STAT31430 Applied Linear Algebra

Topics Covered up to Midterm

Seung Chul Lee

1 Definitions

• Linearly independent:

$$\forall \alpha_1, \dots, \alpha_n \in \mathbb{K}, \ \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0 \Rightarrow \alpha_1 = \dots = \alpha_n = 0$$

• Orthonormal:

$$\langle y_i, y_j \rangle = 0, \quad \forall i \neq j, \quad ||y_i|| = 1, \quad \forall i$$

• Kernel:

For $A \in \mathcal{M}_{n,p}(\mathbb{K})$,

$$\ker(A) = \{x \in \mathbb{K}^p : Ax = 0\} \subset \mathbb{K}^p$$

• Image:

For $A \in \mathcal{M}_{n,p}(\mathbb{K})$,

$$\operatorname{im}(A) = \{Ax : x \in \mathbb{K}^p\} \subset \mathbb{K}^n$$

• Dimension:

The number of elements in a spanning linearly independent set of vectors, i.e., a basis.

- Rank:
 - $\operatorname{rank} A = \dim(\operatorname{im} A)$
- Trace:

$$A = (a_{ij})_{1 \le i,j \le n}, \text{ tr}(A) = \sum_{i=1}^{n} a_{ii}$$

• Permutation:

 $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$ such that it is both injective and surjective, i.e., bijective.

• Determinant:

For $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$,

$$\det(A) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

where $\varepsilon(\sigma)=(-1)^{p(\sigma)}$, the signature of σ , and $p(\sigma)=\sum_{1\leq i\leq j\leq n}\operatorname{Inv}_{\sigma}(i,j)$, the inversion counter.

 $\bullet \ \, Adjoint/conjugate \ transpose/Hermitian \ transpose:$

For
$$A = (a_{ij}) \in \mathcal{M}_n(\mathbb{C}), A^* \in \mathcal{M}_n(\mathbb{C})$$
 given by $A^* = \overline{A^\top} = (\overline{a_{ji}})$

- $A \in \mathcal{M}_n(\mathbb{C})$ is
 - self-adjoint (or Hermitian) if $A = A^*$.
 - unitary if $A^{-1} = A^*$, i.e., $AA^* = A^*A = I$.
 - normal if $AA^* = A^*A$.

- $A \in \mathcal{M}_n(\mathbb{R})$ is
 - symmetric (= self-adjoint) if $A = A^{\top}$.
 - orthogonal (= unitary) if $A^{-1} = A^{\top}$, i.e., $AA^{\top} = A^{\top}A = I$.
 - normal if $AA^{\top} = A^{\top}A$.
- Characteristic polynomial: For $A \in \mathcal{M}_n(\mathbb{C})$,

$$P_A: \mathbb{C} \to \mathbb{C}, \ P_A(\lambda) = \det(A - \lambda I)$$

• Eigenvalues:

The roots of the characteristic polynomial, i.e.,

$$\lambda \in \mathbb{C} \text{ s.t. } \det(A - \lambda I) = 0$$

• Spectrum:

$$\sigma(A) = \{ \lambda \in \mathbb{C} : \det(A - \lambda I) = 0 \}$$

 \bullet Algebraic multiplicity: The largest k such that

$$P_A(z) = (z - \lambda)^k Q(z)$$

• Eigenvector:

A nonzero vector $x \in \mathbb{C}^n$ s.t. $Ax = \lambda x$ for some $\lambda \in \sigma(A)$.

• Spectral radius:

For $A \in \mathcal{M}_n(\mathbb{C})$, the spectral radius of A is

$$\rho(A) := \max_{\lambda \in \sigma(A)} |\lambda|$$

• Eigenspace:

For $\lambda \in \sigma(A)$, $A \in \mathcal{M}_n(\mathbb{C})$, the eigenspace of \mathbb{C}^n associated to λ is

$$E_{\lambda} := \ker(A - \lambda I) = \{x \in \mathbb{C}^n : Ax = \lambda x\}$$

• Generalized eigenspace:

$$F_{\lambda} := \bigcup_{k>1} \ker(A - \lambda I)^k$$

• Matrix polynomial:

For polynomial $P \in \mathbb{C}[x] = \{a_0 + a_1x + a_2x^2 + \dots + a_dx^d : a_1, \dots, a_d \in \mathbb{C}, d \geq 0\}$ and $A \in \mathcal{M}_n(\mathbb{C})$, then $P : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ determined by

$$P(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_d A^d$$

is the corresponding matrix polynomial.

• Direct sum:

If $F_1, \ldots, F_p \subset \mathbb{C}^n$ are subspaces, we write

$$\mathbb{C}^n = \bigoplus_{i=1}^p F_i$$

if any $x \in \mathbb{C}^n$ can be written uniquely as $x = \sum_{i=1}^p x_i, \ x_i \in F_i, \ 1 \le i \le p$.

• Reduction to triangular form:

 $A \in \mathcal{M}_n(\mathbb{C})$ can be reduced to upper (lower) triangular form if $\exists P \in \mathbb{M}_n(\mathbb{C})$ nonsingular and an upper (lower) triangular matrix T s.t. $A = PTP^{-1}$.

• Similar matrices:

A and T are similar matrices if $\exists P$ invertible s.t. $A = PTP^{-1}$.

• Diagonalizability:

A is said to be diagonalizable if $A = PDP^{-1}$ for suitable P and D diagonal.

• Rayleigh quotient:

 $A \in \mathcal{M}_n(\mathbb{C})$ self-adjoint (Hermitian). The Rayleigh quotient is the function $R_A : \mathbb{C}^n \setminus \{0\} \to \mathbb{R}$ defined by

$$R_A(x) = \frac{\langle Ax, x \rangle}{\langle x, x \rangle}$$

• Positive definiteness:

 $A \in \mathcal{M}_n(\mathbb{C})$: Hermitian is positive definite if every eigenvalue $\lambda \in \sigma(A)$ satisfies $\lambda > 0$.

• Positive semidefiniteness:

 $A \in \mathcal{M}_n(\mathbb{C})$: Hermitian is positive definite if every eigenvalue $\lambda \in \sigma(A)$ satisfies $\lambda \geq 0$.

• Singular values:

The singular values of $A \in \mathcal{M}_{m,n}(\mathbb{C})$ are the square roots of the eigenvalues of A^*A .

• Moore-Penrose pseudoinverse:

Given a matrix $A \in \mathcal{M}_{m,n}(\mathbb{C})$ with SVD $A = V\tilde{\Sigma}U^*$, the pseudoinverse $A^{\dagger} \in \mathcal{M}_{n,m}(\mathbb{C})$ is the matrix

$$A^{\dagger} = U\tilde{\Sigma}^{\dagger}V^*, \quad \tilde{\Sigma}^{\dagger} = \begin{bmatrix} \Sigma^{-1} & 0\\ 0 & 0 \end{bmatrix} \in \mathcal{M}_{n,m}(\mathbb{R})$$

• Fundamental spaces of matrices:

$$A \in \mathcal{M}_{m,n}(\mathbb{R}) = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} \tilde{a}_1 \\ \vdots \\ \tilde{a}_m \end{bmatrix}$$

- Column space: $col(A) = span\{a_1, \dots, a_n\}$
- Kernel or null space: $\ker(A) = \text{null}(A) = \{x \in \mathbb{R}^n : Ax = 0\}$
- Row space: $\operatorname{row}(A) = \operatorname{span}\{\tilde{a}_1, \dots, \tilde{a}_n\} = \operatorname{col}(A^\top)$
- Left null space: $\ker(A^{\top}) = \{ y \in \mathbb{R}^m : A^{\top}y = 0 \}$
- Norm:

A norm $\|\cdot\|: \mathbb{K}^d \to [0,\infty)$ is a function satisfying

- i. positive definiteness: $||x|| \ge 0$ with ||x|| = 0 iff x = 0, $\forall x \in \mathbb{K}^d$.
- ii. homogeneity: $\|\lambda x\| = |\lambda| \|x\|$, $\forall x \in \mathbb{K}^d, \lambda \in \mathbb{K}$
- iii. triangle inequality: $||x+y|| \le ||x|| + ||y||$, $\forall x, y \in \mathbb{K}^d$
- Inner product:

 $\langle \cdot, \cdot, \rangle$ an inner product on $V \times V \to \mathbb{C}$ is a map satisfying

- i. $\langle v, v \rangle \geq 0, \ \forall v \in V$
- ii. $\langle \alpha_1 w_1 + \alpha_2 w_2, v \rangle = \alpha_1 \langle w_1, v \rangle + \alpha_2 \langle w_2, v \rangle, \quad w_1, w_2, v \in V, \alpha_1, \alpha_2 \in \mathbb{C}$
- iii. $\langle v, v \rangle = 0 \iff v = 0 \in V$
- iv. $\langle v, w \rangle = \langle w, v \rangle, \ \forall v, w \in V$
- Euclidean norm:

$$||x||_2 = \left(\sum_{i=1}^d |x_i|^2\right)^{\frac{1}{2}}$$

• *p*-norm:

$$||x||_p = \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}}, \ 1 \le p \le \infty$$

• Weighted *p*-norm:

$$||x||_{p,w} = \left(\sum_{i=1}^{d} w_i |x_i|^p\right)^{\frac{1}{p}}, \quad w = (w_1, \dots, w_d), \quad w_i > 0, \quad \forall i = 1, \dots, d$$

• Norm using matrix:

For A: real, positive definite, symmetric matrix,

$$||x||_A = (x^\top A x)^{\frac{1}{2}} = \left(\sum_{i,j=1}^n a_{ij} x_i x_j\right)^{\frac{1}{2}}$$

defines a norm.

• ∞-norm:

$$||x||_{\infty} = \max_{1 \le i \le d} |x_i| \left(= \lim_{p \to \infty} ||x||_p \right)$$

 \bullet Frobenius norm (Euclidean, Schur norm):

$$A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K}),$$

$$||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$$

• (Hölder) q-norm $(q \ge 1)$:

$$||A||_{\ell^q} = ||A||_{H,q} = \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^q\right)^{\frac{1}{q}}$$

• Infinity norm (∞ -norm):

$$||A||_{\ell^{\infty}} = ||A||_{H,\infty} = \max_{1 \le i,j \le n} |a_{ij}|$$

• Matrix norm:

A norm $\|\cdot\|$ on $\mathcal{M}_n(\mathbb{K})$ is a matrix norm if for all $A, B \in \mathcal{M}_n(\mathbb{K}), \|AB\| \leq \|A\| \|B\|$

• Subordinate (induced) norm:

Let $\|\cdot\|_*$ be a vector norm on \mathbb{K}^n . Then, the norm

$$||A||_* = \sup_{x \in \mathbb{K}^n \setminus \{0\}} \frac{||Ax||_*}{||x||_*}$$

is a matrix norm on $\mathcal{M}_n(\mathbb{K})$ which is said to be "subordinate" to the vector norm.

• Operator norm:

$$||A||_{a,b} = \sup_{x \neq 0} \frac{||Ax||_b}{||x||_a}$$

for $\|\cdot\|_a$ norm on \mathbb{C}^n , $\|\cdot\|_b$ norm on \mathbb{C}^m , $A \in \operatorname{Lin}(\mathbb{C}^m, \mathbb{C}^n)$. (Not necessarily matrix norms.)

2 Useful Facts

• Gram-Schmidt Orthogonalization:

Let $\{x_1, \ldots, x_n\}$ be a linearly independent set of vectors in \mathbb{K}^d . Then, \exists orthonormal family $\{y_1, \ldots, y_n\} \subset \mathbb{K}^d$ s.t. span $\{y_1, \ldots, y_p\} = \text{span}\{x_1, \ldots, x_p\}, \forall 1 \leq p \leq n$.

• Dimensionality result:

Let $A \subset \mathbb{K}^d$ be a subspace. If $\{v_1, \ldots, v_k\}$, $\{w_1, \ldots, w_l\}$ are two sets of basis vectors for A, then k = l

- For $A \in \mathcal{M}_n(\mathbb{K})$, TFAE
 - i) A is invertible, i.e., $\exists B \in \mathcal{M}_n(\mathbb{K})$ s.t. AB = BA = I.
 - ii) $ker(A) = \{0\}$
 - iii) $im(A) = \mathbb{K}^n$
 - iv) $\exists B \in \mathcal{M}_n(\mathbb{K}) \text{ s.t. } AB = I_n \text{ (left inverse)}$
 - v) $\exists B \in \mathcal{M}_n(\mathbb{K}) \text{ s.t. } BA = I_n \text{ (right inverse)}$
- Property of trace:

 $A, B \in \mathcal{M}_n(\mathbb{K}), \operatorname{tr}(AB) = \operatorname{tr}(BA).$

- Properties of determinants:
 - i) $A, B \in \mathcal{M}_n(\mathbb{K}), \det(AB) = \det(A) \det(B) = \det(BA).$
 - ii) $A \in \mathcal{M}_n(\mathbb{K}), \det(A) = \det(A^\top)$
 - iii) $A \in \mathcal{M}_n(\mathbb{K})$ is invertible iff $\det(A) \neq 0$.
- Property of triangular matrices:
 - i) $T \in \mathcal{M}_n(\mathbb{K})$ lower triangular. If T^{-1} exists, it is also a lower triangular matrix with diagonal entries given as reciprocals of diagonal entries of T.
 - ii) If T' is lower triangular, TT' is also lower triangular with diagonal entries being products of diagonal entries of T and T'.
- Inner products and matrices:

$$x, y \in \mathbb{C}^d$$
,

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$

• Block matrices:

 $A = (A_{I,J}), B = (B_{I,J})$ for some partition (n_I) . Then, C = AB also has block structure $(C_{I,J})$ with

$$C_{I,J} = \sum_{k=1}^{P} A_{I,K} B_{K,J} \text{ for } 1 \le I, J \le P$$

- $\det \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} = \det(A) \det(B)$
- $\lambda \in \sigma(A)$ implies \exists eigenvector associated to λ , i.e., $\ker(A \lambda I) \neq \{0\}$.
- If $\exists x \neq 0$ with $Ax = \lambda x$, then λ is an eigenvalue of A.
- Invariance of eigenvalues:

Both the characteristic polynomial and eigenvalues are invariant under change of basis, i.e., for any $Q \in \mathcal{M}_n(\mathbb{C})$ invertible,

$$P_{QAQ^{-1}} = P_A, \ \ \sigma(QAQ^{-1} = \sigma(A).$$

• If A: Hermitian, then all its eigenvalues are real.

• Lemma:

If $x \in \mathbb{C}^d$ satisfies $Ax = \lambda x$ for some $\lambda \in \mathbb{C}$, then $P(A)x = P(\lambda)x$ for all polynomial $P \in \mathbb{C}[x]$. In particular, $\lambda \in \sigma(A) \Rightarrow P(\lambda) \in \sigma(P(A))$.

 \bullet Cayley-Hamilton Thm:

Given $A \in \mathcal{M}_n(\mathbb{C})$. Let $P_A \in \mathbb{C}[x]$ be the characteristic polynomial of A. Then, $P_A(A) = 0$.

• Spectral Decomposition (Spectral Thm):

Suppose $A \in \mathcal{M}_n(\mathbb{C})$ has p distinct eigenvalues $\lambda_1, \ldots, \lambda_p$ with each λ_i having algebraic multiplicity n_i . Then, the generalized eigenspaces F_{λ_i} satisfy dim $F_{\lambda_i} = n_i$.

• Proposition:

Any matrix $A \in \mathcal{M}_n(\mathbb{C})$ can be reduced to (upper) triangular form.

• Schur Factorization:

For all $A \in \mathcal{M}_n(\mathbb{C})$, $\exists U \in \mathcal{M}_n(\mathbb{C})$ unitary (i.e., $UU^* = U^*U = I$) s.t. $T = U^{-1}AU$ is triangular.

• Proposition:

If $A \in \mathcal{M}_n(\mathbb{C})$ has p distinct eigenvalues $\lambda_1, \ldots, \lambda_p$, then A is diagonalizable.

• Thm:

 $A \in \mathcal{M}_n(\mathbb{C})$ is normal $\iff \exists U \in \mathcal{M}_n(\mathbb{C})$ unitary s.t. $A = U \operatorname{diag}\{\lambda_1, \dots, \lambda_n\}U^{-1}$.

• Thm:

 $A \in \mathcal{M}_n(\mathbb{C})$ is self-adjoint (Hermitian) \iff A: diagonalizable w.r.t. an orthonormal basis and has real eigenvalues.

• Thm:

 $A \in \mathcal{M}_n(\mathbb{C})$ self-adjoint. The smallest eigenvalue λ_1 of A satisfies

$$\lambda_1 = \min_{x \in \mathbb{C}^n \setminus \{0\}} R_A(x) = \min_{x \in \mathbb{C}^n, ||x|| = 1} \langle Ax, x \rangle$$

and the minimum value is attained for at least one eigenvector $x \neq 0$.

• Proposition:

 $A \in \mathcal{M}_n(\mathbb{C})$ self-adjoint with eigenvalues $\lambda_1, \ldots, \lambda_n$ in increasing order. Then, for $i = 2, \ldots, n$,

$$\lambda_i = \min_{x \perp \text{span}\{x_1, \dots, x_{i-1}\}} R_A(x)$$

where $\{x_1, \ldots, x_n\}$ are eigenvectors of A associated to eigenvalues $(\lambda_1, \ldots, \lambda_n)$, respectively.

• Courant-Fisher Thm: $A \in \mathcal{M}_n(\mathbb{C})$ self-adjoint with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. For all $i = 1, \ldots, n$,

$$\lambda_i = \max_{\{a_1, \dots, a_{i-1}\} \subset \mathbb{C}^n} \min_{x \perp \operatorname{span}\{a_1, \dots, a_{i-1}\}} R_A(x)$$

• SVD Factorization:

Let $A \in \mathcal{M}_{m,n}(\mathbb{C})$ be a matrix having r positive singular values $\mu_1 \geq \mu_2 \geq \cdots \mu_r > 0$.

Set
$$\Sigma = \operatorname{diag}\{\mu_1, \dots, \mu_r\}$$
 and $\tilde{\Sigma} = \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \in \mathcal{M}_{m,n}(\mathbb{R}).$

Then, there exist unitary matrices $\bar{U} \in \bar{\mathcal{M}}_n(\mathbb{C}), V \in \mathcal{M}_m(\mathbb{C})$ s.t.

$$A = V \tilde{\Sigma} U^*$$

- Properties of the pseudoinverse:
 - i) If $rank(A) = n \le m$

$$A^{\dagger} = (A^*A)^{-1}A^*$$

so that if A is square and nonsingular, then $AA^{\dagger} = A^{\dagger}A = I$ and $A^{\dagger} = A^{-1}$.

- ii) A^{\dagger} is the unique matrix X s.t. all of the following hold
 - 1. AXA = A
 - 2. XAX = A
 - 3. $XA = (XA)^*$
 - 4. $AX = (AX)^*$
- iii) Minimum length solution to $Ax = b \Rightarrow x^{\dagger} = A^{\dagger}b$.
- Properties of fundamental spaces:
 - $-\dim(\ker A) = n \operatorname{rank} A \text{ (rank-nullity thm)}$
 - $-\dim(\operatorname{row} A) = \operatorname{rank} A \le n$
 - $-\dim(\ker A^{\top}) = m \operatorname{rank} A$
 - $\ker A = \operatorname{row}(A)^{\perp}$
 - $\ker A^{\top} = \operatorname{col}(A)^{\perp}$
- Polar decomposition:

For all $A \in \mathcal{M}_n(\mathbb{R})$, there exists orthogonal Q and $S \in \mathcal{M}_n(\mathbb{R})$ symmetric and positive semidefinite s.t. A = QS. If A is invertible, S is positive definite.

- Comparing norms:
 - For $p \ge 1$, $x \in \mathbb{K}^d$,

$$|x_i| \le \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}}, \ \forall i \ \Rightarrow ||x||_\infty \le ||x||_p$$

- For $p \ge 1$, $x \in \mathbb{K}^d$,

$$||x||_p = \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^d ||x||_{\infty}^p\right)^{\frac{1}{p}} = ||x||_{\infty} d^{\frac{1}{p}}$$

- For $x \in \mathbb{K}^d$,

$$||x||_2 = \left(\sum_{i=1}^d |x_i|^2\right)^{\frac{1}{2}} \le \sum_{i=1}^d \left(|x_i|^2\right)^{\frac{1}{2}} = \sum_{i=1}^d |x_i| = ||x||_1$$

- Properties of vector norms:
 - $\|x\| = \|x y + y\| \le \|x y\| + \|y\|$ and $\|x\| \|y\| \le \|x y\|$. In particular, $x \mapsto \|x\|$ is uniformly (Lipschitz) continuous.
 - On \mathbb{R}^d , Cauchy-Schwarz: $x \cdot y \leq ||x||_2 ||y||_2$
- Equivalence of vector norms:

E: finite dimensional vector space. All norms on E are equivalent in the sense that for all norms $\|\cdot\|$, $\|\cdot\|'$, $\exists c, C > 0$ s.t. $c\|x\| \le \|x\|' \le C\|x\|$ for all $x \in E$.

• Frobenius norm is a matrix norm. $\|\cdot\|_{\ell^{\infty}}$ is not a matrix norm.

- Properties of subordinate norms:
 - All subordinate matrix norms are matrix norms. Not all matrix norms are subordinate to a vector norm. (e.g., Frobenius norm)
 - By homogeneity, for $A \in \mathcal{M}_n(\mathbb{K})$,

$$||A||_* = \sup_{\substack{x \in \mathbb{K}^n \\ ||x||_* = 1}} ||Ax||_* = \sup_{\substack{x \in \mathbb{K}^n \\ ||x||_* \le 1}} ||Ax||_*$$

 $- \|I_n\|_* = 1$ for all vector norms $\|\cdot\|_*$, generating a subordinate norm.

• Proposition:

Let $\|\cdot\|$ be a subordinate matrix norm on $\mathcal{M}_n(\mathbb{K})$. Then, for $A \in \mathcal{M}_n(\mathbb{K})$, $\exists x_A \in \mathbb{K}^n \setminus \{0\}$ s.t.

$$||A|| = \frac{||Ax_A||}{||x_A||}$$

• $\tilde{x}_A = \frac{x_A}{\|x_A\|} \Rightarrow \exists x_{\text{max}} \text{ with } \|x_{\text{max}}\| = 1 \text{ s.t. } \|Ax_{\text{max}}\| = \|A\|.$

• Property of 1-norm:

Let $A \mapsto ||A||_1$ denote the matrix norm subordinate to $||\cdot||_1$ on \mathbb{K}^n . Then, for $A \in \mathcal{M}_n(\mathbb{K})$,

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

i.e., the largest column sum.

• Property of ∞ -norm:

Let $A \mapsto ||A||_{\infty}$ denote the matrix norm subordinate to $||\cdot||_{\infty}$ on \mathbb{K}^n . Then, for $A \in \mathcal{M}_n(\mathbb{K})$,

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}|$$

i.e., the largest row sum.

• Property of 2-norm:

Let $\|\cdot\|_2$ be the matrix norm subordinate to $\|\cdot\|_2$ for $A \in \mathcal{M}_n(\mathbb{K})$. This is also called the spectral norm. Then, $\forall A \in \mathcal{M}_n(\mathbb{K})$,

$$||A||_2 = ||A^*||_2 = \mu_1$$

where $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_r > 0$ are nonzero singular values of A for $A \neq 0$.

• Lemma:

If $U \in \mathcal{M}_n(\mathbb{C})$ is unitary $(UU^* = U^*U = I)$, then for all $A \in \mathcal{M}_n(\mathbb{C})$,

$$||UA||_2 = ||AU||_2 = ||A||_2$$

- Properties of spectral radius:
 - $-A \mapsto \rho(A)$ is not a norm on $\mathbb{C}^{n \times n}$.
 - If $A \in \mathcal{M}_n(\mathbb{C})$ is a normal matrix, then $||A||_2 = \rho(A)$.
 - If $A \mapsto ||A||$ is a matrix norm defined on $\mathcal{M}_n(\mathbb{C})$, then $\rho(A) \leq ||A||$ for all $A \in \mathcal{M}_n(\mathbb{C})$.
 - Given $A \in \mathcal{M}_n(\mathbb{C})$ and $\varepsilon > 0$, there exists a subordinate matrix norm $B \mapsto ||B||_{A,\varepsilon}$ s.t. $||A||_{A,\varepsilon} \le \rho(A) + \varepsilon$.

• Proposition:

Let $A = V\tilde{\Sigma}U^*$ be an SVD factorization of $A \in \mathcal{M}_{m,n}(\mathbb{C})$ with r nonzero singular values of A arranged in decreasing order.

For each $1 \le k \le r$, the matrix $A_k = \sum_{i=1}^k \mu_i v_i u_i^*$ satisfies

$$||A - A_k||_2 \le ||A - X||_2$$

for all $X \in \mathcal{M}_{m,n}(\mathbb{C})$ with rank X = k. Moreover, $||A - A_k||_2 = \mu_{k+1}$.