(d) Given that the roots of the equation; $x^2 - bx + c = 0$ are $\sqrt{\alpha}$ and $\sqrt{\beta}$. Show any

(i)
$$\propto +\beta = b^2 - 2c$$

(4)

(ii)
$$\propto^2 + \beta^2 = (b^2 - 2c - \sqrt{2}c)(b^2 - 2c + \sqrt{2}c)$$

2. (a) Find the solution set for which $\log_2 x - \log_x 4 \le 1$.

(b) Solve the simultaneous equations;
$$2a - 3b + c = 10$$
, $a + 4b + 2c + 3 = 0$, $5a - 2b - c = 7$

(c) A geometric progression has the first term 10 and sum to infinity of 12.5. How many terms of the progression are needed to make a sum which exceeds 10?

- (d) Given that the equations $y^3 2y + 4 = 0$ and $y^2 + y + c = 0$ have a common root, show that $c^3 + 4c^2 + 14c + 20 = 0$.
- 3. (a) Simplify $(2+5i)^2 + 5\left(\frac{7+2i}{3-4i}\right) i(4-6i)$ expressing your answer in the form a+bi.
 - (b) The roots of the equation $3x^2 + 2x 5 = 0$ are \propto and β . Find the value of $\propto^4 + \beta^4$.
 - (c) Solve the equation $\sqrt{x+5} + \sqrt{x+21} = \sqrt{6x+40}$.
 - (d) Given that $\log_5 21 = m$ and $\log_9 75 = n$, show that $\log_5 7 = \frac{1}{2n-1}(2nm m 2)$
- 4. (a) Expand $(1-x)^{\frac{1}{3}}$ as far as the term in x^3 . Use your expansion to deduce $\sqrt[3]{24}$ correct to three s.f.
- (b) In the expansion of $(1 + ax)^n$, the first three terms are $1 \frac{5}{2}x + \frac{75}{8}x^2$. Find n and state the range of values for which the expansion is valid.

PREPARED BY MR MUGERWA FRED 0778081136 / 0700863565 Page 1 of 6