RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	10/849,551
Source:	里fwo
Date Processed by STIC:	10-26-04

ENTERED

IFWO

RAW SEQUENCE LISTING DATE: 10/26/2004
PATENT APPLICATION: US/10/849,551 TIME: 16:46:09

Input Set : D:\US Utility 50229-435 Sequence Listing.txt

Output Set: N:\CRF4\10262004\J849551.raw

3 <110> APPLICANT: University of Kentucky Research Foundation

```
Moscow, Jeffrey A.
 4
 5
         Jordan, Craiq
        Xin, Lu
 8 <120> TITLE OF INVENTION: AN ORGANIC CATION TRANSPORTER PREFERENTIALLY EXPRESSED IN
         HEMATOPOIETIC CELLS
 9
11 <130> FILE REFERENCE: 050229-435
13 <140> CURRENT APPLICATION NUMBER: 10/849,551
14 <141> CURRENT FILING DATE: 2004-05-20
16 <150> PRIOR APPLICATION NUMBER: 60/471,709
17 <151> PRIOR FILING DATE: 2003-05-20
19 <160> NUMBER OF SEQ ID NOS: 14
21 <170> SOFTWARE: PatentIn version 3.3
23 <210> SEQ ID NO: 1
24 <211> LENGTH: 1734
25 <212> TYPE: DNA
26 <213> ORGANISM: Homo sapiens
28 <400> SEQUENCE: 1
29 atggggtccc gccacttcga ggggatttat gaccacgtgg ggcacttcgg cagattccag
                                                                          60
31 agagteetet attteatatg tgeetteeag aacatetett gtggtattea etaettgget
                                                                         120
33 tetgtgttea tgggagteac cecteateat gtetgeagge ceceaggeaa tgtgagteag
                                                                         180
35 gttgttttcc ataatcactc taattggagt ttggaggaca ccggggccct gttgtcttca
                                                                         240
37 ggccagaaag attatgttac ggtgcagttg cagaatggtg agatctggga gctctcaagg
                                                                         300
39 tgtagcagga ataagaggga gaacacatcg agtttgggct atgaatacac tggcagtaag
                                                                         360
41 aaagagtttc cttgtgtgga tggctacata tatgaccaga acacatggaa aagcactgcg
                                                                         420
43 gtgacccagt ggaacctggt ctgtgaccga aaatggcttg caatgctgat ccagccccta
                                                                         480
45 tttatgtttg gagtcctact gggatcggtg acttttggct acttttctga caggctagga
                                                                         540
47 cgccgggtgg tettgtggge cacaageagt ageatgtttt tgtttggaat ageageggeg
                                                                         600
49 tttgcagttg attattacac cttcatggct gctcgctttt ttcttgccat ggttgcaagt
                                                                         660
51 ggctatcttg tggtggggtt tgtctatgtg atggaattca ttggcatgaa gtctcggaca
                                                                         720
53 tgggegtetg tecatttgea tteetttttt geagttggaa ceetgetggt ggetttgaca
                                                                         780
55 ggatacttgg tcaggacctg gtggctttac cagatgatcc tctccacagt gactgtcccc
                                                                         840
57 tttatcctgt gctgttgggt gctcccagag acaccttttt ggcttctctc agagggacga
                                                                         900
59 tatgaagaag cacaaaaaat agttgacatc atggccaagt ggaacagggc aagctcctgt
                                                                        960
61 aaactgtcag aacttttatc actggaccta caaggtcctg ttagtaatag ccccactgaa
                                                                        1020
63 gttcagaagc acaacctatc atatctgttt tataactgga gcattacgaa aaggacactt
                                                                        1080
65 accepttigge taatetggtt caetggaagt tigggattet actegitte etigaattet
                                                                        1140
67 gttaacttag gaggcaatga atacttaaac etetteetee tgggtgtagt ggaaatteee
                                                                        1200
69 geetacaeet tegtgtgeat egeeaeggae aaggteggga ggagaacagt eetggeetae
                                                                        1260
71 tctcttttct gcagtgcact ggcctgtggt gtcgttatgg tgatccccca gaaacattat
                                                                        1320
73 attttgggtg tggtgacagc tatggttgga aaatttgcca tcggggcagc atttggcctc
                                                                        1380
75 atttatettt atacagetga getgtateea accattgtaa gategetgge tgtgggaage
                                                                        1440
77 ggcagcatgg tgtgtcgcct ggccagcatc ctggcgccgt tctctgtgga cctcagcagc
                                                                        1500
```

RAW SEQUENCE LISTING DATE: 10/26/2004
PATENT APPLICATION: US/10/849,551 TIME: 16:46:09

Input Set : D:\US Utility 50229-435 Sequence Listing.txt
Output Set: N:\CRF4\10262004\J849551.raw

79 atttggatct tcataccaca gttgtttgtt gggactatgg ccctcctgag tggagtgtta 81 acactaaagc ttccagaaac ccttgggaaa cggctagcaa ctacttggga ggaggctgca 1620 83 aaactggagt cagagaatga aagcaagtca agcaaattac ttctcacaac taataatagt 1680 85 gggctggaaa aaacggaagc gattaccccc agggattctg gtcttggtga ataa 1734 88 <210> SEQ ID NO: 2 89 <211> LENGTH: 578 90 <212> TYPE: PRT 91 <213> ORGANISM: Homo sapiens 94 <220> FEATURE: 95 <221> NAME/KEY: misc feature 96 <222> LOCATION: (264)..(264) 97 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid 99 <220> FEATURE: 100 <221> NAME/KEY: misc feature 101 <222> LOCATION: (268)..(269) 102 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid 104 <220> FEATURE: 105 <221> NAME/KEY: misc_feature 106 <222> LOCATION: (274)..(275) 107 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid 109 <220> FEATURE: 110 <221> NAME/KEY: misc feature 111 <222> LOCATION: (410) .. (410) 112 <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid 114 <400> SEQUENCE: 2 116 Met Gly Ser Arg His Phe Glu Gly Ile Tyr Asp His Val Gly His Phe 120 Gly Arg Phe Gln Arg Val Leu Tyr Phe Ile Cys Ala Phe Gln Asn Ile 2.0 25 124 Ser Cys Gly Ile His Tyr Leu Ala Ser Val Phe Met Gly Val Thr Pro 40 128 His His Val Cys Arg Pro Pro Gly Asn Val Ser Gln Val Val Phe His 132 Asn His Ser Asn Trp Ser Leu Glu Asp Thr Gly Ala Leu Leu Ser Ser 70 136 Gly Gln Lys Asp Tyr Val Thr Val Gln Leu Gln Asn Gly Glu Ile Trp 137 140 Glu Leu Ser Arg Cys Ser Arg Asn Lys Arg Glu Asn Thr Ser Ser Leu 105 144 Gly Tyr Glu Tyr Thr Gly Ser Lys Lys Glu Phe Pro Cys Val Asp Gly 120 148 Tyr Ile Tyr Asp Gln Asn Thr Trp Lys Ser Thr Ala Val Thr Gln Trp 135 1.40 152 Asn Leu Val Cys Asp Arg Lys Trp Leu Ala Met Leu Ile Gln Pro Leu 150 155 153 145 156 Phe Met Phe Gly Val Leu Leu Gly Ser Val Thr Phe Gly Tyr Phe Ser 170 160 Asp Arg Leu Gly Arg Arg Val Val Leu Trp Ala Thr Ser Ser Ser Met 190 161 185

RAW SEQUENCE LISTING DATE: 10/26/2004 PATENT APPLICATION: US/10/849,551 TIME: 16:46:09

Input Set : D:\US Utility 50229-435 Sequence Listing.txt
Output Set: N:\CRF4\10262004\J849551.raw

	164 165	Phe	Leu	Phe 195	Gly	Ile	Ala	Ala	Ala 200	Phe	Ala	Val	Asp	Tyr 205	Tyr	Thr	Phe
		Met	Ala		Arg	Phe	Phe	Leu		Met	Val	Ala	Ser		Tyr	Leu	Val
	169		210					215					220				
			Gly	Phe	Val	Tyr		Met	Glu	Phe	Ile		Met	Lys	Ser	Arg	
		225	_				230					235		_			240
	176 177	Trp	Ala	Ser	Val	His 245	Leu	His	Ser	Phe	Phe 250	Ala	Val	Gly	Thr	Leu 255	Leu
W>	180	Val	Ala	Leu	Thr	Gly	Tyr	Leu	Xaa	Arq	Thr	Trp	Xaa	Xaa	Tyr	Gln	Met
	181				260	_	_			265		_			270		
M>	184	Ile	Xaa		Ser	Thr	Val	Thr	Val	Pro	Phe	Ile	Leu	Cys	Cys	Trp	Val
	185			275					280					285			
	188	Leu	Pro	Glu	Thr	Pro	Phe	Trp	Leu	Leu	Ser	Glu	Gly	Arg	Tyr	Glu	Glu
	189		290					295					300				
	192	Ala	Gln	Lys	Ile	Val	Asp	Ile	Met	Ala	Lys		Asn	Arg	Ala	Ser	Ser
		305					310					3 1 5					320
	196	Cys	Lys	Leu	Ser		Leu	Leu	Ser	Leu	_	Leu	Gln	Gly	Pro	Val	Ser
	197					325					330					335	
	200	Asn	Ser	Pro	Thr	Glu	Val	Gln	Lys	His	Asn	Leu	Ser	Tyr	Leu	Phe	Tyr
	201				340					345					350		
		Asn	Trp		Ile	Thr	Lys	Arg	Thr	Leu	Thr	Val	${\tt Trp}$	Leu	Ile	Trp	Phe'
	205			355					360					365			
		Thr	_	Ser	Leu	Gly	Phe	-	Ser	Phe	Ser	Leu		Ser	Val	Asn	Leu
	209		370					375					380				
		_	Gly	Asn	Glu	Tyr		Asn	Leu	Phe	Leu		Gly	Val	Val	Glu	Ile
		385					390					395					400
M>		Pro	Ala	${ t Tyr}$			Val	Cys	Ile	Ala		Asp	Lys	Val	Gly	Arg	Arg
	217		_			405			1		410					415	
		Thr	Val	Leu	Ala	Tyr	Ser	Leu	Phe		Ser	Ala	Leu	Ala	_	Gly	Val
	221			_	420		_		_	425	_			_	430		
		Val	Met		Ile	Pro	Gln	Lys		Tyr	Ile	Leu	Gly		Val	Thr	Ala
	225			435			_	_	440	_	_		_	445	_		
		Met		Gly	Lys	Phe	Ala		Gly	Ala	Ala	Phe		Leu	Ile	Tyr	Leu
	229	_	450			_	_	455	_,				460	_			
		-	Thr	Ala	Glu	Leu	_	Pro	Thr	He	Val	_	Ser	Leu	Ala	Val	-
		465		_			470	_	_		_	475	_		_		480
	236	ser	Gly	Ser	Met	Val 485	Cys	Arg	Leu	Ala	Ser 490	ile	Leu	Ala	Pro	Phe 495	Ser
		V-1	7 an	T 011	Cor		т1.	Trn	Tlo	Dho		Dro	Cln.	T 011	Dho		Clar
		Val	Asp	ьeu	Ser	ser	TIE	пр	ше		тте	PLO	GIII	ьец		val	GIA
	241		Mot	λl.	500	T 011	Cor	C1.,	77-7	505	Thr	T 011	Tara	Τ ου	510	C1	The
		TIIT	Met		Leu	rien	ser	Gry		Leu	TIIT	ьец	пÀр		PIO	GIU	1111
	245	T 011	C1	515	7. **~	T 011	ם דת	The	520	Tres	C1.,	C1.,	73.	525	T	T 011	C1
		ьец	530	пув	Arg	ьeu	Ald		1111	ττħ	GIU	GIU		ATG	пув	ьeu	GIU
	249	C.~		7. ~~	C1	C.~	T	535	Cox	Tira	Low	Tarr	540	mb.~	Th.~	7 ~~	7.05
			GIU	ASII	Glu	ser		ser	ser	гÀг	ьeu		ьeu	TILL	ınr	ASN	
	253		C1	T ~··	α 3	T	550	a 1	ν. 70 7	т7 -	ml	555 Drog	7	7	0	01	560
		ser	GTÅ	ьeu	Glu	_	rnr	GIU	ATG	тте		Pro	arg	Asp	ser	_	ьeu
	257	C1	C1			565					570	,				575-	
	∠0U	Gly	GIU														

RAW SEQUENCE LISTINGPATENT APPLICATION: **US/10/849,551**DATE: 10/26/2004

TIME: 16:46:09

Input Set : D:\US Utility 50229-435 Sequence Listing.txt

Output Set: N:\CRF4\10262004\J849551.raw

265 <211> LENGTH: 123805 266 <212> TYPE: DNA 267 <213> ORGANISM: Homo sapiens 269 <400> SEQUENCE: 3 270 aagettgtee aaceeatgge eeacgggeea catgtggeet aagatggett tgaatgeage 60 272 ccaacacaaa tttgtaaact ftcttaaagc attgagatat ttttgcaatt ttcttttta 120 274 geteateage tategttagt gttagtgtat tttatatgtg gtgcaagaea attegtette 180 276 ttccaatgtg gcccagggaa gccaaaagat tggacacccc gtgagatctt ctaggcgact 240 278 ggcccccagt gaaattgtga tcacggagga tagtagagtċ ccggtagtac acataggaga 300 360 280 tgttccacaa actccatatg atcagcaccg ttttcgggag gccccacact gtgccgaaca 420 282 tcatgaatca gtgagggttt aggaagcaca tcaacctccc agtgttttggg agctgctgtt 480 284 ttaagaaggt cccgtttacc attctactgc ccacatgaag agtgaagact aatccgtgga 286 caggatgeet etecagteta getgtgeece geteeetett teteatetaa ategaaceet 540 600 288 tttcctgtgg attgagatga aaagtccttg aacgcaccac cttgtgctgc taggtcagtc 660 290 tagacaatat taagtcacat ccattaagtt ttccttaaag aaaatgtttg aaatatttct 292 tccttcagtt cgatactaag tgtattttgc cacaagacac ttcctgatga cccaatttca 720 294 gqtccccatt cttttatcta tqtgagaatt ctccactttc agactctgct taatttaact 780 840 296 ctctctqaaa atgtgcaagt tcataaaaga aggtgaaata attactacgg tacatacaaa 298 gaggtgaaca tttctttttt atgtacaaat tgtgtgttac cccaagtgga ctttcctggg 900 300 cocqcctcct cettetgtee caggatectg geocagetet gteececaat gaactgeaga 960 1020 302 qqtaqaqqqq taaagaagag cagttgagtg gctcagattg ctgcctgaac tctggaccga 1080 304 ggagcaatca cgagtaaccc caaaaactgc ccattggttt gcgcactcat agcatgaaaa 306 caaqttccqt tcttttqtqc tqtcctqqaa catcaqccaq ctcttaagtc acgttgcccq 1140 308 gatteatgtg etectgeaat gaaaggeeet attgteaaca aggetggtea acaaggeaaa 1200 1260 310 gcaaagtttg acceptgeat caaaacetgg aacateetga ettgttaegt getgagaaat 1320 312 gtgtgcttag tattgtatta aagtaaatgg ggaggggcag tgtctttaaa aatacccaaa 314 gcaaaqaaaa atagatacta tctgctcaat gtcccagagt agaagttttt aaaatgacct 1380 316 gagaaatagg tttattgctt tcattgcttc cttccttctt cttcctcctt ctctgacatt 1440 1500 318 tggccctcct ctctaaaaac ttcccctcat agtgacccca ggctcctgtt gggaagtctc 320 acccactgtg tgggtgaaca agcaaagcaa ctgttaaaag tgttcagata acatggacaa 1560 322 aaaacacatg gaaaagctga tatcgagttc cattgggttt ggagtggttc ttgcgggcaa 1620 1680 324 aggatgcagt gagctgaaca tacattaaaa atacaaaccc ttaagagctg actgggtaag 326 acttaagccc agtatctttc agagatgagt gtctaggtgc atcacccaga tcttagcctg 328 cctgagtgta ccagtgaacc tgcccaggtt ttagtttcct tttctataaa atgatagctt 330 ggttctgatg atcttcagge tecettggga ggtccttgag gettcagete aaaceetage 1860 332 tetgetatet acetettett ggtgetgaga ttecatgata teetteaatt.attgtgggae 1920 334 tgacttagta gaaggcatca gagggaatgg aagcctctac attatcaatg cagaaattga 1980 336 ggcaagaggc caacattatt gcacaaaaca tggcagatgt tggaatgaag aagacagtga 2040 338 gacacaggca gcaacagagc ctccttaatc tctgacccaa aagagtcttg acttgaagtt 2100 340 ccccaagete ettettetet eccaggeact caetgettte aaagegaett caateteaag 2160 342 ttgggagatg tggcccagtt cagggtctgc cgcagactca ggcaccatcc cttctcctat 2220 344 ctcagtttct tcactggcaa atggaaggta tacaattaga tgattttaa agccaagctc 2280 346 agagetaaca tecacaatte caggaattee aggaaatgea caetaaaact aaggttetga 2340 348 aacaaqtaaa aaaacaqacc aaatqttcqa accaacqatt ttcaqacatt ggagcacagg 2400 350 tggcacagga aacaagtgag gtgagtcctg tgattgcccc agcttgctgc ctggagagac 2460 352 tttccaggcc atggaacagg gacatggaat acaggtggag cacagccata tccctgtgta 2520 354 qaaqqatqqq qctqqqqtcc caqqqacact tqtqcaccta qaactcacaq gagagaatac 2580 356 tggagagaag aaagctgcac acggagagaa ctctgggctc tgcagagtgt catctttggg 2640

264 <210> SEQ ID NO: 3

RAW SEQUENCE LISTING DATE: 10/26/2004 PATENT APPLICATION: US/10/849,551 TIME: 16:46:09

Input Set : D:\US Utility 50229-435 Sequence Listing.txt
Output Set: N:\CRF4\10262004\J849551.raw

358	tcttcagcaa	agtattgatc	agcacatgca	tgtgaggaaa	agaaatgagg	ccagaaaaag	2700
360	aatcacccaa	aaagattaga	gggaaccatt	cctagagctc	ccaccagcca	gagaatagcc	2760
362	cctgtggcca	ccaaccacag	ttgaaaacct	tctaattcat	cgggcactga	gtagaacact	2820
364	ctgagtattg	tctcagtaat	gcagcccaat	tcagcttact	ctaaagtctc	ctgtggtccc	2880
366	tcctgacaag	gcttaaaagc	aagtcttggc	tggcacggtg	gtgcgtgcct	gcagtcccag	2940
368	ctatccagga	gggtgagggc	tgaggcagca	tgacgactgt	tcaagccagg	agttcaagac	3000
370	cagcctgggc	aacatagtga	gattctgtat	ctttttttt	tttttttt	tttaaaaaaa	3060
372	aaggccgggc	acggtgtgtc	aaccctgtaa	tcccagcact	ttgggaggcc	gaggtgggta	3120
374	gatcatctga	ggtcgggagt	ttgagacaag	cctgaccaac	atggagaaac	cctgtctcta	3180
376	ctaaaaacac	aaaattagtc	gggcgtggtg	gcacaggcca	gtaatcccag	ctactcgcga	3240
378	ggctgcggca	ggagaatcgc	ttgaacctag	gaggcagagg	ttgcagtgaa	tggagatcgc	3300
					ctaaaaaaca		3360
					aagtaaatta		3420
					tttaaagaat		3480
386	ggcatggtgg	ctcacaccta	taatcccagc	actttgggag	accgaggaag	gtggatcact	3540
					tgaaactctg		3600
					agtcccagtt		3660
					atactgagct		3720
					caaaaaaata		3780
					aacatgaagg		3840
					gagaaaatct		3900
					aagaatggca		3960
					ctttaaagta		4020
					ttttttttgt		4080
					aaaacaaatg		4140
					cctatactat		4200
					aaattctggc		4260
					catgcaacaa		4320
					gacagagaag		4380
					aagaggtgac		4440
					aaggagggag		4500
420	aagtctaagg	gtcactggag	cacaggacgt	gtgaggagag	gggacttcct	gcccttcctg	4560
					aaggttctaa		4620
					tttgattagg		4680
					tggagaaaga		4740
					gtcagggcca		4800
					atttgttcca		4860
432	aacagggttc	tctctcctat	ttaccgggga	gctcaaagag	tccgtagagt	acatatccag	4920
					ttaccatatc		4980
					gctagcacgt		5040
438	ctcacagcca	gtcccagtgg	gacaccgcta	gagagaaggc	taccactaga	gagaaggcta	5100
					ccctctgccc		5160
442	ctacctctca	gcccagcgca	ctagaggaac	tatttcccaa	agcggaaagc	gagagtggag	5220
					tccaagcttg		5280
					tcgtttggaa		5340
					ttttggaccc		5400
					atttgaaagg		5460
					aaaaaaaaca		5520
					gtaaagatgg		5580

RAW SEQUENCE LISTING ERROR SUMMARY

DATE: 10/26/2004

PATENT APPLICATION: US/10/849,551

TIME: 16:46:10

Input Set : D:\US Utility 50229-435 Sequence Listing.txt

Output Set: N:\CRF4\10262004\J849551.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Seq#:2; Xaa Pos. 264,268,269,274,275,410

VERIFICATION SUMMARY

PATENT APPLICATION: US/10/849,551

DATE: 10/26/2004 TIME: 16:46:10

Input Set : D:\US Utility 50229-435 Sequence Listing.txt

Output Set: N:\CRF4\10262004\J849551.raw

L:180 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:2 after pos.:256 L:184 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:2 after pos.:272 L:216 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:2 after pos.:400