岡本 祐幸(おかもと ゆうこう)

職名	名誉教授
所属研究室	理論生物化学物理研究室(TB 研)
メール ※	okamoto{a}cc.nagoya-u.ac.jp

※{a}は@に置き換えて下さい

学歴と学位

1979 年 6 月 米国ブラウン大学物理学科 卒業、B. S. -M. S. の学位を取得(財団法人グルー基金留学生)

1984 年 8 月 米国コーネル大学大学院物理学専攻博士課程 修了、Ph. D. の学位を取得

職歴

1984年9月~1986年3月	米国バージニアエ科大学理学部物理学科 博士研究員
1986年4月~1993年5月	奈良女子大学理学部物理学科 助手
1993年5月~1995年3月	奈良女子大学理学部物理学科 助教授
1995年4月~2005年3月	岡崎国立共同研究機構(現自然科学研究機構)分子科学研究所
	理論研究系 助教授
1995年10月~2005年3月	総合研究大学院大学数物科学研究科機能分子科学専攻 助教
	授(併任)
2005年4月~2022年3月	名古屋大学大学院理学研究科物質理学専攻(物理系) 教授
2007年2月~2020年3月	名古屋大学大学院理学研究科附属構造生物学研究センター 教
	授(兼担)
2007年10月~2024年6月	財団法人グルー基金(現公益財団法人グルー・バンクロフト
	基金)理事
2010年6月~2022年3月	名古屋大学情報基盤センター大規模計算支援環境研究部門
	(現データサイエンス研究部門)教授(兼担)
2011年4月~2021年3月	名古屋大学大学院工学研究科附属計算科学連携教育研究セン
	ター 教授 (兼担)
2022 年 4 月~現在	名古屋大学 名誉教授
2022 年 4 月~現在	名古屋大学 国際本部 (現グローバル・マルチキャンパス推進
	機構) グローバル・エンゲージメントセンター 特任教授
2022 年 4 月~現在	名古屋大学 情報基盤センター 大規模計算支援環境研究部門
	(現データサイエンス研究部門) 招へい教員

2022 年 4 月~現在 理化学研究所 客員主管研究員

2023 年 11 月~2024 年 6 月 公益財団法人 船井情報科学振興財団 事務局職員

2024年6月~2025年6月 公益財団法人 船井情報科学振興財団 業務執行理事

受賞など

2010年11月22日 米国物理学会フェロー表彰

計算物理学部門(DCOMP)からの推薦

Citation: For his invention of novel and useful computational methodologies for probing the conformational phase space of biomolecules.

2011年10月-12月 Overseas Visiting Scholar (ミカエル学期)

英国ケンブリッジ大学セント・ジョンズ・カレッジ

研究内容

研究分野:生物物理学、計算物理学、計算化学

キーワード: 生体分子系の計算機シミュレーション、拡張アンサンブル法、マルチカノニカル法、 焼き戻し法、レプリカ交換法

生体分子系などの多自由度複雑系ではエネルギー極小状態が無数に存在するので、計算機シミュレーションがこれらの極小状態に留まってしまい、誤った答えを出してしまうという困難があった。我々はこの困難を克服するために、拡張アンサンブル法と総称されるシミュレーション法を生体分子系に導入するとともに、より有効な拡張アンサンブル法を新規に開発してきた。これによって、様々な生命現象の発現原理を探っている。具体的には、蛋白質の立体構造予測、蛋白質の折り畳み問題、高圧力環境下の構造転移、薬剤候補分子の蛋白質への結合自由エネルギー計算、アミロイド病発現の原因であるアミロイド線維形成のシミュレーション、更には、蛋白質以外にも、核酸、脂質二重膜、オリゴ糖分子等のシミュレーションも行なっている。

個人ホームページ(リンク)

研究室ホームページ(リンク)

業績リスト

Google Scholar (リンク)
ORCID (リンク)
researchmap (リンク)