Zobrazování 2D křivek

5. cvičení IZG

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole isvec@fit.vutbr.cz

19.04.2021 Autor: Ing. Tomáš Švec

Invariance k affiním transformacím a projekci

 Rotace řídících bodů nemá vliv na tvar křivky.

Interpolace krajních bodů

 Křivka prochází krajními body.

Konvexní obálka

 Křivka leží v konvexní obálce svých řídících bodů.

Lokalita změn

Základní druhy křivek 1/2

Interpolační křivka

 Křivka přímo prochází body ("proložení"bodů křivkou).

Aproximační křivka

- Neprochází body.
- Tzv. řídící body).

Základní druhy křivek 2/2

Racionální křivka

- Váhové koeficienty w_i řídících bodů.
- Invariantní vůči perspektivní projekci.

Neracionální křivka

- Tvar křivky ovlivňujeme pouze změnou polohy řídících bodů.
- Speciální případ racionální křivky, kdy w_i = 1.
- Nejsou invariantní vůči perspektivní projekci!

Možnosti parametrické spojitosti Cⁿ

- C⁰ totožnost navazujících koncových bodů.
- C¹ totožnost tečných vektorů v navazujících bodech.
- C² totožnost vektorů 2. derivace v navazujících bodech.

 Čím vyšší spojitost, tím déle se oba segmenty k sobě přimykají.

Oslabená podmínka spojitosti (též. *geometrická spojitost G*ⁿ)

- G⁰ totožnost navazujících koncových bodů.
- G¹ tečné vektory v navazujících bodech jsou lineárně závislé.
- G² shoda první křivosti v navazujících bodech.

Beziérovy křivky 1/2

- Aproximační křivky (2D grafika, fonty, šablonování) 1960.
- Polynomiální křivka s použitím Bernsteinových polynomů B_i^n .
- Křivka stupně n určena n + 1 body.
- Prochází koncovými body.

Definice křivky

$$Q(t) = \sum_{i=0}^{n} P_i.B_i^n(t); i = 0, 1, ..., n$$

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}; \ t \in <0,1>$$

Tečné vektory v koncových bodech

$$P'(0) = 3(P_1 - P_0)$$

$$P'(0) = 3(P_1 - P_0)$$

 $P'(1) = 3(P_3 - P_2)$

Beziérovy křivky 2/2

Rekurentní definice Bernsteinových polynomů

$$B_i^n(t) = (1-t).B_i^{n-1}(t) + t.B_{i-1}^{n-1}(t)$$

 Využívá ji algoritmus de Casteljau pro vykreslení křivky (viz. dále).

Další vlastnosti polynomů

- Mají nezápornou hodnotu.
- Mají jednotkový součet křivka leží v konvexní obálce.
- Rekurentní definice.

Beziérovy kubiky

- Beziérova křivka 3. řádu popsaná 4 řídicími body
- Segment, který se dá spojovat s dalšími Beziérovými kubikami

$$Q(t) = P_0 B_0^3(t) + P_1 B_1^3(t) + P_2 B_2^3(t) + P_3 B_3^3(t) = \sum_{i=0}^3 P_i B_i^3(t)$$

$$B_0^3(t) = (1-t)^3$$

$$B_1^3(t) = 3t(1-t)^2$$

$$B_2^3(t) = 3t^2(1-t)$$

$$B_3^3(t) = t^3$$

Obsah cvičení

- Soubor student.cpp
- **Úloha 1** (2b) Výpočet trajektorie pomocí Beziérových kubik
- Úloha 2 (1b) Úprava řídicích bodů pro G1 spojitost křivky

■ Úloha č. 1 – Zakřivení trajektorie

- Ve funkci bezierCubicsTrajectory() získávání řídících bodů a následné volání funkce bezierCubic()
- Ve funkci bezierCubic() výpočet bodů trajektorie za pomocí Beziérovy kubiky ze 4 řídících bodů
- C0/G0 spojitost stačí poslední a první bod následujících kubik stejný

Úloha č. 2 – spojitost trajektorie křivky (G₁)

- Potřeba upravit polohu řídicích bodů ve funkci initControlPointsDown () tak, aby byla zachována spojitost G1 (tečné přímky v bodech)
- Zkopírujte obsah funkce initControlPointsUp() a ručně spočítejte nové souřadnice potřebných bodů

Pomocné funkce – vector.h

- S Vector (vektor prvků Point2d)
 - struct Point2d { double x, y, weight};
- point2d vecGet(pVec, i)
 - získání i-tého prvku z vektoru pVec
- point2d_vecGetPtr(pVec, i)
 - ukazatel na i-tý prvek vektoru pVec
- point2d_vecSize(pVec)
 - vrátí velikost vektoru
- S_Vector* vector = point2d_vecCreateEmpty()
 - vytvoří prázdný vektor pro prvky typu Point2d
- point2d_vecPushBack(pVec, p)
 - vloží na konec vektoru pVec prvek p
- point2d vecSet(pVec, i, p)
 - vloží prvek p do vektoru pVec na index i
- point2d vecRelease(&pVec)
 - zruší kompletně celý vektor pVec už s ním nelze pracovat
- point2d vecClean(pVec)
 - smaže prvky vektoru vektor je prázdný o velikosti 0

Další funkce viz vector.h

Dotazy?