Discrete Mathematics Lecture 15

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 14

LHRR:
$$a_n = \sum_{i=1}^{k} c_i a_{n-i}$$

- $r_1, r_2, ..., r_t$ are char roots of multiplicities $m_1, m_2, ..., m_t$
 - Char roots: roots of $r^k c_1 r^{k-1} \dots c_k$

•
$$a_n = \sum_{j=1}^t \left(\sum_{\ell=0}^{m_j-1} \alpha_{j,\ell} n^\ell \right) r_j^n$$

LNRR:
$$a_n = \sum_{i=1}^k c_i a_{n-i} + (f_l n^l + \dots + f_1 n + f_0) s^n$$

- s is a root of $(r^k c_1 r^{k-1} \dots c_k)$ of multiplicity m
- $a_n = (p_l n^l + \dots + p_1 n + p_0) s^n n^m$

Summary of Lecture 14

Generating function: $\{a_n\}_{n=0}^{\infty} \leftrightarrow \sum_{n=0}^{\infty} a_n x^n$.

- A(x) = B(x) if $a_n = b_n$ for all n = 0,1,2,...
- $A(x) + B(x) = \sum_{n=0}^{\infty} (a_n + b_n) x^n$
- $A(x) B(x) = \sum_{n=0}^{\infty} (a_n b_n) x^n$
- $A(x) \cdot B(x) = \sum_{n=0}^{\infty} (\sum_{j=0}^{n} a_j b_{n-j}) x^n$
- $\lambda \cdot A(x) = \sum_{n=0}^{\infty} \lambda a_n x^n$ for any constant $\lambda \in \mathbb{R}$
- B(x) is an **inverse** of A(x) if A(x)B(x) = 1

Operations

THEOREM: $A(x) = \sum_{n=0}^{\infty} a_n x^n$ has an inverse iff $a_0 \neq 0$.

EXAMPLE: Let
$$A(x) = \sum_{n=0}^{\infty} x^n$$
. Find $A^{-1}(x)$.

- $a_0 = 1 \neq 0$: $A^{-1}(x)$ exists
- Denote $A^{-1}(x) = \sum_{n=0}^{\infty} b_n x^n$; $b_0, b_1, ...$ are undetermined coefficients
- $A(x)A^{-1}(x) = 1$:

•
$$(1+x+x^2+\cdots)(b_0+b_1x+b_2x^2+\cdots)=1+0\cdot x+0\cdot x^2+\cdots$$

- Coefficient of x^0 : $b_0 = 1$
- Coefficient of x^1 : $b_1 + b_0 = 0$
- Coefficient of x^2 : $b_2 + b_1 + b_0 = 0$
- Coefficient of x^n : $b_n + b_{n-1} + \dots + b_0 = 0$
 - $b_1 = -1, b_2 = 0, ..., b_n = 0$
 - $A^{-1}(x) = 1 x$

Operations

DEFINITION:
$$A(x) = \sum_{n=0}^{\infty} a_n x^n$$

- $A'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$
 - $A^{(0)}(x) = A(x)$
 - $A^{(k)}(x) = (A^{(k-1)}(x))'$ for all integers $k \ge 1$
- $\int A(x) dx = \sum_{n=0}^{\infty} \frac{1}{n+1} a_n x^{n+1} + C$, where C is a constant

THEOREM: Let $A(x) = \sum_{n=0}^{\infty} a_n x^n$ and $B(x) = \sum_{n=0}^{\infty} b_n x^n$.

- $(\alpha A(x) + \beta B(x))' = \alpha A'(x) + \beta B'(x)$
- $\bullet \quad (A(x)B(x))' = A'(x)B(x) + A(x)B'(x)$
- $\left(A^k(x)\right)' = kA^{k-1}(x) A'(x)$

$$(1 + \alpha x)^u$$

DEFINITION: Let $u \in \mathbb{R}$ and $n \in \mathbb{N}$. The **extended binomial**

coefficient
$$\binom{u}{n} = \begin{cases} u(u-1)\cdots(u-n+1)/n! & n>0\\ 1 & n=0 \end{cases}$$

THEOREM: Let x be a real number with |x| < 1 and let u be a real number. Then $(1 + x)^u = \sum_{n=0}^{\infty} {u \choose n} x^n$.

EXAMPLE:

•
$$(1 - \alpha x)^{-1} = \sum_{n=0}^{\infty} \alpha^n x^n$$

•
$$(1 - \alpha x)^{-u} = \sum_{n=0}^{\infty} {n + u - 1 \choose n} \alpha^n x^n$$

Solving RR with GFs

EXAMPLE: Solve the LNRR $a_n = 8a_{n-1} + 10^{n-1}$ with the initial condition $a_0 = 1$ using generating function.

•
$$A(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$= 1 + \sum_{n=1}^{\infty} (8a_{n-1} + 10^{n-1}) x^n$$

$$= 1 + 8xA(x) + \frac{x}{1-10x}$$

THEOREM: Let $Q(x), P(x) \in \mathbb{R}[x]$ be two polynomials such that $\deg(Q) > \deg(P)$. If $Q(x) = (1 - r_1 x)^{m_1} \cdots (1 - r_t x)^{m_t}$ for distinct non-zero numbers r_1, \dots, r_t and integers $m_1, \dots, m_t \ge 1$, then there exist unique coefficients $\{\alpha_{j,u} : j \in [t], u \in [m_j]\}$ s.t.

$$\frac{P(x)}{Q(x)} = \sum_{j=1}^{t} \sum_{u=1}^{m_j} \frac{\alpha_{j,u}}{(1 - r_j x)^u} .$$

Solving RR with GFs

EXAMPLE: Solve the LNRR $a_n = 8a_{n-1} + 10^{n-1}$ with the initial condition $a_0 = 1$ using generating function.

•
$$A(x) = \frac{1-9x}{(1-8x)(1-10x)}$$

•
$$A(x) = \frac{\alpha_{1,1}}{1-8x} + \frac{\alpha_{2,1}}{1-10x}$$

•
$$\alpha_{1,1} = \alpha_{2,1} = \frac{1}{2}$$

•
$$A(x) = \frac{1}{2} \left(\frac{1}{1 - 8x} + \frac{1}{1 - 10x} \right)$$

= $\sum_{n=0}^{\infty} \frac{1}{2} (8^n + 10^n) x^n$

•
$$a_n = \frac{1}{2}(8^n + 10^n) \quad (n \ge 0)$$

GFs of the Catalan numbers $\{C_n\}_{n=0}^{\infty}$:

•
$$C_n = C_0 C_{n-1} + C_1 C_{n-2} + \dots + C_{n-1} C_0$$

$$\cdot \quad x C(x)^2 = C(x) - 1$$

Counting Combinations with GFs

QUESTION: Let $k > 0, N_1, ..., N_k \subseteq \mathbb{N}$. For every $n \ge 0$, let a_n be the number of n-combinations of [k] with repetition where every $i \in [k]$ appears N_i times. (Distribution problems: Type 2)

- $a_n = |\{(n_1, \dots, n_k) : n_1 \in N_1, \dots, n_k \in N_k, n_1 + \dots + n_k = n\}|$
 - This is also the number of ways of distributing n unlabeled objects into k labeled boxes such that N_i objects are sent to box i

THEOREM:
$$\sum_{n=0}^{\infty} a_n x^n = \prod_{i=1}^k \sum_{n_i \in N_i} x^{n_i}$$
.

•
$$\prod_{i=1}^{k} \sum_{n_i \in N_i} x^{n_i} = \sum_{n_1 \in N_1} x^{n_1} \cdot \sum_{n_2 \in N_2} x^{n_2} \cdots \sum_{n_k \in N_k} x^{n_k}$$
$$= \sum_{n=0}^{\infty} \left(\sum_{n_1 \in N_1, \dots, n_k \in N_k, n_1 + \dots + n_k = n} 1 \right) x^n$$
$$= \sum_{n=0}^{\infty} a_n x^n$$

Counting Combinations with GFs

EXAMPLE: Let a_n be the number of ways of distributing n identical books to 5 persons such that person 1, 2, 3, and 4 receive $\geq 3, \geq 2, \geq 4, \geq 6$ books, respectively. Calculate a_{20} .

•
$$a_n = |\{(n_1, ..., n_5): n_1 \ge 3, n_2 \ge 2, n_3 \ge 4, n_4 \ge 6, n_5 \ge 0, n_1 + \dots + n_5 = n\}|$$

• $N_1 = \{3,4, ...\}; N_2 = \{2,3, ...\}; N_3 = \{4,5, ...\};$
 $N_4 = \{6,7, ...\}; N_5 = \{0,1,2 ...\}$
• $\sum_{n=0}^{\infty} a_n x^n = \prod_{i=1}^5 \sum_{n_i \in N_i} x^{n_i}$

$$= x^{15} \sum_{m=0}^{\infty} {\binom{-5}{m}} (-1)^m x^m$$

•
$$a_{20} = {\binom{-5}{5}} (-1)^5 = 126$$

•
$$a_{20} = {\binom{-5}{5}} (-1)^5 = 126$$
 GFs for the number of partitions $\{p_k(n)\}$:
• $\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} p_k(n) x^n y^k = \frac{1}{1-yx} \cdot \frac{1}{1-yx^2} \cdot \cdots$

istribution problems: Type 4

Counting Permutations with GFs

QUESTION: Let k > 0, N_1 , ..., $N_k \subseteq \mathbb{N}$. For every $n \ge 0$, let a_n be the number of n-permutations of [k] with repetition where every $i \in [k]$ appears N_i times. (Distribution problems: Type 1)

- $a_n = \sum_{n_1 \in N_1, n_2 \in N_2, \dots, n_k \in N_k, n_1 + n_2 + \dots + n_k = n} \frac{n!}{n_1! n_2! \dots n_k!}$
 - This is the number of ways of distributing n labeled objects into k labeled boxes such that N_i objects are sent to box i for all $i \in [k]$

THEOREM:
$$\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n = \prod_{i=1}^k \sum_{n_i \in N_i} \frac{x^{n_i}}{n_i!}.$$

Counting Permutations with GFs

EXAMPLE: Find $a_n = \{s \in \{1,2,3,4\}^n : s \text{ has an even number of } 1s\}$

- a_n = the number of *n*-permutations of {1,2,3,4} with repetition where 1 appears an even number of times
- $N_1 = \{0,2,4,...\}, N_2 = N_3 = N_4 = \{0,1,2,...\}$

•
$$\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n = \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots\right) \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots\right)^3$$

$$= \frac{e^{x} + e^{-x}}{2} \cdot e^{3x}$$

$$= \frac{e^{4x} + e^{2x}}{2}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{(4x)^n}{n!} + \frac{(2x)^n}{n!}\right)$$

$$\bullet \quad \frac{a_n}{n!} = \frac{1}{2} \cdot \left(\frac{4^n}{n!} + \frac{2^n}{n!} \right)$$

•
$$a_n = \frac{4^n + 2^n}{2}$$

• $\frac{a_n}{n!} = \frac{1}{2} \cdot \left(\frac{4^n}{n!} + \frac{2^n}{n!}\right)$ GFs of the Stirling numbers of the 2nd kind $\{S_2(n,j)\}_{n=j}^{\infty}$: • $\sum_{n=j}^{\infty} \frac{S_2(n,j)}{n!} x^n = \frac{1}{j!} (e^x - 1)^j$ Distribution problems: Type 3

•
$$\sum_{n=j}^{\infty} \frac{S_2(n,j)}{n!} x^n = \frac{1}{j!} (e^x - 1)^{j}$$

Principle of Inclusion-Exclusion

1718, de Moivre (1667–1754)

Derangements: Let S be the set of permutations of [n]. Find |A|

for $A = \{x_1 x_2 \dots x_n : x_1 x_2 \dots x_n \in S; x_i \neq i \text{ for all } i \in [n]\}.$

- $A_i = \{x_1 x_2 \cdots x_n : x_1 x_2 \cdots x_n \in S; x_i = i\}, i = 1, 2, ..., n$
 - $A = S \bigcup_{i=1}^{n} A_i$
 - |S| = n!
 - $|\bigcup_{i=1}^n A_i| = ?$

Problem: *S* is a finite set and $A_1, A_2, ..., A_n \subseteq S$.

- $|\bigcup_{i=1}^{n} A_i| = ?$
- $\left|\bigcap_{i=1}^{n} A_i\right| = ?$

Principle of IE (Two Sets)

THEOREM: Let S be a finite set. Let A_1 , A_2 be subsets of S. Then

•
$$|S - A_1| = |S| - |A_1|$$
; $|A_1 - A_2| = |A_1| - |A_1 \cap A_2|$

•
$$S = A_1 \cup (S - A_1), A_1 \cap (S - A_1) = \emptyset;$$

•
$$\{A_1, S - A_1\}$$
 is a partition of S

•
$$|S| = |A_1| + |S - A_1|$$

•
$$|S - A_1| = |S| - |A_1|$$

•
$$A_1 - A_2 = A_1 - A_1 \cap A_2$$

•
$$|A_1 - A_2| = |A_1| - |A_1 \cap A_2|$$

•
$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

•
$$A_1 \cup A_2 = (A_1 - A_2) \cup A_2, (A_1 - A_2) \cap A_2 = \emptyset;$$

•
$$\{A_1 - A_2, A_2\}$$
 is a partition of $A_1 \cup A_2$

•
$$|A_1 \cup A_2| = |A_1 - A_2| + |A_2| = |A_1| - |A_1 \cap A_2| + |A_2|$$

•
$$|A_1 \cap A_2| = |A_1| + |A_2| - |A_1 \cup A_2|$$

Principle of IE (Three Sets)

THEOREM: Let S be a finite set. Let A_1 , A_2 , A_3 be subsets of S.

Then
$$\left| \bigcup_{i=1}^{3} A_i \right| = \sum_{t=1}^{3} (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le 3} |A_{i_1} \cap \dots \cap A_{i_t}|$$

- $\left|\bigcup_{i=1}^{3} A_i\right| = \left|(A_1 \cup A_2) \cup A_3\right| = \left|A_1 \cup A_2\right| + \left|A_3\right| \left|(A_1 \cup A_2) \cap A_3\right|$
 - $|A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2|$
 - $|(A_1 \cup A_2) \cap A_3| = |(A_1 \cap A_3) \cup (A_2 \cap A_3)|$

$$= |A_1 \cap A_3| + |A_2 \cap A_3| - |(A_1 \cap A_3) \cap (A_2 \cap A_3)|$$

$$= |A_1 \cap A_3| + |A_2 \cap A_3| - |A_1 \cap A_2 \cap A_3|$$

•
$$\left| \bigcup_{i=1}^{3} A_i \right| = |A_1| + |A_2| - |A_1 \cap A_2| + |A_3|$$

 $-(|A_1 \cap A_3| + |A_2 \cap A_3| - |A_1 \cap A_2 \cap A_3|)$

•
$$\left| \bigcap_{i=1}^{3} A_i \right| = \sum_{t=1}^{3} (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le 3} |A_{i_1} \cup \dots \cup A_{i_t}|$$

Principle of IE (n Sets)

THEOREM: Let S be a finite set. Let $A_1, A_2, ..., A_n \subseteq S$. Then

•
$$|\bigcup_{i=1}^n A_i| = \sum_{t=1}^n (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le n} |A_{i_1} \cap \dots \cap A_{i_t}|;$$

•
$$|\bigcap_{i=1}^n A_i| = \sum_{t=1}^n (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le n} |A_{i_1} \cup \dots \cup A_{i_t}|.$$

EXAMPLE: Let S be the set of permutations of [n]. Find |A| for

$$A = \{x_1 x_2 \dots x_n : x_1 x_2 \dots x_n \in S; x_i \neq i \text{ for all } i \in [n]\}.$$

- $A_i = \{x_1 x_2 \cdots x_n : x_1 x_2 \cdots x_n \in S; x_i = i\}, i = 1, 2, ..., n$
 - $\bullet \quad A = S \bigcup_{i=1}^{n} A_i$
- $|\bigcup_{i=1}^n A_i| = \sum_{t=1}^n (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le n} |A_{i_1} \cap \dots \cap A_{i_t}|$
 - $|A_{i_1} \cap \dots \cap A_{i_t}| = (n-t)!$ for $t = 1, 2, \dots, n$
- $|A| = |S| |\bigcup_{i=1}^{n} A_i|$ = $n! - \left(\binom{n}{1} * (n-1)! - \binom{n}{2} * (n-2)! + \dots + (-1)^{n-1} * \binom{n}{n} * 1\right)$ = $n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^t \frac{1}{t!} + \dots + (-1)^n \frac{1}{n!}\right)$

Cover

DEFINITION: A **cover** of a finite set *A* is a family $\{A_1, A_2, ..., A_n\}$ of subsets of *A* such that $\bigcup_{i=1}^n A_i = A$.

LEMMA: Let $\{A_1, A_2, ..., A_n\}$ be a cover of a finite set A. Then $|A| \leq \sum_{i=1}^{n} |A_i|$.

- $n = 1: |A| = |A_1|$
- n = 2: $|A| = |A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2| \le |A_1| + |A_2|$
- Suppose true when $n \le k \ (k \ge 2)$.
- When n = k + 1, $|A| = \left| \bigcup_{i=1}^{k} A_i \cup A_{k+1} \right|$ $\leq \left| \bigcup_{i=1}^{k} A_i \right| + \left| A_{k+1} \right|$ $\leq \sum_{i=1}^{k} |A_i| + \left| A_{k+1} \right|$ $= \sum_{i=1}^{k+1} |A_i|$

Pigeonhole Principle

1834, Dirichlet (1805-1859)

THEOREM: (simple form) Let A be a set with $\geq n+1$ elements. Let $\{A_1, A_2, ..., A_n\}$ be a cover of A. Then $\exists k \in [n], |A_k| \geq 2$.

- Suppose that $|A_i| \le 1$ for every $i \in [n]$. Then $n+1 \le |A| \le \sum_{i=1}^n |A_i| \le n$.
 - If $\geq n+1$ objects are distributed into n boxes, then there is at least one box containing ≥ 2 objects.

THEOREM: (general form) Let A be a set with $\geq N$ elements.

Let $\{A_1, A_2, ..., A_n\}$ be a cover of A. Then $\exists k \in [n], |A_k| \ge \lceil N/n \rceil$.

- If $|A_i| < \lceil N/n \rceil$ for all $i \in [n]$, then $N \le |A| \le \sum_{i=1}^n |A_i| < n \cdot N/n = N$
 - If we distribute $\geq N$ objects into n boxes, then there is at least one box that contains $\geq \lceil N/n \rceil$ objects.

Pigeonhole Principle

EXAMPLE: Let $n \in \mathbb{Z}^+$. Let $A \subseteq \{1, 2, ..., 2n\}$ have n+1 elements. Then there exist $x, y \in A$ such that x|y.

- Let $A = \{a_1, ..., a_{n+1}\} \subseteq [2n]$ be any subset of n+1 elements.
- $a_j = 2^{u_j} \cdot v_j$, where $u_j \in \mathbb{N}$ and $v_j \in [2n]$ is odd for all j = 1, 2, ..., n + 1
 - $\{v_1, v_2, \dots, v_{n+1}\} \subseteq \{1, 3, \dots, 2n-1\}$
- $A_i = \{a_i : v_i = i\} \text{ for } i = 1,3,...,2n-1$
- $\{A_1, A_3, ..., A_{2n-1}\}$ is a partition of A
 - $\exists k \in \{1,3,...,2n-1\}$ such that $|A_k| \ge 2$ //pigeonhole principle
 - $a_s, a_t \in A_k \Rightarrow (a_s = 2^{u_s} \cdot v_s) \land (a_t = 2^{u_t} \cdot v_t) \land (v_s = v_t = k)$
 - $(x,y) = \begin{cases} (a_s, a_t), & \text{if } u_s \leq u_t \\ (a_t, a_s), & \text{if } u_s > u_t \end{cases}$