

厦门大学《线性代数I》期中试卷

学院	系	年级	专业
主考教师:	试卷类型:	(A卷)	2019年11月30日

注意: 所有行列式化简和矩阵初等变换必须标出每一步骤!

			-1	1	0	2
分数	阅卷人		2	-1	3	9
		一、 (10) 设 A_{ij} 是 a_{ij} 的代数余子式,行列式 $ A =$	-3	5	-1	6
			4	-2	2	5
		D. A. C. A.	1			

分数	阅卷人	 - (10) 戸畑V	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$		-1	3] + v	
		二、(10)已知 X	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	$\frac{2}{-1}$	$\frac{2}{0}$	= 1	0	1 , XX°	
		 (必须使用伴随矩	车计	質 尚	[· 矩[阵]	I)			

分数	阅卷人		1	2				
		Ξ 、(10) 设 $A =$	-1	-2	4	b	,	求 $R(A)$ 。
			0	a	3	0		

分数	阅卷人

四、(10) 设 $A=[\alpha_1,\alpha_2,\alpha_3,\alpha_4]$,其中 $\alpha_2,\alpha_3,\alpha_4$ 线性无关,且 $\alpha_1=2\alpha_2-3\alpha_3$ 。令 $\beta=\alpha_1+\alpha_2+\alpha_3+\alpha_4$,求方程组 $AX=\beta$ 的通解。

分数	阅卷人

五、(20)解线性方程组:(必须用矩阵初等变换解题)

分数	阅卷人	β 六、(25) 设有向量组 $\alpha_1 = [1,2,3,1]^T$, $\alpha_2 = [2,1,4,1]^T$, $\alpha_3 = [2,1,4,1]^T$
		$[3,0,5,1]^T, \ \alpha_4 = [1,2,6,3]^T, \ \alpha_5 = [-3,-6,-3,1]^T,$

- (2) $\beta_1 = [5,1,12,4]^T$, $\beta_2 = [1,-1,1,0]^T$,向量组 $\{\beta_i\}$ 是否能被向量组 $\{\alpha_j\}$ 线性表示?(给出详细判断过程)
 - (3) 在向量组 $\{\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5,\beta_1,\beta_2\}$ 中,找出一个包含 β_1,β_2 的最大无关组并简要说明理由。

分数	阅卷人	!	n	R(A) = n;
		七、(15) 1、 A^* 是 n 阶矩阵 A 的伴随矩阵,证明 $R(A^*) = \langle$	1,	R(A) = n - 1;
			0,	R(A) < n - 1.