Homework #6

1. (a)

Oil	Pr(Oil)
0	0.5
1	0.5

Gas	Pr(Gas)
0	0.8
1	0.2

Test	Oil	Gas	Pr(Test Oil, Gas)
1	0	0	0.1
1	0	1	0.3
1	1	0	0.9
1	1	1	0

(b) We seek Pr(Oil | Test). To calculate this probability, we use Bayes' Theorem.

$$Pr(Oil \mid Test) = \frac{Pr(Test \mid Oil) * Pr(Oil)}{Pr(Test)}$$

From the conditional probability tables (CPTs) above,

 $Pr(Test \mid Oil) = 0.9$ (disregard Gas, even as Test is doubly dependent on Oil and Gas, because they are mutually exclusive)

$$Pr(Oil) = 0.5$$

$$Pr(Test) = ???$$

Since Pr(Test) is unknown, use the Law of Total Probability to solve for it.

$$Pr(x) = \sum_{i} Pr(x, y_i)$$

Choose x = Test, and y = {Oil, ¬Oil}

$$Pr(x) = Pr(Test) = Pr(Test, Oil) + Pr(Test, \neg Oil)$$

Conditioning,

$$Pr(Test) = Pr(Test \mid Oil) * Pr(Oil) + Pr(Test \mid \neg Oil) * Pr(\neg Oil)$$

 $Pr(Test) = 0.9 * 0.5 + 0.4 * 0.5$
 $Pr(Test) = 0.5(0.9 + 0.4)$
 $Pr(Test) = 0.65$

With all necessary values,

$$Pr(Oil \mid Test) = (0.9 * 0.5) / 0.65 = 0.45 / 0.65 = 0.69$$

(b)
$$Pr(E, F, G, H) = Pr(E \mid B) * Pr(F \mid C, D) * Pr(G \mid F) * Pr(H \mid F, E)$$

(c)
$$Pr(a, \neg b, c, d, \neg e, f, \neg g, h) = 0.2 * 0.3 * [Pr(c \mid a)] * 0.6 * 0.1 * [Pr(f \mid c, d)] * [Pr(\neg g \mid f)] * [Pr(h \mid f, \neg e)] = 0.0036 * Pr(c \mid a) * Pr(f \mid c, d) * Pr(\neg g \mid f) * Pr(h \mid f, \neg e)$$

(d)
$$Pr(a, \neg b) = Pr(a) * Pr(\neg b)$$
 (independence)
= 0.2 * 0.3
= **0.06**

$$Pr(\neg e \mid a) = Pr(\neg e, a) / Pr(a)$$

= $Pr(\neg e) * Pr(a) / (Pr(a)$ (e is independent of a given its parent, b)
= $Pr(\neg e)$

E depends on B, however.

$$Pr(\neg e) = Pr(\neg e,b) + Pr(\neg e,\neg b)$$
 (Law of Total Probabilities, partition on b)
 $Pr(\neg e) = Pr(\neg e,b) * Pr(b) + Pr(\neg e,\neg b) * Pr(\neg b)$ (Conditioning)
 $Pr(\neg e) = 0.9 * 0.7 + 0.1 * 0.3$
 $Pr(\neg e) = 0.63 + 0.03$
 $Pr(\neg e) = Pr(\neg e \mid a) = 0.66$

(e) The **Markovian assumption** states that every node is independent of its non-descendants given its parents. For a node X symbolically,

$X \perp Non-Descendants(X) \mid Parents(X)$

TT .	. 1 .	•
Using	this	notation,
	CILID	motorion,

 $A \perp B$

 $A \perp E$

 $B \perp C$

 $C \perp D \mid A$

 $C \perp E \mid A$

 $D \perp C \mid A, B$

 $D \perp E \mid A, B$

 $E \perp C \mid B$

 $E \perp D \mid B$

 $E \perp F \mid B$

 $E \perp G \mid B$

 $F \perp A \mid C, D$

 $F \perp B \mid C, D$

 $F \perp E \mid C, D$

 $G \perp A \mid F$

 $G \perp B \mid F$

 $G \perp C \mid F$

 $G \perp D \mid F$

 $G \perp E \mid F$

 $G \perp H \mid F$

 $H \perp A \mid F, E$

 $H \perp B \mid F, E$

 $H \perp C \mid F, E$

 $H \perp D \mid F, E$

 $H \perp G \mid F, E$

(f) In a Bayesian network, the Markov blanket of a node includes its parents, children, and the other parents of all its children.

$Markov Blanket(D) = \{A, B, C, F\}$

(g)

(g)		ı	1		1	ī					1
A	В	D	Pr(D AB)	В	Е	Pr(E B)	A	В	D	Е	Pr(D AB) x Pr(E B)
0	0	0	0.5	0	0	0.1	0	0	0	0	0.5 * 0.1 = 0.05
0	0	1	0.5	0	1	0.9	0	0	0	1	0.5 * 0.9 = 0.45
0	1	0	0.6	1	0	0.9	0	0	1	0	0.5 * 0.1 = 0.05
0	1	1	0.4	1	1	0.1	0	0	1	1	0.5 * 0.9 = 0.45
1	0	0	0.1				0	1	0	0	0.6 * 0.9 = 0.54
1	0	1	0.9				0	1	0	1	0.6 * 0.1 = 0.06
1	1	0	0.8				0	1	1	0	0.4 * 0.9 = 0.36
1	1	1	0.2				0	1	1	1	0.4 * 0.1 = 0.04
							1	0	0	0	0.1 * 0.1 = 0.01
							1	0	0	1	0.1 * 0.9 = 0.09
							1	0	1	0	0.9 * 0.1 = 0.09
							1	0	1	1	0.9 * 0.9 = 0.81
							1	1	0	0	0.8 * 0.9 = 0.72
							1	1	0	1	0.8 * 0.1 = 0.08
							1	1	1	0	0.2 * 0.9 = 0.18
							1	1	1	1	0.2 * 0.1 = 0.02

(h) To sum out the variable D,

Let
$$f(A, B, D, E) = Pr(D \mid A, B) \times Pr(E \mid B)$$

$$f(A, B, E) = \sum_{d} f(A, B, D, E) = f(A, B, d, E) + f(A, B, \neg d, E)$$

We are **marginalizing** on the variable D. To do this, look for all rows where A, B, E agree and sum over all possible values of D.

A	В	Е	$\sum_{d} \mathbf{f}(\mathbf{A}, \mathbf{B}, \mathbf{D}, \mathbf{E}) = \mathbf{f}(\mathbf{A}, \mathbf{B}, \mathbf{E})$
0	0	0	0.05 + 0.05 = 0.10
0	0	1	0.45 + 0.45 = 0.90
0	1	0	0.54 + 0.36 = 0.90
0	1	1	0.06 + 0.04 = 0.10
1	0	0	0.01 + 0.09 = 0.10
1	0	1	0.09 + 0.81 = 0.90
1	1	0	0.72 + 0.18 = 0.90
1	1	1	0.08 + 0.02 = 0.10