

Roll

ı						
ı						
ı						
ı						
ı						
ı						
ı						

B TECH (SEM-I) THEORY EXAMINATION 2020-21 ENGINEERING CHEMISTRY

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Q no.	Question	Marks	СО
a.	Explain impurity defects.	2	1
b.	Why Teflon is highly chemically resistant?	2	5
c.	What is selection rule?	2	2
d.	On the basis of IR spectra, distinguish between intermolecular and intramolecular hydrogen bonding.	2	2
e.	Calculate Phase, Component and Degree of freedom in the given system; $C_{(s)} + {}^{1}\!\!/_{2} O_{2} \xrightarrow{C} CO(g)$ $C_{(s)} + O_{2} \xrightarrow{\leftarrow} CO_{2}(g)$	2	3
f.	Why calgon is better than other internal process for water treatment?	2	4
g.	Give the preparations of Grignard reagent.	2	5
h.	Why O2 is paramagnetic and N2 is diamagnetic?	2	1
i.	How can sulfur be estimated by ultimate method?	2	5
j.	How much rust (Fe ₂ O ₃ .3H ₂ O) can be produced by 3g of iron?	2	3

SECTION B

2. Attempt any *three* of the following:

 $3 \times 10 = 30$

Q no.	Question	Marks	СО
a.	With the help of Molecular orbital theory how Metallic bonding in metals can be explained?	10	1
b.	Write the criteria for a molecule to show Raman, IR, Rotational and UV Spectra. Give the possible electronic transitions (UV spectra) in-CH ₃ CH ₂ CH ₃ , CH ₃ CH=CH ₂ , CH ₃ CH=O and CH ₃ -CH=CH-CH ₃ . How many fundamental Vibrational degrees of freedom are expected.	10	2
c.	for the following molecules: CO ₂ , H ₂ O and C ₂ H? The percentage composition of coal sample is: C = 70 %, H ₂ = 10 %, O ₂ 1%,S= 5%,ash = 0.5 %and N = 0.3 %. i. Calculate the quantity of air needed for complete combustion of 1kg of coal, if 60% excess of air is supplied. ii. Calculate the gross and net calorific value of the coal using dulong's formula.	10	4
d.	Give significance of Nernst equation. Consider a cell reaction: Zn / Zn $^{2+}$ [0.1M] Cu $^{2+}$ [0.2M] / Cu Standard reduction potential of Zn $^{2+}$ and Cu $^{2+}$ are -0.76V and 0.34V respectively. Write half-cell reactions, complete cell reaction and calculate EMF of the cell.	10	3

Printed Page: PAGE 1 of 2 et Code:

	Subject Code: KAS102T
e. PARTINE 1985 Setween addition and condensation poly	ymerization. Give 10 5
monomers and one use each of PMMA, Polyethylene	e, Bakelite, PVC,
nylon6,6.,Buna S.	

Roll No:

SECTION C

3. Attempt any *one* part of the following:

Q no.	Question	Marks	СО
a.	 i. Explain types of Non stoichiometric defects with examples. ii. Calculate bond order, magnetic behavior and order of stability of NO, NO⁻, NO⁺ 	10	1
b.	Write a note on liquid crystal describing classifications and applications of liquid crystals.	10	1

4. Attempt any *one* part of the following:

Q no.	Question	Marks	СО
a.	The e.m.f. of the cell cd cdcl ₂ , 2.5 H ₂ O (Saturated) \parallel AgCl _(s) Ag	10	3
	involving following reaction $Cd(s)+2AgCl_{(s)}aq \leftrightarrow cdcl_2$		
	2.5H ₂ O(Saturated)+2Ag _(s) is 0.6753V and 0.6915V at 25 ^o C and O ^o C.		
	Calculate \triangle H, \triangle G and \triangle S at 25 $^{\circ}$ C.		
b.	Draw the Phase diagram of water and explain triple point and metastable	10	3
	state.		

5. Attempt any *one* part of the following:

O no.	Ouestion	Marks	СО
a.	Write Notes on chromophores and Auxochrome. Explain Transitions in	10	2
	UV spectra.		
b.	Explain the Microwave (Rotational) spectra of diatomic molecule and	10	2
	write their applications.		

6. Attempt any *one* part of the following:

Q no.	Question	Marks	СО
a.	Draw diagram of Bomb calorimeter. Explain proximate analysis of coal.	10	4
b.	Explain Ion exchange process of water softening. Zeolite softener was 90% exhausted, when 10,000 hard water was passed through it. The softener required 200 L of NaCL solution of strengths 50 gm/L. Calculates the hardners of water.		4

7. Attempt any *one* part of the following:

Q no.	Question	Marks	СО
a.	Explain with equations preparations of acid, ketone, alcohol, alkanes and	10	5
	Organometallic compound from Grignard reagent.		
b.	What are composite materials? Give the classifications of composite	10	5
	materials?		