```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn as skl
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
from sklearn.model_selection import cross_val_score
from sklearn.meighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score
```

The dataset 'heart', is used to predict the presence or absence of heart disease based on several input features. The following is description of each feature.

- Sex: male or female (0 is female and 1 is male)
- · Age: Age of the patient;
- cp: Chest Pain type: Between 0 to 3
- trestbps: Resting Blood Pressure (in mm Hg): The blood pressure of the patient when they are at rest.
- · Chol: Serum Cholesterol (in mg/dl):Blood cholesterol levels
- fbs: Fasting Blood Sugar. Whether the person has high fasting blood sugar levels >120mg/dl (1=T or 0=F)
- restecg: Resting Electrocardiographic Results (0=Normal, 1=ST Wave Abnormality, 2=left ventricular hypertrophy)
- thalach: Maximum Heart Rate Achieved: The maximum heart rate achieved during exercise stress testing.
- exang: Exercise Induced Angina. Whether or not the person experienced angina (chest pain) during exercise (1 = Yes, 0 = No).
- · oldpeak: Depression Induced by Exercise Relative to Rest
- slope: Slope of the Peak Exercise ST Segment (0=Upsloping, 1=Flat, 2=Downsloping)
- ca: Number of Major Vessels Colored by Fluoroscopy (The number of major blood vessels 0 to 4 that are colored by fluoroscopy)
- thal: Thalassemia A blood disorder that affects the shape of red blood cells. The values typically are (3=Normal, 6=Fixed defect,

7=Reversible defect. If any other value don't worry about it)

• Target: (0= No heart disease (healthy) 1= Heart disease present (diseased))

```
data = pd.read_csv('')
data
```

1. Identify what are the data types of each column (Nominal vs Continous). (14 points)

Write your answer here

- . Sex: Male or Female: ?
- · Age: ?
- cp: ?
- · trestbps: ?
- · Chol: ?
- fbs: ?
- restecg: ?
- thalach: ?
- exang: ?
- · oldpeak: ?
- · slope: ?
- ca: ? (number of blood vessels)
- · thal: ?
- Target: ?
 - 2. Create a correlation heatmap of the data. Set annot to true to check the values. (4 points)

#Enter your code here.

3. According to the heatmap, do you think some of the feature should not be count in the logistic regression? Which ones? How do you know? (Hint: Find the corrrelated pairs first and choose items with strong (around 0.4) correlation). (10 points)
#Enter your code here
Enter your answer here
4. How many null values are there in each feature?(4 points)
#Enter your code here.
5. Show the histogram of each factors and comment on the distribution of some of them. (5 points)
#Enter your code here
6. Split the data set into X (features) and y. The features to use are age, sex, cp, thalach, slope and restecg. (6 points)
#Enter your code here #Hint: features=[?]
× KNN
Finding the best value for K
7. Plot K Neighbors Classifier Scores for different K values: Perform 5-fold cross-validation to evaluate the model's performance for upto 50 neighbors. Then plot the results. Which K value give the highest cross-validation score? (10 points)
#Modify this code #Hint: Store neighbors in a list and iterate through each. Then plot on the same graph
8. Find the Average cross validation score for 11 neighbours. Hint use .mean() for average. (6 points)
#Enter your code here #Hint: Use KNeighborsClassifier
9. Split the dataset into X_train, X_test, y_train and y_test. Split using 70% training and 30% test set. Use random state = 5. Then train the classifier. Then predict y using this. (6 points)
#Enter your code here
10. Find the accuracy, precision and recall upto 4 decimal places. Explain what each of these mean. (15 points).
#Enter your code here # Accuracy
Precision
Recall
Explain here.

Real-Life Example 1

(20 points, 10 points each)

11. Given a 50 year old male who has chest pain type 3, maximum heart rate 222, and UpSloping ST Segment (slope=0) and resting ecg having LVT (restecg=2), predict if the person has a chance of developing heart disease.

#Enter your code here

#Hint: create a tuple to store these values, convert to an array and reshape so you have one row and n columns. Then predict on that.

Hint if predicted value is 1 then what does it mean?

Real-Life Example 2

12. Given a 63 year old female who has chest pain type 1, maximum heart rate 100, and Downsloping ST Segment (slope=2) and a normal resting ecg (restecg=0), predict if the person has a chance of developing heart disease.

#Enter your code here

#Hint: create a tuple to store these values, convert to an array and reshape so you have one row and n columns. Then predict on that.

Hint if predicted value is 1 then what does it mean?