Uwarunkowanie

 $\delta + 1 = \frac{1}{1-\delta} \delta^2 \approx 0$ Bład względny wyniku:

$$\left| \frac{f(\widetilde{x}) - f(x)}{f(x)} \right| = \left| \frac{xf'(x)}{x} \right| |\delta|$$

$$cond(x) = \left| \frac{xf'(x)}{x} \right|$$

Uwarunkowanie zadania numerycznego:

$$\frac{||f(\widetilde{d}) - f(d)||}{||f(d)||} \leq cond(d) \frac{||d - \widetilde{d}||}{||d||}$$

Normy $\mathbf{2}$

$\mathbf{2.1}$ wektorowe

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} \quad ||x||_1 = \sum_{i=1}^n |x_i|^2$$
$$||x||_{\infty} = \max_{i \in \{1, \dots, n\}} |x_k| \quad ||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

2.2macierzowe

$$||A||_1 = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}| \quad ||A||_{\infty} = \max_{i=1,\dots,n} \sum_{j=1}^n |a_{ij}|$$

$$||A||_2 = \sup_{x \neq 0, \ x \in \mathbb{C}^n} \frac{||Ax||_2}{||x||_2} = \sqrt{\rho (A^*A)} \quad A^* = \overline{A}^T$$

$$||A||_F = \sqrt{\sum_{i=0}^n \sum_{j=0}^n |a_{ij}|^2}$$

zgodność norm jeśli: $||Ax|| \le ||A|| \cdot ||x||$ dla normy Frobeniusa: $||Ax||_F \le ||A||_F ||x||_2$ dla dowolej zachodzi: $||AB|| \le ||A|| \cdot ||B||$

$\mathbf{3}$ Arytmetyka zmianno przecinkowa (fl)

Zbiór M(2,t,k) nie jest zamknięty ze względu na działania arytmetyczne. $fl(x \diamond y) = rd(x \diamond y)$ zatem błąd arytmetyki jest taki sam jak błąd arytmetyki reprezentacji wyniku. Zatem $fl(x \diamond y) = (x \diamond y)(1 + \delta)$

jeżeli $x = m_1 \cdot 2^{c_1} \ y = m_2 \cdot 2^{c_2}$ oraz $c_1 - c_2 > t$ to fl(x+y) = x

Nymerycza poprawność

Def. Algorytm A dla zadania φ nazywamy numerycznie poprawnym jeśli istnieje stała k niezależna od wskaźnika uwarunkowania i niezależna od arytmetyki tż dla dowolnej danej $d \in D$ istnieje dana d tż $||d - d|| \le K \cdot 2^{-t} ||d||$ oraz $fl(A(d)) = \varphi(d)$

Czyli, wynik algorytmu A dla danej d (dokładniej) w arytmetyce fl jest dokładnym wynikiem zadania φ dla nieco zaburzonej danej.

Oszacowanie błędu alg. num. poprawnego:
$$||fl(A(d)) - \varphi(d)|| \leq cond(d) \frac{K \cdot 2^{-t} ||d||}{||d||} ||\varphi(d)||$$

Interpolacja

Lagrange

$$p_n(x) = \sum_{i=0}^{n} f_i l_i(x)$$

gdzie:

$$l_i(x) = \prod_{j=0, j\neq i}^n \frac{x - x_j}{x_i - x_j}$$

Newton

$$p_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0) \dots (x - x_n)$$
gdzie:

$$c_k = f_{0,1,2,...,k}$$

oraz

$$f_{i,i+1...k+i} \stackrel{def}{=} \frac{f_{i+1,...,k} + f_{i,...(i+k-1)}}{x_{i+k} - x_i}$$

Hermit identycznie tylko że w tabeli węzły się powtarzają i w miejscu różnic dzielonych których nie można otrzymać wpisujemy $\frac{f^{(k)}(x_i)}{k!}$ a w wielomianie interpolacyjnym składniki postaci $(x-x_i)$ będą posiadały odpowiednią potęgę

Całkowanie numeryczne

Kwadratura jest rzędy r jeśli jest dokładna dla wszystkich wielomianów stopnie r-1 oraz istnieje wielomian stopnia r dla której nie jest dokładna

6.1 **Trapezy**

$$S(f) = \sum_{k=1}^{N} \frac{x_k - x_{k-1}}{2} (f(x_k) + f(x_{k-1})) =$$

$$= \frac{H}{2} \left(f(a) + f(b) + 2 \sum_{k=1}^{N-1} f(a + kH) \right)$$

$$|E(f)| = \left| \sum_{k=1}^{N} \frac{H^3 f''(\xi_k)}{12} \right| \le \frac{H^2 (b-a)}{12} \sup_{\xi \in [a,b]} |f''(\xi)|$$

6.2 Prostokaty

$$S(f) = \sum_{k=1}^{N} (x_k - x_{k-1}) f\left(\frac{x_k + x_{k-1}}{2}\right) = H \sum_{k=0}^{n} f(\frac{x_k + x_{k-1}}{2})$$
$$|E(f)| \le \frac{NH^3}{24} \sup_{\xi \in [a,b]} |f''(\xi)| = \frac{H^2}{24} (b-a) \sup_{\xi \in [a,b]} |f^{(4)}(\xi)|$$

6.3 Simpson

$$S(f) = \sum_{k=1}^{N} \frac{H}{6} \left(f(x_{k-1}) + 4f \left(x_{k-1} + \frac{H}{2} \right) + f(x_k) \right)$$
$$|E(f)| = \left| \sum_{k=1}^{N} \frac{H^5 f^{(4)}(\xi_k)}{90 \cdot 2^5} \right| \le \frac{H^4 (b-a)}{2^4} \sup_{\xi \in [a,b]} |f^{(4)}(\xi)|$$

Rozwiązywanie układów r. liniowych