Поиск изображений

Лекция 11

История вопроса

- Термин «Content-based image retrieval» (CBIR) впервые был введен в употребление в 1992 году Т. Като
- Компания <u>Picsearch</u> выпустила первую публичную версию поиска по изображениям в сентябре 2001 года.
- В июле того же года запустил свой <u>поиск по картинкам Google</u>.
- <u>Яндекс.Картинки</u> официально открылись в июле 2002 года, став первым российским поисковиком, ищущим изображения.
- В ноябре 2003 г. Yahoo! добавил справа от поисковой строки меню с опцией поиска по изображениям в том числе.

Таких же картинок не найдено

Похожие картинки

Эта картинка в других размерах		
Средние	Маленькие	
379×567	200×200	
	200×200	
	200×200	
	180×240	
	130×129	
	100×100	
	100.100	

Кажется, на картинке

женщина

Яндекс 2018 -- продолжение

Похожие картинки

Сайты, где встречается картинка

Демяненко Яна Михайловна, домашняя страница - Демяненко Яна Михайловна

staff.mmcs.sfedu.ru

Демяненко Яна Михайловна, домашняя страница - Демяненко Яна Михайловна

Кажется, на картинке

1ндекс 2019

Похожие картинки

Демяненко Я.М., ЮФУ, 2020

Яндекс 2019 -- продолжение

Сайты, где встречается картинка

Демяненко Яна Михайловна, домашняя страница - Демяненко Яна Михайловна

staff.mmcs.sfedu.ru

Демяненко Яна Михайловна, домашняя страница - Демяненко Яна Михайловна

Demyanenko Yana, homepage - Demyanenko Yana

staff.mmcs.sfedu.ru

Demyanenko Yana, homepage - Demyanenko Yana

Research

sfedu.ru

Yana M. Demyanenko

Кафедра прикладной математики и программирования

sfedu.ru

Демяненко Яна Михайловна

4 курс ФИИТ) Компьютерная графика - ФИИТ, 4 курс - Форум мехмата ЮФУ

forum.mmcs.sfedu.ru

4 курс ФИИТ) Компьютерная графика

Совет: введите описание изображения в строке поиска.

Размер изображения: 379 × 567

Изображения других размеров не найдены.

Похожие изображения - Пожаловаться на картинки

Размер изображения: 379 × 567

Изображения других размеров не найдены.

Google 2015

Совет: введите описание изображения в строке поиска.

Похожие изображения

Пожаловаться на картинки

Размер изображения: 379 × 567

Изображения других размеров не найдены.

Скорее всего, на картинке Александр Сергеевич Демьяненко

Похожие изображения

Пожаловаться на картинки

Результатов: примерно 25 270 000 000 (0,91 сек.)

Размер изображения: 379 × 376

Изображения других размеров не найдены.

Скорее всего, на картинке Александр Сергеевич Демьяненко

Похожие изображения

Пожаловаться на картинки

Изображения других размеров не найдены.

Скорее всего, на картинке Математика

Похожие изображения

379 × 567

Google 2018 -- продолжение

Страницы с подходящими изображениями

Виталий Брагилевский (@_bravit) | Twitter

https://twitter.com/_bravit •

73 × 73 - The latest Tweets from Виталий Брагилевский (@_bravit). Преподаватель в #ЮФУ, читаю курсы по ФП (Haskell, Idris) и теоретической информатике, пишу разное, иногда шучу (не очень). Ростов-на-Дону, Россия.

Белоконь (@Katamarinaki) | Twitter

https://twitter.com/katamarinaki ▼ 73 × 73 - The latest Tweets from Белоконь (@Katamarinaki), русские оказались неуязвимы перед генетическим оружием. Ростов-на-Дону.

Распределение по научным руководителям 2016/2017 ...

docplayer.ru/48342556-Raspredelenie-po-nauchnym-rukovoditelyam-201... ▼ 379 × 567 - Распределение по научным руководителям 2016/2017 Руководство для студентов направления «Фундаментальная информатика и информационные технологии» Содержание 1 Введение Научно-исследовательская работа.

Google 2019 -- продолжение

Похожие изображения

Пожаловаться на картинки

Россия

■ Советский р-н, Ростов-на-Дону - Из вашей истории поиска - Учитывать мое местоположение - Подробнее...

Реверсивный поиск изображений

- Google не первая компания, предложившая открытый универсальный реверсивный поиск изображений.
- До запуска гугловского проекта лидерами в этой области были, пожалуй, онлайновые сервисы канадской компании **Idee**.
 - Базовая технология данной службы поисковая машина
 Ріхітівт, на базе которой и разрабатываются конкретные
 продукты. Соответствующий API на коммерческих условиях
 предлагается и для сторонних проектов.
- лучшими универсальными машинами для реверсивного поиска изображений на сегодняшний день являются сервисы от **Google** и **TinEye**

Системы поиска изображений по содержанию

- Порядка 50 (подробный список) ≈ 25 коммерческие + 25 открытые
- http://en.wikipedia.org/wiki/List_of_CBIR_Engines

Потенциальные области применения алгоритмов поиска по содержанию:

- Поиск изображений в сети интернет
- Каталогизация изображений произведений искусства
- Организация работы с архивами фотографических снимков
- Организация каталогов розничной продажи товаров
- Медицинская диагностика заболеваний
- Предотвращение преступлений и беспорядков
- Военно-оружейное применение
- Вопросы контроля за распространением интеллектуальной собственности
- Получение информации о местоположении удаленных зондов и географическое позиционирование
- Контроль за содержимым массивов изображений

Что запрашивает пользователь?

• Запрос в виде атрибутов/текстового описания изображения

• Запрос в виде некоторой характеристики содержимого

Гистограмма цветов

• Запрос в виде рисунка-наброска

Semantic Gap – Семантический Разрыв

- Запрос в виде изображения-примера («найди то же самое», «найди похожее изображение»)
- Что имел пользователь в виду?
- Что значит «похожее изображение»?
- «Семантический разрыв» несовпадение информации, которую можно извлечь из визуальных данных, и интерпретацией тех же самых данных со стороны пользователя

• Похожее по каким-то характеристикам, например, по цвету

• Полудубликаты (Near-duplicates) – слегка измененная версия изображения (ракурс, цвета)

• Тот же самый объект или сцена («Object retrieval») Большие вариации ракурсов, фона, и т.д., чем при поиске полудубликатов

• Похожие визуально по геометрии сцены с учетом ракурса (могут быть разные по назначению)

«Category-level classification» - изображения одного класса

Пример – банкетный зал.

Например, 256 классов из базы Caltech 256

Анализ постановок задач

Демяненко Я.М., ЮФУ, 2020

Общая схема поиска изображений

Ищем ближайших соседей по выбранной метрике

Какие картинки более схожи между собой?

Характеристики сходства изображений

Основные группы:

- 1. Цветовое сходство
- 2. Текстурное сходство
- 3. Сходство формы
- 4. Дескрипторы изображений
- 5. Сходство объектов и отношений между объектами

Цвет

Признаки цвета (color features)

Гистограммы

Статистическая модель

Мат. ожидание, дисперсия, 3-й момент: для каждого цветового канала

$$F(I) = (h_1^I, h_2^I, ..., h_N^I)$$

$$F(I) = (E_1^{\ \ l}, E_2^{\ \ l}, E_3^{\ \ l}, \sigma_1^{\ \ l}, \sigma_2^{\ \ l}, \sigma_3^{\ \ l}, s_1^{\ \ l}, s_2^{\ \ l}, s_3^{\ \ l})$$

Метрики: L₁, L₂, L_∞

Метрики: ~L₁

Stricker M., Orengo M. Similarity of Color Images. Proceedings of the SPIE Conference, vol. 2420, p. 381-392, 1995

Цветовое сходство

Результат выполнения запроса системой QBIC (1995): 40% красного, 30% жёлтого, 10% чёрного

QBIC: Пример использования

Качество работы системы понятно. Но первая!

Цветовые гистограммы – недостатки

1. Не учитывается схожесть цветов:

$$d(H_1, H_2) = \sqrt{(H_1 - H_2) \cdot A \cdot (H_1 - H_2)^T}$$

А – матрица с коэффициентами «схожести» цветов

Niblack W., Barber R., et al. The QBIC project: Querying images by content using color, texture and shape. In IS&T/SPIE International Symposium on Electronic Imaging: Science & Technology, Conference 1908, Storage and Retrieval for Image and Video Databases, Feb. 1993

QBIC (1995)

- «Query By Image Content»
- Самая первая система СВІR
- Изображения сравниваются по набору признаков
 - Цветовая гистограмма
 - Выделенные вручную объекты и признаки их формы (размер, площадь, количество)
- ~10000 изображений в базе

$$d_{hist}(I,Q) = (h(I) - h(Q))^T A(h(I) - h(Q))$$

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: the QBIC system. IEEE Computer, 28(9):23–32, 1995.

Idee Multicolor Search Lab

Цветовые гистограммы – недостатки

2. Не учитывается пространственное расположение цветов:

$$H_A = H_B = H_C$$

Чья гистограмма?

Запрос на основе закрашенной сетки

Мера расстояния на основе цветового макета (color layout) для закрашенной сетки

$$d_{gridded_color}(I,Q) = \sum_{g} \hat{d}_{color}(C^{I}(g), C^{Q}(g))$$

Способы представления цветов клеток сетки

- Среднее значение цвета в пределах клетки сетки
- Среднее значение и среднеквадратическое отклонение цвета
- Многоразрядная цветовая гистограмма

Результаты поиска, выполненного системой QBIC с использованием меры расстояний на основе цветового макета

Пространственное расположение цветов

- Разбиение изображения на фиксированные блоки
- «Нечеткие области»

Stricker M., Dimai A. Spectral Covariance and Fuzzy Regions for Image Indexing. Machine Vision and Applications, vol. 10., p. 66-73, 1997

Сегментация

Цветовые гистограммы – недостатки

$$H_A = H_B = H_C$$

$$f_i^A = (a_i, b_i, c_i, weight_i^A, x_i^A, y_i^A)$$
 і = 1..N – число цветов; (a_i, b_i, c_i) – параметры цвета і; weight_i – количество цвета і на изображении A; (x_i, y_i) – координаты центра цветового пятна.

Васильева Н., Новиков Б. Построение соответствий между низкоуровневыми характеристиками и семантикой статических изображений. Труды RCDL'2005.

Характеристики сходства изображений

Основные группы:

- 1. Цветовое сходство
- 2. Текстурное сходство
- 3. Сходство формы
- 4. Дескрипторы изображений
- 5. Сходство объектов и отношений между объектами

Текстурное сходство

- Одинаковое пространственное распределение цветов
- Значения цветов изображений могут не совпадать

Рассматриваемые характеристики

- Представление текстуры -- Вектор текстурного описания
 - Пятикомпонентный вектор Харалика (Энергия, Энтропия, Контраст, Однородность, Корреляция)
 - Девятикомпонентный вектор, соответствующий энергетическим текстурным характеристикам Лавса
- Определение сходства с учетом выбранного представления текстуры

Матрицы смежности: характеристики Харалика

Статистические параметры, вычисленные по матрицам:

$$Energy = \sum_{i} \sum_{j} C^{2}(i, j)$$
 - минимален, когда все элементы равны

$$Entropy = -\sum_i \sum_j C(i,j) \log_2 C(i,j)$$
 - мера хаотичности, максимален, когда все элементы равны

$$Contrast = \sum_{i} \sum_{j} (i - j)^{2} C(i, j)$$

- мал, когда большие элементы вблизи главной диагонали

$$Inverse\ Difference\ Moment = \sum_{i} \sum_{j} \frac{C(i,j)}{1+(i-j)^2}$$
 - мал, когда большие элементы далеки от главной диагонали

Correlation
$$\frac{\sum_{i} \sum_{j} (i - \mu_{i})(j - \mu_{j}) N_{d}(i, j)}{\sigma_{i} \sigma_{j}}$$

Использование меры расстояния на основе энергетических текстурных характеристик Лавса

L5E5/E5L5

L5S5/S5L5

L5R5/R5L5

E5E5

E5S5/S5E5

E5R5/R5E5

S5S5

S5R5/R5S5

R5R5

Признаки Tamura

Характеристики, существенные для зрительного восприятия:

- Зернистость (coarseness)
- Контрастность (contrast)
- Направленность (directionality)
- Линейность (line-likeness)
- Регулярность (regularity)
- Грубость (roughness)

Tamura image:

Coarseness-coNtrast-Directionality – точки в трехмерном пространстве CND

Признаки:

- Евклидово расстояние в 3D (QBIC)
- 3D гистограмма (Mars)

Банки текстурных фильтров

- Фильтры Габора
- Признаки Хаара

Меры текстурного сходства

• Расстояние от выбранного образца

$$d_{pick_and_click}(I,Q) = min_{i \in I} ||T(i) - T(Q)||^2$$

 Обобщение на случай текстур характеристик на основе закрашенных сеток

$$d_{gridded_texture}(I,Q) = \sum_{g} \hat{d}_{texture}(T^{I}(g), T^{Q}(g))$$

• Расстояние между текстурными гистограммами

Характеристики сходства изображений

Основные группы:

- 1. Цветовое сходство
- 2. Текстурное сходство
- 3. Сходство формы
- 4. Дескрипторы изображений
- 5. Сходство объектов и отношений между объектами

Требования к признакам формы

- Инвариантность к параллельному переносу
- Инвариантность к изменению масштаба
- Инвариантность к повороту
- Устойчивость к незначительным изменениям формы
- Простота вычисления
- Простота сравнения

Сходство формы

- Сравнение двух областей:
 - Структурными методами (Методами сопоставления графов)
 - Гистограммы формы
 - Методы сопоставления границ
 - Эскизное сопоставление
 - С помощью методов статистического распознавания образов

Гистограмма формы

- Способы построения:
 - Проекционное сопоставление
 - По значению угла наклона касательной в каждом граничном пикселе области

Сопоставление границ

- Представление границ:
 - В виде последовательности символов
 - В виде многоугольника методом полигональной аппроксимации
 - Эластичное сопоставление

Цепные коды

Нумерация направлений для 4-связного и 8-связного цепных кодов:

A: 03001033332322121111

Б: 70016665533222

Пример:

Инвариантность к выбору начальной точки: минимальный код

Инвариатность к повороту: разности цифр кода

Представление границ в виде последовательности символов (Коэффициенты Фурье)

$$<\check{V}_0,V_1,\dots,\check{V}_{m-1}>$$
 Набор точек $v_k=rac{V_{k+1}-V_k}{|V_{k+1}-V_k|}$ Единичные вектора $l_k=\sum_{i=1}^k |V_i-V_{i-1}|, \quad k>0$ Кумулятивные разности $l_0=0$ $a_n=rac{1}{L\left(rac{n2\pi}{L}
ight)^2}\sum_{k=1}^m (v_{k-1}-v_k)e^{-jn(2\pi/L)l_k}$ $d_{Fourier}(I,Q)=\left[\sum_{n=-M}^M |a_n^I-a_n^Q|^2
ight]^{rac{1}{2}}$

В виде многоугольника методом полигональной аппроксимации

 Форма представляется в виде последовательности областей стыка

$$\langle X_i, Y_i, \alpha_i \rangle$$

Эластичное сопоставление

Описание формы на основе контура

Эластичное сопоставление

Эскизное сопоставление. Система ART MUSEUM

Предварительная обработка:

- 1. Уменьшение изображения до заданного размера и удаление шумов с помощью медианного фильтра
- 2. Обнаружение границ. Во-первых, с помощью глобального порога, затем с помощью локального порога. В результате получается очищенное контурное изображение.
- 3. На очищенном контурном изображении производится скелетизация и удаляются избыточные контуры. Полученное изображение ещё раз очищается от шумов, и мы получаем требуемое абстрактное представление.

Над эскизом производятся такие же операции обработки.

Эскизное сопоставление. Система ART MUSEUM

изображение делится на клетки, и для каждой клетки вычисляется корреляция с аналогичной клеткой изображения из базы данных

процедура выполняется несколько раз для разных значений сдвига линейного эскиза

Мера расстояния для эскизного сопоставления
$$d_{sketch}(I,Q) = \frac{1}{\sum_{g} max_{n} [\hat{d}_{correlation}(shift_{n}(A^{I}(g)), L^{Q}(g))]}$$

Инвариантные моменты

Момент порядка (р+q) двумерной непрерывной функций:

$$m_{pq} = \iint x^p y^q f(x, y) dx dy$$

Центральные моменты для f(x,y) – дискретного изображения:

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \bar{x})^{p} (y - \bar{y})^{q} f(x, y), \quad \bar{x} = \frac{m_{10}}{m_{00}}, \quad \bar{y} = \frac{m_{01}}{m_{00}}$$

Вектор признаков:

С использованием нормированных центральных моментов был выведен набор из 7 инвариантных к параллельному переносу, повороту и изменению масштаба моментов.

Гистограммы или моменты?

Stricker M., Orengo M. Similarity of Color Images. ... (3000 изображений)

•	٠		٥
	Полнота	Точность	
ColorHist	56,77 %	23,02 %	•
ColorMoment	55,98 %	25,06 %	
0			0

Характеристики сходства изображений

Основные группы:

- 1. Цветовое сходство
- 2. Текстурное сходство
- 3. Сходство формы
- 4. Дескрипторы изображений
- 5. Сходство объектов и отношений между объектами

Дескрипторы изображений

Гистограммы цветов (1995)

Мешок слов (2003)

Гистограммы градиентов (2005)

Мешок слов и пирамида (2006)

Гистограммы градиентов

HOG (2003)

Дескрипторы: Мотоциклы

Применение дескрипторов

Запрос

Похожие по GIST + цвету

Ограничения дескрипторов

- Как с этой задачей справятся дескрипторы?
- Не очень хорошо, т.к. размеры и ориентация объектов могут значительно меняться
- Может помочь сопоставление изображений по ключевым точкам

Геометрическое сопоставление

Характеристики сходства изображений

Четыре основные группы:

- 1. Цветовое сходство
- 2. Текстурное сходство
- 3. Сходство формы
- 4. Дескрипторы изображений
- 5. Сходство объектов и отношений между объектами

Обнаружение человеческих лиц

- Существующие алгоритмы обнаружения лиц можно разбить на две широкие категории:
 - Эмпирическое распознавание
 - Моделирование изображения лица
- Обнаружение элементов и особенностей которые характерны для изображения лица
 - Края
 - Яркость
 - Цвет
 - Характерная форма черт лица

Обнаружение человеческих лиц, на основе нейронной сети (16000 изображений)

Система из университета Карнеги-Мелон

Метод Виолы — Джонса

- Предложен в 2001 году Paul Viola и Michael Jones
- Существует множество реализаций, в том числе в составе OpenCV (функция cvHaarDetectObjects())

Sorry if we didn't quite get the age and gender right - we are still improving this feature.

Read the story behind this demo

Обнаружение образов человеческих тел

Исходное RGB-изображение → Логарифмическое цветовое пространство

$$I = L(G)$$
 $R_g = L(R) - L(G)$
 $L(x) = 105 \log_{10}(x + 1 + n)$
 $B_y = L(B) - \frac{L(G) + L(R)}{2}$
 $hue = atan(R_g, B_y)$
 $texture = med_2(|I - med_1(I)|)$
 $saturation = \sqrt{R_g^2 + B_y^2}$

- 1. texture < 5, 110 < hue < 150, 20 < saturation < 60
- $2. \ texture < 5, \ 130 < hue < 170, \ 30 < saturation < 130$

[Fleck,Forsyth,Bregler, 1996]

Признаки в системах поиска

		Цвет	Текстура	Форма
_	QBIC	Гистограммы (HSV) $dist^2 = H_1 A H_2^T$	Tamura Image, Euclid dist	Геометрические для границ + моменты
	ualSEEk	Гистограммы (HSV), Color Sets, Location info		
	Netra	Гистограммы (HSV), Color codebook, кластеризация	Фильтры Габора	Fourier-based (Фурье)
	Mars	Гистограммы, HSV $dist = 1 - \sum_{i=1}^{N} \min(H_1(i), H_2(i))$	Tamura Image, 3D Histo	MFD (Фурье)

Заключение

- Большой выбор различных способов представления изображений
- Цвет: гистограммы или статистическая модель?
- Текстура: фильтры Габора, фильтры ІСА
- Форма: дескрипторы Фурье, инвариантные моменты
- При сравнении изображений часто необходимо комбинировать различные признаки