IN THE CLAIMS:

Following is the listing of pending claims in the present application.

1(Original). A method of determining error magnitudes in Reed-Solomon decoding, wherein a vector of v syndromes E_i and v error locations l_j are determined from a received codeword, and error magnitudes e_{l_j} at the v error locations can be determined from the equation $E_i = \sum_{i=1}^{v} e_{l_j} a^{il_j}$, where a is a primitive of the codeword, comprising the steps of:

triangularizing a vxv Vandermonde matrix of the elements a^{il_j} to generate elements of a matrix V;

generating a syndrome vector \mathbf{W} of syndromes $E_{i,}$ adjusted for the triangularization of matrix \mathbf{V} ;

generating a solution to an equation of a form $\mathbf{V}x$ $\mathbf{M}=\mathbf{W}$, where \mathbf{M} is a vector of the error magnitudes e_{l_j} and $\mathbf{V}x$ is a vector of matrix \mathbf{V} , having a single unknown error magnitude;

substituting to create other equations of the form $\mathbf{V}x$ $\mathbf{M}=\mathbf{W}$ having a single unknown that can be solved for a respective error magnitude.

2(Original). The method of claim 1 wherein said triangularizing step comprises the step of recursively generating vectors of V.

3(Original). The method of claim 2 wherein said recursively generating step comprises the steps of:

setting a first vector V(1) of matrix V; and

generating subsequent vectors n, $2 \le n \le v$, as:

$$V(n)=(V(1) + R(A(n-1))_{v-n+1})V(n-1)$$

where A(n) is equal to a^{l_n} and $R(A(n))_m$ is a vector having A(n) replicated m times.

4(Original). The method of claim 3 wherein said step of setting the first vector comprises setting the first vector V(1) to $\{A(1) \ A(2) \ \dots \ A(\nu)\}$.

5(Original). The method of claim 1 wherein said step of generating a syndrome vector comprises the step of recursively generating elements of W.

6(Original). The method of claim 5 wherein said step of recursively generating elements of W comprises the steps of:

for each element W(n):

generating a vector $T(n)=R(A(n))_n*T(n-1)+T(n-1)<<1$, where $R(A(n))_m$ is a vector having A(n) replicated m times and is T(n-1)<<1 is a previous value of T, left-shifted and right-filled with a "0";

generating a vector $U(n)=T(n-1)*\{E(n) E(n-1) ... E1\}$ and computing W(n) as the sum of the elements of U(n).

7(Original). A method of Reed-Solomon decoding, comprising the steps of: generating a vector of v syndromes E_i from a received codeword; generating v error locations l_j from the received codeword,

determining error magnitudes e_{l_i} at the v error locations from the equation

 $E_i = \sum_{j=1}^{\nu} e_{l_j} a^{il_j}$, where a is a primitive of the codeword by:

triangularizing a vxv Vandermonde matrix of the elements a^{il_j} to generate elements of a matrix V;

generating a syndrome vector \mathbf{W} of syndromes $E_{i,}$ adjusted for the triangularization of matrix \mathbf{V} ;

generating a solution to an equation of a form $\mathbf{V}x$ $\mathbf{M}=\mathbf{W}$, where \mathbf{M} is a vector of the error magnitudes e_{l_j} and $\mathbf{V}x$ is a vector of matrix \mathbf{V} , having a single unknown error magnitude;

substituting to create other equations of the form $\mathbf{V}x$ $\mathbf{M}=\mathbf{W}$ having a single unknown that can be solved for a respective error magnitude..

8(Original). The method of claim 7 wherein said triangularizing step comprises the step of recursively generating vectors of V.

9(Original). The method of claim 8 wherein said recursively generating step comprises the steps of:

setting a first vector V(1) of matrix V; and generating subsequent vectors n, $2 \le n \le v$, as:

$$V(n)=(V(1) + R(A(n-1))_{v-n+1})V(n-1)$$

where A(n) is equal to a^{l_n} and $R(A(n))_m$ is a vector having A(n) replicated m times.

10(Original). The method of claim 9 wherein said step of setting the first vector comprises setting the first vector V(1) to $\{A(1) \ A(2) \ \dots \ A(\nu)\}$.

11(Original). The method of claim 7 wherein said step of generating a syndrome vector comprises the step of recursively generating elements of **W**.

12(Original). The method of claim 7 wherein said step of recursively generating elements of W comprises the steps of:

for each element W(n):

generating a vector $T(n)=R(A(n))_n*T(n-1)+T(n-1)<<1$, where $R(A(n))_m$ is a vector having A(n) replicated m times and is T(n-1)<<1 is a previous value of T, left-shifted and right-filled with a "0";

generating a vector $U(n)=T(n-1)*\{E(n) E(n-1) ... E1\}$ and computing W(n) as the sum of the elements of U(n).

13(Original). A Reed-Solomon decoder comprising:

circuitry for generating a vector of v syndromes E_i from a received codeword;

circuitry for generating v error locations l_i from the received codeword,

circuitry for determining error magnitudes e_{l_i} at the v error locations from the equation

 $E_i = \sum_{j=1}^{\nu} e_{l_j} a^{il_j}$, where a is a primitive of the codeword by the operations of:

triangularizing a vxv Vandermonde matrix of the elements a^{il_j} to generate elements of a matrix V;

generating a syndrome vector \mathbf{W} of syndromes E_{i} , adjusted for the triangularization of matrix \mathbf{V} ;

generating a solution to an equation of a form $\mathbf{V}x$ $\mathbf{M}=\mathbf{W}$, where \mathbf{M} is a vector of the error magnitudes e_{l_j} and $\mathbf{V}x$ is a vector of matrix \mathbf{V} , having a single unknown error magnitude;

substituting to create other equations of the form $\mathbf{V}x$ \mathbf{M} = \mathbf{W} having a single unknown that can be solved for a respective error magnitude.

14(Original). The Reed-Solomon decoder of claim 13 wherein said circuitry for determining error magnitudes comprises circuitry for recursively generating vectors of **V**.

15(Original). The Reed-Solomon decoder of claim 14 wherein said circuitry for recursively generating vectors comprises circuitry for:

setting a first vector V(1) of matrix V; and

generating subsequent vectors n, $2 \le n \le v$, as:

$$V(n)=(V(1) + R(A(n-1))_{v-n+1})V(n-1)$$

where A(n) is equal to a^{l_n} and $R(A(n))_m$ is a vector having A(n) replicated m times.

16(Original). The Reed-Solomon decoder of claim 15 wherein said circuitry for determining error magnitudes sets the first vector V(1) to $\{A(1), A(2), \dots, A(v)\}$.

17(Original). The Reed-Solomon decoder of claim 13 wherein said circuitry for determining error magnitudes generates a syndrome vector by recursively generating elements of **W**.

18(Original). The Reed-Solomon decoder of claim 13 wherein said circuitry for generating error magnitudes recursively generates elements of **W** by:

for each element W(n):

generating a vector $T(n)=R(A(n))_n*T(n-1)+T(n-1)<<1$, where $R(A(n))_m$ is a vector having A(n) replicated m times and is T(n-1)<<1 is a previous value of T, left-shifted and right-filled with a "0";

generating a vector $U(n)=T(n-1)*\{E(n)\ E(n-1)\ \dots\ E1\}$ and computing W(n) as the sum of the elements of U(n).