Intervention analysis

Giovani Valdrighi, Vitória Guardieiro

11/12/2020

Total Business Sales FRED

- ▶ Data from 01/2002 to 12/2012, intervention on 07/2008. The period of 01/2013 to 12/2014 will be used as model validation.
- ► In 2008 we have a international banking crisis, strongly affecting sales on the US.

Variance stabilization

▶ With BoxCox transformation, the lambda is 0.1370143.

SARIMA pre-intervention

▶ Model with data until 07/2008. The plots and the models will use the transformed series.

Check differences

▶ To identify parameters *d* and *D* for the SARIMA model.

- Use Augmented Dickey Fuller test to verify if there is trend.
- ► ADF test p-values:
 - ► Original series: 0.01
 - Diff() series: 0.0206
 - Diff() Diff() series: 0.01Diff() Diff(12) series: 0.01
- We will be using d=1 and D=0 or D=1.

ACF and PACF

▶ Plot of ACF and PACF for model to identify parameters p, q, P, Q.

- Both non-seasonal and seasonal ACFs decrease slowly,
- indicating an auto regressive model. For the non seasonal PACFs, we have the first two significant

► SARIMA(2, 1, 1)(2, 0, 1) ► SARIMA(2, 1, 1)(2, 1, 1)

- lags and for the seasonal we have the first three significant lags.
- Going to test the following models:
 - ► SARIMA(2, 1, 1)(3, 0, 1)

SARIMA(2, 1, 1)(3,0,1)

```
## Series: FRED_pre
## ARIMA(2,1,1)(3,0,1)[12]
## Box Cox transformation: lambda= 0.1370143
##
## Coefficients:
## Warning in sqrt(diag(x$var.coef)): NaNs produzidos
##
            ar1
                     ar2
                             ma1
                                     sar1
                                             sar2
                                                    sar3
                                                             sma1
        -1.0841 -0.6725 0.3762 -0.0028 0.6105 0.2732 0.8088
##
## s.e. 0.1669 0.0988 0.2214
                                      NaN
                                              NaN 0.1557
                                                             NaN
##
## sigma^2 estimated as 0.0193: log likelihood=34.32
## AIC=-52.63 AICc=-50.57 BIC=-33.67
##
## Training set error measures:
##
                     MF.
                            RMSE
                                      MAE
                                                MPE
                                                        MAPE
                                                                 MASE
## Training set 1886.588 20274.27 16172.38 0.1815222 1.621103 0.2541459
                      ACF1
## Training set -0.04002457
```


SARIMA(2, 1, 1)(2,0,1)

```
## Series: FRED_pre
## ARIMA(2,1,1)(2,0,1)[12]
## Box Cox transformation: lambda= 0.1370143
##
## Coefficients:
##
            ar1
                    ar2
                            ma1
                                  sar1
                                           sar2
                                                   sma1
      -1.0998 -0.6944 0.3887 1.3894 -0.3895 -0.9628
##
## s.e. 0.1522 0.1011 0.2013 0.1652 0.1651 0.1334
##
## sigma^2 estimated as 0.01554: log likelihood=36.49
## ATC=-58.99 ATCc=-57.41 BTC=-42.4
##
## Training set error measures:
                    ME RMSE
                                 MAE
                                          MPE
                                                 MAPE
                                                           MASE
                                                                      ACF1
## Training set 1927.329 18390 14675.48 0.182487 1.468923 0.2306223 -0.03922664
```


SARIMA(2, 1, 1)(2,1,1)

```
## Series: FRED_pre
## ARIMA(2,1,1)(2,1,1)[12]
## Box Cox transformation: lambda= 0.1370143
##
## Coefficients:
##
            ar1
                    ar2
                            ma1
                                   sar1
                                           sar2
                                                    sma1
      -1.0979 -0.7046 0.4394 0.3592 -0.2377 -0.9998
##
## s.e. 0.1599 0.0989 0.2389 0.1512
                                       0.1785
                                                0.4891
##
## sigma^2 estimated as 0.01376: log likelihood=41.06
## ATC=-68.13 ATCc=-66.23 BTC=-52.69
##
## Training set error measures:
                   MF.
                          RMSE
                                             MPE
                                                     MAPE
                                                              MASE
                                   MAE
                                                                          ACF1
## Training set 824.437 16261.08 11894.78 0.0635975 1.159562 0.1869242 -0.03438936
```


▶ The model with lowest AIC is the SARIMA(2, 1, 1)(2, 1, 1).

FRED pre intervention Real x Predicted

Forecast of pre intervention

We now look on how our model says that the series should be without the intervention, predicting the next six years after july 2008.

FRED series x Forecast of pre-intervention model

Intervention modeling

Permanent constant effect

- For the first intervention model we will define $h_t = I(t > jul2008)\delta_0$, so there will be a permanent effect equal to δ_0 after july of 2008.
- ▶ The estimated δ_0 value is 0.1105 with s.e. 0.1492, so the interval includes 0.

```
## Series: FRED
## Regression with ARIMA(2,1,1)(2,1,1)[12] errors
## Box Cox transformation: lambda = 0.1370143
##
## Coefficients:
##
           ar1
                   ar2
                           ma1
                                  sar1
                                                 sma1
        0.4543 0.2465 -0.5897 0.2995 -0.3439 -1.0 0.1105
##
## s.e. 0.1585 0.0904 0.1395 0.0969
                                         0.0946 0.1 0.1492
##
## sigma^2 estimated as 0.0263: log likelihood=35.34
## ATC=-54 69 ATCc=-53 38 BTC=-32 46
##
## Training set error measures:
##
                      ME RMSE
                                    MAE
                                               MPF.
                                                       MAPE
                                                                 MASE
                                                                            ACF1
## Training set -845.9794 24414 17468.18 -0.09032853 1.629346 0.2050465 -0.0618996
```


FRED Real x Predicted with permanent constant effect

Temporary constant effect

- Now for the intervention model we will define $h_t = I(t = jul2008)\delta_0$, so there will be a temporary effect equal to δ_0 on july of 2008.
- ► The estimated δ_0 value is 0.2209 with s.e. 0.1134, so the interval doesn't include 0.

```
## Series: FRED
## Regression with ARIMA(2,1,1)(2,1,1)[12] errors
## Box Cox transformation: lambda = 0.1370143
##
## Coefficients:
##
           ar1
                   ar2 ma1 sar1
                                           sar2
                                                    sma1
                                                           xreg
        0.4749 0.2230 -0.6151 0.2804 -0.3408 -1.0000 0.2209
## s.e. 0.1695 0.0918 0.1521 0.0989 0.0955 0.0992 0.1134
##
## sigma^2 estimated as 0.02554: log likelihood=37
## ATC=-58 ATCc=-56.69 BTC=-35.77
## Training set error measures:
                      ME RMSE
                                   MAE
                                               MPF.
                                                      MAPE
                                                                MASE
## Training set -805.7189 23866 17205.32 -0.08929967 1.609214 0.2019609
## Training set -0.05589136
```

```
##
## z test of coefficients:
##
##
        Estimate Std. Error z value Pr(>|z|)
## ar1 0.474910 0.169522 2.8015 0.0050873 **
## ar2 0.223007 0.091760 2.4303 0.0150849 *
## ma1 -0.615083 0.152137 -4.0430 5.278e-05 ***
## sar1 0.280412 0.098862 2.8364 0.0045626 **
## sar2 -0.340759  0.095457 -3.5698  0.0003573 ***
## sma1 -0.999978  0.099198 -10.0806 < 2.2e-16 ***
## xreg 0.220942 0.113434 1.9478 0.0514443 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.5
```

Residuals from Regression with ARIMA(2,1,1)(2,1,1)[12] errors 0.2 -0.0 --0.2 --0.4 --0.6 -0.8 -2002 2004 2006 2008 2010 2012 0.4 -30 -0.2 -20 count ACF 0.0 10 --0.2 --0.75 12 24 -0.50 36 0.50 0.25 Lag

FRED Real x Predicted with temporary constant effect

Changing intervention effect

- Now with we model the transfer function as one AR(1), it is, $h_t = \frac{l(t=jul2008)\delta_0}{1-\omega_0 B}$ we can have a more complex effect of intervention, without it being a constant change in the mean.
- ▶ With the estimated values for δ_0 and ω_0 we can compute the transfer curve.

```
##
## Call:
## arimax(x = BoxCox(FRED, lambda), order = c(2, 1, 1), seasonal = list(order = c(2,
      1, 1), frequency = 12), include.mean = FALSE, method = "CSS", xtransf = temporary_const eff,
      transfer = list(c(1, 0)))
##
##
## Coefficients:
##
           ar1
                   ar2
                            ma1
                                   sar1
                                            sar2
                                                     sma1
                                                            T1-AR1 T1-MAO
        0.6262 0.1537 -0.5044 0.1578 -0.5649 -0.8734 -0.2868 0.2074
## s.e. 0.3524 0.0957 0.2007 0.0557 0.1168 0.0582 0.2576 0.0922
##
## sigma^2 estimated as 0.03239: part log likelihood = 35.23
##
## Training set error measures:
##
                         ME.
                                 RMSE
                                             MAE
                                                          MPF.
                                                                   MAPE
                                                                             MASE
## Training set -0.001950638 0.1510535 0.09214914 -0.004856425 0.2199494 0.2738843
##
                      ACF1
## Training set -0.03711821
```


▶ The curve show a increase and after a decrease, while we should expect a decrease. From the results of TSA, we may think that the effect of the intervention only show in the following month, august, so we my try to model with I(t = aug2008).

```
##
## Call:
## arimax(x = BoxCox(FRED, lambda), order = c(2, 1, 1), seasonal = list(order = c(2,
      1, 1), frequency = 12), include.mean = FALSE, method = "CSS", xtransf = 1 *
##
      (seq_along(fred_FIT$DATE) == 79), transfer = list(c(1, 0)))
##
##
## Coefficients:
##
           ar1
                   ar2
                            ma1
                                   sar1
                                            sar2
                                                     sma1
                                                            T1-AR1 T1-MAO
        0.6262 0.1537 -0.5044 0.1578 -0.5649 -0.8734 -0.2868 0.2074
##
## s.e. 0.3524 0.0957 0.2007
                                 0.0557
                                          0.1168
                                                   0.0582
                                                            0.2576 0.0922
## sigma^2 estimated as 0.03239: part log likelihood = 35.23
##
## Training set error measures:
                                 RMSE
                                             MAE
                         ME.
                                                          MPF.
                                                                   MAPE
                                                                             MASE
## Training set -0.001950638 0.1510535 0.09214914 -0.004856425 0.2199494 0.2738843
##
                      ACF1
## Training set -0.03711821
```

FRED Real x Predicted with decreasing effect AR(1) effect 0.00 Predictions Real values 42 0.05 fitted(mod.arimax2) -0.10 -0.15 2002 2004 2010 2012 2002 2010 2012 2006 2008 2004 2006 2008 Time Time

With the computed transfer curve, we use it in a Arima model as regressor.

```
## Series: FRED
## Regression with ARIMA(2,1,1)(2,1,1)[12] errors
## Box Cox transformation: lambda= 0.1370143
##
## Coefficients:
##
           ar1
                   ar2
                           ma1 sar1
                                           sar2
                                                    sma1
                                                            xreg
        0.4749 0.2230 -0.6151 0.2804 -0.3408 -1.0000 1.0653
## s.e. 0 1695 0 0918 0 1521 0 0989 0 0955
                                                 0.0992 0.5469
##
## sigma^2 estimated as 0.02554: log likelihood=37
## ATC=-58
            ATCc=-56.69
                        BTC=-35.77
##
## Training set error measures:
                      ME RMSE
                                   MAE
                                                       MAPE
                                                                MASE
## Training set -805.7189 23866 17205.32 -0.08929967 1.609214 0.2019609
##
## Training set -0.05589136
```

Residuals from Regression with ARIMA(2,1,1)(2,1,1)[12] errors 0.2 -0.0 --0.2 --0.4 --0.6 -0.8 -2002 2004 2006 2008 2010 2012 0.4 -30 -0.2 -20 count ACF 0.0 10 --0.2 --0.75 12 24 -0.50 36 0.50 0.25 Lag

FRED series x Forecast of pre-intervention model 12 months

FRED series x Forecast of pre-intervention model 24 months

Predictive model

```
## Series: FRED_train
## Regression with ARIMA(2,1,1)(2,1,1)[12] errors
## Box Cox transformation: lambda= 0.1370143
##
## Coefficients:
           ar1
                   ar2 ma1 sar1
                                          sar2
                                                   sma1
                                                          xreg
        0.4704 0.2517 -0.6299 0.3276 -0.3571 -1.0000 0.3937
## s.e. 0.1516 0.0908 0.1328 0.0983
                                        0.0977 0.1024 0.0936
##
## sigma^2 estimated as 0.02298: log likelihood=43.44
## ATC=-70 88 ATCc=-69 57 BTC=-48 65
##
## Training set error measures:
##
                     MF.
                            RMSE
                                     MAE
                                                MPE
                                                        MAPE
                                                                 MASE
## Training set -867.4581 22991.08 17055.82 -0.0850767 1.586538 0.2002061
##
                     ACF1
## Training set -0.05841938
```

Predict 12 months

FRED series x Forecast with intervention model

Predict 24 months

FRED series x Forecast with intervention model

