

Unsupervised Accelerated MRI Reconstruction via Ground-Truth-Free Flow Matching

XINZHE LUO¹, YINGZHEN LI², and CHEN QIN¹

¹Department of Electrical and Electronic Engineering & I-X,

²Department of Computing,

Motivation

Motivation

MRI reconstruction

Reconstruct the fully-sampled MR image $x \in \mathbb{C}^D$ from under-sampled k-space measurements $y \in \mathbb{C}^d$ through the forward model

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_C \end{bmatrix} \coloneqq \mathbf{y} = A\mathbf{x} + \mathbf{e} \coloneqq \begin{bmatrix} \mathbf{MFS}_1 \\ \mathbf{MFS}_2 \\ \vdots \\ \mathbf{MFS}_C \end{bmatrix} \mathbf{x} + \mathbf{e},$$

where $M \in \{0,1\}^{d \times D}$ denotes the under-sampling mask, $F \in \mathbb{C}^{D \times D}$ the discrete Fourier transform, $S_i \in \mathbb{C}^{D \times D}$ the sensitivity map of the i-th coil, and $e \sim \mathcal{CN}(\mathbf{0}, 2\sigma^2 I_{Cd})$ the complex Gaussian noise in k-space.

Emulated single coil

Imperial College London

2

Motivation

Research gaps of MRI reconstruction

\sim \times $|\pi|$ $|\pi|$ $|\pi|$ $|\pi|$

Previous work

Optimisation-based:

$$x^* \in \arg\min_x \{-\log p(y\mid x) + \mathcal{R}(x)\},$$
 where $\mathcal{R}(\cdot)$ is some regularization term.

- Supervised learning-based:
 - given paired training data $\{(x_i, y_i)\}_{i=1}^N$, train a neural network $f_\theta: y \mapsto x$ via loss minimization^{1,2}
- Bayesian inference:
 - Learn the prior distribution of fully-sampled images by generative models
 - Reconstruct the observation through posterior sampling^{3,4,5,6}

Research gaps

- Both supervised and prior learning approaches require large datasets of fully-sampled MR images, which can be inaccessible.
- The high number of neural function evaluations (NFEs) of diffusion-model-based MRI reconstruction is computationally prohibitive in practice.

¹Aggarwal et al., TMI 2018 ²Hammernik et al., MRM 2018 ³Song et al., ICLR 2022 ⁴Wang et al., ICLR 2023 ⁵Chung et al., ICLR 2023 ⁶Song et al., ICLR 2023

Methodology

Flow matching

- Goal: learn a continuous normalising flow (CNF) from $p_1^X = \mathcal{N}(\mathbf{0}, \mathbf{I}_D)$ to p_0^X of the fully-sampled MR images.
- Flow matching offers a simulation-free approach to learning the CNF.
- Formulation: define the CNF in the image space (X) by a diffeomorphism $\phi_t^X:[0,1]\times\mathbb{R}^D\to\mathbb{R}^D$
 - $\mathbf{z}_t^X \text{ parameterised by a time-dependent vector field } \mathbf{u}_t^X \colon [0,1] \times \mathbb{R}^D \to \mathbb{R}^D,$ $\mathbf{z}_t^X \triangleq \phi_t^X(\mathbf{z}_1^X), \quad \forall \ \mathbf{z}_1^X \sim p_1^X, \quad \mathrm{d} \mathbf{z}_t^X = \mathbf{u}_t^X(\mathbf{z}_t^X) \mathrm{d} t, \quad \phi_1^X = \mathrm{id}.$

Methodology Flow matching

Conditions

1. conditional variable ω^X independent of t

Question: How to construct the vector field u_t^X such that $p_0^X = [\phi_{1\to 0}^X]_\# p_1^X$ (push-forward of p_1^X by $\phi_{1\to 0}^X$)?

2. conditional probability path s.t. $\forall z$, $\mathbb{E}_{oldsymbol{\omega}^{X} \sim p(oldsymbol{\omega}^{X})} \left[p_0^X(oldsymbol{z} \mid oldsymbol{\omega}^X)
ight] = p_0^X(oldsymbol{z})$ conditioning variable conditional vector field conditional probability path determines explicitly by $\mathbb{E}_{oldsymbol{\omega}^{X} \sim p(oldsymbol{\omega}^{X})}\left[p_{1}^{X}(oldsymbol{z} \mid oldsymbol{\omega}^{X})
ight] = p_{1}^{X}(oldsymbol{z})$ continuity eq. 3. continuity equation $orall oldsymbol{\omega}^X \sim p(oldsymbol{\omega}^X) \quad orall oldsymbol{z}_{t | oldsymbol{\omega}}^X \sim p_t^X(oldsymbol{z}_t \mid oldsymbol{\omega}^X)$ ullet $oldsymbol{u}_{t|oldsymbol{\omega}}^X(oldsymbol{z}_t)$ $\partial_t p_t +
abla \cdot (oldsymbol{u}_t p_t) = 0$ expectation over $oldsymbol{\omega}^X \sim p_t^X (oldsymbol{\omega}^X \mid oldsymbol{z}_t)$ $oldsymbol{\omega}^X \sim p(oldsymbol{\omega}^X)$ determines implicitly by continuity eq. $ullet oldsymbol{u}_t^X(oldsymbol{z}_t) riangleq \mathbb{E}_{oldsymbol{\omega}^X \sim p(oldsymbol{\omega}^X)} \left| oldsymbol{u}_{t|oldsymbol{\omega}}^X(oldsymbol{z}_t) rac{p_t^X(oldsymbol{z}_t|oldsymbol{\omega}^X)}{p_t^X(oldsymbol{z}_t)}
ight|$ $oldsymbol{z}_t^X \sim p_t^X(oldsymbol{z}_t)$

Methodology Flow matching

- Specification of the flow:
 - Choose the conditioning variable $\omega^X \triangleq (x, \epsilon^X) \sim p_0^X \times p_1^X$.
 - Choose the conditional probability path $p_t^X(\mathbf{z}_t \mid \boldsymbol{\omega}^X) \triangleq \delta_{a_t x + b_t \epsilon^X}(\mathbf{z}_t)$ (linear interpolation).
 - Then, the conditional vector field is $u_{t|\omega}^X(z_{t|\omega}^X) = a_t'x + b_t'\epsilon^X$ satisfying the continuity equation.
- Training of the flow:
 - Flow matching (FM) objective:

$$\mathcal{L}_{\text{FM}}(\boldsymbol{\theta}) \coloneqq \mathbb{E}_{t \sim p_T, \, \boldsymbol{z}_t^X \sim p_t^X(\boldsymbol{z}_t)} \left\| \boldsymbol{v}_{\boldsymbol{\theta}}^X(\boldsymbol{z}_t^X, t) - \boldsymbol{u}_t^X(\boldsymbol{z}_t^X) \right\|_2^2$$

- Problem: no closed-form expression for the marginal vector field $m{u}_t^X(m{z}_t^X)$
- Conditional flow matching (CFM) objective:

$$\mathcal{L}_{\mathrm{CFM}}(\boldsymbol{\theta}) \coloneqq \mathbb{E}_{t \sim p_T, \, \boldsymbol{\omega}^X \sim p(\boldsymbol{\omega}^X), \, \boldsymbol{z}_{t|\boldsymbol{\omega}}^X \sim p_t^X \left(\boldsymbol{z}_t | \boldsymbol{\omega}^X \right)} \left\| \boldsymbol{v}_{\boldsymbol{\theta}}^X \left(\boldsymbol{z}_{t|\boldsymbol{\omega}}^X, t \right) - \boldsymbol{u}_{t|\boldsymbol{\omega}}^X \left(\boldsymbol{z}_{t|\boldsymbol{\omega}}^X \right) \right\|_2^2$$

- The gradient of the CFM is equivalent to that of the FM objective.
- Problem: training requires large number of fully-sampled images.

Ground-Truth-Free Flow Matching (GTF²M): Preliminaries

- Dual-space conditional vector fields
 - Measurement (Y)-space conditioning variable: $\omega^Y \triangleq (y, \epsilon^Y)$, $\epsilon^Y \triangleq A\epsilon^X$.
 - If Y-space conditional probability path: $p_t^Y(\mathbf{z}_t \mid \boldsymbol{\omega}^Y) \triangleq \delta_{a_t y + b_t \epsilon^Y}(\mathbf{z}_t)$.
 - If Y-space conditional vector field: $u_{t|\omega}^Y(z_{t|\omega}^Y) = a_t'y + b_t'\epsilon^Y$.

- Forward model of the dual-space conditional paths and vector fields
 - Using the conditions y = Ax + e and $e^Y \triangleq Ae^X$, we can derive

$$\mathbf{z}_{t|\boldsymbol{\omega}}^{Y} = A\mathbf{z}_{t|\boldsymbol{\omega}}^{X} + a_{t}\boldsymbol{e},$$

where $\mathbf{z}_{t|\omega}^{X} \triangleq a_{t}\mathbf{x} + b_{t}\boldsymbol{\epsilon}^{X}$, $\mathbf{z}_{t|\omega}^{Y} \triangleq a_{t}\mathbf{y} + b_{t}\boldsymbol{\epsilon}^{Y}$ and

$$u_{t|\omega}^{Y}(z_{t|\omega}^{Y}) = Au_{t|\omega}^{X}(z_{t|\omega}^{X}) + a_{t}^{\prime}e.$$

\sim \times $\frac{17}{2}$

Ground-Truth-Free Flow Matching (GTF²M)

- Goal: to learn the X-space marginal vector field $u_t^X(z_t^X)$ in a ground-truth-free manner.
 - Denote $h_{\theta}^{X}(\cdot)$: the predictor network for $u_{t}^{X}(z_{t}^{X})$.

■ GTF²M objective:

$$\mathcal{L}_{\mathrm{GTF}^{2}\mathrm{M}}(\boldsymbol{\theta}) \triangleq \mathbb{E}_{t \sim p_{T}, \, \boldsymbol{\omega}^{X} \sim p(\boldsymbol{\omega}^{X}), \, \boldsymbol{z}_{t|\boldsymbol{\omega}}^{X} \sim p_{t}^{X}(\boldsymbol{z}_{t}|\boldsymbol{\omega}^{X}), \, \boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y} \sim p_{t}^{Z}(\boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y}|\boldsymbol{z}_{t|\boldsymbol{\omega}}^{X})} \left\| \boldsymbol{h}_{\boldsymbol{\theta}}^{X}(\boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y}, t) - \boldsymbol{u}_{t|\boldsymbol{\omega}}^{X}(\boldsymbol{z}_{t|\boldsymbol{\omega}}^{X}) \right\|_{2}^{2}$$
 where $p_{t}^{Z}(\boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y} \mid \boldsymbol{z}_{t|\boldsymbol{\omega}}^{X})$ is induced from $\boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y} = \boldsymbol{A}\boldsymbol{z}_{t|\boldsymbol{\omega}}^{X} + a_{t}\boldsymbol{e}$.

It turns out that $\mathcal{L}_{\mathrm{GTF}^2\mathrm{M}}(\boldsymbol{\theta})$ can be written as

$$\mathcal{L}_{\mathrm{GTF}^{2}\mathrm{M}}(\boldsymbol{\theta}) = \mathbb{E}_{t \sim p_{T}, \mathbf{z}_{t}^{X} \sim p_{t}^{X}(\mathbf{z}_{t}), \mathbf{z}_{t}^{Y} \sim p_{t}^{Z}(\mathbf{z}_{t}^{Y}|\mathbf{z}_{t}^{X})} \left\| \boldsymbol{h}_{\boldsymbol{\theta}}^{X}(\mathbf{z}_{t}^{Y}, t) - \boldsymbol{u}_{t}^{X}(\mathbf{z}_{t}^{X}) \right\|_{2}^{2} + \text{const.}$$

lacksquare The GTF²M objective drives $m{h}_{m{ heta}}^X(\cdot)$ to predict $m{u}_t^X(m{z}_t^X)$.

Ground-Truth-Free Flow Matching (GTF²M)

- Goal: to learn the X-space marginal vector field $u_t^X(z_t^X)$ in a ground-truth-free manner.
- ENsemble Stein's Unbiased Risk Estimator (ENSURE) (Aggarwal et al., TMI 2022)
 - $lue{f I}$ Assume the forward operator $m A_s$ is random and parameterised by a random variable s;
 - Assume the forward model $y_s = A_s x + e$, $e \sim \mathcal{N}(0, C)$;
 - Denote $\rho_s \triangleq A_s^* C^{-1} y_s$ the sufficient statistic, and $\hat{x} \triangleq f_{\theta}(\rho_s)$ the reconstruction network.
 - Then, the MSE has an unbiased estimator as

$$\mathcal{L}_{\text{MSE}}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\rho}} \| f_{\boldsymbol{\theta}}(\boldsymbol{\rho}) - \boldsymbol{x} \|_{2}^{2}$$

$$= \mathbb{E}_{s} \mathbb{E}_{\boldsymbol{\rho}_{s}} \| \boldsymbol{R}_{s} (f_{\boldsymbol{\theta}}(\boldsymbol{\rho}_{s}) - \boldsymbol{x}) \|_{2}^{2}$$

$$= \mathbb{E}_{s} \mathbb{E}_{\boldsymbol{\rho}_{s}} \left[\| \boldsymbol{R}_{s} (f_{\boldsymbol{\theta}}(\boldsymbol{\rho}_{s}) - \boldsymbol{\rho}_{s,\text{ML}}) \|_{2}^{2} + 2 \nabla_{\boldsymbol{\rho}_{s}} \cdot \boldsymbol{R}_{s}^{*} \boldsymbol{R}_{s} f_{\boldsymbol{\theta}}(\boldsymbol{\rho}_{s}) \right] + \text{const.}$$

where $R_S \triangleq WP_S$ with $P_S \triangleq A_S^{\dagger}A_S$ and $W \triangleq \mathbb{E}_S[P_S]^{-1/2}$, and $\rho_{S,\mathrm{ML}} \triangleq (A_S^*C^{-1}A_S)^{\dagger}A_S^*C^{-1}y_S$ is the MLE solution for $y_S = A_S x + e$.

Ground-Truth-Free Flow Matching (GTF²M)

Goal: to learn the X-space marginal vector field $u_t^X(z_t^X)$ in a ground-truth-free manner.

Recall the following facts:

Induced forward model over dual-space conditional vector fields:

$$u_{t|\omega}^{Y}(z_{t|\omega}^{Y}) = Au_{t|\omega}^{X}(z_{t|\omega}^{X}) + a_{t}^{\prime}e.$$

Relationship between the measurement-space conditional path and vector field:

$$\mathbf{z}_{t|\boldsymbol{\omega}}^{Y} = a_{t}\mathbf{y} + b_{t}\boldsymbol{\epsilon}^{Y} = \frac{a_{t}}{a_{t}'}\mathbf{u}_{t|\boldsymbol{\omega}}^{Y}(\mathbf{z}_{t|\boldsymbol{\omega}}^{Y}) - b_{t}'\left(\frac{a_{t}}{a_{t}'} - \frac{b_{t}}{b_{t}'}\right)\boldsymbol{\epsilon}^{Y},$$

which implies that we can make prediction based on $u_{t|\omega}^Y(z_{t|\omega}^Y)$ instead of $z_{t|\omega}^Y$:

$$\boldsymbol{h}_{\boldsymbol{\theta}}^{X}(\boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y},t) = \boldsymbol{h}_{\boldsymbol{\theta}}^{X}(\boldsymbol{u}_{t|\boldsymbol{\omega}}^{Y}(\boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y}),t).$$

The GTF²M objective takes the form as an MSE:

$$\mathcal{L}_{\mathrm{GTF}^{2}\mathrm{M}}(\boldsymbol{\theta}) = \mathbb{E}_{t \sim p_{T}, \boldsymbol{\omega}^{X} \sim p(\boldsymbol{\omega}^{X}), \boldsymbol{z}_{t|\boldsymbol{\omega}}^{X} \sim p_{t}^{X}(\boldsymbol{z}_{t}|\boldsymbol{\omega}^{X}), \boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y} \sim p_{t}^{Z}(\boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y}|\boldsymbol{z}_{t|\boldsymbol{\omega}}^{X})} \|\boldsymbol{h}_{\boldsymbol{\theta}}^{X}(\boldsymbol{u}_{t|\boldsymbol{\omega}}^{Y}(\boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y}), t) - \boldsymbol{u}_{t|\boldsymbol{\omega}}^{X}(\boldsymbol{z}_{t|\boldsymbol{\omega}}^{X})\|_{2}^{2}.$$

Ground-Truth-Free Flow Matching (GTF²M)

Goal: to learn the X-space marginal vector field $u_t^X(z_t^X)$ in a ground-truth-free manner.

ENSURE for GTF²M:

$$\mathcal{L}_{\text{GTF}^{2}M}(\boldsymbol{\theta}) = \mathbb{E}_{t,\boldsymbol{\omega}^{X},\boldsymbol{z}_{t|\boldsymbol{\omega}}^{X},\boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y}|\boldsymbol{z}_{t|\boldsymbol{\omega}}^{X}} \|\boldsymbol{h}_{\boldsymbol{\theta}}^{X}(\boldsymbol{u}_{t|\boldsymbol{\omega}}^{Y}(\boldsymbol{z}_{t|\boldsymbol{\omega}}^{Y}),t) - \boldsymbol{u}_{t|\boldsymbol{\omega}}^{X}(\boldsymbol{z}_{t|\boldsymbol{\omega}}^{X}) \|_{2}^{2}$$

$$= \mathbb{E}_{s,t,\boldsymbol{\omega}^{X},\boldsymbol{z}_{t|\boldsymbol{\omega},s}^{X},\boldsymbol{z}_{t|\boldsymbol{\omega},s}^{Y}|\boldsymbol{z}_{t|\boldsymbol{\omega},s}^{X}} \|\boldsymbol{R}_{s}[\boldsymbol{h}_{\boldsymbol{\theta}}^{X}(\boldsymbol{u}_{t|\boldsymbol{\omega},s}^{Y}(\boldsymbol{z}_{t|\boldsymbol{\omega},s}^{Y}),t) - \boldsymbol{u}_{t|\boldsymbol{\omega},s}^{X}(\boldsymbol{z}_{t|\boldsymbol{\omega},s}^{X})] \|_{2}^{2}$$

$$= \mathbb{E}_{s,t,\boldsymbol{\omega}^{Y},\boldsymbol{z}_{t|\boldsymbol{\omega},s}^{Y}} [\|\boldsymbol{R}_{s}[\boldsymbol{h}_{\boldsymbol{\theta}}^{X}(\boldsymbol{\mu}_{t|\boldsymbol{\omega},s}^{X},t) - \widehat{\boldsymbol{u}}_{t|\boldsymbol{\omega},s,\text{ML}}^{X}] \|_{2}^{2} + 2\nabla_{\boldsymbol{\mu}_{t|\boldsymbol{\omega},s}^{X}} \cdot \boldsymbol{R}_{s}^{*}\boldsymbol{R}_{s}\boldsymbol{h}_{\boldsymbol{\theta}}^{X}(\boldsymbol{\mu}_{t|\boldsymbol{\omega},s}^{X},t)] + \text{const.}$$

where $\mu_{t|\omega,s}^X \triangleq A_s^* C_t^{-1} u_{t|\omega,s}^Y (\mathbf{z}_{t|\omega,s}^Y)$ is a sufficient statistic for $u_{t|\omega,s}^X (\mathbf{z}_{t|\omega,s}^X)$ with $C_t = (a_t'\sigma)^2 I_d$, and $\widehat{u}_{t|\omega,s,\mathrm{ML}}^X \triangleq (A_s^* C_t^{-1} A_s)^\dagger A_s^* C_t^{-1} u_{t|\omega,s}^Y (\mathbf{z}_{t|\omega,s}^Y)$ the MLE solution for $u_{t|\omega,s}^Y (\mathbf{z}_{t|\omega,s}^Y) = A u_{t|\omega,s}^X (\mathbf{z}_{t|\omega,s}^X) + a_t' e$.

For single-coil MRI $A_S = M_S F$, $M_S = [I_d \mid \mathbf{0}] T_S$ for some permutation matrix $T_S \in \{0,1\}^{D \times D}$, the projection operator $R_S \triangleq W P_S = F^* T_S^{\mathrm{T}} \mathrm{diag} \left(p_1^{-1/2}, \dots, p_d^{-1/2}, 0, \dots, 0 \right) T_S F$, where p_i is the probability that the ith k-space measurement is acquired.

Ground-Truth-Free Flow Matching (GTF²M)

Goal: to learn the X-space marginal vector field $u_t^X(z_t^X)$ in a ground-truth-free manner.

Computation of the GTF²M objective

Note that
$$\mu_{t|\boldsymbol{\omega},s}^{X} = A_{s}^{*} \boldsymbol{C}_{t}^{-1} \boldsymbol{u}_{t|\boldsymbol{\omega},s}^{Y} \left(\boldsymbol{z}_{t|\boldsymbol{\omega},s}^{Y}\right) = \frac{1}{a_{t}' a_{t} \sigma^{2}} \left[A_{s}^{*} \boldsymbol{z}_{t|\boldsymbol{\omega},s}^{Y} + c \boldsymbol{\epsilon}^{Y}\right]$$
; we can write
$$\boldsymbol{h}_{\boldsymbol{\theta}}^{X} \left(\boldsymbol{\mu}_{t|\boldsymbol{\omega},s}^{X},t\right) = \boldsymbol{h}_{\boldsymbol{\theta}}^{X} \left(A_{s}^{*} \boldsymbol{z}_{t|\boldsymbol{\omega},s}^{Y},t\right).$$

By change of variables, the GTF²M objective can be written as

$$\mathcal{L}_{\mathrm{GTF^2M}}(\boldsymbol{\theta}) = \mathbb{E}_{s,\,t,\,\boldsymbol{\omega}^Y,\,\boldsymbol{z}^Y_{t|\boldsymbol{\omega},s}} \left[\left\| \boldsymbol{R}_s \big[\boldsymbol{h}^X_{\boldsymbol{\theta}} \big(\boldsymbol{A}^*_s \boldsymbol{z}^Y_{t|\boldsymbol{\omega},s},t \big) - \widehat{\boldsymbol{u}}^X_{t|\boldsymbol{\omega},s,\mathrm{ML}} \big] \right\|_2^2 + 2a'_t a_t \sigma^2 \nabla_{\boldsymbol{A}^*_s \boldsymbol{z}^Y_{t|\boldsymbol{\omega},s}} \cdot \boldsymbol{R}^*_s \boldsymbol{R}_s \boldsymbol{h}^X_{\boldsymbol{\theta}} \big(\boldsymbol{A}^*_s \boldsymbol{z}^Y_{t|\boldsymbol{\omega},s},t \big) \right] + \mathrm{const.}$$

Using the Hutchinson trace estimator, the divergence term can be estimated as

$$\nabla_{\boldsymbol{A}_{S}^{*}\boldsymbol{Z}_{t|\boldsymbol{\omega},S}^{Y}}\cdot\boldsymbol{R}_{S}^{*}\boldsymbol{R}_{S}\boldsymbol{h}_{\boldsymbol{\theta}}^{X}(\boldsymbol{A}_{S}^{*}\boldsymbol{Z}_{t|\boldsymbol{\omega},S}^{Y},t) = \mathbb{E}_{\boldsymbol{b}\sim\mathcal{N}(\boldsymbol{0},\boldsymbol{R}_{S}^{*}\boldsymbol{R}_{S})}\left[\boldsymbol{b}^{T}\nabla_{\boldsymbol{A}_{S}^{*}\boldsymbol{Z}_{t|\boldsymbol{\omega},S}^{Y}}\boldsymbol{h}_{\boldsymbol{\theta}}^{X}(\boldsymbol{A}_{S}^{*}\boldsymbol{Z}_{t|\boldsymbol{\omega},S}^{Y},t)\boldsymbol{b}\right].$$

Reconstruction as decoupled continuous de-aliasing

Reconstruction as decoupled continuous de-aliasing

Algorithm 1: Decoupled continuous de-aliasing via cyclic integration

- Input: k-space measurement $y=(y_c)_{c=1}^C$, pretrained flow predictor $h_{\widehat{\theta}}^X(\cdot,t)$, forward steps L, backward steps K, regularisation parameter ζ
- **Output**: reconstructed MR image \hat{x} of y
- Steps:

1. Set
$$\mathbf{z}_0^Y \coloneqq \mathbf{y}$$
;

2. For
$$t = 0, ..., (L-1)/L$$
 do

•
$$\mathbf{z}_{t+1/L}^{Y} \leftarrow \mathbf{z}_{t}^{Y} + \frac{1}{L} \mathbf{A} \mathbf{h}_{\widehat{\boldsymbol{\theta}}}^{X} (\mathbf{A}^{*} \mathbf{z}_{t}^{Y}, t);$$

3. Set
$$\hat{\boldsymbol{\epsilon}}^Y \coloneqq \boldsymbol{z}_1^Y$$
, $\boldsymbol{z}_1^X \coloneqq \boldsymbol{A}^* \hat{\boldsymbol{\epsilon}}^Y$;

4. For
$$t \in \{1, ..., \frac{1}{K}\}$$
 do

•
$$\mathbf{z}_{t|\widehat{\boldsymbol{\omega}}}^{Y} = a_t \mathbf{y} + b_t \widehat{\boldsymbol{\epsilon}}^{Y};$$

•
$$\mathbf{z}_{t-1/\kappa}^X \leftarrow \mathbf{z}_t^X - \frac{1}{\kappa} \mathbf{h}_{\widehat{\boldsymbol{\theta}}}^X (\mathbf{A}^* \mathbf{z}_{t|\widehat{\boldsymbol{\omega}}}^Y, t);$$

•
$$\mathbf{z}_t^X \leftarrow \mathbf{z}_t^X - \lambda_t \mathbf{A}^* (\mathbf{A} \mathbf{z}_t^X - \mathbf{z}_{t|\widehat{\boldsymbol{\omega}}}^Y);$$

// forward integration

// backward integration

// measurement consistency update

5. Set $\hat{x} := \mathbf{z}_0^X$ for single-coil or $\hat{x} := \left(\sum_{c=1}^C \mathbf{S}_c^* \mathbf{S}_c\right)^{-1} \sum_{c=1}^C \mathbf{S}_c^* \mathbf{z}_{0,c}^X$ for multi-coil reconstruction;

lacksquare Return \widehat{x}

Experiments & Results

Experiments

Datasets and preprocessing

NYU fastMRI Initiative database:

- Single-coil proton density (PD) weighted knee MRI without fat suppression.
- Multi-coil T2 weighted brain MRI.

Cartesian sampling masks:

- 8% and 4% fully-sampled low-frequency k-space lines for 4x and 8x, respectively.
- The other lines are sampled random-uniformly and equidistantly for knee and brain MRI, respectively.

Ground truth:

Knee: emulated single-coil image; Brain: SENSE reconstruction.

y Rec.

x

Experiments

Implementation details

Hyperparameters:

- Linear interpolation: $a_t = 1 t$ and $b_t = t$;
- I Noise level: $\sigma = 0.01$.

Network architecture: ADM (ablated diffusion model), Dhariwal and Nichol, NeurIPS 2021

- U-Net;
- \blacksquare Adaptive group normalisation (conditioned on linear projection of the positional embeddings of t);
- Self attention and dropout at the lowest three resolutions of the U-Net.

Training details:

- AdamW optimiser with learning rate 1×10^{-4} , weight decay coefficient 0.1;
- Exponential moving average of the network parameters.

Experiments Compared baselines

Supervised end-to-end learning:

MoDL: Model-based Deep Learning, Aggarwal et al., TMI 2018;

Diffusion model-based posterior sampling methods with prior learning:

- DDNM⁺: Denoising Diffusion Null-space Models, Wang et al., ICLR 2023;
- **II** ΠGDM: Pseudoinverse Guided Diffusion Models, *Song et al., ICLR 2023*;
- FlowPS: Flow-based Posterior Sampling, Pokle et al., TMLR 2024;

Unsupervised methods without prior learning:

El: Rel: Robust Equivariant Imaging, Chen et al., CVPR 2022;

ENSURE: Ensemble Stein's Unbiased Risk Estimator + MoDL, Aggarwal et al., TMI 2022.

Results

Comparison study

Single-coil knee MRI

Method	SSIM ↑		PSNR ↑		NFEs ↓			
	$4\times$	8×	$4\times$	$8 \times$	•			
Zero-filled	$0.684 \pm 0.086*$	$0.556 \pm 0.106*$	$27.60 \pm 2.78*$	$23.92 \pm 2.75*$	N/A			
(a) Supervised methods using fully sampled images								
MoDL [1]	$0.786 \pm 0.069*$	0.692 ± 0.107 *	$30.72 \pm 3.07*$	$28.58 \pm 2.96*$	1			
(b) Prior learning methods using fully sampled images								
$\overline{\mathrm{DDNM^{+}}}$ [30]	$0.791 \pm 0.076*$	$0.681 \pm 0.108*$	$31.73 \pm 3.29*$	28.00 ± 3.20	100			
Π GDM [24]	$0.728 \pm 0.098*$	$0.581 \pm 0.114*$	$30.27 \pm 3.34*$	$25.83 \pm 3.13*$	100			
FlowPS [20]	0.763 ± 0.077 *	0.631 ± 0.101 *	$30.66 \pm 2.73*$	26.30 ± 2.55 *	100			
(c) Unsupervised methods w/o prior learning								
REI [4]	$0.740 \pm 0.087*$	$0.591 \pm 0.110*$	$29.96 \pm 2.87*$	$25.04 \pm 2.97*$	1			
ENSURE [2]	$0.684 \pm 0.086*$	$0.556 \pm 0.106*$	$27.65 \pm 2.79*$	$23.91 \pm 2.75*$	1			
(d) Unsupervised methods w/ prior learning								
Ours	0.801 ± 0.073	0.688 ± 0.095	31.64 ± 2.95	27.95 ± 2.64	20			

Results Comparison study

1πΠΙ 2025

Single-coil knee MRI

Results

Comparison study

\sim 1 π 1 π 1 π 2025

Multi-coil brain MRI

Method	SSIM ↑		PSNR ↑		NFEs ↓			
	$4\times$	8×	$4\times$	$8 \times$,			
Zero-filled	$0.800 \pm 0.089*$	$0.716 \pm 0.117*$	$27.66 \pm 3.78*$	$24.10 \pm 3.97*$	N/A			
(a) Supervised methods using fully sampled images								
MoDL [1]	$0.948 \pm 0.044*$	$0.820 \pm 0.051*$	$38.28 \pm 3.37*$	$30.18 \pm 3.04*$	1			
(b) Prior learning methods using fully sampled images								
$\overline{\mathrm{DDNM}^{+}}$ [30]	$0.929 \pm 0.045*$	$0.887 \pm 0.048*$	$40.61 \pm 3.43*$	$34.13 \pm 2.92*$	100			
FlowPS [20]	$0.855 \pm 0.060*$	$0.748 \pm 0.069*$	$33.10 \pm 2.73*$	$26.56 \pm 3.50*$	100			
(c) Unsupervised methods w/o prior learning								
ENSURE [2]	0.825 ± 0.053 *	$0.739 \pm 0.108*$	$31.75 \pm 3.99*$	$25.56 \pm 3.50*$	1			
(d) Unsupervised methods w/ prior learning								
Ours	0.920 ± 0.060	0.859 ± 0.054	34.65 ± 2.32	28.72 ± 2.92	20			

Results Comparison study

\mathcal{M} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R}

Multi-coil brain MRI

Conclusion

Conclusion

Contributions

- An unsupervised prior learning framework for MRI reconstruction
 - No need for fully-sampled MRI during training;
 - An efficient cyclic integration algorithm as a decoupled continuous de-aliasing process.

Limitations and future work

- \blacksquare No closed-form expression of the GTF 2 M objective for the combined multi-coil MR forward operator;
- Extension of the reconstruction algorithm to noisy data;
- Extension of the framework in the semi-supervised setup.

Thank you! Q&A

XINZHE LUO Postdoc

YINGZHEN LI Senior Lecturer

CHEN QIN Lecturer

