Vaje iz teorije mere

Jan Pantner (jan.pantner@gmail.com)

30. oktober 2025

Kazalo

f Uvod		3		
1	Merljive množice			
	1.1	σ -algebre	3	
	1.2	Pozitivne mere	5	
	1.3	Zunanje mere	10	
	1.4	Polalgebre in razširitve mer	11	
	1.5	Lebesgue-Stieltjesove mere	12	

Uvod

V tem dokumentu so zbrane rešitve nekaterih nalog iz vaj pri Teoriji mere na UL FMF v šolskem letu 2025/26. Bralec lahko vse naloge (in še mnogo drugih) najde v [1].

Dokument zagotovo vsebuje veliko napak – bralcu v izziv je prepuščeno, da jih najde.

1 Merljive množice

1.1 σ -algebre

Definicija

Naj bo X neprazna množica. Družina $\mathcal A$ podmnožicX je σ -algebra, če ima naslednje lastnosti:

- (i) Velja $X \in \mathcal{A}$.
- (ii) Če je $A \in \mathcal{A}$, je tudi $A^c \in \mathcal{A}$.
- (iii) Če je $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$, je tudi

$$\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{A}.$$

Pravimo, da je (X, A) merljiv prostor, množicam A pa merljive množice.

Velja še:

- $\emptyset \in \mathcal{A}$.
- Zaprtost za končne preseke.
- Poljuben presek σ -algeber je σ -algebra.
- Najmanjšo σ -algebro, ki vsebuje $B \subseteq X$, označimo s $\sigma(B)$.

Naloga 1.1

Naj bo (X, \mathcal{A}) merljiv prostor. Za množico $E \in \mathcal{A}$ definiramo

$$\mathcal{A}_E := \{ E \cap F \mid F \subseteq E \} .$$

Dokažite, da je A_E σ -algebra na E.

Rešitev. (i): Velja $E = E \cap E \in \mathcal{A}_E$.

(ii): Naj bo $A = E \cap F \in \mathcal{A}$. Tedaj je $A^c = E \setminus A = E \cap A^{\tilde{c}}$, kjer je A^c komlement A v E, $A^{\tilde{c}}$ pa komplement A v X. Sledi, da je $A^c \in \mathcal{A}_E$.

(iii): Naj bo $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$. Tedaj

$$\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} (E \cap F_i) = E \cap \left(\bigcup_{i\in\mathbb{N}} F_i\right) \in \mathcal{A}_E,$$

saj je $\bigcup_{i\in\mathbb{N}} F_i \in \mathcal{A}$.

Naloga 1.2

Za vsak $n \in \mathbb{N}$ definiramo

$$\mathcal{A}_n = \sigma(\{1\}, \ldots, \{n\}) \subseteq \mathcal{P}(\mathbb{N}).$$

- (a) Dokažite, da je $\mathcal{A}_n = \{ E \subseteq \mathbb{N} \mid E \subseteq [n] \text{ ali } E^C \subseteq [n] \},$
- (b) Dokažite, da je A_n prava podmnožica v A_m za m < n.
- (c) Dokažite, da $\bigcup_{n\in\mathbb{N}} A_n$ ni σ -algebra.

Rešitev. (a): Označimo $\mathcal{B}_n = \{ E \subseteq \mathbb{N} \mid E \subseteq [n] \text{ ali } E^C \subseteq [n] \}$. Najprej pokažimo, da je \mathcal{B}_n σ -algebra.

- (i): Ker je $\mathbb{N}^c \subseteq [n]$, je $\mathbb{N} \in \mathcal{B}$.
- (ii): Zaprtost za komplemente velja zaradi simetričnosti definicije.
- (iii): Naj bo $(B_n)_{n\in\mathbb{N}}\subseteq\mathcal{B}$. Če so vsi $B_i\subseteq[n]$, potem je tudi njihova unija vsebovana v [n]. Podobno, če so vsi B_i^c vsebovani v [n]. Če pa je $B_i\subseteq[n]$ in $B_j^c\subseteq[n]$, pa je $\bigcup_{n\in\mathbb{N}}B_n=\mathbb{N}$.

Očitno \mathcal{B}_n vsebuje vse generatorje \mathcal{A}_n , torej $\mathcal{A}_n \subseteq \mathcal{B}_n$. Obratno, če je $B \in \mathcal{B}$ vsebovan v [n], je unija singletonov, torej je $B \in \mathcal{A}$. Podobno, če je $B^c \subseteq [n]$. Zato je tudi $\mathcal{B}_n \subseteq \mathcal{A}_n$ oziroma skupaj $\mathcal{A}_n = \mathcal{B}_n$.

- (b): Če je n < m, potem $\{m\} \not\subseteq [n]$ in $\{m\}^c \not\subseteq [n]$, torej $m \notin \mathcal{A}_n$.
- (c): Če bi unija bila σ -algebra, bi bila potenčna σ -algebra saj vsebuje vse singletone. Po drugi strani pa je to družina množic, ki so končne ali pa imajo končne komplemente. Tako na primer $2\mathbb{N} \notin \mathcal{A}_n$ za vsak $n \in \mathbb{N}$ in tudi ni v uniji, kar je protislovje.

Naloga 1.3

Naj bo X neštevna množica in

$$\mathcal{A} = \{ E \subseteq X \mid E \text{ je števna ali } E^c \text{ je števna} \}.$$

- (a) Dokažite, da je \mathcal{A} σ -algebra na X.
- (b) Dokažite, da je $\mathcal{A} = \sigma(\{\{x\} \mid x \in X\})$.

Rešitev. (i): Ker je $X^c = \emptyset$ števna množica, je $X \in \mathcal{A}$.

(ii): Zaprtost za komplemente velja zaradi simetrije definicije \mathcal{A} .

(iii): Naj bo $(A_n)_{n\in\mathbb{N}}\subseteq\mathcal{A}$. Če so vsi A_i števni, je števna tudi njihova unija (števna unija števnih množic je števna). Recimo, da je $A_j\in\mathcal{A}$ neštevna (in A_j^c števna) množica. Tedaj

$$A_j \subseteq \bigcup_{i \in \mathbb{N}} A_i \Longrightarrow \left(\bigcup_{i \in \mathbb{N}} A_i\right)^c \subseteq A_j^c,$$

torej je komplement unije števen.

Označimo $\mathcal{B} = \sigma(\{\{x\} \mid x \in X\})$. Očitno \mathcal{A} vsebuje vse generatorje \mathcal{B} , torej $\mathcal{B} \subseteq \mathcal{A}$. Če je $A \in \mathcal{A}$ števna množica, je števna unija singletonov, torej je vsebovana v \mathcal{B} . Podobno velja, če je A^c števna množica, torej je $\mathcal{A} \subseteq \mathcal{B}$. Skupaj smo dokazali $\mathcal{A} = \mathcal{B}$.

Naloga 1.4

Naj bo \mathcal{A} neskončna σ -algebra.

- (a) Dokažite, da v ${\mathcal A}$ obstaja neskončno strogo padajoče zaporedje paroma različnih množic.
- (b) Dokažite, da je kardinalnost neskončne σ -algebra vsaj kontinuum.

Rešitev. (a): Poiščimo pravo merljivo podmnožico, ki ima neskončno merljivih podmnožic. Naj bo $\emptyset \neq E \neq X$ merljiva podmnožica. Pokažimo, da ima ena od množic E in E^c iskano lastnost. Če je $F \in \mathcal{A}$, potem sta $F \cap E$ in $F \cap E^c$ merljivi množici za kateri velja $F = (F \cap E) \cup (F \cap E^c)$. Če ima E m merljivih podmnožic, E^c pa n, potem dobimo največ $m \cdot n$ možnih $F \in \mathcal{A}$, kar je v protislovju z neskončnostjo \mathcal{A} .

Naj bo $E_0 = X$ in E_1 tista od množic E in E^c , ki ima neskončno merljivih podmnožic. Tedaj je \mathcal{A}_{E_1} neskončna σ -algebra. Nadaljujemo induktivno in dobimo strogo padajoče zaporedje $(E_n)_{n \in \mathbb{N}_0}$.

(b): Naj bo $f: \mathcal{P}(\mathbb{N}) \hookrightarrow \mathcal{A}$ preslikava podana z $S \mapsto \bigcup_{i \in S} (E_i \setminus E_{i+1})$. Pokažimo, da je injektivna. Množica $F_i := E_i \setminus E_{i+1} \neq \emptyset$ so paroma disjunktne, saj E_i strogo padajo. Če sta S in T različni podmnožici \mathbb{N} , brez škode za splošnost obstaja $x \in S \setminus T$. Tedaj je $F_x \subseteq f(S)$ in $F_x \not\subseteq f(T)$, torej $f(S) \neq f(T)$. Sledi $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| \leq |\mathcal{A}|$.

1.2 Pozitivne mere

Definicija

 $Pozitivna\ mera$ na merljivem prostoru (X, \mathcal{A}) je preslikava $\mu \colon \mathcal{A} \to [0, \infty]$, ki zadošča:

- $\mu(\emptyset) = 0$,
- Če so A_1,A_2,\ldots paroma disjunktne množice iz $\mathcal{A},$ potem je

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n).$$

Mera je končna, če je $\mu(X) < \infty$.

Velja še:

- Monotonost: $\mu(A) \leq \mu(B)$ za $A \subseteq B$.
- Za poljubne množice A_1, A_2, \ldots iz \mathcal{A} velja

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \mu(A_n).$$

Izrek

Naj bo $\mu \colon \mathcal{A} \to [0, \infty]$ končna aditivna funkcija, kjer je (X, \mathcal{A}) merljiv prostor. Tedaj je μ mera natanko tedaj, kadar za vsako naraščajoče zaporedje $(A_n)_{n \in \mathbb{N}}$ množic velja

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(A_n)$$

Iz splošnega zaporedja $(A_n)_{n\in\mathbb{N}}$ lahko tvorimo naraščajoče zaporedje

$$B_n = \bigcup_{i=1}^n A_i.$$

Izrek

Naj bo (X, \mathcal{A}, μ) prostor z mero in $(A_n)_{n \in \mathbb{N}}$ padajoče zaporedje množic v \mathcal{A} . Če je $\mu(A_1) < \infty$, potem je

$$\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(A_n).$$

Naloga 1.5

Naj bo (X, \mathcal{A}, μ) merljiv prostor s pozitivno mero. Dokažite, da za merljivi podmnožici $A, B \in \mathcal{A}$ velja

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).$$

Rešitev. Ker je

$$A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$$

unija disjunktnih množic, velja

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A \setminus B) + \mu(B \setminus A) + 2\mu(A \cap B)$$
$$= \mu((A \setminus B) \cup (A \cap B)) + \mu((B \setminus A) \cup (A \cap B))$$
$$= \mu(A) + \mu(B).$$

Naloga 1.6

Naj bo (X, \mathcal{A}, μ) merljiv prostor s končno mero. Recimo, da je mera merljive množice $A \in \mathcal{A}$ enaka $\mu(X)$. Dokažite, da za poljubno množico $B \in \mathcal{A}$ velja $\mu(B) = \mu(A \cap B)$.

Rešitev. Upoštevamo monotonost mere in dobimo

$$\mu(A) \le \mu(A \cup B) \le \mu(X) = \mu(A),$$

kar pomeni, da je $\mu(A) = \mu(A \cup B)$. Iz prejšnje naloge vemo, da je

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B) = \mu(a \cup B) + \mu(B).$$

Ker je mera μ končna, lahko krajšamo in dobimo $\mu(B) = \mu(A \cap B)$.

Rešitev. Iz $\mu(A) = \mu(X) = \mu(A) + \mu(A^c)$ sledi $\mu(A^c) = 0$. Torej je

$$\mu(B \setminus A) = \mu(B \cap A^c) \le \mu(A^c) = 0$$

oziroma

$$\mu(B) = \mu(A \cap B) + \mu(B \setminus A) = \mu(A \cap B).$$

Definicija

Lastnost \mathcal{L} velja za skoraj vse $x \in X$, če je $\mu(\{x \mid \mathcal{L} \text{ ne velja za } x\}) = 0$.

Naloga 1.7

Naj bo (X, \mathcal{A}, μ) merljiv prostor in $(E_n)_{n \in \mathbb{N}}$ zaporedje množic iz \mathcal{A} .

(a) Dokažite, da velja

$$\mu\left(\bigcup_{m=1}^{\infty}\bigcap_{n=m}^{\infty}E_n\right)\leq \liminf_{n\to\infty}\mu(E_n).$$

(b) Dokažite, da je množica

$$\bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E_n$$

enaka množici vseh $x \in X$, ki so vsebovani v vseh razen v končno mnogo množicah $E_n.$

(c) Če je $\sum_{n=1}^{\infty} \mu(E_n) < \infty$, dokažite, da je skoraj vsak $x \in X$ vsebovan v končno mnogo množicah E_n .

Rešitev. Left as an exercise to the reader.

Definicija

Mera μ na X je:

- σ -končna, če lahko zapišemo X kot števno unijo (paroma disjunktnih) množic s končno mero.
- semi-končna, če ima vsaka množica z neskončno mero podmnožico s končno pozitivno (neničelno) mero.

Naloga 1.8

Naj bo (X, \mathcal{A}, μ) merljiv prostor z neskončno mero.

- (a) Dokažite, da je vsaka σ -končna mera semi-končna.
- (b) Če je μ semi-končna mera, dokažite, da za vsak c>0 obstaja takšen $E\in\mathcal{A}$, da je $c<\mu(E)<\infty$.
- (c) Če je μ σ -končna, dokažite, da za vsak c>0 obstaja takšen $E\in\mathcal{A}$, da je $c<\mu(E)<\infty$.

Rešitev. (a): Naj bo $X = \bigcup_{n=1}^{\infty} X_n$, kjer so X_n paroma disjunktne množice s končnimi merami, in A množica z neskončno mero. Tedaj je

$$A = \bigcup_{n=1}^{\infty} (X_n \cap A)$$

unija paroma disjunktnih množic in velja

$$\infty = \mu(A) = \sum_{n=1}^{\infty} \mu(X_n \cap A) \neq 0.$$

To pomeni, da obstaja takšen $n \in \mathbb{N}$, da je $\mu(X_n \cap A) \neq 0$. Po drugi strani pa je $\mu(X_n \cap A) \leq \mu(X_n) < \infty$, torej je mera $X_n \cap A$ končna, kar pomeni, da je μ semi-končna.

(b): Naj bo

$$C := \sup \{ \mu(X') \mid X' \in \mathcal{A}, \mu(X') < \infty \}$$

Dokazati želimo, da je $C = \infty$. Recimo, da je $C < \infty$. Tedaj obstaja takšno zaporedje $(A_n)_{n \in \mathbb{N}}$, da je $\lim_{n \to \infty} \mu(A_n) = C$. Sedaj tvorimo naraščajoče zaporedje

$$B_n := \bigcup_{i=1}^n A_i,$$

za katerega velja $\bigcup_{i=1}^n A_i = \bigcup_{i=1}^n B_i$. Torej je

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = \lim_{n \to \infty} \mu(B_n).$$

Ker je

$$\mu(B_n) \le \sum_{i=1}^n \mu(A_i) < \infty,$$

iz definicije C sledi $\mu(B_n) \leq C$. Po drugi strani pa, ker je za vsak $n \in \mathbb{N}$

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \ge \mu(A_n),$$

sledi

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) \ge C,$$

iz česar skupaj dobimo

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = C.$$

Ker je $\mu(X) = \infty$, to pomeni, da je

$$\mu\left(\left(\bigcup_{n=1}^{\infty} A_n\right)^c\right) = \infty.$$

Ker je μ semi-končna, torej obstaja takšna množica $E \subseteq (\bigcup_{n=1}^{\infty} A_n)^c$, da je $0 < \mu(E) < \infty$. Sledi

$$\infty > \mu\left(E \cup \left(\bigcup_{n=1}^{\infty} A_n\right)\right) = \mu(E) + \mu\left(\bigcup_{n=1}^{\infty} A_n\right) > C,$$

kar pa je v protislovju z definicijo C.

(c): Sledi iz točk (a) in (b).

Naloga 1.9

Naj bo (X, \mathcal{A}, μ) merljiv prostor s pozitivno mero μ . Za poljubno množico $E \in \mathcal{A}$ definiramo

$$\mu_0(E) = \sup \{ \mu(F) \mid \mu(F) < \infty, F \subseteq E, F \in \mathcal{A} \}.$$

Dokažite, da je μ_0 pozitivna mera na (X, \mathcal{A}) .

Rešitev. Left as an exercise to the reader.

Naloga 1.10

Naj bo (X, \mathcal{A}, μ) merljiv prostor s pozitivno mero in naj bodo $(E_n)_{n \in \mathbb{N}}$ takšne merljive množice, da velja $\mu(E_n \cap E_m) = 1$ za poljubna $n, m \in \mathbb{N}$. Izračunajte

$$\mu\left(\bigcap_{n=1}^{\infty} E_n\right).$$

Rešitev. Left as an exercise to the reader.

Naloga 1.11

Naj bo (X, \mathcal{A}, μ) verjetnostni^a prostor in naj bo $(E_n)_{n \in \mathbb{N}}$ takšno zaporedje merljivih množic, da je 1 stekališče zaporedja $(\mu(E_n))_{n \in \mathbb{N}}$. Dokažite, da za vsak $0 < \varepsilon < 1$ obstaja takšno podzaporedje $(E_{n_k})_{k \in \mathbb{N}}$, da velja

$$\mu\left(\bigcap_{k=1}^{\infty} E_{n_k}\right) > \varepsilon.$$

$$^{a}\mu(X) = 1$$

Rešitev. Left as an exercise to the reader.

1.3 Zunanje mere

Definicija

Zunanja mera na X je preslikava $\xi \colon \mathcal{P}(\mathcal{X}) \to [0, \infty]$, ki zadošča:

- $\xi(\emptyset) = 0$.
- $\xi(B) \le \xi(A)$ za $B \subseteq A$.
- Za vsako zaporedje (A_n) velja

$$\xi\left(\bigcup_{n=1}^{\infty}A_n\right)\leq\sum_{n=1}^{\infty}\xi(A_n).$$

Množica $A \subseteq X$ je ξ -merljiva, če je

$$\xi(Y) = \xi(A \cap Y) + \xi(A^c \cap Y)$$

za vse $Y \subseteq X$. Množico vseh ξ -merljivih množic označimo z \mathcal{A}_{ξ} .

Ekvivalentno je množica $A \subseteq X$ ξ -merljiva, če je

$$\xi(Y) \ge \xi(A \cap Y) + \xi(A^c \cap Y)$$

za vse $Y \subseteq X$, $\xi(Y) < \infty$.

Naloga 1.12

Naj bo ξ zunanja mera na potenčni množici neprazne množice X in $A \subseteq X$ poljubna množica. Naj za množico $B \subseteq X$ velja $\xi(B) = 0$. Dokažite, da je B ξ -merljiva in izračunaj $\xi(A \cup B)$.

Rešitev. Zaradi monotonosti velja

$$\xi(Y\cap B)+\xi(Y\cap B^c)\leq \xi(B)+\xi(Y)=\xi(Y),$$

torej je $B \xi$ -merljiva. Iz

$$\xi(A) \le \xi(A \cup B) \le \xi(A) + \xi(B) = \xi(A)$$

sledi $\xi(A \cup B) = \xi(A)$.

Naloga 1.13

Naj bo ξ zunanja mera na potenčni množici neprazne množice X in $E\subseteq X$ poljubna ξ -merljiva množica v X. Dokažite, da za poljubno podmnožico $A\subseteq X$ velja

$$\xi(A \cup E) + \xi(A \cap E) = \xi(A) + \xi(E).$$

Rešitev. Ker je $E \in \mathcal{A}_{\varepsilon}$, velja

$$\xi(A \cup E) = \xi((A \cup E) \cap E) + \xi((A \cup E) \cap E^c) = \xi(E) + \xi(A \setminus E).$$

Sledi

$$\xi(A \cup E) + \xi(A \cap E) = \xi(E) + \xi(A \setminus E) + \xi(A \cap E)$$
$$= \xi(E) + \xi(A \cap E^c) + \xi(A \cap E)$$
$$= \xi(E) + \xi(A).$$

Izrek: Carathéodory

Če je ξ zunanja mera na X, je \mathcal{A}_{ξ} σ -algebra in $\xi|_{\mathcal{A}_{\xi}}$ mera in $(X, \mathcal{A}_{\xi}, \xi|_{\mathcal{A}_{\xi}})$ poln prostor z mero.

Naloga 1.14

Naj bo ξ zunanja mera na potencni množici neprazne množice X in naj bo A poljubna podmnožica v X. Naj za vsak $\varepsilon > 0$ obstaja taka ξ -merljiva podmnožica $E \subseteq A$, da je $\xi(A \setminus E) < \varepsilon$. Dokažite, da je A ξ -merljiva.

Rešitev. Za vsak $n \in \mathbb{N}$ obstaja takšna ξ -merljiva množica $E_n \subseteq A$, da je $\xi(A \setminus E_n) < \frac{1}{n}$. Množica

$$E := \bigcup_{n=1}^{\infty} E_n \subseteq A$$

je ξ -merljiva po Carathéodoryjevem izreku. Za vsak $n \in \mathbb{N}$ velja

$$\xi(A \setminus E) \le \xi(A \setminus E_n) < \frac{1}{n},$$

zato je $\xi(A \setminus E) = 0$, kar po zgornji nalogi pomeni, da je $A \setminus E \in A_{\xi}$. Ker je A_{ξ} σ -algebra, je $A = (A \setminus E) \cup E \in \mathcal{A}_{\xi}$.

1.4 Polalgebre in razširitve mer

Definicija

Left as an exercise to the reader.

Naloga 1.15

Naj bo S polalgebra na X in A algebra na X, generirana s S. Naj bo μ polmera na S. Za $A \in A$ definiramo

$$\tilde{\mu}(A) = \sum_{j=1}^{n} \mu(A_j),$$

kjer je $A = \bigcup_{j=1}^n A_j$ neka končna disjunktna unija množic iz \mathcal{S} . Dokažite, da je $\tilde{\mu}$ dobro definirana mera na algebri \mathcal{A} , ki razširja polmero μ .

Rešitev. Left as an exercise to the reader.

1.5 Lebesgue-Stieltjesove mere

Naloga 1.16

Naj bo E podmnožica [0,1] z Lebesgueovo mero 1. Dokažite, da je E gosta v [0,1].

Rešitev. Recimo, da E ni gosta v E. Tedaj obstaja takšen $a \in [0,1]$ in $\varepsilon > 0$, da je $E \cap (a - \varepsilon, a + \varepsilon) = \emptyset$. Tedaj velja

$$\mu(E) \le [0,1] \setminus (a - \varepsilon, a + \varepsilon) < 1,$$

kar je protislovje.

Naloga 1.17

Racionalna števila razvrstimo v zaporedje $(r_n)_{n\in\mathbb{N}}$ in definiramo

$$A = \bigcup_{n=1}^{\infty} \left[r_n - \frac{1}{n^2}, r_n + \frac{1}{n^2} \right].$$

Ali je $A = \mathbb{R}$?

Rešitev. Iz

$$m(A) \le \sum_{n=1}^{\infty} \frac{2}{n^2} = \frac{\pi^2}{3}.$$

sledi $A \neq \mathbb{R}$.

Enakost $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ je znana tudi kot Baselski problem.

Naloga 1.18

Za poljuben $\varepsilon>0$ poiščite takšno neprazno gosto podmnožico $E\subset\mathbb{R},$ da velja $m(E)<\varepsilon.$

Rešitev. Iz prejšnje naloge sledi, da je ustrezna množica

$$A = \bigcup_{n=1}^{\infty} \left[r_n - \frac{3\varepsilon}{2\pi^2 n^2}, r_n + \frac{3\varepsilon}{2\pi^2 n^2} \right].$$

Množica A je gosta, saj vsebuje vsa racionalna števila.

Naloga 1.19

Naj bo $f: \mathbb{R} \to \mathbb{R}$ naraščajoča levozvezna funkcija in μ_f njena pripadajoča Lebesgue-Stieltjesova mera. Izračunajte μ_f od [a, b], $\{a\}$, (a, b] in (a, b). Kdaj je $\mu_f(\{a\}) = 0$? Rešitev. Ker je

$$\{a\} = \bigcap_{n=1}^{\infty} \left[a, a + \frac{1}{n} \right)$$

presek padajočega zaporedja, je

$$\mu_f(\{a\}) = \lim_{n \to \infty} \mu_f\left(\left[a, a + \frac{1}{n}\right)\right)$$

$$= \lim_{n \to \infty} f\left(a + \frac{1}{n}\right) - f(a)$$

$$= \lim_{x \downarrow a} f(x) - f(a)$$

$$= f(a^+) - f(a).$$

Ker je f naraščajoča, limita $f(a^+)$ obstaja. Sledi, da je $\mu_f(\{a\}) = 0$ natanko tedaj, kadar je f zvezna v a.

Dobljeno upoštevamo pri izračunu preostalih mer:

$$\mu_f([a,b]) = \mu_f([a,b)) + \mu_f(\{b\}) = f(b) - f(a) + f(b^+) - f(b) = f(b^+) - f(a),$$

$$\mu_f((a,b]) = \mu_f([a,b]) - \mu_f\{a\} = f(b^+) - f(a) - f(a^+) + f(a) = f(b^+) - f(a^+),$$

$$\mu_f((a,b)) = \mu_f([a,b)) - \mu_f\{a\} = f(b) - f(a) - f(a^+) + f(a) = f(b) - f(a^+).$$

Pomembna opazka je, da imamo opravka s končnimi količinami, torej je odštevanje res dobro definirano.

Literatura

[1] Marko Kandić. Naloge iz teorije mere. 2015.