1.1

Properties of Probability Probability and Set Notation Infinite Series

What is Statistics?

What is a statistic? A function of data

Statistics: study of the collection, analysis, interpretation, presentation, and organization of **data**.

What is Probability?

Probability is a real-valued set function P that assigns, to each event A in the sample space S, a number P(A), called the probability of the event A, such that the following properties are satisfied: $P \rightarrow P_0$ 弘前其 (a) $P(A) \geq 0$; ① 不能为表数

- (b) P(S) = 1; $P(A_i) + P(A_i) + \cdots + P(A_n) = P(S) = 1$ (c) if A_1, A_2, A_3, \ldots are events and $A_i \cap A_j = \emptyset$, $i \neq j$, then

$$P(A_1 \cup A_2 \cup \cdots \cup A_k) = P(A_1) + P(A_2) + \cdots + P(A_k)$$

for each positive integer k, and

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$$

for an infinite, but countable, number of events.

What is Probability?

Real valued function:

A function that assigns a real number to each member of its domain.

Set function:

A function whose domain is a family of subsets of some given set.

$$S = \{1, 2, 3, 4, 5, 6\}$$
 set $A = \{1, 3, 5\}$ interval (),[]

Random Experiments 随机测试

In Statistics, we consider experiments where the outcome can not be predicted with certainty.

- Dutcome space or Sample space, S—collection of all possible outcomes 结果的全集
- An Event is a collection of outcomes in S.
- If a random experiment is performed and the outcome of the experiment is in A, we say **event** A **has occurred**.

Set notation and operations

Notation		Meaning
堂	Ø, {}	Null or empty set
属于	$x \in A$	x is an element of A
并集	$A \cup B$	the union of A and B
交集	$A \cap B$	the intersection of A and B 🦰
班	$A \subseteq B$	A is a subset of B
友。集	$A \subset B$	A is a proper subset of B AFB
推	A', A ^c	the complement of A

6 sided die

- $S = \{1, 2, 3, 4, 5, 6\}$
- P[S] = 1

Theorem 1.1-1

For each event A,

$$P(A) = 1 - P(A').$$

证明 Proof [See Figure 1.1-1(a).] We have

$$S = A \cup A'$$
 and $A \cap A' = \emptyset$.

Thus, from properties (b) and (c), it follows that

$$1 = P(A) + P(A').$$

Hence

$$P(A) = 1 - P(A').$$

Probability Theorems

Theorem 1

$$P[A'] = 1 - P[A]$$

- Theorem 2
 - □ P[Ø]=0
- Theorem3
 - □ If $A \subset B$, then $P[A] \leq P[B]$.

Probability Theorems

- Theorem 4
 - □ For any event A, $P[A] \le 1$
- Theorem 5
 - □ If A and B are any two events, then $P[A \cup B] = P[A] + P[B] P[A \cap B]$

P[A U B U C] = P[A] + P[B] + P[C] - P[A
$$\cap$$
 B] - P[A \cap C] - P[B \cap C] + P[A \cap B \cap C]

1. Suppose a 6-sided die is rolled:

- Let event A = {The outcome is even} 褐軟
- Ac {2,4,6}
- Let event B = {The outcome is greater than 3} $\beta = \{4,5,6\}$
 - $^{\Box}$ a) What are the outcomes in [A ∩ B]?
 - ii) What is $P[A \cap B]$?

: ANB =
$$\left\{ 4, 6 \right\}$$

: $P(ANB) = \frac{2}{h} = \frac{1}{3}$

1. Suppose a 6-sided die is rolled:

- Let event A = {The outcome is even}
- Let event B = {The outcome is greater than 3}
 - b) What are the outcomes in [A U B]? \therefore AUB = $\{2, 4, 5, 6\}$ ii) What is P[A U B]? \therefore P(AUB) = $\frac{4}{6} = \frac{2}{3}$

1... Suppose the die is loaded so that the probability of an outcome is proportional to the outcome, i.e.

$$P[1] = p$$
, $P[2] = 2p$, $P[3] = 3p$, $P[4] = 4p$, $P[5] = 5p$, $P[6] = 6p$, $P[7] = P + 3p + 4p + 5p + 6p = 1$

- c) Find the value of p that would make this a valid probability model
- d) Find the following probabilities: Let event A = {The outcome is even}

 i) P[A], ii) P[A'], iii) P[A U B]

 Let event B = {The outcome is greater than 3} $P(\lambda) + P(A) + P(A) P(A \cap B)$

- 2. The probability that a randomly selected student at Zoom University owns a bicycle is 0.55, the probability that a student owns a car is 0.30, and the probability that a student owns both is 0.10.
 - A) What is the probability that a student selected at random does not own a bicycle?
 - B) What is the probability that a selected student at random owns either a car or a bicycle (or both)?

$$a) P(A') = 1 - P(A) = 0.45$$

b)
$$P(AUB) = P(A) + P(B) - P(ADB) = 0.75$$

- The probability that a randomly selected student at Zoom University owns a bicycle is 0.55, the probability that a student owns a car is 0.30, and the probability that a student owns both is 0.10.
 - C) What is the probability that a student selected at random neither has a car nor a bicycle?

3. Let a > 2. Suppose S = {0, 1, 2, 3,} and
$$P[0] = c$$
, $P[k] = \frac{1}{a^k}$, $k = 1, 2, 3...$

- A) Find the value of c that will make this a valid probability distribution.
- B) Find the probability of an odd outcome

A).
$$P[b'] = \frac{1}{a^{2}} + \frac{1}{a^{2}} + \frac{1}{a^{3}} + \cdots + \frac{1}{a^{n}} \cdots = \frac{1}{a^{n}} (-9^{n}) = \frac{1}{a^{n}} = \frac$$

4. Suppose S = {0, 1, 2, 3, }, P[0] = p, and P[k] = $\frac{1}{2^k k!}$, k = 1, 2, 3...

Find the value of p that will make this a valid probability distribution.

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

1.1-16. Let p_n , n = 0, 1, 2, ..., be the probability that an automobile policyholder will file for n claims in a five-year period. The actuary involved makes the assumption that $p_{n+1} = (1/4)p_n$. What is the probability that the holder will file two or more claims during this period?

R resource http://www.peterhaschke.com/files/IntroToR.pdf