Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Original) A process for synthesizing biopolymers by stepwise assembly from synthesis building blocks which carry protective groups, where at least one synthesis building block which carries a two-stage protective group is used, where the two-stage protective group is activated by an illumination step and eliminated by a subsequent chemical treatment step, characterized in that the activation takes place by elimination of a photoactivatable protective group which is selected from triplet-sensitized photoactivatable groups, labeled photoactivatable groups and triplet-sensitized and labeled photoactivatable groups.
- (Original) The process as claimed in claim 1, characterized in that the
 chemical treatment step comprises a treatment with base, a treatment with acid,
 an oxidation, a reduction or/and a catalyzed, e.g. enzymatic, reaction.
- (Original) The process as claimed in claim 2, characterized in that the chemical treatment step comprises an acid treatment.
- (Previously Presented) The process as claimed in claim 1, characterized in that a derivatized trityl group is used as two-stage protective group.

5. (Original) The process as claimed in claim 4, characterized in that the synthesis building block with the two-stage protective group has the general formula (I):

$$R_2$$
 M_m
 M_m
 M_m
 M_m

where R_1 and R_2 are each independently selected from hydrogen, (L)- R_3 , -O-(L)- R_3 , N(R_3)₂, NHZ and M,

 R_3 is a C_1 - C_8 alkyl group, a C_2 - C_8 -alkenyl group, a C_2 - C_8 -alkynyl group, a C_6 - C_{25} -aryl group or/and a C_5 - C_{25} -heteroaryl group, which may optionally have substituents.

L is a linker group which is optionally present,

X is the synthesis building block,

M is in each case independently a label optionally linked via a linker group, and m is in each case independently an integer from 0 to 4,

Y is in each case independently a photoactivatable protective group as claimed

in claim 1.

Z is an amino protective group, and where R_1 or/and R_2 may optionally be replaced by Y.

 (Previously Presented) The process as claimed in claim 1, characterized in that a photoactivatable group of the general formula (II) is used

in which Ar is a fused polycyclic fluorescent aryl or heteroaryl, $S_1 \text{ and } S_2 \text{ are each independently selected from hydrogen, a C_1-C_8-alkyl group, a C_2-C_8-alkenyl group, a C_2-C_8-alkenyl group, a C_2-C_2-aryl group or a C_5-C_2-heteroaryl group, each of which may optionally have substituents, and Q is a group for linking the photolabile component to the component which can be eliminated chemically.$

 (Previously Presented) The process as claimed in claim 1, characterized in that a photoactivatable group of the general formula (III) is used:

$$\begin{array}{c|c}
T_1 & T_1 & T_2 \\
T_2 & T_1 & T_2
\end{array}$$

$$Q_1 & T_2 & Q_1$$

$$Z_1 & Z_2$$
(III)

in which T_1 , T_2 , T_3 , T_4 , T_5 and T_6 are each independently selected from hydrogen, C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkoxy, C_1 - C_8 -alkoxy, C_2 - C_8 -alkoxycarbonyl, C_6 - C_2 -aryl or aryloxy or/and C_5 - C_2 -heteroaryl or heteroaryloxy, each of which may optionally have substituents,

and T1 or/and T2 may additionally be trialkylsilyl,

and one of T_3 and T_4 may be NO_2 , with the proviso that the other is then H,

Q₁ is hydrogen, optionally substituted C₁-C₄-alkoxy or di(C₁-C₄-alkyl)amino,

 Z_1 and Z_2 together are -OC(O)-, -NT₇C(O)- or -CT₈=CT₉, where T₈ and T₉ are defined as T₃ - T₆, and T₉ may additionally be NO₂.

and adjacent groups T may optionally form a 5- or 6-membered carbocyclic or heterocyclic, saturated or unsaturated ring, and

Q is a group for linking the photolabile component to the component which can be eliminated chemically.

 (Previously Presented) The process as claimed in claim 1, characterized in that a photoactivatable group of the general formula (IV) is used:

$$U_3$$
 U_4
 U_5
 U_5
 U_4
 U_5
 U_5
 U_7
 U_8

in which U_1 , U_2 , U_4 and U_5 are each independently selected from hydrogen, halogen, NO_2 , U_6 , (L)- U_6 , O-(L)- U_6 , $N(U_6)_2$ and NHZ, U_6 is C_1 - C_8 -alkyl, C_2 - C_8 -alkynyl, C_8 - C_8 -alkynyl, C_8 - C_8 -aryl or C_5 . C_2 -heteroaryl, each of which may optionally have substituents, L is a linker group which is optionally present, U_3 is a label optionally linked via a linker group, and Q is a group for linking the photolabile component to the component which can be eliminated chemically.

 (Previously Presented) The process as claimed in claim 1, characterized in that a photoactivatable group of the general formula (V) is used:

$$V_4 \xrightarrow{V_2} V_1 \xrightarrow{Q} V_6 H$$

in which V_1 , V_2 , V_3 , V_4 , V_5 and V_6 are each independently selected from

hydrogen, halogen, NO $_2$, V $_7$, (L)-V $_7$, O-(L)-V $_7$, N(V $_7$) $_2$, NHZ and M, where V $_7$ is C_1 -C $_8$ -alkyl, C_2 -C $_8$ -alkenyl, C_2 -C $_8$ -alkynyl, C_6 -C $_2$ 5-aryl or C_5 -C $_2$ 5-heteroaryl, each of which may optionally have substituents, L is a linker group which is optionally present and V $_5$ and V $_6$ may additionally be trialkylsilyl, M is a label optionally linked via a linker group, and Q is a group for linking the photolabile component to the component which can be eliminated chemically.

- 10. (Previously Presented) The process as claimed in claim 1, characterized in that the two-stage protective group carries a plurality of labeling groups which can be detected independently of one another.
- 11. (Original) The process as claimed in claim 10, characterized in that a first label is linked to the photolabile component and a second label is linked to the component which can be eliminated chemically.
- (Previously Presented) The process as claimed in claim 5, characterized in that the two-stage protective group comprises at least one fluorescent label.
- (Original) The process as claimed in claim 12, characterized in that a fluorescent label is introduced on the trityl framework of a compound (I).
- (Previously Presented) The process as claimed in claim 1, characterized in that the biopolymers are selected from nucleic acids, nucleic acid analogs,

peptides and saccharides.

- (Original) The process as claimed in claim 14, characterized in that the biopolymers are selected from nucleic acids and nucleic acid analogs.
- (Original) The process as claimed in claim 15, characterized in that phosphoramidites are used as synthesis building blocks.
- (Original) The process as claimed in claim 16, characterized in that
 phosphoramidite building blocks carrying the two-stage protective group on the
 5'-O atom are used.
- 18. (Previously Presented) The process as claimed in claim 1, characterized in that the synthesis of the biopolymers includes the use of spacer and/or linker building blocks.
- (Previously Presented) The process as claimed in claim 1, characterized in that the synthesis of the biopolymers is carried out on a solid phase.
- 20. (Original) The process as claimed in claim 19, characterized in that a location-dependent synthesis of a plurality of biopolymers is carried out with in each case a different sequence of synthesis building blocks on a single support.

- 21. (Previously Presented) The process as claimed in claim 1, characterized in that a synthesis building block with two-stage protective group is used for quality control.
- 22. (Currently Amended) Compounds of the general formula (I)

$$R_2$$
 M_m
 M_m
 M_m
 M_m

where R_1 , R_2 , Y, M and M are defined as in elaim-4 claim-5, and X is a synthesis building block or a leaving group, where R_1 or/and R_2 may optionally be replaced by Y.

- (Original) Compounds as claimed in claim 22, characterized in that they carry
 a plurality of labels detectable independently of one another.
- (Previously Presented) Compounds as claimed in claim 22, characterized in that they carry at least one fluorescent label.

- 25. (Original) The use of compounds of the general formula (I) as synthesis building blocks or for preparing synthesis building blocks for the synthesis of biopolymers.
- (Original) The use as claimed in claim 25 for quality control during the synthesis of biopolymers on a solid support.