8051 AND ADVANCED PROCESSOR ARCHITECTURES – Lesson-10: Processor organization

1. The Structural Units in a Processor:

Organisation of various structural units of processor

Buses

- 1) Internal and external buses interconnect the processor internal units with the external system memories, I/O devices and all other system elements
- 2) Address, data and control buses

MDR, MAR, BIU, PC and SP

- 3) MDR (memory data register) holds tMDR, MAR, BIU, PC and SP A andhe accessed byte or word
- 4) MAR (memory address register) holds the address
- 5) BIU (Bus Interface Unit)
- 6) Program Counter or Instruction Pointer and
- 7) Stack Pointer

Registers

- 8) ARS (Application Register Set): Set of on-chip registers for use in the application program. Register set also called file and associates an ALU or FLPU.
- 9) Register window- a subset of registers with each subset storing static variables and status words of a task or program thread. Changing windows help in fast context-switching in a program.

ALU, FLPU

10) ALU and FLPU (Arithmetic and Logic operations Unit and Floating Points operations Unit). FLPU associates a FLP register set for operations.

Caches

- 12) Instruction, Data and Branch Target Caches and associated PFCU (Prefetch control unit) for pre-fetching the instructions, data and next branch target instructions, respectively.
- Multi-way Cache Example- 16 kB, 32-way Instruction cache with 32 byte block for data and 16 kB in ARM
- <u>Cache block</u> Enables simultaneous caching of several memory locations of a set of instructions

AOU

13) AOU (Atomic Operations Unit) An instruction is broken into number of processor-instructions called atomic operations (AOs), AOU finishes the AOs before an interrupt of the process occurs - Prevents problems arising out of incomplete processoroperations on the shared data in the programs

Features in most processors

- Fixed Instruction Cycle Time RISC processor core
- 32-bit Internal Bus Width— to facilitate the availability of arithmetic operations on 32-bit operands in a single cycle. The 32-bit bus—a necessity for signal processing and control system instructions.

Features in most processor

- Program-Counter (PC) bits and its reset value
- Stack-Pointer bits with and its initial reset value

Features in advanced architectures

- Instruction, Branch Target and Data Cache
- Memory-Management unit (MMU)
- Floating Point Processing unit
- System Register Set

Features in advanced architectures

- Floating Point Register Set
- Pre-fetch Control Unit for data_into the Iand D-caches
- Instruction level parallelism units (i) multistage pipeline (ii) Multi-line superscalar processing

RISC architecture

- Executing most instructions_on in a single clock cycle execution per instruction (by hardwired implementation of instructions)
- Using multiple register-sets or registerwindows or files and
- Greatly reducing ALU dependency on the external memory accesses for data due to the reduced number of addressing modes provided for the ALU instructions.

RISC Load and store architecture

• Before ALU operations, the operands are loaded into the registers and similarly the write back result is in the register and then stored at the external memory addresses

5- stage pipeline

Successive Clock Intervals

Chapter-2 L10: "Embedded Systems - " , Raj Kamal, Publs.: McGraw-Hill Education

Cycles

- On cycle 1, the first instruction *IO* enters the instruction fetch (IF) stage of the pipeline and stops at pipeline latch (buffer) between instruction fetch and instruction decode (ID) stage of the pipeline.
- On cycle 2, the second instruction *II* enters the instruction fetch stage, while instruction *I* proceeds to instruction decode stage.
- On cycle 3 the instruction *I2* enters the register (inputs) read (RR) stage, instruction *I1* is in the instruction decode stage, and instruction *I2* enters instruction fetch stage.

Cycles

- Instructions proceed through the pipeline at one stage per cycle until they reach the register (result) write-back (WB) stage, at which point execution of the instruction *IO* is complete.
- On cycle 6 in the example, instructions *I1* through *I5* are in the pipeline, while instruction *I0* has completed and is no longer in the pipeline.
- The pipelined processor is still executing instructions at a rate (throughput) of one instruction per cycle, but the latency of each instruction is now 5 cycles instead of 1. But each cycle period is now 1/5 or less compared to the case without pipelining. Thus processing performance can improve or more times in five stage pipeline.

Super scaling

Stages	Pipeline1	Pipeline 2
Fetch	I5	I'5
Decode	I4	I'4
Read Operands	I3	I'3
Execute	I2	I'2
Write	I1	I'1

Summary

We learnt

- Structural units in a processor to enable selection of appropriate processor for an embedded System
- Caches, Register set(s), buses
- RISC architecture features
- MMU, Floating Point Processing

End of Lesson 10 of Chapter 2