暨南大学本科实验报告专用纸

课程名称	算法分析与设计实验	<u> </u>	评定_		
实验项目名称	格雷码的构造		教师	李展	
实验项目编号	实验二 实验项	目类型 综	合性	实验地	点
学生姓名	长印祺	_学号2018	3051948	3	
学院_信息科学技	术 系 计算机科学	专业	网络	工程	
实验时间_2020_年	F <u>3月26</u> 日 <u>下</u> 午	~ <u>3</u> 月 <u>26</u> 日_	下午		

一、问题描述

Gray 码是一个长度为 2^n 的序列。序列中无相同元素,每个元素都是长度为 n 位的(0, 1)串,相邻元素恰好只有一位不同。利用分治法设计一个算法对任意的 n 构造相应的格雷码。

二、算法思路

读取一个位数 n, 计算出一个值为2ⁿ的参数。格雷码的构造如右图示,每次构造都是将低位对称反转后,前一半的序列的最高位填 0, 后一半序列最高位填 1。利用这个性质的倒推到得出本算法:

- (1) 设置一个n = 0时为[0]的初始列表。
- (2) 我们可以发现高位填充 1 这个操作可以 使用移位运算符来实现,而相对于十进制 数值大小而言,高位补 0,数值本身没有变化。
- (3) 通过分治法,我们相当于将 G(n) 的这一问题分解为 0G(n-1) 和 $1G^{-1}(n-1)$,最终相当于解决 0G(0) 和 $1G^{-1}(n)$ 问题

三、算法实施流程

四、测试结果

	V. (* 112)
1	00000
2	00001
3	00011
4	00010
5	00110
6	00111
7	00101
8	00100
9	01100
10	01101
11	01111
12	01110
13	01010
14	01011
15	01001
16	01000
17	11000
18	11001
19	11011
20	11010
21	11110
22	11111
23	11101
24	11100
25	10100
26	10101
27	10111
28	10110
29	10010
30	10011
31	10001
32	10000

五、实验总结

本算法运用了一个递归分治,因为每个小分块都有规律: N=n 时前一半格雷码从十进制数值上而言是没有变化的,可以直接复制,后一半相当于在二进制首位增加 1,时间复杂度为 O(n);接着递归一次,得到该算法的时间复杂度:

$$T(n) = \begin{cases} 0(1) & n = 1 \\ 2T(n-1) + 1 & n > 1 \end{cases}$$

对该公式进行递归套用,最后算出, $T(n) = O(2^n)$ 。

可见,该算法的时间复杂度相对使用二维列表而言复杂度大幅降低,可能不是时间复杂度最优的算法,也没有那么好理解,需要有到十进制与二进制转换的敏感度与移位运算符的运用,但是从题目要求、时间与空间复杂度平衡性而言,它是一个极其优秀的算法。

同时,如果不需要分治思想的话,我们可以利用格雷码的电路的生成原理 G(i)=i^(i>>1),使用位运算来达到空间与时间复杂度的最优。

```
最优算法的代码如下:
   def calCode(n:int) -> list:
       return [i^(i>>1) for i in range(2**n)]
六、源代码
       import os
       PATH = '.\\'
       class Gray():
          def calCode(self, n: int) -> list: # 核心算法
              return [0] if n == 0 else self.calCode(n - 1) + [x + (1 << (n - 1)
       1)) for x in reversed(self.calCode(n - 1))]
       n = eval(input("请输入格雷码位数:\n"))
       ans = Gray()
       result = []
       b = ans.calCode(n)
       for i in b:
          result.append(bin(i)[2:].zfill(n)) #二进制保存
       print(result)
       ## 文件输出
       f = open(PATH + '2.GrayCode_result', 'w', encoding='UTF-8')
       for i in range(2 ** n):
```

f.write(result[i])

f.write('\n')

f.close()