# Statistical Inference Course Project - Part 2

Joshua Chua Sunday, August 23, 2015

## Overview

In this part of the project we analyse the ToothGrowth data in the R datasets package by doing the following:

- 1. Load the ToothGrowth data and perform some basic exploratory data analyses
- 2. Provide a basic summary of the data.
- 3. Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose. (Only use the techniques from class, even if there's other approaches worth considering)
- 4. State your conclusions and the assumptions needed for your conclusions.

## Data analysis

From the documentation:https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/ToothGrowth.html (https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/ToothGrowth.html)

**Description:** The response is the length of odontoblasts (teeth) in 60 guinea pigs at each of three dose levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice or ascorbic acid).

Format: A data frame with 60 observations on 3 variables.

| Variable | Class   | Description                 |  |
|----------|---------|-----------------------------|--|
| le       | numeric | Tooth length                |  |
| supp     | factor  | Supplement type (VC or OJ). |  |
| dose     | numeric | Dose in milligrams.         |  |

We can see that there are effectively only 3 dosages, so we will convert this to a factor variable.

ToothGrowth\$dose<-as.factor(ToothGrowth\$dose) #dose as a factor
levels(ToothGrowth\$supp)<-c("Orange Juice", "Vitamin C") #rename supplement type
summary(ToothGrowth)

```
##
         len
                                supp
                                          dose
##
    Min.
            : 4.20
                     Orange Juice:30
                                         0.5:20
    1st Qu.:13.07
                     Vitamin C
##
                                  :30
                                         1
                                            :20
    Median :19.25
                                         2
                                            :20
##
    Mean
            :18.81
##
##
    3rd Qu.:25.27
##
    Max.
            :33.90
```

Plotting the data, let's compare the growth in tooth length given the varying dosage for orange juice and ascorbic acid.

```
ggplot(ToothGrowth, aes(x=dose, y=len))+
  geom_boxplot(aes(fill=dose))+
  #geom_smooth(aes(group=1),method = "Lm", se = TRUE)+
  facet_grid(.~supp)
```



We can observe that Vitamin C seems to have an effect on teeth length since a higher does is associated with longer teeth in both delivery methods. Also, orange juice as a method of delivery seems result in longer teeth than Vitamin C, with the exception of the 2mg dose where the lengths are very similar. This might indicate a maximum effect point where doses above 2mg have no additional positive effect on tooth growth.

## Hypothesis testing

From these observations we propose the following hypotheses and check them by means of two-group t-tests.

1. H0, mean tooth length corresponding to two different dosages is the same.

Comparing the dosages 0.5mg to 1mg, 1mg to 2mg, 0.5 to 2mg, we get the following results.

| Dosage  | Confidence Interval    | p-value   | Outcome   |
|---------|------------------------|-----------|-----------|
| 0.5 - 1 | [-11.983781 -6.276219] | 1.268e-07 | Reject H0 |
| 1 - 2   | [-8.996481 -3.733519]  | 1.906e-05 | Reject H0 |
| 0.5 - 2 | [-18.15617 -12.83383]  | 4.398e-14 | Reject H0 |

# 2. H0, mean tooth length corresponding to two different delivery methods is the same.

Comparing the delivery methods for the 3 different doses we get the following results.

| Dosage | Confidence Interval | p-value  | Outcome           |
|--------|---------------------|----------|-------------------|
| 0.5    | [1.719057 8.780943] | 0.006359 | Reject H0         |
| 1      | [2.802148 9.057852] | 0.001038 | Reject H0         |
| 2      | [-3.79807 3.63807]  | 0.9639   | Fail to reject H0 |

#### Conclusions and assumptions

Based on the above, we can conclude that:

- 1. Increased vitamin C dosages (in either orange juice or pure ascorbic acid form) does promote of tooth growth.
- 2. Delivery method has an effect on tooth growth when dosages is between 0.5 and 1mg, but has little influence at a 2mg dose.

We assume that the data is not paired as there are only 60 observations from 10 guinea pigs, 2 delivery methods and 3 dosages, and also that double blind reasearch methods were followed when obtaining the data.

#### Appendix 1: Codes and outputs

```
#subsetting the data by dose
dose05_1 <- subset(ToothGrowth, dose %in% c(0.5,1))
dose1_2 <- subset(ToothGrowth, dose %in% c(1,2))
dose05_2 <- subset(ToothGrowth, dose %in% c(0.5,2))

#0.5mg vs 1mg
t.test(len ~ dose, data=dose05_1, paired=FALSE, var.equal=FALSE)</pre>
```

```
##
## Welch Two Sample t-test
##
## data: len by dose
## t = -6.4766, df = 37.986, p-value = 1.268e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.983781 -6.276219
## sample estimates:
## mean in group 0.5 mean in group 1
## 10.605 19.735
```

```
#1mg vs 2mg
t.test(len ~ dose, data=dose05_2, paired=FALSE, var.equal=FALSE)
```

```
##
## Welch Two Sample t-test
##
## data: len by dose
## t = -11.799, df = 36.883, p-value = 4.398e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.15617 -12.83383
## sample estimates:
## mean in group 0.5 mean in group 2
## 10.605 26.100
```

```
#0.5mg vs 2mg
t.test(len ~ dose, data=dose1_2, paired=FALSE, var.equal=FALSE)
```

```
##
## Welch Two Sample t-test
##
## data: len by dose
## t = -4.9005, df = 37.101, p-value = 1.906e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.996481 -3.733519
## sample estimates:
## mean in group 1 mean in group 2
## 19.735 26.100
```

```
#delivery method t-tests
t.test(len ~ supp, ToothGrowth[ToothGrowth$dose == .5, ],paired=FALSE, var.equal=FALSE)
```

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 3.1697, df = 14.969, p-value = 0.006359
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.719057 8.780943
## sample estimates:
## mean in group Orange Juice mean in group Vitamin C
## 13.23 7.98
```

t.test(len ~ supp, ToothGrowth[ToothGrowth\$dose == 1, ],paired=FALSE, var.equal=FALSE)

```
t.test(len ~ supp, ToothGrowth[ToothGrowth$dose == 2, ],paired=FALSE, var.equal=FALSE)
```

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = -0.046136, df = 14.04, p-value = 0.9639
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.79807 3.63807
## sample estimates:
## mean in group Orange Juice mean in group Vitamin C
## 26.06 26.14
```