Linear Algebra

 ${\bf Martin~Azpillaga}$

 $March\ 5,\ 2014$

unit name

I Definitions 3

Block I

Definitions

I Definitions 5

2. Jordan form

Eigenvalue

Let:

$$A \in \mathcal{M}_{n \times n}(K)$$

$$\cdot \lambda \in K$$

Then, λ is an eigenvalue if:

$$\cdot \exists v \in K \setminus \{0\}$$
:

$$Av = \lambda v$$

We denote:

$$\cdot \{\lambda \in K \mid \lambda \text{ eigenvalue }\} : Spec(A)$$

Eigenvector

Let:

$$A \in \mathcal{M}_{n \times n}(K)$$

 $\cdot \lambda \in K$ eigenvalue

$$\cdot v \in K$$

Then, v is an eigenvector of eigenvalue λ if:

$$Av = \lambda v$$

We denote:

$$\cdot \{v \in K \mid v \text{ eigenvector of eigenvalue } \lambda\} \, : \, Ker_{\lambda}(K)$$

Block II

Propositions

2. Jordan form

III Examples 13

Block III

Examples

III Examples 15

2. Jordan form

IV Problems 17

Block IV

Problems

IV Problems 19

2. Jordan form

V block name 21

Block V

Tasks