TUTORIAL QUESTIONS CHARGED PARTICLES

Question 1

Question 2

a.) $E = 2000 / 0.074 = 2.7 \times 10^4 \text{ Vm}^{-1}$

b.) K.E =
$$eV = 1.6 \times 10^{-19} \times 2000 = 3.2 \times 10^{-16} J$$

c.) K.E = $\frac{1}{2}$ mv²

$$v = 2.65 \times 10^7 \text{ ms}^{-1}$$

Question 3

a.)

c.)
$$Bqv = qE$$

$$E = Bv = 0.0086 \times 4.3 \times 10^7 = 3.70 \times 10^5 \text{ Vm}^{-1}$$

d.)

• Path B:
$$F_E = F_B \rightarrow gE = Bgv \rightarrow v = E/B$$

• Path A:
$$F_E > F_B \rightarrow \underline{qE} > \underline{Bqv} \rightarrow v < E/B$$
; $v < v$

Question 4

a.)
$$\frac{1}{2}$$
 mv² = qV

$$v = 1.84 \times 10^5 \text{ ms}^{-1}$$

↑ Upward force due to electric field, F = qE b.)

Downward balancing force due to magnetic field, F =Bqv

c.)
$$E = Bv = 1.53 \times 10^5 \text{ Vm}^{-1}$$

d.) The move in a circular path downwards.

Question 5

- a.) They are either approximately equals to $1.6 \times 10^{-19} \, \text{C}$ or a whole number multiple of this value. Quantisation implies that no fraction is possible and that charge cannot simply take on any value, therefore charge is quantised.
- b.) charge of 1 electron = Total charge / number of electrons

=
$$40.075 \times 10^{-19} / 25 = 1.603 \times 10^{-19} C$$

c.) Path is circular in the field and bending downwards. Path is straight upon leaving the field.

Slow electrons have smaller radius, fast electrons have bigger radius.

Question 6

Refer to notes on Milikan's Oil drop Experiment.