ENSA-ALHOCEIMA ANALYSE 3

CP II

SEMESTRE 1

Exercice1:

Montrer que pour tous nombres réels x et y on a :

$$|x - y| \ge ||x| - |y||$$

Exercice2:

Soit E un ensemble non vide et d une distance.

Montrer que:

1-
$$\forall (x, y, z) \in E^3$$
: $d(x, y) \ge |d(x, z) - d(z, y)|$

1-
$$\forall (x, y, z) \in E^3$$
: $d(x, y) \ge |d(x, z) - d(z, y)|$
2- $\forall (x_1, x_2, ..., x_n) \in E^n$: $d(x_1, x_n) \le \sum_{i=1}^{n-1} d(x_i, x_{i+1})$

Exercice3:

Soit E l'ensemble des polynômes réels de degré inférieur ou égal à 2.

Pour
$$P(x)=ax^2+bx+c$$
 et $Q(X)=a'x^2+b'x+c'$ dans E, on pose :
$$\begin{cases} d(P,Q)=3 & \text{si } a\neq a'\\ d(P,Q)=2 & \text{si } a=a'\text{ et } b\neq b'\\ d(P,Q)=1 & \text{si } a=a',b=b'\text{ et } c\neq c'\\ d(P,Q)=0 & \text{si } P=Q \end{cases}$$

Montrer que d est une distance sur E.

Exercice4:

Sur l'espace vectoriel IK[X] des polynômes réels ou complexes, on définit les normes suivantes:

Pour $P = a_0 + a_1 X + \cdots + a_n X^n$:

$$N_1(P) = \sum_{i=0}^n |a_i|$$
, $N_2(P) = \left(\sum_{i=0}^n |a_i|^2\right)^{\frac{1}{2}} et$ $N_{\infty}(P) = \sup_{0 \le i \le n} |a_i|$

1- Montrer que $N_{\infty} \leq N_2 \leq N_1$

2- On considère la suite de polynômes $(P_n)_{n \in IN}$ définie par :

$$P_n(X) = 1 + X + \dots + X^n$$

 $P_n(X) = 1 + X + \dots + X^n$ a- Calculer $\frac{N_2}{N_\infty}(P_n) \quad et \quad \frac{N_1}{N_2}(P_n)$

b- Ces normes peuvent-elles être équivalentes? justifier.

Exercice5:

Soit $(E, \| \|_E)$ et $(F, \| \|_F)$ deux espaces vectoriels normés et soit $f: E \to F$ une application et $a \in E$.

Montrer que si f(x) admet une limite lorsque x tend vers a, alors cette limite est unique.