DeepONet: Learning Operators with Neural Networks

Krishna Kumar

University of Texas at Austin

Overview

- 1 From Functions to Operators: The Conceptual Leap
- 2 Universal Approximation Theorem for Operators
- Open Deep ONet Architecture
- Example 1: The Derivative Operator
- 5 Example 2: The 1D Nonlinear Darcy Problem
- 6 Physics-Informed DeepONet
- Summary and Implications

Outline

- 1 From Functions to Operators: The Conceptual Leap
- Universal Approximation Theorem for Operators
- 3 DeepONet Architecture
- 4 Example 1: The Derivative Operator
- 5 Example 2: The 1D Nonlinear Darcy Problem
- 6 Physics-Informed DeepONet
- Summary and Implications

Learning Objectives

- Understand the leap from function approximation to operator learning
- Master the Universal Approximation Theorem for Operators
- Learn the DeepONet architecture: Branch and Trunk networks
- Implement operator learning for the derivative operator
- Apply DeepONet to the 1D nonlinear Darcy problem
- Extend to Physics-Informed DeepONet with PDE constraints

The Fundamental Question

We've learned how neural networks can approximate **functions**: $f \cdot \mathbb{R}^d \to \mathbb{R}^m$

But what if we want to learn mappings between infinite-dimensional function spaces?

Enter **operators**: mappings that take functions as input and produce functions as output.

$$\mathcal{G}:\mathcal{A}\to\mathcal{U}$$

where ${\cal A}$ and ${\cal U}$ are function spaces.

Examples of operators:

- Derivative operator: $\mathcal{G}u = \frac{du}{dx}$
- Integration operator: $\mathcal{G}f = \int_0^x f(t)dt$
- PDE solution operator: Given boundary conditions or source terms,
 map to the PDE solution

Traditional Function Approximation

What we're familiar with:

Point-wise mapping:

- **Input:** A number x = 2.5
- **Output:** A number $f(x) = x^2 = 6.25$

Characteristics:

- Input: Single numbers (scalars)
- Output: Single numbers (scalars)
- Learn: Point-wise mappings
- Architecture: Standard feedforward

Traditional neural networks learn scalar-to-scalar mappings.

Operator Learning: The Next Level

The paradigm shift:

Function-to-function mapping:

- **Input:** An entire function $u(x) = \sin(x)$
- Output: Another entire function G[u](x) = cos(x) (the derivative!)

Examples in science:

- $\mathcal{D}[u] = \frac{du}{dx}$ (Differentiation)
- $\mathcal{I}[f] = \int_0^x f(t)dt$ (Integration)
- S[f] = u where $\nabla^2 u = f$ (PDE solution)

Operators map entire functions to entire functions.

The Challenge with Traditional Neural Networks

Standard neural networks learn point-wise mappings: $\mathbb{R}^n \to \mathbb{R}^m$. But operators map functions to functions.

Traditional approach limitations:

- **Fixed discretization:** Networks trained on specific grids can't generalize to different resolutions
- Curse of dimensionality: High-dimensional function spaces are computationally intractable
- No theoretical foundation: No guarantee that standard networks can approximate operators

How do we represent infinite-dimensional functions with finite data?

Solution: We need a fundamentally different architecture that can handle function inputs and outputs while maintaining theoretical guarantees.

Outline

- 1 From Functions to Operators: The Conceptual Leap
- 2 Universal Approximation Theorem for Operators
- Open Deep ONet Architecture
- 4 Example 1: The Derivative Operator
- 5 Example 2: The 1D Nonlinear Darcy Problem
- 6 Physics-Informed DeepONet
- Summary and Implications

The Breakthrough Theorem

Just as the Universal Approximation Theorem tells us neural networks can approximate functions, there's a remarkable extension:

Theorem (Chen & Chen, 1995)

Neural networks can approximate **operators** that map functions to functions!

Mathematical Statement: For any continuous operator $\mathcal{G}:V\subset C(K_1)\to C(K_2)$ and $\epsilon>0$, there exist constants such that:

$$\left| \mathcal{G}(u)(y) - \sum_{k=1}^{p} \sum_{i=1}^{n} c_{i}^{k} \sigma \left(\sum_{j=1}^{m} \xi_{ij}^{k} u(x_{j}) + \theta_{i}^{k} \right) \underbrace{\sigma(w_{k} \cdot y + \zeta_{k})}_{\text{Trunk Network}} \right| < \epsilon$$

Decoding the Theorem

This looks complex, but the insight is beautiful:

- **Q** Branch Network: Processes function u sampled at sensor points $\{x_j\}$
- **Trunk Network:** Processes output coordinates *y*
- **Ombination:** Multiply branch and trunk outputs, then sum

Key insight

Any operator can be written as:

$$G(u)(y) \approx \sum_{k=1}^{p} b_k(u) \cdot t_k(y)$$

where b_k depends only on the input function and t_k depends only on the output location!

This decomposition is the theoretical foundation for the DeepONet architecture.

Outline

- 1 From Functions to Operators: The Conceptual Leap
- 2 Universal Approximation Theorem for Operators
- Open Deep ONet Architecture
- 4 Example 1: The Derivative Operator
- 5 Example 2: The 1D Nonlinear Darcy Problem
- 6 Physics-Informed DeepONet
- Summary and Implications

DeepONet: The Practical Implementation

DeepONet (Deep Operator Network) is the practical implementation of the Operator Universal Approximation Theorem.

Core Architecture

$$\mathcal{G}_{\theta}(u)(y) = \sum_{k=1}^{p} b_k(u) \cdot t_k(y) + b_0$$

where:

- Branch network: $b_k(u) = \mathcal{B}_k([u(x_1), u(x_2), \dots, u(x_m)])$
- Trunk network: $t_k(y) = \mathcal{T}_k(y)$
- p: Number of basis functions (typically 50-200)
- b₀: Bias term

DeepONet Architecture Diagram

DeepONet Architecture

DeepONet architecture showing branch and trunk networks.

Data flow:

- **①** Input function u sampled at sensor points o Branch network o Coefficients $\{b_k\}$
- **②** Query points $y o \mathsf{Trunk}$ network $o \mathsf{Basis}$ functions $\{t_k\}$
- **3** Element-wise multiplication and summation o Output $\mathcal{G}(u)(y)$

Training Data Structure and Loss Function

Input-output pairs: $(u^{(i)}, y^{(j)}, \mathcal{G}(u^{(i)})(y^{(j)}))$

- *N* input functions: $\{u^{(i)}\}_{i=1}^{N}$
- Each function sampled at m sensors: $\{u^{(i)}(x_j)\}_{j=1}^m$
- Corresponding outputs at **query points**: $\{\mathcal{G}(u^{(i)})(y_k)\}$

Loss Function

$$\mathcal{L}(\theta) = \frac{1}{N \cdot P} \sum_{i=1}^{N} \sum_{k=1}^{P} \left| \mathcal{G}_{\theta}(u^{(i)})(y_k) - \mathcal{G}(u^{(i)})(y_k) \right|^2$$

Key Advantages:

- Resolution independence: Train on one grid, evaluate on any grid
- Fast evaluation: Once trained, instant prediction (no iterative solving)
- Generalization: Works for new functions not seen during training

Outline

- 1 From Functions to Operators: The Conceptual Leap
- 2 Universal Approximation Theorem for Operator
- 3 DeepONet Architecture
- 4 Example 1: The Derivative Operator
- 5 Example 2: The 1D Nonlinear Darcy Problem
- 6 Physics-Informed DeepONet
- Summary and Implications

Perfect Starting Point: Learning Derivatives

Problem Setup: Learn the derivative operator $\mathcal{D}[u] = \frac{du}{dx}$

Why this example:

- Simple and intuitive
- Exact analytical solution for verification
- Shows how DeepONet learns basis decompositions
- Bridges function approximation
 → operator learning

Input functions: Cubic polynomials

$$u(x) = ax^3 + bx^2 + cx + d$$

Target operator:

Sample cubic polynomials and their

Krishna Kumar (UT Austin)

The DeepONet Challenge

Key insight: The derivative of a cubic is always quadratic, so it can be written as:

$$\frac{du}{dx} = w_1 \cdot 1 + w_2 \cdot x + w_3 \cdot x^2$$

where $w_1 = c$, $w_2 = 2b$, $w_3 = 3a$.

The DeepONet challenge

Can it learn this mapping automatically without being told the explicit form?

What we expect:

- Branch network should learn to extract coefficients $\{a, b, c\}$
- Trunk network should learn basis functions $\{1, x, x^2\}$
- The combination should reproduce the derivative exactly

18 / 42

Prediction Results

DeepONet predictions vs. true derivatives for test polynomials.

Results:

• Perfect agreement between predicted and true derivatives

Understanding What DeepONet Learned

Outline

- 1 From Functions to Operators: The Conceptual Leap
- 2 Universal Approximation Theorem for Operators
- 3 DeepONet Architecture
- 4 Example 1: The Derivative Operator
- 5 Example 2: The 1D Nonlinear Darcy Problem
- 6 Physics-Informed DeepONet
- Summary and Implications

A Real PDE: The 1D Nonlinear Darcy Problem

Now for something more challenging: A real PDE with nonlinear physics!

Problem Formulation

The 1D nonlinear Darcy equation models groundwater flow with solution-dependent permeability:

$$\frac{d}{dx}\left(-\kappa(u(x))\frac{du}{dx}\right)=f(x), \quad x\in[0,1]$$

where:

- u(x) is the **solution field** (pressure/hydraulic head)
- $\kappa(u) = 0.2 + u^2(x)$ is the **nonlinear permeability**
- $f(x) \sim GP(0, k(x, x'))$ is a Gaussian random field source
- Homogeneous Dirichlet BCs: u(0) = 0, u(1) = 0

The Operator Learning Challenge

Goal: Learn the solution operator G such that:

$$G[f] = u$$

where u is the solution to the nonlinear Darcy equation for source f.

Why this is much harder than the derivative operator:

- Nonlinear PDE: No analytical solution
- **2** Random sources: Infinite variety of input functions
- **Omplex physics:** Solution depends on entire source profile

Traditional approach: For each new source f, solve the PDE numerically (expensive!)

DeepONet approach: Learn the operator once, then instant evaluation

for any new source

Darcy Dataset Generation

Sample Gaussian random field sources and their corresponding solutions.

Dataset characteristics:

- 1000 source functions f(x) generated from a Gaussian process
- Each source solved numerically using iterative methods
- Solutions exhibit complex, nonlinear relationships to sources.

Learned Basis Functions for Darcy

First 8 basis functions learned by the trunk network.

Observations:

Basis functions capture diverse spatial patterns

Outline

- 1 From Functions to Operators: The Conceptual Leap
- 2 Universal Approximation Theorem for Operator
- 3 DeepONet Architecture
- 4 Example 1: The Derivative Operator
- 5 Example 2: The 1D Nonlinear Darcy Problem
- 6 Physics-Informed DeepONet
- Summary and Implications

Beyond Data-Driven Learning

The next frontier: What if we could incorporate physics directly into operator learning?

Standard DeepONet:

- Learns from data only
- Requires many training examples
- No physics knowledge
- May violate physical laws

Loss function:

$$\mathcal{L} = \|u_{\textit{pred}} - u_{\textit{true}}\|^2$$

Physics-Informed DeepONet:

- Incorporates governing equations
- Enforces boundary conditions
- Requires fewer training examples
- Guarantees physical consistency

Enhanced loss function:

$$\mathcal{L} = \mathcal{L}_{\textit{data}} + \mathcal{L}_{\textit{physics}} + \mathcal{L}_{\textit{boundary}}$$

Physics-Informed DeepONet for 1D Poisson Equation

Problem: Learn the solution operator for the 1D Poisson equation:

$$\frac{d^2u}{dx^2} = -f(x), \quad x \in [0,1]$$

with Dirichlet boundary conditions: u(0) = 0, u(1) = 0

Physics-Informed Loss Components

- **① Data Loss:** $\mathcal{L}_{data} = \frac{1}{N} \sum_{i=1}^{N} \lVert u_{pred}^{(i)} u_{true}^{(i)} \rVert^2$
- Physics Loss: $\mathcal{L}_{physics} = \frac{1}{N} \sum_{i=1}^{N} \left\| \frac{d^2 u_{pred}^{(i)}}{dx^2} + f^{(i)} \right\|^2$
- **3** Boundary Loss: $\mathcal{L}_{boundary} = \frac{1}{N} \sum_{i=1}^{N} \left[|u_{pred}^{(i)}(0)|^2 + |u_{pred}^{(i)}(1)|^2 \right]$

Key Modifications from Standard DeepONet

1. Automatic Differentiation

- Use PyTorch's autograd to compute $\frac{d^2u}{dx^2}$
- Enable gradient computation through the network
- Essential for physics loss calculation

2. Multi-Objective Training

- Balance data fidelity and physics consistency
- Tunable weights: $\lambda_{physics}$, $\lambda_{boundary}$
- Monitor all loss components during training

3. Soft Constraint Enforcement

- Physics and boundary conditions as loss terms
- Flexible framework for different PDEs
- Automatically satisfied solutions

Architecture: Physics-Informed DeepONet

Physics-Informed DeepONet for 1D Poisson Equation

Physics-Informed DeepONet architecture with automatic differentiation.

Key components:

- Branch Network: Processes source functions f(x)
- Trunk Network: Processes spatial coordinates x
- Automatic Differentiation: Computes derivatives for physics loss
- Multi-Component Loss: Combines data, physics, and boundary

Training Dynamics: Loss Components

Physics Consistency Verification

Comparison: Standard vs Physics-Informed DeepONet

Key Advantages of Physics-Informed DeepONet

Enhanced Performance

- Better generalization: Physics constraints improve extrapolation
- Guaranteed consistency: Solutions automatically satisfy PDEs
- Reduced data requirements: Physics knowledge compensates for limited data

Interpretable Learning

- Physics loss tracking: Monitor PDE satisfaction during training
- Boundary condition enforcement: Explicit constraint satisfaction
- Multi-scale learning: Different components learn at different scales

Flexible Framework

- Adaptable to different PDEs: Change physics loss for new equations
- Various boundary conditions: Dirichlet, Neumann, Robin, periodic

Implementation Best Practices

1. Loss Balancing

- Carefully tune $\lambda_{physics}$ and $\lambda_{boundary}$ weights
- Monitor loss ratios during training
- Adjust weights based on problem complexity

2. Training Strategy

- Use sufficient collocation points for physics loss
- Enable automatic differentiation properly
- Track all loss components separately

3. Validation

- Always verify physics satisfaction on test data
- Check boundary condition compliance
- Compare with standard DeepONet baseline

Extensions and Future Directions

Immediate Extensions:

- Different boundary conditions: Neumann, Robin, periodic
- Higher dimensions: 2D/3D
 Poisson equations
- Time-dependent PDEs: Parabolic and hyperbolic equations
- Nonlinear PDEs: Variable coefficients and nonlinear terms

Advanced Applications:

- Inverse problems: Learn unknown parameters from data
- Multi-physics: Coupled PDE systems
- Uncertainty quantification:
 Bayesian neural operators
- Real-time control: Fast PDE-constrained optimization

Physics-informed DeepONet represents a powerful paradigm that combines the flexibility of neural networks with the rigor of physical

Outline

- 1 From Functions to Operators: The Conceptual Leap
- 2 Universal Approximation Theorem for Operator
- Open Deep ONet Architecture
- 4 Example 1: The Derivative Operator
- 5 Example 2: The 1D Nonlinear Darcy Problem
- 6 Physics-Informed DeepONet
- Summary and Implications

What We've Learned: The Paradigm Shift

1. Conceptual Leap

- Functions: $\mathbb{R}^d o \mathbb{R}^m$ (point to point)
- **Operators:** $\mathcal{F}_1 \to \mathcal{F}_2$ (function to function)

2. Theoretical Foundation

- Universal Approximation Theorem for Operators
- Branch-trunk architecture emerges naturally
- Basis function decomposition: $G(u)(y) = \sum_k b_k(u) \cdot t_k(y)$

3. Practical Implementation

- Branch network: Encodes input functions into coefficients
- Trunk network: Generates basis functions at query points
- Training: Learn from input-output function pairs

Key Advantages of DeepONet

- Resolution independence: Train on one grid, evaluate on any grid
- Fast evaluation: Once trained, instant prediction
- Generalization: Works for new functions not seen during training
- Physical consistency: Learns the underlying operator, not just patterns

DeepONet represents a paradigm shift:

- Traditional numerical methods: Solve each problem instance
- Operator learning: Learn the solution pattern once, apply everywhere

When to Use DeepONet

Ideal scenarios:

- Parametric PDEs: Need solutions for many different source terms/boundary conditions
- Real-time applications: Require instant evaluation
- Complex geometries: Traditional methods struggle
- Multi-query problems: Same operator, many evaluations

Limitations:

- Training data: Need many solved examples
- Complex operators: Very nonlinear mappings may be challenging
- **High dimensions:** Curse of dimensionality still applies

The Bigger Picture

This opens new possibilities for:

Scientific Applications:

- Inverse problems: Learn parameter-to-solution mappings
- Control applications:
 Real-time system response
- Multi-physics: Coupled operator learning
- Scientific discovery:
 Understanding operator
 structure

Future Directions:

- Multi-output operators: Vector-valued mappings
- Higher dimensions: 2D/3D PDEs
- Physics-informed training: Incorporate governing equations
- Fourier Neural Operators:
 Alternative architectures

We've seen how physics-informed DeepONet combines PINNs with operator learning!

Questions?

Thank you!

Contact:

Krishna Kumar krishnak@utexas.edu University of Texas at Austin

Interactive Demo:

▶ DeepONet Notebook