Op-Amp Circuits: Part 1

M. B. Patil mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* The Operational Amplifier (Op-Amp) is a versatile building block that can be used for realizing several electronic circuits.

- * The Operational Amplifier (Op-Amp) is a versatile building block that can be used for realizing several electronic circuits.
- * The characteristics of an op-amp are nearly ideal \to op-amp circuits can be expected to perform as per theoretical design in most cases.

- * The Operational Amplifier (Op-Amp) is a versatile building block that can be used for realizing several electronic circuits.
- The characteristics of an op-amp are nearly ideal → op-amp circuits can be expected to perform as per theoretical design in most cases.
- * Amplifiers built with op-amps work with DC input voltages as well \rightarrow useful in sensor applications (e.g., temperature, pressure)

- * The Operational Amplifier (Op-Amp) is a versatile building block that can be used for realizing several electronic circuits.
- The characteristics of an op-amp are nearly ideal → op-amp circuits can be expected to perform as per theoretical design in most cases.
- * Amplifiers built with op-amps work with DC input voltages as well → useful in sensor applications (e.g., temperature, pressure)
- * The user can generally carry out circuit design without a thorough knowledge of the intricate details of an op-amp. This makes the design process simple.

* The external resistances (\sim a few k Ω) are generally much larger than R_o and much smaller than $R_i \to$ we can assume $R_i \to \infty$, $R_o \to 0$ without significantly affecting the analysis.

- * The external resistances (\sim a few k Ω) are generally much larger than R_o and much smaller than $R_i \to$ we can assume $R_i \to \infty$, $R_o \to 0$ without significantly affecting the analysis.
- * V_{CC} and $-V_{EE}$ ($\sim \pm 5~V$ to $\pm 15~V$) must be supplied; an op-amp will not work without them!

- * The external resistances (\sim a few k Ω) are generally much larger than R_o and much smaller than $R_i \to$ we can assume $R_i \to \infty$, $R_o \to 0$ without significantly affecting the analysis.
- * V_{CC} and $-V_{EE}$ ($\sim \pm 5~V$ to $\pm 15~V$) must be supplied; an op-amp will not work without them! In op-amp circuits, the supply voltages are often not shown explicitly.

- * The external resistances (\sim a few k Ω) are generally much larger than R_o and much smaller than $R_i \to$ we can assume $R_i \to \infty$, $R_o \to 0$ without significantly affecting the analysis.
- * V_{CC} and $-V_{EE}$ ($\sim \pm 5~V$ to $\pm 15~V$) must be supplied; an op-amp will not work without them! In op-amp circuits, the supply voltages are often not shown explicitly.

	Parameter	Ideal Op-Amp	741
*	A_V	∞	10 ⁵ (100 dB)
	R_i	∞	2 ΜΩ
	Ro	0	75 Ω

* The output voltage V_o is limited to $\pm V_{\rm sat}$, where $V_{\rm sat} \sim 1.5~V$ less than V_{CC} .

- * The output voltage V_o is limited to $\pm V_{\sf sat}$, where $V_{\sf sat} \sim 1.5 \, V$ less than $V_{\sf CC}$.
- * For $-V_{\rm sat} < V_o < V_{\rm sat}$, $V_i = V_+ V_- = V_o/A_V$, which is very small $\rightarrow V_+$ and V_- are *virtually* the same.

* Broadly, op-amp circuits can be divided into two categories:

- * Broadly, op-amp circuits can be divided into two categories:
 - op-amp operating in the linear region

- * Broadly, op-amp circuits can be divided into two categories:
 - op-amp operating in the linear region
 - op-amp operating in the saturation region

- * Broadly, op-amp circuits can be divided into two categories:
 - op-amp operating in the linear region
 - op-amp operating in the saturation region
- * Whether an op-amp in a given circuit will operate in linear or saturation region depends on

- * Broadly, op-amp circuits can be divided into two categories:
 - op-amp operating in the linear region
 - op-amp operating in the saturation region
- * Whether an op-amp in a given circuit will operate in linear or saturation region depends on
 - input voltage magnitude

- * Broadly, op-amp circuits can be divided into two categories:
 - op-amp operating in the linear region
 - op-amp operating in the saturation region
- * Whether an op-amp in a given circuit will operate in linear or saturation region depends on
 - input voltage magnitude
 - type of feedback (negative or positive)
 (We will take a qualitative look at feedback later.)

In the linear region,

*
$$V_o=A_V\,(V_+-V_-)$$
, i.e., $V_+-V_-=V_o/A_V$, which is very small $\to V_+pprox V_-$

In the linear region,

*
$$V_o=A_V\,(V_+-V_-)$$
, i.e., $V_+-V_-=V_o/A_V$, which is very small $o oxed{V_+}pprox V_-$

* Since R_i is typically much larger than other resistances in the circuit, we can assume $R_i \to \infty$.

$$\rightarrow i_{in} \approx 0$$

In the linear region,

- * $V_o=A_V\,(V_+-V_-)$, i.e., $V_+-V_-=V_o/A_V$, which is very small $ightarrow \overline{V_+pprox V_-}$
- * Since R_i is typically much larger than other resistances in the circuit, we can assume $R_i \to \infty$.

$$\rightarrow i_{in} \approx 0$$

These two "golden rules" enable us to understand several op-amp circuits.

Since $V_{+} \approx V_{-}$, $V_{-} \approx 0 \ V \rightarrow i_{1} = (V_{i} - 0)/R_{1} = V_{i}/R_{1}$.

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since $V_{+} \approx V_{-}, V_{-} \approx 0 V \rightarrow i_{1} = (V_{i} - 0)/R_{1} = V_{i}/R_{1}$.

(The non-inverting input is at *real* ground here, and the inverting input is at *virtual* ground.)

Since i_i (current entering the op-amp) is zero, i_1 goes through R_2 .

Since $V_{+} \approx V_{-}, V_{-} \approx 0 V \rightarrow i_{1} = (V_{i} - 0)/R_{1} = V_{i}/R_{1}$.

(The non-inverting input is at *real* ground here, and the inverting input is at *virtual* ground.)

Since i_i (current entering the op-amp) is zero, i_1 goes through R_2 .

Since $V_{+} \approx V_{-}$, $V_{-} \approx 0 \ V \rightarrow i_{1} = (V_{i} - 0)/R_{1} = V_{i}/R_{1}$.

(The non-inverting input is at *real* ground here, and the inverting input is at *virtual* ground.) Since i_i (current entering the op-amp) is zero, i_1 goes through R_2 .

$$V_o = V_- - i_1 R_2 = 0 - \left(\frac{V_i}{R_1}\right) R_2 = -\left(\frac{R_2}{R_1}\right) V_i$$

Since $V_{+} \approx V_{-}$, $V_{-} \approx 0 \ V \rightarrow i_{1} = (V_{i} - 0)/R_{1} = V_{i}/R_{1}$.

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since i_i (current entering the op-amp) is zero, i_1 goes through R_2 .

$$\to V_o = V_- - i_1 R_2 = 0 - \left(\frac{V_i}{R_1}\right) R_2 = - \left(\frac{R_2}{R_1}\right) V_i \,.$$

The circuit is called an "inverting amplifier."

Since $V_{+} \approx V_{-}$, $V_{-} \approx 0 \ V \rightarrow i_{1} = (V_{i} - 0)/R_{1} = V_{i}/R_{1}$.

(The non-inverting input is at *real* ground here, and the inverting input is at *virtual* ground.)

Since i_i (current entering the op-amp) is zero, i_1 goes through R_2 .

$$ightarrow V_o = V_- - i_1 R_2 = 0 - \left(\frac{V_i}{R_1} \right) R_2 = - \left(\frac{R_2}{R_1} \right) V_i \,.$$

The circuit is called an "inverting amplifier."

Where does the current go?

Since
$$V_{+} \approx V_{-}$$
, $V_{-} \approx 0 \ V \rightarrow i_{1} = (V_{i} - 0)/R_{1} = V_{i}/R_{1}$.

(The non-inverting input is at *real* ground here, and the inverting input is at *virtual* ground.) Since i_i (current entering the op-amp) is zero, i_1 goes through R_2 .

$$\to V_o = V_- - i_1 R_2 = 0 - \left(\frac{V_i}{R_1}\right) R_2 = - \left(\frac{R_2}{R_1}\right) V_i \,.$$

The circuit is called an "inverting amplifier."

Where does the current go?

Since
$$V_+ \approx V_-$$
, $V_- \approx 0$ $V \rightarrow i_1 = (V_i - 0)/R_1 = V_i/R_1$.

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since i_i (current entering the op-amp) is zero, i_1 goes through R_2 .

$$ightarrow V_o = V_- - i_1 R_2 = 0 - \left(\frac{V_i}{R_1} \right) R_2 = - \left(\frac{R_2}{R_1} \right) V_i \,.$$

The circuit is called an "inverting amplifier."

Where does the current go?

(Op-amp 741 can source or sink about 25 mA.)

Op-amp circuits: inverting amplifier

Op-amp circuits: inverting amplifier

* The gain of the inverting amplifier is $-R_2/R_1$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the op-amp which is $\sim 10^5$).

- * The gain of the inverting amplifier is $-R_2/R_1$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the op-amp which is $\sim 10^5$).
- * The gain can be adjusted simply by changing R_1 or R_2 !

- * The gain of the inverting amplifier is $-R_2/R_1$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the op-amp which is $\sim 10^5$).
- * The gain can be adjusted simply by changing R_1 or R_2 !
- * For the common-emitter amplifier, on the other hand, the gain $-g_m(R_C \parallel R_L)$ depends on how the BJT is biased (since g_m depends on I_C).

- * The gain of the inverting amplifier is $-R_2/R_1$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the op-amp which is $\sim 10^5$).
- * The gain can be adjusted simply by changing R_1 or R_2 !
- * For the common-emitter amplifier, on the other hand, the gain $-g_m(R_C \parallel R_L)$ depends on how the BJT is biased (since g_m depends on I_C).

(SEQUEL file: ee101_inv_amp_1.sqproj)

* The output voltage is limited to $\pm V_{\rm sat}.$

- * The output voltage is limited to $\pm V_{\rm sat}$.
- * $V_{\rm sat}$ is $\sim 1.5\,{
 m V}$ less than the supply voltage V_{CC} .

* If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its "slew rate" limitation.

- * If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its "slew rate" limitation.
- * The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall).

- * If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its "slew rate" limitation.
- * The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall).
- * For the 741, the slew rate is 0.5 V/μ sec.

- * If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its "slew rate" limitation.
- * The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall).
- * For the 741, the slew rate is 0.5 $V/\mu {
 m sec.}$

(SEQUEL file: ee101_inv_amp_2.sqproj)

What if the + (non-inverting) and - (inverting) inputs of the op-amp are interchanged?

What if the + (non-inverting) and - (inverting) inputs of the op-amp are interchanged?

Our previous analysis would once again give us $V_o = -\frac{R_2}{R_1} \ V_i$.

What if the + (non-inverting) and - (inverting) inputs of the op-amp are interchanged?

Our previous analysis would once again give us $V_o = -\frac{R_2}{R_1} V_i$.

However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive.

ightarrow Our assumption that the op-amp is working in the linear region does not hold for Circuit 2, and $V_o=-rac{R_2}{R_1}\,V_i$ does not apply any more.

What if the + (non-inverting) and - (inverting) inputs of the op-amp are interchanged?

Our previous analysis would once again give us $V_o = -\frac{R_2}{R_1} V_i$.

However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive.

ightarrow Our assumption that the op-amp is working in the linear region does not hold for Circuit 2, and $V_o=-rac{R_2}{R_1}\,V_i$ does not apply any more.

(Circuit 2 is also useful, and we will discuss it later.)

*
$$V_+ \approx V_- = V_i$$

*
$$V_{+} \approx V_{-} = V_{i}$$

 $\rightarrow i_{1} = (0 - V_{i})/R_{1} = -V_{i}/R_{1}$.

*
$$V_{+} \approx V_{-} = V_{i}$$

 $\rightarrow i_{1} = (0 - V_{i})/R_{1} = -V_{i}/R_{1}$.

* Since
$$i_i = 0$$
, $i_2 = i_1 \rightarrow V_o = V_- - i_2 R_2 = V_+ - i_1 R_2 = V_i - \left(-\frac{V_i}{R_1}\right) R_2 = V_i \left(1 + \frac{R_2}{R_1}\right)$.

*
$$V_{+} \approx V_{-} = V_{i}$$

 $\rightarrow i_{1} = (0 - V_{i})/R_{1} = -V_{i}/R_{1}$.

* Since
$$i_i = 0$$
, $i_2 = i_1 \rightarrow V_o = V_- - i_2 R_2 = V_+ - i_1 R_2 = V_i - \left(-\frac{V_i}{R_1}\right) R_2 = V_i \left(1 + \frac{R_2}{R_1}\right)$.

* This circuit is known as the "non-inverting amplifier."

- * $V_{+} \approx V_{-} = V_{i}$ $\rightarrow i_{1} = (0 - V_{i})/R_{1} = -V_{i}/R_{1}$.
- * Since $i_i = 0$, $i_2 = i_1 \rightarrow V_o = V_- i_2 R_2 = V_+ i_1 R_2 = V_i \left(-\frac{V_i}{R_1}\right) R_2 = V_i \left(1 + \frac{R_2}{R_1}\right)$.
- * This circuit is known as the "non-inverting amplifier."
- * Again, interchanging + and changes the nature of the feedback from negative to positive, and the circuit operation becomes completely different.

* If the sign of the output voltage is not a concern, which configuration should be preferred?

* If the sign of the output voltage is not a concern, which configuration should be preferred?

- * If the sign of the output voltage is not a concern, which configuration should be preferred?
- * For the inverting amplifier, since $V_- \approx$ 0 V, $i_1 = V_s/R_1 \to R_{\rm in} = V_s/i_1 = R_1$.

- * If the sign of the output voltage is not a concern, which configuration should be preferred?
- * For the inverting amplifier, since $V_- \approx$ 0 V, $i_1 = V_s/R_1 \to R_{\rm in} = V_s/i_1 = R_1$.

- * If the sign of the output voltage is not a concern, which configuration should be preferred?
- * For the inverting amplifier, since $V_- \approx 0 \ V$, $i_1 = V_s/R_1 \to R_{\rm in} = V_s/i_1 = R_1$.
- * For the non-inverting amplifier, $R_{\rm in} \sim R_i \, A_V \, \frac{R_1}{R_1 + R_2}$. Huge!

Inverting and non-inverting amplifiers: summary

Consider $R_1 o \infty\,,\,\,R_2 o 0\,.$

Consider
$$R_1 o \infty\,,\,\,R_2 o 0\,.$$

$$rac{V_o}{V_i}
ightarrow 1 + rac{R_2}{R_1}
ightarrow 1$$
 , i.e., $V_o = V_i$.

Consider $R_1 o \infty\,,\ R_2 o 0\,.$

$$rac{V_o}{V_i}
ightarrow 1 + rac{R_2}{R_1}
ightarrow 1$$
 , i.e., $V_o = V_i$.

This circuit is known as unity-gain amplifier/voltage follower/buffer.

Consider
$$R_1 o \infty\,,\ R_2 o 0\,.$$

$$rac{V_o}{V_i}
ightarrow 1 + rac{R_2}{R_1}
ightarrow 1$$
 , i.e., $V_o = V_i$.

This circuit is known as unity-gain amplifier/voltage follower/buffer.

What has been achieved?

Loading effects

Consider an amplifier of gain A_V . We would like to have $V_o = A_V \ V_s$.

Loading effects

Consider an amplifier of gain A_V . We would like to have $V_o = A_V \ V_s$.

However, the actual output voltage is,

$$V_o = \frac{R_L}{R_o + R_L} A_V V_i = A_V \frac{R_L}{R_o + R_L} \frac{R_i}{R_i + R_s} V_s$$
.

Loading effects

Consider an amplifier of gain A_V . We would like to have $V_o = A_V V_s$.

However, the actual output voltage is,

$$V_o = \frac{R_L}{R_o + R_L} A_V V_i = A_V \frac{R_L}{R_o + R_L} \frac{R_i}{R_i + R_s} V_s$$
.

To obtain the desired V_o , we need $R_i
ightarrow \infty$ and $R_o
ightarrow 0$.

Loading effects

Consider an amplifier of gain A_V . We would like to have $V_o = A_V \ V_s$.

However, the actual output voltage is,

$$V_o = \frac{R_L}{R_o + R_L} A_V V_i = A_V \frac{R_L}{R_o + R_L} \frac{R_i}{R_i + R_s} V_s$$
.

To obtain the desired V_o , we need $R_i
ightarrow \infty$ and $R_o
ightarrow 0$.

The buffer (voltage follower) provides these features.

KCL at B:
$$\frac{V_B}{R_L} + \frac{V_B - A_V V_i}{R_o} + \frac{V_B - V_A}{R_2} = 0.$$

KCL at B:
$$\frac{V_B}{R_L} + \frac{V_B - A_V V_i}{R_o} + \frac{V_B - V_A}{R_2} = 0.$$
 Source current:
$$I_S = \frac{V_A}{R_1} + \frac{V_A - V_B}{R_2}.$$

KCL at B:
$$\frac{V_B}{R_L} + \frac{V_B - A_V V_i}{R_o} + \frac{V_B - V_A}{R_2} = 0.$$

Source current: $I_S = \frac{V_A}{R_1} + \frac{V_A - V_B}{R_2}$.

Using $V_i = I_S R_i$, $V_A = V_S - V_i$, and after some algebra, we get

$$R_{\text{in}} = \frac{V_S}{I_S} = \frac{\left(1 + \frac{R_o}{R_L} + \frac{R_o}{R_2}\right) + R_i \left[\left(\frac{1}{R_1} + \frac{1}{R_2}\right) \left(1 + \frac{R_o}{R_L} + \frac{R_o}{R_2}\right) - \frac{R_o}{R_2^2} + \frac{A_V}{R_2}\right]}{\left(\frac{1}{R_1} + \frac{1}{R_2}\right) \left(1 + \frac{R_o}{R_L} + \frac{R_o}{R_2}\right) - \frac{R_o}{R_2^2}}.$$

KCL at B:
$$\frac{V_B}{R_L} + \frac{V_B - A_V V_i}{R_o} + \frac{V_B - V_A}{R_2} = 0.$$

Source current:
$$I_S = \frac{V_A}{R_1} + \frac{V_A - V_B}{R_2}$$
.

Using $V_i = I_S R_i$, $V_A = V_S - V_i$, and after some algebra, we get

$$R_{\text{in}} = \frac{V_S}{I_S} = \frac{\left(1 + \frac{R_o}{R_L} + \frac{R_o}{R_2}\right) + R_i \left[\left(\frac{1}{R_1} + \frac{1}{R_2}\right) \left(1 + \frac{R_o}{R_L} + \frac{R_o}{R_2}\right) - \frac{R_o}{R_2^2} + \frac{A_V}{R_2}\right]}{\left(\frac{1}{R_1} + \frac{1}{R_2}\right) \left(1 + \frac{R_o}{R_L} + \frac{R_o}{R_2}\right) - \frac{R_o}{R_2^2}}.$$

Non-inverting amplifier: input resistance (continued)

$$R_{\text{in}} = \frac{V_{S}}{I_{S}} = \frac{\left(1 + \frac{R_{o}}{R_{L}} + \frac{R_{o}}{R_{2}}\right) + R_{i}\left[\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)\left(1 + \frac{R_{o}}{R_{L}} + \frac{R_{o}}{R_{2}}\right) - \frac{R_{o}}{R_{2}^{2}} + \frac{A_{V}}{R_{2}}\right]}{\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)\left(1 + \frac{R_{o}}{R_{L}} + \frac{R_{o}}{R_{2}}\right) - \frac{R_{o}}{R_{2}^{2}}}.$$

Non-inverting amplifier: input resistance (continued)

$$R_{\text{in}} = \frac{V_{\text{S}}}{I_{\text{S}}} = \frac{\left(1 + \frac{R_o}{R_L} + \frac{R_o}{R_2}\right) + R_i \left[\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\left(1 + \frac{R_o}{R_L} + \frac{R_o}{R_2}\right) - \frac{R_o}{R_2^2} + \frac{A_V}{R_2}\right]}{\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\left(1 + \frac{R_o}{R_L} + \frac{R_o}{R_2}\right) - \frac{R_o}{R_2^2}}.$$

Since R_o is much smaller than R_1 , R_2 , R_I , or R_i ,

$$R_{\rm in} \approx \frac{1 + R_i \left[\left(\frac{1}{R_1} + \frac{1}{R_2} \right) + \frac{A_V}{R_2} \right]}{\left(\frac{1}{R_1} + \frac{1}{R_2} \right)} \approx \frac{R_i \left[\frac{R_1 + R_2}{R_1 R_2} + \frac{A_V}{R_2} \right]}{\frac{R_1 + R_2}{R_1 R_2}} \approx A_V R_i \frac{R_1}{R_1 + R_2}.$$

Let $R_o \rightarrow 0$.

Let
$$R_o \rightarrow 0$$
.

$$V_S = V_i + A_V V_i = V_i (1 + A_V).$$

Let
$$R_o \rightarrow 0$$
.
$$V_S = V_i + A_V V_i = V_i (1 + A_V).$$
$$I_S = \frac{V_i}{R}.$$

Let
$$R_o \rightarrow 0$$
.
 $V_S = V_i + A_V V_i = V_i (1 + A_V)$.
 $I_S = \frac{V_i}{R_i}$.
 $\rightarrow R_{in} = \frac{V_S}{I_S} = R_i (A_V + 1)$

To find R_{out} ,

* Deactivate the input source.

To find R_{out} ,

- * Deactivate the input source.
- * Replace R_L with a test source V'.

To find Rout,

- * Deactivate the input source.
- * Replace R_L with a test source V'.
- * Find the current (I') through V'.

To find Rout,

- * Deactivate the input source.
- * Replace R_L with a test source V'.
- * Find the current (I') through V'.
- * $R_{\text{out}} = \frac{V'}{I'}$

$$V_i = -\frac{(R_i \parallel R_1)}{R_2 + (R_i \parallel R_1)} V' \equiv -kV'.$$

$$V_{i} = -\frac{\left(R_{i} \parallel R_{1}\right)}{R_{2} + \left(R_{i} \parallel R_{1}\right)} V' \equiv -kV'.$$

$$I' = I_{1} + I_{2} = \frac{V' - A_{V}V_{i}}{R_{o}} + \frac{V' - \left(-V_{i}\right)}{R_{2}} = \frac{1}{R_{o}} \left(V' + kA_{V}V'\right) + \frac{1}{R_{2}} \left(V' - kV'\right).$$

$$\begin{aligned} V_i &= -\frac{\left(R_i \parallel R_1\right)}{R_2 + \left(R_i \parallel R_1\right)} \, V' \equiv -kV'. \\ I' &= I_1 + I_2 = \frac{V' - A_V V_i}{R_o} + \frac{V' - \left(-V_i\right)}{R_2} = \frac{1}{R_o} \left(V' + kA_V V'\right) + \frac{1}{R_2} \left(V' - kV'\right). \\ \frac{I'}{V'} &= \frac{1}{R_o} \left(1 + kA_V\right) + \frac{1}{R_2} \left(1 - k\right) \rightarrow R_{\text{out}} = \frac{V'}{I'} = \frac{R_o}{\left(1 + kA_V\right)} \parallel \frac{R_2}{\left(1 - k\right)} \approx \frac{R_o}{\left(1 + kA_V\right)} \end{aligned}$$

$$\begin{split} V_i &= -\frac{(R_i \parallel R_1)}{R_2 + (R_i \parallel R_1)} \ V' \equiv -kV'. \\ I' &= I_1 + I_2 = \frac{V' - A_V V_i}{R_o} + \frac{V' - (-V_i)}{R_2} = \frac{1}{R_o} \left(V' + kA_V V' \right) + \frac{1}{R_2} \left(V' - kV' \right). \\ \frac{I'}{V'} &= \frac{1}{R_o} \left(1 + kA_V \right) + \frac{1}{R_2} \left(1 - k \right) \to R_{\text{out}} = \frac{V'}{I'} = \frac{R_o}{\left(1 + kA_V \right)} \parallel \frac{R_2}{\left(1 - k \right)} \approx \frac{R_o}{\left(1 + kA_V \right)} \\ \text{Special case: Op-amp buffer} \\ k &= \frac{(R_i \parallel R_1)}{R_o + (R_i \parallel R_2)} \to 1 \quad \Rightarrow \quad R_{\text{out}} \approx \frac{R_o}{1 + A_V} \end{split}$$

In summary, the buffer (voltage follower) provides

In summary, the buffer (voltage follower) provides

* a large input resistance $R_{\rm in}$ as seen from the source.

In summary, the buffer (voltage follower) provides

- * a large input resistance R_{in} as seen from the source.
- * a small output resistance $R_{\rm out}$ as seen from the load.

In summary, the buffer (voltage follower) provides

- * a large input resistance R_{in} as seen from the source.
- * a small output resistance $R_{\rm out}$ as seen from the load.
- * a gain of 1, i.e., the output voltage simply follows the input voltage.

Loading effects (revisited)

Problem: We would like to have $V_o = A_V \ V_s$.

Loading effects (revisited)

Problem: We would like to have $V_o = A_V \ V_s$.

But the actual output voltage is,

$$V_o = \frac{R_L}{R_o + R_L} A_V V_i = A_V \frac{R_L}{R_o + R_L} \frac{R_i}{R_i + R_s} V_s.$$

Since the buffer has a large input resistance, $i_1\approx 0\,A$, and V_+ (on the source side) = $V_s\to V_{o1}=V_s$.

Since the buffer has a large input resistance, $i_1\approx 0$ A, and V_+ (on the source side) $=V_s\to V_{o1}=V_s$. Similarly, $i_2\approx 0$ A, and $V_{o2}=A_V$ $V_i=A_V$ V_s .

Since the buffer has a large input resistance, $i_1 \approx 0 A$,

and V_+ (on the source side) $=V_s
ightarrow V_{o1} = V_s$.

Similarly, $\it i_2 \approx 0\,A$, and $\it V_{o2} = \it A_{\it V} \,\it V_{\it i} = \it A_{\it V} \,\it V_{\it s}$.

Finally, $V_{\rm o}=V_{\rm o2}=A_{V}~V_{\rm s}$, as desired, irrespective of $R_{\rm S}$ and $R_{\rm L}$.

Since the buffer has a large input resistance, $i_1 \approx 0 A$,

and V_{+} (on the source side) $=\mathit{V}_{s}
ightarrow \mathit{V}_{o1} = \mathit{V}_{s}$.

Similarly, $i_2 \approx 0 \, A$, and $V_{o2} = A_V \, V_i = A_V \, V_s$.

Finally, $V_o = V_{o2} = A_V V_s$, as desired, *irrespective* of R_S and R_L .

Note that the load current is supplied by the second buffer which acts as a voltage source (= $A_V V_s$) with zero source resistance.

Op-amp circuits (linear region)

Op-amp circuits (linear region)

$$V_- \approx V_+ = 0 \; V \to i_1 = V_{i1}/R_1, \; i_2 = V_{i2}/R_2, \; i_3 = V_{i3}/R_3 \, . \label{eq:V-}$$

$$V_{-} \approx V_{+} = 0 V \rightarrow i_{1} = V_{i1}/R_{1}, i_{2} = V_{i2}/R_{2}, i_{3} = V_{i3}/R_{3}.$$

 $i = i_{1} + i_{2} + i_{3} = \left(\frac{V_{i1}}{R_{1}} + \frac{V_{i2}}{R_{2}} + \frac{V_{i3}}{R_{3}}\right).$

$$V_- \approx V_+ = 0 \; V \to i_1 = V_{i1}/R_1, \; i_2 = V_{i2}/R_2, \; i_3 = V_{i3}/R_3 \, . \label{eq:V-}$$

$$i = i_1 + i_2 + i_3 = \left(\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2} + \frac{V_{i3}}{R_3}\right).$$

Because of the large input resistance of the op-amp, $i_i \approx 0 \rightarrow i_f = i$, which gives

$$V_- \approx \, V_+ = 0 \; V \rightarrow i_1 = V_{i1}/R_1, \, i_2 = V_{i2}/R_2, \, i_3 = V_{i3}/R_3 \, . \label{eq:V-}$$

$$i = i_1 + i_2 + i_3 = \left(\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2} + \frac{V_{i3}}{R_3}\right).$$

Because of the large input resistance of the op-amp, $i_i \approx 0 \rightarrow i_f = i$, which gives

$$V_o = V_- - i_f R_f = 0 - \left(\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2} + \frac{V_{i3}}{R_3}\right) R_f = -\left(\frac{R_f}{R_1} V_{i1} + \frac{R_f}{R_2} V_{i2} + \frac{R_f}{R_3} V_{i3}\right),$$

i.e., V_o is a weighted sum of V_{i1} , V_{i2} , V_{i3} .

$$V_- \approx \, V_+ = 0 \; V \rightarrow i_1 = V_{i1}/R_1, \, i_2 = V_{i2}/R_2, \, i_3 = V_{i3}/R_3 \, . \label{eq:V-}$$

$$i = i_1 + i_2 + i_3 = \left(\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2} + \frac{V_{i3}}{R_3}\right).$$

Because of the large input resistance of the op-amp, $i_i \approx 0 \rightarrow i_f = i$, which gives

$$V_o = V_- - i_f R_f = 0 - \left(\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2} + \frac{V_{i3}}{R_3}\right) R_f = -\left(\frac{R_f}{R_1} V_{i1} + \frac{R_f}{R_2} V_{i2} + \frac{R_f}{R_3} V_{i3}\right),$$

i.e., V_o is a weighted sum of V_{i1} , V_{i2} , V_{i3} .

If $R_1 = R_2 = R_3 = R$, the circuit acts as a <u>summer</u>, giving

$$igg|V_o=-K\left(V_{i1}+V_{i2}+V_{i3}
ight)igg|$$
 with $K=R_f/R$.

Summer example

$$\begin{aligned} &R_1=R_2=R_3=1\;\text{k}\Omega\\ &R_f=2\;\text{k}\Omega\\ &\to V_o=-2\left(V_{i1}+V_{i2}+V_{i3}\right) \end{aligned}$$
 SEQUEL file: ee101_summer.sqproj

Summer example

* Note that the summer also works with DC inputs (so do inverting and non-inverting amplifiers).

Summer example

- * Note that the summer also works with DC inputs (so do inverting and non-inverting amplifiers).
- * Op-amps make life simpler! Think of adding voltages in any other way.

* If resistances are too small, they draw larger currents \rightarrow increased power dissipation

- * If resistances are too small, they draw larger currents \rightarrow increased power dissipation
- * If resistances are too large,

- * If resistances are too small, they draw larger currents \rightarrow increased power dissipation
- * If resistances are too large,
 - The effect of offset voltage and input bias currents becomes more pronounced (to be discussed).

- * If resistances are too small, they draw larger currents \rightarrow increased power dissipation
- * If resistances are too large,
 - The effect of offset voltage and input bias currents becomes more pronounced (to be discussed).
 - Combined with parasitic (wiring) capacitances, large resistances can affect the frequency response and stability of the circuit.

- * If resistances are too small, they draw larger currents \rightarrow increased power dissipation
- * If resistances are too large,
 - The effect of offset voltage and input bias currents becomes more pronounced (to be discussed).
 - Combined with parasitic (wiring) capacitances, large resistances can affect the frequency response and stability of the circuit.
 - Thermal noise increases as R increases, and it may not be desirable in some applications.

- * If resistances are too small, they draw larger currents \rightarrow increased power dissipation
- * If resistances are too large,
 - The effect of offset voltage and input bias currents becomes more pronounced (to be discussed).
 - Combined with parasitic (wiring) capacitances, large resistances can affect the frequency response and stability of the circuit.
 - Thermal noise increases as R increases, and it may not be desirable in some applications.
- * Typical resistance values: 0.1 k to 100 k.

 $R_{\text{in}}=R_1'=10\,\text{k}.$

$$R_{\rm in} = R_1' = 10 \, \rm k.$$

$$R_{
m in} = R_1' = 10\,{
m k}.$$
 $A_V = -rac{R_2'}{R_1'} = -100
ightarrow R_2' = 100 imes 10\,{
m k} = 1\,{
m M}\Omega$

 $R_{\rm in} = R_1' = 10 \, \rm k.$

$$A_V=-rac{R_2'}{R_1'}=-100
ightarrow R_2'=100 imes100$$
 k $=1$ M Ω

 R_2^\prime may be unacceptable from practical considerations.

$$R_{\rm in} = R_1' = 10 \, \rm k.$$

$$A_V = -rac{R_2'}{R_1'} = -100 o R_2' = 100 imes 10 \, \mathrm{k} = 1 \, \mathrm{M}\Omega$$

 R_2^\prime may be unacceptable from practical considerations.

 \rightarrow need a design with smaller resistances.

$$R_{\rm in}=R_1'=10\,{\rm k}.$$

$$A_V = -\frac{R_2'}{R_1'} = -100 \to R_2' = 100 \times 10 \, \text{k} = 1 \, \text{M}\Omega$$

 R_2^\prime may be unacceptable from practical considerations.

 \rightarrow need a design with smaller resistances.

$$R_{\rm in}=R_1'=10\,{\rm k}.$$

$$A_V = -rac{R_2'}{R_1'} = -100 o R_2' = 100 imes 10 \, \mathrm{k} = 1 \, \mathrm{M}\Omega$$

 R_2^\prime may be unacceptable from practical considerations.

 \rightarrow need a design with smaller resistances.

If we ensure $\frac{V_1}{I_1} = R'_2$, we will satisfy the gain condition.

$$I_2 = \frac{V_1}{R_3 + (R_1 \parallel R_2)}$$

$$I_1 = \frac{R_2}{R_1 + R_2} I_2 = \frac{R_2}{R_1 + R_2} \times \frac{R_1 + R_2}{R_3(R_1 + R_2) + R_1 R_2} V_1$$

$$I_{2} = \frac{V_{1}}{R_{3} + (R_{1} \parallel R_{2})}$$

$$I_{1} = \frac{R_{2}}{R_{1} + R_{2}} I_{2} = \frac{R_{2}}{R_{1} + R_{2}} \times \frac{R_{1} + R_{2}}{R_{3}(R_{1} + R_{2}) + R_{1}R_{2}} V_{1}$$

$$R_{\text{eff}} \equiv \frac{V_{1}}{I_{1}} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$$

$$I_{2} = \frac{V_{1}}{R_{3} + (R_{1} \parallel R_{2})}$$

$$I_{1} = \frac{R_{2}}{R_{1} + R_{2}} I_{2} = \frac{R_{2}}{R_{1} + R_{2}} \times \frac{R_{1} + R_{2}}{R_{3}(R_{1} + R_{2}) + R_{1}R_{2}} V_{1}$$

$$R_{\text{eff}} \equiv \frac{V_{1}}{I_{1}} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$$

ightarrow Choose R_1 , R_2 , R_3 such that $R_{
m eff}=R_2'=1\,{
m M}\Omega.$

$$I_{2} = \frac{V_{1}}{R_{3} + (R_{1} \parallel R_{2})}$$

$$I_{1} = \frac{R_{2}}{R_{1} + R_{2}} I_{2} = \frac{R_{2}}{R_{1} + R_{2}} \times \frac{R_{1} + R_{2}}{R_{3}(R_{1} + R_{2}) + R_{1}R_{2}} V_{1}$$

$$R_{\text{eff}} \equiv \frac{V_{1}}{I_{1}} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$$

 \rightarrow Choose R_1 , R_2 , R_3 such that $R_{\text{eff}} = R_2' = 1 \text{ M}\Omega$.

$$R_{\rm eff} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

We want $R_{ ext{eff}}=R_2'=1\, ext{M}\Omega.$

$$R_{\rm eff} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

We want $R_{\mathrm{eff}}=R_2'=1\,\mathrm{M}\Omega.$

Let
$$R_1 = R_3 \equiv R$$

$$R_{\text{eff}} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

We want $R_{\mathrm{eff}}=R_2'=1\,\mathrm{M}\Omega.$

Let
$$R_1 = R_3 \equiv R \to R_{\text{eff}} = \frac{R^2 + 2 R R_2}{R_2} = R \left(\frac{R}{R_2} + 2 \right)$$

$$R_{\text{eff}} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

Let
$$R_1 = R_3 \equiv R \to R_{\text{eff}} = \frac{R^2 + 2RR_2}{R_2} = R\left(\frac{R}{R_2} + 2\right) \to R_2 = \frac{R}{\frac{R_{\text{eff}}}{R} - 2}$$

$$R_{\text{eff}} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

Let
$$R_1 = R_3 \equiv R \to R_{\text{eff}} = \frac{R^2 + 2RR_2}{R_2} = R\left(\frac{R}{R_2} + 2\right) \to R_2 = \frac{R}{\frac{R_{\text{eff}}}{R} - 2}$$

For
$$R = 10 \text{ k}$$
, $R_2 = \frac{10 \text{ k}}{100 - 2} \approx 102 \Omega$.

$$R_{\text{eff}} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

Let
$$R_1 = R_3 \equiv R \to R_{\text{eff}} = \frac{R^2 + 2RR_2}{R_2} = R\left(\frac{R}{R_2} + 2\right) \to R_2 = \frac{R}{\frac{R_{\text{eff}}}{R} - 2}$$

For
$$R = 10 \text{ k}$$
, $R_2 = \frac{10 \text{ k}}{100 - 2} \approx 102 \Omega$.

Ref: Wait et al, Introduction to op-amp theory and applications, McGraw-Hill, 1992.

$$R_{\rm eff} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

We want
$$R_{\text{eff}} = R_2 = 1 \,\text{MM}$$
.

Let $R_1 = R_3 \equiv R \to R_{\text{eff}} = \frac{R^2 + 2 \,R \,R_2}{R_2} = R \left(\frac{R}{R_2} + 2\right) \to R_2 = \frac{R}{\frac{R_{\text{eff}}}{R} - 2}$

For
$$R = 10 \text{ k}$$
, $R_2 = \frac{10 \text{ k}}{100 - 2} \approx 102 \Omega$.

Ref: Wait et al, Introduction to op-amp theory and applications, McGraw-Hill, 1992.

