Relações de Implicação e Equivalência

Lógica para Computação 2014/2

Profa: Daniela Scherer dos Santos daniela.santos37@ulbra.edu.br

Roteiro

- Implicação Lógica;
 - Tautologias e implicação lógica;
- Equivalência Lógica;
 - Tautologias e equivalência lógica;
- Propriedades;
- Exemplos de relações de Equivalência.

Uma proposição P implica logicamente ou apenas implica uma proposição Q, se em suas tabelas-verdade não ocorre VF(10) nessa ordem!
 Ou ainda, se a condicional P → Q for uma tautologia.

Lê-se "a proposição P implica a proposição Q"

Exemplo (1): Verificar se $\mathbf{r} \Rightarrow \mathbf{s} \rightarrow \mathbf{r}$

Exemplo (1): Verificar se r → s → r

Observar a forma:

Exemplo (1):

Verificar se $r \Rightarrow s \rightarrow r$

Solução: 1 - construir a tabela verdade para as proposições

Exemplo (1):

Verificar se $r \rightarrow s \rightarrow r$

Solução: 1 - construir a tabela verdade para as proposições

r	S	s → r
V	V	V
V	F	V
F	V	F
F	F	V

Exemplo (1):

Verificar se $r \rightarrow s \rightarrow r$

Solução: 2 – verificar se NÃO ocorre VF (10)

Exemplo (1):

Verificar se $r \rightarrow s \rightarrow r$

Solução: 2 – verificar se NÃO ocorre VF (10)

Comparando as tabelas-verdade das proposições $\mathbf{r} \in \mathbf{s} \to \mathbf{r}$, verificamos que NÃO ocorre VF (10) (nessa ordem!) em uma mesma linha. Portanto $\mathbf{r} \Longrightarrow \mathbf{s} \to \mathbf{r}$

Exemplo (2): Verificar se (r ^ s) → r

Observar a forma:

Exemplo (2): Verificar se (r ^ s) → r

r	S	r^s
V	V	V
V	F	F
F	V	F
F	F	F

Exemplo (2): Verificar se (r ^ s) → r

Exemplo (2): Verificar se (r ^ s) → r

	r		r s		r^s			
	V		V		V		VV	
	٧		F		F		VV FV	
	F		V		F		FF	
	F		F		F		FF	

Comparando as tabelas-verdade das proposições (r^s) e r, verificamos que NÃO ocorre VF (10) (nessa ordem!) em uma mesma linha. Portanto (r^s) → r

Pode-se também verificar se uma proposição P implica uma proposição Q, testando se a condicional $P \rightarrow Q \acute{e}$ uma tautologia.

Exemplo (1.b)

Verificar se $r \rightarrow s \rightarrow r$

Pode-se também verificar se uma proposição P implica uma proposição Q, testando se a condicional $P \rightarrow Q \acute{e}$ uma tautologia.

Exemplo (1.b)

Verificar se $r \rightarrow s \rightarrow r$

Solução: construir a tabela verdade para a condicional $P \rightarrow Q$

r	S	s → r	$r \rightarrow (s \rightarrow r)$
V	V	V	V
V	F	V	V
F	V	F	V
F	F	V	V

Lógica de Predicados

Pode-se também verificar se uma proposição P implica uma proposição Q, testando se a condicional $P \rightarrow Q \acute{e}$ uma tautologia.

Exemplo (1.b)

Verificar se $r \Rightarrow s \rightarrow r$

Solução: construir a tabela verdade para a condicional $P \rightarrow Q$

r	S	s → r	$r \rightarrow (s \rightarrow r)$		
V	V	V		V	
V	F	V		V	
F	V	F		V	
F	F	V		V	

Como a condicional $r \rightarrow (s \rightarrow r)$ é uma tautologia, então pode-se afirmar que $r \rightarrow s \rightarrow r$

Lógica de Predicados

Profa. Daniela Scherer dos Santos

Pode-se também verificar se uma proposição P implica uma proposição Q, testando se a condicional $P \rightarrow Q \acute{e}$ uma tautologia.

Exemplo (2.b):

Verificar se (r ^ s) ⇒ r

Pode-se também verificar se uma proposição P implica uma proposição Q, testando se a condicional $P \rightarrow Q \acute{e}$ uma tautologia.

Exemplo (2.b):

Verificar se (r ^ s) ⇒ r

Solução: construir a tabela verdade para a condicional P → Q

r	S	r^s	(r ^ s) → r
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

jica de Predicados

Pode-se também verificar se uma proposição P implica uma proposição Q, testando se a condicional $P \rightarrow Q \acute{e}$ uma tautologia.

Exemplo (2.b):

Verificar se (r ^ s) ⇒ r

Solução: construir a tabela verdade para a condicional $P \rightarrow Q$

r	S	r^s	(r ^ s	() →	r
V	V	V		V	
V	F	F		V	
F	V	F		V	
F	F	F		V	

Como a condicional $(r ^s) \rightarrow r \acute{e}$ uma tautologia, então pode-se afirmar que $(r ^s) \rightarrow r$

ica de Predicados

rofa. Daniela Scherer dos Santos

Uma proposição P é logicamente equivalente a uma proposição Q, se as tabelas-verdade destas duas proposições são idênticas.

Ou ainda, se a bicondicional $(P \leftrightarrow Q)$ for uma tautologia.

Lê-se "a proposição P é equivalente a proposição Q"

Exemplo:

Verificar se $(r \rightarrow s) \Leftrightarrow (\sim r \lor s)$

Exemplo:

Verificar se $(r \rightarrow s) \Leftrightarrow (\sim r \lor s)$

Solução: construir a tabela verdade das proposições P e Q e verificar se são idênticas

r	S	r → s	~r	(~r v s)
V	V	V	F	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V

Exemplo:

Verificar se $(r \rightarrow s) \Leftrightarrow (\sim r \lor s)$

Solução: construir a tabela verdade das proposições P e Q e verificar se são idênticas

Como as tabelas das proposições $(r \rightarrow s)$ e $(\sim r \lor s)$ são idênticas, então pode-se afirmar que $(r \rightarrow s) \Leftrightarrow (\sim r \lor s)$

Tautologia e Equivalência Lógica

Ou ainda, se a bicondicional ($P \leftrightarrow Q$) for uma tautologia, então pode-se dizer que estas duas proposições, P e Q, são equivalentes.

Exemplo:

Verificar se $(r \rightarrow s) \Leftrightarrow (\sim r \lor s)$

Tautologia e Equivalência Lógica

Ou ainda, se a bicondicional ($P \leftrightarrow Q$) for uma tautologia, então pode-se dizer que estas duas proposições, P e Q, são equivalentes.

Exemplo:

Verificar se $(r \rightarrow s) \Leftrightarrow (\sim r \lor s)$

Solução: construir a tabela verdade da bicondicional P ↔ Q

r	S	r → s	~r	~r v s	(r → s) ↔ (~r ^s)
V	V	V	F	V	V
V	F	F	F	F	V
F	V	V	V	V	V
F	F	V	V	V	V

Tautologia e Equivalência Lógica

Se a bicondicional $(P \leftrightarrow Q)$ for uma tautologia, então pode-se dizer que estas duas proposições, P e Q, são equivalentes.

Exemplo:

Verificar se $(r \rightarrow s) \Leftrightarrow (\sim r \lor s)$

Solução: construir a tabela verdade da bicondicional

 $P \leftrightarrow Q$

r	S	r → s	~r	~r v s	(r → s) ↔ (~r ^s)		
V	V	V	F	V		V	
V	F	F	F	F		V	
F	V	V	V	V		V	
F	F	V	V	V		V	ei นบร ว อ

Como a bicondicional $(r \rightarrow s) \leftrightarrow (\sim r \lor s)$ é uma tautologia, então pode-se afirmar que $(r \rightarrow s) \Leftrightarrow (\sim r \lor s)$

Proporiedades

Reflexiva:

 $P \rightarrow P$

 $P \Leftrightarrow P$

Transitiva:

se $P \Rightarrow Q$ e $Q \Rightarrow R$, então $P \Rightarrow R$

se $P \Leftrightarrow Q$ e $Q \Leftrightarrow R$, então $P \Leftrightarrow R$

Simétrica:

se $P \Leftrightarrow Q$, então $Q \Leftrightarrow P$

Exemplos de relações de Equivalência

- (a) Dupla negação(p')' ⇔ p
- (b) Leis idempotentes $p + p \Leftrightarrow p$ $p \cdot p \Leftrightarrow p$
- (c) Leis Comutativas $p + q \Leftrightarrow q + p$ $p \cdot q \Leftrightarrow q \cdot p$
- (d) Leis Associativas $p + (q + r) \Leftrightarrow (p + q) + r$ $p \cdot (q \cdot r) \Leftrightarrow (p \cdot q) \cdot r$

Exemplos de relações de Equivalência

(e) Leis de Morgan
 (p . q)' ⇔ p' + q' ----> a negação de um produto de variáveis é igual a soma das negações de cada variável

(p + q)' ⇔ p'. q' -----> a negação da soma de variáveis é igual ao produto das negações de cada variável

(f) Leis Distributivas

$$p.(q+r) \Leftrightarrow (p.q) + (p.r)$$

 $p+(q.r) \Leftrightarrow (p+q).(p+r)$

Exemplos de relações de Equivalência

(g) Bicondicional $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \cdot (q \rightarrow p)$

(h) Condicionais

```
p \rightarrow q (condicional)

q \rightarrow p (recíproca do condicional)

q' \rightarrow p' (contrapositivo)

p' \rightarrow q' (recíproca do contrapositivo)
```

Equivalências:

$$(p \rightarrow q) \Leftrightarrow (q' \rightarrow p')$$

 $(q \rightarrow p) \Leftrightarrow (p' \rightarrow q')$

