Sr No.	MSc Chemistry
	Find the next term in the series: BMO, EOQ, HQS, ?
Alt1	
	LMN
	sov
Alt4	SOW
2	Choose word from the given options which bears the same relationship to the third word, as the first two bears:
	Misogamy: Marriage:: Misogyny:?
Alt1	Children
	Husband
	Relations
	Women
7.1.0.1	
3	Select the lettered pair that has the same relationship as the original pair of words:
	Indolence : Beaver
Alt1	Elegance: Peacock
	Ferocity: Lamb
	Passivity: Cow
	Joviality: Hyena
7.101	
4	Select the lettered pair that has the same relationship as the original pair of words:
	Man : Humanity
Alt1	Frame: Picture
	Scholar: Books
	Flowers: Fragrance
	Drop: Ocean
5	Choose the set that has the same relationship as in the original:
	Horse: Foal: Mare
Alt1	Sheep: lamb: Goat
Alt2	Lion: Cub: Den
	Man: Child: Woman
	Cat: Kitten: Puppy
6	Spot the defective segment from the following:
	I didn't expect
Alt2	this kind of treatment
Alt3	from your hands
Alt4	this morning
7	Many rural children go to school
	by foot
	by walk
Alt3	on foot

Alt4 on their feet

8	is facing the threat of extinction.
Alt1	Tigers
Alt2	Tiger
Alt3	The tiger
Alt4	A tiger
9	Choose the option closest in meaning to the given word:
	TERSE
Alt1	concise
Alt2	
	rude
	poetic
7.110.1	poetio
10	Choose the antonymous option you consider the best:
10	RETICENT
ΛI+1	communicative
	clamorous
	reserved
	dormant
AIL4	doffilant
11	In each of the fellowing exections come statements are fellowed by two conclusions (i) and (ii). Doed the
11	In each of the following questions some statements are followed by two conclusions (i) and (ii). Read the
	statements carefully and then decide which of the conclsions follow beyond a reasonable doubt. Mark your
	answer as
	Statement: I am a Kashmiri Pandit and feel proud that Indira Gandhi belonged to the same community
	Conclusions: (i) Indira Gandhi is proud of being a Kashmiri Pandit
	(ii) All Kashmiri Pandits feel proud of Indira Gandhi
Alt1	·
Alt2	If only conclusion (ii) follows
	If neither conclusion (i) nor (ii) follows
Alt4	If both the conclusions follow
12	What value should come in place of question mark (?) in the following number series?
	48, ?, 94, 123, 156, 193
Alt1	74
Alt2	65
Alt3	69
Alt4	77
13	If in a certain language CARROM is coded as BZQQNL, which word will be coded as
	HOUSE ?
Alt1	IPVTF
Alt2	GNTRD
	INVRF

Alt4	GPTID
14	Teeth: Chew in the same way as
Alt1	Mind : Think
Alt2	Food : Taste
Alt3	Sweater : Heat
Alt4	Eyes : Flicker
15	The following information is given: Eight persons P, Q, R, S, T, U, V and W are sitting around a rectangular table
	in such a way that two persons sit on each of the four sides of the table facing the centre. Persons sitting on
	opposite sides are exactly opposite to each other. S faces North and sits exactly opposite W. T is on the
	immediate left to W. P and V sit on the same side. V is exactly opposite Q, who is on the immediate right of R. U
	is next to the left of S.
	Who is sitting opposite to P?
Alt1	V
Alt2	S
Alt3	Т
Alt4	R
16	There are 4 prime numbers written in ascending order. The product of the first three is 385, and that of the last
	three is 1001, Find the first number
Alt1	5
Alt2	11
Alt3	29
Alt4	19
17	Mean of the first 10 even numbers is
Alt1	12
Alt2	11
Alt3	14
Alt4	9
18	If you were to spell out the numbers, how far would you have to go before encountering the letter 'A'?
Alt1	91
Alt2	
Alt3	
Alt4	
19	A man starts from his office and goes 5 Kms east, Then he turn to the left and again walks for 3 Kms, he turns
	left and walks 5 kms. At what distance is he from the starting point?
Alt1	
Alt2	4
Alt3	
Alt4	

20	The first person is 100cm tall. Each subsequent person is 20% taller than the previous person. What is the
	Median height of 5 persons.
Alt1	173
Alt2	120
Alt3	144
Alt4	207
21	The estimated molar heat capacity of atomic crystals at high-temperature limit by Einstein solid model is:-
Alt1	1/2 R
Alt2	R
Alt3	3R
Alt4	3/2 R
22	The motion of liquid induced by an applied potential across a porous material is called as:-
Alt1	current density
Alt2	electroosmosis
Alt3	streaming current
Alt4	diffusion
23	fac and mer isomers of [Co(NH3)3Cl3] are:-
Alt1	ionization isomers
Alt2	coordination isomers
Alt3	optical isomers
Alt4	geometrical isomers
24	Which one of the following statements is correct regarding C2 and [N2]-?
	Both C2 and [N2]- are diamagnetic
Alt2	C2 is paramagnetic and [N2]- is diamagnetic
	Both C2 and [N2]- are paramagnetic
	C2 is diamagnetic and [N2]- is paramagnetic
25	Which of the following electronic component is used for converting Alternating Current (AC) to Direct current
	(DC)?
Alt1	p-n-p Transistor
	n-p-n Transistor
	p-n Junction Diode
Alt4	Operational Amplifier
26	Bohr-Sommerfeld model of the hydrogen atom considers:-
	Circular orbit of the electron
Alt2	Elliptical orbit of the electron
	Spiral orbit of the electron
	Elliptical as well as circular orbit of the electron
	•
27	The Haber process is used in the manufacture of:-
	NH3

Alt2 N2H4	
Alt3 N3H	
Alt4 NH2OH	
•	
28 If the enthalpy change for a chemical reaction is negative then the reaction can be:-	
Alt1 thermoneutral type	
Alt2 exothermic	
Alt3 endothermic	
Alt4 not feasible	
29 Correct order of following organic compounds according to increasing dipole moment is:-A: Chlorometha	ne; B:
Formaldehyde; C: acetylene	
Alt1 A>B>C	
Alt2 B>A>C	
Alt3 B>C>A	
Alt4 A>C>B	
30 Structure of [ICl4]- is:-	
Alt1 square planar	
Alt2 trigonal bipyramid	
Alt3 tetrahedral	
Alt4 see-saw	
31 The structure of IF7 is:-	
Alt1 Octahedral	
Alt2 Trigonal bipyramid	
Alt3 Square Pyramid	
Alt4 Pentagonal bipyramid	
32 UF6, which is used in nuclear fuel processing, is produced from:-	
Alt1 U and CIF	
Alt2 U and F2O	
Alt3 U and CIF3	
Alt4 U and F2	
33 In the case of entropy of mixing of gasses, the Gibbs Paradox arises due to obvious mistake in considering	g the
following parameter:-	
Alt1 Improper summation of the mole fractions for the gas	
Alt2 The definition of mole fractions for the same gas,	
Alt3 The treatment of the logarithmic function improperly	
Alt4 The definition of entropy	
34 The hybridization in XeF4 is:-	
Alt1 d2sp2	
Alt2 sp3d3	
Alt3 sp3d2	
Alt4 sp3d	

35	Which of the following statement is the Dulong-Petit law for specific heat of solid at constant volume, Cv?
Alt1	Cv = K Tv, K is a constant, and T the absolute temperature
Alt2	Cv-Cv = R, Cp is the specific heat at constant pressure, R is the universal gas constant,
Alt3	Cv = kT, k is the Boltzmann constant, T the absolute temperature,
Alt4	Cv = 3R, R is the universal gas constant,

36	Identify the product(s) formed in the following reaction:-
	(ii) HgOAc, H ₂ O (ii) NaBH ₄ OH OH HO
	A A B A C A C A
Alt1	C alone
Alt2	A alone
Alt3	A, B and D
Alt4	A and B

37	In the stable conformation of trans-1,4-diemethylcylohexane, two methyl groups are:-
Alt1	axial and β
Alt2	equatorial and β
Alt3	equatorial and α , β
Alt4	axial and α , β

38	B3N3H6 reacts with HCl and gives:-
Alt1	[(BH2)3(NHCl)3]
Alt2	No reaction
Alt3	[(BH2)3(NH2)3]
Alt4	[(BHCl)3(NH2)3]

39	The normalization constant of the function (2 Φ 1- Φ 2- Φ 3) corresponding to the molecule involving 3π orbital is:-
Alt1	1/V2
Alt2	1/v6
Alt3	0
Alt4	1/V4

40	I3- ion is:-
Alt1	planar
Alt2	linear
Alt3	V-shape

Λ I+ <i>Λ</i>	T-shape
All4	Т-знаре
//1	In the case of diamagnetic materials which of the following statement is correct:-
	Magnetic moment is classical in origin
	Net electronic spin magnetic moment of paired electrons in same orbital is nonzero
	Individual electronic spin is spin magnetic moment is zero
	Magnetic moment depends on temperature
7110-1	inagnetic moment depends on temperature
42	The correct order of bond angles (smallest first) in H2S, NH3, BF3 and SiH4 is:-
	H2S < SiH4 < NH3 < BF3
	NH3 < H2S < SiH4 < BF3
	H2S < NH3 < BF3 < SiH4
	H2S < NH3 < SiH4 < BF3
43	An organic compound displayed two singlets at 1.5 and 2.0 ppm. The compound is:-
	isopropyl prionate
	Methyl pivalate
	ethyl isobutyrate
	tert-butyl acetate
44	How many isoprene units are present in α-pinene?
Alt1	4
Alt2	2
Alt3	3
Alt4	1
45	(Limonene)
Alt1	Inversion of configuration at C(4)
	Generation of carbocation at C(8) due protonation of double bond b
Alt3	Generation of carbocation at C(1) due protonation of double bond a
Alt4	Generation of carbanion at C(2)
46	NF3 and NCl3 are covalent; NCl3 undergoes hydrolysis while NF3 does not because:-
Alt1	dipole moment of NF3 is more than NCl3
Alt2	electronegativity of F is greater than Cl
	NF3 is more stable than NCl3
	Clean amount its a state with all solvings
Alt4	Cl can expand its octet with d-orbitals

47 The estimation of rate for unimolecular reaction type is proposed by:-

Alt1 RRK

Alt2	RRKM
Alt3	Lindemann
Alt4	Arrhenius

	1. Me ₃ SiCI, Et ₃ N
	2. EtBr, NaNH ₂
Alt1	Et OSiMe ₃
Alt2	OSiMe ₃
Alt3	Me ₃ Si OEt
	OE1

49	In Downs process, sodium is extracted from:-
Alt1	Na2SO4
Alt2	Na2CO3
Alt3	Na2S
Alt4	NaCl

50	Identify correct statement for the reactivity of the following bromides with soft nuclophiles:-
Alt1	A reacts predominantly via SN1 pathway and B reacts via SN2
Alt2	A reacts predominantly via SN2 pathway and B reacts via SN1
Alt3	A and B react via SN2 pathway
Alt4	A and B react via SN1 pathway

51 Lattice energy is:-

Alt1	directly proportional to the distance between the ions
Alt2	directly proportional to the charge density of the ions
Alt3	inversely proportional to the charge density of the ions
Alt4	not affected by the charge density
52	Iron is an example for substance:-
Alt1	Ferromagnetic
Alt2	Ferrimagnetic
Alt3	diamagnetic
Alt4	antiferromagnetic
53	In NaCl unit cell structure, the Na+ ions and Cl- ions are placed individually have the following Bravis lattice
	structure:-
Alt1	Tetragonal
	Body centered cubic
	Face centered cubic
	Simple cubic
7.110.1	
54	The weakest acid among the following is:-
Alt1	
Alt2	
Alt3	
Alt4	
7.11.1	
55	The electrical conductivity of metals exhibit the following trend:-
	Exhibit trangular wave behaviour
	Remains constant with increase in temperature
	Decreases with increase in temperatures
	Increases with increase in temperatures
7.11.	mercuses with marcuse in temperatures
56	Jahn-Teller distortion is not found in complexes with the following electronic configuration.
	t2g2 eg0
	t2g3 eg1
	t2g3 eg2
	t2g6 eg1
7.11.01	
57	Absorption spectra of aniline in aqueous acid exhibits.
	Hypochromic effect
	Hyperchromic effect
	Bathochromic shift
	Hypsochromic shift
Alt4	Trypsoctrionile strict
5.2	The spin only magnetic moment value of [CoF6]3- is:-
	4.89 BM
	7.9 BM
	0 BM
	3.2 BM
AIL4	DIE DIE

Alt3	n-Pentanol
Alt4	Pentan-3-one

or willen of th	e following statements about the following disaccharide are true
A. Reducing	sugar sugar
	cing sugar <br< td=""></br<>
C. Has two	glucose units
D. Has two	mannose units
E. Undergo	es mutaroration
F. Does not	undergo mutarotation?
HO-	он он
Alt1 A, D and E	
Alt2 B, C and F	A A V P
Alt3 B, D and E	

68	Which one of the following compound is chiral?
Alt1	
Alt2	
Alt3	
Alt4	

69	A function, y = a e-bx, where a and b are two constants, can be converted to the form of a straight line by which
	of the following mathematical operations?
	By taking inverse
	By taking natural logarithm
	By integrating
Alt4	By differentiation
70	If the bond length of H—F molecule is 1.2 Å, and polarized charge at the atoms is 1.0 x 10-10 esu. Then the
	electric dipole moment of the molecule will be:-
	3.16 Debye
	1.2 Debye
	2.16 Debye
Alt4	4.16 Debye
71	A hydrocarbon boils at 350 K at 1 atm pressure. The heat of vaporization of the hydrocarbon is:-
Alt1	7530 cal mol-1
Alt2	3750 cal mol-1
Alt3	7350 cal mol-1
Alt4	735 cal mol-1
72	Which of the following are eigen functions of d/dx?
Alt1	log(x)
Alt2	exp(x)
Alt3	sin(x)
Alt4	xn
73	Which one of the following metals is present in Ziegler-Natta catalyst?
Alt1	
Alt2	Fe
Alt3	
Alt4	
74	When NaCl is heated in presence of sodium vapour, it gives yellow colour. This is due to:-
	F centre
	Frenkel defect
	Schottky defect
	metal deficiency defect
7 (10-7	
75	In ScC2 has some metallic conduction due to the presence of:-
	free Sc2+ ions
	free C22- ions
	free Sc3+ ions
	free electrons
AIL	
76	Which of the following is zero in particle in a box?
	zero-point energy
	average position
711Z	average position

Alt3	average momentum
Alt4	average kinetic energy

77	The major product formed in the following reaction is:-
Alt1	J°
Alt2	Сно
Alt3	℃
Alt4	ОГОН

Alt3	
Alt4	
70 300-6 21000 00	10 N 6961 (200) (1)
The followi	ng conversion can be effected by using:-
	\bigcirc Br \longrightarrow \bigcirc NH ₂
Alt1 (i) H2SO4/CH3CN (ii) N	NaOH
Alt2 NaNH2/THF	
Alt3 (i) NaN3/DMSO (ii) LiA	IH4
Alt4 NH3/CH3CN	
	or does not commute with:-
Alt1 modulus operator	AVA
Alt2 Symmetry operator	
Alt3 Components of anglul	
Alt4 Square of the angular	momentum operator
04 124/15-15-2-2-2-11-2	
81 Which among the fo	ollowing is super acid:-
Alt2 H2SO4	
Alt3 HCl	
Alt4 HSbF6	
82 Hamiltonian operat	or does not commute with:-
Alt1 modulus operator	
Alt2 Symmetry operator	
Alt3 Components of anglu	ar momentum operator
Alt4 Square of the angular	momentum operator
83 Which among the fo	ollowing is super acid:-
Alt1 CF3COOH	
Alt2 H2SO4	
Alt3 HCl	

Alt4 HSbF6

84	The vector 2i+j-k is perpendicular to i-4j+ λ k, where i, j, k are unit vectors, if the value of λ is equal to:-
Alt1	-3
Alt2	-2
Alt3	0
Alt4	-1

Alt1 (i) NBS, CCl4, (ii) Mg, Et2O, (iii) 2-methyloxirane, (iv) aq HCl
Alt2 (i) NBS, CCl4, (ii) 2-methyloxirane, (iii) Mg, Et2O, (iv) aq HCl
Alt3 (i) Mg, Et2O, (ii NBS, CCl4), (iii) 2-methyloxirane, (iv) aq HCl
Alt4 (i) 2-methyloxirane, (ii) NBS, CCl4, , , (iii) aq HCl, (iv) Mg, Et2O

Alt3 H. COOH	
Alt4 H. COOH	

87 The half life, t1/2, for a first order reaction	having rate constant k is given by:-
Alt1 $t1/2 = 0.693/(dk/dt)$, t is the time	
Alt2 t1/2 = 0.693/k½	
Alt3 t1/2 = 0.693/k	
Alt4 t1/2 = 0.693/k3/2	

88	88 Which of the following statement is wrong about simple harmonic oscillator?	
Alt1	Kinetic energy is maximum at maximum displacement	
Alt2	Acceleration is proportional to displacement	
Alt3	Frequency of oscillation is independent of mass	
Alt4	Velocity will be maximum when amplitude is zero	

89	Madelung constant, which is used in the calculation of lattice energy, depends on:-
Alt1	geometry of the crystal
Alt2	the number of ions per unit formula
Alt3	the charge of the anion
Alt4	the charge of the cation

90	What would be product formed in a reaction between 2,7-octanedione and NaOH?
Alt1	Q ²
Alt2	

Alt3	
Alt4	

91	The equation $(x2/a2) - (y2/b2) = 1$ describes a:-	
Alt1	parabola	
Alt2	straight line	
Alt3	hyperbola	
Alt4	circle	

92	Identify the compound which corresponds to the 1H-NMR (200 MHz, CDCl3) data: δ 7.31-7.28 (m, 2H), 6.96-6.88	
	(m, 3H), 3.81 (s, 3H).	
Alt1	Acetophenone	
Alt2	Methyl benzoate	
Alt3	Phenyl acetate	
Alt4	Anisole	

If $z = log(x^2 + y^2)$ then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is:-	
Alt1 2(x2+y2)	
Alt2 1	
Alt3 (x2+y2)	
Alt4 2	

	94 In the differential equation $3(d2y/dx^2) + (dy/dx)^3 = x$, the degree and order is:-
A	lt1 1, 2
A	ult2 3, 3
A	lt3 2, 1
A	lt4 3, 2

95	IUPAC name of [Co(NH3)3Cl3] is:-
Alt1	Triamminetrichlorocobalt(III)
Alt2	Triamminetrichloridocobalt(III)
Alt3	Trichloridotriammoniacobalt(III)
Alt4	Tris(ammonia)trichlorocobalt(III)

96	The integral ∫ sin(x) cos(x) dx in the interval a to +a:-
Alt1	is not zero except for certain values of a and cos(x) is symmetric in this range
Alt2	is zero for any value of a and sin(x) is symmetric in this range
Alt3	is zero for any value of a and cos(x) is symmetric in this range
Alt4	is zero for any value of a and cos(x) is antisymmetric in this range

97	When an electron of charge e is accelerated through a potential of V volts, the associated wavelength, λ , of the electron will be:-
Alt1	$\lambda = \left[\frac{h}{(2meV)} \right]^{t/2}$
Alt2	$\lambda = \frac{h}{(2\text{meV})^{\frac{1}{4}}}$
Alt3	$\lambda = \frac{2meV}{h}$
Alt4	$\lambda = \frac{(2\text{meV})^{\frac{1}{2}}}{h}$

The major product in the following reaction is:- OH H ₂ SO ₄ heat	
Alt1	
Alt2	
Alt3 OSO ₃ H	
Alt4	

100	Which one of the following molecule failed to undergo dehydro-halogenation reaction in presence of NaOCH3 in
	CH3OH?
Alt1	cis-1-Chloro-2-methylcyclohexane
Alt2	2-chloro-1,1,3,3-tetramethylcyclohexane
Alt3	trans-1-Chloro-2-methylcyclohexane
Alt4	1-Chloro-2,2-dimethylcyclohexane

Examination: M.Sc. Chemistry	
Section 1 - Section 1	
Question No.1	4.00 Bookmark
The hybridization of iodine in lcl ₂ ⁺ is	
○ sp ³ d	
○ sp	
C sp ³	
C sp ²	
Question No.2	4.00
Sulfite ion on treatment with O-atom forms sulfate ion. For this observation, which of the follow	Bookmark ☐ wings is
not correct? © Sulfate ion is the electron donor in the formation of dative bond.	
C O-atom behaves as a Lewis base.	
C Sulfate ion donates a pair of electron to O-atom.	
O-atom attains octet configuration.	
Question No.3	4.00 Bookmark
The charge to mass ratio (e/m) of positive particles	
C Varies with the nature of gas in discharge tube	
C Is independent of the gas in discharge tube	
C Is constant	
© None of the above	
Question No.4	4.00
	Bookmark □
Optical activity is shown by a molecule C Contains at least three asymmetric centres	
C Is asymmetric as a whole	
C Contains a double bond	
○ Has a centre of symmetry	
Question No.5	4.00
For an ionic crystal of formula AX, the radius ratio lies between 0.732 and 0.414. Its co-ordir number is	Bookmark ation
0 4	
C 8	
○ 6	
O 12	
Question No.6	4.00
AgCl dissolves in aqueous ammonia and not in water because	Bookmark
C Ammonia is a stronger base than water	
C Chloride has more affinity for ammonia	
C Aqueous ammonia is a better solvent than water	
C Silver ions forms soluble complex with ammonia	

Question No.7
Bookmark □
At infinite dilution, the molar conductance of sodium acetate, hydrochloric acid and sodium chloride are 0.0091, 0.0426 and 0.0126 S m ² mol ⁻¹ , respectively. What would be the molar conductance of acetic acid at that dilution?
© 390 x 10 ⁴
© 0.0039 © 0.039
© 3.9 x 10 ⁻⁴
Question No.8 4.00
Bookmark ☐ During one's first few months in a new culture, one should learn the manners that are customary and .
○ the language that is speaking
the spoken there language
the language that is spoken thereto be speaking language
Question No.9
Bookmark □
The entropy change involved in melting of one gram of a solid at 0° C is cal K^{-1} g^{-1} . [Heat of fusion of the solid = 273 cal/g]
0 0.1
O 1
0 10
C 100
Question No.10 4.00
Bookmark ☐ If Priya was selected, shea good surgeon.
C can make
O will make
C would have made
O would make
Question No.11 4.00
Bookmark Which are of the fellowing is not a primary standard substance to be used in titrimetric and pic?
Which one of the following is not a primary standard substance to be used in titrimetric analysis? © Ferrous ammonium sulfate
C Potassium dichromate
Oxalic acid
© Potassium permanganate
Question No.12 4.00
Bookmark ☐ In nitrate ion the N-O bond distance is observed to be 121 pm, which is shorter than N-O (136 pm)
and longer than N≡O (115 pm). This is due to
© Existence of resonance in the molecule.
 Charge transfer from O-atom to N-atom. Nitrate ion is non-linear.
 Nitrate ion is non-linear. Nitrogen is less electropositive than oxygen.
ogg o o o o o o o o o o o o o o o o

Question No.13 4.00 Bookmark Diborane consists of ----- (2c - 2e) and ----- (3c - 2e) bonds. C 2 and 6 C 4 and 2 C 2 and 3 C 4 and 6 **Question No.14** 4.00 Bookmark The maximum number of 90° angles between bond pair-bond pair of electrons is observed in ----hybridization.

 $^{\circ}$ sp 3 d

 $^{\circ}$ dsp 2

 $^{\circ}$ dsp 3

 $^{\circ}$ sp 3 d 2

Question No.15 4.00

Question No.16	4.00
	Bookmark □
Identify the major product in the following reaction. KMnO ₄	
?	
C ÓH	
→ vOH	
СОН	
ОН	
C OH	
,,он	
C OH	
ОН	
Question No.17	4.00
Question No.17	Bookmark
Which has maximum ionization potential?	DOORHIAI K
○ Na	
○ O+	
00	
○ N	
Question No.18	4.00
	Bookmark □
Which of the following nuclei is unstable?	
C 8 _O 16	
○ ⁴ Be ¹⁰	
C 5 _B 10	
○ 7 _N 14	
Question No.19	4.00
Identify the advert in the following centence:	Bookmark □
Identify the adverb in the following sentence: We started early in order to see the sunrise.	
© to see	
© early	
C started	
© in order	
Unitorial Control of the Control of	

Question No.20	4.00
Pick the more acidic compound from the lot.	Bookmark <u></u> ☐
C Br	
СООН	
С СООН	
Br	
C NO ₂	
СООН	
ССООН	
	4
Question No.21	4.00
Inert pair effect is shown by	Bookmark □
© D-block	
© S-block	
O B-block	
C F-block	
Question No.22	4.00
Question No.22 Study the following information carefully and answer the question below it	4.00 Bookmark □
Study the following information carefully and answer the question below it	Bookmark
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not ma	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand.	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand?	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand? © Gita	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand? Gita Deepa	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand? © Gita	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand? C Gita C Deepa C Hansa	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand? Gita Deepa Hansa	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand? Gita Deepa Hansa	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand? Gita Deepa Hansa	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand? Gita Deepa Hansa	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand? Gita Deepa Hansa	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand? C Gita C Deepa C Hansa	Bookmark ☐
Study the following information carefully and answer the question below it In a family, Isha is the granddaughter of Asha. Deepa is the mother of Hansa. Charan Anand. Radha is the mother ofIsha. Deepa is the sister of Vinod and Charan. Nagesl children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not mathe daughter-in-law of Anand. Who is the daughter of Anand? C Gita C Deepa C Hansa	Bookmark ☐

Question No.23	4.00 Bookmark
Predict the major product in the following reaction.	DOOKHAIK [
HBr/H ₂ O ₂ ?	
C Br	
C Br Br	
C Br	
C Br Br	
Question No.24	4.00
The metal ion with which one of the following configurations would show strong tetragona	Bookmark ☐ all distortion?
C t ₂ g ³ e _g ²	
ි t ₂ g ⁶ e _g ³	
C t₂g ⁶ e _g ⁴	
○ t ₂ g ⁴ e _g ⁰	
Question No.25	4.00
	Bookmark [
You are looking at an IR spectrum which measures	
v in cm⁻¹. How would you convert the frequency to	
m ⁻¹ ?	
O Divide by 1000	
○ Divide by 100	
C Multiply by 1000 C Multiply by 100	
Question No.26	4.00
Skew conformation is an intermediate arrangement between	Bookmark □
© Enantiomers and diastereomers	
O d and I conformation	
C Cis and trans isomers	
C Eclipsed and staggered forms	

Question No.27 4.00
Bookmark □
The amount of oxalic acid dehydrate required to prepare 10 liters of desi-normal solution is
C 6.3 g
C 63 g
© 0.63 g
© 630 g
Question No.28 4.00
Bookmark □
Amongst the following substituent's in electrophilic substitution reaction the meta directing group is
C -COCH ₃
○ -OH
C -NHCOR
C -NH ₂
Question No.29 4.00
Bookmark □
Which of the following postulates of Debye-Huckel theory is/are true?
The strong electrolyte is completely ionised at all dilutions
 The oppositely charged ions are completely distributed in the solution but the cations tend to be found in the vicinity of anions and vice-versa
O Decrease in equivalent conductance with increase in concentration is due to fall in mobilities
of ions due to inter-ionic effect
○ All of the above
Question No.30
Bookmark [
Porphyrins are © bidentate
C tetradentate
c ambidentate
© triidentate
Question No.31 4.00
Study the following information carefully and answer the question below it:
Aasha, Bhuvnesh, Charan, Danesh, Ekta, Farhan, Ganesh and Himesh are sitting around a circle, facing the centre. Aasha sits fourth to the right of Himesh while second to the left of Farhan. Charan is not the neighbour of Farhan and Bhuvnesh. Danesh sits third to the right of Charan. Himesh never sits
next to Ganesh.
Three of the following are alike in a certain way based on their positions in the seating arrangement and so form a group. Which is the one that does not belong to that group? © DaneshCharan
C Himesh Farhan
© BhuvneshDanesh
○ Ganesh Ekta

Question No.32	4.00
A man complete a journey in 10 hours. He travels first half of the journey at the rate of 21 km/hr and second half at the rate of 24 km/hr. Find the total journey in km. © 224	mark □
ℂ 230	
€ 220	
© 250	
Question No.33	4.00
Which of the following isotope is used for the treatment of leukemia	mark 🗖
⊂ sp ³ d	
○ sp	
○ sp ²	
$^{\circ}$ sp ³	
Question No.34	4.00 mark □
Which one of the following metal ions doesn't form inner-sphere octahedral complex?	nark [_
C Sc(II)	
O Ni(II)	
C Co(III)	
○ Fe(III)	
Question No.35	4.00
The maximum convertibility of heat into work can be achieved by subjecting one mole of an ideal gato the following operations (in sequence).	mark 🗖 as
Adiabatic expansion, isothermal expansion, adiabatic compression and isothermal compression	
 Isothermal expansion, adiabatic expansion, isothermal compression and adiabatic compression 	
 Adiabatic expansion, adiabatic compression, isothermal expansion and adiabatic compression 	
© Isothermal compression, adiabatic compression, adiabatic expansion and isothermal expansion	
Question No.36	4.00
	mark 🗖
The number of unpaired electron present in the HOMO of O_2^{2+} and O_2^{-} are found to be and respectively.	,
© 1 and 0	
C 1 and 1	
© 0 and 0	
○ 0 and 1	

Poolemai	4.00
Bookmai	rk □
If 0.10 M solution of sucrose is reduced to 0.05 M in 10 hours and to 0.025 M in 20 hours through	
fermentation in an enzyme solution, what is the rate constant for the reaction?	
^C 1.9 x 10 ⁻⁵ s ⁻¹	
[○] 0.693 s ⁻¹	
○ 6.93 x 10 ⁻² s ⁻¹	
© 0.01155 s ⁻¹	
0.01100 0	
Question No.38	4.00
Bookmai	rk □
The stereochemical character of S_N^2 reaction is	
○ retention	
© racemization	
© reduction	
C inversion	
Question No.39	4.00
Bookmal	
The formula used for the determination of surface tension by capillary rise method is	-
$^{\circ}$ 2 $\gamma = \pi hr^2 dg$	
^O 2 γ = hr ² dg	
C 2 γ = hrdg	
C 2 γ = π r cos θ	
Question No.40	4.00
Bookman	
Bookman Choose the correct meaning to the italicized idiom.	
Bookman Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter.	
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. C To have same opinion	
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. C To have same opinion C To give a correct decision	
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. C To have same opinion C To give a correct decision C To have the same eyesight	
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. C To have same opinion C To give a correct decision	
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. C To have same opinion C To give a correct decision C To have the same eyesight	
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. To have same opinion To give a correct decision To have the same eyesight To obtain suitable punishment Question No.41 Bookman	rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. C To have same opinion C To give a correct decision C To have the same eyesight C To obtain suitable punishment Question No.41 Bookman Which of the following represent equilibrium constants?	rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. To have same opinion To give a correct decision To have the same eyesight To obtain suitable punishment Question No.41 Bookman Which of the following represent equilibrium constants? Weak acid or weak base dissociation constant	rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. C To have same opinion C To give a correct decision C To have the same eyesight C To obtain suitable punishment Question No.41 Bookman Which of the following represent equilibrium constants?	rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. To have same opinion To give a correct decision To have the same eyesight To obtain suitable punishment Question No.41 Bookman Which of the following represent equilibrium constants? Weak acid or weak base dissociation constant	rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. To have same opinion To give a correct decision To have the same eyesight To obtain suitable punishment Question No.41 Bookman Which of the following represent equilibrium constants? Weak acid or weak base dissociation constant K _C for a reaction	rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. To have same opinion To give a correct decision To have the same eyesight To obtain suitable punishment Question No.41 Bookman Which of the following represent equilibrium constants? Weak acid or weak base dissociation constant K _C for a reaction Concentration of a strong acid in water (a) and (b) represent equilibrium constants	rk □ 4.00 rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. To have same opinion To give a correct decision To have the same eyesight To obtain suitable punishment Question No.41 Bookman Which of the following represent equilibrium constants? Weak acid or weak base dissociation constant K _C for a reaction Concentration of a strong acid in water (a) and (b) represent equilibrium constants Question No.42	4.00 rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. To have same opinion To give a correct decision To have the same eyesight To obtain suitable punishment Question No.41 Bookman Which of the following represent equilibrium constants? Weak acid or weak base dissociation constant K _C for a reaction Concentration of a strong acid in water (a) and (b) represent equilibrium constants	4.00 rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. To have same opinion To give a correct decision To have the same eyesight To obtain suitable punishment Question No.41 Bookman Which of the following represent equilibrium constants? Weak acid or weak base dissociation constant K _C for a reaction Concentration of a strong acid in water (a) and (b) represent equilibrium constants Question No.42 Bookman	4.00 rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. To have same opinion To give a correct decision To have the same eyesight To obtain suitable punishment Question No.41 Which of the following represent equilibrium constants? Weak acid or weak base dissociation constant K _C for a reaction Concentration of a strong acid in water (a) and (b) represent equilibrium constants Question No.42 Bookman A regular cubic system consists of planes and axes of symmetry.	4.00 rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. C To have same opinion To give a correct decision To have the same eyesight To obtain suitable punishment Question No.41 Which of the following represent equilibrium constants? Weak acid or weak base dissociation constant K _C for a reaction C concentration of a strong acid in water C (a) and (b) represent equilibrium constants Question No.42 A regular cubic system consists of planes and axes of symmetry. C 6 and 12	4.00 rk □
Choose the correct meaning to the italicized idiom. Vijay does not see eye to eye with me in this matter. C To have same opinion To give a correct decision To have the same eyesight To obtain suitable punishment Question No.41 Bookman Which of the following represent equilibrium constants? Weak acid or weak base dissociation constant K _C for a reaction C concentration of a strong acid in water C (a) and (b) represent equilibrium constants Question No.42 A regular cubic system consists of planes and axes of symmetry. C 6 and 12 C 4 and 1	4.00 rk -

Question No.43	4.00
The total number of atoms in a body centred cubic unit cell is	Bookmark □
O 3	
O 4	
0.1	
O 2	
Question No.44	4.00
Which one of the following conditions represents a spontaneous reaction?	Bookmark □
\circ Δ S = positive	
O ΔG = 0	
C ΔH = negative	
O ΔG = negative	
Question No.45	4.00
	Bookmark □
Which one of the followings will not obey 18 electron rule?	A
© [Mn(CO) ₅]	W
© [Mn ₂ (CO) ₁₀]	
C [Fe(CO) ₄] ²⁻	
○ [Fe(CO) ₅]	
The correct IUPAC name of the compound NH2 NH2 C 2-aminopyrrole C 3-aminopyridine C 2-aminopyridine C 3-aminopyrrole C 3-aminopyrrole C 3-aminopyrrole	4.00 Bookmark □
While titrating 0.1 M acetic acid taken in a clean conical flask against 0.1 M sodium hydroxide titrant, what would be the pH value of the solution in the conical flask initially? [Given that: the dissociation constant of acetic acid is 0.000018 C 1.8 C 0.18 C 2.87 C 7.000018	4.00 Bookmark ☐ e as

Question No.48	4.00 Bookmark
At isoelectric point the conjugate acid of glycine is	
CHACH COO-	
© H ₂ NCH ₂ COOH	
© H ₃ N ⁺ CH ₂ COO ⁻	
11314 6112666	
Question No.49	4.00 Bookmark □
Which of the following is not aromatic	
∘ ⊕	
\wedge	
	· 1/1/2 ·
	-1187
o (H)	
Question No.50	4.00
13, 35, 57, 79, 911, ?	Bookmark
c 1311	
C 1315	
O 1113 O 1112	
Question No.51	4.00
Choose the correct meaning of the italicized idiom.	Bookmark □
The father was right in giving a <i>piece of his mind</i> to the son. © Speaking sadly	
© Speaking sauly © Speaking cheerfully	
C Speaking sharply	
○ Speaking kindly	

Question No.52	4.00
Differentiate the following equation: $y = 6x^{-3}$	Bookmark □
$\frac{dy}{dx} = -3x^{-2}$	
$\frac{\mathrm{C}}{\mathrm{d}x} = -18x^{-2}$	
$\frac{\mathrm{d}y}{\mathrm{d}x} = -12x^{-3}$	
$\frac{dy}{dx} = -18x^{-4}$	
Question No.53	4.00 Bookmark □
John teller effect affects the geometry of © [Ni(NH ₃) ₆] ²⁺	
© [MnCl4] ²⁻	A A A
© [NiCl ₄] ² -	//A
ି [Cu(NH ₃) ₆] ²⁺	
Question No.54	4.00 Bookmark
In cubic close packed (ccp) pattern of a metallic crystal, the co-ordination number is	
O 4 O 12	
○ 6	
Question No.55	4.00 Bookmark □
Soret band is an intense absorption band in the near UV region of a heme protein. $ \overset{\circ}{\Pi} {\longrightarrow} {\sigma}^{\star} $	
° n →π* ° <mark>π→π*</mark>	
$^{\circ}$ $\sigma \rightarrow \pi^{\star}$	

Question No.56 4.00 Bookmark [The standard electrode potential for the conversion of Cr(III) to Cr(VI) is -1.33 V. Which one of the following statements is not correct? Cr(III) cannot lose three electrons spontaneously. Cr(VI) can act as an oxidizing agent. Cr(VI) is not a reducing agent. Cr(III) is an oxidizing agent. **Question No.57** 4.00 Bookmark [The number of unshared electrons present on the carbon atom of carbene is 0.1 0 2 \circ 3 04 **Question No.58** 4.00 Bookmark □ Find the determinant of (2 5 8) 5 3 7 (4 6 9) C 29 C -89 C 199 C 259 **Question No.59** 4.00 Which one of the following complexes would have relatively lower CFSE value? $^{\circ}$ [Ni(H₂O)₆]²⁺ $^{\circ}$ [Co(NH₃)₆]³⁺ $^{\circ}$ [Mn(H₂O)₆]²⁴ C [CoF₆]³⁻ **Question No.60** 4.00 Predict the major product of the following reaction.

Question No.61	4.00
Choose the best antonym of the italicized word.	Bookmark
Keerthi did not like her husband being <i>obsequious</i> to his boss.	
© gentle	
○ indifferent	
○ defiant	
C courteous	
Question No.62	4.00
Satements: All dogs are tall, All cats are tall. Conclusion:	Bookmark
I.All dogs are cat	
II. All cats are dogs	
Off neither I nor II follows	
O If either I or II follows	
If only conclusion I follows	
C If only conclusion II follows	
Question No.63	4.00 Bookmark
In the following question, the first two words (given in italics) have a definite relationship one word out of the given four alternatives which will fill the blank space and showthe sa relationship with the third word as between the first two.	Choose
Orange is to Peel as Tooth is to?	
O Joints	
© Gums	
○ Brush	
Question No.64	4.00
Which one of the followings is correct in an isothermal expansion of an ideal gas?	Bookmark
$\triangle U = + \text{ and } \triangle H = 0$	
$\bigcirc \Delta U = 0$ and $\Delta H = +$	
$\bigcirc \Delta U = + \text{ and } \Delta H = +$	
$\triangle U = 0$ and $\triangle H = 0$	
Question No.65	4.00
	Bookmark
Steam is passed on iron rod which forms iron oxide and hydrogen. If the reactants and pre-equilibrium, the number of components and phases present are, respectively.	oducts are in
C 1 and 2	
© 3 and 3	
C 4 and 2	
O 4 and 3	

Question No.66	4.00
Which of the following iron complex is involved in electron transfer in plants and bacteria?	ookmark 🗆
© Transferin	
○ Ferrintin	
○ Myoglobin	
© Ferridoxins	
Question No.67	4.00
	4.00 ookmark □
-I effect is largest for	
O Br	
O F	
O CI	
O I	
Question No.68	4.00
	ookmark 🗆
The entropy of the system increases in the order Gas < liquid < solid	
O Solid< liquid< gas	
O Gas	
O None of these	
Question No.69	4.00
How many geometrical isomers are possible for [Mabcd]? Where a, b, c and d are modentate	ookmark 🗆
ligands.	
O Three	
One	
O Four	
○ Two	
Question No.70	4.00
What is the effective atomic number of the metal atom in ferrocence?	ookmark 🗆
C 18	
C 50	
C 36	
○ 26	
Question No.71	4.00
	ookmark 🗆
Adsorbate is that substance	
Which concentrates on the surface	
Where adsorption takes place Which evaporates from the surface of metals.	
 Which evaporates from the surface of metals None of these 	
O NOTE OF LIESE	

Question No.72	4.00 Bookmark □
The number of photons that pass through a unit area in a unit time is called C Amplitude of light	
O Intensity of light	
Wavelength of lightFrequency of light	
Question No.73	4.00
The hybridization of the carbon atom of the carbocation is of the type	Bookmark \square
^C dsp ²	
○ sp ²	
C sp C sp ³	
Question No.74	4.00
The shape of XeOF ₄ is	Bookmark
© Pyramidal © T-Shaphed	
© Octahedral	
○ Square pyramidal	
Question No.75	4.00 Bookmark □
Based on the information given, answer the below question. 1. A,B,C,D,E and F are travelling in a bus.	
 2. There are two reporters, two mechanics, one photographer and one writer in the group. 3. Photographer A is married to D who is a reporter. 	
4. The writer is married to B who is of the same profession as that of F.	
5. A,B,C,D are two married couples and no one in this belong to the same profession.6. F is the brother of C.	
Which of the following is the pair of mechanics?	
C Cannot be determined C AF	
O BF	
C CE	
Question No.76	4.00 Bookmark □
Which one of the following molecules is optically active?	
O . H	
C=C=C H	
° ~ ‡	
° ~ ů	

Question No.77	4.00
Complete the following nuclear reaction $13Al^{27} + 2He^4 \rightarrow 14P^{30} +?$	Bookmark
On the following fluctual reaction 1971 1 2116 => 141 1	
C _{-1e} 0	
© ₀ n ¹	
© ₁ H ¹	
~ 1 ⁿ .	
Question No.78	4.00
	Bookmark
Study the following information carefully and answer the question below it	
(i) There is a group of five persons- A, B, C, D and E(ii) One of them is manual scavenger, one is sweeper, one is watchman, one is human	scarecrow and
one is grave-digger (iii) Three of them – A, C and grave-digger prefer tea to coffee and two of them – B and prefer coffee to tea	the watchman
(iv) The human scarecrow and D and A are friends to one another but two of these prefe	er coffee to
tea. (v) The manual scavenger is C's brother	
Who is a sweeper?	
○ D	
o C	
OE	
○ A	
Question No.79	4.00
If BAT= 40, AT= 20 then CAT= ?	Bookmark
60	
C 50	
C 43	
€ 80	
Question No.80	4.00
The wavelength of large chiests is of as significance as it is to:	Bookmark
The wavelength of large objects is of no significance as it is too to be measure	
The wavelength of large objects is of no significance as it is too to be measured as Large	
○ Large	

Question No.81	4.00
Which one of the following decay takes place in phosphorescence	Bookmark □
$^{\circ}$ S ₁ \rightarrow S ₀	
$S_1 \rightarrow S_0$ $T_1 \rightarrow S_0$	
$^{\circ} T_2 \longrightarrow T_1$	
$^{\circ} T_2 \longrightarrow S_1$	
Question No.82	4.00 Bookmark
According to Pearson's HSAB principle, which one of the followings doesn't exists in nature O HgS	-
○ MgS ○ Al ₂ O ₃	A .
o CaO	
Question No.83	4.00 Bookmark
Which of the following molecules will not show infrared spectrum O HCI	 →
○ H ₂	
○ H ₂ O ○ CH ₄	
Question No.84	4.00 Bookmark
The cell constant can be obtained by O Dividing specific conductance by observed conductance	
 Multiplying specific conductance by observed conductance 	
 Multiplying specific conductance by equivalent conductance Dividing observed conductance by specific conductance 	
Question No.85	4.00 Bookmark □
Which group of compound does not involve the π - π * transition in UV visible spectroscopy?	
○ Alkenes○ Alcohols	
C Cyanides Azo compounds	
	4.00
Question No.86	4.00 Bookmark ☐
The difference between the molar heat capacity of a gas at constant pressure and at constant is equal to	ant volume
© 1.987 J © 8.314 J	
○ 8.314 kJ/mol ○ 2 kcal	
~ ∠ roai	

Question No.87	4.00
In alkene, electrophilic addition occurs via type of intermediate. © Free radical © carbene	Bookmark <u></u>
C Carbanion C Carbocation	
Question No.88	4.00 Bookmark □
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DOMINATE
Statement: Among all the articles, Prices of laptops show the highest decline from June December 2017. Assumptions: I. Comparative prices of all articles were available from June 2017 to December 2017. II. The prices laptops were higher in the first 6 months than the last 6 months. If neither I nor II is implicit If only assumption II is implicit If both I and II are implicit If only assumption I is implicit	4.00 Bookmark ☐ 2017 to
Question No.90	4.00 Bookmark □
Only after food has been dried it should be stored for later consumption that is should be stored for later consumption should it be stored for later consumption should be stored for later consumption	DOMINATE
Question No.91	4.00 Bookmark □
Choose the best synonym of the italicized word. The security arrangements made for the visiting dignitary were <i>impeccable</i> . © elaborate © flawless	DOMINATE
ଠ grand ଠ tight	

	Question No.92	4.00
	The order of stability of the following is represented correctly in	Bookmark □
	\circ CH ₃ < CF ₃ > C(CF ₃) ₃	
	© CH ₃ > CF ₃ > C(CF ₃) ₃	
	© CH ₃ > CF ₃ < C(CF ₃) ₃	
	\circ CH ₃ CF ₃ C(CF ₃) ₃	
	Question No.93 In a solid lattice, a cation has left a lattice site and is present in interstitial position, the lattice C Schottky defect	4.00 Bookmark ☐ defect is
	© Vacancy defect	
	C Interstitial defect	
	○ Frenkel defect	
_	Question No.94	4.00
	How many isomers of [Co(NH ₃) ₄ (H ₂ O) ₂] ³⁺ C 5 C 4 C 3 C 2	Bookmark
Т	Question No.95	4.00
	2 NO + $Cl_2 \rightarrow 2$ NOC l_2 The rate of the above reaction was found to be doubled when the chlorine concentration is doubled and increases by a factor of eight when the concentrations of both the reactants are doubled. What is the overall order of the reaction?	Bookmark
	○ Four	
	○ Two	
	○ One	
	© Three	

Question No.96 The reagent used in Stobbe condensation is Anhy. AlCl ₃ Zn/HCl KNH ₂ in liq. NH ₃ KOC(CH ₃) ₃	4.00 Bookmark □
 Question No.97 Which three factors affect the rate of a chemical reaction? Temperature, reactant concentration and pressure Temperature, pressure and humidity Temperature, reactant concentration and catalyst Temperature, product concentration and container volume 	4.00 Bookmark ☐
Question No.98 Multi-molecular layers are formed in Chemisorption Physical adsorption Reversible adsorption Absorption	4.00 Bookmark
Choose the missing term:FLP, INS,LPV,? OVXZ ORY SYZ UXZ	4.00 Bookmark □
Question No.100 The metal required in enzymes to maintain sexual maturity and reproduction process is Copper Molybdenum Iron Zinc	4.00 Bookmark ☐