23MAC260 Problem Sheet 5: Solutions

Week 5 Lectures Last updated March 15, 2024

Throughout these solutions, we will use the terminology "point of finite order" and "torsion point" interchangeably.

- 1. For each of the following curves, calculate the torsion subgroup $T \subset E(\mathbb{Q})$:
 - (a) $y^2 = x^3 27$.

Solution: The Integrality and Nagell–Lutz Theorems says that a torsion point must have integer coordinates (x, y) where y = 0 or $y^2 \mid \Delta$.

Here setting y = 0 we get $x^3 - 27 = 0$ which has the integer solution x = 3. So we get one point P = (3,0). Since y = 0 we know that 2P = O, so we know this is really a torsion point.

If $y \neq 0$ we must have $y^2 \mid \Delta = -27 \cdot 27^2 = 3^9$, so we have $|y| \in \{1, 3, 9, 27, 81\}$. We can tabulate the possibilities as follows:

In the last row we can see that there were no solutions for x in any case for example by listing the cubes of the integers:

Since $x \mapsto x^3$ is monotonic increasing, no value of x^3 outside the given range will match one in the table.

So the only torsion point other than the idenrity O is P = (3,0). Hence

$$T = \{O, P\} \cong \mathbb{Z}_2$$
.

(b)
$$y^2 = x^3 + 4x$$
.

Solution: In this case if y = 0 we have $x^3 + 4x = x(x^2 + 4) = 0$; clearly the only solution is x = 0. What about $y \neq 0$?

Here $\Delta = -4 \cdot 4^3 = -4^4 = -2^8$. So if $y^2 \mid \Delta$ then $|y| \in \{1, 2, 4, 8, 16\}$.

In this case since our equation has a linear term in x, we can't solve for x^3 purely in terms of y. So we will just put y^2 in the second row of our table:

To fill in the last row, we need to decide if a given entry in the row above is of the form $x(x^2+4)$ for some integer x. To do this, for example we can note that $x(x^2+4)$ has the same sign as x, so any solution must be positive; moreover $x(x^2+4)>x^3$ for positive x, so for a given y^2 we need only look as far as $\sqrt[3]{y^2}$ for solutions. For example, if x satisfies $x(x^2+4)=256$ then x is at most $\sqrt[3]{256}\approx 6.34$, and we can easily check that $x=1,2,\ldots,6$ don't solve the equation.

So the points we found are (0,0), $(2,\pm 4)$. As always, we need to check whether these candidate torsion points are in fact torsion points, which we now do.

For the point (0,0) this is easy: any point on E with y-coordinate equal to 0 is a point of order 2, and therefore it is in T.

For the points $(2,\pm 4)$ we have to do a bit of work. Let P=(2,4). Using the formula from Week 3 we compute

$$x(2P) = \left(\frac{3x^2 + 4}{2y}\right)^2|_{P} - 2x(P)$$

= 0

and then using the curve equation $y^2 = x^3 + 4x$ we find that y(2P) = 0 also. So 2P = (0,0), and therefore 4P = O. So P is a point of order 4, and hence -P is a point of order 4 also.

So we get

$$T = \{O, (0,0), (2,\pm 4)\}.$$

Thiis is a group with 4 elements, so there are two possible isomorphism classes: \mathbb{Z}_4 and $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. To decide which one our group T actually is, we look at the number of points with order > 2. We see that T contains 2 points (different from O) whose y-coordinate is nonzero. Such a point has order > 2. Of the two possibilities above, only \mathbb{Z}_4 has points of order > 2, so we conclude that

$$T \cong \mathbb{Z}_4$$
.

(c)
$$y^2 = x^3 - 16x + 16$$
.

Solution: Again, Integrality and Nagell–Lutz say that a torsion point other than O must have integer coordinates (x,y) with y=0 or $y^2\mid \Delta$. Here $\Delta=-4\cdot (-16)^3-27(16)^2=16^2\cdot (64-27)=16^2\cdot 37$. So a torsion point must have y=0 or $|y|\in\{1,2,4,8,16\}$. We will deal with both cases directly by tabulating. Our table looks like

and again we need to decide how to fill in the last row.

Denote the cubic $x^3-16x+16$ by f(x). Then $\frac{df}{dx}=3x^2-16$. So the stationary points of f are at $x=\pm\sqrt{16/3}$, hence f is monotic increasing for $|x|\geq\sqrt{16/3}\geq 2$. We will use this to bound the range of values of x we need to consider.

Now f(-5) = -29 < 0, so the monotonic property tells us that f(x) < 0 for $x \le -5$. So when $x \le -5$, the value of f(x) cannot equal y^2 for any y.

We also compute f(8)=400, so again by the monotic property that $f(x)\geq 400$ for $x\geq 8$. So for $x\geq 8$ the value of f(x) cannot equal one of the y^2 values in the table above.

So we can restrict our attention to $-4 \le x \le 7$. For integers x in this range we calculate the values of f(x) to be

The squares in this sequence are $16 = (\pm 4)^2 = f(-4) = f(0) = f(4)$ and $1 = (\pm 1)^2 = f(1)$. So, along with the identity O, we get candidate torsion points

$$\pm P_1 = (0, \pm 4)$$

 $\pm P_2 = (-4, \pm 4)$
 $\pm P_3 = (4, \pm 4)$
 $\pm P_4 = (1, \pm 1)$.

We have to decide which (if any) of these are actual torsion points. We start with P_1 . We will compute multiples of the point $2P_1$ using the addition formulas from Week 3. We find

$$2P_1 = (4,4) = P_3$$

 $3P_1 = (-4,-4) = -P_2$
 $4P_1 = (8,-20)$

At this point we can stop: the y-coordinate of $4P_1$ is does not satisfy the Nagell–Lutz criterion $y^2 \mid \Delta$, so we can conclude that $4P_1$ is not a torsion point, and hence P_1 is not a torsion point.

However, we have shown more: since P_1 is not a torsion point, no multiple of P_1 can be a torsion point either. So our computations above show that $-P_1$, $\pm P_2$, $\pm P_3$ are not torsion points either.

Finally we must decide if $\pm P_4$ are torsion points. Again using the addition formulas from Week 4 we find

$$\chi(2P_4) = \frac{161}{4} \notin \mathbb{Z}.$$

The Integrality Theorem tells us that $2P_4$ is not a torsion point, hence the points $\pm P_4$ are not torsion points either.

So finally we have shown that the only torsion point in $E(\mathbb{Q})$ is the identity:

$$T = \{O\}$$
.

2. Prove (as stated in the Week 4 lectures) that the torsion subgroup T of the curve defined by

$$y^2 = x^3 + 2$$

is the trivial group $T = \{O\}$.

Solution: Integrality and Nagell–Lutz say that a torsion point other than O must have coordinates (x, y) with y = 0 or $y^2 \mid \Delta$.

If y = 0, the equation $x^3 + 2 = 0$ has no integral solutions, so we do not get any torsion point in this case.

Computing we find $\Delta=-27\cdot 2^2=-2^2\cdot 3^3$, so the condition $y^2\mid \Delta$ gives us the cases $|y|=1,\,2,\,3,\,6$. Tabulating we get

In this case we can see directly that the only entry in the second row which is the cube of an integer is -1. So we get candidate torsion points

$$P = (-1, \pm 1)$$

and we must decide if they are actual torsion points.

Computing 2P using the formulas from Week 3, we compute

$$x(2P) = \frac{17}{4} \notin \mathbb{Z}.$$

The Integrality Theorem implies that 2P is not a torsion point, and hence neither are $\pm P$. So the only torsion point in $E(\mathbb{Q})$ is the identity O: that is

$$T = \{O\}$$

as claimed.

3. What is the torsion subgroup $T \subset E(\mathbb{Q})$ for the following curve?

$$y^2 = x^3 - \frac{15}{16}x + \frac{11}{32}.$$

Solution: Here we don't have an integral equation, so neither the Integrality Theorem nor Nagell-Lutz can be applied directly.

First we have to find an integral model of our curve. To do this we need to find μ such that $\mu^4 \cdot \frac{15}{16}$ and $\mu^6 \cdot \frac{11}{32}$ are integers. The obvious choice is $\mu=2$: multiplying our x-coefficient by 2^4 and our y-coefficient by 2^6 gives the integral model

$$y^2 = x^3 - 15x + 22.$$

Now we can use Nagell-Lutz. Putting y=0 we get the equation $x^3-15x+22=0$. This has a root x=2; factoring out x-2 we get $x^3-15x+22=(x-2)(x^2+2x-11)$ and the quadratic has no integer roots. So the only integer point with y=0 is Q=(2,0). Note that since the y-coordinate equals 0, we have 2Q=0, so this is an actual torsion point.

To find points with $y \neq 0$, we compute $\Delta = 432 = 2^4 3^3$ so the possibilities for |y| are $2^{\alpha}3^{b}$ where $\alpha \in \{0, 1, 2\}$, $b \in \{0, 1\}$. Tabulating as before we get

y	1	2	3	4	6	12
y ²	1	4	9	16	36	144
χ						

To decide whether a given y^2 equals $x^3-15x+22$ for some integer x we can argue as before. If $f(x)=x^3-15x+22$ then $\frac{df}{dx}=3x^2-15$. So f is monotonic increaing for $x^2\geq 5$, that is for $|x|\geq \sqrt{5}$.

Now f(-5) < 0, so the monotonic property tells us that f(x) < 0 for $x \le -5$. So when $x \le -5$ the value of f(x) cannot equal y^2 for any y.

Also f(6) = 148 > 144, and again the monotonic property says that f(x) > 144 for all $x \ge 6$. So for $x \ge 6$ the value of f(x) cannot equal one of the y^2 values in the table above.

So we can restrict our attention to $-4 \le x \le 5$. For integer x in this range we calculate the values of f(x) to be:

The only squares in this sequence are $36 = 6^2 = f(-1)$ and $4 = 2^2 = f(3)$. So we get candidate torsion points

$$\pm P_1 = (-1, \pm 6)$$

 $\pm P_2 = (3, \pm 2).$

Again we must decide which of them are actually torsion points.

Computing multiplies of P₁ as in Week 3 shows that

$$2P_1 = (3, -2) = -P_2$$

$$3P_1 = 2P_1 \oplus P_1 = (2, 0) = Q.$$

Hence $6P_1=2Q=O$, so P_1 has order 6. We have seen that all the candidate points are multiples of P_1 , and hence are in the torsion subgroup T: in other words

$$T = \langle P_1 \rangle = \{O, (2, 0), (-1, \pm 6), (3, \pm 2)\}$$

 $\cong \mathbb{Z}_6$

where the last isomorphism comes from the fact (proved for example in the Geometry and Groups module) that any cyclic group with n elements is isomorphic to \mathbb{Z}_n .