Calculus A Homework 1

30 Sept 2021

Assigned exercises:

1. Prove that $\{x \in \mathbb{Q} : x^2 < 2 \lor x < 0\}$ is a Dedekind cut.

Definition:

A Dedekind cut T is a non-empty proper subset of \mathbb{Q} such that:

i)
$$\forall p \in \mathbb{Q}$$
, $q \in T$, $p < q \rightarrow p \in T$

ii)
$$\forall p \in T, \exists q \in T \text{ s.t. } p < q$$

Proof:

Let
$$T = \{x \in \mathbb{Q} : x^2 < 2 \lor x < 0\}$$

 $(1 \in \mathbb{Q} \land 1 \in T)$ but $(3 \in \mathbb{Q} \land 3 \notin T)$, so T is a non empty subset of \mathbb{Q} .

i) $\forall p \in \mathbb{Q}$,

If $p \leq 0$, then obviously $p \in T$.

Otherwise, let $q \in T$ s.t.p < q.

By definition, p < q and $q^2 < 2$,

thus
$$0 < p^2 < q^2 < 2 \Rightarrow p^2 < 2$$
, so $p \in T$.

ii) $\forall p \in T$,

If $p \le 0$ then $q = 1, q \in T$.

Otherwise p > 0 and $p^2 < 2$

$$\Leftrightarrow p^2 + 2p < 2 + 2p \Leftrightarrow p < \frac{2p+2}{p+2}$$

Let
$$q = \frac{2p+2}{p+2}$$

By definition, p<q.

$$q^2 < 2 \ requires \left(\frac{2p+2}{p+2}\right)^2 - 2 < 0$$

$$\Leftrightarrow \frac{4p^2 + 8p + 4 - 2p^2 - 8p - 8}{(p+2)^2} = \frac{2p^2 - 4}{(p+2)^2} < 0, which is true as $p^2 < 2$.$$

So,
$$q = \frac{2p+2}{p+2} \in T$$
, thus T is a Dedekind cut.

Q.E.D

2. Let $f: \mathbb{N} \to \mathbb{N}$ be a map such that $\forall n \in \mathbb{N}$ we have f(f(n))=f(n). Show that f is injective if and only if f is surjective.

Proof:

i) Assume f is injective, but f is not surjective.

Let
$$P = \mathbb{N} \setminus (Range \ f)$$
, and $m \in P$.

It is given that
$$f(f(n))=f(n)$$
 so $f(m)=m$.

Means that
$$\exists x \in Domain f, f(x) = m$$
.

Thus m does not exist and $P = \emptyset$, arising a contradiction to that f is not surjective.

- ii) Assume f is surjective, but f is not injective. Assumptions $\Rightarrow \exists m_1, m_2 \in Domain \ f \ s.t. \ m_1 \neq m_2 \ but \ f(m_1) = f(m_2).$ By assumption, Range $f = \mathbb{N}$ (codomain of f).
 Given f(f(n)) = f(n), so $\forall a \in \mathbb{N}$, $f(a) = a \Rightarrow f$ is bijective
 That contradicts the assumption of f is not a one-to-one function. Q.E.D.
- 3. Let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be two Cauchy sequences of rationals. Show that $(a_n\cdot b_n)_{n\geq 1}$ is also a Cauchy sequence.

Proof:

 $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ are both Cauchy,

 $\therefore \, \forall \epsilon > 0, \exists \, N \in \, \mathbb{N} \, \, s. \, t. \, \forall m, n > N,$

$$|a_m - a_n| < \epsilon$$
 and $|b_m - b_n| < \epsilon$

Also, $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ are both bounded, so let M be the sum of the upper bounds of $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$.

$$|a_m b_m - a_n b_n| = |a_m b_m - a_n b_m + a_n b_m - a_n b_n| \le |b_m| |a_m - a_n| + |a_n| |b_m - b_n| < (|a_n| + |b_m|) \epsilon \le M\epsilon,$$

Thus $(a_n b_n)_{n \ge 1}$ is also Cauchy.

Q.E.D.

4. Show that if $(a_n)_{n\geq 1}$ is a Cauchy sequence of rationals, then $(|a_n|)_{n\geq 1}$ is also a Cauchy sequence. Is the converse true (justify)?

Proof:

$$(a_n)_{n\geq 1}$$
 is Cauchy, so $\forall \epsilon>0$, $\exists N\in\mathbb{N}\ s.t.\ \forall\ m,n>N, |a_m-a_n|<\epsilon$ For $(|a_n|)_{n\geq 1}$, $||a_m|-|a_n||\leq |a_m-a_n|<\epsilon$, so $(|a_n|)_{n\geq 1}$ is also Cauchy. Q.E.D.

Assume $(a_n)_{n\geq 1}$ s.t. $a_n=(-1)^n$, obviously $(|a_n|)_{n\geq 1}$ is true, however $(a_n)_{n\geq 1}$ is not. So the converse is false.

Bonus exercises:

1. Prove that $\sqrt{2}$ is irrational.

Proof:

Assume $\sqrt{2} \in \mathbb{Q}$ then it is reasonable to let $\sqrt{2} = \frac{m}{n}$ such that $\sqrt{2}$ is expressed as a fraction in its simpliest form, i.e. $m, n \in \mathbb{Z}$ and $n \neq 0$ and $\gcd(m, n) = 1$.

$$\sqrt{2} = \frac{m}{n} \Leftrightarrow m^2 = 2n^2$$

 $\therefore 2 \mid m$. Let m = 2k.

$$(2k)^2 = 4k^2 = 2n^2 \Leftrightarrow n^2 = 2k^2 \ (\because 2|n)$$

Thus, 2|m and 2|n contradicts gcd (m,n)=1, hence $\sqrt{2}$ is irrational.