

Analyses for CNM study 1

R packages used

```
library(nlme) # for lme(), gls(), intervals()
```

Data

All the data cleanup and preparation was done on a separate R script, "data cleanup.R".

```
source("data cleanup.r")
```

```
## Warning: package 'lubridate' was built under R version 3.5.3
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
##
## Attaching package: 'reshape'
## The following object is masked from 'package:lubridate':
##
## stamp
```

The data was converted to long format, that is, each row is a partner/relationship from a participant. To compare models using a likelihood ratio test, models must be generated using the same dataset, so to avoid potential comparison issues caused by missing data, only complete data subsets were used on each analysis.

Checking the need for mixed effects models

Defining variables in a complete dataset:

```
vars <- c("Respondent.ID", "avoidance", "anxiety", "satisfaction", "hierarchy")
data <- na.omit(study1.long[vars])
dv1 <- data$avoidance
dv2 <- data$anxiety
dv3 <- data$satisfaction
iv <- data$hierarchy
id <- data$Respondent.ID</pre>
```

Checking whether a random-intercept model is an improvement over a fixed intercept one:


```
ri3 <- lme(dv3 ~ 1, random = list(id = pdSymm(form = ~ 1)),
                           method="REML", na.action=na.exclude)
anova(i1, ri1)
##
       Model df
                     AIC
                              BIC
                                     logLik
                                               Test L.Ratio p-value
## i1
             2 1713.504 1722.171 -854.7521
           1
## ri1
             3 1702.758 1715.758 -848.3789 1 vs 2 12.74626
anova(i2, ri2)
##
       Model df
                     AIC
                              BIC
                                     logLik
                                              Test L.Ratio p-value
              2 1969.847 1978.514 -982.9236
## ri2
           2 3 1924.692 1937.692 -959.3462 1 vs 2 47.15476 <.0001
anova(i3, ri3)
##
       Model df
                     AIC
                              BIC
                                     logLik
                                               Test L.Ratio p-value
## i3
           1 2 3006.037 3014.703 -1501.018
           2 3 2973.114 2986.114 -1483.557 1 vs 2 34.92231 <.0001
```

The random-intercept models significantly improve the fixed-intercept ones. This confirms he appropriateness of using linear mixed effects models.

Variability in within-participant anxiety, avoidance, and relationship satisfaction by hierarchy type

Step 1: Look at hierarchy type only

To test whether the within-participant variability in avoidance, anxiety, and relationship satisfaction differed by hierarchy type, we compared (via likelihood ratio test) two linear mixed effects models for each outcome variable: one which assumed a homogeneous variance across hierarchical and non-hierarchical groups and one which assumed heterogeneous variance. Both models had a random intercept and no fixed effects.

Options used in the nlme::lme() function:

random = list(id = pdSymm(form = ~ 1)), which is the same as random = ~ 1|id, sets the random effects to be structured as a positive-definite symmetric matrix; it assumes homogeneous between-subject variance.

random = list(id = pdDiag(form = ~ iv)) sets the random effects to be structured as a diagonal matrix; it assumes heterogeneous between-subject variance across the levels of iv (hierarchical and non-hierarchical groups).

weights = varIdent(form = ~ 1 | iv) sets heterogeneous within-participant variance for levels of iv
(hierarchical and non-hierarchical groups)

method = "REML" Restricted Maximum Likelihood (REML) is used if fixed effects don't change between models to be compared. If fixed effects change, we use "ML", Maximum Likelihood.


```
method="REML")
anova(ri1,wsh1)
       Model df
                      AIC
                               BIC
                                      logLik
                                               Test L.Ratio p-value
## ri1
           1 3 1702.758 1715.758 -848.3789
           2 4 1693.915 1711.248 -842.9576 1 vs 2 10.84263 0.001
anova(ri2,wsh2)
       Model df
##
                      AIC
                               BIC
                                               Test L.Ratio p-value
                                      logLik
            1 3 1924.692 1937.692 -959.3462
            2 4 1915.984 1933.317 -953.9919 1 vs 2 10.70866 0.0011
## wsh2
anova(ri3,wsh3)
       Model df
                      AIC
                               BIC
                                      logLik
                                               Test L.Ratio p-value
## ri3
            1 3 2973.114 2986.114 -1483.557
            2 4 2970.761 2988.094 -1481.380 1 vs 2 4.353521 0.0369
## wsh3
Hierarchy type is related to within-participant variability in avoidance, anxiety, and satisfaction.
summary(wsh1)
## Linear mixed-effects model fit by REML
## Data: NULL
##
         AIC
                   BIC
                          logLik
    1693.915 1711.248 -842.9576
##
## Random effects:
## Formula: ~1 | id
           (Intercept) Residual
## StdDev: 0.3974177 0.9113319
##
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | iv
## Parameter estimates:
## NonHierarchical Hierarchical
          1.000000
##
                          1.251087
## Fixed effects: dv1 ~ 1
##
                 Value Std.Error DF t-value p-value
## (Intercept) 2.06933 0.05022416 339 41.20188
## Standardized Within-Group Residuals:
         Min
                      Q1
                               Med
                                            QЗ
                                                      Max
## -1.7133403 -0.7427639 -0.2162893 0.5643724 4.6181998
##
## Number of Observations: 564
## Number of Groups: 225
summary(wsh2)
## Linear mixed-effects model fit by REML
   Data: NULL
##
##
          AIC
                   BIC
                          logLik
##
    1915.984 1933.317 -953.9919
##
```



```
## Random effects:
    Formula: ~1 | id
##
##
           (Intercept) Residual
             0.7732425 1.009965
## StdDev:
##
## Variance function:
  Structure: Different standard deviations per stratum
  Formula: ~1 | iv
    Parameter estimates:
## NonHierarchical
                      Hierarchical
##
          1.000000
                          1.266016
  Fixed effects: dv2 ~ 1
##
##
                  Value Std.Error DF t-value p-value
##
   (Intercept) 2.227602 0.0705765 339 31.56294
##
## Standardized Within-Group Residuals:
##
                      Q1
                                 Med
                                             QЗ
## -2.4747354 -0.5595333 -0.3092204 0.5039857 3.4660662
## Number of Observations: 564
## Number of Groups: 225
summary(wsh3)
## Linear mixed-effects model fit by REML
    Data: NULL
##
          AIC
                   BIC
                         logLik
     2970.761 2988.094 -1481.38
##
##
## Random effects:
    Formula: ~1 | id
##
           (Intercept) Residual
              1.717406 2.776182
## StdDev:
##
## Variance function:
## Structure: Different standard deviations per stratum
  Formula: ~1 | iv
  Parameter estimates:
## NonHierarchical
                      Hierarchical
##
          1.000000
                          1.158269
## Fixed effects: dv3 ~ 1
##
                  Value Std.Error DF t-value p-value
##
   (Intercept) 20.04605 0.1710055 339 117.2246
##
## Standardized Within-Group Residuals:
##
                      Q1
                                 Med
                                             QЗ
## -3.6367692 -0.5945878 0.1165595 0.6878617 1.9789642
##
## Number of Observations: 564
## Number of Groups: 225
The within-participant standard deviations for avoidance, anxiety, and relationship satisfaction were higher
```

The within-participant standard deviations for avoidance, anxiety, and relationship satisfaction were higher in the hierarchical group by 25%, 26%, and 16% respectively.

Estimated weight and standard deviations for non-hierarchical and hierarchical groups:


```
summary(wsh1)$sigma # avoidance, non-hierarchical
## [1] 0.9113319
summary(wsh1)$sigma*coef(wsh1$modelStruct$varStruct, uncons=FALSE)
## Hierarchical
##
       1.140155
summary(wsh2)$sigma # anxiety, non-hierarchical
## [1] 1.009965
summary(wsh2)$sigma*coef(wsh1$modelStruct$varStruct, uncons=FALSE)
## Hierarchical
       1.263554
summary(wsh3)$sigma # satisfaction, non-hierarchical
## [1] 2.776182
summary(wsh3)$sigma*coef(wsh1$modelStruct$varStruct, uncons=FALSE)
## Hierarchical
       3.473245
Confidence intervals:
intervals(wsh1, level = 0.95, which = "all")
## Approximate 95% confidence intervals
##
## Fixed effects:
##
                  lower
                           est.
                                  upper
## (Intercept) 1.970539 2.06933 2.16812
## attr(,"label")
## [1] "Fixed effects:"
##
## Random Effects:
##
   Level: id
##
                      lower
                                 est.
                                           upper
## sd((Intercept)) 0.285393 0.3974177 0.5534154
##
##
  Variance function:
##
                   lower
                             est.
## Hierarchical 1.095153 1.251087 1.429223
## attr(,"label")
## [1] "Variance function:"
##
##
  Within-group standard error:
       lower
                  est.
                           upper
## 0.8312993 0.9113319 0.9990696
intervals(wsh2, level = 0.95, which = "all")
## Approximate 95% confidence intervals
##
## Fixed effects:
```



```
##
                  lower
                             est.
## (Intercept) 2.088779 2.227602 2.366425
## attr(,"label")
  [1] "Fixed effects:"
##
    Random Effects:
##
    Level: id
##
##
                        lower
                                   est.
                                             upper
## sd((Intercept)) 0.6461323 0.7732425 0.9253584
##
##
   Variance function:
##
                  lower
                             est.
## Hierarchical 1.09994 1.266016 1.457167
## attr(,"label")
## [1] "Variance function:"
##
##
    Within-group standard error:
##
       lower
                  est.
                           upper
## 0.9156106 1.0099647 1.1140421
intervals(wsh3, level = 0.95, which = "all")
## Approximate 95% confidence intervals
##
##
    Fixed effects:
##
                  lower
                             est.
                                     upper
## (Intercept) 19.70968 20.04605 20.38241
## attr(,"label")
## [1] "Fixed effects:"
##
##
    Random Effects:
##
    Level: id
##
                       lower
                                 est.
## sd((Intercept)) 1.394681 1.717406 2.114808
##
##
   Variance function:
##
                   lower
                              est.
## Hierarchical 1.009026 1.158269 1.329587
## attr(,"label")
## [1] "Variance function:"
##
##
    Within-group standard error:
##
      lower
                est.
                         upper
## 2.522023 2.776182 3.055953
Exploratory - checked whether a heterogeneous between-subjects variance model improved the heterogeneous
```

Exploratory - checked whether a heterogeneous between-subjects variance model improved the heterogeneous within-subjects variance model:


```
method="REML")
anova(wsh1,bsh1)
       Model df
                      AIC
                               BIC
                                      logLik
                                               Test
                                                         L.Ratio p-value
## wsh1
            1 4 1693.915 1711.248 -842.9576
            2 5 1695.915 1717.582 -842.9576 1 vs 2 2.484712e-07 0.9996
anova(wsh2,bsh2)
       Model df
##
                      AIC
                               BIC
                                      logLik
                                               Test
                                                         L.Ratio p-value
## wsh2
            1 4 1915.984 1933.317 -953.9919
## bsh2
            2 5 1917.983 1939.650 -953.9916 1 vs 2 0.0004971541 0.9822
anova(wsh3,bsh3)
##
       Model df
                      AIC
                               BIC
                                     logLik
                                              Test
                                                        L.Ratio p-value
## wsh3
            1 4 2970.761 2988.094 -1481.38
            2 5 2972.761 2994.427 -1481.38 1 vs 2 2.926199e-07 0.9996
## bsh3
```

Step 2: add control variables

No significant improvement.

We first checked which potential control variables are related to the within-participant variability in the outcomes:

Numerical variables:

```
for(x in cvs.num){ # numerical vars
  data <- na.omit(study1.long[c(vars,x)])</pre>
  print(x)
  cv <- data[[x]]</pre>
  dv1 <- data$avoidance</pre>
  dv2 <- data$anxiety</pre>
  dv3 <- data$satisfaction
  iv <- data$hierarchy
  id <- data$Respondent.ID
  m1 <- lme(dv1 ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            method="REML")
  m2 <- lme(dv2 ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             method="REML")
  m3 <- lme(dv3 ~ 1, random = list(id = pdSymm(form = ~ 1)),
            method="REML")
  mcv1 <- lme(dv1 ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
              #weights = varFixed(~cv),
              #weights = varPower(1,~cv),
              weights = varExp(1,~cv),
              method="REML",
              control=lmeControl(opt = "optim"
                                   #returnObject=TRUE
```



```
mcv2 <- lme(dv2 ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             #weights = varFixed(~cv),
             #weights = varPower(1, \sim cv),
             weights = varExp(1,~cv),
             method="REML",
             control=lmeControl(opt = "optim"
                                #returnObject=TRUE
             )
 mcv3 <- lme(dv3 ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             #weights = varFixed(\sim cv),
             #weights = varPower(1,~cv),
             weights = varExp(1,~cv),
             method="REML",
             control=lmeControl(opt = "optim"
                                #returnObject=TRUE
             )
  a1 <- anova(m1,mcv1); a2 <- anova(m2,mcv2); a3 <- anova(m3,mcv3);
  print(a1); print(a2); print(a3);
## [1] "rel.length.c"
       Model df
                     AIC
                               BIC
                                      logLik
                                               Test L.Ratio p-value
            1 3 1686.358 1699.325 -840.1789
           2 4 1670.893 1688.183 -831.4465 1 vs 2 17.46479 <.0001
##
       Model df
                     AIC
                              BIC
                                      logLik
                                               Test L.Ratio p-value
           1 3 1900.927 1913.895 -947.4634
           2 4 1898.419 1915.710 -945.2098 1 vs 2 4.507312 0.0338
## mcv2
                               BIC
##
       Model df
                     AIC
                                      logLik
                                               Test L.Ratio p-value
## m3
           1 3 2945.399 2958.367 -1469.699
## mcv3
            2 4 2945.262 2962.552 -1468.631 1 vs 2 2.137014 0.1438
## [1] "age.c"
                              BIC
##
       Model df
                     AIC
                                      logLik
                                               Test L.Ratio p-value
## m1
          1 3 1702.758 1715.758 -848.3789
## mcv1
          2 4 1717.480 1734.813 -854.7398 1 vs 2 12.72168 4e-04
##
       Model df
                     AIC
                              BIC
                                      logLik
                                               Test L.Ratio p-value
## m2
           1 3 1924.692 1937.692 -959.3462
## mcv2
           2 4 1971.141 1988.475 -981.5708 1 vs 2 44.44913 <.0001
       Model df
                     AIC
                              BIC
                                               Test L.Ratio p-value
                                      logLik
            1 3 2973.114 2986.114 -1483.557
## m3
## mcv3
           2 4 3009.368 3026.701 -1500.684 1 vs 2 34.25337 <.0001
## [1] "incomeperPPL.c"
##
       Model df
                               BIC
                     AIC
                                      logLik
                                               Test L.Ratio p-value
## m1
            1 3 1332.046 1344.273 -663.0233
## mcv1
           2 4 1340.895 1357.197 -666.4475 1 vs 2 6.848584 0.0089
       Model df
                     AIC
                               BIC
                                      logLik
                                               Test L.Ratio p-value
            1 3 1494.572 1506.798 -744.2859
## m2
## mcv2
           2 4 1534.143 1550.445 -763.0717 1 vs 2 37.57165 <.0001
       Model df
                               BIC
##
                    AIC
                                      logLik
                                               Test L.Ratio p-value
           1 3 2307.176 2319.402 -1150.588
## m3
## mcv3
           2 4 2336.047 2352.348 -1164.023 1 vs 2 26.87112 <.0001
```


Categorical variables:

```
for(x in cvs.cat){ # categorical vars
  data <- na.omit(study1.long[c(vars,x)])</pre>
  print(x)
  cv <- data[[x]]
  dv1 <- data$avoidance
  dv2 <- data$anxiety
  dv3 <- data$satisfaction
  iv <- data$hierarchy
  id <- data$Respondent.ID
  m1 <- lme(dv1 ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            method="REML")
  m2 <- lme(dv2 ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            method="REML")
  m3 <- lme(dv3 ~ 1, random = list(id = pdSymm(form = ~ 1)),
            method="REML")
  mcv1 <- lme(dv1 ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             weights = varIdent(form = ~1|cv),
             method="REML")
  mcv2 <- lme(dv2 ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             weights = varIdent(form = ~1|cv),
             method="REML")
  mcv3 <- lme(dv3 ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             weights = varIdent(form = ~1|cv),
             method="REML")
  print(anova(m1,mcv1))
  print(anova(m2,mcv2))
  print(anova(m3,mcv3))
## [1] "N.Partners.3levels"
##
        Model df
                      AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
            1 3 1702.758 1715.758 -848.3789
            2 5 1683.952 1705.618 -836.9759 1 vs 2 22.80603 <.0001
## mcv1
       Model df
##
                      AIC
                               BIC
                                       logLik
                                                Test
                                                       L.Ratio p-value
## m2
            1 3 1924.692 1937.692 -959.3462
## mcv2
           2 5 1928.644 1950.310 -959.3219 1 vs 2 0.04867099
##
        Model df
                      AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
## m3
            1 3 2973.114 2986.114 -1483.557
## mcv3
            2 5 2967.545 2989.211 -1478.772 1 vs 2 9.56959 0.0084
## [1] "gender"
##
        Model df
                      AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
## m1
            1 3 1409.988 1422.414 -701.9941
            2 5 1400.180 1420.890 -695.0898 1 vs 2 13.80854
##
        Model df
                      AIC
                               BIC
                                                Test L.Ratio p-value
                                       logLik
            1 3 1591.117 1603.543 -792.5583
## m2
            2 5 1593.515 1614.225 -791.7574 1 vs 2 1.601779 0.4489
## mcv2
        Model df
                      AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
            1 3 2462.146 2474.572 -1228.073
## m3
## mcv3
            2 5 2463.782 2484.492 -1226.891 1 vs 2 2.364013 0.3067
## [1] "orientation.binary"
##
        Model df
                      AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
## m1
            1 3 1392.963 1405.357 -693.4815
## mcv1
            2 4 1390.362 1406.887 -691.1812 1 vs 2 4.600673 0.032
```



```
Model df AIC BIC logLik
                                         Test L.Ratio p-value
       1 3 1565.982 1578.376 -779.9909
## m2
## mcv2
         2 4 1567.586 1584.111 -779.7930 1 vs 2 0.3957323 0.5293
       Model df AIC
                        BIC
                                logLik
                                         Test L.Ratio p-value
## m3
         1 3 2431.052 2443.446 -1212.526
          2 4 2433.049 2449.574 -1212.524 1 vs 2 0.003576701 0.9523
## mcv3
## [1] "race.binary"
                 AIC
       Model df
                           BIC
                                logLik
                                          Test
                                                 L.Ratio p-value
          1 3 1405.787 1418.200 -699.8935
## m1
## mcv1
          2 4 1407.786 1424.337 -699.8930 1 vs 2 0.001065629 0.974
       Model df
                  AIC
                       BIC logLik
                                         Test L.Ratio p-value
         1 3 1578.72 1591.134 -786.3602
         2 4 1580.15 1596.701 -786.0749 1 vs 2 0.5705183 0.4501
## mcv2
##
      Model df
                 AIC
                         BIC
                                logLik
                                         Test L.Ratio p-value
       1 3 2448.825 2461.238 -1221.412
       2 4 2450.171 2466.722 -1221.086 1 vs 2 0.6534813 0.4189
## mcv3
## [1] "children.binary"
##
       Model df AIC
                          BIC
                                  logLik
                                         Test L.Ratio p-value
## m1
        1 3 1409.988 1422.414 -701.9941
## mcv1
         2 4 1410.788 1427.357 -701.3942 1 vs 2 1.1998 0.2734
                 AIC
                        BIC
       Model df
                                logLik
                                          Test L.Ratio p-value
         1 3 1591.117 1603.543 -792.5583
         2 4 1592.304 1608.872 -792.1521 1 vs 2 0.8123354 0.3674
## mcv2
       Model df
                   AIC
                           BIC
                                  logLik
                                         Test L.Ratio p-value
## m3
          1 3 2462.146 2474.572 -1228.073
          2 4 2462.592 2479.160 -1227.296 1 vs 2 1.553942 0.2126
## mcv3
## [1] "education.3levels"
       Model df
                 AIC
                           BIC
                                 logLik
                                          Test L.Ratio p-value
## m1
        1 3 1389.832 1402.213 -691.9160
         2 5 1393.791 1414.425 -691.8953 1 vs 2 0.04152336 0.9795
       Model df
                           BIC
                                  logLik
                                          Test L.Ratio p-value
                   AIC
## m2
       1 3 1569.435 1581.816 -781.7175
         2 5 1572.252 1592.886 -781.1259 1 vs 2 1.183284 0.5534
## mcv2
       Model df
                  AIC
                       BIC logLik
                                         Test L.Ratio p-value
         1 3 2419.608 2431.988 -1206.804
## m3
          2 5 2422.550 2443.185 -1206.275 1 vs 2 1.05754 0.5893
## mcv3
## [1] "marital.status"
                           BIC
                                         Test L.Ratio p-value
       Model df
                 AIC
                                logLik
## m1
          1 3 1702.758 1715.758 -848.3789
## mcv1
          2 4 1700.197 1717.530 -846.0986 1 vs 2 4.560775 0.0327
##
       Model df
                   AIC
                           BIC logLik
                                          Test L.Ratio p-value
## m2
         1 3 1924.692 1937.692 -959.3462
         2 4 1923.451 1940.784 -957.7255 1 vs 2 3.241416 0.0718
## mcv2
       Model df AIC BIC logLik
                                          Test L.Ratio p-value
        1 3 2973.114 2986.114 -1483.557
## mcv3
       2 4 2974.251 2991.584 -1483.126 1 vs 2 0.8632052 0.3528
## [1] "cohab"
##
       Model df AIC BIC
                                  logLik
                                         Test L.Ratio p-value
       1 3 1702.758 1715.758 -848.3789
## mcv1
         2 5 1684.597 1706.263 -837.2983 1 vs 2 22.16132 <.0001
       Model df AIC
                        BIC
                                logLik
                                          Test L.Ratio p-value
## m2
        1 3 1924.692 1937.692 -959.3462
## mcv2 2 5 1918.558 1940.224 -954.2790 1 vs 2 10.13439 0.0063
       Model df
                   AIC
                                logLik Test L.Ratio p-value
##
                           BIC
```



```
## m3
           1 3 2973.114 2986.114 -1483.557
           2 5 2976.225 2997.891 -1483.112 1 vs 2 0.8894541
## mcv3
                                                                0.641
## [1] "coparent"
       Model df
                              BIC
##
                     AIC
                                      logLik
                                              Test L.Ratio p-value
## m1
            1 3 1702.758 1715.758 -848.3789
## mcv1
           2 5 1702.606 1724.272 -846.3028 1 vs 2 4.152251 0.1254
##
       Model df
                     AIC
                              BIC
                                      logLik
                                               Test L.Ratio p-value
## m2
           1 3 1924.692 1937.692 -959.3462
           2 5 1923.902 1945.568 -956.9509 1 vs 2 4.790579 0.0911
## mcv2
##
       Model df
                              BIC
                                      logLik
                     AIC
                                              Test
                                                    L.Ratio p-value
## m3
           1 3 2973.114 2986.114 -1483.557
           2 5 2976.507 2998.174 -1483.254 1 vs 2 0.6068902 0.7383
```

After adjusting p-values for multiple comparisons, the following variables were related to within-participant variance:

Avoidance - relationship length, number of partners, gender, and cohabitation.

Anxiety - cohabitation

Satisfaction - number of partners

Model selection for within-participant variability in avoidance

Strategy: start with a model that includes hierarchy (variable of interest), relationship length, number of partners, gender, and cohabitation status. Then perform model selection through a backwards elimination process.

Model with 4 control variables:

```
cvs.avoid <- c("rel.length.c", "N.Partners.3levels", "gender", "cohab")</pre>
data <- na.omit(study1.long[c(vars,cvs.avoid)])</pre>
dv <- data$avoidance
iv <- data$hierarchy
id <- data$Respondent.ID
cv1 <- data[[cvs.avoid[1]]]</pre>
cv4 <- data[[cvs.avoid[2]]]</pre>
cv5 <- data[[cvs.avoid[3]]]</pre>
cv11 <- data[[cvs.avoid[4]]]</pre>
mcv4 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             weights = varComb(
                  varIdent(form = ~ 1 | iv),
                  varExp(1, ~cv1), # length
                  varIdent(form = ~ 1 | cv4), # number of partners
                  varIdent(form = ~ 1 | cv5), # gender
                  varIdent(form = ~ 1 | cv11) # cohab
             ),
            method="REML")
aic3 <- numeric() # vector that will store AIC values for later comparison
mcv3 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             weights = varComb(
                  varIdent(form = ~ 1 | iv),
                  #varExp(1, ~cv1), # length
                  varIdent(form = ~ 1 | cv4), # number of partners
                  varIdent(form = ~ 1 | cv5), # gender
```



```
varIdent(form = ~ 1 | cv11) # cohab
            ),
            method="REML")
a1 <- anova(mcv3,mcv4)
aic3[1] <- a1$AIC[2]-a1$AIC[1] # AIC of full minus reduced model
mcv3 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varComb(
                 varIdent(form = ~ 1 | iv),
                 varExp(1, ~cv1), # 1 length
                 #varIdent(form = ~ 1 | cv4), # number of partners
                 varIdent(form = ~ 1 | cv5), # gender
                 varIdent(form = ~ 1 | cv11) # cohab
            ),
            method="REML")
a4 <- anova(mcv3,mcv4)
aic3[2] <- a4$AIC[2]-a4$AIC[1] # AIC of full minus reduced model
mcv3 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varComb(
                 varIdent(form = ~ 1 | iv),
                 varExp(1, ~cv1), # length
                 varIdent(form = ~ 1 | cv4), # number of partners
                 #varIdent(form = ~ 1 | cv5), # gender
                 varIdent(form = ~ 1 | cv11) # cohab
            ),
            method="REML")
a5 <- anova(mcv3,mcv4)
aic3[3] <- a5$AIC[2]-a5$AIC[1] # AIC of full minus reduced model
mcv3 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varComb(
                 varIdent(form = ~ 1 | iv),
                 varExp(1, ~cv1), # length
                 varIdent(form = ~ 1 | cv4), # number of partners
                 varIdent(form = ~ 1 | cv5) # gender
                 #varIdent(form = ~ 1 | cv11) # cohab
            ),
            method="REML")
a11 \leftarrow anova(mcv3, mcv4)
aic3[4] <- a11$AIC[2]-a11$AIC[1] # AIC of full minus reduced model
print(aic3)
```

[1] -7.743088 -12.856747 -4.240881 -2.824791

** Eliminate cohabitation - it improves the model with 3 control variables, but not by much (after adjusting for multiple testing, improvement is not significant) **

Should one more variable be eliminated?


```
varExp(1, ~cv1), # length
                 varIdent(form = ~ 1 | cv4), # number of partners
                  varIdent(form = ~ 1 | cv5) # gender
                  ),
            method="REML")
aic2 <- numeric() # vector that will store AIC values for later comparison
mcv2 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varComb(
                 varIdent(form = ~ 1 | iv),
                  #varExp(1, ~cv1), # length
                 varIdent(form = ~ 1 | cv4), # number of partners
                 varIdent(form = ~ 1 | cv5) # gender
                 ),
            control=lmeControl(opt = "optim"
                               \#opt = "nlminb"
                               #returnObject=TRUE
                               ),
            method="REML")
a1 <- anova(mcv2,mcv3)
aic2[1] <- a1$AIC[2]-a1$AIC[1] # AIC of full minus reduced model
mcv2 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varComb(
                 varIdent(form = ~ 1 | iv),
                  varExp(1, ~cv1), # length
                  #varIdent(form = ~ 1 | cv4), # number of partners
                 varIdent(form = ~ 1 | cv5) # gender
                  ),
            method="REML")
a4 <- anova(mcv2, mcv3)
aic2[2] <- a4$AIC[2]-a4$AIC[1] # AIC of full minus reduced model
mcv2 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varComb(
                 varIdent(form = ~ 1 | iv),
                 varExp(1, ~cv1), # length
                 varIdent(form = ~ 1 | cv4) # number of partners
                  #varIdent(form = ~ 1 | cv5) # gender
                  ),
            method="REML")
a5 <- anova(mcv2,mcv3)
aic2[3] <- a5$AIC[2]-a5$AIC[1] # AIC of full minus reduced model
print(aic2)
## [1] -18.23048 -19.85542 -3.83260
** Remove gender - only a small improvement, non-significant after correcting p-value for multiple testing **
aic1 <- numeric()
mcv2 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varComb(
                 varIdent(form = ~ 1 | iv),
                 varExp(1, ~cv1), # length
                  varIdent(form = ~ 1 | cv4) # number of partners
```



```
method="REML")
mcv1 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varComb(
                 varIdent(form = ~ 1 | iv),
                  #varExp(1, ~cv1), # length
                  varIdent(form = ~ 1 | cv4) # number of partners
                  ),
            method="REML")
a <- anova(mcv1, mcv2)
aic1[1] \leftarrow a$AIC[2] - a$AIC[1]
print(a)
        Model df
                       AIC
                                BIC
                                        logLik
                                                 Test L.Ratio p-value
## mcv1
           1 6 1363.722 1388.496 -675.8608
## mcv2
            2 7 1343.368 1372.272 -664.6842 1 vs 2 22.35324 <.0001
mcv1 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varComb(
                 varIdent(form = ~ 1 | iv),
                  varExp(1, ~cv1) # length
                  #varIdent(form = ~ 1 | cv4) # number of partners
                  ),
            method="REML")
a <- anova(mcv1, mcv2)
aic1[2] \leftarrow a\$AIC[2] - a\$AIC[1]
print(a)
        Model df
                       AIC
                                BIC
                                        logLik
                                                 Test L.Ratio p-value
            1 5 1371.442 1392.088 -680.7212
## mcv1
            2 7 1343.368 1372.272 -664.6842 1 vs 2 32.07405 <.0001
## mcv2
Both variables impove the model.
```

Final model for within-participant avoidance:

```
## Linear mixed-effects model fit by REML
## Data: NULL
## AIC BIC logLik
## 1343.368 1372.272 -664.6842
##
## Random effects:
## Formula: ~1 | id
## (Intercept) Residual
## StdDev: 0.3738431 1.12048
##
```



```
## Combination of variance functions:
## Structure: Different standard deviations per stratum
## Formula: ~1 | iv
## Parameter estimates:
## NonHierarchical Hierarchical
          1.000000
                      1.298594
## Structure: Exponential of variance covariate
## Formula: ~cv1
## Parameter estimates:
##
         expon
## -0.04278682
## Structure: Different standard deviations per stratum
## Formula: ~1 | cv4
## Parameter estimates:
         >3
## 1.0000000 0.8949208 0.6129545
## Fixed effects: dv ~ 1
##
                  Value Std.Error DF t-value p-value
## (Intercept) 1.853254 0.04848691 274 38.22174
## Standardized Within-Group Residuals:
                        Q1
                                   Med
                                                QЗ
           \texttt{Min}
## -1.39799056 -0.63526356 -0.05280845 0.77141668 3.64912238
## Number of Observations: 460
## Number of Groups: 186
res <- resid(var.avoidance, type = "pearson")</pre>
fit <- fitted(var.avoidance, level=0)</pre>
plot(ranef(var.avoidance, level = 1))
```


plot(res ~ iv)

plot(res ~ cv1)

plot(res ~ cv4)

qqnorm(res)
qqline(res)

Normal Q-Q Plot

Model selection - Within-participant variability in anxiety

Check whether adding cohabitation to a model with hierarchy type improves de model

```
data <- na.omit(study1.long[c(vars,"cohab")])</pre>
dv <- data$satisfaction</pre>
iv <- data$hierarchy</pre>
id <- data$Respondent.ID
cv <- data[["cohab"]]</pre>
mcv1 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             weights = varIdent(form = ~ 1 | cv), # cohab
             method="ML")
m0 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             weights = varComb(
               varIdent(form = ~ 1 | iv),
               varIdent(form = ~ 1 | cv) # cohab
             ),
             method="ML")
a <- anova(m0,mcv1)
print(a)
```

```
## Model df AIC BIC logLik Test L.Ratio p-value
## m0 1 6 2971.743 2997.753 -1479.872
## mcv1 2 5 2974.534 2996.209 -1482.267 1 vs 2 4.790989 0.0286
```

In a model with heterogeneous within-participant variance by hierarchy type, cohabitation is no longer significantly associated with within-participant variability (after adjusting significance for multiple testing).

Model selection - Within-participant variability in relationship satisfaction

Check whether adding number of partners to a model with hierarchy type improves de model

```
data <- na.omit(study1.long[c(vars,"N.Partners.3levels")])</pre>
dv <- data$satisfaction</pre>
iv <- data$hierarchy
id <- data$Respondent.ID
cv <- data[["N.Partners.3levels"]]</pre>
mcv1 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             weights = varIdent(form = ~ 1 | cv), # number of partners
             method="ML")
m0 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),
            weights = varComb(
               varIdent(form = ~ 1 | iv),
               varIdent(form = ~ 1 | cv) # number of partners
             ),
            method="ML")
a \leftarrow anova(m0, mcv1)
print(a)
```

```
## Model df AIC BIC logLik Test L.Ratio p-value ## m0 1 6 2963.177 2989.187 -1475.589 ## mcv1 2 5 2965.826 2987.501 -1477.913 1 vs 2 4.649 0.0311
```

In a model with heterogeneous within-participant variance by hierarchy type, number of partners is no longer significantly associated with within-participant variability (after adjusting significance for multiple testing).

Avoidance, Anxiety, and relationship satisfaction by hierarchy type

Here we use the same variance models from the previous analyses and add fixed effects to it.

Avoidance

Step 1: add hierarchy type to model from previous analysis

```
data <- na.omit(study1.long[c(vars,cvs.avoid[1],cvs.avoid[4])])</pre>
dv <- data$avoidance</pre>
iv <- data$hierarchy
id <- data$Respondent.ID
cv1 <- data[[cvs.avoid[1]]] # rel. length</pre>
cv4 <- data[[cvs.avoid[4]]] # number of partners</pre>
m.avoid <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
             weights = varComb(
                  varIdent(form = ~ 1 | iv),
                  varExp(1, ~cv1), # length
                  varIdent(form = ~ 1 | cv4) # number of partners
                  ),
            method="ML")
m.avoid.h <- lme(dv ~ iv, random = list(id = pdSymm(form = ~ 1)),</pre>
             weights = varComb(
                  varIdent(form = ~ 1 | iv),
                  varExp(1, ~cv1), # length
```



```
varIdent(form = ~ 1 | cv4) # number of partners
),
method="ML")
print(anova(m.avoid, m.avoid.h))
```

```
## Model df AIC BIC logLik Test L.Ratio p-value ## m.avoid 1 7 1640.424 1670.694 -813.2117 ## m.avoid.h 2 8 1631.897 1666.492 -807.9485 1 vs 2 10.52637 0.0012
```

Adding hierarchy type as a fixed effect improved the variance-only model for avoidance.

Step 2: control variables

[1] "incomeperPPL.c"

Checking which potential control variables are related to avoidance:

```
for(x in cvs){
  if(x != "rel.length.c" & x != "N.Partners.3levels"){
    data <- na.omit(study1.long[c(vars,"rel.length.c","N.Partners.3levels",x)])</pre>
  } else {
    data <- na.omit(study1.long[c(vars,"rel.length.c","N.Partners.3levels")])</pre>
    }
  print(x)
  dv <- data$avoidance
  iv <- data$hierarchy</pre>
  id <- data$Respondent.ID
  cv1 <- data$rel.length.c</pre>
  cv4 <- data$N.Partners.3levels
  cv <- data[[x]]</pre>
  m1 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varComb(
                 varIdent(form = ~ 1 | iv),
                 varExp(1, ~cv1), # length
                  varIdent(form = ~ 1 | cv4) # number of partners
                  ),
            method="ML")
  mcv <- lme(dv ~ cv, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varComb(
                 varIdent(form = ~ 1 | iv),
                 varExp(1, ~cv1), # length
                 varIdent(form = ~ 1 | cv4) # number of partners
                  ),
            method="ML")
  a1 <- anova(m1,mcv)
  print(a1)
## [1] "rel.length.c"
##
       Model df
                      AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
## m1
           1 7 1631.025 1661.296 -808.5127
## mcv
           2 8 1571.818 1606.413 -777.9089 1 vs 2 61.20755 <.0001
## [1] "age.c"
##
       Model df
                      AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
## m1
           1 7 1631.025 1661.296 -808.5127
```

2 8 1630.423 1665.018 -807.2116 1 vs 2 2.602187 0.1067


```
##
       Model df
                     AIC
                                     logLik
                                              Test L.Ratio p-value
                              BIC
## m1
           1
             7 1264.281 1292.727 -625.1405
           2 8 1265.613 1298.123 -624.8065 1 vs 2 0.668069 0.4137
## mcv
       "N.Partners.3levels"
##
       Model df
                     AIC
                              BIC
                                     logLik
                                              Test L.Ratio p-value
             7 1631.025 1661.296 -808.5127
## m1
           1
           2 9 1621.103 1660.023 -801.5516 1 vs 2 13.92204
  mcv
##
   [1] "gender"
##
       Model df
                     AIC
                              BIC
                                     logLik
                                               Test L.Ratio p-value
## m1
           1 7 1339.151 1368.069 -662.5753
           2 9 1341.357 1378.538 -661.6783 1 vs 2 1.793924 0.4078
       "orientation.binary"
##
   [1]
##
       Model df
                     AIC
                              BIC
                                     logLik
                                               Test
                                                        L.Ratio p-value
## m1
           1
             7 1327.215 1356.073 -656.6077
           2 8 1329.213 1362.193 -656.6064 1 vs 2 0.002461753 0.9604
  [1] "race.binary"
       Model df
                                     logLik
##
                     AIC
                              BIC
                                               Test
                                                       L.Ratio p-value
## m1
             7 1335.926 1364.814 -660.9630
           2 8 1337.913 1370.928 -660.9564 1 vs 2 0.01326144 0.9083
      "children.binary"
                     AIC
                                     logLik
##
       Model df
                              BIC
                                               Test L.Ratio p-value
## m1
           1 7 1339.151 1368.069 -662.5753
           2 8 1335.830 1368.879 -659.9147 1 vs 2 5.321132 0.0211
## mcv
  [1] "education.3levels"
##
       Model df
                     AIC
                              BIC
                                     logLik
                                               Test L.Ratio p-value
## m1
           1 7 1318.133 1346.944 -652.0666
           2 9 1319.947 1356.991 -650.9737 1 vs 2 2.185764 0.3352
  mcv
##
       "marital.status"
##
       Model df
                     AIC
                                     logLik
                              BTC
                                              Test L.Ratio p-value
## m1
             7 1631.025 1661.296 -808.5127
           2 8 1574.408 1609.003 -779.2040 1 vs 2 58.61739 <.0001
## mcv
## [1] "cohab"
##
       Model df
                     AIC
                              BIC
                                     logLik
                                              Test L.Ratio p-value
             7 1631.025 1661.296 -808.5127
## m1
##
           2 9 1571.167 1610.086 -776.5835 1 vs 2 63.8583 <.0001
##
   [1] "coparent"
                     AIC
##
       Model df
                                     logLik
                                               Test L.Ratio p-value
                              BIC
             7 1631.025 1661.296 -808.5127
## m1
           1
             9 1605.653 1644.572 -793.8263 1 vs 2 29.3727 <.0001
```

The following variables were related to avoidance: relationship length, number of partners, marital status, cohabitation, and coparenting. PS: After adjusting for multiple testing, children (p=0.02) is not a significant predictor.

Model selection strategy: start with a model that includes hierarchy (iv of interest), relationship length, number of partners, marital status, cohabitation status, and coparenting status, all as fixed effects variables. Then perform model selection through a backwards elimination process.


```
cv4 <- data$N.Partners.3levels
cv10 <- data$marital.status
cv11 <- data$cohab
cv12 <- data$coparent
aic0 <- numeric()
m0 \leftarrow lme(dv \sim iv + cv1 + cv4 + cv10 + cv11 + cv12,
                 random = list(id = pdSymm(form = ~ 1)),
                 weights = varComb(
                   varIdent(form = ~ 1 | iv),
                   varExp(1, ~cv1), # length
                   varIdent(form = ~ 1 | cv4) # number of partners
                   ),
             method="ML")
print(cvs.avoid.fix[1])
## [1] "rel.length.c"
m <- update(m0, .~. -cv1)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[1] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
## m
          1 15 1542.469 1607.334 -756.2343
          2 16 1534.467 1603.656 -751.2333 1 vs 2 10.00203 0.0016
print(cvs.avoid.fix[2])
## [1] "N.Partners.3levels"
m <- update(m0, .~. -cv4)</pre>
a \leftarrow anova(m,m0)
diff \leftarrow a\$AIC[2] - a\$AIC[1]
aic0[2] \leftarrow diff
print(a)
      Model df
                     AIC
                               BIC
                                       logLik
##
                                                Test L.Ratio p-value
        1 14 1534.653 1595.194 -753.3266
          2 16 1534.467 1603.656 -751.2333 1 vs 2 4.186693 0.1233
print(cvs.avoid.fix[3])
## [1] "marital.status"
m <- update(m0, .~. -cv10)</pre>
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[3] \leftarrow diff
print(a)
##
      Model df
                     AIC
                                       logLik
                                                Test L.Ratio p-value
                               BIC
## m
         1 15 1533.913 1598.779 -751.9567
          2 16 1534.467 1603.656 -751.2333 1 vs 2 1.446788
                                                                  0.229
print(cvs.avoid.fix[4])
```



```
## [1] "cohab"
m <- update(m0, .~. -cv11)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[4] \leftarrow diff
print(a)
##
      Model df
                      AIC
                                BIC
                                        logLik
                                                 Test L.Ratio p-value
## m
          1 14 1540.894 1601.436 -756.4472
           2 16 1534.467 1603.656 -751.2333 1 vs 2 10.42784 0.0054
print(cvs.avoid.fix[5])
## [1] "coparent"
m <- update(m0, .~. -cv12)</pre>
a \leftarrow anova(m,m0)
diff \leftarrow a\$AIC[2] - a\$AIC[1]
aic0[5] \leftarrow diff
print(a)
##
                      AIC
                                BIC
                                        logLik
                                                 Test L.Ratio p-value
           1 14 1530.730 1591.271 -751.3651
## m
           2 16 1534.467 1603.656 -751.2333 1 vs 2 0.2637 0.8765
print(aic0)
## [1] -8.0020353 -0.1866934 0.5532116 -6.4278388 3.7363000
** Eliminate coparenting - it does not improve model with 4 control variables and increases AIC the most **
cvs.avoid.fix <- c("rel.length.c", "N.Partners.3levels",</pre>
                     "marital.status", "cohab")
aic0 <- numeric()
data <- na.omit(study1.long[c(vars,cvs.avoid.fix)])</pre>
dv <- data$avoidance</pre>
iv <- data$hierarchy</pre>
id <- data$Respondent.ID
cv1 <- data$rel.length.c</pre>
cv4 <- data$N.Partners.3levels
cv10 <- data$marital.status</pre>
cv11 <- data$cohab
aic1 <- numeric()</pre>
m0 \leftarrow lme(dv \sim iv + cv1 + cv4 + cv10 + cv11,
                 random = list(id = pdSymm(form = ~ 1)),
                 weights = varComb(
                   varIdent(form = ~ 1 | iv),
                   varExp(1, ~cv1), # length
                   varIdent(form = ~ 1 | cv4) # number of partners
             method="ML")
print(cvs.avoid.fix[1])
## [1] "rel.length.c"
```



```
m <- update(m0, .~. -cv1)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]
aic0[1] \leftarrow diff
print(a)
      Model df
##
                     AIC
                               BIC
                                       logLik
                                                 Test L.Ratio p-value
## m
          1 13 1540.177 1596.394 -757.0886
          2 14 1530.730 1591.271 -751.3651 1 vs 2 11.44684
                                                                  7e-04
print(cvs.avoid.fix[2])
## [1] "N.Partners.3levels"
m <- update(m0, .~. -cv4)</pre>
a <- anova(m,m0)
diff \leftarrow a\$AIC[2] - a\$AIC[1]
aic0[2] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
          1 12 1530.774 1582.667 -753.3873
          2 14 1530.730 1591.271 -751.3651 1 vs 2 4.044229 0.1324
## mO
print(cvs.avoid.fix[3])
## [1] "marital.status"
m <- update(m0, .~. -cv10)</pre>
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[3] \leftarrow diff
print(a)
      Model df
##
                     AIC
                               BIC
                                       logLik Test L.Ratio p-value
         1 13 1530.151 1586.368 -752.0755
## m
          2 14 1530.730 1591.271 -751.3651 1 vs 2 1.420667 0.2333
print(cvs.avoid.fix[4])
## [1] "cohab"
m <- update(m0, .~. -cv11)</pre>
a \leftarrow anova(m,m0)
diff \leftarrow a$AIC[2] - a$AIC[1]
aic0[4] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
## m
          1 12 1537.077 1588.970 -756.5386
          2 14 1530.730 1591.271 -751.3651 1 vs 2 10.34701 0.0057
## mO
print(aic0)
## [1] -9.44684043 -0.04422927 0.57933324 -6.34700617
```

** Eliminate marital status - it does not improve model with 3 control variables and increases AIC the most


```
cvs.avoid.fix <- c("rel.length.c", "N.Partners.3levels", "cohab")</pre>
aic0 <- numeric()
data <- na.omit(study1.long[c(vars,cvs.avoid.fix)])</pre>
dv <- data$avoidance</pre>
iv <- data$hierarchy</pre>
id <- data$Respondent.ID
cv1 <- data$rel.length.c</pre>
cv4 <- data$N.Partners.3levels
cv11 <- data$cohab
aic1 <- numeric()</pre>
m0 \leftarrow lme(dv \sim iv + cv1 + cv4 + cv11,
                 random = list(id = pdSymm(form = ~ 1)),
                 weights = varComb(
                   varIdent(form = ~ 1 | iv),
                   varExp(1, ~cv1), # length
                   varIdent(form = ~ 1 | cv4) # number of partners
                   ),
             method="ML")
print(cvs.avoid.fix[1])
## [1] "rel.length.c"
m <- update(m0, .~. -cv1)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]
aic0[1] \leftarrow diff
print(a)
##
      Model df
                      AIC
                                BIC
                                       logLik
                                                 Test L.Ratio p-value
          1 12 1554.472 1606.364 -765.2361
           2 13 1530.151 1586.368 -752.0755 1 vs 2 26.32116 <.0001
print(cvs.avoid.fix[2])
## [1] "N.Partners.3levels"
m <- update(m0, .~. -cv4)</pre>
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[2] \leftarrow diff
print(a)
##
      Model df
                     AIC
                                BIC
                                       logLik Test L.Ratio p-value
          1 11 1530.866 1578.434 -754.4328
## m
           2 13 1530.151 1586.368 -752.0755 1 vs 2 4.714721 0.0947
print(cvs.avoid.fix[3])
## [1] "cohab"
m <- update(m0, .~. -cv11)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[3] \leftarrow diff
print(a)
```



```
##
      Model df
                   AIC
                                       logLik Test L.Ratio p-value
                               BIC
          1 11 1542.581 1590.148 -760.2902
## m
## mO
          2 13 1530.151 1586.368 -752.0755 1 vs 2 16.42951
print(aic0)
## [1] -24.321164 -0.714721 -12.429509
** Eliminate number of partners - it has a small, non-significant improvement in the model **
cvs.avoid.fix <- c("rel.length.c", "cohab")</pre>
aic0 <- numeric()</pre>
data <- na.omit(study1.long[c(vars,cvs.avoid.fix)])</pre>
dv <- data$avoidance</pre>
iv <- data$hierarchy</pre>
id <- data$Respondent.ID
cv1 <- data$rel.length.c</pre>
cv11 <- data$cohab
aic1 <- numeric()</pre>
m0 < -lme(dv ~ iv + cv1 + cv11,
                 random = list(id = pdSymm(form = ~ 1)),
                 weights = varComb(
                   varIdent(form = ~ 1 | iv),
                   varExp(1, ~cv1), # length
                   varIdent(form = ~ 1 | cv4) # number of partners
                   ),
             method="ML")
print(cvs.avoid.fix[1])
## [1] "rel.length.c"
m \leftarrow update(m0, .~. -cv1)
a \leftarrow anova(m,m0)
diff \leftarrow a\$AIC[2] - a\$AIC[1]
aic0[1] \leftarrow diff
print(a)
      Model df
                     AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
          1 10 1554.021 1597.265 -767.0105
## m
          2 11 1530.866 1578.434 -754.4328 1 vs 2 25.15542 <.0001
print(cvs.avoid.fix[2])
## [1] "cohab"
m <- update(m0, .~. -cv11)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]
aic0[2] \leftarrow diff
print(a)
      Model df
                     AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
## m
          1 9 1547.867 1586.786 -764.9335
           2 11 1530.866 1578.434 -754.4328 1 vs 2 21.00124 <.0001
print(aic0)
## [1] -23.15542 -17.00124
```


** Keep length of relationship and cohabitation status - both significantly improve the model ** Residual plots:

```
res <- resid(m0, type = "pearson")
fit <- fitted(m0, level=0)
plot(ranef(m0, level = 1))</pre>
```


plot(res ~ iv)

plot(res ~ cv1)

plot(res ~ cv11)

qqnorm(res)
qqline(res)

Normal Q-Q Plot

Anxiety

Step 1: add hierarchy type to model from previous analysis

```
## Model df AIC BIC logLik Test L.Ratio p-value
## m.anx 1 4 1912.517 1929.858 -952.2586
## m.anx.h 2 5 1900.972 1922.647 -945.4857 1 vs 2 13.54583 2e-04
```

Adding hierarchy type as a fixed effect improved the variance model (no fixed effects) for anxiety.

Step 2: control variables

##

Model df

AIC

BIC

Checking which potential control variables are related to anxiety:

```
for(x in cvs){
  data <- na.omit(study1.long[c(vars,x)])</pre>
  print(x)
  dv <- data$anxiety</pre>
  iv <- data$hierarchy
  id <- data$Respondent.ID
  cv <- data[[x]]</pre>
  m1 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varIdent(form = ~ 1 | iv),
            method="ML")
  mcv <- lme(dv ~ cv, random = list(id = pdSymm(form = ~ 1)),</pre>
            weights = varIdent(form = ~ 1 | iv),
            method="ML")
  a <- anova(m1,mcv)
  print(a)
## [1] "rel.length.c"
       Model df
                      AIC
                                       logLik
##
                               BIC
                                                Test L.Ratio p-value
## m1
           1 4 1889.623 1906.921 -940.8116
           2 5 1853.985 1875.606 -921.9923 1 vs 2 37.63856 <.0001
## [1] "age.c"
##
       Model df
                      AIC
                               BIC
                                       logLik
                                                Test
                                                     L.Ratio p-value
## m1
           1 4 1912.517 1929.858 -952.2586
## mcv
           2 5 1913.950 1935.626 -951.9751 1 vs 2 0.5670111 0.4514
## [1] "incomeperPPL.c"
```

logLik Test L.Ratio p-value


```
1 4 1488.719 1505.030 -740.3597
           2 5 1490.355 1510.744 -740.1777 1 vs 2 0.364047 0.5463
## mcv
##
  [1] "N.Partners.3levels"
       Model df
                                     logLik
##
                     AIC
                              BIC
                                              Test L.Ratio p-value
## m1
           1
             4 1912.517 1929.858 -952.2586
             6 1914.753 1940.763 -951.3764 1 vs 2 1.764562 0.4138
##
  mcv
  [1] "gender"
##
##
       Model df
                     AIC
                              BIC
                                     logLik
                                              Test L.Ratio p-value
## m1
             4 1581.768 1598.345 -786.8839
           2 6 1583.705 1608.570 -785.8526 1 vs 2 2.062734 0.3565
##
  mcv
       "orientation.binary"
##
       Model df
                     AIC
                              BIC
                                     logLik
                                              Test L.Ratio p-value
## m1
           1
             4 1558.268 1574.802 -775.1341
## mcv
           2 5 1556.183 1576.850 -773.0913 1 vs 2 4.085704 0.0432
  [1] "race.binary"
##
       Model df
                     AIC
                              BIC
                                     logLik
                                              Test
                                                        L.Ratio p-value
           1 4 1569.976 1586.536 -780.9881
## m1
           2 5 1571.976 1592.675 -780.9880 1 vs 2 0.0002802241 0.9866
  mcv
   [1] "children.binary"
       Model df
                     AIC
##
                              BIC
                                     logLik
                                              Test
                                                     L.Ratio p-value
             4 1581.768 1598.345 -786.8839
## m1
           1
           2 5 1583.352 1604.073 -786.6760 1 vs 2 0.4157617 0.5191
  mcv
  [1] "education.3levels"
##
       Model df
                     AIC
                              BIC
                                     logLik
                                              Test L.Ratio p-value
## m1
             4 1560.868 1577.384 -776.4339
           1
           2 6 1563.118 1587.892 -775.5587 1 vs 2 1.750394 0.4168
##
  mcv
   [1] "marital.status"
##
       Model df
                     AIC
                              BIC
                                     logLik
                                              Test L.Ratio p-value
## m1
           1 4 1912.517 1929.858 -952.2586
           2 5 1884.621 1906.296 -937.3104 1 vs 2 29.89654 <.0001
## [1] "cohab"
##
       Model df
                     AIC
                              BIC
                                     logLik
                                              Test L.Ratio p-value
## m1
           1 4 1912.517 1929.858 -952.2586
           2 6 1873.617 1899.628 -930.8086 1 vs 2 42.90002 <.0001
   [1]
      "coparent"
##
       Model df
##
                     AIC
                              BIC
                                     logLik
                                              Test L.Ratio p-value
## m1
             4 1912.517 1929.858 -952.2586
           2 6 1905.634 1931.644 -946.8169 1 vs 2 10.88358 0.0043
```

The following variables were related to anxiety: relationship length, sexual orientation, marital status, cohabitation, co-parenting.

Model selection strategy: start with a model that includes hierarchy (iv of interest), relationship length, sexual orientation, marital status, cohabitation, co-parenting, all as fixed effects variables. Then perform model selection through a backwards elimination process.

```
cvs.anx.fix <- c("rel.length.c", "orientation", "marital.status", "cohab", "coparent")
data <- na.omit(study1.long[c(vars,cvs.anx.fix)])
dv <- data$anxiety
iv <- data$hierarchy
id <- data$Respondent.ID
cv1 <- data$rel.length.c
cv6 <- data$orientation
cv10 <- data$marital.status
cv11 <- data$cohab</pre>
```



```
cv12 <- data$coparent
aic0 <- numeric()</pre>
m0 \leftarrow lme(dv \sim iv + cv1 + cv6 + cv10 + cv11 + cv12,
                random = list(id = pdSymm(form = ~ 1)),
                 weights = varIdent(form = ~ 1 | iv),
             method="ML")
print(cvs.anx.fix[1])
## [1] "rel.length.c"
m <- update(m0, .~. -cv1)</pre>
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[1] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                       logLik Test L.Ratio p-value
      1 17 1521.022 1591.253 -743.5111
## m
          2 18 1517.847 1592.209 -740.9235 1 vs 2 5.175343 0.0229
print(cvs.anx.fix[2])
## [1] "orientation"
m <- update(m0, .~. -cv6)
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[2] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                       logLik
                                                 Test L.Ratio p-value
## m
          1 11 1513.181 1558.624 -745.5903
           2 18 1517.847 1592.209 -740.9235 1 vs 2 9.333689 0.2296
print(cvs.anx.fix[3])
## [1] "marital.status"
m <- update(m0, .~. -cv10)</pre>
a \leftarrow anova(m,m0)
diff \leftarrow a\$AIC[2] - a\$AIC[1]
aic0[3] \leftarrow diff
print(a)
      Model df
##
                    AIC
                               BIC
                                       logLik
                                                 Test L.Ratio p-value
        1 17 1516.114 1586.345 -741.0571
           2 18 1517.847 1592.209 -740.9235 1 vs 2 0.2672973 0.6052
print(cvs.anx.fix[4])
## [1] "cohab"
m <- update(m0, .~. -cv11)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[4] \leftarrow diff
print(a)
```



```
Model df
##
                   AIC
                                       logLik Test L.Ratio p-value
                               BIC
          1 16 1526.345 1592.444 -747.1723
## m
## mO
          2 18 1517.847 1592.209 -740.9235 1 vs 2 12.49774 0.0019
print(cvs.anx.fix[5])
## [1] "coparent"
m <- update(m0, .~. -cv12)</pre>
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]
aic0[5] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
          1 16 1515.306 1581.406 -741.6530
## mO
           2 18 1517.847 1592.209 -740.9235 1 vs 2 1.459097 0.4821
print(aic0)
## [1] -3.175343 4.666311 1.732703 -8.497738 2.540903
** Eliminate coparenting - it does not improve model with 4 control variables and increases AIC the most **
cvs.anx.fix <- c("rel.length.c", "orientation", "marital.status", "cohab")</pre>
data <- na.omit(study1.long[c(vars,cvs.anx.fix)])</pre>
dv <- data$anxiety</pre>
iv <- data$hierarchy</pre>
id <- data$Respondent.ID
cv1 <- data$rel.length.c</pre>
cv6 <- data$orientation
cv10 <- data$marital.status
cv11 <- data$cohab
aic0 <- numeric()
m0 \leftarrow lme(dv \sim iv + cv1 + cv6 + cv10 + cv11,
          random = list(id = pdSymm(form = ~ 1)),
           weights = varIdent(form = ~ 1 | iv),
          method="ML")
print(cvs.anx.fix[1])
## [1] "rel.length.c"
m <- update(m0, .~. -cv1)</pre>
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[1] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                       logLik
                                                Test L.Ratio p-value
## m
          1 15 1517.321 1579.289 -743.6602
          2 16 1515.306 1581.406 -741.6530 1 vs 2 4.014495 0.0451
print(cvs.anx.fix[2])
## [1] "orientation"
m <- update(m0, .~. -cv6)
a <- anova(m,m0)
```



```
diff \leftarrow a\$AIC[2] - a\$AIC[1]
aic0[2] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                     logLik
                                                Test L.Ratio p-value
## m
          1 9 1510.106 1547.287 -746.053
           2 16 1515.306 1581.406 -741.653 1 vs 2 8.800016 0.2673
## mO
print(cvs.anx.fix[3])
## [1] "marital.status"
m <- update(m0, .~. -cv10)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[3] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                       logLik
                                                 Test
                                                        L.Ratio p-value
          1 15 1513.449 1575.418 -741.7248
## mO
           2 16 1515.306 1581.406 -741.6530 1 vs 2 0.1435067 0.7048
print(cvs.anx.fix[4])
## [1] "cohab"
m <- update(m0, .~. -cv11)</pre>
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[4] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                       logLik
                                                 Test L.Ratio p-value
## m
          1 14 1523.208 1581.045 -747.6041
           2 16 1515.306 1581.406 -741.6530 1 vs 2 11.90224 0.0026
## mO
print(aic0)
## [1] -2.014495 5.199984 1.856493 -7.902243
** Eliminate orientation - it does not improve a model with 3 control variables and it increases AIC the most
cvs.anx.fix <- c("rel.length.c", "marital.status", "cohab")</pre>
data <- na.omit(study1.long[c(vars,cvs.anx.fix)])</pre>
dv <- data$anxiety</pre>
iv <- data$hierarchy
id <- data$Respondent.ID
cv1 <- data$rel.length.c
cv10 <- data$marital.status
cv11 <- data$cohab
aic0 <- numeric()
m0 \leftarrow lme(dv \sim iv + cv1 + cv10 + cv11,
           random = list(id = pdSymm(form = ~ 1)),
           weights = varIdent(form = ~ 1 | iv),
          method="ML")
```



```
print(cvs.anx.fix[1])
## [1] "rel.length.c"
m <- update(m0, .~. -cv1)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[1] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                       logLik
                                                 Test L.Ratio p-value
          1 8 1835.759 1870.354 -909.8798
           2 9 1831.461 1870.380 -906.7305 1 vs 2 6.298463 0.0121
## mO
print(cvs.anx.fix[2])
## [1] "marital.status"
m <- update(m0, .~. -cv10)</pre>
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[2] \leftarrow diff
print(a)
      Model df
##
                     AIC
                               BIC
                                       logLik
                                                 Test L.Ratio p-value
         1 8 1829.702 1864.297 -906.8510
## m
           2 9 1831.461 1870.380 -906.7305 1 vs 2 0.2410078 0.6235
print(cvs.anx.fix[3])
## [1] "cohab"
m <- update(m0, .~. -cv11)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[3] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                       logLik
                                                 Test L.Ratio p-value
## m
          1 7 1838.741 1869.012 -912.3707
           2 9 1831.461 1870.380 -906.7305 1 vs 2 11.28028 0.0036
print(aic0)
## [1] -4.298463 1.758992 -7.280277
** Eliminate marital status **
cvs.anx.fix <- c("rel.length.c", "cohab")</pre>
data <- na.omit(study1.long[c(vars,cvs.anx.fix)])</pre>
dv <- data$anxiety</pre>
iv <- data$hierarchy</pre>
id <- data$Respondent.ID
cv1 <- data$rel.length.c</pre>
cv11 <- data$cohab
aic0 <- numeric()
m0 \leftarrow lme(dv \sim iv + cv1 + cv11,
          random = list(id = pdSymm(form = ~ 1)),
```



```
weights = varIdent(form = ~ 1 | iv),
          method="ML")
print(cvs.anx.fix[1])
## [1] "rel.length.c"
m <- update(m0, .~. -cv1)</pre>
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[1] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                      logLik Test L.Ratio p-value
      1 7 1840.053 1870.323 -913.0264
## m
          2 8 1829.702 1864.297 -906.8510 1 vs 2 12.35068
                                                                 4e-04
print(cvs.anx.fix[2])
## [1] "cohab"
m \leftarrow update(m0, .~.~cv11)
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[2] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                      logLik Test L.Ratio p-value
        1 6 1840.161 1866.108 -914.0808
          2 8 1829.702 1864.297 -906.8510 1 vs 2 14.45945 7e-04
print(aic0)
## [1] -10.35068 -10.45945
** Keep relationship length and cohabitation **
Residual plots:
res <- resid(m0, type = "pearson")</pre>
fit <- fitted(m0, level=0)</pre>
plot(ranef(m0, level = 1))
```


plot(res ~ iv)

plot(res ~ cv1) # rel. length

plot(res ~ cv11) # cohab

qqnorm(res)
qqline(res)

Normal Q-Q Plot

Satisfaction

Step 1: add hierarchy type to model from previous analysis

```
## Model df AIC BIC logLik Test L.Ratio p-value ## m.sat 1 4 2969.064 2986.405 -1480.532 ## m.sat.h 2 5 2956.329 2978.004 -1473.165 1 vs 2 14.7354 1e-04
```

Adding hierarchy type as a fixed effect improved the variance model (no fixed effects) for satisfaction.

Step 2: control variables

Checking which potential control variables are related to satisfaction:


```
for(x in cvs){
  data <- na.omit(study1.long[c(vars,x)])</pre>
  print(x)
  dv <- data$satisfaction</pre>
  iv <- data$hierarchy
  id <- data$Respondent.ID
  cv <- data[[x]]</pre>
  m1 <- lme(dv ~ 1, random = list(id = pdSymm(form = ~ 1)),</pre>
           weights = varIdent(form = ~ 1 | iv),
           method="ML")
 mcv <- lme(dv ~ cv, random = list(id = pdSymm(form = ~ 1)),</pre>
           weights = varIdent(form = ~ 1 | iv),
           method="ML")
  a <- anova(m1,mcv)
 print(a)
}
## [1] "rel.length.c"
                             BIC
                                             Test L.Ratio p-value
      Model df
                 AIC
                                    logLik
        1 4 2941.305 2958.602 -1466.652
## m1
       2 5 2930.017 2951.638 -1460.008 1 vs 2 13.28801 3e-04
## [1] "age.c"
##
      Model df
                  AIC
                             BIC
                                    logLik
                                             Test L.Ratio p-value
## m1
         1 4 2969.064 2986.405 -1480.532
          2 5 2970.799 2992.474 -1480.399 1 vs 2 0.2653941 0.6064
## [1] "incomeperPPL.c"
      Model df
                   AIC
                             BIC
                                    logLik
                                             Test
                                                      L.Ratio p-value
## m1
         1 4 2306.772 2323.083 -1149.386
          2 5 2308.769 2329.158 -1149.385 1 vs 2 0.002634695 0.9591
## [1] "N.Partners.3levels"
##
      Model df
                    AIC
                             BIC
                                    logLik
                                             Test L.Ratio p-value
## m1
          1 4 2969.064 2986.405 -1480.532
## mcv
          2 6 2965.087 2991.097 -1476.543 1 vs 2 7.977476 0.0185
## [1] "gender"
##
      Model df
                    AIC
                             BIC
                                    logLik
                                             Test L.Ratio p-value
## m1
        1 4 2461.340 2477.917 -1226.670
       2 6 2460.173 2485.039 -1224.087 1 vs 2 5.166593 0.0755
## [1] "orientation.binary"
##
      Model df
                    AIC
                             BIC
                                    logLik
                                             Test L.Ratio p-value
        1 4 2430.531 2447.065 -1211.266
          2 5 2430.610 2451.276 -1210.305 1 vs 2 1.921985 0.1656
## [1] "race.binary"
##
      Model df
                   AIC
                             BIC
                                    logLik
                                             Test
                                                     L.Ratio p-value
        1 4 2448.238 2464.797 -1220.119
          2 5 2450.140 2470.840 -1220.070 1 vs 2 0.09763496 0.7547
## mcv
## [1] "children.binary"
##
      Model df
                    AIC
                             BIC
                                    logLik
                                             Test L.Ratio p-value
## m1
          1 4 2461.340 2477.917 -1226.670
          2 5 2460.307 2481.028 -1225.153 1 vs 2 3.033148 0.0816
## [1] "education.3levels"
##
                 AIC
      Model df
                             BIC
                                    logLik
                                             Test L.Ratio p-value
          1 4 2419.185 2435.701 -1205.592
          2 6 2421.665 2446.439 -1204.833 1 vs 2 1.519473 0.4678
## [1] "marital.status"
```



```
Model df
##
                     AIC
                              BIC
                                     logLik
                                              Test L.Ratio p-value
           1 4 2969.064 2986.405 -1480.532
## m1
           2 5 2960.798 2982.473 -1475.399 1 vs 2 10.26638 0.0014
## mcv
  [1] "cohab"
##
                              BIC
                                     logLik
                                              Test L.Ratio p-value
       Model df
                     AIC
## m1
           1 4 2969.064 2986.405 -1480.532
           2 6 2956.537 2982.548 -1472.269 1 vs 2 16.52699
                                                               3e-04
  [1] "coparent"
##
       Model df
                     AIC
                              BIC
                                     logLik
                                              Test L.Ratio p-value
## m1
           1 4 2969.064 2986.405 -1480.532
## mcv
             6 2962.505 2988.515 -1475.252 1 vs 2 10.55977 0.0051
```

The following variables were related to anxiety: relationship length, marital status, cohabitation, co-parenting.

Model selection strategy: start with a model that includes hierarchy (iv of interest), relationship length, marital status, cohabitation, co-parenting, all as fixed effects variables. Then perform model selection through a backwards elimination process.

```
cvs.sat.fix <- c("rel.length.c", "marital.status", "cohab", "coparent")</pre>
data <- na.omit(study1.long[c(vars,cvs.sat.fix)])</pre>
dv <- data$satisfaction</pre>
iv <- data$hierarchy</pre>
id <- data$Respondent.ID
cv1 <- data$rel.length.c
cv10 <- data$marital.status
cv11 <- data$cohab
cv12 <- data$coparent
aic0 <- numeric()
m0 \leftarrow lme(dv \sim iv + cv1 + cv10 + cv11 + cv12,
           random = list(id = pdSymm(form = ~ 1)),
           weights = varIdent(form = ~ 1 | iv),
           method="ML")
print(cvs.sat.fix[1])
## [1] "rel.length.c"
m \leftarrow update(m0, .~. -cv1)
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[1] \leftarrow diff
print(a)
      Model df
                      AIC
                                BIC
                                        logLik
                                                  Test L.Ratio p-value
## m
           1 10 2918.595 2961.839 -1449.298
           2 11 2918.783 2966.351 -1448.391 1 vs 2 1.8124 0.1782
print(cvs.sat.fix[2])
## [1] "marital.status"
m <- update(m0, .~. -cv10)
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]
aic0[2] \leftarrow diff
print(a)
                                BIC
```

Test

L.Ratio p-value

logLik

##

Model df

AIC


```
1 10 2916.783 2960.027 -1448.392
## m
## mO
           2 11 2918.783 2966.351 -1448.391 1 vs 2 0.0003488189 0.9851
print(cvs.sat.fix[3])
## [1] "cohab"
m <- update(m0, .~. -cv11)</pre>
a <- anova(m,m0)
diff \leftarrow a\$AIC[2] - a\$AIC[1]
aic0[3] \leftarrow diff
print(a)
##
      Model df
                      AIC
                                BIC
                                        logLik
                                                  Test L.Ratio p-value
          1 9 2918.967 2957.886 -1450.483
## m
           2 11 2918.783 2966.351 -1448.391 1 vs 2 4.184037 0.1234
print(cvs.sat.fix[4])
## [1] "coparent"
m <- update(m0, .~. -cv12)</pre>
a <- anova(m,m0)
diff \leftarrow a\$AIC[2] - a\$AIC[1]
aic0[4] \leftarrow diff
print(a)
##
      Model df
                      AIC
                                BIC
                                        logLik
                                                  Test L.Ratio p-value
           1 9 2915.791 2954.711 -1448.896
           2 11 2918.783 2966.351 -1448.391 1 vs 2 1.008725 0.6039
## mO
print(aic0)
## [1] 0.1876002 1.9996512 -0.1840373 2.9912755
** Eliminate coparenting - it does not improve model with 4 control variables and increases AIC the most **
cvs.sat.fix <- c("rel.length.c", "marital.status", "cohab")</pre>
data <- na.omit(study1.long[c(vars,cvs.sat.fix)])</pre>
dv <- data$satisfaction</pre>
iv <- data$hierarchy</pre>
id <- data$Respondent.ID
cv1 <- data$rel.length.c</pre>
cv10 <- data$marital.status</pre>
cv11 <- data$cohab
aic0 <- numeric()
m0 \leftarrow lme(dv \sim iv + cv1 + cv10 + cv11,
           random = list(id = pdSymm(form = ~ 1)),
           weights = varIdent(form = ~ 1 | iv),
           method="ML")
print(cvs.sat.fix[1])
## [1] "rel.length.c"
m <- update(m0, .~. -cv1)</pre>
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[1] \leftarrow diff
```



```
print(a)
##
      Model df
                     AIC
                               BIC
                                      logLik
                                                Test L.Ratio p-value
          1 8 2916.591 2951.186 -1450.295
          2 9 2915.791 2954.711 -1448.896 1 vs 2 2.799484 0.0943
print(cvs.sat.fix[2])
## [1] "marital.status"
m <- update(m0, .~. -cv10)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]
aic0[2] \leftarrow diff
print(a)
##
      Model df
                     AIC
                               BIC
                                      logLik
                                                Test
                                                         L.Ratio p-value
## m
          1 8 2913.801 2948.396 -1448.900
          2 9 2915.791 2954.711 -1448.896 1 vs 2 0.009129234 0.9239
print(cvs.sat.fix[3])
## [1] "cohab"
m <- update(m0, .~. -cv11)</pre>
a \leftarrow anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[3] \leftarrow diff
print(a)
      Model df
                     AIC
                               BIC
                                      logLik
                                                Test L.Ratio p-value
## m
          1 7 2916.701 2946.972 -1451.351
          2 9 2915.791 2954.711 -1448.896 1 vs 2 4.909633 0.0859
print(aic0)
## [1] -0.7994839 1.9908708 -0.9096331
** Eliminate marital status **
cvs.sat.fix <- c("rel.length.c", "cohab")</pre>
data <- na.omit(study1.long[c(vars,cvs.sat.fix)])</pre>
dv <- data$satisfaction</pre>
iv <- data$hierarchy</pre>
id <- data$Respondent.ID
cv1 <- data$rel.length.c</pre>
cv11 <- data$cohab
aic0 <- numeric()
m0 < -lme(dv ~ iv + cv1 + cv11,
          random = list(id = pdSymm(form = ~ 1)),
          weights = varIdent(form = ~ 1 | iv),
          method="ML")
print(cvs.sat.fix[1])
## [1] "rel.length.c"
```



```
m \leftarrow update(m0, .~. -cv1)
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[1] \leftarrow diff
print(a)
##
      Model df AIC
                              BIC
                                     logLik Test L.Ratio p-value
       1 7 2916.617 2946.888 -1451.309
## m
          2 8 2913.801 2948.396 -1448.900 1 vs 2 4.816656 0.0282
print(cvs.sat.fix[2])
## [1] "cohab"
m <- update(m0, .~. -cv11)</pre>
a <- anova(m,m0)
diff <- a$AIC[2] - a$AIC[1]</pre>
aic0[2] \leftarrow diff
print(a)
##
      Model df AIC
                              BIC
                                     logLik Test L.Ratio p-value
## m 1 6 2915.594 2941.541 -1451.797
## mO
          2 8 2913.801 2948.396 -1448.900 1 vs 2 5.793781 0.0552
print(aic0)
## [1] -2.816656 -1.793781
** Keep relationship length and cohabitation **
Residual plots:
res <- resid(m0, type = "pearson")</pre>
fit <- fitted(m0, level=0)</pre>
plot(ranef(m0, level = 1))
```


plot(res ~ iv)

plot(res ~ cv1) # rel. length

plot(res ~ cv11) # cohab

qqnorm(res)
qqline(res)

Normal Q-Q Plot

