Lecture Notes: Real Analysis — First Lecture (Course By: The Bright Side of Mathematics)

Thobias K. Høivik

March 15, 2025

Introduction to Real Analysis

Definition 1 (Axioms of The Reals). A non-empty set \mathbb{R} together with operations $+, \times$ and ordering \leq is called the real numbers if it satisfies:

- (A) $(\mathbb{R}, +)$ is an abelian group with additive identity 0.
- (M) (\mathbb{R},\cdot) is an abelian group with multiplicative identity 1.
- (D) Distributive law: $x \cdot (y+z) = x \cdot y + x \cdot z$.
- $(O) \leq is \ a \ total \ order, \ compatible \ with + \ and \cdot, \ Archimedian \ property$.
- (C) Every Cauchy sequence is a convergent sequence.

Notice that properties A, M and D makes \mathbb{R} a field.

Definition 2 (The Absolute Value Function). Let $x \in \mathbb{R}$. Then the absolute value of x is:

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

Sequences and Limits

Definition 3 (Sequences). A sequence of real numbers is a map $a_n : \mathbb{N} \to \mathbb{R}$ or $a_n : \mathbb{N}_0 \to \mathbb{R}$ if you have $0 \in \mathbb{N}$. (Truly, a number theorist's worst nightmare)

We will more often use the notations (a_1, a_2, a_3, \dots) or $(a_n)_{n \in \mathbb{N}}$ or $(a_n)_{n=1}^{\infty}$ or (a_n) .

Examples:

1.

$$(a_n)_{n\in\mathbb{N}} = ((-1)^n)_{n\in\mathbb{N}} = (-1, 1, -1, 1, \dots)$$

2.

$$(a_n)_{n\in\mathbb{N}} = \left(\frac{1}{n}\right)_{n\in\mathbb{N}} = (1, \frac{1}{2}, \frac{1}{3}, \dots)$$

3.

$$(a_n)_{n\in\mathbb{N}}=(2^n)_{n\in\mathbb{N}}=(2,4,8,16,32,\dots)$$

Convergent Series

Definition 4 (Convergent Series). A sequence $(a_n)_{a\in\mathbb{N}}$ is called convergent to $a\in\mathbb{R}$ if

$$\mathcal{E} > 0$$
, $\exists N \in \mathbb{N}$, $\forall n > N : |a_n - a| < \mathcal{E}$

Example: $(a_n) = (\frac{1}{n})$ (change in notation) is convergent to $0 \in \mathbb{R}$.

Proof. Let $\mathcal{E} > 0$. Choose $N \in \mathbb{N}$ such that $N \cdot \mathcal{E} > 1$ or, in other words, let $N > \frac{1}{\mathcal{E}}$ which must exist because of the Archimedian property. Then for $n \geq N$, we have:

$$|a_n - 0| = |\frac{1}{n} - 0| = |\frac{1}{n}| \le \frac{1}{N} < \mathcal{E}$$