Let $\{X_n\}$ be a sequence of random variables and let X be a random variable. Let F_{X_n} and F_X be, respectively, the c.d.f.s of X n and X. Let $C(F_X)$ denote the set of all points where F_X is continuous. We say that X_n converges in distribution to X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x), \quad \text{for all } x \in C(F_X).$$

We denote this convergence by

$$X_n \stackrel{D}{\to} X$$
.

Example 1:

Let X_n have p.d.f. $f_n(x) = n x^{n-1}$, for 0 < x < 1, zero elsewhere.

Then
$$F_{X_n}(x) =$$

$$\begin{cases}
0 & x < 0 \\
x^n & 0 \le x < 1.
\end{cases}$$

$$\lim_{n \to \infty} F_{X_n}(x) =$$

$$\begin{cases}
0 & x < 1 \\
1 & x \ge 1
\end{cases}$$

Therefore, $X_n \stackrel{D}{\rightarrow} X$, where P(X=1)=1.

Recall that
$$X_n \to 1$$
, since if $0 < \varepsilon \le 1$, $P(|X_n - 1| \ge \varepsilon) = (1 - \varepsilon)^n \to 0$ as $n \to \infty$, and if $\varepsilon > 1$, $P(|X_n - 1| \ge \varepsilon) = 0$.

Example 2:

Let X_n have p.d.f. $f_n(x) = n e^{-nx}$, for x > 0, zero otherwise.

Recall that
$$X_n \stackrel{P}{\to} 0$$
, since if $\varepsilon > 0$, $P(|X_n - 0| \ge \varepsilon) = P(X_n \ge \varepsilon) = e^{-n\varepsilon} \to 0$ as $n \to \infty$.

Consider X with p.m.f. P(X=0)=1.

$$F_{X_n}(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-nx} & x \ge 0 \end{cases}$$
 $F_X(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x), \quad \text{for all } x \neq 0.$$

$$F_{X_n}(0) = 0$$
 for all n , but $F_X(0) = 1$. $\lim_{n \to \infty} F_{X_n}(0) \neq F_X(0)$.

Since
$$0 \notin C(F_X)$$
, $X_n \xrightarrow{D} X$.

Example 3:

Let
$$X_n$$
 have p.m.f. $P(X_n = \frac{1}{n}) = \frac{1}{2} - \frac{1}{n}$, $P(X_n = 1) = \frac{1}{2} + \frac{1}{n}$.

Then
$$F_{X_n}(x) = \begin{cases} 0 & x < \frac{1}{n} \\ \frac{1}{2} - \frac{1}{n} & \frac{1}{n} \le x < 1. & \lim_{n \to \infty} F_{X_n}(x) = \begin{cases} 0 & x \le 0 \\ \frac{1}{2} & 0 < x < 1. \\ 1 & x \ge 1 \end{cases}$$

Consider X with p.m.f. $P(X=0) = \frac{1}{2}, P(X=1) = \frac{1}{2}$.

Then
$$F_X(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{2} & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x), \quad \text{for all } x \neq 0.$$

$$F_{X_n}(0) = 0$$
 for all n , but $F_X(0) = \frac{1}{2}$. $\lim_{n \to \infty} F_{X_n}(0) \neq F_X(0)$.

Since
$$0 \notin C(F_X)$$
, $X_n \xrightarrow{D} X$.

Example 4:

Consider
$$\{X_n\}$$
 with p.m.f.s $P(X_n = 3) = 1 - \frac{1}{n}$, $P(X_n = 7) = \frac{1}{n}$.

Recall that
$$X_n \stackrel{P}{\to} 3$$
, since if $0 < \varepsilon \le 4$, $P(|X_n - 3| \ge \varepsilon) = \frac{1}{n} \to 0$ as $n \to \infty$, and if $\varepsilon > 4$, $P(|X_n - 3| \ge \varepsilon) = 0$.

Consider X with p.m.f. P(X=3)=1.

$$F_{X_n}(x) = \begin{cases} 0 & x < 3 \\ 1 - \frac{1}{n} & 3 \le x < 7 \\ 1 & x \ge 7 \end{cases} \qquad F_X(x) = \begin{cases} 0 & x < 3 \\ 1 & x \ge 3 \end{cases}$$

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x), \quad \text{for all } x \in \mathbf{R}. \quad \Rightarrow \quad X_n \stackrel{D}{\to} X.$$

Example 5*:

Let X have a Uniform distribution over (0, 1).

Let
$$P(X_n = \frac{i}{n}) = \frac{1}{n}$$
, for $i = 1, 2, ..., n$.

Note that X is continuous, while X_n 's are discrete.

For
$$0 < x < 1$$
, $F_X(x) = x$, $F_{X_n}(x) = \frac{\lfloor nx \rfloor}{n}$, where $|x| =$ the greatest integer less than or equal to x .

Therefore,
$$X_n \stackrel{D}{\to} X$$
, since $|F_{X_n}(x) - F_X(x)| \le \frac{1}{n}$ for all x .

Example 6:

Suppose
$$P(X_n = i) = \frac{n+i}{3n+6}$$
, for $i = 1, 2, 3$.

Find the limiting distribution of X_n .

$$F_{X_n}(x) = \begin{cases} 0 & x < 1 \\ \frac{n+1}{3n+6} & 1 \le x < 2 \\ \frac{2n+3}{3n+6} & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases} \qquad \lim_{n \to \infty} F_{X_n}(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{3} & 1 \le x < 2 \\ \frac{2}{3} & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}$$

Then $X_n \stackrel{D}{\rightarrow} X$, where $P(X=i) = \frac{1}{3}$, for i = 1, 2, 3.

Example 7:

Let
$$X_n$$
 have p.d.f. $f_n(x) = \frac{1 + \frac{x}{n}}{1 + \frac{1}{2}n}$, for $0 < x < 1$, zero elsewhere,

Find the limiting distribution of X_n .

$$F_{X_n}(x) = \begin{cases} 0 & x < 0 \\ \frac{x + \frac{x^2}{2n}}{1 + \frac{1}{2n}} & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

$$F_X(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$
Then $X = \begin{bmatrix} 0 & x < 0 \\ x & 0 \le x < 1 \\ 1 & x \ge 1 \end{bmatrix}$

Then $X_n \to X$, where X has a Uniform distribution over (0, 1).

Example 8:

Let the pmf of Y_n be $p_n(y) = 1$, y = n, zero elsewhere. Show that Y_n does not have a limiting distribution. (In this case, the probability has "escaped" to infinity.)

$$F_{Y_n}(y) = \begin{cases} 0 & y < n \\ 1 & y \ge n \end{cases}$$

Let $y \in \mathbf{R}$. Let $N = \lfloor y \rfloor + 1$.

(|y| = the greatest integer less than or equal to y.)

Then $F_{Y_n}(y) = 0$ for all $n \ge N$.

Therefore, $\lim_{n\to\infty} F_{Y_n}(y) = 0$ for all $y \in \mathbf{R}$.

However, F(y) = 0 for all $y \in \mathbf{R}$ is not a c.d.f.

Therefore, Y_n does not have a limiting distribution.

Example 9:

Let
$$X_1, X_2, \dots$$
 be i.i.d. Uniform $(0, \theta)$. Let $Y_n = \max(X_1, X_2, \dots, X_n)$.

We already know that $Y_n \stackrel{P}{\to} \theta$.

Find the limiting distribution of $Z_n = n(\theta - Y_n)$.

$$F_{Y_n}(x) = F_{\max X_i}(x) = \left(\frac{x}{\theta}\right)^n, \quad 0 < x < \theta.$$

$$F_{Z_n}(z) = P(n(\theta - Y_n) \le z) = P(Y_n > \theta - \frac{z}{n}) = 1 - \left(1 - \frac{z}{n\theta}\right)^n,$$

 $0 < z < n \theta$.

$$F_{Z_n}(z) \to 1 - e^{-z/\theta}, \ z > 0,$$
 as $n \to \infty$.

 $Z_n \xrightarrow{D} X$, where X has Exponential distribution with mean θ .

Example 10:

Let X_1, X_2, \dots be i.i.d. with mean μ and standard deviation σ .

Let
$$\overline{X}_n = \frac{X_1 + ... + X_n}{n}$$
, $n = 1, 2, ...$

We already know that $\overline{X}_n \to \mu$.

Then for all $\varepsilon > 0$, $P(|\overline{X}_n - \mu| \ge \varepsilon) \to 0$, $P(|\overline{X}_n - \mu| < \varepsilon) \to 1$ as $n \to \infty$.

We wish to show that $\overline{X}_n \xrightarrow{D} \mu$.

$$F_{\mu}(x) = \begin{cases} 0 & x < \mu \\ 1 & x \ge \mu \end{cases}$$

Since $F_{\mu}(x)$ is not continuous at μ , we need to show

① if
$$x < \mu$$
, $\lim_{n \to \infty} F_{\overline{X}_n}(x) = 0$,

② if
$$x > \mu$$
, $\lim_{n \to \infty} F_{\overline{X}_n}(x) = 1$.

- ① If $x < \mu$, then $\exists \varepsilon > 0$ such that $x \le \mu \varepsilon$. Then $F_{\overline{X}_n}(x) \le P(\overline{X}_n \le \mu - \varepsilon) \le P(|\overline{X}_n - \mu| \ge \varepsilon) \to 0$ as $n \to \infty$.
- ② If $x > \mu$, then $\exists \varepsilon > 0$ such that $x \ge \mu + \varepsilon$. Then $F_{\overline{X}_n}(x) \ge P(\overline{X}_n \le \mu + \varepsilon) \ge P(|\overline{X}_n - \mu| < \varepsilon) \to 1$ as $n \to \infty$.

Therefore, $\overline{X}_n \stackrel{D}{\to} \mu$.