We want to calculate the median with the observations in \mathcal{X} using the L_1 distance function as below.

- 1. Equal weights.
 - (a) We have $\mathcal{X} = \{1, 2, 3, 4, 5\}$. (The number of observations is odd). Sketch $y = 0.2 \cdot |x 1| + 0.2 \cdot |x 2| + 0.2 \cdot |x 3| + 0.2 \cdot |x 4| + 0.2 \cdot |x 5|$. What did you find it?
 - (b) We have $\mathcal{X}=\{1,2,3,4\}$. (The number of observations is even). Sketch $y=0.25\cdot|x-1|+0.25\cdot|x-2|+0.25\cdot|x-3|+0.25\cdot|x-4|$. What did you find it?
- 2. Unequal weights.
 - (a) We have $\mathcal{X} = \{1, 2, 3, 4, 5\}$. (The number of observations is odd). Sketch $y = 0.3 \cdot |x 1| + 0.2 \cdot |x 2| + 0.1 \cdot |x 3| + 0.2 \cdot |x 4| + 0.2 \cdot |x 5|$. What did you find it?
 - (b) We have $\mathcal{X}=\{1,2,3,4\}$. (The number of observations is even). Sketch $y=0.25\cdot|x-1|+0.30\cdot|x-2|+0.20\cdot|x-3|+0.25\cdot|x-4|$. What did you find it?
- 3. Can you generalize the above results? What is the optimal location (weighted median) with $y = \sum_{i=1}^{n} w_i |x x_i|$?