Методические указания к выполнению расчётно-графической работы по теме

«Множества»

Расчетно-графические работы выполняются командами студентов (по 3-4 человека) и заключаются в выполнении заданий, оформлении отчета. Сформированным командам присваивается номер от 1 до 20 (номера будут в таблице excel напротив каждой команды).

К расчетно-графической работе предъявляются следующие требования:

- 1) к выполнению заданий в работе должны быть:
 - а. представлены в логической последовательности основные этапы исследования или решения;
 - b. указаны используемые теоретические положения и методы;
 - с. получены точные численные результаты и построены требуемые графические изображения;
- 2) **к оформлению отчета** отчет должен быть выполнен в электронном виде в одном из следующих форматов: doc, docx или ppt, pptx (для ppt, pptx используется шаблон Университета ИТМО (ИСУ —> Полезные ссылки —> Корпоративная стилистика —> Презентации (в самом низу)), а затем, если нет анимаций, переведён в **pdf**, и содержать:
 - а. титульный лист/слайд (название дисциплины, номер модуля, учебный год, название РГР, ФИ исполнителя, номера групп, дата, место (Университет ИТМО));
 - b. условия всех заданий;
 - с. основные этапы решения (исследования) каждой задачи, его теоретическое обоснование, численные результаты;
 - d. при необходимости графики или рисунки, иллюстрирующие решение каждой задачи (выполненные в математическом редакторе Desmos: https://www.desmos.com/ или Geogebra: https://www.geogebra.org/). В случае интерактивных графиков и рисунков допускается вставить в отчёт вместо них ссылки на рабочие листы математического редактора и при защите демонстрировать их отдельно;
 - е. выводы;
 - f. оценочный лист (для работы, выполненной командой; при этом вклад каждого исполнителя оценивается всей командой по шкале от 0 до 5 баллов).

Задания

Задание 1.1. Перечислите элементы множества $A = \{x : x \in \mathbb{Z} \text{ и } 10 \le x \le 17\}$.

Решение: $A = \{x: x \in \mathbb{Z} \text{ и } 10 \le x \le 17\} = \{10,11,12,13,14,15,16,17\}.$

Множества чисел по вариантам представлены в таблице 1.1

Таблица 1.1 – Множества чисел по вариантам к заданию 1.1

	1 аолица 1.1 — Множества чисел по вариантам к заданию 1.1
N₂	Множества чисел
варианта	
1	$B = \{x : x \in \mathbb{Z} \text{ if } x^2 < 24\}$
2	$C = \{x: x \in \mathbf{Z} \text{ и } 6x^2 + x - 1 = 0\}$
3	$D = \left\{ x : x \in \mathbf{R} \text{ if } x^2 - 2x + 1 = 0 \right\}$
4	$E = \{x: x$ – целое и $x^2 < 100\}$
5	$F = \{x : x - \text{положительное четное целое число, меньше чем 21}\}$
6	$K = \{x: x < 12, x - $ натуралное число $\}$
7	$L = \{x: x = 2(n+1), n$ — неотрицательное целое число и $n \le 3\}$
8	$M = \{x: x = 2n, n - \text{натуральное число и } n < 5\}$
9	$N = \{x: x = n^3 - 1, n - \text{натуральное число и } 6 \le n \le 10\}$
10	$O = \{x: x = n^2, n - $ целое число и $ n \le 3\}$
11	$P = \{x : x \in \mathbf{Z} \text{ if } x^2 < 36\}$
12	$Q = \{x: x \in \mathbf{Z} \text{ и } 6x^2 - x - 1 = 0\}$
13	$R = \{x: x - $ целое и $x^4 < 121\}$
14	$S = \{x : x - \text{положительное нечетное целое число, меньше чем 36} \}$
15	$T = \{x: x < 21, x - $ натуралное четное число $\}$
16	$U = \{x: x = 2(n-1), n-$ неотрицательное целое число и $n \le 5\}$
17	$V = \{x: x = 3n, n - \text{натуральное число и } n < 6\}$
18	$W = \{x: x = n^3 + 2, n - \text{натуральное число и } 4 \le n \le 9\}$
19	$X = \{x: x = n^3, n - $ целое число и $ n \le 4\}$
20	$Y = \{x: x = n^3 + n^2, n - \text{целое число и } n \le 3\}$

Задание 1.2. Опишите множество при помощи характеристического свойства: $M = \{$ множество всех чисел, являющихся степенями двойки: 2, 4, 8, 16,..., не превышающих 300 $\}$.

Решение: $M = \{x: x = 2^n, n \in \mathbb{N} \text{ b } n \le 8 \text{ b}.$

Множества чисел по вариантам представлены в таблице 1.2.

Таблица 1.2 – Множества чисел по вариантам к заданию 1.2

T.C	Таолица 1.2 — IVIНОжества чисел по вариантам к заданию 1.2
№	Множества чисел
варианта	
1	Множество натуральных чисел, кратных пяти: 5, 10, 15,
	20,
2	Множество чисел 1, 4, 9, 25, 36,
3	Множество чисел 3, 6, 9, 12,15, 18, 21, 24.
4	Множество четных чисел 2, 4, 6, 8,, не превышающих 100.
5	Множество чисел -10 , -8 , -6 , -4 , -2 , 0 , 2 , 4 , 6 , 8 , 10 .
6	Множество неотрицательных нечетных чисел 1, 3, 5, 7,
7	Множество чисел 1, 5, 9, 13, 17,
8	Множество чисел, кратных трем и по модулю не
	превышающих 15.
9	Множество четных отрицательных чисел –2, –4, –6, –8,
10	Множество чисел 1, 2, 4, 8, 16, 32,
11	Множество натуральных чисел, кратных шести: 6, 12, 18,
	24,
12	Множество чисел 4, 8, 12, 16,20, 24, 28, 32.
13	Множество чисел –10, –7, –4, –1, 2, 5, 8, 11, 14.
14	Множество четных чисел 2, 4, 6, 8,,
15	Множество чисел, кратных шести и по модулю не
	превышающих 100.
16	Множество чисел 1, 5, 25, 125,
17	Множество чисел, – 16, –12, –8, –4, 0.
18	Множество чисел целых положительных чисел, не
	превышающих 25.
19	Множество чисел, -27, -9, -3, 1.
20	Множество чисел,-7, -5, -3, -1.

Задание 1.3. Эквивалентны ли следующие множества $A = \{x: x^2 - 8x + 15 = 0\}$ и $B = \{2,3\}$.

Решение: Рассмотрим множество $A = \{x: x^2 - 8x + 15 = 0\}$.

Решим квадратное уравнение $x^2 - 8x + 15 = 0$.

$$a = 1, b = -8, c = 15,$$

$$D = b^{2} - 4ac = (-8)^{2} - 4 \cdot 1 \cdot 15 = 64 - 60 = 4,$$

$$x_{1} = \frac{-b + \sqrt{D}}{2a} = \frac{-(-8) + \sqrt{4}}{2 \cdot 1} = \frac{8 + 2}{2} = 5,$$

$$x_{2} = \frac{-b - \sqrt{D}}{2a} = \frac{-(-8) - \sqrt{4}}{2 \cdot 1} = \frac{8 - 2}{2} = 3.$$

Таким образом, $A = \{x: x^2 - 8x + 15 = 0\} = \{3,5\}.$

Т.к. $\{3,5\} \neq \{2,3\}$, то множества $A = \{3,5\}$ и $B = \{2,3\}$ не являются эквивалентными.

Множества чисел по вариантам представлены в таблице 1.3.

Таблица 1.3 – Множества чисел по вариантам к заданию 1.3

	таолица 1.5 — Множества чисел по вариантам к заданию 1.5
№	Множества чисел
варианта	
1	$A = \{x: x^3 - 1 = 0\}$ $B = \{x: x^2 - 3x + 2 = 0\}$
2	$A = \{x: x^2 - 3x + 2 = 0\}$ и $B = \{2,3\}$
3	$A = \{2^n, n = 1, 2\}$ и $B = \{n^2, n = 1, 2,\}$
4	$A = \{y : y = 3^x, 0 < x < \infty\}$ и $B = \{y : y = 3^n, n = 1, 2,\}$
5	$A = \{x: x^2 - 5x + 6 = 0\} \text{ и } B = \{2,3\}$
6	$A = \{x: x^3 - 8 = 0\}$ и $B = \{x: x^2 - 4x + 4 = 0\}$
7	$A = \left\{ x : 2^{\frac{5x-1}{5x+2}} = 4 \right\} \text{ и } B = \left\{ y : y^2 + 2y + 1 = 0 \right\}$
8	$A = \{x: \sqrt{x^2 - 1} = x + 1\} \text{ и } B = \{x: x^2 + 2x + 1 = 0\}$
9	$A = \left\{x: \left(x^2 - 1\right)\sqrt{2x - 1}\right\} $ и $B = \left\{0.5; 1\right\}$
10	$A = \left\{ x: \log_{\frac{1}{7}}(x+7) = -2 \right\} \text{ if } B = \left\{ \log_{6}(x+4) = \log_{6}(4x-2) \right\}$
11	$A = \left\{ x : 2^{\frac{5x-1}{5x+2}} = 8 \right\} \text{ if } B = \left\{ y : y^2 - 2y + 1 = 0 \right\}$
12	$A = \left\{ x : \sqrt{x^2 - 4} = x + 2 \right\}$ $M = \left\{ x : x^2 + 2x + 1 = 0 \right\}$
13	$A = \left\{ x: \log_{\frac{1}{7}}(x+7) = -1 \right\} \text{ if } B = \left\{ \log_{6}(x-5) = \log_{6}(5x-2) \right\}$

	1
14	$A = \{x: (x^3 - 1)\sqrt{3x - 1} = 0\} \text{ и } B = \{\frac{1}{3}; 1\}$
15	$A = \{x: x^3 - 64 = 0\}$ и $B = \{x: x^2 - 8x + 16 = 0\}$
16	$A = \{x: x^2 - 5x - 6 = 0\}$ и $B = \{2,3\}$
17	$A = \{x: \log_7(x+8) = 1\}$ и $B = \{\log_6(2x-5) = \log_6(5x-2)\}$
18	$A = \{x: (x^4 - 1)\sqrt{9x^2 - 1} = 0\} B = \{\frac{1}{3}; 1; -1\}$
19	$A = \{x: x^3 - 8 = 0\}$ и $B = \{x: x^2 + 3x + 2 = 0\}$
20	$A = \left\{ x : 4^{\frac{5x-1}{4x+2}} = 4 \right\} \text{ и } B = \left\{ y : y^2 - 6y + 9 = 0 \right\}$

Задание 1.4. Даны множества $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 2, 3\}$, $B = \{2, 3, 4\}$, $C = \{1, 3, 5\}$.

Найдите $A \setminus C$, $A \setminus \overline{B}$, $B \setminus C$, $\overline{A \cup B}$, $\overline{C} \cup A$, $\overline{A} \cup B$, $B \cap \overline{A}$, $A \cup B \cup C$, $(A \cup B) \cap C$, $(A \setminus B) \cup C$, $(\overline{A} \setminus B) \cup C$, $(\overline{A} \cup B) \cap \overline{C}$, $(A \cup B) \setminus (\overline{A} \cap C)$, $(A \setminus B) \cup (A \setminus C)$, $(C \cup A) \setminus (C \cap A)$, $(A \cup B) \cap (A \cap C)$, $\overline{A \cup B \cup C}$, $\overline{C} \cup (B \setminus A)$, $A \oplus C$, $(A \setminus B) \oplus (A \setminus C)$, $(\overline{A} \setminus B) \oplus (B \setminus A)$.

Решение:

1.
$$A \setminus C = \{1, 2, 3\} \setminus \{1, 3, 5\} = \{2\}.$$

2.
$$\overline{B} = U \setminus B = \{1, 2, 3, 4, 5, 6\} \setminus \{2, 3, 4\} = \{1, 5, 6\},\$$

 $A \setminus \overline{B} = \{1, 2, 3\} \setminus \{1, 5, 6\} = \{2, 3\}.$

3.
$$B \setminus C = \{ 2, 3, 4 \} \setminus \{1, 3, 5\} = \{2, 4\}.$$

4.
$$\overline{A \cup B} = \overline{\{1, 2, 3\} \cup \{2, 3, 4\}} = \overline{\{1, 2, 3, 4\}} = U \setminus \{1, 2, 3, 4\} = \{1, 2, 3, 4, 5, 6\} \setminus \{1, 2, 3, 4\} = \{5, 6\}.$$

5.
$$\overline{C} = U \setminus C = \{1, 2, 3, 4, 5, 6\} \setminus \{1, 3, 5\} = \{2, 4, 6\},\$$

 $\overline{C} \cup A = \{2, 4, 6\} \cup \{1, 2, 3\} = \{1, 2, 3, 4, 6\}.$

6.
$$\overline{A} = U \setminus A = \{1, 2, 3, 4, 5, 6\} \setminus \{1, 2, 3\} = \{4, 5, 6\},\ \overline{A} \cup B = \{4, 5, 6\} \cup \{2, 3, 4\} = \{2, 3, 4, 5, 6\}.$$

7.
$$B \cap \overline{A} = \{ 2, 3, 4 \} \cap \{4, 5, 6\} = \{4\}.$$

8.
$$A \cup B \cup C = \{1, 2, 3\} \cup \{2, 3, 4\} \cup \{1, 3, 5\} = \{1, 2, 3, 4, 5\}$$
.

9.
$$(A \cup B) \cap C = (\{1, 2, 3\} \cup \{2, 3, 4\}) \cap \{1, 3, 5\} =$$

$$= \{1,2,3,4\} \cap \{1, 3, 5\} = \{1,3\}.$$

10.
$$A \setminus B = \{1, 2, 3\} \setminus \{2, 3, 4\} = \{1\}, (A \setminus B) \cup C = \{1\} \cap \{1, 3, 5\} = \{1\}.$$

11.
$$(\overline{A} \setminus B) \cup C = (\{4,5,6\} \setminus \{2, 3, 4\}) \cup \{1, 3, 5\} =$$

= $\{5,6\} \cup \{1, 3, 5\} = \{1,3,5,6\}.$

12.
$$(\overline{A} \cup B) \cap \overline{C} = (\{4,5,6\} \cup \{2,3,4\}) \cap \{2,4,6\} =$$

= $\{2,3,4,5,6\} \cap \{2,4,6\} = \{2,4,6\}.$

13.
$$A \cup B = \{1, 2, 3\} \cup \{2, 3, 4\} = \{1, 2, 3, 4\}, \overline{A} \cap C = \{4, 5, 6\} \cap \{1, 3, 5\} = \{5\}, (A \cup B) \setminus (\overline{A} \cap C) = \{1, 2, 3, 4\} \setminus \{5\} = \{1, 2, 3, 4\}.$$

14.
$$(A \setminus B) \cup (A \setminus C) = \{1\} \cup \{2\} = \{1, 2\}.$$

15.
$$C \cup A = \{1, 3, 5\} \cup \{1, 2, 3\} = \{1, 2, 3, 5\},\$$

 $C \cap A = \{1, 3, 5\} \cap \{1, 2, 3\} = \{1, 3\},\$
 $(C \cup A) \setminus (C \cap A) = \{1, 2, 3, 5\} \setminus \{1, 3\} = \{2, 5\}.$

16.
$$(A \cup B) \cap (A \cap C) = \{1, 2, 3, 4\} \cap \{1, 3\} = \{1, 3\}.$$

17.
$$\overline{A \cup B \cup C} = U \setminus (A \cup B \cup C) = \{1, 2, 3, 4, 5, 6\} \setminus \{1, 2, 3, 4, 5\} = \{6\}.$$

18.
$$B \setminus A = \{ 2, 3, 4 \} \setminus \{1, 2, 3\} = \{4\}, \overline{C} \cup (B \setminus A) = \{2, 4, 6\} \cup \{4\} = \{2, 4, 6\}.$$

19.
$$A \oplus C = \{1, 2, 3\} \oplus \{1, 3, 5\} = \{2, 5\}.$$

20.
$$(A \setminus B) \oplus (A \setminus C) = \{1\} \oplus \{2\} = \{1, 2\}.$$

21.
$$\overline{A} \setminus B = \{4,5,6\} \setminus \{2, 3, 4\} = \{5,6\},$$

 $(\overline{A} \setminus B) \oplus (B \setminus A) = \{5,6\} \oplus \{4\} = \{4,5,6\}.$

Множества по вариантам представлены в таблице 1.4.

Таблица 1.4 – Множества по вариантам к заданию 1.4

№	Множества
варианта	
1	$U = \{a,b,c,d\}, A = \{a,c\}, B = \{a,b,d\}, C = \{b,c\}$
2	$U = \{1, 2, 3, 4, 5, 6\}, A = \{1, 2, 3\}, B = \{1, 3, 5, 6\}, C = \{4, 5, 6\}$
3	$U = \{p,q,r,s,t,u,v,w\}, A = \{p,q,r,s\}, B = \{r,t,v\},\$
	$C = \{p, s, t, u\}$
4	$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 2, 3, 4, 5, 6, 7\},\$
	$B = \{4,5,6,7,8,9,10\}, C = \{2,4,6,8,10\}$
5	$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 2, 3, 4, 5, 6\},\$
	$B = \{4,6,7,8,9,10\}, C = \{2,4,6,8,10\}$

6	$U = \{p, q, r, s, t, u, v, w\}, A = \{p, q, r, s, t\}, B = \{p, r, t, v\},$
	$C = \{p, s, t, u, v\}$
7	$U = \{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7\}, A = \{0, 1, 2, 3, 4, 5, 6, 7\},$
	$B = \{3,4,5,6,7\}, C = \{-3,-2,-1,0,1,2,3,4\}$
8	$U = \{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{0, 1, 2, 3, 4, 5, 6, 7\},$
	$B = \{5,6,7,8,9\}, C = \{-3,-2,-1,0,1,2,3,4\}$
9	$U = \{p,q,r,s,t,u,v,w,x\}, A = \{p,q,r,s,t\}, B = \{p,r,t,v,x\},\$
	$C = \{p, s, t, u, v\}$
10	$U = \{p,q,r,s,t,u,v,w,x\}, A = \{p,q,r,s,t,x\},\$
	$B = \{p, r, t, v, x\}, C = \{p, s, t, u, v, x\}$
11	$U = \{1, 2, 3, 4, 5, 6, 7, 8\}, A = \{1, 3, 5, 7\}, B = \{2, 4, 6, 8\}, C = \{1, 2, 5, 8\}$
12	$U = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5\}, A = \{0, 1, 2, 3, 4, 5\},$
	$B = \{-4, -2, 0, 2, 4\}, C = \{-3, -2, -1, 0, 1, 2, 3, 4\}$
13	$U = \{-6, -4, -3, -2, -1, 0, 1, 2, 3\}, A = \{-6, -3, 0, 3\},$
	$B = \{-4, -2, 0, 2, 3\}, C = \{-3, -2, -1, 0, 1, 2, 3\}$
14	$U = \{k, l, q, r, s, t, u, v, w, x\}, A = \{k, l, r, s, t, x\},$
	$B = \{p, r, t, v, x\}, C = \{p, s, u, v, x\}$
15	$U = \{a,b,c,d,e,f,g\}, A = \{a,c,e,g\}, B = \{a,b,d,f\},$
	$C = \{b, c, d\}$
16	$U = \{a,b,c,d,e,f,g,i,j\}, A = \{a,c,e,g,i,j\}, B = \{a,b,d,f,g\},$
	$C = \{b, c, d, j\}$
17	$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 2, 3, 4, 5, 6\}, B = \{2, 4, 6, 8, 10\},$
	$C = \{3, 5, 7, 9\}$
18	$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 2, 5, 6, 9, 10\}, B = \{2, 4, 6, 8, 10\},$
	$C = \{1, 3, 5, 7, 9\}$
19	$U = \{a, b, c, d, e, f, g, m, n, o\}, A = \{a, c, e, g, m, n\},$
20	$B = \{a, b, d, f, n, o\}, C = \{b, c, d, f, g, o\}$
20	$U = \{-6, -4, -2, 0, 1, 3, 5, 7, 9\}, A = \{-6, -4, 0, 3, 7, 9\},$
	$B = \{-4, -2, 0, 3\}, C = \{-6, -2, 0, 1, 3, 7\}$

Задание 1.5. Опишите множество, соответствующее закрашенной части диаграммы Венна:

Решение: $(A \cup B) \setminus C$.

Диаграммы Венна к заданию 1.5 по вариантам представлены в таблице 1.5.

Таблица 1.5 – Диаграммы Венна по вариантам к заданию 1.5

	Таблица 1.5 – Диаграммы Венна по вариантам к заданию 1.5
N₂	Диаграммы Венна
варианта	
1	
2	

Продолжение таблицы 1.5 7 B \boldsymbol{A} 8 B \boldsymbol{A} C 9 B

10

Продолжение таблицы 1.5 11 B \boldsymbol{A} 12 B \boldsymbol{A} \overline{c} 13 B \boldsymbol{A} 14 B \boldsymbol{A}

Задание 1.6. Для каждого из приведенных ниже множеств используйте диаграммы Венна и заштрихуйте те ее части, которые изображают заданные множества: $\overline{A} \cup \overline{B}$, $\overline{A} \cap (B \cup C)$.

Решение:

$$a)\overline{A}\cup\overline{B}$$

$\overline{A} \cap (B \cup C)$

Множества к заданию 1.6 по вариантам представлены в таблице 1.6.

Таблица 1.6 – Множества по вариантам к заданию 1.6

No	таолица 1.6 – множества по вариантам к заданию 1. Множества
варианта	
1	$\overline{A \cap B}$, $A \cap (B \cup C)$
2	$(\overline{A} \cup \overline{B}) \setminus (A \cup B), (A \setminus B) \cap C$
3	$(A \cup B) \setminus (A \cap B), (A \setminus B) \cup C$
4	$A \setminus \overline{B}, \ \overline{C} \setminus \overline{A \cup B}$
5	$A \setminus (A \cap B), (\overline{A \cup B}) \cup C$
6	$\overline{A \cup B}$, $B \setminus (A \cup C)$
7	$\overline{A} \cap \overline{B}, \overline{(A \cap B \cap C)}$
8	$\overline{A \setminus B}$, $B \setminus (\overline{A \cup C})$
9	$A \setminus (\overline{A \cap B}), (A \setminus B) \cup (B \setminus C)$
10	$\overline{A} \setminus (A \cap B), (A \cap B) \cup (B \cap C) \cup (A \cap C)$
11	$\overline{\overline{A} \cap B}$, $A \cap (\overline{B \cup C})$
12	$(\overline{A} \cup \overline{B}) \setminus \overline{(A \cap B)}, (A \setminus B) \oplus C$
13	$(A \setminus \overline{B}) \setminus (A \cap B), (A \setminus B) \cup \overline{C}$
14	$\overline{A \setminus \overline{B}}, \overline{C} \oplus \overline{A \cup B}$
15	$A \setminus (\overline{A} \cap B), (\overline{A \cup B}) \setminus C$
16	$\overline{A \cup B} \setminus A, B \setminus (A \cup C) \setminus \overline{C}$
17	$(\overline{A} \cap \overline{B}) \oplus (A \cup B), (\overline{A \cap B \cap C})$

18	$\overline{A \setminus B} \cup A, \ B \setminus \left(\overline{A \cup \overline{C}}\right)$
19	$\overline{A} \setminus (\overline{A \cap B}), (\overline{A} \setminus B) \cup (B \setminus \overline{C})$
20	

Задание 1.7. С помощью диаграммы Венна проверьте справедливость соотношения $(A \cup C) \setminus (A \setminus B) = (A \cap \overline{B}) \cup (\overline{A} \setminus C)$.

Решение:

С помощью диаграммы Венна построим множество $(A \cup C) \setminus (A \setminus B)$.

С помощью диаграммы Венна построим множество $(A \cap \overline{B}) \cup (\overline{A} \setminus C)$.

Тактам образом, $(A \cup C) \setminus (A \setminus B) \neq (A \cap \overline{B}) \cup (\overline{A} \setminus C)$.

Соотношения к заданию 1.7 по вариантам представлены в таблице 1.7.

Таблица 1.7 – Соотношения по вариантам к заданию 1.7

No	Соотношения
варианта	
1	$(A \cup C) \setminus (A \cap B) = (A \cap \overline{B}) \cup (\overline{A} \cap C)$
2	$\overline{C} \setminus \overline{A \cup B} = \overline{A} \setminus \overline{B \cup C}$
3	$A \setminus (B \cap C) = (A \setminus B) \cap \overline{C}$
4	$A \setminus (B \cup C) = (A \setminus B) \cap \overline{C}$
5	$\overline{A \cup B} \cap C = C \setminus (C \cap (A \cup B))$
6	$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$
7	$C \setminus (A \cap B) = (A \setminus C)$
8	$C \setminus \overline{A \cup B} = A \setminus \overline{B \cup C}$
9	$A \setminus (C \cap B) = (A \cup B) \cap (A \cup C)$
10	$(A \cup B) \setminus (A \cap C) = (A \cap \overline{C}) \cup (\overline{A} \cap C)$
11	$(A \cup \overline{C}) \setminus (A \cap B) = (A \cap \overline{B}) \cup (\overline{A} \cap \overline{C})$
12	$\overline{C} \setminus \overline{A \cap B} = \overline{A} \setminus \overline{B \cap C}$
13	$A \setminus \left(\overline{B \cap C}\right) = \left(A \setminus B\right) \cap \overline{C}$
14	$A \setminus (B \cup C) = (\overline{A} \setminus B) \cap \overline{C}$
15	$\overline{A \cup B} \cap C = C \setminus \left(C \cap \left(\overline{A \cup B}\right)\right)$
16	$\left(\overline{A \cup B}\right) \setminus C = \left(\overline{A \setminus C}\right) \cup \left(\overline{B \setminus C}\right)$
17	$C \setminus (A \cap B) = (A \setminus C) \setminus B$
18	$C \setminus \overline{A \cup B} \setminus B = (A \setminus C) \setminus \overline{B \cup C}$
19	$\overline{A \setminus (C \cap B)} = (A \cup B) \cap (\overline{A \cup C})$
20	$(A \cup B) \setminus (A \cap C) = \left(\overline{A \cap \overline{C}}\right) \cup \left(\overline{\overline{A} \cap C}\right)$

Задание 1.8. Докажите тождество $(A \setminus B) \setminus C = A \setminus (B \cup C)$, используя свойства операций.

Решение: Используя выражение для разности
$$A \setminus B = A \cap \overline{B}$$
 имеем: $(A \setminus B) \setminus C = (A \cap \overline{B}) \setminus C = (A \cap \overline{B}) \cap \overline{C}$ = $A \cap (\overline{B} \cap \overline{C})$.

Используя закон де Моргана
$$\overline{B} \cap \overline{C} = \overline{B \cup C}$$
 получаем:
$$A \cap \left(\overline{B} \cap \overline{C}\right) = A \cap \overline{B \cup C}$$
 выражение для разности $A \setminus B = A \cap \overline{B}$ $A \setminus \left(B \cup C\right)$.

Таким образом, тождество $(A \setminus B) \setminus C = A \setminus (B \cup C)$ доказано.

Тождества к заданию 1.8 по вариантам представлены в таблице 1.8.

Таблица 1.8 – Тождества по вариантам к заданию 1.8

№ варианта	Тождества по вариантам к заданию 1.0
1	$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
2	$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$
3	$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
4	$(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$
5	$(A \cap B) \cup (A \cap \overline{B}) = (A \cup B) \cap (A \cup \overline{B}) = A$
6	$\overline{A \cup B} \cap C = C \setminus (C \cap (A \cup B))$
7	$A \setminus (B \cup C) = (A \setminus B) \cap \overline{C};$
8	$A \setminus \left(\overline{B \cup C}\right) = \left(A \setminus B\right) \cap \left(A \setminus C\right)$
9	$\left(\overline{A \cup B}\right) \setminus C = \left(A \setminus C\right) \cup \left(B \setminus C\right)$
10	$(\overline{A \cup B}) \setminus \overline{C} = (\overline{A} \setminus C) \cap (\overline{B} \setminus C)$
11	$A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$
12	$(A \cup B) \setminus C = (A \setminus C) \cap (B \setminus C)$
13	$A \setminus (B \cap C) = (A \setminus B) \cup (C \setminus A)$
14	$(A \cap B) \setminus C = (A \setminus C) \cup (B \setminus C)$
15	$(A \cap B) \cup (A \cap \overline{B}) = (\overline{A \cup B}) \cap (A \cup \overline{B}) = B$
16	$\overline{A \cup B} \cap C = C \setminus (C \cup (A \cap B))$
17	$A \setminus (B \cup C) = (A \setminus B) \cap \overline{C} \cap C;$
18	$A \setminus \left(\overline{B \cap C}\right) = \left(A \setminus B\right) \cup \left(C \setminus A\right)$
19	$(\overline{A \cup B}) \setminus C = (A \setminus B) \cup (B \setminus C)$
20	$\left(\overline{A \cap B}\right) \setminus \overline{C} = \left(\overline{\overline{A} \setminus C}\right) \cap \left(\overline{B} \setminus C\right)$

Задание 1.9.

а) Используя формулу включений-исключений, решите задачу. В группе спортсменов 30 человек. Из них 20 занимаются плаванием, 18 — легкой атлетикой и 10 — лыжами. Плаванием и легкой атлетикой занимаются 11 человек, плаванием и лыжами — 8, легкой атлетикой и лыжами — 6 человек. Сколько спортсменов занимаются всеми тремя видами спорта?

Решение: A-множество спортсменов, занимающихся плаванием, |A|=20, B-множество спортсменов, занимающихся легкой атлетикой, |B|=18,

C-множество спортсменов, занимающихся лыжами, |C| = 10,

$$|A \cap B| = 11, |A \cap C| = 8, |B \cap C| = 6, |A \cap B \cap C| = ?$$

Применим формулу включения и исключения:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|,$$

$$30=20+18+10-11-8-6+|A\cap B\cap C|;$$

$$30-23=|A\cap B\cap C|$$
; $|A\cap B\cap C|=7$.

Ответ: 7 спортсменов занимаются всеми тремя видами спорта.

б) Используя формулу включений-исключений, решите задачу. Найдите количество целых положительных чисел, не превосходящих 1000 и не делящихся нацело ни на одно из чисел 3, 5, и 7.

Решение: Пусть A, B, C – множества целых положительных чисел, не превосходящих 1000, делящихся нацело на 3, 5, и 7 соответственно. Тогда $A \cap B$, $A \cap C$, $B \cap C$, $A \cap B \cap C$ – множества целых положительных чисел, не превосходящих 1000, делящихся нацело на 15 = 3·5, 35 = 5·7, 21 =3·7 и 105 = 3·5·7 соответственно.

Тогда, используя формулу включения и исключения имеем:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| =$$

$$= \left[\frac{1000}{3}\right] + \left[\frac{1000}{5}\right] + \left[\frac{1000}{7}\right] - \left[\frac{1000}{3 \cdot 5}\right] - \left[\frac{1000}{3 \cdot 7}\right] - \left[\frac{1000}{5 \cdot 7}\right] + \left[\frac{1000}{3 \cdot 5 \cdot 7}\right] =$$

$$= 333 + 200 + 142 - 66 - 47 - 28 + 9 = 543.$$

Следовательно, количество целых положительных чисел, не превосходящих 1000 и не делящихся нацело ни на одно из чисел 3, 5, и 7, равно 1000-543=457.

Ответ: 457 целых положительных чисел, не превосходящих 1000 и не делящихся нацело ни на одно из чисел 3, 5, и 7.

Задачи к заданию 1.9 по вариантам представлены в таблице 1.9.

Таблица 1.9 – Задачи по вариантам к заданию 1.9

№	Задача
варианта	
1	У фирмы есть 100 предприятий, причем каждое
	предприятие выпускает хотя бы одну продукцию вида A, B
	или C . Продукцию всех трех видов выпускают 10
	предприятий, продукцию вида A и B $-$ 18 предприятий,
	продукцию вида A и $C-15$ предприятий, продукцию вида B
	и $C-21$ предприятие. Число предприятий, выпускающих
	продукцию вида A , равно числу предприятий, выпускающих
	продукцию вида B , и равно числу предприятий,
	выпускающих продукцию вида C . Найти число предприятий,
	выпускающих только продукцию вида A .

	продолжение таолицы 1.9
2	В студенческой группе 20 человек. Из них 10 имеют
	оценку «девять» по химии, 8 – по математике, 7 – по физике,
	4 – по химии и по математике, 5 – по химии и по физике, 4 –
	по математике и по физике, 3 – по химии, по математике и по
	физике. Сколько студентов в группе не имеют оценок
	«девять»?
3	В спортивном лагере 100 человек, занимающихся
	плаванием, легкой атлетикой и футболом. Из них 10
	занимаются и плаванием, и легкой атлетикой, и футболом, 18
	– плаванием и легкой атлетикой, 15 – плаванием и футболом,
	21 – легкой атлетикой и футболом. Число спортсменов,
	занимающихся плаванием, равно числу спортсменов,
	занимающихся легкой атлетикой, и равно числу спортсменов,
	занимающихся футболом. Найти это число.
4	Во время сессии 24 студента группы должны сдать три
	зачета: по физике, математике и информатике. 20 студентов
	сдали зачет по физике, 10 – по математике, 5 – по
	информатике, 7 – по физике и математике, 3 – по физике и
	информатике, 2 – по математике и информатике. Сколько
	студентов сдали все три зачета?
5	Группе студентов предложены спецкурсы по методам
	оптимизации, искусственному интеллекту и имитационному
	моделированию. 22 студента записались на спецкурс по
	методам оптимизации, 18 – на спецкурс по искусственному
	интеллекту, 10 – на спецкурс по имитационному
	моделированию, 8 – на спецкурсы по методам оптимизации и
	искусственному интеллекту, 15 – на спецкурсы по методам
	оптимизации и имитационному моделированию, 7 – на
	спецкурсы по искусственному интеллекту и имитационному
	моделированию. 5 студентов записались на все три
	спецкурса. Сколько студентов в группе?
6	Опрос группы студентов показал, что 70 % из них любят
	ходить в кино, 60 % – в театр, 30% – в музей. В кино и театр
	ходят 40 % студентов, в кино и в музей – 20 %, в театр и в
	музей – 10 %. Сколько студентов (в %) ходят в кино, театр и
	в музей?
7	J
'	В группе 20 студентов. После медицинского осмотра 14
	студентов были направлены на дополнительное
	обследование к терапевту, 6 – к окулисту, 5 – к неврологу. К
	терапевту и окулисту были направлены 3 студента, к
	терапевту и неврологу – 3, к окулисту и неврологу – 2.
	Сколько студентов было направлено к терапевту, окулисту
	и неврологу?

	продолжение таолицы 1.9
8	Всем участникам автопробега не повезло. 12 из них
	увязли в песке – пришлось толкать машину, 8 понадобилась
	замена колеса, у шестерых перегрелся мотор, пятеро
	толкали машину и меняли колесо, четверо толкали машину
	и остужали мотор, трое меняли колесо и остужали мотор.
	Одному пришлось испытать все виды неполадок. Сколько
	всего было участников автопробега?
9	В студенческой группе 25 человек. Чтобы получить
	допуск на экзамен по данному курсу необходимо защитить
	курсовой проект, выполнить лабораторную работу и сдать
	зачет. 15 студентов защитили курсовой проект, 20 —
	выполнили лабораторную работу, 17 — сдали зачет.
	Защитили курсовой проект и выполнили лабораторную
	работу 12 человек. Защитили курсовой проект и сдали зачет
	13 человек. Выполнили лабораторную работу и сдали зачет
	16 человек. Сколько студентов допущено к экзамену?
10	При обследовании рынка спроса инспектор указал в
	опросном листе следующие данные. Из 1000 опрошенных
	811 покупают жевательную резинку «Dirol», 752 – «Orbit»,
	418 – «Stimorol», 570 – «Dirol» и «Orbit», 356 – «Dirol» и
	«Stimorol», 348 – «Orbit» и «Stimorol», 297 – все виды
	жевательной резинки. Не ошибся ли инспектор?
11	
11	Сколько целых чисел между 1 и 502 делятся на 6 или на 10?
12	
12	Сколько целых чисел между 1 и 502 делятся на 10 или на
12	15?
13	Сколько целых чисел между 1 и 3002 делятся на 10, но не
1.4	делятся на 40?
14	Сколько целых чисел между 1 и 3002 делятся на 10, но не
	делятся на 14?
15	Сколько целых чисел между 1 и 3003 делится на 3, 5 или
	7?
16	Сколько целых чисел между 1 и 3003 делится на 5, 7 или
	11?
17	Сколько целых чисел между 1 и 3004 делится на 4, 5 или
	6?
18	Сколько целых чисел между 1 и 3004 делится на 6, 7 или
	8?
19	Сколько положительных целых чисел, меньших 700,
	делятся на 3, 5 или 6?
20	Сколько положительных целых чисел, меньших 700, не
	делятся на 8?
	F 1

Задача 1.10. Используя формулу включений-исключений, решите задачу. Сколько натуральных чисел от 1 до 10000 не делится ни на α , ни на β , ни на γ , ни на δ ?

Решение: Пусть $\alpha = 2$, $\beta = 5$, $\gamma = 9$, $\delta = 8$. Если число делится на 8, то оно делится и на 2. Поэтому число 8 можно в условии задачи опустить.

Пусть A, B, C — множества целых положительных чисел, не превосходящих 1000, делящихся нацело на 2, 5, и 9 соответственно. Тогда $A \cap B$, $A \cap C$, $B \cap C$, $A \cap B \cap C$ — множества целых положительных чисел, не превосходящих 10000, делящихся нацело на 10 = 2.5, 18 = 2.9, 45 = 5.9 и 90 = 2.5.9 соответственно.

Тогда, используя формулу включения и исключения имеем:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| =$$

$$= \left[\frac{10000}{2}\right] + \left[\frac{10000}{5}\right] + \left[\frac{10000}{9}\right] - \left[\frac{10000}{2 \cdot 5}\right] - \left[\frac{10000}{2 \cdot 9}\right] - \left[\frac{10000}{5 \cdot 9}\right] +$$

$$+ \left[\frac{10000}{2 \cdot 5 \cdot 9}\right] = 5000 + 2000 + 1111 - 1000 - 555 - 222 + 111 = 6445.$$

Следовательно, количество целых положительных чисел, не превосходящих 10000 и не делящихся нацело ни на одно из чисел 2, 5, 8 и 9, равно 10000-6445=3555.

Ответ: 3555 целых положительных чисел, не превосходящих 10000 и не делящихся нацело ни на одно из чисел 2, 5, 8 и 9.

Значения α , β , γ , δ по вариантам представлены в таблице 1.10.

Таблица 1.10 – Значения α , β , γ , δ по вариантам к заданию 1.10

№ варианта	α	β	γ	δ
1	4	5	8	7
2	2	3	4	5
3	7	9	5	3
4	2	5	4	13
5	3	4	5	8
6	3	8	16	7
7	11	7	9	3
8	13	9	5	3
9	5	8	9	4
10	3	5	6	13
11	5	10	3	7
12	9	18	5	7
13	11	3	12	5
14	6	12	3	13
15	15	3	7	11

			1 ' '	,
16	7	14	3	5
17	18	3	5	7
18	4	5	10	7
19	2	12	5	7
20	6	2	11	13

Задача 1.11

Методом математической индукции доказать, что при $n \in \mathbb{N}$ (1–12):

- 1. $n^3 + 9n^2 + 26n + 24$ кратно 6
- 2. $7^{2n}-1$ кратно 24
- $3.15^n + 6$ кратно 7
- 4. $9^{n} + 3$ кратно 4
- 5. $7^n + 3n 1$ кратно 9
- 6. $7^n + 12n + 17$ кратно 18
- 7. $5^n + 2 \cdot 3^n + 5$ кратно 8
- 8. $5^n 3^n + 2n$ кратно 4
- 9. $5 \cdot 2^{3n-2} + 3^{3n-1}$ кратно 19
- 10. $9^{n+1} 18n 9$ кратно 18
- 11. $n^3 + 11n$ делится на 6
- 12. $3^{2n+1} + 2^{n+2}$ делится на 7

Задача 1.12

Доказать, что при любом $n \in \mathbb{N}$ выполняется равенство (1–14):

1.
$$1+3+5+...+(2n-1)=n^2$$

2.
$$\frac{1}{a(a+1)} + \frac{1}{(a+1)(a+2)} + \dots + \frac{1}{(a+n-1)(a+n)} = \frac{n}{a(a+n)}$$

3.
$$1 \cdot 3 + 2 \cdot 5 + \dots + n(2n+1) = \frac{n(n+1)(4n+5)}{6}$$

4.
$$2 \cdot 2 + 3 \cdot 5 + \dots + (n+1)(3n-1) = \frac{n(2n^2 + 5n + 1)}{2}$$

5.
$$4 \cdot 2 + 7 \cdot 2^3 + 10 \cdot 2^5 + \dots + (3n+1) \cdot 2^{2n-1} = n \cdot 2^{2n+1}$$

6.
$$1+6+20+...+(2n-1)\cdot 2^{n-1}=3+2^n\cdot (2n-3)$$

7.
$$\left(1 - \frac{1}{4}\right)\left(1 - \frac{1}{9}\right) ... \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$$

8.
$$\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)..\left(1-\frac{4}{(2n-1)^2}\right)=\frac{1+2n}{1-2n}$$

9.
$$\frac{1}{1\cdot 5} + \frac{1}{3\cdot 7} + \dots + \frac{1}{(2n-1)(2n+3)} = \frac{n(4n+5)}{3(2n+1)(2n+3)}$$

10.
$$\frac{1 \cdot 4}{2 \cdot 3} + \frac{2 \cdot 5}{3 \cdot 4} + \dots + \frac{n(n+3)}{(n+1)(n+2)} = \frac{n(n+1)}{n+2}$$

11.
$$1 + \frac{7}{3} + \frac{13}{9} + \dots + \frac{6n-5}{3^{n-1}} = \frac{2 \cdot 3^n - 3n - 2}{3^{n-1}}$$

12.
$$\frac{1}{1^2 \cdot 3^2} + \frac{2}{3^2 \cdot 5^2} + \dots + \frac{n}{(2n-1)^2 (2n+1)^2} = \frac{n(n+1)}{2(2n+1)^2}$$

13.
$$\frac{1 \cdot 2^1}{3!} + \frac{2 \cdot 2^2}{4!} + \frac{3 \cdot 2^3}{5!} + \dots + \frac{n2^n}{(n+2)!} = 1 - \frac{2^{n+1}}{(n+2)!}$$

14.
$$3+20+168+...+(2n+1)\cdot 2^{n-1}\cdot n!=2^n\cdot (n+1)!-1$$