



## Transformers, power flow analysis part 2

ELEC0447 - Analysis of electric power and energy systems

Bertrand Cornélusse October 6, 2025

## Overview I

1. The Transformer

2. Transformers in the power flow analysis

# What will we learn today?

- ► The power transformer
- ► The next part of power flow analysis: how to include transformers and transformers with tap changers

You will be able to do exercises 6.2, 6.3, 6.4 from Ned Mohan's book.



## Basic model of a transformer

A (single phase) transformer is made of two magnetically coupled coils or windings. An ideal transformer is a two-port represented as



with

$$u_2 = nu_1$$

$$i_2 = -\frac{1}{n}i_2$$

## Usages

In power systems, transformers are mainly used to transmit power over long distances by changing the voltage level, thus decreasing the current for a given power level. The voltage level of a synchronous generator is around 20kV.

Voltage is changed around five times between generation and load.

#### It is also used to

- measure currents and voltages,
- electrically isolate parts of a circuit (not the auto-transformer we will see),
- and match impedances.

## How does a transformer work?



Link to the video

## Non-ideal model I



The ideal model is complemented by elements

## Non-ideal model II

- $ightharpoonup X_m$  that models the magnetizing inductance
- $ightharpoonup X_{leakage,i}$  that models the flux not captured by the core on side i
- $ightharpoonup R_{core}$  that models eddy current and hysteresis losses, i.e., losses in the iron core
- $ightharpoonup R_1$  and  $R_2$  that model (coil) copper losses

Parameters are either given in the datasheet or obtained by open-circuit and short-circuit tests.

The core is ususally laminated to decrease losses.

# Simplification

The excitation current, the sum of the currents in  $R_{core}$  and  $X_m$ , is often neglected, leading to a simpler non-ideal model, and the series impedances can be transferred from one side to the other, with

$$Z_p = R_1 + jX_{leakage,1}$$

and

$$Z_s = R_2 + jX_{leakage,2}$$



# Per unit representation I

Let's consider the rated voltages and currents on both sides of the (ideal) transformer as base values. As

$$V_{s,base} = nV_{p,base}$$

and

$$I_{p,base} = nI_{s,base},$$

the MVA base is the same on both sides, and thus

$$Z_{s,base} = n^2 Z_{p,base}$$

# Per unit representation II

Hence, in per unit, the transformer can be replaced by a single impedance

$$Z_{tr} = \frac{Z_p}{Z_{p,base}} + \frac{Z_s}{Z_{s,base}}.$$



# Per unit representation III

Thus we have also that

$$Z_{tr} = \frac{Z_p + Z_s/n^2}{Z_{p,base}}$$
$$= \frac{n^2 Z_p + Z_s}{Z_{s,base}}$$

i.e. the impedance is the same whether we see it from the primary or the secondary side, although the voltage bases differ.

Also, if the three-phase transformer is wye-delta connected, a 30° phase shift must be applied (more on this later).

## Illustration of Per-Unit normalization I

This is Example 6.1 from the reference book. Consider the one-line diagram



#### with

- lacktriangle a 200 km line with  $R=0.029\Omega/km$ ,  $X=0.326\Omega/km$ , neglected shunt impedances
- ▶ two transformers with a leakage reactance of 0.2pu in the (500 kV, 1000 MVA) base, and losses neglected.

## Illustration of Per-Unit normalization II

What is the equivalent model in a (345 kV, 100 MVA) base?

#### In the (500 kV, 1000 MVA) base:

- $Z_{line,pu} = 200 \times (0.029 + j0.326)/(500^2/1000) = 0.0232 + j0.2608pu$
- ▶ hence, the total impedance between buses 1 and 2 is

$$Z_{12} = 0.0232 + j0.2608 + 2 * j0.2pu = 0.0232 + j0.6608pu$$

#### In the (345 kV, 100 MVA) base

the pu value of the impedance is the same in the (500 kV, 1000 MVA) and (345 kV, 1000 MVA) bases!

## Illustration of Per-Unit normalization III

- ▶ Why? since we can transfer the impedance from one side of each transformer to the other, cf. a previous remark.
- ▶ if we now change the MVA base to 100 MVA,

$$Z_{12} = (0.0232 + j0.6608) \times (100/1000)pu = 0.00232 + j0.06608pu$$

since the base impedance is proportional to the inverse of the MVA base.

# Efficiency

The efficiency expressed in % is

$$100 \times \frac{P_{output}}{P_{input}} = 100 \times \left(1 - \frac{P_{losses}}{P_{input}}\right)$$

#### Remarks:

- maximal when loaded such that copper losses = iron losses (cancel derivative of efficiency w.r.t current)
- ► Around 99.5 % in large power transformers at full load.

## Tap changers

- ightharpoonup Some transformers are equipped with a system allowing to change the 1:n ratio
- ► The ability to change the tap under load is called load tap changer (LTC) or on-load tap changer (OLTC)
- ► This is mainly used for voltage control
- It is usually implemented using auto-transformers
- We will see later on how to include this in the power flow analysis

# Tap changing transformers



Link to the video

## **Auto-transformers**

The two windings (of the same phase) are connected in series, without galvanic insulation. They are commonly used when the ratio is limited.

Advantages:

- Physically smaller
- less costly (less copper)
- higher efficiency
- easy to implement tap changes
- "solid" earth grounding

### Disadvantages:

- no electrical insulation
- higher short circuit current
- full voltage at secondary if it breaks (in case of a step down)

## Phase shift in delta-star transformers

The star part has n times the number of turns of the delta part (primary side). Let's reason on phase a,

- Voltage  $\bar{V}_{a,s}$  is on the same core as  $\bar{V}_{AC,p} = \sqrt{3}\bar{V}_{a,p}\angle -30^\circ$  where  $\bar{V}_{a,p}$  is the (virtual) phase-neutral voltage on the primary side.
- Since  $\bar{V}_{a,s} = n\bar{V}_{AC,p}$ ,  $\bar{V}_{a,s} = n\sqrt{3}\bar{V}_{a,p}\angle -30^{\circ}$



We gain a  $\sqrt{3}$  factor in the amplification, and a lagging phase shift of 30°.

The same reasoning holds for phases b and c.

# Power flow regulation by phase shifting I

We have seen that active power flows are dictated by the voltage magnitudes but also the sine of the angle difference between buses:



$$S_r = \bar{V}_r \bar{I}^* = V_r \left( \frac{V_s \angle - \delta - V_r}{-jX} \right)$$

$$= \frac{V_s V_r \sin \delta}{X} + j \frac{V_s V_r \cos \delta - V_r^2}{X}$$

 $\delta$  is the angle between  $\bar{V}_r$  and  $\bar{V}_s$ 

# Power flow regulation by phase shifting II

If we have a device that can generate an adjustable phase shift, we can control the power flows. This is the purpose of phase-shifting transformers.

In practice phase shifting is achieved by "combining the signal with a fraction of itself shifted by 90°". For the details of how it is implemented or modeled, see

- Wikipedia
- Section 5.7. of the Weedy or ELEC0014.
- ▶ ENTSO-E Phase Shift Transformers Modelling, Version 1.0.0, May 2015

# Example: phase shifting transformers on the borders of Belgium I



#### 380/380 kV, in series with:

- line Zandvliet (B) Borssele (NL) and Zandvliet (B) - Geertruidenberg (NL)
- 2. line Meerhout (B) Maasbracht (NL)
- 3. line Gramme (B) Maasbracht (NL)
  - nominal power 3VN Imax = 1400 MVA
  - phase shift adjustment: 35 positions,  $+17/-17 \times 1.5$  (at no load)

# Example: phase shifting transformers on the borders of Belgium II

#### 220/150 kV:

- ▶ in series with the Chooz (F) Monceau (B) line nominal power: 400 MVA
- in-phase adjustment: 21 positions,  $+10/-10 \times 1.5\%$
- ightharpoonup quadrature adjustment: 21 positions,  $+10/-10 \times 1.2$

## Remarks

#### In three-phase operation,

- either there are three separate single-phase transformers (easier to fix when there is a problem on a phase, more modular)
- or a three-phase transformer, that is a single core with three auto-transformers on it, cf. the video at the beginning of this presentation (cheaper, lighter core and less copper).

Some transformers called **three-winding transformers** are equipped with a third winding (not to be confused with a three-phase transformer) that is used for auxiliary purposes (feeding auxiliary devices e.g., fans, providing reactive power support, ...).



# Transformer without regulation

A transformer, in the per-unit representation, can thus be represented

- as a two-port if the shunt admittance is considered
- as a simple series leakage impedance if the shunt admittance is neglected

It is a bit harder to model controllable taps for voltage and flow control.

# Representing taps and phase shifts I

Let  $Y_l$  be the leakage admittance and t be the off-nominal turns ratio:

- if  $0 < t \le 1$ , this corresponds to a simple tap-changer
- if  $0 < |t| \le 1$  but is complex, then this is a phase-shifter ( $\angle t < \pi/2$ )



We have

$$\bar{I}_1 = \left(\bar{V}_1 - \frac{\bar{V}_2}{t}\right) Y_l$$

# Representing taps and phase shifts II

and since  $rac{ar{V}_2}{t}ar{I}_1^{\star}=-ar{V}_2ar{I}_2^{\star}$  by energy conservation

$$\bar{I}_2 = -\frac{\bar{I}_1}{t^*} = -\bar{V}_1 \frac{Y_l}{t^*} + \bar{V}_2 \frac{Y_l}{|t|^2}$$

Thus tap and phase shift can be represented by the admittance matrix

$$\left[\begin{array}{c} \bar{I}_1 \\ \bar{I}_2 \end{array}\right] = \left[\begin{array}{cc} Y_l & -\frac{Y_l}{t} \\ -\frac{Y_l}{t^\star} & \frac{Y_l}{|t|^2} \end{array}\right] \left[\begin{array}{c} \bar{V}_1 \\ \bar{V}_2 \end{array}\right]$$

# Representing taps and phase shifts III

- ▶ if  $0 < t \le 1$ , this can be represented as a  $\pi$  two-port
- if  $0 < |t| \le 1$  but is complex, this is not the case

In the power flow analysis you must pay attention to this when constructing the system-wide admittance matrix. As an exercise, let's add a phase-shifting transformer to our 3-bus example.

- Link to the example in PandaPower
- ► Link to the Newton-Raphson example