The key here is that, while this kind of connectivity includes a notion of time, it can be converted into a graph connectivity problem of a more standard sort.

We construct the following directed graph G. We scan through the ordered triples in the trace data, maintaining an array pointing to linked lists associated with each computer C_a . (Each list is initalized to null.)

For each triple (C_i, C_j, t_k) we see in our scan, we create nodes (C_i, t_k) and (C_j, t_k) , and we create directed edges joining these two nodes in both directions. Also, we append these nodes to the lists for C_i and C_j respectively. If this is not the first triple involving C_i , then we include a directed edge from (C_i, t) to (C_i, t_k) , where t is the timestamp in the preceding element (the previously last one) in the list for C_i . We do the analogous thing for C_j . By explicitly maintaining these lists for each node, we are thus able to construct all these new nodes and edges in constant time per triple.

Now, given a collection of triples, we want to decide whether a virus introduced at computer C_a at time x could have infected computer C_b by time y. We walk through the list for C_a until we get to the last node (C_a, x') for which $x' \leq x$. We now run directed BFS from (C_a, x') to determine all nodes that are reachable from it. If a node of the form (C_b, y') with $y' \leq y$ is reachable, then we declare that C_b could have been infected by time y; otherwise we declare it could not have.

Let's argue first about the correctness of the algorithm, then its running time. First, we claim that if there is a path from (C_a, x') to (C_b, y') as in the previous paragraph, then C_b could have been infected by time y. To see this, we simply have the virus move between computers C_i and C_j at time t_k , whenever an edge from (C_i, t_k) to (C_j, t_k) is traversed by the BFS. This is a feasible sequence of virus transmissions that results in the virus first leaving C_a at time x or later (by the definition of x') and arriving at C_b by time y.

Conversely, suppose there were a sequence of virus transmissions that results in the virus first leaving C_a at time x or later and arriving at C_b by time y. Then we can build a path in our graph as follows. We start at node (C_a, x') and follow edges to (C_a, x'') , for the x'' when the virus first leaves C_a . (Note that there are such edges since $x' \leq x \leq x''$; or else x' = x''.) In general, for each time that the virus moves from C_i to C_j at time t_k , we add the edge from (C_i, t_k) to (C_j, t_k) to the path; if it next moves out of C_j at time $t \geq t_k$, we add the the sequence of edges from (C_j, t_k) to (C_j, t_k) . When the virus first arrives at node C_b , we will have just added a node (C_b, y'') to the path; since $y'' \leq y$ and y' is the largest y involving C_b in the trace data with this property, there is a sequence of edges from (C_b, y'') to (C_b, y') , completing the path.

Finally, we consider the running time. Each triple in the trace data causes us to add a constant number of nodes and edges to the graph, so the graph has O(m) nodes and edges, and since we build it in constant time per node and edge, this takes time O(m). Running BFS takes time linear in the size of the graph, so this too takes time O(m).

 $^{^{1}}$ ex207.316.912