

Miércoles 25 de Febrero 2021 Docente: Martín Marcano

3er Año "A"

Área de formación: Matemática

Preservación de la vida en el planeta, salud y vivir bien.

Tecnología de la información y comunicación en la cotidianidad.

Razones, Proporciones y Media proporcional.

RAZÓN

Es la comparación que se establece entre dos cantidades de una magnitud mediante las operaciones de sustracción o división. Si dicha comparación se realiza por sustracción se llama **razón aritmética**, pero si se realiza mediante una división se le llama **razón geométrica**.

Ejemplo 1:

Luis y Roxana son aficionados al atletismo. Deciden hacer una competencia y observan que cuando Luis recorre 25m, Roxana 35m. Basados en este ejemplo podemos afirmar que Roxana recorre 10m más que Luis. Para llegar a esta conclusión hemos realizado una comparación por sustracción. A este tipo de comparación la llamaremos entonces razón aritmética.

Así tenemos:

Ahora bien si nosotros efectuamos la división entre las distancias recorridas por Luis y Roxana obtendremos:

Antecedente
$$\frac{35}{25} = \frac{7}{5}$$
 valor de la razón podemos afirmar que

La rapidez de Roxana y Luis están en relación 7 a 5. La rapidez de Roxana es como 7 y la de Luis es como 5. La rapidez de Roxana es 2/5 más que la de Luis.

Ejemplo 2.

El avión A se desplaza con una rapidez de 400km/h y el avión B se desplaza con una rapidez de 300km/h. Determine e interprete la razón geométrica de A con respecto a B.

Solución:

$$R = \frac{A}{B}$$
 R= $\frac{400}{300} = \frac{4}{3}$

La rapidez de los aviones A y B están en relación 4 a 3; En cada hora por cada 4km que avanza el avión A, el avión B avanza 3km.

Es importante destacar que la razón geométrica es más aplicable a una variedad de problemas, por ello en algunos problemas donde solo se menciona la razón, quedara sobreentendido que se trata de la razón geométrica.

PROPORCIÓN

Es la igualdad en valor numérico de dos razones de la misma clase.

Dada una proporción $\frac{a}{b} = \frac{c}{d}$, se cumple que: a.d=b.c, se lee "el producto de los extremos es igual al producto de los medios.

Veamos si la siguiente situación corresponde o no a una proporción:

En la familia de Carlos que son 6 integrantes todos los días compran 3 panes, en la familia de Juan que son 10 integrantes se compran 5 panes, en ambas familias el reparto de los panes es equitativo.

Solución:

Observemos que en la familia de Carlos los 3 panes deben ser distribuidos entre 6, como el reparto es equitativo tenemos que:

 $\frac{3}{6} = \frac{1}{2}$, lo cual implica que a cada integrante de la familia le corresponde medio pan.

Para la familia de Juan tenemos que:

 $\frac{5}{10} = \frac{1}{2}$, también corresponde medio pan para cada integrante de la familia.

Igualando ambas razones, tenemos:

 $\frac{3}{6} = \frac{5}{10}$, en un lenguaje un poco estricto diremos que a esta igualdad de **razones geométricas** se denomina **proporción geométrica**.

Es importante destacar que al cociente encontrado anteriormente se le llama <u>constante de</u> <u>proporcionalidad</u> (como observamos anteriormente es muy útil para resolver problemas que tratan de repartos proporcionales)

En el estudio de las proporciones geométricas existe una clasificación de estas en discretas y continuas:

Una proporción geométrica discreta es aquella donde los términos medios son diferentes. Una proporción geométrica continua es aquella donde los términos medios son iguales.

"Cuarta proporcional", "tercera proporcional" y "media proporcional" en una proporción geométrica.

Consideremos la siguiente proporción geométrica: $\frac{a}{b} = \frac{c}{d}$

Si la proporción es discreta se cumple que $b \neq c$, en este caso el cuarto término "d" recibe el nombre de "cuarta proporcional" de a;b y c (en ese orden).

Si la proporción es continua se cumple que $b\!=\!c$, en este caso el cuarto termino "d" recibe el nombre de **"tercera proporcional"** de a y b. El término medio "b" es la **media proporcional** de " a y d" y por lo tanto se cumple que $b\!=\!\sqrt{a.d}$ Ejemplos:

- a) Sea la proporción $\frac{8}{4} = \frac{10}{5}$, los términos medios 4 y 10 son diferentes, por lo tanto la proporción es discreta y se dice que el cuarto termino 5 es la cuarta proporcional de 8;4 y 10(en ese orden).
- b) Sea la proporción $\frac{8}{4} = \frac{4}{2}$, los términos medios son iguales, por lo tanto la proporción es continua y se dice que el termino 2 es la tercera proporcional de 8 y 4. Además el termino 4 es la media proporcional de 8 y 2, y su forma práctica de cálculo es $\sqrt{|8| \cdot (2)} = \sqrt{16} = 4$

Veamos la resolución de los siguientes problemas:

Problema 1.

Las edades de Juan y Rocío están en relación de **5** a **9** y la suma de ellas es **84**. ¿Qué edad tiene Juan?

Solución:

Las edades de Juan y Rocío están en relación 5 a 9, por lo tanto:

La edad de Juan es 5k y la edad de Rocío es 9k.

Como la suma de las edades es 84 años, tenemos:

$$5k+9k=84 \rightarrow 14k=84 \rightarrow k=\frac{84}{14}=6$$

Luego la edad de Juan es:

$$5k \rightarrow 5.(6) = 30 \, a \, \tilde{n} \, os.$$

Problema 2.

Calcule la cuarta proporcional de las estaturas de 3 estudiantes y que son:

1,6 m; 1,2m y 1,4m.

Solución:

La cuarta proporcional es el cuarto termino de la proporción, por lo tanto:

$$\frac{1,6}{1,2} = \frac{1,4}{c} \rightarrow 1,6c = (1,2).(1,4) \rightarrow c = \frac{(1,2).(1,4)}{1,6} = 1,05.$$

La cuarta proporcional es 1,05

Problema 3.

La suma de dos números es 144 y su

razón geométrica vale $\frac{2}{7}$. ¿Cuáles son

los dichos números?

Solución:

Sean los números A y B, como su razón geométrica es $\frac{2}{7}$, entonces:

$$\frac{A}{B} = \frac{2}{7} \rightarrow A = 2k \ y \ B = 7k$$
, luego: $A + B = 144 \rightarrow 2k + 7k = 144 \rightarrow 9k = 144 \rightarrow k = \frac{144}{9} = 16$

Por lo tanto: A=2.(16)=32 yB=7.(16)=112

Los números son 32 y 112.

Problema 4.

La razón geométrica de dos números vale **4/7** y su razón aritmética es **45**. Determina el menor de los números.

Solución:

La razón geométrica es $\frac{A}{B} = \frac{4}{7} \rightarrow A = 4 k y B = 7 k$

Como su razón aritmética es 45, se cumple entonces que B-A=45

Luego:
$$7k-4k=45 \rightarrow 3k=45 \rightarrow k=\frac{45}{3}=15$$

Por lo tanto: A = 4.(15) = 60

El menor de los números es 60.

Problema 5.

Tres números son entre sí como **4**; **7** y **11**, y la suma del menor con el mayor de dichos números es **105**. Determinar el menor de estos números.

Solución:

Sean los números a,b y c:

$$\rightarrow \frac{a}{4} = \frac{b}{7} = \frac{c}{11} = k$$
, se obtiene entonces que:

$$a=4k,b=7kyc=11k.$$

Luego:
$$a+c=105 \rightarrow 4k+11k=105 \rightarrow 15k=105 \rightarrow k=\frac{105}{15}=7$$

Por lo tanto el menor será: $a=4 k \rightarrow a=4.(7)=28$

Problema 6.

En una proporción geométrica se sabe que el producto de extremos es **600**. Si los términos medios son consecutivos. ¿Cuál es la suma de los términos medios?

Solución:

Tenemos la siguiente proporción:

$$\frac{a}{b} = \frac{c}{d}$$
, en donde se cumple que: $a \cdot d = b \cdot c$

Según información que nos brinda el problema se tiene: $a.d\!=\!600$ y además "b" y "c" son números consecutivos. Luego $600\!=\!(24).(25)$, lo cual implica que $b\!=\!24$ y $c\!=\!25$ Finalmente: $b\!+\!c\!=\!24\!+\!25\!=\!49$

La suma de los términos medios es 49.

Problema 7.

En una proporción continua la diferencia de los extremos es **20** y el valor de la

constante es $\frac{2}{3}$. Determinar la media

proporcional.

Solución:

En este caso tenemos que la proporción es continua, lo cual implica que los términos medios son iguales; por otro lado la diferencia entre los extremos es 20 y el valor de la constante de proporcionalidad es 2/3, lo cual implica que si "E" es el primer término, entonces E+20 será el cuarto término, así tenemos:

$$\frac{E}{M} = \frac{M}{E+20} = \frac{2}{3} \rightarrow E = 2k \ y \ M = 3k$$
, luego:

$$\frac{3k}{2k+20} = \frac{2}{3} \rightarrow 3.(3k) = 2.(2k+20) \rightarrow 9k = 4k+40 \rightarrow 9k-4k=40 \rightarrow 5k=40,$$

.
$$k = \frac{40}{5} = 8$$
, por lo tanto la media proporcional (M) será: $M = 3k \rightarrow M = 3.(8) = 24$

Problema 8.

Amanda lee 18 páginas en 23 minutos. A esta velocidad, ¿cuántas páginas leerá en 45 minutos?

Solución:

Esta situación se resuelve de manera sencilla aplicando una proporción, así tenemos:

$$\frac{18}{23} = \frac{x}{45} \rightarrow 23 \ x = (18).(45) \rightarrow x = \frac{(18).(45)}{23} = 35.2$$
, Amanda leerá cerca de 35.2 páginas en 45 minutos.

Problema 9.

John se comió tres perros calientes en seis minutos. A esta velocidad, ¿cuántos se comerá en doce minutos?

Solución:

Tenemos la siguiente proporción:

$$\frac{3}{6} = \frac{x}{12} \rightarrow 6x = (3).(12) \rightarrow x = \frac{(3).(12)}{6} = 6$$
, John se comerá 6 perros calientes en 12 minutos.

Pongamos en práctica lo aprendido.

En unión familiar resuelva los siguientes problemas:

<u>1)</u>

La relación entre el número de pasajeros de dos micros es de **7** a **5**; si bajan **4** pasajeros de uno y suben al otro, se iguala el número de pasajeros en ambos , ¿cuántos pasajeros llevan entre ambos? 2)

Tres números están en la misma relación que **5**; **9** y **13**. Si la suma de ellos es **216**. Indica el mayor de ellos .

3) En una fiesta hay 48 personas en total. Si la razón de hombre-mujeres es 1 a 3.¿Cuantas mujeres hay en la fiesta?¿Cuántos hombres hay en la fiesta?

4)

Si:
$$\frac{a}{b} = \frac{7}{11}$$
; además: $a \times b = 308$. Calcular:
" $b - a$ "

5) Jeffrey fue a la tienda a comprar pollo para la cena. Se asombró con los precios y tuvo que sacar algunas cuentas mientras compraba. En la tienda, las 3 libras de pollo costaban \$13,50. Si Jeffrey tiene \$30 ¿cuántas libras puede comprar?

6)
La relación entre el número de pasajeros de dos micros es de 7 a 5; si bajan 4 pasajeros de uno y suben al otro, se iguala el número de pasajeros en ambos , ¿cuántos pasajeros llevan entre ambos?

7)El equipo de basquetbol anotó 85 puntos en los últimos 2 juegos. ¿Cuántos puntos se espera que anoten después de 5 juegos?

Aspectos a Evaluar.

- i) Responsabilidad en la realización del trabajo requerido. (4pts)
- ii) Resolución de los ejercicios planteados mediante procesos explicados en la guía y en la programación de Tv.(16pts)

Puedes **COMPLEMENTAR** la información de la guía utilizando:

Canal oficial de cada familia una escuela o por el canal en Youtube(buscar en Youtube programa de fecha 20/01/21).

Matemática de 3er año (Colección Bicentenario) Matemática de 3er año (Santillana, cualquier edición)

www.wikipedia.org.