

Turning Polysemantic Neurons Into Pure Features by Identifying Relevant Circuits

Maximilian Dreyer, Erblina Purelku, Johanna Vielhaben, Wojciech Samek, Sebastian Lapuschkin

What do neurons encode?

Studying neurons can be difficult due to polysemanticity, redundancies, etc.

with PURE, we tackle polysemanticity:

Idea

Each pure feature corresponds to a specific sub-graph.

When we know which sub-graph is active, we also know which feature is present.

PURE: Purifying Representations

1. Find most activating samples for a polysemantic neuron.

Qualitative Experiments

Apply PURE and sort neurons according to the effect of disentanglement.

Quantitative Experiments

We use foundation model embeddings (e.g., CLIP [2] and DINOv2 [3]) to measure monosemanticity before and after purification of ResNet models. Idea: embedding distances for maximally activating patches should decrease.

PURE is more neuronspecific, as activations take into account all present features.

PURE achieves better

compared to activation-

diesentanglement

based clustering.

with embedding $\mathbf{e}_i^{\mathrm{CLIP}}$ of max. act. image patch i of neuron k

Outlook & Conclusion

- → Application to language, e.g., Large Language Models.
- → Studying the benefits of PURE for concept-based explanations, probing, and unlearning.
- → Performing an ablation study & user study for validation.

References

[1] Achtibat, Reduan, et al. "From attribution maps to humanunderstandable explanations through concept relevance propagation." Nature Machine Intelligence 5.9 (2023): 1006-1019. [2] Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference on machine learning. [3] Oquab, Maxime, et al. "DINOv2: Learning Robust Visual Features

without Supervision." Transactions on Machine Learning Research (2023).

CODE