Introduction to Interpretable Machine Learning

Dean Allsopp

Global AI Bootcamp

December 15, 2018

Machine Learning?

Iteratively derive structure from data

(Patterns, Rules, Clusters, Policies)

Supervised Machine Learning?

(We have labels)

Interpretable Machine Learning?

What? — Data (Features)

How? – Model (Global)

Why? — Prediction (Local)

How well do you understand the data?

Tools?

R

Python

EDA

Data Explorer (R)

Pandas Profiling (Py)

create_report([dataset])

Data Profiling Report

- Basic Statistics
 - Raw Counts
 - Percentages
- Data Structure
- Missing Data Profile
- Univariate Distribution
 - Histogram
 - Bar Chart (by frequency)
 - QQ Plot
- Correlation Analysis
- Principle Component Analysis

Basic Statistics

Raw Counts

Name	Value
Rows	506
Columns	14
Discrete columns	1
Continuous columns	13
All missing columns	0
Missing observations	0
Complete Rows	506
Total observations	7,084
Memory allocation	57.4 Kb

Univariate Distribution

Histogram

Correlation Analysis

chas_1 -	-0.06	-0.04	0.06	0.09	0.09	0.09	-0.1	-0.01	-0.04	-0.12	0.05	-0.05	0.18	-1	1
chas_0 -	0.06	0.04	-0.06	-0.09	-0.09	-0.09	0.1	0.01	0.04	0.12	-0.05	0.05	-0.18	1	-1
medv -	-0.39	0.36	-0.48	-0.43	0.7	-0.38	0.25	-0.38	-0.47	-0.51	0.33	-0.74	1	-0.18	0.18
Istat -	0.46	-0.41	0.6	0.59	-0.61	0.6	-0.5	0.49	0.54	0.37	-0.37	1	-0.74	0.05	-0.05
b -	-0.39	0.18	-0.36	-0.38	0.13	-0.27	0.29	-0.44	-0.44	-0.18	1	-0.37	0.33	-0.05	0.05
ptratio -	0.29	-0.39	0.38	0.19	-0.36	0.26	-0.23	0.46	0.46	1	-0.18	0.37	-0.51	0.12	-0.12
tax -	0.58	-0.31	0.72	0.67	-0.29	0.51	-0.53	0.91	1	0.46	-0.44	0.54	-0.47	0.04	-0.04
Features - pea	0.63	-0.31	0.6	0.61	-0.21	0.46	-0.49	1	0.91	0.46	-0.44	0.49	-0.38	0.01	-0.01
dis -	-0.38	0.66	-0.71	-0.77	0.21	-0.75	1	-0.49	-0.53	-0.23	0.29	-0.5	0.25	0.1	-0.1
age -	0.35	-0.57	0.64	0.73	-0.24	1	-0.75	0.46	0.51	0.26	-0.27	0.6	-0.38	-0.09	0.09
rm -	-0.22	0.31	-0.39	-0.3	1	-0.24	0.21	-0.21	-0.29	-0.36	0.13	-0.61	0.7	-0.09	0.09
nox -	0.42	-0.52	0.76	1	-0.3	0.73	-0.77	0.61	0.67	0.19	-0.38	0.59	-0.43	-0.09	0.09
indus -	0.41	-0.53	1	0.76	-0.39	0.64	-0.71	0.6	0.72	0.38	-0.36	0.6	-0.48	-0.06	0.06
zn -	-0.2	1	-0.53	-0.52	0.31	-0.57	0.66	-0.31	-0.31	-0.39	0.18	-0.41	0.36	0.04	-0.04
crim -	1	-0.2	0.41	0.42	-0.22	0.35	-0.38	0.63	0.58	0.29	-0.39	0.46	-0.39	0.06	-0.06
	crim _	_ uz	_ snpui	, xon	E	- age	, sip	ਾ ਇ Features	tax •	_ ptratio _	q	stat -	_ medv	chas_0_	chas_1_

Correlation Meter -1.0 -0.5 0.0 0.5 1.0

Model Residuals Plot

DALEX (R)

YELLOWBRICK (Py)

Variable Importance Plot

DALEX (R)

SHAP (PY)

In [11]: shap.summary_plot(shap_values, X_display, plot_type="bar")

Partial Dependence & Individual Conditional Plots

DALEX/IML (R)

PDPBOX (Py)

Ceteris Paribus Plot

DALEX (R)

LIME (R)

LIME (Py)

Generate data points based on training data

Compute complex model predictions from the generated data to find the 'most useful features'

Fit a local linear model for the 'most useful features' and use the feature coefficients as reason codes

Shapley Values (Coalition Attribution)

IML (R)

SHAP (Py)

BreakDown

DALEX (R)

PyBreakdown (Py)

In [7]: # visualisation explanation.visualize(figsize=(8,5),dpi=100)

Surrogate Trees

IML (R)

SKATER (Py)

Conclusion

Multiple ML Models

Multiple Interpretation Approaches

Data Understanding

Consider Local and Global

Combine Multiple Perspectives

R

Python

Recommendations (Python):

```
Local - [SHAP]
Global - Surrogate Trees [SKATER]
Data -[Pandas Profiling]
Visual - [Yellowbrick], [PDPBox]
```

Recommendations (R):

```
Local - SHAP [IML]
Global - Surrogate Trees [IML], Variable Importance [DALEX]
Data - [Data Explorer]
Visual - Breakdown, ALE, Ceteris Paribus [DALEX]
Visual - PDP, ICE [IML]
```

Thanks for Listening!

dean_allsopp@hotmail.com