PROBLEM SOLVING

Simple examples for each major time complexity.

Time Complexity	Examples	Explanation	
O(1) (Constant Time)	 - Accessing an array element arr[5] - Swapping two variables - Checking if a number is even (x % 2 == 0) 	Time does not depend on input size	
O(log n) (Logarithmic Time)	 Binary search in a sorted array Finding the height of a balanced BST Halving a number until 1 (e.g. while n > 1: n //= 2) 	Input is reduced by half each step	
O(n) (Linear Time)	Finding max in an arrayLinear searchPrinting all elements of an array	Time grows linearly with input size	
O(n log n) (Linearithmic Time)	- Merge Sort - Heap Sort - Efficient sorting algorithms	Combination of linear and logarithmic behavior	
O(n²) (Quadratic Time)	- Bubble Sort - Insertion Sort - Nested loops over array: for i in n: for j in n:	Time grows exponentially with input	
O(n³) (Cubic Time)	- Matrix multiplication (naive) - 3 nested loops: for i in n: for j in n: for k in n:	Time increases very fast with input size	
O(2 ⁿ) (Exponential Time)	Solving Tower of HanoiRecursive FibonacciGenerating all subsets	Time doubles with each added input	
O(n!) (Factorial Time)	 Solving Traveling Salesman Problem by brute force Generating all permutations Recursive solutions without pruning 	Extremely slow growth, infeasible for n > 10	

Example Code Snippets for Clarity

```
O(1):
```

```
int getFirst(int arr[]) {
  return arr[0];
}
O(log n):
   1) int binarySearch(int arr[], int n, int key) {
  int low = 0, high = n-1;
  while (low <= high) {
     int mid = (low + high) / 2;
     if (arr[mid] == key) return mid;
     else if (arr[mid] < key) low = mid + 1;
     else high = mid - 1;
  }
  return -1;
}
2) for(int i = 1; i < n; i *= 2) {
  printf("%d", i);
}
O(n):
1) for(int i = 0; i < n; i++) {
  printf("%d", i);
}
2) void printArray(int arr[], int n) {
  for (int i = 0; i < n; i++)
     printf("%d ", arr[i]);}
```

```
O(n<sup>2</sup>):
1) for(int i = 0; i < n; i++) {
  for(int j = 0; j < n; j++) {
     printf("%d, %d", i, j);
   }
}
2) void printPairs(int arr[], int n) {
   for (int i = 0; i < n; i++) {
     for (int j = 0; j < n; j++) {
        printf("(%d,%d) ", arr[i], arr[j]);
     }}}
O(nlogn):
for(int i = 0; i < n; i++) {
  for(int j = 1; j < n; j *= 2) {
     printf("%d, %d", i, j);
   }
}
O(2^n)
int fib(int n) {
   if(n <= 1) return n;
   return fib(n-1) + fib(n-2);
}
Use Master Theorem for recursive functions like:
```

 $T(n) = 2T(n/2) + O(n) \rightarrow O(n \log n)$

 $T(n) = T(n/2) + O(1) \rightarrow O(\log n)$

Time Complexity Identification Tricks (with C examples)

Pattern	Time Complexity	Example	Explanation
Single loop over n	O(n)	for(i = 0; i < n; i++)	Runs n times
Two nested loops	O(n²)	for(i = 0; i < n; i++) for(j = 0; j < n; j++)	n * n iterations
Three nested loops	O(n³)	for(i=0;i <n;i++) for(j=0;j<n;j++) for(k=0;k<n;k++)< td=""><td>n * n * n iterations</td></n;k++)<></n;j++) </n;i++) 	n * n * n iterations
Loop dividing n by 2 each time	O(log n)	for(i = n; i > 1; i /= 2)	Halves each step
Loop multiplying i by 2	O(log n)	for(i = 1; i < n; i *= 2)	Doubles each step
Loop inside loop with decreasing range	O(n log n)	for(i = 0; i < n; i++) for(j = n; j > 1; j /= 2)	n * log n
Recursive Fibonacci	O(2 ⁿ)	fib(n) = fib(n-1) + fib(n-2)	2 calls per level
Generating permutations	O(n!)	Backtracking or recursion over all orderings	Factorial growth

Tricks for Quick Analysis

Count how many times the loop runs (visually)

E.g. for(
$$i = 1$$
; $i < n$; $i *= 2$)

- \diamond Doubles \rightarrow Logarithmic \rightarrow O(log n)
- ❖ Nested loops = Multiply inner by outer

- \rightarrow Outer loop n, inner loop n = O(n²)
 - Check if recursive calls grow exponentially or divide

$$recur(n) = recur(n-1) + recur(n-2) \rightarrow O(2^n)$$

$$recur(n) = recur(n/2) \rightarrow O(log n)$$

$$recur(n) = 2 * recur(n/2) \rightarrow O(n)$$

- ❖ Sorting usually = O(n log n) (e.g. Merge Sort, Quick Sort average case)
- Use Log Table:

$$i = 1$$
; while($i < n$) { $i *= 2$; } // $log_2 n$ times

$$i = n$$
; while($i > 0$) { $i /= 2$; } // $log_2 n$ times