Тактовая частота и разрядность

Луцив Дмитрий Вадимович

Кафедра системного программирования СПбГУ

Содержание

Характеристики ЭВМ в целом

- Разрядность
 - Разрядность ОЗУ

Характеристики ЭВМ в целом

Характеристики ЭВМ в целом

- Характеристики процессора
- Объём оперативной памяти
- Объём и скорость устройств хранения данных
- Состав и характеристики интерфейсных устройств

Характеристики ЭВМ в целом 4 / 22

Характеристики процессора

- Качественная: система команд и архитектура в целом об этом позже
- Количественная: тактовая частота
- Количественная и качественная: разрядность

Характеристики ЭВМ в целом

Тактовый сигнал

Тактовый сигнал 6 / 22

Тактовый сигнал

- Тактовый сигнал периодический электрический сигнал, служащий для синхронизации электронных схем
- Такт промежуток времени между тактовыми сигналами
- Тактовая частота частота тактовых сигналов (1/длину такта)
- Тактовый генератор электронная схема, генерирующая тактовый сигнал

Зачем нужен тактовый сигнал? (1)

- Для многих электронных компонент (например, сумматоров) задано максимальное время на операцию
- Время задаётся в тактах, например
 - Для Zilog Z80:
 - push RR (положить значение 16-битного регистра на стек) 11 тактов
 - рор RR (снять со стека и сохранить в 16-битном регистре) 10 тактов
 - add a,R (прибавить 8-битное значение в регистре R к a) 4 такта
 - Для Intel 80386
 - ullet add eax, DWORD PTR [ebp-0x8] (прибавить к 32-битному eax значение из памяти по адресу ebp-8) 7 тактов
- Можно быть уверенным в том, когда операция завершена, а не проверять прогресс

Зачем нужен тактовый сигнал? (1)

- Для многих электронных компонент (например, сумматоров) задано максимальное время на операцию
- Время задаётся в тактах, например
 - Для Zilog Z80:
 - push RR (положить значение 16-битного регистра на стек) 11 тактов
 - рор RR (снять со стека и сохранить в 16-битном регистре) 10 тактов
 - add a, R (прибавить 8-битное значение в регистре R к a) 4 такта
 - Для Intel 80386
 - add eax, DWORD PTR [ebp-0x8] (прибавить к 32-битному eax значение из памяти по адресу ebp-8) — 7 тактов
- Можно быть уверенным в том, когда операция завершена, а не проверять прогресс
- На самом деле даже для Intel i80386 это не всегда так, а для более новых и подавно

Зачем нужен тактовый сигнал? (2)

- Ясно, в какой момент можно начинать выполнять следующую команду
- Ясно, как синхронизировать разные стадии выполнения одной и той же команды
- Ясно, как синхронизировать различные узлы ЭВМ

При этом

- В ЭВМ обычно много тактовых генераторов и тактовых частот несколько для ЦП, для ОЗУ (пониже), для шин чем дальше от ядра процессора, тем ниже
- Тактовый сигнал не привязан к реальному времени: частота высокая, но может «плавать» или понижаться для экономии энергии

Тактовый сигнал 9 / 22

Примеры значений тактовой частоты

1 Гц — (c $^{-1}$), единица частоты периодических событий, 1 событие в секунду У ЭВМ первого поколения типичное значение тактовой частоты было в пределах $100\,$ КГц

Процессор	Год выпуска	выпуска Тактовая частота	
Intel 4004	1971	740 КГц	
Motorola 6800	1974	2 МГц	
Zilog Z80	1976	2,5 МГц	
Intel 80186	1982	6 МГц	
Intel 80486 DX	1989	20 МГц	
Intel 80486 DX4	1994	100 МГц	
Pentium 4	2000	1,6 ГГц	
Intel Xeon Westmere	2010	3,6 ГГц	

Примеры значений тактовой частоты

1 Гц — (c⁻¹), единица частоты периодических событий, 1 событие в секунду У ЭВМ первого поколения типичное значение тактовой частоты было в пределах 100 КГц

Процессор	Год выпуска	Тактовая частота
Intel 4004	1971	740 КГц
Motorola 6800	1974	2 МГц
Zilog Z80	1976	2,5 МГц
Intel 80186	1982	6 МГц
Intel 80486 DX	1989	20 МГц
Intel 80486 DX4	1994	100 МГц
Pentium 4	2000	1,6 ГГц
Intel Xeon Westmere	2010	3,6 ГГц

По идее, чем выше, тем «лучше», но у современного сложного процессора сигнал за 1 такт не успевает пройти даже от одной части кристалла к другой. Одно из косвенных решений — конвейеризация — позже

Альтернатива

Асинхронные ЭВМ

- Блок процессора / узел внутри ЭВМ подаёт сигнал по мере готовности результата
- Позволяют добиться большей производительности, но сложнее в проектировании и устройстве

Примеры (не экзотические)!

- ILLIAC I и II, GA144 (стековый, дла Forth)
- Длинные асинхронные операции на современных процессорах, например, деление на RISC-процессорах

Альтернатива

Асинхронные ЭВМ

- Блок процессора / узел внутри ЭВМ подаёт сигнал по мере готовности результата
- Позволяют добиться большей производительности, но сложнее в проектировании и устройстве

Примеры (не экзотические)!

- ILLIAC I и II, GA144 (стековый, дла Forth)
- Длинные асинхронные операции на современных процессорах, например, деление на RISC-процессорах
- Устройства расширения в «обычных» ЭВМ выполняют длительные операции (например, с участием DMA), сообщают о выполнении команд и получают следующие по мере готовности

Разрядность

• Разрядность ОЗУ

Разрядность 12 / 22

Понятие разрядности

- Разрядность обычно количество битов в шине данных и в машинном слове
- Машинное слово минимальная единица обмена данными между процессором и 03У

Разрядность 13 / 22

Понятие разрядности

- Разрядность обычно количество битов в шине данных и в машинном слове
- Машинное слово минимальная единица обмена данными между процессором и 03У

А ещё обычно

- Количество битов в шине данных
- Количество битов в арифметических регистрах
- Размер целого числа, над которым аппаратно производится операция (машинное слово)

Разрядность В / 22

Понятие разрядности

- Разрядность обычно количество битов в шине данных и в машинном слове
- Машинное слово минимальная единица обмена данными между процессором и 03У

А ещё обычно

- Количество битов в шине данных
- Количество битов в арифметических регистрах
- Размер целого числа, над которым аппаратно производится операция (машинное слово)

И иногда

- Количество битов в шине адреса и в адресных регистрах
- размер стандартного типа int в С (совсем не всегда, может зависеть от архитектуры, ОС и транслятора)

Разрядность В / 22

Внутренняя и внешняя разрядность

- Внутренняя разрядность количество битов, из которых состоят регистры и шины между блоками процессора
- Внешняя разрядность количество битов, из которых состоят шины компьютера

Обычно речь идёт об арифметических регистрах и шине данных, но понятия внутренней и внешней разрядности также применяются и к адресным регистрам и шине адреса

Разрядность 14 / 22

Примеры, подтверждения и исключения (1): Intel 8086

- Шина данных 16 битов
- Арифметические регистры и операции по 16 битов
 - Ho mul ax, R/M считает 32-битный результат DX: AX \leftarrow AX \star R/M
- Адресные регистры 16 битов (адресуют по 64 КиБ)
- Шина адреса 20 битов (16-битный адрес складывается с адресом сегмента, это позволяет адресовать до 1 МиБ, об этом позже)

Разрядность 15 / 22

Примеры, подтверждения и исключения (1): Intel 8086

- Шина данных 16 битов
- Арифметические регистры и операции по 16 битов
 - Ho mul ax, R/M считает 32-битный результат DX: AX \leftarrow AX \star R/M
- Адресные регистры 16 битов (адресуют по 64 КиБ)
- Шина адреса 20 битов (16-битный адрес складывается с адресом сегмента, это позволяет адресовать до 1 МиБ, об этом позже)
- Intel 8088 (сделан позже 8086, первый процессор IBM PC)
 - Всё то же самое, но шина данных 8 битов

Разрядность 15 / 22

Примеры, подтверждения и исключения (2): Zilog Z80

- Шина адреса 16 битов
- Шина данных 8 битов
- Арифметические регистры и операции по 8 битов
 - Но add hl, bc считает 16-битный результат над парами регистров

Разрядность 16 / 22

Примеры, подтверждения и исключения (3)

← 27 c		A0 A1	30 31
	MREQ IORQ WR RD	A2 A3 A4 A5	33 34 35 36
•	REFSH	A6 A7 A8	37 38
◆ 18	HALT	A9	39 40
<u>24</u>	WAIT	A10 A11	1 2
17	INT	A12 A13 A14	3 4 5
▶ 26 c	RESET	A15	14
25	BUSRQ BUSAK	D0 D1 D2	15 12 8
▶ 6	> CLK	D3 D4	7
11 29	Vcc GND	D5 D6 D7	10 13

«Распиновка» Intel 8086 🗗

Разрядность

Разрядность ОЗУ (1): зачем сделали Intel 8088?

Сделали позже 8086, а разрядность шины данных меньше.

 Разрядность
 Разрядность 03У
 18 / 22

Разрядность ОЗУ (1): зачем сделали Intel 8088?

Сделали позже 8086, а разрядность шины данных меньше.

Оперативная память 30-контактные С single in-line memory module — 8-битный

А тогда зачем сделали 16-битный 8086? Точнее, как он пользовался 8-битной памятью?

 Разрядность
 Разрядность ОЗУ
 18 / 22

Разрядность ОЗУ (1): зачем сделали Intel 8088?

Сделали позже 8086, а разрядность шины данных меньше.

Оперативная память 30-контактные ♂ single in-line memory module — 8-битный А тогда зачем сделали 16-битный 8086? Точнее, как он пользовался 8-битной памятью?

- Один 16-битный модуль можно собрать из двух 8-битных. С 16-битными процессорами семейства х86 так и делали.
- В итоге «память вообще» получает номер «слова памяти», но слово может быть 8 или 16-битным, в зависимости от исполнения компьютера

зрядность Pазрядность 03У 18 / 22

Процессоры даны с внутренней / внешней разрядностью

- SIMM 30-контактный □ 8 битов
 - $X1 i8088 \ 16/8$
 - X2 i8086 16/16, i80186 16/16 , i80286 16/16, i386SX 32/16
- SIMM 72-контактный □ 32 битов
 - \bullet X1 i386 32/32, i486 32/32, i586 Overdrive 32/32 (специально на место 80486)
 - $X2 i586 \ 32/64$
- DIMM (Dual in-line memory module)

 [□] 100-контактный 64 битов
 - X1 i586 $_32/64$

13 рядность Разрядность 03У 19 / 22

Экономия и повышение производительности

Способы экономии

- Если есть старая память или системная плата можно поставить «урезанный» по внешней разрядности процессор 8088, 386SX, 586 Overdrive
- Если есть старая память, на новую системную плату можно ставить старые модули меньшей разрядности парами (DIMM — 2xSIMM)

Разрядность Разрядность ОЗУ 20 / 22

Экономия и повышение производительности

Способы экономии

- Если есть старая память или системная плата можно поставить «урезанный» по внешней разрядности процессор — 8088, 386SX, 586 Overdrive
- Если есть старая память, на новую системную плату можно ставить старые модули меньшей разрядности парами (DIMM — 2xSIMM)

Способ повышения производительности

У некоторых процессоров (i586) внешняя разрядность выше внутренней для более производительного обмена данными с памятью. Про это позже в лекции про кэш.

 Разрядность
 Разрядность ОЗУ
 20 / 22

Упражнения и вопросы

Упражнения

- Найдите документацию по системной плате своего ПК, выясните, какие виды памяти и в каких сочетаниях в неё можно устанавливать
- Выясните разрядность шины адреса своего ПК внутреннюю и внешнюю

Вопросы

- Что такое тактовый сигнал, тактовая частота и тактовый генератор?
- Приведите примеры асинхронных операций, не управляемых тактами
- Что такое внутренняя и внешняя разрядность?
- Зачем Intel выпускали версии процессоров с пониженной внешней разрядностью?

Вопросы

EDU.DLUCIV.NAME ☐