Computational Linear Algebra – Assignment 1

(points: 30)

Problem 1 (points: 4 + 3 + 3 = 10)

Let *X* and *Y* be two sets. A function $f: X \to Y$ is said to be a bijection if:

- it is injective: if $f(x_1) = f(x_2)$ where $x_1, x_2 \in X$, then necessarily $x_1 = x_2$, and
- it is surjective: every $y \in Y$ can be written as y = f(x) for some $x \in X$.
- 1. Let X and Y be of the form $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_m\}$. Prove that there exists a bijection $f: X \to Y$ if and only if m = n.
- 2. Note that an implication of the above result is that there cannot exist a bijection between a (finite) set X and a proper subset $Y \subset X$. Give a simple example to show that this is not true if X and Y are allowed to have infinitely many elements. (hint: consider the set of even integers).
- 3. If $f: X \to Y$ is a bijection, then its inverse $g: Y \to X$ is defined as g(y) = x if y = f(x). Check that g is also a bijection.

Problem 2 (points: 2 + 2 = 4)

Let A be an $m \times n$ matrix. Its transpose A^{T} is the $n \times m$ matrix defined as

$$(A^{\mathsf{T}})_{ij} = A_{ji} \qquad (1 \le i \le n, 1 \le j \le m),$$

where A_{ij} denotes the entry in the *i*-th row and *j*-th column of A.

- 1. Let the size of A and B be $m \times n$ and $n \times p$. Show that $(AB)^{\top} = B^{\top}A^{\top}$.
- 2. More generally, if matrices A_1, \dots, A_k are such that their product $A_1 \cdots A_k$ is defined, then show that

$$(A_1 \cdots A_k)^{\top} = A_k^{\top} \cdots A_1^{\top}.$$

(hint: use induction).

Problem 3 (points: 2 + 4 + 2 + 3 = 11)

Let A be an $n \times n$ matrix. Recall that its inverse B is another $n \times n$ matrix such that AB = BA = I, where I is the $n \times n$ identity matrix. We say that a matrix is invertible if it has an inverse.

- 1. Using a simple argument, explain why the inverse of a matrix A (if it exists) is always unique, i.e., there cannot exist two distinct inverses of A. The unique inverse is denoted by A^{-1} .
- 2. Show that if A and B are invertible, then so is AB. In particular, show that $(AB)^{-1} = B^{-1}A^{-1}$.
- 3. More generally, show that if A_1, \ldots, A_k are a set of invertible matrices, then the product $A_1 A_2 \cdots A_k$ is invertible and its inverse is the product $A_k^{-1} \cdots A_1^{-1}$.
- 4. If A is invertible, then show that A^{T} is invertible and its inverse is the transpose of A^{-1} .

Problem 4 (points: 2 + 2 + 1 = 5)

Let A and B be two points on a plane whose coordinates are (a,b) and (c,d). Let θ be the angle (assumed to be acute) between line segments \overline{OA} and \overline{OB} where O is the origin. Then show that

$$ac + bd = \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2} \cdot \cos \theta. \tag{1}$$

From (1), deduce that

- 1. If \overline{OA} and \overline{OB} are perpendicular to each other, then ac+bd=0.
- 2. For any choice of a, b, c, and $d, ac + bd \le \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2}$.

Can (1) be extended to three dimensional space. What would be the corresponding formula?
