2 punti

Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

\sim			, • 1	
Cognome,	nome	e	matricol	a:
COSHOING	1101110	\sim	III COI	u.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

- (a) Quali delle seguenti sono formule che formalizzano correttamente "x è un numero primo" utilizzando il linguaggio \cdot , 1 e relativamente alla struttura $\langle \mathbb{N}, \cdot, 1 \rangle$

 - $\exists x \neg (x=1) \land \neg \exists y (\neg (y=1) \land y \cdot x = x)$
 - $\Box (x=1) \to \forall y \forall z (y \cdot z = x \to y = 1 \lor z = 1)$
- (b) Sia $L = \{S, k, f, d\}$ un linguaggio del prim'ordine con S simbolo di relazione 2 punti binario, k simbolo di funzione unario, f simbolo di funzione binario e d simbolo di costante. Quali dei seguenti sono L-termini?
 - \square S(d, k(d))
 - $\square k(f(f(d,k(d)),f(k(d),d)))$
 - $\Box f(k(k(f(d,d),d)),d)$
- (c) Siano $\varphi(w)$ e $\psi(w,x)$ formule del prim'ordine e σ un enunciato.
 - \square Se \mathcal{A} è una struttura tale che $\mathcal{A} \models \exists x \neg \varphi(x)$, allora $\mathcal{A} \models \exists x (\neg \sigma \lor \neg \varphi(x))$.
 - Se \mathcal{D} è una struttura tale che $\mathcal{D} \models \forall w \neg \varphi(w)$, allora $\mathcal{D} \models \forall w (\varphi(w) \rightarrow \sigma)$.
 - $\square \exists w \forall x \, \psi(w, x) \models \forall x \exists w \, \psi(w, x)$
 - $\Box \neg \exists w \neg \varphi(w) \models \forall w \neg \varphi(w)$
- (d) Siano A e B insiemi tali che $B\subseteq A$. Allora possiamo concludere con certezza che $\underline{2}$ punti
 - $\square (A \cap B) \cup (A \setminus B) = A.$
 - \square se B è più che numerabile allora anche A lo è.
 - \square se Ae B sono entrambi infiniti e numerabili allora $A \setminus B$ è finito.
 - $\square A \setminus B \neq A.$

(e) Consideriamo le funzioni $k \colon \mathbb{N}^2 \to \mathbb{N}, \quad (w, x) \mapsto 5w^2 + x$ 2 punti e $f: \mathbb{N} \to \mathbb{N}^2$, $w \mapsto (w, 5w)$. Allora $\square k \circ f(w) = 5w(w+1) \text{ per ogni } w \in \mathbb{N}.$ \Box f è iniettiva ed è l'inversa di k. \square la funzione k è iniettiva. \square Esistono $w, x \in \mathbb{N}$ tali che k(w, x) = 1. (f) Sia Q una relazione binaria su un insieme non vuoto D. 2 punti \square Se Q è simmetrica, allora non può essere anche antisimmetrica. \Box Se Q è irriflessiva, allora non può essere anche riflessiva. \square Se Q è una relazione di equivalenza, allora è anche un preordine. \square Se Q è una relazione d'equivalenza e R è un'altra relazione binaria su D tale che $Q \subseteq R$, allora R è riflessiva. (g) Sia S la proposizione $\neg D \lor (A \to B)$. Allora 2 punti \square S è tale che $i^*(S) = 0$ per ogni interpretazione i. \square Se i è un'interpretazione tale che i(B) = 0 allora necessariamente i(D) = i(A) =0. □ S è una tautologia. \square S è conseguenza logica di $D \rightarrow B$.

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{S, k, d\}$ con S simbolo di relazione binaria, k simbolo di funzione binaria e d simbolo di costante. Consideriamo la L-struttura $\mathcal{D} = \langle \mathbb{Z}, \geq, \cdot, 3 \rangle$, dove \cdot è l'usuale funzione moltiplicazione.

Sia φ la formula

$$(S(w,x) \land \exists y (k(d,y) = x))$$

e ψ la formula

$$(S(w,x) \to \exists y (k(d,y) = x))$$

- 1. Determinare se:
 - $\mathcal{D} \models \varphi[w/-1000, x/-2000], f$
 - $\underline{\bullet} \ \mathcal{D} \models \phi[w/-1000,x/-3000], \mathbf{v}$
 - $\mathcal{D} \models \exists x \, \varphi[w/-1000, x/-999]._{V}$
- 2. Determinare se $\mathcal{D} \models \forall w \exists x \varphi[w/0, x/0]$.
- 3. Determinare se:
 - $\mathcal{D} \models \psi[w/-1000, x/-2000], f$
 - $\mathcal{D} \models \psi[w/-1000, x/-3000], v$
 - \bullet $\mathcal{D} \models \forall x \psi[w/-1000, x/-998]$. f
- $\underline{4}$. Determinare se $\mathcal{D} \models \exists w \forall x \psi [w/-1, x/3]$.
- $\underline{\mathbf{5}}$. Determinare se $\forall w \exists x \, \varphi \models \exists w \forall x \, \psi_{\cdot \mathbf{f}}$

Giustificare le proprie risposte.

					1
Cognome.	nome	\mathbf{e}	mat	trico	la:

Versione 4

Esercizio 3 9 punti

Sia D un insieme non vuoto e $k\colon D\to D$ una funzione. Formalizzare relativamente alla struttura $\langle D,k\rangle$ mediante il linguaggio $L=\{k\}$ con un simbolo di funzione unario le seguenti affermazioni:

- $\underline{1}$. k è una funzione costante (ovvero il suo range contiene un solo punto)
- $\underline{2}$. se k è una funzione costante, allora k è suriettiva
- 3. $k \circ k$ è iniettiva
- 4. ogni elemento ha almeno due preimmagini distinte.