# **Engineering Economics**

## Module -5

## Replacement Analysis and Costing

<u>Replacement Analysis</u> - Deterioration, Obsolescence, Inadequacy, Economic life for cycle replacements, individual replacement, Numerical exercises.

<u>Costing</u> – Elements of cost, Components of cost, Preparation of cost sheet, Numerical exercises.

# **Introduction**

Replacement analysis is one of the crucial analysis in capital budgeting. An asset life may be reduced due to physical impairment, changes in economic requirements and rapid changes in technology that may obsolete an asset prior to expectation. The replacement of assets offers economic opportunity for the firm. In replacement analysis there is two alternatives:

- The assets that are currently being used: The defender
- The assets that we have to buy to replace current assets: The Challenger

Factors to be considered in replacement analysis are listed below.

- Sunk costs to be ignored
- Existing asset value need not be considered
- Income tax to be avoided
- The optimal replacement cycle is one which has lowest equivalent annual cost
- The replacement decision will apply indefinitely.
- Economic life of the challenger and the defender should not be considered.

All industries and military equipment gets worn with time and usage and function with decreasing efficiency.

Eg. Machine requires higher operating cost, transport vehicle requires more maintenance cost etc.

The ever-increasing repair and maintenance cost necessitates the replacement of the equipment. However, there is no sharp, clearly defined time which indicates the need for this replacement. The replacement policy consists of calculating the increased operating cost, maintenance cost, forced idle time cost together with cost of replacing new equipment.

The objective is to minimize the sum of the cost of the item, cost of replacing the item and the cost associated with failure of item.

The equipment needs replacement not because it no longer performs to the designed standards, but because more modern equipment performs higher standards.

Eg. An equipment may have an economic life of 20yrs yet it may become obsolete after 10 yrs because of better technical development.



- 1. Deterioration
- 2. Obsolescence
- 3. Inadequacy

#### Reasons for Replacement

in the performance of the equipment as compared to the new equipment identical to the present one.

Deterioration may occur due to wear and tear due to the

- (a) Increases the maintenance cost
- (b) Reduces the product quality
- (c) Decrease the rate of production
- (d) Increases labour cost
- (e) Reduces efficiency of equipment.
  - 2. Obsolescence occurs when the technology of an asset is surpassed by newer and/or different technologies. Changes in technology cause subsequent changes in the market demand for older assets.

Eg. Today's personal computers (PCs) with more RAM, faster clock speeds, larger hard drives, and more powerful central processors have made older, less powerful PCs obsolete, thus obsolete assets may need to be replaced with newer, more technologically advanced ones.

**3.** <u>Inadequacy</u> The gradual loss of market value of an asset as it is being consumed or exhausted. Oil wells and timber tracts are examples of such assets. In most cases the asset will be used until it is depleted, at which time a replacement asset will be obtained.

### **Limitations of Replacement Analysis**

This method assumes that a firm is continually replacing, and therefore determines a once- and-for-all optimal replacement cycle. In practice this is unlikely to be valid due to:

- Changing technology, which can quickly make machines obsolete and shorten replacement cycles. This means that one asset is not being replaced by one exactly similar.
- Inflation, which by altering the cost structure of assets means that the optimal replacement cycle can vary over time
- If inflation affects all variables equally it is best excluded from the analysis by discounting real cash flows at a real interest rate – the optimal replacement cycle will remain valid
- Differential inflation rates mean that the optimal replacement cycle varies over time
- The effects of taxation (ignored in the analysis but they could be incorporated)
- The fact that production is unlikely to continue in perpetuity

## **Replacement Models**

- 1. Replacement of items whose maintenance cost increases with time and the value of money remains same during the period.
- 2. Replacement of items whose maintenance cost increases with time and the value of money changes with time.
- 3. Group Replacement Policy

**Case 1**: Replacement of items whose maintenance cost increases with time and the value of money remains same during the period.

**Notations:** 'C' is the capital or purchase cost of the machinery

'S' is the scrap value or resale value of the machinery

- Total cost incurred on the item during period 'Y'
  - = capital cost of machine + total maintenance cost during period 'Y' scrap value

i.e, Total cost = 
$$C + M(Y) - S$$

• Average cost/unit of time incurred during the period 'Y' on the item

$$G(Y) = \frac{C + M(Y) - S}{Y}$$

Where Y - no. of years, M(Y) - Cumulative maintenance cost in that year.

**Note:** Running cost = Operating cost = Maintenance cost.

### **Problems**

**1.** The cost of the machine is Rs. 6100 and its scrap value is Rs.100. The maintenance cost found from experience are as follows:

| Year         | 1   | 2   | 3   | 4   | 5   | 6    | 7    | 8    |
|--------------|-----|-----|-----|-----|-----|------|------|------|
| Maintenance  | 100 | 250 | 400 | 600 | 900 | 1200 | 1600 | 2000 |
| cost in yrs. | 100 | 230 | 700 | 000 | 700 | 1200 | 1000 | 4000 |

Where should the machine be replaced?

(a) **Solution :** C=6100 S=100 n=8

| No. of years | Maintenance<br>Cost | Cumulative maintenance cost M(Y) | $\begin{aligned} & \text{Total cost} \\ & C + M(Y) - S \end{aligned}$ | Average cost/unit $\frac{C+M(Y)-S}{Y}$ |
|--------------|---------------------|----------------------------------|-----------------------------------------------------------------------|----------------------------------------|
| 1            | 100                 | 100                              | 6100                                                                  | 6100                                   |
| 2            | 250                 | 350                              | 6350                                                                  | 3175                                   |
| 3            | 400                 | 750                              | 6750                                                                  | 2250                                   |
| 4            | 600                 | 1350                             | 7350                                                                  | 1837.5                                 |
| 5            | 900                 | 2250                             | 8250                                                                  | 1650                                   |
| 6            | 1200                | 3450                             | 9450                                                                  | 1575                                   |
| 7            | 1600                | 5050                             | 11050                                                                 | 1578.57                                |
| 8            | 2000                | 7050                             | 13050                                                                 | 1631.25                                |

**Conclusion:** We should replace the machinery by the end of  $6^{th}$  year or at the beginning of  $7^{th}$  year as the maintenance cost is more than the average total cost of the machine in the  $7^{th}$  year.

**2.** A fleet owner finds from his past experience records that cost of the machine is Rs. 6000 and the running costs are given below, at what stage the replacement is due?

| Year                   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|------------------------|------|------|------|------|------|------|------|------|
| Maintenance cost       | 1000 | 1200 | 1400 | 1800 | 2300 | 2800 | 3400 | 4000 |
| Scrap/resale value 'S' | 3000 | 1500 | 750  | 375  | 200  | 200  | 200  | 200  |

**Solution:** C=6000 n=8

| No. of | Maintenance | Cumulative  | Cost  | Total cost | Average   |
|--------|-------------|-------------|-------|------------|-----------|
| years  | Cost        | maintenance | scrap | (C-S) +    | cost/unit |
| (Y)    |             | cost M(Y)   | value | M(Y)       | C-S+M(Y)  |
|        |             |             | (C-S) |            | Y         |
| 1      | 1000        | 1000        | 3000  | 4000       | 4000      |
| 2      | 1200        | 2200        | 4500  | 6700       | 3350      |
| 3      | 1400        | 3600        | 5250  | 8850       | 2950      |
| 4      | 1800        | 5400        | 5625  | 11025      | 2756.25   |
| 5      | 2300        | 7700        | 5800  | 13500      | 2700      |
| 6      | 2800        | 10500       | 5800  | 16300      | 2716.66   |
| 7      | 3400        | 13900       | 5800  | 19700      | 2814.28   |
| 8      | 4000        | 17900       | 5800  | 23700      | 2962.5    |

**Conclusion:** The average cost /unit is greater than the maintenance cost till the end of  $5^{th}$  year but increases suddenly in the  $6^{th}$  year, so till the  $5^{th}$  year ending we will use the same fleet but will have to replace it by a new one at the beginning of  $6^{th}$  year.

3. Cost of equipment= Rs 5, 00,000 Resale value= Rs 1, 00,000 Maintenance cost is as follows

| Year            | 1      | 2      | 3      | 4      | 5      |
|-----------------|--------|--------|--------|--------|--------|
| Maintenancecost | 25,000 | 30,000 | 45,000 | 60,000 | 65,000 |

When it is economical to replace the equipment?

**Solution :** C=5,00,000 S=1,00,000 n=5

| No. of years | Maintenance<br>Cost | Cumulative maintenance cost M(Y) | $\begin{aligned} & Total\ cost \\ & C + M(Y) - S \end{aligned}$ | Average cost/unit C+M(Y)-S |
|--------------|---------------------|----------------------------------|-----------------------------------------------------------------|----------------------------|
| 1            | 25000               | 25000                            | 425000                                                          | 425000                     |
| 2            | 30000               | 55000                            | 455000                                                          | 227500                     |

| 3 | 45000 | 100000 | 500000 | 166666.67 |
|---|-------|--------|--------|-----------|
| 4 | 60000 | 160000 | 560000 | 140000    |
| 5 | 65000 | 225000 | 625000 | 125000    |

<u>Conclusion:</u> Since the average maintenance cost goes on decreasing till  $5^{th}$  year, it is economical to replace the equipment at the end of  $5^{th}$  year.

4. Cost of equipment= Rs 10, 00,000 Resale value= Rs 2, 50,000

Maintenance cost is as follows

| Year                    | 1      | 2      | 3      | 4      | 5      |
|-------------------------|--------|--------|--------|--------|--------|
| <b>Maintenance cost</b> | 22,000 | 25,000 | 25,000 | 40,000 | 45,000 |

When it is economical to replace the equipment?

**Solution**: C=10,00,000 S=2,50,000 n=5

| No. of years | Maintenance<br>Cost | Cumulative<br>maintenance cost<br>M(Y) | $\begin{aligned} & \text{Total cost} \\ & C + M(Y) - S \end{aligned}$ | Average cost/unit $\frac{C+M(Y)-S}{Y}$ |
|--------------|---------------------|----------------------------------------|-----------------------------------------------------------------------|----------------------------------------|
| 1            | 22000               | 22000                                  | 772000                                                                | 772000                                 |
| 2            | 25000               | 47000                                  | 797000                                                                | 398500                                 |
| 3            | 25000               | 72000                                  | 822000                                                                | 294000                                 |
| 4            | 40000               | 112000                                 | 862000                                                                | 215500                                 |
| 5            | 45000               | 157000                                 | 907000                                                                | 181400                                 |

<u>Conclusion:</u> Since the average cost goes on decreasing till  $5^{th}$  year, it is economical to replace the equipment at the end of  $5^{th}$  year.

5. A firm is considering replacement of an equipment, whose first cost is Rs. 4,000 and the scrap value is negligible at the end of any year. Based on experience, it was found that the maintenance cost is zero during the first year and it increases by Rs. 200 every year thereafter.

When should the equipment be replaced?

**Solution:** C=4000

| No. of years | Maintenance<br>Cost | Cumulative<br>maintenance cost<br>M(Y) | $\begin{aligned} & \text{Total cost} \\ & C + M(Y) - S \end{aligned}$ | Average cost/unit C+M(Y)-SY |
|--------------|---------------------|----------------------------------------|-----------------------------------------------------------------------|-----------------------------|
| 1            | 0                   | 0                                      | 4000                                                                  | 4000                        |
| 2            | 200                 | 200                                    | 4200                                                                  | 2100                        |
| 3            | 400                 | 600                                    | 4600                                                                  | 1533.34                     |
| 4            | 600                 | 1200                                   | 5200                                                                  | 1300                        |

| 5 | 800  | 2000 | 6000 | 1200    |
|---|------|------|------|---------|
| 6 | 1000 | 3000 | 7000 | 1166.66 |
| 7 | 1200 | 4200 | 8200 | 1171.42 |

Conclusion: We should replace the machinery by the end of 6<sup>th</sup> year or at the beginning of 7<sup>th</sup> year as the maintenance cost is more than the average total cost of the machine in the 7<sup>th</sup> year.

6. A machine is purchased for Rs 20, 00,000 the maintenance cost and the resale value at the end of each year is shown below. When it is economical to replace the machine?

| Year    | 1        | 2        | 3           | 4        | 5        | 6        | 7        | 8        | 9      | 10    |
|---------|----------|----------|-------------|----------|----------|----------|----------|----------|--------|-------|
| M.Cos   | 50000    | 60000    |             | 72000    | 78000    | 90000    | 100000   | 125000   | 150000 | 17800 |
| t 50000 | 00000    | 65000    | 72000 78000 |          | 90000    | 100000   | 125000   | 150000   | 0      |       |
| Resale  | 18,00,00 | 17,00,00 | 15,00,00    | 14,50,00 | 14,00,00 | 13,00,00 | 12,00,00 | 11,00,00 | 900,00 | 72500 |
| Value   | 0        | 0        | 0           | 0        | 0        | 0        | 0        | 0        | 0      | 0     |

#### **Solution:**

C=20,00,000 n=10

| No.   | Maintenance | Cumulative  | Cost      | Total cost | Average     |
|-------|-------------|-------------|-----------|------------|-------------|
| of    | Cost        | maintenance | scrap     | (C-S) +    | cost/unit   |
| years |             | cost M(Y)   | value     | M(Y)       | C-S+M(Y)    |
| (Y)   |             |             | (C-S)     |            | Y           |
| 1     | 50000       | 50000       | 2,00,000  | 2,50,000   | 2,50,000    |
| 2     | 60000       | 110000      | 3,00,000  | 4,10,000   | 2,05,000    |
| 3     | 65000       | 175000      | 5,00,000  | 6,75,000   | 2,25,000    |
| 4     | 72000       | 247000      | 5,50,000  | 7,97,000   | 1,99,250    |
| 5     | 78000       | 325000      | 6,00,000  | 9,25,000   | 1,85,000    |
| 6     | 90000       | 415000      | 7,00,000  | 11,15,000  | 1,85,833.33 |
| 7     | 100000      | 515000      | 8,00,000  | 13,15,000  | 1,87,857.14 |
| 8     | 125000      | 640000      | 9,00,000  | 15,40,000  | 1,92,500    |
| 9     | 150000      | 790000      | 11,00,000 | 18,90,000  | 2,10,000    |
| 10    | 178000      | 968000      | 12,75,000 | 22,43,000  | 2,24,300    |

**Conclusion:** Since the average cost decreases at the end of  $2^{nd}$  year and suddenly increases at  $3^{rd}$  year. But again it decreases till end of  $6^{th}$  year...so its economical to replace at beginning of  $3^{rd}$  year or feasible to replace at end of  $6^{th}$  year.

 $\underline{Case\ 2}$ : Replacement of items whose maintenance cost increases with time and the value of money also changes with time.

The maintenance cost varies with time and we want to find the optimum value of time at which the item should be replaced. The value of money decreases with a constant rate which is known as **Depreciation ratio or Discount factor**.

Given by, 
$$V = \frac{1}{(1+i)^{n-1}}$$
 for the value of Re. 1

Where, i is the interest or discount factor

n is the year

1 the value of Re. on which discount is considered in that year.

In this we made an assumption that the maintenance cost spent on the equipment or an item is at the beginning of each year.

## **Problems**

1. A company buys a machine for Rs. 6000 and gives us a 20% declining method of depreciation. Maintenance costs are expected to be Rs. 300 in each of the first 2 years and then to go up annually as follows:

Rs. 700, Rs. 1000, Rs.1500, Rs.2000, Rs.2500.

When should the machine be replaced?

Discount factor (first year)= 
$$\frac{1}{(1+0.2)^{1-1}} = 1$$

Second year = 0.8333

Present value of maintenance cost(PVMC) = discount factor \* maintenance cost

| 1 2 3 4 5 6 7 | 8 |
|---------------|---|
|---------------|---|

| No.   | Maintenance | Discount | Present value | Cumulative | =5 + Cost of | Cumulative | Weighted |
|-------|-------------|----------|---------------|------------|--------------|------------|----------|
| of    | Cost        | Factor   | of the        | of PVMC    | m/c          | Discount   | Average  |
| years |             |          | maintenance   | M(Y)       | =M(Y)+C      | factor     | cost     |
|       |             |          | cost(PVMC)    |            |              |            | = 6 / 7  |
| 1     | 300         | 1        | 300           | 300        | 6300         | 1          | 6300     |
| 2     | 300         | 0.8333   | 249.99        | 549.99     | 6549.99      | 1.8333     | 3572.78  |

Prepared by Prof. Suman M, Dept. Of CSE, DSCE

| 3 | 700  | 0.6944 | 486.08 | 1036.07 | 7036.07 | 2.5277 | 2783.58 |
|---|------|--------|--------|---------|---------|--------|---------|
| 4 | 1000 | 0.5787 | 578.7  | 1614.77 | 7614.77 | 3.1064 | 2451.31 |
| 5 | 1500 | 0.482  | 723    | 2337.77 | 8337.77 | 3.5884 | 2323.53 |
| 6 | 2000 | 0.4018 | 803.6  | 3141.37 | 9141.37 | 3.9902 | 2290.96 |
| 7 | 2500 | 0.3348 | 837    | 3978.37 | 9978.37 | 4.325  | 2307.14 |

**Conclusion:** It is clear from the table that the maintenance cost is less than the weighted average cost till the end of  $6^{th}$  year but gets increased in the beginning of  $7^{th}$  year, so it is advisable to replace the machine with a new one at the beginning of  $7^{th}$  year in order to overcome it.

2. A manufacturer is offered 2 machine's A and B. A is priced at Rs.5000 and running costs are estimated at Rs.800 at each of the first 5 years increasing by Rs.200 / year in the 6<sup>th</sup> and subsequent years, machine B which has the same capacity as A costs Rs.2500 but will have running cost of Rs.1200/year for 1<sup>st</sup> 6 years increasing by Rs.200 / year thereafter. If money is worth of 10% / year which machine should be purchased? Assume that the scrap value is zero at the end.

**Solution:** Machine A: C=5000 i=10%=0.1

| No.   | Maintenance | Discount | Present value | Cumulative | =5 + Cost of | Cumulative | Weighted |
|-------|-------------|----------|---------------|------------|--------------|------------|----------|
| of    | Cost        | Factor   | of the        | of PVMC    | m/c          | Discount   | Average  |
| years |             |          | maintenance   | M(Y)       | =M(Y)+C      | factor     | cost     |
|       |             |          | cost(PVMC)    |            |              |            | = 6 / 7  |
| 1     | 800         | 1        | 800           | 800        | 5800         | 1          | 5800     |
| 2     | 800         | 0.9090   | 727.2         | 1527.2     | 6527.2       | 1.9090     | 3419.17  |
| 3     | 800         | 0.8264   | 661.12        | 2188.32    | 7188.32      | 2.7354     | 2627.88  |
| 4     | 800         | 0.7513   | 601.04        | 2789.36    | 7789.36      | 3.4867     | 2234.02  |
| 5     | 800         | 0.6830   | 546.4         | 3335.76    | 8335.76      | 4.1697     | 1999.12  |
| 6     | 1000        | 0.6209   | 620.9         | 3956.66    | 8956.66      | 4.7906     | 1869.63  |
| 7     | 1200        | 0.5645   | 677.4         | 4634.06    | 9634.06      | 5.3551     | 1799.04  |
| 8     | 1400        | 0.5132   | 718.48        | 5352.54    | 10,352.54    | 5.8683     | 1764.14  |
| 9     | 1600        | 0.4665   | 746.4         | 6098.94    | 11,098.94    | 6.3348     | 1752.05  |
| 10    | 1800        | 0.4241   | 763.38        | 6862.32    | 11,862.32    | 6.7589     | 1755.06  |

Machine B: C=2500 i=10%=0.1

| No.   | Maintenance | Discount | Present value | Cumulative | =5 + Cost of | Cumulative | Weighted |
|-------|-------------|----------|---------------|------------|--------------|------------|----------|
| of    | Cost        | Factor   | of the        | of PVMC    | m/c          | Discount   | Average  |
| years |             |          | maintenance   | M(Y)       | =M(Y)+C      | factor     | cost     |
|       |             |          | cost(PVMC)    |            |              |            | = 6 / 7  |
| 1     | 1200        | 1        | 1200          | 1200       | 3700         | 1          | 3700     |

| 2 | 1200 | 0.9090 | 1090.8 | 2290.8  | 4790.8    | 1.9090 | 2509.58 |
|---|------|--------|--------|---------|-----------|--------|---------|
| 3 | 1200 | 0.8264 | 991.68 | 3282.48 | 5782.48   | 2.7354 | 2113.94 |
| 4 | 1200 | 0.7513 | 901.56 | 4184.04 | 6684.04   | 3.4867 | 1917.01 |
| 5 | 1200 | 0.6830 | 819.6  | 5003.64 | 7503.64   | 4.1697 | 1799.56 |
| 6 | 1200 | 0.6209 | 745.08 | 5748.72 | 8248.72   | 4.7906 | 1721.85 |
| 7 | 1400 | 0.5645 | 790.3  | 6539.02 | 9039.02   | 5.3551 | 1687.92 |
| 8 | 1600 | 0.5132 | 821.12 | 7360.14 | 9860.14   | 5.8683 | 1680.23 |
| 9 | 1800 | 0.4665 | 839.7  | 8199.84 | 10,699.84 | 6.3348 | 1689.05 |

Conclusion: Machine A should be replaced by the end of 9<sup>th</sup> year and machine B should be replaced by the end of 8<sup>th</sup> year and the average cost of the machine B is less than A, so purchase machine B.

3. A machine costs Rs.10,000 operating costs are Rs.500/year for the first 5 years, in the 6<sup>th</sup> year and the subsequent years operating cost increases by Rs.100 each year. Assuming money is worth 10% year, find the optimum length of time to hold the machine before replacement.

**Solution :** C=10,000 i=10%=0.1

| No.   | Maintenance | Discount | Present value | Cumulative | =5 + Cost of | Cumulative | Weighted |
|-------|-------------|----------|---------------|------------|--------------|------------|----------|
| of    | Cost        | Factor   | of the        | of PVMC    | m/c          | Discount   | Average  |
| years |             |          | maintenance   | M(Y)       | =M(Y)+C      | factor     | cost     |
|       |             |          | cost(PVMC)    |            |              |            | = 6 / 7  |
| 1     | 500         | 1        | 500           | 500        | 10,500       | 1          | 10,500   |
| 2     | 500         | 0.9090   | 454.5         | 954.5      | 10,954.5     | 1.9090     | 5758.34  |
| 3     | 500         | 0.8264   | 413.2         | 1367.7     | 11,367.7     | 2.7354     | 4155.77  |
| 4     | 500         | 0.7513   | 375.65        | 1743.35    | 11,743.35    | 3.4867     | 3368.04  |
| 5     | 500         | 0.6830   | 341.5         | 2084.85    | 12,084.85    | 4.1697     | 2898.25  |
| 6     | 600         | 0.6209   | 372.54        | 2457.39    | 12,457.39    | 4.7906     | 2600.38  |
| 7     | 700         | 0.5645   | 395.15        | 2852.54    | 12,852.54    | 5.3551     | 2400.05  |
| 8     | 800         | 0.5132   | 410.56        | 3263.1     | 13,263.1     | 5.8683     | 2260.13  |
| 9     | 900         | 0.4665   | 419.85        | 3682.95    | 13,682.95    | 6.3348     | 2159.97  |
| 10    | 1000        | 0.4241   | 425.1         | 4107.05    | 14,107.05    | 6.7589     | 2087.18  |
| 11    | 1100        | 0.3855   | 424.05        | 4531.1     | 14,531.1     | 7.1444     | 2033.91  |
| 12    | 1200        | 0.3505   | 420.6         | 4951.7     | 14,951.7     | 7.4949     | 1994.91  |
| 13    | 1300        | 0.3186   | 414.18        | 5365.88    | 15,365.88    | 7.8135     | 1966.58  |
| 14    | 1400        | 0.2896   | 405.44        | 5771.32    | 15,771.32    | 8.1031     | 1946.33  |
| 15    | 1500        | 0.2632   | 394.8         | 6166.12    | 16,166.12    | 8.3663     | 1932.29  |
| 16    | 1600        | 0.2392   | 382.72        | 6548.84    | 16,548.84    | 8.6055     | 1923.05  |
| 17    | 1700        | 0.2175   | 369.75        | 6918.5     | 16,918.5     | 8.823      | 1917.55  |
| 18    | 1800        | 0.1977   | 355.86        | 7274.45    | 17,274.45    | 9.0207     | 1914.97  |

| 19 | 1900 | 0.1797 | 341.43 | 7615.88 | 17,615.88 | 9.2004 | 1914.68 |
|----|------|--------|--------|---------|-----------|--------|---------|
| 20 | 2000 | 0.1634 | 326.8  | 7942.68 | 17,942.68 | 9.3638 | 1916.18 |

Conclusion: Till the 19<sup>th</sup> year, average cost is greater than the maintenance cost but increases on 20<sup>th</sup> year i.e, maintenance cost is greater than the average weighted cost, so we will replace the machinery at the beginning of the 20<sup>th</sup> year.

4. A person is considering to purchase a machine for his factory. The related data about the alternative machine's are as follows:

|                      | Machine A | MachineB | Machine C |
|----------------------|-----------|----------|-----------|
| Present Investment   | 10,000    | 12,000   | 15,000    |
| Total annual         | 2,000     | 1,500    | 1,200     |
| maintenance          |           |          |           |
| cost/running cost    |           |          |           |
| Life in years        | 10        | 10       | 10        |
| Salvage value in Rs. | 500       | 1000     | 1200      |

As an advisor of the company, you have been asked to select the best machine. Consider 12% nominal rate of return/year.

**Solution :** To calculate discount factor for each year

I=12% = 0.12

| No. of   | Discount |
|----------|----------|
| years    | factor   |
| 1        | 1        |
| 2        | 0.8928   |
| 3        | 0.7971   |
| 4        | 0.7117   |
| 5        | 0.6355   |
| 6        | 0.5672   |
| 7        | 0.5066   |
| 8        | 0.4521   |
| 9        | 0.4036   |
| 10       | 0.3606   |
| Total    | 6.3267   |
| discount |          |
| factor   |          |

Prepared by Prof. Suman M, Dept. Of CSE, DSCE

| for   |  |
|-------|--|
| 10yrs |  |

Total maintenance for machine A for 10yrs with discount factor

$$= 2000 * 6.3267 = 12,653.4$$

Total maintenance for machine B for 10yrs with discount factor

Total maintenance for machine C for 10yrs with discount factor

The salvage value of the machine will be considered in the  $10^{th}$  year, so we will consider only the discount factor of  $10^{th}$  year (i.e, 0.3606)

Salvage value of machine A = 500 \* 0.3606 = 180.3

Salvage value of machine B = 1000 \* 0.3606 = 360.6

Salvage value of machine C = 1200 \* 0.3606 = 432.72

Total present value of machine A

= initial Investment + maintenance cost – salvage value

$$=10,000 + 12,653.4 - 180.3 = 22,473.1$$

Total present value of machine B

= initial Investment + maintenance cost – salvage value

$$=12,000 + 9490.05 - 360.6 = 21,129.45$$

Total present value of machine C

= initial Investment + maintenance cost – salvage value

$$=15,000 + 7592.04 - 432.72 = 22,159.32$$

<u>Conclusion:</u> We will consider machine B, as the total cost of machine B is less than the costs of A and C.

#### **Problems to be solved**

5. A company has a 2 year old machine purchased at a cost of Rs.10,000. Now a new machine is available at Rs.12,000. The operation and maintenance cost of the existing machine is Rs.600 for the 1<sup>st</sup> year, Rs.800 for the 2<sup>nd</sup> year and then it increases by Rs.300/year. The operation and maintenance cost of the new machine

is Rs.400 for the first year, then it increases by Rs.150/year. The capacities of the machine's are same and they have no resale value. The company expects a minimum of 12% return on its capital investments. Determine whether the existing machine should be replaced by the new machine?

6. A truck is priced at Rs.60,000 and running costs are estimated at Rs.6000 for each of the 1<sup>st</sup> 4 years, increasing by Rs.2000/year in the 5<sup>th</sup> and subsequent years. If the money is worth 10% / year, when should the truck be replaced? Assume the truck has no scrap value.

EE\_Module\_5\_Chapter1\_RA