NUMBER THEORY HOMEWORK 2: A CONJECTURE ON REPUNIT NUMBERS

WILL CHUANG

1. Data collecting, and Brutal force computing

Data collecting

- \bullet {2,3,4,5,6,7}
- {3,4,5,6,7,8}
- \bullet {4,5,6,7,8,9}
- {5,6,7,8,9,10}
-

Brutal force computing

If we assume the six consecutive number as:

$$\{6k, 6k+1, 6k+2, 6k+3, 6k+4, 6k+5\}$$

then according the possible number of choices are the Stirling number of second kind:

Since we know that there are six cases can be excluded in the beginning, because it's not possible to single out one number, and equals to a product that is formed by the other five numbers.

Hence, we only need to consider the following 25 cases:

- $\{6k, 6k + 1\}$, $\{6k + 2, 6k + 3, 6k + 4, 6k + 5\}$ $\Rightarrow (6k)(6k + 1) = (6k + 2)(6k + 3)(6k + 4)(6k + 5)$ No rational solution.
- $\{6k, 6k + 2\}$, $\{6k + 1, 6k + 3, 6k + 4, 6k + 5\}$ \Rightarrow (6k)(6k + 2) = (6k + 1)(6k + 3)(6k + 4)(6k + 5)No rational solution.
- $\{6k, 6k + 3\}$, $\{6k + 1, 6k + 2, 6k + 4, 6k + 5\}$ No rational solution.

- $\{6k, 6k + 4\}, \{6k + 1, 6k + 2, 6k + 3, 6k + 5\}$ No rational solution.
- $\{6k, 6k + 5\}$, $\{6k + 1, 6k + 2, 6k + 3, 6k + 4\}$ No rational solution.
- $\{6k+1, 6k+2\}$, $\{6k, 6k+3, 6k+4, 6k+5\}$ No rational solution.
- $\{6k+1, 6k+3\}$, $\{6k, 6k+2, 6k+4, 6k+5\}$ No rational solution.
- $\{6k+1, 6k+4\}$, $\{6k, 6k+2, 6k+3, 6k+5\}$ No rational solution.
- $\{6k+1, 6k+5\}$, $\{6k, 6k+2, 6k+3, 6k+4\}$ No rational solution.
- $\{6k+2,6k+3\}$, $\{6k,6k+1,6k+4,6k+5\}$ No rational solution.
- $\{6k + 2, 6k + 4\}$, $\{6k, 6k + 1, 6k + 3, 6k + 5\}$ No rational solution.
- $\{6k+2, 6k+5\}$, $\{6k, 6k+1, 6k+3, 6k+4\}$ No rational solution.
- $\{6k+3,6k+4\}$, $\{6k,6k+1,6k+2,6k+5\}$ No rational solution.
- $\{6k+3, 6k+5\}$, $\{6k, 6k+1, 6k+2, 6k+4\}$ No rational solution.
- $\{6k+4, 6k+5\}$, $\{6k, 6k+1, 6k+2, 6k+3\}$ No rational solution.
- $\{6k, 6k + 1, 6k + 2\}, \{6k + 3, 6k + 4, 6k + 5\}$ No rational solution.
- $\{6k+1, 6k+2, 6k+3\}$, $\{6k, 6k+4, 6k+5\}$ No rational solution.

NUMBER THEORY HOMEWORK 2: A CONJECTURE ON REPUNIT NUMBERS

- $\{6k+2, 6k+3, 6k+4\}, \{6k, 6k+1, 6k+5\}$ No rational solution.
- $\{6k, 6k + 2, 6k + 4\}, \{6k + 1, 6k + 3, 6k + 5\}$ No rational solution.
- $\{6k, 6k + 1, 6k + 4\}, \{6k + 2, 6k + 3, 6k + 5\}$ No rational solution.
- $\{6k+1, 6k+2, 6k+4\}$, $\{6k+3, 6k+5, 6k\}$ No rational solution.
- $\{6k+1, 6k+2, 6k+5\}$, $\{6k+3, 6k+4, 6k\}$ No rational solution.
- $\{6k+1, 6k+3, 6k+4\}$, $\{6k+2, 6k+5, 6k\}$ No rational solution.
- $\{6k+1, 6k+4, 6k+5\}$, $\{6k+2, 6k+3, 6k\}$ No rational solution.
- $\{6k+2, 6k+4, 6k+5\}$, $\{6k+1, 6k+3, 6k\}$ No rational solution.

2. Conjectures and Proofs

Conjecture 1

Claim:

For the case (6k + a)(6k + b)(6k + c) = (6k + d)(6k)(6k + e), there is no rational solutions for this equation, if $a, b, c, d, e \in \{1, 2, 3, 4, 5\}$.

Proof. Let's expand the equation, and simplify it:

$$(6k+a)(6k+b)(6k+c) = (6k+d)(6k)(6k+e)$$

$$\Rightarrow abc + (6ab+6ac+6bc-6de)k + (36a+36b-36e)k^2 = 0$$

$$\Rightarrow \frac{abc}{(36a+36b-36e)} + \frac{(6ab+6ac+6bc-6de)}{(36a+36b-36e)}k + k^2 = 0$$

Since
$$(x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta$$
, hence

$$\alpha\beta = \frac{abc}{36(a+b-e)} \in \mathbb{Z}$$

$$\alpha + \beta = \frac{-(ab+ac+bc-de)}{6 \cdot (a+b-e)} = \frac{de-a(b+c)-bc}{6(a+b-e)} \in \mathbb{Z}$$

where $k = \alpha$, or β , and $\alpha, \beta \in \mathbb{Z}$. Therefore,

6 |
$$de - a(b+c) - bc$$
, (\exists symmetry: $b \longleftrightarrow c, d \longleftrightarrow e$)
36 | abc

That is to form abc, there are two cases: either (3,4,5) or (2,4,5). Thus, there are six sub-cases to test:

(1)
$$(a, b, c, d, e) = (3, 4, 5, 1, 2)$$

$$\Rightarrow de - a(b+c) - bc = -45 \Rightarrow 6 \not| -45 \Rightarrow$$
(2)
$$(a, b, c, d, e) = (4, 3, 5, 1, 2)$$

$$\Rightarrow de - a(b+c) - bc = -45 \Rightarrow 6 \not| -45 \Rightarrow$$
(3)
$$(a, b, c, d, e) = (5, 3, 4, 1, 2)$$

$$\Rightarrow de - a(b+c) - bc = -45 \Rightarrow 6 \not| -45 \Rightarrow$$
(4)
$$(a, b, c, d, e) = (2, 4, 5, 1, 2)$$

$$\Rightarrow de - a(b+c) - bc = -35 \Rightarrow 6 \not| -35 \Rightarrow$$
(5)
$$(a, b, c, d, e) = (4, 2, 5, 1, 2)$$

$$\Rightarrow de - a(b+c) - bc = -34 \Rightarrow 6 \not| -34 \Rightarrow$$
(6)
$$(a, b, c, d, e) = (5, 2, 4, 1, 2)$$

$$\Rightarrow de - a(b+c) - bc = -35 \Rightarrow 6 \not| -35 \Rightarrow$$

$$(a, b, c, d, e) = (3, 4, 5, 1, 2)$$

$$\Rightarrow de - a(b+c) - bc = -45 \Rightarrow 6 \not| -45 \Rightarrow$$

Conjecture 2

Claim:

For the case (6k + a)(6k + b) = (6k + c)(6k + d)(6k)(6k + e), there is no rational solutions for this equation, if $a, b, c, d, e \in \{1, 2, 3, 4, 5\}$.

Proof. Consider

$$k^{4} \frac{(216)(e+d+c)k^{3} + 36(de+ce+cd-1)k^{2} + 6(cde-b-a)k - ab}{1296} = 0$$

Since $k \in \mathbb{Z}$, hence

$$\alpha\beta\gamma\delta = \frac{-ab}{1296}$$

That is

$$1296 \mid ab \Rightarrow 1296 \le ab,$$

Because $a, b \in \{1, 2, 3, 4, 5\}$, it follows that this is not possible. This completes the proof!