Tae Eun Kim Spring 2020

Below is the list of important concepts and topics to review from materials after Midterm 2.

Chapter 12: polynomial interpolation and approximation

- the idea, key types, and implementation of piecewise polynomial interpolation; B-splines will not be on the exam.
- least square approximation and normal equations;
- orthogonality orthogonal vectors and orthogonal matrices;
- two versions of QR factorization, Moore-Penrose inverse of a matrix, a.k.a. the pseudo-inverse, and the connection to least square problems;
- triangularization of matrices Gram–Schmidt (review this from linear algebra) and, more importantly, Householder.

Chapter 13: nonlinear rootfinding

- rootfinding tools built in MATLAB;
- conditioning of rootfinding problem;
- various iteration methods their ideas, implementation, and rates of convergence;

Chapter 14: numerical differentiation and integration

- different viewpoints on finite difference formulas (FD, BD, CD), e.g., geometric, interpolation-based, extrapolated, ...;
- accuracy of finite difference formulas;
- determination of optimal step size for finite differences;
- Newton-Cotes family of quadrature formulas and their derivations from various viewpoints, e.g., geometric, interpolation-based, extrapolated, . . . ;
- error analysis for quadrature methods local and global;
- implementation of composite methods;

Chapter 15: ordinary differential equations

- significance of 1st-order ODEs (why is 1st-order sufficient?);
- Runge-Kutta methods (multi-step algorithms) derivation and accuracy
- application/implementation of the algorithms;
- usage of ode45;

Problem 1. (Newton's Method)

In this problem, we calculate the value of $\sqrt[4]{7}$ numerically using Newton's method.

- (a) Define function f(x) whose root is $\sqrt[4]{7}$ and derive the corresponding Newton's iterative formula.
- (b) Now write a MATLAB program to implement Newton's method with the following details:
 - Set $x_0 = 1.5$.
 - You must include a statement defining f(x).
 - Utilize the previous result in the iterative steps; do <u>NOT</u> define f'(x).
 - Stop the iteration if either $|f(x_{n+1})| \le 10^{-10}$ or $|x_{n+1} x_n| \le 10^{-8}$.

Consider approximating the integral $I\{f\} = \int_a^b f(x) dx = \int_0^\pi \sin x dx$ using composite trapezoidal method

$$I_h^{[t]}{f} = h\left(\frac{f(x_1)}{2} + \sum_{i=2}^{n-1} f(x_i) + \frac{f(x_n)}{2}\right)$$

where $x_i=(i-1)h$ and $h=\pi/(n-1)$ for $i\in\mathbb{N}[1,n]$. Write a MATLAB program which calculates $I_h^{[t]}\{f\}$ for $n=5,9,17,33,65,\ldots,2049$. Tabulate the values of h, $I_h^{[t]}\{f\}$, and $I_h^{[t]}\{f\}-I\{f\}$ using disp or fprintf function.

(a) Use the first-order forward difference formula

$$D_h^{[1f]}{f}(x) = \frac{f(x+h) - f(x)}{h} = f'(x) + \frac{f''(x)}{2}h + \frac{f'''(x)}{6}h^2 + \mathcal{O}(h^3)$$

and Richardson extrapolation to obtain a second-order forward difference formula $D_h^{[2f]}\{f\}(x)$ for first derivatives. Write down explicitly the leading error term.

(b) Let a < b and $x_j = a + (b-a)j/n$ for j = 0, 1, 2, ..., n and suppose that the values $y_j = f(x_j)$, $0 \le j \le n$ are known and saved in MATLAB as ydp; a, b, and n are also saved as a, b, n, respectively. Nothing else is known about f.

Your mission, should you choose to accept it, is to calculate numerically the derivatives $f'(x_j)$ for $0 \le j \le n$ using second-order methods using MATLAB.

Suppose that the motion of a certain spring-mass system satisfies the differential equation

$$u'' + u' + \frac{1}{5}u^3 = 3\cos\omega t$$

and the initial conditions

$$u(0) = 2, u'(0) = 0.$$

Write a Matlab program to plot the trajectory u(t) for $0 \le t \le 100$ using the modified Euler method explained below.

The modified Euler formula for the initial value problem $\mathbf{y}' = \mathbf{f}(t, \mathbf{y}), \ \mathbf{y}(t_0) = \mathbf{y}_0$ is given by

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}\left(t_n + \frac{h}{2}, y_n + \frac{h}{2}\mathbf{f}(t_n, \mathbf{y}_n)\right).$$

The Lorenz equations are the nonlinear autonomous three-dimensional system

$$\begin{split} \dot{x} &= \sigma(y-x) \\ \dot{y} &= x(\rho-z) - y, \\ \dot{z} &= xy - \beta z \end{split}$$

where the dot notation indicates the time-derivative $\frac{d}{dt}.$ Using

$$\sigma = 10, \quad \rho = 28, \quad \beta = 8/3,$$

plot the three-dimensional trajectory of the particle initially located at (x, y, z) = (-8, 8, 27) for $0 \le t \le 10$ using ode45.