

Android et Innovation

Adnane Cabani
D1 272
cabani@esigelec.fr

Les capteurs

Introduction

- Trois types de capteurs :
 - Les détecteurs de mouvement
 - Les capteurs environnementaux
 - Les capteurs de position

Quelques types de capteurs supportés

Capteur	Туре	Description	Utilisation
TYPE_ACCELEROMETER	M	Mesure la force d'accélération en m/s ²	Détecter les mouvements
TYPE_GYROSCOPE	M	Mesure le taux de rotation en rad/s sur les trois axes x, y et z	Détection l'orientation de l'appareil
TYPE_LIGHT	M	Mesure le niveau de lumière ambiante en lux (lx)	Adapter la luminosité de l'écran
TYPE_ORIENTATION	L	Mesure le degré de rotation que l'appareil effectue sur les trois axes	Déterminer la position de l'appareil

Type M : matérielle

Type L : logicielle (se base sur plusieurs capteurs pour déduire et calculer des

données)

http://developer.android.com/guide/topics/sensors_overview.html

Identifier les capteurs

```
public class MainActivity extends Activity {
    @Override
   protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity main);
        // Créer une instance de SensorManager
        SensorManager mySensorManager =
                (SensorManager) getSystemService(Context.SENSOR SERVICE);
       // Récupérer la liste des capteurs
       List<Sensor> listeCapteurs = mySensorManager
                .getSensorList(Sensor.TYPE ALL);
       // Affichage de la liste des capteurs
       TextView tv = (TextView) findViewById(R.id.textView1);
        for (Sensor sensor : listeCapteurs) {
            tv.append(" - " + sensor.getType()
                    + "\t : \t " + sensor.getName() + "\n");
```

📵 Liste des capteurs

- 1 : KXTJ2-1009 3-axis

Accelerometer

-8 : PROXIMITY

: LIGHT

Liste des capteurs

- : LSM330DLC 3-axis Accelerometer
- : AK8975C 3-axis Magnetic field sensor
- : iNemoEngine Orientation sensor
- : AL3201 Light sensor
- : LSM330DLC Gyroscope sensor
- : iNemoEngine Gravity sensor
- 10 : iNemoEngine Linear Acceleration sensor
- : iNemoEngine Rotation_Vector sensor
- : Rotation Vector Sensor
- : Gravity Sensor
- : Linear Acceleration Sensor
- : Orientation Sensor
- : Corrected Gyroscope Sensor

Configurer l'application

```
<uses-feature
android:name="string"
android:required=["true" | "false"]
android:glEsVersion="integer" />
```

- android:name : Indique un seul matériel ou fonctionnalité du logiciel utilisé par l'application
- android:required: (valeur par défaut: true)
 - true : présence indispensable
 - false : présence souhaitable
- android:glEsVersion : version openGL requise par l'application (valeur par défaut : OpenGL ES 1.0)

Exemple:

Vérifier l'existence d'un capteur

```
public class MainActivity extends Activity {
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity main);
        // Créer une instance de SensorManager
        SensorManager mySensorManager = (SensorManager)
                getSystemService(Context.SENSOR SERVICE);
        // Obtenir le capteur gyroscope par défaut,
        // retourne NULL s'il n'existe pas
        Sensor gyroscope = mySensorManager
                .getDefaultSensor(Sensor.TYPE GYROSCOPE);
        if (gyroscope == null)
            Toast.makeText(this, "Pas de gyroscope !", Toast.LENGTH LONG)
                    .show();
        else
            Toast.makeText(this, "Il existe au moins un gyroscope.",
                    Toast.LENGTH LONG).show();
```

Système de coordonnées

 Vérifier toujours l'orientation par défaut de l'appareil.

- Orientation :
 - Portrait (en général les Smartphones)
 - Paysage (beaucoup de tablette)

Bonnes pratiques

- 1. Annuler l'enregistrement de l'écouteur du capteur :
 - à la fin d'utilisation
 - activité en pause

Si non,

- L'acquisition des données continue
- → Consommation de la batterie

```
private SensorManager mySensorManager;
...
@Override
protected void onPause() {
    super.onPause();
    mySensorManager.unregisterListener(this);
}
```

Bonnes pratiques

- 2. Ne pas bloquer la méthode onSensorChanged()
 Peut être appelée fréquemment (selon la fréquence d'utilisation du capteur).
- 3. Éviter d'utiliser des méthodes ou types de capteurs obsolètes
- 4. Vérifier la présence du capteur avant son utilisation
- 5. Choisir la bonne fréquence d'utilisation du capteur

Utiliser les capteurs

- Implémenter l'interface SensorEventListener
- S'abonner aux événements du capteur public boolean registerListener (<u>SensorEventListener</u> listener, <u>Sensor</u> sensor, int rate)
 - listener : l'objet SensorEventListener
 - sensor : le capteur à écouter
 - rate : fréquence d'écoute en microsecondes

Les capteurs de mouvement

 Tous les capteurs de mouvement retournent des tableaux multidimensionnels

Capteur	donnée	Description	Unité de mesure	
TYPE_ACCELER OMETER	SensorEvent.values[0]	Acceleration force along the x axis (including gravity).	m/s ²	
	SensorEvent.values[1]	Acceleration force along the y axis (including gravity).		
	SensorEvent.values[2]	Acceleration force along the z axis (including gravity).		
TYPE_GRAVITY	SensorEvent.values[0]	Force of gravity along the x axis.	m/s ²	
	SensorEvent.values[1]	Force of gravity along the y axis.		
	SensorEvent.values[2]	Force of gravity along the z axis.		

http://developer.android.com/guide/topics/sensors/sensors_motion.html

Exemple - Accéléromètre

```
public class MainActivity extends Activity implements SensorEventListener {
   private SensorManager mySensorManager;
   private Sensor accelerometre;
   @Override
   protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity main);
       // Récupérer le gestionnaire de capteurs
       mySensorManager = (SensorManager) getSystemService(SENSOR SERVICE);
       // Récupérer l'accéléromètre
        accelerometre = mySensorManager.getDefaultSensor(Sensor.TYPE ACCELEROMETER);
```

Exemple - Accéléromètre

```
@override
protected void onPause() {
    super.onPause();
    mySensorManager.unregisterListener(this);
}

@override
protected void onResume() {
    super.onResume();
    mySensorManager.registerListener(this, accelerometre, SensorManager.SENSOR_DELAY_UI);
}

@override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
    Toast.makeText(MainActivity.this, "onAccuracyChanged()", Toast.LENGTH_SHORT).show();
}
```

Exemple - Accéléromètre

```
@Override
public void onSensorChanged(SensorEvent event) {
   float x, y, z;
    if (event.sensor.getType() == Sensor.TYPE ACCELEROMETER) {
        x = event.values[0];
        y = event.values[1];
        z = event.values[2];
        TextView tvX = (TextView) findViewById(R.id.tvX);
        TextView tvY = (TextView) findViewById(R.id.tvY);
        TextView tvZ = (TextView) findViewById(R.id.tvZ);
        tvX.setText(Float.toString(x));
        tvY.setText(Float.toString(y));
        tvZ.setText(Float.toString(z));
```

Il est utile d'utiliser des filtres passe-bas et passe-haut pour éliminer les forces gravitationnelles et réduire le bruit.