Problem Set 6

Noella James

04/9/2017

collaborators: none

Problem 6-1: Job Assignment revisited

Solution

Let h_1, h_2, \ldots, h_n be the hours worked by each worker $1 \ldots n$. The goal is to find an allocation such that $min(\sum_{k=1}^n h_k)$.

Assume there are p tasks, $t_1 \dots t_p$. The equation for task t_1 would be $(h_1 \times M[1,1] + h_2 \times M[2,1] + \dots + h_n \times M[n,1]) \ge 1$.

The equation for task t_k would be $(h_1 \times M[1, k] + h_2 \times M[2, k] + \ldots + h_n \times M[n, k]) \ge 1$ for $k = 1 \ldots p$.

Each worker can work a maximum of 10 hours. Thus we have a set of equations $h_i \leq 10$ for $i = 1 \dots n$.

Each worker can work a minimum of 0 or more hours. Thus we have a set of equations $h_i \ge 0$ for $i = 1 \dots n$.

Thus the linear programming solution for the above problem is :

 $min(\sum_{k=1}^{n} h_k).$

such that:

 $(h_1 \times M[1, k] + h_2 \times M[2, k] + \ldots + h_n \times M[n, k]) \ge 1 \text{ for } k = 1 \ldots p$

 $h_i \leq 10 \text{ for } i = 1 \dots n.$

and

 $h_i \geq 0$ for $i = 1 \dots n$.