

מעבדה בהנדסת חשמל 1א' 044157

ניסוי SV1 תדריך מעבדה ודוח סיכום

גרסה 1.61 קיץ תשפ"ב 2022

תאריך	שם המדריך בפועל	ביצוע עד סעיף	מועד
4.8.22			ביצוע הניסוי
			השלמת חלקים חסרים

שם משפחה	שם פרטי	סטודנט
שטרנליכט	עמיחי	1
לוגסי	יקיר	2

תוכן עניינים

4	התאמת ה- mux מדוח ההכנה	1
5	1.1 סינתזה	
6	1.2 הקצאת הדקים וצריבה לכרטיס	
7	מונה סינכרוני עם קפיצות	2
8	2.1 צריבה לכרטיס	
9	מונה מתנפח	3
9	3.1 הגדרת הבעיה והפתרון שלה	
11	3.2 מימוש משווה	
11	3.2.1 כתיבת קוד	
12	Control-Path-סימולציה ל 3.2.2	
13	Data-Path-לציה ל-3.2.3	
14	(slow/fast) מימוש מונה 3.3	
15	3.3.1 סינתזה	
16	3.3.2 סימולציה	
17	3.4 מימוש המונה המתנפח כתכן הירארכי בקוד SystemVerilog	
18	3.4.1 שרטוט "גרפי" של המימוש ב-SV	
19	3.4.2 סימולציה למונה המתנפח	
20	המונה המתנפח בתכן הירארכי גרפי	4
20	אכיטקטורה 4.1	
21	4.2 הוספת מודולים שלך לשרטוט	
21	שעון של קצב $-1~\mathrm{Hz}$ סעיף הסבר, לא לביצוע 4.3	
22	4.4 מונה מתנפח הירארכיה עליונה	
23	4.4.1 סימולציה למכלול המלא	
25	4.4.2 הקצאת הדקים	
26	4.4.3 צריבה לכרטיס והדגמה	
26	גבוי העבודה	5

הערות לפני תחילת העבודה:

מטרות ניסוי זה היא לתרגל:

- SV כתיבת קוד בשפת -
- כתיבת מונים סינכרוניים
 - תכן הירארכי בתוכנה
 - תכן הירארכי גרפי -

https://youtu.be/hlaMRqzOvPo58 באו את הסרטון שמתאר את תכני המעבדה:

ראו גם את הסרטון בו השתמשתם במעבדה הקודמת על טיפול בקבצים

רשום את השעה בה התחלת את המעבדה: 14:55

1 התאמת ה- mux מדוח ההכנה

מטרה: להוסיף מודול לפרויקט ע"י שינוי במודול קיים.

1. הורד מהמודל ופתח את קובץ הארכיב ששמרת בסיום עבודת ההכנה למעבדת SV1.

שים לב לא לשמור אוטומטית בשם שמציעים לך אלא:

- שמור את הקובץ ב desktop שלך בתיקייה שתייצר עבור מעבדה זו ופתח אותו לפרויקט בתיקייה הנ"ל בשם עם התאריך של יום המעבדה. (הקפד לא להשאירו בתיקית downloads).
 - שים לב להשתמש בתיקיה קרובה ל- DESKTOP ושאינה עמוק בעץ.
 - .mux 4to1 if.sv קומבינטורי IF בעזרת משפט MUX מימוש ה- 2
- 3. שנה את שם המודול ל- mux 2to1 if של סיבית אחת.
 - הרגילה השמירה הקובץ (ע"י פקודת שמרה לשם המודול שמור את הקובץ המצומצם בשם אחר שמור שמור שמור שמור את הקובץ (ע"י פקודת השמירה הרגילה (File -> Save as

הוסף את הקוד המעודכן לדוח:

```
module mux_2tol_if
(
   input logic [1:0] datain,
   input logic select,
   output logic outd
);

always_comb
begin
   outd = 0;
   if(select == 1'b0) begin
      outd = datain[0];
   end
   else if(select == 1'b1) begin
   outd = datain[1];
   end
end
end
```

1.1 סינתזה

- Analysis & Synthesis סינתזה סינתזה. 1
- 2. בדוק ששמות הכניסות/יציאות שלך מתאימים לקובץ ההדקים הנתון לך. אם לא, התאם לפי הצורך.

שים לב: אם עשית שינויים, ובכלל אחרי כל שינוי בקובץ ההדקים, יש לבצע:

- (Assignmemnts -> Remove assignments -> All) הסרת כל הדקים (Tools -> TCL Scripts -> Run והרצת קובץ הדקים

1.2 הקצאת הדקים וצריבה לכרטיס

- .*.tcl -הרץ את קובץ ה- 1
- .2 בצע קומפילציה מלאה Compilation לתכן.

(ALMS) שים לב: תמיד לוודא בסיכום הקומפילציה המלאה שהוקצו יותר מ- 0 מודולים לפרויקט.

3. הצג את ה- PIN PLANNER הכולל את הקצאת ההדקים. בדוק שהיא נכונה ושכל הכניסות והיציאות הוגדרו בדוק שהיא נכונה ושכל הפינים הוגדר שלכל הפינים הוגדר שלכל הפינים הוגדר שלכל הפינים הוגדרו בדע מחדש.

הוסף את השורות הרלוונטיות של ה- PIN PLANNER לדוח.

Node Name	Direction	Location	I/O Bank	VREF Group	I/O Standard
in_ datain[1]	Input	PIN_AA15	3B	B3B_N0	3.3-V LVTTL
in_ datain[0]	Input	PIN_AA14	3B	B3B_N0	3.3-V LVTTL
outd outd	Output	PIN_AA24	5A	B5A_N0	3.3-V LVTTL
select	Input	PIN_AB30	5B	B5B_N0	3.3-V LVTTL

4. הורד את התכן לכרטיס.

הגדר מה תרצה לבדוק על הכרטיס, כדי להראות פעולה תקינה של המערכת.

תשובה: כאשר ה-select פעיל (sw0 למעלה), נרצה לבדוק האם היציאה (ledr0) מקבלת את select (croin tasin (sw0), נרצה לבדוק האם היציאה (sw0) למטה), נרצה ערך הכניסה (adtain[1] (המשויך ל-key3), מקבלת את ערך הכניסה (datain[0] (המשויך ל-key2).

.5 בדוק שהמערכת פועלת כנדרש על הכרטיס.

קרא למדריך, רשום את השעה בה הוא ראה את המעגל:

2 מונה סינכרוני עם קפיצות

מטרה: לבדוק מעגל שנכתב בעבודת הכנה, על הכרטיס.

- .1 אל הפרויקט TOP מעבודת את קובץ קשיצות קפיצות קפיצות של קפיצות את קובץ את קובץ המונה ל
- 2. בדוק ששמות הכניסות/יציאות שלך מתאימים לקובץ ההדקים הנתון לך. אם לא, התאם לפי הצורך והרץ קובץ הדקים.
 - .PIN PLANNER -הרץ קומפילציה מלאה לתכן והצג את ה- 3

הוסף את סיכום הקומפילציה המלאה וטבלת ההדקים הרלוונטים מה- PIN רדו"ח.

Flow Status	Successful - Thu Aug 04 15:22:51 2022	
Quartus Prime Version	17.0.0 Build 595 04/25/2017 SJ Standard Edition	
Revision Name	SV1Exs	
Top-level Entity Name	jmp_counter	
Family	Cyclone V	
Device	5CSXFC6D6F31C6	
Timing Models	Final	
Logic utilization (in ALMs)	3 / 41,910 (< 1 %)	
Total registers	8	
Total pins	6 / 499 (1%)	
Total virtual pins	0	
Total block memory bits	0 / 5,662,720 (0 %)	
Total DSP Blocks	0 / 112 (0 %)	
Total HSSI RX PCSs	0/9(0%)	
Total HSSI PMA RX Deserializers	0/9(0%)	
Total HSSI TX PCSs	0/9(0%)	
Total HSSI PMA TX Serializers	0/9(0%)	
Total PLLs	0 / 15 (0 %)	
Total DLLs	0 / 4 (0 %)	

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standar
in_ clk	Input	PIN_AK4	3B	B3B_N0	PIN_AK4	3.3-V LVTTL
count[3]	Output	PIN_AG25	4A	B4A_N0	PIN_AG25	3.3-V LVTTL
out count[2]	Output	PIN_AD24	4A	B4A_N0	PIN_AD24	3.3-V LVTTL
out count[1]	Output	PIN_AC23	4A	B4A_N0	PIN_AC23	3.3-V LVTTL
out count[0]	Output	PIN_AB23	5A	B5A_N0	PIN_AB23	3.3-V LVTTL
in_ resetN	Input	PIN_AJ4	3B	B3B_N0	PIN_AJ4	3.3-V LVTTL

2.1 צריבה לכרטיס

1. צרוב את תכן המונה עם הקפיצות לכרטיס.

! והשעון resetN המופעל ידנית, נקבעו לשני לחצנים, זהה אותם resetN שים לב

.2 בדוק שהמונה עובד נכון על הכרטיס.

קרא למדריך, רשום את השעה בה הוא ראה את המעגל:

3 מונה מתנפח

מטרה: בתרגיל זה יש לממש מונה מתנפח בקוד, מונה זהה לזה שנבנה במעבדת תכן סכמתי.

3.1 הגדרת הבעיה והפתרון שלה

נחזור על ההגדרה של מונה מתנפח: שיא הספירה של המונה המתנפח הולך וגדל עם כל מחזור ספירה. בתחילת הספירה (מיד לאחר איפוס המונה) הספירה המרבית היא 0:

https://youtu.be/fJsrXKCBbj8 ראו את הסרטון שמתאר את המשימה

:הגדרת הדרישות

בשלב הראשון נבנה מונה מתנפח בעל שתי יציאות בינאריות. לשם כך יש להשתמש בשני מונים בינאריים עולים וברכיב משווה.

<u>בשלב השני</u> נרחיב את המונה המתנפח בהירארכיה עליונה לעבודה אוטומטית עם שעון הכרטיס ולהצוגת הספירה על תצוגת 7Seg.

נתחיל עם השלב הראשון ונבנה מונה מתנפח בתוכנה.

הבעיה (בנית מונה מתנפח) והפתרון העקרוני שלה מוצגים בדיאגרמה הבאה.

הסימבול של מונה מתנפח צריך להיראות כך:

להלן דוגמה לתוצאות סימולציה של מונה מתנפח:

הגדרת Interface של המונה המתנפח בשלב

SIGNAL		
clk	Manual	Input from key
resetN	Active low – asynchronic	Key
enable	Active high - synchronic	Key
SlowCount[3:0]	Output vector	Leds
FastCount[3:0]	Output vector	Leds

נתחיל עם הבניה של כל אחד מהרכיבים הדרושים למונה המתנפח, תחילה המשווה ואז המונה. אחר כך נחבר את שלושת הרכיבים למימוש המונה המתנפח.

3.2 מימוש משווה

3.2.1 כתיבת קוד

.comparator.sv. שלד של שלד של שהוא שלד של קובץ

1. השלם את הקוד החסר לפי הלוגיקה הנתונה להלן.

	cmp
Vect1[30] == Vect2[30]	1
Vect1[30] != Vect2[30]	0

2. הרץ סינתזה מוצלחת לקראת סימולציה.

הוסף את הקוד השלם לדו"ח.

```
module comparator

(
    // Input, Output Ports
    input logic [3:0] vect1,
    input logic [3:0] vect2,
    output logic cmp
    );

// Combinatorial logic
    assign cmp = (vect1==vect2) ? 1 : 0;
endmodule
```

הבאים. כיון שיש 256 קומבינציות אפשריות, נחלק את הסימולציה לשני שלבים, כמתואר בסעיפים הבאים.

2.2.2 סימולציה ל- Control-Path

הנחיה: בשלב הראשון נבדוק את הלוגיקה בעלת שני מצבים: כניסות שוות וכניסות שונות.

1. לכן בדוק בסימולציה זו רק שנים-שלושה מקרים (מדגם) מתוך כל האפשרויות.

יש לפרט את המצבים שתרצה לבדוק במקרה זה:

תשובה:

שמנו בכל אחת מהכניסות אות כניסה מסוג counter בתדרים שונים וזרים (כלומר לא כפולות אחד של השני בכל אחת מהכניסות אות כניסה מסוג בדקנו מה יהיה הערך של המשווה כאשר ערכי שני הווקטורים שווים ל0, לאחר מכן כיצד הוא משתנה כאשר ערך vect2 משתנה ל1, וכן מה ערך המשווה כאשר vect1 גם כן נהיה 1.

2. בצע סימולציה. שים לב להציג את התוצאות כ UNSIGNED ולא כמספר בינארי.

<u>שים לב</u>: באופן כללי הקפד בכל הסימולציות להציג את התוצאות כ- UNSIGNED או HEX ולא כמספר בינארי, כשרלוונטי. כמו כן, ניתן להוסיף לדוח יותר מתמונה אחת כדי להציג מצבים שונים בסימולציה ומקרי קצה (כגון סיום ספירה והתחלת ספירה מחדש).

| Color | Colo

Data-Path -סימולציה ל 3.2.3

<u>הנחיה</u>: בשלב השני נבדוק את כל צירופי הכניסות: יש לכסות את כל 16*16 = 16*16 הקומבינציות האפשריות. כדי להיות יעילים מומלץ להשתמש בשני מונים בשני קצבים שונים.

הסבר כיצד תגדיר מונים אלה.

תשובה:

כדי לבדוק את כל הקומבינציות בצורה יעילה נגדיר מונה אחד בתדר 1,ומונה שני בתדר פי 16 ממנו, כך לכל ערך של המונה האיטי נבדוק את כל ערכי המונה השני, לאחר מכן החלפנו בין תפקידי המונים בן לכל ערך של המונה האיטי, נבדקים 16 ערכים של בווקטורים כך שנעבור על כל האפשרויות (משום שלכל ערך של המונה האיטי, נבדקים 16 ערכים של המונה המהיר, סהייכ 16*16=256 צירופים).

1. בצע סימולציה. שים לב להציג את התוצאות כ UNSIGNED או HEX ולא כמספר בינארי.

הוסף תוצאות סימולציה לדוח. ניתן להוסיף יותר מתמונה אחת כדי להציג מצבים שונים.

(slow/fast) מימוש מונה 3.3

מטרה: לבנות מונה עולה בתוכנה, כולל פונקציות של טעינת נתונים ואפשור ספירה.

נתונה טבלת האמת שמגדירה את המונה:

resetN	CLOCK_50	enable	loadn	enable_cnt	init[30]	count[30]	
0	X	X	X	X	X	0000	Reset
1	0, 1, ↓	X	X	X	X	previous count	
1	↑	0	X	X	X	previous count	
1	↑	1	0	X	Init[30]	Init[30]	Load
1	↑	1	1	0	X	previous count	
1	<u></u>	1	1	1	X	count+1	Increment

שים לב לממש את פקודות ה- IF לפי סדר ההיראכיה של הטבלה ולבצע הזחות INDENT כדי שהקוד יהיה קריא. כמו כן **הקפד** להשתמש **בלוגיקה סינכרונית** בלבד.

1. פתח את קובץ המונה up_counter . הוסף לו לוגיקה על פי הדרישות בטבלת הנ"ל. מומלץ למחזר חלקים מהקוד של מונה שכבר כתבתם.

3.3.1 סינתזה

1. הרץ סינתזה Analysis & Synthesis היות והשלב הבא הוא סימולציה.

והוסף את הקוד שלך לדו"ח.

```
module up_counter
    // Input, Output Ports
    input logic clk,
    input logic resetN,
    input logic enable,
    input logic enable,
    input logic loadN,
    input logic [3:0] init,
    output logic [3:0] count
);

always_ff @( posedge clk or negedge resetN )
begin

    if (!resetN) begin // Asynchronic reset
        count <= 4'b0;
    end
    else if (!enable) begin
        count <= count;
    end
    else if (!loadN) begin
        count <= init;
    end
    else if (!enable_cnt) begin
        count <= count;
    end
    else begin
        count <= count;
    end
    else begin
        count <= count;
    end
    end
    else begin
    count <= count + 4'b1;
    end
end // always
endmodule</pre>
```

3.3.2 סימולציה

הגדר מה המצבים שתרצה לסמלץ. (יש לפרט את המצבים ולכסות את כל האפשרויות)

תשובה:

נרצה לבדוק את המצבים המתוארים בטבלת האמת, באופן היררכי לפי הדומיננטיות של הרגליים. בהמשך הסימולציה הוספנו אות ריסט / טעינה / אפשור כדי לבדוק שהלוגיקה עובדת באופן תקין גם לאחר תחילת הריצה.

1. בצע סימולציה. שים לב להציג את התוצאות כ UNSIGNED או HEX ולא כמספר בינארי.

הוסף תוצאות סימולציה לדוח.

קרא למדריך, רשום את השעה בה הוא ראה את המעגל: 16:15

3.4 מימוש המונה המתנפח כתכן הירארכי בקוד SystemVerilog

<u>מטרה</u>: לממש את המונה המתנפח על ידי חיבור שני מונים ומשווה. תבנה מימוש זה כתכן הירארכי בתוכנה, ב- SV, על ידי instantiation (הפעלה) של המודולים הנ"ל.

הנחיות:

יש להשתמש בקובץ השלד הנתון לך inflating_counter.sv ולהוסיף את החלקים החסרים תוך קביעת החיבורים המתאימים בין שני המונים והמשווה.

ורפרמ

- יש לחבר את כניסת ה- ENABLE החיצונית לשני המונים. (כי בשלב הבא, בהירארכיה העליונה, נשתמש בה להפעלת המערכת רק פעם אחת בשניה.)
 - יש לתת ערכים לכל הכניסות של המודולים -
 - יש לוודא שלכל הסיגנלים שמות מובנים ומשמעותיים (coding convention).

- השלם את הקוד בקובץ הנתון.
- .2 בצע סינתזה מוצלחת לקוד שלך.

הוסף את הקוד לדו"ח.

SV - שרטוט "גרפי" של המימוש ב 3.4.1

1. בדומה לדו"ח ההכנה, **הצג בצורה גרפית** את מימוש המונה בעזרת ה- RTL Viewer **ובדוק** שהחיבורים שלך נכונים. אם לא, תקן בהתאם.

הוסף RTL VIEW לדו"ח. up_counter:fastC clk enable_cnt enable count[3..0] FastCount[3..0] 4'h0 init[3..0] comparator:cmp loadN vect1[3..0] cmp resetN vect2[3..0] SlowCount[3..0] clk up_counter:slowC enable clk resetN enable_cnt count[3..0] 4'h0 init[3..0]

1'h1 load<u>N</u> resetN

3.4.2 סימולציה למונה המתנפח

הגדר מה תרצה לבדוק בסימולציה.

תשובה:

<u>נבדוק את הפעולה התקינה של המעגל, תוך שליחת אות ריסט / איפשור.</u>

ולא כמספר בינארי. HEX או UNSIGNED - ולא כמספר בינארי. שים לב להציג את התוצאות כ-

Calculation | Control | Control

2. וודא שבדקת את כניסת ה- ENABLE, אם לא חזור על הסימולציה.

שים לב: אין צורך להוריד לכרטיס בשלב זה!

16:48 קרא למדריך, רשום את השעה בה הוא ראה את המעגל:

4 המונה המתנפח בתכן הירארכי גרפי

מטרה: שילוב המונה המתנפח בתכן הירארכי עליון שיאפשר הפעלה קלה שלו.

<u>הנחיה</u>: מכיוון שקשה ללחוץ על לחצן השעון עשרות פעמים, וקשה לקרוא תצוגת נוריות שמשתנה קצב של 20nsec, נרחיב את מימוש המונה המתנפח בהירארכיה עליונה, על ידי:

- שימוש בשעון פנימי של הכרטיס בקצב $50 \mathrm{MHz}$ הפעלה אוטומטית של המעגל במקום הלחצן -
 - הספירה קצב שעון בקצב איטי יותר של $-1~\mathrm{Hz}$ האטת הספירה -
 - הוספת תצוגות של 7Seg להצגת ספרות הרכיב מעבודת ההכנה
 - .TOP וקבע אותו כ- inflating_cnt_top.bdf פתח את הקובץ הגרפי

נתוך: המערכת אותה תממש לצורך הבדיקה, דומה למערכת הבאה, אבל תוך שימוש ברכיבים שלך.

אכיטקטורה 4.1

בכרטיס LampTest -ו darkN בכרטיס ברטיס תחבר את הכניסות לאילו מתגים/לחצנים תחבר את הכניסות DE-10 ה

תשובה:

לפי הדוח הכנה, נרצה ש- darkN=1 ,LampTest = 0 וזאת בשביל שהם לא יהיו שידומיננטייםיי ויקבעו את המוצא, כלומר יאפשרו להציג את המספרים שנרצה. tcl נחבר את tcl לפי קובץ ה-tcl נחבר את tcl

לאיזה רכיב שעל הכרטיס תחבר את היציאות של המודול HEXSS!

תשובה:

.hex2 ,hex0 לפי קובץ ה-tcl נשתמש בשתי תצוגות 7-מקטעים שהן tcl

4.2 הוספת מודולים שלך לשרטוט

מטרה: להוסיף מודולים יעודיים לשלד הירארכי עליון קיים.

נתונים:

נתון לך שלד של המערכת בהירארכיה עליונה, בקובץ inflating_cnt_top.bdf. יש להשלימו עם הרכיבים והחיבורים המתאימים, כפי שיוסבר להלן. להצגת הספירה של המונה המתנפח נשתמש הן בנוריות והן בתצוגת (7Seg) Seven Segments).

לצורך השלמת השרטוט בהירארכיה עליונה תחילה יש ליצור סימבול גרפי לכל אחד מהמודולים שכתבת, המודול inflating_counter.sv ולהוסיף אותם למערכת. לשם כך יש לבצע את הפעולות הבאות:

- Ouartus Cook Book בור סימבולים למודולים שכתבת. רצוי להעזר ב- 1.
 - 2. **הוסף** אותם לשרטוט במקומות המסומנים.

4.3 שעון של קצב 1 Hz <u>– סעיף הסבר, לא לביצוע</u>

נתון: המודול של מונה מחלק תדר, בשם one_sec_counter.sv, בשם השעון וממיר את קצב השעון המודול של מונה מחלק תדר, בשם המאד המאד איטי יותר של DE10, DE10, לפולס בקצב איטי יותר של $(50~\mathrm{MHz})$, DE10.

- מודול זה בעל **הכניסות**:
- ענון (של הכרטיס 50 MHz) של הכרטיס clk כניסת איפוס אסינכרונית resetN
- TURBO ב- 0 לוגי התדר נשאר ללא הפולס עולה ל-10 Hz. ב- 1 לוגי התדר נשאר ללא דער כניסה של ביט אחד. ב- 1 לוגי תדר הפולס עולה ל-10 Hz שינוי (1 Hz)

והיציאות:

- one_sec פולס צר, ברוחב של 20 nsec (לפי MHz), בתדר של 1 Hz, מעין "שעון איטי". one_sec פולס צר, ברוחב של clock skew (הטיית שעון) יש לחבר יציאה זו לכניסת enable של הרכיב. כדי לא לייצר תופעה של שעון המערכת (50 MHz) לכניסת השעון של הרכיב.
 - פולס רחב, ברוחב של שניה, בתדר של **duty50** -

במצב TURBO שתי היציאות מהירות פי 10, כפי שניתן לראות להלן בסימולציה של מודול זה.

4.4 מונה מתנפח הירארכיה עליונה

<u>מטרה</u>: להשלים את ההירארכיה העליונה עם הרכיבים והחיבורים הנדרשים. ניתן להיעזר בסכימת ה- RTL הנתונה.

- 1. בדוק חיבורי הכניסות (חלקם כבר קיימים):
 - KEY0 ללחצן resetN כניסת ה
 - כניסת השעון למתנד 50MHZ -

PIN AF14 -to CLOCK 50

- ולא למפסק (או שתלחצו עליו 50 מיליון פעמים ⊡ולא למפסק (או
 - כניסת הטורבו למפסק (לא ללחצן)
- one_sec של שעון השניות מהווה כניסת one_sec של המונה המתנפח
 - 2. בדוק חיבורי יציאות (חלקם כבר קיימים):
 - LEDR לנורית אדומה one_sec_counter אדומה duty50 היציאה -
- HEXSS ולכניסות של המונה המתנפח מחווטים באופן ישיר לנוריות LEDR ולכניסות של
 - הדקים TSeg -ל HEXSS הדקים היציאות של

שים לב: חיבורים אלה כבר קיימים בקובץ ההדקים הנתון. אבל

. יש לעדכן בקובץ ההדקים את שמות הנוריות האדומות לפי שמות היציאות של המונה המתנפח שלך. $\overline{3}$

הוסף לדו"ח את שרטוט המערכת.

4.4.1 סימולציה למכלול המלא

שים לב! היות והשלב הבא הוא סימולציה, לפני ביצוע הסינתזה יש להקטין את הקבוע במונה של מחלק התדר one_sec_counter.sv מ- 50,000,000 למספר קטן יותר, למשל 20. ראה הוראות בהערות הקובץ.

1. לקראת סימולציה הרץ סינתזה מוצלחת

צרף את סיכום הסינתזה לדו"ח.

•	
Flow Status	Successful - Thu Aug 04 17:18:31 2022
Quartus Prime Version	17.0.0 Build 595 04/25/2017 SJ Standard Edition
Revision Name	SV1Exs
Top-level Entity Name	inflating_cnt_top
Family	Cyclone V
Device	5CSXFC6D6F31C6
Timing Models	Final
Logic utilization (in ALMs)	N/A
Total registers	42
Total pins	28
Total virtual pins	0
Total block memory bits	0
Total DSP Blocks	0
Total HSSI RX PCSs	0
Total HSSI PMA RX Deserializers	0
Total HSSI TX PCSs	0
Total HSSI PMA TX Serializers	0
Total PLLs	0
Total DLLs	0

הגדר מה תרצה לבדוק בסימולציה. רשום את כל מצבי הכניסות ויציאות המיוחדים.

:תשובה

Reset, LampTest, DarkN, Turbo, All Outputs

ולא UNSIGNED INTEGER או UNSIGNED INTEGER או בצע סימולציה, שים לב להציג את תוצאות המונים כ כמספר בינארי.

קרא למדריך, רשום את השעה בה הוא ראה את המעגל:

4.4.2 הקצאת הדקים

שים לב! לקראת הצריבה החזר את הקבוע במונה מחלק התדר ל- 50,000,000 עבור פעולה עם השעון לכרטיס.

- .1 בצע הסרת הדקים.
- .TCL את קובץ ההדקים המעודכן 2
 - .3 בצע קומפילציה מלאה לתכן.

רשום להלן כמה זמן ארכה הקומפילציה (זמן הקומפילציה נתון בפינה הימנית בתחתית במסך) 1:21

.3.3 V שכל ההדקים הרלוונטים מוגדרים נכון וכ- PIN PLANNER .4

הצג את ה- PIN PLANNER הכולל את הקצאת ההדקים הרלוונטים.

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate
CLOCK_50	Input	PIN_AF14	3B	B3B_N0	PIN_AF14	3.3-V LVTTL		16mA (default)	
darkN	Input	PIN_AC29	5B	B5B_N0	PIN_AC29	3.3-V LVTTL		16mA (default)	
duty50	Output	PIN_AC22	4A	B4A_N0	PIN_AC22	3.3-V LVTTL		16mA (default)	1 (default)
FastCount[3]	Output	PIN_AG25	4A	B4A_N0	PIN_AG25	3.3-V LVTTL		16mA (default)	1 (default)
FastCount[2]	Output	PIN_AD24	4A	B4A_N0	PIN_AD24	3.3-V LVTTL		16mA (default)	1 (default)
FastCount[1]	Output	PIN_AC23	4A	B4A_N0	PIN_AC23	3.3-V LVTTL		16mA (default)	1 (default)
FastCount[0]	Output	PIN_AB23	5A	B5A_N0	PIN_AB23	3.3-V LVTTL		16mA (default)	1 (default)
₩ HEX0[6]	Output	PIN_AH18	4A	B4A_N0	PIN_AH18	3.3-V LVTTL		16mA (default)	1 (default)
HEX0[5]	Output	PIN_AG18	4A	B4A_N0	PIN_AG18	3.3-V LVTTL		16mA (default)	1 (default)
HEX0[4]	Output	PIN_AH17	4A	B4A_N0	PIN_AH17	3.3-V LVTTL		16mA (default)	1 (default)
HEX0[3]	Output	PIN_AG16	4A	B4A_N0	PIN_AG16	3.3-V LVTTL		16mA (default)	1 (default)
HEX0[2]	Output	PIN_AG17	4A	B4A_N0	PIN_AG17	3.3-V LVTTL		16mA (default)	1 (default)
HEX0[1]	Output	PIN_V18	4A	B4A_N0	PIN_V18	3.3-V LVTTL		16mA (default)	1 (default)
HEX0[0]	Output	PIN_W17	4A	B4A_N0	PIN_W17	3.3-V LVTTL		16mA (default)	1 (default)
HEX2[6]	Output	PIN_W16	4A	B4A_N0	PIN_W16	3.3-V LVTTL		16mA (default)	1 (default)
HEX2[5]	Output	PIN_AF18	4A	B4A_N0	PIN_AF18	3.3-V LVTTL		16mA (default)	1 (default)
HEX2[4]	Output	PIN_Y18	4A	B4A_N0	PIN_Y18	3.3-V LVTTL		16mA (default)	1 (default)
HEX2[3]	Output	PIN_Y17	4A	B4A_N0	PIN_Y17	3.3-V LVTTL		16mA (default)	1 (default)
HEX2[2]	Output	PIN_AA18	4A	B4A_N0	PIN_AA18	3.3-V LVTTL		16mA (default)	1 (default)
[™] HEX2[1]	Output	PIN_AB17	4A	B4A_N0	PIN_AB17	3.3-V LVTTL		16mA (default)	1 (default)
HEX2[0]	Output	PIN_AA21	4A	B4A_N0	PIN_AA21	3.3-V LVTTL		16mA (default)	1 (default)
LampTest	Input	PIN_AA30	5B	B5B_N0	PIN_AA30	3.3-V LVTTL		16mA (default)	
resetN	Input	PIN_AJ4	3B	B3B_N0	PIN_AJ4	3.3-V LVTTL		16mA (default)	
SlowCount[3]	Output	PIN_AB22	5A	B5A_N0	PIN_AB22	3.3-V LVTTL		16mA (default)	1 (default)
SlowCount[2]	Output	PIN_AF24	4A	B4A_N0	PIN_AF24	3.3-V LVTTL		16mA (default)	1 (default)
SlowCount[1]	Output	PIN_AE24	4A	B4A_N0	PIN_AE24	3.3-V LVTTL		16mA (default)	1 (default)
SlowCount[0]	Output	PIN_AF25	4A	B4A_N0	PIN_AF25	3.3-V LVTTL		16mA (default)	1 (default)
turbo	Input	PIN_Y27	5B	B5B NO	PIN Y27	3.3-V LVTTL		16mA (default)	

4.4.3 צריבה לכרטיס והדגמה

1. הורד את התכן לכרטיס.

- 2. בדוק שהמערכת פועלת כנדרש על הכרטיס:
- המונה מתנפח מ- 0 עד 15, מתאפס ומתחיל להתנפח מחדש.
 - .resetN -בדוק איפוס ב-
- בדוק שבמצב TURBO המונה מתקדם בקצב מהיר פי 10.
 - .darkN בדוק את הפעולות של
- .3 אם המערכת אינה פעולת כנדרש מצא את הבעיה, תקן אותה ובדוק שוב.

קרא למדריך, רשום את השעה בה הוא ראה את המעגל:

5 גבוי העבודה

שמור דוח זה רגיל וכ- PDF והעלה את קובץ ה- PDF למודל.

שמור את הפרויקט רגיל וגם כארכיב (באמצעות Project -> Archive Project). העלה את קובץ הארכיב למודל, כי תצטרך אותו בהמשך.

גבה את הדוח וארכיב הפרויקט גם באמצעים אחרים.

רשום את השעה בה סיימת את המעבדה: 17:55