

The Challenge of an Open Security Testing Methodology for Control Systems

Matthew Franz franz@digitalbond.com

Overview

- Background
- Current state of security testing
- Some assumptions
- Problem space
- Some strawman ideas
- Conclusions

My Background in Security Testing

- Worked in a internal product security team for a large network vendor
 - Tested dozens of different products, applications, and devices at various stages of the development lifecycle
 - Worked with QA teams to add security testing to their own processes
 - Contributed to several cross-functional security intiatives that didn't go anywhere
 - Was part of several small wins
 - Developed modular vulnerability assessment criteria
 - Developed standards toolset to be used across the entire product line (easy to use Linux LiveCD)
- Currently do network and application testing as part of Digital Bond assessments

The Status Quo

- There are open methodologies for assessing operational networks (such as OSSTM for "pentesting") but nothing comparable for <u>products</u>, whether IT or SCADA.
- Big vendors are making investments in product security testing and application assessments -- are smaller vendors?
- As an asset owner or vendor, to develop your own security testing approach you must start from scratch
- Current practice is largely art vs. engineering

Up Front Assumptions

- By "Security Testing" we mostly really mean vulnerability testing -- not functional testing of security (encryption, authentication, authorization features) in a product or solution
- The <u>operational impact</u> of control system vulnerability exploitation might be unique but the methodology to discover/exploit / test those vulnerabilities is not
- Security testing is not a panacea and cannot address the entire space of product security concerns
- The is some really "basic stuff" that can/should be done by both vendors and asset owner prior to "bringing in the consultants" or "shipping your gear to a test lab"

What are the problems I see?

- Difficult to compare security testing products and security assessment services without open criteria
- Confusion about what sorts of testing should be done:

What is being tested? (i.e component vs. system)

When? (pre-ship, solution integration, deployment)

Why? (misconfiguration, implementation flaw, known vs. unknown)

- Assessment and Framework overload?!
- Raise the floor!

Too many applications, devices, protocols still have issues with free/Open Source tools

What might be in a standard open framework for security testing?

- A set of common definitions, or at least a mapping of terms if we can't agree on terms
- Clusters of discrete assessment activities (perhaps in a taxonomy) mapped to:
 - Types of vulnerabilities tested/assessed?
 - Who is the "user" (end users, vendor, integrator)
 - Where in the lifecycle the activity would be the most useful?
- A methodology for selection of test cases for different targets so that security tests can be integrated into existing test plans

Which Tools and Why?

- What percentage of the attack surface of your device, application, solution is actually "unique" to control systems?
- Just among free tools there are dozens of choices
 Nessus, Nmap, ISIC, SPIKE, PROTOS, Amap, Nikto, Hydra, WebScarab, COMRaider, Metasploit, etc.
- Need to move beyond tool based approach (run tool X and you a fine!) to a vulnerability criteria approach based on specific checks for different targets

Different Types of Targets Need Different Tests

Interface

Single API, protocol implementation, physical interface, protocol stack, service, etc.

Device/Appliance

Single hardware (Embedded or PC) platform with multiple interfaces Limited user managment of underlying OS

Application

Distributed across multiple hardware platforms

May or may not use standards application components

User typically (but not always) has to manage security of underlying OS

System/Solution

Multiple devices and applications on a network
Testing here looks most like a "pen-test" or network vulnerability
assessment

What types of vulnerabilities are we checking?

Known vulnerabilities in infrastructure components

Operating System, Application, Library

Robustness

- Flooding
- Handling of Malformed Message

Application Misconfiguration flaws

- Security features
- Default credentials
- Backdoors

Network Misconfiguration

- Access Control Lists and Firewall Rules
- MAC Filtering and Authentication

Challenges

Easy Problems

- Diverse set of "users" (vendors, integrators, end users)
- Diverse technology base
- If it were easy (or really necessary?) then why hasn't it been done?

Hard Problems

- The business case methodology is a competitive advantage and why do it if you can't charge for it?
- Perceived and real risks vendor exposure

Conclusions

- Regardless of private & public programs that do security testing of control systems, there is a need for various "users" (whether vendors, end users, or integrators) to do some testing themselves
- It is possible to carve out some basic assessment activities (call them tests, if you like) that are high impact and that can be easily implemented
- At a minimum "users" should initially focus on testing aspects of system they have control over

Next Steps

- Is there really a need?
- Would anyone do testing themselves?
- Any role for PCSF?
- Where are related efforts?
 - Control System Security Foundation
 - PCSRF
 - SANS "Procurement Language" Project?

