UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

FACULTAD DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA, INFORMÁTICA Y MECÁNICA

ESCUELA PROFESIONAL DE INGENIERÍA INFORMÁTICA Y DE SISTEMAS

GRUPO 4 " Estimación de esfuerzos utilizando Cost Drivers - COCOMO"

ASIGNATURA : INGENIERÍA DE SOFTWARE I

DOCENTE : QUINTANILLA PORTUGAL, ROXANA LISETTE

INTEGRANTES:

•	CHOQUE BUENO, FIORELLA	160889
•	GUEVARA FERRO, CRISTIAN LUIS	171061
•	GUTIERREZ DAZA,GONZALO	170432
•	HUAMAN HERMOZA, ANTONY ISAAC	170434
•	HUILLCA MOZO, BRYAN	160329
•	ORE GAMARRA ABRAHAM	171064
•	QUISPE PALOMINO, LUIYI ANTONY	174914
•	VEGA CENTENO OLIVERA, RONALDINHO	140934

CUSCO – PERÚ 2021

Análisis de líneas de código

Basándonos en proyectos similares encontrados en github se medirá un aproximado de las líneas de código para nuestro proyecto utilizando una herramienta web que nos hace posible contar la cantidad de líneas de código de los proyectos mencionados.

-Link de la herramienta-> https://codetabs.com/count-loc/count-loc-online.html

Primer Proyecto: Sistema Tutorías-master

Link -> https://github.com/FroylanMtz/Sistema Tutorias

Segundo proyecto: Sistema Tutorías-master

-Link proyecto -> https://github.com/kaninflas/tutorapp

Resultado del análisis

Al momento de analizar los dos proyectos anteriores logramos observar principalmente que están realizados mayormente en el lenguaje de JavaScript por el cual este contiene la mayor cantidad de líneas de código .

Al ser estos dos proyectos grandes el primero basado para un grupo de estudiantes por carreras y el segundo para una universidad, las líneas de código son superiores a 300 KLDC entonces estas estarían clasificadas un tipo de proyecto "Empotrado".

Entonces para nuestro proyecto que es realizar un sistema de tutorías solo para una carrera profesional por el momento podríamos asumir que nuestro proyecto tendrá un número menor a 50 KLDC ya que nuestro sistema será más simple comparado con los dos ejemplos anteriores por consiguiente podemos afirmar que nuestro proyecto estará en el tipo de proyecto "Orgánico".

Finalmente estimamos que nuestro proyecto tendría un aproximado de 10000 líneas de código.

Submodelo - Detallado

Se ajusta la cantidad de multiplicadores, también incorpora las características de la versión intermedia, aplicando la ingeniería de software.

Estimación nominal del esfuerzo (Modo de desarrollo)

TABLE IV COCOMO SOFTWARE DEVELOPMENT MODES

		Mode	
Feature	Organic	Semidetached	Embedded
Organizational understanding of product objectives	Thorough	Considerable	General
Experience in working with related software systems	Extensive	Considerable	Moderate
Need for software conformance with pre-established require- ments Need for software conformance	Basic	Considerable	Full
with external interface specifica- tions Concurrent development of associ-	Basic	Considerable	Full
ated new hardware and opera- tional procedures Need for innovative data processing	Some	Moderate	Extensive
architectures, algorithms Premium on early completion	Minimal Low	Some Medium	Considerable High
Product size range Examples	<50 KDSI Batch data reduction Scientific	<300 KDSI Most transaction processing systems	All sizes Large, complex transaction processing
	models Business models Familiar	New OS, DBMS Ambitious inven- tory, production control	systems Ambitious, very large OS Avionics
	OS, compiler Simple inven- tory, produc- tion control	Simple command- control	Ambitious com- mand-control

Análisis de las elecciones

Característica	Elección	Razón
Comprensión organizacional de los objetivos del producto.	Considerable	Los implicados en el desarrollo deben conocer como es el funcionamiento de las tutorías en la universidad
Experiencia en trabajar con afines sistemas de software	Extenso	Los desarrolladores deben tener amplio conocimiento acerca de las tecnologías a usar

Necesidad de conformidad del software con requisitos preestablecidos	Considerable	Se debe buscar que el producto satisfaga completamente lo requerido por la universidad
Necesidad de conformidad del software con las especificaciones de la interfaz externa.	Considerable	Considerando
Desarrollo concurrente de nuevos procedimientos operativos y hardware asociados	Algunos	Quizás se requiera la implementación de ciertos procedimientos operativos para el sistema
Necesidad de arquitecturas y algoritmos de procesamiento de datos innovadores	Mínimo	Se buscará dar un producto basado en tecnologías actuales que brinde soporte a largo plazo al producto
Desarrollo anticipado del producto	Medio	Los plazos dados se deben respetar y cumplir según lo establecido
Rango de tamaño del producto	<50 KDSI	Al ser un proyecto aplicado a solo la carrera de Informática y según el análisis realizado se estima esa cantidad de líneas de código

Conclusión

Los proyectos de modo orgánico generalmente provienen de entornos estables, familiares, indulgentes y relativamente libres, además de que en estos se posee una experiencia en proyectos similares.

Valor Nominal

Según nuestra estimación el tamaño del producto está en 10000 líneas de código. A partir de la Tabla V, determinamos entonces que el esfuerzo de desarrollo nominal para este poeta en modo Orgánico es:

 $3.2(10)^{1.05} = 35$ man-months (MM).

$\begin{tabular}{ll} TABLE\ V\\ COCOMO\ NOMINAL\ EFFORT\ AND\ SCHEDULE\ EQUATIONS \end{tabular}$

DEVELOPMENT MODE	NOMINAL EFFORT	SCHEDULE
Organic	(MM) _{NOM} = 3.2(KDSI) ^{1.05}	TDEV = 2.5(MM _{DEV}) 0.38
Semidetached	(MM) NOM = 3.0(KDSI) 1.12	TDEV = 2.5(MM _{DEV}) 0.35
Embedded	(MM) _{NOM} = 2.8(KDSI) ^{1.20}	TDEV = 2.5(MM _{DEV}) 0.32

(KDSI = thousands of delivered source instructions)

COST DRIVERS

Los generadores de costos son características del desarrollo de software que influyen en el esfuerzo en la realización de un determinado proyecto. A diferencia de los factores de escala, los generadores de costos se seleccionan en función de la justificación de que tienen un efecto lineal sobre el esfuerzo. Hay 17 multiplicadores de esfuerzo que se utilizan en el modelo COCOMO para regular el esfuerzo de desarrollo.

- Confiabilidad de software requerida (RELY)
- Tamaño de la base de datos (DATA)
- Complejidad del producto (CPLX)
- Desarrollado para la reutilización (RUSE)
- Coincidencia de documentación con las necesidades del ciclo de vida (DO-CU)
- Restricción de tiempo de ejecución (TIME)
- Restricción de almacenamiento principal (STOR)
- Volatilidad de la plataforma (PVOL)
- Capacidad de analista (ACAP)
- Capacidad del programador (PCAP)
- Continuidad del personal (PCON)
- Experiencia en aplicaciones (APEX)
- Experiencia de plataforma (PLEX)
- Experiencia en lenguaje y herramientas (LTEX)
- Uso de herramientas de software (TOOL)
- Desarrollo multisitio (SITE)
- Programa de desarrollo requerido (SCED)

Baseline Effort Constans: A=3.20; B=1.05							
Baseline Schedule Constants:			C=2.50;		D=0.38		
baseline sene	duic constan			C-2.50,		D-0.30	
Driver	Symbol	VL	L	N	Н	VH	XH
RELY	EM1	0.82	0.92	1.00	1.10	1.26	
DATA	EM2		0.90	1.00	1.14	1.28	
CPLX	EM3	0.73	0.87	1.00	1.17	1.34	1.74
RUSE	EM4		0.95	1.00	1.07	1.15	1.24
DOCU	EM5	0.81	0.91	1.00	1.11	1.23	
TIME	EM6			1.00	1.11	1.29	1.63
STOR	EM7			1.00	1.05	1.17	1.46
PVOL	EM8		0.87	1.00	1.15	1.30	
ACAP	EM9	1.42	1.19	1.00	0.85	0.71	
PCAP	EM10	1.34	1.15	1.00	0.88	0.76	
PCON	EM11	1.29	1.12	1.00	0.90	0.81	
APEX	EM12	1.22	1.10	1.00	0.88	0.81	
PLEX	EM13	1.19	1.09	1.00	0.91	0.85	
LTEX	EM14	1.20	1.09	1.00	0.91	0.84	
TOOL	EM15	1.17	1.09	1.00	0.90	0.78	
SITE	EM16	1.22	1.09	1.00	0.93	0.86	0.80
SCED	EM17	1.43	1.14	1.00	1.00	1.00	

COCOMO SOFTWARE COST DRIVER RATINGS

				Ratings			
	Cost Driver	Very Low	Low	Nominal	High	Very High	Extra High
	Product attributes						
	RELY	Effect: slight in- convenience	Low, easily recov- erable losses	Moderate, recover- able losses	High financial loss	Risk to human life	
	DATA		DB bytes Prog. DSI < 10	$10 \le \frac{D}{P} < 100$	$100 \le \frac{D}{P} < 1000$	D _P > 1000	
	CPLX	See Table 8 _					
	Computer attributes TIME			≤ 50% use of avail- able execution time	70%	85%	95%
	STOR			< 50% use of avail- able storage	70%	85%	95%
	VIRT		Major change ev- ery 12 months Minor: 1 month	Major: 6 months Minor: 2 weeks	Major: 2 months Minor: 1 week	Major: 2 weeks Minor: 2 days	
	TURN		Interactive	Average turnaround <4 hours	4-12 hours	>12 hours	
	Personnel attributes						
DI EV	ACAP	15th percentiles	35th percentile	55th percentile	75th percentile	90th percentile	
PLEX	AEXP	<4 months ex- perience	1 year	3 years	6 years	12 years	
	PCAP	15th percentile*	35th percentile	55th percentile	75th percentile	90th percentile	
APEX	VEXP	<1 month expe- rience	4 months	1 year	3 years		
LTEX	LEXP	<1 month expe- rience	4 months	1 year	3 years		
	Project attributes						
	MODP	No use	Beginning use	Some use	General use	Routine use	
	TOOL	Basic micropro- cessor tools	Basic mini tools	Basic midi/maxi tools	Strong maxi pro- gramming, test tools	Add require- ments, design, management, documentation tools	
	SCED	75% of nominal	85%	100%	130%	160%	

^{*} Team rating criterie: analysis (programming) ability, efficiency, ability to communicate and cooperate

Baseline Effort Constans:			A=3.20; B=1.05			
Baseline Schedule Constants:			C=2.50; D=0.38			
Driver	Categioría	Our Value	Motivo			
RELY	VL	0.82	Serias consecuencias financieras de fallas de software			
DATA	L	0.90	20.000 bytes			
CPLX	L	0.87	Procesamiento comunitario			
RUSE	N	1.0	Trabajo reutilizable			
DOCU	N	1.0	Documentación adecuada			
TIME	N	1.0	Utilizará 70% del tiempo disponible			
STOR	N	1.0	45k de 64k store(70%)			
PVOL	L	0.87	Basado en hardware de microprocesador comercial			
ACAP	Н	0.85	Buenos analistas			
PCAP	Н	0.88	Buenos programadores			
PCON	Н	0.90	Continuidad del personal			
APEX	Н	0.88	Seis meses			
PLEX	VH	0.85	Tres años			
LTEX	Н	0.91	Doce meses			
TOOL	Н	0.90	A nivel básico de herramienta de minicomputadora			
SITE	XH	0.80	Desarrollo en diferentes sitios			
SCED	N	1.0	SCED nueve meses			
	Multipliers	0.184				

Esfuerzo de desarrollo estimado (Estima estimado para el software de tutorías con esfuerzo de desarrollo nominal (35 MM) multiplicado por el producto de los multiplicadores de esfuerzo para los 17 atributos del generador de costos (0.184). El esfuerzo estimado resultante para el proyecto es entonces

$$E = (35 \text{ MM}) (0.184) = 6 \text{ MM}.$$

 $TDEV = 2.5(6)^{0.38} = 4 \text{ months}$
 $E/T = 6/4 = 1.5 \text{ personas}$

Esfuerzo de desarrollo estimado (Estimate Development Effort): Calculando el esfuerzo de desarrollo

TABLE V COCOMO NOMINAL EFFORT AND SCHEDULE EQUATIONS

DEVELOPMENT MODE	NOMINAL EFFORT	SCHEDULE
Organic	(MM) _{NOM} = 3.2(KDSI) 1.05	TDEV = 2.5(MM _{DEV}) 0.38
Semidetached	(MM) NOM = 3.0(KDSI) 1.12	TDEV = 2.5(MM _{DEV}) 0.35
Embedded	(MM) _{NOM} = 2.8(KDSI) ^{1.20}	TDEV = 2.5(MM _{DEV}) 0.32

(KDS1 = thousands of delivered source instructions)