

Outline

Dissipative systems

Production functions

Energy and capital input

Notes:

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 1 / 30

Idealized vs. real systems: The pendulum

▶ Ideal system: Mathematical pendulum

$$\ddot{\alpha} = -\omega_0^2 \sin \alpha \; ; \quad \omega_0^2 = g/I$$

- ▶ Linearization: $\alpha \approx x/I$, no friction
- Possible solutions: at rest, periodic oscillations
- depends only on initial condition
- ► Real system: Driven pendulum

$$\ddot{\alpha} = -\omega_0^2 \sin \alpha - \gamma \dot{\alpha} + A \sin(\omega_A t)$$

- **Friction**: $-\gamma\dot{\alpha}$ is compensated by a periodic force
- ► System is constantly pumped with energy
- Possible solutions:
 - ► Regular motion with higher periodicity
 - ► Chaotic motion → unpredictable
- ► Simple system with complex dynamics
 - ▶ Precondition: Dissipation, energy import

Conservative vs dissipative systems

- **Conservative system:** Conserved quantity E(x)
 - ► Hamiltonian dynamics: $E = 1/2m\dot{x}^2 + V(x)$
 - Example: Frictionless pendulum
 - Phase space:
 - ► Stays constant → constant density
 - ► Existence of a real-valued continuous function that is constant on trajectories, dE/dt = 0
 - ► Stable/unstable nodes, also saddles and centers
- ▶ Dissipative System: Energy flows in and out
 - **Stationary Non-Equilibrium:** $E_{in} = E_{out}$
 - Example: Driven pendulum
 - ► Phase space:
 - ► Contracting or expanding → Inhomogeneous density
 - ► Sources (repellors) and sinks (attractors)

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer $\,-\,$ 3 / 30

Notes:

- Living systems: Ecology, Society, Economy, ...
 - ► ... Transportation, metabolic systems, infrastructure, ...
- ► ALL living systems require import of energy
 - ▶ 1. Law of Thermodynamics: Conservation of energy
 - Consequence: Energy can be only transformed
 - ▶ Import in form of high valued energy ("free energy")
 - ► Transformation produces entropy
- ► ALL living systems depend on entropy export
 - Export in form of devalued energy
 - Examples: Excretion, waste, heat
- ▶ Result: Order, Structure, Organization
 - ► Non-equilibrium: requires maintenance
 - ▶ Without Energy import/Entropy export: **Order** → **Chaos**

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 4 / 30

The meaning of entropy: Measuring order and value

Entropy measures order

- ▶ Ordered states dissolve spontaneously → Increase of entropy
- ► *Irreversibility:* no spontaneous reversal
- ► Maintaining "order" requires high value energy
- Exploiting low value energy requires more energy

► Entropy measures value

- Example: Health insurance pays back $1 \times 500.000.000 \text{ EUR} = 50.000.000 \times 10 \text{ EUR}$ What will you do with your 10 EUR?
- ... Increase of pensions/social welfare by 10 EUR?

"Less is more": The lower the entropy, the better

low entropy

high entropy

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 5 / 30

Notes:

The value of instability: Evolution

- ► **Mechanical systems:** Equilibrium = death
- Living systems (Ecology, economy, ...)
 - ► Stationary non-equilibrium: keeps the status quo
 - ► Stationary states can be stable/unstable
 - ► Random shocks continuously test stability
 - ▶ Resilience: Ability to return to a previous stable state
 - ► Importance of fast and slow processes (time scales)

Evolution

- ► Innovations challenge status quo ("creative destruction")
- ► Feedback between system and environmental changes
- ► Adaptation, learning and novelty as response
- ► Self-organization plays major role (decentralized processes)
- ► Open-ended: sequence of system states

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — 6 / 30

Limit Cycles

- ► Conservative systems: center ("curl")
- ightharpoonup variety of closed trajectories ightharpoonup undamped oscillations.
- ► amplitude depends on initial condtions
- stable, but not asymptotically stable
- ▶ Dissipative systems: limit cycle
 - ▶ isolated closed trajectory → self-sustained oscillations
 - neighboring trajectories are not closed: either attracted or repelled by the limit cycle
 - periodic solution, can be stable or unstable
 - ▶ does not depend on initial conditions
 - ▶ does not exist in gradient systems (1-d)

Limit cycle: No point where $(\dot{x}, \dot{y}) = (0, 0)$

ETH ZÜrİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 7 / 30

Notes:

Fast and slow processes: Remember the fairy tale "Der Hase und der Igel" (english version: 'The Tortoise and the Hare' -

The consequence for modeling: We focus on the slow time scale that determines the system dynamics. Processes on the fast time scale have long reached their (quasi) equilibrium.

Hopf Bifurcation

- ► Limit cycle on either side of the bifurcation point
 - **2-dim example:** Oscillations with frequency ω

$$\dot{r} = \mu r - r^3$$
; $\dot{\theta} = \omega + br^2$

- ▶ Control parameter μ < 0: Stable spiral with $r^* = 0$
 - ► Exponentially damped oscillations → Equilibrium
- ▶ Control parameter $\mu > 0$: Decay changes into growth
 - ► Supercritical Hopf bifurcation
 - ▶ Unstable spiral at r = 0, Bifurcation point: $r = \sqrt{\mu}$
 - ► Emergence of a stable limit cycle

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 8 / 30

Subcritical Hopf bifurcation

- ► After bifurcation trajectories jump to a distant attractor
 - ▶ Possible attractors: Fixed point, another limit cycle, infinity
 - ▶ 3-dim or higher: Chaotic attractor possible
- ► Remark: Analytical criteria difficult
 - Linearization cannot distinguish between sub- or supercritical hopf bifurcation
 - Quick and dirty approach: numerical solution, watch dynamics for different values of μ

2d Example:

$$\dot{r} = \mu r + r^3 - r^5$$
; $\dot{\theta} = \omega + br^2$

(Strogatz, p. 252)

Degenerate Hopf bifurcation —

- ightharpoonup Non-conservative ightharpoonup conservative system at the bifurcation point
- ▶ No limit cycles on either side of the bifurcation points
- Fixed point becomes nonlinear center instead of weak spiral

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 9 / 30

Notes:

Strogatz (2000), p. 250

- limit cycle is always an attractor
- $\mu < 0$: two stable attractors: limit cycle, fixed point at the origin between them is an unstable cycle (shown as
- as μ increases, the unstable cycle shrinks (for $\mu=0$ to zero amplitude) o engulfs origin, which becomes unstable
- $\mu=0$: subcritical bifurcation \rightarrow unstable cycle shrinks to zero amplitude
- $\mu > 0$: one stable attractor: limit cycle, i.e. even trajectories used to remain near the origin have to "jump" to the distant attractor now (Strogatz (2000), p. 252)

Outline

Dissipative systems

Production functions

Energy and capital input

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 10 / 30

Economic theory of production

- ► Production: **Output** ← **Input**
 - process, that combines and transforms inputs into outputs
 - production technology: relationship between inputs and outputs
- ▶ Production function: $Y = \mathcal{F}(x_1, x_2, ..., x_n)$
 - ▶ Inputs: factors for production $x_1, x_2, ..., x_n$, output: Y
 - ▶ Key inputs: Capital (K) and Labor (L) \Rightarrow Y = $\mathcal{F}(K, L)$
 - Input of high valued energy: Economy as a dissipative system
- ightharpoonup Important: $\mathcal F$ describes only technology, not economic behavior
 - substitute technology: $Y = a + bx_1 + cx_2 + \cdots$
 - ▶ substitute between different inputs (none really essential)
 - ightharpoonup complementary technology: $Y = \min\{x_1, x_2, \ldots\}$
 - complementary inputs (all are essential)
 - ▶ Question: Is F different for substitute and complementary technologies?

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 11 / 30

Notes:

- This is not too far from the alchemistic idea of transforming lead into gold (using the 'philosopher's stone').
- parameters a, b, c, ... are to be determined empirically
- a is the fixed input, b, c, ... are variable input coefficients

Average and marginal products

- ▶ Average Product: $AP_{x_i} = Y/x_i$
 - average amount produced by each input unit
 - ightharpoonup different for each input factor $\rightarrow i$
- ► Marginal Product: $MP_{x_i} = \Delta Y / \Delta x_i$
 - \triangleright slope of the production function wrt a given input factor x_i
 - additional output produced by one more unit of input
 - ▶ all other inputs kept constant

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 12 / 30

Notes:

- This plot of the production function assumes (i) an inflection point (A) and (ii) a decrease after C. Most production functions, in particular those discussed in this lecture, do not assume that.
 - inflection point at A: marginal product reaches a maximum
 - B: steepest possible line through the origin touches the production function curve, corresponds to the maximum average product
- beyond C: the production function begins to decline
- companies ideally want to operate in between points B and C (stage 2)
- Detailed explanation of the three stages in production function:
- Stage 1: In Stage 1 (from the origin to point B) the variable input is being used with increasing efficiency, reaching a maximum at point B. Because the efficiency of both fixed and variable inputs is improving throughout stage 1, a firm will always try to operate beyond this stage. In stage 1, fixed inputs are underutilized.
- Stage 2: Output increases at a decreasing rate, and the average and marginal products are declining. In this stage, the employment of additional variable inputs decreases the efficiency of variable inputs.
- Stage 3: Too much variable input is being used relative to the available fixed input: variable inputs are overutilized. Both the efficiency of variable and fixed inputs decline throughout this stage.
- Source: http://en.wikipedia.org/wiki/Production_function

Returns to Scale

- \blacktriangleright given production function $Y = \mathcal{F}(K, L)$, e.g. L = 5, $K = 3 \Rightarrow Y = \mathcal{F}(5, 3) = 20$
 - ▶ How does output Y changes if input is increased by a factor λ (e.g. 20% $\rightarrow \lambda = 1.2$)
- **1** constant returns to scale (CRS): $\mathcal{F}_1(\lambda K, \lambda L) = \lambda \mathcal{F}_1(K, L)$
 - example: $\mathcal{F}_1(1.2 \times K, 1.2 \times L) = \mathcal{F}_1(6, 3.6) = 24 = 1.2 \times \mathcal{F}_1(5, 3) = 24$
 - if all inputs are increased by $\lambda=1.2$, output is increased exactly by $\lambda=1.2$
- 2 increasing returns to scale (IRS): $\mathcal{F}_2(\lambda K, \lambda L) > \lambda \mathcal{F}_2(K, L)$
 - example: $\mathcal{F}_2(1.2 \times K, 1.2 \times L) = \mathcal{F}_2(6, 3.6) = 33 > 1.2 \times \mathcal{F}_2(5, 3) = 24$
 - if all inputs are increased by $\lambda = 1.2$, output is increased more than λY_2
- **3** decreasing returns to scale (DRS): $\mathcal{F}_3(\lambda K, \lambda L) < \lambda \mathcal{F}_3(K, L)$
 - example: $\mathcal{F}_3(1.2 \times K, 1.2 \times L) = \mathcal{F}_3(6, 3.6) = 22 < 1.2 \times \mathcal{F}_3(5, 3) = 24$
 - if all inputs are increased by $\lambda = 1.2$, output is increased less than λY_3

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 13 / 30

- Returns to Scale: Explains the behavior of the rate of increase in output (production) relative to the associated increase in all the inputs (factors of production) in the long run.
- Source: https://en.wikipedia.org/wiki/Returns_to_scale
- IRS is of course what every firm wants. Can you think of conditions to get IRS, as opposed to DRS?

Elasticity

- \triangleright y = f(x): relationship between output y and input x
 - ▶ how 'elastic' is y if x is changed? ⇒ elasticity
 - remember: price elasticity of supply and demand (!)

$$\eta = \frac{dy/y}{dx/x} = \frac{x}{y} \frac{dy}{dx} = \frac{d(\ln y)}{d(\ln x)}$$

- ► Law of diminishing returns
 - ▶ Short run: MP = dy/dx declines with additional increase in input
 - b difficult for firms to increase output if closer to maximum capacity of production
 - ▶ Relation to elasticity: $\eta = MP/AP$

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 14 / 30

Notes:

- f(x) is a differentiable function of variable x
- note: $\frac{dx}{x} = d(\ln x)$
- Short run refers to an increased input given the same facilities, where long run would also include investments in production facilities.

Decreasing returns to scale in productivity

Ringelmann effect (social psychology)

- ► larger teams are less productive
- declining motivation, "social loafing"
- overhead of coordination

- ► Teams of OSS developers
 - ► robust log-linear regression:

$$lpha = exttt{0.86} \pm exttt{0.02}$$

- \blacktriangleright $X \times 2.0 \Rightarrow Y \times 1.1$ (**OSS** projects!)
- ► large variation across projects

image: CC-by-SA Bart Derksen

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 15 / 30

Notes:

• I. Scholtes, P. Mavrodiev, F.S.: From Aristotle to Ringelmann: A large-scale analysis of team productivity and coordination in Open Source Software projects, Empirical Software Engineering 21 (2016) 642-683

Cobb-Douglas production function

- ▶ Specific form of a production function Y = F(K, L): $Y = A L^{\alpha} K^{\beta}$
 - A: level of technology (assumed constant), aka total factor productivity (TFP)
 - ▶ two input variables: capital K, labor L
 - \blacktriangleright two exponents: $\alpha \to L$, $\beta \to K \Rightarrow$ elasticities

$$\eta_{L} = \frac{L}{Y} \frac{dY}{dL} = A\alpha L^{\alpha - 1} K^{\beta} \frac{L}{Y} = \alpha$$
$$\eta_{K} = \frac{K}{Y} \frac{dY}{dK} = A\beta L^{\alpha} K^{\beta - 1} \frac{K}{Y} = \beta$$

- $ightharpoonup \left[\alpha + \beta = 1 \right] \Rightarrow$ Constant Return to Scale
 - empirics (Douglas) + mathematics (Cobb): $\alpha = 3/4$, $\beta = 1/4$
 - ightharpoonup remember demand elasticity: $|E_d| < 1 \rightarrow$ inelastic (output less elastic wrt capital)

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 16 / 30

Notes:

- Total-factor productivity: In economics, total-factor productivity (TFP) is a variable which accounts for effects in total output not caused by inputs. For example, a year with unusually good weather will tend to have higher output, because bad weather hinders agricultural output. A variable like weather does not directly relate to unit inputs, so weather is considered a total-factor productivity variable.
- original Cobb-Douglas production function: $Y = AL^{3/4}K^{1/4}$
 - History: friendship between Paul Douglas and Charles Cobb
 - Douglas: PD in 1920s: working on the problem of input-output relations
 - survey by NBER: during the decade 1909-1918, the share of output associated with labor was fairly constant at about 74% (\rightarrow 3/4)
- Cobb: which production function might account for this?
- NBER: National Bureau of Economic Research, a very important economic institution in the US ⇒ NBER Working paper series

Empirics

ightharpoonup mostly $\alpha + \beta = 1$, but $\alpha \approx 2/3 \neq 3/4$, $\beta \approx 1/3 \neq 1/4$

PRODUCTION FUNCTION FOR AUSTRALIA,

Cross-Section Studies and Fiscal Year	Observations (N)		SE of k		SE of j	k + j
Australia:						
1913	85	.52	.05	.47	.05	.99
1923	87	.53	.05	.49	.05	1.02
1927	85	.59	.05	.34	.04	.93
1935	138	.64	.04	.36	.04	1.00
1937	87	.49	.04	.49	.04	.98
Victoria:						
1911	34	.74	.08	.25	.11	.99
1924	38	.62	.08	.31	.10	.93
1928	35	.59	.07	.27	.09	.86
New South Wales:						
1934	125	.64	.04	.34	.03	.99
Average of all commonwealth and state studies .	714	.60	.06	.37	.06	.97
Average of						
commonwealth						
studies only	482	.55	.04	.43	.04	.98
Average of state						
studies only	232	.65	.07	.29	.08	.94

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 17 / 30

- Here the production function is of the form: $P = bL^k K^j$
- The sum of exponents for labour and capital is approximately 1. This is close to constant return.
- The average exponent for labour, namely k, is 0.6.
- Douglas, Paul H. "The Cobb-Douglas Production Function Once Again: Its History, Its Testing, and Some New Empirical Values." Journal of Political Economy 84, no. 5 (1976): 903-15. http://www.jstor.org/stable/1830435.

Properties of Cobb-Douglas function

① Constant returns to scale: $\alpha + \beta = 1 \Rightarrow F(K, L) = A L^{\alpha} K^{1-\alpha}$

$$F(\lambda K, \lambda L) = A (\lambda L)^{\alpha} (\lambda K)^{1-\alpha} = A \lambda^{\alpha} \lambda^{1-\alpha} L^{\alpha} K^{1-\alpha} = \lambda F(K, L)$$

Marginal products are positive:

$$(MP_K) = \frac{\partial F}{\partial K} = A\beta L^{\alpha} K^{\beta - 1} = A(1 - \alpha) \left(\frac{L}{K}\right)^{\alpha} > 0$$
$$(MP_L) = \frac{\partial F}{\partial L} = A\alpha L^{\alpha - 1} K^{\beta} = A\alpha \left(\frac{L}{K}\right)^{\alpha - 1} > 0$$

Marginal products are decreasing with inputs:

$$\begin{split} \frac{\partial}{\partial K} \left(M P_K \right) &= \frac{\partial^2 F}{\partial K^2} = -\alpha (1 - \alpha) A L^{\alpha} K^{-\alpha - 1} < 0 \\ \frac{\partial}{\partial L} \left(M P_L \right) &= \frac{\partial^2 F}{\partial L^2} = \alpha (\alpha - 1) A L^{\alpha - 2} K^{1 - \alpha} < 0 \end{split}$$

- ▶ direct relation to empirics ⇒ linear regression

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 18 / 30

Outline

Dissipative systems

Production functions

Energy and capital input

ETH ZÜrİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 19 / 30

Notes:

- If $\beta = 1 \alpha$, then we can get last part of the marginal products with $\frac{1}{K}$, which is called *organic component*.
- But if the Cobb-Douglas production function has its general form

$$F(K, L) = A L^{\alpha} K^{\beta}$$

with $0 < \beta < 1$, then there are increasing returns if $\alpha + \beta > 1$ but decreasing returns if $\alpha + \beta < 1$, since

$$F(\lambda K, \lambda L) = A (\lambda L)^{\alpha} (\lambda K)^{\beta} = A \lambda^{\alpha} \lambda^{\beta} L^{\alpha} K^{\beta} = \lambda^{\alpha+\beta} A L^{\alpha} K^{\beta} = \lambda^{\alpha+\beta} F(K, L),$$

which is greater than or less than $\lambda F(K, L)$ as $\alpha + \beta$ is greater or less than one.

Deriving the dynamics for production

- **Production function** depends on inputs: $\hat{Y}[X_1(t), X_2(t), ...]$
 - Normalization $Y_0 = \text{const.}$, i.e. $Y = \hat{Y} Y_0$
 - ightharpoonup Common inputs $X_i(t)$: Capital K(t), labor L(t),
 - New input: "energy" E(t): general form of resources
- ► General dynamics:

$$\frac{dY}{dt} = \sum_{j} \frac{dY_{X_{j}}}{dt}; \quad \frac{dY_{X_{j}}}{dt} = \frac{\partial Y}{\partial X_{j}} \frac{dX_{j}}{dt}$$

- $ightharpoonup dY_{X_i}/dt$: growth contributions from inputs X_i
- \blacktriangleright Assumptions for $Y(X_i)$ and dX_i/dt needed
- ► Cobb-Douglas production function:

$$Y[X_1(t), X_2(t), ...] = A X_1^{\alpha_1}(t) X_2^{(\alpha_2)}(t)$$

- **Elasticities:** $0 < \alpha_i < 1$: diminishing returns to scale
- ► Total factor productivity: A (production efficiency)

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 20 / 30

Dynamics of energy I

- ▶ Power series: $\frac{dE}{dt} = \dot{E} = \sum_{k=0}^{n} a_k E^k = a_0 + a_1 E + a_2 E^2 + ...$
 - ▶ Need to consider sources (inflow) and sinks (outflow) of energy
- ▶ Saturation dynamics: (1) logistic equation: $\dot{E} = f(E, \underline{a}) = a_1 E + a_2 E^2$
 - ► Stationary solutions $\dot{E} = 0$: $E_1^* = 0$, $E_2^* = -a_1/a_2$
 - For meaningful E: 1. $a_1 > 0$, 2. $a_2 < 0$ (saturation dynamics), 3. $|a_2| \ll |a_1|$
- ▶ **Stability analysis:** Gradient method: $f(x, \underline{a}) = -\frac{dV(x, \underline{a})}{dx}$

$$\frac{d^2V(E,\underline{a})}{dE^2} = -a_1 - 2a_2E \ \Rightarrow \ \frac{d^2V(E,\underline{a})}{dE^2}\bigg|_{r_*^*} = -a_1 \ ; \ \frac{d^2V(E,\underline{a})}{dE^2}\bigg|_{r_*^*} = +a_1$$

- \triangleright E_2^* is stable, stability is determined by a_1 (comparably large)
- ▶ What dynamics shall we expect from a very stable equilibrium? Conclusion: $a_2 = 0$ (!)

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 21 / 30

Notes:

Dynamics of energy II

- **Saturation dynamics:** (2) linear equation: $\dot{E} = a_0 + a_1 E$
 - ightharpoonup stationary solution $E^* = -a_0/a_1$
 - for meaningful *E*: 1. **either** $a_1 < 0$, $a_0 > 0$ **or** $a_1 > 0$, $a_0 < 0$, 2. $|a_1| \ll |a_0|$
 - $ightharpoonup a_1 > 0$: exponential growth, so $a_1 < 0$ (exponential decay) is the only option
 - $ightharpoonup a_0 > 0$: makes sense, source term for energy
- **Stability analysis:** Method of small perturbations: $E(t) = E^* + \delta E$

$$\underbrace{\frac{dE^{\star}}{dt}}_{=0} + \underbrace{\frac{d\delta E}{dt}}_{=0} = \underbrace{a_0 + a_1 r^{\star}}_{=0} + a_1 \delta E$$

$$\delta E \sim e^{\lambda t} \Rightarrow \frac{d\delta E}{dt} = \lambda \delta E = a_1 \delta E \Rightarrow \lambda = a_1$$

- \triangleright E^* is (again) stable, stability is determined by a_1 (comparably small)
- ► System is not unstable, but can change more easily

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 22 / 30

Dynamics of energy III

- ▶ Isolated case: Saturation dynamics → Equilibrium
 - \blacktriangleright Energy provided at a constant rate q_0 (e.g sun radiation)
 - ► No self-replication, exponential decay (dissipation)

$$\frac{dE(t)}{dt} = q_0 - cE(t); \quad E(t) = \frac{q_0}{c} \left[1 - e^{-ct} \right]; \quad E^* = \frac{q_0}{c}$$

► Coupling with production: Use of energy for increasing production:

$$\frac{dE(t)}{dt} = q_0 - cE(t) - \frac{\partial E(t)}{\partial Y} \frac{dY_E}{dt}$$

2 Assumptions: Y(E) and dY_E/dt needed

$$Y(E) = A_E E^{1/2}(t) \rightarrow E = \frac{1}{A_E^2} Y^2 \rightarrow \frac{\partial E}{\partial Y} = \frac{2}{A_E^2} Y \; ; \quad \frac{dY_E}{dt} \propto E(t) Y$$

Dynamics of energy resource: efficiency $d_2 = 2/A_F^2$

$$\frac{dE(t)}{dt} = q_0 - cE(t) - \frac{2}{A_E^2} Y^2 E(t) = q_0 - \left[c + d_2 Y^2\right] E(t)$$

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 23 / 30

Notes:

Dynamics of capital

- \blacktriangleright We need assumptions for Y(K) and dY_K/dt
- \blacktriangleright Assumption for Y(K) from Cobb-Douglas production function:

$$Y(K) = A_K \sqrt{K^{1/2}(t)} \rightarrow K = \frac{1}{A_K^2} Y^2 \rightarrow \frac{\partial K}{\partial Y} = \frac{2}{A_K^2} Y = \frac{2K}{Y}$$

- ▶ Assumptions for dY_K/dt : Saturation dynamics \rightarrow Growth via investments
 - ▶ Savings rate 0 < s < 1, γ : Decay of Y without input (defines relaxation time scale)

Variant 1:
$$\frac{dY_K}{dt} = s - \gamma Y$$
 $\left(\text{Variant 2: } \frac{dY_K}{dt} = \mu s Y - \mu \gamma Y^2 \right)$

- **Dynamics of capital:** Remember: $K = Y^2/A_k^2$
 - ▶ Efficiency $\beta = 2/A_K^2$, depreciation $\kappa = 2\gamma$

$$\frac{dK}{dt} = \frac{\partial K}{\partial Y}\frac{dY_k}{dt} = \frac{2K}{Y}\left[s - \gamma Y\right] = \beta sY - \kappa K$$

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer $\,-\!-\!$ 24 / 30

Dynamics of production

ightharpoonup Considering Y(E, K)

$$\frac{dY}{dt} = \frac{dY_E}{dt} + \frac{dY_K}{dt}$$
$$= s - \gamma Y + d_2 E(t) Y = s - [\gamma - d_2 E(t)] Y$$

► Coupling with dynamics of energy and capital

$$\frac{dE(t)}{dt} = q_0 - \left[c + d_2 Y^2\right] E(t)$$
$$\frac{dK(t)}{dt} = \beta s Y - \kappa K(t)$$

▶ **Assumptions**: Y(E, K) and E(t) reach equilibrium fast \rightarrow stationary solution

$$Y_{\star} = \frac{s}{\gamma - d_2 E_{\star}} \; ; \quad E_{\star} = \frac{q_0}{c + d_2 Y_{\star}^2}$$

 $\gamma d_2 Y_{\star}^3 - s d_2 Y_{\star}^2 - [q_0 d_2 - \gamma c] \; Y_{\star} = c s$

ETH ZÜriCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 25 / 30

Notes:

Bifurcation analysis

$$\gamma d_2 Y_{\star}^3 - s d_2 Y_{\star}^2 - [q_0 d_2 - \gamma c] Y_{\star} = c s$$

Assume s = 0, i.e. no feedback between Y, K

$$\begin{split} \big[\gamma d_2 Y_{\star}^2 - \big(q_0 d_2 - \gamma c \big) \big] Y_{\star} &= 0 \\ Y_{\star}^{(1)} &= 0 \; ; \quad Y_{\star}^{(2,3)} = \pm \sqrt{\frac{q_0}{\gamma} - \frac{c}{d_2}} \; ; \quad d_2^{\rm bif} = \frac{c \gamma}{q_0} \end{split}$$

- ▶ Positive solution only if: $q_0d_2 > c\gamma$ ($c\gamma$: dissipation)
- ▶ Negative solution? $Y = \hat{Y} Y_0$, i.e. $Y < Y_0$
- ▶ Assume 0 < s < 1 and small $cs \rightarrow$ **Bias** toward large positive Y

$$Y_{\star}^{(1)} = 0$$
; $Y_{\star}^{(2,3)} = \frac{c}{2\gamma} \pm \sqrt{\frac{c^2}{4\gamma^2} + \left(\frac{q_0}{\gamma} - \frac{c}{d_2}\right)}$

Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 26 /

Stability analysis

► Small perturbations of equilibrium solutions

$$Y = Y^* + \delta Y$$
; $E = E^* + \delta E$; $\left| \frac{\delta Y}{Y^*} \right| \sim \left| \frac{\delta E}{E^*} \right| \ll 1$

► Dynamics of small perturbations

$$\begin{bmatrix} \delta \dot{Y} \\ \delta \dot{E} \end{bmatrix} = \begin{bmatrix} -\gamma_0 + d_2 E^* & d_2 Y^* \\ -2d_2 E^* Y^* & -c - d_2 Y^2_* \end{bmatrix} \begin{bmatrix} \delta Y \\ \delta E \end{bmatrix}$$

▶ Ansatz: $\delta Y \sim e^{\lambda t}$, $\delta E \sim e^{\lambda t} \rightarrow$ Eigenvalues λ :

$$\lambda^{(1,2)} = -\frac{1}{2} \left(\gamma + c + d_2 Y_{\star}^2 - d_2 E^{\star} \right) \\ \pm \sqrt{\frac{1}{4} \left(\gamma + c + d_2 Y_{\star}^2 - d_2 E^{\star} \right)^2 - c(\gamma - d_2 E^{\star}) - d_2 Y_{\star}^2 (\gamma + d_2 E^{\star})}$$

ETH ZÜriCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — $$ 27 / 30

Notes:

Stability analysis: Results

0	< d ₂ <	0.027	: 1 stable node
0.027	< d ₂ <	0.046	: 1 stable node, 1 instable node, 1 saddle point
0.046	< d ₂ <	2.720	: 1 stable focal point, 1 instable focal point, 1
			saddle point
2.720	< d ₂		: 2 stable focal points, 1 saddle point

Increased efficiency in resource use (i) **increases production**, but (ii) can **stabilize the drop down** of production

ETH ZÜRİCİN Chair of Systems Design — www.sg.ethz.ch

 $d_2 = 2.0$

Prof. Frank Schweitzer — — 28 / 30

SS06: Review of Coupled Dynamics and Stability

- ▶ Revisit and deepen your understanding of coupled dynamics, focusing on mastering the use of Python and interpretation.
- Extend an existing model and investigate with these tools.
 - ► Master the identification of fixed points with sympy.
 - ▶ Understand phase portraits and how to plot them.
 - ► Apply these insights to a new model.

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 29 / 30

Notes:

Questions

- Explain the differences between conservative and dissipative systems. What are the practical consequences? Give examples.
- Our economy constantly produces electrical energy, using nuclear power plants, photovoltaic systems or wind turbines. How does this fit the 1st and 2nd law of thermodynamics?
- **3** Compare the limit cycle and the center solution. How can you decide between them?
- 4 Explain the structure and the meaning of a production function.
- **6** How can you calculate the marginal product, increasing and decreasing returns to scale?
- 6 What is special about the Cobb-Douglas production function. Why should α , β be smaller than 1?
- **8** Shows the degenerated pitch bifurcation diagram a saddle-node bifurcation?

EIH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — 30 / 30

