

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER : 61142888
PUBLICATION DATE : 30-06-86

APPLICATION DATE : 14-12-84
APPLICATION NUMBER : 59264243

APPLICANT : SONY CORP.

INVENTOR : OKADA TAKAFUMI;

INT.CL. : H04N 9/31

TITLE : VIDEO PROJECTOR

ABSTRACT : PURPOSE: To suppress a face flicker and an inter-line flicker by using n sets of projective tubes to generate rasters having an interval of $1/n$ vertical period each and bringing the illuminant frequency of the screen into n times the field frequency.

CONSTITUTION: A video signal is applied to n sets of projective tubes whose projected light beams are projected overlappingly on a screen while deviating the video signal sequentially at an interval of $1/n$ vertical period each and the deflection of the n sets of projecting tubes is shifted sequentially by the $1/n$ vertical period. In a video projector where two black/white projecting tubes 1P, 1Q whose projected light beams are projected on one screen 2 for example, a video signal is applied to one tube, e.g., to the tube 1Q while shifting it for the $1/2$ vertical period, and the deflection of the projecting tube 1Q is shifted by the $1/2$ vertical period.

COPYRIGHT: (C)1986,JPO&Japio

本発明は上述問題点を解決するため、先々からの投射光を同一スクリーンに並ねて投射する n 組の投射管にビデオ信号を順次 $1/n$ 垂直期間ずらして供給すると同時に、n 組の投射管の傾角を順次 $1/n$ 垂直期間ずらすものである。例えば、先々からの投射光を同一スクリーン(2)に投射する 2 個の白黒投射管(1P), (1Q)を備えるものにおいては、一方、例えは投射管(1Q)にビデオ信号を $1/2$ 垂直期間ずらして供給すると同時に、この投射管(1Q)の傾角を $1/2$ 垂直期間ずらして行なう。

[作用]

以上の構成において、 n 速の投射管は実々 $1/n$ 垂直期間だけ離れてラスターを形成することになり、スクリーンの発光周波数が信号のフィールド周波数の n 倍となり、面プリント及びインタラインプリントが改壁される。

(実施例)

以下、第1圖を参照しながら本発明の一実施例について説明しよう。

同図において、(1P), (1S) は、表 1 同様に計算

路 (7Q)に供給され、この偏向回路 (7Q)より投射管 (1Q)の偏向コイル (8Q)に偏向電流が供給される。

第1回例は以上のように構成され、投射管(1Q)には、投射管(1P)に供給されるビデオ信号 S_1 より $1/2 V$ ずれたビデオ信号 S_2 が供給されると同時に、投射管(1Q)の偏向は、投射管(1P)に対して $1/2 V$ ずらされるので、同時に見ると、投射管(1P)と(1Q)とは $1/2 V$ だけ離れた位置にラスターを形成していることになる。換言すると、投射管(1Q)においては、投射管(1P)に $1/2 V$ だけ遅れて同一位置にラスターを形成することになる。そのため、スクリーン(2)上の発光周波数は信号のフィールド周波数の2倍となる。この場合、第2回Bに示すように各フィールドの画面(a, b, c, ...)が、あたかも $1/2 V$ の周期で2回ずつ表示されるようになる。

従つて、この第1圖例によれば、高輝度でも面フリッカが完全に抑止されると共に、インタライシフリッカも駆逐される。

因之低，深差方率（第1圖細紅者於下，粗黑者

特開昭61-142888 (2)

であり、天々の投射管(1P),(1Q)からの投射光 L_p,L_q はスクリーン(2)に重ねて投射されるようになされている。

また、端子(3)にはビデオ信号 S_v が供給され、このビデオ信号 S_v はアンプ(5P)を介して投射管(1P)に供給される。また、ビデオ信号 S_v は同期分解回路(6P)に供給され、同期信号 P_{sync} が得られる。この同期信号 P_{sync} は偏向回路(7P)に供給され、この偏向回路(7P)より投射管(1P)の偏向コイル(8P)に偏向信号が供給される。

また、端子(3)に供給されるビデオ信号 s_v は遅延線(9Q)に供給される。この遅延線(9Q)は $1/2$ 垂直期間（以下I垂直期間をIVで示す）の遅延時間を持つものであり、その出力側にはビデオ信号 s_v より $1/2$ Vだけ遅延されたビデオ信号 s_v'' が得られる。このビデオ信号 s_v'' はアンプ(5Q)を介して投射管(1Q)に供給される。また、ビデオ信号 s_v'' は同期分離回路(6Q)に供給され、上述した同期信号 P_{ayne} より先々 $1/2$ Vだけ遅れた同期信号 P_{ayne}'' が得られる。この同期信号 P_{ayne}'' は偏同回

(9Q)を除いた例を参照)では、投射管(1P)と(1Q)とは、同時に見ると、同一位置にラスターを形成していることになる。そのため、スクリーン(2)上の発光周波数は信号のフィールド周波数と同じである。この場合、第2図Aに示すように、各フィールドの画面($a+a$, $b+b$, $c+c$, ...)が1Vの周期で表示されて見える。従つて、この場合には、高輝度となるとフリンクカ放電が目立つことがある。

尚、第1回例では、入力のフィールド信号間に前あるいは後のフィールド信号を補間信号としたことと等価であるが、この補間信号として他の方法を用いてもよい。例えば、前後のフィールド信号の算術平均値を補間信号として用いることも考えられる。この場合には、投射管(1P)あるいは(1Q)の一方を算術平均値でドライアすることになら。

また、第1図例は2管式の日系のビデオプロジェクタの例であるが、赤、緑、青の各原色に対して2管ずつの6管式のカラーのビデオプロジェクタも同様に構成することができる。第3図は、こ

のカラーの場合の構成を示している。

同図において、 $(1P_B)$, $(1P_a)$, $(1P_s)$ は、夫々赤色、緑色、青色の画像を発生する投射管であり、また $(1Q_a)$, $(1Q_0)$, $(1Q_s)$ も、夫々赤色、緑色、青色の画像を発生する投射管である。これら投射管 $(1P_k)$ ~ $(1Q_s)$ からの投射光は、スクリーン(図示せず)に重ねて投射されるようになされている。そして、実際には、投射管 $(1P_B)$ ~ $(1P_s)$ に対して投射管 $(1Q_R)$ ~ $(1Q_s)$ は左右逆に並べられ、シニアイング防音の改善が図られている。

また、端子(S)にはカラービデオ信号 $S_{c\gamma}$ が供給され、このビデオ信号 $S_{c\gamma}$ は輝度/色処理回路(10P)に供給される。この処理回路(10P)より得られる赤、緑、青の原色信号R、G、Bは、依次アンプ($5P_R$)、($5P_G$)、($5P_B$)を介して放射管(1P_R)、(1P_G)、(1P_B)に供給される。また、ビデオ信号 $S_{c\gamma}$ は同期分離回路(6P)に供給され、同期信号 P_{Sync} が得られる。この同期信号 P_{Sync} は偏向回路(7P_R)、(7P_G)、(7P_B)に供給され、これら偏向回路(7P_R)、(7P_G)、(7P_B)より放射管(1P_R)、(1P_G)、

～(1Q_n) IC には、投射管(1P_n)～(1P₁) に供給される原色信号 R～B 上り 1/2 V ずれた原色信号 R'～B' が供給されると同時に、投射管(1Q_n)～(1Q₁) の偏向は、投射管(1P_n)～(1P₁) IC 対して 1/2 V ずらされているので、投射管(1P_n)～(1P₁) と投射管(1Q_n)～(1Q₁) とは 1/2 V だけ離れてラスターを形成していることになる。従つて図 1 図例の白黒の場合と同様の作用効果を得ることができる。

次に、第4図は、3管式のカラーのビデオプロセッサに適用した例である。

同図において、(1R),(1G),(1B)は赤色、緑色、青色の画像を交互に発生する投射管であり、夫々の投射管(1B)～(1B)からの投射光はスクリーン(図示せず)に並んで投射されるようになされている。

また、端子(3)にはカラービデオ信号 S_{cv} が供給され、このビデオ信号 S_{cv} は輝度／色処理回路(10)に供給される。この処理回路(10)より得られる赤原色信号は、アンプ(5R)を介して投射管(1R)に供給される。また、処理回路(10)より得られる緑灰色

號開啓61-142888 (3)

(IP₁) の偏向コイル (BP₈), (BP₉), (BP₁₀) に偏向信号が供給される。

また、端子(3)に供給されるビデオ信号 S_{cv} は遅延線(9Q)に供給される。この遅延線(9Q)は $1/2$ V の遅延時間を有するものであり、その出力側にはビデオ信号 S_{cv} より $1/2$ V 遅延されたビデオ信号 S_{cv}^* が得られる。このビデオ信号 S_{cv}^* は輝度／色処理回路(10Q)に供給される。この処理回路(10Q)からは、灰色信号 R, G, B に対して $1/2$ V だけ遅延された赤、緑、青の原色信号 R^* , G^* , B^* が得られ、これらは、夫々アンプ(5Q_a), (5Q_b), (5Q_c)を介して投射管(1Q_a), (1Q_b), (1Q_c)に供給される。また、遅延線(9Q)を介されたビデオ信号 S_{cv}^* は同期分離回路(6Q)に供給され、上述した同期信号 P_{sync} より先々 $1/2$ V だけ遅れた同期信号 P_{sync}^* が得られる。この同期信号 P_{sync}^* は偏向回路(7Q_a), (7Q_b), (7Q_c)に供給され、これら偏向回路(7Q_a), (7Q_b), (7Q_c)より投射管(1Q_a), (1Q_b), (1Q_c)の偏向コイル(8Q_a), (8Q_b), (8Q_c)に供給される。

第3回例は以上のように構成され、投射管(10₂)

信号Gは遅延線(110)に供給される。この遅延線(110)は $1/3$ Vの遅延時間を有するものであり、その出力側には青原色信号Bが $1/3$ Vだけ遅延されて得られ、これがアンプ(5G)を介して投射管(1G)に供給される。また、処理回路より得られる青原色信号Bは遅延線(11B)に供給される。この遅延線(11B)は $2/3$ Vの遅延時間を有するものであり、その出力側には青原色信号Bが $2/3$ Vだけ遅延されて得られ、これがアンプ(5B)を介して投射管(1B)に供給される。

また、ビデオ信号 S_{cv} は同期分離回路(6)に供給され、同期信号 P_{sync} が得られる。この同期信号 P_{sync} は偏向回路(7R)に供給され、この偏向回路(7R)より投射管(1B)の偏向コイル(8B)に偏向信号が供給される。また、分離回路(6)からの同期信号 P_{sync} は、 $1/3$ V の遅延時間を持つ遅延線(12G)を介して偏向回路(7G)に供給され、この偏向回路(7G)より投射管(1G)の偏向コイル(8C)に偏向信号が供給される。また、分離回路(6)からの同期信号 P_{sync} は $2/3$ V の遅延時間を持つ遅延線(12B)

を介して偏向回路(7B)に供給され、この偏向回路(7B)より反射管(1B)の偏向コイル(8B)に偏向信号が供給される。

第4回例は以上のように構成され、投射管(1R), (1G), (1B)には、順次 $1/3$ Vずつずれた赤、緑、青の原色信号 R, G, B が供給されると同時に、投射管(1R), (1G), (1B)に、その倍数が $1/3$ Vずつずらされるので、投射管(1R), (1G), (1B)は順次 $1/3$ Vずつ離れてラスターを形成することになる。換算すると、投射管(1G)においては、投射管(1R)に $1/3$ Vだけ離れて同一位置にラスターを形成し、投射管(1B)においては、投射管(1R)に $2/3$ Vだけ離れて同一位置にラスターを形成することになる。そのため、スクリーン上の発光周波数は信号のフィールド周波数の3倍となる。この場合、第5回例に示すように各色の画面 R, G, B が $1/3$ Vの間隔で順次表示されるよう見える。従つて、この第4回例においても、第1回例と同様に高輝度でもフリップカ防護が達成される。

図3に従来方式(第4回例において差額額(11G))

を付して示す。

同回路において、処理回路側からの赤、青の原色信号 R、B は、不失アンプ (5R)、(5B) を介して投射管 (1R)、(1B) に供給される。また、処理回路側からの緑原色信号 G は遅延線 (13G) に供給される。この遅延線 (13G) は $L/2$ V の遅延時間を有するものであり、その出力側には緑原色信号 G が $1/2$ V だけ遅延されて得られ、これがアンプ (5G) を介して投射管 (1G) に供給される。

また、分離回路(6)からの同期信号 P_{sync} は、偏向回路(7B),(7B)に供給され、これら偏向回路(7B),(7B)より投射管(1B),(1B)の偏向コイル(8B),(8B)に夫々偏向信号が供給される。また、分離回路(6)からの同期信号 P_{sync} は、 $1/2$ Vの遅延時間を持つする遅延線(14G)を介して偏向回路(7C)に供給され、この偏向回路(7C)より投射管(1C)の偏向コイル(8G)に偏向信号が供給される。

その他の第1回例と同様に認定され、

この第6回例において、投射管(1C)には、投射管(1R),(1L)に供給される原色信号を比べて、

特開昭61-142888 (4)

(11B),(12G),(12B)を除いた例を参照)では、投射管(1R),(1G),(1B)は、同時に見ると、同一位置にラスターを形成していることになる。そのため、スクリーン上の発光周波数は信号のフィールド周波数と同じである。この場合、第5図Aに示すように、カラー画面($r+g+b$)が1Vの周期で表示されて見える。従つて、この場合には、高輝度となるとフリツカ妨害が目立つことになる。

尚、第4回例の場合、単色の画面がスクリーン上に表示されるときは、その発光周波数は信号のフィールド周波数となる。しかし、このときは単色であり輝度が高くならないので、フリッカはありません目立たず、それ程問題はない。

ところで、原色信号 R, G, B と輝度信号 Y の関係は、

$$Y = 0.30R + 0.59G + 0.11B$$

で与えられるので、緑の螺旋と（赤十字）の螺旋
とが略等しい。このことから、第4回例の代りに、
第6図のように構成することも考えられる。第6
図において、第4図と対応する部分には同一符号

された原色信号が供給されると同時に、投射管(1G)の偏向は、投射管(1R),(1B)に対して $1/2V$ ずらされるので、投射管(1E),(1B)と投射管(1G)とは $1/2V$ だけ離れてラスターを形成している。換算すると、投射管(1G)においては、投射管(1R),(1B)に $1/2V$ だけ遅れて同一位置にラスターを形成することになる。そのため、エクリーンの発光周波数はフィールド周波数の2倍となる。この場合、図7図Bに示すように、赤、青の画面($r+b$)と緑の画面 e とが $1/2V$ の間隔で交互に表示されるよう見える。従つて、この場合も、図1の例と同様の作用効果を得ることができる。

尚、第7図Aは第5図Aと同じものを示している。

〔発明の効果〕

以上述べた、本発明によれば、 μ 組の投射管は夫々 $1/\mu$ 垂直期間 ($1/\mu V$) だけ離れてラスターを形成し、スクリーンの発光周波数はフィールド周波数の μ 倍となるので、高輝度でも面フリンカが抑止され、そしてインタラインフリンカが解消さ

れる。

図面の簡単な説明

第1図は本発明の一実施例を示す構成図、第2図はその説明のための図、第3図、第4図及び第5図及び第7図は夫々第4図例及び第6図例の説明のための図である。

(1P)及び(1Q)は天々投射管、(2)はスクリーン、
 (6P)及び(6Q)は天々同期分離回路、(7P)及び(7Q)
 は天々倒向回路、(9Q)は遮断器である。

代理人 伊 塞

同 樾 紫 秀 盛

特開昭61-142888 (5)

第一圖

第 2 図

第 4 図

第 5 回

特開昭61-142888 (6)

第6図

第7図

