1. Identificando el proceso ARIMA

Tenemos $Y_t = C_t + I_t$, donde Y_t , C_t y I_t denotan (las componentes cíclicas de) el ingreso, consumo e inversión en t, respectivamente.

También tenemos que

$$C_t = aC_{t-1} + \varepsilon_t$$

$$I_t = bI_{t-1} + k\varepsilon_t$$

donde 0 < a < b < 1, k > 0 y donde ε_t denota un ruido blanco (innovaciones) tanto para C_t como para I_t . Nótese que el ruido a la derecha de las dos expresiones es el mismo proceso.

Determine el proceso ARIMA que sigue Y_t y exprese el ruido blanco correspondiente en función de ε_t . Muestre las raíces de los polinomios AR y MA correspondientes, testeando su módulo mayor que uno.

2. Expectativas racionales con camino aleatorio

La demanda por un bien perecible viene dada por

$$Q_t^D = -\beta P_t$$

donde P_t es el precio en t.

La oferta en t depende de decisiones que las firmas toman un período antes, basadas en sus expectativas del precio en t, P_t^e , y de un shock de oferta en t, u_t :

$$Q_t^S = \gamma P_t^e + u_t.$$

Donde oferta y demanda están expresadas en desviación de su media y γ y β son constantes positivas. El precio y la cantidad producida en t se obtienen igualando oferta con demanda.

(a) Sin hacer ningún supuesto sobre cómo se forman las expectativas o sobre el proceso u_t , exprese P_t en función de P_t^e y u_t .

En lo que sigue, suponga que las expectativas son racionales.

- (b) Use (a) para expresar P_t^e en función de $\mathbb{E}_{t-1}u_t$.
- (c) Al supuesto de expectativas racionales agréguese el supuesto de que u_t sigue un camino aleatorio sin drift, con innovaciones ε_t :

$$u_t = u_{t-1} + \varepsilon_t.$$

(d) Use las partes anteriores para mostrar que P_t sigue un proceso ARIMA(p, d, q). Identifique el proceso de innovación y los valores de p, d y q. Luego haga lo mismo para la cantidad producida, Q_t .