FRATAXIN

Composition of data from PDB, Uniprot, clinVar, PolyPhen etc.

by Catrina Friedrich & Sebastian Leimbacher

OVERVIEW

- Monomer
- 2 helices
- 5 beta sheets
- Sequence length: 129 aa
- Ligand interaction: Iron
- 3 isoforms

Frataxin (PDB ID: 3S4M, created with iCn3D)

Q16595 FRDA_HUMAN Q16595-2 FRDA_HUMAN Q16595-3 FRDA_HUMAN	1 1 1	MWTLGRRAVAGLLASPSPAQAQTLTRVPRPAELAPLCGRRGLRTDIDATCTPRRASSNQR MWTLGRRAVAGLLASPSPAQAQTLTRVPRPAELAPLCGRRGLRTDIDATCTPRRASSNQR MWTLGRRAVAGLLASPSPAQAQTLTRVPRPAELAPLCGRRGLRTDIDATCTPRRASSNQR ************************************	60 60 60
Q16595 FRDA_HUMAN Q16595-2 FRDA_HUMAN Q16595-3 FRDA_HUMAN	61 61 61	GLNQIWNVKKQSVYLMNLRKSGTLGHPGSLDETTYERLAEETLDSLAEFFEDLADKPYTFGLNQIWNVKKQSVYLMNLRKSGTLGHPGSLDETTYERLAEETLDSLAEFFEDLADKPYTFGLNQIWNVKKQSVYLMNLRKSGTLGHPGSLDETTYERLAEETLDSLAEFFEDLADKPYTF************************************	120 120 120
Q16595 FRDA_HUMAN Q16595-2 FRDA_HUMAN Q16595-3 FRDA_HUMAN	121 121 121	EDYDVSFGSGVLTVKLGGDLGTYVINKQTPNKQIWLSSPSSGPKRYDWTGKNWVYSHDGV EDYDVSFGSGVLTVKLGGDLGTYVINKQTPNKQIWLSSPSRLTWLLWLFHP EDYDVSFGSGVLTVKLGGDLGTYVINKQTPNKQIWLSSPSRYVVDLSVMTGLGK ***********************************	180 171 174
Q16595 FRDA_HUMAN Q16595-2 FRDA_HUMAN Q16595-3 FRDA_HUMAN	181 172 175	SLHELLAAELTKALKTKLDLSSLAYSGKDA TGCTPTTACPSMSCWPQSSLKP	210 171 196

Entry	Entry name	Protein names	Organism	Gene name
Q16595	FRDA_HUMAN	Frataxin, mitochondrial	Homo sapiens (Human)	FXN FRDA, X25
Q16595-2	FRDA_HUMAN	Isoform 2 of Frataxin, mitochondria	Homo sapiens (Human)	FXN FRDA, X25
Q16595-3	FRDA_HUMAN	Isoform 3 of Frataxin, mitochondria	Homo sapiens (Human)	FXN FRDA, X25

Algment of isoforms of Frataxin (Aligned with Unirpot Align tool)

LOCATION

Graphics by Christian Stolte & Seán O'Donoghue; Source: COMPARTMENTS

Manual annotation Automatic computational assertion

KNOWN FUNCTIONS

- Primarily in mitochondrium
- Ferroxidase activity: $4 \text{ Fe}^{2+} + 4 \text{ H}^{+} + O_{2} = 4 \text{ Fe}^{3+} + 2 \text{ H}_{2}O$
- Biosynthesis of heme proteins
- Assembly/repair iron-sulfur clusters

Putative iron binding site (created with iCn3D)

- Report the GO terms for your protein
- ferrous iron binding (4) + -
- mitochondrial matrix (4) + -
- protein binding (4) + -
- ferric iron binding (3) + -
- 2 iron, 2 sulfur cluster binding (2) + -
- cellular iron ion homeostasis (2) + -
- ferroxidase activity (2) + -
- iron chaperone activity (2) + -
- iron incorporation into metallo-sulfur cluster (2) + -
- mitochondrion (2) + -
- positive regulation of lyase activity (2) + -
- L-cysteine desulfurase complex (1) + -
- adult walking behavior (I) + -
- aerobic respiration (1) + -
- cellular response to hydrogen peroxide (I) + -
- cytosol (I) + -
- embryo development ending in birth or egg hatching (I) + -

- heme biosynthetic process (I) + -
- ion transport (1) + -
- iron-sulfur cluster assembly (1) + -
- mitochondrion organization (1) + -
- negative regulation of apoptotic process (1) + -
- negative regulation of multicellular organism growth (I) + -
- negative regulation of organ growth (1) + -
- negative regulation of release of cytochrome c from mitochondria (1) + -
- oxidative phosphorylation (I) + -
- positive regulation of aconitate hydratase activity (1) + -
- positive regulation of catalytic activity (I) + -
- positive regulation of cell growth (I) + -
- positive regulation of cell population proliferation (1) + -
- positive regulation of succinate dehydrogenase activity (1) + -
- proprioception (I) + -
- protein autoprocessing (I) + -
- regulation of ferrochelatase activity (1) + -
- response to iron ion (I) + -
- small molecule metabolic process

FRIEDREICH'S ATAXIA

- Autosomal recessive
- Progressive (neuro-)degenerative
- Impaired balance & mobility
- Cardiomyopathy
- Speech impairment
- Scoliosis
- I in 50'000 individuals of European ancestry

Source: Reatapharma.com

FRATAXIN & FRIEDREICH'S ATAXIA

- Frataxin deficiant cells
- Iron accumulation in mitochondria
- Increased oxidative stress
- Inhibition of antioxidant defences
- Impaired mitochondrial ATP production

Scheme of frataxin's effect (source: Fixing frataxin: 'ironing out' the metabolic defect in Friedreich's ataxia)

Putative iron binding site (red)

lle > Val or Phe (yellow)

Leu > Ser or Termination (yellow)

Gly > Ala or Val (yellow)

Asn > Lys (yellow)

Met > lle

TREATMENT

- Conventional cardiac treatments
- Surgery
- Clinical developement: Omaveloxolone (activation of NRF2)

Source: Reatapharma.com

REFERENCES

- PDB (Protein Data Bank, Frataxin) http://www.rcsb.org/pdb/results/results.do?tabtoshow=Current&qrid=EF9D19E9, 04.10.2019
- Uniprot (Human Frataxin, reviewed)

 https://www.uniprot.org/uniprot/?query=family:src&fil=reviewed%3Ayes+AND+organism%3A%22Homo+sapiens+%28Human%29+%5B9606%5D%22&sort=score, 04.10.2019
- PolyPhen-2 http://genetics.bwh.harvard.edu/pph2/, 04.10.2019
- Omaveloxolone, Reatapharma.com, https://www.reatapharma.com/wp-content/uploads/2019/02/20170601_PR_MOXIe_Part1_Data-1.pdf, 04.10.2019
- National Institute of Neurological Disorders and Stroke, <u>https://www.ninds.nih.gov/disorders/patient-caregiver-education/fact-sheets/friedreichs-ataxia-fact-sheet</u>, 04.10.2019
- NCBI Variation Viewer, https://www.ncbi.nlm.nih.gov/variation/view/?q=BRCAI, 04.10.2019

PAPER REFERENCES

- Structure-function analysis of Friedreich's ataxia mutants reveals determinants of frataxin binding and activation of the Fe-S assembly complex, 2011,
 Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA.
- Fixing frataxin: 'ironing out' the metabolic defect in Friedreich's ataxia, 2014, A
 Anzovino et al.