Chapter 5 Reducibility

CS 341: Foundations of CS II

Marvin K. Nakayama Computer Science Department New Jersey Institute of Technology Newark, NJ 07102

CS 341: Chapter 5

Introduction

- Previously, we saw
 - Church-Turing Thesis
 - Many problems are solvable using TMs
 - lacktriangle One problem (language), A_{TM} , is unsolvable by TMs, where

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$

- We now will see many other computationally unsolvable problems.
- We will do this by using **reductions**.
- Example:

Finding your way around a city reduces to obtaining a city map.

Contents

• Reducing One Problem to Another

- Examples of Undecidable Problems (Languages)
- Mapping Reducibility
- Examples of Non-Turing-Recognizable Problems (Languages)

CS 341: Chapter 5

5-3

Reducibility

- \bullet Reduction always involves two problems (languages), A and B.
- **Definition:** If A reduces to B, then can use any solution of B to solve A.

• Remarks:

- lacktriangle We showed that A_{NFA} is decidable by reducing A_{NFA} to A_{DFA} .
- lacksquare Definition of reduction says nothing about solving A or B alone.
- lacksquare If A is reducible to B, then A cannot be harder than B.
- The statement " $p \Rightarrow q$ " is equivalent to " $\neg q \Rightarrow \neg p$ ".
- \blacksquare Suppose A reduces to B. Then
 - \blacktriangle If I can solve B, then I can solve A.
 - \blacktriangle Equivalently, if I can't solve A, then I can't solve B.
 - \blacktriangle Equivalently, if A is undecidable, then B is undecidable.

5-2

5-4

CS 341: Chapter 5

5-5

5-7

5-6

5-8

Reducibility

- ullet It required some effort to prove that A_{TM} is not decidable.
- But now we can build on this result as follows:
 - To show another language L is undecidable, we typically show A_{TM} reduces to L.
 - If "language L is decidable" implies " A_{TM} is decidable," then L is not decidable.
- ullet Typical approach to show L is undecidable via reduction from A_{TM} to L
 - lacksquare Suppose L is decidable.
 - lacksquare Let R be a TM that decides L.
 - lacksquare Using R as subroutine,
 - lacktriangle can construct another TM S that decides A_{TM} .
 - But A_{TM} is not decidable.
 - Conclusion: L is not decidable.

Halting Problem for TMs is Undecidable

- Recall that A_{TM} (acceptance problem for TMs) is undecidable, where $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is TM that accepts string } w \}.$
- Another decision problem: Does TM M halt on input w? $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is TM that halts on string } w \}.$
- In this case (but not others), A_{TM} and $HALT_{\mathsf{TM}}$ have same universe $\Omega = \{ \langle M, w \rangle \mid M \text{ is TM, } w \text{ is string } \}.$
- ullet Given $\langle M,w \rangle \in \Omega$ of specific pair of TM M and string w,
 - \blacksquare if M halts on input w, then $\langle M, w \rangle \in HALT_{\mathsf{TM}}$,
 - \blacksquare if M doesn't halt on input w, then $\langle M, w \rangle \not\in HALT_{\mathsf{TM}}$.
- How does $HALT_{TM}$ differ from A_{TM} ?

Theorem 5.1

 $HALT_{\mathsf{TM}}$ is undecidable.

CS 341: Chapter 5

Basic Idea of Proof that $HALT_{\mathsf{TM}}$ is Undecidable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts string } w \},$ $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on string } w \}.$

Basic idea of proof by contradiction: reduce $A_{\rm TM}$ to $HALT_{\rm TM}$

- Suppose \exists TM R that **decides** $HALT_{TM}$.
- ullet How could we use R to construct TM to **decide** A_{TM} ?
- Recall universal TM U recognizes A_{TM} :

U = "On input $\langle M, w \rangle \in \Omega$, where M is a TM and w is a string:

- **1.** Simulate M on input w.
- **2.** If M ever enters its accept state, accept; if M ever enters its reject state, reject."
- U doesn't decide A_{TM} since M may loop on w in stage 1.
- **Solution:** first run R on $\langle M, w \rangle$ to see if it's safe to run M on w.

CS 341: Chapter 5

Proof that $HALT_{TM}$ is Undecidable

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts string } w \},$ $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on string } w \}.$

- ullet Assume \exists TM R that decides $HALT_{\mathsf{TM}}$.
- \bullet Define TM S to decide A_{TM} using TM R as follows:

S = "On input $\langle M, w \rangle \in \Omega$, where M is a TM and w a string:

- 1. Run R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If R accepts, simulate M on input w until it halts.
- 4. If *M* accepts, *accept*; otherwise, *reject*."
- ullet TM S always halts and decides A_{TM}
 - \blacksquare S accepts $\langle M, w \rangle \in A_{\mathsf{TM}}$, and S rejects $\langle M, w \rangle \not\in A_{\mathsf{TM}}$.
- Thus, deciding A_{TM} is reduced to deciding $HALT_{TM}$.
- \bullet But A_{TM} is undecidable, so $HALT_{\mathsf{TM}}$ must also be undecidable.

Emptiness Problem for TMs is Undecidable

ullet Decision problem: Does a TM M recognize the empty language?

$$\begin{split} E_{\mathsf{TM}} &= \{\, \langle M \rangle \,|\; M \text{ is a TM and } L(M) = \emptyset \,\} \\ &\subseteq \{\, \langle M \rangle \,|\; M \text{ is a TM} \,\} \,\equiv \, \Omega_E, \end{split}$$

where universe Ω_E comprises all TMs.

- ullet For a specific encoded TM $\langle M \rangle \in \Omega_E$,
 - lacktriangle if M accepts at least one string, then $\langle M \rangle \not\in E_{\mathsf{TM}}$,
 - \blacksquare if M accepts no strings, then $\langle M \rangle \in E_{\mathsf{TM}}$.

Theorem 5.2

 E_{TM} is undecidable.

Proof Idea: Reduce A_{TM} to E_{TM} .

- Suppose E_{TM} is decidable.
- ullet Let R be a TM that decides E_{TM} .
- ullet Use TM R to construct another TM S that decides A_{TM} .
- But since A_{TM} is undecidable, E_{TM} must also be.

Constructing Decider S for A_{TM} From Decider R for E_{TM}

$$E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

- Bad Idea: When S receives input $\langle M, w \rangle$, it calls R with input $\langle M \rangle$.
 - If R accepts, then $L(M) = \emptyset$.
 - \blacktriangle In particular, M does not accept w, so S rejects input $\langle M, w \rangle$.
 - If R rejects, then $L(M) \neq \emptyset$, so M accepts at least one string.
 - \blacktriangle But don't know if M accepts w, so TM S can't decide $A_{\mathsf{TM}}.$
- ullet Fix: Create another TM M_1 from TM M and w as follows:

$$M_1 =$$
 "On input x :

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w, and accept iff M accepts."
- w is only string M_1 could accept, so one of 2 cases occurs:
 - \blacktriangle If $\langle M, w \rangle \in A_{\mathsf{TM}}$, then $L(M_1) = \{w\}$, so $\langle M_1 \rangle \not\in E_{\mathsf{TM}}$.
 - \blacktriangle If $\langle M, w \rangle \not\in A_{\mathsf{TM}}$, then $L(M_1) = \emptyset$, so $\langle M_1 \rangle \in E_{\mathsf{TM}}$.

CS 341: Chapter 5

Proof: $E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is TM and } L(M) = \emptyset \} \text{ is Undecidable}$

- Reduce A_{TM} to E_{TM} : suppose \exists TM R that decides E_{TM} .
- \bullet Define TM S to decide A_{TM} using decider R for E_{TM} as follows:

$$S=$$
 "On input $\langle M,w\rangle$, where M is a TM and w is a string:

1. Construct TM $M_{\mathbf{1}}$ from M and w as follows:

$$M_1 = \text{"On input } x$$
:

- (1) If $x \neq w$, reject.
- (2) If x = w, run M on input w, and accept iff M accepts."
- 2. Run R on input $\langle M_1 \rangle$.
- 3. If R accepts, reject; if R rejects, accept."
- Note that

 $\langle M_1 \rangle \not\in E_{\mathsf{TM}} \iff L(M_1) \neq \emptyset \iff M \text{ accepts } w$ $\iff \langle M, w \rangle \in A_{\mathsf{TM}}.$

- \bullet But then TM S decides A_{TM} , which is undecidable.
- ullet Therefore, TM R cannot exist, so E_{TM} is undecidable.

CS 341: Chapter 5

5-11

TM Recognizing Regular Language is Undecidable

• **Decision problem:** Does a TM M recognize a regular language?

$$\begin{array}{l} REG_{\,\mathsf{TM}} \,=\, \{\, \langle M \rangle \,|\,\, M \text{ is a TM and } L(M) \text{ is a regular language}\,\} \\ \,\subseteq\, \{\, \langle M \rangle \,|\,\, M \text{ is a TM}\,\} \,\equiv\, \Omega_{REG}, \end{array}$$

where universe Ω_{REG} comprises all TMs.

- \bullet For a specific encoded TM $\langle M \rangle \in \Omega_{REG}$
- \blacksquare if L(M) is regular, then $\langle M \rangle \in REG_{\mathsf{TM}}$,
- if L(M) is nonregular, then $\langle M \rangle \not\in REG_{\mathsf{TM}}$.

Theorem 5.3

 REG_{TM} is undecidable.

Proof Idea: Reduce A_{TM} to REG_{TM} .

- ullet Assume REG_{TM} is decidable.
- \bullet Let R be a TM that decides REG_{TM} .
- ullet Use TM R to construct TM S that decides A_{TM} .
- But how do we do this?

CS 341: Chapter 5

Recall

5-13

5-15

5-16

Constructing Decider S for A_{TM} from Decider R for REG_{TM}

 $REG_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}.$

- \bullet TM S is given input $\langle M, w \rangle$.
- ullet TM S first constructs a TM M' using $\langle M,w \rangle$ so that L(M') is a regular language if and only if M accepts w.

$$\{ 0^n 1^n | n \ge 0 \},$$

which is nonregular.

- If M accepts w, then M' recognizes language Σ^* , which is **regular**.
- We construct M' as follows:
 - M' automatically accepts all strings in $\{0^n 1^n | n > 0\}$.
 - lacksquare In addition, if M accepts w, then M' accepts all other strings.

Proof that REG_{TM} is Undecidable

- \bullet Suppose that REG_{TM} is decidable.
- ullet Let R be a TM that decides REG_{TM} .
- \bullet Use R to construct TM S to decide $A_{\rm TM}\!:$

S = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

1. Construct following TM M' from M and w:

$$M' =$$
 "On input x :

- **1.** If $x \in \{0^n 1^n | n \ge 0\}$, accept.
- 2. If $x \notin \{0^n 1^n \mid n \ge 0\}$, run M on input w and accept iff M accepts w."
- **2.** Run R on input $\langle M' \rangle$.
- 3. If R accepts, accept; if R rejects, reject."
- $\langle M' \rangle \in REG_{\mathsf{TM}} \iff \langle M, w \rangle \in A_{\mathsf{TM}}$, so S decides A_{TM} , which is impossible.

CS 341: Chapter 5

Equivalence of 2 TMs is Undecidable

• Decision problem: Do 2 TMs recognize the same language?

$$\begin{split} EQ_{\mathsf{TM}} &= \{ \, \langle M_1, M_2 \rangle \, | \, M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \, \} \\ &\subseteq \{ \, \langle M_1, M_2 \rangle \, | \, M_1, \, M_2 \text{ are TMs} \, \} \equiv \Omega_{EQ}, \end{split}$$

where universe Ω_{EO} comprises all pairs of TMs.

- For any specific encoded pair $\langle M_1, M_2 \rangle \in \Omega_{EQ}$,
 - if $L(M_1) = L(M_2)$, then $\langle M_1, M_2 \rangle \in EQ_{\mathsf{TM}}$,
 - if $L(M_1) \neq L(M_2)$, then $\langle M_1, M_2 \rangle \notin EQ_{TM}$.

Theorem 5.4

 EQ_{TM} is undecidable.

CS 341: Chapter 5 Proof that EQ_{TM} is Undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}.$

- Reduce E_{TM} to EQ_{TM} as follows:
 - Let $M_2 = M_\emptyset$ be a TM with $L(M_\emptyset) = \emptyset$.
 - A TM that decides EQ_{TM} can also decide E_{TM} by deciding if $\langle M_1, M_\emptyset \rangle \in EQ_{\mathsf{TM}}$.

$$\blacktriangle \langle M_1 \rangle \in E_{\mathsf{TM}} \iff \langle M_1, M_\emptyset \rangle \in EQ_{\mathsf{TM}}$$

- Since E_{TM} is undecidable (Theorem 5.2), EQ_{TM} must be undecidable.
- ullet We'll see later that EQ_{TM} is
- not Turing-recognizable
- not co-Turing-recognizable

5-17 *CS 341: Chapter 5*

5-18

5-20

Other Undecidable Problems

- Does a TM recognize a finite language?
- Does a TM recognize a context-free language?
- Does a TM recognize a decidable language?
- Does a TM halt on all inputs?
- Does a TM have a state that is never entered on any input string?

Rice's Theorem.

- Informally: Every non-trivial property \mathcal{P} of languages of Turing machines is undecidable.
- ullet Formally: Let ${\mathcal P}$ be a language consisting of TM descriptions such that
 - 1. \mathcal{P} contains some, but not all, TM descriptions, and
 - 2. whenever $L(M_1) = L(M_2)$, we have $\langle M_1 \rangle \in \mathcal{P}$ iff $\langle M_2 \rangle \in \mathcal{P}$.

Then \mathcal{P} is undecidable.

Proof of Rice's Theorem: Reduce A_{TM} to \mathcal{P}

- Suppose $\mathcal P$ is decided by TM $R_{\mathcal P}$.
- Let T_{\emptyset} be a TM that always rejects, so $L(T_{\emptyset}) = \emptyset$.
- Without loss of generality, assume $\langle T_{\emptyset} \rangle \not\in \mathcal{P}$. (Otherwise, consider $\overline{\mathcal{P}}$.)
- Because we assumed \mathcal{P} is nontrivial, $\exists \mathsf{TM} \ T$ with $\langle T \rangle \in \mathcal{P}$.
- ullet Now design TM S to decide A_{TM} using $R_{\mathcal{P}}$'s ability to distinguish between T_{\emptyset} and T.

S = "On input $\langle M, w \rangle$, where M is a TM and w a string:

1. Use M and w to construct the following TM M_w :

 $M_w =$ "On input x:

- 1. Simulate M on input w. If it halts and rejects, reject.
- **2.** Simulate T on input x. If it accepts, accept."
- **2.** Use TM $R_{\mathcal{P}}$ to determine whether $\langle M_w \rangle \in \mathcal{P}$. If YES, accept. If NO, reject."

CS 341: Chapter 5

Proof of Rice's Theorem: Reduce A_{TM} to \mathcal{P} (cont.)

- ullet Note that TM M_w simulates T if M accepts w.
- Hence,
 - $L(M_w) = L(T)$ if M accepts w,
 - $L(M_w) = \emptyset$ if M does not accept w.
- Therefore, $\langle M_w \rangle \in \mathcal{P}$ iff M accepts w.
- ullet Hence, S decides A_{TM} , which is impossible since A_{TM} is undecidable.
- ullet Thus, ${\mathcal P}$ is undecidable.

CS 341: Chapter 5

5-19

Limited Success Thus Far

- Our reductions have been straightforward:
 - Transform TM for some language into a similar TM that decides another language
- As a result, the languages we proved are undecidable are similar:
 - A_{TM} , EQ_{TM} , $HALT_{TM}$, etc.
- For languages concerning questions not about TMs, we have to use a different approach.
 - e.g., Hilbert's 10th problem
- Recall interpretation of TM configuration:

 $1011q_701$

- \blacksquare current state is q_7
- LHS of tape is 1011, and RHS of tape is 01
- tape head is on RHS 0

5-21 *CS 341: Chapter 5*

5-22

5-24

Computation Histories

Definition: An accepting computation history for a TM M on a string w is a sequence of configurations

$$C_1, C_2, \ldots, C_k$$

for some $k \ge 1$ such that the following properties hold:

- 1. C_1 is the start configuration of M on w.
- 2. Each C_j yields C_{j+1} .
- 3. C_k is an accepting configuration.

Definition: A **rejecting computation history** for M on w is the same except last configuration C_k is a rejecting configuration of M.

Remarks About Computation Histories

- Accepting and rejecting computation histories are finite.
- \bullet If M does not halt on w,
 - then no accepting or rejecting computation history exists.
- Useful for both
 - deterministic TMs (one history)
 - nondeterministic TMs (many histories).
- " $\langle M, w \rangle \not\in A_{\mathsf{TM}}$ " is equivalent to
 - " $\not\exists$ accepting computation history C_1, \ldots, C_k for M on w"
 - "All histories C_1, \ldots, C_k are non-accepting ones for M on w".

CS 341: Chapter 5

Context-Free Languages

Decision problem: Does a CFG generate all strings over Σ ?

$$ALL_{\mathsf{CFG}} = \{ \langle G \rangle \mid G \text{ is CFG with } L(G) = \Sigma^* \}$$

 $\subseteq \{ \langle G \rangle \mid G \text{ is CFG} \} \equiv \Omega_{ALLG}.$

Theorem 5.13

 ALL_{CFG} is undecidable.

Proof Idea: (see Sipser for full proof)

- ullet Approach: Reduce A_{TM} to ALL_{CFG} .
- ullet Construct a CFG G from TM M and input w.
 - lacksquare If M does not accept w, then G generates all strings.
 - If M accepts w, then G generates all strings **except** the accepting computation histories for M on w.
- \bullet CFG G generates all strings iff TM M does not accept w.

CS 341: Chapter 5

5-23

Mapping Reducibility

- Thus far, we have seen several ways to reduce one problem to another.
- Reductions appear in
 - decidability theory
 - complexity theory (as we'll see later in Chapter 7).
- Now we want to formalize the notion of reducibility.

5-28

Computable Functions

- ullet Suppose we have 2 languages A and B, where
- A is defined over alphabet Σ_1 , so $A \subseteq \Sigma_1^*$, i.e., universe $\Omega_1 = \Sigma_1^*$
- lacksquare B is defined over alphabet Σ_2 , so $B\subseteq \Sigma_2^*$, i.e., universe $\Omega_2=\Sigma_2^*$
- ullet Informally speaking, A is reducible to B if we can use a "black box" for B to build an algorithm for A.
- **Definition**: A function

$$f: \Sigma_1^* \to \Sigma_2^*$$

is a **computable function** if some TM M, on every input $w \in \Sigma_1^*$, halts with just $f(w) \in \Sigma_2^*$ on its tape.

- All the usual integer computations are computable:
 - Addition, multiplication, sorting, etc.

Computable Functions

One useful class of computable functions transforms one TM into another.

Example:

T = "On input w:

- 1. If $w = \langle M \rangle$, where M is some TM,
 - Construct $\langle M' \rangle$, where M' is a TM such that
 - L(M') = L(M), but
 - lacksquare M' never tries to move tape head off LHS of tape."

The function T accomplishes this by adding several states to the description of ${\cal M}.$

CS 341: Chapter 5

Mapping Reducibility

Definition: Suppose

- A is defined over alphabet Σ_1 , so $A \subseteq \Sigma_1^*$, i.e., universe $\Omega_1 = \Sigma_1^*$
- B is defined over alphabet Σ_2 , so $B \subseteq \Sigma_2^*$, i.e., universe $\Omega_2 = \Sigma_2^*$

Then A is mapping reducible to B, written

$$A \leq_{\mathsf{m}} B$$

if there is a computable function

$$f: \Sigma_1^* \to \Sigma_2^*$$

such that, for every $w \in \Sigma_1^*$,

$$w \in A \iff f(w) \in B$$
.

The function f is called a **reduction** of A to B. (f is also called a **many-one reduction**.)

CS 341: Chapter 5

Language A is Mapping Reducible to B

$$w \in A \iff f(w) \in B$$

 ${\sf YES \ instance \ for \ problem} \ A \qquad \Longleftrightarrow \qquad {\sf YES \ instance \ for \ problem} \ B$

Example: Mapping Reduction $A_{TM} \leq_m HALT_{TM}$

• Recall that

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is TM that accepts string } w \} \subseteq \Omega_A,$ $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is TM that halts on string } w \} \subseteq \Omega_H.$

- In this case (but not always), same universes $\Omega_A = \Omega_H = \Omega$, with $\Omega = \{ \langle M, w \rangle \mid M \text{ is TM, } w \text{ is string } \}$
- \bullet We previously proved that $HALT_{TM}$ is undecidable by showing A_{TM} reduces to $HALT_{\mathsf{TM}}$.
- To show $A_{\mathsf{TM}} \leq_{\mathsf{m}} HALT_{\mathsf{TM}}$, need function $f: \Omega_A \to \Omega_H$, with
 - ullet input $\langle M,w \rangle \in \Omega_A$ is instance for acceptance problem for TMs
 - output $f(\langle M, w \rangle) = \langle M', w' \rangle \in \Omega_H$ is instance for halting problem for TMs
 - $\langle M, w \rangle \in A_{\mathsf{TM}} \iff f(\langle M, w \rangle) = \langle M', w' \rangle \in HALT_{\mathsf{TM}}.$

Example: Mapping Reduction $A_{TM} \leq_m HALT_{TM}$

- Recall $\Omega_A = \Omega_H = \Omega$, with $\Omega = \{ \langle M, w \rangle \mid \mathsf{TM} \ M, \mathsf{string} \ w \}$
- $\Omega_A = \Omega$ $\Omega_H = \Omega$ $HALT_{TM}$

• TM F computes reducing fcn f

F= "On input $\langle M,w \rangle \in \Omega_A$, where M is TM and w is string:

1. Construct the following TM M':

$$M' =$$
 "On input x :

- (1) Run M on input x.
- (2) If M accepts, accept.
- (3) If M rejects, enter a loop."
- 2. Output $\langle M', w \rangle \in \Omega_H$."
- Note that $\langle M, w \rangle \in A_{\mathsf{TM}} \iff \langle M', w \rangle \in HALT_{\mathsf{TM}}$.

CS 341: Chapter 5

Decidability obeys \leq_m Ordering

Theorem 5.22

If $A \leq_{\mathsf{m}} B$ and B is decidable, then A is decidable.

Proof.

- Let M_B be TM that decides B.
- Let $f: \Sigma_1^* \to \Sigma_2^*$ be reducing fcn from A to B.
- Consider the following TM:

$$M_A =$$
 "On input $w \in \Sigma_1^*$:

- 1. Compute $f(w) \in \Sigma_2^*$.
- 2. Run M_B on input f(w) and give the same result."

 $\Omega_1 = \Sigma_1^*$

- Since f is reducing function, $w \in A \iff f(w) \in B$.
 - If $w \in A$, then $f(w) \in B$, so M_B and M_A accept.
 - If $w \notin A$, then $f(w) \notin B$, so M_B and M_A reject.
- Thus, M_A decides A.

CS 341: Chapter 5

5-31

 $\Omega_2 = \Sigma_2^*$

Undecidability obeys \leq_m Ordering

Corollary 5.23

If $A \leq_{\mathsf{m}} B$ and A is undecidable, then B is undecidable also.

Proof. Language A undecidable and B decidable contradicts the previous theorem.

Recall: Complements $\overline{A} = \Sigma_1^* - A$ and $\overline{B} = \Sigma_2^* - B$.

Fact: If $A \leq_{\mathsf{m}} B$, then $\overline{A} \leq_{\mathsf{m}} \overline{B}$.

Proof.

• Let f be reducing fcn of A to B:

$$w \in A \iff f(w) \in B.$$

• Same fcn f shows $\overline{A} \leq_{\mathsf{m}} \overline{B}$ since

$$w \in \overline{A} \iff f(w) \in \overline{B}.$$

 $\Omega_2 = \Sigma_2^*$

5-35

5-36

Recognizability and \leq_m

Theorem 5.28

If $A \leq_{\mathsf{m}} B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof.

- Let M_B be TM recognizing B.
- Let f be reducing fcn from A to B.
- Define a new TM as follows:

$$M_A = \text{ "On input } w \in \Sigma_1^*$$
:

- 1. Compute $f(w) \in \Sigma_2^*$.
- 2. Run M_B on input f(w) and give the same result."
- Since f is a reducing function, $w \in A \iff f(w) \in B$.
 - If $w \in A$, then $f(w) \in B$, so M_B and M_A accept.
 - If $w \notin A$, then $f(w) \notin B$, so M_B and M_A reject or loop.
- \bullet Thus, M_A recognizes A.

Corollary 5.29

If $A \leq_{\mathsf{m}} B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Proof. Language A not Turing-recognizable and B Turing-recognizable contradicts the previous theorem.

Unrecognizability and ≤_m

Fact: If $A \leq_{\rm m} B$ and A is not co-Turing-recognizable, then B is not co-Turing-recognizable. **Proof.**

- If A is not co-Turing-recognizable, then complement \overline{A} is not Turing-recog.
- $A \leq_{\mathsf{m}} B$ implies $\overline{A} \leq_{\mathsf{m}} \overline{B}$ (see slide 5-32).
- $\bullet \overline{B}$ is not Turing-recog. (Corollary 5.29).
- \bullet Hence, B is not co-Turing-recognizable.

CS 341: Chapter 5

E_{TM} is not Turing-recognizable

Recall: the emptiness problem for TMs:

$$E_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is TM with } L(M) = \emptyset \}$$

$$\subseteq \{ \langle M \rangle \mid M \text{ is TM } \} \equiv \Omega_E$$

Proof. Reduce $\overline{A_{TM}} \leq_m E_{TM}$, and apply Corollary 5.29.

- $\Omega_A = \{ \langle M, w \rangle \mid \mathsf{TM} \ M, \mathsf{string} \ w \}$
- Reducing fcn $f(\langle M, w \rangle) = \langle M' \rangle$, where M' is following TM:

- 1. Ignore input x, and run M on input w.
- 2. If M accepts w, accept; if M rejects w, reject."
- If M accepts w (i.e., $\langle M, w \rangle \not\in \overline{A_{\mathsf{TM}}}$), then $L(M') = \Sigma^*$; if M doesn't accept w (i.e., $\langle M, w \rangle \in \overline{A_{\mathsf{TM}}}$), then $L(M') = \emptyset$.
- Thus, $\langle M, w \rangle \in \overline{A_{\mathsf{TM}}} \iff f(\langle M, w \rangle) = \langle M' \rangle \in E_{\mathsf{TM}}.$
- Cor. 5.29 implies E_{TM} not TM-recog. since $\overline{A_{\mathsf{TM}}}$ also isn't (Cor. 4.23).

CS 341: Chapter 5

Theorem 5.30: EQ_{TM} is not Turing-recognizable

$$EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \}$$

$$\subseteq \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs} \} \equiv \Omega_{EQ}$$

Proof. Reduce $\overline{A_{TM}} \leq_m EQ_{TM}$, and apply Corollary 5.29.

- Reduction $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$
 - \blacktriangle $M_1 = "reject on all inputs."$
 - \blacktriangle M_2 = "On input x:

- 1. Ignore input x, and run M on w.
- 2. If M accepts w, accept; if M rejects w, reject."
- $\bullet L(M_1) = \emptyset.$
- If M accepts w (i.e., $\langle M, w \rangle \not\in \overline{A_{\mathsf{TM}}}$), then $L(M_2) = \Sigma^*$. If M doesn't accept w (i.e., $\langle M, w \rangle \in \overline{A_{\mathsf{TM}}}$), then $L(M_2) = \emptyset$.
- Thus, $\langle M, w \rangle \in \overline{A_{\mathsf{TM}}} \iff f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \in EQ_{\mathsf{TM}}.$
- $\overline{A}_{\mathsf{TM}}$ not TM-recognizable (Cor. 4.23), so EQ_{TM} not TM-recognizable by Corollary 5.29.

Theorem 5.30: EQ_{TM} is not co-Turing-recognizable

$$EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs with } L(M_1) = L(M_2) \}$$

 $\subseteq \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs} \} \equiv \Omega_{EQ}$

Proof. Reduce $A_{TM} \leq_m EQ_{TM}$, and apply Fact on slide 5-34.

• Reduction $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$

 \blacktriangle $M_1 = "accept on all inputs."$

 \blacktriangle M_2 = "On input x:

- 1. Ignore input x, and run M on w.
- 2. If M accepts w, accept; if M rejects w, reject."
- $\bullet L(M_1) = \Sigma^*.$
- If M accepts w (i.e., $\langle M, w \rangle \in A_{\mathsf{TM}}$), then $L(M_2) = \Sigma^*$. If M doesn't accept w (i.e., $\langle M, w \rangle \not\in A_{\mathsf{TM}}$), then $L(M_2) = \emptyset$.
- $\langle M, w \rangle \in A_{\mathsf{TM}} \iff f(\langle M, w \rangle) = \langle M_1, M_2 \rangle \in EQ_{\mathsf{TM}}.$
- Because A_{TM} is not co-Turing-recognizable, EQ_{TM} is not co-Turing-recognizable by Fact on slide 5-34.

Summary of Chapter 5

- ullet Computable function $f:\Sigma_1^* o \Sigma_2^*$ has TM that maps
 - strings in Σ_1^* (i.e., instances of one problem)
 - to strings in Σ_2^* (i.e., instances of another problem)
- Mapping reduction $A \leq_m B$: $w \in A \iff f(w) \in B$, for some computable function f.
 - \blacksquare If I can solve B, then I can solve A.
 - \blacksquare If I can't solve A, then I can't solve B.
- Undecidable problems: $A_{\rm TM}$, $HALT_{\rm TM}$, $E_{\rm TM}$, $REG_{\rm TM}$, $EQ_{\rm TM}$, $ALL_{\rm CFG}$
- Rice's Theorem: any nontrivial property of the language of a TM is undecidable.
- E_{TM} is not Turing-recognizable.
- \bullet EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.