Collecting Coupons

Problem

Coupons in cereal boxes are numbered 1 to 5, and a set of one of each is required for a prize. With one coupon per box, how many boxes on the average are required to make a complete set?

Solution

Let X_1, X_2, \ldots, X_5 be random variables representing the number of boxes opened until receiving the $1^{\text{st}}, 2^{\text{nd}}, \ldots$, and 5^{th} unique coupon, respectively, where the number of boxes is counted since the last box containing a unique coupon was opened. For example, X_3 represents the number of boxes opened after the 2^{nd} unique coupon was found up until the $3^{3\text{rd}}$ unique coupon was found.

Each X_i is a geometric random variable associated with a different probability of success. For example, X_1 is associated with $p_1=1$ because the 1st box will obviously contain a unique coupon. X_2 is associated with $p_2=\frac{4}{5}$ because only 4 of the 5 coupons are unique at that point. Probabilities for the remaining X_i can be calculated in a similar fashion. For geometric random variables, we also know that $E[X_i]=\frac{1}{p_i}$.

To solve the problem, we can apply the Linearity of Expectation property as follows:

$$E\left[\sum_{i=1}^{5} X_i\right] = \sum_{i=1}^{5} E[X_i]$$

$$= \sum_{i=1}^{5} \frac{1}{p_i}$$

$$= 5\left(\frac{1}{5} + \frac{1}{4} + \frac{1}{3} + \frac{1}{2} + \frac{1}{1}\right)$$

$$= \frac{137}{12} \approx 11.42$$

Notes

When generalized to n coupons, the solution to this problem can be written as:

$$C(n) = n \sum_{i=1}^{n} \frac{1}{i} = nH_n$$

In the above, H_n represents the n^{th} Harmonic Number, which is the sum of the reciprocals of integers from 1 to n.