DSC5103 Statistics

Session 2. The K-Nearest Neighbor Algorithm

Last time

- Out-of-sample prediction performance as the correct measure
- The Bias-Variance decomposition and trade-off

Simulation Fundamentals

f()

- Play the God's role and generate data with a known mechanism
- Stochastic models
 - Random variables, their distributions and parameters
 - The relationship among variables, dependency structures
- Monte Carlo simulation
 - Use computer to simulate outcomes of a stochastic model
 - To mimic the process of obtaining a sample from the population
 - By comparing the known population parameters and the estimates made from the sample, we can better evaluate our estimation methods

Simulation in R

- Simulating random variables with a known distribution
 - Random sampling sample)
 - Uniform [win, max)
 - Poisson) (mean), {0,1,2, ---}
 - Binomial N, P

{0,1,2,-...n}

- Normal U, 5

-60, +60 M

\[
 \sum_{0,0^{1}}
 \]

- Multivariate Normal un (24 24) Tou Prus
- Simulating stochastic models
 - A 1-D linear model $y = \beta_0 + \beta_1 \times + \xi$
- BO, B, ENNO,00), (

- A 2-D classification example

Prob. Functions in R: unit, binom, norm, pois, munorm

 $\frac{V \text{ norm}(n, u, \sigma)}{=}$: Simulate n points

d norm (x, u, o): PDF (Prob. density func)

$$P \text{ norm } (X, U, \sigma^2) : CDF$$

q norm (p, u, 52): quantile

K-Nearest Neighbors (KNN)

- k Nearest Neighbors is a flexible nonparametric approach for both regression and classification.
- For any given X, we find the k closest neighbors to X in the training data, and examine their corresponding Y. We use
 - the average of the neighbors' Y as prediction for regression;
 - the **majority votes** of the neighbors' Y as prediction for classification.

The smaller that k is, the more flexible the method will be.

High Var) K=1 + K=N (y=y) (high Bins)

!!!BE CAREFINDS!!!Flexible K

Least flexible (low Var)

- How to define "closest"? How to measure distance in the space of $X? \Rightarrow \text{Normalize}$
- Categorical X?
- Dimensionality??Variable selection???

KNN Example with k = 3

Optimal Classifier

Simulated Data: K = 10

KNN: K=10

K = 1 and K = 100

KNN: K=1 KNN: K=100

KNN Demo in R

A regression problem using KNN

- Applying KNN on the Mixture Example
 - https://web.stanford.edu/~hastie/ElemStatLearn/datasets/mixture.example.info.txt

- Homework 1
 - Learn RMarkdown (http://rmarkdown.rstudio.com/)
 - Test the curse of dimensionality of the KNN algorithm

- Next time:
 - Linear Regression