☑ UNIT 1: Computer Hardware Basics – Quick Study Summary

♦ Basics of Motherboard

- Motherboard: Main circuit board (aka mobo).
- Contains: CPU, RAM, chipset, BIOS, ports, slots.
- Connects all components data & power flow control.

♦ CMOS and BIOS

- BIOS (Basic Input/Output System):
 - o Firmware on ROM chip.
 - o Boots system, performs **POST**, handles hardware.
- CMOS:
 - Stores BIOS settings (date, time, boot order, etc.).
 - Powered by CMOS battery.

Working of Processor

- Executes instructions via fetch-decode-execute cycle.
- Measured in GHz (e.g., 3.2GHz = 3.2 billion cycles/sec).

♦ Types of Processors

- Intel: i3, i5, i7, Pentium, Celeron
- AMD: Ryzen, Athlon
- Types:
 - Microprocessor (general purpose)
 - DSP (Digital Signal Processor)
 - o **GPU** (Graphics Processor)
 - Multi-core (2+ cores in one chip)

Components of CPU

- ALU: Arithmetic & Logic operations
- CU (Control Unit): Manages data flow
- Registers: Temporary storage
- Cache:
 - L1: Fastest, smallest, built-in

- o L2: On CPU chip, bigger
- L3: External, shared among cores

⋄ System Memory

► RAM (Random Access Memory)

- Temporary memory volatile.
- Types:
 - o DRAM: Slower, needs refresh
 - SRAM: Faster, costlier (used for cache)
 - o **VRAM**: For graphics
 - o MRAM: Magnetic, retains data

➤ Virtual Memory

- Disk used as RAM when RAM is full.
- Enables multitasking.

▶ Protected Memory

- Stops apps from interfering with each other.
- Increases security and stability.

Storage Devices

➤ Hard Disks

- Non-volatile permanent storage.
- Types: IDE, SATA, SCSI
- File systems:
 - o FAT, NTFS, HFS

► RAID (Redundant Array of Independent Disks)

- Combines disks for speed/fault-tolerance.
- RAID Levels:
 - o **RAID 0** Striping (fast, no fault tolerance)
 - o **RAID 1** Mirroring
 - o **RAID 5** Striping with parity (most common)
 - o RAID 10 Mirror + Striping

➤ Optical Drives

- Types: CD-ROM, DVD-ROM, WORM, Erasable CDs
- Used for media, backups.

➤ Removable Storage

- USB Drives, Memory Cards, External HDDs
- Tape Drives: Used for backup (cheap, long-term)

⋄ Common Computer Ports

Port Type	Use
USB	Data transfer, charging
VGA / HDMI	Video output
PS/2	Keyboard/mouse (older
F3/2	PCs)
Serial	Low-speed legacy data port
Parallel	Printer/scanner (older)
Audio Jack	Mic, speakers
Ethernet	Wired network

⋄ Input Devices

• Keyboard, Mouse, Scanner, Joystick, Microphone

♦ Display Systems

- VGA, SVGA, AGP
- Monitors:
 - o CRT (old), LCD, LED, OLED

⋄ Printers and Their Types

Туре	Description	
Dot Matrix	Impact, ribbon-based	
Inkjet	Sprays ink droplets	

Uses toner and laser **Laser**

beam

Uses heat on special Thermal

paper

QUICK RECAP CHART

Term	Meaning
BIOS	Basic input/output system
CMOS	Stores BIOS config (battery
	powered)
RAM	Temporary memory
RAID 5	Striping + Parity (fault-tolerant)
SATA	Modern HDD interface
USB	Universal data port
VGA/HDMI	Video output ports
Dot Matrix	Old printer type

☑ UNIT 2: Operating Systems – Quick Study Summary

⋄ Basics of Operating System (OS)

- Operating System: Software that manages hardware and software resources.
- Acts as bridge between user and hardware.

⋄ Functions of Operating System

- 1. **Process Management** Executes, schedules, manages processes.
- 2. **Memory Management** Allocates/deallocates memory (RAM).
- 3. File System Management Manages files, directories, access.
- 4. **Device Management** Controls I/O devices via drivers.
- 5. **Security & Access Control** User accounts, passwords, permissions.
- 6. User Interface CLI (Command Line) or GUI (Graphical Interface).

Client vs Server Operating System

Feature	Client OS	Server OS
Purpose	Desktop use	Manages network & services
Evamples	Windows 10, macOS,	Windows Server, Red Hat, Ubuntu
Examples	Linux	Server
Supports multiple users?	No	Yes
Services	Minimal (print, file sharing)	Advanced (Active Directory, DNS, DHCP)

⋄ Command Line Basics (CLI)

- Text-based interface.
- Useful for:
 - o File operations (copy, delete, rename)
 - System diagnostics
 - Script automation
- Examples: dir, cd, mkdir, rm, ping

♦ Files & Directories

- **File**: Logical unit of storage.
- **Directory (Folder):** Container for files/subdirectories.
- Structure: Tree-based hierarchy
- File Naming:
 - Max length depends on OS.
 - o Extensions: .exe, .txt, .sys, .dll

♦ System Files

- Important files required for boot and OS operation.
- Examples: ntoskrnl.exe, boot.ini, IO.sys, config.sys

♦ Boot Process Overview

1. BIOS runs POST

2. Bootloader loaded from boot sector

- 3. OS kernel is loaded into memory
- 4. OS takes over and initializes user environment

◇ Device Drivers

- Software that helps OS communicate with hardware.
- Each hardware needs a driver (e.g., printer, graphics card).
- Types:
 - o Kernel-mode drivers Core operations
 - User-mode drivers For user-level apps/devices
- If a driver is missing or corrupt → device won't function.

QUICK RECAP TABLE

Concept	Description
OS	Software managing
	hardware/software
Client OS	For end-user systems
Server OS	Manages network services
CLI	Command-line interface
Boot Process	Steps to load OS
System File	Essential OS/boot files
Directory	Folder that holds files/subfolders
Device Driver	Interface between hardware & OS

✓ UNIT 3: Computer Principles & Black Box Model of the PC – Quick Study Summary

Memory and Processor (Basics)

- Processor (CPU):
 - Executes instructions using ALU + Control Unit.
 - Works via Fetch → Decode → Execute cycle.
- Memory:
 - o Holds data temporarily (RAM) or permanently (ROM/HDD).
 - o Interacts with processor during execution.

♦ Address and Data Buses

- Data Bus: Carries actual data between CPU & memory.
- Address Bus: Carries memory addresses.
- Control Bus: Manages control signals.
- Wider bus → faster and more efficient communication.

♦ Stored Program Concept

- Introduced by John von Neumann.
- Both program and data are stored in memory.
- CPU fetches instructions one-by-one for execution.

♦ Physical Components of a PC

- CPU, RAM, ROM, HDD/SSD, PSU, Motherboard, Ports
- Peripherals: Mouse, keyboard, monitor, printer, etc.
- All components interact via buses on the motherboard.

⋄ Basic Electrical Safety

- Turn off power before opening PC.
- Use anti-static wrist strap to prevent ESD.

Never touch circuit boards directly with bare hands.

Motherboards and Design

- Contains: **CPU socket**, RAM slots, **chipsets**, expansion slots.
- Connects internal and external components.
- Types of slots: PCI, AGP, PCIe

♦ Dismantling and Rebuilding a PC

Steps to Dismantle:

- 1. Power off and unplug.
- 2. Ground yourself.
- 3. Remove case panel.
- 4. Disconnect components (RAM, HDD, cables, etc.)

Rebuilding:

- 1. Insert motherboard → screw in.
- 2. Install CPU, RAM, PSU.
- 3. Connect storage, cables, GPU, etc.
- 4. Close panel and power on.

◇ POST (Power-On Self Test)

- Runs when PC powers on (part of BIOS).
- Tests:
 - o CPU
 - o RAM
 - Disk drives
 - Keyboard
- If POST fails → beeps or error codes.

♦ Boot Sequence Steps

1. POST runs

- 2. BIOS looks for bootable device
- 3. Bootloader loads OS kernel
- 4. Control handed over to OS

⋄ Real Mode Architecture

- Used by older Intel CPUs (8086, 80286).
- CPU can access only 1 MB memory.
- No protection, direct access to hardware.

⋄ Interrupts

- Signals from hardware/software to CPU.
- Types:
 - Hardware Interrupt (e.g., keyboard press)
 - Software Interrupt (system calls)
- Helps CPU multitask and respond quickly.

QUICK RECAP TABLE

Term	Description	
Stored	Dua guarra I data in manusari	
Program	Program + data in memory	
Data Bus	Carries actual data	
Address Bus	Sends memory location	
Motherboard	Central circuit hub	
POST	Power-On Self Test by BIOS	
Real Mode	Basic CPU mode, 1MB limit	
Interrupt	Signal to CPU to stop & handle	
Interrupt	task	
Boot Process	POST → BIOS → OS	

☑ UNIT 4: Enterprise & Active Directory Infrastructure – Quick Study Summary

♦ Enterprise Infrastructure Overview

- Enterprise Infrastructure = Framework combining:
 - Servers, clients, storage, network, security, services
- Goal: Centralized management, security, and access across large organizations.

⋄ Enterprise Infrastructure Architecture

Main Components:

- Client systems: End-user machines
- Server systems: Provide centralized services
- **Directory services**: For authentication (e.g., AD)
- Security: Firewalls, antivirus, policies
- Networking: Switches, routers, LAN/WAN

Introduction to Active Directory (AD)

- AD = Directory Service by Microsoft
- Stores users, groups, devices, policies
- Enables central management, authentication, SSO

♦ Key AD Concepts

Term	Description
Kerberos	Authentication protocol (uses tickets)
LDAP	Protocol for accessing directory info
TGT	Ticket Granting Ticket for Kerberos
Forest	Top-level container with one or more
Forest	domains
Domain	Logical group of network objects
OU	Organizational Unit (sub-container in
00	domain)
Site Topology	Physical structure (based on location, IP)

♦ Trust Relationships in AD

- Enable access across domains and forests.
- Types:
 - o One-way
 - Two-way
 - o Transitive / Non-transitive

Managing AD Objects

AD Objects:

- **User** account with login access
- Group collection of users/devices
- **Computer** systems joined to domain
- **OU** organizational container
- **Domain** top-level AD object

Operations:

• Create, modify, move, delete objects via ADUC (GUI) or PowerShell

♦ Group Policy (GPO) Overview

Controls user/device settings across the domain.

GPO Structure:

- Linked to sites, domains, or OUs
- Contains security settings, restrictions, update rules

⋄ GPO Security Settings

Setting	Purpose
Password Policies	Length, complexity, history, expiry
Account Lockout	Lock after X wrong attempts
Timeout Settings	Auto logoff after inactivity
USB Enable/Disable	Manage USB access
Screen Saver Settings	Enforce screen lock
Audit Logging	Track user actions
Windows Updates	Auto-download/install settings
User Restrictions	App usage limits, network rules

⋄ GPO Application Process

- Creation → Linking → Enforcing
- Applied in the following order:
 - Local
 - o Site
 - o Domain
 - o OU

(LSDOU Rule)

- Loopback processing: Overrides user GPO based on computer GPO.
- Precedence: Last applied GPO takes priority (unless enforced).

♦ Fine-Grain Password Policy (FGPP)

- More granular control over passwords.
- Applied to specific users/groups (not domain-wide).

Workstation Addition to Domain

- Windows Clients: Added via System settings or CLI.
- Non-Windows Clients: Use tools like Samba, LDAP plugins.

♦ Integrating Additional Auth Methods

- Biometric (Fingerprint), Smart Card, RSA tokens
- Used for MFA (Multi-Factor Authentication)

⋄ Single Sign-On (SSO)

- Login once → access multiple services.
- Simplifies user experience, improves security.

⋄ AD Hardening Guidelines

- Regularly patch systems
- Enforce strong password policies
- Restrict admin privileges
- Enable auditing
- Disable unused accounts
- Use **secure protocols** (e.g., LDAPS)

QUICK RECAP TABLE

Concept	Meaning
AD	Microsoft directory service
Domain	Logical boundary for objects
OU	Sub-group for organizing objects
Kerberos	Secure ticket-based authentication
LDAP	Protocol to read AD information
GPO	Set of rules applied to
	users/computers

TGT	Ticket from Kerberos for session
	access
SSO	Login once, access many services
FGPP	Specific password rules for
FGPP	groups/users

☑ UNIT 5: Cloud Computing – Quick Study Summary

⋄ What is Cloud Computing?

- **Definition**: Delivering computing services (servers, storage, databases, software) over the internet ("cloud").
- Goal: On-demand access, pay-as-you-go, scalable IT resources.

⋄ Key Cloud Concepts

- On-demand self-service
- Broad network access
- Resource pooling
- Rapid elasticity
- Measured service (billing by usage)

♦ Types of Clouds

Public Cloud

Cloud Type Description

Services delivered over internet (e.g., AWS,

Azure)

Private Cloud Used exclusively by one organization

Hybrid Cloud Mix of public + private

Community Cloud Shared by several organizations

⋄ Cloud Service Models

Mo del	Description	Examples
laa	Infrastructure as a Service (virtual servers,	AWS EC2, Google Compute
S	storage)	Engine
Paa S	Platform as a Service (runtime, databases, tools)	Heroku, Google App Engine
Saa S	Software as a Service (apps over internet)	Gmail, Office 365, Dropbox

♦ Multi-Tenancy Model

- Single software instance serves multiple users (tenants).
- Each user's data is isolated but runs on shared infrastructure.

♦ Cloud Deployment Models

Model	Key Features	
Private	Internal use only, high control/security	
Public	Shared infrastructure, low cost	
Hybrid	Combines public/private flexibility	
Community	Shared infra for common-purpose	
	groups	

⋄ Security Design & Architecture

- Focus on data confidentiality, integrity, availability (CIA).
- Ensure **secure architecture** across all layers: application, network, storage.

⋄ Cloud Security Reference Model

Security is layered:

Data layer: encryption, backups

Application layer: authentication, input validation

o Host layer: hardened VMs

Network layer: firewalls, VPNs

Physical layer: secure data centers

Cloud Identity and Access Management (IAM)

☑ Identity Provisioning

• Process of creating, updating, and deleting user identities.

Verifying user identity (passwords, biometrics, tokens).

• Granting specific access rights (based on roles, policies).

• Safe generation, storage, and distribution of encryption keys.

♦ Infrastructure & Virtualization Security

- **Hypervisor** is a key risk point (runs multiple VMs).
- Risks:
 - o VM escape
 - o Resource contention
 - o Insecure API access

Understanding Cloud Security

Concept **Description**

Security Boundary Defines scope of responsibility (provider vs user)

Security Mapping Matches controls to assets

Brokered Access Access via intermediary (e.g., CASB)

Storage Location Data residency matters (laws, compliance)

Encryption Protects data in transit & at rest

Auditing & Compliance Ensures legal & regulatory standards are met

OAuth, SAML, OpenID Connect for identity

Identity Protocols

federation

QUICK RECAP TABLE

OAuth / SAML

Term Meaning **Cloud Computing** Internet-based computing services Application / Platform / Infrastructure SaaS / PaaS / IaaS layers Public/Private Shared vs exclusive cloud access Cloud Multi-Tenancy Shared software with isolated users IAM **Identity and Access Management** Hypervisor Virtualization platform controller Encryption Protects data confidentiality SSO Single login for multiple services

Federated identity protocols

☑ UNIT 6: Cloud Computing – Quick Study Summary

⋄ What is Cloud Computing?

- **Cloud Computing** = Delivering computing services (like servers, storage, apps) over the internet.
- Based on on-demand access, scalability, pay-per-use model.
- Users don't manage hardware handled by the cloud provider.

♦ Characteristics of Cloud Computing

Characteristic	Description
On-demand self- service	Users can provision resources as needed
Broad network access	Services available over internet or private network
Resource pooling	Shared resources serve multiple customers
Rapid elasticity	Quick scale-up or scale-down
Measured service	Usage metered and billed accordingly

♦ Cloud Service Models

Model	What It Provides	Examples
laaS	Virtualized hardware (VMs, storage)	AWS EC2, Azure VM

PaaS Platforms to build & deploy apps Heroku, Google App Engine

Ready-to-use applications over internet Gmail, Office 365

⋄ Types of Clouds

Type Description

Public Cloud Services over public internet (shared infra)

Private Cloud Dedicated to one organization (secure)

Hybrid Cloud Combines public + private

Shared between organizations with common needs

♦ Cloud Architecture

- Core Components:
 - Client devices (mobile, desktop)
 - Cloud services (apps, compute, storage)
 - Cloud platform (runtime, tools)
 - o Infrastructure (networks, servers)

Cloud Cube Model (Jericho Forum)

Helps assess cloud deployment across 4 dimensions:

Dimension	Options	
Into wool/Esste wool	Inside or outside organization's	
Internal/External	firewall	
Proprietary/Open	Vendor-owned or open standards	
Perimeterised/De-	Secured internally or open to internet	
perimeterised		
Insourced/Outsourced	Managed in-house or by provider	

Multi-Tenancy

- Multiple users share the same infrastructure.
- **Tenant isolation** is key for security.
- Saves cost and improves resource use.

Identity and Access Management (IAM)

Ensures only authorized users access resources.

Component Purpose

Confirms identity (e.g., password,

fingerprint)

AuthorizationGrants specific access rightsAuditingTracks access logs and actionsUser ProvisioningAdds, updates, disables accounts

Cloud Security Reference Model

Focuses on securing all layers:

• Data Security: Encryption, masking

• Application Security: Firewalls, WAFs

• Platform Security: OS hardening

• Network Security: VPNs, secure APIs

• Physical Security: Data center protection

♦ Identity Federation & Protocols

Protocol Use Case

SSO (Single Sign-On) One login for multiple services

Delegated access without password

OAuth sharing

SAML Federated identity using XML
OpenID Decentralized identity system

⋄ Cloud Encryption

- Protects data at rest, in transit, and in use.
- Requires:
 - Key management
 - Access control
 - End-to-end encryption
- Homomorphic encryption: Compute on encrypted data without decrypting.

♦ Cloud Governance

• Set of rules, policies, and controls for secure cloud usage.

Governance covers:

- User roles & access
- Data location and ownership
- Regulatory compliance (e.g., GDPR)
- SLA monitoring and enforcement

QUICK RECAP TABLE

Concept	Meaning	
laaS / PaaS / SaaS	Service models for infra, platform, software	
Cloud Cube	Framework with 4 dimensions (Jericho	
Model	Forum)	
Multi-Tenancy	Multiple users on shared infra	
IAM	Manages identity & access	
OAuth / SAML	Federated identity protocols	
Encryption	Secures data in cloud	
Cloud	Control and compliance framework	
Governance		