

TrenchT2™ HiperFET™ **Power MOSFET**

IXFA180N10T2 IXFP180N10T2

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

TO-263 AA (IXFA)

 $R_{\text{DS(on)}} \leq 6m\Omega$

= 100V

180A

TO-220AB (IXFP)

G = Gate	D	= Drain
S = Source	Tab	= Drain

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 175°C	100	V	
$\mathbf{V}_{\mathtt{DGR}}$	$T_J = 25^{\circ}C$ to 175°C, $R_{GS} = 1M\Omega$	100	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	$T_{\rm c}$ = 25°C (Chip Capability) Lead Current Limit, RMS	180 120	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	450	A	
I _A	$T_c = 25^{\circ}C$	90	Α	
E _{AS}	$T_{c} = 25^{\circ}C$	750	mJ	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 175^{\circ}C$	15	V/ns	
P _D	T _C = 25°C	480	W	
T		-55 +175	°C	
\mathbf{T}_{JM}		175	°C	
T _{stg}		-55 +175	°C	
T _L T _{sold}	1.6mm (0.062in.) from Case for 10s Plastic Body for 10 Seconds	300 260	°C	
M _d	Mounting Torque (TO-220)	1.13 / 10	Nm/lb.in.	
Weight	TO-263 TO-220	2.5 3.0	g g	

Symbol Test Conditions Characteristic Values (T₁ = 25°C Unless Otherwise Specified) Min. Typ. Max. $\mathbf{BV}_{\mathrm{DSS}}$ $V_{GS} = 0V, I_{D} = 250\mu A$ 100 ٧ $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ 2.0 4.0 $V_{\rm GS(th)}$ $V_{GS} = \pm 20V, V_{DS} = 0V$ ±100 nΑ l_{gss} $V_{DS} = V_{DSS}, V_{GS} = 0V$ 10 μΑ l_{DSS} T₁ = 150°C 750 μΑ $\boldsymbol{R}_{\text{DS}(\underline{on})}$ $V_{GS} = 10V, I_{D} = 50A, Notes 1, 2$ $6 \text{ m}\Omega$

Features

- International Standard Packages
- Avalanche Rated
- 175°C Operating Temperature
- High Current Handling Capability
- Fast Intrinsic Rectifier
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode **Power Supplies**
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

•	SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		acteristic Values Typ. Max.		
g _{fs}		$V_{DS} = 10V, I_{D} = 60A, \text{ Note 1}$	50	88	S
C _{iss})			10.5	nF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		945	pF
C_{rss}	J			100	pF
t _{d(on)}	١	Decistive Switching Times		21	ns
t _r		Resistive Switching Times $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		37	ns
t _{d(off)}		$R_{G} = 2\Omega$ (External)		34	ns
t _f	J	G , ,		13	ns
Q _{g(on)})			185	nC
Q _{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		48	nC
Q_{gd}	J			52	nC
R _{thJC}					0.31 °C/W
R _{thCH}		TO-220		0.50	°C/W

Source-Drain Diode

Symbol Test Conditions Char		Chara	acteristic Values		
$(T_{J} = 25^{\circ})$	°C, Unless Otherwise Specified)	Min.	Тур.	Max.	
Is	$V_{GS} = 0V$			180	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			720	Α
V _{SD}	$I_F = 100A, V_{GS} = 0V, Note 1$			1.3	V
t _{rr}	$I_{F} = 0.5 \cdot I_{D25}, V_{GS} = 0V$		66		ns
I _{RM}	-di/dt = 100A/μs		5.8		Α
$\mathbf{Q}_{_{\mathrm{RM}}}$	$V_{R} = 0.5 \bullet V_{DSS}$		190		nC

Notes: 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

 On through-hole package, R_{DS(on)} Kelvin test contact location must be 5mm or less from the package body.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-263 Outline

CVM	INCHES		MILLIMETERS	
SYM	MIN	MAX	MIN	MAX
Α	.160	.190	4.06	4.83
A1	.080	.110	2.03	2.79
b	.020	.039	0.51	0.99
b2	.045	.055	1.14	1.40
С	.016	.029	0.40	0.74
c2	.045	.055	1.14	1.40
D	.340	.380	8.64	9.65
D1	.315	.350	8.00	8.89
E	.380	.410	9.65	10.41
E1	.245	.320	6.22	8.13
е	.100 BSC		2.54 BSC	
L	.575	.625	14.61	15.88
L1	.090	.110	2.29	2.79
L2	.040	.055	1.02	1.40
L3	.050	.070	1.27	1.78
L4	0	.005	0	0.13

TO-220 Outline

Pins: 1 - Gate 2 - Drain 3 - Source

0)///	INCHES		MILLIMETERS	
SYM	MIN	MAX	MIN	MAX
Α	.170	.190	4.32	4.83
b	.025	.040	0.64	1.02
b1	.045	.065	1.15	1.65
С	.014	.022	0.35	0.56
D	.580	.630	14.73	16.00
E	.390	.420	9.91	10.66
е	.100 BSC		2.54 BSC	
F	.045	.055	1.14	1.40
H1	.230	.270	5.85	6.85
J1	.090	.110	2.29	2.79
k	0	.015	0	0.38
L	.500	.550	12.70	13.97
L1	.110	.230	2.79	5.84
ØΡ	.139	.161	3.53	4.08
Q	.100	.125	2.54	3.18

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 90A Value vs. **Junction Temperature**

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 90A Value vs.

Fig. 6. Drain Current vs. Case Temperature

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature $R_G = 2\Omega$, $V_{GS} = 10V$ V_{DS} = 50V tr-Nanoseconds I _D = 45A T_J - Degrees Centigrade

Drain Current $R_G = 2\Omega$, $V_{GS} = 10V$ $V_{DS} = 50V$ T_J = 25°C tr-Nanoseconds T_J = 125°C I_D - Amperes

Fig. 14. Resistive Turn-on Rise Time vs.

Fig. 15. Resistive Turn-on Switching Times vs.
Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Drain Current

Fig. 18. Resistive Turn-off Switching Times vs.
Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance