Electroencephalogram (EEG)

Origin of biopotentials

Action potential

-100

Active channel: sodium-potassium pump

Remove 3 Na⁺ for every 2 k⁺

M. Bear *et al*, Neuroscience: exploring the brain, Lippincott Williams & Wilkins, 2001.

Biologocal neuron

Axon to synapse via neurotransmitter

Simplified synapse in biologocal neuron

Action potential

Brain

Cerebrum (大腦)

Thalamus (丘腦)

Sensory and motor system

Human behaviors ...

Hypothalamus (丘腦下部)

- Autonomic nervous system
- Temperature regulation
- Water and electrolyte balance
- Behavior response to emotion
- Endocrine control
- Sexual response

Medulla Oblongata (延腦)

 Vital centers that regulates heart rate, respiratory rate, blood pressure, blood vessel, etc.

Cerebellum (小腦)

 Coordinating skeletal muscles and impulses from cerebral cortex

Cerebrum (Frontal, Parietal, Temporal and Occipital lobes)

Electroencephalogram (EEG)

M. Bear *et al*, Neuroscience: exploring the brain, Lippincott Williams & Wilkins, 2001.

Electroencephalogram (EEG) rhythms

EEG spikes or abnormal waveform in epilepsy

John G. Webster, Medical Instrumentation, application and design, 3rd Ed., Houghton Mifflin, 2000.

(c)

Figure 4.27 (Continued)

Psychomotor

EEG changes in sleep

Figure 4.29 The electroencephalographic changes that occur as a human subject goes to sleep The calibration marks on the right represent $50~\mu\text{V}$. (From H. H. Japser, "Electrocephalography," in *Epilepsy and Cerebral Localization*, edited by W. G. Penfield and T. C. Erickson. Springfield, Ill.: Charles C. Thomas, 1941.)

EEG electrode placement (CP₂) (CPz) Vertex 20% 20% 20% 20% 20% 20% 10% Nasion ¹20% Preaurical Inion point HL Chan, EE, CGU Inion 10% **EEG** 15

Multichannel EEG recodeings: Neuroscan™

Monopolar measurements

Bipolar measuremesnts

Monopolar montage

Bipolar montage

Megnetoencephalography (MEG)

- Typical scalp magnetic fields are on the order of a 10 billionth of the earth's magnetic field.
- MEG fields are measured inside a magnetically shielded room for protection against higher-frequency electromagnetic perturbations.
- This MEG recording was acquired as the subject moved his finger at time 0. Data indicate early motor preparation prior to the movement onset before peaking at about 20 ms after movement onset.

MEG

FIGURE 18. Magnetoencephalogram (MEG) with EEG. (From Cohen, D. and Cuffin, B. N., *Electroencephalogr. Clin. Neurophys.*, 56, 1983. With permission.)

Sensor placement

Magnitude squared coherence (MSC)

 Functional coupling by the normalized cross spectrum at specified frequencies between brain regions

$$c_{xy}(f) = \frac{|X(f)Y^*(f)|^2}{|X(f)|^2 |Y(f)|^2}$$

Electrooculogram (EOG)

R. Berea et al, IEEE Trans. Neural Sys. Rehab Eng. 2002.

(b)

Independent component analysis (ICA)

(B) Summed Projection of Selectrd Components

After blind source separation

12 spontantaneous MEG

Independent Components Extracted from MEG

Independent Components Extracted from MEG

Brain waves in coma

Lempel-Ziv complexity

EEG complexity of normal (left) and coma (right)

EEG waveform recorded from one patient under sevoflurane in different states

Estimation of depth of anesthesia by EEG/AEP

EEG monitoring

Audio evoked potential monitoring

Estimating depth of anesthesia based on neuro fuzzy model (XS Zhang, IEEE Trans. BME, 2001)

Two-dimensional cortical imaging

 Employs a distributed source model, in which equivalent sources are distributed in 2D cortical surface

Source localization of epilleptic spike (Figure provided by Dr. Yu-Tai Tsai)

Single Dipole Fit

MUSIC

LORETA

Cortical Imaging

Ш

Reference

- John G. Webster, Medical Instrumentation, application and design, 3rd Ed., Houghton Mifflin, 2000.
- F.M. Ham, I. Kostanic, Principle of Neurocomputing for Science & Engineering, McGraw Hill, 2001.