

Claims

What is claimed is:

1

2

3

4

416

7 1 2

D 2

<u>L</u> 3

4

- 1. A polynucleotide molecule comprising at least one gene of interest, and at least one selectable marker gene, wherein said at least one selectable marker gene comprises a nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence encoding SEQ ID NOS.: 3, 4, or 5, or functional fragments thereof; or a complement of said nucleotide sequence; and
 - (b) a nucleotide sequence which selectively hybridizes under stringent conditions to a nucleotide sequence shown in SEQ ID NOS: 1 or 2, or a complement thereof.
 - 2. The polynucleotide molecule of claim 1, wherein said polynucleotide is operably linked to a promoter.
 - 3. Transgenic cells transformed with a gene of interest and the polynucleotide molecule of claim 1, wherein the selectable marker gene gives said cells a selective advantage when a population of cells including the transformed cells and nontransformed cells is supplied with a marker compound.
- 1 4. The transgenic cells of claim 3 wherein said marker compound is arabitol, ribitol, mannitol or a derivative thereof.
- 5. The transgenic cells of claim 3, wherein said transgenic cells comprise bacteria, fungi, yeast,
 plant or a combination thereof.
- 1 6. A Plant or plant tissue regenerated from the cells of claim 3.
- 7. A method of selecting transformed cells from a population of cells comprising

2	a) introducing into the genome of a cell a gene of interest and a selectable marker gene;
3	b) obtaining transformed cells;
4	c) supplying to the population of cells a marker compound wherein said transformed cells
5	have a selective advantage over non-transformed cells due to expression or transcription of the
6	gene of interest or the selectable marker gene in the presence of the marker compound; and
7	d) selecting said transformed cells from the population of cells;
8	wherein said selectable marker gene comprises a nucleotide sequence selected from the group
9	consisting of:
1 0	(a) a nucleotide sequence encoding SEQ ID NOS.: 3, 4, or 5, or functional fragments
1	thereof; or a complement of said nucleotide sequence; and
12	(b) a nucleotide sequence which selectively hybridizes under stringent conditions to a
īŲ3	nucleotide sequence shown in SEQ ID NOS: 1 or 2, or a complement thereof;
1 4	and said marker compound comprises arabitol, ribitol, mannitol or a derivative thereof.
()) (,) 1	8. The method of claim 7, wherein said cells comprise bacteria, fungi, yeast, plant or a
	combination thereof.
1	9. The method of claim 8, wherein said cells comprise plant cells.
1	10. Transformed cells selected according to the method of claim 7.
1	11. Transformed plants derived from the cells of claim 10.

13. A polynucleotide molecule comprising a nucleotide sequence selected from the group 1

12. Seeds produced from the transformed plants of claim 11, wherein said seeds are capable of

2 consisting of:

germinating to produce transformed plants.

1

2

3	(a) a nucleotide sequence encoding SEQ ID NOS.: 3, 4, or 5, or functional fragments
4	thereof; or a complement of said nucleotide sequence; and
5	(b) a nucleotide sequence which selectively hybridizes under stringent conditions to a
6	nucleotide sequence shown in SEQ ID NOS: 1 or 2, or a complement thereof.
1	14. The polynucleotide molecule of claim 13, wherein said nucleotide sequence comprises SEQ
2	ID NO 1.
1 12 13	15. The polynucleotide molecule of claim 13, wherein said nucleotide sequence comprises SEQ ID NO 2.
\$\frac{1}{C}\$	16. A polypeptide molecule comprising SEQ ID NO 3, or functional fragments thereof.
	17. A polypeptide molecule comprising SEQ ID NO 4, or functional fragments thereof.
1 5551 1	18. A polypeptide molecule comprising SEQ ID NO 5, or functional fragments thereof.