A	R7901	Pages: 2
A	K/901	rages: 2

Reg No.:	Name:
110	i willo.

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: EC401

Course Name: INFORMATION THEORY & CODING

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

Marks

- 1 a) A source emits one of four symbols S_0 , S_1 , S_2 and S_3 with probabilities 1/3, 1/6, 1/4, 1/4 respectively. The successive symbols emitted by the source are statistically independent. Calculate the entropy of the source.
 - b) If X and Y are discrete random sources and P(X,Y) is their joint probability (12) distribution and is given as

Calculate H(X), H(Y), H(X/Y), H(Y/X), H(X, Y) and I(X,Y).

Verify the formula H(X, Y) = H(X) + H(Y/X).

- 2 a) State Shannon's channel coding theorem. Give its positive and negative (5) statements.
 - b) An information source produces sequences of independent symbols (10) A,B,C,D,E,F,G with corresponding probabilities 1/3,1/27,1/3,1/9,1/9,1/27,1/27. Construct a binary code and determine its efficiency and redundancy using
 - i) Shannon –Fano coding procedure
 - ii) Huffman coding procedure.
- 3 a) What is meant by a symmetric channel? How do we find the capacity? (5)
 - b) Discuss binary symmetric and binary erasure channel? Draw the channel (10) diagrams and derive the expressions for their channel capacities.

PART B

Answer any two full questions, each carries 15 marks.

4 a) The parity matrix of a (6,3) linear systematic block code is given below. (7)

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Construct standard array.

- b) State and derive Shannon-Hartley theorem. Explain the implications. (8)
- 5 a) Derive the expression for channel capacity when bandwidth becomes infinite. (7)

A R7901 Pages: 2

- b) A voice grade channel of the telephone network has a bandwidth of 3.4 KHz. (8)
 - (a) Calculate channel capacity of the telephone channel for signal to noise ratio of 30 dB.
 - (b) Calculate the minimum SNR required to support information transmission through the telephone channel at the rate of 4800 bits/sec.
- 6 a) Define ring and field. Discuss properties. (5)
 - b) The parity matrix for a (7,4) linear block code is given below: (10)

$$[P] = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

- i) Find generator and parity check matrices
- ii) Draw the encoder circuit.
- iii) Sketch the syndrome calculation circuit
- iv) Illustrate the decoding of the received vector corresponding to the message vector 1001, if it is received with 5th bit in error.

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Draw a (2, 1,3) convolutional encoder with [1, 0, 1, 1] and [1, 1, 1, 1] as the (8) impulse responses. Find the output of the convolutional encoder for input sequence 11011 using transform domain approach
 - b) Given $G(D) = [1, 1 + D + D^3]$, design a (2, 1, 3) convolutional encoder of rate = (7) $\frac{1}{2}$.
 - c) Discuss properties of Hamming codes. (5)
- 8 a) Construct a convolution encoder, given rate 1/3, constraint length L = 3. Given (15) $g^{(1)} = (1\ 0\ 0), g^{(2)} = (1\ 0\ 1), g^{(3)} = (1\ 1\ 1)$. Sketch state diagram and trellis diagram of this encoder.
 - b) Discuss syndrome decoding of cyclic code. Draw syndrome decoder circuit for a (5) (15, 9) cyclic code with generator polynomial $g(X)=1+X^3+X^4+X^5+X^6$
- 9 a) Draw a (2,1,2) convolutional encoder with the feedback polynomials as (8) $g_1(X)=1+X+X^2$ and $g_2(X)=1+X^2$. Draw the code tree and trace output for input sequence 10011.
 - b) Discuss generation of Hamming codes. (7)
 - c) What is minimum free distance of a convolutional code? (5)

Ktu 👤 bank