Inferència

Estimadors:

 $\hat{\pi} \rightarrow p = \sum_{i,y_i=1} 1/n$

 $\hat{\mu} \rightarrow \bar{y} = \sum_{i=1}^{n} y_i / n$

 $\hat{\sigma}^2 \rightarrow s^2 = \frac{\sum_{i=1}^n (y_i - \overline{y})^2}{n-1} = \frac{\sum_{i=1}^n y_i^2 - \frac{(\sum_{i=1}^n y_i)^2}{n}}{n-1}$

Cas de model lineal simple: $\widehat{\beta_1} \rightarrow b_1 = r_{XY} \cdot \frac{s_Y}{s_X} = \frac{s_{XY}}{s_X^2}$ $\widehat{\beta_0} \rightarrow b_0 = \bar{y} - b_1 \bar{x}$

Fetadístics: "senval /soroll" o "diferència / s e" sequeixen una N o t. "quocients de variàncies" sequeixen v^2 o E.

Estadístics:	"senyal /soroll" o "diferència / s.e" segueixen una N o t_{ν} "quocients de variàncies" segueixen χ_{ν}^2 o F_{ν} (per a un possible valor versemblant θ_0 del paràmetre corresponent)			
Paràmetre θ	Estadístic i se*	Estadístic amb distribució contrastant $ heta_0$	Premisses per $Y = f(\theta) + \varepsilon$ (model $f(\theta)$, residus ε)	Interval de Confiança (1- α)% (risc α %)
θ és μ	$\frac{(\overline{y} - \mu)}{se}$ $se = \sigma/\sqrt{n}$	$z = \frac{(\overline{y} - \theta_0)}{se} \sim N(0,1)$	Normalitat de Υ(o n "gran") σ coneguda	$[\bar{y} \pm z_{1-\frac{\alpha}{2}} \ se]$
θ és μ	$\frac{(\overline{y} - \mu)}{se}$ $se = s/\sqrt{n}$	$t = \frac{(\overline{y} - \theta_0)}{se} \sim t_{n-1}$	Normalitat de Y	$[\bar{y} \pm t_{n-1,1-\frac{\alpha}{2}} \ se]$
θ és π	$\frac{(p-\pi)}{se}$ (se de l'estadístic no és exactament el del l θ	$z = \frac{(p - \theta_0)}{se} \sim N(0,1)$	(1- π) $n \ge \approx 5$ $\pi \ n \ge \approx 5$ $(\pi \to P \ o \ \pi \to 0.5)$	$[p \pm z_{1-\frac{\alpha}{2}} se]$ $se = \sqrt{\pi(1-\pi)/n} (\pi \to P \ o \ \pi \to 0.5)$
θ és σ^2	$\frac{s^2(n-1)}{\sigma^2}$	$\chi^2 = \frac{s^2(n-1)}{\theta_0} \sim \chi_{n-1}^2$	Normalitat de Y	$\left[\frac{s^2(n-1)}{\chi^2_{n-1, 1-\frac{\alpha}{2}}}, \frac{s^2(n-1)}{\chi^2_{n-1, \frac{\alpha}{2}}}\right]$
θ és μ1-μ2 (ο μ _D)	$\frac{(\overline{d} - \mu_D)}{se}$ $se = s_D / \sqrt{n}$	$t = \frac{(\overline{d} - \theta_0)}{se} \sim t_{n-1}$	Normalitat de <i>D</i> (Y ₁ - Y ₂) (2 grups aparellats)	$[\bar{d} \pm t_{n-1,1-\frac{\alpha}{2}} se]$
θ és μ1-μ2	$se = s\sqrt{\frac{\frac{1}{n_1} + \frac{1}{n_2}}{n_1}} (s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)}{n_1 + n_2 - 2})$	$t = \frac{(\bar{y}_1 - \bar{y}_2) - (\theta_0)}{se} \sim t_{n1+n2-2}$	Normalitat de Y_1 i Y_2 Homoscedasticitat ($\sigma_1 = \sigma_2$) (2 grups independents amb σ_1 i σ_2 desconegudes)	$[(\bar{y}_1 - \bar{y}_2) \pm t_{(n_1+n_2-2),1-\frac{\alpha}{2}} se]$
θ és π1-π2	$\frac{(P_1 - P_2) - (\pi_1 - \pi_2)}{se}$ (se de l'estadístic no és exactament el del l $($	$z = \frac{(P_1 - P_2) - (\theta_0)}{se} \sim N(0,1)$	$(1-\pi_i) \ n_i \ge \approx 5$ $\pi_i \ n_i \ge \approx 5$ $(\pi_i \to Pi)$ (2 grups independents)	$[(P_1 - P_2) \pm z_{1 - \frac{\alpha}{2}} \text{ se }]$ $se = \sqrt{P_1(1 - P_1)/n_1 + P_2(1 - P_2)/n_2}$
θ és $\frac{\sigma_1^2}{\sigma_2^2}$	$\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} = \frac{s_1^2/s_2^2}{\sigma_1^2/\sigma_2^2}$	$F = \frac{s_1^2/s_2^2}{\theta_0} \sim F_{n1-1,n2-1}$	Normalitat de Y_1 i Y_2 (2 grups independents)	$\left[\frac{s_1^2/s_2^2}{F_{(n1-1,n2-1),1-\frac{\alpha}{2}}}, \frac{s_1^2/s_2^2}{F_{(n1-1,n2-1),\frac{\alpha}{2}}}\right]$
θ és $oldsymbol{eta}_i$	$\frac{(b_i - \beta_i)}{se_{b_i}}$	$t=rac{(b_i- heta_0)}{se_{b_i}}\sim t_{n-2}$ (per a eta_0 o eta_1 del model lineal simple)	Linealitat Normalitat (dels residus) Homoscedasticitat (dels residus) Independència (dels residus)	$[b_i \pm t_{n-2,1-\frac{\alpha}{2}} \ se_{b_i}]$

^{*} se (estàndard error o error tipus)