

ACM The Web Conference 2023 User Modeling and Personalization Track

Fine-tuning Partition-aware Item Similarities for Efficient and Scalable Recommendation

Tianjun Wei, Jianghong Ma, Tommy W.S. Chow

May 4, 2023 Austin, TX, USA

Background

Item Similarity Models

- Classical and straightforward method in CF
- Construct item-item weight (similarity) matrix
- Recommend items based on user historical interactions
- Face scalability problem with the growing number of items

Graph Convolution Network (GCN)

- Stack multiple convolutional layers
- Capture high-order user-item relationship

UltraGCN [1]

- Approximate infinite convolutional layers
- Construct an item adjacency graph
- Adopt graph sampling in item adjacency graph

Graph in CF

[1] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation, in CIKM 2021.

0.010

Algebraic connectivity (Fielder value) of the sampled item adjacency graph in UltraGCN

Our investigation

- Reveal the group structure in sampled item adjacency graph
- Demonstrate that the graph sampling strategy in UltraGCN is an approximation of graph partitioning

Identify Group Structure

Inspiration & Challenges

Inspiration

- Implement graph partitioning to item similarity models
- Community structure exists in real-world cases

Challenges

- Real-world data and partitioning result are not ideal
- INFORMATION LOSS

Methodology

Spectral Information in Graph

- Be used to perform graph partitioning
- Be revealed to be better in preserving inter-partition item relationships
- Be added to the fine-tuning of item similarity within each partition as global-level information

Methodology (cont.)

Local Prior Knowledge of Partitions

- A data augmentation strategy
- Virtual users who have interacted with all items in a partition
- Directly add values to item adjacency matrix
- No extra computational cost

Similarity Modeling in Each Partition

argmin
$$tr(S^TQS - 2(I - \lambda W^T)QS)$$
 ...
 S
 $Q = R^TR + \eta$

Experiment

- Achieve great recommendation performance
- High training speed
- Low parameter storage
- Ensure both efficiency and scalability

Dataset	Metric	GF-CF	LightGCN	SimGCL	UltraGCN	EASE	BISM	FPSR
Yelp2018 -	Recall@20	<u>0.0697</u>	0.0653	0.0681	0.0683	0.0657	0.0662	0.0703
	NDCG@20	<u>0.0571</u>	0.0532	0.0556	0.0561	0.0552	0.0559	0.0584
	#Params	-	4.46M	4.46M	4.46M	1448M	191M	3.27M
	Time (s)	23	~74000	~2900	617	22	783	35
Douban -	Recall@20	0.1719	0.1571	0.1699	0.1925	0.2038	0.2158	<u>0.2095</u>
	NDCG@20	0.1365	0.1206	0.1346	0.1556	0.1786	<u>0.1889</u>	0.1950
	#Params	-	5.04M	5.04M	5.04M	499M	158M	2.14M
	Time (s)	19	~22000	~2700	~5900	16	410	33

Performance comparison (partial)

Fine-tuned item similarity

Weighted sum

Visualization of item similarity matrix learned in *Yelp2018* dataset

Yelp2018 Amazon-cds Douban Gowalla **Dataset** N@20 N@20 N@20 N@20 Metrics R@20 R@20 R@20 R@20 w/o global-level 0.1540 0.0873 0.2046 0.1909 0.1566 <u>0.1883</u> <u>0.0702</u> <u>0.0582</u> information w/o local 0.1542 <u>0.0887</u> *0.2085* 0.1945 0.1785 0.1486 0.0662 0.0556 prior knowledge w/o 0.1539 0.0870 0.2084 0.1943 0.1832 0.1501 0.0692 0.0574 l_2 regularization **FPSR** 0.1576 0.0896 0.2095 0.1950 0.1884 0.1566 0.0703 0.0584

Ablation analysis

Detailed Analysis

Thank you!

The code is available at GitHub: Joinn99/FPSR

Presenter:

Tianjun Wei

City University of Hong Kong

tjwei2-c@my.cityu.edu.hk

FPSR