Session

Faculty Dr. Fazal Noorbasha B.Sc., M.Sc., M.Tech. (VLSI), B.Tech. (ECE), M.Tech. (AI), Ph.D. (VLSI - Central University, Sagar)

Associate Professor - Dept. of ECE
Associate Dean - Academics
K L University
Guntur, AP - INDIA

E-Mail: fazalnoorbasha@kluniversity.in

Department of ECE

AY 2024-2025 :: EVEN SEM

VLSI DESIGN 23EC2211A

TOPIC CO-3-4-5

CO-3

CLK M_p In_1 In_2 In_3 PDN CLK M_e

Dynamic CMOS logic

Differential Cascade Voltage Switch Logic (or DCVSL)

Draw and explain Dynamic CMOS Logic using $Y = (\overline{AB + C})$.

this circuit is divided into two major phases: precharge and evaluation, with the mode of operation determined by the clock signal CLK.

Draw and explain pseudo-NMOS logic using $Y = (\overline{AB + C})$.

Draw and explain Differential Cascode Voltage Switch logic (DCVSL) using NAND and AND.

Draw and explain Differential Cascode Voltage Switch logic (DCVSL) using XOR-XNOR.

Figure 6.37 Complementary passytransister logic (CPL).

Transmission Logic Circuit

Graphical Symbol

CMOS transmission gate (TG)

0 <i>D_{in_0}</i>	Select	D _{out}
	0	D _{in_0}
1 D _{in_1}	1	D _{in_1}

(b)

Construct CMOS complex logic circuit for given Boolean function $Y = (\overline{D + E + A})(B + C)$ and find an equivalent CMOS inverter circuit for simultaneous switching of all inputs, assuming that (W/L)p = 15 for all pMOS transistors and (W/L)n = 10 for all nMOS transistors.

