

- 1. R комутативне кільце з одиницею.
- **реф.** Оскільки R є комутативним кільцем з одиницею, нехай $a,b \in R$. Тоді a=b та b=a. Отже, для деякої одиниці $\varepsilon \in R$. $b=a\varepsilon$, а отже і $a=b\varepsilon$
- **сим.** Якщо $b=a\varepsilon$ для деякої одиниці $\varepsilon\in R$, то $a=b\varepsilon^{-1}$ та ε^{-1} одиниця.
- **транз.** Якщо $b=a\varepsilon_1$ та $c=b\varepsilon_2$ для деяких одиниць $\varepsilon_1,\varepsilon_2\in R$, то $c=b\varepsilon_2=a\varepsilon_1\varepsilon_2=aw$, де $w=\varepsilon_1\varepsilon_2$ одиниця.
- 2. $[0] = \{0\}$
 - $[1] = \{1, 5, 7, 11\}$
 - $[2] = \{2, 10\}$
 - $[3] = \{3, 9\}$
 - $[4] = \{4, 8\}$
 - $[6] = \{6\}$
- 3. Нехай $\varphi: G \to H$ гомоморфізм, $K = \ker \varphi$ ядро гомоморфізму. $\forall g \in G, \forall h \in \ker \varphi, \varphi(ghg^{-1}) = \varphi(g)\varphi(h)(\varphi(g))^{-1} = \varphi(g)e_K(\varphi(g))^{-1} = \varphi(g)(\varphi(g))^{-1} = e_K$. Отже $\ker \varphi$ нормальна підгрупа G.
- 4. (3) = $\{0, -3, 3, -6, 6, \dots\}$. В підкільця (3) нема ідеалів, окрім самого ж (3), а отже він головний. (6) = $\{0, -6, 6, -12, 12, \dots\}$. В підкільця (6) є елементи кратні 2 і 3, тобто воно не є головним. Отже (6) не максимальний в \mathbb{Z} . А от в (3) максимальним ідеалом буде (6), так як більше (6) є лише (3) а воно і є самим кільцем.
- 5. Якщо n буде простим (n=p) необоротним буде елмент 0, а він утворює ідеал $\{0\}$. Якщо n буде складеним $(n=kp^{\alpha})$, необоротними будуть елементи, які не взаємно прості з n і вони не будуть обовєязково утворювати ідеал. Якщо n буде степінню просто числа $(n=p^{\alpha})$ необоротними будуть 0 та усі $p^{\alpha-i}$, $i=\overline{0,\alpha-1}$, і вони будуть утворювати ідеал. Отже $n=p^{\alpha},\alpha>0$.