Mathematics Theory

• Numerical integration of differential equations (20-01-2020):

Integrate the following differential equations by Euler's method and Taylor's method of the second order. Provide your results correct to 4 places of decimal. The first 4 differential equations are autonomous, and the rest are non-autonomous. In all of them $x \equiv x(t)$ and $\dot{x} \equiv \mathrm{d}x/\mathrm{d}t$.

- 1. $\dot{x} = \cos^2 x$, 0 < t < 1, x(0) = 0, $\Delta t = 0.2$.
- 2. $\dot{x} = -x^2$, 1 < t < 2, x(1) = 1, $\Delta t = 0.2$.
- 3. $\dot{x} = 0.25x(1 0.05x), 0 \le t \le 2, x(0) = 1, \Delta t = 0.2.$
- 4. $\dot{x} = 1 2x$, x(0) = 2, $\Delta t = 0.2$. Find x(1).
- 5. $\dot{x} = (1+t^2)^{-1} 2x^2, 0 \le t \le 1, x(0) = 0, \Delta t = 0.2.$
- 6. $\dot{x} = x \sin(t)/t$, x(0) = 2, $\Delta t = 0.25$. Find x(1).
- 7. Consider $\dot{x} = x(1 + e^{2t})$, x(0) = 1. Integrate up to n = 3, with a step-size of $\Delta t = 0.1$.
- 8. Given $\dot{x} = -x + \sin(4\pi t)$, x(0) = 0.5, integrate up to n = 2, with $\Delta t = 0.1$.
- 9. Given $\dot{x} = -2x + \exp(-2t)$, x(0) = 0.1, integrate up to n = 2, with $\Delta t = 0.1$.
- 10. Given $\dot{x} = t^2 x$, x(0) = 1, integrate up to n = 3, with $\Delta t = 0.1$.

• Phase plots and linear stability of first-order autonomous systems (06-02-2020):

1. Analyze the following equations graphically. In each case, plot $x-\dot{x}$ by hand (which you can also support by plotting on a computer), find all the fixed points and classify their stability. Verify your conclusion about stability by a linear stability analysis.

A.
$$\dot{x} = x^2 - 1$$
 B. $\dot{x} = -x^3$ C. $\dot{x} = x^3$ D. $\dot{x} = x^2$ E. $\dot{x} = 4x^2 - 16$ F. $\dot{x} = 1 - x^{14}$ G. $\dot{x} = x - x^3$ H. $\dot{x} = e^{-x} \sin x$ I. $\dot{x} = 1 + 0.5 \cos x$ J. $\dot{x} = 1 - 2 \cos x$ K. $\dot{x} = e^x - \cos x$ (Hint: Plot e^x and $\cos x$ as separate functions, and look for intersections.)

2. Use linear stability analysis to classify the fixed points of the following equations. If linear stability analysis fails because $f'(x_c) = 0$, use a graphical argument to decide the stability.

A.
$$\dot{x} = x(1-x)$$
 B. $\dot{x} = x(1-x)(2-x)$ C. $\dot{x} = \tan x$ D. $\dot{x} = x^2(6-x)$ E. $\dot{x} = 1 - \exp(-x^2)$ F. $\dot{x} = \ln x$ G. $\dot{x} = ax - x^3$ (Check for $a < 0$, $a = 0$ and $a > 0$.)

• Conservative and reversible systems (13-02-2020):

1. For each of the following equations/systems, identify whether it is conservative or not. If it is conservative, then obtain the equation of conservation.

(a)
$$\ddot{x} = x - x^2$$
 [conservative, $(\dot{x}^2/2) - (x^2/2) + (x^3/3) = C$]

(b)
$$\dot{x} = -2\cos x - \cos y$$
, $\dot{y} = -2\cos y - \cos x$ [reversible but not conservative]

(c)
$$\dot{x} = xy, \, \dot{y} = -x^2$$
 [conservative, $x^2 + y^2 = C$]