L'impôt abc : vers la démocratie fiscale

Joseph Enguehard, Gaël Giraud, Éric Levieil et Mathilde Salin

(dans l'ordre alphabétique)

Georgetown EJP Seminar - 15 December 2020

Introduction

Point de départ : les limites des barèmes actuels

- Aujourd'hui, les impôts dits progressifs sont obtenus avec des barèmes par tranches de taux marginal, soit un bricolage peu intuitif et peu satisfaisant.
- La complexité de ces barèmes en fait un obstacle au débat fiscal : êtes-vous capable de concevoir rapidement une réforme d'ensemble et d'évaluer ses effets à tous les niveaux de revenus?
- Or la possibilité d'une délibération fiscale de fond (qui paye combien?) est plus que jamais essentielle : comment répondre à l'appauvrissement de l'État et à la "sécession des riches"? Comment financer la transition écologique?
- ▶ Un impératif démocratique : chacun a le droit "de consentir librement [à la nécessité de la contribution publique], d'en suivre l'emploi, et d'en déterminer la quotité, l'assiette, le recouvrement et la durée" (DDHC, art. 14).

Quelques définitions utiles

Soit un impôt i payé sur une assiette (un revenu) r.

- ▶ Le revenu disponible : $r_d(r) = r i(r)$.
- ▶ Le taux effectif d'imposition : $t(r) = \frac{i(r)}{r}$.
- ▶ Le taux marginal d'imposition : $t_m(r) = i'(r)$.

Aujourd'hui, l'impôt est calculé ainsi : $i(r) = \int_0^r t_m(\rho) d\rho$.

Progressivité "faible" : t' > 0. Progressivité "forte" : $t'_m > 0$.

La progressivité (ainsi définie) est avant tout une propriété locale et n'implique pas nécessairement une forte redistributivité (mais tout impôt redistributif est globalement progressif).

Exemple : l'impôt sur le revenu (IR) français

FIGURE 1 – Barème applicable aux revenus de 2019

Barème progressif applicable aux revenus de 2019				
Tranches	Taux d'imposition à appliquer sur la tranche correspondante (ou tranche marginale d'imposition)			
Jusqu'à 10 064 €	0 %			
De 10 065 € à 27 794 €	14 %			
De 27 795 € à 74 517 €	30 %			
De 74 518 € à 157 806 €	41 %			
Plus de 157 807 €	45 %			

Source: https://www.service-public.fr/particuliers/vosdroits/F1419

Exemple d'un célibataire avec 30000 euros de revenu imposable :

$$t_m(r) = 30\%$$

$$t(r) = \frac{0 \times 10064 + 0.14 \times (27794 - 10065) + 0.30 \times (30000 - 27794)}{30000} = 10.5\%$$

Exemple : l'impôt sur le revenu (IR) français

▶ Dans un barème par tranches de taux marginal comme celui de l'IR, t_m est une fonction en escalier.

FIGURE 2 – Barème statutaire 2019 de l'IR (taux marginal)

- ► Une réforme fiscale consiste donc à jouer sur le découpage des tranches : combien de tranches, quels revenus, quels taux?
- ► Un exercice technocratique peu propice à la délibération collective, doublé d'un arbitrage entre simplicité et progressivité?

Arbitrage historique entre le nombre de tranches et la progressivité?

TABLE 1 – Principales réformes du barème de l'IR (source : Barèmes IPP).

	Nombre de tranches	Taux marginal maximum (%)				
1949	8	60				
1974	13	60				
1983	14	65				
1987	13	57				
1993	7	57				
1996	7	54				
2003	7	48				
2006	5	40				
2012	6	45				
2014	5	45				

L'impôt abc

Qu'est-ce que l'impôt abc?

L'impôt abc est un barème obtenu par une formule de taux effectif simple :

$$t(r) = a \cdot \frac{r - b}{r + c}$$

οù

- a est le taux effectif maximum,
- b est le revenu imposable minimum,
- c ajuste l'augmentation du taux avec le revenu.
- ▶ Découverte indépendamment par G. Cassel (1901), É. Levieil (2015) et F.X. Martin (2019).

- ▶ a est le taux d'imposition maximal : $(\forall r) t(r) \leq a$.
- ▶ Il serait acquitté par un contribuable infiniment riche : $t(r) \underset{r \to \infty}{\rightarrow} a$.

FIGURE 3 - Effet d'une variation de a

b est le revenu imposable minimum : $(\forall r \leq b) \ t(r) = 0$.

FIGURE 4 – Effet d'une variation de b

- c ajuste l'augmentation du taux avec le revenu.
- Augmenter c allège l'impôt de tout le monde, mais plus particulièrement celui des revenus intermédiaires.

FIGURE 5 – Effet d'une variation de c

c est le paramètre le moins intuitif.

- ▶ c décale la progressivité de l'impôt vers les plus hauts revenus ce qui ne veut pas dire rendre l'impôt plus redistributif!
- ▶ On peut éventuellement le remplacer par $r^* = c + 2b$. En effet $t(r^*) = \frac{a}{2}$: le revenu imposé à la moitié du taux maximal. Dans ce cas, la formule abc se réécrit $t(r) = \frac{a(r-b)}{r+t^*-2b}$.
- c peut servir de variable d'ajustement de la recette de l'impôt.

De manière générale, étudier l'effet d'un paramètre en fixant les deux autres n'est pas le plus pertinent : implique de faire varier la recette!

Comment choisir *a*, *b*, *c*?

$$t(r) = a \cdot \frac{r - b}{r + c}$$

- ▶ De manière purement normative?
 - a) Quelle la part maximale du revenu que l'État a le droit de prélever?
 - b) Quelle est le revenu minimum de subsistance?
 - c) À quel niveau de revenu devrait-on acquitter la moitié du taux maximal?

Mais on ne peut plus choisir la recette de l'impôt : peu adapté au monde réel !

Comment choisir *a*, *b*, *c*?

$$t(r) = a \cdot \frac{r - b}{r + c}$$

- ► En choisissant la recette à l'avance, ce qui enlève un degré de liberté.
- Par exemple, une fois la recette et *b* déterminés, l'impôt est d'autant plus redistributif que le doublet (*a*, *c*) est élevé.

Soit une population de N contribuables de revenu moyen \bar{r} . Une recette T est faisable ssi $0 \le T \le Na(\bar{r} - b)$.

Pour tous $(a,b) \in [0,1] \times \mathbb{R}_+$ et toute recette faisable T, il existe un unique $c \in \mathbb{R}_+$ permettant d'atteindre T (TVI).

Avantages de l'impôt abc

Pourquoi abc est-il un bon impôt?

Qu'attendre d'un "bon impôt", qui puisse de plus être le résultat d'une délibération démocratique?

- ► **Simplicité** : calcul en taux effectif et non en taux marginal ; nombre limité de paramètres, si possible intuitifs.
- ▶ **Justice** : Progressivité forte (le taux marginal est partout croissant). "Préservation des incitations" (une augmentation de revenu ne peut pas diminuer le revenu après impôt : $t_m < 1$).
- ▶ **Régularité** : le taux effectif est C^1 (le taux marginal est continu).
- ▶ **Modulabilité** : la variation des paramètres laisse une grande latitude de choix.

Flexibilité de la formule abc

$$t(r) = a \cdot \frac{r - b}{r + c}$$

La flexibilité de la formule est bien illustrée par certains cas particuliers d'abc.

- $ightharpoonup b=c=0 \implies t(r)=a$, la flat tax.
- $ightharpoonup c=0 \implies I(r)=a(r-b)$, équivalent d'un barème à deux tranches.
- ▶ $a=1 \implies r_d(r) = \frac{(1-a)r^2 + (ab+c)r}{r+c} \xrightarrow[r \to \infty]{} b+c$: plafonnement des revenus! Auquel cas c devient l'écart maximum de revenu (absolu).

Entre ces extrêmes, il y a tout un continuum d'impôts progressifs. Voir notre simulateur (http://146.59.226.237:3838/)!

Liens avec l'impôt sur le revenu actuel

Retour au barème par tranches

FIGURE 6 – Barème statutaire 2019 de l'IR (taux marginal)

Retour au barème par tranches

Table 2 – Comparaison de l'impôt abc avec un barème par tranches de taux marginal.

	abc	barème par tranches					
simplicité	\checkmark	×	Le mode de calcul avec différents taux marginaux n'est pas compris.				
justice	✓	✓	\grave{A} condition que le barème soit progressif.				
régularité	✓	×	Discontinuité du taux marginal à chaque changement de tranche.				
modulabilité	\checkmark	×	Une réforme fiscale implique de redéfinir les taux et les tranches.				

Comment traduire un barème par tranches en impôt abc?

$$t(r) = a \cdot \frac{r - b}{r + c}$$

- ▶ a correspond au taux marginal de la dernière tranche.
- b est le seuil de la première tranche imposable.
- c est la valeur permettant de maintenir la recette.
 - Cela revient à minimiser l'écart entre les deux courbes de taux effectif en pondérant par la distribution des revenus.
 - Si on ne veut pas faire dépendre c de la distribution des revenus, on peut aussi définir $c \equiv \operatorname{argmin} \sup |t_{abc}(r) t(r)|$.

L'approximation abc du barème de l'IR - taux effectif

c est ici la valeur permettant de maintenir la recette. Qualité de l'approximation : KS = 1,15 points!

FIGURE 7 – IR actuel et impôt abc avec a = 0.45, b = 830, c = 4020.

L'approximation abc du barème de l'IR - taux marginal

L'approximation abc de l'IR "final"

On prend cette fois en compte, en plus du barème statutaire :

- les abattements (diminutions de l'assiette qui dépendent du type du revenu)
- la décote (réduction d'impôt pour les bas revenus)
- ▶ le PFU, Prélèvement forfaitaire unique (possibilité de sortir les dividendes du barème progressif pour les imposer à 12,8%)
- ► la CEHR, Contribution exceptionnelle sur les hauts revenus (deux tranches supplémentaires)

L'impôt *abc* obtenu correspond à celui qui donnerait la même recette que l'IR actuel (aux niches près), en supprimant tous les dispositifs précédents.

Le taux d'imposition final de l'impôt sur le revenu en 2019

taux d'Imposition (%) en fonction du revenu mensuel (€) en prenant en compte décote, abattements et CEHR

Traducti I'IR+CEHR	ions abc de	approc	hant l'impe	ôt de 2019	en supp	posant l'ab	sence du PFU
Composition du revenu	ı	a (%)	b (€)	С	a (%)	b (€)	С
Composition moyenne à	chaque revenu _	21	1407	215	33	1407	2296
Revenus du travail unique	ement	49	1374	4449	49	1374	4449
Dividendes uniquement _		17	2062	874	31	2062	5698

Le taux d'imposition final de l'impôt sur le revenu en 2019

taux d'imposition (%) en fonction du revenu mensuel (€) en prenant en compte décote, abattements et CEHR

Traductions abc de	approchant l'impôt de 2019 en supposant l'absence d					bsence du PFU
I'IR+CEHR						
Composition du revenu	a (%)	b (€)	С	a (%	b (€)	С
Composition moyenne à chaque revenu	. 21	1407	215	33	1407	2296
Revenus du travail uniquement	49	1374	4449	49	1374	4449
Dividendes uniquement	. 17	2062	874	31	2062	5698

Impôt abc et justice distributive

Impôt abc et justice distributive : le critère de sacrifice égal

- Soit u l'utilité en fonction du revenu. Le critère de sacrifice égal (Mill, 1848) dit que chaque contribuable doit perdre une quantité égale d'utilité : $\exists K \forall r, \ u(r) u(r_d(r)) = K$.
- ▶ Sacrifice égal relatif : $\exists K \, \forall r, \, \frac{u(r_d(r))}{u(r)} = K$.
- ▶ Posons la question en sens inverse (problème de rationalisation) : existe-t-il une utilité pour laquelle l'impôt *abc* est juste? Quelle est alors la norme implicite véhiculée par un impôt *abc* particulier?

Impôt abc et justice distributive : le critère de sacrifice égal

Théorème de Ok (1995). Sous quelques conditions de régularité, une fonction de taux d'imposition respecte le sacrifice égal (absolu ou relatif) si et seulement si elle préserve les incitations $(r'_d > 0)$.

- C'est bien le cas d'abc.
- ▶ Théorème 2. i convexe (progressivité forte) $\implies u$ concave.

Petit résultat intéressant. Un impôt satisfaisant le sacrifice égal plafonne le revenu disponible si et seulement s'il ne peut être justifié sous aucun critère par une fonction d'utilité non bornée.

▶ Dans le cas d'abc, cela signifie que a = 1 implique une utilité bornée. Fixer un maximum de revenu revient à supposer que l'utilité tirée du revenue est finie.

Exemple 1 : l'impôt "ab" (c = 0)

Pour une fonction d'utilité u(r)=r-b, le sacrifice égal relatif donne un impôt abc avec c=0 (impôt à 2 tranches). Soit $\sigma \in]0,1]$ la proportion d'utilité sacrifiée,

$$(1-\sigma)(r-b)=r-b-i \Leftrightarrow \frac{i}{r}=\sigma\frac{r-b}{r}.$$

• $\sigma = a$: le sacrifice est égal au taux maximal d'imposition.

Exemple 2 : l'impôt "bc" (a = 1)

Pour une fonction d'utilité $u(r) = U - \frac{1}{r}$ (concave et bornée par un supremum d'utilité U), le sacrifice égal relatif donne un impôt abc avec a = 1.

$$(1-\sigma)\left(U-\frac{1}{r}\right) = U - \frac{1}{r-i} \Leftrightarrow \frac{i}{r} = \frac{r-U^{-1}}{r+\frac{1-\sigma}{\sigma U}}$$

- $b = U^{-1}$: le revenu minimum est l'inverse du supremum d'utilité.
- Le plafond de revenu après impôt est inversement proportionnel au sacrifice et à l'utilité maximale :

$$b + c = \frac{1}{U} + \frac{1 - \sigma}{\sigma U} = \frac{1}{\sigma U} = (\sigma U)^{-1}$$

Exemple 3 : l'impôt "c" (a = 1, b = 0)

Pour la même utilité $u(r) = U - \frac{1}{r}$, le sacrifice égal **absolu** donne un impôt *abc* avec a = 1 et b = 0. Soit S le sacrifice absolu,

$$U - \frac{1}{r} - S = U - \frac{1}{r-i} \Leftrightarrow \frac{i}{r} = \frac{r}{r+S^{-1}}$$

- $c=S^{-1}$: le plafond de revenu après impôt est l'inverse du sacrifice.
- Si la recette de l'impôt est répartie de manière égale entre les contribuables, on montre que $\delta_c u(r_d)$ est de même signe que $t-\tilde{t}$, où \tilde{t} est la moyenne quadratique du taux d'imposition parmi la population imposable.
- Si on remplaçait l'IR par un impôt c = 506k€ annuels, 76 % des contribuables seraient imposés à moins de t̃ = 5,5%, et donc avantagés par une baisse du plafond des revenus.

Résultats additionnels sur les effets des paramètres

L'effet de c sur la progressivité

La progressivité peut être mesurée localement par

$$\pi(r) \equiv t'_m(r) = \frac{2a(b+c)c}{(r+c)^3}.$$

Les paramètres a et b augmentent donc tous les deux la progressivité partout. Et c?

$$\frac{\delta\pi}{\delta c} = \frac{2a}{(r+c)^4}((b+2c)r - 2bc - c^2)$$

Augmenter c augmente (diminue) donc la progressivité de l'impôt au-delà (en dessous) d'un revenu égal à

$$\frac{2bc+c^2}{b+2c}.$$

Par exemple, avec les paramètres implicites du barème de l'IR actuel (a = 0.45, b = 830, c = 4020), ce revenu (mensuel imposable) vaut $2574 \in$.

L'effet de c sur le revenu disponible

Augmenter c augmente le revenu disponible à tous les niveaux de revenu. Maintenant, comment l'augmentation relative varie-t-elle avec le revenu ?

$$\delta_r \delta_c \ln r_d \ge 0 \Leftrightarrow P(r) \equiv -(1-a)r^2 + 2(1-a)br + ab^2 + 2bc + c^2 \ge 0$$

$$P(r) = 0 \Leftrightarrow r = b \pm \frac{b+c}{\sqrt{1-a}}$$

Concrètement, la profitabilité d'une augmentation de c augmente jusqu'à un certain niveau de revenu puis diminue. Par exemple, avec les paramètres implicites du barème de l'IR actuel, ce revenu (mensuel imposable) vaut

$$830 + \frac{830 + 4020}{\sqrt{1 - 0.45}} = 7370.$$

L'effet de c sur l'apport fiscal

Définissons l'apport fiscal des contribuables gagnant entre r et $r+\varepsilon$ comme leur contribution rapportée à la recette totale. Soit f la distribution des revenus et R le revenu le plus élevé :

$$A_r^{r+\varepsilon} \equiv \frac{\int_r^{r+\varepsilon} i(\rho) f(\rho) d\rho}{\int_b^R i(\rho) f(\rho) d\rho}.$$

Dans le cas abc, on montre en appliquant le théorème de la moyenne généralisé qu'il existe $\tilde{r} \in]b,R[$ tels que $\forall r \in [b,R],$

$$\lim_{\varepsilon \to 0} \delta_c \ln A_r^{r+\varepsilon} = \frac{r - \tilde{r}}{(r+c)(\tilde{r}+c)}.$$

Par conséquent, augmenter c augmente (diminue) la part de l'impôt total payée par les contribuables au-dessus (en dessous) d'un certain revenu – lequel dépend toutefois de la distribution des revenus et des paramètres.

Hypothèse de redistribution égale

Ou alors on peut faire des hypothèses redistributives. Supposons par exemple soit la recette fiscale est redistribuée de manière égale entre les contribuables.

▶ Soit f la distribution des revenus, étalée sur l'intervalle I. Le revenu disponible vaut alors

$$r_d(r) = r + a \left[\int_I \frac{\rho(\rho - b)}{\rho + c} f(\rho) d\rho - \frac{r(r - b)}{r + c} \right].$$

En toute logique, les contribuables dont l'impôt est inférieur (supérieur) à l'impôt moyen ont intérêt à une augmentation (baisse) du taux maximum.

L'impôt moyen de la traduction abc de l'IR final 2019 est de 1936
 €, et 73 % des contribuables payent moins.

Hypothèse de redistribution égale

▶ À l'inverse, augmenter *b* est dans l'intérêt des contribuables aux revenus supérieurs à un certain seuil.

$$\delta_b r_d = \frac{ar}{r+c} - \int_I \frac{a\rho}{\rho+c} f(\rho) d\rho.$$

▶ L'effet de *c* est ambigu.

$$\delta_c r_d = \frac{ar}{(r+c)^2} - \int_I \frac{a\rho}{(\rho+c)^2} f(\rho) d\rho.$$