How Difficult is it to Reduce Low-level Cloud Biases with the Higher-order Turbulence Closure Approach in Climate Models?

Kuan-Man Xu

NASA Langley Research Center, Hampton, VA, USA

Bogenschutz, P. A., and coauthors, 2013: Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model. *J. Climate*, 26, 9655–9676.

Guo, H., and coauthors, 2014: Multivariate Probability Density Functions with Dynamics in the GFDL Atmospheric General Circulation Model: Global Tests. *J. Climate*, 27, 2087–2108.

Cheng, A., and K.-M. Xu, 2015: Improved Low-Cloud Simulation from the Community Atmosphere Model with an Advanced Third-Order Turbulence Closure. *J. Climate*, 28, 5737–5762.

Guo, Z and coauthors, 2015: Parametric behaviors of CLUBB in simulations of low clouds in the

NACSAmunity Atmosphere Model (CAM). J. Adv. Model. Earth Syst., 7, doi:10.1002/2014MS000405.

Uncertainties in cloud feedback remain in GCMs

Local contribution to intermodel spread in cloud feedback: AR4

· Most of intermodel spread arises from low stratocumulus/cumululs regions

Local contribution to intermodel spread in cloud feedback: AR5

- · Low subtropical clouds still uncertain.
- · Large contribution from equatorial Pacific.

Soden and Vecchi (2011

Soden and Vecchi (2011):

 Low cloud cover is responsible for ~3/4 of the difference in global-mean net cloud feedback among AR4 models, with the largest contributions associated with low-level subtropical marine cloud systems;

The low-cloud inconsistency and deficiency in most of the models.

CAM5, CAM5 (IPHOC; CLUBB), and AM3 (CLUBB, CLUBB+)

The higher-order turbulence closure approach

Advance 12 prognostic equations

$$\overline{w}, \overline{q}_t, \overline{\theta}_l, \overline{w'^2}, \overline{q_t'^2}, \overline{\theta_l'^2}, \overline{w'q_t'}, \overline{w'\theta_l'}, \overline{q_t'\theta_l'}, \overline{w'^3}, \overline{q_t'^3}, \overline{\theta_l'^3}$$

Use PDF to close higher-order moments, buoyancy terms

$$\frac{\overline{w'q_{\iota}^{'2}}, \overline{w'\theta_{\iota}^{'2}}, \overline{w'q_{\iota}^{'}\theta_{\iota}^{'}}, \overline{w'^{2}q_{\iota}}, \overline{w'^{2}\theta_{\iota}^{'}}, \overline{w'^{2}\theta_{\iota}^{'}}, \overline{w'^{2}\theta_{\iota}^{'3}}, \overline{w'\theta_{\iota}^{'3}}, \overline{w'\theta_{\iota}^{'3}}$$

 Δt

Select PDF from given family to match 12 moments

Diagnose cloud fraction, liquid water from PDF

Differences between IPHOC and CLUBB used in GCMs?

CLUBB (Cloud Layers Unified by Binormals; Golaz *et al.* 2002); IPHOC (Intermediately Prognostic Higher-order turbulence Closure; Cheng and Xu 2008)

	IPHOC	CLUBB
Third-order moments	3	1
Known moments (predicted)	12 (5 in GCM; 12 in CRM)	10 (10 in GCM and CRM)
Double Gaussian	Analytical II	Analytical I
Convergence of double Gaussian	To a single Gaussian if sk=0	not
PBL height	Predicted	n/a

Global Distribution of Annual Mean Low Cloud Fraction - IPHOC

Differences in mean, RMS, correlation, subsidence regions, and storm track regions

Global Distribution of Annual-Mean SW Cloud-radiative Forcing -- IPHOC

CAM5, CAM5-CLUBB (tuned) cloud fraction and SW cloud radiative forcing

GFDL AM3, AM3-CLUB and tuned versions SW Cloud radiative forcing differences from CERES

(b4	4) AM3	-CLU	BB: tı	ine + v	ariable
60N -	Sor	7-5	7		
30N -		300			Ton.
EQ-	17	Contract of the second			
30S - V		The state of the s			
60S		-	2	- www	25
lon	60E = (0.,360.)	120E	180	120W	60W od) = 0.8910
	- Ohe = -		,,,,,,		rmse = 10.6

Variable *v*: cloud water variance from CLUBB (0.001-10) Enhanced accretion rates (10%)

GDFL AM3 united parameterization, CLUBB+

r(Obs, Mod) = 0.653842

Tuned parameter tests in CAM5-CLUBB (Guo et al. 2015)

Table 1. Tunable Parameters of CLUBB and ZM

Parameter	Description	Default Value	Investigated Range
C1	Constant associated with $\overline{w'^2}$ dissipation	2.5	1.25-5
C2rt	Constant associated with $q_t^{'2}$ dissipation	1.0	0.5-2
C6rt	Low skewness of Newtonian damping of water flux	4.0	3.0-8.0
C6rtb	High skewness of Newtonian damping of water flux	6.0	3.0-8.0
C7	Low skewness of buoyancy damping of water flux	0.8	0.25-1.0
C7b	High skewness of buoyancy damping of water flux	0.65	0.25-1.0
C8	Constant associated with Newtonian damping of w'^3	3.0	1.5-6.0
C11	Low skewness of buoyancy damping of w ^{'3}	0.8	0.0-1.0
C11b	High skewness of buoyancy damping of w'3	0.65	0.0-1.0
C14	Constant of Newtonian damping of u^2 and v^2	1.0	1.0-2.0
v (nu)	Background coefficient of eddy diffusion	20.0	10.0-40.0
β (beta)	Constant related to skewness of $\theta_{\rm I}$ and $q_{\rm t}$	1.75	0.0-3.0
γ (gamma_coef)	Constant of the width of PDF in w-coordinate $(\tilde{\sigma}_w^2)$	0.32	0.1-0.6
μ (mu)	Parcel entrainment rate (1/m)	0.001	$0.5-2.0 \times 10^{-3}$
C0_Ind	ZM precipitation efficiency over land	0.0059	0.003-0.09
C0_ocn	ZM precipitation efficiency over ocean	0.045	0.003-0.09
dmpdz	Entrainment rate of ZM	-10^{-3}	-0.2 to -2×10^{-3}
tau	CAPE consumption time scale (s)	3600 s	1800–10,800

Sensitivity to Tuning parameter tests in CAM5-CLUBB (Guo et al. 2015)

The A-Train

Summary and conclusions

- The higher-order turbulence closure approach offers a promising approach to subgrid-scale variability.
- The low-level clouds are improved in different GCM simulations and the biass in SW cloud radiative forcing are reduced.
- The potential for realistic simulation of cloud processes is great with the higher-order turbulence closure approach, for example, coupling with cloud microphysics, and unified low and deep convection parameterization.
- Sensitivity to parameters are especially strong for skewness-related parameters. A better constraint is needed from global observations.

