HW2

EE 4033 Algorithms, Fall 2018 107/10/24

Problem 1

• Solve the recurrence for randomized quicksort

$$T(n) \le O(n) + \frac{1}{n} \sum_{i=1}^{n-1} (T(i) + T(n-i))$$

Problem 2

Stealing goods from a list of houses

v[1]	v[2]	v[3]	v[4]	v[5]	v[6]	v[7]	v[8]
8	5	3	9	6	4	10	1

- Given: values of the goods in each house
- Target: get maximum total stolen value
- Constraint: cannot steal in adjacent houses
- Classic dynamic programming problem

Problem 3

- Cities are divided into northern and southern parts
- Wants to build as many bridges across the river
- But the bridges cannot intersect

Problem 3

- "Longest Increasing Subsequence" problem
 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15
- Also a classical dynamic programming problem
- How to relate to the bridge-building scenario?

- It is better not to describe your algorithms with codes alone
 - TAs are not compilers
 - If you REALLY need to, use pseudocodes instead
 - Better yet, try describing your work in humanunderstandable words

Problem 1

- ullet Find the smallest number whose digits multiply to a given integer p
- a) p = 96 $N_p = \{ \mathbf{268}, 286, 348, 384, 438, \dots, 1268, 1286, \dots \}$ $n_{min} = \mathbf{268}$
- b) p = 1 $N_p = \{\mathbf{11}, 111, 1111, 11111, ...\}$ $n_{min} = \mathbf{11}$
- c) p = 23 $N_p = \emptyset$

Problem 1

Solve the problem using a greedy algorithm

input.txt	output.txt
96	268
1	11
20	45

Explain your work in the report

Problem 2

Minimize the penalties of delayed homework submissions

						h_6	
Deadline d_i	1	2	3	4	4	4	6
Penalty p_i							

- Each homework assignment h_i has a deadline d_i and a penalty p_i for not submitting in time
- Penalty is a constant no matter how late you submit
- If $d_i = 4$, submitting h_i on day-4 is okay

Problem 2

Minimize the penalties of delayed homework submissions

	h_1	h_2	h_3	h_4	h_5	h_6	h_7
Deadline d_i	1						
Penalty p_i	25	65	35	50	15	90	5
$\mathrm{Day} \#$	1	2	3	4	5	6	7
Day# Do Assignment#							

- Total Penalty = 15 + 25 = 40 (wants to minimize)
- Can be solved using a greedy algorithm

• Problem 2

	$\mid h_1 \mid$	h_2	h_3	h_4	h_5	h_6	h_7
Deadline d_i	1	2	3	4	4	4	6
Penalty p_i	25	65	35	50	15	90	5
$\mathrm{Day} \#$	1	2	3	4	5	6	7
$\frac{\text{Day}\#}{\text{Do Assignment}\#}$	1						

input.txt	output.txt
1 2 3 4 5 6 7	3 2 4 6 5 7 1
1 2 3 4 4 4 6	40
25 65 35 50 15 90 5	

How to parse input arguments?

```
import sys
args = sys.argv
print(args[1], args[2])
```

- Do not hard-define "input.txt" or "output.txt" into your code
- Do not use input() to obtain paths

- Read the HW instructions very carefully
 - Failing to follow them may lead to loss of credits
- All the inputs are of arbitrary size
- Use the provided selfCheck.py to check the format of your .zip/.tar file before uploading
 - Do not include redundant files for it might cause troubles when judging

- About referencing
 - For each hand-written problem, write the collaborators and/or URLs at the beginning or end of each problem
 - For each programming problem, write the collaborators and/or URLs at the end of your handwritten answer sheet (not in PDF or as code comments!)
 - If URLs are too long, you can print them out or simply write down the name/title of the webpage