

*Adamou et al
cited with Record*

tr_ <u>Q9ANY1</u>	Pneumococcal histidine triad protein E precursor	1039
Q9ANY1_STRPN	(Hypothetical	AA
	protein SP1004) [phtE] [Streptococcus pneumoniae]	align

Score = 2016 bits (5224), Expect = 0.0
 Identities = 1004/1039 (96%), Positives = 1004/1039 (96%)

Query: 1	MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLT	PDQVS 60
Sbjct: 1	MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLT	PDQVS 60
Query: 61	QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMDPQVNLKDADIVN	120
Sbjct: 61	QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMDPQVNLKDADIVN	120
Query: 121	EVKGGYIICKVTDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY	180
Sbjct: 121	EVKGGYIICKVTDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY	180
Query: 181	TTNDGYVFNPADIEEDTGNAYIVPHGGHYHYIPXXXXXXXXXXXXXXNMQLPSQLS	240
Sbjct: 181	TTNDGYVFNPADIEEDTGNAYIVPHGGHYHYIP	NMQLPSQLS
Query: 241	YSSTASDNNTQSVAKGSTSKPANKSENLQSLLKELYDPSAQRYS	ESDGLVFDPAIISR 300
Sbjct: 241	YSSTASDNNTQSVAKGSTSKPANKSENLQSLLKELYDPSAQRYS	ESDGLVFDPAIISR 300
Query: 301	TPNGVAIPHGDHYHFIPYSKLSALEEKIARMVPISGTGSTVSTNAKPNEVXXXXXXX	360
Sbjct: 301	TPNGVAIPHGDHYHFIPYSKLSALEEKIARMVPISGTGSTVSTNAKPNEV	360
Query: 361	XXXXXXXXKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNSQIGQPTLPNNSLA	420
Sbjct: 361	KELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNSQIGQPTLPNNSLA	420
Query: 421	TPSPSLPINPGTSHEKHEEDGYGFDANRIIAEDESGFVMSHGDNHYFFKKDLTEEQIKA	480
Sbjct: 421	TPSPSLPINPGTSHEKHEEDGYGFDANRIIAEDESGFVMSHGDNHYFFKKDLTEEQIKA	480
Query: 481	AQKHLEEVKTSHNGLDSLSSHEQDYPSSNAEMKDLLKKIEEKIAGIMKQYGVKRESIVVN	540
Sbjct: 481	AQKHLEEVKTSHNGLDSLSSHEQDYPSSNAEMKDLLKKIEEKIAGIMKQYGVKRESIVVN	540
Query: 541	KEKNAIIIYPHGDHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV	600
Sbjct: 541	KEKNAIIIYPHGDHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV	600
Query: 601	VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVLEKVSGKVG	660
Sbjct: 601	VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVLEKVSGKVG	660
Query: 661	EGVGNIANFELDQPYLPGQTFKYTIAASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA	720
Sbjct: 661	EGVGNIANFELDQPYLPGQTFKYTIAASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA	720
Query: 721	GDTYLRVNPQFAVPKGTDALRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK	780
Sbjct: 721	GDTYLRVNPQFAVPKGTDALRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK	780

Query: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENLKLDEKVEEPKTS 840
 Sbjct: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENLKLDEKVEEPKTS 840

 Query: 841 EKVEKEKLSETGNSTSNTLEEVPTVDPVQEKVAKFAESYGMKLENVLNFNMDGTIELYLP 900
 Sbjct: 841 EKVEKEKLSETGNSTSNTLEEVPTVDPVQEKVAKFAESYGMKLENVLNFNMDGTIELYLP 900

 Query: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960
 Sbjct: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960

 Query: 961 ENSTDNGMLNPEGNVGSDPMILDPALEEAPAVDPVQEKEKFTASYGLGLDSVIFNMDGTI 1020
 Sbjct: 961 ENSTDNGMLNPEGNVGSDPMILDPALEEAPAVDPVQEKEKFTASYGLGLDSVIFNMDGTI 1020

 Query: 1021 ELRLPSGEVIKKNLSDLIA 1039
 Sbjct: 1021 ELRLPSGEVIKKNLSDLIA 1039

tr Q8DQ07 Pneumococcal histidine triad protein E [phtE] 1039
 Q8DQ07_STRR6 [Streptococcus AA
 pneumoniae (strain ATCC BAA-255 / R6)] align

Score = 2006 bits (5196), Expect = 0.0
 Identities = 998/1039 (96%), Positives = 1000/1039 (96%)

Query: 1 MKFSKKYIAAGSAIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVS 60
 Sbjct: 1 MKFSKKYIAAGSAIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVS 60

 Query: 61 QKEGIQAEQIVIKITDQGYVTSHGDHYHYNGKVPYDALFSEELLMKDPNYQLKDADIVN 120
 Sbjct: 61 QKEGIQAEQIVIKITDQGYVTSHGDHYHYNGKVPYDALFSEELLMKDPNYQLKDADIVN 120

 Query: 121 EVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVARSQGRY 180
 Sbjct: 121 EVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVARSQGRY 180

 Query: 181 TTNDGYVFNPADIIEDTGNAYIVPHGGHYHYIPXXXXXXXXXXXXXXNMQLSQLS 240
 Sbjct: 181 TTNDGYVFNPADIIEDTGNAYIVPHGGHYHYIP NMQLSQLS 240

 Query: 241 YSSTASDNNTQSVAKGSTSKPANKSENLQSLLKELYDSPAQRYSSES DGLVFDPAKIISR 300
 Sbjct: 241 YSSTASDNNTQSVAKGSTSKPANKSENLQSLLKELYDSPAQRYSSES DGLVFDPAKIISR 300

 Query: 301 TPNGVAIPHGDHYHFIPYSKLSALEEKIARMVPISGTGSTVSTNAKPNEVXXXXXXX 360
 Sbjct: 301 TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEVSSLGSSLSSN 360

 Query: 361 XXXXXXXXKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNSQIGQPTLPNNSLA 420
 Sbjct: 361 PSSLTTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNSQIGQPTLPNNSLA 420

Query: 421 TPSPSLPINPGLSHEKHEEDGYGFDANRIIAEDESGFVMSHGDHNHYFFKKDLTEEQIKA 480
 TPSPSLPINPGLSHEKHEEDGYGFDANRIIAEDESGF+MSHG+HNHYFFKKDLTEEQIKA
 Sbjct: 421 TPSPSLPINPGLSHEKHEEDGYGFDANRIIAEDESGFIMSHGNHNHYFFKKDLTEEQIKA 480

Query: 481 AQKHLEEVKTSHNGLDSLSSHEQDYPNAKEMKDLDDKKIEEKIAGIMKQYGVKRESIVVN 540
 AQKHLEEVKTSHNGLDSLSSHEQDYPNAKEMKDLDDKKIEEKIAGIMKQYGVKRESIVVN
 Sbjct: 481 AQKHLEEVKTSHNGLDSLSSHEQDYPNAKEMKDLDDKKIEEKIAGIMKQYGVKRESIVVN 540

Query: 541 KEKNAAIYPHGDHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNV 600
 KEKNAAIYPHGDHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNV
 Sbjct: 541 KEKNAAIYPHGDHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNV 600

Query: 601 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVLEKVGKVG 660
 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVLEKVGKVG
 Sbjct: 601 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVLEKVGKVG 660

Query: 661 EGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA 720
 EGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA
 Sbjct: 661 EGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA 720

Query: 721 GDTYLRVNPQFAVPKGTDALVRVDFEHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK 780
 GDTYLRVNPQFAVPKGTDALVRVDFEHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK
 Sbjct: 721 GDTYLRVNPQFAVPKGTDALVRVDFEHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK 780

Query: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENKLDEKVEEPKTS 840
 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENKLDEKVEEPKTS
 Sbjct: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS 840

Query: 841 EKVEKEKLSETGNSTSNTLEEVPVDVQEKVAKFAESYGMKLENVLNFMDGTIELYLP 900
 EKVEKEKLSETGNSTSNTLEEVPVDVQEKVAKFAESYGMKLENVLNFMDGTIELYLP
 Sbjct: 841 EKVEKEKLSETGNSTSNTLEEVPVDVQEKVAKFAESYGMKLENVLNFMDGTIELYLP 900

Query: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960
 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP
 Sbjct: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960

Query: 961 ENSTDNGMLNPEGNVGSDPMLDALEEAPAVDPVQEKEKFTASYGLGLDSVIFNMDGTI 1020
 ENSTDNGMLNPEGNVGSDPMLDALEEAPAVDPVQEKEKFTASYGLGLDSVIFNMDGTI
 Sbjct: 961 ENSTDNGMLNPEGNVGSDPMLDALEEAPAVDPVQEKEKFTASYGLGLDSVIFNMDGTI 1020

Query: 1021 ELRLPSGEVIKKNLSDLIA 1039
 ELRLPSGEVIKKNLSDLIA
 Sbjct: 1021 ELRLPSGEVIKKNLSDLIA 1039

tr Q6WNQ7	Surface protein BVH-3 [bvh-3] [Streptococcus	1039
<u>Q6WNQ7</u> STRPN	pneumoniae]	AA
		<u>align</u>

Score = 2006 bits (5196), Expect = 0.0
 Identities = 998/1039 (96%), Positives = 1000/1039 (96%)

Query: 1 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVS 60
 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVS
 Sbjct: 1 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVS 60

Query: 61 QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN 120
 QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN
 Sbjct: 61 QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN 120

Query: 121 EVKGGYIICKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVARSQGRY 180
 EVKGGYIICKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVARSQGRY
 Sbjct: 121 EVKGGYIICKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVARSQGRY 180

Query: 181 TTNDGYVFNPADIEDTGNAYIVPHGGHYHYIPXXXXXXXXXXXXXXNMQPSQLS 240
 TTNDGYVFNPADIEDTGNAYIVPHGGHYHYIP NMQPSQLS
 Sbjct: 181 TTNDGYVFNPADIEDTGNAYIVPHGGHYHYIPKSDLSASELAAKAHLAGKNMQPSQLS 240

Query: 241 YSSTASDNNTQSVAKGSTSKPANKSENLQSLKELYDPSAQRYS ESDGLVFDPAKIISR 300
 YSSTASDNNTQSVAKGSTSKPANKSENLQSLKELYDPSAQRYS ESDGLVFDPAKIISR
 Sbjct: 241 YSSTASDNNTQSVAKGSTSKPANKSENLQSLKELYDPSAQRYS ESDGLVFDPAKIISR 300

Query: 301 TPNGVAIPHGDHYHFIPYSKLSALEEKIARMVPIISGTGSTVSTNAKPNEVVXXXXXXX 360
 TPNGVAIPHGDHYHFIPYSKLSALEEKIAR VPIISGTGSTVSTNAKPNEVV
 Sbjct: 301 TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEVVSSLGSSLSSN 360

Query: 361 XXXXXXXXKELSSASDGYIFNPKDIVETATAYIVRHGDHFHYIPKSQNQIGQPTLPNNSLA 420
 KELSSASDGYIFNPKDIVETATAYIVRHGDHFHYIPKSQNQIGQPTLPNNSLA
 Sbjct: 361 PSSLTTSKELSSASDGYIFNPKDIVETATAYIVRHGDHFHYIPKSQNQIGQPTLPNNSLA 420

Query: 421 TPSPSLPINPGBT SHEKHEEDGYGFDANRIIAEDESFGVMSHGDHNHYFFKKDLTEEQIKA 480
 TPSPSLPINPGBT SHEKHEEDGYGFDANRIIAEDESFG+MSHG+HNHYFFKKDLTEEQIKA
 Sbjct: 421 TPSPSLPINPGBT SHEKHEEDGYGFDANRIIAEDESFGFIMSHGNHNHYFFKKDLTEEQIKA 480

Query: 481 AQKHLEEVKTSHNGLDSLSSHEQDYP SNAKEMKDLDDKIEEKIAGIMKQYGVKRESIVVN 540
 AQKHLEEVKTSHNGLDSLSSHEQDYP NAKEMKDLDDKIEEKIAGIMKQYGVKRESIVVN
 Sbjct: 481 AQKHLEEVKTSHNGLDSLSSHEQDYP GNAKEMKDLDDKIEEKIAGIMKQYGVKRESIVVN 540

Query: 541 KEKNAI IYPHGDHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV 600
 KEKNAI IYPHGDHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV
 Sbjct: 541 KEKNAI IYPHGDHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV 600

Query: 601 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVKLEKVSGKVFG 660
 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVKLEKVSGKVFG
 Sbjct: 601 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVKLEKVSGKVFG 660

Query: 661 EGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA 720
 EGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA
 Sbjct: 661 EGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA 720

Query: 721 GDTYLRVNPQFAVPKGTDALVRVFD EFGNAYLENNYKVGEIKLPIPKLNQGTTAGNK 780
 GDTYLRVNPQFAVPKGTDALVRVFD EFGNAYLENNYKVGEIKLPIPKLNQGTTAGNK
 Sbjct: 721 GDTYLRVNPQFAVPKGTDALVRVFD EFGNAYLENNYKVGEIKLPIPKLNQGTTAGNK 780

Query: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENKLDEKVEEPKTS 840
 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQEN KLDEKVEEPKTS
 Sbjct: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS 840

Query: 841 EKVEKEKLSETGNSTSNSTLEEVPVDPVQEKFKAESYGMKLENVLNFMDGTIELYLP 900
 EKVEKEKLSETGNSTSNSTLEEVPVDPVQEKFKAESYGMKLENVLNFMDGTIELYLP
 Sbjct: 841 EKVEKEKLSETGNSTSNSTLEEVPVDPVQEKFKAESYGMKLENVLNFMDGTIELYLP 900

Query: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960

Sbjct: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960
 Query: 961 ENSTDNGMLNPEGNVGSDPMULDPALEEAPAVDPVQEKEKFTASYGLGLDSVIFNMDGTI 1020
 ENSTDNGMLNPEGNVGSDPMULDPALEEAPAVDPVQEKEKFTASYGLGLDSVIFNMDGTI
 Sbjct: 961 ENSTDNGMLNPEGNVGSDPMULDPALEEAPAVDPVQEKEKFTASYGLGLDSVIFNMDGTI 1020
 Query: 1021 ELRLPSGEVIKKNLSDLIA 1039
 ELRLPSGEVIKKNLSDLIA
 Sbjct: 1021 ELRLPSGEVIKKNLSDLIA 1039

tr Q6WNQ5 surface protein BVH-3 (Fragment) [bvh-3] [Streptococcus 1019
Q6WNQ5_STRPN pneumoniae] AA align

Score = 1974 bits (5115), Expect = 0.0
 Identities = 981/1019 (96%), Positives = 981/1019 (96%)

Query: 21 CAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVSQKEGIQAEQIVIKITDQGYV 80
 CAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVSQKEGIQAEQIVIKITDQGYV
 Sbjct: 1 CAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVSQKEGIQAEQIVIKITDQGYV 60
 Query: 81 TSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYVVYLKD 140
 TSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYVVYLKD
 Sbjct: 61 TSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYVVYLKD 120
 Query: 141 AAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRYTTNDGYVFNPADIIEDTGNA 200
 AAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRYTTNDGYVFNPADIIEDTGNA
 Sbjct: 121 AAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRYTTNDGYVFNPADIIEDTGNA 180
 Query: 201 YIVPHGGHYHYIPXXXXXXXXXXXXXXXXXXXXMQPSQLSYSSSTASDNNTQSVAKGSTSK 260
 YIVPH GRYHYIP NMQPSQLSYSSSTASDNNTQSVAKGSTSK
 Sbjct: 181 YIVPHRGHYHYIPKSDLSASELAAKAHLAGKNMQPSQLSYSSSTASDNNTQSVAKGSTSK 240
 Query: 261 PANKSENLQSLLKELYDSPAQRYSSESGLVFDPAKIISRTPNGVAIPHGDHYHFIPYSK 320
 PANKSENLQSLLKELYDSPAQRYSSESGLVFDPAKIISRTPNGVAIPHGDHYHFIPYSK
 Sbjct: 241 PANKSENLQSLLKELYDSPAQRYSSESGLVFDPAKIISRTPNGVAIPHGDHYHFIPYSK 300
 Query: 321 LSALEEKIARMVPISGTGSTVSTNAKPNEVXXXXXXXXXXXXXXELSSASDGYIFN 380
 LSALEEKIARMVPISGTGSTVSTNAKPNEVV KELSSASDGYIFN
 Sbjct: 301 LSALEEKIARMVPISGTGSTVSTNAKPNEVSSLGSLSSNPSSLTTSKELSSASDGYIFN 360
 Query: 381 PKDIVEETATAYIVRHGDHFHYIPKSQNQIGQPTLPNNSLATPSPSLPINPGTSHEKHEED 440
 PKDIVEETATAYIVRHGDHFHYIPKSQNQIGQPTLPNNSLATPSPSLPINPGTSHEKHEED
 Sbjct: 361 PKDIVEETATAYIVRHGDHFHYIPKSQNQIGQPTLPNNSLATPSPSLPINPGTSHEKHEED 420
 Query: 441 GYGF DANRIIAEDESGFVM SHGDHNHYFFKKDLTEEQIKAAQKHLEEVKTSHNGLDSLSS 500
 GYGF DANRIIAEDESGFVM SHGDHNHYFFKKULTEEQIKAAQKHLEEVKTSHNGLDSLSS
 Sbjct: 421 GYGF DANRIIAEDESGFVM SHGDHNHYFFKKDLTEEQIKAAQKHLEEVKTSHNGLDSLSS 480
 Query: 501 HEQDYP SNAKEMKLDKKIEEKIAGIMKQYGVKRESIVNKEKNAI IYPHGDHHADPID 560
 HEQDYP SNAKEMKLDKKIEEKIAGIMKQYGVKRESIVNKEKNAI IYPHGDHHADPID
 Sbjct: 481 HEQDYP SNAKEMKLDKKIEEKIAGIMKQYGVKRESIVNKEKNAI IYPHGDHHADPID 540
 Query: 561 EH KPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNVVNLKNSTFNNQFTLANGQ 620

Sbjct: 541 EHKPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNVVNLLKNSTFNNQNFTLANGQ
Sbjct: 541 EHKPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNVVNLLKNSTFNNQNFTLANGQ 600

Query: 621 KRVSFSPPELEKKLGINMLVKLITPDGVLEKSGKVFGEGVGNIANFELDQPYLPQQT 680
KRVSFSPPELEKKLGINMLVKLITPDGVLEKSGKVFGEGVGNIANFELDQPYLPQQT

Sbjct: 601 KRVSFSPPELEKKLGINMLVKLITPDGVLEKSGKVFGEGVGNIANFELDQPYLPQQT 660

Query: 681 FKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHAGDTYLRVNPQFAVPKGTDAL 740
FKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHAGDTYLRVNPQFAVPKGTDAL

Sbjct: 661 FKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHAGDTYLRVNPQFAVPKGTDAL 720

Query: 741 VRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNKIPVTFMANAYLDNQSTYIVE 800
VRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNKIPVTFMANAYLDNQSTYIVE

Sbjct: 721 VRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNKIPVTFMANAYLDNQSTYIVE 780

Query: 801 VPILEKENQTDKPSILPQFKRNKAQENLKLDEKVEEPKTSEKVEKEKLSETGNSTSNTL 860
VPILEKENQTDKPSILPQFKRNKAQEN K DEKVEEPKTSEKVEKEKLSETGNSTSNTL

Sbjct: 781 VPILEKENQTDKPSILPQFKRNKAQENSKFDEKVEEPKTSEKVEKEKLSETGNSTSNTL 840

Query: 861 EEVPTVDPVQEKFVAKFAESYGMKLENVLFNMDGTIELYLPGEVIKKNMADFTGEAPQGN 920
EEVPTVDPVQEKFVAKFAESYGMKLENVLFNMDGTIELYLPGEVIKKNMADFTGEAPQGN

Sbjct: 841 EEVPTVDPVQEKFVAKFAESYGMKLENVLFNMDGTIELYLPGEVIKKNMADFTGEAPQGN 900

Query: 921 GENKPSENGKVSTGTVENQPTENKPADSLPPEAPNEKPVKPENSTDNGMLNPEGNVGSDPM 980
GENKPSENGKVSTGTVENQPTENKPADSLPPEAPNEKPVKPENSTDNGMLNPEGNVGSDPM

Sbjct: 901 GENKPSENGKVSTGTVENQPTENKPADSLPPEAPNEKPVKPENSTDNGMLNPEGNVGSDPM 960

Query: 981 LDPALEEAPAVDPVQEKFASGLGLDSVIFNMDGTIELRLPSGEVIKKNLSDLIA 1039
LDPALEEAPAVDPVQEKFASGLGLDSVIFNMDGTIELRLPSGEVIKKNLSDLIA

Sbjct: 961 LDPALEEAPAVDPVQEKFASGLGLDSVIFNMDGTIELRLPSGEVIKKNLSDLIA 1019

> 0 < IntelliGenetics

> 0 <

FastDB - Fast pairwise comparison of sequences
Release 5.4

Results file sp103.res made by sdavid on Wed 28 Nov 101 11:51:05 -PST.

Query sequence being compared:
SP103 (1-447)
Number of sequences searched:
1
Number of scores above cutoff:
1Results of the initial comparison of SP103 (1-447) with:
File : US0971235-2.pep

100-

50-

X

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

O

U

E

N

C

B

E

R

O

F

S

E

Query Match 80.7%; Score 574; DB 4; Length 796;
 Best Local Similarity 80.6%; Pred. No. 4.3e-56;
 Matches 104; Conservative 16; Mismatches 9; Indels 0; Gaps 0;
 Qy 8 AYALNQHRSQENKDNNRVSIVDGSQSSQKSENLTPOVSKREGIQAEOIVIKITDQGYT 67
 Db 1 SYELGLYQARTVKENNVRVSYIDGRQATQKTENLTPDEVSKEGINAEQIVIKITDQGYT 60
 Qy 68 SHGDHYHYNGKVPYDALFSEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYYVYLKA 127
 Db 61 SHGDHYHYNGKVPYDAIISEELLMKDPNYQLKDEDIVNEVKGGYVIKVDGKYYVYLKA 120
 Qy 128 AHADNVRTK 136
 Db 121 AHADNVRTK 129

SEQ ID 56 w098/18930

Query Match 80.9%; Score 575.5; DB 4; Length 763;
 Best Local Similarity 79.6%; Pred. No. 2.7e-56;
 Matches 103; Conservative 18; Mismatches 9; Indels 1; Gaps 1;
 Qy 7 CAYALNQHRS-QENKDNNRVSIVDGSQSSQKSENLTPOVSKREGIQAEOIVIKITDQGY 65
 Db 1 CSYELGRHOAGQVKESNRVSYIDGDQAGOKAENLTPDEVSKEGINABQXVIKITDQGY 60
 Qy 66 VTSHGDIHYHYNGKVPYDALFSEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYYVYLK 125
 Db 61 VTSHGDIHYHYNGKVPYDAIISEELLMKDPNYQLKDSDIVNEIKGGYVIKVNKGKYYVYLK 120
 Qy 126 DAAHADNVRTK 136
 Db 121 DAAHADNIRTK 131

w098/18930 SEQ ID 66

US006582706B1

(12) **United States Patent**
Johnson et al.

(10) Patent No.: **US 6,582,706 B1**
(45) Date of Patent: **Jun. 24, 2003**

(54) **VACCINE COMPOSITIONS COMPRISING
STREPTOCOCCUS PNEUMONIAE
POLYPEPTIDES HAVING SELECTED
STRUCTURAL MOTIFS**

(75) Inventors: **Leslie S. Johnson, Germantown, MD
(US); John E. Adamou, Rockville, MD
(US)**

(73) Assignee: **MedImmune, Inc., Gaithersburg, MD
(US)**

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: **09/468,656**

(22) Filed: **Dec. 21, 1999**

Related U.S. Application Data

(60) Provisional application No. 60/113,048, filed on Dec. 21, 1998.

(51) Int. Cl.⁷ **A61K 39/09**

(52) U.S. Cl. **424/244.1; 424/184.1;
424/185.1; 424/190.1; 424/237.1; 435/69.1;
435/320.1; 530/350; 536/23.1; 536/23.7**

(58) Field of Search **424/184.1, 185.1,
424/190.1, 237.1, 244.1; 435/69.1, 320.1;
514/94; 530/350; 536/23.1, 23.7**

(56) **References Cited**

U.S. PATENT DOCUMENTS

6,042,838 A * 3/2000 Briles et al. **424/244.1**

FOREIGN PATENT DOCUMENTS

WO	WO 95/06732	3/1995
WO	WO 97/48417	6/1996
WO	WO 97/41151	11/1997
WO	WO-98/18930 A2 *	5/1998
WO	WO 98/18930	5/1998
WO	WO 98/18931	5/1998
WO	WO 99/15675	4/1999
WO	WO 00/17370	3/2000
WO	WO 00/39299	7/2000

OTHER PUBLICATIONS

Paul et al. Fundamental Immunology, Raven Press, New York, NY (1993) 3rd Edition, p. 251.*

Riffkin et al. A single amino-acid change between the antigenically different extracellular serine proteases V2 and B2 from *Dichelobacter nodosus*. *Gene* (1995) vol. 167, pp. 279-283.*

Abaza et al. Effects of amino acid substitutions outside an antigenic site on protein binding to monoclonal antibodies of predetermined specificity obtained by peptide immunization. *Journal of Protein Chemistry* (1992) vol. 11, No. 5, pp. 433-444.*

Paul W.E. In *Fundamental Immunology* (1993) Raves Press, New York, pp. 249-251.*

Ristori et al. Compositional bias and mimicry toward the non-self proteome in immunodominant T cell epitopes of self and nonself antigens. *FASEB Journal* (2000) vol. 14, pp. 431-438.*

Cundell, et al., "Receptor specificity of adherence of *Streptococcus pneumoniae* to human type-11 pneumocytes and vascular endothelial cells in vitro" *Micro. Path.* vol. 17, pp. 361-374 (1994).

Cundell et al., "Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor", *Nature*, vol. 377, pp. 435-438 (1995).

Tuomanen et al., "Alcohol Consumption and Mortality Among Women", *New Engl. J. Med.*, vol. 322, pp. 1280-1284 (1995).

Idanpana-Heikkila et al., "Oligosaccharides Interfere with the Establishment and Progression of Experimental Pneumococcal Pneumonia", *J. Inf. Dis.*, vol. 176, pp. 704-712 (1997).

Lupas et al., "Predicting Coiled Coils from Protein Sequences", *Sciences*, vol. 252, pp. 1162-1164 (1991).

*cited by examiner

Primary Examiner—James Housel

Assistant Examiner—Ulrike Winkler

(74) Attorney, Agent, or Firm—Elliot M. Olstein; Alan J. Grant

(57) **ABSTRACT**

A vaccine composition is disclosed that comprises polypeptides and fragments of polypeptides containing histidine triad residues or coiled-coil regions, some of which polypeptides or fragments lie between 80 and 680 residues in length. Also disclosed are processes for preventing infection caused by *S. pneumoniae* comprising administering of vaccine compositions.

11 Claims, 32 Drawing Sheets

WEST Search History**[Hide items] [Restore] [Clear] [Cancel]***updated
search*

DATE: Monday, June 20, 2005

<u>Hide?</u>	<u>Set Name</u>	<u>Query</u>	<u>Hit Count</u>
<i>DB=USPT; PLUR=YES; OP=AND</i>			
<input type="checkbox"/>	L1	6582706.pn.	1
<i>DB=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=AND</i>			
<input type="checkbox"/>	L2	lxxc	16
<input type="checkbox"/>	L3	hxxhxh	6
<i>htp\$2 or pht\$2 or phpa or php-a or bvh\$5 or (histidine near2 (motif or domain or triad)) or bvh3 or bvh-3 or pvh3 or pvh-3 or phtb or pht or phtd or phte or pht</i>			
<input type="checkbox"/>	L4		14614
<input type="checkbox"/>	L5	L4 and strepto\$	1332
<input type="checkbox"/>	L6	L5 and pneumon\$	400
<input type="checkbox"/>	L7	L4 same strepto\$	69
<input type="checkbox"/>	L8	L7 and pneumon\$	43
<input type="checkbox"/>	L9	L7 same pneumon\$	34
<i>DB=EPAB; PLUR=YES; OP=AND</i>			
<input type="checkbox"/>	L10	WO-200288178-A2.did.	0

END OF SEARCH HISTORY

[Generate Collection](#)[Print](#)

Search Results - Record(s) 1 through 43 of 43 returned.

- 1. [20040242844](#). 16 Jul 04. 02 Dec 04. Group b streptococcus antigens and corresponding dna fragments. Martin, Denis, et al. 530/350; C07K014/00 C07K001/00 C07K017/00.
- 2. [20040241687](#). 18 Jun 04. 02 Dec 04. Novel compounds. Thonnard, Joelle, et al. 435/6; 424/190.1 435/252.3 435/320.1 435/69.3 530/350 536/23.7 C12Q001/68 C07H021/04 A61K039/02 C07K014/195 C12N001/21.
- 3. [20040203093](#). 03 Jun 02. 14 Oct 04. NUCLEOTIDE SEQUENCE OF THE HAEMOPHILUS INFLUENZAE RD GENOME, FRAGMENTS THEREOF, AND USES THEREOF. Fleischmann, Robert D., et al. 435/69.1; 435/320.1 435/325 435/6 536/23.2 702/20 C12Q001/68 G06F019/00 G01N033/48 G01N033/50 C07H021/04.
- 4. [20040171113](#). 19 Apr 04. 02 Sep 04. Antigens of group b streptococcus and corresponding dna fragments. Martin, Denis, et al. 435/69.1; 435/252.3 435/320.1 530/350 536/23.7 C07H021/04 C12N001/21 C07K014/315.
- 5. [20040110181](#). 05 Jan 04. 10 Jun 04. Novel streptococcus pneumoniae open reading frames encoding polypeptide antigens and uses thereof. Zagursky, Robert John, et al. 435/6; 435/252.3 435/320.1 435/69.1 530/350 536/23.7 C12Q001/68 C07H021/04 C07K014/315.
- 6. [20040097706](#). 18 Nov 03. 20 May 04. Streptococcus pyogenes antigens and corresponding dna fragments. Martin, Denis, et al. 530/350; 424/190.1 C07K014/315 C12Q001/68 A61K039/02.
- 7. [20040081662](#). 08 Oct 03. 29 Apr 04. Vaccine. Hermand, Philippe, et al. 424/190.1; A61K039/02.
- 8. [20040071730](#). 26 Sep 03. 15 Apr 04. Bvh-a2 and bvh-a3 antigens of group b streptococcus. Martin, Denis, et al. 424/190.1; 435/252.3 435/320.1 435/6 435/69.1 435/7.32 530/350 C07K014/315 C12N015/74 G01N033/554 G01N033/569 C12Q001/68 A61K039/02.
- 9. [20040052820](#). 08 Oct 02. 18 Mar 04. Fusion proteins comprising DP-178 and other viral fusion inhibitor peptides useful for treating aids. Bolognesi, Dani Paul, et al. 424/208.1; 424/188.1 424/204.1 530/300 530/350 A61K039/21 C07K014/16 A61K039/12 C07K002/00 C07K004/00 C07K005/00 C07K007/00 C07K014/00 C07K016/00 C07K017/00 A61K038/00 C07K001/00.
- 10. [20040052781](#). 14 Apr 03. 18 Mar 04. Vaccine compositions comprising Streptococcus pneumoniae polypeptides having selected structural motifs. Johnson, Leslie S., et al. 424/130.1; 424/185.1 435/100 A61K039/395 A61K039/00.
- 11. [20040033235](#). 06 Jan 03. 19 Feb 04. Nucleic acids encoding DP-178 and other viral fusion inhibitor peptides useful for treating aids. Bolognesi, Dani Paul, et al. 424/186.1; 424/187.1 424/188.1 · 424/208.1 530/350 A61K039/21 A61K039/12 C07K014/16 C07K014/10 C07K014/05 C07K014/11.
- 12. [20040005331](#). 13 Mar 03. 08 Jan 04. Vaccine compositions comprising Streptococcus pneumoniae polypeptides having selected structural motifs. Johnson, Leslie S., et al. 424/190.1; 530/350 536/23.7 A61K039/02 C07H021/04 C07K014/315.

-
13. 20040001836. 14 Apr 03. 01 Jan 04. Vaccine compositions comprising streptococcus pneumoniae polypeptides having selected structural motifs. Johnson, Leslie S., et al. 424/165.1; 424/190.1 A61K039/40 A61K039/02.
-
14. 20030204074. 04 Jun 03. 30 Oct 03. Streptococcus pneumoniae 37-kDa surface adhesin a protein. Sampson, Jacquelyn, et al. 536/23.7; 424/190.1 435/252.3 435/320.1 435/69.3 435/7.32 530/350 G01N033/554 G01N033/569 C07H021/04 A61K039/02 C12P021/02 C12N001/21 C07K014/315 C12N015/74.
-
15. 20030165528. 22 Apr 03. 04 Sep 03. Streptococcus pyogenes antigens. Martin, Denis, et al. 424/190.1; 435/252.3 435/320.1 435/69.3 530/350 536/23.7 A61K039/02 C07H021/04 C07K014/195 C12P021/02 C12N001/21 C12N015/74.
-
16. 20030105307. 03 Jan 01. 05 Jun 03. Streptococcus pneumoniale 37-kDa surface adhesion a protein. Sampson, Jacquelyn, et al. 536/23.1; 530/350 C07H021/02 C07H021/04 C07K001/00 C07K014/00 C07K017/00.
-
17. 20030049271. 21 Feb 02. 13 Mar 03. Streptococcus pyogenes polypeptides and corresponding DNA fragments. Martin, Denis, et al. 424/190.1; 435/252.3 435/320.1 435/69.3 435/7.32 530/350 536/23.7 A61K039/02 G01N033/554 G01N033/569 C07K014/315 C07H021/04 C12P021/02 C12N001/21.
-
18. 20020197605. 18 Dec 00. 26 Dec 02. Novel Polynucleotides. Nakagawa, Satoshi, et al. 435/6; 435/287.2 435/91.2 C12Q001/68 C12P019/34 C12M001/34.
-
19. 20020032323. 30 Oct 97. 14 Mar 02. STREPTOCOCCUS PNEUMONIAE POLYNUCLEOTIDES AND SEQUENCES. KUNSCH, CHARLES A., et al. 536/23.7; 435/252.3 435/320.1 435/69.1 536/24.32 C12P021/02 C07H021/04 C12N001/21 C12N015/74.
-
20. 6903184. 10 Jul 00; 07 Jun 05. Multiple antigenic peptides immunogenic against Streptococcus pneumonia. Ades; Edwin W., et al. 530/300; 424/184.1 424/190.1 424/234.1 424/244.1 530/323 530/331 530/350 530/806 530/825. C07K00200 C07K00500 C07K00100 A61K03909 A61K03902.
-
21. 6833356. 25 Aug 00; 21 Dec 04. Pneumococcal protein homologs and fragments for vaccines. Koenig; Scott, et al. 514/12; 424/130.1 424/184.1 424/243.1 424/244.1 514/2 530/350 536/23.1. C07K014/00 A61K038/16.
-
22. 6824783. 07 Jun 95; 30 Nov 04. Methods for inhibition of membrane fusion-associated events, including HIV transmission. Bolognesi; Dani Paul, et al. 424/188.1; 424/208.1 435/5 530/360. A61K039/21.
-
23. 6800744. 30 Jun 98; 05 Oct 04. Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics. Doucette-Stamm; Lynn A., et al. 536/23.1; 435/320.1 435/325 435/419 435/6 536/23.4 536/24.1 536/24.32. C12Q001/68 C12N001/14 C12N015/00 C12N005/00 C12N005/04 C07H021/02 C07H021/04.
-
24. 6783930. 02 Dec 99; 31 Aug 04. Development of novel anti-microbial agents based on bacteriophage genomics. Pelletier; Jerry, et al. 435/5; 435/7.1 435/7.33 435/7.8 435/883 530/350 530/820 536/23.7. C12Q001/68 G01N033/569 C07H021/04 C07K014/00.
-

25. 6773880. 03 Jan 01; 10 Aug 04. Streptococcus pneumoniae 37-kDa surface adhesin A protein. Sampson; Jacquelyn, et al. 435/6; 536/23.7 536/24.32 536/24.33. C12Q001/68.
26. 6617156. 13 Aug 98; 09 Sep 03. Nucleic acid and amino acid sequences relating to Enterococcus faecalis for diagnostics and therapeutics. Doucette-Stamm; Lynn A., et al. 435/320.1; 435/252.3 435/6 435/69.1 536/23.7 536/24.32. C12N015/31 C12N015/63 C12N001/13 C12Q001/68.
27. 6583275. 30 Jun 98; 24 Jun 03. Nucleic acid sequences and expression system relating to Enterococcus faecium for diagnostics and therapeutics. Doucette-Stamm; Lynn A., et al. 536/23.1; 435/243 435/320.1 435/325 435/6 536/24.3 536/24.32. C07H021/00 C12Q001/68 C12N015/00 C12N001/00 C12N005/00.
28. 6582706. 21 Dec 99; 24 Jun 03. Vaccine compositions comprising Streptococcus pneumoniae polypeptides having selected structural MOTIFS. Johnson; Leslie S., et al. 424/244.1; 424/184.1 424/185.1 424/190.1 424/237.1 435/320.1 435/69.1 530/350 536/23.1 536/23.7. A61K039/09.
29. 6562958. 04 Jun 99; 13 May 03. Nucleic acid and amino acid sequences relating to Acinetobacter baumannii for diagnostics and therapeutics. Breton; Gary, et al. 536/23.7; 536/23.1. C07H021/02.
30. 6551795. 18 Feb 99; 22 Apr 03. Nucleic acid and amino acid sequences relating to pseudomonas aeruginosa for diagnostics and therapeutics. Rubenfield; Marc J., et al. 435/69.1; 435/253.3 435/320.1 435/325 435/6 536/23.1 536/23.7. C12P021/06 C12N015/00 C07H021/04.
31. 6518013. 07 Jun 95; 11 Feb 03. Methods for the inhibition of epstein-barr virus transmission employing anti-viral peptides capable of abrogating viral fusion and transmission. Barney; Shawn O'Lin, et al. 435/5; 424/230.1 530/300 530/324 530/325 530/326. C12Q001/70.
32. 6479055. 06 Jun 95; 12 Nov 02. Methods for inhibition of membrane fusion-associated events, including respiratory syncytial virus transmission. Bolognesi; Dani Paul, et al. 424/211.1; 424/186.1 530/324. A61K039/145.
33. 6228983. 07 Jun 95; 08 May 01. Human respiratory syncytial virus peptides with antifusogenic and antiviral activities. Barney; Shawn O'Lin, et al. 530/300; 424/186.1 424/211.1 530/324 530/325 530/326. A61K038/00.
34. 6217884. 28 Dec 98; 17 Apr 01. Streptococcus pneumoniae 37-kDa surface adhesin a protein. Sampson; Jacquelyn S., et al. 424/244.1; 424/184.1 424/190.1 424/200.1 435/69.1 435/69.3 435/71.1 530/350 536/23.7. A61K039/09.
35. 6174860. 16 Apr 99; 16 Jan 01. Insecticidal toxins and nucleic acid sequences coding therefor. Kramer; Vance Cary, et al. 514/12; 435/320.1 435/410 435/412 435/418 435/69.1 536/23.7 800/302. A61K038/00 C12N005/02 C12N005/04 C12P021/06.
36. 5874088. 05 Jan 95; 23 Feb 99. Deletion mutants of cholera vaccines expressing heterologous antigens. Mekalanos; John J.. 424/200.1; 424/203.1 424/235.1 424/261.1 435/243 435/252.1 435/252.3 435/69.3 435/909. A61K039/106 C12N001/21.
37. 5854416. 17 Sep 96; 29 Dec 98. Streptococcus pneumoniae 37-KDA surface adhesin a protein and nucleic acids coding therefor. Sampson; Jacquelyn S., et al. 536/23.7; 424/244.1 435/320.1

536/23.1. C07H021/04.

-
38. WO 200288178A. New BVH-A4 proteins and genes from serotype III Group B streptococcus, useful for treating or preventing streptococcal infection in infants, pregnant women, non-pregnant adults (e.g. pneumonia), or members of dairy herd (mastitis). BOYER, M, et al. A61K038/00 A61K039/00 A61K039/09 A61P031/04 C07H021/04 C07K014/315 C07K019/00 C12N001/15 C12N001/19 C12N001/21 C12N005/10 C12N015/09 C12N015/31 C12N015/63 C12P021/02 G01N033/53 G01N033/569 G01N033/68.
-
39. WO 200231156A. New BVH-A2 and BVH-A3 antigens of Group B Streptococcus, useful for treating, preventing or diagnosing streptococcal infections, e.g. sepsis, meningitis, pneumonia, cellulitis, osteomyelitis, septic arthritis and endocarditis. BOYER, M, et al. A61K038/00 A61K039/02 A61K039/09 A61P031/04 C07K014/315 C07K019/00 C12N001/15 C12N001/19 C12N001/21 C12N005/10 C12N015/09 C12N015/31 C12N015/63 C12N015/74 C12P021/02 C12Q001/68 G01N033/554 G01N033/569.
-
40. WO 200222167A. Novel immunogenic composition comprising Streptococcus pneumoniae polysaccharide and protein antigen useful for preventing, ameliorating and treating pneumococcal infections in infants, toddlers and elderly persons. LAFERRIERE, C A J, et al. A61K039/09 A61K039/385 A61K039/39 A61P011/00 A61P027/16 A61P031/04.
-
41. WO 200222168A. New immunogenic composition for treating streptococcal infections in infants and elders, comprises two Streptococcus pneumoniae proteins selected from the poly histidine triad family and the choline binding protein family. HERMAND, P, et al. A61K000/00 A61K039/02 A61K039/09 A61K039/385 A61P011/00 A61P027/16 A61P031/04.
-
42. WO 200198334A. New Streptococcus pneumoniae BVH-3 and BVH-11 variant and epitope-bearing polypeptides, useful as vaccine components for treating or preventing streptococcal infections such as otitis media, meningitis, and bacteremia. BRODEUR, B R, et al. A61K039/00 A61K039/02 A61K039/09 A61K039/39 A61P011/00 A61P027/16 A61P031/04 C07H021/04 C07K014/315 C07K019/00 C12N001/15 C12N001/19 C12N001/21 C12N005/10 C12N009/00 C12N015/09 C12N015/30 C12N015/31 C12N015/63 C12N015/74 C12P021/02 C12N015/63 C12R001:46.
-
43. WO 200037105A. Vaccine useful for prophylaxis and treatment of pneumococcal infections such as otitis media, nasopharyngeal and bronchial infections, comprises Streptococcus pneumoniae proteins. ADAMOU, J E, et al. A61K038/00 A61K039/00 A61K039/02 A61K039/09 A61K039/395 A61K039/40 A61P031/04 A61P031/10 C07H021/04 C07K014/315 C07K014:315.
-

[Generate Collection](#)

[Print](#)

Terms	Documents
L7 and pneumon\$	43

[Prev Page](#) [Next Page](#) [Go to Doc#](#)

US006833356B1

(12) United States Patent
Koenig et al.(10) Patent No.: US 6,833,356 B1
(45) Date of Patent: Dec. 21, 2004(54) PNEUMOCOCCAL PROTEIN HOMOLOGS
AND FRAGMENTS FOR VACCINES

(75) Inventors: Scott Koenig, Rockville, MD (US); Jon Heinrichs, North Potomac, MD (US); Leslie S. Johnson, Germantown, MD (US); John E. Adamou, Germantown, MD (US)

(73) Assignee: Medimmune, Inc., Gaithersburg, MD (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 197 days.

(21) Appl. No.: 09/645,835

(22) Filed: Aug. 25, 2000

Related U.S. Application Data

(60) Provisional application No. 60/150,750, filed on Aug. 25, 1999.

(51) Int. Cl.⁷ C07K 14/00; A61K 38/16

(52) U.S. Cl. 514/12; 514/2; 530/350; 424/184.1; 424/130.1; 424/243.1; 424/244.1; 536/23.1

(58) Field of Search 514/12, 2; 530/350, 530/23.1; 424/184.1, 130.1, 243.1, 244.1, 185.1; 536/23.1

(56) References Cited

U.S. PATENT DOCUMENTS

4,694,073 A * 9/1987 Bentle et al. 530/399

2003/0031682 A1 * 2/2003 Brodeur et al. 424/190.1

FOREIGN PATENT DOCUMENTS

WO WO 98/18930 5/1998
WO WO 99/42588 8/1999
WO WO 00/06736 2/2000

OTHER PUBLICATIONS

Spellerberg et al., Lmb, a protein with similarities to the Lral adhesin family, mediates attachment of streptococcus agalactiae to human laminin. Infection and Immunity Feb. 1999, vol. 67 871-878.*

* cited by examiner

Primary Examiner—Robert A. Wax

Assistant Examiner—Chih-Min Kam

(74) Attorney, Agent, or Firm—Elliott M. Olstein; Alan J. Grant

(57) ABSTRACT

The invention is directed to isolated polypeptides bearing sequence homology to the Sp36 protein found in pneumococcal organisms, such as *Streptococcus pneumoniae*. Polynucleotides encoding such polypeptides are also disclosed. The invention also relates to antibodies specific for the disclosed polypeptides and to uses of such antibodies in the treatment of diseases caused by staphylococci as well as group A and B streptococci. In addition, the invention relates to the use of the disclosed polypeptides in compositions and as vaccines and for prophylactic uses such as in vaccination of animals, especially humans, against a wide variety of streptococcal, staphylococcal and other diseases.

8 Claims, 9 Drawing Sheets

US-PAT-NO: 6833356

DOCUMENT-IDENTIFIER: US 6833356 B1

TITLE: Pneumococcal protein homologs and fragments for vaccines

DATE-ISSUED: December 21, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Koenig; Scott	Rockville	MD		
Heinrichs; Jon	North Potomac	MD		
Johnson; Leslie S.	Germantown	MD		
Adamou; John E.	Germantown	MD		

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE CODE
Medimmune, Inc.	Gaithersburg	MD			02

APPL-NO: 09/ 645835 [PALM]

DATE FILED: August 25, 2000

PARENT-CASE:

This application claims the priority of U.S. Provisional Application No. 60/150,750, filed Aug. 25, 1999, the disclosure of which is hereby incorporated by reference in its entirety.

INT-CL: [07] C07 K 14/00, A61 K 38/16

US-CL-ISSUED: 514/12; 514/2, 530/350, 424/184.1, 424/130.1, 424/243.1, 424/244.1, 536/23.1

US-CL-CURRENT: 514/12, 424/130.1, 424/184.1, 424/243.1, 424/244.1, 514/2, 530/350, 536/23.1

FIELD-OF-SEARCH: 514/12, 514/2, 530/350, 530/23.1, 424/184.1, 424/130.1, 424/243.1, 424/244.1, 424/185.1, 536/23.1

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<input type="checkbox"/> <u>4694073</u>	September 1987	Bentle et al.	530/399
<input type="checkbox"/> <u>2003/0031682</u>	February 2003	Brodeur et al.	424/190.1

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
WO 98/18930	May 1998	WO	
WO 99/42588	August 1999	WO	
WO 00/06736	February 2000	WO	

OTHER PUBLICATIONS

Spellerberg et al., Lmb, a protein with similarities to the Lral adhesin family, mediates attachment of streptococcus agalactiae to human laminin. Infection and Immunity Feb. 1999, vol. 67 871-878.

ART-UNIT: 1653

PRIMARY-EXAMINER: Wax; Robert A.

ASSISTANT-EXAMINER: Kam; Chih-Min

ATTY-AGENT-FIRM: Olstein; Elliott M. Grant; Alan J.

ABSTRACT:

The invention is directed to isolated polypeptides bearing sequence homology to the Sp36 protein found in pneumococcal organisms, such as Streptococcus pneumoniae. Polynucleotides encoding such polypeptides are also disclosed. The invention also relates to antibodies specific for the disclosed polypeptides and to uses of such antibodies in the treatment of diseases caused by staphylococci as well as group A and B streptococci. In addition, the invention relates to the use of the disclosed polypeptides in compositions and as vaccines and for prophylactic uses such as in vaccination of animals, especially humans, against a wide variety of streptococcal, staphylococcal and other diseases.

8 Claims, 7 Drawing figures

[Previous Doc](#) [Next Doc](#) [Go to Doc#](#)

: Entry 15 of 34

File: USPT

Dec 21, 2004

US-PAT-NO: 6833356

DOCUMENT-IDENTIFIER: US 6833356 B1

TITLE: Pneumococcal protein homologs and fragments for vaccines

DATE-ISSUED: December 21, 2004

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Koenig; Scott	Rockville	MD		
Heinrichs; Jon	North Potomac	MD		
Johnson; Leslie S.	Germantown	MD		
Adamou; John E.	Germantown	MD		

US-CL-CURRENT: 514/12; 424/130.1, 424/184.1, 424/243.1, 424/244.1, 514/2, 530/350, 536/23.1

CLAIMS:

What is claimed is:

1. An isolated polypeptide comprising an amino acid sequence with at least 95% sequence identity to the sequence of SEQ ID NO: 4 and wherein said polypeptide binds to an antibody that is specific for Sp36 (SEQ ID NO: 7).
2. An isolated polypeptide comprising an amino acid sequence with at least 95% sequence identity to a sequence selected from the group consisting of SEQ ID NO: 2 and 4 wherein said polypeptide is identical to that found in an organism selected from the group consisting of Group A streptococci and Staphylococcus aureus and wherein said polypeptide binds to an antibody that is specific for Sp36 (SEQ ID NO: 7).
3. The isolated polypeptide of claim 2 wherein said Group A organism is Streptococcus pyogenes.
4. The isolated polypeptide of claim 2 wherein said organism is Staphylococcus aureus.
5. An isolated polypeptide comprising an amino acid sequence at least 95% identical to the sequence of SEQ ID NO: 4 and wherein said polypeptide has a sequence with at least 12.6% sequence identity to the amino acid sequence of the Sp36 protein (SEQ ID NO: 7) of Streptococcus pneumoniae and wherein said isolated polypeptide binds to an antibody that is specific for Sp36.
6. An isolated polypeptide comprising the sequence of SEQ ID NO: 2 wherein said isolated polypeptide binds to an antibody that is specific for Sp36 (SEQ ID NO: 7) of Streptococcus pneumoniae.
7. An isolated polypeptide comprising the amino acid sequence of SEQ ID NO: 2.
8. An isolated polypeptide comprising the amino acid sequence of SEQ ID NO: 4.

[First Hit](#)[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)[Generate Collection](#)[Print](#)

L9: Entry 29 of 34

File: DWPI

Feb 10, 2005

DERWENT-ACC-NO: 2003-120461

DERWENT-WEEK: 200511

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: New BVH-A4 proteins and genes from serotype III Group B streptococcus, useful for treating or preventing streptococcal infection in infants, pregnant women, non-pregnant adults (e.g. pneumonia), or members of dairy herd (mastitis)

INVENTOR: BOYER, M; BRODEUR, B R ; HAMEL, J ; MARTIN, D ; RIOUX, S

PATENT-ASSIGNEE: SHIRE BIOCHEM INC (SHIRN), BOYER M (BOYEI), BRODEUR B R (BRODI), HAMEL J (HAMEI), MARTIN D (MARTI), RIOUX S (RIOUI)

PRIORITY-DATA: 2001US-287712P (May 2, 2001)

[Search Selected](#)[Search All](#)[Clear](#)**PATENT-FAMILY:**

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
<input checked="" type="checkbox"/> JP 2005503774 W	February 10, 2005		095	C12N015/09
<input checked="" type="checkbox"/> WO 200288178 A2	November 7, 2002	E	059	C07K014/315
<input checked="" type="checkbox"/> EP 1390505 A2	February 25, 2004	E	000	C12N015/31
<input checked="" type="checkbox"/> AU 2002308325 A1	November 11, 2002		000	C07K014/315
<input checked="" type="checkbox"/> US 20040171113 A1	September 2, 2004		000	C07H021/04

DESIGNATED-STATES: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZM ZW AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI TR

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
JP2005503774W	May 2, 2002	2002JP-0585476	
JP2005503774W	May 2, 2002	2002WO-CA00664	
JP2005503774W		WO 200288178	Based on
WO 200288178A2	May 2, 2002	2002WO-CA00664	
EP 1390505A2	May 2, 2002	2002EP-0766595	
EP 1390505A2	May 2, 2002	2002WO-CA00664	
EP 1390505A2		WO 200288178	Based on
AU2002308325A1	May 2, 2002	2002AU-0308325	

AU2002308325A1		WO 200288178	Based on
US20040171113A1	May 2, 2002	2002WO-CA00664	
US20040171113A1	April 19, 2004	2004US-0476614	

INT-CL (IPC): A61 K 38/00; A61 K 39/00; A61 K 39/09; A61 P 31/04; C07 H 21/04; C07 K 14/315; C07 K 19/00; C12 N 1/15; C12 N 1/19; C12 N 1/21; C12 N 5/10; C12 N 15/09; C12 N 15/31; C12 N 15/63; C12 P 21/02; G01 N 33/53; G01 N 33/569; G01 N 33/68

ABSTRACTED-PUB-NO: WO 200288178A

BASIC-ABSTRACT:

NOVELTY - An isolated polypeptide (designated GBS-BVH-A4), which comprises a BVH-A4 protein polypeptide from serotype III Group B streptococcus (GBS) strain COH1, is new.

DETAILED DESCRIPTION - An isolated polypeptide (designated GBS-BVH-A4), which comprises a BVH-A4 protein polypeptide from serotype III Group B streptococcus (GBS) strain COH1 comprises:

- (a) a polypeptide comprising 1055 amino acids (I) fully defined in the specification;
- (b) a polypeptide having at least 80-95% identity to a second polypeptide having (I);
- (c) a polypeptide capable of raising antibodies having binding specificity for (I);
- (d) an epitope bearing portion of (a);
- (e) fragments or analogs of (a), (b), (c) or (d);
- (f) any of the polypeptides of (a)-(e), where the N-terminal Met residue is deleted; or
- (g) any of the polypeptide of (a)-(e), where the secretory amino acid sequence is deleted.

INDEPENDENT CLAIMS are also included for the following:

- (1) An isolated polynucleotide comprising a sequence:
 - (a) encoding the GBS-BVH-A4 polypeptide;
 - (b) having 3168 bp fully defined in the specification; or
 - (c) that is complementary of (a) or (b);
- (2) Vectors comprising the polynucleotide, where the DNA is operably linked to an expression control region;
- (3) Host cells comprising the vector;
- (4) Producing (M1) the GBS-BVH-A4 polypeptide;

(5) Chimeric polypeptides comprising two or more GBS-BVH-A4 polypeptides, or its fragments or analogs, provided that the polypeptides are linked so as to form a chimeric polypeptide;

(6) A pharmaceutical composition comprising the GBS-BVH-A4 polypeptide, and a pharmaceutical carrier, diluent or adjuvant;

(7) Diagnosing (M2) GBS bacterial infection in a host susceptible to GBS infection; and

(8) A kit comprising the GBS-BVH-A4 polypeptide for detecting or diagnosing streptococcal infection.

ACTIVITY - Antibiotic; Immunostimulant.

Test details are described but no results are given.

MECHANISM OF ACTION - Polypeptide Therapy; Vaccine.

Test details are described but no results are given.

USE - The GBS-BVH-A4 polypeptide is useful for the therapeutic or prophylactic treatment of GBS bacterial infection in a host susceptible to GBS infection. In particular, the GBS-BVH-A4 polypeptide is useful for treating or preventing GBS infection in a neonate or infant (e.g. sepsis, meningitis, pneumonia, cellulitis, osteomyelitis, septic arthritis, endocarditis or epiglottitis), in a pregnant woman (e.g. mild urinary tract infection to life-threatening sepsis and meningitis, osteomyelitis, endocarditis, amniotitis, endometritis, wound infection (post-cesarean or post-episiotomy), cellulitis or fasciitis), in a non-pregnant adult (e.g. bacteremia, skin or soft tissue infection, pneumonia, urosepsis, endocarditis, peritonitis, meningitis or emphysema), or in a member of dairy herd (e.g. mastitis). The composition or GBS-BVH-A4 polypeptide is also useful for treating or preventing streptococcal infection (all claimed). The GBS-BVH-A4 polypeptide or antibody is also useful for diagnosing GBS or streptococcal infection.

ABSTRACTED-PUB-NO: WO 200288178A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.0/2

DERWENT-CLASS: B04 D16

CPI-CODES: B04-B04C1; B04-C01G; B04-E01; B04-F0100E; B04-F01E; B04-N0300E; B04-N03E; B11-C07A; B11-C08E; B12-K04A4; B14-A01B2; B14-C03; B14-C09; B14-F01; B14-G01; B14-K01; B14-N01; B14-N07; B14-N16; B14-S06; B14-S11B; D05-C12; D05-H09; D05-H12A; D05-H12B; D05-H12E; D05-H14B; D05-H17A5; D05-H17B5; D05-H17C;

[Previous Doc](#)

[Next Doc](#)

[Go to Doc#](#)

DOCUMENT-IDENTIFIER: US 20040052781 A1

TITLE: Vaccine compositions comprising Streptococcus pneumoniae polypeptides having selected structural motifs

Abstract Paragraph:

A vaccine composition is disclosed that comprises polypeptides and fragments of polypeptides containing histidine triad residues or coiled-coil regions, some of which polypeptides or fragments lie between 80 and 680 residues in length. Also disclosed are processes for preventing infection caused by S. pneumoniae comprising administering of vaccine compositions.

Summary of Invention Paragraph:

[0002] This invention relates generally to the field of bacterial antigens and their use, for example, as immunogenic agents in humans and animals to stimulate an immune response. More specifically, it relates to the vaccination of mammalian species with a polypeptide comprising at least one conserved histidine triad residue (HxxHxH) and at least one helix-forming polypeptide obtained from Streptococcus pneumoniae as a mechanism for stimulating production of antibodies that protect the vaccine recipient against infection by a wide range of serotypes of pathogenic S. pneumoniae. Further, the invention relates to antibodies against such polypeptides useful in diagnosis and passive immune therapy with respect to diagnosing and treating such pneumococcal infections.

Summary of Invention Paragraph:

[0004] Streptococcus pneumoniae is a gram positive bacteria which is a major causative agent in invasive infections in animals and humans, such as sepsis, meningitis, otitis media and lobar pneumonia (Tuomanen et al. New Engl. J. Med. 322:1280-1284 (1995)). As part of the infective process, pneumococci readily bind to non-inflamed human epithelial cells of the upper and lower respiratory tract by binding to eukaryotic carbohydrates in a lectin-like manner (Cundell et al., Micro. Path. 17:361-374 (1994)). Conversion to invasive pneumococcal infections for bound bacteria may involve the local generation of inflammatory factors which may activate the epithelial cells to change the number and type of receptors on their surface (Cundell et al., Nature, 377:435-438 (1995)). Apparently, one such receptor, platelet activating factor (PAF) is engaged by the pneumococcal bacteria and within a very short period of time (minutes) from the appearance of PAF, pneumococci exhibit strongly enhanced adherence and invasion of tissue. Certain soluble receptor analogs have been shown to prevent the progression of pneumococcal infections (Idanpaan-Heikkila et al., J. Inf. Dis., 176:704-712 (1997)). A number of various other proteins have been suggested as being involved in the pathogenicity of S. pneumoniae. There remains a need for identifying polypeptides having epitopes in common from various strains of S. pneumoniae in order to utilize such polypeptides as vaccines to provide protection against a wide variety of S. pneumoniae.

Summary of Invention Paragraph:

[0005] In accordance with the present invention, there is provided vaccines and vaccine compositions that include polypeptides obtained from S. pneumoniae and/or variants of said polypeptides and/or active fragments of such polypeptides.

Brief Description of Drawings Paragraph:

[0013] FIG. 3 is a western blot demonstrating the ability of antisera raised against recombinant Sp36 derived from strain Norway type 4 to react with Sp36 of heterologous strains. Total cell lysates were immunoblotted with mouse antisera to Sp36. A band representing Sp36 protein was detected in all 23 S. pneumoniae strains tested, which included isolates from each of the 23 pneumococcal serotypes represented in the current polysaccharide vaccine.

Brief Description of Drawings Paragraph:

[0018] FIG. 8 shows the results of immunization of mice with PhtD recombinant protein, which leads to protection from lethal sepsis. C3H/HeJ (Panel A and B) or Balb/cByJ (Panel C) mice were immunized subcutaneously with PhtD protein (15 .mu.g in 50 .mu.l PBS emulsified in 50 .mu.l complete Freund's adjuvant (CFA)). The recombinant PhtD protein used in protection experiments consisted of 819 amino acid residues, starting with the cysteine (residue 20). A group of 10 sham-immunized mice received PBS with adjuvant. A second immunization of 15 .mu.g protein with incomplete Freund's adjuvant (IFA) was administered 3 weeks later; the sham group received PBS with IFA. Blood was drawn (retro-orbital bleed) at week 7; and sera from each group was pooled for analysis of anti-PhtD antibody by ELISA. Mice were challenged at week 8 by an intraperitoneal (i.p.) injection of approximately 550 CFU S. pneumoniae strain SJ2, serotype 6B (Panel A), 850 CFU of strain EF6796, serotype 6A (Panel B) or 450 CFU of strain EF5668, serotype 4 (Panel C). In preliminary experiments, the LD_{sub}.50 for strain SJ2 and EF6796 were determined to be approximately 10 CFU for both strains. The LD_{sub}.50 for strain EF5668 was determined to be <5 CFU. Survival was determined in all groups over the course of 15 days following challenge. Data are presented as the percent survival for a total of 10 mice per experimental group. Two-sample Log-rank test was used for statistical analysis comparing recombinant Pht immunized mice to sham-immunized mice.

Detail Description Paragraph:

[0033] In accordance with a further aspect of the invention, a vaccine of the type hereinabove described is administered for the purpose of preventing or treating infection caused by S. pneumoniae.

Detail Description Paragraph:

[0040] In still another aspect the present invention relates to a method of using one or more antibodies (monoclonal, polyclonal or sera) to the polypeptides of the invention as described above for the prophylaxis and/or treatment of diseases that are caused by pneumococcal bacteria. In particular, the invention relates to a method for the prophylaxis and/or treatment of infectious diseases that are caused by S. pneumoniae. In a still further preferred aspect, the invention relates to a method for the prophylaxis and/or treatment of otitis media, nasopharyngeal, bronchial infections, and the like in humans by utilizing a vaccine of the present invention.

Detail Description Paragraph:

[0054] The present invention further relates to variants of polynucleotides. The variants of the polynucleotides may be a naturally occurring allelic variant of the polynucleotides or a non-naturally occurring variant of the polynucleotides. The variants include variants in which one or more bases are substituted, deleted or inserted. Complements to such coding polynucleotides may be utilized to isolate polynucleotides encoding the same or similar polypeptides. In particular, such procedures are useful to obtain native immunogenic portions of polypeptides from different serotypes of S. pneumoniae, which is especially useful in the production of "chain" polypeptide vaccines containing multiple immunogenic segments.

Detail Description Paragraph:

[0088] The genomic DNA used as target for amplification was isolated from S. pneumoniae Norway strain (serotype 4), the same strain used for genomic sequencing. The complete sequence of the Sp36 gene (SEQ ID NO:9), and its predicted amino acid sequence (SEQ ID NO:8), are given in the Sequence Listing appended hereto. It was noted that the predicted amino acid sequence included a hydrophobic leader sequence followed by a sequence (LSVC) similar to the consensus sequence for Type II signal peptidase (LxxC, in which both x's typically represent small amino acids). Primers (listed as SEQ ID NOS:1-3) were designed that would amplify the Sp36 gene and allow its cloning into pQE10 and expression as a histidine-tagged protein lacking the signal sequence for purification by nickel-affinity chromatography. Cloning of the fragment amplified by SEQ ID Nos 1 and 3 would result in a protein

containing amino acids 2 through 800 of Sp36; cloning of the fragment amplified by SEQ ID Nos 2 and 3 would result in a protein containing amino acids 7 through 800 of Sp36 (amino acid numbers refer to SEQ ID NO:8).

Detail Description Paragraph:

[0090] In each of the three experiments shown in FIGS. 1A-1C, C3H/HeJ mice (10/group) were immunized intraperitoneally (i.p.) with Sp36 protein (15 .mu.g in 50 .mu.l PBS emulsified in 50 .mu.l complete Freund's adjuvant (CFA)). A group of 10 sham-immunized mice received PBS with adjuvant. A second immunization of 15 .mu.g protein with incomplete Freund's adjuvant (IFA) was administered 4 weeks later; the sham group received PBS with IFA. Blood was drawn (retro-orbital bleed) at weeks 3, 6, and 9; and sera from each group were pooled for analysis of anti-Sp36 antibody by ELISA. Mice were challenged at week 10 by an i.p. injection of approximately 500 CFU *S. pneumoniae* strain SJ2 (serotype 6B; provided by P. Flynn, St. Jude Children's Research Hospital, Memphis, Tenn.). In preliminary experiments, the LD_{sub}.50 of this strain was determined to be approximately 10 CFU. Mice were monitored for 14 days for survival.

Detail Description Paragraph:

[0099] C3H/HeJ mice (10 mice/group) were passively immunized by two i.p. injections of 100 .mu.l of rabbit serum. The first injection was administered twenty-four hours before challenge with 172 cfu of *S. pneumoniae* strain SJ2, and the second injection was given four hours after challenge. FIG. 2 shows the survival of mice after infection with two different strains of pneumococci.

Detail Description Paragraph:

[0102] Conservation of Sp36 Among Strains of *S. pneumoniae*

Detail Description Paragraph:

[0105] The mouse anti-Sp36 sera detected two major bands with apparent molecular weights of 97 and 100 kDa in all 23 pneumococcal lysates tested (shown in FIG. 3). The Sp36 signals obtained from *S. pneumoniae* serotypes 1, 5, 17F and 22F were lower, indicating either that the level of Sp36 expression is reduced in these strains, or that Sp36 in these strains is antigenically different.

Detail Description Paragraph:

[0112] These experiments indicate that Sp36 is recognized by the human immune system and suggest that antibodies able to bind the Sp36 protein may be produced during natural *S. pneumoniae* infection in humans. Since the patients were infected with a variety of pneumococcal strains, these data also support the idea that Sp36 is antigenically conserved.

CLAIMS:

2. A process for preventing infection caused by *S. pneumoniae* comprising: administering the vaccine of claim 1.

[First Hit](#)[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)[Generate Collection](#)[Print](#)

L9: Entry 10 of 34

File: PGPB

Sep 4, 2003

DOCUMENT-IDENTIFIER: US 20030165528 A1
TITLE: *Streptococcus pyogenes* antigens

Detail Description Paragraph:

[0110] An ORF which shares 62% with the *S. pyogenes* BVH-P1 gene was initially presented in the patent application PCT/CA99/00114 which described Group B streptococcus antigens. BVH-PL gene was also found to share homology (62% identity) with an ORF present in the genome of *S. pneumoniae* (The Institute for Genomic Research).

[Previous Doc](#)[Next Doc](#)[Go to Doc#](#)

DOCUMENT-IDENTIFIER: US 6582706 B1

TITLE: Vaccine compositions comprising *Streptococcus pneumoniae* polypeptides having selected structural MOTIFS

Brief Summary Text (2):

This invention relates generally to the field of bacterial antigens and their use, for example, as immunogenic agents in humans and animals to stimulate an immune response. More specifically, it relates to the vaccination of mammalian species with a polypeptide comprising at least one conserved histidine triad residue (HxxHxH-SEQ ID NO: 12) and at least one helix-forming polypeptide obtained from Streptococcus pneumoniae as a mechanism for stimulating production of antibodies that protect the vaccine recipient against infection by a wide range of serotypes of pathogenic *S. pneumoniae*. Further, the invention relates to antibodies against such polypeptides useful in diagnosis and passive immune therapy with respect to diagnosing and treating such pneumococcal infections.

<input checked="" type="checkbox"/>	tr	Q8DQ07	_STRR6 Pneumococcal histidine triad protein E [phtE] [S... 2017
<input checked="" type="checkbox"/>	tr	Q6WNQ7	_STRPN Surface protein BVH-3 [bvh-3] [Streptococcus pne... 2017
<input checked="" type="checkbox"/>	tr	Q9ANY1	_STRPN Pneumococcal histidine triad protein E precursor... 2006
<input checked="" type="checkbox"/>	tr	Q6WNQ5	_STRPN Surface protein BVH-3 (Fragment) [bvh-3] [Strept... 1968
<input type="checkbox"/>	tr	Q8CWR4	_STRR6 Histidine Motif-Containing protein [phpA] [Strep... 442 e-
<input checked="" type="checkbox"/>	tr	Q8DPQ2	_STRR6 Pneumococcal histidine triad protein A [phtA] [S... 437 e-
<input checked="" type="checkbox"/>	tr	Q9AG74	_STRPN PhpA [phpA] [Streptococcus pneumoniae] 437 e-
<input checked="" type="checkbox"/>	tr	Q9AHT9	_STRPN Pneumococcal histidine triad A protein [phtA] [S... 435 e-
<input checked="" type="checkbox"/>	tr	Q8DQ08	_STRR6 Pneumococcal histidine triad protein D [phtD] [S... 434 e-
<input type="checkbox"/>	tr	Q6T8D7	_STRPN Pneumococcal protein BVH-11-3 [Streptococcus pne... 431 e-
<input type="checkbox"/>	tr	Q97QM8	_STRPN Conserved domain protein [SP1175] [Streptococc... 424 e-
<input checked="" type="checkbox"/>	tr	Q9ANY2	_STRPN Pneumococcal histidine triad protein D precursor... 423 e-
<input type="checkbox"/>	tr	Q97QM9	_STRPN Conserved domain protein [SP1174] [Streptococc... 423 e-
<input checked="" type="checkbox"/>	tr	Q9ANY3	_STRPN Pneumococcal histidine triad protein B precursor... 423 e-
<input type="checkbox"/>	tr	Q6WNQ3	_STRPN Surface protein BVH-11 (Fragment) [bvh-11] [Stre... 417 e-
<input type="checkbox"/>	tr	Q6WNP8	_STRPN Surface protein BVH-11-2 (Fragment) [bvh-11-2] [...] 417 e-
<input type="checkbox"/>	tr	Q6WNQ1	_STRPN Surface protein BVH-11 (Fragment) [bvh-11] [Stre... 415 e-
<input type="checkbox"/>	tr	Q6WNP5	_STRPN Surface protein BVH-11-2 (Fragment) [bvh-11-2] [...] 415 e-
<input type="checkbox"/>	tr	Q6WNP9	_STRPN Surface protein BVH-11-2 (Fragment) [Streptococc... 410 e-
<input type="checkbox"/>	tr	Q6T304	_STRPN Surface protein BVH-11 (Fragment) [bvh11] [Strep... 410 e-
<input type="checkbox"/>	tr	Q6WNQ0	_STRPN Surface protein BVH-11 (Fragment) [bvh-11] [Stre... 405 e-
<input type="checkbox"/>	tr	Q6WNP6	_STRPN Surface protein BVH-11-2 (Fragment) [bvh-11-2] [...] 400 e-
<input type="checkbox"/>	tr	Q8NZ82	_STRP8 Hypothetical protein spyM18_2072 [spyM18_2072] [...] 306 1e
<input type="checkbox"/>	tr	Q8E4U1	_STRA3 Hypothetical protein gbs1306 [gbs1306] [Streptoc... 305 3e
<input type="checkbox"/>	tr	Q8DZ81	_STRA5 Streptococcal histidine triad family protein [SA... 305 3e
<input type="checkbox"/>	tr	Q5X9R2	_STRP6 Streptococcal histidine triad protein [M6_Spy171... 305 4e
<input type="checkbox"/>	tr	Q9ZH7	_STRAG Hypothetical protein [Streptococcus agalactiae] 305 4e
<input type="checkbox"/>	tr	Q99XV4	_STRPY Hypothetical protein SPy2006 [SPy2006] [Streptoc... 304 6e
<input type="checkbox"/>	tr	Q8K5Q1	_STRP3 Histidine triad protein [SpyM3_1724] [Streptococ... 304 8e
<input type="checkbox"/>	tr	Q93GT5	_STRPY Histidine triad protein of group A streptococci ... 302 2e
<input type="checkbox"/>	tr	Q8E338	_STRA3 Hypothetical protein gbs1925 [gbs1925] [Streptoc... 301 5e
<input type="checkbox"/>	tr	Q877Y2	_STRP3 Hypothetical protein SPs1722 [SPs1722] [Streptoc... 291 4e
<input type="checkbox"/>	tr	Q9AE21	_STRAG Hypothetical protein (Fragment) [Streptococcus a... 241 9e
<input type="checkbox"/>	tr	Q8DQ06	_STRR6 Pneumococcal histidine triad protein E, truncati... 121 8e
<input type="checkbox"/>	tr	Q8E029	_STRA5 Hypothetical protein SAG0907 [SAG0907] [Streptoc... 111 1e
<input type="checkbox"/>	tr	Q8E5R2	_STRA3 Hypothetical protein gbs0918 [gbs0918] [Streptoc... 109 3e
<input type="checkbox"/>	tr	Q8P0G5	_STRP8 Putative internalin A [spyM18_1373] [Streptococc... 99 4e
<input type="checkbox"/>	tr	Q8K714	_STRP3 Putative internalin A [inlA] [Streptococcus pyog... 97 2e
<input type="checkbox"/>	tr	Q5XBJ5	_STRP6 Internalin protein [M6_Spy1083] [Streptococcus p... 97 3e
<input type="checkbox"/>	tr	Q99Z76	_STRPY Putative internalin A [inlA] [Streptococcus pyog... 92 9e
<input type="checkbox"/>	tr	Q5AWR8	_EMENI Hypothetical protein [AN7262.2] [Aspergillus nid... 47 0.
<input type="checkbox"/>	tr	Q6HCJ0	_BACHK Cell division protein [ftsK] [Bacillus thuringie... 47 0.
<input type="checkbox"/>	sp	P45386	IGA4_HAEIN Immunoglobulin A1 protease precursor (EC 3.... 46 0.
<input type="checkbox"/>	tr	Q8ISF7	_CAEEL 2MDa_1 protein [isof] [Caenorhabditis elegans] 46 0.

<input type="checkbox"/>	tr	<u>Q8ISF6</u>	_CAEEL 2MDa_2 protein [isof] [Caenorhabditis elegans]	46	0.
<input type="checkbox"/>	sp	<u>P16053</u>	NFM_CHICK Neurofilament triplet M protein (160 kDa neu...)	45	0.
<input type="checkbox"/>	sp	<u>Q97QP7</u>	IGA1A_STRPN Immunoglobulin A1 protease precursor (EC 3...)	44	0.
<input type="checkbox"/>	tr	<u>Q869E1</u>	_DICDI DNA ligase I (EC 6.5.1.1) (Polydeoxyribonucleoti...)	44	0.
<input type="checkbox"/>	tr	<u>Q8IB63</u>	_PLAF7 Hypothetical protein PF08_0035 [PF08_0035] [Plas...	44	0.
<input type="checkbox"/>	tr	<u>Q9VC00</u>	_DROME CG13648-PA [CG13648] [Drosophila melanogaster (F...	44	0.
<input type="checkbox"/>	tr	<u>Q5TUJ9</u>	_ANOGA ENSANGP00000029120 [ENSANGG00000022532] [Anophel...	44	0.
<input type="checkbox"/>	tr	<u>Q839C3</u>	_ENTFA N-acetylmuramoyl-L-alanine amidase, family 4 [EF...	44	0.
<input type="checkbox"/>	tr	<u>Q7PR93</u>	_ANOGA ENSANGP00000010616 [ENSANGG00000008127] [Anophel...	44	0.
<input type="checkbox"/>	tr	<u>O73793</u>	_SERCA Neurofilament medium subunit [Serinus canaria (C...	43	0.
<input type="checkbox"/>	tr	<u>Q9FN97</u>	_ARATH Transposon protein-like [Arabidopsis thaliana (M...	43	0.
<input type="checkbox"/>	tr	<u>Q54U33</u>	_DICDI Hypothetical protein [DDB0218298] [Dictyostelium...	43	0.
<input type="checkbox"/>	tr	<u>Q963T1</u>	_PLARE Glutamate-rich protein (Fragment) [GLURP] [Plasm...	43	0.
<input type="checkbox"/>	tr	<u>Q07594</u>	_ENTHI K2 protein (Fragment) [Entamoeba histolytica]	43	0.
<input type="checkbox"/>	tr	<u>Q6PK21</u>	_HUMAN OGFR protein [Homo sapiens (Human)]	43	0.
<input type="checkbox"/>	sp_vs	<u>Q9NZT2-2</u>	Splice isoform 2 of Q9NZT2 [OGFR] [Homo sapiens (...]	43	0.
<input type="checkbox"/>	sp	<u>Q9NZT2</u>	OGFR_HUMAN Opioid growth factor receptor (OGFr) (Zeta-...)	43	0.
<input type="checkbox"/>	tr	<u>Q6HBX5</u>	_BACHK Hypothetical protein [BT9727_4640] [Bacillus thu...	43	0.
<input type="checkbox"/>	tr	<u>Q7RQS8</u>	_PLAYO Retinitis pigmentosa GTPase regulator-like prote...	43	0.
<input type="checkbox"/>	tr	<u>O77320</u>	_PLAF7 Hypothetical protein MAL3P3.3 [MAL3P3.3] [Plasmo...	43	0.
<input type="checkbox"/>	tr	<u>Q5HQ74</u>	_STAEQ Pyruvate dehydrogenase complex E2 component, dih...	42	0.
<input type="checkbox"/>	tr	<u>Q9L4Z1</u>	_STAEF Pyruvate dehydrogenase complex subunit E2 [pdhc]...	42	0.
<input type="checkbox"/>	tr	<u>Q9VGW4</u>	_DROME CG14692-PA [CG14692] [Drosophila melanogaster (F...	42	0.
<input type="checkbox"/>	tr	<u>Q90307</u>	_CARAU Carassius auratus [Carassius auratus (Goldfish)]	42	0.
<input type="checkbox"/>	tr	<u>Q898B0</u>	_CLOTE Hypothetical protein CTC00555 [CTC00555] [Clostr...	42	0.
<input type="checkbox"/>	tr	<u>Q6R4Z8</u>	_CAPBU Dehydrin cor29 [Capsella bursa-pastoris (Shepher...	42	0.
<input type="checkbox"/>	tr	<u>Q50R78</u>	_ENTHI Hypothetical protein [298.t00012] [Entamoeba his...	42	0.
<input type="checkbox"/>	tr	<u>Q8MMQ1</u>	_DICDI Similar to Required for the transfer of mannosyl...	42	0.
<input type="checkbox"/>	tr	<u>Q8IBL1</u>	_PLAF7 Hypothetical protein MAL7P1.129 [MAL7P1.129] [Pl...	42	0.
<input type="checkbox"/>	tr	<u>Q55K21</u>	_CRYNE Hypothetical protein [CNBK1650] [Cryptococcus ne...	42	0.
<input type="checkbox"/>	sp	<u>Q8CT13</u>	ODP2_STAEF Dihydrolipoyllysine-residue acetyltransfера...	41	0.
<input type="checkbox"/>	tr	<u>O33741</u>	_STRPN SpsA protein [Streptococcus pneumoniae]	41	0.
<input type="checkbox"/>	tr	<u>Q8II1W5</u>	_PLAF7 Hypothetical protein PFD0320c (Fragment) [PFD032...	41	0.
<input type="checkbox"/>	tr	<u>Q5TVN3</u>	_ANOGA ENSANGP00000027660 (Fragment) [ENSANGG0000002494...]	41	0.
<input type="checkbox"/>	tr	<u>Q07593</u>	_ENTHI K2 protein (Fragment) [Entamoeba histolytica]	41	0.
<input type="checkbox"/>	sp	<u>Q28820</u>	TRDN_RABIT Triadin [TRDN] [Oryctolagus cuniculus (Rabb...)	41	0.
<input type="checkbox"/>	sp	<u>Q59947</u>	IGA1_STRRR6 Immunoglobulin A1 protease precursor (EC 3....)	41	0.
<input type="checkbox"/>	tr	<u>Q7SXW9</u>	_BRARE Wu:fc44a10 protein (Fragment) [wu:fc44a10] [Brac...	41	0.
<input type="checkbox"/>	tr	<u>Q28688</u>	_RABIT Neurofilament-H (Fragment) [Oryctolagus cuniculu...]	41	0.
<input type="checkbox"/>	tr	<u>Q94674</u>	_PLAGA Thrombospondin-related anonymous protein (Fragme...)	41	0.
<input type="checkbox"/>	tr	<u>Q5WNG8</u>	_CAEBR Hypothetical protein CBG08011 [CBG08011] [Caenor...	41	0.
<input type="checkbox"/>	tr	<u>Q6BLN0</u>	_DEBHA Similar to ca CA2433 IPF12959 Candida albicans I...	41	0.
<input type="checkbox"/>	sp_vs	<u>Q28820-4</u>	Splice isoform Cardiac 3 of Q28820 [TRDN] [Orycto...]	41	0.
<input type="checkbox"/>	sp_vs	<u>Q28820-6</u>	Splice isoform Skeletal 3 of Q28820 [TRDN] [Orycto...]	41	0.
<input type="checkbox"/>	sp	<u>Q54875</u>	IGA1B_STRPN Immunoglobulin A1 protease precursor (EC 3...)	40	0.

<input type="checkbox"/>	tr	<u>Q568L0</u>	_BRARE Wu:fc44a10 [wu:fc44a10] [Brachydanio rerio (Zebr...]	40	(
<input type="checkbox"/>	tr	<u>Q4ZHU3</u>	_STAXY Biofilm-associated protein [bap] [Staphylococcus...]	40	(
<input type="checkbox"/>	tr	<u>Q510B7</u>	_ENTHI Hypothetical protein [113.t00023] [Entamoeba his...]	40	(
<input type="checkbox"/>	tr	<u>Q8IJ56</u>	_PLAF7 Glutamate-rich protein [PF10_0344] [Plasmodium f...]	40	(
<input type="checkbox"/>	tr	<u>Q9GUY4</u>	_PENJP Crustocalcin [DD4(ccn)] [Penaeus japonicus (Kuru...]	40	(
<input type="checkbox"/>	tr	<u>Q9GTX2</u>	_PLAFA Glutamate-rich protein [GLURP] [Plasmodium falci...]	40	(
<input type="checkbox"/>	tr	<u>Q61US9</u>	_CAEBR Hypothetical protein CBG05170 [CBG05170] [Caenor...]	40	(
<input type="checkbox"/>	tr	<u>Q6FWC0</u>	_CANGA Candida glabrata strain CBS138 chromosome D comp...	40	(
<input type="checkbox"/>	tr	<u>Q6CTI0</u>	_KLULA Similar to sp Q05050 Saccharomyces cerevisiae YM...	40	(
<input type="checkbox"/>	tr	<u>Q879S6</u>	_XYLFT Hemagglutinin-like secreted protein [pspA] [Xyle...	40	(
<input type="checkbox"/>	tr	<u>O17102</u>	_CAEEL Hypothetical protein F42G2.6 [F42G2.6] [Caenorha...]	40	(

CLUSTAL W (1.74) multiple sequence alignment

tr|Q9ANY3|Q9ANY3_STRPN

DGYIFNASDIIEDTGDAYIVPHGDHYIIPKNELSASELAAAEEAYWNGK-
 ::*****:***** . *****:*****:*****:*. *:

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

-----NMQP-SQLSYSSTASD---NNTQSVAKGSTSKPANKSEN
 -----NMQP-SQLSYSSTASD---NNTQSVAKGSTSKPANKSEN
 -----NMQP-SQLSYSSTASD---NNTQSVAKGSTSKPANKSEN
 -----NMQP-SQLSYSSTASD---NNTQSVAKGSTSKPANKSEN
 NLSNSRTYRRQNSDNTSRTNWPSVNPGBTNTNTSNNSNQASQ SND
 NLSNSRTYRRQNSDNTSRTNWPSVNPGBTNTNTSNNSNQASQ SND
 NLSNSRTYRRQNSDNTSRTNWPSVNPGBTNTNTSNNSNQASQ SND
 -----QGSRPSSSSSHNANPAQRLSEHNLTVTPTYHQN-QGEN
 -----QGSRPSSSSSYNANPAQRLSEHNLTVTPTYHQN-QGEN
 -----QGSRPSSSSSYNANPAQRLSEHNLTVTPTYHQN-QGEN

* . . . : * : . . .

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

LQSLLKELYDSPAQRYS ESDGLVFDPAKII SRTPNGVAIPHGDHYHFIP
 LQSLLKELYDSPAQRYS ESDGLVFDPAKII SRTPNGVAIPHGDHYHFIP
 LQSLLKELYDSPAQRYS ESDGLVFDPAKII SRTPNGVAIPHGDHYHFIP
 LQSLLKELYDSPAQRYS ESDGLVFDPAQITSRTARGVAVPHGDHYHFIP
 IDSLLKQLYKLPLSQRHVESDGLIFDPAQITSRTANGVAVPHGDHYHFIP
 IDSLLKQLYKLPLSQRHVESDGLIFDPAQITSRTARGVAVPHGDHYHFIP
 IDSLLKQLYKLPLSQRHVESDGLIFDPAQITSRTARGVAVPHGDHYHFIP
 ISSLLRELYAKPLSERHVESDGLIFDPAQITSRTANGVAVPHGDHYHFIP
 ISSLLRELYAKPLSERHVESDGLIFDPAQITSRTARGVAVPHGNHYHFIP
 ISSLLRELYAKPLSERHVESDGLIFDPAQITSRTARGVAVPHGNHYHFIP
 :****:*** * :***:*****:*****:*** . ***:*****:*****

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

YSKLSALEEKIARRVPISGTGSTVSTNAKPNEVSSLGSLSSNPS---SL
 YSKLSALEEKIARRVPISGTGSTVSTNAKPNEVSSLGSLSSNPS---SL
 YSKLSALEEKIARMVPISGTGSTVSTNAKPNEVSSLGSLSSNPS---SL
 YSKMSELEERIARIIPLRYRSNHWPDSRP-EQPSPQPTPEPS PG----
 YSQLSPLEEKLARIIPLRYRSNHWPDSRP-EQPSPQSTPEPS PSpQpAP
 YSKMSELEERIARIIPLRYRSNHWPDSRP-EQPSPQPTPEPS PG----
 YSQLSPLEEKLARIIPLRYRSNHWPDSRP-EQPSPQSTPEPS PSpQpAP
 YEQMSELEKRIARIIPLRYRSNHWPDSRP-EQPSPQSTPEPS PSpQpAP
 YEQMSELEKRIARIIPLRYRSNHWPDSRP-EEPSPQPTPEPS PS----

* . : * * : : * : . . . : * * . : . . *

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

TTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIIPKS NQIGQPTL
 TTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIIPKS NQIGQPTL
 TTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIIPKS NQIGQPTL
 -PQPAPNLKIDSNSLVSQVLRKVGEGYVFEEKGISRYVFAKD----L
 NPQPAPSNPIDEK--LVKEAVRKVGDG YVFEENG VPRYI PAKD----L
 -PQPAPNLKIDSNSLVSQVLRKVGEGYVFEEKGISRYVFAKD----L
 NPQPAPSNPIDEK--LVKEAVRKVGDG YVFEENG VPRYI PAKD----L
 NPQPAPSNPIDEK--LVKEAVRKVGDG YVFEENG VSRYI PAKD----L
 -PQPAPSNPIDGK--LVKEAVRKVGDG YVFEENG VSRYI PAKD----L
 .. . * . : * . . : * . . : * : . : * .

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN

PNNSLATPSPSLPINPGISHEKHEEDGYGFDANRIIAEDESGFIMSHGNH
 PNNSLATPSPSLPINPGISHEKHEEDGYGFDANRIIAEDESGFIMSHGNH
 PNNSLATPSPSLPINPGTSHEKHEEDGYGFDANRIIAEDESGFIMSHGNH
 PNNSLATPSPSLPINPGTSHEKHEEDGYGFDANRIIAEDESGFIMSHGNH
 PSETVKNLESKLSKQESVSHT-----LTAKKEN--VAPRDQ.
 SAETAAGIDSKLAKQESLSHK-----LGAKKTD--LPSSDR
 PSETVKNLESKLSKQESVSHT-----LTAKKEN--VAPRDQ
 SAETAAGIDSKLAKQESLSHK-----LGAKKTD--LPSSDR
 SAETAAGIDSKLAKQESLSHK-----LGAKKTD--LPSSDR

tr|Q9ANY3|Q9ANY3_STRPN

--KKVPLDR--MP-YNLQYTVEVK-----NGSLIIP---HYDHYHNIK
 . . * : ;* . ::*: * : * . : * . :
 FYPFHAGDTYLRVNPQFAVPKGTDALVRVFDEFHGNAYLENNYKVGEIKL
 FYPFHAGDTYLRVNPQFAVPKGTDALVRVFDEFHGNAYLENNYKVGEIKL
 FYPFHAGDTYLRVNPQFAVPKGTDALVRVFDEFHGNAYLENNYKVGEIKL
 FYPFHAGDTYLRVNPQFAVPKGTDALVRVFDEFHGNAYLENNYKVGEIKL
 FAWFDDH-----TYKAPNG-YTLEDLFATIK--YYVEHPDER----
 FEWFDEG-----LYEAPKG-YSLEDLLATVK--YYVEHPNER----
 FAWFDDH-----TYKAPNG-YTLEDLFATIK--YYVEHPDER----
 FEWFDEG-----LYEAPKG-YSLEDLLATVK--YYVEHPNER----
 FEWFDEG-----LYEAPKG-YTLEDLLATVK--YYVEHPNER----
 FEWFDEG-----LYEAPKG-YTLEDLLATVK--YYVEHPNER----
 * * . : . * : * : : . : * : * : :
 :

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

PIPKLNQGTTRTAGNKPVTFMANAYLDNQSTYIVEVP---ILEKENQT
 PIPKLNQGTTRTAGNKPVTFMANAYLDNQSTYIVEVP---ILEKENQT
 PIPKLNQGTTRTAGNKPVTFMANAYLDNQSTYIVEVP---ILEKENQT
 PIPKLNQGTTRTAGNKPVTFMANAYLDNQSTYIVEVP---ILEKENQT
 --PHSDNG---WGN-----ASEHVLGKK-----DHS
 --PHSDNG---FGN-----ASDHVQRNKNGQ-----ADTNQT
 --PHSDNG---WGN-----ASEHVLGKK-----DHS
 --PHSDNG---FGN-----ASDHVQRNKNGQADTNQTEKPNEEKPQT
 --PHSDNG---FGN-----ASDHVRKNK-----VDQD
 --PHSDNG---FGN-----ASDHVQRNKNGQ-----ADTNQT
 * : ;*: ** * . : : . :
 :

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

DKPSILPQFKRNKAQENSKLDEKVEEPKTSEKVEKEKLSETGNSTSNTL
 DKPSILPQFKRNKAQENSKLDEKVEEPKTSEKVEKEKLSETGNSTSNTL
 DKPSILPQFKRNKAQENLKDEKVEEPKTSEKVEKEKLSETGNSTSNTL
 DKPSILPQFKRNKAQENSFKDEKVEEPKTSEKVEKEKLSETGNSTSNTL
 EDP-----NKNFKADEEPVVE-ETP-AEP-----
 EKP-----NEEKPQTEKPEE-ETPREEKP-QSEKPESP-----
 EDP-----NKNFKADEEPVVE-ETP-AEP-----
 EKP-----EEDKEHDEVSEP--THPESDEK-ENHVGLNPS-ADN
 SKP-----DEDKEHDEVSEP--THPESDEK-ENHAGLNPS-ADN
 EKP-----SEEKPQTEKPEE-ETPREEKP-QSEKPESP-----
 ..* . : : * :
 :

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

EEVPTVDPVQEKVAKFAESYG-MKLENVLNFNMDGTIELYLPAGEVIKKNM
 EEVPTVDPVQEKVAKFAESYG-MKLENVLNFNMDGTIELYLPAGEVIKKNM
 EEVPTVDPVQEKVAKFAESYG-MKLENVLNFNMDGTIELYLPAGEVIKKNM
 -----E-----VPQVET---EKVEAQLKEAEVLLAKV
 --KPTEEPEEESPEE---ESEEPQVET---EKVKEKLREAEDLLGKI
 -----E-----VPQVET---EKVEAQLKEAEVLLAKV
 LYKPSTDTEE-TEEEAEDTTDEAEIPQVEH---SVINAKIAEAEALLEKV
 LYKPSTDTEE-TEEEAEDTTDEAEIPQVEN---SVINAKIADAELLK
 --KPTEEPEE-SPEESEE-----PQVET---EKVEEKLREAEDLLGKI
 : : * : : : ..* : :
 :

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN

ADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVK
 ADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVK
 ADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVK
 ADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVK
 TDSS--LKANATETLAGLRNNNLTQIMDNN-SIMAAEKLALLKGS--N
 QNPI--IKSNAKETLTGLKNLLFGTQDNN-TIMAAEKLALLKES--K
 TDSS--LKANATETLAGLRNNNLTQIMDNN-SIMAAEKLALLKGS--N
 TDSS--IRQNAVETLTGLKSLLLGTKDNN-TISAEVDSLLALLKES--Q
 TDPS--IRQNAMELTGLKSLLLGTKDNN-TISAEVDSLLALLKES--Q

tr Q9ANY3 Q9ANY3_STRPN	QDPI--IKSNAKETLTGLKNMLLFGTQDNN-TIMAEAEKLLALLKES--K : ..*... . . . : * : . . . * : . . . :
tr Q8DQ07 Q8DQ07_STRR6	PENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKEKFTASYGLGL
tr Q6WNQ7 Q6WNQ7_STRPN	PENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKEKFTASYGLGL
tr Q9ANY1 Q9ANY1_STRPN	PENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKEKFTASYGLGL
tr Q6WNQ5 Q6WNQ5_STRPN	PENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKEKFTASYGLGL
tr Q8DPQ2 Q8DPQ2_STRR6	PSSVSKEKIN-----
tr Q9AG74 Q9AG74_STRPN	-----
tr Q9AHT9 Q9AHT9_STRPN	PSSVSKEKIN-----
tr Q8DQ08 Q8DQ08_STRR6	PTPIQ-----
tr Q9ANY2 Q9ANY2_STRPN	PAPIQ-----
tr Q9ANY3 Q9ANY3_STRPN	-----
tr Q8DQ07 Q8DQ07_STRR6	DSVIFNMMDGTIELRLPSGEVIKKNLSDLIA
tr Q6WNQ7 Q6WNQ7_STRPN	DSVIFNMMDGTIELRLPSGEVIKKNLSDLIA
tr Q9ANY1 Q9ANY1_STRPN	DSVIFNMMDGTIELRLPSGEVIKKNLSDLIA
tr Q6WNQ5 Q6WNQ5_STRPN	DSVIFNMMDGTIELRLPSGEVIKKNLSDLIA
tr Q8DPQ2 Q8DPQ2_STRR6	-----
tr Q9AG74 Q9AG74_STRPN	-----
tr Q9AHT9 Q9AHT9_STRPN	-----
tr Q8DQ08 Q8DQ08_STRR6	-----
tr Q9ANY2 Q9ANY2_STRPN	-----
tr Q9ANY3 Q9ANY3_STRPN	-----

PileUp

MSF: 1080 Type: P Check: 8540 ..

Name: tr|Q8DQ07|Q8DQ07_STRR6 oo Len: 1080 Check: 6992 Weight: 0.100
 Name: tr|Q6WNQ7|Q6WNQ7_STRPN oo Len: 1080 Check: 6992 Weight: 0.100
 Name: tr|Q9ANY1|Q9ANY1_STRPN oo Len: 1080 Check: 7347 Weight: 0.100
 Name: tr|Q6WNQ5|Q6WNQ5_STRPN oo Len: 1080 Check: 4063 Weight: 0.100
 Name: tr|Q8DPQ2|Q8DPQ2_STRR6 oo Len: 1080 Check: 1836 Weight: 0.100
 Name: tr|Q9AG74|Q9AG74_STRPN oo Len: 1080 Check: 8409 Weight: 0.100
 Name: tr|Q9AHT9|Q9AHT9_STRPN oo Len: 1080 Check: 9461 Weight: 0.100
 Name: tr|Q8DQ08|Q8DQ08_STRR6 oo Len: 1080 Check: 9939 Weight: 0.100
 Name: tr|Q9ANY2|Q9ANY2_STRPN oo Len: 1080 Check: 1016 Weight: 0.100
 Name: tr|Q9ANY3|Q9ANY3_STRPN oo Len: 1080 Check: 2485 Weight: 0.100

//

tr|Q8DQ07|Q8DQ07_STRR6 MKFSKKYI AAGSAVIVSL SLCAYALNQH RSQENK.DNN
 tr|Q6WNQ7|Q6WNQ7_STRPN MKFSKKYI AAGSAVIVSL SLCAYALNQH RSQENK.DNN
 tr|Q9ANY1|Q9ANY1_STRPN MKFSKKYI AAGSAVIVSL SLCAYALNQH RSQENK.DNN
 tr|Q6WNQ5|Q6WNQ5_STRPN CAYALNQH RSQENK.DNN
 tr|Q8DPQ2|Q8DPQ2_STRR6 MQLEISNRKR VSMKINKKYL VG.SAAALIL SVCSYELGLY QARTVK.ENN
 tr|Q9AG74|Q9AG74_STRPN MKINKKYL VG.SAAALIL SVCSYELGLY QARTVK.ENN
 tr|Q9AHT9|Q9AHT9_STRPN MKINKKYL VG.SAAALIL SVCSYELGLY QARTVK.ENN
 tr|Q8DQ08|Q8DQ08_STRR6 MKINKKYL AG.SAVLAL SVCSYELGRH QAGQVKKESN
 tr|Q9ANY2|Q9ANY2_STRPN MKINKKYL AG.SAVLAL SVCSYELGRH QAGQVKKESN
 tr|Q9ANY3|Q9ANY3_STRPN MKINKKYL AG.SAVLAL SVCSYELGRY QAGQDKKESN

tr|Q8DQ07|Q8DQ07_STRR6 RVSYVDGSQS SQKSENLTDP QVSQKEGIQA EQIVIKITDQ GYVTSHGDHY
 tr|Q6WNQ7|Q6WNQ7_STRPN RVSYVDGSQS SQKSENLTDP QVSQKEGIQA EQIVIKITDQ GYVTSHGDHY
 tr|Q9ANY1|Q9ANY1_STRPN RVSYVDGSQS SQKSENLTDP QVSQKEGIQA EQIVIKITDQ GYVTSHGDHY
 tr|Q6WNQ5|Q6WNQ5_STRPN RVSYVDGSQS SQKSENLTDP QVSQKEGIQA EQIVIKITDQ GYVTSHGDHY
 tr|Q8DPQ2|Q8DPQ2_STRR6 RVSYIDGKQA TQKTENLTPD EVSKREGINA EQIVIKITDQ GYVTSHGDHY
 tr|Q9AG74|Q9AG74_STRPN RVSYIDGKQA TQKTENLTPD EVSKREGINA EQIVIKITDQ GYVTSHGDHY
 tr|Q9AHT9|Q9AHT9_STRPN RVSYIDGKQA TQKTENLTPD EVSKREGINA EQIVIKITDQ GYVTSHGDHY
 tr|Q8DQ08|Q8DQ08_STRR6 RVSYIDGDQA GQKAENLTDP EVSKREGINA EQIVIKITDQ GYVTSHGDHY
 tr|Q9ANY2|Q9ANY2_STRPN RVSYIDGDQA GQKAENLTDP EVSKREGINA EQIVIKITDQ GYVTSHGDHY
 tr|Q9ANY3|Q9ANY3_STRPN RVAYIDGDQA GQKAENLTDP EVSKREGINA EQIVIKITDQ GYVTSHGDHY

tr|Q8DQ07|Q8DQ07_STRR6 HYYNGKVPYD ALFSEELLMK DPNYQLKDAD IVNEVKGGYI IKVDGKYYVY
 tr|Q6WNQ7|Q6WNQ7_STRPN HYYNGKVPYD ALFSEELLMK DPNYQLKDAD IVNEVKGGYI IKVDGKYYVY
 tr|Q9ANY1|Q9ANY1_STRPN HYYNGKVPYD ALFSEELLMK DPNYQLKDAD IVNEVKGGYI IKVDGKYYVY
 tr|Q6WNQ5|Q6WNQ5_STRPN HYYNGKVPYD ALFSEELLMK DPNYQLKDAD IVNEVKGGYI IKVDGKYYVY
 tr|Q8DPQ2|Q8DPQ2_STRR6 HYYNGKVPYD AIFSEELLMK DPNYKLKDDED IVNEVKGGYV IKVDGKYYVY
 tr|Q9AG74|Q9AG74_STRPN HYYNGKVPYD AIISEELLMK DPNYQLKDDED IISEIKGGYV IKVDGKYYVY
 tr|Q9AHT9|Q9AHT9_STRPN HYYNGKVPYD AIISEELLMK DPNYKLKDDED IVNEVKGGYV IKVDGKYYVY
 tr|Q8DQ08|Q8DQ08_STRR6 HYYNGKVPYD AIISEELLMK DPNYQLKDSD IVNEIKGGYV IKVDGKYYVY
 tr|Q9ANY2|Q9ANY2_STRPN HYYNGKVPYD AIISEELLMK DPNYQLKDSD IVNEIKGGYV IKVDGKYYVY
 tr|Q9ANY3|Q9ANY3_STRPN HYYNGKVPYD AIISEELLMK DPNYQLKDSD IVNEIKGGYV IKVNGKYYVY

tr|Q8DQ07|Q8DQ07_STRR6 LKDAAHADNV RTKDEINRQK QEHVKDNE... KVNSNVAV ARSQGRYTTN
 tr|Q6WNQ7|Q6WNQ7_STRPN LKDAAHADNV RTKDEINRQK QEHVKDNE... KVNSNVAV ARSQGRYTTN
 tr|Q9ANY1|Q9ANY1_STRPN LKDAAHADNV RTKDEINRQK QEHVKDNE... KVNSNVAV ARSQGRYTTN

tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

LKDAAHADNV RTKDEINRQK QEHVKDNE... .KVNSNVAV ARSQGRYTTN
 LKDAAHADNV RTKEEINRQK QEHSQHREGG TPRNDGAVAL ARSQGRYTTD
 LKDAAHADNV RTKEEINRQK QEHSQHREGG TPRNDGAVAL ARSQGRYTTD
 LKDAAHADNV RTKEEINRQK QEHSQHREGG TPRNDGAVAL ARSQGRYTTD
 LKDAAHADNI RTKEEIKRQK QERSHNHN.. .SRADNAVA ARAQGRYTTD
 LKDAAHADNI RTKEEIKRQK QEHSHNHG. .GSNDQAVVA ARAQGRYTTD
 LKDAAHADNI RTKEEIKRQK QERSHNHN.. .SRADNAVA ARAQGRYTTD

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

DGYVFPNPADI IEDTGNAYIV PHGGHYHYIP KSDLSASELA AAKAHLAGK.
 DGYVFPNPADI IEDTGNAYIV PHGGHYHYIP KSDLSASELA AAKAHLAGK.
 DGYVFPNPADI IEDTGNAYIV PHGGHYHYIP KSDLSASELA AAKAHLAGK.
 DGYVFPNPADI IEDTGNAYIV PHRGHYHYIP KSDLSASELA AAKAHLAGK.
 DGYIFNASDI IEDTGDAYIV PHGDHYHYIP KNELSASELA AAEAFLSGRG
 DGYIFNASDI IEDTGDAYIV PHGDHYHYIP KNELSASELA AAKAFLSGRG
 DGYIFNASDI IEDTGDAYIV PHGDHYHYIP KNELSASELA AAEAFLSGRG
 DGYIFNASDI IEDTGDAYIV PHGDHYHYIP KSDLSASELA AAQAYWNGK.
 DGYIFNASDI IEDTGDAYIV PHGDHYHYIP KNELSASELA AAEAYWNGK.
 DGYIFNASDI IEDTGDAYIV PHGDHYHYIP KNELSASELA AAEAYWNGK.

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

..... .NMQP.SQLS YSSTASD... NNTQSVAKGS TSKPANKSEN
 NLSNSRTYRR QNSDNTSRN WVPSVNPGBT TNTNTSNNSN TNSQASQ SND
 NLSNSRTYRR QNSDNTSRN WVPSVNPGBT TNTNTSNNSN TNSQASQ SND
 NLSNSRTYRR QNSDNTSRN WVPSVNPGBT TNTNTSNNSN TNSQASQ SND
 QGSRPSSSS HNANPAQPRL SENHNLTVTP TYHQN.QGEN
 QGSRPSSSS YNANPAQPRL SENHNLTVTP TYHQN.QGEN
 QGSRPSSSS YNANPAQPRL SENHNLTVTP TYHQN.QGEN

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

LQSLKELYD SPAQRYSES DGLVFDPAKI ISRTPNGVAI PHGDHYHFIP
 IDSLLKQLYK LPLSQRHVES DGLVFDPAQI TSRTARGVAV PHGDHYHFIP
 IDSLLKQLYK LPLSQRHVES DGLIFDPAQI TSRTANGVAV PHGDHYHFIP
 IDSLLKQLYK LPLSQRHVES DGLVFDPAQI TSRTARGVAV PHGDHYHFIP
 ISSLLRELYA KPLSERHVES DGLIFDPAQI TSRTANGVAV PHGDHYHFIP
 ISSLLRELYA KPLSERHVES DGLIFDPAQI TSRTARGVAV PHGNHYHFIP
 ISSLLRELYA KPLSERHVES DGLIFDPAQI TSRTARGVAV PHGNHYHFIP

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

YSKLSALEEK IARRVPISGT GSTVSTNAKP NEVVSSLGSL SSNPS... SL
 YSKLSALEEK IARRVPISGT GSTVSTNAKP NEVVSSLGSL SSNPS... SL
 YSKLSALEEK IARMVPISGT GSTVSTNAKP NEVVSSLGSL SSNPS... SL
 YSKLSALEER IARIPIPLRYR SNHWVPDSRP .EQPSPQPTP EPSPG.....
 YSQLSPLEEK LARIPIPLRYR SNHWVPDSRP .EQPSPQSTP EPSPSPQPAP
 YSQMSELEER IARIPIPLRYR SNHWVPDSRP .EQPSPQPTP EPSPG.....
 YSQLSPLEEK LARIPIPLRYR SNHWVPDSRP .EQPSPQSTP EPSPSPQPAP
 YEQMSELEKR IARIPIPLRYR SNHWVPDSRP .EQPSPQSTP EPSPSPQPAP
 YEQMSELEKR IARIPIPLRYR SNHWVPDSRP .EEPSPQOPTP EPSPS.....

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN

TTSKELSSAS DGYIFNPKDI VEETATAYIV RHGDHFHYIP KSNQIGQPTL
 TTSKELSSAS DGYIFNPKDI VEETATAYIV RHGDHFHYIP KSNQIGQPTL
 TTSKELSSAS DGYIFNPKDI VEETATAYIV RHGDHFHYIP KSNQIGQPTL

tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

TTSKELSSAS DGYIFNPKDI VEETATAYIV RHGDHFHYIP KSNQIGQPTL
 . PQPAPNLKI DSNSSLVSQL VRKGEGYVF EEKGISRYVF AKD.....L
 NPQPAPSNPI DEK..LVKEA VRKGDGYVF EENGVPRYIP AKD.....L
 . PQPAPNLKI DSNSSLVSQL VRKGEGYVF EEKGISRYVF AKD.....L
 NPQPAPSNPI DEK..LVKEA VRKGDGYVF EENGVPRYIP AKD.....L
 NPQPAPSNPI DEK..LVKEA VRKGDGYVF EENGVSRYIP AKD.....L
 . PQPAPSNPI DGK..LVKEA VRKGDGYVF EENGVSRYIP AKD.....L

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

PNNSLATPSP SLPINPGISH EKHEEDGYGF DANRIIAEDE SGFIMSHGNH
 PNNSLATPSP SLPINPGISH EKHEEDGYGF DANRIIAEDE SGFIMSHGNH
 PNNSLATPSP SLPINPGTSH EKHEEDGYGF DANRIIAEDE SGFVMSHGHDH
 PNNSLATPSP SLPINPGTSH EKHEEDGYGF DANRIIAEDE SGFVMSHGHDH
 PSETVKNLES KLSKQESVSH T.....LTAKKE N...VAPRDQ
 SAETAAGIDS KLAQQESLSH K.....LGAKKT D...LPSSDR
 PSETVKNLES KLSKQESVSH T.....LTAKKE N...VAPRDQ
 SAETAAGIDS KLAQQESLSH K.....LGAKKT D...LPSSDR
 SAETAAGIDS KLAQQESLSH K.....LGAKKT D...LPSSDR
 SAETAAGIDS KLAQQESLSH K.....LGTKKT D...LPSSDR

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

NHYFFKKDLT EEQIKAAQKH LEEVKTSHNG LDSLSSHEQD YPGNAKEMKD
 NYFFKKDLT EEQIKAAQKH LEEVKTSHNG LDSLSSHEQD YPGNAKEMKD
 NYFFKKDLT EEQIKAAQKH LEEVKTSHNG LDSLSSHEQD YPSNAKEMKD
 NYFFKKDLT EEQIKAAQKH LEEVKTSHNG LDSLSSHEQD YPSNAKEMKD
 EFYDKAYNLL TEAHKALFEN .KGRNSDFQA LDKLLERLND EST.....N
 EFYNKAYDLL ARIHQDLDN .KGRQVDFAE LDNLLERLKD VSS.....D
 EFYDKAYNLL TEAHKALFXN .KGRNSDFQA LDKLLERLND EST.....N
 EFYNKAYDLL ARIHQDLDN .KGRQVDFAE LDNLLERLKD VSS.....D
 EFYNKAYDLL ARIHQDLDN .KGRQVDFAE LDNLLERLKD VPS.....D
 EFYNKAYDLL ARIHQDLDN .KGRQVDFAE LDNLLERLKD VSS.....D

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

LDDKIEEKIA GIMKQYGVKR ESIVVNKEKN AIIYPHGDHH HADPIDEHKP
 KEKLVDDLLA FLAPITHPERLGKPNS QIEYTE....DEVRIAQL
 KVKLVDDILA FLAPIRHPERLGKPNA QITYTD....DEIQVAKL
 KEKLVDDLLA FLAPITHPERLGKPNS QIEYTE....DEVRIAQL
 KVKLVDDILA FLAPIRHPERLGKPNA QITYTD....DEIQVAKL
 KVKLVDDILA FLAPIRHPERLGKPNA QITYTD....DEIQVAKL
 KVKLVEDILA FLAPIRHPERLGKPNA QITYTD....DEIQVAKL

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

VGIGHSHSNY ELFKEEGVA KKEGNKVYTG EELTNVVNLL KNSTFNNQNF
 ADK.YTSDG YIFDEHD.II SDEGD.AYVT PHMGHS.HWI GKDSLSDKEK
 AGK.YTTEGD YIFDPRD.IT SDEGD.AYVT PHMTHS.HWI KKDSLSEAER
 ADK.YTSDG YIFDEHD.II SDEGD.AYVT PHMGHS.HWI GKDSLSDKEK
 AGK.YTTEGD YIFDPRD.IT SDEGD.AYVT PHMTHS.HWI KKDSLSEAER
 AGK.YTTEGD YIFDPRD.IT SDEGD.AYVT PHMTHS.HWI KKDSLSEAER
 AGK.YTAEDG YIFDPRD.IT SDEGD.AYVT PHMTHS.HWI KKDSLSEAER

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN

TLANGQKRVs FSFPPELEKK LGINMLVKLI TPDGKVLEKV SGKVFGEVG
 TLANGQKRVs FSFPPELEKK LGINMLVKLI TPDGKVLEKV SGKVFGEVG
 TLANGQKRVs FSFPPELEKK LGINMLVKLI TPDGKVLEKV SGKVFGEVG

tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

TLANGQKRVs FSFPPELEKK LGINMLVKLI TPDGKVLEKV SGKVFGEVG
 VAAQAYTKEK GLTPPSPDAD VKAN..... PTGDSAAAI YNRVKE...
 AAAQAYAKEK GLTPPSTDHQ DSGN..... TEAKGAEAI YNRVKA...
 VAAQAYTKEK GLTPPSPDAD VKAN..... PTGDSAAAI YNRVKE...
 AAAQAYAKEK GLTPPSTDHQ DSGN..... TEAKGAEAI YNRVKA...
 AAAQAYAKEK GLTPPSTDHQ DSGN..... TEAKGAEAI YNRVKA...
 AAAQAYAXEK GLTPPSTDHQ DSGN..... TEAKGAEAI YNRVKA...

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

NIANFELDQP YLPGQTFKYT IASKDYPEVS YDGTFTVPTS LAYKMASQTI
 ..KRIPLVR. .LP.YMVEHT VEVK..... NGNLIIP.. HKDHYHNIK
 ..KKVPLDR. .MP.YNLQYT VEVK..... NGSЛИIP.. HYDHYHNIK
 ..KRIPLVR. .LP.YMVEHT VEVK..... NGNLIIP.. HKDHYHNIK
 ..KKVPLDR. .MP.YNLQYT VEVK..... NGSЛИIP.. HYDHYHNIK
 ..KKVPLDR. .MP.YNLQYT VEVK..... NGSЛИIP.. HYDHYHNIK
 ..KKVPLDR. .MP.YNLQYT VEVK..... NGSЛИIP.. HYDHYHNIK

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

FYPFHAGDTY LRVNPQFAVP KGTDALVRVF DEFHGNAYLE NNYKVGEIKL
 FAWFDDH... TYKAP NG.YTLEDLF ATIK.. YYVE HPDER....
 FEWFDEG... LYEAP KG.YSLEDLL ATVK.. YYVE HPNER....
 FAWFDDH... TYKAP NG.YTLEDLF ATIK.. YYVE HPDER....
 FEWFDEG... LYEAP KG.YSLEDLL ATVK.. YYVE HPNER....
 FEWFDEG... LYEAP KG.YTLEDLL ATVK.. YYVE HPNER....
 FEWFDEG... LYEAP KG.YTLEDLL ATVK.. YYVE HPNER....

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

PIPKLNQGTT RTAGNKIPVT FMANAYLDNQ STYIVEVP.. .ILEKENQT
 ..PHSDNG.. WGN..... ASEHVLGK K..... DHS
 ..PHSDNG.. FGN..... ASDHVQRN KNGQ..... ADTNQT
 ..PHSDNG.. WGN..... ASEHVLGK K..... DHS
 ..PHSDNG.. FGN..... ASDHVQRN KNGQADTNQT EKPNEEKPQT
 ..PHSDNG.. FGN..... ASDHVRKN K..... VDQD
 ..PHSDNG.. FGN..... ASDHVQRN KNGQ..... ADTNQT

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN
 tr|Q6WNQ5|Q6WNQ5_STRPN
 tr|Q8DPQ2|Q8DPQ2_STRR6
 tr|Q9AG74|Q9AG74_STRPN
 tr|Q9AHT9|Q9AHT9_STRPN
 tr|Q8DQ08|Q8DQ08_STRR6
 tr|Q9ANY2|Q9ANY2_STRPN
 tr|Q9ANY3|Q9ANY3_STRPN

DKPSILPQFK RNKAQENSKL DEKVEEPKTS EKVEKEKLSE TGNSTSNSTL
 DKPSILPQFK RNKAQENSKL DEKVEEPKTS EKVEKEKLSE TGNSTSNSTL
 DKPSILPQFK RNKAQENLKL DEKVEEPKTS EKVEKEKLSE TGNSTSNSTL
 DKPSILPQFK RNKAQENSKF DEKVEEPKTS EKVEKEKLSE TGNSTSNSTL
 EDP..... NKNFKA DEEPVE..ET P.AEP.....
 EKP..... NEEKPQ TEKPEE..ET PREEKP.QSE KPESP....
 EDP..... NKNFKA DEEPVE..ET P.AEP.....
 EKP..... EEDKEH DEVSEP..TH PESDEK.ENH VGLNPS.ADN
 SKP..... DEDKEH DEVSEP..TH PESDEK.ENH AGLNPS.ADN
 EKP..... SEEKPQ TEKPEE..ET PREEKP.QSE KPESP....

tr|Q8DQ07|Q8DQ07_STRR6
 tr|Q6WNQ7|Q6WNQ7_STRPN
 tr|Q9ANY1|Q9ANY1_STRPN

EEVPTVDPVQ EKVAKFAESY G.MKLENVLF NMDGTIELYL PSGEVVIKKNM
 EEVPTVDPVQ EKVAKFAESY G.MKLENVLF NMDGTIELYL PSGEVVIKKNM
 EEVPTVDPVQ EKVAKFAESY G.MKLENVLF NMDGTIELYL PSGEVVIKKNM

tr Q6WNQ5 Q6WNQ5_STRPN	EEVPTVDPVQ EKVAKFAESY G.MKLENVLF NMDGTIELYL PSGEVIKKNM E VPQVET . . . EKVEAQL KEAEVLLAKV .. KPTEEPEEE ESPEEESPE . . . ESEEPQVET . . . EKVKEKL REAEDLLGKI E VPQVET . . . EKVEAQL KEAEVLLAKV LYKPSTDTEE . TEEEAEDETT DEAEIPQVEH . . . SVINAKI AEAEALLEKV LYKPSTDTEE . TEEEAEDETT DEAEIPQVEN . . . SVINAKI ADAEALLEKV . . KPTEEPEEE . SPEESEE PQVET . . . EKVEEKL REAEDLLGKI
tr Q8DQ07 Q8DQ07_STRR6	ADFTGEAPQG NGENKPSENG KVSTGTVENQ PTENKPADSL PEAPNEKPVK ADFTGEAPQG NGENKPSENG KVSTGTVENQ PTENKPADSL PEAPNEKPVK ADFTGEAPQG NGENKPSENG KVSTGTVENQ PTENKPADSL PEAPNEKPVK ADFTGEAPQG NGENKPSENG KVSTGTVENQ PTENKPADSL PEAPNEKPVK TDSS..LKAN ATETLAGLRN NLTLQIMDNN . SIMAEAEKL LALLKGS..N QNPI..IKSN AKETLTGLKN NLLFGTQDNN . TIMAEAEKL LALLKES..K TDSS..LKAN ATETLAGLRN NLTLQIMDNN . SIMAEAEKL LALLKGS..N TDSS..IRQN AVETLTGLKS SLLLGTDNN . TISAEVDSDL LALLKES..Q TDPS..IRQN AMETLTGLKS SLLLGTDNN . TISAEVDSDL LALLKES..Q QDPI..IKSN AKETLTGLKN NLLFGTQDNN . TIMAEAEKL LALLKES..K
tr Q8DQ07 Q8DQ07_STRR6	PENSTDNGML NPEGNVGSDP MLDPALEEAP AVDPVQEKLE KFTASYGLGL PENSTDNGML NPEGNVGSDP MLDPALEEAP AVDPVQEKLE KFTASYGLGL PENSTDNGML NPEGNVGSDP MLDPALEEAP AVDPVQEKLE KFTASYGLGL PENSTDNGML NPEGNVGSDP MLDPALEEAP AVDPVQEKLE KFTASYGLGL PSSVSKEKIN .. PSSVSKEKIN .. PTPIQ.. PAPIQ..
tr Q8DQ07 Q8DQ07_STRR6	DSVIFNMDGT IELRLPSGEV IKKNLSDLIA DSVIFNMDGT IELRLPSGEV IKKNLSDLIA DSVIFNMDGT IELRLPSGEV IKKNLSDLIA DSVIFNMDGT IELRLPSGEV IKKNLSDLIA

Alignments

tr Q8DQ07 Pneumococcal histidine triad protein E [phtE] [Streptococcus pneumoniae (strain ATCC BAA-255 / R6)]

align

Score = 2017 bits (5225), Expect = 0.0

Identities = 1004/1039 (96%), Positives = 1004/1039 (96%)

Query: 1	MKF SKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLT	PDQVS 60
Sbjct: 1	MKF SKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLT	PDQVS 60
Query: 61	QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN	120
Sbjct: 61	QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN	120
Query: 121	EVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVARSQGRY	180
Sbjct: 121	EVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVARSQGRY	180
Query: 181	TTNDGYVFNPADIIEDTGNAYIVPHGGHYHYIPXXXXXXXXXXXXXXXXXXXXMQPSQLS	240
Sbjct: 181	TTNDGYVFNPADIIEDTGNAYIVPHGGHYHYIPKSDLSASELAAKAHLAKNMQPSQLS	240
Query: 241	YSSTASDNNTQSVAKGSTSKPANKSENLSLQSLKELYDSPAQRYS	300
Sbjct: 241	YSSTASDNNTQSVAKGSTSKPANKSENLSLQSLKELYDSPAQRYS	300
Query: 301	TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEVXXXXXX	360
Sbjct: 301	TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEV	360
Query: 361	XXXXXXXXKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNN	420
Sbjct: 361	PSSLTTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNN	420
Query: 421	TPSPSLPINPGISHEKHEEDGYGFDANRIIAEDESGFIMSHGNHNHYFFKKDLTEEQIKA	480
Sbjct: 421	TPSPSLPINPGISHEKHEEDGYGFDANRIIAEDESGFIMSHGNHNHYFFKKDLTEEQIKA	480
Query: 481	AQKHLEEVKTSHNGLDSLSSHEQDYPGNNAKEMKDLDKKIEEKIAGIMKQYGVKRESIVVN	540
Sbjct: 481	AQKHLEEVKTSHNGLDSLSSHEQDYPGNNAKEMKDLDKKIEEKIAGIMKQYGVKRESIVVN	540
Query: 541	KEKNAAIYPHGDDHHADPIDEHKPGVIGHSHSNYELFKPEEGVAKKEGNKVYTGEE	600
Sbjct: 541	KEKNAAIYPHGDDHHADPIDEHKPGVIGHSHSNYELFKPEEGVAKKEGNKVYTGEE	600
Query: 601	VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVKLEVKSGKVFG	660
Sbjct: 601	VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVKLEVKSGKVFG	660
Query: 661	EGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA	720
Sbjct: 661	EGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA	720

Query: 721 GDTYLRVNPQFAVPKGTDALVRVFDEPHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK 780
 GDTYLRVNPQFAVPKGTDALVRVFDEPHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK
 Sbjct: 721 GDTYLRVNPQFAVPKGTDALVRVFDEPHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK 780
 Sbjct: 721 GDTYLRVNPQFAVPKGTDALVRVFDEPHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK 780
 Query: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS 840
 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS
 Sbjct: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS 840
 Sbjct: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS 840
 Query: 841 EKVEKEKLSETGNSTSNSTLEEVPVDPVQEKFVAKFAESYGMKLENVLNFNMDGTIELYLP 900
 EKVEKEKLSETGNSTSNSTLEEVPVDPVQEKFVAKFAESYGMKLENVLNFNMDGTIELYLP
 Sbjct: 841 EKVEKEKLSETGNSTSNSTLEEVPVDPVQEKFVAKFAESYGMKLENVLNFNMDGTIELYLP 900
 Sbjct: 841 EKVEKEKLSETGNSTSNSTLEEVPVDPVQEKFVAKFAESYGMKLENVLNFNMDGTIELYLP 900
 Query: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960
 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP
 Sbjct: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960
 Sbjct: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960
 Query: 961 ENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKFVAKFAESYGMKLENVLNFNMDGTI 1020
 ENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKFVAKFAESYGMKLENVLNFNMDGTI
 Sbjct: 961 ENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKFVAKFAESYGMKLENVLNFNMDGTI 1020
 Sbjct: 961 ENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKFVAKFAESYGMKLENVLNFNMDGTI 1020
 Query: 1021 ELRLPSGEVIKKNLSDLIA 1039
 ELRLPSGEVIKKNLSDLIA
 Sbjct: 1021 ELRLPSGEVIKKNLSDLIA 1039

tr Q6WNQ7 Surface protein BVH-3 [bvh-3] [Streptococcus pneumoniae] 1039 AA align

Score = 2017 bits (5225), Expect = 0.0
 Identities = 1004/1039 (96%), Positives = 1004/1039 (96%)

Query: 1 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTPDQVS 60
 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTPDQVS
 Sbjct: 1 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTPDQVS 60
 Sbjct: 1 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTPDQVS 60
 Query: 61 QKEGIQAQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN 120
 QKEGIQAQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN
 Sbjct: 61 QKEGIQAQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN 120
 Sbjct: 61 QKEGIQAQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN 120
 Query: 121 EVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY 180
 EVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY
 Sbjct: 121 EVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY 180
 Sbjct: 121 EVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY 180
 Query: 181 TTNDGYVFPNPADIIEDTGNAYIVPHGGHYHYIPXXXXXXXXXXXXXXXXXXNMQPSQLS 240
 TTNDGYVFPNPADIIEDTGNAYIVPHGGHYHYIP NMQPSQLS
 Sbjct: 181 TTNDGYVFPNPADIIEDTGNAYIVPHGGHYHYIPKSDSLSELAAKAHLAGKNMQPSQLS 240
 Sbjct: 181 TTNDGYVFPNPADIIEDTGNAYIVPHGGHYHYIPKSDSLSELAAKAHLAGKNMQPSQLS 240
 Query: 241 YSSTASDNNTQSVAKGSTSXPANKSENLQSLLKELYDSPAQRYSEDGLVFDPAKIISR 300
 YSSTASDNNTQSVAKGSTSXPANKSENLQSLLKELYDSPAQRYSEDGLVFDPAKIISR
 Sbjct: 241 YSSTASDNNTQSVAKGSTSXPANKSENLQSLLKELYDSPAQRYSEDGLVFDPAKIISR 300
 Sbjct: 241 YSSTASDNNTQSVAKGSTSXPANKSENLQSLLKELYDSPAQRYSEDGLVFDPAKIISR 300
 Query: 301 TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEVVXXXXXXX 360
 TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEVV
 Sbjct: 301 TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEVVSSLGSLSSN 360
 Sbjct: 301 TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEVVSSLGSLSSN 360
 Query: 361 XXXXXXXXELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSQNQIGQPTLPNNSLA 420

KELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLA
 Sbjct: 361 PSSLTTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLA 420

Query: 421 TPSPLPINPGISHEKHEEDGYGFDANRIIAEDESGFIMSHGNHNHYFFKKDLTEEQIKA 480
 TPSPLPINPGISHEKHEEDGYGFDANRIIAEDESGFIMSHGNHNHYFFKKDLTEEQIKA
 Sbjct: 421 TPSPLPINPGISHEKHEEDGYGFDANRIIAEDESGFIMSHGNHNHYFFKKDLTEEQIKA 480

Query: 481 AQKHLEEVKTSHNGLDSLSSHEQDYPGNAKEMKLDKKIEEKIAGIMKQYGVKRESIVVN 540
 AQKHLEEVKTSHNGLDSLSSHEQDYPGNAKEMKLDKKIEEKIAGIMKQYGVKRESIVVN
 Sbjct: 481 AQKHLEEVKTSHNGLDSLSSHEQDYPGNAKEMKLDKKIEEKIAGIMKQYGVKRESIVVN 540

Query: 541 KEKNAAIYPHGDHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV 600
 KEKNAAIYPHGDHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV
 Sbjct: 541 KEKNAAIYPHGDHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV 600

Query: 601 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVLEKVSGKVFG 660
 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVLEKVSGKVFG
 Sbjct: 601 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVLEKVSGKVFG 660

Query: 661 EGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA 720
 EGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA
 Sbjct: 661 EGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA 720

Query: 721 GDTYLRVNPQFAVPKGTDALVRVDEFHGNAYLENNYKVGEIKLPIPKLNQGTTRTAGNK 780
 GDTYLRVNPQFAVPKGTDALVRVDEFHGNAYLENNYKVGEIKLPIPKLNQGTTRTAGNK
 Sbjct: 721 GDTYLRVNPQFAVPKGTDALVRVDEFHGNAYLENNYKVGEIKLPIPKLNQGTTRTAGNK 780

Query: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS 840
 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS
 Sbjct: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS 840

Query: 841 EKVEKEKLSETGNSTSNSTLEEVPTVDPVQEKFVAKFAESYGMKLENVLNFNMDGTIELYLP 900
 EKVEKEKLSETGNSTSNSTLEEVPTVDPVQEKFVAKFAESYGMKLENVLNFNMDGTIELYLP
 Sbjct: 841 EKVEKEKLSETGNSTSNSTLEEVPTVDPVQEKFVAKFAESYGMKLENVLNFNMDGTIELYLP 900

Query: 901 SGEVIKKNMADFTGEAPQGNENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960
 SGEVIKKNMADFTGEAPQGNENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP
 Sbjct: 901 SGEVIKKNMADFTGEAPQGNENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960

Query: 961 ENSTDNGMLNPEGNVGSDPMMDPALEEAPAVDPVQEKFVAKFAESYGMKLENVLNFNMDGTI 1020
 ENSTDNGMLNPEGNVGSDPMMDPALEEAPAVDPVQEKFVAKFAESYGMKLENVLNFNMDGTI
 Sbjct: 961 ENSTDNGMLNPEGNVGSDPMMDPALEEAPAVDPVQEKFVAKFAESYGMKLENVLNFNMDGTI 1020

Query: 1021 ELRLPSGEVIKKNLSDLIA 1039
 ELRLPSGEVIKKNLSDLIA
 Sbjct: 1021 ELRLPSGEVIKKNLSDLIA 1039

tr Q9ANY1 Pneumococcal histidine triad protein E precursor
 (Hypothetical
 protein SP1004) [phtE] [Streptococcus pneumoniae] 1039
 AA
align

Score = 2006 bits (5196), Expect = 0.0
 Identities = 998/1039 (96%), Positives = 1000/1039 (96%)

Query: 1 MKFSKKYIAAGSAIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTPDQVS 60

Sbjct: 1 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTPDQVS
 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTPDQVS 60

 Query: 61 QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMDPQYQLKDADIVN 120
 QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMDPQYQLKDADIVN
 Sbjct: 61 QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMDPQYQLKDADIVN 120

 Query: 121 EVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY 180
 EVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY
 Sbjct: 121 EVKGGYIIKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY 180

 Query: 181 TTNDGYVFNPADIIEDTGNAYIVPHGGHYHYIPXXXXXXXXXXXXXXXXXXXX 240
 TTNDGYVFNPADIIEDTGNAYIVPHGGHYHYIP NMQPSQLS
 Sbjct: 181 TTNDGYVFNPADIIEDTGNAYIVPHGGHYHYIPKSDSLSELAAAKAHLAGKNMQPSQLS 240

 Query: 241 YSSTASDNNTQSVAKGSTSKPANKSENLSQSLKELYDSPAQRYSSESDGLVFDPAKIISR 300
 YSSTASDNNTQSVAKGSTSKPANKSENLSQSLKELYDSPAQRYSSESDGLVFDPAKIISR
 Sbjct: 241 YSSTASDNNTQSVAKGSTSKPANKSENLSQSLKELYDSPAQRYSSESDGLVFDPAKIISR 300

 Query: 301 TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPIISGTGSTVSTNAKPNEVVXXXXXX 360
 TPNGVAIPHGDHYHFIPYSKLSALEEKIAR VPIISGTGSTVSTNAKPNEVV
 Sbjct: 301 TPNGVAIPHGDHYHFIPYSKLSALEEKIARMVPIISGTGSTVSTNAKPNEVVSSLSSN 360

 Query: 361 XXXXXXXXKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLA 420
 KELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLA
 Sbjct: 361 PSSLTTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLA 420

 Query: 421 TPSPLPINPGISHEKHEEDGYGF DANRIIAEDESGFIMSHGNHNHYFFKDLTEEQIKA 480
 TPSPLPINPG SHEKHEEDGYGF DANRIIAEDESGF+MSHG+HNHYFFKDLTEEQIKA
 Sbjct: 421 TPSPLPINPGTSHEKHEEDGYGF DANRIIAEDESGFVMSHGDNHYFFKDLTEEQIKA 480

 Query: 481 AQKHLEEVKTSHNGLDSLSSHEQDYPGNNAKEMKDLDDKIEEKIAGIMKQYGVKRESIVVN 540
 AQKHLEEVKTSHNGLDSLSSHEQDYP NAKEMKDLDDKIEEKIAGIMKQYGVKRESIVVN
 Sbjct: 481 AQKHLEEVKTSHNGLDSLSSHEQDYPNSNAKEMKDLDDKIEEKIAGIMKQYGVKRESIVVN 540

 Query: 541 KEKNAAIYPHGDHHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV 600
 KEKNAAIYPHGDHHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV
 Sbjct: 541 KEKNAAIYPHGDHHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV 600

 Query: 601 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVLEKVGKVFG 660
 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVLEKVGKVFG
 Sbjct: 601 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGVLEKVGKVFG 660

 Query: 661 EGVGNIANFELDQPYLPGQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA 720
 EGVGNIANFELDQPYLPGQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA
 Sbjct: 661 EGVGNIANFELDQPYLPGQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA 720

 Query: 721 GDTYLRVNPQFAVPKGTDALVRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK 780
 GDTYLRVNPQFAVPKGTDALVRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK
 Sbjct: 721 GDTYLRVNPQFAVPKGTDALVRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK 780

 Query: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS 840
 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQEN KLDEKVEEPKTS
 Sbjct: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENKLDEKVEEPKTS 840

 Query: 841 EKVEKEKLSETGNSTSNSTLEEVPDVQEKVAKFAESYGMKLENVLNFNMDGTIELYLP 900
 EKVEKEKLSETGNSTSNSTLEEVPDVQEKVAKFAESYGMKLENVLNFNMDGTIELYLP
 Sbjct: 841 EKVEKEKLSETGNSTSNSTLEEVPDVQEKVAKFAESYGMKLENVLNFNMDGTIELYLP 900

Query: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960
 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP
 Sbjct: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKP 960

Query: 961 ENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKKLEKFTASYGLGLDSVIFNMDGTI 1020
 ENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKKLEKFTASYGLGLDSVIFNMDGTI
 Sbjct: 961 ENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKKLEKFTASYGLGLDSVIFNMDGTI 1020

Query: 1021 ELRLPSGEVIKKNLSDLIA 1039
 ELRLPSGEVIKKNLSDLIA
 Sbjct: 1021 ELRLPSGEVIKKNLSDLIA 1039

tr Q6WNQ5 Surface protein BVH-3 (Fragment) [bvh-3] [Streptococcus pneumoniae] 1019
 AA align

Score = 1968 bits (5099), Expect = 0.0
 Identities = 977/1019 (95%), Positives = 979/1019 (95%)

Query: 21 CAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVSQKEGIQAEQIVIKITDQGYV 80
 CAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVSQKEGIQAEQIVIKITDQGYV
 Sbjct: 1 CAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVSQKEGIQAEQIVIKITDQGYV 60

Query: 81 TSHGDHYHYANGKVPYDALFSEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYYVYLKD 140
 TSHGDHYHYANGKVPYDALFSEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYYVYLKD
 Sbjct: 61 TSHGDHYHYANGKVPYDALFSEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYYVYLKD 120

Query: 141 AAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRYTTNDGYVFNPADIIIEDTGNA 200
 AAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRYTTNDGYVFNPADIIIEDTGNA
 Sbjct: 121 AAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRYTTNDGYVFNPADIIIEDTGNA 180

Query: 201 YIVPHGGHYHYIPXXXXXXXXXXXXXXXXXNMQPSQLSYSSTASDNNTQSVAKGSTSK 260
 YIVPH GHYHYIP NMQPSQLSYSSTASDNNTQSVAKGSTSK
 Sbjct: 181 YIVPHRGHYHYIPKSDLSASELAAKAHLAGKQNMQPSQLSYSSTASDNNTQSVAKGSTSK 240

Query: 261 PANKSENLQSLLKELYDSPAQRYSSESDGLVFDPAKIISRTPNGVAIPHGDHYHFIPYSK 320
 PANKSENLQSLLKELYDSPAQRYSSESDGLVFDPAKIISRTPNGVAIPHGDHYHFIPYSK
 Sbjct: 241 PANKSENLQSLLKELYDSPAQRYSSESDGLVFDPAKIISRTPNGVAIPHGDHYHFIPYSK 300

Query: 321 LSALEEKIARRVPISGTGSTVSTNAKPNEVVXXXXXXXXXXXXXXKELSSASDGYIFN 380
 LSALEEKIAR VPISGTGSTVSTNAKPNEVV KELSSASDGYIFN
 Sbjct: 301 LSALEEKIARMVPISGTGSTVSTNAKPNEVVSSLGSLSSNPSSLTTSKELSSASDGYIFN 360

Query: 381 PKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLATPSPSLPIPNPGISHEKHEED 440
 PKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLATPSPSLPIPNPG SHEKHEED
 Sbjct: 361 PKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLATPSPSLPIPNPGTSHEKHEED 420

Query: 441 GYGF DANRIIAEDESGFIMSHGNHNHYFFKKDLTEEQIKAQKHLLEEVKTSHNGLDSLSS 500
 GYGF DANRIIAEDESGF+MSHG+HNHYFFKKDLTEEQIKAQKHLLEEVKTSHNGLDSLSS
 Sbjct: 421 GYGF DANRIIAEDESGFVMSHGDHNHYFFKKDLTEEQIKAQKHLLEEVKTSHNGLDSLSS 480

Query: 501 HEQDYPGNAKEMKLDKKIEEKIAGIMKQYGVKRESIVVNKEKNAAIYPHGDHHADPID 560
 HEQDYP NAKEMKLDKKIEEKIAGIMKQYGVKRESIVVNKEKNAAIYPHGDHHADPID
 Sbjct: 481 HEQDYP SNAKEMKLDKKIEEKIAGIMKQYGVKRESIVVNKEKNAAIYPHGDHHADPID 540

Query: 561 EHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNVVNLLKNSTFNNQNFTLANGQ 620
 EHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNVVNLLKNSTFNNQNFTLANGQ
 Sbjct: 541 EHKPVGIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNVVNLLKNSTFNNQNFTLANGQ 600

Query: 621 KRVSPSFPPPELEKKLGINMLVKLITPDGVKLEKVGKVFGEVGNIANFELDQPYPQQT 680
 KRVSPSFPPPELEKKLGINMLVKLITPDGVKLEKVGKVFGEVGNIANFELDQPYPQQT
 Sbjct: 601 KRVSPSFPPPELEKKLGINMLVKLITPDGVKLEKVGKVFGEVGNIANFELDQPYPQQT 660

Query: 681 FYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHAGDTYLRVNPQFAVPKGTDAL 740
 FYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHAGDTYLRVNPQFAVPKGTDAL
 Sbjct: 661 FYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHAGDTYLRVNPQFAVPKGTDAL 720

Query: 741 VRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNKIPVTFMANAYLDNQSTYIVE 800
 VRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNKIPVTFMANAYLDNQSTYIVE
 Sbjct: 721 VRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNKIPVTFMANAYLDNQSTYIVE 780

Query: 801 VPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTSEKVEKEKLSETGNSTSNSTL 860
 VPILEKENQTDKPSILPQFKRNKAQENSK DEKVEEPKTSEKVEKEKLSETGNSTSNSTL
 Sbjct: 781 VPILEKENQTDKPSILPQFKRNKAQENSKFDEKVEEPKTSEKVEKEKLSETGNSTSNSTL 840

Query: 861 EEVPTVDPVQEKAESYGMKLENVLFNMDGTIELYLPSGEVIKKNMADFTGEAPQGN 920
 EEVPTVDPVQEKAESYGMKLENVLFNMDGTIELYLPSGEVIKKNMADFTGEAPQGN
 Sbjct: 841 EEVPTVDPVQEKAESYGMKLENVLFNMDGTIELYLPSGEVIKKNMADFTGEAPQGN 900

Query: 921 GENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKENSTDNGMLNPEGNVGSDPM 980
 GENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKENSTDNGMLNPEGNVGSDPM
 Sbjct: 901 GENKPSENGKVSTGTVENQPTENKPADSLPEAPNEKPVKENSTDNGMLNPEGNVGSDPM 960

Query: 981 LDPALEEAPAVDPVQEKKFTASYGLGLDSVIFNMDGTIELRLPSGEVIKKNLSDLIA 1039
 LDPALEEAPAVDPVQEKKFTASYGLGLDSVIFNMDGTIELRLPSGEVIKKNLSDLIA
 Sbjct: 961 LDPALEEAPAVDPVQEKKFTASYGLGLDSVIFNMDGTIELRLPSGEVIKKNLSDLIA 1019

tr Q8CWR4 Histidine Motif-Containing protein [phpA] [Streptococcus pneumoniae (strain ATCC BAA-255 / R6)] 855
 AA align

Score = 442 bits (1137), Expect = e-122
 Identities = 219/369 (59%), Positives = 271/369 (73%), Gaps = 21/369 (5%)

Query: 1 MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVS 60
 MK +KKY+A A +V LS+CAY L H++Q K+NNRVSY+DG Q++QK+ENLTPD+VS
 Sbjct: 12 MKINKKYLGVATLV-LSVCAYELGLHQAQTVKENNRVSYIDGKQATQKTENLTPDEVS 70

Query: 61 QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADI 120
 ++EGI AEQIVIKITDQGYVTSHGDHYHYYNGKVPYDA+ SEELLMKDPNYQLKD DI++
 Sbjct: 71 KREGINAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDAIISEELLMKDPNYQLKDEDI 130

Query: 121 EVKGGYIIVKVDGKYYVYLKDAAHADNVRTKDEINRQKQBHVKDNE----KVNSNAVARS 176
 E+KGGY+IKVDGKYYVYLKDAAHADNVRTK+EINRQKQEH + E + + VA+ARS
 Sbjct: 131 EIKGGYVIKVDGKYYVYLKDAAHADNVRTKEEINRQKQEHSQHREGGTPRNDGAVALARS 190

Query: 177 QGRYTTNDGYVFNPADIIIEDTGNAYIVPHGGHYHYIPXXXXXXXXXXXXXNMQP 236
 QGRYTT+DGY+FN +DIIEDTG+AYIVPHG HYHYIP
 Sbjct: 191 QGRYTTDDGYIFNASDIIIEDTGDAYIVPHGDHYHYIPKNELSASEAAKAFLSGRGNLS 250

Figure 5**A. Full-length Sp36****B. N-terminus****C. C-terminus**

[ExPASy Home page](#)[Site Map](#)[Search ExPASy](#)[Contact us](#)[Swiss-Prot](#)Search for

UniProtKB/TrEMBL

entry Q9ANY1

[Printer-friendly view](#)
[Request update](#)
Q
[\[Entry info\]](#)
[\[Name and origin\]](#)
[\[References\]](#)
[\[Comments\]](#)
[\[Cross-references\]](#)
[\[Keywords\]](#)

[\[Features\]](#)
[\[Sequence\]](#)
[\[Tools\]](#)

Note: most headings are clickable, even if they don't appear as links. They link to the user manual or other documents.

Entry information

Entry name	Q9ANY1_STRPN
Primary accession number	Q9ANY1
Secondary accession number	Q7D4B6
Entered in TrEMBL in	Release 17, June 2001
Sequence was last modified in	Release 17, June 2001
Annotations were last modified in	Release 30, May 2005

Name and origin of the protein

Protein name **Pneumococcal histidine triad protein E [Precursor]**

Synonym **Hypothetical protein SP1004**

Gene name **Name: phtE**

OrderedLocusNames: SP1004

From **Streptococcus pneumoniae [TaxID: 1313]**

Taxonomy **Bacteria; Firmicutes; Lactobacillales; Streptococcaceae; Streptococcus.**

References

[1] NUCLEOTIDE SEQUENCE

DOI=10.1128/IAI.69.2.949-958.2001; PubMed=11159990 [NCBI, ExPASy, EBI, Israel, Japan]

Adamou J.E., Heinrichs J.H., Erwin A.L., Walsh W., Gayle T., Dormitzer M., Dagan R., Brewah Y.A., Barren P., Lathigra R., Langermann S., Koenig S., Johnson S.;

"Identification and characterization of a novel family of pneumococcal proteins (the Pht family) that are protective against sepsis.";

Infect. Immun. 69:949-958(2001).

[2] NUCLEOTIDE SEQUENCE

STRAIN=ATCC BAA-334 / TIGR4;

DOI=10.1126/science.1061217; PubMed=11463916 [NCBI, ExPASy, EBI, Israel, Japan]

Tettelin H., Nelson K.E., Paulsen I.T., Eisen J.A., Read T.D., Peterson S.N., Heidelberg J.F., DeBoy R.T., Haft D.H., Dodson R.J., Durkin A.S., Gwinn M.L., Kolonay J.F., Nelson W.C., Peterson J.D., Umayam L.A., White O., Salzberg S.L., Lewis M.R., Fraser C.M.;

"Complete genome sequence of a virulent isolate of *Streptococcus pneumoniae*.";

Science 293:498-506(2001).

Comments

None

Cross-references

AF318956; AAK06761.1; -;
Genomic_DNA.

[EMBL / GenBank / DDBJ]
[CoCodingSequence]

EMBL	AE007403; AAK75121.1; -; Genomic_DNA.	[EMBL / GenBank / DDBJ] [CoCodingSequence]
PIR	H95115; H95115.	
TIGR	SP1004; -.	
InterPro	IPR006270; Strep_his_triad. Graphical view of domain structure.	
Pfam	PF04270; Strep_his_triad; 5. Pfam graphical view of domain structure.	
TIGRFAMs	TIGR01363; strep_his_triad; 3.	
ProDom	[Domain structure / List of seq. sharing at least 1 domain]	
HOGENOM	[Family / Alignment / Tree]	
ProtoMap	Q9ANY1.	
PRESAGE	Q9ANY1.	
ModBase	Q9ANY1.	
SWISS-2DPAGE	Get region on 2D PAGE.	
UniRef	View cluster of proteins with at least 50% / 90% identity.	

Keywords**Complete proteome; Hypothetical protein; Signal.****Features**

Feature table viewer

Key	From	To	Length	Description
SIGNAL	1	29	29	Potential.

Sequence information

Length: 1039 Molecular weight: 114631 CRC64: 81A563FC806625C4 [This is a checksum on the AA sequence]

10	20	30	40	50	60
MKFSSKKYIAA	GSAVIVSLSL	CAYALNQHRS	QENKDNNRVS	YVDGSQSSQK	SENLTTPDQVS
70	80	90	100	110	120
QKEGIQAEQI	VIKITDQGYV	TSHGDHYHYY	NGKVPYDALF	SEELLMKDPN	YQLKDADIVN
130	140	150	160	170	180
EVKGGYIIKV	DGKYYVYLKD	AAHADNVRTK	DEINRQKQEH	VKDNEKVNSN	VAVARSQGRY
190	200	210	220	230	240
TTNDGYVFNP	ADIIIEDTGNA	YIVPHGGHYH	YIPKSDLSAS	ELAAAAKHLA	GKNMQPSQLS
250	260	270	280	290	300
YSSTASDNNT	QSVAKGSTSK	PANKSENLQS	LLKELYDSPS	AQRYSSESDGL	VFDPAKIISR
310	320	330	340	350	360
TPNGVAIPHG	DHYHFIPYSK	LSALEEKIAR	MVPISGTGST	VSTNAKPNEV	VSSLGSISSLN
370	380	390	400	410	420
PSSLTTSKEL	SSASDGYIFN	PKDIVEETAT	AYIVRHGDHF	HYIPKSNQIG	QPTLPNNSLA
430	440	450	460	470	480

TPSPSLPINP GTSHEKHEED GYGF DANRII AEDE SGFVMS HGDHNHYFFK KDLTEEQIKA
 490 500 510 520 530 540
 AQKHLEEVKT SHNGLDSLSS HEQD YPSNAK EMKD LDKKIE EKIAGIMKQY GVKR ESIVVN
 550 560 570 580 590 600
 KEKNAI IYPH GDHHHADPID EH KPVGIGH S HSNYEL FKPE EGVAKKEGNK VYTGEEL TNV
 610 620 630 640 650 660
 VNLLKNSTFN NQNFTL LANGQ KRVSF SFPPE LEKK LGINML VKLITPDGKV LEKVSG KVFG
 670 680 690 700 710 720
 EGVGNIANFE LDQPYLPQQT FKYTIASKDY PEVSYDGTFT VPTSLAYKMA SQTIFYPFHA
 730 740 750 760 770 780
 GDTYL RVNPQ FAVPK GTDAL VRVFDEFHGN AYLENNYKVG EIKLPIPKLN QGTT RTAGNK
 790 800 810 820 830 840
 IPVT FMANAY LDNQ STYIVE VPILEKENQT DKPSIL PQFK RNKAQENLKL DEKVEE PKTS
 850 860 870 880 890 900
 EKVEKEKLSE TGNSTS NSTL EEVPTVDPVQ EKVAKFAES Y GMKLEN VL FN MDGTIELY LP
 910 920 930 940 950 960
 SGEVIKKN MA DFTGEAPQGN GENKP SEENGK VSTGTVENQP TENKP ADSLP EAPNEK PVKP
 970 980 990 1000 1010 1020
 ENSTDNGMLN PEGNVGSDPM LDPALEEAPA VDPVQE KLEK FTASYGL GLD SVIFNMDGTI
 1030
 ELRLPSGEVI KKNLSDLIA

Q9ANY1 in FASTA
format

[View entry in original UniProtKB/TrEMBL format](#)

[View entry in raw text format \(no links\)](#)

[Request for annotation of this UniProtKB/TrEMBL entry](#)

BLAST	BLAST submission on ExPASy/SIB or at NCBI (USA)		Sequence analysis tools: ProtParam, ProtScale, Compute pI/Mw, PeptideMass, PeptideCutter, Dotlet (Java)
	ScanProsite, MotifScan		Submit a homology modeling request to SWISS-MODEL
	NPSA Sequence analysis tools		

 [ExPASy Home page](#) [Site Map](#) [Search ExPASy](#) [Contact us](#) [Swiss-Prot](#)

Hosted by NHRI Taiwan Mirror sites: Australia Brazil Canada Korea Switzerland USA

tr Q9ANY1	Pneumococcal histidine triad protein E precursor	1039
Q9ANY1_STRPN	(Hypothetical	AA
	protein SP1004) [phtE] [Streptococcus pneumoniae]	<u>align</u>

Score = 2006 bits (5196), Expect = 0.0
 Identities = 998/1039 (96%), Positives = 1000/1039 (96%)

Query: 1	MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLT	PDQVS 60
	MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLT	PDQVS
Sbjct: 1	MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLT	PDQVS 60
Query: 61	QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMDP	NQQLKDADIVN 120
	QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMDP	NQQLKDADIVN
Sbjct: 61	QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMDP	NQQLKDADIVN 120
Query: 121	EVKGGYI1KVDGKYYVLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVAR	SQGRY 180
	EVKGGYI1KVDGKYYVLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVAR	SQGRY
Sbjct: 121	EVKGGYI1KVDGKYYVLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNVAVAR	SQGRY 180
Query: 181	TTNDGYVFNPADIIEDTGNAYIVPHGGHYHYIPKSDLSASELAAKAHLAGKNM	QPSQLS 240
	TTNDGYVFNPADIIEDTGNAYIVPHGGHYHYIPKSDLSASELAAKAHLAGKNM	QPSQLS
Sbjct: 181	TTNDGYVFNPADIIEDTGNAYIVPHGGHYHYIPKSDLSASELAAKAHLAGKNM	QPSQLS 240
Query: 241	YSSTASDNNTQSVAKGSTSKPANKSENLQSLKELYDPSAQRYS	ESDGLVFDPAKISR 300
	YSSTASDNNTQSVAKGSTSKPANKSENLQSLKELYDPSAQRYS	ESDGLVFDPAKISR
Sbjct: 241	YSSTASDNNTQSVAKGSTSKPANKSENLQSLKELYDPSAQRYS	ESDGLVFDPAKISR 300
Query: 301	TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTV	STNAKPNEVXXXXXXXXX 360
	TPNGVAIPHGDHYHFIPYSKLSALEEKIAR VP13GTGSTV	STNAKPNEV
Sbjct: 301	TPNGVAIPHGDHYHFIPYSKLSALEEKIARMVPISGTGSTV	STNAKPNEVSSLGSLSSN 360
Query: 361	XXXXXXXXKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKS	NQIGQPTLPNNSLA 420
	KELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKS	NQIGQPTLPNNSLA
Sbjct: 361	PSSLTTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKS	NQIGQPTLPNNSLA 420
Query: 421	TPSPSLPINPGISHEKHEEDGYGFDANRIIAEDESGFIMSHGNHN	YFFKKDLTEEQIKA 480
	TPSPSLPINPGISHEKHEEDGYGFDANRIIAEDESGF+MSHG+HN	YFFKKDLTEEQIKA
Sbjct: 421	TPSPSLPINPGTSHEKHEEDGYGFDANRIIAEDESGFVMSHDHN	YFFKKDLTEEQIKA 480
Query: 481	AQKHLÉEVKTSHNGLDSLSSHEQDYPGNAKEMKDLDKKIEEKIAGIM	KQYGVKRESIVVN 540
	AQKHLÉEVKTSHNGLDSLSSHEQDYPGNAKEMKDLDKKIEEKIAGIM	KQYGVKRESIVVN
Sbjct: 481	AQKHLÉEVKTSHNGLDSLSSHEQDYPNAKEMKDLDKKIEEKIAGIM	KQYGVKRESIVVN 540
Query: 541	KEKNAAIYPHGDHHADPIDEHKPGVIGHSHSNYELFKPEEGVAK	KEGNKVTGEELTNV 600
	KEKNAAIYPHGDHHADPIDEHKPGVIGHSHSNYELFKPEEGVAK	KEGNKVTGEELTNV
Sbjct: 541	KEKNAAIYPHGDHHADPIDEHKPGVIGHSHSNYELFKPEEGVAK	KEGNKVTGEELTNV 600
Query: 601	VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLG	INMLVKLITPDGVLEKVSGKVFG 660
	VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLG	INMLVKLITPDGVLEKVSGKVFG
Sbjct: 601	VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLG	INMLVKLITPDGVLEKVSGKVFG 660
Query: 661	EGVGNIANFELDQPYLPGQTFKYTIASKDYPEVSYDGTFTVPTSLAY	KMASQTIFYPFHA 720
	EGVGNIANFELDQPYLPGQTFKYTIASKDYPEVSYDGTFTVPTSLAY	KMASQTIFYPFHA
Sbjct: 661	EGVGNIANFELDQPYLPGQTFKYTIASKDYPEVSYDGTFTVPTSLAY	KMASQTIFYPFHA 720
Query: 721	GDTYLRLVNPQFAVPKGTDALRVFDEFHGNAYLENNYKVGEIKLPI	PKLNQGTTRAGNK 780
	GDTYLRLVNPQFAVPKGTDALRVFDEFHGNAYLENNYKVGEIKLPI	PKLNQGTTRAGNK
Sbjct: 721	GDTYLRLVNPQFAVPKGTDALRVFDEFHGNAYLENNYKVGEIKLPI	PKLNQGTTRAGNK 780

Query: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS 840
IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQEN KLDEKVEEPKTS
Sbjct: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENLKLDEKVEEPKTS 840

Query: 841 EKVEKEKLSETGNSTSNSTLEEVPTVDPVQEKVAKFAESYGMKLENVLNFNMDGTIELYLP 900
EKVEKEKLSETGNSTSNSTLEEVPTVDPVQEKVAKFAESYGMKLENVLNFNMDGTIELYLP
Sbjct: 841 EKVEKEKLSETGNSTSNSTLEEVPTVDPVQEKVAKFAESYGMKLENVLNFNMDGTIELYLP 900

Query: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENOPTENKPADSLPEAPNEKPVKP 960
SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENOPTENKPADSLPEAPNEKPVKP
Sbjct: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENOPTENKPADSLPEAPNEKPVKP 960

Query: 961 ENSTDNGMLNPEGNVGSDFMLDPALEEAPAVDPVQEKFASYGLGLDSVIFNMDGTI 1020
ENSTDNGMLNPEGNVGSDFMLDPALEEAPAVDPVQEKFASYGLGLDSVIFNMDGTI
Sbjct: 961 ENSTDNGMLNPEGNVGSDFMLDPALEEAPAVDPVQEKFASYGLGLDSVIFNMDGTI 1020

Query: 1021 ELRLPSGEVIKKNLSDLIA 1039
ELRLPSGEVIKKNLSDLIA
Sbjct: 1021 ELRLPSGEVIKKNLSDLIA 1039

tr Q8DQ07	Pneumococcal histidine triad protein E [phtE]	1039
Q8DQ07_STRR6	[Streptococcus pneumoniae (strain ATCC BAA-255 / R6)]	AA <u>align</u>

Score = 2017 bits (5225), Expect = 0.0
 Identities = 1004/1039 (96%), Positives = 1004/1039 (96%)

Query: 1	MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVS	60
	MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVS	
Sbjct: 1	MKFSKKYIAAGSAVIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQKSENLTQDQVS	60
Query: 61	QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN	120
	QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN	
Sbjct: 61	QKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALFSEELLMKDPNYQLKDADIVN	120
Query: 121	EVKGGYIICKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY	180
	EVKGGYIICKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY	
Sbjct: 121	EVKGGYIICKVDGKYYVYLKDAAHADNVRTKDEINRQKQEHVKDNEKVNSNAVARSQGRY	180
Query: 181	TTNDGYVFNPADIEDTGNAYIVPHGGHYHYIPXXXXXXXXXXXXXXXXXXXXMQPSQLS	240
	TTNDGYVFNPADIEDTGNAYIVPHGGHYHYIP	NMQPSQLS
Sbjct: 181	TTNDGYVFNPADIEDTGNAYIVPHGGHYHYIPKSDLSASELAAKAHLAGKNMQPSQLS	240
Query: 241	YSSTASDNNTQSVAKGSTSKPANKSENLQSLKELYDSPAQRYSedesGLVFDPAKIISR	300
	YSSTASDNNTQSVAKGSTSKPANKSENLQSLKELYDSPAQRYSedesGLVFDPAKIISR	
Sbjct: 241	YSSTASDNNTQSVAKGSTSKPANKSENLQSLKELYDSPAQRYSedesGLVFDPAKIISR	300
Query: 301	TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEVXXXXXXXXX	360
	TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEV	
Sbjct: 301	TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEVSSLGSSLSSN	360
Query: 361	XXXXXXXXKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLA	420
	KELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLA	
Sbjct: 361	PSSLTTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKSNQIGQPTLPNNSLA	420
Query: 421	TPSPSLPINPGISHEKHEEDGYGF DANRIIAEDESGFIMSHGNHNHYFFKKDLTEEQIKA	480
	TPSPSLPINPGISHEKHEEDGYGF DANRIIAEDESGFIMSHGNHNHYFFKKDLTEEQIKA	
Sbjct: 421	TPSPSLPINPGISHEKHEEDGYGF DANRIIAEDESGFIMSHGNHNHYFFKKDLTEEQIKA	480
Query: 481	AQKHLEEVKTSHNGLDSLSSHEQDYPGNAKEMKLDKKIEEKIAGIMKQYGVKRESIVVN	540
	AQKHLEEVKTSHNGLDSLSSHEQDYPGNAKEMKLDKKIEEKIAGIMKQYGVKRESIVVN	
Sbjct: 481	AQKHLEEVKTSHNGLDSLSSHEQDYPGNAKEMKLDKKIEEKIAGIMKQYGVKRESIVVN	540
Query: 541	KEKNAI IYPHGDHHADPIDEHKPGVIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV	600
	KEKNAI IYPHGDHHADPIDEHKPGVIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV	
Sbjct: 541	KEKNAI IYPHGDHHADPIDEHKPGVIGHSHSNYELFKPEEGVAKKEGNKVTGEELTNV	600
Query: 601	VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLG INMLVKLITPDGVLEKVSGKVFG	660
	VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLG INMLVKLITPDGVLEKVSGKVFG	
Sbjct: 601	VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLG INMLVKLITPDGVLEKVSGKVFG	660
Query: 661	EGVGNIANFELDQPYLPGQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA	720
	EGVGNIANFELDQPYLPGQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA	
Sbjct: 661	EGVGNIANFELDQPYLPGQTFKYTIASKDYPEVSYDGTFTVPTSLAYKMASQTIFYPFHA	720
Query: 721	GDTYLRVNPQFAVPKGTDALRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK	780
	GDTYLRVNPQFAVPKGTDALRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK	
Sbjct: 721	GDTYLRVNPQFAVPKGTDALRVFDEFHGNAYLENNYKVGEIKLPIPKLNQGTTAGNK	780

Query: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS 840
IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS
Sbjct: 781 IPVTFMANAYLDNQSTYIVEVPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTS 840

Query: 841 EKVEKEKLSETGNSTSNSTLEEVPTVDPVQEKVAKFAESYGMKLENVLNFNMDGTIELYLP 900
EKVEKEKLSETGNSTSNSTLEEVPTVDPVQEKVAKFAESYGMKLENVLNFNMDGTIELYLP
Sbjct: 841 EKVEKEKLSETGNSTSNSTLEEVPTVDPVQEKVAKFAESYGMKLENVLNFNMDGTIELYLP 900

Query: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENOPTENKPADSLPEAPNEKPVKP 960
SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENOPTENKPADSLPEAPNEKPVKP
Sbjct: 901 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENOPTENKPADSLPEAPNEKPVKP 960

Query: 961 ENSTDNGMLNPEGNVGSDEMLDPALEEAPAVDPVQEKFASYGLGLDSVIFNMDGTI 1020
ENSTDNGMLNPEGNVGSDEMLDPALEEAPAVDPVQEKFASYGLGLDSVIFNMDGTI
Sbjct: 961 ENSTDNGMLNPEGNVGSDEMLDPALEEAPAVDPVQEKFASYGLGLDSVIFNMDGTI 1020

Query: 1021 ELRLPSGEVIKKNLSDLIA 1039
ELRLPSGEVIKKNLSDLIA
Sbjct: 1021 ELRLPSGEVIKKNLSDLIA 1039

CLUSTAL W (1.74) multiple sequence alignment

```

tr|Q9ANY1|Q9ANY1_STRPN MKFSKKYIAAGSAIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQK
tr|Q8DQ07|Q8DQ07_STRR6 MKFSKKYIAAGSAIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQK
tr|Q6WNQ7|Q6WNQ7_STRPN MKFSKKYIAAGSAIVSLSLCAYALNQHRSQENKDNNRVSYVDGSQSSQK
tr|Q6WNQ5|Q6WNQ5_STRPN -----CAYALNQHRSQENKDNNRVSYVDGSQSSQK
*****  

tr|Q9ANY1|Q9ANY1_STRPN SENLTPDQVSQKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALF
tr|Q8DQ07|Q8DQ07_STRR6 SENLTPDQVSQKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALF
tr|Q6WNQ7|Q6WNQ7_STRPN SENLTPDQVSQKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALF
tr|Q6WNQ5|Q6WNQ5_STRPN SENLTPDQVSQKEGIQAEQIVIKITDQGYVTSHGDHYHYYNGKVPYDALF
*****  

tr|Q9ANY1|Q9ANY1_STRPN SEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYYVYLKDAAHADNVRTK
tr|Q8DQ07|Q8DQ07_STRR6 SEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYYVYLKDAAHADNVRTK
tr|Q6WNQ7|Q6WNQ7_STRPN SEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYYVYLKDAAHADNVRTK
tr|Q6WNQ5|Q6WNQ5_STRPN SEELLMKDPNYQLKDADIVNEVKGGYIIKVDGKYYVYLKDAAHADNVRTK
*****  

tr|Q9ANY1|Q9ANY1_STRPN DEINRQKQEHVKDNEKVNSNAVARSQGRYTTNDGYVFNPADIIEDTGNA
tr|Q8DQ07|Q8DQ07_STRR6 DEINRQKQEHVKDNEKVNSNAVARSQGRYTTNDGYVFNPADIIEDTGNA
tr|Q6WNQ7|Q6WNQ7_STRPN DEINRQKQEHVKDNEKVNSNAVARSQGRYTTNDGYVFNPADIIEDTGNA
tr|Q6WNQ5|Q6WNQ5_STRPN DEINRQKQEHVKDNEKVNSNAVARSQGRYTTNDGYVFNPADIIEDTGNA
*****  

tr|Q9ANY1|Q9ANY1_STRPN YIVPHGGHYHYIPKSDLSASELAAAKAHLAGKNMQPSQLSYSSSTASDNNT
tr|Q8DQ07|Q8DQ07_STRR6 YIVPHGGHYHYIPKSDLSASELAAAKAHLAGKNMQPSQLSYSSSTASDNNT
tr|Q6WNQ7|Q6WNQ7_STRPN YIVPHGGHYHYIPKSDLSASELAAAKAHLAGKNMQPSQLSYSSSTASDNNT
tr|Q6WNQ5|Q6WNQ5_STRPN YIVPHRGHYHYIPKSDLSASELAAAKAHLAGKNMQPSQLSYSSSTASDNNT
*****  

tr|Q9ANY1|Q9ANY1_STRPN QSVAKGSTSKPANKSENQSLLKELYDSPAQRYSES DGLVFDPAKIISR
tr|Q8DQ07|Q8DQ07_STRR6 QSVAKGSTSKPANKSENQSLLKELYDSPAQRYSES DGLVFDPAKIISR
tr|Q6WNQ7|Q6WNQ7_STRPN QSVAKGSTSKPANKSENQSLLKELYDSPAQRYSES DGLVFDPAKIISR
tr|Q6WNQ5|Q6WNQ5_STRPN QSVAKGSTSKPANKSENQSLLKELYDSPAQRYSES DGLVFDPAKIISR
*****  

tr|Q9ANY1|Q9ANY1_STRPN TPNGVAIPHGDHYHFIPYSKLSALEEKIARMVPISGTGSTVSTNAKPNEV
tr|Q8DQ07|Q8DQ07_STRR6 TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEV
tr|Q6WNQ7|Q6WNQ7_STRPN TPNGVAIPHGDHYHFIPYSKLSALEEKIARRVPISGTGSTVSTNAKPNEV
tr|Q6WNQ5|Q6WNQ5_STRPN TPNGVAIPHGDHYHFIPYSKLSALEEKIARMVPISGTGSTVSTNAKPNEV
*****  

tr|Q9ANY1|Q9ANY1_STRPN VSSLGSLSSNPSSLTTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHF
tr|Q8DQ07|Q8DQ07_STRR6 VSSLGSLSSNPSSLTTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHF
tr|Q6WNQ7|Q6WNQ7_STRPN VSSLGSLSSNPSSLTTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHF
tr|Q6WNQ5|Q6WNQ5_STRPN VSSLGSLSSNPSSLTTSKELSSASDGYIFNPKDIVEETATAYIVRHGDHF
*****  

tr|Q9ANY1|Q9ANY1_STRPN HYIPKSNQIGQPTLPNSLATPSPSLPINPGTSHEKHEEDGYGFDANRII
tr|Q8DQ07|Q8DQ07_STRR6 HYIPKSNQIGQPTLPNSLATPSPSLPINPGISHEKHEEDGYGFDANRII
tr|Q6WNQ7|Q6WNQ7_STRPN HYIPKSNQIGQPTLPNSLATPSPSLPINPGISHEKHEEDGYGFDANRII
tr|Q6WNQ5|Q6WNQ5_STRPN HYIPKSNQIGQPTLPNSLATPSPSLPINPGTSHEKHEEDGYGFDANRII
*****  

tr|Q9ANY1|Q9ANY1_STRPN AEDESGFVMSHGHDHNHYFFKKDLTEEQIKAAQKHLEEVKTSHNGLDSLSS
tr|Q8DQ07|Q8DQ07_STRR6 AEDESGFIMSHGNHNHYFFKKDLTEEQIKAAQKHLEEVKTSHNGLDSLSS
tr|Q6WNQ7|Q6WNQ7_STRPN AEDESGFIMSHGNHNHYFFKKDLTEEQIKAAQKHLEEVKTSHNGLDSLSS

```

tr|Q6WNQ5|Q6WNQ5_STRPN AEDESGFVMSHGDHNHYFFKSDLTEEQIKAAQKHLEEVKTSHNGLDSLSS
*****:*****:*****:*****:*****:*****:*****:*****:*****
tr|Q9ANY1|Q9ANY1_STRPN HEQDYPNAKEMKDLDKIEEKIAGIMKQYGVKRESIVVNKEKNAI IYPH
tr|Q8DQ07|Q8DQ07_STRR6 HEQDYPNAKEMKDLDKIEEKIAGIMKQYGVKRESIVVNKEKNAI IYPH
tr|Q6WNQ7|Q6WNQ7_STRPN HEQDYPNAKEMKDLDKIEEKIAGIMKQYGVKRESIVVNKEKNAI IYPH
tr|Q6WNQ5|Q6WNQ5_STRPN HEQDYPNAKEMKDLDKIEEKIAGIMKQYGVKRESIVVNKEKNAI IYPH
*****.*****:*****:*****:*****:*****:*****:*****:*****
tr|Q9ANY1|Q9ANY1_STRPN GDHHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNV
tr|Q8DQ07|Q8DQ07_STRR6 GDHHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNV
tr|Q6WNQ7|Q6WNQ7_STRPN GDHHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNV
tr|Q6WNQ5|Q6WNQ5_STRPN GDHHHADPIDEHKPVGIGHSHSNYELFKPEEGVAKKEGNKVYTGEELTNV
*****:*****:*****:*****:*****:*****:*****:*****
tr|Q9ANY1|Q9ANY1_STRPN VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGKV
tr|Q8DQ07|Q8DQ07_STRR6 VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGKV
tr|Q6WNQ7|Q6WNQ7_STRPN VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGKV
tr|Q6WNQ5|Q6WNQ5_STRPN VNLLKNSTFNNQNFTLANGQKRVSFSPPELEKKLGINMLVKLITPDGKV
*****:*****:*****:*****:*****:*****:*****:*****
tr|Q9ANY1|Q9ANY1_STRPN LEKVS GTKVFGEGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFT
tr|Q8DQ07|Q8DQ07_STRR6 LEKVS GTKVFGEGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFT
tr|Q6WNQ7|Q6WNQ7_STRPN LEKVS GTKVFGEGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFT
tr|Q6WNQ5|Q6WNQ5_STRPN LEKVS GTKVFGEGVGNIANFELDQPYLPQTFKYTIASKDYPEVSYDGTFT
*****:*****:*****:*****:*****:*****:*****:*****
tr|Q9ANY1|Q9ANY1_STRPN VPTSLAYKMASQTIFYPFHAGDTYL RVNPQFAVPKGTDALVRVFDEFGN
tr|Q8DQ07|Q8DQ07_STRR6 VPTSLAYKMASQTIFYPFHAGDTYL RVNPQFAVPKGTDALVRVFDEFGN
tr|Q6WNQ7|Q6WNQ7_STRPN VPTSLAYKMASQTIFYPFHAGDTYL RVNPQFAVPKGTDALVRVFDEFGN
tr|Q6WNQ5|Q6WNQ5_STRPN VPTSLAYKMASQTIFYPFHAGDTYL RVNPQFAVPKGTDALVRVFDEFGN
*****:*****:*****:*****:*****:*****:*****:*****
tr|Q9ANY1|Q9ANY1_STRPN AYLENNYKVGEIKLPIPKLNQGTTAGNKPVTFMANAYLDNQSTYIVE
tr|Q8DQ07|Q8DQ07_STRR6 AYLENNYKVGEIKLPIPKLNQGTTAGNKPVTFMANAYLDNQSTYIVE
tr|Q6WNQ7|Q6WNQ7_STRPN AYLENNYKVGEIKLPIPKLNQGTTAGNKPVTFMANAYLDNQSTYIVE
tr|Q6WNQ5|Q6WNQ5_STRPN AYLENNYKVGEIKLPIPKLNQGTTAGNKPVTFMANAYLDNQSTYIVE
*****:*****:*****:*****:*****:*****:*****:*****
tr|Q9ANY1|Q9ANY1_STRPN VPILEKENQTDKPSILPQFKRNKAQENLKLDEKVEEPKTSEKVEKEKLSE
tr|Q8DQ07|Q8DQ07_STRR6 VPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTSEKVEKEKLSE
tr|Q6WNQ7|Q6WNQ7_STRPN VPILEKENQTDKPSILPQFKRNKAQENSKLDEKVEEPKTSEKVEKEKLSE
tr|Q6WNQ5|Q6WNQ5_STRPN VPILEKENQTDKPSILPQFKRNKAQENSKFDEKVEEPKTSEKVEKEKLSE
*****:*****:*****:*****:*****:*****:*****:*****
tr|Q9ANY1|Q9ANY1_STRPN TGNSTSNSTLEEVTVDVQEKVAKFAESYGMKLENVLFNMDGTIELYLP
tr|Q8DQ07|Q8DQ07_STRR6 TGNSTSNSTLEEVTVDVQEKVAKFAESYGMKLENVLFNMDGTIELYLP
tr|Q6WNQ7|Q6WNQ7_STRPN TGNSTSNSTLEEVTVDVQEKVAKFAESYGMKLENVLFNMDGTIELYLP
tr|Q6WNQ5|Q6WNQ5_STRPN TGNSTSNSTLEEVTVDVQEKVAKFAESYGMKLENVLFNMDGTIELYLP
*****:*****:*****:*****:*****:*****:*****:*****
tr|Q9ANY1|Q9ANY1_STRPN SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLP
tr|Q8DQ07|Q8DQ07_STRR6 SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLP
tr|Q6WNQ7|Q6WNQ7_STRPN SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLP
tr|Q6WNQ5|Q6WNQ5_STRPN SGEVIKKNMADFTGEAPQGNGENKPSENGKVSTGTVENQPTENKPADSLP
*****:*****:*****:*****:*****:*****:*****:*****
tr|Q9ANY1|Q9ANY1_STRPN EAPNEKPVKPENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKLEK
tr|Q8DQ07|Q8DQ07_STRR6 EAPNEKPVKPENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKLEK
tr|Q6WNQ7|Q6WNQ7_STRPN EAPNEKPVKPENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKLEK

tr Q6WNQ5 Q6WNQ5_STRPN	EAPNEKPVKPENSTDNGMLNPEGNVGSDPMLDPALEEAPAVDPVQEKLEK *****
tr Q9ANY1 Q9ANY1_STRPN	FTASYGLGLDSVI FNMDGTIELRLPSGEVIKKNLSDLIA
tr Q8DQ07 Q8DQ07_STRR6	FTASYGLGLDSVI FNMDGTIELRLPSGEVIKKNLSDLIA
tr Q6WNQ7 Q6WNQ7_STRPN	FTASYGLGLDSVI FNMDGTIELRLPSGEVIKKNLSDLIA
tr Q6WNQ5 Q6WNQ5_STRPN	FTASYGLGLDSVI FNMDGTIELRLPSGEVIKKNLSDLIA *****

PileUp

MSF: 1039 Type: P Check: 304 ..

Name: tr|Q9ANY1|Q9ANY1_STRPN oo Len: 1039 Check: 9358 Weight: 0.100
 Name: tr|Q8DQ07|Q8DQ07_STRR6 oo Len: 1039 Check: 8867 Weight: 0.100
 Name: tr|Q6WNQ7|Q6WNQ7_STRPN oo Len: 1039 Check: 8867 Weight: 0.100
 Name: tr|Q6WNQ5|Q6WNQ5_STRPN oo Len: 1039 Check: 3212 Weight: 0.100

//

tr|Q9ANY1|Q9ANY1_STRPN MKFSKKYIAA GSAVIVSLSL CAYALNQHRS QENKDNNRVS YVDGSQSSQK
 tr|Q8DQ07|Q8DQ07_STRR6 MKFSKKYIAA GSAVIVSLSL CAYALNQHRS QENKDNNRVS YVDGSQSSQK
 tr|Q6WNQ7|Q6WNQ7_STRPN MKFSKKYIAA GSAVIVSLSL CAYALNQHRS QENKDNNRVS YVDGSQSSQK
 tr|Q6WNQ5|Q6WNQ5_STRPN CAYALNQHRS QENKDNNRVS YVDGSQSSQK

tr|Q9ANY1|Q9ANY1_STRPN SENLTPDQVS QKEGIQAEQI VIKITDQGYV TSHGDHYHY NGKVPYDALF
 tr|Q8DQ07|Q8DQ07_STRR6 SENLTPDQVS QKEGIQAEQI VIKITDQGYV TSHGDHYHY NGKVPYDALF
 tr|Q6WNQ7|Q6WNQ7_STRPN SENLTPDQVS QKEGIQAEQI VIKITDQGYV TSHGDHYHY NGKVPYDALF
 tr|Q6WNQ5|Q6WNQ5_STRPN SENLTPDQVS QKEGIQAEQI VIKITDQGYV TSHGDHYHY NGKVPYDALF

tr|Q9ANY1|Q9ANY1_STRPN SEELLMKDPN YQLKDADIVN EVKGGYIICK DGKYYVYLKD AAHADNVRTK
 tr|Q8DQ07|Q8DQ07_STRR6 SEELLMKDPN YQLKDADIVN EVKGGYIICK DGKYYVYLKD AAHADNVRTK
 tr|Q6WNQ7|Q6WNQ7_STRPN SEELLMKDPN YQLKDADIVN EVKGGYIICK DGKYYVYLKD AAHADNVRTK
 tr|Q6WNQ5|Q6WNQ5_STRPN SEELLMKDPN YQLKDADIVN EVKGGYIICK DGKYYVYLKD AAHADNVRTK

tr|Q9ANY1|Q9ANY1_STRPN DEINRQKQEH VKDNEKVNSN VAVARSQGRY TTNDGYVFNP ADIIIEDTGNA
 tr|Q8DQ07|Q8DQ07_STRR6 DEINRQKQEH VKDNEKVNSN VAVARSQGRY TTNDGYVFNP ADIIIEDTGNA
 tr|Q6WNQ7|Q6WNQ7_STRPN DEINRQKQEH VKDNEKVNSN VAVARSQGRY TTNDGYVFNP ADIIIEDTGNA
 tr|Q6WNQ5|Q6WNQ5_STRPN DEINRQKQEH VKDNEKVNSN VAVARSQGRY TTNDGYVFNP ADIIIEDTGNA

tr|Q9ANY1|Q9ANY1_STRPN YIVPHGGHYH YIPKSDLSAS ELAAAKAHLA GKNMQPSQLS YSSTASDNNT
 tr|Q8DQ07|Q8DQ07_STRR6 YIVPHGGHYH YIPKSDLSAS ELAAAKAHLA GKNMQPSQLS YSSTASDNNT
 tr|Q6WNQ7|Q6WNQ7_STRPN YIVPHGGHYH YIPKSDLSAS ELAAAKAHLA GKNMQPSQLS YSSTASDNNT
 tr|Q6WNQ5|Q6WNQ5_STRPN YIVPHRGHYH YIPKSDLSAS ELAAAKAHLA GKNMQPSQLS YSSTASDNNT

tr|Q9ANY1|Q9ANY1_STRPN QSVAKGSTSK PANKSENLQS LLKELYDSPS AQRYSSESDGL VFDPAKIISR
 tr|Q8DQ07|Q8DQ07_STRR6 QSVAKGSTSK PANKSENLQS LLKELYDSPS AQRYSSESDGL VFDPAKIISR
 tr|Q6WNQ7|Q6WNQ7_STRPN QSVAKGSTSK PANKSENLQS LLKELYDSPS AQRYSSESDGL VFDPAKIISR
 tr|Q6WNQ5|Q6WNQ5_STRPN QSVAKGSTSK PANKSENLQS LLKELYDSPS AQRYSSESDGL VFDPAKIISR

tr|Q9ANY1|Q9ANY1_STRPN TPNGVAIPHG DHYHFIPYSK LSALEEKIAR MVPISGTGST VSTNAKPNEV
 tr|Q8DQ07|Q8DQ07_STRR6 TPNGVAIPHG DHYHFIPYSK LSALEEKIAR RVPISGTGST VSTNAKPNEV
 tr|Q6WNQ7|Q6WNQ7_STRPN TPNGVAIPHG DHYHFIPYSK LSALEEKIAR RVPISGTGST VSTNAKPNEV
 tr|Q6WNQ5|Q6WNQ5_STRPN TPNGVAIPHG DHYHFIPYSK LSALEEKIAR MVPISGTGST VSTNAKPNEV

tr|Q9ANY1|Q9ANY1_STRPN VSSLGSLSSN PSSLTTSKEL SSASDGYIFN PKDIVEETAT AYIVRHGDHF
 tr|Q8DQ07|Q8DQ07_STRR6 VSSLGSLSSN PSSLTTSKEL SSASDGYIFN PKDIVEETAT AYIVRHGDHF
 tr|Q6WNQ7|Q6WNQ7_STRPN VSSLGSLSSN PSSLTTSKEL SSASDGYIFN PKDIVEETAT AYIVRHGDHF

tr|Q6WNQ5|Q6WNQ5_STRPN

VSSLGSLSN PSSLTSKEL SSASDGYIFN PKDIVEETAT AYIVRHGDHF

tr|Q9ANY1|Q9ANY1_STRPN
tr|Q8DQ07|Q8DQ07_STRR6
tr|Q6WNQ7|Q6WNQ7_STRPN
tr|Q6WNQ5|Q6WNQ5_STRPNHYIPKSNQIG QPTLPNNSLA TPSPLPINP GTSHEKHEED GYGF DANRII
HYIPKSNQIG QPTLPNNSLA TPSPLPINP GISHEKHEED GYGF DANRII
HYIPKSNQIG QPTLPNNSLA TPSPLPINP GISHEKHEED GYGF DANRII
HYIPKSNQIG QPTLPNNSLA TPSPLPINP GTSHEKHEED GYGF DANRIItr|Q9ANY1|Q9ANY1_STRPN
tr|Q8DQ07|Q8DQ07_STRR6
tr|Q6WNQ7|Q6WNQ7_STRPN
tr|Q6WNQ5|Q6WNQ5_STRPNAEDESGFVMS HGDHNHYFFK KDLTEEQIKA AQKHLEEVKT SHNGLDSLSS
AEDESGFIMS HGNHNHYFFK KDLTEEQIKA AQKHLEEVKT SHNGLDSLSS
AEDESGFIMS HGNHNHYFFK KDLTEEQIKA AQKHLEEVKT SHNGLDSLSS
AEDESGFVMS HGDHNHYFFK KDLTEEQIKA AQKHLEEVKT SHNGLDSLSStr|Q9ANY1|Q9ANY1_STRPN
tr|Q8DQ07|Q8DQ07_STRR6
tr|Q6WNQ7|Q6WNQ7_STRPN
tr|Q6WNQ5|Q6WNQ5_STRPNHEQDYPNAK EMKDLDKKIE EKIAGIMKQY GVKR ESIVVN KEKNAAIYPH
HEQDYPNAK EMKDLDKKIE EKIAGIMKQY GVKR ESIVVN KEKNAAIYPH
HEQDYPNAK EMKDLDKKIE EKIAGIMKQY GVKR ESIVVN KEKNAAIYPH
HEQDYPNAK EMKDLDKKIE EKIAGIMKQY GVKR ESIVVN KEKNAAIYPHtr|Q9ANY1|Q9ANY1_STRPN
tr|Q8DQ07|Q8DQ07_STRR6
tr|Q6WNQ7|Q6WNQ7_STRPN
tr|Q6WNQ5|Q6WNQ5_STRPNGDHHHADPID EH KPVGIGHS HSNYELFKPE EGVA KKEGNK VYTGEELTNV
GDHHHADPID EH KPVGIGHS HSNYELFKPE EGVA KKEGNK VYTGEELTNV
GDHHHADPID EH KPVGIGHS HSNYELFKPE EGVA KKEGNK VYTGEELTNV
GDHHHADPID EH KPVGIGHS HSNYELFKPE EGVA KKEGNK VYTGEELTNVtr|Q9ANY1|Q9ANY1_STRPN
tr|Q8DQ07|Q8DQ07_STRR6
tr|Q6WNQ7|Q6WNQ7_STRPN
tr|Q6WNQ5|Q6WNQ5_STRPNVNLLKNSTFN NQNFTLANGQ KRVSFSFPPE LEKKLG INML VKLITPDGKV
VNLLKNSTFN NQNFTLANGQ KRVSFSFPPE LEKKLG INML VKLITPDGKV
VNLLKNSTFN NQNFTLANGQ KRVSFSFPPE LEKKLG INML VKLITPDGKV
VNLLKNSTFN NQNFTLANGQ KRVSFSFPPE LEKKLG INML VKLITPDGKVtr|Q9ANY1|Q9ANY1_STRPN
tr|Q8DQ07|Q8DQ07_STRR6
tr|Q6WNQ7|Q6WNQ7_STRPN
tr|Q6WNQ5|Q6WNQ5_STRPNLEKVSGK VFG EGV GNIANFE LDQPYLPGQT FKYTIASKDY PEVSYDGTFT
LEKVSGK VFG EGV GNIANFE LDQPYLPGQT FKYTIASKDY PEVSYDGTFT
LEKVSGK VFG EGV GNIANFE LDQPYLPGQT FKYTIASKDY PEVSYDGTFT
LEKVSGK VFG EGV GNIANFE LDQPYLPGQT FKYTIASKDY PEVSYDGTFTtr|Q9ANY1|Q9ANY1_STRPN
tr|Q8DQ07|Q8DQ07_STRR6
tr|Q6WNQ7|Q6WNQ7_STRPN
tr|Q6WNQ5|Q6WNQ5_STRPNVPTSLAYKMA SQTIFYPFHA GDTYL RVNPQ FAVPK GTDAL VRVFDEFHGN
VPTSLAYKMA SQTIFYPFHA GDTYL RVNPQ FAVPK GTDAL VRVFDEFHGN
VPTSLAYKMA SQTIFYPFHA GDTYL RVNPQ FAVPK GTDAL VRVFDEFHGN
VPTSLAYKMA SQTIFYPFHA GDTYL RVNPQ FAVPK GTDAL VRVFDEFHGNtr|Q9ANY1|Q9ANY1_STRPN
tr|Q8DQ07|Q8DQ07_STRR6
tr|Q6WNQ7|Q6WNQ7_STRPN
tr|Q6WNQ5|Q6WNQ5_STRPNAYLENNYKVG EIKLPIPKLN QGTTR TAGNK IPVT FMANAY LDNQ STYIVE
AYLENNYKVG EIKLPIPKLN QGTTR TAGNK IPVT FMANAY LDNQ STYIVE
AYLENNYKVG EIKLPIPKLN QGTTR TAGNK IPVT FMANAY LDNQ STYIVE
AYLENNYKVG EIKLPIPKLN QGTTR TAGNK IPVT FMANAY LDNQ STYIVEtr|Q9ANY1|Q9ANY1_STRPN
tr|Q8DQ07|Q8DQ07_STRR6
tr|Q6WNQ7|Q6WNQ7_STRPN
tr|Q6WNQ5|Q6WNQ5_STRPNVPILEKENQT DKPSIL PQFK RNKAQENLKL DEKVEE PKTS EKVEKEKLSE
VPILEKENQT DKPSIL PQFK RNKAQENS KL DEKVEE PKTS EKVEKEKLSE
VPILEKENQT DKPSIL PQFK RNKAQENS KL DEKVEE PKTS EKVEKEKLSE
VPILEKENQT DKPSIL PQFK RNKAQENS KF DEKVEE PKTS EKVEKEKLSEtr|Q9ANY1|Q9ANY1_STRPN
tr|Q8DQ07|Q8DQ07_STRR6
tr|Q6WNQ7|Q6WNQ7_STRPNTGNSTS NSTL EEVPTVDPVQ EKVA KFAESY GMKLEN VLFN MDGTIELYLP
TGNSTS NSTL EEVPTVDPVQ EKVA KFAESY GMKLEN VLFN MDGTIELYLP
TGNSTS NSTL EEVPTVDPVQ EKVA KFAESY GMKLEN VLFN MDGTIELYLP

tr Q6WNQ5 Q6WNQ5_STRPN	TGNSTSNTL EEVPTVDPVQ EKVAKFAESY GMKLENVLFN MDGTIELYLP
tr Q9ANY1 Q9ANY1_STRPN	SGEVIKKNMA DFTGEAPQGN GENKPSENGK VSTGTVENQP TENKPADSLP
tr Q8DQ07 Q8DQ07_STRR6	SGEVIKKNMA DFTGEAPQGN GENKPSENGK VSTGTVENQP TENKPADSLP
tr Q6WNQ7 Q6WNQ7_STRPN	SGEVIKKNMA DFTGEAPQGN GENKPSENGK VSTGTVENQP TENKPADSLP
tr Q6WNQ5 Q6WNQ5_STRPN	SGEVIKKNMA DFTGEAPQGN GENKPSENGK VSTGTVENQP TENKPADSLP
tr Q9ANY1 Q9ANY1_STRPN	EAPNEKPVKP ENSTDNGMLN PEGNVGSDPM LDPALEEAPA VDPVQEKLK
tr Q8DQ07 Q8DQ07_STRR6	EAPNEKPVKP ENSTDNGMLN PEGNVGSDPM LDPALEEAPA VDPVQEKLK
tr Q6WNQ7 Q6WNQ7_STRPN	EAPNEKPVKP ENSTDNGMLN PEGNVGSDPM LDPALEEAPA VDPVQEKLK
tr Q6WNQ5 Q6WNQ5_STRPN	EAPNEKPVKP ENSTDNGMLN PEGNVGSDPM LDPALEEAPA VDPVQEKLK
tr Q9ANY1 Q9ANY1_STRPN	FTASYGLGLD SVIFNMDGTI ELRLPSGEVI KKNLSDLIA
tr Q8DQ07 Q8DQ07_STRR6	FTASYGLGLD SVIFNMDGTI ELRLPSGEVI KKNLSDLIA
tr Q6WNQ7 Q6WNQ7_STRPN	FTASYGLGLD SVIFNMDGTI ELRLPSGEVI KKNLSDLIA
tr Q6WNQ5 Q6WNQ5_STRPN	FTASYGLGLD SVIFNMDGTI ELRLPSGEVI KKNLSDLIA