Parte 1. Objetivo e apresentação do MVP

Ao escolher o dataset do IMBD, fiquei com curiosidade de entender como funciona a estrutura hierárquica desses projetos e qual o padrão de cargos envolvidos em filmes extremamente bem ranqueados, além disso quais são os atores que mais aparecem dentre esses filmes?

Para isso será utilizado um esquema em que traga os atores e cargos principais como fatos e toda a estrutura em volta como dimensões.

Parte 2. Estrutura conceitual: Esquema estrela

Como ideia inicial de planejamento de estruturação logica do projeto, é notado que existem algumas "tabelas" predefinidas pelo próprio sistema IMDB, sendo elas identificadas como esquema relacional induzido.

Como tradução necessária ao esquema inicial, fica-se imaginado um esquema estrela em que os "protagonista" ou "fatos" são os dados da pergunta feita na parte 1 do projeto encontrados no link disponibilizado pelo professor (https://datasets.imdbws.com/), sendo assim:

1. Tabela de Fatos:

- Título Detalhes (title_ratings):
 - tconst (string) chave estrangeira para a tabela title.basics.tsv.gz
 - averageRating (float) média ponderada das avaliações individuais dos usuários
 - numVotes (integer) número de votos recebidos pelo título

2. Tabelas Dimensionais:

- Título Básico (title_basics):
 - tconst (string) chave primária
 - primaryTitle (string) título mais popular / título usado pelos cineastas
 - genres (array) até três gêneros associados ao título
- Principais Colaboradores (title principals):
 - tconst (string) chave primária
 - nconst (string) chave estrangeira para a tabela name.basics.tsv.gz
 - category (string) categoria do trabalho da pessoa
- **Detalhes dos nomes** (name.basics):
 - nconst (string) chave primária
 - primaryName (string) nome pelo qual a pessoa é mais frequentemente creditada
 - primaryProfession (array) top-3 profissões da pessoa

A tabela de fatos contém as métricas de avaliação (averageRating e numVotes) para os títulos, enquanto as tabelas dimensionais contêm informações detalhadas sobre títulos, equipes de produção, colaboradores e pessoas envolvidas. Isso permite que a analise de como as características dos filmes se relacionam com as avaliações, bem como os padrões de equipe de produção e a relevância dos colaboradores.

De uma maneira da qual fossem englobadas e enquadradas todas as informações cruas do dataset inicial, a abordagem em esquema estrela resultada seria a seguinte:

Como gostaria de aumentar o desempenho e mostrar os dados de maneira mais limpa, decidi seguir com um esquema reduzido, do qual serão excluídas as colunas e tabelas que não respondam exatamente a pergunta do objetivo declarado na primeira parte:

Parte 3. ETL/Dados para banco em nuvem

3.1 Extração e transformação dos dados

Utilizando o Google cloud e seu serviço de cluster Google Proc, será possivel a criação do cluster que armazenará os arquivos apontados através do esquema estrela, sendo eles:

name.basics.tsv.gz title.akas.tsv.gz title.basics.tsv.gz title.crew.tsv.gz title.episode.tsv.gz title.principals.tsv.gz title.ratings.tsv.gz

Sendo assim, é possível armazena-los através das ferramentas de upload oferecidas e de manipulação por exemplo, a que será utilizada Hive.

Como os arquivos disponibilizados são incorporados em extensão tsv e compactados em GZ, foi necessária a descompactação dos mesmos e para a importação no HDFS primeiramente serem colocados no Google Storage e a transferência para o cluster com o comando:

hadoop distcp gs://dataproc-staging-us-central1-345813319426-s9wcsy4e/google-cloud-dataproc-metainfo/5cb1e64a-daaa-482b-9f1c-46f13a234f81/IMDB/*.tsv hdfs:///user/dataproc/imdb/

3.1 Extração e transformação dos dados - Alteração na ferramenta e método

Após o plantão de duvidas, a forma de inserção e ETL dos dados no GC se tornou mais fácil e interativa, sem a necessidade da inserção no HDFS e manipulação através do HIVE.

Partindo dos passos antes feitos de inserção dos dados no Google Storage, a intenção agora é utilizar o Data Fusion com o BigQuery funcionando como banco de dados como passo final para a entrada dos dados. Será necessário para a alocação dos dados nos buckets somente o envio dos arquivos para os novos buckets normal e temporário.

Assim, como segundo passo após o upload dos dados TSV nos buckets do google storage, o passo seguinte é a transformação dos dados dentro do Data fusion utilizando o Wrangle.

Logo, como primeiros passos, a exclusão de algumas tabelas que não fazem sentido: title.akas.tsv.gz, title.episode.tsv.gz e title.crew

No processo de transformação foram excluídas todas as colunas e tabelas que não fazem sentido para o objetivo.

Como toda informação remanescente das tabelas pode ser importante para as consultas, não foram necessárias adequações dos dados inclusos nas colunas.

Dataset inicial no BigQuery:

3.3 Qualidade dos dados:

3.3.1 Análise sobre qualidade dos dados

Para a tabela titlebasics, as coluna que mais apresentam inconsistências são as relacionadas a títulos.

Existem muitas formas diferentes de representar os números dos episódios, podendo ser eles com muitas casas decimais após o primeiro número, tornando-se muito dificil entender a qual episodio o subconjunto está se referindo.

Uma maneira de resolver é buscando seus verdadeiros significados através de algum padrão encontrado nas linhas, e com isso, criar uma categorização mais simples através da substituição de todos os números após "Episode #"

Quanto as outras tabelas, todas as informações utilizadas estão bem definidas e de facil acesso:

⊞ titl	leratings	Q CONSULT	CONSULTA ▼ +2COMPART		
ESQUE	EMA DETAL	HES VIS	UALIZAR	LINHAGEM	
Linha	tconst	1	averageRating	numVotes	
1	tt0000024		4.2	117	
2	tt0000025		3.9	45	
3	tt0000036		4.4	611	
4	tt0000037		4.4	68	
5	tt0000038		4.2	204	
6	tt0000040		4.0	68	
7	tt0000044		3.9	48	
8	tt0000052		4.2	105	
9	tt0000076		4.4	541	
10	tt0000078		3.7	88	
11	tt0000108		4.4	550	
12	tt0000109		4.5	531	
13	tt0000110		4.4	537	
14	tt0000111		4.4	553	
15	tt0000112		4.5	530	

⊞ tit	leprincipals	CONSULTA ▼	+ COMPARTILHAR	COPIAR	± SNAPSHO [*]
ESQU	EMA DETALHES	VISUALIZAR	LINHAGEM	PERFIL DE DADOS	QUAL
Linha	tconst	nconst	4	category	4
1	tt11528406	nm9506111		actor	
2	tt13608964	nm0001769)	actor	
3	tt12721794	nm7255714	1	actor	
4	tt5711016	nm8124389)	actor	
5	tt0003599	nm0168621		actor	
6	tt14748922	nm6021864	1	actor	
7	tt3218912	nm5977384	1	actor	
8	tt14600862	nm8135362	2	actor	
9	tt12477560	nm3102870)	actor	
10	tt1249105	nm0585171		actor	
11	tt26426096	nm1340051		actor	
12	tt6932758	nm9018281		actor	

Logo		
Linha	nconst	primaryName
1	nm12841848	Ali Shakeri Zand
2	nm11806888	Lily Beer
3	nm7946759	Trish Robertson
4	nm4991335	Marshall Martinez
5	nm2178491	Doug McGovern
6	nm14675637	Samet Yüce
7	nm8450815	Leon Blanda
8	nm5443765	Louise Rodgers
9	nm9485566	David Graf
10	nm11637590	Shane Newsham
11	nm12433638	Carvajal Carlos
12	nm6749959	DeAngelo Alexander
13	nm6882452	Isabelle Brandauer

As definições dos subconjuntos estão claros e totalmente entendíveis, tornando muito mais fácil os processos de consulta em porterior.

3.3.2 Catalogação do dataset e de suas tabelas.

Foram adicionadas descrições detalhadas a todas as tabelas e suas colunas.

Parte 4. Resposta ao objetivo

A primeira consulta necessária é descobrir quais são os filmes mais bem ranqueados do dataset disponibilizado pelo IMDB e logo em seguida criar uma tabela com os resultados:

Resultados da consulta

INFOR	MAÇÕES DO JOB RESULTA	ADOS JSON	DETALHES DA EXECUÇÃO
Linha	primarytitle ▼	averagerating ~	numvotes ▼
1	Breaking Bad	9.5	2023816
2	The Shawshank Redemption	9.3	2787176
3	Game of Thrones	9.2	2194822
4	The Godfather	9.2	1940872
5	The Dark Knight	9.0	2766563
6	The Lord of the Rings: The Retu	9.0	1909611
7	Schindler's List	9.0	1402085
8	The Godfather Part II	9.0	1318901
9	Pulp Fiction	8.9	2138214
10	Friends	8.9	1041248
11	Inception	8.8	2456328

```
CREATE OR REPLACE TABLE `pelagic-range-398901.imdbmvp.top20filmes`
AS
SELECT t1.primarytitle, t2.averagerating, t2.numvotes, t1.tconst
FROM `pelagic-range-398901.imdbmvp.titlebasics` t1
INNER JOIN `pelagic-range-398901.imdbmvp.titleratings` t2
ON t1.tconst = t2.tconst
WHERE t2.numvotes > 1000000
ORDER BY t2.averagerating DESC
LIMIT 20;
```


Agora, entender a estrutura hierárquica:

```
SELECT t1.primarytitle, t2.category, COUNT(t2.category) AS category_count
FROM `pelagic-range-398901.imdbmvp.top20filmes` t1
LEFT JOIN `pelagic-range-398901.imdbmvp.titleprincipals` t2
ON t1.tconst = t2.tconst
GROUP BY t1.primarytitle, t2.category
ORDER BY t1.primarytitle, category_count DESC;
```

Do qual tenho o objetivo de (em ordem decrescente) entender quantos atores, atrizes, escritores, diretores e produtores existem em cada uma das produções de cinema.

Resultando em uma consulta de 105 linhas, segue uma lista de correspondências encontradas:

primarytitle	category	category
Breaking Bad	actor	7
Breaking Bad	actress	2
Breaking Bad	writer	1
Fight Club	actor	4
Fight Club	producer	3
Fight Club	writer	2
Fight Club	director	1
Forrest Gump	producer	3
Forrest Gump	actor	2
Forrest Gump	actress	2
Forrest Gump	writer	2
Forrest Gump	director	1
Friends	actor	5
Friends	actress	3
Friends	writer	2
Game of Thron	actress	4
Game of Thron	actor	4
Game of Thron	writer	2
Goodfellas	actor	3
Goodfellas	editor	2
Goodfellas	writer	1
Goodfellas	actress	1
Goodfellas	director	1
Goodfellas	cinematog	1
Goodfellas	producer	1

Com estes números, é possível encontrar um padrão que possa apresentar alguma regra ou padrão dentre os filmes apresentados no dataset:

O total de pessoas em todas as equipes de alguma maneira sempre é de 10 pessoas, sendo elas divididas entre atores, atrizes, escritores, produtores, diretores ou cinematografista.

	primarytitle	category_cour	ıt •
1.	One Flew Over the Cuckoo's Nest		10
2.	Goodfellas		10
3.	Breaking Bad		10
4.	The Lord of the Rings: The Return		10
5.	Pulp Fiction		10
6.	The Matrix		10
7.	Friends		10
8.	Forrest Gump		10
9.	Schindler's List		10
10.	The Dark Knight		10
11.	The Godfather		10
12.	Stranger Things		10
13.	Game of Thrones		10
14.	The Lord of the Rings: The Fellow		10
15.	Interstellar		10
16.	The Godfather Part II		10
17.	Fight Club		10
18.	The Lord of the Rings: The Two To		10
19.	The Shawshank Redemption		10
20.	Inception		10
		1-20/20 <	>

Além disso, é possível notar que os filmes mais bem ranqueados tem como distribuição de cargos através da seguinte query:

```
SELECT
  t2.category,
  COUNT(*) AS role_count
FROM
  `pelagic-range-398901.imdbmvp.TOPCARGOS` t2
GROUP BY
  t2.category
ORDER BY
  role_count DESC;
```

Resu	ltados da consu	iita			
INFOR	MAÇÕES DO JOB	RESULTA	DOS	JSON	
Linha	category ▼	6	role_cou	ınt ▼	
1	actor			20	
2	writer			17	
3	director			16	
4	producer			15	
5	actress			13	
6	cinematographer			8	
7	editor			7	
8	composer			7	
9	production_designer			2	

E pode ser calculada a média das classificações (averagerating) para cada categoria de cargo. Isso pode ajudar a determinar se há uma correlação entre o cargo desempenhado no filme e a classificação média no IMDB:

```
WITH CategoryAverageRatings AS (
  SELECT
   t2.category,
   AVG(t1.averagerating) AS average_rating
    `pelagic-range-398901.imdbmvp.titleprincipals` t2
  LEFT JOIN
    `pelagic-range-398901.imdbmvp.top20filmes` t1
    t1.tconst = t2.tconst
  GROUP BY
    t2.category
)
SELECT
  category,
  ROUND(average_rating, 2) AS rounded_average_rating
  CategoryAverageRatings
ORDER BY
  average_rating DESC;
```

Resultados da consulta

INFOR	MAÇÕES DO JOB	RESULTA	DOS JSON
Linha	category ~	6	rounded_average_rat
1	composer		8.96
2	actor		8.95
3	actress		8.94
4	editor		8.92
5	writer		8.91
6	cinematographer		8.91
7	director		8.88
8	producer		8.87
9	production_designer		8.85
10	self		null
11	archive_footage		null

Quanto a pergunta final indagada na parte 1. Objetivo: quais são os atores que mais aparecem dentre esses filmes:

Para isso, se tornou necessário criar uma nova tabela TOPATORES adicionando a chave de nome com filtro somente para atores e cruza-la com a base namebasics para descobrir seus nomes.

```
QUERY 1
CREATE OR REPLACE TABLE `pelagic-range-398901.imdbmvp.topatores`
AS SELECT t1.primarytitle, t1.averagerating, t2.category, t2.tconst, t2.nconst
FROM `pelagic-range-398901.imdbmvp.top20filmes` t1
LEFT JOIN `pelagic-range-398901.imdbmvp.titleprincipals` t2
ON t1.tconst = t2.tconst
where category = 'actor';

QUERY 2
CREATE OR REPLACE TABLE `pelagic-range-398901.imdbmvp.topatores`
AS SELECT t1.primarytitle, t1.averagerating, t1.category, t1.tconst, t1.nconst, t2.primaryName
FROM `pelagic-range-398901.imdbmvp.topatores` t1
LEFT JOIN `pelagic-range-398901.imdbmvp.namebasics` t2
ON t1.nconst = t2.nconst;
```

inha	primarytitle	averagerating	category	tconst	nconst	primaryName
1	The Dark Knight	9.0	actor	tt0468569	nm0000288	Christian Bale
2	The Dark Knight	9.0	actor	tt0468569	nm0000323	Michael Caine
3	The Dark Knight	9.0	actor	tt0468569	nm0001173	Aaron Eckhart
4	The Dark Knight	9.0	actor	tt0468569	nm0005132	Heath Ledger
5	Schindler's List	9.0	actor	tt0108052	nm0000146	Ralph Fiennes
6	Schindler's List	9.0	actor	tt0108052	nm0000553	Liam Neeson
7	Schindler's List	9.0	actor	tt0108052	nm0001426	Ben Kingsley
8	The Godfather Part II	9.0	actor	tt0071562	nm0000199	Al Pacino
9	The Godfather Part II	9.0	actor	tt0071562	nm0000134	Robert De Niro
10	The Godfather Part II	9.0	actor	tt0071562	nm0000380	Robert Duvall
11	The Lord of the Rings: The Retu	9.0	actor	tt0167260	nm0001557	Viggo Mortensen
12	The Lord of the Rings: The Retu	9.0	actor	tt0167260	nm0089217	Orlando Bloom
13	The Lord of the Rings: The Retu	9.0	actor	tt0167260	nm0000704	Elijah Wood
14	The Lord of the Rings: The Retu	9.0	actor	tt0167260	nm0005212	lan McKellen
15	Breaking Bad	9.5	actor	tt0903747	nm2666409	RJ Mitte
16	Breaking Bad	9.5	actor	tt0903747	nm0606487	Dean Norris
17	Breaking Bad	9.5	actor	tt0903747	nm0644022	Bob Odenkirk
18	Breaking Bad	9.5	actor	tt0903747	nm0666739	Aaron Paul
19	Breaking Bad	9.5	actor	tt0903747	nm0052186	Jonathan Banks
20	Breaking Bad	9.5	actor	tt0903747	nm0186505	Bryan Cranston
21	Breaking Bad	9.5	actor	tt0903747	nm2366374	Steven Michael Quezada
22	Goodfellas	8.7	actor	tt0099685	nm0000582	Joe Pesci
23	Goodfellas	8.7	actor	tt0099685	nm0000501	Ray Liotta
24	Goodfellas	8.7	actor	tt0099685	nm0000134	Robert De Niro
25	The Matrix	8.7	actor	tt0133093	nm0915989	Hugo Weaving
26	The Matrix	8.7	actor	tt0133093	nm0000401	Laurence Fishburne
27	The Matrix	8.7	actor	tt0133093	nm0000206	Keanu Reeves
28	Stranger Things	Q 7	actor	H4574334	nm1002086	David Harbour

Agora, para finalizar, uma query para encontrar os 6 atores que estejam em mais de uma obra dentre as maiores 20 ranqueadas.

```
SELECT
   primaryname,
   COUNT(primaryname) AS name_count,
   AVG(averagerating) AS average_rating
FROM
   `pelagic-range-398901.imdbmvp.topatores`
GROUP BY
   primaryname
ORDER BY
   name_count DESC,
   average_rating DESC
   limit 6;
```

Resu	Iltados da consi	ılta			
INFOR	MAÇÕES DO JOB	RESULTA	DOS	JSON	DETALHES DA EX
Linha	primaryname 🔻	//	name_co	ount ▼	average_rating ▼
1	lan McKellen			3	8.86666666666
2	Orlando Bloom			3	8.86666666666
3	Elijah Wood			3	8.86666666666
4	Al Pacino			2	9.1
5	Viggo Mortensen			2	8.9
6	Robert De Niro			2	8.85

Oque nos dá a resposta de trindade dos atores e personagens mais bem ranqueados: Orlando Bloom(Legolas), Ian McKellen(Gandalf) e Elijah Wood(Frodo):

Como os três participam de uma das maiores trilogias dos cinemas, grande crédito também pode ser dado as lendas Al Pacino e Robert Deniro.

Parte 5. Autoavaliação

Ao me autoavaliar, noto resiliência e esforço para completar e entender todos os pontos dos materiais oferecidos, tanto quanto entregar de maneira completa seus trabalhos e o MVP.

Ao passar do tempo e entender a melhor maneira para fazer a entrega, entendendo e melhorando o trabalho de acordo com os pedidos e necessidades declaradas pelos professores, como a necessidade de todo o trabalho ser feito através de uma plataforma na nuvem, me vi também me esforçando para acertar todo o MVP de acordo com a demanda e as dificuldades encontradas no caminho.

Espero ter alcançado o objetivo proposto. Obrigado.