偏振光	光学实验 (基	基础内容)数据记	录表格			
姓名:_	学	号: 班:	级:	座位号:	日期:	<u>.</u>
-	眼睛直视激	光束,禁止将激光束 的光学表面。如必须用	•	·,只能接触其	某磨砂面;	
(0) 观察 在起偏器 盘读数: 将起偏器	激光束的偏抗 是P后放置一白约 、 异转至光强较强	纸屏,转动起偏器,观 。	· [察激光器光源			录光强极小时起偏器的度
原理: 光 方 方法: 使 于 法: 平 方法: 平 方 法: 平 方 步 骤: 1) 澳 小 平	产束以布儒斯特 一量。如起偏器 巨激光束以布儒 可向。 光束正入射反射 产台使反射光束	透射轴在水平方向,则斯特角入射反射镜表面时的平台方位与激光器出射光束重台	电矢量垂直于则入射光电矢量面,调整起偏 加,调整起偏 角:将反射镜	量与入射面平行器P方位角,当 放在小平台上 为平台方位角α	厅,反射光强极小卧 当反射光强极小卧 上,自制带小孔的 (;=0:;	光中没有电矢量与入射面 人。 时,则起偏器P的透射轴位 以纸片放置在出射光束处,
		射角约为55°。用白约的小平台方位角和起偏)和起偏器P方位角,使反
	序号	入射角为布儒斯特角 时的平台方位角α _B				
	1					
	3					
2						
	l	····································	 射率n = tanθ _B =	=		
原理: 起步骤: 1) 置起偏器P方	立于水平方位的方位角	位置; 2) 移去	云反射镜; 3)	用毫伏表测量光	与起偏器P正交消光。 强,4)转动检偏器A使其
(6) 测消		交替测透射光强极值 /。	和 1 . (田 r	nV 表示)		
	,我幼A盆, l量次数	又有例題初几銀版值 I_{max} (mV)	I_{\min} (min (min (min (min (min (min (min (min			
- 7次!	1	Imax (III V)	1min (II	1 7)		
	2					
	3					
	l值 R:	Ω				
	i 旧. 化;					

挡住光源时 $I_0 =$ _____ mV。

计算得到消光比
$$e = \frac{\overline{I_{min}} - I_0}{2I_{max}} = \underline{\hspace{1cm}}$$
。

注: 电阻取值宜在50~200 Ω, 此时硅光电池接收的光强与输出电压基本线性;

Io: 挡住光源后, 其它光如日光灯、红外线等不可避免地照射到光电池上, 这些光可称为背景光或噪声。

(7) 测量透射光强与两偏振器P与A之间夹角 θ 的关系

原理:起偏器P后的出射光束为线偏振光,设其光强为 I_{max} ,该线偏振光经检偏器A后,根据马吕斯定律,其出射光强为 $I_{max}\cos^2\theta$ 。

步骤:起偏器P置于水平方向且保持不动,转动检偏器A至不同方位角,测量经检偏器A后出射光强。

电阻箱示值R= _______, $p=\overline{p_{\leftrightarrow}}=$ ______, $\alpha_{\updownarrow}=$ ______,**挡住光源时** $I_0=$ ______mV

序号	自变量: 起偏器与 检偏器夹角 <i>θ</i> (°)	置A盘于方位角 α=α ₁ +90+θ (°)	出射光强测量值 I _m (mV)	相对透过率 $I_{\rm m}/I_{\rm max}$ 或(I _m - I ₀)/(I _{max} - I ₀)	$\cos^2 \theta$
1.	$0.0 \; (I_{\text{max}})$				
2.	15.0				
3.	30.0				
4.	45.0				
5.	60.0				
6.	75.0				
7.	80.0				
8.	84.0				
9.	87.0				
10.	90.0(I _{min})		* II . A. I Triber . I . A. L	2011 11 15 15 11 12	14 74 7

在实验报告中画出相对透射率随 θ 变化的关系曲线,并与理论值 $\cos^2\theta$ 的曲线相比较,检验马吕斯定律的符合程度,给出结论。

(8) 定待测波片 Cx 的轴向

原理: 将待测波片放在已正交消光的起偏器 P 和检偏器 A 之间。旋转波片 C,使三者仍保持消光状态,这时波片的一个轴就已平行于偏振器 P 的透射轴方向。

步骤:将起偏器 P 透射轴置于水平方向 $\overline{p_{\leftrightarrow}} = ______,检偏器 A 透射轴置于垂直方向 <math>\alpha_{\updownarrow} = _______。将待测波片 C_x 置于小平台上。转动待测波片 C_x,使三者消光,记录待测波片 C_x 的一个轴在垂直方向时的度盘示值 <math>c_x = ______。$

(9) 定波片 C₀ 的快轴方向(大致方向已标出)

原理: 同上。

步骤:移去待测波片 C_x 。轻轻地装上仪器配套的波片盘 C_0 ,用上一步骤方法定出波片快轴在垂直方向时的度盘方位角 c_0 = 。该波片快轴大致方向已在盘上用圆点标出。

(10) 线偏振光经过1/4波片

内容:观测线偏振光经过1/4波片Co后的偏振态的改变。

方法:激光器经起偏器P后的出射光束为线偏振光。该线偏振光经过1/4波片 C_0 后,出射光的偏振态与波片和起偏器之间夹角 β 有关。通过检偏器A和光强计(毫伏表)可检验出射光的偏振态。

步骤:保持1/4波片 C_0 快轴于垂直方向,转动起偏器P,使起偏器P的透射轴与波片慢轴之间的夹角 β 分别为 0° 、 22.5° 、 45° 、 67.5° 。在每个夹角 β 处,转动检偏器A,测出透射光的长轴方位角 α_i 和光强极大值 I_{max} 、极小值 I_{min} 。计算极值比。说明何时透射光近似为线偏振光或圆偏振光。

起偏器P透射轴置于水平方向 $p_{\leftrightarrow} = ______$,波片 C_0 度盘示值 $c_0 = _______$ 。

序号	<i>p-p</i> ↔ (°)	p (°)	检偏器A透射轴在 出射光长轴方向时 的方位角α _i (°)	I	$I_{ m min}$ (mV)	出射光长轴 与水平方向 的夹角 <i>Ψ</i> =α ₁ +90-α _i (°)	$b^2/a^2 \approx I_{\min}/I_{\max}$	用(11)式 计算δ _r (°)	用(2)式 计算ψ(°)
1	0.0								
2	22.5								
3	45.0								
4	67.5								

注:由于测量误差等原因,最后两列计算结果可能无解。

(11) 线偏振光通过1/2波片或全波片

内容: 令C₀的快轴和Cx的一轴平行。将起偏器P透射轴置于不同方位,观测起偏器P后出射的线偏振光经两波片后偏振态的改变(用检偏器A和毫伏表检验)。由测量数据判断它们组成了1/2波片还是全波片,并由此定出待测波片Cx的快轴方向(写在表格右侧)。

Cx某轴置于垂直方向,度盘示值_____。; C₀快轴置于垂直方向,度盘示值_____。

序号	<i>p-p</i> ↔ (°)	p (°)	消光时 A 盘 度盘读数α _i (°)	消光时 光强读数	a_{\updownarrow} - a_i (°)
1	0.0				
2	15.0				
3	30.0				
4	45.0				

(12) 线偏振光通过全波片或1/2波片

令 C_0 的慢轴和Cx的同一个轴平行,观测线偏振光经过这两个1/4波片后偏振态的改变,由测量数据判断他们近似组成了全波片还是1/2波片,并由此判断出待测波片Cx的快轴方向(写在表格右侧)。

Cx某轴保持垂直方向不变,度盘示值_____。; Co快轴转动90°至水平方向,度盘示值____。

序号	<i>p-p</i> ↔ (°)	p (°)	消光时 A 盘 度盘读数α _i (°)	消光时 光强读数	a_{\updownarrow} - a_i (°)
1	0.0				
2	15.0				
3	30.0				
4	45.0				

实验完毕后,将光学元件放入盒内,仪器复原后才能离开。