TINA szimuláció

7-es verzió

Tartalom:

I. Optimalizálás	2. oldal
II. Karakterisztika felvétele	6. oldal
III. Félvezető eszközök karakterisztikája	9. oldal
1, Dióda karakterisztikája	9. oldal
2, Bipoláris NPN tranzisztor karakterisztikája	10. oldal
IV. Váltakozó áramú mérések	14. oldal
1, Oszcilloszkóp használata	14. oldal
2, Soros R-L kör mérése	18. oldal
3, Aluláteresztő R-C szűrő	21. oldal
4, Búgófeszültség vizsgálata egy-utas egyenirányítónál	23. oldal
5, FE munkaponti mérése	25. oldal
6, FE erősítő mérése	26. oldal
7, Műveleti erősítő mérése	29. oldal
V. Digitális technika	31.oldal
1, Impulzusformáló áramkörök	31. oldal
2, Digitális alapáramkörök realizálása	32. oldal
3, 4 bites aszinkron előreszámláló J-K tárolókból	33. oldal
4, Szinkron szekvenciális áramkör vizsgálata	35. oldal

I. Optimalizálás:

1, Feszültségosztó mérése:

Két adatot kell beállítani:

- 1, Mit szeretnénk? Optimalizálás célja
- 2, Ehhez mit változtassunk meg? Vezérlő elem

Nézzük meg egy egyszerű terhelt feszültségosztón:

Mint látható Uki értéke most 2,86 V.

Legyen az a cél, hogy Uki értéke 1 V legyen. Ehhez a következőt kell tenni:

1, Optimalizáslási cél választása:

Analízis menü, Optimalizálási cél választása: ekkor megváltozik az egér mutató, egy kis voltmérő jelenik meg mellette. Ezzel kattintsunk bele a feszültségmérőbe, akkor kijön a következő ablak:

Mivel DC-ben (egyenáramban) vagyunk, ezért DC célfüggvény.

És itt válasszuk az értéket, és állítsunk be 1-et a nulla helyére. Azaz 1V-ot szeretnénk értéknek. Mértékegységet nem kell megadni, csak a prefixumot ha van (k, M, m, u, n, stb.)

Majd OK-zuk le mindkét ablakot. Ekkor Uki mellett megjelenik egy duplanyíl:

2, Vezérlő elem választása:

Ahhoz, hogy a célt elérjük, valamelyik alkatrészt meg kell változtatni. Meg kell tehát mondani a TINÁ-nak, hogy melyik alkatrésznek, melyik adatát változtathatja meg a cél eléréséhez, ez lesz a vezérlő elem. Analízis menü, Vezérlő elem választás. Megváltozik az egér mutató, egy kis ellenállás jelenik meg mellette. Ezzel kattintsunk a kiválasztandó alkatrészre, ez példánkban legyen az R2. Előjön a következő ablak:

Itt ki kell választanunk, hogy R2 melyik adatát változtathatja meg a TINA a cél eléréséhez. Nyilvánvalóan az ellenállás értékét kell kijelölnünk. Tehát, kattintsunk a Kijelöl... gombra!

Állítsuk be az intervallumot, amin belül keres a TINA. Ha túl nagy intervallumot adunk meg, sokáig tarthat a számolás, ha pedig olyant, ami nem tartalmazza a helyes értéket, akkor egy hibaüzenetet kapunk, hogy az optimális érték kívül esik a megadott tartományos. Ilyenkor próbálkozzunk újra, a min., vagy a max. érték odébb tolásával.

Ha le OK-zzuk, R2 mellett is megjelenik a duplanyíl:

Miután mindkét dolgot kiválasztottuk, jöhet a szimuláció: Analízis menü, Optimalizálás almenü, DC optimalizálás.

Ezt csak le kell OK-zni, és indul a számolás.

És a végeredmény:

Ha OK-t nyomunk, akkor be is állítja R2 értékét a kiszámolt 133,33 Ω -ra.

Az interaktív módot bekapcsolva látható, hogy Uki értéke valóban 1 V.

II. Karakterisztika felvétele

A karakterisztika egy olyan grafikon, melynek mindkét tengelyén villamos mennyiség található. Pl

Ezen a dióda karakterisztikán látszik, hogy a vízszintes tengelyen a dióda feszültsége, a függőlegesen pedig árama van ábrázolva. Matematikailag úgy mondjuk, hogy az áram van ábrázolva a feszültség függvényében.

A karakterisztika felrajzoltatásához azt a mennyiséget, amit a vízszintes tengelyen akarunk ábrázolni bemenetnek, amit a függőleges tengelyen, azt pedig kimenetnek kell állítanunk. (Adatlapon az I/O állapot).

Nézzük meg egy példán keresztül:

Az ábrán egy valóságos feszültségforrás (Ut, Rb), és egy rákapcsolt terhelés látható (Rt). A Watt mérővel mérjük Rt teljesítményét, jelenleg 3,13 mW.

Szeretnénk felrajzoltatni a teljesítményváltozás mértékét Rt változásának függvényében. Tehát a függőleges tengelyen lesz Pt (kimenetre kell állítani), és a vízszintesen Rt (bemenetre kell állítani). Az összes többi alkatrész I/O állapotát semmire.

Általában a TINA a fesz., vagy áramforrásokat automatikusan bemenetre, a műszereket kimenetre állítja. Ezeket egyesével végig kell nézni, és kiállítani "Semmi"-re. Az I/o állapotot az adatlapon lehet állítani. Pl. a fesz. Forrásnál:

Át kell állítani "Semmi"-re.

A Watt-mérőt kimenetre. Valószínűleg azon is lesz.

Most már csak Rt-t kell beállítani bemenetnek. Ezt nem lehet megcsinálni az adatlapján, hanem az Elhelyez menüben van egy olyan, hogy Bemenet, erre katt rá.

Megváltozik az egér mutató: egy I+ jelre. Ezzel kell rákattintani a bemenet + pontjára, itt az Rt felső kivezetésére. Ekkor ezt egy négyzettel bekeretezi, majd rá kell kattantani Rt másik kivezetésére, ekkor Rt így fog kinézni:

Grafikon felvétele:

Analízis menü, DC analízis almenü, és ott DC transzfer karakterisztika.

Itt ki kell választani a kezdő és végértéket. Legyen a kezdő 0, a végérték 5000. A pontok száma azt jelenti, hogy ezen a tartományon belül ennyi mérést végez, maradhat 100. A Bemenethez Rt van állítva egy így jó. OK. Íme:

A kurzort bekapcsolva meg tudjuk keresni a görbe maximumát, ami $2k\Omega$

III. Félvezető eszközök karakterisztikája

1, Dióda:

Karakterisztika felrajzolásához a vízszintes tengelyen ábrázolni kívánt mennyiséget kell "bemenetnek" beállítani. Itt tehát Ud lesz a bemenet. A függőleges tengelyen lévőt pedig kimenetnek kell állítani, itt tehát Id (ampermérő) a kimenet. Beállításait Id. előbb. (Valós mérésnél természetesen szükség van egy soros áramkorlátozó ellenállásra is, itt viszont a nélkül végezhető el a mérés. A karakterisztikán is látszik majd, hogy milyen nagy áramok jelennek meg a diódán.)

Analízis menü, DC analízis almenü, DC transzfer karakterisztika

Itt azt állítjuk be, hogy Ud értékét 0 és 1 volt között állítsa. A teljes karakterisztika (tehát záró és nyitó) felvételéhez a kezdő értéket negatívra kell állítani, itt kb. -50, -60 V-ra.

Majd OK:

2, Bipoláris NPN tranzisztor:

A, Bemeneti:

UCE-t állítsuk "Semmi"-re. Ő nem vesz részt a mérésben, csupán a kollektor emitter feszültséget állítja be. VS1 a bemenet, AM1 a kimenet. (Valós mérésnél itt is szükségesek az ellenállások).

Analízis menü, DC analízis almenü, DC transzfer karakterisztika

Itt a VS1, tehát UBE értékének tartományát állítjuk be.

B, Kimeneti:

Mivel a kimeneti karakterisztikát több különböző Ib-hez szokták felvenni, így ez egy kicsit bonyolultabb.

A bázisra ilyenkor áramforrást tegyünk, ügyelve a polaritására!

Ic a kimenet, UCE a bemenet! Ib-t vezérlőelemnek kell kiválasztani. Azaz, hogy a TINA több különböző Ib értékre is elvégezze a mérést.

Analízis menü, Vezérlőelem választás:

Mivel azt szeretnénk, hogy a TINA Ib értékét változtassa, így Kijelöl...

Kezdőérték: 0 Végérték 120 μA

Esetek száma: 6 (ennyi Ib értéknél veszi fel a karakterisztikát)

Ezután Analízis menü, DC analízis almenü, DC transzfer karakterisztika

Itt az UCE feszültség kezdő és végértékét választjuk ki. Ez 0-10V.

A címkézést utólag lehet megvalósítani:

A görbék feliratozását ezzel a gombbal, a gombra, majd a grafikonra kattintva egyesével.

A címkézést pedig ezzel:

IV. Váltakozó áramú mérések:

1, Oszcilloszkóp használata:

Generátor beállítása:

A TINA a generátornál mindig egységugrás jelet állít be alapból. Ezért sose feledkezzünk meg a generátor átállításáról:

Kattintsunk rá duplán:

Itt a jelalaknál látható, hogy egységugrás, ezért katt az egységugrásra, majd a mellette megjelenő 3 pontra:

Előjön a Gerjesztés editor:

Itt be lehet állítani a jel alakját, amplitúdóját, és frekvenciáját.

Oszcilloszkóp:

A műszerek fülben található, ez az ikonja:

A műszer pedig:

Megtehetjük, hogy bekötjük, de a TINA a voltmérőket is meg tudja jeleníteni az oszcilloszkópon! Ehhez elkészítjük az előbbi kapcsolást 2 voltmérővel.

Az oszcilloszkóp képernyője, és kezelőfelülete a T&M menüből hívható elő.

A Channel pontban lehet beállítani, hogy melyik voltmérőt használja bemenetnek.

A Storage blokkban lehet elindítani a mérést (RUN). A Horizontal blokkban a TIME/DIV-et lehet állítani, vagyis, hogy egy osztás hány secundumot jelentsen. Mivel 1 kHz-es jelet állítottunk be, így ezt célszerű 1 ms, vagy alá állítani. A Vertical blokkban pedig a VOLTS/DIV állítható, vagyis hogy egy osztás hány voltnak felel meg. Mivel 1 V a tápunk csúcsértéke, így állítsuk 500 mV-ra.

A Trigger blokkban tudjuk megállítani a jelet. Állítsuk Normalra. (Ekkor ismét RUN állapotba kell kapcsolnunk!

TIPP: az AUTO gombbal automatikusan beállítja a jelet! (Elvileg, de nem mindig).

Ha megállítjuk a mérést (STOP), akkor lehetőségünk van a képernyőn lévő jelalakokat exportálni.

Címkézhetjük, mérhetünk rajta a kurzorokkal, és másolhatjuk is többek közt.

2, Soros R-L kör mérése:

Ug értéke 10 V, 1 kHz. Szinuszos.

R1 1k Ω , L 100 mH.

AC mérést végezve kapjuk ezeket az értékeket.

Kapcsoljuk be az oszcilloszkópot, most mindhárom voltmérő jelét felrajzoltathatjuk:

A jelalakokat elmentve:

Vegyük fel a soros R-L kör impedancia-frekvenciafüggését. Ehhez alakítsuk át az áramkört:

Ezután válasszuk ki az impedanciamérőt vezérlőelemnek. Analízis, Vezérlőelem választás, és katt a műszerre:

Jelöljük ki, hogy a frekvenciát változtassa:

Logaritmikus legyen a skála, a mérések (esetek száma) 30 legyen. Nem lehet a kezdő frekvencia 0, mert 0-nak nem értelmezhető a logaritmusa!

Ezután Analízis menü, AC analízis, AC transzfer karakterisztika:

Mivel az amplitúdó és fázis görbét is fel szeretnénk

rajzoltatni, így azt jelöljük be.

3, Aluláteresztő RC szűrő:

Ube: 1V, 50 Hz, szinuszos Rajzoltassuk fel a átviteli jelleggörbét (Bode).

Ehhez a frekvenciát kell változtatni, mérni Uki, és Ube értékét, majd kiszámolni Au értékét, és ábrázolni. A frekvenciát a generátoron lehet változtatni, ezért ki kell jelölni vezérlőelemnek, és ott kiválasztani a frekvenciát.

Analízis menü, vezérlő elem választás, katt a gererátorra:

Ott jelalak, három pont-ra:

Ott a frekvencia, és Kijelöl...

Itt nem érdemes bármit is változtatni, úgyis később még rákézdez, tehát OK.

A görbe felvétele:

Analízis, AC analízis, AC transzfer karakterisztika:

10 Hz és 100kHz között végezze el a mérést. 100 mérést végezzen, és a frekvenciaskála logaritmikus legyen. Rajzolja fel az amplitudó és a fázis diagramot is.

A határfrekvencia (R=Xc) alatt átenged, itt az au=0 dB (1-szeres az erősítés). Határfrekvencián ehhez képest 3dB-lel kevesebb az erősítés, itt ugye -3 dB. A piros kurzor ide van beállítva, és leolvasható a frekvencia értéke: (Az A merker x értéke) 1,59kHz.

A kék jelölőt is erre a frekvenciára állítva leolvasható a B merker Y értéke, azaz a fázisszök értéke: -45°. Aminek pontosan annyinak is kell lennie.

4, Búgófeszültség vizsgálata egy-utas egyenirányítónál:

A generátor pozitív szinusz hullámait a dióda átengedi, a negatívakat levágja. Így fél szinuszokat kapunk. A jel simításához kondenzátort használhatunk. Amikor a szinusz csúcsértéke után a feszültség értéke csökkenni kezd, a kondenzátor elkezd kisülni. Minél nagyobb a C értéke, annál lassabban sül ki, így a jel változása csökken. (azaz a búgófeszültség).

A mérés során több kölönböző C értéknél szeretnénk megvizsgálni, hogyan változik a kimeneti jelalak C nagyságának váltpztatásával. Ezért C értékét kell kiválasztani vezérlő elemnek.

Tehát minél nagyobb a C, annál simább lesz a jel. Azaz annál kisebb a búgófeszültség.

5, FE munkaponti mérése:

6, FE erősítő mérése:

Exportálva:

Az erősítő fázist fordít! A két jelalak között 180°-os fáziseltérés van.

Bode felvétele:

Ehhez a generátor frekvenciáját kell változtatni. Tehát: Vezérlő elem választás. Válasszuk a generátor frekvenciáját.

Ezt csak OK.

Majd Analízis menü, AC analízis, AC tranziens analízis.

Az alsó és a felső határfrekvencia meghatározása:

Ahol au 3 dB-el csökken a közepes erősítéshez képest, tehát 16,11dB-hez képest. Ez 13,11 dB. Az A jelű kurzort az alsó frekvenciához, a B jelűt a felsőhöz állítjuk be.

Így az A x értéke lesz az alsó határfrekvencia: fa=7,43 Hz

A B jelű X értéke pedig a felső: ff=16,33 MHz.

A sávszélesség: B=ff-fa= kb. 16,33 MHz

7, Műveleti erősítő mérése:

Invertáló váltakozó feszültségű erősítő:

VG1= 10 mV, 1 kHz, Válasszunk valós műveleti erősítőt, egy μA741-es típust. Ennél azonban be kell kötni a +-Ut-t is! Ez legyen 12 V.

Au kiszámítása:

Au = - Rv/R1 = -200k/20k = -10

Méréssel: Au=Uki/Ube= 70,52mV/7,07mV=9,974 au=20*lg Au= 19,77 dB.

Mérés oszcilloszkólppal:

Jól látható a fázisfordítás, és az erősítés.

BODE felvétele:

Vezérlő elem: generátor frekvenciája

Az alsó határfrekvencián az erősítés 3dB-lel csökken, vagyis 17-re. Ekkor leolvasható a frekvencia értéke az A jelű merker segítségével:

(X érték): fa=71,57 Hz. Ezt C1, és/vagy C2 kondenzátorok okozzák, és kiszámolható. A felső szintén meghatározható a B jelű merkerrel: ff=83,36kHz. Sőt a sávszélesség is: B=ff-fa=A-B=83,29 kHz.

V. Digitális technika

1, Impulzusformáló áramkörök:

Differenciáló áramkör:

Generátor beállítása:

Négyszögjel, 5V-os amplitudó, és 10kHz.

Ezután Analízis menü, és ott a Tranziens:

Analízis ideje: 300 mikrosec. (A 10kHz-es jel periódusideje: 100 mikrosec., így 3 periódust fog kirajzolni).

2, Digitális alapáramkörök realizálása:

Adott a következő függvény:

 $F=\Sigma(2,4,5,6,7,10,12,14)$. D a legnagyobb helyi értékű változó. Egyszerűsítsük le VK táblával:

Az eredmény:

$$F^4 = B \cdot \overline{A} + \overline{D} \cdot C + C \cdot \overline{A}$$

Építsük meg a TINA program segítségével:

Vegyük fel az igazságtáblázatát a kapcsolók kapcsolgatásával.

3, 4 bites aszinkron előre számláló áramkör J-K tárolókból:

A J-K tárolók P(negált), és C(negált) lábait állandó logikai 1-re kell kötni.

A P=Preset=Beírás=aktiválása esetén a kimenet értéke 1 lesz.

A C=Clear=Törlés aktiválása esetén a kimenet értéke 0 lesz.

Mivel negáltak, ezért alacsony szintek aktívak, így 0 esetén aktívak. 1 esetén kizárjuk őket a működésből.

Az első tárolóra adjuk az órajelet, az Órajelgenerátor2 nevű alkatrésszel.

A tárolók kimeneteire a már előbb használt Kivezetés nevű kapcsot tegyük.

Interaktív (Digitális!) mód bekapcsolása után elkezd számolni.

A legkisebb helyi értékű kimenet a Q1, a legnagyobb a Q4.

Rajzoltassuk fel a TINÁ-val a kapcsolás idődiagramját!

Analízis menü, Digitális idődiagram... almenü:

A következő figyelmeztetést kapjuk:

Ezt nyugodtan figyelmen kívül hagyhatjuk, hiszen ezeket a lábakat szándékosan nem kötöttük be, és nem is hibának titulálja a program, csak figyelmeztetésnek.

Kijön a következő ablak is:

Itt az analízis idejét kell beállítani. Mivel a generátor frekvenciája 1 Mhz, aminek a periódusideje 1 mikro sec., és nekünk legalább 16 periódus kell, így állítsuk 20 mikrosec.-re.

4, Szinkron szekvenciális áramkör vizsgálata: És végül egy feladat az írásbeliről:

Rajzoljuk meg TINÁ-ban, és készítsük el az idődiagramját!

Látható, hogy az A és a B jelzők közötti szakasz ismétlődik. Ebből már könnyen felrajzolható az állapotdiagram is.