Importing Libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing Dataset

In [2]:

```
df = pd.read_csv("../datasets/Titanic-Dataset.csv")
df.head()
```

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cal
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	N
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	N
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C1
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	N

In [3]:

df.shape

Out[3]:

(891, 12)

```
In [4]:
```

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

dtypes: float64(2), int64(5), object(5

memory usage: 83.7+ KB

Handlingf null values

In [5]:

```
df.isnull().any()
```

Out[5]:

PassengerId	False
Survived	False
Pclass	False
Name	False
Sex	False
Age	True
SibSp	False
Parch	False
Ticket	False
Fare	False
Cabin	True
Embarked	True
dtype: bool	

```
In [6]:
```

```
df.isnull().sum()
```

Out[6]:

PassengerId 0 Survived 0 Pclass 0 Name 0 0 Sex 177 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked dtype: int64

In [7]:

```
df.describe()
```

Out[7]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [8]:
```

```
df['Age'].median()
```

Out[8]:

28.0

In [9]:

```
df['Age'] = df['Age'].fillna(df['Age'].median())
```

```
In [10]:
```

```
df['Age'].isnull().any()
```

Out[10]:

False

```
In [11]:
df['Cabin'].mode()
Out[11]:
         B96 B98
     C23 C25 C27
1
              G6
Name: Cabin, dtype: object
In [12]:
df['Cabin'].mode()[0][0:3]
Out[12]:
'B96'
In [13]:
df['Cabin'] = df['Cabin'].fillna(method = 'bfill')
In [14]:
df['Embarked'].mode()
Out[14]:
Name: Embarked, dtype: object
In [15]:
df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
```

In [16]:

df.head()

Out[16]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cal
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	С
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	C1
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C1
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	E

Data Visualisation

```
In [17]:
```

```
sns.countplot(x = 'Sex', data = df)
```

Out[17]:

<Axes: xlabel='Sex', ylabel='count'>

Inference: From this graph we can see the difference between the count of different Gender

In [18]:

sns.barplot(data=df,x="Embarked",y="Age",hue="Sex")

Out[18]:

<Axes: xlabel='Embarked', ylabel='Age'>

inference: From the above graph we can see the variation in the age of different embarkment zone and the gender

In [19]:

sns.barplot(data=df,x="Sex",y="Age",hue="Embarked", errorbar = None)

Out[19]:

<Axes: xlabel='Sex', ylabel='Age'>

In [20]:

```
sns.distplot(df['Age'])
```

/var/folders/m8/dg41v9m11bdcfq4q15h80_140000gn/T/ipykernel_95392/32558
28239.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0. 14.0.

Please adapt your code to use either `displot` (a figure-level function with

similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df['Age'])

Out[20]:

<Axes: xlabel='Age', ylabel='Density'>

inference: From the above gaph we can the Normal Distribution of age

In [21]:

```
sns.scatterplot(x = 'Age', y = 'Fare', data = df)
```

Out[21]:

<Axes: xlabel='Age', ylabel='Fare'>

Inference: From the above graph we can see the fair that was charged based on the age of passenger

In [22]:

```
sns.relplot(x = 'Age', y= 'Fare', data = df, hue = 'Embarked')
```

Out[22]:

<seaborn.axisgrid.FacetGrid at 0x142014890>

inference: the above graph shows the fare chared for the passengers in different embarment zones and compares with their age

In [23]:

```
sns.scatterplot(x = 'Embarked',y = 'Fare', data = df)
```

Out[23]:

<Axes: xlabel='Embarked', ylabel='Fare'>

Inference: the above graph shows the fare chared for the passengers in different embarment zones

In [24]:

sns.distplot(df.Fare)

/var/folders/m8/dg41v9m11bdcfq4q15h80_140000gn/T/ipykernel_95392/34021
12601.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0. 14.0.

Please adapt your code to use either `displot` (a figure-level function with

similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(df.Fare)

Out[24]:

<Axes: xlabel='Fare', ylabel='Density'>

inference: from the above graph we can see the distribution of the fare

In [25]:

sns.barplot(x = 'Embarked', y = 'Age', data = df)

Out[25]:

<Axes: xlabel='Embarked', ylabel='Age'>

In [26]:

```
sns.boxplot(x = 'Embarked', y = 'Fare', data = df)
```

Out[26]:

<Axes: xlabel='Embarked', ylabel='Fare'>

In [27]:

```
sns.boxplot(x = 'Embarked', y = 'Age', data = df)
```

Out[27]:

<Axes: xlabel='Embarked', ylabel='Age'>

In [28]:

```
corr = df.corr()
corr
```

/var/folders/m8/dg41v9m11bdcfq4q15h80_l40000gn/T/ipykernel_95392/24380 84875.py:1: FutureWarning: The default value of numeric_only in DataFr ame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to sile nce this warning.

corr = df.corr()

Out[28]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
PassengerId	1.000000	-0.005007	-0.035144	0.034212	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.064910	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.339898	0.083081	0.018443	-0.549500
Age	0.034212	-0.064910	-0.339898	1.000000	-0.233296	-0.172482	0.096688
SibSp	-0.057527	-0.035322	0.083081	-0.233296	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.172482	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096688	0.159651	0.216225	1.000000

In [29]:

```
fig=plt.figure()
axes1=fig.add_axes([0.1,0.1,0.8,0.8]) #[left,bottom,width,height]
axes1.pie(df['Embarked'].value_counts(),labels = ['S', 'C','Q'],autopct="%0.2f%%")
axes1.legend()
```

Out[29]:

<matplotlib.legend.Legend at 0x1423decd0>

Outlier detection

```
In [30]:
```

```
sns.boxplot(df.Age)
```

Out[30]:

<Axes: >


```
In [31]:
```

```
q1 = df.Age.quantile(0.25)
q3 = df.Age.quantile(0.75)
```

In [32]:

```
IQR = q3 - q1
```

In [33]:

```
upper_limit =q3+1.5*IQR
```

In [34]:

```
upper_limit
```

Out[34]:

54.5

In [35]:

```
lower_limit = q1-1.5*IQR
lower_limit
```

Out[35]:

2.5

In [36]:

```
df.median()
```

/var/folders/m8/dg41v9m11bdcfq4q15h80_l40000gn/T/ipykernel_95392/53005 1474.py:1: FutureWarning: The default value of numeric_only in DataFra me.median is deprecated. In a future version, it will default to Fals e. In addition, specifying 'numeric_only=None' is deprecated. Select o nly valid columns or specify the value of numeric_only to silence this warning.

df.median()

Out[36]:

Passenge	rId	446.0000
Survived		0.0000
Pclass		3.0000
Age		28.0000
SibSp		0.0000
Parch		0.0000
Fare		14.4542
	-	

dtype: float64

In [37]:

```
df = df[df.Age<upper_limit]</pre>
```

In [38]:

sns.boxplot(df["Age"])

Out[38]:

<Axes: >


```
In [39]:
```

```
sns.boxplot(df.Fare)
```

Out[39]:

<Axes: >

In [40]:

```
q1 = df.Fare.quantile(0.25)
q3 = df.Fare.quantile(0.75)
```

In [41]:

IQR = q3-q1

In [42]:

```
upper_limit =q3+1.5*IQR
```

In [43]:

```
upper_limit
```

Out[43]:

64.4063

In [44]:

```
df = df[df.Fare<upper_limit]</pre>
```

In [45]:

sns.boxplot(df.Fare)

Out[45]:

<Axes: >

Splitting Dependent and Independent variables

In [46]:

df.head()

Out[46]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cal
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	C1
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C1
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	E
5	6	0	3	Moran, Mr. James	male	28.0	0	0	330877	8.4583	E

In []:

In [47]:

```
x = df.loc[:,['Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare']]
y = df.Embarked
```

In [48]:

x.head()

Out[48]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare
0	0	3	male	22.0	1	0	7.2500
2	1	3	female	26.0	0	0	7.9250
3	1	1	female	35.0	1	0	53.1000
4	0	3	male	35.0	0	0	8.0500
5	0	3	male	28.0	0	0	8.4583

```
9/21/23, 9:50 AM
                                              Assignment 3 - Jupyter Notebook
 In [49]:
 y.head()
 Out[49]:
       S
       S
 2
 3
       S
  4
       S
 5
 Name: Embarked, dtype: object
 Encoding
 In [50]:
 from sklearn.preprocessing import LabelEncoder
 In [51]:
 le=LabelEncoder()
 In [52]:
 x["Sex"]=le.fit_transform(x["Sex"])
 In [53]:
 x['Sex']
 Out[53]:
 0
         1
 2
         0
 3
         0
         1
 5
         1
 886
         1
 887
         0
 888
 889
         1
 890
 Name: Sex, Length: 741, dtype: int64
```

```
In [54]:
```

```
x["Sex"].value_counts()
Out[54]:
```

```
503
     238
Name: Sex, dtype: int64
```

```
In [55]:
x['Sex'].nunique()
Out[55]:
2
In [56]:
y = le.fit_transform(y)
```

Feature Scalling

```
In [57]:
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
In [58]:
x = sc.fit_transform(x)
In [59]:
Х
Out[59]:
array([[-0.72435582, 0.6809705, 0.68786702, ..., 0.59768849,
        -0.43803498, -0.7675324],
       [ 1.38053698, 0.6809705 , -1.45376937, ..., -0.49586008,
        -0.43803498, -0.71687899],
       [1.38053698, -2.13016677, -1.45376937, ..., 0.59768849,
        -0.43803498, 2.67314775],
       [-0.72435582, 0.6809705, -1.45376937, ..., 0.59768849,
         2.07811944, 0.44814957],
       [1.38053698, -2.13016677, 0.68786702, ..., -0.49586008,
        -0.43803498, 0.93967531],
       [-0.72435582, 0.6809705, 0.68786702, ..., -0.49586008,
        -0.43803498, -0.73001135]])
```

Train and Test Split

In [60]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0)
In [61]:
x_train.shape,x_test.shape,y_train.shape,y_test.shape
```

```
Out[61]:
((518, 7), (223, 7), (518,), (223,))
```