Analysis I Lösung 4

ETH Zürich FS 2024

- **4.1. MC Fragen: Reihen und Potenzreihen.** Wählen Sie die einzige richtige Antwort.
- (a) Sei $\sum_{n\geq 0} c_n z^n$ eine Potenzreihe mit Konvergenzradius $\rho\in(0,\infty)$. Sei ausserdem ρ' der Konvergenzradius der Potenzreihe $\sum_{n\geq 1} nc_n z^{n-1}$. Welche Aussage trifft zu?
 - $\bigcap \rho > \rho'$
 - $\bigcap \rho < \rho'$
 - \bullet $\rho = \rho'$
 - O Es liegen nicht genügend Informationen vor, um dies zu entscheiden.

Lösung: Für die Bestimmung des Konvergenzradius ρ' macht es keinen Unterschied, ob wir $\sum_{n\geq 1} nc_n z^{n-1}$ oder $\sum_{n\geq 1} nc_n z^n$ betrachten. Es gilt nun:

$$\limsup_{n\to\infty} \sqrt[n]{n|c_n|} = \limsup_{n\to\infty} \sqrt[n]{n} \cdot \sqrt[n]{|c_n|} = \underbrace{\lim_{n\to\infty} \sqrt[n]{n}}_{=1} \cdot \limsup_{n\to\infty} \sqrt[n]{|c_n|} = \limsup_{n\to\infty} \sqrt[n]{|c_n|}$$

Also stimmen ρ und ρ' überein. Wir haben in obiger Rechnung folgenden Fakt verwendet:

Fakt: Sei $(a_n)_{n\geq 1}$ eine konvergente Folge reeller Zahlen mit $\lim_{n\to\infty} a_n > 0$ und $(b_n)_{n\geq 1}$ eine nach oben beschränkte Folge reeller Zahlen. Dann gilt

$$\limsup_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \cdot \limsup_{n \to \infty} b_n.$$

- (b) Wir nehmen an, dass $\sum_{k\geq 1} a_k$ absolut konvergiert und dass $\sum_{k\geq 1} b_k$ konvergiert. Geben Sie die korrekte Antwort auf folgende zwei Fragen an.
- (A) Die Reihe $\sum_{k\geq 1} a_k^2$
 - \bigcirc konvergiert nicht notwendigerweise.
 - O konvergiert immer, aber konvergiert nicht notwendigerweise absolut.
 - $\bullet\,$ konvergiert immer absolut.
 - O keine der obigen Aussagen trifft zu.
- (B) Die Reihe $\sum_{k\geq 1} a_k b_k$
 - O konvergiert nicht notwendigerweise.
 - O konvergiert immer, aber konvergiert nicht notwendigerweise absolut.
 - konvergiert immer absolut.

16. März 2024

O keine der obigen Aussagen trifft zu.

Lösung: Da die Reihen $\sum_{k\geq 1} a_k$ und $\sum_{k\geq 1} b_k$ konvergieren, sind $(a_k)_{k\geq 1}$ und $(b_k)_{k\geq 1}$ Nullfolgen. Insbesondere sind sie beschränkt. Daher existiert C>0, so dass $|a_k|+|b_k|\leq C$ für alle $k\geq 1$. Dann gilt für alle $k\geq 1$, dass

$$|a_k|^2 \le C|a_k|, \quad |a_k b_k| \le C|a_k|.$$

Da die Reihe $\sum_{k\geq 1} a_k$ absolut konvergiert, folgt aus dem Vergleichssatz somit, dass sowohl $\sum_{k\geq 1} a_k^2$ als auch $\sum_{k\geq 1} a_k b_k$ absolut konvergieren.

- (c) Sei $\phi \colon \mathbb{N}^* \to \mathbb{N}^*$ eine Abbildung, $\sum_{n \geq 1} a_n$ eine Reihe und $b_n = a_{\phi(n)}$ für $n \geq 1$. Welche der folgenden Aussagen stimmt?
 - $\bigcirc \sum_{n>1} a_n$ ist konvergent und ϕ surjektiv $\Longrightarrow \sum_{n>1} b_n$ ist konvergent.

Falsch: " ϕ surjektiv" bedeutet intuitiv, dass unter den b_n alle a_n vorkommen müssen, aber dass wir a_n 's öfters benutzen dürfen. Somit können wir das folgende Gegenbeispiel angeben:

$$\sum_{n=1}^{\infty} a_n = 1 + (-1) + \frac{1}{2} + \left(-\frac{1}{2}\right) + \frac{1}{3} + \left(-\frac{1}{3}\right) + \frac{1}{4} + \left(-\frac{1}{4}\right) + \dots$$

konvergiert (mit Reihenwert 0), aber

$$\sum_{n=1}^{\infty} b_n = 1 + 1 + (-1) + \frac{1}{2} + \frac{1}{2} + \left(-\frac{1}{2}\right) + \frac{1}{3} + \frac{1}{3} + \left(-\frac{1}{3}\right) + \frac{1}{4} + \frac{1}{4} + \left(-\frac{1}{4}\right) + \dots = \infty,$$

da die harmonische Reihe divergiert.

 $\bigcirc \sum_{n\geq 1} a_n$ ist konvergent und ϕ injektiv $\Longrightarrow \sum_{n\geq 1} b_n$ ist konvergent.

Falsch: " ϕ injektiv" bedeutet intuitiv, dass unter den b_n nicht alle a_n vorkommen müssen, aber dass wir keine a_n 's mehr als einmal benutzen dürfen. Somit können wir das folgende Gegenbeispiel angeben:

$$\sum_{n=1}^{\infty} a_n = 1 + (-1) + \frac{1}{2} + \left(-\frac{1}{2}\right) + \frac{1}{3} + \left(-\frac{1}{3}\right) + \frac{1}{4} + \left(-\frac{1}{4}\right) + \dots$$

konvergiert (mit Reihenwert 0), aber

$$\sum_{n=1}^{\infty} b_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots = \infty,$$

da die harmonische Reihe divergiert.

 $\bigcirc \sum_{n\geq 1} a_n$ ist absolut konvergent und ϕ surjektiv $\Longrightarrow \sum_{n\geq 1} b_n$ ist konvergent.

Falsch: Mit derselben Überlegung zur Bedeutung der Surjektivität wie oben können wir das folgende Gegenbeispiel angeben:

$$\sum_{n=1}^{\infty} a_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

ist absolut konvergent (mit Reihenwert 2), aber

$$\sum_{n=1}^{\infty} b_n = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \cdots = \infty.$$

• $\sum_{n\geq 1} a_n$ ist absolut konvergent und ϕ injektiv $\Longrightarrow \sum_{n\geq 1} b_n$ ist konvergent.

Richtig: Die Folge der b_n ist hier eine Umordnung einer Teilfolge $(a_{l(n)})_{n\geq 1}$. Die absolute Konvergenz von $\sum_{n\geq 1} a_n$ impliziert die Konvergenz der Reihe $\sum_{n\geq 1} a_{l(n)}$ über die Teilfolge. Nach dem Umordnungssatz für absolut konvergente Reihen konvergiert also auch $\sum_{n\geq 1} b_n$ absolut.

4.2. Konvergenz von Reihen. Untersuchen Sie das Konvergenzverhalten folgender Reihen (d.h. entscheiden Sie in jedem Fall ob die Reihe absolut konvergent, bedingt konvergent, oder divergent ist).

(a)
$$\sum_{k\geq 1} \frac{3}{2k+2}$$

Lösung: Wir stellen fest, dass $\frac{3}{2k+2} = \frac{3}{2} \cdot \frac{1}{k+1}$. Da die harmonische Reihe divergiert, divergiert auch die vorliegende Reihe.

(b)
$$\sum_{k>1} \frac{k^2+k+1}{k^5+k^3+1}$$

Lösung: Durch Teilen von Zähler und Nenner durch k^2 sehen wir, dass es ein $K \in \mathbb{N}$ gibt, so dass für $k \geq K$ gilt, dass $\frac{k^2+k+1}{k^5+k^3+1} \leq \frac{2}{k^3} \leq \frac{1}{k^2}$ ist. Also konvergiert die vorliegende Reihe absolut (Vergleichssatz und Beispiel 2.7.8).

(c)
$$\sum_{k>1} \frac{5k+2^k}{3^k}$$

Lösung: Wir wenden das Quotientenkriterium an:

$$\frac{\frac{5(k+1)+2^{k+1}}{3^{k+1}}}{\frac{5k+2^k}{3^k}} = \frac{1}{3} \cdot \frac{\frac{5(k+1)}{2^k} + 2}{\frac{5k}{2^k} + 1} \xrightarrow{k \to \infty} \frac{1}{3} \cdot \frac{2}{1} = \frac{2}{3},$$

da gemäss Beispiel 2.2.3 $\lim_{k\to\infty} \frac{5(k+1)}{2^k} = \lim_{k\to\infty} \frac{5k}{2^k} = 0$. Somit konvergiert die vorliegende Reihe nach dem Quotientenkriterium absolut.

(d)
$$\sum_{k>1} (-1)^{k+1} \left(\sqrt{k+1} - \sqrt{k} \right)$$

Lösung: Es gilt

$$\sqrt{k+1} - \sqrt{k} = \frac{\left(\sqrt{k+1} - \sqrt{k}\right)\left(\sqrt{k+1} + \sqrt{k}\right)}{\sqrt{k+1} + \sqrt{k}} = \frac{k+1-k}{\sqrt{k+1} + \sqrt{k}} = \frac{1}{\sqrt{k+1} + \sqrt{k}}.$$

In letzterer Darstellung sieht man direkt, dass die Folge definiert durch

$$a_k = \sqrt{k+1} - \sqrt{k} = \frac{1}{\sqrt{k+1} + \sqrt{k}}$$

nichtnegativ und monoton fallend ist und gegen 0 konvergiert. Somit konvergiert die vorliegende Reihe nach dem Leibniz-Kriterium. Um zu zeigen, dass sie nicht absolut konvergiert, stellen wir fest, dass $\sum_{k=1}^{n} \left(\sqrt{k+1} - \sqrt{k} \right) = \sqrt{n+1} - 1$, was nach oben unbeschränkt ist.

(e)
$$\sum_{k>1} \left(1 + \frac{1}{k}\right)^{k^2} \frac{1}{2^k}$$

Lösung: Wir wenden das Wurzelkriterium an:

$$\sqrt[k]{\left(1+\frac{1}{k}\right)^{k^2}\frac{1}{2^k}} = \left(1+\frac{1}{k}\right)^k\frac{1}{2} \stackrel{k\to\infty}{\longrightarrow} \frac{e}{2}$$

gemäss Beispiel 2.2.6. Da e>2 ist, folgt aus dem Wurzelkriterium, dass die vorliegende Reihe divergiert.

4.3. Konvergenzradius. Bestimmen Sie in den folgenden Teilaufgaben (a)–(d) den jeweiligen Konvergenzradius ρ_a , ρ_b , ρ_c , ρ_d der gegebenen Potenzreihe und beantworten Sie jeweils die zusätzlichen Fragen rechts.

(a) $\sum_{k\geq 0} z^k$ Zeigen Sie, dass die Potenzreihe in allen Punkten $z\in\mathbb{C}$ mit $|z|=\rho_a$ divergiert.

Lösung: Aus der Formel für den Konvergenzradius folgt direkt $\rho_a = 1$. Für |z| = 1 ist die Folge $(|z^k|)_{k \ge 0}$ keine Nullfolge, und daher kann die Potenzreihe für solche $z \in \mathbb{C}$ nicht konvergieren (vgl. MC Frage 3.1(e)).

(b)
$$\sum_{k\geq 1} \frac{1}{k} z^k$$
 Finden Sie $z_1, z_2 \in \mathbb{C}$ mit $|z_1| = |z_2| = \rho_b$, so dass die Potenzreihe in z_1 konvergiert und in z_2 divergiert.

Lösung: Aus Beispiel 2.2.5 folgt, dass $\limsup_{k\to\infty}\sqrt[k]{\frac{1}{k}}=1$. Somit ist der Konvergenzradius $\rho_b=1$. Für z=1 divergiert die Potenzreihe, da wir in diesem Punkt die harmonische Reihe erhalten. Für z=-1 erhalten wir eine alternierende harmonische Reihe, welche aufgrund des Leibniz-Kriteriums konvergiert.

(c)
$$\sum_{k\geq 1} \frac{1}{k^2} z^k$$
 Zeigen Sie, dass die Potenzreihe in allen Punkten $z\in\mathbb{C}$ mit $|z|=\rho_c$ absolut konvergiert.

Lösung: Aus Beispiel 2.2.5 folgt wieder, dass $\limsup_{k\to\infty} \sqrt[k]{\frac{1}{k^2}} = 1$. Somit ist der Konvergenzradius $\rho_c = 1$. Für |z| = 1 ist $\left|\frac{1}{k^2}z^k\right| = \frac{1}{k^2}$, sodass die Potenzreihe für solche z gemäss Beispiel 2.7.8 absolut konvergiert.

(d)
$$\sum_{k\geq 1} \frac{(k!)^2}{(2k)!} z^k$$
 Hinweis: Verwenden Sie nicht die Definition des Konvergenzradius, sondern wenden Sie direkt das Quotientenkriterium an.

Lösung: Wie der Hinweis vorschlägt, betrachten wir

$$|a_{k+1}| \cdot \frac{1}{|a_k|} = \frac{((k+1)!)^2}{(2(k+1))!} |z|^{k+1} \cdot \frac{(2k)!}{(k!)^2 \cdot |z|^k} = |z| \frac{(k+1)^2}{(2k+1)(2k+2)} = |z| \frac{k+1}{2(2k+1)},$$

was für $k \to \infty$ gegen $\frac{|z|}{4}$ konvergiert. Aus dem Quotientenkriterium folgt, dass die Potenzreihe für |z| < 4 absolut konvergiert und für |z| > 4 divergiert. Somit ist $\rho_d = 4$.

4.4. Wurzelkriterium vs. Quotientenkriterium. Sei $(a_n)_{n\geq 1}$ eine Folge reeller oder komplexer Zahlen mit $a_n\neq 0$ für alle $n\geq 1$. Zeigen Sie, dass Folgendes gilt:

$$\liminf_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}\leq \liminf_{n\to\infty}\sqrt[n]{|a_n|}\leq \limsup_{n\to\infty}\sqrt[n]{|a_n|}\leq \limsup_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}.$$

Folgern Sie, dass falls der Grenzwert $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|}$ existiert, folgende Gleichheit gilt:

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|a_n|}.$$

Wie interpretieren Sie die Aussagen in dieser Aufgabe im Zusammenhang mit dem Quotienten- und Wurzelkriterium?

 $\mathit{Hinweis:}$ Um eine der Ungleichungen zu beweisen, können Sie mit einer reellen Zahl $q > \limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$ beginnen, und dann ähnlich wie im Beweis des Quotientenkriteriums zeigen, dass $\limsup_{n \to \infty} \sqrt[n]{|a_n|} \le q$.

16. März 2024 5/9

Lösung: Die zweite Ungleichung folgt aus der Definition von lim sup und lim inf. Wir zeigen die dritte Ungleichung; der Beweis der ersten Ungleichung ist ähnlich.

D-INFK

Sei

$$\alpha = \limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}.$$

Falls $\alpha = \infty$ ist, gibt es nichts zu beweisen. Falls α endlich ist, betrachte eine reelle Zahl $q > \alpha$. Es gibt dann ein $N \in \mathbb{N}$, so dass

$$\frac{|a_{n+1}|}{|a_n|} \le q$$

für $n \geq N$.

Nach Multiplikation k solcher aufeinanderfolgender Terme erhalten wir:

$$\frac{|a_{N+k}|}{|a_N|} = \frac{|a_{N+k}|}{|a_{N+k-1}|} \cdot \frac{|a_{N+k-1}|}{|a_{N+k-2}|} \cdot \dots \cdot \frac{|a_{N+2}|}{|a_{N+1}|} \cdot \frac{|a_{N+1}|}{|a_N|} \le q^k.$$

Das heisst, es gilt $|a_n| \leq |a_N| q^{-N} \cdot q^n$ für $n \geq N$. Deshalb gilt für $n \geq N$

$$\sqrt[n]{|a_n|} \le \sqrt[n]{|a_N|q^{-N}} \cdot q,$$

sodass, nach Übung 2.2 in Serie 2,

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} \le q. \tag{1}$$

Die Ungleichung (1) gilt für jedes $q > \alpha$, und deshalb gilt auch

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} \le \alpha = \limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}.$$

Falls $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|}$ existiert, gilt gemäss Lemma 2.4.1 in allen Ungleichungen in der Aufgabenstellung Gleichheit. Somit existiert in diesem Fall auch $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ und hat denselben Wert.

Im Zusammenhang mit dem Wurzel- bzw. Quotientenkriterium bedeuten die Aussagen in dieser Aufgabe Folgendes: Das Wurzelkriterium kann die Konvergenz einer Reihe beweisen, auch wenn das Quotientenkriterium diesen Schluss nicht erlaubt. In der Tat ist dies der Fall, wenn

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1 < \limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

6/916. März 2024 gilt. In der Vorlesung haben wir ein Beispiel gesehen, in dem dieser Fall tatsächlich eintritt. Der umgekehrte Fall kann nicht eintreten: Wenn das Wurzelkriterium keinen Schluss erlaubt, also wenn $\limsup_{n\to\infty}\sqrt[n]{|a_n|}=1$, dann erlaubt auch das Quotientenkriterium keinen Schluss, weil dann aus den Ungleichungen in dieser Aufgabe

$$\liminf_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} \le 1 \le \limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

folgt. Wenn allerdings bei der Anwendung des Quotientenkriteriums der Grenzwert $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|}$ existiert (also der tatsächliche Grenzwert, und nicht nur der Limes superior/inferior), dann ist das Wurzelkriterium "gleich stark" wie das Quotientenkriterium.

4.5. b-adische Brüche. Lesen Sie über b-adische Brüche im Buch von Königsberger (im Abschnitt 6.2.I, LINK). Stellen Sie die folgenden Zahlen als Dualbruch und als Dezimalbruch dar:

$$\frac{1}{3}$$
, $\frac{1}{4}$, $\frac{1}{5}$.

Welche der Entwicklungen sind endlich?

Lösung: Als Dezimalbrüche finden wir die folgenden Darstellungen:

$$\frac{1}{3} = 0.333... = 0.\overline{3},$$

da
$$\sum_{k=1}^{\infty} \frac{3}{10^k} = \frac{3}{10} \cdot \underbrace{\sum_{k=0}^{\infty} \frac{1}{10^k}}_{=10/9} = \frac{1}{3}$$

$$\frac{1}{4} = 0.25000 \dots = 0.25,$$

$$\frac{1}{5} = 0.2000 \dots = 0.2,$$

$$da \frac{2}{10} + \frac{5}{10^2} = \frac{1}{4}$$
$$da \frac{2}{10} = \frac{1}{5}$$

Andererseits, als Dualbrüche:

$$\frac{1}{3} = 0.010101... = 0.\overline{01},$$

da
$$\sum_{k=1}^{\infty} \left(\frac{0}{2^{2k-1}} + \frac{1}{2^{2k}} \right) = \frac{1}{4} \cdot \underbrace{\sum_{k=0}^{\infty} \frac{1}{4^k}}_{=4/3} = \frac{1}{3}$$

$$\frac{1}{4} = 0.01000 \dots = 0.01,$$

$$da \frac{1}{2^2} = \frac{1}{4}$$

$$\frac{1}{5} = 0.00110011 \dots = 0.\overline{0011},$$

da
$$\sum_{k=1}^{\infty} \left(\frac{0}{2^{4k-3}} + \frac{0}{2^{4k-2}} + \frac{1}{2^{4k-1}} + \frac{1}{2^{4k}} \right)$$
$$= \frac{1}{8} \cdot \sum_{k=0}^{\infty} \frac{1}{16^k} + \frac{1}{16} \cdot \sum_{k=0}^{\infty} \frac{1}{16^k} = \frac{3}{15} = \frac{1}{5}$$

Wir stellen fest, dass für 1/4 sowohl der Dezimalbruch als auch der Dualbruch endlich ist. Für 1/3 ist sowohl der Dezimalbruch als auch der Dualbruch unendlich (periodisch). Für 1/5 ist der Dezimalbruch endlich, während der Dualbruch unendlich ist (periodisch).

Allgemein gilt, dass für eine natürliche Zahl $n \geq 1$ die Darstellung von 1/n als b-adischer Bruch endlich ist, wenn $k, m \in \mathbb{N}$ existieren, so dass

$$\frac{1}{n} = \frac{m}{b^k}$$

gilt. Dies gilt genau dann, wenn ein $k \in \mathbb{N}$ existiert, so dass $n \mid b^k$.

- **4.6. Vertauschen von Limes und unendlicher Summation.** Lesen Sie die Aussage von Satz 2.7.28 im Skript.
- (a) Definiere für $j, n \in \mathbb{N}$:

$$f_n(j) := \begin{cases} 1, & \text{falls } j = n, \\ 0, & \text{falls } j \neq n. \end{cases}$$

Zeigen Sie, dass $f(j) := \lim_{n \to \infty} f_n(j)$ für alle $j \in \mathbb{N}$ existiert, dass aber

$$\sum_{j=0}^{\infty} f(j) \neq \lim_{n \to \infty} \sum_{j=0}^{\infty} f_n(j)$$

gilt. Wieso ist Satz 2.7.28 hier nicht anwendbar?

Lösung: Für jedes $j \in \mathbb{N}$ und alle n > j haben wir $f_n(j) = 0$, also existiert der Grenzwert $f(j) = \lim_{n \to \infty} f_n(j) = 0$, was zu $\sum_{j=0}^{\infty} f(j) = 0$ führt. Andererseits haben wir für alle $n \in \mathbb{N}$, dass $\sum_{j=0}^{\infty} f_n(j) = 1$ ist, und daher $\lim_{n \to \infty} \sum_{j=0}^{\infty} f_n(j) = 1$.

Satz 2.7.28 kann in diesem Fall nicht angewendet werden, da Bedingung (2) nicht erfüllt werden kann: Wegen Teil 2.1 der Bedingung müsste $g(j) \ge 1$ für alle $j \in \mathbb{N}$ gelten, sodass $\sum_{j=0}^{\infty} g(j) = \infty$ folgt und Teil 2.2 der Bedingung nicht erfüllt sein kann.

(b) Beweisen Sie Satz 2.7.28.

Hinweis: Wählen Sie für $\varepsilon > 0$ zuerst $J \in \mathbb{N}$, so dass $\sum_{j=J}^{\infty} g(j) < \frac{\varepsilon}{4}$. Für hinreichend grosse n sind die Abstände zwischen $f_n(j)$ und f(j) für alle $0 \le j < J$ klein.

Lösung: Sei $\varepsilon > 0$. Wir folgen dem Hinweis und wählen $J \in \mathbb{N}^*$, so dass $\sum_{j=J}^{\infty} g(j) < \frac{\varepsilon}{4}$, was möglich ist, da die Reihe $\sum_{j>0} g(j)$ konvergiert. Da für alle $j \in \mathbb{N}$ gilt, dass

8/9

 $\lim_{n\to\infty} f_n(j) = f(j)$ gibt es $N(0), \ldots, N(J-1) \in \mathbb{N}$, so dass für alle $0 \le j < J$ folgendes gilt:

$$\forall n \ge N(j) \colon |f_n(j) - f(j)| < \frac{\varepsilon}{2J}.$$

Wir definieren $N := \max\{N(j) \mid 0 \le j < J\}$. Dann gilt für alle $n \ge N$, dass

$$\left| \sum_{j=0}^{\infty} f_n(j) - \sum_{j=0}^{\infty} f(j) \right| \leq \sum_{j=0}^{J-1} \underbrace{|f_n(j) - f(j)|}_{<\varepsilon/(2J)} + \sum_{j=J}^{\infty} \underbrace{(|f_n(j)| + |f(j)|)}_{\leq g(j)}$$

$$< J \cdot \frac{\varepsilon}{2J} + 2 \cdot \underbrace{\sum_{j=J}^{\infty} g(j)}_{<\varepsilon/4}$$

Dies zeigt gemäss Definition der Konvergenz, dass

$$\lim_{n \to \infty} \sum_{j=0}^{\infty} f_n(j) = \sum_{j=0}^{\infty} f(j)$$

und der Satz ist bewiesen.