Hands-on Activity 10.1 Data Analysis using Python

Name: Cuadra, Audrick Zander G.

Section: CPE22S3

Date: April 3, 2024

Submitted to: Engr. Roman Richard

Intended Learning Outcome

- 1. Perform descriptive and correlation analysis to to analyze the dataset.
- 2. Interpret the results of descriptive and correlation analysis

Resources

- · Personal Computer
- · Google Colab
- Internet Connection

Instruction

- 1. Gather a dataset regarding your identified problem for the ASEAN Data Science Explorer.

 Make sure that the dataset includes multiple variables.
- 2. Load the dataset into pandas dataframe.

```
1 import pandas as pd
2 import numpy as np
3
4 co2e = pd.read_csv(
5    '/content/Total GHG by Sector.csv',
6 )
7 co2e
```

	Year	Agriculture	Commercial	Electricity	Energy (own- use)	Industry	Residential	Transp
0	1990	0.15	0.33	10.21	1.17	9.09	2.20	13
1	1991	0.14	0.37	13.48	1.08	6.98	2.17	13
2	1992	0.13	0.41	14.30	1.26	7.35	2.43	15
3	1993	0.12	0.47	14.76	1.26	8.96	2.68	17
4	1994	0.11	0.52	15.49	1.24	8.24	2.89	17
5	1995	0.12	0.61	16.60	1.34	11.31	3.31	21
6	1996	0.13	0.65	18.20	1.56	10.64	3.55	23
7	1997	1.17	0.81	21.76	1.50	12.46	3.81	23
8	1998	1.04	1.16	22.09	1.62	11.30	3.92	24
9	1999	0.99	1.47	19.44	1.81	10.88	4.20	24
10	2000	0.86	1.69	21.44	2.19	8.89	3.94	24
11	2001	0.81	2.04	22.48	1.83	8.37	3.68	24
12	2002	0.87	2.07	21.45	1.79	7.85	3.67	25
13	2003	0.94	1.92	22.55	2.15	9.06	3.35	24
14	2004	0.88	1.64	23.95	1.71	8.88	3.50	25
15	2005	0.86	1.47	26.53	1.59	9.33	2.88	24
16	2006	0.76	1.58	23.12	1.15	9.51	2.60	22
17	2007	0.62	1.54	25.00	1.18	10.02	2.51	23
18	2008	0.76	1.53	27.76	0.98	11.71	2.41	21
19	2009	0.61	2.44	28.27	0.90	10.09	2.52	22
20	2010	0.64	2.78	31.28	1.02	11.68	2.50	22
21	2011	0.56	2.89	32.32	0.94	11.38	2.46	22
22	2012	0.54	2.84	34.58	1.04	10.54	2.41	23
23	2013	0.57	3.30	40.18	0.89	12.16	2.36	24
24	2014	0.51	4.22	43.07	1.05	12.68	2.31	25
25	2015	0.58	3.79	46.89	0.91	12.99	2.60	29
26	2016	0.69	4.80	50.95	0.63	15.05	2.99	32
27	2017	0.87	6.06	58.24	0.68	16.36	3.08	33
28	2018	0.62	6.51	63.76	0.74	13.99	3.34	34
29	2019	0.69	6.93	69.40	1.00	12.96	3.49	35

View recommended plots

3. Prepare the data by applying appropriate data preprocessing techniques.

³ co2e2000s

	Year	Agriculture	Commercial	Electricity	Energy (own- use)	Industry	Residential	Transp
11	2001	0.81	2.04	22.48	1.83	8.37	3.68	24
12	2002	0.87	2.07	21.45	1.79	7.85	3.67	25
13	2003	0.94	1.92	22.55	2.15	9.06	3.35	24
14	2004	0.88	1.64	23.95	1.71	8.88	3.50	25
15	2005	0.86	1.47	26.53	1.59	9.33	2.88	24
16	2006	0.76	1.58	23.12	1.15	9.51	2.60	22
17	2007	0.62	1.54	25.00	1.18	10.02	2.51	23
18	2008	0.76	1.53	27.76	0.98	11.71	2.41	21
19	2009	0.61	2.44	28.27	0.90	10.09	2.52	22
20	2010	0.64	2.78	31.28	1.02	11.68	2.50	22
21	2011	0.56	2.89	32.32	0.94	11.38	2.46	22
22	2012	0.54	2.84	34.58	1.04	10.54	2.41	23
23	2013	0.57	3.30	40.18	0.89	12.16	2.36	24
24	2014	0.51	4.22	43.07	1.05	12.68	2.31	25
25	2015	0.58	3.79	46.89	0.91	12.99	2.60	29
26	2016	0.69	4.80	50.95	0.63	15.05	2.99	32
27	2017	0.87	6.06	58.24	0.68	16.36	3.08	33
28	2018	0.62	6.51	63.76	0.74	13.99	3.34	34
29	2019	0.69	6.93	69.40	1.00	12.96	3.49	35

Next steps:

View recommended plots

^{1 #} filtering out the datas that are lower than 2001

² co2e2000s = co2e.query('Year > 2000')

^{1 #} transforming Year column into index

² co2e2000s.set_index('Year', inplace=True)

³ co2e2000s

	Agriculture	Commercial	Electricity	Energy (own- use)	Industry	Residential	Transport
Year							
2001	0.81	2.04	22.48	1.83	8.37	3.68	24.19
2002	0.87	2.07	21.45	1.79	7.85	3.67	25.08
2003	0.94	1.92	22.55	2.15	9.06	3.35	24.47
2004	0.88	1.64	23.95	1.71	8.88	3.50	25.34
2005	0.86	1.47	26.53	1.59	9.33	2.88	24.12
2006	0.76	1.58	23.12	1.15	9.51	2.60	22.65
2007	0.62	1.54	25.00	1.18	10.02	2.51	23.45
2008	0.76	1.53	27.76	0.98	11.71	2.41	21.71
2009	0.61	2.44	28.27	0.90	10.09	2.52	22.74
2010	0.64	2.78	31.28	1.02	11.68	2.50	22.96
2011	0.56	2.89	32.32	0.94	11.38	2.46	22.75
2012	0.54	2.84	34.58	1.04	10.54	2.41	23.68
2013	0.57	3.30	40.18	0.89	12.16	2.36	24.75
2014	0.51	4.22	43.07	1.05	12.68	2.31	25.69
2015	0.58	3.79	46.89	0.91	12.99	2.60	29.71
2016	0.69	4.80	50.95	0.63	15.05	2.99	32.15
2017	0.87	6.06	58.24	0.68	16.36	3.08	33.20
2018	0.62	6.51	63.76	0.74	13.99	3.34	34.36
2019	0.69	6.93	69.40	1.00	12.96	3.49	35.57

1 # checking if the Year column turned into index

2 co2e2000s.dtypes

Agriculture float64
Commercial float64
Electricity float64
Energy (own-use) float64
Industry float64
Residential float64
Transport float64

dtype: object

- 1 # adds a column "Total" that adds the sum of the rows
- 2 co2e2000s['Total'] = co2e2000s.sum(axis=1)
- 3 co2e2000s

<ipython-input-101-0d683eddf107>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us co2e2000s['Total'] = co2e2000s.sum(axis=1)

Energy

	Agriculture	Commercial	Electricity	(own- use)	Industry	Residential	Transport
Year							
2001	0.81	2.04	22.48	1.83	8.37	3.68	24.19
2002	0.87	2.07	21.45	1.79	7.85	3.67	25.08
2003	0.94	1.92	22.55	2.15	9.06	3.35	24.47
2004	0.88	1.64	23.95	1.71	8.88	3.50	25.34
2005	0.86	1.47	26.53	1.59	9.33	2.88	24.12
2006	0.76	1.58	23.12	1.15	9.51	2.60	22.65
2007	0.62	1.54	25.00	1.18	10.02	2.51	23.45
2008	0.76	1.53	27.76	0.98	11.71	2.41	21.71
2009	0.61	2.44	28.27	0.90	10.09	2.52	22.74
2010	0.64	2.78	31.28	1.02	11.68	2.50	22.96
2011	0.56	2.89	32.32	0.94	11.38	2.46	22.75
2012	0.54	2.84	34.58	1.04	10.54	2.41	23.68
2013	0.57	3.30	40.18	0.89	12.16	2.36	24.75
2014	0.51	4.22	43.07	1.05	12.68	2.31	25.69
2015	0.58	3.79	46.89	0.91	12.99	2.60	29.71
2016	0.69	4.80	50.95	0.63	15.05	2.99	32.15
2017	0.87	6.06	58.24	0.68	16.36	3.08	33.20
2018	0.62	6.51	63.76	0.74	13.99	3.34	34.36
2019	0.69	6.93	69.40	1.00	12.96	3.49	35.57

Next steps: V

View recommended plots

^{1 #} sort the dataframe by descending order of the total column

² sort co2 = co2e2000s.sort values(by='Total', ascending=False)

³ sort_co2

	Agriculture	Commercial	Electricity	Energy (own- use)	Industry	Residential	Transport
Year							
2019	0.69	6.93	69.40	1.00	12.96	3.49	35.57
2018	0.62	6.51	63.76	0.74	13.99	3.34	34.36
2020	0.63	7.25	70.01	0.77	10.62	3.29	27.44
2017	0.87	6.06	58.24	0.68	16.36	3.08	33.20
2016	0.69	4.80	50.95	0.63	15.05	2.99	32.15
2015	0.58	3.79	46.89	0.91	12.99	2.60	29.71
2014	0.51	4.22	43.07	1.05	12.68	2.31	25.69
2013	0.57	3.30	40.18	0.89	12.16	2.36	24.75
2012	0.54	2.84	34.58	1.04	10.54	2.41	23.68
2011	0.56	2.89	32.32	0.94	11.38	2.46	22.75
2010	0.64	2.78	31.28	1.02	11.68	2.50	22.96
2009	0.61	2.44	28.27	0.90	10.09	2.52	22.74
2008	0.76	1.53	27.76	0.98	11.71	2.41	21.71
2005	0.86	1.47	26.53	1.59	9.33	2.88	24.12
2004	0.88	1.64	23.95	1.71	8.88	3.50	25.34
2003	0.94	1.92	22.55	2.15	9.06	3.35	24.47
2007	0.62	1.54	25.00	1.18	10.02	2.51	23.45
2001	0.81	2.04	22.48	1.83	8.37	3.68	24.19
2002	0.87	2.07	21.45	1.79	7.85	3.67	25.08

^{1 #} displays the top 10 years that produced the most CO2

² sort_head_co2 = sort_co2.head(10)

³ sort_head_co2

	Agriculture	Commercial	Electricity	Energy (own- use)	Industry	Residential	Transport
Year							
2019	0.69	6.93	69.40	1.00	12.96	3.49	35.57
2018	0.62	6.51	63.76	0.74	13.99	3.34	34.36
2020	0.63	7.25	70.01	0.77	10.62	3.29	27.44
2017	0.87	6.06	58.24	0.68	16.36	3.08	33.20
2016	0.69	4.80	50.95	0.63	15.05	2.99	32.15
2015	0.58	3.79	46.89	0.91	12.99	2.60	29.71
2014	0.51	4.22	43.07	1.05	12.68	2.31	25.69
2013	0.57	3.30	40.18	0.89	12.16	2.36	24.75
2012	0.54	2.84	34.58	1.04	10.54	2.41	23.68

View recommended plots

- 4. Analyze the data using descriptive analysis.
- 1 # displays the descriptive data analysis of the top 10 years and its total
 2 sort_head_co2.describe()

	Agriculture	Commercial	Electricity	Energy (own- use)	Industry	Residential	Transpo
count	10.000000	10.000000	10.000000	10.000000	10.00000	10.000000	10.0000
mean	0.626000	4.859000	50.940000	0.865000	12.87300	2.833000	28.9300
std	0.104478	1.703346	13.866627	0.151089	1.86967	0.453727	4.6990
min	0.510000	2.840000	32.320000	0.630000	10.54000	2.310000	22.7500
25%	0.562500	3.422500	40.902500	0.747500	11.57500	2.422500	24.9850
50%	0.600000	4.510000	48.920000	0.900000	12.82000	2.795000	28.5750
75%	0.675000	6.397500	62.380000	0.985000	13.74000	3.237500	32.9375

5. Perform correlation analysis.

1 sort_head_co2.corr()

	Agriculture	Commercial	Electricity	Energy (own- use)	Industry	Residential	Т
Agriculture	1.000000	0.584184	0.559892	-0.676435	0.760002	0.632902	
Commercial	0.584184	1.000000	0.985932	-0.461336	0.329937	0.932609	
Electricity	0.559892	0.985932	1.000000	-0.447692	0.313381	0.938850	
Energy (own-use)	-0.676435	-0.461336	-0.447692	1.000000	-0.644693	-0.521495	-
Industry	0.760002	0.329937	0.313381	-0.644693	1.000000	0.360400	
Residential	0.632902	0.932609	0.938850	-0.521495	0.360400	1.000000	
Transport	0.694308	0.758131	0.789944	-0.506827	0.721773	0.834375	

^{1 #} displaying the correlation in a plot

<Axes: xlabel='y(t)', ylabel='y(t + 1)'>

- 6. Interpret the results based on the descriptive and correlation analysis.
- It displays a strong positive correlation of the greenhouse emissions. It also shows the averages of different greenhouse emissions per year as well as the fluctuation of values in the years were CO2 emissions are in their all time high. The standard deviation provides

² from pandas.plotting import lag_plot

³

⁴ lag_plot(sort_head_co2)

insights on the amount of emissions that deviate from their respective averages during its peak. This benefits us in a way that we can identify the consistency of greenhouse emission during these pivotal years.