Integral indefinida 1

Definição: Uma função F é denominada uma primitiva de f no intervalo I se F'(x) = f(x) para todo x em I.

Teorema: Se F for uma primitiva de f em um intervalo I, então a primitiva mais geral de fem $I \in F(x) + c$, onde $c \in \text{uma constante arbitrária}$.

Exemplo: Encontre a primitiva mais geral de cada uma das seguintes funções.

a)
$$f(x) = \sin x$$

b)
$$f(x) = \frac{1}{x}$$

b)
$$f(x) = \frac{1}{x}$$
 c) $f(x) = x^n$, $n \neq -1$ d) $f(x) = 3^x$

$$n \neq -1$$

$$d) f(x) = 3^x$$

Exercícios

1-20 Encontre a primitiva mais geral da função. (Verifique sua resposta derivando.)

1.
$$f(x) = x - 3$$

3.
$$f(x) = \frac{1}{2} + \frac{3}{4}x^2 - \frac{4}{5}x^3$$
 1. $F(x) = \frac{1}{2}x^2 + 3x + C$ **3.** $F(x) = \frac{1}{2}x + \frac{1}{4}x^3 - \frac{1}{5}x^4 + C$

 $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$

1.
$$F(x) = \frac{1}{2}x^2 + 3x + C$$

5.
$$f(x) = (x+1)(2x-1)$$
 5. $F(x) = \frac{2}{3}x^3 + \frac{1}{2}x^2 - x + C$ 7. $F(x) = 4x^{5/4} - 4x^{7/4} + C$

7.
$$f(x) = 5x^{1/4} - 7x^{3/4}$$

7.
$$f(x) = 5x^{1/4} - 7x^{3/4}$$
 9. $F(x) = 4x^{3/2} - \frac{6}{7}x^{7/6} + C$

9.
$$f(x) = 6\sqrt{x} - \sqrt[6]{x}$$

Notação: $\int f(x)dx$ será usada para representar a primitiva de f e é chamada de integral indefinida. Assim:

$$\int f(x)dx = F(x) \text{ significa } F'(x) = f(x)$$

TABELAS DE INTEGRAIS INDEFINIDAS

 $\int cf(x) dx = c \int f(x) dx$

$$\int k \, dx = kx + C$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + C$$

$$\int \operatorname{sen} x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \operatorname{sec}^2 x \, dx = \operatorname{tg} x + C$$

$$\int \operatorname{cossec}^2 x \, dx = -\cot x + C$$

$$\int \sec x \tan x \, dx = \sec x + C \qquad \qquad \int \csc x \cot x \, dx = -\csc x + C$$

Exercícios

5-18 Ache a integral indefinida geral.

5.
$$\int (x^2 + x^{-2}) dx$$

5.
$$\frac{1}{3}x^3 - (1/x) + 6$$

5.
$$\frac{1}{3}x^3 - (1/x) + C$$
 7. $\frac{1}{4}x^4 + 3x^2 + x + C$

7.
$$\int (x^3 + 6x + 1) dx$$

9.
$$\int (1-t)(2+t^2) dt$$

$$11. \int \frac{x^3 - 2\sqrt{x}}{x} dx$$

9. $2t-t^2+\frac{1}{3}t^3-\frac{1}{4}t^4+C$ II. $\frac{1}{3}x^3-4\sqrt{x}+C$

Respostas:

11.
$$\frac{1}{3}x^3 - 4\sqrt{x} + C$$

Método da substituição 1.1

7-46 Calcule a integral indefinida.

7.
$$\int x \operatorname{sen}(x^2) dx$$

9.
$$\int (3x-2)^{20} dx$$

$$11. \int (x+1)\sqrt{2x+x^2} \ dx$$

$$13. \int \frac{dx}{5-3x}$$

15.
$$\int \operatorname{sen} \pi t \, dt$$

$$17. \int \frac{a+bx^2}{\sqrt{3ax+bx^3}} dx$$

$$19. \int \frac{(\ln x)^2}{x} \, \mathrm{d}x$$

$$21. \int \frac{\cos \sqrt{t}}{\sqrt{t}} dt$$

23.
$$\int \cos \theta \, \sin^6 \! \theta \, d\theta$$

$$25. \int e^x \sqrt{1+e^x} \, dx$$

27.
$$\int \frac{z^2}{\sqrt[3]{1+z^3}} dz$$

$$29. \int e^{\operatorname{tg} x} \sec^2 x \, dx$$

$$31. \int \frac{\cos x}{\sin^2 x} dx$$

$$33. \int \sqrt{\cot g \, x} \, \csc^2 x \, dx$$

35.
$$\int \frac{\sin 2x}{1+\cos^2 x} dx$$

37.
$$\int \cot g x \, dx$$

Respostas:

7.
$$-\frac{1}{2}\cos(x^2) + C$$

11.
$$\frac{1}{3}(2x+x^2)^{3/2}+C$$

15.
$$-(1/\pi)\cos \pi t + C$$

19.
$$\frac{1}{3}(\ln x)^3 + C$$

23.
$$\frac{1}{7} \sin^7 \theta + C$$

27.
$$\frac{1}{2}(1+z^3)^{2/3}+C$$
 29. $e^{\lg x}+C$

31.
$$-1/(\sin x) + C$$

35.
$$-\ln(1+\cos^2 x) + C$$
 37. $\ln|\sin x| + C$

9.
$$\frac{1}{63}(3x-2)^{21}+C$$

13.
$$-\frac{1}{3}\ln|5-3x|+C$$

15.
$$-(1/\pi)\cos \pi t + C$$
 17. $\frac{2}{3}\sqrt{3ax + bx^3} + C$

21.
$$2 \sin \sqrt{t} + C$$

25.
$$\frac{2}{3}(1+e^x)^{3/2}+C$$

29.
$$e^{\operatorname{tg} x} + C$$

31.
$$-1/(\sin x) + C$$
 33. $-\frac{2}{3}(\cot x)^{3/2} + C$

37.
$$\ln |\sin x| + C$$