

Circles Ex 16.4 Q1

Answer:

It is given that O is the circle and $\angle APB = 50^{\circ}$

Fig

We have to find $\angle AOB$ and $\angle OAB$

According to the figure O is center of the circle.

 $\angle AOB = 2\angle APB$ [The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.]

$$\therefore \angle AOB = 2 \times 50^{\circ} \qquad [\because \angle APB = 50^{\circ}]$$
$$= 100^{\circ}$$

 $\ln \Delta AOB$

AO = BO(Radii of the same circle)

Then,
$$\angle OAB = \angle OBA$$
 [Angles equal to opposite sides are equal] $\angle OAB + \angle ABO + \angle BOA = 180^{\circ}$ [Angle sum property]

$$\Rightarrow \angle OAB + \angle ABO = 180^{\circ} - 100^{\circ}$$

$$\Rightarrow 2\angle OAB = 80^{\circ}$$

$$\Rightarrow \angle OAB = 40^{\circ}$$

Hence, $\angle AOB = 100^{\circ}$ and $\angle OAB = 40^{\circ}$.

Circles Ex 16.4 Q2

It is given that O is the centre of circle and A, B and C are points on circumference

We have to find $\angle ABC$

The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

 \angle ABC=12reflex \angle AOC=12360°-150°=12×210°=105°

Hence, $\angle ABC = 105^{\circ}$

********* END *******