

Development of an Autonomous Car

Kathryn Atherton, Joshua Hahn, Hannah Mackin Schenck

Purdue University, Purdue College of Engineering

Background

- Autonomous control of cars has been vision of engineers
- Currently, cruise control allows for control of speed
- Driver still needs to monitor distance from other cars and facilitate passing of other vehicles
- Sensors allow for proximity warnings when another car is passing in blind spots and may even apply brakes, if needed
- Still no perfectly "autonomous" vehicle
- Grand Challenge of Engineering to enhance mass transit in urban areas.

Criteria

- Monitor speed and distance of vehicles
- Maintain vehicle speed limit of 10cm / sec
- Maintain buffer distance of 15 cm between vehicles
- Minimize correction times (< 1 second)
- Never surpass 10 cm/s

Logic Flowchart

Design Process & Testing

- The design team began by making a flowchart of the logic required to meet all of the criteria for the vehicle, as seen in the bottom left corner.
- Then, testing began to determine the accuracy of the sensors, mainly the ultrasonic sensor.
- Simultaneously, the robot parts were analyzed to brainstorm the structure of the vehicle.
- As the vehicle does not need to turn, only one motor was needed to operate the vehicle.
- Due to the limited building resources, only one front wheel was incorporated into the design, and the vehicle has a rear-wheel drive design.
- Various placements of the ultrasonic sensor were considered, but the team determined that having it
 in the very front over the front wheel was the best position for its function.
- An equation was derived to determine the power required to operate the vehicle at various distances from the car ahead of it.
- Finally, a code was created from the flow chart and equation, and a framework for the final car design was built.

ULTRASONIC SENSOR TESTING

Trial Number	Distance Sensed (cm)	Actual Distance (cm)	Change (cm)27
1	27	24	3
2	24	20	4
3	24	15	9
4	13	10	3
5	23	17	6
6	12	8	4
7	22	15	7
8	14	10	4
9	18	14	4

MOTOR SPEED TESTING

WOTOR SPEED TESTING			
Trial Number	Motor Speed	Robot Speed (cm/s)	
1	50	21.0	
2	30	13.6	
3	20	5.97	
4	25	11.5	

Final Design & Performance

- The final design consisted of a single front wheel, with rear wheel drive.
- The ultrasonic sensor was placed at the front of the vehicle and an index card was placed on the back so as to provide a surface for the vehicles behind it to sense its presence.
- Immediately prior to testing, team had problems with the ultrasonic sensor controlling the deceleration of the vehicle
- During the final performance, the vehicle continued to have this problem.

Conclusions

- In order to improve this prototype, the design team recommends improving the ultrasonic sensor implementation.
- The placement of the sensor should be tested again in order to maximize its functionality.
- The battery level affects the power of the motors, so the power needs to be constantly adjusted in order to maintain the speed limit.
- Otherwise, the three-wheeled vehicle design worked well and the vehicle was structurally sound.

Acknowledgments

We would like to thank our professor, Dr. Nauman, and Graduate TA, Michael, for their guidance and support throughout this process.