MichaelBasta_Assignment_5

Michael Basta

2022-11-28

```
Cereals <- read.csv("/Users/michaelbasta/Documents/Fundmentals of Machine Learning /Module 8/Cereals.cs
df <- Cereals
row.names(df) <- df$name</pre>
df <- na.omit(df)</pre>
# eliminating all the non
df <- df[,4:16]
df <- scale(df)
head(df)
                              calories
                                          protein
                                                         fat
## 100%_Bran
                            -1.8659155 1.3817478 0.0000000 -0.3910227
## 100%_Natural_Bran
                             ## All-Bran
                            -1.8659155 1.3817478 0.0000000 1.1795987
## All-Bran_with_Extra_Fiber -2.8737823 1.3817478 -0.9932203 -0.2702057
## Apple_Cinnamon_Cheerios
                             0.1498180 -0.4773310 0.9932203 0.2130625
## Apple_Jacks
                             0.1498180 - 0.4773310 - 0.9932203 - 0.4514312
##
                                             carbo
                                                       sugars
## 100%_Bran
                             3.22866747 -2.5001396 -0.2542051 2.5605229
## 100% Natural Bran
                            -0.07249167 -1.7292632 0.2046041
                                                              0.5147738
## All-Bran
                             2.81602258 -1.9862220 -0.4836096 3.1248675
## All-Bran_with_Extra_Fiber 4.87924705 -1.7292632 -1.6306324 3.2659536
## Apple_Cinnamon_Cheerios
                            -0.27881412 -1.0868662 0.6634132 -0.4022862
## Apple_Jacks
                            -0.48513656 -0.9583868 1.5810314 -0.9666308
##
                              vitamins
                                            shelf
                                                      weight
## 100%_Bran
                            -0.1818422 0.9419715 -0.2008324 -2.0856582
## 100%_Natural_Bran
                            -1.3032024 0.9419715 -0.2008324 0.7567534
## All-Bran
                            -0.1818422 0.9419715 -0.2008324 -2.0856582
## All-Bran_with_Extra_Fiber -0.1818422 0.9419715 -0.2008324 -1.3644493
## Apple_Cinnamon_Cheerios
                            -0.1818422 -1.4616799 -0.2008324 -0.3038480
## Apple_Jacks
                            -0.1818422 -0.2598542 -0.2008324 0.7567534
                                rating
```

```
d <- dist(df, method = "euclidean")
# Hierarchical clustering using Complete Linkage</pre>
```

1.8549038

-0.5977113

1.2151965

-0.9165248

-0.6553998

100%_Bran

All-Bran

Apple_Jacks

100%_Natural_Bran

Apple_Cinnamon_Cheerios

All-Bran_with_Extra_Fiber 3.6578436

```
hc1 <- hclust(d, method = "complete")

# Plot the obtained dendogram
plot(hc1, cex = 0.6, hang = -1)</pre>
```


d hclust (*, "complete")

```
library(cluster)

# Compute with agnes and with different Linkage methods
hc_single <- agnes(df, method = "single")
hc_complete <- agnes(df, method = "complete")
hc_average <- agnes(df, method = "average")

# Compare Agglomerative coefficients
print(hc_single$ac)

## [1] 0.6067859

print(hc_complete$ac)

## [1] 0.8353712

print(hc_average$ac)</pre>
```

```
pltree(hc_complete, cex = 0.6, hang = -1, main = "Dedrogram of agnes")
```

Dedrogram of agnes

df agnes (*, "complete")

```
paste("Best Linkage method is the complete with the highest cofficient")
```

[1] "Best Linkage method is the complete with the highest cofficient"

```
# Marking clusters to see the best number
hc_complete <- hclust(d, method = "complete")

# plot dendrogram
plot(hc_complete, cex = 0.6)
rect.hclust(hc_complete, k = 7, border = 1:5)</pre>
```


d hclust (*, "complete")

```
paste("The choice for clusters is 7 based on the height chosen")
```

[1] "The choice for clusters is 7 based on the height chosen"

```
# In order to check the stability of the clusters we need to partition data and then see how well clust
Index <- 1:38
# Partition A
Train <- df[Index,]

# Partition B
Test <- df[-Index,]

# Applying clustering on partition A
d <- dist(Train, method = "euclidean")
hc_complete <- hclust(d, method = "centroid")

plot(hc_complete, cex = 0.6)</pre>
```


d hclust (*, "centroid")

```
hc_single <- agnes(Train, method = "single")
hc_complete <- agnes(Train, method = "complete")
hc_average <- agnes(Train, method = "average")

# Compare Agglomerative coefficients
print(hc_single$ac)

## [1] 0.5853558

print(hc_complete$ac)

## [1] 0.7904243

print(hc_average$ac)</pre>
```

[1] 0.7235901

From what is seen on the partition dendrogram and the agglomerative coefficients we see the structur

To be able to cluster "Healthy Cereals" We will consider only (Protien, Fiber, Vitamins, rating)

Yes data should be normalized As we don't want the clustering algorithm to depend to an arbitrary va

df <- Cereals

```
row.names(df) <- df$name</pre>
df <- na.omit(df)</pre>
# Only Selecting the columns contributing to healthy cereals
df \leftarrow df[,c(5,8,12,16)]
df <- scale(df)</pre>
head(df)
##
                                  protein
                                                fiber
                                                         vitamins
                                                                       rating
## 100%_Bran
                               1.3817478 3.22866747 -0.1818422 1.8549038
## 100%_Natural_Bran
                               0.4522084 - 0.07249167 - 1.3032024 - 0.5977113
## All-Bran
                               1.3817478 2.81602258 -0.1818422 1.2151965
## All-Bran_with_Extra_Fiber 1.3817478 4.87924705 -0.1818422 3.6578436
## Apple_Cinnamon_Cheerios -0.4773310 -0.27881412 -0.1818422 -0.9165248
## Apple_Jacks
                              -0.4773310 -0.48513656 -0.1818422 -0.6553998
d <- dist(df, method = "euclidean")</pre>
# Hierarchical clustering using Complete Linkage
hc1 <- hclust(d, method = "complete")</pre>
# Plot the obtained dendogram
```


plot(hc1, cex = 0.6, hang = -1)

d hclust (*, "complete")