CSE 311: Data Communication

Instructor:

Dr. Md. Monirul Islam

Channel & signal Characteristics: modulation

Use carrier signal to shift these
 2 signals in different frequency
 positions

also called Frequency division multiplexing (FDM) $G(\omega)$

Baseband signal 1

Baseband signal 2

Channel & signal Characteristics: modulation

- Time division multiplexing (TDM)
 - Interleave pulses from different signals in time domain signal

Channel & signal Characteristics: DeModulation

- Done at the receiving end
 - Bandpass filter separates appropriate signal
 - Makes necessary corrections for amplitude, frequency and phase changes

Signal Characteristics: digital source coding and error correction coding

- 2 opposite procedures
- Digital source coding
 - An aggressive measure to reduce redundancy
- Error correction coding
 - A systematic addition of redundancy to detect/correct errors

- Removes redundancy
- Uses bandwidth as little as possible
- Related to randomness/predictibility in data

- Removes redundancy
- Uses bandwidth as little as possible
- Related to randomness/predictibility in data

- Removes redundancy
- Uses bandwidth as little as possible
- Related to randomness/predictibility in data

- Example: Morse code
 - Frequently occurring letters e, t, a: shorter codes
 - Less frequent letters: longer codes

• A message with probability p, its $randomness\ or\ entropy = \log(1/p) = -\log(p)$

• A message with probability p, its $randomness\ or\ entropy = \log(1/p) = -\log(p)$

What happens when p = 0 and p = 1?

- Add systemic redundancy
- 50% of English text is redundant
- Difficult to recover if error occurs in reduced text

- Add systemic redundancy
- 50% of English text is redundant
- Difficult to recover if error occurs
- Error Detection: adding parity bit

- Add systemic redundancy
- 50% of English text is redundant
- Difficult to recover if error occurs
- Error Detection: adding parity bit

Assume to transmit 0001

- Add systemic redundancy
- 50% of English text is redundant
- Difficult to recover if error occurs
- Error Detection: adding parity bit

- Add systemic redundancy
- 50% of English text is redundant
- Difficult to recover if error occurs
- Error Detection: adding parity bit

Detects single bit error; however cannot detect even no. of errors or cannot locate or correct single bit error

Signals and systems

Topics

- Definition, classification and properties of signals
- Examples of some useful signals
- Fourier Series of Periodic Signals

Classification of Signals

Review

- Based on continuity in time axis
 - Continuous time
 - Discrete time
- Based on continuity in amplitude axis
 - Continuous amplitude (analog)
 - Discrete amplitude (digital)

Classification of Signals

Review

• Signal g(t) is periodic for a positive constant T_0 so that

$$g(t) = g(t + T_0)$$
 for all t

- Smallest T_0 is its period
- A signal is aperiodic if NOT periodic

• Periodic signal starts at $t = -\alpha$ and continues forever

- Periodic signal starts at $t = -\alpha$ and continues forever
- cannot start at an finite time, say, t = 0, otherwise $g(t) = g(t + T_0)$ cannot be satisfied

- Periodic signal starts at $t = -\alpha$ and continues forever
- cannot start at an finite time, say, t = 0, otherwise $g(t) = g(t + T_0)$ cannot be satisfied

- Periodic signal starts at $t = -\alpha$ and continues forever
- cannot start at an finite time, say, t = 0, otherwise $g(t) = g(t + T_0)$ cannot be satisfied

Zero or Undefined at this region

At
$$t = -T_0$$
, $g(t) \neq g(t + T_0)$

Energy and Power signals

• Energy Signal: finite E_a

$$E_g = \int_{-\infty}^{\infty} g^2(t) dt < \infty$$

• Power signal: finite P_a

$$0 < P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g^2(t) dt < \infty$$

Energy and Power signals

$$E_g = \int_{-\infty}^{\infty} g^2(t)dt < \infty$$

$$0 < P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g^2(t)dt < \infty$$

- Finite E_g signal has zero P_g
- Finite P_g Signal has infinite E_g
- A signal CANNOT be both energy and power signal
- Real life signals are energy signals
- Power signals have infinite duration; impractical to generate
- Periodic signals are power signals

Deterministic and Random signals

- Deterministic
 - has complete physical description, mathematically or graphically
- Random
 - has only probabilistic description, e.g., mean value, rms, distribution
- All message signals are random

Signal Properties Time shifting property

• Whatever happens in g(t) at t second also happens in $\phi(t)$ T seconds later at instant t + T

$$\phi(t+T)=g(t)$$

Or,

$$\phi(t) = g(t - T)$$

Signal Properties

Time shifting property

$$\phi(t+T) = g(t)$$
$$\phi(t) = g(t-T)$$

Beginning T seconds later

Beginning T seconds earlier

Signal Properties Time scaling property

- Compression or expansion
- Compression:
 - Whatever happens in g(t) at t second also happens in $\phi(t)$ at t/a

$$\phi(t) = g(at), a > 1$$

Signal Properties Time scaling property

- Compression or expansion
- Compression:
 - Whatever happens in g(t) at t second also happens in $\phi(t)$ at t/a

$$\phi(t) = g(at), a > 1$$

- Expansion:
 - Whatever happens in g(t) at t second also happens in $\phi(t)$ at at

$$\phi(t) = g\left(\frac{t}{a}\right), a > 1$$

Signal Properties Time scaling property

$$\phi(t) = g(at)$$

$$\phi(t) = g\left(\frac{t}{a}\right)$$

Compression

Expansion

Signal Properties Time inversion property

- Mirroring about vertical axis
- Whatever happens in g(t) at t second also happens in $\phi(t)$ at -t
- Similar to time scaling where a = -1

$$\phi(-t) = g(t)$$

$$\phi(t) = g(-t)$$

Signal Properties

Example of Time inversion property

$$\phi(-t) = g(t)$$

$$\phi(t) = g(-t)$$

Unit Impulse Signal

- One of the most important signals, $\delta(t)$
- Also know as Dirac delta function

$$\delta(t) = \begin{cases} \infty & \text{if } t = 0 \\ 0 & \text{if } t \neq 0 \end{cases}$$

with the constraint,

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

A function with unit area under curve

Compress the function leaving the area unchanged

$$\delta(t) = \begin{cases} \infty & \text{if } t = 0 \\ 0 & \text{if } t \neq 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

$$\delta(t) = \begin{cases} \infty & \text{if } t = 0 \\ 0 & \text{if } t \neq 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

Impulse location is at t = 0

Multiplication of a Function by Impulse

$$\phi(t)\delta(t) = \phi(0)\delta(t)$$

Multiplication of a Function by Impulse

$$\phi(t)\delta(t-T) = \phi(T)\delta(t-T)$$

$$\int_{-\infty}^{\infty} \delta(t)\phi(t)dt = \phi(0)\int_{-\infty}^{\infty} \delta(t)dt$$

$$= \phi(0)$$

$$t \longrightarrow t$$

$$2e^{-t/2}$$
(a)

$$\int_{-\infty}^{\infty} \delta(t - T)\phi(t)dt$$

$$= \phi(T) \int_{-\infty}^{\infty} \delta(t - T)dt$$

$$= \phi(T)$$

$$\int_{a}^{b} \delta(t-T)\phi(t)dt$$

$$= \phi(T)\int_{a}^{b} \delta(t-T)dt$$

$$\int_{a}^{b} \delta(t-T)\phi(t)dt$$

$$= \phi(T)\int_{a}^{b} \delta(t-T)dt$$

$$= \phi(T)$$

$$\int_{a}^{b} \delta(t-T)\phi(t)dt$$

$$= \phi(T)\int_{a}^{b} \delta(t-T)dt$$

$$= \begin{cases} \phi(T) & a \le T \le b \\ 0 & otherwise \end{cases}$$

