Wednesday, November 11, 2020

CMSC204 Kartchner

V(StateGraph) = {Oregon, Alaska, Texas, Hawaii, Vermont, NewYork, California} E(StateGraph) = {(Alaska, Oregon), (Hawaii, Alaska), (Hawaii, Texas), (Texas, Hawaii), (Hawaii, California), (Hawaii, New York), (Texas, Vermont), (Vermont, California), (Vermont, Alaska)}

1. Draw the StateGraph

10:14 AM

1. Describe the graph pictured above, using the formal graph notation.

 $V(StateGraph) = \begin{cases} (Alaska, Oregon), (Hawaii, Alaska), (Hawaii, Texas), (Texas, Hawaii), (Hawaii, California), (Hawaii, New York), (Texas, Vermont), (Vermont, California), (Vermont, Alaska) \\ \{Oregon, Alaska, Texas, Hawaii, Vermont, NewYork, California\} \end{cases}$

2. a. Is there a path from Oregon to any other state in the graph? $\mathcal{N}_{\mathcal{O}}$

b. Is there a path from Hawaii to every other state in the graph?

c. From which state(s) in the graph is there a path to Hawaii? Jexas

3. a. Show the adjacency matrix that would describe the edges in the graph. Store the vertices in alphabetical order

	Alaska	California	Hawaii	New York	Oregon	Texas	Vermont
Alaska	0	0	0	0	1	0	0
California	0	0	0	0	0	0	0
Hawaii	1	1	0	1	0	1	0
New York	0	0	0	0	0	0	0
Oregon	0	0	0	0	0	0	0
Texas	0	0	1	0	0	0	1
Vermont	1	1	0	0	0	0	0

3. b. Show the adjacency lists that would describe the edges in the graph

- 4 a. Which of the following lists the graph nodes in depth first order beginning with E?
- **E**, G, F, C, D, B, A
- B) G, A, E, C, B, F, D
- C) E, G, A, D, F, C, B
- D) E, C, F, B, A, D, G
- 4 b. Which of the following lists the graph nodes in breadth first order beginning at F?
 - A) F, C, D, A, B, E, G
 - **B** F, D, C, A, B, C, G
 - C) F, C, D, B, G, A, E
 - D) a, b, and c are all breadth first traversals

5. Find the shortest distance from Atlanta to every other city

Jo	Washigton	600
То	Houston	800
Jo	Dallas	1900
Jo	Den vov	2680
Īο	Austm	almo
ĪD	Chicago	2800

6. Find the minimal spanning tree using Prim's algorithm. Use 0 as the source vertex . Show the steps.

2) , (5)

4)

7. Find the minimal spanning tree using Kruskal's algorithm. Show the weights in order and the steps.

Weignalist = 2 1,2,3,3,4,5,6,7,8}

8. Find the minimal spanning tree using the algorithm you prefer. Use Minneapolis/St. Paul as the source vertex

9. List the nodes of the graph in a breadth first topological ordering. Show the steps using arrays predCount, topologicalOrder and a queue

St. Louis

2	F) 0 0 0 2 1 0 0 0 2 1 Pres Court 8) 0 0 0 0 0 0 0 0 1
	2 5 6 Topological Order
	0712 07125648
, [7]	9 000000 ResCone
	5 6 4 3 9 Queve
	07125 07125 JOROGIAN
Ġ	0 0 0 2 0 0 0 0 1 1 Rolans
	6 4 Guar
	071256 Jorgen Orson
7	000100001 Ros Come
	48 Grove
	0712564 Tolowsian Ovanov

10. List the nodes of the graph in a breadth first topological ordering.

Start

1 Schete Moun

Programming 1

Programming 2

Comewor Organization

Algorithms High-Lavoi Languages

Operating Systems

Theory of Computation Sonior Sominat

Compriors

End