Министерство образования Республики Беларусь Белорусский национальный технический университет Факультет транспортных коммуникаций Кафедра «Геодезия и аэрокосмические геотехнологии»

Отчет по лабораторной работе №3 «Уравнивание геодезического четырехугольника» Вариант №3

Выполнил: ст.гр.11405118

Вишняков Д.Н.

Проверил: ст. преподаватель

Будо А.Ю.

Цель работы: Выполнить уравнивание линейно-угловой сети в виде геодезического четырехугольника и выполнить оценку точности, схема сети представлена на рисунке 1.

Рисунок 1 – Схема линейно-угловой сети

Исходные данные представлены в таблице 1, 2, 3.

Таблица 1. Исходные координаты

П	Координаты исх.пунктов						
Пункт	N, м	Е, м	N, дм	Е, дм			
A	1097	106	10970	1060			
В	1641	643	16410	6430			
		Приближ. коорд	цинаты пунктов				
С	1619	1386	16190	13860			
D	1009	1172	10090	11720			

Таблица 2. Измеренные стороны

Элемент	Изм. Стороны, м	Изм. Стороны, дм
BC	743,084	7430,840
CD	646,870	6468,700
BD	824,574	8245,740

Таблица 3. Измеренные направления

Элемент	Изм. направления
AB	0°00′00,00″
AC	23°10′24,80″
AD	50°06′36,80″
BC	0°00′00,00″
BD	48°23′49,50″
BA	132°56′47,20″
CD	0°00′00,00″
CA	48°31′13,60″
СВ	72°23′56,90″
DA	0°00′00,00″
DB	45°20′23,30″
DC	104°32′34,0″

Необходимо вычислить СКП измеренных расстояний и направлений по формуле 1

$$m = a + b \cdot D \tag{1}$$

где $a=2\,$ мм, $b=3\,$ ppm, также эти величины являются исходными данными.

СКП угла тахеометра m_{β} =2", СКП горизонтальных направлений вычисляем по формуле 2

$$m_M = \frac{m_\beta}{\sqrt{2}} \tag{2}$$

Результаты вычислений СКП измеренных направлений и расстояний сведем в таблицу 4.

Далее составляется матрица P, т.е. матрица весов измерений размерности $N \times N$, где N — количество измеренных величин и вес рассчитывается по формуле

$$P_i = \frac{1}{m_i^2} \tag{3}$$

Сама матрица выглядит следующим образом:

						P	=							
լ0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0,5	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0,5	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0,5	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0,5	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0,5	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0,5	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0,5	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0,5	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0,5	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0,5	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	559	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	644	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	500l

Таблица 4. СКП измеренных направлений и расстояний

Элемент	СКП, мм	СКП, дм		
BC	4,22930	0,0422930		
CD	3,94060	0,0394060		
DA	4,47370	0,0447370		
Элемент	СКП нап	равлений		
AB	1,41	142"		
AC	1,41	142"		
AD	1,4142"			
BC	1,4142"			
BD	1,4142"			
BA	1,4142"			
BA	1,4142"			
CD	1,4142"			
CA	1,4142"			
CB	1,4142"			
DA	1,4142"			
DB	1,4142"			
DC	1,4142"			

Затем составим матрицу A. Для этого заполняем матрицу частными производными по измеренным направлениям по следующим формулам 4, 5, 6, 7:

$$a_{AB} = -\rho \frac{E_B - E_A}{S_{AB}^2} \tag{4}$$

$$b_{AB} = \rho \frac{N_B - N_A}{S_{AB}^2} \tag{5}$$

$$S_{AB} = \sqrt{(N_B - N_A)^2 + (E_B - E_A)^2}$$
 (6)

$$\rho = \frac{180^{\circ}}{\pi \cdot 3600''} \tag{7}$$

Для измеренных расстояний будем рассчитывать по формулам 8 и 9

$$c_{AB} = \frac{N_B - N_A}{S_{AB}} \tag{8}$$

$$d_{AB} = \frac{E_B - E_A}{S_{AB}} \tag{9}$$

Матрица А выглядит следующим образом:

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ -13,8 & 5,6 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -19,2 & -1,6 & -1 & 0 & 0 & 0 \\ -27,7 & -0,8 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -16,1 & -19,2 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ -10,5 & 30,0 & 10,6 & -30,1 & 0 & 0 & -1 & 0 \\ -13,8 & 5,6 & 0 & 0 & 0 & 0 & -1 & 0 \\ -27,7 & -0,8 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & -19,2 & -1,6 & 0 & 0 & 0 & -1 \\ 0 & 0 & -16,1 & -19,2 & 0 & 0 & 0 & -1 \\ -10,6 & 30,0 & 10,6 & -30,1 & 0 & 0 & 0 & -1 \\ -0,03 & 1,00 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0,94 & 0,33 & -0,94 & -0,33 & 0 & 0 & 0 & 0 \\ 0 & 0 & -0,77 & 0,64 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Для вычисления вектора свободных членов для измеренных направлений необходимо рассчитать на каждой станции дирекционный (ориентирующий) угол нулевого направления по формуле 10

$$Z_0 = \frac{\left(\alpha_{AD} - M_{AD}\right) + \left(\alpha_{AC} - M_{AC}\right) + \left(\alpha_{AB} - M_{AB}\right)}{N} \tag{10}$$

При этом необходимо следить за тем, чтобы значение в скобке $(\alpha - M)$ лежало в интервале от 0 до 2π , иначе необходимо добавить 360° к полученному дирекционному углу.

Например, в направлении DC был получен дирекционный угол $\alpha=19^{\circ}14'39,2''$, тогда выражение $(\alpha_{DC}-M_{DC})<0$

Для нахождения дирекционных углов направлений можно воспользоваться решением обратной геодезической задачи (далее ОГЗ). Результат решения ОГЗ для направления AB приведен в таблице 5

Таблица 5. Результат решения ОГЗ

$N_{\underline{0}}$	Коорді	инаты	Приращения				C 9.
точки	Х, дм	<i>Y, д</i> м	ΔХ, ∂м	ДҮ, ∂м	r_{1-2}	$\alpha_{1\text{-}2}$	<i>S, д</i> м
A	10970,00	1060,00	5440,00	5370,00	44°34′37,7″	44°34′37,7″	7665 25
В	16410,00	6430,00	3440,00	3370,00	44 34 37,7	44 34 37,7	7665,25

Дирекционные углы остальных направлений сведем в таблицу 6

Таблица 6. Дирекционные углы остальных направлений

Направление	α
AC	67°44′44,7″
AD	85°17′38,4″
BC	88°23′7,3″
BD	39°56′51″
BA	44°34′37,7″
CD	19°14′39,2″
CA	67°44′44,7″
СВ	88°23′7,3″
DA	85°17′38,4″
DB	39°56′51″
DC	19°14′39,2″

Затем по рассчитанным значениям дирекционных углов и ориентирующих углов, вычислят значения направлений $M_{ij}^{\it ebiq}$ по формуле 11

$$M_{AD}^{ebiq} = \alpha_{AD} - Z_0 \tag{11}$$

Результаты вычислений формул 10 и 11 приведем в таблице 7 Далее можно вычислить вектор свободных членов L по формуле 12

$$L = \begin{bmatrix} \left(M_{AB}^{6bi^{u}} - M_{AB}^{u3M} \right) \cdot 3600 \\ \left(M_{AC}^{6bi^{u}} - M_{AC}^{u3M} \right) \cdot 3600 \\ \dots \\ S_{BC}^{6bi^{u}} - S_{BC}^{u3M} \end{bmatrix}$$
(12)

Результаты вычислений вектора L

$$\begin{bmatrix}
 10,612593 \\
 50,962050 \\
 -61,574643 \\
 44,106117 \\
 -39,712974 \\
 -4,393143 \\
 88,278909 \\
 L = -50,564355 \\
 -37,714554 \\
 -96,949122 \\
 -57,881717 \\
 154,830839 \\
 2,416352 \\
 -4,212395 \\
 -3,986546$$

Вектор поправок в приближенные значения искомых пунктов вычисляются по формуле 13

$$\delta = -(A^T P A)^{-1} A^T P L \tag{13}$$

Результат вычислений поправок приведен ниже

$$\delta = \begin{bmatrix} 0,1882 \\ -0,2360 \\ -0,3938 \\ 0,1503 \\ 11,3336 \\ -5,2818 \\ -89,1190 \\ -23,3530 \end{bmatrix}$$

Процесс уравнивания плановой сети является итерационным процессом, итерации продолжают до тех пор, пока поправки не будут меньше значения чем из предыдущей итерации на 0,0001 м. Прежде чем проводить вторую и последующие итерации необходимо заменить значения приближенных координат искомых пунктов на значения предыдущей итерации (см таблицу8)

Таблица 8 Координаты исходных пунктов для второй итерации

Пункт	Координаты исходных пунктов				
	N, м	Е, м			
A	1097	106			
В	1641	643			
	Приближенные координаты пунктов				
С	1619,188	1385,764			
D	1008,606	1172,150			

В таблице 9 приведены уравненные координаты исходных и искомых пунктов после 3 итерации

Таблица 9. Уравненные координаты

Пункт	Координаты исходных пунктов				
	N, м	Е, м			
A	1097	106			
В	1641	643			
	Уравненные координаты пунктов				
C	1619,1881	1385,7638			
D	1008,6061	1172,1504			

Оценка точности

Вычислим СКП единицы веса по формуле 14

$$\mu = \sqrt{\frac{V^T P V}{N - u}} \tag{14}$$

где N — число измерений;

u — число определяемых параметров, это число мы берем из вектора поправок, то есть u будет равно количеству строк из вектора поправок.

Результат вычислений

$$\mu = \sqrt{\frac{4,616}{15-8}} = 0.812$$

Ковариационная матрица определяемых параметров по формуле 15

$$Q = \left(A^T P A\right)^{-1} \tag{15}$$

Ковариационная матрица измерений по формуле 16

$$Q_{v} = AQA^{T} \tag{16}$$

Результат вычислений формул 15 и 16 соответственно приведены ниже

$$Q = \begin{bmatrix} 0,003 & 0,000 & 0,002 & 0,001 & -0,025 & -0,044 & -0,057 & -0,049 \\ 0,000 & 0,001 & 0,000 & 0,000 & 0,002 & -0,004 & 0,007 & 0,010 \\ 0,002 & -0,001 & 0,002 & 0,001 & -0,021 & -0,033 & -0,036 & -0,041 \\ 0,001 & 0,001 & 0,001 & 0,002 & -0,013 & -0,034 & -0,036 & -0,046 \\ -0,025 & 0,002 & -0,021 & -0,013 & 0,927 & 0,428 & 0,523 & 0,513 \\ -0,044 & -0,004 & -0,033 & -0,034 & 0,428 & 1,470 & 0,946 & 0,966 \\ -0,057 & 0,007 & -0,036 & -0,036 & 0,523 & 0,946 & 1,974 & 1,183 \\ -0,049 & 0,001 & -0,046 & -0,046 & 0,513 & 0,966 & 1,183 & 1,970 \end{bmatrix}$$

$$Q_{\mathcal{Y}} = \begin{bmatrix} 0.93 & 0.57 & 0.50 & -0.26 & -0.17 & 0.43 & 0.00 & 0.17 & -0.17 & -0.09 & -0.08 & -0.01 & 0.00 & 0.00 & -0.01 \\ 0.57 & 0.78 & 0.65 & 0.21 & -0.05 & -0.16 & -0.02 & -0.09 & 0.07 & -0.09 & -0.06 & 0.15 & 0.00 & -0.01 & 0.00 \\ 0.50 & 0.65 & 0.85 & 0.05 & 0.22 & -0.27 & -0.02 & -0.08 & 0.09 & 0.00 & 0.14 & -0.14 & 0.00 & 0.01 & 0.01 \\ -0.26 & 0.21 & 0.10 & 1.14 & 0.61 & 0.24 & -0.13 & -0.15 & 0.28 & 0.08 & -0.02 & 0.10 & 0.00 & -0.01 & 0.01 \\ -0.17 & -0.05 & 0.16 & 0.61 & 1.10 & 0.29 & 0.21 & -0.21 & -0.00 & -0.19 & 0.24 & -0.04 & -0.01 & 0.01 & -0.00 \\ 0.43 & -0.16 & -0.26 & 0.24 & 0.29 & 1.47 & -0.08 & 0.36 & -0.28 & 0.27 & -0.22 & 0.06 & 0.00 & 0.00 & 0.00 \\ 0.00 & -0.02 & -0.11 & -0.13 & 0.21 & -0.08 & 1.16 & 0.46 & 0.38 & -0.34 & -0.05 & 0.39 & 0.01 & 0.01 & -0.01 \\ 0.17 & -0.09 & -0.03 & -0.15 & -0.21 & 0.36 & 0.46 & 0.90 & 0.65 & 0.26 & -0.06 & -0.19 & 0.00 & 0.00 & 0.00 \\ -0.17 & 0.07 & 0.14 & 0.28 & -0.00 & -0.28 & 0.38 & 0.65 & 0.97 & 0.09 & 0.11 & -0.20 & 0.01 & -0.01 & 0.01 \\ -0.08 & -0.06 & 0.11 & -0.02 & 0.24 & -0.22 & -0.05 & -0.06 & 0.11 & 0.65 & 0.88 & 0.47 & -0.01 & 0.00 & -0.00 \\ 0.01 & 0.15 & -0.21 & 0.10 & -0.04 & -0.06 & 0.39 & -0.19 & -0.20 & 0.33 & 0.47 & 1.20 & 0.01 & -0.01 & -0.01 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.01 & 0.00 & 0.01 & 0.00 & -0.01 & 0.00 & 0.00 \\ 0.00 & -0.01 & 0.01 & -0.01 & 0.01 & 0.00 & 0.01 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & 0.00 \\ 0.00 & -0.01 & 0.01 & -0.01 & 0.01 & 0.00 & 0.01 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & 0.00 \\ 0.01 & 0.00 & 0.01 & 0.01 & -0.01 & 0.00 & 0.01 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & 0.00 \\ 0.01 & 0.00 & 0.01 & 0.01 & -0.00 & 0.01 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & 0.00 \\ 0.01 & 0.00 & 0.01 & 0.01 & -0.00 & 0.01 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & 0.00 \\ 0.01 & 0.00 & 0.01 & 0.01 & -0.00 & 0.01 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & 0.00 \\ 0.01 & 0.00 & 0.01 & 0.01 & -0.00 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & 0.00 \\ 0.00 & -0.01 & 0.01 & -0.00 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & -0.01 &$$

СКП уравненных параметров по формуле 17

$$m_i = \mu \cdot \sqrt{Q_{i,i}} \tag{17}$$

Результат вычислений

$$m_{NC}=0.03$$
 дм $=0.0030$ м $m_{EC}=0.02$ дм $=0.0019$ м $m_{ND}=0.03$ дм $=0.0025$ м $m_{ED}=0.03$ дм $=0.0028$ м

СКП уравненных измерений по формуле 18

$$m_{yi} = \mu \cdot \sqrt{Q_{y_{i,i}}} \tag{18}$$

Результат вычислений представлены в таблице 10 СКП уравненных измерений по формуле 18

$$m_{yi} = \mu \cdot \sqrt{Q_{y_{i,i}}} \tag{18}$$

Результат вычислений представлены в таблице 10

Таблица 10. СКП уравненных измерений

D.	СКП уравненных измерений
Элемент	Угловых измерений, "
AB	0,553
AC	0,508
AD	0,529
BC	0,614
BD	0,602
BA	0,697
CD	0,618
CA	0,544
СВ	0,566
DA	0,581
DB	0,539
DC	0,629

Расчет эллипсов ошибок

Для расчетов параметров эллипсов ошибок вычислим вспомогательную величину W по формуле 19

$$W = \sqrt{(Q_{i,i} - Q_{i+1,i+1})^2 + 4 \cdot (Q_{i,i+1})^2}$$
 (19)

Для точки С

 W_C = 0,002 дм =0,000163 м

Для точки D

$$W_D = 0,002$$
 дм = $0,000220$ м

Угол поворота большой полуоси эллипса относительно северного направления находим по формуле 20

$$\varphi = \frac{\pi}{2} - \frac{1}{2} \cdot \arcsin\left(\frac{2 \cdot Q_{i,i+1}}{W}\right) \tag{20}$$

Для точки С и D соответственно

$$\varphi_C = 91^{\circ}32'50,6''$$

 $\varphi_D = 50^{\circ}17'47,4''$

Большая полуось эллипса ошибок рассчитаем по формуле 21

$$a = \mu \cdot \sqrt{\frac{Q_{i,i} + Q_{i+1,i+1} + W}{2}}$$
 (21)

Для точки С и D соответственно

$$a_C = 0.03$$
 дм = 0.0030 м $a_D = 0.03$ дм = 0.0032 м

Малая полуось эллипса ошибок считаем по формуле 22

$$b = \mu \cdot \sqrt{\frac{Q_{i,i} + Q_{i+1,i+1} - W}{2}}$$
 (22)

Для точки C и D соответственно

$$b_C = 0.02 \text{ дм} = 0.0019 \text{ м}$$

 $b_D = 0.02 \text{ дм} = 0.0018 \text{ м}$

Статистический тест Хи-квадрат

В данной работе примем вероятность Р = 95%, тогда

$$\chi_{nes}^{2} = XM2.OEP\left(\frac{q}{2};r\right) = 1,69$$

$$\chi_{npas}^{2} = XM2.OEP\left(1 - \frac{q}{2};r\right) = 16,01$$

где r – число степеней свободы и r = N-u

$$\sqrt{\frac{\chi_{\text{пев}}^2}{r}} \le \mu \le \sqrt{\frac{\chi_{\text{прав}}^2}{r}}$$
 $0.491 \le 0.575 \le 1.512$

Вывод: Статистический тест Хи-квадрат выполняется.