IM600/133 Material Data

Table 1 - Temperature dependent material properties

		Thermal Conductivity (W/mm.K)					
Temperature	Specific Heat	Fibre	Transverse	Through-			
(°C)	(J/kg°C)			Thickness			
25	1065	0.008	0.00067	0.00067			
500	2100	0.004390	0.000342	0.000342			
800	2100	0.002608	0.00018	0.00018			
1000	2171	0.001736	0.0001	0.0001			
3316	2500	0.001736	0.0001	0.0001			
3334*	5875	0.001736	0.0001	0.0001			
3335*	5875	0.0005	0.0005	0.0005			
7000*	5875	0.001015	0.001015	0.001015			
	Temperat	ure dependent materia	l properties				
		Electrical Conductivity (1/Ω.mm)					
Temperature	Density	Fibre	Transverse	Through-			
(°C)	(kg/mm^3)			Thickness			
25	1.52x10 ⁻⁶	35.97	0.001145	1.79x10 ⁻⁶			
500	1.52x10 ⁻⁶	35.97	0.001145	1.79x10 ⁻⁶			
800	1.10x10 ⁻⁶	35.97	0.001145	1.79x10 ⁻⁶			
3316	1.10x10 ⁻⁶	35.97	0.001145	1.79x10 ⁻⁶			
3334*	1.11x10 ⁻⁹	35.97	2	1x10 ⁶			
3335*	1.11x10 ⁻⁹	0.2	0.2	1x10 ⁶			
7000*	1.11x10 ⁻⁹	1.5	1.5	1x10 ⁶			
- Gas			I				
	Temperature Rang	ge (°C)	Energy Released (J)				
Resin Decomposition	500-800		4.8x10 ⁶				
Fibre Ablation 3316-3334			43x10 ⁶				
nterlaminar Thermal Co	nductivity	500 W/m ² °C					
nterlaminar Electrical C	onductivity	1x10 ⁵ 1/Ω.mm					

Table 2 - Temperature dependent mechanical properties [1].

Temperature	E ₁	$E_2 = E_3$	$G_{12}=G_{13}$	G ₂₃			α11	$\alpha 22 = \alpha 33$
(°C)	(MPa)	(MPa)	(MPa)	(MPa)	$v_{12} = v_{13}$	V23	(x10 ⁻⁸)	$(x10^{-5})$
25	137,000	8200	4360	3000	0.3	0.45	1.80	2.16
200	137,000	6560	3488	2400	0.3	0.45	5.40	3.78
260	137,000	82	34.88	24	0.3	0.45	5.40	3.78
600	137,000	4.1	1.744	1.2	0.3	0.45	5.40	3.78
3316	137,000	4.1	1.744	1.2	0.3	0.45	5.40	3.78
>3316	1370	0.41	0.1744	0.12	0.3	0.45	5.40	3.78

Table 3 - Strain rate effects on intralaminar strength and fracture toughness [2]

	Xt	Xc	Yt	Yc	$S_{12}=S_{13}=S_{23}$	Γ_{11}^{C}	Γ_{11}^{T}	$\Gamma_{22}^{\rm C}$	Γ_{22}^{T}
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(N/mm)	(N/mm)	(N/mm)	(N/mm)
QS	1708	1281	34	192	128	10	133	1.6	0.5
HR	2357	1781	47	263	177	16	164	2.0	0.6

^{*}QS refers to quasi-static and HR refers to high strain rate conditions

Table 4 - Traction and fracture toughness properties [3].

Temperature (°C)	σ _{max} (MPa)	τ _{max} (MPa)	G _{IC} (J/m ²)	G _{IIC} =G _{IIIC} (J/m ²)
25	65.0	100.0	435	1855
300	1x10 ⁻⁴	1x10 ⁻⁵	1x10 ⁻⁶	1x10 ⁻⁷
3000	1x10 ⁻⁴	1x10 ⁻⁵	1x10 ⁻⁶	1x10 ⁻⁷

References

- [1] H. Chen, F. S. Wang, X. T. Ma, and Z. F. Yue, 'The coupling mechanism and damage prediction of carbon fiber/epoxy composites exposed to lightning current', *Compos. Struct.*, vol. 203, pp. 436–445, 2018, doi: 10.1016/j.compstruct.2018.07.017.
- [2] F. S. Wang, N. Ding, Z. Q. Liu, Y. Y. Ji, and Z. F. Yue, 'Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike', *Compos. Struct.*, vol. 117, no. 1, pp. 222–233, 2014, doi: 10.1016/j.compstruct.2014.06.029.
- [3] S. Kamiyama, Y. Hirano, and T. Ogasawara, 'Delamination analysis of CFRP laminates exposed to lightning strike considering cooling process', *Compos. Struct.*, vol. 196, pp. 55–62, 2018, doi: 10.1016/j.compstruct.2018.05.003.