

Verification of 64 Point FFT/IFFT Processor

EE 382M-11 Verification of Digital Systems

Bagus Hanindhito (bh29293), Tosin Jemilehin (tej474), Ashen Ekanayake (ese396)

The University of Texas at Austin

Agenda

- Introduction
- Formal Verification
- Universal Verification Methodology
- Logical Equivalence Checking
- Conclusion

Introduction

Basic Operation

- The circuit decomposes 64-point FFT/IFFT into two-dimensional 8-point FFT/IFFT.
 - $A(s+8t) = \sum_{l=0}^{7} \left[W_{64}^{sl} \sum_{m=0}^{7} B(l+8m) W_8^{sm} \right] W_8^{lt}$
 - W_8^{sm} and W_8^{lt} are 8-point twiddle-factors (complex constant)
 - W_{64}^{sl} is 64-point twiddle-factors (complex constant)
- No true multiplier; Multiplication is implemented as shift-andadd.

Data Format

- The circuit uses Q4.12 Signed Fixed-Point format for both real data and imaginary data to form 32-bit complex data.
 - Largest value is 7.9997558593750 (0b0111111111111111)
 - Smallest value is -8.000000000000 (0b10000000000000)
 - Resolution is 0.0002441406250 (0b0000000000000001)

Complex Data Set (32-bit)						
3116 Real Data (16-bit)	150 Imaginary Data (16-bit)					

Block Diagram

Circuit Behavior

Single FFT/IFFT operation can be completed in 135 Cycles

Verification Plan

- Formal Verification
 - To verify the Master Control block (RTL-Level)
- Universal Verification Methodology (UVM)
 - To verify full-circuit functionality (RTL-Level)
- Logical Equivalence Checking (LEC)
 - To verify synthesized netlist against RTL model
 - To verify implementation against the generated netlist

Formal Verification

Overview

- Formal Verification using Cadence JasperGold.
- Verification is done for Master Control block.
 - The heart of the circuit.
 - Control the dataflow and operation throughout the circuit.
 - Need to be verified extensively.
- Properties are written based on the specification of the circuits.

Assumption

- Master control is triggered by Input Counter when the 56th input data enters the Input Buffer.
 - Mastertrig signal goes high at least one clock cycle.
- Master control consists of 23 states
 - 23 clock cycles to perform FFT/IFFT computation
 - No interruption is possible after triggered.
 - Full cycle starts at IDLE state, end at IDLE state.
 - Cannot be triggered before the full cycle is ended.

Input Data Set

- Input buffer groups the input data into eight sets.
- Each set enters the 8-point FFT block per clock cycle.

Set	Input Data
0	B(0), B(8), B(16), B(24), B(32), B(40), B(48), B(56)
1	B(1), B(9), B(17), B(25), B(33), B(41), B(49), B(57)
2	B(2), B(10), B(18), B(26), B(34), B(42), B(50), B(58)
3	B(3), B(11), B(19), B(27), B(35), B(43), B(51), B(59)
4	B(4), B(12), B(20), B(28), B(36), B(44), B(52), B(60)
5	B(5),B(13),B(21),B(29),B(37),B(45),B(53),B(61)
6	B(6), B(14), B(22), B(30), B(38), B(46), B(54), B(62)
7	B(7), B(15), B(23), B(31), B(39), B(47), B(55), B(63)

Complex Constant Multiplier Scheduling

 This specification governs how the master control block behaves. (Red = Multi-Cycle Multiplication)

SET	DATA0		DA	ГА1	DA	TA2	DA	TA3	DA	TA4	DATA5 DATA6		DATA7			
SEI	CONST	TYPE	CONST	TYPE	CONST	TYPE	CONST	TYPE								
SET 0	BYPASS	1	BYPASS	1	BYPASS	1	BYPASS	1								
SET 1	BYPASS	1	1	1	2	1	3	1	4	1	5	1	6	1	7	1
SET 2	BYPASS	1	2	1	4	1	6	1	8	1	HOLD	HL	HOLD		HOLD	HL
	HOLD	1	HOLD	HL	HOLD	HL	HOLD	HL	HOLD	HL	6	5	4	5	2	5
SET 3	BYPASS	1	3	1	6	1	7	5	4	5	1	5	2	7	5	7
	BYPASS	1	4	1	8	1	HOLD	HL	BYPASS	5	HOLD	HL	HOLD	HL	HOLD	HL
SET 4	HOLD	HL	HOLD	HL	HOLD	HL	4	5	HOLD	HL	HOLD	HL	HOLD	HL	HOLD	HL
	HOLD	HL	4	7	8	7	HOLD	HL								
	HOLD	HL	HOLD	HL	HOLD	HL	4	3								
SET 5	BYPASS	1	5	1	6	5	1	5	4	7	7	3	2	3	3	2
SET 6	BYPASS	1	6	1	4	5	2	7	8	7	HOLD	HL	HOLD	HL	HOLD	HL
	HOLD	HL	2	3	4	2	6	6								
SET 7	BYPASS	1	7	1	2	5	5	7	4	3	3	2	6	6	1	4

Input Buffer Control Signal

- hold_all_in
 - Stall input circuit when multiplier needs more than
 1 cycle
- hold_buf_2, hold_buf_1, hold_buf_0
 - Stall additional buffers when multiplier needs more than 1 cycle.
- in_ctrl_buf_2, in_ctrl_buf_1, in_ctrl_buf_0
 - Select the input of additional buffers.
- pos_hold_ctrl
 - Select the input of main buffer segment.

Data(x) ■ Swapping Unit

First 8-Point FFT

Input Buffer Control Signal Assertion

✓	Assert	master_control.v_master_control_inst.assert_hold_all_in	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_all_in:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_hold_buf_2	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_buf_2:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_hold_buf_1	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_buf_1:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_hold_buf_0	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_buf_0:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_in_ctrl_buf_2	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_in_ctrl_buf_2:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_in_ctrl_buf_1	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_in_ctrl_buf_1:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_in_ctrl_buf_0	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_in_ctrl_buf_0:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_pos_hold_ctrl	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_pos_hold_ctrl:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session

Complex Constant Multiplier Unit

Eight complex constant multiplier blocks, one for each type.

Ту	уре	Input Operand	Pre-Processing	Constant Operand	Result	PostProcessing
1	1	A + jB	NONE A + jB	C + jD	AC - BD + j(AD + BC)	NONE $AC - BD + j(AD + BC)$
2	2	A + jB	IM_INVERT A – jB	C + jD	AC + BD + j(AD - BC)	$ \begin{array}{c} IM_INVERT \\ AC + BD + j(-AD + BC) \end{array} $
3	3	A + jB	RE_INVERT $-A + jB$	C + jD	-AC - BD + j(-AD + BC)	$\begin{array}{c} IM_INVERT \\ -AC - BD + j(AD - BC) \end{array}$
4	4	A + jB	RE_INVERT IM_INVERT -A - jB	C + jD	-AC + BD + j(-AD - BC)	NONE $-AC + BD + j(-AD - BC)$
Ę	5	A + jB	RE-IM SWAP $B + jA$	C + jD	-AD + BC + j(AC + BD)	RE_INVERT $AD - BC + j(AC + BD)$
6	6	A + jB	RE-IM SWAP IM_INVERT $B-jA$	C + jD	AD + BC + j(-AC + BD)	NONE $AD + BC + j(-AC + BD)$
7	7	A + jB	RE-IM SWAP RE_INVERT $-B+jA$	C + jD	-AD - BC + j(AC - BD)	NONE $-AD - BC + j(AC - BD)$
8	8	A + jB	RE-IM SWAP RE_INVERT IM_INVERT -B - jA	C + jD	AD - BC + j(-AC - BD)	$RE_INVERT \\ -AD + BC + j(-AC - BD)$

Complex Constant Multiplier Unit (cont'd)

Complex Const. Mult.: Shuffle Unit

- Shuf_Ctrl_0 through Shuf_Ctrl_7
 - Select which set of data goes which constant multiplier.

✓	Assert	master_control.v_master_control_inst.assert_Shuf_Ctrl_0	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Shuf_Ctrl_0:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Shuf_Ctrl_1	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Shuf_Ctrl_1:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Shuf_Ctrl_2	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Shuf_Ctrl_2:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
>	Assert	master_control.v_master_control_inst.assert_Shuf_Ctrl_3	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Shuf_Ctrl_3:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Shuf_Ctrl_4	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Shuf_Ctrl_4:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Shuf_Ctrl_5	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Shuf_Ctrl_5:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
~	Assert	master_control.v_master_control_inst.assert_Shuf_Ctrl_6	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Shuf_Ctrl_6:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Shuf_Ctrl_7	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Shuf_Ctrl_7:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session

Complex Const. Mult.: Multiplier Unit

- Type_Sel_0 through Type_Sel_7
 - Select the type of operation that each multiplier does.

Analysis Session

45.5 <embedded>

master control v master control instassert Type Sel 0

Assert

Complex Const. Mult.: Multiplier Unit Assertion

Hp (26)

Infinite

•	Assert	master_condion.v_master_condion_mscassert_type_ser_o	TIP (20)	minine	43.3	~embedded>	Analysis Session
✓∕	Cover (related)	master_control.v_master_control_inst.assert_Type_Sel_0:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Type_Sel_1	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Type_Sel_1:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Type_Sel_2	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Type_Sel_2:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Type_Sel_3	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Type_Sel_3:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Type_Sel_4	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Type_Sel_4:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Type_Sel_5	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Type_Sel_5:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Type_Sel_6	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Type_Sel_6:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Type_Sel_7	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓∕	Cover (related)	master_control.v_master_control_inst.assert_Type_Sel_7:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session

Complex Const. Mult.: Bypass Unit

- Bypass_Sel_0 through Bypass_Sel_7
 - Select whether a multiplication is performed or not for each multiplication block.

 Bypass means no multiplication (only swapping or sign inverting the real and imaginary parts).

Bypass Circuit

Analysis Session

0.0 <embedded>

master control v master control instassert Bypass Sel 0

Complex Const. Mult.: Bypass Unit Assertion

~	Assert	master_condition_master_condition_mscasser_bypass_ser_o	TINE	IIIIIIICE	0.0	<eiiibeadea></eiiibeadea>	Allalysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_Sel_0:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_Sel_1	PRE	Infinite	0.0	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_Sel_1:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_Sel_2	PRE	Infinite	0.0	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_Sel_2:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_Sel_3	PRE	Infinite	0.0	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_Sel_3:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_Sel_4	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_Sel_4:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_Sel_5	PRE	Infinite	0.0	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_Sel_5:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_Sel_6	PRE	Infinite	0.0	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_Sel_6:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_Sel_7	PRE	Infinite	0.0	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_Sel_7:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session

Complex Const. Mult.: Deshuffle Unit

- DeShuf_Ctrl_0 through DeShuf_Ctrl_7
 - Select return path of the dataset after being multiplied.

✓	Assert	master_control.v_master_control_inst.assert_DeShuf_Ctrl_0	PRE	Infinite	0.0	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DeShuf_Ctrl_0:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DeShuf_Ctrl_1	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DeShuf_Ctrl_1:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DeShuf_Ctrl_2	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DeShuf_Ctrl_2:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DeShuf_Ctrl_3	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DeShuf_Ctrl_3:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DeShuf_Ctrl_4	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DeShuf_Ctrl_4:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DeShuf_Ctrl_5	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DeShuf_Ctrl_5:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DeShuf_Ctrl_6	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DeShuf_Ctrl_6:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DeShuf_Ctrl_7	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DeShuf_Ctrl_7:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session

Complex Const. Mult.: Datapath Unit

- Bypass_EN_0 through Bypass_EN_7
 - Select whether to use dataset from multiplier unit or from bypass unit.
- Hold_Ctrl_0 through Hold_Ctrl_7
 - Select whether to stall the datapath due to multicycle multiplication.
- DFF_Ctrl_0 through DFF_Ctrl_7
 - Select whether to use next data or delayed data.

Complex Const. Mult.: Datapath Unit (Assertion)

✓	Assert	master_control.v_master_control_inst.assert_Bypass_EN_0	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_EN_0:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_EN_1	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_EN_1:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_EN_2	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
>	Cover (related)	master_control.v_master_control_inst.assert_Bypass_EN_2:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
*	Assert	master_control.v_master_control_inst.assert_Bypass_EN_3	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_EN_3:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_EN_4	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
>	Cover (related)	master_control.v_master_control_inst.assert_Bypass_EN_4:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_EN_5	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_EN_5:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_EN_6	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_EN_6:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Bypass_EN_7	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Bypass_EN_7:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session

Complex Const. Mult.: Datapath Unit (Assertion)

✓	Assert	master_control.v_master_control_inst.assert_Hold_Ctrl_0	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Hold_Ctrl_0:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Hold_Ctrl_1	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Hold_Ctrl_1:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Hold_Ctrl_2	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Hold_Ctrl_2:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Hold_Ctrl_3	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Hold_Ctrl_3:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Hold_Ctrl_4	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Hold_Ctrl_4:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Hold_Ctrl_5	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Hold_Ctrl_5:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Hold_Ctrl_6	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Hold_Ctrl_6:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_Hold_Ctrl_7	PRE	Infinite	0.0	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_Hold_Ctrl_7:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session

Complex Const. Mult.: Datapath Unit (Assertion)

✓	Assert	master_control.v_master_control_inst.assert_DFF_Ctrl_0	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DFF_Ctrl_0:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DFF_Ctrl_1	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DFF_Ctrl_1:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DFF_Ctrl_2	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DFF_Ctrl_2:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DFF_Ctrl_3	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DFF_Ctrl_3:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DFF_Ctrl_4	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DFF_Ctrl_4:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DFF_Ctrl_5	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DFF_Ctrl_5:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DFF_Ctrl_6	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DFF_Ctrl_6:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_DFF_Ctrl_7	PRE	Infinite	0.0	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_DFF_Ctrl_7:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session

Compute Buffer (CB)

- Rearrange Dataset for second stage of 8-point FFT.
- hold_seg_0 through hold_seg_7
 - To stall each segment of the buffer
- input_ctrl_all_cb
 - To select which data to buffer.

Multiplier Unit Second 8-Point FFT

Analysis Session

45.5 <embedded>

Compute Buffer (CB) (Assertion)

master control v master control instassert hold seg 0

~	Assert	master_condition_v_master_condition_ms.tasserc_noid_seg_o	mp (20)	minice	45.5	<embedded></embedded>	Allalysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_seg_0:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_hold_seg_1	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_seg_1:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_hold_seg_2	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_seg_2:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_hold_seg_3	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_seg_3:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_hold_seg_4	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_seg_4:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_hold_seg_5	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_seg_5:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_hold_seg_6	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_seg_6:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_hold_seg_7	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_hold_seg_7:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓∕	Assert	master_control.v_master_control_inst.assert_in_ctrl_all_cb	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_in_ctrl_all_cb:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session

Output Buffer

- Serialize the Output Data
- counter_en
 - to indicate valid output data
- next_data (currently unused)
 - to indicate the next operation can be started

✓	Assert	master_control.v_master_control_inst.assert_counter_en	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_counter_en:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session
✓	Assert	master_control.v_master_control_inst.assert_next_data	Hp (26)	Infinite	45.5	<embedded></embedded>	Analysis Session
✓	Cover (related)	master_control.v_master_control_inst.assert_next_data:precondition1	В	1	0.0	<embedded></embedded>	Analysis Session

Universal Verification Methodology (UVM)

UVM Verification Steps

Step 1: Understanding the Interface

 Step 2: Create a dummy (DUT) module to setup the UVM environment Mimic the basic behavior without worrying about the exact functionality (Using the same input output interfaces)

Step 3: Modify the Scoreboard

```
task run();
   forever begin
        fifo in.get(tx in);
        fifo out.get(tx out);
        if(tx_in.In_Valid && (tx_in.rst == 0) && (index1 < 64))begin
            in data[index1] = tx in.In Stream;
            index1 = index1 + 1;
            if (index1==64) begin
                generate results();
            end
        end
        if(tx out.Out Valid)begin
            out data[index2] = tx out.Out Stream;
            index2 = index2 + 1;
            if (index2==64) begin
                compare();
        end
    end
endtask: run
```

• Step 4: Write a Perfect FFT

- Difficult
 - 16-bit Fixed Point
 - No SV Support
- Solution
 - Connect FFT and IFFT together as the DUT
- ➤ Alternative Solution
 - DPI-C

Theoretically,

Time Domain Data In = Time Domain Data Out

However there might be small errors due to rounding off in fixed point arithmetic

- Step 5: Generating the sequences
 - Reset sequences (created a new sequence class)
 - Usual input data sequence with necessary constraints

(- 0.10009765625 < Data < 0.10009765625)

```
constraint c_In_Stream_imag { (In_Stream[15 :0] >= 16'hFE66) // (In_Stream[15: 0] <= 16'h019A);}
constraint c_In_Stream_real { (In_Stream[31:16] >= 16'hFE66) // (In_Stream[31:16] <= 16'h019A);}</pre>
```

Generate enough sequences to get an output

Step 6: Simulating Using "ModelSim"

```
# UVM_INFO ../tb/scoreboard.sv(72) ... [fft_scoreboard Gold Out: 00c8fe8a, FFT Out: 00c8fa8a
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] Gold Out: 0140ff1f, FFT Out: 0140fb1e
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] Gold Out: 0115fe97, FFT Out: 0115fa96
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scorebourd] Gold Out: 0011ffaa, FFT Out: 0011fbaa
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] Gold Out: ff6fffde, FFT Out: fb6ffbde
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreb/ard] Gold Out: 0104fe81, FFT Out: 0103fa80
# UVM INFO ../tb/scoreboard.sv(72) ... [fft_scoreboard] Gold Out: 0076000b, FFT Out: 0075000b
# UVM INFO ../tb/scoreboard.sv(72) ... [fft_scoreboard] Gold Out: ffee0061, FFT Out: fbee0060
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoret oard] Gold Out: 0198fffd, FFT Out: 0198fbfc
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoret oard] Gold Out: ff4e00cf, FFT Out: fb4e00ce
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] Gold Out: feb1fefb, FFT Out: fab1fafb
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] Gold Out: ff0fff2b, FFT Out: fb0ffb2a
# UVM INFO ../tb/scoreboard.sv(72) ... [fft_scoreboard] Gold Out: 00f7fe76, FFT Out: 00f7fa76
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] Gold Out: ff990170, FFT Out: fb99016f
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] Gold Out: 00b3ffe9, FFT Out: 00b3fbe8
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] Gold Out: 00ea007c, FFT Out: 00ea007c
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] Gold Out: ff92fe8c, FFT Out: fb92fa8c
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] Gold Out: fealfebe, FFT Out: faalfabd
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] Gold Out: 00bb0036, FFT Out: 00ba003/
# UVM INFO ../tb/scoreboard.sv(72) ... [fft scoreboard] told Out: 0143ff5e, FFT Out: 0143fb5e
```


Logical Equivalence Checking

Logical Equivalence Checking

Motivation

- To ensure logical equivalence doesn't break along chip design process
- To ensure design intent is retained as design move into real life implementation

Stages considered

- RTL to Synthesized Netlist (using Synopsys DC)
- Synthesized Netlist to Implementation (using Cadence Innovus)

LEC Workflow

- Setup
 - Identifying keypoints/cuts
- Mapping
 - Mapping keypoints
- Comparison

First stage

RTL ---> Synthesized Netlist

RTL to Synthesized Netlist

- Setup
 - Golden -> RTL
 - Revised -> Generated Netlist

- Assumption
 - Sequential constant set to 0
 - Sequential merge to reduce unreachable states

RTL to Synthesized Netlist(Mapping)

```
// Golden key points = 6538
// Revised key points = 6508
// Mapping key points ...
```

Revised	36	34	6406	6476		
Golden	36	34	6406	6476		
Mapped points	PI	P0	DFF	Total		
Mapped points: SYSTEM class						

Unmapped points DFF Total

Unreachable 62 62

Revised:

Unmapped points DFF Total

Unmapped points DFF Total

Unmapped points DFF Total

RTL to Synthesized Netlist(Mapping)

Mapping manager

RTL to Synthesized Netlist(Comparison)

```
Unmapped points DFF
                            Total
Unreachable
// Running automatic setup...
// Automatic setup finished.
// Command: add compared points -all
// 6440 compared points added to compare list
// Command: compare
Compared points
                            DFF
                                      Total
                            6406
                                      6440
Equivalent
// Command: puts "Num of compare points = [qet_compare_points -count]"
Num of compare points = 6440
// Command: puts "Num of diff points = [get compare points -NONequivalent -count]"
Num of diff points
// Command: puts "Num of abort points = [get compare points -abort -count]"
Num of abort points
// Command: puts "Num of unknown points = [get_compare_points -unknown -count]"
Num of unknown points = 0
```


Netlist to Implementation Stage

Setup

- Golden -> Verified Netlist
- Revised -> Implementation Design

Assumption

- Sequential constant set to 0
- Sequential merge to reduce unreachable states
- Black boxes were defined due to insufficient library definitions

Mapped points: SYSTEM class								
Mapped points	PΙ	PO	DFF	Total				
Golden	36	34	6406	6476				
Revised	36	34	6406	6476				
Unmapped points:								
Golden:								
Unmapped points	DFF	Т	otal					
<u>Unreachable</u>	32	32	2					

Netlist to Implementation(Mapping)

RTL to Synthesized Netlist(Comparison)

```
/ Running automatic setup...
 / Automatic setup finished.
 // Command: add_compared_points -all
 / 6440 compared points added to compare list
 / Command: compare
Compared points
                                      Total
                     34
                            6406
Equivalent
// Command: puts "Num of compare points = [get_compare_points -count]"
Num of compare points = 6440
// Command: puts "Num of diff points = [get_compare_points -NONequivalent -co
unt1"
Num of diff points
// Command: puts "Num of abort points = [get_compare_points -abort -count]"
Num of abort points
// Command: puts "Num of unknown points = [get_compare_points -unknown -count]"
Num of unknown points = 0
```


Conclusion

Conclusion

- We were able to complete a comprehensive verification on the FFT/IFFT Processor
- Formal Verification was carried out on the "Master Control" unit
- RTL design was tested using UVM
- Gate level and implementation level netlists were verified using Logical Equivalence Checking
- Our project is available on GitHub to anyone for further experiments

https://github.com/ashanuka/FFT-IFFT-Verification

Reference

 Maharatna, Koushik, Grass, Eckhard and Jagdhold, Ulrich (2004) A 64-point Fourier transform chip for high-speed wireless LAN application using OFDM. IEEE Journal of Solid-State Circuit, 39 (3), 484-493.