# Fundamentos de Programación

# Tipos de Datos: Símbolos y Estructuras

Profesor: Daniel Wilches Maradei

Diapositivas Originales: Jesús A. Aranda



Universidad del Valle

# Qué es un símbolo?

- Un símbolo es una pieza atómica de información representada por una cadena de caracteres
- Los símbolos pueden ser usados como nombre de variables, o para denotar Strings
- Al usar un símbolo le estamos diciendo a Scheme que acepte la palabra tal como es, sin tratar de interpretarlo más que como un cadena de caracteres
- La diferencia entre símbolos y Strings es que los primeros, aunque se forman de múltiples letras, son atómicos

### Creando símbolos

Para crear un símbolo debe anteponerse una comilla sencilla a la cadena de caracteres:

#### 'scheme

- Los símbolos no pueden tener espacios
- Para comparar símbolos se usa el predicado symbol=?

# Ejemplo symbol=?

(symbol=? 'uno 'dos) false

(symbol=? 'tres 'tres)
true

# Ejemplo de uso de los símbolos

```
(cond
  ((= dia 1) 'domingo)
  ((= dia 2) 'lunes)
  ((= dia 3) 'martes)
....
  ((= dia 7) 'sabado)
  (else 'DiaInvalido)
)
```

# Strings != Símbolos

- Los Strings, a diferencia de los símbolos, no son atómicos, es decir, Scheme entiende que son un conjunto de caracteres
- Podemos preguntar por el tamaño de un String, más no de un símbolo. Igualmente, solo en los Strings se puede preguntar por el carácter que está en la posición N.
- Los Strings se declaran encerrando entre "" una cadena de caracteres, mientras los símbolos se declaran precediendo con una cadena

# Imágenes

En Scheme también se le puede asociar un símbolo a una imagen, de este modo podemos mostrarla cuando deseemos:

(define celular



- Esto lo logramos mediante la opción Editar+Insertar Imagen
- En el momento en el que hagamos esto, el código fuente deja de ser texto plano !!

### Estructuras

- Son tipos de datos más complejos, no atómicos, que se conforman de varias partes.
- A cada una de sus partes se le da un nombre
- Sus partes pueden ser accedidas de manera independiente
- Para qué pueden servir las estructuras ?

### Uso de las estructuras

- 1. Definir tipos de datos complejos:
  - Cómo representar un punto ?
  - Cómo representar una persona ?
- Cuando necesitemos devolver varios valores desde una función
  - Si necesitamos devolver en una función un par de números por ejemplo

## Ejemplo



- Qué deberíamos hacer para representar un PUNTO 2D en Scheme ?
- Noten que se compone de 2 partes: coordenada X y coordenada Y

# Representación

| Symbol 'correcto correcto |      |      |     |                |     |     |   |   |   |   |
|---------------------------|------|------|-----|----------------|-----|-----|---|---|---|---|
| Stı                       | ring | g "H | Hol | a M            | und | ol' |   |   |   |   |
|                           | Н    | 0    |     | а              |     | M   | u | n | d | 0 |
| Struct Punto2D            |      |      |     |                |     |     |   |   |   |   |
|                           | 23   |      |     | <u>у</u><br>45 |     |     |   |   |   |   |

## Definición de la estructura Punto2D

(define-struct Punto2D (X Y))



define-struct es la manera de definir una estructura llamada Punto2D que contiene 2 componentes: X y Y

# Creación de una variable de tipo estructura

(make-Punto2D 3 4)

| Struct Punto2D |   |  |  |  |  |  |  |
|----------------|---|--|--|--|--|--|--|
| х              | У |  |  |  |  |  |  |
| 3              | 4 |  |  |  |  |  |  |

- make-<nombreestructura> es una función que crea una estructura del tipo especificado.
- Esta función se define automáticamente cuando usamos define-struct

# Acceso a los componentes de una estructura

(Punto2D-X variable) (Punto2D-Y variable)

 Cuando usamos el define-struct, además de crearse la función make-<estructura>, se crean las funciones accesoras a sus campos. Estas funciones se llaman:

nombreestructura-nombrecampo

## Ejemplo de estructuras

```
(define-struct Punto2D (X Y))
(define puntoInicial (make-Punto2D 1 1))
(define puntoFinal (make-Punto2D 5 12))
"La suma de las coord.X de ambos puntos es:"
(+ (Punto2D-X puntoInicial) (Punto2D-X puntoFinal))
```

## Ejercicio

- Cree una función que calcule la distancia entre 2 puntos.
- Recuerde que la fórmula para calcular la distancia entre 2 puntos es:

$$\sqrt{(x1-x2)^2+(y1-y2)^2}$$

## Estructura posn

- La estructura Punto2D que acabamos de crear ya está predefinida en Scheme pero con otro nombre: posn
- posn es el equivalente a un punto en 2 dimensiones, sus componentes son x y y

# Creación de estructura Punto3D

 Crear una estructura Punto3D que permita representar un punto en sus sistema de 3 dimensiones

# Creación de estructura EstudianteUV

 Crear una estructura EstudianteUV que permita representar a un estudiante de la Universidad del Valle. Entre los componentes pueden estar nombre, código, año de nacimiento, créditos, etc.

### struct?

Hay un predicado que es declarado también cuando usamos una estructura con definestruct:

nombreestructura?

 Este predicado nos permite determinar si una variable contiene un valor del tipo de estructura deseado:

Punto2D?
Punto3D?
EstudianteUV?
Posn?

## Guías de diseño

 Cuando creemos estructuras es importante documentar bien qué tipo de datos va a contener, cuál es la función de cada uno de sus componentes, y cuál es la función final de la estructura.

```
; Esta estructura representa un punto en un sistema ; de 2 dimensiones. (define-struct Punto2D (X Y)) ; Las componentes del punto X y Y deben ser valores ; numéricos, y corresponden a su distancia en los eje ; X y Y del punto de origen (0,0)
```