

Компютърни архитектури CSCB008

Логически функции и логически елементи Булева алгебра

доц. д-р Ясен Горбунов 2021

Някои термини

логическа константа – истина (true) и неистина (false), 1 и 0, HIGH и LOW

Някои термини

логическа константа — истина (true) и неистина (false), 1 и 0, HIGH и LOW

логическа променлива – аргумент от двоичното множество $x_0, x_1, ..., x_n \in B$

набор от логически променливи – съчетание от стойности (всяка логическа променлива може да приема една стойност – **права** или **инверсна**)

Някои термини

логическа константа — истина (true) и неистина (false), 1 и 0, HIGH и LOW

логическа променлива – аргумент от двоичното множество $x_0, x_1, ..., x_n \in B$

набор от логически променливи — съчетание от стойности (всяка логическа променлива може да приема една стойност — **права** или **инверсна**)

логическа функция

Една функция $f(x_0, x_1, ..., x_n)$ се нарича булева ако тя и който и да е от нейните аргументи приемат само двоични стойности.

непълно определена логическа функция (НОЛФ)

За определени набори функцията има стойности, които не са дефинирани.

Таблица на истинност

пример за функция на 3 променливи				
номер на набора	X ₂	X ₁	X ₀	функция f(x ₂ ,x ₁ ,x ₀)
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	Χ
7	1	1	1	X

X – don't care може да бъде 0 или 1

Видове логически схеми

комбинационни - без памет

Видове логически схеми

Видове логически схеми

комбинационни - без памет

последователностни - с обратни връзки

Инвертор

транзисторът като цифров ключ

линеен режим – отделяне на активна мощност ($P = I^2.R$)

ключов режим – напълно отпушен или запушен – работа без загуби

BJT – Bipolar Junction Transistor
$$R_{on} = \sim 5 - 50 \ \Omega$$

Инвертор

CMOS – Complementary Metal-Oxide-Semiconductor R_{on} = ~ 0.005 – 10 Ω

NOT

$$Y = \overline{A}$$

таблица на истинност

Инвертор – бързодействие на логическите елементи

динамични характеристики – два вида закъснение:

най-дълъг път (propagation delay)

t_{od} = максимално закъснение от входа към изхода

най-къс път (contamination delay)

t_{cd} = минимално закъснение от входа към изхода

Инвертор - 74HC04 (CMOS), 74HCT04 (TTL)

разположение на изводите (pinout)

DIP корпус (Dual In-line Package)

SMD корпус (Surface Mount Device)

Елементарни логически функции и логически елементи

- зависят от 1 или 2 аргумента
- за пълнота към тях се прибавят константите 0 и 1

Основни операции в Булевата алгебра:

- една едноместна (унарна) операция **отрицание** (HE, NOT) означение
- две двуместни (бинарни) операции

конюнкция - логическо И (AND) означение * · \
дизюнкция - логическо ИЛИ (OR) означение + \

други означения

1	логическо отрицание	$x = 010 \rightarrow !x = 0$
~	побитово отрицание	$x = 010 \rightarrow \sim x = 101$
&&	логическо И (Булево И)	$x = 10 \rightarrow (1 \&\& x) = true$
&	побитово И	$X_1 = 10, X_2 = 01 \rightarrow X_1 \& X_2 = 00; \& X_1 = 0$ (съкращаване)
1	логическо ИЛИ (Булево ИЛИ)	$x = 10 \rightarrow (0 x) = true$
	побитово ИЛИ	$x = 10 \rightarrow (1 \mid x) = 11; (0 \mid x) = 10; \mid x = 1$ (съкращаване)

Елементарни логически функции и логически елементи

Елементарни логически функции и логически елементи

AND

$$Y = AB$$

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

ИЛИ

OR

$$Y = A + B$$

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Елементарни логически функции и логически елементи

И

AND

$$Y = AB$$

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

ИЛИ

OR

$$Y = A + B$$

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Изкл. ИЛИ

XOR

$$Y = A \oplus B$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Елементарни логически функции и логически елементи

И-НЕ

NAND

$$Y = \overline{AB}$$

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

или-не

NOR

$$Y = \overline{A + B}$$

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Изкл. ИЛИ-НЕ

XNOR

$$Y = \overline{A + B}$$

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Логически елементи (gates)

Елементарни логически функции и логически елементи – приоритет на логическите операции

- (1) скоби най-висок приоритет
- (2) NOT в тривиалната алгебра операцията NOT не съществува
- (3) AND конюнкция
- (4) OR дизюнкция

Елементарни логически функции и логически елементи

логически функции при брой на аргументите n \leq 2 $\longrightarrow N_f = 2^{2^2} = 2^4 = 16$

функция	означение	функция	означение
$f_0 = 0$	0	$f_8 = \overline{x_1 + x_2}$	$X_1 \longrightarrow f$
$f_1 = x_1 \cdot x_2$	$X_1 \longrightarrow f$	$f_9 = x_1.x_2 + \overline{x_1}.\overline{x_2}$	$X_1 \longrightarrow f$
$f_2 = x_1 \cdot \overline{x_2}$	$X_1 \longrightarrow X_2 \longrightarrow f$	$f_{10} = \overline{x_2}$	$x_2 \longrightarrow f$
$f_3 = x_1$	$x_1 \longrightarrow f$	$f_{11} = x_1 + \overline{x_2}$	$X_1 \longrightarrow f$
$f_4 = \overline{x_1} \cdot x_2$	$X_1 \longrightarrow X_2 \longrightarrow f$	$f_{12} = \overline{x_1}$	$x_1 \longrightarrow f$
$f_5 = x_2$	$x_2 \longrightarrow f$	$f_{13} = \overline{x_1} + x_2$	$X_1 \longrightarrow f$
$f_6 = x_1.\overline{x_2} + \overline{x_1}.x_2$	$X_1 \longrightarrow f$	$f_{14} = \overline{x_1 \cdot x_2}$	X ₁ _
$f_7 = x_1 + x_2$	$X_1 \longrightarrow f$	$f_{15} = 1$	1

Закони на Булевата алгебра

закон	дизюнкция	конюнкция
постулат	$x_1 + 0 = x_1$	$x_1 \cdot 1 = x_1$
постулат	$x_1 + \overline{x_1} = 1$	$x_1 \cdot \overline{x_1} = 0$
теорема	$x_1 + x_1 = x_1$	$x_1 \cdot x_1 = x_1$
теорема	$x_1 + 1 = 1$	$x_1 \cdot 0 = 0$
теорема за степенуване	$(\overline{x_1}) = x_1$	-

Закони на Булевата алгебра

закон	дизюнкция	конюнкция
постулат	$x_1 + 0 = x_1$	$x_1 \cdot 1 = x_1$
постулат	$x_1 + \overline{x_1} = 1$	$x_1 \cdot \overline{x_1} = 0$
теорема	$x_1 + x_1 = x_1$	$x_1 \cdot x_1 = x_1$
теорема	$x_1 + 1 = 1$	$x_1 \cdot 0 = 0$
теорема за степенуване	$\overline{(\overline{x_1})} = x_1$	-
постулат за комутативност	$x_1 + x_2 = x_2 + x_1$	$x_1 \cdot x_2 = x_2 \cdot x_1$
теорема за асоциативност	$(x_1+x_2)+x_3=x_1+(x_2+x_3)$	$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)$
постулат за дистрибутивност	$x_1 \cdot (x_2 + x_3) = x_1 \cdot x_2 + x_1 \cdot x_3$	$x_1 + (x_2 \cdot x_3) = (x_1 + x_2) \cdot (x_1 + x_3)$

Закони на Булевата алгебра

закон	дизюнкция	конюнкция
постулат	$x_1 + 0 = x_1$	$x_1 \cdot 1 = x_1$
постулат	$x_1 + \overline{x_1} = 1$	$x_1 \cdot \overline{x_1} = 0$
теорема	$x_1 + x_1 = x_1$	$X_1 \cdot X_1 = X_1$
теорема	$x_1 + 1 = 1$	$x_1 \cdot 0 = 0$
теорема за степенуване	$\overline{(\overline{x_1})} = x_1$	-
постулат за комутативност	$x_1 + x_2 = x_2 + x_1$	$x_1 \cdot x_2 = x_2 \cdot x_1$
теорема за асоциативност	$(x_1+x_2)+x_3=x_1+(x_2+x_3)$	$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)$
постулат за дистрибутивност	$x_1 \cdot (x_2 + x_3) = x_1 \cdot x_2 + x_1 \cdot x_3$	$x_1 + (x_2 \cdot x_3) = (x_1 + x_2) \cdot (x_1 + x_3)$
теорема за инвертирането (правило на Де Морган)	$\overline{(x_1 + x_2)} = \overline{x_1} \cdot \overline{x_2}$	$\overline{(x_1 \cdot x_2)} = \overline{x_1} + \overline{x_2}$
теорема за поглъщане	$x_1 + x_1 \cdot x_2 = x_1$	$x_1 \cdot (x_1 + x_2) = x_1$
закон за слепване	$x_1 \cdot x_2 + x_1 \cdot \overline{x_2} = x_1$	$(x_1 + x_2) \cdot (x_1 + \overline{x_2}) = x_1$
закон за съкращаване	$x_1 + \overline{x_1} \cdot x_2 = x_1 + x_2$	$x_1 \cdot (\overline{x_1} + x_2) = x_1 \cdot x_2$

Функционална пълнота

Функционално пълна система от функции – база (базис)

Съвкупност от такива функции, чрез които може да бъде записана произволна логическа функция от n аргумента, тоест да се реализират произволни крайни функционални преобразувания.

Пример.: Базисът на Бул включва AND, OR и NOT

Минимална база

Такава, от която не може да се изключи нито една функция, без това да наруши условието за функционална пълнота.

Най-удобни в практиката са базите И-НЕ (NAND) и ИЛИ-НЕ (NOR).

Начини на задаване на логическите функции

символно изобразяване

$$11010_{(2)} \Leftrightarrow x_1 \cdot x_2 \cdot \overline{x_3} \cdot x_4 \cdot \overline{x_5} = 26_{(10)} = 32_{(8)} = 1 A_{(16)}$$

стандартен ред

$$f(\overline{x_1} \cdot \overline{x_2} + \overline{x_1} \cdot x_2 + x_1 \cdot \overline{x_2}) \Leftarrow \sum_{0}^{3} (0, 1, 2)$$

1. Задаване чрез диаграма

2. Таблично задаване

$$f = \sum_{0}^{7} (1, 2, 3, 6, 7)$$

<i>X</i> ₁	\boldsymbol{X}_2	X_3		f
$\overline{X_1}$	$\overline{X_2}$	$\overline{X_3}$	0 0 0	0
$\overline{X_1}$	$\overline{X_2}$	<i>x</i> ₃	0 0 1	1
$\overline{X_1}$	\boldsymbol{x}_2	$\overline{X_3}$	0 1 0	1
$\overline{X_1}$	\boldsymbol{x}_2	<i>X</i> ₃	0 1 1	1
\boldsymbol{x}_1	$\overline{X_2}$	$\overline{X_3}$	1 0 0	0
\boldsymbol{x}_1	$\overline{X_2}$	<i>x</i> ₃	1 0 1	0
\boldsymbol{x}_1	<i>X</i> ₂	$\overline{X_3}$	1 1 0	1
\boldsymbol{x}_1	\boldsymbol{X}_2	<i>X</i> ₃	1 1 1	1

Начини на задаване на логическите функции

3. Равнинно изобразяване (карти на Карно, **K-Мар**)

Начини на задаване на логическите функции

4. Аналитично задаване

конституент на единицата (**minterm**) f=1 за един набор от аргументите

X_1	X_2	k ₀ ¹	k ₁ ¹	k ₂ ¹	k ₃ ¹
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

конституент на нулата (**maxterm**) f=0 за един набор от аргументите

<i>x</i> ₁	X_2	k ₀ ⁰	k ₁ ⁰	k ₂ ⁰	k ₃ ⁰
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

участват всички променливи

функционално пълни системи

стойността на ф-ята в *i*-тия набор

СДНФ – съвършена дизюнктивна нормална форма (SOP – Sum of Products, Сума от произведения)

$$f = \sum_{i=0}^{2n-1} k_i^1 \cdot A_i$$

СКНФ – съвършена конюнктивна нормална форма (POS – Product of Sums, Произведение от суми)

$$f = \prod_{i=0}^{2n-1} (k_i^0 + A_i)$$

Пример за аналитично задаване в СДНФ

<i>X</i> ₁	\boldsymbol{X}_2	X_3		f
$\overline{X_1}$	\overline{X}_2	$\overline{X_3}$	0 0 0	0
$\overline{X_1}$	$\overline{X_2}$	<i>X</i> ₃	0 0 1	1
$\overline{X_1}$	X_2	$\overline{X_3}$	0 1 0	1
$\overline{X_1}$	\boldsymbol{x}_2	<i>x</i> ₃	0 1 1	1
\boldsymbol{x}_1	$\overline{X_2}$	$\overline{X_3}$	1 0 0	0
\boldsymbol{x}_1	$\overline{X_2}$	<i>x</i> ₃	1 0 1	0
\boldsymbol{x}_1	<i>X</i> ₂	$\overline{X_3}$	1 1 0	1
<i>X</i> ₁	<i>X</i> ₂	X ₃	1 1 1	1

заместване: $0 \to -x$ (инверсна форма) $1 \to x$ (права форма)

СДНФ
$$f = \sum_{i=0}^{2n-1} k_i^1 \cdot A_i \Rightarrow \sum_{i=0}^{2n-1} (1,2,3,6,7) = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot \overline{x_3} + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot \overline{x_3} + x_1 \cdot x_2 \cdot \overline{x_3} + x_1 \cdot x_2 \cdot x_3$$

Пример за аналитично задаване в СКНФ

$\boldsymbol{x_1}$	\boldsymbol{x}_2	X_3		f
$\overline{X_1}$	$\overline{X_2}$	$\overline{X_3}$	0 0 0	0
$\overline{X_1}$	$\overline{X_2}$	<i>X</i> ₃	0 0 1	1
$\overline{X_1}$	<i>X</i> ₂	$\overline{X_3}$	0 1 0	1
$\overline{X_1}$	\boldsymbol{x}_2	<i>X</i> ₃	0 1 1	1
\boldsymbol{x}_1	$\overline{X_2}$	$\overline{X_3}$	1 0 0	0
<i>X</i> ₁	$\overline{X_2}$	<i>x</i> ₃	1 0 1	0
\boldsymbol{x}_1	\boldsymbol{X}_2	$\overline{X_3}$	1 1 0	1
<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	1 1 1	1

заместване: 0 → x (права форма) 1 → ~x (инверсна форма)

CKH
$$\Phi$$
 $f = \prod_{i=0}^{2n-1} (k_i^1 + A_i) \Rightarrow \prod_{i=0}^{2n-1} (0,4,5) = (x_1 + x_2 + x_3) \cdot (\overline{x_1} + x_2 + x_3) \cdot (\overline{x_1} + x_2 + \overline{x_3})$

