简单粗暴微积分

雷瑞祺

最后更新: November 4, 2021

Contents

1	函数	:与极限
	1.1	函数的初等性态
	1.2	一些新玩具
		1.2.1 等式
		1.2.2 不等式
		1.2.3 三角函数
		1.2.4 反三角函数
		1.2.5 双曲函数
	1.3	数列的极限
		1.3.1 定义
		1.3.2 性质
	1.4	函数的极限
	1.5	求极限的方法
		1.5.1 按玩法常用程度排序
	1.6	极限的定义
		1.6.1 一系列等价无穷小
	1.7	函数的连续性与间断点
2	The	Second Chapter

1 函数与极限

本章涉及了高等数学中基本的玩具.

1.1 函数的初等性态

研究函数性质的几个角度

- 奇偶性
- 周期性
- 单调性
- 有界性

1.2 一些新玩具

1.2.1 等式

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + a^{2}b^{n-3} + ab^{n-2} + b^{n-1})$$

1.2.2 不等式

(Cauchy-Schwartz不等式) 对任意 $a_i, b_i \in \mathbf{R}$, 有

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2.$$

1.2.3 三角函数

余切
$$y = \cot x = \frac{\cos x}{\sin x}, \{x \mid x \neq n\pi, n = 0, \pm 1, \pm 2, \cdots\}$$

正割
$$y = \sec x = \frac{1}{\cos x}, \{x \mid x \neq n\pi + \frac{\pi}{2}, n = 0, \pm 1, \pm 2, \cdots\}$$

余割
$$y = \csc x = \frac{1}{\sin x}, \{x \mid x \neq n\pi, n = 0, \pm 1, \pm 2, \cdots\}$$

1.2.4 反三角函数

1.2.5 双曲函数

定义

双曲正弦函数
$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2}, D = \mathbf{R}$$

双曲余弦函数
$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2}, D = \mathbf{R}$$

双曲正切函数
$$\operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}, D = \mathbf{R}$$

双曲余切函数
$$\operatorname{cth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}, D = \mathbf{R}$$

反双曲正弦
$$\operatorname{arcsh} x = \ln(x + \sqrt{x^2 + 1}), D = \mathbf{R}$$

反双曲余弦
$$\operatorname{arcch} x = \ln(x + \sqrt{x^2 - 1}), D = [1, +\infty)$$

反双曲正切
$$\operatorname{arcth} x = \frac{1}{2} \ln \frac{1+x}{1-x}, D = (-1,1)$$

性质

$$\bullet \ \operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$$

•
$$\operatorname{sh} 2x = 2\operatorname{sh} x\operatorname{ch} x$$

$$\bullet \ \operatorname{ch} 2x = \operatorname{sh}^2 x + \operatorname{ch}^2 x$$

•
$$\operatorname{sh}(x \pm y) = \operatorname{sh} x \operatorname{ch} y \pm \operatorname{ch} x \operatorname{sh} y$$

•
$$\operatorname{ch}(x \pm y) = \operatorname{ch} x \operatorname{ch} y \pm \operatorname{sh} x \operatorname{sh} y$$

1.3 数列的极限

1.3.1 定义

 $\forall \varepsilon > 0, \exists N > 0, \, \exists n > N$ 时, 恒有 $|x_n - a| < \varepsilon$ 成立.

1.3.2 性质

极限的唯一性 若数列 $\{x_n\}$ 收敛,则它的极限唯一.

收敛数列的有界性 若数列 $\{x_n\}$ 收敛,则 $\{x_n\}$ 有界.

收敛数列的保序性 设有数列 $\{x_n\}$, $\{y_n\}$, $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$, 且自某一项起, 有 $x_n \le y_n$, 则 $a \le b$.

子列的收敛性 数列 $\{x_n\}$ 收敛于a的充分必要条件是 $\{x_n\}$ 的任一子列都收敛,且都收敛于a.

1.4 函数的极限

1.5 求极限的方法

1.5.1 按玩法常用程度排序

- 1. 极限的四则运算, 极限的复合运算
- 2. 初等函数的连续性, $\lim_{x\to x_0} f(x) = f(x_0)$
- 3. 特殊极限
- 4. 等价无穷小(相乘除)
- 5. 夹逼定理
- 6. 有界量×无穷小=无穷小
- 7. 单调有界(证明)
- 8. 其它: 分子有理化

1.6 极限的定义

1.6.1 一系列等价无穷小

 $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim e^x - 1 \sim \ln(1+x) \ (x \to 0)$

$$(1+x)^{\alpha} - 1 \sim \alpha x \ (x \to 0)$$
$$1 - \cos x \sim \frac{x^2}{2} \ (x \to 0)$$

1.7 函数的连续性与间断点

连续的定义

2 The Second Chapter