Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Tomáš Plšek **Naměřeno:** 6. dubna 2018

Obor: Astrofyzika Ročník: II Semestr: IV Testováno:

Úloha č. 2: Studium termoelektrické emise

Úkoly:

- 1. Změřte výstupní práci w wolframu pomocí Richardsonovy Dushmanovy přímky.
- 2. Odhadněte pro použitou diodu intenzitu elektrického pole u povrchu katody.
- 3. Změřte závislost $I_{nas} = f(U_a)$ pro $U_a < 500$ V, zpracujte ji do souřadnic $\ln I_{nas} = \sqrt{U_a}$ a určete přírůstek proudu díky přítomnosti elektrického pole pro $U_a = 500$ V. Porovnejte experimentálně získanou hodnotu s hodnotou určenou dle vztahu (7).
- 4. Pro dvě hodnoty žhavícího proudu I_f změřte oblast náběhového proudu I a vyneste do grafu. Zpracujte rovněž v souřadnicích $\ln I = f(U_a)$ a z přímkové části v náběhové oblasti určete teplotu elektronů.

1. Úvod

Při emisi dochází k uvolnění elektronů z povrchu kovu. V našem případě k ní dochází kvůli vysoké teplotě kovu. Termoemise nám může poskytnout např. informaci o silách, kterými jsou elektrony vázány v kovu.

Kovy vyžhavené na vysokou teplotu tedy emitují elektrony. Povrch kovu však dokážou opustit pouze elektrony, jejichž energie je větší než výstupní práce kovu w. Součet všech elektronů uvolněných z kovu o výstupní práci w a teplotě T se označuje nasycený emisní proud:

$$I_{nas} = B T^2 \exp(-w/kT), \tag{1}$$

kde B je konstanta zahrnující plochu katody a termoemisní konstantu a k je Boltzmannova konstanta. Zlogaritmováním a úpravou rovnice (1) získáme vztah pro Richardsonovu-Dushmanovu přímku:

$$y = -\frac{w}{k}x + \ln B,\tag{2}$$

kde $y = \ln(I_{nas}/T^2)$ a $x = T^{-1}$. Teplotu vlákna určíme z měření žhavícího proudu a napětí, protože odpor vlákna se mění s teplotou dle vztahu:

$$R_t = \frac{\rho d}{S}(1 + \alpha t),\tag{3}$$

kde t je teplota ve stupních Celsia, ρ je hustota materiálu, z nějž j vlákno vyrobeno, $\frac{d}{S}$ je poměr délky katody a její plochy a α je teplotní součinitel odporu.

Snížíme-li anodové napětí z kladných hodnot do záporných, jsou elektrony stále více brzděny elektrickým polem. Pro tuto náběhovou oblast anodového proudu platí vztah:

$$I = I_0 \exp\left(\frac{eU_a}{kT_e}\right),\tag{4}$$

kde T_e je teplota elektronů.

Nachází-li se katoda v silném elektrickém poli dochází ke snížení výstupní práce katody o hodnotu:

$$w_p = \sqrt{\frac{e^3 E}{4\pi\epsilon_0}}. (5)$$

Pro novou hodnotu nasyceného proudu tedy platí:

$$\ln I'_{nas} = \ln I_{nas} + w_p/kT \tag{6}$$

a po dosazení za w_p získáváme vztah:

$$\ln I'_{nas} = \ln I_{nas} + \sqrt{\frac{e^3}{4\pi\epsilon_0 k^2 T^2}} \cdot \sqrt{E},\tag{7}$$

kde E je intenzita elektrického pole u povrchu katody. Intenzitu el. pole u žhavené katody lze v případě elektronky určit ze vztahu:

$$E = U_a \frac{L - D}{D} \frac{1}{r \ln(D/r)}.$$
 (8)

Konstanty L, D a r jsou parametry užité katody a anody, kde L je vzdálenost anody a studené katody, D je vzdálenost anody a žhavené katody a r je poloměr katody.

2. Měření

Měření této úlohy je polo-automatizováno, oba zdroje napětí i všechny měřicí přístroje jsou připojeny k počítači. Data se ihned po naměření vykreslují do příslušného grafu, z nějž můžeme na začátku určit oblast nasyceného proudu.

Parametry soustavy:

maximální žhavící proud $I_f = 2 \text{ A}$ maximální anodové napětí $U_a = 500 \text{ V}$ poloměr katody r = 0.045 mmdélka katody d = 50 mmR = 17 mmpoloměr anody D = 15 mmvzdálenost anody a žhavené katody $L=25~\mathrm{mm}$ vzdálenost anody a studené katody $\rho = 4.89 \cdot 10^{-8} \ \Omega \text{m}$ hustota odporu $\alpha = 4.83 \cdot 10^{-3} \text{ K}^{-1}$ teplotní součinitel odporu

w = 4.5 eVvýstupní práce wolframu

Nejdříve budeme měnit napětí na anodě U_a a sledovat jak se nám mění hodnota anodového proudu I_a . Vyneseme-li tuto závislost graficky, můžeme určit oblast nasyceného proudu a tedy i odpovídající oblast anodového napětí, ve které je proud nasycený.

V nasycené oblasti tedy vybereme určitou hodnotu anodového napětí a provedeme pro ni měření závislosti anodového proudu na proudu žhavícím. Získanou závislost převedeme podle vztahu (2) a pomocí Richardsonovy-Dushmanovy přímky určíme hodnotu výstupní práce wolframu w.

I_f [A]	$I_a [\mu A]$	T[K]	$x [10^{-3} \text{ K}^{-1}]$	y
1.935	34.260	1391	0.719	-24.76
1.806	10.194	1346	0.743	-25.90
1.711	3.870	1311	0.763	-26.82
1.610	1.300	1276	0.784	-27.86
1.511	0.407	1241	0.806	-28.96
1.406	0.106	1205	0.830	-30.24
1.306	0.026	1169	0.855	-31.58
1.211	0.006	1134	0.882	-33.00
1.106	0.002	1096	0.913	-34.09
1.015	0.001	1063	0.941	-34.48

1021

0.979

-34.71

0.911

0.001

Tabulka 1: Teploty katody a hodnoty pro R-D přímku.

Graf 1: Určení výstupní práce wolframu pomocí R-D přímky.

Výstupní práce wolframu $w = (4.37 \pm 0.04) \text{ eV}.$

Nyní proměříme závislost nasyceného proudu na anodovém napětí, vyjádříme závislost $\ln(I_{nas})$ na $\sqrt{U_a}$ a ze směrnice přímky určíme přírůstek proudu díky přítomnosti elektrického pole při anodovém napětí $U_a = 500$ V. Tuto hodnotu srovnáme s teoretickou hodnotou podle vztahu (7).

Teoretická hodnota intenzity elektrického pole u povrchu katody $E=12.8\cdot 10^6~{\rm V\,m^{-1}}.$

Tabulka 2
a: Závislost nasyceného proudu na anodovém napětí při
 $I_f=1.73~\mathrm{A}.$

U_a [V]	$I_a [\mu A]$	$\sqrt{U_a} \left[V^{1/2} \right]$	$\ln(I_{nas})$
112	4.92	10.61	-12.22
167	5.07	12.91	-12.19
190	5.09	13.80	-12.19
229	5.17	15.13	-12.17
267	5.22	16.35	-12.16
327	5.30	18.07	-12.15
375	5.35	19.36	-12.14
426	5.40	20.63	-12.13
470	5.44	21.68	-12.12
499	5.47	22.34	-12.12

Tabulka 2
b: Závislost nasyceného proudu na anodovém napětí při $I_f=1.86~\mathrm{A.}$

U_a [V]	$I_a [\mu A]$	$\sqrt{U_a} \left[V^{1/2} \right]$	$\ln(I_{nas})$
103	17.32	10.15	-10.96
170	17.99	13.03	-10.93
200	18.22	14.14	-10.91
236	18.41	15.38	-10.90
290	18.65	17.03	-10.89
342	18.86	18.50	-10.88
401	19.06	20.02	-10.87
440	19.20	20.98	-10.86
475	19.30	21.79	-10.86
499	19.36	22.33	-10.85

Graf 2a: Závislost logaritmu nasyceného proudu na anodovém napětí při $I_f=1.73~\mathrm{A.}$

Naměřená hodnota rozdílu nasyceného proudu $\Delta I_{nas} = (0.97 \pm 0.01) \ \mu\text{A}$. Teoreticky určená hodnota rozdílu nasyceného proudu $\Delta I_{nas} = 2.16 \ \mu\text{A}$.

Graf 2b: Závislost logaritmu nasyceného proudu na anodovém napětí při $I_f=1.86~\mathrm{A.}$

Naměřená hodnota rozdílu nasyceného proudu $\Delta I_{nas} = (3.4 \pm 0.1) \ \mu\text{A}$. Teoreticky určená hodnota rozdílu nasyceného proudu $\Delta I_{nas} = 7.4 \ \mu\text{A}$.

Pro dvě hodnoty žhavícího proudu nyní proměříme oblast náběhového proudu (na anodě bude záporné napětí). Když vyjádříme závislost $\ln(I) = f(U_a)$ a proložíme ji přímkou, ze směrnice přímky můžeme zjistit teplotu elektronů T_e . Tuto hodnotu porovnáme s teplotou katody T_k .

Tabulka 3
a: Závislost náběhového proudu na anodovém napětí při
 $I_f=1.73~\mathrm{A}.$

U_a [V]	$I_a [\mu A]$	$\ln(I_{nas})$
-10.07	0.0004	-21.63
-9.00	0.0017	-20.18
-8.12	0.0008	-20.99
-7.07	0.0013	-20.49
-6.00	0.0040	-19.34
-5.27	0.0143	-18.06
-4.07	0.0520	-16.77
-3.21	0.1349	-15.82
-1.97	0.6269	-14.28
-1.07	1.3772	-13.50
-0.16	2.1898	-13.03

Tabulka 3
a: Závislost náběhového proudu na anodovém napětí při
 $I_f=1.86~\mathrm{A}.$

U_a [V]	$I_a [\mu A]$	$\ln(I_{nas})$
-10.03	0.0013	-20.46
-9.04	0.0025	-19.79
-8.06	0.0016	-20.28
-6.99	0.0020	-20.02
-6.23	0.0061	-18.91
-5.06	0.0211	-17.67
-4.07	0.0947	-16.17
-3.08	0.2340	-15.27
-2.05	0.7264	-14.14
-1.26	1.6682	-13.30
-0.17	3.4306	-12.58

Graf 3a: Závislost logaritmu náběhového proudu na anodovém napětí při $I_f=1.73~\mathrm{A.}$

Graf 3b: Závislost logaritmu náběhového proudu na anodovém napětí při $I_f=1.86~\mathrm{A.}$

Při žhavícím proudu $I_f=1.73$ A jsem stanovil teplotu emitovaných elektronů $T_e=(10400\pm 500)$ K a teplotu katody $T_k=1300$ K.

Při žhavícím proudu $I_f=1.86$ A jsem stanovil teplotu emitovaných elektronů $T_e=(10500\pm 400)$ K a teplotu katody $T_k=1400$ K.

3. Závěr

V oblasti nasyceného proudu jsem proměřil závislost anodového proudu na proudu žhavícím a určil jsem hodnotu výstupní práce wolframu $w=(4.37\pm0.04)$ eV. Tabulková hodnota pro wolfram je w=4.5 eV.

Ze závislosti nasyceného proudu na anodovém napětí jsem určil rozdíl nasyceného proudu, když je katoda v přítomnosti silného elektrického pole při anodovém napětí $U_a = 500$ V, a tuto hodnotu jsem porovnal s teoretickou hodnotou. Při žhavícím proudu $I_f = 1.73$ A je naměřený rozdíl nasyceného proudu $\Delta I_{nas} = (0.97 \pm 0.01)~\mu\text{A}$ a teoretická hodnota $\Delta I_{nas} = 2.16~\mu\text{A}$. Při žhavícím proudu $I_f = 1.86$ A je naměřený rozdíl nasyceného proudu $\Delta I_{nas} = (3.4 \pm 0.1)~\mu\text{A}$ a teoretická hodnota $\Delta I_{nas} = 7.4~\mu\text{A}$. V obou případech je teoretická hodnota více než dvakrát větší než měřená.

Ze závislosti anodového proudu na anodovém napětí v náběhové oblasti jsem odhadl teplotu elektronů. Pro žhavící proud $I_f = 1.73$ A je odhadovaná teplota elektronů $T_e = (10400 \pm 500)$ K a teplota katody $T_k = 1300$ K. Pro žhavící proud $I_f = 1.86$ A je to $T_e = (10500 \pm 400)$ K a $T_k = 1400$ K. Teplota elektronů se tedy se změnou žhavícího proudu prakticky nemění.