Deep Learning

Krystian Mikolajczyk & Chen Qin & Seyed Moosavi

Department of Electrical and Electronic Engineering Imperial College London

- RNN Word embedding
- RNN Unit
- LSTM Unit
- GRU Unit
- Architectures & applications

• Feed-Forward Networks vs. Recurrent Neural Networks

• Chain like structure of RNN suitable for sequences and lists

Speech, language, text, temporal data (audio, video)

- Dialog generation example
 - Input question, output answer
 - Semantic meaning needs numerical embedding

RNN - word embeddings

- Word embedding is a real number, vector (numerical) representation of a word or text allowing to apply mathematical tools
 - words with similar meaning will have vector representations that are close together in the embedding space
 - the goal is to capture some sort of relationship in that space e.g. meaning, morphology, context, etc

RNN - word embeddings

- One-Hot Encoding (Count Vectorizing) with a vocabulary
 - Binary indicator of word persence/absence from the text
- TF-IDF (term frequency inverse document frequency) vectors, Bag of Words, instead of binary presence count, words are represented by their term frequency multiplied by their inverse document frequency
 - words that occur everywhere are given little weighting (i.e. 'the', 'and')
- ullet A co-occurrence matrix is a large matrix $V \times V$. If words occur together, they are marked with a positive count, otherwise 0.

Rome							word V														
												I	like	enjoy	deep	learning	NLP	flying			
	Rome	_	[1,	,	0,	0	Ο	Ο	,	0.1		1	0	2	1	0	0	0	0	0	
	Nome	_	L + /	0,	0,	0,	0,	0,	,	0]		like	2	0	0	1	0	1	0	0	
	Paris	=	[0,	1,	Ο,	0,	0,	0,	,	0]		enjoy	1	0	0	0	0	0	1	0	
											X =	deep	0	1	0	0	1	0	0	0	
				0	4	0	_	0		0.3	Λ –	learning	0	0	0	1	0	0	0	1	
	Italy	=	ιο,	υ,	⊥,	υ,	υ,	υ,	,	U]		NLP	0	1	0	0	0	0	0	1	
						_						flying	0	0	1	0	0	0	0	1	
	France	=	[0,	υ,	υ,	1,	Ο,	Ο,	,	0]			0	0	0	0	1	1	1	0	

Е

RNN - word embeddings

- Word2Vec, Doc2Vec is a neural probabilistic model
 - Shallow network trained on large text data
 - Captures semantic relations
 - One-word contex, multi-word context

- GloVe embedding
 - global matrix factorization and local context window on word-word co-occurrence

RNN Unit

• inputs $x_t \in \mathbb{R}^{N_{in}}$ and outputs $v_t \in \mathbb{R}^{N_{out}}$

$$h_{t} = \Theta(W^{(hh)}h_{t-1} + W^{(xh)}x_{t} + b_{h})$$

$$y_{t} = W^{(hy)}h_{t} + b_{y}$$

- ▶ Θ is an activation function,
- $h_t \in \mathbb{R}^{N_h}$ is the hidden state,
- $W^{(hh)} \in \mathbb{R}^{N_h \times N_h}$.
- $W^{(xh)} \in \mathbb{R}^{N_h \times N_{in}}$.
- $W^{(hy)} \in \mathbb{R}^{N_{out} \times N_h}$.
- $b_h \in \mathbb{R}^{N_h}$ and $b_v \in \mathbb{R}^{N_{out}}$
- The output could also be passed through as input to the next unit e.g. $x_{t+1} = y_t$,
 - to train this type of RNN, we shift the sequence by one to obtain the target sequence

RNN Unit

- RNNs use a distributed hidden state that allows them to store sequence information
- RNN as a layered, feedforward network with shared weights
- Training with backpropagation algorithm with the forward and backward passes stepping through time
 - At the backward pass we add the derivatives at all the different times for each weight (weight sharing)
- Models well short term dependencies
 - A single tanh layer
- Vanishing gradients with long term dependencies (long sequences)

$$\delta^{(l)} = \left(\prod_{k=l}^{L-1} \Theta'(s^{(k)}) (W^{(k)})^T\right) \Theta'(s^{(L)}) \nabla_{x^{(L)}} \mathcal{L}$$

Long Short Term Memory

- LSTM was designed to avoid long term dependency problems i.e. remembers information for long periods
 - Multiple layers, three sigmoid gates (forget, input/update, output) that protect and control the cell state by letting some information through with [0,1]
 - ullet tanh layer pushes information to range $\left[-1,1\right]$

LSTM Unit

- Input: concatenated h_{t-1} , x_t
- Forget gate f_t decides what and how much old to forget $f_t = \Theta(W_f[h_{t-1}, x_t] + b_f)$
 - Note, gate layer $\Theta = \sigma$ is sigmoid
- ullet Update gate i_t decides what and how much new to remember

$$i_t = \Theta(W_i[h_{t-1}, x_t] + b_i)$$

Internal cell state

$$\hat{C}_t = \tanh(W_C[h_{t-1}, x_t] + b_C)$$

LSTM Unit

• Internal cell state C_t that allows the unit to store and retain information, which results from old C_{t-1} and new \hat{C}_t

$$C_t = f_t \otimes C_{t-1} \oplus i_t \otimes \hat{C}_t$$

ightharpoonup \otimes , \oplus - elementwise operations

ullet Output gate decides what and how much to output using o_t

$$o_t = \Theta(W_o[h_{t-1}, x_t] + b_o)$$

$$h_t = o_t \otimes \tanh(C_t)$$

LSTM Unit

- Advantages of a typical RNN architecture
 - Possibility of processing input of any length
 - Model size not increasing with size of input
 - Computation takes into account historical information
 - Weights can be shared across time

Drawbacks

- Computation can be slow
- Difficulty of accessing information from a long time ago
- Cannot consider any future input for the current state
- Many internal parameters

Gated Recurrent Unit

ullet GRU adaptively reset and update memory, r_t and z_t gates are similar to the forget and the input gate of the LSTM

$$z_t = \Theta(W_z[h_{t-1}, x_t] + b_z)$$

$$r_t = \Theta(W_r[h_{t-1}, x_t] + b_r)$$

$$\hat{h}_t = \tanh(W[r_t \otimes h_{t-1}, x_t] + b)$$

$$h_t = (1 - z_t) \otimes h_{t-1} + z_t \otimes \hat{h}_t$$

$$o_t = h_t$$

- Fully exposes its memory at each time step and has no separate memory cells, which is different to the LSTM
- The output combines its last state and the new state.
- LSTM and GRU outperform the traditional tanh-unit but there is no significant performance difference between the LSTM and GRU.

RNN

- RNN Word embedding
- RNN Unit
- LSTM Unit
- GRU Unit
- Next: RNN Architectures & applications

LSTM architectures

- Bidirectional (BRNN), past and future
 - Sequence to sequence learning
 - ► Language modeling e.g. ELMO, Google Translate.

- Deep (DRNN) for large data e.g. video
 - Many hidden layers

LSTM architectures

- Many to many I name entity recognition, audio/video labelling
- Many to one Sentiment classification, audio classification
- One to many audio, text generation (music, captioning)
- Many to many II- machine translation

LSTM architectures - many to many

- Speech recognition
 - Audio sequence input and text sequence output

- Video annotation
 - Video input and text output

Speech Recognition

Reduced word errors by more than 30%

LSTM architectures - one to many

- Image captioning
 - Generating image description

- Audio generation
 - Generating original music by genre

LSTM architectures - many to one

- Sentiment analysis
- A sentence (statement, comment, post) is input to multi layer LSTM that outputs a probability between positive and negative sentiment
 - note Dropout layer for regularisation

LSTM architectures - many to many

- The encoder RNN needs to encode the entire source sentence into the final hidden state
- For long sentences, it is difficult to store everything in the final hidden state

RNN, LSTM - attention mechanism

- Attention mechanisms allow neural networks to choose where they focus in the data in order to accomplish certain tasks
 - decoder can then attend to different parts of the source sentence at each step of the translation
 - At each step i of the decoder translation, an alignment model computes scores between the most recent decoder hidden state and each encoder hidden state
 - Vector of the hidden state sequence h_t is fed into a learnable layers $a(h_t)$ (with softmax) to produce a probability vector α (attention) given the most recent decoder state
 - The output vector c is a weighted average of $c = \alpha_t \otimes h_t$

RNN, LSTM - attention mechanism

- Attention mechanism also allows to inspect and interpret the model behaviour
 - note English-French related words, and image-text attention

- Attention Is All You Need, Vaswani et al.,2017, https://arxiv.org/abs/1706.03762
- Self-attention mechanism
- Transformers deal with long-term dependencies better than LSTM
- Encoder-Decoder structure of the transformer made it perfect for machine translation
- Illustrated blog http://jalammar.github.io/ illustrated-transformer/

- Encoder-Decoder structure
- Tokenized input vector embedding
- Positional encoding of words in sentence
- Parallel processing of words

- Scaled dot product attention
 - Q (query), K (key), V (value) three projections of each input vector x (word)
 - * with matrices

$$Q = M_Q \mathbf{x}, \ K = M_K \mathbf{x}, \ V = M_V \mathbf{x},$$
 $Attention(Q, K, V) = softmax(rac{QK^{ op}}{\sqrt{d_k}})V$

- d_k dimension of the key vectors, to normalize the variance
- The output ensures that the words we want to focus on are kept and irrelevant words are reduced

- Multi-head attention
 - Linear (dense) layers and split into heads.
 - Scaled dot-product attention.
 - Concatenation of heads.
 - Final linear (dense) layer.
- Multiple heads jointly attend to information at different positions from different representational spaces
- Each head has a reduced dimensionality, so the total computation cost is the same as a single head attention with full dimensionality.

- Tokenization and positional encoding
- Transformer has N Encoder layers
 - multi head attention consists of 8 self-attention layers (heads)
 - residual connections and layer normalization help in avoiding vanishing gradients
 - feed forward network consists of two fully-connected layers with a ReLU activation in between
 - The output of the encoder is the input to the decoder.

- Transformer has N decoder layers each consisting of
 - Masked multi-head attention (with look ahead mask and padding mask indicate which entries (words) should not be used e.g. future)
 - Multi-head attention
 - Feed forward network consists of two fully-connected layers with a ReLU activation in between
 - Residual connections and layer normalization help in avoiding vanishing gradients

- Decoder receives encoder outputs and previous decoder output (shifted right)
- Transformer with N decoder layers
 - Attention with look ahead mask and padding mask indicate which entries (words) should not be used e.g. future

- Recurrent Neural Networks
 - Word embedding
- RNN Unit
- LSTM Unit
- GRU Unit
- Architectures & applications
- Transformer
- Other sequence modelling networks: Autoregressive, WaveNet,