Simplified DES

1 Introduction

In this lab we will work through a simplified version of the DES algorithm. The algorithm is not cryptographically secure, but its operations are similar enough to the DES operation to give a better feeling for how it works.

We will proceed by reading the Simplified DES algorithm description in the Stallings section. We will then work through a full example in class.

2 Full Example

Let the plaintext be the string 0010 1000. Let the 10 bit key be 1100011110.

2.1 Key Generation

The keys k_1 and k_2 are derived using the functions P10, Shift, and P8. P10 is defined as follows:

	P10									
3	5	2	7	4	10	1	9	8	6	

P8 is defined to be as follows:

			I	28			
6	3	7	4	8	5	10	9

The first key k_1 is therefore equal to:

The mot key wi is their	CIOI	c cq	aaı	00.						
Bit #	1	2	3	4	5	6	7	8	9	10
K	1	1	0	0	0	1	1	1	1	0
P10(K)	0	0	1	1	0	0	1	1	1	1
Shift(P10(K))	0	1	1	0	0	1	1	1	1	0
P8(Shift(P10(K)))	1	1	1	0	1	0	0	1		

The second key k_2 is derived in a similar manner:

Bit #	1	2	3	4	5	6	7	8	9	10
K	1	1	0	0	0	1	1	1	1	0
P10(K)	0	0	1	1	0	0	1	1	1	1
$Shift^3(P10(K)))$	1	0	0	0	1	1	1	0	1	1
$P8(Shift^2(P10(K)))$	1	0	1	0	0	1	1	1		

So we have the two keys $k_1 = \{1110 \ 1001\}$ and $k_2 = \{1010 \ 0111\}$

2.2 Initial and Final Permutation

The plaintext undergoes an initial permutation when it enters the encryption function, IP. It undergoes a reverse final permutation at the end IP^{-1} .

The function IP is defined as follows:

			Ι	Р			
2	6	3	1	4	8	5	7

The function IP^{-1} is defined as follows:

ĺ				IP) -1			
Ì	4	1	3	5	7	2	8	6

Applied to the input, we have the following after the initial permutation:

Bit #	1	2	3	4	5	6	7	8
\overline{P}	0	0	1	0	1	0	0	0
$\overline{IP(P)}$	0	0	1	0	0	0	1	0

2.3 Functions f_K , SW, K

- The function f_k is defined as follows. Let P = (L, R), then $f_K(L, R) = (L \oplus F(R, SK), R)$.
- The function SW just switches the two halves of the plaintext, so $SW(L,R) \to (R,L)$
- The function F(p, k) takes a four bit string p and eight bit key k and produces a four bit output. It performs the following steps.
 - 1. First it runs an expansion permutation E/P:

			\mathbf{E}_{\prime}	/P			
4	1	2	3	2	3	4	1

- 2. Then it XORs the key with the result of the E/P function
- 3. Then it substitutes the two halves based on the S-Boxes.
- 4. Finally, the output from the S-Boxes undergoes the P4 permutation: $\begin{vmatrix} P4 \\ 2 & 4 & 3 & 1 \end{vmatrix}$

Applying the functions, we must perform the following steps: $IP^{-1} \circ f_{K_2} \circ SW \circ f_{K_1} \circ IP$

- 1. We have already calculated $IP(P) = \{0010\ 0010\}$. Applying the next functions:
- 2. $f_{K_1}(L,R) = f_{\{1110\ 1001\}}(0010\ 0010) = (0010 \oplus F(0010,\{1110\ 1001\}),0010)$
- 3. $F(0010, \{1110\ 1001\}) = P4 \circ SBoxes \circ \{1110\ 1001\} \oplus (E/P(0010))$
- 4. The steps are:

Bit #	1	2	3	4	5	6	7	8
R	0	0	1	0				
E/P(R)	0	0	0	1	0	1	0	0
$\overline{}$	1	1	1	0	1	0	0	1
$E/P(R) \oplus k_1$	1	1	1	1	1	1	0	1
$\overline{\text{SBoxes}(E/P(R) \oplus k_1)}$	1	0	0	0				
$P4(Sboxes(E/P(R)\oplus k_1))$	0	0	0	1				

- 5. The result from F is therefore 0001
- 6. Calculating we then have $f_{k_1}(L,R) = (0010 \oplus 0001,0010) = (0011,0010)$
- 7. So far, then L=0011 and R=0010. SW just swaps them so R=0011 and L=0010.
- 8. We now do the calculation of $f_{k_2}(L,R) = f_{\{1010\ 0111\}}(0010\ 0011) = (0010 \oplus F(0011,\{1010\ 0111\},0011))$

9. The steps for F are as above:

Bit #	1	2	3	4	5	6	7	8
R	0	0	1	1				
E/P(R)	1	0	0	1	0	1	1	0
k_2	1	0	1	0	0	1	1	1
$E/P(R) \oplus k_2$	0	0	1	1	0	0	0	1
$\overline{\mathrm{SBoxes}(\mathrm{E/P}(\mathrm{R}) \oplus k_2)}$	1	0	1	0				
$P4(Sboxes(E/P(R) \oplus k_2))$	0	0	1	1				

- 10. So now we have the outcome of F as 0011
- 11. Calculating we then have $f_{k_2}(L,R) = (0010 \oplus 0011,0011) = (0001,0011)$
- 12. Last, we perform the IP^{-1} permutation:

Bit #	1	2	3	4	5	6	7	8
R,L	0	0	0	1	0	0	1	1
$IP^{-1}(R,L)$	1	0	0	0	1	0	1	0

13. So the final result of the encryption is 1000 1010.