An Oscillator as a Second-Order Sysken
1. An undamped os cillaton: md2x = - kx
II/. A damped oscillator: m d2x = - kx - B dx
The damping is proportional to velocity, dx.
Non write da = x = v = 0.x + 1.v
and $\frac{d^2x}{dt^2} = \frac{dv}{dt} = v = -\frac{k}{m}x - \frac{B}{am}\frac{dx}{dt}$ $v = -\frac{B}{dx} + \frac{dx}{dt}$ $v = -\frac{B}{m}x - \frac{B}{am}\frac{dx}{dt}$ $v = -\frac{B}{m}x - \frac{B}{m}\frac{dx}{dt}$ $v = -\frac{B}{m}x - \frac{B}{m}\frac{dx}{dt}$ $v = -\frac{B}{m}x - \frac{B}{m}\frac{dx}{dt}$
$i) [\dot{V} = -\omega^2 \times -2b \times] \left(\frac{\omega^2 = k/m}{2b = B/m} \right)^{m}$
Hence we have $\left(\frac{\dot{x}}{\dot{y}}\right) = \left(\begin{array}{c} 0 & 1 \\ -\omega^2 & -25 \end{array}\right) \left(\begin{array}{c} \chi \\ y \end{array}\right)$ in matrix form $\left(\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right) = \left(\begin{array}{c} 0 & 1 \\ -\omega^2 & -25 \end{array}\right) \left(\begin{array}{c} \chi \\ y \end{array}\right)$
Non we know de - 2 de + De = 0
We use solutions of the type $[x=x_0e^{\chi t}]$ $\Rightarrow [\dot{x}:dx/dt: \lambda x]$ and $[d^2x/dt^2=\dot{x}:-\lambda^2 x]$.
3) x = da/at = \under \under and
Hence we have (x2- Tx + D) x = 0.
$\frac{\lambda^2 - 7\lambda + \Delta = 0}{\text{and}} \frac{7 = -2b}{\Delta = \omega^2}$
Two eigenvalues, $\lambda_{1/2} = 2 \pm \sqrt{7^2 - 4\Delta}$
(Two eigenvalues)

- 2 -
$ \lambda_{1/2} = -2b \pm \sqrt{4b^2 - 4\omega^2} = -b \pm \sqrt{b^2 - \omega^2}.$
i) If [b2> w2], then both listenvalues λ_1 , λ_2 neal
and n= noexp[(-5 ± \sigma_b^2-w^2)t]. The
Of Oscillator is overdamped.
ii) If [b2 < w], then both eigen ratues 2,, 22 are
Complex and x = x0e exp[±i/b2-w2t].
The oscillator is underdamped, with
a decaying amplitude of oscillation.
iii) If [b2: w2], then both eigen values 21,22
are real and the same. \n = x0e-st
The oscillator is antically damped.
Correction to Richardson's Theory.
$\frac{dy}{dt} = lx + h - By lindicates the war readiness of x.$
Correction to the Predator-Pren Model

The growth rate of the predator population, dy = - Cy + Dxy . The term - Cy indicates that even in the linem the predator population is

Additional Points on the Threshold Theorem of Sp; demiology x=(no+yo)-y+Bln(4/yo) i) x has a turn (a maximum) when y=B/A. ii) When y -> 0, (i.e. y « B/A), x -> - 0. 1.e. 2 ~ B la (3) The logarithmic pout dominates. iii) When 5 -> 0 (i.e. 5>> B/A), then | x v - y . The linear pant dominales The B=0,

[dZ =0] (No recovered)

[dZ =0] (No recovered)

[individual]

Straight decreases

[301X0)

A=(x0+y0)-y. iv) For B=0], and 2=(x0+40)-4. In this case, Stanking at t=0, au susuptibles become infected. No one recoveres and a no one is removed.

A Connection: $y_0 - y_\infty = 2y_0 \left(\frac{y_0 - 1}{p} \right)$ Now $y_0 = p + e = 2y_0 = -1 = \frac{e}{p}$ where $e \ll p$. Hence, $y_0 - y_\infty = 2y_0 = 2(p + e) = 2(p + e) = 2(p + e) = 2(p + e)$ $y_0 - y_\infty = 2p = 2p = 2e = 2(p_0 - e)$ when y_0 is slightly $y_0 - y_\infty = 2e = 2(p_0 - e)$ when y_0 is slightly $y_0 - y_\infty = 2e = 2(p_0 - e)$ greater than p