Homework 8

Due on: Monday, March 23

Problem 1

We introduced the classical groups $SO(p,q;\mathbb{R})$ and $SO(p,q;\mathbb{C})$ as leaving x^THx invariant with $H=\begin{pmatrix}\mathbb{I}_p&0\\0&-\mathbb{I}_q\end{pmatrix}$. Then we introduced the classical groups $SU(p,q)\equiv SU(p,q;\mathbb{C})$ as leaving $x^\dagger Hx$ invariant. Finally we defined the classical groups $Sp(2n,\mathbb{R})$ and $Sp(2n,\mathbb{C})$ as leaving $x^T\Omega y$ invariant where $\Omega=\begin{pmatrix}0&\mathbb{I}_n\\-\mathbb{I}_n&0\end{pmatrix}$. Can one define a group by requiring that $x^\dagger\Omega x$ is invariant? If so, is it equivalent to one of the classical groups?

Problem 2

Consider the group U(2). Is it connected? Simply connected? Compact? Consider the map $\varphi(g) = R$ from $g \in U(2)$ into $R \in SO(3)$, given by $U^{\dagger}x^{i}\sigma_{i}U = \sigma_{i}R^{i}{}_{j}x^{j}$. Is this a homomorphism? If so, what is its kernel? Is U(2) a covering group of SO(3)?

Problem 3

The group $SO^*(2n)$ is defined as leaving both x^Tx and $x^{\dagger}\Omega x$ invariant. In physics it appears in 7 dimensions where $SO(6,2) = SO^*(8)$ is the anti-de Sitter group, or in 5 + 1 dimensions where it is the conformal group.

- (a) Show that this implies that both x^Ty and $x^{\dagger}\Omega y$ are invariant.
- (b) If one writes M in block form as $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, what are the conditions the $n \times n$ complex matrices A, B, C, D must satisfy?

Problem 4

The groups USp(2p, 2q) are defined as leaving $x^T\Omega y$ and $x^{\dagger}Hy$ invariant. What is the expression for the generators of USp(n, n)? Recall that $USp(2n) = Sp(2n, \mathbb{C}) \cap SU(2n)$.

Problem 5

Finally $SU^*(2n)$. Its generators satisfy $M^*\Omega = \Omega M$ and are traceless. Do matrices satisfying this condition form a Lie algebra? Why are these groups called $SU^*(2n)$ and not, for example, $Sp^*(2n)$? And why are the groups $SO^*(2n)$ in problem 3 called $SO^*(2n)$ and not, for example, $SU^*(2n)$ or

Spring 2020 PHY680 Homework 8

 $Sp^*(2n)$?

Hint: count the number of generators.