Statistical learning

Ngô Minh Nhựt

2025

- Materials
 - Lecture notes
 - Books:
 - Kevin P. Murphy, <u>Probabilistic Machine Learning: An Introduction</u>, MIT Press, March 2022
 - G. James, An Introduction to Statistical Learning (2nd edition),
 Springer, 2021
 - C. Bishop, Pattern Recognition and Machine Learning, Springer,
 2006 (pdf)
- Lecturers
 - Theory: Ngô Minh Nhựt
 - Labs: Lê Long Quốc

- Labs and coding environment
 - Through instruction session and Q&A on forum
 - Python (with Visual Code)
 - Google Colab (for training with powerful machines)

https://code.visualstudio.com

https://colab.research.google.com

- Tests
 - Quiz and report: 10%
 - Lab assignment: 15%
 - Mid-term test: 35%
 - Final project: 40%

- This course provides
 - basic knowledge about machine learning and
 - underlying mechanism about machine learning as well as
 - some applications in practical problems

Course topic

Week	Topic	Week	Topic
1	Introduction	8	Support vector machine
2	Linear regression	9	K-mean
3	Logistic regression	10	Dimensionality reduction
4	Overfitting and model validation	11	Decision tree
5	Neural network		
6	Midterm test		
7	Convolutional neural network		

Machine learning

- □ A machine learning algorithm is an algorithm learning to accomplish a task by observing data.
 - Used on complex tasks where it's hard to develop algorithms with handcrafted-rules
 - Exploits patterns in observed data and extract rules automatically

Applications

- Computer vision
- Speech to text, text to speech
- Financial analysis
- Self-driving cars
- Ads-targeting
- Virtual assistant

Example: object detection

- Learn from annotated corpus of examples (a dataset) to classify unknown images among different object types
- Observe images to learn patterns
- Lot of data available (i.e: ImageNet dataset)
- Very good error rates (< 5% with deep-CNN)</p>

Types of machine learning algorithms

- Supervised
- Learn a function by observing labeled samples, containing input and expected output
- Classification
- Regression

- Unsupervised
- Find underlying relations in data by observing unlabeled samples, containing only input
- Clustering
- Dimensionality reduction

Machine learning

Machine learning

Learning process

Feature extraction

- Extract the information useful for the task (features)
 we want to learn
- Example
 - Stock market time-series → [opening price, closing price, lowest price, highest price]
 - Image → Image with edges filtered
 - Document → bag-of-word

Classification vs Regression

- □ Regression: learn a function mapping an input to a real value
 - E.g., predict the temperature of tomorrow given some meteo signals
- Classification: learn a function mapping an input element to a class (within a finite set of possible classes)
 - E.g., predict tomorrow weather: {sunny, cloudy, rainy} given some meteo signals

Regression

Classification

Clustering

□ Separate different observed data points in similar groups (clusters). Observed data are unlabeled.

Linear algebra review

- Matrix and vector
- Summation and dot product
- Matrix multiplication
- Inversion and transposition

Matrix and vector

Matrix is a two-dimension array, e.g.,

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

- A is a 2x3 matrix consisting of 2 rows and 3 columns
- Vector is a matrix with multiple rows and one column

$$B = \begin{bmatrix} x \\ y \\ w \\ z \end{bmatrix}$$

B is a vector or 4x1 matrix

Matrix and vector

Unit matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Square matrix
- Diagonal from left-top to right-bottom are all one
- Other elements are zero
- Notation of unit matrix: I

Matrix and vector

- Notations and symbols
 - A_{ij}: element at i-th row and j-th column of matrix A
 - Vector with n dimensions is a vector with n rows
 - v_i: element at i-th row of vector v
 - Matrix is represented by upper case characters, vector by lower case ones
 - Scalar is a quantity having one value
 - R: set of real scalars
 - \blacksquare \mathbb{R}^n : set of n-dimension vectors

Summation and dot product

Summation of matrixes is done element wise, e.g.,

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} x & y \\ w & z \end{bmatrix} = \begin{bmatrix} a+x & b+y \\ c+w & d+z \end{bmatrix}$$

- Dimension of output matrix does not change
- Multiplication of matrix and a scalar

$$\alpha \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha a & \alpha b \\ \alpha c & \alpha d \end{bmatrix}$$

Matrix multiplication

Multiplication of matrix and vector

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} * \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \\ ex + fy \end{bmatrix}$$

- Output is a vector
- Dimension of vector must be equal to number of columns of matrix
 - E.g., mxn matrix multiplied by nx1 vector resulting in mx1 vector
 - Vector is the second operand

Matrix multiplication

Multiplication of matrix and matrix

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} * \begin{bmatrix} x & y \\ w & z \end{bmatrix} = \begin{bmatrix} ax + bw & ay + bz \\ cx + dw & cy + dz \\ ex + fw & ey + fz \end{bmatrix}$$

- Split into multiplications of matrix and vectors and combine the outputs
- Number of columns of first matrix must be equal to number of rows of second matrix
 - E.g., mxn matrix multiplied by nxp matrix resulting in mxp matrix

Inversion and transposition

Inversion

- Inverted matrix of A is denoted by A⁻¹
- $A*A^{-1} = I$
- Non-squared matrix does not have inverted matrix
- Transposition
 - Transposed matrix of A is denoted by A^T

$$A = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}, A^T = \begin{bmatrix} a & c & e \\ b & d & f \end{bmatrix}$$

- Mean, median
- Variance, standard deviation
- Covariance, correlation
- Law of large numbers

Mean: arithmetic average of a variable

$$\mu = rac{1}{N} \sum_{i=1}^N x_i$$

- Example: Mean of [3, 7, 10] is (3+7+10)/3 = 6.67
- Median: middle value when data is sorted
 - Example #1: Median of [3, 7, 10] is 7
 - Example #2: For [3, 7, 100], the median is still 7

■ Variance: average squared deviation from the mean

$$\sigma^2 = rac{1}{N} \sum_{i=1}^N (x_i - \mu)^2$$

- What is variance of [2, 4, 6] vs. [1, 9, 10]?
- Standard deviation: square root of variance

Covariance: measures whether two variables change together

$$\mathrm{Cov}(X,Y) = rac{1}{N} \sum_{i=1}^N (x_i - \mu_X)(y_i - \mu_Y)$$

Example

Student	Study Hours (X)	Exam Score (Y)
А	2	50
В	4	60
С	6	70
D	8	80
Е	10	90

$$\mu_X = \frac{2+4+6+8+10}{5} = 6$$

$$\mu_Y = \frac{50+60+70+80+90}{5} = 70$$

$$\mathrm{Cov}(X,Y) = \frac{80 + 20 + 0 + 20 + 80}{5} = \frac{200}{5} = 40$$

- Correlation: measures the strength and direction of a linear relationship of two variables
 - Correlation is covariance that is standardized
- Pearson correlation formula

$$r = rac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

- Interpretation:
 - ightharpoonup r=1: Perfect positive correlation
 - r=-1: Perfect negative correlation
 - r=0: No correlation

Example

Student	Study Hours (X)	Exam Score (Y)
А	2	50
В	4	60
С	6	70
D	8	80
Е	10	90

$$\mu_X = \frac{2+4+6+8+10}{5} = 6$$

$$\mu_Y = \frac{50+60+70+80+90}{5} = 70$$

$$\mu_X = \frac{2+4+6+8+10}{5} = 6$$
 $\operatorname{Cov}(X,Y) = \frac{80+20+0+20+80}{5} = \frac{200}{5} = 40$

• Standard deviation of Study Hours (
$$X$$
): $\sigma_X pprox 2.83$

• Standard deviation of Exam Scores (Y): $\sigma_Y pprox 14.14$

$$r=rac{ ext{Cov}(X,Y)}{\sigma_X\sigma_Y}$$

$$r=rac{40}{(2.83 imes14.14)}$$

$$r=rac{40}{39.99}pprox 1$$

- Law of large numbers: as sample size increases, sample mean approaches population mean
- Example
 - If we flip a fair coin 10 times, heads might appear 3 times (30%).
 - However, after 10,000 flips, the probability will be closer to 50%.