

MOS INTEGRATED CIRCUITS

 μ PD789166,167,176,177,166Y,167Y,176Y,177Y,166(A),167(A), 176(A),177(A),166Y(A),167Y(A),176Y(A),177Y(A)

8-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD789166, 789167, 789176, and 789177 (hereafter, represented as μ PD78916x and μ PD78917x) are μ PD789167, 789177 Subseries (small, general-purpose) in the 78K/0S Series. The μ PD789166Y, 789167Y, 789176Y, and 789177Y (hereafter, represented as μ PD78916xY and μ PD78917xY) are μ PD789167Y, 789177Y Subseries (small, general-purpose) in the 78K/0S Series.

A stricter quality assurance program (called special grade in NEC's grade classification) is applied to the μ PD789166(A), 789167(A), 789177(A) (hereafter, represented as μ PD78916x(A) and μ PD78917x(A)), and μ PD789166Y(A), 789167Y(A), 789176Y(A), 789177Y(A) (hereafter, represented as μ PD78916xY(A) and μ PD78917xY(A)), compared to the μ PD78916x, 78917x, 78916xY, and 78917xY, which are classified as standard grade.

In addition, a flash memory version (µPD78F9177, 78F9177Y) that can operate within the same power supply voltage range as the mask ROM version, and a range of development tools are also being prepared.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

μPD789167, 789177, 789167Y, 789177Y Subseries User's Manual: U14186E 78K/0S Series User's Manual Instruction: U11047E

FEATURES

ROM and RAM sizes

Part Number	Program Memory (ROM)	Data Memory (Internal High-Speed RAM)
μPD789166, 789176, 789166Y, 789176Y,	16 Kbytes	512 bytes
789166(A), 789176(A), 789166Y(A), 789176Y(A)		
μPD789167, 789177, 789167Y, 789177Y,	24 Kbytes	
789167(A), 789177(A), 789167Y(A), 789177Y(A)		

- Minimum instruction execution time can be changed
 Serial interface: 2 channels from high-speed (0.2 μ s @10.0-MHZ operation with main system clock, V_{DD} = 4.5 to 5.5 V) to ultra-lowspeed (122 μ s @ 32.768-kHz operation with subsystem clock)
- 8-bit resolution A/D converter: 8 channels $(\mu PD78916x, 78916xY, 78916x(A), 78916xY(A))$
- 10-bit resolution A/D converter: 8 channels $(\mu PD78917x, 78917xY, 78917x(A), 78917xY(A))$
- On chip 16-bit multiplier
- I/O ports: 31
- Power supply voltage: V_{DD} = 1.8 to 5.5 V

- 3-wire serial I/O mode / UART mode: 1 channel
- SMB(μPD78916xY, 78917xY, 78916xY(A), and 78917xY(A) only): 1 channel
- Timers: 6 channels
- 16-bit timer: 1 channel
- 8-bit timer/event counter: 2 channels
- 8-bit timer: 1 channel
- · Watchdog timer: 1 channel
- · Watch timer: 1 channel

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

APPLICATIONS

Power windows, keyless entry, battery management unit, side air bags, etc

ORDERING INFORMATION

(1) μ PD78916x, 78917x, 78916x(A), 78917x(A)

Part Number	Package	Quality grade
μPD789166GB-×××-8ES	44-pin plastic LQFP (10 × 10 mm)	Standard
μPD789167GB-×××-8ES	44-pin plastic LQFP (10 \times 10 mm)	Standard
μPD789176GB-×××-8ES	44-pin plastic LQFP (10 \times 10 mm)	Standard
μPD789177GB-×××-8ES	44-pin plastic LQFP (10 \times 10 mm)	Standard
μPD789166GB(A)-×××-8ES	44-pin plastic LQFP (10 \times 10 mm)	Special
μPD789167GB(A)-×××-8ES	44-pin plastic LQFP (10 \times 10 mm)	Special
μPD789176GB(A)-×××-8ES	44-pin plastic LQFP (10 \times 10 mm)	Special
μPD789177GB(A)-×××-8ES	44-pin plastic LQFP (10 × 10 mm)	Special

(2) μ PD78916xY, 78917xY, 78916xY(A), 78917xY(A)

Part Number	Package	Quality grade	_
μPD789166YGB-×××-8ES	44-pin plastic LQFP ($10 \times 10 \text{ mm}$)	Standard	
μPD789166YGA-×××-9EU	48-pin plastic TQFP (fine pitch) $(7 \times 7 \text{ mm})$	Standard	
μPD789167YGB-×××-8ES	44-pin plastic LQFP ($10 \times 10 \text{ mm}$)	Standard	
μPD789167YGA-×××-9EU	48-pin plastic TQFP (fine pitch) (7 \times 7 mm)	Standard	
μPD789176YGB-×××-8ES	44-pin plastic LQFP (10 \times 10 mm)	Standard	
μPD789176YGA-×××-9EU	48-pin plastic TQFP (fine pitch) (7 \times 7 mm)	Standard	
μPD789177YGB-×××-8ES	44-pin plastic LQFP (10 \times 10 mm)	Standard	
μPD789177YGA-×××-9EU	48-pin plastic TQFP (fine pitch) (7 \times 7 mm)	Standard	
μPD789166YGA(A)-×××-9EU	48-pin plastic TQFP (fine pitch) (7 \times 7 mm)	Special	
μPD789167YGA(A)-×××-9EU	48-pin plastic TQFP (fine pitch) (7 \times 7 mm)	Special	
μPD789176YGA(A)-xxx-9EU	48-pin plastic TQFP (fine pitch) (7 \times 7 mm)	Special	
μPD789177YGA(A)-×××-9EU	48-pin plastic TQFP (fine pitch) (7 \times 7 mm)	Special	

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

★ 78K/0S SERIES LINEUP

The products in the 78K/0S Series are listed below. The names enclosed in boxes are subseries names.

Small-scale package, general-purpose applications

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP[™] (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

The major differences between subseries are shown below.

Series for LCD drive, general-purpose applications

	_CD arive, gen	ROM			mer		8-Bit	10-Bit	Serial	I/O	V _{DD}	Remarks
	Function	Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	Interface		MIN.	
Subseries	Name										Value	
Small-scale	μPD789046	16 KB	1 ch	1 ch	1 ch	1 ch	_	_	1 ch (UART:	34	1.8 V	-
package, general-	μPD789026	4 KB to 16 KB			_				1 ch)			
purpose applications	μPD789088	16 KB to 32 KB	3 ch							24		
	μPD789074	2 KB to 8 KB	1 ch									
	μPD789014	2 KB to 4 KB	2 ch	_						22		
	μPD789062	4 KB							_	14		RC oscillation version
	μPD789052											_
Small-scale	μPD789177	16 KB to	3 ch	1 ch	1 ch	1 ch	_	8 ch	1 ch (UART:	31	1.8 V	_
package, general-	μ PD789167	24 KB					8 ch	-	1 ch)			
purpose	μPD789156	8 KB to	1 ch		-		_	4 ch		20		On-chip
applications	μPD789146	16 KB					4 ch	_				EEPROM
and A/D	μPD789134A	2 KB to					_	4 ch				RC oscillation
converter	μPD789124A	8 KB					4 ch	_				version
	μPD789114A						_	4 ch				_
	μPD789104A						4 ch	_				
LCD drive	μPD789835	24 KB to 60 KB	6 ch	_	1 ch	1 ch	3 ch	_	1 ch (UART: 1 ch)	37	1.8 V Note	Dot LCD supported
	μPD789830	24 KB	1 ch	1 ch			_			30	2.7 V	
	μPD789488	32 KB	3 ch					8 ch	2 ch (UART:	45	1.8 V	_
	μPD789478	24 KB to 32 KB					8 ch	-	1 ch)			
	μPD789417A	12 KB to					_	7 ch	1 ch (UART:	43		
	μPD789407A	24 KB					7 ch	-	1 ch)			
	μPD789456	12 KB to	2 ch	Ĭ			_	6 ch		30		
	μPD789446	16 KB					6 ch	_				
	μPD789436						_	6 ch		40		
	μPD789426						6 ch	_				
	μPD789316	8 KB to 16 KB					_		2 ch (UART: 1 ch)	23		RC oscillation version
	μPD789306]	
	μPD789467	4 KB to		_			1 ch		_	18]	
	μ PD789327	24 KB					_		1 ch	21		

Note Flash memory version: 3.0 V

Series for ASSP

OCHES IOI 7	Function	ROM		Tir	mer		8-Bit	10-Bit	Serial	I/O	V_{DD}	Remarks
		Capacity	8-Bit	16-Bit	Watch	WDT	A/D	A/D	Interface		MIN.	
Subseries	Name										Value	
USB	μPD789803	8 KB to 16 KB	2 ch	-	-	1 ch	-	-	2 ch	41	3.6 V	-
	μPD789800	8 KB							(USB: 1 ch)	31	4.0 V	
Inverter control	μPD789842	8 KB to 16 KB	3 ch	Note 1	1 ch	1 ch	8 ch	_	1 ch (UART: 1 ch)	30	4.0 V	-
On-chip bus controller	μPD789850	16 KB	1 ch	1 ch	-	1 ch	4 ch		2 ch (UART: 1 ch)	18	4.0 V	-
Keyless entry	μPD789861	4 KB	2 ch	-	-	1 ch	-	_	-	14	1.8 V	RC oscillation version, on-chip EEPROM
	μPD789860											On-chip
	μPD789862	16 KB	1 ch	2 ch					1 ch (UART: 1 ch)	22		EEPROM
VFD drive	μPD789871	4 KB to 8 KB	3 ch	_	1 ch	1 ch	-	_	1 ch	33	2.7 V	_
Meter control	μPD789881	16 KB	2 ch	1 ch	_	1 ch	_	-	1 ch (UART: 1 ch)	28	2.7 V Note 2	_

Notes 1. 10-bit timer: 1 channel

2. Flash memory version: 3.0 V

OVERVIEW OF FUNCTIONS

#PD789166Y,789176Y #PD789166Y,789176Y #PD789166Y,789176Y #PD789166Y,789176YA) #PD789166YA), 789176YA) #PD789166YA), 789176YA) #PD789166YA), 789176YA) #PD789166YA), 789176YA) #PD789166YA, 789177YA #PD78916YA, 789177YA #PD78916YA, 789177YA #PD78916YA, 789177YA #PD78916YA, 78917YA #PD78916YA		14.		DD700166 700176	DD790167 790177			
μPD789167(A), 789176(A)		Item		·				
μPD789166Y(A), 789176Y(A)								
Internal memory								
High-speed RAM 512 bytes			ı	μPD789166Y(A), 789176Y(A)	μPD789167Y(A), 789177Y(A)			
Minimum instruction execution time		Internal memory	ROM	16 KB	24 KB			
122 μ s (@ 32.768-kHz operation with subsystem clock) General-purpose registers 8 bits × 8 registers			High-speed RAM	512 bytes				
Instruction set	*	Minimum instruction	execution time	,				
Bit manipulations (set, reset, and test) Multiplier 8 bits × 8 bits = 16 bits		General-purpose reg	isters	8 bits × 8 registers				
Total: 31		Instruction set		'				
CMOS input: 8 CMOS I/O: 17 17 N-ch open-drain (12-V withstand voltage): 6		Multiplier		8 bits × 8 bits = 16 bits				
CMOS I/O: N-ch open-drain (12-V withstand voltage): 6 A/D converters 8-bit resolution × 8 channels (μPD78916x, 78916x(A), 78916x(A), 78917xY(A)) 10-bit resolution × 8 channels (μPD78917x, 78917xY, 78917xY(A), 78917xY(A)) Serial interfaces 3-wire serial I/O / UART: 1 channel SMB: 1 channel (μPD78916xY, 78917xY, 78916xY(A), 78917xY(A)) Timers 16-bit timer: 1 channel 8-bit timer/event counter: 2 channels 8-bit timer: 1 channel Watchdog timer: 1 channel Timer output 4 output (16-bit/8-bit timer alternate function: 1) Vectored interrupt sources Internal: 10, External: 4 (μPD78916x, 78917x, 78916x(A), 78917xY(A)) Internal: 12, External: 4 (μPD78916xY, 78917xY, 78916xY(A), 78917xY(A)) Internal: 1 Power supply voltage Vope = 1.8 to 5.5 V Operating ambient temperature TA = -40 to +85°C Package 44-pin plastic LQFP (10 × 10 mm) 48-pin plastic LQFP (fine pitch) (7 × 7 mm)		I/O ports		Total:	31			
A/D converters				• CMOS I/O: 17				
10-bit resolution × 8 channels (μPD78917x, 78917xY, 78917xY(A), 78917xY(A) Serial interfaces		A/D convertors						
SMB: 1 channel (μPD78916xY, 78917xY, 78916xY(A), 78917xY(A)) 16-bit timer: 1 channel 8-bit timer: 2 channels 8-bit timer: 1 channel Watchdog timer: 1 channel Watch timer: 1 channel Internal: 10, External: 4 (μPD78916x, 78917x, 78916x(A), 78917x(A)) Internal: 12, External: 4 (μPD78916xY, 78917xY, 78916xY(A), 78917xY(A)) Non-maskable Internal: 1 Power supply voltage V _{DD} = 1.8 to 5.5 V Operating ambient temperature T _A = -40 to +85°C Package 44-pin plastic LQFP (10 × 10 mm) 48-pin plastic TQFP (fine pitch) (7 × 7 mm)		A/D conveners		• 10-bit resolution × 8 channels (µPD78917x, 78917xY, 78917x(A), 78917xY(A))				
Timers		Serial interfaces		3-wire serial I/O / UART: 1 channel				
 8-bit timer/event counter: 2 channels 8-bit timer: 1 channel Watchdog timer: 1 channel Watch timer: 1 channel Timer output 4 output (16-bit/8-bit timer alternate function: 1) Vectored interrupt sources Internal: 10, External: 4 (μPD78916x, 78917x, 78916x(A), 78917x(A)) Internal: 12, External: 4 (μPD78916xY, 78917xY, 78916xY(A), 78917xY(A)) Non-maskable Internal: 1 Power supply voltage V_{DD} = 1.8 to 5.5 V Operating ambient temperature T_A = -40 to +85°C Package 44-pin plastic LQFP (10 × 10 mm) 48-pin plastic TQFP (fine pitch) (7 × 7 mm) 				• SMB: 1 channel (μPD78916xY, 78917xY, 78916xY(A), 78917xY(A))				
Vectored interrupt sources Maskable Internal: 10, External: 4 (μ PD78916x, 78917x, 78916x(A), 78917x(A)) Internal: 12, External: 4 (μ PD78916xY, 78917xY, 78916xY(A), 78917xY(A)) Non-maskable Internal: 1 Power supply voltage V _{DD} = 1.8 to 5.5 V Operating ambient temperature T _A = -40 to +85°C Package • 44-pin plastic LQFP (10 × 10 mm) • 48-pin plastic TQFP (fine pitch) (7 × 7 mm)		Timers		8-bit timer/event counter: 2 channels8-bit timer: 1 channelWatchdog timer: 1 channel				
Sources Internal: 12, External: 4 (μ PD78916xY, 78917xY, 78916xY(A), 78917xY(A)) Non-maskable Internal: 1 Power supply voltage $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$ Operating ambient temperature $T_A = -40 \text{ to } +85^{\circ}\text{C}$ Package • 44-pin plastic LQFP (10 × 10 mm) • 48-pin plastic TQFP (fine pitch) (7 × 7 mm)		Timer output		4 output (16-bit/8-bit timer alternate function: 1)				
Non-maskable Internal: 12, External: 4 (μ PD78916xY, 78917xY, 78917xY(A)) Non-maskable Internal: 1 Power supply voltage $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$ Operating ambient temperature $T_{A} = -40 \text{ to } +85^{\circ}\text{C}$ Package • 44-pin plastic LQFP (10 × 10 mm) • 48-pin plastic TQFP (fine pitch) (7 × 7 mm)		Vectored interrupt	Maskable	Internal: 10, External: 4 (μPD78916x, 78917x, 78916x(A), 78917x(A))				
Power supply voltage $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$ Operating ambient temperature $T_A = -40 \text{ to } +85^{\circ}\text{C}$ Package • 44-pin plastic LQFP (10 × 10 mm) • 48-pin plastic TQFP (fine pitch) (7 × 7 mm)		sources		Internal: 12, External: 4 (μPD78916xY, 78917xY, 78916xY(A), 78917xY(A))				
Operating ambient temperature $T_A = -40 \text{ to } +85^{\circ}\text{C}$ Package • 44-pin plastic LQFP (10 × 10 mm) • 48-pin plastic TQFP (fine pitch) (7 × 7 mm)			Non-maskable	Internal: 1				
Package • 44-pin plastic LQFP (10 × 10 mm) • 48-pin plastic TQFP (fine pitch) (7 × 7 mm)		Power supply voltage		V _{DD} = 1.8 to 5.5 V				
48-pin plastic TQFP (fine pitch) (7 × 7 mm)		Operating ambient temperature		$T_A = -40 \text{ to } +85^{\circ}\text{C}$				
		Package		44-pin plastic LQFP (10 × 10 mm)				
(μPD78016vV 78017vV 78016vV(Δ) 78017vV(Λ) αρίν)				48-pin plastic TQFP (fine pitch) (7 × 7 mm)				
$(\mu \Gamma D I 0 3 10 \lambda T, I 0 3 10 \lambda T(\lambda), I 0 3 17 \lambda T(\lambda) 0 11 y)$				(μPD78916xY, 78917xY, 78916xY(A), 78917xY(A) only)				

6

CONTENTS

1.	PIN CONFIGURATION (TOP VIEW)	8
2.	BLOCK DIAGRAM	11
3.	PIN FUNCTIONS	12
	3.1 Port Pins	12
	3.2 Non-Port Pins	13
	3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	14
4.	MEMORY SPACE	16
5.	PERIPHERAL HARDWARE FUNCTIONS	17
	5.1 Ports	17
	5.2 Clock Generator	18
	5.3 Timer	18
	5.4 A/D Converter	22
	5.5 Serial Interface	
	5.6 Multiplier	26
6.	INTERRUPT FUNCTION	27
7.	STANDBY FUNCTION	29
8.	RESET FUNCTION	29
9.	MASK OPTION	29
10.	INSTRUCTION SET OVERVIEW	30
	10.1 Conventions	30
	10.1.1 Operand identifiers and description methods	30
	10.1.2 Descriptions of operation fields	31
	10.1.3 Description of flag operation fields	
	10.2 Operations	32
11.	ELECTRICAL SPECIFICATIONS	37
12.	CHARACTERISTICS CURVES	54
13.	PACKAGE DRAWING	57
14.	RECOMMENDED SOLDERING CONDITIONS	59
ΑP	PENDIX A. DEVELOPMENT TOOLS	61
AP I	PENDIX B. RELATED DOCUMENTS	63

1. PIN CONFIGURATION (TOP VIEW)

• 44-pin plastic LQFP (10 × 10 mm)

```
μPD789166GB-×××-8ES μPD789166GB(A)-×××-8ES μPD789167GB-×××-8ES μPD789176GB-×××-8ES μPD789176GB(A)-×××-8ES μPD789177GB-×××-8ES μPD789177GB-×××-8ES μPD789166YGB-×××-8ES μPD789167YGB-×××-8ES μPD789177YGB-×××-8ES μPD789177YGB-×××-8ES μPD789177YGB-×××-8ES
```


Note The SCL0 and SDA0 pins are available in μ PD78916xY and 78917xY products only.

Cautions 1. Connect the IC0 (Internally Connected) pin directly to Vsso or Vsso.

- 2. Connect the AVDD pin to VDDO.
- 3. Connect the AVss pin to Vsso.

• 48-pin plastic TQFP (fine pitch) (7 × 7 mm)

 $\begin{array}{lll} \mu \text{PD789166YGA-} \times \times \times \text{-9EU} & \mu \text{PD789166YGA(A)-} \times \times \times \text{-9EU} \\ \mu \text{PD789167YGA-} \times \times \times \text{-9EU} & \mu \text{PD789176YGA(A)-} \times \times \times \text{-9EU} \\ \mu \text{PD789176YGA-} \times \times \times \text{-9EU} & \mu \text{PD789177YGA(A)-} \times \times \times \text{-9EU} \\ \mu \text{PD789177YGA-} \times \times \times \text{-9EU} & \mu \text{PD789177YGA(A)-} \times \times \times \text{-9EU} \end{array}$

Cautions 1. Connect the IC0 (Internally Connected) pin directly to Vsso or Vss1.

- 2. Leave the IC2 pin open.
- 3. Connect the AVDD pin to VDD0.
- 4. Connect the AVss pin to Vsso.

ANI0 to ANI7: Analog input RESET: Reset

ASCK20: Asynchronous serial input RxD20: Receive data

AV_{DD}: Analog power supply $\overline{SCK20}$: Serial clock (for SIO20) AV_{REF}: Analog reference voltage $SCL0^{Note}$: Serial clock (for SMB0)

SDA0^{Note}: AVss: Analog ground Serial data BZO90: Buzzer output SI20: Serial input CPT90: Capture trigger input SO20: Serial output IC0, IC2Note: Internally connected SS20: Chip select input INTP0 to INTP3: TI80, TI81: Timer input

Interrupt from peripherals P00 to P05: Port 0 TO80 to TO82, TO90: Timer output P10, P11: Port 1 TxD20: Transmit data P20 to P26: Port 2 VDD0, VDD1: Power supply P30 to P33: Port 3 Vsso, Vss1: Ground

P50 to P53: Port 5 X1, X2: Crystal (main system clock)
P60 to P67: Port 6 XT1, XT2: Crystal (subsystem clock)

Note The IC2, SCL0, and SDA0 pins are available in μ PD78916xY, 78917xY, 78916xY(A), and 78917xY(A) products only.

2. BLOCK DIAGRAM

Notes 1. SMB is available in μ PD78916xY, 78917xY, 78916xY(A), and 78917xY(A) products only.

2. The IC2 pin is available in μ PD78916xY, 78917xY, 78916xY(A), and 78917xY(A) products only.

Remark The internal ROM capacity varies depending on the product.

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
P00 to P05	I/O	Port 0 6-bit input/output port Input/output mode can be specified in 1-bit units When used as an input port, an on-chip pull-up resistor can be used by setting software.	Input	_
P10, P11	I/O	Port 1 2-bit input/output port Input/output mode can be specified in 1-bit units When used as an input port, an on-chip pull-up resistor can be used by setting software.	Input	-
P20	I/O	Port 2	Input	SCK20/ASCK20
P21		7-bit input/output port Input/output mode can be specified in 1-bit units		SO20/TxD20
P22		For P20 to P22, P25, and P26, an on-chip pull-up resistor		SI20/RxD20
P23		can be used by setting software.		SCL0 Note
P24		Only P23 and P24 can be used as N-ch open-drain input/output port pins.		SDA0 Note
P25		inputoutput port pino.		TI80/SS20
P26				TO80
P30	I/O	Port 3	Input	INTP0/TI81/CPT90
P31		4-bit input/output port Input/output mode can be specified in 1-bit units		INTP1/TO81
P32		An on-chip pull-up resistor can be used by setting software.		INTP2/TO90
P33				INTP3/TO82/BZO90
P50 to P53	I/O	Port 5 4-bit N-ch open-drain input/output port Input/output mode can be specified in 1-bit units An on-chip pull-up resistor can be specified by the mask option.	Input	_
P60 to P67	Input	Port 6 8-bit input-only port	Input	ANI0 to ANI7

Note μ PD78916xY, 78917xY, 78916xY(A), and 78917xY(A) only

3.2 Non-Port Pins

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt input for which the valid edge (rising edge,	Input	P30/TI81/CPT90
INTP1		falling edge, or both rising and falling edges) can be specified		P31/TO81
INTP2				P32/TO90
INTP3				P33/TO82/BZO90
SI20	Input	Serial data input to serial interface	Input	P22/RxD20
SO20	Output	Serial data output from serial interface	Input	P21/TxD20
SCK20	I/O	Serial clock input/output for serial interface	Input	P20/ASCK20
SS20	Input	Chip select input to serial interface	Input	P25/TI80
ASCK20	Input	Serial clock input for asynchronous serial interface	Input	P20/SCK20
RxD20	Input	Serial data input for asynchronous serial interface	Input	P22/SI20
TxD20	Output	Serial data output for asynchronous serial interface	Input	P21/SO20
SCL0 ^{Note}	I/O	SMB0 clock input/output	Input	P23
SDA0 ^{Note}	I/O	SMB0 data input/output	Input	P24
TI80	Input	External count clock input to 8-bit timer/event counter (TM80)	Input	P25/SS20
TI81	Input	External count clock input to 8-bit timer/event counter (TM81)	Input	P30/INTP0/CPT90
TO80	Output	8-bit timer/event counter (TM80) output	Input	P26
TO81	Output	8-bit timer/event counter (TM81) output	Input	P31/INTP1
TO82	Output	8-bit timer (TM82) output	Input	P33/INTP3/BZO90
TO90	Output	16-bit timer (TM90) output	Input	P32/INTP2
BZO90	Output	16-bit timer Buzzer output	Input	P33/INTP3/TO82
CPT90	Input	Capture edge input	Input	P30/INTP0/TI81
ANI0 to ANI7	Input	A/D converter analog input	Input	P60 to P67
AVREF	-	A/D converter reference voltage	-	-
AVss	_	A/D converter ground potential	-	-
AV _{DD}	_	A/D converter analog power supply	-	-
X1	Input	Connecting crystal resonator for main system clock	-	-
X2	_	oscillation	_	-
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	-	-
XT2	_		-	-
V _{DD0}	_	Positive power supply	-	-
V _{DD1}	-	Positive power supply (other than ports)	-	-
Vsso	_	Ground potential	-	-
Vss1	_	Ground potential (other than ports)	-	
RESET	Input	System reset input	Input	-
IC0	_	Internally connected. Connect this pin directly to the Vsso or Vss1 pin.	_	-
IC2 ^{Note}	_	Internally connected. Leave this pin open.	_	_

Note μ PD78916xY, 78917xY, 78916xY(A), 78917xY(A) only.

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins is shown in Table 3-1. For the input/output circuit configuration of each type, refer to **Figure 3-1**.

Table 3-1. Types of Pin Input/Output Circuits

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00 to P05	5-H	I/O	Input: Independently connects to VDD0, VDD1, VSS0, or VSS1
P10, P11			via a resistor.
P20/SCK20/ASCK20	8-C		Output: Leave open.
P21/SO20/TxD20			
P22/SI20/RxD20			
P23/SCL0 ^{Note}	13-X		Input: Independently connects to VDD0 or VDD1 via a
P24/SDA0 ^{Note}			resistor.
			Output: Leave open.
P25/TI80/SS20	8-C		Input: Independently connects to VDD0, VDD1, VSS0, or VSS1
P26/TO80			via a resistor. Output: Leave open.
P30/INTP0/TI81/CPT90			Input: Independently connects to Vsso or Vssı via a
P31/INTP1/TO81			resistor.
P32/INTP2/TO90			Output: Leave open.
P33/INTP3/TO82/BZO90			
P50 to P53	13-U		Input: Independently connects to VDD0 or VDD1 via a resistor.
			Output: Leave open.
P60/ANI0 to P67/ANI7	9-C	Input	Connect directly to VDD0, VDD1, Vsso, or Vss1.
AV _{REF}	_	_	Connect directly to VDD0, VDD1, VSS0, or VSS1.
AVDD			Connect directly to VDD0 or VDD1.
AVss			Connect directly to Vsso or Vss1.
XT1		Input	Connect to Vsso or Vss1.
XT2		_	Leave open.
RESET	2	Input	-
IC0	_	-	Connect directly to Vsso or Vss1.
IC2 ^{Note}			Leave open.

Note The IC2, SCL0, and SDA0 pins are available in μ PD78916xY, 78917xY, 78916xY(A), and 78917xY(A) products only.

Figure 3-1. Pin Input/Output Circuits

0023H

0000H

Vector table area

4. MEMORY SPACE

Products in the μ PD78916x, 78917x, 78916xY, 78917xY, 78916x(A), 78917x(A), 78916xY(A), and 78917xY(A) can access up to 64 Kbytes of memory space.

Figure 4-1 shows the memory map.

FFFFH Special function registers 256×8 bits FF00H FEFFH Internal high-speed RAM 512×8 bits FD00H FCFFH Data memory space n n n n HReserved n n n n H + 1 n n n n H Program area 0080H Program memory Internal ROMNote 007FH space CALLT table area 0040H 003FH Program area 0024H

Figure 4-1. Memory Map

Note The internal ROM capacity depends on the product. (See the following table.)

0000H

Part Number	Last Address of Internal ROM nnnnH
μPD789166, 789176, 789166Y, 789176Y, 789166(A), 789176(A), 789166Y(A), 789176Y(A)	3FFFH
μPD789167, 789177, 789167Y, 789177Y, 789167(A), 789177(A), 789167Y(A), 789177Y(A)	5FFFH

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 Ports

The following three types of I/O ports are available:

CMOS Input:	8
CMOS input/output:	17
 N-ch open-drain input/output: 	6
Total:	31

Table 5-1. Port Functions

Port Name	Pin Name	Function
Port 0	P00 to P05	Input/output port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.
Port 1	P10, P11	Input/output port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.
Port 2	P20 to P26	Input/output port. Input/output can be specified in 1-bit units. For P20 to P22, P25, and P26, an on-chip pull-up resistor can be specified by means of software.
		(P23 and P24 are N-ch open-drain I/O ports (with 5-V withstand voltage).)
Port 3	P30 to P33	Input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software.
Port 5	P50 to P53	N-channel open-drain input/output port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by the mask option.
Port 6	P60 to P67	Input-only port

17

5.2 Clock Generator

An on-chip system clock generator is provided.

The minimum instruction execution time can be changed.

- 0.2 μ s/0.8 μ s (@ 10.0-MHz operation with Main system clock, VDD = 4.5 to 5.5 V)
 - 122 μs (@ 32.768-kHz operation with Subsystem clock)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer

Six on-chip timers are provided.

16-bit timer 90 (TM90): 1 channel
8-bit timer/event counters 80, 81 (TM80, TM81): 2 channels
8-bit timer 82 (TM82): 1 channel
Watch timer (WT): 1 channel
Watchdog timer (WDT): 1 channel

Table 5-2. Timer Operation

		TM90	TM80	TM81	TM82	WT	WTM
Operation mode	Interval timer	-	1 channel				
	External event counter	-	1 channel	1 channel	-	-	-
Function	Timer output	1 output	1 output	1 output	1 output	-	-
	Square wave output	-	1 output	1 output	1 output	-	-
	PWM output	ı	1 output	1 output	1 output	-	_
	Buzzer output	1 output	ı	ı	ı	-	_
	Capture	1 input	-	- 1	-	_	_
	Interrupt request	1	1	1	1	1	1

Internal bus 16-bit compare register 90 (CR90) Output ◯ TO90/INTP2 controller /P32 Match - INTTM90 fx/2² $f_{x}/2^{6}$ 16-bit timer counter 90 (TM90) Output O BZO90/INTP3 /TO82/P33 fx/2⁷ Selector OVF controller CPT90/INTP0 /TI81/P30 16-bit capture 16-bit counter Edge detector register 90 (TCP90) read buffer Internal bus

Figure 5-2. Block Diagram of 16-Bit Timer

Figure 5-3. Block Diagram of 8-Bit Timer/Event Counter 80

Internal bus 8-bit compare register 81 (CR81) Match ► INTTM81 $fx/2^4$ Selector Output OVF 8-bit timer counter 81 (TM81) ① TO81/P31 controller $fx/2^8$ /INTP1 TI81/CPT90/ (P30/INTP0 Clear Internal bus

Figure 5-4. Block Diagram of 8-Bit Timer/Event Counter 81

Figure 5-5. Block Diagram of 8-Bit Timer 82

Figure 5-6. Block Diagram of Watch timer

Note Bit 0 of the Watch timer mode control register (WTM)

Figure 5-7. Watchdog Timer Block Diagram

Note Bit 7 of the Watchdog timer mode control register (WDTM)

5.4 A/D Converter

The conversion resolution of the A/D converter differs depending on the product as shown below.

- 8-bit A/D converter × 8 channels μPD78916x, 78916xY, 78916x(A), 78916xY(A)
- 10-bit A/D converter × 8 channels .. μPD78917x, 78917xY, 78917x(A), 78917xY(A)

A/D conversion can only be started by software.

Figure 5-8. A/D Converter Block Diagram

5.5 Serial Interface

Two serial interface channels are incorporated.

Serial interface SIO20: 1 channel
 Serial interface SMB^{Note}: 1 channel

Note The SMB0 is available in μ PD78916xY, 78917xY, 78916xY(A), and 78917xY(A) products only.

(1) Serial Interface SIO20

Serial interface 20 has the following three modes:

- Operation stop mode:
 Power consumption can be reduced.
- Asynchronous serial interface (UART) mode: A dedicated baud rate generator is incorporated.
- 3-wire serial I/O mode: A function to select the clock phase or data phase is incorporated.

Figure 5-9. Block Diagram of Serial Interface 20

(2) Serial Interface SMB0

SMB0 has following two modes:

• Operation stop mode: Power consumption can be reduced.

• SMB mode: Supporting multi-master.

Figure 5-10 shows the block diagram of Serial Interface SMB0.

Figure 5-10. Block Diagram of SMB0

5.6 Multiplier

The calculation of 8 bits \times 8 bits = 16 bits can be performed.

Multiplication data register A0 (MRA0)

Multiplication data register B0 (MRB0)

Multiplier

Internal bus

Figure 5-11. Multiplier Block Diagram

6. INTERRUPT FUNCTION

A total of 17 interrupt sources are provided, divided into the following two types.

Non-maskable interrupts: 1 sourceMaskable interrupts: 16 sources

Table 6-1. Interrupt Source List

			Interrupt Source	Internal/	Vector	Basic
Interrupt Type	Priority ^{Note 1}	Name	Trigger	External	Table Address	Configuration Type ^{Note 2}
Non- maskable	_	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with the interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			H8000	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTSR20	End of serial interface 20 UART reception	Internal	000EH	(B)
		INTCSI20	End of serial interface 20 3-wire SIO transfer reception			
	6	INTST20	End of serial interface 20 UART transmission		0010H	
	7	INTWT	Watch timer interrupt		0012H	
	8	INTWTI	Interval timer interrupt		0014H	
	9	INTTM80	Generation of matching signal of 8-bit timer/event counter 80		0016H	
	10	INTTM81	Generation of matching signal of 8-bit timer/event counter 81		0018H	
	11	INTTM82	Generation of matching signal of 8-bit timer 82		001AH	
	12	INTTM90	Generation of matching signal of 16-bit timer 90		001CH	
	13	INTSMB0 ^{Note 3}	SMB interrupt	1	001EH	
	14	INTSMBOV0 ^{Note 3}	SMB timeout interrupt		0020H	
	15	INTAD0	A/D conversion completion signal		0022H	

Notes 1. Priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 15 is the lowest order.

- 2. Basic configuration types (A), (B), and (C) correspond to (A), (B), and (C) in Figure 6-1.
- **3.** μ PD78916xY, 78917xY, 78916xY(A), 78917xy(A) only.

Remark As the interrupt source of the watchdog timer (INTWDT), either a non-maskable interrupt or a maskable interrupt (internal) can be selected.

Figure 6-1. Basic Configuration of Interrupt Function

(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt

IF: Interrupt request flagIE: Interrupt enable flagMK: Interrupt mask flag

7. STANDBY FUNCTION

The following two standby functions are available for further reduction of system current consumption.

• HALT mode: In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.

• STOP mode: In this mode, oscillation of the system clock is stopped. All the operations performed on the system clock are suspended, resulting in extremely small power consumption.

CSS0^{Note 1} = 1 Subsystem clock Main system clock operation operation^{Note} CSS0^{Note 1} = 0 **HALT** instruction **HALT** instruction STOP Interrupt instruction request Interrupt Interrupt request request STOP mode HALT mode HALT mode Clock supply for CPU Clock supply for CPU Main system clock oscillation is stopped is stopped, oscillation is stopped, oscillation is maintained is maintained

Figure 7-1. Standby Function

Notes 1. Bit 4 of the sub-clock control register (CSS)

2. The current consumption can be reduced by stopping the main system clock.
When the CPU is operating on the subsystem clock, set bit 7 (MCC) of the processor clock control register (PCC) to stop the main system clock. The STOP instruction cannot be used.

Caution When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

8. RESET FUNCTION

The following two reset methods are available.

- (1) External reset by the RESET pin
- (2) Internal reset by watchdog timer detection runaway time.

9. MASK OPTION

The μ PD78916x, 78917x, 78916xY, 78917xY, 78916x(A), 78917x(A) 78916xY(A), and 78917xY(A) have the following mask options.

- P50 to P53 mask options
 On-chip pull-up resistors can be selected.
- <1> Specify on-chip pull-up resistors in bit units
- <2> Do not specify on-chip pull-up resistors

10. INSTRUCTION SET OVERVIEW

This section lists the μ PD78916x, 78917x, 78916xY, 78917xY, 78916x(A), 78917x(A) , 78916xY(A), and 78917xY(A) instruction set.

10.1 Conventions

10.1.1 Operand identifiers and description methods

Operands are described in the "Operand" column of each instruction in accordance with the description method of the instruction operand identifier (refer to the assembler specifications for detail). When there are two or more description methods, select one of them. Alphabetic letters in capitals and the symbols, #, !, \$, and [], are keywords and must be described as they are. Each symbol has the following meaning.

- #: Immediate data specification
- \$: Relative address specification
- !: Absolute address specification
- []: Indirect address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to describe the #,!, \$, or [] symbols.

For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for description.

Table 10-1. Operand Identifiers and Description Methods

Identifier	Description Method
r rp sfr	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7), AX (RP0), BC (RP1), DE (RP2), HL (RP3) Special function register symbol
saddr saddrp	FE20H to FF1FH immediate data or label (even address only)
addr16 addr5	0000H to FFFFH immediate data or label (Only even addresses for 16-bit data transfer instructions) 0040H to 007FH immediate data or label (even address only)
word byte bit	16-bit immediate data or label 8-bit immediate data or label 3-bit immediate data or label

10.1.2 Descriptions of operation fields

A: A register; 8-bit accumulator

X: X register

B: B register

C: C register

D: D register

E: E register

H: H register

L: L register

AX: AX register pair; 16-bit accumulator

BC: BC register pair

DE: DE register pair

HL: HL register pair

PC: Program counter SP:

Stack pointer

PSW: Program status word

CY: Carry flag

AC: Auxiliary carry flag

Z: Zero flag

IE: Interrupt request enable flag

NMIS: Non-maskable interrupt servicing flag

Memory contents indicated by address or register contents in parentheses ():

XH, XL: Higher 8 bits and lower 8 bits of 16-bit register

Logical product (AND) ۸:

v: Logical sum (OR)

Exclusive OR ∀:

Inverted data

addr16: 16-bit immediate data or label

Signed 8-bit data (displacement value) jdisp8:

10.1.3 Description of flag operation fields

(Blank): Not affected 0: Cleared to 0 1: Set to 1

×: Set/cleared according to the result Previously saved value is restored R:

10.2 Operations

Marana	0	Ditto	011-	Occupation	Flags
Mnemonic	Operand	Bytes	Clock	Operation	Z AC CY
MOV	r. #byte	3	6	r ← byte	
	saddr, #byte	3	6	(saddr) ← byte	
	sfr, #byte	3	6	sfr ← byte	
	A, r ^{Note 1}	2	4	$A \leftarrow r$	
	r, A ^{Note 1}	2	4	r ← A	
	A, saddr	2	4	$A \leftarrow (saddr)$	
	saddr, A	2	4	(saddr) ← A	
	A, sfr	2	4	A ← sfr	
	sfr, A	2	4	sfr ← A	
	A, !addr16	3	8	A ← (addr16)	
	!addr16, A	3	8	(addr16) ← A	
	PSW, #byte	3	6	PSW ← byte	× × ×
	A, PSW	2	4	$A \leftarrow PSW$	
	PSW, A	2	4	PSW ← A	× × ×
	A, [DE]	1	6	$A \leftarrow (DE)$	
	[DE], A	1	6	(DE) ← A	
	A, [HL]	1	6	$A \leftarrow (HL)$	
	[HL], A	1	6	(HL) ← A	
	A, [HL + byte]	2	6	A ← (HL + byte)	
	[HL + byte], A	2	6	(HL + byte) ← A	
XCH	A, X	1	4	$A \longleftrightarrow X$	
	A, r ^{Note 2}	2	6	$A \longleftrightarrow r$	
	A, saddr	2	6	$A \longleftrightarrow (saddr)$	
	A, sfr	2	6	$A \longleftrightarrow (sfr)$	
	A, [DE]	1	8	$A \longleftrightarrow (DE)$	
	A, [HL]	1	8	$A \longleftrightarrow (HL)$	
	A, [HL + byte]	2	8	$A \longleftrightarrow (HL+byte)$	
MOVW	rp, #word	3	6	$rp \leftarrow word$	
	AX, saddrp	2	6	$AX \leftarrow (saddrp)$	
	saddrp, AX	2	8	(saddrp) ← AX	
	AX, rp ^{Note 3}	1	4	$AX \leftarrow rp$	
	rp, AX ^{Note 3}	1	4	rp ← AX	

Notes 1. Except r = A

2. Except r = A, X

3. Only when rp = BC, DE, HL

Remark One clock of an instruction is one clock of the CPU clock (fcPu) selected using the processor clock control register (PCC).

Mnemonic	Ongrand	Durton	Clask	Oneuration		Flags			
wnemonic	Operand	Bytes	Clock	Operation	z	AC	CY		
XCHW	AX, rp ^{Note}	1	8	$AX \longleftrightarrow rp$					
ADD	A, #byte	2	4	A, CY ← A + byte	×	×	×		
	saddr, #byte	3	6	$(saddr),CY \leftarrow (saddr) + byte$	×	×	×		
	A, r	2	4	$A, CY \leftarrow A + r$	×	×	×		
	A, saddr	2	4	A, CY ← A + (saddr)	×	×	×		
	A, !addr16	3	8	A, CY ← A + (addr16)	×	×	×		
	A, [HL]	1	6	$A, CY \leftarrow A + (HL)$	×	×	×		
	A, [HL + byte]	2	6	A, CY ← A + (HL + byte)	×	×	×		
ADDC	A, #byte	2	4	A, CY ← A + byte + CY	×	×	×		
	saddr, #byte	3	6	$(\text{saddr}),\text{CY} \leftarrow (\text{saddr}) + \text{byte} + \text{CY}$	×	×	×		
	A, r	2	4	$A, CY \leftarrow A + r + CY$	×	×	×		
	A, saddr	2	4	A, CY ← A+ (saddr) + CY	×	×	×		
	A, !addr16	3	8	A, CY ← A+ (addr16) +CY	×	×	×		
	A, [HL]	1	6	$A, CY \leftarrow A + (HL) + CY$	×	×	×		
	A, [HL + byte]	2	6	A, CY ← A+ (HL + byte) + CY	×	×	×		
SUB	A, #byte	2	4	A, CY ← A – byte	×	×	×		
	saddr, #byte	3	6	$(saddr),CY \leftarrow (saddr) - byte$	×	×	×		
	A, r	2	4	$A, CY \leftarrow A - r$	×	×	×		
	A, saddr	2	4	$A, CY \leftarrow A - (saddr)$	×	×	×		
	A, !addr16	3	8	$A, CY \leftarrow A - (addr16)$	×	×	×		
	A, [HL]	1	6	$A, CY \leftarrow A - (HL)$	×	×	×		
	A, [HL + byte]	2	6	A, CY ← A − (HL + byte)	×	×	×		
SUBC	A, #byte	2	4	A, CY ← A – byte – CY	×	×	×		
	saddr, #byte	3	6	(saddr), CY ← (saddr) – byte – CY	×	×	×		
	A, r	2	4	$A, CY \leftarrow A - r - CY$	×	×	×		
	A, saddr	2	4	$A, CY \leftarrow A - (saddr) - CY$	×	×	×		
	A, !addr16	3	8	$A, CY \leftarrow A - (addr16) - CY$	×	×	×		
	A, [HL]	1	6	$A, CY \leftarrow A - (HL) - CY$	×	×	×		
	A, [HL + byte]	2	6	A, CY ← A − (HL + byte) − CY	×	×	×		

Note Only when rp = BC, DE, HL

Remark One clock of an instruction is one clock of the CPU clock (fcpu) selected using the processor clock control register (PCC).

Maamania	Operand	Duton	Clock	Operation	Flags
Mnemonic	Operand	Bytes	CIOCK		Z AC C
AND	A, #byte	2	4	$A \leftarrow A \land byte$	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \land byte$	×
	A, r	2	4	$A \leftarrow A \wedge r$	×
	A, saddr	2	4	$A \leftarrow A \wedge (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \wedge (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \land (HL)$	×
	A, [HL + byte]	2	6	$A \leftarrow A \wedge (HL + byte)$	×
OR	A, #byte	2	4	$A \leftarrow A \lor byte$	×
	saddr, #byte	3	6	$(saddr) \leftarrow (saddr) \lor byte$	×
	A, r	2	4	$A \leftarrow A \lor r$	×
	A, saddr	2	4	$A \leftarrow A \lor (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×
	A, [HL + byte]	2	6	A ← A ∨ (HL + byte)	×
XOR	A, #byte	2	4	$A \leftarrow A + byte$	×
	saddr, #byte	3	6	(saddr) ← (saddr) → byte	×
	A, r	2	4	$A \leftarrow A \vee r$	×
	A, saddr	2	4	$A \leftarrow A \vee (saddr)$	×
	A, !addr16	3	8	$A \leftarrow A \lor (addr16)$	×
	A, [HL]	1	6	$A \leftarrow A \lor (HL)$	×
	A, [HL + byte]	2	6	A ← A → (HL + byte)	×
CMP	A, #byte	2	4	A – byte	× × >
	saddr, #byte	3	6	(saddr) – byte	× × >
	A, r	2	4	A – r	× × >
	A, saddr	2	4	A – (saddr)	× × >
	A, !addr16	3	8	A – (addr16)	× × >
	A, [HL]	1	6	A – (HL)	× × >
	A, [HL + byte]	2	6	A – (HL + byte)	× × >
ADDW	AX, #word	3	6	$AX, CY \leftarrow AX + word$	× × >
SUBW	AX, #word	3	6	$AX, CY \leftarrow AX - word$	× × >
CMPW	AX, #word	3	6	AX – word	× × >
INC	r	2	4	r ← r + 1	××
	saddr	2	4	(saddr) ← (saddr) + 1	××
DEC	r	2	4	r ← r– 1	××
	saddr	2	4	(saddr) ← (saddr) – 1	××

Remark One clock of an instruction is one clock of the CPU clock (fcpu) selected using the processor clock control register (PCC).

Mnemonic	Onemand	Dutas	Clask	Onesation	Flags		
<u> </u>		Bytes	Clock	Operation	Z	AC	CY
INCW	rp	1	4	rp ← rp + 1			
DECW	rp	1	4	$rp \leftarrow rp - 1$			
ROR	A, 1	1	2	$(CY,A_7 \leftarrow A_0,A_{m\text{-}1} \leftarrow A_m) \times 1$			×
ROL	A, 1	1	2	$(CY,A_0\leftarrow A_7,A_{m+1}\leftarrow A_m)\times 1$			×
RORC	A, 1	1	2	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m\text{-}1} \leftarrow A_m) \times 1$			×
ROLC	A, 1	1	2	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$			×
SET1	saddr.bit	3	6	(saddr.bit) ← 1			
	sfr.bit	3	6	sfr.bit ← 1			
	A.bit	2	4	A.bit ← 1			
	PSW.bit	3	6	PSW.bit ← 1	×	×	×
	[HL].bit	2	10	(HL).bit ← 1			
CLR1	saddr.bit	3	6	(saddr.bit) ← 0			
	sfr.bit	3	6	$sfr.bit \leftarrow 0$			
	A.bit	2	4	A.bit ← 0			
	PSW.bit	3	6	PSW.bit ← 0	×	×	×
	[HL].bit	2	10	(HL).bit ← 0			
SET1	CY	1	2	CY ← 1			1
CLR1	CY	1	2	CY ← 0			0
NOT1	CY	1	2	$CY \leftarrow \overline{CY}$			×
CALL	!addr16	3	6	$(SP-1) \leftarrow (PC+3)$ H, $(SP-2) \leftarrow (PC+3)$ L, $PC \leftarrow addr16$, $SP \leftarrow SP-2$			
CALLT	[addr5]	1	8	$(SP - 1) \leftarrow (PC + 1)_H, (SP - 2) \leftarrow (PC + 1)_L,$ $PC_H \leftarrow (00000000, addr5 + 1)$ $PC_L \leftarrow (00000000, addr5)$ $SP \leftarrow SP - 2$			
RET		1	6	$PC_H \leftarrow (SP + 1), PC_L \leftarrow (SP),$ $SP \leftarrow SP + 2$			
RETI		1	8	$\begin{aligned} & PCH \leftarrow (SP+1), PCL \leftarrow (SP), \\ & PSW \leftarrow (SP+2), SP \leftarrow SP+3, \\ & NMIS \leftarrow 0 \end{aligned}$	R	R	R
PUSH	PSW	1	2	(SP − 1) ← PSW, SP ← SP − 1			
	rp	1	4	$(SP-1) \leftarrow rp_H, (SP-2) \leftarrow rp_L,$ $SP \leftarrow SP-2$			
POP	PSW	1	4	PSW ← (SP), SP ← SP + 1	R	R	R
	гр	1	6	$rp_H \leftarrow (SP + 1), rp_L \leftarrow (SP),$ $SP \leftarrow SP + 2$			
MOVW	SP, AX	2	8	$SP \leftarrow AX$			
	AX, SP	2	6	AX ← SP			

Remark One clock of an instruction is one clock of the CPU clock (fcpu) selected using the processor clock control register (PCC).

Mananania	Onemand	Distan	Clock	Oncorption	Flags
Mnemonic	Operand	Bytes	Clock	Operation	Z AC CY
BR	!addr16	3	6	PC ← addr16	
	\$addr16	2	6	PC ← PC + 2 + jdisp8	
	AX	1	6	$PCH \leftarrow A, PCL \leftarrow X$	
ВС	\$addr16	2	6	PC ← PC + 2 + jdisp8 if CY = 1	
BNC	\$addr16	2	6	PC ← PC + 2 + jdisp8 if CY = 0	
BZ	\$addr16	2	6	PC ← PC + 2 + jdisp8 if Z = 1	
BNZ	\$addr16	2	6	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$	
ВТ	saddr.bit, \$saddr16	4	10	PC ← PC + 4 + jdisp8 if (saddr. bit) = 1	
	sfr.bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if sfr. bit = 1	
	A.bit, \$saddr16	3	8	PC ← PC + 3 + jdisp8 if A. bit = 1	
	PSW.bit \$addr16	4	10	PC ← PC + 4 + jdisp8 if PSW. bit = 1	
BF	saddr.bit, \$addr16	4	10	$PC \leftarrow PC + 4 + jdisp8$ if (saddr. bit) = 0	
	sfr.bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if sfr. bit = 0	
	A.bit, \$addr16	3	8	PC ← PC + 3 + jdisp8 if A. bit = 0	
	PSW.bit, \$addr16	4	10	PC ← PC + 4 + jdisp8 if PSW. bit = 0	
DBNZ	B, \$addr16	2	6	$B \leftarrow B - 1$, then PC \leftarrow PC + 2 + jdisp8 if B \neq 0	
	C, \$addr16	2	6	$C \leftarrow C - 1$, then $PC \leftarrow PC + 2 + jdisp8$ if $C \neq 0$	
	saddr, \$addr16	3	8	$(saddr) \leftarrow (saddr) - 1$, then PC \leftarrow PC + 3 + jdisp8 if $(saddr) \neq 0$	
NOP		1	2	No Operation	
El		3	6	IE ← 1 (Enable Interrupt)	
DI		3	6	IE ← 0 (Disable Interrupt)	
HALT		1	2	Set HALT Mode	
STOP		1	2	Set Stop Mode	

Remark One clock of an instruction is one clock of the CPU clock (fcPu) selected using the processor clock control register (PCC).

11. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol		Conditions	Ratings	Unit
Supply voltage	V _{DD}	AV _{DD} − 0.3 V ≤ V _D	$DD \leq AVDD + 0.3 V$	-0.3 to +6.5	V
	AV _{DD}	$AV_{REF} \leq AV_{DD} + 0$.	3 V		V
	AVREF	AVREF ≤ VDD + 0.3	$AV_{REF} \le V_{DD} + 0.3 V$		V
Input voltage	VII	Pins other than P	50 to P53, P23, P24	-0.3 to V _{DD} + 0.3	V
	V ₁₂ P23, P24		-0.3 to +5.5	V	
	Vıз	P50 to P53	N-ch open drain	-0.3 to +13	V
			On-chip pull-up resistor	-0.3 to V _{DD} + 0.3	V
Output voltage	Vo			-0.3 to V _{DD} + 0.3	V
Output current, high	gh I _{OH} Per pin μ PD78916x, 78917x,		μ PD78916x, 78917x,	-10	mA
		Total for all pins	78916xY, 78917xY	-30	mA
		Per pin	μPD78916x(A),	-7	mA
		Total for all pins	78917x(A), 78916xY(A), 78917xY(A)	-22	mA
Output current, low	lou	Per pin	μ PD78916x, 78917x,	30	mA
		Total for all pins	78916xY, 78917xY	160	mA
		Per pin	μPD78916x(A),	10	mA
		Total for all pins	78917x(A), 78916xY(A), 78917xY(A)	120	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

★ Main System Clock Oscillator Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic		Oscillation frequency (fx) ^{Note 1}	V _{DD} = 4.5 to 5.5 V	1.0		10.0	MHz
resonator	Vsso X1 X2		V _{DD} = 3.0 to 5.5 V	1.0		6.0	MHz
	│ ┊│ │ □ │ ┆		V _{DD} = 1.8 to 5.5 V	1.0		5.0	MHz
	C1 + C2 +	Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms
Crystal	Lv., va vol	Oscillation frequency (fx) ^{Note 1}	V _{DD} = 4.5 to 5.5 V	1.0		10.0	MHz
resonator	Vsso X1 X2		V_{DD} = 3.0 to 5.5 V	1.0		6.0	MHz
	 		V _{DD} = 1.8 to 5.5 V	1.0		5.0	MHz
	C1 = C2 =	Oscillation stabilization time ^{Note 2}	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$			10	ms
	777		V _{DD} = 1.8 to 5.5 V			30	ms
External		X1 input frequency (fx) ^{Note 1}	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	1.0		10.0	MHz
clock	X1 X2		V_{DD} = 3.0 to 5.5 V	1.0		6.0	MHz
			V _{DD} = 1.8 to 5.5 V	1.0		5.0	MHz
	X	X1 input high-/low-level width	V _{DD} = 4.5 to 5.5 V	45		500	ns
	\rightarrow	(txH, txL)	V _{DD} = 3.0 to 5.5 V	75		500	ns
			V _{DD} = 1.8 to 5.5 V	85		500	ns
	X1 X2	X1 input frequency (fx) ^{Note 1}	V _{DD} = 2.7 to 5.5 V	1.0		5.0	MHz
	OPEN	X1 input high-/low-level width (txH, txL)	V _{DD} = 2.7 to 5.5 V	85		500	ns

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- 2. Time required to stabilize oscillation after reset or STOP mode release. Use a resonator that stabilizes oscillation within the oscillation wait time.
- Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vsso.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - · Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	ICOXT1 XT2	Oscillation frequency $(f_{XT})^{Note 1}$		32	32.768	35	kHz
	C3 = C4 =	Oscillation stabilization time Note 2	V _{DD} = 4.5 to 5.5 V		1.2	2	s
	', 		V _{DD} = 1.8 to 5.5 V			10	s
External clock	XT1 XT2	XT1 input frequency (f _{XT}) ^{Note 1}		32		35	kHz
	4	XT1 input high-/low-level width (txth, txtl)		14.3		15.6	μs

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - **2.** Time required to stabilize oscillation after reset or STOP mode release. Use a resonator that stabilizes oscillation within the oscillation wait time.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - . Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vsso.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - · Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics ($T_A = -40$ °C to +85°C, $V_{DD} = 1.8$ to 5.5 V) (1/3)

Parameter	Symbol			Cond	litions	MIN.	TYP.	MAX.	Unit	
Output current,	Іон	Per pin		μ PD78	916x, 78917x, 78916xY,			-1	mA	
high		Total for all	pins	, 78917x`	·			-15	mA	
		Per pin		и PD78	916x(A), 78917x(A),			-1	mA	
		Total for all	pins	•	Y(A), 78917xY(A)			-11	mA	
Output current, low	loL	Per pin	in , PD789		916x, 78917x, 78916xY,			10	mA	
		Total for all	otal for all pins		Υ			80	mA	
		Per pin		и PD78	916x(A), 78917x(A),			3	mA	
		Total for all	pins	-	Y(A), 78917xY(A)			60	mA	
Input voltage, high	V _{IH1}	P00 to P05	, P10,	P11,	V_{DD} = 2.7 to 5.5 V	0.7 V _{DD}		V _{DD}	V	
		P60 to P67	•		V _{DD} = 1.8 to 5.5 V	0.9 V _{DD}		V _{DD}	V	
	V _{IH2}	P50 to	N-ch c	open	V _{DD} = 2.7 to 5.5 V	0.7 V _{DD}		12	V	
		P53	drain		V _{DD} = 1.8 to 5.5 V	0.9 V _{DD}		12	V	
			On-ch	ip pull-	V _{DD} = 2.7 to 5.5 V	0.7 V _{DD}		V_{DD}	V	
			up res	sistor	V _{DD} = 1.8 to 5.5 V	0.9 V _{DD}		V_{DD}	V	
	V _{IH3}	RESET,			V_{DD} = 2.7 to 5.5 V	0.8 V _{DD}		V_{DD}	V	
		P20 to P26	, P30	to P33	V _{DD} = 1.8 to 5.5 V	0.9 V _{DD}		V_{DD}	V	
	V _{IH4}	X1, X2, XT	1, XT2)	V_{DD} = 4.5 to 5.5 V	$V_{\text{DD}} - 0.5$		V_{DD}	V	
					V _{DD} = 1.8 to 5.5 V	V _{DD} - 0.1		V_{DD}	V	
Input voltage, low	V _{IL1}	P00 to P05	, P10,	P11,	V_{DD} = 2.7 to 5.5 V	0		0.3 Vdd	V	
		P60 to P67	•		V _{DD} = 1.8 to 5.5 V	0		0.1 V _{DD}	V	
	V _{IL2}	P50 to P53	}		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.3 V _{DD}	V	
					V_{DD} = 1.8 to 5.5 V	0		0.1 V _{DD}	V	
	V _{IL3}	· · · · · · · · · · · · · · · · · · ·				$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.2 V _{DD}	V
		P20 to P26, P30 to P33		to P33	V_{DD} = 1.8 to 5.5 V	0		0.1 V _{DD}	V	
	V_{IL4}	X1, X2, XT	1, XT2	2	V_{DD} = 4.5 to 5.5 V	0		0.4	V	
					V_{DD} = 1.8 to 5.5 V	0		0.1	V	
Output voltage, high	Vон	Pins other than P23,	VDD	= 4.5 to	5.5 V, Iон = –1 mA	V _{DD} - 1.0			V	
3		P24, P50 to	O VDD	= 1.8 to	5.5 V, IOH = $-100 \mu A$	V _{DD} - 0.5			V	
Output voltage, low	V _{OL1}	Pins other than P50 to P53	(μ Ε		5.5 V, lo _L = 10 mA x, 78917x, 78916xY,			1.0	V	
		(μ Ε	PD78916	5.5 V, IoL = 3 mA ((A), 78917x(A), 78917xY(A))			1.0	V		
			VDD	= 1.8 to	5.5 V, IoL = 400 μA			0.5	V	
	Vol2	Vol2 F	Vol.2 P50 to P53	(μ Ε		5.5 V, IoL = 10 mA x, 78917x, 78916xY,			1.0	V
						V _{DD} (μ F	= 4.5 to PD78916	5.5 V, loL = 3 mA x(A), 78917x(A), 78917xY(A))		
			-		5.5 V, lo _L = 1.6 mA			0.4	V	

DC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$) (2/3)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Input current leakage, high	Ішн1	$V_{I} = V_{DD}$	Pins other than P50 to P53 (N-ch opendrain) X1, X2, XT1, and XT2			3	μΑ
	I _{LIH2}		X1, X2, XT1, XT2			20	μΑ
	Ішнз	V _I = 12 V ^{Note 1}	P50 to P53 (N-ch open drain)			20	μΑ
Input current leakage, low	ILIL1	V1 = 0 V	Pins other than P50 to P53 (N-ch opendrain) X1, X2, XT1, and XT2			-3	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μΑ
	ILIL3		P50 to P53 (N-ch open drain)			-3 ^{Note 2}	μΑ
Output current leakage, high	Ісон	Vo = V _{DD}				3	μΑ
Output current leakage, low	Ісос	Vo = 0 V				-3	μΑ
Software pull-up resistor	R ₁	V _I = 0 V, for _I P53	pins other than P23, P24, and P50 to	50	100	200	kΩ
Mask option pull- up resistor	R ₂	V _I = 0 V, P50) to P53	15	30	60	kΩ

Notes 1. When pull-up resistors are not connected to P50 to P53 (specified by the mask option).

2. A low-level input leakage current of $-60~\mu\text{A}(\text{MAX.})$ flows only during the 1-cycle time after a read instruction is executed to P50 to P53 when on-chip pull-up resistors are not connected to P50 to P53 (specified by the mask option) and P50 to P53 are set to input mode. At times other than this, $-3\mu\text{A}$ (MAX.) current flows.

★ DC Characteristics ($T_A = -40$ to +85°C, $V_{DD} = 1.8$ to 5.5 V) (3/3)

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Power supply current	I _{DD1} Note 1	10.0-MHz crystal oscillation operating mode	V _{DD} = 5.0 V ± 10% Note 4		3.2	8.0	mA
		6.0-MHz crystal oscillation operating mode	V _{DD} = 5.0 V ± 10% Note 4		2.0	4.7	mA
		5.0-MHz crystal oscillation	V _{DD} = 5.0 V ± 10% Note 4		1.8	4.0	mA
		operating mode (C1 = C2 = 22pF)	V _{DD} = 3.0 V ± 10% Note 5		0.6	1.2	mA
		(01 - 02 - 22μι)	$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 5}}$		0.35	0.7	mA
	I _{DD2} Note 1	10.0-MHz crystal oscillation HALT mode	V _{DD} = 5.0 V ± 10% Note 4		1.5	3.0	mA
		6.0-MHz Crystal oscillation HALT mode	V _{DD} = 5.0 V ± 10% Note 4		0.9	1.8	mA
		5.0-MHz crystal oscillation	V _{DD} = 5.0 V ± 10% ^{Note 4}		0.75	1.5	mA
		HALT mode (C1 = C2 = 22pF)	V _{DD} = 3.0 V ± 10% Note 5		0.4	0.8	mA
		(C1 - C2 - 22pr)	V _{DD} = 2.0 V ± 10% Note 5		0.25	0.5	mA
Іррз	I _{DD3} Note 1	32.768-kHz crystal	V _{DD} = 5.0 V ± 10%		25	90	μΑ
		oscillation operating mode Note 3 (C3 = C4 = 22pF, R = 220k Ω)	V _{DD} = 3.0 V ± 10%		7.0	50	μΑ
			V _{DD} = 2.0 V ± 10%		3.5	30	μΑ
	I _{DD4} Note 1	^{e 1} 32.768-kHz crystal	V _{DD} = 5.0 V ± 10%		16	75	μΑ
		oscillation HALT mode ^{Note 3}	V _{DD} = 3.0 V ± 10%		4.5	35	μΑ
		(C3 = C4 = 22pF, R = 220k Ω)	V _{DD} = 2.0 V ± 10%		2.3	18	μΑ
	I _{DD5} Note 1	32.768-kHz crystal stop	V _{DD} = 5.0 V ± 10%		0.1	10	μΑ
		STOP mode	V _{DD} = 3.0 V ± 10%		0.05	5.0	μΑ
			V _{DD} = 2.0 V ± 10%		0.05	3.0	μΑ
	I _{DD6} Note 2	10.0-MHz crystal oscillation A/D operating mode	V _{DD} = 5.0 V ± 10% Note 4		4.0	10.0	mA
		6.0-MHz crystal oscillation A/D operating mode	V _{DD} = 5.0 V ± 10% Note 4		2.8	6.7	mA
		5.0-MHz crystal oscillation	V _{DD} = 5.0 V ± 10% Note 4		2.6	6.0	mA
		A/D operating mode (C1 = C2 = 22pF)	V _{DD} = 3.0 V ± 10% Note 4		1.4	3.2	mA
		(O1 - O2 - 22pr)	V _{DD} = 2.0 V ± 10% Note 4		1.15	2.7	mA

- **Notes 1.** The AV_{REF}ON (ADCS0 (bit 7 of ADM0; A/D converter mode register 0) = 1), AV_{DD}, and the port current (including the current flowing through the internal pull-up resistors) are not included.
 - 2. The AVREFOn (ADCS0 =1) and port current (including the current flowing through the internal pull-up resistors) are not included. Refer to the A/D converter characteristics for the current flowing through AVREF.
 - 3. When the main system clock is stopped.
 - **4.** During high-speed mode operation (when the processor clock control register (PCC) is set to 00H.)
 - **5.** During low-speed mode operation (when PCC is set to 02H)

AC Characteristics

(1) Basic operation ($T_A = -40$ °C to +85°C, $V_{DD} = 1.8$ to 5.5 V)

	Parameter	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
*	Cycle time	Тсч	Operation based on the	V _{DD} = 4.5 to 5.5 V	0.2		8	μs
	(minimum instruction		main system clock	V _{DD} = 3.0 to 5.5 V	0.33		8	μs
	execution time)			V _{DD} = 2.7 to 5.5 V	0.4		8	μs
				V _{DD} = 1.8 to 5.5 V	1.6		8	μs
			Operation based on the su	ıbsystem clock	114	122	125	μs
	TI80 and TI81 input	f⊤ı	V _{DD} = 2.7 to 5.5 V		0		4	MHz
	frequency		V _{DD} = 1.8 to 5.5 V		0		275	kHz
	TI80 and TI81 input	tтін, tтіL	V _{DD} = 2.7 to 5.5 V		0.1			μs
	high-/low-level width		V _{DD} = 1.8 to 5.5 V		1.8			μs
	Interrupt input high- /low-level width	tinth, tintl	INTP0 to INTP3		10			μs
	RESET input low- level width	t RSL			10			μs
	CPT90 input high- /low-level width	tсрн, tcpl			10			μs

*

Tcy vs VDD (main system clock)

(2) Serial interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) 3-wire serial I/O mode (SCK20...Internal clock)

Parameter	Symbol	Condition	ıs	MIN.	TYP.	MAX.	Unit
SCK20 cycle time	tkcY1	V _{DD} = 2.7 to 5.5 V		800			ns
		V _{DD} = 1.8 to 5.5 V		3200			ns
SCK20 high-/low-	t KH1, t KL1	V _{DD} = 2.7 to 5.5 V		tkcy1/2-50			ns
level width		V _{DD} = 1.8 to 5.5 V		tkcy1/2-150			ns
SI20 setup time	t sıkı	V _{DD} = 2.7 to 5.5 V		150			ns
(to SCK20 ↑)		V _{DD} = 1.8 to 5.5 V		500			ns
SI20 hold time	t KSI1	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK20 ↑)		V _{DD} = 1.8 to 5.5 V		600			ns
SO20 output delay	t ks01	R = 1 kΩ,	V _{DD} = 2.7 to 5.5 V	0		250	ns
time from SCK20↓		C = 100 pF ^{Note}	V _{DD} = 1.8 to 5.5 V	0		1000	ns

Note R and C are the load resistance and load capacitance of the SO20 output line.

(b) 3-wire serial I/O mode (SCK20...External clock)

Parameter	Symbol	Col	nditions	MIN.	TYP.	MAX.	Unit
SCK20 cycle time	tkcy2	V _{DD} = 2.7 to 5.5 V		900			ns
		V _{DD} = 1.8 to 5.5 V		3500			ns
SCK20 high-/low-	t KH2, t KL2	V _{DD} = 2.7 to 5.5 V		400			ns
level width		V _{DD} = 1.8 to 5.5 V		1600			ns
SI20 setup time	tsık2	V _{DD} = 2.7 to 5.5 V		100			ns
(to SCK20 ↑)		V _{DD} = 1.8 to 5.5 V	/ _{DD} = 1.8 to 5.5 V				ns
SI20 hold time	t _{KSI2}	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
(from SCK20 ↑)		V _{DD} = 1.8 to 5.5 V		600			ns
SO20 output delay	tkso2	R = 1 kΩ,	V _{DD} = 2.7 to 5.5 V	0		300	ns
time from SCK20 \downarrow		C = 100 pF ^{Note}	V _{DD} = 1.8 to 5.5 V	0		1000	ns
SO20 setup time	tkas2	V _{DD} = 2.7 to 5.5 V	•			120	ns
(when using SS20, to $\overline{\text{SS20}}\downarrow$)		V _{DD} = 1.8 to 5.5 V				400	ns
SO20 disable time	tkDS2	V _{DD} = 2.7 to 5.5 V				240	ns
(when using SS20, from SS20 ↑)		V _{DD} = 1.8 to 5.5 V				800	ns

Note R and C are the load resistance and load capacitance of the SO20 output line.

(c) UART mode (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		V _{DD} = 2.7 to 5.5 V			78125	bps
		V _{DD} = 1.8 to 5.5 V			19531	bps

(d) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK20 cycle	t KCY3	V _{DD} = 2.7 to 5.5 V	900			ns
time		V _{DD} = 1.8 to 5.5 V	3500			ns
ASCK20 high-/low-	t кнз, t к∟з	V _{DD} = 2.7 to 5.5 V	400			ns
level width		V _{DD} = 1.8 to 5.5 V	1600			ns
Transfer rate		V _{DD} = 2.7 to 5.5 V			39063	bps
		V _{DD} = 1.8 to 5.5 V			9766	bps
ASCK20 rise time, fall time	tr, tr				1	μs

(3) Serial interface SMB0 (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V) (μ PD78916xY, 78917xY, 78916xY(A), 78917xY(A) only)

(a) DC Characteristics

Parameter Input voltage, high	Symbol V _{IH}		Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Viu						
	VIII	SCL0, SDA0	V _{DD} = 2.7 to 5.5 V	0.8 V _{DD}		V _{DD}	V
		(at hysteresis)	V _{DD} = 1.8 to 5.5 V	0.9 V _{DD}		V _{DD}	V
Input voltage, low	VIL	SCL0, SDA0	V _{DD} = 2.7 to 5.5 V	0		0.2 V _{DD}	V
		(at hysteresis)	V _{DD} = 1.8 to 5.5 V	0		0.1 V _{DD}	V
Output voltage,	Vol	SCL0, SDA0	V _{DD} = 4.5 to 5.5 V, I _{OL} = 10 mA			1.0	V
high			(μPD78916xY, 78917xY)				
			V_{DD} = 4.5 to 5.5 V, I_{OL} = 3 mA			1.0	V
			(μPD78916xY(A), 78917xY(A))				
			V_{DD} = 1.8 to 5.5 V, I_{OL} = 400 μ A			0.5	V
Input current	Інн	SCL0, SDA0	$V_{I} = V_{DD}$			3	μΑ
leakage, high							
Input current	LIL	SCL0, SDA0	V _I = 0 V			-3	μΑ
	Output voltage, high Input current leakage, high	Output voltage, high Input current leakage, high Input current leukage.	Output voltage, high Input current leakage, high (at hysteresis) SCL0, SDA0 SCL0, SDA0	$(at \ hysteresis) \hline V_{DD} = 1.8 \ to \ 5.5 \ V \\ Output \ voltage, \\ high \hline V_{DL} & SCL0, SDA0 \\ \hline V_{DD} = 4.5 \ to \ 5.5 \ V, \ I_{OL} = 10 \ mA \\ (\mu PD78916xY, 78917xY) \\ \hline V_{DD} = 4.5 \ to \ 5.5 \ V, \ I_{OL} = 3 \ mA \\ (\mu PD78916xY(A), 78917xY(A)) \\ \hline V_{DD} = 1.8 \ to \ 5.5 \ V, \ I_{OL} = 400 \ \mu \ A \\ \hline Input \ current \\ Ieakage, \ high \hline Input \ current \\ $	$ (at \ hysteresis) \hline V_{DD} = 1.8 \ to \ 5.5 \ V \\ O \\$	(at hysteresis) VDD = 1.8 to 5.5 V Output voltage, high VDD = 4.5 to 5.5 V, IDL = 10 mA (μPD78916xY, 78917xY) (μPD78916xY, 78917xY(A)) VDD = 4.5 to 5.5 V, IDL = 3 mA (μPD78916xY(A), 78917xY(A)) VDD = 1.8 to 5.5 V, IDL = 400 μ A VI Input current leakage, high ILIH SCL0, SDA0 VI = VDD Input current ILIL SCL0, SDA0 VI = 0 V	(at hysteresis) VoD = 1.8 to 5.5 V 0 0.1 VoD Output voltage, high VoL SCL0, SDA0 VoD = 4.5 to 5.5 V, loL = 10 mA 1.0 VDD = 4.5 to 5.5 V, loL = 3 mA 1.0 (μPD78916xY(A), 78917xY(A)) VDD = 1.8 to 5.5 V, loL = 400 μ A 0.5 Input current leakage, high LIL SCL0, SDA0 VI = VDD 3 Input current ILIL SCL0, SDA0 VI = 0 V -3

(b) DC Characteristics (When using comparator)

(B) DO GHAIR	otor lotico	(Whom doing comparator)				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input range	V _{SDA} , V _{SCL}	V _{DD} = 1.8 to 5.5 V	0		5.5	V
Transfer level	VISDA,	4.5 ≤ V _{DD} ≤ 5.5 V	0.72 VISMB	VISMB	1.28 VISMB	٧
	Viscl	3.3 ≤ V _{DD} < 4.5 V	0.78 VISMB	VISMB	1.22 VISMB	V
		2.7 ≤ V _{DD} < 3.3 V	0.75 VISMB	VISMB	1.25 VISMB	V
		1.8 ≤ V _{DD} < 2.7 V	0.90 VISMB	VISMB	1.45 VISMB	V
Input level	VISMB	LVL01, LVL00 = 0, 1		0.25×V _{DD}		V
hreshold value		LVL01, LVL00 = 1, 0		0.375×V _{DD}		V
		LVL01, LVL00 = 1, 1		$0.5 \times V_{DD}$		V

Note VISMB is an input level threshold value selected by bits LVL00 and LVL01 (bits 0 and 1 of SMB input level setting register 0 (SMBVI0)).

According to the SMB standard (V1.1), the maximum value of low-level input voltage is 0.8 V, and the minimum value of high-level input voltage, 2.1 V. To satisfy these conditions, set LVL01 and LVL00 as follows;

- When V_{DD} = 1.8 to 3.3 V: LVL01, LVL00 = 1, 1 (0.5 × V_{DD})
- \bullet When V_{DD} = 3.3 to 4.5 V: LVL01, LVL00 = 1, 0 (0.375 \times V_{DD})
- When $V_{DD} = 4.5$ to 5.5 V: LVL01, LVL00 = 0, 1 (0.25 × V_{DD})

"LVL01, LVL00 = 0, 0" is not available since this setting does not satisfy the SMB standard (V1.1).

(c) AC Characteristics

Parameter		Symbol	SMB	Mode	Standard Mode I ² C Bus		High-speed Mode I ² C Bus		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCL0 clock	r frequency	fclk	10	100	0	100	0	400	kHz
Bus free tir	ne	t BUF	4.7	_	4.7	_	1.3	_	μs
,	top and start condition)								
Hold time ^N	ote1	thd:STA	4.0	_	4.0	_	0.6	_	μs
Start/resta	t condition setup time	tsu:sta	4.7	_	4.7		0.6	-	μs
Stop condi	tion setup time	tsu:sто	4.0	_	4.0	-	0.6	-	μs
Data hold	When using CBUS- compatible master	thd:dat	-	-	5	_	_	-	μs
	When using SMB/IIC bus		300	-	_	_	0 ^{Note 2}	900 ^{Note 3}	ns
Data setup	time	tsu:dat	250	_	250	-	100 ^{Note 4}	-	ns
SCL0 clock	c low-level width	tLOW	4.7	_	4.7	-	1.3	-	μs
SCL0 clock	k high-level width	t HIGH	4.0	50	4.0		0.6	-	μs
SCL0 and	SDA0 signal fall time	tr	-	300	-	300		300	ns
SCL0 and	SDA0 signal rise time	t R	ı	1000	-	1000	-	300	ns
Spike pulse width controlled by input filter		tsp	_	_	-	_	0	50	ns
Timeout		tтімеоит	25	35	_	-	-	-	ms
Total extended time of SCL0 clock low-level period (slave)		tlow:sext	_	25	_	_	_	_	ms
Total extended time of cumulative clock low-level period (master)		tlow:mext	-	10	-	-	-	_	ms
Capacitive	load per each bus line	Cb	_	_	_	400	_	400	pF

Notes 1. In the start condition, the first clock pulse is generated after this hold time.

- 2. To fill in the undefined area of the SCL0 falling edge, it is necessary for the device to internally provide at least 300 ns of hold time for the SDA0 signal (which is VIHmin. of the SCL0 signal).
- **3.** If the device does not extend the SCL0 signal low hold time (tLow), only maximum data hold time thd:dat needs to be fulfilled.
- **4.** The high-speed mode I²C bus is available in the SMB mode and the standard mode I²C bus system. At this time, the conditions described below must be satisfied.

If the device extends the SCL0 signal low state hold time

 $t_{\text{SU:DAT}} \ge 250 \text{ ns}$

If the device extends the SCL0 signal low state hold time

Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released ($t_{Rmax.}$ + $t_{SU:DAT}$ = 1000 + 250 = 1250 ns by the SMB mode or the standard mode I^2C bus specification).

AC Timing Measurement Points (excluding the X1 and XT1 inputs)

Clock Timing

TI Timing

Interrupt Input Timing

RESET Input Timing

CPT90 Input Timing

Serial Transfer Timing

3-wire serial I/O mode:

Remark m = 1, 2

3-wire serial I/O mode (when using SS20):

UART mode (external clock input):

SMB mode:

8-Bit A/D Converter Characteristics (µPD78916x, 78916xY, 78916x(A), 78916xY(A))

(Ta = -40 to +85°C, 1.8 \leq AVREF \leq AVDD = VDD \leq 5.5 V, AVss = Vss = 0 V)

	<u> </u>		, , , , , , , , , , , , , , , , , , ,				
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Resolution			8	8	8	bit
	Overall error Note		$2.7 \le AV_{REF} \le AV_{DD} \le 5.5 V$		±0.4	±0.6	%FSR
			1.8 ≤ AV _{REF} ≤ AV _{DD} ≤ 5.5 V		±0.8	±1.2	%FSR
*	Conversion time	tconv	4.5 ≤ AV _{REF} ≤ AV _{DD} ≤ 5.5 V	12		100	μs
			$2.7 \le AV_{REF} \le AV_{DD} \le 5.5 V$	14		100	μs
			1.8 ≤ AV _{REF} ≤ AV _{DD} ≤ 5.5 V	28		100	μs
	Analog input voltage	VIAN		0		AVREF	V
	Reference voltage	AVREF		1.8		AV _{DD}	V
	Resistance between AVREF and AVSS	Radref		20	40		kΩ

Note Excludes quantization error (±0.2%FSR).

Remark FSR: Full scale range

10-Bit A/D Converter Characteristics (μ PD78917x, 78917xY, 78917xY(A), 78917xY(A)) (T_A = -40 to +85°C, 1.8 \leq AV_{REF} \leq AV_{DD} = V_{DD} \leq 5.5 V, AV_{SS} = V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			10	10	10	bit
Overall error Note		$4.5 \text{ V} \le \text{AV}_{\text{REF}} \le \text{AV}_{\text{DD}} \le 5.5 \text{ V}$		±0.2	±0.4	%FSR
		$2.7 \text{ V} \le \text{AV}_{\text{REF}} \le \text{AV}_{\text{DD}} \le 5.5 \text{ V}$		±0.4	±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}$		±0.8	±1.2	%FSR
Conversion time	tconv	$4.5 \text{ V} \le \text{AV}_{\text{REF}} \le \text{AV}_{\text{DD}} \le 5.5 \text{ V}$	12		100	μs
		$2.7 \text{ V} \le \text{AV}_{\text{REF}} \le \text{AV}_{\text{DD}} \le 5.5 \text{ V}$	14		100	μs
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}$	28		100	μs
Zero-scale error Note		$4.5 \text{ V} \le \text{AV}_{\text{REF}} \le \text{AV}_{\text{DD}} \le 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \le \text{AV}_{\text{REF}} \le \text{AV}_{\text{DD}} \le 5.5 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}$			±1.2	%FSR
Full-scale error Note		$4.5 \text{ V} \le \text{AV}_{\text{REF}} \le \text{AV}_{\text{DD}} \le 5.5 \text{ V}$			±0.4	%FSR
		$2.7 \text{ V} \le \text{AV}_{\text{REF}} \le \text{AV}_{\text{DD}} \le 5.5 \text{ V}$			±0.6	%FSR
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}$			±1.2	%FSR
Integral linearity	INL	$4.5 \text{ V} \le \text{AV}_{\text{REF}} \le \text{AV}_{\text{DD}} \le 5.5 \text{ V}$			±2.5	LSB
Note error		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}$			±4.5	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}$			±8.5	LSB
Differential linearity	DNL	$4.5 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}$			±1.5	LSB
error Note		$2.7 \text{ V} \le \text{AV}_{\text{REF}} \le \text{AV}_{\text{DD}} \le 5.5 \text{ V}$			±2.0	LSB
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{AV}_{\text{DD}} \leq 5.5 \text{ V}$			±3.5	LSB
Analog input voltage	VIAN		0		AVREF	V
Reference voltage	AVREF		1.8		AVDD	V
Resistance between AVREF and AVSS	Rairef		20	40		kΩ

Note Excludes quantization error (±0.05%FSR).

Remark FSR: Full scale range

Data Memory Stop Mode Low Power Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		1.8		5.5	٧
Release signal set time	tsrel		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁵ /fx		s
wait time ^{Note 1}		Release by interrupt request		Note 2		s

- **Notes 1.** The oscillation stabilization time is the time the CPU operation is stopped to prevent unstable operation when oscillation starts.
 - **2.** By using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS), $2^{12}/fx$, $2^{15}/fx$, or $2^{17}/fx$ can be selected.

Remark fx: Main system clock oscillation frequency

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

12. CHARACTERISTICS CURVES

13. PACKAGE DRAWING

44 PIN PLASTIC QFP (10x10)

NOTE

Each lead centerline is located within 0.16 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	12.0±0.2
В	10.0±0.2
С	10.0±0.2
D	12.0±0.2
F	1.0
G	1.0
Н	$0.37 ^{+0.08}_{-0.07}$
- 1	0.2
J	0.8 (T.P.)
K	1.0±0.2
L	0.5
М	$0.17 ^{+0.03}_{-0.06}$
N	0.10
Р	1.4±0.05
Q	0.1±0.05
R	3°+4° -3°
S	1.6 MAX.
U	0.6±0.15
	S44GB-80-8ES-1

48-PIN PLASTIC TQFP (FINE PITCH) (7x7)

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	9.0±0.2
В	7.0±0.2
С	7.0±0.2
D	9.0±0.2
F	0.75
G	0.75
Н	$0.22^{+0.05}_{-0.04}$
I	0.10
J	0.5 (T.P.)
K	1.0±0.2
L	0.5±0.2
М	$0.17^{+0.03}_{-0.07}$
N	0.08
Р	1.0±0.1
Q	0.1±0.05
R	3°+4° -3°
S	1.27 MAX.
	D4004 F0 0F1

P48GA-50-9EU

14. RECOMMENDED SOLDERING CONDITIONS

The μ PD78916x, 78917x, 78916xY, 78917xY, 78916x(A), 78917x(A), 78916xY(A), and 78917xY(A) should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 14-1. Surface Mounting Type Soldering Conditions (1/2)

```
μPD789166GB-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789167GB-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789176GB-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789177GB-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789166YGB-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789167YGB-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789176YGB-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789177YGB-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789166GB(A)-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789176GB(A)-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789176GB(A)-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789177GB(A)-xx-8ES: 44-pin plastic LQFP (10 x 10 mm) μPD789177GB(A)-xx-8ES: 44-pin plastic LQFP (10 x 10 mm)
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Twice or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Twice or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Table 14-1. Surface Mounting Type Soldering Conditions (2/2)

```
\muPD789166YGA-\times\times-9EU: 48-pin plastic TQFP (7 × 7 mm) \muPD789167YGA-\times\times-9EU: 48-pin plastic TQFP (7 × 7 mm) \muPD789176YGA-\times\times-9EU: 48-pin plastic TQFP (7 × 7 mm) \muPD789177YGA-\times\times-9EU: 48-pin plastic TQFP (7 × 7 mm) \muPD789166YGA(A)-\times\times-9EU: 48-pin plastic TQFP (7 × 7 mm) \muPD789167YGA(A)-\times\times-9EU: 48-pin plastic TQFP (7 × 7 mm) \muPD789176YGA(A)-\times\times-9EU: 48-pin plastic TQFP (7 × 7 mm) \muPD789177YGA(A)-\times\times-9EU: 48-pin plastic TQFP (7 × 7 mm)
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Twice or less, Number of days:3 ^{Note} (After that, prebaking is necessary at 125°C for 10 hours)	IR35-103-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Twice or less, Number of days:3 (After that, prebaking is necessary at 125°C for 10 hours)	VP15-103-2
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	-

Note The number of days for storage at 25°C, 65% RH MAX after the dry pack has been opened.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for developing systems using the μ PD78916x, 78917x, 78916xY, 78917xY, 78916x(A), 78917x(A), 78916xY(A), and 78917xY(A).

Language Processing Software

RA78K0S ^{Notes 1, 2, 3}	Assembler package common to 78K/0S Series
CC78K0S ^{Notes 1, 2, 3}	C compiler package common to 78K/0S Series
DF789177 ^{Notes 1, 2, 3}	Device file for μ PD78916x, 78917x, 78916xY, 78917xY, 78916x(A), 78917x(A), 78916xY(A), and 78917xY(A)
CC78K0S-L ^{Notes 1, 2, 3}	C compiler library source file common to 78K/0S Series

Flash Memory Writing Tools

Flashpro III (Part No.: FL-PR3 ^{Note 4} , PG-FP3)	Flash programmer dedicated for on-chip flash memory microcontrollers
FA-44GB-8ES ^{Note 4}	Flash memory programming adapter for 44-pin plastic LQFP (GB-8ES type)
FA-48GA	Flash memory programming adapter for 48-pin plastic TQFP (fine pitch) (GA-9EU type)

★ Debugging Tools (1/2)

IE-78K0S-NS In-circuit emulator		In-circuit emulator used to debug hardware or software when application systems which use the 78K/0S Series are developed. The IE-78K0S-NS supports an integrated debugger (ID78K0S-NS). The IE-78K0S-NS is used in combination with an interface adapter for connection to an AC adapter, emulation probe, or host machine.
IE-78K0S-NS-A In-circuit emulator		The debugging function is enhanced by the addition of a coverage function and the tracer function and timer function are also enhanced.
IE-70000-MC-PS-B AC adapter		Adapter used to supply power from a 100- to 240-V AC outlet
IE-70000-98-IF-C Interface adapter		Adapter required when using the PC-9800 series (excluding notebook PCs) as the host machine (C bus supported)
IE-70000-CD-IF-A PC card/interface		PC card and interface cable required when using a notebook PC as the host machine (PCMCIA socket supported)
IE-70000-PC-IF-C Interface adapter		Adapter required when using an IBM PC/AT TM or compatible as the host machine (ISA bus supported)
IE-70000-PCI-IF-A Interface adapter		Adapter required when using a PC equipped with a PCI bus as the host machine
IE-789177-NS-EM1 Emulation board		Emulation board used to emulate the peripheral hardware specific to the device. This is used in combination with the in-circuit emulator.
NP-44GB-TQ ^{Note 4} Emulation probe		Board to connect an in-circuit emulator to the target system. This is used in combination with the TGB-044SAP.
·	TGB-044SAP ^{Note 5} conversion socket	Conversion socket to connect the target system board on which a 44-pin plastic LQFP can be mounted and the NP-44GB-TQ

★ Debugging Tools (2/2)

NP-48GA ^{Note 4} Emulation probe		Board to connect an in-circuit emulator to the target system. This is used in combination with the TGA-048SDP.
·	TGA-048SDP ^{Note 5} conversion socket	Conversion socket to connect the target system board on which a 48-pin plastic TQFP (fine pitch) can be mounted and the NP-48GA
SM78K0S ^{Notes 1, 2}		System simulator common to 78K/0S Series
ID78K0S-NS ^{Notes 1, 2}		Integrated debugger common to 78K/0S Series
DF789177 ^{Notes 1, 2}		Device file for µPD78916x, 78917x, 78916xY, 78917xY, 78916x(A), 78917x(A), 78916xY(A), and 78917xY(A)

- **Notes 1.** Based on the PC-9800 series (MS-DOSTM + WindowsTM)
 - 2. Based on IBM PC/AT and compatibles (Japanese Windows/English Windows)
 - 3. Based on the HP9000 series 700TM (HP-UXTM), and SPARCstationTM (SunOSTM, SolarisTM)
 - 4. Product made by and available from Naito Densei Machida Mfg. Co., Ltd. (+81-45-475-4191).
 - 5. Product made by TOKYO ELETECH CORPORATION.

Refer to: Daimaru Kogyo, Ltd.

Tokyo Electronic Division (+81-3-3820-7112)

Osaka Electronic Division (+81-6-6244-6672)

Remark The RA78K0S, CC78K0S, ID78K0S-NS, and SM78K0S can be used in combination with the DF789177.

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name		
μPD789166, 167, 176, 177, 166Y, 167Y, 176Y, 177Y, 166(A), 167(A), 176(A), 177(A), 166Y(A), 167Y(A), 176Y(A), 177Y(A) Data Sheet	This manual	
μPD78F9177, 78F9177Y Data Sheet	U14022E	
μPD789167, 789177, 789167Y, 789177Y Subseries User's Manual	U14186E	
78K/0S Series Instruction User's Manual	U11047E	

Document Related to Development Tools (User's Manuals)

Document	Document No.	
RA78K0S Assembler Package	Operation	U14876E
	Language	U14877E
	Structured Assembly Language	U11623E
CC78K0S C Compiler	Operation	U14871E
	Language	U14872E
SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later	Operation (Windows Based)	U14611E
SM78K Series System Simulator Ver. 2.10 or Later	External Part User Open Interface Specifications	U15006E
ID78K0-NS, ID78K0S-NS Integrated Debugger Ver. 2.20 or Later	Operation (Windows Based)	U14910E
Project Manager Ver. 3.12 or later (Windows-based)	U14610E	

Documents Related to Embedded Software (User's Manuals)

Document Name	Document No.
IE-78K0S-NS In-Circuit Emulator	U13549E
IE-78K0S-NS-A In-Circuit Emulator	U15207E
IE-789177-NS-EM1 Emulation Board	U14621E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE -Products & Packages-	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Device	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

NOTES FOR CMOS DEVICES —

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC I^2C components conveys a license under the Philips I^2C Patent Rights to use these components in an I^2C system, provided that the system conforms to the I^2C Standard Specification as defined by Philips.

FIP and EEPROM are trademarks of NEC Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Branch The Netherlands Eindhoven, The Netherlands

Tel: 040-244 58 45 Fax: 040-244 45 80

Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

Filiale Italiana
 Milano, Italy
 Tel: 02-667541
 Fax: 02-66754299

NEC Electronics (France) S.A.

Vélizy-Villacoublay, France Tel: 01-3067-58-00 Fax: 01-3067-58-99

NEC Electronics (France) S.A. Representación en España

Madrid, Spain Tel: 091-504-27-87 Fax: 091-504-28-60

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.

Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 253-8311 Fax: 250-3583

J02.3-1

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of January, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4