Oblig 6

Oskar Idland

A Diskusjonsoppgaver

Oppgave 1

a)

Definisjon Ortonormalitet er definert som at indreproduktet mellom to egenfunksjoner er null hvis de er ulike og ett hvis de er like, notert ned Kronecker delta. For funksjoner defineres det i et område. Dette kan være i et vilkårlig intervall [a,b], som inkluderer $[-\infty,\infty]$. Det vil si at

$$\langle \psi_i | \psi_j \rangle = \int_{-\infty}^{\infty} \psi_i^* \psi_j = \delta_{ij} = \begin{cases} 1 & \text{hvis } i = j \\ 0 & \text{hvis } i \neq j \end{cases}$$

For egentilstandene til en partikkel betyr dette hvis en partikkel måles i en tilstand ψ_i vil den ikke kunne måles i en tilstand ψ_i rett etterpå.

b)

Bølgefunksjonen må være normalisert ettersom $\int_{-\infty}^{\infty} \Psi^* \Psi$ d må være lik 1. Det er fordi utrykket representer sannsynligheten for å finne en partikkel en plass i universet, som selvfølgelig må være 1.

c)

Ja, ettersom integralet er med hensyn til x har det ikke noe å si om vi legger til en faktor gitt av t.

Oppgave 2

 \mathbf{a}

Svaret er <u>nei, aldri,</u> ettersom ved måling vil Ψ kollapse til en av sine egentilstander, og sin tilhørende energi. I vårt tilfelle er det E_1 eller E_2 .

b)

Resultatet av en energimåling av Ψ_{sum} vil kollapse Bølgefunksjonen til enten Ψ_1 eller Ψ_2 som vil gi oss en energi som er enten E_1 eller E_2 .

c)

Forventningsverdien $\langle E \rangle$ vil ikke være det samme som målingen i oppgave b), ettersom $\langle E \rangle$ representerer et gjennomsnitt fra flere målinger, ikke bare energien fra én måling, slik at $\langle E \rangle \in \langle E_1, E_2 \rangle$

d)

Den nye bølgefunksjonen vil se ut som enten Ψ_1 eller Ψ_2 avhengig av hva målingen av Ψ_{sum} kollapser til. Da vil vi også måle energien tilhørende til den respektive bølgefunksjonen, enten E_1 eller E_2 .

e)

Hvis systemet er beskrevet av Ψ_1 alene vil vi alltid måle den tilhørende energien E_1 .

Oppgave 3

B: Det er en energi-tilstand, og den er proporsjonal med tilstanden ψ_n . Dette er logisk ettersom $\hat{a}_+\psi_n=\psi_{n+1}/\sqrt{n!}$

B Regneoppgaver

Oppgave 4

a)

Grunntilstanden er gitt ved

$$\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2} \tag{1}$$

Heveoperatoren som beskrevet i Griffiths likning 2.48 (versjon 3) gjør følgende

$$\hat{a}_{+} = \frac{1}{\sqrt{2\hbar m\omega}} \left(-i\hat{p} + m\omega x \right), \quad \hat{p} = -i\hbar \frac{\mathrm{d}}{\mathrm{d}x}$$
 (2)

$$\begin{split} &\psi_1 = \hat{a}_+ \psi_0 \\ &\psi_1 = \frac{1}{\sqrt{2\hbar m\omega}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left(-i\hat{p}e^{-\frac{m\omega}{2\hbar}x^2} + m\omega x e^{-\frac{m\omega}{2\hbar}x^2}\right) \\ &\psi_1 = \frac{1}{\sqrt{2\hbar m\omega}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \left(m\omega x + m\omega x\right) e^{-\frac{m\omega}{2\hbar}x^2} \\ &\psi_1 = \frac{2m\omega x}{\sqrt{2\hbar m\omega}} \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega}{2\hbar}x^2} \\ &\psi_1 = \underbrace{\sqrt{\frac{2m\omega}{\hbar}x\psi_0}}_{\hbar} \end{split}$$

Videre har vi at $\psi_2 = \hat{a}_+ \psi_1 / \sqrt{2}$.

$$\begin{split} \psi_2 &= \frac{\hat{a}_+ \psi_1}{\sqrt{2}} \\ \psi_2 &= \frac{1}{\sqrt{2}} \frac{1}{2\hbar m\omega} \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{4}} \left(-\hbar \frac{\mathrm{d}}{\mathrm{d}x} 2m\omega x e^{-\frac{m\omega}{2\hbar}x^2} + (m\omega x)^2 e^{-\frac{m\omega}{2\hbar}x^2} \right) \\ \psi_2 &= \frac{1}{\sqrt{2}} \frac{1}{2\hbar m\omega} \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{4}} \left(-2\hbar m\omega e^{-\frac{m\omega}{2\hbar}x^2} + 2(m\omega x)^2 e^{-\frac{m\omega}{2\hbar}x^2} + (m\omega x)^2 e^{-\frac{m\omega}{2\hbar}x^2} \right) \\ \psi_2 &= \frac{1}{\sqrt{2}} \frac{1}{2\hbar m\omega} \left(\frac{m\omega}{\pi \hbar} \right)^{\frac{1}{4}} \left(-2\hbar m\omega + 3(m\omega x)^2 \right) e^{-\frac{m\omega}{2\hbar}x^2} \\ \psi_2 &= \frac{1}{\sqrt{2}} \left(\frac{3m\omega}{2\hbar} x^2 - 1 \right) \psi_0 \end{split}$$

b)

Vi bruker utrykket for potensialet V(x) som beskrevet i Griffiths likning 2.43 (versjon 3)

$$V(x) = \frac{1}{2}kx^2\tag{3}$$

Figur 1: Plot av ψ_0, ψ_1, ψ_2 og potensialet V

c)

Vi sjekker først ortogonaliteten til ψ_0 og ψ_1 .

$$\int_{-\infty}^{\infty} \psi_0 \psi_1 \, dx = \int_{-\infty}^{\infty} \sqrt{\frac{2m\omega}{\hbar}} x \psi_0^2 \, dx$$

Ettersom ψ_0 er en parfunksjon symmetrisk om x=0 og x er en oddefunksjon symmetrisk om x=0 vet vi at et integral symmetrisk om x=0 vil være 0.

Videre sjekker vi ortogonaliteten til ψ_0 og ψ_2 . Vi starter med å sette $k=m\omega/\pi\hbar$

$$\int_{-\infty}^{\infty} \psi_0 \psi_2 \, dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} \left(\frac{3}{2} k x^2 - 1 \right) \psi_0^2 \, dx$$

$$\frac{1}{\sqrt{2}} \left(\underbrace{\int_{-\infty}^{\infty} \frac{3}{2} kx^2 \psi_0^2 \, dx}_{\text{utrykk 1}} - \underbrace{\int_{-\infty}^{\infty} \psi_0^2 \, dx}_{\text{utrykk 2}} \right) = 0$$

Til slutt sjekker vi ortogonaliteten til ψ_1 og ψ_2

$$\int_{-\infty}^{\infty} \psi_1 \psi_2 \, dx = \int_{-\infty}^{\infty} \left(\sqrt{2k} x \psi_0 \right) \left(\frac{1}{\sqrt{2}} \left(\frac{3}{2} k x^2 - 1 \right) \psi_0 \right) \, dx$$

$$\underbrace{\int_{-\infty}^{\infty} \frac{3}{2} \sqrt{k} x^3 \psi_0^2 \, dx}_{= 0 \text{ pga symmetri}} - \underbrace{\int_{-\infty}^{\infty} \sqrt{2k} x \psi_0^2 \, dx}_{= 0 \text{ pga symmetri}}$$

Oppgave 5

a)

Vi setter $x = \frac{\xi}{\sqrt{\pi}\alpha^2}$ og $dx = \frac{1}{\sqrt{\pi}\alpha^2} d\xi$

Ι

$$\langle x \rangle = \int_{-\infty}^{\infty} \psi_0^* x \psi_0 \, dx$$

$$= \int_{-\infty}^{\infty} \alpha^2 e^{-\xi^2} x \, dx$$

$$= \int_{-\infty}^{\infty} \alpha^2 e^{-\xi^2} \frac{\xi}{\pi \alpha^4} \, d\xi$$

$$= \frac{1}{\pi \alpha^2} \int_{-\infty}^{\infty} \xi e^{-\xi^2} \, d\xi$$

Igjen har vi en oddefunksjon multiplisert med en parfunksjon. Da vet vi at integralet blir null

$$\langle x \rangle = 0$$

II Vi vet at $\langle p \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \langle x \rangle$.

$$\langle p \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \langle x \rangle$$

$$\underline{\langle p \rangle = 0}$$

III

$$\langle x^2 \rangle = \int_{-\infty}^{\infty} \psi_0^* x^2 \psi_0 \, dx$$
$$\langle x^2 \rangle = \int_{-\infty}^{\infty} \alpha^2 e^{-\xi^2} x^2 \, dx$$
$$\langle x^2 \rangle = \int_{-\infty}^{\infty} \alpha^2 e^{-\xi^2} \frac{\xi^2}{\pi \sqrt{\pi} \alpha^6} \, d\xi$$
$$\langle x^2 \rangle = \frac{1}{\pi \sqrt{\pi} \alpha^4} \int_{-\infty}^{\infty} \xi^2 e^{-\xi^2} \, d\xi$$

Vi ser i Rottmann (nr. 49 s, 155) at

$$\int_{-\infty}^{\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
$$\frac{\langle x^2 \rangle = \frac{1}{2\pi\alpha^4}}$$

IV

$$\langle p^2 \rangle = \int_{-\infty}^{\infty} \psi_0^* \hat{p}^2 \psi_0 \, dx$$

$$\langle p^2 \rangle = \int_{-\infty}^{\infty} \alpha e^{-\xi^2/2} \left(-i\hbar \frac{\mathrm{d}}{\mathrm{d}x} \right)^2 \alpha e^{-\xi^2/2} \, dx$$

$$\langle p^2 \rangle = \hbar^2 a^2 \int_{-\infty}^{\infty} e^{-\xi^2/2} \frac{\mathrm{d}^2}{\mathrm{d}x^2} e^{-\xi^2/2} \, dx$$

$$\langle p^2 \rangle = \hbar^2 \alpha^2 \int_{-\infty}^{\infty} e^{-\xi^2/2} \pi \alpha^4 \frac{\mathrm{d}^2}{\mathrm{d}\xi} e^{-\xi^2/2} \frac{1}{\sqrt{\pi}\alpha^2} \, \mathrm{d}\xi$$

$$\langle p^2 \rangle = \sqrt{\pi} \hbar^2 \alpha^4 \int_{-\infty}^{\infty} \xi^2 e^{-\xi^2} \, \mathrm{d}\xi$$

Vi gjenkjennner integralet fra $\langle x^2 \rangle$.

$$\langle p^2 \rangle = \frac{\pi \hbar^2 \alpha^4}{2}$$

b)

Vi sjekker uskarphetsrelasjonen.

$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\frac{1}{2\pi\alpha^4} - 0} = \sqrt{\frac{1}{2\pi\alpha^4}} = \frac{1}{a^2} \sqrt{\frac{1}{2\pi}}$$
$$\sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} = \sqrt{\frac{\pi\hbar^2 a^4}{2} - 0} = \sqrt{\frac{\pi\hbar^2 a^4}{2}} = \hbar\alpha^2 \sqrt{\frac{\pi}{2}}$$
$$\sigma_x \sigma_p = \frac{1}{\alpha^2} \hbar\alpha^2 \sqrt{\frac{1}{2\pi} \cdot \frac{\pi}{2}} = \frac{\hbar}{\underline{2}} \ge \frac{\hbar}{\underline{2}}$$

Oppgave 6

Vi definerer kinetisk energi K

$$K = \frac{1}{2}mv^2 = \frac{1}{2m}(\underbrace{mv}_{p})^2 = \frac{1}{2m}p^2$$

Videre har vi

$$\langle K \rangle_0 = \frac{1}{2m} \left\langle p^2 \right\rangle_0 = \frac{1}{2m} \frac{m \omega \hbar}{2} = \frac{\omega \hbar}{4}$$

$$\langle K \rangle_1 = \frac{1}{2m} \left\langle p^2 \right\rangle_1 = \frac{1}{2m} \frac{3m\hbar\omega}{2} = \frac{3\omega\hbar}{4}$$

Til slutt har $\langle V \rangle$

$$\langle V \rangle_0 = \frac{1}{2} k \left\langle x^2 \right\rangle_0 = \frac{k}{2} \frac{\hbar}{2m\omega} = \frac{\hbar k}{4m\omega}$$

$$\langle V \rangle_1 = \frac{1}{2} k \left\langle x^2 \right\rangle_1 = \frac{k}{2} \frac{3\hbar}{2m\omega} = \frac{3\hbar k}{4m\omega}$$

Vi vet at total energi E er gitt ved E=V+K. Vi forventer at for hvert steg opp ved bruk av heveoperatoren skal energien E øke med $\hbar\omega$. Det er nøyaktig hva vi får ettersom både V og E øker med $\hbar\omega/2$.