Also zuerst: Was hat man unter $\int_{a}^{b} f(x) dx$ zu verstehen?

Um dieses festzusetzen, nehmen wir zwischen a und b der Grösse nach auf einander folgend, eine Reihe von Werthen $x_1, x_2, \ldots, x_{n-1}$ an und bezeichnen der Kürze wegen x_1 – a durch δ_1 , x_2 – x_1 durch δ_2 , . . . , b – x_{n-1} durch δ_n und durch ε einen positiven ächten Bruch. Es wird alsdann der Werth der Summe

$$S = \delta_1 f(\alpha + \varepsilon_1 \delta_1) + \delta_2 f(x_1 + \varepsilon_2 \delta_2) + \delta_3 f(x_2 + \varepsilon_3 \delta_3) + \cdots + \delta_n f(x_{n-1} + \varepsilon_n \delta_n)$$

von der Wahl der Intervalle δ und der Grössen ϵ abhängen. Hat sie nun die Eigenschaft, wie auch δ und ϵ gewählt werden mögen, sich einer festen Grenze ϵ unendlich zu nähern, sobald sämmtliche δ unendlich klein werden, so heisst dieser Werth $\int_a^b f(\mathbf{x}) d\mathbf{x}$.

abcdefohüklmnopgrstuvwxyz ABCDEFGhT/kLMNOPQRSTUVWXYZ

This example uses:

\usepackage[T1]{fontenc}
\usepackage{aurical}
\renewcommand{\rmdefault}{AuriocusKalligraphicus}
\usepackage[symbolgreek]{mathastext}

Typeset with mathastext 1.12b (2011/02/09).