

Supply Chains Modelling and Simulation Framework: Graph-Driven Approach Using Ontology-Based Semantic Networks and Graph Database

Mahmoud Elbattah
National University of Ireland Galway
mahmoud.elbattah@nuigalway.ie

Outline

- Supply Chains Background
- Research Problem
- The Proposed Framework & Methodology
- Expected Outcomes

Supply Chains Background

What is a Supply Chain?

Research Problem

Outline of Challenges

Potential Gaps in Literature

Conceptual Modelling

- The lack of a <u>standard basis</u> for modelling supply chains.
- The developed models might not help with scalability for large-scale supply chains.
- The Lack of recognition that supply chains are <u>neither completely</u> discrete nor continuous, but a mixture of both.

Supply Chains Ontology

- Apart from (*Fayez, Rabelo, 2005*), the ontology mainly addressed the strategic level of supply chains.
- The shortage of industry-specific ontologies.

Simulation **Tools**

- Simulation tools were mostly convenient for <u>simulation experts</u>.
- Automatic generation (model-driven architecture) of simulation models has been little addressed.

The Proposed Framework

Outline of Objectives

Conceptual Modelling

- Providing a semantic-based modelling method for supply chains.
- Investigating the flexibility and scalability provided by graph database for building complex large-scale supply chain models.

Supply Chains Ontology

- Developing generic ontology that can describe the strategic, tactical and operational levels of supply chains.
- Developing specific ontology for healthcare supply chains.

Simulation Models

 Automatic generation of simulation models based on high-level conceptual models to help non-simulation experts.

The Proposed Framework Overview

Conceptual Modelling Approach

Supply Chains as Big Graphs

A typical supply chain example.

- A virtual complex network of suppliers, manufacturers, wholesaler, retailers and customers connected through upstream and downstream linkages.
- Apparently, it can be conceivable to consider modelling supply chains as constructing "Big Graphs".

Supply Chains as Semantic Networks

An example of a semantic network.

Nodes \rightarrow The supply chain participants (entities) interconnected.

Arcs \rightarrow Predicates that can represent properties or relationships.

Supply Chains Ontology

Models and Ontologies Storage with Graph Database

format.

Building Simulation Models

Automatic Generation of Simulation Models

Expected Outcomes

Expected Outcomes

- Higher flexibility and share-ability of supply chain models through semantic graph-driven models.
- Extended potentials for storing large-scale supply chain models using graph database.
- Extracting generic ontology for supply chains.
- Developing specific ontology for healthcare supply chains.

Expected Outcomes (cont'd)

- Capability to build combined discrete-continuous models based on discrete-continuous classification of ontology attributes.
- Helping non-simulation experts by automatic generation of simulation models.

Thank You!