APPENDIX

DREIPHASTIGE WICKLUNG IN STERN-DREIECK-MISCHSHALTUNG FÜR EINE ELECTRICHE MACHINE

DE 3202 958 A1 LAID OPEN: August 11, 1983

A delta-connection winding and a star-connection are connected in parallel.

BUNDESREPUBLIK
DEUTSCHLAND

OffeniegungsschriftDE 3202958 A1

(a) Int. CI 3 H 02 K 3/00 H 02 K 17/12

DEUTSCHES PATENTAMT

(1) Aktenzeichen: P 32 02 958 6 (2) Anmeldetag: 29, 1, 82

Offenlegungstag: 11. 8.83

① Anmelder:

Siemens AG, 1000 Berlin und 8000 München, DE

(72) Erfinder:

Auinger, Herbert, Dipl.-Ing. Dr., 8500 Nürnberg, DE

(54) Dreiphasige Wicklung in Stern-Dreieck-Mischschaltung für eine elektrische Maschine

Bei einer gesehnten dreiphasigen Wicklung in Stern-Dreieck-Mischschaltung für Ständer oder Schleitringlaufer einer elektrischen Maschine sind zur Verringerung der Oberwellenanteile und der Kupferverluste die inneren Wicklungsabschnitte durch Ausgleichsleiter in Dreieckschaltung verbunden, an die jeweils zwei parallele, gegenüber den Dreiecksabschnitten um 30" el versetzte, mit den Klemmen verbundene äußere Wicklungsabschnitte siernförmig angeschlossen sind. Die räumliche Aufteilung der Wicklungsabschnitte ist dabei so vorgenommen, daß sich innerhalb jeden Polpaares eine zwölfzonige Wicklungsanordnung ergibt. (32 02 958)

Tabelle I: Vergleichende Übersicht von herkömmlichen sechszonigen Zweischichtwicklungen in Dreieckschaltung mit äquivalenten Υ/Δ -Mischschaltungen für N/p = 36 Nuten je Polyaar

g(a,r) (
-Schaltung Verlustminderung gemäß Gl. (4)	ramay) 1/4	25/24	9/5	k2/61	3/4
aquivalente ۲/۵ -Schaltung Fig. 10 Gruppierung Verlustmii der Spulen وهسقای 13	0 - 12 - 0 reine 4-Schaltumg (Fig.10 rechts)	- (1) - (2) - (3) - (4)	K + 1	5 - 5 - 5 - 6 - 6 - 6	reine Poppel- Y-Schaltung (Fig.10 links)
V Cu / N	100 %	100,8 %	107,2 %	2, 121	
6. 103	5,16	1,16	5,93	4,00	o, 'c
w	0,9561	0,9525	0,9236	0,8666	0,878,0
vor- und rückwärts laufende Stab- Wellenwicklung mit verschiedenen Spulengruppierangen	ς + ε	+ +		+	0 +
		8/3		~~~~~~	2/3
	Spulen/ L				
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	12 Spulen/ Strang		27		

Tabelle II: Wicklungseigenschaften möglicher Y/Δ -Mischschaltungen bei N/p = 36 Nuten je Polpaur

Spulenauf-	Spulen-	er manne, emanes en e i seu e seusen semano com	€0 · 10 ⁻⁵		
teilung	schritt	٤	0	relative verluste	, Nuprer-
				Λ	B
1 - 10 - 1	1 - 19	0,9525	4,46	96,7	95,8(223/24)
	1 18	0,9189	4,05	97,5	96,6
10	1 - 17	0,9380	3,28	99,7	98,8
	1 - 16	0,9200	2,73	103,7	102,7
	1 - 15	0,8951	2,86	109,5	108,5
2 - 8 - 2	1 - 19	0,9416	3,49	94,5	91,7(211/12)
2	1 - 18	0,9380	3,24	95,2	92,4
8	117	0,9273	2,96	97,5	94,5
2	1 - 16	0,9095	2,66	101,3	98,25
	1 - 15	0,8848	2,68	107,0	103,8
3 - 6 - 3	1 - 19	0,9236	2,93	93,8	87,5(2 7/8)
3	1 - 18	0,9200	2,73	94,5	88,2
6	1 - 17	0,9095	2,66	96,7	90,2
3	1 - 16	0,8921	2,77	100,5	93,8
4 - 4 - 4	1 - 19	0,8985	3,11	94,4	83,3(\$5/6)
4	1 - 18	0,8951	2,86	95,1	84,0
4	1 - 17	0,8848	2,68	97,3	85,9
	1 - 16	0,8679	2,66	101,1	89,3

A im Vergleich mit der Normalausführung, ungesehnt

≟ 1()0 %

B im Vergleich mit der Normalausführung, Squivalente Schnung

€ 100 %

Tabelle III: Wicklungseigenschaften bei identischen und ungepaßten Spulen

		einheitliche Spulen	angepaßte Spulen
	ılen- ndungszahl	• •	$w_{Y} = 2/\sqrt{3} \cdot w_{\Delta}$ bei $\sqrt{-}$ Schaltung $w_{Y} = 1/\sqrt{3} \cdot w_{\Delta}$ bei $$ Schaltung
		and the second s	
	iter- erschnitte		$q_y = \sqrt{3}/2$ q_b bei $\ -Schaltung\ $
- [a de la companya de l	$W_{gCS} = (2 + \sqrt{3}) W_{\Delta} $ (Fig. 20)	$q_y = \sqrt{3}$ $q_x beiSchaltung$
	Wicklungs- faktor {		$\xi = \frac{2}{1+2/\sqrt{3}} \cdot z = 0,9282 \xi^{*}_{Z}$
	effektive Windungs- zahl w · {	$\frac{(2 + \sqrt{3})^{2}}{4} \xi_{Z} \qquad ^{W}_{\Delta}$ = 3,4821 $W_{\Delta} \xi_{Z}^{*}$	$\frac{8}{1+4\sqrt{3}} \xi_{Z} w_{\Delta} = \frac{8\sqrt{3}}{2+\sqrt{3}} \xi_{Z} w_{\Delta}$ $= 3,7128 w_{\Delta} \cdot \xi_{Z}$
Fig. 20, 21	Kupfer- verluste	unterschiedliche Kupferverlustaufteilung	gleiche Kupferverlust- aufteilung wegen erhöhter effektiver Windungszahl nur $\frac{(2+\sqrt{3})^3}{32\sqrt{3}} = 0,9378$ facher Strom
- 1 gemäß F	veriuste	$V_{\Delta} = (4/7)V_{\text{ges}} \stackrel{?}{=} 57,14 \%$ $V_{Y} = (3/7)V_{\text{ges}} = \frac{42,86 \%}{100,00 \%}$	$V_{\Delta} = 0.9578^{2} \cdot 57.14 = 50.269$ $V_{Y} = 0.9378^{2} \cdot (\frac{2}{\sqrt{3}}) \cdot 42.86 =$
ng 1 - 2	Durchflutungs- polygon	ungleichseitiges Zwölfeck (Fig. 4)	so,26 % 100,52 % gleichseitiges Zwölfeck
tei lu	bei $\frac{W}{T} = 1$	f : 1I = 2 : \(\frac{3}{3} \)	
Spulenaufteilu	bei $\frac{W}{7} = \frac{11}{12}$	umgleichseitiges Vier- umdzwanzigeck (Fig. 8)	ungleichseitiges Vier- undzwanzigeck
Spul	1	$1:2:111=2:\sqrt{13/2:\sqrt{3}}$	1: II = 2: 2.cos15
! !	1	= 2:1,803:1,732	= 2 : 1,932

^{*)} ξ_2 Zonenfaktor

Tabe	elle IV: Vergleich verschiedener M	Vicklungsau	Tabelle IV: Vergleich verschiedener Wicklungsausführungen für N/p = 24 Nuten pro Polpaar	:	
Spulen	Wicklungsart	Sehnung	Durchflutungspolygon	u/	15,103
	Einschicht- oder Zweischicht- wicklung A-Schaltung 6zonig (Fig. 1)	1/1	gleichseitiges Sechseck (Fig. 2) Seitenlänge: 4 x 2	77.20,0	8,900
	Zweischichtwicklung Δ-Schaltung 6zonig (Fig. 3)	5/6	ungleichseitiges Zwölfeck (Fig. 4)	0526,0	6,240
су	Einschicht- und Zweischicht- wicklung λ-Δ-Mischschaltung i2zonig (Fig. 6)	1/1	Seitenlängen: (2×2) : (2×5)		
iljieitli (Dj. 3il)	Sweischichtwicklung 12zonig (Fig. 7)	11/12	ungleichseitiges Vierundzwanzigeck (Fig. 3) I : II : III Seitenlängen: 2 : \$\sqrt{13}/2 : \frac{13}{3}\$	0,9171	(a)
\dagger \dagg	Finschicht- und Zweischicht- wicklungk-A-Mischschaltung 122onig (Fig. 6)	1/1	gleichseitiges Zwölfeck Seitenlänge: 2 : 2	0,9263	6,633
$\frac{S}{\Sigma V} = Y^W $ $SI(1)$	<pre>Zweischichtwicklung A - Δ -Mischschaltung !2.onig (Fig. 7)</pre>	11/12	umgleichseitiges Vierumdzwanzigeck I : II Seitenlängen: 2 : 1,932	FC10 6	5,736
1phasige	Aphasige Käfigwicklung	1/1	gleichseitiges Vierundzwanzigeck	-	
reiphase pgestuft)reiphasenwicklumg mit sinusförmig ubgestuften Spulenwindungszahlen			0,7899	10.10

Nummer: Int. CL³: 32 02 958 H 02 K 3/00 35. Anmeldetag: 29. Januar 1982 Offenlegungstag: 1/10 11. August 1983 F1G2 յ։

FIG 10

30

5/10

82 P 3 0 1 5 DE

