Kapitola XII. Normální formy a vlastnosti bezkontextových jazyků

Chomského normální forma (CNF)

Definice: Necht' G = (N, T, P, S) je BKG. G je v *Chomského normální formě*, pokud každé pravidlo z P má jeden ze tvarů:

- $A \rightarrow BC$, kde $A, B, C \in N$;
- $A \rightarrow a$, kde $A \in N$, $a \in T$;

Příklad:

G = (N, T, P, S), kde $N = \{A, B, C, S\}$, $T = \{a, b\}$, $P = \{S \rightarrow CB, C \rightarrow AS, S \rightarrow AB, A \rightarrow a, B \rightarrow b\}$, je v Chomského normální formě.

Pozn.: $L(G) = \{a^n b^n : n \ge 1\}$

Greibachové normální forma (GNF)

Definice: Necht' G = (N, T, P, S) je BKG. G je v *Greibachové normalní formě*, pokud každé pravidlo z P má následující tvar:

• $A \rightarrow ax$, kde $A \in N$, $a \in T$, $x \in N^*$

Příklad:

$$G = (N, T, P, S)$$
, kde $N = \{B, S\}$, $T = \{a, b\}$, $P = \{S \rightarrow aSB, S \rightarrow aB, B \rightarrow b\}$ je v Greibachové normální formě.

Pozn.: $L(G) = \{a^n b^n : n \ge 1\}$

Generativní síla normálních forem

Tvrzení: Pro každou BKG existuje ekvivalentní gramatika *G*' v Chomského normální formě.

Důkaz: Viz str. 348 v knize [Meduna: Automata and Languages]

Tvrzení: Pro každou BKG existuje ekvivalentní gramatika *G*' v Greibachové normální formě.

Důkaz: Viz str. 376 v knize [Meduna: Automata and Languages]

Pozn.: Základní vlastnosti CNF a GNF:

CNF: pokud $S \Rightarrow^n w$; $w \in T^*$ potom n = 2|w| - 1

GNF: pokud $S \Rightarrow^n w$; $w \in T^*$ potom n = |w|

Metody obecné syntaktické analýzy

• Metody obecné syntaktické analýzy mohou být použity pro libovolný bezkontextový jazyk

Pozn.: Třída LR jazyků =
 třída deterministických jazyků

• Vstupní řet.: a_1 a_2 a_3 \cdots a_n

 a_2

 a_3

 a_n

• Vstupní řet.: a₁

Myšlenka:

S[1, n]

S[1, 3]

 $\dots S[n-2,n]$

S[1, 2]

S[2,3] ... S[n-1,n]

$$A \in S[1,1] \quad B \in S[2,2] \quad C \in S[3,3] \qquad S[n,n]$$

$$A \to a_1 \qquad B \to a_2 \qquad C \to a_3$$
• Vstupní řet.: $a_1 \qquad a_2 \qquad a_3 \qquad \cdots \qquad a_n$

Algoritmus: Obecná SA založená na CNF

- Vstup: G = (N, T, P, S) v CNF, $w = a_1...a_n$
- Výstup: ANO, pokud $w \in L(G)$ NE, pokud $w \notin L(G)$
- Metoda:
- pro každé a_i , kde i = 1, ..., n: $S[i, i] := \{A : A \rightarrow a_i \in P\}$
- Aplikuj následující pravidlo, dokud žádná z množin S[i, k] nemůže být změněna:
 - $\underline{\text{if }} A \to BC \in P, B \in S [i,j], C \in S [j+1,k],$ kde $1 \le i \le j < k \le n \text{ then p\'idej } A \text{ do } S[i,k]$
- if $S \in S[1, n]$ then napiš('ANO')

 else napiš('NE')

$$G = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

$$S[1,1]=\{A\}$$
 $S[2,2]=\{A\}$ $S[3,3]=\{S\}$ $S[4,4]=\{B\}$ $S[5,5]=\{B\}$ $A \to a$ $A \to a$ $B \to b$ $B \to b$ $B \to b$

$$G = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

S[1,2] S[2,3] S[3,4] S[4,5] $S[1,1]=\{A\}$ $S[2,2]=\{A\}$ $S[3,3]=\{S\}$ $S[4,4]=\{B\}$ $S[5,5]=\{B\}$

$$G = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

?
$$\rightarrow AA$$

$$S[1,2] \qquad S[2,3] \qquad S[3,4] \qquad S[4,5]$$

$$S[1,1]=\{A\} \qquad S[2,2]=\{A\} \qquad S[3,3]=\{S\} \qquad S[4,4]=\{B\} \qquad S[5,5]=\{B\}$$

G = (N, T, P, S), kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Otázka: $aacbb \in L(G)$?

?
$$AA$$

$$S[1,2]=\emptyset \quad S[2,3] \quad S[3,4] \quad S[4,5]$$

$$S[1,1]=\{A\} \quad S[2,2]=\{A\} \quad S[3,3]=\{S\} \quad S[4,4]=\{B\} \quad S[5,5]=\{B\}$$

$$G = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

?
$$AA$$
 ? AS
 $S[1,2]=\emptyset$ $S[2,3]$ $S[3,4]$ $S[4,5]$
 $S[1,1]=\{A\}$ $S[2,2]=\{A\}$ $S[3,3]=\{S\}$ $S[4,4]=\{B\}$ $S[5,5]=\{B\}$

G = (N, T, P, S), kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Otázka: $aacbb \in L(G)$?

?
$$AA$$
 ? AS

$$S[1,2]=\emptyset \quad S[2,3]=\emptyset \quad S[3,4] \quad S[4,5]$$

$$S[1,1]=\{A\} \quad S[2,2]=\{A\} \quad S[3,3]=\{S\} \quad S[4,4]=\{B\} \quad S[5,5]=\{B\}$$

```
G = (N, T, P, S), kde N = \{A, B, C, S\}, T = \{a, b, c\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}
Otázka: aacbb \in L(G)?
```

?
$$AA$$
 ? AS $C \to SB$

$$S[1,2]=\emptyset \quad S[2,3]=\emptyset \quad S[3,4] \quad S[4,5]$$

$$S[1,1]=\{A\} \quad S[2,2]=\{A\} \quad S[3,3]=\{S\} \quad S[4,4]=\{B\} \quad S[5,5]=\{B\}$$

G = (N, T, P, S), kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Otázka: $aacbb \in L(G)$?

?
$$AA$$
 ? AS $C \to SB$

$$S[1, 2] = \emptyset \quad S[2, 3] = \emptyset \quad S[3, 4] = \{C\} \quad S[4, 5]$$

$$S[1, 1] = \{A\} \quad S[2, 2] = \{A\} \quad S[3, 3] = \{S\} \quad S[4, 4] = \{B\} \quad S[5, 5] = \{B\}$$

G = (N, T, P, S), kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Otázka: $aacbb \in L(G)$?

?
$$AA$$
 ? AS $C \to SB$? $\to BB$

$$S[1, 2] = \emptyset \quad S[2, 3] = \emptyset \quad S[3, 4] = \{C\} \quad S[4, 5]$$

$$S[1, 1] = \{A\} \quad S[2, 2] = \{A\} \quad S[3, 3] = \{S\} \quad S[4, 4] = \{B\} \quad S[5, 5] = \{B\}$$

$$G = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

?
$$AA$$
 ? AS $C \to SB$? BB

$$S[1, 2] = \emptyset \quad S[2, 3] = \emptyset \quad S[3, 4] = \{C\} \quad S[4, 5] = \emptyset$$

$$S[1, 1] = \{A\} \quad S[2, 2] = \{A\} \quad S[3, 3] = \{S\} \quad S[4, 4] = \{B\} \quad S[5, 5] = \{B\}$$

$$G = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

S[1,3] S[2,4] S[3,5]

 $S[1, 2] = \emptyset$ $S[2, 3] = \emptyset$ $S[3, 4] = \{C\}$ $S[4, 5] = \emptyset$

 $S[1, 1] = \{A\}$ $S[2, 2] = \{A\}$ $S[3, 3] = \{S\}$ $S[4, 4] = \{B\}$ $S[5, 5] = \{B\}$

$$G = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

$$S[1,3]$$
 $S[2,4]$ $S[3,5]$

$$S[1,2]=\varnothing S[2,3]=\varnothing S[3,4]=\{C\} S[4,5]=\varnothing S[1,1]=\{A\} S[2,2]=\{A\} S[3,3]=\{S\} S[4,4]=\{B\} S[5,5]=\{B\}$$

$$\overline{G} = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

$$S[1,3]=\varnothing$$
 $S[2,4]$ $S[3,5]$
 $S[1,2]=\varnothing$ $S[2,3]=\varnothing$ $S[3,4]=\{C\}$ $S[4,5]=\varnothing$
 $S[1,1]=\{A\}$ $S[2,2]=\{A\}$ $S[3,3]=\{S\}$ $S[4,4]=\{B\}$ $S[5,5]=\{B\}$

$$G = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

 $S \to AC$ $S[1, 3] = \emptyset$ S[2, 4] S[3, 5] $S[1, 2] = \emptyset$ $S[2, 3] = \emptyset$ $S[3, 4] = \{C\}$ $S[4, 5] = \emptyset$ $S[1, 1] = \{A\}$ $S[2, 2] = \{A\}$ $S[3, 3] = \{S\}$ $S[4, 4] = \{B\}$ $S[5, 5] = \{B\}$

$$G = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

$$S \rightarrow AC$$

 $S[1, 3] = \emptyset$ $S[2, 4]$ $S[3, 5]$
 $S[1, 2] = \emptyset$ $S[2, 3] = \emptyset$ $S[3, 4] = \{C\}$ $S[4, 5] = \emptyset$
 $S[1, 1] = \{A\}$ $S[2, 2] = \{A\}$ $S[3, 3] = \{S\}$ $S[4, 4] = \{B\}$ $S[5, 5] = \{B\}$

G = (N, T, P, S), kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Otázka: $aacbb \in L(G)$?

$$S[1,3] = \emptyset \qquad S[2,4] = \{S\} \quad S[3,5]$$

$$S[1,2] = \emptyset \qquad S[2,3] = \emptyset \qquad S[3,4] = \{C\} \quad S[4,5] = \emptyset$$

$$S[1,1] = \{A\} \quad S[2,2] = \{A\} \quad S[3,3] = \{S\} \quad S[4,4] = \{B\} \quad S[5,5] = \{B\}$$

$$\overline{G} = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

$$S[1,3] = \emptyset \qquad S[2,4] = \{S\} \quad S[3,5]$$

$$S[1,2] = \emptyset \qquad S[2,3] = \emptyset \qquad S[3,4] = \{C\} \quad S[4,5] = \emptyset$$

$$S[1,1] = \{A\} \quad S[2,2] = \{A\} \quad S[3,3] = \{S\} \quad S[4,4] = \{B\} \quad S[5,5] = \{B\}$$

 $\overline{G} = (N, T, P, S)$, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Otázka: $aacbb \in L(G)$?

$$S[1, 3] = \emptyset \qquad S[2, 4] = \{S\} \quad S[3, 5] = \emptyset$$

$$S[1, 2] = \emptyset \quad S[2, 3] = \emptyset \quad S[3, 4] = \{C\} \quad S[4, 5] = \emptyset$$

$$S[1, 1] = \{A\} \quad S[2, 2] = \{A\} \quad S[3, 3] = \{S\} \quad S[4, 4] = \{B\} \quad S[5, 5] = \{B\}$$

$$G = (N, T, P, S), \text{ kde } N = \{A, B, C, S\}, T = \{a, b, c\},$$

$$P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$$

Otázka: $aacbb \in L(G)$?

$$S[1, 4]$$
 $S[2, 5]$

$$S[1, 3] = \emptyset \quad S[2, 4] = \{S\} \quad S[3, 5] = \emptyset$$

$$S[1, 2] = \emptyset \quad S[2, 3] = \emptyset \quad S[3, 4] = \{C\} \quad S[4, 5] = \emptyset$$

$$S[1, 1] = \{A\} \quad S[2, 2] = \{A\} \quad S[3, 3] = \{S\} \quad S[4, 4] = \{B\} \quad S[5, 5] = \{B\}$$

G = (N, T, P, S), kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Otázka: $aacbb \in L(G)$?

$$S[1, 4]$$
 $S[2, 5]$
 $S[1, 3] = \emptyset$ $S[2, 4] = \{S\}$ $S[3, 5] = \emptyset$
 $S[1, 2] = \emptyset$ $S[2, 3] = \emptyset$ $S[3, 4] = \{C\}$ $S[4, 5] = \emptyset$
 $S[1, 1] = \{A\}$ $S[2, 2] = \{A\}$ $S[3, 3] = \{S\}$ $S[4, 4] = \{B\}$ $S[5, 5] = \{B\}$

 $\overline{G} = (N, T, P, S), \text{ kde } N = \{A, B, C, S\}, T = \{a, b, c\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Otáplica graph F = I(C)?

Otázka: $aacbb \in L(G)$?

$$S[1, 4]$$
 $S[2, 5]$
 $S[1, 3] = \emptyset$ $S[2, 4] = \{S\}$ $S[3, 5] = \emptyset$
 $S[1, 2] = \emptyset$ $S[2, 3] = \emptyset$ $S[3, 4] = \{C\}$ $S[4, 5] = \emptyset$
 $S[1, 1] = \{A\}$ $S[2, 2] = \{A\}$ $S[3, 3] = \{S\}$ $S[4, 4] = \{B\}$ $S[5, 5] = \{B\}$

 $G = (N, T, P, S), \text{ kde } N = \{A, B, C, S\}, T = \{a, b, c\},$ $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$

Otázka: $aacbb \in L(G)$?

$$S[1, 4] = \emptyset$$
 $S[2, 5]$
 $S[1, 3] = \emptyset$ $S[2, 4] = \{S\}$ $S[3, 5] = \emptyset$
 $S[1, 2] = \emptyset$ $S[2, 3] = \emptyset$ $S[3, 4] = \{C\}$ $S[4, 5] = \emptyset$
 $S[1, 1] = \{A\}$ $S[2, 2] = \{A\}$ $S[3, 3] = \{S\}$ $S[4, 4] = \{B\}$ $S[5, 5] = \{B\}$

 $G = (N, T, P, S), \text{ kde } N = \{A, B, C, S\}, T = \{a, b, c\},$ $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$

Otázka: $aacbb \in L(G)$?

$$S[1, 4] = \emptyset$$
 $S[2, 5]$
 $S[1, 3] = \emptyset$ $S[2, 4] = \{S\}$ $S[3, 5] = \emptyset$
 $S[1, 2] = \emptyset$ $S[2, 3] = \emptyset$ $S[3, 4] = \{C\}$ $S[4, 5] = \emptyset$
 $S[1, 1] = \{A\}$ $S[2, 2] = \{A\}$ $S[3, 3] = \{S\}$ $S[4, 4] = \{B\}$ $S[5, 5] = \{B\}$

 $\overline{G} = (\overline{N}, \overline{T}, \overline{P}, \overline{S}), \text{ kde } N = \{A, B, C, S\}, T = \{a, b, c\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Otázka: $aacbb \in L(G)$?

 $S[1, 4] = \emptyset$ S[2, 5] $S[1, 3] = \emptyset$ $S[2, 4] = \{S\}$ $S[3, 5] = \emptyset$ $S[1, 2] = \emptyset$ $S[2, 3] = \emptyset$ $S[3, 4] = \{C\}$ $S[4, 5] = \emptyset$ $S[1, 1] = \{A\}$ $S[2, 2] = \{A\}$ $S[3, 3] = \{S\}$ $S[4, 4] = \{B\}$ $S[5, 5] = \{B\}$

G = (N, T, P, S), kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$ Otázka: $aacbb \in L(G)$?

$$C \to SB$$

$$S[1, 4] = \emptyset \qquad S[2, 5]$$

$$S[1, 3] = \emptyset \qquad S[2, 4] = \{S\} \qquad S[3, 5] = \emptyset$$

$$S[1, 2] = \emptyset \qquad S[2, 3] = \emptyset \qquad S[3, 4] = \{C\} \qquad S[4, 5] = \emptyset$$

$$S[1, 1] = \{A\} \qquad S[2, 2] = \{A\} \qquad S[3, 3] = \{S\} \qquad S[4, 4] = \{B\} \qquad S[5, 5] = \{B\}$$

```
\overline{G} = (N, T, P, S), kde N = \{A, B, C, S\}, T = \{a, b, c\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}
Otázka: aacbb \in L(G)?
```

$$S[1, 4] = \emptyset \qquad S[2, 5] = \{C\}$$

$$S[1, 3] = \emptyset \qquad S[2, 4] = \{S\} \qquad S[3, 5] = \emptyset$$

$$S[1, 2] = \emptyset \qquad S[2, 3] = \emptyset \qquad S[3, 4] = \{C\} \qquad S[4, 5] = \emptyset$$

$$S[1, 1] = \{A\} \qquad S[2, 2] = \{A\} \qquad S[3, 3] = \{S\} \qquad S[4, 4] = \{B\} \qquad S[5, 5] = \{B\}$$

$$G = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

$$S[1, 4] = \emptyset$$
 $S[2, 5] = \{C\}$

$$S[1, 3] = \emptyset$$
 $S[2, 4] = \{S\}$ $S[3, 5] = \emptyset$

$$S[1, 2] = \emptyset$$
 $S[2, 3] = \emptyset$ $S[3, 4] = \{C\}$ $S[4, 5] = \emptyset$

$$S[1, 1] = \{A\}$$
 $S[2, 2] = \{A\}$ $S[3, 3] = \{S\}$ $S[4, 4] = \{B\}$ $S[5, 5] = \{B\}$

$$\overline{G} = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

$$S \to AC$$
 S [1, 5]
 $S[1, 4] = \emptyset$ $S[2, 5] = \{C\}$
 $S[1, 3] = \emptyset$ $S[2, 4] = \{S\}$ $S[3, 5] = \emptyset$
 $S[1, 2] = \emptyset$ $S[2, 3] = \emptyset$ $S[3, 4] = \{C\}$ $S[4, 5] = \emptyset$
 $S[1, 1] = \{A\}$ $S[2, 2] = \{A\}$ $S[3, 3] = \{S\}$ $S[4, 4] = \{B\}$ $S[5, 5] = \{B\}$

$$G = (N, T, P, S)$$
, kde $N = \{A, B, C, S\}$, $T = \{a, b, c\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Otázka: $aacbb \in L(G)$?

$$S[1, 4] = \emptyset \qquad S[2, 5] = \{C\}$$

$$S[1, 3] = \emptyset \qquad S[2, 4] = \{S\} \qquad S[3, 5] = \emptyset$$

$$S[1, 2] = \emptyset \qquad S[2, 3] = \emptyset \qquad S[3, 4] = \{C\} \qquad S[4, 5] = \emptyset$$

$$S[1, 1] = \{A\} \qquad S[2, 2] = \{A\} \qquad S[3, 3] = \{S\} \qquad S[4, 4] = \{B\} \qquad S[5, 5] = \{B\}$$

```
G = (N, T, P, S), kde N = \{A, B, C, S\}, T = \{a, b, c\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}
Otázka: aacbb \in L(G)?
```

$$S[1, 4] = \emptyset \qquad S[2, 5] = \{C\}$$

$$S[1, 3] = \emptyset \qquad S[2, 4] = \{S\} \qquad S[3, 5] = \emptyset$$

$$S[1, 2] = \emptyset \qquad S[2, 3] = \emptyset \qquad S[3, 4] = \{C\} \qquad S[4, 5] = \emptyset$$

$$S[1, 1] = \{A\} \qquad S[2, 2] = \{A\} \qquad S[3, 3] = \{S\} \qquad S[4, 4] = \{B\} \qquad S[5, 5] = \{B\}$$

```
G = (N, T, P, S), kde N = \{A, B, C, S\}, T = \{a, b, c\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}
Otázka: aacbb \in L(G)?
```

 $S[1, 4] = \emptyset \qquad S[2, 5] = \{C\}$ $S[1, 3] = \emptyset \qquad S[2, 4] = \{S\} \qquad S[3, 5] = \emptyset$ $S[1, 2] = \emptyset \qquad S[2, 3] = \emptyset \qquad S[3, 4] = \{C\} \qquad S[4, 5] = \emptyset$ $S[1, 1] = \{A\} \qquad S[2, 2] = \{A\} \qquad S[3, 3] = \{S\} \qquad S[4, 4] = \{B\} \qquad S[5, 5] = \{B\}$

```
G = (N, T, P, S), kde N = \{A, B, C, S\}, T = \{a, b, c\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}
Otázka: aacbb \in L(G)?
```

```
S[1, 4] = \emptyset \qquad S[2, 5] = \{C\}
S[1, 3] = \emptyset \qquad S[2, 4] = \{S\} \qquad S[3, 5] = \emptyset
S[1, 2] = \emptyset \qquad S[2, 3] = \emptyset \qquad S[3, 4] = \{C\} \qquad S[4, 5] = \emptyset
S[1, 1] = \{A\} \qquad S[2, 2] = \{A\} \qquad S[3, 3] = \{S\} \qquad S[4, 4] = \{B\} \qquad S[5, 5] = \{B\}
```

```
G = (N, T, P, S), kde N = \{A, B, C, S\}, T = \{a, b, c\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}
Otázka: aacbb \in L(G)?
```

Pumping lemma pro BKJ

Nechť L je BKJ. Potom existuje k≥ 1 takové, že:
pokud z ∈ L a |z| ≥ k, pak existuje u, v, w, x, y tak, že z = uvwxy, přičemž dále platí:
1) vx ≠ ε 2) |vwx| ≤ k 3) pro každé m≥ 0: uv^mwx^my ∈ L

Příklad:

```
G = (\{S, A\}, \{a, b, c\}, \{S \rightarrow aAa, A \rightarrow bAb, A \rightarrow c\}, S) generuje L(G) = \{ab^ncb^na : n \ge 0\}, tedy L(G) je BKJ. Existuje k = 5 takové, že 1), 2) and 3) platí:
```

• pro z = abcba: $z \in L(G)$ a $|z| \ge 5$: $uv^0wx^0y = ab^0cb^0a = aca \in L(G)$ $uv^1wx^1y = ab^1cb^1a = abcba \in L(G)$ $uv^2wx^2y = ab^2cb^2a = abbcbba \in L(G)$

• pro z = abbcbba: $z \in L(G)$ a $|z| \ge 5$:

• Pomocí pumping lemmy pro BKJ často provádíme důkaz sporem, že daný jazyk <u>není</u> bezkontextový:

• Pomocí pumping lemmy pro BKJ často provádíme důkaz sporem, že daný jazyk <u>není</u> bezkontextový:

Předpokládejme, že L je bezkontextový

• Pomocí pumping lemmy pro BKJ často provádíme důkaz sporem, že daný jazyk <u>není</u> bezkontextový:

Předpokládejme, že L je bezkontextový

Uvažujme PL konstantu k a vyberme $z \in L$, jehož délka je závislá na k tak, že $|z| \ge k$ je vždy pravdivé

• Pomocí pumping lemmy pro BKJ často provádíme důkaz sporem, že daný jazyk <u>není</u> bezkontextový:

Předpokládejme, že L je bezkontextový

Uvažujme PL konstantu k a vyberme $z \in L$, jehož délka je závislá na k tak, že $|z| \ge k$ je vždy pravdivé

Pro <u>všechny</u> dekompozice z na uvwxy: $vx \neq \varepsilon$, $|vwx| \leq k$, ukážeme existuje $m \geq 0$ pro které $uv^mwx^my \notin L$; SPOR ale podle PL platí vztah: $uv^mwx^my \in L$

• Pomocí pumping lemmy pro BKJ často provádíme důkaz sporem, že daný jazyk <u>není</u> bezkontextový:

Předpokládejme, že L je bezkontextový

Uvažujme PL konstantu k a vyberme $z \in L$, jehož délka je závislá na k tak, že $|z| \ge k$ je vždy pravdivé

Pro <u>všechny</u> dekompozice z na uvwxy: $vx \neq \varepsilon$, $|vwx| \leq k$, ukážeme existuje $m \geq 0$ pro které $uv^mwx^my \notin L$; SPOR ale podle PL platí vztah: $uv^mwx^my \in L$

špatný předpoklad

• Pomocí pumping lemmy pro BKJ často provádíme důkaz sporem, že daný jazyk <u>není</u> bezkontextový:

Předpokládejme, že L je bezkontextový

Uvažujme PL konstantu k a vyberme $z \in L$, jehož délka je závislá na k tak, že $|z| \ge k$ je vždy pravdivé

Pro <u>všechny</u> dekompozice z na uvwxy: $vx \neq \varepsilon$, $|vwx| \leq k$, ukážeme existuje $m \geq 0$ pro které $uv^mwx^my \notin L$; SPOR ale podle PL platí vztah: $uv^mwx^my \in L$

špatný předpoklad

Proto L není bezkontextový

Pumping lemma: Příklad 1/2

Dokažme, že $L = \{a^nb^nc^n : n \ge 1\}$ není BKJ.

- 1) Předpokládejme, že L je BKJ. Nechť $k \ge 1$ je konstanta z pumping lemmy pro daný jazyk L.
 - 2) Necht' $z = a^k b^k c^k$: $a^k b^k c^k \in L$, $|z| = |a^k b^k c^k| = 3k \ge k$
- 3) Všechny dekompozice z na uvwxy; $vx \neq \varepsilon$, $|vwx| \leq k$:

Pumping lemma: Příklad 2/2

a) $vwx \in \{a\}^* \{b\}^*$:

• Pumping lemma: $uv^0wx^0v \in L$

• $uv^0wx^0y = uwy =$ $uv^0wx^0y = uwy =$ uwy = uw

Pozn.: uwy obsahuje "k" symbolů c, ale méně než "k" symbolů a nebo b

b)
$$vwx \in \{b\}^* \{c\}^*$$
:

• Pumping lemma:

$$uv^0wx^0y \in L$$

•
$$uv^0wx^0y = uwy =$$

Pozn.: *uwy* obsahuje "*k*" symbolů *a*, ale méně než "*k*" symbolů *b* nebo *c* Všechny dekompozice vedou ke sporu!

Pumping lemma: Příklad 2/2

- **a)** $vwx \in \{a\}^* \overline{\{b\}^*}$:
- Pumping lemma: $uv^0wx^0y \in L$

Pozn.: uwy obsahuje "k" symbolů c, ale méně než "k" symbolů a nebo b

b)
$$vwx \in \{b\}^* \{c\}^*$$
:

• Pumping lemma:

$$uv^0wx^0y \in L$$

•
$$uv^0wx^0y = uwy =$$

a...aabb...b b...bcc...cc

Pozn.: *uwy* obsahuje "*k*" symbolů *a*, ale méně než "*k*" symbolů *b* nebo *c* **Všechny dekompozice vedou ke sporu!**

4) Proto L není bezkontextový jazyk.

Uzávěrové vlastnosti BKJ

Definice: Třída bezkontextových jazyků je uzavřená vůči operaci *o*, pokud výsledek operace *o* na libovolné bezkontextové jazyky je opět bezkontextový jazyk.

Uzávěrové vlastnosti BKJ

Definice: Třída bezkontextových jazyků je uzavřená vůči operaci o, pokud výsledek operace o na libovolné bezkontextové jazyky je opět bezkontextový jazyk.

Ilustrace:

• Třída bezkontextových jazyků je uzavřená vůči *sjednocení*.

To znamená:

Uzávěrové vlastnosti BKJ

Definice: Třída bezkontextových jazyků je uzavřená vůči operaci *o*, pokud výsledek operace *o* na libovolné bezkontextové jazyky je opět bezkontextový jazyk.

Ilustrace:

• Třída bezkontextových jazyků je uzavřená vůči *sjednocení*.

To znamená:

Uzávěrové vlastnosti BKJ

Definice: Třída bezkontextových jazyků je uzavřená vůči operaci o, pokud výsledek operace o na libovolné bezkontextové jazyky je opět bezkontextový jazyk.

Ilustrace:

• Třída bezkontextových jazyků je uzavřená vůči *sjednocení*.

To znamená:

Algoritmus: BKG pro sjednocení

- Vstup: $G_1 = (N_1, T, P_1, S_1)$ a $G_2 = (N_2, T, P_2, S_2)$;
- Výstup: Gramatika $G_u = (N, T, P, S)$ taková, že: $L(G_u) = L(G_1) \cup L(G_2)$

Metoda:

- Necht' $S \notin N_1 \cup N_2$, dále necht' $N_1 \cap N_2 = \emptyset$:
 - $N := \{S\} \cup N_1 \cup N_2;$
 - $P := \{S \rightarrow S_1, S \rightarrow S_2\} \cup P_1 \cup P_2;$

Algoritmus: BKG pro konkatenaci

- Vstup: $G_1 = (N_1, T, P_1, S_1)$ a $G_2 = (N_2, T, P_2, S_2)$;
- Výstup: $G_c = (N, T, P, S)$ taková, že: $L(G_c) = L(G_1) \cdot L(G_2)$

Metoda:

- Necht' $S \notin N_1 \cup N_2$, dále necht' $N_1 \cap N_2 = \emptyset$:
 - $N := \{S\} \cup N_1 \cup N_2;$
 - $\bullet P := \{S \to S_1 S_2\} \cup P_1 \cup P_2;$

Algoritmus: BKG pro iteraci

- Vstup: $G_1 = (N_1, T, P_1, S_1)$
- Výstup: $G_i = (N, T, P, S)$ taková, že: $L(G_i) = L(G_1)^*$
- Metoda:
- Necht' $S \notin N_1$:
 - $N := \{S\} \cup N_1;$
 - $P := \{S \rightarrow S_1 S, S \rightarrow \varepsilon\} \cup P_1;$

Uzávěrové vlastnosti

Tvrzení: Třída BKJ je uzavřená vůči: sjednocení, konkatenaci, iteraci.

Důkaz:

- Nechť L₁, L₂ jsou dva bezkontextové jazyky.
- Potom existují dvě BKG G_1 , G_2 , pro které platí: $L(G_1) = L_1$, $L(G_2) = L_2$;
- Sestrojme gramatiky pomocí předchozích algoritmů:
 - G_u , pro kterou platí: $L(G_u) = L(G_1) \cup L(G_2)$
 - G_c , pro kterou platí: $L(G_c) = L(G_1)$. $L(G_2)$
 - G_i , pro kterou platí: $L(G_i) = L(G_1)^*$
- Každá BKG definuje bezkontextový jazyk, tedy: L_1L_2 , $L_1 \cup L_2$, L_1^* jsou bezkontextové jazyky.

Průnik: Není uzavřeno

Tvrzení: Třída bezkontextových jazyků není uzavřená vůči průniku.

Důkaz:

- Průnik nějakých dvou BKJ nesmí být tedy BKJ:
- $L_1 = \{a^m b^n c^n : m, n \ge 1\}$ je BKJ
- $L_2 = \{a^n b^n c^m : m, n \ge 1\}$ je BKJ
- $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 1\}$ není BKJ (Důkaz je založen na pumping lemma viz dříve)

CBD

Doplněk: Není uzavřeno

Tvrzení: Třída bezkontextových jazyků není uzavřená vůči doplňku.

Důkaz sporem:

- Předpokládejme, že třída bezkontextových jazyků je uzavřená vůči doplňku:
- $L_1 = \{a^m b^n c^n : m, n \ge 1\}$ je **BKJ**
- $L_2 = \{a^n b^n c^m : m, n \ge 1\}$ je **BKJ**
- L_1 , L_2 jsou tedy **BKJ**
- $\overline{L_1} \cup \overline{L_2}$ je **BKJ** (třída BKJ je uzavřená vůči sjednocení)
- $L_1 \cup L_2$ je **BKJ** (předpoklad)
- De-Morganovy zákony říkají: $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 1\}$ je **BKJ**
- $\{a^nb^nc^n: n \ge 1\}$ ale není **BKJ** \Longrightarrow **Spor**

Hlavní rozhodnutelné problémy

1. Problém členství:

• Instance: BKG $G, w \in T^*$; Otázka: $w \in L(G)$?

2. Problém prázdnosti:

• Instance: BKG G;

Otázka: $L(G) = \emptyset$?

3. Problém konečnosti:

• Instance: BKG G; Otázka: Je L(G) konečný?

Algoritmus: Problém členství

- Vstup: BKG G = (N, T, P, S) v CNF, $w \in T^+$
- Výstup: ANO, pokud $w \in L(G)$ NE, pokud $w \notin L(G)$
- Metoda I:
- if $S \Rightarrow^n w$, kde $1 \le n \le 2|w| 1$, then napiš('ANO')

 else napiš('NE')
- Metoda II:
- Viz Obecná metoda SA založená na CNF

Celkově:

Problém členství je pro BKJ rozhodnutelný

Dostupné symboly

Myšlenka: Symbol X je dostupný, pokud $S \Rightarrow^* ... X...$, kde S je počáteční neterminál.

Definice: Necht' G = (N, T, P, S) je BKG. Symbol $X \in N \cup T$ je dostupný, pokud existuje $u, v \in (N \cup T)^*$, takové, že: $S \Rightarrow^* uXv$. Jinak je X nedostupný.

Pozn.: Každý nedostupný symbol může být odstraněn z BKG

Příklad:

$$G = (\{S, A, B\}, \{a, b\}, \{S \rightarrow SB, S \rightarrow a, A \rightarrow ab, B \rightarrow aB\}, S)$$

S - dostupný: pro $u = \varepsilon$, $v = \varepsilon$: $S \Rightarrow^0 S$

A - **nedostupný**: neexistuje $u, v \in \Sigma^*$ takové, že: $S \Rightarrow^* uAv$

B - dostupný: pro u = S, $v = \varepsilon$: $S \Rightarrow 1$ SB

 \boldsymbol{a} - dostupný: pro $u = \varepsilon$, $v = \varepsilon$: $S \Rightarrow^1 \boldsymbol{a}$

b - **nedostupný**: neexistuje $u, v \in \Sigma^*$ takové, že: $S \Rightarrow^* ubv$

Ukončující symboly

Myšlenka: Symbol X je ukončující, pokud X derivuje řetězec terminálů.

Definice: Necht' G = (N, T, P, S) je BKG. Symbol $X \in N \cup T$ je *ukončující*, pokud existuje řetězec $w \in T^*$, pro který platí: $X \Rightarrow^* w$. Jinak je X *neukončující*.

Pozn.: Každý neukončující symbol může být odstraněn z BKG

Příklad:

```
G = (\{S, A, B\}, \{a, b\}, \{S \rightarrow SB, S \rightarrow a, A \rightarrow ab, B \rightarrow aB\}, S)

Symbol S - ukončující: pro w = a: S \Rightarrow^1 a

Symbol A - ukončující: pro w = ab: A \Rightarrow^1 ab

Symbol B - neukončující: neexistuje w \in T^* takové, že: B \Rightarrow^* w

Symbol A - ukončující: pro A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A = A =
```

Algoritmus: Problém prázdnosti

- **Vstup:** BKG G = (N, T, P, S);
- Výstup: ANO, pokud $L(G) = \emptyset$ NE, pokud $L(G) \neq \emptyset$
- Metoda:
- if S je neukončující then napiš('ANO')
 else napiš('NE')

Celkově:

Problém prázdnosti je pro BKJ rozhodnutelný

Algoritmus: Problém konečnosti

- Vstup: BKG G = (N, T, P, S) v CNF;
- Výstup: ANO, pokud L(G) je konečný NE, pokud L(G) je nekonečný
- Metoda:
- Necht' $k = 2^{\operatorname{card}(N)}$
- if existuje $z \in L(G)$, $k \le |z| < 2k$ then napiš('NE') else napiš('ANO')

Celkově:

Problém konečnosti je pro BKJ rozhodnutelný

Hlavní nerozhodnutelné problémy

- 1. Problém ekvivalence:
- Instance: BKG G_1 , G_2 ; Otázka: $L(G_1) = L(G_2)$?
- 2. Problém jednoznačnosti:
- Instance: BKG G; Otázka: Je G jednoznačná?

Poznámka:

Je matematicky dokázáno, že neexistují žádné algoritmy, které by tyto problémy vyřešily v konečném čase.