ОТЛАДОЧНЫЙ КОМПЛЕКТ РАДИОЧАСТОТНОГО МОДУЛЯ

TE-CC430EV-868

РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ	.2
2 СОСТАВ И ОСОБЕННОСТИ КОМПЛЕКТА	.2
3 ОТЛАДОЧНАЯ ПЛАТА MSP-EXP430G2 (LaunchPAD)	
4 ЗАЩИТА ОТ ЭЛЕКТРОСТАТИКИ	_
5 ПИТАНИЕ ОТЛАЛОЧНОГО КОМПЛЕКТА	_

1 ВВЕДЕНИЕ

TE-CC430EV-868 – отладочный комплект компании Терраэлектроника на базе собственного радиочастотного модуля TE-CC430F51-868 и отладочной платы MSP-EXP430G2 (LaunchPAD) производства компании Texas Instruments. В комплект входит два устройства, каждое состоит из радиочастотного модуля и отладочной платы. Используя комплект TE-CC430EV-868, разработчик может организовать полудуплексный CC430F51 радиоканал, котором трансиверы работают совместно эмуляторами/программаторами отладочных плат.

Модуль TE-CC430F51-868 предназначен для работы в безлицензионном ISM-диапазоне 433МГц. Он реализован на микросхеме СС430F5137, которая представляет собой систему-на-кристалле (SoC) и состоит из микроконтроллерного ядра MSP430F5xx и многоканального RF-трансивера CC1101 с низким энергопотреблением.

MSP430F5xx из Микроконтроллерное ядро состава SoC CC430F5137 имеет максимальную тактовую частоту 25 МГц, 12-разрядный аналогово-цифровой преобразователь (АЦП) с частотой выборок 200 kSPS, набор последовательных интерфейсов (UART, 2xSPI, I2C, IrDA) и аппаратный модуль шифрования AES-128.

Модуль TE-CC430F51-868 разработан для установки в серийные изделия, сокращения сроков их разработки и подготовки производства.

С помощью радиомодуля **TE-CC430F51-868**, используя фирменный стек <u>SimpliciTI</u> для СС430, разработчики могут создавать надежные беспроводные сети.

2 СОСТАВ И ОСОБЕННОСТИ КОМПЛЕКТА

Вид одного устройства, состоящего из радиочастотного модуля ТЕ-СС430F51-868 и отладочной платы MSP-EXP430G2 (LaunchPAD) приведен на рис.1.

Телефон: (495) 221-78-03. Продажи: sale@terraelectronica.ru

Рис.1 Модуль TE-CC430F51-868 на отладочной плате MSP-EXP430G2

В комплекте **TE-CC430EV-868** модуль **TE-CC430F51-868** установлен как макрокомпонент на переходную плату, являющуюся мезонином для отладочной платы MSP-EXP430G2 (LaunchPAD).

Отладочный комплект **TE-CC430EV-868** включает:

- плата-мезонин с модулем ТЕ-СС430F51-868 2шт.;
- отладочная плата MSP-EXP430G2 (LaunchPAD) 2шт.;
- антенна 2шт.;

Вид платы-мезонина с модулем **TE-CC430F51-868** приведен на рис.2

Рис.2 Плата-мезонин с модулем TE-CC430F51-868

Принципиальная схема модуля ТЕ-СС430F51-868 приведена на рис.3.

Рис.3 Принципиальная схема модуля ТЕ-СС430F51-868

Москва, Бизнес-парк «Дербеневский», улица Дербеневская, дом 1, подъезд 23 Справка о наличии: (495) 221-78-04. Факс: (495) 221-78-02 Телефон: (495) 221-78-03. Продажи: sale@terraelectronica.ru

Рис.4 Принципиальная схема платы-мезонина с модулем ТЕ-СС430F51-868

Москва, Бизнес-парк «Дербеневский», улица Дербеневская, дом 1, подъезд 23 Справка о наличии: (495) 221-78-04. Факс: (495) 221-78-02 Телефон: (495) 221-78-03. Продажи: sale@terraelectronica.ru Отличительными особенностями модуля ТЕ-СС430F51-868 являются:

- SoC CC430F5137: 32 КБ Flash-памяти, 4 КБ ОЗУ, аппаратный модуль шифрования AES-128, USCI (UART, 2xSPI, I2C, IrDA), 12-разрядный АЦП 200 kSPS;
- светодиод пользователя;
- выводы портов микроконтроллера доступны на контактных площадках;
- совместимость с программным стеком SimpliciTI;
- шаг периферийных контактных площадок 2 мм;
- напряжение питания: 1,8...3,6 В;
- размеры: 30х14х2 мм.

Нумерация выводов модуля **TE-CC430F51-868** представлена на рис.4, функции выводов – в табл.1.

Рис.5 Нумерация выводов модуля TE-CC430F51-868

Таблица 1 Функции выводов модуля ТЕ-СС430F51-868

таолица	· + y · ·	кции выводов модули те оо тоо	. 0 . 000	
Nº	Имя	Имя сигнала	Вх./вых	Функция
вывода	цепи			
1	VDD	VDD		Напряжение питания
2	PJ.0	PJ.0/TD0	I/O	Линия цифрового сигнала
				общего назначения
3	PJ.1	PJ.1/TDI/TCLK	I/O	Линия цифрового сигнала
				общего назначения
4	PJ.2	PJ.2/TMS	I/O	Линия цифрового сигнала
				общего назначения
5	PJ.3	PJ.3/TCK	I/O	Линия цифрового сигнала
				общего назначения
6	TEST	TEST/SBWTCK	I	Линия цифрового сигнала
				общего назначения
7	RST	RST/NMI/ SBWTDIO	I/O	Линия цифрового сигнала
				общего назначения
8	P5.1	P5.1/XOUT	I/O	Линия цифрового сигнала
				общего назначения
9	P5.0	P5.0/XIN	I/O	Линия цифрового сигнала
				общего назначения
10	P2.7	P2.7/	I/O	Линия цифрового сигнала
		PM_ADC12CLK/PM_DMAE0		общего назначения

	1	1		
11	P2.6	P2.6/ PM_ACLK	I/O	Линия цифрового сигнала
				общего назначения
12	P2.5	P2.5/ PM_SVMOUT/ CB5/A5/	I/O	Линия цифрового сигнала
		VREF+/ VeREF+		общего назначения
13	P2.4	P2.4/ PM_RTCCLK/ CB4/A4/	I/O	Линия цифрового сигнала
		VREF-/ VeREF-		общего назначения
14	P2.3	P2.3/ PM_TA1CCR2A/ CB3/ A3	I/O	Линия цифрового сигнала
				общего назначения
15	P2.2	P2.2/ PM_TA1CCR1A/ CB2/ A2	I/O	Линия цифрового сигнала
				общего назначения
16	P2.1	P2.1/ PM_TA1CCR0A/ CB1/ A1	I/O	Линия цифрового сигнала
				общего назначения
17	P2.0	P2.0/ PM_CBOUT1/	I/O	Линия цифрового сигнала
		PM_TA1CLK/CB0/ A0		общего назначения
18	P1.7	P1.7/ PM_UCA0CLK/	I/O	Линия цифрового сигнала
		PM_UCB0STE		общего назначения
19	P1.6	P1.6/	I/O	Линия цифрового сигнала
		PM_UCA0TXD/PM_UCA0SIMO		общего назначения
20	P1.5	P1.5/	I/O	Линия цифрового сигнала
		PM_UCA0RXD/PM_UCA0SOMI		общего назначения
21	P1.4	P1.4/	I/O	Линия цифрового сигнала
		PM_UCB0CLK/PM_UCA0STE		общего назначения
22	P1.3	P1.3/	I/O	Линия цифрового сигнала
		PM_UCB0SIMO/PM_UCB0SDA		общего назначения
23	P1.2	P1.2/	I/O	Линия цифрового сигнала
		PM UCB0SOMI/PM UCB0SCL	•	общего назначения
24	P1.1	P1.1/ PM_RFGDO2	I/O	Линия цифрового сигнала
			•	общего назначения
25	P1.0	P1.0/ PM RFGDO0	I/O	Линия цифрового сигнала
			•	общего назначения
26	P3.7	P3.7/ PM_SMCLK	I/O	Линия цифрового сигнала
			0	общего назначения
27	P3.6	P3.6/ PM_RFGDO1	I/O	Линия цифрового сигнала
	1 0.0	1 0.0/ 1 M_1 (1 0 0 0 1	., 0	общего назначения
28	P3.5	P3.5/ PM_TA0CCR4A	I/O	Линия цифрового сигнала
	1 0.0	1 0.0/ 1 W_1/10 0 01 C // C	., 0	общего назначения
29	P3.4	P3.4/ PM_TA0CCR3A	I/O	Линия цифрового сигнала
		1 6 1 <u>.</u> 17 6 6 7 7	0	общего назначения
30	P3.3	P3.3/ PM_TA0CCR2A	I/O	Линия цифрового сигнала
	1 3.0	1 0.57 1 M_17(0001(L)(., 0	общего назначения
31	P3.2	P3.2/ PM_TA0CCR1A	I/O	Линия цифрового сигнала
	. 5.2		., 0	общего назначения
32	P3.1	P3.1/ PM_TA0CCR0A	I/O	Линия цифрового сигнала
02	1 0.1	1 0.17 1 W_17 to 0 0 1 to 1	1, 0	общего назначения
33	P3.0	P3.0/ PM CBOUT0/	I/O	Линия цифрового сигнала
	1 0.0	PM TAOCLK	"0	общего назначения
34	GND	1 W_1/100ER		Земля
35	GND			Земля
36	ANT		l I	Антенный вход
37	GND		ı	Земля
31	חאום			או נואוסט

Функционирование модуля **TE-CC430F51-868** определяется функционированием микросхемы CC430F5137, которое описано в документе «Datasheet **CC430F613x CC430F612x** CC430F513x» SLAS554F –MAY 2009–REVISED DECEMBER 2011

Присоединительные размеры модуля **TE-CC430F51-868** указаны на рис.5

Рис.6 Присоединительные размеры модуля TE-CC430F51-868

3 ОТЛАДОЧНАЯ ПЛАТА MSP-EXP430G2 (LaunchPAD)

Отладочная плата MSP-EXP430G2 (рис. 7) в данном отладочном комплекте используется как схемный эмулятор и программатор внутренней Flash-памяти микроконтроллерного ядра MSP430 микросхемы CC430F5137.

Рис.7 Отладочная плата MSP-EXP430G2 (LaunchPAD)

Ee функционирование описано в документе MSP-EXP430G2 LaunchPad Experimenter Board User's Guide (Rev. C)

4 ЗАЩИТА ОТ ЭЛЕКТРОСТАТИКИ

При работе с отладочным комплектом **TE-CC430EV-868** следует соблюдать все правила защиты от электростатического электричества.

5 ПИТАНИЕ ОТЛАДОЧНОГО КОМПЛЕКТА

Питание отладочного комплекта **TE-CC430EV-868** осуществляется от порта USB.

