Modelowanie zmienności Warszawskiego Indeksu Giełdowego przy wykorzystaniu metod GARCH

 ${\it na~podstawie}\\ {\it Volatility~Forecasting~in~the~Hang~Seng~Index~using~the~GARCH~Approach}$

Bartłomiej Kuźma Maciej Odziemczyk 384866 388581

WNE UW

Oświadczenie autorów pracy

Mając świadomość odpowiedzialności prawnej oświadczamy, że niniejsza praca zaliczeniowa została napisana przeze nas samodzielnie i nie zawiera treści uzyskanych w sposób nie zgodny z obowiązującymi przepisami prawa. Oświadczamy również, że przedstawiona praca zaliczeniowa, ani jej fragmenty nie są równolegle i nie były wcześniej wykorzystywane do uzyskania zaliczenia z innego przedmiotu w toku studiów na WNE UW (wyłączając badania na potrzeby pracy magisterskiej). Oświadczamy ponadto, że niniejsza wersja pracy jest identyczna z przesłaną wersją elektroniczną.

1 Wstęp

Celem niniejszego projektu było sprawdzenie czy modele z rodziny GARCH generują lepsze predykcje zmienności Warszawskiego Indeksu Giełdowego w porównaniu do modeli klasycznych - błądzenia przypadkowego, średniej historycznej (model benchmarkowy) oraz średniej ruchomej. Podobnie jak w badaniu referencyjnym [4] zweryfikowana została hipoteza o wrażliwości predykcji modeli klasy GARCH na założenia o rozkładzie składnika losowego. w związku z leptokurtycznością rozkładu stóp zwrotu oczekiwano, że dużo lepszym modelem rozkładu reszt jest rozkład t-studenta z uwagi na swój kształt w stosunku do rozkładu normalnego (wysmukłość i grubość ogonów). Ponadto w przypadku asymetrii rozkładu stóp zwrotu rozkład skośny t-studenta powinien okazać się lepszy. Hipotezę formalnie można zapisać w następujący sposób:

 $metric_{GARCH-N} > metric_{GARCH-T}$ jeżeli $Skew \approx 0$,

 $metric_{GARCH-N} > metric_{GARCH-T} > metric_{GARCH-ST}$ jeżeli $Skew \not\approx 0$

gdzie:

metric oznacza metrykę błędu predykcji (im niższa tym lepszy model),

GARCH-N model GARCH z założeniem o normalnym rozkładzie błędu losowego,

GARCH-T model GARCH z założeniem o rozkładzie t-studenta dla błędu losowego,

GARCH – ST model GARCH z założeniem o skośnym rozkładzie t-studenta dla błędu losowego,

Skew to skośność rozkładu stóp zwrotu.

Metryki opisane zostały dokładniej w sekcji poświęconej Metodologii. Poza rozkładem Normalnym, t-Studenta i skośnym t-Studenta, przetestowany został również generalizowany rozkład błędu (Generalized Error Distribution).

Zmienność jest jedną z najważniejszych miar w dziedzinie modelowania rynków finansowych, jest ona bowiem podstawą oceny ryzyka, tym samym wielu różnych modeli np. VaR (Value at Risk), dlatego też wiedza o jakości modeli służących do jej przewidywania jest niezwykle istotna. Dotychczas większość badań empirycznych dotyczących zmienności indeksów giełdowych skupiona była na rynku w Wielkiej Brytanii i Stanach Zjednoczonych, a mimo to wyniki nie były jednoznaczne. Badanie referencyjne dotyczy natomiast giełdowego indeksu z Hong Kongu (Hang Seng Index) i wyniki tam uzyskane wskazywały na wyższość modeli kasy GARCH, szczególnie tych uwzględniających w jakiś sposób asymetrię, nad modelami klasycznymi, zarówno w standardowych metrykach jak i w wyspecjalizowanych finansowych funkcjach straty. Ponadto okazało się również, predykcje wrażliwe są na rozkład reszt i Normalny wypada najgorzej, najlepszą kombinacją okazały się inne niż normalne rozkłady z modelem uwzględniającym asymetrię.

2 Dane i ich analiza

W analizie wykorzystano dane cen zamknięcia Warszawskiego Indeksu Giełdowego dla lat 2010-2020 (dzienne i tygodniowe, źródło https://stooq.pl), na których podstawie obliczono logarytmiczne stopy zwrotu według wzoru:

$$r_t = \ln\left(\frac{p_t}{p_{t-1}}\right)$$

gdzie:

 r_t to logarytmiczna stopa zwrotu z indeksu,

a p_t i p_{t-1} to odpowiednio cena zamknięcia indeksu w okresie bieżącym i poprzedzającym go.

Rysunek 1. obrazuje uzyskane zwroty dzienne i tygodniowe, można zauważyć tam zjawisko grupowania wariancji co zwiastuje warunkową heteroskedastyczność.

Rysunek 2. obrazuje wykresy ACF dla przybliżenia zrealizowanej zmienności analizowanych szeregów, pozwalają one na nabranie intuicji dotyczącej korelacji tejże zmienności w czasie. Przybliżeniem wspomnianej zmienności są kwadraty stóp zwrotu dla danych dziennych oraz wariancja danych o wyżej częstotliwości dla danych tygodniowych, o poprawności takiego podejścia pisali Poon i Granger [3].

Korelogramy wykazują silną zależność zmienności od swoich poprzednich realizacji, w celu formalnego potwierdzenia zdecydowano się na przeprowadzenie testu ARCH. Dla jedenastu pierwszych opóźnień danych dziennych uzyskano statystykę testową 479.66 co w rozkładzie χ^2_{11} oznacza silne odrzucenie hipotezy zerowej o braku zależności. Dla danych tygodniowych przetestowano 5 opóźnień, statystyka testowa wyniosła 47.87 co przy rozkładzie χ^2_5 również nie daje podstaw do przyjęcia hipotezy zerowej. W Tabeli 1. przedstawiono podstawowe charakterystyki

Rysunek 1: log-stopy zwrotu WIG

Rysunek 2: Wykresy ACF dla proxy zmienności zrealizowanej log-stóp zwrotu z WIG

(a) dzienne (kwadrat log-stóp zwrotu)

(b) tygodniowe (wariancja danych o wyższej częstotliwości)

Źródło: Opracowanie własne.

rozkładów analizowanych stóp zwrotu, co koresponduje niejako z postawioną hipotezą badawczą (warunkowanie skośnością rozkładu modelowanej zmiennej).

Jak można zaobserwować w Tabeli 1. rozkłady charakteryzują się dużo większą kurtozą od standardowego rozkładu Normalnego (K=0), ponadto ich skośność jest również znacznie różna od 0, co w świetle postawionej hipotezy badawczej powinno objawić się wyższością rozkładu skośnego t-Studenta nad zwykłym, oraz Normalnym. Test Jarqua-Bera nie dał podstaw do podważenia wyciągniętych wniosków, ponieważ zarówno w przypadku danych dziennych jak i tygodniowych odrzucił on hipotezę zerową o normalności rozkładu.

Tablica 1: Statystyki rozkładów log-stóp zwrotu

	dzienne	tygodniowe
N	2748	574
Średnia	0.000129	0.000595
Mediana	0.000396	0.002114
Odchylenie standardowe	0.010937	0.025013
Skośność	-1.1712	-2.2507
Kurtoza	12.4303	18.9578

3 Metodologia

Porównawczy charakter badania wymaga policzenia kilku modeli i zweryfikowania rezultatów za pomocą kilku metryk. Warto w tym momencie podkreślić, że weryfikacja odbędzie się na wydzielonej próbie out of sample (2020 rok) za pomocą predykcji na jeden okres do przodu, co oznacza, że modele z każdym krokiem były szacowane od nowa z uwzględnieniem obserwacji poprzedzającej przewidywany okres. w niniejszej sekcji sformułowane zostały modele wykorzystane w projekcie. Modele z rodziny GARCH opisywane są przez dwa równania, pierwsze - równanie średniej i drugie - równanie zmienności (zazwyczaj to nim różnią się poszczególne modele).

Zwykły model GARCH(1,1):

$$r_t = \mu + \varepsilon_t, \quad \varepsilon_t \sim N(0, h_t)$$

 $h_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta h_{t-1}^2$

gdzie:

pierwsze równanie jest równaniem średniej i w podstawowej wersji składa się ze stałej i reszty, a drugie równanie jest równaniem zmienności, zależnym od reszty i zmienności z okresu poprzedniego.

Exponential-GARCH(1,1) (E-GARCH):

$$\ln h_t^2 = \omega + \beta \ln h_{t-j}^2 + \alpha \left| \frac{\varepsilon_{t-1}}{\sqrt{h_{t-1}^2}} \right| + \gamma \frac{\varepsilon_{t-1}}{\sqrt{h_{t-1}^2}}$$

gdzie:

 γ w przypadku istotności i ujemnej wartości oznacza występowanie efektu dźwigni (asymetrycznych reakcji zmienności na dodatnie i ujemne wahania stopy zwrotu).

Threshold-GARCH(1,1) (T-GARCH):

$$\begin{split} h_t^2 &= \omega + \alpha \varepsilon_{t-1}^2 + \beta h_{t-1}^2 + \gamma \varepsilon_{t-1}^2 I_{t-1} \\ I_{t-1} &= \begin{cases} 1 & \text{dla} & \varepsilon_{t-1} < 0 \\ 0 & \text{w p.p.} \end{cases} \end{split}$$

gdzie:

 γ w przypadku istotności zwiększa reakcję na negatywne zmiany.

Component-GARCH(1,1) (C-GARCH):

W odróżnieniu od powyższych modeli GARCH, model C-GARCH rozróżnia długo- i krótko-okresowość zjawiska mean-reversion (m_t to próg)

$$h_t^2 - m_t = \bar{\omega} + \alpha(\varepsilon_{t-1}^2 - \bar{\omega}) + \beta(h_{t-1}^2 - \bar{\omega})$$

$$m_t = \omega + \rho(m_{t-1} - \omega) + \phi(\varepsilon_{t-1}^2 - h_{t-1}^2)$$

gdzie:

 ρ kontroluje zbliżanie się m_t do ω i z reguły przyjmuje wartości pomiędzy 0.99 a 1, co powoduje powolną konwergencję.

w ramach klasycznych modeli uśredniających wykorzystano Błądzenie Losowe (*Random Walk*), Średnią Historyczną (*Historical Average*) oraz Średnią Ruchomą (*Moving Average*) z oknem 1- i 3-letnim.

Błądzenie Losowe:

$$h_t^2 = h_{t-1}^2$$

gdzie:

 h^2 jest zrealizowaną zmiennością.

Średnia Historyczna:

$$h_t^2 = \frac{1}{t-1} \sum_{i=1}^{t-1} h_i^2$$

Średnia Ruchoma:

$$h_t^2 = \frac{1}{\tau} \sum_{i=t-\tau}^{t-1} h_i^2$$

Każda z metryk błędu prognoz ma swoje wady i zalety i działa lepiej lub gorzej w określonych warunkach, dlatego właśnie, podobnie jak w artykule referencyjnym, do porównania wyników w niniejszym badaniu użyto szeregu metryk, w tym podstawowych miar, takich jak:

Średni błąd (Mean Error, ME):

$$ME = \frac{1}{\tau} \sum_{t=T+1}^{T+\tau} (h_t^2 - s_t^2)$$

gdzie:

 τ jest liczbą kroków prognozy,

a s_t^2 aktualną zmiennością

Średni błąd bezwzględny (Mean Absolute Error, MAE):

$$MAE = \frac{1}{\tau} \sum_{t=T+1}^{T+\tau} |h_t^2 - s_t^2|$$

gdzie:

T jest ostatnim okresem in sample.

Błąd średnio kwadratowy (Root Mean Square Error, RMSE):

$$RMSE = \sqrt{\frac{1}{\tau} \sum_{t=T+1}^{T+\tau} (h_t^2 - s_t^2)^2}$$

Dopasowany średni procentowy błąd bezwzględny (Adjusted Mean Absolute Percentage Error, AMAPE):

$$AMAPE = \frac{1}{\tau} \sum_{t=T+1}^{T+\tau} \left| \frac{(h_t^2 - s_t^2)}{(h_t^2 + s_t^2)} \right|$$

Współczynnik nierówności Theila (Theil Income Coefficient, TIC):

$$TIC = \frac{\sqrt{\frac{1}{\tau} \sum_{t=T+1}^{T+\tau} (h_t^2 - s_t^2)^2}}{\sqrt{\frac{1}{\tau} \sum_{t=T+1}^{T+\tau} h_t^4} + \sqrt{\frac{1}{\tau} \sum_{t=T+1}^{T+\tau} s_t^4}}$$

6

Użyto także statystyk asymetrycznych, które w różnym stopniu karzą za przeszacowania i niedoszacowania prognoz:

Średni błąd asymetryczny (niedoszacowania) (MME(U)):

$$MME(U) = \frac{1}{\tau} \left[\sum_{i=1}^{O} |(h_t^2 - s_t^2)| + \sum_{i=1}^{U} \sqrt{|h_t^2 + s_t^2|} \right]$$

Średni błąd asymetryczny (przeszacowania) (MME(O)):

$$MME(O) = \frac{1}{\tau} \left[\sum_{i=1}^{O} \sqrt{|(h_t^2 - s_t^2)|} + \sum_{i=1}^{U} |h_t^2 + s_t^2| \right]$$

gdzie:

U mówi o liczbie niedoszacowaniań (underpredictions),

a o (overpredictions) o liczbie przeszacowań pośród predykcji.

By sprawdzić jak skuteczne są modele jeżeli chodzi o prognozowanie kierunku zmian zastosowano także takie metryki finansowe, jak:

DCP:

% correct direction change predictions (DCP) =
$$\frac{1}{\tau} \sum_{t=T+1}^{T+\tau} z_{t+1}$$

$$z_{t+1} = \begin{cases} 1 & \text{jeżeli} \quad (s_{t+1}^2 - s_t^2)(h_{t+1}^2 - s_t^2) > 0 \\ 0 & \text{w p.p.} \end{cases}$$

DCPU:

$$DCPU = \frac{1}{\tau} \sum_{t=T+1}^{T+\tau} z_{t+1},$$

$$z_{t+1} = \begin{cases} 1 & \text{jeżeli} \quad (s_{t+1}^2 - s_t^2)(h_{t+1}^2 - s_t^2) > 0, \quad s_t^2 > T \\ 0 & \text{w p.p.} \end{cases}$$

gdzie:

T to próg, dla wartości powyżej, którego liczona jest wartość metryki. w przypadku niniejszego, jak i referencyjnego badania $T=2\mathrm{e}{-4}$.

4 Wyniki

Przed przystąpieniem do analizy wyników, warto zaznaczyć, że w tabelach z wartościami statystyk obok każdej z kolumn znajduje się jej wystandaryzowana wersja (wynik podzielono przez wartość danej metryki dla modelu Historycznej Średniej, ułatwia to porównywanie modeli w ramach danego kryterium). Najlepsze modele w ramach każdej metryki zaznaczono gwiazdkami (odpowiednio * dla najlepszego, ** dla drugiego najlepszego wyniku i *** dla trzeciego).

W tabeli 2. zaprezentowano podstawowe metryki błędów prognozy dla wszystkich modeli w wariancie szeregu o częstotliwości tygodniowej. Jak widać podstawowe modele przodują we wszystkich statystykach. Można też stwierdzić, że modele GARCH osiągają stosunkowo słabe wyniki dla prawie każdej z metryk, co jest odstępstwem od wyników otrzymanych w referencyjnym badaniu. Jedynie w przypadku metryki TIC model T-GARCH z rozkłem t-Studenta (zarówno skośnym jak i nie) wypada dobrze, ale i tak wyniki są znacznie gorsze niż w badaniu dla rynku z Hong Kongu. Warto zauważyć również przeciwne znaki Mean Error dla modeli klasycznych w porównaniu z GARCH, może to sugerować odmienną specyfikę predykcji - jedne modele nie doszacowują, podczas gdy drugie przeszacowują; to jednak zostało zweryfikowane za pomocą metryk asymetrycznych (MME(O) i MME(U)). Obserwujemy również ogromną przewagę modeli uśredniających (Random Walk, Historical ave. i MA) w metrykach opisujących sumę odchyleń - MAE i RMSE. Warto zauważyć również dużą wrażliwość metryk na poczynione założenie o rozkładzie w modelu GARCH jak i również na sam zastosowany model z tej rodziny, nie można jednak powiedzieć aby którykolwiek z rozkładów dominował.

Tablica 2: Błędy prognozy, dane tygodniowe

model	ME		MAE		RMSE		AMAPE		TIC	
Random walk	-0.000000*	0.00	0.000245	1.33	0.000668	1.15	0.476530	1.09	0.551043*	0.65
Historical ave.	-0.000143	1.00	0.000184*	1.00	0.000583*	1.00	0.436195**	1.00	0.850964	1.00
MA—1year	-0.000056**	0.39	0.000207***	1.12	0.000585***	1.00	0.457780***	1.05	0.747517	0.88
MA—3year	-0.000128***	0.89	0.000186**	1.01	0.000584**	1.00	0.434961*	1.00	0.831373	0.98
GARCH-N	0.001024	-7.16	0.001173	6.36	0.001968	3.37	0.754718	1.73	0.738220	0.87
GARCH-T	0.001247	-8.72	0.001343	7.29	0.001901	3.26	0.780532	1.79	0.716255	0.84
GARCH-G	0.001104	-7.72	0.001255	6.81	0.001902	3.26	0.771298	1.77	0.732034	0.86
GARCH-ST	0.001388	-9.71	0.001480	8.03	0.002065	3.54	0.790393	1.81	0.731506	0.86
EGARCH-N	0.000746	-5.22	0.000870	4.72	0.001785	3.06	0.700629	1.61	0.716094	0.84
EGARCH-T	0.000837	-5.85	0.000940	5.10	0.001371	2.35	0.751132	1.72	0.649630	0.76
EGARCH-G	0.000828	-5.79	0.000939	5.10	0.001579	2.71	0.736675	1.69	0.684270	0.80
EGARCH-ST	0.000942	-6.59	0.001042	5.65	0.001470	2.52	0.767838	1.76	0.663185	0.78
TGARCH-N	0.000850	-5.94	0.000958	5.20	0.001890	3.24	0.718342	1.65	0.720454	0.85
TGARCH-T	0.000775	-5.42	0.000885	4.80	0.001213	2.08	0.748120	1.72	0.627071**	0.74
TGARCH-G	0.000781	-5.46	0.000890	4.83	0.001404	2.41	0.734760	1.68	0.658633	0.77
TGARCH-ST	0.000839	-5.86	0.000948	5.15	0.001254	2.15	0.761043	1.74	0.634342***	0.75
CGARCH-N	0.001044	-7.30	0.001166	6.33	0.001927	3.30	0.754246	1.73	0.728049	0.86
CGARCH-T	0.001236	-8.64	0.001333	7.23	0.001868	3.20	0.779943	1.79	0.713124	0.84
CGARCH-G	0.001163	-8.13	0.001271	6.90	0.001883	3.23	0.770886	1.77	0.718181	0.84
CGARCH-ST	0.001341	-9.38	0.001436	7.79	0.001994	3.42	0.787025	1.80	0.725426	0.85

W przypadku danych o częstotliwości dziennej (tabela 3.) widzimy, że sytuacja jest zupełnie inna niż w wariancie tygodniowym. Rozstęp wynikowy jest dużo mniejszy, a także nie powtarza się sytuacja, w której najlepsze wyniki dla większości metryk osiągają te same modele. w przypadku metryki MAE najlepsze okazują się modele E-GARCH, niezależnie od rozkładu osiągają one najlepsze wyniki. Modele T-GARCH okazały się z kolei najlepsze pod względem kryterium RMSE. w pozostałych metrykach dobrze radzą sobie także standardowe modele GARCH, czy też model C-GARCH. Model referencyjny - średnia historyczna w przypadku danych dziennych okazał się jednym z najgorszych rozwiązań. w tym miejscu zauważyć należy jednak bardzo małe różnice, zwłaszcza pomiędzy modelami z rodziny GARCH, co może sugerować nie tylko niewrażliwość predykcji na założenie o rozkładzie ale również na typ modelu GARCH dla danych o większej częstotliwości. w przypadku badania indeksu HSI wyniki wydają się być trochę bardziej zróżnicowane. Brak jest tam również sytuacji, w której jeden z modeli osiąga 3 najlepsze wyniki, dla którejś z metryk.

Tablica 3: Błędy prognozy, dane dzienne

model	ME		MAE		RMSE		AMAPE		TIC	
Random walk	-0.000001*	0.00	0.000530	1.53	0.001645	1.25	0.667039	1.14	0.613278*	0.68
Historical ave.	-0.000248	1.00	0.000347	1.00	0.001317	1.00	0.583329	1.00	0.905538	1.00
MA—1year	-0.000101	0.41	0.000415	1.20	0.001313	1.00	0.628684	1.08	0.811254	0.90
MA—3year	-0.000225	0.90	0.000356	1.03	0.001316	1.00	0.593164	1.02	0.888582	0.98
GARCH-N	-0.000079***	0.32	0.000381	1.10	0.001259	0.96	0.578332	0.99	0.700110**	0.77
GARCH-T	-0.000082	0.33	0.000379	1.09	0.001256	0.95	0.577685	0.99	0.701183***	0.77
GARCH-G	-0.000085	0.34	0.000378	1.09	0.001257	0.95	0.576741	0.99	0.702682	0.78
GARCH-ST	-0.000081	0.33	0.000379	1.09	0.001256	0.95	0.577979	0.99	0.701471	0.77
EGARCH-N	-0.000143	0.57	0.000346	1.00	0.001239	0.94	0.560509	0.96	0.732538	0.81
EGARCH-T	-0.000142	0.57	0.000345**	0.99	0.001236	0.94	0.560237	0.96	0.729620	0.81
EGARCH-G	-0.000145	0.58	0.000344*	0.99	0.001237	0.94	0.559314***	0.96	0.732583	0.81
EGARCH-ST	-0.000141	0.57	0.000346***	1.00	0.001236	0.94	0.560633	0.96	0.730869	0.81
TGARCH-N	-0.000132	0.53	0.000350	1.01	0.001236	0.94	0.559253**	0.96	0.712847	0.79
TGARCH-T	-0.000129	0.52	0.000351	1.01	0.001233*	0.94	0.559439	0.96	0.709366	0.78
TGARCH-G	-0.000134	0.54	0.000349	1.01	0.001234**	0.94	0.558409*	0.96	0.712189	0.79
TGARCH-ST	-0.000129	0.52	0.000351	1.01	0.001234***	0.94	0.559721	0.96	0.711877	0.79
CGARCH-N	-0.000079	0.32	0.000385	1.11	0.001259	0.96	0.579690	0.99	0.701555	0.77
CGARCH-T	-0.000080	0.32	0.000380	1.09	0.001255	0.95	0.579984	0.99	0.702123	0.78
CGARCH-G	-0.000084	0.34	0.000378	1.09	0.001256	0.95	0.578373	0.99	0.702627	0.78
CGARCH-ST	-0.000079**	0.32	0.000380	1.10	0.001255	0.95	0.580986	1.00	0.702320	0.78

Tabela 4. pokazuje wyniki, zaproponowanych przez Pagana i Schwerta [1], asymetrycznych metryk MME(U) i MME(O), dla wszystkich modeli zarówno w wariancie tygodniowym jak i dziennym. Dla danych tygodniowych w przypadku metryki, która nakłada większą karę na niedoszacowania najlepsze wyniki osiągają modele T-GARCH (rozkłady t-Studenta i GED). Zdecydowanie najsłabsze rezultaty osiągnął w tym przypadku model Średniej Historycznej, co widać po tym, że wartość wystandaryzowanej metryki jest mniejsza niż 1 w przypadku każdego innego modelu. Statystyka bardziej karząca przeszacowania osiąga najlepsze wyniki dla podstawowych modeli, tj. Błądzenia Przypadkowego, Średniej Historycznej i 3-letniej Średniej Ruchomej. Patrząc na wyniki dla tygodniowych stóp zwrotu, przypuszczenie o tendencji modeli GARCH do przeszacowań wydaje się potwierdzać.

Dla danych dziennych i statystyki MME(U) dobre wyniki osiąga przede wszystkim model C-GARCH, ale warto zauważyć, że poza Błądzeniem Przypadkowym i Średnią Historyczną pozostałe modele osiągają bardzo zbliżone wyniki. Tym razem, w przypadku dziennej zmienności, wyniki dla wszystkich modeli są bardziej zbliżone jeśli chodzi o statystykę karząca przeszacowania, niż miało to miejsce w przypadku danych tygodniowych. Co się jednak nie zmieniło to to, że najlepsze wyniki osiągają tu podstawowe modele. w kontekście znaku błędów wnioski dla danych dziennych wydają się być podobne do przypadku tygodniowego; co różni natomiast te dwa zbiory to zakres rezultatów, wyższa częstotliwość wydaje się znacznie wygładzać predykcje, do tego stopnia, że różnice zauważalne są właściwie tylko pomiędzy rodzinami modeli: uśredniające vs GARCH.

Wartości finansowych funkcji starty, oceniających czy kierunek predykcji jest zgodny z faktyczną zmianą, znajdują się tabeli 5. Jak widać w przypadku danych tygodniowych najlepsze rezultaty osiągają modele podstawowe (im wartość statystyki bliższa 1, tym lepiej model przewiduje kierunek zmian), za wyjątkiem Błądzenia Przypadkowego, które zgodnie z teorią musi otrzymać wartość 0 (wynika to z definicji tychże metryk). Co warto jednak wyraźnie zaznaczyć to fakt, że modele GARCH osiągają znacznie gorsze wyniki, niż miało to miejsce w referencyjnym artykule.

W przypadku danych dziennych, każdy z modeli wydaję się prognozować kierunek zmian z podobną precyzją. Jeśli chodzi jednak o statystykę DCPU (która bierze pod uwagę jedynie zmienność powyżej pewnego progu, w tym przypadku, tak jak zostało to wcześniej zaznaczone, chodziło o 2.00e-4), widzimy, że najlepszy rezultat osiąga historyczna średnia, a pozostałe modele nie odstają specjalnie (w szczególności modele GARCH osiągają niewiele gorsze wyniki).

Tablica 4: Asymetryczne błędy prognozy

		Dane tygodniowe				Dane dzienne		
model	MME(U)		MME(O)		MME(U)		MME(O)	
Random walk	0.0058	0.81	0.0060***	1.93	0.0084	1.03	0.0083	1.47
Historical ave.	0.0072	1.00	0.0031*	1.00	0.0081	1.00	0.0057*	1.00
MA—1year	0.0048	0.68	0.0067	2.17	0.0065	0.81	0.0105	1.85
MA—3year	0.0065	0.91	0.0039**	1.27	0.0077	0.96	0.0066**	1.17
GARCH-N	0.0026	0.36	0.0283	9.11	0.0062***	0.76	0.0093	1.64
GARCH-T	0.0023	0.31	0.0320	10.29	0.0062	0.77	0.0093	1.63
GARCH-G	0.0027	0.37	0.0299	9.61	0.0062	0.77	0.0092	1.62
GARCH-ST	0.0024	0.33	0.0336	10.83	0.0062	0.77	0.0093	1.64
EGARCH-N	0.0019	0.26	0.0241	7.76	0.0066	0.82	0.0077	1.36
EGARCH-T	0.0019***	0.26	0.0271	8.72	0.0066	0.82	0.0077	1.36
EGARCH-G	0.0019	0.27	0.0263	8.45	0.0066	0.82	0.0076***	1.34
EGARCH-ST	0.0020	0.27	0.0287	9.24	0.0066	0.81	0.0077	1.37
TGARCH-N	0.0019	0.27	0.0256	8.23	0.0066	0.82	0.0077	1.36
TGARCH-T	0.0019*	0.26	0.0266	8.56	0.0066	0.82	0.0078	1.37
TGARCH-G	0.0019**	0.26	0.0259	8.34	0.0066	0.82	0.0076	1.35
TGARCH-ST	0.0019	0.27	0.0277	8.92	0.0066	0.81	0.0078	1.38
CGARCH-N	0.0022	0.31	0.0288	9.27	0.0062	0.77	0.0094	1.66
CGARCH-T	0.0022	0.31	0.0319	10.27	0.0061**	0.76	0.0094	1.66
CGARCH-G	0.0022	0.31	0.0307	9.90	0.0062	0.77	0.0092	1.63
CGARCH-ST	0.0023	0.33	0.0331	10.67	0.0061*	0.76	0.0095	1.67

Tablica 5: Finansowe funkcje straty

	Dane tygodniowe			Dane dzienne		
model	DCP		DCP		DCPU	
Random walk	0.000	0.00	0.000	0.00	0.000	0.00
Historical ave.	0.725	1.00	0.697	1.00	0.847	1.00
MA-1year	0.686	0.95	0.665	0.95	0.750	0.89
MA—3year	0.647	0.89	0.665	0.95	0.750	0.89
GARCH-N	0.451	0.62	0.701	1.01	0.792	0.93
GARCH-T	0.471	0.65	0.701	1.01	0.792	0.93
GARCH-G	0.451	0.62	0.697	1.00	0.792	0.93
GARCH-ST	0.471	0.65	0.701	1.01	0.792	0.93
EGARCH-N	0.471	0.65	0.705	1.01	0.778	0.92
EGARCH-T	0.471	0.65	0.709	1.02	0.792	0.93
EGARCH-G	0.471	0.65	0.705	1.01	0.778	0.92
EGARCH-ST	0.471	0.65	0.709	1.02	0.778	0.92
TGARCH-N	0.471	0.65	0.709	1.02	0.778	0.92
TGARCH-T	0.471	0.65	0.709	1.02	0.778	0.92
TGARCH-G	0.471	0.65	0.709	1.02	0.778	0.92
TGARCH-ST	0.471	0.65	0.709	1.02	0.778	0.92
CGARCH-N	0.471	0.65	0.697	1.00	0.778	0.92
CGARCH-T	0.471	0.65	0.697	1.00	0.792	0.93
CGARCH-G	0.471	0.65	0.701	1.01	0.792	0.93
CGARCH-ST	0.471	0.65	0.689	0.99	0.792	0.93

Źródło: Opracowanie własne.

5 Wnioski i podsumowanie

W niniejszej pracy zbadano jak dobrze modele klasy GARCH prognozują zmienność log-stopy zwrotu Warszawskiego Indeksu Giełdowego (WIG). Wyniki te porównano z klasycznymi modelami uśredniającymi (Błądzenie Losowe, Średnia Historyczna czy Średnia Ruchoma).

Modele klasy GARCH okazały się być najskuteczniejsze w przypadku danych dziennych, brak jest jednak jednego dominującego modelu. Porównując wyniki do referencyjnego artykułu można stwierdzić, że modele klasy GARCH osiągają gorsze wyniki w przypadku symetrycznych metryk błędów prognoz. Widać to szczególnie w przypadku danych tygodniowych, że dla prawie wszystkich metryk (wyjątkiem TIC) najlepsze wyniki osiągają klasyczne podejścia uśredniające, co jest bardziej zbliżone do wyników osiągniętych przez McMillana i innych [2]. Oczywiście ze względu na zakres dat out-of-the-sample (tj. rok 2020) i panującą na świecie epidemię COVID-19, a także fakt korzystania z danych dotyczących WIG, a nie HSI, wyników między poszczególnymi badaniami nie powinno się bezrefleksyjnie porównywać.

w przypadku metryk asymetrycznych, które w różny sposób karzą przeszacowania i niedoszacowania, brak jest zdecydowanego lidera. w zależności od typu danych i metryki różne modele osiągają dobre wyniki. Co ważne w przypadku danych tygodniowych modele klasy GARCH znacznie bardziej przeszacowują niż modele klasyczne. Dla danych dziennych zdecydowanie najmniej przeszacowuje model Historycznej Średniej, natomiast pozostałe modele, zarówno klasyczne jak i z rodziny GARCH osiągają podobne wyniki, na przykład 3 najlepszy wynik osiągnął wynik model E-GARCH z rozkładem GEN.

w przypadku metryk finansowych określających skuteczność, z jaką model prognozuje kierunek zmian należy podkreślić słabą skuteczność dla modeli GARCH w przypadku danych tygodniowych i w zasadzie porównywalne wyniki dla każdego z modeli w przypadku danych dziennych. Dla zmian wartości powyżej ustanowionego progu, najlepszy okazał się być model Średniej Historycznej, ok. 8-10 punktów procentowych skuteczniejszy niż pozostałe podejścia.

w kontekście postawionej hipotezy badawczej, spełnienie warunku o skośności rozkładu stóp zwrotu odbiegającej od zera, jak się okazało, nie implikuje wyższości założenia o skośnym rozkładzie w modelu GARCH. Mało tego różnice w jakości prognoz okazały się zauważalne jedynie w przypadku danych o tygodniowej częstotliwości, obserwowano wówczas również wysokie metryki sumujące błędy co może sugerować "niedotrenowanie" modeli GARCH w takich warunkach. Zastosowanie danych dziennych znacznie zmniejszyło różnice między rezultatami modeli uśredniających i modeli GARCH, można powiedzieć zatem, że te drugie "dotrenowały się" do tego stopnia, że prognozy wykazywały niską wrażliwość zarówno na założenie o rozkładzie jak i sam typ modelu GARCH. Uzyskane wyniki nie dają zatem podstaw do przyjęcia hipotezy badawczej, ponadto to który model jest najlepszy okazało się zależne od zastosowanej metryki.

Literatura

- [1] G. W. Schwert A. R. Pagan. Alternative models for conditional stock volatilities. *Journal of Econometrics*, 45:267–290, 1990.
- [2] O. Ap Gwilym D. McMillan, A. Speight. Forecasting uk stock market volatility. *Applied Financial Economics*, 10:435–448, 2000.
- [3] Clive W. J. Granger Ser-Huang Poon. Forecasting volatility in financial markets: A review. *Journal of Economic Literature*, 41:478—539, 2003.
- [4] Bruce Morley Wei Liu. Volatility forecasting in the hang seng index using the garch approach. *Asia-Pacific Finan Markets*, 16:51—-63, 2009.