Submodular Maximization with Matroid and Packing Constraints in Parallel

Alina Ene ¹, Huy L. Nguyen ², Adrian Vladu ¹

¹Boston University, ²Northeastern University

Submodular Functions and Submodular Maximization

Submodular functions are functions that satisfy the diminishing returns property. Formally, they are defined as $F: 2^{[n]} \to \mathbb{R}$, such that

$$F(A \cup B) + F(A \cap B) \leq F(A) + F(B)$$
, for all $A, B \subseteq [n]$.

Equivalently, they satisfy the diminishing returns property:

$$F(A \cup \{e\}) - F(A) \ge F(B \cup \{e\}) - F(B)$$
 for all $A \subseteq B \subseteq [n], e \in [n]$.

Examples:

 $F(S) = \text{area}\left(\bigcup_{i \in S} D_i\right)$

 $F(S) = |E(S, \overline{S})|$

Submodular maximization with down-monotone constraints

- We want to maximize F, but the set of elements we are allowed to choose is constrained (i.e. cardinality/matroid constraint) to \mathbf{P} .
- ▶ Classically, one can obtain (1-1/e)-approximation for monotone F, and (1/e)-approximation for non-monotone F.
- ▶ Key tool: multilinear extension. Extends F to $[0,1]^n$ via polynomial

$$f(\mathbf{x}) = \sum_{S \subseteq [n]} \left(F(S) \cdot \Pi_{i \in S} x_i \cdot \Pi_{i \notin S} (1 - x_i) \right).$$

- ▶ Can approximate $f(\mathbf{x})$, $\nabla f(\mathbf{x})$ very well by evaluating F at poly(n) samples.
- $\nabla^2 f \leq 0$ pointwise; equivalently f is concave in nonnegative directions.

Classical results overview

- Monotone f: continuous greedy $\dot{\mathbf{x}} = \arg\max_{\mathbf{v} \in \mathbf{P}} \langle \nabla f(\mathbf{x}), \mathbf{v} \rangle$.
- Frank-Wolfe
 constrained to nonnegative directions.
 Makes at least as much
- Makes at least as much progress as it would make by moving towards $\mathbf{x} \vee \mathbf{x}^* \in \mathbf{P}$, so can always gain $f(\mathbf{x} \vee \mathbf{x}^*) f(\mathbf{x}) \geq f(\mathbf{x}^*) f(\mathbf{x})$ per unit of step due to concavity.
- Figure 3. Gain given by solving $\dot{v}(t) = f(\mathbf{x}^*) v(t), v(0) = 0,$ $v(t) = f(\mathbf{x}^*)(1 e^{-t}), \text{ so } v(1) = f(\mathbf{x}^*)(1 1/e).$

0.6 0.5 0.4 0.3 0.2 0.1 0.8 0.6 0.4

Multilinear extension for cut function.

 $f(x) = x_1(1 - x_2) + x_2(1 - x_1)$

► Non-monotone *f* : dampen step

$$\dot{\mathbf{x}} = (1 - \mathbf{x}) \cdot \arg\max_{\mathbf{v} \in \mathbf{P}} \langle \nabla f(\mathbf{x}), \mathbf{v} \rangle$$
 .

- Issue: since f is non-monotone, we do not have $f(\mathbf{x} \vee \mathbf{x}^*) \geq f(\mathbf{x}^*)$, so can not gain the same amount of progress.
- ▶ Instead, use $f(\mathbf{x} \vee \mathbf{x}^*) \ge (1 \|\mathbf{x}\|_{\infty}) f(\mathbf{x}^*)$.
- ▶ Dampening the step, slows the growth of $\|\mathbf{x}\|_{\infty}$.

$\frac{f(x)}{f(x)}$

Our Results

- We are concerned with maximizing f in few parallel rounds of adaptivity (as defined by [1]). Pay for queries to f and ∇f .
- ► We only need to consider the more general setup for arbitrary functions concave along non-negative directions (DR-submodular).

For monotone and non-monotone DR-submodular f, we obtain approximations that match the classical bounds up to additive ε .

regime constraint type	monotone: $(1-1/e-arepsilon)$ -approx.	non-monotone: $(1/e-\varepsilon)$ -approx.
packing constraints $\mathbf{A}\mathbf{x} \leq 1, \ \mathbf{A} \in \mathbb{R}^{m \times n}$	$O\left(\frac{\log(n/\varepsilon)\log m}{\varepsilon^2}\right)$	$O\left(rac{\log(n/arepsilon)\log(m+n)\log(1/arepsilon)}{arepsilon^2} ight)$
matroid constraint	$O\left(\frac{\log^2 n}{\varepsilon^3}\right)$	$O\left(\frac{\log^2 n}{\varepsilon^3}\right)$

Rounds of adaptivity required by our algorithms.

Warm-up: Monotone Functions with Packing Constraints

Discretizing continuous greedy.

- Potential function: $\frac{f(\mathbf{x})}{\text{smax}(\mathbf{A}\mathbf{x})}$, where $\text{smax}(\mathbf{y}) = \frac{1}{\eta} \log \sum_{i} \exp(\eta y_i)$ is a smooth approximation for $\text{max}(\mathbf{y})$.
- ▶ Iteratively update **x** such that we gain what we deserve:

$$\frac{f(\mathbf{x} + \boldsymbol{\delta}) - f(\mathbf{x})}{\operatorname{smax}(\mathbf{A}(\mathbf{x} + \boldsymbol{\delta})) - \operatorname{smax}(\mathbf{A}\mathbf{x})} \gtrsim M - f(\mathbf{x})$$

where M is a guess on $f(\mathbf{x}^*)$.

1. Lower bound increase in f using gradient at future point: if $\delta \leq \varepsilon \mathbf{x}$,

$$f(\mathbf{x} + \boldsymbol{\delta}) - f(\mathbf{x}) \ge \langle \nabla f(\mathbf{x} + \boldsymbol{\delta}), \boldsymbol{\delta} \rangle \ge \langle \nabla f(\mathbf{x}(1 + \varepsilon)), \boldsymbol{\delta} \rangle$$
.

2. Upper bound increase in smax using smoothness:

$$\langle \operatorname{smax}(\mathbf{A}(\mathbf{x} + \boldsymbol{\delta})) - \operatorname{smax}(\mathbf{A}\mathbf{x}) \leq \langle \nabla_{\mathbf{x}} \operatorname{smax}(\mathbf{A}\mathbf{x}), \boldsymbol{\delta} \rangle$$

How to update x?

Scale coordinates

 x_i with sufficient relative gain

$$rac{
abla_i f((1+arepsilon)\mathbf{x})}{
abla_{x_i} \mathrm{smax}(\mathbf{A}\mathbf{x})} \gtrsim M - f(\mathbf{x})$$
(based on [2]).

► Failure to increase any coordinate certifies that we are done.

Why does it terminate fast?

- ▶ Can almost black box packing LP solver [3]; main difference is that the linear objective $\nabla f(\mathbf{x}(1+\varepsilon))$ changes.
- ▶ Gradient is monotone, so the linear objective only decreases. We can still analyze packing LP with decreasing objective. Termination in $\tilde{O}(\varepsilon^{-2})$ parallel rounds.

What about non-monotone functions?

- ▶ Issue: some gradient coordinates may be negative.
- ► Solution: do not touch them until they are positive, careful analysis.

Matroid Constraints

Observation 1: Greedy algorithm gives 1/2-approximation [4].

$$S' = S \cup \arg\max_{e:S \cup \{e\} \in \mathbf{P}} f(S \cup \{e\}) - f(S).$$

Proof idea: Maintain $S \in \mathbf{P}$ and matroid base $O = S^* \cup S \setminus T$, where $T \subseteq S^* \setminus S$ is obtained via exchange property. Greedy enforces $f(S) \geq f(S^*) - f(O)$.

Observation 2: Running greedy $O(1/\varepsilon)$ times improves to $1-1/e-\varepsilon$. **Proof idea:** Break greedy over $O(1/\varepsilon)$ iterations.

New base $S^* \cup S \setminus T$ can be reached from S.

v to continuous f

Both observations apply to continuous f.

Observation 3:

Parallelize greedy by simultaneously increasing all x_i with large marginal gains (use gradient lookahead).

- Marginal gains only decrease.
- lacktriangle Coordinates are scaled by 1+arepsilon, none gets touched too many times.

Takeaway notes

- ► Continuous optimization makes discrete problems easy the only property of *f* we use is concavity along non-negative directions.
- ► Submodular maximization with packing constraints is no harder than solving positive LP's in parallel.
- ► Extend techniques to other discrete problems? What else is there?

References

 $\langle \nabla f(x+\delta), \delta \rangle$

 $-f(x+\delta)-f(x)$

 $\geq \langle \nabla f(x(1+\epsilon)), \delta \rangle$

- [1] E. Balkanski and Y. Singer, "The adaptive complexity of maximizing a submodular function", in STOC~2018.
- [2] C. Chekuri and K. Quanrud, "Submodular function maximization in parallel via the multilinear relaxation", in *SODA 2019*.
- [3] M. W. Mahoney, S. Rao, D. Wang, and P. Zhang, "Approximating the solution to mixed packing and covering LPs in parallel $\tilde{O}(\varepsilon^{-3})$ time", in *ICALP 2016*.
- [4] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, "An analysis of approximations for maximizing submodular set functions", *Mathematical programming*, 1978.

Can these algorithms be made practical?