Sky Is Not the Limit:

Tighter Rank Bounds for Elevator Automata in Büchi
Automata Complementation

Vojtěch Havlena Ondřej Lengál Barbora Šmahlíková

Brno University of Technology, Czech Republic

TACAS'22

- Automata over infinite words
- \blacksquare $\mathcal{A} = (Q, \delta, I, Acc)$ over Σ
 - Q finite set of states
 - \blacktriangleright δ transition relation; $\delta \subseteq Q \times \Sigma \times Q$
 - I ⊆ Q initial states
 - Acc ⊆ Q accepting states

- Automata over infinite words
- \blacksquare $\mathcal{A} = (Q, \delta, I, Acc)$ over Σ
 - Q finite set of states
 - \blacktriangleright δ transition relation; $\delta \subseteq Q \times \Sigma \times Q$
 - $ightharpoonup I \subset Q$ initial states
 - ► Acc ⊆ Q accepting states
- accept by looping over accepting states

- Automata over infinite words
- \blacksquare $\mathcal{A} = (Q, \delta, I, Acc)$ over Σ
 - Q finite set of states
 - ▶ δ transition relation; δ ⊆ Q × Σ × Q
 - I ⊂ Q initial states
 - Acc ⊆ Q accepting states
- accept by looping over accepting states

- Automata over infinite words
- \blacksquare $\mathcal{A} = (Q, \delta, I, Acc)$ over Σ
 - Q finite set of states
 - ▶ δ transition relation; δ ⊆ Q × Σ × Q
 - ► *I* ⊂ *Q* initial states
 - ► Acc ⊆ Q accepting states
- accept by looping over accepting states

- Automata over infinite words
- \blacksquare $\mathcal{A} = (Q, \delta, I, Acc)$ over Σ
 - Q finite set of states
 - \blacktriangleright δ transition relation; $\delta \subseteq Q \times \Sigma \times Q$
 - ► *I* ⊂ *Q* initial states
 - ► Acc ⊆ Q accepting states
- accept by looping over accepting states

Büchi automata (BAs):

- Automata over infinite words
- \blacksquare $\mathcal{A} = (Q, \delta, I, Acc)$ over Σ
 - Q finite set of states
 - ▶ δ transition relation; δ ⊆ Q × Σ × Q
 - ▶ $I \subseteq Q$ initial states
 - ► Acc ⊆ Q accepting states
- accept by looping over accepting states

 \blacksquare define the class of ω -regular languages

- Automata over infinite words
- \blacksquare $\mathcal{A} = (Q, \delta, I, Acc)$ over Σ
 - Q finite set of states
 - ▶ δ transition relation; δ ⊆ Q × Σ × Q
 - I ⊆ Q initial states
 - ► *Acc* ⊆ *Q* accepting states
- accept by looping over accepting states

- \blacksquare define the class of ω -regular languages
- used in program verification (Ultimate Automizer), linear time MC, probabilistic MC, decision procedures, . . .

Complementation:

■ Given A, get a BA A^{\complement} such that $\mathcal{L}(A^{\complement}) = \overline{\mathcal{L}(A)}$.

Complementation:

■ Given A, get a BA A^{\complement} such that $\mathcal{L}(A^{\complement}) = \overline{\mathcal{L}(A)}$.

Motivation:

■ Model checking of linear-time properties

$$\underbrace{\mathcal{S}}_{\mathsf{system}} \models \underbrace{\varphi}_{\mathsf{property}} \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \quad \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}^{\complement}) = \emptyset$$

Complementation:

■ Given A, get a BA A^{\complement} such that $\mathcal{L}(A^{\complement}) = \overline{\mathcal{L}(A)}$.

Motivation:

Model checking of linear-time properties

$$\underbrace{\mathcal{S}}_{\mathsf{system}} \models \underbrace{\varphi}_{\mathsf{property}} \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \quad \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}^{\complement}) = \emptyset$$

- Termination analysis of programs: Ultimate Automizer
 - removing traces with proved termination
 - difference automaton

Complementation:

■ Given A, get a BA A^{\complement} such that $\mathcal{L}(A^{\complement}) = \overline{\mathcal{L}(A)}$.

Motivation:

Model checking of linear-time properties

$$\underbrace{\mathcal{S}}_{\mathsf{system}} \models \underbrace{\varphi}_{\mathsf{property}} \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \quad \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}^{\complement}) = \emptyset$$

- Termination analysis of programs: Ultimate Automizer
 - removing traces with proved termination
 - difference automaton
- Decision procedures: implements negation
 - ▶ S1S: MSO over $(\omega, 0, +1)$
 - QPTL: quantified propositional temporal logic
 - ► FO over Sturmian words

Complementation:

■ Given A, get a BA A^{\complement} such that $\mathcal{L}(A^{\complement}) = \overline{\mathcal{L}(A)}$.

Motivation:

■ Model checking of linear-time properties

$$\underbrace{\mathcal{S}}_{\mathsf{system}} \models \underbrace{\varphi}_{\mathsf{property}} \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \quad \leadsto \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}^{\complement}) = \emptyset$$

- Termination analysis of programs: Ultimate Automizer
 - removing traces with proved termination
 - difference automaton
- Decision procedures: implements negation
 - ▶ S1S: MSO over $(\omega, 0, +1)$
 - QPTL: quantified propositional temporal logic
 - ▶ FO over Sturmian words
- Basic operation for inclusion/equivalence checking

Complementation:

■ Given A, get a BA A^{\complement} such that $\mathcal{L}(A^{\complement}) = \overline{\mathcal{L}(A)}$.

Motivation:

Model checking of linear-time properties

$$\underbrace{\mathcal{S}}_{\mathsf{system}} \models \underbrace{\varphi}_{\mathsf{property}} \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \quad \rightsquigarrow \quad \mathcal{L}(\mathcal{A}_{\mathcal{S}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}^{\complement}) = \emptyset$$

- Termination analysis of programs: Ultimate Automizer
 - removing traces with proved termination
 - difference automaton
- Decision procedures: implements negation
 - ▶ S1S: MSO over $(\omega, 0, +1)$
 - QPTL: quantified propositional temporal logic
 - FO over Sturmian words
- Basic operation for inclusion/equivalence checking
- Beautiful and @fun@!

- Notoriously difficult...
 - exponential worst-case lower bound (0.76n)ⁿ

[Yan'06]

- Notoriously difficult...
 - ▶ exponential worst-case lower bound (0.76*n*)^{*n*}

[Yan'06]

Approaches:

- Ramsey-based [Sistla, Vardi, Volper'87][BreuersLO'12]
- Determinization-based (SPOT, LTL2DSTAR)

[Safra'88][Piterman'06][Redziejowski12]

- Slice-based [Vardi,Wilke'08][Kähler,Wilke'08]
- Learning-based [Li,Turrini,Zhang,Schewe'18]
- Subset-tuple construction [Allred, Utes-Nitche'18]
- Semideterminization-based (SEMINATOR 2) [BlahoudekDS'20]
- Rank-based [KupfermanV'01][FriedgutKV'06][Schewe'09]

Rank-based Complementation of Büchi Automata

- [Kupferman & Vardi 2001]
- [Friedgut, Kupferman & Vardi 2006]
- [Schewe 2009]
- [Chen, Havlena & L. 2019]
- [Havlena & L. 2021]
- this talk

- **Run DAG** \mathcal{G}_w of \mathcal{A} on the word w
 - represents all runs of A on w
 - $w \notin \mathcal{L}(A)$ iff no ∞ accepting path

- **Run DAG** \mathcal{G}_w of \mathcal{A} on the word w
 - represents all runs of A on w
 - ▶ $w \notin \mathcal{L}(A)$ iff no ∞ accepting path

- **Ranking procedure** (start with i = 0)
 - 1 assign rank *i* to vertices with finitely many successors and remove them from \mathcal{G}_w

- **Run DAG** \mathcal{G}_w of \mathcal{A} on the word w
 - represents all runs of A on w
 - $w \notin \mathcal{L}(A)$ iff no ∞ accepting path

- **Ranking procedure** (start with i = 0)
 - assign rank *i* to vertices with finitely many successors and remove them from \mathcal{G}_w
 - 2 assign rank i + 1 to vertices that cannot reach Acc and remove them from G_w

- **Run DAG** \mathcal{G}_w of \mathcal{A} on the word w
 - represents all runs of A on w
 - ▶ $w \notin \mathcal{L}(A)$ iff no ∞ accepting path

- **Ranking procedure** (start with i = 0)
 - assign rank *i* to vertices with finitely many successors and remove them from \mathcal{G}_w
 - 2 assign rank i + 1 to vertices that cannot reach Acc and remove them from G_w
 - i := i + 2;repeat until $\mathcal{G}_w = \emptyset$

run DAG for $b^{\omega} \notin \mathcal{L}(\mathcal{A})$

rank 2 rank 1

(r.2) (S:1) rank 0

(S:1) (t:0)

(S:1) (t:0)

- **Run DAG** \mathcal{G}_w of \mathcal{A} on the word w
 - represents all runs of A on w
 - $w \notin \mathcal{L}(A)$ iff no ∞ accepting path

- **Ranking procedure** (start with i = 0)
 - assign rank *i* to vertices with finitely many successors and remove them from \mathcal{G}_w
 - 2 assign rank i + 1 to vertices that cannot reach Acc and remove them from G_w
 - i := i + 2; repeat until $\mathcal{G}_w = \emptyset$

Lemma[Kupferman, Vardi'01] $w \notin \mathcal{L}(\mathcal{A})$ \Leftrightarrow $\forall v : rank(v) \leq 2|Q|$

run DAG of A over b^{ω}

run DAG of A over b^{ω}

track all runs

Guess & Check:

nondet. choice of ranking:

$$\{r:0,s:1\},\{r:2,s:0\},\ldots$$

run of $\mathcal{A}^{\complement}$ over b^{ω}

run DAG of A over b^{ω}

track all runs

Guess & Check:

nondet, choice of ranking:

$$\{r:0,s:1\},\{r:2,s:0\},\ldots$$

- check no run ∞ Acc
 - breakpoint

 $b \\ (s:1,t:0)$ $b \\ (s:1,t:0)$ $b \\ (s:1,t:0)$ $b \\ (s:1,t:0)$ $b \\ (s:1,t:0)$

track all runs

Guess & Check:

- nondet. choice of ranking:
 - $\{r:0,s:1\},\{r:2,s:0\},\ldots$
- $lue{}$ check no run ∞ *Acc*
 - breakpoint
- ranks on runs can never increase

run of $A^{\mathbb{C}}$ over b^{ω}

Source of state explosion:

- lacksquare size of $\mathcal{A}^{\complement}$ depends on the factorial of the rank bound
 - ▶ the maximum finite rank of \mathcal{G}_w for $w \notin \mathcal{L}(\mathcal{A})$
 - e.g., $\{q, r, s, t\}$, bound = 5, \sim
 - $\{q:5, r:5, s:3, t:1\}, \{q:3, r:3, s:1, t:5\}, \{q:1, r:3, s:1, t:5\}, \dots$

Source of state explosion:

- lacksquare size of \mathcal{A}^\complement depends on the factorial of the rank bound
 - ▶ the maximum finite rank of \mathcal{G}_w for $w \notin \mathcal{L}(\mathcal{A})$
 - ightharpoonup e.g., $\{q, r, s, t\}$, bound = 5, \sim
 - $\{q:5, r:5, s:3, t:1\}, \{q:3, r:3, s:1, t:5\}, \{q:1, r:3, s:1, t:5\}, \dots$
- lacksquare by default, bound = 2|Q|-1
 - ▶ often unnecessarily high! ~> many redundant states generated

Source of state explosion:

- lacksquare size of \mathcal{A}^\complement depends on the factorial of the rank bound
 - ▶ the maximum finite rank of \mathcal{G}_w for $w \notin \mathcal{L}(\mathcal{A})$
 - e.g., $\{q, r, s, t\}$, bound = 5, \sim
 - $\{q:5, r:5, s:3, t:1\}, \{q:3, r:3, s:1, t:5\}, \{q:1, r:3, s:1, t:5\}, \dots$
- lacksquare by default, bound = 2|Q|-1
 - ▶ often unnecessarily high! ~> many redundant states generated

This talk

Get a safe rank bound for every state by:

- 1 considering BAs with restricted structure (elevator BA)
- 2 data-flow analysis for general BAs

Source of state explosion:

- lacksquare size of $\mathcal{A}^{\complement}$ depends on the factorial of the rank bound
 - ▶ the maximum finite rank of \mathcal{G}_w for $w \notin \mathcal{L}(\mathcal{A})$
 - ▶ e.g., $\{q, r, s, t\}$, bound = 5, ~
 - $\{q:5, r:5, s:3, t:1\}, \{q:3, r:3, s:1, t:5\}, \{q:1, r:3, s:1, t:5\}, \dots$
- lacksquare by default, bound = 2|Q|-1
 - ▶ often unnecessarily high! ~> many redundant states generated

This talk

Get a safe rank bound for every state by:

- 1 considering BAs with restricted structure (elevator BA)
- 2 data-flow analysis for general BAs

Keep the rank bounds as small as possible!

Elevator Automata

Elevator Automata

Elevator automata:

- Büchi automata with the following types of SCCs:
 - ▶ D: deterministic
 - ► IWA: inherently weak accepting (all cycles accepting)
 - ► NA: non-accepting

Elevator Automata

Elevator automata:

- Büchi automata with the following types of SCCs:
 - ▶ D: deterministic
 - ► IWA: inherently weak accepting (all cycles accepting)

Elevator Automata

Elevator automata:

- Büchi automata with the following types of SCCs:
 - ▶ D: deterministic
 - ► IWA: inherently weak accepting (all cycles accepting)

generalization of semi-deterministic BAs (NA followed by D)

Elevator Automata

- Elevator automata often occur in practice.
 - e.g., in translation from LTL formulae (90 % of LTL benchmark)

- Let us look at the condensation of A
- **depth**(A) =length of longest path of A's condensation

Lemma

If A is an elevator automaton, then bound $(A) \leq 2 \cdot depth(A)$.

- for general BAs: $bound(A) \le 2|Q| 1$
- new rank bound independent on |Q| = n

- Let us look at the condensation of A
- **depth**(A) =length of longest path of A's condensation

Lemma

If A is an elevator automaton, then bound(A) $\leq 2 \cdot depth(A)$.

- for general BAs: $bound(A) \le 2|Q| 1$
- new rank bound independent on |Q| = n

Good, but could be better!

■ Why is $bound(A) \le 2 \cdot depth(A)$ not good enough?

■ Why is $bound(A) \le 2 \cdot depth(A)$ not good enough?

Example

■ Why is $bound(A) \le 2 \cdot depth(A)$ not good enough?

■ Why is $bound(A) \le 2 \cdot depth(A)$ not good enough?

What to do:

- compute rank bounds for each state independently
 - ightharpoonup can be much lower than bound(A) for many states!

Example

- bound(t) ≤ 2
- bound(s) \leq 4, . . .

■ Why is $bound(A) \le 2 \cdot depth(A)$ not good enough?

What to do:

- compute rank bounds for each state independently
 - can be much lower than bound(A) for many states!

Example

- $bound(t) \leq 2$
- $bound(s) < 4, \dots$
- take into account types of neighbouring SCCs

Example

- instead of changing definition, we provide algorithm

- \blacksquare traverse \mathcal{A} back to front and apply rules to set types and ranks:
- Terminal components:
 - ► (IWA:0) for inherently weak accepting
 - ► (D:2) otherwise

- traverse A back to front and apply rules to set types and ranks:
- Terminal components:
 - IWA:0 for inherently weak accepting
 - D:2 otherwise
- Non-terminal components:

Algorithm for tighter bounds for elevator automata:

- \blacksquare traverse \mathcal{A} back to front and apply rules to set types and ranks:
- Terminal components:
 - ► (IWA:0) for inherently weak accepting
 - ▶ (D:2) otherwise
- Non-terminal components:

Example

- \blacksquare traverse \mathcal{A} back to front and apply rules to set types and ranks:
- Terminal components:
 - ► (IWA:0) for inherently weak accepting
 - ► (D:2) otherwise
- Non-terminal components:

- \blacksquare traverse \mathcal{A} back to front and apply rules to set types and ranks:
- Terminal components:
 - ► (IWA:0) for inherently weak accepting
 - D:2 otherwise
- Non-terminal components:

- \blacksquare traverse \mathcal{A} back to front and apply rules to set types and ranks:
- Terminal components:
 - ► (IWA:0) for inherently weak accepting
 - (D:2) otherwise
- Non-terminal components:

- \blacksquare traverse \mathcal{A} back to front and apply rules to set types and ranks:
- Terminal components:
 - ► (IWA:0) for inherently weak accepting
 - (D:2) otherwise
- Non-terminal components:

Complementation of Elevator Automata – Example

comparison with [Schewe'09]

Complementation of Elevator Automata – Example

comparison with [Schewe'09]

Can we get a theoretical result not talking about number of SCCs?

Can we get a theoretical result not talking about number of SCCs?

Theorem

- in general: $\mathcal{O}((0.76n)^n)$
- how to obtain $\mathcal{O}(16^n)$?

Can we get a theoretical result not talking about number of SCCs?

Theorem

- in general: $\mathcal{O}((0.76n)^n)$
- how to obtain $\mathcal{O}(16^n)$? semi-determinize!!
 - ightharpoonup double the number of states, rank bound at most 3

Can we get a theoretical result not talking about number of SCCs?

Theorem

- in general: $\mathcal{O}((0.76n)^n)$
- how to obtain $\mathcal{O}(16^n)$? semi-determinize!!
 - ightharpoonup \sim double the number of states, rank bound at most 3

Can we get a theoretical result not talking about number of SCCs?

Theorem

- in general: $\mathcal{O}((0.76n)^n)$
- how to obtain $\mathcal{O}(16^n)$? semi-determinize!!
 - → double the number of states, rank bound at most 3

Going beyond elevator automata

Going beyond elevator automata

Going beyond elevator automata

- the technique generalizes to non-elevator automata:
 - ► G: general SCC
- we can generalize the rules:

Going beyond elevator automata

- the technique generalizes to non-elevator automata:
 - ► G: general SCC
- we can generalize the rules:

$$\ell = \max\{\ell_D, \ell_N + 1, \ell_W, \ell_G\} + 2|C \setminus \mathit{Acc}|$$

$$C : \boxed{G : \ell}$$

$$\boxed{D : \ell_D \quad [NA : \ell_N] \quad [IWA : \ell_W] \quad [G : \ell_G]}$$

■ Can we improve over the $+2|C \setminus Acc|$?

■ Can we improve over the $+2|C \setminus Acc|$?

- Can we improve over the $+2|C \setminus Acc|$?
- Often, rank bounds of states within an SCC depend on each other.

- Can we improve over the $+2|C \setminus Acc|$?
- Often, rank bounds of states within an SCC depend on each other.
- ~ data flow analysis!
 - propagates rank bounds
 - outer macrostate analysis
 - inner macrostate analysis

Data Flow Analysis — Outer Macrostate Analysis

- Based on sizes of macrostates
- Bound for the smallest macrostate in every cycle
- Forward rank propagation

Data Flow Analysis — Inner Macrostate Analysis

Based on ranks assigned to all states in a macrostate

Experiments

Experimental Evaluation

- Random automata from [Tsai,Fogarty,Vardi,Tsay'11]
 - alphabet of 2 symbols
 - starting with 15 states
 - reduced using SPOT, RABIT
 - removed semi-deterministic, inherently weak, unambiguous, empty
 - 2592 hard automata
 - ► Timeout: 5 min

Experimental Evaluation

- Random automata from [Tsai,Fogarty,Vardi,Tsay'11]
 - alphabet of 2 symbols
 - starting with 15 states
 - reduced using SPOT, RABIT
 - removed semi-deterministic, inherently weak, unambiguous, empty
 - ► 2592 hard automata
 - ► Timeout: 5 min
- LTL automata
 - larger alphabets (up to 128 symbols)
 - from LTL formulae (from literature and randomly generated)
 - 414 hard automata
 - ► Timeout: 5 min

Experimental Evaluation

- Random automata from [Tsai,Fogarty,Vardi,Tsay'11]
 - alphabet of 2 symbols
 - starting with 15 states
 - reduced using SPOT, RABIT
 - removed semi-deterministic, inherently weak, unambiguous, empty
 - 2592 hard automata
 - ► Timeout: 5 min
- LTL automata
 - larger alphabets (up to 128 symbols)
 - from LTL formulae (from literature and randomly generated)
 - 414 hard automata
 - Timeout: 5 min
- Total: 3006 state-based BAs, 458 of them elevator automata

Experimental Evaluation

- Implemented in C++ within RANKER
- Compared with:
 - ► GOAL (Schewe, Safra, Piterman, Fribourg)
 - ► SPOT
 - ► LTL2DSTAR
 - ► SEMINATOR 2
 - ► ROLL

Experimental Evaluation – States rank-based

- Schewe'09]
- RANKEROLD: [Havlena,L.'21]

- blue: random
- red: LTL
- no post-processing

Experimental Evaluation – States rank-based

method			media	ın			wins		losse	s		timeouts								
RANKER	3812	(4452	:	207)	79	(93	1	26)									279	(276	:	3)
RANKEROLD	7398	(8688)	:	358)	141	(197	:	29)	2190	(2011	:	179)	111	(107	:	4)	365	(360	:	5)
SCHEWE	4550	(5495	:	665)	439	(774	:	35)	2640	(2315	:	325)	55	(1	:	54)	937	(928	:	9)

■ all (random : LTL)

Experimental Evaluation – States not rank-based

- SPOT: determinisation-based [Duret-Lutz et al.'16]
- ROLL: learning-based [Li et al.'19]

- blue: random
- red: LTL
- post-processing: SPOT

Experimental Evaluation – States not rank-based

(a) RANKER VS SPOT

(b) RANKER VS ROLL

method	mean				median				wins					losse	es		timeouts			
RANKER	47	(52	1	18)	22	(27	1	10)									279	(276	1	3)
PITERMAN	73	(82	:	22)	28	(34	:	14)	1435	(1124	:	311)	416	(360	:	56)	14	(12	:	2)
SAFRA	83	(91	:	30)	29	(35	:	17)	1562	(1211	:	351)	387	(350	:	37)	172	(158	:	14)
SPOT	75	(85	:	15)	24	(32	:	10)	1087	(936	:	151)	683	(501	:	182)	13	(13	:	0)
FRIBOURG	91	(104	:	13)	23	(31	:	9)	1120	(1055	:	65)	601	(376	:	225)	81	(80	:	1)
LTL2DSTAR	73	(82	:	21)	28	(34	:	13)	1465	(1195	:	270)	465	(383)	:	82)	136	(130	:	6)
SEMINATOR 2	79	(91	:	15)	21	(29	:	10)	1266	(1131	:	135)	571	(367	:	204)	363	(362	:	1)
ROLL	18	(19	:	14)	10	(9	:	11)	2116	(1858	:	258)	569	(443	:	126)	1109	(1106	:	3)

all (random: LTL)

Future Work

- Generalization to complementation of TELA
 - transition-based Emerson-Lei automata
- Exploit the elevator structure even more
- Language inclusion checking

Conclusion

Elevator automata

- BAs with deterministic, inherently weak, and non-accepting SCCs
- occur often in practice
- the structure can be exploited

in rank-based complementation

- ▶ allow tighter bounds of states' ranks \sim smaller $\mathcal{A}^{\complement}$
- can be generalized to general SCCs
- rank bounds can be refined by data-flow analysis

Conclusion

Elevator automata

- BAs with deterministic, inherently weak, and non-accepting SCCs
- occur often in practice
- the structure can be exploited

in rank-based complementation

- ightharpoonup allow tighter bounds of states' ranks \sim smaller $\mathcal{A}^{\complement}$
- can be generalized to general SCCs
- rank bounds can be refined by data-flow analysis

THANK YOU!

Experimental Evaluation – Time

method	mea	an runtin	ıе	[s]	med	lian runt	im	e [s]	timeouts				
RANKER	7.83	(8.99	:	1.30)	0.51	(0.84	:	0.04)	279	(276	:	3)	
RANKEROLD	9.37	(10.73	:	1.99)	0.61	(1.04	:	0.04)	365	(360	:	5)	
SCHEWE	21.05	(24.28	:	7.80)	6.57	(7.39	:	5.21)	937	(928	:	9)	
RANKER	7.83	(8.99	:	1.30)	0.51	(0.84	:	0.04)	279	(276	:	3)	
PITERMAN	7.29	(7.39	:	6.65)	5.99	(6.04	:	5.62)	14	(12	:	2)	
SAFRA	14.11	(15.05	:	8.37)	6.71	(6.92	:	5.79)	172	(158	:	14)	
SPOT	0.86	(0.99	:	0.06)	0.02	(0.02	:	0.02)	13	(13	:	0)	
FRIBOURG	17.79	(19.53	:	7.22)	9.25	(10.15	:	5.48)	81	(80	:	1)	
LTL2DSTAR	3.31	(3.84	:	0.11)	0.04	(0.05	:	0.02)	136	(130	:	6)	
SEMINATOR 2	9.51	(11.25	:	0.08)	0.22	(0.39)	:	0.02)	363	(362	:	1)	
ROLL	31.23	(37.85	:	7.28)	8.19	(12.23	:	2.74)	1109	(1106	:	3)	

Elevator Automata Complementation – Run DAGs

■ $bba^{\omega} \notin \mathcal{L}(\mathcal{A})$

Elevator Automata Complementation – Run DAGs

lacksquare bba $^\omega
ot\in \mathcal{L}(\mathcal{A})$

а

Elevator Automata Complementation – Run DAGs

lacksquare bba $^\omega
ot\in \mathcal{L}(\mathcal{A})$

■ Nondeterministically guesses run DAG ranks

[Schewe'09]

- Nondeterministically guesses run DAG ranks
- [Schewe'09]
- Macrostates (S, O, f, i); accepting macrostates $(\cdot, \emptyset, \cdot, \cdot)$ (omit i)
 - \triangleright S tracks all runs of \mathcal{A} (determinization of NFAs)
 - ightharpoonup O tracks all runs with an even rank (since a breakpoint with $O = \emptyset$)
 - to accept a word → decrease ranks of the runs from O
 - f guesses ranks of a level in a run DAG
 - tight rankings: (i) odd max rank r (ii) cover ranks {1,3,...,r}

- Nondeterministically guesses run DAG ranks
- [Schewe'09]
- Macrostates (S, O, f, i); accepting macrostates $(\cdot, \emptyset, \cdot, \cdot)$ (omit i)
 - \triangleright S tracks all runs of \mathcal{A} (determinization of NFAs)
 - ightharpoonup O tracks all runs with an even rank (since a breakpoint with $O = \emptyset$)
 - f guesses ranks of a level in a run DAG
 - tight rankings: (i) odd max rank r (ii) cover ranks $\{1,3,\ldots,r\}$
- Transition function (S, O, f) $\stackrel{a}{\rightarrow}$ (S', O', f')
 - ▶ S'-part: subset construction; $S' = \delta(S, a)$
 - ightharpoonup O'-part: keeps successors of O with even ranks (or a new sample if $O = \emptyset$)
 - f': nonincreasing tight ranking wrt δ (with even accepting states)

Nondeterministically guesses run DAG ranks

- [Schewe'09]
- Macrostates (S, O, f, i); accepting macrostates $(\cdot, \emptyset, \cdot, \cdot)$ (omit i)
 - \triangleright S tracks all runs of \mathcal{A} (determinization of NFAs)
 - ightharpoonup O tracks all runs with an even rank (since a breakpoint with $O = \emptyset$)
 - f guesses ranks of a level in a run DAG
 - tight rankings: (i) odd max rank r (ii) cover ranks {1,3,...,r}
- Transition function (S, O, f) $\stackrel{a}{\rightarrow}$ (S', O', f')
 - ► S'-part: subset construction; $S' = \delta(S, a)$
 - ightharpoonup O'-part: keeps successors of O with even ranks (or a new sample if $O = \emptyset$)
 - f': nonincreasing tight ranking wrt δ (with even accepting states)
- Waiting and Tight part
 - in Walting guess the point from which all successor rankings are tight (only S-part)
 - in Тіднт track tight rankings

Rank-based Complementation *Example*

Rank-based Complementation *Example*

- - $S' = \delta(\{s, t\}, b) = \{s, t\}$
 - $f'(s) \le f(s), f'(t) \le f(s),$ $f'(t) \text{ is even} \Longrightarrow \{s:1, t:0\}$
 - $O' = \{t\} \qquad (O' = S' \cap even(f'))$
 - $ightharpoonup (\{s:1,t:0\},\{t\})$

Rank-based Complementation Example

- - $S' = \delta(\{s, t\}, b) = \{s, t\}$
 - $f'(s) \le f(s), f'(t) \le f(s),$ $f'(t) \text{ is even} \Longrightarrow \{s:1, t:0\}$
 - \triangleright $O' = \{t\}$ $(O' = S' \cap even(t'))$
 - \blacktriangleright $({s:1, t:0}, {t})$
- - \triangleright S', f' similar to the previous case
 - \triangleright $O' = \emptyset$ $(O' = \delta(\{t\}, b) \cap even(t'))$

