Problem.

Suppose that the characteristic polynomial f(t) of $A \in M_{7\times 7}(\mathbb{R})$ splits, with the only zeroes being 1 and 2.

Assume that the eigenspaces E_1 and E_2 of L_A have dimension 2 and 3, respectively.

- a) How many such matrices A are there, up to similarity?
- b) If we also know that the algebraic multiplicity m_1 equals 3, determine the Jordan canonical form of A.

Solution.

Let V be a vector space such that $L_A \in \text{End}(V)$. Note that dim V = 7.

Let d_1 be the multiplicity of the eigenvalue 1, and let d_2 be the multiplicity of the eigenvalue 2.

Since 1 and 2 are the only eigenvalues, $d_1 + d_2 = \dim V = 7$.

Since E_1 has the dimension of 2, there are two columns in the dot diagram of K_1 . Therefore, $d_1 \geq 2$

Similarly, since E_2 has the dimension of 3, there are three columns in the dot diagram of K_2 . Thus, $d_2 \geq 3$ and thus $7 - d_2 = d_1 \leq 4$.

We now look at each case.

If $d_1 = 2$, then $d_2 = 5$, and there is only one possibility for the dot diagram corresponding to K_1 (because 2 = 1 + 1). The number of possible dot diagrams corresponding to K_2 in this case is equal to the number of partitions of 5 with 3 terms, which is equal to 2 + 2 + 2 + 1 + 1 + 3.

If $d_1 = 3$, then $d_2 = 4$, and there is only one possibility for the dot diagram corresponding to K_1 (the only partition of 3 up to the order of elements, consisting of two terms, is 1 + 2). Similarly, there is only one possibility for the dot diagram of K_2 (the partition of 4 with 3 elements is 1 + 1 + 2).

If $d_1 = 4$, then $d_2 = 3$. The number of partitions of 4 with 2 terms is 2 (1 + 3, 2 + 2), and thus there are two possibilities for the dot diagram of K_1 . There is only one possible dot diagram of K_2 , because the only partition of 3 with three terms is 1 + 1 + 1.

Therefore, there are $1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5$ possible matrices A, equivalent up to similarity.

If $d_1 = 3$, from the discussion above we already know that JCF can be inferred: