TABLE OF CONTENTS

S.NO	DATE	TITLE OF THE EXPERIMENTS	PAGE NO	MARK	SIGN
1.		Download ingand Installing Hadoop;Understanding Different Hadoop Modes. Startup Scripts, Configuration Files.	1		
2.		Hadoop Implementation of File Management Tasks, Such as Adding Files and Directories, Retrieving Files and Deleting Files	12		
3.		Implement of Matrix Multiplication with Hadoop Map Reduce	15		
4.		Run a Basic Word Count Map Reduce Program to Understand Map Reduce Paradigm.	19		
5.		Installation of Hive along with Practice Examples.	24		
6.		Installation of Hbase along with Practice Examples	27		
7.		Installation of Thrift.	30		
8.		Practice Importing and Exporting Data FromVarious Databases.	31		

EX. No. 1: DOWNLOADING AND INSTALLING HADOOP; UNDERSTAND ING DIFFERENT HADOOP MODES .START UP SCRIPTS, CONFIGURATION FILES.

PREREQUISITESTOINSTALL HADOOPON WINDOWS

- **VIRTUALBOX** (For Linux): it is used for installing the operating system on it.
- **OPERATINGSYSTEM**: You can install Hadoop on Windows or Linux based operating systems. Ubuntu and CentOS are very commonly used.
- **JAVA**: You need to install the Java8 package on your system.
- HADOOP: You require Hadoop latest version

1. InstallJava

- Java JDK Link to downloadhttps://www.oracle.com/java/technologies/javase-jdk8-downloads.html
- ExtractandinstallJavainC:\Java
- Opencmdandtype->javac-version

Command Prompt

```
Microsoft Windows [Version 10.0.19041.572]
(c) 2020 Microsoft Corporation. All rights reserved.
C:\Users\asus>javac -version
javac 1.8.0_241
```

2. DownloadHadoop

https://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-3.3.0/hadoop-3.3.0.tar.gz

extracttoC:\Hadoop

- 3. SetthepathJAVA_HOME Environmentvariable
- 4. SetthepathHADOOP_HOMEEnvironmentvariable

5. Configurations

EditfileC:/Hadoop-3.3.0/etc/hadoop/core-site.xml,

```
paste thexml codein folderand save
<configuration>
      cproperty>
             <name>fs.defaultFS</name>
             <value>hdfs://localhost:9000</value>
      </configuration>
Rename"mapred-site.xml.template"to "mapred-site.xml"andeditthisfileC:/Hadoop-
                                    3.3.0/etc/hadoop/mapred-site.xml,pastexml codeand savethis file.
<configuration>
      cproperty>
             <name>mapreduce.framework.name</name>
             <value>yarn</value>
      </configuration>
Createfolder"data"under"C:\Hadoop-3.3.0"
Create folder "datanode" under "C:\Hadoop-
3.3.0 \ data" Create folder "name node" under "C: \ Hadoop-like the control of 
3.3.0\data"
Edit file C:\Hadoop-3.3.0/etc/hadoop/hdfs-
site.xml,pastexml codeand savethis file.
<configuration>
      cproperty>
             <name>dfs.replication</name>
             <value>1</value>
      cproperty>
             <name>dfs.namenode.name.dir</name>
             <value>/hadoop-3.3.0/data/namenode</value>
      cproperty>
      <name>dfs.datanode.data.dir</name>
```

```
<value>/hadoop-3.3.0/data/datanode</value>
 </configuration>
Edit file C:/Hadoop-3.3.0/etc/hadoop/yarn-
site.xml,pastexml codeand savethis file.
<configuration>
 cproperty>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
 cproperty>
        <name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </configuration>
Edit file C:/Hadoop-3.3.0/etc/hadoop/hadoop-
env.cmdbyclosingthe commandline
"JAVA HOME=%JAVA HOME%"insteadofset"JAVA HOME=C:\Java"
```

6. HadoopConfigurations

Downloadhttps://github.com/brainmentorspvtltd/BigData_RDE/blob/master/Hadoop%20Config uration.zipor (forhadoop 3)

https://github.com/s911415/apache-hadoop-3.1.0-winutils

- Copy folder bin and replace existing bin folder inC:\Hadoop-3.3.0\bin
- FormattheNameNode
- Opencmdandtype command"hdfsnamenode–format"

C:\Windows\System32\cmd.exe

```
Microsoft Windows [Version 10.0.19041.572]
(c) 2020 Microsoft Corporation. All rights reserved.
```

C:\hadoop-3.3.0\bin>hdfs namenode -format

7. Testing

- Open cmd and change directory to C:\Hadoop-3.3.0\sbin
- typestart-all.cmd
- C:\Windows\System32\cmd.exe

```
Microsoft Windows [Version 10.0.19041.572]
(c) 2020 Microsoft Corporation. All rights reserved.
C:\hadoop-3.3.0\sbin>start-all.cmd
```

(Oryoucanstartlikethis)

Start name node and data node witht his command

- typestart-dfs.cmd
- Start yarnthroughthiscommand
- typestart-yarn.cmd

Makesuretheseapps arerunning

- HadoopNamenode
- Hadoopdatanode
- YARNResourceManager

YARN Node Manager

Open: http://localhost:8088

Open:http://localhost:9870

Overview 'localhost:9000' (ractive)

Summary

Hadoop installed Successfully.....

EX. No : 2 HADOOP IMPLEMENTATION OF FILE MANAGEMENT TASKS, SUCH AS ADDING FILES AND DIRECTORIES, RETRIEVING FILES AND DELETING FILES

1. Createadirectoryin HDFSatgivenpath(s).

Usage:

hadoopfs-mkdir<paths>Example:

hadoopfs-mkdir/user/saurzcode/dir1/user/saurzcode/dir2

2. Listthecontentsofadirectory.

Usage:

hadoopfs-

ls<args>Example:

hadoopfs-ls/user/saurzcode

3. Upload and download a file in

HDFS.Upload:hadoop fs -put:

Copy single src file, or multiple src files from local file system to the Hadoop data file

systemUsage:

hadoopfs-put<localsrc>...<HDFS_dest_Path> Example:

hadoopfs-put/home/saurzcode/Samplefile.txt/user/saurzcode/dir3/

Download:

hadoopfs-get:

Copies/Downloads files to the local file

systemUsage:

hadoopfs-get<hdfs_src><localdst>Example:

hadoopfs-get/user/saurzcode/dir3/Samplefile.txt/home/

4. See contents of a

fileSame as unix cat

command:Usage:

hadoopfs-cat<path[filename]>

Example:

hadoopfs-cat/user/saurzcode/dir1/abc.txt

5. Copy a filefromsourcetodestination

This command allows multiples ources as well in which case the destination must be a directory. Usage: hadoopfs-cp < source > < dest >

Example:

hadoop fs -cp

/user/saurzcode/dir1/abc.txt

/user/saurzcode/dir2

6. Copy a file from/To Local file system to

HDFScopyFromLocal

Usage:

hadoopfs-copyFromLocal<localsrc>

URIExample:

hadoop fs -copyFromLocal /home/saurzcode/abc.txt /user/ saurzcode/abc.txtSimilartoputcommand,exceptthatthesourceisrestrictedtoa localfilereference.

copyToLocal

Usage:

hadoopfs-copyToLocal [-ignorecrc] [-crc] URI<localdst>

Similartogetcommand, exceptthatthedestinationisrestrictedtoalocalfilereference.

7. Movefilefromsourceto destination.

Note:- Moving files across filesystem is not

permitted. Usage:

hadoopfs-mv <src><dest>Example:

hadoopfs-mv/user/saurzcode/dir1/abc.txt/user/saurzcode/dir2

8. Removeafileordirectoryin HDFS.

Remove files specified as argument. Deletes directory only when it is

emptyUsage:

hadoopfs-rm<arg>Example:

hadoopfs-rm/user/saurzcode/dir1/abc.txt

Recursiveversion of delete.

Usage:

hadoop fs -rmr <arg>

Example:hadoopfs-

rmr/user/saurzcode/

9. Display last few lines of a

file.Similar to tail command in

Unix.Usage:

hadoop fs -tail <path[filename]>

Example:hadoopfs-

tail/user/saurzcode/dir1/abc.txt

10. Displaytheaggregatelength ofafile.

Usage:

hadoopfs-du<path>Example:

hadoopfs-du/user/saurzcode/dir1/abc.txt

EX.No:3 IMPLEMENT OF MATRIX MULTIPLICATION WITH HADOOP MAPREDUCE AIM:-

To write a Map Reduce Program that implements Matrix Multiplication.

PROCEDURE:

WeassumethattheinputmatricesarealreadystoredinHadoopDistributedFileSystem(HDF S)inasuitableformat(e.g.,CSV,TSV)whereeachrowrepresentsamatrixelement.Thematrices are compatible for multiplication (the number of columns in the first matrix is equaltothenumber of rows in the second matrix).

STEP1:MAPPER

The mapper will take the input matrices and emit key-value pairs for each element in the result matrix. The key will be the (row, column) index of the result element, and the valuewill be the corresponding element value.

STEP2:REDUCER

Thereducerwilltakethekey-valuepairsemittedbythemapperandcalculatethepartialsumforeachelement in theresult matrix.

STEP3:MAINDRIVER

The main driver class sets up the Hadoop job configuration and specifies the input andoutputpaths forthe matrices.

STEP4: RUNNINGTHE JOB

To run the MapReduce job, you need to package your classes into a JAR file and then submitit to Hadoop using the hadoop jar command. Make sure to replace input_path and output_pathwiththeactualHDFSpaths toyour inputmatrices and desired output directory.

PROGRAM:

import

java.io.IOException;importjava.

util.StringTokenizer;

import

org.apache.hadoop.io.IntWritable;import

org.apache.hadoop.io.LongWritable;import

org.apache.hadoop.io.Text;

importorg.apache.hadoop.mapreduce.Mapper;

```
import
org.apache.hadoop.mapreduce.Reducer;import
org.apache.hadoop.conf.Configuration;importo
rg.apache.hadoop.mapreduce.Job;
import
org.apache.hadoop.mapreduce.lib.input.TextInputFormat;import
org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;import
org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;importo
rg.apache.hadoop.fs.Path;
publicclassMatrixMultiplicationMapperextendsMapper<LongWritable,Text,Text,Text>
protectedvoidmap(LongWritablekey, Textvalue, Contextcontext)throwsIOException, Interrupted
Exception{
    // Parse the input line to get row, column, and value of each element in the input
    matricesString[] elements = value.toString().split(",");
    int row =
    Integer.parseInt(elements[0]);int col =
    Integer.parseInt(elements[1]);intval=Int
    eger.parseInt(elements[2]);
    //Emitkey-value pairswherekeyis(row, column) indexoftheresultelement
    // and value is the corresponding element
    valuecontext.write(newText(row+","+ col),new
    Text(val));
  }
}
public class MatrixMultiplicationReducer extends Reducer<Text, Text, Text, IntWritable>
{protectedvoidreduce(Textkey,Iterable<Text>values,Contextcontext)throwsIOException,Inter
ruptedException{
    intresult =0;
    for(Text value: values) {
       // Accumulate the partial sum for the result
       elementresult+= Integer.parseInt(value.toString());
```

```
}
    // Emit the final result for the result
    elementcontext.write(key,newIntWritable(r
    esult));
  }
publicclassMatrixMultiplicationDriver{
  public static void main(String[] args) throws Exception
     {Configurationconf=new Configuration();
    Job job = Job.getInstance(conf, "Matrix
    Multiplication");job.setJarByClass(MatrixMultiplication
    Driver.class);job.setMapperClass(MatrixMultiplicationM
    apper.class);job.setReducerClass(MatrixMultiplicationRe
    ducer.class);job.setOutputKeyClass(Text.class);job.setOu
    tputValueClass(Text.class); FileInputFormat.addInputPat\\
    h(job, new
    Path(args[0]));FileOutputFormat.setOutputPath(job, new
    Path(args[1]));System.exit(job.waitForCompletion(true)?
    0:1);
  }
```

Run the program

Hadoop jar matrix multiplication.jar Matrix Multiplication Driver input_path output_path

lendi@ubuntu:~/Desktop\$ hadoop jar MatrixMultiplication.jar /matrix_data/ /matrix_output_new

RESULT:

Thus the Map Reduce Program that implements Matrix Multiplication was executed and verified successfully.

EX.NO: 4 RUN A BASIC WORD COUNT MAP REDUCE PROGRAM TO UNDERSTAND MAPREDUCE PARADIGM.

AIM:-

To write a Basic Word Count program to understand Map Reduce Paradigm.

PROCEDURE:

Theentire Map Reduce program can be fundamentally divided into three parts:

- MapperPhaseCode
- ReducerPhaseCode
- DriverCode

STEP1:MAPPERCODE:

We have created a class Map that extends the class Mapper which is already defined intheMapReduceFramework.

- Wedefinethedatatypesofinputandoutputkey/valuepairaftertheclassdeclarationusingangle brackets.
- Boththeinputand outputof the Mapper isakey/valuepair.

Input:

- Thekeyis nothingbut theoffset of each lineinthe text file:LongWritable
- The value is each individual line: Text

Output:

- Thekeyis the tokenizedwords: Text
- Wehavethehardcoded valueinourcasewhichis1:IntWritable
- **Example**–Dear1, Bear 1,etc.

Wehavewrittenajavacodewherewehavetokenizedeachwordandassignedthemahardcodedvalue equal to 1.

STEP2: REDUCER CODE:

- Wehavecreated aclassReducewhichextendsclassReducer likethatof Mapper.
- Wedefinethedatatypesofinputandoutputkey/valuepairaftertheclassdeclarationusingangle brackets as doneforMapper.
- Boththeinput and the output of the Reducer is a keyvalue pair.

Input:

- The key nothing butthose unique wordswhichhave beengenerated after the sortingandshufflingphase: Text
- The value is a list of integers corresponding to each key: Int Writable
- Example–Bear, [1,1],etc.

Output:

- Thekeyis all theuniquewordspresent in the inputtext file: Text
- The value is the number of occurrences of each of the unique words: Int Writable
- Example–Bear,2;Car,3,etc.
- Wehaveaggregatedthevaluespresentineachofthelistcorrespondingtoeachkeyandproducedthe final answer.
- In general, a single reducer is created for each of the unique words, but, you can specify the number of reducer in mapred-site.xml.

STEP3:DRIVER CODE:

- Inthedriver class, weset the configuration of our MapReduce jobtorunin Hadoop.
- Wespecifythenameofthejob,thedatatypeofinput/outputofthemapperandreducer.
- Wealso specifythe names of the mapper and reducer classes.
- The path of the input and output folder is also specified.
- The method setInputFormatClass () is used for specifying that how a Mapper will readthe input data or what will be the unit of work. Here, we have chosen TextInputFormatso that single line is read by the mapper at a time from the input text file.

 The main ()methodistheentrypointforthedriver.Inthismethod,weinstantiateanewConfigurationobje ct forthe job.

PROGRAM:

import
java.io.IOException;importjava.
util.StringTokenizer;
import
org.apache.hadoop.io.IntWritable;import
org.apache.hadoop.io.LongWritable;import
org.apache.hadoop.io.Text;

```
import
org.apache.hadoop.mapreduce.Mapper;import
org.apache.hadoop.mapreduce.Reducer;
import
org.apache.hadoop.conf.Configuration;import
org.apache.hadoop.mapreduce.Job;
import
org. a pache. hadoop. mapreduce. lib. input. Text Input Format; import\\
org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;import
org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import
org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;importo
rg.apache.hadoop.fs.Path;
publicclass WordCount
public static class Map extends Mapper<LongWritable,Text,Text,IntWritable>
{public void map(LongWritable key, Text value,Context context)
throwsIOException,InterruptedException{
Stringline=value.toString();
StringTokenizer tokenizer = new
StringTokenizer(line); while
(tokenizer.hasMoreTokens())
{value.set(tokenizer.nextToken());
context.write(value,newIntWritable(1));
public static class Reduce extends Reducer<Text,IntWritable,Text,IntWritable>
{public void reduce(Text key, Iterable<IntWritable> values,Context
context)throwsIOException,InterruptedException {
intsum=0;
for(IntWritablex:values)
sum+=x.get();
```

```
}
  context.write(key,newIntWritable(sum));
  }
  public static void main(String[] args) throws Exception
  {Configurationconf=newConfiguration()
Job job = new Job(conf, "My Word Count
Program");job.setJarByClass(WordCount.class);job.set
MapperClass(Map.class);job.setReducerClass(Reduce.c
lass);job.setOutputKeyClass(Text.class);job.setOutputV
alueClass(IntWritable.class);job.setInputFormatClass(T
extInputFormat.class);job.setOutputFormatClass(TextO
utputFormat.class);PathoutputPath = new Path(args[1]);
  //Configuring the input/output path from the filesystem into the
  jobFileInputFormat.addInputPath(job, new
  Path(args[0]));FileOutputFormat.setOutputPath(job,newPath(args[
  1]));
  //deleting the output path automatically from hdfs so that we don't have
  todeleteit explicitly
  outputPath.getFileSystem(conf).delete(outputPath);
  //exiting the job only if the flag value becomes
  falseSystem.exit(job.waitForCompletion(true)?0:1);
   }
  }
```

RuntheMapReducecode:

The command for running a Map Reduce code is:

hadoopjarhadoop-mapreduce-example.jarWordCount/sample/input/sample/output

OUTPUT:

```
16/08/17 01:17:45 INFO impl.YarnClientImpl: Submitted application application_14
71410736896_0001
16/08/17 01:17:45 INFO mapreduce.Job: The url to track the job: http://ubuntu.ub
untu-domain:8088/proxy/application_1471410736896_0001/
16/08/17 01:17:45 INFO mapreduce.Job: Running job: job_1471410736896_0001
16/08/17 01:17:52 INFO mapreduce.Job: Job job_1471410736896_0001 running in uber
mode: false
16/08/17 01:17:52 INFO mapreduce.Job: map 0% reduce 0%
16/08/17 01:17:59 INFO mapreduce.Job: map 100% reduce 0%
16/08/17 01:18:06 INFO mapreduce.Job: map 100% reduce 100%
16/08/17 01:18:06 INFO mapreduce.Job: Job job_1471410736896_0001 completed succe
sfully
16/08/17 01:18:06 INFO mapreduce.Job: Counters: 49
File System Counters

FILE: Number of bytes read=3772644
FILE: Number of bytes written=7775215
FILE: Number of large read operations=0
FILE: Number of write operations=0
FILE: Number of bytes read=17k4718
HDFS: Number of bytes written=510970
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of read operations=6
HDFS: Number of read operations=0
HDFS: Number of read operations=0
HDFS: Number of read operations=6
HDFS: Number of read operations=6
HDFS: Number of write operations=0
HDFS: Number of read operations=0
```


RESULT:

Thus the Map Reduce Program that implements word count was executed and verified successfully.

EX.NO: 5 INSTALLATION OF HIVE ALONG WITH PRACTICE EXAMPLES.

PREREQUISITES:

- JavaDevelopmentKit(JDK)installedandtheJAVA_HOMEenvironmentvariableset.
- HadoopinstalledandconfiguredonyourWindowssystem.

STEP-BY-STEPINSTALLATION:

1. DownloadHIVE:

Visit the Apache Hive website and download the latest stable version of Hive.OfficialApacheHivewebsite:https://hive.apache.org/

2. Extractthe DownloadedHiveArchivetoaDirectoryonYourWindowsMachine,

e.g.,C:\hive.

3. ConfigureHive:

- Open the Hive configuration file (hive-site.xml) located in the conf folder of theextractedHive directory.
- Setthe necessary configurations, such as Hive Metastore connections ettings and Hadoop configurations. Make sure to adjust paths accordingly for Windows. Here's an example of some configurations:

4. EnvironmentVariablesSetup:

- AddtheHivebinarydirectory(C:\hive\bininthisexample)toyourPATHenvironmentvariab le.
- SettheHIVE_HOMEenvironmentvariabletopointtotheHiveinstallationdirectory(C:\hiv ein this example).

5. StarttheHiveMetastoreservice:

TostarttheHiveMetastoreservice, you can use the schematool script:

6. StartHive:

- Openacommandpromptorterminal andnavigate totheHiveinstallation directory.
- Executethehive commandto starttheHiveshell.

EXAMPLES:

1. CreateaDatabase:

Tocreateanewdatabase in HIVE, usethe following syntax:

CREATEDATABASEdatabase_name;

Example:

CREATEDATABASEmydatabase;

2. UseaDatabase:

```
To use a specific database in HIVE, use the following syntax:USEdatabase_name;
```

Example:

USEmydatabase;

3. ShowDatabases:

To display a list of available databases in HIVE, use the following syntax:SHOW DATABASES;

4. CreateaTable:

```
To create a table in HIVE, use the following syntax:CREATETABLE table_name (
column1
datatype,column2
datatype,
...);
```

Example:

```
CREATE TABLE mytable
(idINT,
name
STRING,age
INT
);
```

5. ShowTables:

Todisplayalistoftablesinthecurrentdatabase,usethefollowingsyntax:SHOW TABLES;

6. DescribeaTable:

To view the schema and details of a specific table, use the following syntax:DESCRIBEtable_name;

Example:

DESCRIBEmytable;

7. InsertDataintoaTable:

Toinsert datainto atablein HIVE, use the following syntax:

INSERTINTOtable_name(column1,column2,...)VALUES(value1,value2,...);

Example:

INSERTINTOmytable(id,name,age)VALUES (1,'JohnDoe',25);

8. SelectDatafromaTable:

SELECTcolumn1,column2,...FROMtable_nameWHEREcondition;

Example:

SELECT* FROMmytable WHEREage>20;

RESULT:

Thus the Installation of HIVE was done successfully.

EX.NO: 6 INSTALLATION OF HBASE INSTALLING ALONG WITH PRACTICE EXAMPLES

AIM:

To install HBASE using Virtual Machine and perform some operations in HBASE.

PROCEDURE:

Step1:Installa VirtualMachine

- DownloadandinstallavirtualmachinesoftwaresuchasVirtualBox(https://www.virtualbox.org/)or VMware(https://www.vmware.com/).
- CreateanewvirtualmachineandinstallaUnixbasedoperatingsystemlikeUbuntuorCentOS.YoucandownloadtheISOimageofyourdesir edLinuxdistributionfromtheirofficialwebsites.

Step2:SetuptheVirtualMachine

- LaunchthevirtualmachineandinstalltheUnixbasedoperatingsystemfollowingtheinstallationwizard.
- Makesurethevirtualmachinehasnetworkconnectivitytodownloadsoftwarepackages.

Step3:InstallJava

- Opentheterminalorcommandlinein thevirtualmachine.
- Updatethepackagelist

sudo a ptup date

• InstallOpenJDK(JavaDevelopmentKit):

sudoaptinstalldefault-jdk

• Verifythe Javainstallation:

java-version

Step4:DownloadandInstallHBase

- Inthevirtualmachine, navigate to the directory where you want to install HB ase.
- Download the HBase binarydistributionfromtheApacheHBasewebsite(https://hbase.apache.org/). Look for thelateststable version.
- Extractthedownloadedarchive

tar-xvf<hbase_archive_name>.tar.gz

• Replacehbase_archive_name>withtheactual nameofthe HBasearchivefile.

• Movethe extractedHBasedirectorytoadesired location:

sudomv<hbase_extracted_directory>/opt/hbase

 $\bullet \quad Replace < hbase_extracted_directory > with the actual name of the extracted HB as edirectory$

.

Step5:ConfigureHBase

• OpentheHBase configurationfileforediting:

sudonano/opt/hbase/conf/hbase-site.xml

• Addthefollowingproperties totheconfigurationfile:

• Savethe fileandexitthetext editor.

Step6:StartHBase

• StarttheHBaseserver:

sudo /opt/hbase/bin/start-

hbase.shHBASEPRACTICEEXAMPLE

S:

Step1:StartHBase

MakesureHBaseisinstalledandrunningonyour Windowssystem.

Step2:OpenHBaseShell

 Open a command prompt or terminal window and navigate to the directory where theHBaseinstallationislocated. Runthefollowingcommandtostart theHBaseshell:

>>hbaseshell

Step3:CreateaTable

- Inthe HBaseshell, you can create at able with column families.
- Forexample, let's create at able named "my_table" with a column family called "cf":

Step4:InsertData

- Toinsertdataintothetable, you can use the put command.
- Here's an example of inserting arow with a specific row keyand values:

```
>>put'my_table','row1','cf:column1','value1'
>>put'my_table','row1','cf:column2','value2'
```

Step5:GetData

- Youcan retrieved at a from the table using the get command.
- Forexample, to getthe values of aspecific row:

• This will display all the column family values for the specified row.

Step6:ScanData

- Toscan andretrievemultiplerowsortheentiretable, usethe scancommand.
- Forinstance.to scanallrows inthetable:

This will display all rows and their corresponding column family values.

Step7:DeleteData

- Todeleteaspecificrow or aparticular cell value, you canuse the delete command.
- Here's anexampleofdeletingaspecific row:

Step8:Disableand DropTable

- Ifyouwanttoremovethetableentirely, youneed to disable and dropit.
- Usethe following commands:

RESULT:

Thus the installation of HBase using Virtual Machine was done successfully.

EX.NO: 7 INSTALLATION OF THRIFT

AIM:

To install Apache thrift on Windows OS.

PROCEDURE:

Step1:DownloadApacheThrift:

- VisittheApacheThriftwebsite:https://thrift.apache.org/
- Gotothe "Downloads" section and find the latest version of Thrift.
- DownloadtheWindowsbinarydistribution (ZIPfile) for thedesired version.

Step2:Extract theZIPfile:

- LocatethedownloadedZIPfile and extractits contents to a directory of your choice.
- Thisdirectorywillbereferred to as <THRIFT_DIR>inthefollowing steps.

Step3:Setupenvironmentvariables:

- OpentheStartmenuandsearchfor"EnvironmentVariables"andselect"Editthesystemenvir onment variables."
- Clickthe"EnvironmentVariables"buttonatthebottomrightofthe"SystemProperties"wind ow.
- Underthe "System variables" section, find the "Path" variable and click "Edit."
- Addthefollowingentriestothe"Variablevalue"field(replace<THRIFT_DIR>withthe actual directorypath):

<THRIFT_DIR>\bin <THRIFT_DIR>\lib

• Click"OK"tosavethechanges.

Step4:Verifytheinstallation:

- Openanew Command Prompt window.
- Runthe following command to verify that Thrift is installed and accessible:

thrift-version

• Ifeverything is setup correctly, you should see the version number of Thrift printed on the screen.

RESULT:

Thus the installation of Thrift on windows OS was done successfully.

EX.NO :8 PRACTICE IMPORTING AND EXPORTING DATA FROM VARIOUS DATABASES.

AIM:

To import and export data from various Databases using SQOOP.

PROCEDURE:

Step1:InstallSQOOP.

- First, youneedtoinstallSqoopon yourHadoopclusterormachine.
- DownloadthelatestversionofSqoopfromtheApacheSqoopwebsite(http://sqoop.apache.org/)andfollowtheinstallationinstructionsprovidedinthedocumentation

Step2:Importingdata fromadatabase:

• Toimport data from adatabaseintoHadoop, usethefollowingSqoop command:

```
Sqoop import —
connectjdbc:<DB_TYPE>://<DB_HOST>:<DB_PORT>/<DB_N

AME>\
--username<DB_USERNAME> \
--password<DB_PASSWORD>\
--table<TABLE_NAME>\
--target-dir<HDFS_TARGET_DIR> \
```

- Replacetheplaceholders
 - (<DB_TYPE>,<DB_HOST>,<DB_PORT>,<DB_NAME>,<DB_USERNAME>,< <DB_PASSWORD>, <TABLE_NAME>, <HDFS_TARGET_DIR>, and <NUMBER_OF_MAP_TASKS>)withtheappropriate values for your database and Hadoo penvironment.

Step3:Exportingdata toadatabase:

Toexportdata from Hadoop to a database, use the following Sqoop command:

```
sqoop export –
connectjdbc:<DB_TYPE>://<DB_HOST>:<DB_PORT>/<DB_N
AME>\
```

- --password <DB_PASSWORD>\
- --table<TABLE_NAME>\
- --export-dir<HDFS_EXPORT_DIR> \setminus
- --input-fields-terminated-by'<DELIMITER>'
- Replacetheplaceholders
 - (<DB_TYPE>,<DB_HOST>,<DB_PORT>,<DB_NAME>,<DB_USERNAME>,< <DB_PASSWORD>, <TABLE_NAME>, <HDFS_EXPORT_DIR>, and <DELIMITER>)withtheappropriate values for your database and Hadoopen vironment.

RESULT:

Thus the implementation export data from various Databases using SQOOP was done successfully.