Title

D. Zack Garza

Wednesday 16th September, 2020

Contents

1	Wed	dnesday, September 16	1
	1.1	Group Schemes	1
	1.2	Hopf Algebras	2
		1.2.1 Module Constructions	2
	1.3	Frobenius Kernels	3

1 | Wednesday, September 16

1.1 Group Schemes

Definition 1.0.1 (Representable Functors).

Let F :: k-alg \to Set be a functor, then F is **representable** iff F(R) corresponds to "solutions to equations in R".

Example 1.1.

Let $F(\cdot) = \mathrm{SL}(2, \cdot)$, then the corresponding equations are $\det(x_{ij}) = 1$.

If F is representable, there is a correspondence $F(R) \cong \text{hom}_R(A,R)$. In the above example,

$$A = k[x_{11}, x_{12}, x_{21}, x_{22}] / \langle x_{11}x_{22} - x_{12}x_{21} \rangle,$$

which is exactly the coordinate algebra.

 $\textbf{Definition 1.0.2} \ (\textbf{Affine Group Scheme}).$

An affine group scheme is a representable functor F: k-alg \to Groups.

Suppose G is an affine group scheme, and let A = k[G] be the representing object. Then there is a correspondence

$$G$$
-modules $\iff k[G]^{\vee}$ -modules.

For G reductive, the RHS is equivalent to Dist(G)-modules.

Definition 1.0.3 (Finite Group Schemes). G is a **finite** group scheme iff k[G] is finite dimensional.

If G is finite, then $A^{\vee} \cong k[G]^{\vee}$ is a cocommutative Hopf algebras. Thus representations for *finite* group schemes are equivalent to representations for finite-dimensional cocommutative Hopf algebras.

On group scheme side: see reduction, spectral sequences, conceptual arguments. On the algebra side: have bases, underlying vector space, can do concrete computations. Can take $\operatorname{Spec}(k[G])^{\vee}$ to recover a group scheme.

1.2 Hopf Algebras

For A a k-alg, we have a multiplication and a unit, which can be defined in terms of diagrams. To categorically reverse arrows, we can ask for a comultiplication and a counit.

$$\Delta: A \to A \otimes A$$

$$\epsilon: A \to k$$
.

We'll want another map, an antipode

$$s:A\to A$$
.

The comultiplication should satisfy

$$\begin{array}{ccc} A^{\otimes 3} \xleftarrow[1\otimes A]{} & A^{\otimes 2} \\ \Delta \otimes 1 & \Delta \uparrow \\ A^{\otimes 2} \xleftarrow[]{} & A \end{array}$$

The counit should satisfy

$$k \otimes A \xleftarrow{\varepsilon \otimes 1} A^{\otimes 2}$$

$$\downarrow^{\cong} \qquad \Delta \uparrow$$

$$A \xrightarrow{\cong} A$$

And the antipode should satisfy

$$\begin{array}{c}
A & \longleftarrow & A \\
\uparrow & \qquad & \Delta \uparrow \\
A & \longleftarrow & A
\end{array}$$

1.2.1 Module Constructions

Let A be a Hopf algebra.

1. For A-modules M, N, we can form the A-module $M \otimes_k N$ with

$$\Delta(a) = \sum a_i \otimes a_j$$

$$a(m\otimes n)=\sum a_1m\otimes a_2n.$$

2. If M is finite-dimensional over A, then $M^{\vee} = \hom_k(M, k) \ni f$ is an A-module, and we can define (af)(x) := f(s(a)x) for $a \in A, x \in M$.

Example 1.2.

A = kG the group algebra on a group is a Hopf algebra:

$$\Delta: A \to A^{\otimes 2}$$
$$g \mapsto g \otimes g.$$

The module action is diagonal, namely $g(m \otimes n) = gm \otimes gn$. The antipode is given by $s(g) = g^{-1}$, and the unit is $\varepsilon(g) = 1$ for all $g \in G$.

Example 1.3.

Let $A = U(\mathfrak{g})$, the universal enveloping algebra for \mathfrak{g} a Lie algebra. Recall that \mathfrak{g} -modules are equivalent to $U(\mathfrak{g})$ -modules (unitary representations, some big associative algebra). Then A is a Hopf algebra, with $\Delta(\ell) = \ell \otimes 1 + 1 \otimes \ell$ for $\ell \in \mathfrak{g}$. The unit is $\varepsilon(\ell) = 0$, and the antipode is $s(\ell) = -\ell$.

Example 1.4.

Take the additive group \mathbb{G}_a , then $A = k[\mathbb{G}_a] \cong k[x]$ is a commutative Hopf algebra with $\Delta(x) = x \otimes 1 + 1 \otimes x$, $\varepsilon(x) = 0$, s(x) = -x.

Example 1.5.

For \mathbb{G}_m , we have $A = k[\mathbb{G}_m] \cong k[x, x^{-1}], \varepsilon(x) = 1, s(x) = x^{-1}$.

1.3 Frobenius Kernels

Let G be an algebraic group (scheme) over k, where char (k) = p. Let $F : G \to G$ be the Frobenius, where e.g.

$$F: \mathrm{GL}(n,\,\cdot\,) \to \mathrm{GL}(n,\,\cdot\,)$$

 $(x_{ij}) \mapsto (x_{ij}^p).$

Then F is a map of group schemes.

Definition 1.0.4 (Frobenius Kernels).

 $G_r := \ker F^r$, where $F^r := F \circ F \circ \cdots \circ F$ is the r-fold composition of the Frobenius. This yields a nesting $G_1 \subseteq G_2 \subseteq G_3 \cdots \subseteq G$.

Recall that

$$Dist(G) = \left\langle \frac{x_{\alpha}^n}{n!}, \frac{y_{\beta}^m}{m!}, \binom{H_i}{k} \right\rangle.$$

We get a chain of finite dimensional algebras

$$\operatorname{Dist}(G_1) \leq \operatorname{Dist}(G_2) \leq \cdots \leq \operatorname{Dist}(G)$$

where

$$Dist(G_1) = \left\langle \frac{x_{\alpha}^n}{n!}, \frac{y_{\beta}^m}{m!}, \begin{pmatrix} H_i \\ k \end{pmatrix} \mid 0 \le n, m, k \le p - 1 \right\rangle,$$

where in general $\mathrm{Dist}(G_\ell)$ goes up to $p^\ell - 1$. Recall that G_r representations were equivalent to $\mathrm{Dist}(G_r)$ representations.

Some basic questions (Curtis, Steinberg, 1960s):

- 1. What are the simple modules for Frobenius kernels? I.e., what are the irreducible representations for G_r ?
- 2. How are the representations for G_r related to those for G?