Range

Variance

Standard Deviation

Coefficient of Variation

Measures of Variability

Table 2.11: Annual Payouts for Two Different Investment Funds

Year	Fund A (\$)	Fund B (\$)
1	1,100	700
2	1,100	2,500
3	1,100	1,200
4	1,100	1,550
5	1,100	1,300
6	1,100	800
7	1,100	300
8	1,100	1,600
9	1,100	1,500
10	1,100	350
11	1,100	460

Table 2.11: Annual Payouts for Two Different Investment Funds (cont.)

Year	Fund A (\$)	Fund B (\$)
12	1,100	890
13	1,100	1,050
14	1,100	800
15	1,100	1,150
16	1,100	1,200
17	1,100	1,800
18	1,100	100
19	1,100	1,750
20	1,100	1,000
Mean	1,100	1,100

Range:

- ☐ The **range** can be found by subtracting the smallest value from the largest value in a data set.
- ☐ Illustration: Consider the data on home sales in a Cincinnati, Ohio, suburb.
 - ☐ Largest home sales price: \$456,250.

Range = Largest value – Smallest value

☐ Smallest home sales price: \$108,000. =\$

= \$456,250 - \$108,000

= \$348,250

□ Drawback: Range is based on only two of the observations and thus is highly influenced by extreme values.

Measures of Variability

- □ Variance:
 - $\hfill\Box$ is a measure of variability that utilizes all the data.
 - ☐ It is based on the deviation about the mean, which is the difference between the value of each observation

Population Variance	Sample Variance	
$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$	
σ^2 = population variance x_i = value of i^{th} element μ = population mean N = population size	s^2 = sample variance x_i = value of i^{th} element \overline{x} = sample mean n = sample size	

Table 2.12: Computation of Deviations and Squared Deviations About the Mean for the Class Size Data

Number of Students in Class (x_i)	Mean Class Size ($ar{x}$)	Deviation About the Mean $(x_i - \bar{x})$	Squared Deviation About the Mean $(x_i - \overline{x})^2$
46	44	2	4
54	44	10	100
42	44	-2	4
46	44	2	4
32	44	-12	144
			256
		$\Sigma(x_i - \overline{x})$	$\Sigma(x_i - \overline{x})^2$

Computation of Sample Variance: $s^2 = \frac{\sum (x_i - x)^2}{n - 1} = \frac{256}{4} = 64 \text{ (students)}^2$

- □The coefficient of variation
 - is a descriptive statistic that indicates how large the standard deviation is relative to the mean.
- □Expressed as a percentage.

COEFFICIENT OF VARIATION

$$\left(\frac{\text{Standard deviation}}{\text{Mean}} \times 100\right)\%$$
 (2.6)

Measures of Variability

Illustration:

□ Consider the class size data:

46 54 42 46 32

□ Mean,

 $\overline{x} = 44$.

□ Coefficient of variation =

 \square Standard deviation, s = 8 (students).

The coefficient of variation tells that the sample standard deviation is 18.2% of the value of the sample mean.

Percentiles Empirical Rule

Quartiles Identifying Outliers

z-Scores Boxplots

Analyzing Distributions

- ☐ A percentile
 - □ is the value of a variable at which a specified (approximate) percentage of observations are below that value.
- ☐ The pth percentile tells us the point in the data where:
 - ☐ Approximately *p* percent of the observations have values less than the *p*th percentile.
 - □ Approximately:

(100 - p) percent of the observations have values greater than the pth percentile.

Location of the pth Percentile

$$L_p = \frac{p}{100}(n+1) \tag{2.7}$$

Illustration:

- ☐ To determine the 85th percentile for the home sales data:
- ☐ Arrange the data in ascending order:

```
108,000 138,000 138,000 142,000 186,000 199,500 208,000 254,000 254,000 257,500 298,000 456,250
```

2. Compute

$$L_{85} = \frac{p}{100} (n+1) = \frac{(85)}{2100} (12+1) = 11.05.$$

3. The interpretation of $L_{85} = 11.05$ is that the 85th percentile is 5% of the way between the value in position 11 and value in position 12.

Analyzing Distributions

Illustration (cont.):

- ☐ To determine the 85th percentile for the home sales data:
 - ☐ The value in the 11th position is 298,000.
 - ☐ The value in the 12th position is 456,250.
 - □ \$305,912.50 represents the 85th percentile of the home sales data:

85th percentile =
$$298,000 + 0.05(456,250 - 298,000)$$

= $298,000 + 0.05(158,250)$
= $305,912.50$

- **Quartiles:** When the data is divided into four equal parts:
 - ☐ Each part contains approximately 25% of the observations.
 - ☐ Division points are referred to as quartiles.

 Q_1 = first quartile, or 25th percentile.

 Q_2 = second quartile, or 50th percentile (also the median).

 Q_3 = third quartile or 75th percentile.

☐ The difference between the third and first quartiles is often referred to as the **interquartile range**, or IQR.

Analyzing Distributions

- ☐ The **z-score**:
 - ☐ measures the relative location of a value in the data set.
- ☐ Helps to determine how far a particular value is from the mean relative to the data set's standard deviation.
- □ Often called the standardized value.
- \square The z -score can be interpreted as the number of standard deviations x_i is from the mean x.

□ z-Scores (cont.):

If x_1 , x_2 , \square , x_n is a sample of n observations:

z-SCORE

$$z_i = \frac{x_i - \overline{x}}{s} \tag{2.8}$$

where

 z_i = the z-score for x_i

 \overline{x} = the sample mean

s = the sample standard deviation

Analyzing Distributions

Table 2.13: z-Scores for the Class Size Data

No. of Students in Class (x_i)	Deviation About the Mean $(x_i - \bar{x})$	$z\text{-Score}\bigg(\frac{x_i - \overline{x}}{s}\bigg)$
46	2	2/8 = 0.25
54	10	10/8 = 1.25
42	-2	-2/8 = -0.25
46	2	2/8 = 0.25
32	-12	-12/8 = -1.50

For class size data, $\overline{x} = 44$ and s = 8.

For observations with a value > mean, z-score > 0.

For observations with a value < mean, z-score < 0.

Empirical Rule:

- ☐ For data having a bell-shaped distribution:
 - ☐ Approximately 68% of the data values will be within 1 standard deviation.
 - ☐ Approximately 95% of the data values will be within 2 standard deviations.
 - ☐ Almost all the data (99.7%) values will be within 3 standard deviations.

Analyzing Distributions

- ☐ The height of adult males in the United States
 - ☐ Mean 69.5 inches and
 - □ Standard deviation of 3 inches.
- □ 1 SD -> 68% of U.S. males are between 66.5 and 72.5 in tall
- ☐ 2 SD -> 95% of U.S. males are between 63.5 and 75.5 in tall
- □ 3 SD -> 99.7% of U.S. males are between 60.5 and 78.5 in tall

□Extreme values in a data set.

- ☐ Any data value with a z-score less than -3 or greater than +3 is an outlier.
- ☐ Such data values can then be reviewed to determine their accuracy and whether they belong in the data set.

Analyzing Distributions

- □ Data value incorrectly recorded;
 - □ Correct before further analysis.
- □ Data value incorrectly included
 - \square It can be removed.
- ☐ Unusual data value that has been recorded correctly
 - ☐ The observation should remain.

......

- ☐ A boxplot:
 - ☐ is a graphical summary of the distribution of data.
- ☐ Developed from the quartiles for a data set.

Figure 2.22: Boxplot for the Home Sales Data

Analyzing Distributions

- ☐ Steps used to male boxplot:
 - ☐ Draw box with ends located at the first and third quartiles.

 \square E.g. Q1 = 139,000 and Q3 = 256,625.

- □ Draw a line at the median (203,750)
- □ Find Outliers
 - □ IQR = Q3 Q1
 - □ Limits = Q1 1.5(IQR), Q3 + 1.5(IQR)
 - □ IQR = 117,625.
 - ☐ Limits =
 - \square 139,000 1.5(117,625) = -37,437.5
 - \square 256,625 + 1.5(117,625) = 433,062.5

- □ Draw Whiskers
 - Dashed lines from the ends of the box to the smallest and largest values inside the limits computed in Step 3.
 - □ Values of 108,000 and 298,000.
- ☐ Finally, the location of each outlier is shown with an asterisk
 - **456,250.**

