Замену чисел a < b на числа a + t, b - t, где $t \in [0, (b - a)/2]$, назовём сближением с фиксированной суммой, а замену на числа ta, b/t, где $t \in [1, \sqrt{b/a}]$, – сближением с фиксированным произведением.

- 1. Пусть $0 < a < b \in \mathbb{R}$ и $n \in \mathbb{N}$. Как при сближении ведут себя величины: (a) ab; (b) $\sqrt{a} + \sqrt{b}$; (c) $a^n + b^n$; (d) $1/a^n + 1/b^n$?
- 2. Сумма неотрицательные числа x_1, x_2, \ldots, x_n равна 1. Докажите, что

$$(1+x_1)(2+x_2)\dots(n+x_n) \le 2 \cdot n!$$

3. Для действительных чисел $x_1, x_2, \ldots, x_n \ge 1$ докажите неравенство

$$\frac{1}{1+x_1} + \frac{1}{1+x_2} + \ldots + \frac{1}{1+x_n} \ge \frac{n}{1+\sqrt[n]{x_1x_2\ldots x_n}}.$$

4. Для неотрицательных чисел a, b и c докажите, что верно неравенство

$$(a+b+c)^5 \ge 81abc(a^2+b^2+c^2).$$

5. Докажите, что из всех выпуклых n-угольников, вписанных в данную окружность, наибольшую площадь имеет правильный n-угольник.

Домашнее задание

6. (Неравенство о средних) Докажите, что если $x_1,\, x_2,\, \dots,\, x_n>0,$ то

$$\frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}} \le \sqrt[n]{x_1 \ldots x_n} \le \frac{x_1 + \ldots + x_n}{n} \le \sqrt{\frac{x_1^2 + \ldots + x_n^2}{n}}.$$

7. Пусть $x_1, x_2, \ldots, x_n > 0$ и $x_1 + x_2 + \ldots + x_n = 1$. Докажите неравенство

$$\frac{(1-x_1)(1-x_2)\dots(1-x_n)}{x_1x_2\dots x_n} \ge (n-1)^n.$$

8. Сумма неотрицательных чисел x, y и z равна 1. Докажите неравенства

$$0 \le xy + yz + zx - 2xyz \le \frac{7}{27}.$$

- 9. Докажите, что из всех выпуклых n-угольников, вписанных в данную окружность, наибольший периметр имеет правильный n-угольник.
- 10. Пусть $f \colon \mathbb{R} \to \mathbb{R}$ монотонная нечётная функция. Докажите, что

$$f(a)f(b) + f(b)f(c) + f(a)f(c) \le 0$$
, если $a + b + c = 0$.