REPRESENTING NEGATIVE NUMBERS

Presented by Nabanita Danie Villon Presented by Nab Presented by Nabanita Das 🗢

- Are the negative numbers just numbers with a minus sign in the front? This is probably true...but there are issues to represent negative numbers in computing systems.
- Common schemas:
 - Sign-magnitude
 - Complementary representations:
 - 1's complement
 - 2's complement most common & important

Representation Of Negative Number

Sign Magnitude

• An extra bit in the most significant position is designated as the **sign** bit which is to the left of an unsigned integer. The unsigned integer is the **magnitude**.

- A 0 in the sign bit means positive, and a 1 means negative.
- There is a problem with the sign-magnitude representation is a plus zero and minus zero, which causes unnecessary complexity.

- In the signed magnitude method number is divided into two parts: Sign bit and magnitude. Sign bit is 1 for negative number and o for positive number. Magnitude of number is represented with the binary form of the number.
- Left most bit used to represent sign
 - o = positive value
 - 1 = negative value
- Given an n+1-bit sign magnitude number the range of values that it can represent is $-(2^n-1)$ to $+(2^n-1)$

1's Complement

- For positive numbers, the representation is the same as for unsigned integers where the most significant bit is always zero.
- The additive inverse of a one's complement representation is found by inverting each bit.
- Inverting each bit is also called taking the one's complement.
- Shortcut for base 2?
 - All combinations used, but 2 zeros!

+N $-N$	
0 0000 111	1
1 0001 111	0
2 0010 110	1
3 0011 110	0
4 0100 101	1
5 0101 101	0
6 0110 100	1
7 0111 100	0

2'S Complement Process

The steps in the 2's Complement process uses base-2 (binary) numbers.

First, complement all of the digits in a number.

 A digit's complement is the number you add to the digit to make it equal to the largest digit in the base (i.e., 1 for binary). In binary language, the complement of o is 1, and the complement of 1 is o.

Second, add 1.

• Without this step, our number system would have two zeroes (+0 & -0), which no number system has.

- If we consider x is a positive number.
- Then -x is represented by $b^D+(-x)$.
 - Ex. Let b=2 and D=4. Then -1 is represented by $2^4-1 = 15$ or 1111_2 .
 - Ex. Let b=2 and D=4. Then -5 is represented by $2^4 5 = 11$ or 1011_2 .

Solution for the two ZERO's

• oooo \longrightarrow 1's complement \longrightarrow 1111 \longrightarrow adding 1 \longrightarrow 10000 discharge carry.

	+N	-N
)	0000	0000
_	0001	1111
)	0010	1110
3	0011	1101
ļ	0100	1100
,)	0101	1011
ó	0110	1010
7	0111	1001

2's Complement

First, find the equivalent binary number.

If the decimal number was positive: then ok.

If the decimal number was negative: invert all the bits, and add 1 (with carries as

needed).

Examples

25 decimal is 00011001 binary. It's positive, so all done.

-25 decimal:

Begin with binary: 00011001

Invert all the bits to get: 11100110

+ 1

Add 1 to get: 11100111 (decimal value -25)

9's & 10's Complement Process

- Similarly 2's complement, the 10's Complement process uses base-10 (decimal) numbers. In decimal number system we have the 9's and 10's complement, the 9's is obtained by subtracting each digit from 9.
- 10's complement = 9's complement +1.

First, complement all of the digits in a number.

• A digit's complement is the number you add to the digit to make it equal to the largest digit in the base (i.e., 9 for decimal). The complement of 0 is 9, 1 is 8, 2 is 7, etc.

Second, add 1.

- Without this step, our number system would have two zeroes (+0 & -0), which no number system has.
- If we consider x is a positive number.
- Then -x is represented by $b^D+(-x)$.
 - Then the 10's complement of 12389 = $10^5 12389$

$$= 100000 - 12389 = 87611.$$

10's Complement Examples

Example #1

Example #2

Binary Arithmetic

BINARYADDITION

BINARY SUBTRACTION

BINARY MULTIPLICATION

• BINARY DIVISION

Binary Addition

```
0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 0 1 (Carry bit)
```

```
1 1 0 1 (13 decimal)
+0 0 0 1 (+1 decimal)
1 1 1 0 (14 decimal)
```

Binary Subtraction

```
0 - 0 = 0
1 - 0 = 1
0 - 1 = 1 1 (Borrow bit)
1 - 1 = 0
```

```
1 1 0 1 (13 decimal)
-0 0 1 1 (3 decimal)
1 0 1 0 (10 decimal)
```

Binary Multiplication

```
\begin{array}{r}
10000 \\
X0110 \\
00000 \\
+1000 \\
+10000 \\
0110000 = 4810
\end{array}
```

Binary Division

```
011)0110010 (1
      000
       000
        000
         000
          0 0 1
                   (0
           000
             010
Q=1000=16<sub>10</sub>
R=10= 2<sub>10</sub>
```

Using The 2's Compliment Process

Use the 2's complement process to add together the following numbers.

$$+ POS \Rightarrow + 5 POS \Rightarrow 14$$
NEG (-9)
$$+ POS \Rightarrow + 5 NEG \Rightarrow - 4$$

POS 9 NEG (-9)
+ NEG
$$\Rightarrow$$
 + (-5)
POS 4 NEG \Rightarrow + (-5)
NEG \Rightarrow + (-5)
NEG \Rightarrow + (-14)

POS + POS → POS Answer

If no 2's complement is needed, use regular binary addition.

POS + NEG → POS Answer

Take the 2's complement of the negative number and use regular binary addition.

POS + NEG → NEG Answer

Take the 2's complement of the negative number and use regular binary addition.

NEG + NEG → NEG Answer

00001110

Take the 2's complement of both negative numbers and use regular binary addition.

