Reti Bayesiane II

IALab A.A. 2018/2019

Inferenza Esatta

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$P(B|j, m)$$

$$= P(B, j, m)/P(j, m)$$

$$= \alpha P(B, j, m)$$

$$= \alpha \sum_{e} \sum_{a} P(B, e, a, j, m)$$

Rewrite full joint entries using product of CPT entries:

$$\mathbf{P}(B|j,m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B)P(e)\mathbf{P}(a|B,e)P(j|a)P(m|a)$$

$$= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e)P(j|a)P(m|a)$$

Enumerazione sulla Distribuzione Congiunta

Ordine Topologico da sinistra a destra

Evaluation tree

$$\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e) P(j|a) P(m|a)$$

Evaluation tree

 $\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e) P(j|a) P(m|a)$

Evaluation tree

Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$\begin{split} &\mathbf{P}(B|j,m) \\ &= \mathbf{P}(B,j,m)/P(j,m) \\ &= \alpha \mathbf{P}(B,j,m) \\ &= \alpha \ \Sigma_e \ \Sigma_a \ \mathbf{P}(B,e,a,j,m) \end{split}$$

Rewrite full joint entries using product of CPT entries:

$$\begin{split} &\mathbf{P}(B|j,m) \\ &= \alpha \ \sum_{e} \sum_{a} \mathbf{P}(B)P(e)\mathbf{P}(a|B,e)P(j|a)P(m|a) \\ &= \alpha \mathbf{P}(B) \ \sum_{e} P(e) \ \sum_{a} \mathbf{P}(a|B,e)P(j|a)P(m|a) \end{split}$$

Recursive depth-first enumeration: O(n) space, $O(d^n)$ time

Fare le somme "bottom-up" memorizzando i risultati intermedi (**factors**) per evitare computazioni ripetute.

Esempio di simple query **P**(B|j,m)

riscrivo in fattori secondo Rete Bayesiana:

Dynam

Program

Dynamic Programming

$$\mathbf{P}(B|j,m) = \alpha \, \mathbf{P}(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$$

2. associo ciascuna Distribuzione di Probabilità nella formula alla variabile di cui è la CPT:

$$P(B|j,m) = \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$$

$$B \quad E \quad A \quad J \quad M$$

$$P(B|j,m) = \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$$

$$B \qquad E \qquad A \qquad J \qquad M$$

3. al posto delle CPT scrivo delle funzioni il cui *pedice* è la variabile associata, e i cui *parametri* sono le Variabili non assegnate che compaiono nella CPT:

$$\alpha f_B(b) \sum_e f_E(e) \sum_a f_A(a,b,e) f_J(a) f_M(a)$$

$$\alpha f_B(b) \sum_e f_E(e) \sum_a f_A(a,b,e) f_J(a) f_M(a)$$

4. il fattore *più a destra* $f_M(a)$ sarà:

a	$f_M(a)$	
Т	0,70	
F	0,01	

5. il fattore seguente (verso *sinistra*) $f_I(a)$ sarà:

a	f _J (a)
Т	0,9
F	0,05

$$\alpha f_B(b) \sum_e f_E(e) \sum_a f_A(a,b,e) f_J(a) f_M(a)$$

6. il fattore $f_A(a,b,e)$ sarà:

a	b	e	$f_A(a,b,e)$
Т	T	T	0,95
Т	Т	F	0,94
Т	F	Т	0,29
Т	F	F	0,001
F	Т	T	0,05
F	Т	F	0,06
F	F	Т	0,71
F	F	F	0,999

$$\alpha f_B(b) \sum_e f_E(e) \sum_a f_A(a,b,e) f_J(a) f_M(a)$$

7. adesso c'è una sommatoria; *moltiplichiamo* i tre fattori ottenendo:

$$f_{AJM}(a,b,e) = f_A(a,b,e) \times f_J(a) \times f_M(a)$$

vedi dopo

8. e poi *sommiamo* sulla variabile A ottenendo:

$$f_{\bar{A}JM}(b,e) = \sum_{a} f_{AJM}(a,b,e)$$

9. continuiamo nello stesso modo con la formula ottenuta:

$$\alpha f_B(b) \sum_{a} f_E(e) f_{\overline{A}JM}(b,e)$$

Multiplication

La moltiplicazione di due fattori si fa tra righe consistenti

sulle variabili condivise:

Α	В	f1(A,B)
Т	Т	0,3
Т	F	0,7
F	Т	0,9
F	F	0,1

В	С	f2(B,C)
Т	Т	0,2
Т	F	0,8
F	Т	0,6
F	F	0,4

Multiplication

La *moltiplicazione* di due fattori si fa tra **righe consistenti** sulle variabili condivise:

Α	В	f1(A,B)
Т	Т	0,3
Т	F	0,7
F	Т	0,9
F	F	0,1

0,6

0,4

Α	В	С	f3(A,B,C)
Т	Т	Т	0,3 x 0,2
Т	Т	F	0,3 x 0,8
Т	F	Т	0,7 x 0,6
Т	F	F	0,7 x 0,4
F	Т	Т	0,9 x 0,2
F	Т	F	0,9 x 0,8
F	F	Т	0,1 x 0,6
F	F	F	0,1 x 0,4

Multiplication

La *moltiplicazione* di due fattori si fa tra **righe consistenti** sulle variabili condivise:

Α	В	f1(A,B)
Т	Т	0,3
Т	F	0,7
F	Т	0,9
F	F	0,1

A	В	С	f3(A,B,C)
Т	Т	Т	0,3 x 0,2
Т	Т	F	0,3 x 0,8
Т	F	Т	0,7 x 0,6
Т	F	F	0,7 x 0,4
F	Т	Т	0,9 x 0,2
F	Т	F	0,9 x 0,8
F	F	Т	0,1 x 0,6
F	F	F	0,1 x 0,4

Summation

La *sommatoria* su una variabile A si fa sommando le righe corrispondenti con A che varia tra i valori possibili T/F:

A	В	С	f3(A,B,C)
Т	Т	Т	0,06
Т	Т	F	0,24
Т	F	Т	0,42
Т	F	F	0,28
F	Т	Т	0,18
F	Т	F	0,72
F	F	Т	0,06
F	F	F	0,04

В	С	f4(B,C)
Т	Т	0,06+0,18
Т	F	0,24+0,72
F	Т	0,42+0,06
F	F	0,28+0,04

Summation

La *sommatoria* su una variabile A si fa sommando le righe corrispondenti con A che varia tra i valori possibili T/F:

Α	В	С	f3(A,B,C)
Т	Т	Т	0,06
Т	Т	F	0,24
Τ	F	Т	0,42
Т	F	F	0,28
F	Т	Т	0,18
F	Т	F	0,72
F	F	Т	0,06
F	F	F	0,04

В	С	f4(B,C)
Т	Т	0,06+0,18
Т	F	0,24+0,72
F	Т	0,42+0,06
F	F	0,28+0,04

Summation

La *sommatoria* su una variabile A si fa sommando le righe corrispondenti con A che varia tra i valori possibili T/F:

Α	В	С	f3(A,B,C)
Т	Т	Т	0,06
Т	Т	F	0,24
Т	F	Т	0,42
Т	F	F	0,28
F	Т	Т	0,18
F	Т	F	0,72
F	F	Т	0,06
F	F	F	0,04

	В	C	f4(B,C)
	Т	Т	0,06+0,18
	Т	F	0,24+0,72
	F	Т	0,42+0,06
	F	F	0,28+0,04

Enumeration VS Variable Elimination

Consideriamo una BN speciale, una catena (chain):

E la simple query $P(X_1 | x_n)$.

Con enumerazione la complessità è $O(2^n)$.

Enumeration VS Variable Elimination

Consideriamo una BN speciale, una catena (chain):

Con eliminazione:

$$P(X1|xn) = P(X1) \sum_{x2} P(x2|X1) \sum_{x3} P(x3|x2) \dots$$

$$\dots \sum_{x_{n-2}} P(x_{n-2}|x_{n-3}) \sum_{x_{n-1}} P(x_{n-1}|x_{n-2}) P(x_n|x_{n-1})$$

Enumeration VS Variable Elimination

Consideriamo una BN speciale, una catena (chain):

Con eliminazione:

$$P(X1|xn) = P(X1) \sum_{x2} P(x2|X1) \sum_{x3} P(x3|x2) \dots$$

$$\dots \sum_{x_{n-2}} P(x_{n-2}|x_{n-3}) \sum_{x_{n-4}} P(x_{n-1}|x_{n-2}) P(x_n|x_{n-1})$$

Partendo da destra, i fattori non crescono mai oltre 2 variabili (4 valori), con complessità O(n)

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^k n)$

Multiply connected networks:

- can reduce 3SAT to exact inference ⇒ NP-hard
- equivalent to counting 3SAT models ⇒ #P-complete

max k padri

- 1. A v B v C
- 2. C v D v ¬A
- 3. B v C v ¬D

