Text Clustering

Hongning Wang CS@UVa

Today's lecture

- Clustering of text documents
 - Problem overview
 - Applications
 - Distance metrics
 - Two basic categories of clustering algorithms
 - Evaluation metrics

Clustering v.s. Classification

Assigning documents to its corresponding categories

Clustering problem in general

- Discover "natural structure" of data
 - What is the criterion?
 - How to identify them?
 - How many clusters?

CS@UVa CS 6501: Text Mining

Clustering problem in general

- Clustering the process of grouping a set of objects into clusters of similar objects
 - Basic criteria
 - high intra-class similarity
 - low inter-class similarity
 - No (little) supervision signal about the underlying clustering structure
 - Need similarity/distance as guidance to form clusters

What is the "natural grouping"?

Clustering is very subjective! Distance metric is important!

group by gender

group by source of ability

group by costume

CS@UVa CS 6501: Text Mining

6

Clustering in text mining

CS@UVa CS6501: Text Mining 7

Applications of text clustering

- Organize document collections
 - Automatically identify s
 hierarchical/topical s
 relation among documents

Applications of text clustering

- Grouping search results
 - Organize documents by topics
 - Facilitate user browsing

http://search.carrot2.org/stable/search

Applications of text clustering

Topic modeling

Will be discussed later separately

Grouping words into topics

Distance metric

- Basic properties
 - Positive separation
 - $D(x, y) > 0, \forall x \neq y$
 - D(x, y) = 0, i.f.f., x = y
 - Symmetry
 - D(x,y) = D(y,x)
 - Triangle inequality
 - $D(x,y) \le D(x,z) + D(z,y)$

Typical distance metric

Minkowski metric

$$-d(x,y) = \sqrt[p]{\sum_{i=1}^{V} (x_i - y_i)^p}$$

- When p = 2, it is Euclidean distance
- Cosine metric

$$-d(x,y) = 1 - cosine(x,y)$$

• when $|x|^2 = |y|^2 = 1$, $1 - cosine(x, y) = \frac{r^2}{2}$

CS@UVa CS 6501: Text Mining 12

Typical distance metric

- Edit distance
 - Count the minimum number of operations
 required to transform one string into the other
 - Possible operations: insertion, deletion and replacement
 R
 R
 R

Figure 1. d(i,j) Matrix with Minimal Path Identified

Typical distance metric

- Edit distance
 - Count the minimum number of operations
 required to transform one string into the other
 - Possible operations: insertion, deletion and replacement
 - Extent to distance between sentences
 - Word similarity as cost of replacement
 - "terrible" -> "bad": low cost
 - "terrible" -> "terrific": high cost

Lexicon or distributional semantics

Preserving word order in distance computation

- Partitional clustering algorithms
 - Partition the instances into different groups
 - Flat structure
 - Need to specify the number of classes in advance

- Typical partitional clustering algorithms
 - k-means clustering
 - Partition data by its closest mean

CS@UVa CS 6501: Text Mining 16

- Typical partitional clustering algorithms
 - k-means clustering
 - Partition data by its closest mean
 - Gaussian Mixture Model
 - Consider variance within the cluster as well

- Hierarchical clustering algorithms
 - Create a hierarchical decomposition of objects
 - Rich internal structure
 - No need to specify the number of clusters
 - Can be used to organize objects

- Typical hierarchical clustering algorithms
 - Bottom-up agglomerative clustering
 - Start with individual objects as separated clusters
 - Repeatedly merge closest pair of clusters

Most typical usage: gene sequence analysis

- Typical hierarchical clustering algorithms
 - Top-down divisive clustering
 - Start with all data as one cluster
 - Repeatedly splitting the remaining clusters into two

CS@UVa CS 6501: Text Mining 20

Desirable properties of clustering algorithms

- Scalability
 - Both in time and space
- Ability to deal with various types of data
 - No/less assumption about input data
 - Minimal requirement about domain knowledge
- Interpretability and usability

Cluster validation

- Criteria to determine whether the clusters are meaningful
 - Internal validation
 - Stability and coherence
 - External validation
 - Match with known categories

Recap: special kernels for text data

- String kernel
 - -x and y are two text sequences

N-gram kernel (length n substrings)

$$-K(x,y) = \sum_{n} \sum_{u \in A^{n}} \sum_{i:u=x[i]} \sum_{j:u=y[j]} 1$$

where A is an finite alphabet of symbols

All character sequence of length *n*

All occurrences of sequence u in y

All occurrences of sequence u in x

Insight of string kernel:

Counting the overlapping of all subsequences with length up to n in x and y

Lodhi, Huma, et al. "Text classification using string kernels." The Journal of Machine Learning Research 2 (2002): 419-444.

Recap: special kernels for text data

Tree kernel

Similar?

Barack Obama is the president of the United States.

Elon Musk is the CEO of Tesla Motors.

```
(ROOT
(ROOT
                                                            (S
 (S
                                                                             ) (NNP
                                                                                         ))
                                                               (NP (NNP
    (NP (NNP
                    ) (NNP
                                 ))
                                                               (VP (VBZ
    (VP (VBZ
                                                                 (NP
      (NP
                                                                               ) (NN
                    ) (NN
                                    ))
                                                                   (NP (DT
                                                                                         ))
        (NP (DT
        (PP (IN
                                                                   (PP (IN
                      ) (NNP
                                    ) (NNPS
                                                    )))))
                                                                     (NP (NNP
                                                                                     ) (NNPS
                                                                                                    )))))
          (NP (DT
    (..)))
                                                               (..))
```

Almost identical in their dependency parsing tree!

Recap: special kernels for text data

Tree kernel

Can be relaxed to allow subsequent computation under unlatching nodes

$$-K(x,y) = \begin{cases} 0 & \text{if } r_1 = r_2 \\ 1 + K(x[r_1], y[r_2]) & \text{otherwise} \end{cases}$$

Search through all the sub-trees starting from root node r

Culotta, Aron, and Jeffrey Sorensen. "Dependency tree kernels for relation extraction." Proceedings of the ACL. P423-429, 2004.

Recap: popular implementations

LIBLINEAR v.s. general SVM

(b) rcv1, *l*: 677,399, *n*: 47,236, #nz: 156,436,656

Fan, Rong-En, et al. "LIBLINEAR: A library for large linear classification." The Journal of Machine Learning Research 9 (2008): 1871-1874.

Recap: what is the "natural grouping"?

Clustering is very subjective! Distance metric is important!

group by gender

group by source of ability

group by costume

CS@UVa CS 6501: Text Mining

27

Recap: distance metric

- Basic properties
 - Positive separation
 - $D(x, y) > 0, \forall x \neq y$
 - D(x, y) = 0, i.f.f., x = y
 - Symmetry
 - $\quad \bullet \ D(x,y) = D(y,x)$
 - Triangle inequality
 - $D(x,y) \le D(x,z) + D(z,y)$

Internal validation

Coherence

- Inter-cluster similarity v.s. intra-cluster similarity
- Davies–Bouldin index

Evaluate every pair of clusters

•
$$DB = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \left(\frac{\sigma_i + \sigma_j}{d(c_i, c_j)} \right)$$

— where k is total number of clusters, σ_i is average distance of all elements in cluster i, $d(c_i, c_j)$ is the distance between cluster centroid c_i and c_j .

We prefer smaller DB-index!

Internal validation

Coherence

- Inter-cluster similarity v.s. intra-cluster similarity
- Dunn index

•
$$D = \frac{\min\limits_{1 \le i < j \le k} d(c_i, c_j)}{\max\limits_{1 \le i \le k} \sigma_i}$$

We prefer larger D-index!

Worst situation analysis

Limitation

- No indication of actual application's performance
- Bias towards a specific type of clustering algorithm if that algorithm is designed to optimize similar metric

Required, might need extra cost

- Given class label $\hat{\Omega}$ on each instance
 - Purity: correctly clustered documents in each
 cluster

 Not a good metric if we assign

Not a good metric if we assign each document into a single cluster

•
$$purity(\Omega, C) = \frac{1}{N} \sum_{i=1}^{k} \max_{j} |c_i \cap w_j|$$

— where c_i is a set of documents in cluster i, and w_j is a set of documents in class j

$$purity(\Omega, C) = \begin{cases} \frac{1}{17}(5+4+3) & x \\ 0 & x \\ x & x \end{cases}$$
 cluster 2 cluster 3 cluster

- Given class label Ω on each instance
 - Normalized mutual information (NMI)
 - $NMI(\Omega, C) = \frac{I(\Omega, C)}{[H(\Omega) + H(C)]/2}$ Normalization by entropy will penalize too many clusters
 - where $I(\Omega, C) = \sum_{i} \sum_{j} P(w_i \cap c_j) \log \frac{P(w_i \cap c_j)}{P(w_i)P(c_j)}$, $H(\Omega) = \sum_{i} P(w_i) \log P(w_i)$ and $H(C) = \sum_{j} P(c_j) \log P(c_j)$
 - Indicate the increase of knowledge about classes when we know the clustering results

- Given class label Ω on each instance
 - Rand index
 - Idea: we want to assign two documents to the same cluster if and only if they are from the same class

•
$$RI = \frac{TP + TN}{TP + FP + FN + TN}$$
 Essentially it is like classification accuracy

	$w_i = w_j$	$w_i \neq w_j$
$c_i = c_j$	TP	FP
$c_i \neq c_j$	FN	TN

Over every pair of documents in the collection

- Given class label Ω on each instance
 - Rand index

	$w_i = w_j$	$w_i \neq w_j$
$c_i = c_j$	20	20
$c_i \neq c_j$	24	72

$$TP + FP = \binom{6}{2} + \binom{6}{2} + \binom{5}{2} = 40$$

$$TP = \binom{5}{2} + \binom{4}{2} + \binom{3}{2} + \binom{2}{2} = 20$$

$$\text{cluster 1}$$

$$\text{cluster 2}$$

$$\text{cluster 3}$$

CS@UVa CS 6501: Text Mining 34

- Given class label Ω on each instance
 - Precision/Recall/F-measure
 - Based on the contingency table, we can also define precision/recall/F-measure of clustering quality

	$w_i = w_j$	$w_i \neq w_j$
$c_i = c_j$	TP	FP
$c_i \neq c_j$	FN	TN

What you should know

- Unsupervised natural of clustering problem
 - Distance metric is essential to determine the clustering results
- Two basic categories of clustering algorithms
 - Partitional clustering
 - Hierarchical clustering
- Clustering evaluation
 - Internal v.s. external

Today's reading

- Introduction to Information Retrieval
 - Chapter 16: Flat clustering
 - 16.2 Problem statement
 - 16.3 Evaluation of clustering