Homework 13/03 Joan Pau Condal Marco

Exercici 1: Demostra que f^* es lineal.

Sigui $f: E \longrightarrow F$ una aplicació lineal, definim f^* de la següent manera:

$$f^*: F^* \longrightarrow E^*$$
$$\omega \mapsto \omega \circ f$$

Donada la definició de f^* , demostrarem les dues propietats per veure que l'aplicació és lineal.

Siguin $w, v \in F^*$ dues aplicacions lineals, sabem que:

$$f^*(w+v) = (w+v) \circ f = (w+v)(f) = w(f) + v(f) = w \circ f + v \circ f = f^*(w) + f^*(v)$$

D'on queda demostrada la primera propietat de la linealitat.

Per la segona propietat, considerarem $\alpha \in \mathbb{R}$ i $w \in F^*$ aplicació lineal. Aleshores, per definició de f^* sabem que:

$$f^*(\alpha w) = (\alpha w) \circ f = (\alpha w)(f) =$$
$$\alpha w(f) = \alpha(w \circ f) = \alpha f^*(w)$$

D'on queda demostrada la linealitat de f^* .

Exercici 2: Demostra el següent corol·lari:

$$C(\mathcal{B}_2^*, \mathcal{B}_1^*) = (C(\mathcal{B}_1, \mathcal{B}_2))^t$$

On C és la matriu de canvi de base; i $\mathcal{B}_1, \mathcal{B}_2$ són dues bases de l'espai E de dimensió finita.

Recordem que si tenim l'aplicació lineal $f: E \longrightarrow F$ i definim $f^*: F^* \longrightarrow E^*$, aleshores

$$M_{\mathcal{B}_{F^*}\mathcal{B}_{E^*}}(f^*) = (M_{\mathcal{B}_E}\mathcal{B}_F(f))^t \tag{1}$$

Definim dues bases d'un espai E de dimensió finita i una base dual per cada base de E

$$\mathcal{B}_1 = \{v_1, \dots, v_n\}$$
 $\mathcal{B}_1^* = \{v_1^*, \dots, v_n^*\}$
 $\mathcal{B}_2 = \{u_1, \dots, u_n\}$ $\mathcal{B}_2^* = \{u_1^*, \dots, u_n^*\}$

Definim ara l'endomorfisme f de E de la següent manera:

$$f: E \longrightarrow E$$

 $f(v_i) \mapsto u_i, \forall i = 1, \dots, n$

D'aquesta manera, f és l'aplicació de canvi de base de \mathcal{B}_1 a \mathcal{B}_2 . Si aconseguim demostrar que f^* és la funció de canvi de base de \mathcal{B}_2^* a \mathcal{B}_1^* , per (1) haurem demostrat el corol·lari.

Per definició, f^* serà l'endomorfisme de E^* tal que

$$f^*: E^* \longrightarrow E^*$$
$$\omega \mapsto \omega \circ f$$

Per demostrar que f^* és la funció de canvi de base, hem de demostrar que

$$f^*(u_i^*) = v_i^*, \forall i = 1, \dots, n$$

Per la definició de f^* sabem que

$$f^*(u_i^*)(v_j) = (u_i^* \circ f)(v_j) = u_i^*(f(v_j)) = u_i^*(u_j), \forall i, j = 1, \dots, n$$
(2)

I de la igualtat (2) podem veure que

$$(u_i^* \circ f)(v_j) = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases} \implies (u_i^* \circ f) = v_i^*, \forall i = 1, \dots, n$$

D'on concluïm que $f^*(u_i^*) = v_i^*, \forall i = 1, ..., n$; que significa que f^* és la funció de canvi de base \mathcal{B}_2^* a \mathcal{B}_1^* , demostrant així el corol·lari.

Exercici 3: Si \mathcal{B} és una base de E, \mathcal{B}^* la seva base dual i \mathcal{B}^{**} la base dual de la base dual, demostra que

$$M_{\mathcal{B}\mathcal{B}^{**}}(\Psi) = \mathbf{I}$$

la matriu identitat

Recordem de teoria les aplicacions ψ_u i Ψ :

$$\psi_u : E \longrightarrow \mathbb{R} \qquad \Psi : E \longrightarrow E^{**}$$

$$\psi_u(\omega) \mapsto \omega(u) \qquad \qquad \Psi(u) := \psi_u$$

$$\psi_u \in E^{**}$$

Definim les bases dels tres espais de la següent manera:

$$\mathcal{B} = \{u_1, \dots, u_n\}$$
$$\mathcal{B}^* = \{v_1, \dots, v_n\}$$
$$\mathcal{B}^{**} = \{w_1, \dots, w_n\}$$

Per la definició de matriu d'aplicació lineal, sabem que la columna i de la matriu $M_{\mathcal{BB}^{**}}(\Psi)$ serà $\Psi(u_i) = \psi_{u_i}$. Aplicant la definició de ψ_{u_i} sabem que $\psi_{u_i}(v_j) = v_j(u_i), \forall j = 1, ..., n$. Per tant

$$\psi_{u_i}(v_j) = v_j(u_i) = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases} \implies \psi_{u_i} = w_i$$

Finalment, si representem cada ψ_{u_i} , $i=1,\ldots,n$ en coordenades de \mathcal{B}^{**} obtenim:

$$(\psi_{u_1})_{\mathcal{B}^{**}} = (1, 0, \dots, 0)$$

$$(\psi_{u_2})_{\mathcal{B}^{**}} = (0, 1, 0, \dots, 0)$$

$$\vdots$$

$$(\psi_{u_n})_{\mathcal{B}^{**}} = (0, \dots, 0, 1)$$

I al construir la matriu de Ψ ens queda

$$M_{\mathcal{BB}^{**}}(\Psi) = [\psi_{u_1}, \dots, \psi_{u_n}] = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix} = \mathbf{I}$$