RERESTANTANTANTANTANTANTANTANTAN

91577M

SUPERVISOR'S USE ONLY

QUALIFY FOR THE FUTURE WORLD KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

Tuanaki, Kaupae 3, 2015

91577M Te whakahāngai i te taurangi o ngā tau matatini hei whakaoti rapanga

2.00 i te ahiahi Rāapa 25 Whiringa-ā-rangi 2015 Whiwhinga: Rima

Paetae	Kaiaka	Kairangi
Te whakahāngai i te taurangi o ngā tau matatini hei whakaoti rapanga.	Te whakahāngai i te taurangi o ngā tau matatini mā te whakaaro whaipānga hei whakaoti rapanga.	Te whakahāngai i te taurangi o ngā tau matatini mā te whakaaro waitara hōhonu hei whakaoti rapanga.

Tirohia mēnā e rite ana te Tau Ākonga ā-Motu (NSN) kei runga i tō puka whakauru ki te tau kei runga i tēnei whārangi.

Me whakamātau koe i ngā tūmahi KATOA kei roto i tēnei pukapuka.

Tuhia ō mahinga KATOA.

Tirohia mēnā kei a koe te pukapuka Tikanga Tātai me ngā Tūtohi L3-CALCMF.

Mēnā ka hiahia whārangi atu anō koe mō ō tuhinga, whakamahia ngā whārangi wātea kei muri o tēnei pukapuka, ka āta tohu ai i te tau tūmahi.

Tirohia mēnā e tika ana te raupapatanga o ngā whārangi 2–21 kei roto i tēnei pukapuka, ka mutu, kāore tētahi o aua whārangi i te takoto kau.

ME HOATU RAWA KOE I TĒNEI PUKAPUKA KI TE KAIWHAKAHAERE Ā TE MUTUNGA O TE WHAKAMĀTAUTAU.

TAPEKE	
--------	--

TŪMAHI TUATAHI

MĀ TE KAIMĀKA ANAKE

(a) Whakaotihia te whārite $x^2 - 8x + 4 = 0$.

Tuhia tō whakautu ki te āhua $a \pm b\sqrt{c}$, ina ko a, b me c he tau tōpū, ā, ko $b \ne 1$.

(b) Mēnā $u = 1 + \sqrt{3}i$, āta whakaaturia a u^3 ki te hoahoa Argand i raro.

QUESTION ONE

ASSESSOR'S USE ONLY

(a) Solve the equation $x^2 - 8x + 4 = 0$.

Write your answer in the form $a \pm b\sqrt{c}$, where a, b, and c are integers and $b \ne 1$.

(b) If $u = 1 + \sqrt{3}i$, clearly show u^3 on the Argand diagram below.

Kimihia ngā ta	u tūturu p me q kia p	outa ko <i>pv</i> + <i>av</i>	y = 6.5 - 11i.		
		y and and provided the			
łāponotia ko ng	ā pūtake o te whārit	e $3x^2 + (2c + 1)$	0x - (c+3) = 0 h	ne tūturu i ngā wā	katoa
Hāponotia ko nş nō ngā uara kat	$\sqrt{3}$ pūtake o te whārito oa o c , ina ko c he tū	e $3x^2 + (2c + 1)$ turu.	0x - (c+3) = 0 h	ne tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	ā pūtake o te whārito oa o c, ina ko c he tū	e $3x^2 + (2c + 1)$ turu.	0x - (c+3) = 0 h	ne tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whārito oa o c, ina ko c he tū	e $3x^2 + (2c + 1)$ turu.	0x - (c+3) = 0 h	ne tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whārito oa o c, ina ko c he tū	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ne tūturu i ngā wā	katoa
Hāponotia ko nş nō ngā uara kat	gā pūtake o te whārito oa o c, ina ko c he tū	e $3x^2 + (2c + 1)$ turu.	0x - (c+3) = 0 h	ne tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whārito oa o c, ina ko c he tū	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ie tūturu i ngā wā	katoa
Hāponotia ko nş nō ngā uara kat	gā pūtake o te whārito oa o c, ina ko c he tū	e $3x^2 + (2c + 1)$ turu.	0x - (c+3) = 0 h	ne tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whāritooa o c, ina ko c he tū	e $3x^2 + (2c + 1)$ turu.	0x - (c+3) = 0 h	ie tūturu i ngā wā	katoa
Hāponotia ko nş nō ngā uara kat	gā pūtake o te whārito	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ne tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whārito	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ie tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whārito	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ie tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whārito	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ne tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whārito	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ie tūturu i ngā wā	katoa
Hāponotia ko nş nō ngā uara kat	gā pūtake o te whārito	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ne tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whārito	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ie tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whārito	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ie tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whārito	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ie tūturu i ngā wā	katoa
Hāponotia ko ng nō ngā uara kat	gā pūtake o te whārito	e $3x^2 + (2c + 1)$ turu.	(c+3) = 0 h	ie tūturu i ngā wā	katoa

w is the comple			
Find the real nu	mbers p and q such that pv	+ qw = 6.5 - 11i.	
Prove that the roof c , where c is re	ts of the equation $3x^2 + (2a^2 + 1)^2$	(c+1)x - (c+3) = 0 are always	ys real for all values
Prove that the roof c , where c is re	ts of the equation $3x^2 + (2a^2 + 1)^2$	(c+1)x - (c+3) = 0 are always	s real for all values
Prove that the roof c , where c is re	ts of the equation $3x^2 + (2a^2 + 1)x^2 + (2$	(c+1)x - (c+3) = 0 are always	ys real for all values
Prove that the roof c , where c is re	ts of the equation $3x^2 + (2a^2 + 1)^2$	(c+1)x - (c+3) = 0 are always	ys real for all values
Prove that the roof c , where c is re	ts of the equation $3x^2 + (2a^2 + 1)^2$	(c+1)x - (c+3) = 0 are always	ys real for all values
Prove that the roof c , where c is re	ts of the equation $3x^2 + (2a^2 + 1)^2 = 1$	(c+1)x - (c+3) = 0 are always	ys real for all values
Prove that the roof c , where c is re	ts of the equation $3x^2 + (2a^2 + 1)^2$	(c+1)x - (c+3) = 0 are always	ys real for all values
Prove that the roof c, where c is re	ts of the equation $3x^2 + (2a^2 + 1)^2 = 1$	(c+1)x - (c+3) = 0 are alway	ys real for all values
Prove that the roof c, where c is re	ts of the equation $3x^2 + (2a^2 + 1)^2 = 1$	(c+1)x - (c+3) = 0 are alway	ys real for all values
Prove that the roof c, where c is re	ts of the equation $3x^2 + (2a^2 + 1)^2 = 1$	(c+1)x - (c+3) = 0 are alway	ys real for all values
Prove that the roof c, where c is re	ts of the equation $3x^2 + (2a^2 + 1)^2 = 1$	(c+1)x - (c+3) = 0 are alway	ys real for all values
Prove that the roo	ts of the equation $3x^2 + (2a^2 + 1)^2 = 1$	(c+1)x - (c+3) = 0 are alway	ys real for all values
Prove that the roof c, where c is re	ts of the equation $3x^2 + (2a^2 + 1)x^2 + (2$	(c+1)x - (c+3) = 0 are alway	ys real for all values

haponotia ko $\frac{1}{b}$	$\frac{c-c}{c-d} = p$, ina ko	<i>b, c, d, e,</i> me	o ne tuturu ka	toa.	

TŪMAHI TUARUA

MĀ TE
KAIMĀKA
ANAKE

	2 + 3i
TZ	• - • • • • • • • • • • • • • • • • • •
Ka taea te tau matatin	i $\frac{2+3i}{5+i}$ te kī mā te āhua $k(1+i)$, ina ko k he tau tūturu.
	i $\frac{1}{5+i}$ te kī mā te āhua $k(1+i)$, ina ko k he tau tūturu.
	ii $\frac{2+3}{5+i}$ te kī mā te āhua $k(1+i)$, ina ko k he tau tūturu.
	i $\frac{2 + 3}{5 + i}$ te kī mā te āhua $k(1 + i)$, ina ko k he tau tūturu.
	ii $\frac{2+3}{5+i}$ te kī mā te āhua $k(1+i)$, ina ko k he tau tūturu.
	ii $\frac{2+3}{5+i}$ te kī mā te āhua $k(1+i)$, ina ko k he tau tūturu.
Ka taea te tau matatin Kimihia te uara o <i>k</i> .	ii $\frac{2+3i}{5+i}$ te kī mā te āhua $k(1+i)$, ina ko k he tau tūturu.
	te kī mā te āhua $k(1 + i)$, ina ko k he tau tūturu.
	te kī mā te āhua $k(1 + i)$, ina ko k he tau tūturu.
	te kī mā te āhua $k(1 + i)$, ina ko k he tau tūturu.

QUESTION TWO

_	
_	
_	
]	The complex number $\frac{2+3i}{5+i}$ can be expressed in the form $k(1+i)$, where k is a real number
F	Find the value of k .
_	
_	

e)	Kimihia ngā tau tūturu A , B me C kia puta ko $\frac{1}{x^2(x-1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{(x-1)}$
)	Tuhia te tau matatini $\left(\frac{4i^7-i}{1+2i}\right)^2$ ki te āhua $a+bi$, ina ko a me b he tau tūturu.

Write the complex n	sumber $\left(\frac{4i^7 - i}{1 + 2i}\right)^2$ in the form $a + bi$, where a and b are real number
Write the complex n	umber $\left(\frac{4i^7 - i}{1 + 2i}\right)^2$ in the form $a + bi$, where a and b are real number
Write the complex n	umber $\left(\frac{4i^7 - i}{1 + 2i}\right)^2$ in the form $a + bi$, where a and b are real number
Write the complex n	umber $\left(\frac{4i^7 - i}{1 + 2i}\right)^2$ in the form $a + bi$, where a and b are real number

Kimihia	te whārite Cartes	sian o te hua	nui e whak	aahua ana 1	$m\bar{a} \operatorname{arg}\left(\frac{z}{z}\right)$	$\left(\frac{2}{5}\right) = \frac{3}{4}$	

Find the Cartesian ed	quation of the foc	us described b	z+5	4	

TŪMAHI TUATORU

⁄Iō tēh	nea, ēhea uara tūturu rānei o k he pūtake ōrite tō te whārite $kx^2 + \frac{x}{k} + 2 = 0$?
Ko tēta	ahi otinga kotahi o te whārite $3w^3 + Aw^2 - 3w + 10 = 0$ ko $w = -2$.
⁄Iēnā l	ko A he tau tūturu, kimihia te uara o te A me ērā atu otinga e rua o te whārite.

QUESTION THREE

(a)	If $z = 4 +$	-2i and $w =$	-1 + 3i,	find a	arg(zw).
-----	--------------	---------------	----------	--------	----------

(b)	For what real value(s) of k does the equation $kx^2 + \frac{x}{k} + 2 = 0$ have equal roots?

(c)	One solution of the equation	$3w^3 + Aw^2 -$	-3w + 1	0 = 0	is	w = -2.

If A is a real number, find the value of A and the other two solutions of the equation.						

Ka haere tonu te Tūmahi Tuatoru i te whārangi 18.

Question Three continues on page 19.

(e)	(i)	Kimihia ia pūtake o te whārite $z^5 - 1 = 0$.	MĀ TI KAIMĀI ANAK
			_
			_
			_
	(;;)	Weihe ke n to nūteke i to wāhenge (i) me to tohenge tāmmee iti rayve	_
	(ii)	Waiho ko p te pūtake i te wāhanga (i) me te tohenga tōrunga iti rawa. Me whakaatu ko ngā pūtake i te wāhanga (i) ka taea te tuhi hei $1, p, p^2, p^3, p^4$.	
			_
			_
			_
			_
			_

(i)	Find each of the roots of the equation $z^5 - 1 = 0$.	,		
	<u>-</u>			
(ii)	Let p be the root in part (i) with the smallest positive argument.			
	Show that the roots in part (i) can be written as $1, p, p^2, p^3, p^4$.			

		He wharangi ano ki te hiahiatia.	
TAU TŪMAHI		Tuhia te (ngā) tau tūmahi mēnā e tika ana.	

	Extra paper if required.		
QUESTION NUMBER	Write the question number(s) if applicable.	ASSESSOR' USE ONLY	
NOMBER			

English translation of the wording on the front cover

Level 3 Calculus, 2015

91577M Apply the algebra of complex numbers in solving problems

2.00 p.m. Wednesday 25 November 2015 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Apply the algebra of complex numbers in solving problems.	Apply the algebra of complex numbers, using relational thinking, in solving problems.	Apply the algebra of complex numbers, using extended abstract thinking, in solving problems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Show ALL working.

Make sure that you have the Formulae and Tables Booklet L3-CALCMF.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–21 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.