6.842 Randomness and Computation

February 17, 2022

Lectures on Derandomization

Lecturer: Ronitt Rubinfield Scribe: Yuchong Pan

1 Randomized Complexity Class

Definition 1. A language is a subset of $\{0,1\}^*$.

Definition 2. P is a complexity class that consists of all languages L with a polynomial time deterministic algorithm A.

Definition 3. RP is a complexity class that consists of all languages L with a polynomial time probabilistic algorithm A such that

$$\mathbb{P}[A \text{ accepts } x] \ge 1/2, \qquad \text{if } x \in L,$$

$$\mathbb{P}[A \text{ rejects } x] = 1, \qquad \text{if } x \notin L,$$

This is called 1-sided error.

Definition 4. BPP is a complexity class that consists of all languages L with a polynomial time probabilistic algorithm A such that

$$\mathbb{P}[A \text{ accepts } x] \ge 2/3, \qquad \qquad \text{if } x \in L,$$

$$\mathbb{P}[A \text{ rejects } x] \ge 2/3, \qquad \qquad \text{if } x \not\in L,$$

This is called 2-sided error.

2 Derandomization via Enumeration

Consider a problem L in BPP. Given a randomized algorithm A that decides L with running time t(n) and $r(n) \leq t(n)$ random bits, we can define a deterministic algorithm in Algorithm 1 that decides L. By the definition of BPP, the majority answer is the correct answer. The running time of Algorithm 1 is $2^{r(n)} \cdot t(n)$.

- 1 run A on every possible random string of length r(n)
- 2 output the majority answer

Algorithm 1: A deterministic algorithm that derandomizes a randomized algorithm A with running time t(n) and $r(n) \le t(n)$ random bits.

Definition 5. $EXP = \bigcup_{c} EXP(2^{n^{c}}).$

Corollary 6. BPP \subseteq EXP.