Homework 3

The finite difference method in 2D

Problem 1: Poisson equation

Write a MATLAB code for solving the Poisson equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = S(x, y)$ in 2D over the $[0; 1] \times [0; 1]$ computational domain for different source terms S(x, y) and compare the numerical solution with the analytical solutions $f_{an}(x, y)$ provided below. The Dirichlet boundary conditions can be derived directly from the analytical solutions.

• Homogeneous source term

$$S(x,y) = A \tag{1}$$

$$f_{an}(x,y) = e^{kx} \sin(ky) + \frac{A}{4} (x^2 + y^2)$$
 (2)

where A and k are arbitrary numbers.

Non-homogeneous source term

$$S(x,t) = \left(x^2 + y^2\right)e^{xy} \tag{3}$$

$$f_{an}(x,t) = e^{xy} (4)$$

Problem 2: advection-diffusion equation

Write a MATLAB code for solving the advection-diffusion equation $\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} = \Gamma \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right)$ over the $[0;1] \times [0;1]$ computational domain, where u, v and $\Gamma > 0$ are arbitrary numbers. The initial condition f_0 is:

$$f(x, y, t = 0) = f_0 = C\cos(B\pi\eta) \exp\left(\frac{1 - \sqrt{1 + 4A^2\pi^2\Gamma^2}}{2\Gamma}\xi\right)$$
 (5)

where A and B are arbitrary numbers and $\xi = ux + vy$ and $\eta = vx - uy$. The analytical solution $f_{an}(x,y)$ is given by the following epression:

$$f_{an}(x,y,t) = f_0 e^{-\Gamma \pi^2 (u^2 + v^2)(B^2 - A^2)t}$$
(6)

The Dirichlet boundary conditions can be derived directly from the analytical solutions. Remember to choose a proper combination of space and time steps, satisfying the stability requirements (Co < 1 and Di < 1/4). Pay attention to the fact that Dirichlet boundary conditions along the boundaries are time-dependent (see the analytical solution).

An example is given by the following input data:

- Velocity: $u = 1 \, m/s$ and $v = 0.5 \, m/s$
- Diffusion coefficient: $\Gamma = 0.05 \, m^2/s$
- Number of grid points: $n_X = n_Y = 40$
- Time step: $\triangle t = 0.0025 \, s$
- Total time of simulation: $\tau = 0.3 \, s$
- Arbitrary constants: A = 1.25, B = 0.75, C = 1