Introduction -Seminar-

Yasemin Aslan

SPRU (Science Policy Research Unit)
Business School
University of Sussex

Week 1: 28 January 2022

Learning Outcomes

Learning outcome		Assessment mode
1	Explain the concept of network and list the main network indicators	ESS
2	Describe and apply the major techniques for the collection of network data and their sta- tistical analysis	ESS,GPN+GWS
3	Identify the main characteristics of networks by means of network measures	ESS,GPN+GWS
4	Employ network analysis techniques to produce network data-based infographics	GPN + GWS

Note: ESS: Essay; GPN: Group Presentation; GWS: Group Written Submission

Overview

- 1 The 'old school' exercise
- 2 R, RStudio, and igraph
- Ready ...?
- Some useful (and freely available) resources to learn R

You are provided with a list 20 R&D projects. These projects involve different types of organisations. You are requested to:

- Draw a network the depicts the collaboration activity of firms on projects (inter-organisational network)
- Which are the most influential organisations in this network?
- Which are the most critical organisations for the cohesion of the network?
- Upload a picture of your network https://padlet.com/yaslan2/oysry42vouhcetvt

R&D project	List of partners
Proj01	U2, F1, NG1
Proj02	U1, NG4, F1
Proj03	NG3, NG1, F1
Proj04	NG3, NG4, F1
Proj05	U3, F1
Proj06	U3, F2
Proj07	U3, F3
Proj08	U3, U4
Proj09	F1
Proj10	U5
Proj11	U4, U5, U6
Proj12	U3, U7
Proj13	U7, G1
Proj14	U7, O1
Proj15	U7, G2
Proj16	G2, F3
Proj17	F3, O2
Proj18	O2, F4, NG2
Proj19	F4, U9, NG2
Proj20	NG2, U8

Firm (F); University (U); Gov. (G); Non-Gov. (NG); Other (O)

The 'old school' exercise Degree centrality

Node	$C_D(n_i)$
F1	6
F2	1
F3	3
F4	3
G1	1
G2	2
NG1	3
NG2	4
NG3	3
NG4	3
01	1
02	3
U1	2
U2	2
U3	5
U4	3
U5	2
U6	2
U7	4
U8	1
U9	2

The 'old school' exercise Closeness centrality

Node	$C_C(n_i)$
F1	0.40
F2	0.33
F3	0.42
F4	0.27
G1	0.27
G2	0.33
NG1	0.30
NG2	0.27
NG3	0.30
NG4	0.30
01	0.27
O2	0.34
U1	0.29
U2	0.29
U3	0.49
U4	0.36
U5	0.27
U6	0.27
U7	0.37
U8	0.22
U9	0.22

The 'old school' exercise Betweenness centrality

Node	$C_B(n_i)$
F1	0.42
F2	-
F3	0.42
F4	0.04
G1	-
G2	0.05
NG1	0.00
NG2	0.14
NG3	0.00
NG4	0.00
01	-
02	0.34
U1	-
U2	-
U3	0.72
U4	0.19
U5	-
U6	-
U7	0.22
U8	-
U9	-

• A language and environment for statistical computing and graphics

- A language and environment for statistical computing and graphics
- Runs on Windows, Linux, macOS

- A language and environment for statistical computing and graphics
- Runs on Windows, Linux, macOS
- Initially developed for statistical analysis by Robert Gentleman and Ross Ihaka (University of Auckland) – that's why "R".

- A language and environment for statistical computing and graphics
- Runs on Windows, Linux, macOS
- Initially developed for statistical analysis by Robert Gentleman and Ross Ihaka (University of Auckland) – that's why "R".
- Core Group with write access to the R source

- A language and environment for statistical computing and graphics
- Runs on Windows, Linux, macOS
- Initially developed for statistical analysis by Robert Gentleman and Ross Ihaka (University of Auckland) – that's why "R".
- Core Group with write access to the R source
- Constantly updated and with access to 19,000 packages (January 2022, www.r-pkg.org)

• An open-source editor for R

- An open-source editor for R
- Developed by a company called RStudio

- An open-source editor for R
- Developed by a company called RStudio
- Functionalities that are otherwise not available in the standard R editor

www.rstudio.com

- An open-source editor for R
- Developed by a company called RStudio
- Functionalities that are otherwise not available in the standard R editor
- Support, tutorials, webinars

R Studio

Elements of the interface:

- Script: the list of commands we want R to execute
- Console: the list of commands R executes and the outcomes of these
- Environment, History: variables, datasets, and executed commands
- Files, Plot, Packages, Help, Viewer: generated charts, loaded packages, etc.

http://igraph.org/r/

• Provides a relatively comprehensive set of tools to perform network analysis

http://igraph.org/r/

- Provides a relatively comprehensive set of tools to perform network analysis
- Developed by Gábor Csárdi (Harvard University) and others

http://igraph.org/r/

- Provides a relatively comprehensive set of tools to perform network analysis
- Developed by Gábor Csárdi (Harvard University) and others
- Excellent textbook [Kolaczyk and Csárdi, 2014]

Ready ...?

Ready ...?

On campus*

- Go to http://rstudio.uscs.susx.ac.uk/
- Access the website by using your University of Sussex account

On your personal computer

- Install R
- Install RStudio

RStudio cloud

- Go to https://rstudio.cloud
- Register and sign in

^{*}You can access the server off campus by using remote desktop http://www.sussex.ac.uk/its/services/software/windowsremote

Through the RStudio interface:

- Tools
- Install Packages
- Search for igraph
- 4 Tick the box "Install Dependencies"
- Install

or

Through the RStudio console

```
1 install.packages("igraph")
2 library("igraph")
```

Some useful (and freely available) resources to learn R

Books

- Harley Wickham and Garrett Grolemund R for Data Science: generic introduction to R and to the data analysis workflow
- Claus O. Wilke Fundamentals of Data Visualisation: mainly based on ggplot2, an R package for data visualisation
- Online courses: a host of possible choices!
 - ► RStudio official learning pathways
 - ► Linkedin Learning
 - ► Coursera, EdX...
- Online communities: practical solutions to specific issues
 - ► StackOverFlow Q&A about coding problems
 - GitHub a bit more advanced, repository of routines
- Twitter: #rstats and @rstatstweet

Next time ...

Next time ...

- Lecture: Network definition
 - ▶ Definition of network and different types of networks
 - Overview of the historical and disciplinary origins of (social) network analysis
 - ► Network visualisation standards
- Seminar: Network definition
 - ► Short intro to R
 - Basic commands

Questions

References I

Kolaczyk, E. and Csárdi, G. (2014).

Statistical analysis of network data with R, volume 65. Springer-Verlag, New York, NY, USA.