Обучение параметрической модели

- Выбрать параметрическую модель для представления набора функций
- Три главных вопроса:
 - Какая модель лучше всего представляет этот набор функций?
 - Какой из нескольких экземпляров модели получает какую особенность?
 - Сколько экземпляров модели?
- Вычислительная сложность важна
 - Невозможно изучить все возможные наборы параметров и все возможные комбинации возможностей

ВВЕДЕНИЕ В КОМПЬЮТЕРНОЕ ЗРЕНИЕ

Лекция № 6

Параметрические модели

План лекции

- 1. Метод построение параметрических моделей RANSAC
- 2. Дексриптор контрольных точек SIFT
- 3. Дексриптор изображений HOG
- 4. Задача сопоставления изображений

01

RANSAC

Пример: Line Fitting

• Зачем нужна модель линий? Многие объекты можно описать с помощью линий

• Почему бы нам просто не воспользоваться обнаружением краёв?

Сложности с Line Fitting

• Как учитывать несколько линий?

• Как выделить линию, если отсутствуют ее части или они скрыты?

• Что делать с шумами?

RANSAC [Fischler & Bolles 1981]

- RANdom SAmple Consensus
- Подход: мы хотим избежать воздействия шумовых параметров, поэтому давайте искать хорошие параметры, и использовать только их

• Интуиция: если для вычисления текущих параметров, то результирующая линия не будет иметь большой поддержки от остальных точек.

- Задача: Оценить лучшую линию
 - Сколько точек нужно для оценки линии?

Итеративный поиск

Сравнение моделей машинного обучения

RANSAC loop:

- 1. Случайный выбор опорных точек, на которых будет сделана оценка модели
- 2. Вычислить модель для группы точек
- 3. Найти inliers (хорошие совпадения) для этой модели
- 4. Если количество inliers достаточно велико, пересчитайте оценку преобразования по наименьшим квадратам на всех inliers
- 5. Сохранить модель с наибольшим количеством inliers

RANSAC: сколько нужно точек в выборке?

- Сколько нужно точек?
 - Предположим, что w это доля inliers (точек от прямой)
 - n точек, необходимо для определения гипотезы (2 для линий)
 - k количество выбранных точек
- Вероятность, что взять точки для модели n: w^n
- Вероятность, что все k точек outliers: $p = (1 w^n)^k$

⇒ Выберем высокое k, чтобы получить низкую вероятность, что все точки в выборке outliers

RANSAC: сколько нужно точек в выборке?

Параме тров	Доля outliers в выборке						
модели (n)	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

$$p = (1 - w^n)^k$$
$$p = 0.99$$

RANSAC: Плюсы и минусы

• Плюсы:

- Метод обучения классов моделей
- Легко внедряется и легко вычисляет частоту отказов
- Интерпретируемый

• Минусы:

- Справляется только с умеренным количеством шума outliers
- Многие проблемы имеют высокий уровень outliers (но иногда выборочный выбор случайных подмножеств может помочь)

02

SIFT

Локальные описания

- Мы знаем, как определить особые точки
- Следующий вопрос:

Как их описать для соответствия?

Дескриптор точки должен быть:

- 1. Инвариантен
- 2. Уникальным

Инвариантность локальных описаний

• Содержимое изображения преобразуется в локальные координаты объекта, которые инвариантно изменяются с параметрами смещения, вращения и масштаба

CVPR 2003 Tutorial on **Recognition and Matching Based on Local Invariant Features** David Lowe

Переходя к инварианту вращения

Инвариант вращения

- Нам дана ключевая точка и ее масштаб от DoG
- Выберем характерную ориентацию для ключевой точки
- Опишем особенности, связанные с этой ориентацией
- Причины быть инвариантном вращения:
 - Если на другом изображении эта точка окажется повернутой, то характеристики будут теми же

- Используем размытое изображение, связанное со уровнем особой точки в DoG
- Возьмем градиенты изображения над ключевыми точками района
- Для инвариантности к вращению, повернем направление и расположение градиента на ориентацию по ключевым точкам
 - Теперь мы отменили вращение и имеем градиенты, выраженные в местах относительно ориентации на ключевые точки θ.

- Создадим массив гистограмм ориентаций (показан массив 4х4).
- Заполним вращающиеся градиенты в их гистограммы локальной ориентации.
 - Вклад градиента делится на близлежащие гистограммы в зависимости от расстояния. Если он находится на полпути между двумя точками гистограммы, то дает половину вклада в обе ячейки гистограммы.
 - Для градиентов, расположенных далеко от центра, вклад градиента уменьшается по гауссу.
- Авторы SIFT обнаружили, что лучшие результаты были с 8 ориентационными бинами на гистограмме

- Такое построение гистограмм градиентов производится для каждой ячейки области особой точки
- Авторы SIFT обнаружили, что лучшие результаты были с 8 ориентационными бинами на гистограмме и массивом гистограмм 4х4.

- 8 бинов ориентации на гистограмме и массив гистограмм 4х4 дают 8х4х4 = 128 чисел.
- Таким образом, дескриптор SIFT это вектор длиной 128, который инвариантен к вращению (потому что мы повернули дескриптор) и масштабированию (потому что мы работали с масштабированным изображением из DoG).
- Мы можем сравнить каждый вектор с растра А с каждым вектором с растра В, чтобы найти совпадающие ключевые точки

Чувствительность к количеству ориентаций гистограммы

Figure 8: This graph shows the percent of keypoints giving the correct match to a database of 40,000 keypoints as a function of width of the $n \times n$ keypoint descriptor and the number of orientations in each histogram. The graph is computed for images with affine viewpoint change of 50 degrees and addition of 4% noise.

Устойчивость к шуму

- Сопоставление фичей после случайного изменения масштаба и ориентации изображения с различными уровнями шума.
- Поиск ближайшего соседа в пространстве на 30 000 фичей

Стабильность характеристик для аффинного изменения

- Сопоставление фичей после случайного изменения масштаба и ориентации изображения, с 2% шума изображения, и аффинные искажения
- Поиск ближайшего соседа в пространстве на 30 000 фичей

Различия в признаках

- Варьируемый размер базы данных признаков, с 30-градусным аффинным изменением, 2% шума изображения
- Измерение % правильности для одного ближайшего соседа

Примеры поиска SIFT

Примеры поиска SIFT

03

HOG

Histogram of Oriented Gradients

• Найдем набор характеристик, позволяющих дискриминировать формы объектов

• Задачи

- Широкий диапазон поз и большие различия во внешнем виде
- Шумный фон при различном освещении
- Алгоритмическая эффективность

• Ссылки

- [1] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In CVPR, pages 886-893, 2005
- [2] Chandrasekhar et al. CHoG: Compressed Histogram of Gradients A low bit rate feature descriptor, CVPR 2009

Histogram of Oriented Gradients

Внешний вид и форма локальных объектов часто хорошо характеризуются распределением локальных градиентов интенсивности или направлений краев

Histogram of Oriented Gradients

- Разделение окна изображения на небольшие пространственные области (ячейки)
- Ячейки могут быть прямоугольными или радиальными.
- Каждая ячейка накапливает
 взвешенную локальную 1-D
 гистограмму направлений градиента
 над пикселями ячейки.

Histogram of Oriented Gradients

Визуализация HOG

Разница между HOG и SIFT

- HOG обычно используется для описания целых изображений. SIFT используется для сопоставления ключевых точек
- Гистрограммы SIFT ориентированы на доминантный градиент. HOG - нет.
- Градиенты HOG нормализуются с помощью соседних бинов гистограмм.
- Дескрипторы SIFT используют различные шкалы (DoG) для вычисления множественных дескрипторов.

04

Image Stitching

Процедуры:

• Обнаружение характерных точек на обоих изображениях

Процедура:

- Обнаружение характерных точек на обоих изображениях
- Поиск соответствующие пары

Процедура:

- Обнаружение характерных точек на обоих изображениях
- Поиск соответствующие пары
- Применение пар для объединения и выравнивания изображений

• Найти особые точки

Поиск особых точек

- Найти особые точки
- Построить дексрипторы SIFT

Построение SIFT Descriptors

- Найти особые точки
- Построить дексрипторы SIFT
- Сопоставить дескрипторы SIFT

Match SIFT Descriptors

• Расстояние между парами

Алгоритм:

- Соответствие дескрипторов SIFT (6 строк кода)
- Вход: D1, D2, порог (по умолчанию 0.7)
- Выход: соответствие [индекс D1, индекс D2].

- Найти особые точки
- Построить дексрипторы SIFT
- Сопоставить SIFT фичи
- Построить преобразование

$$T = egin{bmatrix} t_{11} & t_{12} & t_{13} \ t_{21} & t_{22} & t_{23} \ 0 & 0 & 1 \end{bmatrix}$$

Построить преобразование

• 2D преобразование

Псевдокод:

- Построить матрицу формирования
- Шесть переменных
 - каждая точка дает два уравнения
 - как минимум три пункта
- Наименьшая площадь

$$H = egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ 0 & 0 & 1 \end{bmatrix}$$

- Найти особые точки
- Построить дексрипторы SIFT
- Сопоставить SIFT фичи
- Построить преобразование
- RANSAC

RANSAC

Построение преобразования

RANSAC – расчет ошибки (n=3):

$$\left\|egin{bmatrix} x_2 \ y_2 \ 1 \end{bmatrix} - H egin{bmatrix} x_1 \ y_1 \ 1 \end{bmatrix}
ight\|_2$$

$$H = egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ 0 & 0 & 1 \end{bmatrix}$$

- Найти особые точки
- Построить дексрипторы SIFT
- Сопоставить SIFT фичи
- Построить преобразование
- RANSAC

Результаты

Результаты

Место для ваших вопросов