Feuille d'exercice n° 06 : Équations différentielles

Exercice 1 () Calculer les intégrales suivantes via un changement de variable adéquat.

$$\mathbf{1)} \ \int_0^1 \frac{\mathrm{d}t}{\mathrm{ch}(t)}$$

$$4) \int_1^e \frac{\mathrm{d}t}{t + t(\ln t)^2}$$

$$7) \int_0^\pi \frac{\sin t}{3 + \cos^2 t} \, \mathrm{d}t$$

2)
$$\int_0^1 t^2 \sqrt{1-t^2} \, \mathrm{d}t$$

$$5) \int_1^e \frac{\mathrm{d}t}{t\sqrt{\ln t + 1}}$$

$$8) \int_1^2 \frac{\mathrm{d}t}{\sqrt{t} + 2t}$$

$$3) \int_1^2 \frac{\ln t}{\sqrt{t}} \, \mathrm{d}t$$

6)
$$\int_0^1 \frac{\mathrm{d}t}{\mathrm{e}^t + 1}$$

9)
$$\int_1^2 \frac{\ln(1+t) - \ln t}{t^2} dt$$

Exercise 2 (Soit $a, b \in \mathbb{R}$, soit $I(a, b) = \int_a^b \frac{x^2 - 1}{(x^2 + 1)\sqrt{x^4 + 1}} dx$.

- 1) Montrer que I(a,b) = I(-b,-a)
- 2) Soient a et b de même signe. Montrer que $I\left(\frac{1}{a},\frac{1}{b}\right)=I(a,b)$. En déduire que $I(a,\frac{1}{a})=0$.
- 3) Soit $y \in [1, +\infty[$, montrer qu'il existe un unique $x \in \mathbb{R}_+$ tel que $y = \operatorname{ch}(x)$. On note alors $x = \operatorname{Argch}(y).$

Remarque : on dit que x est l'argument cosinus hyperbolique de y.

- 4) Exprimer alors $e^{Argch(y)}$ en fonction de yFacultatif: exprimer Argch(y) en fonction de y et étudier la fonction Argch.
- **5)** Calculer I(a,b) pour $a \ge 1$ et $b \ge 1$ en commençant par poser $u = x + \frac{1}{x}$, puis $u = \sqrt{2} \operatorname{ch}(t)$.
- 6) En déduire I(a,b) lorsque a et b sont de même signe (non nul).

On pose, pour tout $(n,p) \in \mathbb{N}^2$, $I_{n,p} = \int_0^1 x^n (1-x)^p dx$. Exercice 3

- 1) Exprimer, pour tout $(n,p) \in \mathbb{N} \times \mathbb{N}^*$, $I_{n,p}$ en fonction de $I_{n+1,p-1}$.
- **2)** En déduire $I_{n,p}$ pour tout $(n,p) \in \mathbb{N}^2$,
- 3) Calculer $I_{n,n}$ pour tout entier naturel n et en déduire la limite de la suite $(I_{n,n})_{n\in\mathbb{N}}$.

Exercice 4 ()

- a) Vérifier que la fonction $f: x \mapsto \ln \tan \left(\frac{x}{2} + \frac{\pi}{4}\right)$ est définie et dérivable sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et calculer
 - **b)** Résoudre : $y' y \tan x = \frac{1}{\cos^2 x} \operatorname{sur} \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ avec y(0) = 1.

Déterminer les solutions réelles des équations différentielles suivantes.

- 2) $y' + y = (x^2 2x + 2)e^{2x}$ sur \mathbb{R} avec y(0) = 0.
- 3) $y' 2y = \operatorname{sh} x 2x \operatorname{ch} x \operatorname{sur} \mathbb{R}$.
- **6)** $xy' y = x \text{ sur } \mathbb{R}_+^*.$

- 4) $xy' \ln x y = 3x^2 \ln^2 x$ sur]0,1[. 5) $y' + x^2y + x^2 = 0$ sur \mathbb{R} avec y(0) = 0. 7) $y'\sqrt{1-x^2} y = 1$ sur]-1,1[. 8) $y' 3y = x^2 e^x + xe^{3x}$ sur \mathbb{R} avec y(0) = 1.

Déterminer les fonctions $f:[0,1]\to\mathbb{R}$ dérivables telles que $\forall x\in[0,1]$ f'(x)+f(x)=Exercice 5 f(0) + f(1).

Exercice 6 (\nearrow) Donner l'ensemble des solutions de l'équation différentielle suivante sur \mathbb{R}_+^* , \mathbb{R}_-^* , \mathbb{R}_-^* et \mathbb{R}_+ :

$$xy' + y = x(3x + 4).$$

Exercice 7 () Déterminer les solutions réelles des équations différentielles suivantes.

- 1) $y'' + y' 2y = 8 \sin x$ avec $y(\pi) = 0$ et $y'(\pi) = 1$
- 2) $y'' + y' = 4x^2 e^x$ avec y(0) = e et y'(0) = 0
- 3) $y'' + 4y = x^2 x + 1$

5) $y'' - 3y' + y = \sin x + \cos x$

4) $y'' + y' + 2y = (8x + 1)e^x$

6) $y'' - y = \sin x$

Exercice 8 (**Solution**) On étudie les équations différentielles d'Euler, qui sont de la forme (\mathscr{E}): $ax^2y'' + bxy' + cy = g(x)$, où a, b et c sont des constantes et g est une fonction.

- 1) On suppose que l'on étudie (\mathscr{E}) sur \mathbb{R}_+^* et l'on pose $z(t) = y(e^t)$. Montrer que y est solution de (\mathscr{E}) si et seulement si z est solution d'une équation différentielle linéaire d'ordre deux, à coefficients constants (à déterminer en fonction de a, b et c).
- 2) Résoudre $x^2y'' + xy' y = 2x \ln(x)$ sur \mathbb{R}_+^* .
- 3) Résoudre $x^2y'' + 3xy' + y = (x+1)^2 \text{ sur } \mathbb{R}_+^*$.
- 4) Résoudre $x^2y'' + 3xy' + y = 0$ sur \mathbb{R} .

Exercice 9 (\mathcal{F}) Trouver les applications de $f: \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^2 telles que :

$$\forall x \in \mathbb{R}, \quad f''(x) + f(-x) = xe^{x}.$$

Exercice 10 Le but de cet exercice est de résoudre le système différentiel (S) suivant :

$$\left\{ \begin{array}{lcl} x'' & = & x'+y'-y \\ y'' & = & x'+y'-x \end{array} \right., \quad \text{en } x,y \in \mathscr{C}^2(\mathbb{R},\mathbb{R}).$$

- 1) Soient $x, y \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$. On pose u = x + y et v = x y. Montrer alors qu'il existe deux équations différentielles du second ordre (\mathbf{E}) et (\mathbf{F}) telles que l'on ait : (x, y) est solution de (\mathbf{S}) si et seulement si u est solution (\mathbf{E}) et v est solution de (\mathbf{F}) .
- 2) Résoudre (E).
- 3) Résoudre (F).
- 4) En déduire les solutions de (S).

