



# Financial Incluion in Africa









## **Agenda**

- Our team
- Client case
- Hypotheses
- Target Customers profile
- Our model



#### **Our Team**

We are a Financial analytics solutions provider.

We offers tailored data analysis and machine learning solutions for financial providers.

#### **Data scientists:**

Alex Volosha

Hiroi Isomura

Ron Silva

#### **Our Client Case**

# Who in Africa is most likely to have a bank account?

- Only around 14% of adults have a bank account in Kenya, Rwanda, Tanzania and Uganda
- Our goal is to develop a model that can predict which individuals are most likely to have or use a bank account.



## Hypotheses for bank holder's profile

- 1. People from specific country has more access to bank account.
- 2. Most people that don't have bank account are from rural area.
- 3. People with cell phones have no bank account.
- 4. People with high education have more access to bank account.
- 5. People who are employed have more access to bank account.

## **Bank Account Holder Rate per Countries**



## Bank Account Holder Rate per Cellphone Possession



## **Bank Account Holder Rate per Location Type**



## Bank Account Holder Rate per Education type



## Bank Account Holder Rate per Job type



## Bank Account Holder Rate per Gender



# **Customer portrait:**

- A man, between 30 and 40 years old
- Having a cell phone
- From an urban area
- With a technical or graduation degree
- Formally employed

is more likely to have a bank account.

#### Baseline model

#### Final model 1



#### Basis model

| 1            | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.91      | 0.97   | 0.94     | 2022    |
| 1            | 0.70      | 0.42   | 0.52     | 331     |
| accuracy     |           |        | 0.89     | 2353    |
| macro avg    | 0.80      | 0.69   | 0.73     | 2353    |
| weighted avg | 0.88      | 0.89   | 0.88     | 2353    |

#### Final model

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.94      | 0.89   | 0.91     | 4063    |
| 1            | 0.47      | 0.63   | 0.54     | 642     |
| accuracy     |           |        | 0.85     | 4705    |
| macro avg    | 0.71      | 0.76   | 0.73     | 4705    |
| weighted avg | 0.87      | 0.85   | 0.86     | 4705    |

#### Baseline model

#### Final model 1



Observations scale between models is disproportioned due to oversampling technique applied to minority class in models

#### Basis model

#### Model 2



Observations scale between models is disproportioned due to oversampling technique applied to minority class in models

# **Next steps**

We see, that we could capture more potential customers (true positives) at the expense of increased number of false positives as well.

If the cost of screening process is significantly lower than value from onboarded customer, we will tune the model to capture as many potential customers as possible.





-0.047

0.013

0.017

0.13

0.37

-0.1

0.1

-0.049

0.25

0.013

-0.1

dender of respondent with head

age of respondent - -0.059

relationship\_with\_head - 0.13

gender\_of\_respondent - -0.027 0.00032

education level - - 0.051

job\_type - 0.38

-0.019

0.17

0.27

0.019

0.12

0.32

-0.064

0.0018 -0.071

0.013

-0.47

0.12

-0.03

-0.47

-0.017

0.041

-0.35

0.12

-0.017

0.044

-0.1

-0.03

0.041

0.044

0.2

0.0

- -0.2

-0.4