# Classification Using Functional Data Analysis for Temporal Gene Expression Data

Functional PCA Simulation Study

July 31, 2019

### Contents

Introduction

Quantity of the second of t

Simulation Results

### 1. Introduction

- A simulation study was performed based on the first five estimated  $FPCs(\hat{\rho}_m)$  from the yeast cell-cycle data
- Five random coefficients  $\epsilon_m(m=1,...,5)$  were generated for each subject from normal distributions with means 0.6, 0.5, 0.4, 0.3, and 0.2 for group 1 and -0.6, -0.5, -0.4, -0.3, and -0.2 for group 2
- The variances of  $\epsilon_m$  correspond to the estimated eigenvalues $(\hat{\lambda}_m)$

$$\hat{X}_i(t) = \hat{\mu}(t) + \sum_{m=1}^M \epsilon_{im} \hat{
ho}_m(t) \quad 0 \leq t \leq T.$$



Fig. 1. Temporal gene expression profiles of yeast cell cycle. Dashed lines: G<sub>1</sub> phase; Gray solid lines: non-G<sub>1</sub> phases; Black solid line: overall mean curve.

Fig. 5. The first five FPCs for the known 90 genes for yeast cell-cycle data. These five FPCs account for 98.9% of the total variation, with the first FPC accounting for 66.5%, the second for 21.9%, the third for 4.7%, the fourth for 3.1% and the fifth for 2.7%.

#### 1. Introduction

• Using training set from generated  $\hat{X}_i$ 's, calculate  $\hat{\epsilon}'_{im}$  for FPCA, and  $\hat{\gamma}_{il}$  for B-spline method( $i=1,2,...,n,\ m=1,2,...,M,\ l=1,2,...,L$ )

$$\hat{X}_i(t) = \hat{\mu}'(t) + \sum_{m=1}^M \hat{\epsilon}'_{im} \hat{\rho}'_m(t) \quad 0 \leq t \leq T,$$

$$\hat{X}_{l}(t) = \sum_{k=1}^{p} \hat{eta}_{k} \hat{\bar{B}}_{k}(t_{ij}) + \sum_{l=1}^{q} \hat{\gamma}_{il} \hat{B}_{l}(t_{ij}) => \hat{\mu}'(t) + \sum_{l=1}^{q} \hat{\gamma}_{il} \hat{B}_{l}(t_{ij})$$

• With these  $\hat{\epsilon}'_{im}$ , and  $\hat{\gamma}_{il}$ , classify test set's group via logistic regression analysis, where the inverse link function is

$$g^{-1}\left(\hat{\alpha} + \sum_{m=1}^{M} \hat{\beta}_{m}\hat{\epsilon}'_{m}\right) = \hat{\pi}_{i}, \quad i = 1, 2, ..., n.$$

 Then compare the classification error rates of both methods with the fitted logistic regression models

- http://genome-www.stanford.edu/cellcycle/data/rawdata/
- ullet Rawdata contains unnecessary data(other than lpha factor synchronized data) and NA values

| ^  | gene :  | dn3experiment1 | cln3experiment2 | db2experiment2 | clb2experiment1 | alpha0min ° | alpha7min | alpha14min | alpha21min | alpha28min | alpha35min <sup>0</sup> | alpha42min |
|----|---------|----------------|-----------------|----------------|-----------------|-------------|-----------|------------|------------|------------|-------------------------|------------|
| 1  | YALOU1C | 0.15           | N/A             | -0.22          | 0.07            | -0.15       | -0.15     | -0.21      | 0.17       | -0.42      | -0.44                   | -0.15      |
| 2  | YALO02W | -0.07          | -0.76           | -0.12          | -0.25           | -0.11       | 0.10      | 0.01       | 0.06       | 0.04       | -0.26                   | 0.04       |
| 3  | YALO03W | -1.22          | -0.27           | -0.10          | 0.23            | -0.14       | -0.71     | 0.10       | -0.32      | -0.40      | -0.58                   | 0.11       |
| 4  | YALO04W | -0.09          | 1.20            | 0.16           | -0.14           | -0.02       | -0.48     | -0.11      | 0.12       | -0.03      | 0.19                    | 0.13       |
| 5  | YALO05C | -0.60          | 1.01            | 0.24           | 0.65            | -0.05       | -0.53     | -0.47      | -0.06      | 0.11       | -0.07                   | 0.25       |
| 6  | YALOO7C | 0.65           | 1.39            | -0.29          | -0.54           | -0.60       | -0.45     | -0.13      | 0.35       | -0.01      | 0.49                    | 0.18       |
| 7  | YALO08W | -0.36          | -0.22           | -0.20          | 0.10            | -0.28       | -0.22     | -0.06      | 0.22       | 0.25       | 0.13                    | 0.34       |
| 8  | YALO09W | 0.25           | -0.79           | -0.22          | -0.54           | -0.03       | -0.27     | 0.17       | -0.12      | -0.27      | 0.06                    | 0.23       |
| 9  | YAL010C | -0.30          | -0.60           | -0.18          | 0.01            | -0.05       | 0.13      | 0.13       | -0.21      | -0.45      | -0.21                   | 0.06       |
| 10 | YAL011W | -0.15          | -0.71           | -0.15          | -0.25           | -0.31       | -0.43     | -0.30      | -0.23      | -0.13      | -0.07                   | 0.08       |
| 11 | YAL012W | -1.22          | 0.66            | -0.64          | -0.17           | 0.02        | -0.33     | -0.49      | -0.30      | -0.15      | -0.24                   | 0.40       |
| 12 | YAL013W | -0.34          | -1.06           | -0.45          | -0.29           | -0.36       | -0.19     | 0.00       | -0.32      | -0.27      | -0.12                   | 0.04       |
| 13 | YAL014C | -0.84          | -1.29           | -0.12          | 0.18            | -0.10       | -0.15     | -0.01      | -0.25      | -0.16      | -0.13                   | 0.06       |
| 14 | YAL015C | -0.12          | -0.54           | -0.12          | -0.18           | 0.00        | -0.01     | 0.12       | -0.23      | -0.13      | 0.25                    | 0.30       |
| 15 | YAL016W | -0.42          | 0.23            | 0.14           | 0.32            | 0.06        | 0.01      | 0.17       | -0.14      | 0.01       | -0.24                   | 0.15       |
| 16 | YAL017W | 0.29           | -0.40           | -0.09          | -0.32           | -0.40       | -0.22     | 0.19       | -0.20      | -0.09      | 0.41                    | 0.13       |
| 17 | YAL018C | -0.29          | NA.             | -0.42          | -0.01           | 0.46        | 0.28      | 0.16       | -1.72      | 0.33       | 0.05                    | 0.22       |
| 18 | YAL019W | 0.26           | -0.17           | -0.23          | -0.12           | -0.24       | -0.95     | -0.23      | 0.12       | -0.02      | 0.23                    | -0.11      |
| 19 | YAL020C | 0.44           | -0.51           | -0.22          | 0.15            | -0.02       | -0.29     | -0.07      | -0.22      | -0.06      | -0.07                   | 0.20       |

- ullet Select lpha factor synchronized data and omit NA values
- Transform the rawdata into fd(functional data) object
- Obtain PCA basis from original data

```
library(fda.usc)
cell <- read.delim("mbc_9_12_3273__CDCDATA.txt")
gene <- cell[, c(1, 6:23)]
gene <- na.omit(gene)
train <- gene[, -1] # remove the column of gene's names
train.fdata <- fdata(train)
train.fd <- fdata2fd(train.fdata, nbasis=5)
train.pca <- create.pc.basis(train.fdata, l=1:5, lambda=1)</pre>
```

The plots of the five FPC curves are similar to paper's plots



- From  $\hat{X}_i(t) = \hat{\mu}(t) + \sum_{m=1}^M \epsilon_{im} \hat{\rho}_m(t)$   $0 \le t \le T$ , generate 100 datasets(100 train and test data for each dataset)  $\hat{X}_i(t_j), \ j=1,..,18$  with the  $\epsilon_{im}$ 's given by rnorm function
- $\hat{\mu}(t_j)$

```
> train.pca$mean$data
```

•  $\hat{\rho}_m(t_i), j = 1, ..., 18$ 

```
> train.pca$basis$data
PC1 -0.4561404 -0.479346676 -0.4247908 -0.29182332 -0.126654438
                                                              0.01429060
                                                              0.34040726
PC2 -0.5411512 -0.186631395 0.1605178 0.38051140 0.425509450
PC3 -0.1898493 -0.020566941 0.0975911 0.08482354 -0.064600250 -0.25186520 -0.3810106 -0.359326018 -0.1877626
PC4 0.2695601 -0.005837465 -0.1442123 -0.11876424 -0.009465060
PC5 -0.3229185 0.084633595
                           0.2655946 0.19445872 -0.007339227 -0.14848975 -0.2188865 -0.202355596
   0.14841734 0.10541349 0.07989280 0.08783613 0.12572348
                                                              0.16424892 0.193680854
PC2 -0.19609004 -0.15040227 -0.05606380 0.02964161 0.07065622
   0.08564740 0.34353622 0.43444108 0.36855158 0.24246307
                                                               0.11089664 -0.006290314 -0.1250567 -0.181603360
PC4 -0.42292993 -0.33849766 -0.11923254 0.14104835 0.33351809
                                                               0.40326009
                                                                          0.329094820 0.1916163 -0.003462398
PC5 -0.08170919 -0.08148318 -0.07663211 -0.12252707 -0.14050875 -0.09324863
```

### 3. Simulation Results: FPCA Method

- Estimate  $\hat{\mu}'(t)$  and  $\hat{\rho}'_m(t)$  with the generated train set via create.pc.basis function
- Then calculate the  $\hat{\epsilon}'_{im}$  of train and test set for each m=1,...,5, where

$$\hat{\epsilon}'_{im} = \sum_{k=1}^{S} ((\hat{X}_i(k) - \hat{\mu}'(k))\hat{\rho}'_m(k), \ S = 18$$

```
> set.e$train
             e1
                         e2
                                     e3
                                                                 e5
   -0.869215856 -0.23562203
                            0.433777067 5.537948e-01 1.063533e-02
   0.556755587 0.98388789
                            0.411870967 -2.808091e-01 -2.318547e-01
   -2.820701032 0.66934749
                            0.122762361 -5.452579e-01 2.245622e-01
   -1.025282104 0.19911721 0.827533058 8.093052e-02 -2.422870e-01
5
   -0.593736680 -1.42365411
                            0.649620527 1.639880e-01 -5.136332e-01
   -1.092823476 0.44827997 -0.026507738 -5.537899e-01 -1.683859e-01
  -1.186541380 0.66016536 0.543837469 -3.542383e-02 5.154803e-01
  -3.024055210 -0.24716041 0.343763698 9.113634e-02 -6.634528e-01
   -3.789155918
                 0.99908339
                            -0.144872988 -8.804926e-02 3.332286e-01
   -1.969398241 -1.13112182 -1.070065773 -1.809187e-01 1.896484e-01
```

### 3. Simulation Results: FPCA Method

 Fit the logistic regression model with the train set, and inverse link function is,

$$g^{-1}\left(\hat{\alpha}+\sum_{m=1}^{M}\hat{\beta}_{m}\hat{\epsilon}'_{m}\right)=\hat{\pi}_{i}, \quad i=1,2,...,n.$$

Compare the predicted group with real group

```
model <- glm(group ~ ., data=set.e$train, family = binomial)
pi.hat <- predict(model, set.e$test, type="response")
pred <- ifelse(pi.hat > 0.5, 1, 0)
c.tab <- table(set.e$test$group, pred)</pre>
```

```
> c.tab
pred
0 1
g1 45 5
g2 2 48
```

# 3. Simulation Results : B-Spline Method

• Estimate  $\hat{\gamma}_I(t)$  with  $\hat{\mu}'(t)$  and the generated train set via fdata2fd function

$$\hat{X}_i(t) = \hat{\mu}'(t) + \sum_{l=1}^q \hat{\gamma}_{il} \hat{B}_l(t_{ij}) 
ightarrow \sum_{l=1}^q \hat{\gamma}_{il} \hat{B}_l(t_{ij}) = \hat{X}_i(t) - \hat{\mu}'(t)$$

Then, compare the predicted group with real group again

```
> set.g$train
        bspl4.1 bspl4.2 bspl4.3
                                           bspl4.4
                                                         bspl4.5
1
    -0.62616469
                0.24564096 -0.34526021
                                        0.79890592 -0.2799767746
2
    0.80388548 -1.23495369
                            0.90478820
                                       -0.55219458
                                                     0.3871989234
3
    -1.52332520 -0.58778991
                            0.79114818
                                        0.27916429
                                                     0.9497160121
    -0.57219810 -0.24336485
                            -0.28915390
                                        0.66955174
                                                     0.1559336510
5
   -0.97656065
                1.82230530 -2.27876606
                                        1.37854016 -0.2618415784
   -0.58135191 -0.41349177
                            0.49447364 -0.28318202
                                                     0.6959187765
7
   -0.34948635 -0.78836300
                            0.44450431 0.56145459
                                                     0.2002993960
   -2.23394579
                0.45480243
                            -0.22007230
                                        0.68499553
                                                     0.5731021470
   -2.07672726 -1.03434167
                            1.74478320
                                        0.13489758
                                                     0.9155496583
10
    -1.95039882
                1.52990490 -0.67697929
                                        0.17207756
                                                     0.1265386771
```

### 3. Simulation Results: Classification Error Rates

- For each of the 100 simulated datasets, classification error rates were calculated for the test data based on FPCA and B-spline methods
- Except for the case with No=1, the overall classification error rates based on FPCA are always lower that those observed for B-splines

Table: Classification error rates based on FPCA ans B-Splines(B-S)

| No. of FPCs or base functions | Group 1<br>FPCA | B-S          | Group 2<br>FPCA | B-S          | overall<br>FPCA | B-S          |
|-------------------------------|-----------------|--------------|-----------------|--------------|-----------------|--------------|
| 1                             | 32.72 (8.41)    | 27.32 (7.86) | 32.70 (8.31)    | 26.90 (7.86) | 32.71 (5.26)    | 27.11 (4.58) |
| 2                             | 22.16 (6.65)    | 24.08 (6.37) | 22.06 (6.15)    | 24.80 (6.55) | 22.11 (4.33)    | 24.44 (3.97) |
| 3                             | 7.58 (4.58)     | 7.92 (3.96)  | 8.26 (5.34)     | 8.76 (4.71)  | 7.92 (3.35)     | 8.34 (2.70)  |
| 4                             | 7.14 (4.14)     | 8.18 (4.18)  | 7.62 (5.10)     | 8.98 (5.00)  | 7.38 (3.11)     | 8.58 (2.96)  |
| 5                             | 7.40 (4.07)     | 7.68 (4.29)  | 7.86 (5.26)     | 8.58 (5.01)  | 7.63 (3.06)     | 8.13 (3.15)  |

### References I



Hans-Georg Müller Xiaoyan Leng.

Classification using functional data analysis for temporal gene expression data.

BIOINFORMATICS, 22(1):68-76, 2006.

# Thank You!