HOMEWORK 3

JACKSON VAN DYKE

Exercise 1 (Hatcher §1.1, 3). For a path-connected space X, show that $\pi_1(X)$ is abelian iff all basepoint-change homomorphisms $\alpha_{\#}$ (where α is a path from a basepoint x_0 to x_1) depend only on the endpoints of the path α .

Exercise 2 (Hatcher §1.1, 17). Construct infinitely many non-homotopic retractions $S^1 \vee S^1 \to S^1$.

Exercise 3 (Hatcher §1.1, 20). Suppose $f_t: X \to X$ is a homotopy such that f_0 and f_1 are both the identity map. Use Lemma 1.19 to show that for any $x_0 \in X$, the loop $f_t(x_0)$ represents an element of the center of $\pi_1(X, x_0)$. [One can interpret the result as saying that a loop represents an element of the center of $\pi_1(X)$ if it extends to a loop of maps $X \to X$.]

Lemma 1 (Hatcher, 1.19). If $\varphi_t: X \to Y$ is a homotopy and h is the path $\varphi_t(x_0)$ formed by the images of a basepoint $x_0 \in X$, then the three maps in the diagram:

$$\pi_{1}\left(X,x_{0}\right) \xrightarrow{\varphi_{1}} \left(X,\varphi_{1}\left(x_{0}\right)\right)$$

$$\pi_{1}\left(X,x_{0}\right) \xrightarrow{\varphi_{0}} \left(h_{\#}\right)$$

$$\pi_{1}\left(Y,\varphi_{0}\left(x_{0}\right)\right)$$

satisfy $\varphi_{0*} = h_{\#}\varphi_{1*}$.

Exercise 4. Show that every 3×3 matrix with positive real entries has a positive real eigenvalue. [Hint: Consider $D = \{(x, y, z) \mid x, y, z, \ge 0, x^2 + y^2 + z^2 = 1\}$ and use the Brouwer fixed point theorem.]

Exercise 5. Let T be the 2-torus $T^2 = S^1 \times S^1$. For each of the following, is there a subspace $A \subset T$ such that $A \cong S^1$ and A has the stated property:

- (i) A is a retract of T,
- (ii) A is not a retract of T,
- (iii) A is a deformation retract of T.

Date: September 18, 2019.

1