MathDNN Homework 11

Department of Computer Science and Engineering 2021-16988 Jaewan Park

Problem 1

(a) Since log is a concave function, using Jensen's inequality, we obtain the following.

$$VLB_{\theta,\phi}^{(K)}(x) = \mathbb{E}_{Z_1,\dots,Z_K \sim q_{\phi}(z|x)} \left[\log \frac{1}{K} \sum_{k=1}^K \frac{p_{\theta}(x \mid Z_k) p_Z(Z_k)}{q_{\phi}(Z_k \mid x)} \right]$$

$$\leq \log \left(\mathbb{E}_{Z_1,\dots,Z_K \sim q_{\phi}(z|x)} \left[\frac{1}{K} \sum_{k=1}^K \frac{p_{\theta}(x \mid Z_k) p_Z(Z_k)}{q_{\phi}(Z_k \mid x)} \right] \right)$$

$$= \log \left(\frac{1}{K} \sum_{k=1}^K \mathbb{E}_{Z_k \sim q_{\phi}(z|x)} \left[\frac{p_{\theta}(x \mid Z_k) p_Z(Z_k)}{q_{\phi}(Z_k \mid x)} \right] \right)$$

$$= \log \left(\frac{1}{K} \sum_{k=1}^K p_{\theta}(x) \right) = \log p_{\theta}(x)$$

(b) Using the given hint together with Jensen's inequality, we obtain the following.

$$\begin{aligned} \text{VLB}_{\theta,\phi}^{(K)}(x) &= \mathbb{E}_{Z_{1},\cdots,Z_{K} \sim q_{\phi}(z|x)} \left[\log \frac{1}{K} \sum_{k=1}^{K} \frac{p_{\theta}(x \mid Z_{k}) p_{Z}(Z_{k})}{q_{\phi}(Z_{k} \mid x)} \right] \\ &= \mathbb{E}_{Z_{i_{1}},\cdots,Z_{i_{M}} \sim q_{\phi}(z|x)} \left[\log \left(\mathbb{E}_{I=\{i_{1},\cdots,i_{M}\}} \left[\frac{1}{M} \sum_{m=1}^{M} \frac{p_{\theta}(x \mid Z_{i_{m}}) p_{Z}(Z_{i_{m}})}{q_{\phi}(Z_{i_{m}} \mid x)} \right] \right) \right] \\ &\geq \mathbb{E}_{Z_{i_{1}},\cdots,Z_{i_{M}} \sim q_{\phi}(z|x)} \left[\mathbb{E}_{I=\{i_{1},\cdots,i_{M}\}} \left[\log \frac{1}{M} \sum_{m=1}^{M} \frac{p_{\theta}(x \mid Z_{i_{m}}) p_{Z}(Z_{i_{m}})}{q_{\phi}(Z_{i_{m}} \mid x)} \right] \right] \\ &= \mathbb{E}_{I=\{i_{1},\cdots,i_{M}\}} \left[\mathbb{E}_{Z_{i_{1}},\cdots,Z_{i_{M}} \sim q_{\phi}(z \mid x)} \left[\log \frac{1}{M} \sum_{m=1}^{M} \frac{p_{\theta}(x \mid Z_{i_{m}}) p_{Z}(Z_{i_{m}})}{q_{\phi}(Z_{i_{m}} \mid x)} \right] \right] \\ &= \mathbb{E}_{I=\{i_{1},\cdots,i_{M}\}} \left[\text{VLB}_{\theta,\phi}^{(M)}(x) \right] = \text{VLB}_{\theta,\phi}^{(M)}(x) \end{aligned}$$

(c) We should choose q_{ϕ} powerful enough so that $q_{\phi}(Z_k \mid x) = p_{\theta}(Z_k \mid x)$ for all $k = 1, \dots, K$.

$$\begin{aligned} \text{VLB}_{\theta,\phi}^{(K)}(x) &= \mathbb{E}_{Z_1,\cdots,Z_K \sim q_{\phi}(z|x)} \left[\log \frac{1}{K} \sum_{k=1}^K \frac{p_{\theta}(x \mid Z_k) p_Z(Z_k)}{q_{\phi}(Z_k \mid x)} \right] \\ &= \mathbb{E}_{Z_1,\cdots,Z_K \sim q_{\phi}(z|x)} \left[\log \frac{1}{K} \sum_{k=1}^K \frac{p_{\theta}(x \mid Z_k) p_Z(Z_k)}{p_{\theta}(Z_k \mid x)} \right] \\ &= \mathbb{E}_{Z_1,\cdots,Z_K \sim q_{\phi}(z|x)} \left[\log \frac{1}{K} \sum_{k=1}^K p_{\theta}(x) \right] = p_{\theta}(x) \end{aligned}$$

Problem 2

(a) Since log is a concave function, using Jensen's inequality, we obtain the following.

$$\log p_{\theta}(X_{i}) = \log \left(\mathbb{E}_{Z \sim q_{\phi}(z|X_{i})} \left[\frac{p_{\theta}(X_{i} \mid Z) r_{\lambda}(Z)}{q_{\phi}(Z \mid X_{i})} \right] \right)$$

$$\geq \mathbb{E}_{Z \sim q_{\phi}(z|X_{i})} \left[\log \left(\frac{p_{\theta}(X_{i} \mid Z) r_{\lambda}(Z)}{q_{\phi}(Z \mid X_{i})} \right) \right] = \text{VLB}_{\theta,\phi,\lambda}(X_{i})$$

(b) Gradients regarding θ and λ can be easily derived as the following

$$\nabla_{\theta} \text{VLB}_{\theta,\phi,\lambda}(X_i) = \nabla_{\theta} \mathbb{E}_{Z \sim q_{\phi}(z|X_i)} \left[\log \left(\frac{p_{\theta}(X_i \mid Z) r_{\lambda}(Z)}{q_{\phi}(Z \mid X_i)} \right) \right] = \mathbb{E}_{Z \sim q_{\phi}(z|X_i)} \left[\nabla_{\theta} \log p_{\theta}(X_i \mid Z) \right]$$

$$\nabla_{\lambda} \text{VLB}_{\theta,\phi,\lambda}(X_i) = \nabla_{\lambda} \mathbb{E}_{Z \sim q_{\phi}(z|X_i)} \left[\log \left(\frac{p_{\theta}(X_i \mid Z) r_{\lambda}(Z)}{q_{\phi}(Z \mid X_i)} \right) \right] = \mathbb{E}_{Z \sim q_{\phi}(z|X_i)} \left[\nabla_{\lambda} \log r_{\lambda}(Z) \right]$$

For gradients on ϕ , we can use the log-derivative trick.

$$\begin{split} \nabla_{\phi} \text{VLB}_{\theta,\phi,\lambda}(X_{i}) &= \nabla_{\phi} \mathbb{E}_{Z \sim q_{\phi}(z|X_{i})} \bigg[\log \bigg(\frac{p_{\theta}(X_{i} \mid Z) r_{\lambda}(Z)}{q_{\phi}(Z \mid X_{i})} \bigg) \bigg] = \nabla_{\phi} \int \log \bigg(\frac{p_{\theta}(X_{i} \mid z) r_{\lambda}(z)}{q_{\phi}(z \mid X_{i})} \bigg) q_{\phi}(z \mid X_{i}) dz \\ &= \int \bigg(-\frac{\nabla_{\phi} q_{\phi}(z \mid X_{i})}{q_{\phi}(z \mid X_{i})} q_{\phi}(z \mid X_{i}) + \log \bigg(\frac{p_{\theta}(X_{i} \mid z) r_{\lambda}(z)}{q_{\phi}(z \mid X_{i})} \bigg) \nabla_{\phi} q_{\phi}(z \mid X_{i}) \bigg) dz \\ &= \int \log \bigg(\frac{p_{\theta}(X_{i} \mid z) r_{\lambda}(z)}{q_{\phi}(z \mid X_{i})} \bigg) \frac{\nabla_{\phi} q_{\phi}(z \mid X_{i})}{q_{\phi}(z \mid X_{i})} q_{\phi}(z \mid X_{i}) dz \\ &= \mathbb{E}_{Z \sim q_{\phi}(z \mid X_{i})} \bigg[\log \bigg(\frac{p_{\theta}(X_{i} \mid Z) r_{\lambda}(Z)}{q_{\phi}(Z \mid X_{i})} \bigg) \nabla_{\phi} \log q_{\phi}(Z \mid X_{i}) \bigg] \end{split}$$

(c) We can rewrite VLB as the following.

$$\begin{aligned} \text{VLB}_{\theta,\phi,\lambda}(X_i) &= \mathbb{E}_{Z \sim q_{\phi}(z|X_i)} \left[\log \left(\frac{p_{\theta}(X_i \mid Z) r_{\lambda}(Z)}{q_{\phi}(Z \mid X_i)} \right) \right] \\ &= \mathbb{E}_{Z \sim q_{\phi}(z|X_i)} [\log p_{\theta}(X_i \mid Z)] - D_{\text{KL}}(q_{\phi}(z \mid X_i) \mid\mid r_{\lambda}(z)) \end{aligned}$$

Then the first term can be calculated as

$$\begin{split} \mathbb{E}_{Z \sim q_{\phi}(z|X_{i})}[\log p_{\theta}(X_{i} \mid Z)] &= \mathbb{E}_{Z \sim \mathcal{N}(\mu_{\phi}(X_{i}), \Sigma_{\phi}(X_{i}))} \left[\log \mathcal{N}\left(f_{\theta}(Z), \sigma^{2}I\right)\right] \\ &= \mathbb{E}_{Z \sim \mathcal{N}(\mu_{\phi}(X_{i}), \Sigma_{\phi}(X_{i}))} \left[-\frac{1}{2}(X_{i} - f_{\theta}(Z))^{\mathsf{T}}\left(\sigma^{2}I\right)^{-1}(X_{i} - f_{\theta}(Z)) \right. \\ &\left. - \frac{1}{2}\log\left(\left(2\pi\right)^{k} \middle| \sigma^{2}I \middle|\right)\right] \\ &= -\frac{1}{2\sigma^{2}} \mathbb{E}_{Z \sim \mathcal{N}(\mu_{\phi}(X_{i}), \Sigma_{\phi}(X_{i}))} \left[\left\|X_{i} - f_{\theta}(Z)\right\|^{2}\right] - \frac{k}{2}\log\left(2\pi\sigma^{2}\right) \\ &= -\frac{1}{2\sigma^{2}} \mathbb{E}_{\varepsilon \sim \mathcal{N}(0, I)} \left[\left\|X_{i} - f_{\theta}\left(\mu_{\phi}(X_{i}) + \sqrt{\Sigma_{\phi}(X_{i})\varepsilon}\right)\right\|^{2}\right] - \frac{k}{2}\log\left(2\pi\sigma^{2}\right). \end{split}$$

Using the reparametrization trick simplifies the expectation term, and makes able the gradient of this

first term be directly calculated. The second term also can be calculated as the following.

$$D_{\mathrm{KL}}(q_{\phi}(z \mid X_i) \mid\mid r_{\lambda}(z)) = \frac{1}{2} \left(\mathrm{tr} \left(\mathrm{diag}(\lambda_2)^{-1} \Sigma_{\phi}(X_i) \right) + (\lambda_1 - \mu_{\phi}(X_i))^{\mathsf{T}} \mathrm{diag}(\lambda_2)^{-1} (\lambda_1 - \mu_{\phi}(X_i)) - k + \log \left(\frac{\det \left(\mathrm{diag}(\lambda_2) \right)}{\det \left(\Sigma_{\phi}(X_i) \right)} \right) \right)$$

The gradient of the second term can also be directly calculated, so we can obtain the gradients via backpropagation.

Problem 4

(a) Let $p_A = (p_{A1}, p_{A2}, p_{A3})$ and $p_B = (p_{B1}, p_{B2}, p_{B3})$. Then

$$\mathbb{E}_{p_A,p_B}[\text{points for }B] = p_{A1}p_{B2} + p_{A2}p_{B3} + p_{A3}p_{B1} - p_{A1}p_{B3} - p_{A2}p_{B1} - p_{A3}p_{B2}.$$

Suppose $p_A^* = (p_{A1}^*, p_{A2}^*, p_{A3}^*), p_B^* = (p_{B1}^*, p_{B2}^*, p_{B3}^*)$ is the solution for the given problem. Then we have

$$\begin{aligned} p_{A1}^* p_{B2} + p_{A2}^* p_{B3} + p_{A3}^* p_{B1} - p_{A1}^* p_{B3} - p_{A2}^* p_{B1} - p_{A3}^* p_{B2} \\ & \leq p_{A1}^* p_{B2}^* + p_{A2}^* p_{B3}^* + p_{A3}^* p_{B1}^* - p_{A1}^* p_{B3}^* - p_{A2}^* p_{B1}^* - p_{A3}^* p_{B2}^* \\ & \leq p_{A1} p_{B2}^* + p_{A2} p_{B3}^* + p_{A3} p_{B1}^* - p_{A1} p_{B3}^* - p_{A2} p_{B1}^* - p_{A3} p_{B2}^*. \end{aligned}$$

for all $p_A, p_B \in \Delta^3$. If $p_A^* = p_B^* = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, all three terms are 0, so it is a solution of the problem. Now we should show that this is the only solution for the problem. Suppose $p_A^* \neq \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ and generally let $p_{A1}^* < p_{A2}^*$. Now substitute $p_A = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ and $p_B = (0, 0, 1)$, then

$$p_{A1}^*p_{B2} + p_{A2}^*p_{B3} + p_{A3}^*p_{B1} - p_{A1}^*p_{B3} - p_{A2}^*p_{B1} - p_{A3}^*p_{B2} = p_{A2}^* - p_{A1}^* > 0$$

$$p_{A1}p_{B2}^* + p_{A2}p_{B3}^* + p_{A3}p_{B1}^* - p_{A1}p_{B3}^* - p_{A2}p_{B1}^* - p_{A3}p_{B2}^* = 0$$

so the inequality becomes false. Similarly, suppose $p_B^* \neq \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ and generally let $p_{B1}^* < p_{B2}^*$. Now substitute $p_A = (0, 0, 1)$ and $p_B = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, then

$$\begin{aligned} p_{A1}^*p_{B2} + p_{A2}^*p_{B3} + p_{A3}^*p_{B1} - p_{A1}^*p_{B3} - p_{A2}^*p_{B1} - p_{A3}^*p_{B2} &= 0 \\ p_{A1}p_{B2}^* + p_{A2}p_{B3}^* + p_{A3}p_{B1}^* - p_{A1}p_{B3}^* - p_{A2}p_{B1}^* - p_{A3}p_{B2}^* &= p_{B1}^* - p_{B2}^* < 0 \end{aligned}$$

so the inequality also becomes false. Therefore always $p_A^* = p_B^* = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, so it is the unique solution for the problem.

(b) If B chooses p_B as given, the expected points for B is always 0 regardless of A, so A can choose any

strategy. However, if B chooses strategies other than $p_B = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, choosing any strategy may not be optimal for A. Choosing $p_B = (1,0,0), (0,1,0), (0,0,1)$ results in \mathbb{E}_{p_A,p_B} [points for B] > 0 each when A chooses strategies such that $p_{A3} > p_{A2}, \, p_{A1} > p_{A3}, \, p_{A2} > p_{A1}$.