FIG.1a.

Synthetic DNA Substrates Mimicking Transcriptional Cis- Regulatory Elements

5' -GGGAATTCAAGGGGCGGGGCAAGGATCCAG -3' GC-box a:

5' -CTGGATCCTTGCCCCGCCCTTGAATTCCC -3'

GC-box b:

GC-box b MET: 5' -CTGGATCCTTGCCC ^mCGCCCCTTGAATTCCC -3'

5' -GGGAATTCAAATGACGTCAAAAGGATCCAG -3' 5' -CTGGATCCTTTTGACGTCATTTGAATTCCC -3' CRE b: CRE a:

5' -GGGAATTCAAATGA^M CGTCAAAAGGATCCAG -3' CRE a MET:

FIG. 1

			2/26				
Kii IC50 (nM) (nM)	8	20 15	S.	30	20	150	300
Vα	0089		G	CAACCCTCCAC-3'			·6-5
Sequence	5'-CTGGATCCTTGCCCCGCCCCTTGAATTCCC-3	5'-CTGGATCCTTGCCCmCGCCCCTTGAATTCCC-3'	5'-CTGGATCCTTGCCCmCGCCCCTTGAATTCCC-3'	5'- CCTACCCACCCTGGATCCTTGCCCmCGCCCCTTGAATTCCCAACCCTCCAC-3'	5'-ATCCTTGCCCmCGCCCCTTGAAT-3'	5'TTGCCCmCGCCCTT-3'	5'-GGGAATTCAAATGAmCGTCAAAAGGATCCAG-3'
NUCLEO- TIDES	30	30	30	50 5'-	22	4	30
NAME NC TIE	GC-Box b	GC-Box bMET (SEQ ID NO: 10)	GC BoxpMET (SEQ ID NO: 10)	GC-Box cMET	(SEQ ID NO: 13) GC Box dMET (SEQ ID NO: 14)	GC-Box eMET (SEQ ID NO: 15)	CRE aMET (SEQ ID NO: 11)

Primer D

7/26

FIG.7a.

8/26

STARTING POPULATION

FIG.7b. GENERATION 1

FIG.7c. GENERATION 3

1G.7d.

3pT G#	_	5	6	6	&	∞	&	7	7		. 9	6 10	9 0 6
TpG GpT	•	•	•	•	•	•	•	•	•		•	•	
GENERATION 5	TGGGGGGGGGCGGGGGGAGTTTGA	GGGGGGAGGGCGGATAGTTGTGTG	GGGTGGGGTGGGGTGTGGG	GAGGGGGGGAGCGGAGGGGGTTGGG	GGGGGGAAGGGCGTGGGGTTGGGTG	-GGGAGGGGGGCGATGGGGTGGTGG	GGGTGGGGTGGCGTTGTGGGTGGGG	GGGAGGGGTGGCGGTGGGTATGTGG	GGGGAGGGTGGCGGGTATGGAGTGG		GGGGGGGAGTGCGTTGATGGGTGTG	GGGGGGGAGTG <u>CG</u> TTGATGGGTGTG GGGGGGTGGAT <u>CG</u> TGGGGGGGGGG	GGGGGGGAGTGCGTTGATGGGTGTG GGGGGGGGGGGGGG
TpG	•		•				•	•	•		•	• •	• • •
GpT			•				•	•	•		•	• •	• • •
#5	7	=	10	10	10	10	10	10	10	•	20	10 9	0 0

SUBSTITUTE SHEET (RULE 26)

FIG. 7e.

#5	2	9	7	9	9	5	9	7	6	0	ω	œ
TpG GpT	•		•	•	•	•		•	•	•	•	•
TpG	•	•	•	•	•	•	•	•	•	•	•	•
GENERATION 5	GGGAGGGGTAGCGGGAGTGTGTG	GGGGGTAAGGGGGG	GGGGGGTGGTTCGGTAATGGGGGGT	GGTGGGAGAGGCGTGGTGTAGGTAG	GGGGGGGTGTACGAGGTTTGTGTGG	TGGTGGAGGGGCGAAGAGTGTGTG	GGGGGTGGGATGCGGAATAAGGATGG	TGAGGGGAGGCGAATAGATGGTGG	GGGGGGAGTAAGCGGGGGGTGTGGTGG	TGAAGGGGGGTGCGGGGGG-	GTGGTGATGGGGCGGGGGTGGTGG	TGGAGGGGTAGGCGTGGGGTGATGGG
TpG			•	•	•	•	•	•		•	•	•
GpT	•	•	•	•	•	•	•		•	•	•	•
# 5	6	6	တ	တ	တ	တ	တ	တ	∞	∞	ω (∞

The street of th

FIG. 7f.

# 5	ω	∞	7	9	9	10	တ	တ	တ	∞	ω	7
Тра срт	•	•	•	•	•	•	•	•	•	•	•	•
	GTGATGGG	3TAGAGGGG	rgtgtggg •••	GTATGTAG	GTGGTGGG ••	GGGGTTGG .	FTGGGGGGG ••	BATGGGGTG	GTGGGGG .	GGGGGTGG ••	GGTGGTGG	TGTGATGG
GENERATION 5	GGTAGGGAGTGGCGGGTGGTGATGGG	GGGTGTAGAGGCCGGGAGTAGAGGGG	GGGTGGGTTTGGCGTAATTGTGTGGG	GGGTGTGTTGGGCGTGGGGGTATGTAG	TGGGGAGAATGGCGGGGGGGTGGTGGG	TATGGTGGGAGGCGGGGGGGGTTGG	TGGGGAAAGAGGCGTGAGTGGGGGGG	TGTAGGGGAGGACGGGGGGGTG	GGGTGGGTAATGCGTAGGGTGGGGGG	GTGTGGGTAAGGCGGTATGGGGGTGG	TGGAGGGTGTTGCGGTGAGGTGGTGG	GGTGGTGATCGGGGTTGTGATGG
TpG	•	•	•	•	•	•	•	•	•	•	•	•
GpT	•	•	•	:		•		•	•	•	:	•
# 5	∞	ω	ω	∞	_	7	7	7	7	7	7	7

	•
ζ	ת
	•
•	•
C	5
_	
L	
	-

Ğ	/	7	7	7	9	2	ω	9	9	4	10	0
TpG GpT	:	•	•	•	•		•	:	•	•	•	
TpG	•	•	•	:	•	•	•	•	•	•	•	•
GENERATION 5	GGGGGTAAAGTGCGGGTGGTTGATGG	GTGGAGGTGTTGCGTAGTGTGGGAGG	GTGGGGAATGGTCGGTTATGGTGGGG	GGGATGTGGTAGCGGGGGTGTGTTAG	GGGGTAGGAGTTCGTAGGGGTGTGTT	GAGGTGGTGGATCGGGATGATGGATT	TGGGGGGAAATACGGGGGGGGGGTGGTA	GGAGTAGGGTTACGTGGTGGTAATGG	GAGGAGTAAAGGCGTGTGTTGTGGTG	TGGATGAGAGTGCGTGTATGATAAGG	AGGGTTAGTGAACGGGGGGGGGGGTGG	GAGAAGGGTAAACCTGGGGGGGGGA
TpG	•	•	•	•		•	•			•	•	
GpT	•	•	•	•	•	•	•	•	•	•	•	•
#5	7	7	7	7	7	/	9	9	9	9	2	2

88 6 6 0

14/26

FIG.9a

The first of the first will again to make the first of th

DEFINITION Lyt-2.2 gene, T- cell differentiation antigen, 3' UTR. ACCESSION GB_RO:MMLYT22

TGGGGGGGGGGGGGGGGGGGTTTGA

GAACAATGGGGGGGGGGGGGGGGGGGGTTTAGCTATGTCAGAATTCA 5100

5110

5120

5130

5140

DEFINITION homeo box 2.6 (Hox-2.6) mRNA ACCESSION GB_RO:MUSHOX26

86

880

870

8

910

920

DEFINITION growth arrest-specific promoter gene, gas-1 ACCESSION GB_RO:MMGAS1PRA

2510

15/26

DEFINITION pim-1 proto-oncogene, pim-1 protein kinase, CpG island, 5' UTR region.
ACCESSION GB_RO:MUSPIM1

The second states that the transition of the second states that the second states the second states that the second states that the second states the second states the second states the second states that the second states the second s

GAGGGGGGGAGCGGAGGGGGTTGGG

GAGGGGTGTAGCCGCGAGGGGGGGGGGGGGGGGGGGGCCCTGGTCCCGCCGCC 1500

1510

1540

1530

1520

DEFINITION neuronal dihydropyridine-sensitive L-type calcium channel alpha-1 subunit mRNA, 3' UTR. ACCESSION GB_RO:MUSDHPCC

SUBSTITUTE SHEET (RULE 26)

8370

FIG.9c.

When there are the first west within the same of the first way with the same of the same o

HUMAN SEQUENCES

Huntington's Disease Region, chromsome 4p16.3. GB_PR:HSL1C2 DEFINITION

ACCESSION

Human Down Syndrome region of chomosome 21. DEFINITION

GB_HTG:HSAC000002 ACCESSION

DEFINITION

upstream region of HoxA7 gene, CpG island. ACCESSION

GB_PR:HSHCRDNA

chromosome 22 CpG island DNA DEFINITION

GB_PR:HS303B3 **ACCESSION**

DEFINITION

CpG island DNA. GB_PR:HS167B9F **ACCESSION**

Y chromosome sex determining region, Yp pseudoautosomal DEFINITION

boundary, PAB1

GB_PR:HSCAMF3X1 ACCESSION

creatine transporter and paralogous genes, pericentomeric DEFINITION

repeats on chromosome 16.

GB_PR:HSU41302 ACCESSION

cathepsin D (cat D) gene, exon 5. GB_PR:HUMCATD3 DEFINITION

ACCESSION

ğa • lə Mary Arrill and Mary Will are the Arrill and Arrive and

:

argininosuccinate synthetase gene 5' end, CpG island DEFINITION

GB_PR:HSASG5E ACCESSION

DEFINITIONACCESSION

argininosuccinate synthetase gene 5' end, CpG island GB_PR:HUMAS1

vimentin gene, 5' regulatory region, CpG island. GB_PR:HUMVIM DEFINITION **ACCESSION**

vimentin gene, exon 1, 5' end CpG island. GB_PR:HUMVIM02 DEFINITION **ACCESSION**

vimentin gene, 5' end, CpG island. GB_PR:HUMVIMAA DEFINITION

ACCESSION

vimentin gene, 5' end, CpG island GB_PR:HSVIM5RR **DEFINITION ACCESSION**

DEFINITIONACCESSION

FIG.12a.

2.0

1.5

1.5

0.0

0.02

0.04

0.06

0.08

1/pdldC (p M⁻¹)

FIG.12b.

SUBSTITUTE SHEET (RULE 26)

FIG. 17a.

FIG. 17b.

FIG. 17c.

FIG. 19a.

FIG. 19b.

FIG.21.

FIG.22.

FIG.23a.

FIG.23b.

FIG.23c.

SUBSTITUTE SHEET (RULE 26)