Welcome

Introduction

- Video: Welcome 6 min
- Video: What is Machine Learning?
 7 min
- Reading: What is Machine Learning?
 5 min
- Reading: How to Use Discussion Forums
 4 min
- Video: Supervised Learning
 12 min
- Reading: Supervised Learning 4 min
- Video: Unsupervised Learning
 14 min
- Reading: Unsupervised Learning
 3 min
- Reading: Who are Mentors?
 3 min
- Reading: Get to Know Your Classmates
 8 min
- Reading: Frequently AskedQuestions11 min

Review

Reading: Lecture Slides 20 min

Cost Function

We can measure the accuracy of our hypothesis function be using a **cost function**. This takes an average difference (actually a fancier version of an average) of all the results of the hypothesis with inputs from x's and the actual output y's.

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}_i - y_i \right)^2 = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x_i) - y_i \right)$$

To break it apart, it is $\frac{1}{2} \bar{x}$ where \bar{x} is the mean of the squares of $h_{\theta}(x_i) - y_i$, or the difference between the predicted value and the actual value.

This function is otherwise called the "Squared error function", or "Mean squared error". The mean is halved $\left(\frac{1}{2}\right)$ as a convenience for the computation of the gradient descent, as the derivative term of the square function will cancel out the $\frac{1}{2}$ term. The following image summarizes what the cost function does:

✓ Complete

Go to next item

