CODE TO NOTE

INTERNAL PULL-UP RESISTOR:

pinMode(pin, INPUT_
PULLUP);

To declare a standard input, use the line pinMode(pin, INPUT);. If you would like to use one of the RedBoard's built-in pull-up $20k\Omega$ resistors, it would look like this:

pinMode(pin, INPUT_PULLUP);. The advantage
of external pull-ups is being able to choose a more
exact value for the resistor.

DIGITAL INPUT:

digitalRead(pin);

Check to see if an input pin is reading HIGH (5V) or LOW (0V). Returns TRUE (1) or FALSE (0) depending on the reading.

IS EQUAL TO:

if(digitalRead(pin) ==
LOW)

This is another logical operator. The "is equal to" symbol == can be confusing. Two equals signs are the same as asking, "Are these two values equal to one another?" Contrarily, one equals sign means assigning a particular value to a variable. Don't forget to add the second equals sign if you are comparing two values.

CODING CHALLENGES

CHANGE THE KEY OF EACH BUTTON: Use the frequency table in the comment section at the end of the code to change the notes that each button plays.

PLAY MORE THAN THREE NOTES WITH IF STATEMENTS: By using combinations of buttons, you can play up to seven notes of the scale. You can do this in a few ways. To get more practice with if statements, try adding seven if statements and using the Boolean AND && operator to represent all of the combinations of keys.

PLAY MORE THAN THREE NOTES WITH BINARY MATH: You can use a clever math equation to play more than three notes with your three keys. By multiplying each key by a different number, then adding up all of these numbers, you can make a math equation that produces a different number for each combination of keys.

45 : CIRCUIT 2B