

Metodika sběru dat:

- transekty vedoucí po spádnici svahu
- plochy 10x15m v pravidelných vzd.
- vegetační data = fytocenol.snímek
- proměnné prostředí

geomorfologie topografie půdní charakteristiky světelné poměry plochy

Měřené, vypočtené nebo odhadované proměnné prostředí:

ALTRIV	výška nad dnem údolí (m)
ALIINIV	., (,
RALTRIV	relativní výška nad údolním dnem (rozsah 0-1, 0 – dno údolí, 1 – horní hrana)
SLOPE	sklon plochy (°)
ASPSSW	orientace, vyjádřená jako odchylka od 22.5°
XERSSW	index xericity, [cos (slope aspect-202.5°) * tg SLOPE]
SURFSL	tvar reliéfu po spádnici (–1 pro konkávní, 0 pro plochý, 1 pro konvexní)
SURFIS	tvar reliéfu po vrstevnici (–1 pro konkávní, 0 pro plochý, 1 pro konvexní)
RELPOS	pozice plochy relativně vůči protějšímu svahu (-1 pod, 0 v úrovní a 1 nad úrovní protější údolní hrany)
GMFPOS	geomorfologická pozice plochy v rámci svahu (-1 pata svahu, 0 údolní svah, +1 horní hrana údolí)

kategorie charakterizující půdní typy:

ALUV	incl. fluvizem
SUTĚ	incl. suťový ranker
SVAH	incl. kambizem a luvizem
SKÁLA	incl. ranker, litozem a rendzina
STRSUB	struktura substrátu: 1 – jílovitá, 2 – hlinitá, 3 – písčitá, 4 – štěrkovitá, 5 – kamenitá, 6 – balvanitá, 7 – skalnatá
SOILDPT	log [hloubka půdy (cm) + 1]
pH/H	půdní reakce měřená v roztoku H₂O
pH/K	půdní reakce měřená v roztoku KCI
•	1

Další proměnné: množství světla dopadajícího do podrostu (měřené metodou GLA - Gap Light Analyzer), půdní analýzy rozšířené o poměr C:N a nasycenost sorpčního komplexu bázemi

Korelační struktura datového souboru:

PCA ordinační diagram, jako *species* použity **proměnné prostředí**, ad hoc promítnuté vypočtené **Ellenbergovy hodnoty** pro plochy.

Trans Total ~ COVER E3

(skutečné množství světla procházejícího zápojem měřené metodou GLA ~ odhad pokryvnosti E3):

LIGHT ~ Trans Total

(průměr EIV pro světlo ~ skutečné množství světla procházejícího zápojem - měřené metodou GLA):

• půdně-vegetační katéna typická pro říční ekofenomén

TWINSPAN klasifikace vs. vlhkost:

VItava:

- 1. teplomilné acidofilní doubravy Sorbo torminalis-Quercetun
- dubohabřiny jihočeské Stellario-Tillietum)
- acidofilní bory
- acidofilní doubravy Luzulo-Quercetum
- 5. suťové lesy Aceri-Carpinetum
- 6. jedliny Deschampsio flexuosae-Abietetum a Lunario-Acere
- 7. lužní lesy vázané na přítomnost fluvizemě (Stellario-Alnetur Carpinetum)

- bazifilní kontinentálně laděné doubravy (Pruno mahaleb-Quercetum pubescentis)
- 2. acidofilní xerotermní doubravy (Sorbo torminalis-Quercetum a Genisto pilosae-Quercetum)
- 3. acidofilní bory a rozvolněné acidofilní doubravy (*Cardamino petraeae-Pinetum?*)
- 4. dubohabřiny *Primulo veris-Carpinetum* a zapojené doubravy *Corno-Quercetum*
- 5. suťové lesy Aceri-Carpinetum a bučiny
- 6. lužní lesy Stellario-Alnetum)
- 7. suťové lesy s Ribes alpina a Rosa pendulina, jinak druhově chudé

TWINSPAN klasifikace vs. živiny:

VItava:

- 1. teplomilné acidofilní doubravy Sorbo torminalis-Quercetun
- dubohabřiny jihočeské Stellario-Tillietum)
- 3. acidofilní bory
- acidofilní doubravy Luzulo-Quercetum
- 5. suťové lesy Aceri-Carpinetum
- 6. jedliny Deschampsio flexuosae-Abietetum a Lunario-Acere
- 7. lužní lesy vázané na přítomnost fluvizemě (*Stellario-Alnetur Carpinetum*)

- bazifilní kontinentálně laděné doubravy (Pruno mahaleb-Quercetum pubescentis)
- 2. acidofilní xerotermní doubravy (Sorbo torminalis-Quercetum a Genisto pilosae-Quercetum)
- 3. acidofilní bory a rozvolněné acidofilní doubravy (*Cardamino petraeae-Pinetum?*)
- 4. dubohabřiny *Primulo veris-Carpinetum* a zapojené doubravy *Corno-Quercetum*
- 5. suťové lesy Aceri-Carpinetum a bučiny
- 6. lužní lesy Stellario-Alnetum)
- 7. suťové lesy s Ribes alpina a Rosa pendulina, jinak druhově chudé

TWINSPAN klasifikace vs. diverzita:

VItava:

- 1. teplomilné acidofilní doubravy Sorbo torminalis-Quercetun
- 2. dubohabřiny jihočeské Stellario-Tillietum)
- 3. acidofilní bory
- 4. acidofilní doubravy Luzulo-Quercetum
- 5. suťové lesy Aceri-Carpinetum
- 6. jedliny Deschampsio flexuosae-Abietetum a Lunario-Acere
- 7. lužní lesy vázané na přítomnost fluvizemě (*Stellario-Alnetur Carpinetum*)

- bazifilní kontinentálně laděné doubravy (Pruno mahaleb-Quercetum pubescentis)
- 2. acidofilní xerotermní doubravy (Sorbo torminalis-Quercetum a Genisto pilosae-Quercetum)
- acidofilní bory a rozvolněné acidofilní doubravy (Cardamino petraeae-Pinetum?)
- 4. dubohabřiny *Primulo veris-Carpinetum* a zapojené doubravy *Corno-Quercetum*
- 5. suťové lesy Aceri-Carpinetum a bučiny
- 6. lužní lesy Stellario-Alnetum)
- 7. suťové lesy s Ribes alpina a Rosa pendulina, jinak druhově chudé

TWINSPAN klasifikace vs. heterogenita EIV

(Ellenbergových indikačních hodnot pro pH/obsah Ca):

VItava:

- 1. teplomilné acidofilní doubravy Sorbo torminalis-Quercetun
- 2. dubohabřiny jihočeské Stellario-Tillietum)
- 3. acidofilní bory
- acidofilní doubravy Luzulo-Quercetum
- 5. suťové lesy Aceri-Carpinetum
- 6. jedliny Deschampsio flexuosae-Abietetum a Lunario-Acere
- 7. lužní lesy vázané na přítomnost fluvizemě (*Stellario-Alnetur Carpinetum*)

- 1. bazifilní kontinentálně laděné doubravy (*Pruno mahaleb-Quercetum pubescentis*)
- acidofilní xerotermní doubravy (Sorbo torminalis-Quercetum a Genisto pilosae-Quercetum)
- 3. acidofilní bory a rozvolněné acidofilní doubravy (*Cardamino petraeae-Pinetum?*)
- 4. dubohabřiny *Primulo veris-Carpinetum* a zapojené doubravy *Corno-Quercetum*
- 5. suťové lesy Aceri-Carpinetum a bučiny
- 6. lužní lesy Stellario-Alnetum)
- 7. suťové lesy s Ribes alpina a Rosa pendulina, jinak druhově chudé

st.dev. REACT ~ svažitost

3.0 2.5 sdREACT 2.0 5 1.0 20 60 80 0 40 SLOPE

st.dev. REACT ~ pH

půdně-vegetační katéna typická pro říční ekofenomén

Modelování druhové diverzity

• použití GLM modelů (alfa a beta diverzita vs. faktory prostředí)

půdně-vegetační katéna typická pro říční ekofenomén

Modelování druhové diverzity

• použití GLM modelů (alfa a beta diverzita vs. faktory prostředí)

Species pool

- velikost species pool
 (Beals smoothing + fytocenologická databáze, Ewald 2002)
- pravděpodobnost přítomnosti druhu na stanovišti daného druhového složení (Münzbergová & Herben 2004)

Půdní reakce vypočtené podle EIV ~ měřené pH (H2O)

REACT - vypočtená podle EIV druhů reálně přítomných **react** - podle druhů vygenerovaných pomocí *Beals smoothing*

půdně-vegetační katéna typická pro říční ekofenomén

Modelování druhové diverzity

• použití GLM modelů (alfa a beta diverzita vs. faktory prostředí)

Species pool

- velikost species pool
 (Beals smoothing + fytocenologická databáze, Ewald 2002)
- pravděpodobnost přítomnosti druhu na stanovišti daného druhového složení (Münzbergová & Herben 2004)

Analýza vztahu plant traits vs. env. variables:

- maticová metoda "4th corner" (Legendre 1997)
- použití mnohorozměrných metod (Lepš)

RDA diagram

vztah CSR strategií k jednotlivým vysvětlujícícm proměnným.

c – competitors

cr – competitors/ruderals

cs – competitor/stress-tolerators

csr - competitors/stress-toler./ruderals

r - ruderals

s - stress-tolerators

sr - stress-tolerators/ruderals

půdně-vegetační katéna typická pro říční ekofenomén

Modelování druhové diverzity

• použití GLM modelů (alfa a beta diverzita vs. faktory prostředí)

Species pool

- velikost species pool
 (Beals smoothing + fytocenologická databáze, Ewald 2002)
- pravděpodobnost přítomnosti druhu na stanovišti daného druhového složení (Münzbergová & Herben 2004)

Analýza vztahu plant traits vs. env. variables:

- maticová metoda "4th corner" (Legendre 1997)
- použití mnohorozměrných metod (Lepš)

NE. TOHLE DE KONIKLEC. BLBOST KVETE JINAK.