Dual-decoder Transformer for Joint Automatic Speech Recognition and Multilingual Speech Translation

Hang Le¹ Jiatao Gu² D

Juan Pino² Didier Schwab¹ Changhan Wang²
Laurent Besacier¹

¹Univ. Grenoble Alpes, CNRS, LIG

²Facebook AI

FACEBOOK AI

Existing Models

From cascade to end-to-end

Dual-decoder Transformer

- Motivated by previous work, but more general (including several previous models as special cases).
- Flexible: level of interaction between decoders is a design choice.

Dual-decoder Transformer

Cross dual-decoder Transformer **A** (Attention), **M** (Merge), **L** (LayerNorm)

Parallel dual-decoder Transformer

Main Findings and Results

Main findings

- Dual-attention enables the decoders to effectively help each other.
- Parallel dual-attention improves both translation and transcription.
- Symmetric design is better than asymmetric one.
- Wait-k: Letting ASR be ahead is better than letting ST be ahead.

Results on MuST-C tst-COMMON

No	type	side	self	src	merge	epochs	de	es	fr	it	nl	pt	ro	ru	avg	WER
1	Bilingual (Inaguma et al., 2020) 50						22.91	27.96	32.69	23.75	27.43	28.01	21.90	15.75	25.05	12.0
2	One-to One-to						17.70 16.50	20.90 18.90	26.50 24.50	18.00 16.20	20.00 17.80	22.60 20.80	- 15.90	- 9.80	- 17.55	-
4	indepe	ndent+	+			25	22.82	27.20	32.11	23.34	26.67	28.98	21.37	14.34	24.60	11.6
5 6 7	par par ^{R3} par++	both both both	√ - -	√ √ √	concat sum sum	25 25 25	22.74 22.84 23.63	27.59 27.92 28.12	32.86 32.12 33.45	23.50 23.61 24.18	26.97 27.29 27.55	29.51 29.48 29.95	21.94 21.16 22.87	14.88 14.50 15.21		11.6 11.6 11.4