Assignment-7	EE204 - Analog Circuits	24 th Mar 2018
Submission Deadline-17.00 2 nd Apr 4, 2018.	Submission Protocol: Drop hardcopy in the EE office	Comment: None

1. Find the current as a function of time for all the circuits:

Show that the assumption near resonance as done during the class is valid for circuit (c)

2. Design a phase-shift oscillator using a single MOSFET using the topology shown below such that the oscillation frequency is 2 kHz. Find out the value of C required. Assuming r_0 to be very large find the minimum value for R_D such that the loop gain becomes unity.

Assume the transistor to be nMOS (ignore the symbol) with g_m = 10 mS, R = 10 k Ω .

3. We have argued that when $A\beta>1$ for a +ve feedback network, the circuit can oscillate and the gain will itself adjust in such a way that $A\beta=1$. In such cases, the non-linearity of the gain comes into picture.

Prove the same graphically assuming that the open loop voltage of the amplifier as a function of the input is given by, $v_0 = 10(1-\exp(-v_i))$.

4. Consider the circuit shown below:

Assignment-7	EE204 - Analog Circuits	24 th Mar 2018
Submission Deadline-17.00 2 nd Apr 4, 2018.	Submission Protocol: Drop hardcopy in the EE office	Comment: None

Design the circuit in a such a way that peak to peak swing is larger than V_{DD} . You can choose design and MOSFET parameters to prove the same.