AMENDMENTS TO THE CLAIMS

Claims 1-11 (cancelled)

Claim 12 (currently amended)

12. Pesticides and herbicides, characterized in that they comprise at least one compound of the formula (I) according to Claim 1. A pesticidal or herbicidal composition comprising a compound of formula I according to claim 27 and a pesticidally or herbicidally acceptable carrier.

Claim 13 (cancelled)

Claim 14 (original)

14. Method of combating pests and weeds, characterized in that compounds of the formula (I) according to Claim 1 27 are allowed to act on pests and/or their environment or on weeds and/or their environment.

Claims 15-26 (cancelled)

Claim 27 (new - corresponding-in-part to original claim 2)

27. A compound of formula (I), wherein:

X represents halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₁-C₆-alkoxy, C₃-C₆-alkenyloxy, C₁-C₆-alkylthio, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-

C₆-halogenoalkyl, C₂-C₆-halogenoalkenyl, C₁-C₆-halogenoalkoxy, C₃-C₆-halogenoalkenyloxy, nitro, cyano, or represents phenyl, phenoxy, phenylthio, benzyloxy or benzylthio, each of which is optionally substituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, nitro or cyano,

- Y represents halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₁-C₆-alkoxy, C₃-C₆-alkenyloxy, C₁-C₆-alkylthio, C₁-C₆-alkyl-sulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₆-halogenoalkyl, C₂-C₆-halogenoalkenyl, C₁-C₆-halogenoalkoxy, C₃-C₆-halogenoalkenyloxy, nitro or cyano,
- Z represents hydrogen, halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₁-C₆-halogenoalkyl, C₂-C₆-halogenoalkenyl, C₁-C₆-alkoxy, C₃-C₆-alkenyloxy, C₁-C₆-halogenoalkenyloxy, nitro or cyano, where at least one of the substituents X and Y does not represent halogen, alkyl, halogenoalkyl or alkoxy,
- A, B and the carbon atom to which they are bonded represent saturated or unsaturated C₃-C₁₀-cycloalkyl in which one ring member is optionally replaced by oxygen or sulphur and which is optionally monosubstituted or polysubstituted by C₁-C₈-alkyl, C₃-C₁₀-cycloalkyl, C₁-C₈-halogenoalkyl, C₁-C₈-alkoxy, C₁-C₈-alkylthio, halogen or phenyl, or
- A, B and the carbon atom to which they are bonded represent C₃-C₆-cycloalkyl which is substituted by an alkylenediyl group which optionally contains one or two oxygen and/or sulphur atoms or by an alkylenedioxy or by an alkylenedithio group, this group together with the carbon atom to which it is bonded forming a further five-to eight-membered ring, or

A, B and the carbon atom to which they are bonded represent C₃-C₈-cycloalkyl or C₅-C₈-cycloalkenyl in which two substituents together with the carbon atoms to which they are bonded represent C₃-C₆-alkanediyl, C₃-C₆-alkenediyl or C₄-C₆-alkanedienediyl, in which one methylene group is optionally replaced by oxygen or sulphur and each of which is optionally substituted by C₁-C₆-alkyl, C₁-C₆-alkoxy or halogen,

G represents hydrogen (a) or one of the groups

$$R^1$$
 (b), R^2 (c), SO_2-R^3 (d), R^4 (e), R^5 (e), R^7

- E represents a metal ion equivalent or an ammonium ion,
- L represents oxygen or sulphur and
- M represents oxygen or sulphur,
- R¹ represents C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₈-alkoxy-C₁-C₈-alkyl, C₁-C₈-alkyl or poly-C₁-C₈-alkoxy-C₁-C₈-alkyl, each of which is optionally substituted by halogen, or represents C₃-C₈-cycloalkyl in which at least one ring member is optionally replaced by 5 oxygen and/or sulphur and which is

optionally substituted by halogen, C1-C6-alkyl or C1-C6-alkoxy,

or phenyl which is optionally substituted by halogen, cyano, vitro, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -halogenoalkyl, C_1 - C_6 -halogenoalkoxy, C_1 - C_6 -alkylthio or C_1 - C_6 -alkylsulphonyl,

or phenyl-C₁-C₆-alkyl which is optionally substituted by halogen, vitro,-cyano, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-halogenoalkyl or C₁-C₆-halogenoalkoxy,

or 5- or 6-membered hetaryl which is optionally substituted by halogen or C₁-C₆-alkyl,

or phenoxy- C_1 - C_6 -alkyl which is optionally substituted by halogen or C_1 - C_6 -alkyl, or

5- or 6-membered hetaryloxy- C_1 - C_6 -alkyl which is optionally substituted by halogen, amino or C_1 - C_6 -alkyl,

R² represents C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₈-alkoxy-C₂-C₈-alkyl or poly-C₁-C₈-alkoxy-C₂-C₈-alkyl, each of which is optionally substituted by halogen,

or C_3 - C_8 -cycloalkyl which is optionally substituted by halogen, C_1 - C_6 -alkyl or C_+ C_6 -alkoxy, or

phenyl or benzyl, each of which is optionally substituted by halogen, cyano, nitro, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-halogenoalkyl or C₁-C₆-halogenoalkoxy,

R³ represents C₁-C₈-alkyl which is optionally substituted by halogen, or phenyl or benzyl, each of which is optionally substituted by halogen, C₁-C₆-alkyl, C₁-C₆-

alkoxy, C1-C4-halogenoalkyl, C1-C4-halogenoalkoxy, cyano or nitro,

- R⁴ and R⁵ independently of one another represent C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₈-alkyl amino, di-(C₁-C₈-alkyl)amino, C₁-C₈-alkylthio, C₂-C₈-alkenylthio or C₃-C₇-cycloalkylthio, each of which is optionally substituted by halogen, or phenyl, phenoxy or phenylthio, each of which is optionally substituted by halogen, nitro, cyano, C₁-C₄-alkoxy, C₁-C₄-balogenoalkoxy, C₁-C₄-alkylthio, C₁-C₄-halogenoalkyl,
- R⁶ and R⁷ independently of one another represent hydrogen, or C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₁-C₈-alkoxy, C₃-C₈-alkenyl or C₁-C₈-alkoxy-C₁-C₈-alkyl, each of which is optionally substituted by halogen, or phenyl which is optionally substituted by halogen, C₁-C₈-alkyl or C₁-C₈-alkoxy, or benzyl which is optionally substituted by halogen, C₁-C₈-alkyl, C₁-C₈-halogenoalkyl or C₁-C₈-alkoxy, or together represent a C₃-C₆-alkylene radical in which one carbon atom is optionally replaced by oxygen or sulphur.

Claim 28 (new - corresponding-in-part to original claim 3)

- 28. A compound of the formula (I) according to Claim 27 in which
 - X represents fluorine, chlorine, bromine, C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkinyl, C₁-C₄-alkoxy, C₃-C₄-alkenyloxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₄-halogenoalkyl, C₃-C₄-halogenoalkenyloxy, nitro or cyano, or phenyl, phenoxy, phenylthio; benzyloxy or benzylthio, each of which is optionally substituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-halogenoalkyl, C₁-C₂-halogenoalkoxy, nitro or cyano,

- Y represents fluorine, chlorine, bromine, C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkinyl, C₁-C₄-alkoxy, C₃-C₄-alkenyloxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₄-halogenoalkyl, C₃-C₄-halogenoalkenyl, C₁-C₄-halogenoalkenyloxy, nitro or cyano,
- Z represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkinyl, C₁-C₄-halogenoalkyl, C₃-C₄-halogenoalkenyl, C₁-C₄-alkoxy, C₃-C₄-alkenyloxy, C₁-C₄-halogenoalkoxy, C₃-C₄-halogenoalkenyloxy, nitro or cyano,
 - where at least one of the substituents X and Y does not represent halogen, alkyl, halogenoalkyl or alkoxy,
- A, B and the carbon atom to which they are bonded represent saturated or unsaturated C₃-C8-cycloalkyl in which one ring member is optionally replaced by oxygen or sulphur and which is optionally substituted by C₁-C₆-alkyl, C₃-C8-cycloalkyl, C₁-C₃-halogenoalkyl, C₁-C₆-alkoxy, 5 Cl-C₆-alkylthio, fluorine, chlorine or phenyl, or
- A, B and the carbon atom to which they are bonded represent C₅-C₆-cycloalkyl which is substituted by an alkylenediyl group which optionally contains one or two oxygen or sulphur atoms or by an alkylenedioxy or by an alkylenedithio group, this group together with the carbon atom to which it is bonded forming a further five- to seven-membered ring, or
- A, B and the carbon atom to which they are banded represent C₃-C₆-cycloalkyl or C₅-C₆-cycloalkenyl, in which two substituents together with the carbon atoms to which they are bonded represent C₃-C₅-alkanediyl, C₃-C₅-alkenediyl or butadienediyl, in which one methylene group is optionally replaced by oxygen or sulphur and each of which is optionally substituted by C₁-C₅-alkyl, C₁-C₅-alkoxy,

fluorine, chlorine or bromine,

G represents hydrogen (a) or one of the groups

$$R^1$$
 (b), R^2 (c), SO_2-R^3 (d), R^4 (e), R^7

- E represents a metal ion equivalent or an ammonium ion,
- L represents oxygen or sulphur and
- M represents oxygen or sulphur,
- R¹ represents C₁-C₁₆-alkyl, C₂-C₆-alkenyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkyl or poly-C₁-C₆-alkoxy-C₁-C₆-alkyl, each of which is optionally substituted by fluorine or chlorine, or represents C₃-C₇-cycloalkyl which is optionally substituted by fluorine, chlorine, C₁-C₅-alkyl or C₁-C₅-alkoxy and in which up to two ring members are optionally replaced by oxygen and/or sulphur,

or represents phenyl which is optionally substituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₃-halogenoalkyl, C₁-C₃-halogenoalkoxy, C₁-C₄-alkylthio or C₁-C₄-alkylsulphonyl,

or phenyl-C₁-C₄-alkyl which is optionally substituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₃-halogenoalkyl or C₁-C₃-halogenoalkoxy,

or pyrazolyl, thiazolyl, pyridyl, pyrimidyl, furanyl or thienyl, each of which is optionally substituted by fluorine, chlorine, bromine or C₁-C₄-alkyl,

or phenoxy-C₁-C₅-alkyl which is optionally substituted by fluorine, chlorine, bromine or C₁-C₄-alkyl, or

pyridyloxy-C₁-C₅-alkyl, pyrimidyloxy-C₁-C₅-alkyl or thiazolyloxy-C₁-C₅-alkyl, each of which is optionally substituted by fluorine, chlorine, bromine, amino or C₁-C₄-alkyl,

R² represents C₁-C₁₆-alkyl, C₂-C₁₆-alkenyl, C₁-C₆-alkoxy-C₂-C₆-alkyl or poly-C₁-C₆-alkoxy, each of which is optionally substituted by fluorine or chlorine,

or C_3 - C_7 -cycloalkyl which is optionally substituted by fluorine, chlorine, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy, or

phenyl or benzyl, each of which is optionally substituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, C₁-C₃-alkoxy, C₁-C₃-halogenoalkyl or C₁-C₃-halogenoalkoxy,

R³ represents C₁-C₆-alkyl which is optionally substituted by fluorine or chlorine, or phenyl or benzyl, each of which is optionally substituted by fluorine, chlorine, bromine, C₁-C₅-alkyl, C₁-C₅-alkoxy, C₁-C₃-halogenoalkyl, C₁-C₃-halogenoalkoxy, cyano or nitro,

- R⁴ and R⁵ independently of one another represent C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkyl amino, di-(C₁-C₆-alkyl)amino, C₁-C₆-alkylthio, C₃-C₄-alkenylthio or C₃-C₆-cycloalkylthio, each of which is optionally substituted by fluorine or chlorine, or phenyl, phenoxy or phenylthio, each of which is optionally substituted by fluorine, chlorine, bromine, nitro, cyano, C₁-C₃-alkoxy, C₁-C₃-halogenoalkoxy, C₁-C₃-alkyl or C₁-C₃-halogenoalkyl,
- R⁶ and R⁷ independently of one another represent hydrogen, or C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₃-C₆-alkenyl or C₁-C₆-alkoxy-C₁-C₆-alkyl, each of which is optionally substituted by halogen, or phenyl which is optionally substituted by halogen, C₁-C₅-halogenoalkyl, C₁-C₅-alkyl or C₁-C₅-alkoxy, or benzyl which is optionally substituted by halogen, C₁-C₅-alkyl, C₁-C₅-halogenoalkyl or C₁-C₅-alkoxy, or together represent a C₃-C₆-alkylene radical in which one carbon atom is optionally replaced by oxygen or sulphur.

Claim 29 (new - corresponding-in-part to original claim 4)

- 29. A compound of the formula (I) according to Claim 27 in which
 - X represents fluorine, chlorine, bromine, methyl, ethyl, propyl, iso-propyl, vinyl, ethinyl, methoxy, ethoxy, propoxy, iso-propoxy; allyloxy, methallyloxy, trifluoromethyl, difluoromethoxy, trifluoromethoxy, methylthio, methylsulphinyl, in methylsulphonyl, nitro, cyano, or phenyl, phenoxy, phenylthio, benzyloxy or benzylthio, each of which is optionally substituted by fluorine, chlorine, bromine, methyl, ethyl, propyl, iso-propyl, tert-butyl, methoxy, ethoxy, propoxy, tert-butoxy, trifluoromethyl, trifluoromethoxy, nitro or cyano,
 - Y represents fluorine, chlorine, bromine, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-

butyl, tert-butyl, vinyl, ethinyl, methoxy, ethoxy, propoxy, iso-propoxy, allyloxy, methallyloxy, trifluoromethyl, methylthio, methylsulphinyl, methylsulphonyl, difluoromethoxy, trifluoromethoxy, nitro or cyano,

- Z represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, vinyl, ethinyl, methoxy, ethoxy, propoxy, iso-propoxy, allyloxy, methallyloxy, difluoromethoxy, trifluoromethyl, trifluoromethoxy, nitro or cyano, where at least one of the substituents X and Y does not represent halogen, alkyl, 25 halogenoalkyl or alkoxy;
- A, B and the carbon atom to which they are bonded represent saturated or unsaturated C₃-C₈-cycloalkyl in which one ring member is optionally replaced by oxygen or sulphur and which is optionally substituted by methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, sec-butyl, tent-butyl, cyclopropyl, cyclohexyl, trifluoromethyl, methoxy, ethoxy, propoxy, iso-propoxy, butoxy, iso-butoxy, sec-butoxy, tert-butoxy, methylthio, ethylthio, fluorine, chlorine or phenyl, or
- A, B and the carbon atom to which they are bonded represent C₅-C₆-cycloalkyl which is substituted by an alkylenediyl group which optionally contains one oxygen or sulphur atom or by an alkylene-dioxy group, this group together with the carbon atom to which it is bonded forming a further five- to six-membered ring, or
- A, B and the carbon atom to which they are bonded represent C₃-C₆-cycloalkyl or C₅-C₆-cycloalkenyl in which two substituents together with the carbon atoms to which they are bonded represent C₃-C₄-alkanediyl, C₃-C₄-alkenediyl or butadienediyl, in each of which one methylene group is optionally replaced by oxygen or sulphur,

G represents hydrogen (a) or one of the groups

$$R^1$$
 (b), R^2 (c), SO_2-R^3 (d), R^4 (e), R^5 (e), R^7

- E represents a metal ion equivalent or an ammonium ion,
- L represents oxygen or sulphur and
- M represents oxygen or sulphur,
- R¹ represents C₁-C₄-alkyl, C₂-C₁₄-alkenyl, C₁-C₄-alkoxy-C₁-C₆-alkyl, C₁-C₄-alkylthio-C₁-C₆-alkyl or poly-Cl-C₄-alkoxy-Cl-C₄-alkyl, each of which is optionally substituted by fluorine or chlorine, or C₃-C₆-cycloalkyl which is optionally substituted by fluorine, chlorine, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, tert-butyl, methoxy, ethoxy, propoxy or iso-propoxy and in which up to two ring members are optionally replaced by oxygen and/or sulphur,

or phenyl which is optionally substituted by fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, propyl, i-propyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy, methylthio, ethylthio, methylsulphonyl or ethylsulphonyl,

or benzyl which is optionally substituted by fluorine, chlorine, bromine, methyl,

ethyl, propyl, i-propyl, methoxy, ethoxy, trifluoromethyl or trifluoromethoxy,

or furanyl, thienyl, pyridyl, pyrimidyl, thiazolyl or pyrazolyl, each of which is optionally substituted by fluorine, chlorine, bromine, methyl or ethyl,

or phenoxy-C₁-C₄-alkyl which is optionally substituted by fluorine, chlorine, methyl or ethyl, or

pyridyl-oxy-C₁-C₄-alkyl, pyrimidyloxy-C₁-C₄-alkyl or thiazolyloxy-C₁-C₄-alkyl, each of which is optionally substituted by fluorine, chlorine, amino, methyl or ethyl,

R² represents C₁-C₁₄-alkyl, C₂-C₁₄-alkenyl, C₁-C₄-alkoxy-C₂-C₆-alkyl, poly-C₁-C₄-alkoxy-C₂-C₆-alkyl, each of which is optionally substituted by fluorine or chlorine,

or C₃-C₆-cycloalkyl which is optionally substituted by fluorine, chlorine, methyl; ethyl, propyl, iso-propyl or methoxy,

or phenyl or benzyl, each of which is optionally substituted by fluorine, chlorine, cyano, nitro, methyl, ethyl, propyl, i propyl, methoxy, ethoxy, trifluoromethyl or trifluoromethoxy,

represents methyl, ethyl, propyl or isopropyl, each of which is optionally substituted by fluorine or chlorine, or phenyl or benzyl, each of which is optionally substituted by fluorine, chlorine, bromine, methyl, ethyl, propyl, isopropyl, tert-butyl, methoxy, ethoxy, isopropoxy, tert-butoxy, trifluoromethyl, trifluoromethoxy, cyano or mitro.

R⁴ and R⁵ independently of one another represent C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkyl amino, di-(C₁-C₄-alkyl)amino or C₁-C₄-alkylthio, each of which is optionally substituted by fluorine or chlorine, or phenyl, phenoxy or phenylthio, each of which is optionally substituted by fluorine, chlorine, bromine, nitro, cyano, C₁-C₂-alkoxy, C₁-C₂-fluoro-alkoxy, C₁-C₂-alkylthio, C₁-C₂-fluoroalkylthio or C₁-C₃-alkyl,

R⁶ and R⁷ independently of one another represent hydrogen, or C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₃-C₄-alkenyl or C₁-C₄-alkoxy-C₁-C₄-alkyl, each of which is optionally substituted by fluorine or chlorine, or phenyl which is optionally substituted by fluorine, chlorine, bromine, C₁-C₄-halogenoalkyl, C₁-C₄-alkyl or C₁-C₄-alkoxy, or benzyl which is optionally substituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-halogenoalkyl or C₁-C₄-alkoxy, or together represent a C₅-C₆-alkylene radical in which one carbon atom is optionally replaced by oxygen or sulphur.

Claim 30 (new)

30. A compound of the formula (I) according to Claim 27 wherein at least one of X, Y and Z is C₁-C₆ halogenoalkoxy.

Claim 31 (new)

31. The compound of claim 30 wherein X is $C_1^{i}C_6$ halogenoalkoxy.

Claim 32 (new)

A pesticidal or herbicidal composition comprising a compound of formula I according to claim 31 and a pesticidally or herbicidally acceptable carrier.

Claim 33 (new)

33. Method of combating pests and weeds, characterized in that compounds of the formula (I) according to Claim 31 are allowed to act on pests and/or their environment or on weeds and/or their environment.

Claim 34 (new - corresponding-in-part to original claim 5)

34. A process for preparing the compound of claim 27, wherein carboxylic esters of the formula (III)

in which

A, B, X, Y, Z and R⁸ are as defined in claim 27

are subjected to an intramolecular condensation reaction in the presence of a diluent and in the presence of a base.