SISTEMAS INFORMATICOS

PRUEBA ABIERTA I

RELACIONA LOS HUECOS CON LOS NOMBRES

Relaciona los huecos con los nombres: RJ45, PS/2, Audio, USB 3.0, eSATA, USB 2.0. A continuación, se describe la función y la identificación de cada conector:

RJ45:

- Función: Se utiliza para redes Ethernet. Es el estándar para conectar computadoras a Internet con un cable de red.
- Identificación: Tiene forma rectangular y 8 pines metálicos.
- Uso común: Para conectar a routers y switches de red.

PS/2:

- Función: Usado para teclados y ratones, más común en computadoras antiguas.
- Identificación: Conector redondo con una muesca de alineación. Generalmente verde (ratón) o morado (teclado).
- Uso común: Conectar dispositivos periféricos viejos.

Audio (Jack 3.5 mm):

- Función: Para entrada o salida de audio para auriculares, micrófonos y altavoces.
- Identificación: Pequeño conector redondo, a menudo de colores: verde (salida) o rosa (entrada).

USB 3.0:

- Función: Universal para transferencias de datos y alimentación, con velocidad de hasta 5 Gbps.
- Identificación: Similar al USB 2.0, pero con una lengüeta interna azul.
- Uso común: Conectar discos duros externos y memorias USB.

eSATA:

- Función: Conectar dispositivos de almacenamiento externo a alta velocidad.
- Identificación: Puerto robusto, parecido al SATA interno pero distinto.
- Uso común: Transferencias de datos con almacenamiento externo.

USB 2.0:

- Función: Universal para datos y alimentación, con velocidad de hasta 480 Mbps.
- Identificación: Similar a USB 3.0, pero con lengüeta negra o blanca.
- Uso común: Conectar impresoras, ratones y cámaras.

FireWire:

Función: Conexión veloz para dispositivos multimedia cámaras, discos duros externos y otros periféricos.

Identificación: Puerto trapezoidal con 4, 6 o 9 pines.

Uso común: Transferir datos en edición de video y audio profesional.

IDENTIFICA PUERTOS/CONECTORES EN TU ORDENADOR Y MENCIONA POSIBLES ADICIONALES

Realiza una revisión de tu equipo y describe los puertos que encuentres. Ejemplo: Puertos encontrados:

- USB (2.0 y 3.0): Cuatro puertos, dos de cada tipo.
- Audio: Conector para micrófono y auriculares.

Puertos encontrados:

- RJ45: Puerto Ethernet.
- USB (2.0, 3.0 y 3.1): 2xNegros, 2xAzules, 2xAguamarina.
- Audio: Conector para micrófono, auriculares y línea.
- HDMI: Conexión para video/audio de alta definición (Interno y Externo).
- DisplayPort: Para conectar monitores con alta definición (Externo).
- VGA: Para conectar monitores con alta definición (Interno).
- DVI: Para conectar monitores con alta definición (Interno).
- -- PS/2: Para conectar Ratón o Teclados más antiguos.

REALIZA UNA LISTA DE SISTEMAS OPERATIVOS, SU DESARROLLADOR Y ARQUITECTURA

Ejemplo de tabla con sistemas operativos conocidos:

Sistema Operativo	Empresa/Co munidad	Arquitectur a
Windows 11	Microsoft	x64
macOS 13 Ventura	Apple	ARM
Ubuntu 22.04	Canonical	x86, x64, ARM
Fedora 39	Red Hat	x86, x64, ARM
Android 13	Google	ARM
Debian 12	Comunidad Open Source	x86, x64, ARM

Información adicional:

Windows es usado en oficinas.

macOS es popular en diseño.

Linux se usa en servidores.

Android es líder en dispositivos móviles.

Debian es distribución de Linux (Programación).

PLANIFICACIÓN Y TÉCNICAS DE INSTALACIÓN

Instalación, actualización y recuperación de sistemas operativos:

1. Planificación general

Antes de instalar un sistema operativo, se debe planear para asegurar que todo funcione bien:

Requisitos del sistema: Verificar las especificaciones mínimas y recomendadas (procesador, RAM, almacenamiento, compatibilidad).

Ejemplo: Windows 11 necesita un procesador de 64 bits, 4 GB de RAM, 64 GB de almacenamiento y TPM 2.0.

Preparación del dispositivo: Hacer copias de seguridad y comprobar que los periféricos son compatibles.

Medio de instalación: Descargar la imagen ISO oficial y crear un USB o DVD instalador usando herramientas como Rufus o Etcher.

BIOS/UEFI: Ajustar el arranque desde el USB/DVD.

2. Técnicas específicas por sistema operativo Windows 11:

- Instalación: Iniciar desde el USB, ajustar particiones y terminar la configuración.
- Actualización: Utilizar la herramienta de Microsoft para actualizar desde Windows 10.
- Recuperación: Configurar puntos de restauración y usar "Restablecer este PC" si hay problemas.

Windows 10:

- Instalación: Similar a Windows 11, con requisitos más bajos (1 GB de RAM y 16 GB de almacenamiento para 32 bits).

- Actualización: Controlar desde Configuración → Windows Update.
- Recuperación: Usar la herramienta de creación de medios o las opciones avanzadas como "Reparar inicio".

macOS 13 Ventura:

- Instalación: Hacer un USB con el comando createinstallmedia en Terminal, iniciar en modo de recuperación y seguir instrucciones.
- Actualización: Ir a Preferencias del Sistema → Actualización de software.
- Recuperación: Utilizar el modo de recuperación (Cmd+R) para reinstalar macOS o reparar discos.

Ubuntu 22.04:

- Instalación: Crear un USB de arranque, iniciar desde allí y configurar particiones, idioma y zona horaria.
- Actualización: Ejecutar en Terminal:

```bash

sudo apt update

sudo apt upgrade

...

- Recuperación: Usar el modo de recuperación desde GRUB o ejecutar sudo dpkg configure -a para arreglar configuraciones dañadas.
- 3. Consideraciones finales

Documentación: Anotar pasos importantes y usar imágenes para futuras referencias.

Virtualización: Probar sistemas operativos en VirtualBox antes de instalarlos realmente.

#### Conclusión:

Un proceso bien planificado y técnicas específicas para cada sistema operativo ayudan a instalar de forma efectiva, reducir riesgos y mejorar la recuperación en fallos. Esto es crucial para asegurar el funcionamiento en entornos profesionales.

# OBSERVA TIPOS DE CABLES Y CONECTORES E IDENTIFICA SU USO

Análisis de algunos cables comunes:

#### Cable Coaxial:

Envía señales de televisión, radio y datos, se usa en redes viejas. Se reconoce por su núcleo central con aislamiento y una malla metálica. Usos incluyen televisión por cable, antenas e Internet con DOCSIS.

Cable UTP (Par Trenzado No Apantallado):

Hecho para redes Ethernet. Está compuesto por pares de hilos trenzados sin apantallamiento y cubierto por plástico. Se usa para conectar computadoras, routers y switches en redes LAN.

## Cable de Fibra Óptica:

Envía datos rápidamente usando luz. Tiene un núcleo de vidrio o plástico cubierto con capas resistentes como PVC o Kevlar. Se utiliza en redes WAN, enlaces entre servidores y telecomunicaciones.

#### Conector RJ45:

Se usa para terminar cables Ethernet en redes LAN. Tiene forma modular, con 8 pines metálicos y una lengüeta plástica. Se emplea para unir dispositivos como switches, routers y computadoras.

#### Conector DB25:

Envía datos en puertos paralelos o seriales. Tiene forma rectangular, con 25 pines en dos filas. Se usa para conectar impresoras viejas y dispositivos industriales.

#### Conector DB9:

Facilita la comunicación serial entre equipos. Es más pequeño que el DB25 y tiene 9 pines en dos filas. Se utiliza con módems, sistemas de control industrial y equipos viejos.

#### Conector BNC:

Une cables coaxiales para transmisión de señales. Es cilíndrico y tiene un cierre de bayoneta. Se usa en redes coaxiales (Ethernet 10BASE2) y en sistemas de video.

#### Terminador de 50 $\Omega$ :

Se usa para finalizar líneas coaxiales y evitar que las señales se reflejen. Se aplica en redes antiguas con cable coaxial.

Latiguillos y conectores para fibra óptica:

Permiten conexiones precisas en cables de fibra. Incluyen conectores como SC, LC y ST. Se utiliza en centros de datos, redes FTTH y telecomunicaciones.



# INTERCONEXIÓN DE SISTEMAS EN RED Y GESTIÓN DE PUERTOS

#### 1. Interconexión de sistemas en red

La interconexión de sistemas sirve para conectar dispositivos y compartir recursos, como archivos e internet de forma efectiva y segura. Para hacerlo bien, deben seguirse estos pasos:

#### 1.1. Configuración de redes locales (LAN):

#### Elementos necesarios:

- Router: Provee internet y asigna IPs usando DHCP.
- Switch: Une dispositivos en la red.
- Cable Ethernet (categoría 5e, 6 o más): Conecta los dispositivos.

# Pasos básicos de configuración:

- Conectar el router al módem y al switch.
- Asignar IPs a los dispositivos (dinámicas por DHCP o fijas).
- Configurar acceso a internet con la puerta de enlace.

## Comprobación de conectividad:

- Usa el comando ping [IP] para checar comunicación entre dispositivos.
- 1.2. Configuración de redes inalámbricas (Wi-Fi):
- Entra a la configuración del router (generalmente 192.168.1.1 o similar).
- Ajusta SSID, tipo de cifrado (WPA3) y contraseña.
- Usa repetidores o puntos de acceso para mejorar la cobertura.

# 1.3. Configuración de redes extendidas (WAN):

Las redes WAN conectan redes locales lejanas con tecnologías como MPLS, VPN o fibra.

Ejemplo: Usar una VPN para conectarse de forma segura a una red corporativa desde afuera.

#### 2. Manejo de puertos

La gestión de puertos asegura que los servicios y aplicaciones funcionen al comunicarse con otros dispositivos.

#### 2.1. Identificación de puertos y protocolos:

#### Puertos comunes:

- 80: HTTP (navegación no segura).
- 443: HTTPS (navegación segura).
- 22: SSH (administración remota).
- 25 y 587: SMTP (envío de correos).
- 3389: RDP (escritorio remoto Windows).

#### **Protocolos:**

- TCP: Protocolo basado en conexión.
- UDP: Más rápido, sin confirmación de entrega.

#### 2.2. Configuración de puertos en routers y cortafuegos:

## Apertura de puertos:

- Accede al router y busca "Reenvío de puertos" o "NAT".
- Indica el puerto a abrir, la IP del dispositivo y el protocolo.
- Guarda los cambios y checa conectividad.

## Cierre de puertos innecesarios:

- Para mayor seguridad, cierra los puertos no usados para impedir accesos no deseados.

## Uso de cortafuegos:

- En Windows, crea reglas de entrada o salida con el cortafuegos.
- En Linux, usa comandos como:
  - ```bash

sudo ufw allow [puerto]/tcp sudo ufw deny [puerto]/udp

#### 2.3. Monitoreo y pruebas de puertos:

- Usa herramientas como nmap para checar puertos abiertos y servicios en la red:

```
```bash
```

```
nmap -p [puerto] [IP]
```

٠.,

- Utiliza servicios en línea como Open Port Checker para validar accesibilidad externa a la red.

3. Seguridad

Aplicación de protocolos seguros:

- Usa HTTPS en vez de HTTP para proteger la navegación.
- Implementa SSH en lugar de Telnet para conexiones remotas seguras.

Segmentación de red:

- Divide la red en subredes usando VLANs para limitar acceso entre dispositivos, mejorando seguridad y rendimiento.

Auditorías periódicas:

- Revisa regularmente la configuración de puertos y redes para encontrar vulnerabilidades y accesos no permitidos.

Conclusión

La interconexión de sistemas y manejo de puertos son clave para una red eficiente y segura. Un proceso bien planificado, con herramientas y protocolos adecuados, mejora el rendimiento y protege sistemas contra amenazas. Este enfoque muestra un entendimiento sólido de las mejores prácticas en administración de redes.

REFERENCIAS

https://hardzone.es/noticias/componentes/colores-puerto-usb/

https://www.xataka.com/basics/vga-dvi-hdmi-displayport-usb-c-como-saber-que-cable-para-monitor-necesito

https://www.profesionalreview.com/conectores-pc/

https://www.monografias.com/trabajos104/puertos-y-conectores-pc/puertos-y-conectores-pc

https://es.wikipedia.org/wiki/Puerto (inform%C3%A1tica)

https://es.wikipedia.org/wiki/Sistema operativo

https://www.arsys.es/blog/mejores-sistemas-operativos-diferencias-y-cual-elegir

https://www.profesionalreview.com/2023/12/09/instalar-sistema-operativo/

https://www.youtube.com/watch?v=fbNqVwJ2TGk

https://www.youtube.com/watch?v=kBOekGrkwSA

https://sarreplec.caib.es/pluginfile.php/14196/mod_resource/content/3/EM02_2 0/singlepage_index.html

https://www.xataka.com/basics/como-instalar-linux-a-windows-10-ordenador

https://www.kio.tech/blog/data-center/que-es-la-interconexion-de-redes

https://es.wikipedia.org/wiki/Interconectividad de redes