Deep Learning

Vazgen Mikayelyan

YSU, Krisp

October 17, 2019

Outline

1 What is Convolutional Neural Network?

Pamous CNNs

What is convolution?

Definition 1

Convolution of the functions $f,g:\mathbb{R}\to\mathbb{R}$ is defined as the integral of the product of the two functions after one is reversed and shifted:

$$(f*g)(t) =: \int_{-\infty}^{+\infty} f(x)g(t-x) dx.$$

What is convolution?

Definition 1

Convolution of the functions $f,g:\mathbb{R}\to\mathbb{R}$ is defined as the integral of the product of the two functions after one is reversed and shifted:

$$(f*g)(t) =: \int_{-\infty}^{+\infty} f(x)g(t-x)dx.$$

It easy to see that f * g = g * f.

What is convolution?

Definition 1

Convolution of the functions $f,g:\mathbb{R}\to\mathbb{R}$ is defined as the integral of the product of the two functions after one is reversed and shifted:

$$(f*g)(t) =: \int_{-\infty}^{+\infty} f(x)g(t-x)dx.$$

It easy to see that f * g = g * f.

Definition 2

Convolution of the sequences of real numbers $\{f_n\}_{n=-\infty}^{+\infty}$, $\{g_n\}_{n=-\infty}^{+\infty}$ is the following sequence:

$$z_n =: \sum_{k=-\infty}^{+\infty} f_k g_{n-k}.$$

Definition 3

Convolution of the functions $f,g:\mathbb{R}^2\to\mathbb{R}^2$ is the following function:

$$(f*g)(t,\tau) =: \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)g(t-x,\tau-y) dxdy.$$

Definition 3

Convolution of the functions $f,g:\mathbb{R}^2\to\mathbb{R}^2$ is the following function:

$$(f*g)(t,\tau) =: \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)g(t-x,\tau-y) dxdy.$$

It easy to see that f * g = g * f.

Definition 3

Convolution of the functions $f,g:\mathbb{R}^2\to\mathbb{R}^2$ is the following function:

$$(f*g)(t,\tau) =: \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y)g(t-x,\tau-y) dxdy.$$

It easy to see that f * g = g * f.

Definition 4

Let f(x, y) is an image and w(s, t) is a kernel where $s \in [a, b], t \in [c, d],$ $x, y, s, t, a, b, c, d \in \mathbb{Z}$. The convolution between kernel w and image f is the following function

$$(w*f)(x,y) = \sum_{s=a}^{b} \sum_{t=c}^{d} w(s,t) f(x-s,y-t)$$

Convolution on RGB Images

Convolution on RGB Images

• How many dimensions has convolution kernel in general?

Convolution on RGB Images

- How many dimensions has convolution kernel in general?
- What does 1×1 convolution do?

Valid and Same Convolution

• Padding = Same: means the input image ought to have zero padding so that the output in convolution doesn't differ in size as input.

Valid and Same Convolution

- Padding = Same: means the input image ought to have zero padding so that the output in convolution doesn't differ in size as input.
- Padding = Valid: means we don't add the zero pixel padding around the input matrix, and its like saying, we are ready to loose some information.

Strided Convolution

7 x 7 Input Volume

5 x 5 Output Volume

Strided Convolution

7 x 7 Input Volume

3 x 3 Output Volume

One Layer of CNN

12	20	30	0
8	12	2	0
34	70	37	4
112	100	25	12

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4	,	112	37
112	100	25	12			

• Number of channels is the same after pooling layer.

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4	,	112	37
112	100	25	12			

- Number of channels is the same after pooling layer.
- There are not trainable parameters in this layer.

12	20	30	0
8	12	2	0
35	70	37	6
99	80	25	12

Outline

What is Convolutional Neural Network?

Pamous CNNs

LeNet-5 (1998)

LeNet-5 (1998)

• Activation functions are sigmoids and hyperbolic tangents.

LeNet-5 (1998)

- Activation functions are sigmoids and hyperbolic tangents.
- LeNet-5 has approximately 60k parameters.

• The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.

- The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.
- Local response normalization?

- The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.
- Local response normalization?
- AlexNet has approximately 60M parameters.

- The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.
- Local response normalization?
- AlexNet has approximately 60M parameters.
- Accuracies on ImageNet: Top1=63.3%, Top5=84.6%.

• Fixed kernel size.

- Fixed kernel size.
- The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.

- Fixed kernel size.
- The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.
- VGG-16 has approximately 138M parameters.

- Fixed kernel size.
- The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.
- VGG-16 has approximately 138M parameters.
- Accuracies on ImageNet: Top1=74.4%, Top5=91.9%.

VGG-19 (2014)

• The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.

VGG-19 (2014)

- The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.
- VGG-19 has approximately 144M parameters.

VGG-19 (2014)

- The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.
- VGG-19 has approximately 144M parameters.
- Accuracies on ImageNet: Top1=74.5%, Top5=92%.

Identity function is easy to learn for residual block.

• Resnet-50 has approximately 25.6M parameters.

- Resnet-50 has approximately 25.6M parameters.
- Accuracies on ImageNet: Top1=77.15%, Top5=93.29%.

How much is the number of multiplications?

How much is the number of multiplications?

$$28 \cdot 28 \cdot 32 \cdot 5 \cdot 5 \cdot 192 \approx 120 M$$

Inception Networks with 1X1 Convolutions

Inception Networks with 1X1 Convolutions

How much is the number of multiplications?

Inception Networks with 1X1 Convolutions

How much is the number of multiplications?

 $28 \cdot 28 \cdot 16 \cdot 1 \cdot 1 \cdot 192 + 28 \cdot 28 \cdot 32 \cdot 5 \cdot 5 \cdot 16 \approx 12.4M$

• GoogLeNet/Inception v1 (2014) has approximately 5M parameters.

- GoogLeNet/Inception v1 (2014) has approximately 5M parameters.
- Accuracies on ImageNet: Top1=69.8%, Top5=89.9%.

- GoogLeNet/Inception v1 (2014) has approximately 5M parameters.
- Accuracies on ImageNet: Top1=69.8%, Top5=89.9%.
- Inception v2 (2015) has approximately 11.2M parameters.

- GoogLeNet/Inception v1 (2014) has approximately 5M parameters.
- Accuracies on ImageNet: Top1=69.8%, Top5=89.9%.
- Inception v2 (2015) has approximately 11.2M parameters.
- Accuracies on ImageNet: Top1=74.8%, Top5=92.2%.

- GoogLeNet/Inception v1 (2014) has approximately 5M parameters.
- Accuracies on ImageNet: Top1=69.8%, Top5=89.9%.
- Inception v2 (2015) has approximately 11.2M parameters.
- Accuracies on ImageNet: Top1=74.8%, Top5=92.2%.
- Inception v3 (2015) has approximately 23.8M parameters.

- GoogLeNet/Inception v1 (2014) has approximately 5M parameters.
- Accuracies on ImageNet: Top1=69.8%, Top5=89.9%.
- Inception v2 (2015) has approximately 11.2M parameters.
- Accuracies on ImageNet: Top1=74.8%, Top5=92.2%.
- Inception v3 (2015) has approximately 23.8M parameters.
- Accuracies on ImageNet: Top1=78.8%, Top5=94.4%.

- GoogLeNet/Inception v1 (2014) has approximately 5M parameters.
- Accuracies on ImageNet: Top1=69.8%, Top5=89.9%.
- Inception v2 (2015) has approximately 11.2M parameters.
- Accuracies on ImageNet: Top1=74.8%, Top5=92.2%.
- Inception v3 (2015) has approximately 23.8M parameters.
- Accuracies on ImageNet: Top1=78.8%, Top5=94.4%.
- Inception v4/Inception-ResNet (2016) has approximately 55.8M parameters.

- GoogLeNet/Inception v1 (2014) has approximately 5M parameters.
- Accuracies on ImageNet: Top1=69.8%, Top5=89.9%.
- Inception v2 (2015) has approximately 11.2M parameters.
- Accuracies on ImageNet: Top1=74.8%, Top5=92.2%.
- Inception v3 (2015) has approximately 23.8M parameters.
- Accuracies on ImageNet: Top1=78.8%, Top5=94.4%.
- Inception v4/Inception-ResNet (2016) has approximately 55.8M parameters.
- Accuracies on ImageNet: Top1=80.1%, Top5=95.1%.

- GoogLeNet/Inception v1 (2014) has approximately 5M parameters.
- Accuracies on ImageNet: Top1=69.8%, Top5=89.9%.
- Inception v2 (2015) has approximately 11.2M parameters.
- Accuracies on ImageNet: Top1=74.8%, Top5=92.2%.
- Inception v3 (2015) has approximately 23.8M parameters.
- Accuracies on ImageNet: Top1=78.8%, Top5=94.4%.
- Inception v4/Inception-ResNet (2016) has approximately 55.8M parameters.
- Accuracies on ImageNet: Top1=80.1%, Top5=95.1%.
- The best result on ImageNet: Top1=86.4%, Top5=98%

- GoogLeNet/Inception v1 (2014) has approximately 5M parameters.
- Accuracies on ImageNet: Top1=69.8%, Top5=89.9%.
- Inception v2 (2015) has approximately 11.2M parameters.
- Accuracies on ImageNet: Top1=74.8%, Top5=92.2%.
- Inception v3 (2015) has approximately 23.8M parameters.
- Accuracies on ImageNet: Top1=78.8%, Top5=94.4%.
- Inception v4/Inception-ResNet (2016) has approximately 55.8M parameters.
- Accuracies on ImageNet: Top1=80.1%, Top5=95.1%.
- The best result on ImageNet: Top1=86.4%, Top5=98% with 829M parameters.