Mikroişlemci Sistemleri

Dr. Öğr. Üyesi Erkan Uslu 14 YTÜ-CE

Ders-14 Konular

- Hafıza Birimleri
- ROM
- Masked ROM
- PROM
- EPROM
- EEPROM
- Flash Memory
- RAM

- SRAM
- DRAM
- Adres Çözümleme
- 8086 Hafiza Birimleri Arayüzü
- Örnekler

ROM (Read Only Memory)

- ROM hafıza birimi çalışması sırasında sadece okunabilir
- ROM **\(\Delta\)** non-volatile : enerjisi kesildiğinde verisi kaybolmaz
- 8086 reset vektöründe bir ROM yerleşiktir

ROM Çeşitleri

- Masked ROM
- PROM (programmable read-only memory)
- EPROM (erasable programmable read-only memory)
- **EEPROM** (electrically erasable programmable read-only memory)
- Flash Memory

Masked ROM

- Üretim aşamasında programlanır
- Kullanıcı tarafından yeniden programlanamaz
- Yüksek miktarda üretim için uygun maliyettedir

PROM

- Sigorta (fuse) link teknolojisi kullanır
- Kullanıcı tarafından 1 kere programlanabilir
 - OTP (one time programmable) olarak da isimlendirilir

EPROM

- Kullanıcı tarafından çok defa silinip yazılabilir
- Silme işleminde tüm içerik silinir
- Silme işlemi UV ışık altında 15-20 dk tutularak yapılır

EEPROM

- Devrede programlanabilir
- Byte seviyesinde tekil silme imkanı var

Flash ROM

- Yığın olarak silinebilir
- EEPROM göre daha az esnektir

4x4 ROM

4x4 ROM
Program:
Adr./Data
0 - A
1 - 3
2 - 5
3 - 7

ROM Blok Diyagram

 2^{n} x m kapasiteli ROM $\overline{OE} \leftrightarrow \overline{RD}$ $\overline{CS} \leftrightarrow Adres çözümleme$

RAM (Random Access Memory)

- RAM **** volatile memory
- Hızlı okuma ve yazma
- Bilgisayarda «main memory» olarak kullanılır
- Random access vs. sequential access

RAM Çeşitleri

- SRAM (static random access memory)
- DRAM (dynamic random access memory)

SRAM

- SRAM çapraz eşleştirilmiş değil kapıları kullanır.
- Hafıza bölgesine yeni bir veri yazılana kadar enerjisi mevcut olduğu sürece veriyi saklar

SRAM Hücresi

WL: word line (adres), BL: bit line (data)

1 Yazma Mantığı SRAM –

• BL=1 and \overline{BL} =0

WL=1

SRAM – 0 Yazma Mantığı

• BL=0 and \overline{BL} =1

• WL=1

SRAM – Okuma Mantığı

WL=1

SRAM Blok Diyagram

 $\frac{RE}{WE} \leftrightarrow \overline{ND}$ $\overline{WE} \leftrightarrow \overline{WR}$ $\overline{CS} \leftrightarrow \text{Adres gözümleme}$ 2" x m kapasiteli SRAM

SRAM İç Yapısı

DRAM

- Kapasite + Transistor çiftlerinden oluşur
- Tuttuğu lojik değer belirli aralıklarla güncellenmek zorundadır
- Her bir hücresi SRAM'a göre entegrede 4 kat daha az yer kaplar
- 0 değeri kayıpsız saklanır, 1 değeri güncellenmezse kaybedilir

DRAM Hücresi

DRAM – 1 Yazma Mantığı

DRAM – 0 Yazma Mantığı

DRAM - Güncelleme

DRAM Blok Diyagramı

DRAM İç Yapısı

8086 Adres Uzayı

- $8086 \rightarrow 20$ adres ucu, 16 veri ucu var
- Hafıza birimleri → 8 veri ucuna sahip
- 8086 → çift adresten 16 bitlik, tek adresten 8 bitlik, çift adresten 8 bitlik işlemleri bir okuma/yazma çevriminde yapmayı desteklemeli

8086 Adres Uzayı

- $20 \text{ uç ile } 2^{20} = 1 \text{M}$ hafıza gözü adreslenebilir
- Hafıza birimi → birim kapasite 1 byte (8 veri ucu)
- 8086 adresleme kapasitesi → 1MB

1MB

8086 Adres Uzayı – çift adresten 8 bit işlem

8086 Adres Uzayı – tek adresten 8 bit işlem

8086 Adres Uzayı – çift adresten 16 bit işlem

8086 Adres Uzayı – tek adresten 16 bit işlem

Adres Çözümleme

- Hafıza ve I/O çipleri ortak veri ve adres yollarını kullanır
- Bir seferde yola veri çıkan tek bir çip sağlamak için ADRES ÇÖZÜMLEME kullanılır
- Hafıza ve I/O çipleri sadece belirli adres aralıklarına yerleştirmek için ADRES ÇÖZÜMLEME gereklidir

Adres Çözümleme (AÇ)

- AÇ lojiği ile hafıza birimi için CS işareti üretilir
 - A1-Ai hafıza biriminin adres uçlarına bağlanır
- A(i+1)-A19 uçları AÇ lojiğine girdi olur
- M/I0 ucu AÇ'de kullanılırsa \rightarrow isolated I/0
- M/IO ucu AÇ'de kullanılmazsa \rightarrow memory mapped I/O
- A0, \overline{BHE} AÇ'de kullanılırsa \rightarrow seperate bank decoder yöntemi
- kullanılıyorsa → seperate bank strobe yöntemi A0, \overline{BHE} ; \overline{RD} , \overline{WR} işaretleri ile birleştirilerek

Isolated I/O – Memory Mapped I/O

Seperate Bank Decoder Seperate Bank Strobe

- aralığına giren çift ve tek adresler için ayrı ayrı Seperate Bank Decoder: Verilen adres CS üretilir
- Seperate Bank Strobe : Verilen adres aralığı için \overline{CS} üretilir, çift ve tek adresler için ayrı okuma/yazma işaretleri üretilir

Seperate Bank Decoder – Seperate Bank Strobe

Adres Çözümleme

- AÇ lojiği için
- Çok girişli NAND kapısı
- Dekoder entegresi
- PAL, PLD (programlanabilir lojik elemanlar)

Adres Çözümleme – 3x8 decoder (74138)

ıc	141	Ω	ш	ш	ш								
SELECTED TU9TUO		NONE	NONE	NONE	$\overline{\underline{\mathrm{Y}0}}$	$\overline{Y1}$	$\overline{\text{Y2}}$	$\overline{\overline{Y3}}$	$\overline{74}$	$\overline{\text{Y5}}$	$\overline{\chi_6}$	$\overline{Y7}$	
		$\overline{Y7}$	ェ	エ	工	工	ェ	エ	ェ	ェ	ェ	ェ	_
	205	<u>Xe</u>	Ξ	ェ	工	ェ	ェ	ェ	ェ	ェ	ェ	_	ェ
PLITS		$\overline{Y5}$	Ξ	エ	工	ェ	ェ	ェ	ェ	ェ	_	ェ	ェ
		$\overline{\mathbf{Y4}}$	Ξ	エ	工	ェ	ェ	ェ	ェ	_	ェ	ェ	ェ
OUTPUTS		$\overline{\mathbf{Y3}}$	Ξ	エ	ェ	I	ェ	ェ	_	ェ	ェ	ェ	ェ
		$\overline{Y2}$	ェ	エ	工	I	ェ	_	ェ	ェ	ェ	ェ	ェ
		$\overline{\underline{Y1}}$	ェ	エ	工	I	_	ェ	ェ	ェ	ェ	ェ	ェ
		<u>X0</u>	Ξ	工	工	_	ェ	ェ	工	工	ェ	工	工
	F	4	×	×	×	_	エ		エ	_	ェ	_	ェ
	SELECT	8	×	×	×	_	_	ェ	ェ	_	_	ェ	ェ
S	S	ပ	×	×	×	_	_	_	_	工	I	工	I
INPUTS	ш	<u>E3</u>	×	エ	×	_	_	_	_	_	_	_	_
	ENABLE	<u>E2</u>	×	×	ェ	_	_	_	_	_	_	_	_
	ш	E1	_	×	×	工	工	エ	ェ	工	ェ	ェ	ェ

X : Don't Care, L : Low, H : High

3228	Y4 Y5 Y6 Y7
▼ 四 ∪	E2 E3
	100

Adres Çözümleme – 2x4 decoder (74139)

SELECTED OUTPUT			NONE	$\overline{ ext{Y0}}$	$\overline{ ext{Y1}}$	$\overline{\text{Y2}}$	<u>Y3</u>
· ·	^	$\overline{\mathbf{Y3}}$	ェ	エ	ェ	ェ	_
Ě	0017013	<u>Y2</u>	ェ	エ	ェ	_	ェ
<u> </u>	_ 	$\overline{Y1}$	ェ	ェ	_	I	ェ
		<u>X0</u>	Ξ	_	ェ	ェ	エ
INPUTS	SELECT	4	×	_	ェ	_	ェ
		8	×	_	_	ェ	エ
	ENABLE	$\overline{m{E}}$	エ	_	_	_	_

X : Don't Care, L : Low, H : High