Basic identities of matrix/vector ops	j j	Vector norms (beyond euclidean)	Determinant of square-diagonals =>	If all else fails, try to find row/column with MOST zeros	If associated to same eigenvalue λJthen eigenspace	$ \sigma_1,,\sigma_p $ are singular values of \underline{A}].	Variance (Bessel's correction) of $\alpha_1,, \alpha_m$ is
$(A+B)^T = A^T + B^T (AB)^T = B^T A^T (A^{-1})^T = (A^T)^{-1} $	Notice: $Q_j c_j = \sum_{i=1}^{J} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \sum_{i=1}^{J} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$ so	vector norms are such that: $ x = 0 \iff x = 0$,	$\left \begin{array}{c} \operatorname{diag}(a_1,, a_n) = \prod_i a_i \\ \operatorname{triangular matrices}) \end{array} \right $	Perform minimal EROs/ECOs to get that row/column to be all-but-one zeros	E_{λ} has spanning-set $\{x_{\lambda_i}, \dots\}$	(Positive) singular values are (positive) square-roots	$Var_{\mathbf{w}} = \frac{1}{m-1} \sum_{j} \alpha_{j}^{2} = \frac{1}{m-1} \mathbf{w}^{T} \left(\sum_{j} \mathbf{r}_{j}^{T} \mathbf{r}_{j} \right) \mathbf{w}$
$(AB)^{-1} = B^{-1}A^{-1}$	rewrite as	$\frac{ \lambda x = \lambda x }{ x + y \le x + y }$		Don't forget to keep track of sign-flipping &	$x_1,, x_n$ are linearly independent \Rightarrow apply Gram-Schmidt $q_{\lambda_i}, \leftarrow x_{\lambda_i},$	of eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$ i.e. $\sigma_1^2,, \sigma_D^2$ are eigenvalues of $\underline{AA^T}$ or $\underline{A^TA}$	$= \frac{1}{m-1} \mathbf{w}^T \mathbf{A}^T \mathbf{A} \mathbf{w}$
For $\underline{A \in \mathbb{R}^{m \times n}}$ $\underline{A_{ij}}$ is the i -th ROW then j -th COLUMN	j j	ℓ_p norms: $\ \mathbf{x}\ _p = \left(\sum_{i=1}^n \mathbf{x}_i ^p\right)^{1/p}$	The (column) rank of AJ is number of linearly	scaling-factors Do Laplace expansion along that row/column =>	Then $\{\mathbf{q}_{\lambda_i}, \dots\}$ is orthonormal basis (ONB) of E_{λ_i}	$\ A\ _2 = \sigma_1 (link to matrix norms) $	First (principal) axis defined =>
$(A^{T})_{ij} = A_{ji} \left[(AB)_{ij} = A_{i\star} \cdot B_{\star j} = \sum_{i} A_{ik} B_{kj} \right]$	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1}^{r} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i = \mathbf{a}_{j+1} - \sum_{i=1}^{r} \operatorname{proj}_{\mathbf{q}_i} (\mathbf{a}_{j+1})$	$\frac{p-1}{p-1} \cdot \frac{\ \mathbf{x}\ _1 = \sum_{i=1}^n \mathbf{x}_i }{p-1}$	independent columns, i.e. rk(A) I.e. its the number of pivots in row-echelon-form	notice all-but-one minor matrix determinants go to		Let $r = rk(A)$, then number of strictly positive singular	$\mathbf{w}_{(1)} = \operatorname{argmax}_{\ \mathbf{w}\ =1} \mathbf{w}^T \mathbf{A}^T \mathbf{A} \mathbf{w}$
R	$[a_1, \dots, a_n \in \mathbb{R}^m]$ $[m \ge n]$	$p=2$: $\ \mathbf{x}\ _2 = \sqrt{\sum_{i=1}^n \mathbf{x}_i^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$	I.e. its the dimension of the column-space	zero	$Q = (\mathbf{q}_1,, \mathbf{q}_n)$ is an ONB of $\mathbb{R}^n \Longrightarrow Q = [\mathbf{q}_1 \mathbf{q}_n]$ is orthogonal matrix i.e. $Q^{-1} = Q^T$	values is r	= arg max _{w =1} (m-1)Var _w = v ₁
$(Ax)_i = A_{i*} \cdot x = \sum_j A_{ij} x_j \left[\underbrace{x^T y = y^T x = x \cdot y = \sum_i x_i y_i} \right]$	$U_n = \text{span}\{a_1,, a_n\}$ We apply Gram-Schmidt to build ONB	$p = \infty$ $\ \mathbf{x}\ _{\infty} = \lim_{p \to \infty} \ \mathbf{x}\ _{p} = \max_{1 \le i \le n} \mathbf{x}_{i} $	rk(A) = dim(C(A)) I.e. its the dimension of the image-space	Representing EROs/ECOs as transfor- mation matrices	$ \mathbf{q}_1, \dots, \mathbf{q}_n $ are still eigenvectors of $\underline{A} = A = QDQ^T$	i.e. $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_p = 0$	i.e. $\underline{w}_{(1)}$ the direction that maximizes variance $Var_{\underline{w}}$ i.e. maximizes variance of projections on line $Rw_{(1)}$
$\mathbf{x}^T A \mathbf{x} = \sum_i \sum_j A_{ij} \mathbf{x}_i \mathbf{x}_j \mathbf{x}_i \mathbf{x}_j \mathbf{x}_k^T = [0 \dots \mathbf{x} \dots 0]$	$(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m \text{for } U_n \subset \mathbb{R}^m $	Any two norms in \mathbb{R}^n are equivalent, meaning there	$rk(A) = dim(im(f_A))$ of linear map $f_A(x) = Ax$	For $A \in \mathbb{R}^{m \times n}$, suppose a sequence of:	(spectral decomposition)	$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^I$	
$\mathbf{e}_{k}\mathbf{x}^{T} = [0^{T}; \dots; \mathbf{x}^{T}; \dots; 0^{T}]$	$ j=1 \Rightarrow u_1 = a_1 \text{ [and } q_1 = \hat{u}_1 \text{ [i.e. start of iteration]}$	exist $r>0$; $s>0$ such that: $\forall x \in \mathbb{R}^{n}, r \ x\ _{a} \le \ x\ _{b} \le s \ x\ _{a}$	The (row) rank of AJis number of linearly independent	EROs transform A EROS A' => there is matrix R s.t.	A = QDQ ^T can be interpreted as scaling in direction of its eigenvectors:		σ ₁ u ₁ ,,σ _r u _r (columns of <u>US</u>) are principal components/scores of A
Scalar-multiplication + addition distributes over:	$ j=2 \Rightarrow \frac{\mathbf{u}_2 = \mathbf{a}_2 - (\mathbf{q}_1 \cdot \mathbf{a}_2)\mathbf{q}_1}{\mathbf{q}_2 = \mathbf{u}_2} $ and $ \mathbf{q}_2 = \mathbf{u}_2 $ etc Linear independence guarantees that $ \mathbf{a}_{j+1} \notin U_j $	$\ \mathbf{x}\ _{\infty} \le \ \mathbf{x}\ _{b} \le \ \mathbf{x}\ _{a}$ $\ \mathbf{x}\ _{\infty} \le \ \mathbf{x}\ _{2} \le \ \mathbf{x}\ _{1}$	rows The row/column ranks are always the same, hence	RA = A' ECOs transform A → ECOs A' ⇒ there is matrix C s.t.	1) Perform a succession of reflections/planar	SVD is similar to spectral decomposition, except it always exists	Recall: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ with $\sigma_1 \ge \cdots \ge \sigma_r > 0$ so that
column-blocks =>	For exams: compute $\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$	Equivalence of ℓ_1, ℓ_2 and $\ell_{\infty} \Rightarrow x _2 \le \sqrt{n} x _{\infty}$	$ \text{rk}(A) = \text{dim}(C(A)) = \text{dim}(R(A)) = \text{dim}(C(A^T)) = \text{rk}(A^T)$	AC = A'	rotations to change coordinate-system 2) Apply scaling by λ _j to each dimension q _j	If $\underline{n \le m}$ then work with $\underline{A^T A \in \mathbb{R}^{n \times n}}$	relates principal axes and principal components
$\lambda A + B = \lambda [A_1 A_C] + [B_1 B_C] = [\lambda A_1 + B_1 \lambda A_C + B_C]$ row-blocks \Rightarrow	1) Gather $Q_j = [\mathbf{q_1} \dots \mathbf{q_j}] \in \mathbb{R}^{m \times j}$	$\ \mathbf{x}\ _1 \leq \sqrt{n} \ \mathbf{x}\ _2$	A jis full-rank iff $rk(A) = min(m, n)$, i.e. its as linearly	Both transform A → EROS+ECOS A' => there are	Undo those reflections/planar rotations	Obtain eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2 \ge 0$ of $A^T A$	Data compression: If o ₁ ≫ o ₂ I then compress AI by projecting in direction of principal component =>
$\lambda A + B = \lambda [A_1;; A_r] + [B_1;; B_r] = [\lambda A_1 + B_1;; \lambda A_r + B_r]$	2) Compute $\mathbf{c}_i = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$	Induce metric $\underline{d(x, y)} = y - x $ has additional properties:	independent as possible	matrices R, C s.t. RAC = A'	Extension to C ⁿ	Obtain orthonormal eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^n$ of	$A \approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T$
Matrix-multiplication distributes over:	3) Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}	Translation invariance: $d(x+w,y+w)=d(x,y)$	Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{m \times n}$ are equivalent if there exist	FORWARD: to compute these transformation	Standard inner product: $(x, y) = x^{\dagger} y = \sum_{i} \overline{x_{i}} y_{i}$	A^TA (apply normalization e.g. Gram-Schmidt!!!! to eigenspaces E_{G_i}	<u> </u>
$ \begin{array}{l} \textbf{column-blocks} \Rightarrow AB = A[B_1 \mid \dots \mid B_p] = [AB_1 \mid \dots \mid AB_p] \\ \textbf{row-blocks} \Rightarrow AB = \overline{[A_1; \dots; A_p]B} = \overline{[A_1B; \dots; A_pB]} \\ \end{array} $	Properties: dot-product & norm	Scaling: $\underline{d(\lambda x, \lambda y)} = \lambda \underline{d(x, y)}$	two invertible matrices $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$	matrices: Start with $[I_m \mid A \mid I_n]$, i.e. Aland identity matrices	Conjugate-symmetric: $\langle x, y \rangle = \overline{\langle y, x \rangle}$	$V = [v_1 \dots v_n] \in \mathbb{R}^{n \times n}$ is orthogonal so $V^T = V^{-1}$	Cholesky Decomposition
	$x^T y = y^T x = x \cdot y = \sum_{i} x_i y_i x \cdot y = a b \cos x \hat{y} $	Matrix norms Matrix norms are such that: $ A = 0 \iff A = 0$	such that $\mathbf{A} = \mathbf{P}\tilde{\mathbf{A}}\mathbf{Q}^{-1}$ Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{n \times n}$ are similar if there exists an	For every ERO on A), do the same to LHS (i.e. I _m)	Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$	$r = rk(A) = no.$ of strictly +ve σ_i	Consider positive (semi-)definite $A \in \mathbb{R}^{n \times n}$ Cholesky Decomposition is $A = LL^{T}$ where L is
$AB = [A_1 A_p][B_1;; B_p] = \sum_{i=1}^{p} A_i B_i$	i	$ \lambda A = \lambda A A A A + A A = A + A A A A A A A A $	invertible matrix $P \in \mathbb{R}^{n \times n}$ such that $A = P\tilde{A}P^{-1}$	For every ECO on Al do the same to RHS (i.e. $\overline{I_n}$)	We can <u>diagonalise</u> real matrices in <u>C</u> Jwhich lets us <u>diagonalise</u> more matrices than before	Let $\mathbf{u}_i = \frac{1}{a_i} A \mathbf{v}_i$ then $\mathbf{u}_1,, \mathbf{u}_r \in \mathbb{R}^m$ are orthonormal	lower-triangular
e.g. for $A = [a_1 \mid \mid a_n]$, $B = [b_1;; b_n]$ $\Rightarrow AB = \sum_i a_i b_i$	$x \cdot y = y \cdot x \cdot x \cdot (y + z) = x \cdot y + x \cdot z \cdot \alpha x \cdot y = \alpha(x \cdot y)$	Matrices Fm×n are a vector space so matrix norms	Similar matrices are equivalent, with Q = P	Once done, you should get $[I_m \mid A \mid I_n] \rightsquigarrow [R \mid A' \mid C]$ with $RAC = A' \mid$	Least Square Method	(therefore linearly independent)	For positive semi-definite => always exists, but non-unique
Projection: definition & properties	$x \cdot x = x ^2 = 0 \iff x = 0$ for $x \neq 0$, we have $x \cdot y = x \cdot z \implies x \cdot (y - z) = 0$	are vector norms, all results apply Sub-multiplicative matrix norm (assumed by default)	A]is diagonalisable iff A]is similar to some diagonal matrix D		If we are solving $Ax = b$ and $b \notin C(A)$, i.e. no solution,	The <u>orthogonal compliment</u> of span $\{\mathbf{u}_1,, \mathbf{u}_r\}$	For positive-definite => always uniquely exists s.t.
A projection $\underline{\pi: V \rightarrow V}$ is a endomorphism such that	$ x \cdot y \le x y $ (Cauchy-Schwartz inequality)	is also such that $ AB \le A B $	Properties of determinants	If the sequences of EROs and ECOs were $R_1,, R_{\lambda}$ and	then Least Square Method is: Finding xjwhich minimizes Ax-b 2	$span(\mathbf{u}_1,,\mathbf{u}_r)^{\perp} = span(\mathbf{u}_{r+1},,\mathbf{u}_m)$	diagonals of <u>L</u>] are positive
	$ u+v ^2 + u-v ^2 = 2 u ^2 + 2 v ^2$ (parallelogram law)	Common matrix norms, for some $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$	Consider $A \in \mathbb{R}^{n \times n}$, then $A_{ii}' \in \mathbb{R}^{(n-1) \times (n-1)}$ the	$C_1,, C_{\mu}$ respectively $R = R_{\lambda} \cdots R_1$ and $C = C_1 \cdots C_{\mu}$ so	Recall for $A \in \mathbb{R}^{m \times n}$ we have unique decomposition	Solve for unit-vector u _{r+1} s.t. it is orthogonal to u ₁ ,, u _r	Finding a Cholesky Decomposition:
A square matrix P such that $P^2 = P$ is called a	$ u+v \le u + v $ (triangle inequality) $u \perp v \iff u+v ^2 = u ^2 + v ^2 $ (pythagorean	$\ \mathbf{A}\ _1 = \max_j \ \mathbf{A}_{\star j}\ _1$	(i, j) minor matrix of Al, obtained by deleting i th row	$(R_{\lambda} \cdots R_{1})A(C_{1} \cdots C_{\mu}) = A'$	for any $\underline{\mathbf{b}} \in \mathbb{R}^m$ $\underline{\mathbf{b}} = \mathbf{b}_i + \mathbf{b}_k$	Then solve for unit-vector u _{r+2} s.t. it is orthogonal	Compute LL^T and solve $A = LL^T$ by matching terms
It is called an orthogonal projection matrix if	theorem)	$\ \mathbf{A}\ _2 = \sigma_1(\mathbf{A})$ i.e. largest singular value of \mathbf{A}	and j +th column from A	$R^{-1} = R_1^{-1} \cdots R_n^{-1}$ and $C^{-1} = C_{11}^{-1} \cdots C_1^{-1}$, where	where $\frac{\mathbf{b}_i \in C(A)}{\mathbf{b}_k}$ and $\frac{\mathbf{b}_k \in \ker(A^T)}{\mathbf{b}_k}$	to u ₁ ,,u _{r+1} And so on	For square roots always pick positive If there is exact solution then positive-definite
$P^2 = P = P^{\dagger}$ (conjugate-transpose)	$\ c\ ^2 = \ a\ ^2 + \ b\ ^2 - 2\ a\ \ b\ \cos b\hat{a}\ $ (law of cosines)	(square-root of largest eigenvalue of A^TA or AA^T) $\ A\ _{\infty} = \max_i \ A_{i*}\ _1 \text{ note that } \ A\ _1 = \ A^T\ _{\infty}$	Then we define determinant of \underline{A} , i.e. $\underline{\det(A) = A }$, as	$\begin{bmatrix} R_i^{-1}, C_i^{-1} \end{bmatrix}$ are inverse EROs/ECOs respectively	$\left \frac{\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _{2} \text{ is minimized} \iff \ \mathbf{A}\mathbf{x} - \mathbf{b}_{i}\ _{2} = 0 \iff \mathbf{A}\mathbf{x} = \mathbf{b}_{i}}{\ \mathbf{A}\mathbf{x} - \mathbf{b}_{i}\ _{2}} \right $	$U = [\mathbf{u}_1 \mid \dots \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ is orthogonal so $U^T = U^{-1}$	If there are free variables at the end, then positive
	Transformation matrix & linear maps For linear map $f: \mathbb{R}^n \to \mathbb{R}^m$ ordered bases		$\det(A) = \sum_{k=1}^{n} (-1)^{j+k} A_{jk} \det(A_{jk}'), \text{ i.e. expansion along}$	are inverse exostectos respectively	$A^{T}Ax = A^{T}b$ is the normal equation which gives	$S = diag_{m \times n}(\sigma_1,, \sigma_n)$ AND DONE!!!	semi-definite
	For linear map $f: \mathbb{R}^n \to \mathbb{R}^m$ ordered bases $(\mathbf{b}_1,, \mathbf{b}_n) \in \mathbb{R}^m$ and $(\mathbf{c}_1,, \mathbf{c}_m) \in \mathbb{R}^m$	Frobenius norm: $\ \mathbf{A}\ _{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} ^{2}}$	R=1 i j-th row *(for any <u>i</u>])	BACKWARD: once $R_1,,R_{\lambda}$ and $C_1,,C_{\mu}$ for which	solution to least square problem:	If $m < n$ then let $B = A^T$	parameterized on free variables
πjis the identity operator on U	$A = \mathbf{F}_{CB} \in \mathbb{R}^{m \times n}$ is the transformation-matrix of f	Vi=1 j=1	$\det(A) = \sum_{i=1}^{n} (-1)^{k+j} A_{kj} \det(A_{kj}'), \text{ i.e. expansion along}$	$RAC = A'$ [are known , starting with $[I_m \mid A \mid I_n]$]	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \mathbf{A}\mathbf{x} = \mathbf{b}_i \iff \mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$	apply above method to $\underline{B} \Longrightarrow \underline{B = A^T = USV^T}$ $A = B^T = VS^TU^T$	[1 1 1] [1 0 0]
The linear map $\pi^* = I_V - \pi$ is also a projection with	w.r.t to bases B and C	A matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is consistent with the vector norms $\ \cdot\ _a$ on \mathbb{R}^n and $\ \cdot\ _b$ on \mathbb{R}^m if	$\lim_{k=1} \frac{\sum_{i=1}^{k-1} \gamma_{i} A_{kj} \det(A_{kj})}{k} = 0$	For $i=1 \rightarrow \lambda$ perform R_i on A] perform $R_{\lambda-i+1}^{-1}$ on LHS	Linear Regression	Tricks: Computing orthonormal	e.g. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} = LL^T$ where $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & c & \sqrt{1-c^2} \end{bmatrix}$, $c \in [0,1]$
$W = im(\pi^*) = ker(\pi)$ and $U = ker(\pi^*) = im(\pi)$, i.e. they swapped	$\frac{f(\mathbf{b}_j) = \sum_{i=1}^m A_{ij} \mathbf{c}_i}{} = \operatorname{each} \mathbf{b}_j \text{ basis gets mapped to a}$ $\operatorname{linear combination of} \sum_i a_i \mathbf{c}_i \text{ bases}$	vector norms $\ \cdot\ _a$ on \underline{R}^* and $\ \cdot\ _b$ on \underline{R}^* if for all $\underline{A} \in \mathbb{R}^{m \times n}$ and $\underline{x} \in \mathbb{R}^n$ $\Rightarrow \ \underline{Ax}\ _b \le \ \underline{A}\ \ \underline{x}\ _a$	j}th column (for any j]	(i.e. I _m)	Let $y = f(t) = \sum_{j=1}^{n} s_j f_j(t)$ be a mathematical model,	vector-set extensions	[1 6 41-62]
π] is a projection along W] onto U]	If f^{-1} exists (i.e. its bijective and $\underline{m} = n$) then	If a = b, · is compatible with · _a	When det(A) = 0] we call AJa singular matrix Common determinants	For $j = 1 \rightarrow \mu$ perform C_j on \underline{A} , perform $C_{\mu-j+1}^{-1}$ on	where f_j are basis functions and s_j are parameters	You have orthonormal vectors $\underline{\mathbf{u}_1,, \mathbf{u}_r \in \mathbb{R}^m} \Rightarrow \text{need}$	If A = LL ^T you can use <u>forward/backward substitution</u>
π [*] is a projection along <u>U</u> onto <u>W</u> π [*] is the identity operator on <u>W</u>	$(\mathbf{F}_{CB})^{-1} = \mathbf{F}^{-1}_{BC}$ (where \mathbf{F}^{-1}_{BC} is the	Frobenius norm is consistent with ℓ_2 norm \Rightarrow $\ Av\ _2 \le \ A\ _F \ v\ _2$	For <u>n = 1</u> J, det(A) = A ₁₁	RHS (i.e. In)	Let $(\underline{t_i, y_i})$, $1 \le i \le m, m \gg n$ be a set of observations ,	to extend to orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_m \in \mathbb{R}^m$ Special case => two 3D vectors => use cross-product =>	to solve equations
V can be decomposed as V = U ⊕ W meaning every	transformation-matrix of f^{-1}	For a vector norm $\ \cdot\ $ on \mathbb{R}^n , the subordinate	For $n=2$] $det(A) = A_{11}A_{22} - A_{12}A_{21}$ $det(I_n) = 1$	You should get $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C^{-1}]$ with	and t, y ∈ R ^m are vectors representing those observations	a×b±a,b	For $\underline{Ax = b} \Rightarrow \text{let } \underline{y = L^T x}$ Solve $\underline{Ly = b}$ by forward substitution to find \underline{y}
vector $\underline{x \in V}$ Can be uniquely written as $\underline{x = u + w}$ $\underline{u \in U}$ and $u = \pi(x)$		matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is	Multi-linearity in columns/rows: if	$A = R^{-1}A'C^{-1}$	$ f_j(\mathbf{t}) = [f_j(\mathbf{t}_1), \dots, f_j(\mathbf{t}_m)]^T$ is transformed vector		Solve L ^T x = y by backward substitution to find x
$w \in W \text{ and } w = x - \pi(x) = (I_{x'} - \pi)(x) = \pi^*(x)$	The transformation matrix of the identity map is called	$\ A\ = \max\{\ Ax\ : x \in \mathbb{R}^n, \ x\ = 1\}$	$A = [a_1 a_i a_n] = [a_1 \lambda x_i + \mu y_i a_n] $ then	You can mix-and-match the forward/backward modes	$A = [f_1(t) f_n(t) \in \mathbb{R}^{m \times n}$ is a matrix of columns	Extension via standard basis $I_m = [e_1 e_m]$ using $ (tweaked) GS$:	[11 0 0]
	change-in-basis matrix The identity matrix I _m represents id _R m w.r.t. the	$= \max \left\{ \frac{\ \mathbf{A}\mathbf{x}\ }{\ \mathbf{x}\ } : \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq 0 \right\}$	$\det(A) = \lambda \det([a_1 \dots x_j \dots a_n])$	i.e. inverse operations in inverse order for one, and	$z = [s_1,, s_n]^T$ is vector of parameters	Choose candidate vector: just work through	For <u>n = 3</u>] => L = ₂₁ ₂₂ 0 ₁
i.e. the image and kernel of <u>π</u> are orthogonal	standard basis $E_m = \langle e_1,, e_m \rangle \Rightarrow i.e. I_m = I_{EE}$	$= \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ \le 1\}$	+ µ det ([a ₁ y _j a _n])	operations in normal order for the other e.g. you can do $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C]$ to get	Then we get equation Az=y => minimizing Az-y 2	e ₁ ,,e _m sequentially starting from e ₁ ⇒ denote the current candidate e _k	[131 132 133]
subspaces infact they are eachother's orthogonal compliments,	If $B = \langle \mathbf{b}_1,, \mathbf{b}_m \rangle$ is a basis of \mathbb{R}^m , then $I_{EB} = [\mathbf{b}_1 \mathbf{b}_m]$ is the transformation matrix from B	Vector norms are compatible with their subordinate matrix norms	And the exact same linearity property for rows	$AC = R^{-1}A' \Rightarrow useful for LU factorization$	is the solution to Linear Regression So applying LSM to Az = y is precisely what Linear	Orthogonalize: Starting from $j = r$ going to $j = m$ with	$LL^T = \begin{bmatrix} l_{11}^2 & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^2 * l_{22}^2 & l_{21}l_{31} * l_{22}l_{32} \end{bmatrix}$
i.e. U [±] = W, W [±] = U (because finite-dimensional vectorspaces)	to E	For $p = 1, 2, \infty$ matrix norm $\ \cdot\ _p$ is subordinate to	M = M	Eigen-values/vectors	Regression is	each iteration => with current orthonormal vectors	[l ₁₁ l ₃₁ l ₂₁ l ₃₁ *l ₂₂ l ₃₂ l ₃₁ *l ₃₂ *l ₃₃]
so we have $\pi(x) \cdot y = \pi(x) \cdot \pi(y) = x \cdot \pi(y)$	$I_{BE} = (I_{EB})^{-1}$, so $\Rightarrow F_{CB} = I_{CE}F_{EE}I_{EB}$	the vector norm $\ \cdot\ _p$ (and thus compatible with)	Alternating: if any two columns of Alare equal (or any	Consider $A \in \mathbb{R}^{n \times n}$, non-zero $\mathbf{x} \in \mathbb{C}^n$ is an eigenvector	We can use normal equations for this => $\ Az-y\ _2$ is minimized $\iff A^TAz=A^Ty$	u ₁ ,,u _j Compute	Forward/backward substitution
or equivalently, $\pi(x) \cdot (y - \pi(y)) = (x - \pi(x)) \cdot \pi(y) = 0$	Dot-product uniquely determines a vector w.r.t. to	Properties of matrices	two rows of A are equal), then A = 0 (its singular)	with eigenvalue $\lambda \in C$ for A if $Ax = \lambda x$ If $Ax = \lambda x$ then $A(kx) = \lambda(kx)$ for $k \neq 0$ i.e. kx is also an	Solution to normal equations unique iff Ajis full-rank,	$\mathbf{w}_{j+1} = \mathbf{e}_k - \sum_{i=1}^{j} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1}^{j} (\mathbf{u}_i)_k \mathbf{u}_i$	Forward substitution: for lower-triangular
By Cauchy–Schwarz inequality we have ∥π(x)∥ ≤ ∥x∥	basis	Consider $\underline{A} \in \mathbb{R}^{m \times n}$	Immediately from this (and multi-linearity) => if columns (or rows) are linearly-dependent (some are	eigenvector	i.e. it has linearly-independent columns	= e _k - U _i c _i	$\begin{bmatrix} I & I & I & I \\ I & I & I & I \\ I & I &$
The authorough projection auto the line containing	If $a_i = x \cdot b_i$; $x = \sum_i a_i b_i$, we call a_i the coordinate-vector of x_i w.r.t. to a_i	If <u>Ax = x</u> for all <u>x</u> then <u>A = I</u> For square <u>A</u> , the trace of <u>A</u> is the sum if its diagonals ,	linear combinations of others) then A = 0	AJhas at most nJdistinct eigenvalues	/	Where $U_i = [\mathbf{u}_1 \dots \mathbf{u}_i]$ and $\mathbf{c}_i = [(\mathbf{u}_1)_k, \dots, (\mathbf{u}_i)_k]^T$	[[\ell_{n,1} \ell_{n,n}]
vector \underline{u} jis $\text{proj}_{\underline{u}} = \hat{u}\hat{u}^T$, i.e. $\text{proj}_{\underline{u}}(v) = \frac{\underline{u} \cdot v}{\underline{u} \cdot \underline{u}} u$; $\hat{u} = \frac{\underline{u}}{\ \underline{u}\ }$	Rank-nullity theorem:	i.e. tr(A)	Stated in other terms \Rightarrow rk(A) < n \iff A = 0 <=> RREF(A) \neq I _n \iff A = 0 (reduced row-echelon-form)	The set of all eigenvectors associated with eigenvalue $\underline{\lambda}$ is called eigenspace E_{λ} of \underline{A}	Positive (semi-)definite matrices Consider symmetric $A \in \mathbb{R}^{n \times n}$ i.e. $A = A^T$	NOTE: $\mathbf{e}_k \cdot \mathbf{u}_i = (\mathbf{u}_i)_k$ i.e. k th component of \mathbf{u}_i	For Lx = b], just solve the first row
A special case of $\pi(x) \cdot (y - \pi(y)) = 0$ is $u \cdot (v - \text{proj}_{u} v) = 0$ since $\text{proj}_{u}(u) = u$	dim(im(f)) + dim(ker(f)) = rk(A) + dim(ker(A)) = n	A Jis symmetric iff $A = A^T$ A Jis Hermitian, iff $A = A^{\dagger}$ i.e.	\Leftrightarrow $C(A) \neq \mathbb{R}^n \iff A = 0 (column-space)$	$ E_{\lambda} = \ker(A - \lambda I)$	A is positive-definite iff $x^T Ax > 0$ for all $x \neq 0$	If $\mathbf{w}_{j+1} = 0$ then $\mathbf{e}_k \in \text{span}\{\mathbf{u}_1, \dots, \mathbf{u}_j\} = \infty$ discard	$\ell_{1,1} x_1 = b_1 \implies x_1 = \frac{b_1}{\ell_{1,1}}$ and substitute down
If $\underline{U} \subseteq \mathbb{R}^n$ is a \underline{R} -dimensional subspace with	f_lis injective/monomorphism iff ker(f)={0} iff A_lis full-rank	its equal to its conjugate-transpose	For more equivalence to the above, see invertible	-The geometric multiplicity of ∆is	A is positive-definite iff all its eigenvalues are strictly positive	w _{j+1} choose next candidate e _{k+1} try this step again	Thon selve the second row
orthonormal basis (ONB) $(\mathbf{u}_1,, \mathbf{u}_k) \in \mathbb{R}^m$	Orthogonality concepts	AA^{T} and $A^{T}A$ are symmetric (and positive	matrix theorem Interaction with EROs/ECOs:	$\dim(E_{\lambda}) = \dim(\ker(A - \lambda I))$	A is positive-definite => all its diagonals are strictly	Normalize: w _{i+1} ≠0 so compute unit vector	$\ell_{2,1} x_1 + \ell_{2,2} x_2 = b_2 \implies x_2 = \frac{b_2 - \ell_{2,1} x_1}{\ell_{2,2}}$ and
	$u \perp v \iff u \cdot v = 0$, i.e. u_j and v_j are orthogonal	semi-definite) -For real matrices, Hermitian/symmetric are	Swapping rows/columns flips the sign	The spectrum $Sp(A) = \{\lambda_1,, \lambda_n\}$ of \underline{A} is the set of all eigenvalues of \overline{A}	positive	$ \mathbf{u}_{j+1} = \hat{\mathbf{w}}_{j+1} $	substitute down
Orthogonal projection onto \underline{U} is $\pi_U = \mathbf{U}\mathbf{U}^T$	u and v are orthonormal iff $u \perp v$, $ u = 1 = v $ $A \in \mathbb{R}^{n \times n}$ is orthogonal iff $A^{-1} = A^T$	equivalent conditions	Scaling a row/column by <u>\lambda</u> ≠ 0] will scale the determinant by \lambda] (by multi-linearity)	The characteristic polynomial of A Jis	-Ajis positive-definite => max(A _{ij} , A _{jj})> A _{ij} i.e. strictly larger coefficient on the diagonals	Repeat: keep repeating the above steps, now with	and so on until all x _i jare solved
Can be rewritten as $\pi_U(v) = \sum_i (\mathbf{u}_i \cdot v) \mathbf{u}_i$	Columns of A = [a ₁ a _n] are orthonormal basis	Every eigenvalue λ_i of Hermitian matrices is real	Remember to scale by λ^{-1} to maintain equality, i.e.	$P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	Alis positive-definite => all upper-left submatrices are	new orthonormal vectors $\underline{\mathbf{u}_1,, \mathbf{u}_{j+1}}$	Backward substitution: for upper-triangular
If $(\mathbf{u}_1,,\mathbf{u}_k)$ is not orthonormal , then "normalizing	(ONB) $C = \langle \mathbf{a}_1, \dots, \mathbf{a}_n \rangle \in \mathbb{R}^n$ so $A = \mathbf{I}_{EC}$ is	geometric multiplicity of λ_i = geometric multiplicity of λ_i	$\det(A) = \lambda^{-1} \det([a_1 \mid \dots \mid \lambda a_i \mid \dots \mid a_n])$	$a_0 = A \int_{A \in C} a_{n-1} = (-1)^{n-1} \operatorname{tr}(A) \int_{A \in C} a_n = (-1)^n \int_{A \in C} a_n = $	also positive-definite Sylvester's criterion: A is positive-definite iff all	SVD Application: Principal Compo-	U = \[\begin{pmatrix} u_{1,1} & \dots & u_{1,n} \\ \dots & \dots & \dots \end{pmatrix} \]
factor" $(\mathbf{U}^T \mathbf{U})^{-1}$ is added => $\pi_U = \mathbf{U}(\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T$	change-in-basis matrix Orthogonal transformations preserve	eigenvectors x ₁ ,x ₂ associated to distinct	Invariant under addition of rows/columns Link to invertable matrices => $ A^{-1} = A ^{-1}$ which	The algebraic multiplicity of \(\lambda \) is the number of	upper-left submatrices have strictly positive	nent Analysis (PCA) Assume $A_{uncentered} \in \mathbb{R}^{m \times n}$ represent \underline{m} samples of	0 u _{n,n}]
For line subspaces U = span{u}, we have	lengths/angles/distances $\Rightarrow Ax _2 = x _2$, $AxAy = xy$	eigenvalues λ_1, λ_2 are orthogonal , i.e. $x_1 \perp x_2$	Link to invertable matrices => A ⁻¹ = A ⁻¹ which means A is invertible ←⇒ A ≠ 0 i.e. singular	times it is repeated as root of P(λ) 1]≤ geometric multiplicity of λ	determinant	n dimensional data (with $m \ge n$)	For <u>Ux = b</u> , just solve the last row
$(\mathbf{U}^T \mathbf{U})^{-1} = (u^T u)^{-1} = 1/(u \cdot u) = 1/ u $	Therefore can be seen as a succession of reflections and planar rotations	A Jis triangular iff all entries above (<i>lower-triangular</i>) or	matrices are not invertible	≤ algebraic multiplicity of \(\)	AJis positive semi-definite iff $x^T Ax \ge 0$ for all x	Data centering: subtract mean of each column from that column's elements	$u_{n,n} \times_n = b_n \implies x_n = \frac{b_n}{u_{n,n}}$ and substitute up
Gram-Schmidt (GS) to gen. ONB from	det(A) = 1 or det(A) = -1, and all eigenvalues of A are	below (upper-triangular) the main diagonal are zero	For block-matrices:	Let $\lambda_1,, \lambda_n \in \mathbb{C}$ be (potentially non-distinct)	AJis positive semi-definite iff all its eigenvalues are	Let the resulting matrix be $\underline{A \in \mathbb{R}^{m \times n}}$, who's columns	Then solve the second-to-last row $u_{n-1,n-1}x_{n-1}+u_{n-1,n}x_n=b_{n-1}$
lin. ind. vectors Gram-Schmidt is iterative projection => we use	s.t. \(\lambda\right) = 1	Determinant => $ A = \prod_i a_{ii}$ i.e. the product of diagonal elements	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$	eigenvalues of \underline{A} with $\underline{x}_1,, \underline{x}_n \in \mathbb{C}^n$ their	non-negative -AJis positive semi-definite => all its diagonals are	have mean zero PCA is done on centered data-matrices like A	$\begin{bmatrix} -n_{-1}, n_{-1} & n_{-1} & n_{-1}, n_{-n} & n_{-1} \\ b_{n-1} & u_{n-1}, n_{-1} & n_{-1} \end{bmatrix}$ and substitute up
current j dim subspace, to get next (j+1) dim	$A \in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $A^T A = I$ or $AA^T = I$	<u> </u>	$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1} B)$ if Alor D are	eigenvectors $ \operatorname{tr}(A) = \sum_{i} \lambda_{i} \text{ and } \operatorname{det}(A) = \prod_{i} \lambda_{ij} $	non-negative	SVD exists i.e. $A = USV^T$ and $r = rk(A)$	$\Rightarrow x_{n-1} = \frac{b_{n-1} - u_{n-1,n-1} \times x_{n-1}}{u_{n-1,n}}$ and substitute up
subspace Assume orthonormal basis (ONB) $(q_1,, q_j) \in \mathbb{R}^m$	If <u>n > m</u> then all <u>m</u> prows are orthonormal vectors If <u>m > n</u> then all <u>n</u> jcolumns are orthonormal vectors	Alis diagonal iff $A_{ij} = 0, i \neq j$ i.e. if all off-diagonal	= det(D) det(A-BD ⁻¹ C)	A Jis diagonalisable iff there exist a basis of R ⁿ	A_j is positive semi-definite => max(A_{ii}, A_{jj}) \geq A_{ij}	Let $A = [\mathbf{r}_1;; \mathbf{r}_m]$ be rows $\mathbf{r}_1,, \mathbf{r}_m \in \mathbb{R}^n$ \Rightarrow each	and so on until all x _i Jare solved
for il-dim subspace (), c DM	$U \perp V \subset \mathbb{R}^n \iff \mathbf{u} \cdot \mathbf{v} = 0$ for all $\mathbf{u} \in U, \mathbf{v} \in V$, i.e. they are	entries are zero Written as	invertible, respectively	consisting of $x_1,, x_n$ A is diagonalisable iff $r_i = g_i$, where	i.e. no coefficient larger than on the diagonals A is positive semi-definite => all upper-left	row corresponds to a sample Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m$ \Longrightarrow each	Thin QR Decomposition w/ Gram-
	orthogonal subspaces Orthogonal compliment of $\underline{U} \subset \mathbb{R}^n$ is the subspace	$\frac{\operatorname{diag}_{m \times n}(\mathbf{a}) = \operatorname{diag}_{m \times n}(a_1, \dots, a_p), p = \min(m, n)}{m} \text{ where}$	Sylvester's determinant theorem:	$r_i = \text{geometric multiplicity of } \lambda_i \text{ and}$	submatrices are also positive semi-definite	column corresponds to one dimension of the data	Schmidt (GS)
	$U^{\perp} = \{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \perp y \}$	$\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p$ diagonal entries of $\underline{\mathbf{A}}$	det (I _m +AB) = det (I _n +BA) Matrix determinant lemma:	g_i = geometric multiplicity of λ_i	AJis positive semi-definite => it has a Cholesky Decomposition	Let $X_1,, X_n$ be random variables where each X_i	Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (\underline{m \ge n})$, i.e.
$P_j = Q_j Q_j^T$ is orthogonal projection onto U_j	$= \left\{ x \in \mathbb{R}^n \mid \forall y \in \mathbb{R}^n : x \le x+y \right\}$	For $x \in \mathbb{R}^n$, $Ax = \operatorname{diag}_{m \times n}(a_1, \dots, a_p)[x_1 \dots x_n]^T$ (if	$ \det(\mathbf{A} + \mathbf{u}\mathbf{v}^T) = (1 + \mathbf{v}^T \mathbf{A}^{-1}\mathbf{u}) \det(\mathbf{A}) $	Eigenvalues of \underline{A}^k are $\lambda_1, \dots, \lambda_n$		i.e. each X _i corresponds to i th component of data	$ \mathbf{a}_1,, \mathbf{a}_n \in \mathbb{R}^m $ are linearly independent $ Apply \underline{GS} \mathbf{q}_1,, \mathbf{q}_n \leftarrow GS(\mathbf{a}_1,, \mathbf{a}_n) $ to build ONB
$P_{\perp j} = I_m - Q_j Q_j^T$ is orthogonal projection onto	$\mathbb{R}^{n} = U \oplus U^{\perp}$ and $(U^{\perp})^{\perp} = U$ $U \perp V \iff U^{\perp} = V$ and vice-versa	=[a ₁ x ₁ a _p x _p 0 0], ∈ κ	$\det \left(\mathbf{A} + \mathbf{U}\mathbf{V}^{T}\right) = \det \left(\mathbf{I}_{m} + \mathbf{V}^{T}\mathbf{A}^{-1}\mathbf{U}\right) \det(\mathbf{A})$	Let $P = [\mathbf{x}_1 \dots \mathbf{x}_n]]$, then $AP = [\lambda_1 \mathbf{x}_1 \dots \lambda_n] + [\mathbf{x}_1 \dots \mathbf{x}_n] + [\mathbf{x}_1$	For any $\underline{M \in \mathbb{R}^{m \times n}}$, $\underline{MM^T}$ and $\underline{M^TM}$ are symmetric and positive semi-definite	i.e. random vector $X = [X_1,, X_n]^T$ models the data	Apply $GS \stackrel{q_1,,q_n}{\leftarrow} GS(a_1,,a_n)$ to build ONB $(q_1,,q_n) \in \mathbb{R}^m$ for $C(A)$
$\left(U_{j}\right)^{\perp}$ (orthogonal compliment)	$U \perp V \iff U^{\perp} = V$ and vice-versa $Y \subseteq X \implies X^{\perp} \subseteq Y^{\perp}$ and $X \cap X^{\perp} = \{0\}$	$\frac{p = m}{\text{diag}_{m \times n}(\mathbf{a}) + \text{diag}_{m \times n}(\mathbf{a}) + \text{diag}_{m \times n}(\mathbf{a}) + \text{diag}_{m \times n}(\mathbf{a})}$		$AP = [\lambda_1 \mathbf{x}_1 \dots \lambda_n \mathbf{x}_n] = [\mathbf{x}_1 \dots \mathbf{x}_n] \operatorname{diag}(\lambda_1, \dots, \lambda_n) = PD$ $\Rightarrow \text{if } P^{-1} = \text{ exists then}$	Singular Value Decomposition (SVD) &	<u>r</u> 1,,r _m	For exams: more efficient to compute as
Uniquely decompose next U _j ∌a _{j+1} = v _{j+1} +u _{j+1}	Any x ∈ R ⁿ can be uniquely decomposed into	Consider diag $_{n \times k}(c_1, \dots, c_q), q = \min(n, k)$, then	$\left\ \det \left(\mathbf{A} + \mathbf{U} \mathbf{W} \mathbf{V}^T \right) = \det \left(\mathbf{W}^{-1} + \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U} \right) \det (\mathbf{W}) \det (\mathbf{A})$	A=PDP ⁻¹ , i.e. Ajis diagonalisable	Singular Values	Co-variance matrix of \underline{X} is $Cov(A) = \frac{1}{m-1} A^T A = $	$\frac{\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j}{\mathbf{c}_j}$
$v_{j+1} = P_j(a_{j+1}) \in U_j$ => discard it!!	$x = x_i + x_k$ where $x_i \in U$ and $x_k \in U^{\perp}$	$\operatorname{diag}_{m \times n}(a_1, \dots, a_p)\operatorname{diag}_{n \times k}(c_1, \dots, c_q)$	Tricks for computing determinant If block-triangular matrix then apply	P = I _{EB} is change-in-basis matrix for basis	Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$ is any decomposition of the form $A = USV^{\overline{I}}$, where	$(A^TA)_{ij} = (A^TA)_{ji} = Cov(X_i, X_j)$	1) Gather $Q_j = [\mathbf{q_1} \mid \dots \mid \mathbf{q_j}] \in \mathbb{R}^{m \times j}$ all-at-once
$u_{j+1} = P_{\perp j} \left(a_{j+1} \right) \in \left(U_j \right)^{\perp} \implies \text{we're after this!!}$	For matrix $\underline{A} \in \mathbb{R}^{m \times n}$ and for row-space $\underline{R}(A)$, column-space $\underline{C}(A)$ and null space $\underline{C}(A)$	= diag _{$m \times k$} ($a_1 c_1,, a_r c_r, 0,, 0$) = diag(s)		$B = \langle x_1,, x_n \rangle$ of eigenvectors $ fA = F_{EE} $ is transformation-matrix of linear map f .	decomposition of the form $\underline{A = USV^T}$, where $ \text{Orthogonal } U = [\mathbf{u}_1 \dots \mathbf{u}_m] \in \mathbb{R}^{m \times m} \text{ and }$		2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$
Let $\mathbf{q}_{i+1} = \hat{\mathbf{u}}_{i+1} \mid \Rightarrow$ we have next ONB $\langle \mathbf{q}_1,, \mathbf{q}_{i+1} \rangle$	$ R(A)^{\perp} = R(A) ^{\perp} = R(A)^{\perp} $	Where $r = \min(p, q) = \min(m, n, k)$ and $s \in \mathbb{R}^S$, $s = \min(m, k)$	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)$	then FEE = IEB FBB IBE	$V = [\mathbf{v}_1 \dots \mathbf{v}_m] \in \mathbb{R}^{n \times n}$	$v_1,, v_r$ (columns of V) are principal axes of A	all-at-once
for U _{j+1} => start next iteration	Any $b \in \mathbb{R}^m$ can be uniquely decomposed into	Inverse of square-diagonals =>	If close to triangular matrix apply EROs/ECOs to get it	Spectral theorem: if A is Hermitian then P^{-1} exists: $ f \mathbf{x}_i, \mathbf{x}_j _{associated}$ to different eigenvalues then	$S = \text{diag}_{m \times n}(\sigma_1, \dots, \sigma_p)$ where $p = \min(m, n)$ and	Let $\underline{\mathbf{w}} \in \mathbb{R}^n$ be some unit-vector \Longrightarrow let $\alpha_j = \mathbf{r}_j \cdot \mathbf{w}$ be the	3) Compute $Q_j c_j \in \mathbb{R}^m$, and subtract from a_{j+1}
$\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = \mathbf{a}_{j+1} - Q_j c_j$ where	$\begin{array}{c} \mathbf{b} = \mathbf{b}_i + \mathbf{b}_k \\ \mathbf{b} = \mathbf{b}_i + \mathbf{b}_k \end{array}$, where $\begin{array}{c} \mathbf{b}_i \in C(A) \text{ and } \mathbf{b}_k \in \ker(A^T) \\ \mathbf{b}_i \in F(A) \text{ and } \mathbf{b}_k \in \ker(A) \end{array}$	diag $(a_1,, a_n)^{-1}$ = diag $(a_1^{-1},, a_n^{-1})$ i.e. diagonals cannot be zero (division by zero undefined)	there, then its just product of diagonals If Cholesky/LU/QR is possible and cheap then do it,	$ \mathbf{f} \frac{\mathbf{x}_i, \mathbf{x}_j}{\mathbf{x}_i \perp \mathbf{x}_j} $ associated to different eigenvalues then	$\sigma_1 \ge \cdots \ge \sigma_p \ge 0$	projection/coordinate of sample rj onto w	Can now rewrite $\mathbf{a}_j = \sum_{i=1}^{j} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = Q_j \mathbf{c}_j$
$c_{j} = [\mathbf{q}_{1} \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_{j} \cdot \mathbf{a}_{j+1}]^{T}$	- 1 Sk succession of everly	cannot be zero (division by zero undefined)	then apply AB = A B	' '			<u> </u>
)1 m/+1:				I			

Choose $Q = Q_n = [\mathbf{q}_1 \mid \mid \mathbf{q}_n] \in \mathbb{R}^{m \times n}$, notice its	proj _{Lu} = uu ^T and proj _{Pu} = I _n -uu ^T =>	$ \partial^n k^{*\cdots *n} _f = n_b = n_1 = (n_1,, n_b) _f$	\tilde{f} is backwards stable if $\forall x \in X$, $\exists \tilde{x} \in X$ s.t. $\tilde{f}(x) = f(\tilde{x})$	For FP matrices , let $ M _{ij} = M_{ij} $, i.e. matrix $ M $ of	max · · / // · · ·	Rayleigh quotient for <u>Hermitian</u> $A = A^{\dagger}$ is	Nonlinear Systems of Equations
semi-orthogonal since Q ^T Q=I _n	$H_{\mathbf{u}} = \operatorname{proj}_{\mathbf{p_u}} - \operatorname{proj}_{\mathbf{l_u}}$	$\begin{vmatrix} \frac{\partial^n k^{+\cdots+n} f}{\partial \mathbf{x}_{\cdot}^{n} k \cdots \partial \mathbf{x}_{\cdot}^{n} f} &= \partial_{ik}^n \cdots \partial_{i1}^n f &= f_{i_1 \cdots i_k}^{(n_1, \dots, n_k)} \end{vmatrix}$	and $\frac{\ \tilde{x}-x\ }{\ x\ } = O(\epsilon_{\text{mach}})$	absolute values of MI	Stability depends on growth-factor $\rho = \frac{\max_{i,j} u_{i,j} }{\max_{i,j} a_{i,j} }$	$R_{A}(\mathbf{x}) = \frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T}}$	Recall that $\nabla f(\mathbf{x})$ is direction of max . rate-of-change
Notice \Rightarrow $\mathbf{a}_j = Q_j \mathbf{c}_j = \mathbf{Q}[\mathbf{q}_1 \cdot \mathbf{a}_j,, \mathbf{q}_j \cdot \mathbf{a}_j, 0,, 0]^T = \mathbf{Q}\mathbf{r}_j$	Visualize as preserving component in Pu then	Its an N -th order partial derivative where $N = \sum_{k} n_{k}$	i.e. exactly the right answer to nearly the right	$fl(\lambda \mathbf{A}) = \lambda \mathbf{A} + E; E _{ij} \le \lambda \mathbf{A} _{ij} \in \text{mach}$	⇒ for partial pivoting $ρ ≤ 2^{m-1}$	X I X	
Let $R = [r_1 \dots r_n] \in \mathbb{R}^{n \times n} \Longrightarrow$	flipping component in Lu	$\neg \nabla f = [\partial_1 f,, \partial_n f]^T \text{ is gradient of } \underline{f} \Rightarrow (\nabla f)_i = \frac{\partial f}{\partial x_i}$	question, a subset of stability	$fl(\mathbf{A}+\mathbf{B})=(\mathbf{A}+\mathbf{B})+E; E _{ij} \leq \mathbf{A}+\mathbf{B} _{ij} \epsilon_{mach}$	$\ U\ = O(\rho \ A\) = \sum_{i=1}^{n} \frac{\ \Delta A\ }{\ A\ } = O(\rho \epsilon_{\text{machine}})$	Eigenvectors are stationary points of R_A $R_A(x)$ is closest to being like eigenvalue of x , i.e.	$\frac{\text{Idea: Search for Stationary point by gradient descent:}}{\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)}) \text{for step length } \alpha $
$\frac{\mathbf{q}_{1}^{T}\mathbf{a}_{1}\\ \mathbf{q}_{1}^{T}\mathbf{a}_{n}] $	H _u is involutory, orthogonal and symmetric, i.e.	$\nabla^T f = (\nabla f)^T \text{is transpose of } \nabla f \text{i.e. } \nabla^T f \text{is row vector}$	⊕, ⊖, ⊗, ⊘ inner-product, back-substitution w/ triangular systems, are backwards stable	$f((AB) = AB + E; E _{ij} \le n\epsilon_{mach}(A B)_{ij} + O(\epsilon_{mach}^{2})$	A = O(A) A = O(A) A = O(A)	$R_A(\mathbf{x}) = \operatorname{argmin} \ A\mathbf{x} - \mathbf{o}\mathbf{x}\ _2$	
A = QR = Q , notice its	$H_{II} = H_{II}^{-1} = H_{II}^{T}$		If backwards stable \tilde{f} and f has condition number		only such and state in process	$\frac{\alpha}{R_A(\mathbf{x}) - R_A(\mathbf{v}) = O(\ \mathbf{x} - \mathbf{v}\ ^2)} \text{ as } \mathbf{x} \to \mathbf{v}_J \text{ where } \mathbf{v}_J \text{ is}$	If A is positive-definite, solving $Ax = b$ and $min_x f(x) = \frac{1}{2} x^T Ax - x^T b$ are equivalent
	Modified Gram-Schmidt	$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})}{\delta}$ is	$\kappa(x)$ then relative error $\frac{\ \tilde{f}(x)-f(x)\ }{\ f(x)\ } = O(\kappa(x)\epsilon_{\text{mach}})$	Taylor series about $\underline{a} \in \mathbb{R}$ is	Full pivoting is PAQ = LU finds largest entry in	eigenvector	Get iterative methods $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \mathbf{p}^{(k)}$ for step
	Go check <u>Classical GM</u> first, as this is just an alternative	directional-derivative of f		$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + O((x-a)^{n+1}) $ as $\underline{x \to a}$	bottom-right submatrix Makes it pivot with row/column swaps before normal	(6)	length $a^{(k)}$ and directions $p^{(k)}$
Full QR Decomposition Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (m \ge n),$	computation method Let $P_{\perp} \mathbf{q}_{j} = \mathbf{I}_{m} - \mathbf{q}_{j} \mathbf{q}_{j}^{T}$ be projector onto <u>hyperplane</u>	It is <u>rate-of-change</u> in direction $\underline{\mathbf{u}}$, where $\underline{\mathbf{u}} \in \mathbb{R}^n$ is	Accuracy, stability, backwards stability are norm-independent for fin-dim X, Y	Need $\underline{a} = 0 = f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + O(x^{n+1})$ as	elimination	Power iteration: define sequence $b^{(k+1)} = \frac{Ab^{(k)}}{\ Ab^{(k)}\ }$	
i.e. $\mathbf{a}_1,, \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent		$\frac{ \text{unit-vector} }{ D_{\mathbf{u}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u}} = \nabla f(\mathbf{x}) \mathbf{u} \cos(\theta) \Rightarrow D_{\mathbf{u}}f(\mathbf{x}) $	Big-O meaning for numerical analysis	x → 01	Very expensive O(m ³) search-ops, partial pivoting	with initial b(0) s.t. b(0) = 1	Conjugate gradient (CG) method: if $\underline{A} \in \mathbb{R}^{n \times n}$
Apply QR decomposition to obtain:	$(\mathbf{Rq}_j)^{\perp}$ i.e. orthogonal compliment of line \mathbf{Rq}_j	maximized when $\cos \theta = 1$	In complexity analysis $f(n) = O(g(n))$ as $n \to \infty$	$e.g.(1+\epsilon)^p = \sum_{k=0}^{n} {p \choose k} \epsilon^k * O(\epsilon^{n+1})$ $e.g.(1+\epsilon)^p = P \cdot P \cdot O(\epsilon^{n+1})$ $as \epsilon \to 0$	only needs $O(m^2)$	Assume dominant λ_1 ; \mathbf{x}_1 exist for \mathbf{A}], and that	symmetric then $(\mathbf{u}, \mathbf{v})_A = \mathbf{u}^T A \mathbf{v}$ is an inner-product $ \mathbf{GC} $ chooses $\mathbf{p}^{(R)}$ that are conjugate w.r.t. Al i.e.
ONB $(\mathbf{q}_1, \dots, \mathbf{q}_n) \in \mathbb{R}^m$ for $C(A)$	Notice: $P_{\perp j} = I_m - Q_j Q_j^T = \prod_{i=1}^{J} (I_m - \mathbf{q}_i \mathbf{q}_i^T) = \prod_{i=1}^{J} P_{\perp \mathbf{q}_i}$	i.e. when $\underline{\mathbf{x}}, \underline{\mathbf{u}}$ are parallel \Rightarrow hence $\nabla f(\underline{\mathbf{x}})$ is direction	But in <u>numerical analysis</u> $f(\varepsilon) = O(g(\varepsilon))$ as $\varepsilon \to 0$ i.e.	$e.g.(1+\epsilon)^p = \sum_{k=0}^n \frac{p!}{k!(p-k)!} \epsilon^k + O(\epsilon^{n+1})$ as $\epsilon \to 0$	Metric spaces & limits Metrics obey these axioms	proj _{X1} (b ⁽⁰⁾)≠0	$\langle \mathbf{p}^{(i)}, \mathbf{p}^{(i)} \rangle_A = 0$ for $i \neq j$
Semi-orthogonal $Q_1 = [\mathbf{q}_1 \dots \mathbf{q}_n] \in \mathbb{R}^{m \times n}$ and upper-triangular $R_1 \in \mathbb{R}^{n \times n}$, where $A = Q_1 R_1$	i=1 i=1	of max. rate-of-change	$\limsup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ < \infty$ i.e. $\exists C, \delta > 0 \text{s.t. } \forall \epsilon \text{J, we have}$		$\frac{\text{Metrics}}{d(x,x)=0} x\neq y \implies d(x,y)>0 d(x,y)=d(y,x) $	Under above assumptions.	And chooses $\alpha^{(k)}$ s.t. residuals
	Re-state: $\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = >$	f has local minimum at x_{loc} if there's radius $r > 0$ s.t.	$0 < \ \epsilon\ < \delta \implies \ f(\epsilon)\ \le C \ g(\epsilon)\ $	Elementary Matrices	$d(x,z) \le d(x,y) + d(y,z)$	$\mu_{k} = R_{A} \left(\mathbf{b}^{(k)} \right) = \frac{\mathbf{b}^{(k)} + \mathbf{A} \mathbf{b}^{(k)}}{\mathbf{b}^{(k)} + \mathbf{b}^{(k)}}$ converges to dominant	$\mathbf{r}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) = \mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}$ are orthogonal
Compute basis extension to obtain remaining $\mathbf{q}_{n+1},, \mathbf{q}_m \in \mathbb{R}^m$ where $\langle \mathbf{q}_1,, \mathbf{q}_m \rangle$ is ONB for \mathbb{R}^m	$\mathbf{u}_{j+1} = \left(\prod_{i=1}^{j} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{j+1} = \left(P_{\perp \mathbf{q}_{i}} \cdots P_{\perp \mathbf{q}_{1}}\right) \mathbf{a}_{j+1}$	$\forall x \in B[r; x_{loc}]$ we have $f(x_{loc}) \le f(x)$	O(g) is set of functions	$\frac{\overline{\text{Identity}} \mathbf{I}_n = [\mathbf{e}_1 \dots \mathbf{e}_n] = [\mathbf{e}_1; \dots; \mathbf{e}_n]}{\text{vectors}} \mathbf{e}_1, \dots, \mathbf{e}_n \text{for rows/columns}$	For metric spaces, mix-and-match these infinite/finite	$\frac{b(k)}{b(k)}$	$k=0 \Rightarrow \mathbf{p}(0) = -\nabla f(\mathbf{x}(0)) = \mathbf{r}(0)$
Notice $(\mathbf{q}_{n+1}, \dots, \mathbf{q}_m)$ is ONB for $C(A)^{\perp} = \ker(A^T)$	Projectors $P_{\perp q_1}, \dots, P_{\perp q_j}$ are iteratively applied to	f has global minimum x_{glob} if $\forall x \in \mathbb{R}^n$ we have	$\overline{\{f : \limsup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ < \infty\}}$	Row/column switching: permutation matrix Pii	limit definitions:	λ ₁	$\frac{1}{k \ge 1} = \sum_{\mathbf{p}^{(k)} = \mathbf{r}^{(k)} - \sum_{i < k} \frac{(\mathbf{p}^{(i)}, \mathbf{r}^{(k)})_{\mathbf{A}}}{(\mathbf{p}^{(i)}, \mathbf{p}^{(i)})_{\mathbf{A}}} \mathbf{p}^{(i)}$
Let $Q_2 = [\mathbf{q}_{n+1} \dots \mathbf{q}_m] \in \mathbb{R}^{m \times (m-n)}$ let	a _{j+1} removing its <u>components along</u> q ₁ then <u>along</u>	f(xglob) ≤ f(x)	Smallness partial order $O(g_1) \le O(g_2)$ defined by	obtained by switching ei and ej in In (same for	$\overline{\lim}_{X \to +\infty} f(x) = +\infty \iff \forall r \in \mathbb{R}, \exists N \in \mathbb{N}, \forall x > N : f(x) > r$	$ \langle \overline{\mathbf{b}_k} \rangle $ converges to some dominant $\underline{\mathbf{x}_1}$ associated with $ \underline{\lambda_1} \Rightarrow \mathbf{Ab}^{(k)} $ converges to $ \underline{\lambda_1} $	(p(1),p(1))A
	q ₂ and so on	A local minimum satisfies <u>optimality conditions</u> : $\nabla f(\mathbf{x}) = 0$, e.g. for $\underline{n} = 1$ jits $f'(x) = 0$	$\frac{\text{set-inclusion } O(g_1) \subseteq O(g_2)}{\text{set-inclusion } O(g_1) \subseteq O(g_2)}$	rows/columns)	$\lim_{X\to p} f(x) = L \iff \begin{cases} \forall \varepsilon > 0, \exists \delta > 0, \forall x \in X : \\ 0 < d_X(x, p) < \delta \implies d_Y(f(x), L) < \varepsilon \end{cases}$		(b) (b) (b) (b) n(k) r(k)
Then full QR decomposition is	12 pane 30 01111	$\nabla^2 f(\mathbf{x})$ is positive-definite, e.g. for $n=1$ its $f''(\mathbf{x}) > 0$	i.e. as $\epsilon \to 0$] $g_1(\epsilon)$ goes to zero faster than $g_2(\epsilon)$	Applying P _{ij} from left will swap rows, from right will swap columns	Cauchy sequences, i.e.	If $\operatorname{proj}_{\mathbf{x}_1} \left(\mathbf{b}^{(0)} \right) = 0$ then $\left(\mathbf{b}_k \right)$; (μ_k) converge to second	
$A = QR = [Q_1 Q_2] \begin{bmatrix} R_1 \\ 0_{m-n} \end{bmatrix} = Q_1 R_1$	Let $\mathbf{u}_{k}^{(j)} = \left(\prod_{i=1}^{j} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{k}$, i.e. $\underline{\mathbf{a}_{k}}$ without its		Roughly same hierarchy as complexity analysis but flipped (some don't fit the pattern)	$P_{ij} = P_{ij}^{T} = P_{ij}^{-1}$, i.e. applying twice will undo it	$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall m, n \ge N : d(a_m, a_n) < \varepsilon$, converge in	dominant λ_2 ; \mathbf{x}_2 instead If no dominant λ (i.e. multiple eigenvalues of	Without rounding errors, CG converges in ≤n
0 _{m-n}	components along q ₁ ,,q _j	$\mathbf{H}(f) = \nabla^2 f = \mathbf{J}(\nabla f)^T$ is Hessian $\Rightarrow \mathbf{H}(f)_{ij} = \frac{\partial^2 f}{\partial \mathbf{x}_i \partial \mathbf{x}_i}$	e.g, $O(\varepsilon^3) < O(\varepsilon^2) < O(\varepsilon) < O(1)$	Row/column scaling: $D_i(\lambda)$ obtained by scaling e_i by	Complete spaces You can manipulate matrix limits much like in real	maximum λ then (b _k) will converge to <u>linear</u>	Similar to to Gram-Schmidt (but different
	Notice: $\mathbf{u}_j = \mathbf{u}_j^{(j-1)}$, thus $\mathbf{q}_j = \hat{\mathbf{u}}_j = \mathbf{u}_j^{(j-1)} / r_{jj}$ where	Interpret $F: \mathbb{R}^n \to \mathbb{R}^m$ as m functions $F_i: \mathbb{R}^n \to \mathbb{R}$	Maximum:	λ] in I _n (same for rows/columns)	analysis, e.g. $\lim_{n\to\infty} (A^n B + C) = (\lim_{n\to\infty} A^n) B + C$	combination of their corresponding eigenvectors Slow convergence if dominant λ ₁ not "very	inner-product) $\langle \mathbf{p}^{(0)}, \dots, \mathbf{p}^{(n-1)} \rangle$ and $\langle \mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \rangle$ are bases for
$\text{proj}_{C(A)} = Q_1 Q_1^T$, $\text{proj}_{C(A)^{\perp}} = Q_2 Q_2^T$ are orthogonal	$r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ $	(one per output-component)	$O(\max(g_1 , g_2)) = O(g_2) \iff O(g_1) \leq O(g_2)$	Applying P _{ij} from left will scale rows, from right will		dominant"	$\frac{\langle \mathbf{p}^{(0)},,\mathbf{p}^{(n-1)}\rangle}{\mathbb{R}^n}$ and $\frac{\langle \mathbf{r}^{(0)},,\mathbf{r}^{(n-1)}\rangle}{\mathbb{R}^n}$ are $\frac{\text{bases}}{\mathbb{R}^n}$ for
<u>projections</u> onto $C(A) \mid C(A)^{\perp} = \ker(A^{\top})$ respectively	Iterative step:	$J(F) = [\nabla^T F_1;; \nabla^T F_m]$ is Jacobian $\Rightarrow J(F)_{ij} = \frac{\partial F_i}{\partial x_i}$	e.g. $O(\max(\epsilon^k, \epsilon)) = O(\epsilon)$	$S_{i}(\lambda) = \text{diag}(1,, \lambda,, 1)$ so all diagonal properties	Turn metric limit $\lim_{n\to\infty} x_n = L$ into real limit $\lim_{n\to\infty} d(x_n, L) = 0$ to leverage real analysis	$\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_1\ = O\left(\left \frac{\lambda_2}{\lambda_1}\right ^k\right)$ for phase factor	QR Algorithm to find Schur decomposi-
Notice: $QQ^T = I_m = Q_1 Q_1^T + Q_2 Q_2^T$	$\mathbf{u}_{k}^{(j)} = \left(P_{\perp \mathbf{q}_{j}}\right) \mathbf{u}_{k}^{(j-1)} = \mathbf{u}_{k}^{(j-1)} - \left(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{(j-1)}\right) \mathbf{q}_{j}$	Conditioning	Using functions $f_1,,f_n$ let $\Phi(f_1,,f_n)$ be formula	$\begin{vmatrix} D_j(\lambda) = \text{diag}(1, \dots, \lambda, \dots, 1) \\ \text{apply, e.g. } D_j(\lambda)^{-1} = D_j(\lambda^{-1}) \end{vmatrix}$ so all diagonal properties	Bounded monotone sequences converge in R		tion $A = QUQ^{\dagger}$
Generalizable to $A \in C^{m \times m}$ by changing transpose to	i.e. each iteration j of MGS computes $P_{\perp q_i}$ (and	A problem is some $f: X \to Y$ where X, Y are normed	defining some function	Row addition: $L_{ij}(\lambda) = \mathbf{I}_{n} + \lambda \mathbf{e}_{i} \mathbf{e}_{i}^{T}$ performs	Sandwich theorem for limits in RJ=> pick easy	$\alpha_k \in \{-1, 1\}$ it may <u>alternate</u> if $\lambda_1 < 0$	Any $\underline{A} \in \mathbb{C}^{m \times m}$ has Schur decomposition $\underline{A} = QUQ^{\dagger}$
conjugate-transpose	projections under it) in one go	vector-spaces A problem <i>instance</i> is f with fixed input $x \in X$.	Then $\Phi(O(g_1),, O(g_n))$ is the <u>class of functions</u>		$\frac{\text{upper/lower}}{\lim_{n\to\infty} r^n} = 0 \iff r < 1 \text{ and}$	$\alpha_{k} = \frac{(\lambda_{1})^{k} c_{1}}{ \lambda_{1} ^{k} c_{1} }$ where $c_{1} = x_{1}^{\dagger} b^{(0)}$ and assuming	Q] is unitary, i.e. $Q^{\dagger} = Q^{-1}$ and upper-triangular U]
Lines and hyperplanes in $\mathbb{E}^n(=\mathbb{R}^n)$	At start of iteration j ∈ 1n we have ONB	shortened to just "problem" (with $x \in X$ Jimplied)	$\{\Phi(f_1,,f_n): f_1 \in O(g_1),,f_n \in O(g_n)\}$	$R_i \leftarrow R_i + \lambda R_j$ when applying from left	$\lim_{n \to \infty} \sum_{i=0}^{n} ar^{i} = \frac{a}{1-r} \iff r < 1$	b ^(k) ;x ₁ are normalized	Diagonal of U contains eigenvalues of A
	$\mathbf{q}_1, \dots, \mathbf{q}_{j-1} \in \mathbb{R}^m$ and residual $\mathbf{u}_i^{(j-1)}, \dots, \mathbf{u}_n^{(j-1)} \in \mathbb{R}^m$	δx is small perturbation of $x_j = \delta f = f(x + \delta x) - f(x)$	e.g. $e^{O(1)} = \{e^{f(\epsilon)} : f \in O(1)\}$	$\frac{\lambda c_i e_j^T}{is zeros}$ except for $\underline{\lambda}$ in $\underline{(i,j)}$ th entry	Iterative Techniques	(A-σI) has eigenvalues <u>λ</u> -σ	
		A problem (instance) is: Well-conditioned if all small δx lead to small δf i.e.	General case: $\Phi_1(O(f_1),, O(f_m)) = \Phi_2(O(g_1),, O(g_n))$ means	$L_{ij}(\lambda)^{-1} = L_{ij}(-\lambda)$ both triangular matrices	Systems of Equations	$\Rightarrow \underline{\text{power-iteration}} \text{ on } \underline{(A-\sigma I)} \text{ has } \frac{\lambda_2 - \sigma}{\lambda_1 - \sigma}$	Algorithm 1 Basic QR iteration
	Compute $r_{jj} = \left\ \frac{\mathbf{u}_{j}^{(j-1)}}{\mathbf{u}_{j}} \right\ \Rightarrow \mathbf{q}_{j} = \frac{\mathbf{u}_{j}^{(j-1)}}{r_{jj}} / r_{jj}$	if K is small (e.g. 1) 10) 10 ²	$\Phi_1(O(f_1),,O(f_m)) \subseteq \Phi_2(O(g_1),,O(g_n))$	LU factorization w/ Gaussian elimina-	Let $A, R, G \in \mathbb{R}^{n \times n}$ where G^{-1} exists => splitting	Eigenvector guess => estimated eigenvalue	1: for $k = 1, 2, 3,$ do 2: $A^{(k-1)} = Q^{(k-1)}R^{(k-1)}$
A line $L = \mathbb{R} \mathbf{n} + \mathbf{c}$ is characterized by direction $\mathbf{n} \in \mathbb{R}^n$	For each $k \in (j+1)n$ compute $r_{jk} = q_j \cdot u_k^{(j-1)} =>$	Ill-conditioned if some small δx lead to large δf , i.e.	e.g. $e^{O(1)} = O(k^{\epsilon})$ means $\{e^{f(\epsilon)} : f \in O(1)\} \subseteq O(k^{\epsilon})$	Recall: you can represent EROs and ECOs as	A=G+RIhelps iteration	reigenvector guess -> estimated eigenvalue	3: $A^{(k)} = R^{(k-1)}Q^{(k-1)}$
(n ≠0 and offset from origin c∈L It is customary that:	$\begin{bmatrix} \mathbf{u}_{k}^{(j)} = \mathbf{u}_{k}^{(j-1)} - r_{jk} \mathbf{q}_{j} \end{bmatrix}$	if K j is large (e.g. 106 1016)	not necessarily true	transformation matrices R, C respectively	$\frac{Ax=b rewritten as x=Mx+c }{M=-G^{-1}R; c=-G^{-1}b}$ where	Inverse (power-)iteration: perform power iteration on	4: end for
$\ \mathbf{n}\ _1$ is a unit vector, i.e. $\ \mathbf{n}\ _1 = \ \hat{\mathbf{n}}\ _1 = 1$ $\ \mathbf{c} \in L\ _1$ is closest point to origin, i.e. $\mathbf{c} \perp \mathbf{n}\ _1$	Next ONB $\langle \mathbf{q}_1,, \mathbf{q}_j \rangle$ and next residual $\mathbf{u}_{i+1}^{(j)},, \mathbf{u}_n^{(j)}$		$\frac{ \text{Special case: } f = \Phi(O(g_1), \dots, O(g_n)) }{ f \in \Phi(O(g_1), \dots, O(g_n)) } \text{ means}$	<u>LU</u> factorization => finds <u>A = LU</u> where <u>L, U</u> are	Define f(x)=Mx+c and sequence	$(A-\sigma I)^{-1}$ to get $\lambda_{1,\sigma}$ closest to σ_I	For $A \in \mathbb{R}^{m \times m}$ each iteration $A^{(k)} = Q^{(k)} R^{(k)}$ produces
		Absolute condition number $cond(x) = \hat{\kappa}(x) = \hat{\kappa} $ of \underline{f} at \underline{x} .	e.g. $(\varepsilon+1)^2 = \varepsilon^2 + O(\varepsilon)$ means	lower/upper triangular respectively	$\mathbf{x}^{(k+1)} = f(\mathbf{x}^{(k)}) = M\mathbf{x}^{(k)} + \mathbf{c}$ with starting point $\mathbf{x}^{(0)}$	$(A-\sigma I)^{-1}$ has <u>eigenvalues</u> $(\lambda-\sigma)^{-1}$ so <u>power iteration</u>	orthogonal $Q^{(k)^T} = Q^{(k)^{-1}}$
i.e. 0 ∉ L i.e. L doesn't go through the origin	NOTE: for $j=1$ => $q_1,, q_{j-1} = \emptyset$, i.e. none yet	$\widehat{\kappa} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ \delta f\ }{\ \delta x\ }$	$\epsilon \mapsto (\epsilon + 1)^2 \in \{\epsilon^2 + f(\epsilon) : f \in O(\epsilon)\}$, not necessarily true	Naive Gaussian Elimination performs	Limit of $\langle \mathbf{x}_{R} \rangle$ is fixed point of $\underline{f} = $ unique fixed point of \underline{f} is solution to $A\mathbf{x} = \mathbf{b}$	will yield largest (λ _{1,σ} - σ) ⁻¹	$A^{(k+1)} = R^{(k)}Q^{(k)} = (Q^{(k)}^TQ^{(k)})R^{(k)}Q^{(k)}$
	By end of iteration $\underline{j=n}$, we have ONB $(\mathbf{q}_1,,\mathbf{q}_n) \in \mathbb{R}^m$	=> for \underline{most} problems simplified to $\hat{\kappa} = \sup_{\delta X} \frac{\ \delta f\ }{\ \delta x\ }$		$[I_m \mid A \mid I_n] \rightarrow [R^{-1} \mid U \mid I_n]$ to get $AI_n = R^{-1} U$ using only row addition	If - is consistent norm and M < 1 then (x _k)	i.e. will yield smallest $\lambda_{1,\sigma} - \sigma$, i.e. will yield $\lambda_{1,\sigma}$	So $= O(k)^T A(k) O(k)$ means
·If c= λn i.e. L= Rn => L Jis vector-subspace of R ⁿ i.e. 0∈L i.e. L Jgoes through the origin	[r ₁₁ r _{1n}]	If <u>Jacobian</u> $J_f(x)$ exists then $\hat{\kappa} = J_f(x) $, where <u>matrix</u>	Let $f_1 = O(g_1)$, $f_2 = O(g_2)$ and let $k \neq 0$ be a constant	R ⁻¹ i.e. inverse EROs in <u>reversed order</u> , is	converges for any x ⁽⁰⁾ (because Cauchy-completeness)	11 - 1	$A^{(k+1)}$ is similar to $A^{(k)}$
L]has dim(L) = 1 and orthonormal basis (ONB) { n̂ }	$A = [a_1 a_n] = [q_1 q_n]$ $\therefore : = QR$	norm - induced by norms on X and Y	$\frac{ f_1 f_2 = O(g_1 g_2) }{ f_1 + f_2 = O(\max(g_1 , g_2)) } \frac{ f \cdot O(g) }{ f_1 + f_2 = O(\max(g_1 , g_2)) } \frac{ O(k \cdot g) }{ f_1 + f_2 = O(\max(g_1 , g_2)) }$	lower-triangular so $L = R^{-1}$	We want to find M < 1 and easy to compute M; c Stopping criterion usually the relative residual	$\left\ \mathbf{b}^{(R)} - \alpha_R \mathbf{x}_{1,\sigma} \right\ = O\left(\left\ \frac{\lambda_{1,\sigma} - \sigma}{\lambda_{2,\sigma} - \sigma} \right\ ^R \right) \text{ where } \mathbf{x}_{1,\sigma} \right)$	Setting $A^{(0)} = A$ we get $A^{(k)} = (\tilde{Q}^{(k)})^T A \tilde{Q}^{(k)}$ where
1 (1 - n - 1	[0 r _{nn}]	Relative condition number $\kappa(x) = \kappa \int_{\mathbb{R}} \int_$	\Rightarrow if $g_1 = g = g_2$ then $f_1 + f_2 = O(g)$	Algorithm 1 Gaussian elimination 1: $U = A, L = I$		corresponds to $\lambda_{1,\sigma}$ and $\lambda_{2,\sigma}$ is 2nd-closest to σ	$\tilde{Q}^{(k)} = Q^{(0)} \dots Q^{(k-1)}$
A hyperplane $P = (\mathbb{R}\mathbf{n})^{\perp} + \mathbf{c} = \{x + \mathbf{c} \mid x \in \mathbb{R}^n, x \perp \mathbf{n}\}\$ $= \{x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \mathbf{c} \cdot \mathbf{n}\}\$	corresponds to thin QR decomposition Where $A \in \mathbb{R}^{m \times n}$ is full-rank, $Q \in \mathbb{R}^{m \times n}$ is	$\kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	Floating-point numbers	2: for $k = 1$ to $m - 1$ do		Efficiently compute eigenvectors for known	Under <u>certain conditions</u> QR algorithm converges to Schur decomposition
characterized by normal $\mathbf{n} \in \mathbb{R}^n$ $(\mathbf{n} \neq 0)$ and offset from	semi-orthogonal, and $R \in \mathbb{R}^{n \times n}$ is upper-triangular	=> for most problems simplified to	Consider base/radix $\beta \ge 2$ (typically 2) and precision	3: for $j = k + 1$ to m do 4: $\ell_{j,k} = u_{j,k}/u_{k,k}$		eigenvalues o Eigenvalue guess ⇒ estimated eigenvector	Schur decomposition
origin c∈P	Classical vs. Modified Gram-Schmidt	$\kappa = \sup_{\delta X} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	t≥1](24]or 53]for IEEE single/double precisions) Floating-point numbers are discrete subset	5: $u_{j,k:m} = u_{j,k:m} - \ell_{j,k}u_{k,k:m}$	Assume A's diagonal is non-zero (w.l.o.g. permute/change basis if isn't) then A = D+L+U's where D	Algorithm 3 Inverse iteration	We can apply shift $\mu^{(k)}$ at iteration k
It represents an (n-1) dimensional slice of the	These algorithms both compute thin thin QR decomposition	If <u>Jacobian</u> $J_f(x)$ exists then $\kappa = \frac{\ J_f(x)\ }{\ f(x)\ /\ x\ }$	$\mathbf{F} = \{ (-1)^{S} (m/\beta^{t}) \beta^{e} \mid 1 \le m \le \beta^{t}, s \in \mathbb{B}, m, e \in \mathbb{Z} \}$	6: end for 7: end for	is diagonal of Al, L, U are strict lower/upper triangular	1: for $k = 1, 2, 3,$ do 2: $\hat{x}^{(k)} = (A - \sigma I)^{-1} x^{(k-1)}$	$\Rightarrow A^{(k)} - \mu^{(k)} I = Q^{(k)} \overline{R^{(k)}}; A^{(k+1)} = R^{(k)} Q^{(k)} + \mu^{(k)} I$
It is customary that:	Modified Gram-Schmidt	More important than k for numerical analysis	s jis sign-bit, m/β ^t is mantissa, e jis exponent (8)-bit		parts of AJ	3: $x^{(k)} = \hat{x}^{(k)}/\max(\hat{x}^{(k)})$ 4: $\lambda^{(k)} = (x^{(k)})^T A x^{(k)}$	If shifts are good eigenvalue estimates then last column of $\tilde{Q}^{(k)}$ converges quickly to an eigenvector
$\ \mathbf{n}_{\mathbf{j}}\ $ is a unit vector, i.e. $\ \mathbf{n}_{\mathbf{j}}\ = \ \hat{\mathbf{n}}\ = 1$ $\mathbf{c} \in P$ is closest point to origin, i.e. $\mathbf{c} = \lambda \mathbf{n}_{\mathbf{j}}$	Classical Gram-Schmidt 1: for $j = 1$ to n do 2: $u_i = a_i$	Matrix condition number $Cond(A) = \kappa(A) = A A^{-1} $	for single, $\frac{11}{b}$ bit for double) Equivalently, can restrict to $\beta^{t-1} \le m \le \beta^t - 1$ for unique	The pivot element is simply <u>diagonal entry</u> $u_{kk}^{(k-1)}$	Jacobi Method:	4: $\lambda^{(R)} = (x^{(R)})^T A x^{(R)}$ 5: end for	Estimate µ ^(k) with <u>Rayleigh quotient</u> =>
With those $\Rightarrow P = \{x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \lambda\}$	1: for $j = 1$ to n do 3: end for 2: $u_j = a_j$ 4: for $j = 1$ to n do	⇒ comes up <u>so often</u> that has <u>its own name</u> $A \in \mathbb{C}^{m \times m}$ is <u>well-conditioned</u> if $\kappa(A)$ is small ,	mjand ej	fails if $u_{kk}^{(k-1)} \approx 0$	$G = D; R = L + U$ => $M = -D^{-1}(L + U); c = D^{-1}b$	Can reduce matrix inversion $O(m^3)$ to $O(m^2)$ by	$\mu^{(k)} = (A_k)_{mm} = (\bar{\mathbf{q}}_m^{(k)})^T A \bar{\mathbf{q}}_m^{(k)} \text{ where } \bar{\mathbf{q}}_m^{(k)} \text{ is } \underline{m} \text{-th}$
-If c · n ≠ 0 => P not vector-subspace of ℝ ⁿ	3: for $i = 1$ to $j - 1$ do 5: $r_{ii} = u_i _2$	ill-conditioned if large	FCR is idealized (ignores over/underflow), so is	$\frac{\tilde{L}\tilde{U} = A + \delta A}{\ \tilde{L}\ \cdot \ \tilde{U}\ } = O(\epsilon_{mach})$ only backwards	$ \mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j \neq i} A_{ij} \mathbf{x}_{j}^{(k)} \right) \Rightarrow \mathbf{x}_{i}^{(k+1)}$ only needs	pre-factorization	column of $\tilde{Q}^{(k)}$
i.e. 0 ∉ P , i.e. P doesn't go through the origin P is affine-subspace of ℝ ⁿ	4: $r_{ij} = q_i^* a_j$ 6: $q_i = u_j / r_{ij}$ 5: $u_j = u_j - r_{ij} q_i$ 7: for $k = j + 1$ to n do	$\kappa(\mathbf{A}) = \kappa(\mathbf{A}^{-1}) \kappa(\mathbf{A}) = \kappa(\gamma \mathbf{A}) \ \cdot \ = \ \cdot \ _2 \implies \kappa(\mathbf{A}) = \frac{\sigma_1}{\sigma_m} $	countably infinite and self-similar (i.e. $F = \beta F$) For all $x \in \mathbb{R}$ there exists $fl(x) \in F$ s.t.	stable if L · U ≈ A	$ \mathbf{b}_{i}; \mathbf{x}^{(k)}; \mathbf{A}_{i*} \Rightarrow \underline{\text{row-wise parallelization}}$		
If c · n = 0 i.e. P = (Rn) => P is vector-subspace of	6: end for 8: $r_{jk} = q_j^* u_k$ 7: $r_{jj} = u_j _2$ 9: $u_k = u_k - r_{jk}q_j$		$ x-fl(x) \le \epsilon_{mach} x $	Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$			
R ⁿ	8: $q_j = u_j/r_{jj}$ 10: end for 9: end for 11: end for	For $\underline{\mathbf{A} \in \mathbb{C}^{m \times n}}$, the problem $f_{\underline{\mathbf{A}}}(x) = \underline{\mathbf{A}}x$ has	Equivalently $fl(x) = x(1+\delta), \delta \le \epsilon_{mach}$	Solving $Ax = LUx$ Jis $\sim \frac{2}{3} m^3$ flops (back substitution is	Gauss-Seidel (G-S) Method:		
i.e. 0∈PJ, i.e. PJgoes through the origin P has dim(P) = n - 1	9: end for 11: end for Computes at j th step:	$\kappa = \ \mathbf{A}\ \frac{\ \mathbf{x}\ }{\ \mathbf{A}\mathbf{x}\ } \Rightarrow \text{if } \underline{\mathbf{A}}^{-1} \text{ exists then } \underline{\kappa \in \text{Cond}(\mathbf{A})}$	Machine epsilon $\epsilon_{\text{machine}} = \epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t} \underline{is} $	<u>O(m²)</u>)	$G = D + L; R = U = M = -(D + L)^{-1} U; C = (D + L)^{-1} b$ $(b+1) = 1 \qquad (b+1) \qquad (b)$		
	Classical GS $\Rightarrow j$ th column of Q and the j th column	If Ax = b problem of finding x given b is just	maximum relative gap between FPs Half the gap between 1 and next largest FP	NOTE: Householder triangularisation requires $\sim \frac{4}{3} m^3$	$\mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right)$		
Notice $L = \mathbb{R} \mathbf{n}$ and $P = (\mathbb{R} \mathbf{n})^{\perp}$ are orthogonal	of <u>R</u> J	$f_{\mathbf{A}^{-1}}(b) = \mathbf{A}^{-1}b = \kappa = \ \mathbf{A}^{-1}\ \frac{\ b\ }{\ \mathbf{x}\ } \le \text{Cond}(\mathbf{A})$	$\frac{1}{2^{-24}} \approx 5.96 \times 10^{-8}$ and $\frac{1}{2^{-53}} \approx 10^{-16}$ for single/double		Computing $\mathbf{x}_{:}^{(k+1)}$ needs \mathbf{b}_{i} ; $\mathbf{x}^{(k)}$; $\mathbf{A}_{i\star}$ and $\mathbf{x}_{:}^{(k+1)}$ for		
compliments, so:	Modified GS ⇒ j th column of Q Jand the j th row of	For $\underline{\mathbf{b}} \in \mathbb{C}^m$, the problem $f_{\underline{\mathbf{b}}}(A) = A^{-1}\underline{\mathbf{b}}$ (i.e. finding $\underline{\mathbf{x}}$) in		Partial pivoting computes PA = LU where P is a	j < i ⇒ lower storage requirements		
$proj_L = \hat{\mathbf{n}} \hat{\mathbf{n}}^T$ is orthogonal projection onto $L_I(along P)$ $proj_P = id_{\mathbb{R}^N} - proj_L = I_N - \hat{\mathbf{n}} \hat{\mathbf{n}}^T$ is orthogonal	Both have flop (floating-point operation) count of	$Ax = b$ has $k = A A^{-1} = Cond(A)$	FP arithmetic: let *, *) be real and floating counterparts of arithmetic operation	permutation matrix => PPT = I i.e. its orthogonal For each column finds largest entry and row-swaps			
projection onto P (along L)	O(2mn ²)	Stability	For x, y ∈ F we have	to make it <u>new pivot</u> => P _j	Successive over-relaxation (SOR):		
· L = im (proj _L) = ker (proj _P) and	NOTE: Householder method has $2(mn^2 - n^3/3)$ flop	Given a problem $f: X \to Y$, an algorithm for f is	$x \circledast y = f(x * y) = (x * y)(1 * \epsilon), \delta \le \epsilon_{mach}$	Then performs normal elimination on that column =>	$\frac{G = \omega^{-1}D + L; R = (1 - \omega^{-1})D + U}{M = -(\omega^{-1}D + L)^{-1}((1 - \omega^{-1})D + U); c = -(\omega^{-1}D + L)^{-1}b}$		
$P = \ker(\operatorname{proj}_{L}) = \operatorname{im}(\operatorname{proj}_{P})$	count, but better numerical properties Recall: $Q^{\dagger}Q = I_n$ => check for loss of orthogonality	$\tilde{f}: X \to Y$	Holds for any <u>arithmetic operation</u>	Result is $L_{m-1}P_{m-1} \dots L_2P_2L_1P_1A=U$, where	$\omega = (\omega D + L) ((1 - \omega D + U); C = -(\omega D + L) b$ $\omega = (i - 1, (k+1), -n, (k))$		
$\mathbb{R}^n = \mathbb{R}^n \oplus (\mathbb{R}^n)^{\perp}$, i.e. all vectors $\mathbf{v} \in \mathbb{R}^n$ uniquely	with $\ I_n - Q^{\dagger}Q\ = loss$	Input $\underline{x \in X}$ is first rounded to $\underline{fl(x)}$ i.e. $\underline{\tilde{f}(x)} = \underline{\tilde{f}(fl(x))}$ Absolute error $\Rightarrow \ \tilde{f}(x) - f(x)\ $	above applies to complex ops as-well	L _{m-1} P _{m-1} L ₂ P ₂ L ₁ P ₁ =L' _{m-1} L' ₁ P _{m-1} P ₁	$ \mathbf{x}_{i}^{(k+1)} = \frac{\omega}{A_{ij}} \left(\mathbf{b}_{j} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right) _{\text{for}}$		
			Caveat: $\epsilon_{mach} = \frac{1}{2} \beta^{1-t}$ must be scaled by factors on	Setting $L = (L'_{m-1} L'_1)^{-1} \mid P = P_{m-1} P_1 \mid gives$	+(1-ω)x _i ^(R)		
Householder Maps: reflections	Classical GS => $\frac{\ \mathbf{I}_{n} - \mathbf{Q}^{\dagger} \mathbf{Q}\ \approx \text{Cond}(\mathbf{A})^{2} \in \text{mach}}{\ \mathbf{I}_{n} - \mathbf{Q}^{\dagger} \mathbf{Q}\ \approx \mathbf{Q}^{\dagger} = Q$	relative error $\Rightarrow \frac{\ \tilde{f}(x) - f(x)\ }{\ f(x)\ }$	the order of 2 ^{3/2} , 2 ^{5/2} for ⊗, ⊘ respectively	PA=LU	relaxation factor <u>u > 1</u>		
Two points $\mathbf{x}, \mathbf{y} \in \mathbb{E}^n$ are reflections w.r.t hyperplane $P = (\mathbf{Rn})^{\perp} + \mathbf{c} \text{ if:}$	• Modified GS $\Rightarrow \ I_n - Q^{\dagger}Q\ \approx \text{Cond}(A) \epsilon_{\text{mach}}$	$ \tilde{f} $ is accurate if $\forall x \in X$, $ \tilde{f}(x) - f(x) = O(\epsilon_{mach})$	(x ₁ ⊕⊕x _n)	Algorithm 2 Gaussian elimination with partial pivoting 1: $U = A, L = I, P = I$	If A is strictly row diagonally dominant then		
$P = (R\mathbf{n})^{\frac{1}{2}} + \mathbf{c}$ it: 1) The translation $x\hat{y} = y - x$ is parallel to normal n_i , i.e.	NOTE: Householder method has $\ \mathbf{I}_n - Q^{\dagger}Q\ \approx \epsilon_{\text{mach}}$	\tilde{f} is stable if $\forall x \in X$, $\exists \tilde{x} \in X$ s.t.	$\underset{\approx (x_1 + \dots + x_n) + \sum_{j=1}^n x_j \left(\sum_{j=i}^n \delta_j\right)^{: \delta_j \le \epsilon_{\text{mach}}}}{\sum_{j=1}^n x_j \left(\sum_{j=i}^n \delta_j\right)^{: \delta_j \le \epsilon_{\text{mach}}}}$	2: for $k = 1$ to $m - 1$ do	Jacobi/Gauss-Seidel methods converge; AJis strictly		
xy=λn	Multivariate Calculus Consider f: R ⁿ → R!	$\frac{\ \tilde{f}(x) - f(\tilde{x})\ }{\ f(\tilde{x})\ } = O\left(\epsilon_{\text{mach}}\right) \text{ and } \frac{\ \tilde{x} - x\ }{\ x\ } = O\left(\epsilon_{\text{mach}}\right)$	$(x_1 \otimes \cdots \otimes x_n) \approx (x_1 \times \cdots \times x_n)(1 + \epsilon), \epsilon \le 1.06(n - 1)\epsilon_{\text{mach}}$	3: $i = \operatorname{argmax} u_{i,k} $	row diagonally dominant if $ A_{ij} > \sum_{j \neq i} A_{ij} $		
(12) Midpoint m = 1/2(x+y) \(\in P\) i.e. m \(\in \) = C \(\in \)	When clear write <u>i</u> th component of input as <u>i</u> instead	i.e. nearly the right answer to nearly the right question	$\frac{\operatorname{fl}(\sum x_i y_i) = \sum x_i y_i (1 + \epsilon_i)}{1 + \epsilon_i = (1 + \delta_i) \times (1 + \eta_i) \cdots (1 + \eta_n)} \text{ where }$ $\frac{\operatorname{fl}(\sum x_i y_i) = \sum x_i y_i (1 + \epsilon_i)}{1 + \epsilon_i + \epsilon_i} \text{ where }$	4: $u_{k,k:m} \leftrightarrow u_{l,k:m}$ 5: $\ell_{k,1:k-1} \leftrightarrow \ell_{i,1:k-1}$	If A] is positive-definite then G-S and SOR $(\underline{\omega} \in (0, 2))$ converge		
Suppose $P_{\mathbf{u}} = (\mathbf{R}\mathbf{u})^{\perp}$ goes through the origin with unit	of x;	outer-product is stable	$ 1+\epsilon_i \approx 1+\delta_i + (\eta_i + \dots + \eta_n) $	6: $\rho_{k,:} \leftrightarrow \rho_{i,:}$	Eigenvalue Problems		
normal $\underline{u \in \mathbb{R}^n}$ Householder matrix $H_{\underline{u}} = I_n - 2uu^T$ is reflection w.r.t.	Level curve w.r.t. to $c \in \mathbb{R}$ jis all points s.t. $f(x) = c$ Projecting level curves onto \mathbb{R}^n gives f s		$ f (x^Ty)-x^Ty \le \sum x_iy_i \varepsilon_i $	7: for $j = k + 1$ to m do 8: $\ell_{j,k} = u_{j,k}/u_{k,k}$	If A Jis diagonalizable then eigen-decomposition is		
hyperplane Pu	contour-map		Assuming ne _{mach} ≤ 0.1 =>	9: $u_{j,k:m} = u_{j,k:m} - \ell_{j,k}u_{k,k:m}$	Dominant λ_1 ; x_1 are such that $ \lambda_1 $ is strictly largest		
Recall: let Lu = Ru			$ fl(x^Ty) - x^Ty \le \phi(n)\epsilon_{mach} x ^T y $ where $ x _i = x_i $	10: end for 11: end for	for which $Ax = \lambda x$		
	n_k th order partial derivative w.r.t i_k of, of n_1 th order partial derivative w.r.t i_1 of f is:		is <u>vector</u> and $\phi(n)$ is <u>small function</u> of n	Work required: $\sim \frac{2}{3} m^3 \text{flops} \sim O(m^3) $ results in $L_{ij} \le 1$			
	F-yang gentland game in Tillou Tillou		Summing a series is more stable if terms added in order of increasing magnitude	so L = O(1)			
			and a second second		1	1	1