A model structure on the cartesian cubical sets

1 The cartesian cube category

We consider the cartesian cube category \mathbb{C} , defined as the free finite product category on an interval $\delta_0, \delta_1 : 1 \rightrightarrows I$. As a classifying category for an algebraic theory $\mathbb{T} = \{0,1\}$, \mathbb{C} has a covariant presentation by Lawvere duality, namely as the dual of the full subcategory of finitely-generated, free \mathbb{T} -algebras $\mathsf{Alg}(\mathbb{T})_{\mathrm{fg}}$. In this case, the algebras are simply bipointed sets (A, a_0, a_1) , and the free ones are the strictly bipointed sets $a_0 \neq a_1$. Thus $\mathsf{Alg}(\mathbb{T})_{\mathrm{fg}}$ consists of the finite, strictly bipointed sets and all bipointed maps between them.

Definition 1. The objects of the cartesian cube category $\mathbb C$ are themselves called cubes, and will be written

$$[n] = \{x_1, ..., x_n\},\$$

where the x_i may be regarded as coordinate axes. The arrows,

$$f: [n] \longrightarrow [m],$$

are then taken to be m-tuples of elements drawn from the set

$$[n]^+ = \{0, x_1, ..., x_n, 1\},\$$

regarded as formal terms representing composites of faces, degeneracies, permutations, and diagonals (alternately, the arrows are arbitrary bipointed maps $[m]^+ \longrightarrow [n]^+$).

2 Cubical sets

The category cSet of *cubical sets* is the category of presheaves on the cartesian cube category \mathbb{C} . It is generated by the representable presheaves y([n]), which will be written $I^n = y([n])$ and called the *standard n-cubes*.

3 Partial map classification and the +-algebra weak factorization system

Cofibrations, partial map classification, the functor X^+ , the awfs of +-algebras.

4 Partial path lifting (biased version)

Given a type $P: I \longrightarrow Set$, the type of (0-biased) partial path-lifting structures $L^0(P)$ may be defined in the "logical style" of [?] as:

$$L^{0}(P) = \prod_{\phi:\Phi} \prod_{s:\prod_{i:I}(Pi)^{\phi}} \prod_{a_{0}:P0} a_{0}|\phi = s0 \longrightarrow \sum_{a:\prod_{i:I}Pi} (a0 = a_{0}) \times (a|\phi = s).$$
(1)

The data involved in this type can be represented as follows:

Here the left-hand vertical square is understood to be a pullback of the right-hand one along the chosen endpoint $\delta_0: 1 \longrightarrow I$ (the "bias").

Now write

$$\widetilde{P} = \prod_{i:I} Pi$$

for the type of sections of the projection $P = \sum_{i:I} Pi \longrightarrow I$, and write

$$\pi_0: \widetilde{P} \longrightarrow P0$$

for the 0^{th} -projection (i.e. the evaluation of $P: I \longrightarrow \mathsf{Set}$ at 0: I).

Then the (0-biased) partial path-lifting structures on P correspond to +-algebra structures on the projection $\pi_0: \widetilde{P} \longrightarrow P0$, as follows.

Proposition 2. For any $P : Set^{I}$, there is an isomorphism

$$L^0(P) \cong {}^+ Alg(\pi_0 : \widetilde{P} \longrightarrow P0)$$
.

Proof. Consider the following diagram,

which is (2), extended by the counit (evaluation) $\varepsilon: \widetilde{P} \times I \longrightarrow P$ over I on the right. The pullback of ε over I along δ_0 is just $\pi_0: \widetilde{P} \longrightarrow P0$.

Given an $L^0(P)$ -structure we construct a +Alg-structure on $\pi_0: \widetilde{P} \longrightarrow P0$ as follows: for any I^n and cofibration $i_{\phi}: [\phi] \longrightarrow I^n$ and any commutative square,

we require a diagonal filler,

uniformly in I^n and ϕ . Transposing the span formed by i_{ϕ} and s along the adjunction $I^* \dashv \prod_I$ gives the right-hand square in (??), and the commutative square formed by a_0 and π_0 gives the rest of the data in that diagram. Thus the $L^0(P)$ -structure gives an $a: I^n \times I \longrightarrow P$ as indicated. Looking at (3), we see that a lifts across ε to a unique map $\overline{a}: I^n \times I \longrightarrow \widetilde{P} \times I$ over I, by the universal property of $\varepsilon: \widetilde{P} \times I \longrightarrow P$. We can therefore set

$$j = \delta_0^*(\overline{a}) : \mathbf{I}^n \longrightarrow \widetilde{P}$$
.

Suppose conversely that we have a ${}^{+}$ Alg-structure on $\pi_0: \widetilde{P} \longrightarrow P0$, and we want to build a (0-biased) partial path-lifting structure on P. Take any I^n, ϕ, s, a_0 as indicated and we require an $a: I^n \times I \longrightarrow P$ over I. From s we get \overline{s} by the universal property of ε , and therefore we get \overline{s}_0 by pullback. From \overline{s}_0 and a_0 and the ${}^{+}$ Alg structure on π_0 we get a map $j: I^n \longrightarrow \widetilde{P}$ over P0 which is a diagonal filler of the indicated square formed by $i_{\phi}, \overline{s}_0, a_0$ and π_0 . We then get the required map $a: I^n \times I \longrightarrow P$ over I as the $(I^* \dashv \prod_I)$ -transpose of j,

$$a = \varepsilon \circ (i \times I)$$
.

We leave to the reader the verification that these assignments are mutually inverse. \Box

5 Unbiased partial path lifting

6 A left-induced model structure on the Cartesian cubical sets

We make use of the Sattler model structure [?] on the *Dedekind cubical* sets $\widehat{\mathbb{D}} = \mathsf{Set}^{\mathbb{D}^{\mathrm{op}}}$, where \mathbb{D} is the category of *Dedekind cubes*, defined as

the Lawvere theory of distributive lattices. The unique product-preserving functor

$$i: \mathbb{C} \longrightarrow \mathbb{D}$$

classifying the Dedekind interval $I_{\mathbb{D}} \in \mathbb{D}$ induces an adjunction,

$$i_! \dashv i^* \dashv i_* : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{D}},$$

where $i^*(Q) = Q \circ i$, for $Q \in \mathbb{D}$.

Lemma 3. Observe that $i_!$ is left exact since the Dedekind interval $I_{\mathbb{D}}$ is strict, $0 \neq 1 : 1 \rightrightarrows I_{\mathbb{D}}$. Thus we have geometric morphisms:

$$(i_! \dashv i^*): \widehat{\mathbb{D}} \longrightarrow \widehat{\mathbb{C}},$$

classifying the bipointed object $i_!(I_{\mathbb{C}}) = I_{\mathbb{D}}$,

$$(i^* \dashv i_*): \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{D}},$$

classifying the dLat $i^*(I_{\mathbb{D}}) := \mathbb{I}$, where $\eta : I_{\mathbb{C}} \longrightarrow \mathbb{I}$ can be described pointwise as the distributive lattice completion of the corresponding bipointed set.

Also, since i is faithful so is $i_!$, and since i is surjective on objects i^* is also faithful.

It follows that:

- $\widehat{\mathbb{C}}$ is $(i_! \circ i^*)$ -coalgebras on $\widehat{\mathbb{D}}$,
- $\widehat{\mathbb{D}}$ is $(i^* \circ i_*)$ -coalgebras on $\widehat{\mathbb{C}}$,
- $\widehat{\mathbb{D}}$ is $(i^* \circ i_!)$ -algebras on $\widehat{\mathbb{C}}$.

We will use the following transfer theorem for QMSs from \cite{MSs} from $\cite{M$

Theorem ([?, ?]). Suppose $\widehat{\mathbb{D}}$ has a (cofibrantly generated) model structure $(\mathcal{C}_{\mathbb{D}}, \mathcal{W}_{\mathbb{D}}, \mathcal{F}_{\mathbb{D}})$. Given an adjunction

$$i_! \dashv i^* : \widehat{\mathbb{D}} \longrightarrow \widehat{\mathbb{C}},$$

there is a left-induced model structure on $\widehat{\mathbb{C}}$ if the following acyclicity condition holds:

$$(i_!^{-1}\mathcal{C}_{\mathbb{D}})^{\pitchfork} \subset i_!^{-1}\mathcal{W}_{\mathbb{D}}.$$

For the left-induced model structure $(\mathcal{C}_{\mathbb{C}}, \mathcal{W}_{\mathbb{C}}, \mathcal{F}_{\mathbb{C}})$ on $\widehat{\mathbb{C}}$ we then have:

$$\mathcal{C}_{\mathbb{C}} = i_{!}^{-1} \mathcal{C}_{\mathbb{D}},$$
 $\mathcal{W}_{\mathbb{C}} = i_{!}^{-1} \mathcal{W}_{\mathbb{D}}.$

The Sattler model structure on $\widehat{\mathbb{D}}$ is given as follows (for a constructive treatment a smaller class of "pointwise decidable cofibrations" is used, but we consider the classical case first):

where $\delta: 1 \longrightarrow I$ is either endpoint inclusion.

For the left-induced model structure on $\widehat{\mathbb{C}}$ we therefore have the following specification:

$$\mathcal{C} = \text{monomorphisms},$$

$$\mathcal{W} = \left\{ f \mid i_! f = p \circ i, \ p \in \mathcal{F}_{\mathbb{D}} \cap \mathcal{W}_{\mathbb{D}}, \ i \in \mathcal{C}_{\mathbb{D}} \cap \mathcal{W}_{\mathbb{D}} \right\},$$

$$\mathcal{F} = (\mathcal{C} \cap \mathcal{W})^{\pitchfork}.$$

The determination of \mathcal{C} follows from the fact that $i_!: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{D}}$ is conservative. To check the acyclicity condition,

$$(i_!^{-1}\mathcal{C}_{\mathbb{D}})^{\pitchfork} \subset i_!^{-1}\mathcal{W}_{\mathbb{D}},$$

we know that $i_!^{-1}\mathcal{C}_{\mathbb{D}}$ consists of the monos in \mathbb{C} , so take $f: Y \longrightarrow X$ in $(i_!^{-1}\mathcal{C}_{\mathbb{D}})^{\pitchfork}$, apply $i_!$, and factor the result as $i_!f = p \circ m: i_!Y \longrightarrow Z \longrightarrow i_!X$ with $p \in \mathcal{F}_{\mathbb{D}} \cap \mathcal{W}_{\mathbb{D}}$ and $m: i_!Y \longrightarrow Z$ monic. We then need to show that m is in $\mathcal{W}_{\mathbb{D}}$.

We can apply Theorem 2.2.1 of [?], with $K = \widehat{\mathbb{C}}$, $M = \widehat{\mathbb{D}}$, $V = i_!$, $k = i^*$, and:

- 1. QX = X and $\epsilon = 1_X : X \longrightarrow X$, so that $i_! 1_X = 1_{i_!X}$ and therefore in $\mathcal{W}_{\mathbb{D}}$, while all objects are cofibrant,
- 2. Qf = f for any $f: X \longrightarrow Y$ in $\widehat{\mathbb{C}}$, so that the naturality condition is similarly trivial,
- 3. factor the codiagonal $X + X \longrightarrow X$ as $\pi_2 \circ j : X + X \longrightarrow I \times X \longrightarrow X$ with $j = (\partial I \times X) : X + X \longrightarrow I \times X$.

It remains only to show that $i_!p: i_!(I \times X) \longrightarrow i_!X$ is in $\mathcal{W}_{\mathbb{D}}$ and $i_!j: i_!(X+X) \longrightarrow i_!(I \times X)$ is in $\mathcal{C}_{\mathbb{D}}$. The latter is clear, since j is monic. To show the former, observe that for any $D \in \widehat{\mathbb{D}}$, the projection $\pi_2: I_{\mathbb{D}} \times D \longrightarrow D$ is in $\mathcal{W}_{\mathbb{D}}$ by 3-for-2, since an endpoint inclusion $D \longrightarrow I_{\mathbb{D}} \times D$ is a cofibration and a strong deformation retract, hence in $\mathcal{W}_{\mathbb{D}}$.

Thus we have shown:

Theorem 4. There is a Quillen model structure (C, W, \mathcal{F}) on the category $\widehat{\mathbb{C}}$ of cartesian cubical sets, in which

$$\mathcal{C} = monomorphisms,$$

$$\mathcal{W} = \{ f \mid i_! f = p \circ i, \ p \in \mathcal{F}_{\mathbb{D}} \cap \mathcal{W}_{\mathbb{D}}, \ i \in \mathcal{C}_{\mathbb{D}} \cap \mathcal{W}_{\mathbb{D}} \},$$

$$\mathcal{F} = (\mathcal{C} \cap \mathcal{W})^{\pitchfork}.$$

where $i_!: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{D}}$ is the left adjoint of precomposition along the canonical map $i: \mathbb{C} \longrightarrow \mathbb{D}$ from Cartesian cubes to Dedekind cubes, and $(\mathcal{C}_{\mathbb{D}}, \mathcal{W}_{\mathbb{D}}, \mathcal{F}_{\mathbb{D}})$ is the Sattler model structure on $\widehat{\mathbb{D}}$.

References:

- Gambino-Sattler
- Sattler
- Hess, Kedziorek, Riehl, Shipley
- Garner, Kedziorek, Riehl