Intro to Verilog

☐ TABLE 2-2

Verilog Primitives for Combinational Logic Gates

Gate primitive

Example instance

and (F, X, Y);
or (F, X, Y);
not (F, Y);
nand $(F, X, Y);$
nor $(F, X, Y);$
xor (F, X, Y);
xnor(F, X, Y);

□ TABLE 2-4

Verilog Bitwise Logic Operators

Verilog operator symbol	Operator function	Example
~ & ^ ~^, ^~	Bitwise not Bitwise and Bitwise or Bitwise xor Bitwise xnor	F = ~X; F = X & Y; F = X Y; F = X ^ Y; F = X ~^ Y;

□ TABLE 2-5 Truth Table for the Function $L = D\overline{X} + A$

D	X	Α	L
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1


```
module fig2_5 (L, D, X, A);
    input D, X, A;
    output ⊥;
    wire X_n, t2;
    not (X_n, X);
    and (t2, D, X_n);
    or (L, t2, A);
endmodule
```

FIGURE 2-27 Gate level schematic for a two-bit greater-than comparator circuit

FIGURE 2-33 Structural Verilog Description of Two-Bit Greater-Than Circuit

```
// Two-bit greater-than circuit: Verilog structural model
                                                                       // 1
                                                                       //
// See Figure 2-27 for logic diagram
module comparator_greater_than_structural(A, B, A_greater_than_B);
 input [1:0] A, B;
                                                                           4
 output A_greater_than_B;
                                                                           5
 wire B0_n, B1_n, and0_out, and1_out, and2_out;
                                                                           7
 not
   inv0(B0_n, B[0]), inv1(B1_n, B[1]);
  and
   and 0 (and 0 out, A[1], B1 n),
                                                                       // 10
   and1 (and1 out, A[1], A[0], B0 n),
                                                                       // 11
   and2 (and2 out, A[0], B1 n, B0 n);
                                                                       // 12
                                                                       // 13
  or
   or0 (A greater than B, and0 out, and1 out, and2 out);
                                                                       // 14
endmodule
                                                                       // 15
```

FIGURE 2-34 Dataflow Verilog Description of Two-Bit Greater-Than Comparator

```
// Two-bit greater-than circuit: Dataflow model
// See Figure 2-27 for logic diagram
module comparator_greater_than_dataflow(A, B, A_greater_than_B);
 input [1:0] A, B;
 output A_greater_than_B;
 wire B1_n, B0_n, and0_out, and1_out, and2_out;
 assign B1_n = ~B[1];
 assign B0 n = \simB[0];
 assign and0 out = A[1] & B1 n;
 assign and 1 out = A[1] & A[0] & B0 n;
                                                                         // 10
 assign and 2_{out} = A[0] & B1_n & B0_n;
                                                                         // 11
 assign A greater than B = and0 out | and1 out | and2 out;
                                                                         // 12
endmodule
                                                                         // 13
```

FIGURE 2-35 Conditional Dataflow Verilog Description of Two-Bit Greater-Than Circuit

FIGURE 2-37 Behavioral Verilog Description of Two-Bit Greater-Than Circuit

```
// Two-bit greater-than circuit: Behavioral model
// See Figure 2-27 for logic diagram
module comparator_greater_than_behavioral(A, B, A_greater_than_B);
 input [1:0] A, B;
 output A_greater_than_B;
 assign A_greater_than_B = A > B;
endmodule
```

THE END