Projektowanie algorytmów i metody sztucznej inteligencji.

Sprawozdanie

Graf, algorytm BFS i DFS

Rafał Kowalczyk 218503

1. Zadanie

Zaimplementowanie grafu, algorytmów BFS oraz DFS.

2. Opis

Zaimplementowano graf z użyciem listy sąsiadów, ponieważ używa ona mniej pamięci niż macierz sąsiedztwa.

W programie podajemy liczbę wierzchołków oraz ilu sąsiadów ma mieć każdy wierzchołek grafu. Pomiary wykonano dla grafów, w których każdy wierzchołek miał do 10 oraz do 100 losowo wybranych sąsiadów. Czas pomiarów podano w sekundach.

Algorytm łączenia wierzchołków nie pozwala na wielokrotne dodanie krawędzi łączącej te same wierzchołki.

3. Pomiary

Tabela 1 Pomiary algorytmu BFS, 10 sąsiadów dla każdego wierzchołka. Czas podano w sekundach.

Liczba				
wierzchołków	Pomiar 1	Pomiar 2	Pomiar 3	Średnia
10	0,000082	0,000083	0,000081	0,000082
100	0,000759	0,000731	0,000716	0,000735333
1000	0,007846	0,007696	0,007699	0,007747
10000	0,073392	0,075721	0,077926	0,075679667
100000	0,462	0,424905	0,86884	0,585248333

Tabela 2 Pomiary algorytmu DFS, 10 sąsiadów dla każdego wierzchołka. Czas podano w sekundach.

Liczba				
wierzchołków	Pomiar 1	Pomiar 2	Pomiar 3	Średnia
10	0,000094	0,000084	0,000083	0,000087
100	0,000761	0,000632	0,000783	0,000725333
1000	0,007186	0,006312	0,006715	0,006737667
10000	0,078604	0,063626	0,059558	0,067262667
100000	0,426271	0,447027	0,392001	0,421766333

Wykres 1 Przeszukiwanie DFS i BFS w grafie, 10 sąsiadów dla wierzchołka. Na podstawie średnich pomiarów.

Pomiary dla maksymalnie 100 krawędzi od wierzchołka.

Wykres 2 Pomiar dla 100 krawędzi od wierzchołka

Tabela 3 BFS, do 100 sąsiadów od wierzchołka.

Liczba				
wierzchołków	Pomiar 1	Pomiar 2	Pomiar 3	Średnia
10	0,000091	0,000093	0,000046	7,66667E-05
100	0,005108	0,005078	0,005771	0,005319
1000	0,053224	0,056871	0,066512	0,058869
10000	0,357176	0,357929	0,381537	0,365547333
100000	4,696166	3,302692	3,303117	3,767325

Tabela 4 DFS, do 100 sąsiadów od wierzchołka.

Liczba				_
wierzchołków	Pomiar 1	Pomiar 2	Pomiar 3	Średnia
10	0,000090	0,000092	0,000089	9,03333E-05
100	0,005041	0,005481	0,004867	0,005129667
1000	0,054689	0,062575	0,055011	0,057425
10000	0,373021	0,355015	0,372618	0,366884667
100000	3,014009	4,770904	4,802995	4,195969333

Pomiary dla maksymalnie 5 krawędzi od wierzchołka.

Tabela 3 Wykres DFS oraz BFS, maksymalnie 100 sąsiadów dla wierzchołka.

Tabela 4 BFS, 5 sąsiadów od wierzchołka.

Liczba				
wierzchołków	Pomiar 1	Pomiar 2	Pomiar 3	Średnia
10	0,000061	0,000062	0,00008	6,76667E-05
100	0,000418	0,000479	0,000431	0,000442667
1000	0,004142	0,004796	0,004456	0,004464667
10000	0,047732	0,043563	0,044013	0,045102667
100000	0,261163	0,303493	0,303911	0,289522333

Tabela 5 DFS, 5 sąsiadów od wierzchołka.

Liczba wierzchołków	Pomiar 1	Pomiar 2	Pomiar 3	Średnia
WIEIZCHOROW	r Ulliai I	r Ulliai Z	Fullial 3	Sieuria
10	0,000058	0,000079	0,000074	7,03333E-05
100	0,000397	0,000391	0,000441	0,000409667
1000	0,003671	0,003836	0,003631	0,003712667
10000	0,039608	0,039999	0,037439	0,039015333
100000	0,275203	0,263951	0,288382	0,275845333

4. Wnioski

Z pomiarów wynika, że algorytm DFS i BFS ma złożoność O(n), czyli prawidłowo.

Widoczny na wykresie 2 przeskok między czasem przejścia dla 10 wierzchołków, a czasem dla 100 wierzchołków prawdopodobnie spowodowany jest tym, że dla 10 wierzchołków algorytm utworzy maksymalnie 9 krawędzi od każdego wierzchołka. Dla 100 wierzchołków zostanie utworzone do 99 krawędzi. Taka różnica w liczbie danych do zapisania w stosie lub kolejce powoduje różnicę w czasie zapisu.