Question: An urn contains 25 balls of which 10 balls bear a mark X and the remaining 15 bear a mark Y. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that

- (a) all will bear X mark.
- (b) not more than 2 will bear Y mark.
- (c) at least one ball will bear Y mark.
- (d) the number of balls with X mark and Y mark will be equal.

Solution:

Parameter	Values	Description		
n	6	Number of draws		
p	0.4	Probability that ball bears <i>X</i> mark		
q	0.6	Probability that ball bears Y mark		
$\mu = np$	2.4	mean of the distribution		
$\sigma = npq$	1.2	variance of the distribution		
X		Number of cards bear mark X		
Y		Number of cards bear mark Y		
TADLE 4				

TABLE 4

DEFINITION OF PARAMETERS

using Gaussian

$$Y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$
 (1)

The CDF of Y:

$$F_Y(y) = 1 - \Pr(Y > y) \tag{2}$$

$$= 1 - \Pr\left(\frac{Y - \mu}{\sigma} > \frac{y - \mu}{\sigma}\right) \tag{3}$$

But,

$$\frac{Y - \mu}{\sigma} \sim \mathcal{N}(2.4, 1.44) \tag{4}$$

(5)

the Q-function is defined as:

$$Q(x) = \Pr(Y > x) \ \forall x \in Y \sim \mathcal{N}(2.4, 1.44)$$
 (6)

therefore the cdf will be:

$$F_{Y}(y) = \begin{cases} 1 - Q\left(\frac{y - \mu}{\sigma}\right), & y > \mu \\ Q\left(\frac{\mu - y}{\sigma}\right), & y < \mu \end{cases}$$
 (7)

(a) all will bear X mark.

using Gaussian

considering 0.5 as the correction term,

$$Pr(X > 5.5) = 1 - F_X(5.5)$$
 (8)

$$=Q\left(\frac{5.5-\mu}{\sigma}\right) \tag{9}$$

$$=Q\left(\frac{3.1}{1.2}\right) \tag{10}$$

$$= Q(2.583) \tag{11}$$

$$= 0.00489$$
 (12)

(b) not more than 2 will bear Y mark.

using Gaussian

considering 0.5 as the correction term,

$$\Pr(Y < 2.5) = 1 - Q\left(\frac{2.5 - \mu}{\sigma}\right)$$
 (13)

$$=1-Q\left(\frac{-1.1}{1.2}\right) \tag{14}$$

$$= 1 - Q(-0.9166) \tag{15}$$

$$= Q(0.9166) = 0.1796$$
 (16)

(c) at least one ball will bear Y mark.

using Gaussian

considering 0.5 as the correction term,

$$\Pr(Y < 0.5) = 1 - Q\left(\frac{0.5 - \mu}{\sigma}\right)$$
 (17)

$$=1-Q\left(\frac{-1.1}{1.2}\right)$$
 (18)

$$= 1 - Q(-2.588) \tag{19}$$

$$= 1 - 0.0048 \tag{20}$$

$$= 0.9952$$
 (21)

(d) the number of balls with X mark and Y mark will be equal.

using Gaussian

considering 0.5 as the correction term, the gaussian distribution function is defined as:

$$p_Y(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (22)

the probability of the person winning the prize exactly once is given by:

$$p_X(3) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(3-\mu)^2}{2\sigma^2}}$$
(23)

$$= \frac{0.882}{\sqrt{2\pi\sigma^2}}$$
(24)

$$= 0.2933$$
(25)

$$p_Y(3) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(3-\mu)^2}{2\sigma^2}}$$
(26)

$$= 0.2933$$
(27)

$$Pr(X = 3 + Y = 3) = p_X(3) p_Y(3)$$
(28)

$$= 0.086$$
(29)

Gaussian vs Binomial Table

Question	Gaussian	Binomial
all will bear X mark	0.00489	0.00409
not more than 2 will bear Y mark	0.1796	0.1792
at least one ball will bear Y mark	0.9952	0.9959
the number of balls with X mark and Y mark will be equal	2.4	0.2764

TABLE 4
Definition of parameters

Gaussian vs Binomial graph

Fig. 4. pmf of binomial and pdf of Gaussian of X and Y marked balls