Задание на практику З курса, осенний семестр

Задача

Решить сингулярную двуточечную краевую задачу методом конечных разностей

$$\varepsilon y''(x) + p(x)y'(x) + q(x)y(x) + f(x) = 0, \quad x \in [0, 1],$$

со смешанными граничными условиями

$$-\alpha_1 y'(0) + \alpha_2 y(0) = \gamma_1,$$

 $\beta_1 y'(1) + \beta_2 y(1) = \gamma_2,$

при различных значениях параметра

$$\varepsilon = 1, 0.1, 0.01, 0.001.$$

Nº	α_1	α_2	β_1	β_2	γ_1	γ_2	p(x)	q(x)	f(x)
1	1	0	$\frac{\beta_1}{1}$	$\frac{\beta_2}{0}$	$\frac{1}{2}$	$\frac{72}{5}$	$\frac{p(x)}{x^2+x}$	$\frac{q(x)}{x\sin(x) - \cos(x)}$	$\frac{f(x)}{x^2+x}$
1	1	U	1	U				. , , , , ,	·
2	0	1	0	1	3	6	$\sqrt{x^2+x}$	$\sin^2(x) + \cos(x)$	$x^3 - x^2 + x$
3	1	0	1	0	4	7	$x-x^2$	$\sqrt[3]{\sin^2(x) + \cos(x)}$	$x^3 - x^2 + \sqrt{x}$
4	0	1	0	1	5	8	$\sqrt{x-x^2}$	$x^2 + x$	$x^3 - \sqrt{x^2 + x}$
5	1	0	1	0	6	9	$x\sin(x) + x^2$	$\sqrt{x^2+x}$	$\sqrt{x^3 - x^2} + x$
6	0	1	0	1	7	1	$\sqrt{x\sin(x) + x^2}$	$x-x^2$	$\sqrt{x^3 - x^2 + x}$
7	1	0	1	0	8	2	$x\sin(x) + \cos(x)$	$\sqrt{x-x^2}$	$(x^3 - x^2)\sin(x)$
8	0	1	0	1	9	3	$\sin(x) + \cos(x)$	$x\sin(x) + x^2$	$(x^3 - x^2)\cos(x)$
9	1	0	1	0	1	4	$x^2\sin(x) + \cos(x)$	$\sqrt{x\sin(x) + x^2}$	$\sqrt[3]{\sqrt{x^3 - x^2} + x}$
10	0	1	0	1	2	5	$x\sin(x) - \cos(x)$	$x\sin(x) + \cos(x)$	$x^2 + x$
11	1	0	1	0	3	6	$\sin^2(x) + \cos(x)$	$x^2 + x$	$x^3 - x^2 + x$
12	0	1	0	1	4	7	$\sqrt[3]{\sin^2(x) + \cos(x)}$	$\sqrt{x^2 + x}$	$x^3 - x^2 + \sqrt{x}$
13	1	0	1	0	5	8	$x^2 + x$	$x-x^2$	$x^3 - \sqrt{x^2 + x}$
14	0	1	0	1	6	9	$\sqrt{x^2 + x}$	$\sqrt{x-x^2}$	$\sqrt{x^3 - x^2} + x$
15	1	0	1	0	7	1	$x-x^2$	$x\sin(x) + x^2$	$\sqrt{x^3 - x^2 + x}$
16	0	1	0	1	8	2	$\sqrt{x-x^2}$	$\sqrt{x\sin(x) + x^2}$	$(x^3 - x^2)\sin(x)$
17	1	0	1	0	9	3	$x\sin(x) + x^2$	$x\sin(x) + \cos(x)$	$(x^3 - x^2)\cos(x)$
18	0	1	0	1	1	4	$\sqrt{x\sin(x) + x^2}$	$\sin(x) + \cos(x)$	$\sqrt[3]{\sqrt{x^3 - x^2} + x}$
19	1	0	1	0	2	5	$x\sin(x) + \cos(x)$	$x^2\sin(x) + \cos(x)$	$x^3 - x^2 + \sqrt{x}$
20	0	1	0	1	3	6	$\sin(x) + \cos(x)$	$x\sin(x) - \cos(x)$	$x^3 - \sqrt{x^2 + x}$
21	1	0	1	0	4	7	$x^2\sin(x) + \cos(x)$	$\sin^2(x) + \cos(x)$	$\sqrt{x^3 - x^2} + x$