# **User Manual for**

# mrMLM

multi-locus random-SNP-effect Mixed Linear Model tools for genome-wide association study

**(version 5.1)** 

Ya-Wen Zhang, Wang Jing-Tian, Shi-Bo Wang, Yang-Jun Wen, Wen-Long Ren, Jin Zhang, Hong-Fu Li, Tamba CL, Zhang Yuan-Ming (soyzhang@mail.hzau.edu.cn)

Last updated on December, 2023

**Disclaimer**: While extensive testing has been performed by Yuan-Ming Zhang's Lab at Crop Information Center of College of Plant Science and Technology, Huazhong Agricultural University, the results are, in general, reliable, correct or appropriate. However, results are not guaranteed for any specific datasets. We strongly recommend that users validate the mrMLM results with other software packages, i.e., GEMMA, EMMAX, GAPIT v2 & PLINK.

#### **Download website:**

https://cran.r-project.org/web/packages/mrMLM/index.html or https://bigd.big.ac.cn/biocode/tools/BT007077

## Citation:

| Method or software | e References                                                                                                                                                                      |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mrMLM              | Wang et al. Scientific Reports 2016, 6:19444.                                                                                                                                     |
| ISIS EM-BLASSO     | Tamba et al. <i>PLoS Computational Biology</i> 2017, 13(1): e1005357.                                                                                                             |
| pLARmEB            | Zhang et al. <i>Heredity</i> 2017, 118: 517–524.                                                                                                                                  |
| FASTmrEMMA         | Wen et al. <i>Briefings in Bioinformatics</i> 2018, 19(4): 700–712.                                                                                                               |
| pKWmEB             | Ren et al. <i>Heredity</i> 2018, 120(3): 418–428.                                                                                                                                 |
| FASTmrMLM          | Tamba & Zhang, <i>bioRxiv</i> , 2018. doi: 10.1101/341784.                                                                                                                        |
|                    | Zhang et al. Genomics, Proteomics & Bioinformatics 2020, 18: 481-487.                                                                                                             |
| BLUPmrMLM          | Hong-Fu Li, Jing-Tian Wang, Qiong Zhao, and Yuan-Ming Zhang. BLUPmrMLM: A fast multi-locus random-SNP-effect mixed linear model in genome-wide association studies. In submission |
| Software mrMLM     | Zhang et al. <i>Genomics, Proteomics &amp; Bioinformatics</i> 2020, 18: 481-487.                                                                                                  |

Note: These references are listed in section of References.

This work was supported by the National Natural Science Foundation of China (32070557, 32270673, 31571268, 31871242 and U1602261), Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (Program No. 2014RC020), and State Key Laboratory of Cotton Biology Open Fund (CB2017B01; CB2019B01; CB2021B01).

### **INTRODUCTION**

## 1.1 Why mrMLM?

mrMLM (multi-locus random-SNP-effect Mixed Linear Model) program is an R package for multi-locus genome-wide association studies (GWAS). At present this program (v5.1) includes seven methods: 1) mrMLM, 2) FASTmrMLM (Fast multi-locus random-SNP-effect EMMA), 3) ISIS EM-BLASSO (Iterative Sure Independence Screening EM-Bayesian LASSO), 4) pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes), 5) pKWmEB (polygenic-background-control-based Kruskal-Wallis test plus empirical Bayes); 6) fast mrMLM (FASTmrMLM); and 7) BLUPmrMLM (Best linear unbiased prediction mrMLM).

Different from the previous versions, the software program of mrMLM v5.1 may run on personal computer such as desktop and laptop, which have smaller RAM than server. If there is (almost) homozygous association mapping population available, these methods are very effective. If there are many heterozygous marker genotypes in association mapping populations, the IIIVmrMLM software is available.

mrMLM 5.1 works well on Windows, Linux (desktop) and MacOS.

# 1.2 Getting started

The software package mrMLM runs only in the R software environment and can be freely downloaded from the R website (https://cran.r-project.org/web/packages/mrMLM.GUI/index.html), or the BioCode (https://bigd.big.ac.cn/biocode/tools/7077), or requested from the maintainer, Dr Yuan-Ming Zhang at College of Plant Science and Technology, Huazhong Agri Univ (soyzhang@mail.hzau.edu.cn).

Note: Users may need to install Rtools https://cran.r-project.org/bin/windows/Rtools/ and add it into the system of PATH (Fig 1). The purpose is to ensure that the results can be written to the computer.

#### 1.2.1 One-Click installation

Within R environment, the mrMLM software can be installed online using the below command:

# install.packages("mrMLM")



Figure 1. Install Rtools

# 1.2.2 Step-by-step installation

# 1.2.2.1 Install the add-on packages

**Offline installation** Users may download the below 32 packages from CRAN (https://cran.r-project.org/), github (https://github.com/) and google search.

BEDMatrix, coin, colorspace, data.table, bigmemory, doParallel, foreach, graphics, grDevices, iterators, lars, later, libcoin, lpsolve, matrixStats, methods, modeltools, multcomp, mvtnorm, nevreg, pillar, Repp, ReppArmadillo, ReppEigen, sampling, sandwich, sbl, stats, TH.data, utils, tibble, zoo.

Under the R environment, then, users find "Packages"—"Install package(s) from local files...", select all the above 32 packages, and install them offline.

#### 1.2.2.2 Install mrMLM

Open R GUI, select "Packages"—"Install package(s) from local files..." and then find the mrMLM package which you have downloaded on your desktop.

User Manual file Users can decompress the mrMLM package and find the User Manual file (name: Instruction.pdf) in the folder of ".../mrMLM/inst".

## 1.2.3 Run mrMLM

Once the software mrMLM is installed, users may run it using two commands:

```
library("mrMLM")
mrMLM(***) (***: please see § 2.1.2 Example)
```

If users re-use the software mrMLM, users also use the above two commands.

# 2. Function

# 2.1 Function mrMLM()

# 2.1.1 Parameter settings

| Parameter      | Meaning                                                                                                                                                                                                                                   | File format                                                                                                                                    | Note               |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
| fileGen        | File path & name in your computer, i.e., fileGen="D:/Users/Genotype_num.csv"                                                                                                                                                              | *.csv; *.txt (Genotypic values. Row: markers; Column: individuals). When PC=TRUE, the file format are PLINK binary files: *.bed; *.bim; *.fam. | Tables 1~3         |  |  |
| filePhe        | File path & name in your computer, i.e., filePhe="D:/Users/Phenotype.csv"                                                                                                                                                                 | *.csv; *.txt (Phenotypic values. <b>Row</b> : individual; <b>Column</b> : traits)                                                              | Table 4            |  |  |
| fileKin        | File path & name in your computer, i.e., fileKin="D:/Users/Kinship.csv" or fileKin=NULL                                                                                                                                                   | *.csv; *.txt (Kinship matrix. <b>Row</b> & <b>Column</b> : individuals)                                                                        | Table 5            |  |  |
| filePS         | File path & name in your computer,i.e., filePS="D:/Users/PopStr.csv" or filePS=NULL                                                                                                                                                       | *.csv; *.txt [Population structure. <b>Row</b> : individual; <b>Column</b> : sub-populations 1, 2,, <i>k</i> (No. of sub-populations)]         | Table 6~8          |  |  |
| PopStrType     | Three types of population structures: $Q(Q \text{ matrix})$ , Po                                                                                                                                                                          | CA (principal components), EvolPopStr (evolutionary popu                                                                                       | ulation structure) |  |  |
| fileCov        | File path & name in your computer,i.e., fileCov="D:/Users/Covariate.csv" or fileCov=NULL                                                                                                                                                  | *.csv; *.txt (Covariate. <b>Row</b> : individual; <b>Column</b> : covariate 1, 2,, <i>k</i> (No. of covariate))                                | Table 9            |  |  |
| Genformat      | Format for genotypic codes: Num (number), Cha (cha                                                                                                                                                                                        | aracter) & Hmp (Hapmap), i.e., Genformat="Num"                                                                                                 |                    |  |  |
| method         | Six multi-locus GWAS methods. Users may select on method=c("mrMLM","FASTmrMLM","FASTmrEM                                                                                                                                                  | e to six methods. For example, MA","pLARmEB","pKWmEB","ISIS EM-BLASSO")                                                                        |                    |  |  |
| Likelihood     | This parameter is only for FASTmrEMMA, including Likelihood="REML" or Likelihood="ML"                                                                                                                                                     | restricted maximum likelihood (REML) and maximum likelihood (REML)                                                                             | kelihood (ML).     |  |  |
| trait          | Traits analyzed from number 1 to number 2. For exan                                                                                                                                                                                       | nple, trait=1:3 indicates that users analyze the first to third                                                                                | traits.            |  |  |
| SearchRadius   | This parameter is only for mrMLM and FASTmrMLM SearchRadius=20 indicates that only one potentially                                                                                                                                        | M, indicating Search Radius in search of potentially associated QTN was selected within 20 kb.                                                 | nted QTN.          |  |  |
| CriLOD         | Critical LOD score for significant QTN. CriLOD=3                                                                                                                                                                                          | indicates that the critical LOD score for significant QTN is                                                                                   | set at 3.0.        |  |  |
| SelectVariable | This parameter is only for pLARmEB. SelectVariable chromosome. Users may change this number in real d                                                                                                                                     | e=50 indicates that 50 potentially associated variables are at analysis in order to obtain the best final results.                             | selected from each |  |  |
| Bootstrap      | This parameter is only for pLARmEB, including FAL Bootstrap=TRUE indicates the analysis of both real                                                                                                                                      | .SE & TRUE. Bootstrap=FALSE indicates the analysis of dataset and four resampling datasets.                                                    | only real dataset; |  |  |
| DrawPlot       | This parameter is for all the six methods, including FabrawPlot=TRUE indicates the output of the Manhat                                                                                                                                   | ALSE and TRUE. <b>DrawPlot=FALSE</b> indicates no figure of tan and QQ plots.                                                                  | output;            |  |  |
| Plotformat     | This parameter is for all the figure files, including *.jpeg, *.png, *.tiff and *.pdf. Plotformat="jpeg" indicates the *.jpeg format of plot file.                                                                                        |                                                                                                                                                |                    |  |  |
| dir            | Save path in your computer, i.e, "D:/Users"                                                                                                                                                                                               |                                                                                                                                                |                    |  |  |
| PC             | This parameter is used to specify whether only small RAM device is available to run the mrMLM program, such as desktop or laptop. The default value is PC=FALSE. PC=TRUE indicates running the program on desktop or laptop with low RAM. |                                                                                                                                                |                    |  |  |
| RAM            | This parameter is the RAM of your desktop or laptop. The default value is RAM=4. RAM=4 indicates the RAM of your device or maximum RAM you want to use is 4G.                                                                             |                                                                                                                                                |                    |  |  |
| trait_NA       | A logic variable for BLUPmrMLM, indicating where are indicated by "NA".                                                                                                                                                                   | trait phenotype is missing. If YES, trait_NA = TRUE, and                                                                                       | the missing values |  |  |

| LDmove           | A logic variable for BLUPmrMLM, indicating whether the highly correlated pseudo QTNs are deleted from the minimum P-value QTN. If YES, LDmove = TRUE, and these pseudo QTNs should be deleted. |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calc_para        | If YES, Calc_para = TRUE, and parallel calculation is implemented in BLUPmrMLM.                                                                                                                |
| Fixed_select     | If YES, <b>Fixed_select</b> = TRUE, users should determine the number of variables in each chromosome in BLUPmrMLM using the parameter of " <b>support.size</b> ".                             |
| support.size     | <b>support.size</b> = number, which is the number of variables in each chromosome in BLUPmrMLM.                                                                                                |
| adequate_fit     | Whether to fit residual phenotypes with the resting SNPs once again in BLUPmrMLM. If YES, adequate_fit = TRUE.                                                                                 |
| midresult.output | Whether the middle results in the first step of BLUPmrMLM are output. If YES, midresult.output = TRUE.                                                                                         |

#### **2.1.2 Example**

#### The full codes for the first six methods

mrMLM(fileGen="D:/Users/Genotype\_num.csv",filePhe="D:/Users/Phenotype.csv",fileKin=NULL,filePS=NULL, PopStrType=NULL,fileCov=NULL,Genformat="Num",method=c("mrMLM","FASTmrMLM","FASTmrEMMA","pLARmEB","pKWmEB","ISIS EM-BLASSO"),Likelihood="REML",trait=1:3,SearchRadius=20,CriLOD=3, SelectVariable=50,Bootstrap=FALSE,DrawPlot=FALSE, Plotformat="jpeg", dir="D:/Users")

#### The reduced codes for the first six methods

mrMLM(fileGen="D:/Users/Genotype\_num.csv", filePhe="D:/Users/Phenotype.csv", Genformat="Num", method=c("mrMLM","FASTmrMLM","FASTmrEMMA","pLARmEB","pKWmEB","ISIS EM-BLASSO"), trait=1:3, CriLOD=3, dir="D:/Users")

It should be noted that users must set "fileGen", "filePhe", "Genformat", "method", "trait", "CriLOD" and "dir", and the other eight parameters can be default in function, including PopStrType="Q"; Likelihood="REML"only for FASTmrEMMA; SearchRadius=20 only for mrMLM and FASTmrMLM; SelectVariable=50 & Bootstrap=FALSE only for pLARmEB; DrawPlot=TRUE; Plotformat= "jpeg".

#### The codes for lower RAM consumption

#### The full codes for the first six methods

mrMLM(fileGen="D:/Users/Genotype",filePhe="D:/Users/Phenotype.csv",fileKin=NULL,filePS=NULL,PopStrT ype=NULL,fileCov=NULL,method=c("mrMLM","FASTmrMLM","FASTmrEMMA","pLARmEB","pKWmEB"),Likelihood="REML",trait=1:3,SearchRadius=20,CriLOD=3,SelectVariable=50,Bootstrap=FALSE,DrawPlot=FALSE,Plotformat="jpeg", dir="D:/Users", PC=TRUE, RAM=4)

The reduced codes for the first six methods are as follows.

mrMLM (fileGen="D:/Users/Genotype",filePhe="D:/Users/Phenotype.csv",Genformat="Num",method=c("mrMLM","FASTmrMLM","FASTmrEMMA","pLARmEB","pKWmEB"), trait=1:3, CriLOD=3, dir="D:/Users", PC=TRUE)

The codes for lower RAM consumption may run on personal computer such as desktop and laptop, which has smaller RAM than server. The parameter "PC" and "RAM" are added in the version 5.0.2 to realize this function. Please see 2.1.1 for details. Note that this technique of low RAM consumption is not suitable for "ISIS EM-BLASSO" algorithm.

#### The codes for the seventh method (BLUPmrMLM)

The full codes for the seventh method (BLUPmrMLM)

**BLUPmrMLM**(fileGen="D:/Users/Genotype\_num.csv",filePhe="D:/Users/Phenotype.csv",fileKin=NULL,trait=1 :3,trait\_NA=FALSE,fileCov=NULL,dir,LDmove=TRUE,svrad=1,svpal=0.01,svmlod=3,Calc\_para=FALSE,Fixed \_select=FALSE,support.size=50,adequate\_fit=TRUE,midresult.output=FALSE)

The reduced codes for the seventh method (BLUPmrMLM)

**BLUPmrMLM**(fileGen="D:/Users/Genotype\_num.csv",filePhe="D:/Users/Phenotype.csv",trait=1:3,dir="D:/Users/")

BLUPmrMLM is a fast multi-locus random-SNP-effect mixed linear algorithm in genome-wide association studies. Its genotype files should be the numeric format in § 2.3. Other input files are showed in § 2.3.

## 2.2 Function MultiManhattan()

Users can use this function to draw or adjust the Manhattan plot according to their own needs.

#### 2.2.1 Parameter settings

| Parameter          | Meaning                                             |
|--------------------|-----------------------------------------------------|
| ResultIntermediate | Intermediate results obtained by the mrMLM software |

| ResultFinal    | Final results obtained by the mrMLM software                                                                                                                                                                                                                                                                             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mar            | A numerical vector of the form c(bottom, left, top, right), which gives the number of lines of margin to be specified on the four sides of the plot, and the default is c(2.9, 2.8, 0.7, 2.8)                                                                                                                            |
| LabDistance    | Distance between label and axis; the default is 1.5                                                                                                                                                                                                                                                                      |
| ScaleDistance  | Distance between scale values and axis; the default is 0.4                                                                                                                                                                                                                                                               |
| LabelSize      | Size of all the three labels; the default is 0.8                                                                                                                                                                                                                                                                         |
| ScaleSize      | Size of scale values; the default is 0.7                                                                                                                                                                                                                                                                                 |
| AxisLwd        | The width of axis, a positive number; the default is 5                                                                                                                                                                                                                                                                   |
| TckLength      | The length of tick marks; the default is -0.03                                                                                                                                                                                                                                                                           |
| LogTimes       | Magnification of {-log10(P-value)}; the default is 2                                                                                                                                                                                                                                                                     |
| LODTimes       | Magnification of {LOD score}; the default is 1.2                                                                                                                                                                                                                                                                         |
| lodline        | The significant LOD score; the default is 3                                                                                                                                                                                                                                                                              |
| dirplot        | Path to save plot; the default is current working directory                                                                                                                                                                                                                                                              |
| PlotFormat     | Format of the plot, i.e., *.tiff, *.png, *.jpeg, *.pdf                                                                                                                                                                                                                                                                   |
| width          | Figure width; the default is 28000                                                                                                                                                                                                                                                                                       |
| height         | Figure height; the default is 7000                                                                                                                                                                                                                                                                                       |
| pointsize      | Word resolution, with the unit of 1/72 inch, being pixels per inch (ppi); the default is 60                                                                                                                                                                                                                              |
| res            | Figure resolution, with the unit of pixels per inch (ppi); the default is 600                                                                                                                                                                                                                                            |
| MarkGene       | To mark genes in plot or not; if "TRUE" is selected, a file, namely "Reference information to mark gene.csv", that contains the <i>x</i> and <i>y</i> axis information of all the significant QTNs will generate. The default is "FALSE", indicating that no candidate or known gene names are marked in Manhattan plot. |
| Pos_x          | The x axis positions of all the marked genes are input                                                                                                                                                                                                                                                                   |
| Pos_y          | The y axis positions of all the marked genes are input                                                                                                                                                                                                                                                                   |
| GeneName       | All the gene names are input                                                                                                                                                                                                                                                                                             |
| GeneNameColour | The color of gene names                                                                                                                                                                                                                                                                                                  |
|                | Arguments passed to points, axis, text                                                                                                                                                                                                                                                                                   |

# **2.2.2 Example**

# The full codes

 $\label{lem:multiManhattan} MultiManhattan (ResultIntermediate="D:/Users/intermediate result.csv", ResultFinal="D:/Users/Final result.csv", \\ mar=c(2.9,2.8,0.7,2.8), LabDistance=1.5, ScaleDistance=0.4, LabelSize=0.8, ScaleSize=0.7, AxisLwd=5, TckLength=1.5, Colored (LabelSize=0.8, ScaleSize=0.7), AxisLwd=1.5, Colored (LabelSize=0.8, ScaleSize=0.8, ScaleSize=0.7), AxisLwd=1.5, Colored (LabelSize=0.8, ScaleSize=0.8, ScaleSize$ 

-0.03,LogTimes=2,LODTimes=1.2,lodline=3,dirplot="D:/Users", PlotFormat=c("tiff","png","jpeg","pdf"), width= 28000, height=7000, pointsize = 60, res=600, MarkGene=TRUE, Pos\_x=c(139,195), Pos\_y=c(7.5,7), GeneName=c("Gene1","Gene2"), GeneNameColour="blue")

#### The reduced codes

MultiManhattan(ResultIntermediate="D:/Users/intermediate result.csv", ResultFinal="D:/Users/Final result.csv")

It should be noted that users must set up two parameters "ResultIntermediate" and "ResultFinal", and the other twenty-one parameters may be default in this Function.

#### 2.3 Dataset format

Numeric format for dataset "fileGen" (Table 1) The first column, named "rs#", stands for marker ID, i.e., "PZB00859.1". The second column, named "chrom", stands for chromosome, i.e., numeric variable "1". The third column, named "pos", stands for the position (bp) of SNP on the chromosome. The fourth column, named "genotype for code 1", indicates reference base for code variable x = 1. Among the remaining columns, each column lists all the genotypes for one individual, and the first row shows the individual names. For each marker, homozygous genotypes are expressed by 1 and -1, respectively, and the heterozygous and missing genotypes are indicated by zero. If the base for the first individual is missing, the base firstly observed in this row is what we list. Note that the genotype with code 1 will be also appeared in the **Result** files.

Table 1. The numeric format of the genotypic dataset

| rs#        | chrom | pos       | genotype for code 1 | 33-16 | Nov-38 | A4226 | A4722 |
|------------|-------|-----------|---------------------|-------|--------|-------|-------|
| PZB00859.1 | 1     | 157104    | С                   | 1     | 1      | 1     | 1     |
| PZA01271.1 | 1     | 1947984   | С                   | 1     | -1     | 1     | -1    |
| PZA03613.2 | 1     | 2914066   | G                   | 1     | 1      | 1     | 1     |
| PZA03613.1 | 1     | 2914171   | Т                   | 1     | 1      | 1     | 1     |
| PZA03614.2 | 1     | 2915078   | G                   | 1     | 1      | 1     | 1     |
| PZA03614.1 | 1     | 2915242   | Т                   | 1     | 1      | 1     | 1     |
| PZA00403.5 | 1     | 223466873 | Т                   | 1     | 1      | 1     | 0     |
| :          | :     | ÷         | :                   | :     | :      | :     | :     |

Character format for dataset "fileGen" (Table 2) The first three columns are same as those in Table 1. The differences are that the marker values are character, such as **A**, **T**, **C**, **G** and **N**, and the other notations are heterozygous genotypes. The "N"

indicates the missing of genotypes. The first rows from the fourth to last columns are individual name.

Table 2. The character format of the genotypic dataset

| rs#        | chrom | pos     | 33-16 | Nov-38 | A4226 | A4722 |
|------------|-------|---------|-------|--------|-------|-------|
| PZB00859.1 | 1     | 157104  | С     | С      | С     | С     |
| PZA01271.1 | 1     | 1947984 | С     | G      | С     | G     |
| PZA03613.2 | 1     | 2914066 | G     | G      | G     | G     |
| PZA03613.1 | 1     | 2914171 | Т     | T      | Т     | T     |
| :          | :     | :       | :     | :      | :     | :     |

Hapmap format for dataset "fileGen" (Table 3) Please see the TASSEL software in details. Here we introduce simply. The first eleven columns describe the specific information of markers and individuals, and these column names must be "rs#", "alleles", "chrom", "pos", "strand", "assembly#", "center", "protLSID", "assayLSID", "panelLSID" and "QCcode". In the "rs#" (1st), "chrom" (3rd) and "pos" (4th) columns, the information has been described as the above. The values of marker genotypes should be character, such as AA, TT, CC, GG, NN, AC and AG, where the "NN" indicates the missing or unknown of genotypes. In the 2nd and 5th to 11th columns, "NA" indicates no information available. All the individual genotypic information will be showed from the 12th to last columns. In each column, individual name is listed in the first row, i.e., "33-16", and the others are the genotypes (character).

Table 3. The hapmap format of the genotypic dataset

| rs#        | alleles | chrom | pos     | strand | assembly# | center | protLSID | assayLSID | panelLSID | QCcode | 33-16 | ••• |
|------------|---------|-------|---------|--------|-----------|--------|----------|-----------|-----------|--------|-------|-----|
| PZB00859.1 | A/C     | 1     | 157104  | +      | AGPv1     | Panzea | NA       | NA        | maize282  | NA     | CC    | ••• |
| PZA01271.1 | C/G     | 1     | 1947984 | +      | AGPv1     | Panzea | NA       | NA        | maize282  | NA     | CC    | ••• |
| PZA03613.2 | G/T     | 1     | 2914066 | +      | AGPv1     | Panzea | NA       | NA        | maize282  | NA     | GG    | ••• |
| PZA03613.1 | A/T     | 1     | 2914171 | +      | AGPv1     | Panzea | NA       | NA        | maize282  | NA     | TT    | ••• |
| PZA03614.2 | A/G     | 1     | 2915078 | +      | AGPv1     | Panzea | NA       | NA        | maize282  | NA     | GG    | ••• |
| PZA03614.1 | A/T     | 1     | 2915242 | +      | AGPv1     | Panzea | NA       | NA        | maize282  | NA     | TT    | ••• |
| ÷          | :       | :     | :       | ÷      | :         | :      | ÷        | :         | :         | ÷      | :     | ••• |

Before implementing GWAS, the above character genotypes should be transferred into numeric information, here the homozygous genotype of each marker for the first individual is transferred into 1, another homozygous genotype for this marker is transferred into -1, and heterozygous and missing genotypes are transferred into zero.

If the base for the first individual is missing, the base firstly observed in this row is what we list.

PLINK binary format for dataset "fileGen" Please see the PLINK software and the sample data in "mrMLM/inst/extdata" for details. Here we introduce simply. PLINK binary files consist of three files with a same name: 1) \*.bed contains the genotypic information of individuals, 2) \*.bim contains the information of genetic marker, and 3) \*.fam contains the information of individuals. The following provides two ways to convert hapmap to \*.bed/\*.bim/\*.fam.

# Under linux system.

Firstly, if the suffix of your hapmap file is not ".hmp.txt" or it cannot be handled by TASSEL, you should transform it to "\*.hmp.txt" by using the following codes on R environment.

 $Genotype <- \ read.csv("/home/data/Genotype\_Hmp.csv", header=FALSE) \\ write.table(Genotype, "/home/data/Genotype.hmp.txt", quot=FALSE, row.name=F, col. \\ name=F, sep="\t")$ 

Secondly, quit R environment and set a path to the location where original and converted datasets are stored, e.g.,

cd/home/data

Then, use TASSEL to sort the hapmap file by running:

/home/tassel-5-standalone/run\_pipeline.pl -SortGenotypeFilePlugin -inputFile Genotype.hmp.txt -outputFile Genotype.sort.hmp.txt -fileType Hapmap

Next, use TASSEL to transform \*.hmp.txt to \*.vcf by running:

/home/tassel-5-standalone/run\_pipeline.pl -fork1 -h Genotype.sort.hmp.txt -Xmx50g - export -exportType VCF

Finally, use PLINK to transform \*.vcf to plink binary files (\*.bed/\*.bim/\*.fam) by running:

/home/plink/plink --vcf Genotype.vcf --make-bed --out Genotype

#### Under windows system

Firstly, please install the Java, TASSEL and PLINK software packages with Windows versions as Figure 2. Note that TASSEL and Java should be installed, while PLINK

should be downloaded, decompressed, and used (it is unnecessary to install). These software packages can be downloaded from

Java: https://www.oracle.com/java/technologies/downloads/#jdk17-windows

TASSEL: https://www.maizegenetics.net/tassel/

PLINK: https://www.cog-genomics.org/plink/1.9/



Figure 2. The installation package of TASSEL (top left), plink (top right) and Java(bottom).

Secondly, if the suffix of your hapmap file is not ".hmp.txt" or it cannot handle by TASSEL, you should transform it to "\*.hmp.txt" by using the following codes on R environment.

Genotype <- read.csv("E:/Genotype\_Hmp.csv",header=FALSE)
write.table(Genotype,"E:/Genotype.hmp.txt",quot=FALSE,row.name=F,col.name=F,
sep="\t")

Thirdly, use TASSEL to sort the hapmap file. Open Windows PowerShell on your computer and run the following two code:

cd E:\TASSEL5

./run\_pipeline -SortGenotypeFilePlugin -inputFile E:\Genotype.hmp.txt -outputFile E:\Genotype.sort.hmp.txt -fileType Hapmap

Here "*E*:\*TASSEL5*" indicates the path to install TASSEL, while "*E*:\*Genotype.hmp.txt*" indicates the path and file name of your hapmap data which need to be sort.

Next, use TASSEL to transform \*.hmp.txt to \*.vcf. Open Windows PowerShell on your computer and run the following two codes:

./run\_pipeline -fork1 -h E:\Genotype.sort.hmp.txt -Xmx10g -export -exportType VCF

Here "E:\TASSEL5" indicates the path to install TASSEL, while "E:\Genotype.sort.hmp.txt" indicates the path and file name of your hapmap data which need to be transformed. "-Xmx10g" is a parameter setup, indicating the maximum memory, 10 G, in the use of the TASSEL software. It should be less than the RAM of your device and larger than the memory in the process of data.

Finally, use PLINK to transform \*.vcf to plink binary files (\*.bed/\*.bim/\*.fam). Open Windows PowerShell on your computer and run the following two codes:

cd E:\plink win64 20220305

./plink --vcf E:\TASSEL5\Genotype.vcf --make-bed --out E:\Genotype

Here "E:\TASSEL5\Genotype.vcf" indicates the path and file name of \*.vcf file generated in previous step, while "E:\Genotype" indicates the path and file name of plink binary files which are the input data of mrMLM 5.1.

Format for the dataset "filePhe" (Table 4) The Phenotypic file should be a file with \*.csv or \*.txt format. The first column lists individual ID, i.e., "B46", and "<Phenotype>" should be showed in the first row. Among the other columns, each column lists all the observations for the trait, its trait name is showed in the first row, i.e., "trait1", and phenotypic values are in the corresponding rows of their individuals. "NA" indicates the missing or unknown phenotypes.

**The format for dataset "fileKin"** (Table 5) The Kinship file should be a file with \*.csv or \*.txt format. In the first column in Table 5, "263" is sample size (n), and "33-16", "Nov-38" and "A4226" are individual ID. Note that "n" is the number of common individuals between the phenotypic and genotypic datasets. All the kinship coefficients are listed as an  $n \times n$  matrix.

<Phenotype> trait3 trait1 trait2 44.32 B46 42 43.02 B52 72.8 72.5 71.88 B57 41.7 41.42 41 74.5 B64 74.43 74.5

Table 4. The format of Phenotypic dataset

fileKin=NULL indicates that the Kinship matrix is calculated by the software mrMLM. Here only the above n individuals are used to calculate the Kinship matrix. fileKin="D:/Users/Kinship.csv" means that the K matrix with name Kinship.csv is uploaded from the folder "D:/Users". If the number and order of individuals in Kinship.csv are not consistent with those of the above n individuals, our software may match the K matrix in order that the number and order of the transferred K matrix are consistent with those in the above n individuals.

**Q** matrix format for dataset "filePS" (Table 6) The Q matrix dataset in Table 6 consists of a  $(n+2) \times (k+1)$  matrix, where n is the number of the above common individuals and k is the number of sub-populations. In the first column, "<PopStr>" and "<ID>" should present in the first and second rows, respectively; "33-16", "Nov-38" and "44226" are individual ID. In the 2nd to (k+1)-th columns, " $Q_1$ " to " $Q_k$ " indicate sub-populations. In the third row, "0.014", "0.972" and "0.014" are the posterior probabilities of the "33-16" individual in the 1st, 2nd and 3rd subpopulations, respectively. When the Q matrix is uploaded to the software, the software will automatically delete the column whose sum is the smallest.

Table 5. The format of the Kinship dataset

| 263    |         |         |         |         |         |
|--------|---------|---------|---------|---------|---------|
| 33-16  | 1.00809 | 0.45954 | 0.50677 | 0.42503 | 0.45591 |
| Nov-38 | 0.45954 | 1.03352 | 0.43048 | 0.47044 | 0.39597 |
| A4226  | 0.50677 | 0.43048 | 1.01717 | 0.45409 | 0.43775 |
| A4722  | 0.42503 | 0.47044 | 0.45409 | 0.89002 | 0.34874 |
| A188   | 0.45591 | 0.39597 | 0.43775 | 0.34874 | 1.0099  |
| A214N  | 0.34693 | 0.33421 | 0.39779 | 0.29244 | 0.33058 |
| A239   | 0.43593 | 0.46499 | 0.40323 | 0.36691 | 0.39597 |
|        | :       | :       | :       | :       | :       |

Table 6. The format of the filePS dataset

| <popstr></popstr> |       |       |       |
|-------------------|-------|-------|-------|
| <id></id>         | Q1    | Q2    | Q3    |
| 33-16             | 0.014 | 0.972 | 0.014 |
| Nov-38            | 0.003 | 0.993 | 0.004 |
| A4226             | 0.071 | 0.917 | 0.012 |
| A4722             | 0.035 | 0.854 | 0.111 |
| A188              | 0.013 | 0.982 | 0.005 |
| A214N             | 0.762 | 0.017 | 0.221 |
| A239              | 0.035 | 0.963 | 0.002 |

| A272 | 0.019 | 0.122 | 0.859 |
|------|-------|-------|-------|
|      | :     | :     | :     |

Principal components format for dataset "filePS" (Table 7) The principal component dataset in Table 7 consists of a  $(n+2) \times (k+1)$  matrix, where n is the number of the common individuals and k is the number of principal components. In the first column, " $\langle PCA \rangle$ " and " $\langle ID \rangle$ " should present in the first and second rows, respectively; "33-16", "Nov-38" and "A4226" are individual ID. In the 2nd to (k+1)-th columns, "PC<sub>1</sub>" to "PC<sub>k</sub>" indicate the first to k-th principal components. In the second column, "0.306", ..., "0.216" are the scores of the first principal component for the 1st to 9-th individuals, respectively. Note that the software doesn't delete any principle components.

**Table 7. The dataset format of principal components** 

| <pca></pca> |        |        |        |
|-------------|--------|--------|--------|
| <id></id>   | PC1    | PC2    | PC3    |
| 33-16       | 0.306  | 0.029  | 0.226  |
| Nov-38      | -0.708 | -2.071 | 1.413  |
| A4226       | -2.330 | 0.116  | -0.824 |
| A4722       | 1.059  | 0.470  | -1.315 |
| A188        | -2.376 | 1.087  | -0.135 |
| A214N       | -2.346 | 0.516  | 0.666  |
| A239        | -0.099 | -0.318 | -0.473 |
| A272        | -0.053 | 0.093  | -0.275 |
| A441-5      | 0.216  | -0.535 | -0.159 |
| :           | :      | :      | :      |

Evolutionary population structure format for dataset "filePS" (Table 8) The evolutionary population structure dataset in Table 8 consists of a  $(n+2) \times 2$  matrix, where n is the number of the common individuals. In the first column, " $\langle EvolPopStr \rangle$ " and " $\langle ID \rangle$ " should present in the first and second rows, respectively; "33-16", "Nov-38" and "44226" are individual ID. In the second column, "EvolType" indicates the evolutionary type, i.e., the evolutionary types for individuals "33-16" and "44722" are "A" and "B", respectively, such as wild (A), landrace (B), and bred (C) soybeans.

filePS=NULL indicates no inclusion of population structure in the genetic model. filePS="D:/Users/PopStr.csv" means that population structure dataset with name PopStr.csv is uploaded from the folder "D:/Users". If the number and order of

individuals in PopStr.csv aren't consistent with those of the above common individuals, our software may match the population structure matrix in order that the number and order of new matrix are consistent with those in the above common individuals.

Table 8. The dataset format of evolutionary population structure

| <evolpopstr></evolpopstr> |          |  |
|---------------------------|----------|--|
| <id></id>                 | EvolType |  |
| 33-16                     | A        |  |
| A4722                     | В        |  |
| A188                      | A        |  |
| A239                      | В        |  |
| :                         | :        |  |

The format for dataset "fileCov" (Table 9) The "Covariate" dataset consists of the  $(n+2) \times (k+1)$  matrix, where n is the number of the common individuals and k is the number of covariates. In the first column, "<Covariate>" and "<ID>" should present in the first and second rows, respectively. If covariate is categorical, it should be named as Cate\_covariate\*. If covariate is continuous, it should be named as Con\_covariate\* (Table 9).

fileCov=NULL indicates no inclusion of covariates in the genetic model. fileCov="D:/Users/covariate.csv" means that the covariates with name covariate.csv are uploaded from the folder "D:/Users". If the number and order of individuals in the uploaded file are not consistent with those in the above common individuals, our software need to change the number and order of individuals in order to match the above datasets.

Table 9. The format of the fileCov dataset

| <covariate></covariate> |                 |                 |                |                |
|-------------------------|-----------------|-----------------|----------------|----------------|
| <id></id>               | Cate_covariate1 | Cate_covariate2 | Con_covariate1 | Con_covariate2 |
| 33-16                   | A               | С               | 349.5          | 374            |
| Nov-38                  | В               | С               | 205            | 452            |
| A4226                   | A               | D               | 300            | 374            |
| A4722                   | A               | D               | 190            | 452            |
| A188                    | В               | С               | 213            | 374            |
| •                       | :               | :               | :              | :              |

#### 2.4 Result

Once the running of the software mrMLM v5.0.2 is ended, the "results" files will appear on the Directory, which was set up by users before running the software. The results for each trait include "\*\_intermediate result.csv", "\*\_Final result.csv", and Manhattan and QQ plots.

In the \*\_intermediate result.csv file, there are thirteen columns, including Trait ID, Trait name, reference sequence number (rs#, marker name), chromosome, marker's position (bp) on the chromosome, SNP effect ( $\gamma_k$ , Effect) (mrMLM, FASTmrMLM, and FASTmrEMMA),  $-\log_{10}(P)$  (mrMLM, FASTmrMLM, FASTmrEMMA, and pKWmEB, BLUPmrMLM), and genotype for code 1.

In the **Final result** file, there are fourteen columns, including Trait ID, Trait name, method, reference sequence number (rs#, marker names), chromosome, marker's position (bp) in the chromosome, QTN effect, LOD score, -log<sub>10</sub>(P), the proportion of phenotypic variance explained by significant QTN (r<sup>2</sup>), minor allelic frequency, genotype for code 1, residual error variance, and total phenotypic variance.

In the Manhattan plot, each marker  $-\log_{10}(P)$  median among the  $-\log_{10}(P)$  values from the mrMLM, FASTmrMLM, FASTmrEMMA, pKWmEB, and BLUPmrMLM approaches is used to draw the Manhattan plots. If users do not select one of the above four approaches, the software program does not produce the Manhattan plot. In the Manhattan plot, these dots are indicated by light colors. All the QTNs commonly identified by multiple approaches are indicated by the pink dots that are shown above dotted vertical lines, while all the QTNs identified by one single approach are indicated by the light color dots that are also shown above dotted vertical lines (Fig 3).



Figure 3. Manhattan plot

In Figure 3, the  $-\log_{10}(P\text{-values})$  obtained from genome-wide single-marker scanning are indicated by two types of points, in which all the points in the same chromosome have the same color, while the LOD scores for significant QTNs are indicated by the points with pink color. We calculated the LOD scores only for the SNP markers that are significantly associated with the trait of interest, rather than all the markers.

The setups for the resolution of the Manhattan plot are default. If users select the format of \*.pdf, the **Figure width** is 16 [with the unit of inches], **Figure height** is 4 [with the unit of inches], and **Word resolution** is 20 [with the unit of 1/72 inch, ppi]. If users select the other three format, **Figure width** is 28000, **Figure height** is 7000 [with the unit of pixel (px)], **word resolution** is 60 [with the unit of 1/72 inch, being pixels per inch (ppi)], and **Figure resolution** is 600 [with the unit of pixels per inch (ppi)].

Using the P-values in Figure 3, it is easy to draw the QQ plot (Fig 4). **If users do not select one of the above four approaches, the software program does not produce the QQ plot.** The setups for the resolution of the QQ plot are default. If users select the format of \*.pdf, the **Figure width** is 7 [with the unit of inches], **Figure height** is 7 [with the unit of inches], and **Word resolution** is 25 [with the unit of 1/72 inch, ppi]. If users select the other three format, **Figure width** is 10000, **Figure height** is 10000 [with the unit of pixel (px)], **word resolution** is 60 [with the unit of 1/72 inch, being pixels per inch (ppi)], and **Figure resolution** is 600 [with the unit of pixels per inch (ppi)].



Figure 4. QQ plot

#### 3. References

1. Zhang Yuan-Ming, Mao Yongcai, Xie Chongqing, Howie Smith, Luo Lang, Xu Shizhong. Mapping

- quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (*Zea mays* L.). *Genetics* 2005, **169**: 2267–2275.
- Wang Shi-Bo, Feng Jian-Ying, Ren Wen-Long, Huang Bo, Zhou Ling, Wen Yang-Jun, Zhang Jin, Jim M. Dunwell, Xu Shizhong\*, Zhang Yuan-Ming\*. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. *Scientific Reports* 2016, 6: 19444.
- Tamba Cox Lwaka, Ni Yuan-Li, Zhang Yuan-Ming\*. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. *PLoS Computational Biology* 2017, 13(1): e1005357.
- 4. Zhang Jin<sup>#</sup>, Feng Jian-Ying<sup>#</sup>, Ni Yuan-Li, Wen Yang-Jun, Niu Yuan, Tamba Cox Lwaka, Yue Chao, Song Qijian, Zhang Yuan-Ming<sup>\*</sup>. pLARmEB: Integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. *Heredity* 2017, **118**: 517–524.
- Ren Wen-Long#, Wen Yang-Jun#, Jim M. Dunwell, Zhang Yuan-Ming\*. pKWmEB: Integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. *Heredity* 2018, 120: 208–218.
- 6. Wen Yang-Jun, Zhang Hanwen, Ni Yuan-Li, Huang Bo, Zhang Jin, Feng Jian-Ying, Wang Shi-Bo, Jim M. Dunwell, Zhang Yuan-Ming\*, Wu Rongling\*. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. *Briefings in Bioinformatics* 2018, 19(4): 700–712.
- Tamba CL, Zhang YM. A fast mrMLM algorithm for multi-locus genome-wide association studies. *bioRxiv*, 2018. doi: 10.1101/341784.
- Zhang Yuan-Ming\*, Jia Zhenyu, Jim M. Dunwell. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers in Plant Science 2019, 10: 100.
- Zhang Ya-Wen, Tamba Cox Lwaka, Wen Yang-Jun, Li Pei, Ren Wen-Long, Ni Yuan-Li, Gao Jun, Zhang Yuan-Ming\*. mrMLM v4.0: An R platform for multi-locus genome-wide association studies. *Genomics*, *Proteomics & Bioinformatics* 2020, 18: 481-487.
- 10. Li M, Zhang YW, Zhang ZC, Xiang Y, Liu MH, Zhou YH, Zuo JF, Zhang HQ, Chen Y, Zhang YM. A compressed variance component mixed model for detecting QTNs, and QTN-by-environment and QTN-by-QTN interactions in genome-wide association studies. *Molecular Plant* 2022, 15(4): 630-650.
- 11. Li Hong-Fu, Wang Jing-Tian, Qiong Zhao, Zhang Yuan-Ming. BLUPmrMLM: A fast multi-locus random-SNP-effect mixed linear model in genome-wide association studies. In submission