Multi-Stop Methods

Will look for school that uses into form more than I point in the post. Should increase ourning.

Alan - Bartefuth (3- stop)

Albamada approach from that in the test.

= 4: +r(c (1x:2) +p ((x:-12:-) +c ((x:-5 2:-5)]

use Toplar sovies

リューリートリーチュートラニー

 $f(x^{i,j}, x^{i,j}) = f(x^{i,j}, x^{i,j}) + \frac{1}{(-r)} f(x^{i,j}, x^{i,j}) + \frac{r}{(-r)} f(x^{i,j}$

f(x; y; -) = f(x; y;) + \(\frac{1}{2}\right) f(x; y;) + \(\frac{2}{2}\right) f'(x; y;) + \(\frac{2}{2}\right) f''(x; y;) \)

 $| (rc(a), -sra), -sra), -\frac{1}{4} r_3 a_{1}, -1 \cdots]$ $= a' + re(a) + re(a) + re(a), -ra), + \frac{1}{6} a'_{11} - \frac{1}{9} a'_{11}, -1 \cdots]$ $= (rc(a), -ra), + \frac{1}{6} a'_{11} - \frac{1}{9} a'_{11}, -1 \cdots]$ $= (rc(a), -ra), + \frac{1}{6} a'_{11} - \frac{1}{9} a'_{11}, -1 \cdots]$ $= (rc(a), -ra), + \frac{1}{6} a'_{11} - \frac{1}{9} a'_{11}, -1 \cdots]$ $= (rc(a), -ra), + \frac{1}{6} a'_{11} - \frac{1}{9} a'_{11}, -1 \cdots]$ $= (rc(a), -ra), + \frac{1}{6} a'_{11} - \frac{1}{9} a'_{11}, -1 \cdots]$ $= (rc(a), -ra), + \frac{1}{6} a'_{11} - \frac{1}{9} a'_{11}, -1 \cdots]$ $= (rc(a), -ra), + \frac{1}{6} a'_{11} - \frac{1}{9} a'_{11}, -1 \cdots]$ $= (rc(a), -ra), + \frac{1}{6} a'_{11} - \frac{1}{9} a'_{11}, -1 \cdots]$

€ 7; = 9;

(y: = ay; + 6y; + 6y;

1 = 0 + 1+ C

\$ = - 6 - 2 c

(1) 14;" : -6 4;" -2 6 7;"

d = & +2e

(1) 6 41 " = 641," + 264;"

a= 23 1= 16 C= 12

E

11 = 4: + 15 [53 (or 2) + (-10) ((x: 12) + 2 ((x: 2) - 2)]

Local Trunchin array

General schon yin = y, who (x; y;)

Truestie com (Tin(h): 3in. 4: -h6(siyi)

So ever is $T_{ini}(L) = \frac{O(L^2)}{L} = O(L^2)$ For Man -Bablind 3-54op

41

Adams - Marten 2-540p

yin : yi + h [a f(xin yin) + b f(xiyi) + cf(xin yin)]

wih got

4; + k4; + 62 4; + 63 4; 1 1 ...

= 4: + ar[((x,2)) + r ((x,2)

166 (1x; 9;) + ch [(1x; 9;) . h (1x; 9;) . h (1/2; 9;) - h (1/2; 9;) - h (1/2; 9;) - h

(4; ·4;

(4: + by + + by + + cy;

(1) ty;" = 91;" + E7;"

(+ 2' = & 2; ... - £ 2; ... enson

$$g_{im} = a_{i} + \frac{r_{i}}{r_{i}} \left[2 \left\{ (x_{im} a_{im}) + 6 \left\{ (x_{i} a_{i}) - 1 \left\{ (x_{im} a_{im}) \right\} \right\} \right]$$

Truncation error

Sin = 4: + 1 3 f(x, 4) - f(x, 4, 1) d(x)

Notice that Adair Bestfacth was only del points and Adams Mahlon vous old men parts

A-B is an explinit method.

- Generally yin = 4: + h[afluen yin] +...]

may actually be difficult to solve this
for yin!

- Explicit methods are genrelly less accurate than implicit method for the same a of old points used.

EX 41 = 3+x 4101 =0 0 (x < 1

 $= \lambda^{i} + \frac{1}{r} \left[3(\lambda^{i} + x^{i}) - (\lambda^{i-1} + x^{i-1}) \right]$ $= \lambda^{i} + \frac{1}{r} \left[3(\lambda^{i} + x^{i}) - (\lambda^{i-1} + x^{i-1}) \right]$ $= \lambda^{i} + \frac{1}{r} \left[3(\lambda^{i} + x^{i}) - (\lambda^{i-1} + x^{i-1}) \right]$

 $y_{[n]} = (1 + \frac{3}{2}L)y_{1}^{2} + (\frac{3}{2}L)x_{1}^{2} - (\frac{1}{2}(y_{[n]} + y_{[n]})$ \times \(\frac{3}{2}L \) \(\frac{3}{2}L \) \(\frac{1}{2}L \) \(\frac{1}

 $= (\frac{1}{2}f)\lambda^{1+1} + (\frac{1}{2}f)\chi^{1+1} + (1 + \frac{1}{6}f)\lambda^{1} + (\frac{1}{6}f)\chi^{1} - \frac{1}{12}(2^{1-1} + \chi^{1-1})$ $= \lambda^{1} + \frac{1}{2}f(2^{1}f(x^{(1)}2^{(1)}) + 8 \cdot (2^{1}f(x^{(1)}2^{(1)}) + 8 \cdot (2^{1}f(x^{(1)}2^{(1)}) + 2^{1}f(x^{(1)}2^{(1)}) + 2^{1}f(x^{(1)}2^{(1)})$ $= (\frac{1}{2}f)\lambda^{1+1} + (\frac{1}{2}f)\chi^{1+1} + (1 + \frac{1}{6}f)\lambda^{1} + (\frac{1}{6}f)\lambda^{1} + (\frac{1}{6}f)\chi^{1} + (\frac{1$

(1- = h) y; + (1= + (1= h) x; + (1= + h) x; - 1 (y; + x; -)

 $\left(\begin{array}{c}
y_{1+1} = \frac{y_0 y_0}{\left(1 - \frac{E}{12}h\right)} & y_0 y_0 \\
y_1 y_1 \\
y_2 & y_0
\end{array}\right) \text{ such that }$ i = 1, ... M.1

Generally van R.4 method to guarte the read volves to van the multi-stype techniques. ADOM - Bushforth

2-stop
$$y_{i+1} = y_i + \frac{h}{2} \left[3f(x_i, y_i) - f(x_{i-1}, y_{i-1}) \right] + O(h^2)$$

3-stop $y_{i+1} = y_i + \frac{h}{12} \left[23f(x_i, y_i) - 10f_{i-1} + 5f_{i-2} \right] + O(h^2)$
4-stop $y_{i+1} = y_i + \frac{h}{12} \left[55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3} \right] + O(h^4)$
5-stop $y_{i+1} = y_i + \frac{h}{12} \left[1901f_i - 2774f_{i-1} + 26016f_{i-2} - 1274f_{i-3} + 251f_{i-4} \right] + O(h^3)$

ADams - Woulton

The Milti Age methods polynomial can also be derial by integration polynomial approximations

Use poly through all the paints (plus the unboam)

(on actually use any poly to so this - SEE TEXT.

Predictor Corrector Med Improved Euler Mid

5

Arrays the Elop it X; and Xiv, to convert y; value.

9(x)

3(x)

3(x)

4(x)

4(x)

4(x)

4(x)

4(x)

5(x)

6(x)

7(x)

y'=x+y y(0)=0 h=0.2 Pred-Con Ex

y; = y; + hf(x; y;) = y; + h(x; +y;) Predictor

yin = y; + \frac{h}{2} \left(x; yi) + \frac{h}{h}(x; yi) \left(x; yi) \right) \(\text{corrector}\)

= y; + \frac{h}{2} \left(x; +yi) + \left(x; +yi) \right)

y; + h(x; +yi)

= y; \left(1 + h \frac{h}{2}\right) + \text{x}; \left(\frac{h}{2} + \hat{h}^2\right) + \frac{h}{2} \left(x; +yi)

= y; \left(1.22\right) + \text{x}; \left(0.12\right) + \left(0.1)\text{x}; \text{to}

7; (Emproved Exlex)0 0 0,2 1.22(0) + 0.12(0) + 0.1(0.2) = 0.02 0.4 1.22(0.02) + 0.12(0.2) + 0.1(0.4) = 0.0884 0.6 1.22(0.0884) + 0.12(0.4) + 0.1(0.6) = 0.215848 0.8 (.22(0.28848) + 0.12(0.6) + 0.1(0.8) = 0.4153350.42541

1.22(0.415335) +0.12(0.8) +0.1(1.0) =0.702708 0.718282

Predita Concetar

First compute $y_{in}^* = y_i \cdot hr((x_i y_i))$ = Euler

thus we $y_{in} = y_i \cdot \frac{1}{2} \left(f(x_i y_i) \cdot f(x_{in}, y_{in}) \right)$ average the slape of two booking

IS Improved tiver pushed

- · you is a preliction
- · next rep is a correction using the producted into.

- Another approach is to use an exiplicit to
get a prediction and an iniphist to correct.

A-B 4-step 1 1 2 = 23 , 24 [55 f(x, y, 1) -59 f(x, y, 1) -37 f(x, y, 1)

-9 f(x, y, 1)

A-M 3-step 4 (9 f(x, y, 1) +19 f(x, y, 1) -5 f(x, y, 1) + f(x, y, 1)]

- A. M. 3-54p) both O(hu) to occurany ext A. M. 3-54p) equations is motobal!
- Also by using yin from an applicit and potters it into air implicit, eliminate need to colve an implicit equation!
- this is the guest way of wing implist scheme.
- An alternate approach : to solving
 the implicit equation is to use fixed point
 the afice

and = 12 + 3 + 2 (a t(x" 2") + 1d ((x") - 2((x")) + 1(x"))

EN How to analytically get read values. 6/29/94

Generate a Sovier

y' = x+y = f(x,4) => y'(0) = 0+y(0) = 0

Now $y(x) = y(0) + x \cdot y'(0) + \frac{x^2}{2} y''(0) + \frac{x^3}{6} y'''(0) + \cdots$ $= 0 + x \cdot 0 + \frac{x^2}{2} \cdot 1 + \frac{x^3}{6} \cdot 1 + \cdots$ $= 0 + x \cdot 0 + \frac{x^3}{2} \cdot 1 + \cdots$

Check by using known solution $y = e^{2x} - x - 1 = (1 + x + \frac{x^2}{6} + \frac{x^3}{6} + \dots) - x - 1$ $y = \frac{x^3}{2} + \frac{x^3}{6} + \dots$ ok

Approx. the ODE.

Sippose y' = y + x + y for small x_i , in y > x $\frac{y'}{y} = 1 \quad \exists \quad \text{Any} = x + C$ $y = x e^{x} \qquad y(0) = c \cdot 1 = 0$ $\exists \quad c = 0$ and, timil siden! can't be right.

Now tony $y' \approx x$ is x >> y $so y = \frac{x^2}{2} + 4 \qquad y(x) = 0 = 4$ $y = \frac{x^2}{2}$

Is $x)>y = \frac{x^2}{2}$ yes for xeel it xshell. So $y = \frac{x^2}{2}$ seems at.

ON HW. from last time, use $y = \frac{x^2}{2}$ to guarde any sead values.

END

Given the coupled system

$$y_1' = f_1(x, y_1, y_2, y_3)$$
 subject to $y_1(x_0) = y_{1,0}$
 $y_2' = f_2($ subject to $y_2(x_0) = y_{2,0}$
 $y_3' = f_3($ subject to $y_3(x_0) = y_{3,0}$

we first calculate

$$k_{1,1} = h \cdot f_1(x_j, y_{1,j}, y_{2,j}, y_{3,j})$$
 where $y_{1,j} = y_1(x_j)$
 $k_{1,2} = h \cdot f_2($) where $y_{2,j} = y_2(x_j)$
 $k_{1,3} = h \cdot f_3($) where $y_{3,j} = y_3(x_j)$

then calculate

$$\begin{array}{lll} k_{2,1} & = & h \cdot f_1 \left(x_j + \frac{h}{2}, \ y_{1,j} + \frac{k_{1,1}}{2}, \ y_{2,j} + \frac{k_{1,2}}{2}, \ y_{3,j} + \frac{k_{1,3}}{2} \right) \\ k_{2,2} & = & h \cdot f_2 \left(\\ k_{2,3} & = & h \cdot f_3 \left(\right) \end{array} \right) \end{array}$$

then

$$k_{3,1} = h \cdot f_1 \left(x_j + \frac{h}{2}, \ y_{1,j} + \frac{k_{2,1}}{2}, \ y_{2,j} + \frac{k_{2,2}}{2}, \ y_{3,j} + \frac{k_{2,3}}{2} \right)$$

$$k_{3,2} = h \cdot f_2 \left(\right)$$

$$k_{3,3} = h \cdot f_3 \left(\right)$$

then

$$k_{4,1} = h \cdot f_1 (x_j + h, y_{1,j} + k_{3,1}, y_{2,j} + k_{3,2}, y_{3,j} + k_{3,3})$$

 $k_{4,2} = h \cdot f_2 ($
 $k_{4,3} = h \cdot f_3 ($

and finally, we calculate

$$\begin{array}{rcl} y_{1,j+1} & = & y_{1,j} + \frac{1}{6} \cdot \left(k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1} \right) \\ y_{2,j+1} & = & y_{2,j} + \frac{1}{6} \cdot \left(k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2} \right) \\ y_{3,j+1} & = & y_{3,j} + \frac{1}{6} \cdot \left(k_{1,3} + 2k_{2,3} + 2k_{3,3} + k_{4,3} \right) \end{array}$$

to give us the new values for y_1 , y_2 and y_3 corresponding to x_{i+1} .

When solving the initial value problem y' = f(x, y) with the initial condition $yx_0) = y_0$, we can use the following multi-point methods:

Adams-Bashforth (explicit method)

•
$$y_{i+1} = y_i + \frac{h}{2} \left[3f_i - f_{i-1} \right] + O(h^2)$$
 2-step

•
$$y_{i+1} = y_i + \frac{h}{12} \left[23f_i - 16f_{i-1} + 5f_{i-2} \right] + O(h^3)$$
 3-step

•
$$y_{i+1} = y_i + \frac{h}{24} \left[55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3} \right] + O(h^4)$$
 4-step

•
$$y_{i+1} = y_i + \frac{h}{720} \left[1901f_i - 2774f_{i-1} + 2616f_{i-2} - 1274f_{i-3} + 251f_{i-4} \right] + O(h^5)$$
 5-step

Adams-Moulton (implicit method)

•
$$y_{i+1} = y_i + \frac{h}{12} \left[5f_{i+1} + 8f_i - f_{i-1} \right] + O(h^3)$$
 2-step

•
$$y_{i+1} = y_i + \frac{h}{24} \left[9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2} \right] + O(h^4)$$
 3-step

•
$$y_{i+1} = y_i + \frac{h}{720} \left[251f_{i+1} + 646f_i - 264f_{i-1} + 106f_{i-2} - 19f_{i-3} \right] + O(h^5)$$
 4-step

where $f_i = f(x_i, y_i)$.