

CRP 292

Introdução à Informática

Prof. João Batista Ribeiro

joao42lbatista@gmail.com

Slides baseados no material da Prof.ª Larissa F. Rodrigues

Sistemas, códigos numéricos e aritmética binária

Conteúdo

- Introdução
- Sistemas Numéricos
- A Informação e sua Representação
- Conversões entre Sistemas Numéricos
- Aritmética com Números Binários
 - Soma
 - Subtração
 - Multiplicação
 - Divisão

Existem 10 tipos de pessoas no mundo:

As que entendem binário e as que não entendem.

Introdução

Processamento

Os sistemas de numeração têm por objetivo estabelecer símbolos e convenções para representar quantidades, de forma a registrar a informação quantitativa e poder processá-la. A representação de quantidades faz-se com os números.

O homem utilizou diversos sistemas numéricos antes de adotar o sistema decimal. "Resquícios" de bases numéricas ancestrais persistem até hoje, como a base 60, utilizada na contagem do tempo e na trigonometria.

- Os sistemas de numeração são definidos pela base que eles utilizam, isto é, o número de dígitos que o sistema utiliza.
 - Exemplo: Sistema Decimal

$$(765) = 700 + 60 + 5 = 7 \cdot 10^{2} + 6 \cdot 10^{1} + 5 \cdot 10^{0}$$

- Os sistemas de numeração são definidos pela base que eles utilizam, isto é, o número de dígitos que o sistema utiliza.
 - Exemplo: Sistema Decimal

O sistema decimal utiliza <mark>10</mark> dígitos e possuí <mark>base 10</mark>

- Ocomo os computadores representam as informações usando dois estados, eles são adequados para números binários.
 - Desligado: 0
 - Ligado: 1

O sistema binário utiliza 2 dígitos e possuí base 2

Sistema	Base	Algarismos
Binário	2	O, 1
Ternário	3	O, 1, 2
Octal	8	0, 1, 2, 3, 4, 5, 6, 7
Decimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Duodecimal	12	O, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B
Hexadecimal	16	O, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

- Número binário no computador: BIT Binary Digit
- É a menor unidade computacional
- Um bit pode representar apenas 2 símbolos (O e 1)

A representação de toda e qualquer informação em um computador é, em seu nível mais elementar, constituído por conjuntos de bits

 Um número de n bits pode representar 2ⁿ valores distintos

BITS	Símbolos
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

- BYTE (Binary Term)
 - Grupo ordenado de 8 bits
 - Unidade de armazenamento e transferência
 - Representa um caractere
 - Todas as letras, números e outros caracteres são codificados e decodificados por meio dos bytes

1 byte = 8 bits = 1 caractere (letra, número ou símbolo)

Prefixo	Simbolo	Tamanho		
quilo	k	10^{3}	10001	
mega	M	106	1000 ²	
giga	G	10°	1000³	
tera	Т	1012	10004	
peta	P	10^{15}	10005	
exa	Е	1018	1000^{6}	
zeta	Z	10^{21}	10007	
iota	Y	10^{24}	10008	

Unidade	Tamanho
Bit (b)	1 ou 0
Byte (B)	8 bits
Kilobyte (kB)	1000 B ou 10 ³ bytes
Megabyte (MB)	1000 KB ou 106 bytes
Gigabyte (GB)	1000 MB ou 109 bytes
Terabyte (TB)	1000 GB ou 10 ¹² bytes
Petabyte (PB)	1000 TB ou 1015 bytes
Exabyte (EB)	1000 PB ou 1018 bytes
Zettabyte (ZB)	1000 EB ou 10 ²¹ bytes
Yottabyte (YB)	1000 ZB ou 10 ²⁴ bytes

Prefixo	Simbolo	Tamanho		
quibi	Ki	210	10241	
mebi	Mi	220	10242	
gibi	Gi	230	10243	
tebi	Ti	240	10244	
pebi	Pi	250	10245	
exbi	Ei	260	10246	
zebi	Zi	270	10247	
iobi	Yi	280	10248	

Unidade	Tamanho
Bit (b)	1 ou 0
Byte (B)	8 bits
Kibibyte (KiB)	1024 B ou 210 bytes
Mebibyte (MiB)	1024 KB ou 220 bytes
Gibibyte (GiB)	1024 MB ou 2 ³⁰ bytes
Tebibyte (TiB)	1024 GB ou 240 bytes
Pebibyte (PiB)	1024 TB ou 250 bytes
Exbibyte (EiB)	1024 PB ou 260 bytes
Zebibyte (ZiB)	1024 EB ou 2 ⁷⁰ bytes
Yobibyte (YiB)	1024 ZB ou 280 bytes

Unidade	Tamanho
Bit (b)	1 ou 0
Byte (B)	8 bits ou 1 carácter
Kilobyte (kB)	1000 ou 2 ¹⁰ bytes
Megabyte (MB)	1000 KB ou 2 ²⁰ bytes
Gigabyte (GB)	1000 MB ou 2 ³⁰ bytes
Terabyte (TB)	1000 GB ou 2 ⁴⁰ bytes
Petabyte (PB)	1000 TB ou 2 ⁵⁰ bytes
Exabyte (EB)	1000 PB ou 2 ⁶⁰ bytes
Zettabyte (ZB)	1000 EB ou 2 ⁷⁰ bytes
Yottabyte (YB)	1000 ZB ou 2 ⁸⁰ bytes

Taxa de Transferência 1 Mbps vs 1 MBps ps => por segundo 1.000 b por segundo VS 1.000 B por segundo

Byte size units: IEC Units (KiB, MiB, etc)

JEC Units (KIB, MIB, etc)
JEDEC Units (KB, MB, etc)
Metric Units (kB, MB, etc)

Byte size units: [IEC Units (KiB, MiB, etc)

Example: 2000 bytes equals 1,95 KiB

Byte size units: [JEDEC Units (KB, MB, etc)

Example: 2000 bytes equals 1,95 KB

Byte size units: [Metric Units (kB, MB, etc)

Example: 2000 bytes equals 2,00 kB

Tabela ASCII (alguns itens)

American Standard Code for Information Interchange "Código Padrão Americano para o Intercâmbio de Informação"

Bin	Oct	Dec	Нех	Sinal
0011 0000	060	48	30	0
0011 0001	061	49	31	1
0011 0010	062	50	32	2
0011 0011	063	51	33	3
0011 0100	064	52	34	4
0011 0101	065	53	35	5
0011 0110	066	54	36	6
	-			

Bin	Oct	Dec	Hex	Sinal
0101 0000	120	80	50	Р
0101 0001	121	81	51	Q
0101 0010	122	82	52	R
0101 0011	123	83	53	S
0101 0100	124	84	54	T
0101 0101	125	85	55	U
0101 0110	126	86	56	٧

<u>Binário</u>	<u>Caractere</u>
0100 0001	Α
0100 0010	В
0110 0001	a
0110 0010	b
0011 1100	<
0011 1101	=
0001 1011	ESC
0111 1111	DEL

https://pt.wikipedia.org/wiki/ASCII

MEGABYTE

Lembra daquele **disquete** (ou disco flexível) que costumávamos usar para guardar dados? O de maior capacidade podia armazenar até **5,76 MB**: daria para salvar só **5 fotos digitais** ou ouvir um arquivo de música em mp3 com aproximadamente 5 minutos de duração.

^{*}dados de Igor Bessera da Seagate

GIGABYTE

Usar **pendrives** para guardar arquivos e levá-los onde você quiser já é algo bem comum. Num dispositivo de **1 GB**, daria para gravar 320 **fotos digitais** (.jpg), mas com resolução bem maior do que no exemplo anterior. Se fosse guardar só músicas, você gastaria 16 horas para ouvir toda a lista (dá para ir de avião de São Paulo a Moscou durante esse tempo).

TERABYTE

Para aqueles que precisam de mais espaço, já existem HDs (discos rígidos) externos, que bem como pendrives tem a facilidade de serem portáteis. Um HD externo de 1 TB pode armazenar cerca de 40 filmes em alta definição ou 500 jogos. Já em fotos digitais em alta resolução, seriam 320 mil e em música digital, 16,6 mil horas (666 dias ou quase 1 ano e meses)

PETABYTE

Para armazenar **1 PB** em dados, seria necessário um **datacenter** (local projetado especialmente para guardar dados de empresas) que ocuparia uma área total de **1.000 m²**, com **4.000 máquinas** (entre servidores e estações de trabalho)

^{*}dados de Márcio Silva, pesquisador do Laboratório de Arquitetura e Redes do Departamento de Ciência da Computação da Poli-USP

EXABYTE

Para armazenar 1 EB em dados, seriam necessários 71 datacenters que, juntos, ocupariam 9 campos de futebol.

Se cada homem, mulher e criança do planeta guardasse consigo 1 pacote de arquivos de 2,5 GB (entre fotos, músicas, documentos, vídeos e outros), conseguiriam alcançar 1 EB – considerando que a população mundial de 6,9 bilhões de pessoas.

^{*}dados de Márcio Silva, pesquisador do Laboratório de Arquitetura e Redes do Departamento de Ciência da Computação da Poli-USP

ZETTABYTE

Para guardar 1 ZB em volume de dados, seriam necessários 73 mil datacenters que, juntos, ocupariam toda a área da cidade de São Paulo ou 9 mil campos de futebol. Essa é a demanda aproximada de armazenamento no mundo, até o final deste ano.

^{*}dados de Márcio Silva, pesquisador do Laboratório de Arquitetura e Redes do Departamento de Ciência da Computação da Poli-USP

YOTABYTE

Por fim, temos **1 YB**, uma quantidade gigantesca de dados: para você ter uma ideia, seriam necessários **75** milhões de datacenters, que ocupariam toda área do Estado de São Paulo.

^{*}dados de Márcio Silva, pesquisador do Laboratório de Arquitetura e Redes do Departamento de Ciência da Computação da Poli-USP

Decimal para Binário

- Divida o número por 2 até que o quociente seja 0
- O número binário correspondente será formado pelos restos das divisões, sendo o resto da última divisão o dígito binário mais à esquerda (bit mais significativo)
- Exemplo: Converter o número 23 para binário

Decimal para Binário

- O Divida o número por 2 até que o quociente seja 0
- O número binário correspondente será formado pelos restos das divisões, sendo o resto da última divisão o dígito binário mais à esquerda (bit mais significativo)
- Exemplo: Converter o número 23 para binário

Resultado: $(23)_{10} = (10111)$

Decimal Fracionário para Binário

- Separar a parte inteira da fracionária
- Converter a parte inteira pelo método de divisões sucessivas por 2
- Converter a parte fracionária por multiplicações sucessivas por 2, até conseguir uma precisão satisfatória.
- O número fracionário convertido será composto por algarismos inteiros resultantes tomados nas multiplicações

- Decimal Fracionário para Binário
- Exemplo: Converter para binário (considerando 5 dígitos na parte decimal) o número 234,435

Resultado: $(234.435) = (11101010.01101)_{2}$

Binário para Decimal

$$(10111)_{2}$$

Número Binário para Decimal
 Lei de Formação ampliada (polinômio)

$$a_n * b^n + a_{n-1} * b^{n-1} + a_{n-2} * b^{n-2} + ... + a_0 * b^0 + a_{-1} * b^{-1} + a_{-2} * b^{-2} + ... + a_{-m} * b^{-m}$$

• Exemplo: $(101,110)_{2} = (?)_{10}$

Adição

• Regras:

```
0 + 0 = 0
```

$$0+1=1$$

$$1 + 0 = 1$$

$$1 + 1 = 0$$
 (e "vai 1" para o dígito de ordem superior)

$$1 + 1 + 1 = 1$$
 (e "vai 1" para o dígito de ordem superior)

Adição

- Na soma, segue-se sempre a ordem das colunas da direita para esquerda, tal como uma soma em decimal.
- Exemplo: 11100 + 11010

Subtração

• Regras:

- 0 0 = 0
- 0 1 = 1 ("vem 1 do próximo")
- 1 0 = 1
- 1 1 = 0
- Estouro = borrow (empréstimo) ou "vem 1"

Subtração

- Como é impossível tirar 1 de zero, o artifício é "pedir emprestado" 1 da casa de ordem superior
- Quando o dígito de ordem superior for 0, então procuramos pelo próximo dígito de ordem superior, até que ele seja 1
- Este bit torna-se então 0 e a todos os bits pulados (bits de valor 0) damos o valor 1

- Subtração
 - Exemplo: 11100 01010

		empréstimo 1				
	1	1	1	Ö	0	
-	0	1	0	1	0	
	1	0	0	1	0	•

- Multiplicação
 - Regras:
 - $0 \times 0 = 0$
 - $0 \times 1 = 0$
 - $1 \times 0 = 0$
 - 1 x 1 = 1
- A única diferença ao se realizar multiplicação em binários, em relação à multiplicação em decimal, é que a soma final deve ser feita em binário.

Multiplicação

Exemplo: 1011 x 1101

				1	0	1	1
			X	1	1	0	1
				1	0	1	1
			0	0	0	0	
		1	0	1	1		
	1	0	1	1			
_	0	0	0	1	1	1	1

Divisão

- Pode ser feita de maneira idêntica à divisão decimal
- A diferença reside no fato das multiplicações e subtrações internas ao processo serem feitas em binário
- O valor do divisor deve ser igual ou menor que o modo dividendo e, se for igual ou menor é escrito 1 no quociente. Esse valor é multiplicado pelo divisor e subtraído do dividendo, até atingir o valor zero, no caso da divisão exata.

Divisão

• Exemplo: 110111/101:

110111	101
<u>101</u>	1011
00111	
<u>101</u>	
0101	
101	
000	

55/5 = 11

Exercícios

- 1) Qual o decimal equivalente a (11011011)₂?
- 2) Qual o binário equivalente à sua idade?
- 3) Converter os seguintes números decimais para números binários
- a) 39
- b) 0, 5625
- c) 256, 75
- d) 129, 625

- 4) Execute as seguintes operações:
 - a) 0011 + 1110
 - b) 1110 0100
 - c) 1101101/1011
 - d) 10011 x 1101

- MANZANO, A. L. N. G.; MANZANO, M. I. N. G. Estudo dirigido de informática básica. 7.ed. Érica, 2007.
- Capítulo 03

Obrigado pela atenção!:)