NU, Chendon 117010285

$$A\begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \end{bmatrix} = 0 \implies \pi = \begin{bmatrix} 2x_3 - 5x_4 \\ -3x_3 - x_4 \\ x_3 \\ x_4 \\ 0 \\ 0 \end{bmatrix} = X_3\begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + X_4\begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -5 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$
 is a set of basis.

$$(b) \cdot A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_7 \end{bmatrix} = 0 \Rightarrow X = \begin{bmatrix} -2X_2 - 5X_4 - 4X_6 - 2X_7 \\ -X_4 - 3X_4 \\ x_6 \\ x_7 \end{bmatrix} = X_2 \begin{bmatrix} -2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + X_4 \begin{bmatrix} -3 \\ 0 \\ -3 \\ 0 \\ 0 \end{bmatrix} + X_7 \begin{bmatrix} -2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(c) \cdot A \cdot \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_7 \end{bmatrix} = D \Rightarrow X = X_2 \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + X_5 \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

3. (a). A Caussian-Elimination
$$\begin{bmatrix} 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow Col(A) 's basis: $\sqrt{277-572}$$$

$$\Rightarrow Col(A) 's basis: \begin{cases} 27 \begin{bmatrix} -5 \\ 4 \end{bmatrix} \\ -3 \end{bmatrix} , Row(A) basis: \begin{cases} 0 \\ 2 \end{bmatrix} \\ 0 \end{cases}$$
(b) A Gaussian-Elimination $\begin{bmatrix} -b & 0 & 3 & 0 & 0 \\ 0 & -\frac{3}{2} & 0 & 0 & 0 \\ 0 & 0 & -\frac{5}{2} & 0 \end{cases}$

5. (a) . Row(A) basis:
$$Q \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
.

(b) . Let $V = [r_1, r_2, r_3]$ $\begin{bmatrix} v_1 & 1 & 1 \\ v_2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

(b) . Let $V = [r_1, r_2, r_3]$ $\begin{bmatrix} v_1 & 1 & 1 \\ v_2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

(c) $A \begin{bmatrix} x_1 & x_2 & 1 & 1 \\ x_2 & x_3 & 1 \\ x_1 & x_2 & 1 \\ x_2 & x_3 & 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

Basis of Mull $A : A = A$.

(b) $A = A = A$.

(c) $A = A = A$.

(d) $A = A = A$.

(e) $A = A$.

7. If A has a rawk 2, then $\exists C_1, C_2$ s.t. C_1 & C_2 are independent and Ch=anci+bncz. Then, A can be written as [ci o as G -- ang]+[vG b3G...

 $8 (a). \begin{bmatrix} 2 & 1 & 5 \\ -b & 0 & -10 \\ 4 & 17 & 17 \end{bmatrix} \xrightarrow{Ganssian-El.} \begin{bmatrix} 2 & 15 \\ 0 & 31 \\ 0 & 02 \end{bmatrix} \cdot det (A) = -12$

(b) [1 3.5 3.5] Ganssian-El. [1 3.5 3.5] det (B)=-12

(c) det (c) = $|\det(A)| = 12$. 9. $\det(B) = \det(|\int_{0}^{1000} |\det(A)| = 3\det(A)$.

- (o. : det(A) = det(-A) = -det(A)
 - . det (A) =0
 - ... A is not invertible