Aussagenlogik – 2: Semantik

bv

Dr. Günter Kolousek

Semantik

- ▶ Die Bedeutung (Semantik) einer aussagenlogischen Formel besteht in den Wahrheitsbedingungen.
- ► Eine Bewertung V (auch Interpretation genannt)
 - ist eine Zuordnung von Wahrheitsbedingungen zu allen Satzbuchstaben (atomaren Formeln).
- ▶ Beispielformel: $p \land q \lor r$
 - Bewertung
 - V(p) = 8 ist durch 2 teilbar
 - V(q) = 6 ist das Produkt von 2 und 4
 - V(r) = alle geraden Zahlen sind durch 3 teilbar
- ▶ Die Semantik zusammengesetzter Formeln ~ Junktoren.
- ▶ D.h. $p \land q \lor r$ ergibt mit der Bewertung V den Wert 0.
 - Anstatt false bzw. falsch: aussagenlogische Konstante 0.
 - analog, true bzw. wahr: 1.

Junktoren 1

Negation (einstellig, unär)

$$\begin{array}{c|c} p & \neg p \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$$

► Konjunktion (zweistellig, binär)

$$\begin{array}{c|cccc} p & q & p \wedge q \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

Disjunktion und Antivalenz

р	q	$p \lor q$	p⊻q
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	0

Junktoren 2

(materielle) Implikation, Subjunktion

р	q	$p \to q$
0	0	1
0	1	1
1	0	0
1	1	1

- ► Wenn ein Viereck rund wäre, wäre 4 kleiner als 2 ... wahr!
- Wenn die Erde eine Sonne wäre, dann ist $1 < 2 \dots$ wahr!
- ► Wenn ich 10000€ gespart habe, dann ~ Weltreise
 - ▶ mehr als Implikation: nicht genug Geld ~ keine Weltreise!
- ► Biimplikation, Äquivalenz

р	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Junktoren 3

- Präzedenz der Junktoren
 - 1. ¬ ... bindet am stärksten
 - 2. ^
 - **3.** ∨, <u>∨</u>
 - **4.** →
 - 5. ↔ ... bindet am schwächsten
- ▶ Beispiel
 - Unsere Zimmer sind mit Telefon und Radio oder Fernseher ausgestattet.

 - ► V(p) ... Zimmer hat Telefon
 - ► V(q) ... Zimmer hat Radio
 - ▶ V(r) ... Zimmer hat Fernseher

Wahrheitstafelmethode

- \triangleright p \land q \lor r
- ▶ Wahrheitstafel

р	q	r	(p	\wedge	q)	V	r
0	0	0		0		0	
0	0	1		0		1	
0	1	0		0		0	
0	1	1		0		1	
1	0	0		0		0	
1	0	1		0		1	
1	1	0		1		1	
1	1	1		1		1	

Bildung der Formel aus Wahrheitstafel

Aufgaben

- Welche der folgenden Ausdrücke sind Aussagen?
 - $x^2 + 1 > 0$
 - Maxi ist älter als Mini.
 - $x^2 + 3x 5$
 - ► Wie spät ist es?
- ► Formuliere in "wenn...dann"
 - ► Ich gehe jeden Freitag ins Kino
 - ► Ich gehe nur freitags in Kino
 - Freitags gehe ich nie ins Kino

Aufgaben - 2

- Aussagenlogische Formel für vorhergende Aussagen mit
 - V(p) = Es ist Freitag
 - V(q) =Ich gehe ins Kino
- ▶ Wahrheitstafeln
 - $ightharpoonup \neg p \lor (p \rightarrow \neg q)$
 - $\triangleright p \lor q \rightarrow p \land q$
 - ightharpoonup p
 ightharpoonup q
 - \triangleright $(p \rightarrow q) \rightarrow r$
 - $P \rightarrow (q \rightarrow r)$

Tautologie und Kontradiktion

- ► Eine Formel A von AL ist genau dann **logisch wahr**, wenn sich allein aus der Bedeutung der Junktoren ergibt, dass A bzgl. aller Bewertungen wahr ist (Tautologie)
 - $\triangleright p \lor \neg p$
 - ▶ ~ allgemein gültig
- ► Eine Formel A von AL ist genau dann **logisch falsch**, wenn sich allein aus der Bedeutung der Junktoren ergibt, dass A bzgl. aller Bewertungen falsch ist (Kontradiktion)
 - $ightharpoonup p \land \neg p$
 - ➤ ~ unerfüllbar

Äquivalenz und Konsequenz

- ➤ Zwei Formeln *F* und *G* heißen (logisch) äquivalent, wenn sie in jeder Zeile ihrer Wahrheitstafeln übereinstimmen: *F* ⇔ *G*.
 - ightharpoonup a
 ightharpoonup b
 ightharpoonup b
 ightharpoonup a
 ightharpoonup b
 igh
 - ▶ Die beiden Formeln F und G sind genau dann äquivalent, wenn die Formel $F \leftrightarrow G$ eine Tautologie ist.
- Die Formel G heißt eine (logische) Konsequenz, wenn in jeder Zeile ihrer Wahrheitstafel in der F wahr ist auch G wahr ist: F ⇒ G.
 - $ightharpoonup q \Rightarrow p \rightarrow q$
 - ▶ Die Formel G ist eine Konsequenz der Formel F, wenn die Formel $F \rightarrow G$ eine Tautologie ist.

Wichtige Äquivalenzen 1

- ► $A \Leftrightarrow \neg \neg A$ (Gesetz der doppelten Negation)
- ► $A \land A \Leftrightarrow A$ (Idempotenz der Konjunktion)
 - ► (Idem ... dasselbe, Potenz ... Leistungskraft)
- ▶ $A \land B \Leftrightarrow B \land A$ (Kommutativität der Konjunktion)
- ► $A \land (B \land C) \Leftrightarrow (A \land B) \land C$ (Assoziativität der Konjunktion)
- ▶ $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$ (1. Gesetz von De Morgan)

Wichtige Äquivalenzen 2

- $ightharpoonup A \lor A \Leftrightarrow A$ (Idempotenz der Disjunktion)
- $ightharpoonup A \lor B \Leftrightarrow B \lor A$ (Kommutativität der Disjunktion)
- ► $A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C$ (Assoziativität der Disjunktion)
- ▶ $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$ (2. Gesetz von De Morgan)
- ► $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ 1. Distributivgesetz
- ► $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$ 2. Distributivgesetz

Wichtige Äquivalenzen 3

- \triangleright $A \rightarrow B \Leftrightarrow \neg A \lor B$
- $ightharpoonup A
 ightharpoonup B \Leftrightarrow \neg B
 ightharpoonup \neg A$
- ▶ $A \leftrightarrow B \Leftrightarrow B \leftrightarrow A$ (Kommutativität der Biimplikation)
- ▶ $A \leftrightarrow (B \leftrightarrow C) \Leftrightarrow (A \leftrightarrow B) \leftrightarrow C$ (Assoziativität der Biimplikation)
- $ightharpoonup A \leftrightarrow B \Leftrightarrow \neg A \leftrightarrow \neg B$
- $ightharpoonup \neg (A \leftrightarrow B) \Leftrightarrow A \lor B$
- $\blacktriangleright A \leftrightarrow B \Leftrightarrow (A \to B) \land (B \to A)$

Dualitätsprinzip

- Sind zwei Formeln A und B, in denen nur die Junktoren ¬, ∧ und ∨ vorkommen, äquivalent, dann sind auch die Formeln, die aus A und B dadurch entstehen, dass alle auftretenden ∧ durch ∨, ∨ durch ∧, 1 durch 0 und 0 durch 1 ersetzt werden, ebenfalls äquivalent.
- ▶ Beispiel
 - a ∧ 1 ⇔ a
 - ▶ Daher gilt: $a \lor 0 \Leftrightarrow a$

Einsetzungstheorem

- Wir bezeichnen mit A[p/B] diejenige Formel, die aus A dadurch entsteht, dass für jedes Vorkommen der Aussagenvariablen p in A die Formel B eingesetzt wird.
 - ightharpoonup A: $(p \rightarrow q) \leftrightarrow p$
 - **▶** B: (r ∧ s)
 - ightharpoonup A[p/B]: $((r \land s) \rightarrow q) \leftrightarrow (r \land s)$
- Einsetzungstheorem: Ist A eine Tautologie bzw. eine Kontradiktion, dann auch A[p/B].
 - D.h. durch Einsetzen enstehen aus Tautologien wieder Tautologien und aus Kontradiktionen wieder Kontradiktionen.

Ersetzung

- ► Eine Teilformel ist:
 - ▶ Jede Formel A ist eine Teilformel von sich selbst.
 - Ist A eine zusammengesetzte Formel, etwa ¬ p, p ∧ q,... dann sind auch p und q Teilformeln von A.
 - Jede Teilformel einer Teilformel von A ist ebenfalls eine Teilformel von A.
- Beispiel
 - ightharpoonup A: p ightharpoonup ((\neg q \lor r) ightharpoonup s)
 - Teilformeln von a:
 - $ightharpoonup p
 ightarrow ((\neg q \lor r)
 ightarrow s)$
- Mit A[[B/C]] wird diejenige Formel bezeichnet, die aus A dadurch entsteht, dass beliebig viele Vorkommnisse der Teilformel B von A durch die Formel C ersetzt werden.
- ► Ersetzungstheorem: Ist $B \Leftrightarrow C$, dann ist $A \Leftrightarrow A[[B/C]]$.

- Umlauf Erde um Sonne: 365.24219... Tage
- Schaltjahr
 - alle 4 Jahre ein Tag dazu
 - dann allerdings: Schnitt 365.25 Tage
 - daher alle 100 Jahre: kein Tag hinzu
 - dann allerdings: Schnitt unter 355.24219...
 - daher alle 400 Jahre: doch Tag hinzu

Algorithmus

```
def schaltjahr(jahr):
    if jahr % 4 == 0:
        if jahr % 100 == 0:
            if jahr % 400 == 0:
                 return True
            else:
                 return False
        else:
             return True
    else:
        return False
```

Algorithmus 2: besser! def schaltjahr(jahr): **if** jahr % 4: return False elif jahr % 100: return True elif jahr % 400: return False else: return True

- Überlegungen zur Umsetzung von Algorithmus 2 in AL
 - ▶ q if p else r
 - ▶ in AL: $(p \rightarrow q) \land (\neg p \rightarrow r)$
 - ▶ False if p else r
 - ▶ in AL: $(p \to 0) \land (\neg p \to r) \Leftrightarrow$ $(\neg p \lor 0) \land (\neg \neg p \lor r) \Leftrightarrow$ $\neg p \land (p \lor r) \Leftrightarrow$ $(\neg p \land p) \lor (\neg p \land r) \Leftrightarrow$ $\neg p \land r$
 - ► True if p else r
 - ▶ in AL: $(p \to 1) \land (\neg p \to r) \Leftrightarrow$ $(\neg p \lor 1) \land (\neg \neg p \lor r) \Leftrightarrow$ $1 \land (p \lor r) \Leftrightarrow$ $p \lor r$

- Bewertung V
 - $V(p) = \text{jahr mod } 4 \neq 0$
 - $V(q) = \text{jahr mod } 100 \neq 0$
 - $V(r) = \text{jahr mod } 400 \neq 0$
- ▶ in AL: $\neg p \land (q \lor (\neg r \land 1)) \Leftrightarrow \neg p \land (q \lor \neg r)$
- ► The winner is... Algorithmus 4:

Schlussfolgerung

- ▶ ist eine der ältesten Anwendungen der Logik
- ausgehend von gewissen Voraussetzungen (Prämissen) erhält man unter Anwendung sogenannter Schlussregeln neue Aussagen (Konklusion).
- die meisten Schlussfolgerungen des alltäglichen Lebens sind keine logischen Folgerungen, sondern kommen aus der Erfahrung und Beobachtung: daher kann die Konklusion auch falsch sein.
- aussagenlogische Folgerungen sind immer richtig.

Schlussfolgerung - 2

- Verschiedene Formen der Tautologien können benutzt werden, um Schlüsse zu ziehen. Diese werden als Inferenzregeln (to infer ... folgern) bezeichnet.
- Beispiele solcher Tautologien:
 - $ightharpoonup p \wedge (p \rightarrow q) \Rightarrow q \dots$ modus ponens (Abtrennungsregel)
 - Anwendung des logischen Schlusses (Syllogismus)
 - Obersatz: p
 - ▶ Untersatz: p → q
 - Konklusion: q
 - ▶ $\neg q \land (p \rightarrow q) \Rightarrow \neg p \dots$ modus tollens (Widerlegungsregel)
 - ▶ $q \land (\neg p \rightarrow \neg q) \Rightarrow p \dots$ Kontrapositionsregel
 - ▶ $\neg q \land (\neg p \rightarrow q) \Rightarrow p \dots$ indirekter Beweis
 - ▶ $(p \rightarrow q) \land (q \rightarrow r) \Rightarrow p \rightarrow r \dots$ hypothetical syllogism

Aufgaben – 3

- Welche sind Tautologien, welche Kontradiktionen?
 - ightharpoonup p
 igh
- Beweise, dass die folgenden Formeln äquivalent sind!
 - $ightharpoonup F = p \rightarrow q, G = \neg q \rightarrow \neg p$
 - $F = p \leftrightarrow q, G = p \land q \lor \neg p \land \neg q$

 - $\blacktriangleright F = p \to (q \to r), G = p \land q \to r$
- Beweise, das G eine Konsequenz von F
 - $F = (p \to q) \land (q \to r), G = p \to r$
 - $ightharpoonup F = \neg(p \rightarrow q), G = p$
 - $ightharpoonup F = q, G = p \rightarrow q$
 - $ightharpoonup F = p \land (p \rightarrow q), G = q$

Aufgaben – 4

Vereinfache

```
▶ p \rightarrow (p \rightarrow q)
▶ p \lor (q \land \neg p)
▶ p \land q \lor \neg p \land q
▶ p \land (q \lor r \land p)
▶ p \land (q \lor r \land \neg p)
```

Vereinfache

```
def f(p, q):
    if p:
        if q: return p
        else: return False
    else:
        if not q: return False
        else: return True
```