Home beer

Microcervejaria automatizada

Solução Geral

Solução estrutural

- Estrutura principal
- Conjunto panela-filtro
- Tubulação
- Trocador de calor
- Reservatório de água
- Dimensionamento das bombas
- ♦ Whirlpool
- Alimentador de insumos

Estrutura principal

Material:

 Aço 1020 galvanizado 20x20mm e espessura de 1,5mm

Estrutura principal - simulação estrutural

Condições de contorno

- ♦ 900 N
 - > Panelas cheias
- ❖ 1000 N
 - Reservatório d'água
- Deslocamento da base no plano XY

Estrutura principal - resultado

Conjunto panela-filtro

Α	Filtro
В	Resistência
С	Panela

Panela

- ❖ 3 panelas de 50 L (400x400mm)
- Aço inox

Resistência

Resistência de 5000 W

Filtro

- Malha de 300 μm (355x320mm)
- Aço inox

Alimentador de insumos

Α	Suporte para insumos	Alumínio
В	Case para servo	Acrílico
С	Татра	Acrílico

Alimentador de insumos - funcionamento

Tubulação

Tubulação

Item	Nome	Quantidade 1" (33,4 mm)	Quantidade ¾" (17.25 mm)
А	Niple	8	2
В	Válvulas	9	1
С	Tubo	2 m	0,6 m
D	Curva 90°	7	3
Е	TEE	5	-
F	Redutor	2	-

Trocador de Calor

	Mosto	Água
Temperatura de Entrada (°C)	100°C	20°C
Temperatura de Saída (°C)	25°C	35°C
Vazão Volumétrica	2 L/min	10 L/min
Diâmetro externo dos tubos	10,29 mm	17,15 mm
Espessura dos tubos	1,24 mm	1,65 mm
Comprimento dos tubos	8,155 m	8,155 m

Trocador de tubo duplo com fluxo cruzado - Aço inox AISI 304 SH10s

Trocador de Calor

ANSYS 2019 R3

Reservatório

- Volume de aproximadamente 101L
- Resfriamento da água até 20°C com placas de Peltier;
- ❖ Dimensões: 1460x410x170 mm.
- Material: Polipropileno de alta densidade;
- Espessura: 3 mm

Placa de Peltier

Dimensionamento das Bombas

Requisitos das bombas:

- Suprir as maiores perdas de carga através da tubulação e do trocador de calor.
- > A bomba principal deve ter temperatura de operação de até 100°C.
- > Vazão específica para o trocador de calor, para maior eficiência no resfriamento.

Fase	Vazão	Diâmetro hidráulico
Água em contra-fluxo	10 L/min	13,85 mm
Mosto em contra-fluxo	2 L/min	7,81 mm
Todo o resto	26 L/min	27,86 mm

Dimensionamento das Bombas

Maiores perdas:

Fase	Perda de pressão
Água em contra-fluxo	7150,2 Pa
Mosto em contra-fluxo	4856,4 Pa
Todo o resto	12680,7 Pa

Características das bombas escolhidas:

Pressão máxima	Vazão máxima	Temperatura máxima
6*10⁵ Pa	26 L/min	100 °C

As bombas suprem as necessidades do projeto.

Whirlpool

Objetivo:

Agitar e mover as partículas sólidas do mosto para que elas se assentem no fundo da panela.

Simulação em CFD (ANSYS):

- Como as propriedades da água são próximas às do mosto, a simulação foi feita com a água, para fluido viscoso e incompressível, porém com valores de viscosidade do mosto.
- Condições de entrada:

Vazão volumétrica	Diâmetro hidráulico
26 L/min	27,86 mm

Whirlpool

Visualização das linhas de trajetória do fluido, com menos e mais linhas de trajetória.

Solução do Sistema Embarcado

- Módulo do Sistema de Aquisição;
- Módulo do Sistema de Comunicação;
- Módulo do Sistema de Atuação;
- Módulo do Sistema de Alimentação.

Sistema de Aquisição - Sensor de temperatura IR

- Modelo MLX90614ESF;
- Tensão de operação de 5V;
- Resolução de 10-bit PWM;
- Precisão de ±0,5°C.

Sistema de Aquisição - Sensor de fluxo

- Modelo 1/2" YF-S201b;
- Tensão de operação de 5V;
- Instalado em linha com a tubulação;
- Pulsos PWM para o controlador.

Sistema Comunicação

- Raspberry pi 3 B+;
- Wifi integrado a placa;
- GPIO de 40 pinos;
- Dispensa o uso de módulos extras.

Sistema de Atuação - Circuito de acionamento

- Acionamento com 3.3V;
- Proteção e isolamento.

Sistema de Atuação - Circuito de acionamento

Sistema de Atuação - Válvula eletro-mecânica

- Modelo VS4213ITHUS;
- Tensão de operação de 220V;
- Temperatura máxima de 240°C;
- Pressão máxima de até 12 bar.

Sistema de Atuação - Bomba

- Modelo RB7BC120BZ2V;
- Tensão de operação de 220V;
- Temperatura máxima de 110°C;
- 120W de potência máxima;
- ❖ Vazão de 26L/min.

Sistema de Atuação - Motor suporte de insumos

- Modelo 9g SG90;
- Tensão de operação de 5v;
- Torque máximo de 1,5kg.cm.

Sistema de Atuação - Placa Peltier

- Tensão de operação de12v;
- Potência máxima de 72W.

Sistema de Atuação - Resistência

- Potência máxima de 5000W;
- Tensão de operação de 220V.

Controle de temperatura

- Temperatura e tempo ;
- Degraus de temperatura das receitas ~ 10°C.

Controle de temperatura

- Controlador PID;
- Acionamento de resistência elétricas;
- ❖ PWM;

Controle de temperatura

- Transformar a saída do controlador em PWM;
- Chaveamento das resistências utilizando o circuito de acionamento de relés;
- Aquecimento de 25 a 60°C = 17 min;
- Degraus de $\Delta 10^{\circ}$ C = 7 min;
- Ganhos Kp = 1000 e Ki = 0,01.

Sistema de Alimentação - Fonte placa de peltier

- Fonte reguladora 12V;
- Circuito retificador;
- Circuito regulador.

Sistema de Alimentação - Fonte placa de peltier

Solução de Software

- Documentação;
- Mock da API;
- Skill da Alexa;
- Aplicativo.

Skill Alexa

Documentação

- Diagramas;
- Documentação da API;
- Plano de Testes.

```
[{
    "nome": "string",
    "descricao": "string",
    "tempoMedio": "string",
    "quantidadeLitros": "number",
        "ingredientes": [{
                "nome": "string",
                "quantidade": "string",
                "unidadeMedida": "enum"
        }],
    "aquecimento": {
        "temperatura": "number"
    },
    "brassagem": [{
            "tempo": "number",
            "temperatura": "number"
    }],
    "fervura": {
        "tempoTotal": "number",
            "ingredientes": [{
            "tempo": "number",
                "nome": "string",
                "quantidade": "string",
                "unidadeMedida": "enum"
            }]
}]
```

Mock API

- Rotas;
- Autenticação;
- Requisições;
- Seeds.


```
"nome": "American IPA",
"descricao": "Cerveja amarga, com um toque suave de lúpulo Columbus",
"tempoMedio": "135",
"quantidadeLitros": "20",
"Ingredientes": [
    "nome": "Áqua",
    "quantidade": "21",
    "unidadeMedida": "Litros"
    "nome": "Malte Pielsen",
    "quantidade": "5",
    "unidadeMedida": "Kilos"
    "nome": "Malte Melanoidina",
    "quantidade": "1",
    "unidadeMedida": "Kilos"
    "nome": "Lúpulo Herkules",
    "quantidade": "20",
    "unidadeMedida": "gramas"
    "nome": "Lúpulo Cascade",
    "quantidade": "80",
    "unidadeMedida": "gramas"
    "nome": "Lúpulo Columbus",
    "quantidade": "80",
    "unidadeMedida": "gramas"
    "nome": "Fermento US05",
    "quantidade": "1",
    "unidadeMedida": "pacote"
"aquecimento": {
```

Alexa

- Intents;
- Utterances;
- Função Lambda.

Aplicativo

- Componentes;
- Autenticação por QRCode;
- Integração com a API.

Avanços - Reservatório

Avanços - Whirlpool

Integração: Verificou-se que a resistência não inviabiliza a fase de whirlpool.

Avanços - Fonte de alimentação da placa peltier

- Custo benefício não viabiliza sua produção;
- Fontes comerciais com melhor custo benefício;
- Fonte comercial de 12V e 10A custa em média R\$40;
- Trafo da fonte projetada custa em média R\$75;

OBRIGADO!