Block Coding

- Block coding changes a block of 'm' bits into a block of 'n' bits (n>m)
- mB/nB encoding technique
- We need Redundancy to ensure Synchronization
- Block coding gives us redundancy and improves line coding performance

Block coding concept

Block Coding

- Block coding changes a block of 'm' bits into a block of 'n' bits (n>m)
- mB/nB encoding technique
- We need Redundancy to ensure Synchronization
- Block coding gives us redundancy and improves line coding performance

Using block coding 4B/5B with NRZ-I line coding

Block Coding

- Block coding changes a block of 'm' bits into a block of 'n' bits (n>m)
- mB/nB encoding technique
- We need Redundancy to ensure Synchronization
- Block coding gives us redundancy and improves line coding performance

4B/5B mapping codes

Data Sequence	Encoded Sequence	Control Sequence	Encoded Sequence
0000	11110	Q (Quiet)	00000
0001	01001	I (Idle)	11111
0010	10100	H (Halt)	00100
0011	10101	J (Start delimiter)	11000
0100	01010	K (Start delimiter)	10001
0101	01011	T (End delimiter)	01101
0110	01110	S (Set)	11001
0111	01111	R (Reset)	00111
1000	10010		
1001	10011		
1010	10110		
1011	10111		
1100	11010		
1101	11011		
1110	11100		
1111	11101		

Block Coding

- Block coding changes a block of 'm' bits into a block of 'n' bits (n>m)
- mB/nB encoding technique
- We need Redundancy to ensure Synchronization
- Block coding gives us redundancy and improves line coding performance

Example

We need to send data at a 1-Mbps rate. What is the minimum required bandwidth, using a combination of 4B/5B and NRZ-I or Manchester coding?

Example

8B/10B block encoding

Scrambling

- Biphase schemes suitable for LAN but not for Long Distance
- Block Coding + NRZ-I solves synch issue but has DC component
- Bipolar AMI has a narrow bandwidth (no DC Component) but synch issue (long series of 0s)

Scrambling

 The system needs to insert the required pulses based on the defined scrambling rules

AMI used with scrambling

Types of Scrambling Techniques

- Two common scrambling techniques are B8ZS and HDB3
- Bipolar with 8-Zero Substitution (B8ZS)
- High-density bipolar
 3-zero (HDB3)

Two cases of B8ZS scrambling technique

a. Previous level is positive.

Types of Scrambling Techniques

- Two common scrambling techniques are B8ZS and HDB3
- Bipolar with 8-Zero Substitution (B8ZS)
- High-density bipolar
 3-zero (HDB3)

Different situations in HDB3 scrambling technique

Analog-to-digital Conversion

- Analog Data to Digital Data
- Process of Digitization
- Two techniques:
 - ✓ Pulse Code Modulation (PCM)
 - ✓ Delta Modulation (DM)

Pulse Code Modulation (PCM)

Pulse Code Modulation (PCM)

- Sampling
- Quantization
- Encoding

Three different sampling methods for PCM

Nyquist Sampling Rate

- Nyquist \rightarrow fs = 2fh
- Sampling sine wave at three sampling rates:
 - √ f_s = 4f (2 times the Nyquist rate)
 - \checkmark f_s = 2f (Nyquist rate)
 - ✓ fs = f (one-half the Nyquist rate)

Nyquist Sampling Rate

Pulse Code Modulation (PCM)

- Most common technique
- Employs a PCM Encoder
- A PCM encoder has three processes:
 - √ Sampling
 - ✓ Quantization
 - ✓ Encoding

Components of PCM encoder

Pulse Code Modulation (PCM)

- Sampling
- Quantization
- Encoding

Quantization & encoding of a sampled signal

- Sampling → Series of pulses with amplitude values between min and max signal amplitude
- Infinite set with nonintegral values not suitable for encoding
- We quantize the sampling output into certain levels based on range of amplitudes and how much accuracy is needed

Quantization & encoding of a sampled signal

Pulse Code Modulation (PCM)

- Encoding
 - √ Sampling
 - ✓ Quantization
 - √ Encoding
- Decoding

Original Signal Recovery- PCM Decoder

Analog-to-digital Conversion

- Analog Data to Digital Data
- Process of Digitization
- Two techniques:
 - ✓ Pulse Code Modulation (PCM)
 - ✓ Delta Modulation (DM)

Delta Modulation (DM)

- PCM is a very complex technique
- Delta modulation is a simpler technique
- PCM finds the value of the signal amplitude for each sample; DM finds the change from the previous sample
- No code words

The process of delta modulation

Delta Modulation (DM)

- Delta modulation is a simpler technique
- DM finds the change from the previous sample
- No code words

Delta Modulation Components

Delta Demodulation Components

Transmission Modes

- Transmission of Data:
 - √ Wiring
 - Data Stream
- Do we send 1 bit at a time; or do we group bits into larger groups and, if so, how?
- Parallel or Serial Transmission

Data transmission modes

Parallel Transmission

- Binary data (1s ad 0s) organized in groups of 'n' bits
- We send 'n' bits at a time instead of just one
- 'n' wires required to send 'n' bits at one time

Parallel Transmission

Serial Transmission

- In serial transmission one bit follows another
- Only one communication channel rather than 'n' to transmit data

Serial Transmission

Asynchronous Transmission

Serial Transmission

- In serial transmission one bit follows another
- Only one communication channel rather than 'n' to transmit data

Synchronous Transmission

Isochronous Transmission

- Real time Audio and Video
- Synchronization between characters is not enough
- Entire stream should be synchronized
- Isochronous guarantees fixed rate data