БДЗ по прикладной криптографии

Фирсов Георгий, М21-507

6 мая 2022 г.

Содержание

дание 1	2
дание 2	2
дание З	2
дание 4	2
дание 5	2
дание 6	2
дание 7	2
дание 8	2
дание 9	2
дание 10	2
дание 11	2
идание 12	2

Задание 1

Анна генерирует два числа $x \stackrel{R}{\leftarrow} \mathbb{Z}_1, y \stackrel{R}{\leftarrow} \mathbb{Z}_q$, после чего отсылает Борису тройку $(A_0, A_1, A_2) = (g^x, g^y, g^{xy+a}).$

Борис генерирует свои два числа $r \stackrel{R}{\leftarrow} \mathbb{Z}_q, s \stackrel{R}{\leftarrow} \mathbb{Z}_q$, а затем отправляет Анне следующую пару: $(B_1, B_2) = (A_1^r \cdot g^s, (A_2/g^b)^r \cdot A_0^s)$. Заметим, что:

$$B_1 = A_1^r \cdot g^s = g^y \cdot g^s = g^{y+s}$$

$$B_2 = (A_2/g^b)^r \cdot A_0^s) = g^{xy+a} \cdot g^{-b} \cdot g^{xs} = g^{x(y+s)+a-b}$$
(1)

Если B_1 возвести в степень x и затем умножить на обратный к полученному элемент число B_2 , то получится g^{a-b} :

$$B_1^x = (g^{y+s})^x = g^{x(y+s)}$$

$$B_2 \cdot (B_1^{-x}) = g^{x(y+s)+a-b} \cdot g^{-x(y+s)} = g^{a-b}$$
(2)

Если a=b, то $g^{a-b}=g^0=e_{\mathbb{G}}.$ Это свойство и можно использовать для проверки равенства чисел a и b.

Ответ: в) Анна проверяет равенство $B_2/B_1^x = 1$

Задание 2

Задание 3

Задание 4

Задание 5

Задание 6

Задание 7

Задание 8

Задание 9

Задание 10

Задание 11

Задание 12