1704 AUTOMATON

# 5.259 min\_size\_full\_zero\_stretch

DESCRIPTION LINKS AUTOMATON

**Origin** Derived from the unit commitment problem

Constraint min\_size\_full\_zero\_stretch(MINSIZE, VARIABLES)

Arguments MINSIZE : int

VARIABLES : collection(var-dvar)

**Restrictions**  $MINSIZE \ge 0$ 

 $\begin{aligned} & \texttt{MINSIZE} \leq | \texttt{VARIABLES}| \\ & & \textbf{required}(\texttt{VARIABLES}, \texttt{var}) \end{aligned}$ 

Given an integer MINSIZE and a sequence of variables VARIABLES enforce MINSIZE to be greater than or equal to the size of the smallest full stretch of zero of VARIABLES or to |VARIABLES| if no full stretch of zero exists.

A *stretch of zero* is a maximum sequence of zero, while a *full stretch of zero* is a stretch of zero that is neither located at the leftmost nor at the rightmost border of the sequence of variables VARIABLES. The *size of a stretch of zero* is the number of zero of the stretch.

Example

Purpose

 $(2, \langle 0, 2, 0, 0, 0, 2, 1, 0, 0, 3 \rangle)$ 

Figure 5.560 shows the smallest full stretch of zero associated with the example. The  $min\_size\_full\_zero\_stretch$  constraint holds since the size of the smallest full stretch of zero of the sequence  $0\ 2\ 0\ 0\ 2\ 1\ 0\ 0\ 3$  is greater than or equal to 2.



Figure 5.560: Illustration of the **Example** slot: smallest full stretch of zero in bold and red (MINSIZE = 2); note that the leftmost stretch of zero of size 1 is ignored since it is located at one of the two extremities of the sequence  $0\ 2\ 0\ 0\ 2\ 1\ 0\ 0$  3.

```
\begin{tabular}{ll} $|$VARIABLES| > 2$ \\ $range(VARIABLES.var) > 1$ \\ $|$VARIABLES|-among\_diff\_0(VARIABLES.var) > 1$ \\ \end{tabular}
```

20121023 1705

## **Symmetries**

- Items of VARIABLES can be reversed.
- An occurrence of a value of VARIABLES.var that is different from 0 can be replaced by any other value that is also different from 0.

## Counting

| Length (n) | 2 | 3  | 4    | 5     | 6      | 7       | 8         |
|------------|---|----|------|-------|--------|---------|-----------|
| Solutions  | 9 | 82 | 1137 | 19026 | 364033 | 7850291 | 188987201 |

Number of solutions for  $min\_size\_full\_zero\_stretch$ : domains 0..n

Solution density for min\_size\_full\_zero\_stretch



1706 AUTOMATON

 $Solution\ density\ for\ {\tt min\_size\_full\_zero\_stretch}$ 



| Length (n)         |   | 2 | 3  | 4    | 5     | 6      | 7       | 8         |
|--------------------|---|---|----|------|-------|--------|---------|-----------|
| Total              |   | 9 | 82 | 1137 | 19026 | 364033 | 7850291 | 188987201 |
| Parameter<br>value | 1 | - | 9  | 160  | 2575  | 45072  | 882441  | 19330432  |
|                    | 2 | 9 | 9  | 176  | 2875  | 49932  | 966672  | 20958912  |
|                    | 3 | - | 64 | 176  | 2900  | 50436  | 975394  | 21117888  |
|                    | 4 | - | -  | 625  | 2900  | 50472  | 976178  | 21132416  |
|                    | 5 | - | -  | -    | 7776  | 50472  | 976227  | 21133568  |
|                    | 6 | - | -  | -    | -     | 117649 | 976227  | 21133632  |
|                    | 7 | - | -  | -    | -     | -      | 2097152 | 21133632  |
|                    | 8 | - | -  | -    | -     | -      | -       | 43046721  |

Solution count for  $\min_{\text{size\_full\_zero\_stretch:}} \text{domains } 0..n$ 

20121023 1707

## Solution density for $min\_size\_full\_zero\_stretch$



Parameter value as fraction of length

## Solution density for min\_size\_full\_zero\_stretch



Parameter value as fraction of length

See also

common keyword: stretch\_path(sequence).

Keywords

characteristic of a constraint: joker value, automaton, automaton with counters,

1708 AUTOMATON

automaton with same input symbol.

combinatorial object: sequence.

constraint network structure: alpha-acyclic constraint network(3).

20121023 1709

Automaton

Figure 5.561 depicts the automaton associated with the min\_size\_full\_zero\_stretch constraint.



Figure 5.561: Automaton of the min\_size\_full\_zero\_stretch constraint



Figure 5.562: Hypergraph of the reformulation corresponding to the automaton (with two counters) of the min\_size\_full\_zero\_stretch constraint where  $l=|{\tt VARIABLES}|$  (since all states of the automaton are accepting there is no restriction on the last variable  $Q_n$ )