

Simple & Compact

Group F
Team Mammonite
맘모나이트

Professor : Park Youngjin

Presentor: Lee Jongeun

Member : Jung Mingi Lee Inpyo Lee Geonwoo

Lee Jongeun Yeom Donghoon Hwang Seokyoung

System Design

Motor Control Vision System Processing Integration

Entire Design
Thermal Design

Control Process

Calibration

Performance

ROS Structure

Algorithm

System Design

System Design - Picking & Releasing

- 1. Use only 1 motor
- 2. No direction change for parking

System Design - Material

<Cardboard Paper>

88g, 0.09697g/ cm^3

System Design – Weight adjustment

2047g	1935g
1922g	1867g

Average	1942.75g
Total	7771g
Difference	-3.8%~5.3%

System Design – Moving

<Straight>

<CW rotating>

<Left and Right>

<CCW rotating>

System Design - Heat Distribution

5min operation without heat distribution

Room Temperature = 21.4°C

Part	Temperature(°C)
Converter	43.0
Pickup Motor	40.4
Myrio	39.1
Webcam	38.4
NUC	34.3

Fan & Fin

System Design - Heat Distribution

5min operation with fan & fin

Room Temperature = 21.4°C

Part	Temperature(°C)
Converter (Fan&Fin)	26.0
Pickup Motor (Fin)	33.8
Myrio (Fin)	33.2
Webcam (Fin)	29.1
NUC (Fin)	30.1

System Design – Heat Distribution

Before

After

Part	Temperature difference with room temperature(ΔT, °C)	
	Without Fan&Fin	With Fan&Fin
Converter (Fan&Fin)	21.6	4.6
Pickup Motor (Fin)	19.0	12.4
Myrio (Fin)	17.7	11.8
Webcam (Fin)	17.0	7.7
NUC (Fin)	12.9	8.7

Motor Control

Motor Control - Control Process

Drivaters.
MX-28

Desired RPM

Phase = 1 Move forward

Phase

Phase = 2, 3 Move left & right

> Phase = 4, 5 Turn

Phase = 6 Pick up

Phase = 7
Park & Release

Motor Control – velocity input

Step input

- Sudden acceleration change can induce motor damage
- It can cause vibration

Gradual input

- Prevent sudden velocity change
- Spend more time to accelerate, but reduce error and precise

Wision Processing

Vision Processing – Viewing angle of Webcam

All balls can be detected in the initial position.

Vision Processing – Location of Webcam

Vision Processing – Location of Webcam

Vision Processing – Location of Webcam

(x=607, v=156) ~ R:101 G:95 B:95

Vision Processing - Reducing error code

<Real Distance and Measured Distance>

<Error between Real Distance and Measured Distance>

=> Make error less than 5% every color of ball

Ball seems larger than reality. Use matlab polyfit for fitting.

```
for(size_t i = 0; i <contours_r.size(); i++){
    approxPolyDP(contours_r[i], contours_r_poly[i], 3, true);
    minEnclosingCircle(contours_r_poly[i], center_r[i], radius_r[i]);
    radius_r[i] = 0.7536*radius_r[i]+0.6771;
}

for( size_t i = 0; i < contours_b.size(); i++ ){
    approxPolyDP( contours_b[i], contours_b_poly[i], 3, true );
    minEnclosingCircle( contours_b_poly[i], center_b[i], radius_b[i] );
    radius_b[i] = 0.8538*radius_b[i]-4.0814;
}

for( size_t i = 0; i < contours_b2.size(); i++ ){
    approxPolyDP( contours_b2[i], contours_b_poly2[i], 3, true );
    minEnclosingCircle( contours b_poly2[i], center_b2[i], radius_b2[i] );
    radius_b2[i] = 0.8538*radius_b2[i]-4.0814;
}

for(size_t i = 0; i < contours_g.size(); i++){
    approxPolyDP(contours_g[i], contours_g_poly[i], 3, true);
    minEnclosingCircle(contours_g_poly[i], center_g[i], radius_g[i]);
    radius_g[i] = 0.7224*radius_g[i]+1.8049;
}</pre>
```

System Integration

System Integration - ROS Structure Diagram

<Usual rqt_graph using Lidar with 6 nodes>

System Integration - ROS Structure Diagram

Detecting Ball

Moving Around

Picking Ball

Releasing


```
Important feature of our algorithm: switch
while (ros::ok()){
  ros::spinOnce();
 If (pickup_ball_number < 3){</pre>
                                       else {
                                         switch (phase){
   switch (phase){
                                                 Detecting Green Ball
              Detecting Ball
                                          case 1:
    case 1:
             Moving Around
                                                 Moving to Green Ball
                                          case 2:
    case 2:
                Picking Ball
                                                         Releasing
                                          case 3:
    case 3:
```


-


```
Important feature of our algorithm: Switch
while (ros::ok()){
  ros::spinOnce();
 If (pickup_ball_number < 3){</pre>
   switch (phase){
              Moving Around
     case 2:
```

}

Simple & Compact

Compact Hardware

7.7kg < 8kg 465*375*310(mm)

(Smaller and Lighter than last year models)

System Design

No suspension

Simple heat solution (than duct)

Pickup & Release

One Actuator
(Simple mechanism)
Frontside pickup
& Release

Vision ROS

2 Webcams,but less sensor2 Nodes < 6Switch Statement

Demo Video

Pick up & Drop Off

Normal Forces

1652g	1993g
1727g	1930g

Average	1825.5g
Total	7302g
Difference	5.3%~9.5%

System Design – Simple Mechanism

Motor Control - Gear Ratio Selection

1. Limitation of stall torque

$$\tau_{mot} < \tau_{stall}$$
 $\Leftrightarrow N < 5.102$

2. Motor temperature should be lower than 35°C

(Time= 2min, safety factor=4.0, efficiency=0.1 (worst case))

N<2.829

3. Maximize velocity

Motor speed $\propto N$ (at same angular velocity)

Angular velocity $\propto -N$ (linearly decrease)

 $V_{speed} = 0.17278 \cdot N - 0.00338659 \cdot N^2$

our gear ratio

15:40=2.667

1. Motor torque is smaller than stall torque

$$\tau_{mot} < \tau_{stall}$$

$$\Leftrightarrow \tau_{friction} \cdot N < \tau_{stall}$$

2. Motor temperature is lower than 35°C (using heat equation)

Time= 2min, safety factor=4.0

N<2.829

Experimental data $\omega_{mot} = 37.375 \text{ rpm}$ I = 0.4 A $\tau_{friction} = 0.49 \text{ N} \cdot \text{m}$ R = 8.5714 V/A

$$N \equiv \frac{r_2}{r_1}$$
 (gear ratio)

$$\tau_{mot} = \tau_{friction} \cdot \frac{r_2}{r_1} = \tau_{friction} \cdot N$$

$P=I^2R=0.5395N^2+0.5161N+0.1234$ (J/s)

When $\tau > 0.49$,

Efficiency: 0.08~0.38

Worst case: 0.08

 $P \cdot 0.92 \cdot t = R_{ther} \Delta T$

Let $T_0 = 26$ °C, $\Delta T < 9$ °C

P< 75.04

N<11.315

In experiment

 $18R_{ther} = I_{eff}^2 \cdot R \cdot 0.62 \cdot 1200$

 $R_{ther} = 920.5 (J/k)$

If the safety factor is 4.0 -> N<2.829

3. Motor speed $\propto X$ (at same angular velocity) Angular velocity $\propto -X$ (linearly decrease) \therefore optimization

$$\begin{aligned} \omega_{mot} &= 5.7596 - 2.3038 \tau_{mot}(rad/s) \\ \omega_{mot} &= 5.7596 - 2.3038 \cdot \tau_{friction} \cdot N \\ V_{speed} &= r_{wheel} \cdot \omega_{gear_1} = \omega_{mot} \cdot \frac{r_2}{r_1} = \omega_{mot} \cdot N \end{aligned}$$

$$V_{speed} = 0.17278 \cdot N - 0.00338659 \cdot N^2$$

 V_{max} at $N = 2.551$