Neural Networks and Deep Learning

Dr. Jerome J. Braun

This Lecture: Introduction — Part 1

Course: Neural Networks and Deep Learning IF 7615

Unauthorized distributing, redistributing, posting, and/or reposting, of the materials of this course (including course lectures, lecture slides, slide-sets, syllabi, guidelines, assignments, quizzes, exams, presentations, software, electronic media, etc.), is prohibited.

This Lecture

- Neural networks and deep learning field
- · Applications

J. Braun

3

What is Artificial Neural Network (ANN)?

- Units with associated function
 - Also referred to in literature as nodes or "neurons"
- · Connections weighted links between units

- · Learning algorithm
 - · Typically modify weights of connections
 - · Sometimes modify units, network topology
- Conventional artificial neural networks (ANNs) are <u>NOT</u> models of biological neural networks or brain!
 - We will see this later in this course

ANN Topologies

Most general — fully/arbitrarily connected

J. Braun

5

List of Some ANN Architecture Categories

- · "Shallow" multilayer perceptron (MLP) networks
- · Deep MLP networks
- · Convolutional networks
- · Recurrent networks, LSTMs, GRUs, ...
- · Autoencoders
- · Transformers, BERT, ...
- · Generative adversarial networks (GANs)
- · ... and other

We will study them in this course

l. Braun 6

Neural Networks and Deep Learning

Machine Learning

Here "Neural Networks" means" *Artificial* Neural Networks"

Neural Networks

Deep Learning

Neural networks have evolved into dominant, large and uniquely powerful domain

Neural Networks

Deep Learning

Solve problems too difficult for any other known approaches

Deep Learning = deep neural networks!

J. Braur

11

Machine Learning

- · Many tasks not feasible to "pre-program"
 - Not feasible to find "rules"
 - Too much variability
 - Examples: handwriting recognition (e.g., zipcode on envelopes), speech recognition
- Machine learning algorithmic methods to learn
 - From data, from experience
 - Arthur Samuel (1959): Machine Learning field of study that gives computers ability to learn without being explicitly programmed
- Learning from data
 - Some data
 - Lots of data ("Big Data")
 - Little data

Learning From Data — Algorithmic Paradigms

- · Classical statistical (regression, decision-trees, etc.)
- · Clustering (nearest-neighbor, etc.)
- · Component analyses (PCA, ICA, DCA, etc.)
- Hidden Markov models (HMM)
- Support vector machines (SVM)
- · ... etc. ...
- · Artificial neural networks and deep learning
 - Feedforward neural networks
 - Recurrent neural networks
 - · ... etc. ...

J. Braun

Neural Networks and Deep Learning (1)

Machine Learning

Neural Networks

Deep Learning

Here "Neural Networks" means "*Artificial* Neural Networks"

Neural networks have evolved into dominant, large and uniquely powerful domain

Solve problems too difficult for any other known approaches

Neural Networks

Deep Learning

Deep Learning = deep neural networks!

Neural Networks and Deep Learning (3)

- · Learning in biological species vs. machines
 - Learning vs. innate capabilities in biological species
- · Reasoning vs. learning
 - Machine Reasoning
 - Learning to reason
- Deep Learning and Artificial Intelligence (AI)
 - At present neural networks and deep learning are necessary for Al

I. Braun 16

Neural Networks and Deep Learning (4)

- In biological systems, robust learning is key to intelligent behaviors
 - Same for artificial systems!
- · Robust learning is key for developing intelligent machines
- · Central core of contemporary Artificial Intelligence (AI)
 - Modern AI is dominated by deep neural networks (deep learning)
- Al is currently "street name" for deep neural networks and deep learning
 - In media (TV, etc.), advertising, popular press

J. Braun 17

Neural Networks and Deep Learning (5)

- · Who cares? Everybody!
 - Deep learning currently "hottest" area!
- Companies racing to make/use systems based on neural networks and deep-learning
 - Amazon, Google, Facebook, Apple, Microsoft, and other hightech giants
 - Scores/hundreds of other companies in industry and commerce
 - From healthcare, through manufacturing, to entertainment
 and many more!
 - Wide range of areas and applications

This Lecture

· Neural networks and deep learning — field

Applications

1

Neural Network and Deep Learning — Applications

A few examples (out of many)	
Machine Vision	Speech & Language Processing (NLP)
Face Recognition, Object Recognition	Autonomous Vehicles
Self-driving cars	Robotics
Forecasting	Assistive Robotics
Wheather, climate, etc.	Bioinformatics
Computational biology, neuroscience	"X-"informatics
Analytics (text, video, etc.)	Economics, Financial forecasting
Medical diagnostics	Insurance
Biomed data analysis; healthcare	Fraud detection
Drug development	Image/photo tagging
Personalized medicine	

... many others...

- · Span of potential applications enormous
- · But beware of misapplication and overkills!

Application Examples

Handwriting Recognition

578 a 29 b

Face Recognition

In 2011, IBM Watson system won "Jeopardy!" TV game against human champions

Movie suggestions, e.g., "Other Movies You Might Enjoy"

J. Braun

21

Self-Driving Cars

· Google:

Description English: A Google self-driving car at the intersection of Junction Ave and North Rengstorff Ave in Mountain View. This picture was taken from the bite lane of North Rengstorff Ave.

Date | 9 March 2016, 12-50-57

Source | 0 wa work

Others

Speech Processing

- · Speech Recognition
- Language Identification
- · Speaker Recognition / Verification
- · Accent Recognition
- · Speech Synthesis
- · ...more

Biomedical Applications

- Large and growing range of applications in medicine, healthcare, and other life-sciences areas
 - High potential for revolutionizing disease diagnostics and treatment
- · Examples
 - Bioinformatics and biomedical data analysis
 - + E.g., gene expression analyses

- Medical imagery analysis for disease diagnostics
 - + E.g., abnormality detection, lesion classification (diagnosis)

2

Robotics Applications

NASA Mars Spirit Rover (Wikipedia . org

- Wide range of applications
- Examples: assistive robotics, medical robotics, disaster robotics, manufacturing

Deep Learning for Medical Diagnostics

- · In popular press referred to as Al
- In reality deep artificial neural networks (deep learning)
 - Convolutional networks, etc.
- Wide range of diagnostic applications and successful results
 - Lung disease, including malignancies
 - Skin lesions and malignancies
 - Breast cancer
 - and other...
- Arguably revolution of medicine
 - Current results indicate performance superior to human experts

J. Braun 27

Deep Neural Networks for Noninvasive Prediction of Occult Peritoneal Metastasis in Gastric Cancer

- · Jiang et al., JAMA Network Open, January 5, 2021
- · Noninvasive preoperative (pre-surgery) assessment of occult peritoneal metastasis of gastric cancer
- · Potentially useful to aoid unnecessary surgery and risk of associated complications
- · CT imagery
- · 1978 patients
- · Densely connected convolutional neural network (CNN)
- · Discrimination performance of network substantially higher than conventional clinicopathological factors

Deep Neural Networks for Lung Cancer Screening

- · Ardila et al., Nature Medicine, May 2019
- · Predict lung cancer risk by comparing patient's current and prior CT imaging
- · Deep convolutional neural networks (CNN)
- · 6,716 National Lung Cancer Screening Trial (NLST) cases
- 94.4% AUC performance
- · Performance better or comparable with human readers (radiologists)

Deep Neural Networks for Skin Lesion Classification

- · Liu et al., 2019
- · Differential diagnosis of 26 skin conditions from photographs and medical histories
- · 14,021 development cases, 3,756 evaluation cases
- · Variable number of deep convolutional neural network modules to process images
 - · Inception-v4
- · Shallow module for patient demographic information and medical history (metadata)

Deep Neural Networks for Breast Cancer Screening

- · McKinney et al., Nature, January 1, 2020
- · Breast cancer prediction from mammograms
- · Ensemble of three deep-learning models
- · Exploit ImageNet, RetinaNet, ResNet
- · All models implemented in TensorFlow
- · Platform includes Google TPU hardware
- · System performance potential to perform better than trained radiologists
 - False positives reduction: 5.7% and 1.2% (US and UK)
 - False negative reduction: 9.4% and 2.7%
 - Able to generalize from UK data to US data
 - · Able to outperform human experts
 - + Six readers (radiologists)
 - + AUC-ROC performance higher than that of human readers by 11.5% margin

J. Braun

Deep Neural Networks for Cardiovascular Risk Prediction

- · Zeleznik et al., Nature Communications, Jan. 2021
- · Coronary artery calcium predictor of cardiovascular events
- · Visible on all CT chest scans computed tomography (CT) scans
 - · But quantification requires expertise, time, and specialized equipment
- · Robust automatic quantification by deep-learning system
 - · Convolutional neural networks
- $^{\, \cdot }$ 20,084 individuals from asymptomatic, and stable and acute chest pain cohorts
- High correlation of deep-learning system with quantification by expert readers

· And robust test-retest reliability

[Zeleznik, 2021]

Coronary calcium (orange)

Braun 32

Deep Neural Networks for Gallbladder Cancer Diagnostics

- · Basu et al., 2022
- · Diagnostics of gallbladder malignancies
- · Input: ultrasound sonography images
- · Transformer network architecture
- · Basu et al. compared system results with conclusions of two expert radiologists
 - · Found system performance was better

Deep Neural Networks for BPPV Diagnosis

J. Braun

- · Pham et al., Oct. 2022
- · Diagnostics of benign paroxysmal positional vertigo (BPPV) types
 - · Posterior canal types (Left, right), Lateral canal types: geotropic BPPV (left, right), apogeotropic (left, right)
- · Input: video stream of patient eye-motion during diagnostic medical exam (Dix-Hallpike test)

· Hybrid deep artificial neural network architecture

· Exploit deep convolutional networks and recurrent networks

Nystagmus

J. Braun

34

Deep Generative Models for Medical Imagery

- · Adams et al., 2022
- · Al in radiology
 - · Using DALL-E 2 generative model for text-to-image generation, image augmentation, and manipulation
 - DALL-E 2 learns relevant representations of X-ray images
 - + Zero-shot text-to-image generation of new images, continuation of image beyond original boundaries

Deep Neural Networks for Understanding Universe

- · Walmsley et al., MNRAS 509, 2022
 - Deep neural networks for astronomy and astrophysics research
 - Visual morphological classification of galaxies from images
 - + Morphology of galaxies key to understanding galactic evolution
- Data Dark Energy Camera Legacy Survey images of galaxies
- · Ensemble of convolutional neural networks
 - Exploit EfficientNet-B0 architecture with modifications
- · Predict morphology features of galaxies
 - · E.g., spiral arms, bars, etc.
 - Measured against confident volunteer classifications
 - + Galaxy Zoo volunteers
 - Trained networks reach up to 99% accuracy
 - Measured against ~10 volunteers, could be viewed as achieving superhuman performance

≥ 0.10

