Assignment 5

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

df=pd.read_csv('/content/Mall_Customers.csv')
df

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

print(df.head())
print(df.tail())

		CustomerI	D	Genre	Age	Annual	Income	(k\$)	Spending	Score (1-100)
(0	:	1	Male	19			15			39
	1	:	2	Male	21			15			81
,	2	3	3	Female	20			16			6
	3	4	4	Female	23			16			77
4	4	!	5	Female	31			17			40
		Custome	rID	Genre	Age	e Annua	al Incor	ne (k\$) Spendin	g Score	(1-100)
	195	5 :	196	Female	35	5		12	0		79
	196	5 :	197	Female	45	5		12	6		28
;	197	7 :	198	Male	32	2		12	6		74
:	198	3 :	199	Male	32	2		13	7		18
	199	9 :	200	Male	36)		13	7		83

print(df.shape)

(200, 5)

print(df.info())

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns): Non-Null Count Dtype # Column --------200 non-null int64 0 CustomerID 1 Genre 200 non-null object 200 non-null int64 2 Age 3 Annual Income (k\$) 200 non-null int64 4 Spending Score (1-100) 200 non-null int64 dtypes: int64(4), object(1) memory usage: 7.9+ KB

df.describe()

None

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

df.corr()

<ipython-input-9-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid column
df.corr()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	-0.026763	0.977548	0.013835
Age	-0.026763	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0 327227	0.009903	1 000000

sns.heatmap(df.corr())

<ipython-input-10-aa4f4450a243>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid colum sns.heatmap(df.corr())
<Axes: >

11/21/23, 10:08 PM

CustomerID False
Genre False
Age False
Annual Income (k\$) False
Spending Score (1-100) False
dtype: bool

df.isnull().sum()

df.isnull().any()

CustomerID 0
Genre 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0
dtype: int64

plt.subplots(figsize=(20,15))

sns.boxplot(df)

x=df.iloc[:,:3]
y=df.iloc[:,3:4]

x.head()

	CustomerID	Genre	Age
0	1	Male	19
1	2	Male	21
2	3	Female	20
3	4	Female	23
4	5	Female	31

y.head()

	Annual	Income	(k\$)
0			15
1			15
2			16
3			16
4			17

print(x.shape)
print(y.shape)

(200, 3) (200, 1)

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

x['Genre']=le.fit_transform(x['Genre'])

x[['Genre']]

```
Genre

0 1
1 1
2 0
3 0
4 0
... ...
x.head()
```

 CustomerID
 Genre
 Age

 0
 1
 1
 19

 1
 2
 1
 21

 2
 3
 0
 20

 3
 4
 0
 23

 4
 5
 0
 31

from sklearn.model_selection import train_test_split
v train v test v train v test=train test split(v v test size=0 3 random stat

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=0)

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(140, 3)
   (60, 3)
   (140, 1)
```

(60, 1)

from sklearn.preprocessing import MinMaxScaler
mms=MinMaxScaler()

x_train_scaled=mms.fit_transform(x_train)

x_test_scaled=mms.fit_transform(x_test)

x_train_scaled

```
array([[0.65829146, 1.
                              , 0.40384615],
                              , 0.55769231],
       [0.48241206, 0.
                              , 0.26923077],
       [0.90954774, 0.
                             , 0.32692308],
       [0.09547739, 0.
       [0.76884422, 0.
                              , 0.38461538],
                              , 0.57692308],
       [0.46231156, 1.
       [0.27135678, 0.
                              , 0.61538462],
                             , 0.25
       [0.81909548, 0.
       [0.25628141, 1.
                              , 0.28846154],
                              , 0.71153846],
       [0.4321608 , 0.
       [0.69849246, 0.
                              , 0.32692308],
                              , 0.96153846],
       [0.45226131, 0.
       [0.68844221, 1.
                              , 0.26923077],
       [0.50753769, 0.
                              , 0.59615385],
                              , 0.13461538],
       [0.72361809, 1.
                              , 0.61538462],
       [0.44723618, 0.
       [0.54773869, 1.
                              , 0.92307692],
       [0.07035176, 1.
                              , 0.36538462],
                              , 0.32692308],
       [0.13567839, 1.
       [0.70854271, 1.
                              , 0.26923077],
       [0.93969849, 1.
                              , 0.19230769],
       [0.23115578, 0.
                              , 0.61538462],
                              , 0.01923077],
       [0.69346734, 1.
                              , 0.32692308],
       [0.9798995 , 0.
       [0.54271357, 1.
                              , 0.96153846],
                              , 0.94230769],
       [0.31155779, 0.
                              , 0.03846154],
       [0.01005025, 0.
                              , 0.67307692],
       [0.29648241, 1.
                              , 0.5
       [0.68341709, 0.
       [0.98994975, 1.
                              , 0.26923077],
       [0.2160804, 0.
                             , 0.25
                                         ],
       [0.05025126, 1.
                              , 0.94230769],
       [0.97487437, 0.
                              , 0.55769231],
                              , 0.80769231],
       [0.36683417, 0.
                              , 0.51923077],
       [0.98492462, 0.
       [0.89447236, 1.
                              , 0.78846154],
                              , 0.23076923],
       [0.87939698, 0.
       [0.63316583, 1.
                              , 0.48076923],
       [0.46733668, 0.
                              , 0.42307692],
                              , 0.38461538],
       [0.56281407, 0.
       [0.79396985, 1.
                              , 0.30769231],
                              , 0.26923077],
       [0.95979899, 0.
       [0.25125628, 0.
                              , 0.59615385],
                              , 0.01923077],
       [0.47236181, 0.
                              , 0.26923077],
                              , 0.90384615],
       [0.55276382, 1.
       [0.47738693, 1.
                              , 0.11538462],
       [0.32160804, 1.
                              , 0.86538462],
       [0.83919598, 0.
                              , 0.28846154],
                              , 0.11538462],
       [0.20603015, 1.
       [0.34673367, 0.
                              , 0.26923077],
                              , 0.25
       [0.24623116, 0.
                              , 0.21153846],
       [0.24120603, 0.
                              , 0.57692308],
       [0.42713568, 1.
                              , 0.11538462],
       [0.06532663, 0.
       [0.80904523, 0.
                              , 0.21153846],
       [0.11557789, 1.
                              , 0.25
       [0.93467337, 0.
                              , 0.69230769],
```

print(x_test_scaled)

```
[[0.07567568 1.
                       0.65384615]
 [0.8972973 1.
                       0.42307692]
                       0.69230769]
 [0.55675676 1.
 [0.50810811 1.
                       0.57692308]
 [0.93513514 1.
                       0.17307692]
 [0.96216216 1.
                       0.53846154]
 [0.00540541 0.
                       0.07692308]
 [0.76756757 1.
                       0.57692308]
 [0.04324324 0.
                       0.76923077]
 [0.8
                       0.5
 [0.30810811 1.
                       0.01923077]
 [0.65405405 0.
                       0.25
 [0.95135135 0.
                       0.36538462]
 [0.81081081 0.
                       0.55769231]
 [0.41081081 1.
                       0.75
 [0.01621622 0.
                        0.09615385]
 [0.15675676 1.
                       0.
 [0.68108108 1.
                       0.55769231]
 [0.17837838 0.
                       0.23076923]
                       0.78846154]
 [0.37837838 1.
 [0.96756757 0.
                       0.21153846]
 [0.76216216 1.
                       0.19230769]
 [0.22162162 0.
                       0.11538462]
 [0.83783784 0.
                       0.23076923]
 [0.3027027 1.
                       1.
 [0.64324324 1.
                        0.40384615]
 [0.94594595 1.
                       0.32692308]
 [0.97837838 1.
                       0.23076923]
 [0.63783784 0.
                       0.42307692]
 [0.21621622 0.
                       0.59615385]
 [0.06486486 0.
                       0.32692308]
 [0.27567568 1.
                       0.55769231]
 [0.78918919 1.
                        0.48076923]
 [0.57837838 0.
                       0.01923077]
 [0.0972973 0.
                       0.53846154]
                       0.34615385]
 [1.
            0.
 [0.67567568 1.
                       0.38461538]
                       0.25
 [0.
 [0.42702703 0.
                        0.53846154]
 [0.55135135 0.
                       0.92307692]
 [0.7027027 1.
                        0.03846154]
 [0.33513514 0.
                       0.48076923]
```

0:08 PM					
[0.11891892	0.	0.51923077]			
[0.58918919	1.	0.01923077]			
[0.88648649	0.	0.34615385]			
[0.31891892	0.	0.69230769]			
[0.02162162	1.	0.88461538]			
[0.38378378	1.	0.15384615]			
[0.61621622	0.	0.63461538]			
[0.75135135	0.	0.26923077]			
[0.36216216	0.	0.55769231]			
[0.64864865	0.	0.09615385]			
[0.97297297	0.	0.44230769]			
[0.5027027	0.	0.17307692]			
[0.78378378	1.	0.30769231]			
[0.10810811	0.	0.69230769]			
[0.14054054	1.	0.80769231]			
[0 04224224	Δ.	0 720760221			