Roll No .: CS2311027

Name: HARITH . Y

Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram End Semester Examination – January-May, 2024

Course Code: MA1001

Course Title: Differential Equations

Batches: All

Category: Core

Date of Examination: 01.05.2024

Duration: 3 Hours Maximum Marks: 50

- + X. (a) State Picard's theorem for first order ordinary differential equations. (2)
 - (b) Find all solutions of the initial value problem $y' = 3y^{2/3}$, y(0) = 0. (1)
 - (c) Does part (b) contradict Picard's theorem? If not, why? (1)
 - 2. Solve: $(y \log y 2xy)dx + (x + y)dy = 0.$ (3)
- Notice Solve by reducing the equation $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$ into a linear equation. (3)
- Find the general solution of the following differential equation in three different ways: $x^2y'' + xy' y = 0$. (6)
- O So Derive the formula of the method of variation of parameters for a particular solution of the equation y'' + P(x)y' + Q(x)y = R(x). (4)
- $\checkmark 6. \text{ If } p \text{ is not zero or a positive integer, show that } (1+x)^p = \sum_{n=0}^{\infty} \frac{p(p-1)(p-2)\dots(p-n+1)}{n!} x^n$ for |x| < 1. [Here $p(p-1)(p-2)\dots(p-n+1) = 1$ when n = 0.] (4)
 - 7. Find the Frobenius series solution of the differential equation xy'' + y' + xy = 0. (5)
 - - (b) Find the inverse Laplace transform of $F(p) = \log\left(\frac{p^2 + 1}{p(p+1)}\right)$. (2)
 - \mathscr{D} . Prove: If L[f(x)] = F(p), then $\int_0^\infty \frac{f(x)}{x} dx = \int_0^\infty F(p) dp$. Hence compute $\int_0^\infty \frac{\sin x}{x} dx$. (3)
 - 10. State and prove the convolution theorem on Laplace transforms. (4)
 - \mathcal{N} . Find the Fourier series of the function f(x) = x, $-\pi \le x < \pi$. (4)
- $\sqrt{2}$. 12. Prove: $\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \dots = \frac{\pi}{4}$ for each $0 < x < \pi$. (3)