Hjelpemidler:

d) høyt trykk og høy temperatur

EKSEMPEL PÅ SEMESTERPRØVE I TMT4115 GENERELL KJEMI (KAP. 5-8)

B2-Typegodkjent kalkulator, med tomt minne, i henhold til utarbeidet liste.

Aylward & Findlay: SI Chemical Data Det er kun ett riktig svar for hver oppgave. Sett derfor kun ett kryss for hver oppgave. Dersom to eller flere svar er avgitt for en oppgave bedømmes denne med null poeng. 1. 4,0 g yttrium metall reagerer med overskudd saltsyre og danner 6,7x10⁻² mol H₂ gass. Hva er formelen for yttriumklorid dannet i reaksjonen? a) YCl b) YCl₂ c) YCl₃ d) YCl₄ **2.** $PCl_5(g)$ dissosieres ved følgende reaksjon: $PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$ 1,0 L PCl₅(g) ved 1 bar trykk blandes med 1,0 L Cl₂(g) ved 2 bar trykk. Hva blir sluttrykket etter dissosiasjonen av PCl₅(g) når temperaturen holdes konstant og sluttvolumet er 2,0 L? a) 2,0 bar b) 1,5 bar c) 1,0 bar d) 0,5 bar 3. 4,0 L Ne(g) ved 1 bar trykk blandes med 2,0 L Ar(g) ved 4 bar trykk. Hva blir partialtrykket av Ne(g) når sluttvolumet av gassblandingen er 3,0 L og temperaturen er konstant? a) 1,25 bar b) 1,33 bar c) 0,5 bar d) 0,33 bar **4.** En reell gass avviker mest fra en ideell gass ved følgende betingelser a) lavt trykk og høy temperatur b) høyt trykk og lav temperatur c) lavt trykk og lav temperatur

5. Likevekten $3\text{Fe}(s) + 4 \text{ H}_2\text{O}(g) = \text{Fe}_3\text{O}_4(g) + 4 \text{ H}_2(g)$ har blitt studert ved 1200 K. Ve	ed
likevekt ble trykket av vann målt til å være 15,0 torr mens totaltrykket ved likevekt var 36	
torr. Likevektskonstanten ved 1200 K er	
a) 0,25	
b) 35,3	
c) 6,7	
d) 4,07	
6. Ved en gitt temperatur er 12,0 mol NO(g) plassert i en konteiner med konstant volum 3L.	
Likevektskonstanten for likevekten $O_2(g) + N_2(g) = 2 \text{ NO}(g)$ er K=0,050. Hvor mange m	ıol
N ₂ er det i konteineren ved likevekt?	
a) 5,4	
b) 3,8	
c) 1,2	
d) 7,0	
7. Ved 900°C er K=1,04 for likevekten $CaCO_3(s) = CaO(s) + CO_2(g)$. Ved lav temperatur	or
CaCO ₃ , CaO, CO ₂ brakt inn i en lukket reaksjonskammer med volum 50,0 L. For hvilke a følgende fire blandinger vil mengden CaO øke før likevekten er innstilt ved 900°C?	av
a) 13,12 g CaCO ₃ , 5,12 g CaO, 13,21 g CO ₂	
b) 3,12 g CaCO ₃ , 12,4 g CaO, 43,21 g CO ₂	
c) 6,66 g CaCO ₃ , 7,33 g CaO, 30,00 g CO ₂	
d) 13,12 g CaCO ₃ , 5,12 g CaO, 23,80 g CO ₂	
8. syntesegass (CO+H ₂) kan produseres ved reaksjonen $CH_4(g) + H_2O(g) = CO(g) + 3 H_2(g)$	g).
Reaksjonen er endoterm, dvs. at den forbruker varme. For å få høyest mulig utbytte b	ør
reaksjonen skje ved	
a) lavt trykk og lav temperatur	
b) høyt trykk og høy temperatur	
c) høyt trykk og lav temperatur	
d) lavt trykk og høy temperatur	
Q Library lyton $CO(a) + HO(a) = CO(a) + H(a)$ on innotity on hybrid to habel dominant ly and A	
9. Likevekten $CO(g) + H_2O(g) = CO_2(g) + H_2(g)$ er innstilt i en lukket beholder med konsta	
volum. Ved en økning i det totale volumet tilgjengelig for likevektsblandingen vil følgend	ue
skje	
a) ingen endring i partialtrykkene av de fire gassene	
b) reaksjonen forskyves mot høyre	
c) reaksjonen forskyves mot venstre	-
d) likevektskonstanten øker og reaksjonen skyves mot høyre	

10. En svak base kjennetegnes med	
a) avgir noen protoner	
b) $K_b > 1$	
c) $K_b \ll 1$	
d) opptar ingen protoner	
	\neg
11. pH for en 0,1 M HCl løsning er	
a) pH = 2	
b) pH = 1	
c) pH = 0	
d) $pH = 1,2$	
12. pH for en 0,1 M løsning av eddiksyre er (pK _a =4,76)	\neg
a) pH = 1	
b) pH = 2,9	
c) pH = 3,9	
d) pH = 4.9	
u) pri – 4,7	!
13. 0,1 M løsninger av HNO ₃ , NH ₃ , CH ₃ COOH, NaCl er rangert etter økende pH	
a) HNO ₃ , CH ₃ COOH, NaCl, NH ₃	
b) HNO ₃ , CH ₃ COOH, NH ₃ , NaCl	
c) CH ₃ COOH, HNO ₃ , NaCl, NH ₃	
d) HNO ₃ , NaCl, CH ₃ COOH, NH ₃	
	2
14. Syrekonstantene for den polyprotiske syren H_3AsO_4 er henholdsvis $K_{a1}=5x10^{-3}$	3
K _{a2} =8x10 ⁻⁸ , K _{a1} =6x10 ⁻¹⁰ . Hva er pH for en 0,1 M løsning av Na ₂ HAsO ₄ ?	
a) 10,3	
b) 4,7	
c) 8,2	
d) 9,2	
15. Hvilken av følgende fire buffere har høyest bufferkapasitet?	
a) 0.1 M Na ₂ HPO ₄ og 0.001 M Na ₃ PO ₄	\dashv
b) 0.005 M Na ₂ HPO ₄ og 0.005 M Na ₃ PO ₄	\dashv
c) 0.001 M Na ₂ HPO ₄ og 0.01 M Na ₃ PO ₄	\dashv
d) 0.01 M Na ₂ HPO ₄ og 0.01 M Na ₃ PO ₄	=
u) 0.01 IVI 1\a211\text{IF O4 Ug 0.01 IVI 1\a3\text{IO4}}	

16. En 40,0 mL løsning av 0,200 M NaOH skal titreres med en 0,100 M løsning HCl. Hva er pH i løsningen etter tilsats av 10 mL HCl løsning? a) pH= 8,2 b) pH= 12,1 c) pH= 13,15 d) pH= 13,5 17. Løseligheten av Ba(OH) ₂ (s) er 15,6 g/L. Hva er løselighetsproduktet K _{sp} for Ba(OH) ₂ (s)? a) 1x10 ⁻² b) 3x10 ⁻³ c) 7x10 ⁻⁵ d) 8x10 ⁻⁴ 18. Løselighetsproduktet for AgI(s) er K _{sp} = 8,3x10 ⁻¹⁷ . Løselighet for AgI(s) i g/L er a) 2,14x10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0x10 ⁻⁷ g/L d) 2,3x10 ⁻⁴ g/L
a) pH= 8,2 b) pH= 12,1 c) pH= 13,15 d) pH= 13,5 17. Løseligheten av Ba(OH) ₂ (s) er 15,6 g/L. Hva er løselighetsproduktet K _{sp} for Ba(OH) ₂ (s)? a) 1x10 ⁻² b) 3x10 ⁻³ c) 7x10 ⁻⁵ d) 8x10 ⁻⁴ 18. Løselighetsproduktet for AgI(s) er K _{sp} = 8,3x10 ⁻¹⁷ . Løselighet for AgI(s) i g/L er a) 2,14x10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0x10 ⁻⁷ g/L
b) pH= 12,1 c) pH= 13,15 d) pH= 13,5 17. Løseligheten av Ba(OH) ₂ (s) er 15,6 g/L. Hva er løselighetsproduktet K_{sp} for Ba(OH) ₂ (s)? a) $1x10^{-2}$ b) $3x10^{-3}$ c) $7x10^{-5}$ d) $8x10^{-4}$ 18. Løselighetsproduktet for AgI(s) er K_{sp} = 8,3x10 ⁻¹⁷ . Løselighet for AgI(s) i g/L er a) 2,14x10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0x10 ⁻⁷ g/L
c) pH= 13,15 d) pH= 13,5 17. Løseligheten av Ba(OH) ₂ (s) er 15,6 g/L. Hva er løselighetsproduktet K _{sp} for Ba(OH) ₂ (s)? a) 1x10 ⁻² b) 3x10 ⁻³ c) 7x10 ⁻⁵ d) 8x10 ⁻⁴ 18. Løselighetsproduktet for AgI(s) er K _{sp} = 8,3x10 ⁻¹⁷ . Løselighet for AgI(s) i g/L er a) 2,14x10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0x10 ⁻⁷ g/L
17. Løseligheten av Ba(OH) ₂ (s) er 15,6 g/L. Hva er løselighetsproduktet K_{sp} for Ba(OH) ₂ (s)? a) $1x10^{-2}$ b) $3x10^{-3}$ c) $7x10^{-5}$ d) $8x10^{-4}$ 18. Løselighetsproduktet for AgI(s) er K_{sp} = 8,3x10 ⁻¹⁷ . Løselighet for AgI(s) i g/L er a) $2,14x10^{-6}$ g/L b) $0,0004$ g/L c) $8,0x10^{-7}$ g/L
17. Løseligheten av Ba(OH) ₂ (s) er 15,6 g/L. Hva er løselighetsproduktet K_{sp} for Ba(OH) ₂ (s)? a) 1×10^{-2} b) 3×10^{-3} c) 7×10^{-5} d) 8×10^{-4} 18. Løselighetsproduktet for AgI(s) er K_{sp} = 8,3×10 ⁻¹⁷ . Løselighet for AgI(s) i g/L er a) 2,14×10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0×10 ⁻⁷ g/L
a) 1×10^{-2} b) 3×10^{-3} c) 7×10^{-5} d) 8×10^{-4} 18. Løselighetsproduktet for AgI(s) er K _{sp} = 8,3×10 ⁻¹⁷ . Løselighet for AgI(s) i g/L er a) 2,14×10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0×10 ⁻⁷ g/L
a) 1×10^{-2} b) 3×10^{-3} c) 7×10^{-5} d) 8×10^{-4} 18. Løselighetsproduktet for AgI(s) er K _{sp} = 8,3×10 ⁻¹⁷ . Løselighet for AgI(s) i g/L er a) 2,14×10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0×10 ⁻⁷ g/L
a) 1×10^{-2} b) 3×10^{-3} c) 7×10^{-5} d) 8×10^{-4} 18. Løselighetsproduktet for AgI(s) er K _{sp} = 8,3x10 ⁻¹⁷ . Løselighet for AgI(s) i g/L er a) 2,14x10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0x10 ⁻⁷ g/L
b) $3x10^{-3}$ c) $7x10^{-5}$ d) $8x10^{-4}$ 18. Løselighetsproduktet for AgI(s) er K_{sp} = 8,3x10 ⁻¹⁷ . Løselighet for AgI(s) i g/L er a) 2,14x10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0x10 ⁻⁷ g/L
c) $7x10^{-5}$ d) $8x10^{-4}$ 18. Løselighetsproduktet for AgI(s) er K_{sp} = $8,3x10^{-17}$. Løselighet for AgI(s) i g/L er a) $2,14x10^{-6}$ g/L b) $0,0004$ g/L c) $8,0x10^{-7}$ g/L
d) $8x10^{-4}$ 18. Løselighetsproduktet for AgI(s) er K_{sp} = $8,3x10^{-17}$. Løselighet for AgI(s) i g/L er a) $2,14x10^{-6}$ g/L b) $0,0004$ g/L c) $8,0x10^{-7}$ g/L
18. Løselighetsproduktet for AgI(s) er K_{sp} = 8,3x10 ⁻¹⁷ . Løselighet for AgI(s) i g/L er a) 2,14x10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0x10 ⁻⁷ g/L
a) 2,14x10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0x10 ⁻⁷ g/L
a) 2,14x10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0x10 ⁻⁷ g/L
a) 2,14x10 ⁻⁶ g/L b) 0,0004 g/L c) 8,0x10 ⁻⁷ g/L
b) 0,0004 g/L c) 8,0x10 ⁻⁷ g/L
c) $8.0 \times 10^{-7} \text{ g/L}$
u) 2,3A10 g/L
19. En løsning av henholdsvis H ₂ S og Ni(NO ₃) ₂ blandes. Hva skjer?
a) løsningene blandes uten at andre reaksjoner skjer
b) blandingen begynner å koke
c) utfelling av NiS
d) avdampning av NH ₃ (g)
20. En løsning inneholder følgende kationer: Na ⁺ og Ag ⁺ . For å skille disse ionene fra
hverandre kan følgende gjøres
a) tilsette hydrogensulfid for å felle ut natriumionene
b) tilsette kaliumhydroksyd for å felle ut natriumionene
c) tilsette saltsyre for felle ut sølv-ionene
d) tilsette salpetersyre for å felle ut natrium metall