Analysis Report on Publibike Dataset

November 17, 2019

1 Data Description:

We merged the following data:

- $\bullet\,$ Publibike: total number of Publibike rides by hour
- Swisscom: total number of Swisscom commuters in Lugano by hour
- $\bullet\,$ TPL: total number of total running buses by hour

2 Substitution Effect btw Buses and Publibikes

2.1 All Sample

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i, \tag{1}$$

where y_i represents the number of rides per hour, and x_i represents the number of Swisscom commuters per hour.

Table 1: All sample

	Dependent variable:
	# rides per hour
# Swisscom commuters per hour	0.005***
	(0.001)
Constant	24.172***
	(1.070)
Observations	768
R^2	0.072
Adjusted R^2	0.071
Residual Std. Error	18.833 (df = 766)
F Statistic	$59.793^{***} (df = 1; 766)$
Note:	*p<0.1; **p<0.05; ***p<0.01

2.2 By bus coverage

Figure 1: Histogram of number of running buses by hour

$$y_i(S) = \beta_1 + \beta_2 x_i(S) I_D + \varepsilon_i \tag{2}$$

where S = D, E, N.

ullet D: day time 6am-8pm, enough buses on the road

 \bullet E: evening time 9pm-0am and 5am, a few buses on the road

 \bullet N: night time 1am-4am, no buses on the road

Table 2: Substitution effect by bus coverage

	Dependent variable: # Publibike rides per hour		
	6am - 8pm	$9\mathrm{pm}$ - $0\mathrm{am}$ and $5\mathrm{am}$	1am - 4am
# Swisscom commuters	0.003*** (0.001)	0.088*** (0.013)	0.113** (0.043)
Constant	28.600*** (1.657)	7.525** (3.729)	3.666* (2.150)
Observations	521	174	73
\mathbb{R}^2	0.022	0.212	0.089
Adjusted R ²	0.020	0.207	0.076
Residual Std. Error	16.594 (df = 519)	21.521 (df = 172)	8.434 (df = 71)
F Statistic	$11.759^{***} (df = 1; 519)$	$46.293^{***} (df = 1; 172)$	$6.902^{**} (df = 1; 71)$

Note:

*p<0.1; **p<0.05; ***p<0.01

2.3 Conclusions and suggestions

- 1. A lower ratio of commuters will use Publibikes when there are more buses available
- 2. From 9pm to 4am, around 10% of commuters use Publibikes, which is way higher than day time, 0.3%
- 3. During the evening time, the R square of the model reaches 21.2%, which means 20% of the changes in demands for Publibikes are driven by commuters.
- 4. Publibike company should consider pushing ads designed for commuters during evening time. (Precise marketing)

3 User Type Impact on the Usage of Publibike

Causality Issue: Both the usage of Publibikes and buses will be driven by the commuting demands during peak hours. We need to control for that by gathering the residuals first:

$$e_i^y = y_i - \hat{\beta}_1 + \hat{\beta}_2 z_i \tag{3}$$

$$e_i^x = x_i - \hat{\gamma}_1 + \hat{\gamma}_2 z_i \tag{4}$$

where z_i is the number of buses that are on the road. Then we run the following regression:

$$e_i^y(T) = \theta_0 + \theta_1 e_i^x(T) + \varepsilon_i, \tag{5}$$

where T = 'summer' or 'not summer'.

Table 3:

	Dependent variable:		
	Residuals of (# number of Publibike rides)		
	Before summer holiday	Summer holiday	
Residuals of			
(# number of Swisscom commuters)	0.003**	0.0005	
	(0.001)	(0.002)	
Constant	-0.000	-0.000	
	(0.923)	(1.062)	
01	227	20.4	
Observations	237	284	
\mathbb{R}^2	0.028	0.0003	
Adjusted R^2	0.024	-0.003	
Residual Std. Error	14.216 (df = 235)	17.890 (df = 282)	
F Statistic	$6.711^{**} (df = 1; 235)$	0.094 (df = 1; 282)	

Note:

*p<0.1; **p<0.05; ***p<0.01

3.1 Conclusions and suggestions

- 1. Students are the major users of Publibikes
- 2. Employees don't ride Publibikes more often even if there are more bikes available during the summer holiday.
- 3. To promote sustainability, employers should encourage employees use Publibikes more often especially during the summer holiday.