Name : Henil Pancholi

Roll No. :80

Subject : Data Visualization

Assignment: 2

Q: 1

import pandas as pd import matplotlib.pyplot as plt

file_path = r"D:\Data_Visualization\Assignment\employee_data.csv"
df = pd.read_csv(file_path)

print(df.head())

#OUTPUT:

#	ID	Gender	Experience (Years)	Position	Salary
# O	1	F	4	DevOps Engineer	109976
#1	2	M	6	DevOps Engineer	120088
#2	3	M	17	Web Developer	181301
#3	4	M	7	Systems Administrator	77530
# 4	5	F	13	Systems Administrator	152397

#1. Average Salary of each Position

avg_salary_position = df.groupby('Position')['Salary'].mean()

plt.figure(figsize=(10, 6))

avg_salary_position.plot(kind='bar', edgecolor='black', color='skyblue')

plt.title('Average Salary by Position')

plt.xlabel('Position')

plt.ylabel('Average Salary')

plt.xticks(rotation=45, ha='right')

plt.grid(axis='y')

plt.tight_layout()

plt.show()

2. Total number of Male and Female employees gender_count = df['Gender'].value_counts() plt.figure(figsize=(6, 6)) gender_count.plot(kind='pie', autopct='%1.1f%%', startangle=90, colors=['#ff9999',#66b3ff']) plt.title('Gender Distribution') plt.ylabel('') plt.tight_layout() plt.show()

3. Salary for employees with 10-15 years of experience exp_salary = df[(df['Experience (Years)'] >= 10) & (df['Experience (Years)'] <= 15)] plt.figure(figsize=(12, 6)) plt.bar(exp_salary['ID'].astype(str), exp_salary['Salary'], color='orange', edgecolor='black') plt.title('Salary for Employees with 10-15 Years of Experience') plt.xlabel('Employee ID') plt.ylabel('Salary') plt.ylabel('Salary') plt.xticks(rotation=90) plt.grid(axis='y') plt.tight_layout() plt.show()

4. Number of positions in the company position_count = df['Position'].value_counts() plt.figure(figsize=(10, 6)) position_count.plot(kind='bar', color='green', edgecolor='black') plt.title('Number of Positions in the Company') plt.xlabel('Position') plt.ylabel('Count') plt.ylabel('Count') plt.xticks(rotation=45, ha='right') plt.grid(axis='y') plt.tight_layout() plt.show()

5. Which position is better in terms of salary sorted_salary_position = avg_salary_position.sort_values(ascending=False) plt.figure(figsize=(10, 6)) sorted_salary_position.plot(kind='bar', color='purple', edgecolor='black') plt.title('Positions Ranked by Average Salary') plt.xlabel('Position') plt.ylabel('Position') plt.ylabel('Average Salary') plt.xticks(rotation=45, ha='right') plt.grid(axis='y') plt.tight_layout() plt.show()

print("\nAverage Salary by Position:\n", avg_salary_position)
print("\nGender Count:\n", gender_count)
print("\nEmployees with 10-15 Years Experience:\n", exp_salary[['ID', 'Experience (Years)', 'Salary']])
print("\nNumber of Positions:\n", position_count)

#OUTPUT:

Average Salary by Position:

Position

Cloud Solutions Architect 160841.633333 Database Administrator (DBA) 132864.552632 DevOps Engineer 161859.081081 IT Manager 170711.550000 IT Security Analyst 134440.820513 IT Support Specialist 87683.806452 Network Administrator 116865.064516 Software Engineer 131357.416667 Systems Administrator 113117.447368 Systems Analyst 127658.189189 Web Developer 108238.116279