A. 6

E. None of the above

E. None of the above

A. Serial number

Part I (3 points each)

1.	For which	For which of the following n , the square matrix					is invertible over \mathbf{Z}_n ?
	A. 2010	B. 2011					E. None of the above

How many *irreducible* polynomials of degree 5 over GF_2 ?

C. 10

Apply Fermat's primality test on 21. Which is NOT a witness of compositeness? B. 4 C. 8 D. 16 E. None of the above

D. 12

D. AES

- To generate a large prime, how many times at least should the Miller-Rabin test be repeated on a candidate integer to make sure the error probability $\leq 10^{-15}$? E. None of the above A. 15 B. 20 C. 25 D. 30
- Whose operation of S-box is speeded up by the *bitslice* technique?
- A. Serpent Which hash function was announced to win the SHA-3 competition?

C. IDEA

- A. BLAKE B. Grøstl C. JH D. Skein E. None of the above
- Which construction is SHA-3 based on? 7.

B. SMS4

B. 8

- A. Feistel B. Substitution-permutation network
- D. Merkle-Damgård E. None of the above C. Sponge
- E. None of the above B. User name C. Expiry date D. Private key
- Which is NOT one of the operations of the IDEA encryption?

Which should NOT be listed on a digital certificate?

- A. Multiplication modulo 2¹⁶+1 B. Exponentiation modulo 2¹⁶–1
- C. Addition modulo 2¹⁶ D. Exclusive OR E. None of the above
- 10. Which statement is FALSE about Identity Based Cryptography?
 - A. It removes the need for a trusted third party
 - B. It removes the need for storage and transmission of certificates
 - C. Its first signature scheme is based on the RSA problem
 - D. Its first encryption scheme is based on bilinear pairings on elliptic curves
 - E. None of the above

Part II (3 points each)

- Select appropriate mode(s) of operation with specified property respectively from the following list:
 A. ECB
 B. CBC
 C. OFB
 D. CFB
 E. CTR
 F. CCM
 G. GCM
 H. XEX
 I. XTS-AES
 J. CBC-CS1
 - Use multiplications in the Galois field $GF_{2^{128}}$: 11
 - ◆ Generate *periodic* key stream with fixed key and IV: 12
 - Decryption can be parallelized while encryption can *not* be parallelized: 13
 - ◆ Designed for confidentiality on storage devices: 14
 - Use the technique of *ciphertext stealing*: 15
 - ◆ Authenticated encryption: 16
- In Shamir's secret sharing scheme with threshold 3 over GF_{19} , the secret a_0 is hided as the constant of the polynomial $f(x) = a_2 x^2 + a_1 x + a_0 \in GF_{19}[x]$.
 - The points (1, 6), (2, 4), (4, 12) that f(x) passes are obtained from three participants, then the secret is recovered as $a_0 = \boxed{17}$.
 - The point (3, y) is also distributed to another participant, then y = 18.
- On a 64-bit machine, two 128-bit numbers, $x = x_1 2^{64} + x_0$ and $y = y_1 2^{64} + y_0$, are multiplied with Karatsuba technique which requires 3 multiplications instead of 4.
 - Compute $A = x_1 \cdot y_1$, $B = x_0 \cdot y_0$, and $C = \boxed{19}$ (in terms of x_0, x_1, y_0, y_1).
 - Then $x \cdot y$ is given by $A 2^{128} + D 2^{64} + B$, where $D = \boxed{20}$ (in terms of A, B, C).

Part III (Write down all details of your work)

- 21 (4 points) Show that a group G is abelian if $a^2 = e$ for all $a \in G$.
- [22] (6 points) Find all possible *n* such that $\varphi(n) = 16$.
- [23] (6 points) Solve $x^2 + 7x + 1 \equiv 0 \pmod{45}$ by Chinese Remainder Theorem.
- 24 (6 points) Explain the technique of *ciphertext stealing* used in some modes of operation. What advantage does it have?
- (6 points) Explain *Montgomery reduction* for modular arithmetic. What advantage does it have?
- 26 (12 points) Factor n = 3837523 by Quadratic Sieve as below.

	2	3	5	7	11	13	17	19
1964 ²	0	2	0	0	0	3	0	0
3397^{2}	5	0	1	0	0	2	0	0
8077 ²	1	0	0	0	0	0	0	1
9398 ²	0	0	5	0	0	0	0	1
14262 ²	0	0	2	2	0	1	0	0
17078 ²	6	2	0	0	1	0	0	0
19095 ²	2	0	1	0	1	1	0	1

- The second row means $1964^2 \equiv 3^2 \times 13^3 \pmod{n}$. (a) Find $a_1, a_2, ..., a_k$ such that $(a_1, a_2, ..., a_k)^2 \pmod{n}$ is a square on the given factor base
- (b) Find a and b such that $a^2 \equiv b^2 \pmod{n}$
- (c) Factor *n*

Cryptography

Exam 3

2012/11/20

Name: Student ID number:	
--------------------------	--

1	2	3	4	5	6	7	8	9	10
11		12		13		14		15	
16		17		18		19		20	

21 ~ 26

Solution

1	2	3	4	5	6	7	8	9	10
В	A	C	C	A	Е	C	D	В	A
11		12		13		14		15	
GHI		C (E F G)		BDJ		ΗΙ		IJ	
16		17		18		19		20	
FG		12		6		$(x_1+x_0)(y_1+y_0)$		C-A-B	

22 17, 32, 34, 40, 48, 60

23 4, 19, 34 (mod 45)

26 1093 × 3511