

Document Discovery

Determining Similarity (RECALL)

- Query Q is represented as a document vector
- Search terms here are the descriptors
- Calculation of the similarity of the document vector Q with all document vectors D

Text ... "Hello everyone", "This webpage"...."which webpage"...

Text	Index
Hello	(1, 1)
everyone	(1, 2)
This	(2, 1)
webpage	(2, 2); (3, 2)

The similarity between Q and D is given by the cosine of the angle θ between the two document vectors Q and D

$$sim(Q, D) = cos(\theta)$$

Document Clustering

- Similar documents are combined into clusters
- The similarity analysis and cluster assignment is done at the time of index creation
- Analysis of document descriptors using thesauri

Ranking Results

 To achieve high-quality search results, the documents obtained from the inverted index must be weighted according to their relevance

- What is important?
 - Term Frequency Algorithm (TFA)
 - Zipf's law: The more often a keyword occurs in a text, the more important it must be

Term Frequency Algorithm

- Term Frequency Algorithm (TFA)
 - Zipf's law: The more often a keyword occurs in a text, the more important it must be
- Simplest weight: Absolute word frequency

$$TF(d,t) = n(d,t)$$

- Alternative possibilities:
 - relative word frequency

$$TF(d,t) = \frac{n(d,t)}{\sum_{\tau} n(d,\tau)}$$

Inverse Document Frequency

- Inverse Document Frequency Algorithm
- To distinguish a document, by keyword
 - ... in terms of content, and from other documents,
 - ... the occurrence of the keyword in other documents (D_t) must also be determined!
- **Example:** ... "This webpage" "which webpage does the previous webpage..." ...

Text	Index
webpage	(1, 2); (2, 2); (2,6)

TF-IDF-(1/2)

- Term Frequency (TF)
- Inverse Document Frequency (IDF)
- The occurrence of the keyword in other documents (D_t) can then be used to obtain the IDF:

$$IDF(d,t) = \frac{1}{|D_t|}$$

The more documents contain the keyword, the worse it characterizes a single document

■ **Example:** ... "This webpage"...."which webpage does the previous webpage..."...

Text	Index
webpage	(1, 2); (2, 2); (2,6)

Simplest weight: Absolute word frequency

$$TF(d,t) = n(d,t)$$

Inverse document frequency:

$$IDF(d,t) = \frac{1}{|D_t|}$$

Term Frequency-Inverse Document Frequency (TF-IDF) is obtained as follows:

$$TFIDF(d,t) = TF(d,t) * IDF(d,t)$$