Tecnologie Digitali - Relazione: convertitore di impedenza negativa e circuito Howland

Salvatore Bottaro¹ and Lorenzo M. Perrone²

¹salvo.bottaro@hotmail.it ²lorenzo.perrone.lmp@gmail.com

Sommario—In questa relazione mostriamo le caratteristiche e i limiti di un convertitore di impedenza negativa e la sua applicazione nel circuito Howland.

I. CONVERTITORE DI IMPEDENZA NEGATIVA

Si consideri il circuito in figura 1.

Figura 1: Convertitore di impedenza negativa

Si mostri in che senso esso sia un convertitore di impedenza negativa applicando le regole d'oro dell'op-amp e risolvendo le equazioni del circuito. Come si vede in figura 1 la tensione V_{In+} all'ingresso non-invertente dell'op-amp è la tensione V_g del generatore VG. Per le regole d'oro dell'op-amp si ha la stessa tensione all'ingresso invertente ed essendo l'op-amp in configurazione non-invertente, tale tensione viene amplificata di un fattore $1+\frac{R_2}{R_1}$, da cui:

$$V_{out} = (1 + \frac{R_2}{R_1})V_{in} \tag{1}$$

Pertanto la corrente che scorre da V_{In+} a V_{out} è data da:

$$I = \frac{V_{In+} - V_{out}}{R_3} = -\frac{R_2}{R_1 R_3} V_g \rightarrow V_g = -\frac{R_1 R_3}{R_2} I \quad (2)$$

da cui si evince come il generatore veda un'impedenza equivalente negativa.

Poiché l'espressione della resistenza equivalente segue direttamente dall'equazione 1 si ha che un modo per verificare il corretto comportamento del circuito è verificare se l'op-amp si comporta correttamente in configurazione non-invertente e dunque cercare di delineare i limiti di tale configurazione.

Per quanto riguarda il dimensionamento di R_1 e R_2 si ha che ovviamente esse devono essere tali che V_{out} non sia troppo alto in rapporto alle tensioni di alimentazione. Come si legge

Figura 2: Convertitore realizzato con TINA

dal foglio di specifiche, il *Maximum peak output voltage swing* al massimo è $\pm 12 \div 14~V$, pertanto deve risultare:

$$V_{in} \left(1 + \frac{R_2}{R_1}\right) \le 12 \sim 14V$$
 (3)

Ad esempio si confrontino le simulazioni fatte con TINA (vedi figura 2) in cui sono stati impiegati Gain all'invertente G=11 (figura 3) G=101 (figura 4). Si nota come nel primo caso il convertitore funzioni correttamente nel range di tensione scelto, nel secondo caso invece satura appena supera i 12 V.

Figura 3: Simulazione del convertitore per G=11

Per quanto riguarda R_3 invece, essa deve essere scelta in modo tale che non scorra troppa corrente verso il ramo non-invertente cosicché l'op-amp non riesca a stabilire il giusto feedback e dunque uguagliare le tensioni ai due ingressi, ovvero non deve essere troppo piccola. In figura 5 si vede come per tensioni vicine a 1 V si perda l'andamento lineare.

Figura 4: Simulazione del convertitore con G=101

Figura 5: Simulazione del convertitore con G=11 e R=300 Ω

Se si osserva il grafico in figura 6 si vede come per $V_{in}=1V$ il segnale in V_{out} non dipenda da R_3 a partire dai 380 Ω circa.

Figura 6: Dipendenza del segnale in uscita da V_{out} in funzione di R_3 con G=11

Non disponendo di equazioni o modelli per dimensionare correttamente R_3 , in base a varie prove effettuate possiamo fornire in tabella I dei valori minimi indicativi per R_3 in funzione del gain G con una tensione di ingresso di 1 V.

Tabella I: Valori minimi indicativi per R_3

G	R
11	380
10	230
9	150
8	110
7	80
6	60

La possibilità di disporre di un circuito con impedenza equivalente negativa trova molte applicazioni, una di queste è il circuito di Howland.

II. CIRCUITO DI HOWLAND

Lo schema del circuito di Howland è in figura 7.

Figura 7: Circuito Howland

In base ai risultati ottenuti in precedenza, il circuito è equivalente al parallelo fra le resistenze R_G , R_L e R_{eq} come si evince in figura 8.

Figura 8: Circuito equivalente al circuito Howland

Pertanto è immediato scrivere le equazioni che regolano il circuito. Prendendo come maglie fondamentali quella contenente il generatore e R_L e quella contenente R_L e R_G , e come verso convenzionale per le correnti I_1 e I_2 in entrambe le maglie quello antiorario, si hanno le seguenti equazioni:

$$V_G - R_G I_1 - R_L I_1 + R_L I_2 = 0 (4)$$

$$-R_{eq}I_2 + R_LI_1 - R_LI_2 = 0 (5)$$

Da cui si deducono le correnti:

$$I_1 = \frac{V_G(R_L + R_{eq})}{R_G R_L + R_L R_{eq} - R_G R_{eq}}$$
 (6)

$$I_2 = \frac{V_G R_L}{R_G R_L + R_L R_{eq} - R_G R_{eq}}$$
 (7)

Figura 9: Plot della corrente I_L su resistenza di carico R_L per R3 = 500 Ohm, Vg = 0.5V, R2 = 10k, R1 = 1k, R_g = 50 Ohm

Dal momento che la corrente che scorre in R_L è $I_1 - I_2$, si ha, posto $R_{eq} = -R$:

$$I_L = I_1 - I_2 = -\frac{V_G R}{R_G R_L - R_L R + R_G R}$$
 (8)

Si vede come se nell'equazione precedente si pone $R_G=R$, l'espressione per I_L diventa semplicemente:

$$I_L = -\frac{V_G}{R} \tag{9}$$

Ovvero la corrente che scorre nel carico R_L non dipende dal carico, ovvero dimensionando opportunamente R_1 , R_2 ed R_3 si ha che il circuito Howland si comporta come un generatore ideale di corrente. Verifichiamo tramite delle simulazioni di TINA che questo comportamento sia rispettato, e in quali circostanze.

In Figura (9) si riporta un grafico della corrente che attraversa la resistenza di carico I_L in funzione della resistenza stessa R_L in un intervallo 100 Ohm - 100 kOhm, con resistenza del generatore arbitrariamente posta pari a 50Ohm, R1 = 1kOhm, R2 = 10kOhm, R3 = 500 Ohm.

Ciò che si nota immediatamente è che l'andamento della corrente si mantiene costante in una regione di *plateau* nel range $R_L=100$ -23k Ohm, nella quale ha un valore circa pari a $44\pm 2\mu\mathrm{A}$, per poi decrescere sensibilmente tendendo a zero.

Ovviamente il nostro interesse si concentra sul comprendere quale è il motivo per cui si ha questo brusco cambiamento proprio al valore di R_L di circa 23kOhm e, in un'ottica più concreta, come fare eventualmente ad estendere il *plateau*.

Il primo tentativo effettuato è quello di raddoppiare la resistenza R_3 a 1kOhm, e al tempo stesso raddoppiare R_G a 100 Ohm per far si che rimanga sempre valida la relazione $R=\frac{R_1R_3}{R_2}=R_G$. Il risultato è plottato in figura (10), dove si vede il confronto con i valori precedenti.

Come si può osservare, questa nuova scelta di resistenze ha esteso (raddoppiato) la zona di *plateau*, fino al range di R_L 1000hm-52k Ohm. Continuando a raddoppiare R_L e R_G si verifica che il range (circa) raddoppia di estensione. I risultati di queste prove sono riportati in Figura (11).

Figura 10: Plot della corrente I_L su resistenza di carico R_L , per R3 = 500 Ohm (nero), e R3 = 1k (blu)

Figura 11: Dipendenza di I_L da R_L - raddoppiamo R3 e R_G : R3 = 250 (verde); R3 = 500 Ohm R_G = 50 Ohm (nero); R3 = 1k R_G = 100 Ohm (blu); R3 = 2k R_G = 200 Ohm (rosso)

E' interessante notare come, sempre in base a quanto simulato da TINA, in questo modo si possa arrivare a rendere quasi del tutto costante il valore della corrente sul carico (di circa 1 μ A) per un range di resistenze di quasi 4 ordini di grandezza, che fa capire piuttosto bene la definizione di generatore ideale di corrente assegnata al circuito Howland. Il passo successivo è cercare di mantenere costante il valore della resistenza del generatore R_G , che nella realtà è appunto un parametro fissato dal costruttore del generatore di tensione, e agire invece sui valori di R_1 e R_3 . Ovviamente bisogna sempre far si che $R_G = \frac{R_1 R_3}{R_2}$, quindi raddoppiando R_3 dimezzeremo R_1 e viceversa. Riportiamo una di queste simulazioni in Figura (12), dove si vede che effettivamente il plateau è aumentato, tuttavia in misura sensibilmente minore che nelle prove precedenti, oltre, ovviamente, a modificare il GAIN del circuito amplificante, che ricordiamo è pari a $G=1+\frac{R_2}{R_1}$.

A. Relazione fra V_{out} e R_L

Rimane da capire quale potrebbe essere il motivo per cui il valore di I_L smette di rimanere costante per decrescere rapidamente superata una certa soglia di R_L . Per far questo, procediamo con la risoluzione formale del circuito andando a ricavare la relazione fra la tensione di uscita dell'op-amp V_{out} e R_L .

Figura 12: I_L su R_L : dipendenza da R3 e R1 - raddoppiamo R3 e dimezziamo R1. R3 = 125Ohm, R1 = 4k (nero); R3 = 250 Ohm, R1 = 2k (rosso); R3 = 500 Ohm, R1 = 1k (blu)

Figura 13: V_{out} in funzione di R_L a $R_3 = 500$ fissata, $V_G = 0.5 V$

A partire dalla rappresentazione del circuito in Figura (7), è possibile scrivere con minima fatica le seguenti:

$$\begin{cases} V_L = I_L R_L \\ V_{out} = (1 + \frac{R_2}{R_1}) V_L \end{cases}$$
 (10)

Da cui risulta:

$$V_{out} = I_L R_L (1 + \frac{R_2}{R_1})$$
 (11)

Dal momento che, come visto precedentemente, la corrente I_L non dipende (o meglio, non dovrebbe dipendere) da R_L , a regime ci aspettiamo una proporzionalità di tipo lineare, con intercetta nulla e coefficiente angolare I_L $(1+\frac{R_2}{R_1})$. Verifichiamo questo andamento simulandolo con TINA, impiegando gli stessi valori di R_3 , R_G del grafico (9). I risulati sono in Figura (13)

Dall'analisi di questo grafico seguono due importanti risultati:

• Capiamo finalmente per quale motivo per una resistenza di carico $R_L \gtrsim 20k$ Ohm la corrente I_L termina il suo andamento costante. Infatti, come si può osservare, a tale resistenza coincide una tensione di output dell'op-amp di 11.3 V, subito in saturazione, per cui l'op-amp non riesce più a mantenere il feedback sul ramo invertente, ed esce dal comportamento ideale. Il valore V_{out} di saturazione è strettamente correlato con la tensione di alimentazione

 V_{CC} (che per queste simulazioni è stata posta a ± 15 V), e infatti all'aumentare di quest'ultima si verifica un incremento della regione di *plateau*.

• L'andamento lineare è molto ben rispettato e una stima del coefficiente angolare della retta, pari a $m_{meas} \simeq 4.8\,10^{-4}\,\mathrm{V/}$ Ohm risulta essere in accordo con quello aspettato, calcolato moltiplicando il valore costante della corrente quando $R_L \leq 20k\mathrm{Ohm}$ per il gain $G=1+\frac{R_2}{R_1}\simeq 11$ del circuito, da cui risulta che $m_{exp}\simeq 4.8\,10^{-4}\mathrm{V/}$ Ohm.

PROBLEMA! Tuttavia, proprio quest'ultimo risultato ci pone davanti ad un'incongruenza con le relazioni ricavate nella prima parte della relazione. Infatti, nella (9) si è visto che $I_L = -\frac{V_G}{R}$ che, per i valori impiegati nell'ultima simulazione, e cioè $R = R_g = 50$ Ohm e $V_G = 0.5V$, implica una corrente I_L dell'ordine della decina di mA, e non decina di μ A, come ricavato dalle simulazioni precedenti. Riteniamo che ci possa essere un errore, o una ipotesi non del tutto verificata nella risoluzione del circuito, che dia origine a questa evidente discrepanza, che nonostante gli sforzi non siamo riusciti a localizzare.

A questo punto, avendo analizzato approfonditamente il comportamento simulato del circuito, e identificato un range per alcuni parametri tipici in cui il circuito di Howlen sembra funzionare, abbiamo montato sulla breadboard i componenti, tra cui un potenziometro variabile fra $108-1020\pm1\%\mathrm{Ohm}$ che avrebbe giocato il ruolo di carico R_L . Con nostro grandissimo dispiacere non siamo riusciti ad ottenere alcuna serie di misure utili con il VI di acquisizione, nonostante vari tentativi. E' utile riportare di seguito i valori delle resistenze e alcune osservazioni.

Resistenze	Valori
R1	1 kOhm $\pm 5\%$
R2	$10 \text{ kOhm } \pm 5\%$
R3	10 kOhm $\pm 5\%$
R_G	$100\mathrm{Ohm}~\pm5\%$
R_L	108-1210 ±1%Ohm

III. OSSERVAZIONI

- Le resistenze sono state dimensionate in modo da rimanere nel range di validità del modello, come ricavato nelle simulazioni;
- La resistenza del generatore R_G è stata arbitrariamente scelta da noi, con un valore abbastanza sensato (100 Ohm), e collegata in serie al generatore stesso;
- La tensione fornita dal generatore di tensione appositamente impiegato per questa esperienza (e non l'ATTEN usuale) è circa di 1 V, per cui, a partire dalla $I_L = -\frac{V_G}{R_G}$, ci aspettiamo una corrente nel circuito di carico di 10 mA, al di sotto del valore tipico per l'op-amp μ A741CP che è di 25 mA, con un massimo dichiarato di 40 mA;
- Il primo segnale acquisito dal VI, la tensione in uscita dall'op-amp V_{out} era del tutto saturato impiegando un fondoscala a 10 V. Il gain previsto era circa 11, per cui abbiamo esplorato valori di V_{in} intorno a mezzo volt,

tuttavia abbiamo continuato a non osservare altro che la saturazione a +10V.

- Per comprendere meglio cosa non stesse funzionando secondo le aspettative, è stato posto un multimetro digitale
 in modalità amperometro in serie al carico. Il valore di
 corrente aspettato doveva essere maggiore di 10mA (20,
 30 in base al V_{in} impostato), ma l'amperometro non ha
 mai registrato un valore superiore a circa 6mA.
- Una prima, e probabilmente fondata ipotesi, è che nel circuito in esame parte della corrente prodotta dall'opamp venisse immessa dentro il generatore, e che quindi ciò modificasse il comportamento dell'Howland.
- Per verificare questa supposizione abbiamo scollegato il generatore di tensione in uso per impiegare la boccola a 5V dell'ATTEN, costruendo un partitore di tensione 1:10 in modo da fornire come Vin sul ramo non invertente circa 0.5V. La cosa che ci ha sorpreso più di tutto è che pur avendo montato il partitore, misurando con un secondo multimetro la tensione in ingresso, questa rimanesse comunque a circa 5V. Il buon funzionamento del partitore è stato verificato scollegando l'op-amp, e la tensione letta era circa 0.5V, come aspettato, ma ricollegando nuovamente il partitore al circuito, il valore tornava a 5V.
- L'unica conclusione che abbiamo potuto trarre è che l'inserimento di un generatore di tensione perturbava enormemente il comportamento modellizzato del circuito di Howland, e in particolare tale perturbazione si potrebbe ascrivere alla corrente che dal circuito rientra nel generatore. Una verifica sensata consisterebbe nel provare a collegare una pila al posto del generatore, poichè quest'ultima non dovrebbe essere influenzata dal resto del circuito.
- Come ultima osservazione, è da rilevare che, anche nelle simulazioni di TINA, anche una differenza di qualche decina di Ω fra R_G e R_{eq} , che devono essere uguali per evidenziare il comportamente di Negative Impedance Converter, era sufficiente per modificare drasticamente l'andamento della corrente I_L in funzione della resistenza di carico R_L . Dal momento che la nostra R_G era collegata in serie al generatore, la sua resistenza reale interna, sommata a R_G , potrebbe essere risultata sensibilmente diversa dalla nostra R_{eq} , e quindi aver contribuito al cattivo funzionamento del circuito.

RIFERIMENTI BIBLIOGRAFICI

- Datasheet, μA741 General-Purpose Operational Amplifiers. SLOS094E
 NOVEMBER 1970 –REVISED JANUARY 2015. http://www.ti.com/lit/ds/symlink/ua741.pdf
- [2] Paul Horowitz, Winfield Hill The Art of Electronics. Cambridge University Press (1989).