Series 1 Warmup

Numerical methods for PDEs Last edited: February 28, 2017 Due date: 2017-03-14 at 23:59

Template codes are available on the course's webpage at https://moodle-app2.let.ethz.ch/course/view.php?id=3089.

This is a warmup problem. You do not need to hand in this problem.

Exercise 1 Finite Differences for Poisson Equation in 2D

In this problem we consider the Finite Differences discretization of the Poisson problem on the unit square:

$$-\Delta u = f \quad \text{in } \Omega := (0,1)^2,$$

$$u = 0 \quad \text{on } \partial\Omega,$$
(1)

for a bounded and continuous function $f \in \mathcal{C}^0(\overline{\Omega})$.

We consider a regular tensor product grid with meshwidth $h := (N+1)^{-1}$ and we assume a lexicographic numbering of the interior vertices of the mesh as depicted in Fig.1.

Figure 1: Lexicographic numbering of vertices of the equidistant tensor product mesh.

Figure 2: 5-point stencil used in this problem.

We consider the 5-point stencil finite difference scheme for the operator $-\Delta$ described by the 5-points stencil shown in Fig. 2.

1a)

Write the system
$$\mathbf{A}\mathbf{u} = \mathbf{F} \tag{2}$$

corresponding to the discretization of (1) using the stencil in Fig. 2, specifying the matrix $\bf A$ and the vectors $\bf F$ and $\bf u$.

1b)

In the template file finite_difference.cpp, implement the function

```
void createPoissonMatrix2D(SparseMatrix& A, int N),
```

to construct the matrix **A** in (2), where *N* denotes the number of interior grid points along one dimension, with typedef Eigen::SparseMatrix<double> SparseMatrix. Assume the matrix **A** to have an uninitialized size at the beginning.

1c)

In the template file finite_difference.cpp, implement the function

```
void createRHS(Vector& rhs, FunctionPointer f, int N, double dx),
```

to build the vector \mathbf{F} in (2), with typedef Eigen::VectorXd Vector and typedef double(*FunctionPointer)(double, double). The argument \mathbf{f} is a function pointer to the function f in (1), \mathbb{N} is the number of interior grid points and $d\mathbf{x}$ is cell width. Again, assume that the vector rhs has uninitialized size when passed in input.

1d)

In the template file finite_difference.cpp, implement the function

```
void poissonSolve(Vector& u, FunctionPointer f, int N),
```

to solve the system (2), with u the vector containing the values of the approximate solution at all the grid points, including those on the boundary, and the other arguments as in the previous subproblems.

1e)

Plot the discrete solution that you get from subproblem **1d)** for $f(x,y) = 8\pi^2 \sin(2\pi x) \sin(2\pi y)$ and N = 50, and compare it to the exact solution $u(x,y) = \sin(2\pi x) \sin(2\pi y)$.