$12n_{0479} \ (K12n_{0479})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 186488768414913u^{49} - 290002817250832u^{48} + \dots + 308976956670931b + 23795142626938, \\ -2.98208 \times 10^{14}u^{49} + 1.16633 \times 10^{15}u^{48} + \dots + 1.85386 \times 10^{15}a - 3.97700 \times 10^{15}, \ u^{50} - 2u^{49} + \dots + 7u - 10^{15}u^{10} = \langle b - 1, -2u^2a + a^2 - 2au + 4u^2 - 4a + 3u + 7, \ u^3 + u^2 + 2u + 1 \rangle$$

$$I_3^u = \langle b + 1, \ u^2 + a - u + 2, \ u^3 - u^2 + 2u - 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 59 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I.} \\ I_1^u = \langle 1.86 \times 10^{14} u^{49} - 2.90 \times 10^{14} u^{48} + \dots + 3.09 \times 10^{14} b + 2.38 \times 10^{13}, \ -2.98 \times 10^{14} u^{49} + 1.17 \times 10^{15} u^{48} + \dots + 1.85 \times 10^{15} a - 3.98 \times 10^{15}, \ u^{50} - 2u^{49} + \dots + 7u - 3 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.160858u^{49} - 0.629138u^{48} + \dots - 4.21769u + 2.14525 \\ -0.603569u^{49} + 0.938590u^{48} + \dots + 1.19866u - 0.0770127 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.442711u^{49} + 0.309453u^{48} + \dots - 3.01903u + 2.06824 \\ -0.603569u^{49} + 0.938590u^{48} + \dots + 1.19866u - 0.0770127 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0498473u^{49} - 0.638746u^{48} + \dots + 5.09518u + 0.739281 \\ -0.316393u^{49} + 0.485397u^{48} + \dots + 2.60385u - 0.176830 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0589435u^{49} - 0.198506u^{48} + \dots - 4.62549u + 2.19124 \\ -0.738441u^{49} + 1.20164u^{48} + \dots + 1.08821u - 0.149542 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.660432u^{49} - 0.972483u^{48} + \dots - 0.425785u + 2.52397 \\ 0.348382u^{49} - 0.970681u^{48} + \dots - 2.09905u + 1.98130 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -\frac{818278759941418}{308976956670931}u^{49} + \frac{1283399787362471}{308976956670931}u^{48} + \dots + \frac{3241957768122858}{308976956670931}u - \frac{3010107002943738}{308976956670931}u^{48} + \dots + \frac{3241957768122858}{308976956670931}u - \frac{3010107002943738}{308976956670931}u^{48} + \dots + \frac{3241957768122858}{308976956670931}u^{48} + \dots + \frac{3241957684}{308976956670931}u^{48} + \dots + \frac{3241957684}{308976956670931}u^{48} + \dots + \frac{3241957684}{308976956670931}u^{48} + \dots + \frac{324195768}{308976956670931}u^{48} + \dots + \frac{324195768}{308976956709900000$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{50} + 18u^{49} + \dots + 4150u + 289$
c_2, c_5	$u^{50} + 4u^{49} + \dots - 28u - 17$
c_3	$u^{50} + u^{49} + \dots + 1024u + 488$
c_4,c_8,c_9	$u^{50} - u^{49} + \dots - 16u + 8$
c_6, c_7, c_{11}	$u^{50} + 2u^{49} + \dots - 7u - 3$
c_{10}, c_{12}	$u^{50} - 2u^{49} + \dots - 3995u - 2391$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{50} + 38y^{49} + \dots + 3129458y + 83521$
c_2, c_5	$y^{50} - 18y^{49} + \dots - 4150y + 289$
c_3	$y^{50} - 41y^{49} + \dots - 2344704y + 238144$
c_4, c_8, c_9	$y^{50} + 43y^{49} + \dots - 896y + 64$
c_6, c_7, c_{11}	$y^{50} + 48y^{49} + \dots - 79y + 9$
c_{10}, c_{12}	$y^{50} + 16y^{49} + \dots + 33729737y + 5716881$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.548026 + 0.636865I		
a = -0.141399 + 0.209810I	0.14665 + 5.50869I	-5.48648 - 2.48413I
b = 1.031990 - 0.770119I		
u = 0.548026 - 0.636865I		
a = -0.141399 - 0.209810I	0.14665 - 5.50869I	-5.48648 + 2.48413I
b = 1.031990 + 0.770119I		
u = 0.747661 + 0.370902I		
a = 1.27766 - 1.31418I	-0.80164 - 9.94223I	-7.39959 + 7.60109I
b = 1.119580 + 0.753217I		
u = 0.747661 - 0.370902I		
a = 1.27766 + 1.31418I	-0.80164 + 9.94223I	-7.39959 - 7.60109I
b = 1.119580 - 0.753217I		
u = -0.701764 + 0.430117I		
a = -1.00242 - 1.23319I	4.04082 + 5.32876I	-2.84513 - 5.88571I
b = -0.971275 + 0.823552I		
u = -0.701764 - 0.430117I		
a = -1.00242 + 1.23319I	4.04082 - 5.32876I	-2.84513 + 5.88571I
b = -0.971275 - 0.823552I		
u = -0.613532 + 0.535693I		
a = 0.370473 + 0.106254I	4.44373 - 0.93541I	-1.58239 - 0.30026I
b = -0.839697 - 0.858575I		
u = -0.613532 - 0.535693I		
a = 0.370473 - 0.106254I	4.44373 + 0.93541I	-1.58239 + 0.30026I
b = -0.839697 + 0.858575I		
u = 0.680028 + 0.435043I		
a = -0.548393 - 0.018507I	0.78344 - 3.70599I	-5.05675 + 3.80006I
b = 0.600139 - 0.934400I		
u = 0.680028 - 0.435043I		
a = -0.548393 + 0.018507I	0.78344 + 3.70599I	-5.05675 - 3.80006I
b = 0.600139 + 0.934400I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.609239 + 0.505071I		
a = 0.659368 - 1.086520I	1.077150 - 0.581801I	-4.57087 + 2.28469I
b = 0.728352 + 0.857268I		
u = 0.609239 - 0.505071I		
a = 0.659368 + 1.086520I	1.077150 + 0.581801I	-4.57087 - 2.28469I
b = 0.728352 - 0.857268I		
u = -0.314558 + 1.181770I		
a = 0.755396 + 0.911108I	-1.86240 + 5.95457I	0
b = 0.883202 - 0.570553I		
u = -0.314558 - 1.181770I		
a = 0.755396 - 0.911108I	-1.86240 - 5.95457I	0
b = 0.883202 + 0.570553I		
u = -0.754187 + 0.037133I		
a = 1.177820 + 0.351943I	-5.37048 - 2.06528I	-9.77366 + 3.43997I
b = 0.791193 + 0.522358I		
u = -0.754187 - 0.037133I		
a = 1.177820 - 0.351943I	-5.37048 + 2.06528I	-9.77366 - 3.43997I
b = 0.791193 - 0.522358I		
u = -0.030213 + 1.260010I		
a = -0.22647 + 1.85610I	-3.90026 + 0.44346I	0
b = -1.111340 - 0.290888I		
u = -0.030213 - 1.260010I		
a = -0.22647 - 1.85610I	-3.90026 - 0.44346I	0
b = -1.111340 + 0.290888I		
u = 0.251247 + 1.259910I		
a = -0.547258 + 0.656638I	2.05074 - 3.33048I	0
b = -0.684570 - 0.219108I		
u = 0.251247 - 1.259910I		
a = -0.547258 - 0.656638I	2.05074 + 3.33048I	0
b = -0.684570 + 0.219108I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.299311 + 1.263120I		
a = 0.021398 + 0.222536I	-1.35085 + 1.74111I	0
b = 0.705583 + 0.479463I		
u = -0.299311 - 1.263120I		
a = 0.021398 - 0.222536I	-1.35085 - 1.74111I	0
b = 0.705583 - 0.479463I		
u = -0.095422 + 1.324880I		
a = -0.023038 + 1.203270I	1.85552 + 1.71056I	0
b = 1.169140 - 0.223723I		
u = -0.095422 - 1.324880I		
a = -0.023038 - 1.203270I	1.85552 - 1.71056I	0
b = 1.169140 + 0.223723I		
u = 0.667644		
a = -1.23502	-1.84778	-2.14880
b = -0.589141		
u = -0.179331 + 1.371620I		
a = 1.20289 - 1.64393I	-1.78664 + 3.49510I	0
b = -0.538230 + 0.405630I		
u = -0.179331 - 1.371620I		
a = 1.20289 + 1.64393I	-1.78664 - 3.49510I	0
b = -0.538230 - 0.405630I		
u = 0.523052 + 0.312664I		
a = -1.58769 + 0.98505I	-5.97365 - 1.50019I	-9.06126 + 4.58058I
b = -1.278040 + 0.059074I		
u = 0.523052 - 0.312664I		
a = -1.58769 - 0.98505I	-5.97365 + 1.50019I	-9.06126 - 4.58058I
b = -1.278040 - 0.059074I		
u = 0.062298 + 1.409670I		
a = -0.212165 - 1.347970I	5.34369 - 2.04364I	0
b = 0.181198 + 0.793511I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.062298 - 1.409670I		
a = -0.212165 + 1.347970I	5.34369 + 2.04364I	0
b = 0.181198 - 0.793511I		
u = 0.20226 + 1.41029I		
a = 0.244900 + 0.806956I	-0.46882 - 4.20038I	0
b = -1.348940 + 0.042324I		
u = 0.20226 - 1.41029I		
a = 0.244900 - 0.806956I	-0.46882 + 4.20038I	0
b = -1.348940 - 0.042324I		
u = -0.478945 + 0.205762I		
a = 1.01707 - 2.37277I	-6.81379 + 1.04376I	-7.43326 - 6.78776I
b = -0.767299 + 0.234309I		
u = -0.478945 - 0.205762I		
a = 1.01707 + 2.37277I	-6.81379 - 1.04376I	-7.43326 + 6.78776I
b = -0.767299 - 0.234309I		
u = 0.28571 + 1.46065I		
a = 0.22222 - 2.14370I	5.0883 - 13.7071I	0
b = 1.175840 + 0.774815I		
u = 0.28571 - 1.46065I		
a = 0.22222 + 2.14370I	5.0883 + 13.7071I	0
b = 1.175840 - 0.774815I		
u = 0.24689 + 1.47668I		
a = -1.12288 + 0.98727I	6.96288 - 7.09069I	0
b = 0.577120 - 1.045150I		
u = 0.24689 - 1.47668I		
a = -1.12288 - 0.98727I	6.96288 + 7.09069I	0
b = 0.577120 + 1.045150I		
u = 0.21123 + 1.48331I		
a = -0.10979 - 1.94214I	7.49634 - 3.56090I	0
b = 0.854567 + 0.927257I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.21123 - 1.48331I		
a = -0.10979 + 1.94214I	7.49634 + 3.56090I	0
b = 0.854567 - 0.927257I		
u = -0.25705 + 1.47829I		
a = -0.06564 - 2.05483I	10.20760 + 8.82997I	0
b = -1.058610 + 0.870913I		
u = -0.25705 - 1.47829I		
a = -0.06564 + 2.05483I	10.20760 - 8.82997I	0
b = -1.058610 - 0.870913I		
u = 0.15233 + 1.49913I		
a = -1.01986 + 1.15371I	7.08236 + 3.11695I	0
b = 0.992952 - 0.891101I		
u = 0.15233 - 1.49913I		
a = -1.01986 - 1.15371I	7.08236 - 3.11695I	0
b = 0.992952 + 0.891101I		
u = -0.20291 + 1.49495I		
a = 1.08852 + 1.06865I	11.03000 + 2.01018I	0
b = -0.799853 - 0.997275I		
u = -0.20291 - 1.49495I		
a = 1.08852 - 1.06865I	11.03000 - 2.01018I	0
b = -0.799853 + 0.997275I		
u = 0.275380 + 0.327909I		
a = -0.267865 - 0.801075I	-0.199328 - 0.932041I	-3.89641 + 7.43641I
b = 0.330232 + 0.361285I		
u = 0.275380 - 0.327909I		
a = -0.267865 + 0.801075I	-0.199328 + 0.932041I	-3.89641 - 7.43641I
b = 0.330232 - 0.361285I		
u = -0.403899		
a = 2.57601	-2.29285	3.34720
b = 1.10270		

II. $I_2^u = \langle b-1, -2u^2a + a^2 - 2au + 4u^2 - 4a + 3u + 7, u^3 + u^2 + 2u + 1 \rangle$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a+1\\1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^2 - u - 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u^2 + 1 \\ u^2 + u + 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u^2 + u + 2 \\ au + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^2 - 1 \\ -u^2 - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{2} + u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + u + 2 \\ au + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} - 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2}a - 2u^{2} + a - 3 \\ u^{2}a + au + a + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 4u 16$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^6$
c_2	$(u+1)^6$
c_3, c_4, c_8 c_9	$(u^2+2)^3$
c_{6}, c_{7}	$(u^3 + u^2 + 2u + 1)^2$
c_{10}, c_{12}	$(u^3 + u^2 - 1)^2$
c_{11}	$(u^3 - u^2 + 2u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^6$
c_3, c_4, c_8 c_9	$(y+2)^6$
c_6, c_7, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$
c_{10}, c_{12}	$(y^3 - y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = 0.917744 - 0.191855I	-3.55561 + 2.82812I	-8.49024 - 2.97945I
b = 1.00000		
u = -0.215080 + 1.307140I		
a = -0.67262 + 1.68158I	-3.55561 + 2.82812I	-8.49024 - 2.97945I
b = 1.00000		
u = -0.215080 - 1.307140I		
a = 0.917744 + 0.191855I	-3.55561 - 2.82812I	-8.49024 + 2.97945I
b = 1.00000		
u = -0.215080 - 1.307140I		
a = -0.67262 - 1.68158I	-3.55561 - 2.82812I	-8.49024 + 2.97945I
b = 1.00000		
u = -0.569840		
a = 1.75488 + 1.87343I	-7.69319	-15.0200
b = 1.00000		
u = -0.569840		
a = 1.75488 - 1.87343I	-7.69319	-15.0200
b = 1.00000		

III.
$$I_3^u = \langle b+1, \ u^2+a-u+2, \ u^3-u^2+2u-1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + u - 2 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + u - 3 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + u - 2 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + u - 2 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-6u^2 + 4u 16$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
$c_3, c_4, c_8 \ c_9$	u^3
c_5	$(u+1)^3$
c_6, c_7	$u^3 - u^2 + 2u - 1$
c_{10}, c_{12}	$u^3 - u^2 + 1$
c_{11}	$u^3 + u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^3$
$c_3,c_4,c_8 \ c_9$	y^3
c_6, c_7, c_{11}	$y^3 + 3y^2 + 2y - 1$
c_{10}, c_{12}	$y^3 - y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -0.122561 + 0.744862I	1.37919 - 2.82812I	-5.16553 + 1.85489I
b = -1.00000		
u = 0.215080 - 1.307140I		
a = -0.122561 - 0.744862I	1.37919 + 2.82812I	-5.16553 - 1.85489I
b = -1.00000		
u = 0.569840		
a = -1.75488	-2.75839	-15.6690
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^9)(u^{50}+18u^{49}+\cdots+4150u+289)$
c_2	$((u-1)^3)(u+1)^6(u^{50}+4u^{49}+\cdots-28u-17)$
<i>c</i> ₃	$u^{3}(u^{2}+2)^{3}(u^{50}+u^{49}+\cdots+1024u+488)$
c_4, c_8, c_9	$u^{3}(u^{2}+2)^{3}(u^{50}-u^{49}+\cdots-16u+8)$
<i>C</i> ₅	$((u-1)^6)(u+1)^3(u^{50}+4u^{49}+\cdots-28u-17)$
c_{6}, c_{7}	$(u^3 - u^2 + 2u - 1)(u^3 + u^2 + 2u + 1)^2(u^{50} + 2u^{49} + \dots - 7u - 3)$
c_{10}, c_{12}	$(u^3 - u^2 + 1)(u^3 + u^2 - 1)^2(u^{50} - 2u^{49} + \dots - 3995u - 2391)$
c_{11}	$((u^3 - u^2 + 2u - 1)^2)(u^3 + u^2 + 2u + 1)(u^{50} + 2u^{49} + \dots - 7u - 3)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^9)(y^{50} + 38y^{49} + \dots + 3129458y + 83521)$
c_2,c_5	$((y-1)^9)(y^{50}-18y^{49}+\cdots-4150y+289)$
c_3	$y^{3}(y+2)^{6}(y^{50}-41y^{49}+\cdots-2344704y+238144)$
c_4, c_8, c_9	$y^{3}(y+2)^{6}(y^{50}+43y^{49}+\cdots-896y+64)$
c_6, c_7, c_{11}	$((y^3 + 3y^2 + 2y - 1)^3)(y^{50} + 48y^{49} + \dots - 79y + 9)$
c_{10}, c_{12}	$((y^3 - y^2 + 2y - 1)^3)(y^{50} + 16y^{49} + \dots + 3.37297 \times 10^7 y + 5716881)$