

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression

Logistic Regression

Given
$$x$$
, want $\hat{y} = P(y=1|x)$
 $x \in \mathbb{R}^{n_x}$

Parameters: $w \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$.

Output $\hat{y} = \sigma(w^Tx + b)$

Output $\hat{y} = \sigma(x^Tx + b)$

$$X_0 = 1, \quad x \in \mathbb{R}^{n_x + 1}$$

$$\hat{y} = 6 (0^{T}x)$$

$$6 = 0$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_2$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

$$0_1$$

deeplearning.ai

Basics of Neural Network Programming

Logistic Regression cost function

Logistic Regression cost function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Since $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$, want $\hat{y}^{(i)} \approx y^{(i)}$.

Loss (error) function: $\int_{\mathcal{C}} (\hat{y}, y) = \frac{1}{2} (\hat{y} - y)^2$

The entropy of the second of the