

CLAIMS

What is claimed is:

5 1. A compound of formula I:

or stereoisomers or pharmaceutically acceptable salts

10 thereof, wherein:

M is absent or selected from CH_2 , CHR^5 , CHR^{13} , $\text{CR}^{13}\text{R}^{13}$, and
 CR^5R^{13} ;

15 Q is selected from CH_2 , CHR^5 , CHR^{13} , $\text{CR}^{13}\text{R}^{13}$, and CR^5R^{13} ;

J, K, and L are independently selected from CH_2 , CHR^5 ,
 CHR^6 ,
 CR^6R^6 and CR^5R^6 ;

20 with the provisos:

1) at least one of M, J, K, L, or Q contains an R^5 ;
and

25 2) when M is absent, J is selected from CH_2 , CHR^5 ,
 CHR^{13} ,
and CR^5R^{13} ;

30 E is $-(\text{CR}^7\text{R}^8)-(\text{CR}^9\text{R}^{10})_v-$;

Y is selected from:

X is selected from NR¹⁴, O, and S;

Z is selected from C(O)R³, S(O)₂R³, C(O)OR³, C(O)NR²R³,

C(=NR¹)NR²R³, C(=CHCN)NR²R³, C(=CHNO₂)NR²R³,

C(=C(CN)₂)NR²R³, and (CR'R')_t-phenyl substituted with
0-5 R¹⁵;

R', at each occurrence, is selected from H, C₁₋₆ alkyl,
C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, and
(CH₂)_rphenyl substituted with R^{15e};

R¹ is selected from H, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, OH,
CN, and
(CH₂)_wphenyl;

R^2 is selected from H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, and a (CH₂)_{r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{2a};}

5 R^{2a}, at each occurrence, is selected from C₁₋₄ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, Br, I, F, (CF₂)_rCF₃, NO₂, CN, (CH₂)_rNR^{2b}R^{2b}, (CH₂)_rOH, (CH₂)_rOR^{2c}, (CH₂)_rSH, (CH₂)_rSR^{2c}, (CH₂)_rC(O)R^{2b}, (CH₂)_rC(O)NR^{2b}R^{2b}, (CH₂)_rNR^{2b}C(O)R^{2b}, (CH₂)_rC(O)OR^{2b}, (CH₂)_rOC(O)R^{2c}, (CH₂)_rCH(=NR^{2b})NR^{2b}R^{2b}, (CH₂)_rNHC(=NR^{2b})NR^{2b}R^{2b}, (CH₂)_rS(O)_pR^{2c}, (CH₂)_rS(O)₂NR^{2b}R^{2b}, (CH₂)_rNR^{2b}S(O)₂R^{2c}, and (CH₂)_rphenyl;

10 R^{2b}, at each occurrence, is selected from H, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and phenyl;

15 R^{2c}, at each occurrence, is selected from C₁₋₅ alkyl, C₃₋₆ cycloalkyl, and phenyl;

20 R³ is selected from a CR^{3'}R^{3''}R^{3"}, (CR^{3'}R^{3''})_{r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R¹⁵ and a (CR^{3'}R^{3''})_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R¹⁵;}

25 R^{3'} and R^{3''}, at each occurrence, are selected from H, C₁₋₆ alkyl, (CH₂)_rC₃₋₆ cycloalkyl, and phenyl;

30 R⁴ is absent, taken with the nitrogen to which it is attached to form an N-oxide, or selected from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, (CH₂)_qC(O)R^{4b}, (CH₂)_qC(O)NR^{4a}R^{4a'}, (CH₂)_qC(O)OR^{4b}, and a (CH₂)_{r-C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{4c};}

R^{4a} and R^{4a'}, at each occurrence, are selected from H, C₁₋₆ alkyl, (CH₂)_rC₃₋₆ cycloalkyl, and phenyl;

5 R^{4b}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, (CH₂)_rC₃₋₆ cycloalkyl, C₂₋₈ alkynyl, and phenyl;

10 R^{4c}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, (CH₂)_rOH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{4a}R^{4a'}, and (CH₂)_rphenyl;

15 R⁵ is selected from a (CR^{5'}R^{5''})_t-C₃₋₁₀ carbocyclic residue substituted with 0-5 R¹⁶ and a (CR^{5'}R^{5''})_{t-5-10} membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R¹⁶;

20 R^{5'} and R^{5''}, at each occurrence, are selected from H, C₁₋₆ alkyl, (CH₂)_rC₃₋₆ cycloalkyl, and phenyl;

25 R⁶, at each occurrence, is selected from C₁₋₄ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, (CF₂)_rCF₃, CN, (CH₂)_rNR^{6a}R^{6a'}, (CH₂)_rOH, (CH₂)_rOR^{6b}, (CH₂)_rSH, (CH₂)_rSR^{6b}, (CH₂)_rC(O)OH, (CH₂)_rC(O)R^{6b}, (CH₂)_rC(O)NR^{6a}R^{6a'}, (CH₂)_rNR^{6d}C(O)R^{6a}, (CH₂)_rC(O)OR^{6b}, (CH₂)_rOC(O)R^{6b}, (CH₂)_rS(O)_pR^{6b}, (CH₂)_rS(O)₂NR^{6a}R^{6a'}, (CH₂)_rNR^{6d}S(O)₂R^{6b}, and (CH₂)_tphenyl substituted with 0-3 R^{6c};

30 R^{6a} and R^{6a'}, at each occurrence, are selected from H, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and phenyl substituted with 0-3 R^{6c};

35 R^{6b}, at each occurrence, is selected from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and phenyl substituted with 0-3 R^{6c};

R^{6c} , at each occurrence, is selected from C_{1-6} alkyl, C_{3-6} cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, $(CH_2)_rOH$, $(CH_2)_rSC_{1-5}$ alkyl, and $(CH_2)_rNR^{6d}R^{6d}$;

5

R^{6d} , at each occurrence, is selected from H, C_{1-6} alkyl, and

C_{3-6} cycloalkyl;

10 R^7 is selected from H, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_qOH$, $(CH_2)_qSH$, $(CH_2)_qOR^{7d}$, $(CH_2)_qSR^{7d}$, $(CH_2)_qNR^{7a}R^{7a'}$, $(CH_2)_rC(O)OH$, $(CH_2)_rC(O)R^{7b}$, $(CH_2)_rC(O)NR^{7a}R^{7a'}$, $(CH_2)_qNR^{7a}C(O)R^{7a}$, $(CH_2)_rC(O)OR^{7b}$, $(CH_2)_qOC(O)R^{7b}$, $(CH_2)_qS(O)_pR^{7b}$, $(CH_2)_qS(O)_2NR^{7a}R^{7a'}$,
15 $(CH_2)_qNR^{7a}S(O)_2R^{7b}$, C_{1-6} haloalkyl, a $(CH_2)_r-C_{3-10}$ carbocyclic residue substituted with 0-3 R^{7c} , and a $(CH_2)_r-5-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{7c} ;

20

R^{7a} and $R^{7a'}$, at each occurrence, are selected from H, C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, a $(CH_2)_r-C_{3-10}$ carbocyclic residue substituted with 0-5 R^{7e} , and a $(CH_2)_r-5-10$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e} ;

25

R^{7b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, a $(CH_2)_r-C_{3-6}$ carbocyclic residue substituted with 0-2 R^{7e} , and a $(CH_2)_r-5-6$ membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{7e} ;

30

35 R^{7c} , at each occurrence, is selected from C_{1-4} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, $(CF_2)_rCF_3$, NO_2 , CN, $(CH_2)_rNR^{7f}R^{7f}$, $(CH_2)_rOH$,

(CH₂)_rOC₁₋₄ alkyl, (CH₂)_rSC₁₋₄ alkyl, (CH₂)_rC(O)OH,
 (CH₂)_rC(O)R^{7b}, (CH₂)_rC(O)NR^{7f}R^{7f}, (CH₂)_rNR^{7f}C(O)R^{7a},
 (CH₂)_rC(O)OC₁₋₄ alkyl, (CH₂)_rOC(O)R^{7b},
 (CH₂)_rC(=NR^{7f})NR^{7f}R^{7f}, (CH₂)_rS(O)_pR^{7b},
 5 (CH₂)_rNHC(=NR^{7f})NR^{7f}R^{7f}, (CH₂)_rS(O)₂NR^{7f}R^{7f},
 (CH₂)_rNR^{7f}S(O)₂R^{7b}, and (CH₂)_rphenyl substituted with
 0-3 R^{7e};

R^{7d}, at each occurrence, is selected from C₁₋₆ alkyl
 10 substituted with 0-3 R^{7e}, alkenyl, alkynyl, and a
 C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{7c};

R^{7e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈
 alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I,
 15 CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH,
 (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{7f}R^{7f}, and (CH₂)_rphenyl;

R^{7f}, at each occurrence, is selected from H, C₁₋₅ alkyl,
 20 and C₃₋₆ cycloalkyl;

R⁸ is selected from H, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and
 (CH₂)_tphenyl substituted with 0-3 R^{8a};

R^{8a}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈
 25 alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I,
 CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH,
 (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{7f}R^{7f}, and (CH₂)_rphenyl;

alternatively, R⁷ and R⁸ join to form C₃₋₇ cycloalkyl, or
 30 =NR^{8b};

R^{8b} is selected from H, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, OH,
 CN, and
 (CH₂)_r-phenyl;

35 R⁹ is independently selected from H, C₁₋₈ alkyl, C₂₋₈
 alkenyl, C₂₋₈ alkynyl, F, Cl, Br, I, NO₂, CN,

(CH₂)_rOH, (CH₂)_rSH, (CH₂)_rOR^{9d}, (CH₂)_rSR^{9d},
 (CH₂)_rNR^{9a}R^{9a'}, (CH₂)_rC(O)OH, (CH₂)_rC(O)R^{9b},
 (CH₂)_rC(O)NR^{9a}R^{9a'}, (CH₂)_rNR^{9a}C(O)R^{9a}, (CH₂)_rNR^{9a}C(O)H,
 (CH₂)_rC(O)OR^{9b}, (CH₂)_rOC(O)R^{9b}, (CH₂)_rS(O)_pR^{9b},
 (CH₂)_rS(O)₂NR^{9a}R^{9a'}, (CH₂)_rNR^{9a}S(O)₂R^{9b}, C₁₋₆
 5 haloalkyl, a (CH₂)_r-C₃₋₁₀ carbocyclic residue
 substituted with 0-5 R^{9c}, and a (CH₂)_r-5-10 membered
 heterocyclic system containing 1-4 heteroatoms
 selected from N, O, and S, substituted with 0-3 R^{9c};

10 R^{9'} is independently selected from H, C₁₋₈ alkyl, C₂₋₈
 alkenyl, C₂₋₈ alkynyl, F, Cl, Br, I, NO₂, CN,
 (CH₂)_rOH, (CH₂)_rSH, (CH₂)_rOR^{9d}, (CH₂)_rSR^{9d},
 (CH₂)_rNR^{9a}R^{9a'}, (CH₂)_rC(O)OH, (CH₂)_rC(O)R^{9b},
 15 (CH₂)_rC(O)NR^{9a}R^{9a'}, (CH₂)_rNR^{9a}C(O)R^{9a}, (CH₂)_rNR^{9a}C(O)H,
 (CH₂)_rC(O)OR^{9b}, (CH₂)_rOC(O)R^{9b}, (CH₂)_rS(O)_pR^{9b},
 (CH₂)_rS(O)₂NR^{9a}R^{9a'}, (CH₂)_rNR^{9a}S(O)₂R^{9b}, C₁₋₆
 haloalkyl, (CH₂)_r-C₃₋₆ cycloalkyl, (CH₂)_q-phenyl
 substituted with 0-5 R^{9c}, and a (CH₂)_q-5-10 membered
 20 heterocyclic system containing 1-4 heteroatoms
 selected from N, O, and S, substituted with 0-3 R^{9c};

R^{9a} and R^{9a'}, at each occurrence, are selected from H, C₁₋₆
 25 alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, a (CH₂)_r-C₃₋₁₀
 carbocyclic residue substituted with 0-5 R^{9e}, and a
 (CH₂)_r-5-10 membered heterocyclic system containing
 1-4 heteroatoms selected from N, O, and S,
 substituted with 0-3 R^{9e};

30 R^{9b}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈
 alkenyl, C₂₋₈ alkynyl, a (CH₂)_r-C₃₋₆ carbocyclic
 residue substituted with 0-2 R^{9e}, and a (CH₂)_r-5-6
 membered heterocyclic system containing 1-4
 heteroatoms selected from N, O, and S, substituted
 35 with 0-3 R^{9e};

R^{9c} , at each occurrence, is selected from C_{1-4} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, $(CF_2)_rCF_3$, NO_2 , CN, $(CH_2)_rNR^{9f}R^{9f}$, $(CH_2)_rOH$, $(CH_2)_rOC_{1-4}$ alkyl, $(CH_2)_rSC_{1-4}$ alkyl, $(CH_2)_rC(O)OH$,

5 $(CH_2)_rC(O)R^{9b}$, $(CH_2)_rC(O)NR^{9f}R^{9f}$, $(CH_2)_rNR^{9f}C(O)R^{9a}$,

$(CH_2)_rC(O)OC_{1-4}$ alkyl, $(CH_2)_rOC(O)R^{9b}$,

$(CH_2)_rC(=NR^{9f})NR^{9f}R^{9f}$, $(CH_2)_rS(O)pR^{9b}$,

$(CH_2)_rNHC(=NR^{9f})NR^{9f}R^{9f}$, $(CH_2)_rS(O)_2NR^{9f}R^{9f}$,

$(CH_2)_rNR^{9f}S(O)_2R^{9b}$, and $(CH_2)_r$ phenyl substituted with

10 0-3 R^{9e} ;

R^{9d} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, a C_{3-10} carbocyclic residue substituted with 0-3 R^{9c} , and a 5-6 membered

15 heterocyclic system containing 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R^{9c} ;

R^{9e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8}

20 alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{9f}R^{9f}$, and $(CH_2)_r$ phenyl;

R^{9f} , at each occurrence, is selected from H, C_{1-5} alkyl,

25 and C_{3-6} cycloalkyl;

R^{10} is independently selected from H, C_{1-8} alkyl, C_{2-8}

alkenyl, C_{2-8} alkynyl, F, Cl, Br, I, NO_2 , CN,

$(CH_2)_rOH$, $(CH_2)_rOR^{10d}$, $(CH_2)_rSR^{10d}$, $(CH_2)_rNR^{10a}R^{10a'}$,

30 $(CH_2)_rC(O)OH$, $(CH_2)_rC(O)R^{10b}$, $(CH_2)_rC(O)NR^{10a}R^{10a'}$,

$(CH_2)_rNR^{10a}C(O)R^{10a}$, $(CH_2)_rNR^{10a}C(O)H$, $(CH_2)_rC(O)OR^{10b}$,

$(CH_2)_rOC(O)R^{10b}$, $(CH_2)_rS(O)pR^{10b}$, $(CH_2)_rS(O)_2NR^{10a}R^{10a'}$,

$(CH_2)_rNR^{10a}S(O)_2R^{10b}$, C_{1-6} haloalkyl, a $(CH_2)_r-C_{3-10}$

carbocyclic residue substituted with 0-5 R^{10c} , and a

35 $(CH_2)_r$ -5-10 membered heterocyclic system containing

1-4 heteroatoms selected from N, O, and S,

substituted with 0-3 R^{10c} ;

5 R^{10a} and $R^{10a'}$, at each occurrence, are selected from H, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, a $(CH_2)_r$ -C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{10e} , and a (CH₂)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{10e} ;

10 R^{10b} , at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, a $(CH_2)_r$ -C₃₋₆ carbocyclic residue substituted with 0-2 R^{10e} , and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{10e} ;

15 R^{10c} , at each occurrence, is selected from C₁₋₄ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, Br, I, F, (CF₂)_rCF₃, NO₂, CN, (CH₂)_rNR^{10f}R^{10f}, (CH₂)_rOH, (CH₂)_rOC₁₋₄ alkyl, (CH₂)_rSC₁₋₄ alkyl, (CH₂)_rC(O)OH, (CH₂)_rC(O)R^{10b}, (CH₂)_rC(O)NR^{10f}R^{10f}, (CH₂)_rNR^{10f}C(O)R^{10a}, (CH₂)_rC(O)OC₁₋₄ alkyl, (CH₂)_rOC(O)R^{10b}, (CH₂)_rC(=NR^{10f})NR^{10f}R^{10f}, (CH₂)_rS(O)_pR^{10b}, (CH₂)_rNHC(=NR^{10f})NR^{10f}R^{10f}, (CH₂)_rS(O)₂NR^{10f}R^{10f}, (CH₂)_rNR^{10f}S(O)₂R^{10b}, and (CH₂)_rphenyl substituted with 0-3 R^{10e} ;

20 R^{10d} , at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{10c} , and a 5-6 membered heterocyclic system containing 1-4 heteroatoms selected from the group consisting of N, O, and S substituted with 0-3 R^{10c} ;

25 R^{10e} , at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{10f}R^{10f}, and (CH₂)_rphenyl;

R^{10f} , at each occurrence, is selected from H, C₁₋₅ alkyl, and C₃₋₆ cycloalkyl;

5 with the proviso that when R¹⁰ is -OH, R⁹ is not halogen, cyano, or bonded to the carbon to which it is attached through a heteroatom;

alternatively, R⁹ and R¹⁰ join to form C₃₋₇ cycloalkyl;

10 R¹¹ is selected from H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_qOH, (CH₂)_qSH, (CH₂)_qOR^{11d}, (CH₂)_qSR^{11d}, (CH₂)_qNR^{11a}R^{11a'}, (CH₂)_rC(O)OH, (CH₂)_rC(O)R^{11b}, (CH₂)_rC(O)NR^{11a}R^{11a'}, (CH₂)_qNR^{11a}C(O)R^{11a}, (CH₂)_rC(O)OR^{11b}, (CH₂)_qOC(O)R^{11b}, (CH₂)_qS(O)_pR^{11b}, (CH₂)_qS(O)₂NR^{11a}R^{11a'}, (CH₂)_qNR^{11a}S(O)₂R^{11b}, C₁₋₆ haloalkyl, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{11c}, and a (CH₂)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms
15 selected from N, O, and S, substituted with 0-3 R^{11c};

20 R^{11'} is selected from H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_qOH, (CH₂)_qSH, (CH₂)_qOR^{11d}, (CH₂)_qSR^{11d}, (CH₂)_qNR^{11a}R^{11a'}, (CH₂)_rC(O)OH, (CH₂)_rC(O)R^{11b}, (CH₂)_rC(O)NR^{11a}R^{11a'}, (CH₂)_qNR^{11a}C(O)R^{11a}, (CH₂)_rC(O)OR^{11b}, (CH₂)_qOC(O)R^{11b}, (CH₂)_qS(O)_pR^{11b}, (CH₂)_qS(O)₂NR^{11a}R^{11a'}, (CH₂)_qNR^{11a}S(O)₂R^{11b}, C₁₋₆ haloalkyl, a (CH₂)_r-C₃₋₆ cycloalkyl, (CH₂)_q-phenyl substituted with 0-5 R^{11c}, and a (CH₂)_q-5-10 membered heterocyclic system containing 1-4 heteroatoms
25 selected from N, O, and S, substituted with 0-3 R^{11c};

30 R^{11a} and R^{11a'}, at each occurrence, are selected from H, C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-5 R^{11e}, and a (CH₂)_r-5-10 membered heterocyclic system containing

1-4 heteroatoms selected from N, O, and S,
substituted with 0-3 R^{11e};

5 R^{11b}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-2 R^{11e}, and a (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{11e};

10 15 R^{11c}, at each occurrence, is selected from C₁₋₄ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, Br, I, F, (CF₂)_rCF₃, NO₂, CN, (CH₂)_rNR^{11f}R^{11f}, (CH₂)_rOH, (CH₂)_rOC₁₋₄ alkyl, (CH₂)_rSC₁₋₄ alkyl, (CH₂)_rC(O)OH, (CH₂)_rC(O)R^{11b}, (CH₂)_rC(O)NR^{11f}R^{11f}, (CH₂)_rNR^{11f}C(O)R^{11a}, (CH₂)_rC(O)OC₁₋₄ alkyl, (CH₂)_rOC(O)R^{11b}, (CH₂)_rC(=NR^{11f})NR^{11f}R^{11f}, (CH₂)_rNHC(=NR^{11f})NR^{11f}R^{11f}, (CH₂)_rS(O)_pR^{11b}, (CH₂)_rS(O)₂NR^{11f}R^{11f}, (CH₂)_rNR^{11f}S(O)₂R^{11b}, and 20 (CH₂)_rphenyl substituted with 0-3 R^{11e};

25 R^{11d}, at each occurrence, is selected from C₁₋₆ alkyl substituted with 0-3 R^{11e}, C₂₋₆ alkenyl, C₂₋₆ alkynyl, and a C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{11c};

30 R^{11e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{11f}R^{11f}, and (CH₂)_rphenyl;

R^{11f}, at each occurrence, is selected from H, C₁₋₅ alkyl, and C₃₋₆ cycloalkyl;

35 R¹² is selected from H, C₁₋₆ alkyl, (CH₂)_qOH, (CH₂)_rC₃₋₆ cycloalkyl, and (CH₂)_tphenyl substituted with 0-3 R^{12a};

R^{12a}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{9f}R^{9f}, and (CH₂)_rphenyl;

R¹³, at each occurrence, is selected from C₁₋₄ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, (CF₂)_wCF₃, (CH₂)_qNR^{13a}R^{13a'}, (CH₂)_qOH, (CH₂)_qOR^{13b}, (CH₂)_qSH, (CH₂)_qSR^{13b}, (CH₂)_wC(O)OH, (CH₂)_wC(O)R^{13b}, (CH₂)_wC(O)NR^{13a}R^{13a'}, (CH₂)_qNR^{13d}C(O)R^{13a}, (CH₂)_wC(O)OR^{13b}, (CH₂)_qOC(O)R^{13b}, (CH₂)_wS(O)_pR^{13b}, (CH₂)_wS(O)₂NR^{13a}R^{13a'}, (CH₂)_qNR^{13d}S(O)₂R^{13b}, and (CH₂)_w-phenyl substituted with 0-3 R^{13c};

R^{13a} and R^{13a'}, at each occurrence, are selected from H, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and phenyl substituted with 0-3 R^{13c};

R^{13b}, at each occurrence, is selected from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and phenyl substituted with 0-3 R^{13c};

R^{13c}, at each occurrence, is selected from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, (CH₂)_rOH, (CH₂)_rSC₁₋₅ alkyl, and (CH₂)_rNR^{13d}R^{13d};

R^{13d}, at each occurrence, is selected from H, C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

R¹⁴ is selected from C₁₋₄ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, C(O)NR^{14a}R^{14a'}, C(O)R^{14b}, C(O)OC₁₋₄ alkyl, (CH₂)_rS(O)_pR^{14b}, (CH₂)_rphenyl substituted with 0-3 R^{14c};

R^{14a} and $R^{14a'}$, at each occurrence, are selected from H,
 C₁₋₆ alkyl, $(CH_2)_rC_{3-6}$ cycloalkyl, and $(CH_2)_r$ phenyl
 substituted with 0-3 R^{14c} , and a $(CH_2)_r$ -5-10 membered
 heterocyclic system containing 1-4 heteroatoms
 5 selected from N, O, and S, substituted with 0-2 R^{14c} ;

 R^{14b} , at each occurrence, is selected from C₁₋₆ alkyl,
 $(CH_2)_rC_{3-6}$ cycloalkyl, and $(CH_2)_r$ phenyl substituted
 with 0-3 R^{14c} , and a $(CH_2)_r$ -5-10 membered
 10 heterocyclic system containing 1-4 heteroatoms
 selected from N, O, and S, substituted with 0-2 R^{14c} ;
 and

 R^{14c} , at each occurrence, is selected from C₁₋₆ alkyl,
 15 $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, F, Br, I, CN, NO₂,
 $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, $(CH_2)_w$ phenyl;

 R^{15} , at each occurrence, is selected from C₁₋₈ alkyl, C₂₋₈
 alkenyl, C₂₋₈ alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br,
 20 I, F, NO₂, CN, $(CHR')_rNR^{15a}R^{15a'}$, $(CHR')_rOH$,
 $(CHR')_rO(CHR')_rR^{15d}$, $(CHR')_rSH$, $(CHR')_rC(O)H$,
 $(CHR')_rS(CHR')_rR^{15d}$, $(CHR')_rC(O)OH$,
 $(CHR')_rC(O)(CHR')_rR^{15b}$, $(CHR')_rC(O)NR^{15a}R^{15a'}$,
 $(CHR')_rNR^{15f}C(O)(CHR')_rR^{15b}$, $(CHR')_rC(O)O(CHR')_rR^{15d}$,
 25 $(CHR')_rOC(O)(CHR')_rR^{15b}$, $(CHR')_rC(=NR^{15f})NR^{15a}R^{15a'}$,
 $(CHR')_rNHC(=NR^{15f})NR^{15f}R^{15f}$, $(CHR')_rS(O)_p(CHR')_rR^{15b}$,
 $(CHR')_rS(O)_2NR^{15a}R^{15a'}$, $(CHR')_rNR^{15f}S(O)_2(CHR')_rR^{15b}$,
 C₁₋₆ haloalkyl, C₂₋₈ alkenyl substituted with 0-3 R',
 C₂₋₈ alkynyl substituted with 0-3 R', $(CHR')_r$ phenyl
 30 substituted with 0-3 R^{15e} , and a $(CH_2)_r$ -5-10 membered
 heterocyclic system containing 1-4 heteroatoms
 selected from N, O, and S, substituted with 0-2 R^{15e} ;

 R^{15a} and $R^{15a'}$, at each occurrence, are selected from H,
 35 C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, a $(CH_2)_r$ -C₃₋₁₀
 carbocyclic residue substituted with 0-5 R^{15e} , and a
 $(CH_2)_r$ -5-10 membered heterocyclic system containing

1-4 heteroatoms selected from N, O, and S,
substituted with 0-2 R^{15e};

5 R^{15b}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, a (CH₂)_r-C₃₋₆ carbocyclic residue substituted with 0-3 R^{15e}, and (CH₂)_r-5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-2 R^{15e};

10 15 R^{15d}, at each occurrence, is selected from C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₆ alkyl substituted with 0-3 R^{15e}, a (CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-3 R^{15e}, and a (CH₂)_r5-6 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R^{15e};

20 R^{15e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{15f}R^{15f}, and (CH₂)_rphenyl;

25 R^{15f}, at each occurrence, is selected from H, C₁₋₅ alkyl, C₃₋₆ cycloalkyl, and phenyl;

30 35 R¹⁶, at each occurrence, is selected from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, Br, I, F, NO₂, CN, (CHR')_rNR^{16a}R^{16a'}, (CHR')_rOH, (CHR')_rO(CHR')_rR^{16d}, (CHR')_rSH, (CHR')_rC(O)H, (CHR')_rS(CHR')_rR^{16d}, (CHR')_rC(O)OH, (CHR')_rC(O)(CHR')_rR^{16b}, (CHR')_rC(O)NR^{16a}R^{16a'}, (CHR')_rNR^{16f}C(O)(CHR')_rR^{16b}, (CHR')_rC(O)O(CHR')_rR^{16d}, (CHR')_rOC(O)(CHR')_rR^{16b}, (CHR')_rC(=NR^{16f})NR^{16a}R^{16a'}, (CHR')_rNHC(=NR^{16f})NR^{16f}R^{16f}, (CHR')_rS(O)_p(CHR')_rR^{16b}, (CHR')_rS(O)₂NR^{16a}R^{16a'}, (CHR')_rNR^{16f}S(O)₂(CHR')_rR^{16b}, C₁₋₆ haloalkyl, C₂₋₈ alkenyl substituted with 0-3 R',

C₂₋₈ alkynyl substituted with 0-3 R', and
(CHR')_rphenyl substituted with 0-3 R^{16e};

5 R^{16a} and R^{16a'}, at each occurrence, are selected from H,
C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, a (CH₂)_r-C₃₋₁₀
carbocyclic residue substituted with 0-5 R^{16e}, and a
(CH₂)_r-5-10 membered heterocyclic system containing
1-4 heteroatoms selected from N, O, and S,
substituted with 0-2 R^{16e};

10 10 R^{16b}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈
alkenyl, C₂₋₈ alkynyl, a (CH₂)_rC₃₋₆ carbocyclic
residue substituted with 0-3 R^{16e}, and a (CH₂)_r-5-6
membered heterocyclic system containing 1-4
15 heteroatoms selected from N, O, and S, substituted
with 0-2 R^{16e};

20 R^{16d}, at each occurrence, is selected from C₂₋₈ alkenyl,
C₂₋₈ alkynyl, C₁₋₆ alkyl substituted with 0-3 R^{16e}, a
(CH₂)_r-C₃₋₁₀ carbocyclic residue substituted with 0-3
R^{16e}, and a (CH₂)_r-5-6 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-3 R^{16e};

25 R^{16e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈
alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, F,
Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH,
(CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{16f}R^{16f}, and (CH₂)_rphenyl;

30 R^{16f}, at each occurrence, is selected from H, C₁₋₅ alkyl,
and C₃₋₆ cycloalkyl, and phenyl;

v is selected from 0, 1, and 2;

35 t is selected from 1 and 2;

w is selected from 0 and 1;

r is selected from 0, 1, 2, 3, 4, and 5;

q is selected from 1, 2, 3, 4, and 5; and

5

p is selected from 1, 2, and 3.

2. The compound according to Claim 1, wherein:

10 R⁴ is absent, taken with the nitrogen to which it is attached to form an N-oxide, or selected from C₁₋₈ alkyl, (CH₂)_rC₃₋₆ cycloalkyl, and (CH₂)_r-phenyl substituted with 0-3 R^{4c};

15 R^{4c}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, (CH₂)_rOH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{4a}R^{4a'}, and (CH₂)_rphenyl;

20 R² is selected from H and C₁₋₄ alkyl;

R⁶, at each occurrence, is selected from C₁₋₄ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, (CF₂)_rCF₃, CN, (CH₂)_rOH, (CH₂)_rOR^{6b}, (CH₂)_rC(O)R^{6b}, 25 (CH₂)_rC(O)NR^{6a}R^{6a'}, (CH₂)_rNR^{6d}C(O)R^{6a}, and (CH₂)_tphenyl substituted with 0-3 R^{6c};

30 R^{6a} and R^{6a'}, at each occurrence, are selected from H, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and phenyl substituted with 0-3 R^{6c};

R^{6b}, at each occurrence, is selected from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and phenyl substituted with 0-3 R^{6c};

35 R^{6c}, at each occurrence, is selected from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃,

$(CH_2)_rOC_{1-5}$ alkyl, $(CH_2)_rOH$, $(CH_2)_rSC_{1-5}$ alkyl, and
 $(CH_2)_rNR^{6d}R^{6d}$;

5 R^{6d} , at each occurrence, is selected from H, C_{1-6} alkyl,
 and

C_{3-6} cycloalkyl;

10 R^7 , is selected from H, C_{1-3} alkyl, $(CH_2)_rC_{3-6}$ cycloalkyl,
 $(CH_2)_qOH$, $(CH_2)_qOR^{7d}$, $(CH_2)_qNR^{7a}R^{7a'}$, $(CH_2)_rC(O)R^{7b}$,
 $(CH_2)_rC(O)NR^{7a}R^{7a'}$, $(CH_2)_qNR^{7a}C(O)R^{7a}$, C_{1-6} haloalkyl,
 $(CH_2)_r$ phenyl with 0-2 R^{7c} ;

15 R^{7a} and $R^{7a'}$, at each occurrence, are selected from H, C_{1-6} alkyl,
 $(CH_2)_rC_{3-6}$ cycloalkyl, a $(CH_2)_r$ phenyl substituted with 0-3 R^{7e} ;

20 R^{7b} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl,
 $(CH_2)_r$ phenyl substituted with 0-3 R^{7e} ;

25 R^{7c} , at each occurrence, is selected from C_{1-4} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $(CH_2)_rC_{3-6}$ cycloalkyl, Cl, Br, I, F, $(CF_2)_rCF_3$, NO_2 , CN, $(CH_2)_rNR^{7f}R^{7f}$, $(CH_2)_rOH$, $(CH_2)_rOC_{1-4}$ alkyl, $(CH_2)_rC(O)R^{7b}$, $(CH_2)_rC(O)NR^{7f}R^{7f}$, $(CH_2)_rNR^{7f}C(O)R^{7a}$, $(CH_2)_rS(O)_pR^{7b}$, $(CH_2)_rS(O)_2NR^{7f}R^{7f}$, $(CH_2)_rNR^{7f}S(O)_2R^{7b}$, and $(CH_2)_r$ phenyl substituted with 0-2 R^{7e} ;

30 R^{7d} , at each occurrence, is selected from C_{1-6} alkyl, $(CH_2)_rC_{3-6}$ cycloalkyl, $(CH_2)_r$ phenyl substituted with 0-3 R^{7e} ;

35 R^{7e} , at each occurrence, is selected from C_{1-6} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-6} cycloalkyl, Cl, F, Br, I, CN, NO_2 , $(CF_2)_rCF_3$, $(CH_2)_rOC_{1-5}$ alkyl, OH, SH, $(CH_2)_rSC_{1-5}$ alkyl, $(CH_2)_rNR^{7f}R^{7f}$, and $(CH_2)_r$ phenyl;

R^{7f} , at each occurrence, is selected from H, C₁₋₅ alkyl, and C₃₋₆ cycloalkyl;

R^8 is H or joins with R^7 to form =NR^{8b};

5

R^9 , is selected from H, C₁₋₃ alkyl, (CH₂)_rC₃₋₆ cycloalkyl, (CH₂)_rOH, (CH₂)_rOR^{9d}, (CH₂)_rNR^{9a}R^{9a'}, (CH₂)_rC(O)R^{9b}, (CH₂)_rC(O)NR^{9a}R^{9a'}, (CH₂)_rNR^{9a}C(O)R^{9a}, C₁₋₆ haloalkyl, (CH₂)_rphenyl with 0-2 R^{9c}, (CH₂)_r-5-10 membered

10 heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R¹⁵;

$R^{9'}$, is selected from H, C₁₋₃ alkyl, (CH₂)_rC₃₋₆ cycloalkyl, (CH₂)_rOH, (CH₂)_rOR^{9d}, (CH₂)_rNR^{9a}R^{9a'}, (CH₂)_rC(O)R^{9b}, (CH₂)_rC(O)NR^{9a}R^{9a'}, (CH₂)_rNR^{9a}C(O)R^{9a}, C₁₋₆ haloalkyl, (CH₂)_rphenyl with 0-2 R^{9c}, (CH₂)_r-5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R¹⁵;

20 R^{9a} and $R^{9a'}$, at each occurrence, are selected from H, C₁₋₆ alkyl, (CH₂)_rC₃₋₆ cycloalkyl, a (CH₂)_rphenyl substituted with 0-3 R^{9e};

25 R^{9b} , at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, (CH₂)_rphenyl substituted with 0-3 R^{9e};

30 R^{9c} , at each occurrence, is selected from C₁₋₄ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, Br, I, F, (CF₂)_rCF₃, NO₂, CN, (CH₂)_rNR^{9f}R^{9f}, (CH₂)_rOH, (CH₂)_rOC₁₋₄ alkyl, (CH₂)_rC(O)R^{9b}, (CH₂)_rC(O)NR^{9f}R^{9f}, (CH₂)_rNR^{9f}C(O)R^{9a}, (CH₂)_rS(O)_pR^{9b}, (CH₂)_rS(O)₂NR^{9f}R^{9f}, (CH₂)_rNR^{9f}S(O)₂R^{9b}, and (CH₂)_rphenyl substituted with 0-2 R^{9e};

35

R^{9d} , at each occurrence, is selected from C₁₋₆ alkyl, (CH₂)_rC₃₋₆ cycloalkyl, (CH₂)_rphenyl substituted with 0-3 R^{9e} ;

5 R^{9e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{9f}R^{9f}, and (CH₂)_rphenyl;

10 R^{9f}, at each occurrence, is selected from H, C₁₋₅ alkyl
and C₃₋₆ cycloalkyl;

R^{10} is H ;

15 R¹¹, is selected from H, C₁₋₃ alkyl, (CH₂)_rC₃₋₆ cycloalkyl,
 (CH₂)_qOH, (CH₂)_qOR^{11d}, (CH₂)_qNR^{11a}R^{11a'}, (CH₂)_rC(O)R^{11b},
 (CH₂)_rC(O)NR^{11a}R^{11a'}, (CH₂)_qNR^{11a}C(O)R^{11a}, C₁₋₆
 haloalkyl, (CH₂)_rphenyl with 0-2 R^{11c}, (CH₂)_r-5-10
 membered heterocyclic system containing 1-4
 20 heteroatoms selected from N, O, and S, substituted
 with 0-3 R¹⁵;

$R^{11'}$, is selected from H, C₁₋₃ alkyl, $(CH_2)_rC_{3-6}$ cycloalkyl, $(CH_2)_qOH$, $(CH_2)_qOR^{11d}$, $(CH_2)_qNR^{11a}R^{11a'}$, $(CH_2)_rC(O)R^{11b}$, $(CH_2)_rC(O)NR^{11a}R^{11a'}$, $(CH_2)_qNR^{11a}C(O)R^{11a'}$, C₁₋₆ haloalkyl, $(CH_2)_r$ phenyl with 0-2 R^{11c}, $(CH_2)_r$ -5-10 membered heterocyclic system containing 1-4 heteroatoms selected from N, O, and S, substituted with 0-3 R¹⁵;

30 R^{11a} and R^{11a'}, at each occurrence, are selected from H,
 C₁₋₆ alkyl, (CH₂)_rC₃₋₆ cycloalkyl, a (CH₂)_rphenyl
 substituted with 0-3 R^{11e};

35 R^{11b}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, (CH₂)_rphenyl substituted with 0-3 R^{11e};

R^{11c}, at each occurrence, is selected from C₁₋₄ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, (CH₂)_rC₃₋₆ cycloalkyl, Cl, Br, I, F, (CF₂)_rCF₃, NO₂, CN, (CH₂)_rNR^{11f}R^{11f}, (CH₂)_rOH,

5 (CH₂)_rOC₁₋₄ alkyl, (CH₂)_rC(O)R^{11b}, (CH₂)_rC(O)NR^{11f}R^{11f}, (CH₂)_rNR^{11f}C(O)R^{11a}, (CH₂)_rS(O)_pR^{11b}, (CH₂)_rS(O)₂NR^{11f}R^{11f}, (CH₂)_rNR^{11f}S(O)₂R^{11b}, and (CH₂)_rphenyl substituted with 0-2 R^{11e};

10 R^{11d}, at each occurrence, is selected from C₁₋₆ alkyl, (CH₂)_rC₃₋₆ cycloalkyl, (CH₂)_rphenyl substituted with 0-3 R^{11e};

15 R^{11e}, at each occurrence, is selected from C₁₋₆ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, OH, SH, (CH₂)_rSC₁₋₅ alkyl, (CH₂)_rNR^{11f}R^{11f}, and (CH₂)_rphenyl;

20 R^{11f}, at each occurrence, is selected from H, C₁₋₅ alkyl and C₃₋₆ cycloalkyl;

R¹² is H;

25 R¹³, at each occurrence, is selected from C₁₋₄ alkyl, C₃₋₆ cycloalkyl, (CH₂)NR^{13a}R^{13a'}, (CH₂)OH, (CH₂)OR^{13b}, (CH₂)_wC(O)R^{13b}, (CH₂)_wC(O)NR^{13a}R^{13a'}, (CH₂)NR^{13d}C(O)R^{13a}, (CH₂)_wS(O)₂NR^{13a}R^{13a'}, (CH₂)NR^{13d}S(O)₂R^{13b}, and (CH₂)_w-phenyl substituted with 0-3 R^{13c};

30 R^{13a} and R^{13a'}, at each occurrence, are selected from H, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and phenyl substituted with 0-3 R^{13c};

35 R^{13b}, at each occurrence, is selected from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and phenyl substituted with 0-3 R^{13c};

R^{13c}, at each occurrence, is selected from C₁₋₆ alkyl, C₃₋₆ cycloalkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, (CH₂)_rOC₁₋₅ alkyl, (CH₂)_rOH, and (CH₂)_rNR^{13d}R^{13d};

5

R^{13d}, at each occurrence, is selected from H, C₁₋₆ alkyl, and

C₃₋₆ cycloalkyl;

10 v is selected from 1 and 2;

q is selected from 1, 2, and 3; and

r is selected from 0, 1, 2, and 3.

15

3. The compound according to Claim 2, wherein:

R³ is selected from a (CR^{3'}H)_r-carbocyclic residue
20 substituted with 0-5 R¹⁵, wherein the carbocyclic
residue is selected from phenyl, C₃₋₆ cycloalkyl,
naphthyl, and adamantyl; and a (CR^{3'}H)_r-heterocyclic
system substituted with 0-3 R¹⁵, wherein the
heterocyclic system is selected from pyridinyl,
thiophenyl, furanyl, indazolyl, benzothiazolyl,
25 benzimidazolyl, benzothiophenyl, benzofuranyl,
benzoxazolyl, benzisoxazolyl, quinolinyl,
isoquinolinyl, imidazolyl, indolyl, isoindolyl,
piperidinyl, pyrazolyl, 1,2,4-triazolyl, 1,2,3-
triazolyl, tetrazolyl, thiazolyl, oxazolyl,
30 pyrazinyl, and pyrimidinyl; and

R⁵ is selected from (CR^{5'}H)_t-phenyl substituted with 0-5
R¹⁶; and a (CR^{5'}H)_t-heterocyclic system substituted
with 0-3 R¹⁶, wherein the heterocyclic system is
35 selected from pyridinyl, thiophenyl, furanyl,
indazolyl, benzothiazolyl, benzimidazolyl,
benzothiophenyl, benzofuranyl, benzoxazolyl,

benzisoxazolyl, quinolinyl, isoquinolinyl,
imidazolyl, indolyl, isoindolyl, piperidinyl,
pyrrazolyl, 1,2,4-triazolyl, 1,2,3-triazolyl,
tetrazolyl, thiazolyl, oxazolyl, pyrazinyl, and
5 pyrimidinyl.

4. The compound according to Claim 3, wherein:

R⁴ is absent; and

10 R⁹, R^{9'}, R¹⁰, R¹¹, R^{11'}, R¹², and R¹³ are H.

5. The compound according to Claim 4, wherein the
15 R¹⁶, at each occurrence, is selected from C₁₋₈ alkyl,
(CH₂)_rC₃₋₆ cycloalkyl, CF₃, Cl, Br, I, F,
(CH₂)_rNR^{16a}R^{16a'}, NO₂, CN, OH, (CH₂)_rOR^{16d},
(CH₂)_rC(O)R^{16b}, (CH₂)_rC(O)NR^{16a}R^{16a'},
(CH₂)_rNR^{16f}C(O)R^{16b}, (CH₂)_rS(O)_pR^{16b},
20 (CH₂)_rS(O)₂NR^{16a}R^{16a'}, (CH₂)_rNR^{16f}S(O)₂R^{16b}, and
(CH₂)_rphenyl substituted with 0-3 R^{16e};

R^{16a} and R^{16a'}, at each occurrence, are selected from H,
C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and (CH₂)_rphenyl
25 substituted with 0-3 R^{16e};

R^{16b}, at each occurrence, is selected from H, C₁₋₆ alkyl,
C₃₋₆ cycloalkyl, and (CH₂)_rphenyl substituted with 0-
3 R^{16e};

30 R^{16d}, at each occurrence, is selected from C₁₋₆ alkyl and
phenyl;

R^{16e}, at each occurrence, is selected from C₁₋₆ alkyl, Cl,
35 F, Br, I, CN, NO₂, (CF₂)_rCF₃, OH, and (CH₂)_rOC₁₋₅
alkyl; and

R^{16f}, at each occurrence, is selected from H, and C₁₋₅ alkyl.

6. The compound according to Claim 5, wherein R⁵ is
5 CH₂-phenyl substituted with 0-3 R¹⁶.

7. The compound according to Claim 6, wherein:

R³ is selected from a carbocyclic residue substituted with
10 0-3 R¹⁵, wherein the carbocyclic residue is selected
from phenyl and C₃₋₆ cycloalkyl; and a heterocyclic
system substituted with 0-3 R¹⁵, wherein the
heterocyclic system is selected from pyridinyl,
15 thiophenyl, furanyl, indazolyl, benzothiazolyl,
benzimidazolyl, benzothiophenyl, benzofuranyl,
benzoxazolyl, benzisoxazolyl, quinolinyl,
isoquinolinyl, imidazolyl, indolyl, isoindolyl,
piperidinyl, pyrazolyl, 1,2,4-triazolyl, 1,2,3-
20 triazolyl, tetrazolyl, thiazolyl, oxazolyl,
pyrazinyl, and pyrimidinyl.

8. The compound according to Claim 7, wherein:

R¹⁵, at each occurrence, is selected from C₁₋₈ alkyl,
25 (CH₂)_rC₃₋₆ cycloalkyl, CF₃, Cl, Br, I, F,
(CH₂)_rNR^{15a}R^{15a'}, NO₂, CN, OH, (CH₂)_rOR^{15d},
(CH₂)_rC(O)R^{15b}, (CH₂)_rC(O)NR^{15a}R^{15a'},
(CH₂)_rNR^{15f}C(O)R^{15b}, (CH₂)_rS(O)_pR^{15b},
(CH₂)_rS(O)₂NR^{15a}R^{15a'}, (CH₂)_rNR^{15f}S(O)₂R^{15b},
30 (CH₂)_rphenyl substituted with 0-3 R^{15e}, and a
(CH₂)_r-5-6 membered heterocyclic system containing 1-
4 heteroatoms selected from N, O, and S, substituted
with 0-2 R^{15e};
35 R^{15a} and R^{15a'}, at each occurrence, are selected from H,
C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and (CH₂)_rphenyl
substituted with 0-3 R^{15e};

R^{15b}, at each occurrence, is selected from H, C₁₋₆ alkyl, C₃₋₆ cycloalkyl, and (CH₂)_rphenyl substituted with 0-3 R^{15e};

5

R^{15d}, at each occurrence, is selected from C₁₋₆ alkyl and phenyl;

10 R^{15e}, at each occurrence, is selected from C₁₋₆ alkyl, Cl, F, Br, I, CN, NO₂, (CF₂)_rCF₃, OH, and (CH₂)_rOC₁₋₅ alkyl; and

15 R^{15f}, at each occurrence, is selected from H, and C₁₋₅ alkyl.

15

9. The compound according to Claim 8, wherein E is -CR⁷R⁸-.

10. The compound according to Claim 9, wherein:
20 Z is selected from C(O)NR²R³, C(=NR¹)NR²R³, C(=CHCN)NR²R³, C(=CHNO₂)NR²R³, and C(=C(CN)₂)NR²R³.

11. The compound according to Claim 10, wherein:
R⁶ is H; and
25 when K is CHR⁵, either:
1) M is absent, or
2) Z is other than C(O)NR²R³.

12. The compound according to Claim 11, wherein E
30 is -CH₂-.

13. The compound according to Claim 11, wherein:
Y is selected from:

35

5 14. The compound according to Claim 13, wherein:
Y is selected from:

10 15. The compound according to Claim 11, wherein:
R¹⁶, at each occurrence, is selected from C₁₋₈ alkyl,
(CH₂)_rC₃₋₆ cycloalkyl, CF₃, Cl, Br, I, F,
(CH₂)_rNR^{16a}R^{16a'}, CN, OH, OCF₃, (CH₂)_rOR^{16d},
(CH₂)_rC(O)R^{16b};

15 R^{16a} and R^{16a'}, at each occurrence, are selected from H,
C₁₋₆ alkyl, and C₃₋₆ cycloalkyl;

20 R^{16b}, at each occurrence, is selected from H, C₁₋₆ alkyl,
C₃₋₆ cycloalkyl, and (CH₂)_rphenyl substituted with 0-
3 R^{16e};

25 R^{16d}, at each occurrence, is selected from C₁₋₆ alkyl and
phenyl.

25 16. The compound according to Claim 15, wherein R¹⁶
is selected from F, Cl, Br, OCF₃, and CF₃.

17. The compound according to Claim 11, wherein:

5 R¹⁵, at each occurrence, is selected from CN, C(O)R^{15b}, and
a (CH₂)_r-5-6 membered heterocyclic system containing
1-4 heteroatoms selected from N, O, and S,
substituted with 0-2 R^{15e};

10 R^{15b}, at each occurrence, is selected from H, C₁₋₆ alkyl,
C₃₋₆ cycloalkyl, and (CH₂)_rphenyl substituted with 0-
3 R^{15e}; and

15 R^{15e}, at each occurrence, is selected from C₁₋₆ alkyl, Cl,
F, Br, I, CN, NO₂, (CF₂)_rCF₃, OH, and (CH₂)_rOC₁₋₅
alkyl.

18. The compound according to Claim 15, wherein:

20 R¹⁵, at each occurrence, is selected from CN, C(O)R^{15b},
and a (CH₂)_r-5-6 membered heterocyclic system
containing 1-4 heteroatoms selected from N, O, and
S, substituted with 0-2 R^{15e};

25 R^{15b}, at each occurrence, is selected from C₁₋₆ alkyl, C₃₋₆
cycloalkyl, and (CH₂)_rphenyl substituted with 0-3
R^{15e}; and

30 R^{15e}, at each occurrence, is selected from C₁₋₆ alkyl, Cl,
F, Br, I, CN, NO₂, (CF₂)_rCF₃, OH, and (CH₂)_rOC₁₋₅
alkyl.

19. The compound according to Claim 11, wherein:

35 J and Q are CH₂; and
M is absent or CH₂.

20. The compound according to Claim 15, wherein:

E is $\text{-CH}_2\text{-}$; and
Y is selected from:

5

21. The compound according to Claim 17, wherein:
E is $\text{-CH}_2\text{-}$; and
Y is selected from:

10

22. The compound according to Claim 19, wherein:

Y is:

15

23. The compound according to Claim 19, wherein:
Y is:

20

24. The compound according to Claim 22, wherein K
is CH₂.

25. The compound according to Claim 23, wherein K
is CH₂.

26. The compound according to Claim 1, wherein:
Z is selected from $C(=NR^1)NR^2R^3$ and $C(=C(CN)_2)NR^2R^3$.

5 27. The compound according to Claim 2, wherein:
Z is selected from $C(=NR^1)NR^2R^3$ and $C(=C(CN)_2)NR^2R^3$.

28. The compound according to Claim 4, wherein:
Z is selected from $C(=NR^1)NR^2R^3$ and $C(=C(CN)_2)NR^2R^3$.

10

29. The compound according to Claim 7, wherein:
Z is selected from $C(=NR^1)NR^2R^3$ and $C(=C(CN)_2)NR^2R^3$.

15

30. The compound according to Claim 13, wherein:
Z is selected from $C(=NR^1)NR^2R^3$ and $C(=C(CN)_2)NR^2R^3$.

31. The compound according to Claim 22, wherein:
Z is selected from $C(=NCN)NR^2R^3$ and $C(=C(CN)_2)NR^2R^3$.

20

32. The compound according to Claim 23, wherein:
Z is selected from $C(=NCN)NR^2R^3$ and $C(=C(CN)_2)NR^2R^3$.

25

33. The compound according to Claim 24, wherein:
Z is selected from $C(=NCN)NHR^3$ and $C(=C(CN)_2)NHR^3$; and R¹⁶
is selected from F, Cl, Br, OCF₃, and CF₃.

30

34. The compound according to Claim 25, wherein:
Z is selected from $C(=NCN)NHR^3$ and $C(=C(CN)_2)NHR^3$; and R¹⁶
is selected from F, Cl, Br, OCF₃, and CF₃.

35

35. The compound according to Claim 14, wherein:
Z is selected from $C(=NCN)NR^2R^3$ and $C(=C(CN)_2)NR^2R^3$.

35

36. The compound according to Claim 11, wherein R³
is phenyl substituted with 0-3 R¹⁵.

37. The compound according to Claim 14, wherein R³ is phenyl substituted with 0-3 R¹⁵.

38. The compound according to Claim 17, wherein R³ 5 is phenyl substituted with 0-3 R¹⁵.

39. The compound according to Claim 14, wherein:
R³ is phenyl substituted with 0-3 R¹⁵;
Z is selected from C(=NR¹)NR²R³ and C(=C(CN)₂)NR²R³;
10 J and Q are CH₂; and
M is absent or CH₂.

40. The compound according to Claim 1, wherein the compound of formula I is selected from:
15

(+/-)-N-phenyl-3-[[4-(phenylmethyl)-1-piperidinyl]methyl]-1-piperidinecarboxamide,

20 (+/-)-N-(3-methoxyphenyl)-3-[[4-(phenylmethyl)-1-piperidinyl] methyl]-1-piperidinecarboxamide,

(+/-)-N-(3-carboethoxyphenyl)-3-[[4-(phenylmethyl)-1-piperidinyl]methyl]-1-piperidinecarboxamide,

25 (+/-)-N-(3-cyanophenyl)-3-[[4-(phenylmethyl)-1-piperidinyl]methyl]-1-piperidinecarboxamide,

(+/-)-N-(1-adamantyl)-3-[[4-(phenylmethyl)-1-piperidinyl] methyl]-1-piperidinecarboxamide,

30 N-phenyl-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]-1-piperidinecarboxamide,

35 N-(3-cyanophenyl)-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]-1-piperidinecarboxamide,

N-(1-adamantyl)-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]-1-piperidinecarboxamide,

5 N-(3-methoxyphenyl)-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]-1-piperidinecarboxamide,

N-(3-carboethoxyphenyl)-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]-1-piperidinecarboxamide,

10 1-benzoyl-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]piperidine,

1-phenylacetyl-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]piperidine,

15 1-(3,4-dimethoxybenzoyl)-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]piperidine,

20 1-(3,5-dichlorobenzoyl)-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]piperidine,

1-(3,5-difluorobenzoyl)-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]piperidine,

25 1-(3,5-dimethoxybenzoyl)-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]piperidine,

1-(3,4-methylenedioxybenzoyl)-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]piperidine,

30 1-(2-thiophenesulfonyl)-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]-1-piperidinecarboxamide,

35 1-(3-methoxyphenylacetyl)-4-[[4-(phenylmethyl)-1-piperidinyl]methyl]piperidine,

1-(4-methoxyphenylacetyl)-4-[[4-(phenylmethyl)-1-piperidinyl] methyl]piperidine,

5 (+/-)-N-phenyl-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl] methyl]-1-piperidinecarboxamide,

(+/-)-N-(3-cyanophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-piperidinecarboxamide,

10 (+/-)-N-(1-adamantylphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-piperidinecarboxamide,

15 (+/-)-N-(3-carboethoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-piperidinecarboxamide,

(+/-)-N-(4-fluorophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-piperidinecarboxamide,

20 (+/-)-N-(3-methoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-piperidinecarboxamide,

(+/-)-N-(3-cyanophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

25 (+/-)-N-(3-carboethoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

(+/-)-N-(4-fluorophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

30 (+/-)-N-(4-carboethoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

35 (+/-)-N-(4-fluorophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

(+/-)-N-(1-adamantylphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

5 (+/-)-N-phenyl-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

(+/-)-N-(3-methoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

10 (+/-)-1-phenylsulfonyl-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

15 (+/-)-1-benzoyl-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

(+/-)-1-benzyloxycarbonyl-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

20 (+/-)-N-phenyl-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-pyrrolidinecarboxamide,

(+/-)-N-(3-cyanophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-pyrrolidinecarboxamide,

25 (+/-)-N-(3-methoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-pyrrolidinecarboxamide,

30 (+/-)-N-(4-fluorophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-piperidinecarboxamide,

(+/-)-N-(3-carboethoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-pyrrolidinecarboxamide,

35

(+/-)-N-(4-carboethoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-pyrrolidinecarboxamide,

5 (+/-)-N-(1-adamantylphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-pyrrolidinecarboxamide,

10 (+/-)-N-phenyl-2-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl] ethyl]-1-piperidinecarboxamide,

(+/-)-N-(3-cyanophenyl)-2-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

15 (+/-)-N-(3-methoxyphenyl)-2-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

(+/-)-N-(4-fluorophenyl)-2-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

20 (+/-)-N-(3-carboethoxyphenyl)-2-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

25 (+/-)-N-(4-carboethoxyphenyl)-2-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

30 (+/-)-N-(1-adamantylphenyl)-2-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]ethyl]-1-piperidinecarboxamide,

(+/-)-N-phenyl-2-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl] methyl]-1-piperidinecarboxamide,

35 (+/-)-N-(3-cyanophenyl)-2-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-1-piperidinecarboxamide,

(+/-)-N-(3-methoxyphenyl)-2-[[4-[(4-fluorophenyl)methyl]-
1-piperidinyl]methyl]-1-piperidinecarboxamide,

5 (+/-)-N-(4-fluorophenyl)-2-[[4-[(4-fluorophenyl)methyl]-
1-piperidinyl]methyl]-1-piperidinecarboxamide,

10 (+/-)-N-(3-carboethoxyphenyl)-2-[[4-[(4-
fluorophenyl)methyl]-1-piperidinyl]methyl]-1-
piperidinecarboxamide,

15 (+/-)-N-(4-carboethoxyphenyl)-2-[[4-[(4-
fluorophenyl)methyl]-1-piperidinyl]methyl]-1-
piperidinecarboxamide,

20 (+/-)-N-(1-adamantylphenyl)-2-[[4-[(4-
fluorophenyl)methyl]-1-piperidinyl]methyl]-1-
piperidinecarboxamide,

25 (+/-)-N-(3-cyanophenyl)-2-[[4-[(4-fluorophenyl)methyl]-1-
piperidinyl]methyl]-4-morpholinecarboxamide,

30 (+/-)-N-(3-carboethoxyphenyl)-2-[[4-[(4-
fluorophenyl)methyl]-1-piperidinyl]methyl]-4-
morpholinecarboxamide,

35 (+/-)-N-(4-carboethoxyphenyl)-2-[[4-[(4-
fluorophenyl)methyl]-1-piperidinyl]methyl]-4-
morpholinecarboxamide,

- (+/-)-N-phenyl-2-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-4-morpholinecarboxamide,
- 5 (+/-)-N-(3-methoxyphenyl)-2-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-4-morpholinecarboxamide,
- 10 (+/-)-N-(3-cyanophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3-hydroxy-1-piperidinecarboxamide,
- 15 (+/-)-N-(3-carboethoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3-hydroxy-1-piperidinecarboxamide,
- 20 (+/-)-N-(4-carboethoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3-hydroxy-1-piperidinecarboxamide,
- 25 (+/-)-N-(4-fluorophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3-hydroxy-1-piperidinecarboxamide,
- 30 (+/-)-N-phenyl-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3-hydroxy-1-piperidinecarboxamide,
- 35 (+/-)-N-(3-methoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3-hydroxy-1-piperidinecarboxamide,
- (+/-)-N-(3-cyanophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3-phenylmethyl-1-piperidinecarboxamide,
- (+/-)-N-(4-fluorophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3-phenylmethyl-1-piperidinecarboxamide,

(+/-)-N-phenyl-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl] methyl]-3-phenylmethyl-1-piperidinecarboxamide,

5 (+/-)-N-(3-methoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3-phenylmethyl-1-piperidine-carboxamide,

10 (+/-)-(cis)-N-(3-cyanophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidine-carboxamide,

15 (+/-)-(cis)-N-(3-carboethoxyphenyl)-3-[[4-[(4-fluorophenyl) methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidinecarboxamide,

(+/-)-(cis)-N-(4-carboethoxyphenyl)-3-[[4-[(4-fluorophenyl) methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidinecarboxamide,

20 (+/-)-(cis)-N-(4-fluorophenyl)-3-[[4-[(4-fluorophenyl) methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidine carboxamide,

25 (+/-)-(cis)-N-phenyl-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidine-carboxamide,

30 (+/-)-(cis)-N-(3-methoxyphenyl)-3-[[4-[(4-fluorophenyl) methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidinecarboxamide,

35 (+/-)-(trans)-N-(3-cyanophenyl)-3-[[4-[(4-fluorophenyl) methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidinecarboxamide,

(+/-)-(trans)-N-(3-carboethoxyphenyl)-3-[[4-[(4-fluorophenyl) methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidinecarboxamide,

5 (+/-)-(trans)-N-(4-carboethoxyphenyl)-3-[[4-[(4-fluorophenyl) methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidinecarboxamide,

10 (+/-)-(trans)-N-(4-fluorophenyl)-3-[[4-[(4-fluorophenyl) methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidinecarboxamide,

15 (+/-)-(trans)-N-phenyl-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidinecarboxamide,

(+/-)-(trans)-N-(3-methoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidinecarboxamide,

20 (+/-)-(trans)-N-(3-acetylphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-2-phenylmethyl-1-piperidinecarboxamide,

25 (+/-)-N-(3-cyanophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3,4-dihydro-2(1H)isoquinolinecarboxamide,

30 (+/-)-N-(phenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3,4-dihydro-2(1H)isoquinolinecarboxamide,

35 (+/-)-N-(3-methoxyphenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3,4-dihydro-2(1H)isoquinolinecarboxamide,

(+/-)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]- 1,2,3,4-tetrahydro-2-(phenylacetyl)isoquinoline,

5 (+/-)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]- 1,2,3,4-tetrahydro-2-(phenylmethylsulfonyl)isoquinoline,

10 (+/-)-Phenyl-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl] methyl]-3,4-dihydro-2(1H) isoquinolinecarboxylate,

15 (+/-)-N-(4-cyanophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3,4-dihydro-2(1H) isoquinoline-carboxamide,

(+/-)-N-(4-fluorophenyl)-3-[[4-[(4-fluorophenyl)methyl]-1-piperidinyl]methyl]-3,4-dihydro-2(1H)isoquinoline-carboxamide,

20 (+/-)-N-(3-cyanophenyl)-3-[2-[4-[(phenyl)methyl]-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinoline-carboxamide,

25 (+/-)-3-[[4-[(phenyl)methyl]-1-piperidinyl]ethyl]- 1,2,3,4- tetrahydro-2-(phenylsulfonyl)isoquinoline,

30 (+/-)-N-(4-fluorophenyl)-3-[2-[4-[(phenyl)methyl]-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinoline-carboxamide,

(+/-)-N-(phenyl)-3-[2-[4-[(phenyl)methyl]-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinolinecarboxamide,

35 (+/-)-3-[[4-[(phenyl)methyl]-1-piperidinyl]ethyl]- 1,2,3,4- tetrahydro-2-(2-thiophenesulfonyl)isoquinoline,

(+/-)-3-[(4-[(phenyl)methyl]-1-piperidinyl)ethyl]-
1,2,3,4-tetrahydro-2-(phenacetyl)isoquinoline,

5 (+/-)-N-(3-methoxyphenyl)-3-[2-[4-[(phenyl)methyl]-1-
piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinoline-
carboxamide,

10 (+/-)-N-(phenyl)-3-[2-[4-[(4-fluorophenyl)methyl]-1-
piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinoline-
carboxamide,

15 (+/-)-N-(3-methoxyphenyl)-3-[2-[4-[(4-
fluorophenyl)methyl]-1-piperidinyl]ethyl]-3,4-dihydro-
2(1H)-isoquinoline- carboxamide,

20 (+/-)-N-(3-cyanophenyl)-3-[2-[4-[(4-fluorophenyl)methyl]-1-
piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinoline-
carboxamide,

25 (+/-)-3-[(4-fluorophenyl)methyl]-1-
piperidinyl]ethyl]- 1,2,3,4-tetrahydro-2-
(phenylmethylsulfonyl)isoquinoline,

30 (+/-)-Phenyl-3-[2-[4-[(4-fluorophenyl)methyl]-1-
piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinoline-
carboxylate,

35 (+/-)-N-(3-carboethoxyphenyl)-3-[2-[4-[(phenyl)methyl]-1-
piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinoline-
carboxamide,

(+/-)-N-(3-carboethoxyphenyl)-3-[2-[4-[(4-fluorophenyl)
methyl]-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-
isoquinolinecarboxamide,

35

(+/-)-N-(3-cyanophenyl)-4-[2-[4-(phenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinolinecarboxamide,

5 (+/-)-4-[2-[4-(phenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)phenylsulfonyl isoquinoline,

(+/-)-N-(4-fluorophenyl)-4-[2-[4-(phenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-

10 isoquinolinecarboxamide,

(+/-)-N-(phenyl)-4-[2-[4-(phenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinolinecarboxamide,

15

(+/-)-N-(3-methoxyphenyl)-4-[2-[4-(phenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinolinecarboxamide,

20 (+/-)-Phenyl-4-[2-[4-(phenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinolinecarboxylate,

(+/-)-4-[2-[4-(phenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H) phenacetyl isoquinoline,

25

(+/-)-N-(3-cyanophenyl)-4-[2-[4-(4-fluorophenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinolinecarboxamide,

30 (+/-)-4-[2-[4-(4-fluorophenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-[phenyl]sulfonyl isoquinoline,

35 (+/-)-4-[2-[4-(4-fluorophenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H) [phenacetyl] isoquinoline,

(+/-)-4-[2-[4-(4-fluorophenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-[phenylmethyl]sulfonylisoquinoline,

5 (+/-)-N-(4-carbethoxyphenyl)-4-[2-[4-(4-fluorophenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinoline-carboxamide,

10 (+/-)-N-(4-fluorophenyl)-4-[2-[4-(phenylmethyl)-1-piperidinyl]ethyl]-3,4-dihydro-2(1H)-isoquinolinecarboxamide,

15 (2R)-2-{[4-(4-fluorobenzyl)-1-piperidinyl]methyl}-4-[(2R)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl]morpholine,

(2R)-N-(3-acetylphenyl)-2-{[4-(4-fluorobenzyl)-1-piperidinyl]methyl}-4-morpholinecarboxamide,

20 (2R)-2-{[4-(4-fluorobenzyl)-1-piperidinyl]methyl}-N-(3-methoxyphenyl)-4-morpholinecarboxamide,

(2R)-N-(3-cyanophenyl)-2-{[4-(4-fluorobenzyl)-1-piperidinyl]methyl}-4-morpholinecarboxamide,

25 (2R)-2-{[4-(4-fluorobenzyl)-1-piperidinyl]methyl}-N-(4-fluorophenyl)-4-morpholinecarboxamide,

(2R)-2-{[4-(4-fluorobenzyl)-1-piperidinyl]methyl}-N-phenyl-4-morpholinecarboxamide,

(2R)-N-(3-cyanophenyl)-2-{[(3S)-3-(4-fluorobenzyl)piperidinyl]methyl}-4-morpholinecarboxamide,

35

(2*R*) -*N*-(3-acetylphenyl)-2-{[(3*S*)-3-(4-fluorobenzyl)piperidinyl]methyl}-4-morpholinecarboxamide,

5 (2*R*) -*N*-(3-acetylphenyl)-2-{[(3*S*)-3-(4-fluorobenzyl)piperidinyl]methyl}- *N*-phenyl-4-morpholinecarboxamide,

10 3-{[3-(4-fluorobenzyl)-1-pyrrolidinyl]methyl}-*N*-phenyl-1-piperidinecarboxamide,

N-(3-cyanophenyl)-3-{[3-(4-fluorobenzyl)-1-pyrrolidinyl]methyl}-1-piperidinecarboxamide,

15 *N*-(3-acetylphenyl)-3-{[3-(4-fluorobenzyl)-1-pyrrolidinyl]methyl}-1-piperidinecarboxamide,

3-{[(3*S*)-3-(4-fluorobenzyl)piperidinyl]methyl}- *N*-phenyl-1-piperidinecarboxamide,

20 *N*-(3-cyanophenyl)-3-{[(3*S*)-3-(4-fluorobenzyl)piperidinyl]methyl}-1-piperidinecarboxamide,

25 *N*-(3-acetylphenyl)-3-{[(3*S*)-3-(4-fluorobenzyl)piperidinyl] methyl}-1-piperidinecarboxamide,

30 *tert*-butyl 4-[(3-cyanoanilino)carbonyl]-2-{[4-(4-fluorobenzyl)-1-piperidinyl]methyl}-1-piperazinecarboxylate,

35 *N*-(3-cyanophenyl)-3-{[4-(4-fluorobenzyl)-1-piperidinyl]methyl}-1-piperazinecarboxamide dihydrochloride,

4-benzyl-*N*-(3-cyanophenyl)-3-{[4-(4-fluorobenzyl)-1-piperidinyl]methyl}-1-piperazinecarboxamide,

4-acetyl-N-(3-acetylphenyl)-3-{[4-(4-fluorobenzyl)-1-piperidinyl]methyl}-1-piperazinecarboxamide,

5 *tert*-butyl 4-[(anilino) carbonyl] -2- { [4-(4-fluorobenzyl)-1-piperidinyl]methyl } -1-piperazinecarboxylate,

tert-butyl 4-[(3-methoxyanilino) carbonyl] -2- { [4-(4-fluorobenzyl)-1-piperidinyl]methyl } -1-

10 piperazinecarboxylate,

tert-butyl 4-[(3-acetylanilino) carbonyl] -2- { [4-(4-fluorobenzyl)-1-piperidinyl]methyl } -1-piperazinecarboxylate,

15

3- { [4-(4-fluorobenzyl)-1-piperidinyl]methyl } - N-phenyl-1-piperazinecarboxamide dihydrochloride,

20

3- { [4-(4-fluorobenzyl)-1-piperidinyl]methyl } - N-(3-methoxyphenyl)-1-piperazinecarboxamide dihydrochloride,

25

N-(3-acetylphenyl)-3- { [4-(4-fluorobenzyl)-1-piperidinyl]methyl } -1-piperazinecarboxamide dihydrochloride, and

4-benzyl-N-(3-cyanophenyl)-3- { [4-(4-fluorobenzyl)-1-piperidinyl]methyl } -1-piperazinecarboxamide.

30

41. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to Claim 1.

35

42. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound according to Claim 11.

43. A method for modulation of chemokine receptor activity comprising administering to a patient in need thereof a therapeutically effective amount of a compound according to Claim 1.

5

44. The method according to Claim 43, wherein R⁹, R^{9'}, R¹⁰, R¹¹, R^{11'} and R¹² of the compound according to Claim 1 are H.

10

45. The method according to Claim 44, wherein modulation comprises contacting a CCR3 receptor with an effective inhibitory amount of the compound.

15

46. A method for treating or preventing inflammatory disorders comprising administering to a patient in need thereof a therapeutically effective amount of a compound according to Claim 1.

20

47. The method according to Claim 46, wherein R⁹, R^{9'}, R¹⁰, R¹¹, R^{11'} and R¹² of the compound according to Claim 1 are H.

25

48. The method according to Claim 46, wherein the disorder is selected from asthma, allergic rhinitis, atopic dermatitis, inflammatory bowel diseases, idiopathic pulmonary fibrosis, bullous pemphigoid, helminthic parasitic infections, allergic colitis, eczema, conjunctivitis, transplantation, familial eosinophilia, eosinophilic cellulitis, eosinophilic pneumonias, eosinophilic fasciitis, eosinophilic gastroenteritis, drug induced eosinophilia, HIV infection, cystic fibrosis, Churg-Strauss syndrome, lymphoma, Hodgkin's disease, and colonic carcinoma.

35

49. The method according to Claim 48, wherein the disorder is selected from asthma, allergic rhinitis, atopic dermatitis, and inflammatory bowel diseases.

50. The method according to Claim 49, wherein the disorder is asthma.