Ableitung von Bewegungsmodellen für Anwendungen in der Schüttgutsortierung mittels Machine Learning

Tobias Hornberger
Betreut von Florian Pfaff

Intelligent Sensor-Actuator-Systems Laboratory (ISAS),
Institute for Anthropomatics and Robotics,
Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

http://isas.uka.de

Gliederung

- Beschreibung TableSort
- Aufgabenstellung
- Ansätze
- Daten
- Vorläufige Ergebnisse
- Ausblick

Setup TableSort

Aufgabenstellung

- Prädiktion von Teilchenbewegung
 - Aktuell: Aufwendiges Finetuning von Bewegungsmodellen
 - von Hand, teilweise separat für unterschiedliche Schüttgüter
 - Ziel: Bewegungsmodelle automatisiert ermitteln
 - Einsatz von neuronalen Netzen
 - TensorFlow Framework

Neuronale Netze

- NextStep-Prädiktion und Separator-Prädiktion
- Feed Forward Netz
 - [16, 16, 16]
 - Fully-Connected
 - ReLu Nichtlinearität
- Einzelne Teilchen
- Input Features:

X- und Y-Koordinaten in den n letzten Zeitschritten

Gesammelte Daten

- 4 Sorten Schüttgut
 - Kugeln
 - Pfefferkörner
 - Zylinder
 - Weizenkörner
- ~180.000 Bilder
 - Batches zu je 3500 Bildern
 - 2320x1726 px
 - 193 frames per second
- ~40.000 Teilchen/Tracks
 - → ~580.000 Feature-Label Paare

Schüttgüter

Schüttgüter

Daten Pipeline

- Aufnahmen von der Kamera
 - Batches zu je 3.500 Bildern im Bitmap Format
 - Bayer-Filter
- 2. Konvertieren zu RGB Bildern ("demosaicing")
- 3. Segmentieren und Mittelpunktpositionen bestimmen
- 4. Mittelpunkte einzelnen Tracks zuordnen

Beispiel Daten

TrackID_26_X	TrackID_26_Y
2086	69
2086	146
2085	223
2085	300
2085	377
2085	454
2086	531
2086	607
2086	684
2085	761
2084	838
2083	913
2081	989
2080	1064
2078	1140
2076	1214
2074	1290
2073	1365
2072	1443
2071	1520
2071	1596
NaN	NaN
NaN	NaN
NaN	NaN

Beispiel Daten

TrackID_26_X	TrackID_26_Y
2086	69
2086	146
2085	223
2085	300
2085	377
2085	454
2086	531
2086	607
2086	684
2085	761
2084	838
2083	913
2081	989
2080	1064
2078	1140
2076	1214
2074	1290
2073	1365
2072	1443
2071	1520
2071	1596
NaN	NaN
NaN	NaN
NaN	NaN

Beispiel Kugeln Random Sample

Kugeln – Schlechteste Predictions

Separator vorläufiges Ergebnis

Ausblick

- Separator Netz fertigstellen
- Hyperparameter Tuning
- Data Augmentation/Clean up
- Evaluation der NextStep und Separator Netze
- Ansatz: Recurrent Neural Network

Vielen Dank für ihre Aufmerksamkeit!

Quellen

- [1] 'TrackSort Schüttgutsortierer' Fraunhofer IOSB
- [2] 'Tensorflow Logo' <a href="https://github.com/tensorflow/ten
- [3] 'Bayer pattern on sensor' By Cburnett [GFDL, CC-BY-SA-3.0 or GPL] from Wikimedia Commons

BACKUP FOLIEN

Backup - Aktivierungsfunktionen

Backup - ReLu

Data Cleanup

- Aussortieren von Tracks
 - Nach Winkel
 - Nach Länge
- Unbrauchbare
 - Zu kurz
 - Nicht zusammenhängend

Data Augmentation

