ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

6. Pod jakim kątem trzeba rzucić ciało, aby zasięg rzutu równał się największej wysokości na jaką ciało się wzniesie?

"latex article amsmath

Dane wejściowe:

- Przyjmijmy, że ciało zostaje rzucone z predkościa poczatkowa v_0 .
- \bullet Przyspieszenie ziemskie wynosig.
- Kat rzutu to θ .

Ogólny wzór dla zasiegu rzutu ukośnego:

$$R = \frac{v_0^2 \sin(2\theta)}{g} \tag{1}$$

Ogólny wzór dla maksymalnej wysokości:

$$H = \frac{v_0^2 \sin^2(\theta)}{2g} \tag{2}$$

Warunek: zasieg R równa sie maksymalnej wysokości H:

$$\frac{v_0^2 \sin(2\theta)}{g} = \frac{v_0^2 \sin^2(\theta)}{2g} \tag{3}$$

Przekształcenie wzoru:

$$\sin(2\theta) = \frac{1}{2}\sin^2(\theta) \tag{4}$$

Zastosujmy tożsamości trygonometryczne:

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta) \tag{5}$$

Podstawmy do równania:

$$2\sin(\theta)\cos(\theta) = \frac{1}{2}\sin^2(\theta) \tag{6}$$

Przekształcenie:

Podzielmy obie strony przez $\sin(\theta)$ (zakładajac, że $\sin(\theta) \neq 0$):

$$2\cos(\theta) = \frac{1}{2}\sin(\theta) \tag{7}$$

Podzielmy obie strony przez $\cos(\theta)$ (zakładajac, że $\cos(\theta) \neq 0$):

$$2 = \frac{1}{2}\tan(\theta) \tag{8}$$

Przemnóżmy obie strony przez 2:

$$4 = \tan(\theta) \tag{9}$$

Kat θ :

$$\theta = \tan^{-1}(4) \tag{10}$$

Wynik końcowy:

$$\theta = \tan^{-1}(4) \tag{11}$$