Factors for Constructing Variables Control Charts

				57	74	32	4	4	24	75	91	11	44	[7	33	72	53	37	22	8(14	35	75	99	27	18	7								
		Factors for Control Limits	nits	nits	its	D_4	3.267	2.574	2.282	2.114	2.004	1.924	1.864	1.816	1.777	1.744	1.717	1.693	1.672	1.653	1.637	1.622	1.608	1.597	1.585	1.575	1.566	1.557	-	1.541					
anges	,		D_3	0	0	0	0	0	0.076	0.136	0.184	0.223	0.256	0.283	0.307	0.328	0.347	0.363	0.378	0.391	0.403	0.415	0.425	0.434	0.443	0.451	0.459								
Chart for Ranges			D_2	3.686	4.358	4.698	4.918	5.078	5.204	5.306	5.393	5.469	5.535	5.594	5.647	5.696	5.741	5.782	5.820	5.856	5.891	5.921	5.951	5.979	900'9	6.031	6.056								
			D_1	0	0	0	0	0	0.204	0.388	0.547	0.687	0.811	0.922	1.025	1.118	1.203	1.282	1.356	1.424	1.487	1.549	1.605	1.659	1.710	1.759	1.806								
			d_3	0.853	0.888	0.880	0.864	0.848	0.833	0.820	808.0	0.797	0.787	0.778	0.770	0.763	0.756	0.750	0.744	0.739	0.734	0.729	0.724	0.720	0.716	0.712	0.708								
	for	ine	$1/d_2$	0.8865	0.5907	0.4857	0.4299	0.3946	0.3698	0.3512	0.3367	0.3249	0.3152	0.3069	0.2998	0.2935	0.2880	0.2831	0.2787	0.2747	0.2711	0.2677	0.2647	0.2618	0.2592	0.2567	0.2544								
	Factors for	Center Line	d_2	1.128 0	1.693 0	2.059 0	2.326 0	2.534 0	2.704 0	2.847 0	2.970 0	3.078 0	3.173 0	3.258 0	3.336 0	3.407 0	3.472 0	3.532 0	3.588 0	3.640 0	3.689 0	3.735 0	3.778 0		3.858 0	20.20	3.931 0			$\frac{3}{c_4\sqrt{2(n-1)}}$					
ions		Factors for Control Limits	B_6	2.606 1	2.276	2.088	1.964	.874	.806	.751 2	707	699.	.637	.610	585 3	.563	.544	.526 3	.511 3	.496	.483 3	.470 3	.459 3	.448 3	.438 3		1,420 3	(n-1)	$\frac{4(n-1)}{4n-3}$		$\sqrt{2(n-1)}$				
Deviat			ol Limi	ol Limi		2.0	7	5.	1.9	-	_	_					-				_	_				2000				$c_4 \equiv \frac{4}{4}$	E.	$=1+$ $ c_4$	$B_{\kappa} = c_A + -$	†	
ndard		Contro	Bs	0	0	0 9	0	0.029	0.113	0.179	0.232	0.276	0.313	0.346	3 0.374	0.399	0.421	0.440	0.458	3 0.475	0.490	0.504	0.516	5 0.528	0.539		0.559	3	L4 V 11	- B4 :	ii	ñ			
Chart for Standard Deviations		ors for	B_4	3.267	2.568	2.266	2.089	1.970	1.882	1.815	1.761	1.716	1.679	1.646	1.618	1.594	1.572	1.552	1.534	1.518	1.503	1.490	1.477	1.466	1.455	1.445	1.435	$A_3 = -$	$A_3 = \frac{1}{2}$	$\int_{2(n-1)}$		$\sqrt{2(n-1)}$			
Chart		Fact	B_3	0	0	0	0	0.030	0.118	0.185	0.239	0.284	0.321	0.354	0.382	0.406	0.428	0.448	0.466	0.482	0.497	0.510	0.523	0.534	0.545	0.555	0.565	$A = \frac{3}{\sqrt{n}}$		1	$B_{\varsigma} = c_{\Delta}$				
	Factors for	Center Line	$1/c_4$	1.2533	1.1284	1.0854	1.0638	1.0510	1.0423	1.0363	1.0317	1.0281	1.0252	1.0229	1.0210	1.0194	1.0180	1.0168	1.0157	1.0148	1.0140	1.0133	1.0126	1.0119	1.0114	1.0109	1.0105			B_3	I				
verages	Facto	Cente	₄ 2	0.7979	0.8862	0.9213	0.9400	0.9515	0.9594	0.9650	0.9693	0.9727	0.9754	92176	0.9794	0.9810	0.9823	0.9835	0.9845	0.9854	0.9862	0.9869	0.9876	0.9882	0.9887	0.9892	0.9896								
Chart for Av	-	its	A_3	2.659	1.954	1.628	1.427	1.287	1.182	1.099	1.032	0.975	0.927	988.0	0.850	0.817	0.789	0.763	0.739	0.718	869.0	0.680	0.663	0.647	0.633	0.619	909.0								
	Factors for	Control Limits	A_2	1.880	1.023	0.729	0.577	0.483	0.419	0.373	0.337	0.308	0.285	0.266	0.249	0.235	0.223	0.212	0.203	0.194	0.187	0.180	0.173	0.167	0.162	0.157	0.153								
			A	2.121	1.732	1.500	1.342	1.225	1.134	1.061	1.000	0.949	0.905	998.0	0.832	0.802	0.775	0.750	0.728	0.707	0.688	0.671	0.655	0.640	0.626	0.612	0.600								
	Observations	in	Sample, n	2	c	4	5	9	7	∞	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	For $n > 25$.							

Cumulative Standard Normal Distribution Table

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.10	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.20	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.30	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.40	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.50	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.60	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.70	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.80	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.90	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.00	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.10	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.20	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.30	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.40	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.50	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.60	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.80	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.90	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.00	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.10	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.20	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.30	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.40	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.50	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.60	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.70	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.80	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.90	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.00	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.10	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.20	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.30	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.40	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.50	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.60	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.70	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.80	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999

^{*}Note: z-values greater than 3.89 produce a probability of one.