Identifying Planes in Satellite Imagery

Shreyas Sakhalkar, Rishika Surineni, Patrick Walsh, Ashaz Ahmed, Achintya Garg

Problem Statement & Analysis

- Machine learning model to identify changes in satellite imagery
- To address the need for automated airport monitoring
 - Manual monitoring of airports is labor intensive
 - Cost inefficient
 - Prone to human error
- Projects significance lies in:
 - Enhancing security
 - Improving operational efficiency
 - Reducing costs
 - Minimizing impact on environment by airports
- Broader use cases are possible other than airports such as defense

Use Case Scenarios

- 1. Environmental Impact Assessment and Management:
 - Detect changes in vegetation, water bodies, and land use.
 - Assess ecological footprint and plan green initiatives.
 - Aid in compliance with environmental regulations.
- 2. Optimized Airport Expansion and Development Planning:
 - Analyze land use for strategic expansion.
 - Monitor construction activities and compliance.
 - Identify suitable areas for new infrastructure.
- 3. Disaster Response and Crisis Management:
 - Quick assessment of damages in natural disasters or accidents.
 - Guide emergency operations and infrastructure repair.
 - Enhance response effectiveness and minimize operational downtime.

AI Algorithm and Model

- Prepare Data: Normalized images from our data set, then split the data into a training, testing, and validation set
- Model: We designed two Convolutional Neural Network (CNN) using the Tensorflow library for one and PyTorch for the other
- Our CNNs had 9 layers, one input layer, 7 hidden layers, and one output layer
- For one of the CNNs categorical cross entropy was used as the loss function in training and the other used binary cross entropy
- The models were then tested against the test portion of the data set after training to report a percent accuracy.
- After this we attempted to then scan over a larger image and identify where planes were within them

Results and Demonstration

Predictions on Scene

Lessons Learned

- Importance of a robust data set
- Algorithm selection
- Model selection
- Performance optimization

