How to Use This Template

- Follow the instructions in the course to create this presentation.
- Note that you will be saving this presentation as a PDF. Therefore, all the content will be on the face of the slide. Content in the notes section will not be published.
- Don't use animation as it won't reflect in the PDF.
- Add as many additional slides as you need.
- Feel free to add pictures and anything that you need to enhance the presentation.

Business Intelligence Analysis

Table of Contents

- Introduction
- Methodology
- Results
- Discussion
- Conclusion
- Appendix

Introduction

Introduction

Background Information

 The retail chain operates a network of stores across multiple cities, offering a diverse range of products. With growing competition and fluctuating market demands, the company seeks to enhance its sales performance and optimize stock levels.

Objective of the Analysis

- This analysis aims to:
- Identify Sales Trends: Understand how sales evolve over time and across locations.
- Analyze Stock Impact: Determine how stock availability influences sales volume.
- Conduct Regression Analysis: Assess the relationship between sales and time to forecast future trends.
- Provide Data-Driven Recommendations: Suggest actionable insights to improve inventory management and maximize revenue.

Methodology

Data Details

• The data consists of 6 .csv files, the main one regarding sales and transactions and the other 5 being auxiliary regarding details about products, stores and locations.

Module 1: Data Cleaning and Preparation Using Excel

Imported raw sales data into Excel.

Used **filters**, **sorting**, **and conditional formatting** to identify missing or inconsistent values.

Applied **Excel formulas** to clean and format the dataset.

Standardized column headers and removed duplicates to ensure integrity.

Module 2: Data Querying and Analysis Using PostgreSQL

Data Querying:

Utilize **SQL queries** to extract and manipulate data from the PostgreSQL database Perform checks to ensure data is populated in the tables.

Data Analysis:

Create data cubes using the ROLLUP function to summarize data along hierarchies.

Analyze sales trends over time and across various regions to identify patterns.

Results:

Interpret the results of the SQL queries to derive insights that inform business strategies.

Module 3: Data Visualization and Statistical Analysis

Used Python (Plotly, Pandas, and Seaborn) for advanced visualizations.

Created a **Sunburst Chart** to analyze sales distribution across cities, stores, and products.

Developed a **scatter plot with a trendline** to study the relationship between stock levels and sales volume.

Conducted **regression analysis in Excel** to evaluate how sales change over time.

Module 4: Data Visualization and Dashboards Using Tableau

Imported processed data into Tableau.

Created a **dashboard** showcasing sales performance, stock trends, and key insights.

Designed **interactive charts** to allow dynamic filtering by store, product, and time period.

Provided a **data-driven recommendation section** for business decision-making.

Results

Module 1, Lesson 1: Data Cleaning and Preparation

Module 1, Lesson 2: Data Analysis Using Pivot Tables

City Name	Sum Sales	Total Revenue	Average Sales		
Edinburgh	5538	\$18,146.50	0.68		
Helsinki	3 67 5	\$17,880.98	0.38		
London	1901	\$5,080.29	0.64		
Saint Petersburg	1247	\$4,545.47	0.25		
Vienna	787	\$1,713.89	0.19		
Grand Total	13148	\$47,367.13	0.44		

Module 2, Lesson 1: Data Querying Using PostgreSQL

Module 2, Lesson 2: Data Analysis Using PostgreSQL

Creation of Data Cubes with ROLLUP: This helps in identifying which products perform best in specific regions or time periods, allowing businesses to tailor their sales strategies and inventory levels accordingly.

Summarizing Data Along Hierarchies: This enables businesses to focus on high-performing categories while identifying underperforming areas that may need attention or strategic changes, thus optimizing marketing efforts and resource allocation.

Regions: This information is crucial for forecasting demand, planning promotions, and managing stock levels effectively to avoid overstocking or stockouts, ultimately leading to improved customer satisfaction and profitability.

Module 3, Lesson 1: Data Visualization Using Excel

Module 3, Lesson 2: Statistical Analysis

SUMMARY OUTPUT										
Regression Statistics					X Variable 1 Residual Plot					
Multiple R	0.00255527					200 7				
R Square	6.52941E-06					150 -				
Adjusted R Square	-4.34753E-05					- 100 S	•			
Standard Error	2.805644826					9 9		4 T 4		
Observations	20000					2 30]				
						-5012]3	30 42740 42	750 42760 4	2770 42780	42790
ANOVA						-50 -		X Variable 1		
	df	SS	MS	F	Significance F					
Regression	1	1.027846923	1.027846923	0.130575909	0.71783948					
Residual	19998	157417.1145	7.87164289							
Total	19999	157418.1424								
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%		
Intercept	-23.25708307	65.83469919	-0.353264819	0.723893642	-152.2985326	105.7843664	-152.2985326	105.7843664		
X Variable 1	0.000556371	0.001539689	0.361352883	0.717839483	-0.002461547	0.003574289	-0.002461547	0.003574289		

Module 4, Lesson 1: Basic Tableau Visualizations

Sales by Store

Module 4, Lesson 2: Advanced Visualizations Using Tableau

Discussion

Insights and Recommendations

Sales Performance Varies by Location

- Some stores significantly outperform others, indicating differences in customer demand and purchasing behavior.
- Implication: The retail chain should analyze store-level factors (e.g., location demographics, competitor presence) to optimize operations.

Stock Levels & Sales Correlation is Weak

- The scatter plot and regression analysis suggest no strong correlation between stock levels and sales.
- Implication: Other factors (such as pricing, promotions, and seasonality) might have a
 greater influence on sales trends.

Regression Analysis Shows No Strong Predictive Relationship

- The R² value is nearly zero, indicating that the independent variable does not significantly predict sales.
- Implication: Businesses should consider more variables (e.g., marketing campaigns, discounts, seasonal trends) in future predictive models.

Summary

Analysis of Sales Performance Across Cities

 Based on the provided key findings, here is a rewritten summary and conclusion, emphasizing clarity and actionable insights.

Key Findings

- The analysis reveals distinct performance patterns across different cities:
- **Helsinki and Edinburgh**show strong revenue despite moderate sales volumes. This suggests that these locations are either selling**high-value products**or have adopted successful**premium pricing strategies**.
- In contrast, London and Saint Petersburggenerate lower revenue relative to their high sales volume. This indicates a potential reliance onlower-priced products or smaller transaction values.
- Stock managementappears to be a key area for improvement. Some cities maintain high stock levels without a
 corresponding increase in revenue, which points to potential inefficiencies in inventory and logistics.

Conclusion and Recommendations

- The company's strategy should focus on two primary areas for optimization:
- **Pricing Strategy**: Review and adjust the pricing model in cities like**London and Saint Petersburg**to increase revenue without compromising sales volume. The success of Helsinki and Edinburgh can serve as a benchmark for this effort.
- Stock Management: Improve inventory allocation by linkingstock levels to revenue potential. This will help prevent overstocking in low-revenue cities and ensure that high-revenue locations have adequate supply to meet demand.

Appendix

Include any relevant additional charts, worksheets, or tables that you may have created during the analysis phase