

Régression linéaire

Hypothèses *a pi*

variance des paramètres

Inverse généralisée

Methodes iterativ

Modélisation et inversion en géophysique 5 - Inversion linéaire

Bernard Giroux (bernard.giroux@ete.inrs.ca)

Institut national de la recherche scientifique Centre Eau Terre Environnement

> Version 1.0.1 Hiver 2019

Régression linéaire

Aperçu

Distanc

Existence de la solutio

.....

y potricaca a pric

paramètres

Inverse généralisée

Méthodes itératives

Régression linéaire

Aperçu

Régression linéaire Aperçu

Distance Moindres-carrés

Existence de la solu

....

Inverse généralisé

Méthodes itérativ

- La façon la plus courante de résoudre un problème d'inversion linéaire est basée sur la mesure de la distance entre les données observées d^{obs} et les données prédites d^{pre};
- Cette distance est fonction de l'erreur de prédiction, définie pour une *i*^{*e*} observation par

$$e_i = d_i^{\text{obs}} - d_i^{\text{pre}}.$$
 (1)

- La méthode des moindres-carrés est l'approche la plus fréquente pour estimer les paramètres du modèle mest;
 - On cherche dans ce cas les paramètres qui donneront l'erreur *E* la plus faible, où

$$E = \sum_{i=0}^{N-1} e_i^2 = \mathbf{e}^T \mathbf{e}.$$
 (2)

• L'erreur *E* est la *distance euclidienne* au carré du vecteur **e**.

Aperçu

Régression linéaire Aperçu

Distance Moindres-carrés

Hypothèses a j

Variance d

Inverse généralisé

....

• L'exemple suivant montre l'ajustement de points par une droite, obtenu par moindres-carrés.

Aperçu
Distance

Existence de la soluti

Hypothèses a pric

variance c paramètre

Inverse généralisé

Máthodas itára

- La distance euclidienne est une mesure parmi d'autres;
 On peut par exemple considérer la somme des valeurs absolues.
- On utilise *norme* pour désigner une mesure de distance;
- La norme d'un vecteur est notée ||e||
- On dénombre :

norme
$$L_1: \|\mathbf{e}\|_1 = \left[\sum_{i} |e_i|^1\right]$$
 (3)

norme
$$L_2$$
: $\|\mathbf{e}\|_2 = \left[\sum_i |e_i|^2\right]^{1/2}$ (4)

norme
$$L_n: \|\mathbf{e}\|_n = \left[\sum_{i} |e_i|^n\right]^{1/n}$$
 (5)

• Lorsque $n \to \infty$, seule la valeur la plus élevée a un poids non nul, i.e.

norme
$$L_{\infty}$$
: $\|\mathbf{e}\|_{\infty} = \max_{i} |e_{i}|$ (6)

Régression linéaire

Distance

Moindres-carrés

Existence de la solution

nypotheses a p

Variance de paramètres

Inverse généralisé

Régression linéaire Aperçu Distance

Moindres-carrés

Existence de la solution

Hypothèses a p

paramètres

Inverse generalisee

Méthodes itérative

- Le choix d'une norme dépend principalement de l'importance donnée aux données aberrantes;
- Une norme plus élevée donne un poids plus élevé aux erreur de prédiction e_i plus élevées.
- La norme L₂ implique que les données sont distribuées selon une loi normale;
 - Une distribution normale est assez peu étalée.

Régression linéaire Aperçu Distance

Moindres-carrés

Evistance de la celu

Variance des

Inverse généralisée

Méthodes itératives

 Si les données contiennent quelques points aberrants, la distribution sera plus étalée et les résultats peuvent être complètement erronés.

Moindres-carrés pour une droite

Moindres-carrés

Une droite est définie par une ordonnée à l'origine (m_0) et par une pente (m_1) , i.e.

$$d_i = m_0 + m_1 z_i. (7)$$

- Il y a donc deux paramètres du modèle, M=2.
- Typiquement, on dispose de beaucoup plus que deux points, i.e. N > M.
- À moins que les points ne s'alignent parfaitement, on ne peut trouver une droite qui passe par tout les points;
- On a affaire à un problème *surdéterminé*, il n'y a pas de solution pour laquelle $\mathbf{e} = 0$.

Moindres-carrés pour une droite

 $E = \mathbf{e}^T \mathbf{e} = \sum_{i=0}^{N-1} (d_i - m_0 - m_1 z_i)^2.$

 $=2m_0\sum_{i=0}^{N-1}z_i+2m_1\sum_{i=0}^{N-1}z_i^2-2\sum_{i=0}^{N-1}z_id_i=0.$

• On cherche donc le minimum de $E(m_0, m_1)$, qui est obtenu en égalant les dérivées de E à zéro et en solutionnant :

 $\frac{\partial E}{\partial m_0} = \frac{\partial}{\partial m_0} \sum_{i=0}^{N-1} (d_i - m_0 - m_1 z_i)^2$

 $\frac{\partial E}{\partial m_1} = \frac{\partial}{\partial m_1} \sum_{i=0}^{N-1} (d_i - m_0 - m_1 z_i)^2$

Moindres-carrés

• On cherche alors une solution approximative, où le niveau d'approximation est défini par

 $=2Nm_0+2m_1\sum_{i=0}^{N-1}z_i-2\sum_{i=0}^{N-1}d_i=0$

(10)

(12)

(9)

(8)

Régression linéaire Aperçu Distance

Moindres-carrés

Existence de la soluti

Variance des

Inverse gápáralia

Méthodes itéra

- On peut généraliser les moindres-carrés à n'importe quel système linéaire;
- L'erreur vaut alors

$$E = \mathbf{e}^{T} \mathbf{e} = (\mathbf{d} - \mathbf{Gm})^{T} (\mathbf{d} - \mathbf{Gm}) = \sum_{i=0}^{N-1} \left[d_{i} - \sum_{j=0}^{M-1} G_{ij} m_{j} \right] \left[d_{i} - \sum_{k=0}^{M-1} G_{ik} m_{k} \right]$$
(13)

 En multipliant les termes et changeant l'ordre des sommations, on trouve

$$E = \underbrace{\sum_{j=0}^{M-1} \sum_{k=0}^{M-1} m_j m_k \sum_{i=0}^{N-1} G_{ij} G_{ik}}_{T_1} - 2 \underbrace{\sum_{j=0}^{M-1} m_j \sum_{i=0}^{N-1} G_{ij} d_i}_{T_2} + \underbrace{\sum_{i=0}^{M-1} d_i d_i}_{T_3}$$
(14)

Aperçu Distance

Moindres-carrés

.....

Variance d

Inverse généralise

Máthadas itárat

- Les dérivées sont maintenant calculées
- Pour le 1^e terme, on a

$$\frac{\partial T_1}{\partial m_q} = \sum_{j=0}^{M-1} \sum_{k=0}^{M-1} [\delta_{jq} m_k + m_j \delta_{kq}] \sum_{i=0}^{N-1} G_{ij} G_{ik}$$
 (15)

$$=2\sum_{k=0}^{M-1}m_k\sum_{i=0}^{N-1}G_{iq}G_{ik}$$
(16)

où

$$\delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases} \tag{17}$$

provient du fait que $\partial m_i/\partial m_j$ vaut 1 si i=j et 0 si $i\neq j$.

Aperçu
Distance
Moindres-carrés

Existence de la soluti

nypotrieses a pr

paramètre

inverse generalise

Méthodes itérati

• Pour le 2^e terme, on a

$$-2\frac{\partial T_2}{\partial m_q} = -2\sum_{j=0}^{M-1} \delta_{jq} \sum_{i=0}^{N-1} G_{ij} d_i = -2\sum_{i=0}^{N-1} G_{iq} d_i$$
 (18)

- Le 3^e terme ne contient pas de m, alors $\frac{\partial T_3}{\partial m_a} = 0$.
- En combinant les 3 termes, on trouve

$$\frac{\partial E}{\partial m_q} = 0 = 2 \sum_{k=0}^{M-1} m_k \sum_{i=0}^{N-1} G_{iq} G_{ik} - 2 \sum_{i=0}^{N-1} G_{iq} d_i$$
 (19)

• Sous forme matricielle, cela donne

$$\mathbf{G}^T \mathbf{G} \mathbf{m} - \mathbf{G}^T \mathbf{d} = 0. \tag{20}$$

Aperçu
Distance

Moindres-carrés Existence de la soluti

Hypothèses a pri

Variance de paramètres

Inverse généralisée

Máthadas itárat

- Dans l'équation (20), $\mathbf{G}^T\mathbf{G}$ est une matrice carrée de taille $M \times M$ qui multiplie un vecteur \mathbf{m} de M éléments;
- $\mathbf{G}^T \mathbf{d}$ est aussi un vecteur de M éléments;
- En supposant que $[\mathbf{G}^T\mathbf{G}]^{-1}$ existe, l'estimateur des paramètres du modèle est

$$\mathbf{m}^{\text{est}} = \left[\mathbf{G}^T \mathbf{G}\right]^{-1} \mathbf{G}^T \mathbf{d} \tag{21}$$

Régression linéaire Aperçu Distance

Moindres-carrés Existence de la solut

Hypotheses a

Variance des paramètres

Inverse généralisé

Méthodes itératives

 Les commandes suivantes permettent de générer un ensemble de points plus ou moins alignés le long d'une droite:

```
N = 30
zmin = 0
zmax = 10
z = np.sort(zmin + zmax*np.random.rand(N, 1), axis=0)
a = 2.0
b = 1.0
m = np.asarray([a, b])
sd = 0.5
dobs = m[0] + m[1] * z + sd*np.random.randn(N, 1)
plt.plot(z, dobs, 'o')
plt.xlabel('z', fontsize=16)
plt.ylabel('d', fontsize=16)
plt.show()
```


Aperçu

Moindres-carrés

Existence de la solu

Variance des

paramètres

Inverse généralisée

Méthodes itérative

Aperçu

Distance

Moindres-carrés Existence de la solut

lypothèses *a pri*

Variance des paramètres

Inverse généralisée

Máthadas itárati

- Étapes à suivre :
 - Construire la matrice G;
 - Calculer $\mathbf{A} = \mathbf{G}^T \mathbf{G}$;
 - Calculer $\mathbf{b} = \mathbf{G}^T \mathbf{d}_{\text{obs}}$;
 - Calculer l'inverse de **A**;
 - Calculer $\mathbf{m}_{\text{est}} = \mathbf{A}^{-1}\mathbf{b}$.
- Visualisez le résultat avec

```
dpre = G.dot(mest)

plt.plot(z, dobs, 'o')
plt.plot(z, dpre, '-', linewidth=4)
plt.xlabel('z', fontsize=16)
plt.ylabel('d', fontsize=16)
plt.show()
```


Aperçu

Moindres-carrés

Existence de la solutio

Variance de paramètres

Inverse généralisée

Méthodes itératives

Existence de la solution moindres-carrés

Régression linéaire Aperçu Distance Moindres-carrés

Existence de la solution

Variance d

Inverse généralisée

 La solution des moindres-carrés a été retenue parce qu'il n'y a pas de solution exacte à notre problème;

- C'est la méthode qui nous donne la "meilleure" solution, au sens où la norme L_2 est minimisée;
- En utilisant $\mathbf{m}^{\text{est}} = \left[\mathbf{G}^T \mathbf{G}\right]^{-1} \mathbf{G}^T \mathbf{d}$, on assume qu'il n'y a qu'une seule "meilleure" solution;
- La méthode échoue s'il existe plusieurs solutions qui donne la même erreur *E*.

Ajustement d'une droite avec un seul point :

- Une infinité de droites passe par le point;
- Pour chaque droite, E = 0.

Existence de la solution moindres-carrés

Régression linéaire

Aperçu

Distance

Moindres-carrés

Existence de la solution

Hypotheses

parametres

inverse generalise

Méthodes itérative

- On peut classer les problèmes inverses en fonction de l'information contenue dans le système Gm = d
- Le problème est indéterminé (underdetermined) lorsque le nombre de paramètres M est supérieur au nombre de données indépendantes N, M > N;
 - La matrice $[\mathbf{G}^T\mathbf{G}]^{-1}$ est singulière (non inversible).

- Lorsque *M* < *N*, le problème est surdéterminé (*overdetermined*);
 - Les moindres-carrés sont appropriés.

Régression linéaire

Hypothèses a priori

indéterminé
Problème partiellement

Pondération

Variance de

paramètres

Inverse généralisée

Méthodes itératives

Hypothèses a priori

Hypothèses a priori

Régression linéaire

Hypothèses a priori

Problème purement indéterminé Problème partielleme indéterminé Pondération

paramètres

Inverse généralisé

Méthodes itérative

- Lorsqu'un problème est indéterminé, il existe une infinité de solutions et il faut ajouter une information au système pour arriver à une solution satisfaisante;
- Cette information est nommée information *a priori*;
 - Par exemple, pour ajuster une droite avec un seul point, on peut assumer que la droite doit passer à l'origine.
 - Un autre exemple est de supposer que les paramètres doivent être à l'intérieur d'une plage de valeurs donnée, e.g. des densités entre 1000 et 3500 kg/m³.
- Le choix d'une hypothèse *a priori* n'est pas toujours évident et dépend clairement de l'application.

Problème purement indéterminé

Problème purement

$$L = \mathbf{m}^T \mathbf{m} = \sum m_i^2.$$

• Une hypothèse *a priori* fréquente est que le modèle **m** doit

• se justifie si on considère que les données seules sont

(22)

• Le problème devient celui de minimiser *L* sous la contrainte que $\mathbf{e} = \mathbf{d} - \mathbf{Gm} = 0$.

être "simple";

insuffisantes.

- La méthode des multiplicateurs de Lagrange permet de trouver la solution.
- La fonction à minimiser est

- $\Phi(\mathbf{m}) = L + \sum_{i=0}^{N-1} \lambda_i e_i = \sum_{i=0}^{M-1} m_i^2 + \sum_{i=0}^{N-1} \lambda_i \left| d_i \sum_{i=0}^{M-1} G_{ij} m_j \right|$ (23)
- où λ_i sont les multiplicateurs de Lagrange.

Problème purement indéterminé

Regression inteam

Problème purement indéterminé

Égalité Variance des

Inverse gén

mireroe generalis

• Le minimum est obtenu en dérivant par rapport à *m*

$$\frac{\partial \Phi}{\partial m_q} = \sum_{i=0}^{M-1} 2 \frac{\partial m_i}{\partial m_q} m_i - \sum_{i=0}^{M-1} \lambda_i \sum_{j=0}^{M-1} G_{ij} \frac{\partial m_j}{\partial m_q} = 2m_q - \sum_{i=0}^{M-1} \lambda_i G_{iq}$$
(24)

• En égalant (24) à zéro, on obtient, sous forme matricielle

$$2\mathbf{m} = \mathbf{G}^T \lambda \tag{25}$$

• En insérant dans $\mathbf{d} = \mathbf{Gm}$, on trouve

$$\lambda = 2 \left[\mathbf{G} \mathbf{G}^T \right]^{-1} \mathbf{d} \tag{26}$$

qui nous permet de finalement trouver, l'estimateur de longueur minimum

$$\mathbf{m}^{\text{est}} = \mathbf{G}^T \left[\mathbf{G} \mathbf{G}^T \right]^{-1} \mathbf{d}$$
 (27)

Exercice - Probl. purement indéterminé

Régression linéaire

Hypothèses a pri Problème purement

indéterminé
Problème partielleme
indéterminé

Égalité

Variance de paramètres

Inverse généralisée

Méthodes itérativ

• Trouvez les paramètres du modèle de la figure suivante, pour h = 2 et $\mathbf{d}^{\text{obs}} = [0.5, 0.46]$.

Problème partiellement indéterminé

Régression linéaire

Problème purement indéterminé

Problème partiellement

indéterminé
Pondération

Égalité

paramètres

iliverse generalise

Méthodes itérativ

- En pratique, les problèmes inverses ne sont jamais complètement surdéterminés ou purement indéterminés.
 - Une cellule du modèle peut être traversée par plusieurs rais alors qu'une autre n'est traversée par aucun rai (A);
 - Si tout les segments de rais sont de la même longueur (B), seulement la lenteur moyenne peut être déterminée.

Problème partiellement indéterminé

Régression linéaire

Problème purement indéterminé Problème partiellement indéterminé

Variance de

paramètres

inverse generalis

Méthodes itérativ

• Si le problème n'est pas trop indéterminé, on peut minimiser une combinaison de l'erreur de prédiction et de la longueur du modèle (indépendamment des paramètres individuels):

$$\Phi(\mathbf{m}) = E + \varepsilon^2 L = \mathbf{e}^T \mathbf{e} + \varepsilon^2 \mathbf{m}^T \mathbf{m}, \tag{28}$$

où le poids ε^2 détermine l'importance relative de L par rapport à E.

- Si ε est très élevé, l'emphase est mise sur la partie indéterminée
 - se fait au détriment de E → le modèle estimé sera loin du modèle vrai.
- Si ε est très faible, l'information *a priori* n'est pas propagée et la partie indéterminée le reste.
- En général, on cherche ε par essai-erreur.

Problème partiellement indéterminé

Regression lineaire

Problème purement indéterminé Problème partiellement

Problème partielleme indéterminé

Variance de

parametres

N444b - - - - - 144 - - 41

• En minimisant $\Phi(\mathbf{m})$ par rapport aux paramètres du modèle, on trouve

$$\left[\mathbf{G}^{T}\mathbf{G} + \varepsilon^{2}\mathbf{I}\right]\mathbf{m}^{\text{est}} = \mathbf{G}^{T}\mathbf{d} \tag{29}$$

que l'on récrit

$$\mathbf{m}^{\text{est}} = \left[\mathbf{G}^T \mathbf{G} + \varepsilon^2 \mathbf{I} \right]^{-1} \mathbf{G}^T \mathbf{d}$$
 (30)

- m^{est} est nommé solution des moindres-carrés *amortis* (*damped least squares*).
- La solution est stabilisée par l'amortissement, et on dit que le problème est *régularisé*.
 - On retrouve le terme *régularisation de Tikhonov* pour décrire ce type d'utilisation d'information *a priori*.

Régression linéaire

Problème purement indéterminé

Problème partiellement indéterminé

Égalité

Variance de

Inverse généralisée

Móthodos itórati

 Examinons un exemple de problème partiellement indéterminé.

- Le modèle comporte 16 paramètres;
- La taille h vaut 2;
- 16 mesures ont été effectuées.

Problème partiellement indéterminé

• Définition du modèle et des points de mesure.

```
mtrue = np.array([1.0, 1.1, 1.2, 1.4,
                  1.2, 1.3, 1.4, 1.5,
                  1.6, 1.6, 1.5, 1.8,
                  1.8, 1.9, 2.0, 2.1])
```

```
Tx = h*np.array([[0.0, 0.5], [0.0, 1.5],
                  [0.0, 2.5], [0.0, 3.5],
                  [0.5, 0.0], [1.5, 0.0],
                  [2.5, 0.0], [3.5, 0.0],
                  [0.0, 3.0], [0.0, 2.0],
                  [0.0, 1.0], [0.0, 0.0],
                  [1.0, 0.0], [2.0, 0.0],
                  [3.0, 0.0], [0.0, 4.0]]
Rx = h*np.array([[4.0, 0.5], [4.0, 1.5],
                  [4.0, 2.5], [4.0, 3.5],
                  [0.5, 4.0], [1.5, 4.0],
                  [2.5, 4.0], [3.5, 4.0],
                  [1.0, 4.0], [2.0, 4.0],
                  [3.0, 4.0], [4.0, 4.0],
                  [4.0, 3.0], [4.0, 2.0],
                  [4.0, 1.0], [4.0, 0.0]]
```


Régression linéaire

Problème pureme indéterminé

Problème partiellement indéterminé

Égalité

Variance de

Inverse généralise

Méthodes itérative

Construction de la matrice G.

```
G = np.zeros((16, nx*nz))
G[0. ::4] = h
G[1, 1::4] = h
G[2, 2::4] = h
G[3, 3::4] = h
G[4, :4] = h
G[5, 4:8] = h
G[6, 8:12] = h
G[7, 12:16] = h
G[8, 3] = np.sqrt(2*h*h)
G[9, 2:8:5] = np.sqrt(2*h*h)
G[10, 1:12:5] = np.sqrt(2*h*h)
G[11, ::5] = np.sqrt(2*h*h)
G[12, 4::5] = np.sqrt(2*h*h)
G[13, 8::5] = np.sqrt(2*h*h)
G[14, 12] = np.sqrt(2*h*h)
G[15, 3:13:3] = np.sqrt(2*h*h)
```


Régression linéaire

Problème purement indéterminé

Problème partiellement

indéterminé

Égalité

Variance des

Inverse génér:

inverse generalis

Méthodes itérative

- Générez les données et ajoutez un bruit gaussien avec $\sigma^2 = 0.05$
- Comparez la solution des moindres-carrés ordinaires avec les moindres-carrés amortis pour

•
$$\varepsilon = 10$$

•
$$\varepsilon = 1$$

•
$$\varepsilon = 0.1$$

•
$$\varepsilon = 0.001$$

•
$$\varepsilon = 10^{-15}$$

Régression linéaire

Problème purement indéterminé Problème partiellemen indéterminé Pondération

Variance des paramètres

Inverse générali

Méthodes itérative

- Dans plusieurs cas, la longueur $L = \mathbf{m}^T \mathbf{m}$ n'est pas une mesure appropriée de la simplicité du modèle;
- Par exemple, si on cherche à évaluer les fluctuations par rapport à une moyenne connue
 - il est préférable de minimiser la distance par rapport à cette moyenne (m), i.e.

$$L = (\mathbf{m} - \langle \mathbf{m} \rangle)^{T} (\mathbf{m} - \langle \mathbf{m} \rangle)$$
 (31)

- Dans d'autres cas, on sait que le modèle est continu et varie lentement spatialement
 - on peut alors minimiser
 - l'inclinaison (steepness) : dérivée première de m
 - la rugosité (roughness) : dérivée seconde de m

Regression lineaire

Problème purement indéterminé Problème partielleme indéterminé

Pondération Égalité

paramètres

mverse generalis

d'une matrice **D** telle que (pour l'inclinaison) $\begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} m_0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

• L'inclinaison ou la rugosité peuvent être calculées à partir

$$\mathbf{Dm} = \frac{1}{\Delta x} \begin{bmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \end{bmatrix} \begin{bmatrix} m_0 \\ m_1 \\ \vdots \\ m_{M-1} \end{bmatrix}$$
(32)

- Pour la rugosité, les lignes contiennent $(\Delta x)^{-2} [\cdots 1 -2 1 \cdots]$
- Le terme à minimiser est alors

$$L = (\mathbf{D}\mathbf{m})^{T}(\mathbf{D}\mathbf{m}) = \mathbf{m}^{T}\mathbf{D}^{T}\mathbf{D}\mathbf{m} = \mathbf{m}^{T}\mathbf{W}_{\mathbf{m}}\mathbf{m}$$
(33)

 La matrice W_m donne un poids différent aux paramètres du modèle.

Régression linéaire

Hypothèses a prio Problème purement

indéterminé
Problème partiellemen

Pondération Égalité

paramètres

Inverse généralisée

Methodes iteration

Regression linear

Problème purement indéterminé Problème partiellement indéterminé

Pondération Égalité Variance de

paramètres

inverse generali.

Méthodes itérati

La mesure de la simplicité du modèle peut être généralisée à

$$L = (\mathbf{m} - \langle \mathbf{m} \rangle)^T \mathbf{W}_{\mathbf{m}} (\mathbf{m} - \langle \mathbf{m} \rangle)$$
 (34)

- D'une façon similaire, il est possible de pondérer certains terme de l'erreur de prédiction;
- utile lorsque certaines mesures sont plus précises que d'autres.
- L'erreur de prédiction généralisée s'écrit alors

$$E = \mathbf{e}^T \mathbf{W}_{\mathbf{e}} \mathbf{e}. \tag{35}$$

- W_e est généralement une matrice diagonale;
 - Par exemple, pour 5 mesures où on sait que la 3^e est deux fois plus précise, on aura

$$\mathbf{W}_{e} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 2 & & \\ & & & 1 & \\ & & & & 1 \end{bmatrix}$$
 (36)

Types d'info *a priori* – Pondération

Regression lineair

Problème purement indéterminé
Problème partielleme indéterminé
Pondération

Variance de

Inverse généralisée

Máthodas itárati

• La solution des moindres-carrés pondérés, i.e. lorsque $E = \mathbf{e}^T \mathbf{W}_{\mathbf{e}} \mathbf{e}$, vaut

$$\mathbf{m}^{\text{est}} = \left(\mathbf{G}^T \mathbf{W}_{\text{e}} \mathbf{G}\right)^{-1} \mathbf{G}^T \mathbf{W}_{\text{e}} \mathbf{d}. \tag{37}$$

• Lorsque le système est partiellement indéterminé, l'amortissement est inclus et la solution est

$$\mathbf{m}^{\text{est}} = \left(\mathbf{G}^{T} \mathbf{W}_{\text{e}} \mathbf{G} + \varepsilon^{2} \mathbf{W}_{\text{m}}\right)^{-1} \left(\mathbf{G}^{T} \mathbf{W}_{\text{e}} \mathbf{d} + \varepsilon^{2} \mathbf{W}_{\text{m}} \langle \mathbf{m} \rangle\right)$$
(38)

• Pour résoudre ce système, on peut le simplifier en posant

$$\mathbf{F} = \begin{bmatrix} \mathbf{W}_{e}^{1/2} \mathbf{G} \\ \varepsilon \mathbf{D} \end{bmatrix} \qquad \text{et} \qquad \mathbf{f} = \begin{bmatrix} \mathbf{W}_{e}^{1/2} \mathbf{d} \\ \varepsilon \mathbf{D} \langle \mathbf{m} \rangle \end{bmatrix}$$
(39)

• Il suffit alors de résoudre $\mathbf{F}\mathbf{m}^{\text{est}} = \mathbf{f}$ par la méthode des moindres-carrés ordinaire : $\mathbf{m}^{\text{est}} = (\mathbf{F}^T\mathbf{F})^{-1}\mathbf{F}^T\mathbf{f}$.

Types d'information *a priori* – Exercice 1

,5,0,1, ,,,,,,

othèses *a prid* plème purement

ndéterminé Problème partie ndéterminé

Pondération Égalité

paramètres

Méthodes itérativ

 Le problème est de retrouver une fonction sinus à partir de points aléatoirement distribués.

M = 101

```
Dz = 1.0
z = Dz*np.arange(M)
zmax = z.max()
```

mtrue = np.sin(3*np.pi*z/zmax)
• Les observations sont:

```
ind = np.array([0,8, 14, 16, 36, 48, 60, 72, 84, 90, M-1])
N = ind.size
zobs = z[ind]
```

ullet Pour simplifier, on attribue un poids égal à chaque observation, i.e. \mathbf{W}_{e} est une matrice identité.

dobs = np.sin(3*np.pi*zobs/zmax) + \
 sigmad*np.random.randn(N)

sigmad = 0.0 # pas de bruit dans les données

Types d'information a priori – Exercice 1

Régression linéaire

Problème purement indéterminé

Pondération Égalité Variance des

Méthodes itérative

Methodes iterativ

- Nous avons M=101 et N=11, le système est indéterminé;
- On sait qu'une fonction sinus est lisse, on peut minimiser la rugosité.
- **G** contient simplement des 1 aux indices des points de mesure.

```
i = np.arange(N)
j = ind
s = np.ones(i.shape)
G = sp.coo_matrix((s, (i, j)), shape=(N, M))
```

- La matrice de rugosité **D** (de taille $M \times M$) contient les termes $(\Delta x)^{-2}[...1 21 ...]$ centrés sur le paramètre où la dérivée est évaluée.
 - Aux extrémités, on utilise une dérivée première.
- Construisez **D** et résolvez pour trois valeurs de ε , soit 1.0, 0.01, 100.0.

Régression linéaire

Problème purement indéterminé Problème partiellemen

Pondération Égalité

Egalite

Inverse gánár

Méthodes itérative

- Il arrive parfois qu'on
 - connaisse la valeur du modèle en un point donné;
 - sache qu'une certaine fonction des paramètres est égale à une constante.
- On peut exprimer ces contraintes sous la forme Hm = h, par exemple :
 - la moyenne des paramètres est égale à h_0 :

$$\mathbf{Hm} = \frac{1}{M} [1 \ 1 \ \dots \ 1] \begin{bmatrix} m_0 \\ m_1 \\ \vdots \\ m_{M-1} \end{bmatrix} = [h_0] = \mathbf{h}$$
 (40)

• Une valeur donnée m_k est connue :

$$\mathbf{Hm} = [0 \dots 0 \ 1 \ 0 \dots 0] \begin{bmatrix} m_0 \\ \vdots \\ m_k \\ \vdots \\ \dots \end{bmatrix} = [h_k] = \mathbf{h}$$
 (41)

Régression linéaire

Hypothèses a prior Problème purement indéterminé Problème partiellemen indéterminé Pondération

ÉgalitéVariance d

parametres

Inverse généralisée

_

- La méthode des multiplicateurs de Lagrange permet de trouver la solution.
- On minimise E avec la contrainte que $\mathbf{Hm} \mathbf{h} = 0$ en formant la fonction suivante :

$$\Phi(m) = \sum_{i=0}^{N-1} \left[\sum_{j=0}^{M-1} G_{ij} m_j - d_i \right]^2 + 2 \sum_{i=0}^{p-1} \lambda_i \left[\sum_{j=0}^{M-1} H_{ij} m_j - h_i \right]$$
(42)

où p est le nombre de contraintes.

Les dérivées par rapport aux paramètres,

$$\frac{\partial \Phi(m)}{\partial m_q} = 2 \sum_{i=0}^{M-1} m_i \sum_{j=0}^{N-1} G_{jq} G_{ji} - 2 \sum_{i=0}^{N-1} G_{iq} d_i + 2 \sum_{i=0}^{p-1} \lambda_i H_{iq},$$
 (43)

sont égalées à zéro pour trouver le minimum.

Régression linéaire

Problème purement indéterminé Problème partiellemen

roblème partiellemen déterminé ondération

Égalité

Variance de paramètres

Inverse généralis

Méthodes itérative

Sous forme matricielle, le système d'équation est

$$\underbrace{\begin{bmatrix} \mathbf{G}^T \mathbf{G} & \mathbf{H}^T \\ \mathbf{H} & 0 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} \mathbf{m} \\ \boldsymbol{\lambda} \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} \mathbf{G}^T \mathbf{d} \\ \mathbf{h} \end{bmatrix}}_{\mathbf{b}} \tag{44}$$

 Ce système est habituellement résolu avec un solveur itératif.

Régression linéaire

Problème purement indéterminé Problème partiellemer indéterminé Pondération

Égalité Variance de

Inverse généralis

Méthodes itérative

- La résolution avec les multiplicateurs de Lagrange se prête mal à la situation où on souhaite appliquer une pondération au modèle;
 - on pourrait par exemple vouloir lisser le modèle en plus d'imposer une contrainte d'égalité.
- Une approche par moindres-carrés amortis est possible, il suffit d'ajouter les termes appropriés :

$$\mathbf{F} = \begin{bmatrix} \mathbf{W}_{e}^{1/2} \mathbf{G} \\ \varepsilon \mathbf{D} \\ \gamma \mathbf{H} \end{bmatrix} \qquad \text{et} \qquad \mathbf{f} = \begin{bmatrix} \mathbf{W}_{e}^{1/2} \mathbf{d} \\ \varepsilon \mathbf{D} \langle \mathbf{m} \rangle \\ \gamma \mathbf{h} \end{bmatrix}$$
(45)

où γ permet d'ajuster la pondération de la contrainte d'égalité.

Types d'information a priori – Exercice 2

Régression linéaire

Problème purement indéterminé Problème partiellement indéterminé

Égalité

paramètres

inverse generalis

Méthodes itérati

- Problème : ajuster une droite devant passer par un point connu (z', d').
 - Les paramètres du modèle sont l'ordonnée à l'origine m_0 et la pente m_1 ;
 - et la contrainte est que $d' = m_0 + m_1 z'$.
 - Les données sont :

```
N = 30
zmin = 0
zmax = 10
z = np.sort(zmin + zmax*np.random.rand(N, 1), axis=0)

# d = a + b*z + bruit
a = 2.0
b = 1.0
sd = 0.5
dobs = a + b * z + sd*np.random.randn(N, 1)

# contraintes, z' & d'
zp = 8
dp = 6
```


Régression linéaire

Variance des paramètres

verse généralisée

Méthodes itératives

Variance des paramètres

Régression linéaire Hypothèses *a prioi*

Variance des paramètres

Inverse généralisée Méthodes itératives

- Les données contiennent invariablement un bruit qui va entraîner une erreur dans l'estimation des paramètres du modèle
- Comment le bruit dans les données se propage-t-il dans les paramètres?
- On peut
 - généraliser les estimateurs linéaires vus précédemment à une forme $m^{\text{est}} = Md + v$
 - ullet M et v sont respectivement une matrice et un vecteur, indépendants de ullet
 - quantifier le bruit dans les données par la matrice de covariance [cov d]
- On peut alors montrer que

$$[\operatorname{cov} \mathbf{m}] = \mathbf{M}[\operatorname{cov} \mathbf{d}]\mathbf{M}^{T} \tag{46}$$

Régression linéaire Hypothèses *a prio*

Variance des paramètres

Inverse généralisée Méthodes itératives

- On assume souvent que les données sont non corrélées et qu'elles ont une la même variance σ_d^2 ;
- La covariance des paramètres pour les moindres-carrés vaut alors

$$[\operatorname{cov} \mathbf{m}] = \left[\left(\mathbf{G}^{T} \mathbf{G} \right)^{-1} \right] \sigma_{d}^{2} \mathbf{I} \left[\left(\mathbf{G}^{T} \mathbf{G} \right)^{-1} \right]^{T} = \sigma_{d}^{2} \left(\mathbf{G}^{T} \mathbf{G} \right)^{-1}$$
(47)

• Pour l'estimateur de longueur minimum nous avons

$$[\operatorname{cov} \mathbf{m}] = \left[\mathbf{G}^{T} \left(\mathbf{G} \mathbf{G}^{T} \right)^{-1} \right] \sigma_{d}^{2} \mathbf{I} \left[\mathbf{G}^{T} \left(\mathbf{G} \mathbf{G}^{T} \right)^{-1} \right]^{T}$$
$$= \sigma_{d}^{2} \mathbf{G}^{T} \left(\mathbf{G} \mathbf{G}^{T} \right)^{-2} \mathbf{G}$$
(48)

Régression linéaire Hypothèses *a prior*

Variance des paramètres

Inverse généralisée Méthodes itératives

- Un problème se pose pour estimer σ_d^2 ;
 - On peut se baser sur la résolution des appareils de mesures, e.g. un gravimètre précis à \pm 5 μ Gal, on parle alors de *variance a priori*;
 - On peut aussi se baser sur la distribution des erreurs de prédiction e obtenues après inversion (a posteriori), avec

$$\sigma_d^2 \approx \frac{1}{N - M} \sum_{i=0}^{N-1} e_i^2.$$
 (49)

- La variance a posteriori tend cependant à être surestimée en raison des imprécisions du modèle.
- Le constat final demeure néanmoins : les paramètres du modèles sont corrélés et de variance inégale.
- L'opérateur **G** joue un rôle central dans la propagation des erreurs.

Régression linéaire Hypothèses *a prior*

Variance des paramètres

Inverse généralisée Méthodes itératives

- Exemple de l'influence de **G** sur la variance des paramètres :
 - la variance des données est la même pour tout les points;
 - l'étalement des coordonnées en z dicte la variance des paramètres (zone ombragée = 1σ).

Régression linéaire

11 11 2

Variance des

Inverse généralisée

Instabilité

Méthodes itérativ

Inverse généralisée

Problème partiellement indéterminé

Hypothèses a priori

Variance des
paramètres

Inverse généralisée

Instabilité

Méthodes itérat

 Dans le cas où le problème inverse est en partie indéterminé, l'équation Gm = d contient l'information pour seulement une portion des paramètres du modèle;

• On peut concevoir ces combinaisons comme faisant partie d'un sous-espace de l'espace des paramètres, sous-espace que l'on note $S_p(\mathbf{m})$ et qui correspond à l'espace colonne des paramètres;

Aucune information n'est contenue concernant le reste de

- l'espace des paramètres, qui correspond au noyau ($null\ space$ des paramètres noté $S_0(\mathbf{m})$;

 La partie de \mathbf{m} qui se trouve dans le noyau n'est pas
- La partie de **m** qui se trouve dans le noyau n'est pas "échantillonnée" par **Gm** = **d**.

Problème partiellement indéterminé

Régression linéaire

potneses a

paramètres

Inverse généralisée

Instabilité

Methodes iterative

- Si une partie du problème est surdéterminée, le produit Gm ne permet pas de couvrir tout l'espace des données, peu importe le choix de m;
- Au mieux, **Gm** permet de couvrir un sous-espace $S_p(\mathbf{d})$ de l'espace des données;
- Il existe alors une partie de l'espace des données, $S_0(\mathbf{d})$ qui ne peut être recouvrée, quelque soit le choix des paramètres.

Inverse généralisée

- La décomposition en valeurs singulières (SVD) permet
 - d'identifier les espaces colonnes et noyaux des données et des paramètres;
 - de résoudre les problèmes indéterminés et mal conditionnés;
- Pour une matrice **G** de taille $N \times M$, la SVD est

$$\mathbf{G} = \mathbf{U}\mathbf{S}\mathbf{V}^T \tag{50}$$

OÙ

- U est une matrice $N \times N$ orthogonale où les colonnes forment les vecteurs de base de l'espace des données;
 - V est une matrice $M \times M$ orthogonale où les colonnes forment les vecteurs de base de l'espace des paramètres;
- **S** est une matrice $N \times M$ diagonale contenant les valeurs singulières de G.
- Les vecteurs de **U** et **V** sont dans les deux cas orthogonaux et sont choisis de longueur unitaire; il découle que

$$\mathbf{U}\mathbf{U}^T = \mathbf{U}^T\mathbf{U} = \mathbf{I}$$
 et $\mathbf{V}\mathbf{V}^T = \mathbf{V}^T\mathbf{V} = \mathbf{I}$

Régression linéaire Hypothèses *a priori*

Inverse généralisée

Methodes iterative

- Les valeurs singulières sont habituellement classées en ordre décroissant sur la diagonale de S;
- Certaines valeurs singulières peuvent être égales à zéro, ce qui fait qu'on peut partitionner S selon

$$\mathbf{S} = \begin{bmatrix} \mathbf{S}_p & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \tag{51}$$

où *p* est le nombre de valeurs non nulles.

- Similairement, **U** et **V** peuvent être partitionnées par colonnes, selon $[\mathbf{U}_p \ \mathbf{U}_0]$ et $[\mathbf{V}_p \ \mathbf{V}_0]$, pour ne garder que les colonnes non multipliées par la partie nulle de **S**;
- On a alors la forme compacte

$$\mathbf{G} = \mathbf{U}_p \mathbf{S}_p \mathbf{V}_p^T \tag{52}$$

Hypothèses a priori

paramètres Inverse généralisée

Méthodes itérative

- Les colonnes de \mathbf{U}_p sont dans l'espace colonne des données $S_p(\mathbf{d})$ (aussi noté $S_p(\mathbf{G})$) et sont linéairement indépendantes.
- Comme il y a p vecteurs dans la base, le rang de G est p.
- On peut montrer que $S_0(\mathbf{G}^T) + S_p(\mathbf{G}) = \mathbb{R}^n$, et que les N p colonnes de \mathbf{U}_0 forment la base du noyau de \mathbf{G}^T .
- On nomme ainsi $S_0(\mathbf{G}^T)$ le noyau des données.
- Similairement, on nomme $S_0(\mathbf{G})$ le noyau du modèle.
- ullet Les matrices ${f U}_p$ et ${f V}_p$ sont normalisées, de telle sorte que

$$\mathbf{U}_p^T\mathbf{U}_p = \mathbf{V}_p^T\mathbf{V}_p = \mathbf{I}$$

où **I** est de taille $p \times p$.

• Par contre, comme ces matrices ne couvrent généralement pas l'espace complet des données et des paramètres, $\mathbf{U}_p\mathbf{U}_p^T$ et $\mathbf{V}_p\mathbf{V}_p^T$, ne sont habituellement pas des matrices identitées.

Régression linéaire

pothèses a prior

paramètres

Inverse généralisée Résolution

Instabilité

Methodes iterative

• La SVD peut être utilisée pour calculer l'inverse généralisée de **G**, aussi appelée pseudo-inverse de Moore-Penrose :

$$\mathbf{G}^{\dagger} = \mathbf{V}_{p} \mathbf{S}_{p}^{-1} \mathbf{U}_{p}^{T} \tag{53}$$

La solution est alors

$$\mathbf{m}_{\dagger} = \mathbf{G}^{\dagger} \mathbf{d} \tag{54}$$

- Une propriété intéressante de (54) est que **G**[†] existe toujours, et donc qu'une solution existe toujours.
 - Les valeurs singulières nulles "correspondent" aux colonnes de G linéairement dépendantes, la SVD "filtre" pour ne garder que les colonnes indépendantes.

Régression linéaire

pothèses a prior

paramètres

Inverse généralisée

Instabilité

Methodes iterative

On peut montrer que

- Lorsque N = M = p, $\mathbf{G}^{\dagger} = \mathbf{G}^{-1}$ et la solution est unique et les paramètres s'ajustent parfaitement aux données.
- Lorsque N = p et p < M, \mathbf{G}^{\dagger} est équivalent à la solution de longueur minimum. Pour des raisons de précision numérique, on favorise en pratique l'utilisation de la SVD pour solutionner le système.
- Lorsque M = p et p < N, \mathbf{G}^{\dagger} est équivalent à la solution des moindres-carrés.
- Lorsque p < N et p < M, \mathbf{G}^{\dagger} est équivalent à la solution de longueur minimum.

Variance des paramètres

Hypothèses a prior

ance des

paramètres
Inverse généralisée

Résolution Instabilité

Methodes iterative

- On a vu que la covariance des paramètres est $[\cos \mathbf{m}] = \sigma_d^2 (\mathbf{G}^T \mathbf{G})^{-1}$
- Pour l'inverse généralisée on a

$$[\cos \mathbf{m}_{\dagger}] = \mathbf{G}^{\dagger}[\cos \mathbf{d}] (\mathbf{G}^{\dagger})^{T}$$
 (55)

$$=\sigma_d^2 \mathbf{G}^{\dagger} \left(\mathbf{G}^{\dagger}\right)^T \tag{56}$$

$$= \sigma_d^2 \mathbf{V}_p \mathbf{S}_p^{-2} \mathbf{V}_p^T \tag{57}$$

$$= \sigma_d^2 \sum_{i=0}^{p-1} \frac{V_{:,i} V_{:,i}^T}{s_i^2}$$
 (58)

- Sachant que les valeurs s_i décroissent, on peut remarquer que les termes successifs de la sommation contribuent davantage à la variance du modèle;
 - Des valeurs singulières très très faibles peuvent causer une instabilité de la solution.

Régression linéaire Hypothèses *a priori*

Variance des paramètres Inverse généralisée Résolution

Méthodes itérative

- Malheureusement, \mathbf{m}_{+} *n'est pas* un estimateur non biaisé de \mathbf{m}_{vrai} (sauf si p = M)
 - Cela est dû au fait que m_{vrai} peut contenir des projections non nulles dans des vecteurs de base de V qui ne sont pas utilisés par l'inverse généralisée (portion tronquée).
- On peut quantifier ce biais avec la matrice de résolution du modèle;
 - permet de déterminer à quel point m₊ s'approche de m_{vrai}, en assumant qu'il n'y a pas d'erreur dans les données.
- Partant de \mathbf{m}_{vrai} , on a que $\mathbf{d}_{\text{vrai}} = \mathbf{G}\mathbf{m}_{\text{vrai}}$ et donc que

$$\mathbf{m}_{\dagger} = \mathbf{G}^{\dagger} \mathbf{d}_{\text{vrai}} \tag{59}$$

$$= \mathbf{G}^{\dagger} \mathbf{G} \mathbf{m}_{\text{vrai}} \tag{60}$$

$$= \mathbf{R}_{\mathbf{m}} \mathbf{m}_{\mathbf{vrai}} \tag{61}$$

Régression linéaire

Variance des paramètres

Résolution Instabilité

Methodes iterative

- R_m permet donc de quantifier à quel point m₊ s'approche de m_{vrai};
 - si R_m est une matrice identité, le modèle vrai peut être retrouvé parfaitement et la résolution est "parfaite".
- En pratique, on examine la diagonale de R_m pour voir si les éléments sont proches de 1;
 - $\bullet \quad \text{si c'est le cas, les paramètres correspondants sont bien résolus;}$
 - dans le cas inverse, les paramètres sont une moyenne pondérée des paramètres vrais.
- On peut aussi mener un test de résolution avec un modèle impulsionel m_i (vecteur de 0 avec un seul élément i égal à 1);
 - Le produit de R_m avec m_i fait ressortir la contribution des colonnes de R_m sur le i^e paramètre.

Régression linéaire

Hypothèses a pr

variance des paramètres

Inverse généralisé Résolution

Instabilite

Methodes iteratives

- Examinons la signification de la matrice de résolution avec un exemple en tomographie.
- Le modèle comporte 16 paramètres;
- La taille *h* vaut 2;
- 10 mesures ont été effectuées.

Regression lineaire

potneses a pr

Variance des paramètres

Inverse généralisé Résolution

Méthodes itératives

• La matrice **G** a la forme suivante :

• Le rang de la matrice est 9.

Régression linéaire

Hypothèses a pr

variance des

Inverse généralisée Résolution

Méthodes itératives

- La matrice de résolution contient les éléments les plus élevés sur sa diagonale.
- La résolution est 1 seulement pour le 16^e paramètre.
- Les autres paramètres contiennent des contributions des cellules voisines.

Régression linéaire

Hypothèses a pri

variance des

Inverse généralisé

Résolution Instabilité

Méthodes itératives

 La résolution est plus élevée aux cellules traversés par le long rai oblique.

Régression linéaire

Hypothèses a pr

paramètres

Inverse généralisé Résolution

Methodes iteratives

- Test impulsionnel pour $\mathbf{m}_i = [0100 \dots 0]$
- La 2^e cellule ne peut être complètement distinguée de ses voisines;
- Les cellules traversés par le long rai oblique contribuent moins.

Régression linéaire

Hypothèses a pr

Variance des

paramètres

Résolution Instabilité

Méthodes itérative

• Malgré la résolution imparfaite, le modèle estimé est proche du modèle vrai.

Résolution des données

Régression linéaire

Variance de paramètres

Résolution Instabilité

Methodes iterative

- Idéalement, on voudrait que m₊ nous permette de retrouver exactement les données observées.
- D'une façon similaire à la résolution du modèle, on peut évaluer individuellement le poids des données observées dans les données prédites par m₊.
- Soit **d**_† le vecteur des données produit par **m**_†, i.e.

$$\mathbf{d}_{\dagger} = \mathbf{G}\mathbf{m}_{\dagger} \tag{62}$$

• Puisque $\mathbf{m}_{+} = \mathbf{G}^{\dagger} \mathbf{d}$, on a que

$$\mathbf{d}_{\dagger} = \mathbf{G}\mathbf{G}^{\dagger}\mathbf{d} \tag{63}$$

$$= \mathbf{R}_{\mathrm{d}} \mathbf{d} \tag{64}$$

Résolution des données

Régression linéaire

potneses a

paramètres

Inverse généralise Résolution

Méthodes itérative

- Si $\mathbf{R}_d = \mathbf{I}$, l'erreur de prédiction est nulle.
- À l'inverse, \mathbf{R}_{d} donne une mesure de la capacité de l'estimateur à reproduire les données;
- Si par exemple R_d contient une ligne égale à

$$[\dots 0000.10.80.1000\dots]$$

où 0.8 apparaît sur le *i*^e colonne, alors

$$d_i^{\text{pre}} = \sum_{j} R_d(i, j) d_j^{\text{obs}} = 0.1 d_{i-1}^{\text{obs}} + 0.8 d_i^{\text{obs}} + 0.1 d_{i+1}^{\text{obs}}$$
 (65)

Résolution des données

Régression linéaire Hypothèses *a prion*

Variance des paramètres
Inverse généralisée

Résolution Instabilité

Methodes iterative

- Examinons R_d pour l'exemple précédent
- Les valeurs sur la diagonale sont assez proches de 1, sauf pour les 8^e et 9^e données où $R_d \approx 1$
- Pour les 7 autres données, il y a une composante non nulle des autres termes;
 - les données prédites sont une moyenne pondérée des données observées

• le notebook suivant reprend cet exemple avec plus de détails https://github.com/bernard-giroux/geo1302/blob/master/inv_svd_resolution.ipynb

Résolution - Conclusion

Régression linéaire

potneses a p

paramètres

Inverse généralise Résolution

Methodes iterative

- Il est important de rappeler que R_m et R_d ne dépendent pas des données et des modèles, mais qu'elles sont dues exclusivement à G;
- Ces matrices sont donc le reflet de
 - la physique du problème;
 - la géométrie d'acquisition des données.
- En pratique, la capacité à retrouver m_{vrai} dépend autant de la résolution que de la propagation du bruit dans les paramètres du modèle.
- $\bullet~~\mathbf{R}_{\rm m}$ et $\mathbf{R}_{\rm d}$ sont des outils très pratiques pour la conception des géométries d'acquisition.

Hypothèses *a priori*Variance des paramètres

Inverse généralisée

Instabilité
Méthodes itérati

On a mentionné que les valeurs singulières très très faibles

 Cette instabilitée peut être quantifié si on récrit l'estimateur de l'inverse généralisé en fonction des valeurs singulières;

peuvent entraîner une instabilité de la solution;

• De fait, on peut montrer que

$$\mathbf{m}_{+} = \mathbf{V}_{p} \mathbf{S}_{p}^{-1} \mathbf{U}_{p}^{T} \mathbf{d} = \sum_{i=0}^{p-1} \frac{\mathbf{U}_{\cdot,i}^{T} \mathbf{d}}{s_{i}} \mathbf{V}_{\cdot,i}$$

- $\mathbf{m}_{\mathbf{q}} = \mathbf{v}_{p} \mathbf{s}_{p} \quad \mathbf{s}_{p} \mathbf{u} = \sum_{i=0}^{n} \mathbf{s}_{i} \quad \mathbf{v}_{i}$
- En présence de bruit, la projection de d dans les directions définies par les colonnes de U sera non nulle;
 Une valeur très faible de s; au dénominateur, e.g. dans les

limites de précision de l'ordinateur, entraîne une valeur très

- élevée de la contribution du vecteur **V**_{.,i}, au point de dominer la solution;
- Dans le pire des cas, l'inverse généralisé n'est qu'un amplificateur de bruit.

Instabilité

Régression linéaire

Inverse généralisée

Variance des paramètres

Résolution Instabilité

Methodes iterative

- Une mesure de l'instabilité est le conditionnement du système;
- Partons d'un vecteur de données \mathbf{d} et de la solution $\mathbf{m}_+ = \mathbf{G}^\dagger \mathbf{d}$, et considérons un 2^e vecteur \mathbf{d}' , légèrement perturbé, et la solution associée $\mathbf{m}'_+ = \mathbf{G}^\dagger \mathbf{d}'$, alors

$$\mathbf{m}_{\dagger} - \mathbf{m}_{\dagger}' = \mathbf{G}^{\dagger}(\mathbf{d} - \mathbf{d}').$$

- La plus grande différence entre \mathbf{m}_{\uparrow} et \mathbf{m}'_{\uparrow} sera lorsque $\mathbf{d} \mathbf{d}'$ est projeté dans la direction de $\mathbf{U}_{\cdot,p-1}$ car sera correspond à la plus petite valeur singulière non nulle.
- Soit

$$\mathbf{d} - \mathbf{d}' = \alpha \mathbf{U}_{\cdot, p-1}$$

alors

$$\|\mathbf{d} - \mathbf{d}'\|_2 = \alpha.$$

Instabilité

pothèses *a prior* riance des • L'influence sur la solution sera

$$\mathbf{m}_{\dagger} - \mathbf{m}'_{\dagger} = \frac{\alpha}{s_{\nu-1}} \mathbf{V}_{\cdot, \nu-1}$$

et

$$\|\mathbf{m}_{\dagger} - \mathbf{m}_{\dagger}'\|_2 = \frac{\alpha}{s_{\nu-1}}.$$

• On peut ainsi déterminer que

$$\|\mathbf{m}_{\dagger} - \mathbf{m}'_{\dagger}\|_{2} \leq \frac{1}{S_{n-1}} \|\mathbf{d} - \mathbf{d}'\|_{2}$$

- puisque α correspond au cas de la plus grande différence
- entre m₊ et m'₊.
 Similairement, on peut montrer que le modèle a la plus petite norme lorsque d est dans la direction de V_{.,0}, et donc

que
$$\|\mathbf{m}_{\mathsf{t}}\|_{2} \geq \frac{1}{s_{0}} \|\mathbf{d}\|_{2}$$

Variance des paramètres Inverse généralisée

Instabilité Méthodes itérati

conditionné.

• En combinant les inégalités, on trouve finalement que

$$\frac{\|\mathbf{m}_{+} - \mathbf{m}'_{+}\|_{2}}{\|\mathbf{m}_{+}\|_{2}} \le \frac{s_{0}}{s_{p-1}} \frac{\|\mathbf{d} - \mathbf{d}'\|_{2}}{\|\mathbf{d}\|_{2}}$$

(66)

- La limite (66) est applicable, peut importe le choix de la valeur de p;
- En réduisant la valeur de p et éliminant les vecteurs associés aux
- faibles valeurs singulières, on peut stabiliser la solution. • Cette stabilité vient au prix d'une réduction de la résolution.
 - On définit le conditionnement de G par

• On définit le conditionnement de **G** par
$$\operatorname{cond}(\mathbf{G}) = \frac{s_0}{s_{k-1}} \tag{67}$$

- où $k = \min(M, N)$ (si la matrice n'est pas de plein rang,
- $cond(\mathbf{G}) = \infty$). • Un problème possédant un conditionnement bas est dit bien

Inverse généralisée Instabilité

Instabilité

Régression linéaire

potneses a

Variance de paramètres

Inverse generalise Résolution Instabilité

Méthodes itérative

 Un exemple illustrant comment il est possible de traiter un cas instable est présenté dans le notebook https://github.com/bernard-giroux/geo1302/blob/ master/inv_svdt.ipynb

Régression linéaire

0.00

Variance des

amètres

erse généralisé

Méthodes itératives

Motivation

Méthodes itératives

Motivation

Régression linéaire

ypothèses a p

paramètres

Inverse généralisée

Motivation

- Pour beaucoup de problèmes inverses en 3D, le nombre de paramètre des modèles à estimer est très élevé, de plusieurs centaines de millier à quelques millions.
- Des difficultés apparaissent pour stocker les matrices en mémoire et pour solutionner les systèmes avec des méthodes directes (factorisation LU).
- Pour les cas où la matrice G est creuse, la famille des méthodes itératives offre l'avantage que le produit G^TG n'a pas à être stocké en mémoire.

Hypothèses a priori Variance des paramètres Inverse généralisée Méthodes itératives Motivation

- L'algorithme de Kaczmarz, développé dans les années 30 pour solutionner des systèmes d'équations linéaires, est particulièrement efficace lorsque G est creuse.
- Le point de départ est de considérer que chaque équation $G_{i,:}\mathbf{m} = d_i$ est un hyperplan dans R^N .
- L'algorithme démarre avec une solution m⁽⁰⁾ (l'exposant désigne l'itération en cours);
- Cette solution est projetée dans l'hyperplan défini par la 1^{re} ligne de G pour obtenir m⁽¹⁾;
- Cette solution est ensuite projetée dans l'hyperplan défini par la 2^e ligne de G pour obtenir m⁽²⁾, et ainsi de suite pour toute les lignes;
- Le processus est répété jusqu'à ce qu'une convergence satisfaisante soit atteinte.

Régression linéaire

ypotneses *a pr*

variance des paramètres

Inverse généralise

Motivation

 Illustration de l'algorithme de Kaczmarz pour un système à deux équations

Hypothèses a priori

variance des paramètres Inverse généralisée

Méthodes itérati

- On sait que le vecteur $\mathbf{G}_{i,:}^T$ est perpendiculaire à l'hyperplan défini par $\mathbf{G}_{i,:}\mathbf{m} = d_i$.
- La projection de $\mathbf{m}^{(i)}$ vers $\mathbf{m}^{(i+1)}$ est donc proportionnelle à $\mathbf{G}_{i+1,i}^T$ i.e.

$$\mathbf{m}^{(i+1)} = \mathbf{m}^{(i)} + \beta \mathbf{G}_{i+1,:}^T$$
 (68)

• On peut trouver β sachant que $\mathbf{G}_{i+1,:}\mathbf{m}^{(i+1)} = d_{i+1}$:

$$\mathbf{G}_{i+1,:} \left(\mathbf{m}^{(i)} + \beta \mathbf{G}_{i+1,:}^{T} \right) = d_{i+1}$$

$$\mathbf{G}_{i+1,:} \mathbf{m}^{(i)} - d_{i+1} = -\beta \mathbf{G}_{i+1,:} \mathbf{G}_{i+1,:}^{T}$$

$$\beta = -\frac{\mathbf{G}_{i+1,:} \mathbf{m}^{(i)} - d_{i+1}}{\mathbf{G}_{i+1,:} \mathbf{G}_{i+1,:}^{T}}$$

• Ce calcul est rapide car il n'implique que des produits de vecteurs.

Régression linéaire

potneses a p

paramètres

Inverse généralisée

Motivation

- Si le système **Gm** = **d** a une solution unique, l'algorithme de Kaczmarz converge vers cette solution;
- S'il existe plusieurs solutions, l'algorithme converge vers la solution la plus proche de m⁽⁰⁾;
 - si $\mathbf{m}^{(0)} = \mathbf{0}$, on obtient la solution de longueur minimum.

Hypothèses a priori Variance des paramètres Inverse généralisée Méthodes itératives Motivation

- L'algorithme *algebraic reconstruction technique* (ART) est une variante de celui de Kaczmarz spécifiquement modifié pour la reconstruction tomographique;
 - Les corrections au modèle ne sont appliquées que si un rai traverse la cellule correspondante;
 - Initialement, la correction était approximée par une moyenne pour toutes les cellules traversées, ce qui entraîne un certain lissage;
 - Subséquement, la correction a été modifié pour tenir compte de la longueur des segments de rai dans chaque cellule traversée.
- Par rapport à Kaczmarz, ART permet de réduire l'utilisation de mémoire et la proportion de multiplications par rapport aux additions (à l'époque (années 70), les multiplications étaient plus coûteuses à calculer).

Reconstruction tomographique - SIRT

Hypothèses a priori Variance des paramètres Inverse généralisée Méthodes itératives Motivation

- Un des problèmes de l'algorithme ART est qu'il tend à produire des images plus bruitées que l'algorithme de Kaczmarz.
- L'algorithme simultaneous iterative reconstruction technique (SIRT) est une variation de ART qui donne de meilleures images, au dépend du temps de calcul, légèrement plus long.
- La correction est modifiée pour tenir compte du nombre de segments de rai qui traverse les cellules.
- Un désavantage majeur des algorithmes ART et SIRT est le fait de ne pas pouvoir inclure de contraintes.
- Les algorithmes de Kaczmarz, ART et SIRT ont été supplantés par des méthodes plus efficaces pour des problèmes de grandes dimensions;
 - ils permettent néanmoins d'illustrer le concept de solveur itératif.