Теория вероятностей и математическая статистика Лектор А.А. Лобузов

Семестр 6 Лекция 2

Дискретная статистическая модель

Пусть $\mathbf{X} = (X_1, X_2, ..., X_N)$ случайная выборка, полученная при измерении дискретной случайной величины ξ , принимающей значения

$$x_1^*$$
 x_2^* \dots x_m^* .

По числовой выборке $\mathbf{x} = (x_1, x_2, ..., x_N)$ строим

Статистический ряд:

X_i	x_1^*	x_{2}^{*}	•••	•••	•••	x_m^*
n_i	n_1	n_2	•••	• • •	• • •	n_m
w_i	w_1	w_2	• • •	•••	•••	w_m

$$n_i$$
 — частота значения x_i^* , $\sum_{i=1}^m n_i = N$;

 w_i — относительная частота (частость) значения x_i^* ,

$$w_i = \frac{n_i}{N}, \qquad \sum_{i=1}^m w_i = 1.$$

По статистическому ряду находят многие характеристики.

	To le con		ornousener			W X	n fartes		
esurue	iku	, ra		un					
X	1	2	3	4	5	6	7	3	
n	6	19	20	25	17	6	6	1	
w	906	9,19	0,2	9,25	917	9,06	0,06	0,01	
nacus	24	arka	eurei	low	OCH	Kee	cool		
1									
0,15									
9/07	1		1						
9,05-	1								
16	1 2	3	15	£ 7.	3	7			
Craruc	oure	new	pre	7					
2/1	2	3	4	5 6	7	8	9		
n 1	9			1 2		3	2		
W 0,01	1,09	0,12	0,27 0	11 0,2	1004	9,05	5,62		
Duna	grees	eika	2 9	oyun	yece	pain	pege	www	
1				,					
9,5			-						
0,6		,							
0,4		1							
9,3	7								
91		1 66	+ 1	9 10 19	1				
	3		SMI						

Числовые характеристики выборки

Выборочное среднее

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{m} x_i^* \cdot n_i = \sum_{i=1}^{m} x_i^* \cdot w_i$$

Выборочный момент k-ого порядка

$$\overline{\mu}_k = \overline{x^k} = \sum_{i=1}^m (x_i^*)^k \cdot w_i, \overline{\mu}_1 = \overline{x}$$

Выборочная дисперсия

$$D_B = \sum_{i=1}^{m} (x_i^* - \overline{x})^2 \cdot w_i = \sum_{i=1}^{m} (x_i^*)^2 \cdot w_i - (\sum_{i=1}^{m} x_i^* \cdot w_i)^2 = \overline{x^2} - (\overline{x})^2$$

Выборочное среднее квадратическое отклонение

$$\overline{\sigma} = \sqrt{D_B}$$

Выборочный центральный момент k-ого порядка

$$\overline{\mu}_{k}^{0} = \sum_{i=1}^{m} (x_{i}^{*} - \overline{x})^{k} \cdot w_{i}, \overline{\mu}_{1}^{0} = 0, \overline{\mu}_{2}^{0} = D_{B} = \overline{\mu}_{2} - (\overline{\mu}_{1})^{2},$$

$$\overline{\mu}_{3}^{0} = \sum_{i=1}^{m} ((x_{i}^{*})^{3} - 3(x_{i}^{*})^{2} \overline{\mu}_{1} + 3x_{i}^{*} (\overline{\mu}_{1})^{2} - (\overline{\mu}_{1})^{3}) \cdot w_{i} = \overline{\mu}_{3} - 3\overline{\mu}_{2} \overline{\mu}_{1} + 2(\overline{\mu}_{1})^{3},$$

$$\begin{split} & \overline{\mu}_{4}^{\,0} = \sum_{i=1}^{m} ((x_{i}^{*})^{\,4} - 4(x_{i}^{*})^{\,3} \overline{\mu}_{1} + 6(x_{i}^{*})^{\,2} (\overline{\mu}_{1})^{\,2} - 4x_{i}^{*} (\overline{\mu}_{1})^{\,3} + (\overline{\mu}_{1})^{\,4}) \cdot w_{i} = \\ & = \overline{\mu}_{4} - 4 \overline{\mu}_{3} \overline{\mu}_{1} + 6 \overline{\mu}_{2} (\overline{\mu}_{1})^{\,2} - 3(\overline{\mu}_{1})^{\,4} \end{split}$$

Выборочная мода \bar{M}_0

$$\overline{M}_0 = \{x_i^* \mid n_i = \max n_k\}, \text{ если } n_i = \max n_k > n_j, i \neq j;$$

если
$$n_i = n_{i+1} = \dots = n_{i+j} = \max n_k$$
, то $\overline{M}_0 = \frac{1}{2} (x_i^* + x_{i+j}^*)$,

если $n_i = n_j = \max n_k > n_l$, i < l < j, то \overline{M}_0 — не существует.

Выборочная медиана

$$\overline{M}_{e} = \begin{cases} x_{i}^{*}, & F_{N}^{\Im}(x_{i-1}^{*}) < 0, 5 < F_{N}^{\Im}(x_{i}^{*}), \\ \frac{1}{2}(x_{i}^{*} + x_{i+1}^{*}), & F_{N}^{\Im}(x_{i}^{*}) = 0, 5. \end{cases}$$

Выборочный коэффициент асимметрии

$$\overline{a}_s = \frac{\overline{\mu}_3^0}{\overline{\sigma}_3^3}$$

Коэффициент асимметрии (**skewness**) положителен, если правый хвост распределения длиннее левого, и отрицателен в противном случае.

Если распределение симметрично относительно математического ожидания, то его коэффициент асимметрии равен нулю.

Выборочный коэффициент эксцесса

$$\overline{\varepsilon}_k = \frac{\overline{\mu}_4^0}{\overline{\sigma}^4} - 3$$

Коэффициент эксцесса (kurtosis, коэффициент островершинности)

– мера остроты пика распределения случайной величины.