

Múltiplo o Divisor

El juez tiene un número n oculto que debes determinar. Para ello, puedes hacer preguntas de los siguientes dos tipos:

- 1. Proporcionas un entero m y el juez te responde "Sí" si m es múltiplo de n o si m es divisor de n, y "No" en caso contrario. Esta pregunta tiene coste 1.
- 2. Proporcionas un entero m y el juez te responde un entero d que es la mínima distancia de m a alguno de los múltiplos o divisores de n, es decir, $d = \min_{x \in D_n \cup M_n} |m x|$, donde D_n es el conjunto de divisores de n y M_n es el conjunto de múltiplos de n. La i-ésima vez que haces esta pregunta, la pregunta tiene coste i^2 .

Tu objetivo es determinar el número n sin que la suma de costes de tus preguntas sea demasiado grande.

Entrada y salida

Este es un problema interactivo. Debes refrescar la salida cada vez que imprimas datos (cout << endl o cout << flush en C++, System.out.flush() en Java, stdout.flush() en Python).

La primera línea de la entrada contiene el número de casos T. En cada caso, el juez tendrá un número n que deberás adivinar haciendo preguntas.

Para hacer una pregunta, debes imprimir una línea con el formato ? t m, donde $1 \le t \le 2$ es el tipo de pregunta y $1 \le m \le 3 \cdot 10^{18}$ el parámetro de la pregunta. A continuación, se te responderá con una línea las palabras SI o NO en el caso de la primera pregunta, o con un entero d en el caso de la segunda pregunta. En caso de que realices una pregunta inválida o excedas el límite de coste, se te responderá con -1, y en ese caso tu programa debe terminar inmediatamente.

Para dar la respuesta, debes imprimir una línea con el formato ! n, donde n es el valor que has determinado. A continuación, debes leer una respuesta con un carácter, que será:

- +, si se pasa al caso siguiente. En ese caso tu programa debe continuar con el nuevo caso.
- -, si no se pasa al caso siguiente, o bien porque ya se han acabado los casos o bien porque has dado una respuesta incorrecta. En ese caso, tu programa debe terminar inmediatamente.

Ejemplo

Juez	Programa	Comentario
2		n=2 en el primer caso
SI	? 1 1	1 es divisor de 2
~1	?23	2 00 41/1801 40 2
1		1 = 3 - 2 = 3 - 4
+	! 2	n = 6 en el segundo caso
'	?28	
2	0.0.10	2 = 8 - 6
1	? 2 13	1 = 13 - 12
-	? 2 4	
1		1= 4-3
NO	? 1 5	5 no es divisor ni múltiplo
110	! 6	o no es antisor in manapio
_		

Restricciones

 $1 \le T \le 100$.

$$1 \le n \le 10^{18}$$
.

Los m de tus preguntas deben satisfacer $1 \le m \le 3 \cdot 10^{18}$.

Las preguntas que hagas pueden tener como máximo coste total 200 en cada uno de los casos.

El valor de n está fijo al comienzo de la interacción, es decir, no cambia adaptivamente según las preguntas que hagas.

Subtareas

- 1. (10 puntos) $n \le 100$.
- 2. (20 puntos) n < 2000.
- 3. (30 puntos) $n \le 10^9$.
- 4. (10 puntos) n es un número regular: no es divisible por primos diferentes de 2,3 o 5.
- 5. (30 puntos) Sin restricciones adicionales.

Adicionalmente, la puntuación que obtienes en una subtarea depende del coste de las preguntas que hagas: para obtener una puntuación completa el coste debe ser como máximo 25 y para obtener una puntuación positiva como máximo 200. La puntuación de cada subtarea es multiplicada por un multiplicador M(q), donde q es el máximo coste total de preguntas que has hecho en cada caso de esa subtarea. El valor de M(q) viene dado por:

$$M(q) = egin{cases} 0 & q > 200 \ 0.5 + rac{200 - q}{750} & 200 \geq q > 50 \ 0.7 + rac{150 - 3q}{250} & 50 \geq q > 25 \ 1.0 & 25 \geq q \end{cases}$$