Unified-OneHead Multi-Task Challenge

Object Detection + Semantic Segmentation + Image Classification with a **single head**

o. TL;DR

Key Point	Requirement
Task	Build one head (2–3 layers) that outputs detection + segmentation + classification simultaneously
Data	Three <i>mutually exclusive</i> mini-datasets (< 120 MB total) supplied by the course; one-command download
Hardware	Free Google Colab GPU (T4 or V100) • Total training time ≤ 2 h
Core difficulty	Catastrophic forgetting: after alternating training, each task must drop ≤ 5 % vs. its single-task baseline
Deliverables	colab.ipynb • report.md • llm_dialogs.zip (all LLM chat logs)
Grading	20 + 20 + 25(+5) + 10 + 15 + 10 = 100 pts
Deadline	XX/YY (Fri) 23:59 GMT+8 — submit via GitHub pull request

1. Official Mini-Datasets

Task	Subset Name	Origin	Downloa d Size	Images (train/val	Annotatio n
Detection	Mini- COCO-Det	COCO 2017 (10 classes)	45 MB	300 (240 / 60)	COCO JSON
Segmentatio n	Mini-VOC- Seg	PASCAL VOC 2012	30 MB	300 (240 / 60)	PNG masks
Classificatio n	Imagenette	Imagenett e v2	25 MB	300 (240 / 60)	folder / label

All image files are

non-overlapping across the three subsets.Hidden test sets (60 images per task) will be used by the TAs for final evaluation.

Dataset directory layout after extraction:

2. Model Specifications

Component	Constraint
Backbone	Choose one : MobileNetV3-Small (2.5 M), EfficientNet-Bo (5.3 M), YOLOv8-n <i>backbone</i> (3.2 M), or Fast-SCNN (1.1 M). Public ImageNet weights may be loaded.
Neck	\leq 2 conv/BN/ReLU layers or a single FPN layer.
Head	Exactly 2–3 layers (Conv or MLP) and single branch : must emit <i>all three</i> outputs at once. Example output schema (stride 16 feature map): • Detection: N × (cx, cy, w, h, conf, C_det) • Segmentation: C_seg × H × W mask • Classification: C_cls logits
Total parameters	< 8 M (entire model).
Inference speed	≤ 150 ms per 512 × 512 image on Colab T4.

3. Training Schedule & Forgetting Criterion

```
Stage 0 (optional) - warm-up / ImageNet pretrain
Stage 1 - Train ONLY on Dataset A (Seg) → record mIoU_base
Stage 2 - Train ONLY on Dataset B (Det) → measure mIoU_drop
Stage 3 - Train ONLY on Dataset C (Cls) → measure mIoU_drop +
mAP_drop
```

Required after Stage 3:

```
mIoU ≥ mIoU_base - 5 %
mAP ≥ mAP_base - 5 %
Top-1 ≥ Top1_base - 5 %
```

3.1 Forgetting-mitigation toolbox (pick any)

- Elastic Weight Consolidation (EWC)
- Learning without Forgetting (LwF)
- Replay buffer (≤ 10 images per task per step)
- Knowledge distillation (previous checkpoint as teacher)

4. Scoring (100 pts)

Item	Description	Pts
Design & motivation	Soundness and creativity of single- head architecture	20
Training schedule & forgetting remedy	Completeness and theoretical justification	20
Performance	All tasks within the 5 % drop \rightarrow 25 pts Bonus + 5 pts if every metric \geq its baseline	25 (+5)
Resource efficiency	Training ≤ 2 h, params < 8 M, inference < 150 ms	10
Report quality	Clarity, figures, citations	15
LLM dialogue logs	Complete prompts + responses	10

5. Deliverables

```
your_repo/

- colab.ipynb ← runnable end-to-end notebook
- report.md ← architecture, schedule, results, analysis
- llm_dialogs.zip ← ALL ChatGPT / LLM logs (txt or json)
- README.md ← reproduction steps & requirements
- scripts/ ← helper & evaluation scripts
```

Submit a GitHub pull request to the course repo including the commit hash.

6. Evaluation Command (used by TAs)

```
python eval.py \
   --weights your_model.pt \
   --data_root data \
   --tasks all # outputs mAP, mIoU, Top-1
```

7. FAQ

Question	Answer		
Can I use a different backbone?	Yes, as long as the <i>total</i> parameter count is < 8 M and you justify your choice in the report.		
May I implement the head as a small Transformer?	Yes—≤ 3 layers, still within the parameter limit.		
How do I balance the three losses?	Up to you; describe your search strategy in the report.		
Are LLM logs really mandatory?	Yes. Missing or incomplete logs = 0 pts for that category.		
Can I train on multiple GPUs or paid Colab?	No. The TA validation uses a single free T4/V100. Your code must reproduce results in that environment.		

8. Academic Integrity

- Provide all LLM conversations in llm_dialogs.zip.
- External code/data must be cited.
- Plagiarism or undisclosed extra data leads to point deductions or failure.