

# Mathematical Foundations of Computer Science

Lecture 18: Introduction to Graphs

#### Abstraction: Graph





Representing objects and relations/ connections between objects

- Entities = Vertices
- Relations/ Connections = Edges

#### Social Networks:

- Vertices = People.
- Edges = Friendships.

### Graphs



Undirected graph: For any  $u, v \in V$ , if  $(u, v) \in E$ , then  $(v, u) \in E$ 

|V| = n will denote the number of nodes in a graph |E| = m will denote the number of edges in a graph

### Directed Graphs

Captures Asymmetric Relations between objects

Every edge has a direction associated with it.



 $(u, v) \in E$  does not imply that  $(v, u) \in E$ 

E.g. a graph representing NFL games Edge from u to v if team u beats team v

$$V = \{2, 3, 5, 7, 9, 8, 11, 10\}$$
 $P = \{(5, 11), (1, 2), (7, 11), (7, 8), (8, 3), (3, 8), (8, 9), (3, 10), (11, 10)\}$ 
 $P = \{(5, 11), (1, 2), (7, 11), (7, 8), (8, 3), (3, 8), (8, 9), (3, 10), (11, 10)\}$ 

### Other Generalizations Graphs

#### Weighted graphs: G = (V, E, w)

Edges have numbers associated with them, representing extent of relation e.g. maps with distances.





#### Multigraph:

- Edges E is a multiset of  $V \times V$  i.e. can have parallel edges
- Can have self-loops too.

#### Simple Graphs: The Default Case



G=(V,E) is a simple graph iff:

- Undirected, unweighted graph  $(u, v) \in E \Rightarrow (v, u) \in E$
- No self-loops  $(u, u) \notin E$









### Common Graphs



## Subgraph of a Graph



A subgraph H = (U, F) of a graph  $G = (\dot{V}, E)$  is a graph where both  $U \subseteq V$  and  $F \subseteq E$ .

• Subgraph doesn't need to contain all the edges incident on U Induced subgraph: when  $U \subseteq V$  and  $F = \{(u, v) \in E : u, v \in U\}$ .

#### Degree of a Vertex



Degree (or valency) of a vertex v (represented by deg(v)) in graph G(V, E) is the number of edges in E incident on v.

In simple graph with n vertices:  $\leq \deg(v) \leq$ 

Regular graph: graph where every vertex has same degree.



## Sum of Degrees/ Handshake Lemma

**Thm.** In any undirected graph G = (V, E), the sum of the degrees is equal to twice the number of edges:  $\sum_{v \in V(G)} \deg(v) = 2 |E(G)|$ 

**Proof.** By "Double Counting" # of (vertex, edge) incidences i.e. pairs (v, e) where  $v \in V$ ,  $e \in E$  and e is incident on v When e How much does each vertex contribute?

How much does each edge contribute?

Independent Sets, Cliques, Graph Complements



### Independent Set



72

Empty graph: a graph with no edges

#### Independent Set:

A subset of vertices with no edges between them in G (subset whose induced subgraph is empty). E.g.,  $S = \{v_2, v_4, v_8\}$ 

What is the size of the largest independent set in G?

#### Complete Graphs, Cliques



 $K_n$ : complete graph on n-vertices.

Or also called an *n*-clique



Cliques in a graph:

A subgraph that is a clique.

What is the size of the largest clique in G?

### **Graph Complements**



$$\bar{G} = (V, \bar{E})$$
=Complement of  $G = (V, E)$ 

- Graph on the same of vertices
- $(u,v) \notin E \text{ iff } (u,v) \in \overline{E}$



**Thm.** S is an independent set in G iff S is a clique in  $\overline{G}$ 

Pf. S is an independent set. So, For every  $u, v \in S$ ,  $(u, v) \notin E$  i.e.,  $\forall u, v \in S$ ,  $(u, v) \in \overline{E}$  Hence S is a clique in  $\overline{G}$ 

## Relations b/w Graph Properties

Given graph G(V, E):

what is the size of the maximum independent set in *G* (independent set with largest number of vertices)?

- a) = size of the maximum clique in  $\bar{G}$ ?
- b) = size of the maximum clique in G?
- c) = size of the maximum independent set in  $\bar{G}$ ?
- d) None of the above
- e) All of the above

## **Graph Coloring**

A graph G(V, E) is k- colorable (vertex) if each vertex can be colored with one of k colors such that each edge is not monochromatic i.e. if  $(u, v) \in E$  then u, v have different colors.



*Is this graph 3-colorable?* 

*Is this graph 2-colorable?* 

#### Color Classes

What can you say about each color class i.e. all the vertices of



Each color class is an independent set

**Theorem.** If a graph on n vertices is k-colorable, then the size of the maximum independent set  $\geq$  ?

Thank you!