Série 10

Exercice 1. Dans l'espace, on donne trois points non alignés A, B et C.

- a. Déterminer, en fonction de \overrightarrow{AB} et \overrightarrow{AC} , une équation vectorielle de la droite d symétrique (orthogonale) de (AC) par rapport à (AB).
- b. Application numérique : A(0,0,0), B(-2,1,-3) et C(3,-2,2) (dans un repère orthonormé).

Exercice 2. On donne un triangle ABC rectangle en B. Existe-t-il un point sur (AB) dont le symétrique par rapport à (AC) appartient à (BC)? Si oui, donner son abscisse dans le repère (A, \overrightarrow{AB}) . On pourra discuter selon l'angle θ au sommet A.

Exercice 3. Dans l'espace muni d'un repère orthonormé, on donne les points A(-6,3,5), B(0,3,2) et le plan $\pi: y+z-2=0$.

- a. Montrer que A et B sont situés du même côté de π .
- b. On souhaite atteindre B avec un rayon laser issu de A, après une réflexion sur π . Quel point de π doit-on viser?

Exercice 4.

La figure ci-contre représente un cube de côté 2. Dans chacun des cas suivants écrire une équation normale du plan proposé vu depuis le point A:

a.
$$(ABC)$$
 b. (BCF) c. (BCE)

Ensuite, décrire le lieu géométrique formé des points M vérifiant la condition proposée :

d.
$$\overrightarrow{HG} \cdot \overrightarrow{CM} = 0$$
 e. $\overrightarrow{AB} \cdot \overrightarrow{AM} = 2$ f. $\overrightarrow{AC} \cdot \overrightarrow{EM} = 4$.

Exercice 5. Dans l'espace muni d'un repère orthonormé, on donne B(0, -4, -7), H(-2, -2, -5), et $d: x = y + 1 = \frac{z-2}{2}$. Déterminer les sommets A et C du triangle ABC sachant que A appartient à d, et que, dans le triangle ABC, H est le pied de la hauteur issue de A et l'angle au sommet A a pour cosinus $-\frac{1}{3}$.

Exercice 6. On donne trois points non alignés A, B, C dans l'espace et un réel $0 \le \alpha \le 1$.

- a. En fonction des données, localiser depuis A le point D situé sur la hauteur issue de A et tel que le rapport de l'aire du triangle BCD à l'aire de ABC soit égal à α .
- b. Application numérique : A(20,-12,40), B(12,16,0), C(16,24,-12) (repère orthonormé), $\alpha = \frac{1}{4}$.

Exercice 7.

Quel est l'angle θ entre deux faces d'un tétraèdre régulier? On pourra introduire un repère orthonormé adapté au problème.

Exercice 8. Dans l'espace muni d'un repère orthonormé, on donne les points A(5,0,3), B(-1,4,4)ainsi que les plans :

$$\rho: 2x + 2y + z + 1 = 0 \text{ et } \pi: \begin{cases} x = -6 - s \\ y = s \\ z = 2 - 8s + t \end{cases}, s, t \in \mathbb{R}.$$

Déterminer les coordonnées du point C sachant que le triangle ABC est rectangle en C, que \overrightarrow{AC} est directeur de π et que \overrightarrow{BC} est directeur de ρ .

Éléments de réponse :

Eléments de réponse :
Ex. 1 : a.
$$d:\overrightarrow{AM} = t(2\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\|\overrightarrow{AB}\|^2}\overrightarrow{AB} - \overrightarrow{AC}), t \in \mathbb{R}$$
, b. $d:4x = z, y = 0$.
Ex. 2 : $\frac{1}{\cos(2\theta)}$ pour $\theta \neq \frac{\pi}{4}$.

Ex. 2:
$$\frac{1}{\cos(2\theta)}$$
 pour $\theta \neq \frac{\pi}{4}$

Ex. 3:
$$(-2, 1, 1)$$
.

Ex. 3:
$$(-2,1,1)$$
.
Ex. 4: a. $\overrightarrow{AE} \cdot \overrightarrow{AM} = 0$, b. $\overrightarrow{AB} \cdot \overrightarrow{AM} = 4$, c. $\overrightarrow{AF} \cdot \overrightarrow{AM} = 4$, d. (BCF) , e. plan médiateur de AB , f. (BDF) .

Ex. 5 :
$$A(-3, -4, -4)$$
, $C(-4, 0, -3)$.

$$\begin{array}{l} \mathbf{Ex.~5:} \ A~(-3,-4,-4),~C~(-4,0,-3).\\ \mathbf{Ex.~6:} \ \mathrm{a.~} \overrightarrow{AD} = (1-\alpha)(\overrightarrow{AB} - \frac{\overrightarrow{AB}~\overrightarrow{BC}}{\|\overrightarrow{BC}\|^2}\overrightarrow{BC}),~\mathrm{b.~}D(5,-9,37). \end{array}$$

Ex. 7:
$$\cos(\theta) = \frac{1}{3}$$
.

Ex. 8 :
$$C(2,3,0)$$
 ou $C(3,2,0)$.