$a^n \pm 1$ Solutions

Yufei Zhao Trinity College, Cambridge

April 2011

Practice problems:

- 1. A primitive root mod n is a number g such that the smallest positive integer k for which $g^k \equiv 1 \mod n$ is $\phi(n)$.
 - (a) Show that 2 is a primitive root mod 3^n for any $n \ge 1$.
 - (b) Show that if g is an odd primitive root mod p such that $p^2 \nmid g^{p-1} 1$, then g is also a primitive root mod p^n and $2p^n$ for any $n \geq 1$.

Solution. (a) Since $\phi(3^n) = 2 \cdot 3^{n-1}$, the problem amounts to showing that $3^n \nmid 2^{3^{n-1}} - 1$ and $3^n \nmid 2^{2 \cdot 3^{n-2}} - 1$ (when $n \geq 2$). The first claim follows from reduction mod 3, and the second claim follows from the exponent lifting trick, as $3 \parallel 2^2 - 1$, so that $3^{n-1} \parallel 2^{2 \cdot 3^{n-2}} - 1$.

(b) Since $\phi(p^n) = \phi(2p^n) = (p-1)p^{n-1}$, it suffices to show $p^n \nmid g^{(p-1)p^{n-2}} - 1$ and $p^n \nmid g^{dp^{n-1}} - 1$ for any divisor d of p-1 with d < p-1. The first claim follows from $p^{n-1} \parallel g^{(p-1)p^{n-2}} - 1$ by the exponent lifting trick as $p \parallel g^{p-1} - 1$ by assumption, and the second claim follows from the fact that $p \mid g^m - 1$ if and only if $(p-1) \mid m$ as g is a primitive root mod p.

2. (Cyclotomic polynomials) For a positive integer n, define the polynomial $\Phi_n(x)$ by

$$\Phi_n(x) = \prod_{\substack{1 \le k \le n \\ \gcd(n,k) = 1}} (x - e^{\frac{2\pi i k}{n}}).$$

- (a) Prove the polynomial identity $\prod_{d|n} \Phi_d(x) = x^n 1$, where the product is taken over all divisors d of n.
- (b) Prove that $\Phi_n(x)$ is an integer polynomial.
- (c) Let m and n be positive integers, and let p be a prime divisor of $\Phi_n(m)$. Prove that either $p \mid n$ or $n \mid p-1$.
- (d) (Special case of Dirichlet's theorem) Prove that for every positive integer n, there are infinitely many primes p with $p \equiv 1 \pmod{n}$.

Solution. (a) The right-hand side polynomial x^n-1 can be factored as $\prod_{k=1}^n (x-e^{\frac{2\pi i k}{n}})$. For $1 \le k \le n$, each factor $x-e^{\frac{2\pi i k}{n}}$ appears exactly once in the left hand side (in $\Phi_d(x)$ for $d=\frac{n}{\gcd(n,k)}$) and all factors in the left hand side are of this form.

- (b) Use induction on d. We have $\Phi_1(x) = x 1$. Suppose $\Phi_d(x)$ is an integer polynomial for all d < n. Then by (a) $\Phi_n(x)$ is the quotient of two monic integer polynomials, and hence it must also be an integer polynomial.
- (c) Suppose $p \nmid n$ and $n \nmid p-1$. We have $p \mid \Phi_n(m) \mid m^n-1$ by (a). So $p \nmid m$, and hence $p \mid m^{p-1}-1$ by Fermat's little theorem. Thus $p \mid m^{\gcd(p-1,n)}-1$. Since $n \nmid p-1$,

 $\gcd(p-1,n) < n$. Since $p \nmid n$, we know $p \nmid \frac{n}{\gcd(p-1,n)}$. Suppose $p^k \parallel m^{\gcd(p-1,n)} - 1$. By the exponent lifting trick, we have $p^k \parallel m^n - 1$. However, from (a) we know that the polynomial $\Phi_n(x)$ is a factor of $\frac{x^n-1}{x^{\gcd(p-1,n)}-1}$. Setting x=m gives us a contradiction, since on one hand we have $p \mid \Phi_n(m)$ but on the other hand p does not divide $\frac{m^n-1}{m^{\gcd(p-1,n)}-1}$ as it is the quotient of two numbers both exactly divisible by p^k .

(d) It suffices to show that for every positive integer $n \geq 2$, there is at least one prime p with $p \equiv 1 \pmod{n}$, since then we can find infinitely many such p by finding primes p_k such that $p_k \equiv 1 \pmod{kn}$ for each $k \geq 1$.

For $n \geq 2$, $|\Phi_n(n)| > 1$. Let p be a prime divisor of $\Phi_n(n)$. Since $\Phi_n(n) | n^n - 1$ by (a), $p \nmid n$, so $n \mid p - 1$ by part (b). This gives us the desired prime.

3. (IMO 2003) Let p be a prime number. Prove that there exists a prime number q such that for every integer n, $n^p - p$ is not divisible by q.

Solution. Let q be a prime divisor of $\Phi_p(p) = \frac{p^p-1}{p-1} = p^{p-1} + p^{p-2} + \dots + p + 1$ with $p^2 \nmid q-1$ (this must exist since $\Phi_p(p) \not\equiv 1 \pmod{p^2}$). By problem $2, p \mid q-1$. If $n^p \equiv p \pmod{q}$, then $p^{\frac{q-1}{p}} \equiv n^{q-1} \equiv 1 \pmod{q}$. We have $q \mid \gcd(p^{\frac{q-1}{p}}-1, p^p-1) = p^{\gcd(\frac{q-1}{p}, p)} - 1$, which equals to p-1 since $p^2 \nmid q-1$. However, we cannot simultaneously have $q \mid p-1$ and $p \mid q-1$. Thus n^p-p is not divisible by q.

- 4. (a) Prove that $\Phi_m(x)$ and $\Phi_n(x)$ are always relatively prime as polynomials for $m \neq n$.
 - (b) Show that if for some integer x, $\Phi_m(x)$ and $\Phi_n(x)$ are not relative prime, then m/n is an integer power of a prime.

Solution. (a) The zeros of $\Phi_n(x)$ and $\Phi_m(x)$ are distinct, since the zeros of $\Phi_n(x)$ are precisely the primitive n-th roots of unity. Thus the polynomials are relatively prime.

(b) Suppose some prime p divides both $\Phi_m(x)$ and $\Phi_n(x)$. By replacing x by x+p if necessary, we may assume that x>1. Let us deal with the p=2 case separately. We claim that if $\Phi_m(x)$ is even then m must be a power of 2. Indeed, otherwise let q be an odd prime divisor of m, and let m=qs, then by the previous problem, $\Phi_m(x)$ divides $\frac{x^m-1}{x^s-1}=x^{(q-1)s}+x^{(q-2)s}+\cdots+x^s+1$, which is always odd. The p=2 case follows.

Now assume that p > 2. By the previous problem, p divides $x^m - 1$ and $x^n - 1$, and hence $p \mid x^{\gcd(m,n)} - 1$. Let $p^k \parallel x^{\gcd(m,n)} - 1$. One of $\frac{m}{\gcd(m,n)}$ and $\frac{n}{\gcd(m,n)}$ is not divisible by p, and assume that it is the latter. Then by the exponent lifting trick, $p^k \parallel x^n - 1$. If $\gcd(m,n) < n$, then $\Phi_n(x)$ divides $\frac{x^n-1}{x^{\gcd(m,n)}-1}$, which is not divisible by p by the above analysis. This contradicts $p \mid \Phi_n(x)$. Hence $\gcd(m,n) = n$, i.e., $n \mid m$.

We claim that $\frac{m}{n}$ is a power of p. If not, then pick some prime q dividing $\frac{m}{n}$. We have $p \mid \Phi_n(x) \mid x^n - 1 \mid x^{m/q} - 1$. By the exponent lifting trick, the same power of p divides both $x^m - 1$ and $x^{m/q} - 1$. But $\Phi_m(x)$ divides $\frac{x^m - 1}{x^{m/q} - 1}$, which contradicts $p \mid \Phi_m(x)$. Thus $\frac{m}{n}$ is a power of p.

- 5. Let p_1, p_2, \ldots, p_k be distinct primes greater than 3. Let $N = 2^{p_1 p_2 \cdots p_k} + 1$.
 - (a) (IMO Shortlist 2002) Show that N has at least 4^n divisors.
 - (b) Show that N has at least $2^{2^{k-1}}$ divisors. (Hint: use cyclotomic polynomials)

Solution. (a) Observe that if a and b are coprime odd numbers, then $gcd(2^a+1,2^b+1)=3$, since their gcd must divide $gcd(2^{2a}-1,2^{2b}-1)=2^{gcd(2a,2b)}-1=2^2-1=3$. Since $2^{ab}+1$ is divisible by both 2^a+1 and 2^b+1 , it must also be divisible by $\frac{1}{3}(2^a+1)(2^b+1)$.

We use induction on k. When k=1, $2^{p_1}+1$ is divisible by 3 and greater than 9, so it must have at least 4 divisors. Let $a=p_1\cdots p_{k-1}$ and $b=p_k$. Suppose that 2^a+1 has at least 4^{k-1} divisors. Since 2^a+1 is coprime to $\frac{1}{3}(2^b+1)$, the number $M=\frac{1}{3}(2^a+1)(2^b+1)$ must have at least $2\cdot 4^{k-1}$ divisors (for each divisor d of 2^a+1 , we get two divisors d and $\frac{1}{3}(2^b+1)d$ of M). Also $M\mid N$ and $N=2^{ab}+1>M^2$ (since $2^{ab}+1>2^{ab}>2^{2(a+b+1)}>M^2$). So N has at least 4^k divisors (for each divisor d of M, we have divisors d and N/d). This completes the induction.

(b) It suffices to show that N is divisible by at least 2^{k-1} distinct prime. We have

$$N = 2^{p_1 \cdots p_k} + 1 = \frac{2^{2p_1 \cdots p_k} - 1}{2^{p_1 \cdots p_k} - 1} = \frac{\prod_{d|2p_1 \cdots p_k} \Phi_d(x)}{\prod_{d|p_1 \cdots p_k} \Phi_d(x)} = \prod_{d|p_1 \cdots p_k} \Phi_{2d}(2).$$

Consider the set of divisors d of $p_1 \cdots p_k$ with an odd number of prime factors. There are 2^{k-1} such divisors d, and they provide mutually coprime $\Phi_d(2)$ by Problem 4. Take one prime divisor from each such $\Phi_d(2)$ and we get what we want.

6. (IMO 1990) Determine all positive integers n such that $\frac{2^n+1}{n^2}$ is an integer.

Solution. We claim that the only solutions are n=1,3. Suppose $n \notin \{1,3\}$. Let p be the smallest prime divisor of n. Then $p \mid 2^n+1$, so $p \mid 2^{2n}-1$. By Fermat's little theorem, we also have $p \mid 2^{p-1}-1$. Thus $p \mid 2^{\gcd(p-1,2n)}-1$. Since p is the smallest prime divisor of n, we must have $\gcd(p-1,2n)=2$. So $p \mid 2^2-1$ and hence p=3.

Suppose $3^k \parallel n$. We have $3 \parallel 2^2 - 1$. So by the exponent lifting trick, $3^{k+1} \parallel 2^{2n} - 1$. If $n^2 \mid 2^n + 1$, then $3^{2k} \mid 2^{2n} - 1$. Thus $2k \le k + 1$, hence k = 1. Thus $3 \parallel n$.

Let n=3m. Suppose $m \neq 1$. Let q denote the smallest prime divisor of m. By the same argument as above, we have $q \mid 2^{\gcd(q-1,6m)}-1$, and $\gcd(q-1,6m) \in \{2,6\}$, so q divides either $2^2-1=3$ or $2^6-1=63=7\cdot 3^2$. Since $3 \parallel n, q \neq 3$, so q=7. However, $2^n+1=(2^3)^m+1\equiv 2 \pmod{7}$, so 7 cannot divide 2^n+1 , contradiction. This shows that 1 and 3 are the only solutions.

7. (IMO 2000) Does there exist a positive integer N which is divisible by exactly 2000 different prime numbers and such that $2^N + 1$ is divisible by N?

Solution. Yes. We will show by induction that for any $m \ge 1$, there exists a positive integer N divisibly by exactly m different prime numbers such that $N \mid 2^N + 1$.

When m=1, choose N=3.

We will use the following variant of the exponent lifting trick: if p is an odd prime, $a \ge 2$, $k, m \ge 1$, $\ell \ge 0$, n odd, $p^k \parallel a+1$, and $p^\ell \parallel n$, then $p^{k+\ell} \parallel a^n+1$. This in fact follows from our usual exponent lifting trick, as neither a-1 nor a^n-1 are divisible by p (since $a \equiv -1 \pmod{p}$ and n is odd), so the claim follows as $p^k \parallel a^2 - 1$ implies $p^{k+\ell} \parallel a^{2n} - 1$.

Now suppose $N=p_1^{a_1}\cdots p_m^{a_m}$ satisfies $N\mid 2^N+1$, where p_1,\ldots,p_m are distinct prime and $a_i\geq 1$. Suppose $p_i^{b_i}\parallel 2^N+1$ for each i. Write this as $p_1^{b_1}\cdots p_m^{b_m}\parallel 2^N+1$. Then by above variant of the exponent lifting trick, we have $p_1^{b_1+\ell}p_2^{b_2}\cdots p_m^{b_m}\parallel 2^{Np_1^\ell}+1$. For ℓ sufficiently large, we also have $p_1^{b_1+\ell}p_2^{b_2}\cdots p_m^{b_m}<2^{Np_1^\ell}+1$, so that $2^{Np_1^\ell}+1$ has some prime divisor p_{k+1} distinct from $p_1,\ldots p_k$. Then $Np_1^\ell p_{k+1}\mid 2^{Np_1^\ell p_{k+1}}+1$, and hence we can choose $N'=Np_1^\ell p_{k+1}$ to complete the induction.

8. Let N be a positive integer ending in digits 25, and m a positive integer. Prove that for some positive integer n, the rightmost m digits of 5^n and N agree in parity (i.e., for

 $1 \le k \le m$, the k-th digit from the right in n is odd if and only if the k-th digit from the right in N is odd).

Yufei Zhao

Solution. We will prove by induction on m that there exists infinitely many n that works. This is trivial when m = 1, 2.

For the inductive step, it suffices to prove the following claim: if $n \ge m \ge 2$, then the rightmost m digits of 5^n and $5^{n+2^{m-2}}$ agree in parity, but the (m+1)-th digit from the right differ in parity.

By the exponent lifting trick, we have $2^m \parallel 5^{2^{m-2}} - 1$ as $2^2 \parallel 5 - 1$. It follows that $5^{2^{m-2}+n} - 5^n$ is divisible by 10^m but not $2 \cdot 10^m$. The claim follows.

9. (Hensel's lemma) Let

$$f(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_2 x^2 + c_1 x + c_0$$

be a polynomial with integer coefficients. Its derivative f' is a polynomial defined by

$$f'(x) = nc_n x^{n-1} + (n-1)c_{n-1}x^{n-2} + \dots + 2c_2x + c_1.$$

Suppose that $a \in \mathbb{Z}$ satisfies $p \mid f(a)$ and $p \nmid f'(a)$. Prove that for any integer k, there exists an integer b satisfying $p^k \mid f(b)$ and $p \mid b - a$.

Solution. We use induction on k to find, for each $k \ge 1$, an integer b_k , satisfying $b_1 = a$ and

$$b_{k+1} \equiv b_k \pmod{p^k}$$

and

$$f(b_k) \equiv 0 \pmod{p^k}$$
.

Note that this implies $b_k \equiv b_1 = a \pmod{p}$.

When k = 1, we can just take $b_1 = a$. Now assume that k > 1 and b_{k-1} has already been chosen. Set

$$b_{k+1} = b_k + p^k r$$

for some integer r to be decided later. We have

$$f(b_{k+1}) = f(b_k + p^k r) = \sum_{j=0}^n c_j (b_k + p^k r)^j$$

$$\equiv \sum_{j=0}^k c_j (b_k^j + j p^k r b_k^{j-1}) = f(b_k) + p^k r f'(b_k) \pmod{p^{k+1}},$$

where the modulo equivalence comes from binomial expansion. (This is related to the taylor expansion in calculus: $f(x + \epsilon) \approx f(x) + \epsilon f'(x)$.) From the induction hypothesis, we know $p^k \mid f(b_k)$. Also $b_k \equiv a \pmod{p}$, so $p \nmid f'(b_k)$, and hence $f'(b_k)$ has an inverse mod p, say $t \in \mathbb{Z}$, satisfying $f'(b_k)t \equiv 1 \pmod{p}$. Then setting $r = -\frac{f(b_k)t}{r^k}$, we have

$$f(b_{k+1}) \equiv f(b_k) - f(b_k)rf'(b_k) = f(b_k)(1 - rf'(b_k)) \equiv 0 \pmod{p^{k+1}}.$$

since $p^k \mid f(b_k)$ and $p \mid 1 - rf'(b_k)$. This completes the induction step.