تمرین سری سوم موعد تحویل: روز چهارشنبه ۱۳۹۸/۰۹/۲۷

اصول سیستمهای مخابراتی

دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی

 $v_1(t)=6e^{Xt}$ دارای توزیع یکنواخت در فاصله $0\leq X\leq 2$ است. برای فرآیندهای X دارای توزیع یکنواخت در فاصله $v_1(t)=6e^{Xt}$ مقادیر زیر را بیابید:

$$\overline{v_2^2(t)}$$
 و $\overline{v_1^2(t)}$ و $\overline{v_1^2(t)}$ و $R_{v_2}(t_1,t_2)$ و $R_{v_1}(t_1,t_2)$ و $\overline{v_2(t)}$ و $\overline{v_2(t)}$ و $\overline{v_1(t)}$

۲. فرض کنید متغیرهای تصادفی X و X مستقل باشند که میانگین آنها برابر صفر و واریانس هر یک از آنها برابر σ^2 است. تابع همبستگی متقابل فرآیندهای زیر را پیدا کنید:

$$v(t) = X \cos \omega_0 t + Y \sin \omega_0 t$$
$$w(t) = Y \cos \omega_0 t - X \sin \omega_0 t$$

- ۳. فرض کنید z(t)=v(t)-v(t+T) که در آن v(t) یک سیگنال تصادفی ایستان و z(t)=v(t)-v(t+T) .۳ فرض کنید $R_z(\tau)$ را بیابید. آیا می توان تابع خودهمبستگی فرآیند z(t) را به صورت بیان z(t) کرد؟ مقدار z(t) را نیز برحسب z(t) بیابید.
- برای (راهنمایی: برای $R_{yx}(\tau)$ بیابید. (راهنمایی: برای $R_{yx}(\tau)$ بیابید. (راهنمایی: برای برای برای $Y(t) = \frac{dx(t)}{dt}$ بیابید. (راهنمایی: برای این کار از تبدیل فوریه معکوس $G_{yx}(f)$ و $G_{yx}(f)$ استفاده کنید.)
- ۵. فرض کنید در ورودی گیرنده، به جای فیلتر پایین گذر ایده آل از یک فیلتر پایین گذر $\frac{N_0}{2}$ در $\frac{N_0}{2}$ در نویز بهنای باند نویز استفاده شده است. نویز ورودی گیرنده را نویز سفید با چگالی طیف توان نظر بگیرید.
 - الف) چگالی طیف توان نویز فیلترشده $G_{y}(f)$ را به دست آورید.
 - ب) همچنین تابع خودهبستگی $R_{y}(au)$ را به دست آورید.
 - ج) توان نویز فیلترشده را نیز به دست آورید.
- جداقل $\alpha=0.5dB$ / Km یک سیستم تکرار کننده کابلی به طول 400Km مفروض است که در آن $\alpha=0.5dB$ است. حداقل تعداد بخشهای تکرار کننده هم طول لازم را برای به دست آوردن $\left(\frac{S}{N}\right)_D \geq 30dB$ پیدا کنید، به شرطی که $\frac{S}{N}$ باشد. (راهنمایی: حتماً به کتاب کارلسون مراجعه شود.)

موفق باشيد