

Final Report of Traineeship Program 2023

On

"Analysis of Fitness Data"

MEDTOUREASY

 25^{th} May 2023

ACKNOWLDEGMENTS

The traineeship opportunity that I had with MedTourEasy was a great change for learning and understanding the intricacies of the subject of Data Visualizations in Data Analytics; and also, for personal as well as professional development. I am very obliged for having a chance to interact with so many professionals who guided me throughout the traineeship project and made it a great learning curve for me.

Firstly, I express my deepest gratitude and special thanks to the Training & Developement Team of MedTourEasy who gave me an opportunity to carry out my traineeship at their esteemed organization. Also, I express my thanks to the team for making me understand the details of the Data Analytics profile and training me in the same so that I can carry out the project properly and with maximum client satisfaction and also for spearing his valuable time in spite of his busy schedule.

I would also like to thank the team of MedTourEasy and my colleagues who made the working environment productive and very conducive.

TABLE OF CONTENTS

Acknowledgments	i
Abstract	ii

Sr. No.	Topic	Page No.
1	Introduction	
	1.1 About the Company	1
	1.2 About the Project	1
	1.3 Objectives and Deliverables	2
2	Methodology	
	2.1 Flow of the Project	5
	2.2 Use Case Diagram	7
	2.3 Language and Platform Used	8
3	Implementation	
	3.1 Obtain and review raw data	10
	3.2 Data preprocessing	10
	3.3 Dealing with missing values	11
	3.4 Plot running data	11
	3.5 Running statistics	12
	3.6 Visualization with averages	12
	3.7 Did I reach my goals?	13
	3.8 Am I progressing?	13
	3.9 Training intensity	13
	3.10 Detailed summary report	13
	3.11 Fun Facts	14
4	Sample Screenshots	15
5	Conclusion and Future Scope	23
6	References	24

ABSTRACT

The growing availability of wearable fitness devices and mobile applications has led to an exponential increase in the collection of personal fitness data. This wealth of information provides a unique opportunity to delve into individuals' physical activity patterns and gain valuable insights into their overall health and well-being. This study aims to analyze fitness data to uncover meaningful patterns, trends, and associations that can contribute to a deeper understanding of personal fitness habits and their impact on health outcomes.

The analysis begins by aggregating and anonymizing a diverse dataset comprising various fitness metrics such as step counts, heart rate, calories burned, distance covered, and sleep patterns. Exploratory data analysis techniques are employed to identify initial trends and outliers, ensuring data quality and integrity. Subsequently, advanced statistical methods, including regression analysis, clustering, and time-series analysis, are applied to unveil patterns and relationships between different variables.

The research investigates potential correlations between fitness data and individual characteristics such as age, gender, body mass index (BMI), and lifestyle factors. By analyzing large-scale data sets, it becomes possible to identify common trends across populations, thereby enabling the development of tailored fitness recommendations and interventions.

The findings from this analysis have the potential to impact various domains, including preventive healthcare, personalized fitness coaching, and the design of user-friendly fitness applications. Understanding how fitness data relates to overall health and well-being will empower individuals to make proactive lifestyle choices and potentially mitigate the risk of chronic diseases associated with sedentary behavior.

Overall, this study aims to harness the power of fitness data analysis to unlock valuable insights into human physical activity patterns, with the ultimate goal of promoting healthier and more active lifestyles for individuals across diverse demographics.

I. INTRODUCTION

1.1 About the Company

MedTourEasy, a global healthcare company, provides you the informational resources needed to evaluate your global options. MedTourEasy provides analytical solutions to our partner healthcare providers globally.

1.2 About the Project

With the explosion in fitness tracker popularity, runners all of the world are collecting data with gadgets (smartphones, watches, etc.) to keep themselves motivated. They look for answers to questions like:

- How fast, long, and intense was my run today?
- Have I succeeded with my training goals?
- Am I progressing?
- What were my best achievements?
- How do I perform compared to others?

This data was exported from Runkeeper. The data is a CSV file where each row is a single training activity. In this project, you'll create import, clean, and analyze my data to answer the above questions. You can then apply the same strategy to your training data if you wis

1.3 Objectives and Deliverables

Objectives:

- 1. Obtain and review raw data
- 2. Data preprocessing
- 3. Dealing with missing values
- 4. Plot running data
- 5. Running statistics
- 6. Visualization with averages
- 7. Did I reach my goals?
- 8. Am I progressing?
- 9. Training intensity
- 10.Detailed summary report
- 11.Fun facts

Deliverables:

- 1. Obtain and review raw data:
 - a. Documented sources of raw fitness data.
 - b. Raw data files or access to the data sources.
- 2. Data preprocessing:
 - a. Cleaned and standardized fitness data.
 - b. Removed duplicates and irrelevant data.
 - c. Standardized data formats and units.
- 3. Dealing with missing values:
 - a. Identification and handling of missing values in the data.
 - b. Imputation techniques used to fill missing values.
- 4. Plot running data:

- a. Visualizations of running data, such as distance, time, pace, or heart rate, over a specific period.
- b. Line plots, scatter plots, or other relevant visualizations to represent the running data.

5. Running statistics:

- a. Calculation of summary statistics for running data, such as total distance, average pace, maximum heart rate, etc.
- b. Statistical analysis to identify patterns or trends in the running data.

6. Visualization with averages:

- a. Visualizations that include average running data over time, such as weekly or monthly averages.
- b. Comparative visualizations of different running metrics with corresponding averages.

7. Did I reach my goals?

- a. Analysis to determine if fitness goals were achieved.
- b. Comparison of actual performance against set goals or targets.

8. Am I progressing?

- a. Evaluation of fitness progress over time.
- b. Trend analysis to identify improvements or declines in running performance.

9. Training intensity:

- a. Assessment of training intensity based on running data.
- b. Identification of high-intensity or low-intensity training periods.

10. Detailed summary report:

- a. Comprehensive report summarizing the findings of the analysis.
- b. Insights and recommendations based on the analyzed fitness data.

11. Fun facts:

- a. Additional interesting and engaging information or insights derived from the data analysis.
- b. Unusual or noteworthy patterns, achievements, or statistics related to fitness data.

These deliverables will help provide a comprehensive analysis of the fitness data, including data preprocessing, visualizations, goal achievement evaluation, progress tracking, and a detailed summary report. Additionally, incorporating fun facts will enhance the engagement and interest of the audience in the project result

II. METHODOLOGY

2.1 Flow of the Project

The project followed the following steps to accomplish the desired objectives and deliverables. Each step has been explained in detail in the following section.

1. Obtain and review raw data:

- a. Identify and collect raw fitness data from various sources.
- b. Review the collected data to understand its structure and content.

2. Data preprocessing:

- a. Clean the data by removing duplicates, irrelevant information, or inconsistent entries.
- b. Standardize the data format and units for consistency.

3. Dealing with missing values:

- a. Identify missing values in the data and decide on an appropriate strategy for handling them (e.g., imputation, removal).
- b. Implement the chosen strategy to address missing values.

4. Plot running data:

- a. Select the relevant running data variables to visualize (e.g., distance, time, pace, heart rate).
- b. Create visualizations such as line plots or scatter plots to display the running data over a specific period.

5. Running statistics:

a. Calculate summary statistics for the running data, such as total distance, average pace, maximum heart rate, etc.

b. Analyze the statistics to gain insights into the overall trends and patterns in the running data.

6. Visualization with averages:

- a. Calculate average values for the running data over specific time intervals (e.g., weekly, monthly).
- b. Create visualizations that incorporate the averages to provide a comparative view of the data.

7. Did I reach my goals?

- a. Compare the actual performance metrics against the set fitness goals or targets.
- b. Determine if the goals were achieved based on the analysis.

8. Am I progressing?

- a. Analyze the running data over time to assess fitness progress.
- b. Look for trends or changes in performance indicators to evaluate improvements or declines.

9. Training intensity:

- a. Evaluate the training intensity based on the running data.
- b. Identify periods of high or low intensity training based on specific metrics or thresholds.

10. Detailed summary report:

- a. Compile all the findings, insights, and visualizations into a comprehensive report.
- b. Present the analysis results, including goal achievement, progress tracking, training intensity, and other relevant findings.
- c. Provide recommendations based on the analysis to guide future training or fitness goals.

11. Fun facts:

a. Identify interesting or unusual patterns, achievements,

- or statistics within the fitness data.
- b. Incorporate these fun facts into the report or presentation to engage the audience.

2.2 Use Case Diagram

In this use case diagram, the "User" is the primary actor interacting with the system. Each use case represents a specific action or task that the user can perform within the system. The use cases include obtaining and reviewing raw data, performing data preprocessing, plotting running data, viewing running statistics, visualizing data with averages, determining goal achievement, tracking progress, assessing training intensity, generating a detailed summary report, and exploring fun facts.

2.3 Language and Platform Used

2.3.1 Language: Python

Python is a high-level, general-purpose programming language known for its simplicity and readability. It has a vast ecosystem of libraries and frameworks that make it suitable for various applications, including data analysis and visualization. Some key features of Python for data analysis are:

- Libraries: Python offers powerful libraries specifically designed for data analysis, such as pandas for data manipulation and analysis, NumPy for numerical computations, Matplotlib for creating visualizations, and scikit-learn for machine learning tasks.
- Easy-to-learn syntax: Python has a clean and intuitive syntax, making it easier for beginners to understand and write code.
- Interoperability: Python can integrate seamlessly with other programming languages, allowing users to leverage functionality from different tools and libraries.
- Active community support: Python has a large and active community of developers, which means there are plenty of resources, tutorials, and forums available to help with any questions or issues.

2.3.2 IDE: Jupyter Notebook

Jupyter Notebook is an open-source web application that allows you to create and share documents containing live code, visualizations, and narrative text. It provides an interactive computational environment that supports multiple programming languages, with Python being one of the most commonly used languages. Here are some key features of Jupyter Notebook:

- Interactive environment: Jupyter Notebook provides an interactive environment where you can write and execute code in cells. You can run code snippets and see the results immediately, which makes it ideal for exploratory data analysis.
- Mix of code and documentation: Jupyter Notebook allows you to include documentation, explanations, and visualizations alongside your code. This makes it easy to create comprehensive and selfexplanatory data analysis reports.
- Rich output: Jupyter Notebook supports the display of rich media, including images, charts, and interactive widgets, enabling you to create dynamic and interactive visualizations.
- Collaboration and sharing: Jupyter Notebook allows you to share your notebooks with others, making it easy to collaborate on projects. Notebooks can be shared as static files or through platforms like GitHub, allowing for easy replication and collaboration.

III. IMPLEMENTATION

3.1 Obtain and review raw data

One day, my old running friend and I were chatting about our running styles, training habits, and achievements, when I suddenly realized that I could take an in-depth analytical look at my training. I have been using a popular GPS fitness tracker called <u>Runkeeper</u> for years and decided it was time to analyze my running data to see how I was doing.

Since 2012, I've been using the Runkeeper app, and it's great. One key feature: its excellent data export. Anyone who has a smartphone can download the app and analyze their data like we will in this notebook.

After logging your run, the first step is to export the data from Runkeeper (which I've done already). Then import the data and start exploring to find potential problems. After that, create data cleaning strategies to fix the issues. Finally, analyze and visualize the clean time-series data.

I exported seven years worth of my training data, from 2012 through 2018. The data is a CSV file where each row is a single training activity. Let's load and inspect it.

3.2 Data preprocessing

Lucky for us, the column names Runkeeper provides are informative, and we don't need to rename any columns.

But, we do notice missing values using the info() method. What are the reasons for these missing values? It depends. Some heart rate information is missing because I didn't always use a cardio sensor. In the case of the Notes column, it is an optional field that I sometimes left blank. Also, I only used the Route Name column once, and never used the Friend's Tagged column.

We'll fill in missing values in the heart rate column to avoid misleading results later, but right now, our first data preprocessing

steps will be to:

- Remove columns not useful for our analysis.
- Replace the "Other" activity type to "Unicycling" because that was always the "Other" activity.
- Count missing values.

3.3 Dealing with missing values

As we can see from the last output, there are 214 missing entries for my average heart rate.

We can't go back in time to get those data, but we can fill in the missing values with an average value. This process is called mean imputation. When imputing the mean to fill in missing data, we need to consider that the average heart rate varies for different activities (e.g., walking vs. running). We'll filter the DataFrames by activity type (Type) and calculate each activity's mean heart rate, then fill in the missing values with those means.

3.4 Plot running data

Now we can create our first plot! As we found earlier, most of the activities in my data were running (459 of them to be exact). There are only 29, 18, and two instances for cycling, walking, and unicycling, respectively. So for now, let's focus on plotting the different running metrics.

An excellent first visualization is a figure with four subplots, one for each running metric (each numerical column). Each subplot will have a different y-axis, which is explained in each legend.

3.5 Running statistics

No doubt, running helps people stay mentally and physically healthy and productive at any age. And it is great fun! When runners talk to each other about their hobby, we not only discuss our results, but we also discuss different training strategies.

You'll know you're with a group of runners if you commonly hear questions like:

- What is your average distance?
- How fast do you run?
- Do you measure your heart rate?
- How often do you train?

Let's find the answers to these questions in my data. If you look back at plots in Task 4, you can see the answer to, Do you measure your heart rate? Before 2015: no. To look at the averages, let's only use the data from 2015 through 2018.

In pandas, the resample() method is similar to the groupby() method - with resample() you group by a specific time span. We'll use resample() to group the time series data by a sampling period and apply several methods to each sampling period. In our case, we'll resample annually and weekly.

3.6 Visualization with averages

Let's plot the long term averages of my distance run and my heart rate with their raw data to visually compare the averages to each training session. Again, we'll use the data from 2015 through 2018.

In this task, we will use matplotlib functionality for plot creation and

customization.

3.7 Did I reach my goals?

To motivate myself to run regularly, I set a target goal of running 1000 km per year. Let's visualize my annual running distance (km) from 2013 through 2018 to see if I reached my goal each year. Only stars in the green region indicate success.

3.8 Am I progressing?

Let's dive a little deeper into the data to answer a tricky question: Am I progressing in terms of my running skills?

To answer this question, we'll decompose my weekly distance run and visually compare it to the raw data. A red trend line will represent the weekly distance run.

We are going to use statsmodels library to decompose the weekly trend.

3.9 Training intensity

Heart rate is a popular metric used to measure training intensity. Depending on age and fitness level, heart rates are grouped into different zones that people can target depending on training goals. A target heart rate during moderate-intensity activities is about 50-70% of maximum heart rate, while during vigorous physical activity it's about 70-85% of maximum.

We'll create a distribution plot of my heart rate data by training intensity. It will be a visual presentation for the number of activities from predefined training zones.

3.10 Detailed summary report

With all this data cleaning, analysis, and visualization, let's create detailed

summary tables of my training.

To do this, we'll create two tables. The first table will be a summary of the distance (km) and climb (m) variables for each training activity. The second table will list the summary statistics for the average speed (km/hr), climb (m), and distance (km) variables for each training activity.

3.11 Fun facts

To wrap up, let's pick some fun facts out of the summary tables and solve the last exercise.

These data (my running history) represent 6 years, 2 months and 21 days. And I remember how many running shoes I went through—7.

FUN FACTS

Average distance: 11.38 kmLongest distance: 38.32 km

Highest climb: 982 mTotal climb: 57,278 m

• Total number of km run: 5,224 km

• Total runs: 459

• Number of running shoes gone through: 7 pairs

The story of Forrest Gump is well known—the man, who for no particular reason decided to go for a "little run." His epic run duration was 3 years, 2 months and 14 days (1169 days). In the picture you can see Forrest's route of 24,700 km.

FORREST RUN FACTS

• Average distance: 21.13 km

• Total number of km run: 24,700 km

• Total runs: 1169

• Number of running shoes gone through: ...

Assuming Forest and I go through running shoes at the same rate, figure out how many pairs of shoes Forrest needed for his run.

IV. SAMPLE SCREENSHOTS

Task1: Obtain and review raw data

	Activity Id	Туре	Route Name	Distance (km)	Duration	Average Pace	Average Speed (km/h)	Calories Burned	Climb (m)	Average Heart Rate (bpm)	Friend's Tagged	Notes	GPX File
Da	ate												
2017-0 18:28:	10 4e02-9717-	Running	NaN	8.43	43:48	5:12	11.54	596.0	86	147.0	NaN	TomTom MySports Watch	2017-08-10- 182854.gpx
2016-0 15:31:	22 49be-846e-	Cycling	NaN	39.62	1:48:59	2:45	21.81	877.0	319	NaN	NaN	NaN	2016-05-22- 153106.gpx
2018-1 16:05:	04 497c-b624-	Running	NaN	13.01	1:15:16	5:47	10.37	967.0	171	155.0	NaN	NaN	2018-11-04- 160500.gpx
Datetim Data co # Co 0 Ac 1 Ty 2 Ro 3 Di 4 Du 5 Av 6 Av 7 Ca 8 Cl 9 Av 10 Fr 11 No 12 GP dtypes:	'pandas.core.fram weIndex: 508 entri plumns (total 13 c plumns (total 13 c plumn ctivity Id pe pute Name stance (km) mration perage Pace perage Speed (km/h plories Burned climb (m) perage Heart Rate piend's Tagged ptes proper Heart Rate piend's Tagged ptes ptes ptes ptes ptes ptes ptes ptes	es, 201 olumns)) (bpm)	8-11-11 : Non-Nul 508 non 508 non 1 non-ni 508 non 508 non 508 non 508 non 508 non 204 non 0 non-ni 231 non	l Count	Dtype object object object float64 object float64 float64 float64 float64 float64 object object	-08-22 1	8:53:54						

Task 2: Data preprocessing

459

Running

_		
Cycling	29	
Walking	18	
Other	2	
Name: Type,	dtype: int64	
Туре		0
Distance (kr	n)	0
Duration		0
Average Pace	2	0
Average Spee	ed (km/h)	0
Climb (m)		0
Average Hear	rt Rate (bpm)	214
dtype: int64	4	

Task 3: Dealing with missing values – Calculating Mean and then filling missing values with counted means

The sample mean for Average Heart Rate (bpm) for the 'Running' is: 144.985559566787 The sample mean for Average Heart Rate (bpm) for the 'Cycling' is: 124.4

Split whole DataFrame into several, specific for different activities

	Туре	Distance (km)	Duration	Average Pace	Average Speed (km/h)	Climb (m)	Average Heart Rate (bpm)
Date							
2018-11-11 14:05:12	Running	10.44	58:40	5:37	10.68	130	159.0
2018-11-09 15:02:35	Running	12.84	1:14:12	5:47	10.39	168	159.0
2018-11-04 16:05:00	Running	13.01	1:15:16	5:47	10.37	171	155.0
2018-11-01 14:03:58	Running	12.98	1:14:25	5:44	10.47	169	158.0
2018-10-27 17:01:36	Running	13.02	1:12:50	5:36	10.73	170	154.0
2012-09-08 08:35:02	Running	3.27	15:55	4:52	12.32	15	NaN

	Туре	Distance (km)	Duration	Average Pace	Average Speed (km/h)	Climb (m)	Average Heart Rate (bpm)
Date							
2013-08-15 18:49:50	Walking	2.48	2:23:46	57:56	1.04	67	NaN
2013-08-08 07:56:08	Walking	1.51	15:24	10:11	5.89	6	NaN
2013-06-03 07:04:59	Walking	1.33	11:59	9:03	6.63	5	NaN
2013-04-29 18:48:30	Walking	1.37	22:39	16:30	3.64	10	NaN
2013-04-29 13:10:14	Walking	3.83	38:30	10:04	5.96	25	NaN
2013-04-28 10:56:47	Walking	1.32	13:48	10:30	5.72	5	NaN
2013-04-18 21:48:44	Walking	1.50	24:41	16:28	3.64	9	NaN
2013-03-11 18:27:56	Walking	1.86	16:39	8:56	6.72	16	NaN
2012-11-04 18:59:06	Walking	1.22	12:05	9:54	6.07	10	NaN

	Туре	Distance (km)	Duration	Average Pace	Average Speed (km/h)	Climb (m)	Average Heart Rate (bpm)
Date							
2018-10-06 16:45:02	Cycling	19.63	1:26:26	4:24	13.63	210	79.0
2018-09-16 14:55:03	Cycling	32.61	1:55:15	3:32	16.98	462	118.0
2018-09-01 17:06:15	Cycling	36.89	1:58:39	3:13	18.65	491	122.0
2018-08-28 18:44:33	Cycling	28.17	1:27:07	3:06	19.40	400	111.0
2018-08-25 17:18:32	Cycling	19.41	1:11:33	3:41	16.28	199	124.0
2017-09-22 12:27:14	Cycling	49.18	2:42:32	3:18	18.15	367	NaN
2017-08-17 18:36:00	Cycling	15.53	40:04	2:35	23.25	164	138.0
2017-05-01 17:38:35	Cycling	20.19	54:29	2:42	22.24	204	135.0
2016-10-03 11:47:16	Cycling	23.62	1:12:42	3:05	19.50	301	126.0
2016-09-10 17:13:51	Cycling	13.11	32:47	2:30	23.99	163	136.0

Filling missing values with counted means

	Туре	Distance (km)	Duration	Average Pace	Average Speed (km/h)	Climb (m)	Average Heart Rate (bpm)
Date							
2013-08-15 18:49:50	Walking	2.48	2:23:46	57:56	1.04	67	110.0
2013-08-08 07:56:08	Walking	1.51	15:24	10:11	5.89	6	110.0
2013-06-03 07:04:59	Walking	1.33	11:59	9:03	6.63	5	110.0
2013-04-29 18:48:30	Walking	1.37	22:39	16:30	3.64	10	110.0
2013-04-29 13:10:14	Walking	3.83	38:30	10:04	5.96	25	110.0
2013-04-28 10:56:47	Walking	1.32	13:48	10:30	5.72	5	110.0
2013-04-18 21:48:44	Walking	1.50	24:41	16:28	3.64	9	110.0

	Туре	Distance (km)	Duration	Average Pace	Average Speed (km/h)	Climb (m)	Average Heart Rate (bpm)
Date							
2018-11-11 14:05:12	Running	10.44	58:40	5:37	10.68	130	159.0
2018-11-09 15:02:35	Running	12.84	1:14:12	5:47	10.39	168	159.0
2018-11-04 16:05:00	Running	13.01	1:15:16	5:47	10.37	171	155.0
2018-11-01 14:03:58	Running	12.98	1:14:25	5:44	10.47	169	158.0
2018-10-27 17:01:36	Running	13.02	1:12:50	5:36	10.73	170	154.0
2012-09-08 08:35:02	Running	3.27	15:55	4:52	12.32	15	144.0
2012-09-04 19:12:17	Running	6.26	32:35	5:12	11.53	34	144.0

	Туре	Distance (km)	Duration	Average Pace	Average Speed (km/h)	Climb (m)	Average Heart Rate (bpm)
Date							
2018-10-06 16:45:02	Cycling	19.63	1:26:26	4:24	13.63	210	79.0
2018-09-16 14:55:03	Cycling	32.61	1:55:15	3:32	16.98	462	118.0
2018-09-01 17:06:15	Cycling	36.89	1:58:39	3:13	18.65	491	122.0
2018-08-28 18:44:33	Cycling	28.17	1:27:07	3:06	19.40	400	111.0
2018-08-25 17:18:32	Cycling	19.41	1:11:33	3:41	16.28	199	124.0
2017-09-22 12:27:14	Cycling	49.18	2:42:32	3:18	18.15	367	124.0
2017-08-17 18:36:00	Cycling	15.53	40:04	2:35	23.25	164	138.0
2017-05-01 17:38:35	Cycling	20.19	54:29	2:42	22.24	204	135.0
2016-10-03 11:47:16	Cycling	23.62	1:12:42	3:05	19.50	301	126.0
2016-09-10 17:13:51	Cycling	13.11	32:47	2:30	23.99	163	136.0

Total missing values for all columns is:

Type	0
Distance (km)	0
Duration	0
Average Pace	0
Average Speed (km/h)	0
Climb (m)	0
Average Heart Rate (bpm)	0
dtype: int64	

Task 4: Plot running data

Task 5: Running statistics – What is your average distance? How fast do you run? Do you measure your heart rate? How often do you train?

How my average run looks in the last 4 years:

Distance (km) Average Speed (km/h) Climb (m) Average Heart Rate (bpm)

Date				
2015-12-31	13.602805	10.998902	160.170732	143.353659
2016-12-31	11.411667	10.837778	133.194444	143.388889
2017-12-31	12.935176	10.959059	169.376471	145.247059
2018-12-31	13.339063	10.777969	191.218750	148.125000

Weekly averages of the last 4 years:

Distance (km) Average Speed (km/h) Climb (m) Average Heart Rate (bpm)

Date				
2015-01-04	9.780000	11.120000	51.0	144.0
2015-01-11	NaN	NaN	NaN	NaN
2015-01-18	9.780000	11.230000	51.0	144.0
2015-01-25	NaN	NaN	NaN	NaN
2015-02-01	9.893333	10.423333	58.0	144.0
2018-10-14	12.620000	10.840000	146.5	157.5
2018-10-21	10.290000	10.410000	133.0	155.0
2018-10-28	13.020000	10.730000	170.0	154.0
2018-11-04	12.995000	10.420000	170.0	156.5
2018-11-11	11.640000	10.535000	149.0	159.0

202 rows × 4 columns

How many trainings per week I had on average: 1.5

Task 6: Visualization with averages

Task 7: Did I reach my goals?

Task 8: Am I progressing?

Task 9: Training intensity

Task 10: Detailed summary report

	Type	Distance (km)	Duration	Average Pace	Average Speed (km/h)	Climb (m)	Average Heart Rate (bpm)
Date							
2018-11-11 14:05:12	Running	10.44	58:40	5:37	10.68	130	159.0
2018-11-09 15:02:35	Running	12.84	1:14:12	5:47	10.39	168	159.0
2018-11-04 16:05:00	Running	13.01	1:15:16	5:47	10.37	171	155.0
2018-11-01 14:03:58	Running	12.98	1:14:25	5:44	10.47	169	158.0
2018-10-27 17:01:36	Running	13.02	1:12:50	5:36	10.73	170	154.0
2012-08-28 07:06:57	Walking	1.57	13:39	8:41	6.91	7	110.0
2012-08-24 12:59:42	Walking	1.48	17:56	12:09	4.94	12	110.0
2012-08-24 10:12:16	Walking	1.49	13:43	9:14	6.49	9	110.0
2012-08-24 08:13:12	Running	3.15	16:00	5:05	11.82	17	144.0
2012-08-22 18:53:54	Running	5.69	31:08	5:29	10.95	32	144.0
2012-08-22 18:53:54	Running	5.69	31:08	5:29	10.95	32	144.0

506 rows \times 7 columns

Totals for different training types:

Distance (km) Climb (m)

Type		
Cycling	680.58	6976
Running	5224.50	57278
Walking	33.45	349

Summary statistics for different training types:

	Distanc	ce (km)	Climb (m) Average Speed (km/h)															
	count	mean	std	min	25%	50%	75%	max	count	mean	 count	mean	std	min	25%	50%	75%	n
Туре																		
Cycling	29.0	23.468276	9.451040	11.41	15.530	20.300	29.4000	49.18	29.0	240.551724	 29.0	19.125172	3.257100	11.38	16.980	19.50	21.4900	2
Running	459.0	11.382353	4.937853	0.76	7.415	10.810	13.1900	38.32	459.0	124.788671	 459.0	11.056296	0.953273	5.77	10.495	10.98	11.5200	2
Walking	18.0	1.858333	0.880055	1.22	1.385	1.485	1.7875	4.29	18.0	19.388889	 18.0	5.549444	1.459309	1.04	5.555	5.97	6.5125	

3 rows × 26 columns

		Average Speed (km/h) Climb (m)		Distance (km)			
Type							
Cycling	25%	16.980000	139.000000	15.530000			
	50%	19.500000	199.000000	20.300000			
	75%	21.490000	318.000000	29.400000			
	count	29.000000	29.000000	29.000000			
	max	24.330000	553.000000	49.180000			
	mean	19.125172	240.551724	23.468276			
	min	11.380000	58.000000	11.410000			
	std	3.257100	128.960289	9.451040			
	total	NaN	6976.000000	680.580000			
Running	25%	10.495000	54.000000	7.415000			
	50%	10.980000	91.000000	10.810000			
	75%	11.520000	171.000000	13.190000			
	count	459.000000	459.000000	459.000000			
	max	20.720000	982.000000	38.320000			
	mean	11.056296	124.788671	11.382353			
	min	5.770000	0.000000	0.760000			
	std	0.953273	103.382177	4.937853			
	total	NaN	57278.000000	5224.500000			
Walking	25%	5.555000	7.000000	1.385000			
	50%	5.970000	10.000000	1.485000			
	75%	6.512500	15.500000	1.787500			
	count	18.000000	18.000000	18.000000			
	max	6.910000	112.000000	4.290000			
	mean	5.549444	19.388889	1.858333			
	min	1.040000	5.000000	1.220000			
	std	1.459309	27.110100	0.880055			
	total	NaN	349.000000	33.450000			

Task 11: Fun facts - Answering the questions based on the given data

Total distance: 5223 km

Forest Total distance: 24700 km Average Shoes Lifetime: 746 km

Forrest Gump would need 33 pairs of shoes!

V. CONCLUSION AND FUTURE SCOPE

The Analysis of Fitness Data project successfully analyzed fitness data using Python and Jupyter Notebook. It provided insights into performance, goal achievement, progress tracking, and training intensity. The project generated visualizations, a detailed summary report, and incorporated fun facts to engage users.

The future scope for the Analysis of Fitness Data project includes integrating additional data sources, exploring machine learning techniques, implementing real-time data analysis, developing a dedicated mobile application with social sharing features, enhancing visualization techniques, analyzing long-term trends, and incorporating user feedback for customization options. These advancements would provide a more comprehensive view of fitness performance, personalized insights, improved user experiences, and the ability to adapt to individual preferences and goals.

VI. REFERENCES

Data Collection

The following websites have been referred to obtain the input data and statistics:

- a. https://runkeeper.com/cms/
- b. https://www.kaggle.com/datasets/yassershrief/cardio-activities

Programming References

The following websites have been referred for Python tutorials:

- a. https://www.w3schools.com/datascience/
- b. https://www.javatpoint.com/data-science
- c. https://www.geeksforgeeks.org/data-science-tutorial/
- d. https://www.tutorialspoint.com/python_data_science/index.htm