LiqSim

December 11, 2024

Authors and version

Group: 8A

Andrei Hileuski (s196735) Stanislav Givojno (s201608) Version: prod: 0.0.1.1

Introduction

Project purposes and description of the modeled physical phenomenon

The movement of surface of liquid counted by shallow water equations

Used tools

- Python 3.11
- \bullet matplotlib 3.9.3
- \bullet scipy 1.14.1
- sympy
- numpy 2.1.3
- *LATEX*
- git2.47
- https://github.com/
- \bullet GitHubDesktop
- PyCharm 2024.3

General description of the project and possible alternatives

Simulating of liquid's surface movement will be described with shallow water equations:

$$\frac{\partial \eta}{\partial t} + \frac{\partial (\eta v_x)}{\partial x} + \frac{\partial (\eta v_y)}{\partial y} = 0$$

$$\frac{\partial (\eta v_x)}{\partial t} + \frac{\partial}{\partial x} (\eta v_x^2 + \frac{1}{2} g \eta^2) + \frac{\partial (\eta v_x v_y)}{\partial y} = 0$$

$$\frac{\partial (\eta v_y)}{\partial t} + \frac{\partial}{\partial y} (\eta v_y^2 + \frac{1}{2}g\eta^2) + \frac{\partial (\eta v_x v_y)}{\partial x} = 0$$

Where η is the total fluid column height and vector $\overrightarrow{v} = (v_x, v_y)$ is the fluid's horizontal flow velocity, averaged across the vertical column. With this equations being solved, surface of fluid could be represented.

Will be represented by making liquid's surface class, plot and animation maker classes. Also with the function of surface object. All would be united with solved equations. Example: https://www.youtube.com/watch?v=IVXkm-no4ro

WARNING: must ask about numeric and symbolic ways to find solutions.

ATTENTION: Physical and mathematical model could be corrected with adding more features if possible

Requirements

Functional requirements

- animation of movement of surface of liquid in time
- animation of velocity and acceleration fields in time
- getting velocity and acceleration field in exact time
- some features could be added

Non-functional requirements

- input start conditions in separate window
- output start conditions with result animations and plots
- getting an .exe file. Optional: getting an android release
- some features could be added

Work shedule and deadline

Days	Aim
Week 1 (4.XII.2024 - 11.XII.2024)	Making theoretical model. Creating
	class for water surface
Week 2 (11.XII.2024 - 18.XII.2024)	Find ways to find solutions and test
	them. Create class for animation
	maker
Week 3 (18.XII.2024 - 25.XII.2024)	Connect animation maker and sur-
	face object. Test it with some func-
	tions
Week 4 (25.XII.2024 - 01.I.2025)	Add velocity and acceleration fields
	methods to animation maker. Op-
	tional: create methods to save sur-
	face, velocity and acceleration fields
	as images in current time
Week 5 (01.I.2025 - 08.I.2025)	Create class for interactive with user
	and connect it to the program
Week 6 (08.I.2025 - 15.I.2025)	Final features. Optional: creating
	.exe and .apk distributives
Week 7 (15.I.2025 - 22.I.2025)	Final testing and finishing
22.I.2025	DEADLINE & presentation

All versions could be found in repository https://github.com/Uki-coder/LiqSim

Literature

- [1] https://docs.python.org/3.11/
 [2] https://matplotlib.org/stable/
 [3] https://docs.scipy.org/doc/scipy/
- $[4]\ https://numpy.org/doc/stable/index.html$
- $[5] \ https://en.wikipedia.org/wiki/Shallow_water_equations$