1 Design Parameters

1.1 Design Load

$$M_u = 100.0$$
 k-ft

1.2 Design Parameters

	Stee	el Prope	rties
Ī	f_y (ksi)	ϵ_y	E_s (ksi)
	60.0	0.002	29000.0

Concret	acrete Properties		
f'_c (ksi)	ϵ_c	β	
6.0	0.003	0.75	

Secti	Section Properties				
b (in)	h (in)	d (in)			
12.0	18.0	16.0			

2 Calculate Balanced Reinforcement Ratio

2.1 Balanced Reinforcement Ratio

$$\xi_b = \frac{\epsilon_c}{\epsilon_c + \epsilon_y} = \frac{0.003}{0.003 + 0.002} = 0.6$$

$$\rho_b = 0.85 \cdot \beta \frac{f_c'}{f_y} \cdot \xi_b = 0.85 \cdot 0.75 \frac{6.0 \text{ ksi}}{60 \text{ ksi}} \cdot 0.6 = 0.03825$$

2.2 Ensure Tension Controlled Section

$$\xi_{lim} = \frac{\epsilon_c}{\epsilon_c + 0.005} = \frac{0.003}{0.003 + 0.005} = 0.375$$

$$\begin{split} \rho_{lim} &= 0.85 \cdot \beta \frac{f_c'}{f_y} \cdot \xi_{lim} \\ \rho_{lim} &= 0.85 \cdot 0.75 \frac{6.0 \text{ ksi}}{60 \text{ ksi}} \cdot 0.375 = 0.02390625 \end{split}$$

$$x_{lim} = \xi_{lim} \cdot d = 0.375 \cdot 16.0 \text{ in} = 6.0 \text{ in}$$

3 Determine Required Reinforcement

3.1 Find Maximum Strength of Singly Reinforced Section

$$M_{u,lim} = \phi \cdot 0.85 \cdot f_c' \beta \, \, \mathrm{b} x_{lim} \left(\mathrm{d} - \beta \frac{x_{lim}}{2} \right)$$

$$M_{u,lim} = 0.9 \cdot 0.85 \cdot (6.0 \text{ksi})(0.75)(12.0 \text{ in})(6.0 \text{ in}) \left(16.0 \text{ in} - 0.75 \frac{6.0 \text{ in}}{2}\right) \cdot \frac{12 \text{ in}}{\text{ft}}$$

$$M_{u,lim} = 284.0 \text{ k-ft}$$

3.2 Calculate Required Reinforcement

 $M_u \leq M_{u,lim} \Rightarrow$ Positive Reinforcement Required

$$A_s = \frac{0.85 f_c' \beta x_{na} b}{\sigma_s} = \frac{0.85 (6.0 \text{ ksi}) 0.75 (1.9 \text{ in}) (12.0 \text{ in})}{(60 \text{ ksi})}$$

$$A_s = 1.45 \text{ in}^2$$

Required Reinforcement by Bar Size

Bar No.	$A_b(\text{ in}^2)$	No. Pos. Bars	No. Neg. Bars	Pos. Bar Spacing (in)	Neg. Bar Spacing (in)
3.0	0.11	14.0	0.0	0.86	0.0
4.0	0.20	8.0	0.0	1.50	0.0
5.0	0.31	5.0	0.0	2.40	0.0
6.0	0.44	4.0	0.0	3.00	0.0
7.0	0.60	3.0	0.0	4.00	0.0
8.0	0.79	2.0	0.0	6.00	0.0
9.0	0.99	2.0	0.0	6.00	0.0
10.0	1.23	2.0	0.0	6.00	0.0
11.0	1.48	1.0	0.0	12.00	0.0
14.0	2.41	1.0	0.0	12.00	0.0
18.0	3.98	1.0	0.0	12.00	0.0