

Art of Problem Solving 2003 Iran MO (2nd round)

National Math Olympiad (Second Round) 2003

Day 1	
1	We call the positive integer n a $3-stratum$ number if we can divide the set of its positive divisors into 3 subsets such that the sum of each subset is equal to the others. a) Find a $3-stratum$ number. b) Prove that there are infinitely many $3-stratum$ numbers.
2	In a village, there are n houses with $n > 2$ and all of them are not collinear. We want to generate a water resource in the village. For doing this, point A is better than point B if the sum of the distances from point A to the houses is less than the sum of the distances from point B to the houses. We call a point ideal if there doesnt exist any better point than it. Prove that there exist at most 1 ideal point to generate the resource.
3	n volleyball teams have competed to each other (each 2 teams have competed exactly 1 time.). For every 2 distinct teams like A, B , there exist exactly t teams which have lost their match with A, B . Prove that $n = 4t + 3$. (Notabene that in volleyball, there doesnt exist tie!)
Day 2	
1	Let $x, y, z \in \mathbb{R}$ and $xyz = -1$. Prove that:
	$x^4 + y^4 + z^4 + 3(x + y + z) \ge \frac{x^2}{y} + \frac{x^2}{z} + \frac{y^2}{x} + \frac{y^2}{z} + \frac{z^2}{x} + \frac{z^2}{y}.$
2	$\angle A$ is the least angle in $\triangle ABC$. Point D is on the arc BC from the circumcircle of $\triangle ABC$. The perpendicular bisectors of the segments AB , AC intersect the line AD at M , N , respectively. Point T is the meet point of BM , CN . Suppose that R is the radius of the circumcircle of $\triangle ABC$. Prove that:
	$BT + CT \le 2R.$
3	We have a chessboard and we call a 1×1 square a room. A robot is standing on one arbitrary vertex of the rooms. The robot starts to move and in every one movement, he moves one side of a room. This robot has 2 memories A, B .

Contributors: sororak

Art of Problem Solving

2003 Iran MO (2nd round)

At first, the values of A, B are 0. In each movement, if he goes up, 1 unit is added to A, and if he goes down, 1 unit is waned from A, and if he goes right, the value of A is added to B, and if he goes left, the value of A is waned from B. Suppose that the robot has traversed a traverse (!) which hasnt intersected itself and finally, he has come back to its initial vertex. If v(B) is the value of B in the last of the traverse, prove that in this traverse, the interior surface of the shape that the robot has moved on its circumference is equal to |v(B)|.

www.artofproblemsolving.com/community/c3887

Contributors: sororak