4.22 Proof: Since $f(x) = \frac{2x-1}{2x(1-x)} = \frac{1}{1-x} - \frac{1}{2x(1-x)}$. Take $a \neq b \in (0,1)$, then $2a - 1 \neq 2b - 1$, $2a(1-a) \neq 2b(1-b)$ so that $f(a) \neq f(b)$. As a result, f is injective.

Let $y = f(x) = \frac{2x-1}{2x(1-x)}$, $2xy(1-x) = 2x - 1 \Leftrightarrow 2xy - 2x^2y = 2x - 1 \Leftrightarrow (2y)x^2 + (2-2y) - 1 = 0$. Then we have $x = \sqrt{1 - \frac{1}{2y}}$, 0 < x < 1. So f is surjective.

So we can conclude that f is bijective.

4.31 Proof: Since f is a bijection that is increasing, the if $a, b \in A$ and a > b, we have f(a) > f(b). Suppose f^{-1} is not increasing on B, then there's at least one pair of $x, y \in B$ such that $f^{-1}(x) \leq f^{-1}(y) \Rightarrow f(f^{-1}(x)) \leq f(f^{-1}(y))$ since f is increasing on A. Because $f(f^{-1}(x)) = x$, we have $x \leq y$ which is contradict with the assumption.

Thus, we can conclude that f^{-1} is increasing on $B.\blacksquare$

4.35 **Proof:**

- (a) No, suppose $f(x) = x^2, g(x) = \sqrt{x}, f(g(y)) = y$ but f(x) is not even surjective.
- **(b)** No, suppose $f(x) = x^2$, $g(x) = \sqrt{x}$, we have $g(f(x)) : x | x \ge 0 \rightarrow y | y \ge 0$ and $f(g(x)) : \mathbb{R} \to x | x \ge 0$. Then if y < 0, g(f(x)) is not defined.
- **4.37 Proof:** Let y = f(f(x)) denote the map $f \circ f$. Since $f \circ f$ is injective, take $a \neq b \in A$, $f(f(a)) \neq f(f(b))$. Take $B' \subseteq B$ to make $f' : A \to B'$ bijective, we can have a inverse function f^{-1} that $f^{-1}(f(f(a))) = f(a)$, thus $f^{-1}(f(f(a))) \neq f^{-1}(f(f(b))) \Rightarrow f(a) \neq f(b)$.

So we can conclude that if $f \circ f$ is injective, f is also injective.

4.43 Proof: Suppose A is an finite set, since $B \subset A$, then B must be a finite set as well and |B| < |A| We know that if A, B are finite sets and bijection $f: A \to B$ was established, |A| = |B| which is conflict to the inequity above.

Thus, A must be infinite set.