



# Statistical analysis (I) -- simple experimental designs

Jessica Ewald, Postdoctoral Fellow

jessica.ewald@mcgill.ca

McGill University, Montreal, QC Canada

#### **Omics Data Analysis (in a nutshell)**



#### DATA PROCESSING

-- prepare data for main analysis

#### Data processing ....

#### General steps

- 1. (Samples) Quality checking
- 2. (Features) Missing value imputation
- 3. (Features) Data filtering
- 4. (Both) Normalization

#### **Sample Space**









|                            | PIF_178 | PIF_087  | PIF_090  | NETL_005_V1 |
|----------------------------|---------|----------|----------|-------------|
| 1,6-Anhydro-beta-D-glucose | 40.85   | 62.18    | 270.43   | 154.47      |
| 1-Methylnicotinamide       | 65.37   | 340.36   | 64.72    | 52.98       |
| 2-Aminobutyrate            | 18.73   | 24.29    | 12.18    | 172.43      |
| 2-Hydroxyisobutyrate       | 26.05   | 41.68    | 65.37    | 74.44       |
| 2-Oxoglutarate             | 71.52   | 67.36    | 23.81    | 1199.91     |
| 3-Aminoisobutyrate         | 1480.3  | 116.75   | 14.3     | 555.57      |
| 3-Hydroxybutyrate          | 56.83   | 43.82    | 5.64     | 175.91      |
| 3-Hydroxyisovalerate       | 10.07   | 79.84    | 23.34    | 25.03       |
| 3-Indoxylsulfate           | 566.8   | 368.71   | 665.14   | 411.58      |
| 4-Hydroxyphenylacetate     | 120.3   | 432.68   | 292.95   | 214.86      |
| Acetate                    | 126.47  | 212.72   | 314.19   | 37.34       |
| Acetone                    | 9.49    | 11.82    | 4.44     | 206.44      |
| Adipate                    | 38.09   | 327.01   | 131.63   | 144.03      |
| Alanine                    | 314.19  | 871.31   | 464.05   | 589.93      |
| Asparagine                 | 159.17  | 157.59   | 89.12    | 273.14      |
| Betaine                    | 109.95  | 244.69   | 116.75   | 278.66      |
| Carnitine                  | 265.07  | 120.3    | 25.03    | 200.34      |
| Citrate                    | 3714.5  | 2617.57  | 862.64   | 13629.61    |
| Creatine                   | 196.37  | 212.72   | 221.41   | 85.63       |
| Creatinine                 | 16481.6 | 15835.35 | 24587.66 | 20952.22    |
| Dimethylamine              | 632.7   | 607.89   | 735.1    | 1064.22     |
| Ethanolamine               | 645.48  | 487.85   | 407.48   | 820.57      |
| Formate                    | 441.42  | 252.14   | 249.64   | 468.72      |
| Fucose                     | 336.97  | 198.34   | 186.79   | 407.48      |
| Fumarate                   | 7.69    | 18.92    | 7.1      | 96.54       |
| Glucose                    | 395.44  | 8690.62  | 1352.89  | 862.64      |
| Glutamine                  | 871.31  | 601.85   | 301.87   | 1685.81     |
| Glycine                    | 2038.56 | 1107.65  | 620.17   | 5064.45     |
| Glycolate                  | 685.4   | 651.97   | 141.17   | 70.81       |

# **Quality checking**

- The first & most critical step before analysis
  - √Garbage in and garbage out
- Depending on
  - √Good experimental design
  - √Good laboratory practice
- Pay attention to
  - **√**Outliers
  - **√**Batch effects

# **Outliers (I)**

Relative to the majority





# **Outliers (II)**

Mainly concerns **sample** outliers, not on feature space

- ➤ Interested in large, systemic outliers: measurements impacted for whole sample
- Common & normal to have feature outliers
- Statistical feature outliers could be our target of interest



Source: towardsdatascience

# **Batch effects (I)**

#### Omics data can have batch effects

- Display overall or systematic differences
- ❖ Technical (not biological) reasons
  - Sample preparation, machine run, technician, time before running samples



# **Batch effects (II)**



Metabolomics (2018) 14:72

#### Batch effects (III)

**Batch effect correction** methods perform batch effect correction prior to statistical analysis;

- Internal standards
- Computational estimation

#### Implementation in MetaboAnalyst

- MetaboAnalyst currently supports nine wellestablished methods (ComBat, EigenMS, QC-RLSC, ANCOVA, RUVrandom, RUV2, RUVseq, NOMIS and CCMN) for batch effect correction.
- The automated (default) will return the results with least distance among batches.



Metabolomics (2018) 14:72

| ✓ Upload multiple batch files                |                       |              |  |  |  |  |
|----------------------------------------------|-----------------------|--------------|--|--|--|--|
| Please upload your data set (one at a time): |                       |              |  |  |  |  |
| Data format:                                 | Sample in columns 🗸   |              |  |  |  |  |
| Correction method:                           | automated (default) 🗸 |              |  |  |  |  |
| Evaluation target:                           | automated (default)   |              |  |  |  |  |
| Missing value estimation:                    | ComBat                | ~            |  |  |  |  |
| Data label:                                  | EigenMS               |              |  |  |  |  |
| + Choose                                     | ANCOVA                | set All Done |  |  |  |  |
|                                              | RUV-random            |              |  |  |  |  |
|                                              | RUV2                  |              |  |  |  |  |

Some methods can include batch variables within the model for statistical analysis, such that differences associated with batch are accounted for during analysis. This is the concept we will use for meta-data or complex design

# Missing values (I)

- Common in omics data. Can be introduced during data collection, or by algorithms during raw data pre-processing (i.e. peak picking)
- Most algorithms will complain if input contains missing values

| 1.4781  | 2    | 1.05 | 1.84 | 0.89 | 1.33 | 1.94 | 1.43 | 0.85 | 1.52 | 1.48 | 2.52 | 2.22 |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1.4929  | 2.03 | 1.06 | 1.86 | 0.88 | 1.33 | 1.13 | 1.46 | 0.88 | 0.97 | 1.47 | 1.88 | 2.19 |
| 1.8554  | NA   | 0.47 | 0.83 | NA   | 1.31 | NA   | NA   | NA   | NA   | 0.6  | NA   | 0.79 |
| 1.9242  | 1.82 | 1.59 | 1.45 | 1.73 | 3.13 | 1.91 | 1.79 | 1.58 | 1.77 | 1.99 | 3.26 | 3.35 |
| 1.93875 | NA   | 0.76 | 1.1  | 0.83 | 2.62 | 0.8  | 1.53 | 1.45 | 0.94 | 1.8  | NA   | 3.36 |
| 2.1275  | 1.19 | 0.72 | NA   | NA   | 2.88 | NA   | 1.68 | NA   | 0.94 | 1.1  | NA   | 3.16 |
| 2.152   | NA   | 2.25 | 2.9  | 1.25 | 8.75 | 5.02 | 1.09 | 1.91 | 1.33 | 3.13 | 2.84 | 4.18 |
| 2.1864  | NA   | 1.3  | 2.7  | 0.8  | 3.47 | 2.84 | NA   | 0.9  | NA   | 1.98 | 2.05 | 2.35 |
| 2.2378  | 1.58 | 0.61 | 1.03 | 1.75 | 0.84 | 1.51 | 0.72 | 0.77 | 1.15 | 0.85 | 0.79 | 0.96 |

## Missing value (II)

- ❖ Goal: "guess" reasonable values
  - Must understand why the data are missing
  - Choose the appropriate imputation strategy
- Options:
- Missing completely at random:
  - Ie. Machine fails randomly
- Missing at random:
  - Depends on sample characteristics (age, sex, etc.)
  - Within group of 'similar' samples, missingness is random
- Missing not at random:
  - Depends on the true value of the measured variable
  - Ie. Missing because metabolite is below the detection limit



#### Great explanation!



## Feature filtering (I)

- Not all features are informative
- There are redundancies in omics data for most features
- Filtering non-informative features before statistical analysis can often significantly improve the power



# Feature filtering (II)

#### Low quality

- Too many missing values
- Hard to measure: low repeatability based on QC

#### Low abundance

Variables of very small values (close to baseline or detection limit).

#### Low variance

 Variables that are near-constant values throughout the experiment conditions (housekeeping or homeostasis)

DO NOT filter features based on their p-values or fold changes

#### Normalization (I)

- Most statistical methods work best when variables are normally distributed
  - Biological measurements are often right skew
- Variable abundance levels can vary across several magnitudes
  - Inconvenient for visualization
- Adjust other effects:
  - Dilutions, tissue volumes, etc



# Normalization (II)

But ..... normalization often makes data difficult to interpret

#### Try simple methods first

- Most physiological measures are log-normal
- Auto-scale (unit transformation, or Z-score)





#### Normalization (III)

Many methods are available

- ✓ Centering
- ✓ Scaling
- **√**Transformation

There is NO guarantee of global normal distribution in omics data

| Method               | Formula                                                                                                                        | Unit  | Goal                                                                                            | Advantages                                                                       | Disadvantages                                                                                             |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| Centering            | $\tilde{x}_{ij} = x_{ij} - \overline{x}_i$                                                                                     | 0     | Focus on the<br>differences and not the<br>similarities in the data                             | Remove the offset<br>from the data                                               | When data is<br>heteroscedastic, the<br>effect of this<br>pretreatment method<br>is not always sufficient |  |
| Autoscaling          | $\tilde{x}_{ij} = \frac{x_{ij} - \overline{x}_i}{s_i}$                                                                         | (-)   | Compare metabolites based on correlations                                                       | All metabolites become equally important                                         | Inflation of the measurement errors                                                                       |  |
| Range scaling        | $\tilde{x}_{ij} = \frac{x_{ij} - \overline{x}_i}{\left(x_{i_{\max}} - x_{i_{\min}}\right)}$                                    | (-)   | Compare metabolites<br>relative to the<br>biological response<br>range                          | All metabolites become<br>equally important.<br>Scaling is related to<br>biology | Inflation of the<br>measurement errors<br>and sensitive to outliers                                       |  |
| Pareto scaling       | $\tilde{x}_{ij} = \frac{x_{ij} - \overline{x}_i}{\sqrt{s_i}}$                                                                  | 0     | Reduce the relative importance of large values, but keep data structure partially intact        | Stays closer to the original measurement than autoscaling                        | Sensitive to large fold changes                                                                           |  |
| Vast scaling         | $\widetilde{x}_{ij} = \frac{\left(x_{ij} - \overline{x}_i\right)}{s_i} \cdot \frac{\overline{x}_i}{s_i}$                       | (-)   | Focus on the metabolites that show small fluctuations                                           | Aims for robustness,<br>can use prior group<br>knowledge                         | Not suited for large<br>induced variation<br>without group<br>structure                                   |  |
| Level scaling        | $\tilde{x}_{ij} = \frac{x_{ij} - \overline{x}_i}{\overline{x}_i}$                                                              | (-)   | Focus on relative response                                                                      | Suited for identification of e.g. biomarkers                                     | Inflation of the measurement errors                                                                       |  |
| Log transformation   | $\tilde{x}_{ij} = \log(x_{ij})$ $\hat{x}_{ij} = \tilde{x}_{ij} - \overline{\tilde{x}}_{i}$                                     | Log O | Correct for<br>heteroscedasticity,<br>pseudo scaling. Make<br>multiplicative models<br>additive | Reduce<br>heteroscedasticity,<br>multiplicative effects<br>become additive       | Difficulties with values<br>with large relative<br>standard deviation and<br>zeros                        |  |
| Power transformation | $ \widetilde{x}_{ij} = \sqrt{\left(x_{ij}\right)} $ $ \widetilde{x}_{ij} = \widetilde{x}_{ij} - \overline{\widetilde{x}}_{i} $ | ıÓ    | Correct for heteroscedasticity, pseudo scaling                                                  | Reduce<br>heteroscedasticity, no<br>problems with small<br>values                | Choice for square root is arbitrary.                                                                      |  |

#### STATISTICAL ANALYSIS

-- identify significant features & patterns

#### **Objective**

- Data are 'cleaned' and ready to analyze
  - No outliers
  - No missing values
  - Filtered out low quality or uninformative values
  - Normalized/transformed
- We want to identify features that are interesting in our research context
  - Metabolites with different abundance between "Control" and "Treated" samples

#### Univariate analysis

Test each feature independently (ignore their relationships to each other)

- 1. T-tests
  - Compare the means between 2 conditions
- 2. ANOVA & post-hoc analysis
  - One factor with more than 2 levels (One-way ANOVA)
  - Two factors (Two-way ANOVA)
- 3. Linear modeling (i.e., limma): more flexible analysis
  - Multiple factors
  - Time series
  - Covariates analysis

All these approaches are now available in MetaboAnalyst 5.0

# **Example Results**





# P-value & multiple testing issue

- 1. P-value = probability of observed difference between groups if there is truly no effect (a.k.a the null hypothesis)
- 2. One "rejects the null hypothesis" when the p-value is less than the significance level  $\alpha$  which is often 0.05 or 0.01
- 3. When the null hypothesis is rejected, the result is said to be statistically significant

Performing T-tests on typical metabolomic data might result in performing ~10000 separate hypothesis tests. If we use a standard p value cut-off of 0.05, we would see 500 (10000\*0.05) features to be deemed "significant" by chance!

#### Figure adapted from:

#### The third Ghost of Experimentation: Multiple comparisons



#### Adjusted p-values



#### **Bonferroni** (FWER)

- $\alpha = \alpha/n$
- ♦ Probability of ≥ 1 false positive =  $\alpha$
- Extremely strict

#### Benjamini-Hochberg (FDR)

- False discovery rate (ie. 0.05)
- \* False sig. metabs / Total sig. metabs
- Adjusted p-value or "q-value"

## **Principal Component Analysis (PCA)**

Project high-dimensional data into lower dimensions that capture the most variance of the data

Assumption:

Main directions of variance

≈ major data characteristics

# PCA Scores and Loadings

# Component 1

#### Component 1 Scores = Loadings x data

$$PC1_1 = a^*x_1 + b^*y_1 + c^*z_1$$
  
 $PC1_2 = a^*x_2 + b^*y_2 + c^*z_2$ 



**Original X values** 



Integrates information from three variables – x, y, and z

#### Intuitive interpretation

#### **Scores** = Loadings x data

$$t_1 = p_1x_1 + p_2x_2 + p_3x_3 + ... + p_nx_n$$



Sample patterns (scores) are directly related to feature patterns (loadings)

#### PCA summary

PCA integrates information from many variables into a few variables. It is widely used for:

- Data overview
- Outlier detection
- > Find out relationships between variables

PCA is a linear method for dimension reduction.

There are non-linear methods

> t-SNE, UMAP, etc



#### From unsupervised to supervised classification

PCA vs. PLS-DA



**Scores** = Loadings x data

#### PCA vs. PLS-DA

 $t_1 = p_1 x_1 + p_2 x_2 + p_3 x_3 + ... + p_n x_n$ 

- In PCA we found loadings that computed scores that maximized variance within the data
  - Explain the main trends without considering metadata
- In PLS-DA, we find loadings that compute scores that maximize variance between class groups
  - Explain the main trends that separate the metadata

**Caution!** PLS-DA always produces some separation and is prone to overfitting

#### PLS-DA performance measures

PLS-DA is susceptible to over-fitting, and require more rigorous validation

- 1. Cross validation whether the model can predict on new events
  - > Sum of squares captured by the model (R<sup>2</sup>)
  - Cross-validated R<sup>2</sup> (also known as Q<sup>2</sup>)
  - Prediction accuracy
- 2. **Permutation tests** whether the model captures real signals compared to null

## **Cross validations (CV)**

 Goal: test whether your model can predict class labels for new samples



# PLS-DA ( $R^2 \& Q^2$ )

Q2 is calculated via cross-validation to compute Predicted Residual Sum of Squares (PRESS).

For convenience, the PRESS is divided by the initial sum of squares and subtracted from 1 to resemble the scale of the R2.

Good predictions will have low PRESS or high Q2. Low or even **negative Q2** means that your model is not at all predictive or is overfitted.



# Hands-On Demo