الجامعة المصرية للتعلم الإلكتروني الأهلية



# GEN206 Discrete Mathematics

Section 7

Faculty of Information Technology Egyptian E-Learning University

Fall 2021-2022





### 13. What are the quotient and remainder when

- a) 19 is divided by 7?
- (a) Quotient 2 and Remainder 5
  - $\mathbf{g}$ ) -1 is divided by 3?
  - (g) Quotient −1 and Remainder 2

- **b**) -111 is divided by 11?
  - (b) Quotient −11 and Remainder 10
    - **h)** 4 is divided by 1?
  - (h) Quotient 4 and Remainder 0





**32.** List five integers that are congruent to 4 modulo 12.

 $4, 16, 28, 40, 52, \dots$ 





33. List all integers between -100 and 100 that are congruent to -1 modulo 25.

$$\{-76, -51, -26, -1, 24, 49, 74, 99\}$$



- **34.** Decide whether each of these integers is congruent to 3 modulo 7.
  - **a)** 37
  - c) -17

- **b**) 66
- **d**) -67

- (a) Not congruent to 3 mod 7
- (b) Congruent to 3 mod 7
- (c) Not congruent to 3 mod 7
- (d) Congruent to 3 mod 7





1. Determine whether each of these integers is prime.

- a) 21
- **c**) 71
- e) 111

- **b**) 29
- **d)** 97
- **f**) 143
  - (a) Not prime
  - (b) Prime
  - (c) Prime
  - (d) Prime
  - (e) Not prime
  - (f) Not prime



4. Find the prime factorization of each of these integers.

- **a**) 39
- **d**) 143

- **b**) 81
- e) 289

- c) 101
- **f**) 899

$$a.39 = 3 * 13$$

b. 
$$81 = 3^4$$

$$c. 101 = 101$$

$$e. 289 = 17^2$$





**24.** What are the greatest common divisors of these pairs of integers?

a) 
$$2^2 \cdot 3^3 \cdot 5^5$$
,  $2^5 \cdot 3^3 \cdot 5^2$ 

**b)** 
$$2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13, 2^{11} \cdot 3^9 \cdot 11 \cdot 17^{14}$$

**d**) 
$$2^2 \cdot 7, 5^3 \cdot 13$$

**f**) 
$$2 \cdot 3 \cdot 5 \cdot 7, 2 \cdot 3 \cdot 5 \cdot 7$$



- 25. What are the greatest common divisors of these pairs of integers?
  - a)  $3^7 \cdot 5^3 \cdot 7^3$ ,  $2^{11} \cdot 3^5 \cdot 5^9$
  - **b)**  $11 \cdot 13 \cdot 17, 2^9 \cdot 3^7 \cdot 5^5 \cdot 7^3$
  - c)  $23^{31}$ ,  $23^{17}$
  - **d)**  $41 \cdot 43 \cdot 53, 41 \cdot 43 \cdot 53$
  - e)  $3^{13} \cdot 5^{17}$ ,  $2^{12} \cdot 7^{21}$
  - **f**) 1111, 0

- (a)  $3^5 \cdot 5^3$  or 30375
- (b) 1
- (c) 23<sup>17</sup>
- (d) 41 · 43 · 53 or 93439
- (e) 1
- (f) 1111





#### **26.** What is the least common multiple of each pair in Exercise 24?

a) 
$$2^2 \cdot 3^3 \cdot 5^5$$
,  $2^5 \cdot 3^3 \cdot 5^2$ 

**b)** 
$$2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13, 2^{11} \cdot 3^9 \cdot 11 \cdot 17^{14}$$

**c)** 17, 
$$17^{17}$$
 **d)**  $2^2 \cdot 7$ ,  $5^3 \cdot 13$ 

**f**) 
$$2 \cdot 3 \cdot 5 \cdot 7, 2 \cdot 3 \cdot 5 \cdot 7$$

(a) 
$$2^5 \cdot 3^3 \cdot 5^5$$

(b) 
$$2^{11} \cdot 3^9 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17^{14}$$

(d) 
$$2^2 \cdot 5^3 \cdot 7 \cdot 13$$





## **27.** What is the least common multiple of each pair in Exercise 25?

a) 
$$3^7 \cdot 5^3 \cdot 7^3$$
,  $2^{11} \cdot 3^5 \cdot 5^9$ 

**b)** 
$$11 \cdot 13 \cdot 17, 2^9 \cdot 3^7 \cdot 5^5 \cdot 7^3$$

c) 
$$23^{31}$$
,  $23^{17}$ 

d) 
$$41 \cdot 43 \cdot 53, 41 \cdot 43 \cdot 53$$

e) 
$$3^{13} \cdot 5^{17}$$
,  $2^{12} \cdot 7^{21}$ 

(a) 
$$2^{11} \cdot 3^7 \cdot 5^9 \cdot 7^3$$

(b) 
$$2^9 \cdot 3^7 \cdot 5^5 \cdot 7^3 \cdot 11 \cdot 13 \cdot 17$$

(e) 
$$2^{12} \cdot 3^{13} \cdot 5^{17} \cdot 7^{21}$$

(f) Undefined





**28.** Find gcd(1000, 625) and lcm(1000, 625) and verify that  $gcd(1000, 625) \cdot lcm(1000, 625) = 1000 \cdot 625$ .

$$gcd(1000, 625) = 125$$
  
 $lcm(1000, 625) = 5000$   
 $gcd(1000, 625) \cdot lcm(1000, 625) = 625 \cdot 1000$ 



## Thank You

