(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-335153 (P2002-335153A)

(43)公開日 平成14年11月22日(2002.11.22)

(51) Int.Cl.7	識別配号			テーマコート*(参考)	
HO3K 19/0175	5	G 0 2 F	1/133	505	2H093
G02F 1/133	505	G09G	3/20	622E	5 C 0 0 6
G 0 9 G 3/20	6 2 2			623H	5 C 0 8 0
	6 2 3		3/30	Н	5 J O 5 6
3/30		•	3/36		
	宋韶奎書	未請求 請求	質の数20 OL	(全 21 頁)	最終頁に続く
(21)出願番号	特願2001-141347(P2001-141347)	(71) 出願人 000153878			
(22)出顧日	平成13年5月11日(2001.5.11)	株式会社半導体エネルギー研究所 神奈川県厚木市長谷398番地			
		(72)発明者	神奈川県厚フ	大市長谷398番場 ドー研究所内	18 株式会社半
•		(72)発明者	長尾 祥		
				k市長谷398番月 ドー研究所内	18 株式会社半
		(72)発明者	神奈川県厚っ	大市長谷398番以 ドー研究所内	也 株式会社半
			マグラー イング・	r — Ψ τΣωτιν 1	最終頁に続く

(54) 【発明の名称】 パルス出力回路、シフトレジスタ、および表示装置

(57)【要約】

【課題】 一導電型のTFTによって構成され、かつ出力信号の振幅を正常に得られる表示装置の駆動回路を提供する。

「解決手段」 TFT101、104にパルスが入力されてONし、ノードαの電位が上昇した後、VDD-VthNとなったところで浮遊状態となる。よってTFT105がONし、クロック信号がHiとなるのに伴って出力ノードの電位が上昇する。一方、TFT105のゲート電極の電位は、出力ノードの電位上昇に伴い、容量107の働きによってさらに上昇し、VDD+VthNより高くなる。よって出力ノードの電位は、TFT105のしきい値によって電圧降下することなくVDDまで上昇する。その後、次段出力がTFT102、103に入力されてONし、ノードαの電位は下降してTFT105がOFFする。同時にTFT106がONし、出力ノードの電位はLoとなる。

【特許請求の範囲】

【請求項1】入力電極が第1の入力信号線と電気的に接続された、第1のトランジスタと、

入力電極が第1の電源と電気的に接続された、第2のトランジスタと、

第1の振幅補償回路と、

第2の振幅補償回路と、

容量とを有するバルス出力回路であって、

前記第1のトランジスタと前記第2のトランジスタとはいずれも同一導電型であり、

前記第1のトランジスタの出力電極と、前記第2のトランジスタの出力電極と、前記容量の第1の端子とは、いずれも出力信号線と電気的に接続され、

前記第1のトランシスタのゲート電極と、前記容量の第 2の端子とは電気的に接続され、

前記第1のトランジスタのゲート電極と、前記第1の振幅補償回路の出力部とは電気的に接続され、

前記第2のトランジスタのゲート電極と、前記第2の振幅補償回路の出力部とは電気的に接続され、

第2の信号入力部と、第3の信号入力部とは、それぞれ 20 前記第1の振幅補償回路の第1の入力部および第2の入 力部と電気的に接続され、

前記第2の信号入力部と、前記第3の信号入力部とは、 それぞれ前記第2の振幅補償回路の第1の入力部および 第2の入力部と電気的に接続されていることを特徴とす るパルス出力回路。

【請求項2】入力電極が第1の入力信号線と電気的に接続された、第1のトランジスタと、

入力電極が第1の電源と電気的に接続された、第2のト ランジスタと、

振幅補償回路と、

容量とを有するパルス出力回路であって、

前記第1のトランジスタと前配第2のトランジスタとは いずれも同一導電型であり、

前記第1のトランジスタの出力電極と、前記第2のトランジスタの出力電極と、前記容量の第1の端子とは、いずれも出力信号線と電気的に接続され、

前記第2のトランジスタのゲート電極と、前記第2の振幅補償回路の出力部とは電気的に接続され、

前記第1のトランシスタのゲート電極と、前記振幅補償 40 回路の出力部とは電気的に接続され、

第2の信号入力部と、第3の信号入力部とは、それぞれ前記振幅補償回路の第1の入力部および第2の入力部と電気的に接続され、

前記第2のトランジスタのゲート電極は、前記第3の入力信号線と電気的に接続されていることを特徴とするパルス出力回路。

【請求項3】入力電極が第1の入力信号線と電気的に接続された、第1のトランジスタと、

入力電極が第1の電源と電気的に接続された、第2のト 50

ランジスタと、

入力電極が第2の電源と電気的に接続された、第3のトランジスタと、

入力電極が第1の電源と電気的に接続された、第4のトランシスタと、

入力電極が第2の電源と電気的に接続された、第5のトランジスタと、

入力電極が第1の電源と電気的に接続された、第6のトランジスタと、

.0 容量とを有するパルス出力回路であって、

前記第1乃至第6のトランジスタはいずれも同一導電型 であり、

前記第1のトランジスタの出力電極と、前記第2のトランジスタの出力電極と、前記容量の第1の端子とは、いずれも出力信号線と電気的に接続され、

前記第3のトランジスタの出力電極と、前記第4のトランジスタの出力電極と、前記第1のトランジスタのゲート電極とは、いずれも前記容量の第2の端子と電気的に接続され、

前記第5のトランジスタの出力電極と、前記第6のトランジスタの出力電極とは、いずれも前記第2のトランジスタのゲート電極と電気的に接続され、

前記第3のトランジスタのゲート電極と、前記第6のトランジスタのゲート電極とは、いずれも第2の入力信号線と電気的に接続され、

前記第4のトランジスタのゲート電極と、前記第5のトランジスタのゲート電極とは、いずれも第3の入力信号線と電気的に接続されていることを特徴とするバルス出力回路。

30 【請求項4】入力電極が第1の入力信号線と電気的に接続された、第1のトランジスタと、

入力電極が第1の電源と電気的に接続された、第2のトランジスタと、

入力電極が第2の電源と電気的に接続された、第3のト ランジスタと

入力電極が第1の電源と電気的に接続された、第4のトランジスタと

容量とを有するパルス出力回路であって、

前記第1乃至第4のトランジスタはいずれも同一導電型 であり、

前記第1のトランジスタの出力電極と、前記第2のトランジスタの出力電極と、前記容量の第1の端子とは、いずれも出力信号線と電気的に接続され、

前記第3のトランジスタの出力電極と、前記第4のトランジスタの出力電極と、前記第1のトランジスタのゲート電極とは、いずれも前記容量の第2の端子と電気的に接続され、

前記第3のトランジスタのゲート電極は、第2の入力信 号線と電気的に接続され、

0 前記第2のトランジスタのゲート電極と、前記第4のト

3

ランジスタのゲート電極とは、いずれも第3の入力信号 線と電気的に接続されていることを特徴とするパルス出 力回路。

【 請求項 5 】 入力電極が第 1 の入力信号線と電気的に接続された、第 1 のトランジスタと、

入力電極が第1の電源と電気的に接続された、第2のトランジスタと、

入力電極が第2の電源と電気的に接続された、第3のト ランジスタと、

入力電極が第1の電源と電気的に接続された、第4のト 10 ランジスタと、

入力電極が第2の電源と電気的に接続された、第5のト ランジスタと、

入力電極が第1の電源と電気的に接続された、第6のトランジスタと、

入力電極が第2の電源と電気的に接続された、第7のト ランジスタと、

入力電極が第1の電源と電気的に接続された、第8のトランジスタと、

容量とを有するバルス出力回路であって、

前記第1乃至第8のトランジスタはいずれも同一導電型 であり

前記第1のトランジスタの出力電極と、前記第2のトランジスタの出力電極と、前記容量の第1の端子とは、いずれも出力信号線と電気的に接続され、

前記第3のトランジスタの出力電極と、前記第4のトランジスタの出力電極と、前記第8のトランジスタの出力電極と、前記第1のトランジスタのゲート電極とは、いずれも前記容量の第2の端子と電気的に接続され、

前記第5のトランジスタの出力電極と、前記第6のトラ 30 ンジスタの出力電極と、前記第7のトランジスタの出力 電極とは、いずれも前記第2のトランジスタのゲート電 極と電気的に接続され、

前記第3のトランジスタのゲート電極と、前記第8のトランジスタのゲート電極とは、いずれも第2の入力信号 線と電気的に接続され、

前記第4のトランジスタのゲート電極と、前記第5のトランジスタのゲート電極とは、いずれも第3の入力信号線と電気的に接続され、

前記第7のトランジスタのゲート電極と、前記第8のトランジスタのゲート電極とは、いずれも第4の入力信号線と電気的に接続されていることを特徴とするパルス出力回路。

【請求項6】入力電極が第1の入力信号線と電気的に接続された、第1のトランジスタと、

入力電極が第1の電源と電気的に接続された、第2のトランジスタと、

入力電極が第2の電源と電気的に接続された、第3のト ランジスタと

入力電極が第1の電源と電気的に接続された、第4のト

ランジスタと、

入力電極が第2の電源と電気的に接続された、第5のトランジスタと、

入力電極が第1の電源と電気的に接続された、第6のトランジスタと、

容量と、

走査方向切替回路とを有するパルス出力回路であって、 前記第1乃至第6のトランジスタはいずれも同一導電型 であり、

前配第1のトランジスタの出力電極と、前配第2のトランジスタの出力電極と、前配容量の第1の端子とは、いずれも出力信号線と電気的に接続され、

前記第3のトランジスタの出力電極と、前記第4のトランジスタの出力電極と、前記第1のトランジスタのゲート電極とは、いずれも前記容量の第2の端子と電気的に接続され、

前記第5のトランジスタの出力電極と、前記第6のトランジスタの出力電極とは、いずれも前記第2のトランジスタのゲート電極と電気的に接続され、

20 前記第3のトランジスタのゲート電極と、前記第6のトランジスタのゲート電極とは、いずれも前記走査方向切替回路を介して、第2の入力信号線および第3の入力信号線と電気的に接続され、

前記第4のトランジスタのゲート電極と、前記第5のトランジスタのゲート電極とは、いずれも前記走査方向切替回路を介して、前記第2の入力信号線および前記第3の入力信号線と電気的に接続され、前記走査方向切替回路が第1の状態のとき、前記第3のトランジスタのゲート電極と、前記第6のトランジスタのゲート電極とが、

30 前記第2の入力信号線と導通し、かつ前記第3の入力信号線と非導通となり、前記第4のトランジスタのゲート電極と、前記第5のトランジスタのゲート電極とが、前記第3の入力信号線と導通し、かつ前記第2の入力信号線と非導通となり、前記第3のトランジスタのゲート電極とが、前記第3の入力信号線と導通し、かつ前記第2の入力信号線と非導通となり、前記第4のトランジスタのゲート電極と、前記第5のトランジスタのゲート電極とが、前記第2の入力信号線と導通し、かつ前記第3の入力信号線と非導通となるとを特徴とするバルス出力回路。

【請求項7】入力電極が第1の入力信号線と電気的に接続された、第1のトランジスタと、

入力電極が第1の電源と電気的に接続された、第2のトランジスタと、

入力電極が第2の電源と電気的に接続された、第3のトランジスタと、

入力電極が第1の電源と電気的に接続された、第4のトランジスタと、

50 容量と、

走査方向切替回路とを有するパルス出力回路であって、 前記第1乃至第4のトランジスタはいずれも同一導電型 であり、

前記第1のトランジスタの出力電極と、前記第2のトランジスタの出力電極と、前記容量の第1の端子とは、いずれも出力信号線と電気的に接続され、

前記第3のトランジスタの出力電極と、前記第4のトランジスタの出力電極と、前記第1のトランジスタのゲート電極とは、いずれも前記容量の第2の端子と電気的に接続され、

前記第3のトランジスタのゲート電極は、前記走査方向 切替回路を介して、第2の入力信号線および第3の入力 信号線と電気的に接続され、

前記第2のトランジスタのゲート電極と、前記第4のトランジスタのゲート電極とは、いずれも前記走査方向切替回路を介して、前記第2の入力信号線および前記第3の入力信号線と電気的に接続され、

前記走査方向切替回路が第1の状態のとき、前記第3のトランジスタのゲート電極が前記第2の入力信号線と導通し、かつ前記第3の入力信号線と非導通となり、前記 20 第2のトランジスタのゲート電極と、前記第4のトランジスタのゲート電極とが前記第3の入力信号線と導通し、かつ前記第2の入力信号線と非道通となり、

前記走査方向切替回路が第2の状態のとき、前記第3のトランジスタのゲート電極が前記第3の入力信号線と導通し、かつ前記第2の入力信号線と非導通となり、前記第2のトランジスタのゲート電極と、前記第4のトランジスタのゲート電極とが前記第2の入力信号線と導通し、かつ前記第3の入力信号線と非導通となることを特徴とするパルス出力回路。

【請求項8】入力電極が第1の入力信号線と電気的に接続された、第1のトランジスタと、

入力電極が第2の電源と電気的に接続された、第3のトランジスタと、

入力電極が第1の電源と電気的に接続された、第4のトランジスタと、

入力電極が第2の電源と電気的に接続された、第5のトランジスタと、

入力電極が第1の電源と電気的に接続された、第6のトランジスタと、

入力電極が第2の電源と電気的に接続された、第7のトランジスタと、

入力電極が第1の電源と電気的に接続された、第8のトランジスタと、

容量と、走査方向切替回路とを有するパルス出力回路で ホップ

前記第1乃至第8のトランジスタはいずれも同一導電型 であり、 前記第1のトランジスタの出力電極と、前記第2のトランジスタの出力電極と、前記容量の第1の端子とは、いずれも出力信号線と電気的に接続され、

前記第3のトランジスタの出力電極と、前記第4のトランジスタの出力電極と、前記第8のトランジスタの出力 電極と、前記第1のトランジスタのゲート電極とは、いずれも前記容量の第2の端子と電気的に接続され、

前記第5のトランジスタの出力電極と、前記第6のトランジスタの出力電極と、前記第7のトランジスタの出力 10 電極とは、いずれも前記第2のトランジスタのゲート電極と電気的に接続され、

前記第3のトランジスタのゲート電極と、前記第6のトランジスタのゲート電極とは、いずれも前記走査方向切替回路を介して、第2の入力信号線および第3の入力信号線と電気的に接続され、

前記第4のトランジスタのゲート電極と、前記第5のトランジスタのゲート電極とは、いずれも前記走査方向切替回路を介して、前記第2の入力信号線および前記第3の入力信号線と電気的に接続され、

前記第7のトランジスタのゲート電極と、前記第8のト ランジスタのゲート電極とは、いずれも第4の入力信号 線と電気的に接続され、前配走査方向切替回路が第1の 状態のとき、前記第3のトランジスタのゲート電極と、 前記第6のトランジスタのゲート電極とが、前記第2の 入力信号線と導通し、かつ前記第3の入力信号線と非導 通となり、前記第4のトランジスタのゲート電極と、前 記第5のトランジスタのゲート電極とが、前記第3の入 力信号線と導通し、かつ前記第2の入力信号線と非導通 となり、前記走査方向切替回路が第2の状態のとき、前 30 記第3のトランジスタのゲート電極と、前記第6のトラ ンジスタのゲート電極とが、前配第3の入力信号線と導 通し、かつ前記第2の入力信号線と非導通となり、前記 第4のトランジスタのゲート電極と、前記第5のトラン ジスタのゲート電極とが、前記第2の人力信号線と導通 し、かつ前記第3の入力信号線と非導通となることを特 徴とするパルス出力回路。

【請求項9】請求項8において、

前記走査方向切替回路は、入力電極が前記第2の入力信号線と電気的に接続された第7のトランジスタと、入力電極が前記第2の入力信号線と電気的に接続された第8のトランジスタと、入力電極が前記第3の入力信号線と電気的に接続された第9のトランジスタと、入力電極が前記第3の入力信号線と電気的に接続された第10のトランジスタとを有し、前記第7乃至第10のトランジスタはいずれも前記第1乃至第6のトランジスタと同一導電型であり。

前記第7のトランジスタの出力電極と、前記第9のトランジスタの出力電極と、前記第3のトランジスタのゲート電極とは、いずれも前記第6のトランジスタのゲート電極と電気的に接続され、

前記第8のトランジスタの出力電極と、前記第10のトランジスタの出力電極と、前記第4のトランジスタのゲート電極とは、いずれも前記第5のトランジスタのゲート電極と電気的に接続され、

前記第7のトランジスタのゲート電極と、前記第10の トランジスタのゲート電極とは、いずれも第4の入力信 号線と電気的に接続され、

前記第8のトランジスタのゲート電極と、前記第8のトランジスタのゲート電極とは、いずれも第5の入力信号 線と電気的に接続され、

前記第4の入力信号線に、走査方向切替信号が入力され、前記第5の入力信号線に、前記走査方向切替信号の反転信号が入力されるとき、前記第7のトランジスタと、前記第10のトランジスタとがそれぞれ導通し、かつ前記第8のトランジスタと、前記第9のトランジスタとがそれぞれ非導通となり、

前記第5の入力信号線に、前記走査方向切替信号が入力され、前記第4の入力信号線に、前記走査方向切替信号の反転信号が入力されるとき、前記第8のトランジスタと、前記第9のトランジスタとがそれぞれ導通し、かつ 20 前記第7のトランジスタと、前記第10のトランジスタとがそれぞれ非導通となることを特徴とするパルス出力回路。

【請求項10】請求項7において、

前記走査方向切替回路は、入力電極が前記第2の入力信号線と電気的に接続された第5のトランジスタと、入力電極が前記第2の入力信号線と電気的に接続された第6のトランジスタと、入力電極が前記第3の入力信号線と電気的に接続された第7のトランジスタと、入力電極が前記第3の入力信号線と電気的に接続された第8のトラ 30ンジスタとを有し、前記第5乃至第8のトランジスタはいずれも前記第1乃至第4のトランジスタと同一導電型であり、

前記第5のトランジスタの出力電極と、前記第7のトランジスタの出力電極とは、いずれも前記第3のトランジスタのゲート電極と電気的に接続され、

前記第8のトランジスタの出力電極と、前記第8のトランジスタの出力電極と、前記第2のトランジスタのゲート電極とは、いずれも前記第4のトランジスタのゲート電極と電気的に接続され、

前記第5のトランジスタのゲート電極と、前記第8のトランジスタのゲート電極とは、いずれも第4の入力信号線と電気的に接続され、

前記第6のトランジスタのゲート電極と、前記第7のトランジスタのゲート電極とは、いずれも第5の入力信号 線と電気的に接続され、

前記第4の入力信号線に、走査方向切替信号が入力され、前記第5の入力信号線に、前記走査方向切替信号の 反転信号が入力されるとき、前記第5のトランジスタ と、前記第8のトランジスタとがそれぞれ導通し、かつ 50

前記第6のトランジスタと、前記第7のトランジスタと がそれぞれ非導通となり、

前記第5の入力信号線に、前記走査方向切替信号が入力され、前記第4の入力信号線に、前記走査方向切替信号の反転信号が入力されるとき、前記第6のトランジスタと、前記第7のトランジスタとがそれぞれ導通し、かつ前記第5のトランジスタと、前記第8のトランジスタとがそれぞれ非導通となることを特徴とするバルス出力回路。

10 【請求項11】請求項8において、

前記走査方向切替回路は、入力電極が前記第2の入力信号線と電気的に接続された第9のトランジスタと、入力電極が前記第2の入力信号線と電気的に接続された第10のトランジスタと、入力電極が前記第3の入力信号線と電気的に接続された第11のトランジスタと、入力電極が前記第3の入力信号線と電気的に接続された第12のトランジスタとを有し、

前記第9のトランジスタの出力電極と、前記第110トランジスタの出力電極と、前記第3のトランジスタのゲート電極とは、いずれも前記第8のトランジスタのゲート電極と電気的に接続され、

前記第10のトランジスタの出力電極と、前記第12のトランジスタの出力電極と、前記第4のトランジスタの ゲート電極とは、いずれも前記第5のトランジスタのゲート電極と電気的に接続され、

前記第9のトランジスタのゲート電極と、前記第12の トランジスタのゲート電極とは、いずれも第5の入力信 号線と電気的に接続され、

前記第10のトランジスタのゲート電極と、前記第11 のトランジスタのゲート電極とは、いずれも第6の入力 信号線と電気的に接続され、

前記第4の入力信号線に、走査方向切替信号が入力され、前記第5の入力信号線に、前記走査方向切替信号の 反転信号が入力されるとき、前記第9のトランジスタと、前記第12のトランジスタとがそれぞれ導通し、かつ前記第10のトランジスタと、前記第11のトランジスタとがそれぞれ非導通となり、

前記第5の入力信号線に、前記走査方向切替信号が入力され、前記第4の入力信号線に、前記走査方向切替信号の反転信号が入力されるとき、前記第10のトランジスタと、前記第11のトランジスタとがそれぞれ導通し、かつ前記第9のトランジスタと、前記第12のトランジスタとがそれぞれ非導通となることを特徴とするパルス出力回路。

【請求項12】請求項1乃至請求項8のいずれか1項に おいて、

前記容量は、前記第1のトランジスタのゲート電極と、 前記第1のトランジスタの出力電極との間の容量を用い ることを特徴とするパルス出力回路。

【請求項13】請求項1乃至請求項8のいずれか1項に

おいて、

前記容量は、活性層材料、ゲート電極を構成する材料、 あるいは配線材料のうちいずれか2つの材料を用いて構 成された容量であることを特徴とするパルス出力回路。

【請求項14】請求項1乃至請求項13のいずれか1項 に記載の前記パルス出力回路をn段(nは自然数、1<n)用いてなるシフトレジスタであって、

第1段目の前記パルス出力回路において、

前記第1の入力信号線には、クロック信号もしくはクロック反転信号が入力され、

前記第2の入力信号線には、スタートバルスが入力され、

前記第3の入力信号線には、第2段目の前記パルス出力 回路からの出力信号が入力され、

第m段目(mは自然数、2≤m≤n-1)の前記パルス 出力回路において、

前記第1の入力信号線には、クロック信号もしくはクロック反転信号が入力され、

前記第2の入力信号線には、第m-1段目の前記パルス 出力回路からの出力信号が入力され、

前記第3の入力信号線には、第m+1段目の前記パルス 出力回路からの出力信号が入力され、

第n段目の前記パルス出力回路において、

前記第1の入力信号線には、クロック信号もしくはクロック反転信号が入力され、

前記第2の入力信号線には、第n-1段目の前記パルス 出力回路からの出力信号が入力され、

前記第3の入力信号線には、第1の電源、リセット信号、もしくは前記スタートバルスのいずれか1つが入力され、前記クロック信号あるいは前記クロック反転信号 30と、前記スタートバルスとに伴って、順次サンブリングバルスを出力することを特徴とするシフトレジスタ。

【請求項15】請求項1乃至請求項13のいずれか1項 において、

前記導電型とは、Nチャネル型であることを特徴とするパルス出力回路。

【請求項16】請求項1乃至請求項13のいずれか1項 において、

前記導電型とは、Pチャネル型であることを特徴とする パルス出力回路。

【請求項17】請求項14において、

前記導電型とは、Nチャネル型であることを特徴とする シフトレジスタ。

【請求項18】請求項14において、

前記導電型とは、Pチャネル型であることを特徴とする シフトレジスタ。

【請求項19】請求項1乃至請求項18のいずれか1項 に記載のパルス出力回路あるいはシフトレジスタを用い たことを特徴とする表示装置。

【請求項20】請求項19に記載の表示装置を用いたと 50 用い、Pチャネル型の場合は、電位の高い方をソース電

とを特徴とする電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、バルス出力回路、シフトレジスタ、および表示装置に関する。なお本明細 書中、表示装置とは、画素に液晶素子を用いてなる液晶表示装置および、エレクトロルミネッセンス(EL)素子を始めとした自発光素子を用いてなる自発光表示装置を含むものとする。表示装置の駆動回路とは、表示装置に配置された画素に映像信号を入力し、映像の表示を行うための処理を行う回路を指し、シフトレジスタ、インバータ等を始めとするバルス出力回路や、アンブ等を始めとする増幅回路を含むものとする。

10

0002]

【従来の技術】近年、絶縁体上、特にガラス基板上に半 導体薄膜を形成した表示装置、特に薄膜トランジスタ (以下、TFTと表記)を用いたアクティブマトリクス 型表示装置の普及が進んでいる。TFTを使用したアク ティブマトリクス型表示装置は、マトリクス状に配置さ れた数十万から数百万の画素を有し、各画素に配置され たTFTによって各画素の電荷を制御することによって 映像の表示を行っている。

【0003】さらに最近の技術として、画素を構成する 画素TFTの他に、画素部の周辺領域にTFTを用いて 駆動回路を同時形成するポリシリコンTFTに関する技 術が発展してきており、装置の小型化、低消費電力化に 大いに貢献し、それに伴って、近年その応用分野の拡大 が著しいモバイル情報端末の表示部等に、表示装置は不 可欠なデバイスとなってきている。

【0004】一般的に、表示装置の駆動回路を構成する 回路としては、Nチャネル型TFTとPチャネル型TF Tを組み合わせたCMOS回路が一般的に使用されてい る。とこで、従来一般的に利用されているCMOS回路 の一例として、シフトレジスタを例に挙げる。図11

(A)は、従来より用いられているシフトレジスタの一例であり、点線枠1100で囲まれた部分が1段分のパルスを出力する回路である。図11(A)は3段分を抜き出して示している。1段分の回路は、クロックドインパータ1101、1103、およびインパータ1102 化よって構成されている。図11(B)に詳細な回路構造を示す。図11(B)において、TFT1104~1107によって、クロックドインパータ1101が構成され、TFT1108、1109によって、インパータ1102が構成され、TFT1110~1113によって、クロックドインパータ1103が構成される。

【0005】回路を構成するTFTは、ゲート電極、ソース電極、ドレイン電極の3電極を有する。一般的にCMOS回路において、Nチャネル型TFTは、電位の低い方をソース電極、電位の高い方をドレイン電極として

極、電位の低い方をドレイン電極として用いることが多いため、本明細書においてTFTの接続を説明する際、それらの混同を避けるため、ソース電極およびドレイン電極のうち一方を入力電極、他方を出力電極として表記している。

【0006】回路の動作について説明する。なお、TFTの動作については、ゲート電極に電位が与えられて不純物領域間にチャネルが形成され、導通している状態をON、不純物領域のチャネルが消失して非導通となった状態をOFFと表記する。

【0007】図11 (A) (B)、および図11 (C) に示したタイミングチャートを参照する。 TFT110 7、1104にはそれぞれクロック信号(以後CKと表 記)、クロック反転信号(以後CKBと表記)が入力さ れる。TFT1105、1106にはスタートパルス (以後SPと表記)が入力される。CKがHi電位、C KBがLo電位、SPがHi電位のとき、TFT110 6、1107がONし、Lo電位が出力されてTFT1 108、1109にて構成されるインバータに入力さ れ、反転されて出力ノード (SRoutl) にHi電位 20 が出力される。その後、SPがHi電位の状態でCKが Lo電位、CKBがHi電位になると、インバータ11 02 およびクロックドインパータ1103 によって構成 されたループにおいて、保持動作をとる。よって出力ノ ードにはHi電位が出力されつづける。次にCKがHi 電位、CKBがLo電位になると、再びクロックドイン バータ1101で書き込み動作をとる。このとき、既に SPはLo電位となっているので、出力ノードにはLo 電位が出力される。以後、CKがLo電位、CKBがH i電位となると再び保持動作をとり、このときの出力ノ 30 ードのLo電位は、インバータ1102およびクロック ドインバータ1103によって構成されたループにおい て保持される。

【0008】以上が1段分の動作である。次段は、C K、CKBの接続が逆になっており、上配とはクロック 信号の極性が逆の状態で同様の動作をする。これが交互 に繰り返され、以後同様に、図11(C)に示すように サンプリングバルスが順次出力される。

【0009】CMOS回路の特徴としては、論理が変わる(Hi電位からLo電位へ、あるいはLo電位からH 40 i電位へ)瞬間にのみ電流が流れ、ある論理の保持中には電流が流れない(実際には微小なリーク電流の存在があるが)ため、回路全体での消費電流を低く抑えることが可能な点が挙げられる。

[0010]

【発明が解決しようとする課題】ところで、液晶や自発 光素子を用いた表示装置の需要は、モバイル電子機器の 小型化、軽量化に伴って急速にその需要が増加している が、歩留まり等の面から、その製造コストを十分に低く 抑えることが難しい。今後の需要はさらに急速に増加す 50

12 ることは容易に予測され、そのため表示装置をより安価 に供給できるようにすることが望まれている。

【0011】絶縁体上に駆動回路を作製する方法としては、複数のフォトマスクを用いて、活性層、配線等のバターンを露光、エッチングを行って作りこんでいく方法が一般的であるが、このときの工程数の多さが製造コストに直接影響しているため、可能な限り少ない工程数で製造することが理想的である。そこで、従来CMOS回路によって構成されていた駆動回路を、Nチャネル型もしくはPチャネル型のいずれか一方の導電型のみのTFTを用いて構成することが出来れば、イオンドービング工程の一部を省略することが出来、さらにフォトマスクの枚数も削減することが出来る。

[0012]

【本発明以前の技術の問題点】図9(A)は、従来一般的に用いられているCMOSインバータ(I)と、一極性のみのTFTを用いて構成したインバータ(II)(II I)の例を示している。(II)はTFT負荷型のインバータ、(III)は抵抗負荷型のインバータである。以下に、それぞれの動作について述べる。

【0013】図9(B)は、インバータに入力する信号の波形を示している。ととで、入力信号振幅はVDD-VSS間(VSS<VDD)とする。ととではVSS=0[V]として考える。

【0014】回路動作について説明する。なお、説明を明確かつ簡単にするため、回路を構成するN型TFTのしきい値電圧は、そのばらつきがないものとして一律(VthN)とする。また、P型TFTについても同様に、一律(VthP)とする。

【0015】CMOSインバータに図9(B)のような信号が入力されると、入力信号の電位がHi電位のとき、P型TFT901はOFFし、N型TFT902がONすることにより、出力ノードの電位はLo電位となる。逆に、入力信号の電位がLo電位のとき、P型TFT901がONし、N型TFT902がOFFすることにより、出力ノードの電位はHi電位となる(図9(C))。

【0018】続いて、TFT負荷型インパータ(II)の動作について説明する。同じく図9(B)に示すような信号が入力される場合を考える。まず、入力信号がLo電位のとき、N型TFT904はOFFする。一方、負荷TFT903は常に飽和動作していることから、出力ノードの電位はHi電位方向に引き上げられる。一方、入力信号がHi電位のとき、N型TFT904はONする。ここで、負荷TFT903の電流能力よりも、N型TFT904の電流能力を十分に高くしておくことにより、出力ノードの電位はLo電位方向に引き下げられる。

【0017】抵抗負荷型インバータ(III) についても 同様に、N型TFT906のON抵抗値を、負荷抵抗9

14

05の抵抗値よりも十分に低くしておくことにより、入 力信号がHi電位のときは、N型TFT906がONす ることにより、出力ノードはLo電位方向に引き下げら れる。入力信号がLo電位のときは、N型TFT908 はOFFし、出力ノードはHi電位方向に引き上げられ

【0018】ただし、TFT負荷型インパータや抵抗負 荷型インバータを用いる際、以下のような問題点があ る。図9(D)は、TFT負荷型インバータの出力波形 を示したものであるが、出力がHi電位のときに、90 10 件を満たすことは出来ない。 7で示す分だけVDDよりも電位が低くなる。負荷TF T903において、出力ノード側の端子をソース、電源 VDD側の端子をドレインとすると、ゲート電極とドレ イン領域が接続されているので、とのときのゲート電極 の電位はVDDである。また、この負荷TFTがONし ているための条件は、(TFT903のゲートーソース 間電圧>VthN)であるから、出力ノードの電位は、 最大でも (VDD-VthN) までしか上昇しない。つ まり、907はVthNに等しい。さらに、負荷TFT 903とN型TFT904の電流能力の比によっては、 出力電位がLo電位のとき、908で示す分だけVSS よりも電位が高くなる。とれを十分にVSSに近づける ためには、負荷TFT903に対し、N型TFT904 の電流能力を十分に大きくする必要がある。同様に、図 9(E)は抵抗負荷型インバータの出力波形を示したも のであるが、負荷抵抗905の抵抗値とN型TFT90 6のON抵抗の比によっては、909で示す分だけ電位 が高くなる。つまり、ととに示した一極性のみのTFT を用いて構成したインバータを用いると、入力信号の振 幅に対し、出力信号の振幅減衰が生ずるととになる。 【0019】シフトレジスタのように、前段の出力パル スを次段に入力する構成の回路の場合。m段目→m+1 段目→m+2段目・・・と段を重ねるごとに、TFTの しきい値によって振幅の減衰が生じ、回路として機能し

【0020】本発明は、以上のような課題を鑑見てなさ れたものであり、一極性のみのTFTを用いて製造工程 を削減することにより低コストで作製が可能であり、か つ振幅減衰のない出力を得ることが出来るパルス出力回 路およびシフトレジスタを提供することを目的とする。 [0021]

【課題を解決するための手段】先程の図9(A)の(I I) に示したTFT負荷型インバータにおいて、出力信 号の振幅が正常にVDD-VSSを取るための条件を考 える。第1に、図10(A)のような回路において、出 力信号の電位がLo電位となるとき、その電位を十分に VSSに近づけるためには、電源VDD-出力ノード間 の抵抗値に対し、電源VSS-出力ノード間の抵抗値が 十分に低くなっていればよい。すなわち、N型TFT1 002がONしている期間、N型TFT1001がOF

Fしていればよい。第2に、出力信号の電位がHi電位 となるとき、その電位がVDDに等しくなるには、N型 TFT1001のゲートーソース間電圧の絶対値が、V thNを常に上回っていればよい。つまり、出力ノード のHi電位がVDDとなる条件を満たすには、N型TF T101のゲート電極の電位は (VDD+VthN) よ りも高くなる必要がある。回路に供給される電源はVD D、VSSの2種類のみであるから、VDDよりも電位 の高い第3の電源がない限り、従来の方法では、との条

【0022】そとで、本発明では以下のような手段を講 じた。図10(B)に示すように、N型TFT1001 のゲートーソース間に容量1003を設ける。N型TF T1001のゲート電極がある電位をもって浮遊状態と なったとき、出力ノードの電位を上昇させると、この容 重1003による容量結合によって、出力ノードの電位 上昇分に伴って、N型TFT1001のゲート電極の電 位も持ち上げられる。との効果を利用すれば、N型TF T1001のゲート電極の電位をVDDよりも高く(正 確には、VDD+VthNよりも高く) することが可能 となる。よって出力ノードの電位を十分にVDDまで引 き上げるととが可能となる。

【0023】なお、図10(B)において示した容量1 003は、TFT1001のゲート-ソース間に寄生す る容量を利用するようにしても良いし、実際に容量部分 を作製しても良い。容量部分を独立して作製する場合 は、活性層、ゲート材料、および配線材料のうちいずれ か2つを用いて、間に絶縁層を挟んだ構成として作製す るのが簡単であり、望ましいが、他の材料を用いて作製 30 しても構わない。

[0024]

【発明の実施の形態】図1は、本発明のパルス出力回路 の一形態である、ブートストラップ法を応用したシフト レジスタを示している。図1(A)に示したブロック図 において、100で示されるブロックが1段分のサンプ リングパルスを出力するパルス出力回路であり、図1 (A)のシフトレジスタはn段のバルス出力回路で構成 されている。クロック信号(以後CKと表記)、クロッ ク反転信号(以後CKBと表記)、スタートバルス(以 後SPと表記)が入力される。図1(B)に、ブロック 100の詳細な回路構成を示す。図1(B)において、 ブロック110は第1の振幅補償回路、ブロック120 は第2の振幅補償回路である。図1(C)にさらなる詳 細図を示す。図1(C)において、電源VDDに接続さ れたTFT101と、電源VSSに接続されたTFT1 02とを用いて第1の振幅補償回路が構成され、電源V DDに接続されたTFT103と、電源VSSに接続さ れたTFT104とを用いて第2の振幅補償回路が構成 されている。

【0025】図1に示す回路図および、図2に示すタイ

として用い、次の水平期間の直前に最終段バルス出力を 停止させている。

【0029】なお、本実施形態で示した振幅補償回路の 構成は一例であり、とれ以外の構成を用いていても良い

【0030】 この他の方法としては、図14(A)

(B) に示すように、リセット信号を用意して、帰線期間中に最終段の第3の入力信号線1401に入力することによって、パルス出力を停止する方法、あるいは図15(A)(B)に示すように、リセット用TFT1508、1509を用いて、リセット信号の入力があったとき、TFT1505のゲート電極の電位をLo電位としてOFFし、かつTFT1506のゲート電極電位をHi電位としてONさせるととによって、全段の出力をLo電位に固定するような方法などが挙げられる。とも、リセット信号の入力タイミングは、図14(B)に示したタイミングチャートと同様で良い。なお、図15(A)において、最終段のパルス出力回路の※で示される第3の入力信号線は、VSS側の電源電位に接続して、TFT1502、1503が常にOFFしているようにするのが望ましい。

【0031】また、特に図示していないが、図15に示した回路の場合、回路がサンプリングパルスの出力を開始する前、すなわち電源投入直後に、最初にリセット信号を入力することによって、全段での出力ノードの電位を確定(図15の回路の場合、全段の出力ノードがL0電位に確定)することが出来る。ダイナミック回路の場合、このような操作は安定して回路を動作させるためには有効である。

【0032】以上のような動作によって、一導電型のTFTのみを用いて構成した回路においても、高電位側の電源に接続されたTFTのしきい値の影響などに起因する振幅減衰を生ずることなく、入力信号に対して正常な振幅を有する出力信号を得ることが出来る。さらに本実施形態にて示した回路は、従来のCMOS回路と比較しても複雑な構成ではないことも大きなメリットであるといえる。

[0033]

【実施例】以下に本発明の実施例について記述する。

【0034】[実施例1]図3は、本発明の実施形態にて示したシフトレジスタに、走査方向反転機能を付加したものの例である。図3(A)において、図1(A)に示した回路と比較して、走査方向切替信号(LR)および走査方向切替反転信号(LRB)を追加している。

【0035】図3(B)は、図3(A)において、ブロック300で示される1段分のパルス出力回路の構成を詳細に示したものである。TFT301~306および容量307で構成されるパルス出力回路本体は、図1

- (B) に示したものと同様であるが、第2の入力信号線
- (2) および第3の入力信号線(3)と、パルス出力回

ミングチャートを用いて、回路の動作について説明す る。あるm段目(1 < m≤n)のパルス出力回路におい て、TFT101、104のゲート電極にはm-1段目 の出力パルスが入力されて(m=1、すなわち第1段目 の場合、SPが入力される)Hi電位となり、TFTI 01、104がONする(図2 201参照)。 これに より、ノードαの電位はVDD側に引き上げられ(図2) 202参照)、その電位がVDD-VthNとなった ところでTFT101がOFFし、浮遊状態となる。よ ってTFT105がONする。一方、TFT102、1 10 03のゲート電極にはとの時点ではパルスが入力されて おらず、Lo電位のままであるので、OFFしている。 よってTFT106のゲート電極の電位はLo電位であ り、OFFしているので、TFT105の不純物領域の 一端、すなわち第1の入力信号線(1)から入力される CKがHi電位となるのに伴い、出力ノードの電位がV DD側に引き上げられる(図2 203参照)。

【0026】とこで、TFT105のゲートと出力ノード間には、容量107が設けてあり、さらに今、ノードα、すなわちTFT105のゲート電極は浮遊状態にあ 20るため、出力ノードの電位が上昇するのに伴い、ブートストラップによってTFT105のゲート電極の電位はVDD-VthNからさらに引き上げられる。これにより、TFT105のゲート電極の電位は、VDD+VthNよりも高い電位を取る(図2 202参照)。よって出力ノードの電位は、TFT105のしきい値によって電位が低下することなく、完全にVDDまで上昇する(図2 203参照)。

【0027】同様にして、m+1段目においてはCKBに従ってパルスが出力される(図2204参照)。m+301段目の出力パルスは、m段目に帰還してTFT102、103のゲート電極に入力される。TFT102、103のゲート電極がHi電位となってONすることにより、ノードαの電位はVSS側に引き下げられてTFT105がOFFする。同時にTFT106のゲート電極の電位がHi電位となってONし、m段目の出力ノードの電位はLo電位となる。

【0028】以後、最終段まで同様の動作により、順次 VDD-VSS間の振幅を有するパルスが出力される。 最終段においては、図1(C)において第3の入力信号 40 線より入力されるべき次段出力パルスがないため、CK がそのまま出力されつづける。よって、最終段の出力は サンブリングパルスとして用いることは出来ないため、 実際に必要なサンブリングパルスの出力段数がn段であ るとき、シフトレジスタの段数をn段よりも多く設けて 最終段を含む余剰段をダミー段として扱えばよい。ただ し、最終段の出力は、次の水平期間までの間に何らかの 方法で停止させる必要があるが、図1に示した回路にお いては、第1段目に入力するスタートパルスを最終段の 第3の入力信号線にも入力することによって帰還パルス 50

路本体との間に、点線枠350で示される走査方向切替 回路を有する。本実施例で示している走査方向切替回路 は、TFT308~311を用いて構成され、アナログ スイッチとして機能する。

17

【0036】TFT301およびTFT304のゲート 電極は、図3(B)に示すように、TFT308を介し て第2の入力信号線(2)と接続され、TFT310を 介して第3の入力信号線(3)と接続されている。TF T302およびTFT303のゲート電極は、TFT3 09を介して第2の入力信号線(2)と接続され、TF 10 る、ソース信号線駆動回路1201の全体構成を示した T311を介して第3の入力信号線(3)と接続されて いる。TFT308およびTFT310のゲート電極に はLR信号が入力され、TFT309およびTFT31 1のゲート電極にはLRB信号が入力される。LRおよ びLRBは、排他的にHi電位もしくはLo電位をと り、したがって本実施例の走査方向切替回路は、次の2 つの状態をとる。

【0037】第1に、LRがHi電位、LRBがLo電 位のとき、TFT308およびTFT310がONし、 第2の入力信号線(2)と、TFT301 およびTFT 20 304のゲート電極が導通し、第3の入力信号線(3) と、TFT302およびTFT303のゲート電極が導 通する。第2に、LRがLo電位、LRBがHi電位の とき、TFT309およびTFT311がONし、第2 の入力信号線(2)と、TFT302およびTFT30 3のゲート電極が導通し、第3の入力信号線(3)と、 TFT301およびTFT304のゲート電極が導通す

【0038】すなわち、LRに信号が入力されてHi電 位となり、LRBがLo電位のとき、サンプリングパル 30 スの出力は1段目~2段目~・・・~最終段の順とな り、逆にLRがLo電位、LRBに信号が入力されてH i電位となるとき、サンプリングパルスの出力は最終段 ~・・・2段目~1段目の順となる。本発明においては 簡単な回路の追加によってこれらの機能を容易に付加出 来る。ことで、本実施例は回路をNチャネル型TFTを 用いて構成した場合であり、Pチャネル型TFTを用い て構成する場合は、LRに信号が入力された状態とはL o電位となった状態をいい、Hi電位のときは信号が入 力されていない状態である。

【0039】なお、本実施例で示した走査方向切替回路 は一例であり、他の構成によって同様の機能を付加して

【0040】[実施例2]本実施例においては、一極性の みのTFTを用いて表示装置を作製した例について説明

【0041】図12は、表示装置の概略図である。基板 1200上に、ソース信号線駆動回路1201、ゲート 信号線駆動回路1202および画素部1203を一体形 成にて作製している。画素部において、点線枠1210 50

で囲まれた部分が1画素である。図12の例では、液晶 表示装置の画素を示しており、1個のTFT(以後、画 素TFTと表記する)によって液晶素子の一方の電極に 印加される電荷の制御を行っている。ソース信号線駆動 回路1201、ゲート信号線駆動回路1202への信号 入力は、フレキシブルプリント基板(Flexible Print C ircuit: FPC) 1204を介して、外部より供給され

18

【0042】図4は、図12に示した表示装置におけ 図である。本ソース信号線駆動回路は、クロック信号用 レベルシフタ401、スタートパルス用レベルシフタ4 02、走査方向切替型シフトレジスタ403、バッファ 404、サンプリングスイッチ405を有しており、外 部から入力される信号は、クロック信号(CK)、クロ ック反転信号(CKB)、スタートパルス(SP)、走 査方向切替信号(LR、LRB)、アナログ映像信号 (Videol~Videol2)である。この中で、 CK、CKB、SPに関しては、外部から低電圧振幅の 信号として入力された直後、レベルシフタによって振幅 変換を受け、高電圧振幅の信号として駆動回路に入力さ れる。また、1段のシフトレジスタから出力されるサン プリングパルスは、サンプリングスイッチ405を駆動 するととによって、ソース信号線12列分のアナログ映 像信号を同時にサンプリングしている。

【0043】図5(A)は、クロック信号用レベルシフ タの(LS1)構成を示している。とれは1入力型のレ ベルシフタ回路を並列に配置(Stagel)し、バッ ファ段(Stage2~Stage4)の2入力を、そ れぞれ互いの出力を交互に入力する構成をとっている。 【0044】回路の動作について説明する。なお、図中 で用いている電源電位は、VDD1、VDD2、VSS の3電位であり、VSS<VDD1<VDD2である。 本実施例ではVSS=0[V]、VDD1=5[V]、VD D2=16[V]とした。また、図中、501、503、 508、508で示されるTFTはWゲート構造をとっ ているが、これらのTFTはシングルゲートであっても 良いし、3つ以上のゲート電極を有するマルチゲート機 造でも良い。他のTFTに関しても、ゲート電極の数に 40 よる制限はしない。

【0045】信号入力部1(1)より、VDD1-VS Sの振幅を有するCKが入力される。CKがHi電位の とき、TFT502、504がONし、TFT503の ゲート電極の電位がLo電位となってOFFする。よっ て出力ノードαにはLo電位が出力される。CKがLo 電位のとき、TFT502、504はOFFする。よっ て、飽和動作しているTFT501を通じて、TFT5 03のゲート電極電位はVDD2側に引き上げられ、そ の電位がVDD2-VthNとなったところでTFT5 01はOFFし、TFT503のゲート電極が浮遊状態

となる。これによりTFT503がONし、出力ノード αの電位はVDD2側に引き上げられる。ことで、容量 505の働きにより、出力ノードαの電位上昇に伴っ て、浮遊状態となっているTFT503のゲート電極電 位も引き上げられ、その電位はVDD2よりも高い電位 を取り、その電位がVDD+VthNを上回ることによ って、出力ノードαのHi電位はVDD2に等しくな る。よって、出力信号のLo電位はVSS、Hi電位は VDD2となり、振幅変換が完了する。

【0046】一方、信号入力部2(2)より、CKと同 10 じくVDD1-VSSの振幅を有するCKBが入力さ れ、TFT506~509および容量510によって構 成されたレベルシフタによって振幅変換が行われ、出力 ノードβには、VDD2-VSSの振幅を有する信号が 出力される。なお、ノードαおよびβに出力される信号 は、入力されたCKおよびCKBに対して、極性が逆と なっている。

【0047】本実施例の表示装置に用いたレベルシフタ は、振幅変換後のパルスに対する負荷を考慮して、パッ ファ段を設けている(Stage2~Stage4)。 とのバッファ段を構成するインバータ回路は2入力型で あり、入力信号およびその反転信号を必要とする。図5 では、Stage2に示すバッファ回路において、TF T511のゲート電極に入力される信号と、TFT51 2のゲート電極に入力される信号は、極性が反転した信 号を必要とする。TFT516、517についても同様 である。そとで、ととではCK、CKBが互いの極性反 転信号であることから、前述のレベルシフタ出力を、互 いの信号の反転入力として用いている。

【0048】バッファ段を構成しているインバータ回路 30 の動作について説明する。ととでは、TFT511~5 14および容量515によって構成されたインバータ回 路における動作についてのみ詳細に述べるが、他のイン バータ回路に関しても動作は同様である。

【0049】 TFT511のゲート電極に入力される信 号がHi電位のとき、TFT511がONし、TFT5 13のゲート電極の電位はVDD2側に引き上げられ、 その電位がVDD2-VthNとなったところでTFT 511がOFFし、TFT513のゲート電極は浮遊状 態となる。一方、TFT512、514のゲート電極に 40 はLo電位が入力されてOFFする。続いてTFT51 3がONし、出力ノードャの電位がVDD2側に引き上 げられる。ことで、前述のシフトレジスタおよびレベル シフタと同様、容量515の働きにより、浮遊状態とな っているTFT513のゲート電極の電位が引き上げら れ、VDD2+VthNよりも高い電位を取る。よっ て、出力ノードァのHi電位がVDD2に等しくなる。 【0050】一方、TFT511のゲート電極に入力さ れる信号がLo電位のとき、TFT511がOFFし、

されてONする。したがって、TFT513のゲート電 極の電位がしの電位となり、出力ノードケの電位はしの

【0051】TFT516~519および容量520に よって構成されたインバータ回路においても上記と同様 の動作をし、出力ノードδにパルスが出力される。出力 ノードδには、出力ノードγに出力される信号と極性が 反転したパルスが出力される。

【0052】以後、Stage3、Stage4におい ても同様の動作によって、最終的に信号出力部3(3) および信号出力部4 (4)より、パルスが出力される。 なお、図5(A)においては、Stage2の出力をS tage3に入力する際、StagelからStage 2の場合とは逆に、論理が反転しないように入力してい るが、最終的に使用者が必要とするパルスの論理に合わ せて接続すれば良く、特にStage間の接続に関して は制限を設けない。

【0053】図5(B)は、クロック信号(CK)の振 幅変換の様子を示したものである。入力信号の振幅は0 20 ~5 [V]であり、出力信号の振幅は0~16[V]となっ ている。

【0054】図5(C)は、スタートパルス用のレベル シフタ(LS2)を示している。スタートパルスの場 合、その反転信号を持たないことから、1入力型のレベ ルシフタ回路(Stagel)を用い、1入力型のイン パータ回路(Stage2)、2入力型のインパータ回 路(Stage3)と続く構成とした。回路動作に関し ては、クロック信号用のレベルシフタの項で説明したも のと同様であるので、ここでは説明を省略する。

【0055】図5(D)は、スタートパルス(SP)の 振幅変換の様子を示したものである。入力信号の振幅は 5 [V]であり、出力信号の振幅は16 [V]となってい る。

【0056】図8(A)はバッファ(Buf.)の構成。 を示しており、1入力型インバータ回路(Stage 1) および3段の2入力型インバータ回路(Stage 2~Stage4)によって構成されている。1入力型 インバータ回路の動作に関しては、入力されるバルスの 振幅がVDD2-VSSであって、入出力パルス間の振 幅変換がないことを除いて、レベルシフタ回路と同様で

【0057】2入力型インバータ回路の動作は、TFT 607に、入力信号として前段からの出力信号が入力さ れ、TFT606には、入力信号の反転信号として、前 段のインバータへの入力信号を用いている。TFT60 6、TFT607が排他的に動作することによって、T FT608のゲート電極の電位は前述のレベルシフタ回 路と同様に制御される。以後のインバータ回路において も、入力信号は前段からの出力信号、入力信号の反転信 TFT512、514のゲート電極にはHi電位が入力 50 号は前段への入力信号を用いて動作している。

【0058】図6(B)は、サンプリングスイッチの構成を示している。信号入力部25(25)より、サンプリングパルスが入力され、並列に配された12個のTFT621が同時に制御される。信号入力部1(1)~12(12)より、アナログ映像信号が入力され、サンプリングパルスの入力によって、そのときの映像信号の電位を、ソース信号線に書き込む働きをする。

【0059】本実施例にて示した駆動回路を構成する回の入力路のうち、インバータ回路、レベルシフタ回路に関してるのには、同発明者らにより、特願2001-133431号は、にて出願された発明に記載されているものと同様のものと同様のものを用いている。

【0060】本実施例にて示した表示装置は、画素部を含む表示装置全体を構成する駆動回路を、画素TFTと同一の極性を有する一極性のTFT(例えばN型TFT)のみを用いて作製している。これにより、半導体層にP型を付与するイオンドーピング工程を省略することが可能となり、製造コストの削減や歩留まり向上等に寄与することが出来る。

【0061】なお、本実施例の表示装置を構成したTFTの極性はN型であるが、P型TFTのみを用いて駆動回路および画素TFTを構成することも、本発明によってもちろん可能となる。との場合は、省略されるイオンドービング工程は、半導体層にN型を付与する工程であることを付記する。また、本発明は液晶表示装置のみならず、絶縁体上に駆動回路を一体形成して作製する装置ならばいずれの物にも適用が可能である。

【0062】[実施例3]本実施例においては、実施形態において、図1で示したバルス出力回路の構成を簡略化した例について説明する。

【0063】図7は、本実施例のシフトレジスタを示したものである。図7(A)において、ブロック700が1段分のパルスを出力するパルス出力回路であり、図7(A)のシフトレジスタは n 段のパルス出力回路で構成されている。図7(B)に詳細な回路構成を示す。図1(A)で示したシフトレジスタと、図7(A)のシフトレジスタのブロック図は同様であり、入力される信号も同様である。本実施例が異なる点は、図7(B)において、パルス出力回路をTFT701~704の4つのTFTと、容量705にて構成している点である。図7(B)において、ブロック710は振幅補償回路である。図7(C)にさらなる詳細図を示す。図7(C)において、電源VDDに接続されたTFT701と、電源VSSに接続されたTFT702とを用いて振幅補償回路が構成されている。

【0084】回路の動作について説明する。m段目(1 < m ≤ n) において、TFT701のゲート電極にはm - 1段目より出力されたパルスが入力され(m=1のとき、すなわち第1段目においてはSPが入力される)、TFT701のゲート電極の電位はHi電位となり、O 50

Nする。これにより、ノードαの電位はVDD側に引き上げられ、その電位がVDD-VthNとなったところでTFT701がOFFし、ノードαは浮遊状態となってTFT703がONする。一方、TFT702、704のゲート電極にはこの時点ではバルスが入力されておらず、Lo電位のままであるので、OFFしている。よって、TFT703の不純物領域の一端、すなわち第1の入力信号線(1)から入力されるCKがHi電位となるのに伴い、出力ノードの電位がVDD側に引き上げられる。

【0065】とこで、TFT703のゲートと出力ノード間には、容量705が設けてあり、さらに今、ノードα、すなわちTFT703のゲート電極は浮遊状態にあるため、出力ノードの電位が上昇するのに伴い、ブートストラップによってTFT703のゲート電極の電位はVDD-VthNからさらに引き上げられる。これにより、TFT703のゲート電極の電位は、VDD+VthNよりも高い電位を取る。よって出力ノードの電位は、TFT703のしきい値によって電位が低下することなく、完全にVDDまで上昇する。

【0066】同様にして、m+1段目においてはCKBに従ってバルスが出力される。m+1段目の出力バルスは、m段目に帰還し、TFT702、704のゲート電極に入力される。TFT702、704のゲート電極がHi電位となってONすることにより、ノードの電位はVSS側に引き下げられてTFT703がOFFし、出力ノードの電位はLo電位となる。

【0067】以後、最終段まで同様の動作により、順次 VDD-VSS間の振幅を有するパルスが出力される。 最終段においては、図7(B)において第3の入力信号 線(3)より入力されるべき次段出力パルスがないた め、CKがそのまま出力されつづけるが、実施形態と同 様、ダミー段として扱えば問題はない。図7に示した本 実施例においては、スタートパルスを最終段の第3の入 力信号線に入力することによって、次の水平期間の直前 で最終段出力パルスを停止させている。この他の方法と しては、実施形態の項で述べたようにリセット信号を用 意して、帰線期間中に最終段の第3の入力信号線に入力 してやることによって、パルス出力を停止する方法や、 40全段の出力ノードを帰線期間中にLo電位に固定するよ うにリセット信号を入力する方法など(図15と同様で よい)がある。

【0068】本実施例にて示したパルス出力回路は、実施形態において示したパルス出力回路と比較して索子数が少ない点、また、サンブリングパルスの入出力がない期間で浮遊状態をとる部分が多いことなどから、特に駆動周波数が高い部分向きであるといえる。よって、表示装置においては、ソース信号線駆動回路等に用いるのが望ましい。

【0069】[実施例4]図13を参照する。本発明の実

施形態および実施例1、実施例3等に示したシフトレジスタにおいて、CKは図13(A)に示すように、Hi電位の期間1301とLo電位の期間1302の長さが等しく、CKBはその極性が反転したものが入力される。このとき、サンブリングパルスのパルス幅は、CKおよびCKBのパルス幅に等しいため、その出力は図13(A)において、1303~1307に示すようになる。1303は第1段目のサンブリングパルス、1304は第2段目のサンブリングパルス、分下、3~5段目のサンブリングパルスを示している。

【0070】ととで、CKその他の入出力信号は、Lo電位からHi電位に変化する際の立ち上がり時間および、Hi電位からLo電位に変化する際の立ち下がり時間を有しているため、これに起因して、理想的には現れないはずのパルスの重なりが生ずる場合がある。図13(A)において、サンブリングパルス1303~1307は、隣接したパルス間で、立ち上がり期間と立ち下がり期間が重複している様子が現れている。

【0071】特にアナログ映像信号をサンプリングする ことによって映像表示を行う表示装置の場合、このよう 20 な隣接したサンプリングバルスの重複によって、不正な タイミングで映像信号のサンプリングが行われる場合が あり、表示品質の低下を招くことになる。

【0072】よって、とのようなサンブリングパルスの重複を回避するため、図13(C)に示すように、CKのパルス幅に差を与える。との場合、Hi電位の期間130%よりもやや短くなっている。CKBも同様に、Hi電位の期間をLo電位の期間よりもやや短くしている。とのようにすることで、CKの立ち上がり期間とCKBの立ち下がり期間、あるいはCKのたち下がり期間とCKBの立ち上がり期間の重複がなくなり、したがってサンブリングパルスも、1310~1314に示すように、隣接パルス間での立ち上がり期間、立ち下がり期間の重複をなくすことが出来る

【0073】とこで、再び図1を参照する。図1(B)にて示したパルス出力回路の動作は、TFT105がONしている期間に、CKもしくはCKBが出力ノードに出力されることによってサンブリングパルスが出力される。すなわち、ノード α の電位が上昇を始めてから、次段のサンプリングパルスによってその電位がL0 電位に引き落とされるまでの間、CKもしくはCKBがそのまま出力される。よって、CKの立ち上がり期間とCKBの立ち下がり期間、あるいはCKのたち下がり期間とCKBの立ち上がり期間が重複している場合、サンブリングパルスの前後に、不正なパルスが出力される場合がある。

【0074】図13(A)において、サンブリングバルス1305が出力されるシフトレジスタには、前段のサンブリングパルス1304が入力され、その瞬間より、

CKもしくはCKB (サンプリングパルス1305が出力される段では、CK)がそのまま出力ノードに現れるため、1315にて示されるタイミング、すなわち前段のサンプリングパルス1304が立ち上がり始めるタイミングで、CKがLo電位に下がりきっていないと、図13(B)に示すように、本来出力されるサンプリングパルス1305の前に不正パルス1316が現れる。よって、本実施例で示したように、CK、CKBのパルス幅を変調させることによって、とれらの誤動作を回避することが出来る。

【0075】[実施例5]実施形態およびこれまでの実施例においては、Nチャネル型のTFTのみを用いて回路を構成した例を示したが、電源電位の高低を置き換えることにより、Pチャネル型TFTのみを用いても同様の回路が構成出来る。

【0076】図15(A)(B)は、Pチャネル型のTFTのみを用いて構成したシフトレジスタの例である。図16(A)に示したブロック図に関しては、図1に示したNチャネル型のTFTのみを用いて構成したシフトレジスタと同様の構成であり、ブロック1600が、1段分のサンプリングパルスを出力するパルス出力回路である。Nチャネル型TFTによって構成されたシフトレジスタと異なる点として、図16(B)に示すように、電源電位の高低が逆となっている。

【0077】図17に、タイミングチャートおよび出力パルスを示す。各部の動作は、実施形態にて図1、図2を用いて説明したので、とこでは詳細な説明は省略する。図2に示したものとは、ちょうどHi電位とLo電位が逆転した形となる。

) 【0078】[実施例6]本発明は、様々な電子機器に用いられている表示装置の作製に適用が可能である。とのような電子機器には、携帯情報端末(電子手帳、モバイルコンピュータ、携帯電話等)、ビデオカメラ、デジタルカメラ、パーソナルコンピュータ、テレビ、携帯電話等が挙げられる。それらの一例を図8に示す。

【0079】図8(A)は液晶ディスプレイ(LCD)であり、筐体3001、支持台3002、表示部3003等により構成されている。本発明は、表示部3003に適用が可能である。

【0080】図8(B)はビデオカメラであり、本体3011、表示部3012、音声入力部3013、操作スイッチ3014、バッテリー3015、受像部3018等により構成されている。本発明は、表示部3012に適用が可能である。

【0081】図8(C)はノート型のパーソナルコンピュータであり、本体3021、筺体3022、表示部3023、キーボード3024等により構成されている。本発明は、表示部3023に適用が可能である。

【0082】図8(D)は携帯情報端末であり、本体3 50 031、スタイラス3032、表示部3033、操作ボ (14)

タン3034、外部インターフェイス3035等により 構成されている。本発明は、表示部3033に適用が可能である。

【0083】図8(E)は音響再生装置、具体的には車 載用のオーディオ装置であり、本体3041、表示部3 042、操作スイッチ3043、3044等により構成 されている。本発明は表示部3042に適用が可能であ る。また、本実施例では車載用オーディオ装置を例に挙 げたが、携帯型もしくは家庭用のオーディオ装置に用い ても良い

【0084】図8(F)はデジタルカメラであり、本体3051、表示部(A)3052、接眼部3053、操作スイッチ3054、表示部(B)3055、バッテリー3056等により構成されている。本発明は、表示部(A)3052および表示部(B)3055に適用が可能である。

【0085】図8(G)は携帯電話であり、本体306 1、音声出力部3062、音声入力部3063、表示部 3064、操作スイッチ3065、アンテナ3066等 により構成されている。本発明は、表示部3064に適 20 用が可能である。

【0086】なお、本実施例に示した例はどく一例であり、これらの用途に限定しないことを付記する。

【発明の効果】本発明によって、表示装置の駆動回路および画素部を、一導電型のTFTのみによって構成することが可能となり、表示装置の作製工程を削減することによって、低コスト化、歩留まりの向上に寄与し、より安価に表示装置の供給が可能となる。

【図面の簡単な説明】

【図 1 】 本発明のバルス出力回路の一形態を示す 図。

【図2】 図1に示したパルス出力回路を駆動するタ イミングチャートを示す図。 *【図3】 本発明のパルス出力回路の一実施例である、走査方向切替機能を付加したシフトレジスタを示す図。

【図4】 本発明によって提供される表示装置における、ソース信号線駆動回路の構成例を示す図。

【図5】 本発明によって提供される表示装置における、レベルシフタの回路機成の詳細図

【図6】 本発明によって提供される表示装置における、バッファ、サンプリングスイッチの回路構成の詳細10 図。

【図7】 本発明の一実施例である、構成を簡略化したシフトレジスタを示す図。

【図8】 本発明の適用が可能な電子機器の例を示す 図。

【図9】 従来型CMOSインバータと負荷型インバータの構成と、それぞれの入出力信号の波形を示す図。

【図10】 本発明のパルス出力回路の動作原理を説明する図。

【図11】 従来型のシフトレジスタの回路構成とタイミングチャートを示す図。

【図12】 本発明によって提供される表示装置の全体外観を示す図。

【図13】 クロック信号のパルス幅の違いによる、本発明の実施形態にて示したシフトレジスタの動作を示す図。

【図14】 リセット信号の入力を追加したシフトレジスタを示す図。

【図15】 リセット信号の入力を追加したシフトレジスタを示す図。

30 【図16】 実施形態とは異なる導電型のトランジスタによる回路構成を示す図。

【図17】 図16に示したシフトレジスタを駆動するタイミングチャートを示す図。

[図4]

【図12】

CK : ケロックほ号 CKB : ケロック反転信号 SP : スタートバルス

[図6]

(B) ASW x 12

[図2]

[図10]

[図3]

CK : 70572信号 CKB : 70572版信号 8P : スタートパルス LR : 定金方内収替信号 LRB : 後金方内収替信号

【図5】

[図16]

CK : 50つ5信号 CKB : 50つ5反応信号 SP : 25ートバル2・

[図8]

【図15】

CK : クロック信号 CKB : クロック反応信号 SP : スタートパルス Res : リセット信号

【図17】

フロントページの続き

 (51) Int. Cl. 7
 識別記号
 F I
 デーマコード (参考)

 G 0 9 G
 3/36
 G 1 1 C
 19/00
 J

 G 1 1 C
 19/00
 H 0 3 K
 19/00
 1 0 1 F

F ターム(参考) 2H093 NA41 NC22 NC34 ND50 ND53 ND54 SC006 BB16 BF03 BF34 BF37 EB05 FA41 SC080 AA06 AA10 BB05 DD25 DD27 DD28 FF11 JJ02 JJ03 JJ04 JJ06 SJ056 AA05 BB52 BB59 CC00 CC18 DD12 DD26 DD27 EE11 FF01

FF08 GG09