

MACHINE LEARNING CHALLENGE

ALEXANDER PAK YU LAI (218401269)

HARRY WILLIAM LODGE (218241616)

VIET NAM NGUYEN (218459058)

JARROD KENG YEN YONG (218271795)

Main observations from previous report:

- Many pairs of variables have a strong positive correlation related to rain predictions
- Humidity and pressure can help predict rain
- Accuracy of 79% in model

Models used:

<u>Classification:</u> KNN, PCA, XGB, Naïve Bayes, Decision tree classification and Random forest

Regression: Linear and Logistical

Neural network

MACHINE LEARNING FLOWCHART

CLASSIFICATION MODELS

FEATURE SELECTION

- Humidity3pm
- Pressure9pm
- Pressure3pm
- Rainfall
- WinGustSpeed

NAÏVE BAYES

- Target variable was encoded into numerical values, "Yes" for 1 and "No" for 0
- The precision and recall for class 0 were higher than class 1
- Accuracy Score: 0.81
- Be able to determine whether it will rain tomorrow in Australia

DECISION TREE

- Applying 10-fold cross validation on training set resulted in the best max_depth of 5
- Accuracy score: 0.85
- Performed well in predicting the status of tomorrow rain in Australia

RANDOM FOREST

- Exploiting 10-fold cross validation on training set led to the best number of ensemble of 3
- Accuracy score: 0.83
- Returned the potential of overfitting and less accurate prediction
- Possibly quite accurate prediction on tomorrow rain in Australia

K-NEAREST NEIGHBOURS

- KNN chooses closest neighbours and based on this assigns a class
- Predicts a Value for new observations
- Rain Tomorrow was the target
- Overall Accuracy 81%
- The choice of K Values are crucial
- Results show its practicality, but caution should be used

XGBOOST

- Popular algorithm in Structured and Tabula data
- PCA Recommended to reduce dimension
- Graph of Components show abundance of linear combinations
- Train Test and XGBoost implementation
- Scores show PCA usage
- XGBoost showed models performance

REGRESSION MODEL

LINEAR

- Entire dataset standardized to a range from 0-1
- Highest correlation coefficient is around 0.37
- Each feature and target calculated to see if it would fit the dataset
- The model is underfitting and not able to predict tomorrows weather outcome.

	precision	recall	f1-score	support
No Yes	0.87 0.73	0.95 0.50	0.91 0.59	22067 6372
accuracy macro avg weighted avg	0.80 0.84	0.72 0.85	0.85 0.75 0.84	28439 28439 28439

LOGISTIC REGRESSION

- Date, location, wind dir and risk mm removed
- Easy to implement
- Shorter than neural network in prep time than neural network
- Faster prediction time than neural network
- High accuracy

	precision	recall	f1-score	support
No Yes	0.87 0.70	0.94 0.51	0.90 0.59	27651 7898
accuracy macro avg weighted avg	0.79 0.83	0.72 0.84	0.84 0.75 0.83	35549 35549 35549

Contains no wind direction or risk mm

NEURAL NETWORK

- Only date, location and risk mm removed
- Different data sets were used with different variables
- Different amount of hidden layers tested with varying neuron counts
- Time intensive with large networks
- High accuracy

CONCLUSION

- All above 80% accuracy
- Classification < regression and neural networks
- Near identical implementation
- Best classification = decision tree
- Best of regression and neural network=logistic regression

REFERENCES

Wikipedia n.d., *Mutual information*, Wikipedia, The Free Encyclopedia, retrieved 19 May 2020, https://en.wikipedia.org/wiki/Mutual_information>.