STAT 88: Lecture 21

Contents

Section 6.3: Markov's Inequalityn Section 6.4: Chebyshev's Inequality

Warm up: A study on college students found that the men had an average weight of about 66 kg and an SD of about 9 kg. The women had an average weight of about 55 kg and SD of 9 kg. If you took the men and women together, would the SD of their weights be:

- (a) smaller than 9 kg.
- (b) just about 9 kg.
- (c) bigger than 9 kg.
- (d) you need more information.

Last time

SD(X) is the average deviation of X from the mean E(X).

$$SD(X) = \sqrt{E((X - \mu_X)^2)}$$
 where $\mu_X = E(X)$,

or

$$SD(X) = \sqrt{E(X^2) - \mu_X^2}.$$
$$Var(X) = (SD(X))^2.$$

You should be able to tell which of two distributions has a larger SD.

 $\underline{\text{Ex:}}$ (Exercise 6.5.4)

4. Let X have distribution

x	1	2	3	4
P(X = x)	0.4	0.1	0.1	0.4

Let Y have distribution

у	1	2	3	4
P(Y = Y)	0.1	0.4	0.4	0.1

Which of these distributions has a larger SD?

6.3. Markov's inequality

We study what we can say about how far a non-negative random variable can be from its mean, using only the mean and not the SD.

Tail Probabilities Let X be a a non-negative random variables. Fix c > 0. We want to find $P(X \ge c)$ in terms of E(X).

P(x2c): right hand toll probability

We know

$$\begin{split} E(X) &= \sum_{\text{all } x \geq 0} x P(X = x) \\ &= \sum_{\text{all } x < c} x P(X = x) + \sum_{\text{all } x \geq c} x P(X = x). \end{split}$$

Then

$$E(X) \ge \sum_{\text{all } x \ge c} x P(X = x)$$

$$\ge \sum_{\text{all } x \ge c} c P(X = x)$$

$$= c \sum_{\text{all } x \ge c} P(X = x)$$

$$= c P(X > c).$$

Therefore we obtain **Markov's inequality**: for a non-negative random variable X and a positive constant c > 0,

$$P(X \ge c) \le \frac{E(X)}{c}$$
.

Markov's inequality is a *tail bound*.

Tail probability is bounded by expectation (= 1st moment)

Ex: Give an upper bound for the probability that a Stat 88 student takes 4 or more math classes (E(X) = 1.1).

What does Markov say if k = 0.5?

Ex: Let $X \sim \text{Binomial}(100, 1/2)$. What is an upper bound for $P(X \ge 4E(X))$? What is $P(X \ge 4E(X))$ exactly?

6.4. Chebyshev's inequality

Can we get a better upper bound for the chance a stat 88 Student takes 4 or more math classes knowing the average is 1.1 classes **AND** the SD is 1.5 classes?

This is answered by Chebyshev's inequality.

Let $\mu = E(X)$ and $\sigma = \mathrm{SD}(X)$. Let X be any random variable (possibly negative) and fix c > 0. We are interested in the chance of being in both tails, $P(|X - \mu| \ge c)$.

We have

$$P(|X-\mu| \geq c) = P((X-\mu)^2 \geq c^2)$$
 By Marko's inequality
$$\frac{E((X-\mu)^2)}{c^2}$$
 Since (X-M) ≥ 0 $= \frac{\sigma^2}{c^2}$.

This proves Chebyshev's Inequality: for a random variable X with mean μ and SD σ and a positive constant c > 0,

$$P(|X - \mu| \ge c) \le \frac{\sigma^2}{c^2} = \frac{\operatorname{Var}(X)}{c^2}.$$

Ex: Suppose a random variable X has $\mu = 60$, and $\sigma = 5$. what is the chance that it is outside the interval (50, 70)?

What is $P(X \in (50, 70))$?

Chebyshev's inequality revisited

Chebyshev inequality can give an upper bound for the chance your data is k > 0 or more SD away from the mean, e.g. k = 2.

Let X be a random variable with mean μ and SD σ . Then for all k > 0,

$$P(|X - \mu| \ge k\sigma) \le \frac{\sigma^2}{k^2 \sigma^2} = \frac{1}{k}.$$

The most important point about Chebyshev's inequality is that it makes no assumption about the shape of the distribution. No matter what the shape of the distribution of X:

- the chance that X is at least 2 SDs away from its mean is at most?
- the chance that X is at least 3 SDs away from its mean is at most?
- the chance that X is at least 4 SDs away from its mean is at most?
- the chance that X is at least 5 SDs away from its mean is at most?

This holds for ANY DISTRIBUTION.

Example: (Exercise 6.5.6) Ages in a population have a mean of 40 years. Let X be the age of a person picked at random from the population.

- (a) If possible, find $P(X \ge 80)$. If it's not possible, explain why, and find the best upper bound you can based on the information given.
- (b) Suppose you are told in addition that the SD of the ages is 15 years. What can you say about P(10 < X < 70)?

Bound on One Tail

Suppose we want an upper bound on just one tail, as in the figure below. The right hand tail probability is $P(X - \mu \ge c)$.

Chebyshev's inequality gives an upper bound on the total of two tails starting at equal distances on either side of the mean: $P(|X - \mu| \ge c)$.

You cant just use half of Chebyshev upper bound. Note each single tail is no bigger than the total of two tails.

$$P(X - \mu \ge c) \le P(|X - \mu| \ge c) \le \frac{\operatorname{Var}(X)}{c^2}.$$

Ex: What is chance that a Stat 88 student takes 2 or more math classes given $\mu = 1.1$ and $\sigma = 1.5$?