Solutions to Stochastic Differential Equations by Øksendal

Kai-Jyun Wang*

Contents

2 Some Mathematical Preliminaries

2

^{*}National Taiwan University, Department of Economics.

2. Some Mathematical Preliminaries

Exercise 2.1

Suppose that $X: \Omega \to \mathbb{R}$ is a function which takes only countably many values $a_1, a_2, \ldots \in \mathbb{R}$.

(a) Show that X is a random variable if and only if

$$X^{-1}(a_i) \in \mathcal{F} \text{ for all } i \in \mathbb{N}.$$

(b) Suppose that X is a random variable. Show that

$$E[|X|] = \sum_{i=1}^{\infty} |a_i| P(X = a_i).$$

(c) If X is a random variable and $E[|X|] < \infty$, show that

$$E[X] = \sum_{i=1}^{\infty} a_i P(X = a_i).$$

(d) If X is a random variable and $f: \mathbb{R} \to \mathbb{R}$ is measurable and bounded, show that

$$E[f(X)] = \sum_{i=1}^{\infty} f(a_i)P(X = a_i).$$

Solution.

For (a), suppose first that X is a random variable. Since $\{a_i\}$ are Borel sets, $X^{-1}(a_i) \in \mathcal{F}$ for all $i \in \mathbb{N}$. Conversely, assume that $X^{-1}(a_i) \in \mathcal{F}$ for all a_i . Since the range of X is $\{a_i\}_{i \in \mathbb{N}}$, for any Borel set $B \subset \mathbb{R}$, $X^{-1}(B) = \bigcup_{a_i \in B} X^{-1}(a_i) \in \mathcal{F}$, by the definition of σ -algebra. Thus, X is a random variable.

For (b), since X takes only countably many values, so does |X| with $\{|a_i|\}_{i\in\mathbb{N}}$. By the definition of expectation, we have

$$E[|X|] = \sum_{i=1}^{\infty} |a_i| P(X = a_i)$$

in the extended sense.

For (c), since $E[|X|] < \infty$ and X is a random variable, the series converges absolutely and is well-defined. Hence

$$E[X] = \sum_{i=1}^{\infty} a_i P(X = a_i).$$

For (d), since f is measurable, $f^{-1}(B)$ is Borel and $X^{-1}f^{-1}(B)$ is measurable. f(X) takes

only countably many values, $f(a_1), f(a_2), \ldots$ The definition of expectation gives us

$$E[f(X)] = \sum_{i=1}^{\infty} f(a_i) P(f(X) = f(a_i)) = \sum_{i=1}^{\infty} f(a_i) P(X = a_i).$$

Exercise 2.2

 $X:\Omega\to\mathbb{R}$ is a random variable. The distribution function F of X is defined as

$$F(x) = P(X \le x).$$

- (a) Prove that F has the following properties:
 - (i) $0 \le F \le 1$, $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.
 - (ii) F is non-decreasing.
 - (iii) F is right-continuous.
- (b) $g: \mathbb{R} \to \mathbb{R}$ is measurable such that $E[|g(X)|] < \infty$. Show that

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)dF(x).$$

(c) Let $p(x) \ge 0$ be measurable on \mathbb{R} be the density of X, i.e.,

$$F(x) = \int_{-\infty}^{x} p(t)dt.$$

Find density of B_t^2 .

Solution.

For (a), since P is a probability measure, $0 \le P(S) \le 1$ for any $S \in \mathcal{F}$. In particular, $0 \le P(X \le x) \le 1$ for all $x \in \mathbb{R}$. Also, we can take $x_n \setminus -\infty$ and $|X \le x_n| \setminus \emptyset$ as $n \to \infty$. Hence

$$\lim_{x \to -\infty} F(x) = \lim_{n \to \infty} P(X \le x_n) = P(\emptyset) = 0.$$

Similarly, we can take $x_n \nearrow \infty$ and $|X \le x_n| \nearrow \Omega$ as $n \to \infty$. Hence

$$\lim_{x \to \infty} F(x) = \lim_{n \to \infty} P(X \le x_n) = P(\Omega) = 1.$$

(i) is proved. For (ii), F is non-decreasing because if $x_1 < x_2$, then

$$F(x_1) = P(X \le x_1) \le P(X \le x_2) = F(x_2).$$

For (iii), let h > 0.

$$F(x+h) - F(x) = P(X \le x+h) - P(X \le x) = P(x < X \le x+h).$$

For any y > x, there exists h > 0 such that y > x + h. Thus $(x, x + h] \setminus \emptyset$ as $h \to 0$. Hence

$$F(x+h) - F(x) = P(x < X \le x+h) \rightarrow P(\emptyset) = 0$$

as $h \to 0$. Therefore, *F* is right-continuous.

For (b), by definition of expectation, the left-hand side is

$$E[g(X)] = \int_{\mathbb{R}} g(x) d\mu_X(x),$$

where $\mu_X(B) = P(X^{-1}(B))$ for any Borel set $B \subset \mathbb{R}$.

For (c),

$$F(x) = P(B_t^2 \le x) = P(B_t \le \sqrt{x}) = \int_{-\infty}^{\sqrt{x}} \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{u^2}{2t}\right) du.$$

Hence,

$$p(u) = \frac{d}{dx}F(x) = \frac{1}{\sqrt{2\pi t}}\exp\left(-\frac{x}{2t}\right)\frac{1}{2\sqrt{x}}.$$

Exercise 2.3

Let $\{\mathcal{F}_i\}_{i\in\mathcal{I}}$ be a collection of σ -algebras on Ω . Prove that

$$\mathcal{F} = \bigcap_{i \in I} \mathcal{F}_i$$

is again a σ -algebra.

Solution.

First, since \mathcal{F}_i are σ -algebras, they contain \varnothing and hence $\varnothing \in \mathcal{F}$. For any $A \in \mathcal{F}$, $A \in \mathcal{F}_i$ for all $i \in I$ and hence $A^c \in \mathcal{F}_i$ for all $i \in I$. Thus $A^c \in \mathcal{F}$. Finally, for any countable collection $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{F}$, we have $A_n \in \mathcal{F}_i$ for all $i \in I$ and all $n \in \mathbb{N}$. Then $\bigcup_n A_n \in \mathcal{F}_i$ for all $i \in I$. Hence $\bigcup_n A_n \in \mathcal{F}$. Therefore, \mathcal{F} is a σ -algebra.

Exercise 2.4

(a) Let $X : \Omega \to \mathbb{R}$ be a random variable such that $E[|X|^p] < \infty$ for some $p \in (0, \infty)$. Prove the Chebyshev's inequality:

$$P(|X| \ge \lambda) \le \frac{1}{\lambda^p} E[|X|^p]$$

for any $\lambda > 0$.

(b) Suppose there exists k > 0 such that $M = E\left[\exp(k|X|)\right] < \infty$. Prove that $P(|X| \ge \lambda) \le Me^{-k\lambda}$ for any $\lambda > 0$.

Solution.

For (a), directly estimate that

$$P(|X| \ge \lambda) = \int_{\Omega} \chi_{\{|X|^p \ge \lambda^p\}} dP \le \int_{\Omega} \frac{|X|^p}{\lambda^p} dP = \frac{1}{\lambda^p} E\left[|X|^p\right].$$

(b) is similar:

$$P(|X| \ge \lambda) = \int_{\Omega} \chi_{\{\exp(k|X|) \ge \exp(k\lambda)\}} dP \le \int_{\Omega} \exp(k|X|) \exp(-k\lambda) dP = M \exp(-k\lambda).$$

Exercise 2.5

Let $X, Y : \Omega \to \mathbb{R}$ be two independent random variables and assume for simplicity that X, Y are bounded. Prove that

$$E[XY] = E[X] E[Y].$$

Solution.

For any $\epsilon > 0$, by definition of the expectation, we can find simple functions s and t on Ω such that

$$\int |s - X| \, dP < \epsilon, \quad \int |t - Y| \, dP < \epsilon, \quad \Rightarrow \quad \left| E\left[X\right] - \int s \, dP \right| < \epsilon, \quad \left| E\left[Y\right] - \int t \, dP \right| < \epsilon,$$

where *s* and *t* can be written as

$$s = \sum_{i=1}^{n} s_i \chi_{X^{-1}[s_i, s_{i+1})}$$
 and $t = \sum_{j=1}^{m} t_j \chi_{Y^{-1}[t_j, t_{j+1})}$,

with s_i and t_j being arranged in ascending order. Thus,

$$\int stdP = \sum_{i=1}^{n} \sum_{j=1}^{m} s_{i}t_{j}P(\{X \in [s_{i}, s_{i+1})\} \cap \{Y \in [t_{j}, t_{j+1})\})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} s_{i}t_{j}P(X \in [s_{i}, s_{i+1}))P(Y \in [t_{j}, t_{j+1}))$$

$$= \left(\sum_{i=1}^{n} s_{i}P(X \in [s_{i}, s_{i+1}))\right)\left(\sum_{j=1}^{m} t_{j}P(Y \in [t_{j}, t_{j+1}))\right) = \left(\int sdP\right)\left(\int tdP\right).$$

Also,

$$\left| E\left[XY \right] - \int st dP \right| \le \left| \int |X - s| |t| dP \right| + \left| \int |Y - t| |X| dP \right|.$$

X and Y are bounded, say by M and N respectively. Then t is also bounded by N from our construction. Thus

$$\left| E\left[XY\right] - \int st dP \right| \leq M\epsilon + N\epsilon.$$

Combine the results above, we arrive at

$$\begin{split} |E\left[XY\right] - E\left[X\right]E\left[Y\right]| &\leq \left|E\left[XY\right] - \int stdP\right| + \left|E\left[X\right]E\left[Y\right] - \int sdP \int tdP\right| \\ &\leq (M+N)\epsilon + \left|E\left[X\right] - \int sdP\right| \left|\int tdP\right| + \left|E\left[Y\right] - \int tdP\right| |E\left[X\right]| \\ &\leq (M+N)\epsilon + \epsilon N + \epsilon M. \end{split}$$

Since ϵ is arbitrary, we conclude that E[XY] = E[X]E[Y].

Exercise 2.6

Let (Ω, \mathcal{F}, P) be a probability space and $A_1, \ldots \in \mathcal{F}$ be sets such that

$$\sum_{i=1}^{\infty} P(A_i) < \infty.$$

Prove the Borel-Cantelli lemma:

$$P\left(\bigcap_{m=1}^{\infty}\bigcup_{i=m}^{\infty}A_{i}\right)=0.$$

Solution.

Set $B_m = \bigcup_{i=m}^{\infty} A_i$ be measurable. Then

$$P(B_m) \le \sum_{i=m}^{\infty} P(A_i) \to 0$$

as $m \to \infty$ by the assumption. Thus

$$P\left(\bigcap_{m=1}^{\infty} B_m\right) \leq \lim_{n \to \infty} P\left(\bigcap_{m=1}^{n} B_m\right) \leq \lim_{n \to \infty} P(B_n) = 0.$$

Exercise 2.7

(a) Suppose G_1, \ldots, G_n are disjoint sets in \mathcal{F} such that $\bigcup_{i=1}^n G_i = \Omega$. Prove that the family

$$G = \{G \mid G \text{ is a union of some } G_i\} \cup \{\emptyset\}$$

is a σ -algebra.

- (b) Prove that every finite σ -algebra is of type G as in (a).
- (c) Let \mathcal{F} be a finite σ -algebra on Ω and $X:\Omega\to\mathbb{R}$ be \mathcal{F} -measurable. Prove that X is simple.

Solution.

For (a), first, $\emptyset \in \mathcal{G}$ by definition. Let $G \in \mathcal{G}$. Then $G = \bigcup_{i \in I} G_i$ for some $I \subset \{1, \ldots, n\}$, with the convention that $\bigcup_{i \in \emptyset} G_i = \emptyset$. Then $G^c = \bigcup_{i \notin I} G_i \in \mathcal{G}$. Lastly, for countably many $G_i \in \mathcal{G}$, since \mathcal{G} is finite, there are in fact finitely many distinct G_i and the union must lie in \mathcal{G} by the definition. Hence \mathcal{G} is a σ -algebra.

For (b), let \mathcal{F} be a finite σ -algebra. Consider the collection

$$S = \{ S \in \mathcal{F} \mid S \cap F = \emptyset \text{ or } S \text{ for all } F \in \mathcal{F} \}$$
.

Since \mathcal{F} is finite, S is also finite. We first check that every distinct sets in S are disjoint. Suppose not. There are $S_1, S_2 \in S$ such that $S_1 \cap S_2$ is non-empty. Then $S_1 \cap S_2 = S_1 = S_2$, contradicting the assumption that S_1 and S_2 are distinct. Thus every distinct sets in S are disjoint. Next, we check that $\bigcup_{S \in S} S = \Omega$. If not, let $A = \Omega \setminus \bigcup_{S \in S} S$ be non-empty and $A \cap F$ is a non-empty proper subset of A for some $F \in \mathcal{F}$. But then $A \cap F$ or $A \cap F^c$ must satisfy the condition that there is some $F' \in \mathcal{F}$ such that $A \cap F \cap F'$ or $A \cap F^c \cap F'$ is non-empty, proper subset of $A \cap F$ or $A \cap F^c$ respectively. Note that $F' \neq F$ and the process continues. In the end, we can find a infinite sequence of distinct sets lying in \mathcal{F} , contradicting the finiteness of \mathcal{F} . Thus $\bigcup_{S \in S} S = \Omega$. Finally, by (a),

$$G = \{G \mid G \text{ is a union of some } S \in S\} \cup \{\emptyset\}$$

is a σ -algebra. It remains to show that $\mathcal{G} = \mathcal{F}$. Clearly, $\mathcal{G} \subset \mathcal{F}$ since $\mathcal{S} \subset \mathcal{F}$. For any $F \in \mathcal{F}$, we can write $F = \bigcup_{i=1}^n S_i$ for some $S_i \in \mathcal{S}$. Thus $F \in \mathcal{G}$. We end up with $\mathcal{G} = \mathcal{F}$.

For (c), suppose that X can take infinitely many values $\{a_i\}_{i\in I}$. Since X is \mathcal{F} -measurable, $X^{-1}(\{a_i\}) \in \mathcal{F}$ for all $i \in I$. In particular, $X^{-1}(\{a_i\})$ and $X^{-1}(\{a_j\})$ are disjoint for all $i \neq j$. This implies that \mathcal{F} contains infinitely many disjoint sets, contradicting the finiteness of \mathcal{F} . Thus X can only take finitely many values and is simple.

Exercise 2.8

Let B_t be Brownian motion on \mathbb{R} , $B_0 = 0$. Put $E = E^0$.

(a) Prove that

$$E\left[e^{iuB_t}\right] = e^{-\frac{u^2t}{2}}$$
 for all $u \in \mathbb{R}$.

(b) Use the power series expansion of the exponential function to show that

$$E\left[B_t^{2k}\right] = \frac{(2k)!}{2^k k!} t^k \text{ for all } k \in \mathbb{N}.$$

(c) Prove that

$$E[f(B_t)] = \int_{\mathbb{R}} f(x) \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} dx$$

for all measurable functions f on \mathbb{R} such that the integral is finite. Deduce (b) by setting $f(x) = x^{2k}$.

(d) Now suppose that B_t is a n-dimensional Brownian motion. Prove that

$$E^{x}[|B_{t} - B_{s}|^{4}] = n(n+2)|t-s|^{2}$$

for all $n \in \mathbb{N}$ and $0 \le s, t \le T$.

Solution.

For (a), directly compute the expectation:

$$E\left[e^{iuB_t}\right] = \int_{-\infty}^{\infty} e^{iux} \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} dx = e^{-\frac{u^2t}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x-iut)^2}{2t}} dx = e^{-\frac{u^2t}{2}}.$$

For (b), note that the power series expansion of the exponential function gives

$$e^{iuB_t} = \sum_{k=0}^{\infty} \frac{(iuB_t)^k}{k!} \quad \Rightarrow \quad E\left[e^{iuB_t}\right] = \sum_{k=0}^{\infty} \frac{(iu)^k}{k!} E\left[B_t^k\right].$$

The right-hand side is

$$e^{-\frac{u^2t}{2}} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{u^2t}{2} \right)^k = \sum_{k=0}^{\infty} \frac{(-1)^k u^{2k}}{2^k k!} t^k.$$

For those two expressions to be equal, as a function of u, $E\left[B_t^k\right]=0$ for odd k and we may rewrite the first expression as

$$E\left[e^{iuB_t}\right] = \sum_{k=0}^{\infty} \frac{(-1)^k u^{2k}}{(2k)!} E\left[B_t^{2k}\right].$$

By comparing the coefficients,

$$E\left[B_t^{2k}\right] = \frac{(-1)^k t^k}{2^k k!} \cdot \frac{(2k)!}{(-1)^k} = \frac{(2k)!}{2^k k!} t^k.$$

For (c), it is clear that B_t has the density $p(x) = \frac{1}{\sqrt{2\pi t}}e^{-\frac{x^2}{2t}}$. It follows that

$$E[f(B_t)] = \int f(x) \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} dx.$$

By setting $f: x \mapsto x^{2k}$, we have

$$\begin{split} E\left[B_{t}^{2k}\right] &= \int x^{2k} \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^{2}}{2t}} dx \\ &= x^{2k+1} \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^{2}}{2t}} \Big|_{-\infty}^{\infty} - \int 2k x^{2k} \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^{2}}{2t}} - x^{2k} \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^{2}}{2t}} \frac{x^{2}}{t} dx \\ &= \frac{1}{t} E\left[B_{t}^{2(k+1)}\right] - 2k E\left[B_{t}^{2k}\right] \quad \Rightarrow \quad E\left[B_{t}^{2(k+1)}\right] = (2k+1)t E\left[B_{t}^{2k}\right]. \end{split}$$

And also when k=1, $E\left[B_t^2\right]=t$. Suppose $E\left[B_t^{2k}\right]=\frac{(2k)!}{2^k k!}t^k$. Then

$$E\left[B_t^{2(k+1)}\right] = (2k+1)t\frac{(2k)!}{2^k k!}t^k = \frac{(2(k+1))!}{2^{k+1}(k+1)!}t^{k+1}.$$

The conclusion follows by induction.

For (d), if n = 1, $B_t - B_s \sim N(0, |t - s|)$ and $E^x \left[|B_t - B_s|^4 \right] = 3 |t - s|^2$. Now suppose that for n-dimensional B_t , $E^x \left[|B_t - B_s|^4 \right] = n(n+2) |t - s|^2$. Then for n + 1-dimensional B_t ,

$$E^{x} \left[|B_{t} - B_{s}|^{4} \right] = \int_{\mathbb{R}^{n}} \int_{\mathbb{R}} (|y|^{2} + z^{2})^{2} \frac{1}{\sqrt{(2\pi)^{n+1} |t - s|^{n+1}}} \exp\left(-\frac{|y|^{2} + z^{2}}{2|t - s|}\right) dy dz$$

$$= \int_{\mathbb{R}^{n}} |y|^{4} \frac{1}{\sqrt{(2\pi)^{n} |t - s|^{n}}} \exp\left(-\frac{|y|^{2}}{2|t - s|}\right) dy$$

$$+ 2|t - s| \int_{\mathbb{R}^{n}} |y|^{2} \frac{1}{\sqrt{(2\pi)^{n} |t - s|^{n}}} \exp\left(-\frac{|y|^{2}}{2|t - s|}\right) dy + 3|t - s|^{2}$$

$$= n(n+2)|t - s|^{2} + 2n|t - s|^{2} + 3|t - s|^{2} = (n+1)(n+3)|t - s|^{2}.$$

Thus by induction, the conclusion holds for all $n \in \mathbb{N}$. It follows from the Kolmogorov's continuity theorem that we can always set B_t to be a continuous process.

Exercise 2.9

Let $(\Omega, \mathcal{F}, P) = ([0, \infty), \mathcal{B}, \mu)$ be a probability space where μ is a probability measure such that there is no mass at single points. Define

$$X_t(\omega) = \begin{cases} 1 & if \ t = \omega, \\ 0 & if \ t \neq \omega. \end{cases} \quad and \quad Y_t(\omega) = 0 \ for \ all \ (t, \omega) \in [0, \infty) \times [0, \infty).$$

Prove that $\{X_t\}$ and $\{Y_t\}$ have the same distributions and X_t is a version of Y_t . And yet $t \mapsto Y_t(\omega)$ is continuous for all ω , while $t \mapsto X_t(\omega)$ is discontinuous for all ω .

Solution.

First, given any t, X_t and Y_t are both random variables. For $t_1, \ldots, t_k \in [0, \infty)$, consider the sets $F_1, \ldots, F_k \in \mathcal{B}$. Since Y_t is constant,

$$P(Y_{t_1} \in F_1, \dots, Y_{t_k} \in F_k) = \mathbb{1} \{ 0 \in \cap_{i=1}^k F_i \}.$$

Also, since μ has no mass at single points,

$$P(X_{t_1} \in F_1, \dots, X_{t_k} \in F_k) = \mathbb{1} \left\{ 0 \in \bigcap_{i=1}^k F_i \right\}.$$

Thus, X_t and Y_t have the same distributions. Furthermore, for any $t \in [0, \infty)$, $\{X_t = Y_t\} = \Omega \setminus \{t\}$, which has zero measure and hence X_t is a version of Y_t . Now since Y_t is constant, $t \mapsto Y_t(\omega)$ is continuous for all ω . On the other hand, for any $\omega \in [0, \infty)$, $X(t, \omega)$ is discontinuous

at $t = \omega$, proving that $t \mapsto X_t(\omega)$ is discontinuous for all ω .

Exercise 2.10

Prove that the Brownian motion B_t has stationary increments, i.e., given h > 0, the process $\{B_{t+h} - B_t\}$ has the same distributions for all t.

Solution.

For any h > 0, $B_{t+h} - B_t \sim N(0, h)$. The stationarity follows immediately.

Exercise 2.11

If $B_t = (B_t^{(1)}, \dots, B_t^{(n)})$ is an n-dimensional Brownian motion, then the component processes $B_t^{(i)}$, $1 \le i \le n$, are independent Brownian motions.

Solution.

Since the B_t is continuous almost surely, the component processes $B_t^{(i)}$ are continuous almost surely as well. Now we may regard the component processes as projections of B_t and hence they are normally distributed. $E\left[B_t^{(i)}\right] = 0$ since $E\left[B_t\right] = 0$. Also, $Cov(B_t^{(i)}, B_t^{(j)}) = t\delta_{ij}$ as $Var(B_t) = tI$. Since for $i \neq j$ the covariance is zero, the component processes are independent.

Exercise 2.12

Let B_t be a Brownian motion and fix $t_0 \ge 0$. Prove that the process $\tilde{B}_t = B_{t+t_0} - B_{t_0}$ is a Brownian motion.

Solution.

Since B_t is almost surely continuous, $B_{t+t_0} - B_{t_0}$ is also almost surely continuous. Also, $B_{t+t_0} - B_{t_0} \sim N(0, t)$. For s < t < u,

$$Cov(\tilde{B}_u - \tilde{B}_t, \tilde{B}_t - \tilde{B}_s) = Cov(B_{u+t_0} - B_{t+t_0}, B_{t+t_0} - B_{s+t_0}) = 0.$$

Thus \tilde{B}_t has independent increments. This shows that \tilde{B}_t is a Brownian motion.

Exercise 2.13

Let B_t be 2-dimensional Brownian motion and put

$$D_{\rho} = \left\{ x \in \mathbb{R}^2 \mid |x| < \rho \right\}$$

for $\rho > 0$. Compute $P^0(B_t \in D_{\rho})$.

Solution.

Since $B_t \sim N(0, tI)$,

$$P^{0}(B_{t} \in D_{\rho}) = \int_{D_{\rho}} \frac{1}{2\pi t} \exp\left(-\frac{|x|^{2}}{2t}\right) dx = \int_{0}^{2\pi} \int_{0}^{\rho} \frac{1}{2\pi t} \exp\left(-\frac{r^{2}}{2t}\right) r dr d\theta = 1 - \exp\left(-\frac{\rho^{2}}{2t}\right).$$

Exercise 2.14

Let B_t be n-dimensional Brownian motion and $K \subset \mathbb{R}^n$ be a measure zero set under the Lebesgue measure. Prove that the expected total length of time that B_t spends in K is zero.