Lecture 5: Random Variable, Part III

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

May 5, 2021

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs.
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

May 5, 2021 1 / 46

May 5, 2021 2 / 46

Roadmap

Derived Distribution: Y = g(X)

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs.
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

- Given the PDF of X, What is the PDF of Y = g(X)?
- Wait! Didn't we cover this topic? No. We covered just $\mathbb{E}[g(X)]$.
- Examples: Y = X, Y = X + 1, $Y = X^2$, etc.
- What are easy or difficult cases?
- Easy cases
 - Discrete
 - Linear: Y = aX + b

• Take all values of x such that g(x) = y, i.e.,

$$p_Y(y) = \mathbb{P}(g(X) = y)$$
$$= \sum_{x:g(x)=y} p_X(x)$$

$$p_Y(3) = p_X(2) + p_X(3) = 0.1 + 0.2 = 0.3$$

 $p_Y(4) = p_X(4) + p_X(5) = 0.3 + 0.4 = 0.7$

L5(1) May 5, 2021 5 / 46 If a > 0, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \le \frac{y - b}{a}) = F_X(\frac{y - b}{a})$ $\rightarrow f_Y(y) = \frac{1}{a} f_X\left(\frac{y-b}{a}\right)$

If
$$a < 0$$
, $F_Y(y) = \mathbb{P}(aX + b \le y) = \mathbb{P}(X \ge \frac{y - b}{a}) = 1 - F_X(\frac{y - b}{a})$

$$\to f_Y(y) = -\frac{1}{a}f_X\left(\frac{y - b}{a}\right)$$

Therefore,

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

L5(1) May 5, 2021

Linear: Y = aX + b, when X is exponential

 $f_Y(y) = egin{cases} rac{\lambda}{|a|} e^{-\lambda(y-b)/a}, & ext{if} \quad (y-b)/a \geq 0 \\ 0, & ext{otherwise} \end{cases}$

Linear: Y = aX + b, when X is normal

 $f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases}$

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then for $a \neq 0$ and b, $Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

• Proof.

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right) = \frac{1}{|a|} \frac{1}{\sqrt{2\pi}} \exp\left\{-\left(\frac{y-b}{a} - \mu\right)^2 / 2\sigma^2\right\}$$
$$= \frac{1}{\sqrt{2\pi}|a|\sigma} \exp\left\{-\frac{(y-b-a\mu)^2}{2a^2\sigma^2}\right\}$$

• Remember? Linear transformation preserves normality. Time to prove.

• If b=0 and a>0, Y is exponential with parameter $\frac{\lambda}{a}$, but generally not.

L5(1)

May 5, 2021 7 / 46

L5(1)

May 5, 2021

Step 1. Find the CDF of Y:

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y)$$

Step 2. Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

Ex1.
$$Y = X^2$$
.

$$F_Y(y) = \mathbb{P}(X^2 \le y) = \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$
$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

$$f_Y(y) = \frac{1}{2\sqrt{y}}f_X(\sqrt{y}) +$$

$$\frac{1}{2\sqrt{y}}f_X(-\sqrt{y}), \quad y \ge 0$$

Ex2. $X \sim \mathcal{U}[0,1]$. $Y = \sqrt{X}$.

$$F_Y(y) = \mathbb{P}(\sqrt{X} \le y) = \mathbb{P}(X \le y^2) = y^2$$

$$f_Y(y) = 2y, \quad 0 \le y \le 1$$

Ex3.
$$X \sim \mathcal{U}[0, 2]$$
. $Y = X^3$.

$$F_Y(y) = \mathbb{P}(X^3 \le y) = \mathbb{P}(X \le \sqrt[3]{y}) = \frac{1}{2}y^{1/3}$$

$$f_Y(y) = \frac{1}{6}y^{-2/3}, \quad 0 \le y \le 8$$

When Y = g(X) is monotonic, a general formula can be drawn (see the textbook at pp 207)

Basically, follow two-step approach: (i) CDF and (ii) differentiate.

Ex1.
$$X, Y \sim \mathcal{U}[0, 1]$$
, and $X \perp \!\!\!\perp Y$. $Z = \max(X, Y)$.

*
$$\mathbb{P}(X \le z) = \mathbb{P}(Y \le z) = z, \ z \in [0,1].$$

$$F_{Z}(z) = \mathbb{P}(\max(X, Y) \le z) = \mathbb{P}(X \le z, Y \le z)$$
$$= \mathbb{P}(X \le z)\mathbb{P}(Y \le z) = z^{2} \qquad \text{(from } X \perp \!\!\!\perp Y)$$

$$f_Z(z) = \begin{cases} 2z, & \text{if } 0 \le z \le 1 \\ 0, & \text{otherwise} \end{cases}$$

L5(1)

May 5, 2021 9 / 46

L5(1)

May 5, 2021 10 / 46

Functions of multiple rvs: Z = g(X, Y) (2)

KAIST EE

Roadmap

Basically, follow two step approach: (i) CDF and (ii) differentiate.

Ex2. $X, Y \sim \mathcal{U}[0, 1]$, and $X \perp \!\!\! \perp Y$. Z = Y/X.

$$egin{aligned} F_Z(z) &= \mathbb{P}(Y/X \leq z) \ &= egin{cases} z/2, & 0 \leq z \leq 1 \ 1-1/2z, & z > 1 \ 0, & ext{otherwise} \end{cases} \end{aligned}$$

$$f_Z(z) = \begin{cases} 1/2, & 0 \le z \le 1\\ 1/(2z^2), & z > 1\\ 0, & \text{otherwise} \end{cases}$$

- Depending on the value of z, two cases need to be considered separately.

(Note) Sometimes, the problem is tricky, which requires careful case-by-case handing. :-)

(1) Derived distribution of Y = g(X) or Z = g(X, Y)

(2) Derived distribution of Z = X + Y

(3) Covariance: Degree of dependence between two rvs.

(4) Correlation coefficient

(5) Conditional expectation and law of iterative expectations

(6) Conditional variance and law of total variance

(7) Random number of sum of random variables

- Sum of two independent rvs
- A very basic case with many applications
- Assume that $X, Y \in \mathbb{Z}$

$$\frac{p_Z(z)}{p_Z(z)} = \mathbb{P}(X+Y=z) = \sum_{\{(x,y): x+y=z\}} \mathbb{P}(X=x, Y=y) = \sum_{x} \mathbb{P}(X=x, Y=z-x)$$

$$= \sum_{x} \mathbb{P}(X=x) \mathbb{P}(Y=z-x) = \sum_{x} p_X(x) p_Y(z-x)$$

• $p_Z(z)$ is called **convolution** of the PMFs of X and Y.

- Convolution: $p_Z(z) = \sum_x p_X(x)p_Y(z-x)$
- Interpretation for a given z:
 - (i) Flip (horizontally) the PMF of Y $(p_Y(-x))$
 - (ii) Put it underneath the PMF of X
 - (iii) Right-shift the flipped PMF by z $(p_Y(-x+z))$

L5(2) May 5, 2021 13 / 46 L5(2) May 5, 2021 14 / 46

Y = X + Y, $X \perp \!\!\!\perp Y$: Continuous

KAIST EE

Example

• Same logic as the discrete case

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

• Youtube animation for convolution: https://www.youtube.com/ watch?v=C1N55M1VD2o For a fixed z,

• Example. $X, Y \sim \mathcal{U}[0,1]$ and $X \perp \!\!\! \perp Y$. What is the PDF of Z = X + Y? Draw the PDF of Z.

Very special, but useful case

• X and Y are normal.

Sum of two independent normal rvs

 $X \sim \mathcal{N}(\mu_x, \sigma_x^2)$ and $Y \sim \mathcal{N}(\mu_x, \sigma_x^2)$ Then, $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

- Why normal rvs are used to model the sum of random noises.
- Extension. The sum of finitely many independent normals is also normal.

L5(2) May 5, 2021

https://www.youtube.com/watch?v=MQm6ZP1F6ms

May 5, 2021 17 / 46

L5(2)

May 5, 2021 18 / 46

$Y = X + Y, X \perp \!\!\!\perp Y$, Normal (2)

Roadmap

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z - x) dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{x}} \exp\left\{-\frac{(x - \mu_{x})^{2}}{2\sigma_{x}^{2}}\right\} \frac{1}{\sqrt{2\pi}\sigma_{y}} \exp\left\{-\frac{(z - x - \mu_{y})^{2}}{2\sigma_{y}^{2}}\right\} dx$$

• The details of integration is a little bit tedious. :-)

$$f_Z(z) = \frac{1}{\sqrt{2\pi(\sigma_x^2 + \sigma_y^2)}} \exp\left\{-\frac{(z - \mu_x - \mu_y)^2}{2(\sigma_x^2 + \sigma_y^2)}\right\}$$

(1) Derived distribution of Y = g(X) or Z = g(X, Y)

(2) Derived distribution of Z = X + Y

(3) Covariance: Degree of dependence between two rvs

(4) Correlation coefficient

(5) Conditional expectation and law of iterative expectations

(6) Conditional variance and law of total variance

(7) Random number of sum of random variables

- Goal: Given two rvs X and Y, assign some number that quantifies the degree of their dependence.
 - feeling/weather, university ranking/annual salary,
- Requirements
 - R1. Increases (resp. decreases) as they become more (resp. less) dependent. 0 when they are independent.
 - **R2.** Shows the 'direction' of dependence by + and -
- R3. Always bounded by some numbers (i.e., dimensionless metric). For example, [-1,1]
- Good engineers: Good at making good metrics
 - Metric of how our society is economically polarized
 - Cybermetrics in MLB (Major League Baseball): http://m.mlb.com/glossary/advanced-stats

L5(3) May 5, 2021 21 / 46

- Simple case: $\mathbb{E}[X] = \mu_X = 0$ and $\mathbb{E}[Y] = \mu_Y = 0$
- Dependent: Positive (If $X \uparrow, Y \uparrow$) or Negative (If $X \uparrow, Y \downarrow$)
- What about $\mathbb{E}[XY]$? Seems good.
 - $\circ \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0 \text{ when } X \perp \!\!\!\perp Y$
 - More data points (thus increases) when xy > 0 (both positive or negative)
 - $\circ |\mathbb{E}[XY]|$ also quantifies the amount of spread.

(Q) What about $\mathbb{E}[X + Y]$?

• When they are positively dependent, but have negative values?

L5(3) May 5, 2021 22 / 46

What If $\mu_X \neq 0, \mu_Y \neq 0$?

Example: cov(X, Y) = 0, but not independent

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

Covariance

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow \operatorname{cov}(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp \!\!\!\perp Y$? NO.
- When cov(X, Y) = 0, we say that X and Y are uncorrelated.

- $p_{X,Y}(1,0) = p_{X,Y}(0,1) = p_{X,Y}(-1,0) = p_{X,Y}(0,-1) = 1/4.$
- $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, and $\mathbb{E}[XY] = 0$. So, cov(X, Y) = 0
- Are they independent? No, because if X = 1, then we should have Y = 0.

$$cov(X, X) = var(X)$$

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

$$var[X + Y] = \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 = var[X] + var[Y] + 2cov(X, Y)$$

$$\operatorname{\mathsf{var}}\Bigl[\sum X_i\Bigr] = \sum \operatorname{\mathsf{var}}[X_i] + \sum_{i \neq j} \operatorname{\mathsf{cov}}(X_i, X_j)$$

• n people throw their hats in a box and then pick one at random

- X: number of people with their own hat
- (Q) var[X]
- Key step 1. Define a rv $X_i = 1$ if i selects own hat and 0 otherwise. Then. $X = \sum_{i=1}^{n} X_i$.
- Key step 2. Are X_is are independent?
- $X_i \sim \text{Bern}(1/n)$. Thus, $\mathbb{E}[X_i] = 1/n$ and $var[X_i] = \frac{1}{n}(1 - \frac{1}{n})$

• For $i \neq i$,

$$\begin{aligned} \text{cov}(X_i, X_j) &= \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j] \\ &= \mathbb{P}(X_i = 1 \text{ and } X_j = 1) - \frac{1}{n^2} \\ &= \mathbb{P}(X_i = 1) \mathbb{P}(X_j = 1 | X_i = 1) - \frac{1}{n^2} \\ &= \frac{1}{n} \frac{1}{n-1} - \frac{1}{n^2} = \frac{1}{n^2(n-1)} \end{aligned}$$

$$var[X] = var\left[\sum X_i\right]$$

$$= \sum var[X_i] + \sum_{i \neq j} cov(X_i, X_j)$$

$$= n\frac{1}{n}(1 - \frac{1}{n}) + n(n - 1)\frac{1}{n^2(n - 1)} = 1$$

L5(3)

May 5, 2021 25 / 46

L5(3)

May 5, 2021 26 / 46

Roadmap

KAIST EE

Bounding the metric: Correlation Coefficient

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- Conditional variance and law of total variance
- (7) Random number of sum of random variables

- Regs. R1 and R2 are satisfied. R3. Always bounded by some numbers (dimensionless metric)
- How? Normalization, but by what?

Correlation Coefficient

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X - \mu_X)}{\boxed{\sigma_X}} \cdot \frac{(Y - \mu_Y)}{\boxed{\sigma_Y}}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- Theorem.
- 1. $-1 < \rho < 1$ (proof at the next slide)
- 2. $|\rho| = 1 \Leftrightarrow X \mu_X = c(Y \mu_Y)$ for some constant c (c > 0 when $\rho = 1$ and c < 0when $\rho = -1$). In other words, linear relation, meaning VERY related.

- Cauchy-Schwarz inequality. For any rvs X and Y, $(\mathbb{E}(XY))^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)$
- Proof of $-1 \le \rho \le 1$:

Let
$$\tilde{X} = X - \mathbb{E}(X)$$
 and $\tilde{Y} = Y - \mathbb{E}(Y)$. Then, $(\rho(X,Y))^2 = \frac{\left(\mathbb{E}[\tilde{X}\tilde{Y}]\right)^2}{\mathbb{E}(\tilde{X}^2)\mathbb{E}(\tilde{Y}^2)} \leq 1$

• Proof of CSI: For any constant a,

$$0 \leq \mathbb{E}\left[(X - aY)^2\right] = \mathbb{E}\left[X^2 - 2aXY + a^2Y^2\right] = \mathbb{E}(X^2) - 2a\mathbb{E}(XY) + a^2\mathbb{E}(Y^2)$$

Now, choose $a = \frac{\mathbb{E}(XY)}{\mathbb{E}(Y^2)}$. Then,

$$\mathbb{E}(X^2) - 2\frac{\mathbb{E}(XY)}{\mathbb{E}(Y^2)}\mathbb{E}(XY) + \frac{(\mathbb{E}[XY])^2}{(\mathbb{E}[Y^2])^2}\mathbb{E}(Y^2) = \mathbb{E}(X^2) - \frac{(\mathbb{E}[XY])^2}{\mathbb{E}(Y^2)} \ge 0$$

 (\Rightarrow) Suppose that |
ho|=1. In the proof of CSI,

$$\mathbb{E}\left[\left(\tilde{X} - \frac{\mathbb{E}(\tilde{X}\tilde{Y})}{\mathbb{E}(\tilde{Y}^2)}\tilde{Y}\right)^2\right] = \mathbb{E}(\tilde{X}^2) - \frac{(\mathbb{E}[\tilde{X}\tilde{Y}])^2}{\mathbb{E}(\tilde{Y}^2)} = \mathbb{E}(\tilde{X}^2)(1 - \rho^2) = 0$$

$$ilde{X} - rac{\mathbb{E}(ilde{X} ilde{Y})}{\mathbb{E}(ilde{Y}^2)}Y = 0 \leftrightarrow ilde{X} = rac{\mathbb{E}(ilde{X} ilde{Y})}{\mathbb{E}(ilde{Y}^2)} ilde{Y} =
ho\sqrt{rac{\mathbb{E}(ilde{X}^2)}{\mathbb{E}(ilde{Y}^2)}} ilde{Y}$$

 (\Leftarrow) If $\tilde{Y} = c\tilde{X}$, then

$$\rho(X,Y) = \frac{\mathbb{E}(\tilde{X}c\tilde{X})}{\sqrt{\mathbb{E}[\tilde{X}^2]\mathbb{E}[(c\tilde{X})^2]}} = \frac{c}{|c|}$$

L5(4) May 5, 2021 29 / 46

L5(4)

May 5, 2021 30 / 46

Roadmap

KAIST EE

A Special Random Variable

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

Consider a rv Y, such that

$$Y = \begin{cases} 0, & \text{w.p. } 1/4 \\ 1, & \text{w.p. } 1/4 \\ 2, & \text{w.p. } 1/2 \end{cases}$$

• If $h(y) = y^2$, then a new rv h(Y) is:

$$h(Y) = \begin{cases} 0, & \text{w.p. } 1/4\\ 1, & \text{w.p. } 1/4\\ 4, & \text{w.p. } 1/2 \end{cases}$$

• Consider other rv *X*, which, we assume, has:

$$g(y) = \mathbb{E}[X|Y = y] = \begin{cases} 3, & \text{if } y = 0 \\ 8, & \text{if } y = 1 \\ 9, & \text{if } y = 2 \end{cases}$$

• Then, a rv g(Y) is:

$$g(Y) = \begin{cases} 3, & \text{w.p. } 1/4 \\ 8, & \text{w.p. } 1/4 \\ 9, & \text{w.p. } 1/2 \end{cases}$$

- The rv g(Y) looks special, so let's give a fancy notation to it.
- What about? $X_{exp}(Y)$, $\mathbb{E}[X_Y]$, $\mathbb{E}_X[Y]$?

Conditional Expectation

A random variable $g(Y) = \boxed{\mathbb{E}[X|Y]}$, called conditional expectation of X given Y, takes the value $g(y) = \mathbb{E}[X|Y = y]$, if Y happens to take the value y.

- A function of Y
- A random variable
- Thus, having a distribution, expectation, variance, all the things that a random variable has.
- Often confusing because of the notation.

Expectation of Conditional Expectation

$$\mathbb{E}\big[\mathbb{E}[X|Y]\big] = \mathbb{E}[X],$$
 Law of iterated expectations

Proof.

$$\mathbb{E}\left[\mathbb{E}[X|Y]\right] = \sum_{y} \mathbb{E}[X|Y = y] \rho_{Y}(y)$$
$$= \mathbb{E}[X]$$

L5(5) May 5, 2021 33 / 46

L5(5)

May 5, 2021 34 / 46

Examples and Meaning

Stick of length I

- Uniformly break at point Y, and break what is left uniformly at point X.
- $\mathbb{E}[X|Y = y] = y/2$
- $\mathbb{E}[X|Y] = Y/2$
- $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[Y/2] = \frac{1}{2}\frac{I}{2} = I/4$

KAIST EE

Example: Averaging Quiz Scores by Section

- Forecasts on sales: calculating expected value, given any available information
- X : February sales
- Forecast in the beg. of the year: $\mathbb{E}[X]$
- End of Jan. new information Y = y (Jan. sales) Revised forecast: $\mathbb{E}[X|Y = y]$ Revised forecast $\neq \mathbb{E}[X]$
- Law of iterated expectations $\mathbb{E}[\text{revised forecast}] = \text{original one}$

- A class: n students, student i's quiz score: x_i
- Average quiz score: $m = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Students: partitioned into sections A_1, \ldots, A_k and n_s : number of students in section s
- average score in section $s = m_s = \frac{1}{n_s} \sum_{i \in A_s} x_i$
- whole average: (i) taking the average m_s of each section and (ii) forming a weighted average

$$\sum_{s=1}^{k} \frac{n_s}{n} m_s = \sum_{s=1}^{k} \frac{n_s}{n} \frac{1}{n_s} \sum_{i \in A_s} x_i = \frac{1}{n} \sum_{i=1}^{n} x_i = m$$

- Understanding from $\mathbb{E}\Big[\mathbb{E}[X|Y]\Big] = \mathbb{E}[X]$
- X: score of a randomly chosen student, Y: section of a student $(\in \{1, ..., k\})$

$$m = \mathbb{E}(X) = \mathbb{E}\left[\mathbb{E}[X|Y]\right]$$
$$= \sum_{s=1}^{k} \mathbb{E}(X|Y=s)\mathbb{P}(Y=s)$$
$$= \sum_{s=1}^{k} \left(\frac{1}{n_s} \sum_{i \in A} x_i\right) \frac{n_s}{n} = \sum_{s=1}^{k} m_s \frac{n_s}{n}$$

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- Conditional variance and law of total variance
- Random number of sum of random variables

L5(6) May 5, 2021 37 / 46

var[X|Y]

 $\mathbb{E} \left| \operatorname{var}(X|Y) \right|$

 $\operatorname{var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$

$$g(y) = \operatorname{var}[X|Y = y] = \mathbb{E}[(X - \mathbb{E}[X|Y = y])^2|Y = y]$$

$$g(Y) = \text{var}[X|Y] = \mathbb{E}[(X - \mathbb{E}[X|Y])^2|Y]$$

Conditional Variance

A random variable g(Y) = |var[X|Y]| and called conditional variance of X given Y takes the value g(y) = var[X|Y = y], if Y happens to take the value y.

- A function of Y
- A random variable
- Thus, having a distribution, expectation, variance, all the things that a random variable has

L5(6) May 5, 2021 38 / 46

Expectation and Variance of $\mathbb{E}[X|Y]$ and var[X|Y]

Expectation

Variance

 $\mathbb{E}[X|Y]$

 $\operatorname{\mathsf{var}} \big| \mathbb{E}(X|Y)$

Law of Total Variance

Law of total variance (LTV)

$$\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$$

Proof.

$$\operatorname{\mathsf{var}}(X|Y) = \mathbb{E}[X^2|Y] - (\mathbb{E}[X|Y])^2$$

$$\mathbb{E}\left[\operatorname{var}(X|Y)\right] = \mathbb{E}[X^2] - \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^2\right] \tag{1}$$

$$\operatorname{var}\left[\mathbb{E}(X|Y)\right] = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}\left[\mathbb{E}(X|Y)\right]\right)^{2} = \mathbb{E}\left[\left(\mathbb{E}[X|Y]\right)^{2}\right] - \left(\mathbb{E}[X]\right)^{2} \tag{2}$$

$$(1) + (2) = \mathbb{E}[X^2] + (\mathbb{E}[X])^2 = \text{var}[X]$$

- Same setting as that in page 36
- X: score of a randomly chosen student, Y: section of a student $(\in \{1, ..., k\})$
- Let's intuitively understand: $\operatorname{var}[X] = \mathbb{E}\left[\operatorname{var}(X|Y)\right] + \operatorname{var}[\mathbb{E}(X|Y)]$
- $\mathbb{E}[\mathsf{var}(X|Y)] = \sum_{k=1}^s \mathbb{P}(Y=s)\mathsf{var}(X|Y=s) = \sum_{k=1}^s \frac{n_s}{n}\mathsf{var}(X|Y=s)$
 - Weighted average of the section variances
 - average score variability within individual sections
- $var[\mathbb{E}(X|Y)]$: variability of the average of the differenct sections
 - $\mathbb{E}(X|Y=s)$: average score in section s
 - variability between sections

• Stick of length /

- Uniformly break at point Y, and break what is left uniformly at point X.
- Question. var(X)?
- LTV: $\mathsf{var}[X] = \mathbb{E}\Big[\mathsf{var}(X|Y)\Big] + \mathsf{var}[\mathbb{E}(X|Y)]$
- Fact. If a rv $X \sim \mathcal{U}[0, \theta]$, then $\text{var}(X) = \frac{\theta^2}{12}$
- Since $X \sim \mathcal{U}[0, Y]$, $var(X|Y) = \frac{Y^2}{12} \to \mathbb{E}[var[X|Y]] = \frac{1}{12} \int_0^1 \frac{1}{7} y^2 dy = \frac{f^2}{36}$
- $\mathbb{E}(X|Y) = Y/2 \to \text{var}(\mathbb{E}[X|Y]) = \frac{1}{4}\text{var}[Y] = \frac{1}{4}\frac{l^2}{12} = \frac{l^2}{48}$
- $\operatorname{var}(X) = \frac{l^2}{36} + \frac{l^2}{48} = \frac{7l^2}{144}$

L5(6)

May 5, 2021 41 / 46

L5(6)

May 5, 2021 42 / 46

Roadmap

KAIST EE

Sum of a random number of rvs

- (1) Derived distribution of Y = g(X) or Z = g(X, Y)
- (2) Derived distribution of Z = X + Y
- (3) Covariance: Degree of dependence between two rvs
- (4) Correlation coefficient
- (5) Conditional expectation and law of iterative expectations
- (6) Conditional variance and law of total variance
- (7) Random number of sum of random variables

- N: number of stores visited (random)
- X_i : money spent in store i, independent of other X_j and N, X_i s are identically distributed with $\mathbb{E}[X_i] = \mu$
- $Y = X_1 + X_2 + ... X_N$. What are $\mathbb{E}[Y]$ and var[Y]?
- $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\mathbb{E}[X_i]] = \mathbb{E}[N]\mathbb{E}[X_i] = \mu\mathbb{E}[N]$
- $\operatorname{var}[Y] = \mathbb{E}\left[\operatorname{var}(Y|N)\right] + \operatorname{var}[\mathbb{E}(Y|N)] = \mathbb{E}[N]\operatorname{var}[X_i] + \mu^2\operatorname{var}[N]$

$$\operatorname{var}(\mathbb{E}[Y|N]) = \operatorname{var}(N\mu) = \mu^2 \operatorname{var}[N]$$

$$var[Y|N] = Nvar[X_i]$$

$$\mathbb{E}[\mathsf{var}(Y|N)] = \mathbb{E}[N\mathsf{var}[X_i]] = \mathbb{E}[N]\mathsf{var}[X_i]$$

Questions?

- 1) What are the key steps to get the derived distributions of Y = g(X) or Z = g(X, Y)?
- 2) How can we compute the distribution of Z + X + Y when X and Y are independent?
- 3) What are covariance and correlation coefficient? Why do we need them?
- 4) Please explain the concepts of conditional expectation and conditional variance.