3D model shapes

Implicit surfaces

Implicit surface: basics

- In foundations of 3D scene modeling we have discussed parametric curves and surfaces.
- Implicit surfaces form another useful class for modeling and shape representation.
 - Often used in **intersection testing with rays** since they are simpler to intersect than parametric surface
- Implicit function: f(x,y,z) = 0
 - Point (x,y,z) is on implicit surface if the result is zero when point (x,y,z) is inserted into function
 - Signed distance: negative if (x,y,z) inside or positive if (x,y,z) outside will be returned therefore name signed distance functions is used.
 - Normal (essential shading information) can be computed using partial derivatives the gradient of f. <FORMULA>
 - In Practice, central difference can be used for approximating gradient <FORMULA>
- <EXAMPLES of SDFs: https://iquilezles.org/articles/distfunctions/>

Implicit surface: modeling

- Constructive solid geometry algorithms (subtraction, addition union) can be easily done with them
- SDFs can be easily deformed or blended
 - This is called blobby modelling → metaballs
- <examples>:
 - https://www.playstation.com/de-de/games/dreams/
 - Blender metaballs
- Transformations are done using the inverse transform applied to p, e.g., f(p-t)
- Repeating object can be done using r=mod(p,c).

Implicit surface: rendering

https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes

- For visualization, ray-marching is often used.
 - This method also enables calculating shadows, reflections, AO and other effects.
 - <example: raymarching>

Implicit surface: rendering

- Another approach is to turn the SDF into surface consisting of triangles.
- Famous algorithm for this is marching cubes algorithm*

^{*} Different polygonizational algorithms and GPU methods are presented for real-time rendering.

Isosurface: examples

- https://dl.acm.org/doi/10.1145/3023368.3023377
- https://store.steampowered.com/app/661920/Claybook/

_

Constructive solid geometry

- Two main methods for visualization:
 - Stencil buffer
 - Analytical storage

Subdivision curves and surfaces

- Used to make smooth curves and surfaces
- Gap between discrete surface (triangle meshes) and continuous surfaces (e.g., Bezier patches)
 - Useful for dynamic level of detail
- <example: mesh surface, parametric surface, subdivision surface>
- <example:level of detail>

Subdivision curves: intuition

- Corner cutting algorithm explains subdivision curves well.
 - Initial polygon P₀ is given which specifies control polygon: vertices are control points
 - Corners of given polygon are cut and this is repeated until **sharp corners are** removed $P_0 \rightarrow P_1 \rightarrow ... \rightarrow P_n$
 - Result is called limit curve → smooth curve since all corners are cut off
 - Analogy: low-pass filtering all sharp corners (high frequency) are removed.
 - <image>

Subdivision curves

- Subdivision process can be done in many possible ways
- Subdivision surface is characterized by subdivision scheme
- <example: meshlab subdivision>
 https://pymeshlab.readthedocs.io/en/0.1.8/filter_list.html# subdivision_surfaces_butterfly_subdivision

Subdivision curves: Chaikin scheme

- Given initial polygon P0 with n vertices this is simple method to raptly generate smooth curve
- Chaikin scheme creates two new vertices between each subsequent pairs of vertices
- After each step, original vertices are discarded and new points are reconnected new points are created ¼ away from original vertices
 - <image>
 - <formula>
- Properties:
 - This scheme generates quadratic B-spline
 - Works only for closed polygons

Subdivision curves: schemes

- Two main subdivision schemes exists:
 - Approximating
 - Interpolating
- Approximating
 - Chaikin scheme
 - Since (original) vertices are discarded or modified, limit curve does not lie on vertices of original polygon
- Interpolating
 - Contains all vertices from previous step: limit curve goes through all points interpolating

Subdivision curves: interpolating scheme

- An example: 4 point interpolatory subdivision scheme*
 - 4 nearest points are took for creating a new point
 - All points from previous step are kept
 - Tensions parameter: 0 → linear interpolation, > 0 → curves with different continuity parameters
 - Does not work directly for open polygons.
 - <formula>
 - <image>

^{*} https://cgvr.cs.uni-bremen.de/papers/c2scheme/c2scheme.pdf

Subdivision curves: in practice

 Examples in animation and modeling: http://multires.caltech.edu/pubs/sig00notes.pdf

Subdivision surfaces

- Introduced concepts on subdivision curves apply to subdivision surfaces
- Paradigm for defining smooth, continuous surfaces from meshes with arbitrary topology
 - Infinite level of detail is provided: arbitrary number of triangles/polygons can be generated
 - <example>
- Inspection of continuity is mathematically involved process and thus not straightforward.
- Simple and easily implemented rules needed for subdivision. Two phases, that characterize subdivision scheme:
 - In first, **refinement phase**, new vertices are created and reconnected for some or all vertices of **control mesh** (initial mesh). Different refinement methods exist (e.g., how the polygon can be split)
 - Second, smoothing phase, computes new positions for some or all vertices in the mesh. Different schemes dictates the continuity of surface and whenever the surface is approximating or interpolating.
 - <phases example>

Subdivision surfaces: types

- Subdivision schemes can be:
 - Stationary or non-stationary
 - Stationary same rules are used in each step
 - Non-stationary changes steps based on current step
 - Uniform or non-uniform
 - Uniform same rules for every vertex or edge
 - Non-uniform different rules for vertices or edges, e.g., edges that are on boundary of a surface.
 - Triangle or polygon based

Subdivision surfaces: Loop subdivision

- TODO RTR BOOK
- Meshlab example

Subdivision surfaces: Catmull-Clark

- TODO RTR BOOK
- Meshlab example

Displacement and subdivision

- TODO RTR BOOK
- Blender example

Subdivision surfaces: production

- Pixar OpenSubdiv
- RTR BOOK

Subdivision surfaces

Catmull-Clark subdivision surfaces

Voxels

Voxels

• TODO

Operations on meshes

Operations on meshes

- Tessellation and triangulation RTR 16
- Consolidation RTR 16
- Simplification RTR 16
- Compression RTR 16

Digitalization

Digitalization

- Scanning, photogrammertry, measuring
- https://alicevision.org/#photogrammetry

Procedural modeling

Procedural modeling

- Shape
 - Procedural geometry
- Material
- Noise
- Shaders
- Noding system