

Selecting the Right Texas Instruments Signal Switch

Saminah Chaudhry

Muxes and Signal Switches

ABSTRACT

Texas Instruments[™] offers a wide variety of switches and multiplexers supporting a variety of configuration, voltage, bandwidth, and package needs. This application report summarizes the key features and performance characteristics of our analog signal switches and application considerations for choosing the appropriate TI signal switch.

	Contents	
1	Introduction	4
	1.1 Ideal Versus Non-Ideal Switch	4
2	Basic Signal Switch Structure	5
	2.1 NFET Switch	_
	2.2 Transmission Gate Switch	
	2.3 NFET With Charge Pump	
3	Analog Versus Digital Signal Switches	
	3.1 Bidirectional Switches	
	3.2 Configuration and Channels	
4	Signal Switch Specifications	
5	Texas Instruments Analog Signal Switches and Multiplexers Portfolio	
	5.1 Precision Switches and Multiplexers	
	5.2 Protection Switches and Multiplexers	
	5.3 General Purpose Switches and Multiplexers	
	5.4 Automotive Switches and Multiplexers	
6	Digital Signal Switches and Multiplexers Performance	
7	Applications	
	7.1 SPI Multiplexing	
	7.2 Multiplexing Signals to External ADC	
	7.3 Switchable Op Amp Gain Setting	
	7.4 Multiplexing Body Control Module (BCM) Inputs	
8	Summary	
Apper	ndix A	24
	List of Figures	
1	Ideal Switch	4
2	Simplified CMOS (FET) Switch	4
3	N-channel FET Switch	5
4	On-State Resistance vs Lowest I/O Voltage for an N-channel FET Switch With V_{cc} = 5 V	5
5	Parallel N-/P-Channel FET (Transmission Gate) Switch	
6	On-State Resistance vs Input Voltage for a Parallel n-/p-Channel FET Switch	6
7	Basic Structure of an NMOS Series Switch With the Charge Pump	7
8	Bidirectional Signal Path	8
9	Logic Thresholds	10
10	On-Resistance	10
11	Source and Drain Off Capacitance	11

12	Source and Drain On Capacitance	11
13	Bandwidth	11
14	Channel-to-Channel Crosstalk	12
15	Charge Injection	12
16	Off-Isolation	13
17	ON Leakage Current	13
18	OFF Leakage Current	13
19	Break-Before-Make Time (t _{BBM})	14
20	Turn-ON (t _{ON}) and Turn-OFF (t _{OFF}) Time	14
21	Fail-Safe Logic	15
22	Powered-off Protection	17
23	Overvoltage Protection	17
24	Multiplexing Flash Memory	21
25	Isolation of JTAG, SPI, and GPIO Signals	21
26	Multiplexing Signals to External ADC	
27	Switchable Op Amp Gain Setting	22
28	Multiplexing BCM Inputs	
29	Log r_{on} vs V_{I} , V_{CC} = 5 V (SN74CBT3125)	
30	r _{on} vs V _i , V _{cc} = 5 V (SN74CBT3125)	
31	V ₁ vs V ₀ , V _{CC} = 5 V (SN74CBT3125)	
32	V ₁ vs V ₀ , V _{CC} = 5 V (CD74HCT4066)	
33	r _{on} vs V _I , V _{CC} = 5 V (CD74HCT4066)	
34	V ₁ vs V ₀ , V _{CC} = 4.5 V (CD74HC4066)	
35	$r_{00} \text{ vs } V_{1}, V_{CC} = 4.5 \text{ V (CD74HC4066)} \dots$	
36	$V_0 \text{ vs } V_1, V_{CC} = 6 \text{ V (CD74HC4066)}$	
37	r _{on} vs V _I , V _{CC} = 6 V (CD74HC4066)	
38	V _o vs V _i , V _{cc} = 9 V (CD74HC4066)	
39	r_{on} vs V_{l} , V_{CC} = 9 V (CD74HC4066)	
40	$V_0 \text{ vs } V_1, V_{CC} = 2 \text{ V (SN74HC4066)}$	
41	r_{on} vs V_{l} , V_{CC} = 2 V (SN74HC4066)	
42	V _o vs V _I , V _{cc} = 4.5 V (SN74HC4066)	
43	r _{on} vs V _b , V _{CC} = 4.5 V (SN74HC4066)	
44	$V_0 \text{ vs } V_1, V_{CC} = 6 \text{ V (SN74HC4066)}$	
45	r_{on} vs V_{b} , $V_{CC} = 6$ V (SN74HC4066)	
46	V _o vs V _i , V _{cc} = 5 V (CD4066B)	
47	r_{on} vs V_{i} , V_{cc} = 5 V (CD4066B)	
48	$V_0 \text{ vs } V_1, V_{CC} = 10 \text{ V (CD4066B)}.$	
49	r _{on} vs V _b , V _{CC} = 10 V (CD4066B)	
50	V_{o} vs V_{i} , $V_{cc} = 15$ V (CD4066B)	
51	r _{on} vs V _i , V _{cc} = 15 V (CD4066B)	
52	$V_{O} \text{ vs } V_{I}, V_{CC} = 2 \text{ V (SN74LV4066A)}$	
53	r_{on} vs V_{i} , $V_{cc} = 2$ V (SN74LV4066A)	
54	V _o vs V _i , V _{cc} = 2.5 V (SN74LV4066A)	
55	r_{on} vs V_{l} , $V_{cc} = 2.5$ V (SN74LV4066A)	
56	V_{o} vs V_{i} , $V_{cc} = 3.3$ V (SN74LV4066A)	
57	r_{on} vs V_{i} , $V_{cc} = 3.3$ V (SN74LV4066A)	
58	$V_{O} \text{ vs } V_{I}, V_{CC} = 5.5 \text{ V (SN74LV4066A)}$	
59	$r_{on} \text{ Vs } V_{l}, V_{cc} = 5 \text{ V } (\text{SN74LV4006A})$	
60	$V_{O} \text{ vs } V_{I}, V_{CC} = 3.8 \text{ V } (SIN74LVC1G66)$	
00	V ₀ v ₀ v _β v _{CC} = 1.0 v (014) ± L v 01000/	70

www.ti.com

61	$r_{on} \text{ vs V}_{I}, V_{CC} = 1.8 \text{ V (SN74LVC1G66)}$	43
62	V_{o} vs V_{I} , V_{CC} = 2.5 V (SN74LVC1G66)	44
63	$r_{on} \text{ vs V}_{I}, V_{CC} = 2.5 \text{ V (SN74LVC1G66)}$	44
64	V_{o} vs V_{l} , V_{cc} = 3.3 V (SN74LVC1G66)	45
65	$r_{on} \text{ vs V}_{I}, V_{CC} = 3.3 \text{ V (SN74LVC1G66)}$	45
66	V_{o} vs V_{l} , V_{cc} = 5 V (SN74LVC1G66)	46
67	r_{on} vs V _I , V_{CC} = 5 V (SN74LVC1G66)	46
68	V_{o} vs V_{I} , V_{CC} = 2.5 V (SN74CBTLV3125)	47
69	$r_{on} \text{ vs V}_{I}, V_{CC} = 2.5 \text{ V (SN74 CBTLV3125)}$	48
70	V_{o} vs V_{I} , V_{CC} = 3.3 V (SN74CBTLV3125)	48
71	$r_{on} \text{ vs V}_{I}, V_{CC} = 3.3 \text{ V (SN74CBTLV3125)}$	49
	List of Tables	
1	Configurations and Channels	
2	Analog Precision Switches and Multiplexers	
3	Analog Protection Switches and Multiplexers	
4	General-Purpose Switches and Multiplexers	
5	Automotive Switches and Multiplexers – AECQ100	
6	Summary of Digital Performance	
7	V _{cc} Above 5.5 V	
8	$V_{cc} = 4.5 \text{ V}$	
9	V _{cc} = 3 V	
10	$V_{cc} = 2.5 \text{ V}$	
11	SN74CBT3125 Analog Parameter Measurement Data	
12	CD74HCT4066 Analog Parameter Measurement Data	
13	CD74HC4066 Analog Parameter Measurement Data	
14	SN74HC4066 Analog Parameter Measurement Data	34
15	CD4066B Analog Parameter Measurement Data	38
16	SN74LV4066A Analog Parameter Measurement Data	
17	SN74LVC1G66 Analog Parameter Measurement Data	46
18	SN74CBTI V3125 Analog Parameter Measurement Data	49

Trademarks

Texas Instruments is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

Introduction www.ti.com

1 Introduction

Analog switches are designed to pass (or isolate) analog signals (both voltage and current) and support analog applications such as audio and video data transmission. Texas Instruments offers a wide variety of switches and multiplexers to improve system design with better accuracy, system reliability and platform scalability.

Selecting the right one can be a formidable task. This application report discusses some of the key characteristics and features of Tl's switches and multiplexer families to make the selection process simpler and more efficient.

1.1 Ideal Versus Non-Ideal Switch

When first considering switches, a schematic of the ideal switch (similar to Figure 1) might come to mind.

Figure 1. Ideal Switch

An input signal applied to the left I/O pin (or port) in Figure 1 results in an identical output signal at the right I/O pin, and vice versa. However, in the real world, switches are not ideal and there always is some loss. In the case of clean, properly working mechanical switches, the loss is so minuscule that it hardly bears noting.

Like mechanical switches, solid-state switches are not ideal either. In fact, losses associated with solid-state switches can be significant. Why use a switch like this if it is so far from ideal? The answer is convenience. Solid-state switches are small, fast, easy to use, easy to control, and consume relatively little power compared to traditional electrically controlled switches, such as relays. The switches referred to in this application report are complementary metal-oxide semiconductor (CMOS) field-effect transistor (FET) switches. As mentioned previously, they are not ideal, so we need a way to examine and compare the performance characteristics of the different CMOS families. Figure 2 shows a simplified-circuit model of a CMOS switch.

Figure 2. Simplified CMOS (FET) Switch

The output signal (right side, Figure 2) is altered due to parasitic effects of the switch. Results may include decreased amplitude, signal distortion, phase shift, the introduction of noise, and frequency attenuation.

Parameters contributing to the nonideal characteristics include:

- C_i Control (enable) pin input capacitance
- O_{ISO} Off Isolation: Measurement OFF-state switch impedance
- C_{io} Capacitance measured from either the input or output of the switch
- C_{CHNI} NMOS (PMOS) channel capacitance
- R_{ON} The resistance inserted into the signal path as a result of the switch path being turned on

2 Basic Signal Switch Structure

Texas Instruments signal switches share the common switch architectures NFET switch, Transmission gate switch and NFET with charge pump.

2.1 NFET Switch

Figure 3 shows a simplified FET switch, which consists of an N-channel transistor and gate bias and enable circuitry. The switch is bidirectional; the source and drain are interchangeable (while operating, the side with the lowest V_{VO} is the source). TI CBT bus switches are this type.

Figure 3. N-channel FET Switch

For an N-channel FET to operate properly, the gate should be biased more positive than the magnitude of the signals to be passed. This is because the on-state resistance, R_{ON} (or $R_{DS(ON)}$ as it also is called), increases as the gate, minus source voltage, V_{GS} , decreases. If the lowest $V_{I/O}$ signal approaches the magnitude of V_{CC} , V_{GS} decreases and R_{ON} increases (see Figure 4). The ability to maintain a low R_{ON} in a FET switch depends on maintaining V_{GS} as large as possible. In many applications, this characteristic is not a problem, but the designer should be aware of the nonlinearity of this type of device.

Figure 4. On-State Resistance vs Lowest I/O Voltage for an N-channel FET Switch With $V_{CC} = 5 \text{ V}$

An N-channel FET can be used to implement a level translator. This switch can pass a signal from 0 V to $V_{CC} - V_T$, where V_T is the threshold voltage of the NMOS. This characteristic can be used for down translation. For voltage-translation applications, the switch is required to translate efficiently over a wide frequency range and is required to maintain the proper signal level. For example, when translating from a 5-V TTL to a 3.3-V LVTTL signal, the switch is required to maintain the required V_{OH} (output high voltage) and V_{OL} (output low voltage) of 3.3-V LVTTL signal. One important consideration is that the switch can be used only for down translation, for example, high to low level. For low- to high-level translation, additional components (for example, pullup resistors) are required.

2.2 Transmission Gate Switch

Analog (or bilateral, as they also are called) switches consist of a single N-channel transistor in parallel with a single P-channel transistor (see Figure 5). These are also known as the Transmission gate switch.

Figure 5. Parallel N-/P-Channel FET (Transmission Gate) Switch

As before, when $V_{\text{I/O}}$ approaches V_{CC} , the N-channel conductance decreases (R_{ON} increases) while the P-channel gate-source voltage is maximum and its R_{ON} is minimal. The resulting parallel resistance combination is much flatter than individual channel resistances (see Figure 6). Examples of switches and multiplexers with parallel n and p channel include TMUX11xx, TMUX61xx, TMUX12xx, TMUX13xx, HCT, HC, CD4000, LV-A, LVC, and CBTLV families.

Figure 6. On-State Resistance vs Input Voltage for a Parallel n-/p-Channel FET Switch

A flat R_{ON} is especially important if $V_{I/O}$ signals must swing from rail to rail. However, the tradeoff is increased switch capacitance due to the additional P-channel transistor and associated bias circuitry.

2.3 NFET With Charge Pump

Some manufacturers offer N-channel signal switches with charge-pump-enabled pass transistors. A design of this type as shown in Figure 7 allows the gate voltage to be higher than V_{CC} . This increases V_{GS} above what is possible in noncharge-pump devices and allows signals at or above V_{CC} to be passed. A switch of this type has the advantage of low, relatively flat R_{ON} (over the signal range), without the addition of a P channel and while maintaining C_{io} values comparable to pure N-channel FET switches. This performance comes at the expense of increased I_{CC} (from a few μA to several mA in some cases). Examples include TMUX1072, TMUX136, TMUX15xx, and the CB3Q family.

Note A: EN is the internal enable signal applied to the switch.

Figure 7. Basic Structure of an NMOS Series Switch With the Charge Pump

See Switches and muxes: What are common switch architectures? more details on the basics of analog signal switches offered by Texas Instruments.

3 Analog Versus Digital Signal Switches

TI offers a wide variety of signal switches, and sometimes the nomenclature can be confusing to the point of implying limited functionality for a device or family. See details below on digital vs analog, bus switch and bi-directional functionality of switches.

- **Digital switch**. Designed to pass (or isolate) digital signal levels. May exhibit the capability to satisfactorily pass analog signals. Examples are CBT and CBTLV switch families.
- Analog switch. Designed to pass (or isolate) analog signals. Often exhibits good digital signal performance as well. Examples are TMUX11xx, TMUX61xx, TMUX12xx, TMUX15xx, CD4066B, CD74HCT4066, CD74HC4066, SN74HC4066, SN74LV4066A, and SN74LVC1G66 switches.
 TI's analog and digital bus switches are electrically equivalent and both share the common switch architectures found in the semiconductor industry.
- Bus switch. Digital switches designed for multi-bit switching in computing applications. Examples are CBT and CBTLV switch families.

Typically, the high channel count switches in the TI muxes and switches portfolio are labeled as "digital bus switches" because digital buses usually have many more signal paths than analog signal paths for their common use of transmitting 8, 16, and 32 bits of data. As TI's switch portfolio continues to expand this loose distinction between analog and digital devices are becoming irrelevant. More details can be found in *Switches and muxes: What are switches and multiplexers?*.

3.1 Bidirectional Switches

There are two meanings:

• The switch conducts equally well from source (S) to drain (D) or from drain (D) to source (S). Each channel has very similar characteristics in both directions and supports both analog and digital signals. TI analog switches and multiplexers are typically bidirectional (Figure 8).

Figure 8. Bidirectional Signal Path

• Switch can be used in analog or digital applications. See *Switches and muxes: Are switches and multiplexers bidirectional?* for more details.

3.2 Configuration and Channels

Switch **Configuration** defines the number of signals that can be selected and **Channel** defines the number of configurations (circuits) in a single device. Texas Instruments offers switches and multiplexers in different configurations and channel count. Table 1 shows the 1- and 2- channel configurations, but the number of channels may exceed.

1:1 S D D S1A D1 S1B S2A D2 S2B D2

Table 1. Configurations and Channels

4 Signal Switch Specifications

It should be apparent that the most important switch characteristic depends on how it is used. For example, what $V_{\rm CC}$ levels are present, what amplitude signals are required to be passed, what is the maximum signal distortion limit for the system and so forth. These specifications are covered in more detail below:

- Supply Voltage: Single power supply Device with only positive power supply pins with reference to ground. The voltage applied is labeled as V_{DD}, V_{CC}, V₊ and so forth. Dual power supply Device with positive and negative supply pins with reference to ground. Voltage applied at the positive pin is labeled as V_{DD}, V_{CC}, V₊, and so forth, and at the negative pin is labeled as VSS, VEE, V-, and so forth. For noncharge-pump switches, V_{CC} determines the amplitude of the analog signals that can be passed without clipping. One or more of the gates of the pass transistors must be biased relative to the minimum and maximum values of the expected input voltage range. Switches, such as the TMUX61xx, MUX36Sxx, MUX36Dxx, and CD4000 series allow for biasing from two supplies, making it easy to pass both positive and negative signals. Switches like TMUX1072, SN3257-Q1, TMUX136, and the TMUX15xx, CB3Q family with integrated charge pumps can elevate the gate voltage above V_{CC} (at the expense of larger I_{CC}) and, thus, pass signals of a magnitude greater than V_{CC}.
- Switch Control Signal Levels (V_{IH}/V_{IL}): V_{IH} is the minimum voltage for the input control signal to achieve a *Logic 1* value and V_{IL} is the maximum voltage for the input control signal to remain a *Logic 0* value. Why are these important analog switch considerations? In most applications, the signal switch is controlled by the output of a digital source, therefore, the control signal levels, V_{IH} and V_{IL}, must be compatible with that source to ensure proper operation of the switch. To prevent digital logic control issues, the system must ensure that the output high (V_{OH}) logic output is higher than the input high (V_{IH}) logic input it is controlling. In addition, the output low (V_{OL}) of the logic output must be lower than the input low (V_{IL}) of the logic input it is controlling. See Figure 9 for this logic standard. Some components may not meet the standard, but having V_{IH} < V_{OH} and V_{II} > V_{OL} ensures proper system operation.

Figure 9. Logic Thresholds

• ON Resistance (R_{oN}): The resistance inserted into the signal path as a result of the switch path being turned on. Because it contributes to signal loss and degradation, low R_{ON} tradeoffs must be considered. Noncharge-pump switches achieve low R_{ON} with large pass transistors. These larger transistors lead to larger die sizes and increased C_{io}. This additional channel capacitance can be very significant as it limits the frequency response of the switch. As stated in Section 2.3, switches utilizing charge-pump technology can achieve low R_{ON} and C_{io}, but require significantly higher I_{CC}.

Figure 10. On-Resistance

- Switch Output Level: The maximum signal level a switch without a charge pump can pass is limited to the switch V_{CC}. Is there sufficient noise margin on the device downstream of the switch such that signal attenuation in the switch will not cause data errors? For instance, the N-channel transistor of a CBT device clamps the switch output at a little more than 1 V below the operating V_{CC}, making it unsuitable for 5-V CMOS high-level (V_{IH} = 3.5 V) signal transmission unless operated from at least 4.5-V V_{CC}.
- ON/OFF Capacitance (C_{ON}/C_{OFF}): The ON capacitive loading when a switch path is in the low impedance state. The OFF capacitive loading when a switch path is in the high impedance state. Total switch and load capacitance must be considered because it can affect response time, settling time and fanout limits. See more details in the application note: Improve Stability Issues with Low CON Multiplexers. C_{io} is the capacitance of an input/output (I/O) terminal of the device with the input conditions applied that, according to the product specification, establishes the high-impedance state at the output. This parameter is the internal capacitance encountered at an input/output (I/O) of the

device. These values are established by the design, process, and package of the device.

Figure 11. Source and Drain Off Capacitance

Figure 12. Source and Drain On Capacitance

Frequency Response: All CMOS switches have an upper limit to the frequency that can be passed.
 No matter how low R_{ON} and C_{io} can be maintained in the chip manufacturing process, they still form an undesired low-pass filter that attenuates the switch output signal. Bandwidth (BW) of a switch is the frequency range of signals that can pass through the switch with no more than 3 dB of attenuation.

Figure 13. Bandwidth

- Sine-Wave Distortion or Total Harmonic Distortion. These are measurements of the linearity of the device. Nonlinearity can be introduced a number of ways (design, device physics, and so forth) but, typically, the largest contributor is R_{ON}. As shown in Figure 4 and Figure 6, R_{ON} varies with V_{I/O} for all types of CMOS switches. Having a low R_{ON} is important, but a flat R_{ON} over the signal range is almost equally important.
- Crosstalk: There are two types of crosstalk to consider:
 - Channel-to-channel crosstalk (X_{TALK}): A measurement of unwanted signal coupling from an ON channel to an OFF channel. This is measured in a specific frequency and in specified in dB. The level of crosstalk is a measure of how well decoupled the switch control signal is from the switch output. Due to the parasitic capacitance of CMOS processes, changing the state on the control signal causes noise to appear on the output. In audio applications, this can be a source of the annoying pop that is sometimes heard when switching the unit on or off.

Figure 14. Channel-to-Channel Crosstalk

- Crosstalk between switches. The level of crosstalk also is a measure of adjacent-channel rejection. As with control-to-output crosstalk, parasitic capacitance can couple the signal on one switch with that on another switch.
- Charge Injection (Q_c): Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. TI specifies enable-to-output crosstalk and some competitors use this parameter. As with enable-to-output crosstalk, changing the state on the control pin causes a charge to be coupled to the channel of the transistor introducing signal noise. It is presented in this report for a relative comparison with the competition. See more details in Prevent crosstalk with injection current control.

Figure 15. Charge Injection

• **Off Isolation**: A measurement OFF-state switch impedance. This is measured in dB at a specific frequency, with the corresponding channel in the OFF state.

Figure 16. Off-Isolation

• ON Leakage Current: Leakage current measured at the input port in the ON state, with the corresponding output port in the ON state and the output being open (See Figure 17). Leakage current during the high-impedance state should be very small. Leakage current, if high, may load an isolated bus and corrupt the data.

Figure 17. ON Leakage Current

• **OFF Leakage Current**: Leakage current measured at the input port, with the corresponding channel output in the OFF state under worst-case input and output conditions (See Figure 18). Leakage current is an important parameter, as it contributes to DC errors both when the switch is ON and when it is OFF.

Figure 18. OFF Leakage Current

Break-Before-Make Time (t_{BBM}): Ensures that in a multiplexer, two multiplexer paths are never
electrically connected when the signal path is changed by the select input. Break before make delay is
a safety feature that prevents two inputs from connecting when the device is switching. The output first
breaks from the ON-state switch before making the connection with the next on-state switch. It
guarantees that two multiplexer paths are never electrically connected when the signal path is changed
by the select input. See Figure 19 for more details.

Figure 19. Break-Before-Make Time (t_{BBM})

 Turn ON (t_{ON}) / Turn OFF (t_{OFF}) Time: The time required for a switch path to be internally changed to an ON or OFF state. These parameters determine how quickly the switch can respond to a desired ON or OFF state (See Figure 20). In general, switch enable and disable times are not symmetrical. This is not usually an issue, as few applications require high control (enable) signal frequencies.

Figure 20. Turn-ON (ton) and Turn-OFF (toff) Time

- Propagation Delay (t_{pd}): This parameter is negligible for all but the most critical timing budgets. When
 the switch is ON, the propagation delay through one or more of the pass transistors is minimal. TI
 specifies this number as the mathematical calculation of the typical R_{ON} times the load capacitance.
 See more details on switch timing characteristics in Switches and muxes: What are timing
 characteristics?.
- 1.8 V Control Logic: Switches with this feature have a built-in voltage translator to prevent voltage mismatch between the supply rail and the control logic. V_{IH} and V_{IL} levels are compatible with the 1.8-V logic levels at any voltage supply. See the Simplifying Design With 1.8 V logic MUXes and Switches Tech Note for more information. Most of the new TMUX devices (for example: TMUX1108, TMUX1511 and non-TMUX parts like TS3A27518E, TS5A26542) come with the 1.8 V control logic feature. The built-in voltage translator prevents voltage mismatch between the supply rail of the TMUX device and the control logic of the processor. This feature enables the mux to be controlled directly by the processor through standard 1.8 V GPIO pins. This saves up to 18 mm² per select pin used.
- Fail-safe Logic: Ensures the switch stays off and the logic pin does not back-power VDD when the voltage on the signal pin is greater than VDD. TI switches with Fail-safe Logic will protect downstream components when a logic signal is present on the select pins while the switch is unpowered. This feature allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage. The switch maintains in a high-impedance state on the SEL logic pins preventing power from going through VDD during power sequencing. For example, the Fail-Safe Logic feature allows the select pins of the TMUX1574 to be ramped to 5.5 V while supply V_{DD} = 0 V. Additionally, the feature enables operation of the multiplexer with V_{DD} below the voltage on the select pins.
 - Protects mux and downstream ICs from damage.
 - Eliminates need for power sequencing solutions.
 - Reduces BOM count and cost Simplifies system design.
 - Improves system reliability.

See more details in What is fail-safe logic?.

Figure 21. Fail-Safe Logic

5 Texas Instruments Analog Signal Switches and Multiplexers Portfolio

Texas Instruments offers a comprehensive portfolio of precision, protection, and general-purpose switches and multiplexers to support end-to-end signal chain needs.

This TI analog signal switch and multiplexer portfolio is intended to give a top level view of the characteristics and parameters that the device in that category have. The categories are not always mutually exclusive for example especially when referring to the protection category. Many of the devices in the protection category have some of the same low leakage / low R_{ON} parameters of the precision family yet add additional protection features.

The following sections highlight key features and applications of the precision, protection, and general-purpose switches and multiplexers.

5.1 Precision Switches and Multiplexers

TI offers a broad range of precision multiplexers and switches in different configurations to improve performance and minimize offset errors and signal distortion in high-accuracy measurement systems. The key differentiating features of these precision switches are:

- Low ON Leakage (I_{ON})
- Low ON Resistance (R_{ON})
- Low ON Capacitance (C_{ON})
- Low Charge Injection (Q_c)

In addition to the above features, the TI analog precision switches also support 1.8 V control logic, fail safe logic and are available in ultra small packages: DQA (2.5 mm²), RSV (4.68 mm²).

Table 2 below shows performance specifications of analog precision switches:

Table 2. Analog Precision Switches and Multiplexers

V _{SIGNAL}	Part Number ⁽¹⁾	Configuration	R _{on} (Typ) (Ω)	C _{on} (pF)	Q _C (pC)	Ι _{οΝ} (μΑ)	Package/Pin
	TMUX1101/02	1:1, 1 channel	2	18	-1.5	0.002	SC70 5, SOT-23 5
	TMUX1121/22/23	1:1, 2 channel	1.9	17	-1.5	0.002	VSSOP/8
	TMUX1111/12/13	1:1, 4 channel	2	19	-1.5	0.002	TSSOP 16, UQFN 16
	TMUX1119	2:1, 1 channel	2.5	21	-6	0.004	SC70 6, SOT-23 6
Low Voltage (V _{SIGNAL} <	TMUX1136	2:1, 2 channel	1.8	20	-6	0.002	USON 10, VSSOP 10
24V)	TMUX1133	2:1, 3 channel	2	20	-1	0.002	TSSOP 16
	TMUX1134	2:1, 4 channel	2	20	-1	0.002	TSSOP 20
	TMUX1104	4:1, 1 channel	2.5	40	1.5	0.0035	USON 10, VSSOP 10
	TMUX1109	4:1, 2 channel	2.5	35	1	0.003	TSSOP 16, UQFN 16
	TMUX1108	8:1, 1-channel	2.5	65	1	0.004	TSSOP 16, UQFN 16
	TMUX6121/22/23	1:1, 2 channel	120	4.2	0.15	0.0004	VSSOP 10
	TMUX6111/12/13	1:1, 4 channel	120	4.2	0.6	0.0005	TSSOP 16, WQFN 16
	TMUX6119	2:1, 1 channel	120	4.3	0.19	0.0004	SOT-23 8
	TMUX6136	2:1, 2 channel	120	5.5	-0.4	0.0004	TSSOP 16
Mid Voltage (24V <	TMUX6104	4:1, 1 channel	125	5	0.35	0.001	TSSOP 14
V _{SIGNAL} < 100V)	MUX36S04	4:1, 2 channel	125	6.7	0.3	0.0033	TSSOP 16, WQFN 16
	MUX36S08	8:1, 1 channel	125	9.4	0.3	0.0033	TSSOP 16, WQFN 16
	MUX36D08	8:1, 2 channel	125	8.7	0.31	0.0053	QFN 32, SOIC 28, TSSOP 28, WQFN 32
	MUX36S16	16:1, 1 channel	125	13.5	0.31	0.0053	QFN 32, SOIC 28, TSSOP 28, WQFN 32

⁽¹⁾ The TMUX11xx, TMUX61xx, MUX36xxx, and MUX5xx family of switches and multiplexers all have a transmission gate architecture.

5.2 Protection Switches and Multiplexers

TI offers a broad range of protection multiplexers and switches in different configurations to protect upstream and downstream components from and during fault conditions while maximizing signal integrity. The key differentiating features of these protection switches are:

- Powered Off Protection: Protects switch and isolates signal path when signals are present at the I/O pins and VDD = 0 V. See the *Eliminate Power Sequencing With Powered-off Protection Signal Switched Tech Note* and *Simplify power sequencing with powered-off protection* for more information. TI switches with powered-off protection will protect downstream components when input signals are present in the I/O pins while the switch is unpowered. The switch maintains a high-impedance state on the I/O pins which prevents back-powering V_{DD} and the Select (SEL) pin with the following features.
 - Provides electrical isolation between subsystems.
 - Prevents data from being transmitted unintentionally.
 - Eliminates need for power sequencing solutions.
 - Reduces BOM count and cost Simplifies system design.
 - Improves system reliability.

Figure 22. Powered-off Protection

• Over Voltage Protection / Fault Detection: When the input voltage V_{I/O} exceeds the defined threshold voltage V_{TH}, the switch enters the high impedance state, isolates signal path, and protects downstream components. To improve the safety and longevity of a system TI offers an overvoltage or over temperature feature. When a voltage on the COM pin exceeds the overvoltage threshold V_{OVP_TH}, the open drain output FLT (fault) pin pulls the pin low to indicate an overvoltage event has been detected. The open drain output will release the FLT pin when the voltage on the COM pin returns below the V_{OVP_TH}. This can be used by a processor to turn off the mux or implement other safety features. Similarly, when the junction temperature of the device exceeds the overtemperature detection threshold T_{OTD_TH}, the open drain output FLT pin pulls the pin low to indicate an overtemperature event has been detected. The open drain output releases the FLT pin when the junction temperature returns below the T_{OTD_TH}. As both features use the same FLT pin, safety procedures have to consider both causes of fault.

Figure 23. Overvoltage Protection

These bidirectional switches and multiplexers with powered-off protection can be used to isolate I/O signal paths from system power rails to resolve bus contention issues, reduce power sequencing design complexity and save system power. In addition to the above features, most of the protection switches also support 1.8 V control logic and fail safe logic (to prevent power from going through V_{CC} during power sequencing) and are available in ultra small packages: RSV (4.68 mm²).

Table 3 below shows performance specification of analog protection switches:

Table 3. Analog Protection Switches and Multiplexers

V _{cc}	Part Number	Configuration	R _{oN} (Typ) (Ω)	Package/Pin	Features
	TMUX1511	1:1, 4 channel	2	TSSOP 14, UQFN 16	1.8-V compatible control inputs, Failsafe logic, Supports JTAG signals, Supports SPI signals, Supports input voltage beyond supply
	TMUX154E	2:1, 2 channel	6	UQFN 10, VSSOP 10	1.8-V compatible control inputs, Powered-off protection, Supports I ² C signals, Supports input voltage beyond supply
	TMUX1574	2:1, 4 channel	2	SOT-23-THN 16, TSSOP 16, UQFN 16	1.8-V compatible control inputs, Fail- safe logic, Supports JTAG signals, Supports SPI signals, Supports input voltage beyond supply
	TMUX136	2:1, 2 channel	4.6	UQFN 10	1.8-V compatible control inputs, Supports I ² C signals
	TMUX1072	2:1, 2 channel	6	UQFN 12, VSSOP 10	1.8-V compatible control inputs, Supports I ² C signals, Supports input voltage beyond supply
	TS5A3159A	2:1, 2 channel	0.7	DSBGA 6, SC70 6, SOT- 23 6	Powered-off protection, Break- before-make
Low Voltage (V _{SIGNAL} < 24V)	SN74CBTLV3257	2:1, 4 channel	5	SOIC 16, SSOP 16, TSSOP 16, TVSOP 16, UQFN 16, VQFN 16	Powered-off protection, Supports JTAG signals, Supports SPI signals
	TS5A3359	3:1, 1channel	0.7	DSBGA 8, VSSOP 8	Powered-off protection, Break- before-make
	SN74CBT3305C ⁽¹⁾	1:1, 2 channel	3	SOIC 8, TSSOP 8	Supports I ² C signals, Undershoot protection
	SN74CBTD3306C	1:1, 2 channel	3	SOIC 8, TSSOP 8	Signal path translation, Undershoot protection
	SN74CB3Q3257	2:1, 4 channel	4	SSOP 16, TSSOP 16, TVSOP 16, VQFN 16	Powered-off protection, Supports JTAG signals, Supports SPI signals, Supports input voltage beyond supply
	SN74CBTLV1G125 (1)	1:1, 1 channel	5	SOT-23 5, SC-70 5	Powered-off protection
	SN74CB3T1G125 ⁽¹⁾	1:1, 1 channel	5	SC70 5, SOT-23 5	Powered-off protection, Signal path translation
	SN74CBTLV3126	1:1, 4 channel	5	SOIC 14, SSOP 16, TSSOP 14, TVSOP 14, VQFN 14	Powered-off protection, Supports JTAG signals, Supports SPI signals
	TS3A27518E	2:1, 6 channel	4.4	TSSOP 24, WQFN 24	Powered-off protection, Break- before-make, Supports SPI signals, Supports JTAG signals, 1.8-V compatible control inputs
	MPC509	4:1, 2 channel	1300	SOIC 16, PDIP 16	
Mid Voltage (24 V <	MPC508	8:1, 1 channel	1300	SOIC 16, PDIP 16	Dual supply, Break-before-make,
V _{SIGNAL} < 100 V)	MPC507	8:1, 2 channel	1300	SOIC 28	 Overvoltage protection, Powered-off protection
	MPC506	16:1, 1 channel	1300	SOIC 28	

⁽¹⁾ See Appendix A for analog performance of CBTand CBTLV family.

5.3 General Purpose Switches and Multiplexers

TI offers a broad portfolio of bidirectional general-purpose switches and multiplexers across a wide voltage range, channel count and configuration that are typically used in low-frequency or digital (ON or OFF) applications where size and BOM optimization or both are most important.

Table 4 below shows performance specifications of general purpose multiplexer family of devices:

Table 4. General-Purpose Switches and Multiplexers

V _{SIGNAL}	Part Number	Configuration	R _{on} (Typical) (Ω)	Package/Pin	Features
	TMUX1247	2:1, 1 channel	3	SC70 6	
	TMUX1219	2:1, 1 channel	3	SC70 6, SOT-23 6	
	TMUX1204	4:1, 1 channel	9	USON 10, VSSOP 10	1.8-V compatible control inputs, Break-before-make, Fail-safe logic
	TMUX1209	4:1, 2 channel	5	TSSOP 16, UQFN 16	
	TMUX1208	8:1, 1 channel	5	TSSOP 16, UQFN 16	
	SN74LVC2G66	1:1, 2 channel	6	DSBGA 8, SM8 8, VSSOP 8	Supports I ² C signals
	TS5A3157	2:1, 1 channel	5.5	DSBGA 6, SC70 6, SOT-23 6	Break-before-make
Low Voltage (V _{SIGNAL} < 24 V)	TS5A23157	2:1, 2 channel	10	UQFN 10, VSSOP 10	Break-before-make, Supports I ² C signals
	CD74HC4053 ⁽¹⁾	2:1, 3 channel	45	PDIP 16, SOIC 16, SO 16, TSSOP 16	Break-before-make
	SN74LV4053A ⁽¹⁾	2:1, 3 channel	23	PDIP 16, QFN 16, SOIC 16, SOP 16, TSSOP 16, CDIP 16	Support mixed-mode voltage operation on all ports
	SN74LVC1G3157 ⁽¹⁾	2:1, 1 channel	6	SC70 6, SOT-23 6, SON 6, DSBGA 6, X2SON 6	Break-before-make
	CD4051B (1)	8:1, 1 channel	125	PDIP 16, SOIC 16, SO 16, TSSOP 16	Break-before-make
	TS12A4514	1:1, 1 channel	6.5	PDIP 8, SOIC 8, SOT-23 5	Break-before-make
	MUX509	4:1, 2 channel	125	SOIC 16, TSSOP 16	
Mid Voltage (24 V <	MUX508	8:1, 1 channel	125	SOIC 16, TSSOP 16	Break-before-make
V _{SIGNAL} < 100V)	MUX507	8:1, 2 channel	125	SOIC 28, TSSOP 28	DIEAK-DEIDIE-IIIAKE
	MUX506	16:1, 1channel	125	SOIC 28, TSSOP 28	

⁽¹⁾ See Appendix A for analog performance of HC, LV, LVC and CD400 family.

5.4 **Automotive Switches and Multiplexers**

Table 5 below shows performance specification of automotive (AECQ100) switches:

Table 5. Automotive Switches and Multiplexers - AECQ100

Configuration	Part Number	Package/Pin	Features
	TS5A3166-Q1	SC70 5	Low R _{ON} (<10 Ω), Powered-off protection
1:1, 1 channel	SN74LVC1G66-Q1	SC70 5, SOT-23 5	Low R _{ON} (<10 Ω)
	SN74CBTLV1G125-Q1	SOT-23 5	Low R _{ON} (<10 Ω), Powered-off protection
1:1, 2 channel	SN74LVC2G66-Q1	VSSOP 8	Low R _{ON} (<10 Ω), Supports I ² C signals
	CD4066B-Q1	SOIC 14	Low C _{ON} (<10 pF)
1:1, 4 channel	CD74HCT4066-Q1	SOIC 14, TSSOP 14 52 mm2: 6 x 8.65 (SOIC 14),	Low C _{ON} (<10 pF)
2.4.4 shannal	TS5A3159-Q1	SOT-23 6	Break-before-make, Low R _{ON} (<10 Ω)
2:1, 1 channel	SN74LVC1G3157-Q1	SC70 6, SOT-23 6	Low R _{ON} (<10 Ω)
2:1, 2 channel	TS5A22364-Q1	VSSOP 10	Low R _{ON} (<10 Ω), Break-before-make, Supports negative voltages
	TS5A3357-Q1	VSSOP 10	Low R _{ON} (<10 Ω), Break-before-make, Supports I ² C signals
2:1, 4 channel	SN3257-Q1	SOT-23-THN 16, TSSOP 16	Low R _{ON} (<10 Ω), 1.8-V compatible control inputs, Break- before-make, Fail-safe logic, Integrated pulldown resistor on logic pin, Powered-off protection, Supports SPI signals, Supports input voltage beyond supply
2:1, 6 channel	TS3A27518E-Q1	TSSOP 24, WQFN 24	Low R _{ON} (<10 Ω), Powered-off protection, Break-before- make, Supports SPI signals, Supports JTAG signals, 1.8-V compatible control inputs
4:1, 2 channel	TS3A5017-Q1	VQFN 16	Powered-off protection, Supports SPI signals
4.1, 2 Chamilei	SN74LV4052A-Q1	SOIC 16, TSSOP 16	Low C _{ON} (<10 pF)
	TMUX1308-Q1	SOT-23-THN 16, TSSOP 16	1.8-V compatible control inputs, Break-before-make, Current injection control
8:1, 1 channel	SN74HC4851-Q1	SOIC 16, TSSOP 16	Current Injection Control
	SN74LV4051A-Q1	SOIC 16, SOIC 16, TSSOP 16	Low R _{ON} (<10 Ω), Break-before-make
	CD74HCT4051-Q1	SOIC 16	Low C _{ON} (<10 pF), Break-before-make
16:1, 1 channel	CD74HCT4067-Q1	SOIC 24	Low C _{ON} (<10 pF), Break-before-make

6 Digital Signal Switches and Multiplexers Performance

For digital switches and multiplexers, in addition to the signal switch specifications highlighted in Section 4, the following features also need to be considered:

- Number of bits required to be switched. With TI's wide variety of signal switches, it is possible to switch
 between 1 to 32 bits at the same time with a single device. For instance, the LVC1G66 or CBT1G125
 can be used to switch a single bit, while the CBTLV16211 is capable of switching 24 bits total in banks
 of 12. Or, by tying the adjacent enable pins together, it is possible to control 24 bits with one enable
 signal.
- Special features. TI offers bus switches with special features, such as an integrated diode for single-component level shifting (CBTD), active clamps for undershoot protection (CBTK), Schottky-diode clamps for undershoot protection (CBTS), a bus-hold option (CBTH) for holding floating or unused I/O pins at valid logic levels, and an integrated-series-resistor option (CBTR) to reduce signal-reflection noise.

Table 6 summarizes the digital performance characteristics of TI signal switches from which generalities can be derived regarding switch-family performance. For exact parameters, refer to the respective data sheets.

Part Number	V _{cc}	R _{ON}	t _{pd} ⁽²⁾	t _{on} ⁽³⁾	t _{OFF} (4)	V _{IH} (control inputs)	V _{IL} (control inputs)	C _i (control)	C _{io} (on)	C _{io} (off)
TMUX1209	1.08-5.5 V	5-9 Ω	-	60 ns	45 ns	1.8-V CMOS	1.8-V CMOS	1 pF	42 pF	38 pF
TMUX1511	1.5-5.5 V	2 Ω	67 ps	20 µs	4 µs	1.8-V CMOS	1.8-V CMOS	3 pF	3.3-6 pF	2.4-4 pF
CD4066	3-18 V	200-1300 Ω	7-40 ns	15-70 ns	15-70 ns	approximately. 0.7 × V _{CC}	approximatel y. 0.2 × V _{CC}	5-7.5 pF	_	8 pF
CD74HC4066	2-10 V	15-142 Ω	4-90 ns	8-150 ns	12-225 ns	5-V CMOS	5-V CMOS	10 pF	_	5 pF
CD74HCT4066	4.5-5.5 V	25-142 Ω	4-18 ns	4-18 ns	9-36 ns	5-V TTL	5-V TTL	10 pF	_	5 pF
SN74HC4066	2-6 V	30-150 Ω	3-75 ns	18-225 ns	22-250 ns	5-V CMOS	5-V CMOS	3-10 pF	=	9 pF
LVC1G66	1.65-5.5V	3-30 Ω	0.6-2 ns	1.5-10 ns	1.4-10 ns	5-V CMOS	5-V CMOS	2 pF	13 pF	6 pF
LV4066A	2-5.5 V	21-225 Ω	0.3-18 ns	1.6-32 ns	3.2-32 ns	5-V CMOS	5-V CMOS	1.5 pF	_	5.5 pF
CBT3125	4-5.5 V	5-22 Ω	0.25-0.35 ns	1.8-5.6 ns	1-4.6 ns	5-V TTL/LVTTL	5-V TTL/LVTTL	3 pF	-	4 pF
CBTLV3125	2.3-3.6 V	5-40 Ω	0.15-0.25 ns	2-4.6 ns	1-4.2 ns	LVTTL/2.5-V CMOS	LVTTL/ 2.5-V CMOS	2.5 pF	-	7 pF

Table 6. Summary of Digital Performance (1)

7 Applications

The examples below show some common applications of signal switches and multiplexers:

7.1 SPI Multiplexing

Common applications that require the features of the multiplexer like the TMUX1574 and SN3257-Q1 include multiplexing various protocols from a possessor or MCU such as SPI, eMMC, I2S, or standard GPIO signals. These devices provides superior isolation performance when the device is powered. The added benefit of powered-off protection allows a system to minimize complexity by eliminating the need for power sequencing in hot-swap and live insertion applications. The example shown in Figure 24 illustrates the use of the SN3257-Q1 to multiplex an SPI bus to multiple flash memory devices.

Data are based on data-sheet parameters for the parts tested for this application report. Refer to the respective data sheets for specific parameters and load conditions.

this is the same as t_{PLH}/t_{PHL}. The switch contributes no significant propagation delay other than the RC delay of the typical on-state resistance of the switch and the load capacitance when driven by an ideal voltage source (zero output impedance).

 $^{^{(3)}}$ t_{ON} is the same as t_{PZL}/t_{PZH} .

 $^{^{(4)}}$ t_{OFF} is the same as t_{PLZ}/t_{PHZ} .

www.ti.com Applications

Figure 24. Multiplexing Flash Memory

One useful application of multiplexers is isolating various protocols from a possessor or MCU such as JTAG, SPI, or standard GPIO signals. Switch like the TMUX1511 provides excellent isolation performance when the device is powered. The added benefit of powered-off protection allows a system to minimize complexity by eliminating the need for power sequencing in hot-swap and live insertion applications

Figure 25. Isolation of JTAG, SPI, and GPIO Signals

7.2 Multiplexing Signals to External ADC

Figure 26 shows a 16-bit, 4 input, multiplexed, data-acquisition system. This example is typical in industrial applications that require low distortion for precision measurements. The circuit uses the ADS8864, a 16-bit, 400- kSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along with a precision amplifier, and a 4 input multiplexer (TMUX1104).

Applications www.ti.com

Figure 26. Multiplexing Signals to External ADC

7.3 Switchable Op Amp Gain Setting

One example application of the multiplexer is to change an Op Amp from unity gain setting to an inverting amplifier configuration. Utilizing a switch like the TMUX1219 allows a system to have a configurable gain and allows the same architecture to be utilized across the board for various inputs to the system.

Figure 27. Switchable Op Amp Gain Setting

7.4 Multiplexing Body Control Module (BCM) Inputs

Automotive BCMs are complex systems designed to manage numerous functions such as lighting, door locks, windows, wipers, turn signals and many more inputs. The BCM monitors these physical switches and controls power to various loads within the vehicle. A CMOS multiplexer can be used to multiplex the inputs and minimize the number of GPIO or ADC inputs needed by an onboard MCU. The TMUX1308-Q1 features multiplexing various physical switches in a body control module (BCM) or electronic control unit (ECU). Figure 24 shows a typical BCM system using the TMUX1308-Q1 to multiplex system inputs.

www.ti.com Summary

Figure 28. Multiplexing BCM Inputs

8 Summary

Factors that go into selecting a signal switch can be numerous (low r_{on} , low leakage, channel count, switch configuration, powered- off protection, and so forth). This application report has presented the various TI signal-switch architecture, highlighted the key features and examples of protection, precision and general-purpose switches and multiplexers to support end-to-end signal chain needs and provided example applications of switches to aid the designer in selecting the right TI signal switch.

A.1 Analog Performance - CD, HC, CBT, LVC, and LV

Table 7. V_{cc} Above 5.5 V ⁽¹⁾

Parameter	Better Performance		
R _{ON} (typical to maximum)	CD74HC4066	CD74HC4066 ⁽²⁾	CD4066
	15-126 Ω	30 Ω	200-550 Ω
R _{ON} (peak)	SN74HC4066 ⁽²⁾	CD74HC4066	CD4066
(typical to maximum)	50 Ω (typical)	not specified	not specified
Frequency response	CD74HC4066 ⁽³⁾	CD4066	SN74HC4066 ⁽³⁾
	200 MHz	40 MHz	30 MHz
THD/Sine-wave distortion	CD74HC4066	SN74HC4066 ⁽³⁾	CD4066
	0.008%	0.05%	0.4%
Crosstalk	SN74HC4066	CD4066	CD74HC4066
(enable to output)	20 mV	50 mV	550 mV
Crosstalk	CD4066	CD74HC4066 ⁽³⁾	SN74HC4066 ⁽³⁾
(between switches)	-50 dB at 8 MHz	-72 dB at 1 MHz	-45 dB at 1 MHz
Feedthrough attenuation	CD74HC4066 ⁽³⁾	CD4066	SN74HC4066 ⁽³⁾
	-72 dB at 1 MHz	-50 dB at 1 MHz	-42 dB at 1 MHz

⁽¹⁾ Data are based on data-sheet parameters for the parts tested for this application report. Refer to the respective data sheets for specific parameters and load conditions.

Table 8. $V_{CC} = 4.5 V^{(1)}$

Parameter	Better Performance					
R _{ON} (typical to maximum)	LVC1G66 3-10 Ω	CBT3125 ⁽²⁾ 5-15 Ω	LV4066A 21-100 Ω	CD74HC/ HCT4066 25-142 Ω	SN74HC4066 50-106 Ω	CBT3125 ⁽³⁾ 5-1000 Ω
R _{ON} (peak) (typical to maximum)	CBT3125 ^{(2) (3)} 10 Ω	LVC1G66 6-15 Ω	LV4066A 31-125 Ω	CD74HC/ HCT4066 ⁽³⁾ 50-70 Ω	SN74HC4066 70-215 Ω	CBT3125 ⁽³⁾ 1000 Ω
Frequency response	CBT3125 ^{(2) (3)} >200 MHz	LVC1G66 195 MHz	CD74HC/ HCT4066 ⁽⁴⁾ 200 MHz	LV4066A 50 MHz	SN74HC4066 30 MHz	
THD/Sine-wave distortion	LVC1G66 0.01%	CD74HC/ HCT4066 0.023%	CBT3125 ^{(2) (3)} 0.035%	SN74HC4066 0.05%	LV4066A 0.1%	
Crosstalk (enable to output)	SN74HC4066 15 mV	LV4066A 50 mV	LVC1G66 100 mV	CBT3125 ⁽³⁾ 120 mV	CD74HCT4066 130 mV	CD74HC4066 200 mV
Crosstalk (between switches)	CD74HC/HCT4066 -72 dB	LVC2G66 -58 dB	CBT3125 ^{(2) (3)} -53 dB	SN74HC4066 -45 dB	LV4066A -45 dB	
Feedthrough attenuation	CD74HC/HCT4066 -72 dB	LVC1G66 -58 dB	SN74HC4066 -42 dB	LV4066A -40 dB	CBT3125 ⁽³⁾ -36 dB	

⁽¹⁾ Data are based on data-sheet parameters for the parts tested for this application report. Refer to the respective data sheets for specific parameters and load conditions.

Specification at $V_{CC} = 6 \text{ V}$.

⁽³⁾ Specification at V_{CC} = 4.5 V.

⁽²⁾ CBT3125, $0 \le V_{I/O} \le (V_{CC} - 2 V)$.

⁽³⁾ Value from application report measurement. Not specified in data sheet.

⁽⁴⁾ Ranked here due to load variation from other devices in this report.

Table 9. $V_{cc} = 3 V^{(1)}$

Parameter	Better Performance	е			
R _{ON} (typical to maximum)	LVC1G666-15 Ω	CBTLV31255-15 Ω	LV4066A29-190 Ω	CD74HC4066 ⁽²⁾ Not specified	SN74HC4066 ⁽²⁾ Not specified
R _{ON} (peak)(typical to maximum)	CBTLV3125 ⁽³⁾ 15- 20 Ω	LVC1G6612-20 Ω	LV4066A57-225 Ω	CD74HC4066 ⁽²⁾ Not specified	SN74HC4066 ⁽²⁾ Not specified
Frequency response	CBTLV3125 ⁽³⁾ >200 MHz	LVC1G66175 MHz	CD74HC4066 ⁽²⁾ Not specified	LV4066A35MHz	SN74HC4066 ⁽¹⁾ Not specified
THD/Sine-wave distortion	LVC1G660.015%	CD74HC4066 ⁽²⁾ Not specified	SN74HC4066 ⁽²⁾ Not specified	CBTLV3125 ⁽³⁾ 0.09	LV4066A0.1%
Crosstalk(enable to output)	SN74HC4066 ⁽²⁾ Not specified	LV4066A20 mV	LVC1G6670 mV	CBTLV3125 ⁽³⁾ 70 mV	CD74HC4066 (2)Not specified
Crosstalk(between switches)	CD74HC4066 ⁽²⁾ Not specified	LVC2G66-58 dB	CBTLV3125 ⁽³⁾ -49 dB	SN74HC4066 ⁽²⁾ Not specified	LV4066A-45 dB
Feedthrough attenuation	CD74HC4066 ⁽²⁾ Not specified	LVC1G66-58 dB	CBTLV3125-52 dB	SN74HC4066 ⁽²⁾ Not specified	LV4066A-40 dB

⁽¹⁾ Data are based on data-sheet parameters for the parts tested for this application report. Refer to the respective data sheets for specific parameters and load conditions.

Table 10. $V_{cc} = 2.5 V^{(1)}$

Parameter	Better Performance	9			
R _{ON} (typical to maximum)	LVC1G66	CBTLV3125	LV4066A	CD74HC4066 ⁽²⁾	SN74HC4066 ⁽³⁾
	9-20 Ω	5-40 Ω	38-225 Ω	Not specified	150 Ω
R _{ON} (peak)(typical to maximum)	CBTLV3125 ⁽⁴⁾	LVC1G66	LV4066A	CD74HC4066 ⁽²⁾	SN74HC4066 ⁽³⁾
	15-45 Ω	20-30 Ω	143-600 Ω	Not specified	320 Ω
Frequency response	CBTLV3125 ⁽⁴⁾	LVC1G66	CD74HC4066 ⁽²⁾	LV4066A	SN74HC4066 ⁽²⁾
	>200 MHz	120 MHz	Not specified	30 MHz	Not specified
THD/Sine-wave distortion	LVC1G66	CD74HC4066 ⁽²⁾	SN74HC4066 ⁽²⁾	LV4066A	CBTLV3125 ⁽⁴⁾
	0.025%	Not specified	Not specified	0.1%	0.11%
Crosstalk(enable to output)	SN74HC4066 ⁽²⁾	LV4066A	CBTLV3125 ⁽²⁾	LVC1G66	CD74HC4066 ⁽²⁾
	Not specified	15 mV	30 mV	50 mV	Not specified
Crosstalk(between switches)	CD74HC4066 ⁽²⁾	LVC2G66	CBTLV3125	SN74HC4066 ⁽²⁾	LV4066A
	Not specified	-58 dB	-45 dB	Not specified	-45 dB
Feedthrough attenuation	CD74HC4066 ⁽²⁾	LVC1G66	CBTLV3125	SN74HC4066 ⁽²⁾	LV4066A
	Not specified	-58 dB	-52 dB	Not specified	-40 dB

⁽¹⁾ Data are based on data-sheet parameters for the parts tested for this application report. Refer to the respective data sheets for specific parameters and load conditions.

⁽²⁾ Position in table based on estimated performance. Information not specified in data sheet.

⁽³⁾ Value from application report measurement. Not specified in data sheet.

Position in table based on estimated performance. Information not specified in data sheet.

Data at $V_{CC} = 2 \text{ V}$.

⁽⁴⁾ Value from application report measurement. Not specified in data sheet.

SN74CBT Characteristics www.ti.com

A.2 SN74CBT Characteristics

Figure 29. Log r_{on} vs V_{I} , $V_{CC} = 5 \text{ V (SN74CBT3125)}$

Figure 30. r_{on} vs V_{I} , V_{CC} = 5 V (SN74CBT3125)

www.ti.com CD74HCT Characteristics

Figure 31. V_1 vs V_0 , V_{CC} = 5 V (SN74CBT3125)

Table 11. SN74CBT3125 Analog Parameter Measurement Data (1)

	V _{cc}	Frequency Response	Sine-Wave Distortion	Total Harmonic Distortion	Crosstalk Between Switches		Charge Injection	Feedthrough
			1	kHz				
Ī	5 V	>200 MHz	0.035%	0.15%	-53 dB	120 mV	7.2 pC	-36 dB

⁽¹⁾ Postcharacterization measurement for SN74CBT3125

A.3 CD74HCT Characteristics

Figure 32. V_i vs V_o , $V_{CC} = 5 V$ (CD74HCT4066)

CD74HC Characteristics www.ti.com

Figure 33. r_{on} vs V_{I} , V_{CC} = 5 V (CD74HCT4066)

Table 12. CD74HCT4066 Analog Parameter Measurement Data (1)

V _{cc}	Frequency Response	Total Harmonic Distortion	Cross	stalk	Charge Injection ⁽²⁾	Feedthrough
		1 kHz	Between Switches	Enable to Output		
4.5 V	200 MHz	0.023%	-72 dB	130 mV	8.1 pC	-72 dB

⁽¹⁾ Data-sheet values for CD74HCT4066, except as noted.

A.4 CD74HC Characteristics

Figure 34. V_1 vs V_0 , $V_{CC} = 4.5 \text{ V (CD74HC4066)}$

⁽²⁾ Post-characterization measurement for CD74HCT4066.

www.ti.com CD74HC Characteristics

Figure 35. r_{on} vs V_{I} , V_{CC} = 4.5 V (CD74HC4066)

Figure 36. V_o vs V_i , $V_{cc} = 6 V (CD74HC4066)$

CD74HC Characteristics www.ti.com

Figure 37. r_{on} vs V_{I} , $V_{CC} = 6 V$ (CD74HC4066)

Figure 38. V_o vs V_l , $V_{cc} = 9 V$ (CD74HC4066)

www.ti.com CD74HC Characteristics

Figure 39. r_{on} vs V_{I} , $V_{CC} = 9 V (CD74HC4066)$

Table 13. CD74HC4066 Analog Parameter Measurement Data⁽¹⁾

V _{cc}	Frequency Response	Total Harmonic Distortion	Cros	stalk	Charge Injection ⁽²⁾	Feedthrough
	Response	1 kHz	Between Switches	Enable to Output		
4.5 V	200 MHz	0.022%	-72 dB	200 mV	6.2 pC	-72 dB
9 V	200 MHz	0.008%	N/A	550 mV	9.0 pC	N/A

⁽¹⁾ Data-sheet values for CD74HC4066, except as noted.

⁽²⁾ Post characterization measurement for CD74HC4066.

SN74HC Characteristics www.ti.com

A.5 SN74HC Characteristics

Figure 40. V_o vs V_i , $V_{cc} = 2 V$ (SN74HC4066)

Figure 41. r_{on} vs V_{I} , $V_{CC} = 2 V$ (SN74HC4066)

www.ti.com SN74HC Characteristics

Figure 42. V_0 vs V_1 , $V_{CC} = 4.5 \text{ V (SN74HC4066)}$

Figure 43. r_{on} vs V_{I} , V_{CC} = 4.5 V (SN74HC4066)

SN74HC Characteristics www.ti.com

Figure 44. V_o vs V_i , V_{cc} = 6 V (SN74HC4066)

Figure 45. r_{on} vs V_{I} , $V_{CC} = 6 V$ (SN74HC4066)

Table 14. SN74HC4066 Analog Parameter Measurement Data⁽¹⁾

	V _{cc}	Frequency	Sine-Wave Distortion	Cros	stalk	Charge Injection ⁽²⁾	Feedthrough
		Response	1 kHz	Between Switches	Enable to Output	Charge injection	i eediiiougii
	2 V	N/A	N/A	N/A	N/A	3.8 pC	N/A

Data-sheet values for SN74HC4066, except as noted.

⁽²⁾ Post characterization measurement for SN74HC4066.

www.ti.com CD4066B Characteristics

Table 14. SN74HC4066 Analog Parameter Measurement Data⁽¹⁾ (continued)

V _{cc}	Frequency	Sine-Wave Distortion	Cros	stalk	Charge Injection ⁽²⁾	Feedthrough
V CC	Response	1 kHz	Between Switches	Enable to Output	Charge injection Peedu	reedinough
4.5 V	30 MHz	0.05%	-45 dB	15 mV	5.9 pC	-42 dB
6 V	N/A	N/A	N/A	20 mV	7.9 pC	N/A

A.6 CD4066B Characteristics

Figure 46. V_o vs V_l , $V_{CC} = 5 V$ (CD4066B)

Figure 47. r_{on} vs V_{I} , $V_{CC} = 5 \text{ V (CD4066B)}$

CD4066B Characteristics www.ti.com

Figure 48. V_o vs V_l , V_{cc} = 10 V (CD4066B)

Figure 49. r_{on} vs V_{I} , $V_{CC} = 10 \text{ V (CD4066B)}$

www.ti.com CD4066B Characteristics

Figure 50. V_o vs V_i , V_{cc} = 15 V (CD4066B)

Figure 51. r_{on} vs V_{I} , V_{CC} = 15 V (CD4066B)

LV-A Characteristics www.ti.com

Table 15. CD4066B Analog Parameter Measurement Dat	ement Data ⁽¹⁾	er Mea	Paramet	Analog	CD4066B	Table 15.
--	---------------------------	--------	----------------	--------	---------	-----------

V _{cc} /V _{ss}	Frequency Response	Total Harmonic Distortion	Crosstalk		Charge Injection ⁽²⁾	Feedthrough
	Response	1 kHz	Between Switches	Enable to Output	injection	
5 V/-5 V	40 MHz	0.04%	-50 dB at 8 MHz	50 mV		-50 dB at 1 MHz
10 V/0 V	141 MHz ⁽²⁾	0.032%(2)	-75 dB ⁽²⁾	35 mV ⁽²⁾	18.8 pC	-65 dB ⁽²⁾

⁽¹⁾ Data-sheet values for CD4066B, except as noted.

A.7 LV-A Characteristics

Figure 52. V_0 vs V_1 , $V_{CC} = 2 V$ (SN74LV4066A)

Post characterization measurement for CD4066B. Frequency response, THD, crosstalk, and feedthrough measured using load conditions specified in Appendix A, in order to make a more valid comparison with other devices in this report.

www.ti.com LV-A Characteristics

Figure 53. r_{on} vs V_{I} , $V_{CC} = 2 V$ (SN74LV4066A)

Figure 54. V_0 vs V_1 , $V_{CC} = 2.5 \text{ V (SN74LV4066A)}$

LV-A Characteristics www.ti.com

Figure 55. r_{on} vs V_{I} , $V_{CC} = 2.5 \text{ V (SN74LV4066A)}$

Figure 56. V_o vs V_i , V_{cc} = 3.3 V (SN74LV4066A)

www.ti.com LV-A Characteristics

Figure 57. r_{on} vs V_{I} , $V_{CC} = 3.3 \text{ V (SN74LV4066A)}$

Figure 58. V_0 vs V_1 , V_{CC} = 5 V (SN74LV4066A)

LV-A Characteristics www.ti.com

Figure 59. r_{on} vs V_{I} , V_{CC} = 5 V (SN74LV4066A)

Table 16. SN74LV4066A Analog Parameter Measurement Data (1)

V	Frequency	Sine-Wave Distortion	Cros	stalk	Charge	Feedthrough
V _{cc}	Response	1 kHz	Between Switches	Enable to Output	Injection ⁽²⁾	reedimougn
2.3 V	30 MHz	0.1%	-45 dB	15 mV	2.1 pC	-40 dB
3 V	35 MHz	0.1%	-45 dB	20 mV	2.7 pC	-40 dB
4.5 V	50 MHz	0.1%	-45 dB	50 mV	3.0 pC	-40 dB

Data-sheet values for SN74LV4066A, except as noted.

⁽²⁾ Post characterization measurement for SN74LV4066A.

www.ti.com LVC Characteristics

A.8 LVC Characteristics

Figure 60. V_o vs V_i , V_{cc} = 1.8 V (SN74LVC1G66)

Figure 61. r_{on} vs V_{I} , V_{CC} = 1.8 V (SN74LVC1G66)

LVC Characteristics www.ti.com

Figure 62. V_0 vs V_1 , $V_{CC} = 2.5$ V (SN74LVC1G66)

Figure 63. r_{on} vs V_I, V_{CC} = 2.5 V (SN74LVC1G66)

www.ti.com LVC Characteristics

Figure 64. V_0 vs V_1 , V_{CC} = 3.3 V (SN74LVC1G66)

Figure 65. r_{on} vs V_{I} , V_{CC} = 3.3 V (SN74LVC1G66)

LVC Characteristics www.ti.com

Figure 66. V_o vs V_I , V_{CC} = 5 V (SN74LVC1G66)

Figure 67. r_{on} vs V_{I} , $V_{CC} = 5 V$ (SN74LVC1G66)

Table 17. SN74LVC1G66 Analog Parameter Measurement Data⁽¹⁾

	V _{cc}	Frequency	Sine-Wave Distortion		CrosstalkEnable to	Charge	Feedthrough
		Response	1 kHz	10 kHz	Output	Injection ⁽²⁾	reedinough
	1.8 V	35 MHz	0.1%	0.15%	35 mV	2.5 pC	-42 dB

Data-sheet values for SN74LVC1G66, except as noted.

⁽²⁾ Post characterization measurement for SN74LVC1G66.

www.ti.com CBTLV Characteristics

Table 17. SN74LVC1G66 Analog Parameter Measurement Data⁽¹⁾ (continued)

V	Frequency	Sine-Wave	Distortion	CrosstalkEnable to	Charge	Foodthrough
V _{cc}	Response	1 kHz	10 kHz	Output	Injection ⁽²⁾	Feedthrough
2.5 V	120 MHz	0.025%	0.025%	50 mV	3.0 pC	-42 dB
3 V	175 MHz	0.015%	0.015%	70 mV	3.3 pC	-42 dB
4.5 V	195 MHz	0.01%	0.01%	100 mV	3.5 pC	-42 dB

A.9 CBTLV Characteristics

Figure 68. V_{o} vs V_{I} , V_{CC} = 2.5 V (SN74CBTLV3125)

CBTLV Characteristics www.ti.com

Figure 69. r_{on} vs V_I, V_{CC} = 2.5 V (SN74 CBTLV3125)

Figure 70. V_0 vs V_1 , V_{CC} = 3.3 V (SN74CBTLV3125)

www.ti.com CBTLV Characteristics

Figure 71. r_{on} vs V_{I} , V_{CC} = 3.3 V (SN74CBTLV3125)

Table 18. SN74CBTLV3125 Analog Parameter Measurement Data⁽¹⁾

V _{cc}	Frequency Response	Sine-Wave Distortion	Total Harmonic Distortion	Crosstalk		Charge Injection	Feedthrough
		1 kHz	1 kHz	Between Switches	Enable to Output		
2.5 V	>200 MHz	0.089%	0.11%	-45 dB	30 mV	12.1 pC	-52 dB
3.3 V	>200 MHz	0.033%	0.09%	-49 dB	70 mV	15.5 pC	-52 dB

⁽¹⁾ Post characterization measurement for CBTLV3125.

Revision History www.ti.com

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from A Revision (March 2020) to B Revision	Page
Updated Figure 27: Switchable Op Amp Gain Setting	
Changes from Original (October 2001) to A Revision	Page
Updated Application Report with new TMUX signal switches and multiplexers	1

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated