Compressed Membership for NFA (DFA) with Compressed Labels is in NP (P)

ARTUR JEŻ UNIVERSITY OF WROCŁAW

• Fully compressed membership problem for automata

- Fully compressed membership problem for automata
- no automata in this talk

- Fully compressed membership problem for automata
- no automata in this talk
- SPLs and a technique for them

- Fully compressed membership problem for automata
- no automata in this talk
- SPLs and a technique for them
- more general (word equations)

- Fully compressed membership problem for automata
- no automata in this talk
- SPLs and a technique for them
- more general (word equations)

- Fully compressed membership problem for automata
- no automata in this talk
- SPLs and a technique for them
- more general (word equations)

Results

Fully compressed membership problem for NFA (in NP)

- Fully compressed membership problem for automata
- no automata in this talk
- SPLs and a technique for them
- more general (word equations)

- Fully compressed membership problem for NFA (in NP)
- Fully compressed membership problem for DFA (in P)

- Fully compressed membership problem for automata
- no automata in this talk
- SPLs and a technique for them
- more general (word equations)

- Fully compressed membership problem for NFA (in NP)
- Fully compressed membership problem for DFA (in P)
- ullet (SLP) fully compressed pattern matching (in $\mathcal{O}(n^2)$)

- Fully compressed membership problem for automata
- no automata in this talk
- SPLs and a technique for them
- more general (word equations)

- Fully compressed membership problem for NFA (in NP)
- Fully compressed membership problem for DFA (in P)
- (SLP) fully compressed pattern matching (in $\mathcal{O}(n^2)$)
- word equations: simple, unified proof for everything that is known

Definition (Straight Line Programms (SLP))

Context free grammar defining a single word. (Chomsky normal form).

Definition (Straight Line Programms (SLP))

Context free grammar defining a single word. (Chomsky normal form).

Up to exponential compression.

Definition (Straight Line Programms (SLP))

Context free grammar defining a single word. (Chomsky normal form).

Up to exponential compression.

SLPs as a compression model

- application (LZ, logarithmic transformation)
- theory (formal languages)
- preserves/captures word properties

Definition (Straight Line Programms (SLP))

Context free grammar defining a single word. (Chomsky normal form).

Up to exponential compression.

SLPs as a compression model

- application (LZ, logarithmic transformation)
- theory (formal languages)
- preserves/captures word properties

Applied in many proofs and constructions.

Theory

• word equations (Plandowski: satisfiability in PSPACE)

Theory

word equations (Plandowski: satisfiability in PSPACE)

LZW/LZ dealing algorithms

- $\mathcal{O}(n \log(N/n))$ pattern matching for LZ compressed text
- ullet $\mathcal{O}(\textit{n})$ pattern matching for fully LZW compressed text

Theory

word equations (Plandowski: satisfiability in PSPACE)

LZW/LZ dealing algorithms

- $\mathcal{O}(n \log(N/n))$ pattern matching for LZ compressed text
- ullet $\mathcal{O}(n)$ pattern matching for fully LZW compressed text

String algorithms

- equality
- pattern matching

Theory

word equations (Plandowski: satisfiability in PSPACE)

LZW/LZ dealing algorithms

- $\mathcal{O}(n \log(N/n))$ pattern matching for LZ compressed text
- ullet $\mathcal{O}(n)$ pattern matching for fully LZW compressed text

String algorithms

- equality
- pattern matching

Independent interest

• indexing structure for SLP

- SLPs are used
- develop tools/gain understanding
- membership problem

- SLPs are used
- develop tools/gain understanding
- membership problem

Compressed membership [Plandowski & Rytter 1999]

In membership problems, words are given as SLPs.

- SLPs are used
- develop tools/gain understanding
- membership problem

Compressed membership [Plandowski & Rytter 1999]

In membership problems, words are given as SLPs.

Known results

RE, CFG, Conjunctive grammars...

- SLPs are used
- develop tools/gain understanding
- membership problem

Compressed membership [Plandowski & Rytter 1999]

In membership problems, words are given as SLPs.

Known results

RE, CFG, Conjunctive grammars...

Open questions

Compressed membership for NFA

Input: SLP, NFA $\it N$

Output: Yes/No

Input: SLP, NFA *N*Output: Yes/No

Simple dynamic algorithm: for X_i calculate $\{(p,q) \mid \delta(p, val(X_i), q)\}$

Input: SLP, NFA *N*Output: Yes/No

Simple dynamic algorithm: for X_i calculate $\{(p,q) \mid \delta(p,\mathsf{val}(X_i),q)\}$

Where is the hardness?

Input: SLP, NFA *N*Output: Yes/No

Simple dynamic algorithm: for X_i calculate $\{(p,q) \mid \delta(p, val(X_i), q)\}$

Where is the hardness?

Compress N as well: allow transition by words.

Input: SLP, NFA *N* Output: Yes/No

Simple dynamic algorithm: for X_i calculate $\{(p, q) \mid \delta(p, \text{val}(X_i), q)\}$ Where is the hardness?

Compress N as well: allow transition by words.

Fully compressed NFA membership

- SLP for w
- NFA N, compressed transitions

Input: SLP, NFA *N* Output: Yes/No

Simple dynamic algorithm: for X_i calculate $\{(p,q) \mid \delta(p, \text{val}(X_i), q)\}$

Where is the hardness?

Compress N as well: allow transition by words.

Fully compressed NFA membership

- SLP for w
- NFA N, compressed transitions

Compressed membership for NFA: complexity

Complexity

- NP-hardness (subsum), already for
 - acyclic NFA
 - unary alphabet
- in PSPACE: enough to store positions inside decompressed words

Compressed membership for NFA: complexity

Complexity

- NP-hardness (subsum), already for
 - acyclic NFA
 - unary alphabet
- in PSPACE: enough to store positions inside decompressed words

Conjecture

In NP.

Partial results

- Plandowski & Rytter (unary in NP)
- Lohrey & Mathissen (highly periodic in NP, highly aperiodic in P)

New results

Theorem

Fully compressed membership for NFA is in NP.

Theorem

Fully compressed membership for DFA is in P.

Difficulty: the words are long. Shorten them.

Difficulty: the words are long. Shorten them.

abcaal

Difficulty: the words are long. Shorten them.

d cac

Difficulty: the words are long. Shorten them.

d cad

Deeper understanding

New production: $d \rightarrow ab$. Building new SLP (recompression).

SLP problems: hard, as SLP are different. Building canonical SLP for the instance.

Difficulty: the words are long. Shorten them.

d c a d

Deeper understanding

New production: $d \rightarrow ab$. Building new SLP (recompression).

SLP problems: hard, as SLP are different.

Building canonical SLP for the instance.

What to do with a^n ?

aacaaa

Idea: Recompression

Difficulty: the words are long. Shorten them.

d c a d

Deeper understanding

New production: $d \rightarrow ab$. Building new SLP (recompression).

SLP problems: hard, as SLP are different.

Building canonical SLP for the instance.

What to do with a^n ? Replace each maximal a^n by a single symbol.

 a_2 c a_3

Idea: Recompression

Difficulty: the words are long. Shorten them.

d c a d

Deeper understanding

New production: $d \rightarrow ab$. Building new SLP (recompression).

SLP problems: hard, as SLP are different.

Building canonical SLP for the instance.

What to do with a^n ? Replace each maximal a^n by a single symbol.

 a_2 c a_3

Problems

Easy for text, what about grammar?

Local recompression

Re-compression

- decompressed text: easy; size: large,
- compressed text: hard; size: small.

Local recompression

Re-compression

- decompressed text: easy; size: large,
- compressed text: hard; size: small.

Local decompression

Decompress locally the SLP:

$$X \rightarrow uYvZ$$

- u, v: blocks of letters, linear size
- Y, Z: nonterminals
- recompression inside u, v

Outline

Outline of the algorithm

```
while |\operatorname{val}(X_n)>n| do L_\Sigma \leftarrow \operatorname{list} of letters, L_P \leftarrow \operatorname{list} of pairs for ab \in L_P do \operatorname{compress} pair ab for a \in L_\Sigma do \operatorname{compress} a maximal blocks Decompress the word and solve the problem naively.
```

Outline

Outline of the algorithm

```
 \begin{aligned} \textbf{while} & |\operatorname{val}(X_n) > n| \ \textbf{do} \\ & L_{\Sigma} \leftarrow \text{list of letters, } L_P \leftarrow \text{list of pairs} \\ \textbf{for } & ab \in L_P \ \textbf{do} \\ & \text{compress pair } ab \end{aligned}   \begin{aligned} \textbf{for } & a \in L_{\Sigma} \ \textbf{do} \\ & \text{compress } a \ \text{maximal blocks} \end{aligned}
```

Decompress the word and solve the problem naively.

Theorem

There are $\mathcal{O}(\log |\operatorname{val}(X_n)|)$ iterations.

Proof.

Consider two consecutive letters ab. One of them is compressed. So word shortens by a constant factor. \Box

What is hard, what is easy

What is hard to compress, what easy?

What is hard, what is easy

What is hard to compress, what easy?

Hard

- a pair ab is crossing if $X_i \to uaX_jvX_k$, where $val(X_j) = b \dots$
- a letter a has crossing appearances if aa is a crossing pair

What is hard, what is easy

What is hard to compress, what easy?

Hard

- a pair ab is crossing if $X_i \to uaX_jvX_k$, where $val(X_j) = b \dots$
- a letter a has crossing appearances if aa is a crossing pair

Easy

- a pair ab is non-crossing otherwise
- a letter a has no crossing appearances otherwise

A little detailed outline

Detailed outline

```
while |\operatorname{val}(X_n)>n| do
while possible do
for non-crossing pair ab in \operatorname{val}(X_n) do
compress ab
for a: without crossing blocks do
compress appearances of a
```

A little detailed outline

Detailed outline

```
while |\operatorname{val}(X_n) > n| do
    while possible do
        for non-crossing pair ab in val(X_n) do
            compress ab
        for a: without crossing blocks do
            compress appearances of a
    L \leftarrow list of letters with crossing blocks
    P \leftarrow \text{list of crossing pairs}
    for each ab in P do
        compress ab
    for a \in L do
        compress appearances of a
Decompress X_n and solve the problem naively.
```

Non-crossing pair compression

Non-crossing pair compression

for each production $X_i \rightarrow uX_jvX_k$ **do** replace each *ab* in u, v by c

Non-crossing pair compression

Non-crossing pair compression

for each production $X_i \rightarrow uX_jvX_k$ **do** replace each *ab* in *u*, *v* by *c*

Appearance compression for a without crossing blocks

compute the lengths ℓ_1,\ldots,ℓ_k of a's maximal blocks for each a^{ℓ_m} do

for each production $X_i \to uX_j vX_k$ do replace maximal a^{ℓ_m} in in u, v by a_{ℓ_m}

Non-crossing pair compression

Non-crossing pair compression

for each production $X_i \rightarrow uX_jvX_k$ **do** replace each *ab* in u, v by c

Appearance compression for a without crossing blocks

compute the lengths ℓ_1,\ldots,ℓ_k of a's maximal blocks for each a^{ℓ_m} do

for each production $X_i \to u X_j v X_k$ do replace maximal \mathbf{a}^{ℓ_m} in in u, v by \mathbf{a}_{ℓ_m}

Lemma

It works.

Proof.

The pair is non-crossing: it always appears inside production.

- aX_i and X_i begins with b
- $X_j b$ and X_j ends with a

- aX_i and X_i begins with b
- $X_i b$ and X_i ends with a
- 'pop' first letter of X_i
- replace: $val(X_i) = bu \mapsto val(X_i) = u$ grammar: remove leading b from rule for X_i , replace X_i by bX_i

- aX_i and X_i begins with b
- $X_i b$ and X_i ends with a
- 'pop' first letter of X_i
- replace: $val(X_i) = bu \mapsto val(X_i) = u$ grammar: remove leading b from rule for X_i , replace X_i by bX_i
- 'pop' last letter of X_i

Convert crossing pairs to noncrossing and letters with crossing blocks to letters without crossing blocks (Sequentially).

- aX_i and X_i begins with b
- $X_j b$ and X_j ends with a
- 'pop' first letter of X_i
- replace: $val(X_i) = bu \mapsto val(X_i) = u$ grammar: remove leading b from rule for X_i , replace X_i by bX_i
- 'pop' last letter of X_i

Lemma

After popping letters, ab is noncrossing.

Proof.

Easy, some simple cases.

- aa is a crossing pair: pop a
- can be insufficient
- cut a-prefix or a-suffix
- Represent val(X_i) as $a^{\ell_i}wa^{r_i}$, turn it into w.

- aa is a crossing pair: pop a
- can be insufficient
- cut a-prefix or a-suffix
- Represent val (X_i) as $a^{\ell_i}wa^{r_i}$, turn it into w.

Changing a letter a with crossing blocks to one without

for $i=1\dots n$ do let $X_i\to uX_jvX_k$ calculate the a-prefix a^{ℓ_i} and a-suffix a^{r_i} , remove them replace X_i in rules bodies by $a^{\ell_i}X_ia^{r_i}$

- aa is a crossing pair: pop a
- can be insufficient
- cut a-prefix or a-suffix
- Represent $val(X_i)$ as $a^{\ell_i}wa^{r_i}$, turn it into w.

Changing a letter a with crossing blocks to one without

for $i=1\dots n$ do let $X_i \to uX_jvX_k$ calculate the a-prefix a^{ℓ_i} and a-suffix a^{r_i} , remove them replace X_i in rules bodies by $a^{\ell_i}X_ia^{r_i}$

Lemma

After the algorithm a has no crossing block.

- aa is a crossing pair: pop a
- can be insufficient
- cut a-prefix or a-suffix
- Represent val (X_i) as $a^{\ell_i}wa^{r_i}$, turn it into w.

Changing a letter a with crossing blocks to one without

for $i=1\dots n$ do let $X_i\to uX_jvX_k$ calculate the a-prefix a^{ℓ_i} and a-suffix a^{r_i} , remove them replace X_i in rules bodies by $a^{\ell_i}X_ia^{r_i}$

Lemma

After the algorithm a has no crossing block.

Represent a^ℓ succinctly, using $\mathcal{O}(\log \ell)$ bits.

Running time

All algorithms run in time $poly(n, |G|, |\Sigma|)$.

Running time

All algorithms run in time $poly(n, |G|, |\Sigma|)$.

Size of G

 $abbbcceaX_{j}addfeaafX_{k}$

In each iteration

Running time

All algorithms run in time $poly(n, |G|, |\Sigma|)$.

Size of *G*

 $abbbcceabhaX_{j}abaddfeaaf cdaX_{k}$

In each iteration

• $\mathcal{O}(n)$ new letters

Running time

All algorithms run in time $poly(n, |G|, |\Sigma|)$.

Size of *G*

 $abbbcceabhaX_jabaddfeaafcdaX_k$

In each iteration

- $\mathcal{O}(n)$ new letters
- shrinking by a constant factor

Running time

All algorithms run in time $poly(n, |G|, |\Sigma|)$.

Size of *G*

 $uvbhaX_jabxyzcdaX_k$

In each iteration

- $\mathcal{O}(n)$ new letters
 - shrinking by a constant factor

Running time

All algorithms run in time $poly(n, |G|, |\Sigma|)$.

Size of G

 $uvbhaX_{j}abxyzcdaX_{k}$

In each iteration

- $\mathcal{O}(n)$ new letters
- shrinking by a constant factor

New letters $(|\Sigma|)$

- ullet noncrossing pairs, noncrossing blocks compression (shrinks |G|)
- letters with crossing blocks and crossing pairs: there are $\mathcal{O}(n)$ such letters and $\mathcal{O}(n^2)$ pairs in $\operatorname{val}(X_n)$

- compressed membership: how to modify automaton?
 - for NFA: nondeterminism
 - for DFA: deterministically

- compressed membership: how to modify automaton?
 - for NFA: nondeterminism
 - for DFA: deterministically
- compressed pattern matching
 - better analysis
 - careful implementation
 - details (ends of the pattern)

- compressed membership: how to modify automaton?
 - for NFA: nondeterminism
 - for DFA: deterministically
- compressed pattern matching
 - better analysis
 - careful implementation
 - details (ends of the pattern)
- word equations: some further understanding

- compressed membership: how to modify automaton?
 - for NFA: nondeterminism
 - ► for DFA: deterministically
- compressed pattern matching
 - better analysis
 - careful implementation
 - details (ends of the pattern)
- word equations: some further understanding

Questions

- Any further results?
- How efficient for DFA?
- Are word equations in NP?