

Details

Ver. Rel. No.	Release Date	Prepared. By	Reviewed By	To be Approved	Remarks/Revision Details
1.0	04-12-2020	Krishnapriya J			

Contents

	CONTENTS	3
	MINIPROJECT -1: CALCULATOR	4
	Ageing	4
	Costing	
	4W1H	4
	My product	5
	SWOT ANALYSIS:	5
	Design	
	TEST PLAN	7
	GIT LINK	8
	GIT DASHBOARD	8
	References	8
FIG1	1. HIGH LEVEL DESIGN	6
	2. LOW LEVEL DESIGN	
	3. HIGH LEVEL DESIGN	
FIG4	4. LOW LEVEL DESIGN	7
ТАВ	BLE 1: COSTING	4
TAB	ILE 2: HIGH LEVEL REQUIREMENT	5
TAB	ILE 3: LOW LEVEL REQUIREMENTS	5
TAB	SLE 4: SWOT ANALYSIS	5
ΤΔΒ	RESTEST PLAN	7

Miniproject -1: Calculator

Ageing

The history of the calculator began with the hand-operated Abacus in Ancient Sumeria and Egypt in around 2000-2500 BC. These are very simple devices compared to modern calculators consisting of sets of ten beads on a series of rods held in place on a quadrilateral frame usually made of wood. In 1617 a Scottish Mathematician, John Napier described the workings of a device that would come to be known as Napier's bones. The bones (rods) were very thin with each being inscribed with multiplication tables. In 1642 one Blaise Pascal created a device that could perform arithmetic operations with just two numbers. His machine comprised of geared wheels that could add and subtract two numbers directly and also multiply and divide them by repetition.

Europe saw the next stage in the development of Mechanical calculators during the 17th Century. As late as the 1980s the use of slide rules was part of many countries school curricula and was considered a fundamental requirement for millions of school children to learn. The first solid-state electronic calculator was created in the early 1960s. Pocket-sized devices became available in the 1970s, especially after the Intel 4004, the first microprocessor, was developed by Intel for the Japanese calculator company Busicom. The first calculator capable of symbolic computing was the HP-28C, released in 1987. It could solve quadratic equations symbolically.2D and 3D math plots began to appear as well as other features like data loggers from input sensors and Wi-Fi and other connectivity capabilities also began to appear.

Costing

Year **Functionality** Cost 2020 300 Basic arithmetic operation 2022 Basic mathematical conversion 400 2024 Measurements dealing with area, 500 perimeter and circumference 2026 Temperature conversions 600 2028 750 Banking functionalities

Table 1: Costing

4W1H

An electronic calculator is typically a portable electronic device used to perform calculations, ranging from basic arithmetic to complex mathematics. The first solid-state electronic calculator was created in the early 1960s. Pocket-sized devices became available in the 1970s, especially after the Intel 4004, the first microprocessor, was developed by Intel. In addition to general purpose calculators, there are those designed for specific markets. For example, there are scientific calculators which include trigonometric and statistical calculations. Some calculators even have the ability to do computer algebra. Graphing calculators can be used to graph functions defined on the real line, or higher-dimensional Euclidean space.

My product

High level requirement:

Table 2: High level requirement

ID	Description		
HL_01	The calculator should contain the LCD to display the operations under going		
HL_02	The calculator should contain the keys such as 0-9, +, -, $*$, /, \pm , =, C, CE		
HL_03	In any situation the calculator has to produce a correct result defined by the well-known arithmetic		
	rules.		
HL_04	The calculator size should be 6 inches in height and 3 inches in width		
HL_05	The LCD display should be 2.5 inch in width and 1 inch in length		

Low level requirement:

Table 3: Low level requirements

ID	Description		
LL01	Numerical inputs should be of type int		
LL02	4 digits input for basic arithmetic operation		
LL03	4 digits input for banking function		
LL04	Should raise flags for exceptions		
LL05 Faster Execution			
LL06	Insert main reset key		

SWOT Analysis:

Table 4: SWOT Analysis

	<u> </u>	
STRENGTH	 The ultimate strength of the scientific calculator is its user friendly. And they have all types of operations such as basic calculator, measurement related to area, perimeter, circumference and conversions between different units of distance. It also contains operations that include conversions of temperature units. 	
WEAKNESS	 Those who want continuous change in their electronic gadgets won't opt for a scientific calculator. Even though the use of calculators cannot be overlooked, it should used as a replacement for the manual method of mathematical p solving. If a student gets into the habit of using calculators to solve a mathematical problems, he/she will never develop the math skills to solve basic mathematical problems. 	
OPPORTUNITIES	 It is easy to solve the mathematical calculations which are quite difficult. It takes very less time to compute the very difficult problem. 	
THREATS	To include all the operations in the desired space of the calculator.	

Design

Behavioral diagram:

High level design

Fig1. High level design

Low level design

Fig2. Low level design

Structural diagram:

High level design

Fig3. High level design

Low level design

Fig4. Low level design

Test Plan

Table 5: Test plan

Test case ID	Action	Input	Expected output	Actual output
TC_01	Addition	10,2	12	12
TC_02	Subtraction	10,2	8	8
TC_03	Multiplication	10,2	20	20
TC_04	Division	10,2	5	5
TC_05	Modulus	10,2	0	0
TC_06	Square	2	4	4
TC_07	Cube	2	8	8
TC_08	Square root	4	2	2
TC_09	Greater than	10,2	TRUE(1)	TRUE(1)
TC_10	Lesser than	2,10	TRUE(1)	TRUE(1)

TC_11	Equal to	2,2	TRUE(1)	TRUE(1)
TC_12	Prime number	2	TRUE(1)	TRUE(1)
TC_13	Odd	3	TRUE(1)	TRUE (1)
TC_14	Even	2	TRUE(1)	TRUE (1)
TC_15	Reverse	12	21	21
TC_16	Simple interest	5000,6%,5	6500	6500
TC_17	Compound interest	5000,6%,5	6,744.25	6,744.25
TC_18	Profit	6500,5000	1500	1500
TC_19	Loss	5000,4000	1000	1000

Git Link

https://github.com/99003155/Calculator.git

Git Dashboard

References

- 1. The People's Best Friend: The Calculators' Brief History (interestingengineering.com)
- 2. Calculator Wikipedia