Белорусский Государственный Университет Информатики и Радиоэлектроники Кафедра ЭВМ

\sim	_	U	_	TA C	
()тчет і	าด แลกดา	раторной	nanote	NO	''
	io naco	parophon	paoore	217	_

Тема: «Создание реляционной модели данных по ER-модели»

Выполнили:

Проверила: Куприянова Д.В

ст. гр. 950503 Зарубо Д. Ю Ященко В.П

1 ЦЕЛЬ РАБОТЫ

Познакомиться с реляционной моделью данных. Для указанного варианта задания преобразовать ER-диаграмму в реляционную модель данных. Реализовать полученную реляционную модель данных в среде целевой СУБД.

2 ЗАДАНИЕ

- 1) Проверить ER-диаграмму, созданную в лабораторной работе No1.
- 2) Выполнить преобразование ER-диаграммы в реляционную модель в двух вариантах:
- вид «бумажного» варианта преобразования.
- «автоматизированный».
- 3) Сравнить полученные диаграммы и, если есть расхождения в полученных реляционных диаграммах, найти несоответствия и устранить их.
 - 4) Оформить отчет.

Порядок получения реляционной модели из ER-диаграммы:

Алгоритм преобразования ER-диаграммы в реляционную модель (схему) состоит из следующих шагов:

- Шаг 1. Каждый объект на ER-диаграмме превращается в таблицу. Имя объекта становится именем таблицы.
- Шаг 2. Каждый атрибут объекта становится возможным столбцом с тем же именем; при этом может выбираться более точный формат данных. Столбцы, соответствующие необязательным атрибутам, могут содержать неопределенные значения; столбцы, соответствующие обязательным атрибутам, не могут.
- Шаг 3. Уникальные (ключевые) атрибуты объекта превращаются в первичный ключ таблицы. Если имеется несколько возможных уникальных идентификаторов, то выбирается наиболее подходящий для использования.
- Шаг 4. Связи «один-ко-многим» (в том числе и связи «один-к-одному») становятся внешними ключами. Внешний ключ добавляется в виде столбца (столбцов) в таблицу, соответствующую объекту со стороны «многие» связи. Необязательные связи соответствуют столбцам, допускающим неопределенные значения; обязательные связи столбцам, не допускающим неопределенные значения.
- Шаг 5. Связи «многие-ко-многим» реализуются через промежуточную таблицу. Эта таблица будет содержать как минимум столбцы внешних ключей на соответствующие объекты. Первичный ключ промежуточной таблицы должен включать в себя все внешние ключи на объекты, участвующие в связи.
 - Шаг 6. Если связь имеет дополнительные атрибуты, то, как и в случае

атрибутов объектов, они становятся возможным столбцом таблицы:

- \cdot для связей «один-ко-многим» в таблице со стороны «многие» (вместе с внешним ключом);
- · для связей «многие-ко-многим» в промежуточной таблице (при этом атрибуты, расширяющие комбинацию в связи (например «дата»), также должны войти в состав первичного ключа промежуточной таблицы).

3 РЕЗУЛЬТАТЫ ВЫПОЛНЕНИЯ

Готовая ER диаграмма, отображающая базу данных проката видеодисков, приведена на рисунке 1.

Рисунок 1 – ER диаграмма проката видеодисков

Выполнение шагов 1-3 (Рисунок 2):

Рисунок 2 — превращение ER-диаграммы в реляционную схему

Выполнение шага 4 (Рисунок 3):

Рисунок 3 — связи один-ко-многим

Выполнение шага 5 (Рисунок 4):

Рисунок 4 — связи многие-ко-многим

Преобразование реляционной модели в целевой СУБД

Построение диаграммы выполнено с использованием PostgreSQL и PgAdmin4.

4 ВЫВОД

В ходе выполнения лабораторной работы было выполнено преобразование ER-диаграммы в реляционную модель данных, а также реляционная модель данных была реализована в среде целевой СУБД (PostgreSQL).