Weekly Report: Imtiaz AI Alpha

Week 1 (April 22 – April 25)

Machine Learning Specialization

Course: Supervised Machine Learning: Regression & Classification

Week 1

The first week provided an introduction to supervised learning, emphasizing its goal of mapping input variables to corresponding outputs. Real-world applications were outlined, and foundational machine learning concepts were systematically introduced such a supervised and unsupervised learning.

Key Points to Note:

- > **Supervised Learning:** Mapping inputs (x) to outputs (y).
- > **Regression**: Prediction of continuous numerical values; linear relationship modeled as y=wx+b
- **Classification:** Categorization into classes (Binary or Multi-Class).
- > Unsupervised Learning:
 - o Clustering: Grouping similar data points.
 - Anomaly Detection: Identifying outliers.
- **Linear Regression Notation:** Defining features, weights, bias, and predictions.
- **Cost Function:** Squared error to measure model performance.
- > Gradient Descent:
 - o Goal: Minimize cost function.
 - o Types: Batch, Stochastic, Mini-Batch.
- \triangleright Learning Rate (a): Critical parameter for optimization convergence.

Week 2

The second week expanded into advanced regression techniques and essential preprocessing steps, emphasizing computational efficiency and the importance of preparing data for optimal model training.

Key Points to Note:

- > Multiple Linear Regression:
 - Handling multiple input features.
 - Vectorization for computational efficiency.
- > Gradient Descent with Vectors: Speeding up training via matrix operations.
- > **Normal Equation**: Alternative method for solving linear regression without iterations (limited by dataset size).
- > Feature Scaling:
 - Mean Normalization and Z-Score Normalization.
 - Essential for convergence and balanced model training.
- **Learning Curves**: Visual tool for assessing gradient descent convergence.
- > Automatic Convergence Test: Measuring small improvements in cost function.
- > Feature Engineering:
 - Creating or selecting significant features.
- > Polynomial Regression:
 - o Capturing non-linear relationships through higher-order terms.

Week 3 Summary

The third week transitioned from regression to classification, addressing the limitations of linear regression for classification tasks and introducing logistic regression as a robust alternative.

Key Points to Note:

- > Issues with Linear Regression for Classification:
 - o Unbounded and continuous outputs.
- Logistic Regression:
 - o Introduction of Sigmoid Function to bound outputs between 0 and 1.
 - Probabilistic interpretation of predictions.
- > Decision Boundaries:
 - o Linear and non-linear boundaries based on feature interaction.
- **Cost Function for Logistic Regression:**
 - Development of a convex function for effective optimization.

	Pag	e 3 of 3
>	Gradient Descent for Logistic Regression: Adjustment of parameters using updated equations.	
>	Overfitting and Underfitting:	
	 Definitions and visual interpretations. 	
>		
	 Data augmentation, feature selection, and regularization techniques. 	
>	Regularization:	
	 Addition of penalty terms to cost functions in both linear and logistic regression. 	
	 Importance of choosing appropriate regularization parameter (λ). 	