1. 교과목 수강인원

 수업년도	수업학기	계열구분	수강인원	이수인원
2012	1	공학	9	9
2013	1	공학	10	10
2015	1	공학	12	12
2017	1	공학	11	11
2018	1	공학	16	15

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2018	1	39.54	61.09	35.36	16	
2017	2	37.26	63.09	32.32		
2017	1	38.26	65.82	33.5	11	
2016	2	37.24	72.07	31.53		
2016	1	37.88	73.25	32.17		

3. 성적부여현황(평점)

4. 성적부여현황(등급)

수업년도	수업학기	등급	인원	비율
2012	1	Α+	3	33.33
2012	1	Α0	5	55.56
2012	1	B+	1	11.11
2013	1	Α+	6	60
2013	1	A0	4	40
2015	1	Α+	4	33.33
2015	1	B+	4	33.33
2015	1	C+	4	33.33
2017	1	Α+	3	27.27
2017	1	B+	5	45.45
2017	1	C+	3	27.27
2018	1	Α+	8	53.33
2018	1	A0	5	33.33
2018	1	B+	1	6.67
2018	1	ВО	1	6.67

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2018	1	89.55	90.19	89.44	97	
2017	2	90.46	90.27	90.49		
2017	1	89.91	90.14	89.87	94	
2016	2	91.55	91.97	91.49		
2016	1	91.26	91.81	91.18		

6. 강의평가 문항별 현황

		본인평 균 (가중 치적용)	Olm		점수별 인원분포				
번호	평가문항 번호		소속학과,대학평균과의 차이 (+초과,-:미달)		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
			학과	대학	1 정	2 Z-l	2 24	124	디
교강사:		5점 미만	차이 평균	차이 평균	· 1점	2점	3점	4점	5점

No data have been found.

7. 개설학과 현황

학과	2018/1	2017/1	2015/1	2013/1	2012/1
자원환경공학과	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)

8. 강좌유형별 현황

강좌유형	2012/1	2013/1	2015/1	2017/1	2018/1
일반	1강좌(9)	1강좌(10)	1강좌(12)	1강좌(11)	1강좌(16)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
	서울 공과대학 자원환경공학 과	이 과목에서는 터널 건설의 역학적 의미를 암반 굴착-지보 상호반응 이론(convergence- confinement method)을 통해 공부하고, RSR시스템, RMR시스템, Q시스템 등의 암반분 류법을 이용하여 경험적 터널 설계법을 배운다. 암반에 분포하는 불연속면들의 역학적 거동을 공부하고 터널의 안정성과 지보(support) 설계 에 미치는 영향을 배운다.	This course introduces the technology of tunnel construction and its mechanical meaning by teaching the convergence-confinement method. The students will learn the empirical methods of tunnel design based on various rock mass classification schemes such as RSR-system, RMR-system and Q-system. The students will learn the mechanical behaviour of various discontinuities in rock mass. The effects of the discontinuites on the stability and support design of tunnels will be discussed.	
	서울 공과대학 자원환경공학 과	이 과목에서는 터널 건설의 역학적 의미를 암반 굴착-지보 상호반응 이론(convergence- confinement method)을 통해 공부하고, RSR시스템, RMR시스템, Q시스템 등의 암반분 류법을 이용하여 경험적 터널 설계법을 배운다. 암반에 분포하는 불연속면들의 역	This course introduces the technology of tunnel construction and its mechanical meaning by teaching the convergence- confinement method. The students will learn the empirical methods of tunnel design based on various rock	

교육과정	관장학과	국문개요	영문개요	수업목표
		학적 거동을 공부하고 터널의 안정성과 지보 (support) 설계에 미치는 영향을 배운다.	mass classification schemes such as RSR- system, RMR-system and Q-system. The students will learn the mechanical behaviour of various discontinuities in rock mass. The effects of the discontinuites on the stability and support design of tunnels will be discussed.	
	서울 공과대학 시스템응용공 학부 지구환경 시스템공학전 공	이 과목에서는 터널 건설의 역학적 의미를 암반 굴착-지보 상호반응 이론(convergence- confinement method)을 통해 공부하고, RSR시스템, RMR시스템, Q시스템 등의 암반분 류법을 이용하여 경험적 터널 설계법을 배운다. 암반에 분포하는 불연속면들의 역학적 거동을 공부하고 터널의 안정성과 지보(support) 설계 에 미치는 영향을 배운다.	This course introduces the technology of tunnel construction and its mechanical meaning by teaching the convergence-confinement method. The students will learn the empirical methods of tunnel design based on various rock mass classification schemes such as RSR-system, RMR-system and Q-system. The students will learn the mechanical behaviour of various discontinuities in rock mass. The effects of the discontinuites on the stability and support design of tunnels will be discussed.	

10. CQI 등록내역

No data have been found.