Euler's Method Assignment

Author Aaron Tresham

Date 2017-06-12T20:11:48

Project 9189c752-e334-4311-afa9-605b6159620a

Location 12 - Euler's Method Assignment/Euler's Method Assignment.sagews

Original file <u>Euler's Method Assignment.sagews</u>

Euler's Method Assignment

Question 0

Watch the lecture video here.

Did you watch the video? [Type yes or no.]

Question 1

Use Euler's Method to graph an approximate solution curve to $\frac{dy}{dx}=x^2-y^2$ with initial value (1,2). Graph on the interval from x=1 to x=3 and use n=20 steps.

Question 2

Consider the initial value problem $rac{dy}{dx} = 6x^2 - 3x^2y \quad y(0) = 3$.

Part a

Use Euler's Method with n=50 steps to graph an approximate solution curve on the interval from x=0 to x=1.

Part b

The exact solution of this differential equation is $y=2+e^{-x^3}$. Add a graph of this curve to your graph in part a.

Question 3

Consider the initial value problem $rac{dy}{dx}=y^2\cos(x), \quad y(0)=0.5$.

Part a

Approximate $y\left(\frac{\pi}{6}\right)$ using Euler's Method with n=20.

Part b

Use desolve to find the exact solution of the original initial value problem.

[You'll have to solve for y, either by hand or use Sage.]

Part c

Using the solution from part b, find the exact value of $y\left(\frac{\pi}{6}\right)$.

Part d

Subtract your approximation (part a) from the exact value (part c). This is the error.

Part e

Approximate $y\left(\frac{\pi}{6}\right)$ using Euler's Method with n=50.

Part f

Calculate the new error. [This should be smaller than the error in part d.]