Hyperspherdisdodehedron

by Sven Nilsen, 2022

In this paper I introduce a way of constructing a general hyperspherical disdyakis dodecahedron.

Illustration of a spherical disdyakis dodecahedron^[1]

A hypersphere^[2] is given by the following equation:

$$\sum i : \mathbb{N} \{ x_i^2 \} = r^2$$
$$x : [\mathbb{R}]$$
$$r : \mathbb{R}$$

By using a hypercube^[3] map onto a hypersphere, one obtains the following solutions for a general hyperspherical disdyakis dodecahedron, which is nick named "hyperspherdisdodehedron":

$$r = sqrt(1 + i) \cdot p_i$$
$$p : [\mathbb{R}]$$

Where \hat{v}_i is a coefficient scaled with a vector \hat{v}_{ij} such that one can calculate positions of points:

$$\begin{aligned} & position_{ij} = v_{ij} \cdot p_i \\ & position : [[[\mathbb{R}]]] \\ & v : [[[\mathbb{R}]]] \end{aligned}$$

Where v_{ij} is some permutation of a vector w_i :

$$w_i = (\pm 1, \pm 1, ..., \pm 1, 0, 0, ... 0)$$

The number of zeroes in the vector is `i`.

The total length corresponds to the dimensions of the hypersphere.

This vector is balanced ternary^[4] since it only contains `-1, 0, 1`.

References:

- [1] "Disdyakis dodecahedron"
 Wikipedia
 https://en.wikipedia.org/wiki/Disdyakis dodecahedron
- [2] "n-sphere"
 Wikipedia
 https://en.wikipedia.org/wiki/N-sphere
- [3] "Hypercube"
 Wikipedia
 https://en.wikipedia.org/wiki/Hypercube
- [4] "Balanced ternary"
 Wikipedia
 https://en.wikipedia.org/wiki/Balanced_ternary