

- AWS Lambda,
- Google Cloud Functions

Sebastian Kulaj, Mateusz Kwiecień, Jędrzej Kurzępa, Jakub Jezierczak

Czym jest Serverless computing?

To model, w którym dostawca chmury (AWS, Azure, czy Google Cloud) jest odpowiedzialny za wykonanie fragmentu kodu poprzez dynamiczną alokację zasobów. Naliczanie opłat odbywa się jedynie za zasoby faktycznie wykorzystane do uruchomienia kodu.

Zalety oraz wady Serverless:

Zalety:

- Brak konieczności zarządzania serwerami
- Płatność tylko za wykorzystaną przestrzeń serwerową, co redukuje koszty
- Architektury serverless są naturalnie skalowalne
- Szybkie wdrożenia i aktualizacje są możliwe
- Kod może działać bliżej użytkownika końcowego, co zmniejsza opóźnienia

Wady:

- Trudności z testowaniem i debugowaniem
- Nowe zagrożenia dla bezpieczeństwa
- Stateless (nie przechowują stanu)
- Możliwe problemy z wydajnością
- Ryzyko blokady dostawcy (vendor lock-in)
- Lightweight code

Porównanie kosztów Serverless a laaS:

https://www.cloudflare.com/learning/serverless/what-is-serverless/

Co to jest FaaS (Function as a service)?

- FaaS to model chmury obliczeniowej, umożliwiający uruchomienie fragmentów kodu na żądanie.
- Deweloperzy płacą tylko za czas wykonania funkcji, a nie za cały czas dostępności aplikacji.
- Skalowalność, bezstanowość i krótkie czasy działania to kluczowe cechy FaaS.
- Idealne dla architektur zorientowanych na zdarzenia, takich jak przetwarzanie danych w czasie rzeczywistym czy systemy IoT.

AWS Lambda

- Stworzona przez Amazon w 2014 roku
- 1 z 2 usług serverless compute oferowana przez AWS
- Event Driven
- Logi dostępne przez AWS CloudWatch
- Możliwość uruchomienia przez ponad 200 usług AWS
- Główne korzyści:
 - Pay as you use
 - Automatyczne skalowanie
 - Brak konieczności zarządzania serwerami
 - Wszechstronność zastosowań

AWS Lambda – języki programowania

AWS Lambda natywnie wspiera następujące języki:

Java, Go, PowerShell, Node. js, C#, Python oraz Ruby

Ponadto Lambda oferuje Runtime API który pozwala na użycie dowolnego języka programowania.

AWS Lambda – Sposoby interakcji

 AWS CDK (Cloud Development Kit) - jest to usługa od Amazon pozwalająca na przetrzymywanie infrastruktury w formie kodu. Przykładowy deploy aplikacji: https://github.com/aws-samples/aws-cdk-examples

Strona AWS - dzięki której możemy używać serwisu z użyciem interfejsu użytkownika.

AWS Lambda – Deployment

- w formie .zip
- obraz kontenera
- AWS CDK
- Wklejenie kodu w prompt dostępny poprzez UI

AWS Lambda – przykładowy kod

```
exports.handler = function(event, context, callback) {
 console.log("Received event: ", event);
 var data = {
   "greetings": "Hello, " + event.firstName + " " + event.lastName + "."
 };
 callback(null, data);
```

AWS Lambda – częste połączenia

Często spotykane połączenia AWS Lambda z innymi serwisami AWS:

- AWS API Gateway,
- AWS SQS/SNS,
- AWS S3,
- AWS Step Functions,
- AWS CDK.

AWS Lambda – Architektura aplikacji

AWS Lambda – Model Pricing

AWS Lambda obsługuje procesory oparte na architekturach x86 i Arm, przy czym te drugie oferują do 34% lepszą wydajność za cenę.

AWS Lambda oferuje również darmowy limit obejmujący milion darmowych żądań i 400 000 GB-sekund czasu obliczeń na miesiąc. Cennik zależy od przydzielonej pamięci i jest skalowany na podstawie zużycia.

x86 Price Arm Price		
Region: Europe (Frankfur	·) •	
Memory (MB)	Price per 1ms	
128	\$0.000000021	
512	\$0.000000083	
1024	\$0.000000167	
1536	\$0.000000250	
2048	\$0.000000333	
3072	\$0.000000500	
4096	\$0.000000667	
5120	\$0.000000833	
6144	\$0.000001000	
7168	\$0.000001167	
8192	\$0.000001333	
9216	\$0.000001500	
10240	\$0.000001667	

AWS Serverless - przydatne linki

AWS Skill Builder:

- AWS Lambda Fundations
- Getting into Serveless

AWS Documentation:

- https://aws.amazon.com/serverless/
- https://docs.aws.amazon.com/lambda/index.html

Google Cloud Functions

- Cloud Functions to bezserwerowe środowisko wykonawcze umożliwiające tworzenie i łączenie usług w chmurze.
- Główne Korzyści
 - Dzięki Cloud Functions można proste, jednozadaniowe funkcje, które są powiązane ze zdarzeniami generowanymi przez infrastrukturę i usługi chmury.
 - Kod jest wykonywany w całkowicie zarządzanym środowisku.
 - Nie trzeba udostępniać infrastruktury ani zarządzać serwerami.

Google Functions – języki programowania

Google Cloud Functions wspiera następujące środowiska:

- Node.js,
- Python,
- Go,
- Java,
- Ruby,
- PHP,
- .NET Core.

Google Functions – deployment

Sposoby deploymentu:

- Z lokalnej maszyny przy pomocy gcloud albo konsoli
- Cloud Storage
- Repozytorium kodu (GitHub lub Bitbucket)

Google Cloud Functions – Triggery

- HTTP triggers
- Event triggers:
 - o Pub/Sub triggers
 - Cloud Storage triggers
 - o <u>Fire Store triggers</u>
 - o <u>Firebase</u>

Google Functions - przykładowy kod

```
exports.helloPubSub = (message, context) => {
  const name = message.data
    ? Buffer.from(message.data, 'base64').toString()
    : 'World';
  console.log(`Hello, ${name}!`);
};
```

https://cloud.google.com/functions/docs/writing#directory-structure

Google Functions – Architektura aplikacji

https://cloud.google.com/blog/products/serverless/cloud-functions-pro-tips-retries-and-idempotency-in-action

Google Cloud Functions – Model Pricing

Cloud Functions są wyceniane na podstawie czasu działania funkcji, liczby jej wywołań i zasobów. Dodatkowe opłaty dotyczą transferu danych przy wychodzących żądaniach sieciowych. Istnieje bezterminowa darmowa warstwa dla wywołań, ale wymagane jest posiadanie prawidłowego konta rozliczeniowego.

Memory	vCPU ¹	Price/100ms (Tier 1 Price)	Price/100ms (Tier 2 Price)
128MB	.083 vCPU	\$0.00000231	\$0.00000324
256MB	.167 vCPU	\$0.00000463	\$0.00000648
512MB	.333 vCPU	\$0.000000925	\$0.000001295
1024MB	.583 vCPU	\$0.00001650	\$0.000002310
2048MB	1 vCPU	\$0.000002900	\$0.00004060
4096MB	2 vCPU	\$0.00005800	\$0.000008120
8192MB	2 vCPU	\$0.00006800	\$0.000009520
16384MB ²	4 vCPU	\$0.000136000	\$0.000190400
32768MB ²	8 vCPU	\$.000272000	\$0.000380800

Unit	Tier 1 Pricing	Tier 2 Pricing
GB-Second	\$0.0000025 (\$0.0000025 if idle*)	\$0.000035 (\$0.000035 if idle*)
GHz-Second	\$0.0000100 (\$0.000001042 if idle*)	\$0.0000140 (\$0.00000146 if idle*)

^{*}Idle: If you set a minimum number of function instances, you are also billed for the time these instances are not active. This is called idle time and is priced at a different rate.

Kiedy użyć AWS Lambda, a kiedy Google Cloud Functions? - Porównanie

AWS Lambda	Google Cloud Functions
Wsparcie dla wielu języków programowania, w tym PowerShell	Bez opłat za pierwsze 2 miliony żądań
Możliwość uruchamiania nieograniczonej liczby funkcji na projekt	Wiele opcji przechowywania danych
Szereg źródeł zdarzeń, takich jak SQS, SNS, SES, S3, Kafka, CloudWatch, DynamoDB, HTTP, Kinesis	Obsługa różnych języków programowania, z wyjątkiem PowerShell
Taniej, jeśli liczba żądań przekracza 2 miliony	
Krótszy czas wykonania funkcji (maksymalnie 900 sekund)	Limit 1000 funkcji na projekt
Ograniczenie przechowywania do 75 GB (możliwość zwiększenia poprzez zgłoszenie)	Wyższy koszt po przekroczeniu 2 milionów żądań
	Mniej zintegrowany z innymi usługami

Przypadki Użycia – Google Cloud Functions

Powiadamianie użytkowników: Umożliwia automatyczne generowanie powiadomień dla użytkowników na podstawie zdarzeń w aplikacji.

Konserwacja bazy danych:

Monitorowanie i reagowanie na zdarzenia w bazie danych, umożliwiające oczyszczanie i aktualizację danych w czasie rzeczywistym. Przetwarzanie zasobochłonnych zadań w chmurze: Wykonywanie zadań o dużym obciążeniu procesora lub sieci w chmurze, zamiast na urządzeniu użytkownika.

Integracja z zewnętrznymi usługami i API: Łatwe łączenie z interfejsami API innych usług, umożliwiając współpracę i rozszerzenie funkcjonalności aplikacji.

Future of Serverless

Chmura obliczeniowa znajduje się w centrum nowoczesnego, połączonego świata. Większość nowoczesnych aplikacji wykorzystuje aplikacje obliczeniowe w chmurze do agregowania i przetwarzania danych oraz do tworzenia informacji potrzebnych urządzeniom brzegowym.

- Popyt na chmurę obliczeniową ma rosnąć rocznie o 15%.
- Przewiduje się, że wydatki na chmurę obliczeniową osiągną 50% wydatków na IT w kluczowych segmentach rynku
- Chmura obliczeniowa już teraz zużywa 1-1,5% globalnej energii, a jej wzrost stanowi realne zagrożenie dla środowiska.

Źródła

- https://www.cloudflare.com/learning/serverless/what-is-serverless/
- https://cloud.google.com/functions
- https://docs.aws.amazon.com/lambda/index.html
- https://aws.amazon.com/serverless/
- https://aws.amazon.com/lambda/