Managing Accelerated Application Memory with CUDA C/C++ Unified Memory

The *CUDA Best Practices Guide*, a highly recommended followup to this and other CUDA fundamentals labs, recommends a design cycle called **APOD**: **Assess**, **P**arallelize, **O**ptimize, **D**eploy. In short, APOD prescribes an iterative design process, where developers can apply incremental improvements to their accelerated application's performance, and ship their code. As developers become more competent CUDA programmers, more advanced optimization techniques can be applied to their accelerated code bases.

This lab will support such a style of iterative development. You will be using the Nsight Systems command line tool **nsys** to qualitatively measure your application's performance, and to identify opportunities for optimization, after which you will apply incremental improvements before learning new techniques and repeating the cycle. As a point of focus, many of the techniques you will be learning and applying in this lab will deal with the specifics of how CUDA's **Unified Memory** works. Understanding Unified Memory behavior is a fundamental skill for CUDA developers, and serves as a prerequisite to many more advanced memory management techniques.

Prerequisites

To get the most out of this lab you should already be able to:

- Write, compile, and run C/C++ programs that both call CPU functions and launch GPU kernels.
- Control parallel thread hierarchy using execution configuration.
- Refactor serial loops to execute their iterations in parallel on a GPU.
- Allocate and free Unified Memory.

Objectives

By the time you complete this lab, you will be able to:

- Use the Nsight Systems command line tool (**nsys**) to profile accelerated application performance.
- Leverage an understanding of **Streaming Multiprocessors** to optimize execution configurations.

• Understand the behavior of **Unified Memory** with regard to page faulting and data migrations.

- Use **asynchronous memory prefetching** to reduce page faults and data migrations for increased performance.
- Employ an iterative development cycle to rapidly accelerate and deploy applications.

Iterative Optimizations with the NVIDIA Command Line Profiler

The only way to be assured that attempts at optimizing accelerated code bases are actually successful is to profile the application for quantitative information about the application's performance. nsys is the Nsight Systems command line tool. It ships with the CUDA toolkit, and is a powerful tool for profiling accelerated applications.

nsys is easy to use. Its most basic usage is to simply pass it the path to an executable compiled with nvcc. nsys will proceed to execute the application, after which it will print a summary output of the application's GPU activities, CUDA API calls, as well as information about **Unified Memory** activity, a topic which will be covered extensively later in this lab.

When accelerating applications, or optimizing already-accelerated applications, take a scientific and iterative approach. Profile your application after making changes, take note, and record the implications of any refactoring on performance. Make these observations early and often: frequently, enough performance boost can be gained with little effort such that you can ship your accelerated application. Additionally, frequent profiling will teach you how specific changes to your CUDA code bases impact its actual performance: knowledge that is hard to acquire when only profiling after many kinds of changes in your code bases.

Exercise: Profile an Application with nsys

01-vector-add.cu (<----- you can click on this and any of the source file links in this lab to open them for editing) is a naively accelerated vector addition program. Use the two code execution cells below (CTRL + ENTER). The first code execution cell will compile (and run) the vector addition program. The second code execution cell will profile the executable that was just compiled using nsys profile.

nsys profile will generate a report file which can be used in a variety of manners, including for use in visual profiling with Nsight Systems, which we will look at in more detail in the following section.

Here we use the --stats=true flag to indicate we would like summary statistics printed. In this section this summary will be the focus of our attention. There is quite a lot of information printed:

Operating System Runtime Summary (osrt_sum)

- CUDA API Summary (cuda_api_sum)
- CUDA Kernel Summary (cuda_gpu_kern_sum)
- CUDA Memory Time Operation Summary (cuda_gpu_mem_time_sum)
- CUDA Memory Size Operation Summary (cuda_gpu_mem_size_sum)

In this section you will primarily be using the 4 summaries in **bold** above. In the next section, you will be using the generated report files to give to the Nsight Systems GUI for visual profiling.

After profiling the application, answer the following questions using information displayed in the cuda_gpu_kern_sum section of the profiling output:

- What was the name of the only CUDA kernel called in this application?
- How many times did this kernel run?
- How long did it take this kernel to run? Record this time somewhere: you will be optimizing this application and will want to know how much faster you can make it.

```
In [3]: !nvcc -o single-thread-vector-add 01-vector-add/01-vector-add.cu -run
Success! All values calculated correctly.
In [4]: !nsys profile --stats=true ./single-thread-vector-add
```

Success! All values calculated correctly. Generating '/tmp/nsys-report-14fa.qdstrm'

[3/8] Executing 'nvtx_sum' stats report

SKIPPED: /dli/task/report2.sqlite does not contain NV Tools Extension (NVTX) data.

[4/8] Executing 'osrt_sum' stats report

Time (%) Total Time (tdDev (ns) Na		Avg (ns)	Med (ns)	Min (ns)	Max (ns)
90.3 6053933 27332108.1 poll		19097581.8	10071878.0	1840	100154357
8.9 594680 1424518.7 sem_timedwai		2101345.2	2064414.0	120	20429370
0.5 31671 377485.5 ioctl		63469.6	11150.0	380	7939262
0.3 19865	890 24	827745.4	4615.0	850	7192390
0.0 881	923 27	32663.8	4410.0	2990	537309
101683.8 mmap64 0.0 478	318 44	10870.9	10825.0	3600	30821
4430.2 open64 0.0 165		41338.0	38525.5	31220	57081
12035.9 pthread_create		12961.1	13700.0	840	18030
4639.4 write 0.0 134	802 29	4648.3	3221.0	1480	20720
	743 11	5522.1	3510.0	1701	18081
	851 26	1955.8	70.0	60	49081
9611.7 fgets 0.0 35	851 52	689.4	520.0	160	6510
872.7 fcntl 0.0 33	091 6	5515.2	5515.0	2500	7960
2171.1 open 0.0 25	330 22	1151.4	970.0	550	3770
672.1 fclose 0.0 21	741 14	1552.9	1205.5	780	4050
998.4 read 0.0 16	710 2	8355.0	8355.0	5490	11220
4051.7 socket 0.0 12	200 1	12200.0	12200.0	12200	12200
0.0 connect	081 5	1616.2	1351.0	70	3300
1473.5 fread	230 1	6230.0	6230.0	6230	6230
0.0 pipe2	290 64		50.0	40	190
46.6 pthread_mutex_try	lock	82.7			
0.0 bind	540 1	2540.0	2540.0	2540	2540
0.0 1 0.0 listen	210 1	1210.0	1210.0	1210	1210
0.0 0.0 pthread_cond_broad	280 1 cast	280.0	280.0	280	280

^[5/8] Executing 'cuda_api_sum' stats report

Time (%) Total Time (ns) (ns) StdDev (ns)	Name				Max
95.1 2471506658 6658 0.0 cudaDevi	1 ceSynchroniz	2471506658.0 ze			
6252 62471003.6 cudaMall			30510.0		
0.8 19932312 6281 561933.2 cudaFree 0.0 46621 6621 0.0 cudaLaun	1				
[6/8] Executing 'cuda_gpu_k	ern_sum' sta	ats report			
Time (%) Total Time (ns) (ns) StdDev (ns)		Name		Min (ns)	Max
	1	2471496420.0	2471496420.0	2471496420	247149
[7/8] Executing 'cuda_gpu_m	em_time_sum'	stats repor	t		
Time (%) Total Time (ns) s) Operation	_	(ns) Med (n		lax (ns) Std	Dev (n
75.5 34138263		317.0 4351	.5 1982	80224	22490.
4 [CUDA Unified Memory mem 24.5 11062385 2 [CUDA Unified Memory mem	768 144	104.1 3759	.5 1279	80544	22784.
[8/8] Executing 'cuda_gpu_m	em_size_sum'	stats repor	t		
Total (MB) Count Avg (MB Operation) Med (MB)	Min (MB) M	ax (MB) StdDev	(MB)	
402.653 2304 0.17 d Memory memcpy HtoD]	5 0.033	0.004	1.044	0.301 [CUDA	Unifie
134.218 768 0.17 d Memory memcpy DtoH]	5 0.033	0.004	1.044	0.301 [CUDA	Unifie
<pre>Generated: /dli/task/report2.nsys- /dli/task/report2.sqlit</pre>	•				

Worth mentioning is that by default, nsys profile will not overwrite an existing report file. This is done to prevent accidental loss of work when profiling. If for any reason, you would rather overwrite an existing report file, say during rapid iterations, you can provide the only to allow overwriting an existing report file.

Exercise: Optimize and Profile

Take a minute or two to make a simple optimization to 01-vector-add.cu by updating its execution configuration so that it runs on many threads in a single thread block. Recompile and then profile with nsys profile --stats=true using the code execution cells below. Use the profiling output to check the runtime of the kernel. What was the speed up from this optimization? Be sure to record your results somewhere.

In [1]: !nvcc -o multi-thread-vector-add 01-vector-add/01-vector-add.cu -run

Success! All values calculated correctly.

In [2]: !nsys profile --stats=true ./multi-thread-vector-add

Success! All values calculated correctly. Generating '/tmp/nsys-report-c4e6.qdstrm'

[3/8] Executing 'nvtx_sum' stats report

SKIPPED: /dli/task/report1.sqlite does not contain NV Tools Extension (NVTX) data.

[4/8] Executing 'osrt_sum' stats report

Time (%) Total Time (ns tdDev (ns) Name		Avg (ns)	Med (ns)	Min (ns)	Max (ns)
90.4 615434327 27648662.0 poll		19353280.7	10074122.0	2480	100175395
8.7 59430207 1370120.5 sem_timedwait	² 5 283	2100007.3	2065185.0	120	20480740
0.5 3597667 436415.2 ioctl	9 499	72097.6	12410.0	510	9199323
0.3 1917111 2148526.1 mmap	.0 24	798796.3	8840.0	820	7195710
0.0 110111 133858.6 mmap64	.0 27	40781.9	4060.0	3210	705562
0.0 49695 4281.1 open64	1 44	11294.3	10960.0	4460	33071
0.0 18158 8528.5 fopen	29	6261.4	3570.0	1500	46850
0.0 13854 10685.7 pthread_create	40	34635.0	34565.0	24430	44980
0.0 13023 5433.0 write	32 11	11839.3	11490.0	990	17751
0.0 9928	30 11	9025.5	4500.0	1590	35250
11560.4 munmap 0.0 6678	32 6	11130.3	8325.0	3281	30851
9900.2 open 0.0 5731	.1 26	2204.3	80.0	70	55171
10803.1 fgets 0.0 3569	00 52	686.3	510.0	210	5570
759.6 fcntl 0.0 2947	70 22	1339.5	1195.0	710	3170
602.6 fclose 0.0 2301	.1 14	1643.6	1520.0	440	4060
1088.7 read 0.0 1614	.0 2	8070.0	8070.0	4200	11940
5473.0 socket 0.0 1277	1 1	12771.0	12771.0	12771	12771
0.0 connect 0.0 1243	5 5	2486.2	1541.0	70	6490
2766.4 fread 0.0 668	30 1	6680.0	6680.0	6680	6680
0.0 pipe2 0.0 609	00 64	95.2	85.0	40	360
60.5 pthread_mutex_trylo		2330.0	2330.0	2330	2330
0.0 bind 0.0 129		1290.0	1290.0	1290	1290
0.0 listen					
0.0 38 0.0 pthread_cond_broadca		380.0	380.0	380	380

^[5/8] Executing 'cuda_api_sum' stats report

Time (%) Total Time (ns) (ns) StdDev (ns)	Name				Max
94.5 2468317502			2468317502.0	2468317502	246831
4.8 125277243	3		75602.0	18290	12518
3351 72247542.8 cudaMall 0.7 19214830	ocmanaged 3	6404943.3	6102102.0	5862067	725
0661 742181.2 cudaFree					
0.0 41700 1700 0.0 cudaLaun		41700.0	41700.0	41700	4
2700 010 044424411	cincinci				
<pre>[6/8] Executing 'cuda_gpu_k</pre>	ern_sum' sta	ts report			
Time (%) Total Time (ns) (ns) StdDev (ns)		Name		Min (ns)	Max
100.0 2468307670 7670 0.0 addVecto [7/8] Executing 'cuda_gpu_m Time (%) Total Time (ns) s) Operation	rsInto(float em_time_sum' Count Avg	*, float *, stats report (ns) Med (ns)	float *, int) t s) Min (ns) M		
75.5 34159836 [CUDA Unified Memory mem	 2304 148 cpy HtoD] 768 144	26.3 4382	.5 1983	80320 80832	
[8/8] Executing 'cuda_gpu_m	em size sum'	stats report	t		
Total (MB) Count Avg (MB Operation		•		(MB)	
402.653 2304 0.17	5 0.033	0.004	1.044	0.301 [CUDA	Unifie
d Memory memcpy HtoD] 134.218 768 0.17 d Memory memcpy DtoH]	5 0.033	0.004	1.044	0.301 [CUDA	Unifie
<pre>Generated: /dli/task/report1.nsys- /dli/task/report1.sqlit</pre>					

Exercise: Optimize Iteratively

In this exercise you will go through several cycles of editing the execution configuration of 01-vector-add.cu, profiling it, and recording the results to see the impact. Use the following guidelines while working:

• Start by listing 3 to 5 different ways you will update the execution configuration, being sure to cover a range of different grid and block size combinations.

- Edit the 01-vector-add.cu program in one of the ways you listed.
- Compile and profile your updated code with the two code execution cells below.
- Record the runtime of the kernel execution, as given in the profiling output.
- Repeat the edit/profile/record cycle for each possible optimization you listed above

Which of the execution configurations you attempted proved to be the fastest?

In [5]: !nvcc -o iteratively-optimized-vector-add 01-vector-add/01-vector-add.cu -run

Success! All values calculated correctly.

In [6]: !nsys profile --stats=true ./iteratively-optimized-vector-add

Success! All values calculated correctly. Generating '/tmp/nsys-report-2294.qdstrm'

[3/8] Executing 'nvtx_sum' stats report

SKIPPED: /dli/task/report3.sqlite does not contain NV Tools Extension (NVTX) data.

[4/8] Executing 'osrt_sum' stats report

Time (%) Total tdDev (ns)	Time (ns) Name	Num Calls	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	:
87.2 1 26409876.0 poll	.787307628	99	18053612.4	10071669.0	2420	100167994	
•	197377683	88	2242928.2	2065294.5	140	20609674	
	43065570	497	86651.0	13530.0	410	10532586	
1.0 2264055.1 mmap	20114646	24	838110.3	6290.0	820	7723669	
0.0 103292.4 mmap64	943247	27	34935.1	4940.0	3310	545529	
0.0 5399.6 open64	535559	44	12171.8	11205.0	3590	31250	
0.0 14875.8 pthread_	183634 create	4	45908.5	42016.0	34251	65351	
0.0 7434.3 fopen	181465	29	6257.4	3720.0	1830	36451	
0.0 5249.9 write	150591	11	13690.1	13960.0	1250	21250	
0.0 6356.1 munmap	73100	12	6091.7	3295.0	1200	19530	
0.0 9588.2 fgets	50721	26	1950.8	70.0	60	48961	
0.0 2644.7 open	38160	6	6360.0	7295.0	2410	8760	
0.0 860.2 fcntl	37720	52	725.4	550.0	210	6340	
0.0 756.9 fclose	28731	22	1306.0	1020.0	550	3810	
0.0 1393.2 read	24070	14	1719.3	1225.0	380	5230	
0.0 6385.9 socket	17551	2		8775.5		13291	
0.0 0.0 connect	11880		11880.0				
0.0 2397.3 fread	9471	5	1894.2	1190.0	60	5911	
0.0 0.0 pipe2	7600	1	7600.0	7600.0	7600	7600	
0.0 61.5 pthread_mut			101.6	120.0	40	340	
0.0 0.0 bind	2730	1	2730.0	2730.0	2730	2730	
0.0 0.0 listen	1470	1	1470.0	1470.0	1470	1470	
0.0 0.0 pthread_cond	380 _broadcast	1	380.0	380.0	380	380	

^[5/8] Executing 'cuda_api_sum' stats report

```
Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) Min (ns) Max (ns)
tdDev (ns) Name
52.6
                         3 42265883.0 61242.0 16250 126720157
            126797649
73139550.2 cudaMallocManaged
   39.1 94180785
                         1 94180785.0 94180785.0 94180785 94180785
0.0 cudaDeviceSynchronize
                      3 6714505.7 6520109.0 5850798 7772610
    8.4 20143517
975542.4 cudaFree
                       1 49660.0 49660.0 49660
    0.0
               49660
                                                        49660
0.0 cudaLaunchKernel
[6/8] Executing 'cuda_gpu_kern_sum' stats report
Time (%) Total Time (ns) Instances
                                     Med (ns) Min (ns) Max (ns) St
                             Avg (ns)
dDev (ns)
  100.0 94171773 1 94171773.0 94171773.0 94171773 94171773
0.0 addVectorsInto(float *, float *, float *, int)
[7/8] Executing 'cuda_gpu_mem_time_sum' stats report
Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (n
33687893 2306 14608.8 3103.0 1823 79392 22131.
3 [CUDA Unified Memory memcpy HtoD]
   24.7 11061299 768 14402.7 3727.5 1375 80512 22786.
3 [CUDA Unified Memory memcpy DtoH]
[8/8] Executing 'cuda gpu mem size sum' stats report
Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB)
Operation
  402.653 2306 0.175 0.020 0.004 1.036 0.296 [CUDA Unifie
d Memory memcpy HtoD]
  134.218 768 0.175 0.033 0.004 1.044 0.301 [CUDA Unifie
d Memory memcpy DtoH]
Generated:
  /dli/task/report3.nsys-rep
  /dli/task/report3.sqlite
```

Streaming Multiprocessors and Querying the Device

This section explores how understanding a specific feature of the GPU hardware can promote optimization. After introducing **Streaming Multiprocessors**, you will attempt to further optimize the accelerated vector addition program you have been working on.

The following video presents upcoming material visually, at a high level. Click watch it before moving on to more detailed coverage of their topics in following sections.

```
In [7]:
       from IPython.display import HTML
        video_url = "https://d36m44n9vdbmda.cloudfront.net/assets/s-ac-04-v1/task2/NVPROF_UM_1
        video html = f"""
        <video controls width="640" height="360">
            <source src="{video_url}" type="video/mp4">
            Your browser does not support the video tag.
        </video>
        display(HTML(video_html))
              0:00 / 3:01
                                                                                ()
```

Streaming Multiprocessors and Warps

The GPUs that CUDA applications run on have processing units called **streaming multiprocessors**, or **SMs**. During kernel execution, blocks of threads are given to SMs to execute. In order to support the GPU's ability to perform as many parallel operations as possible, performance gains can often be had by *choosing a grid size that has a number of blocks that is a multiple of the number of SMs on a given GPU.*

Additionally, SMs create, manage, schedule, and execute groupings of 32 threads from within a block called **warps**. A more in depth coverage of SMs and warps is beyond the scope of this course, however, it is important to know that performance gains can also be had by *choosing a block size that has a number of threads that is a multiple of 32*.

Programmatically Querying GPU Device Properties

In order to support portability, since the number of SMs on a GPU can differ depending on the specific GPU being used, the number of SMs should not be hard-coded into a code bases. Rather, this information should be acquired programatically.

The following shows how, in CUDA C/C++, to obtain a C struct which contains many properties about the currently active GPU device, including its number of SMs:

Exercise: Query the Device

Currently, 01-get-device-properties.cu contains many unassigned variables, and will print gibberish information intended to describe details about the currently active GPU.

Build out 01-get-device-properties.cu to print the actual values for the desired device properties indicated in the source code. In order to support your work, and as an introduction to them, use the CUDA Runtime Docs to help identify the relevant properties in the device props struct. Refer to the solution if you get stuck.

```
In [8]: !nvcc -o get-device-properties 04-device-properties/01-get-device-properties.cu -run

Device ID: 0
Number of SMs: 80
Compute Capability Major: 8
Compute Capability Minor: 6
Warp Size: 32
```

Exercise: Optimize Vector Add with Grids Sized to Number of SMs

Utilize your ability to query the device for its number of SMs to refactor the addVectorsInto kernel you have been working on inside 01-vector-add.cu so that it launches with a grid containing a number of blocks that is a multiple of the number of SMs on the device.

Depending on other specific details in the code you have written, this refactor may or may not improve, or significantly change, the performance of your kernel. Therefore, as always, be sure to use nsys profile so that you can quantitatively evaluate performance changes. Record the results with the rest of your findings thus far, based on the profiling output.

```
In [9]: !nvcc -o sm-optimized-vector-add 01-vector-add/01-vector-add.cu -run
```

Success! All values calculated correctly.

In [10]: !nsys profile --stats=true ./sm-optimized-vector-add

Success! All values calculated correctly. Generating '/tmp/nsys-report-1a37.qdstrm'

[1/8] [==================100%] report4.nsys-rep

[3/8] Executing 'nvtx_sum' stats report

SKIPPED: /dli/task/report4.sqlite does not contain NV Tools Extension (NVTX) data.

[4/8] Executing 'osrt_sum' stats report

Time (%) Total		Num Calls	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	
tdDev (ns)	Name						
87.9			18057734.1	10075416.0	27980	100145389	
26521155.0 poll 9.4	190770633	89	2143490.3	2068184.0	180	20378006	
2356593.3 sem_t 1.7	imedwait 34014918	497	68440.5	11250.0	390	8049623	
434584.3 ioctl	10642704	2.4	04.04.04		200		
1.0 2205882.6 mmap	19643784	24	818491.0	4440.0	890	7177988	
0.0 103029.7 mmap64	887787	27	32881.0	3890.0	3150	544389	
0.0	506808	44	11518.4	10975.0	3710	30741	
4868.8 open64 0.0	186583	29	6433.9	3990.0	1490	35181	
7336.4 fopen		4	46200 5	42040 5	22050	62671	
0.0 14443.8 pthread	185202 _create	4	46300.5	43840.5	33850	63671	
0.0 1684.4 write	153914	11	13992.2	13891.0	11820	16671	
0.0	56241	12	4686.8	3460.0	1170	19770	
4962.0 munmap 0.0	50731	26	1951.2	70.0	50	48991	
9594.3 fgets 0.0	42111	6	7018.5	7935.0	3160	9511	
2506.8 open	42111		7010.3	7933.0	3100	9311	
0.0 883.3 fcntl	35390	52	680.6	495.0	160	6690	
0.0	31970	22	1453.2	1075.0	510	4320	
876.1 fclose 0.0	21690	14	1549.3	1210.0	840	4420	
1019.9 read 0.0	18560	2	9280.0	9280.0	4290	14270	
7056.9 socket							
0.0 0.0 connect	11070	1	11070.0	11070.0	11070	11070	
0.0 1610.1 fread	8571	5	1714.2	1730.0	90	3851	
0.0	6850	1	6850.0	6850.0	6850	6850	
0.0 pipe2 0.0	5470	64	85.5	50.0	40	170	
47.7 pthread_mu	tex_trylock						
0.0 0.0 bind	2690	1	2690.0	2690.0	2690	2690	
0.0 0.0 listen	1800	1	1800.0	1800.0	1800	1800	
0.0	280	1	280.0	280.0	280	280	
0.0 pthread_con	d_broadcast						

^[5/8] Executing 'cuda_api_sum' stats report

```
Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) Min (ns) Max (ns)
tdDev (ns) Name
3 37101204.7 27550.0 14381 111261683
   49.1
            111303614
64224858.5 cudaMallocManaged
   42.1 95381372
                         1 95381372.0 95381372.0 95381372 95381372
0.0 cudaDeviceSynchronize
                      3 6565104.7 6631009.0 5852886 7211419
    8.7 19695314
681660.1 cudaFree
                      1 106891.0 106891.0 106891 106891
    0.0
              106891
0.0 cudaLaunchKernel
[6/8] Executing 'cuda_gpu_kern_sum' stats report
Time (%) Total Time (ns) Instances
                                     Med (ns) Min (ns) Max (ns) St
                             Avg (ns)
dDev (ns)
  100.0 95434347 1 95434347.0 95434347.0 95434347 95434347
0.0 addVectorsInto(float *, float *, float *, int)
[7/8] Executing 'cuda_gpu_mem_time_sum' stats report
Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (n
33696150 2310 14587.1 3119.0 1823 79615 22123.
8 [CUDA Unified Memory memcpy HtoD]
   24.7 11063310 768 14405.4 3759.5 1343 80736 22790.
2 [CUDA Unified Memory memcpy DtoH]
[8/8] Executing 'cuda gpu mem size sum' stats report
Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB)
Operation
_____
  402.653 2310 0.174 0.020 0.004 1.036 0.296 [CUDA Unifie
d Memory memcpy HtoD]
  134.218 768 0.175 0.033 0.004 1.044 0.301 [CUDA Unifie
d Memory memcpy DtoH]
Generated:
  /dli/task/report4.nsys-rep
  /dli/task/report4.sqlite
```

Unified Memory Details

You have been allocating memory intended for use either by host or device code with cudaMallocManaged and up until now have enjoyed the benefits of this method - automatic memory migration, ease of programming - without diving into the details of how the **Unified**Memory (UM) allocated by cudaMallocManaged actual works.

nsys profile provides details about UM management in accelerated applications, and using this information, in conjunction with a more-detailed understanding of how UM works, provides additional opportunities to optimize accelerated applications.

The following video presents upcoming material visually, at a high level. Click watch it before moving on to more detailed coverage of their topics in following sections.

```
In [11]:
         from IPython.display import HTML
         video_url = "https://d36m44n9vdbmda.cloudfront.net/assets/s-ac-04-v1/task2/NVPROF_UM_2
         video_html = f"""
         <video controls width="640" height="360">
             <source src="{video_url}" type="video/mp4">
             Your browser does not support the video tag.
         </video>
         ....
         display(HTML(video_html))
               0:00 / 3:08
```

Unified Memory Migration

When UM is allocated, the memory is not resident yet on either the host or the device. When either the host or device attempts to access the memory, a page fault will occur, at which point the host or device will migrate the needed data in batches. Similarly, at any point when the CPU, or any GPU in the accelerated system, attempts to access memory not yet resident on it, page faults will occur and trigger its migration.

The ability to page fault and migrate memory on demand is tremendously helpful for ease of development in your accelerated applications. Additionally, when working with data that exhibits sparse access patterns, for example when it is impossible to know which data will be required to be worked on until the application actually runs, and for scenarios when data might be accessed by multiple GPU devices in an accelerated system with multiple GPUs, on-demand memory migration is remarkably beneficial.

There are times - for example when data needs are known prior to runtime, and large contiguous blocks of memory are required - when the overhead of page faulting and migrating data on demand incurs an overhead cost that would be better avoided.

Much of the remainder of this lab will be dedicated to understanding on-demand migration, and how to identify it in the profiler's output. With this knowledge you will be able to reduce the overhead of it in scenarios when it would be beneficial.

Exercise: Explore UM Migration and Page Faulting

nsys profile provides output describing UM behavior for the profiled application. In this exercise, you will make several modifications to a simple application, and make use of nsys profile after each change, to explore how UM data migration behaves.

01-page-faults.cu contains a hostFunction and a gpuKernel, both which could be used to initialize the elements of a 2<<24 element vector with the number 1. Currently neither the host function nor GPU kernel are being used.

For each of the 4 questions below, given what you have just learned about UM behavior, first hypothesize about what kind of page faulting should happen, then, edit 01-page-faults.cu to create a scenario, by using one or both of the 2 provided functions in the code bases, that will allow you to test your hypothesis.

In order to test your hypotheses, compile and profile your code using the code execution cells below. Be sure to record your hypotheses, as well as the results, obtained from nsys profile --stats=true output. In the output of nsys profile --stats=true you should be looking for the following:

- Is there a CUDA Memory Operation Statistics section in the output?
- If so, does it indicate host to device (HtoD) or device to host (DtoH) migrations?
- When there are migrations, what does the output say about how many *Operations* there were? If you see many small memory migration operations, this is a sign that on-demand page faulting is occurring, with small memory migrations occurring each time there is a page fault in the requested location.

Here are the scenarios for you to explore, along with solutions for them if you get stuck:

 Is there evidence of memory migration and/or page faulting when unified memory is accessed only by the CPU? (solution)

• Is there evidence of memory migration and/or page faulting when unified memory is accessed only by the GPU? (solution)

- Is there evidence of memory migration and/or page faulting when unified memory is accessed first by the CPU then the GPU? (solution)
- Is there evidence of memory migration and/or page faulting when unified memory is accessed first by the GPU then the CPU? (solution)

```
In [18]: !nvcc -o page-faults 06-unified-memory-page-faults/01-page-faults.cu -run
In [19]: !nsys profile --stats=true ./page-faults
```

Generating '/tmp/nsys-report-a9f2.qdstrm'

[3/8] Executing 'nvtx_sum' stats report

SKIPPED: /dli/task/report8.sqlite does not contain NV Tools Extension (NVTX) data. [4/8] Executing 'osrt_sum' stats report

Time (%) Total tdDev (ns)	Name		Avg (ns)	Med (ns)	Min (ns)	Max (ns)	
	541726040		14255948.4	10068452.0	27571	100140983	
	82281413	34	2420041.6	2064009.0	120	20479630	
5.7 522009.6 ioctl	38007919	483	78691.3	13460.0	400	9256664	
1.1 1759163.9 mmap	7601187	18	422288.2	4670.0	1140	7471044	
0.2 140327.5 mmap64	1133120	27	41967.4	4200.0	3380	739722	
0.1 5149.4 open64	525306	44	11938.8	10735.0	4690	31891	
0.0 12245.9 pthread_	192682 create	4	48170.5	47510.5	37430	60231	
0.0 8426.2 fopen		29	6584.7	3820.0	1490	44471	
0.0 4986.8 write	146241	11	13294.6	13770.0	2770	20580	
0.0 11010.7 fgets	58380	26	2245.4	90.0	70	56230	
0.0 5987.7 munmap	48210	7	6887.1	4720.0	3240	20150	
0.0 2362.4 open	40840	6	6806.7	6905.0	3480	9660	
0.0 731.7 fcntl	35351	52	679.8	545.0	160	5550	
0.0 737.3 fclose	32282	22	1467.4	1235.0	750	3880	
0.0 1040.0 read	20390	14	1456.4	1155.0	500	3880	
0.0 6824.3 socket	17191	2	8595.5	8595.5	3770	13421	
0.0 0.0 connect	14090	1	14090.0	14090.0	14090	14090	
0.0 1775.2 fread	9110	5	1822.0	1490.0	90	3700	
0.0	5981	1	5981.0	5981.0	5981	5981	
0.0 pipe2 0.0	5590	64	87.3	50.0	40	480	
67.7 pthread_mut 0.0	ex_trylock 2220	1	2220.0	2220.0	2220	2220	
0.0 bind 0.0	1540	1	1540.0	1540.0	1540	1540	
0.0 listen 0.0	150	1	150.0	150.0	150	150	
0.0 pthread_cond	_broadcast						

^[5/8] Executing 'cuda_api_sum' stats report

```
Time (%) Total Time (ns) Num Calls Avg (ns)
                                               Med (ns)
                                                          Min (ns)
                                                                    Max (ns)
                  Name
StdDev (ns)
           -----
    83.9
               116120559
                               1 116120559.0 116120559.0 116120559 116120559
0.0 cudaMallocManaged
                               1 14605032.0 14605032.0 14605032
    10.6
               14605032
                                                                     14605032
0.0 cudaDeviceSynchronize
     5.5
                7578756
                                     7578756.0
                                                7578756.0
                                                            7578756
                                                                      7578756
0.0 cudaFree
     0.0
                 44471
                                      44471.0
                                                  44471.0
                                                              44471
                                                                        44471
0.0 cudaLaunchKernel
[6/8] Executing 'cuda_gpu_kern_sum' stats report
Time (%) Total Time (ns) Instances Avg (ns)
                                             Med (ns)
                                                        Min (ns) Max (ns) St
dDev (ns)
                  Name
                14602092
                               1 14602092.0 14602092.0 14602092 14602092
   100.0
0.0 deviceKernel(int *, int)
[7/8] Executing 'cuda_gpu_mem_time_sum' stats report
Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (n
              Operation
s)
                11082131
                           768 14429.9 3759.5
                                                     1439
                                                             80768
                                                                       22782.
7 [CUDA Unified Memory memcpy DtoH]
[8/8] Executing 'cuda_gpu_mem_size_sum' stats report
Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB)
Operation
                    0.175 0.033 0.004 1.044
                                                         0.301 [CUDA Unifie
   134.218
             768
d Memory memcpy DtoH]
Generated:
   /dli/task/report8.nsys-rep
```

/dli/task/report8.sqlite

Exercise: Revisit UM Behavior for Vector Add Program

Returning to the 01-vector-add.cu program you have been working on throughout this lab, review the code bases in its current state, and hypothesize about what kinds of memory migrations and/or page faults you expect to occur. Look at the profiling output for your last refactor (either by scrolling up to find the output or by executing the code execution cell just below), observing the CUDA Memory Operation Statistics section of the profiler output. Can you explain the kinds of migrations and the number of their operations based on the contents of the code base?

```
!nsys profile --stats=true ./sm-optimized-vector-add
In [20]:
```

Success! All values calculated correctly. Generating '/tmp/nsys-report-d526.qdstrm'

[2/8] [=========================100%] report9.sqlite

[3/8] Executing 'nvtx_sum' stats report

SKIPPED: /dli/task/report9.sqlite does not contain NV Tools Extension (NVTX) data.

[4/8] Executing 'osrt_sum' stats report

Time (%) Total tdDev (ns)	Time (ns) Name	Num Calls	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	
87.4 1 26450462.4 poll	786831510		18048803.1	10071688.0	2640	100138764	
•	191500807	88	2176145.5	2066619.0	110	20422889	
	39179211	497	78831.4	12610.0	380	8812336	
	23651322	24	985471.8	4370.0	930	10332771	
0.1 142899.8 mmap64		27	40525.0	3820.0	2870	752582	
0.0 4122.1 open64	475821	44	10814.1	10405.5	4270	29420	
·	193833 create	4	48458.3	46325.5	37051	64131	
0.0 7338.2 fopen	192775	29	6647.4	4160.0	1410	32561	
0.0 5892.0 write	143232	11	13021.1	13210.0	1050	22750	
0.0 11242.2 fgets	59582	26	2291.6	90.0	70	57411	
0.0 4162.6 munmap	56441	11	5131.0	4790.0	1090	16760	
0.0 3985.0 fclose	53060	22	2411.8	1505.0	750	19900	
0.0 2592.8 open	43961	6	7326.8	8135.0	3521	10020	
0.0 921.9 fcntl	37171	52	714.8	470.0	150	6810	
0.0 1182.2 read	20710	14	1479.3	1105.0	420	4040	
0.0 6187.2 socket	16850	2	8425.0	8425.0	4050	12800	
0.0 0.0 connect	12100	1	12100.0	12100.0	12100	12100	
0.0 2032.2 fread	9871	5	1974.2	1420.0	90	4961	
0.0 0.0 pipe2	7700	1	7700.0	7700.0	7700	7700	
0.0 50.3 pthread_mut	6740 ex_trylock	64	105.3	130.0	50	270	
0.0 0.0 bind	2210	1	2210.0	2210.0	2210	2210	
0.0 0.0 listen	1241	1	1241.0	1241.0	1241	1241	
0.0 0.0 pthread_cond	270 _broadcast	1	270.0	270.0	270	270	
-							

^[5/8] Executing 'cuda_api_sum' stats report

```
Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) Min (ns) Max (ns)
tdDev (ns)
             Name
3 39089403.0
   49.7
                                       24171.0 13340 117230698
            117268209
67672346.8 cudaMallocManaged
   40.3 95055879
                          1 95055879.0 95055879.0 95055879 95055879
0.0 cudaDeviceSynchronize
            23774695
                      3 7924898.3 7255521.0 6093601 10425573
   10.1
2242218.7 cudaFree
                       1 45431.0 45431.0 45431 45431
    0.0
               45431
0.0 cudaLaunchKernel
[6/8] Executing 'cuda_gpu_kern_sum' stats report
Time (%) Total Time (ns) Instances
                              Avg (ns) Med (ns) Min (ns) Max (ns) St
dDev (ns)
             95047152 1 95047152.0 95047152.0 95047152 95047152
0.0 addVectorsInto(float *, float *, float *, int)
[7/8] Executing 'cuda_gpu_mem_time_sum' stats report
Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (n
33718457 2322 14521.3 2847.0 1822 79424 22092.
3 [CUDA Unified Memory memcpy HtoD]
   24.7 11068084 768 14411.6 3727.5 1343 80607 22789.
8 [CUDA Unified Memory memcpy DtoH]
[8/8] Executing 'cuda gpu mem size sum' stats report
Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB)
Operation
  402.653 2322 0.173 0.012 0.004 1.036 0.296 [CUDA Unifie
d Memory memcpy HtoD]
  134.218 768 0.175 0.033 0.004 1.044 0.301 [CUDA Unifie
d Memory memcpy DtoH]
Generated:
  /dli/task/report9.nsys-rep
   /dli/task/report9.sqlite
```

Exercise: Initialize Vector in Kernel

When nsys profile gives the amount of time that a kernel takes to execute, the host-to-device page faults and data migrations that occur during this kernel's execution are included in the displayed execution time.

With this in mind, refactor the initWith host function in your 01-vector-add.cu program to instead be a CUDA kernel, initializing the allocated vector in parallel on the GPU. After

successfully compiling and running the refactored application, but before profiling it, hypothesize about the following:

- How do you expect the refactor to affect UM memory migration behavior?
- How do you expect the refactor to affect the reported run time of addVectorsInto?

Once again, record the results. Refer to the solution if you get stuck.

In [21]: !nvcc -o initialize-in-kernel 01-vector-add/01-vector-add.cu -run

Device ID: 0 Number of SMs: 80 Success! All values calculated correctly.

In [22]: !nsys profile --stats=true ./initialize-in-kernel

Device ID: 0 Number of SMs: 80

Success! All values calculated correctly.

Generating '/tmp/nsys-report-cece.qdstrm'

- [3/8] Executing 'nvtx_sum' stats report

SKIPPED: /dli/task/report10.sqlite does not contain NV Tools Extension (NVTX) data.

[4/8] Executing 'osrt_sum' stats report

Time (%) Total ⁻ tdDev (ns)	Time (ns) Name	Num Calls	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	:
80.4	491524714	33	14894688.3	10068707.0	2040	100129715	
23316814.7 poll							
10.9	66394903	29	2289479.4	2064834.0	210	20431919	
4101101.0 sem_tir							
5.8	35429236	497	71286.2	10660.0	390	8054254	
474155.6 ioctl							
2.6	15882726	24	661780.3	5280.0	910	7235021	
1843539.9 mmap							
0.1	903494	27	33462.7	3830.0	2920	559689	
106096.4 mmap64							
0.1	461570	44	10490.2	9780.0	3430	23820	
3902.3 open64							
0.0	166323	4	41580.8	41585.5	33561	49591	
6901.5 pthread_cr	reate						
0.0	149143	29	5142.9	3880.0	1710	20591	
4554.2 fopen							
0.0	138292	11	12572.0	13870.0	1090	16850	
4599.5 write							
0.0	60191	26	2315.0	70.0	60	58301	
11419.0 fgets							
0.0	49300	11	4481.8	3490.0	1190	19150	
4986.3 munmap							
0.0	34720	52	667.7	460.0	160	5410	
756.5 fcntl	3 20		00.77			3.20	
0.0	32230	6	5371.7	5005.0	2400	8830	
2301.2 open	32230	· ·	33, 11,	3003.0	2.00	0030	
0.0	26010	22	1182.3	1075.0	530	3330	
639.5 fclose	20010	22	1102.5	1075.0	330	3330	
0.0	21601	14	1542.9	1290.0	880	3330	
764.1 read	21001	14	1342.3	1250.0	880	3330	
0.0	17031	5	3406.2	1640.0	100	9360	
3733.8 fread	1/031	5	3400.2	1040.0	100	9300	
0.0	11270	2	E62E 0	5625 A	3760	7510	
	11270	۷	5635.0	5635.0	3700	7310	
2651.7 socket	7071	1	7071 0	7071 0	7071	7071	
0.0	7871	1	7871.0	7871.0	7871	7871	
0.0 connect	6631		6624 0	6634 0	6621	6631	
0.0	6631	1	6631.0	6631.0	6631	6631	
0.0 pipe2							
0.0	5500	64	85.9	50.0	40	190	
46.9 pthread_mute							
0.0	2040	1	2040.0	2040.0	2040	2040	
0.0 bind							
0.0	1270	1	1270.0	1270.0	1270	1270	
0.0 listen							
0.0	310	1	310.0	310.0	310	310	
0.0 pthread_cond_	_broadcast						

[5/8] Executing 'cuda_api_sum' stats report Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) Min (ns) Max (ns) tdDev (ns) Name 120479863 3 40159954.3 52001.0 14260 120413602 71.6 69501700.2 cudaMallocManaged 19.0 31936600 2 15968300.0 15968300.0 859804 31076796 21366640.0 cudaDeviceSynchronize 15906725 3 5302241.7 4368363.0 4276671 7261691 1697552.1 cudaFree 0.0 60671 4 15167.8 12485.0 4291 31410 12593.2 cudaLaunchKernel [6/8] Executing 'cuda_gpu_kern_sum' stats report Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) St dDev (ns) Name 31079831 3 10359943.7 10519954.0 9974579 10585298 335331.0 initWith(float, float *, int) 856991 1 856991.0 856991.0 856991 856991 0.0 addArraysInto(float *, float *, float *, int) [7/8] Executing 'cuda_gpu_mem_time_sum' stats report Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (n s) Operation 100.0 11079729 768 14426.7 3791.5 1439 80736 22783. 6 [CUDA Unified Memory memcpy DtoH] [8/8] Executing 'cuda_gpu_mem_size_sum' stats report Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB) Operation _____ 134.218 768 0.175 0.033 0.004 1.044 0.301 [CUDA Unifie d Memory memcpy DtoH] Generated: /dli/task/report10.nsys-rep /dli/task/report10.sqlite

Asynchronous Memory Prefetching

A powerful technique to reduce the overhead of page faulting and on-demand memory migrations, both in host-to-device and device-to-host memory transfers, is called **asynchronous memory prefetching**. Using this technique allows programmers to asynchronously migrate unified memory (UM) to any CPU or GPU device in the system, in the background, prior to its use by application code. By doing this, GPU kernels and CPU function

performance can be increased on account of reduced page fault and on-demand data migration overhead.

Prefetching also tends to migrate data in larger chunks, and therefore fewer trips, than ondemand migration. This makes it an excellent fit when data access needs are known before runtime, and when data access patterns are not sparse.

CUDA Makes asynchronously prefetching managed memory to either a GPU device or the CPU easy with its cudaMemPrefetchAsync function. Here is an example of using it to both prefetch data to the currently active GPU device, and then, to the CPU:

Exercise: Prefetch Memory

At this point in the lab, your 01-vector-add.cu program should not only be launching a CUDA kernel to add 2 vectors into a third solution vector, all which are allocated with cudaMallocManaged, but should also be initializing each of the 3 vectors in parallel in a CUDA kernel. If for some reason, your application does not do any of the above, please refer to the following reference application, and update your own code bases to reflect its current functionality.

Conduct 3 experiments using cudaMemPrefetchAsync inside of your 01-vector-add.cu application to understand its impact on page-faulting and memory migration.

- What happens when you prefetch one of the initialized vectors to the device?
- What happens when you prefetch two of the initialized vectors to the device?
- What happens when you prefetch all three of the initialized vectors to the device?

Hypothesize about UM behavior, page faulting specifically, as well as the impact on the reported run time of the initialization kernel, before each experiment, and then verify by running nsys profile. Refer to the solution if you get stuck.

```
In [23]: !nvcc -o prefetch-to-gpu 01-vector-add/01-vector-add.cu -run
Success! All values calculated correctly.
In [24]: !nsys profile --stats=true ./prefetch-to-gpu
```

Success! All values calculated correctly. Generating '/tmp/nsys-report-4331.qdstrm'

[1/8] [=============100%] report11.nsys-rep

[3/8] Executing 'nvtx_sum' stats report

SKIPPED: /dli/task/report11.sqlite does not contain NV Tools Extension (NVTX) data.

[4/8] Executing 'osrt_sum' stats report

Time (%) Total tdDev (ns)	Time (ns) Name	Num Calls	Avg (ns)	Med (ns)	Min (ns)	Max (ns)
73.6 18396348.4 poll	361104340	29	12451873.8	10066695.0	2500	100130275
12.3		26	2323765.2	2060264.0	120	20471206
4221826.1 sem_ti 10.4	.medwait 51054033	500	102108.1	13980.0	400	13713676
748892.5 ioctl	15574635	24	C49042 1	4445 0	1000	7100400
3.2 1812329.2 mmap	15574635	24	648943.1	4445.0	1000	7180498
0.2 141381.4 mmap64	1114249	27	41268.5	4391.0	3490	744972
0.1	531899	44	12088.6	11595.0	5370	30771
4874.0 open64 0.0	197153	4	49288.3	47966.0	37860	63361
11429.1 pthread_		4	49200.3	4/300.0	37800	03301
0.0	188491	29	6499.7	4570.0	1860	28960
5975.2 fopen 0.0	147504	11	13409.5	15570.0	1150	17851
4675.3 write 0.0	59471	26	2287.3	90.0	70	57181
11196.2 fgets	33471	20	2207.5	50.0	70	37101
0.0 4196.0 open	51001	6	8500.2	8125.5	3870	15470
0.0	41721	12	3476.8	2945.5	1420	7620
1757.1 munmap 0.0	38100	52	732.7	540.0	160	6240
853.5 fcntl	30100	32	/32./	340.0	100	0240
0.0 767.6 fclose	35541	22	1615.5	1495.0	750	3400
0.0	20711	14	1479.4	1185.0	360	4481
1278.9 read	10020	-	2606.0	1010 0	00	10040
0.0 3965.3 fread	18030	5	3606.0	1810.0	90	10040
0.0	15970	2	7985.0	7985.0	4210	11760
5338.7 socket 0.0	11450	1	11450.0	11450.0	11450	11450
0.0 connect	6030	1	6020.0	6030.0	6020	6020
0.0 0.0 pipe2	6930	1	6930.0	6930.0	6930	6930
0.0	5550	64	86.7	50.0	40	180
46.3 pthread_mut 0.0	:ex_trу1оск 2720	1	2720.0	2720.0	2720	2720
0.0 bind						
0.0 0.0 listen	1380	1	1380.0	1380.0	1380	1380
0.0	280	1	280.0	280.0	280	280
0.0 pthread_cond 0.0	l_broadcast 190	1	190.0	190.0	190	190
0.0 pthread_mute		_			3	

```
[5/8] Executing 'cuda api sum' stats report
Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns)
                                             Min (ns) Max (ns)
dDev (ns)
            Name
-----
           128099253
                         3 42699751.0 29151.0 13870 128056232
3920881.3 cudaMallocManaged
            15568305 3 5189435.0 4225669.0 4137478 7205158
   10.6
1746224.2 cudaFree
            1687817
                        1 1687817.0 1687817.0 1687817 1687817
    1.1
0.0 cudaDeviceSynchronize
                         3 526682.0 531579.0 498928 549539
            1580046
25658.4 cudaMemPrefetchAsync
                         4 9470.3 5275.5 4280 23050
    0.0 37881
9080.2 cudaLaunchKernel
[6/8] Executing 'cuda_gpu_kern_sum' stats report
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev
850879
                         1 850879.0 850879.0 850879 850879
0.0 addVectorsInto(float *, float *, float *, int)
              847678 3 282559.3 283679.0 280127 283872
                                                             2
108.7 initWith(float, float *, int)
[7/8] Executing 'cuda_gpu_mem_time_sum' stats report
Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (n
          Operation
_______
                     768 14419.9 3791.5 1439 80640 22780.
  100.0
            11074504
4 [CUDA Unified Memory memcpy DtoH]
[8/8] Executing 'cuda_gpu_mem_size_sum' stats report
Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB)
Operation
        134.218 768 0.175 0.033 0.004 1.044 0.301 [CUDA Unifie
d Memory memcpy DtoH]
Generated:
  /dli/task/report11.nsys-rep
  /dli/task/report11.sqlite
```

Exercise: Prefetch Memory Back to the CPU

Add additional prefetching back to the CPU for the function that verifies the correctness of the addVectorInto kernel. Again, hypothesize about the impact on UM before profiling in nsys to confirm. Refer to the solution if you get stuck.

In [25]: !nvcc -o prefetch-to-cpu 01-vector-add/01-vector-add.cu -run

Success! All values calculated correctly.

In [26]: !nsys profile --stats=true ./prefetch-to-cpu

Success! All values calculated correctly. Generating '/tmp/nsys-report-28d8.qdstrm'

[2/8] [=============100%] report12.sqlite

[3/8] Executing 'nvtx_sum' stats report

SKIPPED: /dli/task/report12.sqlite does not contain NV Tools Extension (NVTX) data.

[4/8] Executing 'osrt_sum' stats report

Time (%) Total tdDev (ns)	Time (ns) Name	Num Calls	Avg (ns)	Med (ns)	Min (ns)	Max (ns)	:
	360997711		12448196.9	10071696.0	2470	100128328	
	58798296	26	2261472.9	2065228.5	300	20539378	
	47851040	500	95702.1	13090.5	400	9951564	
3.2 1821732.4 mmap	15651428	24	652142.8	6930.0	1100	7233319	
0.2 152984.9 mmap64	1180200	27	43711.1	4290.0	2920	805524	
0.1 5720.4 open64	524428	44	11918.8	10850.5	4900	36191	
0.0 9487.4 fopen	205142	29	7073.9	3650.0	1440	47760	
0.0 14762.6 pthread_	_, , , , ,	4	44188.3	46500.5	26481	57271	
0.0 5249.0 write	143303	11	13027.5	12600.0	1220	20661	
0.0 9413.4 munmap	77863	11	7078.5	4510.0	1940	34971	
0.0 10886.7 fgets	57841	26	2224.7	90.0	70	55601	
0.0 2741.0 open	46432	6	7738.7	8705.5	3310	10120	
0.0 905.2 fcntl	37910	52	729.0	540.0	150	6800	
0.0 873.9 fclose	33400	22	1518.2	1275.0	750	4800	
0.0 1197.9 read	21220	14	1515.7	1260.0	450	4500	
0.0 2246.4 fread	12661	5	2532.2	1790.0	80	6011	
0.0 2644.6 socket	11920	2	5960.0	5960.0	4090	7830	
0.0 0.0 connect	9540	1	9540.0	9540.0	9540	9540	
0.0 0.0 pipe2	7060	1	7060.0	7060.0	7060	7060	
0.0 66.3 pthread mut	6080 ex trylock	64	95.0	50.0	40	430	
0.0 0.0 listen	2450	1	2450.0	2450.0	2450	2450	
0.0 0.0 bind	2160	1	2160.0	2160.0	2160	2160	
0.0 0.0 pthread_cond	310 I broadcast	1	310.0	310.0	310	310	
	_						

^[5/8] Executing 'cuda_api_sum' stats report

```
Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) Min (ns) Max (ns)
dDev (ns)
            Name
3 41914283.0 70801.0 31130 125640918
   86.7
           125742849
                                                        7
2509395.6 cudaMallocManaged
10.8 15664497 3 5221499.0 4257210.0 4148718 7258569
1764988.2 cudaFree
   1.3 1917881 3 639293.7 526649.0 517588 873644
203003.9 cudaMemPrefetchAsync
                     1 1696098.0 1696098.0 1696098 1696098
   1.2 1696098
0.0 cudaDeviceSynchronize
                       4 11555.3 5695.0 4240 30591
   0.0
            46221
12709.9 cudaLaunchKernel
[6/8] Executing 'cuda_gpu_kern_sum' stats report
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev
(ns)
                 Name
____
             863806
                       1 863806.0 863806.0 863806 863806
   50 5
0.0 addVectorsInto(float *, float *, float *, int)
   49.5 845023 3 281674.3 282719.0 279552 282752 1
838.1 initWith(float, float *, int)
[7/8] Executing 'cuda_gpu_mem_time_sum' stats report
Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (n
          Operation
11082574 768 14430.4 3775.5 1439 80768 22792.
2 [CUDA Unified Memory memcpy DtoH]
[8/8] Executing 'cuda_gpu_mem_size_sum' stats report
Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB)
Operation
134.218 768 0.175 0.033 0.004 1.044 0.301 [CUDA Unifie
d Memory memcpy DtoH]
Generated:
  /dli/task/report12.nsys-rep
  /dli/task/report12.sqlite
```

After this series of refactors to use asynchronous prefetching, you should see that there are fewer, but larger, memory transfers, and, that the kernel execution time is significantly decreased.

Summary

At this point in the lab, you are able to:

- Use the Nsight Systems command line tool (**nsys**) to profile accelerated application performance.
- Leverage an understanding of **Streaming Multiprocessors** to optimize execution configurations.
- Understand the behavior of **Unified Memory** with regard to page faulting and data migrations.
- Use **asynchronous memory prefetching** to reduce page faults and data migrations for increased performance.
- Employ an iterative development cycle to rapidly accelerate and deploy applications.

In order to consolidate your learning, and reinforce your ability to iteratively accelerate, optimize, and deploy applications, please proceed to this lab's final exercise. After completing it, for those of you with time and interest, please proceed to the *Advanced Content* section.

Final Exercise: Iteratively Optimize an Accelerated SAXPY Application

A basic accelerated SAXPY (Single Precision a*x+b) application has been provided for you here. It currently works and you can compile, run, and then profile it with nsys profile below.

Record the runtime of the saxpy kernel without making any modifications and then work iteratively to optimize the application, using nsys profile after each iteration to notice the effects of the code changes on kernel performance and UM behavior.

Utilize the techniques from this lab. To support your learning, utilize effortful retrieval whenever possible, rather than rushing to look up the specifics of techniques from earlier in the lesson.

Your end goal is to profile an accurate saxpy kernel, without modifying N, to run in under 200,000 ns. Check out the solution if you get stuck, and feel free to compile and profile it if you wish.

```
In [27]: !nvcc -o saxpy 09-saxpy/01-saxpy.cu -run

c[0] = 5, c[1] = 5, c[2] = 5, c[3] = 5, c[4] = 5,
 c[4194299] = 5, c[4194300] = 5, c[4194301] = 5, c[4194302] = 5, c[4194303] = 5,

In [28]: !nsys profile --stats=true ./saxpy
```

2/1/24, 4:00 PM

190326

0.0

6760.4 fopen

Unified Memory c[0] = 5, c[1] = 5, c[2] = 5, c[3] = 5, c[4] = 5, c[4194299] = 5, c[4194300] = 5, c[4194301] = 5, c[4194302] = 5, c[4194303] = 5, Generating '/tmp/nsys-report-6f45.qdstrm' [2/8] [==============100%] report13.sqlite [3/8] Executing 'nvtx_sum' stats report SKIPPED: /dli/task/report13.sqlite does not contain NV Tools Extension (NVTX) data. [4/8] Executing 'osrt_sum' stats report Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) Min (ns) Max (ns) St dDev (ns) Name 71.9 291987274 26 11230279.8 10068171.0 2140 96765905 9297595.6 poll 59922913 500 119845.8 13410.0 440 14182854 14.8 793294.2 ioctl 59691.0 12.0 48810974 19 2568998.6 140 20476827 5511928.7 sem_timedwait 23 99773.8 0.6 2294798 6860.0 1160 754462 244946.9 mmap 1161698 27 43025.9 4250.0 0.3 3320 760462 144332.4 mmap64 3 0.1 599700 199900.0 209523.0 96942 293235 98499.7 sem_wait 535706 44 12175.1 11720.0 4840 0.1 34551 5042.9 open64 5 0.1 264804 52960.8 47950.0 39911 77811 15848.6 pthread_create 29

6563.0

4110.0

1671

34110

1

0.0 pthread_cond_broadcast

```
[5/8] Executing 'cuda_api_sum' stats report
```

```
Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) Min (ns) Max (ns) St
dDev (ns)
           Name
94.7 136303807
                   3 45434602.3 24350.0 18550 136260907
8657887.2 cudaMallocManaged
                   1 3797253.0 3797253.0 3797253 3797253
   2.6
           3797253
0.0 cudaDeviceSynchronize
   1.6
           2252198
                       3 750732.7 743992.0 710762
                                                 797444
43732.4 cudaFree
       1474414 3 491471.3 212223.0 7900 1254291
   1.0
668473.9 cudaMemPrefetchAsync
        36321
                    1 36321.0 36321.0 36321 36321
   0.0
0.0 cudaLaunchKernel
```

[6/8] Executing 'cuda_gpu_kern_sum' stats report

[7/8] Executing 'cuda gpu mem time sum' stats report

0.0 saxpy(int *, int *, int *)

```
Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Operation

99.6 3813656 24 158902.3 158784.0 158656 159232 230.

[CUDA Unified Memory memcpy HtoD]

0.4 14398 4 3599.5 3583.5 1407 5824 2459.

[CUDA Unified Memory memcpy DtoH]
```

[8/8] Executing 'cuda_gpu_mem_size_sum' stats report

```
Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB)

Operation

50.332 24 2.097 2.097 2.097 2.097 0.000 [CUDA Unified Memory memcpy HtoD]

0.131 4 0.033 0.033 0.004 0.061 0.033 [CUDA Unified Memory memcpy DtoH]
```

Generated:

/dli/task/report13.nsys-rep
/dli/task/report13.sqlite

```
In [ ]:
```