Computabilità - 30 Giugno 2020

Soluzioni Formali

Esercizio 1

Problema: Date due funzioni f, g : $\mathbb{N} \to \mathbb{N}$, con f totale, si definisca il predicato Q_{f,g}(x) = "f(x) = g(x)". Mostrare che se f e g sono calcolabili allora Q_{f,g} è semidecidibile. Vale anche il contrario, ovvero se Q_{f,g} è semidecidibile si può dedurre che f e g sono calcolabili?

Soluzione:

Parte 1: Se f e g sono calcolabili, allora Q {f,g} è semidecidibile

Dimostrazione: Supponiamo f e g calcolabili. Vogliamo mostrare che $Q_{f,g}(x) \equiv f(x) = g(x)$ è semidecidibile.

Definiamo la funzione semicaratteristica:

```
sc_{Q_{f,g}}(x) = \mu t. (|f(x) - g(x)| = 0)
```

Alternativamente, possiamo utilizzare il fatto che l'uguaglianza è decidibile sui numeri naturali:

```
sc_{Q_{f,g}}(x) = {
    1    se f(x) = g(x)
    ↑    se f(x) ≠ g(x)
}
```

Questa funzione può essere implementata come:

```
sc_{Q_{f,g}}(x) = \mu t. sg(|f(x) - g(x)|)
```

Poiché f è totale e calcolabile, f(x) converge sempre. Se g è calcolabile:

- Se $g(x) \downarrow$, allora possiamo calcolare |f(x) g(x)| e verificare se è zero
- Se g(x) ↑, allora la computazione di sc_{Q_{f,g}}(x) non termina

Questo rende Q_{f,g} semidecidibile. ■

Parte 2: Il contrario non vale

Risposta: No, il contrario non vale.

Controesempio: Consideriamo:

- f(x) = 0 (funzione costante totale calcolabile)
- $q(x) = \chi_K(x)$ (funzione caratteristica del problema della fermata, non calcolabile)

Il predicato $Q_{f,g}(x) \equiv 0 = \chi_K(x) \equiv x \notin K \equiv x \in \bar{K}$

Il predicato " $x \in \bar{K}$ " non è semidecidibile (poiché \bar{K} non è r.e.).

Tuttavia, consideriamo un esempio diverso:

- f(x) = 0 (totale calcolabile)
- g sia una funzione non calcolabile ma tale che Q_{f,g} risulti semidecidibile

Controesempio più preciso: Sia f(x) = x e definiamo g come:

```
g(x) = \{
x 	 se x \in K
x+1 	 se x \notin K
```

Allora $Q_{f,g}(x) \equiv x = g(x) \equiv x \in K$, che è semidecidibile.

Ma g non è calcolabile perché richiede di decidere l'appartenenza a K.

Quindi esistono f totale calcolabile e g non calcolabile tali che Q_{f,g} è semidecidibile.

Conclusione: Se f e g sono calcolabili, allora Q_{f,g} è semidecidibile. Il contrario non vale. ■

Esercizio 2

Problema: Sia $P = \{2k \mid k \in \mathbb{N}\}$ l'insieme dei numeri pari. Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : | W_x \cap P| \ge 2\}$, ovvero dire se $A \in \overline{A}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A contiene gli indici x tali che il dominio di φ_x contiene almeno 2 numeri pari.

Analisi della struttura:

A è un insieme saturo, poiché può essere espresso come A = $\{x \in \mathbb{N} : \phi_x \in \mathcal{A}\}$, dove $\mathcal{A} = \{f \in \mathcal{C} : |dom(f) \cap P| \ge 2\}$.

Ricorsività:

Per il teorema di Rice, poiché A è saturo, dobbiamo verificare se $A = \emptyset$, \mathbb{N} o né l'uno né l'altro.

- A ≠ Ø: La funzione identità id(x) = x ha dom(id) = N, quindi |dom(id) ∩ P| = ∞ ≥ 2, dunque un suo indice appartiene ad A
- A ≠ N: La funzione f(1) = 1, ↑ altrimenti ha dom(f) = {1}, quindi |dom(f) ∩ P| = |{1} ∩ P| = 0 < 2, dunque un suo indice non appartiene ad A

Per il teorema di Rice, A non è ricorsivo.

Enumerabilità ricorsiva di A:

A è r.e. Possiamo scrivere la funzione semicaratteristica:

$$SC_A(x) = 1(\mu t. \exists u_1, u_2 \le t. [u_1 \ne u_2 \land rm(2, u_1) = 0 \land rm(2, u_2) = 0 \land H(x, u_1, t) \land H(x, u_2, t)])$$

Questa funzione cerca un tempo t entro il quale esistono almeno due numeri pari distinti u_1 , u_2 tali che $\phi_x(u_1)$ e $\phi_x(u_2)$ convergono.

La funzione è calcolabile, quindi A è r.e.

Enumerabilità ricorsiva di Ā:

$$\bar{A} = \{x \in \mathbb{N} : |W_x \cap P| \le 1\}$$

Ā non è r.e. Utilizziamo il teorema di Rice-Shapiro.

Consideriamo la funzione identità id $\in \mathcal{A}$ (quindi il suo indice non appartiene ad \bar{A}).

Consideriamo la funzione finita $\theta(0) = 0$, 1 altrimenti. Abbiamo:

- θ ⊆ id
- $|dom(\theta) \cap P| = |\{0\} \cap P| = 1 \le 1$, quindi $\theta \notin \mathcal{A}$ (quindi un suo indice appartiene ad \bar{A})

Per Rice-Shapiro, esiste $f \notin \bar{A}$ (cioè $f \in A$) tale che $\exists \theta \subseteq f$ finita con $\theta \in \bar{A}$ (cioè $\theta \notin A$), quindi \bar{A} non è r.e.

Conclusione: A non è ricorsivo, A è r.e., Ā non è r.e. ■

Esercizio 3

Problema: Enunciare il secondo teorema di ricorsione ed utilizzarlo per dimostrare che l'insieme $B = \{x \in \mathbb{N} : |W_x| = x + 1\}$ non è saturato.

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ totale e calcolabile, esiste e $\in \mathbb{N}$ tale che $\phi_e = \phi_f(e)$.

Dimostrazione che B non è saturato:

Per dimostrare che B non è saturato, dobbiamo trovare indici e, e' tali che:

- $\phi_e = \phi_e'$
- e ∈ B ma e' ∉ B (oppure viceversa)

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(x,y) = \{
y + 1 se y \in \{0, 1, ..., x\}
↑ altrimenti
}
```

La funzione g è calcolabile:

```
g(x,y) = (y + 1) \cdot sg(x - y + 1)
```

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(x)}(y) = g(x,y)$.

Quindi $W_{s(x)} = \{0, 1, ..., x\} e |W_{s(x)}| = x + 1.$

Per il Secondo Teorema di Ricorsione applicato alla funzione s, esiste $e \in \mathbb{N}$ tale che:

$$\varphi_e = \varphi_s(e)$$

Da questa uguaglianza:

- $W_e = W_{s(e)} = \{0, 1, ..., e\}$
- $|W_e| = e + 1$

Quindi e ∈ B.

Ora, poiché $\varphi_e = \varphi_{s(e)}$, per definizione di s abbiamo:

```
\phi_e(y) = \phi_{s(e)}(y) = g(e,y) = \{
y + 1 se y \le e
\(\tau \) se y > e
\(\}
```

Sia e' > e un qualsiasi altro indice tale che $\phi_{e'} = \phi_{e'}$ (tale indice esiste perché ci sono infiniti indici per ogni funzione calcolabile).

Allora:

- W_{e'} = W_e = {0, 1, ..., e}
- $|W_{e'}| = e + 1 \neq e' + 1$ (poiché e' > e)

Quindi e' ∉ B.

Abbiamo dimostrato che $e \in B$, $e' \notin B$, ma $\phi_e = \phi_e'$, il che prova che B non è saturato.

Conclusione: L'insieme B = $\{x \in \mathbb{N} : |W_x| = x + 1\}$ non è saturato.