Тема 2 Динамическое программирование

2.2 Задача распределения ресурсов

2.2.1. Постановка задачи

Имеется сырье в объеме c и n технологических процессов. Если количество x сырья используется в i-м технологическом процессе, то получается прибыль $f_i(x)$. Как распределить сырье между процессами, чтобы получить максимальную прибыль? Пусть x_i -- количество сырья, выделяемое на i-й процесс. Тогда математическая модель сформулированной задачи имеет вид

$$\sum_{i=1}^{n} f_i(x_i) \to \max, \sum_{i=1}^{n} x_i = c, x_i \ge 0, i = \overline{1, n}.$$
 (1)

Специфика задачи нелинейного программирования (1) состоит в том, что его целевая функция и функция ограничений *сепарабельны*, т.е. представимы в виде суммы функций одной переменной. Решим задачу (1) методом динамического программирования.

2.2.2 Алгоритм решения

Осуществим первый этап - инвариантное погружение в семейство задач. Для задачи (1) этот этап состоит в рассмотрении совокупности задач распределения ресурсов в объеме y между k технологическими процессами:

$$P(k,y):$$
 $\sum_{i=1}^{k} f_i(x_i) \to \max, \sum_{i=1}^{k} x_i = y, x_i \ge 0, i = \overline{1,k},$ (2)

где $0 \le y \le c, \ 0 \le k \le n,$ -- параметры семейства.

При y = c и k = n получим исходную задачу.

Оптимальное значение целевой функции задачи (2) назовем *функцией Беллмана* $B_k(y)$:

$$B_k(y) = \max \sum_{i=1}^k f_i(x_i), \sum_{i=1}^k x_i = y, x_i \ge 0, i = \overline{1, k}.$$

Перейдем ко второму этапу -- составлению уравнения Беллмана на основе принципа оптимальности. Сущность этого принципа для задачи (1) выражается приводимыми ниже рассуждениями.

Отметим, что при составлении уравнения Беллмана проверяется правильность инвариантного погружения. С другой стороны, способ погружения сказывается на виде уравнения.

В задаче (2) с k процессами и запасом сырья y выделим k-му процессу сырье в количестве z, $0 \le z \le y$. При этом размер прибыли от k-го процесса будет равен $f_k(z)$.

На оставшиеся процессы с номерами $1,2,\ldots,k-1$ остается сырья в количестве y-z. Из принципа оптимальности следует, что это сырье y-z между процессами $1,2,\ldots,k-1$ нужно распределять оптимальным образом, ибо в противном случае при заданном количестве сырья z для k-го процесса можно получить большую прибыль, если сырье в объеме y-z разделить между процессами $1,2,\ldots,k-1$ оптимальным образом.

Согласно определению (3), размер максимальной прибыли от распределения y-z единиц ресурса между процессами $1, 2, \ldots, k-1$ равен $B_{k-1}(y-z)$.

Таким образом, если запас сырья равен y, то при выделении k-му процессу z единиц ресурса от всех k процессов получаем прибыль

$$f_k(z) + B_{k-1}(y-z).$$
 (4)

Изменяя количество z в пределах $0 \le z \le y$, находим значение $x_k^0(y)$ -- оптимальное количество сырья на k-й процесс, при котором общая прибыль (4) максимальна:

$$f_k(x_k^0(y)) + B_{k-1}(y - x_k^0(y)) = \max_{z} [f_k(z) + B_{k-1}(y - z)], 0 \le z \le y.$$
 (5)

С другой стороны, согласно (3), максимальная прибыль от k процессов при количестве сырья y равна $B_k(y)$. Учитывая это, получаем

$$B_k(y) = \max_{0 \le z \le y} [f_k(z) + B_{k-1}(y-z)], k = \overline{1, n}, 0 \le y \le c.$$
 (6)

Параллельно с функцией $B_k(y)$ можно строить функцию $x_k^0(y)$, $0 \le y \le c$, где $x_k^0(y)$ - значение параметра $z \in [0,y]$, на котором достигается максимум в правой части выражения (6).

Уравнение (<u>6</u>) называется *уравнением Беллмана*.

Поскольку уравнение (6) рекуррентно относительно аргумента k функции $B_k(y)$, то

для его решения необходимо задать начальное условие. Это условие можно получить из (3), если положить k = 1:

$$B_1(y) = \max f_1(x_1), x_1 = y, x_1 \ge 0.$$

Таким образом, начальное условие для уравнения Беллмана (6) имеет вид

$$B_1(y) = f_1(y). \tag{7}$$

Рассмотрим третий этап -- поиск решения уравнения Беллмана (6), (7) и построение по нему решения исходной задачи.

Начальное условие у нас задано -- это условие (7). В уравнении (6) положим k=2:

$$B_2(y) = \max_{0 \le z \le y} \left[f_2(z) + B_1(y - z) \right] = \max_{0 \le z \le y} \left[f_2(z) + f_1(y - z) \right]. \tag{8}$$

В этом выражении под знаком максимума стоят известные функции. Поэтому формула (8) позволяет вычислить $B_2(y)$ максимизацией известной функции одной переменной. Положим далее в (6) k=3:

$$B_3(y) = \max_{0 \le z \le y} [f_3(z) + B_2(y - z)].$$

Функция $f_3(y)$ задана, функция $B_2(y)$ определена выше, следовательно, под знаком максимума стоит известная функция и мы можем теперь определить функцию $B_3(y)$ максимизацией известной функции одной переменной $\text{textit}\{z\}$. И так далее. В результате будут построены функции $B_1(y), \ldots, B_n(y), 0 \le y \le c$. Согласно (3), число $B_n(c)$ -- максимальная прибыль для исходной задачи (1).

Чтобы найти оптимальное распределение сырья по технологическим процессам, обратимся к выражению (5) и совершим обратный ход решения уравнения Беллмана.

Положим в (5) k=n, y=c и, согласно (5), найдем число $x_n^0(c)$, которое, по определению, равно оптимальному количеству сырья, выделяемому на процесс n, если объем сырья на все n процессов равен c. Таким образом, компонента x_n^0 оптимального плана $x^0=(x_1^0,\,x_2^0,\,...,\,x_n^0)$ исходной задачи (1) определена: $x_n^0=x_n^0(c)$.

Если n-му процессу выделили x_n^0 единиц сырья, то на остальные n-1 процессов осталось $c - x_n^0$ единиц.

Положим в (5) $k=n-1,\ y=c-x_n^0$ и найдем $x_{n-1}^0(c-x_n^0)$. По определению $x_{n-1}^0(c-x_n^0)$ равно оптимальному количеству сырья, которое дается $n\text{-}1\text{-}\mathrm{my}$ процессу при условии, что $c-x_n^0$ единиц сырья надо разделить оптимальным образом между первыми n-l процессами. Таким образом, получаем $x_{n-1}^0=x_{n-1}^0(c-x_n^0)$. Продолжив процесс решения, найдем компоненты x_{n-2}^0, \dots, x_1^0 решения исходной

задачи (1). Проанализируем результат.

Достоинства метода:

- 1. Исходная задача (1) максимизации по n переменным свелась к (n-1) задачам (6) максимизации по одной переменной, причем результат -- глобально оптимальный план.
- 2. В процессе решения не использовались аналитические свойства элементов задачи, исходные функции могли быть заданы таблично, графически, алгоритмически и т.д.
- 3. По результатам вычислений $B_k(y)$ легко построить решение задачи (1) при варьированных значениях параметров c и n, что позволяет провести анализ чувствительности решений задачи (1) к изменениям указанных параметров.

Недостатки метода

Основным недостатком метода является *«проклятие размерности»*. Суть этого недостатка состоит в том, что при решении уравнения Беллмана (6) приходится запоминать функции $B_k(y)$. В рассмотренной выше задаче с распределением сырья одного вида ими оказались функции одного аргумента. В общем случае количество аргументов равно количеству видов сырья. Табулирование функций многих переменных (n>2) требует очень много места в оперативной памяти, что затрудняет реализацию метода.

Существуют способы борьбы с «проклятием размерности», но эти способы годятся не для всех задач.

Пример. Рассмотрим пример с данными из табл. 2.1.

Таблица 2.1

Определим функции Беллмана по правилу: $B_1(y) = f_1(y)$,

$$B_2(y) = \max_{0 \le z \le y} [f_2(z) + B_1(y - z)], B_3(y) = \max_{0 \le z \le y} [f_3(z) + B_2(y - z)], \ 0 \le y \le c = 5.$$

Например,

$$B_2(4) = \max_{0 \le z \le 4} (f_2(z) + B_1(4 - z)) =$$

$$= \{ f_2(0) + B_1(4), f_2(1) + B_1(3), f_2(2) + B_1(2),$$

$$f_2(3) + B_1(1), f_2(4) + B_1(0) \} = 4.$$

Значения функций Беллмана представим в табл. 2.2, где в каждой клетке наряду со значением функции Беллмана $B_k(y)$ в скобках укажем значение $x_k^0(y)$, на котором достигает максимума правая часть уравнения (6).

Таблица 2.2

У	1	2	3	4	5
$B_1(y)$	1	2	3	4	5
$B_2(y)$	1(0)	2(0)	3(0)	4(0,4)	7(5)
$B_3(y)$	2(1)	3(1)	4(1)	5(1)	7(0)

Из <u>табл. 2.2</u> видно, что максимальная прибыль в рассматриваемой задаче равна $B_3(5)=7$. Найдем оптимальное распределение ресурсов. Поскольку $x_3^0(5)=0$, то третьему технологическому процессу назначаются ресурсы в объеме $x_3^0=0$. На остальные процессы 1 и 2 остается ресурсов 5-0=5. Прибыль от реализации процессов 1, 2 при объеме ресурсов 5 равна $B_2(5)=7$ и $x_2^0(5)=5$. Значит, второму процессу назначается ресурс в объеме 5: $x_2^0=5$. На первый процесс остается ресурса в объеме 5 -- 5=0. Следовательно, $x_1^0=0$.

Получили оптимальный план

$$(x_1^0 = 0, x_2^0 = 5, x_3^0 = 0).$$

Изменим теперь в задаче одно условие: положим теперь c=4. Согласно таблице, имеем: $B_3(4)=5$ -- это максимальная прибыль, $x_3^0(4)=1$. Следовательно, на первый и второй процессы остается ресурса в объеме 4-1=3. Далее по табл. 2.2 находим $B_2(3)=3$ и $x_2^0(3)=0$. На первый процесс остается ресурса в объеме 3 -- 0 = 3.

Оптимальный план распределения ресурсов

$$(x_1^0=3,\; x_2^0=0,\; x_3^0=1).$$