HOG

2018/9/2

JunYu Wang

1. HOG

Histogram of Oriented Gradients

计算出每一个像素的梯度大小和梯度方向,主要刻画出图像的 lines & corners 等 useful 的信息,并且忽略颜色等 extraneous 的信息

2. 计算 HOG

Step1. At every pixel, the gradient has a magnitude and a direction. For color images, the gradients of the three channels are evaluated (as shown in the figure above). The magnitude of gradient at a pixel is the maximum of the magnitude of gradients of the three channels, and the angle is the angle corresponding to the maximum gradient.

Step2. In this step, the image is divided into 8×8 cells and a histogram of gradients is calculated for each 8×8 cells. An 8×8 image patch contains 8x8x3 = 192 pixel values. The gradient of this patch contains 2 values (magnitude and direction) per pixel which adds up to 8x8x2 = 128 numbers. By the end of this section we will see how these 128 numbers are represented using a 9-bin histogram which can be stored as an array of 9 numbers. (The number of bins is chosen by ourselves)

Step3. Normalization 由于光线等等的影响, magnitude 可能会有不同。因此我们使用

normalization to "normalize" the histogram so they are not affected by lighting variations. 前面提到,我们把图片切成 8×8 的像素 block。接着我们用 16×16 的 kernel 滑动。因此原本的 9 个 bin 的向量就会变成 36 长度的向量,并被我们 normalize

- E. g. [128, 64, 32] $\sqrt{128^2+64^2+32^2}=164.64$ 正则化处理后得到[0.87, 0.43, 0.22]
 - 1. How many positions of the 16×16 blocks do we have? There are 7 horizontal and 15 vertical positions making a total of $7 \times 15 = 105$ positions.
- 2. Each 16×16 block is represented by a 36×1 vector. So when we concatenate them all into one gaint vector we obtain a $36 \times 105 = 3780$ dimensional vector. 这样就得到了我们的 HOG feature

