

Maestría de Ciencia de Datos

Fundamentos Matemáticos de la Ciencia de Datos

Tarea 7: Espacios y subespacios vectoriales lineales

Estudiante: Daniel Nuño

Profesor: Dr. Santiago Elvira

Fecha Entrega: noviembre 6, 2021

Ejercicio 1. Determine si $V = \{(x, y, z) : 2x - y + 3z = 0\}$ es un espacio vectorial.

```
Determine si V= {(x, y, z):2x - y+3z = 0}
    es un espacia vectorial.
   Pormal (a,b,c) y que pare por el origen d'plano con voctor
  : Suponga 2 vectores que complen la jecuación in estan en V
  (X2, Y1, Z1) y (X2, Y2, Z2)
1) (x, y, Z) + ( X, /2, Z) = (x2+x2, y2+y2, Z,+Z2) & V
a(x,+x2)+b(y,+y2)+c(z,+22)=(ax,+by,+czi)+(ax2+by2+cz2)=0+0
2) (x1, y1, Z1) + (x2, y2, Z2) = (x2, y2, Z2) + (x1, y1, Z1)
3) (X, Y1, Z) + (X2, X1, Z2) + (X3, X3, Z3) = U+ (V+ W)
(4) (X2, Y1, Z1) + (0,0,0) = (X1, Y1, Z1)
5) (x, y, z,) + (-x, +, z,) = 0-0=0 V
6) C(X, Y, Z) EV V
 7) c((xi, yi, Zi) + (xi, Yi, Zi)) = ((X1) Y1, Zi) + ((Xi, Y2, Zi)
(8) (C+d) (X, , Y, , Z,) = (Cx +4+ + Cz) + (dx, ,dy, ,dz) ~
9) c(dx,dx,dz) = (cdx,, cdx,, cdz,) /
10) 2(x, , Y, , Z) = (X, , Y, , Z)
si es espacio vectorial
```

Ejercicio 2. Indicar cuales axiomas de Espacio Vectorial se cumplen (si los hay) para el conjunto de matrices que tienen la forma $\begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}$ bajo la suma y multiplicación por un escalar.

Ejercicio 3. Indique si el subconjunto dado H del espacio vectorial V es un subespacio de V:

- a) $V = \mathbb{R}^2$; $H = \{(x, y); x^2 + y^2 \le 1\}$
- b) $V = M_{mn}; H = \{T \in M_{mn}; T \text{ es una matriz triangular superior}\}$
- c) $V = \mathbb{R}^3$; $H = \{x, 0, z\}$

Indique si el sub conjunto dado H del es pacio nectorial V es un sub es pacio de V:

1 a) V = R²; H = {(x, y): x² + y² \leq 1} V = (0, 1)

1) [X1] + [X2] = [X, +X2] & H no pertoreze

[X2] + [X2] = [X3 + Y2] & H no pertoreze

[X3] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X2] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [X4] = [X4 + Y2] & H no pertoreze

[X4] + [

Ejercicio 4. ¿Cuál de los siguientes pares de vectores no pueden generar a \mathbb{R}^2 ?

a)
$$(1,1)$$
 y $(-3,-3)$

$$b)$$
 $(1,1)$ y $(2,2)$

$$c)$$
 $(1,3)$ y $(0,0)$

$$d)$$
 $(1,3)$ y $(3,1)$

Forescio 4. Cool de los siguientes pares de vectores no puede generar a
$$(a, 1)$$
 y $(-3, -3)$ = (a) = (a) + (a) + (a) = (a) + (a) = (a) + (a) = (a) = (a) + (a) = (a)

Ejercicio 5. ¿Cuál de los siguientes conjuntos de polinomios generan \mathcal{P}_2 ?

a)
$$1, x^2$$

b)
$$3, 2x, -x^2$$

c)
$$1+x, 2+2x, x^2$$

d)
$$1, 1+x, 1+x^2$$

de polinomios genera polinomios grado at bx + cx2 G(1+X) + Cz(2+ZX) +

Ejercicio 6. Determinar si (1,-1,2), (1,1,2) y (0,0,1) generan al espacio vectorial \mathbb{R}^3 .

=Jerado 6=	Determina	si Ci	/11,2	1:1	くりり	2)	10	V 5	(,0	6	5.1	101	1.7	0	4	*
	generan a) espacio	Vect	rori	al.	R	9,09		1.	3					100	-
C.V.	+62/2+	6 V3 =	.0						30	+	X	9	13			or 19
no es	conjunto!	ginerador				N.	1						X.			

Ejercicio 7. Determinar si el espacio vectorial M_{22} es generado por

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 4 & -1 \\ 3 & 0 \end{bmatrix} \quad y \quad \begin{bmatrix} -2 & 5 \\ 6 & 0 \end{bmatrix}$$