Instituto Superior Técnico

MEEC

Machine Learning

Lab 1

Linear Regression

Group 9

Manuel Diniz, 84125 Alexandre Rodrigues, 90002

Turno: 4^af 11h00

Contents

1	Pre-processamento dos dados	2
2	Multilayer perceptron	3
3	Convolutional neural network	Δ

Chapter 1

Pre-processamento dos dados

De modo a melhor se enquadrarem ao tipo de redes neuronais a usar, os dados são alterados de forma a se obter valores para cada pixel de 0 a 1 em *floating point*, ao invés dos 0 a 255 em *uint8*. Valores normalizados adequam-se melhor a redes neuronais, pelo que se divide por 255. Para além disto converte-se a *label* de cada imagem para representação *one-hot*, um formato mais uma vez mais adequado para os modelos a usar.

Chapter 2

$Multilayer\ perceptron$

Chapter 3

$Convolutional\ neural\ network$

É agora criado o modelo de uma *CNN*, com a arquitetura especificada. Este modelo é treinado por um máximo de 200 *epochs*, e programado para parar mais cedo se não existirem melhorias na aprendizagem.

O calback de early stopping tem como objetivo evitar que o modelo fique overfit, pelo que é muito importante que este se baseie na métrica correta para decidir quando parar a aprendizagem e restaurar os melhores pesos. A métrica a escolher é claramente val_loss, ou loss de validação, isto porque é a métrica que dá uma avaliação da performance do modelo com dados com qual este não treinou. Se fosse usado, por exemplo, a métrica loss, que diz respeito aos dados de treino, o modelo iria tornar-se significativamente overfit.

Figure 3.1: Evolução das métricas ao longo dos epochs

Como se pode observar, a loss continua a diminuir muito depois da validation loss estabilizar.

Observa-se ainda uma pequena subida da validation loss junto aos últimos epochs, antes do early stopping ter parado a aprendizagem. Nesta altura o modelo estava a tornar-se overfit, melhorando a performance nos dados de treino ao custo da nos dados de validação.

A validação final com os dados de teste produz uma accuracy de 0.9016, e a $confusion\ matrix$ seguinte:

Label	T-shirt	Trouser	Pullover	Dress	Coat	Sandal	Shirt	Sneaker	Bag	Ankle boot
T-shirt	870	0	24	25	2	1	71	0	7	0
Trouser	1	971	1	21	2	0	2	0	2	0
Pullover	18	0	868	7	37	0	67	0	3	0
Dress	16	2	16	906	28	0	27	0	5	0
Coat	1	1	53	19	845	0	77	0	4	0
Sandal	0	0	0	0	0	971	0	21	0	8
Shirt	153	0	68	21	56	0	685	0	17	0
Sneaker	0	0	0	0	0	9	0	974	0	17
Bag	3	1	8	4	4	2	7	5	965	1
Ankle boot	1	0	0	0	0	4	0	34	0	961

Como se pode observar, o modelo é robusto na identificação dos objetos. O maior volume de enganos ocorre na identificação de peças de roupa semelhantes, como T-shirts e shirts, o que é razoável, tendo em conta que os seus formatos são parecidos.

Observando agora as ativações das camadas de convolução para uma imagem exemplo, obtém-se:

Figure 3.2: Imagem de teste

Figure 3.3: Ativação da primeira camada convolucional

Há uma certa dificuldade em tentar entender as features que cada canal capta, pois uma rede neuronal nem sempre opera do modo que imaginamos, e há uma certa tendência de impor a nossa lógica ou forma de pensar sobre o modelo, que pode não ser correto. No entanto, parece ser possível extrapolar que o canal 12 (começando a contar do 0) e talvez o 11 extraem, por exemplo, o formato geral do sapato.

Figure 3.4: Ativação da segunda camada convolucional

A segunda convolução já não permite, através de um olho humano, entender minimamente o processo que o modelo usa, ou que *features* está a identificar. Algumas ativações parecem realçar as bordas do objeto, mas é difícil dizer ao certo.