

Anita Debora Simangunsong, S.Pd., M.Pd

Anita Debora Simangunsong, S.Pd., M.Pd lahir di Medan, Sumatera Utara pada tanggal 8 Oktober 1988. Putri keempat dari 7 bersaudara. Dia telah menempuh jenjang Sekolah Dasar pada tahun 1995 – 2001 di SD ST ANTONIUS Bangun Mulia dan melanjutkan ke Sekolah Menengah Pertama (SMP) pada tahun 2001 – 2004 di SMP Negeri 3 Medan, kemudian melanjutkan ke Sekolah Menengah Atas (SMA) pada tahun 2004 – 2007 di SMA KATOLIK TRISAKTI Medan.

Tahun 2007 melanjutkan Sarjana (S1) di Universitas Negeri Medan (UNIMED) pada program studi Pendidikan Kimia dan lulus tahun 2012. Tahun 2013 melanjutkan S2 di Universitas Negeri Medan (UNIMED) program studi Pendidikan Kimia dan lulus tahun 2015. Riwayat karir sebagai dosen tetap di Program Studi Pendidikan Kimia Universitas HKBP Nommensen Pematangsiantar tahun 2018 sampai sekarang.

KIMIA DASAR I

Anita Debora Simangunsong, S.Pd., M.Pd.

PENERBIT CV.EUREKA MEDIA AKSARA

KIMIA DASAR I

Penulis: Anita Debora Simangunsong, S.Pd., M.Pd.

Editor : Febri Yanti, S.Si., M.Pd.

Desain Sampul: Eri Setiawan

Tata Letak : Via Maria Ulfah

ISBN : 978-623-5382-83-8

Diterbitkan oleh : EUREKA MEDIA AKSARA, JUNI 2022

ANGGOTA IKAPI JAWA TENGAH

NO. 225/JTE/2021

Redaksi:

Jalan Banjaran, Desa Banjaran RT 20 RW 10 Kecamatan Bojongsari

Kabupaten Purbalingga Telp. 0858-5343-1992

Surel: eurekamediaaksara@gmail.com

Cetakan Pertama: 2022

All right reserved

Hak Cipta dilindungi undang-undang

Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku ini dalam bentuk apapun dan dengan cara apapun, termasuk memfotokopi, merekam, atau dengan teknik perekaman lainnya tanpa seizin tertulis dari penerbit.

KATA PENGANTAR

Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa, karena atas berkat dan rahmat-Nya, penulis dapat menyelesaikan buku. Dalam pembuatan buku ini merupakan buah karya dari pemikiran penulis yang diberi judul "Kimia Dasar I." Penulis menyadari bahwa tanpa bantuan dan bimbingan dari berbagai pihak sangatlah sulit untuk menyelesaikan karya ini. Oleh karena itu, penulis mengucapkan banyak terima kasih pada semua pihak yang telah membantu penyusunan buku ini. Sehingga buku ini bisa hadir di hadapan pembaca.

Di dalam buku ini berisi tentang pengenalan mengenai ilmu kimia yang mendasar, sehingga benar-benar harus dipahami ilmu dasar tentang kimia sebelum berlanjut untuk mempelajari secara lebiha mendalam. Untuk rincian isinya diawali dari materi tentang materi dan perubahannya, mengenal atom, molekul, dan ion. Kemudian mengenal ikatan ikimia yang di dalamnya berisi ikatan atom, ikatan ionik, ikatan kovalen dan sebagainya. Selanjutnya diakhir dengan materi stoikiometri.

Maka dari itu harapannya buku Kimia Dasar I ini dapat membantu memahami isinya dengan mudah dan disenangi oleh para pembacanya. Penulis menyadari bahwa buku ini masih jauh dari sempurna. Mudah-mudahan buku ini dapat bermanfaat bagi semua pihak baik untuk pembelajaran di sekolah, untuk penelitian sebagai sumber referensi dan sebagainya. Semoga buku ini pun akan membawa manfaat bagi pengembangan ilmu pengetahuan.

Penulis

Anita Debora Simangunsong, S.Pd., M.Pd.

DAFTAR ISI

KATA PE	NGANTAR	iii
DAFTAR	ISI	iv
DAFTAR	GAMBAR	vii
DAFTAR	TABEL	ix
BAB 1 MA	ATERI DAN PERUBAHANNYA	1
A.	Pengenalan Ilmu Kimia	1
В.	Metode Ilmiah	2
C.	Penggolongan Materi	3
	1. Sifat Materi	4
	2. Wujud Materi	4
	3. Perubahan Materi	6
	4. Klasifikasi Materi	7
BAB 2 AT	TOM, MOLEKUL, DAN ION	13
A.	Pengertian Atom	13
В.	Perkembangan Teori Atom	14
	1. Teori Atom Dalton	15
	2. Teori Atom Thomson	16
	3. Teori Atom Rutherford	17
	4. Model Atom Niels Bohr	19
	5. Teori Atom Modern	21
C.	Tanda Atom	24
	1. Nomor Atom	24
	2. Nomor Massa	24
	3. Penulisan	25
	4. Isotop, Isobar, dan Isoton	25
D.	Bilangan Kuantum	26
	1. Bilangan Kuantum Utama	26
	2. Bilangan Kuantum Azimuth	26
	3. Bilangan Kuantum Magnetik (m)	27
	4. Bilangan Kuantum Spin (s)	27
E.	Konfigurasi Elektron	29
	1. Berdasarkan Kulit	29
	2. Berdasarkan Subkulit	31
	3. Konfigurasi dengan Notasi Gas Mulia	34

	4. Aturan Hund	34
	5. Orbital Penuh dan Setengah Penuh	34
	6. Konfigurasi Ion	35
BAB 3 IK	ATAN KIMIA	36
A.	Kestabilan Atom	36
	1. Dengan Cara Melepaskan Elektron	37
	2. Dengan Cara Menarik Elektron	38
	3. Dengan Cara Menggunakan Pasangan Elektro	n
	Bersama	38
B.	Ikatan Ionik dan Jenisnya	40
	1. Proses Pembentukan Ikatan Ionik	40
	2. Jenis Senyawa Ionik	43
	3. Tata Nama Senyawa Ionik	50
	4. Sifat-sifat Senyawa Ionik	55
C.	Ikatan Kovalen dan Jenisnya	58
	1. Proses Pembentukan Ikatan Kovalen	
	2. Jenis Ikatan Kovalen	61
	3. Ikatan Kovalen pada Anion Poliatomik	63
	4. Tata Nama Senyawa Kovalen	67
	5. Sifat-sifat Senyawa Kovalen	
D.	Bentuk dan Polaritas Molekul	69
	1. Molekul tanpa Pasangan Elektron Bebas	
	(PEB)	75
	2. Molekul dengan Pasangan Elektron Bebas	
	(PEB)	
E.	Gaya Antar Molekul	
	1. Gaya London	
	2. Gaya Dipol-dipol Induksi	
	3. Gaya Dipol-dipol	
	4. Ikatan hidrogen	
F.	Ikatan Logam	86
G.	Evaluasi	
BAB 4ST	OIKIOMETRI	
A.	Hukum-hukum Dasar Kimia	96
	1. Topik: Hukum Kekekalan Massa	
	(Hukum Lavoisier)	98

	2. Hukum Proust	100
	3. Hukum Gay Lussac (Hukum Perbandingan	
	Volume)	102
В.	Konsep Mol	103
	1. Hubungan Mol dengan Partikel	104
	2. Hubungan Mol dengan Massa	106
	3. Hubungan Mol dengan Volum Zat	107
C.	Hukum-hukum tentang Gas	109
	1. Hukum Gas Ideal	109
	2. Hipotesis Avogadro	110
D.	Rumus Empiris, Rumus Molekul & Air Kristal	112
	1. Rumus Empiris	112
	2. Rumus Molekul	113
	3. Air Kristal/ Senyawa Hidrat	113
E.	Kadar Zat	116
DAFTAR I	PUSTAKA	124
BIODATA	PENULIS	125

DAFTAR GAMBAR

Gambar 1.1. Langkah-Langkah Metode Ilmiah	2
Gambar 1.2. Volume Suatu Zat Cair Merupakan Sifat	
Ekstensif Materi	4
Gambar 1.3. Kerapatan Tiga Wujud Materi	5
Gambar 1.4. Reaksi antara Gas Hidrogen dan Oksigen	
Membentuk Molekul Air	6
Gambar 1.5. (a) Atom-atom Sebuah Unsur (b) Molekul	
Unsur (c) Molekul Senyawa	9
Gambar 1.6. rangkaian alat destilasi (penyulingan air dari	
larutan garam)	10
Gambar 1.7. Penyaringan	10
Gambar 1.8. Kromatografi Kertas Berwarna	11
Gambar 2.1 Model Atom Dalton (Bola Pejal)	15
Gambar 2.2 Model Atom Thomson (Roti Kismis)	17
Gambar 2.3 Eksperimen Rutherford	18
Gambar 2.4 Model Atom Rutherford	19
Gambar 2.5 Model Atom Niels Bohr	21
Gambar 2.6 Model Atom Mekanika Kuantum	22
Gambar 2.7 Model Atom Bohr	29
Gambar 2.8 Kenaikan Tingkat Energi	32
Gambar 3.1. Struktur kristal senyawa ionik sebelum	
ditekan (a), saat ditekan (b) dan pecah saat	
ditekan atau dipukul (c)	56
Gambar 3.2. Struktur senyawa ion (a), struktur molekul air (b)
dan gambar saat senyawa ion melarut	
membentuk larutan (c)	57
Gambar 3.3. Struktur Senyawa Ion (a) dan Struktur	
Senyawa Ion Saat Meleleh (b)	57
Gambar 3.4. Struktur Senyawa Ion	57
Gambar 3.5. Pembetukan Ikatan Kovalen Tunggal	61
Gambar 3.6. Pembetukan Ikatan Kovalen Rangkap Dua	61
Gambar 3.7. Pembetukan Ikatan Kovalen Ganda Tiga	62
Gambar 3.8. Pembetukan Ikatan Kovalen Koordinasi	62
Gambar 3.9. Molekul Non Polar dan Molekul Polar	69

Gambar 3.10. Bentuk Dasar Molekul Bilangan	
Koordinasi 2-6	70
Gambar 3.11. Gaya Intra Molekul dan Antar Molekul	
pada Air	80
Gambar 3.12. Proses Terbentuknya Gaya London	81
Gambar 3.13. Proses Terbentuknya Gaya Dipol-Dipol Induks	i 82
Gambar 3.14. Proses Terbentuknya Gaya Dipol-Dipol	82
Gambar 3.15. Ikatan Hidrogen antar Molekul Air (a),	
Molekul Ammonia (b) dan Molekul HF (c)	83
Gambar 3.16. Grafik Pengaruh Gaya Antar Molekul terhadap	,
Titik Didih Zat	84
Gambar 3.17. Model Ikatan Logam	87

DAFTAR TABEL

Tabel 1.1. Perbandingan sifat materi Gas, Cair, dan Padat	5
Tabel 1.2. Perubahan Fisika dan Kimia	6
Tabel 1.3. Beberapa Unsur dan Lambangnya	7
Tabel 1.4. Jenis-Jenis Campuran	8
Tabel 2.1. Kulit dan Jumlah Elektron Maksimum	29
Tabel 3.1 Konfigurasi Elektron Unsur-unsur Gas Mulia	36
Tabel 3.2. Struktur Lewis Unsur Golongan Utama	
Periode 1 dan Periode 2	41
Tabel 3.3. Kation Golongan Utama	43
Tabel 3.4. Kation Golongan Unsur Transisi	44
Tabel 3.5. Kation Poliatomik	45
Tabel 3.6. Anion Unsur Golongan Utama	45
Tabel 3.7. Anion Poliatomik	46
Tabel 3.8. Senyawa Ion Kation Monoatomik - Anion	
Monoatomik	48
Tabel 3.9. Senyawa Ion Kation Monoatomik - Anion	
Poliatomik	48
Tabel 3.10 Senyawa Ion Kation Politomik - Anion	
Monoatomik	49
Tabel 3.11. Senyawa Ion Kation Poliatomik - Anion	
Poliatomik	49
Tabel 3.12. Tata Nama Senyawa Ionik	51
Tabel 3.13. Titik Leleh Senyawa Ionik	55
Tabel 3.14. Contoh Rumus Kimia dan Nama Senyawa	
Kovalen	67
Tabel 3.15. Bentuk dan Polaritas Molekul dari Berbagai	
Bilangan Koordinasi	72
Tabel 3.16. Titik Didih Senyawa Hidrokarbon	85
Tabel 3.17. Kekentalan Bahan	86

KIMIA DASAR I

1

MATERI DAN PERUBANHANNYA

A. Pengenalan Ilmu Kimia

Ilmu Kimia, berasal dari bahasa Arab, yaitu al-kimia yang berarti perubahan materi, oleh ilmuwan Arab Jabir bin Hayyan (700-778M). Dari kata al-kimia diatas, dapat disimpulkan secara singkat bahwa ilmu kimia berarti: ilmu yang mempelajari rekayasa materi, yaitu mengubah materi menjadi materi lain. Secara lengkapnya, kimia merupakan suatu bagian dari ilmu pengetahuan alam, yang mempelajari materi mengenai sturktur dan sifat materi (zat) perubahan materi (zat) dan energi yang turut serta dalam perubahan suatu zat atau materi [tsb.]

Ilmu kimia merupakan ilmu yang mempelajari tentang komposisi, struktur, sifat dan perubahan dari suatu zat. Ilmu ini akan erat kaitannya dengan permasalahan-permasalahan sifat suatu unsur dan atom, bagaiaman pembentukan suatu senyawa, bagaimana atom berikatan satu sama lainnya, apa kegunaan dari suatu material, bagaimana reaksi yang dapat dimanfaatkan dalam kehidupan manusia. Dalam kehidupan sehari-hari, sebenarnya kita sering berhubungan dengan ilmu kimia. Lebih spesifik lagi, kita telah melakukan kontak langsung dengan bahan-bahan kimia baik itu yang alami maupun bahan yang buatan.

Coba perhatikan segala benda di sekitar kita, seperti baju dengan beragam warnanya, plastik dengan beragam bentuk, kertas dengan berbagai ukuran, semen, pupuk, tembaga, besi, karat, bensin dan obat-obatan. Kesemua benda tersebut

2

ATOM, MOLEKUL, DAN ION

A. Pengertian Atom

Sebelum mulai mempelajari apa itu teori atom dan perkembangannya, maka terlebih dahulu perlu memahami dulu pengertian dari atom itu sendiri. Atom secara etimologi atau asal kata berasal dari bahasa Yunani "atomos". Arti dari kata tersebut adalah "tidak bisa dipotong". Dilihat dari asal katanya, kemudian atom diketahui memiliki definisi sebagai suatu partikel yang menyusun suatu benda dan memiliki ukuran sangat kecil. Sedangkan dilansir situs kompas.com dijelaskan bahwa atom merupakan partikel terkecil di dalam semesta dan definisi ini dicetuskan oleh Demokritos di masa Yunani Kuno. Pengertian dari atom kemudian terus berkembang dan hal ini menjadi bagian dari perkembangan teori terhadap atom itu sendiri yang nanti akan dibahas mendetail di bawah. Sebagai bagian atau partikel terkecil, maka atom kemudian tidak bisa dipotong atau diperkecil lagi.

Atom kemudian tersusun atas beberapa partikel, dan kemudian ada istilah subatom. Hal ini menunjukan betapa kecilnya ukuran atom di setiap permukaan benda apapun. Menentukan ukuran atom kemudian menjadi hal yang tidak mudah. Sebab dalam satu tanda titik dari sebuah tulisan atau benda saja sudah tersusun dari jutaan atom. Atom kemudian juga diketahui memiliki dasar materi yang disebut dengan istilah inti atom dan awan elektron. Inti atom terdiri atas proton yang memiliki muatan positif, kemudian elektron yang mengelilinya memiliki muatan netral. Elektron di dalam atom

3

IKATAN KIMIA

A. Kestabilan Atom

Unsur-unsur kimia yang jumlahnya 118 dikelompokkan menjadi 18 golongan dan 7 periode di dalam tabel periodik. Dari 118 unsur, ada yang sifatnya stabil ada juga yang kurang stabil. Unsur yang paling stabil adalah unsur-unsur golongan gas mulia atau golongan VIIIA. Kestabilan golongan gas mulia disebabkan oleh konfigurasi elektron yang stabil, yaitu semua orbital atau sub kulit terisi penuh elektron. Berikut ini konfigurasi elektron unsur-unsur gas mulia.

Tabel 3.1. Konfigurasi Elektron Unsur-unsur Gas Mulia

No.	Nama Unsur	Simbol Atom	Konfigurasi Elektron
1	Helium	⁴ He	$1s^2$
		2	
2	Neon	²⁰ Ne	[He] 2s ² 2p ⁶
		10	_
3	Argon	⁴⁰ Ar	[Ne] 3s ² 3p ⁶
		18	
4	Kripton	⁸⁵ Kr	[Ar] 4s ² 3d ¹⁰ 4p ⁶
		36	
5	Xenon	131Xe	[Kr] 5s ² 4d ¹⁰ 5p ⁶
		54	
6	Radon	²²² Rn	[Xe] $6s^2 4f^{14} 5d^{10} 6p^4$
		86	_

4

STOIKIOMETRI

PETA KONSEP

DAFTAR PUSTAKA

- Achmad, Hiskia., dan S. Tupamahu. Struktur Atom, Struktur Molekul dan Sistem Periodik. Bandung: PT. Citra Aditya Bakti, 2001.
- Alfian, Zul. 2009. Kimia Dasar. USU Press: Medan.
- Basri, S. 2003. Kamus Kimia. Rineka Cipta: Jakarta.
- Brady, J.E. 1999. Kimia Universitas Azas dan Struktur Edisi Kelima Jilid I. Jakarta: Binarupa Aksara.
- Chang, R. 2003. Kimia Dasar: Konsep-Konsep Inti Edisi Ketiga Jilid II. Jakarta: Erlangga.
- Coulson, C.A. 1965. Valence. Glasgow: Oxford University Press.
- Dekock, R.L., dan Gray, H.B. 1980. *Chemical Structure and Bonding*.

 Menlo Park: The Benjamin/Cummings Publishing
 Company, Inc
- Effendy. 2017. *Molekul, Struktur, dan Sifat-Sifatnya*. Malang: Indonesian Academic Publishing.
- Effendy. 2016. *Prespektif Baru Ikatan Ionik, Edisi 3* Malang: Indonesian Academic Publishing.
- Keenan. 1984. Kimia untuk Universitas Edisi Keenam Jilid I. Jakarta: Erlangga.
- Nurhayati, Siti. 2010. *Cerdas Kimia*. Erlangga: Jakarta. Petrucci, Raplh. 1987. *Kimia Dasar*. Erlangga, Jakarta.
- Pertucci. Kimia Dasar Prinsip-Prinsip dan Aplikasi Modern Jilid 1. Jakarta: Erlangga, 2011.
- S, Syukri. 1999. Kimia Dasar 1. Bandung: ITB.
- Sastrohamidjojo, H. 2005. Kimia Dasar. Yogyakarta: UGM Press.

BIODATA PENULIS

Anita Debora Simangunsong, S.Pd., M.Pd.

Penulis lahir di Medan, Sumatera Utara pada tanggal 8 Oktober 1988. Putri keempat dari 7 bersaudara. Dia telah menempuh jenjang Sekolah Dasar pada tahun 1995 – 2001 di SD ST ANTONIUS Bangun Mulia dan melanjutkan ke Sekolah Menengah Pertama (SMP) pada tahun 2001 – 2004 di SMP Negeri 3 Medan, kemudian

melanjutkan ke Sekolah Menengah Atas (SMA) pada tahun 2004 – 2007 di SMA KATOLIK TRISAKTI Medan.

Tahun 2007 melanjutkan Sarjana (S1) di Universitas Negeri Medan (UNIMED) pada program studi Pendidikan Kimia dan lulus tahun 2012. Tahun 2013 melanjutkan S2 di Universitas Negeri Medan (UNIMED) program studi Pendidikan Kimia dan lulus tahun 2015. Riwayat karir sebagai dosen tetap di Program Studi Pendidikan Kimia Universitas HKBP Nommensen Pematangsiantar tahun 2018 sampai sekarang.