Nuclear Energy

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #35: Monday, Nov. 12 2018

Moment of Silence

Thermal Electricity Generation

- Coal, nuclear:
 - Heat boils water
 - Steam spins turbine
 - Turbine turns generator, makes electricity
- Thermodynamics limits efficiency
 - Coal plant: 33% efficient
 - Nuclear plant: 33% efficient
 - Advanced gas plant: 43% efficient

Kingston Fossil Plant (TN)

- 1450 megawatts
- 14,000 tons of coal per day (140 train cars)

Fuel Requirements for a 1000 MW Plant

- Coal: 10,000 tons/day (100 rail cars)
- Diesel: 40,000 barrel/day (1 tanker/week)
- Gas: 240 million cubic feet/day
- Nuclear: 3 kg/day of ²³⁵U

Watts Bar Nuclear Plant

- 2300 megawatts (two units)
- 2.3 tons enriched uranium per year

Nuclear Reactor

Getting Energy from Nuclear Fission

- Nuclear chain reactions produce lots of energy
- Natural uranium:
 - ²³⁸U (99.3%): won't fission
 - ²³⁵U (0.7%): will fission
 - Must enrich natural uranium:
 - Reactor fuel: 3–5% ²³⁵U
 - Bomb: >80% ²³⁵U
 - 1 ounce enriched uranium produces as much heat as 2–3 tons coal

Getting Energy from Nuclear Fission

- Nuclear chain reactions produce lots of energy
- Natural uranium:
 - ²³⁸U (99.3%): won't fission
 - ²³⁵U (0.7%): will fission
 - Must enrich natural uranium:
 - Reactor fuel: 3–5% ²³⁵U
 - Bomb: >80% ²³⁵U
 - 1 ounce enriched uranium produces as much heat as 2–3 tons coal
- Other fissionable substances:
 - 239Pu (plutonium)
 - Can be produced by hitting ²³⁸U with a neutron
 - Byproduct of uranium chain reactions
 - Breeder reactors
 - **233**
 - Produced by hitting ²³²Th with a neutron
 - Thorium reactors

Feasibility of Nuclear Power

Feasibility of Nuclear Power

- Nuclear is much safer than coal or gas
 - Properly operating coal power plants in the U.S. alone kill more people in one month than all the nuclear reactor accidents in history in the entire world.
- The biggest challenges are:
 - Irrational public fear
 - Cost
 - In early 2000s, forecast of "nuclear renaissance"
 - Costs of natural gas, wind, and solar fell much faster than anyone imagined
 - New nuclear plants went way over-budget, behind schedule
 - Investor fears:
 - Costs of nuclear much less predictable than other technologies
 - Accidents are far more costly than other technologies

Industry View

Exelon, the nation's biggest nuclear utility, with 17 plants, estimates that new nuclear plants are more expensive than any other energy source except [solar] photovoltaic.

—Washington Post, 3/16/2011

Investor View

Wall Street learned [from Three-Mile Island] that a group of licensed operators no worse than any other could transform a billiondollar asset into a two billion dollar clean-up in ninety minutes —Peter A. Bradford, Former Commissioner, Nuclear Regulatory Commission Senate Testimony 3/24/2009

Recent Trends in Nuclear

Recent Trends

New Power Plants for 2018-2019

Power Plants Retiring in 2018–2019

Trends in Electricity

Growth Rates

Coal	Gas	Nuclear	Hydro	Renewables
-5.3%	4.8%	0.0%	0.3%	13.0%

Promise for Nuclear

Promise for Nuclear

- China, Russia, and India are investing heavily in nuclear:
 - 19 reactors under construction in China, 7 in Russia, 6 in India
- Private sector is investing heavily:
 - 30 research and development projects
 - \$1.3 billion in private investment
 - TerraPower (founded by Bill Gates)
 - Interest in standardized small modular reactors (SMR)
 - Intrinsically safe
 - Benefits of mass production: learning, economies of scale
 - Many sites don't need 1000–2000 megawatts

Challenges for Nuclear

- Currently nuclear is very expensive
- But as renewables become a greater fraction of all power, intermittency becomes a greater, more expensive challenge.
- Fear is a great challenge.