Assignment #2 CIS 427/527

Group 2

January 19, 2016

1

Since two of the men are telling the truth, we have a proposition of the form $P = (A \wedge B) \vee (A \wedge C) \vee (B \wedge C)$.

- If Adams is telling the truth, then Brown is lying $(A \implies \neg B)$.
- If Brown is telling the truth, then both Adams and Clark are lying $(B \implies (\neg A \land \neg C))$.
- If Clark is telling the truth, then Brown is lying $(C \implies \neg B)$.

If Brown were telling the truth, then P could never be satisfied, therefore Brown is lying, which makes him the killer.

2

2. Show that $((\rightarrow \notin PROP)$

Suppose $((\to \in X \text{ and } X \text{ satisfies (i), (ii), (iii) of Definition 2.1.2.}$ We claim that $Y = X \setminus \{((\to) \text{ also satisfies (i), (ii), and (iii).}$

- (i) $\perp, p_i \in Y$,
- (ii) $\varphi, \psi \in Y$ and $(\varphi \Box \psi) \neq ((\rightarrow, \text{ it is clear that } (\varphi \Box \psi) \in Y)$
- (iii) Similarly, $\varphi \in Y$ and $(\neg \varphi) \neq ((\rightarrow, \text{ so } (\neg \varphi) \in Y))$

Therefore X is not the smallest set satisfying (i), (ii), and (iii), so ($(\rightarrow \text{ cannot belong to } PROP$.

7. (a) Determine the trees of the proposition in Exercise 1

$$(\neg p_2 \to (p_3 \lor (p_1 \leftrightarrow p_2))) \land \neg p_3$$

 $(p_7 \to \neg \bot) \leftrightarrow ((p_4 \land \neg p_2) \to p_1$

 $(((p_1 \rightarrow p_2) \rightarrow p_1) \rightarrow p_2 \rightarrow p_1)$

(b) Determine the propositions with the trees given $\neg\neg\neg\bot$

$$(p_0 \to \bot) \to ((p_0 \leftrightarrow p_1) \land p_5)$$
$$\neg((\neg p_1) \to (\neg p_1))$$

9. Show that a proposition with n connectives has at most 2n+1 subformulas

Base Case A proposition P with zero connectives has $\leq 2(0) + 1 = 1$ subforumla(s).

Inductive Case Inductive Hypothesis: A proposition φ with n connectives has at most 2n+1 subformulas, where $s(\varphi)$ gives the number of subformulas (Def 2.1.3).

Assume propositions p,q with n,m connectives resp., both of which have the property above. $s(p) \le 2n+1$ and $s(q) \le 2m+1$. Consider the proposition $r=(p \square q)$. r must have n+m+1 connectives. From the definition of s,

$$s(r) = s(p) \cup s(q) \cup \{r\}$$
$$|s(r)| \le |s(p)| + |s(q)| + |\{r\}|$$
$$|s(r)| \le 2n + 1 + 2m + 1 + 1$$
$$|s(r)| \le 2(n + m + 1) + 1$$

Since the desired property holds for r the inductive hypothesis holds $\forall n \in \mathbb{N}$.

3

(f) $\begin{array}{c|cccc}
 & (\varphi \lor \neg \varphi) & \varphi \\
\hline
 & 1 & 0 \\
 & 1 & 1
\end{array}$ Is a tautology.

(h) $\begin{array}{c|cccc}
(\bot \to \varphi) & \varphi \\
\hline
1 & 0 \\
1 & 1
\end{array}$ Is a tautology.

4

(a)
$$\varphi \models \varphi$$

(b)
$$\varphi \models \psi$$
 and $\psi \models \sigma \implies \varphi \models \sigma$

(c)
$$\models \varphi \rightarrow \psi \iff \varphi \models \psi$$

5

6

$$\# = \neg(\neg(\neg p \vee \neg q) \vee \neg(p \vee q))$$

7

A conjunctive normal form is a tautology iff every clause is also a tautology.

8

9

 $P \to Q$: True when P is false; false when P is true and Q is false.

 $P \lor Q \to P \land Q$: True when $P \iff Q$; false otherwise. $\neg (P \lor Q \lor R)$: True when P, Q, R are all false; false when any P, Q, R are true. $\neg (P \land Q) \land \neg (Q \lor R) \land (P \lor R)$: True when P is true, Q is false, R is false; false when P is false and R is false.