Algorithme d'orthonormalisation de Gram-Schmidt

 \mathcal{Q} Exercice de base sur l'algorithme d'orthonormalisation de Gram-Schmidt dans \mathbb{R}^3 .

Exercice 1. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 8

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((4, -2, -1), (1, -3, -1), (0, -1, 1)).$$

Exercice 2. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 8

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -1, 3), (-3, 0, -2), (-1, -1, -1)).$$

Exercice 3. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 8

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-5, 2, 0), (-3, 0, -3), (1, 0, -1)).$$

Exercice 4. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 8

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((3, -4, 1), (-1, -1, 1), (-1, 0, -1)).$$

Exercice 5. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 9

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 1, -1), (10, -5, 0), (1, 2, -1)).$$

Exercice 6. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 9

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -1, 0), (0, 0, -1), (2, -1, 1)).$$

Exercice 7. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 9

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 0, -1), (0, 0, -3), (-1, -1, -1)).$$

Exercice 8. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 9

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, 5, 2), (2, -1, 0), (0, -2, 0)).$$

Exercice 9. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 10

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((3, -1, 3), (1, -1, 8), (-4, 1, -6)).$$

Exercice 10. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 10

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((3, -1, 1), (7, -1, 0), (0, -1, 1)).$$

Exercice 11. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 10

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, -1, -7), (-1, -2, 0), (1, 2, -1)).$$

Exercice 12. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 11

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((3, -1, 1), (-1, -2, -2), (-2, 0, -1)).$$

Exercice 13. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 11

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, -1, 1), (-7, 0, 1), (2, -1, 1)).$$

Exercice 14. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, 0, 0), (0, 1, -1), (3, -1, 0)).$$

 \rightarrow page 11

 \rightarrow page 12

 \rightarrow page 13

 \rightarrow page 13

 \rightarrow page 13

 \rightarrow page 13

 \rightarrow page 14

 \rightarrow page 14

 \rightarrow page 14

 \rightarrow page 15

 \rightarrow page 15

 \rightarrow page 15

 \rightarrow page 15

Exercice 15. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-3, -1, 0), (1, 2, 2), (0, 0, 2)).$

Exercice 16. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser \rightarrow page 12 la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 1, -1), (-1, 0, -2), (1, 3, 0)).$

Exercice 17. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 2, -5), (0, 0, 1), (3, 1, 3)).$

Exercice 18. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser \rightarrow page 12 la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, -1, 0), (0, 2, -2), (1, -2, 0)).$

Exercice 19. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, -1, -1), (1, 1, -1), (1, 5, 2)).$

Exercice 20. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 1, 0), (2, -1, 1), (-1, 20, -2)).$

Exercice 21. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 2, 4), (-1, -1, 0), (-1, 1, 0)).$

Exercice 22. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 0, 2), (0, -1, -4), (1, 0, -14)).$

Exercice 23. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -2, 14), (1, 0, -17), (-1, 1, 2)).$

Exercice 24. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, -1, 1), (0, 1, 1), (4, -3, -2)).$

Exercice 25. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -3, -1), (1, -2, 0), (1, -1, 0)).$

Exercice 26. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 1, 1), (2, 3, 1), (-2, 1, 0)).$

Exercice 27. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((5, 7, 0), (1, 0, -2), (0, 1, 1)).$

Exercice 28. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 0, -1), (2, 1, 7), (-1, -2, -1)).$

Exercice 29. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-2, -1, -1), (1, 0, -1), (1, -4, 1)).$

Exercice 30. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-2, 2, -1), (2, 0, 0), (1, 0, -1)).$

Exercice 31. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser \longrightarrow page 16 la famille:

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 0, 1), (-5, 1, 0), (-2, -1, 0)).$

Exercice 32. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 16

 \rightarrow page 16

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-2, -1, -2), (0, -1, 1), (1, 0, 0)).$$

Exercice 33. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 17

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-3, -2, 1), (3, 1, -1), (2, -1, 0)).$$

Exercice 34. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 17

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, -2, 3), (-1, -1, -1), (2, -1, 3)).$$

Exercice 35. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 17

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-3, -1, 0), (-2, 2, 1), (-1, 3, 0)).$$

Exercice 36. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 17

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 1, 3), (0, 0, -1), (-4, -1, 0)).$$

Exercice 37. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 18

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 0, -3), (1, -2, -2), (1, 2, 0)).$$

Exercice 38. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 18

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 1, 1), (1, -1, 4), (0, 2, 0)).$$

Exercice 39. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 18

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-2, 1, 3), (1, 0, 1), (1, 1, -2)).$$

Exercice 40. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 19

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, -2, 0), (19, -1, 1), (-1, 1, 0)).$$

Exercice 41. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 19

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 4, -1), (0, 2, 0), (-4, -1, -4)).$$

Exercice 42. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 19

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((4, 3, 3), (8, 1, -1), (1, 0, -1)).$$

Exercice 43. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 19

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -1, 1), (-11, -4, -4), (2, -1, 1)).$$

Exercice 44. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-5, 0, -1), (-1, 1, -1), (-1, 0, 3)).$$

Exercice 45. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, 0, -3), (-1, 1, -1), (10, -8, 1)).$$

Exercice 46. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 20

 \rightarrow page 20

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((6, 1, -1), (-7, -1, 1), (0, -2, 0)).$$

Exercice 47. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 21

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-2, 1, 0), (-15, 0, 0), (-105, 1, 1)).$$

Exercice 48. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 21

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, -1, 0), (-1, 1, 1), (1, 2, -1)).$$

Exercice 49. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 21

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, 2, -2), (0, 1, -4), (-1, 1, -1)).$$

Exercice 50. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 21

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -1, 0), (-1, 11, 2), (2, -1, 1)).$$

Exercice 51. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 22

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, -11, 0), (0, 5, 0), (3, 1, -1)).$$

Exercice 52. On munit \mathbb{R}^3 du produit scalaire usuel, Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 22

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, -1, 1), (1, 2, -3), (2, 1, 4)).$$

Exercice 53. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 22

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, 4, 0), (2, 2, 1), (0, 2, 1)).$$

Exercice 54. On munit \mathbb{R}^3 du produit scalaire usuel, Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 23

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((2, -2, 0), (18, -26, 1), (-1, 2, -1)).$$

Exercice 55. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 23

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 1, 0), (3, -10, -1), (2, -1, 0)).$$

Exercice 56. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 23

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-3, 1, 1), (0, 3, -1), (-1, -1, 1)).$$

Exercice 57. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 23

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 2, 0), (3, -1, -1), (1, 1, -1)).$$

Exercice 58. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 24

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -1, 0), (-7, -1, 0), (1, -2, -1)).$$

Exercice 59. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, 0, -1), (-2, -1, -3), (1, 1, -1)).$$

Exercice 60. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 24

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, 0, 0), (2, 1, -1), (3, 0, 3)).$$

Exercice 61. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 25

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((6, 0, 1), (-2, -3, 0), (-3, 1, 0)).$$

Exercice 62. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 25

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, -2, 1), (-1, 0, -1), (0, 1, -1)).$$

Exercice 63. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 25

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, -1, 1), (1, 0, -1), (-1, -1, -3)).$$

Exercice 64. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 25

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, -2, 0), (-5, 1, 0), (2, 7, 1)).$$

Exercice 65. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 26

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-3, -4, 0), (1, 0, -1), (2, 1, 0)).$$

Exercice 66. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 26

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((5, -2, 1), (1, 1, 1), (-1, 0, -1)).$$

Exercice 67. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 26

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 0, 2), (-1, 0, -2), (-2, -1, 1)).$$

Exercice 68. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 27

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, 0, -3), (-1, 1, 1), (2, 1, 1)).$$

Exercice 69. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 27

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 1, -1), (2, 1, -1), (1, 0, 2)).$$

Exercice 70. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 27

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, -2, 2), (1, -1, -1), (-1, -1, -2)).$$

Exercice 71. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 27

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 0, 2), (3, -1, 0), (-1, 1, 3)).$$

Exercice 72. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 28

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -3, 1), (0, -1, -1), (1, -1, 1)).$$

Exercice 73. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 28

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -2, 2), (2, 0, -2), (0, -1, -1)).$$

Exercice 74. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -1, 3), (-2, 2, 7), (-1, -1, 3)).$$

Exercice 75. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((2, -1, 0), (-2, 0, 1), (0, 1, 0)).$$

Exercice 76. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 1, -3), (-2, -2, 1), (1, 0, 1)).$$

Exercice 77. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$\rightarrow$$
 page 29

 \rightarrow page 29

 \rightarrow page 29

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, 1, 0), (-1, -1, -1), (1, -3, -2)).$$

Exercice 78. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$\rightarrow$$
 page 29

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 1, 0), (0, -7, 1), (-1, 3, -2)).$$

Exercice 79. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$\rightarrow$$
 page 30

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 1, 1), (2, 0, 1), (0, 1, -1)).$$

Exercice 80. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$\rightarrow$$
 page 30

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -1, -1), (1, -2, 3), (2, 1, 5)).$$

Exercice 81. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$\rightarrow$$
 page 30

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((5, 1, 1), (0, -2, 0), (-1, 2, 0)).$$

Exercice 82. On munit \mathbb{R}^3 du produit scalaire usuel, Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$\rightarrow$$
 page 31

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 2, 1), (-1, -2, 2), (-1, -1, 0)).$$

Exercice 83. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$\rightarrow$$
 page 31

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-2, 1, -4), (-1, -1, -3), (-1, -1, 0)).$$

Exercice 84. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$\rightarrow$$
 page 31

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-3, -1, 0), (1, 1, 6), (0, 1, 2)).$$

Exercice 85. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$\rightarrow$$
 page 31

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -4, 3), (1, -2, -14), (0, 1, -3)).$$

Exercice 86. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 32

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, -1, 1), (1, 1, -4), (1, 0, -1)).$$

Exercice 87. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 32

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-2, 2, 4), (1, -2, -1), (-1, 0, 2)).$$

Exercice 88. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 32

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 37, -3), (3, -1, 0), (1, 0, 0)).$$

Exercice 89. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$\rightarrow$$
 page 33

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, -1, 3), (1, 1, -1), (-1, -4, 1)).$$

Exercice 90. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 33

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -5, -1), (2, 1, 0), (-2, -1, -1)).$$

Exercice 91. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 33

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 0, -1), (1, 1, -23), (-6, 0, -1)).$$

Exercice 92. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 33

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-2, -1, 2), (1, 2, -1), (-1, 4, -1)).$$

Exercice 93. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 34

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-1, 1, -1), (1, 3, 1), (2, -2, -1)).$$

Exercice 94. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 34

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, 1, 0), (0, -1, -1), (-1, -161, 0)).$$

Exercice 95. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 34

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((2, 1, 0), (-3, 1, 0), (2, 1, 2)).$$

Exercice 96. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 35

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 0, -2), (1, 4, -1), (-1, -1, -1)).$$

Exercice 97. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 35

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((0, -1, 1), (-1, 0, 0), (0, -9, -2)).$$

Exercice 98. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 35

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((-2, 0, 1), (3, -1, 4), (0, 0, 2)).$$

Exercice 99. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

 \rightarrow page 35

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 0, -3), (-4, 0, -2), (0, 1, -2)).$$

Exercice 100. On munit \mathbb{R}^3 du produit scalaire usuel. Avec l'algorithme de Gram-Schmidt, orthonormaliser la famille:

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = ((1, 0, -1), (-1, -4, -1), (2, 0, -4)).$$

Corrigé 1. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 1

$$\vec{e}_1 = (4, -2, -1)$$

$$\vec{e}_2 = (1, -3, -1)$$

$$\vec{e}_3 = (0, -1, 1)$$

$$\vec{e}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{13}{110}, -\frac{39}{110}, \frac{13}{11}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{110}} (1, -3, 10)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{21}} \left(4, -2, -1\right), \frac{1}{\sqrt{2310}} \left(-23, -41, -10\right), \frac{1}{\sqrt{110}} \left(1, -3, 10\right)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 2. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 1

$$\vec{e}_1 = (0, -1, 3)$$

$$\vec{e}_2 = (-3, 0, -2)$$

$$\vec{e}_3 = (-1, -1, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{10}{47}, -\frac{45}{47}, -\frac{15}{47}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{10}} (0, -1, 3)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{235}} (-15, -3, -1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{94}} (2, -9, -3)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{10}}(0, -1, 3), \frac{1}{\sqrt{235}}(-15, -3, -1), \frac{1}{\sqrt{94}}(2, -9, -3)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 3. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 1

$$\vec{e}_1 = (-5, 2, 0)$$

$$\vec{e}_2 = (-3, 0, -3)$$

$$\vec{e}_3 = (1, 0, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{8}{33}, \frac{20}{33}, -\frac{8}{33}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{29}} (-5, 2, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{957}} (-4, -10, -29)$$

$$\vec{v}_3 = (1, 0, -1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{8}{33}, \frac{20}{33}, -\frac{8}{33}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{33}} (2, 5, -2)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{29}} (-5, 2, 0), \frac{1}{\sqrt{957}} (-4, -10, -29), \frac{1}{\sqrt{33}} (2, 5, -2)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 4. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (3, -4, 1)$$

$$\vec{e}_2 = (-1, -1, 1)$$

$$\vec{e}_3 = (-1, 0, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{15}{37}, -\frac{20}{37}, -\frac{35}{37} \right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{26}} (3, -4, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{481}} (-16, -9, 12)$$

$$\vec{v}_3 = (-1, 0, -1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{15}{37}, -\frac{20}{37}, -\frac{35}{37} \right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{74}} (-3, -4, -7)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{26}}(3, -4, 1), \frac{1}{\sqrt{481}}(-16, -9, 12), \frac{1}{\sqrt{74}}(-3, -4, -7)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 5. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 1

$$\vec{e}_1 = (1, 1, -1)$$

$$\vec{e}_2 = (10, -5, 0)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{25}{3}, -\frac{20}{3}, \frac{5}{3}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{3}} (1, 1, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{42}} (5, -4, 1)$$

$$\vec{e}_3 = (1, 2, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{14}} (1, 2, 3)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{3}}(1, 1, -1), \frac{1}{\sqrt{42}}(5, -4, 1), \frac{1}{\sqrt{14}}(1, 2, 3)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 6. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 1

$$\vec{e}_1 = (0, -1, 0)$$

$$\vec{e}_2 = (0, 0, -1)$$

$$\vec{e}_3 = (2, -1, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 = (0, 0, -1)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{1} (0, -1, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{1} (0, 0, -1)$$

$$\vec{v}_3 = (2, -1, 1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (2, 0, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{1} (1, 0, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = ((0, -1, 0), (0, 0, -1), (1, 0, 0))$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 7. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 1

$$\vec{e}_1 = (1, 0, -1)$$

$$\vec{e}_2 = (0, 0, -3)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(-\frac{3}{2}, 0, -\frac{3}{2}\right)$$

$$\vec{v}_3 = (-1, -1, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (0, -1, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{1} (0, -1, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(1, 0, -1), \frac{1}{\sqrt{2}}(-1, 0, -1), (0, -1, 0)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 8. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

$$\vec{e}_1 = (-1, 5, 2)$$

$$\vec{e}_2 = (2, -1, 0)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{53}{30}, \frac{1}{6}, \frac{7}{15}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{30}} (-1, 5, 2)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{3030}} (53, 5, 14)$$

$$\vec{e}_3 = (0, -2, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{16}{101}, -\frac{32}{101}, \frac{72}{101}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{101}} (-2, -4, 9)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{30}} (-1, 5, 2), \frac{1}{\sqrt{3030}} (53, 5, 14), \frac{1}{\sqrt{101}} (-2, -4, 9)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 9. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 1

$$\vec{e}_{1} = (3, -1, 3)$$

$$\vec{e}_{2} = (1, -1, 8)$$

$$\vec{e}_{3} = (-4, 1, -6)$$

$$\vec{u}_{3} = \vec{e}_{3} - \langle \vec{e}_{3}, \vec{v}_{1} \rangle \vec{v}_{1} - \langle \vec{e}_{3}, \vec{v}_{2} \rangle \vec{v}_{2} = \left(-\frac{11}{94}, -\frac{231}{470}, -\frac{11}{235}\right)$$

$$\vec{v}_{1} = \frac{1}{\|\vec{e}_{1}\|} \vec{e}_{1} = \frac{1}{\sqrt{19}} (3, -1, 3)$$

$$\vec{v}_{2} = \frac{1}{\|\vec{u}_{2}\|} \vec{u}_{2} = \frac{1}{\sqrt{8930}} (-65, 9, 68)$$

$$\vec{v}_{3} = (-4, 1, -6)$$

$$\vec{v}_{3} = \vec{e}_{3} - \langle \vec{e}_{3}, \vec{v}_{1} \rangle \vec{v}_{1} - \langle \vec{e}_{3}, \vec{v}_{2} \rangle \vec{v}_{2} = \left(-\frac{11}{94}, -\frac{231}{470}, -\frac{11}{235}\right)$$

$$\vec{v}_{3} = \frac{1}{\|\vec{u}_{3}\|} \vec{u}_{3} = \frac{1}{\sqrt{470}} (-5, -21, -2)$$

D'après l'algorithme de Gram-Schmidt, la famille

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{19}}(3, -1, 3), \frac{1}{\sqrt{8930}}(-65, 9, 68), \frac{1}{\sqrt{470}}(-5, -21, -2)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 10. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 1

$$\vec{e}_1 = (3, -1, 1)$$

$$\vec{e}_2 = (7, -1, 0)$$

$$\vec{e}_3 = (0, -1, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{1}{22}, -\frac{7}{22}, -\frac{2}{11}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{66}} (-1, -7, -4)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{11}}(3, -1, 1), \frac{1}{\sqrt{6}}(1, 1, -2), \frac{1}{\sqrt{66}}(-1, -7, -4)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 11. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (-1, -1, -7)$$

$$\vec{e}_2 = (-1, -2, 0)$$

$$\vec{e}_3 = (1, 2, -1)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{51}} (-1, -1, -7)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{v}_2 = \frac{1}{\sqrt{1394}} (-16, -33, 7)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (\frac{7}{123}, -\frac{7}{246}, -\frac{1}{246})$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{246}} (14, -7, -1)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{51}} \left(-1, -1, -7\right), \frac{1}{\sqrt{1394}} \left(-16, -33, 7\right), \frac{1}{\sqrt{246}} \left(14, -7, -1\right)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 12. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 1

$$\vec{e}_1 = (3, -1, 1)$$

$$\vec{e}_2 = (-1, -2, -2)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(-\frac{2}{11}, -\frac{25}{11}, -\frac{19}{11} \right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{11}} (3, -1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{110}} (-2, -25, -19)$$

$$\vec{e}_3 = (-2, 0, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{2}{45}, -\frac{1}{18}, \frac{7}{90} \right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{3\sqrt{10}} (-4, -5, 7)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{11}}(3, -1, 1), \frac{1}{3\sqrt{110}}(-2, -25, -19), \frac{1}{3\sqrt{10}}(-4, -5, 7)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 13. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 1

$$\vec{e}_1 = (-1, -1, 1)$$

$$\vec{e}_2 = (-7, 0, 1)$$

$$\vec{e}_3 = (2, -1, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{3}{86}, \frac{9}{43}, \frac{21}{86}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{3}} (-1, -1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{258}} (-13, 8, -5)$$

$$\vec{v}_3 = (2, -1, 1)$$

$$\vec{v}_4 = \frac{1}{\|\vec{v}_4\|} \vec{v}_4 = \frac{1}{\sqrt{258}} (-13, 8, -5)$$

$$\vec{v}_5 = \frac{1}{\|\vec{v}_5\|} \vec{v}_5 = \frac{1}{\|\vec{v}_5\|} \vec{v}_5 = \frac{1}{\|\vec{v}_5\|} \vec{v}_5 = \frac{1}{\sqrt{86}} (1, 6, 7)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{3}}(-1, -1, 1), \frac{1}{\sqrt{258}}(-13, 8, -5), \frac{1}{\sqrt{86}}(1, 6, 7)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 14. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 1

$$\vec{e}_1 = (-1, 0, 0)$$

$$\vec{e}_2 = (0, 1, -1)$$

$$\vec{e}_3 = (3, -1, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (0, -\frac{1}{2}, -\frac{1}{2})$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{1} (-1, 0, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{2}} (0, 1, -1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (0, -1, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left((-1, 0, 0), \frac{1}{\sqrt{2}} (0, 1, -1), \frac{1}{\sqrt{2}} (0, -1, -1) \right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 15. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

$$\vec{e}_1 = (-3, -1, 0)$$

$$\vec{e}_2 = (1, 2, 2)$$

$$\vec{e}_3 = (0, 0, 2)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{4}{13}, -\frac{12}{13}, \frac{10}{13}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{10}} (-3, -1, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{26}} (-1, 3, 4)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{65}} (2, -6, 5)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{10}} \left(-3, -1, 0\right), \frac{1}{\sqrt{26}} \left(-1, 3, 4\right), \frac{1}{\sqrt{65}} \left(2, -6, 5\right)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 16. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 2

$$\vec{e}_1 = (0, 1, -1)$$

$$\vec{e}_2 = (-1, 0, -2)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (-1, -1, -1)$$

$$\vec{e}_3 = (1, 3, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{1}{3}, \frac{1}{6}, \frac{1}{6}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{2}} (0, 1, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{3}} (-1, -1, -1)$$

$$\vec{v}_3 = (-1, 3, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{6}} (-2, 1, 1)$$

D'après l'algorithme de Gram-Schmidt, la famille

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(0, 1, -1), \frac{1}{\sqrt{3}}(-1, -1, -1), \frac{1}{\sqrt{6}}(-2, 1, 1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 17. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 2

$$\vec{e}_{1} = (0, 2, -5)$$

$$\vec{e}_{2} = (0, 0, 1)$$

$$\vec{u}_{2} = \vec{e}_{2} - \langle \vec{e}_{2}, \vec{v}_{1} \rangle \vec{v}_{1} = \left(0, \frac{10}{29}, \frac{4}{29}\right)$$

$$\vec{v}_{3} = (3, 1, 3)$$

$$\vec{v}_{3} = \vec{e}_{3} - \langle \vec{e}_{3}, \vec{v}_{1} \rangle \vec{v}_{1} - \langle \vec{e}_{3}, \vec{v}_{2} \rangle \vec{v}_{2} = (3, 0, 0)$$

$$\vec{v}_{3} = \frac{1}{\|\vec{u}_{3}\|} \vec{u}_{3} = \frac{1}{1} (1, 0, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{29}}(0, 2, -5), \frac{1}{\sqrt{29}}(0, 5, 2), (1, 0, 0)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 18. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (-1, -1, 0)$$

$$\vec{e}_2 = (0, 2, -2)$$

$$\vec{e}_3 = (1, -2, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (1, -1, -1)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{2}} (-1, -1, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{6}} (-1, 1, -2)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{3}} (1, -1, -1)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(-1, -1, 0), \frac{1}{\sqrt{6}}(-1, 1, -2), \frac{1}{\sqrt{3}}(1, -1, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 19. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 $\leftarrow \text{page 2}$

$$\vec{e}_1 = (-1, -1, -1)$$

$$\vec{e}_2 = (1, 1, -1)$$

$$\vec{e}_3 = (1, 5, 2)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{3}} (-1, -1, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{6}} (1, 1, -2)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (-2, 2, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (-1, 1, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{3}}(-1, -1, -1), \frac{1}{\sqrt{6}}(1, 1, -2), \frac{1}{\sqrt{2}}(-1, 1, 0)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 20. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 2

$$\vec{e}_1 = (0, 1, 0)$$

$$\vec{e}_2 = (2, -1, 1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (2, 0, 1)$$

$$\vec{v}_3 = (-1, 20, -2)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{3}{5}, 0, -\frac{6}{5}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{5}} (1, 0, -2)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left((0, 1, 0), \frac{1}{\sqrt{5}} (2, 0, 1), \frac{1}{\sqrt{5}} (1, 0, -2) \right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 21. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 2

$$\vec{e}_{1} = (1, 2, 4)$$

$$\vec{e}_{2} = (-1, -1, 0)$$

$$\vec{u}_{2} = \vec{e}_{2} - \langle \vec{e}_{2}, \vec{v}_{1} \rangle \vec{v}_{1} = \left(-\frac{6}{7}, -\frac{5}{7}, \frac{4}{7}\right)$$

$$\vec{v}_{3} = (-1, 1, 0)$$

$$\vec{v}_{3} = \vec{e}_{3} - \langle \vec{e}_{3}, \vec{v}_{1} \rangle \vec{v}_{1} - \langle \vec{e}_{3}, \vec{v}_{2} \rangle \vec{v}_{2} = \left(-\frac{32}{33}, \frac{32}{33}, -\frac{8}{33}\right)$$

$$\vec{v}_{3} = \frac{1}{\|\vec{u}_{3}\|} \vec{u}_{3} = \frac{1}{\sqrt{33}} (-4, 4, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{21}}(1, 2, 4), \frac{1}{\sqrt{77}}(-6, -5, 4), \frac{1}{\sqrt{33}}(-4, 4, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 22. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

$$\vec{e}_{1} = (1, 0, 2)$$

$$\vec{e}_{2} = (0, -1, -4)$$

$$\vec{u}_{2} = \vec{e}_{2} - \langle \vec{e}_{2}, \vec{v}_{1} \rangle \vec{v}_{1} = \left(\frac{8}{5}, -1, -\frac{4}{5}\right)$$

$$\vec{e}_{3} = (1, 0, -14)$$

$$\vec{u}_{3} = \vec{e}_{3} - \langle \vec{e}_{3}, \vec{v}_{1} \rangle \vec{v}_{1} - \langle \vec{e}_{3}, \vec{v}_{2} \rangle \vec{v}_{2} = \left(\frac{32}{21}, \frac{64}{21}, -\frac{16}{21}\right)$$

$$\vec{v}_{3} = \frac{1}{\|\vec{u}_{3}\|} \vec{u}_{3} = \frac{1}{\sqrt{21}} (2, 4, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{5}}(1, 0, 2), \frac{\sqrt{5}}{\sqrt{21}}\left(\frac{8}{5}, -1, -\frac{4}{5}\right), \frac{1}{\sqrt{21}}(2, 4, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 23. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 2

$$\vec{e}_1 = (0, -2, 14)$$

$$\vec{e}_2 = (1, 0, -17)$$

$$\vec{e}_3 = (-1, 1, 2)$$

$$\vec{e}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{136}{339}, -\frac{56}{339}, -\frac{8}{339} \right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{5\sqrt{2}} (0, -1, 7)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\frac{1}{5}\sqrt{\frac{339}{2}}} \left(1, -\frac{119}{50}, -\frac{17}{50} \right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{339}} (-17, -7, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{5\sqrt{2}}(0, -1, 7), \frac{5\sqrt{2}}{\sqrt{339}}\left(1, -\frac{119}{50}, -\frac{17}{50}\right), \frac{1}{\sqrt{339}}(-17, -7, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 24. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 2

$$\vec{e}_1 = (-1, -1, 1)$$

$$\vec{e}_2 = (0, 1, 1)$$

$$\vec{e}_3 = (4, -3, -2)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(3, -\frac{3}{2}, \frac{3}{2}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{3}} (-1, -1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{2}} (0, 1, 1)$$

$$\vec{e}_3 = (4, -3, -2)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(3, -\frac{3}{2}, \frac{3}{2}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{6}} (2, -1, 1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{3}}(-1, -1, 1), \frac{1}{\sqrt{2}}(0, 1, 1), \frac{1}{\sqrt{6}}(2, -1, 1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 25. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (0, -3, -1)$$

$$\vec{e}_2 = (1, -2, 0)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(1, -\frac{1}{5}, \frac{3}{5}\right)$$

$$\vec{e}_3 = (1, -1, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{1}{7}, \frac{1}{14}, -\frac{3}{14}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{10}} (0, -3, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{\frac{7}{5}}} \left(1, -\frac{1}{5}, \frac{3}{5}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{14}} (2, 1, -3)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{10}}(0, -3, -1), \frac{\sqrt{5}}{\sqrt{7}}\left(1, -\frac{1}{5}, \frac{3}{5}\right), \frac{1}{\sqrt{14}}(2, 1, -3)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 26. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 2

$$\vec{e}_1 = (1, 1, 1)$$

$$\vec{e}_2 = (2, 3, 1)$$

$$\vec{e}_3 = (-2, 1, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{5}{3}, \frac{5}{6}, \frac{5}{6}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{3}} (1, 1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{2}} (0, 1, -1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{6}} (-2, 1, 1)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{3}}(1, 1, 1), \frac{1}{\sqrt{2}}(0, 1, -1), \frac{1}{\sqrt{6}}(-2, 1, 1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 27. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 2

$$\vec{e}_1 = (5, 7, 0)$$

$$\vec{e}_2 = (1, 0, -2)$$

$$\vec{e}_3 = (0, 1, 1)$$

$$\vec{e}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{14}{115}, \frac{2}{23}, -\frac{7}{115}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{74}} (5, 7, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{25530}} (49, -35, -148)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{14}{115}, \frac{2}{23}, -\frac{7}{115}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{345}} (-14, 10, -7)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{74}}(5, 7, 0), \frac{1}{\sqrt{25530}}(49, -35, -148), \frac{1}{\sqrt{345}}(-14, 10, -7)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 28. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 2

$$\vec{e}_1 = (0, 0, -1)$$

$$\vec{e}_2 = (2, 1, 7)$$

$$\vec{v}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (2, 1, 0)$$

$$\vec{v}_3 = (-1, -2, -1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{3}{5}, -\frac{6}{5}, 0\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{5}} (1, -2, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left((0, 0, -1), \frac{1}{\sqrt{5}} (2, 1, 0), \frac{1}{\sqrt{5}} (1, -2, 0) \right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 29. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

$$\vec{e}_1 = (-2, -1, -1)$$

$$\vec{e}_2 = (1, 0, -1)$$

$$\vec{e}_3 = (1, -4, 1)$$

$$\vec{e}_1 = (-2, -1, -1)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{6}} (-2, -1, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{66}} (4, -1, -7)$$

$$\vec{v}_3 = (1, -4, 1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{14}{11}, -\frac{42}{11}, \frac{14}{11}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{11}} (1, -3, 1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{6}}(-2, -1, -1), \frac{1}{\sqrt{66}}(4, -1, -7), \frac{1}{\sqrt{11}}(1, -3, 1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 30. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 3

$$\vec{e}_1 = (-2, 2, -1)$$

$$\vec{e}_2 = (2, 0, 0)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{10}{9}, \frac{8}{9}, -\frac{4}{9}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{3} (-2, 2, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{5}} (5, 4, -2)$$

$$\vec{e}_3 = (1, 0, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(0, -\frac{2}{5}, -\frac{4}{5}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{5}} (0, -1, -2)$$

D'après l'algorithme de Gram-Schmidt, la famille

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{3}(-2, 2, -1), \frac{1}{3\sqrt{5}}(5, 4, -2), \frac{1}{\sqrt{5}}(0, -1, -2)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 31. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 3

$$\vec{e}_1 = (0, 0, 1)$$

$$\vec{e}_2 = (-5, 1, 0)$$

$$\vec{e}_3 = (-2, -1, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{7}{26}, -\frac{35}{26}, 0 \right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{1} (0, 0, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{26}} (-5, 1, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{26}} (-1, -5, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left((0, 0, 1), \frac{1}{\sqrt{26}} (-5, 1, 0), \frac{1}{\sqrt{26}} (-1, -5, 0) \right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 32. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (-2, -1, -2)$$

$$\vec{e}_2 = (0, -1, 1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(-\frac{2}{9}, -\frac{10}{9}, \frac{7}{9}\right)$$

$$\vec{v}_3 = (1, 0, 0)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{9}{17}, -\frac{6}{17}, -\frac{6}{17}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{17}} (3, -2, -2)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{3}(-2, -1, -2), \frac{1}{3\sqrt{17}}(-2, -10, 7), \frac{1}{\sqrt{17}}(3, -2, -2)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 33. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 3

$$\vec{e}_1 = (-3, -2, 1)$$

$$\vec{e}_2 = (3, 1, -1)$$

$$\vec{e}_3 = (2, -1, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{1}{5}, 0, \frac{3}{5}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{14}} (-3, -2, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{35}} (3, -5, -1)$$

$$\vec{v}_3 = (2, -1, 0)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{1}{5}, 0, \frac{3}{5}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{10}} (1, 0, 3)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{14}} \left(-3, -2, 1\right), \frac{1}{\sqrt{35}} \left(3, -5, -1\right), \frac{1}{\sqrt{10}} \left(1, 0, 3\right)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 34. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 3

$$\vec{e}_1 = (1, -2, 3)$$

$$\vec{e}_2 = (-1, -1, -1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(-\frac{6}{7}, -\frac{9}{7}, -\frac{4}{7}\right)$$

$$\vec{v}_3 = (2, -1, 3)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{15}{38}, -\frac{3}{19}, -\frac{9}{38}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{38}} (5, -2, -3)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{14}} (1, -2, 3), \frac{1}{\sqrt{133}} (-6, -9, -4), \frac{1}{\sqrt{38}} (5, -2, -3)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 35. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 3

$$\vec{e}_1 = (-3, -1, 0)$$

$$\vec{e}_2 = (-2, 2, 1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(-\frac{4}{5}, \frac{12}{5}, 1\right)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{\frac{37}{5}}} \left(-\frac{4}{5}, \frac{12}{5}, 1\right)$$

$$\vec{e}_3 = (-1, 3, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{5}{37}, \frac{15}{37}, -\frac{40}{37}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{74}} (-1, 3, -8)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{10}}(-3, -1, 0), \frac{\sqrt{5}}{\sqrt{37}}\left(-\frac{4}{5}, \frac{12}{5}, 1\right), \frac{1}{\sqrt{74}}(-1, 3, -8)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 36. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

 $\leftarrow \text{page } 3$

$$\vec{e}_1 = (1, 1, 3)$$

$$\vec{e}_2 = (0, 0, -1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{3}{11}, \frac{3}{11}, -\frac{2}{11}\right)$$

$$\vec{v}_2 = \left(\frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{11}} (1, 1, 3)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{22}} (3, 3, -2)$$

$$\vec{e}_3 = (-4, -1, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{3}{2}, \frac{3}{2}, 0\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (-1, 1, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{11}}(1, 1, 3), \frac{1}{\sqrt{22}}(3, 3, -2), \frac{1}{\sqrt{2}}(-1, 1, 0)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 37. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 3

$$\vec{e}_1 = (0, 0, -3)$$

$$\vec{e}_2 = (1, -2, -2)$$

$$\vec{e}_3 = (1, 2, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{8}{5}, \frac{4}{5}, 0\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{1} (0, 0, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{5}} (1, -2, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{5}} (2, 1, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left((0, 0, -1), \frac{1}{\sqrt{5}} (1, -2, 0), \frac{1}{\sqrt{5}} (2, 1, 0) \right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 38. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 3

$$\vec{e}_1 = (0, 1, 1)$$

$$\vec{e}_2 = (1, -1, 4)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{2}} (0, 1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{\frac{3}{2}}} (1, -\frac{5}{2}, \frac{5}{2})$$

$$\vec{e}_3 = (0, 2, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (\frac{10}{27}, \frac{2}{27}, -\frac{2}{27})$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{3\sqrt{3}} (5, 1, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(0, 1, 1), \frac{\sqrt{2}}{3\sqrt{3}}\left(1, -\frac{5}{2}, \frac{5}{2}\right), \frac{1}{3\sqrt{3}}(5, 1, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 39. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (-2, 1, 3)$$

$$\vec{e}_2 = (1, 0, 1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{8}{7}, -\frac{1}{14}, \frac{11}{14}\right)$$

$$\vec{e}_3 = (1, 1, -2)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{8}{27}, \frac{40}{27}, -\frac{8}{27}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{u}_2\|} \vec{e}_1 = \frac{1}{\sqrt{14}} (-2, 1, 3)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{42}} (16, -1, 11)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{3\sqrt{3}} (1, 5, -1)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{14}} \left(-2, 1, 3\right), \frac{1}{3\sqrt{42}} \left(16, -1, 11\right), \frac{1}{3\sqrt{3}} \left(1, 5, -1\right)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 40. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 3

$$\vec{e}_1 = (1, -2, 0)$$

$$\vec{e}_2 = (19, -1, 1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{74}{5}, \frac{37}{5}, 1\right)$$

$$\vec{e}_3 = (-1, 1, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{1}{687}, -\frac{1}{1374}, \frac{37}{1374}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{1374}} \left(-2, -1, 37\right)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{5}} (1, -2, 0), \frac{\sqrt{5}}{\sqrt{1374}} \left(\frac{74}{5}, \frac{37}{5}, 1\right), \frac{1}{\sqrt{1374}} (-2, -1, 37)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 41. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 3

$$\vec{e}_1 = (0, 4, -1)$$

$$\vec{e}_2 = (0, 2, 0)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(0, \frac{2}{17}, \frac{8}{17}\right)$$

$$\vec{v}_3 = (-4, -1, -4)$$

$$\vec{v}_4 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{17}} (0, 4, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{17}} (0, 1, 4)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (-4, 0, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{1} (-1, 0, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{17}}(0, 4, -1), \frac{1}{\sqrt{17}}(0, 1, 4), (-1, 0, 0)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 42. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 3

$$\vec{e}_1 = (4, 3, 3)$$

$$\vec{e}_2 = (8, 1, -1)$$

$$\vec{e}_3 = (1, 0, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{21}{305}, \frac{98}{305}, -\frac{14}{61} \right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{34}} (4, 3, 3)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{10370}} (72, -31, -65)$$

$$\vec{v}_3 = (1, 0, -1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{21}{305}, \frac{98}{305}, -\frac{14}{61} \right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{305}} (-3, 14, -10)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{34}}(4, 3, 3), \frac{1}{\sqrt{10370}}(72, -31, -65), \frac{1}{\sqrt{305}}(-3, 14, -10)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 43. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

 $\leftarrow \text{page } 3$

$$\vec{e}_1 = (0, -1, 1)$$

$$\vec{e}_2 = (-11, -4, -4)$$

$$\vec{e}_3 = (2, -1, 1)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{2}} (0, -1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{17}} (-11, -4, -4)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{64}{153}, -\frac{88}{153}, -\frac{88}{153}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{3\sqrt{34}} (8, -11, -11)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(0, -1, 1), \frac{1}{3\sqrt{17}}(-11, -4, -4), \frac{1}{3\sqrt{34}}(8, -11, -11)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 44. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 3

$$\vec{e}_1 = (-5, 0, -1)$$

$$\vec{e}_2 = (-1, 1, -1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{2}{13}, 1, -\frac{10}{13}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{26}} (-5, 0, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{\frac{21}{13}}} \left(\frac{2}{13}, 1, -\frac{10}{13}\right)$$

$$\vec{e}_3 = (-1, 0, 3)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{8}{21}, \frac{32}{21}, \frac{40}{21}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{42}} (-1, 4, 5)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{26}} \left(-5, 0, -1\right), \frac{\sqrt{13}}{\sqrt{21}} \left(\frac{2}{13}, 1, -\frac{10}{13}\right), \frac{1}{\sqrt{42}} \left(-1, 4, 5\right)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 45. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 4

$$\vec{e}_1 = (-1, 0, -3)$$

$$\vec{e}_2 = (-1, 1, -1)$$

$$\vec{e}_3 = (10, -8, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{39}{14}, \frac{13}{7}, -\frac{13}{14}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{10}} (-1, 0, -3)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{\frac{7}{5}}} \left(-\frac{3}{5}, 1, \frac{1}{5}\right)$$

$$\vec{v}_3 = (10, -8, 1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{39}{14}, \frac{13}{7}, -\frac{13}{14}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{14}} (3, 2, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{10}} \left(-1, 0, -3\right), \frac{\sqrt{5}}{\sqrt{7}} \left(-\frac{3}{5}, 1, \frac{1}{5}\right), \frac{1}{\sqrt{14}} \left(3, 2, -1\right)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 46. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (6, 1, -1)$$

$$\vec{e}_2 = (-7, -1, 1)$$

$$\vec{e}_3 = (0, -2, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (0, -1, -1)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{38}} (6, 1, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{19}} (-1, 3, -3)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (0, -1, -1)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{38}}(6, 1, -1), \frac{1}{\sqrt{19}}(-1, 3, -3), \frac{1}{\sqrt{2}}(0, -1, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 47. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 4

$$\vec{e}_1 = (-2, 1, 0)$$

$$\vec{e}_2 = (-15, 0, 0)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (-3, -6, 0)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{5}} (-2, 1, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{5}} (-1, -2, 0)$$

$$\vec{e}_3 = (-105, 1, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (0, 0, 1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{1} (0, 0, 1)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{5}}(-2, 1, 0), \frac{1}{\sqrt{5}}(-1, -2, 0), (0, 0, 1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 48. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 4

$$\vec{e}_1 = (1, -1, 0)$$

$$\vec{e}_2 = (-1, 1, 1)$$

$$\vec{e}_3 = (1, 2, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{3}{2}, \frac{3}{2}, 0\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{2}} (1, -1, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{1} (0, 0, 1)$$

$$\vec{v}_3 = (1, 2, -1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{3}{2}, \frac{3}{2}, 0\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (1, 1, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(1, -1, 0), (0, 0, 1), \frac{1}{\sqrt{2}}(1, 1, 0)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 49. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 4

$$\vec{e}_1 = (-1, 2, -2)$$

$$\vec{e}_2 = (0, 1, -4)$$

$$\vec{e}_3 = (-1, 1, -1)$$

$$\vec{e}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{18}{53}, -\frac{12}{53}, -\frac{3}{53}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{3} (-1, 2, -2)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{53}} (10, -11, -16)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{18}{53}, -\frac{12}{53}, -\frac{3}{53}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{53}} (-6, -4, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{3}(-1, 2, -2), \frac{1}{3\sqrt{53}}(10, -11, -16), \frac{1}{\sqrt{53}}(-6, -4, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 50. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

$$\vec{e}_1 = (0, -1, 0)$$

$$\vec{e}_2 = (-1, 11, 2)$$

$$\vec{e}_3 = (2, -1, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (2, 0, 1)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{1} (0, -1, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{5}} (-1, 0, 2)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{5}} (2, 0, 1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left((0, -1, 0), \frac{1}{\sqrt{5}} (-1, 0, 2), \frac{1}{\sqrt{5}} (2, 0, 1) \right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 51. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 4

$$\vec{e}_1 = (1, -11, 0)$$

$$\vec{e}_2 = (0, 5, 0)$$

$$\vec{e}_3 = (3, 1, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (0, 0, -1)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{122}} (1, -11, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{122}} (11, 1, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{1} (0, 0, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{122}}(1, -11, 0), \frac{1}{\sqrt{122}}(11, 1, 0), (0, 0, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 52. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 4

$$\vec{e}_1 = (-1, -1, 1)$$

$$\vec{e}_2 = (1, 2, -3)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (-1, 0, -1)$$

$$\vec{e}_3 = (2, 1, 4)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{2}{3}, \frac{4}{3}, \frac{2}{3}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{3}} (-1, -1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{2}} (-1, 0, -1)$$

$$\vec{v}_3 = (-1, 2, 1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{3}}(-1, -1, 1), \frac{1}{\sqrt{2}}(-1, 0, -1), \frac{1}{\sqrt{6}}(-1, 2, 1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 53. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (-1, 4, 0)$$

$$\vec{e}_2 = (2, 2, 1)$$

$$\vec{e}_3 = (0, 2, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{32}{117}, -\frac{8}{117}, \frac{80}{117}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{3\sqrt{13}} \left(\frac{40}{17}, \frac{10}{17}, 1\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{3\sqrt{13}} \left(-4, -1, 10\right)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{17}} \left(-1, 4, 0\right), \frac{\sqrt{17}}{3\sqrt{13}} \left(\frac{40}{17}, \frac{10}{17}, 1\right), \frac{1}{3\sqrt{13}} \left(-4, -1, 10\right)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 54. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 4

$$\vec{e}_1 = (2, -2, 0)$$

$$\vec{e}_2 = (18, -26, 1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (-4, -4, 1)$$

$$\vec{e}_3 = (-1, 2, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{7}{66}, -\frac{7}{66}, -\frac{28}{33}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{66}} (-1, -1, -8)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(1, -1, 0), \frac{1}{\sqrt{33}}(-4, -4, 1), \frac{1}{\sqrt{66}}(-1, -1, -8)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 55. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 4

$$\vec{e}_1 = (0, 1, 0)$$

$$\vec{e}_2 = (3, -10, -1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (3, 0, -1)$$

$$\vec{v}_3 = (2, -1, 0)$$

$$\vec{v}_4 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{1} (0, 1, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{10}} (3, 0, -1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{1}{5}, 0, \frac{3}{5}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{10}} (1, 0, 3)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left((0, 1, 0), \frac{1}{\sqrt{10}} (3, 0, -1), \frac{1}{\sqrt{10}} (1, 0, 3) \right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 56. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 4

$$\vec{e}_1 = (-3, 1, 1)$$

$$\vec{e}_2 = (0, 3, -1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{6}{11}, \frac{31}{11}, -\frac{13}{11}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{11}} (-3, 1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{1166}} (6, 31, -13)$$

$$\vec{e}_3 = (-1, -1, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{4}{53}, \frac{3}{53}, \frac{9}{53}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{106}} (4, 3, 9)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{11}}(-3, 1, 1), \frac{1}{\sqrt{1166}}(6, 31, -13), \frac{1}{\sqrt{106}}(4, 3, 9)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 57. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

$$\vec{e}_1 = (0, 2, 0)$$

$$\vec{e}_2 = (3, -1, -1)$$

$$\vec{e}_3 = (1, 1, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{1}{5}, 0, -\frac{3}{5} \right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{1} (0, 1, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{10}} (3, 0, -1)$$

$$\vec{e}_3 = (1, 1, -1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{1}{5}, 0, -\frac{3}{5} \right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{10}} (-1, 0, -3)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left((0, 1, 0), \frac{1}{\sqrt{10}} (3, 0, -1), \frac{1}{\sqrt{10}} (-1, 0, -3) \right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 58. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 4

$$\vec{e}_1 = (0, -1, 0) \qquad \qquad \vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{1} (0, -1, 0)$$

$$\vec{e}_2 = (-7, -1, 0) \qquad \vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (-7, 0, 0) \qquad \qquad \vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{1} (-1, 0, 0)$$

$$\vec{e}_3 = (1, -2, -1) \qquad \vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (0, 0, -1) \qquad \vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{1} (0, 0, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = ((0, -1, 0), (-1, 0, 0), (0, 0, -1))$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 59. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 4

$$\vec{e}_1 = (-1, 0, -1)$$

$$\vec{e}_2 = (-2, -1, -3)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (\frac{1}{2}, -1, -\frac{1}{2})$$

$$\vec{v}_3 = (1, 1, -1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (1, 1, -1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{3}} (1, 1, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(-1, 0, -1), \frac{\sqrt{2}}{\sqrt{3}}\left(\frac{1}{2}, -1, -\frac{1}{2}\right), \frac{1}{\sqrt{3}}(1, 1, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 60. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (-1, 0, 0)$$

$$\vec{e}_2 = (2, 1, -1)$$

$$\vec{e}_3 = (3, 0, 3)$$

$$\vec{u}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{1} (-1, 0, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{2}} (0, 1, -1)$$

$$\vec{v}_3 = (3, 0, 3)$$

$$\vec{v}_4 = \frac{1}{\|\vec{v}_4\|} \vec{v}_2 = \frac{1}{\sqrt{2}} (0, 1, -1)$$

$$\vec{v}_5 = \frac{1}{\|\vec{v}_5\|} \vec{v}_5 = \frac{1}{\|\vec{v}_5\|}$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left((-1, 0, 0), \frac{1}{\sqrt{2}} (0, 1, -1), \frac{1}{\sqrt{2}} (0, 1, 1) \right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 61. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 5

$$\vec{e}_{1} = (6, 0, 1)$$

$$\vec{e}_{2} = (-2, -3, 0)$$

$$\vec{u}_{2} = \vec{e}_{2} - \langle \vec{e}_{2}, \vec{v}_{1} \rangle \vec{v}_{1} = \left(-\frac{2}{37}, -3, \frac{12}{37}\right)$$

$$\vec{e}_{3} = (-3, 1, 0)$$

$$\vec{u}_{3} = \vec{e}_{3} - \langle \vec{e}_{3}, \vec{v}_{1} \rangle \vec{v}_{1} - \langle \vec{e}_{3}, \vec{v}_{2} \rangle \vec{v}_{2} = \left(-\frac{33}{337}, \frac{22}{337}, \frac{198}{337}\right)$$

$$\vec{v}_{3} = \frac{1}{\|\vec{u}_{3}\|} \vec{u}_{3} = \frac{1}{\sqrt{337}} (-3, 2, 18)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{37}}(6, 0, 1), \frac{1}{\sqrt{12469}}(-2, -111, 12), \frac{1}{\sqrt{337}}(-3, 2, 18)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 62. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 5

$$\vec{e}_1 = (1, -2, 1)$$

$$\vec{e}_2 = (-1, 0, -1)$$

$$\vec{e}_3 = (0, 1, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{1}{2}, 0, -\frac{1}{2}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{6}} (1, -2, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{3}} (-1, -1, -1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{1}{2}, 0, -\frac{1}{2}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (1, 0, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{6}} (1, -2, 1), \frac{1}{\sqrt{3}} (-1, -1, -1), \frac{1}{\sqrt{2}} (1, 0, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 63. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 5

$$\vec{e}_1 = (-1, -1, 1)$$

$$\vec{e}_2 = (1, 0, -1)$$

$$\vec{e}_3 = (-1, -1, -3)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (-2, 0, -2)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{3}} (-1, -1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{6}} (1, -2, -1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (-1, 0, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{3}}(-1, -1, 1), \frac{1}{\sqrt{6}}(1, -2, -1), \frac{1}{\sqrt{2}}(-1, 0, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 64. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

 $\leftarrow \text{page 5}$

$$\vec{e}_1 = (-1, -2, 0)$$

$$\vec{e}_2 = (-5, 1, 0)$$

$$\vec{e}_3 = (2, 7, 1)$$

$$\vec{e}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (0, 0, 1)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{5}} (-1, -2, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{5}} (-2, 1, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{1} (0, 0, 1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{5}}(-1, -2, 0), \frac{1}{\sqrt{5}}(-2, 1, 0), (0, 0, 1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 65. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 5

$$\vec{e}_1 = (-3, -4, 0)$$

$$\vec{e}_2 = (1, 0, -1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{16}{25}, -\frac{12}{25}, -1\right)$$

$$\vec{v}_3 = (2, 1, 0)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{20}{41}, -\frac{15}{41}, \frac{20}{41}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{41}} (4, -3, 4)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{5}(-3, -4, 0), \frac{1}{5\sqrt{41}}(16, -12, -25), \frac{1}{\sqrt{41}}(4, -3, 4)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 66. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 5

$$\vec{e}_1 = (5, -2, 1)$$

$$\vec{e}_2 = (1, 1, 1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{1}{3}, \frac{19}{15}, \frac{13}{15}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{30}} (5, -2, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{555}} (5, 19, 13)$$

$$\vec{e}_3 = (-1, 0, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{6}{37}, \frac{8}{37}, -\frac{14}{37}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{74}} (3, 4, -7)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{30}}(5, -2, 1), \frac{1}{\sqrt{555}}(5, 19, 13), \frac{1}{\sqrt{74}}(3, 4, -7)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 67. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (0, 0, 2)$$

$$\vec{e}_2 = (-1, 0, -2)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (-1, 0, 0)$$

$$\vec{e}_3 = (-2, -1, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (0, -1, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{1} (0, 0, 1)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = ((0, 0, 1), (-1, 0, 0), (0, -1, 0))$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 68. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 5

$$\vec{e}_1 = (-1, 0, -3)$$

$$\vec{e}_2 = (-1, 1, 1)$$

$$\vec{e}_3 = (2, 1, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{27}{26}, \frac{18}{13}, -\frac{9}{26}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{10}} (-1, 0, -3)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{\frac{13}{5}}} \left(-\frac{6}{5}, 1, \frac{2}{5}\right)$$

$$\vec{v}_3 = (2, 1, 1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{27}{26}, \frac{18}{13}, -\frac{9}{26}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{26}} (3, 4, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{10}} \left(-1, 0, -3\right), \frac{\sqrt{5}}{\sqrt{13}} \left(-\frac{6}{5}, 1, \frac{2}{5}\right), \frac{1}{\sqrt{26}} \left(3, 4, -1\right)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 69. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 5

$$\vec{e}_1 = (1, 1, -1)$$

$$\vec{e}_2 = (2, 1, -1)$$

$$\vec{e}_3 = (1, 0, 2)$$

$$\vec{u}_1 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{2}{3}, -\frac{1}{3}, \frac{1}{3}\right)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{6}} (2, -1, 1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (0, 1, 1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{3}}(1, 1, -1), \frac{1}{\sqrt{6}}(2, -1, 1), \frac{1}{\sqrt{2}}(0, 1, 1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 70. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 5

$$\vec{e}_1 = (1, -2, 2)$$

$$\vec{e}_2 = (1, -1, -1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{8}{9}, -\frac{7}{9}, -\frac{11}{9}\right)$$

$$\vec{v}_3 = (-1, -1, -2)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{18}{13}, -\frac{27}{26}, -\frac{9}{26}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{26}} (-4, -3, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{3}(1, -2, 2), \frac{1}{3\sqrt{26}}(8, -7, -11), \frac{1}{\sqrt{26}}(-4, -3, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 71. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

 $\leftarrow \text{page 5}$

$$\vec{e}_{1} = (1, 0, 2)$$

$$\vec{e}_{2} = (3, -1, 0)$$

$$\vec{u}_{2} = \vec{e}_{2} - \langle \vec{e}_{2}, \vec{v}_{1} \rangle \vec{v}_{1} = \left(\frac{12}{5}, -1, -\frac{6}{5}\right)$$

$$\vec{v}_{3} = (-1, 1, 3)$$

$$\vec{v}_{3} = \vec{e}_{3} - \langle \vec{e}_{3}, \vec{v}_{1} \rangle \vec{v}_{1} - \langle \vec{e}_{3}, \vec{v}_{2} \rangle \vec{v}_{2} = \left(\frac{2}{41}, \frac{6}{41}, -\frac{1}{41}\right)$$

$$\vec{v}_{3} = \frac{1}{\|\vec{u}_{3}\|} \vec{u}_{3} = \frac{1}{\sqrt{41}} (2, 6, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{5}} (1, 0, 2), \frac{\sqrt{5}}{\sqrt{41}} \left(\frac{12}{5}, -1, -\frac{6}{5}\right), \frac{1}{\sqrt{41}} (2, 6, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 72. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 5

$$\vec{e}_1 = (0, -3, 1)$$

$$\vec{e}_2 = (0, -1, -1)$$

$$\vec{e}_3 = (1, -1, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (1, 0, 0)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{10}} (0, -3, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{10}} (0, -1, -3)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{1} (1, 0, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{10}}(0, -3, 1), \frac{1}{\sqrt{10}}(0, -1, -3), (1, 0, 0)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 73. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 5

$$\vec{e}_1 = (0, -2, 2)$$

$$\vec{e}_2 = (2, 0, -2)$$

$$\vec{e}_3 = (0, -1, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{2}{3}, -\frac{2}{3}, -\frac{2}{3}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{2}} (0, -1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{6}} (2, -1, -1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{v}_2\|} \vec{u}_3 = \frac{1}{\sqrt{3}} (-1, -1, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(0, -1, 1), \frac{1}{\sqrt{6}}(2, -1, -1), \frac{1}{\sqrt{3}}(-1, -1, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 74. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 $\leftarrow \text{page 5}$

$$\vec{e}_1 = (0, -1, 3)$$

$$\vec{e}_2 = (-2, 2, 7)$$

$$\vec{e}_3 = (-1, -1, 3)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{169}{209}, -\frac{78}{209}, -\frac{26}{209}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{10}} (0, -1, 3)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{2090}} (-20, 39, 13)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{209}} (-13, -6, -2)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{10}}(0, -1, 3), \frac{1}{\sqrt{2090}}(-20, 39, 13), \frac{1}{\sqrt{209}}(-13, -6, -2)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 75. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 6

$$\vec{e}_1 = (2, -1, 0)$$

$$\vec{e}_2 = (-2, 0, 1)$$

$$\vec{e}_3 = (0, 1, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{2}{9}, \frac{4}{9}, \frac{4}{9}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{5}} (2, -1, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{\frac{1}{5}}} \left(-\frac{2}{5}, -\frac{4}{5}, 1\right)$$

$$\vec{v}_3 = (0, 1, 0)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{2}{9}, \frac{4}{9}, \frac{4}{9}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{3} (1, 2, 2)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{5}}(2, -1, 0), \frac{\sqrt{5}}{3}\left(-\frac{2}{5}, -\frac{4}{5}, 1\right), \frac{1}{3}(1, 2, 2)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 76. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 6

$$\vec{e}_1 = (1, 1, -3)$$

$$\vec{e}_2 = (-2, -2, 1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(-\frac{15}{11}, -\frac{15}{11}, -\frac{10}{11}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{11}} (1, 1, -3)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{22}} (-3, -3, -2)$$

$$\vec{e}_3 = (1, 0, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{1}{2}, -\frac{1}{2}, 0\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (1, -1, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{11}}(1, 1, -3), \frac{1}{\sqrt{22}}(-3, -3, -2), \frac{1}{\sqrt{2}}(1, -1, 0)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 77. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 6

$$\vec{e}_1 = (-1, 1, 0)$$

$$\vec{e}_2 = (-1, -1, -1)$$

$$\vec{e}_3 = (1, -3, -2)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{2}} (-1, 1, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{3}} (-1, -1, -1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{6}} (1, 1, -2)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(-1, 1, 0), \frac{1}{\sqrt{3}}(-1, -1, -1), \frac{1}{\sqrt{6}}(1, 1, -2)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 78. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

 $\leftarrow \text{page } 6$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = ((0, 1, 0), (0, 0, 1), (-1, 0, 0))$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 79. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

← page 6

$$\vec{e}_1 = (1, 1, 1)$$

$$\vec{e}_2 = (2, 0, 1)$$

$$\vec{e}_3 = (0, 1, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (\frac{1}{2}, \frac{1}{2}, -1)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{3}} (1, 1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{2}} (1, -1, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{\frac{3}{2}}} (\frac{1}{2}, \frac{1}{2}, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{3}}(1, 1, 1), \frac{1}{\sqrt{2}}(1, -1, 0), \frac{\sqrt{2}}{\sqrt{3}}\left(\frac{1}{2}, \frac{1}{2}, -1\right)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 80. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 6

$$\vec{e}_1 = (0, -1, -1)$$

$$\vec{e}_2 = (1, -2, 3)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (1, -\frac{5}{2}, \frac{5}{2})$$

$$\vec{e}_3 = (2, 1, 5)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (\frac{10}{9}, \frac{2}{9}, -\frac{2}{9})$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{2}} (0, -1, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{\frac{3}{2}}} (1, -\frac{5}{2}, \frac{5}{2})$$

$$\vec{v}_3 = \frac{1}{\|\vec{v}_3\|} \vec{v}_3 = \frac{1}{3\sqrt{3}} (5, 1, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(0, -1, -1), \frac{\sqrt{2}}{3\sqrt{3}}\left(1, -\frac{5}{2}, \frac{5}{2}\right), \frac{1}{3\sqrt{3}}(5, 1, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 81. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (5, 1, 1)$$

$$\vec{e}_2 = (0, -2, 0)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{10}{27}, -\frac{52}{27}, \frac{2}{27}\right)$$

$$\vec{e}_3 = (-1, 2, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{1}{26}, 0, \frac{5}{26}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{3\sqrt{3}} (5, 1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{78}} (5, -26, 1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{26}} (-1, 0, 5)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{3\sqrt{3}}(5, 1, 1), \frac{1}{3\sqrt{78}}(5, -26, 1), \frac{1}{\sqrt{26}}(-1, 0, 5)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 82. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 6

$$\vec{e}_1 = (1, 2, 1)$$

$$\vec{e}_2 = (-1, -2, 2)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(-\frac{1}{2}, -1, \frac{5}{2}\right)$$

$$\vec{e}_3 = (-1, -1, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{2}{5}, \frac{1}{5}, 0\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{6}} (1, 2, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{\frac{15}{2}}} \left(-\frac{1}{2}, -1, \frac{5}{2}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{5}} (-2, 1, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{6}} (1, 2, 1), \frac{\sqrt{2}}{\sqrt{15}} \left(-\frac{1}{2}, -1, \frac{5}{2}\right), \frac{1}{\sqrt{5}} (-2, 1, 0)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 83. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 6

$$\vec{e}_1 = (-2, 1, -4)$$

$$\vec{e}_2 = (-1, -1, -3)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{5}{21}, -\frac{34}{21}, -\frac{11}{21}\right)$$

$$\vec{e}_3 = (-1, -1, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{63}{62}, -\frac{9}{31}, \frac{27}{62}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{62}} (-7, -2, 3)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{21}}(-2, 1, -4), \frac{1}{\sqrt{1302}}(5, -34, -11), \frac{1}{\sqrt{62}}(-7, -2, 3)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 84. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 6

$$\vec{e}_1 = (-3, -1, 0)$$

$$\vec{e}_2 = (1, 1, 6)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(-\frac{1}{5}, \frac{3}{5}, 6\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{10}} (-3, -1, 0)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{910}} (-1, 3, 30)$$

$$\vec{e}_3 = (0, 1, 2)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{3}{13}, \frac{9}{13}, -\frac{1}{13}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{91}} (-3, 9, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{10}} \left(-3, -1, 0\right), \frac{1}{\sqrt{910}} \left(-1, 3, 30\right), \frac{1}{\sqrt{91}} \left(-3, 9, -1\right)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 85. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

 $\leftarrow \text{page } 6$

$$\vec{e}_1 = (0, -4, 3)$$

$$\vec{e}_2 = (1, -2, -14)$$

$$\vec{e}_3 = (0, 1, -3)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{5} (0, -4, 3)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{5\sqrt{3869}} (25, -186, -248)$$

$$\vec{v}_3 = (0, 1, -3)$$

$$\vec{v}_4 = \frac{1}{\|\vec{v}_2\|} \vec{v}_2 = \frac{1}{5\sqrt{3869}} (25, -186, -248)$$

$$\vec{v}_3 = (0, 1, -3)$$

$$\vec{v}_4 = \frac{1}{\|\vec{v}_2\|} \vec{v}_2 = \frac{1}{5\sqrt{3869}} (-62, -3, -4)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{5}(0, -4, 3), \frac{1}{5\sqrt{3869}}(25, -186, -248), \frac{1}{\sqrt{3869}}(-62, -3, -4)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 86. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 6

$$\vec{e}_1 = (-1, -1, 1)$$

$$\vec{e}_2 = (1, 1, -4)$$

$$\vec{e}_3 = (1, 0, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (\frac{1}{2}, -\frac{1}{2}, 0)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{3}} (-1, -1, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{6}} (-1, -1, -2)$$

$$\vec{v}_3 = (1, 0, -1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (\frac{1}{2}, -\frac{1}{2}, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (1, -1, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{3}}(-1, -1, 1), \frac{1}{\sqrt{6}}(-1, -1, -2), \frac{1}{\sqrt{2}}(1, -1, 0)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 87. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 6

$$\vec{e}_1 = (-2, 2, 4)$$

$$\vec{e}_2 = (1, -2, -1)$$

$$\vec{e}_3 = (-1, 0, 2)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{6}} (-1, 1, 2)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{66}} (1, -7, 4)$$

$$\vec{v}_3 = (-1, 0, 2)$$

$$\vec{v}_4 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (-\frac{3}{11}, -\frac{1}{11}, -\frac{1}{11})$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{11}} (-3, -1, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{6}}(-1, 1, 2), \frac{1}{\sqrt{66}}(1, -7, 4), \frac{1}{\sqrt{11}}(-3, -1, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 88. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$\vec{e}_1 = (0, 37, -3)$$

$$\vec{e}_2 = (3, -1, 0)$$

$$\vec{e}_3 = (1, 0, 0)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{1}{1379}, \frac{3}{1379}, \frac{37}{1379}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{1378}} (0, 37, -3)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{1900262}} (1378, -3, -37)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{1379}} (1, 3, 37)$$

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{1378}}(0, 37, -3), \frac{1}{\sqrt{1900262}}(1378, -3, -37), \frac{1}{\sqrt{1379}}(1, 3, 37)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 89. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 6

$$\vec{e}_1 = (1, -1, 3)$$

$$\vec{e}_2 = (1, 1, -1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{14}{11}, \frac{8}{11}, -\frac{2}{11}\right)$$

$$\vec{e}_3 = (-1, -4, 1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (1, -2, -1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{6}} (1, -2, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{11}}(1, -1, 3), \frac{1}{\sqrt{66}}(7, 4, -1), \frac{1}{\sqrt{6}}(1, -2, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 90. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 7

$$\vec{e}_1 = (0, -5, -1)$$

$$\vec{e}_2 = (2, 1, 0)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(2, \frac{1}{26}, -\frac{5}{26}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{26}} (0, -5, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{2730}} (52, 1, -5)$$

$$\vec{e}_3 = (-2, -1, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{2}{21}, \frac{4}{21}, -\frac{20}{21}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{105}} (-1, 2, -10)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{26}} (0, -5, -1), \frac{1}{\sqrt{2730}} (52, 1, -5), \frac{1}{\sqrt{105}} (-1, 2, -10)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 91. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 7

$$\vec{e}_1 = (0, 0, -1)$$

$$\vec{e}_2 = (1, 1, -23)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (1, 1, 0)$$

$$\vec{e}_3 = (-6, 0, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (-3, 3, 0)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (-1, 1, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left((0, 0, -1), \frac{1}{\sqrt{2}} (1, 1, 0), \frac{1}{\sqrt{2}} (-1, 1, 0) \right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 92. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

$$\vec{e}_1 = (-2, -1, 2)$$

$$\vec{e}_2 = (1, 2, -1)$$

$$\vec{e}_3 = (-1, 4, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (-1, 0, -1)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{3} (-2, -1, 2)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{2}} (-1, 4, 1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (-1, 0, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{3}(-2, -1, 2), \frac{1}{3\sqrt{2}}(-1, 4, 1), \frac{1}{\sqrt{2}}(-1, 0, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 93. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 7

$$\vec{e}_1 = (-1, 1, -1)$$

$$\vec{e}_2 = (1, 3, 1)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{4}{3}, \frac{8}{3}, \frac{4}{3}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{3}} (-1, 1, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{6}} (1, 2, 1)$$

$$\vec{e}_3 = (2, -2, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{3}{2}, 0, -\frac{3}{2}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (1, 0, -1)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{3}}(-1, 1, -1), \frac{1}{\sqrt{6}}(1, 2, 1), \frac{1}{\sqrt{2}}(1, 0, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 94. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 7

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = ((0, 1, 0), (0, 0, -1), (-1, 0, 0))$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 95. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{5}}(2, 1, 0), \frac{1}{\sqrt{5}}(-1, 2, 0), (0, 0, 1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 96. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 7

$$\vec{e}_1 = (1, 0, -2)$$

$$\vec{e}_2 = (1, 4, -1)$$

$$\vec{e}_3 = (-1, -1, -1)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{88}{81}, \frac{11}{81}, -\frac{44}{81}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{5}} (1, 0, -2)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{9\sqrt{5}} (2, 20, 1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{9} (-8, 1, -4)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{5}}(1, 0, -2), \frac{1}{9\sqrt{5}}(2, 20, 1), \frac{1}{9}(-8, 1, -4)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 97. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 7

$$\vec{e}_1 = (0, -1, 1)$$

$$\vec{e}_2 = (-1, 0, 0)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = (-1, 0, 0)$$

$$\vec{v}_3 = (0, -9, -2)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (0, -\frac{11}{2}, -\frac{11}{2})$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{\sqrt{2}} (0, -1, 1)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(0, -1, 1), (-1, 0, 0), \frac{1}{\sqrt{2}}(0, -1, -1)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 98. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant:

 \leftarrow page 7

$$\vec{e}_1 = (-2, 0, 1)$$

$$\vec{e}_2 = (3, -1, 4)$$

$$\vec{u}_2 = \vec{e}_2 - \langle \vec{e}_2, \vec{v}_1 \rangle \vec{v}_1 = \left(\frac{11}{5}, -1, \frac{22}{5}\right)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{5}} (-2, 0, 1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{\frac{14}{5}}} \left(\frac{11}{5}, -1, \frac{22}{5}\right)$$

$$\vec{e}_3 = (0, 0, 2)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(\frac{2}{63}, \frac{22}{63}, \frac{4}{63}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{3\sqrt{14}} (1, 11, 2)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{5}}(-2, 0, 1), \frac{\sqrt{5}}{3\sqrt{14}}\left(\frac{11}{5}, -1, \frac{22}{5}\right), \frac{1}{3\sqrt{14}}(1, 11, 2)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 99. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précé-

 $\leftarrow \text{page } 7$

$$\vec{e}_1 = (1, 0, -3)$$

$$\vec{e}_2 = (-4, 0, -2)$$

$$\vec{e}_3 = (0, 1, -2)$$

$$\vec{u}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = (0, 1, 0)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{10}} (1, 0, -3)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{\sqrt{10}} (-3, 0, -1)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{1} (0, 1, 0)$$

D'après l'algorithme de Gram-Schmidt, la famille:

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{10}}(1, 0, -3), \frac{1}{\sqrt{10}}(-3, 0, -1), (0, 1, 0)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

Corrigé 100. On applique l'algorithme, en enlevant à chaque étape les composantes selon les vecteurs précédents (sachant que, on le rappelle, les composantes selon des vecteurs *unitaires* sont données par des produits scalaires), et en divisant par la norme pour que ce soit unitaire. On obtient alors le tableau suivant :

 \leftarrow page 7

$$\vec{e}_1 = (1, 0, -1)$$

$$\vec{e}_2 = (-1, -4, -1)$$

$$\vec{e}_3 = (2, 0, -4)$$

$$\vec{v}_1 = \frac{1}{\|\vec{e}_1\|} \vec{e}_1 = \frac{1}{\sqrt{2}} (1, 0, -1)$$

$$\vec{v}_2 = \frac{1}{\|\vec{u}_2\|} \vec{u}_2 = \frac{1}{3\sqrt{2}} (-1, -4, -1)$$

$$\vec{v}_3 = \vec{e}_3 - \langle \vec{e}_3, \vec{v}_1 \rangle \vec{v}_1 - \langle \vec{e}_3, \vec{v}_2 \rangle \vec{v}_2 = \left(-\frac{8}{9}, \frac{4}{9}, -\frac{8}{9}\right)$$

$$\vec{v}_3 = \frac{1}{\|\vec{u}_3\|} \vec{u}_3 = \frac{1}{3} (-2, 1, -2)$$

D'après l'algorithme de Gram-Schmidt, la famille :

$$(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\frac{1}{\sqrt{2}}(1, 0, -1), \frac{1}{3\sqrt{2}}(-1, -4, -1), \frac{1}{3}(-2, 1, -2)\right)$$

est l'orthonormalisation de la famille $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.