

Presentación del equipo

¿Cómo nos sentimos al terminar el proyecto?

Introducción

33%
De la dieta humana.

Ganadería de precisión

Problemas ¿?

Proceso de validación

Diseño del algoritmo de compresión con pérdida

127	94	76	57		
0	128	56	87	127	
27	115	110	95	27	
123	112	82	53		

Algoritmo de compresión de imágenes con pérdida para la clasificación automática de la salud animal, por medio del escalamiento a través del algoritmo del vecino más cercano.

Diseño del algoritmo de compresión con pérdida

		127	127	76	76
127	76	127	127	76	76
27	110	27	27	110	110
		27	27	110	110

Algoritmo de descompresión de imágenes con pérdida para la clasificación automática de la salud animal, por medio del escalamiento a través del algoritmo del vecino más cercano.

Complejidad del algoritmo de compresión con pérdidas

	Complejidad del tiempo	Complejidad de la memoria
Algoritmo de compresión	O(N*M)	O(N*M)
Algoritmo de decompresión	O(N*M)	O(N*M)

La complejidad del tiempo y la memoria del algoritmo de escalamiento de imágenes mediante el vecino más cercano. En donde N es la cantidad de filas y M es la cantidad de columnas de la matriz compresa o descompresa.

Diseño del algoritmo de compresión sin pérdidas

Algoritmo de compresión de imágenes sin pérdida para la clasificación automática de la salud animal, por medio del LZ77.

Diseño del algoritmo de compresión sin pérdidas

Complejidad del algoritmo de compresión sin pérdidas

	Complejidad del tiempo	Complejidad de la memoria
Algoritmo de compresión	O(N ² *M ²)	O(N*M)
Algoritmo de decompresión	O(N*M)	O(N*M)

La complejidad del tiempo y la memoria del algoritmo de escalamiento de imágenes mediante LZ77. En donde N es la cantidad de filas y M es la cantidad de columnas de la matriz original asociada a la imagen.

Algoritmo final y complejidad

Para el algoritmo final, ejecutamos una combinación del vecino más cercano y LZ77; para reducir las imágenes antes de que pasen por el LZ77 y así disminuir su tiempo de ejecución.

	Complejidad del tiempo	Complejidad de la memoria
Algoritmo de compresión	O(N ² *M ²)	O(N*M)
Algoritmo de decompresión	O(N*M)	O(N*M)

La complejidad del tiempo y la memoria del algoritmo de escalamiento de imágenes mediante LZ77. En donde N es la cantidad de filas y M es la cantidad de columnas de la matriz luego de aplicarle el vecino más cercano.

Tiempo promedio de compresión y comparación con otros tamaños

Ventana=30 y buffer=15

	Tiempo promedio de ejecución (s)	Tamaño promedio del archivo (KB)
Algoritmo de compresión	30.9 s	284.7 KB
Algoritmo de decompresión	0.46 s	284.7 KB

Tiempos promedios de ejecución con 10 archivos del dataset.

	Tiempo promedio de ejecución (s) con ventana=50 y buffer=25	Tiempo promedio de ejecución (s) con ventana=20 y buffer=10
Algoritmo de compresión	89.9 s	25.9 s
Algoritmo de decompresión	0.47 s	0.44 s

Tiempos promedios de ejecución con los mismos 10 archivos del dataset de la tabla anterior y con tamaños de Ventana y buffer distintos.

Consumo promedio de memoria

Ventana=30 y buffer=15

	Consumo promedio de memoria (MB)	Tamaño promedio del archive (KB)
Algoritmo de compresión	2.1 MB	284.7 KB
Algoritmo de decompresión	1.4 MB	284.7 KB

Consumo promedio de memoria con 10 archivos del dataset

Consumo de tiempo

Consumo de tiempo

Compresión

Descompresión

Consumo de memoria

Consumo de memoria

Compresión

Descompresión

Tasa de compresión promedio

	Tasa de compresión
Ganado sano	8:1
Ganado enfermo	9:1

Tasa de compresión promedio para el ganado sano y el ganado enfermo.

Comparación de alternativas y criterios de diseño del algoritmo

Algoritmo con pérdidas

- Vecino más cercano: por un lado su complejidad en tiempo y memoria es mínima y similar a los demás algoritmos con pérdida.
- Teniendo en cuenta los propósitos finales de la compresión, es decir el paso de las imágenes a través del modelo; nos pareció más adecuado respecto a la interpolación bilinear, ya que el modelo puede identificar más fácil una imagen tipo pixel art a una imagen que en ocasiones se puede tornar muy borrosa. Y por otro lado, el retallado remueve elementos.
- La compresión fractal puede resultar más costosa.

Algoritmo sin pérdidas

- LZ77 ya que por un lado, el LZ78 suele gastar menos memoria pero más tiempo de ejecución; teniendo en cuenta que la prioridad era tiempo, lo descartamos.
- El algoritmo de Huffman tiene una menor complejidad para la compresión, pero su descompresión tarda más tiempo y por otro lado, consume mucha más memoria respecto al LZ77.

Informe aceptado en OSF

J. Castro, J.Mesa, C. Vélez, S.Marín y M. Toro.Compression Algorithms to optimize battery consumption in precision livestock. OSF e-prints, mayo de 2021. Disponible en: https://osf.io/5qbp7/

Trabajo en equipo

Historial de llamadas.

Llamada finalizada 1 h 41 min	29/4 8:48 p. m.
Llamada finalizada 2 h 34 min	12/5 8:41 p. m.
Llamada finalizada 19 min 20 s	17/5 7:51 p. m.
Llamada finalizada 1 h 40 min	17/5 9:32 p. m.
Llamada finalizada 1 h 13 min	20/5 6:23 p. m.
Llamada finalizada 27 min 16 s	21/5 7:01 p. m.
Llamada finalizada 1 h 44 min	21/5 9:15 p. m.
Llamada finalizada 2 h 50 min	22/5 9:24 p. m.
Llamada finalizada 1 h Ay	yer 9:15 p. m.
	Llamada finalizada 1 h 41 min Llamada finalizada 2 h 34 min Llamada finalizada 19 min 20 s Llamada finalizada 1 h 40 min Llamada finalizada 1 h 13 min Llamada finalizada 27 min 16 s Llamada finalizada 1 h 44 min Llamada finalizada 2 h 50 min Llamada finalizada 1 h Ay

Actas de reunión.

DÍA	¿QUÉ REALIZAMOS?
29/04/2021	Organización y revisión del algoritmo del vecino más cercano.
12/05/2021	Revisión bibliográfica acerca de los algoritmos de compresión sin pérdida; elección del algoritmo a trabajar.
17/05/2021	Consulta profunda del algoritmo LZ77.
20/05/2021	Implementación del algoritmo LZ77, notamos que estaba algo lento.
21/05/2021	Implementación del algoritmo que combina LZ77 y vecino más cercano.
22/05/2021	Redacción del informe.
23/05/2021	Elaboración diapositivas.
24/05/2021	Detalles finales, preparación de sustentación.

Cambios en el repositorio.

¡GRACIAS!

Apoyado por

Los dos primeros autores son apoyados por las becas Sapiencia y Generación E financiadas por el municipio de Medellín y el Gobierno Nacional respectivamente. Todos los autores quieren agradecer a la Vicerrectoría de Descubrimiento y Creación, de la Universidad EAFIT, por su apoyo en esta investigación.