МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение

высшего образования

«КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ им. В. И. ВЕРНАДСКОГО» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра компьютерной инженерии и моделирования

Разработка и реализация схемы адресации VLSM

Отчет по лабораторной работе № 5 по дисциплине «Компьютерные сети» студента 2 курса группы ИВТ-б-о-202(1) Шор Константина Александровича

Направления подготовки 09.03.01«Информатика и вычислительная техника»

BR2 IoT LAN (Future): 5 Hosts BR2 CCTV LAN (Future): 4 Hosts BR2 HVAC C2LAN (Future): 4 Hosts

Часть 1. Изучение требований к сети

192.168.33.128 /25

Шаг 1. Определил количество доступных адресов узлов и подсетей.

 $2^7 - 2 = 126$

80

6

Шаг 2. Определил самую большую подсеть.

BR1 LAN

Сколько ІР-адресов требуется для самой большой подсети? 40

Какая маска подсети может поддерживать такое количество адресов узла? /26

Сколько всего адресов узла может поддерживать эта маска подсети? **/62**

Можно ли разделить сетевой адрес 192.168.33.128/25 на подсети для поддержки этой подсети? **Да**

Какие сетевые адреса образуются в результате данного разбиения на подсети?

192.16.33.128/26

192.16.33.192/26

Шаг 3. Определил вторую по величине подсеть.

BR2 LAN

Сколько IP-адресов требуется для второй по величине подсети? **25**Какая маска подсети может поддерживать такое количество адресов узла? /27

Сколько всего адресов узла может поддерживать эта маска подсети? **30**

Возможно ли повторно организовать подсеть оставшейся подсети, поддерживая при этом данную подсеть? Да

Какие сетевые адреса образуются в результате данного разбиения на подсети?

192.16.33.192/27

192.16.33.224/27

Шаг 4. Определил третью по величине подсеть.

BR2 IoT LAN / BR2 CCTV LAN / BR2 HVAC C2LAN

Сколько IP-адресов требуется для следующей по величине подсети? 5/4/4

Какая маска подсети может поддерживать такое количество адресов узла? /29

Сколько всего адресов узла может поддерживать эта маска подсети?

8/8/8/8

Возможно ли повторно организовать подсеть оставшейся подсети, поддерживая при этом данную подсеть? Да

Какие сетевые адреса образуются в результате данного разбиения на подсети?

192.168.33.224/29

192.168.33.232/29

192.168.33.240/29

192.168.33.248/29

Шаг 5. Определил четвертую по величине подсеть.

BR1-BR2 Link

Сколько IP-адресов требуется для следующей по величине подсети? 2 Какая маска подсети может поддерживать такое количество адресов узла? /30

Сколько всего адресов узла может поддерживать эта маска подсети? 4

Возможно ли повторно организовать подсеть оставшейся подсети, поддерживая при этом данную подсеть? **Да**

Какие сетевые адреса образуются в результате данного разбиения на подсети?

192.168.33.248/30

192.168.33.252/30

Часть 2. Разработка схемы адресации VLSM

Шаг 1. Рассчитал данные подсетей.

Описание подсети		обходимое эличество узлов		етевой ec/CIDR		дрес эго узла	Широн	совещательный адрес
BR1 LAN		40		192.168.	33.128	192.168	.33.129	192.168.33.191
BR2 LAN		25		192.168.	.33.192 192.168		.33.193	192.168.33.223
BR2 IoT LAN		5		192.168.	.33.224 192.168		.33.225	192.168.33.231
BR2 CCTV LAN		4		192.168.	33.232	192.168	.33.233	192.168.33.239

BR2 HVAC C2LAN	4	192.168.33.240	192.168.33.241	192.168.33.247
Канал BR1- BR2	2	192.168.33.248	192.168.33.249	192.168.33.251

Шаг 2. Заполнил таблицу адресов интерфейсов.

Устройство	Интерфейс	IP-адрес	Маска подсети	Интерфейс устройства
BR1	G0/0/0	192.168.33.249	255.255.255.252	Канал BR1-BR2
	G0/0/1	192.168.33.129	255.255.255.192	40 узлов LAN
BR2	G0/0/0	192.168.33.250	255.255.255.252	Канал BR1-BR2
	G0/0/1	192.168.33.193	255.255.255.224	25 хост LAN

Часть 3. Подключение кабелей и настройка IPv4-сети

Шаг 1. Создал сеть согласно топологии.

Шаг 2. Настроил базовые параметры на каждом маршрутизаторе.

```
Router>enable
Router#conf t
Enter configuration commands, one per line. End with \underline{\text{CNTL}/2}{\,.}
Router(config) #no ip domain-lookup
Router(config) #enable secret class
Router(config) #line console 0
Router(config-line) #password cisco
Router(config-line) #login
Router(config-line) #exit
Router(config) #line vty 0 4
Router(config-line) #password cisco
Router(config-line) #login
Router(config-line) #end
Router#
%SYS-5-CONFIG_I: Configured from console by console
Router#enable
Router#conf t
Enter configuration commands, one per line. End with {\tt CNTL/Z.}
Router(config) #service password-encrtyption
§ Invalid input detected at '^' marker.
Router(config) #service password-encryption
Router(config) #banner motd # Warning unauthorized entry!!! #
Router(config)#
```

```
Router(config) #hostname BR2
BR2(config) #no ip domain-lookup
BR2(config) #enable secret class
BR2(config) #line console 0
BR2(config-line) #password cisco
BR2 (config-line) #login
BR2(config-line)#exit
BR2(config) #line vty 0 4
BR2(config-line) #password cisco
BR2 (config-line) #login
BR2 (config-line) #end
BR2#
%SYS-5-CONFIG I: Configured from console by console
BR2#enable
BR2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
BR2(config) #service password-encryption
BR2(config) #banner motd # Warning unauthorized entry!!! #
BR2(config)#
```

Шаг 3. Настроил интерфейс на каждом маршрутизаторе.

Настроил описание

Tx Ring Limit

Включил интерфейсы

```
BR2(config-if) #int g0/0/0
BR2(config-if) #no shutdown

BR2(config-if) #
%LINK-5-CHANGED: Interface GigabitEthernet0/0/0, changed state to up

BR2(config-if) #int g0/0/1
BR2(config-if) #no shutdown

BR2(config-if) # shutdown

BR2(config-if) #
%LINK-5-CHANGED: Interface GigabitEthernet0/0/1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/1, changed state to up
```

```
BRl(config-if) #int g0/0/0
BRl(config-if) #no shutdown

BRl(config-if) #
%LINK-5-CHANGED: Interface GigabitEthernet0/0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/0, changed state to up
BRl(config-if) #int g0/0/1
BRl(config-if) #no shutdown

BRl(config-if) #
%LINK-5-CHANGED: Interface GigabitEthernet0/0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/1, changed state to up
BRl(config-if) #
```

Шаг 4. Сохранил конфигурацию

Шаг 5. Проверил подключение

Модель маршрутизатора	Интерфейс Ethernet № 1	Интерфейс Ethernet № 2	Последовательный интерфейс № 1	Последовательный интерфейс № 2
1 800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)
4221	Gigabit Ethernet 0/0/0 (G0/0/0)	Gigabit Ethernet 0/0/1 (G0/0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)
4300	Gigabit Ethernet 0/0/0 (G0/0/0)	Gigabit Ethernet 0/0/1 (G0/0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)