RecSys 2018, Vancouver, Canada

On the Robustness and Discriminative Power of IR Metrics for Top-N Recommendation

Daniel Valcarce* A. Bellogín[†] J. Parapar* P. Castells[†] @dvalcarce

@abellogin

@jparapar

@pcastells

*University of A Coruña [†]Universidad Autónoma de Madrid

Evaluation

Recommender Systems Evaluation

Online evaluation (e.g., A/B testing):

- o expensive,
- measures real user behavior.

Offline evaluation:

- o cheap,
- highly reproducible,
- usually constitutes the first step before deploying a recommender system.

Recommender Systems Evaluation

Online evaluation (e.g., A/B testing):

- o expensive,
- measures real user behavior.

Offline evaluation ←

- o cheap,
- highly reproducible,
- usually constitutes the first step before deploying a recommender system.

Offline Evaluation of Recommender Systems (RS)

When evaluating recommender systems (RS), which **metric** should we use?

- Many types: error, ranking accuracy, diversity, novelty, etc.
- Ranking accuracy metrics are becoming the most popular.
- These metrics have been traditionally used in Information Retrieval (IR).

IR Metrics used in RS

Some IR metrics that have been used in RS:

- P: Precision
- Recall
- MAP: Mean Average Precision
- nDCG: Normalised Discounted Cumulative Gain
- MRR: Mean Reciprocal Rank
- o bpref: Binary Preference
- o infAP: Inferred Average Precision

Analyse how IR Metrics behave in RS

These ranking accuracy metrics have been studied in IR.

We want to study their behavior in top-N recommendation.

Two perspectives:

- o robustness,
- o discriminative power.

Proposal

Robustness

Sparsity bias

- Sparsity is intrinsic to the recommendation task.
- We take random subsamples from the test set to increase the bias.

Popularity bias

- Missing-not-at-random (long tail distribution).
- We remove the most popular items to study the bias.

We measure the robustness of a metric by computing the Kendall's correlation of systems rankings when changing the amount of bias.

Discriminative Power

- A metric is discriminative when its differences in value are statistically significant.
- We use the **permutation test** with difference in means as test statistic.
- We run a statistical test between all possible system pairs.
- ⊚ We plot the obtained *p*-values sorted by decreasing value.

Experiments

Experimental Settings

- O Three datasets:
 - o MovieLens 1M,
 - LibraryThing,
 - BeerAdvocate.
- Methodology:
 - AllItems: rank all the items in the dataset that have not been rated by the target user.
 - o 80-20% random split.
- Systems:
 - o 21 different recommendation algorithms.

Comparing metric cut-offs

Comparing cut-offs of the same metric (nDCG)

	@5	@10	@20	@30	@40	@50	@60	@70	@80	@90	@100
@5 -	1.00	0.95	0.93	0.92	0.92	0.92	0.92	0.91	0.90	0.90	0.90
@10 -	0.95	1.00	0.98	0.97	0.97	0.97	0.97	0.96	0.95	0.95	0.95
@20 -	0.93	0.98	1.00	0.99	0.99	0.99	0.99	0.98	0.97	0.97	0.97
@30 -	0.92	0.97	0.99	1.00	1.00	1.00	1.00	0.99	0.98	0.98	0.98
@40 -	0.92	0.97	0.99	1.00	1.00	1.00	1.00	0.99	0.98	0.98	0.98
@50 -	0.92	0.97	0.99	1.00	1.00	1.00	1.00	0.99	0.98	0.98	0.98
@60 -	0.92	0.97	0.99	1.00	1.00	1.00	1.00	0.99	0.98	0.98	0.98
@70 -	0.91	0.96	0.98	0.99	0.99	0.99	0.99	1.00	0.99	0.99	0.99
@80 -	0.90	0.95	0.97	0.98	0.98	0.98	0.98	0.99	1.00	1.00	1.00
@90 -	0.90	0.95	0.97	0.98	0.98	0.98	0.98	0.99	1.00	1.00	1.00
@100 -	0.90	0.95	0.97	0.98	0.98	0.98	0.98	0.99	1.00	1.00	1.00

Correlation between cut-offs of nDCG.

Kendall's correlation among systems when increasing the **sparsity bias** using nDCG.

Kendall's correlation among systems when changing the **popularity bias** using nDCG.

Discriminative power of nDCG measured with p-value curves.

Comparing metrics at the same

cut-off

	P	Recall	MAP	nDCG	MRR	bpref	infAP
P -	1.00	0.89	0.87	0.89	0.71	0.89	0.91
Recall -	0.89	1.00	0.87	0.90	0.72	0.90	0.92
MAP -	0.87	0.87	1.00	0.96	0.84	0.92	0.92
nDCG -	0.89	0.90	0.96	1.00	0.82	0.94	0.96
MRR -	0.71	0.72	0.84	0.82	1.00	0.80	0.80
bpref -	0.89	0.90	0.92	0.94	0.80	1.00	0.96
infAP -	0.91	0.92	0.92	0.96	0.80	0.96	1.00

Correlation between metrics.

Kendall's correlation among systems when increasing the sparsity bias.

Kendall's correlation among systems when increasing the **popularity bias**.

Discriminative power measured with p-value curves.

Conclusions and Future Directions

Conclusions

- Deeper cut-offs offer greater robustness and discriminative power than shallow cut-offs.
- Precision offers high robustness to sparsity and popularity biases and good discriminative power.
- NDCG provides the best discriminative power and high robustness to the sparsity bias and moderate robustness to the popularity bias.

Future work

- Explore different types of metrics such as diversity or novelty metrics.
- Use **other evaluation methodologies** instead of AllItems.
 - For instance, One-Plus-Random: one relevant item and N non-relevant items as candidate set.
- Employ different partitioning schemes such as temporal splits.

Thank you!