

Faculteit Bedrijf en Organisatie

Een vergelijkende studie tussen Data Vault 2.0 en het dimensioneel model bij het modelleren van een datawarehouse.

Jorik Spiesschaert

Scriptie voorgedragen tot het bekomen van de graad van professionele bachelor in de toegepaste informatica

Promotor:
Stijn Lievens
Co-promotor:
Jochen Stroobants

Instelling: DHL Pharma-Logistics

Academiejaar: 2018-2019

Tweede examenperiode

Faculteit Bedrijf en Organisatie
Een vergelijkende studie tussen Data Vault 2.0 en het dimensioneel model bij het modelleren van een
datawarehouse.
Jorik Spiesschaert

Scriptie voorgedragen tot het bekomen van de graad van professionele bachelor in de toegepaste informatica

Promotor: Stijn Lievens Co-promotor: Jochen Stroobants

Instelling: DHL Pharma-Logistics

Academiejaar: 2018-2019

Tweede examenperiode

Samenvatting

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada portitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus.

Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Inhoudsopgave

	inleiding	13
1.1	Probleemstelling	15
1.2	Onderzoeksvraag	16
1.3	Onderzoeksdoelstelling	16
1.4	Opzet van deze bachelorproef	16
2	Stand van zaken	17
2.1	Inleiding data warehouse	17
2.1 2.1.1	Inleiding data warehouse Wat is een data warehouse?	
2.1.1		18
2.1.1 2.1.2	Wat is een data warehouse?	18 18
2.1.1 2.1.2 2.1.3	Wat is een data warehouse?	18 18 19

2.2	Dimensioneel modelleren via Kimball	19
2.2.1	Inleiding	19
2.2.2	Architectuur	19
2.2.3	Componenten	20
2.3	Modelleren via Data Vault 2.0	20
2.3.1	Inleiding	20
2.3.2	Architectuur	20
2.3.3	Componenten	21
2.4	Rapporteringsomgevingen	21
2.4.1	SAP Analytics Cloud	21
2.4.2	Power BI	21
2.4.3	Andere omgevingen	21
3	Methodologie	23
4	Conclusie	25
A	Onderzoeksvoorstel	27
A .1	Introductie	27
A.2	Literatuurstudie	28
A.2.1	Data Vault 2.0	28
A.2.2	Dimensioneel modelleren	29
A .3	Methodologie	29
A.3.1	Performatie	29
A.3.2	Audit	29
A.3.3	Schaalbaarheid	30

A.3.4	Flexibiliteit	30
A.4	Verwachte resultaten	30
A.5	Verwachte conclusies	30
	Bibliografie	31

Lijst van figuren

A.1 Data Vault architectuur voorgesteld door Stroobants (2018). 28

1. Inleiding

De inleiding moet de lezer net genoeg informatie verschaffen om het onderwerp te begrijpen en in te zien waarom de onderzoeksvraag de moeite waard is om te onderzoeken. In de inleiding ga je literatuurverwijzingen beperken, zodat de tekst vlot leesbaar blijft. Je kan de inleiding verder onderverdelen in secties als dit de tekst verduidelijkt. Zaken die aan bod kunnen komen in de inleiding (Pollefliet, 2011):

- context, achtergrond
- afbakenen van het onderwerp
- verantwoording van het onderwerp, methodologie
- probleemstelling
- onderzoeksdoelstelling
- onderzoeksvraag
- ...

1.1 Probleemstelling

Uit je probleemstelling moet duidelijk zijn dat je onderzoek een meerwaarde heeft voor een concrete doelgroep. De doelgroep moet goed gedefinieerd en afgelijnd zijn. Doelgroepen als "bedrijven," "KMO's," systeembeheerders, enz. zijn nog te vaag. Als je een lijstje kan maken van de personen/organisaties die een meerwaarde zullen vinden in deze bachelorproef (dit is eigenlijk je steekproefkader), dan is dat een indicatie dat de doelgroep goed gedefinieerd is. Dit kan een enkel bedrijf zijn of zelfs één persoon (je co-promotor/opdrachtgever).

1.2 Onderzoeksvraag

Wees zo concreet mogelijk bij het formuleren van je onderzoeksvraag. Een onderzoeksvraag is trouwens iets waar nog niemand op dit moment een antwoord heeft (voor zover je kan nagaan). Het opzoeken van bestaande informatie (bv. "welke tools bestaan er voor deze toepassing?") is dus geen onderzoeksvraag. Je kan de onderzoeksvraag verder specifiëren in deelvragen. Bv. als je onderzoek gaat over performantiemetingen, dan

1.3 Onderzoeksdoelstelling

Wat is het beoogde resultaat van je bachelorproef? Wat zijn de criteria voor succes? Beschrijf die zo concreet mogelijk.

1.4 Opzet van deze bachelorproef

De rest van deze bachelorproef is als volgt opgebouwd:

In Hoofdstuk 2 wordt een overzicht gegeven van de stand van zaken binnen het onderzoeksdomein, op basis van een literatuurstudie.

In Hoofdstuk 3 wordt de methodologie toegelicht en worden de gebruikte onderzoekstechnieken besproken om een antwoord te kunnen formuleren op de onderzoeksvragen.

In Hoofdstuk 4, tenslotte, wordt de conclusie gegeven en een antwoord geformuleerd op de onderzoeksvragen. Daarbij wordt ook een aanzet gegeven voor toekomstig onderzoek binnen dit domein.

2. Stand van zaken

Dit hoofdstuk bevat een literatuurstudie omtrent data warehousing. Na het lezen van dit hoofdstuk zullen begrippen zoals dimensioneel modelleren, data vault 2.0 en data warehousing jou niet meer onbekend zijn. Ook zullen beide modelleertechnieken dieper bekeken worden.

2.1 Inleiding data warehouse

Torture the data, and it will confess to anything.

Ronald Coase Winnaar Nobelprijs in Economie (1991)

Veel moderne, digitale bedrijven genereren tegenwoordig enorme volumes data. Deze data kan afkomstig zijn uit verschillende bronnen: CRM-systeem, flat-files (vb. rekenbladen), Twitter-feeds, ... Bestuursleden gebruiken deze data om beslissingen te nemen die de onderneming toelaat om te (blijven) groeien of om bepaalde problemen op te sporen. Stel dat een onderneming meer kosten maakt dan opbrengsten. Op basis van alle gegevens die het bedrijf bezit, kan hieruit dan een analyse gemaakt worden. Zijn er overbodige kosten? Worden onze producten/diensten aan een te lage prijs verkocht? Dit zijn maar enkele vragen die kunnen opgelost worden wanneer het bestuur de correcte rapporteringen ontvangt.

2.1.1 Wat is een data warehouse?

De definitie van een data warehouse luidt als volgt: *ëen subject-georiënteerde, geïnte-greerde, tijd-variante, niet-vluchtige collectie van gegevens dat in eerste instantie gebruikt wordt bij organisaties om beslissingen te nemen*" (Vassiliadis, 2000).

Subject-georiënteerd

Dit begrip slaat op het feit dat een data warehouse met de reden gebouwd is om data te analyseren, niet om transacties op toe te passen. Dit wordt uitgebreid besproken in subsectie 2.1.4.

Geïntegreerd

Dit betekent dat de data warehouse een "centrale"databank is die gegevens bevat vanuit verschillende bronsystemen (bijvoorbeeld gegevens uit het klantenbestand en gegevens uit het verkoopsysteem). Deze data kan effectief ingeladen worden, maar ook opgeslagen worden in virtuele tabellen.

Tijd-variant

Alle data van het verleden, moet terug te vinden zijn in de data warehouse. Dit betekent dat data uit het verleden (bijvoorbeeld een vorig adres van een klant) moet beschikbaar zijn, ook al is deze in het transactioneel systeem aangepast.

Niet-vluchtig

De data die in het systeem zit, moet onveranderlijk zijn, ook al zijn deze fout. Om de foutieve data toch aan te passen, zal er een nieuwe rij moeten toegevoegd worden die de juiste data bevat, die een hogere versie bevat dan de vorige rij.

Conclusie

We kunnen dus uit de definitie van een data warehouse afleiden dat het een grote databron is die alle gegevens bevat die een organisatie bezit vanaf het moment waarbij de data warehouse geïmplementeerd is tot het heden. Op deze databron worden dan analyses gemaakt.

2.1.2 Wagrom is er nood aan een data warehouse?

Volume data apart van transactioneel sys

2.1.3 Wat is het doel van een data warehouse?

Lalalalalalalala

2.1.4 Wat is OLTP en wat zijn de verschillen met OLAP?

Lalalalalalalala

2.1.5 Wat zijn de benodigdheden voor een data warehouse?

Lalalalalalalala

Methodologie

Lalalalalalalala

Architectuur

Lalalalalalalala

Technologie

Lalalalalalalala

Databank

Lalalalalalalala

Data integratie software

Lalalalalalalala

2.2 Dimensioneel modelleren via Kimball

2.2.1 Inleiding

Lalalalalalalala

2.2.2 Architectuur

Lalalalalalalala

Staging area

Lalalalalalalala

Data warehouselaag

Lalalalalalalala

2.2.3 Componenten

Lalalalalalalala

Dimenties

Lalalalalalalala

Facts

Lalalalalalalala

Sterschema's

Lalalalalalalala

2.3 Modelleren via Data Vault 2.0

2.3.1 Inleiding

Lalalalalalalala

2.3.2 Architectuur

Lalalalalalalala

Staging area

Lalalalalalalala

Raw data vault

Lalalalalalalala

Business vault

Lalalalalalalala

Information marts

Lalalalalalalala

2.3.3 Componenten

Lalalalalalalala

Hubs

Lalalalalalalala

Links

Lalalalalalalala

Sattelieten

Lalalalalalalala

2.4 Rapporteringsomgevingen

Inleiding enzoooooo

2.4.1 SAP Analytics Cloud

Lalalalalalalala

2.4.2 Power Bl

Lalalalalalalala

2.4.3 Andere omgevingen

Lalalalalalalala

3. Methodologie

Etiam pede massa, dapibus vitae, rhoncus in, placerat posuere, odio. Vestibulum luctus commodo lacus. Morbi lacus dui, tempor sed, euismod eget, condimentum at, tortor. Phasellus aliquet odio ac lacus tempor faucibus. Praesent sed sem. Praesent iaculis. Cras rhoncus tellus sed justo ullamcorper sagittis. Donec quis orci. Sed ut tortor quis tellus euismod tincidunt. Suspendisse congue nisl eu elit. Aliquam tortor diam, tempus id, tristique eget, sodales vel, nulla. Praesent tellus mi, condimentum sed, viverra at, consectetuer quis, lectus. In auctor vehicula orci. Sed pede sapien, euismod in, suscipit in, pharetra placerat, metus. Vivamus commodo dui non odio. Donec et felis.

Etiam suscipit aliquam arcu. Aliquam sit amet est ac purus bibendum congue. Sed in eros. Morbi non orci. Pellentesque mattis lacinia elit. Fusce molestie velit in ligula. Nullam et orci vitae nibh vulputate auctor. Aliquam eget purus. Nulla auctor wisi sed ipsum. Morbi porttitor tellus ac enim. Fusce ornare. Proin ipsum enim, tincidunt in, ornare venenatis, molestie a, augue. Donec vel pede in lacus sagittis porta. Sed hendrerit ipsum quis nisl. Suspendisse quis massa ac nibh pretium cursus. Sed sodales. Nam eu neque quis pede dignissim ornare. Maecenas eu purus ac urna tincidunt congue.

Donec et nisl id sapien blandit mattis. Aenean dictum odio sit amet risus. Morbi purus. Nulla a est sit amet purus venenatis iaculis. Vivamus viverra purus vel magna. Donec in justo sed odio malesuada dapibus. Nunc ultrices aliquam nunc. Vivamus facilisis pellentesque velit. Nulla nunc velit, vulputate dapibus, vulputate id, mattis ac, justo. Nam mattis elit dapibus purus. Quisque enim risus, congue non, elementum ut, mattis quis, sem. Quisque elit.

Maecenas non massa. Vestibulum pharetra nulla at lorem. Duis quis quam id lacus dapibus interdum. Nulla lorem. Donec ut ante quis dolor bibendum condimentum. Etiam egestas

tortor vitae lacus. Praesent cursus. Mauris bibendum pede at elit. Morbi et felis a lectus interdum facilisis. Sed suscipit gravida turpis. Nulla at lectus. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Praesent nonummy luctus nibh. Proin turpis nunc, congue eu, egestas ut, fringilla at, tellus. In hac habitasse platea dictumst.

Vivamus eu tellus sed tellus consequat suscipit. Nam orci orci, malesuada id, gravida nec, ultricies vitae, erat. Donec risus turpis, luctus sit amet, interdum quis, porta sed, ipsum. Suspendisse condimentum, tortor at egestas posuere, neque metus tempor orci, et tincidunt urna nunc a purus. Sed facilisis blandit tellus. Nunc risus sem, suscipit nec, eleifend quis, cursus quis, libero. Curabitur et dolor. Sed vitae sem. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Maecenas ante. Duis ullamcorper enim. Donec tristique enim eu leo. Nullam molestie elit eu dolor. Nullam bibendum, turpis vitae tristique gravida, quam sapien tempor lectus, quis pretium tellus purus ac quam. Nulla facilisi.

4. Conclusie

Curabitur nunc magna, posuere eget, venenatis eu, vehicula ac, velit. Aenean ornare, massa a accumsan pulvinar, quam lorem laoreet purus, eu sodales magna risus molestie lorem. Nunc erat velit, hendrerit quis, malesuada ut, aliquam vitae, wisi. Sed posuere. Suspendisse ipsum arcu, scelerisque nec, aliquam eu, molestie tincidunt, justo. Phasellus iaculis. Sed posuere lorem non ipsum. Pellentesque dapibus. Suspendisse quam libero, laoreet a, tincidunt eget, consequat at, est. Nullam ut lectus non enim consequat facilisis. Mauris leo. Quisque pede ligula, auctor vel, pellentesque vel, posuere id, turpis. Cras ipsum sem, cursus et, facilisis ut, tempus euismod, quam. Suspendisse tristique dolor eu orci. Mauris mattis. Aenean semper. Vivamus tortor magna, facilisis id, varius mattis, hendrerit in, justo. Integer purus.

Vivamus adipiscing. Curabitur imperdiet tempus turpis. Vivamus sapien dolor, congue venenatis, euismod eget, porta rhoncus, magna. Proin condimentum pretium enim. Fusce fringilla, libero et venenatis facilisis, eros enim cursus arcu, vitae facilisis odio augue vitae orci. Aliquam varius nibh ut odio. Sed condimentum condimentum nunc. Pellentesque eget massa. Pellentesque quis mauris. Donec ut ligula ac pede pulvinar lobortis. Pellentesque euismod. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent elit. Ut laoreet ornare est. Phasellus gravida vulputate nulla. Donec sit amet arcu ut sem tempor malesuada. Praesent hendrerit augue in urna. Proin enim ante, ornare vel, consequat ut, blandit in, justo. Donec felis elit, dignissim sed, sagittis ut, ullamcorper a, nulla. Aenean pharetra vulputate odio.

Quisque enim. Proin velit neque, tristique eu, eleifend eget, vestibulum nec, lacus. Vivamus odio. Duis odio urna, vehicula in, elementum aliquam, aliquet laoreet, tellus. Sed velit. Sed vel mi ac elit aliquet interdum. Etiam sapien neque, convallis et, aliquet vel, auctor non, arcu. Aliquam suscipit aliquam lectus. Proin tincidunt magna sed wisi. Integer blandit

lacus ut lorem. Sed luctus justo sed enim.

Morbi malesuada hendrerit dui. Nunc mauris leo, dapibus sit amet, vestibulum et, commodo id, est. Pellentesque purus. Pellentesque tristique, nunc ac pulvinar adipiscing, justo eros consequat lectus, sit amet posuere lectus neque vel augue. Cras consectetuer libero ac eros. Ut eget massa. Fusce sit amet enim eleifend sem dictum auctor. In eget risus luctus wisi convallis pulvinar. Vivamus sapien risus, tempor in, viverra in, aliquet pellentesque, eros. Aliquam euismod libero a sem.

Nunc velit augue, scelerisque dignissim, lobortis et, aliquam in, risus. In eu eros. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Curabitur vulputate elit viverra augue. Mauris fringilla, tortor sit amet malesuada mollis, sapien mi dapibus odio, ac imperdiet ligula enim eget nisl. Quisque vitae pede a pede aliquet suscipit. Phasellus tellus pede, viverra vestibulum, gravida id, laoreet in, justo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Integer commodo luctus lectus. Mauris justo. Duis varius eros. Sed quam. Cras lacus eros, rutrum eget, varius quis, convallis iaculis, velit. Mauris imperdiet, metus at tristique venenatis, purus neque pellentesque mauris, a ultrices elit lacus nec tortor. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent malesuada. Nam lacus lectus, auctor sit amet, malesuada vel, elementum eget, metus. Duis neque pede, facilisis eget, egestas elementum, nonummy id, neque.

A. Onderzoeksvoorstel

Het onderwerp van deze bachelorproef is gebaseerd op een onderzoeksvoorstel dat vooraf werd beoordeeld door de promotor. Dat voorstel is opgenomen in deze bijlage.

A.1 Introductie

Wanneer het management in het bedrijf een strategische of tactische beslissing wil maken, is deze beslissing gebaseerd op data afkomstig uit verschillende databronnen. Daarom is er bij grote ondernemingen (en tegenwoordig ook bij KMO's) nood aan een rapporteringssysteem. Voor het opstellen en onderhouden van datawarehouses wordt een bepaald budget voorzien. Relaties leggen tussen verschillende data is dan ook een grote uitdaging. Daarom is het dus belangrijk dat het model op de juiste manier ontworpen wordt om kosten te beperken wanneer men de datawarehouse wil onderhouden/uitbreiden. Hiervoor bestaan verschillende modelleertechnieken. In dit onderzoek worden enkel het Kimball dimensioneel modelleren en Data Vault 2.0 vergeleken. We proberen in dit onderzoek de volgende vraag te beantwoorden: Waar zitten de verschillen bij het modelleren met Data Vault 2.0 en het dimensioneel modelleren?

Ook zal er een antwoord trachten gevonden te worden op volgende deelvragen:

- Zijn er verschillende manieren van aanpak mogelijk?
- Hoe flexibel/schaalbaar zijn beide systemen?
- Is er een verschil in performantie?
- Hoe verschillen de technieken naar onderhoud toe?

Bij DHL Pharma Logistics gebeurt het berekenen van de KPI's (Key Performance In-

dicators) nog altijd manueel. Zo worden de KPI's berekend via een rekenmachine en handmatig ingevoerd in een Excel-bestand. De informatie die nodig is om verschillende berekeningen te maken is afkomstig uit verschillende databronnen (mainframe, Cronos, Excel-sheets, ..). Dit neemt veel tijd in beslag, dus beslist de firma om een deel van de KPI's te automatiseren. Hiervoor zal een datawarehouse moeten opgezet worden. Deze zal gemodelleerd worden in Data Vault 2.0. Maar is dit wel de beste oplossing? Dit onderzoek zal uitwijzen of Data Vault 2.0 wel degelijk de beste oplossing is.

A.2 Literatuurstudie

A.2.1 Data Vault 2.0

Architectuur

De architectuur van Data vault bestaat voornamelijk uit 3 lagen: De staging area, de raw data vault area en de Business vault. De staging area wordt gebruikt om alle data tijdelijk te stockeren. Daarna wordt de data doorgezonden naar de volgende laag: de raw data vault. Hierbij wordt de architectuur omgevormd naar een data vault. Hierop worden dan data manipulaties gemaakt en wordt de data doorgezonden naar de volgende laag, de business vault. Data marts worden gecreëerd op de business vault (Linstedt, 2015).

Figuur A.1: Data Vault architectuur voorgesteld door Stroobants (2018).

Entiteittype's

Bij data vault wordt er een onderscheid gemaakt tussen 3 verschillende entiteiten: hub, link en satelliet. In een hub wordt een hash sleutel opgeslagen die gebaseerd is op de identifier van die entiteit en metadata (zoals de bron en wanneer de record is ingevoerd). Een link is entiteit die verantwoordelijk is om verschillende hubs met elkaar te verbinden. Hierin worden de hash sleutels van de verbonden entiteiten in opgeslagen. Satellieten kunnen verbonden worden met hubs en links. Deze bevatten de inhoudelijke data van de entiteit.

A.2.2 Dimensioneel modelleren

Architectuur

Bij het dimensioneel modelleren via Kimball is er 1 enkele laag, hierin worden alle operaties uitgevoerd (ETL: Extraction, Transaction en Load). De data wordt ingeladen in een ster-schema. Op deze laag worden dan data marts gebouwd. (Jukic, 2006)

Entiteittype's

Bij deze techniek bestaan er 2 entiteittype's: feit tabellen en dimensionele tabellen. De feit tabellen bevatten alle transactionele data, data waarop je eigenlijk berekeningen kan maken. Dimensionele tabellen bevatten meer informatie over de transactionele data.

A.3 Methodologie

Voor dit onderzoek zullen er twee datawarehouses opgezet worden in een SAP HANAomgeving. De eerste datawarehouse zal gemodelleerd worden in Data Vault 2.0, de andere
in een dimensioneel model. De SAP HANA omgeving is 'on-premise' die draait in een
Microsoft Azure omgeving. Het modelleren zal deels gebeuren in Eclipse (die een remoteverbinding maakt met Azure) en deels via een web IDE voor HANA (Xsengine). Wanneer
beide datawarehouses operationeel zijn, kan er gestart worden met de vergelijking. De
datawarehouses zullen gebaseerd zijn op KPI's die gedefinieerd zijn bij DHL Pharma
Logistics.

A.3.1 Performatie

Om de performantie van beide systemen te vergelijken, zullen er een aantal verschillende queries uitgevoerd worden op data marts gebaseerd op deze datawarehouses. Op basis van uitvoeringstijd kunnen we deze dan met elkaar vergelijken. Zo kunnen we te weten komen of er wel degelijk een verschil is tussen beide architecturen in performantie en hoe groot de verschillen zijn.

A.3.2 Audit

Stel dat er op 2 verschillende databronnen klantengegevens opgeslagen wordt, zal er een keuze moeten gemaakt worden. Van welke bron haal ik mijn gegevens? Indien er verschillende problemen optreden met data, willen we graag kunnen onderzoeken waar het probleem zich heeft voorgedaan. Hiervoor voegen we META-data toe aan de data die ons verteld waar en wanneer de data werd opgehaald.

A.3.3 Schaalbaarheid

Hoe wordt er omgegaan met grote hoeveelheden data in beide architecturen? Merken we hier een significant verschil? Zien we de uitvoeringstijden lineair/exponentieel stijgen?

A.3.4 Flexibiliteit

De vereisten voor rapportering verandert vaak bij bedrijven. Soms moeten KPI's worden toegevoegd, soms moeten deze gewijzigd worden. Maar wat als er databronnen in het bedrijfsnetwerk toegevoegd? Hoe gemakkelijk kunnen deze wijzigingen gemaakt worden in beide architecturen? Dit zullen we onderzoeken door een nieuwe KPI toe te voegen aan het systeem.

A.4 Verwachte resultaten

Op basis van het uitgevoerde onderzoek zullen we hiervan een resultaat kunnen opstellen. Ik verwacht dat beide technieken zijn voordelen en nadelen zullen hebben. Zo zal Data Vault 2.0 een modelleertechniek zijn die zeer flexibel is, maar dit zal ten koste gaan van de performantie. Het dimensionele model zal zo performanter zijn, maar weinig flexibiliteit bieden.

A.5 Verwachte conclusies

Aangezien Data Vault 2.0 veel flexibiliteit te bieden heeft, zal dit de beste oplossing zijn wanneer alle data verspreidt staat op verschillende systemen. Bij Data Vault 2.0 is het namelijk mogelijk gemakkelijk nieuwe databronnen toe te voegen in een datawarehouse. Maar wanneer men de de data marts wil ontwerpen, zal men nog steeds moeten gebruik maken van dimensioneel modelleren. Wanneer een bedrijf weinig databronnen heeft en deze weinig veranderen, is dimensioneel modelleren de betere oplossing.

Voor DHL Pharma Logistics zal Data Vault 2.0 dan ook de beste oplossing zijn, aangezien hun data verspreidt staat over enkele systemen. Zo kunnen ze hun KPI's ook nog beter definiëren en makkelijker aanpassen in het systeem.

Bibliografie

- Creeger, M. (2009). CTO Roundtable: Cloud Computing. *Communications of the ACM*, 52(8), 50–56.
- Jukic, N. (2006). Modeling strategies and alternatives for dat warehousing projects. *Communications of the ACM*.
- Knuth, D. E. (1998). *The art of computer programming, volume 3: (2nd ed.) sorting and searching.* Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc.
- Linstedt. (2015). Building a Scalable Data Warehouse with Data Vault 2.0.
- Pollefliet, L. (2011). Schrijven van verslag tot eindwerk: do's en don'ts. Gent: Academia Press.
- Stroobants, J. (2018). Modern data warehousing with data vault in SAP HANA.
- Vassiliadis, P. (2000). *Data Warehouse Modeling and Quality Issues* (proefschrift, NATIONAL TECHNICAL UNIVERSITY OF ATHENS).