SHA2 해시함수

https://youtu.be/J7ZojhDyIZA

IT융합공학부 송경주

HANSUNG UNIVERSITY CryptoCraft LAB

- NSA(National Security Agency)에서 2001년 공개한 해시함수
- SHA-1을 대체하기 위해 새로 고안됨
- 블록 암호의 Davies-Meyer 구조를 사용하여 설계됨
- SHA2 해시함수군:

: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/ 224, SHA-512/256

구분	출력 크기	내부 상태	블록 크기	최대 길이	워드	라운드 수
SHA-224	224-bit	256-bit	512-bit	$2^{64} - 1$ bit	32-bit	64
SHA-256	256-bit	256-bit	512-bit	$2^{64} - 1$ bit	32-bit	64
SHA-384	384-bit	512-bit	1024-bit	$2^{128} - 1$ bit	64-bit	80
SHA-512	512-bit	512-bit	1024-bit	$2^{128} - 1$ bit	64-bit	80

Published in	Year	Attack method	Attack	Variant	Rounds	Complexity
New Collision Attacks Against Up To 24-step SHA-2 ^[32]	2008	Deterministic	Collision	SHA- 256	24/64	2 ^{28.5}
				SHA-512	24/80	2 ^{32.5}
		Meet-in-the- middle	Preimage	SHA-	42/64	2 ^{251.7}
Preimages for step-reduced SHA-2 ^[33]	2009			256	43/64	2 ^{254.9}
Preimages for step-reduced SHA-2	2009			SHA-512	42/80	2 ^{502.3}
					46/80	2 ^{511.5}
Advanced meet-in-the-middle preimage attacks ^[34]	2010	Meet-in-the- middle	Preimage	SHA- 256	42/64	2 ^{248.4}
				SHA-512	42/80	2 ^{494.6}
Winhor Order Differential Association Reduced CUA 250(2)	2011	Differential	Pseudo-collision	SHA- 256	46/64	2 ¹⁷⁸
Higher-Order Differential Attack on Reduced SHA-256 ^[2]	2011				33/64	2 ⁴⁶
취약	점병	발견 Biclique	Preimage	SHA- 256	45/64	2 ^{255.5}
Dializate for Designation Attacks on Chair 512 and the CUA 2 family [1]	2011			SHA-512	50/80	2 ^{511.5}
Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 family [1]	2011		Pseudo- preimage	SHA- 256	52/64	2 ²⁵⁵
				SHA-512	57/80	2 ⁵¹¹
1	2012	Differential	Collision	SHA- 256	31/64	2 ^{65.5}
Improving Local Collisions: New Attacks on Reduced SHA-256 ^[35]	2013		Pseudo-collision	SHA- 256	38/64	2 ³⁷
Branching Heuristics in Differential Collision Search with Applications to SHA-512 ^[36]	2014	Heuristic differential	Pseudo-collision	SHA-512	38/80	2 ^{40.5}
4 min of CUA 512/224 and CUA 512/25 d ^{27]}	2016	Differential	Collision	SHA- 256	28/64	practical
Analysis of SHA-512/224 and SHA-512/256 ^[37]	2016			SHA-512	27/80	practical
			Pseudo-collision	SHA-512	39/80	practical

SHA2

- 임의의 길이 메시지에 대해 224-bit, 256-bit, 384-bit, 512-bit 의 고정 길이 해시를 출력함
- 입력된 메시지는 512의 배수로 패딩되어 512비트의 chunk 들로 나뉨 (16개의 32bit 워드)
- A, B, C, D, E, F, G, H : 32비트의 워드 → 총 256 비트 상 태에서 동작
- A, B, C, D, E, F, G, H 레지스터는 Choice, Sigma, Majority, ADD를 통해 연산이 진행됨

<메시지 패딩> 메시지를 512bit의 배수 단위로 패딩

Input: 'abc' \rightarrow a = 0110 0001, b = 0110 0010, c = 0110 0011

입력의 bit 길이 : 8bit×3 =24bit → 0001 1000

01100001 01100010 01100011 00000000 00011000

<초기값 설정>

• A, B, C, D, E, F, G, H: 각 32비트 워드

가장 작은 8개의 소수 : 2, 3, 5, 7, 11, 13, 17, 19 의 제곱 근의 소수점 이하 32bit 사용

Initialize hash values: (first 32 bits of the fractional h0 := 0x6a09e667 h1 := 0xbb67ae85 h2 := 0x3c6ef372 h3 := 0xa54ff53a h4 := 0x510e527f h5 := 0x9b05688c h6 := 0x1f83d9ab h7 := 0x5be0cd19

<초기값 설정>

가장 작은 64개의 소수:

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311]

의 세제곱근 소수점 이하 32bit 사용

<내부 연산>

```
#define RR(x, n)
                       ROTR_ULONG(x, n)
#define SS(x, n)
                   (x \gg n)
                     ((x \& y) \land ((\sim x) \& z))
#define Ch(x, y, z)
                     ((x & y) ^ (x & z) ^ (y & z))
#define Maj(x, y, z)
                  (RR(x, 2) ^ RR(x, 13) ^ RR(x, 22))
#define Sigma0(x)
#define Sigma1(x)
                       (RR(x, 6) ^ RR(x, 11) ^ RR(x, 25))
#define RHO0(x)
                          (RR(x, 7) ^ RR(x, 18) ^ SS(x, 3))
#define RHO1(x)
                          (RR(x, 17) ^ RR(x, 19) ^ SS(x, 10))
```

SHA-256

```
Ch (E, F, G) = (E & F) \oplus (~E & G)

Ma (A, B, C) = (A & B) \oplus (A & C) \oplus (B & C)

(A) = (A >>> 2) \oplus (A >>> 13) \oplus (A >>> 22)

(E) = (E >>> 6) \oplus (E >>> 11) \oplus (E >>> 25)
```

SHA-512

```
Ch (E, F, G) = (E & F) \oplus (~E & G)

Ma (A, B, C) = (A & B) \oplus (A & C) \oplus (B & C)

(A) = (A >>> 14) \oplus (A >>> 18) \oplus (A >>> 41)

(E) = (E >>> 28) \oplus (E >>> 34) \oplus (E >>> 39)
```


<내부 연산>

```
for (j = 0; j < 64; j += 8)
{
    FF(a, b, c, d, e, f, g, h, j + 0);
    FF(h, a, b, c, d, e, f, g, j + 1);
    FF(g, h, a, b, c, d, e, f, j + 2);
    FF(f, g, h, a, b, c, d, e, j + 3);
    FF(e, f, g, h, a, b, c, d, j + 4);
    FF(d, e, f, g, h, a, b, c, j + 5);
    FF(c, d, e, f, g, h, a, b, j + 6);
    FF(b, c, d, e, f, g, h, a, j + 7);
}</pre>
```

```
#define FF(a, b, c, d, e, f, g, h, j) {
   T1 = h + Sigma1(e) + Ch(e, f, g) + SHA256_K[j] + X[j];
   d += T1;
   h = T1 + Sigma0(a) + Maj(a, b, c);
}
```


<해시 출력>

```
ChainVar[0] += a;
ChainVar[1] += b;
ChainVar[2] += c;
ChainVar[3] += d;
ChainVar[4] += e;
ChainVar[5] += f;
ChainVar[6] += g;
ChainVar[7] += h;
```


Q&A