No queries will be entertained during examination

Indian Institute of Technology, Kharagpur

DateFN/AN, Time: 2 hrs. Full Marks 30. Deptt: Mathematics

No. of students 60 Year 2015 Mid Semester Examination

M. Sc./ M. Tech (Dual) Sub. No.: MA31007 Sub. Name: Mathematical Methods

READ THE INSTRUCTIONS CAREFULLY FOR EACH QUESTION AND FOLLOW THE EXACT STEPS ASKED FOR. ATTEMPT ALL QUESTIONS.

1. For the following series, do the following

[3+3=6M]

a)
$$S = \sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$
, b) $T = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

b)
$$T = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

- Find the expressions for partial sums S_m , T_m in terms of m, using mathematical induction
- Then find the limits of S_m , T_m as $m \to \infty$ to find the sums S and T. [No marks for finding sums by any other means. Convergence test is not asked and marks will be deducted for such unnecessary answer.]
- 2. A bouncing ball rises each time to 2/3 of the height of the previous bounce and the ball is originally dropped from a height of 1m. [5M]
 - a) Express the heights by an infinite sequence.
 - b) Express the total distance S the ball goes by an infinite series with proper justification.
 - c) Compute partial sum S_n by using the formula $S_n = a(1-r^n)/(1-r)$, and finally find the total distance S by taking limit of S_n as $n \to \infty$.

[No marks for finding S_n and S by any other means.]

3. Express the following repeating decimal numbers as an infinite series and then find the fractions that are equivalent to them by computing the sums of the infinite series. (The formula S = a/(1-r), |r| < 1 for infinite G.P. series may be used) :---[3+3=6M]

a) $A = 0.55555 \cdots$, b) $B = 0.576923076923076923 \cdots$

No marks for direct writing the fractions by guess or by any other means.

4. Let $y_1(x)$ and $y_2(x)$ be two linearly independent solutions of the equation y''(x) + P(x)y'(x) + Q(x)y = 0. The Wronskian $W(y_1, y_2)$ of two solutions is defined by

1

P.T.O.

 $(y_1(x), y_2(x)) := y_1 y_2' - y_1' y_2$, which is not identically zero because of independence. Suppose one solution $y_1(x)$ is known. [2+1+1+1+1=6M]

- a) Then construct the second solution $y_2(x)$ from $y_1(x)$ by using the following steps: --
 - i) Differentiating W(x) with respect to x, obtain a differential equation for W, and integrating that equation, derive $W(x) = A \exp \left[-\int P(x)dx\right]$, where A is an arbitrary constant.
 - ii) Writing W(x) with justification in the form $W(x) = y_1^2 (y_2/y_1)'$, construct a differential equation for (y_2/y_1) .
 - iii) Integrating above equation, derived in ii), show that $y_2(x) = y_1(x) (B + A \int y_1^{-2}(x) \exp[-\int P(x) dx] dx),$ where *B* is another arbitrary constant.
 - iv) Finally, justify that A and B may be dropped to obtain following final form for $y_2(x)$ as

$$y_2(x) = y_1(x) \int y_1^{-2}(x) \exp[-\int P(x)dx] dx$$
. [No marks for finding $y_2(x)$ by any other means.]

b) Apply the above formula for $y_2(x)$ to obtain second solution of linear oscillator equation y'' + y = 0 from the known solution $y_1(x) = \sin x$.

[No marks for direct solving the differential equation.]

[6M]

5. Find a series solution of odd powers of x of the equation

$$(1 - x^2)y''(x) - 3xy'(x) + n(n+2)y(x) = 0$$

by assuming the solution as $y(x) = \sum_{\lambda=0}^{\infty} a_{\lambda} x^{k+\lambda}$, $a_0 \neq 0$ and by choosing the appropriate root of the indicial equation (for k). Write the general term of the series. Finally choose a class of values for the parameter n to convert the infinite series into a polynomial. Express the polynomial as a compact summation form.

- [No marks for taking the solution without *k*. Two solutions are not asked and massive marks will be deducted for such blindfold answer.]
- 6. Write few lines (point wise) in plain English about the innovative part of this question paper according to your opinion. No mathematical symbols and/or equations will be allowed here. [1M]

[There may be significant negative impression for not answering this question.]