

CAN SATELLITES AID IN IMPROVING AIR QUALITY IN YOUR CITY ???

Karn Vohra (*kxv745@student.bham.ac.uk*)¹, Eloïse Marais², William Bloss¹, Peter Porter³

¹ School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK; ² Department of Physics and Astronomy, University of Leicester, UK; ³ Birmingham City Council, Birmingham, UK

OMI/Aura NO2 Cloud-Screened Tropospheric Column L2 Global 13 km x 24 km V3

Surface observations are sparse and inconsistent

30 SECOND SUMMARY

Validation of satellite observations with surface observations

Apply satellite observations to monitor air quality

A sunny winter's day in Birmingham (smoke from Tyseley Energy from Waste plant)

1. INTRODUCTION

- □ 40,000 early deaths each year in UK are attributed to fine particles and NO₂ pollution; Associated health cost: £6 billion
- ☐ Space-based instruments provide long-term (2005-2017) observations of NO₂ to assess and develop prescient policy
- ☐ Here we validate and use satellite observations to assess air quality in **Birmingham**

2. METHODOLOGY

- □ Validate satellite observations of NO₂ from the **Ozone** Monitoring Instrument (OMI) on-board NASA's Aura satellite with DEFRA and Birmingham City Council groundbased observations
- ☐ Quantify the long-term (2005-2017) trend in OMI NO₂

3. SURFACE MONITORING OF NO₂

☐ Sites are spatially correlated and so can be used to obtain a citywide average NO₂ concentration to validate OMI NO₂

Trends and locations of NO₂ monitoring sites in Birmingham

4. VALIDATION OF SATELLITE OBSERVATIONS

- \square Surface and OMI NO₂ are temporally correlated (R = 0.69)
- OMI NO₂ can be used to infer NO_x trends in Birmingham

5. OMI NO₂ TRENDS IN BIRMINGHAM

- \square OMI NO₂ has decreased at 3.2% a⁻¹ for 2005-2017
- □ NO₂ is short lived, significant decline in OMI NO₂ indicates a significant decline in NO_X emissions

6. DISCUSSION

- Surface sites provide detailed information about spatial variability in NO₂
- Consistent satellite and ground-based NO₂ give us confidence to apply satellite observations to monitor air quality in Birmingham
- We find from OMI that NO₂ has declined by 3.2% a⁻¹ (Birmingham) from 2005 to 2017, similar to the UK-wide decrease in NO_x emissions (3.9% a⁻¹) and more than the decline in London (1.8% a⁻¹) determined with surface NO₂ observations

7. NEXT STEPS

- Similar validation to be completed for satellite observations of other air pollutants (sulphur dioxide, particulate matter and formaldehyde)
- Apply this approach to monitor rapidly developing cities like New Delhi, Kathmandu, Jakarta, Ontisha, Johannesburg and Sao Paulo