

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences
First Year - Semester I Examination – June/July 2018

MAA 1201 - MATHEMATICAL METHODS I

Time: Two (02) hours

Answer ALL Questions

1. a) Show that the vector expression $4\overrightarrow{AB} - \overrightarrow{CB} - 4\overrightarrow{AC}$ is equal to $3\overrightarrow{CB}$.

[15 marks]

b) Define the linear independence of vectors and determine whether the following vectors in \mathbb{R}^3 are linearly independent:

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad x_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 [20 marks]

- c) In the usual notation, $\vec{a} = 2\hat{\imath} 3\hat{\jmath} + z\hat{k}$ and $\vec{b} = 4\hat{\imath} 5\hat{\jmath} 2\hat{k}$. If $\vec{c} = 3\vec{a} 2\vec{b}$ is on the *Oxy* plane, find the value of z.
- d) OABC is a parallelogram. P is the midpoint of OA and the point D divides PC in the ratio 1:2. Prove that O, D and B are collinear.

[Hint: show that $\overrightarrow{OD} = \frac{1}{3} \overrightarrow{OB}$]

[40 marks]

- 2. a) Let $A \equiv (-2, 1, 2)$, $B \equiv (-2, 1, 1)$, $C \equiv (2, 4, 4)$. Find the:
 - (i) area of the triangle ABC,

[10 marks]

(ii) unit vector perpendicular to the plane ABC,

[10 marks]

(iii) perpendicular distance from the point (1, -3, 6) to the plane ABC.

[15 marks]

[Turn over]

- b) Find the value of λ such that the vector $\vec{a} = 3\hat{\imath} + 2\hat{\jmath} 2\hat{k}$, $\vec{b} = \hat{\imath} + 3\hat{\jmath} \hat{k}$ and $\vec{c} = 4\hat{\imath} + \lambda\hat{\jmath} + 5\hat{k}$ are coplanar.
- c) Prove that $\hat{\imath} \times (\vec{a} \times \hat{\imath}) + \hat{\jmath} \times (\vec{a} \times \hat{\jmath}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$ [Hint: Consider $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$]. [25 marks]
- d) If $\frac{d\vec{a}}{dt} = \vec{u} \times \vec{a}$ and $\frac{d\vec{b}}{dt} = \vec{u} \times \vec{b}$, then prove that $\frac{d}{dt} [\vec{a} \times \vec{b}] = \vec{u} \times (\vec{a} \times \vec{b})$.

[30 marks]

- 3. a) Sketch the curve given by $\vec{r} = \cos \theta \hat{\imath} + \sin \theta \hat{\jmath} + 5\hat{k}$, where θ is the angle to the positive Ox axis. [20 marks]
 - b) A particle moves on the Oxy plane, where its position vector at time t is given by $\vec{r} = \cos \omega t \,\hat{\imath} + \sin \omega t \,\hat{\jmath}$, where ω is a constant.

Show that

- (i) the velocity \vec{v} of the particle is perpendicular to \vec{r} [20 marks]
- (ii) show that $\vec{r} \times \vec{v}$ is a constant vector. [10 marks]
- c) Consider the space curve given by $\vec{r} = 3\cos t \,\hat{\imath} + 3\sin t \,\hat{\jmath} + 4t \,\hat{k}$. Find
 - (i) the unit tangent T, [15 marks]
 - (ii) the principal normal N, and [15 marks]
 - (iii) curvature k and radius of curvature ρ . [20 marks]
- 4. a) If $\phi(x,y,z) = 3x^2y y^3z^2$, find $\nabla \phi$ (or grad ϕ) at the point (1, -2, -1).

[30 marks]

b) If $u = x^2 + y^2 + z^2$ and $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, then find $div(u\vec{r})$ in terms of u.

[30 marks]

c) Find the scalar potential function f for $\vec{A} = y^2\hat{\imath} + 2xy\hat{\jmath} - z^2\hat{k}$.

[40 marks]

*** END ***