Table s1. Mechanism of initialization of the model in pseudocode

Agent-Based Model: Initialized						
1.	Gene	erate network topologies and initial agents				
1.1	9	Set network topology	∀ WS, BA, ER			
1.2	5	Set network of nodes(agents)	V			
1.3		Choose the way to assign bots	{hige degree nodes, low degr random} Default: random			
1.4	1	Assign the species of agents	<i>S</i> ∈ {"1", "2"}			
2	Assig	gn the properties of agents				
2.1	5	Set the opinions of agents				
2.1.1		$ \forall i \in V \\ if S == "1" \\ \Omega = N(0.5, 0.15), \\ if S == "2" \\ \Omega = \beta(0.1, 0.1), \\ if \Omega > 1 \\ \Omega = 1 \\ if \Omega < 0 \\ \Omega = 0 $	$\Omega \in [0,1]$			
2.2	5	Set the tolerance	$\varepsilon \in [0,1]$			
2.2.1		$\forall i \in V$ $if S == "2"$ $\varepsilon = inf$ $else$ $\varepsilon = \varepsilon$				
2.3	5	Set the degree of homophily	$m \in [0,1]$			
2.4		Set the degree of confidence to human and bots	$\mu_{to_bots}, \mu_{to_human} \in [0,1]$ $Default = 0.4$			

Table s2. Mechanism of the update function of the model in pseudocode

Age	Agent-Based Model: Opinion exchange by post propagation				
1.	Prepare for posting				
1.1	Randomly select an agent i	$i \in V$			
1.2	Set the list of potential people who may share	E			
	the post.				
1.3	Set the list of influenced people	I			
1.2	Decide the parameter μ				
1.2.1	$if S_i == "1"$	$\mu \in \{\mu_{to_{human}}, \qquad \mu_{to_bot}\}$			
	$\mu = \mu_{to_human}$				
	else				
1.2	$\mu = \mu_{to_bot}$				
1.3	Agent i make a post	post_i			
1.2.1	0 0 1 1/(0.0.05)	0 7 [0.1]			
1.3.1	$\Omega_{post} = \Omega_i + N(0,0.05)$	$\Omega_{post_i} \in [0,1]$			
	Then				
	$if \Omega_{post} > 1$				
	$\Omega_{post} = 1$ $if \ \Omega_{post} < 0$				
	$\Omega_{post}=0$				
1.3.2	Set the Ω that spread this round. since it	$\Omega_{post_i} \in [0,1]$			
	is the first round, just share the original				
	post				
	$\Omega_{post_i} = \Omega_{post}$				
1.4	Set up the post share time to 0	$t_{post_i} \in N$			
	$t_{post} = 0$				
2.	Post propagation				
2.1	Get the degree of all agents in the	$N(i) \in d(i)$			
	neighborhood of agent i.				
2.2	Calculate ε_l and ε_r by their Ω and m				
2.2.1	$\forall j \in N(i)$	$\varepsilon_l, \varepsilon_r \in [0,1]$			
		$ \begin{aligned} \varepsilon_l, \varepsilon_r &\in [0,1] \\ \varepsilon_l + \varepsilon_r &= \varepsilon \end{aligned} $			
	1	1			

	1	I
	$\delta_r(x) = mx + \frac{1-m}{2}$	
	$\varepsilon_r(\Omega_i) = \delta_r(\Omega_i)\varepsilon_r$	
	$\varepsilon_l(\Omega_i) = \varepsilon - \varepsilon_r(\Omega_i)$	
2.3 N(i	i) receives the post and decide whether	
acc	cept it, or not.	
2.3.1	Calculate the difference of opinion	$\Delta\Omega_j \ \forall \ j \ in \ N(i)$
	$\forall j \in N(i)$	
	$\Delta\Omega_j = \Omega_{post_i} - \Omega_j$	
2.3.2	Decide whether accept or not	
	$\forall j \in N(i)$	
	$if \Delta\Omega_j \geq 0$	
	$ if \Delta\Omega_j <\varepsilon_r$	
	$accept_j = True$	
	else	
	$accept_j = False$	
	$if \Delta\Omega_j < 0$	
	$ if \Delta \Omega_j < \varepsilon_l$	
	$accept_j = True$	
	else	
	$accept_j = False$	
2.3.3	Put agents who are accepted and did not	A
	accept the post before into a list.	
	$Let A = \{\}$	
	$\forall j \in N(i)$	
	$if \ accept_j == True \ \& \ j \ \notin I$	
	$j \in A$	
2.4 Ext	tend E and I and remove agent i from E	
Let		
l A	$A \in E$ and $A \in I$	
Th	en	
Let	t	
i	i∉E	
2.5 Op	vinion exchange	

2.5.1	$\forall j \in A$	
	$if S_j == "1"$	
	$\Omega_j = \Omega_j + \Delta \Omega_j * \mu$	
	else	
	$arOmega_j = arOmega_j$	
2.6	Update the t_{post_i}	
	$t_{post_i} += 1$	
2.7	Choose whether stop this round of	
	propagation.	
	$If \ t_{post_i} > 20 \mid E == \emptyset$	
	break	
2.8	Choose a new agent i from E	$i \in E$
2.9	Decide the new parameter μ	
	-	
2.9.1	$if S_i == "1"$	
	$\mu = \mu_{to_human}$	
	else	
	$\mu = \mu_{to_bot}$	
2.	New agent i share the post	
10		
2.	$arOmega_{post_i} =$	
10.1	$\Omega_{post} + (\Omega_i - \Omega_{post_i}) * N(0.5, 0.05, 1)$	
	Then	
	$if \Omega_{post_i} > 1$	
	$\Omega_{post_i} = 1$	
	$if \Omega_{post_i} < 0$	
	$\Omega_{post_i}=0$	
2.	Back to 2.1 and repeat the process	
11		
I		