

GENIVI GNSSService

Component Specification

Release 5.0.0 Status: Released 26.01.2017

Accepted for release by:

Approved by the GENIVI expert group Location Based Services (LBS) and the GENIVI system architecture team (SAT).

Abstract:

This document describes the API 5.0.0 of the GNSSService Abstract Component.

Keywords:

GNSSService, GNSS, GPS, Positioning API.

SPDX-License-Identifier: CC-BY-SA-4.0

Copyright © 2012, BMW Car IT GmbH, Continental Automotive GmbH, PCA Peugeot Citroën, XS Embedded GmbH

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Table of Contents

Chai	nge History	4
1.	Introduction	5
2.	Terminology	6
3.	Requirements	7
1.	Requirements Diagram	7
	AGPS Support	9
	Forward a Set of Sensor Values	9
	Provides Data via IPC	9
	Support of different Global Navigation Satellite Systems (GNSS) to calculate the current	
	position.	
	Accelerator Sensor	9
	Access to Sensor Services	10
	Car Configuration Data	10
	Data Latency for GNSS and DR Signals	10
	Enhanced Position	11
	Extended Acceleration Sensor	11
	Extended GNSS Service	11
	Extended Gyroscope Sensor Service	12
	GNSS Service	12
	PPS Signal	12
	Inclination Sensor	13
	Odometer Sensor	13
	ReverseGear Sensor	13
	Sensor Directory	13
	Sensor Meta-Data	14
	Sensor Signal Timestamp	14
	Signal Measurement Units	14
	Signal Values Type Compatibility	15
	Simple Gyroscope Sensor Service	15
	Slip Angle Sensor	15
	SteeringAngle Sensor	15
	Vehicle State Sensor	16
	VehicleSpeed Sensor	16
	Wheel Tick/Speed Sensor Service	16
4.	Architecture	17
1.	GNSSService	17
2.	GNSSService Diagram	17
3.		
4	Context Diagram	. 19

Change History

Version	Date	Author	Change
0.1	27.08.2013	M. Residori	Document Created
0.2	18.11.2013	M. Residori	Document generated from the GENIVI Enterprise
			Architect model
0.3	27.03.2014	M. Residori	Added copyright notes
3.0.0-alpha	24.04.2014	M. Residori	Changed license version from 3.0 to 4.0
3.0.0-alpha	10.12.2014	M. Residori	Updated API description
3.0.0	20.01.2015	M. Residori	Changed document status to "Released" (after
			System Architecture Team approval)
3.0.0	01.04.2015	H. Schmidt	Updated approval note on title page
4.0.0-alpha	16.12.2015	M. Residori	Updated API description
4.0.0	25.01.2016	M. Residori	Release 4.0.0
5.0.0	26.01.2017	H.Schmidt	Release 5.0.0
		M. Residori	

1. Introduction

This document describes the API of the GNSSService component.

The GNSSService is a component that abstracts the access to GNSS devices (e.g. GPS receivers).

It hides hardware and software dependencies on specific GNSS devices and their drivers.

In systems that implements the EnhancedPositionService component, the GNSSService is typically provided as a C library that is dynamically linked by the EnhancedPositionService.

2. Terminology

Term	Description
GNSS	Global Navigation Satellite System

3. Requirements

1. Requirements Diagram

This diagram shows an overview of all requirements in the area of positioning.

The requirements are organized in four groups:

- 1. SW-POS: general requirements
- 2. SW-GNSS: requirements related to the GNSS receiver
- 3. SW-SNS: requirements related to the vehicle sensors
- 4. SW-ENP: requirements related to enhanced positioning

Figure: 1

AGPS Support

«GFunctionalRequirement» Priority: Medium

Description:

The software platform provides the possibility to inject AGPS "Assisted GPS" data to the GPS device.

Rationale:

This allows to speed up the time to get a valid (fixed) GPS position.

Forward a Set of Sensor Values

«GFunctionalRequirement» Priority: Medium

Description:

The Enhanced Position contains in addition to the Position and Course values as well a set of sensor data.

- yawRate in degrees per second
- filter status
- accuracy information in form of sigma values for every direction [m] and the covariance between latitude and longitude in m^2.
- number of used, tracked and visible satellites.

Rational:

Some clients (e.g. Map Matcher) needs the basic DR filtered position specific sensor values as additional input for the decision algorithm.

Provides Data via IPC

«GFunctionalRequirement» Priority: Medium

Description:

The enhanced position is accessible for multiple clients on the platform at the same time.

An IPC is used to deliver to the clients the Enhanced Position data fields.

Rational:

Several SW components in the system are clients for the result of the filtered position and need to access the data.

Support of different Global Navigation Satellite Systems (GNSS) to calculate the current position.

«GFunctionalRequirement» Priority: Medium

The interfaces are defined in such a way that client applications don't need to know the details of the GNSS in use (e.g. GPS, Galileo, GLONASS, Compass).

Accelerator Sensor

«GFunctionalRequirement» Priority: Medium

Description:

The software platform provides a sensor, which delivers the vehicle acceleration in the driving direction (x Axis, see reference system). The sensor value is delivered in m/s^2. Sensor value of temperature near the sensor is optional.

Configuration data about placement and orientation of the sensor can be provided optionally.

Rational:

Used for optimizing the dead reckoning solution.

Access to Sensor Services

«GFunctionalRequirement» Priority: Medium

Description:

The software platform delivers signals to multiple client applications concurrently by the Sensor Service.

Rational:

This allows for multiple Client Applications to share a single Sensor.

Car Configuration Data

«GFunctionalRequirement» Priority: Medium

Description:

The software platform provides car configuration data, that contains general vehicle details (e.g. physical dimensions of car, distance of axis, driven axis, etc).

Sensor related configuration data depends on the specific sensor requirements (e.g. position of sensor) and is included with the specific sensors.

- Position of center of gravity
- Position of front and rear axle
- driven axles
- seat count
- vehicle mass
- vehicle width
- track width

Rational:

DR module needs the detailed information for more accurate calculations.

Data Latency for GNSS and DR Signals

«GNonFunctionalRequirement» Priority: Medium

Description:

The software platform provides the signals of the GNSS, Extended GNSS and enhanced position in less than 300 ms after acquisition.

Rational:

This guarantees that the tracked current position does not deviate much from the actual position.

Enhanced Position

«GFunctionalRequirement» Priority: Medium

Description:

The software platform delivers the filtered (i.e. combined GNSS and vehicle sensor) position as the Enhanced Position, which is the result of the dead reckoning calculation. The Enhanced Position contains:

- Position expressed as WGS 84 longitude and latitude (unit is tenth of microdegree (degree x 10^-7^))
- the Altitude 'above mean sea level' in meters (corrected by GeoID)
- Heading in degrees relative to the true north
- Climb
- Speed in meters per seconds, positive in the forward direction

Rational:

Other SW-components on the same platform want to access the improved GNSS position, which is calculated by a dead reckoning algorithm.

Extended Acceleration Sensor

«GFunctionalRequirement» Priority: Low

Description:

The software platform provides a sensor, which provides the acceleration on the additional axis y (left-side) and z (up).

The position of the sensor in 3D space in relation to the reference point is given. The angles of the sensor can be specified in the car configuration data. The standard deviations for the sensors can be specified for each axis.

Rational:

Used for optimizing the dead reckoning solution.

Extended GNSS Service

«GFunctionalRequirement» Priority: Medium

Description:

The software platform provides an extension to the GNSS Service with optional information.

Accuracy:

- fixStatus
- hdop, pdop, vdop
- numberOfSatellites
- sigmaLatitude, sigmaLongitude, sigmaAltitude

Satellite Details:

- Information per satellite: azimuth, elevation, inUse, SatelliteId, signalNoiseRatio

Course Details:

- speed for 3-axis

Antenna:

- Antenna Position in 3D coordinates in relation to the reference point (see reference system).

Updated at least with 1Hz frequency additionally to the Signals provided by GNSS-Only Service.

The GNSS Service should provide the capability to switch between different GNSS-Devices (e.g. Galileo, GPS, etc)

Rational:

These data are used for improved positioning based on GNSS.

Extended Gyroscope Sensor Service

«GFunctionalRequirement» Priority: Low

Description:

The software platform includes the sensor that delivers

- pitch rate
- roll rate

This sensor values extend the simple gyroscope sensor.

Sign of is defined by rule of right hand (thumb direction: left and front, see reference system). Car configuration data need to provide position angles according to vehicle reference system.

Rational:

This Sensor Service is used in Dead Reckoning calculations of the vehicle position.

GNSS Service

«GFunctionalRequirement» Priority: High

Description:

The software platform includes a service that provides the following GNSS Signals updated at least with 1Hz frequency:

Position:

- position expressed as WGS 84 altitude, longitude and latitude in tenth of microdegree (degree x 10^-7^)

Course:

- speed in meters per second
- climb
- heading relative to true north expressed in degrees

Timestamp and date as UTC.

Rational:

These data are contained in NMEA 0183 \$GPGGA and \$GPRMC messages and provide the minimum information required for GNSS-only vehicle positioning.

PPS Signal

«GFunctionalRequirement» Priority: Medium

Description:

1) For accurate timing the 1 PPS (pulse per second) signal from the GPS receiver is provided within the positioning framework.

The PPS is a hardware signal which is a UTC synchronized pulse.

The duration between the pulses is 1s +/- 40ns and the duration of the pulse isconfigurable (e.g. it could be

100ms or 200ms).

The pulses occur exactly at the UTC full second timeslots.

2) One option is to provide this signal in the positioning framework as an interrupt service routine and the difference to the system time can be accessed by a getter. This provides a synchronization of the system time to UTC.

Rationale:

Used for synchronizing the timing of the ECU.

Inclination Sensor

«GFunctionalRequirement» Priority: Low

Description:

The software platform provides the inclination of the road in longitudinal direction, i.e. in the direction of movement [°]. Estimated gradient of the road in transverse direction [°]. In unstable driving situations this value might not be available.

Rational:

This Sensor is used for optimizations in Dead Reckoning calculations of the vehicle position.

Odometer Sensor

«GFunctionalRequirement» Priority: Medium

Description:

The software platform includes a Sensor that delivers the traveled distance.

Distance in [cm] with at least 5Hz as a running counter with overflow to support multiple clients.

Rational:

Odometer is sometimes the only speed related Signal available to the head unit.

ReverseGear Sensor

«GFunctionalRequirement» Priority: Medium

Description:

The software platform includes a Sensor that delivers the information if the reverse gear is enabled or not.

Rational

The direction of movement is included in the vehicle speed. This information is only used to detect reverse gear or not.

Sensor Directory

«GFunctionalRequirement» Priority: Medium

Description:

Client Applications are able to query what Sensors are currently available.

Rational:

This allows for development of flexible applications that do not know what sensor data are available in the vehicle a priori. Client shall checks first this directory to find out which ones are available; use meta-data to choose one of interest and use provided data to connect to necessary services.

Sensor Meta-Data

«GFunctionalRequirement» Priority: High

Description:

The software platform provides the following information about the Sensor and the related output Signals:

- Sensor Identifier that is unique within the system
- Sensor Category (Physical/Logical)
- Sensor Type (GPS, Odometer, Map Matching, etc.)
- Sensor Sub-Type (ordinary GPS, differential GPS, etc.)
- Output Signals (Longitude, Latitude, Course, Speed, etc.)
- Output Signal Sampling Frequency (1 Hz, 10 Hz, irregular, etc.)
- Output Signal Measurement Units (kilometers per hour; meters per second; etc.)

Rational:

Sensor clients need that information in order to correctly handle data provided by sensor service and to adapt to the variation in the signal data delivery.

Sensor Signal Timestamp

«GFunctionalRequirement» Priority: High

Description:

The software platform provides for each sample returned by the Sensor Service the timestamp, when it is accompanied. The timestamp corresponds to the time point of the sample acquisition or calculation. Timestamps are derived from the same clock that is accessible to the Client Applications.

Timestamp is delivered with a accuracy of milliseconds.

Rational:

Measurement timestamps are important for proper functioning of most processing algorithms. For instance, algorithms for sensor calibration and dead reckoning typically use data from multiple sensors in conjunction, e.g. logical sensor.

Signal Measurement Units

«GFunctionalRequirement» Priority: High

Description:

The software platform delivers signal values in universal, implementation independent units. It's preferred to use SI-units.

For example, a gyroscope signal should be measured in millidegrees per second instead of A/D converter counts.

Rational:

This decouples the client applications from the implementation details of individual sensor devices.

Signal Values Type Compatibility

«GFunctionalRequirement» Priority: Medium

Description:

All Sensor Services that provide Signals referring to the same physical quantity deliver their data in the same format (including API signatures, data type and measurement units). However, sampling frequency, accuracy etc. can differ.

Rational:

Sensor service clients are able to use multiple Sensor Services without changes in the interfaces.

Simple Gyroscope Sensor Service

«GFunctionalRequirement» Priority: Medium

Description:

The software platform includes the Sensor that delivers

- yaw rate: the rate of the vehicle heading change

-temperature

- status:(temperature compensated or not, etc)

at the frequency of at least 5Hz. Unit of yaw rate is "degrees per second".

Sign of yaw rate is defined by rule of right hand (thumb direction: up) (see reference system)

Rational:

This Sensor Service is used in Dead Reckoning calculations of the vehicle position.

Slip Angle Sensor

«GFunctionalRequirement» Priority: Low

Description:

Platform provides a sensor, which delivers the value slip angle in degrees [°]. It is defined as the angle between the fixed car axis (direction of driving) and the real direction of vehicle movement. The direction and sign is defined equal to the yaw rate (See reference system).

Rational:

This Sensor is used for optimizations in Dead Reckoning calculations of the vehicle position.

SteeringAngle Sensor

«GFunctionalRequirement» Priority: Low

Description:

This sensor provides the angles of the front and rear wheels and the steering wheel in degrees. Configuration values can be provided for sigmas and steering ratio.

Rational:

Is used as additional element for plausibilisation of the yaw rate in the dead reckoning module.

Vehicle State Sensor

«GFunctionalRequirement» Priority: Low

Description:

The software platform provides a sensor, giving the state of certain vehicle systems:

ABS: on/off ESP: on/off

ASC: on/off (stability control)

breaks: on/off

Rational:

This Sensor is used for optimizations in Dead Reckoning calculations of the vehicle position.

VehicleSpeed Sensor

«GFunctionalRequirement» Priority: Medium

Description:

The software platform includes a Sensor that delivers the vehicle speed. Filtered vehicle speed in [m/s] with a frequency of at least 5Hz. Direction is given by the sign of this value.

Rational:

Vehicle speed is sometimes the only speed related signal available to the head unit.

Wheel Tick/Speed Sensor Service

«GFunctionalRequirement» Priority: Medium

Description:

The software platform provides a Sensor that delivers the running counter of partial wheel revolutions at the frequency of at least 5Hz or the already calculated wheelspeed (speed in [m/s] or angular speed).

The resolution of a single wheel revolution (i.e. the number of ticks per revolution) is included with the Sensor Service meta-data.

This identifiers specify the wheel of measurement:

- 0: Average of non driven axle
- 1: Left front wheel
- 2: Right front wheel
- 3: Left rear wheel
- 4: Right rear wheel

Unit: [ticks].

Rational:

This Sensor typically registers 'ticks' from a wheel, adds them up and sends to the vehicle bus with a certain interval. The number of 'ticks' per complete wheel revolution is known in advance. In some cases, the data from multiple wheels are averaged. Other implementations send the already precalculated speed per wheel or axle, which is a valid replacement for most use cases.

4. Architecture

1. GNSSService

The GNSSService is a component that abstracts the access to GNSS devices (e.g. GPS receivers).

It hides hardware and software dependencies on specific GNSS devices and their drivers.

2. GNSSService Diagram

This diagram shows the GNSSService and its interfaces.

Figure: 2

3. Traceability Diagram

This diagram shows the software platform requirements and the use case realizations associated to the GNSSService.

Figure: 3

4. Context Diagram

This diagram shows how the GNSSService component interacts with the SensorsService and the EnhancedPositionService.

Figure: 4

GNSSService

Generated by Doxygen 1.8.9.1

Thu Jan 26 2017 00:58:32

Contents

1	Clas	s Docu	umentation	2
	1.1	TGNS	SSConfiguration Struct Reference	. 2
		1.1.1	Detailed Description	. 2
		1.1.2	Member Data Documentation	. 2
	1.2	TGNS	SSDistance3D Struct Reference	. 2
		1.2.1	Detailed Description	. 2
		1.2.2	Member Data Documentation	. 3
	1.3	TGnss	sMetaData Struct Reference	. 3
		1.3.1	Detailed Description	. 3
		1.3.2	Member Data Documentation	. 3
	1.4	TGNS	SSPosition Struct Reference	. 4
		1.4.1	Detailed Description	. 4
		1.4.2	Member Data Documentation	. 5
	1.5	TGNS	SSSatelliteDetail Struct Reference	. 6
		1.5.1	Detailed Description	. 7
		1.5.2	Member Data Documentation	. 7
	1.6	TGNS	SSStatus Struct Reference	. 7
		1.6.1	Detailed Description	. 8
		1.6.2	Member Data Documentation	. 8
	1.7	TGNS	SSTime Struct Reference	. 8
		1.7.1	Detailed Description	. 9
		1.7.2	Member Data Documentation	. 9
2	File	Docum	nentation	10
_	2.1		init.h File Reference	
		_	Macro Definition Documentation	
		2.1.2	Function Documentation	
	2.2		meta-data.h File Reference	
		2.2.1	Enumeration Type Documentation	
		2.2.2	Function Documentation	
	2.3	anss-s	status.h File Reference	
		2.3.1	Typedef Documentation	
		2.3.2	Enumeration Type Documentation	
		2.3.3	Function Documentation	
	2.4		n File Reference	
	<u></u>	2.4.1	Typedef Documentation	
		2.4.2	Enumeration Type Documentation	
		2.4.3	Function Documentation	

Index 25

1 Class Documentation

1.1 TGNSSConfiguration Struct Reference

```
#include <gnss.h>
```

Public Attributes

- TGNSSDistance3D antennaPosition
- uint32_t supportedSystems
- uint32_t validityBits

1.1.1 Detailed Description

Static configuration data related to the GNSS service.

1.1.2 Member Data Documentation

1.1.2.1 TGNSSDistance3D TGNSSConfiguration::antennaPosition

GNSS antenna position relative to the vehicle reference point.

1.1.2.2 uint32_t TGNSSConfiguration::supportedSystems

Bit mask indicating the satellite systems which are supported by the GNSS hardware [bitwise or'ed EGNSSSystem values].

1.1.2.3 uint32_t TGNSSConfiguration::validityBits

Bit mask indicating the validity of each corresponding value. [bitwise or'ed EGNSSConfigValidityBits values]. Must be checked before usage.

The documentation for this struct was generated from the following file:

· gnss.h

1.2 TGNSSDistance3D Struct Reference

```
#include <gnss.h>
```

Public Attributes

- float x
- float y
- float z

1.2.1 Detailed Description

3 dimensional distance used for description of geometric descriptions within the vehicle reference system.

The vehicle axis system as defined in ISO 8855:2011(E). In this system, the axes (Xv, Yv, Zv) are oriented as follows

- · Xv is in the horizontal plane, pointing forwards
- · Yv is in the horizontal plane, pointing to the left
- Zv is perpendicular to the horizontal plane, pointing upwards For an illustration, see https://collab.← genivi.org/wiki/display/genivi/LBSSensorServiceRequirementsBorg#LBS← SensorServiceRequirementsBorg-ReferenceSystem

The reference point of the vehicle lies underneath the center of the rear axle on the surface of the road.

1.2.2 Member Data Documentation

1.2.2.1 float TGNSSDistance3D::x

Distance in x direction in [m] according to the reference coordinate system.

1.2.2.2 float TGNSSDistance3D::y

Distance in y direction in [m] according to the reference coordinate system.

1.2.2.3 float TGNSSDistance3D::z

Distance in z direction in [m] according to the reference coordinate system.

The documentation for this struct was generated from the following file:

• gnss.h

1.3 TGnssMetaData Struct Reference

```
#include <gnss-meta-data.h>
```

Public Attributes

- uint32_t version
- · EGnssCategory category
- uint32_t typeBits
- uint32_t cycleTime
- uint16 t numChannels

1.3.1 Detailed Description

The software platform provides the following information about the GNSS output signals. GNSS clients need the meta data information in order to correctly handle data provided by GNSS service and to adapt to the variation in the signal data delivery.

1.3.2 Member Data Documentation

1.3.2.1 EGnssCategory TGnssMetaData::category

GNSS Category (Physical/Logical).

1.3.2.2 uint32_t TGnssMetaData::cycleTime

GNSS cycle time (update interval) in ms. 0 for irregular updates

1.3.2.3 uint16_t TGnssMetaData::numChannels

Number of GNSS receiver channels for satellite signal reception.

1.3.2.4 uint32_t TGnssMetaData::typeBits

GNSS Type: combination of bits defined in EGnssTypeBits.

1.3.2.5 uint32_t TGnssMetaData::version

Version of the GNSS service.

The documentation for this struct was generated from the following file:

· gnss-meta-data.h

1.4 TGNSSPosition Struct Reference

```
#include <gnss.h>
```

Public Attributes

- uint64 t timestamp
- · double latitude
- · double longitude
- · float altitudeMSL
- float altitudeEll
- float hSpeed
- float vSpeed
- · float heading
- float pdop
- · float hdop
- float vdop
- uint16_t usedSatellites
- uint16_t trackedSatellites
- uint16_t visibleSatellites
- float sigmaHPosition
- · float sigmaAltitude
- float sigmaHSpeed
- float sigmaVSpeed
- · float sigmaHeading
- EGNSSFixStatus fixStatus
- uint32_t fixTypeBits
- uint32_t activatedSystems
- uint32_t usedSystems
- uint16_t correctionAge
- uint32_t validityBits

1.4.1 Detailed Description

GNSS position data including velocity, status and accuracy. This data structure provides all GNSS information which is typically needed for positioning applications such as GNSS/Dead Reckoning sensor fusion.

Note: For an optimum sensor fusion with vehicle and inertial sensors, the velocity vector (hSpeed, vSpeed, heading) is preferred to be low latency or instantaneous velocity output from the GNSS chipset. This may require a specific configuration of the GNSS chipset which is out of the scope of this API.

1.4.2 Member Data Documentation

1.4.2.1 uint32_t TGNSSPosition::activatedSystems

Bit mask indicating the satellite systems that are activated for use [bitwise or'ed EGNSSSystem values].

1.4.2.2 float TGNSSPosition::altitudeEll

Altitude above WGS84 ellipsoid in [m].

1.4.2.3 float TGNSSPosition::altitudeMSL

Altitude above mean sea level (geoid) in [m].

1.4.2.4 uint16_t TGNSSPosition::correctionAge

Age of used correction data in [s]. Note: The kind of used correction data is identified by the corresponding bit in fixTypeBits.

1.4.2.5 EGNSSFixStatus TGNSSPosition::fixStatus

Value representing the GNSS mode.

1.4.2.6 uint32_t TGNSSPosition::fixTypeBits

Bit mask indicating the sources actually used for the GNSS calculation. [bitwise or'ed EGNSSFixType values].

1.4.2.7 float TGNSSPosition::hdop

The horizontal (2D) dilution of precision.

1.4.2.8 float TGNSSPosition::heading

GNSS course angle [degree] (0 => north, 90 => east, 180 => south, 270 => west, no negative values).

1.4.2.9 float TGNSSPosition::hSpeed

Horizontal speed [m/s], in direction as given by heading.

1.4.2.10 double TGNSSPosition::latitude

Latitude in WGS84 in [degree].

1.4.2.11 double TGNSSPosition::longitude

Longitude in WGS84 in [degree].

1.4.2.12 float TGNSSPosition::pdop

The positional (3D) dilution of precision. [Note: $pdop^2 = hdop^2 + vdop^2$]

1.4.2.13 float TGNSSPosition::sigmaAltitude

Standard error estimate of altitude in [m].

1.4.2.14 float TGNSSPosition::sigmaHeading

Standard error estimate of horizontal heading/course in [degree].

1.4.2.15 float TGNSSPosition::sigmaHPosition

Standard error estimate of the horizontal position in [m].

1.4.2.16 float TGNSSPosition::sigmaHSpeed

Standard error estimate of horizontal speed in [m/s].

1.4.2.17 float TGNSSPosition::sigmaVSpeed

Standard error estimate of vertical speed in [m/s].

1.4.2.18 uint64_t TGNSSPosition::timestamp

Timestamp of the acquisition of the GNSS data [ms]. All sensor/GNSS timestamps must be based on the same time source.

1.4.2.19 uint16_t TGNSSPosition::trackedSatellites

Number of satellites from which a signal is received.

1.4.2.20 uint16_t TGNSSPosition::usedSatellites

Number of satellites used for the GNSS fix.

1.4.2.21 uint32_t TGNSSPosition::usedSystems

Bit mask indicating the satellite systems that are actually used for the position fix [bitwise or'ed EGNSSSystem values].

1.4.2.22 uint32_t TGNSSPosition::validityBits

Bit mask indicating the validity of each corresponding value. [bitwise or'ed EGNSSPositionValidityBits values]. Must be checked before usage.

1.4.2.23 float TGNSSPosition::vdop

The vertical (altitude) dilution of precision.

1.4.2.24 uint16_t TGNSSPosition::visibleSatellites

Number of satellites expected to be receivable, i.e. above horizon or elevation mask.

1.4.2.25 float TGNSSPosition::vSpeed

Vertical speed [m/s]. A positive value indicates an upwards movement, i.e. an ascending altitude.

The documentation for this struct was generated from the following file:

• gnss.h

1.5 TGNSSSatelliteDetail Struct Reference

```
#include <gnss.h>
```

Public Attributes

- uint64_t timestamp
- EGNSSSystem system
- uint16_t satelliteld
- uint16 t azimuth
- uint16 t elevation
- uint16_t CNo

- · uint32_t statusBits
- · int16_t posResidual
- · uint32_t validityBits

1.5.1 Detailed Description

Detailed data from one GNSS satellite.

1.5.2 Member Data Documentation

1.5.2.1 uint16_t TGNSSSatelliteDetail::azimuth

Satellite Azimuth in degrees. Value range 0..359

1.5.2.2 uint16_t TGNSSSatelliteDetail::CNo

C/No (SNR) in dBHz. Range 0 to 99, 0 when not tracking

1.5.2.3 uint16_t TGNSSSatelliteDetail::elevation

Satellite Elevation in degrees. Value range 0..90

1.5.2.4 int16_t TGNSSSatelliteDetail::posResidual

Residual in m of position calculation. Range -999 to +999, 0 if not tracking

1.5.2.5 uint16_t TGNSSSatelliteDetail::satelliteId

Satellite ID. Satellite IDs are only unique within one satellite system. Satellites of different systems can be distinguished by TGNSSSatelliteDetail::system. Ranges: 1..32: GPS satellites (by PRN) 33..64: SBAS/WAA Satellites 65..96: GLONASS satellites 1..64: GALILEO satellites, see Galileo OS SIS ICD, http://www.cogsc-europa.eu/gnss-markets/segments-applications/os-sis-icd.

1.5.2.6 uint32_t TGNSSSatelliteDetail::statusBits

Bit mask of additional status flags. [bitwise or'ed EGNSSSatelliteFlag values].

1.5.2.7 EGNSSSystem TGNSSSatelliteDetail::system

Value representing the GNSS system.

1.5.2.8 uint64_t TGNSSSatelliteDetail::timestamp

Timestamp of the acquisition of the satellite detail data [ms]. All sensor/GNSS timestamps must be based on the same time source.

1.5.2.9 uint32_t TGNSSSatelliteDetail::validityBits

Bit mask indicating the validity of each corresponding value. [bitwise or'ed EGNSSSatelliteDetailValidityBits values]. Must be checked before usage.

The documentation for this struct was generated from the following file:

• gnss.h

1.6 TGNSSStatus Struct Reference

#include <gnss-status.h>

Public Attributes

- uint64_t timestamp
- · EGNSSStatus status
- · EGNSSAntennaStatus antStatus
- uint32_t validityBits

1.6.1 Detailed Description

Container for GNSS status information

1.6.2 Member Data Documentation

1.6.2.1 EGNSSAntennaStatus TGNSSStatus::antStatus

Status of the GNSS antenna

1.6.2.2 EGNSSStatus TGNSSStatus::status

Status of the GNSS receiver

1.6.2.3 uint64_t TGNSSStatus::timestamp

Timestamp of the GNSS status transition [ms]. All sensor/GNSS timestamps must be based on the same time source.

```
1.6.2.4 uint32_t TGNSSStatus::validityBits
```

Bit mask indicating the validity of each corresponding value. [bitwise or'ed EGNSSStatusValidityBits values]. Must be checked before usage.

The documentation for this struct was generated from the following file:

· gnss-status.h

1.7 TGNSSTime Struct Reference

```
#include <gnss.h>
```

Public Attributes

- uint64_t timestamp
- uint16_t year
- uint8_t month
- uint8_t day
- uint8_t hour
- uint8 t minute
- uint8_t second
- uint16_t ms
- EGNSSTimeScale scale
- · int8_t leapSeconds
- · uint32_t validityBits

1.7.1 Detailed Description

Provides the current date and time according UTC (Coordinated Universal Time) Note: the uncommon numbering of day and month is chosen to be compatible with the struct tm from the standard C-Library

1.7.2 Member Data Documentation

1.7.2.1 uint8_t TGNSSTime::day

Day of month fraction of the UTC time. Unit: [day]. Number between 1 and 31

1.7.2.2 uint8_t TGNSSTime::hour

Hour fraction of the UTC time. Unit: [hour] Number between 0 and 23

1.7.2.3 int8_t TGNSSTime::leapSeconds

Number of leap seconds, i.e. difference between GPS time and UTC. Unit: [seconds]. Note: value before 01-July-2015: 16; from 01-July-2015: 17; further changes possible.

1.7.2.4 uint8_t TGNSSTime::minute

Minute fraction of the UTC time. Unit: [minutes] Number between 0 and 59

1.7.2.5 uint8_t TGNSSTime::month

Month fraction of the UTC time. Unit: [month] Number betweeen 0 and 11

1.7.2.6 uint16_t TGNSSTime::ms

Millisecond fraction of the UTC time. Unit: [milliseconds] Number between 0 and 999

1.7.2.7 EGNSSTimeScale TGNSSTime::scale

Time scale used: UTC or GPS.

1.7.2.8 uint8_t TGNSSTime::second

Second fraction of the UTC time. Unit: [seconds] Number between 0 and 59. In case of a leap second this value is 60.

1.7.2.9 uint64_t TGNSSTime::timestamp

Timestamp of the acquisition of the UTC date/time [ms]. All sensor/GNSS timestamps must be based on the same time source.

1.7.2.10 uint32_t TGNSSTime::validityBits

Bit mask indicating the validity of each corresponding value. [bitwise or'ed EGNSSTimeValidityBits values]. Must be checked before usage.

1.7.2.11 uint16_t TGNSSTime::year

Year fraction of the UTC time. Unit: [year] Number equivalent to the year (4 digits)

The documentation for this struct was generated from the following file:

• gnss.h

2 File Documentation

2.1 gnss-init.h File Reference

```
#include <stdbool.h>
```

Macros

- #define GENIVI_GNSS_API_MAJOR 5
- #define GENIVI_GNSS_API_MINOR 0
- #define GENIVI_GNSS_API_MICRO 0

Functions

- bool gnssInit ()
- · bool gnssDestroy ()
- void gnssGetVersion (int *major, int *minor, int *micro)
- 2.1.1 Macro Definition Documentation
- 2.1.1.1 #define GENIVI_GNSS_API_MAJOR 5
- 2.1.1.2 #define GENIVI_GNSS_API_MICRO 0
- 2.1.1.3 #define GENIVI_GNSS_API_MINOR 0
- 2.1.2 Function Documentation
- 2.1.2.1 bool gnssDestroy ()

Destroy the GNSS service. Must be called after using the GNSS service to shut down the service.

Returns

True if shutdown has been successfull.

2.1.2.2 void gnssGetVersion (int * major, int * minor, int * micro)

GNSS services version information. This information is for the GNSS services system structure. The version information for each specific GNSS component can be obtained via the metadata.

Parameters

major	Major version number. Changes in this number are used for incompatible API change.
minor	Minor version number. Changes in this number are used for compatible API change.
micro	Micro version number. Changes in this number are used for minor changes.

2.1.2.3 bool gnssInit ()

Initialization of the GNSS service. Must be called before using the GNSS service to set up the service.

Returns

True if initialization has been successfull.

2.2 gnss-meta-data.h File Reference

```
#include <stdint.h>
```

Classes

struct TGnssMetaData

Enumerations

- enum EGnssCategory { GNSS_CATEGORY_UNKNOWN, GNSS_CATEGORY_LOGICAL, GNSS_CATE
 GORY_PHYSICAL }
- enum EGnssTypeBits {
 GNSS_TYPE_GNSS = 0x00000001, GNSS_TYPE_ASSISTED = 0x00000002, GNSS_TYPE_SBAS = 0x00000004, GNSS_TYPE_DGPS = 0x00000008,
 GNSS_TYPE_DR = 0x00000010 }

Functions

bool gnssGetMetaData (TGnssMetaData *data)

2.2.1 Enumeration Type Documentation

2.2.1.1 enum EGnssCategory

The GNSS category introduces the concept that sensor information can also be derived information computed by combining several signals.

Enumerator

GNSS_CATEGORY_UNKNOWN Unknown category. Should not be used.

GNSS_CATEGORY_LOGICAL A logical GNSS service can combine the signal of a GNSS receiver with additional sources.

GNSS_CATEGORY_PHYSICAL A physical GNSS service, i.e. a stand-alone GNSS receiver.

2.2.1.2 enum EGnssTypeBits

TGnssMetaData:typeBits provides information about the sources used for the GNSS calculation It is a or'ed bitmask of the EGnssTypeBits values.

Enumerator

GNSS_TYPE_GNSS GNSS receiver. Should always be set.

GNSS_TYPE_ASSISTED GNSS receiver with support for Assisted GNSS. E.g. ephemeris or clock data can be provided over network for faster TTFF

GNSS_TYPE_SBAS GNSS receiver with support for SBAS (satellite based augmentation system), such as WAAS, EGNOS, ...

GNSS_TYPE_DGPS GNSS receiver with support for differential GPS

GNSS_TYPE_DR GNSS receiver with built in dead reckoning sensor fusion

2.2.2 Function Documentation

2.2.2.1 bool gnssGetMetaData (TGnssMetaData * data)

Provide meta information about GNSS service. The meta data of a service provides information about it's name, version, type, subtype, sampling frequency etc.

Parameters

data	Meta data content about the sensor service.
------	---

Returns

True if meta data is available.

2.3 gnss-status.h File Reference

Classes

· struct TGNSSStatus

Typedefs

• typedef void(* GNSSStatusCallback) (const TGNSSStatus *status)

Enumerations

- enum EGNSSStatus {
 GNSS_STATUS_NOTAVAILABLE = 0, GNSS_STATUS_INITIALIZING = 1, GNSS_STATUS_AVAILABLE =
 2, GNSS_STATUS_RESTARTING = 3,
 GNSS_STATUS_FAILURE = 4, GNSS_STATUS_OUTOFSERVICE = 5 }
- enum EGNSSAntennaStatus {
 GNSS_ANT_STATUS_NORMAL = 0, GNSS_ANT_STATUS_OVERCURRENT = 1, GNSS_ANT_STATU
 S_OPEN = 2, GNSS_ANT_STATUS_SHORT_GND = 3,
 GNSS_ANT_STATUS_SHORT_BATT = 4, GNSS_ANT_STATUS_OUTOFSERVICE = 5 }

Functions

- bool gnssGetStatus (TGNSSStatus *status)
- bool gnssRegisterStatusCallback (GNSSStatusCallback callback)
- bool gnssDeregisterStatusCallback (GNSSStatusCallback callback)

2.3.1 Typedef Documentation

2.3.1.1 typedef void(* GNSSStatusCallback) (const TGNSSStatus *status)

Callback type for GNSS status. Use this type of callback if you want to register for GNSS status updates data.

Parameters

```
status the GNSS status
```

2.3.2 Enumeration Type Documentation

2.3.2.1 enum EGNSSAntennaStatus

Enumeration to describe the status of the GNSS antenna

Enumerator

GNSS_ANT_STATUS_NORMAL GNSS antenna is working in normal operation.

GNSS_ANT_STATUS_OVERCURRENT GNSS antenna is working but the antenna current is higher than expected.

GNSS_ANT_STATUS_OPEN GNSS antenna is not working because not connected (antenna current too low).

GNSS_ANT_STATUS_SHORT_GND GNSS antenna is not working due to short-circuit to ground.

GNSS_ANT_STATUS_SHORT_BATT GNSS antenna is not working due to short-circuit to battery.

GNSS_ANT_STATUS_OUTOFSERVICE GNSS antenna is temporarily not available, due to some known external condition.

2.3.2.2 enum EGNSSStatus

Enumeration to describe the status of the GNSS receiver

Enumerator

GNSS STATUS NOTAVAILABLE GNSS is not available at all, based on configuration data.

GNSS_STATUS_INITIALIZING Initial status when the connection to the GNSS is set up for the first time.

GNSS_STATUS_AVAILABLE GNSS is available and running as expected.

GNSS STATUS RESTARTING GNSS is restarted, i.e. due to communication loss.

GNSS_STATUS_FAILURE GNSS is not operating properly. Restarting did not help.

GNSS_STATUS_OUTOFSERVICE GNSS is temporarily not available, due to some known external condition, e.g. firmware update or switch off for antenna supervision.

2.3.2.3 enum EGNSSStatusValidityBits

TGNSSStatus::validityBits provides information about the currently valid signals of the TGNSSStatus struct. It is a or'ed bitmask of the EGNSSStatusValidityBits values.

Enumerator

GNSS_STATUS_VALID Validity bit for field TGNSSStatus::status.

GNSS_STATUS_ANT_STATUS_VALID Validity bit for field TGNSSStatus::antStatus.

2.3.3 Function Documentation

2.3.3.1 bool gnssDeregisterStatusCallback (GNSSStatusCallback callback)

Deregister GNSS status callback. After calling this method no new GNSS status updates will be delivered to the client.

Parameters

callback	The callback which should be deregistered.

Returns

True if callback has been deregistered successfully.

2.3.3.2 bool gnssGetStatus (TGNSSStatus * status)

Method to get the GNSS status at a specific point in time.

Parameters

status	After calling the method the current GNSS status is written into status
--------	---

Returns

Is true if data can be provided and false otherwise, e.g. missing initialization

2.3.3.3 bool gnssRegisterStatusCallback (GNSSStatusCallback callback)

Register GNSS status callback. This is the recommended method for continuously monitoring the GNSS status. The callback will be invoked when new GNSS status data is available.

Parameters

callback	The callback which should be registered.

Returns

True if callback has been registered successfully.

2.4 gnss.h File Reference

```
#include "gnss-meta-data.h"
#include <stdint.h>
#include <stdbool.h>
```

Classes

- struct TGNSSDistance3D
- struct TGNSSConfiguration
- struct TGNSSTime
- struct TGNSSSatelliteDetail
- struct TGNSSPosition

Typedefs

- typedef void(* GNSSTimeCallback) (const TGNSSTime time[], uint16 t numElements)
- typedef void(* GNSSPositionCallback) (const TGNSSPosition position[], uint16 t numElements)

Enumerations

- enum EGNSSFixStatus { GNSS_FIX_STATUS_NO, GNSS_FIX_STATUS_TIME, GNSS_FIX_STATUS_2D, GNSS_FIX_STATUS_3D }
- enum EGNSSConfigValidityBits { GNSS_CONFIG_ANTPOS_VALID = 0x00000001, GNSS_CONFIG_SA
 TSYS_VALID = 0x00000002 }
- enum EGNSSFixType {
 GNSS_FIX_TYPE_SINGLE_FREQUENCY = 0x00000001, GNSS_FIX_TYPE_MULTI_FREQUENCY = 0x00000002, GNSS_FIX_TYPE_MULTI_CONSTELLATION = 0x00000004, GNSS_FIX_TYPE_PPP = 0x00000010,
 GNSS_FIX_TYPE_INTEGRITY_CHECKED = 0x000000020, GNSS_FIX_TYPE_SBAS = 0x00001000, GN ← SS_FIX_TYPE_DGNSS = 0x00002000, GNSS_FIX_TYPE_RTK_FIXED = 0x000004000,
 GNSS_FIX_TYPE_RTK_FLOAT = 0x00008000, GNSS_FIX_TYPE_SSR = 0x00010000, GNSS_FIX_TY ← PE_ESTIMATED = 0x00100000, GNSS_FIX_TYPE_DEAD_RECKONING = 0x002000000,
 GNSS_FIX_TYPE_MANUAL = 0x10000000, GNSS_FIX_TYPE_SIMULATOR_MODE = 0x20000000) }

- enum EGNSSTimeScale { GNSS_TIME_SCALE_UTC = 0, GNSS_TIME_SCALE_GPS = 1 }
- enum EGNSSTimeValidityBits { GNSS_TIME_TIME_VALID = 0x00000001, GNSS_TIME_DATE_VALID = 0x00000002, GNSS_TIME_SCALE_VALID = 0x00000004, GNSS_TIME_LEAPSEC_VALID = 0x00000008 }
- enum EGNSSSystem {
 GNSS_SYSTEM_GPS = 0x00000001, GNSS_SYSTEM_GLONASS = 0x00000002, GNSS_SYSTEM_GA
 LILEO = 0x00000004, GNSS_SYSTEM_BEIDOU = 0x000000008,
 GNSS_SYSTEM_GPS_L2 = 0x00000010, GNSS_SYSTEM_GPS_L5 = 0x00000020, GNSS_SYSTEM_G
 LONASS_L2 = 0x00000040, GNSS_SYSTEM_BEIDOU_B2 = 0x000000080,
 GNSS_SYSTEM_SBAS_WAAS = 0x00010000, GNSS_SYSTEM_SBAS_EGNOS = 0x00020000, GNSS_SYSTEM_SBAS_MSAS = 0x00040000, GNSS_SYSTEM_SBAS_QZSS_SAIF = 0x00080000,
 GNSS_SYSTEM_SBAS_SDCM = 0x00100000, GNSS_SYSTEM_SBAS_GAGAN = 0x00200000 }
- enum EGNSSSatelliteFlag { GNSS_SATELLITE_USED = 0x00000001, GNSS_SATELLITE_EPHEMERIS ← AVAILABLE = 0x00000002 }
- enum EGNSSSatelliteDetailValidityBits {
 GNSS_SATELLITE_SYSTEM_VALID = 0x00000001, GNSS_SATELLITE_ID_VALID = 0x00000002, GNS
 S_SATELLITE_AZIMUTH_VALID = 0x00000004, GNSS_SATELLITE_ELEVATION_VALID = 0x00000008,
 GNSS_SATELLITE_CNO_VALID = 0x00000010, GNSS_SATELLITE_USED_VALID = 0x00000020, GN
 SS_SATELLITE_EPHEMERIS_AVAILABLE_VALID = 0x00000040, GNSS_SATELLITE_RESIDUAL_VAL
 ID = 0x00000080 }
- enum EGNSSPositionValidityBits {
 GNSS_POSITION_LATITUDE_VALID = 0x00000001, GNSS_POSITION_LONGITUDE_VALID = 0x00000002,
 GNSS_POSITION_ALTITUDEMSL_VALID = 0x00000004, GNSS_POSITION_ALTITUDEELL_VALID =
 0x00000008,
 GNSS_POSITION_HSPEED_VALID = 0x00000010, GNSS_POSITION_VSPEED_VALID = 0x00000020,
 GNSS_POSITION_HEADING_VALID = 0x00000040, GNSS_POSITION_PDOP_VALID = 0x00000080,
 GNSS_POSITION_HDOP_VALID = 0x00000100, GNSS_POSITION_VDOP_VALID = 0x00000200, GNS⇔
 S_POSITION_USAT_VALID = 0x00000400, GNSS_POSITION_TSAT_VALID = 0x00000800,
 GNSS_POSITION_VSAT_VALID = 0x00001000, GNSS_POSITION_SHPOS_VALID = 0x00002000, GN⇔
 SS_POSITION_SALT_VALID = 0x00004000, GNSS_POSITION_SHSPEED_VALID = 0x00008000,
 GNSS_POSITION_SVSPEED_VALID = 0x00010000, GNSS_POSITION_SHEADING_VALID = 0x00020000,
 GNSS_POSITION_STAT_VALID = 0x000100000, GNSS_POSITION_TYPE_VALID = 0x000200000,
 GNSS_POSITION_ASYS_VALID = 0x00100000, GNSS_POSITION_USYS_VALID = 0x000200000,
 GNSS_POSITION_CORRAGE_VALID = 0x000400000 }

Functions

- bool gnssGetConfiguration (TGNSSConfiguration *gnssConfig)
- bool gnssGetTime (TGNSSTime *utc)
- bool gnssRegisterTimeCallback (GNSSTimeCallback callback)
- bool gnssDeregisterTimeCallback (GNSSTimeCallback callback)
- bool gnssRegisterSatelliteDetailCallback (GNSSSatelliteDetailCallback callback)
- bool gnssDeregisterSatelliteDetailCallback (GNSSSatelliteDetailCallback callback)
- bool gnssGetPosition (TGNSSPosition *position)
- bool gnssRegisterPositionCallback (GNSSPositionCallback callback)
- bool gnssDeregisterPositionCallback (GNSSPositionCallback callback)
- bool gnssGetPrecisionTimingOffset (int32_t *delta)
- bool gnssSetGNSSSystems (uint32 t activateSystems)

2.4.1 Typedef Documentation

2.4.1.1 typedef void(* GNSSPositionCallback) (const TGNSSPosition position[], uint16_t numElements)

Callback type for GNSS position data Use this type of callback if you want to register for GNSS position data. This callback may return buffered data (numElements >1) for different reasons for (large) portions of data buffered at

startup for data buffered during regular operation e.g. for performance optimization (reduction of callback invo	oation
frequency) If the array contains (numElements >1), the elements will be ordered with rising timestamps	CallOII

Parameters

position	pointer to an array of TGNSSPosition with size numElements
numElements	allowed range: >=1. If numElements >1, buffered data are provided.

2.4.1.2 typedef void(* GNSSSatelliteDetailCallback) (const TGNSSSatelliteDetail satelliteDetail[], uint16_t numElements)

Callback type for GNSS satellite details. Use this type of callback if you want to register for GNSS satellite detail data. This callback may return buffered data (numElements >1) for different reasons for (large) portions of data buffered at startup for data buffered during regular operation e.g. for performance optimization (reduction of callback invocation frequency) If the array contains (numElements >1), the elements will be ordered with rising timestamps

Parameters

time	pointer to an array of TGNSSSatelliteDetail with size numElements
numElements	allowed range: >=1. If numElements >1, buffered data are provided.

2.4.1.3 typedef void(* GNSSTimeCallback) (const TGNSSTime time[], uint16_t numElements)

Callback type for GNSS UTC date and time. Use this type of callback if you want to register for GNSS UTC time data. This callback may return buffered data (numElements >1) for different reasons for (large) portions of data buffered at startup for data buffered during regular operation e.g. for performance optimization (reduction of callback invocation frequency) If the array contains (numElements >1), the elements will be ordered with rising timestamps

Parameters

time	pointer to an array of TGNSSTime with size numElements
numElements	allowed range: >=1. If numElements >1, buffered data are provided.

2.4.2 Enumeration Type Documentation

2.4.2.1 enum EGNSSConfigValidityBits

TGNSSConfiguration::validityBits provides information about the currently valid signals of the GNSS configuration data. It is a or'ed bitmask of the EGNSSConfigValidityBits values.

Enumerator

GNSS_CONFIG_ANTPOS_VALID Validity bit for field TGNSSConfiguration::antennaPosition. **GNSS_CONFIG_SATSYS_VALID** Validity bit for field TGNSSConfiguration::supportedSystems.

2.4.2.2 enum EGNSSFixStatus

Description of the fix status of the GNSS reveiver.

Enumerator

GNSS_FIX_STATUS_NO GNSS has no fix, i.e. position, velocity, time cannot be determined

GNSS_FIX_STATUS_TIME GNSS can only determine the time, but not position and velocity

GNSS_FIX_STATUS_2D GNSS has a 2D fix, i.e. the horizontal position can be determined but not the altitude. This implies that also velocity and time are available.

GNSS_FIX_STATUS_3D GNSS has a 3D fix, i.e. position can be determined including the altitude. This implies that also velocity and time are available.

2.4.2.3 enum EGNSSFixType

TGNSSPosition::fixTypeBits provides GNSS Fix Type indication. I.e. it identifies the sources actually used for the GNSS calculation It is a or'ed bitmask of the EGNSSFixType values. The bit values have been grouped logically

with gaps where future extensions can be foreseen Within one group, not all combinations make necessarily sense Between different groups, all combinations should make sense

Enumerator

- **GNSS_FIX_TYPE_SINGLE_FREQUENCY** GNSS satellite data are received on a single frequency. A typical example is GPS using only the C/A code on the L1 frequency. It e.g. also applies to a combined GPS(← L1)/Galileo(E1) fix since L1 and E1 share the same frequency.
- **GNSS_FIX_TYPE_MULTI_FREQUENCY** GNSS satellite data are received on a multiple frequencies. This enables the receiver to correct frequency-dependent errors such as for ionospheric delays. An example could be a GPS receiver receiving on the L1 and L2C band.
- **GNSS_FIX_TYPE_MULTI_CONSTELLATION** GNSS satellite data are received and used for the fix from more than one GNSS system. For example, the fix could be calculated from GPS and GLONASS. This is also possible for single frequency as several GNSS systems share the same frequencies.
- **GNSS_FIX_TYPE_PPP** PPP = Precise Point Positioning An improved precision is achieved without differential corrections. This is possible even for single frequency receivers, e.g. by using carrier phase tracking
- **GNSS_FIX_TYPE_INTEGRITY_CHECKED** Additional integrity checks have been done to ensure the correctness of the fix.
- **GNSS_FIX_TYPE_SBAS** SBAS = Satellite Based Augmentation System Correction data from an SBAS system such as WAAS, EGNOS, ... are taken into account
- **GNSS_FIX_TYPE_DGNSS** DGNSS = Differential GNSS Correction data from Differential GNSS is taken into account
- GNSS_FIX_TYPE_RTK_FIXED RTK = Real Time Kinematic Correction data from a RTK fixed solution is taken into account
- **GNSS_FIX_TYPE_RTK_FLOAT** RTK = Real Time Kinematic Correction data from a RTK floating solution is taken into account
- **GNSS_FIX_TYPE_SSR** SSR = State Space Representation Correction data according the SSR standard from RTCM SC104 or similar are taken into account
- GNSS_FIX_TYPE_ESTIMATED The position is propagated without additional sensor input
- **GNSS_FIX_TYPE_DEAD_RECKONING** The position is propagated with support of additional sensor input, e.g. from inertial and/or vehicle sensors
- GNSS_FIX_TYPE_MANUAL Position is set by manual input
- GNSS_FIX_TYPE_SIMULATOR_MODE Position is simulated

2.4.2.4 enum EGNSSPositionValidityBits

TGNSSPosition::validityBits provides information about the currently valid signals of the GNSS position and velocity including status and accuracy data. It is a or'ed bitmask of the EGNSSPositionValidityBits values.

Enumerator

- GNSS_POSITION_LATITUDE_VALID Validity bit for field TGNSSPosition::latitude.
- GNSS_POSITION_LONGITUDE_VALID Validity bit for field TGNSSPosition::longitude.
- GNSS_POSITION_ALTITUDEMSL_VALID Validity bit for field TGNSSPosition::altitudeMSL.
- GNSS_POSITION_ALTITUDEELL_VALID Validity bit for field TGNSSPosition::altitudeEll.
- GNSS_POSITION_HSPEED_VALID Validity bit for field TGNSSPosition::hSpeed.
- GNSS_POSITION_VSPEED_VALID Validity bit for field TGNSSPosition::vSpeed.
- GNSS_POSITION_HEADING_VALID Validity bit for field TGNSSPosition::heading.
- GNSS_POSITION_PDOP_VALID Validity bit for field TGNSSPosition::pdop.
- GNSS_POSITION_HDOP_VALID Validity bit for field TGNSSPosition::hdop.
- GNSS_POSITION_VDOP_VALID Validity bit for field TGNSSPosition::vdop.
- GNSS_POSITION_USAT_VALID Validity bit for field TGNSSPosition::usedSatellites.

```
GNSS_POSITION_TSAT_VALID Validity bit for field TGNSSPosition::trackedSatellites.
```

GNSS_POSITION_VSAT_VALID Validity bit for field TGNSSPosition::visibleSatellites.

GNSS_POSITION_SHPOS_VALID Validity bit for field TGNSSPosition::sigmaHPosition.

GNSS_POSITION_SALT_VALID Validity bit for field TGNSSPosition::sigmaAltitude.

GNSS_POSITION_SHSPEED_VALID Validity bit for field TGNSSPosition::sigmaHSpeed.

GNSS_POSITION_SVSPEED_VALID Validity bit for field TGNSSPosition::sigmaVSpeed.

GNSS POSITION SHEADING VALID Validity bit for field TGNSSPosition::sigmaHeading.

GNSS_POSITION_STAT_VALID Validity bit for field TGNSSPosition::fixStatus.

GNSS_POSITION_TYPE_VALID Validity bit for field TGNSSPosition::fixTypeBits.

GNSS_POSITION_ASYS_VALID Validity bit for field TGNSSPosition::activatedSystems.

GNSS_POSITION_USYS_VALID Validity bit for field TGNSSPosition::usedSystems.

GNSS_POSITION_CORRAGE_VALID Validity bit for field TGNSSPosition::correctionAge.

2.4.2.5 enum EGNSSSatelliteDetailValidityBits

TGNSSSatelliteDetail::validityBits provides information about the currently valid values of GNSS satellite data. It is a or'ed bitmask of the EGNSSSatelliteDetailValidityBits values.

Enumerator

GNSS_SATELLITE_SYSTEM_VALID Validity bit for field TGNSSSatelliteDetail::system.

GNSS SATELLITE ID VALID Validity bit for field TGNSSSatelliteDetail::satelliteId.

GNSS_SATELLITE_AZIMUTH_VALID Validity bit for field TGNSSSatelliteDetail::azimuth.

GNSS_SATELLITE_ELEVATION_VALID Validity bit for field TGNSSSatelliteDetail::elevation.

GNSS_SATELLITE_CNO_VALID Validity bit for field TGNSSSatelliteDetail::CNo.

GNSS_SATELLITE_USED_VALID Validity bit for field TGNSSSatelliteDetail::statusBits::GNSS_SATELLI← TE USED.

GNSS_SATELLITE_EPHEMERIS_AVAILABLE_VALID Validity bit for field TGNSSSatelliteDetail::status ← Bits::GNSS_SATELLITE_EPHEMERIS_AVAILABLE.

GNSS SATELLITE RESIDUAL VALID Validity bit for field TGNSSSatelliteDetail::posResidual.

2.4.2.6 enum EGNSSSatelliteFlag

TGNSSSatelliteDetail::statusBits provides additional status information about a GNSS satellite. It is a or'ed bitmask of the EGNSSSatelliteFlag values.

Enumerator

GNSS_SATELLITE_USED Bit is set when satellite is used for fix.

GNSS_SATELLITE_EPHEMERIS_AVAILABLE Bit is set when ephemeris is available for this satellite.

2.4.2.7 enum EGNSSSystem

Enumeration to describe the type of GNSS system to which a particular GNSS satellite belongs. For GNSS systems providing different signals (frequencies), separate values are provided for each signal. The enumeration values can be used in bitmasks to represent combinations of satellite systems, e.g. in case of multiconstellation GNSS or GNSS + augmentation systems

Enumerator

GNSS_SYSTEM_GPS GPS (L1 signal)

GNSS_SYSTEM_GLONASS (L1 signal)

GNSS_SYSTEM_GALILEO GALILEO (E1 signal)

```
GNSS_SYSTEM_BEIDOU BeiDou aka COMPASS (B1 signal)
```

GNSS_SYSTEM_GPS_L2 GPS (L2 signal)

GNSS_SYSTEM_GPS_L5 GPS (L5 signal)

GNSS_SYSTEM_GLONASS_L2 GLONASS (L2 signal)

GNSS_SYSTEM_BEIDOU_B2 BeiDou aka COMPASS (B2 signal)

GNSS_SYSTEM_SBAS_WAAS WAAS (North America)

GNSS_SYSTEM_SBAS_EGNOS (Europe)

GNSS_SYSTEM_SBAS_MSAS MSAS (Japan)

GNSS SYSTEM SBAS QZSS SAIF QZSS-SAIF (Japan)

GNSS_SYSTEM_SBAS_SDCM SDCM (Russia)

GNSS_SYSTEM_SBAS_GAGAN GAGAN (India)

2.4.2.8 enum EGNSSTimeScale

Description of the time scale used.

Enumerator

GNSS_TIME_SCALE_UTC GNSS time is provided according UTC time scale (with leap seconds). This is the preferred time scale.

GNSS_TIME_SCALE_GPS GNSS time is provided according GPS time scale (no leap seconds since 06-← Jan-1980). This time scale will only be used if UTC is not available.

2.4.2.9 enum EGNSSTimeValidityBits

TGNSSTime::validityBits provides information about the currently valid parts of UTC date/time. It is a or'ed bitmask of the EGNSSUTCValidityBits values. There are separate validity bits for date end time since a GPS receiver may be able to provide time earlier than date.

Enumerator

GNSS TIME TIME VALID Validity bit for field TGNSSTime fields hour, minute, second, ms.

GNSS_TIME_DATE_VALID Validity bit for field TGNSSTime fields year, month, day.

GNSS_TIME_SCALE_VALID Validity bit for field TGNSSTime field scale.

GNSS_TIME_LEAPSEC_VALID Validity bit for field TGNSSTime field leapSeconds.

2.4.3 Function Documentation

2.4.3.1 bool gnssDeregisterPositionCallback (GNSSPositionCallback callback)

Deregister GNSS position callback. After calling this method no new data will be delivered to the client.

Parameters

callback The callback which should be deregistered.

Returns

True if callback has been deregistered successfully.

2.4.3.2 bool gnssDeregisterSatelliteDetailCallback (GNSSSatelliteDetailCallback callback)

Deregister GNSS satellite detail callback. After calling this method no new data will be delivered to the client.

Parameters

callback	The callback which should be deregistered.

Returns

True if callback has been deregistered successfully.

2.4.3.3 bool gnssDeregisterTimeCallback (GNSSTimeCallback callback)

Deregister GNSS UTC time callback. After calling this method no new time will be delivered to the client.

Parameters

callback	The callback which should be deregistered.
----------	--

Returns

True if callback has been deregistered successfully.

2.4.3.4 bool gnssGetConfiguration (TGNSSConfiguration * gnssConfig)

Accessing static configurationdata related to the GNSS service.

Parameters

gnssConfig	After calling the method the currently available GNSS configuration data is written into gnss←
	Config.

Returns

Is true if data can be provided and false otherwise, e.g. missing initialization

2.4.3.5 bool gnssGetPosition (TGNSSPosition * position)

Method to get the GNSS position data at a specific point in time. All valid flags are updated. The data is only guaranteed to be updated when the valid flag is true.

Parameters

position	After calling the method current GNSS position, velocity, accuracy are written into this param-
	eter.

Returns

Is true if data can be provided and false otherwise, e.g. missing initialization

2.4.3.6 bool gnssGetPrecisionTimingOffset (int32_t * delta)

Provides the precision timing information as signaled by the GNSS PPS signal. For accurate timing the 1 PPS (pulse per second) signal from the GNSS receiver is used within the positioning framework. The PPS is a hardware signal which is a UTC synchronized pulse. The duration between the pulses is 1s +/- 40ns and the duration of the pulse is configurable (about 100-200ms). The PPS signal can be provided in the positioning framework as an interrupt service routine and this method provides the access to the delta from UTC to system time. If you really need precision timing you have to have the system time set within a range of +/-2s of UTC.

Parameters

delta	The result is provided in this parameter in nanoseconds. It gives the deviation of the system
	time (+/-) in respect to the PPS pulse and UTC. If the deviation is is greater than a value that
	can be represented with 32 Bits (i.e. more or less than about 2s) the maximum values are
	written to this parameter and the return value will be false.

Returns

True if the precision timing is available and fits in the range which can be represented by the delta parameter.

2.4.3.7 bool gnssGetSatelliteDetails (TGNSSSatelliteDetail * satelliteDetails, uint16_t count, uint16_t * numSatelliteDetails)

Method to get the GNSS satellite details at a specific point in time. All valid flags are updated. The data is only guaranteed to be updated when the valid flag is true.

Parameters

satelliteDetails	After calling the method current GNSS satellite details are written into this array with size
	count.
count	Number of elements of the array *satelliteDetails. This should be at least TGnssMetaData←
	::numChannels.
numSatellite⊷	Number of elements written to the array *satelliteDetails.
Details	

Returns

Is true if data can be provided and false otherwise, e.g. missing initialization

2.4.3.8 bool gnssGetTime (TGNSSTime * utc)

Method to get the UTC date and time data of the GNSS receiver at a specific point in time. The valid flags is updated. The data is only guaranteed to be updated when the valid flag is true.

Parameters

utc	After calling the method the current GNSS UTC date / time is written into this parameter.

Returns

Is true if data can be provided and false otherwise, e.g. missing initialization

2.4.3.9 bool gnssRegisterPositionCallback (GNSSPositionCallback callback)

Register GNSS position callback. The callback will be invoked when new position data data is available from the GNSS receiver. The valid flags is updated. The data is only guaranteed to be updated when the valid flag is true.

Parameters

callback	The callback which should be registered.
----------	--

Returns

True if callback has been registered successfully.

2.4.3.10 bool gnssRegisterSatelliteDetailCallback (GNSSSatelliteDetailCallback callback)

Register GNSS satellite detail callback. The callback will be invoked when new date data is available from the GNSS receiver. The valid flags is updated. The data is only guaranteed to be updated when the valid flag is true.

Parameters

callback	The callback which should be registered.
----------	--

Returns

True if callback has been registered successfully.

2.4.3.11 bool gnssRegisterTimeCallback (GNSSTimeCallback callback)

Register GNSS UTC time callback. The callback will be invoked when new time data is available from the GNSS receiver. The valid flags is updated. The data is only guaranteed to be updated when the valid flag is true.

Parameters

callback	The callback which should be registered.

Returns

True if callback has been registered successfully.

2.4.3.12 bool gnssSetGNSSSystems (uint32_t activateSystems)

Send a configuration request to use a specific set of GNSS satellite systems

No immediate confirmation is provided as the configuration request is typically executed asynchronously by the GNSS receiver. To verify when the configuration change has been executed, the corresponding fields TGNSS \leftarrow Position::activatedSystems and TGNSSPosition::usedSystems in TGNSSPosition updates have to be monitored

Parameters

activate Systems	Bit mask indicating the satellite systems which shall be activated for use [bitwise or'ed EG↔
activatesystems	Bit mask indicating the satellite systems which shall be activated for use [bitwise of ed Ed
	NSSSystem values].

Returns

True if the configuration request has been accepted.

False if the configuration request has not been accepted or is not supported at all.

Index

activatedSystems	fixStatus	
TGNSSPosition, 5	TGNSSPosition, 5	
altitudeEll	fixTypeBits	
TGNSSPosition, 5	TGNSSPosition, 5	
altitudeMSL		
TGNSSPosition, 5	GENIVI_GNSS_API_MAJOR	
antStatus	gnss-init.h, 10	
TGNSSStatus, 8	GENIVI GNSS API MICRO	
antennaPosition	gnss-init.h, 10	
TGNSSConfiguration, 2	GENIVI_GNSS_API_MINOR	
azimuth	gnss-init.h, 10	
TGNSSSatelliteDetail, 7	GNSS_ANT_STATUS_NORMAL	
r sii toocatoiiito Dotaii, r	gnss-status.h, 13	
CNo	GNSS_ANT_STATUS_OPEN	
TGNSSSatelliteDetail, 7	gnss-status.h, 14	
category	GNSS_ANT_STATUS_OUTOFSERVICE	
TGnssMetaData, 3	gnss-status.h, 14	
correctionAge	GNSS_ANT_STATUS_OVERCURRENT	
TGNSSPosition, 5		
	gnss-status.h, 13	
cycleTime	GNSS_ANT_STATUS_SHORT_BATT	
TGnssMetaData, 3	gnss-status.h, 14	
	GNSS_ANT_STATUS_SHORT_GND	
day	gnss-status.h, 14	
TGNSSTime, 9	GNSS_CATEGORY_LOGICAL	
	gnss-meta-data.h, 11	
EGNSSAntennaStatus	GNSS_CATEGORY_PHYSICAL	
gnss-status.h, 13	gnss-meta-data.h, 11	
EGNSSConfigValidityBits	GNSS_CATEGORY_UNKNOWN	
gnss.h, 18	gnss-meta-data.h, 11	
EGNSSFixStatus	GNSS_CONFIG_ANTPOS_VALID	
gnss.h, 18	gnss.h, 18	
EGNSSFixType	GNSS_CONFIG_SATSYS_VALID	
gnss.h, 18	gnss.h, 18	
EGNSSPositionValidityBits	GNSS_FIX_STATUS_2D	
gnss.h, 19	gnss.h, 18	
EGNSSSatelliteDetailValidityBits	GNSS_FIX_STATUS_3D	
gnss.h, 20	gnss.h, 18	
EGNSSSatelliteFlag	GNSS_FIX_STATUS_NO	
gnss.h, 20	gnss.h, 18	
EGNSSStatus	GNSS_FIX_STATUS_TIME	
gnss-status.h, 14	gnss.h, 18	
EGNSSStatusValidityBits	GNSS FIX TYPE DEAD RECKONING	
gnss-status.h, 14	gnss.h, 19	
EGNSSSystem	GNSS_FIX_TYPE_DGNSS	
gnss.h, 20	gnss.h, 19	
EGNSSTimeScale	GNSS_FIX_TYPE_ESTIMATED	
gnss.h, 21	gnss.h, 19	
EGNSSTimeValidityBits	GNSS_FIX_TYPE_INTEGRITY_CHECKED	
gnss.h, 21	gnss.h, 19	
EGnssCategory	GNSS_FIX_TYPE_MANUAL	
gnss-meta-data.h, 11	gnss.h, 19	
EGnssTypeBits	GNSS_FIX_TYPE_MULTI_CONSTELLATION	
gnss-meta-data.h, 11	gnss.h, 19	
elevation	GNSS_FIX_TYPE_MULTI_FREQUENCY	
TGNSSSatelliteDetail, 7	gnss.h, 19	

GNSS_FIX_TYPE_PPP	GNSS_POSITION_VSPEED_VALID
gnss.h, 19	gnss.h, 19
GNSS_FIX_TYPE_RTK_FIXED	GNSS_SATELLITE_AZIMUTH_VALID
gnss.h, 19	gnss.h, 20
GNSS_FIX_TYPE_RTK_FLOAT	GNSS_SATELLITE_CNO_VALID
gnss.h, 19	gnss.h, 20
GNSS_FIX_TYPE_SBAS	GNSS_SATELLITE_ELEVATION_VALID
gnss.h, 19	gnss.h, 20
GNSS_FIX_TYPE_SIMULATOR_MODE	GNSS_SATELLITE_EPHEMERIS_AVAILABLE
gnss.h, 19	gnss.h, 20
GNSS_FIX_TYPE_SINGLE_FREQUENCY	GNSS_SATELLITE_EPHEMERIS_AVAILABLE_VAL
gnss.h, 19	ID
GNSS_FIX_TYPE_SSR	gnss.h, 20
gnss.h, 19	GNSS_SATELLITE_ID_VALID
GNSS_POSITION_ALTITUDEELL_VALID	gnss.h, 20
gnss.h, 19	GNSS_SATELLITE_RESIDUAL_VALID
GNSS_POSITION_ALTITUDEMSL_VALID	gnss.h, 20
gnss.h, 19	GNSS_SATELLITE_SYSTEM_VALID
GNSS_POSITION_ASYS_VALID	gnss.h, 20
gnss.h, 20	GNSS_SATELLITE_USED
GNSS_POSITION_CORRAGE_VALID	gnss.h, 20
gnss.h, 20	GNSS_SATELLITE_USED_VALID
GNSS_POSITION_HDOP_VALID	gnss.h, 20
gnss.h, 19	GNSS_STATUS_ANT_STATUS_VALID
GNSS_POSITION_HEADING_VALID	gnss-status.h, 14
gnss.h, 19	GNSS_STATUS_AVAILABLE
GNSS_POSITION_HSPEED_VALID	gnss-status.h, 14
gnss.h, 19	GNSS_STATUS_FAILURE
GNSS_POSITION_LATITUDE_VALID	gnss-status.h, 14
gnss.h, 19	GNSS_STATUS_INITIALIZING
GNSS_POSITION_LONGITUDE_VALID	gnss-status.h, 14
gnss.h, 19	GNSS_STATUS_NOTAVAILABLE
GNSS_POSITION_PDOP_VALID	gnss-status.h, 14
gnss.h, 19	GNSS_STATUS_OUTOFSERVICE
GNSS_POSITION_SALT_VALID	gnss-status.h, 14
gnss.h, 20	GNSS_STATUS_RESTARTING
GNSS_POSITION_SHEADING_VALID	gnss-status.h, 14
gnss.h, 20	GNSS_STATUS_STATUS_VALID
GNSS_POSITION_SHPOS_VALID	gnss-status.h, 14
gnss.h, 20	GNSS_SYSTEM_BEIDOU
GNSS_POSITION_SHSPEED_VALID	gnss.h, 20
gnss.h, 20	GNSS SYSTEM BEIDOU B2
GNSS_POSITION_STAT_VALID	gnss.h, 21
gnss.h, 20	GNSS_SYSTEM_GALILEO
GNSS_POSITION_SVSPEED_VALID	gnss.h, 20
gnss.h, 20	GNSS_SYSTEM_GLONASS
<u> </u>	
GNSS_POSITION_TSAT_VALID	gnss.h, 20
gnss.h, 19	GNSS_SYSTEM_GLONASS_L2
GNSS_POSITION_TYPE_VALID	gnss.h, 21
gnss.h, 20	GNSS_SYSTEM_GPS
GNSS_POSITION_USAT_VALID	gnss.h, 20
gnss.h, 19	GNSS_SYSTEM_GPS_L2
GNSS_POSITION_USYS_VALID	gnss.h, 21
gnss.h, 20	GNSS_SYSTEM_GPS_L5
GNSS_POSITION_VDOP_VALID	gnss.h, 21
gnss.h, 19	GNSS_SYSTEM_SBAS_EGNOS
GNSS_POSITION_VSAT_VALID	gnss.h, 21
anss.h. 20	GNSS SYSTEM SBAS GAGAN
allogili EV	GITCO CICILINI ODAO GAGAN

gnss.h, 21	gnss-status.h, 13
GNSS_SYSTEM_SBAS_MSAS	EGNSSAntennaStatus, 13
gnss.h, 21	EGNSSStatus, 14
GNSS_SYSTEM_SBAS_QZSS_SAIF	EGNSSStatusValidityBits, 14
gnss.h, 21	GNSS_ANT_STATUS_NORMAL, 13
GNSS_SYSTEM_SBAS_SDCM	GNSS_ANT_STATUS_OPEN, 14
gnss.h, 21	GNSS_ANT_STATUS_OUTOFSERVICE, 14
GNSS_SYSTEM_SBAS_WAAS	GNSS_ANT_STATUS_OVERCURRENT, 13
gnss.h, 21	GNSS_ANT_STATUS_SHORT_BATT, 14
GNSS_TIME_DATE_VALID	GNSS ANT STATUS SHORT GND, 14
gnss.h, 21	GNSS_STATUS_ANT_STATUS_VALID, 14
-	GNSS_STATUS_AVAILABLE, 14
GNSS_TIME_LEAPSEC_VALID	
gnss.h, 21	GNSS_STATUS_FAILURE, 14
GNSS_TIME_SCALE_GPS	GNSS_STATUS_INITIALIZING, 14
gnss.h, 21	GNSS_STATUS_NOTAVAILABLE, 14
GNSS_TIME_SCALE_UTC	GNSS_STATUS_OUTOFSERVICE, 14
gnss.h, 21	GNSS_STATUS_RESTARTING, 14
GNSS_TIME_SCALE_VALID	GNSS_STATUS_STATUS_VALID, 14
gnss.h, 21	GNSSStatusCallback, 13
GNSS_TIME_TIME_VALID	gnssDeregisterStatusCallback, 14
gnss.h, 21	gnssGetStatus, 14
GNSS_TYPE_ASSISTED	gnssRegisterStatusCallback, 15
gnss-meta-data.h, 11	gnss.h, 15
GNSS_TYPE_DGPS	EGNSSConfigValidityBits, 18
gnss-meta-data.h, 11	EGNSSFixStatus, 18
GNSS_TYPE_DR	EGNSSFixType, 18
gnss-meta-data.h, 11	EGNSSPositionValidityBits, 19
GNSS_TYPE_GNSS	EGNSSSatelliteDetailValidityBits, 20
gnss-meta-data.h, 11	EGNSSSatelliteFlag, 20
GNSS_TYPE_SBAS	EGNSSSystem, 20
gnss-meta-data.h, 11	EGNSSTimeScale, 21
GNSSPositionCallback	EGNSSTimeValidityBits, 21
	GNSS_CONFIG_ANTPOS_VALID, 18
gnss.h, 16	
GNSSSatelliteDetailCallback	GNSS_CONFIG_SATSYS_VALID, 18
gnss.h, 18	GNSS_FIX_STATUS_2D, 18
GNSSStatusCallback	GNSS_FIX_STATUS_3D, 18
gnss-status.h, 13	GNSS_FIX_STATUS_NO, 18
GNSSTimeCallback	GNSS_FIX_STATUS_TIME, 18
gnss.h, 18	GNSS_FIX_TYPE_DEAD_RECKONING, 19
gnss-init.h, 10	GNSS_FIX_TYPE_DGNSS, 19
GENIVI_GNSS_API_MAJOR, 10	GNSS_FIX_TYPE_ESTIMATED, 19
GENIVI_GNSS_API_MICRO, 10	GNSS_FIX_TYPE_INTEGRITY_CHECKED, 19
GENIVI_GNSS_API_MINOR, 10	GNSS_FIX_TYPE_MANUAL, 19
gnssDestroy, 10	GNSS_FIX_TYPE_MULTI_CONSTELLATION, 19
gnssGetVersion, 10	GNSS_FIX_TYPE_MULTI_FREQUENCY, 19
gnssInit, 10	GNSS_FIX_TYPE_PPP, 19
gnss-meta-data.h, 11	GNSS_FIX_TYPE_RTK_FIXED, 19
EGnssCategory, 11	GNSS_FIX_TYPE_RTK_FLOAT, 19
EGnssTypeBits, 11	GNSS_FIX_TYPE_SBAS, 19
GNSS_CATEGORY_LOGICAL, 11	GNSS FIX TYPE SIMULATOR MODE, 19
GNSS_CATEGORY_PHYSICAL, 11	GNSS_FIX_TYPE_SINGLE_FREQUENCY, 19
GNSS_CATEGORY_UNKNOWN, 11	GNSS_FIX_TYPE_SSR, 19
GNSS_TYPE_ASSISTED, 11	GNSS_POSITION_ALTITUDEELL_VALID, 19
GNSS_TYPE_DGPS, 11	GNSS_POSITION_ALTITUDEMSL_VALID, 19
GNSS_TYPE_DR, 11	GNSS_POSITION_ASYS_VALID, 20
GNSS_TYPE_GNSS, 11	GNSS_POSITION_CORRAGE_VALID, 20
GNSS TYPE SBAS, 11	GNSS POSITION HDOP VALID, 19
	:
gnssGetMetaData, 12	GNSS_POSITION_HEADING_VALID, 19

GNSS POSITION HSPEED VALID, 19	gnssGetSatelliteDetails, 23
GNSS POSITION LATITUDE VALID, 19	gnssGetTime, 23
GNSS_POSITION_LONGITUDE_VALID, 19	gnssRegisterPositionCallback, 23
GNSS POSITION PDOP VALID, 19	gnssRegister/SatelliteDetailCallback, 23
	gnssRegisterTimeCallback, 24
GNSS_POSITION_SALT_VALID, 20	
GNSS_POSITION_SHEADING_VALID, 20	gnssSetGNSSSystems, 24
GNSS_POSITION_SHPOS_VALID, 20	gnssDeregisterPositionCallback
GNSS_POSITION_SHSPEED_VALID, 20	gnss.h, 21
GNSS_POSITION_STAT_VALID, 20	gnssDeregisterSatelliteDetailCallback
GNSS_POSITION_SVSPEED_VALID, 20	gnss.h, 21
GNSS_POSITION_TSAT_VALID, 19	gnssDeregisterStatusCallback
GNSS_POSITION_TYPE_VALID, 20	gnss-status.h, 14
GNSS_POSITION_USAT_VALID, 19	gnssDeregisterTimeCallback
GNSS_POSITION_USYS_VALID, 20	gnss.h, 22
GNSS_POSITION_VDOP_VALID, 19	gnssDestroy
GNSS_POSITION_VSAT_VALID, 20	gnss-init.h, 10
GNSS POSITION VSPEED VALID, 19	gnssGetConfiguration
GNSS_SATELLITE_AZIMUTH_VALID, 20	gnss.h, 22
GNSS SATELLITE CNO VALID, 20	gnssGetMetaData
GNSS_SATELLITE_ELEVATION_VALID, 20	gnss-meta-data.h, 12
GNSS SATELLITE EPHEMERIS AVAILABLE,	gnssGetPosition
20	gnss.h, 22
GNSS_SATELLITE_EPHEMERIS_AVAILABLE↔	gnssGetPrecisionTimingOffset
VALID, 20	gnss.h, 22
GNSS_SATELLITE_ID_VALID, 20	gnssGetSatelliteDetails
GNSS_SATELLITE_RESIDUAL_VALID, 20	gnss.h, 23
GNSS_SATELLITE_SYSTEM_VALID, 20	gnssGetStatus
GNSS_SATELLITE_USED, 20	gnss-status.h, 14
GNSS_SATELLITE_USED_VALID, 20	gnssGetTime
GNSS_SYSTEM_BEIDOU, 20	gnss.h, 23
GNSS_SYSTEM_BEIDOU_B2, 21	gnssGetVersion
	gnss-init.h, 10
GNSS_SYSTEM_GALILEO, 20	gnssInit
GNSS_SYSTEM_GLONASS, 20	gnss-init.h, 10
GNSS_SYSTEM_GLONASS_L2, 21	gnssRegisterPositionCallback
GNSS_SYSTEM_GPS, 20	gnss.h, 23
GNSS_SYSTEM_GPS_L2, 21	gnssRegisterSatelliteDetailCallback
GNSS_SYSTEM_GPS_L5, 21	gnss.h, 23
GNSS_SYSTEM_SBAS_EGNOS, 21	gnssRegisterStatusCallback
GNSS_SYSTEM_SBAS_GAGAN, 21	gnss-status.h, 15
GNSS_SYSTEM_SBAS_MSAS, 21	gnssRegisterTimeCallback
GNSS_SYSTEM_SBAS_QZSS_SAIF, 21	gnss.h, 24
GNSS_SYSTEM_SBAS_SDCM, 21	gnssSetGNSSSystems
GNSS_SYSTEM_SBAS_WAAS, 21	gnss.h, 24
GNSS_TIME_DATE_VALID, 21	-
GNSS_TIME_LEAPSEC_VALID, 21	hSpeed
GNSS_TIME_SCALE_GPS, 21	TGNSSPosition, 5
GNSS_TIME_SCALE_UTC, 21	hdop
GNSS_TIME_SCALE_VALID, 21	TGNSSPosition, 5
GNSS_TIME_TIME_VALID, 21	heading
GNSSPositionCallback, 16	TGNSSPosition, 5
GNSSSatelliteDetailCallback, 18	hour
GNSSTimeCallback, 18	TGNSSTime, 9
gnssDeregisterPositionCallback, 21	
gnssDeregisterSatelliteDetailCallback, 21	latitude
gnssDeregisterTimeCallback, 22	TGNSSPosition, 5
gnssGetConfiguration, 22	leapSeconds
gnssGetPosition, 22	TGNSSTime, 9
gnssGetPrecisionTimingOffset, 22	longitude

TGNSSPosition, 5	heading, 5
	latitude, 5
minute	longitude, 5
TGNSSTime, 9	pdop, 5
month	sigmaAltitude, 5
TGNSSTime, 9	sigmaHPosition, 5
MS TONIOCT:	sigmaHSpeed, 5
TGNSSTime, 9	sigmaHeading, 5
numChannels	sigmaVSpeed, 6
TGnssMetaData, 3	timestamp, 6
Tansswetabata, o	trackedSatellites, 6
pdop	usedSatellites, 6
TGNSSPosition, 5	usedSystems, 6
posResidual	vSpeed, 6
TGNSSSatelliteDetail, 7	validityBits, 6
, on to outomos stan,	vdop, 6
satelliteld	visibleSatellites, 6
TGNSSSatelliteDetail, 7	TGNSSSatelliteDetail, 6
scale	azimuth, 7
TGNSSTime, 9	CNo, 7
second	elevation, 7
TGNSSTime, 9	posResidual, 7
sigmaAltitude	satelliteld, 7
TGNSSPosition, 5	statusBits, 7
sigmaHPosition	system, 7
TGNSSPosition, 5	timestamp, 7
sigmaHSpeed	validityBits, 7
TGNSSPosition, 5	TGNSSStatus, 7
sigmaHeading	antStatus, 8
TGNSSPosition, 5	status, 8
sigmaVSpeed	timestamp, 8
TGNSSPosition, 6	validityBits, 8
status	TGNSSTime, 8
TGNSSStatus, 8	day, 9
statusBits	hour, 9
TGNSSSatelliteDetail, 7	leapSeconds, 9
supportedSystems	minute, 9
TGNSSConfiguration, 2	month, 9
system	ms, 9
TGNSSSatelliteDetail, 7	scale, 9
	second, 9
TGNSSConfiguration, 2	timestamp, 9
antennaPosition, 2	validityBits, 9
supportedSystems, 2	year, 9
validityBits, 2	TGnssMetaData, 3
TGNSSDistance3D, 2	category, 3
x, 3	cycleTime, 3
y, 3	numChannels, 3
z, 3	typeBits, 4
TGNSSPosition, 4	version, 4
activatedSystems, 5	timestamp
altitudeEll, 5	TGNSSPosition, 6
altitudeMSL, 5	TGNSSSatelliteDetail, 7
correctionAge, 5	TGNSSStatus, 8
fixStatus, 5	TGNSSTime, 9
fixTypeBits, 5	trackedSatellites
hSpeed, 5	TGNSSPosition, 6
hdop, 5	typeBits

```
TGnssMetaData, 4
usedSatellites
    TGNSSPosition, 6
usedSystems
    TGNSSPosition, 6
vSpeed
    TGNSSPosition, 6
validityBits
    TGNSSConfiguration, 2
    TGNSSPosition, 6
    TGNSSSatelliteDetail, 7
    TGNSSStatus, 8
    TGNSSTime, 9
vdop
    TGNSSPosition, 6
version
    TGnssMetaData, 4
visibleSatellites
    TGNSSPosition, 6
Χ
    TGNSSDistance3D, 3
    TGNSSDistance3D, 3
year
    TGNSSTime, 9
Z
    TGNSSDistance3D, 3
```