

Einführung in die Methode der Panelregression

RatSWD – Nachwuchsworkshop

Längsschnittanalysen auf der Basis amtlicher Sozial- und Wirtschaftsdaten

Axel Werwatz Stefan Mangelsdorf

Paneldaten

$$\left\{\boldsymbol{y}_{it}, \mathbf{X}_{it}\right\}_{i=1,\dots,N}$$
 $t=1,\dots,T$

- N ist groß (N=75240 in AFID)
- T ist klein (T=12 in AFiD)
- Formeln für balanced panel (jedes i in jeder Periode; unrealistisch aber hilfreich hier)
- zeitkonstante und zeitveränderliche Variablen

Wozu Paneldaten?

Josef Brüderl:

- 1. zur Schätzung kausaler Effekte trotz unbeobachteter Heterogenität (Marriage-Premium for Men?)
- 2. zur Analyse individueller Dynamik
- 3. zur präziseren Schätzung (mehr Beobachtungen)
- zu 3: "Auf Grund der inzwischen oft anzutreffenden Stichprobengrößen in praktischen Anwendungen sind mmögliche Effizienzgewinne eher von rein theoretischem Interesse" Lechner (AstA 2002)

Beispiel zu 1): kausale Effekte

Forschungsfrage: Sind exportierende Betriebe produktiver als nichtexportierende?

Beispiel zu 1): kausale Effekte

Forschungsfrage: Sind exportierende Betriebe produktiver als nichtexportierende?

$$lnap_{it} = \beta_0 + \beta_1 exp_{it} + \mathbf{w}_{it} \mathbf{\gamma} + v_{it}$$

Linearer Ansatz mit zeitkonstanten Koeffizienten. Fokus auf β_1 .

Das ist noch kein Modell. Wichtig: Annahmen über v_{it} .

Beispiel und Panel-Modell Notation (1)

zeitkonstante, inviduenspezifische Komponente des Fehlerterm, "unbeobachtete Heterogenität"

Beispiel und Panel-Modell Notation (2)

$$lnap_{it} = \underbrace{\beta_0 + \beta_1 exp_{it} + \mathbf{w}_{it} \gamma}_{it} + v_{it}$$

$$y_{it} = \mathbf{x}_{it} \beta + v_{it}$$

$$= \mathbf{x}_{it} \beta + c_i + u_{it}$$

Notation von Josef Brüderl

$$y_{it} = \beta_1 x_{it} + u_{it}$$
$$u_{it} = v_i + \varepsilon_{it}$$

Unsere Notation folgt weitestgehend

Jeffrey Wooldridge, Econometric Analysis of Cross Section and Panel Data, MIT Press 2002.

Beispiel und Panel-Modell

$$lnap_{it} = \underbrace{\beta_0 + \beta_1 exp_{it} + \mathbf{w}_{it} \mathbf{\gamma}}_{t} + v_{it}$$

$$y_{it} = \mathbf{x}_{it} \mathbf{\beta} + c_i + u_{it}$$

Forschungsziel: Partieller Effekt von *exp* auf Mittelwert von *lnap* gegeben Kontrollvariablen **und** unbeobachtete Heterogenität

Im Allgemeinen
$$\frac{\partial}{\partial x_i} E(y_{it} | \mathbf{x}_{it}, c_i)$$

Im linearen Panel Modell mit idiosynchratischen u_{it} :

$$E(u_{it} \mid \mathbf{x}_{it}, c_i) = 0 \implies E(y_{it} \mid \mathbf{x}_{it}, c_i) = \mathbf{x}_{it} \boldsymbol{\beta} + c_i$$

$$\Rightarrow \frac{\partial}{\partial x_i} E(y_{it} \mid \mathbf{x}_{it}, c_i) = \boldsymbol{\beta}_j$$

Lineares Panel-Modell

$$y_{it} = \mathbf{x}_{it} \boldsymbol{\beta} + v_{it}, \qquad v_{it} = c_i + u_{it}$$

$$\mathbf{E}(y_{it} \mid \mathbf{x}_{it}, c_i) = \mathbf{x}_{it} \boldsymbol{\beta} + c_i \qquad \Rightarrow \frac{\partial}{\partial x_j} \mathbf{E}(y_{it} \mid \mathbf{x}_{it}, c_i) = \boldsymbol{\beta}_j$$

$$E(y_{it} \mid \mathbf{x}_{it}) = E_{c_i \mid \mathbf{x}_{it}} \left[E(y_{it} \mid \mathbf{x}_{it}, c_i) \right] = \mathbf{x}_{it} \boldsymbol{\beta} + E(c_i \mid \mathbf{x}_{it})$$

Im Allgemeinen
$$\frac{\partial}{\partial x_j} E(y_{it} \mid \mathbf{x}_{it}) = \beta_j + \frac{\partial}{\partial x_j} E(c_i \mid \mathbf{x}_{it}) \neq \beta_j$$

ightharpoonup Ignorieren wir c_i , dann ist der partielle Effekt nicht der gewünschte (kausale, originäre, ceteris paribus) Effekt von x_j , geg. beobachtete Kontrollvariablen und unbeobachtete Heterogenität

Lineares Panel-Modell

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + v_{it}, \qquad v_{it} = c_i + u_{it} \qquad \mathbf{E}(y_{it} \mid \mathbf{x}_{it}, c_i) = \mathbf{x}_{it}\mathbf{\beta} + c_i$$

$$\frac{\partial}{\partial x_j} \mathbf{E}(y_{it} \mid \mathbf{x}_{it}, c_i) = \beta_j \qquad \frac{\partial}{\partial x_j} \mathbf{E}(y_{it} \mid \mathbf{x}_{it}) = \beta_j + \frac{\partial}{\partial x_j} \mathbf{E}(c_i \mid \mathbf{x}_{it})$$

Es sei
$$E(c_i | \mathbf{x}_{it}) = \delta_0 + \delta_1 x_{1,it} + \dots + \delta_j x_{j,it} + \dots + \delta_K x_{K,it}$$

$$\Rightarrow \frac{\partial}{\partial x_i} E(y_{it} | \mathbf{x}_{it}) = \beta_j + \delta_j$$

Im Beispiel: Exportieren tendenziell die "starken" Betriebe (δ_j >0) dann überschätzt die Regression ohne Berücksichtigung von c_i im Mittel den "wahren" Exporteffekt (β_j)

Aber: wenn x_j und c unabhängig (unkorrliert) sind, dann ist δ_j =0 und $\frac{\partial}{\partial x_j} E(y_{ii} | \mathbf{x}_{ii}) = \beta_j$

Warum c_i wichtig ist...

Korrelation zwischen c_i und u_{it} und seine Konsequenzen

Referenzergebnis: Pooled OLS

- OLS Regression von y_{it} auf \mathbf{x}_{it} (d.h. exp_{it} und \mathbf{w}_{it})
- .. als ob $N \cdot T$ unabhängige Querschnittsbeobachtungen zur Verfügung wären.
- Panelstruktur wird ignoriert, insb. $v_{it} = c_i + u_{it}$
- OLS-Koeffizientenschätzer von exp_{it} wahrscheinlich zu hoch
- OLS-Standardfehler sind zu klein, da TBeobachtungen zum selben i eben keine unabhängige, "frische" Information sind

Variablen im Exportbeispiel

Abhängige Variable

$$Inap_{it} = In \left(\frac{Umsatz_{it}}{t "atige Personen_{it}} \right)$$

Erklärende Variablen

Export-Dummy $exp_{it} = 1$ wenn $Auslandsumsatz_{it} > 0$

Betriebsgröße: $lntP_{it} = ln(t \ddot{a}tige\ Personen_{it})$

Qualität der Belegschaft: $arbeiterant_{it} = \frac{Arbeiter_{it}}{t \ddot{a}t ige\ Personen_{it}}$

 $lohn_{it} = \frac{Lohnsumme_{it}}{t \ddot{a} tige\ Personen_{it}} - Durchschnittslohn(HG, Region)_{t}$

Dummies für

- Osten
- Hauptgruppen (IG, GG, VG, Basis VL)
- für hochwertige und Spitzentechnologie
- für Mehrbetriebsunternehmen
- für die Jahre 1996 bis 2006.

Pooled-OLS Schätzung (1)

reg lnap exp lntP arbeiterant lohn hgd2 hgd3 hgd4 ost techd1 techd2 mbu mlu jahr1996- jahr2005 Number of obs = 490350Source df SS MS F(22,490327) = 8418.9976271.5849 Model 22 3466.89022 Prob > F = 0.0000Residual R-squared = 0.2742 201913.723490327 .411794013 Adj R-squared = 0.2741278185.308490349 .567321047 Total Root MSE = .64171 Coef. Std. Err. t P> t [95% Conf. Interval] lnap .00213 106.15 0.000 .2219 .2261 .2302 exp 0.000 .0088169 lntP .0106877 .0009545 11.20 .0125586 arbeiterant -.2059455 .0053656 -38.380.000 -.2164619 -.1954291 1.01e-06 0.000 lohn .0002943 291.99 .0002923 .0002963 -.1745256.0024932 -70.000.000 -.1794121 -.1696391 hqd2 hqd3 -.2265739 .0046738 -48.480.000 -.2357344 -.2174135 -.235975 -.2259794 had4 -.2309772 .0025499 -90.58 0.000 -.2027926 -.2075498 .0024272 -85.510.000 -.212307 ost techd1 -.1237306 .0049172 -25.160.000 -.1333681 -.114093 techd2 -.0394741 .0028505 -13.85 0.000 -.045061 -.0338872

•

Pooled-OLS Schätzung (2)

reg lnap exp lntP arbeiterant lohn hgd2 hgd3 hgd4 ost techd1 techd2 mbu mlu jahr1996-jahr2005, cluster(bnr)

Number of obs = 490350Linear regression F(22,68891) = 1037.78Prob > F = 0.0000(Std. Err. adjusted for 68892 clusters in bnr) Robust Coef. Std. Err. P>|t| [95% Conf. Interval] lnap t .2261 .005198 43.50 0.000 .2159 .2363 exp .0106877 3.37 0.001 lntP .0031677 .004479 .0168965 arbeiterant -.2059455.0175763 -11.720.000 -.2403951 -.1714959lohn .0002943 8.81e-06 33.42 0.000 .000277 .0003116 hqd2 -.1745256 .0051605 -33.820.000 -.1846402 -.164411 hqd3 -.2265739 .0092187 -24.580.000 -.2446425 -.2085053 hqd4 -.2309772 .0075909 -30.430.000 -.2458553 -.2160991 -.2075498.0066992 -30.980.000 -.2206803 -.1944193ost techd1 -.1237306 .0099162 -12.480.000 -.1431663 -.10429480.000 techd2 -.0394741 .0059907 -6.59 -.0512158 -.0277324

•

Pooled-OLS Schätzung (2)

reg lnap exp lntP arbeiterant lohn hgd2 hgd3 hgd4 ost techd1 techd2 mbu mlu jahr1996-jahr2005 cluster(bnr

```
Linear regression
                                              Number of obs = 490350
                                              F(22,68891) = 1037.78
                                              Prob > F
                                                          = 0.0000
                           (Std. Err. adjusted for 68892 clusters in bnr)
                            Robust
                   Coef.
                           Std. Err. t P> t
                                                        [95% Conf. Interval]
       lnap
                         .005198 43.50
                                              0.000 .2159
                 .2261
     exp
arb Zum Vergleich
                         .00213
                                    106.15
                                              0.000 .2219
                 .2261
                                                                   .2302
    exp
       hqd3
               -.2265739
                           .0092187
                                     -24.58
                                              0.000
                                                       -.2446425
                                                                   -.2085053
       hqd4
               -.2309772
                           .0075909
                                     -30.43
                                              0.000
                                                      -.2458553
                                                                   -.2160991
               -.2075498
                           .0066992
                                     -30.98
                                              0.000
                                                      -.2206803
                                                                   -.1944193
        ost
                                                                   -.1042948
     techd1
               -.1237306
                           .0099162
                                     -12.48
                                              0.000
                                                      -.1431663
     techd2
                                              0.000
               -.0394741
                           .0059907
                                     -6.59
                                                       -.0512158
                                                                   -.0277324
```

:

Pooled OLS

Unter welchen Bedingungen ist Pooled OLS konsistent?

Annahme POLS.1:

$$E(\mathbf{x}_{it}^{'}v_{it}) = \mathbf{0} \qquad t = 1, 2, ..., T$$

Das beinhaltet:

$$E(\mathbf{x}_{it}^{'}u_{it}) = \mathbf{0} \quad \text{und} \quad E(\mathbf{x}_{it}^{'}c_{i}) = \mathbf{0} \qquad \forall t$$

D.h., erklärende Variablen und c_i sind unkorreliert

Panel-Regression

Modelle/Schätzer, die Panelstruktur ($v_{it} = c_i + u_{it}$) berücksichtigen

Fixed Effects Modell

 $E(c_i|\mathbf{x}_{it})$ beliebig bzw. $Cov(c_i,x_{j,it})$ beliebig

- Within-Schätzer
- First-Difference Schätzer

Random Effects Modell

$$E(c_i|\mathbf{x}_{it})=0$$

$$Cov(c_i,x_{j,it})=0$$

- pooled OLS (consistent)
- pooled GLS (efficient)

Random oder Fixed Effects?

- Traditionell wird C_i bezeichnet als
 - Random Effect, wenn es wie eine Zufallsvariable behandelt wird.
 - Fixed Effect, wenn es wie ein Parameter behandelt wird, der für jedes Individuum i geschätzt werden kann.
- In mikroökonometrischen Panels mit einer großen Zahl von Zufallsziehungen aus der Grundgesamtheit macht es fast immer Sinn, die unbeobachteten Effekte als Zufallsvariablen zu behandeln.

Random oder Fixed Effects?

- In der modernen Ökonometrie ist die Schlüsselfrage, ob c_i korreliert ist mit den beobachteten erklärenden Variablen oder nicht:
 - Random Effect wenn keine Korrelation vorliegt:

$$Cov(\mathbf{x}_{it}, c_i) = \mathbf{0}, \quad t = 1, 2, ..., T$$

- Fixed Effect bedeutet, dass man Korrelationen zwischen C_i und X_{it} erlaubt

FE vs RE im Exportbeispiel

Was wäre in unserem Beispiel plausibel?

- Unbeobachtete Effekte, die die Produktivität beeinflussen, könnten z.B. Managementqualität, spezielles Know-How oder gute Kapitalausstattung sein.
- Diese Merkmale könnten durchaus mit dem Exportverhalten korreliert sein. Ein gutes Produkt lässt sich auch im Ausland besser verkaufen.
 - > Fixed Effects Modell plausibler

Fixed Effects Modell

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + c_i + u_{it}$$

Annahme FE.1: strikte Exogenität

$$E(u_{it} | \mathbf{x}_i, c_i) = 0, t = 1,...,T$$

mit
$$\mathbf{x}_{i} = (\mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{iT})$$

D.h., beliebige Beziehung zwischen \mathbf{x}_{it} und c_i aber gegeben c_i gibt es **keine** Beziehung zwischen u_{it} und den \mathbf{x}_{it} aller Perioden.

Strikte Exogenität (1)

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + c_i + u_{it} \qquad \qquad \mathbf{E}(u_{it} \mid \mathbf{x}_i, c_i) = 0$$

implizieren

$$E(y_{it} \mid \mathbf{x}_{i1}, \mathbf{x}_{i2}, ..., \mathbf{x}_{iT}, c_i) = E(y_{it} \mid \mathbf{x}_{it}, c_i) = \mathbf{x}_{it}\mathbf{\beta} + c_i$$

- Die erste Gleichung bedeutet, dass nach Kontrolle von \mathbf{x}_{it} und c_i alle \mathbf{x}_{is} keinen Einfluss mehr auf y_{it} haben für $s \neq t$.
- Die zweite Gleichung beschreibt die funktionale Form von $E(y_{it} | \mathbf{x}_{it}, c_i)$.

Strikte Exogenität (2)

$$E(u_{it} | \mathbf{x}_i, c_i) = 0, t = 1,...,T$$

schließt aus

– verzögerte abhängige Variablen in \mathbf{x}_{it} :

$$y_{it} = \beta_1 y_{it-1} + c_i + u_{it}$$

$$E(u_{it} | \mathbf{x}_i, c_i) = E(u_{it} | y_{it-1}, \dots, y_{it}, \dots, y_{i1}, c_i) = 0$$

$$E(u_{it} | y_{it}, c_i) = E(u_{it} | \beta_1 y_{it-1} + c_i + u_{it}, c_i) \neq 0$$

Strikte Exogenität (2)

$$E(u_{it} | \mathbf{x}_i, c_i) = 0, t = 1,...,T$$

schließt aus

- verzögerte abhängige Variablen in \mathbf{x}_{it} :
- Feedbackeffekte von verzögerten Schocks $(u_{it-1}, u_{it-2},...)$ auf Elemente von \mathbf{x}_{it} (so dass $\mathbf{E}(u_{it-1} \mid \mathbf{x}_{it}) \neq 0$)

Beispiel:

$$lnap_{it} = \beta_0 + \beta_1 exp_{it} + \mathbf{w}_{it} \mathbf{\gamma} + c_i + u_{it}$$

- Ist exp_{it} strikt exogen?
- Exporttätigkeit heute könnte von vergangenen Produktivitätsschocks beeinflusst sein.
- Ashenfelter's Dip

Within Transformation

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + c_i + u_{it}$$

gilt auch im Durchschnitt für jedes i:

$$\overline{y}_i = \overline{\mathbf{x}}_i \mathbf{\beta} + c_i + \overline{u}_i \qquad \text{mit } \overline{y}_i = \frac{1}{T} \sum_{t=1}^{T} y_{it}$$

Abziehen der Gleichung voneinander ergibt

$$\underbrace{y_{it} - \overline{y}_{i}}_{it} = \underbrace{(\mathbf{x}_{it} - \overline{\mathbf{x}}_{i})}_{it} \quad \mathbf{\beta} \quad + \underbrace{u_{it} - \overline{u}_{i}}_{it}$$

$$\ddot{y}_{it} = \ddot{\mathbf{x}}_{it} \quad \mathbf{\beta} \quad + \ddot{u}_{it}$$

was die c_i eliminiert, aber auch alle zeitkonstanten erklärenden Variablen.

Within Schätzer

Within Schätzer ("Fixed Effects Schätzer"):

Pooled OLS Schätzer von \ddot{y}_{it} auf $\ddot{\mathbf{x}}_{it}$:

$$\hat{\boldsymbol{\beta}}_{FE} = \left(\sum_{i=1}^{N} \ddot{\mathbf{x}}_{i}^{'} \ddot{\mathbf{x}}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \ddot{\mathbf{x}}_{i}^{'} \ddot{\mathbf{y}}_{i}\right)$$

$$= \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{x}}_{it}^{'} \ddot{\mathbf{x}}_{it}\right)^{-1} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{x}}_{it}^{'} \ddot{\mathbf{y}}_{it}\right)$$

 $\hat{\beta}_{\it FE}$ ist konsistent unter FE.1 (strikte Exogenität) und einer Rangbedingung .

First Difference Transformation

Bei zwei Perioden können die Gleichungen von Periode 1 und Periode 2 abgezogen werden:

$$\underbrace{y_{it} - y_{it-1}}_{bt} = \underbrace{\left(\mathbf{x}_{it} - \mathbf{x}_{it-1}\right)}_{bt} \boldsymbol{\beta} + \underbrace{u_{it} - u_{it-1}}_{it-1}$$

$$\Delta y_{it} = \Delta \mathbf{x}_{it} \boldsymbol{\beta} + \Delta u_{it}$$

Lineares Modell in Differenzen ohne Konstante und ohne c_i aber auch ohne zeitkonstante erklärende Variablen

First Difference Schätzer

First Difference Schätzer ist der Pooled OLS Schätzer der Regression

$$\Delta y_{it} = \Delta \mathbf{x}_{it} \mathbf{\beta} + \Delta u_{it}$$

 $\hat{\beta}_{\mathit{FD}}$ ist konsistent unter FE.1 (strikte Exogenität) und einer Rangbedingung .

Es läßt sich zeigen, dass
$$E(u_{it} \mid \mathbf{x}_{i}, c_{i}) = 0, \implies E(\Delta \mathbf{x}_{it} \Delta u_{it}) = \mathbf{0}$$

Within/FE-Schätzer

xtreg lnap exp lntP arbeiterant lohn hgd2 hgd3 hgd4 ost techd1 techd2 mbu mlu jahr1996-jahr2005, fe

lnap	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
exp	.094	.002232	42.13	0.000	.0897	.0984
lntP	0849324	.0018994	-44.72	0.000	0886551	0812097
arbeiterant	.2467592	.0070208	35.15	0.000	.2329986	.2605198
lohn	.000111	6.12e-07	181.42	0.000	.0001098	.0001122
hgd2	.0440935	.0040725	10.83	0.000	.0361116	.0520754
hgd3	04193	.0084138	-4.98	0.000	0584208	0254392
hgd4	0738374	.00393	-18.79	0.000	0815401	0661348
ost	1189403	.086207	-1.38	0.168	2879033	.0500227
techd1	0001622	.0093895	-0.02	0.986	0185654	.018241
techd2	0083742	.0043336	-1.93	0.053	0168678	.0001194
mbu	.0477343	.0033557	14.22	0.000	.0411572	.0543114
mlu	.0160272	.0029988	5.34	0.000	.0101498	.0219047

:

FD-Schätzung

reg D.lnap D.(exp lntP arbeiterant lohn hgd2 hgd3 hgd4 ost techd1 techd2 mbu mlu) jahr1996-jahr2005, nocons

Source	SS	df	MS	Number of obs =	418883
	+			F(22,418861) =	1703.48
Model	2708.8714	22	123.130518	Prob > F =	0.0000
Residual	30275.9277418	861	.072281563	R-squared =	0.0821
	+			Adj R-squared =	0.0821
Total	32984.7991418	883	.078744659	Root MSE =	.26885

D.lnap	Coef.	Std. Err.	t	P> t	 [95% Conf	. Interval]
D1. exp	.0658	.002038	32.28	0.000	.0618	.0698
D1. lntP	1131673	.0024425	-46.33	0.000	1179546	10838
D1.arbeiter	.2615805	.008184	31.96	0.000	.2455402	.2776209
D1. lohn	.000098	5.63e-07	174.18	0.000	.0000969	.0000991
D1. hgd2	.0171386	.0048712	3.52	0.000	.0075913	.026686
D1.hgd3	052439	.0097992	-5.35	0.000	0716451	033233
D1.hgd4	0560545	.0050806	-11.03	0.000	0660122	0460967
D1.ost	1005532	.109766	-0.92	0.360	3156913	.1145849
D1.techd1	0201129	.0102773	-1.96	0.050	0402561	.0000303

:

FE(Within) und zeitkonstante X

$$y_{it} - \overline{y}_{i} = (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i}) \quad \boldsymbol{\beta} + u_{it} - \overline{u}_{i}$$

Within-Transformation eliminiert alle zeitkonstanten erklärenden Variablen

$$y_{it} = \theta_1 + \theta_2 d2_t + \dots + \theta_T d2_T + z_i \gamma_1 + d2_t z_i \gamma_2 + \dots + dT_t z_i \gamma_T + \mathbf{w}_{it} \delta + c_i + u_{it}$$

 $\theta_1+\mathbf{z}_i\boldsymbol{\gamma}_1$ kann nicht von c_i getrennt werden aber: Zeitperioden-effekte $(\theta_2,\ldots,\theta_{\mathrm{T}})$ und Differenzen der partielle Effekte zeitkonstanter Variablen $(\boldsymbol{\gamma}_2,\ldots,\boldsymbol{\gamma}_{\mathrm{T}})$ können (relativ zur Basisperiode) geschätzt werden

(Bsp: Veränderung des gender wage gap) (Wooldridge 2002, S. 267)

Random Effects Modell

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + c_i + u_{it}$$

Annahme RE.1:

(a)
$$E(u_{it} | \mathbf{x}_i, c_i) = 0, t = 1,...,T$$

(b) $E(c_i | \mathbf{x}_i) = E(c_i) = 0$

(b)
$$\mathrm{E}(c_i \mid \mathbf{x}_i) = \mathrm{E}(c_i) = 0$$

Zusätzlich zur strikten Exogenität dürfen erklärende Variablen nicht mit c_i korreliert sein.

Schätzung im Random Effects Modell

Unter Annahme RE.1 gilt

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + v_{it} \qquad \mathbf{E}(v_{it} \mid \mathbf{x}_i) = 0, \quad t = 1,...,T$$

→ Pooled OLS ist konsistent.

Aber: selbst wenn

$$E(u_{it}u_{its}) = 0 \text{ für alle } t \neq s \text{ und } E(u_{it}^2 \mid \mathbf{x}_i) = E(u_{it}^2) = \sigma_u^2,$$

(d.h., u_{it} seriell unkorreliert und homoskedastisch)

$$E(v_{it}^2) = \sigma_c^2 + \sigma_u^2$$

$$E(v_{it}v_{is}) = E[(c_i + u_{it})(c_i + u_{is})] = E(c_i^2) = \sigma_c^2$$

→ GLS ist effizient

Schätzung im Random Effects Modell

Also
$$\Omega = E(\mathbf{v}_i \mathbf{v}_i') = \begin{pmatrix}
\sigma_c^2 + \sigma_u^2 & \sigma_c^2 & \cdots & \sigma_c^2 \\
\sigma_c^2 & \sigma_c^2 + \sigma_u^2 & \cdots & \vdots \\
\vdots & & \ddots & \sigma_c^2 \\
\sigma_c^2 & & \sigma_c^2 + \sigma_u^2
\end{pmatrix}$$

und
$$\hat{\boldsymbol{\beta}}_{FE} = \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{'} \hat{\boldsymbol{\Omega}}^{-1} \mathbf{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{'} \hat{\boldsymbol{\Omega}}^{-1} \mathbf{y}_{i}\right)^{-1}$$

RE-Schätzung

xtreg lnap exp lntP arbeiterant lohn hgd2 hgd3 hgd4 ost techd1 techd2 mbu mlu jahr1996-jahr2005, re

```
Number of obs = 490350
Random-effects GLS regression
                                         Number of groups = 68892
Group variable: bnr
R-sq: within = 0.1036
                                         Obs per group: min =
                                                               1
     between = 0.2307
                                                                7.1
                                                      avq =
     overall = 0.2109
                                                      max =
                                                                11
Random effects u i ~ Gaussian
                                         Wald chi2(22) = 62877.10
                                        Prob > chi2 = 0.0000
corr(u i, X) = 0 (assumed)
```

	lnap	 Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
	exp	.129	.00212	60.89	0.000	.125	.133
·	lntP	0231146	.0015381	-15.03	0.000	0261292	0201
arbei	terant	.0859501	.0063531	13.53	0.000	.0734982	.098402
	lohn	.000124	6.09e-07	203.63	0.000	.0001228	.0001252
	hgd2	0160926	.003498	-4.60	0.000	0229486	0092366
	hgd3	1061965	.0071419	-14.87	0.000	1201944	0921985
	hgd4	11685	.0034461	-33.91	0.000	1236042	1100958
	ost	2652447	.00635	-41.77	0.000	2776904	252799
	techd1	.0028429	.0078006	0.36	0.716	012446	.0181318
	techd2	0068413	.0038463	-1.78	0.075	0143799	.0006973
	mbu	.0857305	.003222	26.61	0.000	.0794154	.0920455
	mlu	.0688241	.0028348	24.28	0.000	.0632681	.0743802

•

RE vs. FE/FD

- FE/FD sind konsistent unter RE-Annahmen
- RE und Pooled OLS sind inkonsistent unter FE-Annahme, falls c_i und \mathbf{x}_{it} korreliert sind.
- Vorbehalt: Linearität und Additivität
- Hausman-Test (vergleicht RE und FE Koeffizienten der zeitvariierenden Regressoren)

$$\left(\hat{\boldsymbol{\beta}}_{1,RE} - \hat{\boldsymbol{\beta}}_{1,FE}\right)^{T} \left[\hat{V}\left(\hat{\boldsymbol{\beta}}_{1,RE}\right) - \hat{V}\left(\hat{\boldsymbol{\beta}}_{1,FE}\right)\right]^{-1} \left(\hat{\boldsymbol{\beta}}_{1,RE} - \hat{\boldsymbol{\beta}}_{1,FE}\right)^{H_{0}} \chi_{M}$$

Vergleich der Schätzungen

	Coef.	S.E.	Z	P> z	[95% Co	nf. Intv]
OLS	.226	.00520	43.50	0.000	.216	.236
RE	.129	.00212	60.89	0.000	.125	.133
FE	.094	.00223	42.13	0.000	.090	.098
FD	.066	.00204	32.28	0.000	.062	.070

Geschätzter Exporteffekt schwankt zwischen

$$e^{\hat{\beta}_{1,FD}} - 1 = e^{0.66} - 1 = 0.068$$

$$e^{\hat{\beta}_{1,FD}} - 1 = e^{0.66} - 1 = 0.068$$
 und $e^{\hat{\beta}_{1,OLS}} - 1 = e^{0.226} - 1 = 0.254$

OLS und RE ignorieren c_i und überschätzen Exporteffekt.

FE bzw. FD Schätzungen sind überzeugender.

Aber schätzen sie `kausalen Effekt' (im Sinne von Rubin/Brüderl)?

Kausaler Effekt im 2-Perioden Sonderfall

$$ATOT = E[Y_{1it_1} - Y_{0it_1}|D_{it_1} = 1]$$
$$= E[Y_{1it_1}|D_{it_1} = 1] - E[Y_{0it_1}|D_{it_1} = 1]$$

$$i \quad t_0 \quad Y_{0it_0} \quad 0$$

$$i \quad t_1 \quad Y_{1it} \quad 1$$

$$j \quad t_{\scriptscriptstyle 0} \quad Y_{\scriptscriptstyle 0jt_{\scriptscriptstyle 0}} \quad 0$$

$$j \quad t_1 \quad Y_{0jt_1} \quad 0$$

$$\widehat{ATOT}_{DID} = \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} (Y_{1it_{1}} - Y_{0it_{0}}) - \frac{1}{N_{0}} \sum_{j=1}^{N_{0}} (Y_{0jt_{1}} - Y_{0jt_{0}}) \\
= \left[\left(\overline{Y}_{1t_{1}} \right)_{1} - \left(\overline{Y}_{0t_{0}} \right)_{1} \right] - \left[\left(\overline{Y}_{0t_{1}} \right)_{0} - \left(\overline{Y}_{0t_{0}} \right)_{0} \right]$$

Kausaler Effekt im 2-Perioden Sonderfall

$$\begin{split} \hat{ATOT}_{DID} &= \frac{1}{N_1} \sum_{i=1}^{N_1} (Y_{1it_1} - Y_{0it_0}) - \frac{1}{N_0} \sum_{j=1}^{N_0} (Y_{0jt_1} - Y_{0jt_0}) & id \quad t \quad Y \quad D \\ &= \left[\left(\overline{Y}_{1t_1} \right)_1 - \left(\overline{Y}_{0t_0} \right)_1 \right] - \left[\left(\overline{Y}_{0t_1} \right)_0 - \left(\overline{Y}_{0t_0} \right)_0 \right] & i \quad t_0 \quad Y_{0it_0} \quad 0 \\ &= \left[\left(\overline{Y}_{1t_1} \right)_1 - \left(\overline{Y}_{0t_0} \right)_1 \right] - \left[\left(\overline{Y}_{0t_1} \right)_0 - \left(\overline{Y}_{0t_0} \right)_0 \right] & i \quad t_1 \quad Y_{1it_1} \quad 1 \\ &= \left[\left(\overline{Y}_{1t_1} \right)_1 - \left(\overline{Y}_{0t_0} \right)_1 \right] - \left[\left(\overline{Y}_{0t_1} \right)_0 - \left(\overline{Y}_{0t_0} \right)_0 \right] & i \quad t_1 \quad Y_{1it_1} \quad 1 \\ &= \left[\left(\overline{Y}_{1t_1} \right)_1 - \left(\overline{Y}_{0t_0} \right)_1 \right] - \left[\left(\overline{Y}_{0t_1} \right)_0 - \left(\overline{Y}_{0t_0} \right)_0 \right] & i \quad t_1 \quad Y_{1it_1} \quad 1 \\ &= \left[\left(\overline{Y}_{1t_1} \right)_1 - \left(\overline{Y}_{0t_0} \right)_1 \right] - \left[\left(\overline{Y}_{0t_1} \right)_0 - \left(\overline{Y}_{0t_0} \right)_0 \right] & i \quad t_1 \quad Y_{1it_1} \quad 1 \\ &= \left[\left(\overline{Y}_{1t_1} \right)_1 - \left(\overline{Y}_{0t_0} \right)_1 \right] - \left[\left(\overline{Y}_{0t_1} \right)_0 - \left(\overline{Y}_{0t_0} \right)_0 \right] & i \quad t_1 \quad Y_{1it_1} \quad 1 \\ &= \left[\left(\overline{Y}_{1t_1} \right)_1 - \left(\overline{Y}_{0t_0} \right)_1 \right] - \left[\left(\overline{Y}_{0t_1} \right)_0 - \left(\overline{Y}_{0t_0} \right)_0 \right] & i \quad t_1 \quad Y_{1it_1} \quad 1 \\ &= \left[\left(\overline{Y}_{1t_1} \right)_1 - \left(\overline{Y}_{0t_1} \right)_1 - \left(\overline{Y}_{$$

Heckman et. al. (1997): FE ist der
$$j$$
 t_1 Y_{0jt_1} t_2 \vdots \vdots \vdots \vdots

DID, FD, FE schätzen kausalen Effekt!

Kausaler Effekt im 2-Perioden Sonderfall

$$\widehat{ATOT}_{DID} = \frac{1}{N_1} \sum_{i=1}^{N_1} (Y_{1it_1} - Y_{0it_0}) - \frac{1}{N_0} \sum_{j=1}^{N_0} (Y_{0jt_1} - Y_{0jt_0}) \\
= \left[\left(\overline{Y}_{1t_1} \right)_1 - \left(\overline{Y}_{0t_0} \right)_1 \right] - \left[\left(\overline{Y}_{0t_1} \right)_0 - \left(\overline{Y}_{0t_0} \right)_0 \right]$$

Identifizierungsbedingung:

$$E\big(Y_{0t_1}-Y_{0t_0}|D=1\big)=E\big(Y_{0t_1}-Y_{0t_0}|D=0\big)$$
 ist mit (Variante von) "selection on the unobservables" vereinbar
$$E\big(c_i|D=1\big)\neq E\big(c_i|D=0\big)$$

`PaneInormalfall'

id t Y D ΔD

 t_0 Y_{0t_0} 0

 $t_1 Y_{1t_1} 1$

 $t_0 Y_{1t_0} 1$

 t_1 Y_{1t_1} 1 0

 $t_0 \quad Y_{0t_0} \quad 0$

 $t_1 Y_{0t_1} 0 0$

 $t_1 \quad Y_{1t_0} \quad 1$

 $t_1 \quad Y_{0t_1} \quad 0 \quad -1$

Falls T>2:

"multiplicity of contrasts that are sometimes available" H,L&S

Sequential Treatments

Rubin-Modell und FE Panel-Modell

$$Y_{1it_1} = \mu_{1t_1}(X) + U_{1it_1}$$

$$Y_{0it_1} = \mu_{0t_1}(X) + U_{0it_1}$$

$$Y_{0it_1} = \beta_0^0 + \mathbf{x}_{it} \mathbf{\beta} + c_i + u_{it}$$

$$Y_{1it_1} = \beta_0^1 + \mathbf{x}_{it} \mathbf{\beta} + c_i + u_{it}$$

The treatment dummy can be systematically related to the persistent component of the error term. This makes FE particularly suitable for applications where participation in a program is determined by preprogram attributes that also affect Y_{it} : Wooldridge (2002, S.278)

Wozu Paneldaten?

Josef Brüderl:

- 1. zur Schätzung kausaler Effekte trotz unbeobachteter Heterogenität (Marriage-Premium for Men?)
- 2. zur Analyse individueller Dynamik
- 3. zur präziseren Schätzung (mehr Beobachtungen)

Beispiel zu 2): Persistenz im Export

Problem: Wird in jeder Periode neu über die Höhe der Produktivität entschieden?

Durch spezielles Know-How (z.B. durch Patente geschützt) könnte es zu Persistenzen in der Produktivität kommen, d.h. die Produktivität in einer Periode ist auch abhängig vom Wert in der Vorperiode.

State Dependence vs. unbeobachtete Heterogenität

$$y_{it} = \alpha y_{i,t-1} + c_i + u_{it}$$

$$Cor(y_{it}, y_{i,t-1}) = Cor(\alpha y_{i,t-1} + c_i + u_{it}, y_{i,t-1})$$

$$= \alpha + Cor(c_i, y_{i,t-1})$$

$$= \alpha + \frac{(1-\alpha)}{[1+(1-\alpha)\sigma_u^2]/[(1+\alpha)\sigma_c^2]}$$

Bsp: y_{it} ist Studienfleiß. Lohnt es sich, Schüler zu bekehren (weil es positive State Dependence gibt $(\alpha>0)$ oder ist Fleiß "angeboren" (hohes c_i)

Dynamisches Modell:

$$y_{it} = \alpha y_{i,t-1} + \mathbf{x}_{it} \mathbf{\beta} + c_i + u_{it}$$

Durch die verzögerte abhängige Variable können die Standardmodelle nicht angewendet werden.

Bsp. FE:

$$\ddot{y}_{i,t-1} = y_{i,t-1} - \frac{1}{T-1} (y_{i1} + \dots + y_{it}) + \dots + y_{i,T-1})$$

$$\ddot{u}_{it} = u_{it} - \frac{1}{T-1} (u_{i2} + \dots + u_{i,t-1}) + \dots + u_{iT})$$

Lösung: FD-Transformation, IV-Ansatz

$$\Delta y_{it} = \alpha \Delta y_{i,t-1} + \Delta \mathbf{x}_{it} \mathbf{\beta} + \Delta u_{it} \quad \text{für } t = 3,...,T$$

Mögliche Instrumente für $\Delta y_{i,t-1}$:

- Um eine weitere Periode verzögerte erste Differenz $\Delta y_{i,t-2}$, "verbraucht" jedoch weitere Periode
- Niveau aus t-2: $y_{i,t-2}$, ist mit $\Delta y_{i,t-1}$ korreliert, jedoch nicht mit Δu_{it} (wenn keine Autokorrelation vorliegt)

Lösung: FD-Transformation, IV-Ansatz

$$\Delta y_{it} = \alpha \Delta y_{i,t-1} + \Delta \mathbf{x}_{it} \mathbf{\beta} + \Delta u_{it} \quad \text{für } t = 3,...,T$$

Mögliche Instrumente für

- Niveau aus t-2: y_{it-2} , ist mit Δy_{it-1} korreliert, jedoch nicht mit Δu_{it} (wenn keine Autokorrelation vorliegt).
- Wenn T>2 gibt es viele solcher Instrumentvariablen In Periode 3: y_{i1} ist ein Instrumente für Δy_{i3} In Periode 4: y_{i1} , y_{i2} sind Instrumente für Δy_{i3} In Periode 5: y_{i1} , y_{i2} , y_{i3} sind Instrumente für Δy_{i3} In Periode 6: y_{i1} , y_{i2} , y_{i3} , y_{i4} sind Instrumente für Δy_{i3}

Verbesserung: Verwendung aller möglicher Lags

 $Z_{i} = \begin{bmatrix} y_{i1} & 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & y_{i1} & y_{i2} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & y_{i1} & \cdots & y_{i,T-2} \end{bmatrix}$

3 4 :

$$= \begin{bmatrix} y_{i1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & [y_{i1}, y_{i2}] & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & [y_{i1}, \dots, y_{i,T-2}] \end{bmatrix}$$

Momente aus den Instrumenten (GMM):

$$E(\mathbf{Z}_{i}^{'}\Delta\mathbf{u}_{i}) = \mathbf{0}$$

 Mehrgleichungssystem, i.A. keine eindeutige Lösung

Zu minimierende Kriteriumsfunktion:

$$J_{N} = \left(\frac{1}{N} \sum_{i=1}^{N} \Delta \mathbf{u}_{i}^{'} \mathbf{Z}_{i}\right) \mathbf{W}_{N} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{Z}_{i}^{'} \Delta \mathbf{u}_{i}\right)$$

Two-Step Gewichtungsmatrix

$$\mathbf{W}_{N} = \left[\frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{Z}_{i}^{'} \stackrel{\wedge}{\Delta \mathbf{u}_{i}} \stackrel{\wedge}{\Delta \mathbf{u}_{i}} \mathbf{Z}_{i}\right)\right]^{-1}$$

mit konsistenten Schätzern $\hat{\Delta u}_i$ aus einer Schätzung im ersten Schritt.

2-stufige GMM Schätzung

xtabond2 lnap L.lnap exp lntP arbeiterant lohn hgd2 hgd3 hgd4 ost techd1 techd2 mbu mlu jahr1997-jahr2005, gmm(L.lnap) iv(exp lntP arbeiterant lohn hgd2 hgd3 hgd4 ost techd1 techd2 mbu mlu jahr1997-jahr2005)nolevel nocons nomata twostep

Dynamic panel-data estimation, two-step difference GMM

Group variable Time variable Number of inst Wald chi2(21) Prob > chi2	: jahr truments = 66 = 3611.55			Number	of obs of group:	ps =	55415 1
lnap	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
lnap	 						
L1.	.3252009	.0143708	22.63	0.000	.2970	0346	.3533672
exp	.0591962	.003998	14.81	0.000	.0513	3603	.0670321
lntP	1757293	.0141978	-12.38	0.000	203	5564	1479022
arbeiterant	.3159173	.0283449	11.15	0.000	.2603	3624	.3714722
lohn	.0001044	.0000166	6.28	0.000	.0000	718	.000137
hgd2	.0217152	.0068951	3.15	0.002	.008	3201	.0352294
hgd3	0468468	.0166921	-2.81	0.005	079	5628	0141308
hgd4	0631432	.0092034	-6.86	0.000	081	1815	045105
ost	0576256	.1522563	-0.38	0.705	3560	0423	.2407912
techd1	0204412	.0161387	-1.27	0.205	0520	0726	.0111901
techd2	0027803	.0072628	-0.38	0.702	0170	0151	.0114546
• •							
	test for AR(1 test for AR(2						

Ausblick: Nichtlineare Modelle

Fixed-Effects Logit

with
$$P(y_{i1} = 1|c_i, \boldsymbol{\beta}) = \frac{\exp(c_i + \mathbf{x}_{i2}'\boldsymbol{\beta})}{1 + \exp(c_i + \mathbf{x}_{i2}'\boldsymbol{\beta})}$$
,

it follows that the conditional probability is given by

$$P((0,1)|t_i=1,c_i,\boldsymbol{\beta}) = \frac{\exp((\mathbf{x}_{i2}-\mathbf{x}_{i1})'\boldsymbol{\beta})}{1+\exp((\mathbf{x}_{i2}-\mathbf{x}_{i1})'\boldsymbol{\beta})},$$

Random Effects Probit

$$P(\mathsf{Mieter}_{h,t}) = \Phi(\beta_0 + \beta_1 \rho_{p,r} + \beta_2 T_{h,t} + \beta_3 \mathsf{Mieter}_{h,t-1} + \mathbf{x}_{h,t}^\top \boldsymbol{\delta} + \mathbf{z}_{h,t}^\top \boldsymbol{\theta} + c_h)$$

- $ightharpoonup c_h$: unbeobachtete Heterogenität
- $\begin{array}{c|c} & c_h | \left(\mathsf{Mieter}_{h0}, \boldsymbol{\rho}_h, \boldsymbol{T}_h, \mathbf{x}_h \right) \sim N(\alpha_0 + \alpha_1 \mathsf{Mieter}_{h0} + \boldsymbol{\alpha_2}^\top \boldsymbol{\rho}_h + \boldsymbol{\alpha_3}^\top \boldsymbol{T}_h \\ & + \boldsymbol{\alpha_4}^\top \mathbf{x}_h, \sigma_a^2 \right) \end{array}$