Projektowanie efektywnych algorytmów

Projekt Nº2

Implementacja i analiza efektywności algorytmu Genetucznego dla problemu komiwojażera

Nikita Stepanenko nr albumu 245816

1. Założenia projektowe

Zadaniem projektowym była implementacja dla problemu komiwojażera algorytmów Tabu Search i Symulowanego Wyżarzania oraz porównanie efektywności obu algorytmów, a także wyznaczenie błędu względnego (porównując z najlepszym znanym rozwiązaniem).

Problem komiwojażera jest jednym z najbardziej znanych i wymagających zagadnień optymalizacyjnych dla informatyka. Polega on na znalezieniu ścieżki o najmniejszej sumie wag przechodzącej przez każdy wierzchołek grafu dokładnie jeden raz i wracającej do wierzchołka początkowego. Jest to problem NP-trudny. Istota i nazwa problemu bierze się z zagwozdki, jaką komiwojażer może mieć przy układaniu trasy, na której odwiedzi określone z góry miasta – zależy mu bowiem na jak najkrótszej ścieżce. Rozróżniamy symetryczne (STSP – ang. Symmetric Traveling Salesman Problem) i asymetryczne (ATSP – ang. Asymmetric Traveling Salesman Problem) przypadki tego problemu. STSP polegają na tym, że waga krawędzi od wierzchołka A do B jest taka sama, jak od wierzchołka B do A. Asymetryczna wersja nie spełnia warunku dla każdej takiej pary krawędzi.

W tym projekcie przedstawione zostaną rozwiązanie za pomocą algorytmu Genetycznego

Ten algorytm dążą do rozwiązania problemu poprzez wykorzystanie pewnych pojęć zdefiniowanych przez dany algorytm. Nie daje gwarancji znalezienia najlepszego możliwego rozwiązania, ale wymagają znacznie mniejszej złożoności obliczeniowej, co powoduje w wielu wypadkach, że okazują się znacznie użyteczniejsze od dokładnego rozwiązania.

2. Stecyfikacja techniczna

- Progrm zrealizowany w języku programowania C++
- Struktury przechowujące dane alokowane są dynamicznie, zależnie od rozmiaru problemu
- Program posiada możliwość wczytywania danych z pliku
- Program posiada możliwość wprowadzenia kryterium stopu
- Algorytmy zostały zaimplementowane zgodnie z paradygmatami programowania obiektowego
- Czas wykonania algorytmu mierzony był z dokładnością do nanosekund, przy wykorzystaniu bibliotek systemowych (chrono)

3. Opis programu

Poniżej przedstawiony został wykorzystany w programie pseudokod dla rozwiązania problemu Komiwojażera przy pomocy algorytmu genetycznego:

1: popsize ← desired population size

```
2: P ← {}
 3: for popsize times do
        P \leftarrow P \cup \{\text{new random individual}\}\
 5: Best ← □
 6: repeat
        for each individual P_i \in P do
            AssessFitness(P_i)
             if Best = \square or Fitness(P_i) > Fitness(Best) then
 g.
10:
                 Best \leftarrow P_i
11: Q ← {}
        for popsize/2 times do
             Parent P_a \leftarrow \text{SelectWithReplacement}(P)
13:
14.
             Parent P_h \leftarrow \text{SelectWithReplacement}(P)
             Children C_a, C_b \leftarrow \text{Crossover}(\text{Copy}(P_a), \text{Copy}(P_b))
             Q \leftarrow Q \cup \{ Mutate(C_a), Mutate(C_b) \}
18: until Best is the ideal solution or we have run out of time
```

Na początku określamy rozmiar *popsize* populacji, tworzymy zbiór danych reprezentujących ją i wypełniamy ją losowymi rozwiązaniami z przestrzeni wszystkich rozwiązań problemu. *Popsize* jest drugim parametrem wywołania programu, który użytkownik wprowadza z klawiatury.

Kolejnym krokiem jest utworzenie pętli głównej programu, która może być wykonywana aż do znalezienia optymalnego rozwiązania, upływu zadanego czasu, bądź przez określoną liczbę iteracji. W prezentowanym programie wykorzystane zostało ostatnie rozwiązanie, a liczbę iteracji pętli użytkownik zadaje z klawiatury jako pierwszy parametr wywołania programu.

Na początku pętli konieczne jest ocenienie jakości wszystkich osobników populacji i zapamiętanie najlepszego dotychczasowego rozwiązania. Jakość osobników będzie miała znaczenie dla selekcji rodziców. Zapamiętanie najlepszego osobnika jest konieczne, aby program mógł pod koniec działania zwrócici go nam – w końcu poszukujemy najlepszego możliwego do znalezienia rozwiązania.

Najważniejszą częścią algorytmu jest druga pętla *for* w głównej pętli programu. To w niej wywoływane mamy funkcje selekcji, krzyżowania i mutacji, które określają przebieg poszukiwań minimum globalnego.

Funkcja SelectWithReplacement została zaimplementowana jako selekcja turniejowa. Jest to prosty algorytm pozwalający na pseudolosowe poszukiwanie rozwiązań w zależności od rozmiaru turnieju. Rozmiar turnieju decyduje o tym, czy selekcja jest w pełni (pseudo)losowa, czy też faworyzowane są osobniki o najlepszych cechach oraz jak bardzo są faworyzowane. Rozmiar ten jest trzecim parametrem programu wprowadzanym przez użytkownika.

Za pomocą funkcji selekcji wybieramy parę rodziców i możemy przystąpić do ich krzyżówki. Krzyżowanie *Crossover* zostało zaimplementowane za pomocą operatora *OX*. Jest to efektywny sposób pozwalający na uzyskanie dobrych wyników końcowych. Do rozmnażania jednak nie musi dojść w każdym przypadku. Przeważnie określa się je za

pomocą parametru jego prawdopodobieństwa i tak też dzieje się w przedstawionym programie. Parametr ten jest czwartym argumentem wprowadzanym przy uruchamianiu programu.

Funkcja *Mutate* została zaimplementowana za pomocą operatora *transposition*, znanego również jako *swap*. Jest to prosta mutacja nieodbiegająca dalece od przypadków rzeczywistych, na których wzorowany jest algorytm - taka mutacja nie zmienia znacznie, lecz delikatnie genotyp mutowanego osobnika. Można powiedzieć, że spełnia zasadę podobieństwa sąsiadów. Mutacja zachodzi z określonym prawdopodobieństwem – jest to piąty, ostatni parametr programu.

Zaimplementowany został również operator mutacji *invert*. Choć większość pomiarów przedstawionych w tym sprawozdaniu została wykonana przy pomocy *transposition*, ostatecznie najlepsze wyniki uzyskane zostały przy pomocy inwersji. Metoda ta została wybrana z powodu lepszych rezultatów uzyskiwanych przez nią.

4. Testy i wykresy

Po każdej zmianie wspóczynnika byli przeprowadzone testy 10 raz.

a) 47 miast ("ftv47.atsp")

- Mutacja 1: wymiana 2-ch losowych punktów miejscami
 - > Zmiana populacji

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
10	80	1	2540	43,01801802
20	80	1	2580	45,27027027
50	80	1	2434	37,04954955
100	80	1	2560	44,14414414
200	80	1	2593	46,00225225

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
50	50	1	2765	55,68693694
50	70	1	2642	48,76126126
50	80	1	2434	37,04954955
50	90	1	2614	47,18468468

> Zmiana mutacji

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
50	80	1	2540	43,01801802
50	80	2	2633	48,2545045
50	80	5	2453	38,11936937
50	80	10	2774	56,19369369

- Mutacja 2: wymiana 2-ch losowych punktów miejscami
 - > Zmiana populacji

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
10	80	1	2621	47,57882883
20	80	1	2419	36,20495495
50	80	1	2434	37,04954955
100	80	1	2413	35,86711712
200	80	1	2435	37,10585586

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
20	50	1	3480	95,94594595
20	70	1	3143	76,97072072
20	80	1	2419	36,20495495
20	90	1	3137	76,63288288

> Zmiana mutacji

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
20	80	1	2419	36,20495495
20	80	2	2934	65,2027027
20	80	5	3265	83,84009009
20	80	10	3058	72,18468468

b) 170 miast ("ftv170.atsp")

• Mutacja 1: wymiana 2-ch losowych punktów miejscami

> Zmiana populacji

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
10	80	1	4800	94,72616633
20	80	1	4815	95,3346856
50	80	1	4711	91,11561866
100	80	1	4813	95,2535497
200	80	1	4796	94,56389452

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
50	50	1	6233	126,2431942
50	70	1	6020	118,5117967
50	80	1	6364	130,9981851
50	90	1	6456	134,3375681

> Zmiana mutacji

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
50	80	1	6440	133,7568058
50	80	2	6007	118,0399274
50	80	5	5927	115,1361162
50	80	10	6319	129,3647913

- Mutacja 2: wymiana 2-ch losowych punktów miejscami
 - > Zmiana populacji

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
10	80	1	6129	122,4682396
20	80	1	6090	121,0526316
50	80	1	6434	133,53902
100	80	1	6431	133,430127
200	80	1	6300	128.6751361

> Zmiana krzyżowania

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
20	50	1	5959	116,2976407
20	70	1	5845	112,1597096
20	80	1	5890	113,7931034
20	90	1	5919	114,845735

> Zmiana mutacji

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
20	80	1	6540	137,3865699
20	80	2	6636	140,8711434
20	80	5	6610	139,9274047
20	80	10	6685	142,6497278

c) 403 miasta ("rbg403.atsp")

• Mutacja 1: wymiana 2-ch losowych punktów miejscami

> Zmiana populacji

• p	opulacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
1	0	80	1	6440	133,7568058
2	0	80	1	6548	137,676951
5	0	80	1	6364	130,9981851
10	00	80	1	6862	149,0744102
20	00	80	1	6432	133,4664247

> populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
50	50	1	4951	100,851927
50	70	1	4979	101,9878296
50	80	1	4711	91,11561866
50	90	1	5022	103,7322515

> Zmiana mutacji

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
50	80	1	4800	94,72616633
50	80	2	4643	88,35699797
50	80	5	4553	84,70588235
50	80	10	4682	89,93914807

- Mutacja 2: wymiana 2-ch losowych punktów miejscami
 - > Zmiana populacji

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
10	80	1	6735	173,2251521
20	80	1	6515	164,3002028
50	80	1	6644	169,5334686
100	80	1	6635	169,168357
200	80	1	6588	167,2616633

populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
20	50	1	6616	168,3975659
20	70	1	6504	163,8539554
20	80	1	6515	164,3002028
20	90	1	6547	165,5983773

> Zmiana mutacji

	1		., .	1.1.1.50/3
populacja	krzyżowanie [%]	mutacja [%]	najlepsza droga	błąd [%]
20	80	1	6515	164,3002028
20	80	2	6368	158,336714
20	80	5	6674	170,7505071
20	80	10	6717	172,494929

5. Porównanie Tabu Search oraz Algorytmu Genetycznego

Najlieprzą ze wszystkich parametrów jest metoda mutacji 1 oraz pprawdopodobieństwo mutacji = 0,05.

Plik ftv47.atsp:

max czas [s]	droga Tabu	droga Ge	blad Tabu %	blad Ge %
30	2119	2441	19,31306306	37,44369369
60	2037	2446	14,69594595	37,72522523
120	1965	2435	10,64189189	37,10585586
180	2037	2455	14,69594595	38,23198198
240	1965	2505	10,64189189	41,0472973
300	2049	2518	15,37162162	41,77927928
360	2012	2520	13,28828829	41,89189189

Plik ftv170.atsp:

max czas [s]	droga Tabu	droga Ge	blad Tabu %	blad Ge %
30	5017	6176	82,10526316	124,1742287
60	4954	5967	79,8185118	116,5880218
120	4873	5449	76,8784029	97,78584392
180	4826	5441	75,17241379	97,49546279
240	4865	5366	76,58802178	94,77313975
300	4982	5034	80,83484574	82,72232305
360	3652	4844	32,55898367	75,82577132

Plik rbg403.atsp:

max czas [s]	droga Tabu	droga Ge	blad Tabu %	blad Ge %
30	2814	7816	14,15821501	217,0791075
60	2786	7389	13,02231237	199,7565923
120	2786	7193	13,02231237	191,8052738
180	2786	7491	13,02231237	203,8945233
240	2786	7397	13,02231237	200,0811359
300	2786	7329	13,02231237	197,3225152
360	2781	7328	12,81947262	197,2819473

6. Wnioski

Ten algorytm był bardzo przyjemny do napisania. Niestety ten algorym jest dużo gorszy niż Tabu Search, ale daje możliwość dopasować parametry do konkretnego zadania. Jest dużo szypszy od Brute Force, ale, jak i inne algorytmy zrobione w tym semestrze, nie daje 100% pewności że wynik jest najlepszy, można powidzieć więcej, prawie zawsze ma nie najleprzą odpowiedź, ale są dość szybkie.