Updated August 2, 2024

Erica Lindsey Busch

Email: erica.busch@yale.edu

Website: ericabusch.github.io

Github: github.com/ericabusch

LinkedIn: linkedin.com/in/erica-busch

Education Yale University August 2020 – Present

PhD Candidate, Neuroscience Department of Psychology Master of Philosophy, Master of Science June 2023

Advisor: Nicholas Turk-Browne

Thesis topic: Manifold learning and real-time neurofeedback

Dartmouth College September 2016 – March 2020

BA in Cognitive Science, Computer Science High Honors

Advisors: James Haxby, Caroline Robertson

Thesis topic: A deep learning approach to scene perception in autism

Centro Tinku Academic CenterAugust - November 2017Dartmouth Department of Spanish and PortugueseCusco, Peru

Awards and	ReproNim/INCF Fellowship	2024
fellowships	Society for Neuroscience Meeting Travel Award, Wu Tsai Institute	2023
	Data Competition 1st Prize, Social and Affective Neuroscience Society	2022
	Graduate Research Fellowship Program, National Science Foundation	2021-2024
	Outstanding Undergraduate Research Award 2nd Prize, Neukom Institute	2020
	Made at Dartmouth Research Competition Grand Prize	2020
	Academic Achievement Prize in Cognitive Science	2020
	Fulbright Fellowship Finalist (Withdrew due to COVID-19)	2020
	High Honors in Cognitive Science	2020
	William H. Neukom Scholarship Award, Neukom Institute for Computational Science	nce 2020
	Citation for Academic Excellence in Machine Learning	2019
	Descarch Experience for Undergraduates Grant National Science Foundation	2010

William H. Neukom Scholarship Award, Neukom Institute for Computational Science	2020
Citation for Academic Excellence in Machine Learning	2019
Research Experience for Undergraduates Grant, National Science Foundation	2019
Citation for Academic Excellence in Cognitive Neuroscience	2019
William H. Neukom Scholarship Award, Neukom Institute for Computational Science	2019
David C. Hodgson Endowment Award in Cognitive Neuroscience	2019
James O. Freedman Presidential Scholar Award	2018
Sophomore Research Scholar Award	2018

Citation for Academic Excellence in Intro to Programming 2017

Dartmouth College Honors List 2017-2020

National Merit Scholarship Finalist 2015

Publications Peer-reviewed articles and conference proceedings

Busch, E.L.*, Conley, M.I.*, & Baskin-Somers, A. Manifold learning uncovers nonlinear interactions between the adolescent brain and social environment that predict psychopathology. (In Press, *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging*) Preprint.

Busch, E.L., Fincke, E.C., Lajoie, G., Krishnaswamy, S., & Turk-Browne, N.B. Learning along the manifold of human brain activity via real-time neurofeedback. *Proceedings of the 8th Annual Conference on Cognitive Computational Neuroscience*. Paper.

Roskies, A., **Busch, E.L.**, & Walton, A. Agency as a framework for thinking about neuropsychiatric disease: A prelude to asking causal questions. (In press, *Philosophical Issues in Psychiatry VI: Causal Concepts in Psychopathology*, Cambridge University Press).

Busch, E.L., Rapuano, K.M., Anderson, K.M., Rosenberg, M.D., Watts, R., Casey, BJ, Haxby, J.V., & Feilong, M. (2024). Dissociation of reliability, predictability, and heritability in fine-and coarse-scale functional connectomes during development. *Journal of Neuroscience*. 44(6), doi:10.1523/JNEUROSCI.0735-23.2023. Paper, Code.

Skalaban, L.J., Chan, I., Lin, Q., Rapuano, K.M., Conley, M.I., **Busch, E.L.**, Watts, R., Murty, V., & Casey, B.J. Representational dissimilarity of faces and places during a working memory task is associated with subsequent recognition memory during development. (2024). *Journal of Cognitive Neuroscience*. 36(3) 415-434, doi:10.1162/jocn_a_02094. Paper.

Afrasiyabi, A., **Busch, E.L.,** Singh, R., Bhaskar, D., Capette, L., Turk-Browne, N.B., Krishnaswamy, S. Looking through the mind's eye via multimodal encoder-decoder networks. (*Machine as Medium: Proceedings of the Center for Collaborative Arts and Media*, Fall 2024 Volume)

Busch, E.L., Yates, T.S., & Turk-Browne, N.B. (2023). Tasks constrain the intrinsic dimensionality of activity in non-selective cortex. *Proceedings of the 7th Annual Conference on Cognitive Computational Neuroscience*. Paper.

Busch, E.L., Huang, J., Benz, A., Wallenstein, T., Lajoie, G., Wolf, G., Krishnaswamy, S.*, & Turk-Browne, N.B.* (2023). Multi-view manifold learning of human brain-state trajectories. *Nature Computational Science*. 3(3), 240-253, doi:10.1038/s43588-023-00419-0. Paper, Analysis capsule, Pip package.

Busch, E.L. & Krishnaswamy, S. (2023). Revealing trajectories of the mind via non-linear manifolds of brain activity. *Nature Computational Science*. 3(3), 192-193, doi: 10.1038/s43588-023-00423-4. *Invited research briefing*. Article.

Huang, J.*, **Busch, E.L.***, Wallenstein, T.*, Gerasimiuk, M., Benz, A., Lajoie, G., Wolf, G., Turk-Browne, N.B., & Krishnaswamy, S. (2022). Learning shared neural manifolds from multi-subject FMRI data. *Proceedings of the 32nd IEEE Machine Learning for Signal Processing*. doi:10.1109/MLSP55214.2022.9943383. Paper, arXiv.

Busch, E.L.*, Slipski, L.*, Feilong, M., Guntupalli, J., Visconti di Oleggio Castello, M., Huckins, J., Nastase, S., Gobbini, M.I., Wager, T., & Haxby, J. (2021). Hybrid hyperalignment: A single high-dimensional model of shared information embedded in cortical patterns of response and functional connectivity. *NeuroImage.* 233, doi:10.1016/j.neuroimage.2021.117975. Paper, Code.

Manuscripts

Afrasiyabi, A., Bhaskar, D., **Busch, E.L.,** Singh, R., Capette, L., Turk-Browne, N.B., Krishnaswamy, S. SAMBA: Spatiotemporal interlinking of brain modalities. (Under review)

Busch, E.L., Lajoie, G., Krishnaswamy, S., & Turk-Browne, N.B. Learning on the manifold of human brain activity via real-time neurofeedback. (In prep)

Busch, E.L., & Turk-Browne, N.B. Diverse tasks constrain and inflate intrinsic dimensionality of cortical activity. (In prep)

* Denotes equal contribution.

Invited Talks		ng: Sept. 2024	
	Learning along the manifold of human brain activity via real-time neurofeedback		
	ABCD Insights & Innovations Meeting, NIH Campus	Mar. 2024	
	Dissociable dimensions reveal scales of individual differences in the functional connectome.		
	Projects in Progress, Wu Tsai Institute	Nov. 2023	
	Learning on the manifold of human brain activity via real-time neurofeedback		
	Shine Lab Meeting, University of Sydney	Apr. 2023	
	Multi-view manifold learning of human brain-state trajectories.		
	Yale Brain Imaging Center Users Meeting	Oct. 2022	
	Enhancing human learning along the neural manifold.		
	ABCD Imaging Analytics Working Group	Sept. 2022	
	The LEGO theory of the developing functional connectome.		
	Current Works in Behavior, Genetics, and Neuroscience	Apr. 2022	
	The LEGO theory of the developing functional connectome.		
	Guest lecture in NSCI 270: Yale University	Nov. 2021	
	Advanced fMRI analysis techniques.		
	FINN Lab Meeting, Dartmouth College	Apr. 2021	

Hyperalignment: Foundations, flavors, and functions

Conference presentations

Busch, E.L., Fincke, E.C., Lajoie, G., Krishnaswamy, S., & Turk-Browne, N.B. (2024) Learning along the manifold of human brain activity via real-time neurofeedback. *Oral Presentation, Real-time Functional Imaging and Neurofeedback Meeting.* Heidelberg, Germany.

Busch, E.L., Fincke, E.C., Lajoie, G., Krishnaswamy, S., & Turk-Browne, N.B. (2024)

Learning along the manifold of human brain activity via real-time neurofeedback. *Contributed Talk and Poster at 8th Annual Conference on Cognitive Computational Neuroscience.* Cambridge, M.A., USA.

Busch, E.L., Conley, M.I., & Baskin-Sommers, A. (2024). Using manifold learning to uncover the embedded brain and implications for mental health in youth. *Poster, Organization for Human Brain Mapping Annual Meeting*. Seoul, South Korea.

Busch, E.L., Fincke, E.C., Lajoie, G., Krishnaswamy, S., & Turk-Browne, N.B. (2024). Learning on the manifold of human brain activity through real-time neurofeedback. *Poster, Organization for Human Brain Mapping Annual Meeting*. Seoul, South Korea.

Busch, E.L., Fincke, E.C., Lajoie, G., Krishnaswamy, S., & Turk-Browne, N.B. (2023). Learning on the manifold of human brain activity through real-time neurofeedback. *Talk at the Society for Neuroscience Annual Meeting Nanosymposium on Neural Decoding and Neuroprosthetics*. Washington, D.C., USA.

Busch, E.L., Yates, T.S., & Turk-Browne, N.B. (2023). Tasks constrain the intrinsic dimensionality of activity in non-selective cortex. *Poster, 7th Annual Conference on Cognitive Computational Neuroscience.*, Oxford, United Kingdom.

Busch, E.L., Bhaskar, D., Letrou, A., Zhang, X., Noah, J.A., Lajoie, G., Hirsch, J., Turk-Browne, N.B., Krishnaswamy, S. (2022). An encoder-decoder framework for cross-modal translation of brain imaging data. *Poster and selected lightning talk, Montreal AI-Neuroscience Meeting*. Montreal, QC, Canada.

Busch, E.L., Letrou, A., Huang, J., Lajoie, G., Wolf, G., Krishnaswamy, S., & Turk-Browne, N.B. (2022). A neural manifold learning framework for real-time fMRI neurofeedback. *Poster, Society for Neuroscience Annual Meeting*. San Diego, CA, USA.

Busch, E.L., Letrou, A., Huang, J., Lajoie, G., Wolf, G., Krishnaswamy, S., & Turk-Browne, N.B. (2022). A neural manifold learning framework for real-time fMRI neurofeedback. *Poster, Real-time Functional Imaging and Neurofeedback Meeting*. New Haven, CT, USA.

Busch, E.L., Rapuano, K.M., Anderson, K.M., Rosenberg, M.D., Watts, R., Casey, BJ, Haxby, J.V., & Feilong, M. (2022). Heritable template underlies reliable idiosyncrasies in the developing fine-scale connectome. *Poster, Organization for Human Brain Mapping Annual Meeting*. Glasgow, Scotland.

Letrou, A., **Busch, E.L.,** & Turk-Browne, N.B., (2022). Relating neural dynamics and emotion dynamics with nonlinear manifold learning. *Poster and talk, Social and Affective Neuroscience Society Annual Meeting*.

Roskies, A., Walton, A., Roth, R.M., **Busch, E.L.,** Holtzheimer, P.E., (2022). Measuring the dimensions of agency: A data-driven approach. *Poster, Philosophy of Science Association*. Pittsburgh, PA.

Busch, E.L., Huang, J., Benz, A., Wallenstein, T., Lajoie, G., Wolf, G., Krishnaswamy, S., & Turk-Browne, N.B. (2021). Manifold learning to capture brain-state trajectories in fMRI. *Poster, Society for Neuroscience Annual Meeting*.

Walton, A.E., Nizzi, M.C., West, B., Mofe, E., Roth, R.M., **Busch, E.L.,** Holtzheimer, P.E., & Roskies A.L. (2021). The impact of anxiety and depression on dimensions of agency. *Poster, 7th Annual NIH BRAIN Initiative Annual Meeting.*

Sivitilli, D.M., Weertman, W.L., **Busch, E.L.**, Ullmann, J.F., Smith, J.R., Gire, D.H. (2021). Strategies of single arm foraging in Octopus rubescens in the absence of visual feedback. *Poster, Society for Integrative and Comparative Biology*.

Busch, E.L., Haskins, A.J., Isik, L., & Robertson, C.E. (2020) A deep learning approach to understanding real-world scene perception in autism. *Presidential Undergraduate Research Symposium, Dartmouth College.*

Walton, A.E., **Busch, E.L.**, Ratoff, W., Smith, W., Holtzheimer, P.E., & Roskies, A.L. (2020). Developing an agency assessment tool for understanding changes in agency with neurointerventions: Preliminary results. *6th Annual NIH BRAIN Initiative Annual Meeting*.

Botch, T.L., **Busch, E.L.**, & Robertson, C.E. (2020). Application of deep neural networks to model omnidirectional gaze behavior in VR. *Vision Sciences Society Annual Meeting*.

Busch, E.L., Sivitilli, D.M., & Gire, D.H. (2019). Using deep learning to model octopus arm motion. *Center for Neurotechnology Research Symposium*. Seattle, WA, USA.

Busch, E.L., Ma, F., Nastase, S.A., & Haxby, J.V. (2019). Individual differences in fine-grained neural correlates of mental states. *Wetterhahn Science Symposium*. Hanover, NH, USA.

Teaching experience

Instructor, Interdepartmental Neuroscience Program Yale University August 2024 fMRI Tutorial, INP First-Year Student Bootcamp.

Teaching Fellow, Department of Psychology Yale University Spring 2022 & 2023

	1010 250/550/11001 250. Computational methods in naman neuroscience.		
	Teaching Fellow, Department of Psychology Yale University	Fall 2022	
	NSCI 160/PSYC 160: The human brain.		
	Teaching Fellow, Department of Psychology Yale University	Fall 2021	
	PSYC 270 /NCSI 270: Research methods in cognitive neuroscience.		
	TA, Department of Computer Science Dartmouth College	Spring 2020	
	COSC 74: Machine learning and statistical data analysis		
	TA, Department of PBS Dartmouth College	Winter 2019	
	PSYC 6: Introduction to neuroscience		
	Peer Tutor, Tutor Clearinghouse Dartmouth College	2017 - 2020	
	SPAN 1-3 (Intro Spanish), SPAN 9 (Culture and Conversation: Advanced), SP	AN 20 (Writing	
	d Reading), COSC 1 (Intro to Programming and Computation), COSC 10 (Object-Oriented		
	Programming), COSC 50 (Software Design), COSC 74 (Machine Learning), PSYC 6 (Intro to		
	Neuroscience), PSYC 10 (Statistics), COGS 1 (Intro to Cognitive Science)		
	Sonia Kovalevsky Math Day Cryptography Instructor	Spring 2018	
	College Access Coach, Let's Get Ready	Summer 2017	
	Private tutor	2012-Present	
	K-12: NY State Regents math and sciences, English, Spanish; AP: Calculus AB	and BC, Statis-	
	tics, Physics, Computer Science; SAT / ACT; UG: Algebra, graph theory, Spanish.		
Service and	Trainee Committee, Cognitive Computational Neuroscience	2024	
outreach	Innovators in Cognitive Neuroscience Organizer (Founding member)	2020-present	
	Wu Tsai Institute Student-Postdoc Committee Fellow	2022–present	
	Yale Psychology Colloquium Committee	2021-2023	
	Yale Psychology Diversity Committee Sneak Peek Mentor	2021-2023	
	DLAB Program Facilitator (Nelson A. Rockefeller Center for Public Polic	y) 2018–2019	
	SIBS Mentoring Program Director (Dartmouth Center for Social Impact)	2016-2020	
	Directed and mentored for a one-on-one youth mentorship program for Date	rtmouth under-	
	grads and Upper Valley youth. Coordinated parents and social workers and to	ained mentors.	
26 . 11			
Mentorship	E. Chandra Fincke (Yale undergraduate and honors thesis student)	2022-Present	
	David Lee (Yale undergraduate and first-year fellow)	2024-Present	
	Ariadne Letrou (Lab manager and postgraduate researcher)	2021-2023	
	Now: PhD student, Princeton Psychology (PI: Ken Norman)		
	Kyle Andruczk (Yale undergraduate)	2022-2023	
Reviewing	PNAS, Imaging Neuroscience, International Conference on Learning F	Representations	
	(ICLR), Proceedings on Cognitive Computational Neuroscience (CCN).	•	
Other skills	Neuroimaging: rt-cloud (Real-time fMRI with cloud computing), MRI operator certified,		
	MEG/EEG experienced. BrainIAK & PyMVPA Contributor, FSL, FreeSurfer,	AFNI.	
	Programming: Python, BASH, C, C++, C# for Unity, Java, MATLAB, R,	HTML, Unity,	
	PsychoPy, PsychToolbox, PyTorch, Keras, TensorFlow.		
	Languages: Spanish (fluent), Italian and Portuguese (intermediate)		
	Miscellaneous: Competitive equestrian, pet enthusiast, runner, freelance d	ata scientist.	

PSYC 258/558/NCSI 258: Computational methods in human neuroscience.