2.METER BRIDGE- Unknown resistance

Aim: To determine the unknown resistance of a given wire by using a meter bridge.

Apparatus: Meterbridge, Battery, Unknown Resistance, Resistance Box, Galvanometer, Pencil Jockey, Connecting wires.

Theory: Meter Bridge works on Wheatstone's network principle. When the bridge is in the balanced state(I_a =0), then

$$\frac{P}{Q} = \frac{R}{S}$$

Where P,Q,R,S are the four resistance in the various arms of the meter bridge.

Here in meter bridge circuit,

P is the known resistance.

Q is the unknown resistance($X\Omega$)

R is the resistance of the wire AJ= $lr\Omega$

S is the resistance of wire $JC=(100-1)r\Omega$

Hence unknown resistance, $X = \frac{R(100-l)}{l}$

Where I is the balancing length when I_g =0

Procedure:

- 1. Set up the circuit as per the circuit diagram.
- 2. Pluck out a suitable value of resistance from the standard resistance box($R=2\Omega$,say) and move the jockey in the wire AC till the galvanometer shows null deflection.
- 3. Note the balancing length(AJ=I) from the scale attached.

- 4. Repeat the experiment from step 2-3 for various values of $R=3,4,4,6....\Omega$ to get a few sets of readings, when X is in the right gap.
- 5. Use the formula $X = \frac{R(100-l)}{l}$ to find the value of X For each set of reading.
- 6. Find the mean X.That is the Unknown resistance of the material.

Result:

The Unknown resistance of the coil=..... Ω

Precaution:

- 1. Connections should be neat, tight and clean
- 2. Plugs in the resistance box should be fixed tightly.
- 3. The Jockey should not be pressed too hard on the bridge wire and do not rub over it.
- 4. Null points should be in the central region of the wire (30 cm to 70 cm).

Sources of error:

- 1. The instrument screws may be loose.
- 2. The plug may not be clean
- 3. Error in the measurement of balancing Length.
- 4. If large current is passed for a sufficiently long time, the wire AC may get heated and its resistance may change considerably during the time of experiment.

Principle of Meter Bridge: Wheatstone's Network

Circuit Diagram:

AC=1 m long wire of bridge.

G=Galvanometer

J=Jockey

Observation

(a)To find the Unknown resistanceX

Sl.No	Resistance,R Ω	Balancing Length(l) (cm)	(100-l) (cm)	$X = \frac{R(100-l)}{l}$ (\Omega)
1				X_{1}
2				X_2
3				X_3
4				X_4
5				<i>X</i> ₅
6				X_{6}

<u>Calculation</u>

Mean value of resistance,X= $\frac{X_1 + X_2 + X_3 + X_4 + X_5 + X_6}{6}$