

RF Based 3D ABS (Automatic Ball-Strike System)

박지훈, 장 환, 변준섭, 정민교, 최지우, 김지석, 윤의빈, 정지원

프로젝트 개요

- VGA/HDMI 표준을 활용하여 **야구 ABS (Automatic Ball/Strike System)**를 설계
- 전면부 Strike-Zone Detection Algorithm과 측면부 Ball Detection Algorithm 구현
- SCCB Protocol 설계 및 UVM 검증으로 데이터 전송의 정확도와 안전성 확보
- Verilog 기반 **RF 설계를** 통해 **저지연/고속 무선 통신을** 구현하여 효율적이고 직접적인 데이터 전송
- 본 프로젝트는 단순한 영상처리를 넘어 FPGA 기반의 영상 알고리즘 설계, 검증 자동화 기법까지 아우르는 종합적 시도로, 향후 스포츠 경기 판정 자동화 및 임베디드 비전 시스템 분야에서 응용 가능성을 제시하였다는 점에서 의의가 있음

목적 및 필요성

- ABS의 핵심 아이디어를 하드웨어로 구현함으로써, 하드웨어 설계 및 신호처리 과정을 학습하고 응용 가능성을 탐구하고자 함
- 빠른 구속, 복잡한 궤적의 투구는 심판 육안으로 정확히 판정하기 어려우므로 ABS로 정확성 보완
- 센서, 비전 인식, 통신 기술을 스포츠 분야에 적용해 **스마트 경기 운영 모델** 제시
- 2차원 평면 정보에 국한되지 않고 3차원 공간에서의 공위치를 정밀하게 파악하기 위해 2대의 카메라를 활용한 스트레오 비전 기법 사용

팀 구성 및 역학

성명	역할
박지훈	팀장, 전면부 설계, 전체 코드 Merge
장 환	하드웨어 설계
변준섭	UART 통신 설계, GUI 및 UVM 검증
정민교	하드웨어 설계, RF 통신 설계
최지우	Zybo-Z7 20 HDMI Interface 설계
김지석	SCCB Protocol 및 측면부 알고리즘 설계
윤의빈	발표자, RF 통신 구현
정지원	전면부설계, GUI 및 UVM 검증

활용 도구

사용 언어

개발 환경

H/W

Basys3

Zybo Z7-20 OV7670 2개

nRF24L01

프로젝트 내용

Front-Block Diagram

공이 임계선을 넘으면 **RF 통신**을 통해 트리거 신호를 전면부 시스템으로 송신

Front Display Object

Strike Zone 내부에 공 색깔 조건을 가진 픽셀이 **5개 이상**일 경우 Strike/Ball 판단

기대 효과

주차 보조 시스템은 주차선이 정의하는 구역 경계를 정밀 인식하여 차량을 주차 공간 내중앙에 최적 정렬되도록 유도함. 또한, 공의 임계선 충돌 시 트리거 신호를 송신하는 Ball Detection 알고리즘을 접목함으로써 운전자의 편의성을 극대화하고 차량 보호 및 안전성 향상에 기여.

차량의 주행 궤적을 실시간 분석하여 차선 이탈·충돌 위험을 사전 예측 함. 자율주행 차량의 경로 안정성 향상 및 사고 예방 효과. 공의 3차원 궤적을 실시간으로 분석하는 기술을 접목

프로젝트 소감

성명	내용
박지훈	전체 코드 Merge를 진행하며 모듈 간 clock timing 동기화와 데이터 경로 최적화의 중요성을 실질적으로 경험할 수 있었습니다.
장 환	RF 통신 모듈과 하드웨어 회로를 구성하며, 신호 간섭·배선 구조 문제를 해결하고 회로 안정성에 대한 이해를 넓힐 수 있었습니다.
변준섭	RGB와 HSV의 특성을 파악하며 색 조건을 설정하는 과정에서 주변 환경에 대한 정보의 중요성을 체감하였습니다.
정민교	RF 통신에 필요한 모듈을 설계할 때, 데이터시트를 분석하여 NRF controller의 FSM을 구성하면서 HW 설계 역량을 키웠습니다.
최지우	영상처리 원리를 학습하고, 이를 응용하여 HDMI 신호를 처리하는 H/W 모듈을 직접 설계하여 설계 및 문제 해결 능력을 기를 수 있었습니다.
김지석	데이터 전송을 넘어, 정밀한 타이밍 제어와 외부 신호 동기회라는 하드웨어 제어의 핵심원리에 대한 이해력을 향상하였습니다.
윤의빈	데이터시트를 직접 분석하고 정상 작동을 위한 Timing 구현과 Register Sequence를 만들며 H/W 역량을 강화할 수 있었습니다.
정지원	영상 처리와 통신 프로토콜 등 다양한 기술의 H/W와 S/W의 통합적 구현으로 완성해낸 성과를 통해 협업의 중요성을 체감하였습니다.