COMPOSITIONS FOR PRODUCING AMINOPLAST PRODUCTS AND METHOD FOR PRODUCING PRODUCTS FROM THESE COMPOSITIONS

Publication number: WO03106524 Publication date: 2003-12-24

RAETZSCH MANFRED (AT); BUCKA HARTMUT (AT); BURGER MARTIN (AT) Inventor:

AGROLINZ MELAMIN GMBH (AT); RAETZSCH MANFRED (AT); BUCKA HARTMUT (AT); BURGER MARTIN (AT) Applicant:

Classification:

C08J5/00; C07D217/24; C08G12/32; C08J5/04; C08K3/00; C08K5/00; C08L61/28; D01F6/76; D04H1/42; D04H3/16; - international:

C08J5/00; C07D217/00; C08G12/00; C08J5/04; C08K3/00; C08K5/00; C08L61/00; D01F6/58; D04H1/42; D04H3/16; (IPC1-7): C08G12/00; C08G12/30; C08G12/32; C08G12/42; C08L61/26; C08L61/28; D01F6/00

C08G12/32; C08L61/28; D01F6/76 - European: Application number: WO2003EP06175 20030612 Priority number(s): AT20020000904 20020614

Also published as:

EP1519972 (A1) US2005250896 (A1)

RU2004136575 (A) EP1519972 (A0)

CN1662571 (A)

more >>

Cited documents:

EP0200906

EP1247837

EP1279686

Report a data error here

Abstract of WO03106524

Compositions for producing aminoplast products by means of melt processing consist of: A) 95 to 99.9 % by mass of solvent-free meltable polycondensates of melamine resins having molar masses ranging from 300 to 300000; A) 0.1 to 5 % by mass of sweak acids serving as thermoinducible curing agents consisting of: acidifiers of the blocked sulfonic acid type; aliphatic C4-C18 carboxylic acids; aromatic C7-C18 carboxylic acids; alkali salts or ammonium salts of phosphoric acid; C1-C12 alkyl esters or C2-C8 hydroxyalkyl esters of C7-C14 aromatic carboxylic acids; salts of melamine or of guanamines having C1-C18 aliphatic carboxylic acids; anhydrides, half-esters or half-amides of C4-C20 dicarboxylic acids; half-esters or half-amines of copolymers consisting of ethylenically unsaturated C4-C20 dicarboxylic acids anhydrides and ethylenically unsaturated monomers of the C2-C20 olein type and/or C8-C20 vinyl aromatic compounds; and/or salts of C1-C18 aliphatic C7-C18 aliphatic C7-C18 aliphatic carboxylic acids and ethylenically unsaturated carboxylic acids and ethylenically ethylenically unsaturated carboxylic acids and ethylenically ethylenica C1-C12 alkyl amines or alkanolamines having C1-C18 aliphatic, C7-C14 aromatic or alkylaromatic carboxylic acids and inorganic acids of the hydrochloric acid, sulfuric acid or phosphoric acid type, and; B) optionally up to 400 % by mass of fillers and or reinforcing fibers, up to 30 % by mass of additional reactive polymers of the ethylene copolymer, maleic anhydride copolymer, modified maleic anhydride copolymer, poly-(meth)acrylate, polyamide, polyester and/or polyurethane type, and up to 4 % by mass, each time with regard to the polycondensates of melamine resins, of stabilizers, UV absorbers and/or auxiliary agents. These inventive compositions can be processed by means of melt processing into products such as panels, coated supporting materials, profiled pieces, pipes, injection-molded articles, fibrous products and

Data supplied from the esp@cenet database - Worldwide

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 24. Dezember 2003 (24.12.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/106524 A1

- (51) Internationale Patentklassifikation⁷: C08G 12/00, 12/30, 12/32, 12/42, C08L 61/26, 61/28, D01F 6/00
- (21) Internationales Aktenzeichen:

PCT/EP03/06175

(22) Internationales Anmeldedatum:

12. Juni 2003 (12.06.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: A904/2002 14. Juni 2002 (14.06.2002) AT
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): AGROLINZ MELAMIN GMBH [AT/AT]; St.-Peter-Strasse 25, A-4021 Linz (AT).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): RÄTZSCH, Manfred [DE/AT]; Langbauernweg 4, A-4073 Wilhering/Thalheim (AT). BUCKA, Hartmut [DE/AT]; Nr. 125, A-4622 Eggendorf (AT). BURGER, Martin [DE/AT]; Franckstrasse 26, A-4020 Linz (AT).
- (74) Anwalt: GROSS, Felix; c/o Patentanwälte, Maikowski & Ninnemann, Postfach 15 09 20, 10671 Berlin (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO,

[Fortsetzung auf der nächsten Seite]

- (54) Title: COMPOSITIONS FOR PRODUCING AMINOPLAST PRODUCTS AND METHOD FOR PRODUCING PRODUCTS FROM THESE COMPOSITIONS
- (54) Bezeichnung: ZUSAMMENSETZUNGEN ZUR HERSTELLUNG VON AMINOPLASTERZEUGNISSEN
- (57) Abstract: Compositions for producing aminoplast products by means of melt processing consist of: A) 95 to 99.9 % by mass of solvent-free meltable polycondensates of melamine resins having molar masses ranging from 300 to 300000; A) 0.1 to 5 % by mass of weak acids serving as thermoinducible curing agents consisting of: acidifiers of the blocked sulfonic acid type; aliphatic C₄-C₁₈ carboxylic acids; aromatic C₇-C₁₈ carboxylic acids; alkali salts or ammonium salts of phosphoric acid; C₁-C₁₂ alkyl esters or C₂-C₈ hydroxyalkyl esters of C₇-C₁₄ aromatic carboxylic acids or of inorganic acids; salts of melamine or of guanamines having C₁-C₁₈ aliphatic carboxylic acids; anhydrides, half-esters or half-amines of C₄-C₂₀ dicarboxylic acids; half-esters or half-amines of copolymers consisting of ethylenically unsaturated C₄-C₂₀ dicarboxylic acid anhydrides and ethylenically unsaturated monomers of the C₂-C₂₀ olefin type and/or C₈-C₂₀ vinyl aromatic compounds; and/or salts of C₁-C₁₂ alkyl amines or alkanolamines having C₁-C₁₈ aliphatic, C₇-C₁₄ aromatic or alkylaromatic carboxylic acids and inorganic acids of the hydrochloric acid, sulfuric acid or phosphoric acid type, and; B) optionally up to 400 % by mass of fillers and or reinforcing fibers, up to 30 % by mass of additional reactive polymers of the ethylene copolymer, maleic anhydride copolymer, modified maleic anhydride copolymer, poly-(meth)acrylate, polyamide, polyester and/or polyurethane type, and up to 4 % by mass, each time with regard to the polycondensates of melamine resins, of stabilizers, UV absorbers and/or auxiliary agents. These inventive compositions can be processed by means of melt processing into products such as panels, coated supporting materials, profiled pieces, pipes, injection-molded articles, fibrous products and laminates.
- (57) Zusammenfassung: Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen durch Schmelzeverarbeitung bestehen aus A) 95 bis 99,9 Masse% lösungsmittelfreien schmelzbaren Polykondensaten von Melaminharzen mit Molmassen von 300 bis 300000, A) 0,1 bis 5 Masse% schwachen Säuren als thermoinduzierbare Härter, bestehend aus Säurebildnern vom Typ blockierte Sulfonsäure; aliphatischen C₄-C₁₈-Carbonsäuren; aromatischen C₇-C₁₈-Carbonsäuren; Alkalisalzen oder Ammoniumsalzen der Phosphorsäure; C₁-C₁₂-Alkylestern oder C₂-C₈-Hydroxyalkylestern von C₇-C₁₄-aromatischen Carbonsäuren oder anorganischen Säuren; Salzen von Melamin oder Guanaminen mit C₁-C₁₈-aliphatischen Carbonsäuren; Anhydriden, Halbestern oder Halbamiden von C₄-C₂₀-Dicarbonsäuren; Halbestern oder Halbamiden von Copolymeren aus ethylenisch ungesättigten C₄-C₂₀-Dicarbonsäure-anhydriden und ethylenisch ungesättigten Monomeren vom Typ C₂-C₂₀-Olefine und/oder C₈-C₂₀-Vinylaromaten; und/oder Salzen von C₁-C₁₂-Alkylaminen bzw. Alkanolaminen mit C₁-C₁₈-aliphatischen, C₇-C₁₄-aromatischen oder alkylaromatischen Carbonsäuren sowie anorganischen Säuren vom Typ Salzsäure, Schwefelsäure oder Phosphorsäure, und B) gegebenenfalls bis zu 400 Masse% Füllstoffen und/oder Verstärkungsfasern, bis zu 30 Masse% weiteren reaktiven Polymeren vom Typ Ethylen-Copolymere, Maleinsäureanhydrid-Copolymere, modifizierte Maleinsäureanhydrid-Copolymere, Poly-(meth)acrylate, Polyamide, Polyester und/oder Polyurethane, sowie bis zu 4 Masse%, jeweils bezogen auf die Polykondensate von Melaminharzen, Stabilisatoren, UV-Absorbern und/oder Hilfsstoffen. Die Zusammensetzungen können durch Schmelzeverarbeitung zu Erzeugnissen wie Platten, beschichtete Trägermaterialien, Profilen, Rohren, Spritzgussartikeln, Fasererzeugnissen und Laminaten verarbeitet werden.

RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\(\text{ir}\) \(\text{Anderungen der Anspr\(\text{iche}\) be geltenden
 \(\text{Frist; Ver\(\text{off}\) fentlichung wird wiederholt, falls \(\text{Anderungen}\)
 eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen. Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen und Verfahren zur Herstellung von Erzeugnissen aus den Zusammensetzungen

Die Erfindung betrifft Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sowie durch Schmelzeverarbeitung daraus hergestellte Erzeugnisse. Ferner sind Verfahren zur Herstellung von Erzeugnissen aus den Zusammensetzungen Gegenstand der Erfindung.

Halbzeuge und Formstoffe aus Aminoplasten wie Melamin-Formaldehyd-Harze oder Melamin-Harnstoff-Formaldehyd-Harze [Ullmanns Encyclopedia of Industrial Chemistry (1987), Vol. A2, 130-131] sind bekannt. Von Nachteil bei der Herstellung von Erzeugnissen aus Melaminharzen ist die schwierige Verarbeitbarkeit nach üblichen thermoplastischen Verarbeitungsverfahren wie Extrusion, Spritzguss oder Blasformen.

Niedermolekulare Melaminharz-Vorkondensate besitzen eine zu geringe Schmelzviscosität für diese Verarbeitungsverfahren und können lediglich als hochgefüllte Formmassen bei langen Zykluszeiten unter Härtung der Erzeugnisse verarbeitet werden (Woebcken, W., Kunststoff-Handbuch Bd. 10 "Duroplaste", Carl Hanser Verl. München 1988, S. 266-274). Fasern, Schäume oder Beschichtungen aus Melaminharzen können auf Grund der niedrigen Schmelzviscosität der Melaminharzvorkondensate nur ausgehend von Lösun-gen der Melaminharzvorkondensate unter Aushärtung während der Formgebung hergestellt werden.

Übliche Härter für Aminoplaste sind starke Säuren wie Salzsäure, Schwefelsäure, p-Toluolsulfonsäure und Ameisensäure sowie Ammoniumchlorid (EP 0 657 496 A2; EP 0 523 485 A1, EP 0 799 260). Von Nachteil bei diesen Härtern ist die zu geringe Härtungsgeschwindigkeit in Zusammensetzungen mit Melaminharzvorkondensaten mit Molmassen von 300 bis 5000 bei kurzen Verweilzeiten während der Schmelzeverarbeitung der Zusammensetzungen zu

Halbzeugen und Formstoffen, was zu unbefriedigenden Werkstoffeigenschaften führt.

Aufgabe der Erfindung sind Zusammensetzungen aus Melaminharzvorkondensaten und Härtern, die für die Schmelzeverarbeitung zu Aminoplasterzeugnissen geeignet sind.

Die Aufgabe wurde durch Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen durch Schmelzeverarbeitung gelöst, wobei die Zusammensetzungen erfindungsgemäss aus

- A) 95 bis 99,9 Masse% lösungsmittelfreien schmelzbaren Polykondensaten von Melaminharzen mit Molmassen von 300 bis 300000,
- B) 0,1 bis 5 Masse% schwachen Säuren als thermoinduzierbare Härter, bestehend aus
 - B1) Säurebildnern vom Typ blockierte Sulfonsäure der allgemeinen Formel (I)

 R1—— SO2—O——R2 (I)

R₁ = unsubstituiertes oder substituiertes Aryl oder Biphenyl

$$R_2$$
 = 4-Nitrobenzyl, Pentafluorbenzyl oder $-N = C - N \cdot (R_4)(R_5)$

Substituenten wobei

R₃ = nichtsubstituiertes oder substituiertes Alkyl oder Aryl,

 $R_4 = H$, C_1 - C_{12} -Alkyl, Phenyl, C_2 - C_9 -Alkanoyl oder Benzyl,

 R_5 = H, C_1 - C_{12} -Alkyl oder Cyclohexyl,

oder R_3 und R_4 oder R_5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann,

- B2) C₄-C₁₈-aliphatischen und/oder C₇-C₁₈-aromatischen Carbonsäuren,
- B3) Alkalisalzen oder Ammoniumsalzen der Phosphorsäure,

- B4) C₁-C₁₂-Alkylestern oder C₂-C₈-Hydroxyalkylestern von C₇-C₁₄-aromatischen Carbonsäuren oder anorganischen Säuren,
- B5) Salzen von Melamin oder Guanaminen mit C_{1-18} -aliphatischen Carbonsäuren,
- B6) Anhydriden, Halbestern oder Halbamiden von C₄-C₂₀-Dicarbonsäuren,
- B7) Halbestern oder Halbamiden von Copolymeren aus ethylenisch ungesättigten C_4 - C_{20} -Dicarbonsäureanhydriden und ethylenisch ungesättigten Monomeren vom Typ C_2 - C_{20} -Olefine und/oder C_8 - C_{20} -Vinylaromaten, und/oder
- B8) Salzen von C₁-C₁₂-Alkylaminen bzw. Alkanolaminen mit C₁-C₁₈- aliphatischen, C₇-C₁₄-aromatischen oder alkylaromatischen Carbonsäuren sowie anorganischen Säuren vom Typ Salzsäure, Schwefelsäure oder Phosphorsäure,

und

C) gegebenenfalls bis zu 400 Masse% Füllstoffen und/oder Verstärkungsfasern, bis zu 30 Masse% weiteren reaktiven Polymeren vom Typ Ethylen-Copolymere, Malein-säureanhydrid-Copolymere, modifizierte Maleinsäureanhydrid-Copolymere, Poly-(meth)acrylate, Polyamide, Polyester und/oder Polyurethane, sowie bis zu 4 Masse%, jeweils bezogen auf die Polykondensate von Melaminharzen, Stabilisatoren, UV-Absorbern und/oder Hilfsstoffen,

bestehen.

Beispiele für übliche Verfahren der Schmelzeverarbeitung sind Extrusion, Spritzguss oder Blasformen.

Beispiele für Aminoplasterzeugnisse, die durch Schmelzeverarbeitung hergestellt werden können, sind Platten, Rohre, Profile, Beschichtungen, Schaumstoffe, Fasern, Spritzgussteile und Hohlkörper.

WO 03/106524 PCT/EP03/06175

Die Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen können in Form von zylindrischen, linsenförmigen, pastillenförmigen oder kugelförmigen Partikeln mit einem mittleren Durchmesser von 0,5 bis 8 mm vorliegen.

Die Polykondensate von Melaminharzen mit Molmassen von 300 bis 300000 können Polykondensate sein, in denen die Triazinsequenzen durch Brückenglieder -NH-Alkylen-NH- verknüpft sind.

Als Melaminharze werden in den erfindungsgemässen Zusammensetzungen Polykondensate aus Melamin bzw. Melaminderivaten und C₁-C₈-Aldehyden mit einem Molverhältnis Melamin bzw. Melaminderivat / C₁-C₈-Aldehyden 1 : 1,5 bis 1: Veretherungsprodukte bevorzugt, partielle 5 sowie deren Melaminderivate durch Hydroxy-C₁-C₁₀-alkylgruppen, Hydroxy-C₁-C₄-alkyl-(oxa- C_2 - C_4 -alkyl)₁₋₅-gruppen und/oder durch Amino- C_1 - C_{12} -alkylgruppen substituierte Melon, Melam, Benzoguanamin, Ammelid, Melem, Melamine, Ammelin, Tetramethoxymethylbenzoguanamin, Caprinoguanamin, Acetoguanamin, und/oder Butyroguanamin sein können, und die C₁-C₈-Aldehyde insbesondere Formaldehyd, Acetaldehyd, Trimethylolacetaldehyd, Acrolein, Furfurol, Glyoxal und/oder Glutaraldehyd, besonders bevorzugt Formaldehyd, sind.

Die Melaminharze können ebenfalls 0,1 bis 10 Masse%, bezogen auf die Summe von Melamin und Melaminderivaten, eingebaute Phenole und/oder Harnstoff enthalten. Als Phenolkomponenten sind dabei Phenol, C_1 - C_9 -Alkylphenole, Hydroxyphenole und/oder Bisphenole geeignet.

Bevorzugt sind die Vorkondensate von Melaminharzen mit Molmassen von 300 bis 300000 Mischungen aus schmelzbaren 4- bis 1000-Kern-Oligotriazinethern,

wobei in den Polytriazinethern die Triazinsegmente

 R_1 = -NH₂, -NH-CHR₂-O-R₃ ,-NH-CHR₂-O-R₄-OH, -CH₃, -C₃H₇, -C₆H₅, -OH, Phthalimido-.

Succinimido-, -NH-CO-C5-C18-Alkyl,

-NH-C₅-C₁₈-Alkylen-OH,

-NH-CHR₂-O-C₅-C₁₈-Alkylen-NH₂, -NH-C₅-C₁₈-Alkylen-NH₂,

-NH-CHR $_2$ -O-R $_4$ -O-CHR $_2$ -NH-, -NH-CHR $_2$ -NH-, -NH-CHR $_2$ -O-C $_5$ -C $_{18}$ -Alkylen-NH-,

-NH-C₅-C₁₈-Alkylen-NH-, -NH-CHR₂-O-CHR₂-NH-,

 $R_2 = H$, C_1 - C_7 - Alkyl;

 $R_3 = C_1-C_{18} - Alkyl, H;$

 $R_4 = C_2-C_{18}-Alkylen, -CH(CH_3)-CH_2-O-C_2-C_{12}-Alkylen-O-CH_2-CH(CH_3)-$

-CH(CH $_3$)-CH $_2$ -O- $_{C2-C12}$ -Arylen-O-CH $_2$ -CH(CH $_3$)-,

 $-[CH_{2}-CH_{2}-CH_{2}-CH_{2}]_{n} -, -[CH_{2}-CH(CH_{3})-O-CH_{2}-CH(CH_{3})]_{n} -, -[-O-CH_{2}-$

 $-[(CH_2)_{2-8}-O-CO-_{C6-C14}-Arylen-CO-O-(CH_2)_{2-8}-]_n$ -,

 $-[(CH_2)_{2\text{-8}}\text{-O-CO-}_{C2\text{-C12}}\text{-Alkylen-CO-O-}(CH_2)_{2\text{-8}}\text{-}]_n\text{-},\\$

wobei n = 1 bis 200;

- Siloxangruppen enthaltende Sequenzen des Typs

- Siloxangruppen enthaltende Polyestersequenzen des Typs

6

bei denen

$$\begin{split} X &= \{(CH_2)_{2\text{-8}}\text{-O-CO-}_{\text{C6-C14}}\text{Arylen-CO-O-}(CH_2)_{2\text{-8}}\} \text{ oder } \\ &- \{(CH_2)_{2\text{-8}}\text{-O-CO-}_{\text{C2-C12}}\text{-Alkylen-CO-O-}(CH_2)_{2\text{-8}}\}; \end{split}$$

$$C_{1}\text{-}C_{4}\text{-}Alkyl \qquad C_{1}\text{-}C_{4}\text{-}Alkyl \\ | \qquad | \qquad | \qquad |$$

$$Y = -\{_{C6\text{-}C14\text{-}}\text{Arylen-CO-O-}(\{Si\text{-}O\text{-}[Si\text{-}O]_{y}\text{-}CO\text{-}_{C6\text{-}C14\text{-}}\text{Arylen-}\} \\ | \qquad | \qquad |$$

$$C_{1}\text{-}C_{4}\text{-}Alkyl \qquad C_{1}\text{-}C_{4}\text{-}Alkyl$$

oder

r = 1 bis 70; s = 1 bis 70 und y = 3 bis 50 bedeuten;

- Siloxangruppen enthaltende Polyethersequenzen des Typs

$$\begin{array}{c|cccc} C_1\text{-}C_4\text{-}Alkyl & C_1\text{-}C_4\text{-}Alkyl \\ & | & | \\ \end{array}$$

$$\text{-}CH_2\text{-}CHR_2\text{-}O\text{-}(\{Si\text{-}O\text{-}[Si\text{-}O]_y\text{-}CHR_2\text{-}CH_2\text{-} \\ & | & | \\ C_1\text{-}C_4\text{-}Alkyl & C_1\text{-}C_4\text{-}Alkyl \\ \end{array}$$

wobei $R_2 = H$; C_1 - C_4 -Alkyl und y = 3 bis 50 bedeuten;

- Sequenzen auf Basis von Alkylenoxidaddukten des Melamins vom Typ 2-Amino-4,6-di-_{C2-C4-}alkylenamino-1,3,5-triazin Sequenzen:
- Phenolethersequenzen auf Basis zweiwertiger Phenole und $C_2\text{-}C_8\text{-}\text{Diolen}$ vom Typ

-C2-C8-Alkylen-O-C6-C18-Arylen-O-C2-C8-Alkylen- Sequenzen;

durch Brückenglieder -NH-CHR₂-NH- oder -NH-CHR₂-O-R₄-O-CHR₂-NH- und -NH-CHR₂-NH- sowie gegebenenfalls -NH-CHR₂-O-CHR₂-NH-, -NH-CHR₂-

O- C_5 - C_{18} -Alkylen-NH- bzw. -NH- C_5 - C_{18} -Alkylen-NH- zu 4- bis 1000-Kern-Polytriazinethern mit linearer und/oder verzweigter Struktur verknüpft sind, wobei in den Polytriazinethern das Molverhältnis der Substituenten R_3 : R_4 = 20 : 1 bis 1 : 20 beträgt, der Anteil der Verknüpfungen der Triazinsegmente durch Brücken-glieder -NH-CHR₃-O-R₄-O-CHR₃-NH- 5 bis 95 Mol% beträgt, und die Polytriazinether bis zu 20 Masse% Diole vom Typ HO - R_4 - OH enthalten können.

Die endständigen Trinzinsegmente in den Polytriazinethern sind Triazinsegmente der Struktur

Y= -NH-CHR $_2$ -O-R $_3$,-NH-CHR $_2$ -O-R $_4$ -OH sowie gegebenenfalls -NH-CHR $_2$ -O-C $_5$ -C $_{18}$ -Alkylen-NH $_2$,

-NH-C₅-C₁₈-Alkylen-NH₂, -NH-C₅-C₁₈-Alkylen-OH,

 R_1 = -NH₂, -NH-CHR₂-O-R₃ ,-NH-CHR₂-O-R₄-OH, -CH₃, -C₃H₇, -C₆H₅, -OH, Phthalimido-.

Succinimido-, -NH-CO-R₃, -NH-C₅-C₁₈-Alkylen-OH, -NH-C₅-C₁₈-Alkylen-NH₂,

-NH-CHR₂-O-C₅-C₁₈-Alkylen-NH₂,

 $R_2 = H, C_1-C_7 - Alkyl;$

 $R_3 = C_1 - C_{18} - Alkyl, H;$

 $\begin{aligned} R_4 &= C_2\text{-}C_{18}\text{-}Alkylen, -CH(CH_3)\text{-}CH_2\text{-}O\text{-}_{C2\text{-}C12}\text{-}Alkylen-O-CH_2\text{-}CH(CH_3)\text{-},} \\ &- CH(CH_3)\text{-}CH_2\text{-}O\text{-}_{C2\text{-}C12}\text{-}Arylen-O-CH_2\text{-}CH(CH_3)\text{-},} \end{aligned}$

$$\begin{split} -[CH_2-CH_2-O-CH_2-CH_2]_n -, -[CH_2-CH(CH_3)-O-CH_2-CH(CH_3)]_n -, \\ -[-O-CH_2-CH_2-CH_2-CH_2-]_n -, \\ -[(CH_2)_{2-8}-O-CO-_{C6-C14}-Arylen-CO-O-(CH_2)_{2-8}-]_n -, \\ -[(CH_2)_{2-8}-O-CO-_{C2-C12}-Alkylen-CO-O-(CH_2)_{2-8}-]_n -, \\ wobei n = 1 bis 200; \end{split}$$

- Siloxangruppen enthaltende Sequenzen des Typs

- Siloxangruppen enthaltende Polyestersequenzen des Typs -[(X)_r-O-CO-(Y)_s-CO-O-(X)_r]- ,

bei denen

$$C_{1}\text{-}C_{4}\text{-}Alkyl \qquad C_{1}\text{-}C_{4}\text{-}Alkyl \\ | \qquad | \qquad |$$

$$Y = -\{_{C6\text{-}C14\text{-}}Arylen\text{-}CO\text{-}O\text{-}(\{Si\text{-}O\text{-}[Si\text{-}O]_y\text{-}CO\text{-}_{C6\text{-}C14\text{-}}Arylen\text{-}}\} \\ | \qquad | \qquad |$$

$$C_{1}\text{-}C_{4}\text{-}Alkyl \qquad C_{1}\text{-}C_{4}\text{-}Alkyl \qquad oder$$

$$\begin{array}{c|cccc} & C_{1}\text{-}C_{4}\text{-}Alkyl & C_{1}\text{-}C_{4}\text{-}Alkyl \\ & | & | & | \\ -\{O\text{-}CO\text{-}_{C2\text{-}C12}\text{-}Alkylen\text{-}CO\text{-}O\text{-}(\{Si\text{-}O\text{-}[Si\text{-}O]_{z}\text{-}CO\text{-}_{C2\text{-}C12}\text{-}Alkylen\text{-}CO\text{-}\}\\ & | & | & | \\ & C_{1}\text{-}C_{4}\text{-}Alkyl & C_{1}\text{-}C_{4}\text{-}Alkyl; \end{array}$$

r = 1 bis 70; s = 1 bis 70 und y = 3 bis 50 bedeuten;

- Siloxangruppen enthaltende Polyethersequenzen des Typs

$$\begin{array}{c|cccc} C_1\text{-}C_4\text{-}Alkyl & C_1\text{-}C_4\text{-}Alkyl \\ & | & | \\ -CH_2\text{-}CHR_2\text{-}O\text{-}(\{Si\text{-}O\text{-}[Si\text{-}O]_y\text{-}CHR_2\text{-}CH_2\text{-} \\ & | & | \\ C_1\text{-}C_4\text{-}Alkyl & C_1\text{-}C_4\text{-}Alkyl \\ \end{array}$$

wobei R_2 = H; C_1 - C_4 -Alkyl und y = 3 bis 50 bedeuten;

- Sequenzen auf Basis von Alkylenoxidaddukten des Melamins vom Typ 2-Amino-4,6-di-_{C2-C4}-alkylenamino-1,3,5-triazin Sequenzen:
- Phenolethersequenzen auf Basis zweiwertiger Phenole und $C_2\text{-}C_8\text{-}Diolen$ vom Typ

-C2-C8-Alkylen-O-C6-C18-Arylen-O-C2-C8-Alkylen- Sequenzen;

bilden.

Die bei den erfindunsgemässen Zusammensetzungen eingesetzten 4- bis 1000-Kern-Polytriazinether können durch Veretherung von Melaminharzvorkondensaten mit C₁-C₄-Alkoholen, gegebenenfalls unter nachfolgender partieller Umetherung mit C_4 - C_{18} -Alkoholen, C_2 - C_{18} -Diolen, mehrwertigen Alkoholen vom Typ Glycerin C₅-C₁₈-Aminoal-koholen, Polyalkylenglycolen, oder Pentaerythrit, Polyestern, Siloxan-polyestern, enthaltenden Hydroxyendgruppen Siloxanpolyethern, Melamin-Alkylenoxid-Addukten und/oder Zweikernphenol-Alkylenoxidaddukten und/oder Umsetzung mit C5-C18-Diaminen und/oder Bisepoxiden, und nachfolgende thermische Kondensation der modifizierten Melaminharzkondensate in der Schmelze im kontinuierlichen Kneter bei Temperaturen von 140 bis 220°C hergestellt werden.

Die Melaminharzvorkondensate, die bei der Herstellung der 4- bis 1000-Kern-Oligotri-azinether eingesetzt werden, sind bevorzugt Vorkondensate, die als C₁-C₈-Aldehyd-Komponenten Formaldehyd, Acetaldehyd und/oder Trimethylolacetaldehyd und als Melaminkomponente neben Melamin ebenfalls Acetoguanamin und/oder Benzoguanamin enthalten können. Besonders

bevorzugt werden Vorkondensate aus Melamin und Formaldehyd mit einem Molverhältnis Melamin/Formaldehyd 1:1,5 bis 1:3.

Bevorzugt sind die in den Zusammensetzungen enthaltenen Polykondensate von Melaminharzen Mischungen aus schmelzbaren 4- bis 300-Kern-Polytriazinethern.

Die thermoinduzierbaren Härter vom Typ blockierte Sulfonsäure der allgemeinen Formel

$$R_1$$
— SO_2 — O — R_2 (1)

in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind bevorzugt blockierte Sulfonsäuren, in denen die Substituenten

 R_1 = unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C_1 - C_4 -Halogenalkyl, C_1 - C_{16} -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl- oder Nitro- substituiertes C_6 - C_{10} -Aryl oder C_7 - C_{12} -Arylalkyl,

$$R_2$$
 = 4-Nitrobenzyl, Pentafluorbenzyl, $-N = C$

$$N(R_4)(R_5)$$

R₃ = C₁-C₁₂-Alkyl, C₁-C₄-Halogenalkyl, C₂-C₆-Alkenyl, C₅-C₁₂-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C₁-C₄-Halogenalkyl, C₁-C₁₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl oder Nitro- substituiertes C₆-C₁₀-Aryl und/oder C₇-C₁₂-Arylalkyl, C₁-C₈-Alkoxy, C₅-C₈-Cycloalkoxy, Phenoxy oder H₂N-CO-NH-,-CN, C₂-C₅-Alkyloyl, Benzoyl, C₂-C₅-Alkoxycarbonyl, Phenoxycarbonyl, Morpholino-, Piperidino-, C₁-C₁₂-Alkyl, C₁-C₄-Halogenalkyl, C₂-C₆-Alkenyl, C₅-C₁₂-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C₁-C₄-Halogenalkyl, C₁-C₁₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl oder Nitro- substituiertes C₆-C₁₀-Aryl, C₇-C₁₂-Arylalkyl, C₁-C₈-Alkoxy, C₅-C₈-Cycloalk-oxy-, Phenoxy-, oder H₂N-CO-NH-,

11

 R_4 = H, C_1 - C_{12} -Alkyl, Phenyl, C_2 - C_9 -Alkanoyl oder Benzyl

R₅= H, C₁-C₁₂-Alkyl oder Cyclohexyl,

sind,

oder R_3 und R_4 oder R_5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann.

Beispiele für bevorzugte blockierte Sulfonsäuren sind Benzilmonoxim-tosylat, 4-Nitroacetophenonoximtosylat, Benzil-monoxim-p-dodecylbenzolsulfonat, α-Cyclohexylsulfonyloxyimino-Tosyloxyiminocapronsäureethylester, α -(4-Chlorphenylsulfonyloxyiimino)capronsäurephenylessigsäureethylester, 4,4-Dimethylbenzilmonoxim-tosy-lat, Dibenzylketonoxim-tosylat, phenylester, α-Tetralonoxim-tosylat, Acetonoxim-p-benzoylbenzolsulfonat, Anthrachinonmonoxim-tosylat, Thioxanthonoxim-tosylat, α -(p-Toluolsulfonyloxy- α -(4-Nitrobenzolsulfonyloxyimino)benzylcyanid, -ωimino)benzylcyanid, α-(Benzolsulfoxyimino)-2,6-(Benzolsulfonyl-oxyimino)-4-chlorbenzylcyanid, α -(2-Chlorbenzolsulfonyloxyimino)-4-methoxybenzylcyanid, dichlorbenzylcyanid, 4-Chlor- α -trifluor-acetophenon-oxim-benzolsulfonat, Fluorenoxim-tosylat, (Benzolsulfonyloxyimino)ureidocarbonyl-ace-tonitril, α -(p-Toluolsulfonyloxyimino)-2,3-Dihydro-1,4-naphthochinon-monoxim-tosylat, benzoylacetonitril, 2-Nitrobenzylsulfonat, 2,6-Chromanoximtosylat, Acetophenonoximtosylat. Dinitrobenzylbenzolsulfonat, 4-Nitrobenzyl-9,10-dimethoxyanthracen-2-sulfonat, 2-4-Cyclohex-1-enyl-2-Methylsulfonyloxyimino-4-phenyl-but-3-ennitril, methylsulfonyl-oxyi-mino-but-3-ennitril, 4-Furan-2-yl-isopropylsulfonyloxyimino-but-3-ennitril und 2-Penta-fluorophenylsulfonyloxyimino-4-phenyl-but-3-ennitril.

Beispiele für aliphatische C_4 - C_{18} -Carbonsäuren, die in den erfindungsgemässen Rezep-turen als thermoinduzierbare Härter enthalten sein können, sind Buttersäure, Capronsäure, Palmitinsäure, Stearinsäure und Ölsäure.

Beispiele für aromatische C_7 - C_{18} -Carbonsäuren, die in den erfindungsgemässen Rezepturen als thermoinduzierbare Härter enthalten sein können, sind Benzoesäure, Phthal-säure oder Naphthalindicarbonsäure.

Beispiele für Alkalisalze oder Ammoniumsalze der Phosphorsäure, die in den erfin-dungsgemässen Zusammensetzungen als thermoinduzierbare Härter enthalten sein können, sind Ammoniumhydrogenphosphat, Natriumpolyphosphat und Kaliumhydrogenphosphat.

Die C_1 - C_{12} -Alkylester bzw. C_2 - C_8 -Hydroxyalkylester von C_7 - C_{14} -aromatischen Carbonsäuren in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind bevorzugt Dibutylphthalat, Phthalsäurediglycolester und/oder Trimellithsäureglycolester.

In den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind die Salze von Melamin bzw. Guanaminen mit $C_{1^{-18}}$ -aliphatischen Carbonsäuren bevorzugt Melamin-formiat, Melamincitrat, Melaminmaleat, Melaminfumarat und/oder Acetoguanaminbutyrat.

In den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind die als thermoinduzierbare Härter eingesetzten Anhydride, Halbester oder Halbamide von C_4 - C_{20} -Dicarbonsäuren bevorzugt Maleinsäureanhydrid, Bernsteinsäureanhydrid, Phthalsäureanhydrid, Mono- C_1 - C_{18} -alkylmaleate, Maleinsäuremonoamid oder Maleinsäuremono- C_1 - C_{18} -alkyl-amide.

Beispiele für Mono- C_1 - C_{18} -alkylmaleate sind Maleinsäuremonobutylester, Maleinsäure-monoethylhexylester oder Monostearylmaleat.

Beispiele für Maleinsäuremono-C₁-C₁₈-alkyl-amide sind Maleinsäuremonoethylamid, Maleinsäuremonooctylamid oder Maleinsäuremonostearylamid.

In den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind die als thermoinduzierbare Härter eingesetzten Halbester oder Halbamide von Copolymeren aus ethylenisch ungesättigten C₄-C₂₀-Dicarbonsäureanhydriden und ethylenisch ungesättigten Monomeren vom Typ C2-C20-Olefine und/oder C8-C20-Vinylaromaten bevorzugt Halbester oder Halbamide von Copolymeren aus Maleinsäureanhydrid und C₃-C₈-α-Olefinen vom Typ Isobuten, Diisobuten Molverhältnis Styren mit einem 4-Methylpenten und/oder und/oder entsprechender bzw. Maleinsäureanhydrid/ C_3 - C_8 - α -Olefin Styren bzw. Monomermischungen von 1:1 bis 1:5.

In den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen sind die Salze von C₁-C₁₂-Alkylaminen bzw. Alkanolaminen mit C₁-C₈-aliphatischen, C₇-C₁₂-aromatischen bzw. alkylaromatischen Carbonsäuren oder anorganischen Säuren vom Typ Salzsäure, Schwefelsäure oder Phosphorsäure bevorzugt Ethanolammoniumchlorid,

Triethylammoniummaleat,
Diethanolammoniumphosphat und/oder Isopropylammonium-p-toluolsulfonat.

Beispiele für geeignete Füllstoffe, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 400 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind Al₂O₃, Al(OH)₃, Bariumsulfat, Calciumcarbonat, Glaskugeln, Kieselerde, Glimmer, Quarzmehl, Schiefermehl, Mikrohohlkugeln, Russ, Talkum, Gesteinsmehl, Holzmehl, Cellulosepulver und/oder Schalen- und Kernmehle wie Erdnussschalenmehl oder Olivenkernmehl. Bevorzugt werden als Füllstoffe Schichtsilikate vom Typ Montmorillonit, Bentonit, Kaolinit, Muskovit, Hectorit, Fluorhectorit, Kanemit, Revdit, Grumantit, Ilerit, Saponit, Beidelit, Nontronit, Stevensit, Laponit, Taneolit, Vermiculit, Halloysit, Volkonskoit, Magadit, Rectorit, Kenyait, Sauconit, Borfluorphlogopite und/oder synthetische Smectite.

Beispiele für geeignete Verstärkungsfasern, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 400 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind anorganische

Fasern, insbesondere Glasfasern und/oder Kohlenstofffasern, Naturfasern, insbesondere Cellulosefasern wie Flachs, Jute, Kenaf und Holzfasern, und/oder Kunststofffasern, insbesondere Fasern aus Polyacrylnitril, Polyvinylalkohol, Polyvinylacetat, Polypropylen, Polyestern und/oder Polyamiden.

Beispiele für reaktive Polymere vom Typ Ethylen-Copolymere, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind teilverseifte Ethylen-Vinylacetat-Copolymere, Ethylen-Butylacrylat-Acrylsäure-Copolymere, Ethylen-Hydroxy-ethylacrylat-Copolymere oder Ethylen-Butylacrylat-Glycidylmethacrylat-Copolymere.

Beispiele für reaktive Polymere vom Typ Maleinsäureanhydrid-Copolymere, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind C_2 - C_{20} -Olefin - Maleinsäureanhydrid-Copolymere oder Copolymere aus Maleinsäureanhydrid und C_8 - C_{20} -Vinylaromaten.

Beispiele für die C_2 - C_{20} -Olefin - Komponenten, die in den Maleinsäureanhydrid-Copolyme-ren enthaltenen sein können, sind Ethylen, Propylen, Buten-1, Isobuten, Diisobuten, Hexen-1, Octen-1, Hepten-1, Penten-1, 3-Methylbuten-1, 4-Methylpenten-1, Methylpenten-1, Ethylpenten-1, Ethylpenten-1, Octadecen-1 und 5,6-Dimethylnorbornen.

Beispiele für die C_8 - C_{20} -Vinylaromaten - Komponenten, die in den Maleinsäureanhydrid-Copolymeren enthaltenen sein können, sind Styren, α -Methylstyren, Dimethylstyren, Iso-propenylstyren, p-Methylstyren und Vinylbiphenyl.

Die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen gegebenenfalls enthaltenen modifizierten Maleinsäureanhydrid-Copolymere sind

bevorzugt partiell oder vollständig veresterte, amidierte bzw. imidierte Maleinsäureanhydrid-Copolymere.

Besonders geeignet sind modifizierten Copolymere aus Maleinsäureanhydrid und C_2 - C_{20} -Olefinen bzw. C_8 - C_{20} -Vinylaromaten mit einem Molverhältnis von 1 : 1 bis 1 : 9 und Mol-massen-Gewichtsmitteln von 5000 bis 500000, die mit Ammoniak, C₁-C2-C18-Monoaminen, C₆-C₁₈-aromatischen C₁₈-Monoalkylaminen, einer Poly(C₂-C₄-alkylen)oxiden monoaminier-ten Monoaminoalkoholen, 3000, und/oder monover-etherten Poly(C2-C4-400 bis von Molmasse alkylen)oxiden einer Molmasse von 100 bis 10000 umgesetzt worden sind, wobei das Molverhältnis Anhydridgruppen Copolymer / Ammoniak, Aminogruppen C₁- C_{18} -Monoalkylamine, C_6 - C_{18} -aromatische Monoamine, C_2 - C_{18} -Monoaminoalkohole bzw. monoaminiertes Poly-(C2-C4-alkylen)oxid und/oder Hydroxygruppen Poly(C2-C₄-alky-len)oxid 1 : 1 bis 20 : 1 beträgt.

Beispiele für reaktive Polymere vom Typ Poly(meth)acrylate, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein von funktionellen Copolymere auf Basis können, (Meth)acrylatmonomeren wie Acrylsäure, Hydroxyethylacrylat, Glycidylacrylat, Glycidylmethacrylat Hydroxybutylmethacrylat, oder Methacrylsäure, ungesättigten (Meth)acrylatmonomeren wie Ethylacrylat, nichtfunktionellen Ethylacrylat und/oder Methylmethacrylat, Ethylhexylacrylat, Butylacrylat, Butylmethacrylat und/oder C_8 - C_{20} -Vinylaromaten. Bevorzugt werden Copolymere auf Basis Methacrylsäure, Hydroxyethylacrylat, Methylmethacrylat und Styren.

Polyamide, den die in Тур Polymere vom Beispiele für reaktive Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein Polyamid-12, Polyamid-11, Polyamid-6, Polyamid-6,6, sind können. Polyaminoamide aus Polycarbonsäuren und Polyalkylen-aminen sowie die entsprechenden methoxylierten Polyamide.

16

Polyester, die in den Тур Polymere vom Beispiele für reaktive Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind Polyester mit Molmassen von 2000 bis 15000 aus gesättigten Isophthalsäure, Adipinsäure Phthalsäure, Dicarbonsäuren wie Bernsteinsäure, ungesättigten Dicarbonsäuren wie Maleinsäure, Fumarsäure und/oder Itakonsäure und Diolen wie Ethylenglycol, Butandiol, Neopentylglycol und/oder Hexandiol. Bevorzugt werden verzweigte Polyester auf Basis von Neopentylglycol, Trimethylolpropan, Isophthalsäure und Azelainsäure.

Beispiele für reaktive Polymere vom Typ Polyurethane, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 30 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind unvernetzte Polyurethane auf Basis von Toluylendiisocyanat, Diphenylmethandiisocyanat, Butandiisocyanat und/oder Hexandiisocyanat als Diisocyanatkomponenten und Butandiol, Hexandiol und/oder Polyalkylenglycolen als Diolkomponenten mit Molmassen von 2000 bis 30000.

Beispiele für geeignete Stabilisatoren und UV-Absorber, die in den Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen bis zu 2 Masse%, bezogen auf die Vorkonden-sate von Melaminharzen, enthalten sein können, sind Piperidinderivate, Benzophenon-derivate, Benzotriazolderivate, Triazinderivate und/oder Benzofuranonderivate.

Beispiele für geeignete Hilfsstoffe, die in den Zusammensetzungen zur Herstellung von Aminoplast-erzeugnissen bis zu 4 Masse%, bezogen auf die Vorkondensate von Melaminharzen, enthalten sein können, sind Verarbeitungshilfsmittel wie Calciumstearat, Magnesiumstearat und/oder Wachse.

Erfindungsgemäss ist weiterhin ein Verfahren zur Herstellung von Erzeugnissen aus den vorbeschriebenen Zusammensetzungen zur Herstellung von

PCT/EP03/06175 WO 03/106524

17

Aminoplasterzeugnissen, hergestellt durch Schmelzeverarbeitung, wobei die Zusammensetzungen in kontinuierlichen Knetern bei Massetemperaturen von 105 bis 220 °C und Verweilzeiten von 2 bis 12 min aufgeschmolzen werden und unter Aushärtung der schmelzbaren Polykondensate von Melaminharzen nach üblichen Verarbeitungsverfahren für thermoplastische Polymere

A) als Schmelze auf einen Glättwerk aufgegeben und als Platte über Transportbänder abgezogen und geschnitten oder auf Flächenbahnen aus Metallfolien, Kunststoffolien, Papierbahnen oder Textilbahnen aufgesiegelt und als Mehrkomponentenverbunde abgezogen und konfektioniert werden,

oder

B) über eine Profildüse ausgetragen und als Profil oder Plattenmaterial abgezogen, geschnitten und konfektioniert werden,

oder

C) über eine Ringdüse ausgetragen, unter Einpressen von Luft als Rohr abgezogen, geschnitten und konfektioniert werden,

oder

D) nach Eindosierung von Treibmitteln über eine Breitschlitzdüse ausgetragen und als geschäumtes Plattenmaterial abgezogen werden,

oder

E) über die Breitschlitzdüse einer Rohrbeschichtungsanlage ausgetragen und schmelz-flüssig auf das rotierende Rohr aufgesiegelt werden,

oder

- bevorzugt mit Dreizonenschnecken in Spritzgussmaschinen, Schneckenlänge von 18 bis 24 D, hohen Einspritzgeschwindigkeiten und bei Werkzeugtemperaturen von 5 bis 70°C, zu Spritzgussformteilen verarbeitet werden, oder
- Schmelzespinnanlagen mittels Schmelzepumpe durch das G) in Kapillarwerkzeug in den Blasschacht extrudiert und als Fäden abgezogen oder nach dem Melt-Blow-Verfahren als Fasern abgetrennt, oder als Schmelze nach dem Rotationsspinnverfahren in eine Scherfeldkammer mit organischen Dispergiermitteln unter Bildung von Faserfibriden ausgetragen, und in

Nachfolgeeinrichtungen weiterverarbeitet werden,

oder

- H) nach dem Harzinfusionsverfahren in eine offene Form mit dem Faserhalbzeug dosiert und nach der Vacuumsacktechnologie zu Laminaten ausgeformt werden, oder
- I) nach dem Harzinjektionsverfahren in eine verriegelbare Form, in dem sich Preforms aus textilem Material befinden, injiziert werden und zu Bauteilen ausgeformt und ausgehärtet werden,

oder

K) zur Schmelzeimprägnierung von nach dem Wickelverfahren, Flechtverfahren oder Pultrusionsverfahren hergestellter Bauteilrohlinge eingesetzt werden, und die Erzeugnisse gegebenenfalls zur vollständigen Aushärtung einer thermischen Nachbehandlung bei Temperaturen von 180 bis 220°C und Verweilzeiten von 30 bis 120 min unterzogen werden.

Für die Herstellung von Erzeugnissen aus den erfindungsgemässen Zusammensetzungen, die Füllstoffe, Verstärkungsfasern, weitere reaktive Polymere, Stabilisatoren, UV-Absorber und/oder Hilfsstoffe enthalten, können Zusammensetzungen eingesetzt werden, in denen diese Komponenten bereits enthalten sind, oder die Komponenten werden bei der Verarbeitung der Zusammensetzungen zugesetzt.

Für das Aufschmelzen der erfindungsgemässen Zusammensetzungen sind als Kurzkompressionsschnecken mit Extruder kontinuierliche Kneter Dreizonenschnecken mit L/D = 20-40 geeignet. Bevorzugt werden 5-Zonen-Scherzone. Kompressionszone, Einzugszone, Schnecken mit Dekompressionszone und Homogenisierungszone. Schnecken mit Schnitttiefen von 1 : 2,5 bis 1 : 3,5 sind bevorzugt geeignet. Besonders günstig ist die Zwischenschaltung von statischen Mischern oder Schmelzepumpen zwischen Zylinder und Düse.

Günstige Massetemperaturen für die aufgeschmolzenen Zusammensetzungen bei der Verarbeitung nach der Glättwerktechnologie zu Platten oder Beschichtungen oder bei der Herstellung von Platten, Profilen oder Rohren durch Austrag aus einer Profildüse liegen im Bereich von 110 bis 150°C.

Bei der Herstellung von geschäumtem Plattenmaterial durch Austrag über eine eingesetzt werden, Zusammensetzungen können Breitschlitzdüse gasabspaltende Treibmittel wie Natriumhydrogencarbonat, Azodicarbonamid, Cyanursäuretrihydrazid und/oder Zitronensäure/Bicarbonat-Treibsysteme enthalten, oder in die Schmelze werden vor dem Austrag leichtflüchtige Kohlenwasserstoffe wie Pentan, Isopentan, Propan und/oder Isobutan, oder Gase wie Stickstoff, Argon und/oder Kohlendioxid dosiert. Günstige Düsentem-peraturen für den Austrag der Treibmittel-enthaltenden Schmelze sind 110 bis 175°C. der Schäume aus den erfindungsgemässen Bevorzugte Schaumdichten Zusammensetzungen liegen im Bereich von 10 bis 500 kg/m².

Für die Extrusionsbeschichtung von Metallrohren sind Massetemperaturen der Schmelzen der Zusammensetzungen von 135°C bis 220°C und eine Vorwärmung des Rohrmaterials auf 100 bis 160°C erforderlich.

Vorzugsweise werden bei der Herstellung von Spritzgusserzeugnissen aus den erfindungsgemässen Zusammensetzungen Spritzgussmaschinen mit Spritzeinheiten eingesetzt, die Dreizonenschnecken mit einer Schneckenlänge von 18 bis 24 D besitzen. Die Einspritzgeschwindigkeit bei der Herstellung der durch Spritzgiessen erzeugten Formteile soll möglichst hoch eingestellt werden, um Einfallstellen und schlechte Bindenähte auszuschliessen.

Bei der Herstellung von Fasererzeugnissen aus den erfindungsgemässen Zusammensetzungen werden zur gleichmässigen Schmelzedosierung der im Plastifizierextruder aufgeschmolzenen Zusammensetzungen über den Schmelzeverteiler zum Kapillarwerkzeug bevorzugt Diphenyl-beheizte Schmelzepumpen für die auf 120-240°C erhitzten Schmelzen eingesetzt.

Die Herstellung von Filamentgarnen aus den erfindungsgemässen Zusammensetzungen kann in Kurzspinnanlagen durch Abzug der Fäden mit Hilfe schnelllaufender Galetten und Weiterverarbeitung in Nachfolgeeinrichtungen aus Nachhärtungskammer, Reckeinrichtung und Wickler erfolgen.

den erfindungsgemässen oder Vliese als Erzeugnisse aus Fasern Zusammensetzungen können ebenfalls nach dem Melt-Blow-Verfahren durch Applizierung eines hocherhitzten Luftstroms um die Kapillardüsenöffnungen bei der Extrusion der Fäden aus dem Kapillarwerkzeug in den Blasschacht hergestellt werden. Der Luftstrom verstreckt den geschmolzenen Faden unter gleichzeitiger Zerteilung in viele Einzelfäserchen mit Faserdurchmessern von 0,5 bis 12 μm . Eine Weiterverarbeitung der auf dem Siebtransportband abgelegten Fasern zu Thermobondieroder Ver-**Applikation** von durch Vliesen kann erforderlichen Festigkeit und nadelungsprozessen zur Erzielung der Dimensionsstabilität erfolgen.

Faserverstärkte Kunststoffe nach dem Harzinfusionsverfahren können durch Impräg-nierung der Faserhalbzeuge durch die unter Umgebungsdruck stehende Schmelze der erfindungsgemässen Zusammensetzung, die in den evakuierten Vakuumsack gedrückt wird, unter Einsatz einer offenen Form hergestellt werden.

Flächige oder komplex geformte Bauteile nach dem Harzinjektionsverfahren werden durch Einlegen von Preforms aus nichtimprägnierten Textilien in eine verriegelbare Form, Injizierung der Schmelze der erfindungsgemässen Zusammensetzung, und Aushärtung hergestellt.

Rotationssymmetrische Bauteile nach dem Wickelverfahren, komplexe Bauteile nach der Rundflechttechnik oder Profile nach der Pultrusionstechnik lassen sich durch Tränkung der Faserrohlinge in Form von Rohren, Fittings, Behältern oder Profilen mit der Schmelze der erfindungsgemässen Zusammensetzung herstellen.

Die Erfindung wird durch folgende Beispiele erläutert:

Beispiel 1

Als schmelzbares Melaminharz-Polykondensat in der Zusammensetzung wird ein und Formaldehyd mit einem Melamin Polytriazinether aus Melamin/Formaldehyd von 1:3 verwendet. Die Methylolgruppen sind überwiegend durch Methanol verethert, so dass der Gehalt des Harzes an Methoxygruppen 20 Masse% beträgt. Die Molmasse des Poly-triazinethers beträgt rund 2000 g/mol. Das schmelzbare Melaminharz-Polykondensat wird mit 1 Masse% Maleinsäure, bezogen auf das Melaminharz-Polykondensat, als thermoinduzierbarer Härter versetzt, und der Härtungsverlauf der Zusammensetzung mittels Dynamisch-Mechanischer-Analyse charakterisiert. Die Analysen wurden an einem RDS-Gerät der Firma Rheometric Scientific durchgeführt. Die Zusammensetzungen wurden von 60°C auf 300°C mit einer Heizrate von 10 K/min aufgeheizt und der Viskositätsverlauf bestimmt. Als Onset wurde die Temperatur bestimmt, ab der ein starker Anstieg der Viskosität zu beobachten ist (Abbildung 1). Die Onsettemperatur der Zusammensetzung beträgt 135°C. Im Vergleichsversuch

Die Onsettemperatur der Zusammensetzung beträgt 135°C. Im Vergleichsversuch ohne thermo-induzierbaren Härter beträgt die Onsettemperatur 200°C.

Beispiele 2 bis 9:

Versuchsdurchführung analog Beispiel 1, anstelle Maleinsäureanhydrid als thermoinduzierbarer Härter wurden die in Tabelle 1 angegebenen Härter verwendet:

Beispiel	Härter	Onsettemperatur		
		(°C)		
2	Phthalsäure	155		
3	Maleinsäureanhydrid	110		
4	Phthalsäureanhydrid	126		
5	5 Maleinsäuremonobutylester			

6	Maleinsäuremonoamid	140		
7	Melaminmaleat	145		
8	p-Toluolsulfonsäure	200		
9	ohne	200		

Im Vergleichsversuch 8 wurde p-Toluolsulfonsäure als starke Säure als thermoinduzierbarer Härter eingesetzt. Die Zusammensetzung mit der starken Säure ergibt eine um 45 bis 90°C höhere Onsettemperatur gegenüber den erfindungsgemässen Zusammensetzungen bzw. die gleiche Onsettemperatur wie in Zusammensetzungen ohne thermoinduzierbaren Härter (Vergleichsversuch 9).

WO 03/106524 PCT/EP03/06175

Beispiel 10

Als Melaminharz wird ein mit einem Ethylenglycol-Diether von Bisphenol A (Simulsol BPLE, Seppic S.A., Frankreich) umgeethertes Melamin-Formaldehyd-Vorkondensat auf Basis 2,4,6-Tris-methoxymethylamino-1,3,5-triazin eingesetzt. Die durch GPC ermittelte Molmasse beträgt 1800, der Gehalt an nichtumgesetztem Simulsol BPLE nach HPLC-Analyse (Lösung in THF, UV-Detektion mit externem Standard) beträgt 14 Masse%. Der Anteil der –OCH₃-Gruppen im umgeetherten Melaminharz (Ermittlung durch GC-Analyse nach Spaltung des Polytriazinethers mit Mineralsäure) beträgt 14,5 Masse%. Die Viskosität bei 140°C liegt bei 800 Pas.

Die Umetherung des Melamin-Formaldehyd-Vorkondensats auf Basis 2,4,6-Trismethoxymethylamino-1,3,5-triazin und weitere Kondensation findet bei 220°C im Laborextruder GL 27 D44 mit Vakuumentgasung (Leistritz) bei einem Temperaturprofil von 100°C/130°C/200°C/200°C/200°C/200°C/200°C/200°C/100°C und einer durchschnittlichen Verweilzeit von 2,5 min statt. Die Extruderdrehzahl beträgt 150

min⁻¹. In die Einzugszone des Extruders werden 2,4,6-Tris-methoxymethylamino-1,3,5-triazin mit 1,38 kg/h und der Ethylenglykol-Diether von Bisphenol A mit 1,13 kg/h mittels Seitenstromdosierung gravimetrisch dosiert. Der aus dem Extruder austretende Strang des Polytriazinethers wird in einem Granulator geschnitten.

Das umgeetherte Harz wird mit 1 Masse% Maleinsäure compoundiert und von diesem Compound der Härtungsverlauf mittels <u>Dynamisch-Mechanischer-Analyse</u> analog Beispiel 1 bestimmt. Die Onsettemperatur beträgt in diesem Beispiel 125°C.

Beispiel 11-14:

Versuchsdurchführung analog Beispiel 10, es wurden die in Tabelle 2 angegebenen Härter verwendet :

Beispiel	Härter	Onsettemperatur
		°C
10	Maleinsäure	125
11	Maleinsäureanhydrid	116
12	Phthalsäureanhydrid	121
13	p-Toluolsulfonsäure	170
14	ohne	180

Abbildung 1

Härtungsverläufe in den Zusammensetzungen nach Beispiel 1 ohne thermoinduzierbaren Härter und mit 1 Masse% Maleinsäure, bezogen auf das Melaminharz-Polykondensat, als thermoinduzierbaren Härter

Viscosität

Patentansprüche

- Zusammensetzungen zur Herstellung von Aminoplasterzeugnissen durch Schmelzeverarbeitung, dadurch gekennzeichnet, dass die Zusammensetzungen aus
 - A) 95 bis 99,9 Masse% lösungsmittelfreien schmelzbaren Polykondensaten von Melaminharzen mit Molmassen von 300 bis 300000,
 - B) 0,1 bis 5 Masse% schwachen Säuren als thermoinduzierbare Härter, bestehend aus
 - B1) Säurebildnern vom Typ blockierte Sulfonsäure der allgemeinen Formel (I)

$$R_1$$
— SO_2 — O — R_2 (1)

R₁ = unsubstituiertes oder substituiertes Aryl oder Biphenyl

$$R_2$$
 = 4-Nitrobenzyl, Pentafluorbenzyl oder - N = C Substituenten N (R₄)(R₅)

wobei 1

R₃ = nichtsubstituiertes oder substituiertes Alkyl oder Aryl,

 $R_4 = H$, C_1 - C_{12} -Alkyl, Phenyl, C_2 - C_9 -Alkanoyl oder Benzyl,

 $R_5 = H$, C_1 - C_{12} -Alkyl oder Cyclohexyl,

oder R_3 und R_4 oder R_5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann,

- B2) C₄-C₁₈-aliphatischen und/oder C₇-C₁₈-aromatischen Carbonsäuren,
- B3) Alkalisalzen oder Ammoniumsalzen der Phosphorsäure,
- B4) C₁-C₁₂-Alkylestern oder C₂-C₈-Hydroxyalkylestern von C₇-C₁₄-aromatischen Carbonsäuren oder anorganischen Säuren,
- B5) Salzen von Melamin oder Guanaminen mit C_{1-18} -aliphatischen Carbonsäuren,
- B6) Anhydriden, Halbestern oder Halbamiden von C₄-C₂₀-Dicarbonsäuren,
- B7) Halbestern oder Halbamiden von Copolymeren aus ethylenisch ungesättigten C₄-C₂₀-Dicarbonsäureanhydriden und ethylenisch

ungesättigten Monomeren vom Typ C_2 - C_{20} -Olefine und/oder C_8 - C_{20} -Vinylaromaten, und/oder

- B8) Salzen von C₁-C₁₂-Alkylaminen bzw. Alkanolaminen mit C₁-C₁₈-aliphatischen, C₇-C₁₄-aromatischen oder alkylaromatischen Carbonsäuren sowie anorganischen Säuren vom Typ Salzsäure, Schwefelsäure oder Phosphorsäure, und
- C) gegebenenfalls bis zu 400 Masse% Füllstoffen und/oder Verstärkungsfasern, bis zu 30 Masse% weiteren reaktiven Polymeren vom Typ Ethylen-Copolymere, Maleinsäureanhydrid-Copolymere, modifizierte Maleinsäureanhydrid-Copolymere, Poly(meth)acrylate, Polyamide, Polyester und/oder Polyurethane, sowie bis zu 4 Masse%, jeweils bezogen auf die Polykondensate von Melaminharzen, Stabilisatoren, UV-Absorbern und/oder Hilfsstoffen,

bestehen.

 Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Polykondensate von Melaminharzen Mischungen aus schmelzbaren 4- bis 1000-Kern-Polytriazinethern sind, wobei in den Polytriazinethern die Triazinsegmente

 $R_1 = -NH_2$, $-NH-CHR_2-O-R_3$, $-NH-CHR_2-O-R_4-OH$, $-CH_3$, $-C_3H_7$, $-C_6H_5$, -OH, Phthalimido-.

Succinimido-, -NH-CO-_{C5-C18}-Alkyl, -NH-C₅-C₁₈-Alkylen-OH,

- -NH-CHR₂-O-C₅-C₁₈-Alkylen-NH₂, -NH-C₅-C₁₈-Alkylen-NH₂,
- -NH-CHR $_2$ -O-R $_4$ -O-CHR $_2$ -NH-, -NH-CHR $_2$ -NH-, -NH-CHR $_2$ -O-C $_5$ -C $_{18}$ -Alkylen-NH-,

-NH-C₅-C₁₈-Alkylen-NH-, -NH-CHR₂-O-CHR₂-NH-,

 $R_2 = H$, C_1 - C_7 - Alkyl;

 $R_3 = C_1 - C_{18} - Alkyl, H;$

$$\begin{split} R_4 &= C_2 - C_{18} - \text{Alkylen, } - \text{CH(CH}_3) - \text{CH}_2 - \text{O-}_{\text{C2-C12}} - \text{Alkylen-O-CH}_2 - \text{CH(CH}_3) -, \\ &- \text{CH(CH}_3) - \text{CH}_2 - \text{O-}_{\text{C2-C12}} - \text{Arylen-O-CH}_2 - \text{CH(CH}_3) -, \\ &- [\text{CH}_2 - \text{CH}_2 - \text{O-}_{\text{CH}_2} - \text{CH}_2]_n -, - [\text{CH}_2 - \text{CH(CH}_3) - \text{O-CH}_2 - \text{CH(CH}_3)]_n -, \\ &- [-\text{O-CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 -]_n -, \\ &- [(\text{CH}_2)_{2-8} - \text{O-CO-}_{\text{C6-C14-}} - \text{Arylen-CO-O-}_{\text{CH}_2})_{2-8} -]_n -, \\ &- [(\text{CH}_2)_{2-8} - \text{O-CO-}_{\text{C2-C12-}} - \text{Alkylen-CO-O-}_{\text{CH}_2})_{2-8} -]_n -, \end{split}$$

- Siloxangruppen enthaltende Sequenzen des Typs

wobei n = 1 bis 200:

- Siloxangruppen enthaltende Polyestersequenzen des Typs -[(X)_r-O-CO-(Y)_s-CO-O-(X)_r]- ,

bei denen

$$C_{1}\text{-}C_{4}\text{-}Alkyl \qquad C_{1}\text{-}C_{4}\text{-}Alkyl \\ | \qquad | \qquad | \qquad |$$

$$Y = -\{_{C6-C14}\text{-}Arylen-CO-O-(\{Si-O-[Si-O]_{y}\text{-}CO-_{C6-C14}\text{-}Arylen-\} \\ | \qquad | \qquad |$$

$$C_{1}\text{-}C_{4}\text{-}Alkyl \qquad C_{1}\text{-}C_{4}\text{-}Alkyl \qquad oder$$

r = 1 bis 70; s = 1 bis 70 und y = 3 bis 50 bedeuten;

- Siloxangruppen enthaltende Polyethersequenzen des Typs

$$\begin{array}{c|cccc} C_{1}\text{-}C_{4}\text{-}Alkyl & C_{1}\text{-}C_{4}\text{-}Alkyl \\ & | & | \\ & -CH_{2}\text{-}CHR_{2}\text{-}O\text{-}(\{Si\text{-}O\text{-}[Si\text{-}O]_{y}\text{-}CHR_{2}\text{-}CH_{2}\text{-} \\ & | & | \\ & C_{1}\text{-}C_{4}\text{-}Alkyl & C_{1}\text{-}C_{4}\text{-}Alkyl \\ \end{array}$$

wobei $R_2 = H$; C_1 - C_4 -Alkyl und y = 3 bis 50 bedeuten;

- Sequenzen auf Basis von Alkylenoxidaddukten des Melamins vom Typ 2-Amino-4,6-di-_{C2-C4-}alkylenamino-1,3,5-triazin Sequenzen:
- Phenolethersequenzen auf Basis zweiwertiger Phenole und $C_2\text{-}C_8\text{-}$ Diolen vom Typ

-C2-C8-Alkylen-O-C6-C18-Arylen-O-C2-C8-Alkylen- Sequenzen;

durch Brückenglieder -NH-CHR $_2$ -NH- oder -NH-CHR $_2$ -O-R $_4$ -O-CHR $_2$ -NH- und -NH-CHR $_2$ -NH- sowie gegebenenfalls -NH-CHR $_2$ -O-CHR $_2$ -NH-, -NH-CHR $_2$ -O-C $_5$ -C $_{18}$ -Alkylen-NH- bzw. -NH-C $_5$ -C $_{18}$ -Alkylen-NH- zu 4- bis 1000-Kern-Polytriazinethern mit linearer und/oder verzweigter Struktur verknüpft sind,

wobei in den Polytriazinethern das Molverhältnis der Substituenten R_3 : R_4 = 20 : 1 bis 1 : 20 beträgt, der Anteil der Verknüpfungen der Triazinsegmente durch Brückenglieder -NH-CHR₃-O-R₄-O-CHR₃-NH- 5 bis 95 Mol% beträgt, und die Polytriazinether bis zu 20 Masse% Diole des Typs HO - R₄ - OH enthalten können.

3. Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Polykondensate von Melaminharzen Mischungen aus schmelzbaren 4- bis 300-Kern-Polytriazinethern sind.

4. Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die thermoinduzierbaren Härter vom Typ blockierte Sulfonsäure der allgemeinen Formel

$$R_1 - SO_2 - O - R_2$$
 (1)

blockierte Sulfonsäuren sind, in denen die Substituenten

 R_1 = unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C_1 - C_4 -Halogenalkyl, C_1 - C_{16} -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl- oder Nitro- substituiertes C_6 - C_{10} -Aryl oder C_7 - C_{12} -Arylalkyl,

$$R_2$$
 = 4-Nitrobenzyl, Pentafluorbenzyl, $-N = C$ $N(R_4)(R_5)$,

R₃ = C₁-C₁₂-Alkyl, C₁-C₄-Halogenalkyl, C₂-C₆-Alkenyl, C₅-C₁₂-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C₁-C₄-Halogenalkyl, C₁-C₁₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl oder Nitro- substituiertes C₆-C₁₀-Aryl und/oder C₇-C₁₂-Arylalkyl, C₁-C₈-Alkoxy, C₅-C₈-Cycloalkoxy, Phenoxy oder H₂N-CO-NH-,-CN, C₂-C₅-Alkyloyl, Benzoyl, C₂-C₅-Alkoxycarbonyl, Phenoxycarbonyl, Morpholino-, Piperidino-, C₁-C₁₂-Alkyl, C₁-C₄-Halogenalkyl, C₂-C₆-Alkenyl, C₅-C₁₂-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C₁-C₄-Halogenalkyl, C₁-C₁₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl oder Nitro- substituiertes C₆-C₁₀-Aryl, C₇-C₁₂-Arylalkyl, C₁-C₈-Alkoxy, C₅-C₈-Cycloalk-oxy-, Phenoxy-, oder H₂N-CO-NH-,

 $R_4 = H$, C_1 - C_{12} -Alkyl, Phenyl, C_2 - C_9 -Alkanoyl oder Benzyl

R₅= H, C₁-C₁₂-Alkyl oder Cyclohexyl,

oder R_3 und R_4 oder R_5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann.

- 5. Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die C_{1-} C_{12} -Alkylester bzw. C_{2} - C_{8} -Hydroxyalkylester von C_{7} - C_{14} -aromatischen Carbonsäuren Dibutylphthalat, Phthalsäurediglycolester und/oder Trimellithsäureglycolester sind.
- 6. Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Salze von Melamin bzw. Guanaminen mit C₁₋₁₆-aliphatischen Carbonsäuren Melaminformiat, Melamincitrat, Melaminmaleat, Melaminfumarat und/oder Acetoguanaminbutyrat sind.
- 7. Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Anhydride, Halbester oder Halbamide von C₄-C₂₀-Dicarbonsäuren Maleinsäureanhydrid, Bernsteinsäureanhydrid, Phthalsäureanhydrid, Mono-C₁-C₁₈-alkyl-maleate, Maleinsäuremonoamid oder Maleinsäuremono-C₁-C₁₈-alkyl-amide sind.
- 8. Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Halbester oder Halbamide von Copolymeren aus ethylenisch ungesättigten C₄-C₂₀-Dicarbonsäureanhy-driden und ethylenisch ungesättigten Monomeren vom Typ C₂-C₂₀-Olefine und/oder C₈-C₂₀-Vinylaromaten Halbester oder Halbamide von Copolymeren aus Maleinsäureanhydrid und C₃-C₈-α-Olefinen vom Typ Isobuten, Diisobuten und/oder 4-Methylpenten und/ oder Styren mit einem Molverhältnis Maleinsäureanhydrid/C₃-C₈-α-Olefin bzw. Styren bzw. entsprechender Monomermischungen von 1 : 1 bis 1 : 5 sind.
- 9. Zusammensetzungen nach Anspruch 1, dadurch gekennzeichnet, dass die Salze von C₁-C₁₂-Alkylaminen bzw. Alkanolaminen mit C₁-C₁₈-aliphatischen, C₇-C₁₄-aromatischen bzw. alkylaromatischen Carbonsäuren oder anorganischen Säuren vom Typ Salzsäure, Schwefelsäure oder Phosphorsäure Ethanolammmoniumchlorid,

Diethanolammoniumphosphat und/oder Isopropylammonium-p-toluolsulfonat sind.

- 10. Verfahren zur Herstellung von Erzeugnissen aus den Zusammensetzungen nach einem oder mehreren der Ansprüche 1 bis 9, hergestellt durch Schmelzeverarbeitung, wobei die Zusammensetzungen in kontinuierlichen Knetern bei Massetemperaturen von 105 bis 220°C und Verweilzeiten von 2 bis 12 min aufgeschmolzen werden und unter Aushärtung der schmelzbaren Polykondensate von Melaminharzen nach üblichen Verarbeitungsverfahren für thermoplastische Polymere
 - A) als Schmelze auf einen Glättwerk aufgegeben und als Platte über Transportbänder abgezogen und geschnitten oder auf Flächenbahnen aus Metallfolien, Kunststoffolien, Papierbahnen oder Textilbahnen aufgesiegelt und als Mehrkomponentenverbunde abgezogen und konfektioniert werden,

oder

B) über eine Profildüse ausgetragen und als Profil oder Plattenmaterial abgezogen, geschnitten und konfektioniert werden,

oder

C) über eine Ringdüse ausgetragen, unter Einpressen von Luft als Rohr abgezogen, geschnitten und konfektioniert werden,

oder

D) nach Eindosierung von Treibmitteln über eine Breitschlitzdüse ausgetragen und als geschäumtes Plattenmaterial abgezogen werden,

oder

E) über die Breitschlitzdüse einer Rohrbeschichtungsanlage ausgetragen und schmelz-flüssig auf das rotierende Rohr aufgesiegelt werden,

oder

F) in Spritzgussmaschinen, bevorzugt mit Dreizonenschnecken einer Schneckenlänge von 18 bis 24 D, hohen Einspritzgeschwindigkeiten und bei Werkzeugtemperaturen von 5 bis 70°C, zu Spritzgussformteilen verarbeitet werden, oder

G) in Schmelzespinnanlagen mittels Schmelzepumpe durch das Kapillarwerkzeug in den Blasschacht extrudiert und als Fäden abgezogen oder nach dem Melt-Blow-Verfahren als Fasern abgetrennt, oder als Schmelze nach dem Rotationsspinnverfahren in eine Scherfeldkammer mit organischen Dispergiermitteln unter Bildung von Faserfibriden ausgetragen, und in Nachfolgeeinrichtungen weiterverarbeitet werden,

oder

- H) nach dem Harzinfusionsverfahren in eine offene Form mit dem Faserhalbzeug dosiert und nach der Vacuumsacktechnologie zu Laminaten ausgeformt werden, oder
- I) nach dem Harzinjektionsverfahren in eine verriegelbare Form, in dem sich Preforms aus textilem Material befinden, injiziert werden und zu Bauteilen ausgeformt und ausgehärtet werden,

oder

K) zur Schmelzeimprägnierung von nach dem Wickelverfahren, Flechtverfahren oder Pultrusionsverfahren hergestellter Bauteilrohlinge eingesetzt werden, und die Erzeugnisse gegebenenfalls zur vollständigen Aushärtung einer thermischen Nachbehandlung bei Temperaturen von 180 bis 220°C und Verweilzeiten von 30 bis 120 min unterzogen werden.

03/06175

INTERNATIONAL SEARCH REPORT a. classification of subject matter IPC 7 COSG12/00 COSG C08G12/42 C08G12/30 C08G12/32 C08L61/26 C08L61/28 D01F6/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 COSG COSL DOIF Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, PAJ, EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° X EP 0 200 906 A (CASSELLA FARBWERKE MAINKUR 1 - 10AG) 12 November 1986 (1986-11-12) column 2, line 12 - line 41 column 14, line 21 -column 18, line 4 X,P EP 1 247 837 A (AGROLINZ MELAMIN GMBH) 1 - 109 October 2002 (2002-10-09) paragraphs '0042!-'0045!; claim 8 X,P EP 1 279 686 A (AGROLINZ MELAMIN GMBH) 1 - 1029 January 2003 (2003-01-29) paragraphs '0026!-'0053!,'0071!; claims 1 - 10Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means in the art. document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 1 October 2003 15/10/2003

Authorized officer

Kiebooms, R

Fax: (+31-70) 340-3016

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

INTERNATIONAL SEARCH REPORT

PCT/EP 03/06175

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0200906	Α	12-11-1986	DE EP	3512446 A1 0200906 A2	16-10-1986 12-11-1986
EP 1247837	A	09-10-2002	DE EP	10117544 A1 1247837 A2	17-10-2002 09-10-2002
EP 1279686	A	29-01-2003	DE EP US	10136321 C1 1279686 A2 2003045667 A1	12-12-2002 29-01-2003 06-03-2003

INTERNATIONALER RECHERCHENBERICHT

03/06175

a. klassifizierung des anmeldungsgegenstandes IPK 7 C08G12/00 C08G12/30 C08G12/42 C08L61/26 C08G12/32 C08L61/28 D01F6/00 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) CO8G CO8L DO1F IPK 7 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sowelt diese unter die recherchierten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evil. verwendete Suchbegriffe) WPI Data, PAJ, EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie® 1 - 10χ EP 0 200 906 A (CASSELLA FARBWERKE MAINKUR AG) 12. November 1986 (1986-11-12) Spalte 2, Zeile 12 - Zeile 41 Spalte 14, Zeile 21 -Spalte 18, Zeile 4 EP 1 247 837 A (AGROLINZ MELAMIN GMBH) 1 - 10X,P 9. Oktober 2002 (2002-10-09) Absätze '0042!-'0045!; Anspruch 8 1 - 10EP 1 279 686 A (AGROLINZ MELAMIN GMBH) X,P 29. Januar 2003 (2003-01-29) Absätze '0026!-'0053!,'0071!; Ansprüche 1 - 10Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfehre verstende Priori Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und ausgeführt) Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen: Anmeldedatum; aber nach diese Verbindung für einen Fachmann naheliegend ist "&" Veröffentlichung, die Milglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 15/10/2003 1. Oktober 2003 Bevollmächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Kiebooms, R Fax: (+31-70) 340-3016

INTERNATIONALER RECHERCHENBERICHT

i	.mac.crace	ANTINUS PROPERTY OF THE PROPER
ı	PCT/EP	03/06175

lm Recherchenbericht angeführtes Patentdokume	lm Recherchenbericht angeführtes Patentdokument		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0200906	Α	12-11-1986	DE EP	3512446 A1 0200906 A2	16-10-1986 12-11-1986
EP 1247837	A	09-10-2002	DE EP	10117544 A1 1247837 A2	17-10-2002 09-10-2002
EP 1279686	A	29-01-2003	DE EP US	10136321 C1 1279686 A2 2003045667 A1	12-12-2002 29-01-2003 06-03-2003