

Warsztaty modelowania

02 – Analiza eksploracyjna danych (EDA)

opracowała Patrycja Naumczyk

EDA - Exploratory Data Analysis

Absolutne minimum

- 1. Typy danych
- 2. Braki danych
- 3. Duplikaty
- 4. Statystyki opisowe (adekwatne do skali pomiarowej zmiennej)
- 5. Rozkłady zmiennych
- 6. Zależności między zmiennymi

Typy danych

pandas $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$

Pandas dtype	Python type	NumPy type	Usage	
object	str or mixed	string_, unicode_, mixed types	Text or mixed numeric and non-numeric values	
int64	int	int_, int8, int16, int32, int64, uint8, uint16, uint32, uint64	Integer numbers	
float64	float	float_, float16, float32, float64	Floating point numbers	
bool	bool	bool_	True/False values	
datetime64	NA	datetime64[ns]	Date and time values	
timedelta[ns]	NA	NA	Differences between two datetimes	
category	NA	NA	Finite list of text values	

Kind of Data	pandas Data Type	Scalar	Array
TZ-aware datetime	<u>DatetimeTZDtype</u>	<u>Timestamp</u>	<u>Datetimes</u>
Timedeltas	(none)	<u>Timedelta</u>	Timedeltas
Period (time spans)	<u>PeriodDtype</u>	Period	<u>Periods</u>
Intervals	<u>IntervalDtype</u>	Interval	Intervals
Nullable Integer	Int64Dtype,	(none)	Nullable integer
Nullable Float	Float64Dtype,	(none)	Nullable float
Categorical	<u>CategoricalDtype</u>	(none)	Categoricals
Sparse	SparseDtype	(none)	<u>Sparse</u>
Strings	<u>StringDtype</u>	str	Strings
Nullable Boolean	BooleanDtype	bool	Nullable Boolean
PyArrow	ArrowDtype	Python Scalars or NA	<u>PyArrow</u>

https://pandas.pydata.org/docs/reference/arrays.html https://pandas.pydata.org/docs/user_guide/basics.html#basics-dtypes

Typy danych

- 1. Atrybut .dtypes / .dtype
- 2. Metody
 - a) astype()
 - b) to_numeric()
 - c) to_datetime()
 - d) select_dtypes()

Set Category Order

Braki danych

- Reprezentacja braku
 - a) np.nan
 - b) NaT
 - c) NA string i nullable
 - d) None
- 2. Metody
 - a) isna() / isnull()
 - b) notna()
 - c) dropna()
 - d) fillna() / interpolate()

Braki danych - missingno

Duplikaty danych

- 1. Flagi metod konstruowania obiektów
- 2. Metody badania indexu
 - a) .index.is_unique
 - b) .index.duplicated()
- 3. Metody badania treści
 - a) duplicated()
 - b) drop_duplicates()

Statystyki opisowe

- 1. Metody:
 - a) describe()
 - b) value_counts()
 - c) unique() / nunique()

N.B.: by default describe returns only numeric field

@w3resource.com

Podstawowe wykresy pandas

- 'bar' or 'barh' for bar plots
- 'hist' for histogram
- 'box' for boxplot
- 'kde' or 'density' for density plots
- 'area' for area plots
- <u>'scatter'</u> for scatter plots
- 'hexbin' for hexagonal bin plots
- <u>'pie'</u> for pie plots


```
fig, (ax0, ax1) = plt.subplots(nrows=1,ncols=2, sharey=True, figsize=(7, 4))
                              fig.suptitle('2014 Sales Analysis', fontsize=14, fontweight='bold')
top_10.plot(kind='barh', y="Sales",
                                                                                       top_10.plot(kind='barh', y="Purchases",
             x="Name", ax=ax0)
                                                                                                    x="Name", ax=ax1)
                                                          2014 Sales Analysis
Revenue
                                                                                      Units
                                           Keeling LLC -
                                    Frami, Hills and Schmidt
                                            Koepp Ltd -
                                                                                                    ax1.axvline(x=avg, color='b',
                                                                                                                label='Average',
                                              Will LLC -
                                                                                                                linestyle='--',
                                            Barton LLC -
                                                                                                                linewidth=1)
                                 Fritsch, Russel and Anderson
                                           Jerde-Hilpert
                                        Trantow-Barrows
                                          White-Trantow
                                             Kulas Inc -
                                                          50000
                                                                 100000
                                                         Total Revenue
                                                                                    Total Units
                              ax0.set_xlim([-10000, 140000])
        ax0.set(title='Revenue', xlabel='Total
                                                                                ax1.set(title='Units',
                 Revenue', ylabel='Customers')
                                                                                         xlabel='Total Units', ylabel='')
                     fig.savefig('sales.png', transparent=False, dpi=80, bbox_inches="tight")
                                                                                                                     pbpython.com
```