

Hierarchický model

© 1995-2019 Josef Pelikán CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
https://cgg.mff.cuni.cz/~pepca/

Hierarchie v 3D modelování

Kompozice "zdola-nahoru"

- složitější objekty se sestavují z jednodušších
- při modelování se často několikanásobně opakují některé části objektů (stavební prvky, součástky)

Databáze 3D objektů

 (nejen) ve strojírenství a stavebnictví se často používají standardní – normalizované – prvky

Parametrická konstrukce

- jednotlivé instance objektu se mohou mírně lišit
- parametry/atributy, mechanismus dědičnosti...

Hierarchické modelování

Scéna se skládá z objektů

- objekty se skládají z komponent
 - » komponenty se skládají ze součástek
 - součástky se skládají z…

Hierarchické modelování je přirozené a efektivní

- v databázi mohou být uloženy celé knihovny dílů, ze kterých si konstuktér/umělec vybírá
- další vlastnosti hierarchické metodiky
 - » atributy uzlů hierarchie (dědičnost, parametrizovatelnost)
 - » relativní transformační matice (poloha potomka je definována pouze vzhledem k rodičovskému uzlu)

Hierarchický model robota

Strom modelu robota

Uložení objektu v databázi

Globální (implicitní) atributy a parametry

vzhled (barva, materiál), přesnost aproximace křivek...

Vlastní 3D prvky

- tělesa, stěny, plochy, VB, IB... (podle typu modelu)
- souřadná soustava spojená s objektem
- lokální hodnoty atributů a parametrů

Odkazy na použité podobjekty

- transformační matice (relativní transformace)
- modifikace parametrů a atributů podobjektu

Reprezentace modelu v paměti

Převedení acyklického grafu do formy stromu

- uzel = instance objektu
- geometrická data se nesdílejí

Souřadnice vrcholů těles, řídících uzlů ploch... podléhají geometrickým transformacím a projekci

- ~ relativní souřadnice uvnitř objektu 3D
- ~ absolutní (světové) souřadnice ve scéně 3D
- promítnuté souřadnice 2D nebo 3D (z = hloubka)
- souřadnice výstupního zařízení 2D (celočíselné)

Relativní transformace

Transformace **listu scény** (síť trojúhelníků) do světových souřadnic se skládá z posloupnosti transformací

součiny matic i modelové transformace může počítat GPU

Souřadné soustavy

Souřadné soustavy II

[x, y] skutečná velikost v pixelech na obrazovce (fragmenty)

z hloubka kompatibilní s z-bufferem

Souřadné soustavy III

Souřadnice modelu

- databáze objektů, ze kterých se skládá scéna
- 3D modelovací programy (3DS Max, Maya, Blender, Rhino...)

Světové souřadnice

- absolutní souřadnice virtuálního 3D světa
- vzájemná poloha jednotlivých instancí objektů

Souřadnice kamery

- 3D svět se transformuje do relativních souřadnic kamery
- střed projekce: počátek, směr pohledu: -z (nebo z)

Hierarchické 3D formáty

PHIGS(+) (ANSI, ISO)

"Programmer's Hierarchical Interactive Graphics System"

OpenInventor, Performer (oba SGI)

objektové nadstavby nad OpenGL

VRML ("Virtual Reality Modeling Language")

WebSpace (World-Wide Web)

OpenSG, X3D (Web3D), FataMorgana (.FMO)...

Vstupní formáty zobrazovacích programů

PoV Ray, RayShade, Radiance...

Scéna je reprezentována stromem (či DAG)

- vnitřní uzly transformace, změny atributů, "skupiny",
 přepínače... mohou být závislé na čase
- listy geometrie (vrcholy, normály), světla, materiály…
- DAG některé listy nebo i celé podgrafy mohou být sdíleny (např. společná geometrie, sady atributů)

Výsledek je definován **průchodem grafem** ("in-order")

- vnitřní uzly modifikují parametry, kontext, souřadnou soustavu
- listy přispívají k vlastnímu výsledku (primitiva scény)

Graf scény

Images © SGI

Literatura

J. Foley, A. van Dam, S. Feiner, J. Hughes: Computer Graphics, Principles and Practice, 285-346

Web3D konsorcium: https://www.web3d.org/