Geometría Proyectiva - 2° cuatrimestre 2016 PRÁCTICA 4

1. Ejercicio 1

Demostración Vayamos por partes:

i) \Longrightarrow ii) Supongamos que para cada punto $x \in M$ existen abiertos $U, V \subseteq \mathbb{R}^n$ y un difeomorfismo $h: U \to V$ tales que $x \in U$ y:

$$h(U \cap M) = V \cap (\mathbb{R}^k \times 0^{n-k}) = \{ y \in V / y_{k+1} = y_{k+2} = \dots = y_n = 0 \}$$

Y queremos ver que para todo punto $x \in M$ existen abiertos $U \subseteq \mathbb{R}^n$ y $W \subseteq \mathbb{R}^k$ y una función diferenciable inyectiva $\phi: W \to \mathbb{R}^n$ tal que:

- $a) \ x \in U$
- b) $\phi(W) = M \cap U$
- c) $D\phi(y)$ tiene rango k para todo $y \in W$
- d) $\phi^{-1}:\phi(W)\to W$ es continua

Notemos entonces que si llamamos $\pi_k: V \to \mathbb{R}^k$ a la proyección a las primeras coordenadas, entonces tenemos que $\pi_k(V \cap (\mathbb{R}^k \times 0^{n-k})) = \{z \in \mathbb{R}^k \mid (z,0) \in V \cap (\mathbb{R}^k \times 0^{n-k})\} = W$ es un abierto de \mathbb{R}^k . Es más, si llamamos $i_k(y) = (y,0)$ a su inversa tenemos que $\phi := h^{-1} \circ i_k : W \to U$ esta bien definida. Veamos que esta es la parametrización que nos sirve:

- a) $x \in U$ por hipótesis
- b) $\phi(W) = h^{-1}(i_k(W)) = h^{-1}(V \cap (\mathbb{R}^k \times 0^{n-k})) = h^{-1}(h(U \cap M)) = U \cap M$
- c) Sabemos que i_k es diferenciable e inyectiva pues es al inclusión, y además h^{-1} es diferenciable e inyectiva pues h es diferenciable e inyectiva.
- d) $D\phi(y) = D(h^{-1} \circ i_k)(y) = Dh^{-1}(y,0) \circ Di_k(y)$ por la regla de la cadena. Por el teorema de la función inversa sabemos que $rg(Dh^{-1}(y,0)) = rg(Dh^{-1}(z)) = n$ para todo $z \in V$, y como i_k es transformación lineal entonces $rg(Di_k(y)) = rg(||i_k|||_E)$ y:

$$rg(\|i_k\|_E) = rg\left(\left[\begin{array}{c|c}Id_k & 0\\\hline 0 & 0\end{array}\right]\right) = k$$

Por lo tanto $D\phi(y)$ tiene rango k para todo $y \in W$

- e) Notemos que $\phi^{-1}:U\cap M\to W$ esta dada por $\phi-1=\pi_k\circ h$ que es continua por ser composición de continuas.
- ii) \Longrightarrow i) Sea $x \in M$, luego por hipótesis existen $x \in U \subseteq \mathbb{R}^n$ y $W \subseteq \mathbb{R}^k$ abiertos tal que $\phi: W \to \mathbb{R}^n$ es una parametrización, tomando si es necesario $\phi^{-1} = \phi^{-1} \phi^{-1}(x)$ podemos suponer que $\phi(0) = x$. Supongamos sin pérdida de generalidad que la primer sub-matriz de $k \times k$ tenga determinante no nulo, o sea $\det\left(\frac{\partial \phi_i}{\partial u_j}|_0\right)_{i,j \le k} \neq 0$. Consideremos $G: W \times \mathbb{R}^{n-k} \to \mathbb{R}^n$ dado por $G(u,t_{k+1},\ldots,t_n) = (\phi_1(u),\ldots,\phi_k(u),\phi_{k+1}(u)+t_{k+1},\ldots,\phi_n(u)+t_n)$, luego se ve que DG_0 es un isomorfismo, por lo que por el teorema de la función inversa existe $A \subseteq W$, $\delta > 0$ y $B \subseteq \mathbb{R}^n$ tal que $G: A \times (-\delta,\delta)^{n-k} \to B$ es un difeomorfismo. Notemos que como $A \subseteq W$ tenemos que $\phi(A) = \tilde{U} \cap M$ con $\tilde{U} \subseteq U$ abierto y además por construcción $x = G(0) \in B \cap \tilde{U}$, luego existe $\epsilon < \delta$ y $\tilde{A} \subseteq A$ tal que $G(\tilde{A} \times (-\epsilon,\epsilon)) = V \subseteq U \cap \tilde{U}$ es un difeomorfismo de R^n . Finalmente es claro que $G(\tilde{A} \times \{0\}) = \phi(\tilde{A}) \subseteq V \cap M$, y recíprocamente si $q \in V \cap M$ entonces como $V \cap M \subseteq U \cap \tilde{U} \cap M \subseteq \phi(A)$ entonces q = G(u',0) = G(u,t) y como G es biyectiva resulta que u = u'. Concluímos que G^{-1} es el difeomorfismo buscado.

2. Ejercicio 2

Demostración Sea $x \in N \subseteq M$, luego por un lado $N = W \cap M$ pues N es abierto relativo y por el otro como M es subvariedad de dimensión k existen $U, V \subseteq \mathbb{R}^n$ abiertos y $h: U \to V$ difeomorfismo, tal que $x \in U$ y $h(U \cap M) = V \cap (\mathbb{R}^k \times 0^{n-k})$. Por lo tanto si consideramos $g = h|_{(U \cap W)}$ luego g es difeomorfismo pues h lo era y ademas trivialmente se sigue cumpliendo que $g(U \cap W \cap M) = h(U \cap W) \cap (\mathbb{R}^k \times 0^{n-k})$ por lo que N es subvariedad de dimensión k.

3. Ejercicio 3

Demostración Sea $x \in M$, luego como rg(df)(x) = n - k tenemos que $df : \mathbb{R}^n \to \mathbb{R}^{n-k}$ es suryectiva; como $x \in M \subseteq U$ entonces existe $\epsilon > 0$ tal que $B_{\epsilon}(x) \subseteq U$. Definamos $g : B_{\epsilon}(0) \to \mathbb{R}^{n-k}$ dado por g(u) = f(u+x), luego $dg|_{B_{\epsilon}(0)} = df|_{B_{\epsilon}(x)}$ y entonces dg es suryectiva en un entorno de 0. En este punto supongamos sin pérdida de generalidad que $det\left(\frac{\partial g_i}{\partial u_j}\right)_{\{k+1 \le i,j \le n\}} \neq 0$ pues dg es suryectiva.

Finalmente sea $h: B_{\epsilon}(0) \to \mathbb{R}^n$ dado por $h(u) = (u_1, \dots, u_k, g(u))$, luego es claro que dh es un isomorfismo por lo tanto existe $W \subseteq B_{\epsilon(0)}, V_1 \subseteq \mathbb{R}^k$ y $V_2 \subseteq \mathbb{R}^{n-k}$ tal que $h: W \to V_1 \times V_2$ es un difeomorfismo. Notemos entoces que F = h(u - x) cumple que las hipótesis del ejercicio 1, luego por 1 M es una subvariedad de dimensión n - k

4. Ejercicio 4

Demostración a) Sea $x \in M$ luego por ser M subvariedad de dimensión k existe $U \subseteq \mathbb{R}^n$, $W \subseteq \mathbb{R}^k$ y $\phi : W \to \mathbb{R}^n$ tal que:

- 1) $x \in U$
- 2) $\phi(W) = M \cap U$
- 3) $D\phi(y)$ tiene rango k para todo $y \in W$
- 4) $\phi^{-1}:\phi(W)\to W$ es continua

Afirmo que existe un abierto $V \subseteq W$, $\epsilon > 0$ y $\phi(W) \subseteq \Omega \subseteq \mathbb{R}^n$ y $F: V \times (-\epsilon, \epsilon)^{n-k} \to \Omega$ difeomorfismo tal que $F(u, 0) = \phi(u)$.

En efecto, como $rg(d\phi) = k$ entonces podemos asumir sin pérdida de generalidad que $det\left(\frac{\partial \phi_i}{\partial u_j}\right)_{\{1 \leq i,j \leq k\}} \neq$

0, y luego si definimos $F(u,t): W \times \mathbb{R}^{n-k} \to \mathbb{R}^n$ dado por $F(u,t_{k+1},\ldots,t_n) = (\phi_1(u),\ldots,\phi_k(u),\phi_{k+1}(u)+t_{k+1},\ldots,\phi_n(u)+t_n)$ entonces dF es un isomorfismo. Por el teorema de la función inversa existe $V \subseteq W, \epsilon > 0, \Omega \subseteq \mathbb{R}^n$ tal que $F: V \times (-\epsilon,\epsilon)^{n-k} \to \Omega$ es un difeomorfismo tal que $F(u,0) = \phi(u)$. Luego de aquí es claro que $h = \pi_{n-k} \circ F$ cumple que tiene rango n-k y $h^{-1}(0) = \phi(V) = V \cap M$

b) ???

5. Ejercicio 5

Demostración Sea $\phi: \mathbb{R}^n \to \mathbb{R}^{n+m}$ dado por $\phi(x) = (x, f(x))$ y veamos que ϕ es una parametrización de Γ_f . Para ello es claro que ϕ es inyectiva y que $\phi(\mathbb{R}^n) = \Gamma_f \cap \mathbb{R}^{n+m}$, además si f es diferenciable entonces ϕ es diferenciable y finalmente si $\pi_k(x, f(x)) = x$ luego $\pi_k = \phi^{-1}$ es continua. Finalmente es fácil ver que:

$$rg(d\phi) = rg\left(\left[\begin{array}{c|c} Id_n & 0 \\ \hline df & 0 \end{array}\right]\right) = n$$

Por lo que Γ_f es una subvariedad de dimensión n

6. Ejercicio 6

Demostración Vayamos de a pasos:

- i) \Longrightarrow ii) Sea $p \in M$ y sea $U \ni p$ tal que existe $g : U \to \mathbb{R}$ extensión diferenciable de f, luego tomemos una carta (V,x) con $V \subseteq U \cap M$, luego $f \circ x^{-1}|_{x(V)} = g \circ x^{-1}|_{x(V)}$ y como g,x^{-1} son diferenciables entonces $f \circ x^{-1}$ es diferenciable.
- ii) \Longrightarrow iii) Sea $p \in M$ y (V, y) una carta arbitraria alrededor de p y (U, x) la carta de p tal que $f \circ x^{-1}$ es diferenciable. Luego si considero $W \subseteq U \cap V$ entonces $f \circ y^{-1}|_{y(W)} = (f \circ x^{-1}|_{x(W)}) \circ (x \circ y^{-1})$ que es diferenciable.
- iii) \Longrightarrow i) Notemos que por la resolución de 1 sabemos que existe $U, V \subseteq \mathbb{R}^n$ abiertos tal que $p \subseteq U$ y $h: U \to V$ difeomorfismo tal que $h(U \cap M) = \{y \in V \mid y_{k+1} = \dots = y_n = 0\} = W$ y por lo tanto $\pi_k \circ h: U \to \pi_k(V)$ es una aplicación diferenciable de rango k. Luego sea $g = f \circ x^{-1} \circ h$ que es diferenciable y cumple que $g|_{U \cap M} = (f \circ x^{-1})|_W = f|_{U \cap M}$.

7. Ejercicio 7

Demostración Sea $p_i: \mathbb{R}^p \to \mathbb{R}$, luego como g es diferenciable se tiene que existe $W \subseteq \mathbb{R}^m$ y $\tilde{g}: W \to P$ tal que $g|_{W \cap N} = \tilde{g}|_{W \cap N}$, similarmente existen $U \subseteq \mathbb{R}^n$ y \tilde{f} , luego si consideramos $V = f^{-1}(f(U) \cap W) \subseteq U$ entonces $p_i \circ g \circ f|_{V \cap M} = p_i \circ \tilde{g} \circ \tilde{f}|_{V \cap M}$ que es diferenciable; concluímos que $g \circ f$ es diferenciable.

8. Ejercicio 8

Demostración Para un lado, sea $v \in df(\mathbb{R}^k)$ y tomemos la carta $(f(W) = V, f^{-1} = x)$ alrededor de p. Luego existen $w_1, \ldots, w_k \in \mathbb{R}$ tal que $v = \sum_{1 \leq i \leq n} w_i df(e_i)$, si consideramos $w = (w_1, \ldots, w_k)$ entonces $\alpha(t) = x(p) + tw \in \mathbb{R}^k$ y se tiene que $\alpha(0) = p$ y $\dot{\alpha}(0) = w$. Por lo tanto existe $\epsilon > 0$ tal que $c = x^{-1} \circ \alpha \in V$ para todo $t \in (-\epsilon, \epsilon)$ y se tiene que c(0) = p y $\dot{c}(0) = dc_0(1) = d(x^{-1} \circ \alpha)_0(1) = dx_{x(p)}^{-1} \circ d\alpha_0(1) = dx_{x(p)}^{-1} (\dot{\alpha}(0)) = dx_{x(p)}^{-1} (w) = \sum_{1 \leq i \leq n} w_i df(e_i) = v$.

Recíprocamente, supongamos que existe $c:(-\epsilon,\epsilon)\to M$ tal que c(0)=p y $dc_0(1)=v$, luego $x\circ c:(-\epsilon,\epsilon)\to W$ es una curva diferenciable tal que $d(x\circ c)_0(1)=\left(\frac{d(x_1\circ c)}{dt}(0),\ldots,\frac{d(x_1\circ c)}{dt}(0)\right)$, luego $v=dc_0(1)=dx_{x(p)}^{-1}\left(\frac{d(x_1\circ c)}{dt}(0),\ldots,\frac{d(x_1\circ c)}{dt}(0)\right)=\sum_{1\leq i\leq k}\frac{d(x_1\circ c)}{dt}(0)dx_{x(a)}^{-1}(e_i)\in dx^{-1}(\mathbb{R}^k)$.

9. Ejercicio 9 trivial

10. Ejercicio 10

Demostración Sea $F: \mathbb{R}^3 \to \mathbb{R}$ dado por $F(x, y, z) = x^2 + y^2 - 1$, luego notemos que $dF_p = \nabla F(p) = (2x, 2y, 0)_p$ y si $p \in \mathcal{C}$ el cilindro, luego $rg(dF_p) = 1 = 3 - 2$. Por lo tanto por 3 si consideramos $U = \mathbb{R}^3$ se tiene que \mathcal{C} es una subvariedad regular de dimensión 2, ie: una superficie regular por 1.

No obstante, como F no es biyectiva para obtener una parametrización por los métodos de 3 deberíamos computar F^{-1} y entonces tendríamos 4 cartas. Por otro lado en polares $\phi(\theta,z) = (\cos(\theta),\sin(\theta),z)$ es una parametrización de \mathcal{C} pues es diferenciable, una inmersión y es una biyección del abierto $(0,2\pi)\times\mathbb{R}$ con $\mathcal{C}=\mathbb{R}^3\cap\mathcal{C}$.

11. Ejercicio 11

Demostración Ya vimos en 5 que Γ_f es una superficie regular, si $p \in \Gamma_f$ luego $T_p\Gamma_f = \langle d\phi_{\phi^{-1}(p)}(e_1), d\phi_{\phi^{-1}(p)}(e_2) \rangle = \langle \frac{\partial \phi}{\partial x}|_{(x,y)}, \frac{\partial \phi}{\partial y}|_{(x,y)} \rangle = \langle \left(1,0,\frac{\partial f}{\partial x}\right), \left(0,1,\frac{\partial f}{\partial y}\right) \rangle = \langle (-\nabla f,1) \rangle^{\perp}.$

12. Ejercicio 12

Demostración Es claro que ϕ es biyectiva y diferenciable, además:

$$rg(d\phi) = rg\left(\begin{bmatrix} \dot{x}\cos(\theta) & \dot{x}\sin(\theta) & \dot{z} \\ -x\sin(t) & x\cos(\theta) & 0 \end{bmatrix} \right) = 2$$

Por lo que $\phi:(a,b)\times(0,2\pi)\to M$ es una parametrización.

De este modo es claro que el toro es cubierto por dos parametrizaciones de este estilo, es decir $\phi_1(t,\theta)$: $(2+\cos(t))(\cos(\theta),\sin(\theta),0)+(\sin(t)(0,0,1)$ donde $\phi_1:(0,2\pi)\times(a,b)\to T$ y $\phi_2:(0,2\pi)\times(a,b)\to T$ dado por $\phi_2(t,\theta)=\phi_1(t,\theta+\pi/2)$. Por lo tanto el toro es una superficie regular por ser cubierto por parametrizaciones.

13. Ejercicio 13

Demostración Notemos que $P: S^2 \setminus N \to \mathbb{R}^2$ esta dado por $P(x,y,z) = \left(\frac{x}{1-z}, \frac{y}{1-z}, 0\right)$ que es continua; afirmo que $f(s,t) = P^{-1}(s,t,0) = \left(\frac{2s}{1+s^2+t^2}, \frac{2t}{1+s^2+t^2}, \frac{s^2+t^2-1}{1+s^2+t^2}\right)$. En efecto,

$$P \circ f(s,t) = P\left(\frac{2s}{1+s^2+t^2}, \frac{2t}{1+s^2+t^2}, \frac{s^2+t^2-1}{1+s^2+t^2}\right)$$

$$= \left(\frac{\frac{2s}{1+s^2+t^2}}{1-\frac{s^2+t^2-1}{1+s^2+t^2}}, \frac{\frac{2t}{1+s^2+t^2}}{1-\frac{s^2+t^2-1}{1+s^2+t^2}}, 0\right)$$

$$= \left(\frac{\frac{2s}{1+s^2+t^2}}{\frac{2}{1+s^2+t^2}}, \frac{\frac{2t}{1+s^2+t^2}}{\frac{2}{1+s^2+t^2}}, 0\right)$$

$$= (s, t, 0)$$

$$\begin{split} f \circ P(x,y,z) = & f\left(\left(\frac{x}{1-z}, \frac{y}{1-z}\right)\right) \\ = & \left(\frac{2x(1-z)}{(1-z)^2 + x^2 + y^2}, \frac{2y(1-z)}{(1-z)^2 + x^2 + y^2}, \frac{\left(\frac{x}{1-z}\right)^2 + \left(\frac{y}{1-z}\right)^2 - 1}{1 + \left(\frac{x}{1-z}\right)^2 + \left(\frac{y}{1-z}\right)^2}\right) \\ = & \left(\frac{2x(1-z)}{(1-z)^2 + x^2 + y^2}, \frac{2y(1-z)}{(1-z)^2 + x^2 + y^2}, \frac{x^2 + y^2 - (1-z)^2}{(1-z)^2 + x^2 + y^2}\right) \\ = & \left(x, y, \frac{1-z^2 - (1-2z+z^2)}{2(1-z)}\right) \\ = & (x, y, z) \end{split}$$

Por lo tanto tenemos que f es una biyecci'on de $\mathbb{R}^2 \to S^2 \setminus N$ diferenciable y con inversa continua. Bastaría ver que rg(df)=2 pero muchas cuentas.... Por lo tanto f es una parametrización de $S^2 \setminus N$

14. Ejercicio 14

Demostración Sea $f = (\frac{x}{a})^2 + (\frac{y}{b})^2 + (\frac{z}{c})^2 - 1$, luego $f : \mathbb{R}^3 \to \mathbb{R}^{3-2} = \mathbb{R}$ es una aplicación diferenciable con 0 en su imagen tal que $\mathcal{E} = f^{-1}(0)$ y $rg(df_p) = 3 - 2 = 1$ para todo $p \in \mathcal{E}$; luego por 3 se tiene que E es una superficie regular. Para ver parametrizaciones una forma simple es tomar \mathcal{A} un atlas para S^2 y tomas $f(x,y,z) = (ax,yb,cz): S^2 \to \mathcal{E}$; luego como tanto f como f^{-1} admiten extensiones diferenciables resulta que f es un difeomorfismo y por lo tanto $f(\mathcal{A})$ es un atlas para \mathcal{E} . Otra sería $\Phi(\theta,\psi) = (a\cos(\theta)\sin(\psi),b\sin(\theta)\sin(\psi),c\cos(\psi))$ que son las coordenadas esféricas alargadas en los ejes.

15. Ejercicio 15

Demostración Si F resultase diferenciable tal que $dF_p \neq 0$ para todo $p \in F^{-1}(0) = M$ luego por 3 se tiene que M es una superficie regular. Supongamos que $c: (-\epsilon, \epsilon) \to M$ es una curva diferenciable tal que c(0) = p y $\dot{c}(0) = v$, luego $F \circ c = 0$ por lo que $dF_p(v) = 0$ para todo $v \in T_pM$. Por otro lado $dF_p(v) = dF_p(\dot{c}(0)) = d(F \circ c)_0(1) = \frac{d(F \circ c)}{dt}|_0 = \sum_{1 \leq i \leq 3} \frac{\partial F}{\partial u_i} \frac{dc_i}{dt} = \langle \nabla F|_p, v \rangle$; por lo tanto como $\nabla F_p \neq 0$ para todo $p \in M$ concluímos que $T_pM = \nabla F|_p^{\perp}$.

16. Ejercicio 16

Demostración a) Afirmo que el cono no es una superficie regular, para eso notemos $M = S^+ \cup S^-$ con $S^+ = \{u \in S \mid u_z \geq 0\}$. Sea $A \subseteq \mathbb{R}^2$ abierto, $U \subseteq \mathbb{R}^3$ y $h: A \to U \cap M$ parametrización, en particular homeomorfismo; sean además $a,b,c \in A$ tal que $h(a) \in S^+$, h(b) = 0 y $h(c) \in S^-$ que en particular dice que $a \neq b \neq c$ pues h es biyectiva. Como A es arco-conexo existe $\gamma: I \to A$ camino de a a c tal que $b \notin \gamma(I)$; como h es homeomorfismo entonces $h \circ \gamma$ es un camino de h(a) a h(c) tal que $0 \notin h \circ \gamma(I)$, pero todo camino de S^+ a S^- pasa por 0 lo que conluye que no existía tal parametrización.

Aquí probamos que el cono no es una variedad topológica, supongamos que nos preguntaban por S^+ que sí es una variedad topológica veamos que no es una superficie regular. Para eso recordemos que si S es superficie entonces para todo $p \in S$ existe $U \subseteq \mathbb{R}^2$ y $V \subseteq \mathbb{R}^3$ tal que $\phi(u,v)=(u,v,f(u,v))$ es una parametrización alrededor de p, por lo tanto si S^+ fuese superficie admitiría una parametrización $\phi=(x,y,f(x,y))$ alrededor de p0 tal que p1 expressible concluímos que no existe parametrización alrededor de p1.

b) Sea G el hiperboloide y tomemos $\phi(u,v)=(u,v,u^2-v^2)$, luego ϕ es claramente una biyección de abiertos y diferenciable, finalmente:

$$rg(d\phi) = rg\left(\begin{bmatrix} 1 & \dot{0} & 2u \\ 0 & 1 & -2v \end{bmatrix}\right) = 2$$

Por lo tanto ϕ es una parametrización de G.