Aufgabe 2

$$A \quad f(n)$$

$$B \quad g(n)$$

$$g(n) = O(f(n) \log n)$$

- a) Beispiele
 - i) A schneller B

$$f(n) = n^{2}$$

$$g(n) = n \log n$$

$$n \log n = O(n^{2} \log n)$$

ii) B schneller A

$$f(n) = n$$
$$g(n) = n \log n$$
$$n \log n = O(n^2 \log n)$$

b)

$$g(n) = \Omega(f(n) \log n)$$

- \Rightarrow i) gilt laut Definition.
- c) ja, x Eingabe und T(x) Laufzeit

$$T(n) = \max T(x)$$

$$|x| = n \quad \text{Laufzeit im schlimmsten Fall}$$

$$T(n) = \Theta(n^2)$$

 \Rightarrow Bubblesort!

 x_i Folge von i sortierten Elementen $\to T(n) = \Theta(n^2)$ $T(x_i) = O(i)$

$$T(n)=\Omega(n^2)$$

$$y_n=\text{Permutation}=\{1,2,3,...,n,n-1,n-2,...,\underline{1}\}$$

$$T(y_n)=\Omega(n^2)$$

Für alle Funktionen f,g in der Vorlesung gilt entweder f=O(g) oder g=O(f), aber: Es gibt Funktionen, für die wir es nicht machen können.

d) A hat Laufzeit $\Theta(n^2)$, kann es sein, dass $\forall x|x|=n=T(x)=O(n)$? \Rightarrow Nein. Die Laufzeit im schlimmsten Fall von $\Omega(n^2)$ bedeutet, dass es für jedes n eine Eingabe der Länge n gibt, bei der der Algorithmus n^2 Zeit benötigt. A hat Laufzeit $O(n^2)$, kann es sein, dass $\forall x|x|=n=T(x)=O(n)$? \Rightarrow ja. A hat Laufzeit $\Omega(n^2)$, kann es sein, dass $\forall x|x|=n=T(x)=O(n)$? \Rightarrow nein.

e) a)
$$3^n=O(2^n)$$
 Wahr oder Falsch? \Rightarrow Falsch! $4^n=2^n*2^n$, wobei 2^n $=$ $O(2^n)$ unmöglich!

b)
$$\underbrace{\log 3^n}_{n \log 3} = \underbrace{O(\log 2^n)}_{n \log 2} \Rightarrow \text{Wahr!}$$

c)
$$3^n = \Omega(2^n) \Rightarrow 3^n > 2^n$$

d)
$$log3^n = \Omega(log2^n) \Rightarrow log3^n > log2^n$$

f)
$$4^n + n^2 \simeq 2^{2n} \ge 2^n \ge 2^{\sqrt{n}} \ge n^2 \log_2(n^2) \simeq n^2 \log n \ge n \log 2^n \simeq 5n^2 + n \log n \simeq n^2 + n - 1 \ge (\log n)^2 \ge \log_3 n \simeq \log_2 n$$

Einschub: Laufzeitvergleich

$$5n^2 + nlogn = \Theta(n^2 + n - 1)$$

$$\mathbf{z.z.:} \qquad O(n^2 + n - 1)$$

$$= \{f | \exists n_0 \in \mathbb{N}, c \in \mathbb{R}^+ \forall n > n_0 \quad f(n) \le c(n^2) + n - 1\}$$

$$5n^2 + n * \log n < 100(n^2 + n - 1)$$

$$5n^2 < 10n^2$$

$$n \log n < n^2 \quad \forall n$$

0.1 RAM

Ziel ist es eine RAM zu bauen, die eine RAM bekommt und diese dann um 10 Plätze nach unten verschiebt.

Idee: Von hinten nach vorne Verschieben. Die Programmlänge ist in R0 gegeben. Es braucht dann zwei freie Register.

Zwei freie Register bekommt man so:

```
R0 = R0 + 12 ; R_{-}0 = n + 12

R0 = R0 + 12 ; R_{-}\{n+12\} = x_{-}2

R0 = R0 - 1 ; R_{-}0 = n+11

R0 = R1 ; R_{-}\{n+11\} = x_{-}1
```

Verschieben des Programms (Umschaufeln)

```
R1 = R0 - 11
R2 R2 = R0 -1
loop:
GZ R1, end
(R2) = (R1)
R2 = R2 -1
R1 = R1-1
GOTO loop
```

Aufräumen...

```
1 end:
2 R11 = R0
3 R0 = R0 + 1
```

EKM

 $\label{eq:continuous} \begin{tabular}{ll} Einheitskostenmaß, jede Operation kostet 1. \\ Schritt: \end{tabular}$

1. 8 bzw. Konstant

$$2. \ \ 4 + \underbrace{8}_{\text{Kosten pro Schleife}} * \underbrace{n}_{\text{Schleifendurchläufe}}$$

3. Konstant

$$\Rightarrow \Theta(n)$$

LKM