Addition Of Grignard Reagents To Aldehydes **And Ketones**

from chapter(s)	in the recomme	ended text
-----------------	----------------	------------

A. Introduction

B. Grignard Reagents: A Type Of Carbanion Equivalents

magnesium;

strong base

cannot be formed from compounds liberating ethyne.

hydrocarbon

C. Reactions Of Methanal With Grignard Reagents

primary <u>alcohols</u> one more

$$MgBr$$
 + O OMg Br $+H_2O$ OH

primary

$$\bigcirc$$
OH \Longrightarrow \bigcirc MgBr \bigcirc OH \Longrightarrow \bigcirc MgBr

a di-Grignard

$$\mathsf{CD_3CH_2OH} \longmapsto \qquad \mathsf{CD_3MgBr} \qquad \qquad \bigvee \mathsf{OMe} \qquad \qquad \bigvee \mathsf{OMe} \qquad \qquad \mathsf{OMe}$$

$$\searrow$$
OH \Longrightarrow \swarrow MgBr \Longrightarrow \bigotimes MgBr

$$\stackrel{\mathsf{OH}}{\longrightarrow} \qquad \stackrel{\mathsf{MgBr}}{\longrightarrow} \qquad \stackrel{\mathsf{MgBr}}{\longrightarrow}$$

more basic than compounds irreversibly. primary because methanal has two secondary alcohols.

D. Reactions Of Other Aldehydes With Grignards

give secondary alcohols with the same

secondary alcohols

$$\stackrel{\mathsf{OH}}{\checkmark} \quad \Longrightarrow \quad$$

E. Reactions Of Ketones With Grignards

tertiary alcohols. the same must be the

F. Complimentary Grignard and Hydride Reductions

a Grignard route

hydride route

G. Reactions Of Carbon Dioxide With Grignards

carboxylic acid.

one more carbon than the Grignard.

СООН

$$HO \longrightarrow OH \longrightarrow BrMg \longrightarrow MgBr$$

$$OH \longrightarrow MgBr$$