L1 Data Representation Quiz ANS

1.	Which hex digit corresponds to the 4-bit pattern 1101? A. 0xB B. 0xC C. 0xD D. 0xE ANS: C
2.	Convert 10110 ₂ to decimal: A. 20 B. 22 C. 18 D. 26 ANS: C (16+4+2=22)
3.	In a 5-bit system, adding 28 and 6 sets which condition? A. No flags set B. Carry flag set C. Overflow flag set D. Zero flag set ANS: B (true sum 34 exceeds 2 ⁵ –1=31)
4.	In a 5-bit system, 3 – 5 results in which carry/borrow status? A. Carry=1 (Borrow=0) B. Carry=0 (Borrow=1) C. Carry=1 (Borrow=1) D. Carry=0 (Borrow=0) ANS: B (result -2 < 0 ⇒ borrow; on M3, Carry=NOT Borrow ⇒ C=0)
5.	On ARM Cortex-M3, the borrow and carry flags relation is: A. Carry = Borrow B. Carry = NOT Borrow C. Borrow always 0 D. Carry always 0 ANS: B
5.	In two's complement, TC(x) can be obtained by: A. Invert bits B. Invert bits and subtract one C. Invert bits and add one D. Add one then invert bits ANS: C
7.	In a 5-bit system, which statement is true about -16 (10000 ₂)? A. Its two's complement is 00000 ₂ B. Its two's complement is itself C. It cannot be represented D. It equals +16 ANS: B (most negative number maps to itself)
8.	Signed overflow can occur when: A. Adding operands with different signs

B. Subtracting operands with the same sign

- C. Adding two negatives
- D. Subtracting a negative from a negative never overflows

ANS: C (same-sign add or different-sign subtract can overflow)

- 9. In CPSR after ADD/SUB, which flag denotes carry?
 - A. N
 - B. Z
 - C. C
 - D. V

ANS: C (C for carry)

- 10. In a 5-bit system, to compute a+b for a=0b10000 and b=0b10000, software should check which flag if a,b are unsigned vs. signed, respectively?
 - A. Unsigned \rightarrow V, Signed \rightarrow C
 - B. Unsigned \rightarrow C, Signed \rightarrow V
 - C. Unsigned \rightarrow N, Signed \rightarrow Z
 - D. Unsigned \rightarrow Z, Signed \rightarrow N

ANS: B (unsigned uses C; signed uses V)

Explanations: For a = 0b10000 and b = 0b10000 in a 5-bit context, software should check the C flag for unsigned addition and the V flag for signed addition, respectively.

Unsigned case

- Treating a and b as unsigned 16 and 16, the true sum is 32, which exceeds the 5-bit unsigned max 2⁵-1=31; therefore the carry flag C is set to indicate unsigned overflow.
- Conclusion: check C for unsigned a + b; C=1 here because the true result > 2^n-1 .

Signed case

- Treating a and b as signed -16 and -16 (since 0b10000 is the most negative value in 5-bit two's complement), the true sum is -32, which is below the signed minimum $-2^{4}=-16$; this sets the overflow flag V for signed overflow.
- Conclusion: check V for signed a + b; V=1 here because the true result $< -2^{n-1}$.
- 11. In a 5-bit system, the same binary addition can represent both unsigned 23+6=29 and signed -9+6=-3 because:
 - A. Adder interprets sign automatically
 - B. Two's complement allows the same hardware; interpretation differs in software
 - C. Hardware selects mode via a pin
 - D. Only subtraction shares hardware

ANS: B

- 12. For char str = "ARM Assembly", what must the final byte be and what is the string's size in Bytes?
 - A. 0x00; 13
 - B. 0x20; 12
 - C. 0x41; 13
 - D. 0x79; 12 (ASCII hex code for lowercase 'y' is 0x79)

ANS: A (includes space for NULL terminator; 12 chars + 1 NUL = 13)