Tarea 2

 ${\bf Entrega} \hbox{:}\ 22$ de febrero de 2023

Problema 1

Calcular la masas total del planeta Tierra con los siguientes datos:

Suponiendo que se trata de una esfera de radio $r=6400\,\mathrm{km};$ y que además la Tierra está constituida por los siguientes porcentajes de elementos: $37\,\%$ de Fe, $25\,\%$ de Si, $13\,\%$ de Mg, $10\,\%$ de Ni, $8\,\%$ de Ca y $7\,\%$ de K.

Se debe calcular la densidad de esos materiales $\rho = \left[\frac{g}{cm^3}\right]$ que se requieren para calcular el peso total de la Tierra.

Problema 2

Por otro lado, se puede ilustrar que la materia a nivel microscópico es hueva. Hacer el siguiente cálculo:

Suponer que se tiene un balín esférico de radio $r=1\,\mathrm{cm}$ compuesto de ^{nat}Fe (con A=54 (6%), A=56 (92%) y A=57 (2%), isótopos más abundantes del Fe). Calcular el volumen de un núcleo de Fe cuyo radio es $r=r_0A^{1/3}$. Suponiendo que no hay repulsión coulombiana, ¿cuántos átomos de Fe cabrían en el balín de 1 cm de radio? Calcular en [kg] lo que pesaría el balín con esa cantidad de átomos.

NOTA: Tomen el valor de r_0 con las unidades convenientes.

Problema 3

De tus resultados anteriores, ¿cuántos balines son necesarios para compararlos con el peso de la Tierra? ¿Qué se puede concluir al respecto?