Università di Pisa

Corso di Scienza e Ingegneria dei Materiali -12 crediti

Corso di laurea in Ingegneria Chimica - Appello straordinario d'esame - 22-11-2021

Informazioni: questo è un esame senza consultazione di libri, appunti o altro materiale relativo al programma del corso. I calcolatori **sono** permessi ad esclusione di quelli preprogrammati a risolvere esercizi. Non è assolutamente consentito l'uso di smartphone, tablet, computer ecc., né scambiare suggerimenti o opinioni con i propri colleghi. Per i calcoli e la brutta copia sono distribuiti dal docente appositi fogli da riconsegnare alla fine della prova: non utilizzare fogli di altra provenienza. Ai trasgressori sarà immediatamente *ritirato e annullato* il compito in qualunque momento della prova. Il tempo a disposizione per la prova è di 3 ore. È consentito uscire per andare in bagno solo a partire dalla seconda ora della prova.

Verrà valutato un punteggio parziale per risposte numericamente errate ma supportate da un ragionamento corretto. Il punteggio assegnato alle domande ed esercizi è riportato in cima al testo. Per l'ammissione occorre ottenere un punteggio pari o superiore a 18, così distribuito: almeno 12 punti nella parte numerica (esercizi) ed almeno 6 in quella teorica (quesiti a risposta aperta e chiusa).

Allieva/o:

e-mail:

PUNTEGGIO	UNO	DUE	TRE	QUATTRO	TOTALE
Esercizi	/6	/5	/5	/5	/21
Domande a Risposta Aperta	/3	/3	/3	/3	/12
·	/33				

Esercizi:

Esercizio N°1

La figura seguente riporta la curva sforzo/deformazione nominale di un provino in lega di alluminio.

Valutare:

- a) Modulo Elastico.
- b) Limite di Snervamento.
- c) Carico di Rottura.
- d) Allungamento Percentuale a Rottura.
- e) Dimensione media dei bordi di grano sapendo che σ_0 = 50 MPa e k_y = 12,5 MPa · mm^{-1/2} Supponendo di dover utilizzare tale lega per realizzare un tirante lungo 3 m e che deve sostenere un peso di 20kN:
- f) Scegliere il diametro del tirante nell'ipotesi che il materiale sia soggetto ad uno sforzo inferiore alla metà dello snervamento.
- g) Valutare, infine, l'allungamento che subirà il tirante quando sarà applicato il carico.

Esercizio N°2

Per una lega carbonio-nichel con il comportamento di creep allo stato stazionario mostrato in figura:

- a) Stimare l'energia di attivazione per il creep. Utilizzare i dati rilevati a 55 MPa e temperature di 427°C e 538°C. (Assumere che l'esponente n sia indipendente dalla temperatura).
- b) Stimare la velocità di scorrimento stazionario a 922 K.

Esercizio N°3

a) Completa il diagramma Ferro-Carbonio con le parti mancanti.

- b) Considera 3,2 kg di Austenite contenente l'1,5 % di C che viene raffreddato al di sotto dell'eutettoide. Qual è la fase proeutettoide?
- c) Quantificare i chili di fase pro eutettoide che si formano (indicando quale) e i kg di ciò che si forma sotto la temperatura eutettoidica.
- d) Rappresentare schematicamente la microstruttura finale.

Esercizio N°4

Una lega di ferro-carbonio CFC contenente inizialmente lo 0,55% in peso di C è esposta ad un'atmosfera ricca di ossigeno e praticamente priva di carbonio a 1325 K. In queste circostanze il carbonio si diffonde dalla lega e reagisce alla superficie con l'ossigeno nell'atmosfera; cioè, la concentrazione di carbonio nella posizione superficiale è mantenuta essenzialmente allo 0% in peso C.

Table 5.1 Tabulation of Error Function Values

z	erf(z)	z	erf(z)	z	erf(z)
0	0	0.55	0.5633	1.3	0.9340
0.025	0.0282	0.60	0.6039	1.4	0.9523
0.05	0.0564	0.65	0.6420	1.5	0.9661
0.10	0.1125	0.70	0.6778	1.6	0.9763
0.15	0.1680	0.75	0.7112	1.7	0.9838
0.20	0.2227	0.80	0.7421	1.8	0.9891
0.25	0.2763	0.85	0.7707	1.9	0.9928
0.30	0.3286	0.90	0.7970	2.0	0.9953
0.35	0.3794	0.95	0.8209	2.2	0.9981
0.40	0.4284	1.0	0.8427	2.4	0.9993
0.45	0.4755	1.1	0.8802	2.6	0.9998
0.50	0.5205	1.2	0.9103	2.8	0.9999

a) A quale distanza dalla superficie la concentrazione di carbonio sarà dello 0,25% in peso dopo un trattamento di 10 ore? Il valore di D a 1325 K è $4.3 \cdot 10^{11}$ m²/s.

Domande a risposta aperta:

Domanda Nº1

Descrivere proprietà, applicazioni e reazione di formazione del Nylon 6,6.

Domanda N°2

Cos'è il fattore di compattazione atomico (FCA)? Calcolare FCA per celle CCC e CFC discutendo i risultati ottenuti.

Domanda N°3

Discutere come mai per i materiali ceramici si effettua la prova meccanica di flessione

Domanda N°4

Cosa sono gli indici di Miller? Descrivere la metodologia per la loro determinazione.