Towards Ubiquitous Learning: A First Measurement of On-Device Training Performance

Dongqi Cai¹, Qipeng Wang², Yuanqiang Liu², Yunxin Liu^{3, 4,} Shangguang Wang^{1, 5} and Mengwei Xu¹

¹ Beijing University of Posts and Telecommunications

² Peking University

³ Institute for Al Industry Research (AIR)

⁴ Tsinghua University

⁵ Shenzhen Research Institute

Background

Storage: 16GB

(Source:https://stats.areppim.com/stats/stats_mobilex2019.htm)

Storage: 512GB

Deep Learning on edge devices

usage	detailed usage	as core feature	
image: 149	photo beauty: 97	94 (96.9%)	
	face detection: 52	44 (84.6%)	
	augmented reality: 19	5 (26.3%)	
	face identification: 8	7 (87.5%)	
	image classification: 11	6 (54.5%)	
	object recognition: 10	9 (90%)	
	text recognition:11	4 (36.3%)	
	word&emoji prediction: 15	15 (100%)	
	auto-correct: 10	10 (100%)	
text:26	translation: 7	3 (42.8%)	
	text classification: 4	2 (50%)	
	smart reply: 2	0 (0%)	
audio: 24	speech recognition: 18	7 (38.9%)	
audio. 24	sound recognition: 8	8 (100%)	
	recommendation: 11	2 (18.1%)	
other: 19	movement tracking: 9	4 (44.4%)	
	simulation: 4	4 (100%)	
	abnormal detection: 4	4 (100%)	
	video segment: 2	1 (50%)	
	action detection: 2	0 (0%)	
	total: 211		

Table 1: The DL usage in different apps. Note: as one app may have multiple DL uses, the sum of detailed usage (column 2) might exceed the corresponding coarse usage (column 1).

Figure 4: Numbers of DL apps using various mobile DL frameworks. "other lib": the DL apps developed on the frameworks in Table 2 but not itemized here, e.g. mace, SNPE, and xnn. "no lib": apps with DL functions but using no DL frameworks from Table 2. Note that the number in "TOTAL" is lower than the sum of others since some DL apps have integrated multiple frameworks.

Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu, and Xuanzhe Liu. A first look at deep learning apps on smartphones. In *The World Wide Web Conference*, pages 2125–2136, 2019.

Open Issue

However, the training stage of deep learning is still commonly placed on data centers.

Ubiquitous Learning

Methods: Federated Learning, Split Learning, Local Transfer Learning, etc.

- ➤ Whether edge devices can really afford training modern NN models?
- ➤ And if so, do current libraries efficiently support that?

Mobile Neural Network (MNN)

- Lightweight
- Versatility
- High performance
- Easy to use

Testing	Training	Training time (ms)		
platform	library	BS = 1	BS=2	BS=4
Samsung	MNN	516	812	1365
Note 10	DL4J	3,032	6,129	OOM
	MNN	6698	10,651	OOM
RPI 3B+	TensorFlow	10,468	14,157	27,574
	PyTorch	48,274	79,097	OOM

Experiment Setups

Devices

Device	Specifications	Yr.
Redmi Note 9 Pro	Snapdragon 720G, 6GB RAM	2020
Xiaomi MI 9	Snapdragon 855, 6GB RAM	2019
Huawei Mate 30	Kirin 990, 8GB RAM	2019
Meizu 16T	Snapdragon 855, 6GB RAM	2019
Samsung S8 Plus	Snapdragon 835, 6GB RAM	2017
Huawei Honor 8	Kirin 950, 3GB RAM	2016

Models

Model	Convs	Parameter
LeNet	2	3.2K
AlexNet	5	61M
MoileNetv2	53	3.4M
SqueezeNet	18	411.2K
GoogLenet	22	6.8M

Overall Latency

- Training time >> Inference time (Up to 17.8× gap with MobileNet and Batchsize 16)
- Setting the number of CPU core as 4 performs better

CPU Usage

The CPU usage during training is already close to maximal with relatively small batchsize

Cross-device Comparison

Performance disparity

It is pervasive across devices and can be up to 4.0× (MobilenetV2 model among Meizu 16T and Samsung S8+)

Model affinity

SqueezeNet trains fastest on Meizu 16T while AlexNet trains fastest on Huawei Mate 30

Latency Breakdown

Raster operator is a unified implementation of all traditional operators that are related to tensor shape transformations, including *slice, concat, reshape, broadcast, etc.*

Memory footprint

To keep the memory usage under 1GB, the upper bound of batchsize may be limited to 4!

Energy consumption

The training time doesn't linearly scale with the batchsize since larger batchsize benefits the **intra-operator parallelism.**

Impacts of CPU parameters

CPU Conf.		Time (s)		Energy (J)			
		H	\mathbf{M}	\mathbf{L}	H	\mathbf{M}	L
	$1\times$	4.2	5.4	10.8	10.6	8.0	6.9
Big	$2\times$	2.6	3.2	6.4	8.9	7.7	7.0
	$4\times$	2.0	3.3	8.4	7.1	8.7	8.2
	$1\times$	25.0	33.9	57.8	10.4	7.2	3.1
Small	$2\times$	13.3	18.0	31.8	10.1	8.4	4.8
	$4\times$	8.0	11.0	52.3	11.4	9.6	8.2
Hybrid	8×	3.8	6.5	50.4	13.4	13.9	14.4

- Using 4 big cores with the highest frequency achieves the best performance.
- Using only one small core with the lowest CPU frequency leads to the lowest usage of energy consumption. Its energy consumption is only 43.7% of the optimal case of training time, despite it runs 28.9× slower.

Thermal dynamics

Such **heterogeneous** thermal dynamics may complicate the ubiquitous learning process, e.g., the device selection in federated learning.

Mobile CPU vs. Mobile GPU

Both GPU Mali and Adreno run much slower than CPU $(1.8 \times -12.0 \times)$

Conclusion

- First measurement of ondevice-training performance
- At the dawn of "learning everywhere and anything"

Future Work

- Generating efficient operators
- Memory optimizations

Tuning system parameters

Thank you

https://github.com/UbiquitousLearning/Benchmark-On-Device-Training