Рабочий протокол и отчет по лабораторной работе No 5.07

Определение постоянной Планка методом задерживающего потенциала

Фадеев Артём, Елизбарашвили Серго

19 июня 2022 г.

1 Цели работы

- Экспериментально проверить законы фотоэффекта.
- Определение постоянной Планка и работы выхода электрона из металла.

2 Задачи, решаемые во время выполнения работы

- Построить график зависимости энергии электронов от частоты падающего излучения, аппроксимировать полученную прямую.
- Определить угол наклона и частоту красной границы фотоэффекта для материала фотокатода и их погрешности.
- Воспользоваться справочником для определения металла, из которого сделан фотокатод.
- Рассчитать погрешности в измерениях постоянной Планка и работы выхода.

3 Объект исследования

• Явление фотоэффекта.

4 Метод эксперементального исследования

• Измерения, путём поиска оптимального значения точки нуля для разных светодиодов.

5 Рабочие формулы и исходные данные

- $h\nu = A_v + \frac{m_e v^2}{2}$ уравнение Эйнштейна
- $h\nu_0=A_v$ работа фотоэффекта
- \bullet $T = eU_0$ условие приращения тока
- $U_0 = \frac{h\nu}{e} \frac{A_v}{e}$ выражение для задерживающего напряжения
- $\nu = \frac{c}{\lambda}$ связь длины волны с частотой
- $\frac{\Delta h}{h} = \frac{\Delta U}{U} + \frac{\Delta \lambda}{\lambda}$ расчет погрешности для постоянной Планка
- $\frac{\Delta A}{A}=\frac{\Delta h}{h}+\frac{\Delta \nu}{\nu}=\frac{\Delta h}{h}+\frac{\Delta \lambda}{\lambda}$ расчет погрешности для работы выхода

6 Измерительные приборы

$N_{\overline{0}}$	Наименование	Тип пробора	Используемый диапазон	Погрешность прибора
1	Вольтметр	цифровой	0.07-0.7	1.5-2%
2	Наноамперметр	цифровой	0-0.5	1.5-2%

7 Схема установки

8 Результаты прямых измерений и их обработки

lambda, нм	U0, B	v, ТГц	T = eU0, Дж * 10^-19
472,000	0,641	635,593	1,027
505,000	0,490	594,059	0,785
525,000	0,438	571,429	0,702
588,000	0,132	510,204	0,211
611,000	0,082	490,998	0,131

9 Результаты косвенных измерений и их обработки

Полученное уравнение	y(x) = 0.00642 * x - 3.03	
v_min, ТГц	471,963	
lambda_min, нм	635,644	
Материал	Цезий (662 нм)	
tg(alpha)	0,006	
h, 10^-34, Дж*с	6,462	
А_вых, эВ	1,904	
Материал	Цезий (1.8 эВ)	

v_i - v_avg	t_i - t_avg	(v_i - v_avg)^2	(x_i - x_avg)(y_i - y_avg)
75,136	0,456	5645,492	34,23662103
33,603	0,214	1129,140	7,181912376
10,972	0,130	120,381	1,430916775
-50,253	-0,360	2525,329	18,08335814
-69,458	-0,440	4824,464	30,55874259
v_avg	560,457		
t_avg, 10^-19	0,571		

$$\frac{\Delta h}{h} = \frac{\Delta U}{U} + \frac{\Delta \lambda}{\lambda} = 0.005 + 0.001 = 0.006$$

$$\frac{\Delta A}{A} = \frac{\Delta h}{h} + \frac{\Delta \nu}{\nu} = \frac{\Delta h}{h} + \frac{\Delta \lambda}{\lambda} = 0.006 + 0.001 = 0.007$$

10 Графики

11 Выводы и анализ работы

$$A_v = 1.904 \ eV \quad h = 6.462 \cdot 10^{-34}$$

- В этой лабораторной работе мы определили зависимость кинетической энергии электрона от частоты.
- Построив аппроксимирующую прямую, получили уравнение, позволившее определить постоянную Планка и работу выхода.
- Используя полученное значение работы выхода смогли определить, что материал из которого сделан фотокатод цезий.