

Report No:CCIS15060046602

FCC REPORT

(Bluetooth)

Applicant: SHENZHEN EXS TECHNOLOGY CO., LIMITED

Address of Applicant: 1801AXiandaizhichuang,Huaqiang North Road, Futian

District, Shen Zhen, Guangdong, China

Equipment Under Test (EUT)

Product Name: Smart Watch

Model No.: WA8

Trade mark: EXS IDEA

FCC ID: 2AFNWWA8

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 28 Dec., 2015

Date of Test: 28 Dec., to 15 Jan., 2016

Date of report issued: 18 Jan., 2016

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	18 Jan., 2016	Original

Tested by:

| | CMG | Date: 18 Jan., 2016

Test Engineer

Reviewed by: Over her Date: 18 Jan., 2016

Project Engineer

3 Contents

			Page
1	С	COVER PAGE	1
2	V	/ERSION	2
3	C	CONTENTS	3
4		TEST SUMMARY	
5	G	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	TEST INSTRUMENTS LIST	8
6	Т	TEST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	_
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	
	6.5	Carrier Frequencies Separation	
	6.6	HOPPING CHANNEL NUMBER	_
	6.7	DWELL TIME	_
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
		S.9.1 Conducted Emission Method	
	6.10	S.9.2 Radiated Emission Method	
	0.20	6.10.1 Conducted Emission Method	
		5.10.2 Radiated Emission Method	
7	_	FEST SETUP PHOTO	_
1			_
8	Ε	EUT CONSTRUCTIONAL DETAILS	63

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN EXS TECHNOLOGY CO., LIMITED
Address of Applicant:	1801A Xiandaizhichuang, Huaqiang North Road, Futian District,
	ShenZhen, Guangdong, China
Manufacturer:	SHENZHEN EXS TECHNOLOGY CO., LIMITED
Address of Manufacturer:	1801A Xiandaizhichuang, Huaqiang North Road, Futian District,
	ShenZhen, Guangdong, China

5.2 General Description of E.U.T.

Product Name:	Smart Watch
Model No.:	WA8
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	2.0dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-600mAh

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Report No: CCIS15060046602

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

•FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully described a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

•IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.7 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
5	Pre-amplifier Compliance Direction (1GHz-18GHz) Systems Inc.		PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
8	8 Spectrum analyzer 9k-30GHz Rohde & Schwarz		FSP30	CCIS0023	03-28-2015	03-28-2016		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017					
2	EMI Test Receiver Rohde & Schwarz		ESCI	CCIS0002	03-28-2015	03-28-2016					
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016					
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetoothantenna is anintegral antenna which permanently attached, and the best case gain of the antenna is 2.0dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.4:2009						
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz, Sweep time=auto						
Limit:		Limit (d	IBuV)				
	Frequency range (MHz) Quasi-peak Average						
	0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50						
Test setup:	* Decreases with the logarithm	•					
Test procedure:	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a	Filter AC pow					
r sor procedure.	 line impedance stabilization network(L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 						
Test Uncertainty:			±3.28 dB				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Bluetooth (Continuous transmitting) mode						
Test results:	Pass						

Measurement Data

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : Smart Watch Site Condition

: Smart Watch

Model : WA8

Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: YT
Remark :

nemark								
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	<u>d</u> B	dB	dBu₹	dBu₹	dB	
1	0.154	22.91	0.27	10.78	33.96	55.78	-21.82	Average
1 2 3 4 5 6 7 8 9	0.162	26.11	0.27	10.77	37.15	65.34	-28.19	QP
3	0.258	18.40	0.27	10.75	29.42	61.51	-32.09	QP
4	0.258	13.35	0.27	10.75	24.37	51.51	-27.14	Average
5	6.186	20.55	0.31	10.82	31.68	60.00	-28.32	QP
6	6.186	17.29	0.31	10.82	28.42	50.00	-21.58	Average
7	11.498	27.70	0.31	10.92	38.93	60.00	-21.07	QP
8	11.498	19.98	0.31	10.92	31.21	50.00	-18.79	Average
9	17.849	40.44	0.33	10.90	51.67	60.00	-8.33	QP
10	17.849	31.51	0.33	10.90	42.74	50.00	-7.26	Average
11	22.535	24.91	0.44	10.89	36.24	50.00	-13.76	Average
12	22.775	27.10	0.44	10.89	38.43	60.00	-21.57	QP

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Smart Watch

Model WA8 Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

CHAIK	Freq	Read Level	LISN Factor		Level	Limit Line		Remark
	MHz	—dBu₹	dB		dBu₹	—dBu₹	dB	
1	0.158	19.27	0.25	10.78	30.30	55.56	-25.26	Average
2	0.170	26.32	0.25	10.77	37.34	64.94	-27.60	QP
3	0.258	18.31	0.26	10.75	29.32	61.51	-32.19	QP
2 3 4 5 6 7	0.258	13.09	0.26	10.75	24.10	51.51	-27.41	Average
5	0.739	14.71	0.19	10.79	25.69	56.00	-30.31	QP
6	1.289	9.75	0.25	10.90	20.90	46.00	-25.10	Average
7	11.683	26.87	0.25	10.92	38.04	60.00	-21.96	QP
8	11.807	16.19	0.25	10.92	27.36	50.00	-22.64	Average
9	17.944	40.79	0.26	10.90	51.95	60.00	-8.05	QP
10	17.944	30.49	0.26	10.90	41.65	50.00	-8.35	Average
11	22.535	25.50	0.38	10.89	36.77	60.00	-23.23	QP
12	22, 535	23.35	0.38	10.89	34.62			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10:2009 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data

	050/					
	GFSK mode					
Test channel	Test channel Peak Output Power (dBm)		Result			
Lowest	6.65	21.00	Pass			
Middle	6.89	21.00	Pass			
Highest	6.79	21.00	Pass			
	π/4-DQPSK	mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	Lowest 6.17		Pass			
Middle	Middle 6.47		Pass			
Highest 6.29		21.00	Pass			
	8DPSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	6.14	21.00	Pass			
Middle	6.50	21.00	Pass			
Highest	Highest 6.35 21.00 Pass					

Test plot as follows:

Modulation mode:GFSK

Date: 4.JAN.2016 13:39:20

Lowest channel

Date: 4.JAN.2016 13:40:28

Middle channel

Date: 4.JAN.2016 13:40:53

Highest channel

Modulation mode:π/4-DQPSK

Date: 4.JAN.2016 13:41:39

Lowest channel

Date: 4..TAN.2016 13:42:12

Middle channel

Date: 4..TAN.2016 13:42:43

Highest channel

Modulation mode:8DPSK

Date: 4.JAN.2016 13:43:50

Lowest channel

Date: 4..TAN.2016 13:44:09

Middle channel

Date: 4.JAN.2016 13:44:30

Highest channel

6.420dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009 and DA00-705		
Receiver setup:	RBW=30kHz, VBW=100kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data

Test channel	20dB Occupy Bandwidth (kHz)			
rest channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	840	1120	1168	
Middle	840	1124	1168	
Highest	840	1120	1168	

Test plot as follows:

Modulation mode:GFSK

Date: 4.JAN.2016 13:47:07

Lowest channel

Date: 4.JAN.2016 13:48:36

Middle channel

Date: 4.JAN.2016 13:49:23

Highest channel

Modulation mode:π/4-DQPSK

Date: 4.JAN.2016 13:50:39

Lowest channel

Date: 4..TAN.2016 13:52:00

Middle channel

Date: 4.JAN.2016 13:53:00

Highest channel

Modulation mode:8DPSK

Date: 4.JAN.2016 13:54:00

Lowest channel

Date: 4..TAN.2016 13:55:21

Middle channel

Date: 4.JAN.2016 13:56:18

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009 and DA00-705		
Receiver setup:	RBW=100kHz, VBW=300kHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data

GFSK mode						
Test channel Carrier Frequencies Separation (kHz)		Limit (kHz)	Result			
Lowest	1004	560.00	Pass			
Middle	1000	560.00	Pass			
Highest	1004	560.00	Pass			
	π/4-DQPSK mo	de				
Test channel Carrier Frequencies Separation (kHz)		Limit (kHz)	Result			
Lowest	1000	749.33	Pass			
Middle	1004	749.33	Pass			
Highest	Highest 1004		Pass			
	8DPSK mode					
Test channel Carrier Frequencies Separation (kHz)		Limit (kHz)	Result			
Lowest	Lowest 1004		Pass			
Middle	Middle 1000		Pass			
Highest	1004	778.67	Pass			

Note: According to section 6.4

Note: According to section 0.4				
Mode	20dB bandwidth (kHz)	Limit (kHz)		
Wode	(worse case)	(Carrier Frequencies Separation)		
GFSK	840	560.00		
π/4-DQPSK	1124	749.33		
8DPSK	1168	778.67		

Test plot as follows:

Modulation mode:GFSK

Date: 4.JAN.2016 14:26:13

Lowest channel

Date: 4..TAN.2016 14:27:15

Middle channel

Date: 4.JAN.2016 14:28:03

Highest channel

Modulation mode:π/4-DQPSK

Date: 4.JAN.2016 14:29:26

Lowest channel

Date: 4..TAN.2016 14:30:29

Middle channel

Date: 4..TAN.2016 14:31:37

Highest channel

Modulation mode:8DPSK

Date: 4.JAN.2016 14:34:06

Lowest channel

Date: 4..TAN.2016 14:35:15

Middle channel

Date: 4.JAN.2016 14:36:59

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009 and DA00-705		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Mode Hopping channel numbers		Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

GFSK

Date: 4..TAN.2016 14:51:14

π/4-DQPSK

Date: 4..TAN.2016 14:54:45

8DPSK

Date: 4.JAN.2016 14:57:45

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009 and KDB DA00-705		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case)

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12480		
GFSK	DH3	0.26496	0.4	Pass
	DH5	0.31317		
	2-DH1	0.12672	0.4	
π/4-DQPSK	2-DH3	0.26784		Pass
	2-DH5	0.31147		
	3-DH1	0.12864		
8DPSK	3-DH3	0.26592	0.4	Pass
	3-DH5	0.31147		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.390*(1600/(2*79))*31.6=124.80ms DH3 time slot=1.656*(1600/(4*79))*31.6=264.96ms DH5 time slot=2.936*(1600/(6*79))*31.6=313.17ms

2-DH1 time slot=0.396*(1600/ (2*79))*31.6=126.72ms

2-DH3 time slot=1.674*(1600/ (4*79))*31.6=267.84ms

2-DH5 time slot=2.920*(1600/ (6*79))*31.6=311.47ms

3-DH1 time slot=0.402*(1600/ (2*79))*31.6=128.64ms

3-DH3 time slot=1.662*(1600/ (4*79))*31.6=265.92ms

3-DH5 time slot=2.920*(1600/ (6*79))*31.6=311.47ms

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test plot as follows:

Modulation mode:GFSK

Date: 4.JAN.2016 14:39:53

DH1

Date: 4.JAN.2016 14:40:43

DH3

Date: 4.JAN.2016 14:41:23

DH5

Modulation mode:π/4-DQPSK

Date: 4.JAN.2016 14:41:58

2-DH1

Date: 4..TAN.2016 14:42:46

2-DH3

Date: 4..TAN.2016 14:43:24

2-DH5

Modulation mode:8DPSK

Date: 4.JAN.2016 14:44:36

3-DH1

Date: 4..TAN.2016 14:45:16

3-DH3

Date: 4.JAN.2016 14:45:49

3-DH5

Report No: CCIS15060046602

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2009 and DA00-705
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Test plot as follows:

GFSK

Lowest Channel

Date: 4.JAN.2016 13:58:16

No-hopping mode

Date: 4.JAN.2016 14:11:11

Hopping mode

Highest Channel

Date: 4.JAN.2016 14:04:41

No-hopping mode

Date: 4..TAN.2016 14:24:09

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

Date: 4.JAN.2016 14:00:21

No-hopping mode

Date: 4.JAN.2016 14:13:06

Hopping mode

Highest Channel

Date: 4..TAN.2016 14:03:42

No-hopping mode

Date: 4..TAN.2016 14:21:45

Hopping mode

8DPSK

Lowest Channel

Date: 4.JAN.2016 14:01:35

No-hopping mode

Hopping mode

Date: 4.JAN.2016 14:16:33

Date: 4..TAN.2016 14:17:40

Highest Channel

Date: 4.JAN.2016 14:02:30

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	9 and 15.205						
Test Method:	ANSI C63.10: 2009								
Test Frequency Range:	2.3GHz to 2.5G								
Test site:	Measurement D								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
		RMS	1MHz	3MHz	Average Value				
Limit:	Freque	ency	Limit (dBuV		Remark				
	Above 1	GHz	54.0 74.0		Average Value Peak Value				
Test setup:	AE EUT (Turntable)	Ground Reference Plane Test Receiver	ism Antenna Tower						
Test Procedure:	groundat a 3 todetermine 2. The EUT was antenna, whis tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and thenthe the rotatable maximum resured 5. The test-recesure SpecifiedBar 6. If the emissic limit specified EUT would be 10dB margin	meter camber the position of a set 3 meters chwas mount height is varietermine the moderation of the m	er. The table we feel the highest research to the top ed from one maximum value arizations of the tuned to heigh om 0 degrees was set to Pea Maximum Hold EUT in peaking could be stop therwise the effect of the two the top the two two the two two two the two two two two two the two	vas rotated adiation. The interference of a variable meter to four e of the field me antenna was arrangents from 1 meters from 1 meters from 260 degrate Detect Full Mode. The mode was apped and the missions the one using processing	nce-receiving e-height antenna r meters above the d strength. Both are set to make the ed to its worst case neter to 4 meters and rees to find the unction and 10dB lower than the he peak values of the hat did not have beak, quasi-peak or				
Test Instruments:	Refer to section	•		1					
Test mode:	Non-hopping m								
Test results:	Passed								

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Watch : WA8 EUT

Model

Test mode : DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
Remark

emari	K :								
			Ant enna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	$\overline{dB/m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2390.000	18.80	27.58	6.63	0.00	53.01	74.00	-20.99	Peak
2	2390.000	7.19	27.58	6.63	0.00	41.40	54.00	-12.60	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Smart Watch

: WA8 Model

Test mode : DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT

	Freq		Antenna Factor						Remark
	MHz	dBu₹	$\overline{dB}/\overline{m}$	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	āB	
1 2	2390.000 2390.000						The state of the s		

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Smart Watch EUT

: WA8 Model

Test mode : DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: YT Remark :

emar	100		Antenna Factor						Remark
	MHz	—dBu∜		<u>d</u> B	<u>db</u>	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Smart Watch Condition

EUT Model : WA8

Test mode : DH1-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT Remark :

emari	K :								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2483.500	18.58	27.52	6.85	0.00	52.95	74.00	-21.05	Peak
2	2483.500	7.79	27.52	6.85	0.00	42.16	54.00	-11.84	Average

π/4-DQPSK mode Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: Smart Watch : WA8 EUT

Model

Test mode : 2DH1-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

CIILAL	к .	Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∜	dB/m	d <u>B</u>	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	2390.000	17.87	27.58	6.63	0.00	52.08	74.00	-21.92	Peak
2	2390.000	7.15	27.58	6.63	0.00	41.36	54.00	-12.64	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Watch

: WAS Model

Test mode : 2DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: YT

emar	k :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	18.68	27.58	6.63	0.00	52.89	74.00	-21.11	Peak
2	2390,000	7.19	27.58	6.63	0.00	41.40	54.00	-12.60	Average

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Smart Watch EUT

Test mode : 2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
Remark

Rei

emari	: .								
	-		Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
82	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBu√/m	₫B	
1	2483.500								
2	2483.500	7.88	27.52	6.85	0.00	42.25	54.00	-11.75	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Smart Watch Condition

EUT

: WA8
Test mode : 2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Humi:55%
Test Engineer: YT
Remark

mar.	к :								
			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	dB/m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500								
2	2483.500	7.82	27.52	6.85	0.00	42.19	54.00	-11.81	Average

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Watch : WA8 EUT

Model

Test mode : 3DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: YT

	Freq					Level			
	MHz	dBu₹	dB/m	āB	āB	$\overline{dBuV/m}$	dBuV/m	āB	
1 2	2390.000 2390.000								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smart Watch : WAS Model

: 3DH1-L mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

mar.		Read	Ant enna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
0	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	2390.000	19.11	27.58	6.63	0.00	53.32	74.00	-20.68	Peak
2	2390.000	7.24	27.58	6.63	0.00	41.45	54.00	-12.55	Average

Test channel:Highest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT Smart Watch Model WA8 :

Test mode : 3DH1-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: YT

	Freq	Read Level	intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
/2	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>		
	2483.500 2483.500									

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Watch EUT WA8 Model :

Test mode : 3DH1-H mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

Cinar.		DJ	A	C-11-	D		Timin	Over	
	Freq		Antenna Factor				Limit Line		
	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBu√/m	dB	
1	2483.500	21.17	27.52	6.85	0.00	55.54	74.00	-18.46	Peak
2	2483.500	7.79	27.52	6.85	0.00	42.16	54.00	-11.84	Average

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2009 and DA00-705							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Non-hopping mode							
Test results:	Pass							

GFSK

Lowest channel

Date: 4.JAN.2016 14:59:20

30MHz~25GHz

Middle channel

Date: 4.JAN.2016 15:00:13

Highest channel

Date: 4.JAN.2016 15:13:18

π/4-DQPSK

Lowest channel

Date: 4.JAN.2016 15:01:43

30MHz~25GHz

Date: 4.JAN.2016 15:03:03

Highest channel

Date: 4.JAN.2016 15:04:26

8DPSK

Lowest channel

Date: 4.JAN.2016 15:05:44

30MHz~25GHz Middle channel

Date: 4.JAN.2016 15:06:58

Highest channel

Date: 4.JAN.2016 15:07:48

6.10.2 Radiated Emission Method

0.10.2 Radiated Elliission We	10.2 Radiated Emission Method								
Test Requirement:	FCC Part15 C Se	ction 15.209							
Test Method:	ANSI C63.10: 2009								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	710070 10112	RMS	1MHz	3MHz	Average Value				
Limit:	Frequen	су	Limit (dBuV/	m @3m)	Remark				
	30MHz-88I	MHz	40.0)	Quasi-peak Value				
	88MHz-216	MHz	43.5	5	Quasi-peak Value				
	216MHz-960	OMHz	46.0)	Quasi-peak Value				
	960MHz-1	GHz	54.0)	Quasi-peak Value				
	Above 1G	iHz	54.0		Average Value				
	7.001010		74.0)	Peak Value				
Test setup:	na Tower								

Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter chamber. The table was rotated 360 degrees todetermine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Uncertainty:	±4.88 dB
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: Smart Watch : WA8 EUT

Model Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT

emark	:								
			Antenna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	$-\overline{dB}/\overline{m}$	<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	103.806	43.00	12.78	0.99	29.50	27.27	43.50	-16.23	QP
1 2 3 4 5	143.830	42.97	8.22	1.28	29.25	23.22	43.50	-20.28	QP
3	279.044	35.68	12.63	1.71	28.49	21.53	46.00	-24.47	QP
4	370.702	41.90	14.51	2.02	28.65	29.78	46.00	-16.22	QP
5	566.622	35.36	17.88	2.57	29.05	26.76	46.00	-19.24	QP
6	631.688	34.93	18.57	2.73	28.84	27.39	46.00	-18.61	QP

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Smart Watch

: WA8

Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
Remark :

Freq							Over Limit	Remark
MHz	dBu∀	$\overline{-dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
103.806	40.91	12.78	0.99	29.50	25.18	43.50	-18.32	QP
143.830	44.86	8.22	1.28	29.25	25.11	43.50	-18.39	QP
232.532	36.73	11.72	1.54	28.64	21.35	46.00	-24.65	QP
285.978	42.38	12.78	1.73	28.47	28.42	46.00	-17.58	QP
370.702	38.14	14.51	2.02	28.65	26.02	46.00	-19.98	QP
564.639	34.78	17.83	2.56	29.05	26.12	46.00	-19.88	QP
	MHz 103, 806 143, 830 232, 532 285, 978 370, 702	Freq Level MHz dBuV 103.806 40.91 143.830 44.86 232.532 36.73 285.978 42.38 370.702 38.14	Freq Level Factor MHz dBuV dB/m 103.806 40.91 12.78 143.830 44.86 8.22 232.532 36.73 11.72 285.978 42.38 12.78 370.702 38.14 14.51	Freq Level Factor Loss MHz dBuV dB/m dB 103.806 40.91 12.78 0.99 143.830 44.86 8.22 1.28 232.532 36.73 11.72 1.54 285.978 42.38 12.78 1.73 370.702 38.14 14.51 2.02	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 103.806 40.91 12.78 0.99 29.50 143.830 44.86 8.22 1.28 29.25 232.532 36.73 11.72 1.54 28.64 285.978 42.38 12.78 1.73 28.47 370.702 38.14 14.51 2.02 28.65	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dB dBuV/m 103.806 40.91 12.78 0.99 29.50 25.18 143.830 44.86 8.22 1.28 29.25 25.11 232.532 36.73 11.72 1.54 28.64 21.35 285.978 42.38 12.78 1.73 28.47 28.42 370.702 38.14 14.51 2.02 28.65 26.02	Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 103.806 40.91 12.78 0.99 29.50 25.18 43.50 143.830 44.86 8.22 1.28 29.25 25.11 43.50 232.532 36.73 11.72 1.54 28.64 21.35 46.00 285.978 42.38 12.78 1.73 28.47 28.42 46.00 370.702 38.14 14.51 2.02 28.65 26.02 46.00	MHz dBuV dB/m dB dB dBuV/m dBuV/m <t< td=""></t<>

Above 1GHz:

Te	st channel		Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.30	31.53	10.57	40.24	49.16	74.00	-24.84	Vertical
4804.00	46.49	31.53	10.57	40.24	48.35	74.00	-25.65	Horizontal
Te	st channel		Low	vest	Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	37.14	31.53	10.57	40.24	39.00	54.00	-15.00	Vertical
4804.00	36.85	31.53	10.57	40.24	38.71	54.00	-15.29	Horizontal

Te	st channel:		Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	45.43	31.58	10.66	40.15	47.52	74.00	-26.48	Vertical	
4882.00	45.73	31.58	10.66	40.15	47.82	74.00	-26.18	Horizontal	
Te	st channel:		Mid	ldle	Lev	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	35.67	31.58	10.66	40.15	37.76	54.00	-16.24	Vertical	
4882.00	35.12	31.58	10.66	40.15	37.21	54.00	-16.79	Horizontal	

Te	st channel:		Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	45.74	31.69	10.73	40.03	48.13	74.00	-25.87	Vertical	
4960.00	45.64	31.69	10.73	40.03	48.03	74.00	-25.97	Horizontal	
Te	st channel:	•	High	nest	Lev	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	35.62	31.69	10.73	40.03	38.01	54.00	-15.99	Vertical	
4960.00	35.47	31.69	10.73	40.03	37.86	54.00	-16.14	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.