Parishram (2025)

Physical Chemistry

Chemical Kinetics

DPP: 3

- **Q1** Assuming elementary an reaction $H_2O_2 + 3I^- +$ $2{
 m H}^+ o 2{
 m H}_2{
 m O} + {
 m I}_3^-$. effect on the rate of this reaction brought about by doubling the concentration of I-without changing the order
 - (A) The rate would increase by a factor of 3
 - (B) The rate would increase by a factor of 8
 - (C) The rate would decrease by a factor of 1/3
 - (D) The rate would increase by a factor of 9
- **Q2** For a reaction $A+B \rightarrow$ products, the rate of reaction was doubled when concentration of A was doubled. When concentration of A and B both was doubled, the rate was again doubled, order of reaction w.r.t. A and ${\bf B}$ are
 - (A) 1,1
- (B) 2,0
- (C) 1, 0
- (D) 0,1
- Q3 Which of the following statement is not correct?
 - (A) Molecularity of a reaction cannot be fractional
 - (B) Molecularity of a reaction cannot be more thanthree
 - (C) Molecularity of a reaction may or may not be equal to the order of reaction
 - (D) Molecularity of a reaction can be obtained from balanced chemical equation
- **Q4** The overall order of reaction between X&Y is 3 . Which of the following rate equation must be correct if, on doubling the concentration of X, the rate of reaction gets doubled?
 - (A) $r = K[X]^2[Y]^0$
 - (B) $r = K[X]^1[Y]^2$
 - (C) $r = K[X]^1[Y]^3$
 - (D) $r = K[X]^2 [Y]^1$
- **Q5** For a reaction between A and B the order with respect to A is 2 and the other with respect to B

- is 3 . The concentrations of both A and B are doubled, the rate will increase by a factor of
- (A) 12
- (B) 16
- (C)32
- (D) 10
- Q6 Which one of the following statements for the order of a reaction is incorrect?
 - (A) Order can be determined only experimentally.
 - (B) Order is not influenced by stoichiometric coefficient of the reactants.
 - (C) Order of a reaction is sum of power to the concentration terms of reactants to express the rate of reaction.
 - (D) Order of reaction is always whole number.
- **Q7** The rate of reaction between two reactants Aand B decreases by a factor of 4 if the conc. of reactant B is doubled. The order of this reaction with respect to reactant B is
 - (A) 2
- (B) -2
- (C) 1
- (D) -1
- The rate of reaction $A+B+C \rightarrow P$ is given by $r=rac{-d[A]}{dt}=k[A]^{1/2}[\ B]^{1/2}[C]^{1/4}.$ order of reaction is
 - (A)1
 - (B) 2

 - (C) $\frac{1}{2}$ (D) $\frac{5}{4}$
- **Q9** For the reaction $A+B \rightarrow$ products, it is observed that
 - (i) on doubling the initial concentration of A only, the rate of reaction is also doubled and
 - (ii) on doubling the initial concentration of both A and B, there is a change by a factor of 8 in the rate of the reaction.

The rate of this reaction is given by

- (A) rate $= k[A][B]^2$
- (B) rate $= k[A]^2[B]^2$
- (C) rate = k[A][B]
- (D) rate $= k[A]^2[B]$

Answer Key

Q1	(B)

(C) Q2

Q3 (D)

Q4 (B)

(C) Q5

(D) Q6

(B) Q7

Q8 (D)

(A) Q9

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Video Solution:

Q2 Video Solution:

Q3 Video Solution:

Q4 Video Solution:

Q5 Video Solution:

Q6 Video Solution:

Q7 Video Solution:

Q8 Video Solution:

Q9 Video Solution:

