BRAC UNIVERSITY Department of Computer Science and Engineering

Examination: Semester Midterm

Duration: 1 Hour 30 Minutes

Semester :Summer 2023

Full Marks: 40

CSE 422: Artificial Intelligence

Answer the following questions. Figures in the right margin indicate marks.

- **1. CO1** a. **Explain** how and under what scenarios can Simulated Annealing overcome the drawbacks of traditional hill climbing.
 - b. **Explain** briefly with reasoning which of the following statements are true or false:
 - -When $\Delta E = 0$, then Simulated Annealing may have come across a plateau
 - -Genetic Algorithm can jump between different states of a state space
 - -The value of eaer ranges from positive to negative infinity. .
 - c. Assume 123456 and 789325 represent two chromosomes. **Explain** how you will perform single point crossover and mutation to create 2 new offspring. (crossover from the middle and you can mutate only 1 gene)
- **2. CO1** a. **Modify** heuristic values of some of the nodes of the following graph so that all the heuristics values of all the nodes become consistent where A is the start node and G is the goal node

b. **Perform** A* search to go from the initial state to goal state in an 8-puzzle problem. 5 Avoid repeated states in your search

Initial State Goal State

1	3	6	1	2	3
4	2		4	5	6
7	5	8	7	8	

- **3. CO2** a. Your job is to create a palindromic positive integer of length n. The number will have no leading zeros. The digit 7 can occur only in the odd positions starting from the left. And the sum of the digits cannot exceed 6n. Now answer the following questions:
 - **-Define** the variables here
 - **-Define** the domain of the variables
 - -What are the constraints? **List** them all.
 - b. Briefly **discuss** the heuristics used in variable ordering and value ordering while optimizing backtracking to solve Constraint Satisfaction Problems.

6

4

4. CO1

- a. For the tree above, **find** the solution using min-max algorithm. Here {A, D, E, F, G} are moves of the minimizing player and {B, C} are the moves of the maximizing player.
- b. **Find** the alpha and beta values for all the nodes if α - β pruning is run on this tree. Which nodes will not be explored after the said pruning? Which branches will be pruned?