Technische Universität München Hannah Schamoni

Ferienkurs Analysis 1 Stetigkeit und Konvergenz

Übungsblatt

16.03.2011

1. Grenzwerte I

Berechnen Sie $\lim_{x\to 0\pm} f(x)$, $\lim_{x\to \pm\infty} f(x)$ für $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$, $f(x)=\frac{1}{x\sqrt{1+x^{-2}}}$ und skizzieren Sie den Graphen.

(a) $\lim_{x \to 3} \frac{3x + 9}{x^2 - 9}$ (b) $\lim_{x \to -3} \frac{3x + 9}{x^2 - 9}$ (c) $\lim_{x \to 0-} \frac{x}{|x|}$ (d) $\lim_{x \to 0+} \frac{x}{|x|}$ (e) $\lim_{x \to -1} \frac{x^2 + x}{x^2 - x - 2}$ (f) $\lim_{x \to 3} \frac{x^3 - 5x + 4}{x^2 - 2}$ (g) $\lim_{x \to 0} \frac{\sqrt{x + 2} - \sqrt{2}}{x}$

(a)
$$\lim_{x\to 3} \frac{3x+9}{x^2-9}$$

(b)
$$\lim_{x \to -3} \frac{3x + 9}{x^2 - 9}$$

(c)
$$\lim_{x \to 0-} \frac{x}{|x|}$$

(d)
$$\lim_{x \to 0+} \frac{x}{|x|}$$

(e)
$$\lim_{x \to -1} \frac{x^2 + x}{x^2 - x - 2}$$

(f)
$$\lim_{x \to 3} \frac{x^3 - 5x + 4}{x^2 - 2}$$

(g)
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$

3. Stetigkeit

Sei $f: [a,b] \to \mathbb{R}$ stetig und monoton wachsend, d.h. aus x < y folgt f(x) < f(y). Zeigen Sie: $f:[a,b] \to [c,d]$ mit c:=f(a) und d:=f(b) ist bijektiv.

4. Unstetigkeit der Umkehrfunktion

Sei $D \subset$ beliebig, $f: D \to [a, b]$ bijektiv, streng monoton steigend und stetig. Geben Sie ein Beispiel dafür an, dass die Umkehrfunktion von f nicht stetig sein muss.

5. Stetige Fortsetzungen

(a) Ist $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$, $f(x) = \sin\left(\frac{1}{x}\right)$ stetig fortsetzbar? (b) Ist $f: \mathbb{C}\setminus\{1\} \to \mathbb{C}$, $f(z) = \frac{z^n - 1}{z - 1}$ stetig fortsetzbar?

6. Zwischenwertsatz

(a) Jedes reelle Polynom von ungeradem Grade hat mindestens eine Nullstelle in R.

(b)
$$\sqrt{\frac{x^2+2x+2}{x^4+1}} = x$$
 besitzt eine Lösung in \mathbb{R} .

(c) Jedes stetige $f:[0,1] \to [0,1]$ besitzt einen Fixpunkt, d.h. es gibt ein $x \in [0,1]$ mit f(x) = x.

7. Stetige Bilder

Sei $M \subseteq \mathbb{R}$ und $f \in C(M)$. Welche der folgenden Aussagen sind wahr? Begründen Sie Ihre Antworten bzw. bringen Sie ein Gegenbeispiel.

- (a) Falls $M \subseteq \mathbb{R}$ beschränkt ist, dann ist f(M) beschränkt.
- (b) Falls $M \subseteq \mathbb{R}$ abgeschlossen ist, dann ist f(M) beschränkt.
- (c) Falls $M \subseteq \mathbb{R}$ kompakt ist, dann ist f(M) beschränkt.

8. Gleichmäßige Stetigkeit und Lipschitz-Stetigkeit

- (a) Seien $C, E \subset \mathbb{C}$ und $f: D \to \mathbb{C}, g: E \to \mathbb{C}$ gleichmäßig stetig mit $f(D) \subset E$. Zeigen Sie, dass die Funktion $g \circ f : D \to \mathbb{C}$ gleichmäßig stetig ist.
- (b) Man zeige, dass die Funktion $x \mapsto \sqrt[k]{x}$ (k ist eine natürliche Zahl > 1) auf $[0, \infty)$ gleichmäßig stetig ist, aber nicht Lipschitz-stetig.

Hinweis: Für die gleichmäßige Stetigkeit benutze man die Ungleichung: $|\sqrt[k]{a} - \sqrt[k]{b}| \le$ $\sqrt[k]{|a-b|}$ (ohne Beweis).

9. Gleichmäßige Stetigkeit II

Untersuchen Sie, welche der folgenden Funktionen gleichmäßig stetig sind:

(a)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$$

(b)
$$f: [10^{-4}, \infty] \to \mathbb{R}, \ f(x) = \frac{1}{x}$$

(a)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$$

(c) $f: [\sqrt{2}, 6] \to \mathbb{R}, \ f(x) = \frac{x^{2011} - 18}{46 + |x|^7}.$

10. Gleichmäßige Konvergenz

Entscheiden Sie, ob die folgenden auf $(0,\infty)$ definierten Funktionenfolgen nicht, punktweise oder sogar gleichmäßig gegen eine Grenzfunktion konvergieren. Geben Sie, falls existent, die Grenzfunktion an.

(a)
$$a_n = x + \frac{1}{n}$$

(b)
$$b_n = \frac{x}{n}$$

(c)
$$c_n = e^x \cdot \sqrt[n]{e}$$
.

11. Gleichmäßige Konvergenz II

- (a) Gegeben seien eine Funktionenfolge (f_n) und die Grenzfunktion f, wobei f_n, f : $\mathbb{R} \supset M \to \mathbb{R}, \ n \in \mathbb{N}$. Zeigen Sie: Falls es ein $\epsilon > 0$ und eine Folge (x_n) in M gibt, so dass $|f_n(x_n) - f(x_n)| \ge \epsilon$ für unendlich viele n, dann konvergiert f_n nicht gleichmäßig gegen f auf M.
- (b) Sei $M_1 := [0,1], M_2 := [1,2]$ und $f_n(x) := \frac{nx}{1+n^2x^2}, x \in \mathbb{R}, n \in \mathbb{N}$. Berechnen Sie die Grenzfunktion f von f_n und entscheiden Sie, ob f_n auf M_1 bzw. M_2 sogar gleichmäßig gegen f konvergiert.

12. Punktweise und gleichmäßige Konvergenz

Man zeige: Die Reihe $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{1-x^n}$ konvergiert punktweise für jedes $x \in (0,1)$ und sie konvergiert für jedes $r \in (0,1)$ auf dem Intervall [-r,r] gleichmäßig.