Midterm Review

EC 320: Introduction to Econometrics

Philip Economides Winter 2022

Prologue

PBS3 Q3

Second proof:

Supporting Proof

$$\sum_{i=1}^n X_i \hat{u_i} = \sum_{i=1}^n X_i (Y_i - \hat{eta_1} - \hat{eta_2} X_i) = \sum_{i=1}^n X_i Y_i - \hat{eta_1} \sum_{i=1}^n X_i - \hat{eta_2} \sum_{i=1}^n X_i^2 = 0$$

Main Proof

$$egin{aligned} & \cos(X,u) = & E[(X_i - ar{X})(\hat{u}_i - ar{\hat{u}_i})] \ & = & rac{1}{n} \sum_{i=1}^n (X_i - ar{X})(\hat{u}_i - ar{\hat{u}_i}) = rac{1}{n} \sum_{i=1}^n (X_i - ar{X})\hat{u}_i \ & = & rac{1}{n} \sum_{i=1}^n (X_i \hat{u}_i) - rac{1}{n} \sum_{i=1}^n (ar{X}\hat{u}_i) = 0 + ar{X}rac{1}{n} \sum_{i=1}^n \hat{u}_i = 0 \end{aligned}$$

PBS3 Q3

Why does
$$\sum_{i=1}^n X_i Y_i - \hat{eta_1} \sum_{i=1}^n X_i - \hat{eta_2} \sum_{i=1}^n X_i^2 = 0$$
 hold?

Dougherty (5th ed), p.93

The partial differentials of RSS with respect to b_1 and b_2 are:

$$\frac{\partial RSS}{\partial b_1} = 2nb_1 - 2\sum_{i=1}^{n} Y_i + 2b_2 \sum_{i=1}^{n} X_i$$
 (1.24)

$$\frac{\partial RSS}{\partial b_2} = 2b_2 \sum_{i=1}^n X_i^2 - 2\sum_{i=1}^n X_i Y_i + 2b_1 \sum_{i=1}^n X_i$$
 (1.25)

As in the four-observation example, $\hat{\beta}_1$ and $\hat{\beta}_2$, the values of b_1 and b_2 that minimize *RSS*, must satisfy the first-order conditions

$$\frac{\partial RSS}{\partial b_1} = 0$$
 and $\frac{\partial RSS}{\partial b_2} = 0$ (1.26)

Hence

$$2n\hat{\beta}_1 - 2\sum_{i=1}^n Y_i + 2\hat{\beta}_2 \sum_{i=1}^n X_i = 0$$
 (1.27)

$$2\hat{\beta}_2 \sum_{i=1}^n X_i^2 - 2\sum_{i=1}^n X_i Y_i + 2\hat{\beta}_1 \sum_{i=1}^n X_i = 0$$
 (1.28)

Exam Structure

Section 1: Multiple Choice Qs (20)

- 10 questions, each worth 2pts
- No negative grading, no attempt marks

Section 2: Short Answer Qs (20)

• 3 questions with multiple parts

Section 3: Long Answer Qs (30 each)

- 3 questions with multiple parts
- Attempt 2 of the choices, each devoted to a particular topic

Know your proofs from homework and detailed in slides

Exam Logistics

This Wednesday at 4pm SHARP

- Lectures up to and including Classical Assumptions
- 110 minutes (1hr 50 minutes), arrive early
- Seat yourself distant from others
- Bring calculators and writing utensils
- I will provide scrap paper and calculators for those in need

Any questions?

	score
canvas time	0.502
	(0.453)
n	20
R^2	0.064

Could there be bias in these results?

Yes: Not controlling for unobserved textbook time, unobserved R time, unobserved homework practice, office hours usage, emails or unobserved ability.