```
In [1]:
import pandas as pd
import numpy as np
import random
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter

In [2]:
data = pd.read_csv('/Week-5-Data-Visualization/world-development-indicators/Indicators.csv')
data.shape

Out[2]:
(5656458, 6)

In [3]:
data.head(10)

Out[3]:
```

|   | CountryName | CountryCode | IndicatorName                                  | IndicatorCode     | Year | Value        |
|---|-------------|-------------|------------------------------------------------|-------------------|------|--------------|
| 0 | Arab World  | ARB         | Adolescent fertility rate (births per 1,000 wo | SP.ADO.TFRT       | 1960 | 1.335609e+02 |
| 1 | Arab World  | ARB         | Age dependency ratio (% of working-age populat | SP.POP.DPND       | 1960 | 8.779760e+01 |
| 2 | Arab World  | ARB         | Age dependency ratio, old (% of working-age po | SP.POP.DPND.OL    | 1960 | 6.634579e+00 |
| 3 | Arab World  | ARB         | Age dependency ratio, young (% of working-age  | SP.POP.DPND.YG    | 1960 | 8.102333e+01 |
| 4 | Arab World  | ARB         | Arms exports (SIPRI trend indicator values)    | MS.MIL.XPRT.KD    | 1960 | 3.000000e+06 |
| 5 | Arab World  | ARB         | Arms imports (SIPRI trend indicator values)    | MS.MIL.MPRT.KD    | 1960 | 5.380000e+08 |
| 6 | Arab World  | ARB         | Birth rate, crude (per 1,000 people)           | SP.DYN.CBRT.IN    | 1960 | 4.769789e+01 |
| 7 | Arab World  | ARB         | CO2 emissions (kt)                             | EN.ATM.CO2E.KT    | 1960 | 5.956399e+04 |
| 8 | Arab World  | ARB         | CO2 emissions (metric tons per capita)         | EN.ATM.CO2E.PC    | 1960 | 6.439635e-01 |
| 9 | Arab World  | ARB         | CO2 emissions from gaseous fuel consumption (% | EN.ATM.CO2E.GF.ZS | 1960 | 5.041292e+00 |

# What is the range of years?

```
In [4]:

years = data['Year'].unique().tolist()
print(min(years), '-',max(years))

1960 - 2015
```

# What are the unique Country names and codes, and how many are there?

```
In [5]:
```

```
# List unique countries and the count or length of list
countries = data['CountryName'].unique().tolist()
countryCode = data['CountryCode'].unique().tolist()

print(countries, countryCode, len(countries), len(countryCode))
```

['Arab World', 'Caribbean small states', 'Central Europe and the Baltics', 'East Asia & Pacific (a ll income levels)', 'East Asia & Pacific (developing only)', 'Euro area', 'Europe & Central Asia (all income levels)', 'Europe & Central Asia (developing only)', 'European Union', 'Fragile and con

flict affected situations', 'Heavily indebted poor countries (HIPC)', 'High income', 'High income: nonOECD', 'High income: OECD', 'Latin America & Caribbean (all income levels)', 'Latin America & C aribbean (developing only)', 'Least developed countries: UN classification', 'Low & middle income', 'Low income', 'Lower middle income', 'Middle East & North Africa (all income levels)', 'M iddle East & North Africa (developing only)', 'Middle income', 'North America', 'OECD members', 'O ther small states', 'Pacific island small states', 'Small states', 'South Asia', 'Sub-Saharan Afri ca (all income levels)', 'Sub-Saharan Africa (developing only)', 'Upper middle income', 'World', 'Afghanistan', 'Albania', 'Angeria', 'American Samoa', 'Andorra', 'Angola', 'Antigua and Barbuda', 'Argentina', 'Armenia', 'Aruba', 'Australia', 'Austria', 'Azerbaijan', 'Bahamas, The', 'Bahrain', 'Bangladesh', 'Barbados', 'Belarus', 'Belgium', 'Belize', 'Benin', 'Bermuda', 'Bhutan', 'Bolivia', 'Bosnia and Herzegovina', 'Botswana', 'Brazil', 'Brunei Darussalam', 'Bulgaria', 'Burkina Faso', ' Burundi', 'Cabo Verde', 'Cambodia', 'Cameroon', 'Canada', 'Cayman Islands', 'Central African Repub lic', 'Chad', 'Channel Islands', 'Chile', 'China', 'Colombia', 'Comoros', 'Congo, Dem. Rep.', 'Congo, Rep.', 'Costa Rica', "Cote d'Ivoire", 'Croatia', 'Cuba', 'Curacao', 'Cyprus', 'Czech Republic', 'Denmark', 'Djibouti', 'Dominica', 'Dominican Republic', 'Ecuador', 'Egypt, Arab Rep.', 'El Salvador', 'Equatorial Guinea', 'Eritrea', 'Estonia', 'Ethiopia', 'Faeroe Islands', 'Fiji', 'Finland', 'France', 'French Polynesia', 'Gabon', 'Gambia, The', 'Georgia', 'Germany', 'Ghana', 'Greece', 'Greenland', 'Grenada', 'Guam', 'Guatemala', 'Guinea', 'Guinea-Bissau', 'Guyana', 'Haiti', ' Honduras', 'Hong Kong SAR, China', 'Hungary', 'Iceland', 'India', 'Indonesia', 'Iran, Islamic Rep.', 'Iraq', 'Ireland', 'Isle of Man', 'Israel', 'Italy', 'Jamaica', 'Japan', 'Jordan', 'Kazakhstan', 'Kenya', 'Kiribati', 'Korea, Dem. Rep.', 'Korea, Rep.', 'Kosovo', 'Kuwait', 'Kyrgyz Republic', 'Lao PDR', 'Latvia', 'Lebanon', 'Lesotho', 'Liberia', 'Libya', 'Liechtenstein', 'Lithuania', 'Luxembourg', 'Macao SAR, China', 'Macedonia, FYR', 'Madagascar', 'Malawi', 'Malaysia', 'Maldives', 'Mali', 'Malta', 'Marshall Islands', 'Mauritania', 'Mauritius', 'Mexico', 'Micronesia, Fed. Sts.', 'Moldova', 'Monaco', 'Mongolia', 'Montenegro', 'Morocco', 'Mozambique', ' Myanmar', 'Namibia', 'Nepal', 'Netherlands', 'New Caledonia', 'New Zealand', 'Nicaragua', 'Niger', 'Nigeria', 'Northern Mariana Islands', 'Norway', 'Oman', 'Pakistan', 'Palau', 'Panama', 'Papua New Guinea', 'Paraguay', 'Peru', 'Philippines', 'Poland', 'Portugal', 'Puerto Rico', 'Qatar', 'Romania', 'Russian Federation', 'Rwanda', 'Samoa', 'San Marino', 'Sao Tome and Principe', 'Saudi Arabia', 'Senegal', 'Serbia', 'Seychelles', 'Sierra Leone', 'Singapore', 'Sint Maarten (Dutch part)', 'Slovak Republic', 'Slovenia', 'Solomon Islands', 'Somalia', 'South Africa', 'South Sudan' , 'Spain', 'Sri Lanka', 'St. Kitts and Nevis', 'St. Lucia', 'St. Martin (French part)', 'St. Vincent and the Grenadines', 'Sudan', 'Suriname', 'Swaziland', 'Sweden', 'Switzerland', 'Syrian Ar ab Republic', 'Tajikistan', 'Tanzania', 'Thailand', 'Timor-Leste', 'Togo', 'Tonga', 'Trinidad and Tobago', 'Tunisia', 'Turkey', 'Turkmenistan', 'Turks and Caicos Islands', 'Tuvalu', 'Uganda', 'Ukr aine', 'United Arab Emirates', 'United Kingdom', 'United States', 'Uruguay', 'Uzbekistan', 'Vanuatu', 'Venezuela, RB', 'Vietnam', 'Virgin Islands (U.S.)', 'West Bank and Gaza', 'Yemen, Rep. ', 'Zambia', 'Zimbabwe'] ['ARB', 'CSS', 'CEB', 'EAS', 'EAP', 'EMU', 'ECS', 'ECA', 'EUU', 'FCS', 'H PC', 'HIC', 'NOC', 'OEC', 'LCN', 'LAC', 'LDC', 'LMY', 'LIC', 'LMC', 'MEA', 'MNA', 'MIC', 'NAC', 'O ED', 'OSS', 'PSS', 'SST', 'SAS', 'SSF', 'SSA', 'UMC', 'WLD', 'AFG', 'ALB', 'DZA', 'ASM', 'ADO', 'A GO', 'ATG', 'ARG', 'ARM', 'ABW', 'AUS', 'AUT', 'AZE', 'BHS', 'BHR', 'BGD', 'BRB', 'BLR', 'BEL', 'B LZ', 'BEN', 'BMU', 'BTN', 'BOL', 'BIH', 'BWA', 'BRA', 'BRN', 'BGR', 'BFA', 'BDI', 'CPV', 'KHM', 'C MR', 'CAN', 'CYM', 'CAF', 'TCD', 'CHI', 'CHL', 'CHN', 'COL', 'COM', 'ZAR', 'COG', 'CRI', 'CIV', 'H RV', 'CUB', 'CUW', 'CYP', 'CZE', 'DNK', 'DJI', 'DMA', 'DOM', 'ECU', 'EGY', 'SLV', 'GNQ', 'ERI', 'E ST', 'ETH', 'FRO', 'FJI', 'FIN', 'FRA', 'PYF', 'GAB', 'GMB', 'GEO', 'DEU', 'GHA', 'GRC', 'GRL', 'G
RD', 'GUM', 'GTM', 'GIN', 'GNB', 'GUY', 'HTI', 'HND', 'HKG', 'HUN', 'ISL', 'IND', 'IDN', 'IRN', 'I
RQ', 'IRL', 'IMY', 'ISR', 'ITA', 'JAM', 'JPN', 'JOR', 'KAZ', 'KEN', 'KIR', 'PRK', 'KOR', 'KSV', 'K WT', 'KGZ', 'LAO', 'LVA', 'LBN', 'LSO', 'LBR', 'LBY', 'LIE', 'LTU', 'LUX', 'MAC', 'MKD', 'MDG', 'M WI', 'MYS', 'MDV', 'MLI', 'MHL', 'MRT', 'MUS', 'MEX', 'FSM', 'MDA', 'MCO', 'MNG', 'MNE', 'M AR', 'MOZ', 'MMR', 'NAM', 'NPL', 'NLD', 'NCL', 'NZL', 'NIC', 'NER', 'NGA', 'MNP', 'NOR', 'OMN', 'P
AK', 'PLW', 'PAN', 'PNG', 'PRY', 'PER', 'PHL', 'POL', 'PRT', 'PRI', 'QAT', 'ROM', 'RUS', 'RWA', 'W
SM', 'SMR', 'STP', 'SAU', 'SEN', 'SRB', 'SYC', 'SLE', 'SGP', 'SXM', 'SVK', 'SVN', 'SLB', 'SOM', 'Z AF', 'SSD', 'ESP', 'LKA', 'KNA', 'LCA', 'MAF', 'VCT', 'SDN', 'SUR', 'SWZ', 'SWE', 'CHE', 'SYR', 'T JK', 'TZA', 'THA', 'TMP', 'TGO', 'TON', 'TTO', 'TUN', 'TUR', 'TKM', 'TCA', 'TUV', 'UGA', 'UKR', 'A RE', 'GBR', 'USA', 'URY', 'UZB', 'VUT', 'VEN', 'VNM', 'VIR', 'WBG', 'YEM', 'ZMB', 'ZWE'] 247 247

# Checking for null values

#### In [6]:

data.isnull().any()

#### Out[6]:

CountryName False
CountryCode False
IndicatorName False
IndicatorCode False
Year False
Value False
dtype: bool

## Value Statistics - use to evaluate overall country exports from 1980 - 2015

```
data['Value'].describe()
Out[7]:
count 5.656458e+06
mean 1.070501e+12
std 4.842469e+13
      -9.824821e+15
min
       5.566242e+00
25%
        6.357450e+01
50%
         1.346722e+07
max 1.103367e+16
Name: Value, dtype: float64
In [8]:
data.std(axis=0)
Out[8]:
Year 1.387895e+01
Value 4.842469e+13
dtype: float64
In [9]:
data['CountryName'].count()
Out[9]:
5656458
Most common value in column 'Value'
In [10]:
data['Value'].mode()
Out[10]:
0 0.0
dtype: float64
```

### Lowest value in column 'Value'

```
In [11]:
data['Value'].min()
Out[11]:
-9824821297572060.0
```

# Highest value in column 'Value'

```
In [12]:
data['Value'].max()
Out[12]:
```

4606252

Russian

D. 10

### Remove Unwanted CountryCode rows

### Find grouped countries via the country code

```
In [13]:
data.columns
Out[13]:
Index(['CountryName', 'CountryCode', 'IndicatorName', 'IndicatorCode', 'Year',
        'Value'],
       dtype='object')
In [14]:
data.set index('CountryCode', inplace=True, drop=False)
In [15]:
data = data.drop(['HIC', 'OEC', 'OED', 'NOC', 'CEB', 'EAP', 'EMU', 'ECS', 'ECA', 'EUU', 'LCN', 'FCS
', 'LAC', 'LMY', 'MEA', 'MNA', 'MIC', 'NAC', 'SSF', 'UMC', 'SSA', 'LMC', 'EAS', 'HPC', 'LDC', 'LIC'
], axis=0)
In [16]:
data = data.reset index(drop=True)
In [17]:
data.shape
Out[17]:
(5059963, 6)
Select Arms Exports from all countries
In [99]:
arms stage = data[data['IndicatorName'].str.contains('Arms exports \((SIPRI'))]
In [100]:
arms_stage.shape
Out[100]:
(2024, 6)
In [101]:
arms stage.head()
Out[101]:
            CountryName CountryCode
                                                           IndicatorName
                                                                           IndicatorCode Year
                                                                                                     Value
 4664484
                                            Arms exports (SIPRI trend indicator
              United States
                                 USA
                                                                         MS.MIL.XPRT.KD 2014 1.019400e+10
                                                                  values)
```

Arms exports (SIPRI trend indicator

|         | CountedANatine | CountryCode | IndicatoYN affic                            | MS.MIL.XPRT.KD<br>IndicatorCode | Year | 5.9/1000e+09<br><b>Value</b> |
|---------|----------------|-------------|---------------------------------------------|---------------------------------|------|------------------------------|
| 4472579 | France         | FRA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD                  | 2014 | 1.978000e+09                 |
| 4453682 | United Kingdom | GBR         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD                  | 2014 | 1.704000e+09                 |
| 4408557 | Germany        | DEU         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD                  | 2014 | 1.200000e+09                 |

# Filter for yearly USA exports

#### In [95]:

```
hist_indicator = 'Arms exports \(SIPRI'\)
hist_year = 2014
hist_country = 'USA'

mask1 = data['IndicatorName'].str.contains(hist_indicator)
mask2 = data['Year'].between(1960, 1980)
mask3 = data['CountryCode'].str.contains(hist_country)

# stage is just those indicators matching the 1980 for year and Arms export over time.
usa_stage = data[mask1 & mask3]
usa_67 = data[mask1 & mask2 & mask3]
```

#### In [96]:

```
usa_stage.head(11)
```

#### Out[96]:

|         | CountryName   | CountryCode | IndicatorName                               | IndicatorCode  | Year | Value        |
|---------|---------------|-------------|---------------------------------------------|----------------|------|--------------|
| 4664484 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 2014 | 1.019400e+10 |
| 4629943 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 2013 | 7.384000e+09 |
| 4651699 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 2012 | 9.018000e+09 |
| 4652810 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 2011 | 9.111000e+09 |
| 4640880 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 2010 | 8.169000e+09 |
| 4621048 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 2009 | 6.822000e+09 |
| 4620931 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 2008 | 6.814000e+09 |
| 4636237 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 2007 | 7.834000e+09 |
| 4631888 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 2006 | 7.521000e+09 |
| 4620019 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 2005 | 6.758000e+09 |
| 4619906 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 2004 | 6.752000e+09 |

### In [23]:

```
type (usa_stage)
```

#### Out[23]:

pandas.core.frame.DataFrame

### **Bar Chart Arms Export per Capita**

```
In [93]:
```

```
years = arms_stage['Year'].values
arms = arms_stage['Value'].values

plt.bar(years,arms)
plt.title("Arms exports per Capita from 1960-2014")
plt.xlabel("Year")
plt.ylabel("Arms Export per Capita in millions")

ax = plt.gca()
ax.yaxis.get_major_formatter().set_scientific(False)

def millions(x, pos):
    'The two args are the value and tick position'
    return '{:.0f}M'.format(x*1e-9)

formatter = FuncFormatter(millions)
ax.yaxis.set_major_formatter(formatter)
plt.show()
```



# Bar chart of yearly USA arms exports

### In [97]:

```
years = usa_stage['Year'].values
arms = usa_stage['Value'].values

plt.bar(years,arms)
plt.title("USA Arms exports per Capita from 1960-2014")
plt.xlabel("Year")
plt.ylabel("USA Arms Export per Capita in millions")

ax = plt.gca()
ax.yaxis.get_major_formatter().set_scientific(False)

def millions(x, pos):
    'The two args are the value and tick position'
    return '{:.0f}M'.format(x*le-9)

formatter = FuncFormatter(millions)
ax.yaxis.set_major_formatter(formatter)
plt.show()
```





Notable years: 2002, 2013 There is an increase in global exports compared to USA

# Line Graph of USA arms exports annual

```
In [30]:
```

```
plt.plot(usa_stage['Year'].values, usa_stage['Value'].values)

plt.xlabel('Year')
plt.ylabel(usa_stage['IndicatorName'].iloc[0])

plt.title('Arms Exports in USA')

plt.axis([1959, 2015, 0, 1.9e10])

ax = plt.gca()
ax.yaxis.get_major_formatter().set_scientific(False)

def millions(x, pos):
    'The two args are the value and tick position'
    return '{:.0f}M'.format(x*1e-9)

formatter = FuncFormatter(millions)

ax.yaxis.set_major_formatter(formatter)

plt.show()
```



# Histogram of Global and USA Arms exports annual

```
In [31]:
```

```
hist_data = usa_stage['Value'].values
plt.hist(usa_stage['Value'].values, 10, normed=False, facecolor='green')

plt.xlabel(usa_stage['IndicatorName'].iloc[0])
plt.ylabel('# of Years')
plt.title("Histogram of USA's Arms exports (1960-2014)")

ax = plt.gca()
ax.xaxis.get_major_formatter().set_scientific(False)
```

```
def millions(x, pos):
    'The two args are the value and tick position'
    return '{:.0f}M'.format(x*1e-9)

formatter = FuncFormatter(millions)

ax.xaxis.set_major_formatter(formatter)

plt.grid(True)

plt.show()
```



So the USA has many years where it exported between 10M-12M arms per capita with outliers on either side.

#### In [32]:

```
print(hist data)
[ 5.96100000e+09
                 6.37600000e+09
                                  5.72500000e+09
                                                  9.02900000e+09
  1.20770000e+10
                  1.10540000e+10
                                  8.34900000e+09
                                                  7.16500000e+09
  8.10100000e+09 1.13340000e+10 8.63400000e+09 1.14780000e+10
  1.05850000e+10 1.18390000e+10 1.20740000e+10 1.57080000e+10
  1.54400000e+10 1.45370000e+10 1.41860000e+10 9.76400000e+09
                                                 1.38340000e+10
  1.06970000e+10 1.34510000e+10 1.39600000e+10
  1.17960000e+10
                  1.06890000e+10
                                  1.15480000e+10
                                                  1.22430000e+10
  1.18010000e+10 1.13420000e+10 1.07620000e+10 1.25400000e+10
  1.41070000e+10 1.38360000e+10 1.14610000e+10 1.11460000e+10
  1.08080000e+10 1.45180000e+10 1.57080000e+10 1.15530000e+10
                                                 5.61800000e+09
  7.59100000e+09 5.68200000e+09 4.95500000e+09
                 6.75800000e+09
  6.75200000e+09
                                  7.52100000e+09
                                                  7.83400000e+09
                  6.82200000e+09
  6.81400000e+09
                                  8.16900000e+09
                                                  9.11100000e+09
  9.01800000e+09 7.38400000e+09 1.01940000e+10]
```

# How does USA compare to other countries

```
In [120]:
```

```
data = data.sort_values(by=['Year', 'Value'], ascending=False)
data.head(10)
```

#### Out[120]:

|         | CountryName | CountryCode | IndicatorName                                  | IndicatorCode  | Year | Value        |
|---------|-------------|-------------|------------------------------------------------|----------------|------|--------------|
| 4918852 | South Asia  | SAS         | Disbursements on external debt, long-term (DIS | DT.DIS.DLXF.CD | 2015 | 2.287139e+11 |
| 4914010 | Pakistan    | PAK         | Disbursements on external debt, long-term (DIS | DT.DIS.DLXF.CD | 2015 | 2.111025e+11 |
| 4913622 | South Asia  | SAS         | PPG, private creditors (DIS, current US\$)     | DT.DIS.PRVT.CD | 2015 | 2.097367e+11 |
| 4913619 | South Asia  | SAS         | PPG, commercial banks (DIS, current US\$)      | DT.DIS.PCBK.CD | 2015 | 2.097213e+11 |
| 4913319 | Pakistan    | PAK         | PPG, private creditors (DIS, current US\$)     | DT.DIS.PRVT.CD | 2015 | 2.087984e+11 |

| 4913320 | Countify:Nistae      | Country Colle | PPG, commercial banks (DISdicatenNals@)        | DTI.ibdl%cl?tciBCccdle | 2/02/2007 | 2.08798 <b>4/ælúé</b> |
|---------|----------------------|---------------|------------------------------------------------|------------------------|-----------|-----------------------|
| 4730595 | Romania              | ROM           | Principal repayments on external debt, long-te | DT.AMT.DLXF.CD         | 2015      | 2.014780e+10          |
| 4727366 | Mexico               | MEX           | Principal repayments on external debt, long-te | DT.AMT.DLXF.CD         | 2015      | 1.946834e+10          |
| 4724948 | 724948 South Asia SA | SAS           | PPG, official creditors (DIS, current US\$)    | DT.DIS.OFFT.CD         | 2015      | 1.897722e+10          |
| 4721109 | Mexico               | MEX           | PPG, private creditors (AMT, current US\$)     | DT.AMT.PRVT.CD         | 2015      | 1.821751e+10          |

#### In [121]:

```
hist_indicator = 'Arms exports \((SIPRI')
hist_year = 1990

mask1 = data['IndicatorName'].str.contains(hist_indicator)
mask2 = data['Year'].isin([hist_year])
mask3 = data['Year'].between(1973, 1981)
mask4 = data['Year'].between(1989, 1996)

arms_1990 = data[mask1 & mask2]
arms_range1 = data[mask1 & mask3].head(20)
arms_range2 = data[mask1 & mask4].head(20)
arms_1990.head(5)
```

### Out[121]:

|         | CountryName       | CountryCode | IndicatorName                               | IndicatorCode  | Year | Value        |
|---------|-------------------|-------------|---------------------------------------------|----------------|------|--------------|
| 4670076 | United States     | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1990 | 1.076200e+10 |
| 4465903 | United<br>Kingdom | GBR         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1990 | 1.877000e+09 |
| 4462962 | Germany           | DEU         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1990 | 1.834000e+09 |
| 4453239 | France            | FRA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1990 | 1.698000e+09 |
| 4375760 | China             | CHN         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1990 | 9.410000e+08 |

#### In [122]:

```
arms_range1
```

#### Out[122]:

|         | 0 N            | 0 1 0 1     | L. P. A. Maria                              | La Parte Octo  | <b>V</b> |              |
|---------|----------------|-------------|---------------------------------------------|----------------|----------|--------------|
|         | CountryName    | CountryCode | IndicatorName                               | IndicatorCode  | Year     | Value        |
| 4692070 | United States  | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1981     | 1.345100e+10 |
| 4553128 | France         | FRA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1981     | 3.786000e+09 |
| 4496997 | United Kingdom | GBR         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1981     | 2.403000e+09 |
| 4475814 | Germany        | DEU         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1981     | 2.029000e+09 |
| 4452661 | Italy          | ITA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1981     | 1.690000e+09 |
| 4355588 | Netherlands    | NLD         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1981     | 8.120000e+08 |
| 4323869 | China          | CHN         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1981     | 6.420000e+08 |
| 4323240 | Switzerland    | CHE         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1981     | 6.390000e+08 |
| 4240877 | Poland         | POL         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1981     | 3.460000e+08 |
| 4211955 | Norway         | NOR         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1981     | 2.780000e+08 |
| 4178697 | Israel         | ISR         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1981     | 2.170000e+08 |

| 4178696 | CountryName<br>Arab World | CountryCode<br>ARB | Arms exports (SIPRINGIA Values)             | IndicatorCode<br>MS MIL XPRT KD | <b>Year</b><br>1981 | <b>Value</b><br>2 170000e+08 |
|---------|---------------------------|--------------------|---------------------------------------------|---------------------------------|---------------------|------------------------------|
|         |                           |                    | ,                                           |                                 |                     |                              |
| 4117226 | Sweden                    | SWE                | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD                  | 1981                | 1.380000e+08                 |
| 4109226 | Korea, Rep.               | KOR                | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD                  | 1981                | 1.300000e+08                 |
| 4109194 | Spain                     | ESP                | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD                  | 1981                | 1.300000e+08                 |
| 4104846 | Canada                    | CAN                | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD                  | 1981                | 1.260000e+08                 |
| 4083097 | Libya                     | LBY                | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD                  | 1981                | 1.070000e+08                 |
| 4061197 | Macedonia, FYR            | MKD                | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD                  | 1981                | 9.100000e+07                 |
| 4038655 | Egypt, Arab<br>Rep.       | EGY                | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD                  | 1981                | 7.700000e+07                 |
| 4031566 | Austria                   | AUT                | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD                  | 1981                | 7.300000e+07                 |

# Histogram of Top 20 arms contributors from 1973-1981

```
In [113]:
```

```
fig, ax = plt.subplots()
ax.annotate("USA",
            xy=(20, 25), xycoords='data',
            xytext=(15, 5), textcoords='data',
            arrowprops=dict(arrowstyle="->",
                            connectionstyle="arc3"),
plt.hist(arms_range1['Value'], 10, normed=False, facecolor='green')
plt.xlabel(arms range1['IndicatorName'].iloc[0])
plt.ylabel('# of Countries (duplicated each year)')
plt.title('Histogram of Arms exported Per Capita (1973-1981)')
plt.axis([0, 1.5e10, 0, 50])
plt.grid(True)
ax = plt.gca()
ax.xaxis.get_major_formatter().set_scientific(False)
{\tt def} millions(x, pos):
    'The two args are the value and tick position'
    return '{:.0f}M'.format(x*1e-9)
formatter = FuncFormatter(millions)
ax.xaxis.set major formatter(formatter)
plt.show()
```



#### In [88]:

```
arms_range2
```

#### Out[88]:

|         | CountryName           | CountryCode | IndicatorName                               | IndicatorCode  | Year | Value        |
|---------|-----------------------|-------------|---------------------------------------------|----------------|------|--------------|
| 4696661 | United States         | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1992 | 1.410700e+10 |
| 4694834 | United States         | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1993 | 1.383600e+10 |
| 4685231 | United States         | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1991 | 1.254000e+10 |
| 4676393 | United States         | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1994 | 1.146100e+10 |
| 4675317 | United States         | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1989 | 1.134200e+10 |
| 4673572 | United States         | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1995 | 1.114600e+10 |
| 4670520 | United States         | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1996 | 1.080800e+10 |
| 4670076 | United States         | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1990 | 1.076200e+10 |
| 4556602 | Russian<br>Federation | RUS         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1995 | 3.900000e+09 |
| 4544913 | Russian<br>Federation | RUS         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1996 | 3.539000e+09 |
| 4544264 | United Kingdom        | GBR         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1989 | 3.520000e+09 |
| 4541527 | Russian<br>Federation | RUS         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1993 | 3.442000e+09 |
| 4513924 | Germany               | DEU         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1994 | 2.751000e+09 |
| 4507509 | Russian<br>Federation | RUS         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1992 | 2.613000e+09 |
| 4502729 | Germany               | DEU         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1991 | 2.516000e+09 |
| 4486259 | France                | FRA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1989 | 2.207000e+09 |
| 4472323 | Germany               | DEU         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1996 | 1.974000e+09 |
| 4467214 | France                | FRA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1996 | 1.896000e+09 |
| 4465903 | United Kingdom        | GBR         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1990 | 1.877000e+09 |
| 4462962 | Germany               | DEU         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1990 | 1.834000e+09 |

# Histogram of Top 20 contributors from 1989-1996

### In [119]:

```
plt.xlabel(if of Countries (duplicated each year)')
plt.title('Histogram of Arms exported Per Capita (1973-1981)')

plt.axis([0, 1.5e10, 0, 20])
plt.grid(True)

ax = plt.gca()
ax.xaxis.get_major_formatter().set_scientific(False)

def millions(x, pos):
    'The two args are the value and tick position'
    return '{:.0f}M'.format(x*1e-9)

formatter = FuncFormatter(millions)
ax.xaxis.set_major_formatter(formatter)

plt.show()
```



# Histogram of arms exports per capita by country

```
In [52]:
```

```
fig, ax = plt.subplots()
ax.annotate("USA",
            xy=(12e9, 25), xycoords='data',
            xytext=(6e9, 500), textcoords='data',
            arrowprops=dict(arrowstyle="->",
                            connectionstyle="arc3"),
plt.hist(arms stage['Value'], 10, normed=False, facecolor='green')
plt.xlabel(arms stage['IndicatorName'].iloc[0])
plt.ylabel('# of Countries (duplicated each year)')
plt.title('Histogram of Arms exported Per Capita (1960-2014)')
plt.axis([0, 1.5e10, 0, 2000])
plt.grid(True)
ax = plt.gca()
ax.xaxis.get major formatter().set scientific(False)
def millions(x, pos):
    'The two args are the value and tick position'
    return '\{:.0f\}M'.format(x*1e-9)
formatter = FuncFormatter(millions)
ax.xaxis.set_major_formatter(formatter)
plt.show()
```



#### In [34]:

```
print(len(arms_stage))
```

2024

So the USA, at ~12M arms is an outlier, as most countries have 0-1M arms exported from 1960-2014

# Relationship between Death rate and Arms Exports in the USA

#### In [50]:

```
hist_indicator = 'Death rate, crude \ (p'
hist_country = 'USA'

mask1 = data['IndicatorName'].str.contains(hist_indicator)
mask2 = data['CountryCode'].str.contains(hist_country)

gdp_stage = data[mask1]
usa_death = data[mask1 & mask2]
```

### In [41]:

```
gdp_stage.head(2)
```

### Out[41]:

|    | CountryName            | CountryCode | IndicatorName                        | IndicatorCode  | Year | Value     |
|----|------------------------|-------------|--------------------------------------|----------------|------|-----------|
| 13 | Arab World             | ARB         | Death rate, crude (per 1,000 people) | SP.DYN.CDRT.IN | 1960 | 19.754452 |
| 91 | Caribbean small states | CSS         | Death rate, crude (per 1,000 people) | SP.DYN.CDRT.IN | 1960 | 9.813167  |

### In [42]:

```
usa_stage.head(2)
```

### Out[42]:

|       | CountryName   | CountryCode | IndicatorName                               | IndicatorCode  | Year | Value        |
|-------|---------------|-------------|---------------------------------------------|----------------|------|--------------|
| 19360 | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1960 | 5.961000e+09 |
| 4255  | United States | USA         | Arms exports (SIPRI trend indicator values) | MS.MIL.XPRT.KD | 1961 | 6.376000e+09 |

```
plt.plot(gdp_stage['Year'].values, gdp_stage['Value'].values)

plt.xlabel('Year')
plt.ylabel(gdp_stage['IndicatorName'].iloc[0])

plt.title('Death Rate Per Capita')

plt.axis([1959, 2014,0,60])

plt.show()
```



### In [72]:

```
plt.plot(usa_death['Year'].values, usa_death['Value'].values)

plt.xlabel('Year')
plt.ylabel(usa_death['IndicatorName'].iloc[0])

plt.title('USA Death Rate Per Capita')

plt.axis([1959, 2014,0,60])

plt.show()
```

