Charm physics at BESIII

Martin Tat, on behalf of the BESIII Collaboration

University of Oxford

FPCP Conference

30th May 2023

Outline

- 1 Charm physics at the BESIII experiment

- 5 Summary and conclusion

The BESIII experiment

- BEPCII is a symmetric e^+e^- collider with a peak luminosity of $1\times 10^{33}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$ at $\sqrt{s}=3.773\,\mathrm{GeV}$
- Tracking: Helium-based multilayer drift chamber (MDC)
- \bullet PID: Plastic scintillator TOF system and $\frac{dE}{dx}$
- Magnet: 1.0 T superconducting solenoid
- Neutral particle tracking: CsI(TI) electromagnetic calorimeter (EMC)

Overview of (left) BEPCII and (right) BESIII.

Recent charm results from BESIII

BESIII has a rich programme of charm physics:

- Strong-phase measurements
 - Measurement of $\delta_{K\pi}$ EPJC **82** 1009 (2022)
 - $D \rightarrow K^-\pi^+\pi^-\pi^+$ strong-phase measurement JHEP **5** (2021) 164
 - $D \rightarrow K^+K^-\pi^+\pi^ F_+$ measurement Phys. Rev. D **107** 032009
- Amplitude analysis
- Semileptonic charm decays
- Searches for rare decays
- Branching fraction measurements

No time to cover all topics in this talk! I will mainly focus on strong-phase measurements in charm decays

Double-tag analysis

Double-tag method

The D mesons are produced in a quantum correlated state:

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|D^0\rangle |\bar{D^0}\rangle - |\bar{D^0}\rangle |D^0\rangle \right)$$

Double-tag analysis

Double-tag method

Equivalently, we can consider the CP even (odd) eigenstates D_+ (D_-): $|\psi\rangle=\frac{1}{\sqrt{2}}\big(|D_+\rangle|D_-\rangle-|D_-\rangle|D_+\rangle\big)$

Double-tag analysis

Double-tag analysis has many advantages:

- **1** $D\bar{D}$ pairs are quantum correlated, which provide direct access to the D^0 - D^0 strong-phase difference
- Measurements are, to first order, free from systematic uncertainties due to efficiencies and branching fractions
- Full reconstruction ensures that the environment is extremely clean

Only one minor drawback:

Lower statistics

EPJC 82 1009 (2022)

Improved measurement of the strong-phase difference $\delta_D^{K\pi}$ in quantum-correlated $D\bar{D}$ decays

What is measured:

ullet Strong-phase difference between CF and DCS $D o K^\mp\pi^\pm$ decays

Analysis strategy:

- ullet Large boost in statistics by including $D o \mathcal{K}_L^0 X$ tags
- ullet Independent determinations of $D o K^0_L X$ branching fractions

Significance:

 \bullet Most precise measurement of $\delta_D^{K\pi}$ in quantum-correlated $D\bar{D}$ decays

The strong-phase difference $\delta_D^{K\pi}$ between CF and DCS $D \to K^-\pi^+$ is a key parameter in charm physics:

$$r_D^{K\pi} \exp\left(-i\delta_D^{K\pi}\right) = \frac{\langle K^+\pi^-|D^0\rangle}{\langle K^+\pi^-|\bar{D^0}\rangle}$$

Analysis is split into three main sections:

- **1** Determination of $D \to K_I^0 X$ branching fractions
- **2** Measurement of the asymmetry $A_{K\pi}$ using CP tags
- $\textbf{ Measurement of } r_D^{K\pi}\cos(\delta_D^{K\pi}) \text{ and } r_D^{K\pi}\sin(\delta_D^{K\pi}) \text{ with } K_{S,L}^0\pi^+\pi^- \text{ tags}$

- Branching fractions must be determined independently of $D \to K^-\pi^+ \Longrightarrow$ Measure using pure *CP* tags
- $K_L^0\pi^0$ and $K_L^0\omega$ are *CP*-even decays, and must therefore be tagged by *CP*-odd decays
 - $K_S^0 \pi^0$, $K_S^0 \eta$, $K_S^0 \eta' (\pi^+ \pi^- \eta, \pi^+ \pi^- \gamma)$, $K_S^0 \omega$

Missing mass squared in *CP*-tagged (left) $D o K_L^0 \pi^0$ and (right) $D o K_L^0 \omega$.

$D \rightarrow K^-\pi^+$

- Branching fractions must be determined independently of $D \to K^-\pi^+ \Longrightarrow$ Measure using pure *CP* tags
- Similarly, $K_L^0\pi^0\pi^0$ is a CP-odd decay and is tagged by CP-even decays
 - K^+K^- , $\pi^+\pi^-$, $K_5^0\pi^0\pi^0$, $\pi^+\pi^-\pi^0$

Missing mass squared in (left) $\pi^+\pi^-\pi^0$ tags and all other tags (left).

$D \rightarrow K^-\pi^+$

Asymmetry $\mathcal{A}_{K\pi}$ of the branching fraction, tagged with CP-even and CP-odd decays, is sensitive to $\delta_D^{K\pi}$:

$$\mathcal{A}_{K\pi} = \frac{-2r_D^{K\pi}\cos(\delta_{K\pi}) + y}{1 + (r_D^{K\pi})^2}$$

Using external inputs for y and $r_D^{K\pi}$, $r_D^{K\pi}\cos(\delta_D^{K\pi})$ is calculated from $\mathcal{A}_{K\pi}$

Left: Fit of the $K^-\pi^+$ vs $K^0_L\omega$ double-tag yield. Right: Branching fraction of $D\to K^-\pi^+$ measured using CP tags.

Double-tag yields using the $K_{S,L}^0\pi^+\pi^-$ tags, in bins of phase space, are also sensitive to $\delta_D^{K\pi}$:

$$Y_i \propto \left(K_i + (r_D^{K\pi})^2 K_{-i} - 2r_D^{K\pi} \sqrt{K_i K_{-i}} \Big[c_i \cos \Big(\delta_D^{K\pi}\Big) - s_i \sin \Big(\delta_D^{K\pi}\Big) \Big] \right)$$

- $\delta_D^{K\pi}$ is close to $\pi \implies \sin \left(\delta_D^{K\pi} \right)$ is much more sensitive to $\delta_D^{K\pi}$
- Unique determination of $\delta_D^{K\pi}$ without ambiguity
- External inputs for K_i , c_i and s_i are recalculated without inputs from $D \to K^-\pi^+$

Bin yields of $D o K^0_{S,L} \pi^+ \pi^-$

Putting this all together:

$$\delta_D^{K\pi} = (187.6^{+8.9+5.4}_{-9.7-6.4})^{\circ}$$

Furthermore, the following braching fractions will be valuable additions to the PDG:

$$\mathcal{B}(D^0 \to K_L^0 \pi^0) = (0.97 \pm 0.03 \pm 0.02) \times 10^{-2}$$

$$\mathcal{B}(D^0 \to K_L^0 \omega) = (1.09 \pm 0.06 \pm 0.03) \times 10^{-2}$$

$$\mathcal{B}(D^0 \to K_L^0 \pi^0 \pi^0) = (1.26 \pm 0.05 \pm 0.03) \times 10^{-2}$$

$$D \rightarrow K^-\pi^+\pi^-\pi^+$$

JHEP 5 (2021) 164

Measurement of the $D \to K^-\pi^+\pi^-\pi^-$ and $D \to K^-\pi^+\pi^0$ coherence factors and average strong-phase differences in quantum-correlated $D\bar{D}$ decays

What is measured:

- Strong-phase difference and coherence factors between CF and DCS $D \to K^{\mp} \pi^{\pm} \pi^{\mp} \pi^{\pm}$ decays in phase space bins
- ullet Phase-space integrated analysis of $D o K^\mp\pi^\pm\pi^0$

Analysis strategy:

• Binning of 5D phase space enhances the coherence factors

Significance:

ullet Crucial input to one of the most precise measurements of γ

The average strong-phase difference of multi-body decays may be determined analogously using *CP* and multi-body tags

Left: Asymmetry of $D \to K^-\pi^+\pi^-\pi^+$ branching fraction with *CP*-even and *CP*-odd tags. Right: Double-tag yields of $K^0_S\pi^+\pi^-$ vs $K^-\pi^+\pi^-\pi^+$.

However, averaging over phase space dilutes interference effects, which is parameterised in terms of the coherence factor:

$$R_{K3\pi} \exp(i\delta_{K3\pi}) \equiv \frac{\int d\vec{x} \, \mathcal{A}_{\bar{D^0} \to K^+\pi^-\pi^+\pi^-}(\vec{x}) \mathcal{A}_{D^0 \to K^+\pi^-\pi^+\pi^-}^*(\vec{x})}{A_{\bar{D^0} \to K^+\pi^-\pi^+\pi^-} A_{D^0 \to K^+\pi^-\pi^+\pi^-}}$$

Like-sign yields are proportional to $(1-R^2)$ and brings sensitivity to $R_{K3\pi}$.

Fit $R_{K3\pi}$ and $\delta_{K3\pi}$: Huge improvements from CLEO-c analysis

But: $R_{K3\pi} = 0.52^{+0.12}_{-0.10}$, so interference effects are very diluted

Can improve coherence factors by defining a binning scheme in terms of the normalised phase difference

$$\delta_{K3\pi}(\vec{x}) = \mathrm{arg}\left(\mathcal{A}_{\bar{D^0}}(\vec{x})\mathcal{A}_{D^0}^*(\vec{x})\right) - \mathrm{arg}\left(\int \mathrm{d}\vec{x}'\,\mathcal{A}_{\bar{D^0}}(\vec{x}')\mathcal{A}_{D^0}^*(\vec{x}')\right)$$

And indeed, the coherence factor is greatly improved in bin 2 and 3!

Binned fit of $\delta_{K3\pi}$ and $R_{K3\pi}$.

Phys. Rev. D **107** 032009

Measurement of the *CP*-even fraction of $D^0 \to K^+K^-\pi^+\pi^-$

What is measured:

ullet Phase-space integrated strong-phase analysis of $D o K^+K^-\pi^+\pi^-$

Analysis strategy:

- Uses a combination of CP and multi-body tags
- Novel partially reconstructed technique to mitigate low efficiencies

Significance:

• First model-independent study of the CP content of this decay

This decay suffers from both low branching fraction and low efficiency, as seen in the double-tag fits

Double-tag fits of $K^+K^-\pi^+\pi^-$ vs (left) K^+K^- and (right) $K^0_S\pi^0$.

Clear quantum correlation: The yield of $K^+K^-\pi^+\pi^-$ vs K^+K^- (*CP*-even) is suppressed, while that of $K^0_S\pi^0$ (*CP*-odd) is enhanced

The strong-phase information is parameterised in terms of the

CP-even fraction
$$F_+$$
: $\frac{N^{\mathrm{DT}}}{N^{\mathrm{ST}}} \propto 1 \mp (2F_+ - 1)$

Branching fractions of $D \to K^+ K^- \pi^+ \pi^-$ measured against *CP*-even/odd tags.

Clearly,
$$D^0 \to K^+ K^- \pi^+ \pi^-$$
 is predominantly CP-even

- To mitigate the low reconstruction efficiency, explore a novel partially reconstructed technique
- Poor low momentum kaon tracking efficiency Only reconstruct one kaon

Fits of (left) fully and (right) partially reconstructed $K^+K^-\pi^+\pi^-$ vs $K^0_S\pi^+\pi^-$.

The multi-body tags $K_{S,L}^0\pi^+\pi^-$, which are split into phase-space bins, provide sensitivity to F_+

Bin yields of $K^+K^-\pi^+\pi^-$ vs $K^0_{S,L}\pi^+\pi^-$.

Combining the *CP* and $K_{S,L}^0\pi^+\pi^-$ tags:

$$F_+ = 0.730 \pm 0.037 \pm 0.021$$

This is not the end of the story:

- 4 A phase-space binned analysis is ongoing
- The statistical precision will improve greatly with more data
- This fully charged mode will provide valuable inputs to γ and charm mixing at LHCb and Belle II

Summary and conclusion

- Many exciting measurements using quantum-correlated $D\bar{D}$ pairs have been performed, using the 3 fb $^{-1}$ dataset
- ② Previous analyses, such as $\delta_{K\pi}$, have been improved using more tags and more precise inputs
- BESIII is now exploring four-body decays, and many binned analyses are in the pipeline
- **3** BESIII is expected to collect 20 fb $^{-1}$ of $\psi(3770)$ data by 2024
 - Strong-phase measurements, which are currently statistics limited, will improve significantly in the next few years

Thanks for listening!