22.2.2 The Pituitary Gland

The pituitary gland is located in a bony cavity called sella tursica and is attached to hypothalamus by a stalk (Figure 22.2). It is divided anatomically into an adenohypophysis and a neurohypophysis. Adenohypophysis consists of two portions, pars distalis and pars intermedia. The pars distalis region of pituitary, commonly called anterior pituitary, produces growth hormone (GH), prolactin (PRL), thyroid stimulating hormone (TSH), adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH). Pars intermedia secretes only one hormone called **melanocyte** (stimulating hormone (MSH). However, in humans, the pars intermedia is almost merged with pars distalis. Neurohypophysis (pars nervosa) also known as posterior pituitary, stores and releases two hormones called oxytocin and vasopressin, which are actually synthesised by

Figure 22.2 Diagrammatic representation of pituitary and its relationship with hypothalamus

the hypothalamus and are transported axonally to neurohypophysis.

Over-secretion of GH stimulates abnormal growth of the body leading to gigantism and low secretion of GH results in stunted growth resulting in pituitary dwarfism. Excess secretion of growth hormone in adults especially in middle age can result in severe disfigurement (especially of the face) called **Acromegaly**, which may lead to serious complications, and premature death if unchecked. The disease is hard to diagnose in the early stages and often goes undetected for many years, until changes in external features become noticeable. Prolactin regulates the growth of the mammary glands and formation of milk in them. TSH stimulates the synthesis and secretion of thyroid hormones from the thyroid gland. ACTH stimulates the synthesis and secretion of steroid hormones called glucocorticoids from the adrenal cortex. LH and FSH stimulate gonadal activity and hence are called **gonadotrophins**. In males, LH stimulates the synthesis and secretion of hormones called **androgens** from testis. In males, FSH and androgens regulate spermatogenesis. In females, LH induces ovulation of fully mature follicles (graafian follicles) and maintains the corpus luteum, formed from the remnants of the graafian follicles 334 Biology

Figure 22.3 Diagrammatic view of the position of Thyroid and Parathyroid

- (a) Ventral side
- (b) Dorsal side

after ovulation. FSH stimulates growth and development of the ovarian follicles in females. MSH acts on the melanocytes (melanin containing cells) and regulates pigmentation of the skin. Oxytocin acts on the smooth muscles of our body and stimulates their contraction. In females, it stimulates a vigorous contraction of uterus at the time of child birth, and milk ejection from the mammary gland. Vasopressin acts mainly at the kidney and stimulates resorption of water and electrolytes by the distal tubules and thereby reduces loss of water through urine (diuresis). Hence, it is also called as **anti-diuretic hormone** (ADH).

An impairment affecting synthesis or release of ADH results in a diminished ability of the kidney to conserve water leading to water loss and dehydration. This condition is known as **Diabetes Insipidus**.

22.2.3 The Pineal Gland

The pineal gland is located on the dorsal side of forebrain. Pineal secretes a hormone called **melatonin**. Melatonin plays a very important role in the regulation of a 24-hour (diurnal) rhythm of our body. For example, it helps in maintaining the normal rhythms of sleep-wake cycle, body temperature. In addition, melatonin also influences metabolism, pigmentation, the menstrual cycle as well as our defense capability.

22.2.4 Thyroid Gland

The thyroid gland is composed of two lobes which are located on either side of the trachea (Figure 22.3). Both the lobes are interconnected with a thin flap of connective tissue called isthmus. The thyroid gland is composed of **follicles** and **stromal tissues**. Each thyroid follicle is composed of follicular cells, enclosing a cavity. These follicular cells synthesise two hormones, **tetraiodothyronine** or **thyroxine** (T_4) and **triiodothyronine** (T_3). Iodine is essential for the normal rate of hormone synthesis in the thyroid. Deficiency of iodine in our diet results in **hypothyroidism** and enlargement of the thyroid gland, commonly called **goitre**. Hypothyroidism during pregnancy causes defective development and maturation of the growing

baby leading to stunted growth (cretinism), mental retardation, low intelligence quotient, abnormal skin, deaf-mutism, etc. In adult women, hypothyroidism may cause menstrual cycle to become irregular. Due to cancer of the thyroid gland or due to development of nodules of the thyroid glands, the rate of synthesis and secretion of the thyroid hormones is increased to abnormal high levels leading to a condition called **hyperthyroidism** which adversely affects the body physiology.

Exopthalmic goitre is a form of hyperthyroidism, characterised by enlargement of the thyroid gland, protrusion of the eyeballs, increased basal metabolic rate, and weight loss, also called **Graves' disease.**

Thyroid hormones play an important role in the regulation of the basal metabolic rate. These hormones also support the process of red blood cell formation. Thyroid hormones control the metabolism of carbohydrates, proteins and fats. Maintenance of water and electrolyte balance is also influenced by thyroid hormones. Thyroid gland also secretes a protein hormone called thyrocalcitonin (TCT) which regulates the blood calcium levels.

22.2.5 Parathyroid Gland

In humans, four parathyroid glands are present on the back side of the thyroid gland, one pair each in the two lobes of the thyroid gland (Figure 22.3b). The parathyroid glands secrete a peptide hormone called **parathyroid hormone** (PTH). The secretion of PTH is regulated by the circulating levels of calcium ions.

Parathyroid hormone (PTH) increases the Ca^{2+} levels in the blood. PTH acts on bones and stimulates the process of bone resorption (dissolution/demineralisation). PTH also stimulates reabsorption of Ca^{2+} by the renal tubules and increases Ca^{2+} absorption from the digested food. It is, thus, clear that PTH is a hypercalcemic hormone, i.e., it increases the blood Ca^{2+} levels. Along with TCT, it plays a significant role in calcium balance in the body.

22.2.6 Thymus

The thymus gland is a lobular structure located between lungs behind sternum on the ventral side of aorta. The thymus plays a major role in the development of the immune system. This gland secretes the peptide hormones called **thymosins**. Thymosins play a major role in the differentiation of **T-lymphocytes**, which provide **cell-mediated immunity**. In addition, thymosins also promote production of antibodies to provide **humoral immunity**. Thymus is degenerated in old individuals resulting in a decreased production of thymosins. As a result, the immune responses of old persons become weak.