Aufgabe 1

Damit L entscheidbar ist, muss es eine TM M geben, sodass L(M) = L. M würde also entscheiden, ob der Weihnachtsmann existiert oder nicht.

L ist damit genau dann entscheidbar, wenn wir wissen, ob der Weihnachtsmann existiert oder nicht.

Aufgabe 2

Formalisierung

Wir haben Eingabewörter $w_i \in \{0,1\}^*$ und TMs M_i . Eine Eingabe w_i wird genau dann akzeptiert, wenn alle M_j w_i akzeptieren mit $0 \le j \le i$. Kann man entscheiden, welche w_i alle akzeptiert werden?

⇒ Diagonalisierung

Lösung

Konstruiere Mehrband-Band-TM M' mit folgender Funktionsweise auf einer Eingabe w_i auf Band 0:

- (i) Entnehme i aus der Eingabe w_i und hinterlege es auf einem Band als j.
- (ii) Lies j und bekomme M_j .
- (iii) Führe auf der Originaleingabe w_j auf $M_i j$ aus.
 - Falls M_j verwirft, soll auch M' verwerfen.
 - Falls M_j akzeptiert und j = 0, soll M' verwerfen.
 - Falls M_j akzeptiert und j > 0, soll j um 1 reduziert werden, dann ab 2) fortgefahren werden.

Korrektheit

 w_i wird akzeptiert \Rightarrow Alle M_j mit $0 \le j \le i$ akzeptieren $w_i \Rightarrow M'$ akzeptiert w_i . w_i wird verworfen \Rightarrow Es mind. j in $0 \le j \le i$, sodass M_j auf w_i verwirft $\Rightarrow M'$ verwirft w_i .

Aufgabe 3

- a) Ja, L_1 ist entscheidbar. Denn sei M' eine TM. M' kann sich einfach die Codierung von jedem $\langle M \rangle$ ansehen, bei unter 24 Zuständen akzeptieren, sonst verwerfen. Damit erkennt M' L_1 .
- b) Nein. Halteproblem $\leq L_2$

c)

Aufgabe 4