Report on Identification

Generated by MTT using : (mtt -u -q -q Identification rep pdf)

Tue Aug 19 15:00:00 BST 2003

Contents

I	Ide	ntification 7
1	idNo	nlinearTanks 9
	1.1	idNonlinearTanks_abg.tex
		1.1.1 Summary information
		1.1.2 Subsystems
		1.1.3 De
		1.1.4 Sf
	1.2	idNonlinearTanks_cbg.ps
	1.3	idNonlinearTanks_struc.tex
	1.4	idNonlinearTanks_sympar.tex
	1.5	idNonlinearTanks_ode.tex
	1.6	idNonlinearTanks_ident.ps (-ieuler)
	1.7	idNonlinearTanks_rep.txt
2	idR	21
	2.1	idRC_abg.tex
		2.1.1 Summary information
		2.1.2 Subsystems
		2.1.3 De
		2.1.4 RC
		2.1.5 Se
	2.2	idRC_struc.tex
	2.3	idRC_sympar.tex
	2.4	idRC_ident.ps
	2.5	idRC_ident _p ar.tex
	2.6	idRC_rep.txt

4 CONTENTS

List of Figures

1.1	System idNonlinearTanks: acausal bond graph	9
1.2	System De : acausal bond graph	11
1.3	System Sf : acausal bond graph	14
1.4	System idNonlinearTanks, representation cbg (-noargs)	16
1.5	System idNonlinearTanks, representation ident (-ieuler)	18
2.1	System idRC: acausal bond graph	21
2.2	System De : acausal bond graph	24
2.3	System RC : acausal bond graph	26
2.4	System Se: acausal bond graph	29
2.5	System idRC , representation ident (-noargs)	32

Part I Identification

Chapter 1

idNonlinearTanks

1.1 idNonlinearTanks_abg.tex

MTT command:

mtt idNonlinearTanks abg tex

Figure 1.1: System idNonlinearTanks: acausal bond graph

The acausal bond graph of system **idNonlinearTanks** is displayed in Figure 2.1 (on page 21) and its label file is listed in Section 2.1.1 (on page 22). The subsystems are listed in Section 2.1.2 (on page 23).

This example illustrates the sensitivity approach to model-based system identification¹.

¹Peter J Gawthrop, Sensitivity Bond Graphs, Journal Franklin Institute, **337**, 2000, pp 907–922

The system compprises two non-linear tanks (see the paper for details). The method identifies four parameters: the two initial states and the two parameters of the non-linear flow resistance.

To see the results, type:

```
mtt -oct -i euler -pdf idNonlinearTanks ippp view
```

1.1.1 Summary information

System Nonlinear Tanks: ¡Detailed description here;

Interface information:

This component has no ALIAS declarations

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: idNonlinearTanks_lbl.txt

tl conical rho,g,V_1

1.1.2 Subsystems

- De Simple effort detector (1) No subsystems.
- Sf Simple flow source (1) No subsystems.

1.1.3 De

Figure 1.2: System De: acausal bond graph

The acausal bond graph of system **De** is displayed in Figure 2.2 (on page 24) and its label file is listed in Section 2.1.3 (on page 24). The subsystems are listed in Section 2.1.3 (on page 26).

Summary information

System De:Simple effort detector Simple effort detector constructed from SS with fixed causality

Interface information:

Parameter \$1 represents actual parameter external

Port in represents actual port in

Port out represents actual port in

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: De_lbl.txt

```
%% Label file for system De (De_lbl.txt)
%SUMMARY De Simple effort detector
%DESCRIPTION Simple effort detector constructed from SS with fixed
% %% Version control history
% %% $Id: De_lbl.txt,v 1.4 2002/11/07 04:28:23 gawthrop Exp $
% %% $Log: De_lbl.txt,v $
 %% Revision 1.4
               2002/11/07 04:28:23 gawthrop
% %% Now has argument - either internal or external
응 응응
% %% Revision 1.3
               1999/09/07 03:32:21
                                peterg
% %% Fixed alias bug
응 응응
% %% Revision 1.2 1999/09/07 03:21:02 peterg
% %% Aliased to out as well as in
응 응응
% %% Revision 1.1 1999/03/03 22:02:04 peterg
```

```
% %% Initial revision
응 응응
% Port aliases
%ALIAS in out in
% Argument aliases
%ALIAS $1 external
%% Each line should be of one of the following forms:
      a comment (ie starting with %)
      component-name cr_name arg1,arg2,..argn
읒
     blank
% ---- Component labels ----
% Component type SS
[in] SS external, external
y SS external,0
```

Subsystems

No subsystems.

1.1.4 Sf

The acausal bond graph of system **Sf** is displayed in Figure 1.3 (on page 14) and its label file is listed in Section 1.1.4 (on page 13). The subsystems are listed in Section 1.1.4 (on page 15).

Summary information

System Sf:Simple flow source Simple flow source constructed from SS with fixed causality

Interface information:

Parameter \$1 represents actual parameter f_s

Port in represents actual port out

Figure 1.3: System Sf: acausal bond graph

Port out represents actual port out

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: Sf_lbl.txt

```
% %% Revision 1.1 1999/03/03 21:50:15 peterg
% %% Initial revision
응 응응
% Port aliases
%ALIAS out | in out
% Argument aliases
%ALIAS
        $1 f_s
%% Each line should be of one of the following forms:
      a comment (ie starting with %)
      component-name cr_name arg1,arg2,..argn
     blank
% ---- Component labels ----
% Component type SS
[out] SS external, external
u SS internal,f_s
```

Subsystems

No subsystems.

1.2 idNonlinearTanks_cbg.ps

MTT command:

mtt idNonlinearTanks cbg ps

This representation is given as Figure 1.4 (on page 16).

1.3 idNonlinearTanks_struc.tex

MTT command:

mtt idNonlinearTanks struc tex

Figure 1.4: System idNonlinearTanks, representation cbg (-noargs)

List of inputs for system idNonlinearTanks			
	Component	System	Repetition
1	u	idNonlinearTanks_u_u	1

	List of outputs for system idNonlinearTanks			
	Component	System	Repetition	
1	у	idNonlinearTanks_y_y	1	

	List of states	s for system idNonlinea	rTanks
	Component	System	Repetition
1	t1	idNonlinearTanks_t1	1
2	t2	idNonlinearTanks_t2	1

1.4 idNonlinearTanks_sympar.tex

MTT command:

mtt idNonlinearTanks sympar tex

Parameter	System
V_1	idNonlinearTanks
V_2	idNonlinearTanks
alpha	idNonlinearTanks
beta	idNonlinearTanks
g	idNonlinearTanks
rho	idNonlinearTanks

Table 1.1: Parameters

1.5 idNonlinearTanks_ode.tex

MTT command:

mtt idNonlinearTanks ode tex

$$\dot{x}_{1} = -\left(\frac{\left((x_{1} + v_{1})^{\left(\frac{1}{3}\right)} 2^{\left(\frac{2}{3}\right)} 3^{\left(\frac{1}{3}\right)} g \rho - (x_{2} + v_{2})^{\left(\frac{1}{3}\right)} 2^{\left(\frac{2}{3}\right)} 3^{\left(\frac{1}{3}\right)} g \rho\right)}{\left(\pi^{\left(\frac{1}{3}\right)} \beta\right)} + u_{1}$$

$$\dot{x}_{2} = \left(\frac{\left((x_{1} + v_{1})^{\left(\frac{1}{3}\right)} 2^{\left(\frac{2}{3}\right)} 3^{\left(\frac{1}{3}\right)} g \rho - (x_{2} + v_{2})^{\left(\frac{1}{3}\right)} 2^{\left(\frac{2}{3}\right)} 3^{\left(\frac{1}{3}\right)} g \rho\right)}{\left(\pi^{\left(\frac{1}{3}\right)} \beta\right)} - \left(\frac{\left((x_{2} + v_{2})^{\left(\frac{1}{3}\right)} 2^{\left(\frac{2}{3}\right)} 3^{\left(\frac{1}{3}\right)} g \rho\right)}{\left(\pi^{\left(\frac{1}{3}\right)} \beta\right)}\right)^{\left(\frac{1}{\alpha}\right)} - \left(\frac{\left((x_{1} + v_{1})^{\left(\frac{1}{3}\right)} 2^{\left(\frac{2}{3}\right)} 3^{\left(\frac{1}{3}\right)} g \rho\right)}{\left(\pi^{\left(\frac{1}{3}\right)} \beta\right)}\right)^{\left(\frac{1}{\alpha}\right)} - \left(\frac{\left((x_{1} + v_{1})^{\left(\frac{1}{3}\right)} 2^{\left(\frac{2}{3}\right)} 3^{\left(\frac{1}{3}\right)} g \rho\right)}{\left(\pi^{\left(\frac{1}{3}\right)} \beta\right)}\right)^{\left(\frac{1}{\alpha}\right)} + u_{1}$$
(1.1)

$$y_1 = \frac{\left((x_2 + v_2)^{\left(\frac{1}{3}\right)} 2^{\left(\frac{2}{3}\right)} 3^{\left(\frac{1}{3}\right)} g \rho \right)}{\pi^{\left(\frac{1}{3}\right)}}$$
(1.2)

1.6 idNonlinearTanks_ident.ps (-ieuler)

MTT command:

mtt -i euler idNonlinearTanks ident ps

This representation is given as Figure 1.5 (on page 18).

1.7 idNonlinearTanks_rep.txt

MTT command:

Figure 1.5: System **idNonlinearTanks**, representation ident (-ieuler)

```
mtt idNonlinearTanks rep txt
## -*-octave-*- Put Emacs into octave-mode
## Outline report file for system idNonlinearTanks (idRC_rep.txt)
## Generated by MTT on" Thu Apr 5 11:17:27 BST 2001.
## Version control history
## $Id: idNonlinearTanks_rep.txt,v 1.2 2003/08/18 16:40:25 gawthrop Exp
## $Log: idNonlinearTanks_rep.txt,v $
## Revision 1.2 2003/08/18 16:40:25 gawthrop
## Modified for ident DIY rep (was ippp).
##
## Revision 1.1 2001/04/05 12:00:18 gawthrop
## Identification example
##
              2000/12/28 11:58:07 peterg
## Revision 1.1
## Put under RCS
##
mtt idNonlinearTanks abg tex # The system description
mtt idNonlinearTanks struc tex
                                # The system structure
mtt idNonlinearTanks sympar tex
                                  # The system parameters
## Uncomment the following lines or add others
##mtt idNonlinearTanks dae tex
                            # The system dae
mtt idNonlinearTanks ode tex
                               # The system ode
## mtt idNonlinearTanks sspar tex # Steady-state parameters
## mtt idNonlinearTanks ss tex # Steady state
## mtt idNonlinearTanks dm tex # Descriptor matrices (of linearised syst
## mtt idNonlinearTanks sm tex # State matrices (of linearised system)
## mtt idNonlinearTanks tf tex # Transfer function (of linearised system
## mtt idNonlinearTanks lmfr ps # log modulus of frequency response (of
## mtt idNonlinearTanks simpar tex # Simulation parameters
## mtt idNonlinearTanks numpar tex # Numerical simulation parameters
## mtt idNonlinearTanks state tex # Simulation initial state
## mtt idNonlinearTanks input tex # Simulation input
## mtt idNonlinearTanks logic tex # Logic control
## mtt -oct -s sidNonlinearTanks odeso ps # Simulation output
```

mtt -i euler idNonlinearTanks ident ps
mtt idNonlinearTanks rep txt # This file

Chapter 2

idRC

2.1 idRC_abg.tex

MTT command:

mtt idRC abg tex

Figure 2.1: System idRC: acausal bond graph

The acausal bond graph of system **idRC** is displayed in Figure 2.1 (on page 21) and its label file is listed in Section 2.1.1 (on page 22). The subsystems are listed in Section 2.1.2 (on page 23).

This example illustrates the sensitivity approach to model-based system identification¹.

The system is a simple RC circuit with zero initial condition; the method identifies the resitance r.

The data is created by typing:

¹Peter J Gawthrop, Sensitivity Bond Graphs, Journal Franklin Institute, 337, 2000, pp 907–922

make

To see the results, type:

mtt -oct -i euler idRC ident view

NB All sensitivity coefficients in idRC_simpar.txtmustbesettozero.

2.1.1 **Summary information**

System idRC: Detailed description here

Interface information:

Parameter \$1 represents actual parameter c

Parameter \$2 represents actual parameter r

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: idRC_lbl.txt

#SUMMARY idRC #DESCRIPTION Detailed description here

System idRC, representation lbl, language txt

File idRC_lbl.txt

Generated by MTT on Tue Aug 19 14:58:27 BST 2003

Model Transformation Tools #####

Version control history

```
## $Id: mtt_banner.sh,v 1.2 2001/07/03 22:59:10 gawthrop Exp $
 ## $Log: mtt_banner.sh,v $
 ## Revision 1.2 2001/07/03 22:59:10 gawthrop
 ## Fixed problems with argument passing for CRs
 ##
 ## Port aliases
## Argument aliases
#ALIAS $1 c
#ALIAS $2 r
## Each line should be of one of the following forms:
##
       a comment (ie starting with #)
##
       component-name cr_name arg1,arg2,..argn
       blank
##
## ---- Component labels ----
## Component type De
y SS external
## Component type RC
rc lin c;r
## Component type Se
u SS external
```

2.1.2 Subsystems

- De Simple effort detector (1) No subsystems.
- RC A Simple two-port RC circuit (1) No subsystems.
- Se Simple effort source (1) No subsystems.

2.1.3 De

The acausal bond graph of system **De** is displayed in Figure 2.2 (on page 24) and its label file is listed in Section 2.1.3 (on page 24). The subsystems are listed in

Figure 2.2: System De: acausal bond graph

Section 2.1.3 (on page 26).

Summary information

System De:Simple effort detector Simple effort detector constructed from SS with fixed causality

Interface information:

Parameter \$1 represents actual parameter external

Port in represents actual port in

Port out represents actual port in

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: De_lbl.txt

```
%% Label file for system De (De_lbl.txt)
%SUMMARY De Simple effort detector
%DESCRIPTION Simple effort detector constructed from SS with fixed causa
% %% Version control history
% %% $Id: De_lbl.txt,v 1.4 2002/11/07 04:28:23 gawthrop Exp $
% %% $Log: De_lbl.txt,v $
% %% Revision 1.4 2002/11/07 04:28:23 gawthrop
% %% Now has argument - either internal or external
응 응응
% %% Revision 1.3 1999/09/07 03:32:21 peterg
% %% Fixed alias bug
응 응응
% %% Revision 1.2 1999/09/07 03:21:02 peterg
% %% Aliased to out as well as in
응 응응
% %% Revision 1.1 1999/03/03 22:02:04 peterg
% %% Initial revision
응 응응
% Port aliases
%ALIAS in out in
% Argument aliases
%ALIAS $1 external
%% Each line should be of one of the following forms:
     a comment (ie starting with %)
     component-name cr_name arg1,arg2,..argn
     blank
% ---- Component labels ----
% Component type SS
[in] SS external, external
```

y SS external,0

Subsystems

No subsystems.

2.1.4 RC

Figure 2.3: System **RC**: acausal bond graph

RC is a Simple two-port RC circuit. The two ports are [in] and [out] and the two parameters are c and r respectively

The acausal bond graph of system **RC** is displayed in Figure 2.3 (on page 26) and its label file is listed in Section 2.1.4 (on page 26). The subsystems are listed in Section 2.1.4 (on page 28).

Summary information

System RC:A Simple two-port RC circuit This simple example is used in the manual.

Interface information:

Parameter \$1 represents actual parameter **c** – Capacitance

Parameter \$2 represents actual parameter \mathbf{r} – Resistance

Port in represents actual port in – The left-hand port

Port out represents actual port **out** – The right-hand port

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: RC_lbl.txt

```
%% Label file for system RC (RC lbl.txt)
%SUMMARY RC A Simple two-port RC circuit
%DESCRIPTION This simple example is used in the manual.
% %% Version control history
% %% $Id: RC_lbl.txt,v 1.4 2001/07/24 04:25:16 gawthrop Exp $
% %% $Log: RC lbl.txt,v $
%% Revision 1.4
              2001/07/24 04:25:16 gawthrop
% %% Relabeled ports - easier for sensitivity to handle
응 응응
              2000/09/14 15:13:02
% %% Revision 1.3
                              peterg
% %% Changed port CRs to give SISO system when used in isolation
% %% Revision 1.2
              1998/07/27 11:09:36
                              peterg
% %% Commented the aliases.
% %% Revision 1.1 1998/07/16 20:16:30 peterg
% %% Initial revision
```

```
% Port aliases
%ALIAS in in # The left-hand port
%ALIAS out out # The right-hand port
% Argument aliases
%ALIAS $1 c # Capacitance
%ALIAS $2 r # Resistance
%% Each line should be of one of the following forms:
       a comment (ie starting with %)
용
       component-name cr_name arg1,arg2,..argn
       blank
% ---- Component labels ----
% Component type C
c lin effort,c
% Component type R
r lin flow, r
% Component type SS
[in] SS external, internal
[out] SS external,0
```

Subsystems

No subsystems.

2.1.5 Se

The acausal bond graph of system **Se** is displayed in Figure 2.4 (on page 29) and its label file is listed in Section 2.1.5 (on page 28). The subsystems are listed in Section 2.1.5 (on page 30).

Summary information

System Se:Simple effort source Simple effort source constructed from SS with fixed causality

Figure 2.4: System Se: acausal bond graph

Interface information:

Parameter \$1 represents actual parameter e_s

Port in represents actual port out

Port out represents actual port out

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

%% Label file for system Se (Se_lbl.txt)

The label file: Se_lbl.txt

```
% %% Revision 1.3 1999/08/05 07:31:39 peterg
% %% Added in alias
응 응응
% %% Revision 1.2 1999/03/12 04:04:27 peterg
% %% Single argument - the effort value e_s
응 응응
% %% Revision 1.1
                1999/03/03 21:55:46 peterg
% %% Initial revision
응 응응
% Port aliases
%ALIAS out | in out
% Argument aliases
%ALIAS $1 e_s
%% Each line should be of one of the following forms:
      a comment (ie starting with %)
      component-name cr_name arg1,arg2,..argn
      blank
% ---- Component labels ----
% Component type SS
[out] SS external, external
u SS e_s,internal
```

Subsystems

No subsystems.

2.2 idRC_struc.tex

MTT command:

mtt idRC struc tex

List of inputs for system idRC			
	Component	System	Repetition
1	u	idRC_u_u	1

	List of outputs for system idRC				
	Component	System	Repetition		
1	У	idRCyy	1		

	List of states for system idRC		
	Component	System	Repetition
1	С	idRC_rc_c	1

2.3 idRC_sympar.tex

MTT command:

mtt idRC sympar tex

Parameter	System
С	idRC
r	idRC

Table 2.1: Parameters

2.4 idRC_ident.ps

MTT command:

mtt idRC ident ps

This representation is given as Figure 2.5 (on page 32).

2.5 $idRC_ident_par.tex$

MTT command:

mtt idRC ident_par tex

Figure 2.5: System **idRC**, representation ident (-noargs)

Name	Value
r	4.95

Table 2.2: Estimated Parameters

2.6 idRC_rep.txt

MTT command:

```
mtt idRC rep txt
## -*-octave-*- Put Emacs into octave-mode
## Outline report file for system idRC (idRC_rep.txt)
## Generated by MTT on" Thu Jun 27 17:03:00 BST 2002.
## Version control history
## $Id: idRC_rep.txt,v 1.3 2003/08/18 08:06:17 gawthrop Exp $
## $Log: idRC_rep.txt,v $
## Revision 1.3 2003/08/18 08:06:17
                              gawthrop
## A working version with more explantion
##
## Revision 1.2 2002/09/23 11:42:14
                              gawthrop
## Example uses simulated data from idRC_ident_data
```

```
##
## Revision 1.1 2000/12/28 11:58:07 peterg
## Put under RCS
##
mtt idRC abg tex # The system description
mtt idRC struc tex
                       # The system structure
mtt idRC sympar tex
                        # The system parameters
## Uncomment the following lines or add others
## mtt idRC dae tex
                   # The system dae
# The system ode
## mtt idRC ode tex
## mtt idRC sspar tex # Steady-state parameters
## mtt idRC ss tex # Steady state
## mtt idRC dm tex # Descriptor matrices (of linearised system)
## mtt idRC sm tex # State matrices (of linearised system)
## mtt idRC tf tex # Transfer function (of linearised system)
## mtt idRC lmfr ps # log modulus of frequency response (of linearised a
## mtt idRC simpar txt # Simulation parameters
## mtt idRC numpar txt # Numerical simulation parameters
## mtt idRC state txt # Simulation initial state
## mtt idRC input txt # Simulation input
## mtt idRC logic txt # Logic control
## mtt idRC odeso ps # Simulation output
## Linear identificationm
##mtt idRC ident_numpar tex
mtt idRC ident ps
##mtt idRC ident_comparison ps
mtt idRC ident_par tex
```

mtt idRC rep txt # This file

Index

```
De – abg, 11, 23
          De – lbl, 12, 24
      De – subsystems, 13, 26
           RC – abg, 26
           RC – lbl, 26
       RC – subsystems, 28
            Se - abg, 28
            Se – lbl, 28
        Se – subsystems, 30
            \mathbf{Sf} – abg, 13
            \mathbf{Sf} – lbl, 13
        Sf – subsystems, 15
    idNonlinearTanks – abg, 9
   idNonlinearTanks – cbg, 15
   idNonlinearTanks - ident, 17
    idNonlinearTanks – lbl, 10
   idNonlinearTanks – ode, 17
   idNonlinearTanks - rep, 17
   idNonlinearTanks – struc, 15
idNonlinearTanks – subsystems, 11
 idNonlinearTanks – sympar, 16
          idRC – abg, 21
         idRC – ident, 31
        idRC - ident_p ar, 31
          idRC - lbl, 22
          idRC – rep, 32
         idRC – struc, 30
      idRC – subsystems, 23
        idRC – sympar, 31
```