

On White II, Wassily Kandinsky 1923

Mecânica e Campo Eletromagnético

Aula 10

Cap. 3 – Dieléctricos. Vector polarização e deslocamento eléctrico. Susceptibilidade eléctrica.

Campo magnético

Isabel Malaquias imalaquias@ua.pt
Gab. 13.3.16

MCE_IM_2024-2025

1

CONDENSADORES E DIELÉCTRICOS

Quando as armaduras de um condensador não carregado são ligadas aos terminais de uma bateria, esta "bombeia" carga de uma armadura para a outra até a ddp entre as duas armaduras igualar a ddp de circuito aberto nos terminais da bateria. A quantidade de carga transferida é Q = CV.

CONDENSADORES LIGADOS EM PARALELO

- Qual é o potencial de cada condensador no circuito?
 NB escolher o terminal negativo como ponto referencial de potencial nulo
- · Qual é a carga de cada uma das armaduras do condensador?
- Qual é a carga total que atravessa a bateria?

MCE_IM_2024-2025

CONDENSADORES LIGADOS EM PARALELO

- Todos os pontos a vermelho têm um potencial V_a = 12 V Todos os pontos a azul têm V_b = 0 V
 - A carga em cada condensador é: Q₁ = C₁V e Q₂ =C₂V, portanto $Q_1 = (6.0 \mu F)(12 V) = 72 \mu C e$ $Q_2 = (12,0 \mu F)(12 V) = 144 \mu C$
 - Os condensadores ficam carregados porque a bateria actua como uma bomba de cargas $Q = Q_1 + Q_2$ o que dá $Q = 216 \mu C$

A CAPACIDADE EQUIVALENTE será dada por C_{eq} = Q_{total} /V ou seja, C_{eq} = 216 μ C/12 V

$$C_{eq} = 18 \mu F$$

$$C_{eq} = C_1 + C_2$$

MCE_IM_2024-2025

CONDENSADORES LIGADOS EM SÉRIE

- Qual é o potencial de cada condensador no circuito? NB escolher o terminal negativo como ponto referencial de potencial nulo
- Qual é a carga de cada uma das armaduras do condensador?
- Qual é a carga total que atravessa a bateria?
- Todos os pontos a:
 - vermelho estão a um potencial de 12 V
 - azul estão a um potencial zero
 - verde estão a um potencial a determinar, V_m

•
$$V_1 = V_a - V_m$$

 $V_2 = V_m - V_b$
 $V_2 = C_2 - C_2 -$

$$V_a - V_b = \frac{Q}{C_1} + \frac{Q}{C_2}$$

 $-Q_1 + Q_2 = 0$

CAPACIDADE EQUIVALENTE, C_{eq} = 4,0 μ F

Durante o carregamento não há transferência de carga de ou para a região a verde, pelo que a sua carga se mantém como zero

 $Q_1 = C_1 V_1 e Q_2 = C_2 V_2$

$$\frac{1}{\mathsf{C}_{\mathsf{eq}}} = \frac{1}{\mathsf{C}_1} = \frac{1}{\mathsf{C}_2}$$

MCE IM 2024-2025

DIELÉCTRICOS

Quando o espaço entre as armaduras de um condensador é ocupado por UM DIELÉCTRICO, A CAPACITÂNCIA AUMENTA de um factor característico do dieléctrico – descoberta de Faraday.

PORQUE AUMENTA?

O campo eléctrico entre as armaduras do condensador enfraquece com a presença do dieléctrico.

Assim, para uma dada carga Q das armaduras, a ddp V é reduzida e a capacitância C aumenta.

Se num condensador sem dieléctrico o campo é ${\rm E}_0$, quando se introduz o dieléctrico, o campo será dado por

$$E = \frac{\mathsf{E}_0}{K}$$

K = CONSTANTE DIELÉCTRICA

MCE_IM_2024-2025

Material não condutor (ex.º vidro, ar, papel ou madeira)

In Tipler & Mosca, *Physics for Scientists and Engineers*, W. H. Freeman& Company (2008), p.819

5

DIELÉCTRICOS

Para um **CONDENSADOR DE PLACAS PARALELAS**, separadas pela distância *d*, a ddp V entre as placas é dada por

$$V = Ed = \frac{E_0}{K}d = \frac{V_0}{K}$$

A nova capacitância, C, será dada por

$$C = \frac{Q}{V} = K \frac{Q}{V_0}$$

 $C = K \frac{\varepsilon_0 A}{d}$

A = área da placa

 $\varepsilon = K\varepsilon_0$

PERMITIVIDADE do dieléctrico

MCE_IM_2024-2025

Material não condutor (ex.º vidro, ar, papel ou madeira)

ENERGIA ARMAZENADA NA PRESENÇA DE UM DIELÉCTRICO

A energia, U, armazenada é dada por

$$U = \frac{1}{2} Q V$$

$$U = \frac{1}{2}C V^2$$

$$U = \frac{1}{2} \frac{\varepsilon A}{d} (Ed)^{2}$$

$$V = \frac{\varepsilon A}{d} (Ed)^{2}$$
volume onde está o dieléctrico
$$u = \frac{\varepsilon}{2} E^{2}$$

$$v = \frac{\varepsilon}{2} E^{2}$$

ENERGIA/VOLUME

Material não condutor (ex.º vidro, ar, papel ou madeira)

K = constante $\varepsilon = K\varepsilon_0$ dieléctrica

Parte desta energia está associada com o campo eléctrico e a restante está associada à agressão mecânica (mechanical stress) polarizadora sobre as moléculas do dieléctrico.

MCE_IM_2024-2025

Interpretação molecular do comportamento do dieléctrico

In Paul A. Tipler & Gene Mosca, Physics for Scientists and Engineers, W. H. Freeman& Company (2008), p.825

Polarização das moléculas do dieléctrico dentro do condensador e criação de um campo eléctrico próprio contrário, induzido $(\overrightarrow{\mathbf{E}_i})$, ao campo eléctrico externo $\overrightarrow{E_0}$

Há assim enfraquecimento do campo dentro do dieléctrico $\overrightarrow{E} = \overrightarrow{E_0} + \overrightarrow{E_i}$.

MCE IM 2024-2025

Dieléctricos e lei de Gauss

Caso 1 - sem dieléctrico

cargas induzidas q^\prime que fazem com que a carga total no condensador seja $\Omega=q\!-\!q^\prime$

Usámos a Lei de Gauss em situações sem dieléctrico. Se tiver, o que acontece?

a MESMA CARGA nos dois casos

marcação das superficies Gaussianas

Caso 1 - sem dieléctrico

q = carga livre das placas

$$\varepsilon_0 \oint \vec{E} \cdot \vec{dS} = \varepsilon_0 \, \mathcal{E}_0 \, \mathcal{A} = q$$

 $E_0 = \frac{q}{\varepsilon_0 A}$

Caso 2- com dieléctrico

$$\varepsilon_0 \oint \overrightarrow{E} \cdot \overrightarrow{dS} = \varepsilon_0 \, \mathrm{EA} = q - q'$$

q' = carga superficial induzida

$$E = \frac{q}{\varepsilon_0 A} - \frac{q'}{\varepsilon_0 A}$$

$$E = \frac{E_0}{K} = \frac{q}{K \varepsilon_0 A}$$

$$q' = q (1 - \frac{1}{K})$$

MCE_IM_2024-2025

0

Dieléctricos e lei de Gauss

O CAMPO TOTAL DENTRO DO DIELÉCTRICO É $\overrightarrow{\mathbf{E}} = \overrightarrow{\mathbf{E_0}} + \overrightarrow{\mathbf{E_i}}$

O CAMPO INDUZIDO é proporcional ao campo eléctrico externo e, logo, proporcional ao campo total

$$\overrightarrow{\mathbf{E}}_{i} = -\chi_{e}\overrightarrow{\mathbf{E}}$$

 $\chi_e = \text{susceptibilidade eléctrica}$ (constante positiva)

$$\overrightarrow{\mathbf{E}} = \overrightarrow{\mathbf{E_0}} + \overrightarrow{\mathbf{E_i}} = \frac{1}{1 + \chi_e} \overrightarrow{\mathbf{E_0}}$$

Comparando com a relação obtida experimentalmente num condensador, verificamos que **a CONSTANTE DIELÉCTRICA é** igual a

$$K = 1 + \chi_e$$

MCE IM 2024-2025

Vectores POLARIZAÇÃO e DESLOCAMENTO ELÉCTRICO

POLARIZAÇÃO

A Polarização, P, pode definir-se como o momento do dipolo eléctrico induzido por unidade de volume

A = área

momento de dipolo induzido na placa dieléctrica

d = espessura do condensador de placas paralelas

volume total do dieléctrico

$$\vec{P} = \chi_e \, \varepsilon_0 \, \vec{E}$$

Halliday & Resnick, Física, II-1, p.119

MCE_IM_2024-2025

11

Vectores POLARIZAÇÃO e DESLOCAMENTO ELÉCTRICO

DESLOCAMENTO ELÉCTRICO

Atrás escrevemos

$$\varepsilon_0 \oint \vec{E} \cdot \overrightarrow{dS} = \varepsilon_0 E_0 A = q$$

$$\varepsilon_0 \oint \vec{E} \cdot \vec{dS} = \varepsilon_0 \, \mathrm{EA} = q - q'$$

$$E = \frac{E_0}{K} = \frac{q}{K\varepsilon_0 A}$$

$$P = \frac{q'}{A}$$

Poderemos agora dizer que

$$\frac{q}{A} = \varepsilon_0 \left(\frac{q}{K \varepsilon_0 A} \right) + \frac{q'}{A}$$

D = deslocamento eléctrico

 relacionado com a carga livre

$$D = \varepsilon_0 E + P$$

$$\vec{D} = \varepsilon_0 \ \vec{E} + \vec{P}$$

$$\oint \vec{D} \cdot d\vec{S} = q$$
 ou div $\vec{D} = \rho$

expressões integral e diferencial da **LEI DE GAUSS** num dieléctrico

MCE IM 2024-2025

FORÇA EXERCIDA SOBRE UMA CARGA POR UM CAMPO MAGNÉTICO

A existência de um campo \overrightarrow{B} magnético num dado ponto do espaço pode ser demonstrada usando uma agulha magnética e um fio de corrente.

Experiências de Örsted e Faraday

https://www.jroma.pt/eletromagnetismo.html

Unidade S.I. de CAMPO MAGNÉTICO

1 tesla = 1 newton /coulomb.metro por segundo 1 T = 1 N/C.m.s⁻¹

1 T = 10⁴ gauss (G)

MCE_IM_2024-2025

13

CAMPO MAGNÉTICO

FORÇA EXERCIDA SOBRE UMA CARGA POR UM CAMPO MAGNÉTICO

$$\vec{F} = q \vec{v} \times \overrightarrow{B}$$

$$|\vec{F}| = q |\vec{v}| |\vec{B}| \operatorname{sen} \theta$$

A força magnética **é sempre perpendicular** à velocidade da partícula carregada e ao campo magnético

não realiza trabalho sobre a partícula ao longo de um trajecto

$$dW = \vec{F} \cdot d\vec{l}$$

$$dW = q (\vec{v} \times \vec{B}) \cdot \vec{v} dt = 0$$

A direcção do vector \vec{v} pode ser alterada pela força magnética, mas não o seu módulo

MCE_IM_2024-2025

FORÇA EXERCIDA SOBRE UMA CARGA POR UM CAMPO MAGNÉTICO. FORÇA DE LORENTZ.

 A força magnética só actua sobre cargas em movimento

https://stringfixer.com/pt/Electron_beams#wiki-1

• Quando $\vec{v} \perp \vec{B}$, e \vec{B} é uniforme, a partícula descreve uma órbita circular

Se \vec{B} for uniforme e \vec{v} não for perpendicular a \vec{B} , a trajectória será helicoidal.

 $\label{lem:https://pt.wikipedia.org/wiki/For%C3\%A7a_de_Lorentz} $$ \#/media/Ficheiro:Magnetic_deflection_helical_path.svg $$$

 Quando existem, em simultâneo, um campo eléctrico e um campo magnético, a partícula fica sujeita à chamada FORÇA DE LORENTZ

$$\vec{F} = q (\vec{E} + \vec{v} \times \vec{B})$$

MCE_IM_2024-2025

10

CAMPO MAGNÉTICO

APLICAÇÕES DA FORÇA MAGNÉTICA

SELECTOR DE VELOCIDADES

A partícula + sofre a acção de uma força eléctrica para baixo e uma força magnética para cima. Estas forças equilibram-se quando a velocidade da partícula verifica vB = E

ESPECTRÓMETRO DE MASSA

Os iões sofrem encurvamento na trajectória e emergem em P_2 . O raio r do círculo varia com a massa do ião.

MCE_IM_2024-2025

Os Cinturões de Van Allen são uma barreira que protege a Terra de radiações, pois conseguem manter electrões muito energéticos a certa distância da atmosfera terrestre. Estão associados às auroras boreal e austral "cortinas" de partículas carregadas vísiveis em determinados pontos na superfície da Terra, onde os cinturões se cruzam com a atmosfera superior

Tipler & Mosca, p. 895

MCE_IM_2024-2025

17

CAMPO MAGNÉTICO

FORÇA EXERCIDA SOBRE UM FIO

 $\vec{F} = Q \vec{v} \times \overrightarrow{B}$

Q = carga total

Num condutor com FORMA ARBITRÁRIA, teremos de somar todas as contribuições para a força

$$\vec{F} = I\left(\int_{a}^{b} d\vec{l}\right) \times \vec{B} = I\vec{l} \times \vec{B}$$

Força sobre um fio que encerra uma SUPERFÍCIE FECHADA

$$\vec{F} = I \left(\oint d\vec{l} \right) \times \overrightarrow{B} = 0$$

MCE IM 2024-2025

LEI DE BIOT-SAVART - Fio infinito

Para o campo eléctrico, tínhamos

$$\vec{E} = \frac{1}{4\pi} \underbrace{\frac{q}{\epsilon_0}}_{\vec{r}^2} \hat{r}$$
 Fonte do campo magnético, será campo
$$d\vec{B} = \frac{1}{4\pi} \underbrace{\frac{1}{\epsilon_0}}_{\vec{c}^2} \underbrace{\vec{l} \, \vec{d} \, \vec{x} \, \hat{r}}_{\vec{r}^2}$$
 lei de Biot-Savart

O elemento $d\vec{l}$ do fio percorrido por uma corrente I fornece uma contribuição $d\vec{B}$ para a indução magnética no ponto P. O campo magnético aponta para dentro do plano da folha.

O módulo da contribuição dB é dado por

$$dB = \frac{\mu_0 I}{4\pi} \cdot \frac{dl \, sen \, \theta}{r^2}$$

MCE_IM_2024-2025

. .

CAMPO MAGNÉTICO

 $\mu_0 = rac{1}{arepsilon_0 \, c^2}$ μ_0 permeabilidade magnética do vazio

LEI DE BIOT-SAVART - Fio infinito

O módulo da contribuição de $d\vec{B}$ é dado por

$$dB = \frac{\mu_0 \mathrm{I}}{4\pi} \cdot \frac{\mathrm{dx} \, \mathrm{sen} \, \theta}{\mathrm{r}^2} \qquad \quad \mathrm{B} = \int dB = \int_{-\infty}^{+\infty} \frac{\mu_0 \mathrm{I}}{4\pi} \cdot \frac{\mathrm{dx} \, \mathrm{sen} \, \theta}{\mathrm{r}^2}$$

integremos em termos de d θ

$$sen θ = sen (π - θ) = \frac{R}{r}$$
 $tg θ = \frac{senθ}{cos θ} = \frac{R}{x}$

$$x = R \frac{cos θ}{sen θ}$$
 $dB = \frac{μ_0 I}{4π} . sen θ dθ$

$$dx = -\frac{R}{sen^2 \theta} d\theta \qquad B = 2 \left(-\frac{\mu_0 I}{4\pi} \int_0^{\pi/2} \sin \theta d\theta \right)$$

MCE IM 2024-2025

$$B = \frac{\mu_0 I}{2\pi R}$$

LEI DE BIOT-SAVART – Fio finito

MCE_IM_2024-2025 2: