

Reducing the "Horseness" of Music Information Retrieval methods

PhD Thesis in I.T. applied to music

Musical industry

Streaming

Music tagging

Methods	Advantages	Drawbacks	Examples
Manual (editor)	Precise	Little	PANDORA
Manual (community)	Plenty	Incorrect Ambiguous Abuse	sound cloud lost.fm
Automatic (data usage)	Precise	Coverage	Spotify
Automatic (autotagging)	Coverage	Precise	DEEZER

Goal

Enhance autotagging for music recommendations

Focus on Instrumentals and Songs

Tools for development

- Database Management
 - Signal processing

 - Statistical analysis

Test with industrial partners

How to guarantee « Horsefree » methods?

"a horse is just a system that is not actually addressing the problem it appears to be solving." (Sturm 2014)

Example

Song/Instrumental classification

Precision on Instrumental detection

	Dataset	Algorithm	Precision (%)
*25 Al,491 tracks (SATIN)	I,677 tracks (MSD)	SVMBFF	82.0
		(Gouyon et al., 2014)	12.5
	Random prediction	11.0	
		Bayle et al., (2017)	82.5

- ♪ SVMBFF: 68 features per track
- ♪ Proposed algorithm: 39 features per frame

Is bigger better?

Dataset

- Diversified
 - Sources (Cross-dataset comparison)
- ♪ Deep learning approaches require a lot of data

Image research field

- √ 2bn images
- ♪ Duplicate Discovery on 2 Billion Internet Images (Wang et al., 2013)

Music research field

- ♪ Deezer: 40M tracks under copyright
- ♪ AcousticBrainz: features for 2.7M tracks

SATIN's world repartition

Bias toward 21st century music

SATIN's wordcloud

Bigger but not too big!

Artist and album filtering

- Up to which point to filter?
- Human can distinguish song from same artist with 20 albums?
- Filtering reduce the dataset

Data augmentation

- Copyright restriction and filtering reduce the dataset size
- ↑ Artificially increase the dataset (pitch, speed, add noise, filter,...)
- ↑ A software framework for musical data augmentation (McFee et al., 2015)

Human annotations

Quality

- Track-level (track from 30s to 12m)
- Frame-level (sample precise to seconds)
- From ground truths to L-measure: multi-annotators and multi-level aggregation.

Objective and subjective

- Subjective: Genre, Mood, Activity...
- ♪ Objective: Instrumental/Song
- ↑ "The tags Vocals and Non-Vocals are well-defined and relatively objective, mutually exclusive, and always relevant." (Gouyon et al., 2014)

Definitions

Oxford dictionary

- Song: A short poem or other set of words set to music or meant to be sung.
- Instrumental: music performed on instruments, with no vocals

Notes

- The voice is an instrument
- What about humming?
- Scat: Improvised jazz singing in which the voice is used in imitation of an instrument
- ↑ A Song is a musical piece containing human voice, whereas an Instrumental does not.

Examples

- Joe Satriani − Crow chant (cf music excerpt)
- ↑ Objective definition but subjective perception?

Can we measure "Horseness"?

Comparison to baseline

- ↑ Random classification (on the dataset)
- **↑ Random** input (in the **system**)

Project « Al Metrics »

- ↑ State-of-the-art per task in multiple fields
 - video games, image, video, music,...
- https://github.com/ai-metrics/ai-metrics

CIFAR-10 Image Recognition

Horse and metrics

- ♪ Precision = TP / (TP + FP)
- Accuracy, F-Measure, ... but:

Horse and metrics

Checklist to diminish horseness of a method

- User listening experience
 - Subjective
 - Different expectation
 - ↑ Time-consuming
 - Too few number of participants

Scientist validation

- ↑ Check the results or what the ML is learning?
- Auralisation of deep convolutional neural networks: listening to learned features (Choi et al., 2015)

Reproducibility and replicability

Examples in Song/Instrumentals classification

- A hierarchical approach for speech-instrumental-song classification (Ghosal et al., 2013)
 - ♪ Precision @ 95%
 - 540 excerpts of 30s: « inhouse dataset »
- SRCAM (Gouyon et al., 2014)
 - ♪ Source code in matlab

 - Cannot run on industrial server with 40k tracks

Reproducibility and replicability

Reproducibility and replicability

Materials

- Replicability is not reproducibility: nor is it good science
 (Drummond 2009)
- 1 https://github.com/audiolabs/APSRR-2016
- https://infoscience.epfl.ch/record/136640
- 1 https://github.com/faroit/reproducible-audio-research
- https://rescience.github.io/
- https://github.com/Cloud-CV/EvalAI

Conclusion and solutions Ideas

Checklist to diminish « horseness » of a method

- Definition of the problem/task/goal
- ↑ Objective/subjective tag ⇔ objective/subjective solution?
- - ♪ Bigger
 - Diversified
 - Sources (Cross-dataset comparison)
 - Samples (representative)
- Data augmentation
- Preprocessing
 - Normalise signal/spectrograms
- Comparison to baseline

 - ↑ Random input (in the system)
- Auralisation of deep convolutional neural networks: listening to learned features (Choi 2015)
- Reproducible research and replicable code
- User listening experiment for validation?

- Y. Bayle, P. Hanna, and M. Robine, "Large-scale classification of musical tracks according to the presence of singing voice," in JIM, 2016, pp. 144–152.
- Y. Bayle, P. Hanna, and M. Robine, "Persistent musical database for music information retrieval," in Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing, 2017, p. 1–4.
- K. Choi, G. Fazekas, M. Sandler, J. Kim, "Auralisation of deep convolutional neural networks: listening to learned features," in *Proceedings of the 16th International Society for Music Information Retrieval Conference*, 2015.
- C. Drummond, "Replicability is not reproducibility: nor is it good science," 2009.
- A. Flexer, "A closer look on artist filters for musical genre classification," World, 19(122), 16-7, 2007.
- A. Ghosal, R. Chakraborty, B. C. Dhara, and S. K. Saha, "A hierarchical approach for speech-instrumental-song classification," *Springerplus*, vol. 2, no. 526, pp. 1–11, Dec. 2013.
- F. Gouyon, B. L. Sturm, J. L. Oliveira, N. Hespanhol, and T. Langlois, "On evaluation validity in music autotagging," arXiv, Sep. 2014.
- B. McFee, E. J. Humphrey, J. P. Bello, "A Software Framework for Musical Data Augmentation," in *Proceedings of the 16th International Society for Music Information Retrieval Conference*, 2015, pp. 248-254.
- B. McFee, O. Nieto, M. M.Farbood, J. P. Bello, "Evaluating Hierarchical Structure in Music Annotations," Frontiers in psychology, 8, 2017.
- J. Schlüter and T. Grill, "Exploring data augmentation for improved singing voice detection with neural networks," in *Proceedings of the 16th International Society for Music Information Retrieval Conference*, 2015, pp. 121–126.
- B. L. Sturm, "A Simple Method to Determine if a Music Information Retrieval System is a "Horse","
 IEEE Transactions on Multimedia, 16(6), 2014, pp 1636-1644,
- X.-J. Wang, L. Zhang, C. Liu, "Duplicate Discovery on 2 Billion Internet Images," in Proceedings of the IEEE CVPRW, 2013.