

Figure 10-7. Slope takeoff.

Technique

Begin the takeoff by increasing rpm to the normal range with the collective full down. Then, move the cyclic toward the slope (frame 1). Holding the cyclic toward the direction of the slope causes the downslope skid to rise as the pilot slowly raises the collective (frame 2). As the skid comes up, move the cyclic as necessary to maintain a level attitude in relation to the horizon. If properly coordinated, the helicopter should attain a level attitude as the cyclic reaches the neutral position. At the same time, use antitorque pedal pressure to maintain heading and throttle to maintain rpm. With the helicopter level and the cyclic centered, pause momentarily to verify everything is correct, and then gradually raise the collective to complete the liftoff (frame 3). After reaching a hover, avoid hitting the ground with the tail rotor by not turning the helicopter tail upslope and gaining enough altitude to ensure the tail rotor is clear. If an upslope wind exists, execute a crosswind takeoff and then make a turn into the wind after clearing the ground with the tail rotor.

Common Errors

- 1. Failing to adjust cyclic control to keep the helicopter from sliding down slope.
- 2. Failing to maintain proper rpm.
- 3. Holding excessive cyclic into the slope as the down slope skid is raised.
- 4. Failure to maintain heading, resulting in a turning or pivoting motion.
- Turning the tail of the helicopter into the slope during takeoff.

Confined Area Operations

A confined area is an area where the flight of the helicopter is limited in some direction by terrain or the presence of obstructions, natural or manmade. For example, a clearing in the woods, a city street, a road, a building roof, etc., can each be regarded as a confined area. The helicopter pilot has added responsibilities when conducting operations

from a confined area that airplanes pilots do not. He or she assumes the additional roles of the surveyor, engineer, and manager when selecting an area to conduct operations. While airplane pilots generally operate from known pre-surveyed and improved landing areas, helicopter pilots fly into areas never used before for helicopter operations. Generally, takeoffs and landings should be made into the wind to obtain maximum airspeed with minimum groundspeed. The pilot should begin with as nearly accurate an altimeter setting as possible to determine the altitude.

There are several things to consider when operating in confined areas. One of the most important is maintaining a clearance between the rotors and obstacles forming the confined area. The tail rotor deserves special consideration because, in some helicopters, it is not always visible from the cabin. This not only applies while making the approach, but also while hovering. Another consideration is that wires are especially difficult to see; however, their supporting devices, such as poles or towers, serve as an indication of their presence and approximate height. If any wind is present, expect some turbulence. [Figure 10-8]

Something else to consider is the availability of forced landing areas during the planned approach. Think about the possibility of flying from one alternate landing area to another throughout the approach, while avoiding unfavorable areas. Always leave a way out in case the landing cannot be completed, or a go-around is necessary.

During the high reconnaissance, the pilot needs to formulate a takeoff plan as well. The heights of obstacles need to be determined. It is not good practice to land in an area and then determine that insufficient power exists to depart. Generally, more power is required to take off than to land so the takeoff criteria is most crucial. Fixing the departure azimuth or heading on the compass is a good technique to use. This ensures that the pilot is able to take off over the preselected departure path when it is not visible while sitting in the confined area.