Es 1

Dati 3 processi: P1, P2 e P3 e 3 tipi di risorse: A, B e C.

Supponiamo che al tempo t il sistema si trovi nel seguente stato:

		risorse occupate		risorse massime richiedibili			
Processo	А	В	С	А	В	С	
P1	2	2	2	3	6	8	
P2	2	0	3	4	3	3	
P3	1	2	4	3	4	4	

P1 chiederà al massimo per ogni singola delle risorse in un qualunque tempo (non al tempo

t) è

3, 6, 8, questo è il caso peggiore di ogni singola risorsa.

Risorse disponibili:

Al tempo t le risorse disponibili sono: 2 3 0 (A, B, C)

Utilizzando l'algoritmo del banchiere stabilire se siamo in uno stato sicuro o non sicuro:

- stato sicuro: facendo un'assegnazione di schedulazione dell'ordine del processo da eseguire riusciamo ad arrivare al completamento di tutti. Ovvero esiste un ordinamento di esecuzione dei processi per cui completo tutti i processi.
- stato non sicuro: potremmo avere deadlock, perché i ragionamenti che facciamo con l'algoritmo del banchiere si basa sul caso pessimo, ma non è detto che questo si verifichi (perciò sappiamo che può verificarsi il deadlock, ma potrebbe anche non verificarsi)

	AI	loc		l	40-x		^	leed	
	Α		C	A	В	C	А	В	C
P-1	2	2	2	3	6	8	1	4	6
P ₂	2	0	3	4	3	3	2	3	0
P3	1	2	4	3	4	4	2	Z	0

Available: 2,30 P_2 P_3 P_4 NeedP1 1 4 6 \leq 2 3 0 = \times P2 2 3 0 \leq 2 3 0 = $\sqrt{-3}$ $A_V = 4$, 3,3

 P_3 2 2 0 \leq 4 3 3 = $\sqrt{-2}A_v = 5, 5, 7$

 P_{1} 1 4 6 \leq 5 5 $7 = \sqrt{3}$ $A_{v} = 7, 7, 9$

Siamo in uno stato sicuro

\vdash		7	֡
ー	7	,	

		ALI	LOC		MAX			
P1	0	0	1	2	0	0	1	2
P2	2	0	0	0	2	7	5	0
Р3	0	0	3	4	6	6	5	6
P4	2	3	5	4	4	3	5	6
P5	0	3	2	2	0	6	5	2

	nee	d	
0	0	0	0
0	7	5	Ð
6	6	2	Z
2	D	0	2
D	3	3	6

$$P_{S} \neq A_{V} \quad V \rightarrow A_{J} = 4 + 8 + 8$$
 $P_{Z} \neq A_{J} \quad V \rightarrow A_{U} = 6 + 7 + 8 + 8$

Il sistema e in uno stato sicuro

Cosa succede se per esempio avessimo avuto (1, 1, 0, 0) come risorse disponibili iniziali? Si poteva verificare il deadlock al secondo giro?

			ALI	LOC		MAX			
Р	1	0	0	1	2	0	0	1	2
Р	2	2	0	0	0	2	7	5	0
Р	23	0	0	3	4	6	6	5	6
Р	4	2	3	5	4	4	3	5	6
Р	P5	0	3	2	2	0	6	5	2

Il sistema è in uno stato non sicuro, potrebbero verificarsi deadlock