Mathe

Contents

1	Vektormultiplikation			
	1.1	Skalarprodukt	2	
		1.1.1 Schattenwurf	2	
	1.2	Kreuzprodukt		
2		nen im Raum	2	
	2.1	Darstellungsarten von Ebenen im Raum	2	
	2.2	Spurpunkte	2	
	2.3	Betrag eines Vektor berechnen	2	
3	Ebenen im 3-dimensionalen Raum			
	3.1	Koordinatenform einer Ebene	3	
		Normalenform einer Ebene		
		Parameterform einer Ebene		

Vektormultiplikation 1

Das Vektormulitplikationsverfahren kann nicht wie bei der addition verlaufen. Dafür gibt es spezielle Methoden um eigenschaften der Vektoren zu bestimmen.

1.1 Skalarprodukt

Das Skalarprodukt ist eine Art einen Vektor mit einem anderen zu Multiplizieren. Dabei werden die einzelnen Achsen der Vektoren multipliziert und anschließend summiert. Wenn das Skalarprodukt 0 ergibt bedeutet es, dass die Vektoren Orthogonal zueinander stehen (90°).

Formel:

$$\vec{a} \bullet \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot cos(\alpha)$$

Beispiel:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \bullet \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = 1 * 4 + 2 * 5 + 3 * 6 = 32$$

1.1.1 Schattenwurf

1.2 Kreuzprodukt

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Formel:
$$\vec{a} \ x \ \vec{b} = \begin{pmatrix} a_2 \cdot b_3 - a_3 \cdot b_2 \\ a_3 \cdot b_1 - a_1 \cdot b_3 \\ a_1 \cdot b_2 - a_2 \cdot b_1 \end{pmatrix}$$
$$|\vec{a} \ x \ \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\alpha)$$

Ebenen im Raum

Darstellungsarten von Ebenen im Raum

$$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} + s * \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} + t * \begin{pmatrix} c_x \\ c_y \\ c_z \end{pmatrix}$$

Dabei ist a der Stützvektor und b mit c die Richtungsvektoren. Wenn b und c gleich sind ist es eine lineare Gleichung und somit keine Ebene mehr. (Es ist eine Gerade im Raum).

2.2 Spurpunkte

2.3 Betrag eines Vektor berechnen

Gegeben ist der Vektor a.

$$a = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Betrag (länge) des Vektor berechen:

$$|\sigma| = \sqrt{a^2 + b^2 + c^2}$$

3 Ebenen im 3-dimensionalen Raum

Eine Ebene im dreidimensionalen Raum kann beschrieben werden durch die:

- Parameterform einer Ebene
- Normalenform einer Ebene
- Koordinatenform einer Ebene

3.1 Koordinatenform einer Ebene

Formel:

 $E: ax_1 + bx_2 + cx_3 = d$

Von Normalenform abgeleitet:

$$\vec{x} \bullet \vec{n} = \vec{p} \bullet \vec{n}$$

Dabei gilt:

• \vec{X} : Beliebiger Punkt

• \vec{n} (a, b, c): Normalen Vektor \vec{x} • \vec{n}

• d: Skalarprodukt von $\vec{p} \bullet \vec{n}$

3.2 Normalenform einer Ebene

Formel:

$$\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \right) \bullet \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$

Dabei gilt:

• \vec{P} : Stützvektor

• \vec{N} : Normalenvektor

• \vec{X} : Beliebiger Vektor (vorgegeben)

Das ergebnis ist eine Skalar. Darübr kann man informationen über den eingegebenen Vektor erfahren. Beispiel: Wenn das Ergebnis = 0 ist, liegt der gegebene Vektor auf der Ebene.

3

3.3 Parameterform einer Ebene

Die Koordinatenform ist eine die Gleichung für eine Ebene im Raum. Formel:

$$E: \vec{x} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} + s * \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + t * \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$