北京工业大学 2020——2021 学年第二学期 《数学分析-2》期末考试试卷 A 卷

考试说明: 考试时长 95 分钟; 闭卷; 解题必须给出必要的步骤, 否则无分承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做 到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承i	诺人:		学号:		班号	.	
0000	00000000000000	0000000000000	000000000000	00000000000000		0000000000000	0000
1.1.	-L->-L->4	나면로 내 기.코	= \#: /\ 100	1n4-(\t // /	が /エ /十 田 氷	一7/11-44-74	44

注: 本试卷共八大题,共<u>六</u>页,满分 100 分,考试时必须使用卷后附加的统一答题纸或草稿纸。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题号	_		三	四	五	六	七	八	总成绩
满分	14	20	20	10	10	10	10	6	
得分				-					

得 分	一、 计算下列定积分:		14 分
	$1, \int x^3 \sqrt{1-x^2} dx$	$2 \sqrt{\frac{\ln x}{x^2}} dx$	

二、1、求曲线 $y = x^2$, $y = \frac{x^2}{4}$, y = 1 围成区域的面积

2、计算
$$\lim_{x\to 0} \frac{\int_{x}^{x^{2}} (e^{x^{2}} - 1) dt}{x \sin x}$$
 3、证明: $\lim_{n\to\infty} \int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = 0$ 20 分

三、 1、判断级数 $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$ 的敛散性

1、判断级数 $\sum_{n=2}^{\infty} \frac{\left(-1\right)^n}{n^s}$ 的敛散性 (说明是条件收敛还是绝对收敛)

$$2$$
、求级数 $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$ 的收敛区间及和函数 20 分

四、设连续函数列 $\{f_n(x)\}$ 在 [0,1] 一致收敛于极限函数 f(x) ,且 $\forall n \in \mathbb{N}$ 函数 $f_n(x)$ 在 [0,1] 可积。证明 f(x) 在 [0,1] 可积。 10 分

五、利用偏导数求函数 $z=x^2y^3(6-x-y)$, x>0, y>0的极值

10分

得 分

| 六、求曲面 $z = \frac{x^2}{2} - y^2 + 1$ 在点(2, -1, 1)切平面方程与法线方程

10分

七、设z = f(u,v)有二阶连续偏导数,u = x + y + z, v = xyz,求 $\frac{\partial^2 z}{\partial x \partial y}$ 。
10 分

得 分

八、设 D_1, D_2 是 \mathbf{R}^2 中两闭集,其中 D_1 有界。用致密性定理(有界点列 必有收敛子列)证明: $\exists x_0 \in D_1, y_0 \in D_2$ 满足 $\|x_0 - y_0\| = \inf_{\substack{x \in D_1 \\ y \in D_2}} \|x - y\|$

6分