Apprentissage statistique

Chapitre 1: Introduction aux statistiques

Lucie Le Briquer

18 février 2018

Table des matières

1	Rappels sur les lois conditionnelles	2
2	Modélisation statistique	2
3	Estimation de paramètres	3
4	Statistiques suffisantes	4
5	Estimation de paramètres	5
6	Test statistique	6

1 Rappels sur les lois conditionnelles

On se placera dans $(\Omega, \mathcal{F}, \mathbb{P})$.

Soit X, Y deux variables aléatoires dans $(\mathbb{X}, \mathcal{X})$ et $(\mathbb{Y}, \mathcal{Y})$. Soit $A \subset \mathcal{Y}$. $\mathbb{E}[\mathbb{1}_{Y \in A} \mid X]$ définie dans $\mathcal{L}^1(\Omega)$. On aimerait que $A \mapsto \mathbb{E}[\mathbb{1}_A \mid X]$ soit une probabilité \mathbb{P} -p.s.

- **Définition 1** (noyau Markovien) -

On définit un noyau Markovien (ou de Markov) sur $(\mathbb{X}, \mathcal{Y})$: P tel que $x \in \mathbb{X} \mapsto P(x, A)$ soit mesurable sur $(\mathbb{X}, \mathcal{X})$, $\forall A \in \mathcal{Y}$ et $A \mapsto P(x, A)$ est une probabilité $\forall x \in \mathbb{X}$.

Définition 2 (loi conditionnelle régulière) —

On dit que P un noyau de Markov sur (X, Y) est une loi conditionnelle régulière pour la loi conditionnelle de Y|X si :

$$\mathbb{E}[\mathbb{1}_A \mid X] = P(X, A) \quad \mathbb{P} - \text{p.s.}$$

- Proposition 1 -

Soit P une loi conditionnelle régulière pour la loi $Y|X. \forall q \colon \mathbb{Y} \longrightarrow \mathbb{R}_+$ mesurable :

$$\mathbb{E}[g(Y)|X] = \int g(y)P(X, dy)$$

Remarque. On supposera dans ce cours qu'il existe toujours des versions régulières des lois conditionnelles.

2 Modélisation statistique

 x_1, \ldots, x_n tirages de pile-face. On veut savoir si la pièce n'est pas pipée. On suppose que x_1, \ldots, x_n sont des réalisations i.i.d. de variables aléatoires sur (Ω, \mathcal{F}) .

On cherche une probabilité sur (Ω, \mathcal{F}) qui explique le mieux nos données x_1, \ldots, x_n .

Définition 3 (expérience statistique) –

Soit (Ω, F) et (X, X) des espaces mesurables et $X : \Omega \longrightarrow X$ une variable aléatoire. P une famille de probabilités sur (Ω, F) .

 $(\Omega, \mathcal{F}, \mathbb{X}, \mathcal{X}, \mathcal{X}, \mathcal{P})$ est appelée une expérience statistique

- On se limitera dans ce cours à $\mathbb{X} \subset \mathbb{R}^d$ mesurable assez sympa (ouvert/fermé)
- En général, on prend $\Omega = \mathbb{X}$, $\mathcal{F} = \mathcal{X}$ et $X : \omega \mapsto \omega$

- \mathcal{P} et X définissent une famille de lois sur $(\mathbb{X}, \mathcal{X})$. On la note \mathcal{P}_X , et pour $\mathbb{P} \in \mathcal{P}$ on note la loi de X suivant \mathbb{P} , \mathbb{P}^X
- Dans le cas où on se permet un nombre infini d'observations, on est dans le cadre d'une expérience statistique dite "répétée".

$$(\Omega, \mathcal{F}, \mathbb{X}^{\mathbb{N}}, \mathcal{X}^{\otimes \mathbb{N}}, X, \mathcal{P}^{\mathbb{N}})$$

où $\mathcal{P}^{\mathbb{N}} = \{\text{ensemble des probas } \mathbb{P} \mid (X_i)_{i \in \mathbb{N}} \text{ soit i.i.d. de loi } \mathbb{P} \in \mathcal{P} \}$

Exemple. $\Omega = \mathbb{X} = \{0,1\}^n$, $\mathcal{F} = \mathcal{X} = \mathcal{P}(\Omega)$. $\mathcal{P} = \{\operatorname{Ber}(p) \mid p \in [0,1]\}$.

- Définition 4

Soit \mathcal{P} un modèle statistique pour X. \mathcal{P} est dominé par ν mesure σ -finie sur $(\mathbb{X}, \mathcal{X})$ si $\forall \mathbb{P} \in \mathcal{P}, \mathbb{P}^X \ll \nu$.

Lemme 1

Si \mathcal{P} est dominé par ν , alors il existe une partie dénombrable de \mathcal{P} , $(\mathbb{P}_n)_{n\in\mathbb{N}}$ tel que la mesure $\mathbb{Q}=\sum 2^{-n}\mathbb{P}_n^X$ domine \mathcal{P} .

3 Estimation de paramètres

Définition 5 (modèle paramétrique) -

On dit que \mathcal{P} , un modèle statistique pour X, est paramétrique s'il existe un ensemble mesurable $\Theta \subset \mathbb{R}^d$ tel que \mathcal{P} peut être paramétré par Θ i.e. $\mathcal{P} = \{\mathbb{P}_{\theta}\}_{\theta \in \Theta}$. On dit que θ est identifiable si $\mathbb{P}_{\theta} = \mathbb{P}'_{\theta} \Rightarrow \theta = \theta'$.

Remarque. Dans les autres cas on dit \mathcal{P} est non-paramétrique. On dit qu'une quantité $\psi(\mathbb{P})$ est identifiable si elle ne dépend que de $\mathbb{P} \in \mathcal{P}$.

- **Définition 6** (estimateur) -

Soit \mathcal{P} un modèle sur X. On appelle statistique ou estimateur toute v.a. T telle qu'il existe $g \colon \mathbb{X} \longrightarrow \mathbb{R}^d$ mesurable avec g(X) = T.

- **Définition 7** (biais) -

Soit T un estimateur $\psi(\mathbb{P})|\theta$. On définit le biais de T par :

$$\mathbb{P} \longmapsto \operatorname{Biais}(T, \mathbb{P}) = \mathbb{E}_{\mathbb{P}}[T] - \psi(\mathbb{P})$$

- **Définition 8** (coût quadratique) -

On définit le coût quadratique de l'estimateur pour le paramètre $\psi(\mathbb{P})$ par :

$$MSE(T, \mathbb{P}) = \mathbb{E}_{\mathbb{P}}[||T - \psi(P)||^2]$$

$$MSE(T, \mathbb{P}) = Biais(T, \mathbb{P})^2 + Var_{\mathbb{P}}(T)$$

Preuve.

$$\mathbb{E}_{\mathbb{P}}[\|T - \psi(\mathbb{P})\|^2] = \mathbb{E}[\|T \pm \mathbb{E}[T] - \psi(\mathbb{P})\|^2]$$

4 Statistiques suffisantes

- **Définition 9** (statistique suffisante) -

 \mathcal{P} modèle statistique pour X. On dit que S est une statistique suffisante si la loi conditionnelle de X|S ne dépend pas de \mathbb{P} i.e. s'il existe un noyau de Markov \mathcal{K} tel que $\forall \mathbb{P} \in \mathcal{P}$:

$$\mathbb{P}^{X|S}(.) = \mathcal{K}(S,.)$$

Exemple. (de la modélisation pile-face)

$$\mathcal{P} = \{ \operatorname{Ber}(p)^{\otimes n} \mid p \in [0, 1] \}$$

n nombre d'observations. X_1, \ldots, X_n i.i.d. $\sim \mathcal{B}(p)$. Un estimateur de p est :

$$T(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i$$

Regardons le biais et la variance :

$$Biais(T, \mathbb{P}) = 0 = \mathbb{E}[T(X_1, \dots, X_n)] - p$$

$$Var(T(X_1, \dots, X_n)) = \frac{1}{n}^2 \sum Var(X_i) = \frac{p(1-p)}{n}$$

T est-il suffisant?

Calcul de loi conditionnelle. Soient $A, B \in \mathcal{X}, \mathcal{Y}$, on veut trouver ψ tel que :

$$\mathbb{E}[\mathbb{1}_A(X)\mathbb{1}_B(X)] = \mathbb{E}[\mathbb{1}_B(X)\psi_A(X)]$$

On identifie en général la loi conditionnelle par $\psi_A(X)$.

Exemple. Loi conditionnelle de $(X_1, \ldots, X_n) | \sum X_i$ à faire en exo.

Soient X, Y deux variables aléatoires réelles indépendantes et Z = X + Y. Soient $A, B \in \mathcal{B}(\mathbb{R})$.

$$\mathbb{E}[\mathbb{1}_A(X)\mathbb{1}_B(Z)] = \mathbb{E}\Big[\mathbb{1}_A(X)\mathbb{E}[\mathbb{1}_B(X+Y)|X]\Big] = \mathbb{E}[\varphi(X)]$$

 $\mathbb{E}[\psi(X,Y)|X] = \varphi(X) \text{ où } \forall x \ \varphi(x) = \mathbb{E}[\psi(x,Y)] \text{ Ici } \varphi(x) = \int_{\mathbb{R}} \mathbbm{1}_B(y+x) d\mathbb{P}^Y(y). \text{ Si } Y \sim \mathcal{N}(0,1):$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathbb{1}_B(y+x) \exp\left(-\frac{y^2}{2}\right) dy$$
$$= \int_{\mathbb{R}} \mathbb{1}_B(z) \exp\left(-\frac{-(z-x)^2}{2}\right) dz$$
$$= \psi_B(z)$$
$$= \mathbb{P}(\tilde{Z} \in B)$$

où $\tilde{Z} \sim \mathcal{N}(x,1)$. On en déduit que $Z|X \sim \mathcal{N}(X,1)$.

- **Théorème 1** (de factorisation de Fisher) -

S est une statistique suffisante ssi il existe une fonction mesurable positive $h\colon \mathbb{X} \longrightarrow \mathbb{R}_+$ telle que $\forall \mathbb{P} \in \mathcal{P}$ on ait :

$$\frac{d\mathbb{P}^X}{d\nu} = h \times \rho_{\mathbb{P}} \circ g$$

où g(X) = S et $\rho_{\mathbb{P}} \colon \mathbb{R}^d \longrightarrow \mathbb{R}_+$ -mesurable.

Exemple. (cas pile-face)

 ν la mesure de comptage domine \mathcal{P} . Soit $\mathbb{P}_p \in \mathcal{P}$.

$$\mathbb{P}_p = (p\delta_1 + (1-p)\delta_0)^{\otimes n}$$

Par exemple pour n = 1, $\nu = \delta_0 + \delta_1$.

$$\mathbb{P}(X_1 \in A) = \sum_{k=0}^{1} \mathbb{P}(X_1 = k, \ k \in A) = \sum \mathbb{P}(X_1 = k, k \in A)\delta_k(A)$$

$$\frac{d\mathbb{P}_p}{d\nu}(x_1, \dots, x_n) = \mathbb{P}_p(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n \mathbb{P}_p(X_i = x_i)$$
$$= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

On s'intéresse à

$$S = \sum_{i=1}^{n} X_i = g(X_1, \dots, X_n) = \rho_{\mathbb{P}_p} \circ g$$

où
$$\rho_{\mathbb{P}_p}(s) = p^s (1-p)^{1-s}$$

5 Estimation de paramètres

On suppose que les observations proviennent d'une vraie loi $\mathbb{P}_* \in \mathcal{P}$ et on voudrait l'identifier.

- **Définition 10** (vraisemblance) -

On définit la vraisemblance comme la fonction $\mathbb{P} \longmapsto \rho_{\mathbb{P}} \circ X$ où $\rho_{\mathbb{P}} = \frac{d\mathbb{P}^X}{d\nu}$. Dans le cas paramétrique c'est une fonction $\Theta \longrightarrow \mathbb{R}_+$, $\theta \longmapsto \rho_{\theta} \circ X$, $\rho_{\theta} = \frac{d\mathbb{P}^X}{d\nu}$.

Définition 11

Dans le cas paramétrique, on dit qu'un estimateur $\hat{\theta}$ est un estimateur du maximum de vraisemblance ssi

$$\hat{\theta} \in \operatorname*{argmax} \rho_{\theta} \circ X$$

6 Test statistique

 $\mathcal{P} = \{\mathbb{P}_0, \mathbb{P}_1\}$. H_0 ="X a pour distribution \mathbb{P}_0 ", H_1 ="X a pour distribution \mathbb{P}_1 ". H_0 est l'hypothèse nulle, H_1 l'hypothèse alternative.

Définition 12 -

Un test statistique est une statistique δ à valeurs dans $\{0,1\}$.

Si $\delta=0$ on dit que H_0 est acceptée, sinon H_0 est rejetée.

On définit deux types de risques pour un test δ .

$$\mathbb{P}_0(\delta=1)$$
 risque de 1ère espèce

c'est le risque de rejeter à tort.

$$\mathbb{P}_1(\delta=0)$$
 risque de 2nde espèce

c'est le risque d'accepter à tort.

- Définition 13 -

On dit δ est de niveau $\alpha \in (0,1)$ si :

$$\mathbb{P}_0(\delta = 1) \leqslant \alpha$$

soit δ, δ' deux tests de niveau α , alors on dit que δ est plus puissant que δ' si :

$$\mathbb{P}_1(\delta=1) \geqslant \mathbb{P}_1(\delta'=1)$$

$$\Leftrightarrow \mathbb{P}_1(\delta=0) \leqslant \mathbb{P}_1(\delta'=0)$$

Test de Neyman-Pearson (ou du ratio de vraisemblance)

On prend ρ_0 et ρ_1 les densités de \mathbb{P}_0 et \mathbb{P}_1 par rapport à ν (= $\mathbb{P}_0 + \mathbb{P}_1$ ici). Le ratio de vraisemblance est défini par :

$$T_L(X) = \rho_1(X)/\rho_0(X)$$

On définit le test de N.-P. de seuil $t \in [0, +\infty]$ par :

$$\delta_t = \begin{cases} 1 & \text{si } T_L \geqslant t \\ 0 & \text{sinon} \end{cases}$$

Théorème 2

Soit $\mathcal{P} = \{\mathbb{P}_0, \mathbb{P}_1\}$ modèle statistique de X. Soit $t \in [0, +\infty]$. On définit :

$$\alpha_t = \mathbb{P}_0(\delta_t = 1)$$

Alors, pour tout δ' de niveau α_t , δ_t est plus puissant que δ' .

Preuve.

Soit $y < +\infty$. Soit δ' un test de niveau $\alpha_t = \mathbb{P}_0(\delta_t = 1)$. On veut montrer :

$$\mathbb{P}_1(\delta'=0) \geqslant \mathbb{P}_1(\delta_t=0)$$

 δ' associée à une fonction $g\colon \mathbb{X} \longrightarrow \{0,1\}, \ \delta'=g(X).$ Dans le cas $t<+\infty$ \mathbb{P}_i -p.s. sur $\delta_t=1$

$$\rho_1(X) \geqslant t\rho_0(X)$$

par définition de δ_t .

$$\begin{split} \mathbb{P}_1(\delta' = 0) &= \int \mathbbm{1}_0(g(x))\rho_1(x)\nu(dx) \pm t \int \mathbbm{1}_1(g(x))\rho_0(x)\nu(dx) \\ &= \int_{\mathbbm{X}} \mathbbm{1}_0(g(x))\rho_1(x)\nu(dx) + \int_{\mathbbm{X}} \mathbbm{1}(g(x))t\rho_0(x)\nu(dx) - \mathbb{P}_0(\delta' = 1) \\ &\geqslant \int_{\mathbbm{X}} \mathbbm{1}_0(g(x))\rho_1(x) + \mathbbm{1}_1(g(x))t\rho_0(x)\nu(dx) - \alpha_t \text{ car } \delta' \text{ de niveau } \alpha_t \end{split}$$

donc la fonctionnelle :

$$g \longmapsto \int \mathbb{1}_0(g(x))\rho_1(x) + t\mathbb{1}_1(g(x))\rho_0(x)\nu(dx)$$

est optimale pour $g = g_t$.

 $x \in \mathbb{X}$, si $\rho_1(x) \geqslant t\rho_0(x)$ alors $\delta_t(x) = 1$

$$\mathbb{1}_0(g_t(x))\rho_1(x) + t\mathbb{1}_1(g_t(x))\rho_0(x) = \min(\rho_1(x), t\rho_0(x))$$

Pareil pour $\delta_t = 0$. Or

$$\mathbb{1}_0(g(x))\rho_1(x) + \mathbb{1}_1(g(x))t\rho_0(x) \geqslant \min(\rho_1(x), t\rho_0(x))$$

et ce min est atteint pour g_t ce qui conclue.