MATH: Operations Research	2014-15 First Term	
Handout 11: Properties of Lipscitz and convex functions		
Instructor: Junfeng Yang	December 2, 2014	

Contents

11.1	Lipschitz continuous functions	11-2
11.2	Convex Lipschitz continuous functions	11-4
11.3	Strongly convex Lipschitz continuous functions	11-5

11.1 Lipschitz continuous functions

Notation.

- $C^k(\mathbb{R}^n)$: functions k times continuously differentiable on \mathbb{R}^n .
- $C_L^{k,p}(\mathbb{R}^n)$: a subset of $C^k(\mathbb{R}^n)$, and the pth order derivative of any f in this class is Lipschitz continuous on \mathbb{R}^n with the constant L>0, i.e.,

$$||f^{(p)}(x) - f^{(p)}(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n.$$

• The most important class in $C_L^{k,p}(\mathbb{R}^n)$ is $C_L^{1,1}(\mathbb{R}^n)$, a function f in which is continuously differentiable and satisfies

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

(thus, ∇f is uniformly continuous on \mathbb{R}^n .)

Theorem 11.1 (Hessian uniformly bounded) Let $f \in C^2(\mathbb{R}^n)$. Then $f \in C^{2,1}_L(\mathbb{R}^n)$ if and only if $\|\nabla^2 f(x)\| \leq L$ for all $x \in \mathbb{R}^n$.

Proof: Necessity. For any $s \in \mathbb{R}^n$ and $\alpha > 0$, it holds

$$\left\| \int_0^\alpha \nabla^2 f(x + \tau s) d\tau \cdot s \right\| = \|\nabla f(x + \alpha s) - \nabla f(x)\| \le \alpha L \|s\|.$$

Dividing both sides by α and letting $\alpha \to 0+$.

Sufficiency. For any $x, s \in \mathbb{R}^n$, it holds that

$$\begin{split} \|\nabla f(x+s) - \nabla f(x)\| &= \left\| \int_0^1 \nabla^2 f(x+\tau s) \mathrm{d}\tau \cdot s \right\| \\ &\leq \int_0^1 \|\nabla^2 f(x+\tau s)\| \mathrm{d}\tau \cdot \|s\| \leq L \|s\|. \end{split}$$

Example 11.1.1 • Linear function: $f(x) = c^T x + d \in C_0^{1,1}(\mathbb{R}^n)$ because

$$\nabla^2 f(x) \equiv 0.$$

• Quadratic function: Suppose $A^T = A$. Then

$$f(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c \in C_{\|A\|}^{1,1}(\mathbb{R}^{n})$$

because $\nabla^2 f(x) \equiv A$.

• $f(x) = \sqrt{1+x^2} \in C_1^{1,1}(R)$ because $f''(x) = \frac{1}{(1+x^2)^{3/2}} \le 1$.

Theorem 11.2 If $f \in C_L^{1,1}(\mathbb{R}^n)$, then $\frac{L}{2}||x||^2 - f(x)$ is convex.

Proof: It follows from $f \in C^{1,1}_L(\mathbb{R}^n)$ and Cauchy-Schwarz inequality that

$$\langle x - y, \nabla f(x) - \nabla f(y) \rangle \le L ||x - y||^2$$

which is equivalent to

$$\langle x - y, (Lx - \nabla f(x)) - (Ly - \nabla f(y)) \rangle \ge 0,$$

i.e., $Lx - \nabla f(x)$ is monotone. Thus, $\frac{L}{2}||x||^2 - f(x)$ is convex.

Theorem 11.3 Let $f \in C_L^{1,1}(\mathbb{R}^n)$. Then for any $x,y \in \mathbb{R}^n$ we have

$$|f(y) - f(x) - \nabla f(x)^T (y - x)| \le \frac{L}{2} ||y - x||^2.$$

Proof:

$$f(y) - f(x) - \nabla f(x)^{T}(y - x) = \int_{0}^{1} \left\langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \right\rangle d\tau.$$

Take absolute value on both sides and amplify the right side properly.

Let $f \in C_L^{1,1}(\mathbb{R}^n)$. Define two quadratic functions at the current point $x_k \in \mathbb{R}^n$:

$$q(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) - \frac{L}{2} ||x - x_k||^2,$$

$$Q(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{L}{2} ||x - x_k||^2.$$

Then, it holds that

$$q(x) \le f(x) \le Q(x), \quad \forall x \in \mathbb{R}^n.$$

Theorem 11.4 Let $f \in C^{2,2}_M(\mathbb{R}^n)$. Then for any $x,y \in \mathbb{R}^n$ we have

$$\|\nabla f(y) - \nabla f(x) - \nabla^2 f(x)(y - x)\| \le \frac{M}{2} \|y - x\|^2,$$
$$|f(y) - q(y; x)| \le \frac{M}{6} \|y - x\|^3,$$

where

$$q(y;x) := f(x) + \nabla f(x)^{T} (y-x) + \frac{1}{2} (y-x)^{T} \nabla^{2} f(x) (y-x).$$

Proof: Notice that

$$\nabla f(y) - \nabla f(x) - \nabla^2 f(x)(y - x) = \int_0^1 \left(\nabla^2 f(x + \tau(y - x)) - \nabla^2 f(x) \right) (y - x) d\tau$$

and

$$\begin{split} &f(y)-f(x)-\nabla f(x)^T(y-x)-\frac{1}{2}(y-x)^T\nabla^2 f(x)(y-x)\\ &=\int_0^1 \left\langle \nabla f(x+\tau(y-x))-\nabla f(x),y-x\right\rangle \mathrm{d}\tau -\frac{1}{2}...\\ &=\int_0^1 \left\langle \int_0^1 \nabla^2 f(x+\theta\tau(y-x))(y-x)\mathrm{d}\theta,y-x\right\rangle \tau \mathrm{d}\tau -\frac{1}{2}...\\ &=\int_0^1 \left\langle \int_0^1 \left(\nabla^2 f(x+\theta\tau(y-x))-\nabla^2 f(x)\right)(y-x)\mathrm{d}\theta,y-x\right\rangle \tau \mathrm{d}\tau. \end{split}$$

Take absolute value on both sides and amplify the right hand side.

Theorem 11.5 Let $f \in C^{2,2}_M(\mathbb{R}^n)$. For any $x,y \in \mathbb{R}^n$ with ||y-x|| = r, it holds that

$$\nabla^2 f(x) - M r I_n \preceq \nabla^2 f(y) \preceq \nabla^2 f(x) + M r I_n$$

where I_n is the identity matrix. Here $A \succeq B$ means $A - B \succeq 0$.

11.2 Convex Lipschitz continuous functions

Notation.

- $\mathcal{F}(\mathbb{R}^n)$: convex functions on \mathbb{R}^n .
- $\mathcal{F}^k(\mathbb{R}^n)$: the intersection of $C^k(\mathbb{R}^n)$ and $\mathcal{F}(\mathbb{R}^n)$, i.e., k times continuously differentiable convex functions on \mathbb{R}^n .
- $\mathcal{F}_L^{k,p}(\mathbb{R}^n)$: a subset of $\mathcal{F}^k(\mathbb{R}^n)$, and the pth order derivative of any f in this class is Lipschitz continuous on \mathbb{R}^n with the constant L.
- The most important class in $\mathcal{F}_L^{k,p}(\mathbb{R}^n)$ is $\mathcal{F}_L^{1,1}(\mathbb{R}^n)$, a function f in which is continuously differentiable, convex and satisfies

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

In fact the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity.

— Rockafellar, 1993.

Consider $\min_{x \in R^n} f(x)$, where $f \in C_L^{1,1}$. In general, gradient type methods converge only to stationary points under this setting. We want to work with a function class $\mathcal{F} \subset C_L^{1,1}$ which satisfies the following assumptions:

Assumption 11.2.1 1. $\nabla f(x) = 0$ implies that x is a global minimizer of f, $\forall f \in \mathcal{F}$.

- 2. If $f_1, f_2 \in \mathcal{F}$ and $\alpha, \beta \geq 0$, then $\alpha f_1 + \beta f_2 \in \mathcal{F}$.
- 3. Any linear function belongs to \mathcal{F} .

Theorem 11.6 If \mathcal{F} satisfies the above three assumptions, then any $f \in \mathcal{F}$ must be convex.

Proof: Let $f \in \mathcal{F}$ and x is an arbitrary fixed point. Consider

$$\phi(y) = f(y) - \langle \nabla f(x), y \rangle, \quad y \in \mathbb{R}^n.$$

From Assumptions 2 and 3, $\phi \in \mathcal{F}$. Clearly $\nabla \phi(x) = 0$. From Assumption 1, it holds that

$$f(y) - \langle \nabla f(x), y \rangle = \phi(y) \ge \phi(x) = f(x) - \langle \nabla f(x), x \rangle,$$

i.e., f is convex.

Theorem 11.7 Let $f \in C^1(\mathbb{R}^n)$. Then $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$ if and only if one of the following conditions holds for all $x, y \in \mathbb{R}^n$ and $\alpha \in [0, 1]$:

$$0 \le f(y) - f(x) - \nabla f(x)^T (y - x) \le \frac{L}{2} ||y - x||^2,$$
$$\frac{1}{2L} ||\nabla f(y) - \nabla f(x)||^2 \le f(y) - f(x) - \nabla f(x)^T (y - x),$$

$$0 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle \le L \|x - y\|^2,$$

$$\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle,$$

$$0 \le \alpha f(x) + (1 - \alpha)f(y) - f(\alpha x + (1 - \alpha)y) \le \frac{\alpha(1 - \alpha)}{2} \cdot L\|x - y\|^2,$$
$$\frac{\alpha(1 - \alpha)}{2} \cdot \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^2 \le \alpha f(x) + (1 - \alpha)f(y) - f(\alpha x + (1 - \alpha)y).$$

Theorem 11.8 Let $f \in C^2(\mathbb{R}^n)$. Then $f \in \mathcal{F}_L^{2,1}(\mathbb{R}^n)$ if and only if

$$0 \preceq \nabla^2 f(x) \preceq LI_n, \quad \forall x \in \mathbb{R}^n.$$

Proof: f is convex if and only if $\nabla^2 f(x) \succeq 0$ for all $x \in R^n$; ∇f is Lipschitz if and only if $\nabla^2 f(x) \preccurlyeq LI_n$ for all $x \in R^n$.

11.3 Strongly convex Lipschitz continuous functions

Notation.

• $S^1_{\mu}(\mathbb{R}^n)$: continuously differentiable functions that are also strongly convex with constant $\mu > 0$, i.e.,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2, \quad \forall x, y \in \mathbb{R}^n.$$

- $S_{\mu,L}^{k,p}(\mathbb{R}^n)$: k times continuously differentiable, strongly convex with parameter μ , and the pth order derivative in this class is Lipschitz continuous on \mathbb{R}^n with the constant L.
- The most interesting class in $\mathcal{S}_{\mu,L}^{k,p}(\mathbb{R}^n)$ is $\mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$, a function f in which satisfies

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||^2,$$

 $||\nabla f(x) - \nabla f(y)|| \le L||x - y||.$

Definition 11.9 (strongly convex function) Let $f \in C^1(\mathbb{R}^n)$. f is called strongly convex on \mathbb{R}^n (denoted by $f \in \mathcal{S}^1_\mu(\mathbb{R}^n)$ if there exists a constant $\mu > 0$ such that for any $x, y \in \mathbb{R}^n$ we have

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2.$$

Theorem 11.10 (strongly convex functions) Let $f \in C^1$. $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$ if and only if one of the following conditions hold for all $x, y \in \mathbb{R}^n$ and $\alpha \in (0,1)$:

$$\begin{split} \langle \nabla f(x) - \nabla f(y), x - y \rangle &\geq \mu \|x - y\|^2, \\ \alpha f(x) + (1 - \alpha)f(y) &\geq f(\alpha x + (1 - \alpha)y) + \frac{\alpha(1 - \alpha)}{2} \cdot \mu \|x - y\|^2. \end{split}$$

Theorem 11.11 If $f \in \mathcal{S}^1_\mu(\mathbb{R}^n)$, then for any $x, y \in \mathbb{R}^n$ we have

$$f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{1}{2\mu} \|\nabla f(x) - \nabla f(y)\|^2,$$
$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \leq \frac{1}{\mu} \|\nabla f(x) - \nabla f(y)\|^2.$$

Proof: Fix x and consider $\phi(y) := f(y) - \langle \nabla f(x), y \rangle$. First, varify $\phi \in \mathcal{S}^1_\mu(\mathbb{R}^n)$. Thus, $\nabla \phi(x) = 0$ implies

$$\phi(x) = \min_{z} \phi(z) \ge \min_{z} \{\phi(y) + \langle \nabla \phi(y), z - y \rangle + \frac{\mu}{2} \|z - y\|^{2} \} = \phi(y) - \frac{1}{2\mu} \|\nabla \phi(y)\|^{2},$$

which implies the first. The second follows by adding two copies of the first with x and y interchanged.

Theorem 11.12 If $f \in \mathcal{S}_{n}^{1}(\mathbb{R}^{n})$ and $\nabla f(x^{*}) = 0$, then

$$\frac{\mu}{2} \|x - x^*\|^2 \le f(x) - f(x^*) \le \frac{1}{2\mu} \|\nabla f(x)\|^2.$$

Proof: The left inequality follows the definition of strongly convex function, while the right one follows from the last theorem.

Theorem 11.13 If $f \in C^2(\mathbb{R}^n)$, then $f \in \mathcal{S}^2_u(\mathbb{R}^n)$ if and only if for any $x \in \mathbb{R}^n$ we have

$$\nabla^2 f(x) \succeq \mu I_n$$
.

Theorem 11.14 If $f \in C^2(\mathbb{R}^n)$, then $f \in \mathcal{S}^{2,1}_{\mu,L}(\mathbb{R}^n) \subset \mathcal{S}^{1,1}_{\mu,L}(\mathbb{R}^n)$ if and only if

$$\mu I_n \preccurlyeq \nabla^2 f(x) \preccurlyeq L I_n, \quad \forall x \in \mathbb{R}^n.$$

The value $Q_f = L/\mu \ge 1$ is called the condition number of f.

Theorem 11.15 If $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$ and $\nabla f(x^*) = 0$, then

$$\frac{1}{2L} \|\nabla f(x)\|^2 \le f(x) - f(x^*) \le \frac{1}{2\mu} \|\nabla f(x)\|^2.$$
$$\frac{\mu}{2} \|x - x^*\|^2 \le f(x) - f(x^*) \le \frac{L}{2} \|x - x^*\|^2.$$

References

[Nesterov] Yurii Nesterov, Introductory Lectures on Convex Optimization, A Basic Course.