

Module 5: Networking and Content Delivery

AWS Academy Cloud Foundations

Networks - Public and Private Cloud loas model allows you to customize your network

IPv4 addr are 32-bit and uses 4-octets and is represented as a positive integer

IPv6 addr are 128-bit and uses 8-hextets (16-bit) and is represented as 4-nibbles or hexadecimal

IPv4 (32-bit) address: 192.0.2.0

IPv6 (128-bit) address: 2600:1f18:22ba:8c00:ba86:a05e:a5ba:00FF

Classless Inter-Domain Routing (CIDR) -

the subnet mosk or prefix length is used to identify the Network and 1964 portions of an IP address

0000010

Fixed

Host identifier

/

0000000

to 11111111

Flexible

Tells you how

many bits are

Open Systems Interconnection (OSI) model Toping is the model we use for our computers

Layer	Number	Function	Protocol/Address
Application	7	Means for an application to access a computer network	HTTP(S), FTP, DHCP, LDAP
Presentation	6	 Ensures that the application layer can read the data Encryption 	ASCI, ICA
Session	5	Enables orderly exchange of data	NetBIOS, RPC
Transport	4	Provides protocols to support host-to-host communication	TCP, UDP
Network	3	Routing and packet forwarding (routers)	IP
Data link	2	Transfer data in the same LAN network (hubs and switches)	MAC
Physical	1	Transmission and reception of raw bitstreams over a physical medium	Signals (1s and 0s)

Network Services

Section 2: Amazon VPC

Module 5: Networking and Content Delivery

Amazon VPC - Each account in the cloud is logically separated and isolated from other accounts

Amazon VPC

- Enables you to provision a logically isolated section of the AWS Cloud where you can launch AWS resources in a virtual network that you define
- Gives you control over your virtual networking resources, including:
 - Selection of IP address range
 - Creation of subnets
 - Configuration of route tables and network gateways

- Enables you to <u>customize the network configuration</u> for your VPC
- Enables you to use multiple layers of security

VPCs and subnets

VPCs:

- Logically isolated from other VPCs
- <u>Dedicated</u> to your AWS account
- Belong to a single AWS Region and can span multiple Availability Zones
- Subnets: -> network segments
 - Range of IP addresses that divide a VPC
 - Belong to a single Availability Zone
 - Classified as public or private

IP addressing & You choose the size of your Private Network

- When you create a VPC, you assign it to an IPv4 CIDR block (range of private IPv4 addresses).
- You <u>cannot change the address range</u> after you create the VPC.
- The largest IPv4 CIDR block size is /16.
- The smallest IPv4 CIDR block size is /28.
- IPv6 is also supported (with a different block size limit).
- CIDR blocks of subnets cannot overlap.

You need to consider an allowance for reserved Reserved IP addresses addresses when you decide on a block

Example: A VPC with an IPv4 CIDR block of 10.0.0.0/16 has 65,536 total IP addresses. The VPC has four equal-sized subnets. Only 251 IP addresses are available for use by each subnet.

IP Addresses for CIDR block 10.0.0.0/24	Reserved for
10.0.0.0	Network address
10.0.0.1	Internal communication
10.0.0.2	Domain Name System (DNS) resolution
10.0.0.3	Future use
10.0.0.255	Network broadcast address

Public IP address types - Public Claud = Internet Access

Public IPv4 address temporary

- Manually assigned through an Elastic IP address
- Automatically assigned through the auto-assign public IP address settings at the subnet level
- -D addr can change if you reboot your server or turn it off

Instance no Public Service

Elastic IP address

- Associated with an AWS account
- Can be allocated and remapped anytime
- Additional costs might apply
- -D addr is semi-permanent but you pay for a reservation cost if you use it or not

Account

Liblic Service

Route tables and routes - used by the Network Services to route traffic between networks

- A route table contains a set of rules (or routes) that you can configure to direct network traffic from your subnet.
- Each route specifies a destination and a target.
- By default, every route table contains a local route for communication within the VPC.
- Each subnet must be associated with a route table (at most one).

Main (Default) Route Table

Desti	ination	Target
10.0.	0.0/16	local

VPC CIDR block

Section 3: VPC networking

Module 5: Networking and Content Delivery

Internet gateway

Network address translation (NAT) gateway

Availability Zone

Public subnet:10.0.1.0/24

NAT gateway (nat-gw-id)

Private subnet: 10.0.2.0/24

Destination	Target
10.0.0.0/16	local
0.0.0.0/0	igw-id

Private Subnet Route Table

Destination	Target	
10.0.0.0/16	local	
0.0.0.0/0	nat-gw-id	

aws AWS Cloud

Region

VPC: 10.0.0.0/16

Internet

gateway

(igw-id)

Public route table

172.16.2.0

Private route

table

Section 4: VPC security

Module 5: Networking and Content Delivery

Security groups (1 of 2)

Security groups (2 of 2)

- A OUBLY COMES TROM COMPANION
- Security groups have rules that control inbound and outbound instance traffic.
- Default security groups deny all inbound traffic and allow all outbound traffic.
- Security groups are stateful. -> looks at the STC of the mag

			Inbound
Source	Protocol	Port Range	Description
sg- <i>xxxxxxxx</i>	All	All	Allow inbound traffic from network interfaces assigned to the same security group.

Outbound						
Destination	Protocol	Port Range	Description			
0.0.0.0/0	All	All	Allow all outbound IPv4 traffic.			
::/0	All	All	Allow all outbound IPv6 traffic.			

Custom security group examples

- default deny
- You can **specify allow** rules, but not deny rules.
- All rules are evaluated before the decision to allow traffic.

			Inbound
Source 🙀	Protocol	Port Range	Description
Any IP 0.0.0.0/0	TCP	80	Allow inbound HTTP access from all IPv4 addresses 7
And P 0.0.0.0/0	TCP	443	Allow inbound HTTPS access from all IPv4 addresses
Your network's public IPv4 address range	ТСР	22	Allow inbound SSH access to Linux instances from IPv4 IP addresses in your network (over the internet gateway)
Ned 10			To a company

٦ı	ıth	ın	d	

Destination	Protocol	Port Range	Description
The ID of the security group for your Microsoft SQL Server database servers	TCP	1433	Allow outbound Microsoft SQL Server access to instances in the specified security group

Network access control lists (network ACLs 1 of 2)

Network access control lists (network ACLs 2 of 2)

- A network ACL has separate inbound and outbound rules, and each rule can either allow or deny traffic.
- Default network ACLs allow all inbound and outbound IPv4 traffic.
- Network ACLs are stateless.

Inbound							
Rule	Туре	Protocol	Port Range	Source	Allow/Deny		
100	All IPv4 traffic	All	All	0.0.0.0/0	ALLOW		
*	All IPv4 traffic	All	All	0.0.0.0/0	DENY		

Outbound							
Rule	Туре	Protocol	Port Range	Destination	Allow/Deny		
100	All IPv4 traffic	All	All	0.0.0.0/0	ALLOW		
*	All IPv4 traffic	All	All	0.0.0.0/0	DENY		

Custom network ACLs examples

- Custom network ACLs deny all inbound and outbound traffic until you add rules.
- You can specify both allow and deny rules.
- Rules are evaluated in number order, starting with the lowest number.

Inbound						
Rule	Туре	Protocol	Port Range	Source	Allow/Deny	
100	HTTPS	ТСР	443	0.0.0.0/0 Any	ALLOW	
120	SSH	ТСР	22	192.0.2.0/24	ALLOW 12	
*	All IPv4 traffic	All	All	0.0.0.0/0	DI:I'.Y	
Outbound						
			Outbound			
Rule	Type	Protocol	Outbound Port Range	Destination	Allow/Deny	
Rule 100	Type HTTPS	Protocol TCP		Destination 0.0.0.0/0		
	77		Port Range			

Security groups versus network ACLs

Attribute	Security Groups	Network ACLs
Scope	Instance level Host-baked FW	Subnet level Met PW
Supported Rules	Allow rules only long by defaut	Allow and deny rules
State	Stateful (return traffic is automatically allowed, regardless of rules)	Stateless (return traffic must be explicitly allowed by rules)
Order of Rules	All rules are evaluated before decision to allow traffic	Rules are evaluated in number order before decision to allow traffic

SNG

Section 5: Amazon Route 53

Module 5: Networking and Content Delivery

nome -> address

Amazon Route 53 - Port num of DNS

Amazon Route 53

- Is a highly available and scalable Domain Name System (DNS) web service
- Is used to route end users to internet applications by translating names (like www.example.com) into numeric IP addresses (like 192.0.2.1) that computers use to connect to each other
- Is fully compliant with IPv4 and IPv6
- Connects user requests to infrastructure running in AWS and also outside of AWS
- Is used to check the health of your resources
- Features traffic flow
- Enables you to register domain names

Amazon Route 53 supported routing

- Simple routing Use in single-server environments
- Weighted round robin routing Assign weights to resource record sets to specify the frequency
- <u>Latency</u> routing Help improve your global applications
- Geolocation routing Route traffic based on <u>location of your users</u>
- Geoproximity routing Route traffic based on <u>location of your resources</u>
- Failover routing Fail over to a backup site if your primary site becomes unreachable
- <u>Multivalue answer routing</u> Respond to DNS queries with up to <u>eight healthy records</u> selected at random

Use case: Multi-region deployment

Name	Туре	Value
example.com	ALIAS	some-elb-name.us-west-2.elb.amazonaws.com
example.com	ALIAS	some-elb-name.ap-southeast-2.elb.amazonaws.com

Amazon Route 53 DNS failover

Improve the availability of your applications that run on AWS by:

- Configuring backup and failover scenarios for your own applications
- Enabling highly available multi-region architectures on AWS
- Creating health checks

DNS failover for a multi-tiered web application

Section 6: Amazon CloudFront

Module 5: Networking and Content Delivery

Content delivery and network latency

Content delivery network (CDN)

- Is a globally distributed system of caching servers
- Caches copies of commonly requested files (static content)
- Delivers a local copy of the requested content from a nearby cache edge or Point of Presence
- Accelerates delivery of dynamic content
- Improves application performance and scaling

Amazon CloudFront infrastructure

- Edge locations
- Multiple edge locations
- Regional edge caches

- Edge locations Network of data centers that CloudFront uses to serve popular content quickly to customers.
- Regional edge cache CloudFront location that caches content that is not popular enough to stay at an edge loca It is located between the origin server a the global edge location.

Amazon CloudFront benefits

- Fast and global
- Security at the edge
- Highly programmable
- Deeply integrated with AWS
- Cost-effective

