Neural Network and Deep Learning

Why Deep Learning?

Hand engineered features are time consuming, brittle and not scalable in practice

Can we learn the **underlying features** directly from data?

Low Level Features

Mid Level Features

Lines & Edges

Eyes & Nose & Ears

High Level Features

Facial Structure

Why Now?

Neural Networks date back decades, so why the resurgence?

1952

1958

1986

1995

Stochastic Gradient Descent

Perceptron

Learnable Weights

Backpropagation

Multi-Layer Perceptron

Deep Convolutional NN

Digit Recognition

I. Big Data

- Larger Datasets
- Easier Collection & Storage

2. Hardware

- Graphics Processing Units (GPUs)
- Massively Parallelizable

3. Software

- Improved **Techniques**
- New Models
- Toolboxes

The Perceptron The structural building block of deep learning

Inputs Weights Sum Non-Linearity Output

$$\hat{y} = g \left(w_0 + \sum_{i=1}^m x_i w_i \right)$$

$$\hat{y} = g(w_0 + \boldsymbol{X}^T \boldsymbol{W})$$

where:
$$\boldsymbol{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $\boldsymbol{W} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

Activation Functions

$$\hat{y} = g(w_0 + X^T W)$$

• Example: sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Importance of Activation Functions

The purpose of activation functions is to **introduce non-linearities** into the network

What if we wanted to build a Neural Network to distinguish green vs red points?

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

Linear Activation functions produce linear decisions no matter the network size

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

Linear Activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

We have:
$$w_0 = 1$$
 and $\mathbf{W} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g \left(w_0 + \mathbf{X}^T \mathbf{W} \right)$$

$$= g \left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right)$$

$$\hat{y} = g \left(1 + 3x_1 - 2x_2 \right)$$

This is just a line in 2D!

Assume we have input:
$$\mathbf{X} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$\hat{y} = g \left(1 + (3*-1) - (2*2) \right)$$

$$= g \left(-6 \right) \approx 0.002$$

Building Neural Networks with Perceptrons

The Perceptron: Simplified

The Perceptron: Simplified

$$z = w_0 + \sum_{j=1}^m x_j w_j$$

Multi Output Perceptron

$$z_{\underline{i}} = w_{0,\underline{i}} + \sum_{j=1}^{m} x_j w_{j,\underline{i}}$$

Single Layer Neural Network

Single Layer Neural Network

Multi Output Perceptron

Deep Neural Network

Applying Neural Networks

Example Problem

Will I pass this class?

Let's start with a simple two feature model

 x_1 = Number of lectures you attend

 x_2 = Hours spent on the final project

Quantifying Loss

The **loss** of our network measures the cost incurred from incorrect predictions

$$\mathcal{L}\left(f\left(x^{(i)};W\right),y^{(i)}\right)$$
Predicted Actual

Empirical Loss

The **empirical loss** measures the total loss over our entire dataset

$$\mathbf{X} = \begin{bmatrix} 4 & 5 \\ 2 & 1 \\ 5 & 8 \\ \vdots & \vdots \end{bmatrix} \qquad \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \qquad \begin{array}{c} f(x) & y \\ 0.1 \\ 0.8 \\ 0.6 \\ \vdots \end{array} \qquad \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{bmatrix}$$

Also known as:

- Objective function
- Cost function
- Empirical Risk

 $J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; \mathbf{W}), y^{(i)})$

Predicted

Actual

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and 1

$$\mathbf{X} = \begin{bmatrix} 4, & 5 \\ 2, & 1 \\ 5, & 8 \\ \vdots & \vdots \end{bmatrix} \qquad \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \qquad \begin{array}{c} f(x) \\ 0.1 \\ 0.8 \\ 0.6 \\ \vdots \end{array} \qquad \begin{bmatrix} 1 \\ 0 \\ 0.6 \\ \vdots \end{bmatrix}$$

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log \left(f(x^{(i)}; \mathbf{W}) \right) + (1 - y^{(i)}) \log \left(1 - f(x^{(i)}; \mathbf{W}) \right)$$
Actual Predicted Actual Predicted

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

Training Neural Networks

Loss Optimization

We want to find the network weights that achieve the lowest loss

$$W^* = \underset{W}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$
$$W^* = \underset{W}{\operatorname{argmin}} J(W)$$

We want to find the network weights that achieve the lowest loss

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; \boldsymbol{W}), y^{(i)})$$

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} J(\boldsymbol{W})$$

$$\overset{\text{Remember:}}{\boldsymbol{W}}$$

$$\boldsymbol{W} = \{\boldsymbol{W}^{(0)}, \boldsymbol{W}^{(1)}, \cdots\}$$

Randomly pick an initial (w_0, w_1)

Take small step in opposite direction of gradient

Repeat until convergence

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- **weights = tf.random_normal(shape, stddev=sigma)

- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- grads = tf.gradients(ys=loss, xs=weights)
- ghts, $W \leftarrow W \eta \frac{\partial f(W)}{\partial W}$ weights_new = weights.assign(weights lr * grads)
- 5. Return weights

Algorithm

- Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- weights = tf.random_normal(shape, stddev=sigma)

- 2. Loop until convergence:
- 3.

- grads = tf.gradients(ys=loss, xs=weights)
- Compute gradient, $\frac{\partial J(W)}{\partial W}$ Update weights, $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- weights_new = weights.assign(weights lr * grads)

5. Return weights

How does a small change in one weight (ex. w_2) affect the final loss J(W)?

$$\frac{\partial J(W)}{\partial w_2} =$$
Let's use the chain rule!

$$\frac{\partial J(\mathbf{W})}{\partial w_2} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

$$\frac{\partial J(W)}{\partial w_1} = \frac{\partial J(W)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_1}$$
Apply chain rule! Apply chain rule!

$$\frac{\partial J(\boldsymbol{W})}{\partial w_1} = \frac{\partial J(\boldsymbol{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

$$\frac{\partial J(\mathbf{W})}{\partial w_1} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

Repeat this for every weight in the network using gradients from later layers

Neural Networks in Practice: Optimization

Training Neural Networks is Difficult

Loss Functions Can Be Difficult to Optimize

Remember:

Optimization through gradient descent

$$\boldsymbol{W} \leftarrow \boldsymbol{W} - \eta \, \frac{\partial J(\boldsymbol{W})}{\partial \boldsymbol{W}}$$

Loss Functions Can Be Difficult to Optimize

Remember:

Optimization through gradient descent

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge

Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

How to deal with this?

Idea I:

Try lots of different learning rates and see what works "just right"

How to deal with this?

Idea I:

Try lots of different learning rates and see what works "just right"

Idea 2:

Do something smarter!

Design an adaptive learning rate that "adapts" to the landscape

Adaptive Learning Rates

- Learning rates are no longer fixed
- Can be made larger or smaller depending on:
 - how large gradient is
 - how fast learning is happening
 - size of particular weights
 - etc...

Adaptive Learning Rate Algorithms

- Momentum
- Adagrad
- Adadelta
- Adam
- RMSProp

Qian et al. "On the momentum term in gradient descent learning algorithms." 1999.

Duchi et al. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." 2011.

Zeiler et al. "ADADELTA: An Adaptive Learning Rate Method." 2012.

Kingma et al. "Adam: A Method for Stochastic Optimization." 2014.

Additional details: http://ruder.io/optimizing-gradient-descent/

Neural Networks in Practice: Mini-batches

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Can be very computational to compute!

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point i
- 4. Compute gradient, $\frac{\partial J_i(W)}{\partial W}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick single data point i
- 4. Compute gradient, $\frac{\partial J_i(W)}{\partial W}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Easy to compute but very noisy (stochastic)!

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of B data points
- 4. Compute gradient, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Algorithm

- I. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Pick batch of B data points
- 4. Compute gradient, $\frac{\partial J(W)}{\partial W} = \frac{1}{B} \sum_{k=1}^{B} \frac{\partial J_k(W)}{\partial W}$
- 5. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 6. Return weights

Fast to compute and a much better estimate of the true gradient!

Mini-batches while training

More accurate estimation of gradient

Smoother convergence Allows for larger learning rates

Mini-batches while training

More accurate estimation of gradient

Smoother convergence
Allows for larger learning rates

Mini-batches lead to fast training!

Can parallelize computation + achieve significant speed increases on GPU's

Neural Networks in Practice: Overfitting

The Problem of Overfitting

Regularization

What is it?

Technique that constrains our optimization problem to discourage complex models

Regularization

What is it?

Technique that constrains our optimization problem to discourage complex models

Why do we need it?

Improve generalization of our model on unseen data

Regularization 1: Dropout

During training, randomly set some activations to 0

Regularization 1: Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node

Regularization 1: Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node

Core Foundation Review

The Perceptron

- Structural building blocks
- Nonlinear activation functions

Neural Networks

- Stacking Perceptrons to form neural networks
- Optimization through backpropagation

Training in Practice

- Adaptive learning
- Batching
- Regularization

Questions?