Теория категорий Сопряженные функторы

Валерий Исаев

07 сентября 2015 г.

План лекции

Рефклективные подкатегории

Определение сопряженности

Единица и коединица сопряжения

Примерь

Рефлективные подкатегории

- ▶ Пусть **C** полная подкатегория **D**. Допустим мы хотим доказать, что вложение **C** \rightarrow **D** эквивалентность.
- ▶ Тогда нам нужно найти для каждого объекта X из \mathbf{D} объект из \mathbf{C} , изоморфный X.
- Иногда бывает так, что эти категории не эквивалентны, но мы всё же можем найти некоторый объект Y в C, который является в некотором смысле лучшим приближением к X.
- ightharpoonup Конкретно, должна существовать стрелка $f:X \to Y$, которая может не быть изоморфизмом, но всё же является в каком-то смысле наилучшей такой стрелкой.

Определение

▶ Пусть **C** – полная подкатегория **D**. Мы говорим, что **C** – *рефлективная* подкатегория **D**, если для любого объекта X из **D** существует стрелка $f: X \to Y$, где $Y \in \mathbf{C}$, такая что для любой стрелки $f': X \to Y'$, где $Y' \in \mathbf{C}$, существует уникальный морфизм $h: Y' \to Y$, такой что следующая диаграмма коммутирует:

• Если вместо стрелки $X \to Y$ существует стрелка $Y \to X$ с аналогичным универсальным свойством, то категория называется корефлективной.

Все стрелки в следующей диаргамме являются вложениям рефлективных подкатегорий:

Например, чтобы по группе G построить соответствующую ей абелеву группу, нужно взять фактор по коммутанту G/[G,G].

План лекции

Рефклективные подкатегории

Определение сопряженности

Единица и коединица сопряжения

Примерь

Моноиды и слова

- ▶ Пусть $U: \mathbf{Mon} \to \mathbf{Set}$ забывающий функтор на категории моноидов.
- ▶ Пусть $F : \mathbf{Set} \to \mathbf{Mon} \mathbf{\phi}$ унктор, сопоставляющий множеству A множество слов в алфавите A.

$$F(A) = \{ [a_1 \dots a_n] \mid a_i \in A \}$$

- lacktriangle Тогда любая функция f:A o U(B) уникальным образом доопределяется до морфизма моноидов g:F(A) o B.
- У этого соотвествия существует обратное, каждому морфизму моноидов $g:F(A)\to B$ сопоставляющее функцию $f:A\to U(B),\ f(a)=g([a]).$
- ► Таким образом, существует биекция $\varphi: Hom_{Set}(A, U(B)) \simeq Hom_{Mon}(F(A), B)$.

Векторные пространства и базисы

- ▶ Пусть \mathbf{Vec}_K категория векторных пространств над полем K.
- ightharpoonup Пусть $U: \mathbf{Vec}_K o \mathbf{Set}$ забывающий функтор.
- ightharpoonup Пусть $F: \mathbf{Set} o \mathbf{Vec}_K \mathbf{ф}$ унктор, сопоставляющий множеству A векторное пространство с базисом A.

$$F(A) = \{ c_1 a_1 + \ldots + c_n a_n \mid c_i \in K, a_i \in A \}$$

- lacktriangle Тогда любая функция f:A o U(B) уникальным образом доопределяется до линейного преобразования $g: F(A) \rightarrow B$.
- ▶ У этого соотвествия существует обратное, каждому линейному преобразованию $g:F(A)\to B$ сопоставляющее функцию $f: A \to U(B)$, f(a) = g(1a).
- Таким образом, существует биекция $\varphi: \mathit{Hom}_{\mathsf{Set}}(A, \mathit{U}(B)) \simeq \mathit{Hom}_{\mathsf{Vec}}(F(A), B)$

Кольца и полиномы

- ▶ Пусть $U: \mathbf{Ring} \to \mathbf{Set}$ забывающий функтор на категории колец.
- ▶ Пусть $F: \mathbf{Set} \to \mathbf{Ring} \mathbf{\phi}$ унктор, сопоставляющий множеству X кольцо полиномов с переменными в X.
- ▶ Тогда любая функция $f:A \to U(B)$ уникальным образом доопределяется до морфизма колец $g:F(A) \to B$.
- У этого соотвествия существует обратное, каждому линейному преобразованию $g:F(A)\to B$ сопоставляющее функцию $f:A\to U(B),\ f(a)=g(1a^1).$
- ▶ Таким образом, существует биекция $\varphi: Hom_{\mathbf{Set}}(A, U(B)) \simeq Hom_{\mathbf{Ring}}(F(A), B).$

Сопряжение

Definition

Сопряжение между категориями ${\bf C}$ и ${\bf D}$ – это тройка (F,U,φ) , состоящая из функторов $F:{\bf C}\to {\bf D}$ и $U:{\bf D}\to {\bf C}$ и естественного изоморфизма $\varphi_{AB}: Hom_{\bf D}(F(A),B)\simeq Hom_{\bf C}(A,U(B))$.

В определении φ является естественным изоморфизмом между функторами $Hom_{\mathbf{D}}(F(-),-), Hom_{\mathbf{C}}(-,U(-)): \mathbf{C}^{op} \times \mathbf{D} \to \mathbf{Set}.$

Во всех примерах, приведенных ранее, изоморфизм $\varphi_{A,B}$ был естественен по A и B. Таким образом, это были примеры сопряжений.

- ▶ Если (F, U, φ) сопряжение, то пишут $F \dashv U$ и говорят, что F левый сопряженный к U, а U правый сопряженный к F.
- ▶ Если $F \dashv U$ и $F' \dashv U$, то F и F' изоморфны.
- Доказательство: упражнение.
- ▶ Если $F \dashv U$ и $F \dashv U'$, то U и U' изоморфны.
- Доказательство: по дуальности.

Сохранение (ко)пределов

Proposition

Левые сопряженные функторы сохраняют копределы. Правые сопряженные функторы сохраняют пределы.

Доказательство.

Второе утверждение является дуальным к первому. Докажем первое. Пусть $F: \mathbf{C} \to \mathbf{D}$ — левый сопряженный к $G: \mathbf{D} \to \mathbf{C}$. Пусть $D: J \to \mathbf{C}$ — некоторая диаграмма в \mathbf{C} . Пусть $L=colim\ D$ — копредел этой диаграммы. Пусть $\alpha: F\circ D \to X$ — некоторый коконус в \mathbf{D} . Тогда существует уникальная стрелка из L в G(X). По сопряженности она соответствует уникальной стрелки из F(L) в X. Таким образом, F(L) — копредел $F\circ D$.

Примеры

План лекции

Рефклективные подкатегории

Определение сопряженности

Единица и коединица сопряжения

Примерь

Определение

- ▶ Пусть (F, G) сопряжение.
- ▶ Тогда $\varphi_{A,F(A)}: Hom_{\mathbb{D}}(F(A),F(A)) \simeq Hom_{\mathbb{C}}(A,GF(A))$ и $\varphi_{G(B),B}: Hom_{\mathbb{D}}(FG(B),B) \simeq Hom_{\mathbb{C}}(G(B),G(B)).$
- ▶ Пусть $\eta_A: A \to GF(A)$ естественное преобразование, которое определяется как $\eta_A = \varphi_{A,F(A)}(id_{F(A)})$.
- ightharpoonup С другой стороны $arphi_{G(B),B}: \mathit{Hom}_{\mathbf{D}}(\mathit{FG}(B),B) \simeq \mathit{Hom}_{\mathbf{C}}(G(B),G(B)).$
- ▶ Пусть $\epsilon_B: FG(B) \to B$ естественное преобразование, которое определяется как $\epsilon_B = \varphi_{G(B),B}^{-1}(id_{G(B)})$.
- lacktriangledown η_A называется *единицей* сопряжения, а ϵ_B *коединицей*.

Примеры

- $ightharpoonup \eta_A(a)$ возвращает "одноэлементное слово на букве a".
 - ightharpoonup Для категории моноидов $\eta_A(a)=[a]$.
 - lacktriangle Для категории векторных пространств $\eta_A(a)=1a$.
 - ▶ Для категории колец $\eta_A(a) = a$ полином, состоящий из одной переменной a.
- ullet $\epsilon_B: FU(B) o B$ "вычисляет" формальное выражение в B.
 - lacktriangle Для категории моноидов $\epsilon_B([a_1\ldots a_n])=a_1*\ldots*a_n$.
 - ightharpoonup Для категории векторных пространств $\epsilon_B(c_1a_1+\ldots+c_na_n)=c_1*a_1+\ldots+c_n*a_n.$
 - ightharpoonup Для категории колец ϵ_B определяется аналогичным образом как функция, вычисляющая полином на данных значениях.

Свойства единицы и коединицы

Proposition

Если (F, G, φ) – сопряжение, то следующие диаграммы коммутируют:

Доказательство

Доказательство.

Условия естественности φ и φ^{-1} можно переписать в следующем виде:

Нижний треугольник в первой диаграмме дает первое необходимое равенство при $f=id_{FG(B)}$ и $g=\epsilon_B$. Второе необходимое равенство получается из верхнего треугольника во второй диаграмме при $f'=id_{GF(A)}$ и $h=\eta_A$.

Определение сопряжения через единицу и коединицу

Существует эквивалентное определение понятия сопряжения через единицу и коединицу.

Proposition

Четверка

$$(F: \mathbf{C} \to \mathbf{D}, G: \mathbf{D} \to \mathbf{C}, \eta_A: A \to GF(A), \epsilon: FG(B) \to B),$$
 состоящая из пары функторов и пары естественных преобразований, удовлетворяющих условию, приведенному в предыдущем утверждении, определяет сопряжение (F, G, φ) , где $\varphi(f) = G(f) \circ \eta_A$ для любого $f: F(A) \to B$, $\varphi^{-1}(g) = \epsilon_B \circ F(g)$ для любого $g: A \to G(B)$. Единицей и коединицей этого сопряжения являются η и ϵ соответственно.

Единица и коединица сопряжения

Доказательство

Доказательство.

Последнее утверждение элементарно следует из определения arphiи $arphi^{-1}$. Докажем, что arphi и $arphi^{-1}$ взаимообратны:

$$arphi^{-1}(arphi(f))=$$
 (по определению $arphi$ и $arphi^{-1})$ $\epsilon_B\circ FG(f)\circ F(\eta_A)=$ (по естественности ϵ) $f\circ \epsilon_{F(A)}\circ F(\eta_A)=$ (по свойству ϵ и η) $f.$
$$\varphi(arphi^{-1}(g))=$$
 (по определению $arphi$ и $arphi^{-1})$ $G(\epsilon_B)\circ GF(g)\circ \eta_A=$ (по естественности η) $G(\epsilon_B)\circ \eta_{G(B)}\circ g=$ (по свойству ϵ и η) $g.$

Доказательство

Доказательство.

Осталось доказать, что φ естественно. Для этого достаточно проверить равенства, приводившиеся в доказательстве предыдущего утверждения.

$$G(g)\circ arphi(f)=$$
 (по определению $arphi)$ $G(g)\circ G(f)\circ \eta_B=$ (так как G – функтор) $G(g\circ f)\circ \eta_B=$ (по определению $arphi)$ $arphi(g\circ f).$ $arphi(f)\circ h=$ (по определению $arphi)$ $G(f)\circ \eta_B\circ h=$ (по естественности η) $G(f)\circ GF(h)\circ \eta_A=$ (по определению $arphi$) $arphi(f\circ F(h)).$

План лекции

Рефклективные подкатегории

Определение сопряженности

Единица и коединица сопряжения

Примеры

Эквивалентность категорий

- ▶ Если $F: \mathbf{C} \to \mathbf{D}$ эквивалентность категорий, то F одновеременно и левый и правый сопряженный.
- Любой обратный к F будет его правым и левым сопряженным.

Рефлективные подкатегории

- ▶ Если $i: \mathbf{C} \to \mathbf{D}$ функтор вложения полной подкатегории, то i является правым сопряженным тогда и только тогда, когда \mathbf{C} рефлективная подкатегория.
- Левый сопряженный к і называется рефлектором.
- ▶ Если $F \dashv i$, то $\eta_X : X \to i(F(X))$ дает нам необходимую аппроксимацию к X в C.
- ▶ Если ${\bf C}$ рефлективная подкатегория, то $F: {\bf D} \to {\bf C}$ на объектах определяется очевидным образом, а на морфизмах по универсальному свойству.

- Декартова категория является декартово замкнутой тогда и только тогда, когда для любого объекта В функтор
 — × В является левым сопряженным.
- ▶ Действительно, правый сопряженный к нему это функтор $(-)^B$, а коединица сопряжения $\epsilon_C: C^B \times B \to C$ это морфизм вычисления ev.
- ▶ Биекция, которая появляется в определении сопряженных функторов, — это в точности биекция каррирования.