Notes on linear algebra

imyp

July 9, 2019

Definition of a linear space

The concept of a linear space generalizes that of the set of all vectors.

A set **K** is called a linear (or affine) space over a field K if

- 1. Given two elements $x, y \in \mathbf{K}$, there is a rule (the addition rule) leading to a (unique) element $x + y \in \mathbf{K}$, called the *sum* of x and y.
- 2. Given any element $x \in \mathbf{K}$ and any number $\lambda \in K$, there is a rule (the rule for multiplication by a number) leading to a (unique) element $\lambda x \in \mathbf{K}$, called the *product* of the element x and the number λ .
- 3. These two rules obey 8 specific axioms.

Properties of the addition rule

- 1. x + y = y + x for every $x, y \in \mathbf{K}$ (commutative);
- 2. (x+y)+z=x+(y+z) for every $x,y,z\in \mathbf{K}$ (associative);
- 3. There exists an element $0 \in \mathbf{K}$ (the zero vector) such that x + 0 = x for every $x \in \mathbf{K}$;
- 4. For every $x \in \mathbf{K}$ there exists an element $y \in \mathbf{K}$ (the negative element) such that x + y = 0.

Properties of the addition rule

Commutative:

$$x + y = y + x$$
 for every $x, y \in \mathbf{K}$

Associative:

$$(x+y)+z=x+(y+z)$$
 for every $x,y,z\in\mathbf{K}$

Identity element:

An element $\mathbf{0} \in \mathbf{K}$ exists, such that $x + \mathbf{0} = x$ for every $x \in K$

Inverse element:

For every $x \in \mathbf{K}$ there exist an element $y \in \mathbf{K}$ such that $x + y = \mathbf{0}$

Properties of the rule for multiplication by a number

- 1. $1 \cdot x = x$ for every $x \in \mathbf{K}$;
- 2. $\alpha(\beta x) = (\alpha \beta)x$ for every $x \in \mathbf{K}$ and every $\alpha, \beta \in K$;
- 3. $(\alpha + \beta)x = \alpha x + \beta x$ for every $x \in \mathbf{K}$ and every $\alpha, \beta \in K$;
- 4. $\alpha(x+y) = \alpha x + \alpha y$ for every $x, y \in \mathbf{K}$ and every $\alpha \in K$.

Properties of multiplication

Identity element:

$$1 \cdot x = x$$
 for every $x \in \mathbf{K}$

Associative:

$$\alpha(\beta x) = (\alpha \beta)x$$
 for every $x \in \mathbf{K}$ and every $\alpha, \beta \in K$

Distributive with respect to K:

$$(\alpha + \beta)x = \alpha x + \beta x$$
 for every $x \in \mathbf{K}$ and every $\alpha, \beta \in K$

Distributive with respect to K:

$$\alpha(x+y) = \alpha x + \alpha y$$
 for every $x, y \in \mathbf{K}$ and every $\alpha \in K$

Linear dependence

Let x_1, x_2, \ldots, x_k be vectors of the linear space **K** over a field K. Let $\alpha_1, \alpha_2, \ldots, \alpha_k$ be numbers from K. Then the vector $y = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_k x_k$ is called a *linear combination* of the vectors x_1, x_2, \ldots, x_k . The numbers $\alpha_1, \alpha_2, \ldots, \alpha_k$ are called the *coefficients* of the linear combination.