Topic: Vertex on, inside, and outside the circle

Question: In the figure, $\widehat{mRS} = 90^{\circ}$ and $\widehat{mHO} = 50^{\circ}$. What is $m \angle OER$?

Answer choices:

A 50°

B 70°

C 90°

D 110°

Solution: D

We can find the measure of $\angle HEO$ given the arc lengths we already know.

$$m \angle HEO = \frac{1}{2}(\widehat{mHO} + \widehat{mRS})$$

$$m \angle HEO = \frac{1}{2}(50^{\circ} + 90^{\circ})$$

$$m \angle HEO = 70^{\circ}$$

Because $\angle HEO$ and $\angle OER$ are a pair of adjacent angle that together form a straight line,

$$m \angle HEO + m \angle OER = 180^{\circ}$$

$$70^{\circ} + m \angle OER = 180^{\circ}$$

$$m \angle OER = 180^{\circ} - 70^{\circ}$$

$$m \angle OER = 110^{\circ}$$

Topic: Vertex on, inside, and outside the circle

Question: In the figure, $m \angle WOL = 40^{\circ}$ and $m \angle OLW = 80^{\circ}$. Also, \overline{LF} is tangent to the circle at L. What is $m \angle FLO$?

Answer choices:

- **A** 30°
- B 40°
- **C** 50°
- D 60°

Solution: D

In $\triangle OWL$, the measures of the three interior angles total 180° . We know that two of them are 40° and 80° .

Those two total 120° , which leaves 60° for $m \angle LWO$, which is an inscribed angle, so its intercepted arc \widehat{LO} has measure 120° . $\angle FLO$ has its vertex on the circle, so its measure is half that of its intercepted arc, which is \widehat{LO} . Therefore,

$$m \angle FLO = \frac{1}{2}m\widehat{LO} = \frac{1}{2}(120^\circ)$$

$$m \angle FLO = \frac{1}{2}m\widehat{LO} = 60^{\circ}$$

Topic: Vertex on, inside, and outside the circle

Question: In the figure, $m \angle RWL = 20^{\circ}$ and $m \angle RSA = 75^{\circ}$. What is $m \angle WLU$?

Answer choices:

- **A** 30°
- B 35°
- C 40°
- D 45°

Solution: B

From the information in the problem, we can fill out the figure.

First we'll find the measure of \widehat{RA} , which is the arc intercepted by $\angle RWL$ (an inscribed angle).

$$m \angle RWL = \frac{1}{2} \widehat{mRA}$$

$$20^{\circ} = \frac{1}{2} m \widehat{RA}$$

$$\widehat{mRA} = 40^{\circ}$$

Now we'll use this to find the measure of \widehat{WU} . Notice that $\angle RSA$ and $\angle WSU$ are a pair of vertical angles, and that their intercepted arcs are \widehat{RA} and \widehat{WU} , respectively. Since their common vertex is inside the circle,

$$m \angle RSA = \frac{1}{2}(\widehat{mRA} + \widehat{mWU})$$

$$75^{\circ} = \frac{1}{2}(40^{\circ} + m\hat{WU})$$

$$150^{\circ} = 40^{\circ} + m\widehat{WU}$$

$$110^{\circ} = m\widehat{WU}$$

Finally, we can find $m \angle WLU$. The arcs intercepted by $\angle WLU$ are \widehat{WU} and \widehat{RA} . Since the vertex of $\angle WLU$ is outside the circle,

$$m \angle WLU = \frac{1}{2} (m\widehat{WU} - m\widehat{RA})$$

$$m \angle WLU = \frac{1}{2}(110^{\circ} - 40^{\circ})$$

$$m \angle WLU = 35^{\circ}$$

