MV notes

Om Swostik Mishra

Cantor $set(\mathscr{C})$:

 $C_0 = [0, 1]$

 $C_1 = [0,1] - (\frac{1}{3},\frac{2}{3})$ and so on (Basically, keep removing the middle one third)

$$\mathscr{C} = \bigcap_{i=0}^{\infty} \mathcal{C}_i$$
(I) $\mathscr{C} \neq \phi$

- (II) \mathscr{C} is closed (hence, compact)
- (III) \mathscr{C} has length 0
- (IV) \mathscr{C} is totally disconnected

Exercise: Can you characterize the elements of \mathscr{C} ?

Integration:

In one variable:

Definition: A partition P of $[a,b] \subset \mathbb{R}$ is a collection $t_0 = a \leq t_1 \cdots \leq t_k = b$

Rectangle in
$$\mathbb{R}^n$$
: $[a_1, b_1] \times [a_2, b_2] \cdots \times [a_n, b_n] = A$

If P_i is a partition of $[a_i, b_i]$, $P = (P_1, P_2, \dots P_n)$ is a partition of A.

 $f: A \to \mathbb{R}$ is a bounded function. (P is a partition of A)

If
$$S = \text{rectangle in } P$$
, $m_S(f) = \inf_{x \in S} f(x)$, $M_S(f) = \sup_{x \in S} f(x)$

$$L(f, P) = \sum_{S \in P} m_S(f) \nu(S)$$

$$U(f,P) = \sum_{S \in P} M_S(f) \nu(S) \ (\nu(S) = \text{volume of } S)$$

$$L(f, P) \le U(f, P)$$

If P and P' are partitions, P' is said to be an refinement of P if any subrectangle S' in P' is contained in contained in some subrectangle S in P.

If
$$P = (P_1, P_2 ... P_n)$$
 and $Q = (Q_1, Q_2 ... Q_n)$, then

$$\mathcal{T} = (P_1 \cup Q_1, \dots, P_n \cup Q_n)$$
 is a refinement of both P and Q .

Proposition: If P' is a refinement of P, then $L(f, P) \leq L(f, P') \leq U(f, P') \leq U(f, P)$.

If
$$S^{'} \in P^{'}$$
, then $S^{'} \subseteq S$ for some $S \in P$, $m_{S^{'}}(f) \ge m_{S}(f)$, $M_{S^{'}} \le M_{S}(f)$

$$S = \bigcup_{i=1}^{m} S_i', S_i' \in P'$$

$$S = \bigcup_{i=1}^{m} S_{i}', \ S_{i}' \in P'$$

$$\sum_{i=1}^{m} m_{S'}(f) \cdot \nu(S') \ge \sum_{i=1}^{m} m_{S}(f) \cdot \nu(S') = m_{S}(f) \sum_{i=1}^{m} \nu(S_{i}') = m_{S}(f) \nu(S)$$

Summing up, $L(f, P') \ge L(f, P)$

Similarly, $U(f, P') \leq U(f, P)$

Corollary: If P and P' are any two partitions: $L(f, P') \leq U(f, P)$

Take Q = common refinement of P, P'.

Then,
$$L(f, P') \le L(f, Q) \le U(f, Q) \le U(f, P)$$

$$\sup_{P} L(f, P) \le \inf_{P'} U(f, P')$$

 $f:A\to\mathbb{R}$: a bounded function is said to be integrable if $\sup_P L(f,P)=\inf_P U(f,P)$

Value is denoted as $\int_A f$

Propositon: f is integrable $\Leftrightarrow \forall \epsilon > 0, \exists$ a partition P such that, $U(f, P) - L(f, P) < \epsilon$

Theorem: Let $f: A \to \mathbb{R}$ be a bounded function on a closed rectangle A. Then f is integrable on A iff the set $B = \{x : f \text{ is discontinuous at } x\}$ has measure 0.

Definition: A set $S \subseteq \mathbb{R}^n$ is said to have measure 0 if given $\epsilon > 0$ there exists a sequence of closed rectangles $Q_1, Q_2 \dots Q_n$, such that $S \subseteq \bigcup_{i=0}^{\infty} Q_i$ and $\sum_{i=1}^{\infty} \nu(Q_i) < \epsilon$

(I) If $\{A_i\}_{1}^{\infty}$ is a countable collection of measure zero sets, then $\bigcup_{i=0}^{\infty} A_i$ has measure zero. $(II)\mathscr{C}$ has measure zero

Definition: A set $A \subseteq \mathbb{R}^n$ is said to have content 0, if given $\epsilon > 0$, there exists a finite collection of closed rectangles $Q_1, Q_2 \dots Q_n$ such that $\sum_{i=1}^n \nu(Q_i) < \epsilon$

Theorem: measure $0 \Rightarrow$ content 0 if A is compact

Proposition: If a < b, then S = [a, b] doesn't have measure zero.

Proof(Sketch): Let $S \subseteq \bigcup_{i=0}^{\infty} Q_i$

 $\sum \nu(Q_i) > (b-a)$

content $0 \Rightarrow \text{measure } 0$