Supervised Learning

Unsupervised Learning

Supervised Learning and **Unsupervised Learning** are essentially just two broad areas within Machine Learning that are applied to solve tasks with slightly different end-goals

It is important to understand the difference, as well as which algorithms are useful for tasks that fall into each area

SUPERVISED

LEARNING

SUPERVISED LEARNING

In Supervised Learning, we have input data...

SUPERVISED LEARNING

and we have output data...

This output data is **known**, or **labelled**. A supervised Machine Learning algorithm looks to find generalised relationships that link the input data to the output data...

SUPERVISED LEARNING

We save these relationships as a model...

...meaning that when we are presented with...

SUPERVISED LEARNING

...an unknown input in the future...

SUPERVISED LEARNING

...the model can assess the input, apply what it has learned...

...and provide a **prediction** of what the output might be!

SUPERVISED LEARNING

Supervised Learning will commonly be applied to **Regression** tasks (predicting a number) or **Classification** tasks (predicting a label or type)

Regression, Logistic Regression,
Decision Trees & Random Forests.
Artificial & Convolutional Neural
Networks are also often applied to
Supervised Learning tasks!

UNSUPERVISED

LEARNING

UNSUPERVISED LEARNING

In Unsupervised Learning, we essentially just have input data - nothing is pre-labelled!

The goal in this scenario is for the algorithm to find...

UNSUPERVISED LEARNING

...hidden structures and patterns in the data...

...often based upon how similar or dissimilar data-points are to each other.

SUPERVISED LEARNING

Unsupervised Learning will commonly be applied for Clustering, Dimensionality Reduction, or Association tasks

Examples of these algorithms are **k-means**, **DBSCAN**, **Apriori**, and **Principal Component Analysis**!