# Assignment #4

Due: Monday, March 16, 2015

TA: Michael Gutierrez / 26-327 / M\_G@mit.edu / 619-228-6593

Office Hours: Mar 13th (Fri) 6pm - 8pm.& Mar 16th (Mon), 9am - 10:30am.

### 1. Heisenberg-limited interferometry with the Yurke state

The Yurke state  $|\psi\rangle=(|n\rangle|n-1\rangle+|n-1\rangle|n\rangle)/\sqrt{2}$  allows one to obtain a measurement of an unknown phase  $\phi$  with uncertainty  $\langle\Delta\phi\rangle=\frac{1}{n}$ , using a Mach-Zehnder interferometer. Methods for experimentally realizing these states have been proposed, for example, using Bose-Einstein condenstates [Castin & Dalibard, Phys. Rev. A vol. 55, p. 4330, 1997]. For this problem, use the following definition for the beamsplitter:

$$BaB^{\dagger} = \frac{1}{\sqrt{2}}(a+ib)$$

$$BbB^{\dagger} = \frac{1}{\sqrt{2}}(b+ia)$$
(1)

a) Let us now analyze the Mach-Zehnder interferometer, fed with a Yurke state as input. Use this setup:



and work in the Schrodinger picture, by doing the following. Let the input be the Yurke state,  $|\phi_0\rangle = |\psi\rangle$ , let the state after the first 50/50 beamsplitter be  $|\phi_1\rangle = B|\phi_0\rangle$ , the state after the phase shifter be  $|\phi_2\rangle = P|\phi_1\rangle$ , and the state after the final 50/50 beamsplitter be  $|\phi_3\rangle = B^{\dagger}|\phi_2\rangle$ . Give expressions for  $|\phi_1\rangle$ ,  $|\phi_2\rangle$ , and  $|\phi_3\rangle$ . Note that the transform of the phase shifter P is  $PaP^{\dagger} = ae^{i\phi}$ . Double-check that when  $\phi = 0$ , the output is the same as the input  $|\phi_3\rangle = |\phi_0\rangle$ . Hint: write these states in terms of operators acting on the vacuum.

b) What is the uncertainty with which you can determine  $\phi$  using the Yurke state input? This is

$$\langle \Delta \phi^2 \rangle = \frac{\langle \Delta M^2 \rangle}{\left| \frac{\partial \langle M \rangle}{\partial \phi} \right|^2} \,, \tag{2}$$

where  $M=a^{\dagger}a-b^{\dagger}b$  is the difference in the photon numbers measured at the outputs of the interferometer. Compute  $\langle \Delta \phi^2 \rangle$ , evaluated at  $\phi=0$  (the point at which the interferometer is balanced), using the  $|\phi_3\rangle$  you obtained above. You should find  $\langle \Delta \phi \rangle = \sqrt{\langle \Delta \phi^2 \rangle} = \frac{1}{n}$ .

c) Using the same diagram as above, let the input now be a coherent state and a vacuum state,  $|\psi_0\rangle = |\alpha\rangle|0\rangle$ . Just as above, let the state after the first 50/50 beamsplitter be  $|\psi_1\rangle = B|\psi_0\rangle$ , the state after the phase shifter be  $|\psi_2\rangle = P|\psi_1\rangle$ , and the state after the final 50/50 beamsplitter be  $|\psi_3\rangle = B^{\dagger}|\psi_2\rangle$ . Give expressions for  $|\psi_1\rangle$ ,  $|\psi_2\rangle$ , and  $|\psi_3\rangle$ .

d) Given the quantum fluctuations of the coherent state, use uncertainty propagation to determine the uncertainty with which you can determine  $\phi$  using the coherent state input, as a function of  $\bar{n} = |\alpha|^2$  and the phase shift angle  $\phi$ .

# 2. Hanbury Brown and Twiss Experiment with Atoms

This problem illustrates the coherence and collimation requirements for performing a Hanbury Brown and Twiss (HBT) experiment with atoms. In fact the HBT experiment was done for both bosons (<sup>4</sup>He) and fermions (<sup>3</sup>He) by Jeltes and company in 2007 (T. Jeltes et al., Nature 445, 402 (2007)). (Note: Ignore gravity in this problem.)

If a free particle starts at point A at time t=0 with an amplitude (wavefunction)  $\psi_A$ , then the amplitude at another point 1 and time  $t=\tau$  is proportional to  $\psi_A e^{i(\mathbf{k}\cdot\mathbf{r}_{A1}-\omega\tau)}$ , where  $\mathbf{r}_{A1}$  is the vector from A to 1,  $\mathbf{k}$  is the particle's wavevector, and  $\hbar\omega$  is its total energy. This can be regarded as Huygen's principle for matter waves, and is a special case of the Feynman path integral formulation of quantum mechanics.



(Based on figure 19-5, in G. Baym, Lectures on Quantum Mechanics)

#### (a) Correlation function

Assume we have a particle at A with amplitude  $\psi_A$  and one at B with amplitude  $\psi_B$ . The joint probability P of finding one particle at 1 and one at 2 is

$$P = \left| \psi_A e^{i\phi_{A1}} \psi_B e^{i\phi_{B2}} \pm \psi_A e^{i\phi_{A2}} \psi_B e^{i\phi_{B1}} \right|^2 \tag{3}$$

and is proportional to the second-order coherence function  $g^{(2)}(1,2)$ . The  $\pm$  is for bosons/fermions and makes the two-particle wavefunction symmetric/antisymmetric under the exchange of particles. Here,  $\phi_{A1} = \mathbf{k}_A \cdot \mathbf{r}_{A1} - \omega \tau$  is the phase factor for the path from point A to detector 1, etc. Calculate P as a function of  $\mathbf{r}_{21}$ , the vector from point 2 to point 1 on the detector.

## (b) Transverse Collimation

Assume you are given a source (e.g. a ball of trapped atoms) with transverse dimension W and detector with transverse dimension w where  $|\mathbf{r}_{21}| \leq w$ . The distance between source and detector d is much greater than all other distances. The transverse component of the phase factor in part (a) can be written:  $\phi_t = (\mathbf{k}_A - \mathbf{k}_B)_t \cdot (\mathbf{r}_{21})_t$ . Assume that the signal at the detector is mainly due to atoms with wavevectors distributed around  $\mathbf{k}_0$ . Argue that the transverse collimation required to see second order correlation effects can be expressed as  $Ww \ll d\lambda_{dB}$ , where  $\lambda_{dB}$  is the deBroglie wavelength corresponding to  $\mathbf{k}_0$ . (Hint: How does  $\phi_t$  vary for atoms originating at different points in the source and being detected at different points on the detector?)

Consider a <sup>6</sup>Li MOT at 500  $\mu$ K. Calculate the deBroglie wavelength. Assuming a MOT and detector of approximately equal size  $(W \approx w)$ , estimate an upper bound on the MOT and detector size using d = 10 cm.

# (c) Longitudinal Collimation

- (i) The longitudinal component of the phase factor in part (a) can be written:  $\phi_l = (\mathbf{k}_A \mathbf{k}_B)_l \cdot (\mathbf{r}_{21})_l$ . Assume a Gaussian distribution of wavevector differences  $p(\mathbf{k}_A \mathbf{k}_B) = e^{-|\mathbf{k}_A \mathbf{k}_B|^2 \gamma^2}$  where the width  $\gamma$  is related to the temperature of the atoms. Calculate  $\langle P \rangle$  using this distribution and your result from part (a). Sketch  $\langle P \rangle$  for both fermions and bosons, indicating the extent of  $(\mathbf{r}_{21})_l$  over which the second order correlation effect can be seen. (Hint: Use the fact that  $\phi_t \ll 2\pi$  from part (b) to simplify the integral.)
- (ii) Now assume you have a pulsed source of atoms with longitudinal dimension L. Atoms are released at time t=0 and detected at some later time  $t=\tau$ . Give geometric arguments to show that the wavevectors of detected atoms must obey  $|(\mathbf{k}_A \mathbf{k}_B)_l| \leq \frac{mvL}{\hbar d}$ , where the velocity  $v = \frac{d}{\tau}$ . This implies that the different velocity groups separate during the expansion, narrowing (by a factor  $\frac{L}{d}$ ) the velocity distribution of atoms detected at any particular time.

Consider again the <sup>6</sup>Li MOT from part (b). Assuming  $\tau = 0.1$ s and  $L \approx W$ , estimate the necessary timing resolution of the detector in order to see second order correlation effects?

# (d) Phase-Space Volume Enhancement

We now pull all the pieces together. The peak in  $g^{(2)}(1,2)$  is visible for  $(\mathbf{k}_A - \mathbf{k}_B) \cdot \mathbf{r}_{21} \le 2\pi$ . This is equivalent to saying that we must detect atoms from within a single phase space cell, defined by  $\delta p_x \delta x \le h$  (and likewise for y and z). In our trapped atom sample, the 3D volume of a phase space cell is  $\delta x \delta y \delta z = (\lambda_{dB})^3$ . Liouville's theorem says that as our ball of atoms expands, the number of phase space cells remains constant. Verify that, by using this pulsed source, the volume of a coherent phase space cell is increased by a factor  $d^3/W^2L$  by the time atoms reach the detector. What is the order of magnitude of this increase (assuming  $L \approx W$ )?

Estimate the average occupation of a cell of phase space for the <sup>6</sup>Li MOT from parts (b) and (c). Use the following numbers for the <sup>6</sup>Li MOT: 10<sup>10</sup> atoms in 1 cm<sup>3</sup>. How does this compare with the average occupation of a BEC or a degenerate Fermi cloud?