Algorithmique Avancée

TD2 Programmation linéaire

Elana Courtines courtines.e@gmail.com https://github.com/irinacake

Séance 1 - 30 septembre 2022 Séance 2 - 7 octobre 2022

Jerome Mengin - jerome.mengin@univ-tlse3.fr

1 Résolution graphique : forme, minimisation et maximisation

Exercice 1:

Il s'agit bien d'un programme linéaire (min), sous forme générale (il y a des \leq et des $\geq)$

Visuellement, on a envie de dire que l'optimum est x_2 , cherchons alors ses coordonnées :

$$optimum = \begin{cases} x + 3y = 18 \\ x + y = 9 \end{cases} = \begin{cases} 2y = 9 \\ y = 4.5 = x \end{cases}$$
 (1)

Si on cherchait à maximiser, on obtiendrai :

Exercice 2:

Pour P1 : max(z = 12x + 10y) :

Il s'agit bien d'un programme linéaire (max), sous forme générale (il y a des \leq et des \geq)

Comme on peut le constater sur la résolution graphique, les contraintes $x \ge 5$ et $y \ge 0$ forcent les solutions à être dans le cadran haut-droite, mais il suffit de prendre $x + y \le 2$ pour ne plus avoir de solution.

Pour P2 : max(z = 12x + 10y) :

Il s'agit bien d'un programme linéaire (max), sous forme canonique (il n'y a que des \geq)

Comme on peut le constater sur la résolution graphique, tout le cadran haut-droite est solution du problème. Le problème est donc non borné, il n'y a pas d'optimum.

Note : si on voulait minimiser la solution plutôt que de le maximiser, on trouverai un optimum, noté x_{min} sur le graphe.

Pour P3: max(z = x + 2y):

Il s'agit bien d'un programme linéaire (max), sous forme canonique (il n'y a que des \leq)

Comme on peut le constater sur la résolution graphique, l'optimum est atteint sur tout un segment de droite.

2 Modélisation simple, Primal, Dual : Le fleuriste et l'hôtelier

Exercice 3:

Variables:

- x = nombre de bouquets de type 1 composés
- y = nombre de bouquets de type 2 composés
- z = nombre de bouquets de type 3 composés

But : max(8x + 5y + 6z)

Contraintes:

$$\begin{pmatrix} 2 & 3 & 2 \\ 1 & 2 & 1 \\ 4 & 3 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ z \end{pmatrix} \le \begin{pmatrix} 90 \\ 81 \\ 120 \end{pmatrix} \Leftrightarrow \begin{cases} 2x + 3y + 2z & \le 90 \\ x + 2y + z & \le 81 \\ 4x + 3y + z & \le 120 \end{cases}$$

Exercice 4:

Question 4.1:

 $\overline{S = 90t + 81u} + 120v$

Ou plutôt : min(90t + 81u + 120v) si on veut que l'hôtelier paie le moins possible.

Question 4.2/4.3:

But ci-dessus.

Contraintes:

$$\begin{cases} t, u, v & \geq 0 \\ 2t + u + 4v & \geq 8 \\ 3t + 2u + 3v & \geq 5 \\ 2t + u + v & \geq 6 \end{cases}$$

Question 4.4:

$$\begin{cases} 2x + 3y + 2z + e_1 &= 90 \\ x + 2y + z + e_2 &= 81 \\ 4x + 3y + z + e_3 &= 120 \\ x, y, z, e_1, e_2, e_3 &\geq 0 \end{cases}$$

Premier tableau du simplex:

_		x	y	z	e_1	e_2	$ e_3 $	
	e_1	2	3	2	1	0	0	90
	e_2	1	2	1	0	1	0	81
	e_3	4	3	1	0	0	1	120
	obj	8	5	6	0	0	0	

Second tableau du simplex:

	$\parallel x$	y	z	e_1	e_2	e_3	
$\overline{e_1}$	0	3/2	3/2	1	0	-1/2	30
e_2	0	5/4	1/2	0	1	-1/4	51
x	1	3/4	1/4	0	0	1/4	30
\overline{obj}	0	-1	4	0	0	-2	

3 Primal-Dual : existence de solutions

$Primal \downarrow / Dual \rightarrow$	∃ Sol. Optimale	Pb. Sans Sol. Réalisable	Pb. Non Borné
∃ Sol. Optimale	✓	Х	Х
Pb. Sans Sol. Réalisable	X	✓	✓
Pb. Non Borné	Х	✓	Х

Cf. Slide 10/18 du cours :

Dualité

Propriété

- ► Si l'un des deux problèmes a une solution optimale alors l'autre a aussi une solution optimale, et elles ont toutes les deux la même valeur.
- ➤ Si l'un des deux problèmes n'est pas borné, alors l'autre est infaisable.
- Les deux problèmes peuvent être simultanément infaisables.

Modélisation 4

Exercice 6:

Question 6.1:

Variables de décision : les "recettes" des différents carburant qu'on doit produire.

 $\forall i \in \{1, 2, 3, 4, 5\}, j \in \{1, 2\}, x_{ij} = \text{nombre de barils d'essence de type } i \text{ utilisés pour la pro-}$ duction de carburant de type j.

Exemple:

Si
$$x_{11} = 2$$
, $x_{21} = 1$, $x_{31} = x_{41} = x_{51} = 0$,

Alors on obtient le carburant de performance : $\frac{2*70+1*80}{3}$

Autres variables possible:

 y_{ij} = proportion d'essence de type i dans le carburant de type j.

$$y_{11} = \frac{2}{3}, \ y_{21} = \frac{1}{3}, \ y_{31} = y_{41} = y_{51} = 0$$

 $y_{11} = \frac{2}{3}$, $y_{21} = \frac{1}{3}$, $y_{31} = y_{41} = y_{51} = 0$, Mais alors il faut des variables indiquant le nombre de barils produits.

Question 6.2:

But:
$$max(profit = \sum_{j=1}^{nC} (pr_j * \sum_{i=1}^{nE} x_{ij}) - \sum_{i=1}^{nE} (c_i * \sum_{j=1}^{nC} x_{ij}))$$

= $max(profit = \sum_{i=1}^{nE} \sum_{j=1}^{nC} (pr_j - c_i) * x_{ij})$

Contraintes:

$$\begin{cases} \forall i,j \;,\; x_{ij} \geq 0 \\ prod_j \geq minprod_j & \forall j \in \{1,...,nC\} \;,\; (\sum_{i=1}^{nE} x_{ij}) > minprod_j \\ \text{disponibilit\'e des essences} & \forall i \in \{1,...,nE\} \;,\; (\sum_{j=1}^{nC} x_{ij}) \leq d_i \\ \text{indice de performance} & \forall j \in \{1,...,nC\} \;,\; (\sum_{i=1}^{nE} (pe_i - pemin_j) * x_{ij}) \geq 0 \end{cases}$$