FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

- Brief review of floating point arithmetic
- Model of floating point arithmetic
- Notation, backward and forward errors
- Read: Section 2.7 of text.

Roundoff errors and floating-point arithmetic

- The basic problem: The set A of all possible representable numbers on a given machine is finite but we would like to use this set to perform standard arithmetic operations (+,*,-,/) on an infinite set. The usual algebra rules are no longer satisfied since results of operations are rounded.
- Basic algebra breaks down in floating point arithmetic.

Example: In floating point arithmetic.

$$a + (b + c)! = (a + b) + c$$

Matlab experiment: For 10,000 random numbers find number of instances when the above is true. Same thing for the multiplication..

Machine precision - machine epsilon

Mhen a number x is very small, there is a point when 1+x==1 in a machine sense. The computer no longer makes a difference between 1 and 1+x.

Definition: the machine epsilon is the smallest number ϵ such that

$$fl(1+\epsilon) \neq 1$$

This number is denoted by $\underline{\mathbf{u}}$ – sometimes by eps .

- Matlab experiment: find the machine epsilon on your computer.
- ➤ Many discussions on what conditions/ rules should be satisfied by floating point arithmetic. The IEEE standard is a set of standards adopted by many CPU manufacturers.

Rule 1.

$$fl(x) = x(1+\epsilon), \quad ext{where} \quad |\epsilon| \leq \underline{\mathrm{u}}$$

Rule 2. For all operations \odot (one of +, -, *, /)

$$fl(x\odot y)=(x\odot y)(1+\epsilon_{\odot}), \quad ext{where} \quad |\epsilon_{\odot}|\leq \underline{\mathrm{u}}$$

Rule 3. For +, * operations

$$fl(a\odot b)=fl(b\odot a)$$

Matlab experiment: Verify experimentally Rule 3 with 10,000 randomly generated numbers a_i , b_i .

Example: Consider the sum of 3 numbers: y = a+b+c.

Done as fl(fl(a+b)+c)

$$egin{aligned} \eta &= fl(a+b) = (a+b)(1+\epsilon_1) \ y_1 &= fl(\eta+c) = (\eta+c)(1+\epsilon_2) \ &= \left[(a+b)(1+\epsilon_1) + c
ight] (1+\epsilon_2) \ &= \left[(a+b+c) + (a+b)\epsilon_1
ight)
ight] (1+\epsilon_2) \ &= (a+b+c) \left[1 + rac{a+b}{a+b+c} \epsilon_1 (1+\epsilon_2) + \epsilon_2
ight] \end{aligned}$$

So disregarding the high order term $\epsilon_1\epsilon_2$

$$fl(fl(a+b)+c) = (a+b+c)(1+\epsilon_3) \ \epsilon_3 pprox rac{a+b}{a+b+c}\epsilon_1 + \epsilon_2$$

If we redid the computation as $y_2 = fl(a + fl(b + c))$ we would find

$$fl(a+fl(b+c)) = (a+b+c)(1+\epsilon_4) \ \epsilon_4 pprox rac{b+c}{a+b+c}\epsilon_1 + \epsilon_2$$

- The first error is amplified by the factor (a+b)/y in the first case and (b+c)/y in the second case.
- In order to sum n numbers more accurately, it is better to start with the small numbers first. [However, sorting before adding is not worth the cost!]
- But watch out if the numbers have mixed signs!

The absolute value notation

- For a given vector x, |x| is the vector with components $|x_i|$, i.e., |x| is the component-wise absolute value of x.
- Similarly for matrices:

$$|A| = \{|a_{ij}|\}_{i=1,...,m;\ j=1,...,n}$$

Obvious result. The basic inequality

$$|fl(a_{ij}) - a_{ij}| \leq \underline{\mathrm{u}} ||a_{ij}||$$

translates into

$$fl(A) = A + E$$
 with $|E| \leq \underline{\mathrm{u}} \; |A|$

 $ightharpoonup A \leq B$ means $a_{ij} \leq b_{ij}$ for all $1 \leq i \leq m; \ 1 \leq j \leq n$

Error Analysis: Inner product

► Inner products are in the innermost parts of many calculations. Their analysis is important.

Lemma: If
$$|\delta_i| \leq \underline{\mathrm{u}}$$
 and $n\underline{\mathrm{u}} < 1$ then
$$\Pi_{i=1}^n (1+\delta_i) = 1 + \theta_n \quad \text{where} \quad |\theta_n| \leq \frac{n\underline{\mathrm{u}}}{1-n\underline{\mathrm{u}}}$$

Common notation $\gamma_n \equiv \frac{n\underline{\mathbf{u}}}{1-n\underline{\mathbf{u}}}$

Main result on inner products:

$$|fl(x^Ty) - x^Ty| \leq \gamma_n |x|^T |y|$$

Absolute value notation used

- When $\gamma_n \leq 1.01 n$ then $|fl(x^Ty) x^Ty| \leq 1.01 \; n$ to $|x|^T \; |y|$
- $ightharpoonup \gamma_n \leq 1.01 n_{\underline{\mathrm{u}}} \; \mathrm{means} \; [1/(1-n_{\underline{\mathrm{u}}})] \leq 1.01$
- For $\underline{\mathbf{u}}=2.0\times 10^{-16}$, assumption $\gamma_n\leq 1.01n\underline{\mathbf{u}}$ holds for $n<4.46\times 10^{13}$.
- Consequence of lemma:

$$|fl(A*B) - A*B| \le \gamma_n |A|*|B|$$

➤ Another way to write the result (less precise) is

$$|fl(x^Ty) - x^Ty| \leq |n|\underline{\mathrm{u}}||x|^T||y| + O(\underline{\mathrm{u}}^{\,2})$$

- Prove the lemma [Hint: use induction]
- Assume you use single precision for which you have $\underline{\mathbf{u}} = 2. \times 10^{-6}$. What is the largest n for which $\gamma_n \leq 1.01 n\underline{\mathbf{u}}$ holds? Any conclusions for the use of single precision arithmetic?
- What does the main result on inner products imply for the case when y=x? [Contrast the relative accuracy you get in this case vs. the general case when $y\neq x$]

Backward and forward errors

Assume the approximation \hat{y} to y = f(x) is computed with arithmetic precision ϵ . Possible analysis: find an upper bound for the Forward error

$$|\Delta y| = |y - \hat{y}|$$

➤ This is not always easy.

Alternative question: find the equivalent perturbation on the initial data (x) which produces the result \hat{y} . In other words, for what Δx do we have:

$$f(x+\Delta x)=\hat{y}$$

The value of $|\Delta x|$ is called the backward error. An analysis to find an upper bound for $|\Delta x|$ is called Backward error analysis.

Example:

$$A = \left(egin{array}{cc} a & b \ 0 & c \end{array}
ight) \quad B = \left(egin{array}{cc} d & e \ 0 & f \end{array}
ight)$$

Consider the product: fl(A.B) =

$$egin{bmatrix} (ad)(1+\epsilon_1) & [ae(1+\epsilon_2)+bf(1+\epsilon_3)] \left(1+\epsilon_4
ight) \ 0 & cf(1+\epsilon_5) \end{bmatrix}$$

with $\epsilon_i \leq \underline{\mathbf{u}}$, for i=1,...,5. Result can be written as:

$$egin{bmatrix} a & b(1+\epsilon_3)(1+\epsilon_4) \ 0 & c(1+\epsilon_5) \end{bmatrix} egin{bmatrix} d(1+\epsilon_1) & e(1+\epsilon_2)(1+\epsilon_4) \ 0 & f \end{bmatrix}$$

- ► So $fl(A.B) = (A + E_A)(B + E_B)$.
- ightharpoonup Backward errors E_A, E_B satisfy:

$$|E_A| \leq 2 \underline{\mathrm{u}} \, |A| + O(\underline{\mathrm{u}}^{\, 2}) \; ; \qquad |E_B| \leq 2 \underline{\mathrm{u}} \, |B| + O(\underline{\mathrm{u}}^{\, 2})$$

ightharpoonup When solving Ax=b by Gaussian Elimination, we will see that a bound on $\|e_x\|$ such that this holds exactly

$$A(x_{
m computed} + e_x) = b$$

is much harder to find than bounds on $\|E_A\|$, $\|e_b\|$ such that this holds exactly

$$(A + E_A)x_{\text{computed}} = (b + e_b).$$

Note: In many instances backward errors are more meaningful than forward errors: if initial data is accurate only to 4 digits for example, then my algorithm for computing x need not have 10 digits of accuracy. A backward error of order 10^{-4} is acceptable.

Show for any x,y, there exist $\Delta x, \Delta y$ such that

$$egin{aligned} fl(x^Ty) &= (x+\Delta x)^Ty, & ext{with} & |\Delta x| \leq \gamma_n |x| \ fl(x^Ty) &= x^T(y+\Delta y), & ext{with} & |\Delta y| \leq \gamma_n |y| \end{aligned}$$

(Continuation) Let A an $m \times n$ matrix, x an n-vector, and y = Ax. Show that there exist a matrix ΔA such

$$fl(y) = (A + \Delta A)x, \quad ext{with} \quad |\Delta A| \leq \gamma_n |A|$$

(Continuation) From the above derive a result about a column of the product of two matrices A and B. Does a similar result hold for the product AB as a whole?

Supplemental notes: Floating Point Arithmetic

In most computing systems, real numbers are represented in two parts: A mantissa and an exponent. If the representation is in the base β then:

$$x=\pm (.d_1d_2\cdots d_m)_{eta}eta^e$$

- $ightharpoonup .d_1d_2\cdots d_m$ is a fraction in the base-eta representation
- ▶ e is an integer can be negative, positive or zero.
- ▶ Generally the form is normalized in that $d_1 \neq 0$.

Example: In base 10 (for illustration)

1. 1000.12345 can be written as

$$0.100012345_{10} \times 10^4$$

2. 0.000812345 can be written as

$$0.812345_{10} \times 10^{-3}$$

➤ Problem with floating point arithmetic: we have to live with limited precision.

Example: Assume that we have only 5 digits of accuray in the mantissa and 2 digits for the exponent (excluding sign).

Let us try to add 1000.2 and 1.07

$$1000.2 = 100002004;$$
 $1.07 = 10070001$

First task: align decimal points. The one with smallest exponent will be (internally) rewritten so its exponent matches the largest one:

$$1.07 = 0.000107 \times 10^4$$

Second task: add mantissas:

Third task: round result. Result has 6 digits - can use only 5 so we can

- **➤** Chop result: |.1 | 0 | 0 | 1 | 2 | ;
- ➤ Round result: | .1 | 0 | 0 | 1 | 3 | ;

Fourth task: Normalize result if needed (not needed here)

result with rounding: 1 0 0 1 3 0 4

The IEEE standard

32 bit (Single precision):

- ▶ In binary: The leading one in mantissa does not need to be represented. One bit gained. ▶ Hidden bit.
- Largest exponent: $2^7 1 = 127$; Smallest: = -126. ['bias' of 127]

64 bit (Double precision):

- ightharpoonup Bias of 1023 so if c is stored exponend actual exponent is 2^{c-1023}
- ightharpoonup e + bias = 2047 (all ones) = special use
- ► Largest exponent: 1023; Smallest = -1022.
- **▶** With hidden bit: mantissa has 53 bits represented.

Take the number 1.0 and see what will happen if you add $1/2, 1/4,, 2^{-i}$. Do not forget the hidden bit!

Hidden bit

.

1	0	0	0	0	0	0	0	0	0	0	1	e	e
1	0	0	0	0	0	0	0	0	0	0	0	e	e

Conclusion

$$fl(1+2^{-52}) \neq 1$$
 but: $fl(1+2^{-53}) == 1$!!