

18V, 4~5.5A 桥式驱动芯片

产品特征

- 驱动一路有刷直流电机
- 微小的待机电流,小于 1µA
- 超低 R_{DS(ON)}电阻
- 最大输出持续电流 4.0A(SOP8)
- 最大输出持续电流 5.5A(DIP8)
- 工作电压范围: 3.0V-18V
- 有紧急停止功能
- 有过热保护功能
- 有欠压保护功能
- 有过流及短路保护功能
- 封装: SOP8 (TMI8260SP) DIP8 (TMI8260DP)

产品概述

TMI8260 是一款 DC 双向马达驱动集成芯片,适用于中大电流电机。两个逻辑输入端子 (IN1/IN2)用作 PWM 控制模式的输入,以控制流过 H 桥的电流方向,从而控制直流电机的旋转方向。该电路具有良好的抗干扰性,微小的待机电流、超低的输出内阻,使用 BCD 工艺,耐压能力强,释放感性负载的反向冲击电流能力强。

TMI8260SP 的封装形式是 SOP8, TMI8260DP 的封装形式是 DIP8, 符合 ROHS 规范, 引脚框架 100%无铅。

应用

- 电子锁
- 大扭力电动玩具
- 按摩仪
- 机器人

典型应用电路

图 1. 典型应用电路图

拓尔微 www.toll-semi.com

绝对最大额定值(1)

参数	符号	最小值	最大值	单位
电源电压	VCC	-0.3	25	V
输出持续电流(SOP8) ⁽²⁾	I _{OUT}	0	4.0	Α
输出持续电流(DIP8) ⁽²⁾	I _{OUT}	0	5.5	Α
IN2, IN1 输入电压	V _{INH}	-0.3	VCC	V
工作环境温度	T _{OP}	-25	85	°C
存储温度	T _{stg}	-40	150	°C
结温温度 ⁽³⁾	TJ	-55	150	°C
芯片功耗	P _D		2.5	W
引脚焊锡温度 (焊接 10s)			260	°C

封装引脚定义

订单信息

产品型号	封装形式	丝印	包装数量
TMI8260SP	SOP8	TMI8260SP	3000/盘
1 W1102003P	3076	XXXXXX	3000/ _{mi.}
TMISSEODD	DIDO	TMI8260DP	2000/盘
TMI8260DP	DIP8	XXXXXX	2000/ 溫.

TMI8260SP 和 TMI8260DP 产品满足无铅要求和 RoHS 标准。

引脚功能

引脚序号	引脚名称	输入/输出	描述
1	IN2	输入	反转输入
2	IN1	输入	正转输入
3	GND	地	参考地
4	VCC	电源	输入功率电源
5/6	OUT1	输出	正转输出
7/8	OUT2	输出	反转输出

ESD 等级

参数	描述	值	单位
V _{ESD}	人体放电模型	±2000	V

JEDEC specification JS-001

推荐工作条件

参数	符号	最小	最大	单位
工作电压范围	VCC	3	18	V
输入信号电压 IN1/IN2	V _{IN_X}	-0.3	6	V
持续输出电流(SOP8)	I _{OUT_X}	0	4	Α
持续输出电流(DIP8)	I _{OUT_X}	0	5.5	Α
逻辑输入频率	F _{IN_X}	0	50	kHz

TMI8260SP TMI8260DP

电特性参数

如无特殊规定, $T_A = 25$ °C.

参数	符号	条件		典型	最大	单位
电源参数						
工作电压	Vvcc		3.0		18	V
待机电流	I _{SDT}	VCC=12V, IN1=IN2=0V, no load			1	μΑ
静态电流	I _{BRAKE}	VCC=12V, IN1=IN2=5V or IN1=5V & IN2=0V or IN1=0V & IN2=5V, no load	0.3	0.6	1	mA
PWM 电流	I _{PWM}	VCC=12V, IN1=5V, IN2=50kHz, no load	1	1.5	3	mA
低压保护	UVLO	VCC rising	1.9	2.2	2.8	V
逻辑输入参数						
输入高电平	V _{INH}		1.5		6	V
输入低电平	V _{INL}				1.2	
输入高电平时电流	I _{INH}	VCC = 12V, VIN = 5V		50	100	μΑ
输入低电平时电流	I _{INL}	VCC = 12V, VIN= 0V			1	μΑ
H-bridge FETs 参	数 (DIP8)				
导通内阻	R _{ds(on)}	I _{LOAD} =1A, HS+LS		80		mΩ
导通内阻	R _{ds(on)}	I _{LOAD} =3A, HS+LS		85		mΩ
H-bridge FETs 参	数 (SOP	8)	/			
导通内阻	R _{ds(on)}	I _{LOAD} =1A, HS+LS		90		mΩ
导通内阻	R _{ds(on)}	I _{LOAD} =3A, HS+LS		95		mΩ
过热温保护参数						
过热保护温度(4)	T _{SD}			170		°C
热关断迟滞(4)	T _{HYS}			40		°C
过流保护参数						
过流保护电流	IOCP	SOP8		8		Α
过流保护电流	IOCP	DIP8		13		Α
过流抗尖峰时间	tocp			2.5		μs
过流重启时间	t _{RETRY}	/		2.4		ms

Note 1: 超出绝对最大额定值的范围可能对设备造成永久性损坏。这些只是等级强调。在那些任何其他超过建议条件下的芯片功能未说明。长期工作在绝对最大额定值的条件下可能影响芯片的可靠性。

Note 2: 所有电压值都对应接地端子。

Note 3: 基于 40mm² FR4 单排 PCB,铜厚 1 盎司,电阻负载。

Note 4:设计保证了热关断阈值和迟滞。

框图

图 2. TMI8260SP/TMI8260DP 系统框图

功能描述

输出真值表

IN1	IN2	OUT1	OUT2	状态
Н	L	Н	L	正转
L	Н	L	Н	反转
Н	Н	L	L	刹车
L	L	Open	Open	停止

输出时序图

图 3. 输出时序图

应用电路说明

如图 1 给出的典型应用电路上的外围元件说明如下:

- C1, C2 为 VCC 输入电容, 主要作用如下:
- 1. 吸收马达向电源释放的能量,稳定 VCC 电源电压,避免 IC 因冲击电压过高而被直接击穿,具有滤除纹波和干扰噪声的功能。
 - 2. 在马达启动的瞬间,能释放电流,帮助马达迅速启动。
- 3. VCC 输入电容 C2 的选择需依照 VCC 的电压稳定性及马达负载电流大小去选择电容,如果 VCC 的电压文波较大或是马达负载电流较大,则须选择更大的电容值。
 - 4. 在 PCB 配置上 C1, C2 电容需要尽量靠近 VCC。

工作模式说明

基本工作模式:

- 1. 前进模式, 定义为: IN2=L, IN1=H, 此时 OUT2=L, OUT1=H;
- 2. 后退模式, 定义为: IN2=H, IN1=L, 此时 OUT2=H, OUT1=L;
- 3. 刹车模式, 定义为: IN2=H, IN1=H, 此时 OUT2=L, OUT1=L;
- 4. 停止模式, 定义为: IN2=L, IN1=L, 此时 OUT2=Open, OUT1=Open。

保护机制说明

使用此 IC 时,当 IC 温度超过 170°C(典型值),此是内置设计的 IC 过热保护电路会强制关闭部分驱动 MOS 晶体管,确保客户产品的安全。当 IC 温度降至 130°C(典型值)时,IC 会迅速自动恢复开始工作。

如果流过电机的电流大于内部的过流保护阈值,内部集成过流保护电路将关闭 MOS 晶体管,IC 停止工作,电机电流低于内部的过流保护阈值后,IC 正常工作。

封装尺寸

SOP8

Symbol	Millimeter					
Symbol	Min.	Nom.	Max.			
Α	-	-	1.75			
A1	0.10	-	0.25			
A2	1.25	-	-			
b	0.31	0.31 -				
С	0.10	0.10 -				
D		4.90 BSC				
E		6.00 BSC				
E1		3.90 BSC				
е	1.27BSC					
L	0.40	0.40 -				
θ	0°	0° -				

注释:

- 1.参考 JEDEC MS-012AA
- 2. 所有尺寸均以毫米为单位

封装尺寸

DIP8

SYMBOL	MI	LLIMET	ER	
SYMBOL	MIN	NOM	MAX	
A	3.60	3.80	4.00	
A1	0.51	_	_	
A2	3.20	3.30	3,40	
A3	1.55	1.60	1.65	
b	0.44	_	0.52	
b1	0.43	0.46	0.49	
B1	1	1.52REF		
с	0.25		0.29	
c1	0.24	0.25	0.26	
D	9.15	9.25	9.35	
E1	6.25	6.35	6.45	
e	1	2.54BSC)	
eA	7.62REF			
eВ	7.62	_	9.30	
eC	0	_	0.84	
L	3.00	_		

包装尺寸

编带尺寸: SOP8

卷盘尺寸: SOP8

Α	В	С	D	E	F	T1
Ø 330±1	12.7±0.5	16.5±0.3	Ø 99.5±0.5	Ø 13.6±0.2	2.8±0.2	1.9±0.2

注释:

- 1) 所有尺寸均以毫米为单位
- 2) 每卷单位数量为 3000
- 3) MSL 级别为 3 级。

包装尺寸

DIP8

注释:

- 1) 所有尺寸均以毫米为单位;
- 2) 每卷单位数量为 2000;
- 3) 建议使用波峰焊。

重要通知

本文档仅提供产品信息。 拓尔微电子股份有限公司(TMI) 保留对其产品进行更正、修改、增强、改进和其他更改以及随时停止任何产品的权利, 恕不另行通知。

拓尔微电子股份有限公司. (TMI) 不对除完全包含在 TMI 产品中的电路之外的任何电路的使用负责。不暗示任何电路专利许可。

拓尔微电子股份有限公司保留所有权利。

http://www.toll-semi.com