How Not to Let Your Model and Data **Drift Away Silently** Chengyin Eng

About

Chengyin Eng

Data Scientist @ Databricks

- Machine Learning Practice Team
- Experience
 - Life Insurance
 - Teaching ML in Production, Deep Learning, NLP, etc.
- MS in Computer Science at University of Massachusetts, Amherst
- BA in Statistics & Environmental Studies at Mount Holyoke College, Massachusetts

Outline

- Motivation
- Machine Learning System Life Cycle
- Why Monitor?
 - Types of drift
- What to Monitor?
- How to Monitor?
- Demo

Why do 96% of ML projects fail in production?

Neglect maintenance: Lack of re-training and testing

Sources:

https://databricks.com/blog/2019/09/18/productionizing-machine-learning-from-deployment-to-drift-detection.html https://www.datanami.com/2020/10/01/most-data-science-projects-fail-but-yours-doesnt-have-to/

This talk focuses on two questions:

This talk focuses on two questions:

What are the statistical tests to use when monitoring models in production?

This talk focuses on two questions:

What are the statistical tests to use when monitoring models in production?

What tools can I use to coordinate the monitoring of data and models?

What this talk is not

- A tutorial on model deployment strategies
- An exhaustive walk through of how to robustly test your production ML code

A prescriptive list of when to update a model in production

Machine Learning System Life Cycle

ML system life cycle

ML system life cycle

Why Monitor?

Model deployment is not the end

It is the beginning of model measurement and monitoring

Data distributions and feature types can change over time due to:

Potential model performance degradation

Models will degrade over time

Challenge: catching this when it happens

Types of drift

Data Drift

One of more distributions deviate:

- Input features
- Label
- Model prediction

Concept Drift

External factors cause the label to evolve

Data Drift

Categories	Expected	Observed	Total
Α	25	35	60
В	25	20	56
С	25	25	50
D	25	20	45
Total	100	100	100

Sources:

https://dataz4s.com/statistics/chi-square-test/

https://towardsdatascience.com/machine-learning-in-production-why-you-should-care-about-data-and-concept-drift-d96d0bc907fb

Concept drift

Source: Krawczyk and Cano 2018. Online Ensemble Learning for Drifting and Noisy Data Streams

Drift types and actions to take

Drift Type	Retrain using new data	Investigate process	Assess business impact	Consider alternative solutions
Feature Drift	Υ	Υ		
Label Drift	Υ	Υ		
Prediction Drift		Y (Model training)	Υ	
Concept Drift	Y (Or tune)			Y (Additional feature engineering)

What to Monitor?

What should I monitor?

- Basic summary statistics of features and target
- Distributions of features and target
- Model performance metrics
- Business metrics

Monitoring tests on data

Numeric Features

- Summary statistics:
 - Median / mean
 - Minimum
 - Maximum
 - Percentage of missing values
- Statistical tests:
 - Mean:
 - Two-sample Kolmogorov-Smirnov (KS) test with Bonferroni correction
 - Mann-Whitney (MW) test
 - Variance:
 - Levene test

Kolmogorov-Smirnov (KS) test with Bonferroni correction

Comparison of two continuous distributions

- Null hypothesis (H_0) :

 Distributions x and y come from the same population
- If the KS statistic has a p-value lower than α , reject H₀
- Bonferroni correction:
 - Adjusts the α level to reduce false positives
 - $\alpha_{\text{new}} = \alpha_{\text{original}} / n$, where n = total number of feature comparisons

Levene test

Comparison of variances between two continuous distributions

• Null hypothesis (H_n) :

$$\sigma^{2}_{1} = \sigma^{2}_{2} = \dots = \sigma^{2}_{n}$$

• If the Levene statistic has a p-value lower than α , reject H₀

Monitoring tests on data

Numeric Features

- Summary statistics:
 - Median / mean
 - Minimum
 - Maximum
 - Percentage of missing values
- Statistical tests:
 - Mean:
 - Two-sample Kolmogorov-Smirnov (KS) test with Bonferroni correction
 - Mann-Whitney (MW) test
 - Variance:
 - Levene test

Categorical Features

- Summary statistics:
 - Mode
 - Number of unique levels
 - Percentage of missing values
- Statistical test:
 - One-way chi-squared test

One-way chi-squared test

Comparison of two categorical distributions

• Null hypothesis (H_0) :

Expected distribution = observed distribution

If the Chi-squared statistic has a p-value lower than α , reject H₀

Monitoring tests on models

- Relationship between target and features
 - Numeric Target: Pearson Coefficient
 - Categorical Target: Contingency tables

- Model Performance
 - Regression models: MSE, error distribution plots etc
 - Classification models: ROC, confusion matrix, F1-score etc
 - Performance on data slices

Time taken to train

How to Monitor?

Workflow

Repeat for other months

Workflow

An open-source platform for ML lifecycle that helps with operationalizing ML

mlflow Tracking

Record and query experiments: code, metrics, parameters, artifacts, models

mlflow

Projects

Packaging format for reproducible runs on any compute platform

mlflow

Models

General model format that standardizes deployment options

mlflow

Model Registry

Centralized and collaborative model lifecycle management

MLflow documentation linked here: https://www.mlflow.org/docs/latest/index.html

MLflow Experiment UI

Experiments > /Users/chengyin.eng@databricks.com/mlops2021/airbnb_hawaii

MLflow Model Registry

An open-source data storage format that allows ACID transaction and metadata handling

Parquet files combined with transaction logs

```
/mytable/_delta_log/000000000000000000.json
/mytable/_delta_log/000000000000000001.json
/mytable/_delta_log/000000000000000003.json
/mytable/_delta_log/0000000000000000003.checkpoint.parquet
/mytable/_delta_log/_last_checkpoint
/mytable/part-00000-3935a07c-416b-4344-ad97-2a38342ee2fc.c000.snappy.parquet
```

Read older versions of data using time travel

```
Python

df1 = spark.read.format("delta").option("timestampAsOf", timestamp_string).load("/delta/events")

df2 = spark.read.format("delta").option("versionAsOf", version).load("/delta/events")
```

Delta documentation linked here: https://docs.delta.io/latest/ index.html

Delta Table History

```
gold_delta_path = "/Users/chengyin.eng@databricks.com/mlops2021/data/airbnb_hawaii_delta"
display(DeltaTable.forPath(spark, gold_delta_path).history())
```

▶ (1) Spark Jobs

	version	timestamp	userId	userName	operation	operationParameters
1	2	2021-06-12T16:46:54.000+0000	4470711271069202	chengyin.eng@databricks.com	WRITE	► {"mode": "Append",
2	1	2021-06-12T16:46:30.000+0000	4470711271069202	chengyin.eng@databricks.com	WRITE	► {"mode": "Append",
3	0	2021-06-12T16:46:03.000+0000	4470711271069202	chengyin.eng@databricks.com	WRITE	► {"mode": "ErrorlfExis

Showing all 3 rows

Demo Notebook

http://bit.ly/mlops2021-drifting-away

Conclusion

- Model measurement and monitoring are crucial when operationalizing ML models
- No one-size fits all
 - Domain & problem specific considerations
- Reproducibility
 - Enable rollbacks and maintain record of historic performance

Literature resources

- Paleyes et al 2021. Challenges in Deploying ML
- Klaise et al. 2020 Monitoring and explainability of models in production
- Rabanser et al 2019 Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift
- Martin Fowler: Continuous Delivery for Machine Learning

Emerging open-source monitoring packages

- <u>EvidentlyAl</u>
- <u>Data Drift Detector</u>
- Alibi Detect