무

Aufgabe 1. (Bernstein-Polynome) Wir betrachten auf einem Intervall [a,b] den Vektorraum $\mathcal{P}_n[a,b]$ der reellwertigen Polynome mit Höchstgrad n, also $\mathcal{P}_n[a,b] = \{p(x) = \sum_{i=0}^n a_i x^i, a_i \in \mathbb{R}, x \in [a,b]\}$. Für den Spezialfall a=0,b=1 (der allgemeine Fall lässt sich durch eine affine Transformation $\varphi:[a,b] \to [0,1]$ auf diesen Fall zurückführen) sind die Bernsteinpolynome vom Grad n definiert durch

$$B_i^n(x) = \binom{n}{i} (1-x)^{n-i} x^i, \quad 0 \le i \le n.$$

Man beweise:

- (a) x = 0 ist *i*-fache Nullstelle von B_i^n , $0 \le i \le n$.
- (b) x = 1 ist n i-fache Nullstelle von B_i^n , $0 \le i \le n$.
- (c) Symmetrieeigenschaft: $B_i^n(x) = B_{n-i}^n(1-x), \ 0 \le i \le n.$
- (d) $(1-x)B_0^n(x) = B_0^{n+1}(x)$ und $xB_n^n(x) = B_{n+1}^{n+1}(x)$.
- (e) $B_i^n \ge 0 \ \forall x \in [0, 1].$
- (f) Rekursionsformel: $B_i^n(x) = x B_{i-1}^{n-1}(x) + (1-x) B_i^{n-1}(x)$.
- (g) Teilung der Eins: $1 = \sum_{i=0}^{n} B_i^n$. Anleitung: Verwenden Sie die allgemeine binomische Formel oder führen Sie einen Induktionsbeweis über n mit den schon gezeigten Rekursionsformeln.
- (h) $\{B_0^n,\ldots,B_n^n\}$ bildet eine Basis von $\mathcal{P}_n[0,1]$. Anleitung: Zeigen Sie lineare Unabhängigkeit (warum genügt dies?). Setzen Sie dazu mit $0=\sum_{i=0}^n\alpha_iB_i^n(x)$ an und zeigen Sie per Induktion über i, dass dann $\alpha_i=0$ gelten muss. Betrachten Sie insbesondere die Stelle x=0, für die ja obige Gleichung auch gelten muss.

Berechnen und skizzieren Sie B_0^1 und B_1^1 sowie B_0^2, B_1^2, B_2^2 .

Aufgabe 2. Implementieren Sie die Berechnung eines natürlichen kubischen Splines sowie dessen Auswertung (Horner-Schema).

Bestimmen Sie damit den interpolierenden Spline zu äquidistanten Stützstellen in [-5,5], wobei die Stützwerte mit der Funktion des Beispiels von Runge (vgl. Übungsblatt 8, Aufgabe 5) gewonnen werden sollen. Stellen Sie ihn für m=5,7,9,11,17 graphisch dar.

Aufgabe 3. Die Abbildung $\gamma: [-1,1] \to \mathbb{R}^2$,

$$t \mapsto \gamma(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} t + \frac{\sin(2\pi t)}{t^2 + 1} \\ \frac{\cos(2\pi t)}{2t^2 + 1} \end{pmatrix}$$

definiert folgende parametrische Kurve in \mathbb{R}^2 :

Die Kurve kann man durch natürliche kubische Splines annähern:

- betrachte m Stützstellen $t_i = \frac{2}{m-1}i-1, i=0,\ldots,m-1$
- \bullet berechne

$$\gamma(t_i) = \begin{pmatrix} x(t_i) \\ y(t_i) \end{pmatrix} \quad i = 0, \dots, m-1$$

- interpoliere einen Spline s_x durch $(t_i, x(t_i))$ und einen zweiten Spline s_y durch $(t_i, y(t_i))$
- benutze

$$t \mapsto \begin{pmatrix} s_x(t) \\ s_y(t) \end{pmatrix}$$

als Approximation von γ .

Implementieren Sie diese Approximation und visualisieren Sie die Ergebnisse für m = 5, 7, 9, 11, 17.

Aufgabe 4. Die Punkte (x_i, y_i) ,

$$x_i = 10^{i-7}, y_i = 1 + x_i, i = 1, \dots, 7$$

liegen alle auf dem Graphen des Polynoms p(x) = 1 + x.

Benutzen Sie diese Punkte als Eingabe zur Berechnung eines approximierenden Polynoms vom Grad 5 mit Hilfe eines linearen Ausgleichsproblems. Lösen Sie das lineare Ausgleichsproblem mit

- (a) der Normalgleichung und dem in NumPy vorhandenen Standardlöser für lineare Gleichungssysteme (solve(A,b))
- (b) dem Householder-Verfahren
- (c) dem CGLS Verfahren

und vergleichen Sie die damit ermittelten Polynomkoeffizienten mit denen des interpolierenden Polynoms p(x) = 1 + x.