09571E-02
15.055	2.45093E-03	1.66244E-03	-0*	-0*	-4.09412E-03
15.142	5.51982E-03	1.65780E-03	-0*	-0*	-4.32719E-03
15.244	5.70123E-03	1.63095E-03	-0*	-0*	-4.50026E-03
15.367	5.35852E-03	1.52044E-03	-0*	-0*	-4.26237E-03
15.496	4.8320E-03	1.42054E-03	-0*	-0*	-3.99535E-03
15.639	4.63893E-03	1.33444E-03	-0*	-0*	-3.75347E-03
15.797	4.31923E-03	1.25694E-03	-0*	-0*	-3.52929E-03
15.974	4.01017E-03	1.18141E-03	-0*	-0*	-3.31247E-03
16.171	3.7347RE-03	1.10911E-03	-0*	-0*	-3.12212E-03
16.393	3.5463AE-03	1.04724E-03	-0*	-0*	-3.00237E-03
16.605	3.46949E-03	9.9897E-04	-0*	-0*	-2.9761AE-03
16.840	3.49401E-03	9.63677E-04	-0*	-0*	-3.03850E-03
17.087	3.59475E-03	9.39051F-04	-0*	-0*	-3.17086E-03
17.347	3.74357E-03	9.22333E-04	-0*	-0*	-3.35123E-03
17.621	3.91569E-03	9.10977E-04	-0*	-0*	-3.55937E-03
17.909	4.09285E-03	9.02498E-04	-0*	-0*	-3.77988E-03
18.214	4.26431E-03	8.95595E-04	-0*	-0*	-4.00374E-03
18.539	4.42541E-03	8.89268E-04	-0*	-0*	-4.22739E-03
18.847	4.57509E-03	8.83056E-04	-0*	-0*	-4.45060E-03
19.262	4.71392E-03	8.76832E-04	-0*	-0*	-4.67470E-03
19.668	4.84330E-03	8.70643E-04	-0*	-0*	-4.90194E-03
20.106	4.96416E-03	8.64622E-04	-0*	-0*	-5.13389E-03

PROGRAM N3CS5 VERSIION 10 DATE 03/21/77 TIME 18.56.47
 3-0 SUPERSONIC FLOW - FLOW IS NONSYMMETRICAL
 MAXIMUM NO. OF STEPS = 2000 LAST Z VALUE = 3.30000E+01
 ERROR LIMIT 1.0000E-03 MAXIMUM NUMBER OF ITERATIONS 20
 PRINT CONTROLS ARE ZPRINT 100000.00 100000.00 100000.00
 KOUT 100 20 20 20 100000.00
 DZPRINT 100000.00
 MACH NO. = 15.00 ANGLE OF ATTACK = 7.50 YAW ANGLF = 0.00 VINF = 5612.49
 FREE STREAM PROPERTIES * DTINF = 1.0000E+00 DTNF = 1.0000E-05 HINF = 3.5000E+05 HO = 1.6100E+07 SINF = 0.
 PERFECT GAS (GAMMA = 1.40 GAS CONSTANT = 1.020191F+04)
 FLOW IS PERIODIC WITH PERIOD = 180.00
 CALC. REGNS AT Z = *2010582E+02
 RADIAL INTERVALS NA = 12 TANGENTIAL INTERVALS MA = 26
 REFINING THE MESH IN THIS RUN

PROGRAM BODY VERSION 3
 BODY IS SPHERICALLY BLUNTED AND SPHERF ENDS AT 7 = .6579799E+00 WITH R = .9396926E+00
 AFT BODY IS A MULTIPLE CONIC WITH
 ANGLE 20.0000 UP TO 15.0000
 ANGLE 5.0000 UP TO *****
 THDF IS A WIND CUT OF
 ANGLE 0.0000 BEGINNING AT 35.0000
 ANGLE 0.0000 BEGINNING AT 50.0000
 ANGLE WITH A FLAP OF HALF-WIDTH 4.7415 LENGTH ALONG 7-AXIS 12.0000 AT 5.0000 DEGREES

PROGRAM TRANSP VERSION 1
 EQUAL SPACING IN TANGENTIAL DIRECTION

PROGRAM TRANSP VERSION 1
 EQUAL SPACING IN RADIAL DIRECTION

ADDITIONAL FEATURES

BACKWARD DIFFERENCE FOR PREDICTOR STEP AND FORWARD DIFFERENCE FOR CORRECTOR STEP IN X DIRECTION
 WALL ENTROPY EXTRAPOLATION FOR 25 PLANS UNTIL A COMPOSITION JUMP AND THEN NO EXTRAPOLATION
 MOD 3 FOR WALL POINTS UNTIL A JUMP OCCURS AND THEN MOD 0 IS USED
 SECOND ORDER ACCURACY IS USED AT WALL POINTS FOR Z LESS THAN 1.00000E+00 OR UNTIL JUMP IS CALLED
 IF PRESSURE IS NEGATIVE THEN THE CONSERVATION VECTORS ARE SMOOTHED BY 1- 2-1
 USING JUMP WHICH COMPUTES JUMPS CORRESPONDING TO DISCONTS. IN RZ AND/OR RHOI EXCEPT FOR THE PHI INTERVAL (0.00. 0.00)
 THE CFL FACTOR IS REDUCED TO .300 WHEN Z IS IN THE INTERVAL (0.00, 0.00)
 USE CFL FACTOR = .300 FOR 0 STEPS AFTER AN EXPANSION JUMP OCCURS
 THE TERMS FOR X DERIVATIVES AT THE WALL ARE MODIFIED FOR
 A STEPS AFTER AN EXPANSION JUMP AND 4 STEPS AFTER A COMPOSITION JUMP

MACH NO IS 1.500000E+01 ANGLE OF ATTACK IS 7.500000E+00 ANGLF OF SIDESLIP IS 0.

PLANE 1 ANGLF IS 0.00 DEGREES
THE AXIS IS SHIFTED UP 0.0000 UNITS

STATION 487 7 IS 2.0105817E+01 R IS 6.6064622E+00 BZ IS 8.74888664E-02 BPHI IS 0.
C IS 9.1298390E+00 CZ IS 3.4571545E-01 CPHT IS 0.

P	W	U	V	RHO	S	M	GAMMA
9.1321E+00	4.8961E+03	1.2009E+03	0.	5.2355E+01	5.4002E-05	4.0732E+04	1.4000E+00
8.9104E+00	4.8831E+03	1.1005E+03	0.	4.4749E+01	4.3848E-05	4.4166E+04	1.4000E+00
8.7003E+00	4.9080E+03	1.0033E+03	0.	3.8004E+01	3.7441E-05	4.5639E-04	1.4000E+00
8.4500E+00	4.9544E+03	9.0612E+02	0.	3.2151E+01	3.2935E-05	4.5952E+04	1.4000E+00
8.2607E+00	5.0049E+03	8.0192E+02	0.	2.6947E+01	2.9818E-05	4.6015E+04	1.4000E+00
8.0784E+00	5.0554E+03	6.8899E+02	0.	2.2359E+01	2.5373E-05	4.6033E+04	1.4000E+00
7.8962E+00	5.1104E+03	5.6800E+02	0.	1.8379E+01	2.0818E-05	4.5965E+04	1.4000E+00
7.6879E+00	5.1459E+03	4.4900E+02	0.	1.5151E+01	1.9263E-05	4.5978E+04	1.4000E+00
7.4574E+00	5.1761E+03	3.0775E+02	0.	1.3043E+01	1.7292E-05	4.5948E+04	1.4000E+00
7.2373E+00	5.1788E+03	3.4718E+02	0.	1.2539E+01	1.6649E-05	4.5210E+04	1.4000E+00
7.0270E+00	5.1907E+03	3.0783E+02	0.	1.3105E+01	1.7992E-05	4.6522E+04	1.4000E+00
6.8167E+00	5.1622E+03	4.2703E+02	0.	1.3249E+01	1.7402E-05	4.6312E+04	1.4000E+00
6.6055E+00	5.0966E+03	4.4549E+02	0.	1.3304E+01	1.5454E-05	5.0465E+04	1.4000E+00

PLANE 2 ANGLF IS 7.50 DEGREES
THE AXIS IS SHIFTED UP 0.0000 UNITS

P	W	U	V	RHO	S	M	GAMMA
9.1321E+00	4.8962E+03	1.2079E+03	9.1717E+01	5.2121E+01	5.3978E-05	4.0634E+04	1.4000E+00
8.9216E+00	4.8843E+03	1.1091E+03	8.8951E+01	4.4534E+01	4.2860E-05	4.4033E+04	1.4000E+00
8.7111E+00	4.9100E+03	1.0108E+03	8.5109E+01	3.7794E+01	3.7456E-05	4.5484E+04	1.4000E+00
8.5007E+00	4.9566E+03	9.3330E+02	8.1177E+01	3.1946E+01	3.2931E-05	4.5795E+04	1.4000E+00
8.2902E+00	5.0071E+03	8.0874E+02	7.7631E+01	2.6757E+01	2.8956E-05	4.5R67E+04	1.4000E+00
8.0797E+00	5.0578E+03	6.9531E+02	7.4380E+01	2.2194E+01	2.5333E-05	4.5P58E+04	1.4000E+00
7.8803E+00	5.1064E+03	5.7309E+02	7.1848E+01	1.8212E+01	2.2024E+01	4.5P35E+04	1.4000E+00
7.6699E+00	5.1485E+03	4.5315E+02	6.8953E+01	1.5032E+01	1.9191E+01	4.5R47E+04	1.4000E+00
7.4433E+00	5.1789E+03	3.6113E+02	6.6706E+01	1.2R78E+01	1.7191E+01	4.5R32E+04	1.4000E+00
7.2379E+00	5.1823E+03	3.4996E+02	6.4994E+01	1.2246E+01	1.6561E+01	4.6n87E+04	1.4000E+00
7.0274E+00	5.1946E+03	3.9837E+02	6.0257E+01	1.2R95E+01	1.7A62E+01	4.449RE+04	1.4000E+00
6.8169E+00	5.1652E+03	4.2742E+02	5.8625E+01	1.3141E+01	1.7243E+01	4.6239E+04	1.4000E+00
6.6055E+00	5.0977E+03	4.4598E+02	9.1112E+01	1.3n085E+01	1.5249E+01	5.053RE+04	1.4000E+00

SIMILAR OUTPUT FOR PLANES 3-25 AT STATION 487 REMOVED
ALSO, ALL REMAINING FIELD PRINTOUT, REMOVED

MACH NO =	15.000	ANGLE OF ATTACK =	7.500	ANGLE OF SIDESLIP =	0.000	Z0 =	0.000
		SURFACE	PRESSURE	SURFACE	RATE TO		
		22.5	30.0	37.5	45.0	52.5	60.0
26.104	13.304	13.095	12.897	12.293	11.699	10.810	9.922
20.644	13.293	13.072	12.865	12.279	11.692	10.822	9.948
21.222	13.226	13.012	12.809	12.229	11.648	10.792	9.931
21.940	13.152	12.940	12.740	12.163	11.598	10.743	9.897
22.468	13.066	12.863	12.657	12.092	11.521	10.614	9.845
23.270	13.017	12.787	12.595	12.020	11.454	10.622	9.792
23.940	12.944	12.711	12.522	11.948	11.387	10.557	9.736
24.714	12.872	12.446	11.873	11.318	10.490	9.677	9.677
25.524	12.748	12.553	12.371	11.797	11.247	10.421	9.615
25.365	12.736	12.484	12.305	11.729	11.181	10.356	9.556
27.274	12.699	12.438	12.261	11.678	11.129	10.300	9.500
28.145	12.692	12.420	12.245	11.650	11.098	10.260	9.456
29.096	12.714	12.430	12.257	11.648	11.040	10.240	9.429
30.063	12.752	12.461	12.286	11.668	11.103	10.241	9.418
31.077	12.787	12.505	12.318	11.705	11.128	10.260	9.424
32.136	12.799	12.549	12.338	11.746	11.152	10.290	9.441
37.224	12.774	12.574	12.333	11.773	11.165	10.320	9.461

MACH NO =	15.000	ANGLE OF ATTACK =	7.500	ANGLE OF SIDE SLIP =	0.000	Z0 =	0.000
7.70	112.5	120.0	127.5	S U P F A C F	P R E S S U R E	P A T T O	
20.1106	2.6110	2.386	2.352	2.318	2.462	2.606	2.899
21.644	2.443	2.225	2.177	2.149	2.276	2.420	2.712
21.722	2.345	2.105	2.039	1.997	2.111	2.245	2.534
21.840	2.272	2.007	1.922	1.864	1.951	2.085	2.369
22.402	2.211	1.922	1.817	1.744	1.826	1.939	2.211
23.200	2.161	1.849	1.725	1.636	1.703	1.804	2.063
24.540	2.121	1.787	1.644	1.541	1.592	1.681	1.927
24.714	2.093	1.736	1.575	1.457	1.404	1.572	1.803
25.524	2.076	1.697	1.519	1.385	1.408	1.475	1.692
26.345	2.068	1.667	1.470	1.324	1.333	1.390	1.592
27.232	2.068	1.647	1.432	1.272	1.268	1.315	1.504
28.145	2.073	1.633	1.402	1.228	1.212	1.250	1.426
29.086	2.093	1.626	1.379	1.192	1.164	1.193	1.358
30.063	2.095	1.624	1.361	1.163	1.124	1.145	1.298
31.077	2.109	1.625	1.348	1.138	1.089	1.103	1.494
32.130	2.124	1.630	1.339	1.118	1.059	1.067	1.246
32.275	2.139	1.638	1.333	1.102	1.033	1.035	1.200
							1.160
							1.314
							1.470
							1.531

AERODYNAMIC DATA

MACH NO = 1.500000E+01 FREE STREAM CONDITIONS
 VINF = 5.612424E+03 ANGLE OF ATTACK = 7.500000E+00 ANGLE OF SIDEFLTP = 0.
 DTNF = 1.000000E+00 TOTAL ANGLE OF ATTACK = 7.500000E+00 APRO ROLL ANGLE = 0.
 DREFCT RAS = 1.000000E-05 DINF = 1.000000E-05 STNF = 0.

REFERENCE LENGTH IS 3.300000E+01 REFERENCE AREA IS 1.479407E-02 ZN TS 0.

AERODYNAMIC COEFFICIENTS AT TARGET EDO Z LOCATIONS
 FORCE COEFFICIENTS CENTERS OF PRESSURE
 CN CA CY CML CMM XCPP XCPY
 7.70 2.06658E-01 1.75140E-01 -0. -1.0490E-01 4.75434E-01

AERODYNAMIC DATA

7 DERIVATIVES OF FORCE AND MOMENT COEFFICIENTS						
	CNZ	CA7	CY7	CMNZ	CMLZ	CML2
Z+7.0						
20.106	3.59043E-03	6.29091E-04	-0.	-0.	-0.	-2.25042E-03
20.544	3.49963E-03	6.23642E-04	-0.	-0.	-0.	-2.37756E-03
21.222	3.74002F-03	6.19560E-04	-0.	-0.	-0.	-2.49812E-03
21.840	3.85351F-03	6.16060E-04	-0.	-0.	-0.	-2.61937E-03
22.448	3.92193F-03	6.13014E-04	-0.	-0.	-0.	-2.74463E-03
22.200	3.98763F-03	6.10581E-04	-0.	-0.	-0.	-2.87614E-03
23.641	4.06498E-03	6.08712F-04	-0.	-0.	-0.	-3.01250E-03
24.714	4.10713E-03	6.07271F-04	-0.	-0.	-0.	-3.15239E-03
25.524	4.16032E-03	6.06281E-04	-0.	-0.	-0.	-3.29593E-03
26.345	4.21272E-03	6.05983E-04	-0.	-0.	-0.	-3.44557E-03
27.236	4.26829E-03	6.06719E-04	-0.	-0.	-0.	-3.60498E-03
28.145	4.33036E-03	6.08767E-04	-0.	-0.	-0.	-3.77723E-03
29.026	4.40051E-03	6.122247F-04	-0.	-0.	-0.	-3.96497E-03
30.063	4.47455E-03	6.17115E-04	-0.	-0.	-0.	-4.16874E-03
31.077	4.55261E-03	6.23165E-04	-0.	-0.	-0.	-4.39822E-03
32.136	4.64899F-03	6.30006E-04	-0.	-0.	-0.	-4.62075E-03
33.226	4.73214E-03	6.37080E-04	-0.	-0.	-0.	-4.86173E-03

PROGRAM D3SSS VERSION 10 DATE 03/21/77 TIME 19.13.39

3-D SUPERSONIC FLOW = FLOW IS NONSYMMETRICAL
 MAXIMUM NO. OF STEPS = 2000 LAST Z VALUE = 6.00000E+01 CFL FACTOR = .900
 ERROR LIMIT 1.000E-03 MAXIMUM NUMBER OF ITERATIONS 20
 PRINT CONTROLS APE ZPRINT 100000.00 100000.00 100000.00 100000.00 100000.00
 KNOT 100 20 20 20 20

DZPRINT 100000.00
 VACUUM NO. = 15.00 ANGLE OF ATTACK = 7.50 YAW ANGLF = 0.00 VINF = 5612.49
 FREE STREAM PROPERTIES * PINF = 1.0000E+00 DINF = 1.0000E-05 HINF = 3.5000E+05 HO = 1.6100E+07 SINF = 0.
 DFFECT GAS (GAMMA = 1.40 GAS CONSTANT = 1.020191E+04
 FLOW IS PERIODIC WITH PERIOD = 180.00
 CALC. BEGINS AT Z = .3322524E+02
 RADIAL INTERVALS NA = 12 TANGENTIAL INTERVALS MA = 32
 DEZONE THE MESH IN THIS RUN

PROGRAM BODY VERSION 3
 BODY IS SPHERICALLY BLUNTED AND SPHERE ENDS AT Z= .6579799E+00 WITH B= .9396926E+00
 AFT BODY IS A MULTIPLE CONIC WITH
 ANGLE 20.0000 UP TO 15.0000
 ANGLE 5.0000 UP TO *****
 THERE IS A WIND CUT OF
 ANGLE 0.0000 BEGINNING AT 35.0000
 ANGLE 0.0000 BEGINNING AT 50.0000
 WITH A FLAP OF HALF-WIDTH 4.7415 LENGTH ALONG Z-AXIS 12.0000 AT 5.0000 DEGREES

PROGRAM TRANG VERSION 1
 THE PHOTOS WERE READ IN BY THE USER

PROGRAM TRANF VERSION 1
 EQUAL SPACING IN RADIAL DIRECTION

ADDITIONAL FEATURES

BACKWARD DIFFERENCE FOR PREDICTOR STEP AND FORWARD DIFFERENCE FOR CORRECTOR STEP IN X DIRECTION
 WALL ENTROPY EXTRAPOLATION FOR 33 PLANES UNTIL A COMPRESSION JUMP AND THEN NO EXTRAPOLATION
 MOD 3 FOR WALL POINTS UNTIL A JUMP OCCURS AND THEN MOD 0 IS USED
 SECOND ORDER ACCURACY IS USED AT WALL POINTS FOR Z LESS THAN 1.00000E+06 OR UNTIL JUMP IS CALLED
 IF PRESSURE IS NEGATIVE THEN THE CONSERVATION VECTORS ARE SMOOTHED BY 1-?1
 USING JUMP WHICH COMPUTES JUMPS CORRESPONDING TO DISCONTS. IN RZ AND/OR RPHI EXCEPT FOR THE PHI INTERVAL (0.00, 0.00)
 THE CFL FACTOR IS REDUCED TO .300 WHEN Z IS IN THE INTERVAL (0.00, 0.00)
 USE CFL FACTOR = .300 FOR 0 STEPS AFTER AN EXPANSION JUMP OCCURS
 THE TERMS FOR X DERIVATIVES AT THE WALL ARE MODIFIED FOR
 A STEPS AFTER AN EXPANSION JUMP AND 4 STEPS AFTER A COMPRESSION JUMP

W4CH NO 1S 1.500000E+01 ANGLE OF ATTACK IS 7.500000E+00

PLANE 1 ANGLF IS 0.00 DEGREES
THE AXIS IS SHIFTED UP 0.0000 UNITS

STATION 503 7 IS 3.3225239E+01 R IS 7.7542679E+00 B7 IS 8.7488664E-02 BPHI IS 0.

P	W	V	R	RHO	S	GAMMA
1.20435E+01	5.3937E+03	4.7117E+02	0.	1.9879E+01	4.6476E-05	2.1393E+04
1.1678E+01	5.3610E+03	3.9414E+02	0.	1.6607E+01	2.5880E-05	6.6852E+04
1.1321E+01	5.3421E+03	3.2478E+02	0.	1.4223E+01	2.7990E-05	6.3454E+00
1.0665E+01	5.3115E+03	2.5917E+02	0.	1.2448E+01	2.2223E-05	3.5799E+04
1.0609E+01	5.2779E+03	2.1543E+02	0.	1.1411E+01	1.8587E-05	3.9060E+04
1.0251E+01	5.2429E+03	2.1674E+02	0.	1.1258E+01	1.6892E-05	5.5976E+00
9.8044E+00	5.2070E+03	2.6273E+02	0.	1.0640E+01	1.6640E-05	5.4323E+00
9.5379E+00	5.1915E+03	2.9956E+02	0.	1.2241E+01	1.6611E-05	4.4556E+04
9.1911E+00	5.1898E+03	3.1544E+02	0.	1.2240E+01	1.4584E-05	4.5764E+04
9.9244E+00	5.1811E+03	3.4012E+02	0.	1.2345E+01	1.6490E-05	4.5218E+04
9.4677E+00	5.1827E+03	3.7568E+02	0.	1.2562E+01	1.6915E-05	4.5776E+04
9.1110E+00	5.1779E+03	4.1238E+02	0.	1.2725E+01	1.7067E-05	5.0961E+00
7.7547E+00	5.1734E+03	4.5226E+02	0.	1.2774E+01	1.7092E-05	5.0842E+00
					4.5831E+04	5.0770E+00

PLANE 2 ANGLF IS 0.40 DEGREES
THE AXIS IS SHIFTED UP 0.0000 UNITS

STATION 503 7 IS 3.3225239E+01 R IS 7.7542679E+00 B7 IS 8.7488664E-02 BPHI IS 0.

P	W	V	R	RHO	S	GAMMA
1.20435E+01	5.3933E+03	4.7409E+02	0.	2.2302E+01	1.9871E+01	4.6471E-04
1.1678E+01	5.3616E+03	3.9722E+02	0.	1.6591E+01	2.5861E-05	2.6617E+04
1.1321E+01	5.3424E+03	3.2722E+02	0.	1.4201E+01	2.7954E-05	3.0961E+04
1.0665E+01	5.3115E+03	2.6113E+02	0.	1.2420E+01	2.2188E-05	3.5797E+04
1.0609E+01	5.2779E+03	2.1628E+02	0.	1.1365E+01	1.8547E-05	3.9039E+04
1.0251E+01	5.2424E+03	2.1566E+02	0.	1.2370E+01	1.6837E-05	4.2969E+04
9.8044E+00	5.2072E+03	2.6090E+02	0.	1.1748E+01	1.6585E-05	5.4440E+04
9.5379E+00	5.1913E+03	2.9841E+02	0.	1.1904E+01	1.6575E-05	4.5707E+04
9.1911E+00	5.1892E+03	3.1454E+02	0.	1.2159E+01	1.6550E-05	5.1289E+00
9.9244E+00	5.1813E+03	3.3833E+02	0.	1.1134E+01	1.2253E+00	5.0859E+00
9.4677E+00	5.1851E+03	3.7363E+02	0.	1.0120E+01	1.2464E+00	5.1111E+00
9.1110E+00	5.1803E+03	4.1097E+02	0.	1.2620E+01	1.7007E-05	5.0985E+00
					4.5761E+04	5.0902E+00

SIMILAR OUTPUT FOR PLANES 3-33, REMOVED

1.0386E+01 5.3949E+03 9.0532E+02 4.5475E-13 1.6786E+00 5.1638E-06 3.6809E+04 8.1090E+00
 9.2474E+00 5.2059E+03 8.2899E+02 2.2737E-13 1.5626E+00 3.1553E-06 5.2572E+04 6.4376E+00
 6.3203E+00 5.1712E+03 7.5331E+02 2.2737E-13 1.5154E+00 2.1687E-06 6.2174E+04 5.2835E+00
 6.7063E+00 5.0703E+03 6.6498E+02 4.5475E-13 1.4913E+00 1.7271E-06 7.2999E+04 1.4066E+00
 6.2753E+00 5.0077E+03 5.8363E+02 9.0946E-13 1.4854E+00 1.5331E-06 7.1051E+04 4.3286E+00
 7.7463E+00 4.935AE+03 4.3192E+02 1.8199E-12 1.5310E+00 1.4006E-06 8.1051E+04 4.0052E+00 1.4000E+00
 K TS 504 D7 IS 1.0330E+05E+03 CFL IS 7.2601223E+02 NCFL IS A MCFL IS 9 JCFL IS 3 7 IS 3.3225230E+01
 K TS 505 D7 IS 1.06P0413E+00 CFL IS 7.0222006E+02 NCFL IS A MCFL IS 10 JCFL IS 3 7 IS 3.4258280E+01
 JIMP IS CALLED FOR PLANE 1 PHI IS 0.00 K IS 505 3.5326325E+01
 THF INPUT VARIABLES ARE AS FOLLOWS
 D.7.1.1.V.4.S.A.SQ 1.260R8E+01 1.69495E-05 4.52P14E+02 0. 5.1758E+03 4.57981E+04
 D.7.1.2.D.7.D.7.D.7.HOT2 7.9095E+00 0. 0. 8.74897E-02 3.2200E+07
 THETA.AMACH.OT.GSM SUPERSONIC EXPANSION CORNER WHERE
 5.0000F+00 5.09100F+00 0. 5.19545E+03 8.60232E+05
 THF OUTPUT VARIABLES ARE AS FOLLOWS
 D.7.1.1.V.4.S.A.SQ 6.45651E+00 1.0507AE-05 0. 5.28194E+03 4.57981E+04
 JIMP IS CALLED FOR PLANE 2 PHI IS 4.00 K IS 505 3.5326325E+01
 THF INPUT VARIABLES ARE AS FOLLOWS
 D.7.1.1.V.4.S.A.SQ 1.2549E+01 1.69347E-05 4.5296E+02 4.92720E+01 5.17739E+03 4.5707E+04
 D.7.1.2.D.7.D.7.HOT2 7.92R6E+00 0. 5.5439E-01 -6.99268E-02 8.74897E-02 3.2200E+07
 THETA.AMACH.OT.GSM SUPERSONIC EXPANSION CORNER WHERE
 6.36995E+00 9.4971E+00 -3.29081E+03 4.022P8E+03
 THF OUTPUT VARIABLES ARE AS FOLLOWS
 D.7.1.1.V.4.S.A.SQ 6.37932E+00 1.04443E-05 -3.16305E-01 -4.52339E+00 5.28436E+03 4.57075E+04 8.55109E+05
 K TS 506 D7 IS 1.06444615E+00 CFL IS 7.0458162E+02 NCFL IS 2 MCFL IS 2 JCFL IS 3 7 IS 3.5326321E+01
 JIMP IS CALLED FOR PLANE 3 PHI IS 8.00 K IS 506 3.639078E+01
 THF INPUT VARIABLES ARE AS FOLLOWS
 D.7.1.1.V.4.S.A.SQ 1.17180E+01 1.61587E-05 4.5399E+02 3.71091E+01 5.18809E+03 4.56359E+04
 D.9.7.RPHI.DR2.DR7.HOT2 7.99721E+00 0. 1.12934E+00 -1.40541E-01 8.74897E-02 3.2200E+07
 THETA.AMACH.OT.GSM SUPERSONIC EXPANSION CORNER WHERE
 0.42531E+00 2.69272E+00 -4.44549E+03 2.71318E+03
 THF OUTPUT VARIABLES ARE AS FOLLOWS
 D.7.1.1.V.4.S.A.SQ 5.72424E+00 9.65811E-06 -1.01940E+01 -7.25343E+01 5.29695E+03 4.56359E+04 8.27389E+05
 K TS 507 D7 IS 1.05869906E+00 CFL IS 7.0841675E+02 NCFL IS ? MCFL IS 3 JCFL IS 3 7 IS 3.6390787E+01
 JIMP IS CALLED FOR PLANE 4 PHI IS 17.00 K IS 507 7 IS 3.744948E+01

THE INPUT VARIABLES ARE AS FOLLOWS
 D•D•U•V•W•S•ASQ
 R•R7•RP7•DR7•DRT7•HOT2
 SUPERSONIC EXPANSION CORNER WHERE
 THF FT7A•AVACH•NT•GSM
 1.1764E+01 1.56229E-05 4.54423F+02 R•55464F+01 5.19408E+03 4.56329E+04
 8.08624F+00 0. 1.71978F+00 -7.12557E-01 R.74887E-02 3.22000E+07
 1.29859E+01 1.8974E+00 74.85659F+03 1.89891E+03
 THF OUTPUT VARIABLES ARE AS FOLLOWS
 D•D•U•V•W•S•ASQ
 5.18470E+00 9.02514E-06 -1.90335F+01 -R.95455E+01 5.30757E+03 4.56329E+04
 K TS 510 DZ IS 1.069903E+00 CFL IS 7.0099466E-02 NCFL IS 2 MCFL IS 4 JCFL IS 3 Z IS 3.7449482E+01
 K TS 510 DZ IS 1.1779792E+00 CFL IS 6.3668354E-02 NCFL IS 3 MCFL IS 4 JCFL IS 3 Z IS 3.8519390E+01
 JUMP IS CALLED FOR PLANE 5 PHI IS 16.00 K IS 509
 THF INPUT VARIABLES ARE AS FOLLOWS
 D•D•U•V•W•S•ASQ 1.03427E+01 4.55376F+02 6.41891E+01 5.20497E+03 4.56241E+04
 R•R7•RP7•DR7•DRT7 1.47850E-05 0. 2.35942F+00 -R.86745E-01 8.74887E-02 3.22000E+07
 SUPERSONIC EXPANSION CORNER WHERE
 THF FT7A•AVACH•NT•GSM 1.67435E+01 1.47332E+00 -5.01770F+03 1.45R03E+03
 THF OUTPUT VARIABLES ARE AS FOLLOWS
 D•D•U•V•W•S•ASQ 4.29166E+00 7.RR680E-06 -5.25425F+01 -1.83238E+02 5.32490E+03 4.56241E+04
 K TS 510 DZ IS 1.0952720E+00 CFL IS 6.8476139E-02 NCFL IS 2 MCFL IS 5 JCFL IS 3 Z IS 3.9697369E+01
 K TS 511 DZ IS 1.2086977E+00 CFL IS 6.2050256E-02 NCFL IS 3 MCFL IS 5 JCFL IS 3 Z IS 4.0792642E+01
 JUMP IS CALLED FOR PLANE 6 PHI IS 20.00 K IS 511
 THF INPUT VARIABLES ARE AS FOLLOWS
 D•D•U•V•W•S•ASQ 9.45284E+00 1.39112E-05 4.56498F+02 0.78320E+01 5.21780F+03 4.55047E+04
 R•R7•RP7•DR7•DRT7 8.41715E+00 0. 3.06359F+00 -3.63970E-01 R.74887E-02 3.22000E+07
 SUPERSONIC EXPANSION CORNER WHERE
 THF FT7A•AVACH•NT•GSM 2.05907E+01 1.15311E+00 -5.11651F+03 1.12459E+03
 THF OUTPUT VARIABLES ARE AS FOLLOWS
 D•D•U•V•W•S•ASQ 3.31746E+00 6.58383E-06 -R.959233F+01 -R.46125E+02 5.34825E+03 4.55047E+04
 K TS 512 DZ IS 1.1310307E+00 CFL IS 6.6311199E-02 NCFL IS 2 MCFL IS 6 JCFL IS 3 Z IS 4.0001339E+01
 K TS 513 DZ IS 1.2496333E+00 CFL IS 6.00166446E-02 NCFL IS 3 MCFL IS 6 JCFL IS 3 Z IS 4.3132370E+01
 JUMP IS CALLED FOR PLANE 7 PHI IS 24.00 K IS 513
 THF INPUT VARIABLES ARE AS FOLLOWS
 D•D•U•V•W•S•ASQ 8.77736E+00 1.32423F-05 4.57401F+02 1.33379E+02 5.22812F+03 4.53733E+04
 R•R7•RP7•DR7•DRT2 8.65906E+00 0. 3.R5482F+00 -4.45229E-01 8.74887E-02 3.22000E+07
 THF OUTPUT VARIABLES ARE AS FOLLOWS

P.D.U.V.S.ASO
 K IS S14 NZ IS 1.1612679E+00 1.32423F-05 9.3P632F+01 2.10R70E+02 5.24471F+03 4.5373E+04 9.27959E+05
 K IS S15 NZ IS 1.2508140E+00 CFL IS 6.4584579E-02 NCFL IS 2 MCFL IS 7 JCFL IS 3 Z IS 4.4382202E+01
 K IS S16 NZ IS 1.3192493E+00 CFL IS 5.9960556E-02 NCFL IS 1 MCFL IS 6 JCFL IS 3 Z IS 4.5543291E+01
 JUMP IS CALLED FOR PLANE 8 PHI IS 28.00 K IS 516 7 IS 4.811335F+01
 THF INPUT VARIABLES ARF AS FOLLOWS
 P.D.U.V.W.S.ASO 8.51535E+00 1.29156E-05 4.57643E+02 1.15350E+02 5.23088E+03 4.54923E+04
 P.R7.RPH7.DP7.DP7.HOT2 8.95810E-00 0. 4.76311E+00 -5.31709E-01 8.748R7E-02 3.2200E+07
 P.D.U.V.W.S.ASO 8.51535E+00 1.29156E-05 1.07R04F+02 2.02751E+02 5.24711E+03 4.54923E+04
 K IS S17 NZ IS 1.15580P8E+00 CFL IS 6.4R89623E-02 NCFL IS 2 MCFL IS 8 JCFL IS 3 Z IS 4.23031F+05
 K IS S18 NZ IS 1.2A90570E+00 CFL IS 5.8182068E-02 NCFL IS 2 MCFL IS 8 JCFL IS 3 Z IS 4.811335E+01
 JUMP IS CALLED FOR PLANE 1 PHI IS 0.00 K IS 518 7 IS 5.055822F+01
 THF INPUT VARIABLES ARF AS FOLLOWS
 P.D.U.V.W.S.ASO 6.74487E+00 1.07070E-05 0. 5.27165E+03 4.62439E+04
 P.R7.RPH7.DP7.DP7.HOT2 7.95837E+00 8.74887E-02 0. -8.748R7E-02 3.2200E+07
 THETA.AMACH.0.T.GSM SUPERSONIC COMPRESSION CORNER WHERE
 5.0000E+00 5.61344E+00 0. -5.27165E+03
 THE OUTPUT VARIABLES ARF AS FOLLOWS
 P.D.U.V.W.S.ASO 1.30105F+01 1.69791E-05 4.51498E+02 0. 5.16065E+03 4.65361E+04
 JUMP IS CALLED FOR PLANE 2 PHI IS 4.00 K IS 518 7 IS 5.055822E+01
 THF INPUT VARIABLES ARF AS FOLLOWS
 P.D.U.V.W.S.ASO 6.76744E+00 1.07511E-05 -4.31233E+00 -6.20500E+01 5.27164E+03 4.61179E+04
 P.R7.RPH7.DP7.DP7.HOT2 7.97741E+00 8.77023E-02 5.57863E-01 -4.29118E-04 -8.77023E-02 3.2200E+07
 THETA.AMACH.0.T.GSM SUPERSONIC COMPRESSION CORNER WHERE
 5.0000E+00 5.61344E+00 -8.79301E+01 -5.27127E+03
 THE OUTPUT VARIABLES ARF AS FOLLOWS
 P.D.U.V.W.S.ASO 1.30569E+01 1.7052RE-05 4.46037F+02 -9.38912E+01 5.16067E+03 4.64722E+04
 JUMP IS CALLED FOR PLANE 3 PHI IS 8.00 K IS 518 7 IS 5.055822E+01
 THF INPUT VARIABLES ARF AS FOLLOWS
 P.D.U.V.W.S.ASO 6.71184E+00 1.0719RE-05 -1.54770E+01 -1.10804E+02 5.27301F+03 4.60761E+04
 P.R7.RPH7.DP7.DP7.HOT2 8.03658P+00 8.83485E-02 1.12947E+00 -8.62453E-04 -8.83485E-02 3.2200E+07
 THETA.AMACH.0.T.GSM SUPERSONIC COMPRESSION CORNER WHERE
 5.00023E+00 5.63063E+00 -1.62852F+02 -5.27168E+03

THE OUTPUT VARIABLES ARE AS FOLLOWS
 1.29711E+01 1.70209E-05 4.31577E+02 -1.74329E+02 5.16227E+03 4.63707E+04 1.06689E+06
 JUMP IS CALLED FOR PLANE 4 PHI IS 12.00 K IS 518 7 TS 5.055E22F+01
 THF INPUT VARIABLFS ARF AS FOLLOWS
 6.62401E+00 1.05916E-05 -3.1145E+01 5.2725E+03 4.61695E+04 8.75562E+05
 6.62401E+00 1.05916E-05 -3.1145E+01 5.2725E+03 4.61695E+04 8.75562E+05
 8.R7.BPH.DR7.HOT2 8.13617E+00 8.94432E-02 -1.7240F+00 -8.94432E-02 3.2200E+07
 SUPERSONIC COMPRESSION CORNFR WHERE
 5.000031E+00 5.631PPE+00 -2.259P3F+02 -5.26994E+03
 THF OUTPUT VARIABLFS ARE AS FOLLOWS
 1.29035E+01 1.68194E-05 4.10192F+02 -2.42279E+02 5.16182E+03 4.64644E+04 1.06573E+06
 JUMP IS CALLED FOR PLANE 5 PHI IS 16.00 K IS 518 7 TS 5.055E22F+01
 THF INPUT VARIABLFS ARF AS FOLLOWS
 6.29791F+00 1.02647E-05 -4.56280F+01 -1.60106E+02 5.27991E+03 4.60015E+04 8.59971E+05
 6.29791F+00 1.02647E-05 -4.56280F+01 -1.60106E+02 5.27991E+03 4.60015E+04 8.59971E+05
 R.R7.BPH.DR7.HOT2 9.10144E-02 2.37399F+00 -1.75966E-03 -9.10144E-02 3.2200E+07
 SUPERSONIC COMPRESSION CORNFR WHFRE
 5.00008E+00 5.69256E+00 -2.64608F+02 -5.27590E+03
 THE OUTPUT VARIABLES ARE AS FOLLOWS
 1.22531E+01 1.63726E-05 3.88542F+02 -2.85964E+02 5.16999E+03 4.63051E+04 1.04775E+06
 JUMP IS CALLED FOR PLANE 6 PHI IS 20.00 K IS 518 7 TS 5.055E22F+01
 THF INPUT VARIABLFS ARF AS FOLLOWS
 5.60291E+00 9.50739E-06 -5.38703E+01 -1.48921E+02 5.29619E+03 4.57560E+04 8.25057E+05
 5.60291E+00 9.50739E-06 -5.38703E+01 -1.48921E+02 5.29619E+03 4.57560E+04 8.25057E+05
 R.R7.BPH.DR7.HOT2 8.446912F+00 9.31035E-02 3.09251F+00 -2.23357E-03 -9.31035E-02 3.2200E+07
 SUPERSONIC COMPRESSION CORNFR WHFRE
 5.00120E+00 5.82530E+00 -2.77774F+02 -5.29127E+03
 THE OUTPUT VARIABLES ARE AS FOLLOWS
 1.10574E+01 1.53112E-05 3.71807F+02 -3.05505E+02 5.18779E+03 4.60794E+04 1.01105E+06
 JUMP IS CALLED FOR PLANE 7 PHI IS 24.00 K IS 518 7 TS 5.055E22F+01
 THF INPUT VARIABLFS ARF AS FOLLOWS
 4.74600E+00 8.53700E-06 -3.58520F+01 -8.10222E+01 5.31939E+03 4.53665E+04 7.7R306E+05
 4.74600E+00 8.53700E-06 -3.58520F+01 -8.10222E+01 5.31939E+03 4.53665E+04 7.7R306E+05
 R.R7.BPH.DR7.HOT2 8.71112E+00 9.57683F-02 3.87862F+00 -2.73222E-03 -9.57683E-02 3.2200E+07
 SUPERSONIC COMPRESSION CORNFR WHFRE
 5.00111E+00 6.02541E+00 -2.27314F+02 -5.31571E+03
 THE OUTPUT VARIABLES ARE AS FOLLOWS
 9.56981E+00 1.39480E-05 3.79055E+02 -2.68046E+02 5.21359E+03 4.57212E+04 9.60446E+05
 JUMP IS CALLED FOR PLANE 8 PHI IS 28.00 K IS 518 7 TS 5.055E22F+01
 THF INPUT VARIABLFS ARF AS FOLLOWS
 4.70009E+00 8.48995E-06 4.4E21F+01 8.43739E+01 5.32125E+03 4.53159E+04 7.75049E+05
 4.70009E+00 8.48995E-06 4.4E21F+01 8.43739E+01 5.32125E+03 4.53159E+04 7.75049E+05
 R.R7.BPH.DR7.HOT2 9.011341E+00 9.90870E-02 4.79252F+00 -3.26293E-03 -9.90870E-02 3.2200E+07

SUPERSONIC COMPRESSOR CORNER WHIFR
 5.00212E+00 6.0449E+00 -5.94707E+01 -5.32177E+03
 * THE OUTPUT VARIABLES ARE AS FOLLOWS
 9.49649E+00 1.38911E-05 4.46755E+02 -1.31645E+02 5.21513E+03 4.56739E+04 9.57096E+05

* TS 520 IS CALLED FOR PLANE 9 PHI IS 32.00 K IS 519 5.167559F+01
 THF INPUT VARIABLES ARE AS FOLLOWS
 7.64552E+00 1.20572E-05 4.58534E+02 2.42858E+02 5.24107E+03 4.53331E+04 8.92393E+05
 9.32675E+00 0. 5.82800E+01 -6.24889E-01 8.74887F-02 3.22000F+07
 * THE OUTPUT VARIABLES ARE AS FOLLOWS
 7.68552E+00 1.20572E-05 1.98452E+02 3.17589E+02 5.25336E+03 4.53331E+04 8.92393F+05

* TS 521 IS 1.1466533E+00 CFL IS 6.5904404E-02 NCFL IS 1 MCFL IS 9 JCFL IS 3 Z IS 5.1675593E+01
 * TS 522 IS 1.1536796E+00 CFL IS 6.5441985E-02 NCFL IS 3 MCFL IS 8 JCFL IS 3 Z IS 5.2813570E+01
 * TS 523 IS 1.1520590E+00 CFL IS 6.5009382E-02 NCFL IS 4 MCFL IS 8 JCFL IS 3 Z IS 5.3959623E+01
 * TS 524 IS 1.1545349E+00 CFL IS 6.4961224E-02 NCFL IS 4 MCFL IS 8 JCFL IS 3 Z IS 5.5113303E+01

* TS 525 IS CALLED FOR PLANE 10 PHI IS 36.00 K IS 524 5.741990E+01
 THF INPUT VARIABLES ARE AS FOLLOWS
 8.72084E+00 1.32522E-05 4.57435E+02 1.51017E+02 5.23080E+03 4.51823E+04 9.21306E+05
 9.77672E+00 0. 7.10320F+00 -7.26543E-01 8.74887F-02 3.22000F+07
 * THE OUTPUT VARIABLES ARE AS FOLLOWS
 8.72084E+00 1.32522E-05 1.76279F+02 2.422628E+02 5.24438E+03 4.51823E+04 9.21306F+05
 * TS 526 IS 1.1440479E+00 CFL IS 6.55556697E-02 NCFL IS 1 MCFL IS 10 JCFL IS 3 Z IS 5.7419896E+01
 * TS 527 IS 1.1621301E+00 CFL IS 6.4536664E-02 NCFL IS 4 MCFL IS 8 JCFL IS 3 Z IS 5.8563944E+01
 * TS 528 IS 1.1666301E+00 CFL IS 6.4287728E-02 NCFL IS 4 MCFL IS 8 JCFL IS 3 Z IS 5.9726074E+01

NSWC/WOL/TR 77-32

MACH NO =	15.000	ANGLE OF ATTACK =	7.500	SURFACE	PRESSURE	PATI O	ANGLE OF SIDESLIP =	0.000	ZN =	0.000				
7*7.0	0.0	8.0	12.0	16.0	20.0	24.0	28.0	32.0	36.0	40.0	44.0	48.0	52.0	56.0
32.225	12.774	12.667	12.558	12.429	12.259	11.960	11.651	11.327	10.939	10.489	10.033	9.575	9.070	8.548
34.558	12.707	12.622	12.543	12.406	12.219	11.939	11.645	11.317	10.927	10.492	10.046	9.584	9.078	8.564
35.326	6.457	6.379	12.495	12.352	12.152	11.891	11.612	11.282	10.894	10.475	10.041	9.580	9.079	8.573
36.391	6.924	6.886	6.724	6.264	12.058	11.812	11.545	11.216	10.834	10.431	10.009	9.553	9.062	8.566
37.449	7.013	6.902	6.376	5.185	11.949	11.711	11.452	11.126	10.752	10.363	9.952	9.504	9.024	8.542
38.519	7.061	6.986	6.486	5.955	10.719	11.596	11.338	11.016	10.652	10.275	9.873	9.433	8.967	8.498
39.647	7.021	6.990	6.612	6.317	4.02	11.169	11.203	10.893	10.531	10.165	9.770	9.340	8.898	8.433
40.792	7.008	6.981	6.760	6.321	5.212	9.817	11.005	10.748	10.405	10.047	9.656	9.233	8.794	8.351
41.941	6.970	6.956	6.750	6.452	5.667	3.318	11.551	10.584	10.269	9.917	9.506	9.113	8.685	8.254
42.072	6.952	6.952	6.902	6.596	5.787	4.459	9.113	10.366	10.134	9.792	9.406	8.994	8.576	7.705
44.382	6.909	6.925	6.817	6.608	6.015	5.128	8.777	9.909	9.972	9.661	9.278	8.871	8.458	8.040
45.443	6.976	6.903	6.822	6.625	6.210	5.218	5.866	9.759	9.534	9.161	8.757	8.348	7.933	7.499
46.574	6.935	6.869	6.806	6.654	6.324	5.205	4.759	4.759	4.029	3.94	3.945	3.646	3.239	7.826
49.113	6.794	6.830	6.779	6.679	6.327	5.258	4.543	8.515	8.984	9.225	8.922	8.539	8.133	7.291
49.242	6.776	6.807	6.758	6.674	6.311	5.376	4.573	5.922	8.911	8.947	8.410	8.044	7.629	7.201
50.563	13.011	13.057	12.971	12.804	12.253	11.057	9.569	9.496	8.201	8.789	8.655	8.354	7.959	7.542
51.674	13.212	13.260	13.122	12.888	12.269	11.101	9.591	9.096	7.688	8.385	8.519	8.262	7.888	7.472
52.114	13.527	13.526	13.293	12.926	12.291	11.289	9.670	8.439	5.898	8.503	8.334	8.169	7.820	7.410
53.660	13.494	13.459	13.171	12.772	12.241	11.597	10.015	8.494	5.279	8.128	8.202	8.058	7.753	7.353
55.113	13.192	13.139	12.865	12.546	12.289	11.949	10.519	8.907	5.292	8.075	7.920	7.954	7.680	6.876
56.165	12.945	12.935	12.893	12.642	12.402	12.293	12.134	10.861	9.173	8.331	7.658	7.821	7.606	7.247
57.420	12.765	12.731	12.637	12.522	12.333	12.269	12.209	11.056	9.357	5.778	8.721	7.478	7.522	7.195
58.641	12.661	12.637	12.464	12.309	12.240	12.170	11.205	11.170	9.500	6.029	6.815	7.737	7.613	7.436
59.725	12.530	12.581	12.304	12.195	12.150	11.233	9.636	6.235	6.227	7.473	7.624	7.358	7.084	6.718
60.442	12.542	12.548	12.439	12.301	12.134	12.059	11.254	6.391	6.391	7.479	7.415	7.299	7.029	6.680

MACH NO =	15.000	ANGLE OF ATTACK =	7.500	ANGLE OF SIDESLIP =	0.000	Zn =	0.000
		SURFACE	PRESSURE	PAT T 0	100.3	105.4	112.2
		72.0	80.0	84.0	92.0	96.0	121.7
7+7.0	60.0	64.0	68.0	72.0	76.0	80.0	84.0
32.225	7.519	7.014	6.511	6.023	5.548	5.112	4.694
34.558	7.529	7.028	6.525	6.027	5.542	5.099	4.673
35.326	7.542	7.036	6.532	6.035	5.547	5.095	4.667
36.191	7.547	7.036	6.533	6.035	5.547	5.096	4.665
37.449	7.559	7.037	6.537	6.040	5.553	5.101	4.667
38.119	7.515	7.026	6.533	6.041	5.557	5.107	4.672
39.697	7.475	7.001	6.518	6.034	5.534	5.114	4.679
40.763	7.415	6.955	6.465	6.011	5.543	5.108	4.678
42.101	7.340	6.895	6.439	5.976	5.521	5.097	4.674
43.132	7.256	6.823	6.377	5.927	5.484	5.013	4.659
44.392	7.161	6.739	6.303	5.866	5.437	5.039	4.233
45.543	7.067	6.652	6.224	5.797	5.380	4.639	4.635
46.794	6.969	6.560	6.139	5.721	5.316	4.940	4.557
48.113	6.970	6.465	6.048	5.638	5.243	4.877	4.504
49.260	6.793	6.380	5.966	5.561	5.174	4.815	4.448
50.559	6.594	6.295	5.882	5.482	5.101	4.748	4.388
51.676	6.627	6.223	5.811	5.413	5.036	4.687	4.331
52.514	6.563	6.158	5.744	5.349	4.975	4.628	4.275
52.960	6.507	6.099	5.683	5.289	4.915	4.571	4.221
55.113	6.457	6.044	5.627	5.233	4.842	4.517	4.168
56.265	6.413	5.996	5.576	5.182	4.811	4.466	4.118
57.320	6.374	5.953	5.530	5.135	4.764	4.417	4.070
58.554	6.340	5.916	5.490	5.093	4.720	4.372	4.024
59.724	6.310	5.884	5.454	5.055	4.681	4.330	3.903
60.823	6.281	5.855	5.424	5.021	4.645	4.291	3.941

MACH NO = 15.000	Z+Z0	148.4	164.0	180.0	SURFACE PRESSURE RATIO	ANGLE OF ATTACK = 7.500	ANGLE OF SIDESLIP = 0.000	Z0 = 0.000
	33.225	1.035	1.294	1.531				
	34.258	1.020	1.263	1.441				
	35.326	1.004	1.227	1.373				
	36.391	.981	1.192	1.319				
	37.449	.976	1.159	1.273				
	38.519	.964	1.129	1.232				
	39.697	.957	1.098	1.190				
	40.793	.941	1.074	1.158				
	42.001	.931	1.049	1.125				
	43.132	.922	1.029	1.100				
	44.392	.913	1.007	1.073				
	45.542	.906	.991	1.054				
	46.794	.899	.974	1.034				
	48.113	.893	.957	1.016				
	49.269	.888	.946	1.006				
	50.558	.883	.934	.994				
	51.676	.879	.925	.987				
	52.814	.875	.917	.981				
	53.960	.871	.909	.975				
	55.113	.868	.902	.971				
	56.265	.865	.895	.967				
	57.420	.862	.889	.965				
	58.564	.860	.885	.964				
	59.724	.858	.880	.964				
	60.893	.855	.876	.964				

AERODYNAMIC DATA

	CN7	CA7	CY7	CMN7	CNN7
7+70	2.77643E-03	3.74124E-04	-0*	-0*	-1.56845E-03
33+225	2.81201E-03	3.77623E-04	-0*	-0*	-1.63774E-03
34+259	2.61044E-03	3.43722E-04	-0*	-0*	-1.56944E-03
35+326	2.56102E-03	3.31251E-04	-0*	-0*	-1.57003E-03
36+391	2.38729E-03	3.03692E-04	-0*	-0*	-1.51329E-03
37+446	2.40902E-03	3.03457E-04	-0*	-0*	-1.57001E-03
38+519	2.33109E-03	2.90797E-04	-0*	-0*	-1.56431E-03
39+587	2.31207E-03	2.87738E-04	-0*	-0*	-1.59444E-03
40+703	2.13969E-03	2.63584E-04	-0*	-0*	-1.51669E-03
42+861	2.16067E-03	2.61404E-04	-0*	-0*	-1.57205E-03
43+132	2.19312E-03	2.49045E-04	-0*	-0*	-1.63970E-03
44+182	2.14237E-03	2.48915E-04	-0*	-0*	-1.64844E-03
45+242	2.10311E-03	2.46045E-04	-0*	-0*	-1.65771E-03
46+744	2.13915E-03	2.21689E-04	-0*	-0*	-1.72901E-03
46+113	2.03956E-03	2.07511E-04	-0*	-0*	-1.69855E-03
46+260	3.04903E-03	3.91400E-04	-0*	-0*	-2.61066AE-03
50+552	3.09326E-03	3.81140E-04	-0*	-0*	-2.70077E-03
51+674	3.08289E-03	3.83060E-04	-0*	-0*	-2.75097E-03
52+814	3.09557E-03	3.84651E-04	-0*	-0*	-2.82198E-03
53+960	3.13244E-03	3.87374E-04	-0*	-0*	-2.91626E-03
55+112	3.17471E-03	3.90364E-04	-0*	-0*	-3.01697E-03
56+265	3.33723E-03	3.69104E-04	-0*	-0*	-3.23130E-03
57+420	3.29263E-03	3.71694E-04	-0*	-0*	-3.25224E-03
58+564	3.29581E-03	3.73782E-04	-0*	-0*	-3.31997E-03
59+726	3.32738E-03	3.75600E-04	-0*	-0*	-3.41686E-03

REFERENCES

1. Solomon, J. M.; Ciment, M.; Ferguson, R. E.; Bell, J. B.; and Wardlaw, A. B.; "A Program for Computing Steady Inviscid Three-Dimensional Supersonic Flow on Reentry Vehicles," Vol. I: Analysis and Programming, NSWC/WOL/TR 76-173
2. Solomon, J. M.; Ciment, M.; Ferguson, R. E.; Bell, J. B.; and Wardlaw, A. B.; "A Program for Determining Blunt Body Flow Fields and Initial Data Planes for Use in Three-Dimensional Supersonic Inviscid Flow Calculations on Spherically Blunted Reentry Vehicles," (to appear)

DISTRIBUTION

Copies

Commander
Naval Sea Systems Command
Headquarters
Department of the Navy
Washington, D. C. 20360
Chief Technical Analyst

Commander
Naval Air Systems Command
Headquarters
Department of the Navy
Washington, D. C. 20360
AIR-320C

Office of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217
Documents Section
M. Cooper, 430B
Dr. Leila Bram, 432

Commander
David Taylor Naval Ship Research
and Development Center
Bethesda, Maryland 20034
Central Library (5641)

Commander
Naval Weapons Center
China Lake, California 93555
Technical Library (533)

Director
U.S. Naval Research Laboratory
Washington, D. C. 20390
Library

NASA
Langley Research Center
Langley Station
Hampton, Virginia 23665
MS/185 Technical Library
Julius Harris

NASA
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135
Library

NSWC/WOL/TR 77-32

DISTRIBUTION

Copies

NASA
George C. Marshall Space Flight Center
Huntsville, Alabama 35812
Library

NASA
600 Independence Avenue, S.W.
Washington, D. C. 20546
F. C. Schwenk, Director,
Research (Code RR)

NASA
P.O. Box 33
College Park, Maryland 20740

Director
Defense Research and Engineering (DDR&E)
Room 3E-1063, The Pentagon, Stop 103
Washington, D. C. 20301
Technical Library
Mr. J. Persh

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

12

Commander (5632.2)
Naval Missile Center
Point Mugu, California 93041
Technical Library

Commanding Officer
USA Aberdeen Research and
Development Center
Aberdeen Proving Ground
Maryland 21005
AMXRD-XSE

Director
Strategic Systems Project Office
Department of the Navy
Washington, D. C. 20390
NSP-2722

Los Angeles Air Force Station
SAMSO/DYAE
P.O. Box 92960
Worldway Postal Center
Los Angeles, California 90009
LT D. Hall, RSSM

NSWC/WOL/TR 77-32

DISTRIBUTION

Copies

Headquarters, Arnold Engineering
Development Center
Arnold Air Force Station
Tennessee 37389
Library/Documents

Commanding Officer
Harry Diamond Laboratories
Washington, D. C. 20438
Library

Commanding General
U.S. Army Missile Command
Redstone Arsenal
Alabama 35809
Chief, Document Section

Commander (ADL)
Naval Air Development Center
Johnsville, Pennsylvania 18974
Dr. R. K. Lobb

Air Force Weapons Laboratory
Kirtland Air Force Base
Albuquerque, New Mexico 87117
Tech. Library (SUL)

The Johns Hopkins University
(C/NOW 7386)
Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20810
Document Library

Director, Defense Nuclear Agency
Headquarters, DASA
Washington, D. C. 20305
STSP (SPAS)

Department of Aeronautics
DFAN
USAF Academy
Colorado Springs, Colorado 80840
Library

Armament Development and Test Center
Eglin AFB, Florida 32542
Technical Library, DLOSL

DISTRIBUTION

Copies

NASA Ames Research Center
Moffett Field, California 94035
Library

AFFDL
Wright Patterson Air Force Base
Ohio 45433
Art Lewis

Wright Aeronautical Laboratories
Wright-Patterson Air Force Base
Dayton, Ohio 45433
Technical Library

Naval Research Laboratory
Washington, D. C.
Library

ONR Branch Office/Pasadena
1030 East Green Street
Pasadena, California 91101
Dr. Richard Lau

Polytechnic Institute of New York
Graduate Center Library
Route 110, Farmingdale
Long Island, New York 11735
Prof. Gino Moretti

Polytechnic Institute of New York
Spicer Library
333 Jay Street
Brooklyn, New York 11201
Reference Dept.

California Institute of Technology
Graduate Aeronautical Laboratories Aero.
Pasadena, California 91109
Librarian

GASDYNAMICS
University of California
Richmond Field Station
1301 South 46th Street
Richmond, California 94804
A. K. Oppenheim

DISTRIBUTION

Copies

Dept. of Aerospace Engineering
University of Southern California
University Park
Los Angeles, California 90007
Dr. John Laufer

University of California, San Diego
Department of Aerospace and
Mechanical Engineering Sciences
LaJolla, California 92037
Dr. P. A. Libby

Case Western Reserve University
Division of Fluid, Thermal and
Aerospace Engineering
Cleveland, Ohio 44106
Dr. Eli Reshotko

University of Cincinnati
Cincinnati, Ohio 45221
Dr. Arnold Polak
Dr. Michael Werle

Cornell University
Graduate School of Aero. Engineering
Ithaca, New York 14850
Prof. A. R. George

University of Delaware
Mechanical and Aeronautical
Engineering Dept.
Newark, Delaware 19711
Dr. James E. Danberg

Georgia Institute of Technology
225 North Avenue, N.W.
Atlanta, Georgia 30332
Dr. Arnold L. Ducoffe

Gordon McKay Library
Harvard University
Cambridge, Massachusetts 02138

Illinois Institute of Technology
3300 South Federal
Chicago, Illinois 60616
Dr. M. V. Morkovin

DISTRIBUTION

Copies

University of Illinois
101 Transportation Bldg.
Urbana, Illinois 61801
Aeronautical and Astronautical
Engineering Dept.

University of Maryland
College Park, Maryland 20740
Dr. John D. Anderson, Jr.
Dept. of Aerospace Engineering

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Library

Serials and Documents Section
General Library
University of Michigan
Ann Arbor, Michigan 48104

U. S. Naval Academy
Annapolis, Maryland 21402
Engineering Dept., Aerospace Div.

Library, Code 2124
U.S. Naval Postgraduate School
Monterey, California 93940
Technical Reports Section

North Carolina State College
Raleigh, North Carolina 27607
Dr. F. R. DeJarnette

Dept. of Aero-Astro Engineering
Ohio State University
2036 Neil Avenue
Columbus, Ohio 43210
Engineering Library

The Pennsylvania State University
University Park, Pennsylvania 18602
Library, Documents Section

Princeton University
Aerospace & Mech. Science Dept.
D-214 Engr Quadrangle
Princeton, New Jersey 08540
Library

DISTRIBUTION

Copies

Purdue University
School of Aeronautical and
Engineering Sciences
Lafayette, Indiana 47907
Dr. C. P. Kentzer

Department of Mechanical
Industrial and Aerospace Engr.
Rutgers - The State University
New Brunswick, New Jersey 08903
Dr. R. H. Page

Stanford University
Stanford, California 94305
Librarian, Dept. of Aeronautics
and Astronautics

The University of Texas at Austin
Applied Research Laboratories
P.O. Box 8029
Austin, Texas 78712

University of Virginia
School of Engineering and Applied Science
Charlottesville, Virginia 22091
Dr. I. D. Jacobson

Federal Reports Center
University of Wisconsin
Mechanical Engineering Building
Madison, Wisconsin 53706
S. Reilly

Institute for Defense Analyses
400 Army-Navy Drive
Arlington, Virginia 22202
Classified Library

Kaman Sciences Corporation
P.O. Box 7463
Colorado Springs, Colorado 80933
Library

Rockwell International Corporation
Technical Information Center
4300 E. Fifth Avenue
Columbus, Ohio 43216

AD-A044 544 NAVAL SURFACE WEAPONS CENTER WHITE OAK LAB SILVER SP--ETC F/G 16/3
A PROGRAM FOR COMPUTING STEADY INVISCID THREE-DIMENSIONAL SUPER--ETC(U).
MAY 77 J M SOLOMON, M CIMENT, R E FERGUSON

UNCLASSIFIED

NSWC/WOL/TR-77-32

NL

2 OF 2
ADA044544

END
DATE
FILMED
10-77
DDC

DISTRIBUTION

Copies

M.I.T. Lincoln Laboratory
P.O. Box 73
Lexington, Massachusetts 02173
Dr. A. B. Wardlaw

3

The RAND Corporation
1700 Main Street
Santa Monica, California 90406
Library - D

United Aircraft Corporation
400 Main Street
East Hartford, Connecticut 06108
Library

Hughes Aircraft Company
Centinela at Teale
Culver City, California 90230
Company Tech. Doc. Center

Lockheed Missiles and Space Co.
P.O. Box 504
Sunnyvale, California 94086
Charles Lee

Lockheed Missiles and Space Co.
3251 Hanover Street
Palo Alto, California 94304
Technical Information Center

Lockheed-California Co.
Burbank, California 91503
Central Library Dept.

Martin Company
3211 Trade Winds Trail
Orlando, Florida 32805
Mr. H. J. Diebolt

Calspan Corporation
4455 Genesee Street
Buffalo, New York 14221
Library

McDonnell Douglas Company
P.O. Box 516
St. Louis, Missouri 63166
Library

NSWC/WOL/TR 77-32

DISTRIBUTION

Copies

McDonnell Douglas Astronautics
Company - West
5301 Bolsa Avenue
Huntington Beach, California 92647
Library

General Electric Company
Missile and Space Division
P.O. Box 8555
Philadelphia, Pennsylvania 19101
MSD Library

General Electric Company
Reentry & Environmental Systems
Division
3198 Chestnut Street
Philadelphia, Pennsylvania 19101

AVCO-Everett Research Lab
2385 Revere Beach Parkway
Everett, Massachusetts 02149
Library

LTV Aerospace Corporation
Missiles and Space Division
P.O. Box 6267
Dallas, Texas 75222
MSD-T-Library

Aeronautical Research Associates
of Princeton
50 Washington Road
Princeton, New Jersey 08540
Dr. C. duP. Donaldson

General Research Corporation
5383 Hollister Avenue
P.O. Box 3587
Santa Barbara, California 93105
Technical Information Office

Sandia Laboratories
Box 5800
Albuquerque, New Mexico 87115
Dr. R. Eaton
Kurt Putz, Div. 1333

TRW Systems Group
1 Space Park
Redondo Beach, California 90278
Tech. Library/Doc. Acquisitions

DISTRIBUTION

Copies

University of Tennessee
Space Institute
Tullahoma, Tennessee 37388
Prof. J. M. Wu

AVCO Missiles Systems Division
201 Lowell Street
Wilmington, Massachusetts 01887
Library

Philco-Ford Corporation
Aeroneutronic Division
Newport Beach, California 92660
Library

University of California -
Los Angeles
Dept. of Mechanics & Structures
Los Angeles, California 90024
Prof. J. D. Cole

American Institute of Aeronautics
and Astronautics
New York, New York 10019
J. Newbauer

Technical Information Services
AIAA
750 Third Avenue
New York, New York 10017
Miss P. Marshall

The Aerospace Corporation
P.O. Box 92957
Los Angeles, California 90009
E. Ndefo
J. M. Lyons
Library

Notre Dame University
Notre Dame, Indiana 46556
Library

Acurex Corp. Aerotherm
485 Clyde Avenue
Mt. View, California 94042
Mr. Abbott

NSWC/WOL/TR 77-32

DISTRIBUTION

Copies

Prototype Development Assoc.
1740 Garry Avenue
Suite 201
Santa Ana, California 92705
Mr. J. Dunn

Courant Institute
New York University
251 Mercer Street
New York, New York 10012
Prof. Peter Lax

TRW
One Space Park
Redondo Beach, California 92078
Garth W. Lippmann, Bldg. R-5, Rm. 2230

Department of Mathematics
University of California at Berkeley
Berkeley, California 94720
Prof. A. Chorin

Science Applications Inc.
101 Continental Bldg.
El Segundo Blvd.
El Segundo, California 90245
L. Cassel