

Assignment II.2

Assigned date: 8 April 2024

Due date: 15 April 2024

Submit a PDF copy of your assignment to <u>Canvas by 23:59 on 15 April 2024</u> (late submissions will not be accepted).

Complete all the problems. Give the answers in two decimal places.

Problem 4.1

Given a flow rate of 8500 m³/d and an overflow rate of 50 m³/(d·m²), calculate the following design parameters of a proposed circular primary sedimentation tank:

- (i) Height of the sedimentation tank (assuming a criterion of diameter/height ratio of 3.5) (2 marks)
- (ii) Hydraulic retention time (HRT) of the sedimentation tank. (1 mark)

Problem 4.2

There is an outdoor renovation project ongoing next to the lobby (G/F) of one of the hall in HKUST. You are a civil engineering student living in the hall and would like to estimate the noise level at your room. Give your answers to the nearest dB for this question.

- (i) Someone claimed that under the same noise source, if receiving distance is <u>doubled</u>, the sound pressure level would be attenuated by approximately <u>6 dB</u>. Do you agree? (*Hint: Assuming two receivers with distances and sound levels* r_1 , L_1 and r_2 , L_2 respectively and prove the relationship above.) (2 marks)
- (ii) Hence, if you are living on the 8th floor, and the measured noise level under unmitigated scenario is 98 dB on the 2nd floor, what is the estimated noise level at your room without any mitigation measures? (2 marks)
- (iii) Suggest one engineering solution that the can be taken to minimize the noise impact to the residents in the hall. (2 marks)

Assignment 4 Page 1 of 2

Problem 4.3

You are performing carbon auditing for a construction contrator Company A for construction work, and some activity data and related emission factors of Company A in 2020 are tabulated in **Table 1** as follows.

Table 1. Activity data and emission factor of Company A in year 2020

Activities	Activity data	Emission factors
Operation of mobile cars (biodiesel)	(To be calculated in (i)	
Electricity	5000 kWh per month	0.37 kg CO ₂ e/kWh
Operation of light	Fuel consumption:	EFco2 = 2.360 kg/L
vans (unleaded petrol)	27000 L	$EF_{CH4} = 0.203 \text{ g/L}$ $EF_{N2O} = 1.105 \text{ g/L}$
Paper consumption	8 tonnes	4.8 kg CO ₂ e/kg of waste

- (i) Assuming that B35 biodiesel is adopted by Company A to reduce carbon footprint, and the fuel economy of the car used is 50 km/gal. Find the daily carbon footprint caused by mobile combusion if 4 cars are needed to travel for 30 km every day. (Assuming that CO₂ is the only GHG emitted.) (2 marks)
- (ii) Categorize the activities in **Table 1** by scope 1, 2 and 3. (3 marks)
- (iii) By (i), (ii) and **Table 1**, calculate the total annual carbon footprint of Company A in 2020(*Hint: You should calculate the annual carbon footprint of each activities in Table 1 and sum them up*). (6 marks)

Note:

- 1. Carbon emission = Activity data (e.g. fuel consumption) × Emission Factor
- 2. Emission (CO₂ equivalent) = Σ (Fuel comsumption × Emission Factor of each GHG × GWP)
- 3. GWP of different GHGs

GHG	Global warming potential (GWP)	
CO_2	1	
CH ₄	28	
N ₂ O	265	

Assignment 4 Page 2 of 2