Blood Gas Electrodes

Bhagya Gunetilleke

The first three function blood gas analyzer

Modern blood gas analyzer

Outline

- Principles of measuring pH, pCO2, pO2
- Calibration & sources of error
- Continuous blood gas analysis
- Co-oximeter & other newer developments

Blood Gas Analysis

 First clinical application of pH & pCO2 – During the polio epidemics, Copenhagen 1952

 Coincided with the first involvement of the 'Anaesthetist' in managing patients 'out of theatre'

Blood Gas Analysis

 Physicians, guided by cyanosis, focused on providing O2, Bjorn Ibsen-Anaesthetist, postulated that inadequate ventilation &CO2 retention caused death in polio patients

 Intubation & positive pressure ventilation guided by blood pH measured using the pH electrode

 Modern intensive care was 'conceived' by Ibsen in Copenhagen 1952

Blood gas machine

Figure 19.17 Blood gas analyser.

pH electrode: Working Principle

- When 2 solutions with different chemical activity (eg. pH) are place on either side of a semi-permeable membrane an electro motive force (emf) is generated. This can be quantified using a voltmeter
- The change in PH in one solution will result in a change in the voltage

pH electrode

Figure 1 Typical combination pH electrode.

- Consists of 2 half cells.
 - Ag / AgCl (glass electrode)
 - Hg / Hg₂Cl₂ (calomel electrode)
- Glass electrode immersed in buffer (same p H as calibrating solution) so at constant pH, which is separated from the blood by a H⁺sensitive(permeable) glass membrane.
- Calomel electrode separated from the sample by KCl bridge.

pH electrode

- H+ (not other +ve ions) moves through the glass selectively, completing the circuit
- When complete, an Electo Motive Force (emf) is created. It is proportional to the activity (not the concentration) of the H⁺
- pH change of 1 produces 60 mv change
- The pH of the buffer solution is taken as the base line pH

Stow-Severinghaus CO₂ Electrode

- Invented by R.W.Stow
- Rubber glove around PH glass & reference electrode
- CO₂ diffused through rubber & reduced PH of water film
- Calibrated using CO₂ mixtures of known concentration but drift significant
 - Further improvements: Severinghaus
- Film of HCO3- to replace H2O reduced drift & improved sensitivity

Stow-Severinghaus CO₂ Electrode

- H+ sensitive glass with electrode enclosed within.
- Sample separated from glass by a nylon / teflon membrane selectively permeable to CO₂ & a thin layer of H2O/NaHCO₃
 - NaHCO₃ stablizes the electrode
 - CO₂ combines with H2O to give rise to HCO₃ - & H+
 - Glass electrode measures change in [H+]
- Change of 1.25 mmHg causes0.01 p H change.

Polarographic / Clark O₂ electrode

Figure 19.1 Working principles of (a) a galvanic oxygen fuel cell and (b) a polarographic oxygen analyser.

Polarographic/Clark O₂ electrode

- Ag/AgCl anode and Pt cathode immersed in a KCl solution.
- Separated from the blood by a polyethylene (fast) or polypropylene (stable) membrane, through which O₂ can diffuse.
- Polarizing voltage of 600mv.
- Anode
 - $-4 \text{ Ag} \rightarrow 4 \text{ Ag} + 4 \text{ e}^{-1}$
 - □ $4Ag^+ + 4Cl \rightarrow 4AgCl$
- Cathode,

$$^{\Box}$$
 O₂ + 2 e + H₂O → 4 (OH⁻)

Polarographic/Clark O₂ electrode

- Concentrations of O₂ (0 % & 12 %) for calibration
- Availability of electrons depends on the concentration of O₂
- The current generated is proportional to the O₂ concentration at Pt electrode.
- Only 10⁻¹¹ A / mmHg
- Current generated is too small to be measured by an ammeter. Wheastone bridge circuit for measurement
- Electrode maintained at 37oC

Calibration

pH electrode

Two buffer solutions with a known p H (p H 6.841 & 7.383)

pCO2 electrode

CO₂ canisters are incorporated.

Canister gas mixes with room air to provide 2 known concentrations. (5.61% & 11.22 %)

Gases are fully humidified before calibration.

 $p CO_2 = CO_2 conc. X (B.P. - SVP)/100$

pO2 electrode

De-ionized water saturated with 100% O2 and 0% O2

Two-Point Calibration

E.g.. for pH electrode
 Measure the response of the electro

Measure the response of the electrode to 2 solutions with known pH & create a linear graph

'Offset' - mV reading at pH 7

'Slope' – change in mV per unit change in unit change in pH
(Ideally 59.16mV/pH at 25OC)

Sources of error –O₂ Electrode

- Relationship between O_2 concentration & the current generated becomes non-linear at high O_2 concentrations. Degree of error depends on
 - Cathode diameter
 - Voltage applied
 - Membrane type (Life span of Teflon membrane 3yrs)
- Consumption of O₂ by the electrode
 - 2 6 % drop from the actual value
 - More with large cathodes
 - Falsely high reading with Halothane

Common Errors

- Systematic errors
 - Electrode performance
 - Membrane deposits
 - Calibration errors
 - Expired / contaminated reagents
 - Membrane integrity errors
 - Holes / cracks
- Temperature
 - If the patient's T⁰ not 37⁰ C, a correction is needed.

Sampling errors

- Incorrect collection
 - Heparin
 - Dilutes the sample
 - Reduces the p H
- Gas bubbles
 - In theory, lowers the pCO_2 & changes the pO_2 .
 - Does not interfere with the results if used immediately as equilibration takes a long time.

Storage errors

- High WBC
 - increases p CO₂ & decreases p O₂ due to aerobic metabolism.
 - No significant effect if the count is below 20,000.
- Air bubbles / leaky syringes
 - Can alter results after 20 30 min.
 - gases are more soluble at low temperatures.

Calculated Values

- Standard Bicarbonate & Base excess quantify the metabolic component of the acid-base disturbance
- Standard HCO₃ (Jorgensen & Astrup)
 - Bicarbonate concentration in plasma under standard conditions i.e.. Equilibrated with gas having pCO₂ of 40 mmHg, saturated with O₂ at 37°C.
- Base excess (Astrup & Siggard-Andersen)
 - Amount of a strong acid / base required to titrate a liter of blood back to a pH of 7.4 at a p CO_2 of 40 mmHg, saturated with O_2 at $37^{\circ}C$.

Siggard – Anderson normogram

- Earlier used to check p
 CO_{2.} (Astrup interpolation)
- Std. HCO₃, BE & total buffer base could be read directly from this chart.

Actual HCO_3 (HCO_3)mmol/l = a.p $CO_2 \times 10^{(pH-6.1)}$

^a =0.231 for kpa or 0.0301 for mmHg

Intravascular electrodes

- All 3 electrodes are available for intravascular use.
- They are miniature forms of these electrodes mounted on a catheter tip.
- Difficult to insert & calibrate.
- Deposition of fibrin is a major problem.
- Fast response time.

Transcutaneous electrodes

- Miniature O₂ & CO₂ are incorporated in to a finger probe, which also has a heating element & a contact liquid.
- The probe forms an air tight seal in the finger.
- The unit is heated to 43°C to dilate blood vessels.
- Gases diffuse through the skin.

Disadvantages

- No pH monitoring.
- Values are lower
 - Decreased solubility
- Diathermy interference
- Low values in shock & hypotension.
- Burns

Advantages

- Non-invasive
- Very useful in neonatal monitoring

Fluorescence based analysis

- A fibre-optic probe with a sensor at the tip.
- Placed intravascularly via a 20 G cannula.
- Uses light from pulsed Xenon lamp with wave lengths of 410nm(p H), 460nm(Pco₂) and 385nm(p O_2).

p H measurement

- Weak, fluorescence acid at the sensor tip.
- Dissociates according to the p H.
- 410nm excites the dissociated form & 460nm excites the non-dissociated form.

CO₂ measurement

- A buffer encapsulated with a silicone membrane is allowed to equilibrate with blood CO₂.
- This is excited at 460nm.

0₂ measurement

- An 0₂ absorbing dye is encapsulated with a silicone membrane.
- This is excited at 385nm.

Co-oximeter

- Newer machines do cooximetry.
- It only measures the 0_2 saturation; not partial pressure.
 - Spectrophotometry principle
 - Uses multiple wave lengths (visible)
 - on a haemolysed sample Can **measure** saturation, Hb,
 - O₂ content, metHb, COHb etc.

Recent Developments

Additional Parameters

Ion selective electrodes are incorporated to the machine to measure Na,K,Ca,Cl, Li Hb, PCV

Lactate, Glucose

- Single integrated gas & liquid calibration cartridge
- Single quality control cartridge
- Small sample volume (125micl)
- Rapid results (Less than 1 minute)

Acknowledgements

- Severinghaus J. First electrodes for blood PO₂ and PCO₂ determination *J Appl Physiol* 97: 1599-1600, 2004
- Ward's Anaesthetic Equipment 4th Edition
- Severinghaus J. The Invention and Development of Blood Gas Analysis Apparatus. Anesthesiology. 2002;97:253-6
- John W. Severinghaus, Poul Astrup, John F. Murray. Blood Gas Analysis and Critical Care Medicine Am. J. Respir. Crit. Care Med., Volume 157, Number 4, April 1998, S114-S122
- Dr Rochana Perera, Consultant Anaesthetist
- Dr. Inoshi Atukorala

