AI2619 2024Spring Written Assignment #1

Problem 1

Suppose we want to do impulse sampling to a continuous-time signal $x(t) = \frac{\sin(\omega_m t)}{\pi t}$. The sampled signal $x_s(t)$ is then filtered and reconstructed, as shown in the figure below.

Here
$$p(t) = \sum_{-\infty}^{+\infty} \delta(t - nT)$$
, $H(\omega) = \begin{cases} 1 & |\omega| < \omega_c \\ 0 & otherwise \end{cases}$ and $H_r(\omega) = \begin{cases} T & |\omega| < \omega_m \\ 0 & otherwise \end{cases}$

The Fourier transform of x(t) is denoted by $X(\omega)$, and the same for other signals.

(1). Let $T = \frac{2\pi}{3\omega_m}$, $\omega_c = \frac{1}{2}\omega_m$. Derive the expression for $X_s(\omega)$, $Y(\omega)$, $R(\omega)$ and r(t), then draw x(t), $x_s(t)$, y(t), r(t) and $X(\omega)$, $X_s(\omega)$, $Y(\omega)$, $R(\omega)$. (You can just draw a few periods if they are periodic, but you must clearly mark the necessary values in your figure, such as peak values and cut-off frequencies)

(2). Let $T = \frac{2\pi}{3\omega_m}$. What is the proper range for ω_c if we want to perfectly reconstruct x(t) in question (1)? Here "perfectly reconstruct" means r(t) = x(t).

- (3). Let $T = \frac{4\pi}{3\omega_m}$, $\omega_c = \frac{1}{2}\omega_m$. Redo what you have done in question (1).
- (4). Let $\omega_c = \frac{1}{2}\omega_m$. What is the proper range for T if we want to get the same output r(t) as that in question (1)?
- (5). If the sampling method is not impulse sampling, but zero-order hold sampling. Is there still a way to perfectly reconstruct x(t)? If so, what should the $h_r(t)$ be then? Please give the procedures. Here, h(t) remains the same, T and ω_c are the same as in question (1).