Applied survival analysis

Constantin T Yiannoutsos, Ph.D.

January 24, 2016

Contents of today's lecture

- Parametric Survival Analysis
 - Introduction
 - Exponential regression
 - Exponential analysis of the nursing home example
 - R implementation of exponential regression
 - The Weibull regression model
 - Fitting the Weibull model in R
 - Weibull analysis of the nursing home example
 - Goodness of fit

Parametric survival analysis

So far, we have focused primarily on nonparametric and semi-parametric approaches to survival analysis, with heavy emphasis on the Cox proportional hazards model:

$$\lambda(t, \mathbf{Z}) = \lambda_0(t) \exp(\beta \mathbf{Z})$$

We used the following estimating approach:

- We estimated $\lambda_0(t)$ nonparametrically, using the Kaplan-Meier estimator, or using the Kalbfleisch/Prentice estimator under the PH assumption
- ullet We estimated eta by assuming a linear model between the log HR and covariates, under the PH model

Both estimates were based on maximum likelihood theory.

Reading: for parametric models see Collett.

Reasons for considering a parametric approach

There are several reasons why we should consider some alternative approaches based on parametric models:

- The assumption of proportional hazards might not be appropriate (based on major departures)
- If a parametric model actually holds, then we would probably gain efficiency
- We may want to handle non-standard situations like
 - interval censoring
 - incorporating population mortality
- We may want to make some connections with other familiar approaches (e.g. use of the Poisson likelihood)
- We may want to obtain some estimates for use in designing a future survival study.

A simple start: Exponential Regression

- Observed data: $(X_i, \delta_i, \mathbf{Z}_i)$ for individual i, $\mathbf{Z}_i = (Z_{i1}, Z_{i2}, ..., Z_{ip})$ represents a set of p covariates.
- **Right censoring:** Assume that $X_i = \min(T_i, U_i)$
- **Survival distribution:** Assume T_i follows an exponential distribution with a parameter λ that depends on \mathbf{Z}_i , say $\lambda_i = \Psi(\mathbf{Z}_i)$. Then we can write:

 $T_i \sim exponential(\Psi(\mathbf{Z}_i))$

Review

First, let's review some facts about the exponential distribution (from our first survival lecture):

$$f(t) = \lambda e^{-\lambda t}$$
 for $t \ge 0$
 $S(t) = P(T \ge t) = \int_t^\infty f(u) du = e^{-\lambda t}$
 $F(t) = P(T < t) = 1 - e^{-\lambda t}$
 $\lambda(t) = \frac{f(t)}{S(t)} = \lambda$ constant hazard!
 $\Lambda(t) = \int_0^t \lambda(u) du = \int_0^t \lambda du = \lambda t$

Modeling the hazard in exponential regression

Now, we say that λ is a constant *over time t*, but we want to let it depend on the covariate values, so we are setting

$$\lambda_i = \Psi(\mathbf{Z}_i)$$

The hazard rate would therefore be the same for any two individuals with the same covariate values.

Although there are many possible choices for Ψ , one simple and natural choice is:

$$\Psi(\mathbf{Z}_i) = \exp[\beta_0 + Z_{i1}\beta_1 + Z_{i2}\beta_2 + \dots + Z_{ip}\beta_p]$$

WHY?

- ensures a positive hazard
- for an individual with $\mathbf{Z} = \mathbf{0}$, the hazard is e^{β_0} .

The model is called **exponential regression** because of the natural generalization from regular linear regression

Exponential regression for the 2-sample case

• Assume we have only a single covariate $\mathbf{Z} = Z$, i.e., (p = 1).

$$\Psi(\mathbf{Z}_i) = \exp(\beta_0 + Z_i \beta_1)$$

- Define: $Z_i = 0$ if individual i is in group 0 $Z_i = 1$ if individual i is in group 1
- What is the hazard for group 0?
- What is the hazard for group 1?
- What is the hazard ratio of group 1 to group 0?
- What is the interpretation of β_1 ?

Constantin T Yiannoutsos

Hazard Rate:

Likelihood for Exponential Model

Under the assumption of right censored data, each person has one of two possible contributions to the likelihood:

(a) they have an **event** at X_i ($\delta_i = 1$) \Rightarrow contribution is

$$L_i = \underbrace{S(X_i)}_{\text{survive to } X_i} \cdot \underbrace{\lambda(X_i)}_{\text{fail at } X_i} = e^{-\lambda X_i} \lambda$$

(b) they are **censored** at X_i ($\delta_i = 0$) \Rightarrow contribution is

$$L_i = \underbrace{S(X_i)}_{\text{survive to } X_i} = e^{-\lambda X_i}$$

The likelihood for the exponential model (cont'd)

The **likelihood** is the product over all of the individuals:

$$\mathcal{L} = \prod_{i} L_{i}$$

$$= \prod_{i} \underbrace{\left(\lambda e^{-\lambda X_{i}}\right)^{\delta_{i}}}_{\text{events}} \underbrace{\left(e^{-\lambda X_{i}}\right)^{(1-\delta_{i})}}_{\text{censorings}}$$

$$= \prod_{i} \lambda^{\delta_{i}} \left(e^{-\lambda X_{i}}\right)$$

Maximum Likelihood for Exponential

How do we use the likelihood?

- first take the log
- ullet then take the partial derivative with respect to $oldsymbol{eta}$
- ullet then set to zero and solve for $\widehat{oldsymbol{eta}}$
- this gives us the maximum likelihood estimators

Likelihood equations

The log-likelihood is:

$$\log \mathcal{L} = \log \left[\prod_{i} \lambda^{\delta_{i}} \left(e^{-\lambda X_{i}} \right) \right]$$

$$= \sum_{i} \left[\delta_{i} \log(\lambda) - \lambda X_{i} \right]$$

$$= \sum_{i} \left[\delta_{i} \log(\lambda) \right] - \sum_{i} \lambda X_{i}$$

For the case of exponential regression, we now substitute the hazard $\lambda = \Psi(\mathbf{Z}_i)$ in the above log-likelihood:

$$\log \mathcal{L} = \sum_{i} \left[\delta_{i} \log(\Psi(\mathbf{Z}_{i})) \right] - \sum_{i} \Psi(\mathbf{Z}_{i}) X_{i}$$
 (1)

General Form of Log-likelihood for Right Censored Data

In general, whenever we have right censored data, the likelihood and corresponding log likelihood will have the following forms:

$$\mathcal{L} = \prod_{i} [\lambda_{i}(X_{i})]^{\delta_{i}} S_{i}(X_{i})$$

$$\log \mathcal{L} = \sum_{i} [\delta_{i} \log (\lambda_{i}(X_{i}))] - \sum_{i} \Lambda_{i}(X_{i})$$

where

- $\lambda_i(X_i)$ is the hazard for the individual i who fails at X_i
- $\Lambda_i(X_i)$ is the cumulative hazard for an individual at their failure <u>or</u> censoring time

For example, see the derivation of the likelihood for a Cox model on p.11-18 of Lecture 4 notes. We started with the likelihood above, then substituted the specific forms for $\lambda(X_i)$ under the PH assumption.

Consider our model for the hazard rate:

$$\lambda = \Psi(\mathbf{Z}_i) = \exp[\beta_0 + Z_{i1}\beta_1 + Z_{i2}\beta_2 + \dots + Z_{ip}\beta_p]$$

We can write this using vector notation, as follows:

Let
$$\mathbf{Z}_i = (1, Z_{i1}, ... Z_{ip})^T$$

and $\boldsymbol{\beta} = (\beta_0, \beta_1, ... \beta_p)$

(Since β_0 is the intercept (i.e., the log hazard rate for the baseline group), we put a "1" as the first term in the vector $\mathbf{Z}_{i\cdot}$) Then, we can write the hazard as:

$$\Psi(\mathbf{Z}_i) = \exp[\beta \mathbf{Z}_i]$$

Now we can substitute $\Psi(\mathbf{Z}_i) = \exp[\beta \mathbf{Z}_i]$ in the log-likelihood shown in (1):

$$\log \mathcal{L} = \sum_{i=1}^{n} \delta_{i}(\beta \mathbf{Z}_{i}) - \sum_{i=1}^{n} X_{i} \exp(\beta \mathbf{Z}_{i})$$

Score Equations

Taking the derivative with respect to β_0 , the score equation is:

$$\frac{\partial \log \mathcal{L}}{\partial \beta_0} = \sum_{i=1}^n [\delta_i - X_i \exp(\beta \mathbf{Z}_i)]$$

For β_k , k = 1, ...p, the equations are:

$$\frac{\partial \log \mathcal{L}}{\partial \beta_k} = \sum_{i=1}^n \left[\delta_i Z_{ik} - X_i Z_{ik} \exp(\beta \mathbf{Z}_i) \right]$$
$$= \sum_{i=1}^n Z_{ik} [\delta_i - X_i \exp(\beta \mathbf{Z}_i)]$$

To find the MLE's, we set the above equations to 0 and solve (simultaneously). The equations above imply that the MLE's are obtained by setting the weighted number of failures $(\sum_i Z_{ik} \delta_i)$ equal to the weighted cumulative hazard $(\sum_i Z_{ik} \Lambda(X_i))$.

Variance of the MLE

To find the variance of the MLE's, we need to take the second derivatives:

$$-\frac{\partial^2 \log \mathcal{L}}{\partial \beta_k \partial \beta_j} = \sum_{i=1}^n Z_{ik} Z_{ij} X_i \exp(\beta \mathbf{Z}_i)$$

Some algebra (see Cox and Oakes section 6.2) reveals that

$$Var(\widehat{\boldsymbol{\beta}}) = I(\boldsymbol{\beta})^{-1} = \left[\mathbf{Z}(\mathbf{I} - \boldsymbol{\Pi})\mathbf{Z}^{T} \right]^{-1}$$

where

- $\mathbf{Z} = (\mathbf{Z}_1, \dots, \mathbf{Z}_n)$ is a $(p+1) \times n$ matrix $(p \text{ covariates plus the "1" for the intercept } \beta_0)$
- $\Pi = diag(\pi_1, \dots, \pi_n)$ (this means that Π is a diagonal matrix, with the terms π_1, \dots, π_n on the diagonal)
- π_i is the probability that the *i*-th person is censored, so $(1 \pi_i)$ is the probability that they failed.
- **Note:** The information $I(\beta)$ (inverse of the variance) is proportional to the number of failures, not the sample size. This will be important when we talk about study design.

The Single Sample Problem ($Z_i = 1$ for everyone)

First, what is the MLE of β_0 ?

We set $\frac{\partial \log \mathcal{L}}{\partial \beta_0} = \sum_{i=1}^n [\delta_i - X_i \exp(\beta_0 Z_i)]$ equal to 0 and solve:

$$\Rightarrow \sum_{i=1}^{n} \delta_{i} = \sum_{i=1}^{n} [X_{i} \exp(\beta_{0})]$$

$$d = \exp(\beta_{0}) \sum_{i=1}^{n} X_{i}$$

$$\exp(\widehat{\beta}_{0}) = \frac{d}{\sum_{i=1}^{n} X_{i}}$$

$$\widehat{\lambda} = \frac{d}{t}$$

where d is the total number of deaths (or events), and $t = \sum X_i$ is the total person-time contributed by all individuals.

MLE estmate for β

If d/t is the MLE for λ , what does this imply about the MLE of β_0 ?

Using the previous formula $Var(\hat{\beta}) = \left[\mathbf{Z}(\mathbf{I} - \Pi)\mathbf{Z}^T\right]^{-1}$, what is the variance of $\hat{\beta}_0$?:

With some matrix algebra, you can show that it is:

$$Var(\widehat{\beta}_0) = \frac{1}{\sum_{i=1}^n (1-\pi_i)} = \frac{1}{d}$$

What about $\hat{\lambda} = e^{\hat{\beta}_0}$?

By the delta method,

$$Var(\hat{\lambda}) = \hat{\lambda}^2 Var(\hat{\beta}_0)$$

= ?

The Two-Sample Problem:

	Z_i	Subjects	Events	Follow-up
Group 0:	$Z_i = 0$	n_0	d_0	$t_0 = \sum_{i=1}^{n_0} X_i$
Group 1:	$Z_i = 1$	n_1	d_1	$t_1 = \sum_{i=1}^{n_1} X_i$

The log-likelihood

$$\log \mathcal{L} = \sum_{i=1}^{n} \delta_{i} (\beta_{0} + \beta_{1} Z_{i}) - \sum_{i=1}^{n} X_{i} \exp(\beta_{0} + \beta_{1} Z_{i})$$
so
$$\frac{\partial \log \mathcal{L}}{\partial \beta_{0}} = \sum_{i=1}^{n} [\delta_{i} - X_{i} \exp(\beta_{0} + \beta_{1} Z_{i})]$$

$$= (d_{0} + d_{1}) - (t_{0} e^{\beta_{0}} + t_{1} e^{\beta_{0} + \beta_{1}})$$

$$\frac{\partial \log \mathcal{L}}{\partial \beta_{1}} = \sum_{i=1}^{n} Z_{i} [\delta_{i} - X_{i} \exp(\beta_{0} + \beta_{1} Z_{i})]$$

$$= d_{1} - t_{1} e^{\beta_{0} + \beta_{1}}$$

This implies:
$$\hat{\lambda}_1 = e^{\hat{\beta_0} + \hat{\beta_1}} = ?$$

$$\hat{\lambda}_0 = e^{\hat{\beta_0}} = ?$$

$$\hat{\beta}_0 = ?$$

$$\hat{\beta}_1 = ?$$

The maximum likelihood estimates (MLE's) of the hazard rates under the exponential model are the number of events divided by the person-years of follow-up!

(this result will be relied on heavily when we discuss study design)

Regression: Means and Medians

Mean Survival Time

For the exponential distribution, $E(T) = 1/\lambda$.

Control Group:

$$\overline{T}_0 = 1/\hat{\lambda}_0 = 1/\exp(\hat{\beta}_0)$$

• Treatment Group:

$$\overline{T}_1 = 1/\hat{\lambda}_1 = 1/\exp(\hat{\beta}_0 + \hat{\beta}_1)$$

Means and medians (cont'd)

Median Survival Time

This is the value M at which $S(t) = e^{-\lambda t} = 0.5$, so $M = \text{median} = \frac{-\log(0.5)}{\lambda}$

Control Group:

$$\hat{M}_0 = \frac{-\log(0.5)}{\hat{\lambda}_0} = \frac{-\log(0.5)}{\exp(\hat{\beta}_0)}$$

• Treatment Group:

$$\hat{M}_1 = \frac{-\log(0.5)}{\hat{\lambda}_1} = \frac{-\log(0.5)}{\exp(\hat{\beta}_0 + \hat{\beta}_1)}$$

Exponential Regression: Variance Estimates and Test Statistics

We can also calculate the variances of the MLE's as simple functions of the number of failures:

$$var(\hat{\beta}_0) = \frac{1}{d_0}$$

$$var(\hat{\beta}_1) = \frac{1}{d_0} + \frac{1}{d_1}$$

Inference

So our test statistics are formed as:

For testing $H_o: \beta_0 = 0$:

$$\chi_w^2 = \frac{\left(\hat{\beta}_0\right)^2}{var(\hat{\beta}_0)}$$
$$= \frac{\left[\log(d_0/t_0)\right]^2}{1/d_0}$$

For testing $H_o: \beta_1 = 0$:

$$\chi_w^2 = \frac{\left(\hat{\beta}_1\right)^2}{var(\hat{\beta}_1)}$$
$$= \frac{\left[\log\left(\frac{d_1/t_1}{d_0/t_0}\right)\right]^2}{\frac{1}{d_0} + \frac{1}{d_1}}$$

How would we form confidence intervals for the hazard ratio?

The Likelihood Ratio test statistic

This is an alternative to the Wald test. It is based on 2 times the log of the ratio of the likelihoods under the null and alternative. We reject H₀ if 2 log(LR) $> \chi^2_{1.0.05}$, where

$$LR = \frac{\mathcal{L}(H_1)}{\mathcal{L}(H_0)} = \frac{\mathcal{L}(\widehat{\lambda}_0, \widehat{\lambda}_1)}{\mathcal{L}(\widehat{\lambda})}$$

The Likelihood Ratio test statistic (cont'd)

For a sample of n independent exponential random variables with parameter λ , the Likelihood is:

$$L = \prod_{i=1}^{n} [\lambda^{\delta_i} \exp(-\lambda x_i)]$$
$$= \lambda^{d} \exp(-\lambda \sum_{i=1}^{n} x_i)$$
$$= \lambda^{d} \exp(-\lambda n\bar{x})$$

where d is the number of deaths or failures. The log-likelihood is

$$\ell = d\log(\lambda) - \lambda n\bar{x}$$

and the MLE is

$$\widehat{\lambda} = d/(n\overline{x})$$

2-Sample Case: LR test calculations

Data:

Group 0: d_0 failures among the n_0 females

mean failure time is $\bar{x}_0 = (\sum_i^{n_0} X_i)/n_0$

Group 1: d_1 failures among the n_1 males

mean failure time is $\bar{x}_1 = (\sum_i^{n_1} X_i)/n_1$

Under the alternative hypothesis:

$$\mathcal{L} = \lambda_1^{d_1} \exp(-\lambda_1 n_1 \bar{x}_1) \times \lambda_0^{d_0} \exp(-\lambda_0 n_0 \bar{x}_0)$$

$$\log(\mathcal{L}) = d_1 \log(\lambda_1) - \lambda_1 n_1 \bar{x}_1 + d_0 \log(\lambda_0) - \lambda_0 n_0 \bar{x}_0$$

The MLE's are:

$$\widehat{\lambda}_1 = d_1/(n_1 \bar{x}_1)$$
 for males

$$\widehat{\lambda}_0 = d_0/(n_0 \bar{x}_0)$$
 for females

MLEs under the null hypothesis

$$\mathcal{L} = \lambda^{d_1 + d_0} \exp[-\lambda (n_1 \bar{x}_1 + n_0 \bar{x}_0)]$$

$$\log(\mathcal{L}) = (d_1 + d_0) \log(\lambda) - \lambda [n_1 \bar{x}_1 + n_0 \bar{x}_0]$$

The corresponding MLE is

$$\hat{\lambda} = (d_1 + d_0)/[n_1\bar{x}_1 + n_0\bar{x}_0]$$

Constructing the LR test

A likelihood ratio test can be constructed by taking twice the difference of the log-likelihoods under the alternative and the null hypotheses:

$$-2\left[\left(d_0+d_1\right)\log\left(\frac{d_0+d_1}{t_0+t_1}\right)-d_1\log[d_1/t_1]-d_0\log[d_0/t_0]\right]$$

Nursing home example

For the females:

- $n_0 = 1173$
- $d_0 = 902$
- $t_0 = 310754$
- $\bar{x}_0 = 265$

For the males:

- $n_1 = 418$
- $d_1 = 367$
- $t_1 = 75457$
- $\bar{x}_1 = 181$

Plugging these values in, we get a LR test statistic of 64.20.

Hand Calculations using events and follow-up:

By adding up "LOS" for males to get t_1 and for females to get t_0 , I obtained:

- $d_0 = 902$ (females) $d_1 = 367 \text{ (males)}$
- $t_0 = 310754$ (female follow-up) $t_1 = 75457$ (male follow-up)

• This yields an estimated log HR:

$$\hat{\beta}_1 = \log\left[\frac{d1/t1}{d0/t0}\right] = \log\left[\frac{367/75457}{902/310754}\right] = \log(1.6756) = 0.5162$$

Constructing the Wald test

In the above calculations, the estimated standard error is:

$$\sqrt{var(\hat{\beta}_1)} = \sqrt{\frac{1}{d_1} + \frac{1}{d_0}} = \sqrt{\frac{1}{902} + \frac{1}{367}} = 0.06192$$

So the Wald test becomes:

$$\chi_W^2 = \frac{\hat{\beta}_1^2}{var(\hat{\beta}_1)} = \frac{(0.51619)^2}{0.061915} = 69.51$$

We can also calculate $\hat{\beta}_0 = log(d_0/t_0) = -5.842$, along with its standard error $se(\hat{\beta}_0) = \sqrt{(1/d0)} = 0.0333$

Exponential Regression in R

```
Call:
survreg(formula = Surv(losyr, fail) ~ gender, data = nurshome,
dist = "exp")
Value Std. Error z p
(Intercept) -0.0578 0.0333 -1.73 8.28e-02
gender -0.5162 0.0619 -8.34 7.62e-17

Scale fixed at 1

Exponential distribution
LogLik(model) = -1006.3 LogLik(intercept only) = -1038.4
Chisq= 64.2 on 1 degrees of freedom, p= 1.1e-15
Number of Newton-Raphson Iterations: 5
n= 1591

Since Z = 8.337, the chi-square test is Z<sup>2</sup> = 69.51.
```

The Weibull regression model

At the beginning of the course, we saw that the survivorship function for a Weibull random variable is:

$$S(t) = \exp[-\lambda(t^{\kappa})]$$

and the hazard function is:

$$\lambda(t) = \kappa \lambda t^{(\kappa-1)}$$

The Weibull regression model assumes that for someone with covariates \mathbf{Z}_i , the survivorship function is

$$S(t; \mathbf{Z}_i) = \exp[-\Psi(\mathbf{Z}_i)(t^{\kappa})]$$

where $\Psi(\mathbf{Z}_i)$ is defined as in exponential regression to be:

$$\Psi(\mathbf{Z}_i) = \exp[\beta_0 + Z_{i1}\beta_1 + Z_{i2}\beta_2 + ... Z_{ip}\beta_p]$$

For the 2-sample problem, we have:

$$\Psi(\mathbf{Z}_i) = \exp[\beta_0 + Z_{i1}\beta_1]$$

Weibull MLEs for the 2-sample problem:

Log-likelihood:

$$\log \mathcal{L} = \sum_{i=1}^{n} \delta_{i} \log \left[\kappa \exp(\beta_{0} + \beta_{1} Z_{i}) X_{i}^{\kappa-1} \right] - \sum_{i=1}^{n} X_{i}^{\kappa} \exp(\beta_{0} + \beta_{1} Z_{i})$$

$$\Rightarrow \exp(\hat{\beta}_0) = d_0/t_0\kappa \qquad \exp(\hat{\beta}_0 + \hat{\beta}_1) = d_1/t_1\kappa$$

where

$$t_{j\kappa} = \sum_{i=1}^{n_j} X_i^{\hat{\kappa}} \text{ among } n_j \text{ subjects}$$

$$\hat{\lambda}_0(t) = \hat{\kappa} \exp(\hat{\beta}_0) \ t^{\hat{\kappa}-1} \ \hat{\lambda}_1(t) = \hat{\kappa} \exp(\hat{\beta}_0 + \hat{\beta}_1) \ t^{\hat{\kappa}-1}$$

$$\widehat{HR} = \hat{\lambda}_1(t)/\hat{\lambda}_0(t) = \exp(\hat{\beta}_1)$$

$$= \exp\left(\frac{d_1/t_1\kappa}{d_0/t_0\kappa}\right)$$

Weibull Regression: Means and Medians

Mean Survival Time

For the Weibull distribution, $E(T) = \lambda^{(-1/\kappa)}\Gamma[(1/\kappa) + 1]$.

Control Group:

$$\overline{T}_0 = \hat{\lambda}_0^{(-1/\hat{\kappa})} \Gamma[(1/\hat{\kappa}) + 1]$$

• Treatment Group:

$$\overline{T}_1 = \hat{\lambda}_1^{(-1/\hat{\kappa})} \Gamma[(1/\hat{\kappa}) + 1]$$

Median Survival Time

For the Weibull distribution, $M = \text{median} = \left[\frac{-\log(0.5)}{\lambda}\right]^{1/\kappa}$

Control Group:

$$\hat{M}_0 = \left[\frac{-\log(0.5)}{\hat{\lambda}_0}\right]^{1/\hat{\kappa}}$$

• Treatment Group:

$$\hat{M}_1 = \left[\frac{-\log(0.5)}{\hat{\lambda}_1}\right]^{1/\hat{\kappa}}$$

where $\hat{\lambda}_0 = \exp(\hat{eta}_0)$ and $\hat{\lambda}_1 = \exp(\hat{eta}_0 + \hat{eta}_1)$.

The Gamma function

Note: the symbol Γ is the "gamma" function. If x is an integer, then

$$\Gamma(x) = (x-1)!$$

In cases where x is not an integer, this function has to be evaluated numerically. In homework and labs, I will supply this value to you.

The Weibull regression model is very easy to fit:

- In STATA: Just specify dist(weibull) instead of dist(exp) within the streg command
- In SAS: use model option dist=weibull within the proc lifereg procedure
- ullet In R: we use the survreg command with the dist="exp" option.

Note: to get more information on these modeling procedures, use the online help facilities.

Fitting the Weibull model in R

Constantin T Yiannoutsos 41 / 59

Comparison of Exponential with Kaplan-Meier

We can see how well the Exponential model fits by comparing the survival estimates for males and females under the exponential model, i.e., $P(T \ge t) = e^{(-\hat{\lambda}_z t)}$, to the Kaplan-Meier survival estimates:

Constantin T Yiannoutsos

Comparison of Weibull with Kaplan-Meier

We can see how well the Weibull model fits by comparing the survival estimates, $P(T \ge t) = e^{(-\hat{\lambda}_z t^{\hat{\kappa}})}$, to the Kaplan-Meier survival estimates.

Other useful plots for evaluating fit

- $-\log(\hat{S}(t))$ vs t
- $\log[-\log(\hat{S}(t))]$ vs $\log(t)$

Why are these useful?

If T is exponential, then $S(t) = \exp(-\lambda t)$

so
$$\log(S(t)) = -\lambda t$$

and $\Lambda(t) = \lambda t$

a straight line in t with slope λ and intercept=0

If **T** is Weibull, then
$$S(t) = \exp(-(\lambda t)^{\kappa})$$

$$\begin{array}{cccc} & \mathrm{so} & \log(S(t)) & = & -\lambda t^{\kappa} \\ & \mathrm{then} & \Lambda(t) & = & \lambda t^{\kappa} \\ & \mathrm{and} & \log(-\log(S(t))) & = & \log(\lambda) + \kappa * \log(t) \end{array}$$

a straight line in $\log(t)$ with slope κ and intercept $\log(\lambda)$.

Goodness of fit plots

So we can calculate our estimated $\Lambda(t)$ and plot it versus t, and if it seems to form a straight line, then the exponential distribution is probably appropriate for our dataset.

Plots for nursing home data: $\hat{\Lambda}(t)$ vs t

Log-log plot in the Weibull analysis

Or we can plot $\log \hat{\Lambda}(t)$ versus $\log(t)$, and if it seems to form a straight line, then the Weibull distribution is probably appropriate for our dataset.

Plots for nursing home data: $\log[-\log(\hat{S}(t))]$ vs $\log(t)$

Estimated log cumulative hazard vs log time

Comparison of methods for the two-sample problem

Data:

	Z_i	Subjects	Events	Follow-up
Group 0:	$Z_i = 0$	n ₀	d_0	$t_0 = \sum_{i=1}^{n_0} X_i$
Group 1:	$Z_i = 1$	n_1	d_1	$t_1 = \sum_{i=1}^{n_1} X_i$

In General:

$$\lambda_z(t) = \lambda(t, Z = z)$$
 for $z = 0$ or 1.

The hazard rate depends on the value of the covariate Z. In this case, we are assuming that we only have a single covariate, and it is binary (Z = 1 or Z = 0)

Reading from Collett

Reference (Collett):

Section(s)	Description
4.1.1, 4.1.2	Exponential properties
4.1.3	Weibull properties
4.3.1, 4.4.2	Exponential ML estimation
4.3.2	Weibull ML estimation
4.5	General Weibull regression
4.6	Model selection - Weibull regression
4.7	Weibull/AFT model connection
Ch.6	AFT - Other parametric models

Constantin T Yiannoutsos

Models

Exponential Regression:

$$\lambda_z(t) = \exp(\beta_0 + \beta_1 Z)$$

 $\Rightarrow \lambda_0 = \exp(\beta_0)$

 $\lambda_1 = \exp(\beta_0 + \beta_1)$

 $HR = \exp(\beta_1)$

Weibull Regression:

$$\lambda_{z}(t) = \kappa \exp(\beta_{0} + \beta_{1}Z) t^{\kappa-1}$$

$$\Rightarrow \lambda_{0} = \kappa \exp(\beta_{0}) t^{\kappa-1}$$

$$\lambda_{1} = \kappa \exp(\beta_{0} + \beta_{1}) t^{\kappa-1}$$

$$HR = \exp(\beta_{1})$$

Models (cont'd)

Proportional Hazards Model:

$$\lambda_z(t) = \lambda_0(t) \exp(\beta_1)$$

 $\Rightarrow \lambda_0 = \lambda_0(t)$ KM?

 $\lambda_1 = \lambda_0(t) \exp(\beta_1)$

 $HR = \exp(\beta_1)$

Remarks

We make the following remarks:

- Exponential model is a special case of the Weibull model with $\kappa=1$ (note: Collett uses γ instead of κ)
- Exponential and Weibull models are both special cases of the Cox PH model.How can you show this?
- If either the exponential model or the Weibull model is valid, then these models will tend to be more efficient than PH (smaller s.e.'s of estimates). This is because they assume a particular form for $\lambda_0(t)$, rather than estimating it at every death time.

Constantin T Yiannoutsos 51 / 59

Exponential regression

For the Exponential model, the hazards are constant over time, given the value of the covariate Z_i :

$$Z_i = 0 \Rightarrow \hat{\lambda}_0 = \exp(\hat{\beta}_0)$$

 $Z_i = 1 \Rightarrow \hat{\lambda}_0 = \exp(\hat{\beta}_0 + \hat{\beta}_1)$

For the Weibull model, we have to estimate the hazard as a function of time, given the estimates of β_0 , β_1 and κ :

$$Z_i = 0 \Rightarrow \hat{\lambda}_0(t) = \hat{\kappa} \exp(\hat{\beta}_0) t^{\hat{\kappa}-1}$$

 $Z_i = 1 \Rightarrow \hat{\lambda}_1(t) = \hat{\kappa} \exp(\hat{\beta}_0 + \hat{\beta}_1) t^{\hat{\kappa}-1}$

However, the ratio of the hazards is still just $\exp(\hat{\beta}_1)$, since the other terms cancel out.

Estimated hazards for the nursing home data

Here's what the estimated hazards look like for the nursing home data:

Estimated Hazards for Weibull & Exponential by Gender

Constantin T Yiannoutsos

Proportional Hazards Model

To get the MLE's for this model, we have to maximize the Cox partial likelihood iteratively. There are not closed form expressions like above.

$$L(\beta) = \prod_{i=1}^{n} \left[\frac{e^{\beta \mathbf{Z}_{i}}}{\sum_{\ell \in \mathcal{R}(X_{i})} e^{\beta \mathbf{Z}_{\ell}}} \right]^{\delta_{i}}$$

$$= \prod_{i=1}^n \left[\frac{e^{\beta_0+\beta_1 Z_i}}{\sum_{\ell \in \mathcal{R}(X_i)} e^{\beta_0+\beta_1 Z_\ell}} \right]^{\delta_i}$$

Comparison with Proportional Hazards Model

```
Call:
coxph(formula = Surv(losyr, fail) ~ gender, data = nurshome)
 n= 1591, number of events= 1269
        coef exp(coef) se(coef) z Pr(>|z|)
gender 0.3958    1.4855    0.0621 6.373 1.85e-10 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
      exp(coef) exp(-coef) lower .95 upper .95
gender
        1.486 0.6732 1.315 1.678
Concordance= 0.541 (se = 0.006)
Rsquare= 0.024 (max possible= 1)
Likelihood ratio test= 38.29 on 1 df. p=6.11e-10
Wald test
                    = 40.62 on 1 df. p=1.852e-10
Score (logrank) test = 41.14 on 1 df, p=1.415e-10
For the PH model, \hat{\beta}_1 = 0.394 and \widehat{HR} = e^{0.394} = 1.483.
```

Constantin T Viannoutsos 55 / 59

Comparison with the Logrank test

Constantin T Yiannoutsos 56 / 59

Comparison with the Wilcoxon test

Note that this is fit by adding rho=1 in R:

Constantin T Yiannoutsos 57 / 59

Comparison of HRs and test statistics for effect of gender

Model/Method	λ_0	λ_1	HR	log(HR)	se(log HR)	Wald Statistic
				<u> </u>	(0)	
Exponential	0.0029	0.0049	1.676	0.5162	0.0619	69.507
Weibull						
t = 50	0.0040	0.0060	1.513	0.4138	0.0636	42.381
t = 100	0.0030	0.0046	1.513			
t = 500	0.0016	0.0025	1.513			
Logrank						41.085
Wilcoxon						41.468
Cox PH						
Ties=Breslow			1.483	0.3944	0.0621	40.327
Ties=Discrete			1.487	0.3969	0.0623	40.565
Ties=Efron			1.486	0.3958	0.0621	40.616
Ties=Exact			1.486	0.3958	0.0621	40.617
Score (Discrete)						41.085

Comparison of Mean and Median Survival Times by Gender

	Mean S	urvival	Median 9	Median Survival		
Model/Method	Female	Male	Female	Male		
Exponential	344.5	205.6	238.8	142.5		
Weibull	461.6	235.4	174.2	88.8		
Kaplan-Meier	318.6	200.7	144	70		
Cox PH (Kalbfleisch/Prentice)			131	72		

Constantin T Yiannoutsos