# Multimodal Transformer Distillation for Audio-Visual Synchronization

Chung-Che Wang Hung-yi Lee Jyh-Shing Roger Jang **Xuanjun Chen** Haibin Wu National Taiwan University



# Introduction

#### Audio-Visual Synchronization (AVS)

- Goal: Determine whether the mouth and speech are synchronized
- VocaLiST: A SOTA model as shown the teacher model in Figure 1
- Applications: Most audio-visual applications, such as dubbing
- Challenges: Requires high computing resources

## Contributions

- Proposed an MTDVocaLiST model, which is trained by our proposed Multimodal Transformer Distillation (MTD) loss
- MTD encourages MTDVocaLiST to mimic the cross-attention distribution and value-relation of VocaLiST deeply
- MTDVocaLiST outperforms similar-size models, reducing VocaLiST's size by 83.52% while maintaining similar performance

#### **MTDVocaLiST**



Figure 1. The proposed MTDVocaLiST model. (a) binary cross entropy loss. (b) cross-attention distribution distillation loss. (c) value-relation distillation loss.

# Naïve Multimodal Transformer Distillation (NMTD)

$$\mathcal{L}_{NMTD} = w_0 \cdot \mathcal{L}_{BCE} + \sum_{l}^{L} w_{l1} \cdot \mathcal{L}_{CAD_l} + \sum_{l}^{L} w_{l2} \cdot \mathcal{L}_{VR_l}, \tag{1}$$

- $w_0$ ,  $w_{l1}$ , and  $w_{l2}$  represent the weights for  $\mathcal{L}_{BCE}$ ,  $\mathcal{L}_{CAD_l}$ , and  $\mathcal{L}_{VR_l}$
- L denotes a candidate layer set, l-th is the sub-layer in the set Multimodal Transformer Distillation (MTD)
- After utilizing uncertainty weighting [1], overall MTD is as follows:

$$\mathcal{L}_{MTD} = w_0 \cdot \mathcal{L}_{BCE} + \sum_{\tau}^{T} \frac{1}{2 \cdot w_{\tau}^2} \cdot \mathcal{L}_{\tau} + \sum_{\tau}^{T} ln(1 + w_{\tau}^2), \tag{2}$$

- T represents a task set
- $\mathcal{L}_{ au}$  denotes the au-th loss, which could be the  $\mathcal{L}_{CAD}$  or  $\mathcal{L}_{VR}$  loss
- $w_0$  and  $w_\tau$  are learnable parameters.  $ln(1+w_\tau^2)$  serves to enforce positive regularization values

# **Experiment setup**

- Dataset: Lip Reading Sentences 2 (LRS2) dataset
- Training: Positive and negative samples are sampled on the fly
- Evaluation protocol: Accuracy of the cross-modal retrieval task

#### Main results

Table 1. Accuracy of different distillation methods in evaluation.

| Distillation<br>method | Input frame length (seconds) |              |              |               |               |              |
|------------------------|------------------------------|--------------|--------------|---------------|---------------|--------------|
|                        | 5<br>(0.2s)                  | 7<br>(0.28s) | 9<br>(0.36s) | 11<br>(0.44s) | 13<br>(0.52s) | 15<br>(0.6s) |
| $\mathcal{L}_{BCE}$    | 71.36                        | 81.44        | 88.84        | 93.41         | 96.19         | 97.69        |
| KD                     | 80.87                        | 88.62        | 93.48        | 96.32         | 97.90         | 98.82        |
| RKD                    | 86.06                        | 92.42        | 95.95        | 97.80         | 98.75         | 99.29        |
| MiniLM*                | 85.60                        | 92.03        | 95.91        | 97.72         | 98.72         | 99.25        |
| FitNets                | 90.81                        | 95.48        | 97.77        | 98.81         | 99.42         | 99.66        |
| MTD                    | 91.45                        | 95.75        | 97.99        | 98.95         | 99.46         | 99.68        |

Figure 2. Comparison of model size and accuracy.



### Comparison with Different Distillation Methods (Table 1)

- Length 5:  $\mathcal{L}_{BCE}$  results in the lowest accuracy at 71.36%.
- Length 5: MTD significantly improves accuracy, surpassing KD by 10.58%, RKD by 5.39%, MiniLM\* by 5.85%, and FitNets by 0.64%.
- Similar trends are observed across different input frame lengths.

# Comparison with SOTA models (Figure 2)

- MTDVocaLiST outperforms similar-size SOTA models, SyncNet, and Perfect Match models by 15.65% and 3.35%;
- MTDVocaLiST reduces the model size of VocaLiST by 83.52%, yet still maintaining similar performance.

## Ablation study and analysis

Figure 3. Ablation study of NMTD loss.





Figure 4. Different layer selection strategies.

Figure 5. Comparison of Transformer representation and cross-attention loss in inference. Note that the MTDVocaLiST only optimizes the MTD loss during training.



**Indispensability (Figure 3):** Both cross-attention distribution and value-relation contribute significantly to NMTD loss

## Layer selection (Figure 4)

- Distilling any Transformer layer significantly improves performance.
- VA layers contribute minimally to the student's final performance.
- Single-layer distillation and BCE training perform worse.

## • UW-25D layer weighting outperforms Uniform, AW and UW-13D Transformer behavior and Transformer representation (Figure 5)

• The Transformer representation loss will not decrease along with the cross attention loss in the inference of MTDVocaLiST

#### References

[1] Kendall et al., "Multi-task learning using uncertainty to weigh losses for scene geometry and semantics," arXiv:1705.07115, 2017.