Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

Elementarna Geometria Różniczkowa

21 maja 2013

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchni Parametryzacja Monge'a

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Wektor normalny

Powtórka z algebry liniowej I

I forma podstawowa

Pochodne kierunkowe. Izometria.

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzchni

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

4 D > 4 P > 4 E > 4 E > 9 Q P

Powierzchnie w R³

Wektory styczne i normalne. I forma nodstawowa

kierunkowe. Izometria.

Krzywizna Gaussa

Krzywizna Gaussa I

Theorema Egregium Twierdzenie

Krzywizna Gaussa II

Odwzorowanie Weingartena
Druga forma podstawowa
Krzywizna Gaussa oraz krzywizna średnia
Podsumowanie
Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela Theorema Egregium Twierdzenie klasyfikujące

Powierzchnie w \mathbb{R}^3 Podstawowe definicje

112ykiady powietzciiii

Parametryzacja Monge

Powierzchnie obrotowe

Powierzchnie prostol

Poziom

Wektory styczne i normalne. I forma podstawowa

Pochodne

zometria.

rzywizna Gaussa I

wizna Gaussa I

heorema Egregium wierdzenie lasyfikacyjne

Wykład 5

Powierzchnie w \mathbb{R}^3

Powierzchnie w \mathbb{R}^3 Podstawowe definicje Przykłady powierzchni

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Denuldadu nomiorada

Parametryzacja Mon

Powierzchnie obrotowe

Powierzchnie prostok

Poziomice funkcji

ektory styczne i ormalne. I forma

odstawowa

ometria.

Krzywizna Gaussa I

zywizna Gaussa

Theorema Egregium Twierdzenie

Definicja

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym. Odwzorowanie (funkcję wektorową)

$$x: U \to \mathbb{R}^3$$

nazywamy **gładkim**, jeśli wszystkie pochodne cząstkowe (dowolnego rzędu) *x* istnieją oraz są odwzorowaniami ciągłymi.

Definicja

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym. Odwzorowanie gładkie

$$x: U \to \mathbb{R}^3$$

nazywamy **lokalnym układem współrzędnych** jeśli jest injekcją, oraz

$$\frac{\partial x}{\partial s}(s,t) \times \frac{\partial x}{\partial t}(s,t) \neq 0$$

dla wszystkich $(s, t) \in U$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Przykłady powierzch

Parametryzacja Mong

Powierzchnie obrotowe

Powierzchnie prostokre

Poziomice

Vektory styczne iormalne. I forma oodstawowa

ochodne ierunkowe rometria

rzywizna Gaussa I

ywizna Gaus

$$x: U \to \mathbb{R}^3$$

nazywamy **gładkim**, jeśli wszystkie pochodne cząstkowe (dowolnego rzędu) x istnieją oraz są odwzorowaniami ciągłymi.

Definicja

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym. Odwzorowanie gładkie

$$x: U \to \mathbb{R}^3$$

nazywamy lokalnym układem współrzędnych jeśli jest injekcją, oraz

$$\frac{\partial x}{\partial s}(s,t) \times \frac{\partial x}{\partial t}(s,t) \neq 0$$

dla wszystkich $(s, t) \in U$.

Elementarna Geometria Różniczkowa

Powierzchnie w IR3

i aramen yzacja monge i

-owierzennie prostokre

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

zywizna Gaussa

Theorema Egregium Twierdzenie klasyfikacyjne

Definicja

- ▶ Podzbiór $M \subset \mathbb{R}^3$ nazywamy **powierzchnią gładką**, jeśli wokół każdego punktu *p* istnieje lokalny układ współrzędnych $x: U \to V \subset \mathbb{R}^3$.
- Powierzchnię gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów $x, y \in M$ istnieje krzywa $\alpha: [0, 1] \to M$ taka, że $\alpha(0) = x$ i $\alpha(1) = y$.

Potocznie mówimy, że przestrzeń jest powierzchnią gładką jeśli "lokalnie" (tj. w małym otoczeniu każdego punktu) wygląda jak fragment płaszczyzny (patrz część 1 Lematu 5.5)

Powierzchnie obrotowe

Powierzchnie prostokr

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa

zywizna Gaussa

Theorema Egregium i Twierdzenie

Różniczkowa

Definicja

- Podzbiór $M \subset \mathbb{R}^3$ nazywamy **powierzchnią gładką**, jeśli wokół każdego punktu p istnieje lokalny układ współrzędnych $x: U \to V \subset \mathbb{R}^3$.
- Powierzchnię gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów $x, y \in M$ istnieje krzywa $\alpha:[0,1] \to M$ taka, że $\alpha(0) = x$ i $\alpha(1) = y$.

Potocznie mówimy, że przestrzeń jest powierzchnią gładką jeśli "lokalnie" (tj. w małym otoczeniu każdego punktu) wygląda jak fragment płaszczyzny (patrz część 1 Lematu 5.5)

Parametryzacia Mongo

Powierzchnie obrotowe

Powierzchnie prostokn

Poziomice funkcji

Vektory styczne Jormalne. I form

ierunkowe. zometria.

Krzywizna Gaussa I

rzywizna Gauss

Theorema Egregium i Twierdzenie

Definicja

- Podzbiór $M \subset \mathbb{R}^3$ nazywamy **powierzchnią gładką**, jeśli wokół każdego punktu p istnieje lokalny układ współrzędnych $x: U \to V \subset \mathbb{R}^3$.
- Powierzchnię gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów x, y ∈ M istnieje krzywa α:[0, 1] → M taka, że α(0) = x i α(1) = y.

Potocznie mówimy, że przestrzeń jest powierzchnią gładką jeśli "lokalnie" (tj. w małym otoczeniu każdego punktu) wygląda jak fragment płaszczyzny (patrz część 1 Lematu 5.5

Parametryzacia Mongo

Powierzchnie obrotowe

Powierzchnie prostokn

Poziomice funkcji

Vektory styczne Jormalne. I form

ierunkowe. zometria.

Krzywizna Gaussa I

rzywizna Gauss

Theorema Egregium i Twierdzenie

Definicja

- Podzbiór $M \subset \mathbb{R}^3$ nazywamy **powierzchnią gładką**, jeśli wokół każdego punktu p istnieje lokalny układ współrzędnych $x: U \to V \subset \mathbb{R}^3$.
- Powierzchnię gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów x, y ∈ M istnieje krzywa α:[0, 1] → M taka, że α(0) = x i α(1) = y.

Potocznie mówimy, że przestrzeń jest powierzchnią gładką jeśli "lokalnie" (tj. w małym otoczeniu każdego punktu) wygląda jak fragment płaszczyzny (patrz część 1 Lematu 5.5

rowierzennie obrotowi

Powierzchnie prostokr

Poziomice funkcji

Vektory styczne Jormalne. I form Jodstawowa

tierunkowe. zometria.

Krzywizna Gaussa I

rzywizna Gau

Theorema Egregium i Twierdzenie

Definicja

- Podzbiór $M \subset \mathbb{R}^3$ nazywamy **powierzchnią gładką**, jeśli wokół każdego punktu p istnieje lokalny układ współrzędnych $x: U \to V \subset \mathbb{R}^3$.
- Powierzchnię gładką M nazywamy łukowo spójną, jeśli dla dowolnych dwóch punktów $x, y \in M$ istnieje krzywa $\alpha:[0,1] \to M$ taka, że $\alpha(0) = x$ i $\alpha(1) = y$.

Potocznie mówimy, że przestrzeń jest powierzchnią gładką jeśli "lokalnie" (tj. w małym otoczeniu każdego punktu) wygląda jak fragment płaszczyzny (patrz część 1 Lematu 5.5).

Jednostkowa sfera, tj. powierzchnia o równaniu $x^2 + y^2 + x^2 = 1$ jest przykładem powierzchni regularnej. Lokalnym układem współrzędnych jest np.

$$x^{\pm}(u,v)=(\pm\sqrt{1-u^2-v^2},u,v)$$
 jak na następującym rysunku

Flementarna Geometria Różniczkowa

Podstawowe definicie

Podstawowe definicje

Przykłady

Parametryzacja Mon

Powierzchnie obroto

Powierzchnie prosto

Poziomice

Wektory styczne i normalne. I forma

Pochodne kierunkowe

rzywizna Gaussa I

_ .

Theorema Egregium i Twierdzenie klasyfikacyjne

Uwaga

UWAGA! Zakładamy, że wszystkie powierzchnie które będzie my rozważać dalej są gładkie i łukowo spójne.

Przykłady po

Parametryzacja Mo

Powierzchnie obrotowe

Powierzchnie prost

Poziomio

Wektory styczne i normalne. I forma

ochodne ierunkowe

rzywizna Gaussa

rzynyizna Causs

Theorema Egregium Twierdzenie

Definicja

Niech $M\subset\mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x\colon U\to M$ i $y\colon V\to M$ będą lokalnymi układami współrzędnych wokół punktu $p\in M$. Wtedy złożenie

$$\Phi_{x,y} \stackrel{\mathsf{def.}}{=} y^{-1} \circ x : x^{-1}(x(U) \cap y(V)) \to y^{-1}(x(U) \cap y(V))$$

nazywamy funkcją zmiany układu współrzędnych.

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką. Wówczas:

- 1. Jeśli $x: U \to M$ jest lokalnym układem współrzędnych wtedy x jest dyfeomorfizmem U na obraz x(U).

$$y \stackrel{def.}{=} x \circ f: V \to M$$

Podstawowe definicie

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką. Wówczas:

- 1. Jeśli $x: U \to M$ jest lokalnym układem współrzędnych wtedy x jest dyfeomorfizmem U na obraz x(U).
- 2. Niech $V \subset \mathbb{R}^2$ będzie zbiorem otwartym i niech $f: V \to U$ będzie dyfeomorfizmem. Wtedy

$$y \stackrel{def.}{=} x \circ f: V \to M$$

jest lokalnym układem współrzędnych i f jest funkcją zmiany układu współrzędnych $\Phi_{v,x}$.

owicizeiiiie w it

Podstawowe definicje

Przykłady

Parametryzacja Mong

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomice

Wektory styczne i normalne. I forma podstawowa

Pochodne tierunkowe zometria.

irzywizna Gaussa

zywizna Gauss

Theorema Egregium Twierdzenie

Powierzchnie obrotowe

Powierzchnie prostokre

Paziamica funkcii

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

rochodne kierunkowe. zometria.

Krzywizna Gaussa I

ywizna Gaussa

Theorema Egregiur Twierdzenie

- - ► rząd pochodnej x na U jest równy 2 (z def. lokalnego układu współrzędnych)
 - ▶ z twierdzenia o funkcji uwikłanej na x(U) istnieje x^{-1} gładkie odwzorowanie odwrotne
- 2) wystarczy sprawdzić dla lokalnego układu współrzędnych dla $y = x \circ f$

Parametryzacja Monge

Powierzchnie obrotowe

Powierzchnie prostoki

Poziomice

Wektory styczne i normalne. I forma

ochodne tierunkowe.

Krzywizna Gaussa I

zywizna Gaussa

Theorema Egregiur Twierdzenie klasyfikacyjne

- 1) ► x injekcja, więc jest bijekcją na obraz.
 - rząd pochodnej x na U jest równy 2 (z def. lokalnego układu współrzędnych)
 - ▶ z twierdzenia o funkcji uwikłanej na x(U) istnieje x^{-1} gładkie odwzorowanie odwrotne
- 2) wystarczy sprawdzić dla lokalnego układu współrzędnych dla $y = x \circ f$

rowierzennie w

Podstawowe definicje

Przykłady powierzchni

Parametryzacja Mong

Powierzchnie obrotowe

rowierzchnie prostoki

Poziomice funkcji

Wektory styczne i normalne. I forma

zometria.

Krzywizna Gaussa

zywizna Gaussa

Theorema Egregium Twierdzenie

- 1) x injekcja, więc jest bijekcją na obraz.
 - ► rząd pochodnej x na U jest równy 2 (z def. lokalnego układu współrzędnych)
 - ▶ z twierdzenia o funkcji uwikłanej na x(U) istnieje x^{-1} gładkie odwzorowanie odwrotne
- 2) wystarczy sprawdzić dla lokalnego układu współrzędnych dla $y = x \circ f$

. Owierzeinnie w u

Podstawowe definicje

Przykłady powierzci

Parametryzacja Mon

rowierzchnie obrotowe

TOWICIZCITIIC PROSTOR

Poziomice funkcji

Wektory styczne i normalne. I forma nodstawowa

ierunkowe. zometria.

Krzywizna Gaussa

zywizna Gauss

Theorema Egregium Twierdzenie

- 1) ► *x* injekcja, więc jest bijekcją na obraz.
 - rząd pochodnej x na U jest równy 2 (z def. lokalnego układu współrzędnych)
 - ▶ z twierdzenia o funkcji uwikłanej na x(U) istnieje x^{-1} gładkie odwzorowanie odwrotne
- 2) wystarczy sprawdzić dla lokalnego układu współrzędnych dla $y = x \circ f$

owierzchnie w K

Podstawowe definicje

Przykłady

Parametryzacja Mo

Powierzchnie obrotow

Powierzchnie prostok

Poziomice fun

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe rometria

rzywizna Gaussa I

zvwizna Gaus

Theorema Egregium i Twierdzenie

- 1) ► *x* injekcja, więc jest bijekcją na obraz.
 - rząd pochodnej x na U jest równy 2 (z def. lokalnego układu współrzędnych)
 - ▶ z twierdzenia o funkcji uwikłanej na x(U) istnieje x^{-1} gładkie odwzorowanie odwrotne
- 2) wystarczy sprawdzić dla lokalnego układu współrzędnych dla $y = x \circ f$

$$\frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} =$$

$$= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) =$$

$$= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) =$$

$$= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right)$$

- ightharpoons $\left(\frac{\partial x}{\partial f_1} imes \frac{\partial x}{\partial f_2}\right) \neq 0$ (lokalny układ współrzędnych)
- ▶ $\left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \neq 0$ (Jakobian funkcji f). Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji fu przejścia.

Elementarna Geometria Różniczkowa

Podstawowe definicje

Przykłady powierzchni

Parametryzacja Monge

Powierzchnie obrotowe

Powierzchnie prostok

Poziomice funkcj

Wektory styczne i normalne. I forma podstawowa

ochodne tierunkowe. zometria

Krzywizna Gaussa I

ovizna Gaussa I

eorema Egregium i ierdzenie

$$\begin{split} \frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} &= \\ &= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\ &= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\ &= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \end{split}$$

$$ightharpoons$$
 $\left(\frac{\partial x}{\partial f_1} imes \frac{\partial x}{\partial f_2}\right)
eq 0$ (lokalny układ współrzędnych)

•
$$\left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \neq 0$$
 (Jakobian funkcji f). Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji funk przejścia.

Elementarna Geometria Różniczkowa

Podstawowe definicje

Przykłady po

Parametryzacja Mong

Powierzchnie obrotowe

Powierzchnie prosto

Poziomice

Wektory styczne i normalne. I forma

Pochodne cierunkowe.

Krzywizna Gaussa I

vwizna Gaussa

$$\begin{split} \frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} &= \\ &= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\ &= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\ &= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \end{split}$$

$$ightharpoons$$
 $\left(\frac{\partial x}{\partial f_1} imes \frac{\partial x}{\partial f_2}\right) \neq 0$ (lokalny układ współrzędnych)

▶
$$\left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \neq 0$$
 (Jakobian funkcji f). Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji funkc przejścia.

Elementarna Geometria Różniczkowa

Podstawowe definicje

Przykłady

Parametryzacja Mor

Powierzchnie obrotowe

Powierzchnie prostoki

Poziomice funkc

normalne. I form podstawowa

zometria.

rzywizna Gaussa I

ywizna Gaus

$$\begin{split} \frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} &= \\ &= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\ &= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\ &= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \end{split}$$

- ▶ $\left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \neq 0$ (lokalny układ współrzędnych)
- ▶ $\left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \neq 0$ (Jakobian funkcji f). Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji funkcy przejścia.

Elementarna Geometria Różniczkowa

TOWICIZEIIIIC W B

Podstawowe definicje

Przykłady

Parametryzacja Mon

rowierzennie obrotowe

Powierzchnie prost

Poziomice fi

normalne. I forma podstawowa

rochoune kierunkowe Izometria.

rzywizna Gaussa I

zywizna Gaus

$$\begin{split} \frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} &= \\ &= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\ &= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\ &= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \end{split}$$

- $\left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \neq 0$ (lokalny układ współrzędnych)
- ▶ $\left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \neq 0$ (Jakobian funkcji f). Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji funkci przejścia.

TOWICIZEITHE W IX

Podstawowe definicje

Przykłady

Parametryzacja Mon

Powierzchnie obrotowe

Powierzchnie prosto

Poziomio

Wektory styczne normalne. I forma podstawowa

rochodne kierunkow zometria.

rzywizna Gaussa I

ywizna Gauss

$$\frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} =$$

$$= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) =$$

$$= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) =$$

$$= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) =$$

$$= \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) =$$

- $\left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \neq 0$ (lokalny układ współrzędnych)
- ▶ $\left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \neq 0$ (Jakobian funkcji f). Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji funprzejścia.

rowierzciiiie w ix

Podstawowe definicje

Przykłady

Parametryzacja Mo

r owierzeinnie obrotowe

Powierzchnie pros

Poziomio

Wektory styczne i normalne. I forma

Pochodne kierunkowe zometria

rzywizna Gaussa I

ywizna Gaussa

$$\begin{split} \frac{\partial(x \circ f)}{\partial s} \times \frac{\partial(x \circ f)}{\partial t} &= \\ &= \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial s} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial s}\right) \times \left(\frac{\partial x}{\partial f_1} \frac{\partial f_1}{\partial t} + \frac{\partial x}{\partial f_2} \frac{\partial f_2}{\partial t}\right) = \\ &= \frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) + \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s} \left(\frac{\partial x}{\partial f_2} \times \frac{\partial x}{\partial f_1}\right) = \\ &= \left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2}\right) \left(\frac{\partial f_1}{\partial s} \frac{\partial f_2}{\partial t} - \frac{\partial f_1}{\partial t} \frac{\partial f_2}{\partial s}\right) \end{split}$$

- $\left(\frac{\partial x}{\partial f_1} \times \frac{\partial x}{\partial f_2} \right) \neq 0$ (lokalny układ współrzędnych)
- Wreszcie teza ($\Phi_{x,y} = f$) wynika z definicji funkcji przejścia.

Podstawowe definicie

Parametryzacja Mo

Powierzchnie obrotowe

Powierzchnie prosto

Poziomic

Wektory styczne i

podstawowa Pochodne

ierunkowe zometria.

. Irzywizna Gaussa I

zywizna Gauss

Theorema Egregium Twierdzenie

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $f: M \to \mathbb{R}$ będzie funkcją. Funkcję f nazywamy gładką jeśli dla każdego punktu $p \in M$ i dla każdego lokalnego układu współrzędnych $x: U \to M$ takiego, że $p \in x(u)$ funkcja

$$f \circ x: U \stackrel{\mathsf{x}}{\to} M \stackrel{f}{\to} \mathbb{R}$$

jest gładka jako funkcja z \mathbb{R}^2 do \mathbb{R} .

W praktyce są dwie metody na definiowanie funkcji określonej na powierzchni.

$$F = f \circ x^{-1} \colon x^{-1}(U) \to U \to \mathbb{R}$$

'owierzchnie prostokre

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkow zometria.

Krzywizna Gaussa

rzywizna Gauss:

heorema Egregium wierdzenie

W praktyce są dwie metody na definiowanie funkcji określonej na powierzchni.

- ▶ Jeśli $F: \mathbb{R}^3 \to \mathbb{R}$ jest gładka, wtedy jej obcięcie $F|_{\mathcal{M}}: \mathcal{M} \to \mathbb{R}$ będzie również gładkie.
- ▶ Załóżmy że $x: U \to M \subset \mathbb{R}^3$ jest lokalnym układem współrzędnych. Jeśli $f: U \to \mathbb{R}$ jest funkcją gładką, to funkcję na powierzchni M możemy określić jako

$$F = f \circ x^{-1} \colon x^{-1}(U) \to U \to \mathbb{R}$$

gdzie $x^{-1}(U) \subset M$. Jest to funkcja gładka jako złożenie dwóch funkcji gładkich.

Powierzchnie obrotowe

Powierzchnie prostol

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe rometria

(rzywizna Gaussa I

rzywizna Gaus

heorema Egregium wierdzenie Jasyfikacyjne

W praktyce są dwie metody na definiowanie funkcji określonej na powierzchni.

- ▶ Jeśli $F: \mathbb{R}^3 \to \mathbb{R}$ jest gładka, wtedy jej obcięcie $F|_{\mathcal{M}}: \mathcal{M} \to \mathbb{R}$ będzie również gładkie.
- ▶ Załóżmy że $x: U \to M \subset \mathbb{R}^3$ jest lokalnym układem współrzędnych. Jeśli $f: U \to \mathbb{R}$ jest funkcją gładką, to funkcję na powierzchni M możemy określić jako

$$F = f \circ x^{-1} : x^{-1}(U) \to U \to \mathbb{R},$$

gdzie $x^{-1}(U) \subset M$. Jest to funkcja gładka jako złożenie dwóch funkcji gładkich.

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

jest funkcją gładką.

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f{:}\,\mathbb{R}^2 o\mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t).$$

Wtedy $f \circ x^{-1}(a, b, c) = \sin(a + b)$ i stąd $f \circ x^{-1}: M \to \mathbb{R}$ jest funkcją gładką na powierzchni paraboloidy.

Podstawowe definicje

rrzykłady powierzchni

Parametryzacja Monge

Powierzchnie obrotowe

Powierzchnie prostol

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe.

Krzywizna Gaussa I

zywizna Gauss

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

jest funkcją gładką.

Niech M będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f: \mathbb{R}^2 \to \mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t).$$

Wtedy $f \circ x^{-1}(a, b, c) = \sin(a + b)$ i stąd $f \circ x^{-1}: M \to \mathbb{R}$ jest funkcją gładką na powierzchni paraboloidy.

Podstawowe definicje

rrzykłady powierzchi

Parametryzacja Monge

Powierzchnie prostoki

Poziomice

Wektory styczne normalne. I form podstawowa

rocnoane kierunkowe. Izometria

Krzywizna Gaussa I

zywizna Gauss

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f: \mathbb{R}^2 \to \mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t)$$

Wtedy $f \circ x^{-1}(a, b, c) = \sin(a + b)$ i stąd $f \circ x^{-1}: M \to \mathbb{R}$ jest funkcją gładką na powierzchni paraboloidy.

Podstawowe definicje

Przykłady p

Parametryzacja Mong

Powierzchnie obrotowi

Powierzchnie prostokr

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe.

Krzywizna Gaussa I

rzywizna Gaus

Theorema Egregium i Twierdzenie klasyfikacyjne

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f: \mathbb{R}^2 \to \mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t)$$

Wtedy $f \circ x^{-1}(a, b, c) = \sin(a + b)$ i stąd $f \circ x^{-1}: M \to \mathbb{R}$ jest funkcją gładką na powierzchni paraboloidy.

Podstawowe definicje

Przykłady p

Parametryzacja Mong

Powierzchnie obrotowi

Powierzchnie prostokr

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe.

Krzywizna Gaussa I

rzywizna Gaus

Theorema Egregium i Twierdzenie klasyfikacyjne

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

▶ Niech *M* będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f: \mathbb{R}^2 \to \mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t).$$

Podstawowe definicie

$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

Niech M będzie zadana jako powierzchnia paraboloidy,

$$x(s, t) = (s, t, s^2 + t^2).$$

Rozważmy funkcję $f: \mathbb{R}^2 \to \mathbb{R}$ zadaną wzorem

$$(s, t) \mapsto \sin(s + t)$$
.

Wtedy $f \circ x^{-1}(a, b, c) = \sin(a + b)$ i stad $f \circ x^{-1}: M \to \mathbb{R}$ jest funkcją gładką na powierzchni paraboloidy.

Podstawowe definicie

Parametryzacja Mor

Powierzchnie obrotowe

Powierzchnie prostokreślne

Poziomio

Wektory styczne i normalne. I forma nodstawowa

Pochodne kierunkowe Izometria

rzywizna Gaussa

. .

Theorema Egregium Twierdzenie

Definicja

Niech M, $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi i niech $f: M \to N$ będzie odwzorowaniem. Mówimy, że f jest **odwzorowaniem gładkim** jeśli jest gładkie jako odwzorowanie $M \to N \hookrightarrow \mathbb{R}^3$. Mówimy, że f jest **dyfeomorfizmem powierzchni** jeśli f jest gładką bijekcją, której odwzorowanie odwrotne jest również gładkie.

Niech M, $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi i niech

$$f:M\to N$$

będzie odwzorowaniem ciągłym. f jest odwzorowaniem gładkim (a więc gładkim jako odwzorowanie $f: M \to \mathbb{R}^3$) wtedy i tylko wtedy gdy dla każdego punktu $p \in M$ istnieje wokół niego lokalny układ współrzędnych $x: U \to M$ oraz istnieje lokalny układ współrzędnych $y: V \to N$ wokół $f(p) \in N$ takie, że złożenie

$$y^{-1} \circ f \circ x: U \to V$$

jest gładkie jako odwzorowanie $\mathbb{R}^2 \to \mathbb{R}^2$ (tam, gdzie to złożenie ma sens).

Powierzchnie w K³

Podstawowe definicje

Przykłady

Parametryzacja Mo

TOWICIZCINIC ODTOLOWC

Powierzchnie prostokreśl

Poziomice

Wektory styczne i normalne. I forma podstawowa

Pochodne cierunkowe zometria

rzywizna Gaussa

rzywizna Gaus:

heorema Egregium i wierdzenie lasyfikacyjne

Definicja

Niech $f: U \to \mathbb{R}$ będzie funkcją określoną na zbiorze otwartym $U \subset \mathbb{R}^2$. Powierzchnię $M \subset \mathbb{R}^3$ nazywamy **powierzchnią Monge'a** jeśli jej parametryzacja jest wykresem funkcji f:

$$x(s, t) = (s, t, f(s, t)).$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Parametryzacia Monge'a

_

Powierzelnie prostole

Poziomice f

Wektory styczne normalne. I form podstawowa

Pochodne cierunkowe zometria

rzywizna Gaussa I

zywizna Gauss

Theorema Egregium i Twierdzenie klasyfikacyjne

Parametryzacja Monge'a spełnia naszą definicję powierzchni (Definicja 5.3), ponieważ

$$\frac{\partial x}{\partial s}(s,t) \times \frac{\partial x}{\partial t}(s,t) = \det \begin{bmatrix} i & j & k \\ 1 & 0 & \frac{\partial f}{\partial s}(s,t) \\ 0 & 1 & \frac{\partial f}{\partial t}(s,t) \end{bmatrix} = \\ = \left(-\frac{\partial f}{\partial s}(s,t), -\frac{\partial x}{\partial t}(s,t), 1 \right) \neq 0.$$

Parametryzacia Monge'a

Przykład

- Paraboloida $(x(u, v) = (u, v, u^2 + v^2))$
- Powierzchnia siodłowa (x(u, v) = (u, v, uv))

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

dstawowe definicje

Przykłady powierzch

Parametryzacja Monge'a

Powierzchnie obrotowe

Danis and Lair and A. C.

Poziomice funkcji

N/-late recent results

normalne. I forma podstawowa

> ochodne ierunkowe. ometria.

Krzywizna Gaussa I

zywizna Gauss

Theorema Egregium i Twierdzenie klasyfikacyjne

Przykład

- Paraboloida $(x(u, v) = (u, v, u^2 + v^2))$
- Powierzchnia siodłowa (x(u, v) = (u, v, uv))

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Przykłady nowierzcho

Parametryzacja Monge'a

, ,

r owierzennie prostokres

Poziomice funkcji

normalne. I forma podstawowa

> ochodne ierunkowe. rometria

Krzywizna Gaussa I

zywizna Gauss

Theorema Egregium i Twierdzenie klasyfikacyjne

- Paraboloida $(x(u, v) = (u, v, u^2 + v^2))$
- Powierzchnia siodłowa (x(u, v) = (u, v, uv))

Parametryzacja Monge'a

Definicja

Powierzchnia obrotowa powstaje poprzez obrócenie krzywej $\alpha(t)$ wokół pewnej ustalonej prostej l. Postać ogólna to $x(t, \phi) = \alpha \cdot Rot_l(\phi)$, gdzie $Rot_l(\phi)$ to macierz 3×3 obrotu o kąt ϕ wokoł prostej l.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Przykłady powierzchni

Powierzchnie obrotowe

Powierzchnie prostok

Poziomice funkcji

ektory styczne i ormalne. I forma odstawowa

zierunkowe. zometria.

rzywizna Gaussa I

zywizna Gaus:

Theorema Egregium i Twierdzenie klasyfikacyjne Najczęściej używane macierze obrotu to obroty wokół osi współrzędnych *x*, *y*, *z*:

$$Rot_{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{bmatrix}$$

$$Rot_{y}(\phi) = \begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix}$$

$$Rot_{z}(\phi) = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

W przypadku obrotu $\alpha(t)=(\alpha_1(t),\alpha_2(t),\alpha_3(t))$ wokół osi Ox otrzymamy

$$x(t, \phi) = (\alpha_1(t), \alpha_2(t) \cos \phi - \alpha_3(t) \sin \phi, \alpha_2(t) \sin \phi + \alpha_3(t) \cos \phi$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

odstawowe definicj

Przykłady powierzchr

Parametryzacja Mo

Powierzchnie obrotowe

owierzchnie prostokr

Poziomice funkcji

/ektory styczne i ormalne. I forma odstawowa

ierunkowe. cometria.

rzywizna Gaussa

zywizna Gau

Theorema Egregium Twierdzenie klasyfikacyjne

$$Rot_{\mathbf{x}}(\mathbf{\phi}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \mathbf{\phi} & \sin \mathbf{\phi} \\ 0 & -\sin \mathbf{\phi} & \cos \mathbf{\phi} \end{bmatrix}$$

$$Rot_{y}(\phi) = \begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix}$$

$$Rot_{z}(\phi) = \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

W przypadku obrotu $\alpha(t)=(\alpha_1(t),\alpha_2(t),\alpha_3(t))$ wokół osi Ox otrzymamy

$$x(t, \phi) = (\alpha_1(t), \alpha_2(t)\cos\phi - \alpha_3(t)\sin\phi, \alpha_2(t)\sin\phi + \alpha_3(t)\cos\phi)$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Parametryzacia Monge

Powierzchnie obrotowe

owierzchnie prostokr

ziomice funkcii

ektory styczne rmalne. I form

erunkowe.

rzywizna Gaussa I

zywizna Gaus:

Theorema Egregium i Twierdzenie klasyfikacyine

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Przykłady powierzchni

Parametryzacja Mong

Powierzchnie obrotowe

Powierzchnie prostokre

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa

zvwizna Gaussa

Theorema Egregium Twierdzenie

Uwaga

Aby powierzchnia w ten sposób uzyskana była gładka musimy dodatkowo wymagać, aby

- krzywa była bez samoprzecięć, oraz
- oś obrotu nie przecinała naszej krzywej w żadnym punkcie

Zadanie

Opisać co się "psuje" w definicji kiedy zachodzi jedna bądź druga okoliczność.

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Przykłady powierzchni

Parametryzacja Mo

Powierzchnie obrotowe

Powierzchnie prostokre

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa

rzywizna Gaussa

Theorems Egregius

Theorema Egregium i Twierdzenie klasyfikacyjne

Uwaga

Aby powierzchnia w ten sposób uzyskana była gładka musimy dodatkowo wymagać, aby

- krzywa była bez samoprzecięć, oraz
- oś obrotu nie przecinała naszej krzywej w żadnym punkcie

7adanie

Opisać co się "psuje" w definicji kiedy zachodzi jedna bądź druga okoliczność.

Powierzchnie obrotowe

Uwaga

Aby powierzchnia w ten sposób uzyskana była gładka musimy dodatkowo wymagać, aby

- krzywa była bez samoprzecięć, oraz
- oś obrotu nie przecinała naszej krzywej w żadnym punkcie.

Powierzchnie w R³

odstawowe definicje

Przykłady powierzchni

Powierzchnie obrotowe

Powierzchnie prostokr

rowierzchnie prostokre

Poziomice funkcji

Wektory styczne i normalne. I forma oodstawowa

Pochodne zierunkowe zometria.

(rzywizna Gaussa I

. . .

Theorema Egregium Twierdzenie

Uwaga

Aby powierzchnia w ten sposób uzyskana była gładka musimy dodatkowo wymagać, aby

- krzywa była bez samoprzecięć, oraz
- oś obrotu nie przecinała naszej krzywej w żadnym punkcie.

Zadanie

Opisać co się "psuje" w definicji kiedy zachodzi jedna bądź druga okoliczność.

Sfera – obrót okręgu $\alpha(t) = (0, \cos t, \sin t)$ wokół osi *z*:

$$(0, \cos t, \sin t) \cdot \begin{bmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} = \\ = (-\cos t \sin \phi, \cos t \cos \phi, \sin t)$$

Hiperboloida jednopowłokowa (katenoida)

Powierzchnie obrotowe

Przykład

► Sfera – obrót okręgu $\alpha(t) = (0, \cos t, \sin t)$ wokół osi z:

$$(0,\cos t,\sin t)\cdot\begin{bmatrix}\cos\varphi&\sin\varphi&0\\-\sin\varphi&\cos\varphi&0\\0&0&1\end{bmatrix}=\\=(-\cos t\sin\varphi,\cos t\cos\varphi,\sin t).$$

Hiperboloida jednopowłokowa (katenoida)

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

dstawowe definicje

B 11 1 1 1

Parametryzacja Mong

Powierzchnie obrotowe

owierzchnie prostokre

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

. Irzywizna Gaussa I

rzywizna Gaussa

Theorema Egregium i Twierdzenie

Przykład

► Sfera – obrót okręgu $\alpha(t) = (0, \cos t, \sin t)$ wokół osi z:

$$(0,\cos t,\sin t)\cdot\begin{bmatrix}\cos\varphi&\sin\varphi&0\\-\sin\varphi&\cos\varphi&0\\0&0&1\end{bmatrix}=\\=(-\cos t\sin\varphi,\cos t\cos\varphi,\sin t).$$

Hiperboloida jednopowłokowa (katenoida)

Elementarna Geometria Różniczkowa

Powierzchnie w K

odstawowe definicje

Domitida do o continuado

Parametryzacja Mor

Powierzchnie obrotowe

Powierzchnie prostokn

Poziomice funkcji

Wektory styczne i normalne. I forma oodstawowa

Pochodne sierunkowe

rzywizna Gaussa

zywizna Gaussa

Theorema Egregium Twierdzenie klasyfikacyine

$$x(t,\phi) = ((R + r\cos t)\cos\phi, (R + r\cos t)\sin\phi, r\sin t).$$

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Przykłady nowiorzek

Parametryzacja Monge'

Powierzchnie obrotowe

Powierzchnie prostok

Poziomice funk

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe.

rzywizna Gaussa I

ywizna Gauss

Theorema Egregium Twierdzenie klasyfikacyjne

Definicja

Powierzchnią prostokreślną nazywamy powierzchnię o parametryzacji

$$x(s, t) = \alpha(s) + t\beta(s),$$

gdzie α i β są krzywymi w przestrzeni \mathbb{R}^3 . α nazywa się potocznie kierownicą, β - ruletą.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Przykłady powierzchr

Parametryzacja Monge'a

r owierzennile obrotowe

Powierzchnie prostokreślne

Poziomice

Vektory styczne Jormalne. I form

ochodne cierunkowe zometria

rzywizna Gaussa I

ywizna Gauss

Theorema Egregium Twierdzenie klasyfikacyjne

Uwaga

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- Powierzchnia śrubowa
- Powierzchnia siodłowa
- Katenoida

owierzchnie w R³

Podstawowe definicje

B 11 1 1 1

Parametryzacja Mong

Powierzchni

Powierzchnie prostokreślne

Poziomice

ektory styczne ormalne. I form

ochodne cierunkowe

rzywizna Gaussa

ywizna Gaus

heorema Egregium wierdzenie lasyfikacyine

Uwaga

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- ▶ Powierzchnia śrubowa
- ▶ Powierzchnia siodłowa
- Katenoida.

Powierzchnie w R³

Podstawowe definicje

Domitile de la constanción

Parametryzacja Mor

Powierzchn

Powierzchnie prostokreślne

Poziomice

/ektory styczne ormalne. I form odstawowa

ochodne ierunkowe

rzywizna Gaussa

zywizna Gaus

heorema Egregium wierdzenie lasvfikacvine

Uwaga

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- Powierzchnia śrubowa
- ▶ Powierzchnia siodłowa
- Katenoida

owierzchnie w R³

Podstawowe definicje

Denuldadu nomiorada

Parametryzacja Mor

rowierzennie or

Powierzchnie prostokreślne

Poziomice

Wektory styczne i normalne. I forma nodstawowa

ochodne ierunkowe

rzywizna Gaussa

zywizna Gauss

Theorema Egregium Twierdzenie klasyfikacyjne

Uwaga

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- Powierzchnia śrubowa
- Powierzchnia siodłowa
- Katenoida

owierzchnie w \mathbb{R}^3

Podstawowe definicje

Domitile de la constanción

Parametryzacja Mong

Powierzchnie ob

Powierzchnie prostokreślne

Poziomice

Wektory styczne i normalne. I forma

ochodne ierunkowe

rzywizna Gaussa

zywizna Gaus

Theorema Egregium Twierdzenie klasyfikacyine

Uwaga

Zauważmy, że dla ustalonego s_0 (czyli linia parametru dla zmiennej t) parametryzacja powyżej redukuje się do równania parametrycznego prostej. Powierzchnia prostokreślna to więc powierzchnia która "składa się" z prostych.

- ▶ Walec, Stożek
- Powierzchnia śrubowa
- Powierzchnia siodłowa
- Katenoida.

owierzchnie w \mathbb{R}^3

odstawowe definicje

Parametryzacja Mor

Powierzchnie obrot

Powierzchnie prostokreślne

roziomice

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe

rzywizna Gaussa

zywizna Gauss

Theorema Egregium Twierdzenie klasyfikacyine

Definicja

Niech $V \subset \mathbb{R}^3$ będzie zbiorem otwartym, oraz niech

 $F: V \to \mathbb{R}$

będzie gładką funkcją.

▶ Punkt p ∈ V nazywamy punktem krytycznym funkcji F ieśli

$$\left(\frac{\partial F}{\partial x_1}(p), \frac{\partial F}{\partial x_2}(p), \frac{\partial F}{\partial x_3}(p)\right) = 0$$

Liczbę $a \in \mathbb{R}$ nazywamy wartością krytyczną odwzorowania F jeśli wewnątrz zbioru $F^{-1}(a)$ leży przynajmniej jeden punkt krytyczny.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Denulda du nomineralu

Parametryzacja Mong

Powierzchnie obrotowe

Powierzchnie prostok

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne cierunkowe zomotrio

Krzywizna Gaussa

rzywizna Gaus

Theorema Egregium i Twierdzenie klasyfikacyine

Definicja

Niech $V \subset \mathbb{R}^3$ będzie zbiorem otwartym, oraz niech

$$F: V \to \mathbb{R}$$

będzie gładką funkcją.

▶ Punkt p ∈ V nazywamy punktem krytycznym funkcji F jeśli

$$\left(\frac{\partial F}{\partial x_1}(p), \frac{\partial F}{\partial x_2}(p), \frac{\partial F}{\partial x_3}(p)\right) = 0.$$

Liczbę $a \in \mathbb{R}$ nazywamy wartością krytyczną odwzorowania F jeśli wewnątrz zbioru $F^{-1}(a)$ leży przynajmniej jeden punkt krytyczny.

Elementarna Geometria Różniczkowa

Powierzchnie w R³

oustawowe definicje

Przykłady nowierzch

Parametryzacja Mong

TOWICIZETHIC ODTOLOWE

Powierzchnie prostokreśln

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne cierunkowe zometria

Krzywizna Gaussa

zywizna Gauss

Theorema Egregium Twierdzenie klasyfikacyjne

$$F: V \to \mathbb{R}$$

będzie gładką funkcją.

▶ Punkt $p \in V$ nazywamy **punktem krytycznym** funkcji *F* jeśli

$$\left(\frac{\partial F}{\partial x_1}(p), \frac{\partial F}{\partial x_2}(p), \frac{\partial F}{\partial x_3}(p)\right) = 0.$$

Liczbę $a \in \mathbb{R}$ nazywamy wartością krytyczną odwzorowania F jeśli wewnątrz zbioru $F^{-1}(a)$ leży przynajmniej jeden punkt krytyczny.

Flementarna Geometria Różniczkowa

$$\frac{\partial F}{\partial x_i}(p) \neq 0.$$

► Liczbę $a \in \mathbb{R}$ nazywamy wartością regularną

Punkt $p \in V$ nazywamy **punktem regularnym** odwzorowania F jeśli dla pewnego i = 1, 2, 3

$$\frac{\partial F}{\partial x_i}(p) \neq 0.$$

► Liczbę $a \in \mathbb{R}$ nazywamy wartością regularną

Punkt $p \in V$ nazywamy **punktem regularnym** odwzorowania F jeśli dla pewnego i = 1, 2, 3

$$\frac{\partial F}{\partial x_i}(p) \neq 0.$$

▶ Liczbę $a \in \mathbb{R}$ nazywamy wartością regularną odwzorowania F jeśli zbiór $F^{-1}(a)$ składa się tylko z punktów regularnych.

Twierdzenie

Niech $V \subset \mathbb{R}^3$ będzie zbiorem otwartym, zaś $F: V \to \mathbb{R}$ funkcją gładką. Jeśli $a \in F(V) \subset \mathbb{R}$ jest wartością regularną, wtedy $F^{-1}(a)$ jest powierzchnią gładką (o ile jest to zbiór niepusty).

Dowód:

Dowód jest dosyć techniczny i wynika z twierdzenia o funkcji uwikłanej. Pomijamy.

Elementarna Geometria Różniczkowa

Powierzchnie w K

odstawowe definicje

Przykłady powierzo

Parametryzacja Monge'a

Powierzchnie prosto

Poziomice funkcji

Wektory styczne normalne. I form

ochodne cierunkowe

rzywizna Gaussa

. .

neorema Egregium vierdzenie asvfikacvine

Twierdzenie

Niech $V \subset \mathbb{R}^3$ będzie zbiorem otwartym, zaś $F: V \to \mathbb{R}$ funkcją gładką. Jeśli $a \in F(V) \subset \mathbb{R}$ jest wartością regularną, wtedy $F^{-1}(a)$ jest powierzchnią gładką (o ile jest to zbiór niepusty).

Dowód:

Dowód jest dosyć techniczny i wynika z twierdzenia o funkcji uwikłanej. Pomijamy.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Przykłady powierzch

rarametryzacja wionge a

B 1 1 1 1 1 1

Towicizeiiiie proste

Poziomice funkcji

Wektory styczne normalne. I form podstawowa

Pochodne kierunkowe.

rzywizna Gaussa

zwyizna Caussa

Przykład

▶ elipsoida (w szczególności sfera o promieniu R jako przeciwobraz $f^{-1}(R)$, gdzie $f(x, y, z) = x^2 + y^2 + z^2$).

- ▶ paraboloida ($F(x, y, z) = x^2 + y^2 z$)
- hiperboloida (jedno i dwu-powłokowa:

$$f(x) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2}$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Parametryzacja Mon

Powierzchnie obrotowe

Powierzchnie prostok

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

ochodne cierunkowe.

rzywizna Gaussa

zywizna Gaussa

Przykład

▶ elipsoida (w szczególności sfera o promieniu R jako przeciwobraz $f^{-1}(R)$, gdzie $f(x, y, z) = x^2 + y^2 + z^2$).

- ▶ paraboloida ($F(x, y, z) = x^2 + y^2 z$)
- hiperboloida (jedno i dwu-powłokowa:

$$f(x) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2}$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

odstawowe definicje

Domitile de mari

Parametryzacja Mon

Powierzchnie obrotowe

Powierzchnie prostoki

Poziomice funkcji

Wektory styczne i normalne. I forma podstawowa

Pochodne zierunkowe zometria

irzywizna Gaussa I

zywizna Gaussa

Przykład

▶ elipsoida (w szczególności sfera o promieniu R jako przeciwobraz $f^{-1}(R)$, gdzie $f(x, y, z) = x^2 + y^2 + z^2$).

- ▶ paraboloida ($F(x, y, z) = x^2 + y^2 z$)
- hiperboloida (jedno i dwu-powłokowa: $f(x) = \frac{x^2}{x^2} + \frac{y^2}{t^2} \frac{z^2}{z^2}.$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Podstawowe definicje

Domitile de la constance

Parametryzacja Mon

rowierzennie obroi

Powierzchnie pro

Poziomice funkcji

Wektory styczne i normalne. I forma nodstawowa

Pochodne cierunkowe zometria

(rzywizna Gaussa I

zywizna Gauss

Wykład 6

Wektory styczne i normalne. I forma podstawowa

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Przestrzen styczi

Wektor norma

rowtorka z algebry linio

orma podstawowa

rocnoane kierunkowe Izometria.

Krzywizna Gaussa

Arzywizna Gaussa II

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa Przestrzeń styczna Wektor normalny Powtórka z algebry liniowej I I forma podstawowa

Pochodne kierunkowe, Izometria.

Krzywizna Gaussa

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie klasyfikacyjne

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

112CST12CT1 STYCE1

Wektor normalr

r owtorku z uigebry iii

orma podstawowa

derunkowe zometria.

Krzywizna Gaussa I

zywizna Gaussa I

$$x(s_0,\cdot):\mathbb{R}\to\mathbb{R}^3$$
.

Podobnie dla dowolnego to mamy krzywą

$$x(\cdot, t_0): \mathbb{R} \to \mathbb{R}^3$$
.

Krzywe te leżą na naszej powierzchni, a wektory styczne do tych krzywych będą grały bardzo ważną rolę w dalszych rozważaniach.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Vektor normalny

owtorka z algebry lifilow

rma podstawowa

cierunkow zometria.

Arzywizna Gaussa

Crzynyizna Gaussa

Powyższe krzywe nazywamy liniami parametru. Jeśli

oznaczymy punkt $p = x(s_0, t_0)$ wtedy wektory do nich styczne w punkcie p oznaczamy przez

$$x_s(p) \stackrel{\text{def.}}{=} \frac{\partial x}{\partial s}(s, t_0)\big|_{s=s_0}, \qquad x_t(p) \stackrel{\text{def.}}{=} \frac{\partial x}{\partial t}(s_0, t)\big|_{t=t_0}.$$

Flementarna Geometria Różniczkowa

$$x_s(p) \stackrel{\text{def.}}{=} \frac{\partial x}{\partial s}(s, t_0)\big|_{s=s_0},$$

$$x_t(p) \stackrel{\text{def.}}{=} \frac{\partial x}{\partial t}(s_0, t)\big|_{t=t_0}.$$

Flementarna Geometria Różniczkowa

Uwaga

Przestrzeń styczna jest faktycznie przestrzenią liniową, tj.

▶ Jeśli $v \in T_pM$, wtedy również $av \in T_pM$ dla dowolnego $a \in \mathbb{R}$. Wynika to z reparametryzacji

 $\alpha_{av}(t) = \alpha_v(at)$

▶ Addytywność (jeśli v, $w \in T_pM$, wówczas $av + bw \in T_pM$, wynika z dowodu następnego lematu.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Wektor normalny

i owtorka z algebry ii

ma poustawowa

kierunkow Izometria.

(rzywizna Gaussa I

Krzywizna Gaussa

Wektor normalny

Powtórka z algebry linio

orma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa

rzywizna Gauss

Theorema Egregium Twierdzenie klasyfikacyjne

Uwaga

Przestrzeń styczna jest faktycznie przestrzenią liniową, tj.

▶ Jeśli $v \in T_pM$, wtedy również $av \in T_pM$ dla dowolnego $a \in \mathbb{R}$. Wynika to z reparametryzacji

$$\alpha_{av}(t) = \alpha_v(at).$$

▶ Addytywność (jeśli v, $w \in T_pM$, wówczas $av + bw \in T_pM$) wynika z dowodu następnego lematu.

Uwaga

Przestrzeń styczna jest faktycznie przestrzenią liniową, tj.

▶ Jeśli $v \in T_pM$, wtedy również av $\in T_pM$ dla dowolnego $a \in \mathbb{R}$. Wynika to z reparametryzacji

$$\alpha_{av}(t) = \alpha_v(at).$$

Addytywność (jeśli v, $w \in T_pM$, wówczas $av + bw \in T_pM$) wynika z dowodu następnego lematu.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Wektor normalny

Powtórka z algebry liniow

na podstawowa

zochodne kierunkowe zometria.

(rzywizna Gaussa I

rzywizna Gaussa

Niech $\alpha_{\nu}: (-\varepsilon, \varepsilon) \to M \subset \mathbb{R}^3$ będzie krzywą gładką. Załóżmy, że $\alpha_{\nu}(0) = p$, oraz $\alpha'_{\nu}(0) = \nu$. Ustalmy punkt $p \in M$ i rozważmy wszystkie tego typu krzywe α_{ν} . Wektory do nich styczne w punkcie p utworzą przestrzeń którą nazywamy przestrzenią styczną i oznaczamy $T_{D}M$.

Uwaga

Przestrzeń styczna jest faktycznie przestrzenią liniową, tj.

▶ Jeśli $v \in T_pM$, wtedy również $av \in T_pM$ dla dowolnego $a \in \mathbb{R}$. Wynika to z reparametryzacji

$$\alpha_{av}(t) = \alpha_v(at).$$

▶ Addytywność (jeśli v, $w \in T_pM$, wówczas $av + bw \in T_pM$) wynika z dowodu następnego lematu.

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym i niech $x: U \to \mathbb{R}^3$ będzie lokalnym układem współrzędnych.

- 1. Przestrzeń styczna jest rozpięta przez wektory $\{x_s(p), x_t(p)\}$, styczne do linii parametru przecinających się w punkcie p.
- 2. Niech $p \in x(U)$, $p = x(s_0, t_0)$ będzie punktem na powierzchni. Wymiar przestrzeni stycznej w punkcie p wynosi

 $\dim T_p M = 2$.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Wektor normalny

Powtórka z algebry liniow

rma podstawowa

Pochodne kierunkowe. zometria.

Krzywizna Gaussa

Krzywizna Gaussa I

Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym i niech $x: U \to \mathbb{R}^3$ będzie lokalnym układem współrzędnych.

- 1. Przestrzeń styczna jest rozpięta przez wektory $\{x_s(p), x_t(p)\}$, styczne do linii parametru przecinających się w punkcie p.
- 2. Niech $p \in x(U)$, $p = x(s_0, t_0)$ będzie punktem na powierzchni. Wymiar przestrzeni stycznej w punkcie p wynosi

 $\dim T_p M = 2.$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Wektor normalny

Powtorka z algebry liniowe

orma podstawowa

rochodne kierunkow Izometria.

Krzywizna Gaussa

rzywizna Gaussa II

heorema Egregium i wierdzenie lasvfikacvine Niech $U \subset \mathbb{R}^2$ będzie zbiorem otwartym i niech $x: U \to \mathbb{R}^3$ będzie lokalnym układem współrzędnych.

- 1. Przestrzeń styczna jest rozpięta przez wektory $\{x_s(p), x_t(p)\}$, styczne do linii parametru przecinających się w punkcie p.
- 2. Niech $p \in x(U)$, $p = x(s_0, t_0)$ będzie punktem na powierzchni. Wymiar przestrzeni stycznej w punkcie p wynosi

dim $T_p M = 2$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Wektor normalny

Powtórka z algebry liniowej

ma podstawowa

kierunkowe Izometria.

(rzywizna Gaussa I

rzywizna Gaussa II

heorema Egregium i wierdzenie

Flementarna

$$\beta \stackrel{\text{def.}}{=} x^{-1} \circ \alpha_v : (-\varepsilon, \varepsilon) \to U \subset \mathbb{R}^2$$

$$\alpha_{\nu}(t) = \underbrace{x \circ x^{-1}}_{\mathrm{id}_{x(U)}} \circ \alpha_{\nu}(t) = x(\beta_1(t), \beta_2(t))$$

Dowód:

Wystarczy udowodnić pierwszą część lematu.

Niech $\langle x_s(p), x_t(p) \rangle_{\mathbb{R}}$ oznacza podprzestrzeń liniową w \mathbb{R}^3 rozpiętą przez wektory x_s i x_t . Pokażemy, że każdy wektor z przestrzeni stycznej T_pM można przedstawić jako kombinację liniową wektorów stycznych do linii parametru.

Niech $v \in T_pM$. Z definicji przestrzeni stycznej istnieje krzywa α_v : $(-\varepsilon, \varepsilon) \to M \subset \mathbb{R}^3$ taka, że $\alpha_v(0) = p$, $\alpha_v'(0) = v \in T_pM$. Rozważmy złożenie

$$\beta \stackrel{\text{def.}}{=} x^{-1} \circ \alpha_{\nu} : (-\varepsilon, \varepsilon) \to U \subset \mathbb{R}^2$$

i niech $\beta_1,\beta_2\colon (-\epsilon,\epsilon)\to \mathbb{R}$ będą funkcjami współrzędnych β . Wtedy równość funkcji

$$\alpha_{\nu}(t) = \underbrace{x \circ x^{-1}}_{\mathrm{id}_{x(U)}} \circ \alpha_{\nu}(t) = x(\beta_1(t), \beta_2(t))$$

pociąga równość pochodnych:

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Wektor normalny

Powtórka z algebry liniow

orma podstawowa

ochodne ierunkowe. ometria.

Krzywizna Gaussa I

rzywizna Gaussa II

Wystarczy udowodnić pierwszą część lematu. Niech $\langle x_s(p), x_t(p) \rangle_{\mathbb{R}}$ oznacza podprzestrzeń liniową w \mathbb{R}^3 rozpiętą przez wektory x_s i x_t . Pokażemy, że każdy wektor z przestrzeni stycznej T_pM można przedstawić jako kombinację liniową wektorów stycznych do linii parametru.

$$\beta \stackrel{\text{def.}}{=} x^{-1} \circ \alpha_{v} : (-\varepsilon, \varepsilon) \to U \subset \mathbb{R}^{2}$$

$$\alpha_{\nu}(t) = \underbrace{x \circ x^{-1}}_{id_{\nu}(t)} \circ \alpha_{\nu}(t) = x(\beta_1(t), \beta_2(t)),$$

Flementarna Geometria Różniczkowa

Niech $\langle x_s(p), x_t(p) \rangle_{\mathbb{R}}$ oznacza podprzestrzeń liniową w \mathbb{R}^3 rozpiętą przez wektory x_s i x_t . Pokażemy, że każdy wektor z przestrzeni stycznej T_pM można przedstawić jako kombinację liniową wektorów stycznych do linii parametru.

Niech $v \in T_p M$. Z definicji przestrzeni stycznej istnieje krzywa $\alpha_{\nu}: (-\varepsilon, \varepsilon) \to M \subset \mathbb{R}^3$ taka, że $\alpha_{\nu}(0) = p$, $\alpha_{\nu}'(0) = \nu \in T_p M$.

$$\beta \stackrel{\text{def.}}{=} x^{-1} \circ \alpha_{v} : (-\varepsilon, \varepsilon) \to U \subset \mathbb{R}^{2}$$

$$\alpha_{\nu}(t) = \underbrace{x \circ x^{-1}}_{\mathrm{id}_{x(U)}} \circ \alpha_{\nu}(t) = x(\beta_1(t), \beta_2(t)),$$

Flementarna Geometria Różniczkowa

Niech $v \in T_p M$. Z definicji przestrzeni stycznej istnieje krzywa $\alpha_{\nu}: (-\varepsilon, \varepsilon) \to M \subset \mathbb{R}^3$ taka, że $\alpha_{\nu}(0) = p, \alpha_{\nu}'(0) = \nu \in T_pM$. Rozważmy złożenie

$$\beta \stackrel{\text{def.}}{=} x^{-1} \circ \alpha_{\nu} : (-\epsilon, \epsilon) \to \mathit{U} \subset \mathbb{R}^2$$

i niech $\beta_1, \beta_2: (-\varepsilon, \varepsilon) \to \mathbb{R}$ będą funkcjami współrzędnych β .

$$\alpha_{\nu}(t) = \underbrace{x \circ x^{-1}}_{\mathrm{id}_{x(U)}} \circ \alpha_{\nu}(t) = x(\beta_1(t), \beta_2(t)),$$

Flementarna Geometria Różniczkowa

Niech $\langle x_s(p), x_t(p) \rangle_{\mathbb{R}}$ oznacza podprzestrzeń liniową w \mathbb{R}^3 rozpiętą przez wektory x_s i x_t . Pokażemy, że każdy wektor z przestrzeni stycznej T_pM można przedstawić jako kombinację liniową wektorów stycznych do linii parametru.

Niech $v \in T_p M$. Z definicji przestrzeni stycznej istnieje krzywa $\alpha_{\nu}: (-\varepsilon, \varepsilon) \to M \subset \mathbb{R}^3$ taka, że $\alpha_{\nu}(0) = p$, $\alpha_{\nu}'(0) = \nu \in T_p M$. Rozważmy złożenie

$$\beta \stackrel{\text{def.}}{=} x^{-1} \circ \alpha_{\nu} : (-\varepsilon, \varepsilon) \to U \subset \mathbb{R}^2$$

i niech $\beta_1, \beta_2: (-\varepsilon, \varepsilon) \to \mathbb{R}$ będą funkcjami współrzędnych β . Wtedy równość funkcji

$$\alpha_{\nu}(t) = \underbrace{x \circ x^{-1}}_{\mathrm{id}_{x(U)}} \circ \alpha_{\nu}(t) = x(\beta_1(t), \beta_2(t)),$$

pociąga równość pochodnych:

Wektor normalny

Powtórka z algebry liniowej

l forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa

Theorema Egregium Twierdzenie klasyfikacyjne

$$\begin{aligned} v &= \alpha'_{v}(t)\big|_{t=0} = x(\beta_{1}(t), \beta_{2}(t))'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta'_{1}(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta'_{2}(t)\big|_{t=0} = \\ &= \beta'_{1}(0)x_{s}(s_{0}) + \beta'_{2}(0)x_{t}(t_{0}) \end{aligned}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = (dlaczego?). Zdefiniujmy krzywą $\alpha: (-\varepsilon, \varepsilon) \to x(U)$ przez

Wektor normalny

Powtórka z algebry liniow

orma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa

Krzywizna Gaussa

Theorema Egregium Twierdzenie klasyfikacyjne

$$\begin{split} v &= \alpha_{v}'(t)\big|_{t=0} = x\big(\beta_{1}(t), \beta_{2}(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta_{1}'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta_{2}'(t)\big|_{t=0} = \\ &= \beta_{1}'(0)x_{s}(s_{0}) + \beta_{2}'(0)x_{t}(t_{0}), \end{split}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Be straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = p (dlaczego?). Zdefiniujmy krzywą $\alpha: (-\varepsilon, \varepsilon) \to x(U)$ przez $\alpha(t) = x(at, bt)$. Proste przeliczenie pokazuje, że $\alpha(0) = p$ i $\alpha'(0) = ax_s + bx_t = v$, czyli v należy do T_pM .

Wektor normalny

Powtórka z algebry liniowe

orma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

rzywizna Gaussa

Theorema Egregium Twierdzenie klasyfikacyjne

$$\begin{split} v &= \alpha_{v}'(t)\big|_{t=0} = x\big(\beta_{1}(t), \beta_{2}(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta_{1}'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta_{2}'(t)\big|_{t=0} = \\ &= \beta_{1}'(0)x_{s}(s_{0}) + \beta_{2}'(0)x_{t}(t_{0}), \end{split}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$.

Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Be straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = p (dlaczego?). Zdefiniujmy krzywą $\alpha: (-\varepsilon, \varepsilon) \to x(U)$ przez $\alpha(t) = x(at, bt)$. Proste przeliczenie pokazuje, że $\alpha(0) = p$ i $\alpha'(0) = ax_s + bx_t = v$, czyli v należy do T_pM .

Wektor normalny

Powtórka z algebry liniov

ioiiia poustawowa

kierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

$$\begin{split} v &= \alpha_{v}'(t)\big|_{t=0} = x\big(\beta_{1}(t), \beta_{2}(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta_{1}'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta_{2}'(t)\big|_{t=0} = \\ &= \beta_{1}'(0)x_{s}(s_{0}) + \beta_{2}'(0)x_{t}(t_{0}), \end{split}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Bez

straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0)=p (dlaczego?). Zdefiniujmy krzywą $\alpha:(-\varepsilon,\varepsilon)\to x(U)$ przez $\alpha(t)=x(at,bt)$. Proste przeliczenie pokazuje, że $\alpha(0)=p$ i $\alpha'(0)=ax_s+bx_t=v$, czyli v należy do T_pM .

Wektor normalny

Powtorka z algebry liniowej

ioiiia poustawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

$$\begin{aligned} v &= \alpha_{v}'(t)\big|_{t=0} = x\big(\beta_{1}(t), \beta_{2}(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta_{1}'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta_{2}'(t)\big|_{t=0} = \\ &= \beta_{1}'(0)x_{s}(s_{0}) + \beta_{2}'(0)x_{t}(t_{0}), \end{aligned}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Bez straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = p (dlaczego?). Zdefiniujmy krzywą $\alpha: (-\varepsilon, \varepsilon) \to x(U)$ przez $\alpha(t) = x(at, bt)$. Proste przeliczenie pokazuje, że $\alpha(0) = p$ i $\alpha'(0) = ax_s + bx_t = v$, czyli v należy do T_pM .

Wektor normalny

Powtórka z algebry liniov

forma podstawowa

zometria.

Krzywizna Gaussa

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie klasyfikacyjne

$$\begin{aligned} v &= \alpha_{v}'(t)\big|_{t=0} = x\big(\beta_{1}(t), \beta_{2}(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta_{1}'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta_{2}'(t)\big|_{t=0} = \\ &= \beta_{1}'(0)x_{s}(s_{0}) + \beta_{2}'(0)x_{t}(t_{0}), \end{aligned}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Bez straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = p (dlaczego?). Zdefiniujmy krzywą $\alpha: (-\varepsilon, \varepsilon) \to x(U)$ przez $\alpha(t) = x(at, bt)$. Proste przeliczenie pokazuje, że $\alpha(0) = p$ i $\alpha'(0) = ax_s + bx_t = v$, czyli v należy do $T_p M$.

Wektor normalny

Powtórka z algebry liniowe

forma podstawowa

Izometria.

Krzywizna Gaussa

(rzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

$$\begin{aligned} v &= \alpha_{v}'(t)\big|_{t=0} = x\big(\beta_{1}(t), \beta_{2}(t)\big)'\big|_{t=0} = \\ &= \frac{\partial x}{\partial \beta_{1}}(s_{0}, t_{0})\beta_{1}'(t)\big|_{t=0} + \frac{\partial x}{\partial \beta_{2}}(s_{0}, t_{0})\beta_{2}'(t)\big|_{t=0} = \\ &= \beta_{1}'(0)x_{s}(s_{0}) + \beta_{2}'(0)x_{t}(t_{0}), \end{aligned}$$

co daje szukany rozkład v w bazie $\{x_s, x_t\}$. Teraz przypuśćmy, że $v = ax_s + bx_t$ dla pewnych $a, b \in \mathbb{R}$. Bez straty ogólności możemy założyć, że lokalny układ współrzędnych został w taki sposób wybrany, że x(0,0) = p (dlaczego?). Zdefiniujmy krzywą $\alpha : (-\varepsilon, \varepsilon) \to x(U)$ przez $\alpha(t) = x(at, bt)$. Proste przeliczenie pokazuje, że $\alpha(0) = p$ i $\alpha'(0) = ax_s + bx_t = v$, czyli v należy do T_pM .

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma oodstawowa

Przestrzeń styczna

Wektor normalny

Powtórka z algebry liniowej

forma podstawov

kierunkowe. Izometria.

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie

Uwaga

Zauważmy, że przestrzeń styczna nie ma ustalonej w kanoniczny sposób bazy. Wektory x_s i x_t ją rozpinające zależą od wybranego lokalnego układu współrzędnych. Natomiast niezależna od tego wyboru jest cała przestrzeń styczna, a więc i jej ortogonalne dopełnienie, które nazywać będziemy kierunkiem normalnym.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią, oraz niech

$$x: U \longrightarrow M$$

 $(s_0, t_0) \longmapsto p \in M$

będzie lokalnym układem współrzędnych. **Wektor normalny w** *p* definiujemy jako

$$N(p) \stackrel{ ext{def.}}{=} rac{x_s imes x_t}{\|x_s imes x_t\|} (s_0, t_0),$$

gdzie x_s i x_t wektorami stycznymi do linii parametru przechodzących przez punkt p.

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Vektory styczne i Jormalne. I forma Jodstawowa

Wektor normalny

Powtórka z algebry liniowej

ma podstawowa

rochodne cierunkowe zometria.

Arzywizna Gaussa I

Krzywizna Gaussa

Ponieważ wektor normalny ma długość 1, więc koniec każdego wektora normalnego N(p) leży na powierzchni sfery dwuwumiarowej $N(M) \subset S^2$. Zatem N może być traktowany jako **odwzorowanie między powierzchniami**

$$N:M \to S^2 \subset \mathbb{R}^3$$

punktów na powierzchni M. Jest to tzw. **odwzorowanie Gaussa** do którego wrócimy później.

Powierzchnie w \mathbb{R}^3

Wektory styczne normalne. I form podstawowa

1120311201131902

Wektor normalny

Powtorka z algebry liniow

orma podstawowa

kierunkow Izometria.

Krzywizna Gaussa I

V------ C----- II

heorema Egregium i wierdzenie

Definicja

Niech V będzie przestrzenią liniową nad ciałem \mathbb{R} . Forma dwuliniowa na V to odwzorowanie

$$F: V \times V \to \mathbb{R}$$
,

które jest liniowe na każdej ze zmiennych, tj. spełnione są następujące równości

- F(av + bw, z) = aB(v, z) + bB(w, z)
- F(v, aw + bz) = aB(v, w) + bB(v, z)

dla wszystkich wektorów v, w, $z \in V$ oraz wszystkich liczb rzeczywistych a, $b \in \mathbb{R}$.

rzywizna Gaussa

rzywizna Gaussa

Theorema Egregium Twierdzenie klasyfikacyjne

Definicja

Niech V będzie przestrzenią liniową nad ciałem \mathbb{R} . Forma dwuliniowa na V to odwzorowanie

$$F: V \times V \to \mathbb{R}$$

które jest liniowe na każdej ze zmiennych, tj. spełnione są następujące równości

- F(av + bw, z) = aB(v, z) + bB(w, z)
- F(v, aw + bz) = aB(v, w) + bB(v, z)

dla wszystkich wektorów v, w, $z \in V$ oraz wszystkich liczb rzeczywistych a, $b \in \mathbb{R}$.

Definicja

Formę dwuliniową B nazywamy symetryczną jeśli

$$B(v, w) = B(w, v)$$

dla wszystkich v, $w \in V$.

Definicja

Niech $\{v_1, \ldots, v_n\}$ będzie bazą przestrzeni V, oraz niech B będzie formą dwuliniową na V. Macierz fromy B w tej bazie definiujemy jako

$$A \stackrel{\text{def.}}{=} \begin{bmatrix} B(v_1, v_1) & \cdots & B(v_1, v_n) \\ \vdots & \ddots & \vdots \\ B(v_n, v_1) & \cdots & B(v_n, v_n) \end{bmatrix}$$

Przy takiej definicji mamy $B(x, y) = xAy^T$ gdzie y^T oznacza transpozycję.

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Wektor normalny

Powtórka z algebry liniowej I

forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa

$$B(v, w) = B(w, v)$$

dla wszystkich v, $w \in V$.

Definicja

Niech $\{v_1, \ldots, v_n\}$ będzie bazą przestrzeni V, oraz niech B będzie formą dwuliniową na V. Macierz fromy B w tej bazie definiujemy jako

$$A \stackrel{\text{def.}}{=} \left[\begin{array}{ccc} B(v_1, v_1) & \cdots & B(v_1, v_n) \\ \vdots & \ddots & \vdots \\ B(v_n, v_1) & \cdots & B(v_n, v_n) \end{array} \right]$$

Przy takiej definicji mamy $B(x, y) = xAy^T$ gdzie y^T oznacza transpozycję.

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczn

Wektor normalny

Powtórka z algebry liniowej I

forma podstawowa

rochodne kierunkowe Izometria.

(rzywizna Gaussa I

Krzywizna Gau

Przykład

Standardowy iloczyn skalarny $\langle x, y \rangle = \sum x_i^2$ jest oczywiście formą dwuliniową. W standardowej bazie przestrzeni \mathbb{R}^n jego macierzą jest $A = \operatorname{Id}$.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Wektor normalny

Powtórka z algebry liniowej I

forma podstawowa

Pochodne kierunkowe

Krzywizna Gaussa I

rzywizna Gaussa II

I forma podstawowa

Elementarna Geometria Różniczkowa

Definicja

Niech $M \subset \mathbb{R}^3$ będzie gładką powierchnią i niech $p \in M$ będzie punktem na niej. Dla powierzchni M definiujemy **pierwszą formę podstawową w punkcie** p jako formę dwuliniową

$$I_p: T_p \mathcal{M} \times T_p \mathcal{M} \longrightarrow \mathbb{R}$$

 $(v, w) \longmapsto \langle v, w \rangle,$

gdzie $\langle\cdot,\cdot\rangle$ jest standardowym iloczynem skalarnym w \mathbb{R}^3 . Oznaczamy ją symbolem I_p .

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczn

Wektor normalny

Powtórka z algebry liniowej I

I forma podstawowa

kierunkowe Izometria.

arzywizna Gaussa I

Krzywizna Gaussa

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

rrzestrzen stycz

Wektor normali

Powtórka z algebry liniowej I

I forma podstawowa

kierunkowe Izometria.

Krzywizna Gaussa

Krzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

Definicja

Pierwsza forma podstawowa powierzchni M to zależna w sposób ciągły od punktu p rodzina wszystkich form dwuliniowych

 $\mathfrak{I}_{\mathcal{M}}\stackrel{\mathrm{def.}}{=} \{I_{p}\}_{p\in\mathcal{M}}.$

Od teraz wektory styczne do linii parametru będziemy nazywać x_1 i x_2 zamiast x_s i x_t . Niech $x(s_0, t_0) = p$.

Definicja

Pierwsza forma podstawowa powierzchni M to zależna w sposób ciągły od punktu p rodzina wszystkich form dwuliniowych

$$\mathfrak{I}_{\mathcal{M}}\stackrel{\mathrm{def.}}{=} \{I_{p}\}_{p\in\mathcal{M}}.$$

Od teraz wektory styczne do linii parametru będziemy nazywać x_1 i x_2 zamiast x_s i x_t . Niech $x(s_0, t_0) = p$.

I forma podstawowa

Uwaga

W każdym punkcie powierzchni macierz formy podstawowej to macierz wymiaru 2 × 2. Przy tak przyjętych oznaczeniach niech

$$g_{ij}(s_0, t_0) \stackrel{def.}{=} \langle x_i(s_0), x_j(t_0) \rangle, \quad i, j = 1, 2.$$

$$I_p = \begin{bmatrix} g_{11}(s_0, t_0) & g_{12}(s_0, t_0) \\ g_{21}(s_0, t_0) & g_{22}(s_0, t_0) \end{bmatrix}$$

$$g_{ij}(s_0, t_0) \stackrel{def.}{=} \langle x_i(s_0), x_j(t_0) \rangle, \quad i, j = 1, 2.$$

Wtedy macierz formy podstawowej w bazie $\{x_1, x_2\}$, w punkcie p ma postać

$$I_p = \left[\begin{array}{ccc} g_{11}(s_0, t_0) & g_{12}(s_0, t_0) \\ g_{21}(s_0, t_0) & g_{22}(s_0, t_0) \end{array} \right]$$

W przyszłości będziemy utożsamiać formę z jej macierzą w standardowej bazie przestrzeni stycznej.

Powierzchnie w R3

Wektory styczne i normalne. I forma podstawowa

TELSTIZETI STYCETIL

ektor normalny/

Powtórka z algebry liniowej I

I forma podstawowa

rochoune kierunkowe. Izometria.

Krzywizna Gaussa

Krzywizna Gaussa I

W każdym punkcie powierzchni macierz formy podstawowej to macierz wymiaru 2×2 . Przy tak przyjętych oznaczeniach niech

$$g_{ij}(s_0, t_0) \stackrel{def.}{=} \langle x_i(s_0), x_j(t_0) \rangle, \quad i, j = 1, 2.$$

Wtedy macierz formy podstawowej w bazie $\{x_1, x_2\}$, w punkcie p ma postać

$$I_p = \left[\begin{array}{ccc} g_{11}(s_0, t_0) & g_{12}(s_0, t_0) \\ g_{21}(s_0, t_0) & g_{22}(s_0, t_0) \end{array} \right]$$

W przyszłości będziemy utożsamiać formę z jej macierzą w standardowej bazie przestrzeni stycznej.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

12CS112C11 Styc211

Wektor normalny

Powtórka z algebry liniowej I

I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa

Krzywizna Gaussa I

$$x(s,t)=(s,t,st).$$

$$x_1(s, t) = (1, 0, t)$$
 $x_2(s, t) = (0, 1, s)$

$$I_p = I_{x(s,t)} = \begin{bmatrix} 1+t^2 & st \\ st & 1+s^2 \end{bmatrix}$$

Flementarna Geometria Różniczkowa

$$x(s,t)=(s,t,st).$$

Wtedy

$$x_1(s, t) = (1, 0, t)$$
 $x_2(s, t) = (0, 1, s).$

$$I_p = I_{x(s,t)} = \begin{bmatrix} 1+t^2 & st \\ st & 1+s^2 \end{bmatrix}$$

Flementarna Geometria Różniczkowa

$$x(s,t)=(s,t,st).$$

Wtedy

$$x_1(s, t) = (1, 0, t)$$
 $x_2(s, t) = (0, 1, s).$

Biorac odpowiednie iloczyny skalarne tych wektorów otrzymujemy następującą postać macierzy pierwszej formy podstawowej:

$$I_p = I_{x(s,t)} = \begin{bmatrix} 1+t^2 & st \\ st & 1+s^2 \end{bmatrix}$$

Elementarna Geometria Różniczkowa

$$x(s,t)=(s,t,st).$$

Wtedy

$$x_1(s, t) = (1, 0, t)$$
 $x_2(s, t) = (0, 1, s).$

Biorac odpowiednie iloczyny skalarne tych wektorów otrzymujemy następującą postać macierzy pierwszej formy podstawowej:

$$I_p = I_{x(s,t)} = \begin{bmatrix} 1+t^2 & st \\ st & 1+s^2 \end{bmatrix}$$

Elementarna Geometria Różniczkowa

Definicja

Elementy macierzy I_p nazywamy współczynnikami metrycznymi lokalnego układu współrzędnych $x: U \to M$

Uwaga

- ▶ Ponieważ $\langle x_i, x_j \rangle = \langle x_j, x_i \rangle$, więc I_p jest formą symetryczna $(g_{12} = g_{21})$.
- Gauss (a za nim część podręczników) używał oznaczeń E, F i G na (odpowienio) g₁₁, g₁₂ i g₂₂.

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

rzestrzeń styczna

Wektor normalny

Powtórka z algebry liniowej I

I forma podstawowa

Pochodne kierunkowe Izometria

Krzywizna Gaussa I

rzywizna Gaussa II

Wektor normaln

Powtórka z algebry liniowej l

I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie

Definicja

Elementy macierzy I_p nazywamy współczynnikami metrycznymi lokalnego układu współrzędnych $x: U \to M$

Uwaga

- ▶ Ponieważ $\langle x_i, x_j \rangle = \langle x_j, x_i \rangle$, więc I_p jest formą symetryczną $(g_{12} = g_{21})$.
- Gauss (a za nim część podręczników) używał oznaczeń E, F i G na (odpowienio) g₁₁, g₁₂ i g₂₂.

Uwaga

- ▶ Ponieważ $\langle x_i, x_j \rangle = \langle x_j, x_i \rangle$, więc I_p jest formą symetryczną $(g_{12} = g_{21})$.
- ► Gauss (a za nim część podręczników) używał oznaczeń E, F i G na (odpowienio) g₁₁, g₁₂ i g₂₂.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Transfer Stycan

Wektor normaln

Powtórka z algebry liniowej I

I forma podstawowa

Pochodne cierunkowe. zometria.

rzywizna Gaussa

heorema Egregium i wierdzenie

Wektor normaln

Powtórka z algebry liniowej I

I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa

rzywizna Gaussa

Theorema Egregium i Twierdzenie

Definicja

Elementy macierzy I_p nazywamy współczynnikami metrycznymi lokalnego układu współrzędnych $x: U \to M$

Uwaga

- ▶ Ponieważ $\langle x_i, x_j \rangle = \langle x_j, x_i \rangle$, więc I_p jest formą symetryczną $(g_{12} = g_{21})$.
- Gauss (a za nim część podręczników) używał oznaczeń E, F i G na (odpowienio) g₁₁, g₁₂ i g₂₂.

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy

$$N = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}}.$$

Dowód

Niech φ będzie kątem między x_1 i x_2 . Wtedy

$$\det(g_{ij}) = g_{11}g_{22} - g_{12}^2 = \langle x_1, x_1 \rangle \langle x_2, x_2 \rangle - \langle x_1, x_2 \rangle^2 =$$

$$= \|x_1\|^2 \|x_2\|^2 - \|x_1\|^2 \|x_2\|^2 \cos^2 \varphi =$$

$$= \|x_1\|^2 \|x_2\|^2 (1 - \cos^2 \varphi) =$$

$$= \|x_1\|^2 \|x_2\|^2 \sin^2 \varphi = \|x_1 \times x_2\|^2,$$

i lemat wynika z definicii *N*.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

1 12esti 2eii stytzii

Wektor normalny

owtórka z algebry liniow

I forma podstawowa

ochodne ierunkowe. zometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy

$$N = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}}.$$

Dowód:

Niech φ będzie kątem między x_1 i x_2 . Wtedy

$$\det(g_{ij}) = g_{11}g_{22} - g_{12}^2 = \langle x_1, x_1 \rangle \langle x_2, x_2 \rangle - \langle x_1, x_2 \rangle^2 =$$

$$= \|x_1\|^2 \|x_2\|^2 - \|x_1\|^2 \|x_2\|^2 \cos^2 \varphi =$$

$$= \|x_1\|^2 \|x_2\|^2 (1 - \cos^2 \varphi) =$$

$$= \|x_1\|^2 \|x_2\|^2 \sin^2 \varphi = \|x_1 \times x_2\|^2,$$

i lemat wynika z definicii *N*.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

11203112011 3170211

Wektor normalny

owtórka z algebry liniow

I forma podstawowa

ochodne ierunkowe. ometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy

$$N = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}}.$$

Dowód:

Niech φ będzie kątem między x_1 i x_2 . Wtedy

$$\det(g_{ij}) = g_{11}g_{22} - g_{12}^2 = \langle x_1, x_1 \rangle \langle x_2, x_2 \rangle - \langle x_1, x_2 \rangle^2 =$$

$$= \|x_1\|^2 \|x_2\|^2 - \|x_1\|^2 \|x_2\|^2 \cos^2 \varphi =$$

$$= \|x_1\|^2 \|x_2\|^2 (1 - \cos^2 \varphi) =$$

$$= \|x_1\|^2 \|x_2\|^2 \sin^2 \varphi = \|x_1 \times x_2\|^2,$$

i lemat wynika z definicii *N*.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

/ektory styczne i ormalne. I forma odstawowa

r raconiacii orycani

Wektor normalny

Powtórka z algebry linio

I forma podstawowa

zocnoane kierunkowe. zometria.

Krzywizna Gaussa

azy wiziia Gaussa ii

neorema Egregium vierdzenie asyfikacyjne

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy

$$N = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}}.$$

Dowód:

Niech φ będzie kątem między x_1 i x_2 . Wtedy

$$\det(g_{ij}) = g_{11}g_{22} - g_{12}^2 = \langle x_1, x_1 \rangle \langle x_2, x_2 \rangle - \langle x_1, x_2 \rangle^2 =$$

$$= \|x_1\|^2 \|x_2\|^2 - \|x_1\|^2 \|x_2\|^2 \cos^2 \varphi =$$

$$= \|x_1\|^2 \|x_2\|^2 (1 - \cos^2 \varphi) =$$

$$= \|x_1\|^2 \|x_2\|^2 \sin^2 \varphi = \|x_1 \times x_2\|^2,$$

i lemat wynika z definicji *N*.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

ektory styczne rmalne. I form dstawowa

1 12esti 2eii styczna

Wektor normalny

Powtórka z algebry lini

I forma podstawowa

Pochodne kierunkowe. zometria.

Krzywizna Gaussa I

Vernauirana Causaa II

heorema Egregium

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy

$$N = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}}.$$

Dowód:

Niech φ będzie kątem między x_1 i x_2 . Wtedy

$$\det(g_{ij}) = g_{11}g_{22} - g_{12}^2 = \langle x_1, x_1 \rangle \langle x_2, x_2 \rangle - \langle x_1, x_2 \rangle^2 =$$

$$= \|x_1\|^2 \|x_2\|^2 - \|x_1\|^2 \|x_2\|^2 \cos^2 \varphi =$$

$$= \|x_1\|^2 \|x_2\|^2 (1 - \cos^2 \varphi) =$$

$$= \|x_1\|^2 \|x_2\|^2 \sin^2 \varphi = \|x_1 \times x_2\|^2,$$

i lemat wynika z definicji N.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Vektory styczne Jormalne. I form Jodstawowa

1 12esti 2eii styczna

Vektor normalny

Powtórka z algebry l

I forma podstawowa

rocnoane kierunkowe Izometria.

arzywizna Gaussa I

Krzywizna Gaussa I

$$(\overline{g_{ij}}\circ\Phi_{x,y})=(J_{\Phi}^{-1})^T(g_{ij})J_{\Phi}^{-1}$$

Dowód: Pomijam Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

rrzestrzen styczna

Wektor normaniy

Powtorka z algebry liniowej i

I forma podstawowa

kierunkowe Izometria.

Arzywizna Gaussa

Krzywizna Gaussa I

Niech $M \subset \mathbb{R}^3$ *będzie gładką powierzchnią i niech* $x: U \to M$, $y: V \to M$ będą lokalnymi układami współrzędnych. Załóżmy, że $x(U) \cap y(V) \neq \emptyset$. Niech (g_{ii}) , [odpowiednio $(\overline{g_{ii}})$] oznacza macierz współczynników metrycznych dla x [odpowiednio y].

$$(\overline{g_{ij}}\circ\Phi_{x,y})=(J_{\Phi}^{-1})^T(g_{ij})J_{\Phi}^{-1}$$

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$, $y: V \to M$ będą lokalnymi układami współrzędnych. Załóżmy, że $x(U) \cap y(V) \neq \emptyset$. Niech (g_{ij}) , [odpowiednio $(\overline{g_{ij}})$] oznacza macierz współczynników metrycznych dla x [odpowiednio y]. Jeśli przez J_{Φ} oznaczymy Jakobian (macierz pochodnych) funkcji zmiany układu współrzędnych $\Phi_{x,y}$ wtedy $(\overline{g_{ij}})$ wyrażają się następującymi wzorami

$$(\overline{g_{ij}}\circ\Phi_{x,y})=(J_{\Phi}^{-1})^T(g_{ij})J_{\Phi}^{-1}$$

Dowód: Pomijamy

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Wektor normalny

D . ()

I forma podstawowa

rma podstawowa

cierunkowe. zometria.

(rzywizna Gaussa I

Krzywizna Gaussa

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$, $y: V \to M$ będą lokalnymi układami współrzędnych. Załóżmy, że $x(U) \cap y(V) \neq \emptyset$. Niech (g_{ij}) , [odpowiednio $(\overline{g_{ij}})$] oznacza macierz współczynników metrycznych dla x [odpowiednio y]. Jeśli przez J_{Φ} oznaczymy Jakobian (macierz pochodnych) funkcji zmiany układu współrzędnych $\Phi_{x,y}$ wtedy $(\overline{g_{ij}})$ wyrażają się następującymi wzorami

$$(\overline{g_{ij}}\circ\Phi_{x,y})=(J_{\Phi}^{-1})^T(g_{ij})J_{\Phi}^{-1}$$

Dowód: Pomijamy

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

....

Wektor normalny

owtorka z algebry liniowej i

I forma podstawowa

kierunkowe. zometria.

arzywizna Gaussa I

Krzywizna Gaussa

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$, $y: V \to M$ będą lokalnymi układami współrzędnych. Załóżmy, że $x(U) \cap y(V) \neq \emptyset$. Niech (g_{ij}) , [odpowiednio $(\overline{g_{ij}})$] oznacza macierz współczynników metrycznych dla x [odpowiednio y]. Jeśli przez J_{Φ} oznaczymy Jakobian (macierz pochodnych) funkcji zmiany układu współrzędnych $\Phi_{x,y}$ wtedy $(\overline{g_{ij}})$ wyrażają się następującymi wzorami

$$(\overline{g_{ij}}\circ\Phi_{x,y})=(J_\Phi^{-1})^T(g_{ij})J_\Phi^{-1}$$

Dowód:

Pomijamy.

Powierzchnie w R³

Vektory styczne Jormalne. I form Jodstawowa

....

Wektor normalny

owtorka z algebry liniowej i

I forma podstawowa

kierunkowe Izometria.

rzywizna Gaussa I

Crzynyizna Gaussa

co można bezpośrednio zapisać:

$$\int_{a}^{b} \sqrt{(\alpha'_{1})^{2} g_{11}(\alpha(t)) + 2\alpha'_{1}\alpha'_{2}g_{12}(\alpha(t)) + (\alpha'_{2})^{2} g_{22}(\alpha(t))} dt$$

Dowód:

Ćwiczenie. Zauważyć, że $(x \circ \alpha)(t)$ jest zwykłą krzywą w \mathbb{R}^3 . Wektor prędkości jest równy $x_1\alpha_1' + x_2\alpha_2'$. Znaleźć jego długość, \mathbb{R}^3 . \mathbb{R}^3 .

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Przestrzeń styczna

Powtórka z algebry linic

I forma podstawowa

zywizna Gaussa I

. Irzywizna Gaussa II

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Rozważmy krzywą gładką $\alpha(t) = (\alpha_1(t), \alpha_2(t)) \subset U$. Wtedy długość krzywej

 $\overline{\alpha} \stackrel{\text{def.}}{=} x \circ \alpha : \mathbb{R} \to M$ na powierzchni jest równa

$$L(\overline{\alpha}) = \int_{a}^{b} \sqrt{I_{\alpha(t)}(\alpha'_{1}(t), \alpha'_{2}(t))} dt,$$

co można bezpośrednio zapisać

$$\int_{a}^{b} \sqrt{(\alpha_{1}')^{2} g_{11}(\alpha(t)) + 2\alpha_{1}' \alpha_{2}' g_{12}(\alpha(t)) + (\alpha_{2}')^{2} g_{22}(\alpha(t))} dt$$

Dowód:

Ćwiczenie. Zauważyć, że $(x \circ \alpha)(t)$ jest zwykłą krzywą w \mathbb{R}^3 . Wektor prędkości jest równy $x_1\alpha_1' + x_2\alpha_2'$. Znaleźć jego długość,

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

rrzestrzen styczna

D. A. L. L. L. L. L.

I forma podstawowa

Izometria.

Krzywizna Gaussa

Krzywizna Gaussa II

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Rozważmy krzywą gładką $\alpha(t) = (\alpha_1(t), \alpha_2(t)) \subset U$. Wtedy długość krzywej $\overline{\alpha} \stackrel{def.}{=} x \circ \alpha : \mathbb{R} \to M$ na powierzchni jest równa

$$L(\overline{\alpha}) = \int_{a}^{b} \sqrt{I_{\alpha(t)}(\alpha'_{1}(t), \alpha'_{2}(t))} dt,$$

co można bezpośrednio zapisać:

$$\int_{a}^{b} \sqrt{(\alpha_{1}')^{2} g_{11}(\alpha(t)) + 2\alpha_{1}' \alpha_{2}' g_{12}(\alpha(t)) + (\alpha_{2}')^{2} g_{22}(\alpha(t))} dt$$

Dowód:

Ćwiczenie. Zauważyć, że $(x \circ \alpha)(t)$ jest zwykłą krzywą w \mathbb{R}^3 . Wektor prędkości jest równy $x_1\alpha_1' + x_2\alpha_2'$. Znaleźć jego długość, $\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4 \mathbf{x}_5 \mathbf$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Przestrzen styczna

Wektor normalny

Powtórka z algebry liniowej I

I forma podstawowa

zierunkowe. zometria.

Krzywizna Gaussa

Krzywizna Gaussa II

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Rozważmy krzywą gładką $\alpha(t) = (\alpha_1(t), \alpha_2(t)) \subset U$. Wtedy długość krzywej $\overline{\alpha} \stackrel{def.}{=} x \circ \alpha : \mathbb{R} \to M$ na powierzchni jest równa

$$L(\overline{\alpha}) = \int_{a}^{b} \sqrt{I_{\alpha(t)}(\alpha'_{1}(t), \alpha'_{2}(t))} dt,$$

co można bezpośrednio zapisać:

$$\int_{a}^{b} \sqrt{(\alpha_{1}')^{2} g_{11}(\alpha(t)) + 2\alpha_{1}' \alpha_{2}' g_{12}(\alpha(t)) + (\alpha_{2}')^{2} g_{22}(\alpha(t))} dt.$$

Dowód

Ćwiczenie. Zauważyć, że $(x \circ \alpha)(t)$ jest zwykłą krzywą w \mathbb{R}^3 . Wektor prędkości jest równy $x_1\alpha_1' + x_2\alpha_2'$. Znaleźć jego długość, $\mathbf{x} = \mathbf{x} + \mathbf{x} = \mathbf{x}$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Wektor normalny

Powtórka z algebry liniowej I

I forma podstawowa

tierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Rozważmy krzywą gładką $\alpha(t) = (\alpha_1(t), \alpha_2(t)) \subset U$. Wtedy długość krzywej $\overline{\alpha} \stackrel{def.}{=} x \circ \alpha: \mathbb{R} \to M$ na powierzchni jest równa

$$L(\overline{\alpha}) = \int_{a}^{b} \sqrt{I_{\alpha(t)}(\alpha'_{1}(t), \alpha'_{2}(t))} dt,$$

co można bezpośrednio zapisać:

$$\int_{a}^{b} \sqrt{(\alpha_{1}')^{2} g_{11}(\alpha(t)) + 2\alpha_{1}' \alpha_{2}' g_{12}(\alpha(t)) + (\alpha_{2}')^{2} g_{22}(\alpha(t))} dt.$$

Dowód:

Ćwiczenie. Zauważyć, że $(x \circ \alpha)(t)$ jest zwykłą krzywą w \mathbb{R}^3 . Wektor prędkości jest równy $x_1\alpha_1' + x_2\alpha_2'$. Znaleźć jego długość,

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Przestrzen styczna

Wektor normalny

Powtórka z algebry liniow

I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gau

Wykład 7

Pochodne kierunkowe. Izometria.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.
Pochodne kierunkowe
Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie klasyfikacyjne

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa

Krzywizna Gaussa II

ierunkowe. cometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa

Krzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f: M \to \mathbb{R}$ oraz wektor $v \in T_p M$ z przestrzeni stycznej.

Z definicji przestrzeni stycznej istnieje krzywa $\alpha:(-\varepsilon,\varepsilon)\to M$ taka że $\alpha(0)=p$ oraz $\alpha'(0)=v$. Oczywiście złożenie $f\circ\alpha:\mathbb{R}\to\mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodną.

Definicja

Przy oznaczeniach jak powyżej definiujemy **pochodną kierunkową** funkcji **f w kierunku wektora** *v* jako

$$\nabla_{\mathbf{v}} f \stackrel{\text{def.}}{=} (f \circ \alpha)'(0)$$

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Pochodne kierunkowe

Izometri

Krzywizna Gaussa

Krzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f: M \to \mathbb{R}$ oraz wektor $v \in T_p M$ z przestrzeni stycznej. Z definicji przestrzeni stycznej istnieje krzywa $\alpha: (-\varepsilon, \varepsilon) \to M$ taka że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Oczywiście złożenie $f \circ \alpha: \mathbb{R} \to \mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodną.

Definicja

Przy oznaczeniach jak powyżej definiujemy **pochodna kierunkową** funkcji **f w kierunku wektora** *v* jako

$$\nabla_{\mathbf{v}} f \stackrel{\text{def.}}{=} (f \circ \alpha)'(0)$$

ocnoane ierunkowe. zometria.

Pochodne kierunkowe

izometr

Krzywizna Gauss

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f:M \to \mathbb{R}$ oraz wektor $v \in T_pM$ z przestrzeni stycznej. Z definicji przestrzeni stycznej istnieje krzywa $\alpha:(-\varepsilon,\varepsilon) \to M$ taka że $\alpha(0)=p$ oraz $\alpha'(0)=v$. Oczywiście złożenie $f\circ\alpha:\mathbb{R}\to\mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodną.

Definicja

Przy oznaczeniach jak powyżej definiujemy **pochodną kierunkową** funkcji **f w kierunku wektora** *v* jako

$$\nabla_{\mathbf{v}} f \stackrel{\text{def.}}{=} (f \circ \alpha)'(0)$$

ierunkowe. zometria.

Pochodne kierunkowe

izomen

Krzywizna Gau:

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f:M \to \mathbb{R}$ oraz wektor $v \in T_pM$ z przestrzeni stycznej. Z definicji przestrzeni stycznej istnieje krzywa $\alpha:(-\varepsilon,\varepsilon) \to M$ taka że $\alpha(0)=p$ oraz $\alpha'(0)=v$. Oczywiście złożenie $f\circ\alpha:\mathbb{R}\to\mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodną.

Definicja

Przy oznaczeniach jak powyżej definiujemy **pochodną kierunkową** funkcji f **w kierunku wektora** v jako

$$\nabla_{\mathbf{v}} f \stackrel{\text{def.}}{=} (f \circ \alpha)'(0).$$

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli β : $(-\epsilon,\epsilon) \rightarrow M$ jest drugą krzywą o tej własności, że $\beta(0) = p$ oraz $\beta'(0) = v$ wtedy

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

Dowód:

- Niech x: U → M − lokalny układ współrzędnych wokół p ∈ M.
- ▶ Załóżmy, że $\alpha(-\varepsilon, \varepsilon) \subset x(u)$, oraz $\beta(-\varepsilon, \varepsilon) \subset x(U)$.
- ► Z założenia mamy $\alpha'(0) = v = \beta'(0)$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> chodne runkowe. metria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli β : $(-\epsilon, \epsilon) \rightarrow M$ jest drugą krzywą o tej własności, że $\beta(0) = p$ oraz $\beta'(0) = v$ wtedy

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

Dowód:

- Niech x: U → M − lokalny układ współrzędnych wokół p ∈ M.
- ▶ Załóżmy, że $\alpha(-\varepsilon, \varepsilon) \subset x(u)$, oraz $\beta(-\varepsilon, \varepsilon) \subset x(U)$.
- ► Z założenia mamy $\alpha'(0) = v = \beta'(0)$.

Powierzchnie w R3

Wektory styczne i normalne. I forma podstawowa

metria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli β : $(-\epsilon,\epsilon) \rightarrow M$ jest drugą krzywą o tej własności, że $\beta(0) = p$ oraz $\beta'(0) = v$ wtedy

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

Dowód:

- Niech x: U → M − lokalny układ współrzędnych wokół p ∈ M.
- ▶ Załóżmy, że $\alpha(-\varepsilon, \varepsilon) \subset x(u)$, oraz $\beta(-\varepsilon, \varepsilon) \subset x(U)$.
- ► Z założenia mamy $\alpha'(0) = v = \beta'(0)$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ometria.

Pochodne kierunkowe

Izometri

Krzywizna Gaussa

Crzywizna Gaussa II

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli β : $(-\epsilon,\epsilon) \rightarrow M$ jest drugą krzywą o tej własności, że $\beta(0) = p$ oraz $\beta'(0) = v$ wtedy

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

Dowód:

- Niech x: U → M − lokalny układ współrzędnych wokół p ∈ M.
- ▶ Załóżmy, że $\alpha(-\varepsilon, \varepsilon) \subset x(u)$, oraz $\beta(-\varepsilon, \varepsilon) \subset x(U)$.
- ► Z założenia mamy $\alpha'(0) = v = \beta'(0)$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ometria.

Pochodne kierunkowe

Izometr

Krzywizna Gaussa I

Krzywizna Gaussa II

$$\left(x^{-1}\circ\alpha\right)'\!(0)=\left(x^{-1}\circ\beta\right)'\!(0).$$

Mamy wtedy

$$(f \circ \alpha)'(0) = [(f \circ x) \circ (x^{-1} \circ \alpha)]'(0) =$$

$$= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{=v = (x^{-1} \circ \beta)'(0)} =$$

$$= J(f \circ x)(x^{-1} \circ \beta(0))(x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0)$$

gdzie J oznacza jakobian odwzorowania (macierz pochodnych czastkowych). Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Zatem również

$$\left(x^{-1}\circ\alpha\right)'\!(0)=\left(x^{-1}\circ\beta\right)'\!(0).$$

Mamy wtedy

$$(f \circ \alpha)'(0) = [(f \circ x) \circ (x^{-1} \circ \alpha)]'(0) =$$

$$= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{=v = (x^{-1} \circ \beta)'(0)} =$$

$$= J(f \circ x)(x^{-1} \circ \beta(0))(x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0)$$

gdzie *J* oznacza jakobian odwzorowania (macierz pochodnych czastkowych).

$$\left(x^{-1}\circ\alpha\right)'\!(0)=\left(x^{-1}\circ\beta\right)'\!(0).$$

Mamy wtedy

$$(f \circ \alpha)'(0) = [(f \circ x) \circ (x^{-1} \circ \alpha)]'(0) =$$

$$= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{=v = (x^{-1} \circ \beta)'(0)} =$$

$$= J(f \circ x) (x^{-1} \circ \beta(0)) (x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0)$$

gdzie J oznacza jakobian odwzorowania (macierz pochodnych czastkowych). Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. cometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

$$\left(x^{-1}\circ\alpha\right)'\!(0)=\left(x^{-1}\circ\beta\right)'\!(0).$$

Mamy wtedy

$$\begin{split} (f \circ \alpha)'(0) &= \left[(f \circ x) \circ (x^{-1} \circ \alpha) \right]'(0) = \\ &= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{=v = (x^{-1} \circ \beta)'(0)} = \\ &= J(f \circ x)(x^{-1} \circ \beta(0))(x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0), \end{split}$$

gdzie *J* oznacza jakobian odwzorowania (macierz pochodnych cząstkowych).

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $f,g:M \to \mathbb{R}$ będą funkcjami gładkimi. Dla wszystkich: punktów $p \in M$, wektorów $v,w \in T_pM$ z przestrzeni stycznej w punkcie p, oraz liczb rzeczywistych $a,b \in \mathbb{R}$ zachodzi

$$\nabla_{v}(af + bg) = a\nabla_{v}f + b\nabla_{v}(g)$$

Uwaga

Dwie pierwsze własności mówią, że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor). Powierzchnie w R

Wektory styczne i normalne. I forma podstawowa

zometria.

rochoune kierunkowe

izometria

Krzywizna Gaussa I

Arzywizna Gaussa II

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $f, g: M \to \mathbb{R}$ będą funkcjami gładkimi. Dla wszystkich: punktów $p \in M$, wektorów $v, w \in T_pM$ z przestrzeni stycznej w punkcie p, oraz liczb rzeczywistych $a, b \in \mathbb{R}$ zachodzi

$$\nabla_{av+bw} f = a \nabla_v f + b \nabla_w f$$

Uwaga

Dwie pierwsze własności mówią, że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor).

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

Niech M $\subset \mathbb{R}^3$ *będzie powierzchnią gładką i niech f, g:M* $\to \mathbb{R}$ beda funkcjami gładkimi. Dla wszystkich: punktów $p \in M$, wektorów v, $w \in T_pM$ z przestrzeni stycznej w punkcie p, oraz liczb rzeczywistych a, $b \in \mathbb{R}$ zachodzi

$$\nabla_{av+bw} f = a \nabla_v f + b \nabla_w f$$

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $f, g: M \to \mathbb{R}$ będą funkcjami gładkimi. Dla wszystkich: punktów $p \in M$, wektorów $v, w \in T_pM$ z przestrzeni stycznej w punkcie p, oraz liczb rzeczywistych $a, b \in \mathbb{R}$ zachodzi

$$\nabla_{av+bw} f = a \nabla_v f + b \nabla_w f$$

$$\nabla_{v}(af + bg) = a\nabla_{v}f + b\nabla_{v}(g)$$

Uwaga

Dwie pierwsze własności mówią, że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor).

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa

Irzywizna Gaussa II

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $f,g:M \to \mathbb{R}$ będą funkcjami gładkimi. Dla wszystkich: punktów $p \in M$, wektorów $v,w \in T_pM$ z przestrzeni stycznej w punkcie p, oraz liczb rzeczywistych $a,b \in \mathbb{R}$ zachodzi

$$\nabla_{av+bw} f = a \nabla_v f + b \nabla_w f$$

Uwaga

Dwie pierwsze własności mówią, że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor).

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ometria.

Pochodne kierunkowe

izometri

Krzywizna Gaussa

Krzywizna Gaussa II

$$\alpha_{v}(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t) \qquad \alpha_{w}(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t),$$

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_{\nu}(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_{\nu}(0)} = v + w.$$

Flementarna Geometria Różniczkowa

Udowodnimy teraz pierwszą własność.

$$\alpha_{v}(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t)$$
 $\alpha_{w}(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t)$

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_{\nu}(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_{\nu}(0)} = v + w.$$

Własność drugą i trzecią pozostawiamy jako (proste) ćwiczenia. Wystarczy w nich skorzystać z podstawowych własności różniczkowania funkcji.

Udowodnimy teraz pierwszą własność.

Niech $v = (v_1, v_2)$ oraz $w = (w_1, w_2)$. Bez straty ogólności możemy założyć, że x(0,0) = p. Zdefiniujmy

$$\alpha_v(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t)$$
 $\alpha_w(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t)$

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_{\nu}(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_{\nu}(0)} = v + w.$$

Flementarna Geometria Różniczkowa

Udowodnimy teraz pierwszą własność.

Niech $v = (v_1, v_2)$ oraz $w = (w_1, w_2)$. Bez straty ogólności możemy założyć, że x(0,0) = p. Zdefiniujmy

$$\alpha_{v}(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t) \qquad \alpha_{w}(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t),$$

oraz niech

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_{\nu}(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_{\nu}(0)} = v + w.$$

Flementarna Geometria Różniczkowa

Udowodnimy teraz pierwszą własność.

Niech $v = (v_1, v_2)$ oraz $w = (w_1, w_2)$. Bez straty ogólności możemy założyć, że x(0,0) = p. Zdefiniujmy

$$\alpha_{v}(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t) \qquad \alpha_{w}(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t),$$

oraz niech

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

Wówczas pochodna β w t = 0 jest równa

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_{\nu}(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_{\nu}(0)} = v + w.$$

Flementarna Geometria Różniczkowa

$$\nabla_{av+bw} f = (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \Big|_{t=0} =$$

$$= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1 x_1 + v_2 x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1 x_1 + w_2 x_2) =$$

$$= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) =$$

$$= a (f \circ \alpha_v)'(t) \Big|_{t=0} + b (f \circ \alpha_w)'(t) \Big|_{t=0} =$$

$$a \nabla_v f + b \nabla_w f$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ochodne erunkowe. ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

$$\nabla_{av+bw}f = (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \Big|_{t=0} =$$

$$= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1x_1 + v_2x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1x_1 + w_2x_2) =$$

$$= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) =$$

$$= a (f \circ \alpha_v)'(t) \Big|_{t=0} + b (f \circ \alpha_w)'(t) \Big|_{t=0} =$$

$$a \nabla_v f + b \nabla_w f$$

Powierzchnie w R3

Wektory styczne i normalne. I forma podstawowa

> ochodne erunkowe. ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

$$\nabla_{av+bw} f = (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \Big|_{t=0} =$$

$$= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1 x_1 + v_2 x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1 x_1 + w_2 x_2) =$$

$$= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) =$$

$$= a (f \circ \alpha_v)'(t) \Big|_{t=0} + b (f \circ \alpha_w)'(t) \Big|_{t=0} =$$

$$a \nabla_v f + b \nabla_w f$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

$$\begin{split} \nabla_{av+bw} f &= (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \bigg|_{t=0} = \\ &= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1 x_1 + v_2 x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1 x_1 + w_2 x_2) = \\ &= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) = \\ &= a (f \circ \alpha_v)'(t) \bigg|_{t=0} + b (f \circ \alpha_w)'(t) \bigg|_{t=0} = \\ &= a \nabla_v f + b \nabla_w f. \end{split}$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $f:M \to \mathbb{R}^3$ będzie odwzorowaniem gładkim (tj. polem wektorowym). **Pochodną** f w punkcie $p \in M$ definiujemy jako

$$Df_p: T_p \mathcal{M} \to R^3$$

 $v \mapsto \nabla_v f = (\nabla_v f_1, \nabla_v f_2, \nabla_v f_3).$

Niech $M, N \subset \mathbb{R}^3$ będą powierzchniami gładkimi, $p \in M$ punktem, oraz niech $f: M \to N$ będzie odwzorowaniem gładkim. Wtedy dla każdego $v \in T_pM$ mamy $Df_p(v) \in T_{f(p)}N$ oraz

$$Df_p: T_pM \to T_{f(p)}N$$

jest odwzorowaniem liniowym.

Dowód:

Liniowość wynika natychmiast z liniowości pochodnej kierunkowej, (Lemat 7.3, punkt drugi) więc musimy tylko pokazać, że $Df_p(v) \in T_{f(p)}N$.

Powierzchnie w R3

Wektory styczne i normalne. I forma podstawowa

metria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Niech $M, N \subset \mathbb{R}^3$ będą powierzchniami gładkimi, $p \in M$ punktem, oraz niech $f: M \to N$ będzie odwzorowaniem gładkim. Wtedy dla każdego $v \in T_pM$ mamy $Df_p(v) \in T_{f(p)}N$ oraz

$$Df_p: T_pM \to T_{f(p)}N$$

jest odwzorowaniem liniowym.

Dowód:

Liniowość wynika natychmiast z liniowości pochodnej kierunkowej, (Lemat 7.3, punkt drugi) więc musimy tylko pokazać, że $Df_p(v) \in T_{f(p)}N$.

Powierzchnie w R3

Wektory styczne i normalne. I forma podstawowa

metria.

ochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

$$Df_p: T_pM \to T_{f(p)}N$$

jest odwzorowaniem liniowym.

Dowód:

Liniowość wynika natychmiast z liniowości pochodnej kierunkowej, (Lemat 7.3, punkt drugi) więc musimy tylko pokazać, że $Df_p(v) \in T_{f(p)}N$.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

ochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

xierunkowe. zometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Niech $v \in T_p M$. Wtedy istnieje taka krzywa $\alpha: (-\varepsilon, \varepsilon) \to M$, że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Mamy wtedy

$$Df_p(v) = \nabla_v f = (f \circ \alpha)'(0).$$

Zauważmy, że krzywa

$$f \circ \alpha : (-\varepsilon, \varepsilon) \to N$$

jest krzywą na powierzchni N, oraz $(f \circ \alpha)(0) = f(p)$. Zatem z definicji przestrzeni stycznej otrzymujemy $(f \circ \alpha)'(0) \in T_{f(p)}N$, czyli $Df_p(v) \in T_{f(p)}N$.

zometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Niech $v \in T_p M$. Wtedy istnieje taka krzywa $\alpha: (-\varepsilon, \varepsilon) \to M$, że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Mamy wtedy

$$Df_p(v) = \nabla_v f = (f \circ \alpha)'(0).$$

Zauważmy, że krzywa

$$f \circ \alpha : (-\varepsilon, \varepsilon) \to N$$

jest krzywą na powierzchni N, oraz $(f \circ \alpha)(0) = f(p)$. Zatem z definicji przestrzeni stycznej otrzymujemy $(f \circ \alpha)'(0) \in T_{f(p)}N$, czyli $Df_p(v) \in T_{f(p)}N$.

zometria.

Pochodne kierunkow

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Niech $v \in T_p M$. Wtedy istnieje taka krzywa $\alpha: (-\varepsilon, \varepsilon) \to M$, że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Mamy wtedy

$$Df_p(v) = \nabla_v f = (f \circ \alpha)'(0).$$

Zauważmy, że krzywa

$$f \circ \alpha : (-\varepsilon, \varepsilon) \to N$$

jest krzywą na powierzchni N, oraz $(f \circ \alpha)(0) = f(p)$. Zatem z definicji przestrzeni stycznej otrzymujemy $(f \circ \alpha)'(0) \in T_{f(p)}N$, czyli $Df_p(v) \in T_{f(p)}N$.

Rozważmy odwzorowanie $f: \mathbb{R}^2 \to S^1 \times \mathbb{R}$ zadane wzorem

$$f(s, t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija walec arkuszem papieru.)

Dla $p = (0, 0) \in \mathbb{R}^2$ mamy f(p) = (1, 0, 0). Zauważmy, że

$$T_{f(p)}(S^1 \times \mathbb{R})\{(1, y, z) \in \mathbb{R}^3\}.$$

Wybierzmy $v = (a, b) \in T_p \mathbb{R}^2$ i niech $\alpha: (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ będzie zadana przez $\alpha(t) = (at, bt)$. Wtedy oczywiście

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)'\big|_{t=0} =$$

= $(-a \sin at, a \cos at, b)\big|_{t=0} = (0, a, b).$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

kierunkowe. zometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa

Krzywizna Gaussa II

$$f(s, t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija walec arkuszem papieru.) Dla $p=(0,0)\in\mathbb{R}^2$ mamy f(p)=(1,0,0). Zauważmy, że

$$T_{f(p)}(S^1 \times \mathbb{R})\{(1, y, z) \in \mathbb{R}^3\}.$$

Wybierzmy $v = (a, b) \in T_p \mathbb{R}^2$ i niech $\alpha: (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ będzie zadana przez $\alpha(t) = (at, bt)$. Wtedy oczywiście

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)' \big|_{t=0} =$$

= $(-a \sin at, a \cos at, b) \big|_{t=0} = (0, a, b)$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

$$f(s, t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija walec arkuszem papieru.) Dla $p=(0,0)\in\mathbb{R}^2$ mamy f(p)=(1,0,0). Zauważmy, że

$$T_{f(p)}(S^1 \times \mathbb{R})\{(1, y, z) \in \mathbb{R}^3\}.$$

Wybierzmy $v=(a,b)\in T_p\mathbb{R}^2$ i niech $\alpha\colon (-\varepsilon,\varepsilon)\to \mathbb{R}^2$ będzie zadana przez $\alpha(t)=(at,bt)$. Wtedy oczywiście

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)' \big|_{t=0} =$$

= $(-a \sin at, a \cos at, b) \big|_{t=0} = (0, a, b)$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ometria.

Pochodne kierunkow

Izometria

Krzywizna Gaussa

Krzywizna Gaussa II

$$f(s, t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija walec arkuszem papieru.) Dla $p=(0,0)\in\mathbb{R}^2$ mamy f(p)=(1,0,0). Zauważmy, że

$$T_{f(p)}(S^1 \times \mathbb{R})\{(1, y, z) \in \mathbb{R}^3\}.$$

Wybierzmy $v=(a,b)\in T_p\mathbb{R}^2$ i niech $\alpha\colon (-\varepsilon,\varepsilon)\to \mathbb{R}^2$ będzie zadana przez $\alpha(t)=(at,bt)$. Wtedy oczywiście

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)' \big|_{t=0} =$$

= $(-a \sin at, a \cos at, b) \big|_{t=0} = (0, a, b).$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ometria.

Pochodne kierunkow

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim.

► Mówimy, że f jest **izometrią** jeśli f jest dyfeomorfizmem,

$$I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w)),$$

► Funkcję f nazywamy **lokalną izometrią**, jeśli dla

Izometria

▶ Mówimy, że f jest **izometrią** jeśli f jest dyfeomorfizmem, oraz pierwsza forma podstawowa jest niezmienniczna ze względu na f, i.e.

$$I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w)),$$

dla wszystkich $p \in M$ i wszystkich $v, w \in T_p(M)$.

► Funkcję f nazywamy **lokalną izometrią**, jeśli dla każdego punktu $p \in M$ istnieje jego otoczenie otwarte $U \subset M$ takie, że $f(U) \subset N$ jest zbiorem otwartym (w N), oraz $f|_{U}: U \to f(U)$ jest izometrią.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim.

 Mówimy, że f jest izometrią jeśli f jest dyfeomorfizmem, oraz pierwsza forma podstawowa jest niezmienniczna ze względu na f, i.e.

$$I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w)),$$

dla wszystkich $p \in M$ i wszystkich $v, w \in T_p(M)$.

Funkcję f nazywamy **lokalną izometrią**, jeśli dla każdego punktu $p \in M$ istnieje jego otoczenie otwarte $U \subset M$ takie, że $f(U) \subset N$ jest zbiorem otwartym (w N), oraz $f|_U: U \to f(U)$ jest izometrią.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> ochodne ierunkowe. cometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium
Twierdzenie

Uwaga

Warto zauważyć, że izometria od lokalnej izometrii różni się tylko i wyłącznie tym, że lokalna izometria nie musi być dyfeomorfizmem całych przestrzeni. Jest to niewielka, lecz jak zobaczymy ważna różnica.

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim. Następujące warunki są równoważne.

- f jest lokalną izometrią.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.
- B. Dla każdego p ∈ M istnieje lokalny układ współrzędnych x: U → M wokół p taki, że f ∘ x: U → N jest lokalnym układem współrzędnych o takich samych współczynnikach metrycznych g_{ij} jak x.
- 4. Dla każdego punktu $p \in M$ istnieje takie jego otoczenie otwarte $A \subset M$, że jeśli $\alpha:(a,b) \to A$ jest gładką krzywą, to długość $\alpha \subset M$ jest taka sama jak długość $f \circ \alpha \subset N$.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> ochodne erunkowe. ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim. Następujące warunki są równoważne.

- 1. f jest lokalną izometrią.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.
- Dla każdego p ∈ M istnieje lokalny układ współrzędnych x: U → M wokół p taki, że f ∘ x: U → N jest lokalnym układem współrzędnych o takich samych współczynnikach metrycznych g_{ij} jak x.
- 4. Dla każdego punktu $p \in M$ istnieje takie jego otoczenie otwarte $A \subset M$, że jeśli $\alpha:(a,b) \to A$ jest gładką krzywą, to długość $\alpha \subset M$ jest taka sama jak długość $f \circ \alpha \subset N$.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

- 1. f jest lokalną izometrią.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.
- Dla każdego p ∈ M istnieje lokalny układ współrzędnych x: U → M wokół p taki, że f ∘ x: U → N jest lokalnym układem współrzędnych o takich samych współczynnikach metrycznych g_{ij} jak x.
- Dla każdego punktu p ∈ M istnieje takie jego otoczenie otwarte A ⊂ M, że jeśli α:(a, b) → A jest gładką krzywą, to długość α ⊂ M jest taka sama jak długość f ∘ α ⊂ N.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim. Następujące warunki są równoważne.

- 1. f jest lokalną izometrią.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.
- 3. Dla każdego $p \in M$ istnieje lokalny układ współrzędnych $x: U \to M$ wokół p taki, że $f \circ x: U \to N$ jest lokalnym układem współrzędnych o takich samych współczynnikach metrycznych g_{ij} jak x.
- 4. Dla każdego punktu $p \in M$ istnieje takie jego otoczenie otwarte $A \subset M$, że jeśli α : $(a, b) \rightarrow A$ jest gładką krzywą, to długość $\alpha \subset M$ jest taka sama jak długość $f \circ \alpha \subset N$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

ochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim. Następujące warunki są równoważne.

- 1. f jest lokalną izometrią.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.
- 3. Dla każdego $p \in M$ istnieje lokalny układ współrzędnych $x: U \to M$ wokół p taki, że $f \circ x: U \to N$ jest lokalnym układem współrzędnych o takich samych współczynnikach metrycznych g_{ij} jak x.
- 4. Dla każdego punktu $p \in M$ istnieje takie jego otoczenie otwarte $A \subset M$, że jeśli $\alpha:(a,b) \to A$ jest gładką krzywą, to długość $\alpha \subset M$ jest taka sama jak długość $f \circ \alpha \subset N$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

ochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2,$$

Udowodnimy tylko, że lokalna izometria zachowuje współczynniki metryczne. Resztę implikacji pozostawiamy jako (opcjonalne) zadania.

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2,$$

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$.

(2) \Rightarrow (3): Pokażemy, że pochodna złożenia $f \circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej wynika, że $f \circ x$ na pewnym otoczeniu $V \subset U$ jest dyfeomorfizmem na swój obraz.

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2$$

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$.

(2) \Rightarrow (3): Pokażemy, że pochodna złożenia $f \circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej wynika, że $f \circ x$ na pewnym otoczeniu $V \subset U$ jest dyfeomorfizmem na swój obraz.

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2$$

Udowodnimy tylko, że lokalna izometria zachowuje współczynniki metryczne. Resztę implikacji pozostawiamy jako (opcjonalne) zadania.

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$.

(2) \Rightarrow (3): Pokażemy, że pochodna złożenia $f \circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej wynika, że $f \circ x$ na pewnym otoczeniu $V \subset U$ jest dyfeomorfizmem na swój obraz. Niech $\{e_1, e_2\}$ będzie standardową bazą w \mathbb{R}^2 . Niech $q \in x(U)$ oraz niech $\overline{q} = x^{-1}(q)$.

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2$$

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$.

(2) \Rightarrow (3): Pokażemy, że pochodna złożenia $f \circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej wynika, że $f \circ x$ na pewnym otoczeniu $V \subset U$ jest dyfeomorfizmem na swój obraz. Niech $\{e_1, e_2\}$ będzie standardową bazą w \mathbb{R}^2 . Niech $q \in x(U)$ oraz niech $\overline{q} = x^{-1}(q)$. Zdefiniujmy teraz krzywe

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2,$$

działające z $(-\varepsilon, \varepsilon) \to x(U)$ dla odpowiednio małego ε .

Powierzchnie w R³

Vektory styczne i ormalne. I forma odstawowa

erunkowe. ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Irzywizna Gaussa II

natomiast z reguły łańcuchowej wynika, że

$$f \circ \alpha_{q,i}(0) = f(q),$$
 $(f \circ \alpha_{q,i})'(0) = (f \circ x)_i,$

gdzie wartości pochodnych x_i oraz $(f \circ x)_i$ są wzięte dla $\overline{q} \subset U$. Ponownie z definicji uzyskujemy

$$(f \circ x)_i = (f \circ \alpha_{q,i})'(0) = \nabla_{x_i} f = Df_q(x_i)$$

więc korzystając z założeninia mamy

$$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$$

dla wszystkich i, j = 1, 2.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> chodne erunkowe. ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

natomiast z reguły łańcuchowej wynika, że

$$f \circ \alpha_{q,i}(0) = f(q),$$
 $(f \circ \alpha_{q,i})'(0) = (f \circ x)_i,$

gdzie wartości pochodnych x_i oraz $(f\circ x)_i$ są wzięte dla $\overline{q}\subset U$. Ponownie z definicji uzyskujemy

$$(f\circ x)_i=(f\circ \alpha_{q,i})'(0)=\nabla_{x_i}f=Df_q(x_i),$$

więc korzystając z założeninia mamy

$$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$$

dla wszystkich i, j = 1, 2.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> chodne erunkowe. ometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

$$lpha_{q,i}(0)=q, \qquad \qquad lpha_{q,i}'(0)=x_i,$$

natomiast z reguły łańcuchowej wynika, że

$$f \circ \alpha_{q,i}(0) = f(q),$$
 $(f \circ \alpha_{q,i})'(0) = (f \circ x)_i,$

gdzie wartości pochodnych x_i oraz $(f \circ x)_i$ są wzięte dla $\overline{q} \subset U$. Ponownie z definicji uzyskujemy

$$(f \circ x)_i = (f \circ \alpha_{q,i})'(0) = \nabla_{x_i} f = Df_q(x_i),$$

więc korzystając z założeninia mamy

$$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$$

dla wszystkich i, j = 1, 2.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> chodne runkowe. metria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

- $\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$
- ▶ Zatem $||(f \circ x)_i|| = ||x_i||$ i kąt między $(f \circ x)_1$ i $(f \circ x)_2$ jest taki sam jak między x_1 i x_2 .
- ► Stąd $(f \circ x)_1$ i $(f \circ x)_2$ są liniowo niezależne (na odp. małym $V \subset U$).
- ► Zatem $f \circ x: V \to N$ jest lokalnym układem współrzędnych (tw. o funkcji uwikłanej),
- Współczynniki metryczne $f \circ x$ są takie same jak samego x (powyższa równość).

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

- $\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$
- ► Zatem $||(f \circ x)_i|| = ||x_i||$ i kąt między $(f \circ x)_1$ i $(f \circ x)_2$ jest taki sam jak między x_1 i x_2 .
- ► Stąd $(f \circ x)_1$ i $(f \circ x)_2$ są liniowo niezależne (na odp. małym $V \subset U$).
- ► Zatem $f \circ x: V \to N$ jest lokalnym układem współrzędnych (tw. o funkcji uwikłanej),
- Współczynniki metryczne f ∘ x są takie same jak samego x (powyższa równość).

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

- $\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$
- ▶ Zatem $||(f \circ x)_i|| = ||x_i||$ i kąt między $(f \circ x)_1$ i $(f \circ x)_2$ jest taki sam jak między x_1 i x_2 .
- ► Stąd $(f \circ x)_1$ i $(f \circ x)_2$ są liniowo niezależne (na odp. małym $V \subset U$).
- ► Zatem $f \circ x$: $V \to N$ jest lokalnym układem współrzędnych (tw. o funkcji uwikłanej),
- Współczynniki metryczne $f \circ x$ są takie same jak samego x (powyższa równość).

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$

- ▶ Zatem $||(f \circ x)_i|| = ||x_i||$ i kąt między $(f \circ x)_1$ i $(f \circ x)_2$ jest taki sam jak między x_1 i x_2 .
- ► Stąd $(f \circ x)_1$ i $(f \circ x)_2$ są liniowo niezależne (na odp. małym $V \subset U$).
- ▶ Zatem $f \circ x$: $V \rightarrow N$ jest lokalnym układem współrzędnych (tw. o funkcji uwikłanej),
- ▶ Współczynniki metryczne $f \circ x$ są takie same jak samego x (powyższa równość).

Pokażemy teraz, że funkcja $f: \mathbb{R}^2 \to S^1 \times \mathbb{R}$ określona przez

$$f(s, t) = (\cos s, \sin s, t)$$

jest lokalną izometrią (ale oczywiście nie jest izometrią).

$$(f \circ x)_1 = (-\sin s, \cos s, 0)$$
 oraz $(f \circ x)_2 = (0, 0, 1)$

$$(f \circ x)_1 \times (f \circ x)_2 = (\cos s, \sin s, 0) \neq (0, 0, 0)$$

$$f(s, t) = (\cos s, \sin s, t)$$

jest lokalną izometrią (ale oczywiście nie jest izometrią). Niech $p = (p_1, p_2) \in \mathbb{R}^2$ oraz niech $U = (p_1 - \pi, p_1 + \pi) \times \mathbb{R}$. Wtedy inkluzja $x: U \to \mathbb{R}^2$ jest lokalnym układem współrzędnych w \mathbb{R}^2 , oraz $f \circ x: U \to S^1 \times \mathbb{R}$ jest injekcją. Co

$$(f \circ x)_1 = (-\sin s, \cos s, 0)$$
 oraz $(f \circ x)_2 = (0, 0, 1)$

$$(f \circ x)_1 \times (f \circ x)_2 = (\cos s, \sin s, 0) \neq (0, 0, 0)$$

Pokażemy teraz, że funkcja $f: \mathbb{R}^2 \to S^1 \times \mathbb{R}$ określona przez

$$f(s, t) = (\cos s, \sin s, t)$$

jest lokalną izometrią (ale oczywiście nie jest izometrią). Niech $p = (p_1, p_2) \in \mathbb{R}^2$ oraz niech $U = (p_1 - \pi, p_1 + \pi) \times \mathbb{R}$. Wtedy inkluzja $x: U \to \mathbb{R}^2$ jest lokalnym układem współrzędnych w \mathbb{R}^2 , oraz $f \circ x: U \to S^1 \times \mathbb{R}$ jest injekcją. Co więcej mamy

$$(f \circ x)_1 = (-\sin s, \cos s, 0)$$
 oraz $(f \circ x)_2 = (0, 0, 1),$

więc

$$(f \circ x)_1 \times (f \circ x)_2 = (\cos s, \sin s, 0) \neq (0, 0, 0)$$

czyli $f \circ x$ jest lokalnym układem współrzędnych.

Krzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

Przykład

Obliczenie współczynników metrycznych zarówno dla x jak $f \circ x$ skutkuje wyznaczeniem macierzy pierwszej formy podstawowej, w każdym z przypadków równej

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

Jednocześnie jest jasnym, że f nie może być izometrią, ponieważ w przeciwnym przypadku \mathbb{R}^2 musiałoby być dyfeomorficzne z $S^1 \times \mathbb{R}$.

Obliczenie współczynników metrycznych zarówno dla x jak i $f \circ x$ skutkuje wyznaczeniem macierzy pierwszej formy podstawowej, w każdym z przypadków równej

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

Jednocześnie jest jasnym, że f nie może być izometrią, ponieważ w przeciwnym przypadku \mathbb{R}^2 musiałoby być dyfeomorficzne z $S^1 \times \mathbb{R}$.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Pochodne kierunkowe

Izometria

Krzywizna Gaussa I

Krzywizna Gaussa II

Pochodne kierunkowe

Izometria

Krzywizna Gaussa

Krzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

Przykład

Obliczenie współczynników metrycznych zarówno dla x jak i $f \circ x$ skutkuje wyznaczeniem macierzy pierwszej formy podstawowej, w każdym z przypadków równej

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

Jednocześnie jest jasnym, że f nie może być izometrią, ponieważ w przeciwnym przypadku \mathbb{R}^2 musiałoby być dyfeomorficzne z $S^1 \times \mathbb{R}$.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Zenavizna Caucca – Ida

ole powierzchni

21 11 12

............

zywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Wykład 8

Krzywizna Gaussa I

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa Krzywizna Gaussa – Idea Pole powierzchni Powtórka z algebry liniowej II

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Id

ole powierzo

Powtórka z algebry liniowej II

rzywizna Gaussa II

Jednak dla celów dalszego wykładu chcielibyśmy, aby był funkcją gładką określoną *na powierzchni*. Stąd następująca definicja:

Definicia

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Odwzorowaniem Gaussa** nazywamy odwzorowanie $\widehat{n}: x(U) \to S^2$ zadane wzorem

$$\widehat{n}(p) \stackrel{\text{def.}}{=} n \circ x^{-1}(p),$$

$$gdzie n = \frac{x_1 \times x_2}{\|x_1 \times x_2\|}.$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Ide

Pole powierzchni

Powtórka z algebry liniowei

i owtorka z algebry illilowej il

zywizna Gaussa II

Tak jak został zdefiniowany wektor normalny (jako $\frac{x_1 \times x_2}{\|x_1 \times x_2\|}$, definicja 6.4), jest on raczej funkcją z $\mathbb{R}^2 \to \mathbb{R}^3$ (lub $\mathbb{R}^2 \to S^2$). Jednak dla celów dalszego wykładu chcielibyśmy, aby był funkcją gładką określoną *na powierzchni*. Stąd następująca definicja:

Definicia

Niech $M \subset R^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Odwzorowaniem Gaussa** nazywamy odwzorowanie $\widehat{n}: x(U) \to S^2$ zadane wzorem

 $\widehat{n}(p) \stackrel{\text{def.}}{=} n \circ x^{-1}(p),$

 $gdzie n = \frac{x_1 \times x_2}{\|x_1 \times x_2\|}$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

rzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole nowierzchni

owtórka z algebry liniowej

rzywizna Gaussa I

rzywizna Gaussa II

Odwzorowanie Gaussa

Krzywizna Gaussa – I

Pole powierzchni

owtórka z algebry linio

1 Owtorka 2 angeory milowe

zywizna Gaussa

Theorema Egregium i Twierdzenie klasyfikacyine

Tak jak został zdefiniowany wektor normalny (jako $\frac{x_1 \times x_2}{\|x_1 \times x_2\|}$, definicja 6.4), jest on raczej funkcją z $\mathbb{R}^2 \to \mathbb{R}^3$ (lub $\mathbb{R}^2 \to S^2$). Jednak dla celów dalszego wykładu chcielibyśmy, aby był funkcją gładką określoną *na powierzchni*. Stąd następująca definicja:

Definicja

Niech $M \subset R^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Odwzorowaniem Gaussa** nazywamy odwzorowanie $\widehat{n}: x(U) \to S^2$ zadane wzorem

$$\widehat{n}(p) \stackrel{\text{def.}}{=} n \circ x^{-1}(p),$$

$$gdzie n = \frac{x_1 \times x_2}{\|x_1 \times x_2\|}.$$

Uwaga

- Odwzorowanie Gaussa zależy od tego w jaki sposób

Odwzorowanie Gaussa

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – I

Dala a sociamalos:

Pole powierzchni

Powtórka z algebry liniowej I

rzywizna Gaussa I

Theorema Egregium i Twierdzenie

Uwaga

- ▶ Dla różnych lokalnych układów współrzędnych dobrze określony jest tylko kierunek normalny, (a więc ±n, znak zależy od wyboru kolejności zmiennych u i v). Przyjmujemy że wybieramy kierunek "zewnętrzny" (o ile ma to sens).
- Odwzorowanie Gaussa zależy od tego w jaki sposób powierzchnia M jest umieszczona w R³ (od lokalnego układu współrzędnych).

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – I

Pole powierzchni

Powtórka z algebry liniowe

zywizna Gaussa

Theorema Egregium | Twierdzenie

Uwaga

- ▶ Dla różnych lokalnych układów współrzędnych dobrze określony jest tylko kierunek normalny, (a więc ±n, znak zależy od wyboru kolejności zmiennych u i v). Przyjmujemy że wybieramy kierunek "zewnętrzny" (o ile ma to sens).
- Odwzorowanie Gaussa zależy od tego w jaki sposób powierzchnia M jest umieszczona w R³ (od lokalnego układu współrzędnych).

Theorema Egregium Twierdzenie klasyfikacyjne

Aby zdefiniować krzywiznę potrzebujemy funkcji *K* o następujących własnościach:

1. $K: M \to \mathbb{R}$ jest funkcją gładką;

- krzywizna K(p) jest niezależna od wyboru lokalnego układu współrzędnych, zależy tylko od kształtu powierzchni;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

- 1. $K:M \to \mathbb{R}$ jest funkcją gładką;
- 2. krzywizna K(p) jest niezależna od wyboru lokalnego układu współrzędnych, zależy tylko od kształtu powierzchni;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> ochodne erunkowe. ometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa - Idea

ole powierzchni

Powtórka z algebry liniowej I

rzywizna Gaussa II

Aby zdefiniować krzywiznę potrzebujemy funkcji *K* o następujących własnościach:

- 1. $K:M \to \mathbb{R}$ jest funkcją gładką;
- 2. krzywizna K(p) jest niezależna od wyboru lokalnego układu współrzędnych, zależy tylko od kształtu powierzchni;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole powierzo

Powtórka z algebry liniowej I

zywizna Gaussa I

- 1. $K: M \to \mathbb{R}$ jest funkcją gładką;
- 2. krzywizna K(p) jest niezależna od wyboru lokalnego układu współrzędnych, zależy tylko od kształtu powierzchni;
- jeśli (otwarty, o niepustym wnętrzu) zbiór naszej powierzchni jest zawarty w płaszczyźnie, wtedy krzywizna na nim powinna znikać;
- 4. w sytuacji na rysunku krzywizna powierzchni M w punkcie p powinna być mniejsza niż krzywizna powierzchni N w tym punkcie, $K_M(p) < K_N(q)$.

Powierzchnie w R³

Wektory styczne i normalne. I forma nodstawowa

ometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole powierzchni

Powtórka z algebry liniowej I

rzywizna Gaussa

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Odwzorowanie Gauss

Krzywizna Gaussa – Idea

.

B - 27 L - 1 L - 12 L -

Powtorka z algebry liniowej

Krzywizna Gaussa II

- ▶ Ustalmy punkt $p \in M$ i lokalny układ współrzędnych $x: U \rightarrow M$ wokół p.
- ▶ Wybierzmy niewielkie otoczenie otwarte $V \subset x(U)$ zawierające punkt p.
- ► Kiedy punkt p należy do zbioru V, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(V) \subset S^2$,
- zbadajmy więc stosunek pól powierzchni

$$\frac{A(\widehat{n}(V)), \ \widehat{n}(V) \subset S^2}{A(V), \ V \subset M}$$

Gauss definiował krzywiznę jako

$$K_{\mathcal{G}}(p) \stackrel{\text{def.}}{=} \varinjlim_{V \to p} \frac{A(\widehat{n}(V))}{A(V)}$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzcl

Powtórka z algebry liniowej II

Krzywizna Gaussa II

- Ustalmy punkt p ∈ M i lokalny układ współrzędnych x: U → M wokół p.
- ▶ Wybierzmy niewielkie otoczenie otwarte $V \subset x(U)$ zawierające punkt p.
- ► Kiedy punkt p należy do zbioru V, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(V) \subset S^2$,
- zbadajmy więc stosunek pól powierzchni

$$\frac{A(\widehat{n}(V)), \ \widehat{n}(V) \subset S^2}{A(V), \ V \subset M}$$

Gauss definiował krzywiznę jako

$$K_{\mathcal{G}}(p) \stackrel{\text{def.}}{=} \varinjlim_{V \to p} \frac{A(\widehat{n}(V))}{A(V)}$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma nodstawowa

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole nowierzchni

Powtórka z algebry liniowej

Krzywizna Gaussa II

- ▶ Ustalmy punkt $p \in M$ i lokalny układ współrzędnych $x: U \rightarrow M$ wokół p.
- ▶ Wybierzmy niewielkie otoczenie otwarte $V \subset x(U)$ zawierające punkt p.
- ► Kiedy punkt p należy do zbioru V, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(V) \subset S^2$,
- zbadajmy więc stosunek pól powierzchni

$$\frac{A(\widehat{n}(V)), \ \widehat{n}(V) \subset S^2}{A(V), \ V \subset M}$$

Gauss definiował krzywiznę jako

$$K_{\mathcal{G}}(p) \stackrel{\text{def.}}{=} \varinjlim_{V \to p} \frac{A(\widehat{n}(V))}{A(V)}$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ometria.

Krzywizna Gaussa I

Udwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole powierzo

Powtórka z algebry liniowej II

Krzywizna Gaussa II

- ▶ Ustalmy punkt $p \in M$ i lokalny układ współrzędnych $x: U \rightarrow M$ wokół p.
- ▶ Wybierzmy niewielkie otoczenie otwarte $V \subset x(U)$ zawierające punkt p.
- ► Kiedy punkt p należy do zbioru V, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(V) \subset S^2$,
- zbadajmy więc stosunek pól powierzchni

$$\frac{A(\widehat{n}(V)), \ \widehat{n}(V) \subset S^2}{A(V), \ V \subset M};$$

Gauss definiował krzywiznę jako

$$K_{\mathcal{G}}(p) \stackrel{\text{def.}}{=} \varinjlim_{V \to p} \frac{A(\widehat{n}(V))}{A(V)}$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole powierzchni

Powtórka z algebry liniowej II

(rzywizna Gaussa II

- ▶ Ustalmy punkt $p \in M$ i lokalny układ współrzędnych $x: U \rightarrow M$ wokół p.
- ▶ Wybierzmy niewielkie otoczenie otwarte $V \subset x(U)$ zawierające punkt p.
- ► Kiedy punkt p należy do zbioru V, wtedy $\widehat{n}(p)$ należy do zbioru $\widehat{n}(V) \subset S^2$,
- zbadajmy więc stosunek pól powierzchni

$$\frac{A(\widehat{n}(V)), \ \widehat{n}(V) \subset S^2}{A(V), \ V \subset M};$$

Gauss definiował krzywiznę jako

$$K_{\mathcal{G}}(p) \stackrel{\text{def.}}{=} \varinjlim_{V \to p} \frac{A(\widehat{n}(V))}{A(V)}.$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

rzywizna Gaussa I

Idwzorowanie Gaussa

Krzywizna Gaussa – Idea

.

Powtórka z algebry liniowe

Krzywizna Gaussa II

Krzywizna Gaussa I

Ouwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole nowierzchni

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

- Czy ta granica jest niezależna od wyboru otoczeń V? Jak to formalnie zdefiniować?
- 2. Jak zdefiniować pole wyznaczone przez $\widehat{n}(V)$ kiedy \widehat{n} ni jest injekcją?
- 3. Co się stanie jeśli odwzorowanie Gaussa "odwraca" obszar V? Czy wtedy należałoby brać pole $A(\widehat{n}(V))$ ze znakiem ujemnym?

Krzywizna Gaussa I

Ouwzorowanie Oaussa

Krzywizna Gaussa - Idea

.

Powtórka z algebry liniowej II

(rzywizna Gaussa II.

Theorema Egregium i Twierdzenie klasyfikacyjne

- 1. Czy ta granica jest niezależna od wyboru otoczeń *V*? Jak to formalnie zdefiniować?
- 2. Jak zdefiniować pole wyznaczone przez $\widehat{n}(V)$ kiedy \widehat{n} nie jest injekcją?
- 3. Co się stanie jeśli odwzorowanie Gaussa "odwraca" obszar V? Czy wtedy należałoby brać pole $A(\widehat{n}(V))$ ze znakiem ujemnym?

zometria.

Krzywizna Gaussa I

Odwzorowanie Odussi

Krzywizna Gaussa – Idea

Data a sociamatas

Pourtárko z okrobru liniousi II

Theorema Egregium i Twierdzenie

- 1. Czy ta granica jest niezależna od wyboru otoczeń *V*? Jak to formalnie zdefiniować?
- 2. Jak zdefiniować pole wyznaczone przez $\widehat{n}(V)$ kiedy \widehat{n} nie jest injekcją?
- 3. Co się stanie jeśli odwzorowanie Gaussa "odwraca" obszar V? Czy wtedy należałoby brać pole $A(\widehat{n}(V))$ ze znakiem ujemnym?

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole powierzc

Powtórka z algebry liniowej II

rzywizna Gaussa II

Theorema Egregium i Twierdzenie

- 1. Czy ta granica jest niezależna od wyboru otoczeń *V*? Jak to formalnie zdefiniować?
- 2. Jak zdefiniować pole wyznaczone przez $\widehat{n}(V)$ kiedy \widehat{n} nie jest injekcją?
- 3. Co się stanie jeśli odwzorowanie Gaussa "odwraca" obszar V? Czy wtedy należałoby brać pole $A(\widehat{n}(V))$ ze znakiem ujemnym?

$$x(\phi, \psi) = (R\cos\phi\cos\psi, R\sin\phi\cos\psi, R\sin\psi)$$

będzie na niej lokalnym układem współrzędnych. Mamy

$$\begin{aligned} x_{\varphi} &= R(-\sin\varphi\cos\psi,\cos\varphi\cos\psi,0), \\ x_{\psi} &= R(-\cos\varphi\sin\psi,-\sin\varphi\sin\psi,\cos\psi) \end{aligned}$$

$$\widehat{n}(p) = \frac{x_{\Phi} \times x_{\Psi}}{\|x_{\Phi} \times x_{\Psi}\|} = \frac{p}{R}$$

Krzywizna Gaussa - Idea

Krzywizna Gaussa - Idea

punkcie (0, 0, 0) i niech

$$x(\phi, \psi) = (R\cos\phi\cos\psi, R\sin\phi\cos\psi, R\sin\psi)$$

będzie na niej lokalnym układem współrzędnych. Mamy

$$\begin{split} x_{\varphi} &= R(-\sin\varphi\cos\psi,\cos\varphi\cos\psi,0), \\ x_{\psi} &= R(-\cos\varphi\sin\psi,-\sin\varphi\sin\psi,\cos\psi), \end{split}$$

więc jeśli wybierzemy (zgodnie z konwencją) wektor normalny *n* wskazujący na zewnątrz, wtedy

$$\widehat{n}(p) = \frac{x_{\Phi} \times x_{\Psi}}{\|x_{\Phi} \times x_{\Psi}\|} = \frac{p}{R}$$

dla całej sfery.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma nodstawowa

Izometria.

Krzywizna Gaussa

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzchni

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Sfera o promieniu R

Sfera o promieniu 1

$$K_{\mathfrak{G}}(p) = \frac{A(\widehat{n}(V))}{A(V)} = \frac{2\pi\cos(\alpha)}{2\pi R^2\cos(\alpha)} = \frac{1}{R^2}.$$

- ► Rozważmy okrąg $S = \{u^2 + v^2 = \varepsilon\}$, oraz jego obraz x(S) leżący na powierzchni siodłowej.
- ▶ Obcięcie odwzorowania Gaussa do *x*(*S*) jest również okręgiem (leżącym teraz na sferze).
- ▶ Jeśli obiegamy okrąg S (lub x(S)) w lewo, okrąg $\widehat{n}(x(S))$ jest obiegany w prawo.
- ► Zatem chcemy nadać znak ujemny polu $A(\widehat{n}(V))$ gdzie V jest ograniczony przez x(S).

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma nodstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzchni

Powtórka z algebry liniowej II

Krzywizna Gaussa II

- Nozważmy okrąg $S = \{u^2 + v^2 = \varepsilon\}$, oraz jego obraz x(S) leżący na powierzchni siodłowej.
- ▶ Obcięcie odwzorowania Gaussa do *x*(*S*) jest również okręgiem (leżącym teraz na sferze).
- ▶ Jeśli obiegamy okrąg S (lub x(S)) w lewo, okrąg $\widehat{n}(x(S))$ jest obiegany w prawo.
- ► Zatem chcemy nadać znak ujemny polu $A(\widehat{n}(V))$ gdzie V jest ograniczony przez x(S).

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

role powierzchni

Powtorka z algebry liniowej II

- Nozważmy okrąg $S = \{u^2 + v^2 = \varepsilon\}$, oraz jego obraz x(S) leżący na powierzchni siodłowej.
- ▶ Obcięcie odwzorowania Gaussa do x(S) jest również okręgiem (leżącym teraz na sferze).
- ▶ Jeśli obiegamy okrąg S (lub x(S)) w lewo, okrąg $\widehat{n}(x(S))$ jest obiegany w prawo.
- ► Zatem chcemy nadać znak ujemny polu $A(\widehat{n}(V))$ gdzie V jest ograniczony przez x(S).

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole powierzchni

Powtórka z algebry liniowej II

Krzywizna Gaussa II

- ► Rozważmy okrąg $S = \{u^2 + v^2 = \varepsilon\}$, oraz jego obraz x(S) leżący na powierzchni siodłowej.
- ▶ Obcięcie odwzorowania Gaussa do *x*(*S*) jest również okręgiem (leżącym teraz na sferze).
- ▶ Jeśli obiegamy okrąg S (lub x(S)) w lewo, okrąg $\widehat{n}(x(S))$ jest obiegany w prawo.
- ► Zatem chcemy nadać znak ujemny polu $A(\widehat{n}(V))$ gdzie V jest ograniczony przez x(S).

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

oue powierzemii Powtórka z algebry liniowei II

Krzywizna Gaussa II

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Pole podzbioru** $S \subset x(U)$ wyraża się wzorem

$$A(S) \stackrel{\text{def.}}{=} \iint_{x^{-1}(S)} \sqrt{|\det(g_{ij})|} \, ds \, dt$$

Motywacją geometryczną jest to, że $\sqrt{|\det(g_{ij})|}$ jest równe polu równoległoboku rozpiętego przez x_1 i x_2 , który jest styczny do powierzchni w tym punkcie.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Jdwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzchni

Powtorka z algebry liniowej II

Irzywizna Gaussa II

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Pole podzbioru** $S \subset x(U)$ wyraża się wzorem

$$A(S) \stackrel{\text{def.}}{=} \iint_{x^{-1}(S)} \sqrt{|\det(g_{ij})|} \, ds \, dt.$$

Motywacją geometryczną jest to, że $\sqrt{|\det(g_{ij})|}$ jest równe polu równoległoboku rozpiętego przez x_1 i x_2 , który jest styczny do powierzchni w tym punkcie.

Powierzchnie w \mathbb{R}^3

Vektory styczne i Jormalne. I forma Jodstawowa

zometria.

Krzywizna Gaussa I

dwzorowanie Gaussa

rzywizna Gaussa – Idea

Pole powierzchni

Powtórka z algebry liniowej II

Irzywizna Gaussa II

(rzynyizna Gaussa II

Theorema Egregium i Twierdzenie

Podobnie jak wcześniej wyraziliśmy długość, teraz wyrazimy pole powierzchni w języku współczynników metrycznych.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. **Pole podzbioru** $S \subset x(U)$ wyraża się wzorem

$$A(S) \stackrel{\text{def.}}{=} \iint_{x^{-1}(S)} \sqrt{|\det(g_{ij})|} \, ds \, dt.$$

Motywacją geometryczną jest to, że $\sqrt{|\det(g_{ij})|}$ jest równe polu równoległoboku rozpiętego przez x_1 i x_2 , który jest styczny do powierzchni w tym punkcie.

Pole powierzchni

Lemat

Załóżmy, że $S \subset x(U) \cap y(V)$ dla dwóch lokalnych układów współrzędnych x, y na M. Niech (g_{ij}) , $[odpowiednio (\overline{g_{ij}})]$ oznacza macierz współczynników metrycznych dla x [odpowiednio y]. Wtedy

$$\iint_{x^{-1}(S)} \sqrt{|\det(g_{ij})|} ds dt = \iint_{y^{-1}(S)} \sqrt{|\det(\overline{g_{ij}})|} ds dt.$$

Dowód pomijamy.

$$\langle x_1 \times x_2, n \rangle = \langle \|x_1 \times x_2\| n, n \rangle = \|x_1 \times x_2\| = \sqrt{|\det(g_{ij})|},$$

$$A(V) = \iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt.$$

$$A(\widehat{n}(V)) = \iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt$$

Pole powierzchni

$$\langle x_1 \times x_2, n \rangle = \langle \|x_1 \times x_2\| n, n \rangle = \|x_1 \times x_2\| = \sqrt{|\det(g_{ij})|},$$

zatem mamy

$$A(V) = \iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt.$$

$$A(\widehat{n}(V)) = \iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt$$

Pole powierzchni

Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Ide

Pole powierzchni

Routárka z akrabru liniowai I

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

$\langle x_1 \times x_2, n \rangle = \langle \|x_1 \times x_2\| n, n \rangle = \|x_1 \times x_2\| = \sqrt{|\det(g_{ij})|},$

zatem mamy

$$A(V) = \iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt.$$

Analogicznie możemy zdefiniować pole $\widehat{n}(V)$ jako

$$A(\widehat{n}(V)) = \iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt,$$

gdzie n_1 , n_2 są pochodnymi cząstkowymi n po zmiennych odpowiednio s i t.

To rozwiązuje problemy (2) i (3) powyżej, jednak problem (1) (niezależności definicji od wyboru otoczeń V) pozostaje.

zatem mamy

$$A(V) = \iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt.$$

Analogicznie możemy zdefiniować pole $\widehat{n}(V)$ jako

$$A(\widehat{n}(V)) = \iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt,$$

gdzie n_1 , n_2 są pochodnymi cząstkowymi n po zmiennych odpowiednio s i t.

To rozwiązuje problemy (2) i (3) powyżej, jednak problem (1) (niezależności definicji od wyboru otoczeń V) pozostaje.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Pole powierzchni

Powtórka z algebry liniowei I

rowtorka z algebry liniowej li

heorema Egregium i wierdzenie

Niech W będzie rzeczywistą przestrzenią wektorową i niech $\langle \; , \; \rangle$ będzie iloczynem skalarnym na W.

Definicja

Rozważmy odwzorowanie liniowe $F: W \rightarrow W$.

Odwzorowaniem dwuliniowym **indukowanym przez** F nazywamy odwzorowanie $\mathcal{B}_F \colon W \times W \to \mathbb{R}$ zadane przez

$$\mathcal{B}_F(v, w) = \langle F(v), w \rangle.$$

Przykład

Niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadane wzorem (w bazie standardowej!)

$$F(v_1, v_2) = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = (v_1 + 2v_2, -v_2).$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Powtórka z algebry liniowei II

1 Owtorka 2 aigeory illilowej il

Krzywizna Gaussa II

Definicja

Rozważmy odwzorowanie liniowe $F: W \rightarrow W$.

Odwzorowaniem dwuliniowym **indukowanym przez** F nazywamy odwzorowanie $\mathcal{B}_F \colon W \times W \to \mathbb{R}$ zadane przez

$$\mathcal{B}_{F}(v, w) = \langle F(v), w \rangle.$$

Przykład

Niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadane wzorem (w bazie standardowej!)

$$F(v_1, v_2) = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = (v_1 + 2v_2, -v_2).$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa – Idi

Pole powierzc

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Definicja

Rozważmy odwzorowanie liniowe $F: W \rightarrow W$.

Odwzorowaniem dwuliniowym **indukowanym przez** F nazywamy odwzorowanie $\mathcal{B}_F \colon W \times W \to \mathbb{R}$ zadane przez

$$\mathcal{B}_{F}(v, w) = \langle F(v), w \rangle.$$

Przykład

Niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadane wzorem (w bazie standardowej!)

$$F(v_1, v_2) = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = (v_1 + 2v_2, -v_2).$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

xierunkowe. zometria.

Krzywizna Gaussa I

Grzywizna Gaussa – Idea

Powtórka z algebry liniowei II

i owtorka z aigebry ililiowej ii

Krzywizna Gaussa II

Odwzorowanie Gaussa

Krzywizna Gaussa – Ide

Powtórka z algebry liniowei II

/ramiana Caussa II

Theorema Egregium Twierdzenie

Przykład

Odwzorowanie ${\mathbb B}_F{:}{\mathbb R}^2 o{\mathbb R}$ indukowane przez F jest równe

$$\mathcal{B}_{F}((v_{1}, v_{2}), (w_{1}, w_{2})) = \langle F(v_{1}, v_{2}), (w_{1}, w_{2}) \rangle =$$

$$= \left\langle \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}, (w_{1}, w_{2}) \right\rangle =$$

$$= \langle (v_{1} + 2v_{2}, -v_{2}), (w_{1}, w_{2}) \rangle = (v_{1} + 2v_{2})w_{1} - v_{2}w_{2}$$

Odwzorowanie $\mathfrak{B}_F: \mathbb{R}^2 \to \mathbb{R}$ indukowane przez F jest równe

$$\mathcal{B}_{F}((v_{1}, v_{2}), (w_{1}, w_{2})) = \langle F(v_{1}, v_{2}), (w_{1}, w_{2}) \rangle =$$

$$= \left\langle \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}, (w_{1}, w_{2}) \right\rangle =$$

$$= \langle (v_{1} + 2v_{2}, -v_{2}), (w_{1}, w_{2}) \rangle = (v_{1} + 2v_{2})w_{1} - v_{2}w_{2}.$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

(rzywizna Gaussa I

Odurania Causa

(rzywizna Gaussa – Idea

Pole powier.

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Lemat

Niech (W, \langle , \rangle) *będzie przestrzenią wektorową z iloczynem* skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej
- Niech $F: W \rightarrow W$ będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- ► Niech M oznacza macierz odwzorowania B_F indukowanego

Wtedy $M = A^tG$.

Powtórka z algebry liniowei II

Lemat

Niech (W, \langle , \rangle) *będzie przestrzenią wektorową z iloczynem* skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech $F: W \rightarrow W$ będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- ► Niech M oznacza macierz odwzorowania B_F indukowanego

Wtedy $M = A^tG$.

Niech (W, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech F: W → W będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- ▶ Niech M oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie).

Wtedy $M = A^tG$.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

e powierzchni

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie Niech (W, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech $F: W \rightarrow W$ będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- ► Niech **M** oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie).

Wtedy $M = A^tG$.

Powtórka z algebry liniowei II

Niech (W, \langle , \rangle) będzie przestrzenią wektorową z iloczynem skalarnym. Ustalmy bazę tej przestrzeni.

- Oznaczmy przez G macierz iloczynu skalarnego w tej bazie.
- Niech $F: W \rightarrow W$ będzie odwzorowaniem liniowym o macierzy A w powyższej bazie.
- ► Niech **M** oznacza macierz odwzorowania B_F indukowanego przez F (znów macierz w powyższej bazie).

Wtedv $\mathbf{M} = \mathbf{A}^t \mathbf{G}$.

Powtórka z algebry liniowei II

Niech F będzie tak jak z poprzedniego przykładu. Na $W=\mathbb{R}^2$ wybierzmy standardową bazę $\{e_1,e_2\}$. Naturalny iloczyn skalarny na \mathbb{R}^2 ma w tej bazie macierz $\mathbf{G}=\mathrm{Id}$. Zatem macierzą odwzorowania \mathcal{B}_F jest macierz

$$\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}^t \cdot Id = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \cdot Id,$$

zatem

$$\mathcal{B}_{F}((v_{1}, v_{2}), (w_{1}, w_{2})) = [v_{1}, v_{2}] \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \cdot \operatorname{Id} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

rzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole pow

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Niech W będzie przestrzenią wektorową i $\mathbb B$ formą dwuliniową na W.

- ▶ B jest formą symetryczną wtedy i tylko wtedy, gdy macierz odwzorowania B w dowolnej bazie W jest macierzą symetryczną.
- Niech $F: W \to W$ będzie odwzorowaniem liniowym. Następujące warunki są równoważne:
 - macierz A odwzorowania F jest symetryczna w każde, bazie ortonormalnej przestrzeni W,
 - 2. forma dwuliniowa \mathbb{B}_F indukowana przez F jesi symetryczna.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa – Idea

Pole powierz

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Niech W będzie przestrzenią wektorową i $\mathbb B$ formą dwuliniową na W.

- ▶ B jest formą symetryczną wtedy i tylko wtedy, gdy macierz odwzorowania B w dowolnej bazie W jest macierzą symetryczną.
- Niech F: W → W będzie odwzorowaniem liniowym. Następujące warunki są równoważne:
 - macierz A odwzorowania F jest symetryczna w każdej bazie ortonormalnej przestrzeni W
 - 2. forma dwuliniowa B_F indukowana przez F jest

Powierzchnie w R3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Odugorowania Gaussa

Krzywizna Gaussa – Idea

Pole powierzch

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Lemat

Niech W będzie przestrzenią wektorową i B formą dwuliniową na W.

- ▶ B jest formą symetryczną wtedy i tylko wtedy, gdy macierz odwzorowania B w dowolnej bazie W jest macierzą symetryczną.
- Niech F: W → W będzie odwzorowaniem liniowym. Następujące warunki są równoważne:
 - 1. macierz **A** odwzorowania F jest symetryczna w każdej bazie ortonormalnej przestrzeni W,
 - 2. forma dwuliniowa \mathfrak{B}_F indukowana przez F jest symetryczna.

Powierzchnie w R3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole powierzenni

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Lemat

Niech W będzie przestrzenią wektorową i $\mathbb B$ formą dwuliniową na W.

- B jest formą symetryczną wtedy i tylko wtedy, gdy macierz odwzorowania B w dowolnej bazie W jest macierzą symetryczną.
- Niech F: W → W będzie odwzorowaniem liniowym. Następujące warunki są równoważne:
 - 1. macierz **A** odwzorowania F jest symetryczna w każdej bazie ortonormalnej przestrzeni W,
 - 2. forma dwuliniowa B_F indukowana przez F jest symetryczna.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

role powierzchni

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Lemat

Niech W będzie przestrzenią wektorową i $\mathbb B$ formą dwuliniową na W.

- ▶ B jest formą symetryczną wtedy i tylko wtedy, gdy macierz odwzorowania B w dowolnej bazie W jest macierzą symetryczną.
- Niech F: W → W będzie odwzorowaniem liniowym. Następujące warunki są równoważne:
 - 1. macierz **A** odwzorowania F jest symetryczna w każdej bazie ortonormalnej przestrzeni W,
 - 2. forma dwuliniowa \mathfrak{B}_F indukowana przez F jest symetryczna.

Powierzchnie w R3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Pole nowierzchni

role powierzchn

Powtórka z algebry liniowej II

Krzywizna Gaussa II

$$\mathcal{B}(\mathbf{v},\mathbf{w})=\mathcal{B}(\mathbf{w},\mathbf{v}).$$

$$A = A^t$$

- ▶ Jeśli jest symetryczna w każdej bazie, możemy wybrać taką, w której macierz G = Id (macierz iloczynu skalarnego na W).
- Zatem

$$\mathcal{B}_{F}(v, w) = v\mathbf{A}^{t} \cdot \mathbf{G}w = w^{t} (\mathbf{A}^{t})^{t} v^{t} = \mathcal{B}_{F}(w, v).$$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

dwzorowanie Gaussa

Krzywizna Gaussa – Ide

ole powierzch

Powtórka z algebry liniowej II

Krzywizna Gaussa II

$$\mathbf{A} = \mathbf{A}^t$$

- ▶ Jeśli jest symetryczna w każdej bazie, możemy wybrać taką, w której macierz G = Id (macierz iloczynu skalarnego na W).
- Zatem

$$\mathcal{B}_{F}(v, w) = v\mathbf{A}^{t} \cdot \mathbf{G}w = w^{t} (\mathbf{A}^{t})^{t} v^{t} = \mathcal{B}_{F}(w, v).$$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Ide

ole powierzchni

Powtórka z algebry liniowej II

Krzywizna Gaussa II

$$\mathcal{B}(\mathbf{v}, \mathbf{w}) = \mathcal{B}(\mathbf{w}, \mathbf{v}).$$

$$\mathbf{A} = \mathbf{A}^t$$

- Jeśli jest symetryczna w każdej bazie, możemy wybrać taką, w której macierz G = Id (macierz iloczynu skalarnego na W).
- Zatem

$$\mathcal{B}_{F}(v, w) = v\mathbf{A}^{t} \cdot \mathbf{G}w = w^{t} (\mathbf{A}^{t})^{t} v^{t} = \mathcal{B}_{F}(w, v).$$

Elementarna Geometria Różniczkowa

Powierzchnie w R3

/ektory styczne i ormalne. I forma odstawowa

ometria.

Krzywizna Gaussa I

dwzorowanie Gaussa

Krzywizna Gaussa – io

Pole powierzch

Powtórka z algebry liniowej II

(rzywizna Gaussa II

heorema Egregium i wierdzenie

$$\mathcal{B}(\mathbf{v},\mathbf{w})=\mathcal{B}(\mathbf{w},\mathbf{v}).$$

$$\mathbf{A} = \mathbf{A}^t$$

- Jeśli jest symetryczna w każdej bazie, możemy wybrać taką, w której macierz G = Id (macierz iloczynu skalarnego na W).
- Zatem

$$\mathcal{B}_F(v, w) = v\mathbf{A}^t \cdot \mathbf{G}w = w^t (\mathbf{A}^t)^t v^t = \mathcal{B}_F(w, v).$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ometria.

Krzywizna Gaussa I

dwzorowanie Gaussa

Pole nowierzchni

Powtórka z algebry liniowei II

Krzywizna Gaussa II

Niech $F: W \to W$ będzie odwzorowaniem liniowym. Załóżmy, że macierz $\mathbf A$ formy F jest symetryczna w każdej bazie ortonormalnej W. Wtedy

- F ma rzeczywiste wartości własne k_i.
- wektory odpowiadające wartościom własnym F są ortogonalne.
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det \mathbf{A} = \prod_{i} k_{i} \quad oraz \quad \operatorname{tr} \mathbf{A} = \sum_{i} k_{i}.$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole powierzch

Powtórka z algebry liniowej II

Krzywizna Gaussa II

heorema Egregium i wierdzenie lasvfikacvine

Niech $F: W \to W$ będzie odwzorowaniem liniowym. Załóżmy, że macierz $\mathbf A$ formy F jest symetryczna w każdej bazie ortonormalnej W. Wtedy

- F ma rzeczywiste wartości własne k_i.
- wektory odpowiadające wartościom własnym F są ortogonalne.
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det \mathbf{A} = \prod_{i} k_{i} \quad oraz \quad \operatorname{tr} \mathbf{A} = \sum_{i} k_{i}.$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zierunkowe. zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole powierzch

Powtórka z algebry liniowej II

Krzywizna Gaussa II

heorema Egregium i wierdzenie Iasvfikacvine Niech $F: W \to W$ będzie odwzorowaniem liniowym. Załóżmy, że macierz A formy F jest symetryczna w każdej bazie ortonormalnej W. Wtedy

- F ma rzeczywiste wartości własne k_i.
- wektory odpowiadające wartościom własnym F są ortogonalne.
- ► Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det \mathbf{A} = \prod_{i} k_{i}$$
 oraz $\operatorname{tr} \mathbf{A} = \sum_{i} k_{i}$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

,

Grzywizna Gaussa – Idea

ole powierzo

Powtórka z algebry liniowej II

Krzywizna Gaussa II

- F ma rzeczywiste wartości własne k_i.
- wektory odpowiadające wartościom własnym F są ortogonalne.
- Macierz A odwzorowania F w dowolnej bazie spełnia

$$\det \mathbf{A} = \prod_{i} k_{i}$$
 oraz $\operatorname{tr} \mathbf{A} = \sum_{i} k_{i}$.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

,

Krzywizna Gaussa – Idea

ole powierzchni

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

ole powierzo

Powtórka z algebry liniowej II

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Niech $W = \mathbb{R}^2$ i niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadane przez symetryczną macierz rzeczywistą

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right].$$

Wielomian charakterystyczny A:

$$f_{\mathbf{A}}(t) = \det \begin{bmatrix} a-t & b \\ b & c-t \end{bmatrix} = t^2 - (a+c)t - (b^2 - ac)$$

posiada deltę nieujemną $\Delta=(a-c)^2+4b^2$, więc ma dwa pierwiastki rzeczywiste (są to wartości własne **A**).

Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Powtórka z algebry liniowei II

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Niech $W = \mathbb{R}^2$ i niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadane przez symetryczną macierz rzeczywistą

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right].$$

Wielomian charakterystyczny A:

$$f_{A}(t) = \det \begin{bmatrix} a-t & b \\ b & c-t \end{bmatrix} = t^{2} - (a+c)t - (b^{2} - ac)$$

posiada deltę nieujemną $\Delta = (a-c)^2 + 4b^2$, więc ma dwa pierwiastki rzeczywiste (są to wartości własne **A**).

Niech $W = \mathbb{R}^2$ i niech $F: \mathbb{R}^2 \to \mathbb{R}^2$ będzie zadane przez symetryczną macierz rzeczywistą

$$\mathbf{A} = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right].$$

Wielomian charakterystyczny A:

$$f_{\mathbf{A}}(t) = \det \begin{bmatrix} a-t & b \\ b & c-t \end{bmatrix} = t^2 - (a+c)t - (b^2 - ac)$$

posiada delte nieujemna $\Delta = (a-c)^2 + 4b^2$, wiec ma dwa pierwiastki rzeczywiste (są to wartości własne A).

Powtórka z algebry liniowei II

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

$$f_A(t) = (1-t)t - 1 = t^2 - t - 1$$

•
$$k_1 = \frac{1+\sqrt{5}}{2}$$
, oraz $k_2 = \frac{1-\sqrt{5}}{2}$.

► $k_1k_2 = \frac{1-\sqrt{5}^2}{4} = -1 = \det \mathbf{A}$, oraz $k_1 + k_2 = 1 = \operatorname{tr} \mathbf{A}$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Id

Pole powier

Powtórka z algebry liniowej II

Krzywizna Gaussa II

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

$$f_{\mathbf{A}}(t) = (1-t)t-1 = t^2-t-1$$

$$k_1 = \frac{1+\sqrt{5}}{2}$$
, oraz $k_2 = \frac{1-\sqrt{5}}{2}$.

$$k_1 k_2 = \frac{1 - \sqrt{5}^2}{4} = -1 = \det \mathbf{A}$$
, oraz $k_1 + k_2 = 1 = \operatorname{tr} \mathbf{A}$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

Krzywizna Gaussa – Idea

Pole powierzch

Powtórka z algebry liniowej II

Krzywizna Gaussa II

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

$$f_{\mathbf{A}}(t) = (1-t)t-1 = t^2-t-1$$

•
$$k_1 = \frac{1+\sqrt{5}}{2}$$
, oraz $k_2 = \frac{1-\sqrt{5}}{2}$.

► $k_1k_2 = \frac{1-\sqrt{5}^2}{4} = -1 = \det \mathbf{A}$, oraz $k_1 + k_2 = 1 = \operatorname{tr} \mathbf{A}$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Odwzorowanie Gaussa

irzywizna Gaussa – Idea

Pole powier

Powtórka z algebry liniowej II

Krzywizna Gaussa II

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

$$f_{\mathbf{A}}(t) = (1-t)t-1 = t^2-t-1$$

•
$$k_1 = \frac{1+\sqrt{5}}{2}$$
, oraz $k_2 = \frac{1-\sqrt{5}}{2}$.

$$k_1k_2 = \frac{1-\sqrt{5}^2}{4} = -1 = \det \mathbf{A}$$
, oraz $k_1 + k_2 = 1 = \operatorname{tr} \mathbf{A}$.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Odugorowania Gaussa

(rzywizna Gaussa – Idea

Pole powier

Powtórka z algebry liniowei II

Krzywizna Gaussa II

Flementarna Geometria Różniczkowa

Powtórka z algebry liniowei II

Zadanie

Oswoić wszystkie nieznane definicje pojawiające się w powyższej powtórce z algebry liniowej i zrozumieć sformułowania powyższych twierdzeń (niekoniecznie z dowodami!)

Wykład 9

Krzywizna Gaussa II

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Druga forma podstawowa

Krzywizna Gaussa oraz

krzywizna średnia

Podsumowa

Agitacja na rzecz zgodnośc definicji

Theorema Egregium i Twierdzenie

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Odwzorowanie Weingartena Druga forma podstawowa Krzywizna Gaussa oraz krzywizna średnia Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyjne

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

wzorowanie Weingarten

uga forma podstawowa

Krzywizna Gaussa oraz

krzywizna średnia

Podsumov

Agitacja na rzecz zgodności definicji

Flementarna Geometria Różniczkowa

Odwzorowanie Weingartena

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

Krzywizna Gaussa I

Krzywizna Gaussa I

Odwzorowanie Weingartena

Druga forma nodetawawa

Druga Iorma podstawow

rzywizna Gaussa oraz rzywizna średnia

Podsumov

Agitacja na rzecz zgodności definicji

Theorema Egregium Twierdzenie klasyfikacyjne

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$. Dla każdego wektora $v \in T_p(M)$ pochodna kierunkowa

$$D\widehat{n}(v) \in T_pM$$

(rozważanej abstrakcyjnie jako 2-wymiarowa podprzestrzeń liniowa w \mathbb{R}^3).

Izometria.

,

Podsumowa

Agitacja na rzecz zgodności definicji

Theorema Egregium Twierdzenie

Dowód:

Wektor normalny $\widehat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U). Wtedy

$$0 = D\langle \widehat{n}, \widehat{n} \rangle(v) = \nabla_v \langle \widehat{n}, \widehat{n} \rangle = 2 \langle \nabla_v \widehat{n}, \widehat{n} \rangle = 2 \langle D \widehat{n}(v), \widehat{n} \rangle$$

więc $D\widehat{n}(v)$ jest zawsze prostopadły do \widehat{n} , zatem musi należeć do T_nM .

Agitacja na rzecz zgodności definicji

Theorema Egregium

Dowód:

Wektor normalny $\widehat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U).

Wtedy

$$0 = D\langle \widehat{n}, \widehat{n} \rangle(v) = \nabla_v \langle \widehat{n}, \widehat{n} \rangle = 2 \langle \nabla_v \widehat{n}, \widehat{n} \rangle = 2 \langle D \widehat{n}(v), \widehat{n} \rangle$$

więc $D\widehat{n}(v)$ jest zawsze prostopadły do \widehat{n} , zatem musi należeć do T_nM_n .

Theorema Egregium Twierdzenie

Dowód:

Wektor normalny $\widehat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U). Wtedy

$$0 = D\langle \widehat{n}, \widehat{n} \rangle(v) = \nabla_v \langle \widehat{n}, \widehat{n} \rangle = 2\langle \nabla_v \widehat{n}, \widehat{n} \rangle = 2\langle D \widehat{n}(v), \widehat{n} \rangle,$$

więc $D\widehat{n}(v)$ jest zawsze prostopadły do \widehat{n} , zatem musi należeć do T_nM .

zometria.

Krzywizna Gaussa

Krzywizna Gaussa I

Odwzorowanie Weingartena

Druga forma podstawow

Krzywizna Gaussa oraz

Podsumov

Agitacja na rzecz zgodności definicji

Theorema Egregium
Twierdzenie

Dowód:

Wektor normalny $\widehat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U). Wtedy

$$0 = D\langle \widehat{n}, \widehat{n} \rangle(v) = \nabla_v \langle \widehat{n}, \widehat{n} \rangle = 2\langle \nabla_v \widehat{n}, \widehat{n} \rangle = 2\langle D \widehat{n}(v), \widehat{n} \rangle,$$

więc $D\widehat{n}(v)$ jest zawsze prostopadły do \widehat{n} , zatem musi należeć do $T_{p}M$.

Przy powyższych oznaczeniach **odwzorowaniem Weingartena** w punkcie p nazywamy odwzorowanie $L: T_pM \to T_pM$ zadane przez

$$L(v) \stackrel{\text{def.}}{=} -D \widehat{n}(v) = -\nabla_v \widehat{n}.$$

Lemat

Odwozorowanie Weingartena L: $T_pM \rightarrow T_pM$ jes odwzorowaniem liniowym.

Dowód:

Lemat wynika z liniowości pochodnej kierunkowej (lemat 7.3).

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

cometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawowa

Krzywizna Gaussa oraz

Podsumowa

Agitacja na rzecz zgodności

definicji
Theorema Faregiju

Przy powyższych oznaczeniach **odwzorowaniem Weingartena** w punkcie p nazywamy odwzorowanie $L: T_pM \to T_pM$ zadane przez

$$L(v) \stackrel{\text{def.}}{=} -D \widehat{n}(v) = -\nabla_v \widehat{n}.$$

Lemat

Odwozorowanie Weingartena L: $T_pM \rightarrow T_pM$ jest odwzorowaniem liniowym.

Dowód:

Lemat wynika z liniowości pochodnej kierunkowej (lemat 7.3).

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawow

Krzywizna Gaussa oraz

Podsumow

Agitacja na rzecz zgodności definicii

Theorema Egregiur

Przy powyższych oznaczeniach **odwzorowaniem Weingartena** w punkcie p nazywamy odwzorowanie $L: T_pM \to T_pM$ zadane przez

$$L(v) \stackrel{\text{def.}}{=} -D \widehat{n}(v) = -\nabla_v \widehat{n}.$$

Lemat

Odwozorowanie Weingartena L: $T_pM \rightarrow T_pM$ jest odwzorowaniem liniowym.

Dowód:

Lemat wynika z liniowości pochodnej kierunkowej (lemat 7.3).

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. cometria.

Krzywizna Gaussa

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawow

Krzywizna Gaussa oraz

Podsumow

Agitacja na rzecz zgodności definicji

definicji
Theorema Egregius

Uwaga

Chociaż do definicji odwzorowania Weingartena używamy lokalnego układu współrzędnych, jednak przy innym wyborze $x: U \to M$, odwzorowanie L może się różnić tylko o znak \pm .

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

(rzywizna Gaussa I

Krzywizna Gaussa

Odwzorowanie Weingartena

Druga forma nodetawawa

Druga forma podstawow

Krzywizna Gaussa ora Krzywizna średnia

odsumowa

Agitacja na rzecz zgodności definicji

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

Druga forma podstawowa w punkcie p to odwzorowanie dwuliniowe $II_p: T_p \mathcal{M} \times T_p \mathcal{M} \to \mathbb{R}$ indukowane przez odwzorowanie Weingartena L, tj. zadane wzorem

$$\Pi_p(v, w) = \langle L(v), w \rangle,$$

dla wszystkich v, w z przestrzeni stycznej T_pM

Uwaga

Tak jak odwzorowanie Weingartena, druga forma podstawowa jest zdefiniowana z dokładnością do znaku.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

cierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa

dwzorowanie Weingarte

Druga forma podstawowa

rzywizna Gaussa oraz rzywizna średnia

Podsumow

Agitacja na rzecz zgodności definicji

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$. **Druga forma podstawowa** w punkcie p to odwzorowanie dwuliniowe $II_p: T_pM \times T_pM \to \mathbb{R}$ indukowane przez odwzorowanie Weingartena L, tj. zadane wzorem

$$\Pi_p(v, w) = \langle L(v), w \rangle,$$

dla wszystkich v, w z przestrzeni stycznej T_pM

Uwaga

Tak jak odwzorowanie Weingartena, druga forma podstawowa jest zdefiniowana z dokładnością do znaku.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

cierunkowe. zometria.

Krzywizna Gaussa

Krzywizna Gaussa I

wzorowanie Weingarte

Druga forma podstawowa

irzywizna Gaussa ora rzywizna średnia

Podsumow

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyine

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$. **Druga forma podstawowa** w punkcie p to odwzorowanie dwuliniowe $II_p: T_pM \times T_pM \to \mathbb{R}$ indukowane przez odwzorowanie Weingartena L, tj. zadane wzorem

$$\Pi_p(v, w) = \langle L(v), w \rangle,$$

dla wszystkich v, w z przestrzeni stycznej T_pM .

Uwaga

Tak jak odwzorowanie Weingartena, druga forma podstawowa jest zdefiniowana z dokładnością do znaku.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa

rzywizna Gaussa

wzorowanie Weingarte

Druga forma podstawowa

rzywizna Gaussa ori rzywizna średnia

Podsumov

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyine dwuliniowe $\Pi_p: T_pM \times T_pM \to \mathbb{R}$ indukowane przez odwzorowanie Weingartena L, tj. zadane wzorem

$$\Pi_p(v, w) = \langle L(v), w \rangle,$$

dla wszystkich v, w z przestrzeni stycznej T_pM .

Uwaga

Tak jak odwzorowanie Weingartena, druga forma podstawowa jest zdefiniowana z dokładnością do znaku.

Uwaga (Oznaczenie)

Macierze odwzorowania Weingartena i drugiej formy podstawowej (w standardowej bazie przestrzeni stycznej x_1, x_2) oznaczamy odpowiednio przez

$$(L_{ij}) = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix}$$
 $(l_{ij}) = \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix}$

Wniosek

Na podstawie powtórki z algebry liniowej II, mamy

$$(l_{ii}) = (L_{ii})^t(g_{ii})$$

więc korzystając z własności odwrotności i transpozycji otrzymujemy

$$(L_{ij}) = (g_{ij})^{-1} (l_{ij})^t$$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Vektory styczne i formalne. I forma fodstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa

lwzorowanie Weingarte

Druga forma podstawowa

Krzywizna Gaussa or krzywizna średnia

Podsumov

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyine

Macierze odwzorowania Weingartena i drugiej formy podstawowej (w standardowej bazie przestrzeni stycznej x_1, x_2) oznaczamy odpowiednio przez

$$(L_{ij}) = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix}$$
 $(l_{ij}) = \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix}$

Wniosek

Na podstawie powtórki z algebry liniowej II, mamy

$$(l_{ij}) = (L_{ij})^t(g_{ij}),$$

więc korzystając z własności odwrotności i transpozycji otrzymujemy

$$(L_{ij}) = (g_{ij})^{-1} (l_{ij})^t.$$

Lemat

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

1. (Równania Weingartena) Dla i = 1, 2 zachodz

$$n_i = -L_{1i}x_1 - L_{2i}x_2.$$

2. Dla indeksów i, j = 1, 2, współczynniki macierzy drugiej formy podstawowej są równe

$$l_{ij} = -\langle n_i, x_j \rangle = \langle n, x_{ij} \rangle$$

gdzie x_{ij} jest oznaczeniem drugiej pochodnej cząstkowej (względem zmienych i-tej i j-tej).

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

кіегинкоwe. Izometria.

Krzywizna Gaussa I

rzywizna Gaussa

wzorowanie Weingarte

Druga forma podstawowa

irzywizna Gaussa ora rzywizna średnia

Podsumov

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyine 1. (Równania Weingartena) Dla i = 1, 2 zachodzi

$$n_i = -L_{1i}x_1 - L_{2i}x_2.$$

2. Dla indeksów i, j = 1, 2, współczynniki macierzy drugiej formy podstawowej są równe

$$l_{ij} = -\langle n_i, x_j \rangle = \langle n, x_{ij} \rangle$$

gdzie x_{ij} jest oznaczeniem drugiej pochodnej cząstkowej (względem zmienych i-tej i j-tej).

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ometria.

Krzywizna Gaussa I

rzywizna Gaussa

wzorowanie Weingarte

Druga forma podstawowa

rzywizna Gaussa ora rzywizna średnia

Podsumov

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie 1. (Równania Weingartena) Dla i = 1, 2 zachodzi

$$n_i = -L_{1i}x_1 - L_{2i}x_2.$$

2. Dla indeksów i, j = 1, 2, współczynniki macierzy drugiej formy podstawowej są równe

$$l_{ij} = -\langle n_i, x_j \rangle = \langle n, x_{ij} \rangle$$
,

gdzie x_{ij} jest oznaczeniem drugiej pochodnej cząstkowej (względem zmienych i-tej i j-tej).

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

erunkowe. ometria.

Krzywizna Gaussa I

rzywizna Gaussa

wzorowanie weingarte

Druga forma podstawowa

rzywizna Gaussa ori zywizna średnia

Podsumowa

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyjne

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i} x_1 - L_{2i} x_2,$$

$$l_{ij} = II(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle$$

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle$$

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i}x_1 - L_{2i}x_2,$$

gdzie $x = x(u_1, u_2)$ (u_i są zmiennymi lokalnego układu współrzędnych x).

$$l_{ij} = \Pi(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle$$

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle,$$

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i} x_1 - L_{2i} x_2,$$

gdzie $x = x(u_1, u_2)$ (u_i są zmiennymi lokalnego układu współrzędnych x).

(2.) Mamy

$$l_{ij} = II(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle,$$

co dowodzi pierwszej równości w punkcie 2 (równość * wynika z dowodu pierwszej części). Aby udowodnić

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle$$

Flementarna Geometria Różniczkowa

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i}x_1 - L_{2i}x_2,$$

gdzie $x = x(u_1, u_2)$ (u_i są zmiennymi lokalnego układu współrzędnych x).

(2.) Mamy

$$l_{ij} = II(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle,$$

co dowodzi pierwszej równości w punkcie 2 (równość * wynika z dowodu pierwszej części). Aby udowodnić druga równość, skorzystamy z tego, że $\langle n, x_i \rangle = 0$. Mamy

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle$$

Flementarna Geometria Różniczkowa

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i} x_1 - L_{2i} x_2,$$

gdzie $x = x(u_1, u_2)$ (u_i są zmiennymi lokalnego układu współrzędnych x).

(2.) Mamy

$$l_{ij} = \Pi(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle,$$

co dowodzi pierwszej równości w punkcie 2 (równość * wynika z dowodu pierwszej części). Aby udowodnić drugą równość, skorzystamy z tego, że $\langle n, x_i \rangle = 0$. Mamy

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle,$$

skąd natychmiast wynika druga równość.

Powierzchnie w R³

Wektory styczne i normalne. I forma nodstawowa

erunkowe. ometria.

Krzywizna Gaussa I

irzywizna Gaussa II

, and a

Druga forma podstawowa

rzywizna Gaussa or zywizna średnia

Podsumowai

Agitacja na rzecz zgodności definicji

Theorema Egregium Twierdzenie Klasyfikacyjne

- Macierz (Lii) odwzorowania Weingartena L jest

 Macierz (L_{ij}) odwzorowania Weingartena L jest symetryczna w każdej bazie ortonormalnej

Dowód:

Symetryczność macierzy (l_{ij}) wynika z równości $l_{ij} = \langle n, x_{ij} \rangle$ oraz $x_{12} = x_{21}$.

Druga teza wynika wtedy z powiązań macierzy symetrycznej symetrycznością odwzorowania przez nią indukowanego (lemat 8.6 cytowany podczas powtórki z algebry liniowej II).

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

dwzorowanie Weingarter

Druga forma podstawowa

Krzywizna Gaussa ora krzywizna średnia

Podsumo

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie

- Druga forma podstawowa II jest symetryczna.
- ► Macierz (Lii) odwzorowania Weingartena L jest symetryczna w każdej bazie ortonormalnej.

Dowód:

- Druga forma podstawowa II jest symetryczna.
- ► Macierz (Lii) odwzorowania Weingartena L jest symetryczna w każdej bazie ortonormalnej.

Dowód:

Symetryczność macierzy (l_{ii}) wynika z równości $l_{ii} = \langle n, x_{ii} \rangle$ oraz $x_{12} = x_{21}$.

Lemat

- Druga forma podstawowa II jest symetryczna.
- Macierz (L_{ij}) odwzorowania Weingartena L jest symetryczna w każdej bazie ortonormalnej.

Dowód:

Symetryczność macierzy (l_{ij}) wynika z równości $l_{ij} = \langle n, x_{ij} \rangle$ oraz $x_{12} = x_{21}$.

Druga teza wynika wtedy z powiązań macierzy symetrycznej symetrycznością odwzorowania przez nią indukowanego (lemat 8.6 cytowany podczas powtórki z algebry liniowej II). \square

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa I

(rzywizna Gaussa II

wzorowanie Weingarter

Druga forma podstawowa

Krzywizna Gaussa oraz

Podsumowanie

i ousumowanie

gitacja na rzecz zgodności efinicji

Theorema Egregium i Twierdzenie klasyfikacyjne

Z powyższych rozważań wcale nie wynika, że macierz odwzorowania Weingartena (Lii) jest symetryczna. Jeśli baza przestrzeni stycznej $\{x_1, x_2\}$ nie będzie ortonormalna w punkcie p, wtedy najczęściej $L_{ii}(p)$ nie będzie macierzą symetryczną. (ogólniej: nie możemy wtedy zastosować do niej lematu 8.6).

$$(L_{ij}) = (g_{ij})^{-1}(l_{ij}).$$

Uwaga

Wiedząc, że macierz (l_{ij}) jest symetryczna, możemy przepisać uzyskaną wcześniej równość do prostszej

$$(L_{ij}) = (g_{ij})^{-1}(l_{ij}).$$

Powierzchnie w R³

Wektory styczne Iormalne. I form Iodstawowa

cierunkowe. zometria.

Krzywizna Gaussa I

Crzywizna Gaussa

Iwzorowanie Weingar

Druga forma podstawowa

zywizna Gaussa oraz

zywizna średnia

usumowanie

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie dasyfikacyine

krzywizna średnia

Macierz odwzorowania liniowego zależy od wyboru bazy przestrzeni, jednak wyznacznik i ślad tego odwzorowania są od bazy niezależne.

$$K(p) = \det L(p)$$

$$H(p) = \frac{1}{2} \operatorname{tr} L(p)$$

Nazywamy je odpowiednio krzywizna Gaussa i krzywizna

Krzywizna Gaussa oraz krzywizna średnia

Macierz odwzorowania liniowego zależy od wyboru bazy przestrzeni, jednak wyznacznik i ślad tego odwzorowania są od bazy niezależne.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech L będzie oznaczało odwzorowanie Weingartena. Zdefiniujmy dwie

$$K(p) = \det L(p)$$
 $H(p) = \frac{1}{2} \operatorname{tr} L(p)$

Nazywamy je odpowiednio krzywizna Gaussa i krzywizna

Macierz odwzorowania liniowego zależy od wyboru bazy przestrzeni, jednak wyznacznik i ślad tego odwzorowania są od bazy niezależne.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech L będzie oznaczało odwzorowanie Weingartena. Zdefiniujmy dwie funkcje skalarne $K: M \to \mathbb{R}, H: M \to \mathbb{R}$ nastepująco

$$K(p) = \det L(p)$$
 $H(p) = \frac{1}{2} \operatorname{tr} L(p).$

Nazywamy je odpowiednio krzywizną Gaussa i krzywizną średnia.

Lemat

Krzywizna Gaussa i krzywizna średnia nie zależą od wyboru macierzy reprezentującej odwzorowanie Weingartena, tj. nie zależą od wyboru bazy przestrzeni stycznej T_pM .

Dowód:

Dowód wynika z odpowiedniego przedstawienia wyznacznika i śladu:

$$\det L(p) = k_1 k_2, \text{tr } L(p) = k_1 + k_2$$

cytowanego w powtórce z algebry liniowej II (Lemat 8.7).

Krzywizna Gaussa oraz krzywizna średnia

Lemat

Krzywizna Gaussa i krzywizna średnia nie zależą od wyboru macierzy reprezentującej odwzorowanie Weingartena, tj. nie zależą od wyboru bazy przestrzeni stycznej T_pM .

Dowód:

Dowód wynika z odpowiedniego przedstawienia wyznacznika i śladu:

$$\det L(p) = k_1 k_2$$
, $\operatorname{tr} L(p) = k_1 + k_2$.

cytowanego w powtórce z algebry liniowej II (Lemat 8.7).

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód:

Przypomnijmy, że $(L_{ij}) = (g_{ij})^{-1}(l_{ij})$. Mamy zatem

$$K(p) = \det(L_{ij}) = \det((g_{ij})^{-1}(l_{ij})) = \frac{\det(l_{ij})}{\det(g_{ii})}$$

Podobnie

$$H(p) = \frac{1}{2} \operatorname{tr}(L_{ij}) = \frac{1}{2 \det(g_{ij})} \operatorname{tr} \left(\begin{bmatrix} g_{22} & -g_{21} \\ -g_{12} & g_{11} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix} \right)$$
$$= \frac{1}{2 \det(g_{ij})} \begin{bmatrix} g_{22}l_{11} - g_{21}l_{12} & * \\ * & -g_{12}l_{21} + g_{11}l_{22} \end{bmatrix}$$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Odwzorowanie Weingartena Druga forma podstawowa

Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód:

Przypomnijmy, że $(L_{ij}) = (g_{ij})^{-1}(l_{ij})$. Mamy zaten

$$K(p) = \det(L_{ij}) = \det((g_{ij})^{-1}(l_{ij})) = \frac{\det(l_{ij})}{\det(g_{ij})}$$

Podobnie

$$H(p) = \frac{1}{2} \operatorname{tr}(L_{ij}) = \frac{1}{2 \det(g_{ij})} \operatorname{tr} \left(\begin{bmatrix} g_{22} & -g_{21} \\ -g_{12} & g_{11} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix} \right)$$
$$= \frac{1}{2 \det(g_{ij})} \begin{bmatrix} g_{22}l_{11} - g_{21}l_{12} & * \\ * & -g_{12}l_{21} + g_{11}l_{22} \end{bmatrix}$$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Odwzorowanie Weingartena Druga forma podstawowa

Krzywizna Gaussa oraz krzywizna średnia

Podsumow

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód:

Przypomnijmy, że $(L_{ij}) = (g_{ij})^{-1}(l_{ij})$. Mamy zatem

$$K(p) = \det(L_{ij}) = \det((g_{ij})^{-1}(l_{ij})) = \frac{\det(l_{ij})}{\det(g_{ij})}.$$

$$H(p) = \frac{1}{2} \operatorname{tr}(L_{ij}) = \frac{1}{2 \det(g_{ij})} \operatorname{tr} \left(\begin{bmatrix} g_{22} & -g_{21} \\ -g_{12} & g_{11} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix} \right)$$
$$= \frac{1}{2 \det(g_{ii})} \begin{bmatrix} g_{22}l_{11} - g_{21}l_{12} & * \\ * & -g_{12}l_{21} + g_{21}l_{22} \end{bmatrix}$$

Flementarna Geometria Różniczkowa

Krzywizna Gaussa oraz krzywizna średnia

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód:

Przypomnijmy, że $(L_{ij}) = (g_{ij})^{-1}(l_{ij})$. Mamy zatem

$$K(p) = \det(L_{ij}) = \det((g_{ij})^{-1}(l_{ij})) = \frac{\det(l_{ij})}{\det(g_{ii})}.$$

Podobnie

$$H(p) = \frac{1}{2} \operatorname{tr}(L_{ij}) = \frac{1}{2 \det(g_{ij})} \operatorname{tr} \left(\begin{bmatrix} g_{22} & -g_{21} \\ -g_{12} & g_{11} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix} \right)$$
$$= \frac{1}{2 \det(g_{ij})} \begin{bmatrix} g_{22}l_{11} - g_{21}l_{12} & * \\ * & -g_{12}l_{21} + g_{11}l_{22} \end{bmatrix}$$

Flementarna Geometria Różniczkowa

Krzywizna Gaussa oraz krzywizna średnia

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód:

Przypomnijmy, że $(L_{ii}) = (g_{ii})^{-1}(l_{ii})$. Mamy zatem

$$K(p) = \det(L_{ij}) = \det((g_{ij})^{-1}(l_{ij})) = \frac{\det(l_{ij})}{\det(g_{ii})}.$$

Podobnie

$$H(p) = \frac{1}{2} \operatorname{tr}(L_{ij}) = \frac{1}{2 \det(g_{ij})} \operatorname{tr} \left(\begin{bmatrix} g_{22} & -g_{21} \\ -g_{12} & g_{11} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix} \right)$$
$$= \frac{1}{2 \det(g_{ij})} \begin{bmatrix} g_{22}l_{11} - g_{21}l_{12} & * \\ * & -g_{12}l_{21} + g_{11}l_{22} \end{bmatrix}$$

Flementarna Geometria Różniczkowa

Krzywizna Gaussa oraz krzywizna średnia

Theorema Egregium Twierdzenie klasvfikacvine

Aby obliczyć krzywizny (średnią i Gaussa) powierzchni potrzebujemy następujące wielkości:

$$g_{11} = \langle x_1, x_1 \rangle, \qquad g_{12} = g_{21} = \langle x_1, x_2 \rangle, \qquad g_{22} = \langle x_2, x_2 \rangle,$$

$$n = \frac{x_1 \times x_2}{\|x_1 \times x_2\|} = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}},$$

$$l_{11} = \langle n_1, x_1 \rangle, \qquad l_{12} = \langle n_2, x_1 \rangle, \qquad l_{22} = \langle n_2, x_2 \rangle,$$

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa

dwzorowanie Weingarter

Krzywizna Gaussa oraz

Podsumov

Agitacja na rzecz zgodności definicii

Theorema Egregium i Twierdzenie

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Oznaczmy przez $\overline{p} = x^{-1}(p)$.

Przypomnijmy orginalną definicję Gaussa krzywizny zastąpmy pola przez odpowiednie całki:

$$K_{\mathfrak{G}}(p) = \lim_{T \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds \, dt}{\iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds \, dt} = \frac{\iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds \, dt}{\iint_{x^{-1}(V)} \sqrt{|\det(g_{ij})|} ds \, dt}$$

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa

dwzorowanie Weingartei

rzywizna Gaussa c rzywizna średnia

Podsumo

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyjne

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Oznaczmy przez $\overline{p} = x^{-1}(p)$.

Przypomnijmy orginalną definicję Gaussa krzywizny i zastąpmy pola przez odpowiednie całki:

$$K_{\mathfrak{G}}(p) = \lim_{T \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\int \int_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt}{\int \int_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt} = \frac{\int \int_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt}{\int \int_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt}$$

Agitacja na rzecz zgodności definicii

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Oznaczmy przez $\overline{p} = x^{-1}(p)$.

Przypomnijmy orginalną definicję Gaussa krzywizny i zastąpmy pola przez odpowiednie całki:

$K_{\mathfrak{G}}(p) = \lim_{T \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt}{\iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt} =$ $=\frac{\iint_{X^{-1}(V)}|\langle n_1\times n_2,n\rangle|ds\,dt}{\iint_{Y^{-1}(V)}\sqrt{|\det(g_{ii})|}ds\,dt}.$

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

wzorowanie Weingarter

Krzywizna Gaussa or

rzywizna średnia

Podsumov

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie

Teraz użyjemy twierdzenia o wartości średniej które mówi, że dla każdego takiego zbioru V muszą istnieć takie punkty a_V , $b_V \in x^{-1}(V)$, że cała całka wyraża się jako wartość funkcji podcałkowej w tych punktach:

$$\iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt = |\langle n_1(a_V) \times n_2(a_V), n(a_V) \rangle| A(x^{-1}(V)),$$

$$\iint_{x^{-1}(V)} \sqrt{|\det(g_{ij})|} ds dt = \sqrt{|\det(g_{ij}(b_V))|} A(x^{-1}(V)).$$

zometria.

Krzywizna Gaussa

Krzywizna Gaussa II

lwzorowanie Weingarten uga forma podstawowa

rzywizna Gaussa o rzywizna średnia

Podsumow

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie

Teraz użyjemy twierdzenia o wartości średniej które mówi, że dla każdego takiego zbioru V muszą istnieć takie punkty a_V , $b_V \in x^{-1}(V)$, że cała całka wyraża się jako wartość funkcji podcałkowej w tych punktach:

$$\iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt = |\langle n_1(a_V) \times n_2(a_V), n(a_V) \rangle| A(x^{-1}(V)),$$

$$\iint_{x^{-1}(V)} \sqrt{|\det(g_{ij})|} ds dt = \sqrt{|\det(g_{ij}(b_V))|} A(x^{-1}(V)).$$

$$\lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \lim_{V \to \{p\}} \frac{|\langle n_1(a_V) \times n_2(a_V), n(a_V) \rangle | A(x^{-1}(V))}{\sqrt{|\det(g_{ij}(\overline{b}_V))|} | A(x^{-1}(V))} = \frac{|\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle|}{\sqrt{|\det(g_{ij}(\overline{p}))|}}.$$

Z równań Weingartena na pochodne wektora normalnego $(n_i = -L_{1i}x_1 - L_{2i}x_2)$ otrzymujemy

$$n_1 \times n_2 = (-(L_{11}x_1 + L_{21}x_2)) \times (-(L_{21}x_1 + L_{22}x_2)) =$$

= $(x_1 \times x_2)(L_{11}L_{22} - L_{21}L_{22}) = K(p)(x_1 \times x_2)$

(jest to krzywizna K(p) zdefiniowana jako $\det(L_{ij})$)

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawowa

krzywizna średnia

Podsumowa

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie

$$\begin{split} \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} &= \lim_{V \to \{p\}} \frac{|\langle n_1(a_V) \times n_2(a_V), n(a_V) \rangle | A(x^{-1}(V))}{\sqrt{|\det(g_{ij}(b_V))|} | A(x^{-1}(V))} = \\ &= \frac{|\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle |}{\sqrt{|\det(g_{ij}(\overline{p}))|}}. \end{split}$$

Z równań Weingartena na pochodne wektora normalnego $(n_i = -L_{1i}x_1 - L_{2i}x_2)$ otrzymujemy

$$n_1 \times n_2 = (-(L_{11}x_1 + L_{21}x_2)) \times (-(L_{21}x_1 + L_{22}x_2)) =$$

= $(x_1 \times x_2)(L_{11}L_{22} - L_{21}L_{22}) = K(p)(x_1 \times x_2)$

(jest to krzywizna K(p) zdefiniowana jako $\det(L_{ij})$)

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa II

dwzorowanie Weingarten:

uga forma podstawowa

rzywizna Gaussa oraz

zywizna średnia

odsumow

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyjne

$$\begin{split} \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} &= \lim_{V \to \{p\}} \frac{|\langle n_1(a_V) \times n_2(a_V), n(a_V) \rangle | A(x^{-1}(V))}{\sqrt{|\det(g_{ij}(b_V))|} | A(x^{-1}(V))} = \\ &= \frac{|\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle |}{\sqrt{|\det(g_{ij}(\overline{p}))|}}. \end{split}$$

Z równań Weingartena na pochodne wektora normalnego $(n_i = -L_{1i}x_1 - L_{2i}x_2)$ otrzymujemy

$$n_1 \times n_2 = (-(L_{11}x_1 + L_{21}x_2)) \times (-(L_{21}x_1 + L_{22}x_2)) =$$

= $(x_1 \times x_2)(L_{11}L_{22} - L_{21}L_{22}) = K(p)(x_1 \times x_2)$

(jest to krzywizna K(p) zdefiniowana jako $\det(L_{ij})$).

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma nodstawowa

zometria.

Krzywizna Gaussa II

awzorowanie weingartei

ruga forma podstawowa

rzywizna Gaussa or zywizna średnia

deumowania

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie klasyfikacyjne

$$\langle \mathbf{n}_{1}(\overline{p}) \times \mathbf{n}_{2}(\overline{p}), \mathbf{n}(\overline{p}) \rangle = \pm K(p) \left\langle x_{1}(\overline{p}) \times x_{2}(\overline{p}), \frac{x_{1}(\overline{p}) \times x_{2}(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle = \frac{\pm K(p)}{\sqrt{\det(g_{ij}(\overline{p}))}} ||x_{1} \times x_{2}||^{2} = \pm K(p) \sqrt{\det(g_{ij}(\overline{p}))},$$

$$K_{\mathcal{G}}(p) = \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\pm K(p)\sqrt{\det(g_{ij}(\overline{p}))}}{\sqrt{\det(g_{ij}(\overline{p}))}} = \pm K(p)$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Jawzorowanie Weingarten

----i--- C-----

rzywizna Gaussa ori rzywizna średnia

Podsumow

Agitacja na rzecz zgodności definicji

Theorema Egregium
Twierdzenie

$$\langle n_{1}(\overline{p}) \times n_{2}(\overline{p}), n(\overline{p}) \rangle = \pm K(p) \left\langle x_{1}(\overline{p}) \times x_{2}(\overline{p}), \frac{x_{1}(\overline{p}) \times x_{2}(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle =$$

$$= \frac{\pm K(p)}{\sqrt{\det(g_{ij}(\overline{p}))}} ||x_{1} \times x_{2}||^{2} = \pm K(p) \sqrt{\det(g_{ij}(\overline{p}))},$$

$$K_{\mathfrak{G}}(p) = \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\pm K(p)\sqrt{\det(g_{ij}(\overline{p}))}}{\sqrt{\det(g_{ij}(\overline{p}))}} = \pm K(p)$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

awzorowanie weingartena

Druga forma podstawowa

rzywizna Gaussa ori rzywizna średnia

Podsumow

Agitacja na rzecz zgodności definicji

Theorema Egregium
Twierdzenie

$$\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle = \pm K(p) \left\langle x_1(\overline{p}) \times x_2(\overline{p}), \frac{x_1(\overline{p}) \times x_2(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle =$$

$$= \frac{\pm K(p)}{\sqrt{\det(g_{ij}(\overline{p}))}} ||x_1 \times x_2||^2 = \pm K(p) \sqrt{\det(g_{ij}(\overline{p}))},$$

$$K_{\mathfrak{G}}(p) = \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\pm K(p)\sqrt{\det(g_{ij}(\overline{p}))}}{\sqrt{\det(g_{ij}(\overline{p}))}} = \pm K(p)$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

iwzorowanie weingarten

ruga forma podstawowa

rzywizna Gaussa or: rzywizna średnia

Podsumow

Agitacja na rzecz zgodności definicji

Theorema Egregium
Twierdzenie

$$\begin{split} \langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle &= \pm K(p) \left\langle x_1(\overline{p}) \times x_2(\overline{p}), \frac{x_1(\overline{p}) \times x_2(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle = \\ &= \frac{\pm K(p)}{\sqrt{\det(g_{ij}(\overline{p})))}} \|x_1 \times x_2\|^2 = \pm K(p) \sqrt{\det(g_{ij}(\overline{p}))}, \end{split}$$

$$K_{\mathfrak{G}}(p) = \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\pm K(p)\sqrt{\det(g_{ij}(\overline{p}))}}{\sqrt{\det(g_{ij}(\overline{p}))}} = \pm K(p)$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma nodstawowa

zometria.

KIZYWIZIIA Gaussa I

Krzywizna Gaussa II

, and the second

rzywizna Gaussa oraz

zywizna średnia

Podsumowan

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie

$$\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle = \pm K(p) \left\langle x_1(\overline{p}) \times x_2(\overline{p}), \frac{x_1(\overline{p}) \times x_2(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle =$$

$$= \frac{\pm K(p)}{\sqrt{\det(g_{ij}(\overline{p})))}} ||x_1 \times x_2||^2 = \pm K(p) \sqrt{\det(g_{ij}(\overline{p}))},$$

$$K_{\mathfrak{G}}(p) = \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\pm K(p)\sqrt{\det(g_{ij}(\overline{p}))}}{\sqrt{\det(g_{ij}(\overline{p}))}} = \pm K(p).$$

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

wzorowanie wenigarten

ruga torma poustawowa

zywizna Gaussa oi zywizna średnia

Podsumowa

Agitacja na rzecz zgodności definicji

Theorema Egregium i Twierdzenie

Wykład 10

Theorema Egregium i Twierdzenie klasyfikacyjne

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

rocnoane kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela

eorema Egregium

wierdzenie klasyfikujace

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Pochodne kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie klasyfikacyjne Symbole Christoffela Theorema Egregium Twierdzenie klasyfikujące

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffel

Theorema Egregium

Twierdzenie klasyfikując

Przypomnijmy najpierw równania Weingartena:

$$n_i = -L_{1i}x_1 - L_{2i}x_2$$
.

Wyrażają one pochodne cząstkowe wektora normalnego w bazie $\{x_1, x_2, n\}$. Udowodnimy teraz podobne wzory dla drugich pochodnych cząstkowych x_{ij} .

Twierdzenie (Formuła Gaussa)

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką oraz niech $x: U \to N$ będzie lokalnych układem współrzędnych. Wtedy

$$x_{ij} = \Gamma_{ij}^{1} x_1 + \Gamma_{ij}^{2} x_2 + l_{ij} n.$$
 (10.1)

$$n_i = -L_{1i}x_1 - L_{2i}x_2$$
.

Wyrażają one pochodne cząstkowe wektora normalnego w bazie $\{x_1, x_2, n\}$. Udowodnimy teraz podobne wzory dla drugich pochodnych cząstkowych x_{ij} .

Twierdzenie (Formuła Gaussa)

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką oraz niech $x: U \to M$ będzie lokalnych układem współrzędnych. Wtedy

$$x_{ij} = \Gamma_{ij}^{1} x_1 + \Gamma_{ij}^{2} x_2 + l_{ij} n. \tag{10.1}$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

(rzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregiur Fwierdzenie klasyfikacyjne

Symbole Christoffela

neorema Egregium

ierdzenie klasyfikują

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregiui Twierdzenie Klasyfikacyjne

Symbole Christoffela

neorema Egregium

ierdzenie klasyfikujące

Uwaga

Ponieważ funkcje Γ_{ij}^k zwane **symbolami Christoffela** nie pojawiły się jeszcze na tym wykładzie, możemy to sformułowanie przyjąć jako ich **definicję** (z resztą tak samo zdefiniowaliśmy torsję krzywej).

Ponieważ $x_{ij} = x_{ji}$, więc natychmiast otrzymujemy pierwszą własność tych symboli:

$$\Gamma_{ij}^k = \Gamma_{ji}^k$$
, dla $k = 1, 2$

Ponieważ funkcje Γ_{ii}^k zwane **symbolami Christoffela** nie pojawiły się jeszcze na tym wykładzie, możemy to sformułowanie przyjąć jako ich **definicję** (z resztą tak samo zdefiniowaliśmy torsję krzywej).

Ponieważ $x_{ii} = x_{ii}$, więc natychmiast otrzymujemy pierwszą własność tych symboli:

$$\Gamma_{ij}^k = \Gamma_{ji}^k$$
, dla $k = 1, 2$.

Dowód Formuły Gaussa:

Ponieważ układ $\{x_1, x_2, n\}$ tworzy bazę przestrzeni \mathbb{R}^3 , więc muszą istnieć współczynniki Γ_{ij}^k oraz Q_{ij} takie, że

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + Q_{ij} n.$$

Zrzutujmy ortogonalnie obie strony tego równania na wektory x_1 , x_2 i n:

$$\langle x_{ij}, x_1 \rangle = \Gamma_{ij}^1 g_{11} + \Gamma_{ij}^2 g_{12}$$
$$\langle x_{ij}, x_2 \rangle = \Gamma_{ij}^1 g_{21} + \Gamma_{ij}^2 g_{22}$$
$$\langle x_{ij}, n \rangle = Q_{ij}$$

Natychmiast z tego wynika, że $Q_{ij} = \langle x_{ij}, n \rangle = \langle x_i, n_j \rangle = l_{ij}$. Pozostałe dwa równania potraktujmy jako własności symboli Christoffela. Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

> erunkowe. ometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie

Symbole Christoffela

Theorema Egregiu

Twierdzenie klasyfikujące

Dowód Formuły Gaussa:

Ponieważ układ $\{x_1, x_2, n\}$ tworzy bazę przestrzeni \mathbb{R}^3 , więc muszą istnieć współczynniki Γ_{ij}^k oraz Q_{ij} takie, że

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + Q_{ij} n.$$

Zrzutujmy ortogonalnie obie strony tego równania na wektory x_1 , x_2 i n:

$$\langle x_{ij}, x_1 \rangle = \Gamma_{ij}^1 g_{11} + \Gamma_{ij}^2 g_{12}$$
$$\langle x_{ij}, x_2 \rangle = \Gamma_{ij}^1 g_{21} + \Gamma_{ij}^2 g_{22}$$
$$\langle x_{ij}, n \rangle = Q_{ij}$$

Natychmiast z tego wynika, że $Q_{ij} = \langle x_{ij}, n \rangle = \langle x_i, n_j \rangle = l_{ij}$. Pozostałe dwa równania potraktujmy jako własności symboli Christoffela.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

Symbole Christoffela

Theorema Egregium

ierdzenie klasyfikujące

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + Q_{ij} n.$$

Zrzutujmy ortogonalnie obie strony tego równania na wektory x_1 , x_2 i n:

$$\langle x_{ij}, x_1 \rangle = \Gamma_{ij}^1 g_{11} + \Gamma_{ij}^2 g_{12}$$

 $\langle x_{ij}, x_2 \rangle = \Gamma_{ij}^1 g_{21} + \Gamma_{ij}^2 g_{22}$
 $\langle x_{ij}, n \rangle = Q_{ij}$

Natychmiast z tego wynika, że $Q_{ij} = \langle x_{ij}, n \rangle = \langle x_i, n_j \rangle = l_{ij}$. Pozostałe dwa równania potraktujmy jako własności symboli Christoffela.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

kierunkowe. Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregiur Twierdzenie klasyfikacyjne

Symbole Christoffela

heorema Egregium

erdzenie klasyfikujące

Symbole Christoffela

Ponieważ układ $\{x_1, x_2, n\}$ tworzy bazę przestrzeni \mathbb{R}^3 , więc muszą istnieć współczynniki Γ_{ii}^k oraz Q_{ij} takie, że

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + Q_{ij} n.$$

Zrzutujmy ortogonalnie obie strony tego równania na wektory x_1 , x_2 i n:

$$\langle x_{ij}, x_1 \rangle = \Gamma_{ij}^1 g_{11} + \Gamma_{ij}^2 g_{12}$$

 $\langle x_{ij}, x_2 \rangle = \Gamma_{ij}^1 g_{21} + \Gamma_{ij}^2 g_{22}$
 $\langle x_{ij}, n \rangle = Q_{ij}$

Natychmiast z tego wynika, że $Q_{ij} = \langle x_{ij}, n \rangle = \langle x_i, n_i \rangle = l_{ii}$. Pozostałe dwa równania potraktujmy jako własności symboli Christoffela.

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregiu Twierdzenie klasyfikacyjne

Symbole Christoffela

heorema Egregium

ierdzenie klasyfikuiace

Lemat

Niech $M \to \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych. Dla wszystkich i, j = 1, 2 zachodzi

$$\begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial g_{j1}}{\partial u_i} + \frac{\partial g_{i1}}{\partial u_j} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{j2}}{\partial u_i} + \frac{\partial g_{i2}}{\partial u_j} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix}$$

$$\frac{\partial g_{ij}}{\partial u_k} = \frac{\partial \langle x_i, x_j \rangle}{\partial u_k} = \left\langle \frac{\partial x_i}{\partial u_k}, x_j \right\rangle + \left\langle x_i, \frac{\partial x_j}{\partial u_k} \right\rangle = \langle x_{ik}, x_j \rangle + \langle x_i, x_{jk} \rangle.$$

Podobnie, permutując indeksy i, j, k (równocześnie pamiętając, że $g_{ij} = g_{ji}$, oraz $x_{ij} = x_{ji}$) otrzymujemy dwa kolejne równania:

$$\frac{\partial g_{ik}}{\partial u_j} = \langle x_{ij}, x_k \rangle + \langle x_i, x_{jk} \rangle$$
$$\frac{\partial g_{jk}}{\partial u_i} = \langle x_{ik}, x_j \rangle + \langle x_k, x_{ij} \rangle$$

Dodając drugie i trzecie równanie, a następnie odejmując pierwsze otrzymujemy:

$$\frac{1}{2}\left(\frac{\partial g_{ik}}{\partial u_j}+\frac{\partial g_{jk}}{\partial u_i}-\frac{\partial g_{ij}}{\partial u_k}\right)=\langle x_{ij},x_k\rangle.$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ochodne ierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium Twierdzenie klasyfikacyjne

Symbole Christoffela

neorema Egregium

iwierdzenie klasyfikujące

$$\frac{\partial g_{ij}}{\partial u_k} = \frac{\partial \langle x_i, x_j \rangle}{\partial u_k} = \left\langle \frac{\partial x_i}{\partial u_k}, x_j \right\rangle + \left\langle x_i, \frac{\partial x_j}{\partial u_k} \right\rangle = \langle x_{ik}, x_j \rangle + \langle x_i, x_{jk} \rangle.$$

$$\frac{\partial g_{ik}}{\partial u_j} = \langle x_{ij}, x_k \rangle + \langle x_i, x_{jk} \rangle$$

$$\frac{\partial g_{jk}}{\partial u_i} = \langle x_{ik}, x_j \rangle + \langle x_k, x_{ij} \rangle$$

$$\frac{1}{2}\left(\frac{\partial g_{ik}}{\partial u_j}+\frac{\partial g_{jk}}{\partial u_i}-\frac{\partial g_{ij}}{\partial u_k}\right)=\langle x_{ij},x_k\rangle.$$

Flementarna Geometria Różniczkowa

$$\frac{\partial g_{ij}}{\partial u_k} = \frac{\partial \langle x_i, x_j \rangle}{\partial u_k} = \left\langle \frac{\partial x_i}{\partial u_k}, x_j \right\rangle + \left\langle x_i, \frac{\partial x_j}{\partial u_k} \right\rangle = \langle x_{ik}, x_j \rangle + \langle x_i, x_{jk} \rangle.$$

Podobnie, permutując indeksy *i*, *j*, *k* (równocześnie pamiętając, że $g_{ij} = g_{ji}$, oraz $x_{ij} = x_{ji}$) otrzymujemy dwa kolejne równania:

$$\frac{\partial g_{ik}}{\partial u_j} = \langle x_{ij}, x_k \rangle + \langle x_i, x_{jk} \rangle$$

$$\frac{\partial g_{jk}}{\partial u_i} = \langle x_{ik}, x_j \rangle + \langle x_k, x_{ij} \rangle$$

$$\frac{1}{2}\left(\frac{\partial g_{ik}}{\partial u_j}+\frac{\partial g_{jk}}{\partial u_i}-\frac{\partial g_{ij}}{\partial u_k}\right)=\langle x_{ij},x_k\rangle.$$

Obliczmy pochodną cząstkową z gii:

$$\frac{\partial g_{ij}}{\partial u_k} = \frac{\partial \langle x_i, x_j \rangle}{\partial u_k} = \left\langle \frac{\partial x_i}{\partial u_k}, x_j \right\rangle + \left\langle x_i, \frac{\partial x_j}{\partial u_k} \right\rangle = \langle x_{ik}, x_j \rangle + \langle x_i, x_{jk} \rangle.$$

Podobnie, permutując indeksy *i*, *j*, *k* (równocześnie pamiętając, że $g_{ii} = g_{ii}$, oraz $x_{ii} = x_{ii}$) otrzymujemy dwa kolejne równania:

$$\frac{\partial g_{ik}}{\partial u_j} = \langle x_{ij}, x_k \rangle + \langle x_i, x_{jk} \rangle$$

$$\frac{\partial g_{jk}}{\partial u_i} = \langle x_{ik}, x_j \rangle + \langle x_k, x_{ij} \rangle$$

Dodając drugie i trzecie równanie, a następnie odejmując pierwsze otrzymujemy:

$$\frac{1}{2}\left(\frac{\partial g_{ik}}{\partial u_i}+\frac{\partial g_{jk}}{\partial u_i}-\frac{\partial g_{ij}}{\partial u_k}\right)=\langle x_{ij},x_k\rangle.$$

$$\langle x_{ij}, x_k \rangle = \Gamma_{ij}^1 \langle x_1, x_k \rangle + \Gamma_{ij}^2 \langle x_2, x_k \rangle = \sum_{r=1}^2 \Gamma_{ij}^r g_{rk},$$

$$\sum_{r=1}^{2} \Gamma_{ij}^{r} g_{rk} = \frac{1}{2} \left(\frac{\partial g_{ik}}{\partial u_{j}} + \frac{\partial g_{jk}}{\partial u_{i}} - \frac{\partial g_{ij}}{\partial u_{k}} \right).$$

$$\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \\ \end{pmatrix} = \begin{pmatrix} \frac{\partial g_{i1}}{\partial u_j} + \frac{\partial g_{j1}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{i2}}{\partial u_j} + \frac{\partial g_{j2}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix}$$

$$\langle x_{ij}, x_k \rangle = \Gamma_{ij}^1 \langle x_1, x_k \rangle + \Gamma_{ij}^2 \langle x_2, x_k \rangle = \sum_{r=1}^2 \Gamma_{ij}^r g_{rk},$$

czyli

$$\sum_{r=1}^{2} \Gamma_{ij}^{r} g_{rk} = \frac{1}{2} \left(\frac{\partial g_{ik}}{\partial u_{j}} + \frac{\partial g_{jk}}{\partial u_{i}} - \frac{\partial g_{ij}}{\partial u_{k}} \right).$$

Wystarczy teraz to równanie zapisać w postaci macierzowej

$$\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \begin{pmatrix} \frac{\partial g_{i1}}{\partial u_j} + \frac{\partial g_{j1}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{i2}}{\partial u_j} + \frac{\partial g_{j2}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix}$$

i pomnożyć z lewej strony przez $(g_{ij})^{-1}$ aby otrzymać szukane przedstawienie Γ_{ii}^k .

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

12 y WIZIIA GAASSA I

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela

Theorema Egregium

wierdzenie klasyfikują

$$\langle x_{ij}, x_k \rangle = \Gamma_{ij}^1 \langle x_1, x_k \rangle + \Gamma_{ij}^2 \langle x_2, x_k \rangle = \sum_{r=1}^2 \Gamma_{ij}^r g_{rk},$$

czyli

$$\sum_{r=1}^{2} \Gamma_{ij}^{r} g_{rk} = \frac{1}{2} \left(\frac{\partial g_{ik}}{\partial u_{j}} + \frac{\partial g_{jk}}{\partial u_{i}} - \frac{\partial g_{ij}}{\partial u_{k}} \right).$$

Wystarczy teraz to równanie zapisać w postaci macierzowej:

$$\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \\ \end{pmatrix} = \begin{pmatrix} \frac{\partial g_{i1}}{\partial u_j} + \frac{\partial g_{j1}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{i2}}{\partial u_j} + \frac{\partial g_{j2}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix},$$

i pomnożyć z lewej strony przez $(g_{ij})^{-1}$ aby otrzymać szukane przedstawienie Γ_{ii}^k .

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

ometria.

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela

Theorema Egregium

vierdzenie klasyfikując

$$\langle x_{ij}, x_k \rangle = \Gamma_{ij}^1 \langle x_1, x_k \rangle + \Gamma_{ij}^2 \langle x_2, x_k \rangle = \sum_{r=1}^2 \Gamma_{ij}^r g_{rk},$$

czyli

$$\sum_{r=1}^{2} \Gamma_{ij}^{r} g_{rk} = \frac{1}{2} \left(\frac{\partial g_{ik}}{\partial u_{j}} + \frac{\partial g_{jk}}{\partial u_{i}} - \frac{\partial g_{ij}}{\partial u_{k}} \right).$$

Wystarczy teraz to równanie zapisać w postaci macierzowej:

$$\begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \\ \end{pmatrix} = \begin{pmatrix} \frac{\partial g_{i1}}{\partial u_j} + \frac{\partial g_{j1}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{i2}}{\partial u_j} + \frac{\partial g_{j2}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix},$$

i pomnożyć z lewej strony przez $(g_{ij})^{-1}$ aby otrzymać szukane przedstawienie Γ_{ii}^k .

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

metria.

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela

Theorema Egregium

rierdzenie klasyfikując

Równanie Gaussa:

następujące równości.

$$l_{11}l_{22} - l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right]$$

Równania Codazziego-Mainardiego:

$$\begin{aligned} \frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{12}^{r} l_{r1} - \Gamma_{11}^{r} l_{r2} \right) &= 0 \\ \frac{\partial l_{22}}{\partial u_1} - \frac{\partial l_{21}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{22}^{r} l_{r1} - \Gamma_{21}^{r} l_{r2} \right) &= 0 \end{aligned}$$

Powierzchnie w R³

Wektory styczne i normalne. I forma nodstawowa

zometria.

Kizywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Symbole Christoffela

neorema Egregium

wierdzenie klasyfikujące

► Równanie Gaussa:

$$l_{11}l_{22}-l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right].$$

Równania Codazziego-Mainardiego:

$$\frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{12}^r l_{r1} - \Gamma_{11}^r l_{r2} \right) = 0$$

$$\frac{\partial l_{22}}{\partial u_1} - \frac{\partial l_{21}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{22}^r l_{r1} - \Gamma_{21}^r l_{r2} \right) = 0$$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

NILY WIZITA Gaussa I

Krzywizna Gaussa I

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela

neorema Egregium

vierdzenie klasyfikując

Niec $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych. Wtedy zachodzą następujące równości.

► Równanie Gaussa:

$$l_{11}l_{22}-l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right].$$

Równania Codazziego-Mainardiego:

$$\frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{12}^r l_{r1} - \Gamma_{11}^r l_{r2} \right) = 0$$

$$\frac{\partial l_{22}}{\partial u_1} - \frac{\partial l_{21}}{\partial u_2} + \sum_{r=1}^{2} \left(\Gamma_{22}^r l_{r1} - \Gamma_{21}^r l_{r2} \right) = 0$$

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

VIZY WIZIIA Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Symbole Christoffela

heorema Egregium

vierdzenie klasyfikujące

Udowodnimy tylko Równania Codazziego-Mainardiego, równanie Gaussa pozostawiając jako ćwiczenie.

Chociaż równania te wyglądają groźnie, ich dowód sprowadza się do bardzo prostego faktu: trzecie pochodne cząstkowe są sobie równe bez względu na kolejność różniczkowania:

$$x_{ijk} = x_{ikj}$$
.

Dowód:

Przypomnijmy formułę Gaussa:

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + l_{ij} n$$

a następnie zróżniczkujmy ją względem u_k :

$$x_{ijk} = \frac{\partial \Gamma_{ij}^1}{\partial u_k} x_1 + \Gamma_{ij}^1 x_{1k} + \frac{\partial_{ij}^2}{\partial u_k} x_2 + \Gamma_{ij}^2 x_{2k} + \frac{\partial l_{ij}}{\partial u_k} n + l_{ij} n_k$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela

heorema Egregium

Twierdzenie klasyfikujące

Chociaż równania te wyglądają groźnie, ich dowód sprowadza się do bardzo prostego faktu: trzecie pochodne cząstkowe są sobie równe bez względu na kolejność różniczkowania:

$$x_{ijk} = x_{ikj}$$
.

Dowód

Przypomnijmy formułę Gaussa:

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + l_{ij} n$$

a następnie zróżniczkujmy ją względem u_k :

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} x_{1k} + \frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} x_{2k} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} n_{k}$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

rzywizna Gaussa I

Krzywizna Gaussa II

heorema Egregiun wierdzenie lasyfikacyjne

Symbole Christoffela

eorema Egregium

ierdzenie klasyfikujące

Ci Zy WiZiia Gaussa i

Krzywizna Gaussa I

heorema Egregiur wierdzenie lasyfikacyjne

Symbole Christoffela

heorema Egregium

wierdzenie klasyfikujące

4 D > 4 P > 4 E > 4 E > 9 Q P

Udowodnimy tylko Równania Codazziego-Mainardiego, równanie Gaussa pozostawiając jako ćwiczenie. Chociaż równania te wyglądają groźnie, ich dowód sprowadza się do bardzo prostego faktu: trzecie pochodne cząstkowe są sobie równe bez względu na kolejność różniczkowania:

$$x_{ijk} = x_{ikj}$$
.

Dowód:

Przypomnijmy formułę Gaussa:

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + l_{ij} n,$$

a następnie zróżniczkujmy ją względem u_k

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} x_{1k} + \frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} x_{2k} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} n_{k}$$

ometria.

XIZY WIZIIA Gaussa I

Krzywizna Gaussa I

Theorema Egregiui Twierdzenie klasyfikacyjne

Symbole Christoffela

heorema Egregiun

wierdzenie klasyfikujące

4□ > 4□ > 4□ > 4□ > 4□ > 4□ >

Udowodnimy tylko Równania Codazziego-Mainardiego, równanie Gaussa pozostawiając jako ćwiczenie. Chociaż równania te wyglądają groźnie, ich dowód sprowadza się do bardzo prostego faktu: trzecie pochodne cząstkowe są sobie równe bez względu na kolejność różniczkowania:

$$x_{ijk} = x_{ikj}$$
.

Dowód:

Przypomnijmy formułę Gaussa:

$$x_{ij} = \Gamma_{ij}^1 x_1 + \Gamma_{ij}^2 x_2 + l_{ij} n,$$

a następnie zróżniczkujmy ją względem u_k :

$$x_{ijk} = \frac{\partial \Gamma_{ij}^1}{\partial u_k} x_1 + \Gamma_{ij}^1 x_{1k} + \frac{\partial_{ij}^2}{\partial u_k} x_2 + \Gamma_{ij}^2 x_{2k} + \frac{\partial l_{ij}}{\partial u_k} n + l_{ij} n_k.$$

Korzystając teraz z równania Weingartena i fromuły Gaussa podstawmy za n_k i x_{ij} ich realizacje w bazie $\{x_1, x_2, n\}$, a następnie uporządkujmy wyrażenie:

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} = \begin{bmatrix} \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k} \end{bmatrix} x_{1} + \begin{bmatrix} \frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k} \end{bmatrix} x_{2} + \begin{bmatrix} \frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k} \end{bmatrix} x_{2} + \begin{bmatrix} \Gamma_{ij}^{1} l_{1k} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}} \end{bmatrix} n = Ax_{1} + Bx_{2} + Cn.$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma

> cierunkowe. zometria.

Kizy wiziia Gaussa i

Kizywiziia Gaussa ii

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela

Theorema Egregiun Twierdzenie klasyfi

Twierdzenie klasyfikujące

Korzystając teraz z równania Weingartena i fromuły Gaussa podstawmy za n_k i x_{ij} ich realizacje w bazie $\{x_1, x_2, n\}$, a następnie uporządkujmy wyrażenie:

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} =$$

$$= \underbrace{\left[\frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k}\right]}_{n_{k}} x_{1} +$$

$$+ \underbrace{\left[\frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k}\right]}_{n_{k}} x_{2} +$$

$$+ \underbrace{\left[\Gamma_{ij}^{1} l_{1k} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}}\right]}_{n_{k}} n = Ax_{1} + Bx_{2} + Cn.$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma

> ierunkowe. zometria.

Titzy Wizila Gadosa i

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Symbole Christoffela

meorema Egregiur Swierdzenie klasyfi

Twierdzenie klasyfikują

Korzystając teraz z równania Weingartena i fromuły Gaussa podstawmy za n_k i x_{ij} ich realizacje w bazie $\{x_1, x_2, n\}$, a następnie uporządkujmy wyrażenie:

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \underbrace{\frac{\partial^{2}_{ij}}{\partial u_{k}} x_{2} + \Gamma^{2}_{ij} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \underbrace{\frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} = \underbrace{\left[\frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k}\right] x_{1} + \underbrace{\left[\frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k}\right] x_{2} + \underbrace{\left[\Gamma_{ij}^{1} l_{1k} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}}\right] n = Ax_{1} + Bx_{2} + Cn.}$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma

> ochodne erunkowe. ometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela

heorema Egregiui

Korzystając teraz z równania Weingartena i fromuły Gaussa podstawmy za n_k i x_{ij} ich realizacje w bazie $\{x_1, x_2, n\}$, a następnie uporządkujmy wyrażenie:

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} =$$

$$= \begin{bmatrix} \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k} \end{bmatrix} x_{1} +$$

$$+ \begin{bmatrix} \frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k} \end{bmatrix} x_{2} +$$

$$+ \begin{bmatrix} \Gamma_{ij}^{1} l_{1k} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}} \end{bmatrix} n = Ax_{1} + Bx_{2} + Cn.$$

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

> ocnoane ierunkowe. :ometria.

Krzywizna Gaussa i

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela

Korzystając teraz z równania Weingartena i fromuły Gaussa podstawmy za n_k i x_{ij} ich realizacje w bazie $\{x_1, x_2, n\}$, a następnie uporządkujmy wyrażenie:

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} =$$

$$= \begin{bmatrix} \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k} \end{bmatrix} x_{1} +$$

$$+ \begin{bmatrix} \frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k} \end{bmatrix} x_{2} +$$

$$+ \begin{bmatrix} \Gamma_{ij}^{1} l_{1k} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}} \end{bmatrix} n = Ax_{1} + Bx_{2} + Cn.$$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma

kierunkowe. Izometria.

Theorema Egregium i Twierdzenie

Symbole Christoffela

Theorema Egregiun

$$x_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} x_{1} + \Gamma_{ij}^{1} \underbrace{\left(\Gamma_{1k}^{2} x_{1} + \Gamma_{1k}^{2} x_{2} + l_{1k} n\right)}_{x_{1k}} + \frac{\partial_{ij}^{2}}{\partial u_{k}} x_{2} + \Gamma_{ij}^{2} \underbrace{\left(\Gamma_{2k}^{1} x_{1} + \Gamma_{2k}^{2} x_{2} + l_{2k} n\right)}_{x_{2k}} + \frac{\partial l_{ij}}{\partial u_{k}} n + l_{ij} \underbrace{\left(-L_{1k} x_{1} - L_{2k} x_{2}\right)}_{n_{k}} =$$

$$= \begin{bmatrix} \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{1k} \end{bmatrix} x_{1} +$$

$$+ \begin{bmatrix} \frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - l_{ij} L_{2k} \end{bmatrix} x_{2} +$$

$$+ \begin{bmatrix} \Gamma_{ij}^{1} l_{1k} + \Gamma_{ij}^{2} l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}} \end{bmatrix} n = Ax_{1} + Bx_{2} + Cn.$$

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma

kierunkowe. Izometria.

Theorema Egregium i Twierdzenie

Symbole Christoffela

Theorema Egregiun

$$x_{ikj} = \left[\frac{\partial \Gamma_{ik}^{1}}{\partial u_{j}} + \Gamma_{ik}^{1} \Gamma_{1j}^{1} + \Gamma_{ik}^{2} \Gamma_{2j}^{2} - l_{ik} L_{1j} \right] x_{1} +$$

$$+ \left[\frac{\partial \Gamma_{ik}^{2}}{\partial u_{j}} + \Gamma_{ik}^{1} \Gamma_{1j}^{2} + \Gamma_{ik}^{2} \Gamma_{2j}^{2} - l_{ik} L_{2j} \right] x_{2} +$$

$$+ \left[\Gamma_{ik}^{1} l_{1j} + \Gamma_{ik}^{2} l_{2j} + \frac{\partial l_{ik}}{\partial u_{j}} \right] n =$$

$$= A' x_{1} + B' x_{2} + C' n.$$

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

tierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyine

Symbole Christoffela

heorema Egregium

zometria.

Krzywizna Gaussa i

Krzywizna Gaussa i

Twierdzenie klasyfikacyjne

Symbole Christoffela

heorema Egregium

ierdzenie klasyfikujące

Zamieniając miejscami j i k otrzymujemy

$$x_{ikj} = \left[\frac{\partial \Gamma_{ik}^{1}}{\partial u_{j}} + \Gamma_{ik}^{1} \Gamma_{1j}^{1} + \Gamma_{ik}^{2} \Gamma_{2j}^{2} - l_{ik} L_{1j} \right] x_{1} +$$

$$+ \left[\frac{\partial \Gamma_{ik}^{2}}{\partial u_{j}} + \Gamma_{ik}^{1} \Gamma_{1j}^{2} + \Gamma_{ik}^{2} \Gamma_{2j}^{2} - l_{ik} L_{2j} \right] x_{2} +$$

$$+ \left[\Gamma_{ik}^{1} l_{1j} + \Gamma_{ik}^{2} l_{2j} + \frac{\partial l_{ik}}{\partial u_{j}} \right] n =$$

$$= A' x_{1} + B' x_{2} + C' n.$$

$$\Gamma^1_{ij}l_{1k} + \Gamma^2_{ij}l_{2k} + \frac{\partial l_{ij}}{\partial u_k} = \Gamma^1_{ik}l_{1j} + \Gamma^2_{ik}l_{2j} + \frac{\partial l_{ik}}{\partial u_j}, \qquad (C = C').$$

Odpowiednio grupując otrzymujemy

$$\frac{\partial l_{ij}}{\partial u_k} - \frac{\partial l_{ik}}{\partial u_j} + \left(\Gamma_{ij}^1 l_{1k} - \Gamma_{ik}^1 l_{1j}\right) + \Gamma_{ij}^2 l_{2k} - \Gamma_{ik}^2 l_{2j} =
= \frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^2 \left(\Gamma_{12}^r l_{r1} - \Gamma_{11}^r l_{r2}\right) = 0.$$

Ostatecznie podstawiając (i = 1, j = 2, k = 1) [odpowiednio: (i = 2, j = 2, k = 1)] otrzymujemy pierwsze [drugie] równanie Codazziego-Mainardiego.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Symbole Christoffela

heorema Egregium

$$\Gamma_{ij}^{1}l_{1k} + \Gamma_{ij}^{2}l_{2k} + \frac{\partial l_{ij}}{\partial u_{k}} = \Gamma_{ik}^{1}l_{1j} + \Gamma_{ik}^{2}l_{2j} + \frac{\partial l_{ik}}{\partial u_{j}}, \qquad (C = C').$$

Odpowiednio grupując otrzymujemy

$$\begin{split} \frac{\partial l_{ij}}{\partial u_k} - \frac{\partial l_{ik}}{\partial u_j} + \left(\Gamma^1_{ij}l_{1k} - \Gamma^1_{ik}l_{1j}\right) + \Gamma^2_{ij}l_{2k} - \Gamma^2_{ik}l_{2j} = \\ = \frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^2 \left(\Gamma^r_{12}l_{r1} - \Gamma^r_{11}l_{r2}\right) = 0. \end{split}$$

Ostatecznie podstawiając (i = 1, j = 2, k = 1) [odpowiednio: (i = 2, j = 2, k = 1)] otrzymujemy pierwsze [drugie] równanie Codazziego-Mainardiego.

Elementarna Geometria Różniczkowa

owierzchnie w \mathbb{R}^3

/ektory styczne i ormalne. I forma odstawowa

ometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium i Twierdzenie klasyfikacyjne

Symbole Christoffela

heorema Egregium

$$\Gamma_{ij}^1 l_{1k} + \Gamma_{ij}^2 l_{2k} + \frac{\partial l_{ij}}{\partial u_k} = \Gamma_{ik}^1 l_{1j} + \Gamma_{ik}^2 l_{2j} + \frac{\partial l_{ik}}{\partial u_j}, \qquad (C = C').$$

Odpowiednio grupując otrzymujemy

$$\begin{split} \frac{\partial l_{ij}}{\partial u_k} - \frac{\partial l_{ik}}{\partial u_j} + \left(\Gamma_{ij}^1 l_{1k} - \Gamma_{ik}^1 l_{1j}\right) + \Gamma_{ij}^2 l_{2k} - \Gamma_{ik}^2 l_{2j} = \\ &= \frac{\partial l_{12}}{\partial u_1} - \frac{\partial l_{11}}{\partial u_2} + \sum_{r=1}^2 \left(\Gamma_{12}^r l_{r1} - \Gamma_{11}^r l_{r2}\right) = 0. \end{split}$$

Ostatecznie podstawiając (i = 1, j = 2, k = 1) [odpowiednio: (i = 2, j = 2, k = 1)] otrzymujemy pierwsze [drugie] równanie Codazziego-Mainardiego.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Vektory styczne i ormalne. I forma odstawowa

ometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie klasyfikacyjne

Symbole Christoffela

neorema Egregium

Zadanie

Udowodnić formułę Gaussa.

Podpowiedź: należy porównać współczynniki A, A', oraz B, B'. Następnie podstawić (i=2, j=1, k=2).

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

cierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium Twierdzenie

Symbole Christoffela

eorema Egregium

Niech $M \subset \mathbb{R}^3$ oraz $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi o krzywiznach odpowienio K_M i K_N . Niech $f:M \to N$ będzie

lokalną izometrią. Wtedy

Niech $M \subset \mathbb{R}^3$ oraz $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi o krzywiznach odpowienio K_M i K_N . Niech $f: M \to N$ będzie lokalną izometrią. Wtedy

$$K_M(p) = K_N(f(p))$$

dla wszystkich p ∈ M.

Ponieważ pierwsza forma podstawowa powierzchni jest niezmienicza ze względu na lokalne izometrie (lemat 7.7, własność 3) wystarczy więc pokazać, że krzywizna Gaussa może być wyrażona w terminach współczynników metrycznych (funkcji g_{11} , g_{12} , g_{22}), oraz ich pochodnych.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium Twierdzenie

утроје Спгізтопеја

Theorema Egregium

Niech $M \subset \mathbb{R}^3$ oraz $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi o krzywiznach odpowienio K_M i K_N . Niech $f: M \to N$ będzie lokalną izometrią. Wtedy

$$K_{\mathcal{M}}(p) = K_{\mathcal{N}}(f(p))$$

dla wszystkich $p \in M$.

Ponieważ pierwsza forma podstawowa powierzchni jest niezmienicza ze względu na lokalne izometrie (lemat 7.7, własność 3) wystarczy więc pokazać, że krzywizna Gaussa może być wyrażona w terminach współczynników metrycznych (funkcji g_{11} , g_{12} , g_{22}), oraz ich pochodnych.

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregiu Twierdzenie dasyfikacyjne

mbole Christoffela

Theorema Egregium

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}.$$

$$l_{11}l_{22} - l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right].$$

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}.$$

$$l_{11}l_{22} - l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right].$$

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}.$$

Wystarczy więc przedstawić wyrażenie $\det(l_{ii}) = l_{11}l_{22} - l_{12}^2$ przy pomocy funkcji g_{11} , g_{12} , g_{22} i ich pochodnych. (**Uwaga:** jest to możliwe, mimo, że żadnej pojedynczej funkcji l_{ii} w taki sposób przedstawić się nie da!).

$$l_{11}l_{22} - l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right].$$

Flementarna Geometria Różniczkowa

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Wiemy, że krzywizna wyraża się wzorem

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}.$$

Wystarczy więc przedstawić wyrażenie $\det(l_{ij}) = l_{11}l_{22} - l_{12}^2$ przy pomocy funkcji g_{11} , g_{12} , g_{22} i ich pochodnych. (**Uwaga:** jest to możliwe, mimo, że żadnej pojedynczej funkcji l_{ij} w taki sposób przedstawić się nie da!).

Przypomnijmy równanie Gaussa (z twierdzenia 10.3):

$$l_{11}l_{22} - l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right].$$

Wyraża ono $l_{11}l_{22} - l_{12}^2$ przy pomocy g_{ij} oraz symboli Christoffela (i ich pochodnych).

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

cierunkowe. zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

heorema Egregiu wierdzenie lasyfikacyjne

Theorema Egregium

zometria.

,

Krzywizna Gaussa II

Theorema Egregiun Twierdzenie klasyfikacyjne

TI .

Theorema Egregium

uiardzania klacufikuiaca

Z drugiej strony dzięki wcześniejszemu lematowi charakteryzującego symbole Christoffela (lemat 10.2):

$$\begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial g_{j1}}{\partial u_i} + \frac{\partial g_{i1}}{\partial u_j} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{j2}}{\partial u_i} + \frac{\partial g_{i2}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix}$$

wiemy, że i je da się wyrazić przy pomocy współczynników metrycznych (i ich pochodnych). Zatem wstawiając równania z tego lematu do równania Gaussa otrzymujemu szukane wyrażenie $l_{11}l_{22}-l_{12}^2$ w tylko terminach funkcji g_{ij} (oraz ich pochodnych).

Krzywizna Gaussa i

Theorema Egregiun Twierdzenie klasyfikacyjne

Theorema Egregium

vierdzenie klasyfikujac

Z drugiej strony dzięki wcześniejszemu lematowi charakteryzującego symbole Christoffela (lemat 10.2):

$$\begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial g_{j1}}{\partial u_i} + \frac{\partial g_{i1}}{\partial u_j} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{j2}}{\partial u_i} + \frac{\partial g_{i2}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix}$$

wiemy, że i je da się wyrazić przy pomocy współczynników metrycznych (i ich pochodnych). Zatem wstawiając równania z tego lematu do równania Gaussa otrzymujemu szukane wyrażenie $l_{11}l_{22}-l_{12}^2$ w tylko terminach funkcji g_{ij} (oraz ich pochodnych).

Elementarna Geometria Różniczkowa

Theorema Egregium

Zadanie

Prześledzić dowód Theorema Egregium i wyprowadzić bezpośredni wzór na krzywiznę Gaussa zawierający tylko współczynniki metryczne i ich pochodne.

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Γheorema Egregiur Γwierdzenie «lasyfikacyine

Symbole Christoffela

Theorema Egregium

iardzania blasufibuiaca

Zadanie

Prześledzić dowód Theorema Egregium i wyprowadzić bezpośredni wzór na krzywiznę Gaussa zawierający tylko współczynniki metryczne i ich pochodne.

Uwaga

Twierdzenie odwrotne do Theorema Egregium nie zachodzi. Mianowicie istnieją powierzchnie M i N oraz odwzorowania $f: M \to N$ dla których K(f(p)) = K(p), lecz mimo wszystko f nie jest lokalną izometrią.

$$M = \{y(u, v) = (u \sin v, u \cos v, \ln u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$$

 $N = \{x(u, v) = (v \sin u, v \cos u, u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$

oraz zdefiniujmy funkcję $f: M \rightarrow N$ jako

$$f(y(u, v)) \stackrel{\text{def.}}{=} x(v, u).$$

$$K(f(y(u,v))) = K(x(v,u)) = \frac{-1}{(1+u^2)^2} = K(y(u,v))$$

Flementarna Geometria Różniczkowa

$$M = \{y(u, v) = (u \sin v, u \cos v, \ln u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$$

 $N = \{x(u, v) = (v \sin u, v \cos u, u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$

oraz zdefiniujmy funkcję $f: M \rightarrow N$ jako

$$f(y(u, v)) \stackrel{\text{def.}}{=} x(v, u).$$

Wtedy (sprawdzić!)

$$K(f(y(u, v))) = K(x(v, u)) = \frac{-1}{(1 + u^2)^2} = K(y(u, v)).$$

Elementarna Geometria Różniczkowa

$$M = \{y(u, v) = (u \sin v, u \cos v, \ln u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$$

 $N = \{x(u, v) = (v \sin u, v \cos u, u) : u \in \mathbb{R}_+, v \in (-\pi, \pi)\},\$

oraz zdefiniujmy funkcję $f: M \to N$ jako

$$f(y(u, v)) \stackrel{\text{def.}}{=} x(v, u).$$

Wtedy (sprawdzić!)

$$K(f(y(u, v))) = K(x(v, u)) = \frac{-1}{(1 + u^2)^2} = K(y(u, v)).$$

Gdyby jednak f była lokalną izometrią, wówczas lokalne układy współrzędnych x i y musiałyby mieć te same współczynniki metryczne (z zamienionymi zmiennymi). Jednak $g_{11}^M(u,v)=1+\frac{1}{u^2}$ podczas gdy $g_{11}^N(u,v)=1$.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie

Symbole Christoffela

Theorema Egregium

Twierdzenie (Klasyfikacyjne powierzchni)

Niech $U \subset \mathbb{R}^2$ będzie spójnym zbiorem otwartym.

Załóżmy, że mamy dane symetryczne macierze 2×2 funkcji $(g_{ij}: U \to \mathbb{R})$ oraz $(l_{ij}: U \to \mathbb{R})$ spełniających $\det(g_{ij}) > 0$,oraz mamy dane osiem funkcji $\Gamma^k_{ij}: U \to \mathbb{R}$ (dla i, j, k=1,2) spełniających z powyższmi (g_{ij}) i (l_{ij}) dwa równania Codazziego-Mainardiego i równanie Gaussa. Wówczas istnieje powierzchnia $x: U \to M$ dla której

- ► (g_{ij}) tworzą pierwszą formę podstawową,
- ► (*l_{ij}*) tworzą drugą formę podstawową,
- Γ^k_{ij} tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

Izometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium Twierdzenie

Symbole Christoffela

Theorema Egregium

- ▶ (g_{ij}) tworzą pierwszą formę podstawową,
- ► (l_{ij}) tworzą drugą formę podstawową,
- $ightharpoonup \Gamma_{ij}^k$ tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Elementarna Geometria Różniczkowa

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium Twierdzenie

ymbole Christoffela

Theorema Egregium

- ▶ (g_{ij}) tworzą pierwszą formę podstawową,
- ▶ (*lij*) tworzą drugą formę podstawową,
- $ightharpoonup \Gamma_{ij}^k$ tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Elementarna Geometria Różniczkowa

Powierzchnie w \mathbb{R}^3

Wektory styczne i normalne. I forma podstawowa

zometria.

Krzywizna Gaussa I

Krzywizna Gaussa I

Theorema Egregium Twierdzenie

ymbole Christoffela

heorema Egregium

Niech $U \subset \mathbb{R}^2$ będzie spójnym zbiorem otwartym. Załóżmy, że mamy dane symetryczne macierze 2×2 funkcji $(g_{ij}: U \to \mathbb{R})$ oraz $(l_{ij}: U \to \mathbb{R})$ spełniających $\det(g_{ij}) > 0$,oraz mamy dane osiem funkcji $\Gamma^k_{ij}: U \to \mathbb{R}$ (dla i, j, k = 1, 2) spełniających z powyższmi (g_{ij}) i (l_{ij}) dwa równania Codazziego-Mainardiego i równanie Gaussa. Wówczas istnieje powierzchnia $x: U \to M$ dla której

- ▶ (g_{ij}) tworzą pierwszą formę podstawową,
- ▶ (*l_{ij}*) tworzą drugą formę podstawową,
- Γ^k_{ij} tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

(rzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregium Twierdzenie dasyfikacyine

lymbole Christoffela

neorema Egregium

Niech $U \subset \mathbb{R}^2$ będzie spójnym zbiorem otwartym. Załóżmy, że mamy dane symetryczne macierze 2×2 funkcji $(g_{ij}: U \to \mathbb{R})$ oraz $(l_{ij}: U \to \mathbb{R})$ spełniających $\det(g_{ij}) > 0$,oraz mamy dane osiem funkcji $\Gamma^k_{ij}: U \to \mathbb{R}$ (dla i, j, k = 1, 2) spełniających z powyższmi (g_{ij}) i (l_{ij}) dwa równania Codazziego-Mainardiego i równanie Gaussa. Wówczas istnieje powierzchnia $x: U \to M$ dla której

- ▶ (g_{ij}) tworzą pierwszą formę podstawową,
- ▶ (*l_{ij}*) tworzą drugą formę podstawową,
- Γ^k_{ij} tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

Krzywizna Gaussa

Krzywizna Gaussa II

Theorema Egregiui Twierdzenie klasyfikacyjne

mbole Christoffela

heorema Egregium

Niech $U \subset \mathbb{R}^2$ będzie spójnym zbiorem otwartym. Załóżmy, że mamy dane symetryczne macierze 2×2 funkcji $(g_{ij}: U \to \mathbb{R})$ oraz $(l_{ij}: U \to \mathbb{R})$ spełniających $\det(g_{ij}) > 0$,oraz mamy dane osiem funkcji $\Gamma^k_{ij}: U \to \mathbb{R}$ (dla i, j, k = 1, 2) spełniających z powyższmi (g_{ij}) i (l_{ij}) dwa równania Codazziego-Mainardiego i równanie Gaussa. Wówczas istnieje powierzchnia $x: U \to M$ dla której

- ▶ (g_{ij}) tworzą pierwszą formę podstawową,
- ▶ (*l_{ij}*) tworzą drugą formę podstawową,
- Γ^k_{ij} tworzą układ funkcji Christoffela.

Co więcej dowolne dwie takie powierzchnie są ze sobą lokalnie izometryczne.

Dowód: Pomijamy.

Powierzchnie w R³

Wektory styczne i normalne. I forma podstawowa

ierunkowe. zometria.

(rzywizna Gaussa I

Krzywizna Gaussa II

Theorema Egregiui Twierdzenie klasyfikacyjne

mbole Christoffela

heorema Egregium