Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра "Прикладная математика"

> ОТЧЁТ ЛАБОРАТОРНАЯ РАБОТА № 8 ПО ДИСЦИПЛИНЕ "МАТЕМАТИЧЕСКАЯ СТАТИСТИКА"

Выполнил студент: Мальцов Дмитрий Дмитриевич группа: 3630102/70401

Проверил: к.ф-м.н., доцент Баженов Александр Николаевич

Содержание

1.	Список таблиц	3
2.	Постановка задачи	4
3.	Теория	4
4.	Реализация	4
5.	Результаты	5
6.	Выводы	5
7.	Литература	5
8.	Приложения	5

1 Список таблиц

1	Доверительные интервалы для параметров нормального распределения.	5
2	Доверительные интервалы для параметров произвольного распределе-	
	ния. Асимптотический подход	5

2 Постановка задачи

Для двух выборок 20 и 100 элементов, сгенерированных согласно нормальному закону N(x,0,1), для параметров масштаба и положения построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве параметра надёжности взять $\gamma = 0.95$.

3 Теория

Доверительным интервалом или интервальной оценкой числовой характеристики или параметра распределения θ с доверительной вероятностью γ называется интервал со случайными границами (θ_1, θ_2), содержащий параметр θ с вероятностью γ .

Функция распределения Стьюдента:

$$T = \sqrt{n-1} \frac{\overline{x} - \mu}{\delta} \tag{1}$$

Функция плотности распределения χ^2 :

$$f(x) = \begin{cases} 0, & x \le 0\\ \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, & x > 0 \end{cases}$$
 (2)

Интервальные оценки для нормального распределения математического ожидания:

$$P = \left(\overline{x} - \frac{\sigma t_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n-1}} < \mu < \overline{x} + \frac{\sigma t_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n-1}}\right) = \gamma, \tag{3}$$

где $t_{1-\frac{a}{2}}$ – квантиль распределения Стьюдента порядка $1-\frac{a}{2}$. стандартного отклонения:

$$P = \left(\frac{\sigma\sqrt{n}}{\sqrt{\chi_{1-\frac{\alpha}{2}}^2(n-1)}} < \sigma < \frac{\sigma\sqrt{n}}{\sqrt{\chi_{\frac{\alpha}{2}}^2(n-1)}}\right) = \gamma,\tag{4}$$

где $\chi^2_{1-\frac{a}{2}},~\chi^2_{\frac{a}{2}}$ — квантили распределения Стьюдента порядков $1-\frac{a}{2}$ и $\frac{a}{2}$ соответственно.

Асимптотическая интервальная оценка для произвольного распределения при большой выборке

математического ожидания:

$$P = \left(\overline{x} - \frac{\sigma u_{1-\frac{a}{2}}}{\sqrt{n}} < \mu < \overline{x} + \frac{\sigma u_{1-\frac{a}{2}}}{\sqrt{n}}\right) = \gamma, \tag{5}$$

стандартного отклонения:

$$P = (s(1+U)^{-1/2} < \sigma < s(1-U)^{-1/2}) = \gamma, \tag{6}$$

где $u_{1-\frac{a}{2}}$ – квантиль нормального распределения N(x,0,1) порядка $1-\frac{a}{2}$., $U=u_{1-\alpha/2}\sqrt{(e+2)/n}$, $e=m_4/s^4-3$

4 Реализация

Работы была выполнена на языке Python 3.8.2 Для генерации выборок и обработки функции распределения использовалась библиотека scipy.stats.

5 Результаты

Таблица 1: Доверительные интервалы для параметров нормального распределения

	m	σ
n = 20	[-0.7367, -0.0098]	[0.5906, 1.1343]
n = 100	[-0.0307, 0.356]	[0.8555, 1.1319]

Таблица 2: Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

	m	σ
n = 20	[-0.705, -0.0415]	[0.6199, 1.0608]
n = 100	[-0.0273, 0.3527]	[0.8668, 1.1201]

6 Выводы

Качество оценок растёт с увеличением объёма выборки, оба метода показывают схожие точности оценки, но у ассимптотического подхода очевидно преимущество в применимости к выборке из произвольного распределения.

7 Литература

Модуль питру

Модуль matplotlib

Модуль scipy

Шевляков Г. Л. Лекции по математической статистике, 2019.

8 Приложения

Код лабораторной