1

GATE Assignment 1

Perambuduri Srikaran - AI20BTECH11018

Download all python codes from

https://github.com/srikaran-p/AI1103/tree/main/GATE Assignment1/codes

Download all latex codes from

https://github.com/srikaran-p/EE3900/tree/main/ GATE Assignment1

PROBLEM

(GATE EC-2018 Q.39) The input $4 \operatorname{sinc}(2t)$ is fed to a Hilbert transformer to obtain y(t), as shown in the figure below:

$$4 \operatorname{sinc} (2t) \longrightarrow \begin{array}{|c|c|} \operatorname{Hilbert} & & \\ \operatorname{Transform} & & \end{array} y(t)$$

Here, $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$. The value (accurate to two decimal places) of $\int_{-\infty}^{\infty} |y(t)|^2 dt$ is

Solution

Lemma 0.1. Parseval's theorem states that there is no loss of information in Fourier transform and the amount of energy remains the same in time and frequency domains.

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$
 (0.0.1)

$$x(t) = 4\operatorname{sinc}(2t) \tag{0.0.2}$$

$$h(t) = \frac{1}{\pi t} \tag{0.0.3}$$

$$y(t) = x(t) * h(t)$$
 (0.0.4)

$$x(t) \stackrel{\mathcal{F}}{\rightleftharpoons} X(f)$$
 (0.0.5)

$$h(t) \stackrel{\mathcal{F}}{\rightleftharpoons} H(f)$$
 (0.0.6)

$$y(t) \stackrel{\mathcal{F}}{\rightleftharpoons} Y(f) \tag{0.0.7}$$

Define a rectangular function,

$$rect(t) = \begin{cases} 1 & \text{if } |t| \le \frac{1}{2} \\ 0 & \text{if } |t| > \frac{1}{2} \end{cases}$$
 (0.0.8)

Define a signum function,

$$\operatorname{sgn}(t) = \begin{cases} 1 & \text{if } t > 0 \\ 0 & \text{if } t = 0 \\ -1 & \text{if } t < 0 \end{cases}$$
 (0.0.9)

The Fourier transforms are

$$X(f) = 2 \operatorname{rect}\left(\frac{f}{2}\right) \tag{0.0.10}$$

$$H(f) = -j\operatorname{sgn}(f) \tag{0.0.11}$$

Applying Convolution theorem in (0.0.4),

$$Y(f) = X(f)H(f) \tag{0.0.12}$$

$$= -2j \operatorname{rect}\left(\frac{f}{2}\right) \operatorname{sgn}(f) \tag{0.0.13}$$

=
$$2j \operatorname{rect}\left(f + \frac{1}{2}\right) - 2j \operatorname{rect}\left(f - \frac{1}{2}\right)$$
 (0.0.14)

Applying Inverse Fourier Transform on Y(f),

$$y(t) = 2j\operatorname{sinc}(t)e^{-j\pi t} - 2j\operatorname{sinc}(t)e^{j\pi t}$$
 (0.0.15)

$$= -2j\operatorname{sinc}(t) \left(e^{j\pi t} - e^{-j\pi t} \right)$$
 (0.0.16)

$$= 2\operatorname{sinc}(t) \left(\frac{e^{j\pi t} - e^{-j\pi t}}{j} \right) \tag{0.0.17}$$

$$= 4\operatorname{sinc}(t)\sin(\pi t) \tag{0.0.18}$$

$$=4\pi t\operatorname{sinc}^{2}(t)\tag{0.0.19}$$

By the Parseval's theorem,

$$\int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |Y(f)|^2 df$$
 (0.0.20)

$$= \int_{-1}^{1} |2 \operatorname{rect}(f)|^2 df \qquad (0.0.21)$$

$$= 8$$
 (0.0.22)

Fig. 0: Input and Output Signals

Fig. 0: Plots of the signals in frequency domain