

Figure 1

STC-1 GTC-1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11A

Figure 11B

Figure 12

Figure 13

GIP Promoter

atctctccag tcccttcctc aacctctga gaacaggcaa actccaccat gattggctta
taaatcgta tatggaccta ctaaggatgt aacaactggg agcatgcta ctagcatgt
ccgaaaccccg gagtcagtc cctagcactg cacaatctca gtccttatga agtagaggga
agatcagagg ttcaaggaca acatcaattt gagaccagcc tggctactt accaaagaaa
gaaagagaga aataaataaa tagatagata aataaataaa taagtaaata aatatcttat
ggctggagag ttggtcagt gtttaagagc acttattgtg gggtggggta tttagtcag
ttgttagagcg ttgccttagg aagtcagg ccctgggtc ggtcccccagc tccggaaaca
aaacaaaaca aaacaaaacaa aacaaaaccc ctgtctggaa aacacctaaa
taaagatata tatataata atatatacat ataataatata tatgatataat atatataat atatcttgc
ggaggaagct atacccctt ttcattgagcc tccaacacat aatgtgcc tgcattccca
ttcatatgc cccaaatggg aaaccatgtg actataaact ctaagtttcct agtcaactagg
aactctcaag acacctacact caggcagcat cacttccggta gtgccaccat tatcagttaa
catccacatc tgggatttcg atcccgatc ccttcgttc ctcagaatg cacctacagc
tttgtgggg tgcccttc ctcagagagt gccaccccgag ttgaccctca ccaaggcaac
ccttgattacc cacagaatcc aacaggaatg agggggaga acagccggcc ctgtgccag
aaaaaaagag gggagggaga aggggggtc cagcctacca cggggcaggt cccagataac
actgcagata cccaaatgtt aatcacccat tagcacaggg ccagagcaaa ggggaaatgt
attaggtta taatgggtt cactgggcag gaccagtggg cttagtcgc aaagataaga
gttttcagg ttaatcagca ccctgtgggt tggtggatata aggaagctaa cacagggtct
tgaagcaaga tcctgag

Mouse chromogranin A (Chga) gene, promoter region.

ACCESSION L31361

1 ccgaaattac ccactacgtt ggaattctat aagggttggg ttgtgttt tgttacagc
61 tgcgttttgcacca cagctgatgt gttctaaagcc cacgtcgatg cttaaacacat
121 ggttgttgaatcacac cgaagccgggt ttcattttggcatgatgttggcaggatgt
181 gttggcagga agcaggaaag agcggaaaca ggtgcggaca gaaaggaggg gctctgaagg
241 atgcaggatca gtgcctaaact gtcattccaga taccagggttc actgtggccc taggcccaggc
301 tgcacggggc ttcccatgtg gtctggccag ggtgagagca gaactgcgggt gggcggggca
361 gaaggaaacc aaccaggaaag cagggttgca cccaaattat ccaggttta agtacattta
421 agagacaagg ctggctgtt gaaggtcaga ggtgtccctg ggggtctggta ctggactgt
481 ccacttcgtt tttatgtttaa tggtgagaac tgcctcacac tgcacccctgc cttaacttgcc
541 ccttgagagc tgcgtggccata ggaccaccc atgtgtgggt tggacccctca gtcacacact
601 gaacgtgtt gaagccactg gttgtcagag cagggtcttc ggcactgagg aagcagtgtac
661 cactatcccc tatcaaataa caattaaataa cacacagaat gcgaggcaca caactgtgtt
721 tcaggagagg cctcgctcg gcaaggggtt caagaggctt ctgtggacc cgctggatgt
781 tccaggaggat cttaaagat gggcgtccctt ccagccaaatg gaaatcaaga gaaaagtacg
841 cgaagtatag gaaaactcg cagtcggag aggtaaatag gggagggatc cgaggctcg
901 agacaggagt gacttgcaca cggacgcaca gcaagttggc aggtggatgtt cagctgtgcc
961 accttctgaa gccgggttacc cttaacccat accagataca agcgggatag agacagctga
1021 tggagaagct ggagggtgggg ggccgggaccc cgaagggtgg gaaaggcgcc gggggggcgg
1081 tcctatgacg taatttcctg ggtgtgtcgcc cgcgtgtcgcc tgctgtcgcc tggatataaa
1141 agccggcata gcattgcgc tgctggccgc gccaccgcacccatcccgcc tggataccacc
1201 accgctactg cagttccctt gctgggtcgag agctttggta gccagactac agacccactc
1261 ccggccatctt cctgcagcag ctgcgtccactt ccgtccgcac cgtccggctc gctatgcgc

//

Figure 14

Mus musculus secretogranin II (Scg2) gene, promoter and exon 1, complete sequence.
ACCESSION AF037451

Mus musculus glucokinase gene, 5' flanking region.
ACCESSION U93275

1 agcttaggt gtgtgaatat ctacttggc gctagggcct tggtcatact aagtaagg
61 cccctcaact ggggtgtacc agttacccct ggactgtcta agcaacaaga aggatagaca
121 tggctacca cagattcat gtctgccact ggctatgtca gaacatgtag gagctttgg
181 aatcaagtcaa acaggtattt tcagactgccc tccctcggt ggggcattcc cgaaggccata
241 ttttccctag agtcagccctt tcccaagctg ggacaagctg tactggacag atgccagcca
301 cttgaactgg gaatacatgg tcatttaggc agctggctta tctcatccat ggtacttgat
361 ggcttcgggt cagcacccca cagaaaatggc agacggggagg ctcccgagaa aacagagaag
421 caggcaggag atcctgcagg caatccctct gtcacccagc ctgcattggac ttccctcaggc
481 cttatgtcggt gtgggtccccca tctgagaaca ttgggttatat gtattttca aaccgatctg
541 cctttaaggaa gtggaaagaaa aaaactgtgg tgtttggcct acctttatga taatggccctt
601 ttcatccctcc taataaaat tgccaaatgtgg ggttagattct atacggaaagc tcttaacccca
661 tggtaggttggc aaatcatgtaa ggtgctaaata atgaataactg gatgcagtca gtacagggt

Figure 15

721 ataaaatgga atgttaagac ctgttgctat gaatggtagt ctaactagat gttgtacaag
781 aaatgttgc gttatgacgt gtggaaacctt ggtattgaag atgtggactc gaaaaccttgt
841 ggatttttg atgccatgtat aaaaatgtga agaatactgt tccttaccaa aaagaagaag
901 aagaaggaga aggaggagga agaggaggag gaggaagaag agggggagga agaagaagag
961 aaggaggagg aagaggagga ggaggaagaa gaggaggagg aggaagaaga agagaaggag
1021 gaggactagg aggaggagga gaagaaggag aaggggaaagg agagagtagc cagaacattt
1081 ggggtgccat cagaatacca gatactccag acatagtcac agaaggactg gttgtttgt
1141 taaatagggt cttgaaaag ttgtgggaa aacctgcagt gagattgtgt gccttagaaa
1201 tgataggcaa gattcatcca caagaatgcg acaagatggc tgcctgaaca agccctgaac
1261 attaacagca ccagtagacc tgcttacacg gaagaaagca atctcatagg ccctcacccc
1321 aaacaagac tacagacgc agaggaactg gagagcagga gaaatgggt ctccctttt
1381 tgagccccct aactgggtt caaatactca atggcagcc ctgaaatcat atgcacaaag
1441 taatactacgc gcaactgaac agattgtacg tttgtgtgt tttgtatga taacaaagaa
1501 gaaaaggccc catgttagag agggagcaag gtgggcatgg aggtatggaa ggagttggaa
1561 ggaggggtga gaaggggaaa gtgtatgtatctttta ttataaaaaa aataaaaaat
1621 gggctgtga gatggctcag tggtaagag cacccgactg ctcttccga aggtctggag
1681 ttcaaatccc agcaaccaca tggggctca caaccatccg taacggatc tggccccc
1741 ttctggagtg tctgaagaca gctacagtgt acttacatat aataaataaa taaaatctt
1801 aaaaaaaaaata aaaaataaaaaa tattagaata aatgttagag gaatattttt aatttaacaa
1861 cttgggtgtg gcaaaagctt tcttcaacaa aaacttaatc cctcagatata gaaaagacta
1921 gaatccacga cgtggataga tacttctgtt tgatgcaga cactattt caggtgtaa
1981 cttgagcaga acttgagttg taacttgggtt ggaaacacaa cacccttggc aaacaaaaga
2041 ttactagata tttagatga aatataaaaaa tacttccac aactgtatgg taggaaacag
2101 ttcaatagta atataattt tgaacaaata atcctaaaaa gaagaaatcc agaggaatag
2161 caagtttaggg gaagagaggg tttgtgtgtg tttgtgtgcg cgcacattt tagccaaat
2221 agatgtatata cttaaatgaa catgccattt aaacccattt tttgcatac agtttacata
2281 tgctaatgaa tactttaaaaa aaaaacattt ggattggaga gaaaatggctc agtggtaag
2341 agttcaattt ccagcaacca catgattgct cacaaccatc tgtaatggga tctgtatgc
2401 tcttctgtt tgctgtt aagtggcggtt gtacttataa ttataaaaaa aataatctt
2461 aaccaaaaaa cccccataat ttcaacaaca gatatgtccct ggtctggggc ttccaggcat
2521 agaaatagaa acacacagag tttggggcca gtgcgggttca ggtccggcat tccagttcag
2581 gtttcagacc aagagaaagg gaaaagaaga gacaagcaac aag

H.sapiens adenosine deaminase (ADA) gene 5' flanking region and exon 1 (and joined CDS).
ACCESSION X02189

1 tccagggaaat ggcgcgatcca ggccggcgccc cgggggggggg gctccggcga gggggggggc
61 cccgggaacg gcccggggcg gggcgggagg cggggccccc cccgttaaga agagcgtggc
121 cggccgcggc caccgtggc cccaggggaaa gcccggcggc caccggcggc gcagagaccc
181 accgagggc ggcggaggga ggcacgcgg ggcgcacgag ggcacc

Homo sapiens mRNA for pre-proinsulin.
ACCESSION X70508

MALWMRLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREA
EDLQVGVQVELGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN"

1 gctgcattc aagaggccat caagcacatc actgttc tccatggcc ctgtggatgc

Figure 16

61 gcctcctgcc cctgctggcg ctgctggccc tctggggacc tgaccaggcc gcagcctttg
121 tgaaccaaca cctgtgcggc tcacacctgg tggaaagctct ctacctagtg tgcggggAAC
181 gaggcttctt ctacacaccc aagacccccc gggaggcaga ggacctgcag gtggggcagg
241 tggagctggg cggggccctt ggtcaggca gcctgcagcc ctggccctg gaggggtccc
301 tgcagaagcg tggcattgtg gaacaatgtt gtaccagcat ctgcctc taccagctgg
361 agaactactg caactagacg cagcccccg gcagcccccc acccgccgccc tccgcaccc
421 agagagatgg aataaagccc ttgaaccagc

Homo sapiens leptin (LEP), mRNA.
ACCESSION XM_004625

"MHWGTLCGFLWLWPYLFYVQAVPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKV
LDFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLP
WASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC"

1 tctgtttca gccccaaaga gcccacccctg ggaaggaaaa tgcattgggg aaccctgtgc
61 ggattcttgcg ggctttggcc ctatcttc tatgtccaag ctgtcccat ccaaaaagtgc
121 caagatgaca ccaaaaacccat catcaagaca attgtcacca ggatcaatga cattcacac
181 acgcagtcg tctcctccaa acagaaaagtc accgggttgg acttcattcc tgggctccac
241 cccatctgaa ccttatccaa gatggaccag acactggcag tctaccaaca gatccctacc
301 agtatgcctt ccagaaacgt gatccaaata tccaaacgacc tgagaacccctt cggggatctt
361 cttcacgtgc tggccttc taagagctgc cacttgcctt gggccagtgg cttggagacc
421 ttggacagcc tgggggggtgt cctgaaagct tcaggctactt ccacagaggtt gggggccctg
481 agcaggctgc aggggtctct gcaggacatg ctgtggcagc tggacctcag ccctgggtgc
541 tgaggccctt aaggctactc ttctgcag gactacgtta agggaaaggaa ctctggcttc
601 caggtatctc caggattgaa gagcattgca tggacacccctt atccagga ctctgtcaat
661 tccctgact cctctaagcc actcttccaa aggacataaga ccctaaggccctt cttttgttt
721 gaaaccaaag atatatacac aggatcctat ttcaccagg aaggggggtcc acccagcaaa
781 gagtggtctg catctggat tcccaaccaag gtcttcagcc atcaacaaga gttgtttgt
841 cccctcttgc cccatctccc cctcactgaa tgctcaatg tgaccagggg tgatttcaga
901 gagggcagag gggtaggcag acccttggta tgaccagaac aagggtccctt ctgagaattc
961 caaggagttc catgaagacc acatccacac acccaggaac tcccagcaac acaagctgga
1021 agcacatgtt tattttatct gcattttattt ctggatggat ttgaagcaaa gcaccagctt
1081 ctccaggctc ttggggtca gccaggccca ggggtctccc tggagtgcaag ttccaatcc
1141 catagatggg tctggcttag ctgaacccat ttgagtgac tgcagggttg ggttcatctg
1201 agcaagagct ggcaaaagggtg gctctccagg tagttctctc gtaactgggtt tcatttctac
1261 tgtgactgtat ttacatcac agtgttgc atgggttgc cctgagtgaa ttccaaagg
1321 ccagggttattt taaaagat ttgtttgtc aagtgcata tgtaggtgc tgcacccagg
1381 ggtggggat ttgtggcag aaggagaag gatctagaat ttgtttctg aataacattt
1441 gtgtgggggg ttctttggaa ggagtggat cattttcttata tcttgcacca ttgtttagga
1501 ttgtttcat gaaaatagctt ctttcagggg ggttgtgagg cctggccagg caccggctgg
1561 agagaagttt ctggccctgg ctgacccaa agagctggaa gaagctgtatg ctgttgc
1621 aatccatcca gaataaaacg caaaggctggaa aagccattt ttggggcag tggtaagctc
1681 tggcttc tgcactgttag ggagtggctt ttctatcat ggagtgcacgg tcccacactg
1741 gtgactgcga tcttcagac aggggtccctt ggtgtgaccc tctgaatgggt ccagggttgc
1801 tcacactctg ggttttatttac atggcagtttgc tcttgcatttgg ggcttgcaccc ccaaaatttgc
1861 gttcttgctt gatggctca ccaaccaag gcaaaaatttgc ccaaaatgtt tgggggggtt
1921 ttactccagg ggtgaagaaa actcccttag caggtggtcc tgagacctga caagcactgc
1981 taggcgagtg ccaggactcc ccaggccagg ccaccaggat ggcccttccc actggaggcc
2041 acattcagga agatgaaaga ggagggttgg ggttgcaccc catcctgtgc ctgtgtttt

Figure 17

2101 gctatcacac agtgggtggt ggatctgtcc aaggaaactt gaatcaaagc agttaacttt
2161 aagactgagc acctgcctca tgctcagccc tgactgggtc tataggctgg agaagctcac
2221 ccaataaaaca ttaagattga ggcctgcctt cagggatctt gcattcccag tggtaaaacc
2281 gcactcaccc atgtgccaag gtggggtatt taccacagca gctgaacagc caaatgcatt
2341 gtgcagttga cagcaggtgg gaaatgttat gagctgaggg gggcggtgcc cagggcccc
2401 cagggaaacc tgcttcact ttacttttc agggcatctt agcttctatt
2461 atagccacat cccttgaaa caagataact gagaattaa aaataagaaa atacataaga
2521 ccataaacagc caacagggtgg caggaccagg actatagccc aggtcctctg atacccagag
2581 cattacgtga gccaggttaat gaggactgg aaccaggagg acccgagcgct ttctggaaaa
2641 gaggagtttc gagtagagt ttgaaggagg tgagggatgt gaatgcctg cagagagaag
2701 ctgttttgtt tggaagggtt ggtgtgttga gatcagggg taaaagtgtg agcagtgt
2761 tacagcgaga ggcagagaaa gaagagacag gagggcaagg gccatgtga agggacctt
2821 aagggttaaag aagggttataaaggagt taagagtac aagtctaga gaagaggctg
2881 gtgctgtgc caggggtgaga gctgctctgg aaaatgtgac ccagatccctc acaaccacct
2941 aatcaggctg aggtgtttaa agccctttgc tcacaaaacc tggcacaatg gctaattccc
3001 agagttgtgaa acttcctaaatggg tttttttttt tgtaacttaa aaaaaaaaaaaa
3061 aaaaagggttgg cgggtgcgg tggctcacgc ctgtaatccc agcactttgg gaggccaagg
3121 tggggggatc acaagggtcac tagatggcga gcatcctggc caacatgggaaacccctc
3181 tctactaaaaa acacaaaagt tagctgagcg tggggcggg cgcctgttagt cccagccact
3241 cgggaggctg agacaggaga atcgtttaaa cctgggaggg ggagagtaca gtgagccaag
3301 atcgcgccac tgcactccgg cctgtatgaca gagcggagatt cgcgtttaaa aaaaaaaaaaaa
3361 aaaaaggtttgg tttttttttt aatctaaata aaataacttt gccccctt

Homo sapiens cholecystokinin (CCK), mRNA.

ACCESSION XM_003225

"GSAAGLLRLETPSQLRPNPKAMNSGVCLCVLMAVLAAGALTQPVPPADPAGSGLQRAE
EAPRRQLRVSQRTDGESRAHLGALLARYIQQARKAPSGRMSIVKNLQNLDPSHRISDRD
YMGWMDFGRRSAEEYEYPS"

1 ggctcagctg cgggtggaa acgccaagcc agctgcgtcc taatccaaaa
61 gccatgaaca gcccgtgtg cctgtcgctg ctgatggcg tactggcgcc tggcgccctg
121 acgcagccgg tgcccccgc agatcccgcg ggccggcc tgcagccggc agaggaggcg
181 ccccgtaggc agctgagggt atogcagaga acggatggcg agtcccgagc gcacctggc
241 gcccgtctgg caagatacat ccagcaggcc cggaaagctc ttctggacg aatgtccatc
301 gttttaaacc tgcagaacct ggaccccagc cacaggataa gtgaccggga ctacatggc
361 tggatggatt tggccgtcg cagtgcccgag gatgtatgtt accccctcta gaggacccag
421 cccgcattcag cccaaacggga agcaacccctcc caaccccgag gaggcagaat aagaaaaacaa
481 tcacactcat aactcattgt ctgtggatgt tgacattgtatgtatcttattatattat
541 tcaatgtaa aatgtgttot gtaagattgt ccagtgcac cacacacccctc accagaattt
601 tgcaaatggaa agacaaaatgt ttcttcattt ctgtgactcc tggctgtaaa atgttggat
661 gctattaaag tgatttcattt ctgcc

CCK Promoter (Rat)

ACCESSION S70690

1 aattcgcgcg ctaagccgca ttattcacgt ttccagacat gtcacaaata cagctaattc

Figure 18

61 ctacaacctg agctgtgtca tggggggggg gggaaatcacc cacagcattt aatctgtgc
121 ttttttaaac acgttgcgttc taagtaaaga gaccgtaga gccacaacca ggaacctaac
181 tgctgtggc atcaactgcc tttcatagt ctccctcagc cggaaaaaaa ccacgctggg
241 tgcctctct atttagaaag agtttctaag ctttctct tcaccctaga ctggcaagg
301 tgagggttagg ctgagggttg caagactgtg agaaaaggaa gcccctct tcttcttgt
361 cggtgagtagt ctcagccaag atccctacca cccagtgaa tcccgtaact ctagaggaaa
421 ggaagaactc tagaggacgg gaagatcatt gcaagctccc ctatgtgc gagccccagcc
481 cgctccactc agccagccag agcttgggg tgcttgagac actctctggc gccacttcg
541 gaccaaaatc atcggtatgtt gtaggctgtt gagaagtcatt ctgggaaga aatggaaacc
601 tttcccaa aggcttccg cacaaaaggc aagagctgca cccaggatct taaaattctg
661 taagacgaga atccacgagg ccaactgtga ttgagttctg aaaaattttag agccctactc
721 ccctctctca ctgggggg cccactcagg tctgaagtgc tccagagaa catgccagaa
781 ttacatttgc tgacacctag tctgtgggg tccccgggtt tcttgaaagg atttgateccc
841 tcaaagctca ctaaacatgt gtcaatcttccatccaga caaactcttgc tttctctccg
901 ggatgggggg tggcacccctc cctgaagagg actcagcaga ggcacccgaac aggggggg
961 ggaaagctgtt ttagataaag aggaggactc atacaaatgtt ccccgctgtt gggggctat
1021 cctcattcac tggccgtttt cccttctccc gggggggccac ttgcgtcggtt ggtctctcca
1081 gtggctgcctt ctgagcacgtt gtccctggccgg actgcgtcag cactgggtaa acagatgact
1141 ggctgcgtac cggccggggc tatttaagag gatgtgcctt gccgcctgccc ctcaacttag
1201 ctggacagca gccgtggaa accgccaagc cagctgactc cgcattccaa ggttaagtggc
1261 tggcagatcc aagaatcatgtt agtgtgaaga actggctgtt agtttgcatttgcgtt
1321 ttagtcttc cattttctgtt gcctccctc acttgacagc tg

Human messenger RNA for growth hormone (presomatotropin).

ACCESSION V00519

"MATGSRSTLLLAFGLLCLPWLQEASFPTIPLSRFDNAMLRAHRLHQIADFDTYQEFE
AYIPKEQKYSFLQNQPQTSLCFSESIPTPSNREETQQKSNEELLRISLLIQSWLEPVQFLRSV
FANSLVYVGASDSNVYDLLKDLEEGIQTLMGRLEDGSPRTGQIFKQTYSKFDTNSHNDDA
LLKNYGLLYCFRKDMDKVETFLRIVQCRSVEGSCGF"

1 cgaaccactc agggctctgtt ggacagctca cctagctgca atggctacag gctccggac
61 gtccctgttc ctggcttttgc cctgtctgtt cttcaagagg gcagtgcctt
121 cccaaaccattt cccttatcca ggcttttga caacgtatgtt ctccggccccc atcgctgca
181 ccagctggcc ttgacacacc accaggagtt tgaagaagcc tatatccaa aggaacagaa
241 gtattccatc ctgcagaacc cccagacccctc cctctgtttc tcaaggtctta ttccgacacc
301 ctccaaacagg gaggaaacac acagaaatc caaccttagag ctgctccgca tctccctgt
361 gtcatccag tggggctgg accccgtgca gttccctagg agtgtctcg ccaacagct
421 ggtgtacggc gctctgaca gcaacgtctt tgaccttca aaggacctag aggaaggcat
481 cccaaacgtt atggggaggc tggaaagatgg cagccccccgg actggccaga tcttcaagca
541 gaccatcagc aagtgcaca caaaacttaca acacgtatgac gcactactca agaactacgg
601 gctgtctac tggctcggg aggacatgga caaggctgag acatccctgc gcatgtgca
661 gtggccgtctt gtggaggggca gctgtggctt ttagtgcctt ggggtggccatc cctgtgaccc
721 ctccccagtg cctctctgg ccctggaaatgtt tgccacttca tgcccccacca gccttgcctt
781 aataaaaattttttagtgcattt

//

Figure 19

Rat GIP Promoter -1 to -1894 bp.

(-1894)

5' _GAGTGGCGACAGGCTGCTAGCAGGCTACACTGAGCTAACCCACCCATAT
ATATAACATAGTTACTATTAGCTTATTTATTTAAGATTATCATTATATATAG
TACACTGTAGTGTCTAGATACACAGAAGAGGCATCGGTCTCTACAGAGGCCACC
ATGTGGTTGCTGGGGATTGAACTCATACCTCTGGCAGAGCAGTCGGTCTTAACG
CTGAGCCATCTCTCCAGCGCCCCAAAGCCAGCTTTAAAAATATTAAAATTCT
TTCTACAGATTGTTTATGTATATGAGTGTGTTGTATCGTTGATGTGTACT
GTGTGCATGGCACATGCCAGTGGGCCACAGACAGAGGGACATGAGATTCCCTGAA
ACTTGGAGTTACAGATGGCTGTGGCTGCCATGTGAGTGAGCCTTGGAACCAAA
CCTGGGTCTGCACAAAAGCAACAAGCACTCTTAATCGTTGAGCCACCTCTCCAACC
CCTGATATTCTTCTGTTGGTCATTAAAATTGATAAACAGAGGGTTTCTTATT
TAAAGATTATTATTTATGTGAGTACACTGTTGCTCTCAGACACATAGAACAG
GGCATTGCTGGATTCTGCTACAGATGGTGTGAGCCACCATGTGGTCTGGAGTT
AAACTCAGGACCTCTGGAAGAGCAGTCAGTGTCTAACCACTGAGCCATCTCTCCA
GTCCCTTCTCAACCTCTGAGAACAGGCAAACCTCCACCATGATTGGCTTATAAATC
GTTATATGGACCTACTAAGGATGTAACAACACTGGGAGCATGCTTACCTAGCATGTCCG
AAACCCGGAGTTCAAGGACAACATCAATTGAGACCAGCCTGGCTACTTACCAA
AGATCAGAGGGTCAAGGACAACATCAATTGAGACCAGCCTGGCTACTTACCAA
GAAAGAAAGAGAGAAATAAATAAATAGATAGATAAATAAATAAATAAGTAAATAA
ATATCTTATGGCTGGAGAGTGGTTCACTGTTAAGAGCACTTATTGTGGGGTTGGG
GATTATCTCAGTGGTAGAGCGTTGCCCTAGGAAGCTCAAGGCCCTGGGTCGGTCC
CCAGCTCCGGAAACACAAAACAAAACAAAACAAACAAACAAACAAAAACC
CTGTCTGGAAAACACCTAAATAAAGATATATATATATAATATACATATAATAT
ATATATGATATATATATATATATATCTTGTGGAGGAAGCTATACCTTCTTCTT
GAGCCTCCAACACACATAAATGTGCCCTGTCACTCCATTCAATTGCCCAAGTGGGAA
ACCATGTGACTATAACTCTAAGTCCCTAGTCACTAGGAACCTCAAGACACCTACC
TCAGGCAGCATCACTCCGGAGTGCCACCATTATCAGTTAACATCCACATCTGGGAT
TCAGATCCCAGATCCCTCTGTTCCCTCAGAAAGTCACCTACAGCTTGTGGGGTGC
CCCTCCCTCAGAGAGTGCCACCCGAGTTGACCCTCACCAAGGCAACCCCTTGTACC
CACAGAATCCAACAGGAAGTAGGGGGAGAACAGCCGCCCTGTGCCAGAAAAAA
AGAGGGGAGGGAGAAGGGGGTGCTCAGCCTACCAACGGGCCAGGTCCCAGATAACA
CTGCAGATACCCAAATGTTAATACCCATTAGCACAGGCCAGAGCAAAGGGAAA
GTGATTAGGTGTATAATGGGGTCACTGGGCAGGAGCAGTGGCTTGAGCTCAA
GATAAGAGGTTTCAGGTTAATCAGCACCCCTGTGGTGTGGATATAAGGAAGCTAA
CACAGGGTCTGAAGCAAGATC_3' (-1)