

Art of Problem Solving 2002 Iran MO (2nd round)

National Math Olympiad (Second Round) 2002

1	Let $n \in \mathbb{N}$ and A_n set of all permutations (a_1, \ldots, a_n) of the set $\{1, 2, \ldots, n\}$ for which $k 2(a_1 + \cdots + a_k)$, for all $1 \le k \le n$.
	Find the number of elements of the set A_n . Proposed by Vidan Govedarica, Serbia
2	A rectangle is partitioned into finitely many small rectangles. We call a point a cross point if it belongs to four different small rectangles. We call a segment on the obtained diagram maximal if there is no other segment containing it. Show that the number of maximal segments plus the number of cross points is 3 more than the number of small rectangles.
3	In a convex quadrilateral $ABCD$ with $\angle ABC = \angle ADC = 135^{\circ}$, points M and N are taken on the rays AB and AD respectively such that $\angle MCD = \angle NCB = 90^{\circ}$. The circumcircles of triangles AMN and ABD intersect at A and ABD intersect at AB
4	Let A and B be two fixed points in the plane. Consider all possible convex quadrilaterals $ABCD$ with $AB = BC$, $AD = DC$, and $\angle ADC = 90^{\circ}$. Prove that there is a fixed point P such that, for every such quadrilateral $ABCD$ on the same side of AB , the line DC passes through P .
5	Let δ be a symbol such that $\delta \neq 0$ and $\delta^2 = 0$. Define $\mathbb{R}[\delta] = \{a + b\delta a, b \in \mathbb{R}\}$, where $a + b\delta = c + d\delta$ if and only if $a = c$ and $b = d$, and define
	$(a+b\delta) + (c+d\delta) = (a+c) + (b+d)\delta,$
	$(a+b\delta)\cdot(c+d\delta) = ac + (ad+bc)\delta.$
	Let $P(x)$ be a polynomial with real coefficients. Show that $P(x)$ has a multiple real root if and only if $P(x)$ has a non-real root in $\mathbb{R}[\delta]$.
6	Let G be a simple graph with 100 edges on 20 vertices. Suppose that we can

choose a pair of disjoint edges in 4050 ways. Prove that G is regular.