Counting

1, 2, 5, 14, ...

Product Rule Sum Rule Finite Sets Overcounting Subtraction Rule Counting

1, 2, 5, 14, ...

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting

The chairs of an auditorium are to be labeled with an uppercase English letter followed by a positive integer not exceeding 100. What is the largest number of chairs that can be labeled differently?

A-1 ... Z-100

There are

- 1. 26 ways to assign a letter and
- 2. 100 ways to assign a number.

Product Rule

Sum Rule Finite Sets Overcounting Subtraction Rule Counting Tree Diagrams

The chairs of an auditorium are to be labeled with an uppercase English letter followed by a positive integer not exceeding 100. What is the largest number of chairs that can be labeled differently?

A-1 ... Z-100

There are

1. 26 ways to assign a letter and

 $26 \cdot 100$

2. 100 ways to assign a number.

Product Rule

Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting
Tree Diagrams

The Product Rule

There are

1. 26 ways to assign a letter and

 $26 \cdot 100$

2. 100 ways to assign a number.

The Product Rule. Suppose that a procedure can be broken down into a sequence of two tasks. If there are n_1 ways to do the first task and for each of these ways of doing the first task, there are n_2 ways to do the second task, then there are n_1n_2 ways to do the procedure.

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

There are 32 computers in a computer center.

Each computer has 24 ports.

How many different ports to a computer in the center are there?

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

There are 32 computers in a computer center.

Each computer has 24 ports.

How many different ports to a computer in the center are there?

$$32 \cdot 24 = 768$$

There are 768 ways to choose one port in the center:

- 1. First, you choose a computer (can be done in 32 ways).
- 2. Then choose a port in that computer (in 24 ways).

Product Rule

Sum Rule

Finite Sets

Overcounting
Subtraction Rule

Counting

There are 32 computers in a computer center.

Each computer has 24 ports.

How to scan all the ports in the computer center?

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

There are 32 computers in a computer center.

Each computer has 24 ports.

How to scan all the ports in the computer center?

```
for c := 1 to 32 do
for p := 1 to 24 do
scan(c, p)
```

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Generalized Product Rule

If a procedure consists of k *sub-tasks*, and the sub-tasks can be performed in n_1, \ldots, n_k ways, then the procedure can be performed

in
$$(n_1 \cdot n_2 \cdot \ldots \cdot n_k)$$
 ways.

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Tree Diagrams

Example:

Count the number of different bit strings of length seven.

The value for each bit can be chosen in two ways (0 or 1). Therefore:

$$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^7 = 128$$

How many different license plates of this format can be made?

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

How many different license plates of this format can be made?

$$26^3 \cdot 10^4 = 175,760,000$$

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Tree Diagrams

A college library has 40 books on sociology and 50 books on anthropology.

You have to *choose only one book* from the library. In how many ways can it be done?

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Tree Diagrams

A college library has 40 books on sociology and 50 books on anthropology.

You have to *choose only one book* from the library. In how many ways can it be done?

40 + 50 = 90 this is called the rule of sum

The Sum Rule

Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting
Tree Diagrams

Product Rule

40 books on sociology, and 50 books on anthropology. There are 40 + 50 = 90 ways to choose a book.

Write an algorithm for a robot to read all the books in the library:

The Sum Rule

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting
Tree Diagrams

40 books on sociology, and 50 books on anthropology. There are 40 + 50 = 90 ways to choose a book.

Write an algorithm for a robot to read all the books in the library:

```
\begin{aligned} & \textbf{for} \ b := 1 \ \textbf{to} \ 40 \ \textbf{do} \\ & read(\texttt{Sociology}, b) \\ & \textbf{for} \ b := 1 \ \textbf{to} \ 50 \ \textbf{do} \\ & read(\texttt{Anthropology}, b) \end{aligned}
```

The Sum Rule

Product Rule
Sum Rule
Finite Sets
Overcounting

Subtraction Rule

Counting
Tree Diagrams

40 books on sociology, and 50 books on anthropology. There are 40 + 50 = 90 ways to choose a book.

The Sum Rule. If a task can be done either in one of n_1 ways or in one of n_2 ways, where none of the set of n_1 ways is the same as any of the set of n_2 ways, then there are $n_1 + n_2$ ways to do the task.

Note that it's important that the two groups don't have common elements (We say that the sets are disjoint).

A new object

Def. A *set* is an unordered collection of objects. The objects are called elements.

If *e* is an element of the set *A*, we write $a \in A$.

Otherwise, if it's not in A, we write $a \notin A$.

Example:

$$A = \{1, 2, 97, 3, 15\}.$$

 $1 \in A.$
 $4 \notin A.$

$$\{1, 2, 3, 3, 2, 1, 1, 1, 1\} = \{1, 2, 3\}$$

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting

Sets

$$A = \{1, 2, 41, 53, 99\}$$

$$B = \{'a', 'z', 'e', 'd', 'c', 'b'\}$$

$$D = \{27, 1, \{5,7\}, 92\}$$

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting

Some important sets

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Tree Diagrams

Natural numbers

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Integer numbers

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Empty set

$$\emptyset = \{ \}$$

Set Builder Notation

We can describe sets using predicates:

$$A = \{x \mid P(x)\}$$

"Set *A* is such that $x \in A$ if and only if P(x)."

Example. Positive integers:

$$Z^+ = \{n \in \mathbb{Z} \mid n > 0\} = \{1, 2, 3, \ldots\}$$

More complex predicates are fine too. Odd and even numbers:

Even =
$$\{n \in \mathbb{Z} \mid \exists k \in \mathbb{Z} (n = 2k)\}$$

Odd = $\{n \in \mathbb{Z} \mid \exists k \in \mathbb{Z} (n = 2k + 1)\}$

Product Rule
Sum Rule
Finite Sets
Overcounting

Overcounting
Subtraction Rule

Tree Diagrams

Counting

Union, ∪

 $A \cup B$ denotes all things that are members of either A or B:

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$$

Equivalently:

x belongs to $A \cup B$ if and only if $x \in A$ or $x \in B$.

Examples:

$$\{1, 2\} \cup \{\text{'a', 'b'}\} = \{1, 2, \text{'a', 'b'}\}\$$

 $\{1, 2, 3\} \cup \{2, 3, 5\} = \{1, 2, 3, 5\}$

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting

Intersection, ∩

 $A \cap B$ denotes all things that are *members of both A and B*:

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\}\$$

Equivalently:

x belongs to $A \cap B$ if and only if $x \in A$ and $x \in B$.

Examples:

$$\{1, 2\} \cap \{\text{`a', 'b'}\} = \emptyset$$

 $\{1, 2, 3\} \cap \{2, 3, 5\} = \{2, 3\}$

Sets *A* and *B* are called *disjoint* if their intersection is empty: $A \cap B = \emptyset$.

Product Rule Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Number of elements of a finite set

Def. If set A is finite, and there are exactly n elements in S, then n is the *cardinality* of the set A. We write

$$|A|=n$$
.

Examples:

$$A = \{3, 4, 5, 6\}$$

 $|A| = 4$
 $B = \{\{3, 4\}, \{5, 6\}, 7\}$
 $|B| = 3$
 $|\emptyset| = 0$

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Tree Diagrams

$$A = \{1, 2, 4, 5\}$$

 $B = \{20, 21, 22, 23, 24\}$

If two sets are disjoint (their intersection is empty), what is the cardinality if their union?

$$|A \cup B| =$$

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Tree Diagrams

$$A = \{1, 2, 4, 5\}$$

 $B = \{20, 21, 22, 23, 24\}$

If two sets are disjoint (their intersection is empty), what is the cardinality if their union?

$$|A \cup B| = |A| + |B| = 4 + 5 = 9.$$

You are given k disjoint sets $A_1, \ldots A_k$:

It means that $A_i \cap A_j = \emptyset$ when $i \neq j$.

What is the cardinality if their union?

$$|A_1 \cup \ldots \cup A_k| =$$

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

You are given k disjoint sets $A_1, \ldots A_k$:

It means that $A_i \cap A_j = \emptyset$ when $i \neq j$.

What is the cardinality if their union?

$$|A_1 \cup \ldots \cup A_k| = |A_1| + \ldots + |A_k| = \sum_{i=1}^k |A_i|.$$

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

You are given k disjoint sets $A_1, \ldots A_k$:

It means that
$$A_i \cap A_j = \emptyset$$
 when $i \neq j$.

What is the cardinality if their union?

$$|A_1 \cup \ldots \cup A_k| = |A_1| + \ldots + |A_k| = \sum_{i=1}^k |A_i|.$$

This is the same *rule of sum*, right?

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Tree Diagrams

Why do we insist on the sets being disjoint?

Really, who cares?

Because

$$A = \{1, 2, 3\}$$

 $B = \{3, 4\}$

$$|A| + |B| = 3 + 2 = 5$$

$$|A \cup B| = |\{1, 2, 3, 4\}| = 4$$

So, in general, $|A \cup B| \neq |A| + |B|$, and if we try to use the sum rule when the sets are not disjoint, we *overcount*, and this is really bad.

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting
Tree Diagrams

Overcounting

$$A = \{1, 2, 3\}$$

 $B = \{3, 4\}$

We were overcounting, because the common elements of *A* and *B* were counted twice:

$$|A| + |B| = |\{1, 2, 3\}| + |\{3, 4\}| = 5,$$

 $|A \cup B| = |\{1, 2, 3, 4\}| = 4.$

Product Rule
Sum Rule
Finite Sets

Overcounting

Subtraction Rule

Counting

Overcounting

$$A = \{1, 2, 3\}$$

 $B = \{3, 4\}$

We were overcounting, because the common elements of *A* and *B* were counted twice:

$$|A| + |B| = |\{1, 2, 3\}| + |\{3, 4\}| = 5,$$

 $|A \cup B| = |\{1, 2, 3, 4\}| = 4.$

Therefore, to get the correct value of $|A \cup B|$, the number of common elements must be subtracted:

$$|A \cup B| = |\{1, 2, 3\}| + |\{3, 4\}| - |\{3\}| = 3 + 2 - 1 = 4.$$

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting

The Subtraction Rule

$$A = \{1, 2, 3\}$$

 $B = \{3, 4\}$

Therefore, to get the correct value of $|A \cup B|$, the number of common elements must be subtracted:

$$|A \cup B| = |\{1, 2, 3\}| + |\{3, 4\}| - |\{3\}| = 3 + 2 - 1 = 4.$$

The general rule for arbitrary sets *A* and *B*:

$$|A \cup B| =$$

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

The Subtraction Rule

$$A = \{1, 2, 3\}$$

 $B = \{3, 4\}$

Therefore, to get the correct value of $|A \cup B|$, the number of common elements must be subtracted:

$$|A \cup B| = |\{1, 2, 3\}| + |\{3, 4\}| - |\{3\}| = 3 + 2 - 1 = 4.$$

The general rule for arbitrary sets *A* and *B*:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Product Rule

Sum Rule

Finite Sets

Overcounting
Subtraction Rule

Counting

Countuing paths

This is a map with three cities, connected by roads.

Count the number of paths from city A to city C, such that each city is visited not more than once.

A B

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting

Countuing paths

This is a map with three cities, connected by roads.

Count the number of paths from city A to city C, such that each city is visited not more than once.

A B

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting

Countuing paths

This is a map with three cities, connected by roads.

Count the number of paths from city A to city C, such that each city is visited not more than once.

Sum Rule Finite Sets Overcounting Subtraction Rule Counting Tree Diagrams

Product Rule

$$A \rightarrow C \text{ or } A \rightarrow B \rightarrow C$$
:

$$2 + 3 \cdot 4 = 14$$

Countuing round trips

This is a map with three cities, connected by roads.

Count the number of round trips starting in city *B*, such that cities *A* and *C* are visited not more than once.

2 paths
C
A paths
3 paths

Product Rule

Sum Rule

Finite Sets

Overcounting

Subtraction Rule

Counting

Countuing round trips

This is a map with three cities, connected by roads.

Count the number of round trips starting in city *B*, such that cities *A* and *C* are visited not more than once.

$$B \rightarrow A \rightarrow B \qquad 3 \cdot 3 = 9$$

$$B \rightarrow C \rightarrow B \qquad 4 \cdot 4 = 16$$

$$B \rightarrow A \rightarrow C \rightarrow B \qquad 3 \cdot 2 \cdot 4 = 24$$

$$B \rightarrow C \rightarrow A \rightarrow B \qquad 4 \cdot 2 \cdot 3 = 24$$
Total 73

Product Rule Sum Rule

Finite Sets

Overcounting
Subtraction Rule

Counting

Countuing round trips II

This is a map with three cities, connected by roads.

Count the number of round trips starting in city *B*, such that

- 1) cities A and C are visited not more than once, and
- 2) each road is used not more than once during a trip.

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting

Countuing round trips II

This is a map with three cities, connected by roads.

Count the number of round trips starting in city B, such that

- 1) cities *A* and *C* are visited not more than once, and
- 2) each road is used not more than once during a trip.

$$B \rightarrow A \rightarrow B \qquad 3 \cdot 2 = 6$$

$$B \rightarrow C \rightarrow B \qquad 4 \cdot 3 = 12$$

$$B \rightarrow A \rightarrow C \rightarrow B \qquad 3 \cdot 2 \cdot 4 = 24$$

$$B \rightarrow C \rightarrow A \rightarrow B \qquad 4 \cdot 2 \cdot 3 = 24$$

$$Total \qquad 66$$

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting

Tree Diagrams

Counting problems can be solved using *tree diagrams*.

Each branch represent one possible choice. Each possible outcome is a leaf of the tree (an endpoint that does not branch).

Example: Count all bit strings of length four.

16 strings.

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting

Tree Diagrams

Counting problems can be solved using *tree diagrams*.

Each branch represent one possible choice.

Each possible outcome is a leaf of the tree (an endpoint that does not branch).

Example 2: Count all bit strings of length four that *do not have two consecutive 1s*.

8 strings.

Product Rule
Sum Rule
Finite Sets
Overcounting
Subtraction Rule
Counting
Tree Diagrams