DS - Scenario Set Question 1

Scenario 1: Delivery Time Analysis for an E-commerce Company

An e-commerce company tracks delivery times (in minutes) for 15 orders:

The company wants to analyze the delivery performance using percentiles and detect if there are any unusual delivery times.

Question 1:

Calculate Q1 and Q3.

Question 2:

Find the Interquartile Range (IQR).

Question 3:

Detect Outliers using the IQR method.

Answer:

Method:

- 1. Calculate Q1 = 25th percentile of the data
- 2. Calculate Q3 = 75th percentile of the data
- 3. Find IQR = Q3 Q1
- 4. Compute Lower Bound = $Q1 1.5 \times IQR$
- 5. Compute **Upper Bound** = $Q3 + 1.5 \times IQR$
- 6. If any value \leq Lower Bound \rightarrow Lower Outlier
- 7. If any value > Upper Bound \rightarrow Upper Outlier

Scenario 2: Student Score Analysis

A teacher is analyzing the mathematics scores of students in her class. The scores are:

Question 1:

Calculate the mean, median, and mode of the scores.

Question 2:

Explain why the median might be a better representation than the mean in this case.

Answer:

Question 1: Method

- 1. Calculate **Mean** = (Sum of all scores) \div (Number of scores)
- 2. Calculate **Median** = Middle value (or average of two middle values) after arranging data in order
- 3. Calculate **Mode** = Value that appears most frequently

Question 2: Method

- 1. Compare mean and median values
- 2. If extreme (very high or low) scores exist, they can distort the mean
- 3. Median is less affected by outliers
- 4. Therefore, **median** gives a better representation of the central performance when data has outliers

Scenario 3: Grocery Store Customer Analysis

A grocery store manager tracks how many customers visit the store daily for a month:

Question 1:

Create a frequency distribution table for this data.

Answer:

Question 1: Method — Frequency Distribution Table

- 1. List all unique values in the data in ascending order
- 2. Count the number of times each value occurs
- 3. Create a table with two columns:
 - Unique Value (Number of Customers)
 - Frequency (Number of Days it Occurred)
- 4. Optionally, calculate **relative frequency** = (Frequency \div Total Days) \times 100

Scenario 4: Real Estate Model Analysis

A real estate model has three variables:

- House Size
- Number of Rooms
- Number of Bathrooms

Question 1:

How can you detect multicollinearity in this model?

Answer:

• Correlation Matrix:

- Compute pairwise correlations between independent variables (House Size, Number of Rooms, Number of Bathrooms).
- High correlation (close to +1 or -1) indicates possible multicollinearity.

• Variance Inflation Factor (VIF):

- Calculate VIF for each independent variable.
- VIF > 5 (or 10) indicates significant multicollinearity.

Scenario 5: Medicine Effectiveness Study

A company made a new medicine to lower blood pressure. They gave it to one group and gave a fake pill (placebo) to another group.

Question 1:

How can the company check if the new medicine works?

Answer:

Question 1: Method - How to Check if the Medicine Works

- 1. **Compare Groups:** Give the medicine to one group and a placebo to another.
- 2. **Measure Blood Pressure:** Record before and after treatment.
- 3. Set Hypotheses:
 - o Null Hypothesis (H₀): The medicine has no effect (mean change in blood pressure is the same as placebo).

- o Alternative Hypothesis (H₁): The medicine reduces blood pressure (mean change is greater than placebo).
- 4. **Statistical Test:** Use a **t-test** to compare the two groups.
- 5. Check p-value:
 - o If **p-value** < 0.05, reject H₀ \rightarrow medicine works.
 - o If **p-value** \geq **0.05**, fail to reject H₀ \rightarrow no significant effect.
- 6. **Optional:** Visualize results with charts (bar or boxplot) for clarity.

Scenario 6: Identifying Outliers in Sales Data

A company wants to find any unusual spikes in sales.

Question 1:

How can the company detect outliers in their sales data?

Answer:

Question 1: Method — How to Detect Outliers

- 1. Use a Boxplot to visually spot unusual sales.
- 2. **IQR Method:**
 - o Find Q1 (25th percentile) and Q3 (75th percentile)
 - \circ Calculate IQR = Q3 Q1
 - Lower Bound = $Q1 1.5 \times IQR$, Upper Bound = $Q3 + 1.5 \times IQR$
 - \circ Sales outside this range \rightarrow outliers
- 3. **Z-Score Method:**
 - o Find how far each sale is from the mean in terms of standard deviation
 - o Usually, $|z| > 3 \rightarrow$ outlier

Scenario 7: Understanding Customer Satisfaction

A restaurant conducted a survey to rate customer satisfaction on a scale of 1 to 5:

Question 1:

How can the restaurant summarize the overall satisfaction?

Answer:

How to Summarize Overall Satisfaction

- 1. Calculate Average (Mean): Shows the general satisfaction level.
- 2. Find Median: Middle value when ratings are ordered; less affected by extremes.
- 3. Find Mode: Most common rating to see what most customers feel.
- 4. **Frequency Distribution:** Count how many customers gave each rating.
- 5. Optional Visualization: Use a bar chart or pie chart to show rating distribution clearly.