

Figura 7.2.3 Campo vectorial **F** normal a una circunferencia en el plano *yz*.

Ejemplo 6

Si consideramos el campo y la curva del Ejemplo 4, vemos que el trabajo realizado por el campo es $-\frac{1}{2}$, una cantidad negativa. Esto quiere decir que el campo se opone al movimiento a lo largo de la trayectoria.

Reparametrizaciones

La integral de línea $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$ no solo depende del campo \mathbf{F} sino también de la trayectoria \mathbf{c} : $[a,b] \to \mathbb{R}^3$. En general, si \mathbf{c}_1 y \mathbf{c}_2 son dos trayectorias diferentes en \mathbb{R}^3 , $\int_{\mathbf{c}_1} \mathbf{F} \cdot d\mathbf{s} \neq \int_{\mathbf{c}_2} \mathbf{F} \cdot d\mathbf{s}$. Por otro lado, veremos que se cumple que $\int_{\mathbf{c}_1} \mathbf{F} \cdot d\mathbf{s} = \pm \int_{\mathbf{c}_2} \mathbf{F} \cdot d\mathbf{s}$ para todo campo vectorial \mathbf{F} si \mathbf{c}_1 es lo que denominamos una *reparametrización* de \mathbf{c}_2 ; en otras palabras, esto significa que \mathbf{c}_1 y \mathbf{c}_2 son descripciones diferentes de la misma curva geométrica.

Definición Sea $h: I \to I_1$ una función de valores reales de clase C^1 que es una aplicación inyectiva de un intervalo I = [a, b] en otro intervalo $I_1 = [a_1, b_1]$. Sea $\mathbf{c}: I_1 \to \mathbb{R}^3$ una trayectoria a trozos C^1 . Diremos entonces que la composición

$$\mathbf{p} = \mathbf{c} \circ h \colon I \to \mathbb{R}^3$$

es una reparametrizaci'on de c.

Esto significa que $\mathbf{p}(t) = \mathbf{c}(h(t))$, de modo que h cambia la variable; alternativamente, podemos pensar que h cambia la rapidez con la que se mueve un punto a lo largo de la trayectoria. En efecto, observe que $\mathbf{p}'(t) = \mathbf{c}'(h(t))h'(t)$, de manera que el vector velocidad para \mathbf{p} es igual que para \mathbf{c} pero multiplicado por el factor escalar h'(t).

Está implícito en la definición que h debe enviar los puntos extremos a puntos extremos; es decir, bien $h(a) = a_1$ y $h(b) = b_1$, o bien $h(a) = b_1$ y $h(b) = a_1$. Distinguimos entonces dos tipos de reparametrización. Si $\mathbf{c} \circ h$ es una reparametrización de \mathbf{c} , entonces o bien