

Outline

- Aggregate Interference
- Interference Coupling Functions for Multiuser Detection

Block

Recursive

S Conclusions

Mar 16 2007 4:52PM

- Transmitter Optimization Increase data rate and/or line reach Reduce power consumption
- Track the changing environment conditions React faster Prevent modem retraining

Accusing a Profile Assume block stationarity For each tone i, estimate the crosstalk variance over a window of length W:

A Simple 1	AL Ex	emple with L=1, P=3
noise power meas	urements w	$[N_1^2, N_2^2, N_3^2] = [100, 200, 300]$
6 PROFILI		$\sum_{i=1}^{3} \ln(\sigma_{j,i}^{2}) + \frac{N_{i}^{2}}{\sigma_{j,i}^{2}}]$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-5.1+3000 = 2994.9
2. 1 2		1.8+300 = 301.8
3. 10 20 4. 50 100	· · · -	8.7+30 = 38.7 13.5+6 = 19.5
5. 200 400		17.7+1.5 = 1.9.2
6. 1 <u>000</u> 2000	3000	22.5+.6 = 23.1
		32

Mar 16 2007 4:55PM

Simpleton Setting- ADSL (G.) (c)

- 128 subchannels (32 for US, 96 for DS)
- Symbol period T=250 us
- 13 profiles for both upstream and downstream stored
 - 3 ISDN (3, 7, 10 users)
 - 3 HDSL (3, 7, 10 users)
 - 3 T1 (3, 7, 10 users)
 - 3 EC ADSL using G.lite (3,7,10 users)
 - Background Noise (-140dBm/Hz)

414-431-1317

Advantages of Profiles

Increase bit rates by having more profiles

Can have fast access to crosstalker activity—no need to transmit to worst case noise scenario

- Prevent modem failure by increasing block length L
- Low complexity

R is not of profiles, T is the symbol period, P is number of tones.

When H=16, L=20, P=128, complexity = 2.3 MIPS

26

Modivation

Multiuser Channel ID

Reliable channel and/or noise variance estimates for multiuser detection

Maintenance and diagnosis

Bandwidth efficient transmission

Desire to track the changing environment conditions

Estimates can be used for optimizing the transmitter

■ Expectation Maximization (EM)

Reduce training overhead to practically 0

29

Previous Work on Channel Estimation

■ EM

Introduced (Dempster, Laird. 77)

SAGE (Fessler, Hero. 94)

SISO (Kaleh, Vallet, 94)

Recursive SISO (Zamiri-Jafarian, 97)

MISO

Gaussian inputs (Feder, Weinstein, 88)

CDMA system (Bhashyam, Aazhang, 00)

MIMO system (Talwar, 96)

SISO OFDM (Zhou, Giannakis, 01)

٠١,

System Model

- Multiple access channel: K inputs, 1 output
- Modems are synchronized with same symbol period T
- Receiver knows the constellations of the transmitters.
- Channel and noise are block stationary

Mar 16 2007 4:59PM

- Takes advantage of finite alphabet property of transmit signal.
- Increases likelihood at every iteration and guaranteed to converge.
- Provides MMSE estimate of transmit data.

Simulation George ADSL-DBM modem 1 NEXT (SSDSL) and 1 FEXT (ADSL) ■ 500 m line FEXT source ■ Initial condition acquired from previous block ■ 10 ms of data (Ltr=0, L=40)

Motivation

- Eliminates delay
- ma Reduces storage
- Track time-variant parameters in an adaptive manner
- Block stationary assumption no longer needed

45

Mar 16 2007 5:01PM

Summary of Contributions

- Identified crosstalk spectrum using accurate and low complexity algorithm
 - Higher data rates
 - Profile $5 \, \mathrm{ms}$
- Obtained multiuser ML channel and noise estimates
 - Soft decisions better than hard decisions

Improved training estimates outside the MAC region

- Developed recursive solution
 - Less storage and delay
- Additional work
 - Extension to MIMO systems
 - Application to coded systems

Papers

- Aldana, Carvano, Cioffi, 'Channe, Estimation for Multicarrier Multiple Input, Single Output Systems using the EM Algorithm", to be submitted to Trans Signal Processing
- Aldana, Cioffi "Channei Tracking for Multiple Input. Single Output Systems using the EM Algorithm", ICC 2001.
- Aldana, Salvekar, Tollado, Cioffi, "MAP Noise Profile Matching for Multicarrier Systems", ICT 2001.
- Aldana, Salvekur, Tellado, Cioffi, "Accurate Noise Estimates in Multicurrier Systems". Fall VTC 2000.
- Salvekar, Aldana, Carvalno, Cioffi, "Crosstalk Profile Detection for use in Multiuser Detection", ICC 2001.
- Zeng, Aldana, Salvekar, Cioffi, "Crossfalk Identification in xDSL systems". IEEE Journal on Selected Areas of Communications.
- Salvekar, Aldana, Tellado, Cioffi, "Peak-to-Average Power Ratio Reduction for Block Transmission Systems in the Presence of Transmit Filtering", ICC
- Salvekar, Aldana, Tellado, Ciolii, "Channel Gain Change Detection and Channel Profile Selection in a Multicarrier System", Globecom 99.

Acknowledgment

- 🛚 Advisor: Prof. Cioffi
- Associate advisor: Prof. Cox
- PhD Oral Committee: Prof. Tobagi and Prof. Gill
- Joice
- Family
- Wonderful Friends

Mar 16 2007 5:03PM

Sylke Law Offices, LLC

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.