

BUNDESREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

EPO4/6914

REC'D	20 JUL 2004
WIPO	PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 30 724.9

Anmeldetag: 08. Juli 2003

Anmelder/Inhaber: Bayer CropScience AG,
40789 Monheim/DE

Bezeichnung: Wirkstoffkombinationen mit insektiziden und
akariziden Eigenschaften

IPC: A 01 N, A 01 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 29. April 2004
Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Agurks

Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften

5 Die vorliegende Erfindung betrifft neue Wirkstoffkombinationen, die aus bekannten cyclischen Ketoenothen einerseits und weiteren bekannten insektiziden Wirkstoffen andererseits bestehen und sehr gut zur Bekämpfung von tierischen Schädlingen wie Insekten und unerwünschten Akariden geeignet sind.

10 Es ist bereits bekannt, dass bestimmte cyclische Ketoenothen herbizide, insektizide und akarizide Eigenschaften besitzen. Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

15 Bekannt mit herbizider, insektizider oder akarizider Wirkung sind unsubstituierte, bicyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A-355 599 und EP-A-415 211) sowie substituierte monocyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A-377 893 und EP-A-442 077).

20 Weiterhin bekannt sind polycyclische 3-Arylpvrrolidin-2,4-dion-Derivate (EP-A-442 073) sowie 1H-Arylpvrrolidin-dion-Derivate (EP-A-456 063, EP-A-521 334, EP-A-596 298, EP-A-613 884, EP-A-613 885, WO 94/01 997, WO 95/26 954, WO 95/20 572, EP-A-0 668 267, WO 96/25 395, WO 96/35 664, WO 97/01 535, WO 97/02 243, WO 97/36 868, WO 97/ 43 275, WO 98/05 638, WO 98/06 721, WO 98/25 928, WO 99/16 748, WO 99/24 437, WO 99/43 649, WO 99/48 869 und WO 99/55 673, WO 01/23354, WO 01/74770). Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

25 Es ist auch bekannt, dass Mischungen aus Phthalsäurediamiden und weiteren bioaktiven Verbindungen eine insektizide und/oder akarizide Wirkung aufweisen (WO 02/087 334). Die Wirkung dieser Mischung ist aber nicht immer optimal.

Weiterhin ist schon bekannt, dass zahlreiche Heterocyclen, Organozinn-Verbindungen, Benzoylharnstoffe und Pyrethroide insektizide und akarizide Eigenschaften besitzen (vgl. WO 93/22 297, WO 93/10 083, DE-A-2 641 343, EP-A-347 488, EP-A-210 487, US 3,364,177 und EP-A-234 045). Allerdings ist die Wirkung dieser Stoffe auch nicht immer befriedigend.

5

Es wurde nun gefunden, dass Mischungen aus Verbindungen der Formel (I)

10

in welcher

X für Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Cyano steht,

15

W, Y und Z unabhängig voneinander für Wasserstoff, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Cyano stehen,

20

A für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, gesättigtes, gegebenenfalls substituiertes Cycloalkyl steht, in welchem gegebenenfalls mindestens ein Ringatom durch ein Heteroatom ersetzt ist,

B für Wasserstoff oder Alkyl steht,

25

A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind, für einen gesättigten oder ungesättigten, gegebenenfalls mindestens ein Heteroatom enthaltenden unsubstituierten oder substituierten Cyclus stehen,

D für Wasserstoff oder einen gegebenenfalls substituierten Rest aus der Reihe Alkyl, Alkenyl, Alkoxyalkyl, gesättigtes Cycloalkyl steht, in welchem gegebenenfalls eines oder mehrere Ringglieder durch Heteroatome ersetzt sind,

5 A und D gemeinsam mit den Atomen an die sie gebunden sind für einen gesättigten oder ungesättigten und gegebenenfalls mindestens ein Heteroatom enthaltenden, im A,D-Teil unsubstituierten oder substituierten Cyclus stehen,

G für Wasserstoff (a) oder für eine der Gruppen

10

steht,

worin

15

E für ein Metallion oder ein Ammoniumion steht,

L für Sauerstoff oder Schwefel steht,

20

M für Sauerstoff oder Schwefel steht,

25

R¹ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder gegebenenfalls durch Halogen, Alkyl oder Alkoxy substituiertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann, jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxyalkyl oder Hetaryloxyalkyl steht,

R² für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder für jeweils gegebenenfalls substituiertes Cycloalkyl, Phenyl oder Benzyl steht,

5

R³ für gegebenenfalls durch Halogen substituiertes Alkyl oder gegebenenfalls substituiertes Phenyl steht,

10

R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio oder für jeweils gegebenenfalls substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen und

15

R⁶ und R⁷ unabhängig voneinander für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl oder gemeinsam mit dem N-Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen gegebenenfalls substituiertes Ring stehen

20

und mindestens einem Phthalsäurediamid der Formel (II) synergistisch wirksam sind und sich zur Bekämpfung tierischer Schädlinge eignen.

25

Die Verbindungen der Formel (I) können, auch in Abhängigkeit von der Art der Substituenten, als geometrische und/oder optische Isomere oder Isomerengemische, in unterschiedlicher Zusammensetzung vorliegen, die gegebenenfalls in üblicher Art und Weise getrennt werden können. Sowohl die reinen Isomeren als auch die Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Im folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die

30

reinen Verbindungen als gegebenenfalls auch Gemische mit unterschiedlichen Anteilen an isomeren Verbindungen gemeint sind.

Bei den Phthalsäurediamiden der Formel (II) handelt es sich ebenfalls um bekannte Verbindungen, die aus folgenden Publikationen bekannt sind oder von diesen umfasst werden (vgl. EP-A 09 19 542, EP-A 100 61 07, WO 01/00575, WO 01/00599, WO 01/46124, JP 2001-33 555 9, WO 01/02354, WO 01/21576, WO 02/088074, WO 02/088075, WO 02/094765, WO 02/094766, WO 02/062807).

Auf die in diesen Publikationen beschriebenen generischen Formeln und Definitionen sowie auf die darin beschriebenen einzelnen Verbindungen wird hiermit ausdrücklich Bezug genommen.

Die Phthalsäurediamide lassen sich unter der Formel (II) zusammenfassen:

15

in welcher

K für Halogen, Cyano, Alkyl, Halogenalkyl, Alkoxy oder Halogenalkoxy steht,

20

Re¹, Re², Re³ jeweils unabhängig voneinander für Wasserstoff, Cyano, für gegebenenfalls durch Halogen substituiertes C₃-C₈-Cycloalkyl oder für eine Gruppe der Formel

25

M¹-Q_k

stehen, in welcher

M¹ für gegebenenfalls substituiertes Alkylen, Alkenylen oder Alkinylen steht,

Q für Wasserstoff, Halogen, Cyano, Nitro, Halogenalkyl, jeweils gegebenenfalls substituiertes C₃C₈-Cyloalkyl, Alkylcarbonyl oder Alkoxycarbonyl, jeweils gegebenenfalls substituiertes Phenyl, Hetaryl oder für eine Gruppe

5

T-Re⁴ steht,

in welcher

10

T für -O-, -S(O)_m- oder —N— Re⁵ steht,

Re⁴ für Wasserstoff, jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkyl-alkyl, Alkoxyalkyl, Alkylcarbonyl, Alkoxycarbonyl, Phenyl, Phenylalkyl, Phenylalkoxy, Hetaryl, Hetarylalkyl steht,

15

Re⁵ für Wasserstoff, für jeweils gegebenenfalls substituiertes Alkylcarbonyl, Alkoxycarbonyl, Phenylcarbonyl oder Phenylalkoxycarbonyl steht,

20 k für die Zahlen 1 bis 4 steht,

m für die Zahlen 0 bis 2 steht,

25

Re¹ und Re² gemeinsam einen gegebenenfalls substituierten vier- bis sieben-gliedrigen Ring bilden, der gegebenenfalls durch Heteroatome unterbrochen sein kann,

L¹ und L³ unabhängig voneinander für Wasserstoff, Halogen, Cyano oder jeweils gegebenenfalls substituiertes Alkyl, Alkoxy, Alk-S(O)_m-, Phenyl, Phenoxy oder Hetaryloxy stehen,

30

L² für Wasserstoff, Halogen, Cyano, jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Halogenalkyl, Cycloalkyl, Phenyl, Hetaryl oder für die Gruppe

5 M²-Re⁶ steht,
in welcher

M² für -O- oder -S(O)_m- steht,

und

Re⁶ für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Phenyl oder Hetaryl steht,

15 L¹ und L³ oder

L¹ und L² gemeinsam einen gegebenenfalls substituierten fünf- bis sechsgliedrigen Ring bilden, der gegebenenfalls durch Heteroatome unterbrochen sein kann, stehen.

20 Bevorzugt handelt es sich um Verbindungen der Formel (II),
in welcher

25 K bevorzugt für Fluor, Chlor, Brom, Jod, Cyano, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy steht,

30 Re¹, Re² und Re³ bevorzugt jeweils unabhängig voneinander für Wasserstoff, Cyano, für gegebenenfalls durch Halogen substituiertes C₃-C₆-Cycloalkyl oder für eine Gruppe der Formel

M^1-Q_k

stehen, in welcher

- 5 M^1 bevorzugt für C_1-C_8 -Alkylen, C_3-C_6 -Alkenylen oder C_3-C_6 -Alkinylen steht,
- 10 Q bevorzugt für Wasserstoff, Halogen, Cyano, Nitro, Halogenalkyl oder für gegebenenfalls durch Fluor, Chlor, C_1-C_6 -Alkyl oder C_1-C_6 -Alkoxy substituiertes C_3-C_8 -Cycloalkyl, in welchem gegebenenfalls ein oder zwei nicht direkt benachbarte Ringglieder durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Halogen substituiertes C_1-C_6 -Alkylcarbonyl oder C_1-C_6 -Alkoxycarbonyl oder für jeweils gegebenenfalls durch Halogen, C_1-C_6 -Alkyl, C_1-C_6 -Halogenalkyl, C_1-C_6 -Alkoxy, C_1-C_6 -Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Hetaryl mit 5 bis 15 Ringatomen (beispielsweise Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Pyrimidyl, Thiazolyl oder Thienyl) oder für eine Gruppe

$T-Re^4$ steht,

in welcher

- 20 T bevorzugt für $-O-$, $-S(O)_m-$ oder $\begin{array}{c} -N- \\ | \\ Re^5 \end{array}$ steht,
- 25 Re^4 bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C_1-C_8 -Alkyl, C_3-C_8 -Alkenyl, C_3-C_8 -Alkinyl, C_3-C_8 -Cycloalkyl, C_3-C_8 -Cycloalkyl- C_1-C_2 -alkyl, C_1-C_6 -Alkylcarbonyl, C_1-C_6 -Alkoxycarbonyl, für jeweils gegebenenfalls einfach bis vierfach durch Halogen, C_1-C_6 -Alkyl, C_1-C_6 -Alkoxy, C_1-C_4 -Halogenalkyl, C_1-C_4 -Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, C_1-C_4 -Phenylalkyl, C_1-C_4 -Phenylalkyloxy, Hetaryl oder Hetarylalkyl, wobei Hetaryl mit 5 bis 6 Ring-

atomen (beispielsweise Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Pyrimidyl, Thiazolyl oder Thienyl) steht,

- Re⁵ bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor und/oder
5 Chlor substituiertes C₁-C₆-Alkylcarbonyl, C₁-C₆-Alkoxycarbonyl, für jeweils
gegebenenfalls einfach bis vierfach durch Halogen, C₁-C₆-Alkyl, C₁-C₆-
Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano sub-
stituiertes Phenyl-carbonyl oder Phenyl-C₁-C₄-alkyloxycarbonyl steht,
- 10 k bevorzugt für die Zahlen 1 bis 3 steht,
- m bevorzugt für die Zahlen 0 bis 2 steht,
- 15 Re¹ und Re² bevorzugt einen fünf- bis sechsgliedrigen Ring bilden, der gegebenen-
falls durch ein Sauerstoff- oder Schwefelatom unterbrochen sein kann,
- L¹ und L³ bevorzugt unabhängig voneinander für Wasserstoff, Cyano, Fluor,
Chlor, Brom, Jod, C₁-C₆-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy,
C₁-C₄-Halogenalkoxy, C₁-C₄-Alkyl-S(O)_m⁻, C₁-C₄-Haloalkyl-
S(O)_m⁻, für jeweils gegebenenfalls einfach bis dreifach durch Fluor,
Chlor, Brom, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-
C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Phenoxy,
Pyrdinyloxy, Thiazolyloxy oder Pyrimidyloxy stehen,
- 25 L² bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, für je-
weils gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-
C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₂-C₆-Alkinyl, für jeweils gegebenen-
falls durch Fluor, Chlor substituiertes C₃-C₆-Cycloalkyl, für jeweils
gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C₁-C₆-
Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy,

- 10 -

Cyano oder Nitro substituiertes Phenyl, Pyridyl, Thienyl, Pyrimidyl
oder Thiazolyl,

oder für eine Gruppe

5

M^2-Re^6

steht, in welcher

10 M^2 bevorzugt für $-O-$ oder $-S(O)_m-$ steht und

15 Re^6 bevorzugt für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C_1-C_8 -Alkyl, C_2-C_8 -Alkenyl, C_3-C_6 -Alkinyl oder C_3-C_6 -Cycloalkyl, für jeweils gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, C_1-C_6 -Alkyl, C_1-C_6 -Alkoxy, C_1-C_4 -Halogen-alkyl, C_1-C_4 -Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Pyridyl, Pyrimidyl oder Thiazolyl steht,

20 L^1 und L^3

oder

25 L^2 und L^3 bevorzugt gemeinsam jeweils einen gegebenenfalls durch Fluor und/oder C_1-C_2 -Alkyl substituierten fünf- bis sechsgliedrigen Ring bilden, der gegebenenfalls durch ein oder zwei Sauerstoffatome unterbrochen sein kann, stehen.

25

Besonders bevorzugt handelt es sich um Verbindungen der Formel II, in welcher

K besonders bevorzugt für Chlor, Brom und Jod steht,

30 Re^1, Re^2 und Re^3 besonders bevorzugt jeweils unabhängig voneinander für Wasserstoff oder für eine Gruppe der Formel

$M^1 \cdot Q_k$

stehen, in welcher

5 M^1 besonders bevorzugt für $C_1\text{-}C_8$ -Alkylen, $C_3\text{-}C_6$ -Alkenylen oder $C_3\text{-}C_6$ -Alkinylen steht,

Q besonders bevorzugt für Wasserstoff, Fluor, Chlor, Cyano, Trifluormethyl, $C_3\text{-}C_6$ -Cycloalkyl oder für eine Gruppe

$T \cdot Re^4$ steht,

in welcher

15 T besonders bevorzugt für $-O-$ oder $-S(O)_m-$ steht,

Re^4 besonders bevorzugt für Wasserstoff, jeweils gegebenenfalls einfach bis dreifach durch Fluor und/oder Chlor substituiertes $C_1\text{-}C_6$ -Alkyl, $C_3\text{-}C_6$ -Alkenyl, $C_3\text{-}C_6$ -Alkinylen oder $C_3\text{-}C_6$ -Cycloalkyl steht,

k besonders bevorzugt für die Zahlen 1 bis 3 steht,

m besonders bevorzugt für die Zahlen 0 bis 2 steht,

25 L^1 und L^3 unabhängig voneinander besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Cyano, $C_1\text{-}C_4$ -Alkyl, $C_1\text{-}C_2$ -Halogenalkyl, $C_1\text{-}C_4$ -Alkoxy, $C_1\text{-}C_2$ -Halogenalkoxy, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, $C_1\text{-}C_4$ -Alkyl, $C_1\text{-}C_4$ -Alkoxy, $C_1\text{-}C_2$ -Halogenalkyl, $C_1\text{-}C_2$ -Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Phenoxy stehen,

L² besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, für jeweils gegebenenfalls einfach bis dreizehnfach durch Fluor und/oder Chlor substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl oder für eine Gruppe

5

M²-Re⁶

steht, in welcher

10

M² besonders bevorzugt für -O- oder -S(O)_m- steht,

und

15

Re⁶ besonders bevorzugt für jeweils gegebenenfalls einfach bis dreizehnfach durch Fluor und/oder Chlor substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl oder C₃-C₆-Cycloalkyl, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Trifluormethyl, Difluormethoxy, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl oder Pyridyl steht.

20

Ganz besonders bevorzugt handelt es sich um Verbindungen der Formel (II), in welcher

K ganz besonders bevorzugt für Jod steht,

25

Re¹ und Re² ganz besonders bevorzugt für Wasserstoff stehen,

Re³ ganz besonders bevorzugt für eine Gruppe der Formel

M¹-Q

30

steht, in welcher

M¹ ganz besonders bevorzugt für -CHCH₃-CH₂-, -C(CH₃)₂-CH₂-,
-CHC₂H₅-CH₂-, —C—CH₂—, -C(C₂H₅)₂-CH₂- steht,

Q ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Cyano, Trifluormethyl, C₃-C₆-Cycloalkyl oder für eine Gruppe
5

T ganz besonders bevorzugt für -S-, -SO- oder -SO₂- steht,
10

Re⁴ ganz besonders bevorzugt für jeweils gegebenenfalls einfach bis dreifach durch Fluor und/oder Chlor substituiertes Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl oder tert.-Butyl, Allyl, Butenyl oder Isoprenyl steht,
15

L¹ und L³ unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, Methyl, Ethyl, n-Propyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, Trifluormethyl, Difluormethoxy oder Trifluormethoxy stehen,
20

L² ganz besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Jod, Cyano, für jeweils gegebenenfalls einfach bis neunfach durch Fluor und/oder Chlor substituiertes Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl, Allyl, Butenyl oder Isoprenyl oder für eine Gruppe
25

M²-R⁶
steht,

30 M² ganz besonders bevorzugt für Sauerstoff oder Schwefel steht,

und

Re⁶ ganz besonders bevorzugt für jeweils gegebenenfalls einfach bis neunfach durch Fluor und/oder Chlor substituiertes Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl, Allyl, Butenyl oder Isoprenyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Methyl, Ethyl, Methoxy, Trifluormethyl, Difluormethoxy, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl steht.

10 Insbesonders bevorzugt handelt es sich um die Verbindung der Formel II-1

15 Überraschenderweise ist die insektizide und/oder akarizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen wesentlich höher als die Summe der Wirkungen der einzelnen Wirkstoffe. Es liegt also ein nicht vorhersehbarer, echter synergistischer Effekt vor und nicht nur eine Wirkungsergänzung.

20 Die erfindungsgemäßen Wirkstoffkombinationen enthalten neben mindestens einem Wirkstoff der Formel (I) mindestens einen Wirkstoff der Formel (II).

Bevorzugt sind Wirkstoffkombinationen enthaltend Verbindungen der Formel (I), in welcher die Reste die folgende Bedeutung haben:

25

W steht bevorzugt für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Chlor, Brom oder Fluor,

X steht bevorzugt für C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, Fluor, Chlor oder Brom,

Y und Z stehen unabhängig voneinander bevorzugt für Wasserstoff, C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkyl,

10 A steht bevorzugt für Wasserstoff oder jeweils gegebenenfalls durch Halogen substituiertes C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl,

B steht bevorzugt für Wasserstoff, Methyl oder Ethyl,

15 A, B und das Kohlenstoffatom an das sie gebunden sind, stehen bevorzugt für gesättigtes C₃-C₆-Cycloalkyl, worin gegebenenfalls ein Ringglied durch Sauerstoff oder Schwefel ersetzt ist und welches gegebenenfalls einfach oder zweifach durch C₁-C₄-Alkyl, Trifluormethyl oder C₁-C₄-Alkoxy substituiert ist,

20 D steht bevorzugt für Wasserstoff, jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₃-C₄-Alkenyl oder C₃-C₆-Cycloalkyl,

A und D stehen gemeinsam bevorzugt für gegebenenfalls durch Methyl substituiertes C₃-C₄-Alkandiyl, worin gegebenenfalls eine Methylengruppe durch Schwefel ersetzt ist.

G steht bevorzugt für Wasserstoff (a) oder für eine der Gruppen

in welchen

E für ein Metallion oder ein Ammoniumion steht,

5

L für Sauerstoff oder Schwefel steht und

M für Sauerstoff oder Schwefel steht,

10 R¹ steht bevorzugt für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl oder gegebenenfalls durch Fluor, Chlor, C₁-C₄-Alkyl oder C₁-C₂-Alkoxy substituiertes C₃-C₆-Cycloalkyl,

15 für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Triflourmethyl oder Triflourmethoxy substituiertes Phenyl,

 für jeweils gegebenenfalls durch Chlor oder Methyl substituiertes Pyridyl oder Thienyl,

20

R² steht bevorzugt für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₁-C₄-Alkoxy-C₂-C₄-alkyl,

25

 für gegebenenfalls durch Methyl oder Methoxy substituiertes C₅-C₆-Cycloalkyl oder

für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl oder Benzyl,

- 5 R³ steht bevorzugt für gegebenenfalls durch Fluor substituiertes C₁-C₄-Alkyl oder für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl,
- 10 R⁴ steht bevorzugt unabhängig voneinander für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-amino, C₁-C₄-Alkylthio oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₄-Alkoxy, Trifluormethoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl oder Trifluormethyl substituiertes Phenyl, Phenoxy oder Phenylthio,
- 15 R⁵ steht bevorzugt für C₁-C₄-Alkoxy oder C₁-C₄-Thioalkyl,
- 20 R⁶ steht bevorzugt für C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl,
- 25 R⁷ steht bevorzugt für C₁-C₆-Alkyl, C₃-C₆-Alkenyl oder C₁-C₄-Alkoxy-C₁-C₄-alkyl,
- W steht besonders bevorzugt für Wasserstoff, Methyl, Ethyl, Chlor, Brom oder Methoxy,

X steht besonders bevorzugt für Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy oder Trifluormethyl,

Y und Z stehen besonders bevorzugt unabhängig voneinander für Wasserstoff, Fluor,
5 Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Trifluormethyl oder Methoxy,

A steht besonders bevorzugt für Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, sec.-Butyl, tert.-Butyl, Cyclopropyl, Cyclopentyl oder Cyclohexyl,

10 B steht besonders bevorzugt für Wasserstoff, Methyl oder Ethyl,

A, B und das Kohlenstoffatom an das sie gebunden sind, stehen besonders bevorzugt
für gesättigtes C₆-Cycloalkyl, worin gegebenenfalls ein Ringglied durch Sau-
erstoff ersetzt ist und welches gegebenenfalls einfach durch Methyl, Ethyl,
15 Methoxy, Ethoxy, Propoxy oder Butoxy substituiert ist,

D steht besonders bevorzugt für Wasserstoff, für Methyl, Ethyl, Propyl, i-
Propyl, Butyl, i-Butyl, Allyl, Cyclopropyl, Cyclopentyl oder Cyclohexyl,

20 A und D stehen gemeinsam besonders bevorzugt für gegebenenfalls durch Methyl
substituiertes C₃-C₄-Alkandiyl,

G steht besonders bevorzugt für Wasserstoff (a) oder für eine der Gruppen

in welchen

M für Sauerstoff oder Schwefel steht,

R¹ steht besonders bevorzugt für C₁-C₈-Alkyl, C₂-C₄-Alkenyl, Methoxymethyl, Ethoxymethyl, Ethylthiomethyl, Cyclopropyl, Cyclopentyl oder Cyclohexyl,

5 für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, Methoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl,

10 für jeweils gegebenenfalls einfach bis zweifach durch Chlor oder Methyl substituiertes Pyridyl oder Thienyl,

R² steht besonders bevorzugt für C₁-C₈-Alkyl, C₂-C₄-Alkenyl, Methoxyethyl, Ethoxyethyl oder für Phenyl oder Benzyl,

15 R⁶ und R⁷ stehen unabhängig voneinander besonders bevorzugt für Methyl, Ethyl oder zusammen für einen C₅-Alkylenrest, in welchem die C₃-Methylengruppe durch Sauerstoff ersetzt ist.

20 W steht ganz besonders bevorzugt für Wasserstoff oder Methyl,

X steht ganz besonders bevorzugt für Chlor, Brom oder Methyl,

Y und Z stehen ganz besonders bevorzugt unabhängig voneinander für Wasserstoff, Chlor, Brom oder Methyl,

25 A, B und das Kohlenstoffatom an das sie gebunden sind, stehen ganz besonders bevorzugt für gesättigtes C₆-Cycloalkyl, in welchem gegebenenfalls ein Ringglied durch Sauerstoff ersetzt ist und welches gegebenenfalls einfach durch Methyl, Methoxy, Ethoxy, Propoxy oder Butoxy substituiert ist,

30 D steht ganz besonders bevorzugt für Wasserstoff,

G steht ganz besonders bevorzugt für Wasserstoff (a) oder für eine der Gruppen

5

in welchen

M für Sauerstoff oder Schwefel steht,

10 R¹ steht ganz besonders bevorzugt für C₁-C₈-Alkyl, C₂-C₄-Alkenyl, Methoxy-methyl, Ethoxymethyl, Ethylmethylthio, Cyclopropyl, Cyclopentyl, Cyclohexyl oder

15 für gegebenenfalls einfach durch Fluor, Chlor, Brom, Methyl, Methoxy, Tri-fluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl,

für jeweils gegebenenfalls einfach durch Chlor oder Methyl substituiertes Pyridyl oder Thienyl,

20 R² steht ganz besonders bevorzugt für C₁-C₈-Alkyl, C₂-C₄-Alkenyl, Methoxy-ethyl, Ethoxyethyl, Phenyl oder Benzyl,

25 R⁶ und R⁷ stehen unabhängig voneinander ganz besonders bevorzugt für Methyl, Ethyl oder zusammen für einen C₅-Alkylenrest, in welchem die C₃-Methylen-gruppe durch Sauerstoff ersetzt ist.

Insbesondere bevorzugt sind Wirkstoffkombinationen mit folgenden Verbindungen der Formel (I)

Beispiel-Nr.	W	X	Y	Z	R	G	Fp.°C
I-1	H	Br	5-CH ₃	H	OCH ₃	CO-i-C ₃ H ₇	122
I-2	H	Br	5-CH ₃	H	OCH ₃	CO ₂ -C ₂ H ₅	140 - 142
I-3	H	CH ₃	5-CH ₃	H	OCH ₃	H	> 220
I-4	H	CH ₃	5-CH ₃	H	OCH ₃	CO ₂ -C ₂ H ₅	128
I-5	CH ₃	CH ₃	3-Br	H	OCH ₃	H	> 220
I-6	CH ₃	CH ₃	3-Cl	H	OCH ₃	H	219
I-7	H	Br	4-CH ₃	5-CH ₃	OCH ₃	CO-i-C ₃ H ₇	217
I-8	H	CH ₃	4-Cl	5-CH ₃	OCH ₃	CO ₂ C ₂ H ₅	162
I-9	H	CH ₃	4-CH ₃	5-CH ₃	OCH ₃	CO-N 	Öl
I-10	CH ₃	CH ₃	3-CH ₃	4-CH ₃	OCH ₃	H	>220
I-11	H	CH ₃	5-CH ₃	H	OC ₂ H ₅	CO-N 	Öl
I-12	CH ₃	CH ₃	3-Br	H	OC ₂ H ₅	CO-i-C ₃ H ₇	212 - 214
I-13	H	CH ₃	4-CH ₃	5-CH ₃	OC ₂ H ₅	CO-n-Pr	134
I-14	H	CH ₃	4-CH ₃	5-CH ₃	OC ₂ H ₅	CO-i-Pr	108
I-15	H	CH ₃	4-CH ₃	5-CH ₃	OC ₂ H ₅	CO-c-Pr	163

Hervorgehoben sind Wirkstoffkombinationen enthaltend die Verbindung der Formel (I-4) und den Wirkstoff der Formel (II-1).

- 5 Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können untereinander, also auch zwischen den jewei-

ligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.

5 Erfnungsgemäß bevorzugt werden die Verbindungen der Formel (I) und (II), in welchen eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen vorliegt.

10 10 Erfnungsgemäß besonders bevorzugt werden die Verbindungen der Formel (I) und (II), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.

15 Erfnungsgemäß ganz besonders bevorzugt werden die Verbindungen der Formel (I) und (II), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.

20 15 Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl können, auch in Verbindung mit Heteroatomen, wie z.B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.

25 20 Gegebenenfalls substituierte Reste können, sofern nichts anderes angegeben ist, einfach oder mehrfach substituiert sein, wobei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können.

30 25 Die Wirkstoffkombinationen können darüber hinaus auch weitere fungizid, akarizid oder insektizid wirksame Zumischpartner enthalten.

Wenn die Wirkstoffe in den erfungsgemäßen Wirkstoffkombinationen in bestimmten Gewichtsverhältnissen vorhanden sind, zeigt sich der synergistische Effekt besonders deutlich. Jedoch können die Gewichtsverhältnisse der Wirkstoffe in den Wirkstoffkombinationen in einem relativ großen Bereich variiert werden. Im allgemeinen enthalten die erfungsgemäßen Kombinationen Wirkstoffe der Formel (I)

und den Mischpartner der Formel (II) in den angegeben bevorzugten und besonders bevorzugten Mischungsverhältnissen:

Das bevorzugte Mischungsverhältnis beträgt 250:1 bis 1:50.

5 Das besonders bevorzugte Mischungsverhältnis beträgt 25:1 bis 1:10.

Die Mischungsverhältnisse basieren auf Gewichtsverhältnissen. Das Verhältnis ist zu verstehen als Wirkstoff der Formel (I) : Mischpartner der Formel (II).

10 Die erfindungsgemäßen Wirkstoffkombinationen eignen bei guter Pflanzenverträglichkeit, günstiger Warmblütetoxizität und guter Umweltverträglichkeit sich zur Bekämpfung von tierischen Schädlingen, vorzugsweise Arthropoden und Nematoden, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft, der Tiergesundheit in Forsten, in Gärten und Freizeiteinrichtungen, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam.
15 Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Isopoda z.B. *Oniscus asellus*, *Armadillidium vulgare*, *Porcellio scaber*.

20 Aus der Ordnung der Diplopoda z.B. *Blaniulus guttulatus*.

Aus der Ordnung der Chilopoda z.B. *Geophilus carpophagus*, *Scutigera spp.*

Aus der Ordnung der Symphyla z.B. *Scutigerella immaculata*.

Aus der Ordnung der Thysanura z.B. *Lepisma saccharina*.

Aus der Ordnung der Collembola z.B. *Onychiurus armatus*.

25 Aus der Ordnung der Orthoptera z.B. *Acheta domesticus*, *Gryllotalpa spp.*, *Locusta migratoria migratorioides*, *Melanoplus spp.*, *Schistocerca gregaria*.

Aus der Ordnung der Blattaria z.B. *Blatta orientalis*, *Periplaneta americana*, *Leucophaea madera*e, *Blattella germanica*.

Aus der Ordnung der Dermaptera z.B. *Forficula auricularia*.

30 Aus der Ordnung der Isoptera z.B. *Reticulitermes spp.*

- Aus der Ordnung der Phthiraptera z.B. Pediculus humanus corporis, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp..
- Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci, Thrips palmi, Frankliniella accidentalis.
- 5 Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedium, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.
- Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephrotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.
- Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancarella, Hyponomeuta padella, Plutella xylostella, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocoptis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Mamestra brassicae, Panolis flammea, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana, Cnaphalocerus spp., Oulema oryzae.
- Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chryscephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp.,

- Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.
- Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
- 5 Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxyx spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa, Hylemyia spp., Liriomyza spp..
- Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.
- Aus der Klasse der Arachnida z.B. Scorpio maurus, Latrodectus mactans, Acarus siro, Argas spp., Ornithodoros spp., Dermacentor gallinae, Eriophyes ribis, Phyllocoptes oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Hemitarsonemus spp., Brevipalpus spp..
- Zu den pflanzenparasitären Nematoden gehören z.B. Pratylenchus spp., Radopholus similis, Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaphelenchus spp..
- 20 Die erfindungsgemäßen Wirkstoffkombinationen aus Verbindungen der Formel (I) und mindestens einer Verbindung 1 bis 15 eignen sich besonders gut zur Bekämpfung von „beißenden“ Schädlingen. Hierzu gehören besonders die folgenden Schädlinge:
- Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancarella, Hyponomeuta padella, Plutella xylostella, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocoptes citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias
- 30

insulana, Heliothis spp., Mamestra brassicae, Panolis flammea, Spodoptera spp.,
Trichoplusia ni, Carpcapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis,
Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella,
Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura
5 fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana, Cnaphalocerus
spp., Oulema oryzae.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica,
Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni,
Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysoccephala,
Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus
10 spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus,
Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp.,
Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus
hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp.,
15 Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra
zealandica, Lissorhoptrus oryzophilus.

Die erfundungsgemäßen Wirkstoffkombinationen aus Verbindungen der Formel (I)
20 und mindestens einer Verbindung 5 bis 8 eignen sich darüber hinaus besonders gut
zur Bekämpfung von „saugenden“ Schädlingen. Hierzu gehören besonders die
folgenden Schädlinge:

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes
vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis,
25 Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Phylloxera
vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli,
Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephrotettix cincticeps,
Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella
aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.

Die erfindungsgemäßen Wirkstoffkombinationen zeichnen sich insbesondere durch eine hervorragende Wirkung gegen Raupen, Käferlarven, Spinnmilben, Blattläuse und Minierfliegen aus.

5 Die erfindungsgemäßen Wirkstoffkombinationen können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.

10 Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder Schaumerzeugenden Mitteln.

15 Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkyl-naphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylen oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethyleketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

20 25 Als feste Trägerstoffe kommen in Frage:

z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talcum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie syn-

- thetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnusschalen, Maiskolben und Tabakstängeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, 5 Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
- 10 Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrig, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
- 15 Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurenährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
- 20 Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
- 25 Die erfindungsgemäßen Wirkstoffkombinationen können in handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.

5 Die erfindungsgemäßen Wirkstoffkombinationen können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne dass der zugesetzte Synergist selbst aktiv wirksam sein muss.

10 Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

15 Die Anwendung geschieht in einer den Anwendungsformen angepassten üblichen Weise.

20 Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnen sich die Wirkstoffkombinationen durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

25 Die erfindungsgemäßen Wirkstoffkombinationen wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören:

Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp..

- Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp..
- 5 Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie Brachycerina z.B. Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxyx spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp..
- Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp..
- Aus der Ordnung der Heteroptera z.B. Cimex spp., Triatoma spp., Rhodnius spp.,
15 Panstrongylus spp..
- Aus der Ordnung der Blattaria z.B. Blatta orientalis, Periplaneta americana, Blattella germanica, Supella spp..
- Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta- sowie Mesostigmata z.B. Argas spp., Ornithodoros spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp..
- Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B.
20 Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp..
- Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B.
25 Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp..
- 30 Die erfindungsgemäßen Wirkstoffkombinationen eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen,

Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so dass durch den Einsatz der erfindungsgemäßen Wirkstoffkombinationen eine wirtschaftlichere und einfachere Tierhaltung möglich ist.

10 Die Anwendung der erfindungsgemäßen Wirkstoffkombinationen geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten, Kapseln, Tränken, Drenchen, Granulaten, Pasten, Boli, des feed-

through-Verfahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös, intraperitoneal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on und Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Haltern, Markierungsvorrichtungen usw.

15 20 Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffkombinationen als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden.

25 Außerdem wurde gefunden, dass die erfindungsgemäßen Wirkstoffkombinationen eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.

30 Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt:

Käfer wie

Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis,
5 Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec.
Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.

Hautflügler wie

Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.

Termiten wie

Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.

Borstenschwänze wie Lepisma saccharina.

15

Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Holzverarbeitungsprodukte und Anstrichmittel.

20

Ganz besonders bevorzugt handelt es sich bei dem vor Insektenbefall zu schützenden Material um Holz und Holzverarbeitungsprodukte.

25

- Unter Holz und Holzverarbeitungsprodukten, welche durch das erfindungsgemäße Mittel bzw. dieses enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen:

Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten, Paletten, Container, Telefonmasten, Holzverkleidungen, Holzfenster und -türen, Sperrholz, Spanplatten, Tischlerarbeiten oder Holzprodukte, die ganz allgemein beim Hausbau oder in der Bautischlerei Verwendung finden.

30

Die Wirkstoffkombinationen können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.

5 Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungs- bzw. Verdünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.

10 Die zum Schutz von Holz und Holzwerkstoffen verwendeten insektiziden Mittel oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.

15 Die Menge der eingesetzten Mittel bzw. Konzentrate ist von der Art und dem Vorkommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allgemeinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.

20 Als Lösungs- und/oder Verdünnungsmittel dient ein organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein öliges oder ölartiges schwer flüchtiges organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser und gegebenenfalls einen Emulgator und/oder Netzmittel.

25 Als organisch-chemische Lösungsmittel werden vorzugsweise ölige oder ölartige Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, eingesetzt. Als derartige schwerflüchtige, wasserunlösliche, ölige und ölartige Lösungsmittel werden entsprechende Mineralöle oder deren Aromatenfraktionen oder mineralölhaltige Lösungsmittelgemische, vor-

zugsweise Testbenzin, Petroleum und/oder Alkylbenzol verwendet.

5 Vorteilhaft gelangen Mineralöle mit einem Siedebereich von 170 bis 220°C, Testbenzin mit einem Siedebereich von 170 bis 220°C, Spindelöl mit einem Siedebereich von 250 bis 350°C, Petroleum bzw. Aromaten vom Siedebereich von 160 bis 280°C, Terpentinöl und dgl. zum Einsatz.

10 In einer bevorzugten Ausführungsform werden flüssige aliphatische Kohlenwasserstoffe mit einem Siedebereich von 180 bis 210°C oder hochsiedende Gemische von aromatischen und aliphatischen Kohlenwasserstoffen mit einem Siedebereich von 180 bis 220°C und/oder Spindelöl und/oder Monochlornaphthalin, vorzugsweise α-Monochlornaphthalin, verwendet.

15 Die organischen schwerflüchtigen ölichen oder ölartigen Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, können teilweise durch leicht oder mittelflüchtige organisch-chemische Lösungsmittel ersetzt werden, mit der Maßgabe, dass das Lösungsmittelgemisch ebenfalls eine Verdunstungszahl über 35 und einen Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, aufweist und dass das Gemisch in diesem Lösungsmittelgemisch löslich oder emulgierbar ist.

20 Nach einer bevorzugten Ausführungsform wird ein Teil des organisch-chemischen Lösungsmittel oder Lösungsmittelgemisches oder ein aliphatisches polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch ersetzt. Vorzugsweise gelangen Hydroxyl- und/oder Ester- und/oder Ethergruppen enthaltende aliphatische organisch-chemische Lösungsmittel wie beispielsweise Glykolether, Ester oder dgl. zur Anwendung.

25 Als organisch-chemische Bindemittel werden im Rahmen der vorliegenden Erfindung die an sich bekannten wasserverdünnbaren und/oder in den eingesetzten organisch-chemischen Lösungsmitteln löslichen oder dispergier- bzw. emulgierbaren

- Kunstharze und/oder bindende trocknende Öle, insbesondere Bindemittel bestehend aus oder enthaltend ein Acrylatharz, ein Vinylharz, z.B. Polyvinylacetat, Polyesterharz, Polykondensations- oder Polyadditionsharz, Polyurethanharz, Alkydharz bzw. modifiziertes Alkydharz, Phenolharz, Kohlenwasserstoffharz wie Inden-Cumaronharz, Siliconharz, trocknende pflanzliche und/oder trocknende Öle und/oder physikalisch trocknende Bindemittel auf der Basis eines Natur- und/oder Kunstharzes verwendet.
- Das als Bindemittel verwendete Kunstharz kann in Form einer Emulsion, Dispersion oder Lösung, eingesetzt werden. Als Bindemittel können auch Bitumen oder bituminöse Substanzen bis zu 10 Gew.-%, verwendet werden. Zusätzlich können an sich bekannte Farbstoffe, Pigmente, wasserabweisende Mittel, Geruchskorrigentien und Inhibitoren bzw. Korrosionsschutzmittel und dgl. eingesetzt werden.
- Bevorzugt ist gemäß der Erfindung als organisch-chemische Bindemittel mindestens ein Alkydharz bzw. modifiziertes Alkydharz und/oder ein trocknendes pflanzliches Öl im Mittel oder im Konzentrat enthalten. Bevorzugt werden gemäß der Erfindung Alkydharze mit einem Ölgehalt von mehr als 45 Gew.-%, vorzugsweise 50 bis 68 Gew.-%, verwendet.
- Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungs-mittel(gemisch) oder ein Weichmacher(gemisch) ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe sowie einer Kristallisation bzw. Ausfällen vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30 % des Bindemittels (bezogen auf 100 % des eingesetzten Bindemittels).
- Die Weichmacher stammen aus den chemischen Klassen der Phthalsäureester wie Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributylphosphat, Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate wie Butylstearat oder Amylstearat, Oleate wie Butyloleat, Glycerinether oder höhermolekulare Glykolether, Glycerinester sowie p-Toluolsulfonsäureester.

Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z.B. Polyvinylmethylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.

5 Als Lösungs- bzw. Verdünnungsmittel kommt insbesondere auch Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der oben genannten organisch-chemischen Lösungs- bzw. Verdünnungsmittel, Emulgatoren und Dispergatoren.

10 Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierverfahren, z.B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt.

15 Zugleich können die erfindungsgemäßen Wirkstoffkombinationen zum Schutz vor Bewuchs von Gegenständen, insbesondere von Schiffskörpern, Sieben, Netzen, Bauwerken, Kaianlagen und Signalanlagen, welche mit See- oder Brackwasser in Verbindung kommen, eingesetzt werden.

20 20 Bewuchs durch sessile Oligochaeten, wie Kalkröhrenwürmer sowie durch Muscheln und Arten der Gruppe Ledamorpha (Entenmuscheln), wie verschiedene Lepas- und Scalpellum-Arten, oder durch Arten der Gruppe Balanomorpha (Seepocken), wie Balanus- oder Pollicipes-Species, erhöht den Reibungswiderstand von Schiffen und führt in der Folge durch erhöhten Energieverbrauch und darüber hinaus durch häufige Trockendockaufenthalte zu einer deutlichen Steigerung der Betriebskosten.

25 Neben dem Bewuchs durch Algen, beispielsweise Ectocarpus sp. und Ceramium sp., kommt insbesondere dem Bewuchs durch sessile Entomostraken-Gruppen, welche unter dem Namen Cirripedia (Rankenflußkrebse) zusammengefasst werden, besondere Bedeutung zu.

30 Es wurde nun überraschenderweise gefunden, dass die erfindungsgemäßen Wirkstoffkombinationen eine hervorragende Antifouling (Antibewuchs)-Wirkung aufweisen.

Durch Einsatz der erfindungsgemäßen Wirkstoffkombinationen kann auf den Einsatz von Schwermetallen wie z.B. in Bis(trialkylzinn)-sulfiden, Tri-*n*-butylzinnlaurat, Tri-*n*-butylzinnchlorid, Kupfer(I)-oxid, Triethylzinnchlorid, Tri-*n*-butyl(2-phenyl-4-chlorphenoxy)-zinn, Tributylzinnoxid, Molybdändisulfid, Antimonoxid, polymerem Butyltitannat, Phenyl-(bispyridin)-wismutchlorid, Tri-*n*-butylzinnfluorid, Manganethylenbisthiocarbamat, Zinkdimethyldithiocarbamat, Zinkethylenbisthiocarbamat, Zink- und Kupfersalze von 2-Pyridinthiol-1-oxid, Bisdimethyldithiocarbamoylzinkethylenbisthiocarbamat, Zinkoxid, Kupfer(I)-ethylen-bisdithiocarbamat, Kupferthiocyanat, Kupfernaphthenat und Tributylzinnhalogeniden verzichtet werden oder die Konzentration dieser Verbindungen entscheidend reduziert werden.

Die anwendungsfertigen Antifoulingfarben können gegebenenfalls noch andere Wirkstoffe, vorzugsweise Algizide, Fungizide, Herbizide, Molluskizide bzw. andere Antifouling-Wirkstoffe enthalten.

Als Kombinationspartner für die erfindungsgemäßen Antifouling-Mittel eignen sich vorzugsweise:

Algizide wie
2-*tert*.-Butylamino-4-cyclopropylamino-6-methylthio-1,3,5-triazin, Dichlorophen, Diuron, Endothal, Fentinacetat, Isoproturon, Methabenzthiazuron, Oxyfluorfen, Quinoclamine und Terbutryn;

Fungizide wie
Benzo[*b*]thiophencarbonsäurecyclohexylamid-S,S-dioxid, Dichlofluanid, Fluorfolpet, 3-Iod-2-propinyl-butylcarbamat, Tollyfluanid und Azole wie Azaconazole, Cyproconazole, Epoxyconazole, Hexaconazole, Metconazole, Propiconazole und Tebuconazole;

Molluskizide wie
Fentinacetat, Metaldehyd, Methiocarb, Niclosamid, Thiodicarb und Trimethacarb;

oder herkömmliche Antifouling-Wirkstoffe wie

5 4,5-Dichlor-2-octyl-4-isothiazolin-3-on, Diiodmethylparatrysulfon, 2-(N,N-Dimethylthiocarbamoylthio)-5-nitrothiazyl, Kalium-, Kupfer-, Natrium- und Zinksalze von 2-Pyridinethiol-1-oxid, Pyridin-triphenylboran, Tetrabutyldistannoxyan, 2,3,5,6-Tetrachlor-4-(methylsulfonyl)-pyridin, 2,4,5,6-Tetrachloroisophthalonitril, Tetramethylthiuramdisulfid und 2,4,6-Trichlorphenylmaleinimid.

10 Die verwendeten Antifouling-Mittel enthalten die erfindungsgemäßen Wirkstoffkombinationen in einer Konzentration von 0,001 bis 50 Gew.-%, insbesondere von 0,01 bis 20 Gew.-%.

15 Die erfindungsgemäßen Antifouling-Mittel enthalten desweiteren die üblichen Bestandteile wie z.B. in Ungerer, *Chem. Ind.* 1985, 37, 730-732 und Williams, *Antifouling Marine Coatings*, Noyes, Park Ridge, 1973 beschrieben.

Antifouling-Anstrichmittel enthalten neben den algiziden, fungiziden, molluskiziden und erfindungsgemäßen insektiziden Wirkstoffen insbesondere Bindemittel.

20 Beispiele für anerkannte Bindemittel sind Polyvinylchlorid in einem Lösungsmittelsystem, chlorierter Kautschuk in einem Lösungsmittelsystem, Acrylharze in einem Lösungsmittelsystem insbesondere in einem wässrigen System, Vinylchlorid/Vinylacetat-Copolymersysteme in Form wässriger Dispersionen oder in Form von organischen Lösungsmittelsystemen, Butadien/Styrol/Acrylnitril-Kautschuke, trocknende Öle, wie Leinsamenöl, Harzester oder modifizierte Hartharze in Kombination mit Teer oder Bitumina, Asphalt sowie Epoxyverbindungen, geringe Mengen Chlorkautschuk, chloriertes Polypropylen und Vinylharze.

25

30 Gegebenenfalls enthalten Anstrichmittel auch anorganische Pigmente, organische Pigmente oder Farbstoffe, welche vorzugsweise in Seewasser unlöslich sind. Ferner können Anstrichmittel Materialien, wie Kolophonium enthalten, um eine gesteuerte

Freisetzung der Wirkstoffe zu ermöglichen. Die Anstriche können ferner Weichmacher, die rheologischen Eigenschaften beeinflussende Modifizierungsmittel sowie andere herkömmliche Bestandteile enthalten. Auch in Self-Polishing-Antifouling-Systemen können die erfundungsgemäßen Verbindungen oder die oben genannten Mischungen eingearbeitet werden.

Die Wirkstoffkombinationen eignen sich auch zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkabinen u.ä. vorkommen. Sie können zur Bekämpfung dieser Schädlinge in Haushaltssektizid-Produkten verwendet werden. Sie sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam. Zu diesen Schädlingen gehören:

Aus der Ordnung der Scorpionidea z.B. *Buthus occitanus*.

Aus der Ordnung der Acarina z.B. *Argas persicus*, *Argas reflexus*, *Bryobia* spp.,
15 *Dermanyssus gallinae*, *Glyciphagus domesticus*, *Ornithodoros moubat*, *Rhipicephalus sanguineus*, *Trombicula alfreddugesi*, *Neutrombicula autumnalis*, *Dermatophagoides pteronissimus*, *Dermatophagoides farinae*.

Aus der Ordnung der Araneae z.B. *Aviculariidae*, *Araneidae*.
Aus der Ordnung der Opiliones z.B. *Pseudoscorpiones chelifer*, *Pseudoscorpiones cheiridium*, *Opiliones phalangium*.

Aus der Ordnung der Isopoda z.B. *Oniscus asellus*, *Porcellio scaber*.
Aus der Ordnung der Diplopoda z.B. *Blaniulus guttulatus*, *Polydesmus* spp..

Aus der Ordnung der Chilopoda z.B. *Geophilus* spp..
Aus der Ordnung der Zygentoma z.B. *Ctenolepisma* spp., *Lepisma saccharina*,

25 *Lepismodes inquilinus*.
Aus der Ordnung der Blattaria z.B. *Blatta orientalis*, *Blattella germanica*, *Blattella asahinai*, *Leucophaea maderae*, *Panchlora* spp., *Parcoblatta* spp., *Periplaneta australasiae*, *Periplaneta americana*, *Periplaneta brunnea*, *Periplaneta fuliginosa*, *Supella longipalpa*.

30 Aus der Ordnung der Saltatoria z.B. *Acheta domesticus*.
Aus der Ordnung der Dermaptera z.B. *Forficula auricularia*.

- Aus der Ordnung der Isoptera z.B. Kalotermes spp., Reticulitermes spp.
- Aus der Ordnung der Psocoptera z.B. Lepinatus spp., Liposcelis spp.
- Aus der Ordnung der Coleoptera z.B. Anthrenus spp., Attagenus spp., Dermestes spp.,
Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus
5 granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum.
- Aus der Ordnung der Diptera z.B. Aedes aegypti, Aedes albopictus, Aedes taenio-
rhynchus, Anopheles spp., Calliphora erythrocephala, Chrysotoma pluvialis, Culex
quinquefasciatus, Culex pipiens, Culex tarsalis, Drosophila spp., Fannia canicularis,
Musca domestica, Phlebotomus spp., Sarcophaga carnaria, Simulium spp., Stomoxys
10 calcitrans, Tipula paludosa.
- Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Galleria mellonella, Plodia
interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.
- Aus der Ordnung der Siphonaptera z.B. Ctenocephalides canis, Ctenocephalides
felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis.
- Aus der Ordnung der Hymenoptera z.B. Camponotus herculeanus, Lasius fuligino-
sus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp.,
15 Tetramorium caespitum.
- Aus der Ordnung der Anoplura z.B. Pediculus humanus capitis, Pediculus humanus
corporis, Phthirus pubis.
- Aus der Ordnung der Heteroptera z.B. Cimex hemipterus, Cimex lectularius, Rhodi-
nus prolixus, Triatoma infestans.
- 20
- Die Anwendung erfolgt in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zer-
stäubersprays, Nebelautomaten, Foggern, Schäumen, Gelen, Verdampferprodukten
mit Verdampferplättchen aus Cellulose oder Kunststoff, Flüssigverdampfern, Gel-
und Membranverdampfern, propellergetriebenen Verdampfern, energielosen bzw.
passiven Verdampfungssystemen, Mottenpapieren, Mottensäckchen und Motten-
gelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.
- 25
- 30 Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter
Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie

erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft, Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff „Teile“ bzw. „Teile von Pflanzen“ oder „Pflanzenteile“ wurde oben erläutert.

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive („synergistische“) Effekte auftreten. So sind
5 beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentecnologisch
15 erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentecnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften („Traits“) verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge,
20 wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt,
25 wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften („Traits“) werden besonders hervorgehoben die erhöhte

Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIa, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im Folgenden „Bt Pflanzen“). Als Eigenschaften („Traits“) werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften („Traits“) werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen; Glyphosate oder Phosphinotricin (z.B. „PAT“-Gen). Die jeweils die gewünschten Eigenschaften („Traits“) verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für „Bt Pflanzen“ seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzenarten mit diesen oder zukünftig entwickelten genetischen Eigenschaften („Traits“).

Die aufgeführten Pflanzen können besonders vorteilhaft erfundungsgemäß mit den erfundungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen.

Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Mischungen.

5 Die gute insektizide und akarizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen geht aus den nachfolgenden Beispielen hervor. Während die einzelnen Wirkstoffe in der Wirkung Schwächen aufweisen, zeigen die Kombinationen eine Wirkung, die über eine einfache Wirkungssummierung hinausgeht.

10 Ein synergistischer Effekt liegt bei Insektiziden und Akariziden immer dann vor, wenn die Wirkung der Wirkstoffkombinationen größer ist als die Summe der Wirkungen der einzeln applizierten Wirkstoffe.

15 Die zu erwartende Wirkung für eine gegebene Kombination zweier Wirkstoffe kann wie folgt nach der so genannten „Colby-Fomel“ berechnet werden (vgl. S.R. Colby, „Calculating Synergistic and Antagonistic Responses of Herbicide Combinations“, Weeds 1967, 15, 20-22):

Wenn

- 20 X den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes A in einer Aufwandmenge von m g/ha oder in einer Konzentration von m ppm bedeutet,
- Y den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes B in einer Aufwandmenge von n g/ha oder in einer Konzentration von n ppm bedeutet und
- 25 E den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der Wirkstoffe A und B in Aufwandmengen von m und n g/ha oder in einer Konzentration von m und n ppm bedeutet,

dann ist

$$E = X + Y - \frac{X \cdot Y}{100}$$

BCS 03-3027

- 45 -

Ist der tatsächliche insektizide Abtötungsgrad größer als berechnet, so ist die Kombination in ihrer Abtötung überadditiv, d.h. es liegt ein synergistischer Effekt vor. In diesem Fall muss der tatsächlich beobachtete Abtötungsgrad größer sein als der aus der oben angeführten Formel errechnete Wert für den erwarteten Abtötungsgrad (E).

Anwendungsbeispiele

Beispiel A

5 **Plutella-Test**

Lösungsmittel: 7 Gewichtsteile Dimethylformamid

Emulgator: 2 Gewichtsteil Alkylarylpolyglykolether

10 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

15 Kohlblätter (*Brassica oleracea*) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (*Plutella xylostella*) besetzt, solange die Blätter noch feucht sind.

20 Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden.

25 Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:

Tabelle A
Pflanzenschädigende Insekten
Plutella-Test

Wirkstoffe	Wirkstoff- konzentration in ppm	Abtötungsgrad in % nach 6d
Verbindung (II-1)	0,0064	30
Verbindung (I-4)	0,8	0
Verbindung (II-1) +	0,0064 + 0,8	gef.* ber. **
Verbindung (I-4)		60 30

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Patentansprüche

1. Mittel, enthaltend Verbindungen der Formel (I)

5

in welcher

X für Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Cyano steht,

10

W, Y und Z unabhängig voneinander für Wasserstoff, Halogen, Alkyl, Alkoxy, Halogenalkyl, Halogenalkoxy oder Cyano stehen,

15

A für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxyalkyl, gesättigtes, gegebenenfalls substituiertes Cycloalkyl steht, in welchem gegebenenfalls mindestens ein Ringatom durch ein Heteroatom ersetzt ist,

20

B für Wasserstoff oder Alkyl steht,

A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind, für einen gesättigten oder ungesättigten, gegebenenfalls mindestens ein Heteroatom enthaltenden unsubstituierten oder substituierten Cyclus stehen,

25

D für Wasserstoff oder einen gegebenenfalls substituierten Rest aus der Reihe Alkyl, Alkenyl, Alkoxyalkyl, gesättigtes Cycloalkyl steht, in

welchem gegebenenfalls eines oder mehrere Ringglieder durch Heteroatome ersetzt sind,

A und D gemeinsam mit den Atomen an die sie gebunden sind für einen gesättigten oder ungesättigten und gegebenenfalls mindestens ein Heteroatom enthaltenden, im A,D-Teil unsubstituierten oder substituierten Cyclus stehen,

G für Wasserstoff (a) oder für eine der Gruppen

steht,

worin

15 E für ein Metallion oder ein Ammoniumion steht,

L für Sauerstoff oder Schwefel steht,

20 M für Sauerstoff oder Schwefel steht,

R¹ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder gegebenenfalls durch Halogen, Alkyl oder Alkoxy substituiertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann, jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxyalkyl oder Hetaryloxyalkyl steht,

R² für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder für jeweils gegebenenfalls substituiertes Cycloalkyl, Phenyl oder Benzyl steht,

5

R³ für gegebenenfalls durch Halogen substituiertes Alkyl oder gegebenenfalls substituiertes Phenyl steht,

10

R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio oder für jeweils gegebenenfalls substituiertes Phenyl, Benzyl, Phenoxy oder Phenylthio stehen und

15

R⁶ und R⁷ unabhängig voneinander für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl oder gemeinsam mit dem N-Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen gegebenenfalls substituierten Ring stehen

20

und mindestens ein Phthalsäurediamid der Formel (II)

in welcher

25

K für Halogen, Cyano, Alkyl, Halogenalkyl, Alkoxy oder Halogenalkoxy steht,

Re¹, Re², Re³ jeweils unabhängig voneinander für Wasserstoff, Cyano, für gegebenenfalls durch Halogen substituiertes C₃-C₈-Cycloalkyl oder für eine Gruppe der Formel

5

M¹-Q_k

stehen, in welcher

10 M¹ für gegebenenfalls substituiertes Alkylen, Alkenylen oder Alkinylen steht,

15 Q für Wasserstoff, Halogen, Cyano, Nitro, Halogenalkyl, jeweils gegebenenfalls substituiertes C₃C₈-Cyloalkyl, Alkylcarbonyl oder Alkoxycarbonyl, jeweils gegebenenfalls substituiertes Phenyl, Hetaryl oder für eine Gruppe

T-Re⁴ steht,

in welcher

20 T für -O-, -S(O)_m- oder —N— steht,
 |
 Re⁵

25 Re⁴ für Wasserstoff, jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkyl-alkyl, Alkoxyalkyl, Alkylcarbonyl, Alkoxycarbonyl, Phenyl, Phenylalkyl, Phenylalkoxy, Hetaryl, Hetarylalkyl steht,

30 Re⁵ für Wasserstoff, für jeweils gegebenenfalls substituiertes Alkylcarbonyl, Alkoxycarbonyl, Phenylcarbonyl oder Phenylalkoxycarbonyl steht,

30

k für die Zahlen 1 bis 4 steht,

m für die Zahlen 0 bis 2 steht,

5 Re¹ und Re² gemeinsam einen gegebenenfalls substituierten vier- bis siebengliedrigen Ring bilden, der gegebenenfalls durch Heteroatome unterbrochen sein kann,

10 L¹ und L³ unabhängig voneinander für Wasserstoff, Halogen, Cyano oder jeweils gegebenenfalls substituiertes Alkyl, Alkoxy, Alk-S(O)_m-, Phenyl, Phenoxy oder Hetarylloxy stehen,

15 L² für Wasserstoff, Halogen, Cyano, jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Halogenalkyl, Cycloalkyl, Phenyl, Hetaryl oder für die Gruppe

M²-Re⁶ steht,

in welcher

20 M² für -O- oder -S(O)_m- steht,

und

25 Re⁶ für jeweils gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Phenyl oder Hetaryl steht,

L¹ und L³ oder

30 L¹ und L² gemeinsam einen gegebenenfalls substituierten fünf- bis sechsgliedrigen Ring bilden, der gegebenenfalls durch Heteroatome unterbrochen sein kann, stehen.

2. Verwendung von Mischungen, wie in Anspruch 1 definiert, zur Bekämpfung tierischer Schädlinge.
- 5 3. Verfahren zur Bekämpfung tierischer Schädlinge, dadurch gekennzeichnet, dass man Mischungen, wie in Anspruch 1 definiert, auf tierische Schädlinge und/oder deren Lebensraum einwirken lässt.
- 10 4. Verfahren zur Herstellung insektizider und akarizider Mittel, dadurch gekennzeichnet, dass man Mischungen, wie in Anspruch 1 definiert, mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.

Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften

Z u s a m m e n f a s s u n g

Die neuen Wirkstoffkombinationen aus cyclischen Ketoenolen der Formel (I) und den in der Beschreibung aufgeführten Wirkstoffen der Formel (II) besitzen sehr gute insektizide und akarizide Eigenschaften.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.