CDSF07, CDSF08

Recap

DS Academy

Elon Musk: 'A.I. will make jobs kind of pointless' — so study this

Published Thu, Aug 29 2019 • 10:47 AM EDT • Updated Fri, Aug 30 2019 • 10:54 AM EDT

/ Variables

How can we summarize?

Correlation

How can we summarize?

Average of X

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

How can we summarize?

Average of X
Average of Y
Center

Correlation

How can we summarize this data?

SD of X

$$\sigma = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

How can we summarize this data?

SD of X SD of Y **Spread**

How can we summarize this data?

Average of X Average of Y Center

SD of X SD of Y **Spread**

How are the two variables related?

Convert each variable to standard units.

The average of the products gives the correlation coefficient

$$Correlation = \frac{Cov(x, y)}{\sigma x * \sigma y}$$

$$r_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

For Population

$$Cov(x,y) = \frac{\sum (x_i - \overline{x}) * (y_i - \overline{y})}{N}$$

For Sample

$$Cov(x,y) = \frac{\sum (x_i - \overline{x}) * (y_i - \overline{y})}{(N-1)}$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}{\frac{1}{n-1} \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(x_i - \bar{x})}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}} \frac{(y_i - \bar{y})}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{1}{n-1} \sum_{i=1}^{n} \sup_{x_i \in \mathcal{Y}_i} \frac{1}{x_i} \sum_{i=1}^{n} \sup_{x_i \in \mathcal{Y}_i} \frac{(y_i - \bar{y})}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{1}{n-1} \sum_{i=1}^{n} \sup_{x_i \in \mathcal{Y}_i} \frac{1}{x_i} \sum_{i=1}^{n} \frac{1}{x_i} \sum_{i=1}^$$

$$r_{xy} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

For Population

$$Cov(x,y) = \frac{\sum (x_i - \overline{x}) * (y_i - \overline{y})}{N}$$

For Sample

$$Cov(x,y) = \frac{\sum (x_i - \overline{x}) * (y_i - \overline{y})}{(N-1)}$$

Correlation - Exceptional Cases

Outliers

Non Linear

Correlation is not Causation!

Correlation is not Causation!

With each increase of one SD in X there is an increase of only r SDs in Y, on the average.

Regression Towards the Mean

Sir Francis Galton

The Regression Fallacy

"... it is part of the human condition that we are statistically punished for rewarding others and rewarded for punishing them."

Daniel Kahneman, winner of the 2002 Nobel Memorial Prize in Economic Sciences

Sampling Bias

Image from Geckoboard

Sampling Bias

Image from Amazon.com

Image from Slate.com

Linear Relationship

A linear function is one for which

$$f(x+y)=f(x)+f(y)$$
and
$$f(ax)=af(x)$$

$$S = \sum_{i=1}^{N} r_i = \sum_{i=1}^{N} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Least Square

$$SSE(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2.$$

$$\frac{\partial}{\partial \hat{\beta_0}} SSE(\hat{\beta_0}, \hat{\beta_1}) = 0$$

$$\frac{\partial}{\partial \hat{\beta_1}} SSE(\hat{\beta_0}, \hat{\beta_1}) = 0$$

$$\frac{\partial}{\partial \hat{\beta_0}} SSE(\hat{\beta_0}, \hat{\beta_1}) = -2\sum_{i=1}^n (y_i - \hat{\beta_0} - \hat{\beta_1} x_i) = -2\sum_{i=1}^n y_i + 2n\hat{\beta_0} + 2\hat{\beta_1} \sum_{i=1}^n x_i$$
$$= -2n\overline{y} + 2n\hat{\beta_0} + 2n\hat{\beta_1} \overline{x}$$

$$\frac{\partial}{\partial \hat{\beta_0}} SSE(\hat{\beta_0}, \hat{\beta_1}) = 0$$

$$-2n\overline{y} + 2n\hat{\beta}_0 + 2n\hat{\beta}_1\overline{x} = 0$$

$$\hat{\beta_0} = \overline{y} - \hat{\beta_1} \overline{x}.$$

Chain Rule

If f and g are both differentiable and F(x) is the composite function defined by F(x) = f(g(x)) then F is differentiable and F' is given by the product

$$F'(x) = f'(g(x)) g'(x)$$
Differentiate outer function

Differentiate inner function

$/// R^2$

R-squared =

Explained variation

Total variation

var(mean)-var(line)
var(mean)

Image from machinelearningplus.com

Understanding Linear Regression Results

6

Optimization terminated successfully.

Current function value: 0.441635

Iterations 7

Logit Regression Results

Dep. Variable	:	Failure	No. Obs	ervations:		23	
Model:		Logit	Df Resi	duals:		21	
ethod: MLE		Df Model:		1			
Date:	Fri	, 18 Oct 2019	Pseudo R-squ.:			0.2813	
Γime: 17:57		17:57:08	08 Log-Likelihood:			-10.158	
converged:		True	LL-Null	.:		-14.134	
			LLR p-value:			0.004804	
	coef	std err	z	P> z	[0.025	0.975]	
Intercept	15.0429	7.379	2.039	0.041	0.581	29.505	
Temperature	-0.2322	0.108	-2.145	0.032	-0.444	-0.020	

Bias vs. Variance

Bias vs. Variance

Machine Learning

by Andrew Ng

3 Blue 1 Brown

THANK YOU

GABRIEL MAGALHÃES

Data Scientist

gabriel.magalhaes@totvs.com.br

f totvs.com

in company/totvs

O @totvs

in fluig.com

