

C.AIN DENSITY FORSYNAPTOPHYSIN MESSAGE IN TANGLE AND NEIGHBORING NONTANGLE NEURONS IN CA1 OF AD HIPPOCAMPUS

D

GRAIN DENSITY FOR POLY A+ MESSAGE IN TANGLE AND NONTANGLE NEURONS IN CAI OF AD HIPPOCAMPUS

C

GRAIN DENSITY FOR CATHEPSIN D MESSAGE IN TANGLE AND NONTANGLE NEURONS IN CALOF AD HIPPOCAMPUS

F

Ε

FIGURE 4

FIGURE 7

Fig. 4 Dot blot hybridization of aRNA from one cell with selected cDNAs. The aRNA was used at lour concentrations, $1.5 \times$, $1.0 \times$, $0.5 \times$ and $0.25 \times$. For each concentration, hybridization was done in duplicate. On each blot: column a, from rows 1–8, the cDNAs are HSP70, p53, H11, nestin, actin, STM2, cyclin D1 and CamK 11, column b, rows 1–5 S182, α 1-ACT, GAPDH, GFAP and pBS.