WYDZIAŁ W-8 / STUDIUM.....

KARTA PRZEDMIOTU

Nazwa w języku polskim Metody systemowe i decyzyjne w informatyce

Nazwa w języku angielskim Systems analysis and decision support methods in Computer

Science

Kierunek studiów (jeśli dotyczy): Informatyka Specjalność (jeśli dotyczy):

Stopień studiów i forma: I / H stopień*, stacjonarna / niestacjonarna*

Rodzaj przedmiotu: obowiązkowy / wybieralny / ogólnouczelniany *

Kod przedmiotu INZ002556 Grupa kursów TAK/NIE*

	Wykład	Ćwiczenia	Laboratorium	Projekt	Seminarium
Liczba godzin zajęć zorganizowanych w Uczelni	30	15	15		
(ZZU)					
Liczba godzin całkowitego	90	60	60		
nakładu pracy studenta (CNPS)					
Forma zaliczenia	Egzamin /	Egzamin /	Egzamin /	Egzamin /	Egzamin /
	zaliczenie	zaliczenie na	zaliczenie na	zaliczenie na	zaliczenie na
	na ocenę*	ocenę*	ocenę*	ocenę*	ocenę*
Dla grupy kursów zaznaczyć					
kurs końcowy (X)					
Liczba punktów ECTS	3	2	2		
w tym liczba punktów	0	0	2		
odpowiadająca zajęciom					
o charakterze praktycznym (P)					
w tym liczba punktów ECTS	1,8	1,2	1,2		
odpowiadająca zajęciom					
wymagającym bezpośredniego					
kontaktu (BK)					

^{*}niepotrzebne skreślić

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

- 1. Znajomość zagadnień z analizy matematycznej i algebry liniowej.
- 2. Umiejętność programowania w podstawowym zakresie (zmienne, funkcje, pętle, instrukcje warunkowe).

CELE PRZEDMIOTU

- C1 Nabycie wiedzy o metodach modelowania systemów.
- C2 Nabycie umiejętności opracowywania komputerowych modeli systemów z wykorzystaniem środowiska obliczeń inżynierskich.
- C3 Zdobycie elementarnej wiedzy z zakresu metod rozwiązywania zadań optymalizacji oraz sposobów ich wykorzystania na potrzeby systemów wspomagania podejmowania decyzji.
- C4 Zdobycie umiejętności wykorzystania komputerowego środowiska obliczeń inżynierskich do rozwiązywania zadań optymalizacji.

PRZEDMIOTOWE EFEKTY KSZTAŁCENIA

Z zakresu wiedzy:

- PEK_W01 Znajomość podstawowych pojęć związanych z modelowaniem i identyfikacją systemów.
- PEK_W02 Zna metody formułowania problemów decyzyjnych i rozwiązywania zadań optymalizacji.

Z zakresu umiejętności:

- PEK_U01 Umie sformułować matematyczny model problemu decyzyjnego.
- PEK_U02 Umie wykorzystać środowisko obliczeniowe MATLAB i pakiet SIMULINK do symulacji komputerowej procesów oraz do identyfikacji systemów.
- PEK_U03 Umie wykorzystać komputerowe środowisko obliczeń inżynierskich do rozwiązywania zadań z zakresu optymalizacji i wspomagania podejmowania decyzji.

Z zakresu kompetencji społecznych:

PEK K01 Potrafi udokumentować wyniki swojej pracy w sposób zrozumiały.

TREŚCI PROGRAMOWE					
	Forma zajęć – wykład Liczba godzin				
Wy1	Model w badaniach systemowych. Wstęp pojęcia podstawowe.	1			
Wy2	Sygnały ciągłe, transformata Laplace'a.	1			
Wy3	Sygnały dyskretne, transformata Z.	1			
Wy4	Typowe opisy obiektów.	1			
Wy5	Podstawowe elementy liniowe.	1			
Wy6	Tworzenie modeli matematycznych na podstawie eksperymentu – zadanie identyfikacji.	1			
Wy7	Identyfikacja obiektów statycznych w warunkach deterministycznych.	1			
Wy8	Zakłócony pomiar wielkości fizycznych.	1			
Wy9	Estymacja parametrów obiektu w obecności zakłóceń pomiarowych.	1			
Wy10	Wybór optymalnego modelu w warunkach losowych – regresja pierwszego i drugiego rodzaju; pełna informacja probabilistyczna.	1			
Wy11	Eksperymentalne wyznaczenie regresji pierwszego i drugiego rodzaju.	1			
Wy12	Model w zadaniu podejmowania decyzji (decyzje dopuszczalne, zadowalające, optymalne).	1			
Wy13	Analityczne metody optymalizacji funkcji wielu zmiennych bez ograniczeń.	1			
Wy14	Analityczne metody optymalizacji funkcji wielu zmiennych z ograniczeniami.	2			
Wy15	Programowanie całkowitoliczbowe – metoda podziału i ograniczeń.	1			
Wy16	Programowanie liniowe.	1			
Wy17	Numeryczne metody optymalizacji – pojęcia podstawowe. Numeryczne metody optymalizacji w kierunku - metody optymalizacji	1			

	funkcji jednej zmiennej.	
Wy18	Bezgradientowe metody optymalizacji funkcji wielu zmiennych bez ograniczeń.	2
Wy19	Gradientowe metody optymalizacji funkcji wielu zmiennych bez ograniczeń. Numeryczne metody optymalizacji funkcji wielu zmiennych z ograniczeniami.	1
Wy20	Probabilistyczne metody optymalizacji: metody Monte Carlo, algorytmy ewolucyjne i genetyczne, symulowane wyżarzanie.	2
Wy21	Wielokryterialne zadanie podejmowania decyzji.	1
Wy22	Algorytmy rozpoznawania wspomagające decyzje.	2
Wy23	Decyzje wieloetapowe, programowanie dynamiczne w ujęciu dyskretnym.	1
Wy24	Podejmowanie decyzji w warunkach niepewności.	1
Wy25	Gra w podejmowanie decyzji.	2
	Suma godzin	30

	Forma zajęć – ćwiczenia	Liczba godzin
Ćw1	Przykłady procesów dynamicznych i ich modele.	1
Ćw2	Równania różniczkowe, transformata Laplace'a i transmitancja.	1
Ćw3	Rozwiązywanie analityczne równań różniczkowych z	1
	wykorzystaniem transformaty Laplace'a.	
Ćw4	Przykłady procesów dyskretnych i ich modele. Transformata Z.	1
Ćw5	Rozwiązywanie równań różnicowych.	1
Ćw6	Numeryczne metody rozwiązywania równań różniczkowych.	1
	Schemat Eulera.	
Ćw7	Formułowanie zadań optymalizacji. Zmienne decyzyjne, funkcja	2
	celu, ograniczenia.	
Ćw8	Podstawowe pojęcia w optymalizacji. Wypukłość zbioru i funkcji,	1
	forma kwadratowa, gradient, macierz hesza.	
Ćw9	Analityczne metody optymalizacji bez ograniczeń i z ograniczeniami	1
	równościowymi. Funkcja Lagrange'a.	
Ćw10	Analityczne metody optymalizacji z ograniczeniami	1
	nierównościowymi. Warunki Kuhna-Tuckera.	
Ćw11	Programowanie liniowe.	1
Ćw12	Programowanie całkowitoliczbowe.	1
Ćw13	Programowanie dynamiczne.	2
	Suma godzin	15

	Liczba godzin	
La1	Szkolenie BHP. Wprowadzenie do pakietu obliczeń inżynierskich	1
	MATLAB. Podstawy pracy w oknie poleceń. Tworzenie skryptów.	
	Wykresy.	
La2	Zaawansowane funkcje pakietu MATLAB. Przetwarzanie danych.	1
La3	Modelowanie procesów dynamicznych w środowisku SIMULINK.	2
	Równania różniczkowe i transmitancja. Rozwiązywanie równań	
	różniczkowych.	
La4	Podstawowe rodzaje procesów dynamicznych. Badania symulacyjne.	1

La5	Opracowanie modelu i symulacja wybranego procesu dynamicznego.	1
	Sprawdzian.	
La6	Metody optymalizacji w kierunku. Implementacja algorytmów i	2
	ilustracja graficzna ich działania.	
La7	Metody optymalizacji wielowymiarowej. Implementacja algorytmów	3
	i ilustracja graficzna ich działania. Sprawozdanie z prac badawczych.	
La8	Zastosowanie przyborników pakietu MATLAB do realizacji	2
	zaawansowanych zadań modelowania i optymalizacji.	
La9	Opracowanie własnego programu w środowisku MATLAB.	2
	Suma godzin	15

	Forma zajęć – projekt	Liczba godzin
Pr1		
Pr2		
Pr3		
Pr4		
	Suma godzin	

	Liczba godzin	
Se1		
Se2		
Se3		
	Suma godzin	

STOSOWANE NARZĘDZIA DYDAKTYCZNE

- N1. Wykład tradycyjny. Prezentacje multimedialne.
- N2. Praca własna studenta rozwiązywanie zadań rachunkowych.
- N3. Praca wspólna rozmowa indywidualna studenta z prowadzącym.
- N4. Praca własna studenta studia literaturowe.
- $N5.\ Praca\ własna\ studenta-programowanie\ w\ MATLAB/SIMULINK.$
- N6. Praca własna studenta badania symulacyjne.
- N7. Praca własna studenta prezentacja wyników.

OCENA OSIĄGNIĘCIA PRZEDMIOTOWYCH EFEKTÓW KSZTAŁCENIA

Oceny (F – formująca (w trakcie semestru), P – podsumowująca (na koniec semestru)	Numer efektu kształcenia	Sposób oceny osiągnięcia efektu kształcenia
F1	PEK_U02	Obserwacja działań studenta. Indywidualna rozmowa nt. bieżącego ćwiczenia laboratoryjnego. Sprawdzian weryfikujący umiejętność zaprogramowania algorytmu identyfikacji lub symulatora procesu dynamicznego.
F2	PEK_U03 PEK_K01	Obserwacja działań studenta. Indywidualna rozmowa nt. bieżącego ćwiczenia

		laboratoryjnego, sprawozdanie z prac badawczych.
F3	PEK_W01 PEK_W02 PEK_U01	Obserwacja działań studenta. Rozwiązywanie zadań rachunkowych przy tablicy na zajęciach ćwiczeniowych. Kolokwium.
	1211_001	zajęciach ewiezemowych. Itolokwiam.
P1 (Wy)	PEK_W01	Egzamin pisemny.
	PEK_W02	
P2 (Cw)	PEK_W01	Na podstawie F3.
	PEK_W02	
	PEK_U01	
P3 (La)	PEK_U02	Na podstawie F1, F2.
	PEK_U03	

LITERATURA PODSTAWOWA I UZUPEŁNIAJĄCA

LITERATURA PODSTAWOWA:

- [1] Bubnicki Z., Teoria i algorytmy sterowania, PWN, Warszawa, 2005
- [2] Findeisen A., Szymanowski J., Wierzbicki A, *Teoria i metody obliczeniowe optymalizacji*, PWN, Warszawa, 1980.
- [3] Gutenbaum J., *Modelowanie matematyczne systemów*, Omnitech Press, Warszawa 1992.
- [4] Kaczorek T., Teoria sterowania, PWN, Warszawa, 1981
- [5] Kusiak J., Danielewska-Tułecka A., Oprocha P., *Optymalizacja Wybrane metody z przykładami zastosowań*, PWN 2009.
- [6] Owen G., Teoria gier, PWN, Warszawa, 1975.
- [7] Świątek J., *Wybrane zagadnienia identyfikacji statycznych systemów złożonych*, Oficyna wydawnicza Politechniki Wrocławskiej, Wrocław, 2009.

LITERATURA UZUPEŁNIAJĄCA:

- [1] Bazaraa M. S., Sherali H.D., Shetty C. M., *Nonlinear Programming Theory and Algorithms*, John Wiley and Sons, Inc., 2006.
- [2] Seidler J., Badach A., Molisz W., Metody rozwiązywania zadań optymalizacji, WNT, Waszawa, 1980.
- [3] Ogata K., Modern Control Engineering, Prentice Hall, 2009.

OPIEKUN PRZEDMIOTU (IMIE, NAZWISKO, ADRES E-MAIL)

prof. Jerzy Świątek, jerzy.swiatek@pwr.wroc.pl

MACIERZ POWIĄZANIA EFEKTÓW KSZTAŁCENIA DLA PRZEDMIOTU Metody systemowe i decyzyjne w informatyce Z EFEKTAMI KSZTAŁCENIA NA KIERUNKU Informatyka I SPECJALNOŚCI

Przedmiotowy efekt kształcenia	Odniesienie przedmiotowego efektu do efektów kształcenia zdefiniowanych dla kierunku studiów i specjalności (o ile dotyczy)**	Cele przedmiotu***	Treści programowe***	Numer narzędzia dydaktycznego***
PEK_W01	K1INF_W02	C1	Wy1 – Wy11	N1, N2, N4
(wiedza)	K1INF_W15		Ćw1 – Ćw6	
PEK_W02	K1INF_W01	C3	Wy12 – Wy25	N1, N2, N4
	K1INF_W15		Ćw7 – Ćw13	
PEK_U01	K1INF_U15	C3	Wy12,Wy21,	N1, N2
(umiejętności)			Wy23 –Wy25,	
			Ćw7, La9	
PEK_U02	K1INF_U07	C2	La1 – La5	N3, N5 – N7
PEK_U03	K1INF_U07	C4	La6 – La9	N3, N5 – N7
	K1INF_U11			
PEK_K01 (kompetencje)			La7, La9	N3, N7

^{** -} wpisać symbole kierunkowych/specjalnościowych efektów kształcenia

^{*** -} z tabeli powyżej