

Definition

- **Data compression** is a fundamental concept in computer science that involves reducing the size of data to optimize storage, transmission, and computation
- Save Storage Space
- Reduce Time for Transmission
- Faster to Encode, Send, then Decode than to Send the Original
- Progressive Transmission
 - Some compression techniques allow us to send the most important bits first so we can get a low resolution version of some data before getting the high fidelity version

What is Data and Information

- Data and information are not the same!
- Data is the medium through which information is transmitted.
- Data is what we use to send and share information.

☐ Analog data

- Also called continuous data
- Represented by real numbers (or complex numbers)

☐ Digital data

- Finite set of symbols {a1, a2, ..., am}
- All data represented as sequences (strings) in the symbol set.
- Example: {a,b,c,d,r} abracadabra
- Digital data can be an approximation to analog data

What is Data and Information

- The same amount of information can be represented by various amount of data
- Ex 1: Your friend, Ali, will meet you at the Airport in Cairo at 5 minutes past 6:00 pm tomorrow night
- Ex 2: Your friend will meet you at the Airport at 5 minutes past
 6:00 pm tomorrow night
- Ex 3: Ali will meet you at Airport at 6:00 pm tomorrow night

Why Data Compression is Possible

- Most natural data has extra, unnecessary details.
- There is usually more data than actual useful information.
- Removing the extra data is called compression.
- But to understand the data, we need to **restore** it (decompression).
- Information theory helps us understand how much we can compress data and the best way to do it.

Data Redundancy

- •Inter Data Redundancy means that some parts of the data are repeated or unnecessary.
- •In audio, nearby sound samples are often similar (predictive encoding),
- and silent parts can be removed.
- •In digital images, nearby pixels on the same line are usually similar (spatial redundancy).
- •In digital videos, in addition to spatial redundancy, frames close to each
- other in a video often look similar (temporal redundancy).
- •Compression reduces one or more of these redundancies to make data smaller.

Types of Data Redundancy

- <u>Code:</u> a list of symbols (letters, numbers, bits etc.)
- Code word: a sequence of symbols used to represent a piece of information or an event (e.g., gray levels).
- Code word length: the number of symbols in each code word

Example: (binary code, symbols: 0,1, length: 3)

0: 000 4: 100 1: 001 5: 101

2: 010 6: 110

3: 011 7: 111

r_k: k-th Event or Code word

 $P(r_k)$: probability of r_k

 $I(r_k)$: # (the number) of bits for r_k

Expected value:
$$E(X) = \sum_{x} xP(X = x)$$

Average # of bits:
$$L_{avg} = E(l(r_k)) = \sum_{k=0}^{L-1} l(r_k)P(r_k)$$

For N symbols total number of bits: NL_{avg}

- I(r_k) = constant length
- **Example:** for N x M image with 8 gray level (L=8)

r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$
$r_0 = 0$	0.19	000	3
$r_1 = 1/7$	0.25	001	3
$r_2 = 2/7$	0.21	010	3
$r_3 = 3/7$	0.16	011	3
$r_4 = 4/7$	0.08	100	3
$r_{\rm s} = 5/7$	0.06	101	. 3
$r_6 = 6/7$	0.03	110	3
$r_7 = 1$	0.02	111	3

Assume
$$l(r_k) = 3$$
, $L_{avg} = \sum_{k=0}^{7} 3P(r_k) = 3\sum_{k=0}^{7} P(r_k) = 3$ bits

Total number of bits: 3NM

- I(r_k) = variable length
- Consider the probability of the gray levels:

Table 6.1	Variable-Leng	th Coding Exa	mple	variable leng	th
r_k	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2 .
$r_2 = 2/7$	0.21	010	3	10	2
$r_3 = 3/7$	0.16	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_5 = 5/7$	0.06	101	. 3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
$r_7 = 1$	0.02	111	3	000000	6

$$L_{avg} = \sum_{k=0}^{7} l(r_k)P(r_k) = 2.7 \text{ bits}$$

Total number of bits: 2.7 NM

• Compression Factor: $C_F = \frac{n_1}{n_2}$

• Relative data redundancy: $R_D = 1 - \frac{1}{C}$

Example:

if
$$C_F = \frac{10}{1}$$
 then $R_D = 1 - \frac{1}{10} = 0.9$

if
$$n_2 = n_1$$
 then $C_F = 1$, $R_D = 0$

if
$$n_2 << n_1$$
 then $C_F \to \infty$, $R_D \to 1$

(90% of the data in dataset1 is redundant) if $n_2 >> n_1$ then $C_E \to 0$, $R_D \to -\infty$

- I(r_k) = variable length
- Consider the probability of the gray levels:

Table 6.1	Variable-Leng	th Coding Exa	mple	variable leng	gth
rk	$p_r(r_k)$	Code 1	$l_1(r_k)$	Code 2	$l_2(r_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2
$r_2 = 2/7$	0.21	010	3 3 3	10	2 3
$r_3 = 3/7$	0.16	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_s = 5/7$	0.06	101	. 3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
$r_7 = 1$	0.02	111	3	000000	6

$$L_{avg}^{Codel} = \sum_{k=0}^{7} I_1(r_k) P_r(r_k) = 3 bits$$

Total number of bits(Code1):3NM

$$L_{avg}^{Code2} = \sum_{k=0}^{7} I_2(r_k) P_r(r_k) = 2.7 \text{ bits}$$

Total number of bits(Code2): 2.7NM

$$C_F = \frac{3}{2.7} = 1.11 \text{ (about 10\%)}$$
 $R_D = 1 - \frac{1}{1.11} = 0.099$

Summary

- Variable-length coding reduces the number of bits required compared to fixed-length coding.
- Shorter codes are assigned to values with higher probabilities, improving storage efficiency and reducing data size.
- By using variable-length coding in images and videos, effective compression can be achieved without losing information.

- 1. What is the primary goal of data compression?
- A) Increase data size
- B) Reduce storage space and transmission time
- C) Introduce more redundancy in data
- D) Make data harder to process

•

- What does Inter Data Redundancy refer to?
 - A) The process of adding extra data for error detection
 - B) The repetition or unnecessary presence of some parts of the data
 - C) The process of encrypting data to improve security
 - D) The method of storing data in multiple locations

- What is the main advantage of variable-length coding over fixed-length coding?
 - A) It increases the number of bits required for storage
 - B) It assigns longer codes to frequently occurring values
 - C) It reduces the number of bits required by assigning shorter codes to more probable values
 - D) It ensures that all values have the same code length

- How does variable-length coding contribute to data compression?
 - A) By increasing redundancy in the data
 - B) By assigning shorter codes to less probable values
 - C) By using the same number of bits for all values
 - D) By reducing storage size while preserving information

•

What is the information?

- Information adds to people's knowledge.
- The more unknown or surprising a message is, the more informative it becomes.
- Key Concept:
- Surprise, unpredictability, and unexpectedness increase the amount of information in a message.
- Example Comparison:
- Message 1: "Two-thirds of the students passed all subjects."
- Message 2: "Two-thirds of the students scored 100% in all subjects."
- Both messages have similar word counts, but Message 2 is more informative because it presents an unexpected fact.

Modeling Information

Key Concepts:

The expectation of an event is measured by its probability.

High probability → High expectation (more likely to occur).

Low probability → Rare event (less likely to occur).

Zero probability → The event never happens.

Self-Information Formula:

- For a random event E with probability P(E), the amount of information (self-information) is:
- <u>Idea</u>: For a random event E with probability P(E) the amount of information (<u>self-information</u>) is:

$$I(E) = log(\frac{1}{P(E)}) = -log(P(E))$$
 units of information

• Note: I(E)=0 when P(E)=1

Definition of Events and Alphabet:

- A set of random events $S=(r_1,r_2,...,r_n)$ forms an alphabet in a source message.
- Each event r_k has a probability p_k .
- The total probability of all events sums to 1:

$$\sum p_k = 1$$

The source is memoryless (each event occurs independently).

Measuring Self-Information:

• The amount of surprise (self-information) in an event r_k is given by:

$$I(r_k) = -\log(P(r_k))$$

Lower probability = Higher information content (rare events carry more information).

- Key Insight:
- Frequent events (high probability) provide less information.
- Rare events (low probability) provide more information.

Self-Information:

- Measures information in individual events or symbols.
- To analyze an entire source, we need to consider all possible symbols.

First-Order Entropy:

- Measures the average self-information of all symbols.
- Defined mathematically as:

$$H = -\sum_{k=0}^{L-1} P(r_k) log(P(r_k))$$

- Represents uncertainty or expected information in a source.
- Higher entropy = More uncertainty (symbols are equally probable).

Entropy and Redundancy

Entropy (H):

- Represents the average number of bits needed to encode a symbol based on its probability distribution.
- It is the Shannon lower bound on the number of bits required per symbol in a source model.
- Redundancy (R):
- Measures the extra bits used beyond entropy when encoding symbols.
- Defined as:

$$R = L_{avg} - H$$

where:
$$L_{avg} = E(l(r_k)) = \sum_{k=0}^{L-1} l(r_k)P(r_k)$$

Note: of L_{avg} = H, the R=0 (no redundancy)

Probability of Symbols:

- Given an alphabet {a, b, c} with probabilities:
 - $P(a) = \frac{1}{8}$
 - $P(b) = \frac{1}{4}$
 - $P(c) = \frac{5}{8}$

Self-Information Calculation:

- Self-information is calculated using log base 2:
 - $I(a) = \log_2(8) = 3$
 - $I(b) = \log_2(4) = 2$
 - $I(c) = \log_2(8/5) = 0.678$

Conclusion:

 Receiving symbol "a" provides more information than receiving "b" or "c", since its probability is the lowest.

Case 1: Given Probabilities

- Consider an alphabet {a, b, c} with probabilities:
 - $P(a) = \frac{1}{8}$
 - $P(b) = \frac{1}{4}$
 - $P(c) = \frac{5}{8}$
- Self-Information Calculation:
 - $I(a) = \log_2(8) = 3$
 - $I(b) = \log_2(4) = 2$
 - $I(c) = \log_2(8/5) = 0.678$
- Entropy Calculation:
 - $H = \frac{1}{8} \times 3 + \frac{1}{4} \times 2 + \frac{5}{8} \times 0.678$
 - H=1.3 bits/symbol

Consider an alphabet {a, b, c} with equal probabilities:

•
$$P(a) = \frac{1}{3}$$

•
$$P(b) = \frac{1}{3}$$

•
$$P(c) = \frac{1}{3}$$

Self-Information Calculation:

•
$$I(a) = I(b) = I(c) = \log_2(3) = 1.6$$

Entropy Calculation (Worst Case):

•
$$H = 3 \times (\frac{1}{3} \times \log_2(3))$$

• H=1.6 bits/symbol

First Order Entropy

P Insights:

- Entropy is lower when probabilities are uneven (1.3 bits/symbol).
- ✓ Maximum entropy occurs in the worst case (equal probabilities) (1.6 bits/symbol).

First Order Entropy Estimation

It is not easy to estimate H reliably!

21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243

Gray Level	Count	Probability
21	12	3/8
95	4	1/8
169	4	1/8
243	12	3/8

image

3/8=12/32

First order estimate of H:

$$H = -\sum_{k=0}^{3} P(r_k)log(P(r_k)) = 1.81 \text{ bits/pixel}$$

Total bits: $4 \times 8 \times 1.81 = 58$ bits

First Order Entropy Estimation

? Conclusions:

- ✓ The more distinct gray levels there are and the more evenly they are distributed, the higher the entropy (H).
- ✓ If the image contains only a few gray levels, the entropy will be lower.
- Entropy represents the level of uncertainty or randomness in the distribution of values, which is crucial for data compression and efficient image representation. 💋

Second order entropy Estimation

- Second order estimate of H:
 - Use relative frequencies of <u>pixel blocks</u>:

21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243

 Gray Level Pair
 Count
 Probability

 (21, 21)
 8
 1/4

 (21, 95)
 4
 1/8

 (95, 169)
 4
 1/8

 (169, 243)
 4
 1/8

 (243, 243)
 8
 1/4

 (243, 21)
 4
 1/8

image

$$H = -\sum_{k=0}^{5} P(r_k)log(P(r_k)) = 1.25 \text{ bits/pixel}$$

Total bits: $4 \times 8 \times 1.25 = 40$ bits

Entropy Estimation

- First-order Estimate:
- Provides a lower bound on achievable compression.
- Based only on direct frequency counts of elements.
- Higher-order Estimates:
- Reveal inter-data redundancy in the dataset.
- Offer a more accurate entropy estimation.
- Why Apply Transformations?
- Redundant data indicates potential for better compression.
- Mathematical transformations & compression techniques improve efficiency.

- ✓ Second-order entropy considers pixel blocks, reducing redundancy and leading to lower entropy (H).
- ✓ Lower entropy means the image is more predictable, which improves compression efficiency.

Entropy Estimation

For example, consider <u>differences</u>:

) Origi	inal Im	age Da	ta:				Appl	ying	Differe	nce Tr	ansfor	matio	on:
21	21	21	95	169	243	243	243	21	0	0	74	74	74	0	0
21	21	21	95	169	243	243	243					74			
21	21	21	95	169	243	243	243	21	0	0	74	74	74	0	0
21	21	21	95	169	243	243	243	21	0	0	74	74	74	0	0

- High variation between values → Higher entropy (H = 1.81 bits/pixel)
- Entropy After Transformation:
- New entropy = 1.41 bits/pixel (lower than 1.81).
- Compression improves as redundancy increases.

Gray Level or Difference	Count	Probability
0	16	1/2
21	4	1/8
74	12	3/8

$$H = -\sum_{k=0}^{2} P(r_k)log(P(r_k)) = 1.41 \text{ bits/pixel}$$

Entropy Estimation

- Further Improvement Possible:
 - Second-order entropy estimate suggests H = 1.25 bits/pixel is achievable.
 - Better transformations can further reduce entropy for optimal compression.

Estimating Entropy & Data Compression

- Understanding Entropy in Compression
- Entropy measures the amount of information or randomness in data.
- Lower entropy → better compression is possible.
- First-order entropy provides a lower bound on compression efficiency.
- Higher-order entropy helps detect hidden data redundancy.

Estimating Entropy & Data Compression

- Key Takeaways
- ✓ Transformations (like difference calculation) reduce entropy.
 - √ Lower entropy means better data compression.
 - √ Higher-order entropy helps find optimal compression strategies.

Goal of Compression

Goals of Compression:

- Conserve storage space Reduces data size, allowing more information to be stored.
- Reduce transmission time Smaller data sizes lead to faster transmission over networks.
- Progressive transmission Enables data to be gradually restored while being transmitted.
- Reduce computation Minimizes processing power required to handle compressed data.
- The original data (\bigcirc f) is compressed using a \bigcirc Compress unit.
- The compressed data (\bigcirc g) is either transmitted through a channel or stored in a storage device.
- When needed, the data is **retrieved** from storage or received through the transmission channel.
- The **Decompress** unit restores the original data (^f).

Basic Data Types Explanation

Definition of Data in Compression:

Data in the context of compression includes any digital form of factual information that a computer program can process.

Types of Data:

Data can be classified into different types:

- Text
- Binary
- Graphic
- Image
- O Audio
- Video
- Multimedia

Binary Representation:

All digital data is ultimately stored as **0s and 1s** in a **binary format**.

Basic Data Types

- Text: Represented by 8-bit ASCII code.
 - Found in files with .txt, .tex, .doc extensions.
- Binary: Includes database files, spreadsheets, executables, and program codes.
 - Typically stored in .bin files.
- Image: Stored as a 2D array of pixels, where each pixel has a color code.
 - Examples: .bmp (bitmap image), .psd (Photoshop format).
- Graphics: Based on vectors or mathematical equations.
 - Example: .png (Portable Network Graphics).
- Sound: Represented by wave functions.
 - Example: .wav sound files.

Basic Data Compression Concepts

- Lossless Compression (f=f^)
- Also called entropy coding or reversible coding.
- Information preserving (original data is perfectly restored).
- Low compression ratios (less reduction in size).
- Lossy Compression (f≠f^)
- Also called irreversible coding.
- Not information preserving (some data is lost permanently).
- High compression ratios (better size reduction but lower quality).
- Compression Ratio
- |f| is the number of bits in the original data.

Transmit (channel)

Storage

Device

Decompress

retrieve

Trade-off: Quality vs. Compression Ratio

- Higher compression ratio = Smaller file size but lower quality.
- Lower compression ratio = Larger file size but better quality.

Lossless Compression

- Data is not lost The original data is fully restored.
 - **Text compression** (e.g., documents, source code).
 - Compression of computer binary files (e.g., executable files).
- - Typically **no better than 4:1** (modest reduction in size).
- III Statistical-Based Techniques
 - Huffman coding
 - Arithmetic coding
 - Olomb coding

- •**♦** LZW, LZ77
- ◆◆ Sequitur
- Burrows-Wheeler Method
- ***** Existing Standards
 - Morse code, Braille, gzip, zip,
 - bzip, GIF, JBIG, Lossless JPEG

Lossy Compression

- X Data is lost, but not too much
 - **Audio** (e.g., MP3, AAC).
 - Wideo (e.g., MP4, MPEG).
 - Still images, medical images, photographs (e.g., JPEG).
- Ompression Ratio 10:1
 - compression often maintains high fidelity results.

- **Major Techniques**
 - Vector Quantization
 - Wavelets
 - **Output** Block Transforms
- **Standards**
 - **JPEG** (for images).
 - **MPEG** (for videos).

Compression Algorithm Design

- 1 Description of the Problem Identify the need for compression.
 - 2 Mathematical Modeling Develop a theoretical framework.
 - 3 **Design of the Algorithm** Define the logic and structure.
 - 4 **Verification of the Algorithm –** Ensure correctness and efficiency.
 - 5 **Estimation of Computational Complexity** Analyze performance.
 - 6 Implementation Convert the design into code.
 - 7 **Program Testing** Validate with real-world data.
 - 8 **Documentation** Record details for future use.

Description of the Problem

- **Objective:** Develop an efficient algorithm to **remove redundancy** from specific data types.
- Key Considerations:
- **Understanding the problem** Identify data format and output constraints.
 - Asking the right questions What redundancies exist? What efficiency is required?
 - Clarifying vague problems Apply Divide and Conquer to break down complex issues.
 - Deliverables: A precise problem specification detailing input & output requirements.

Mathematical Modeling

Definition:

Modeling sets up an **environment** to observe variables and explore system behavior. It extends **problem description** into a **mathematical formulation** using rules & relationships.

- Importance in Algorithm Design:
- **Determines algorithm approach** The right model influences **design choices**.
 - Describes source data Helps identify redundancies in the data.
 - Forms the knowledge base The model is the foundation on which compression algorithms operate.
- In data compression:

Mathematical models **analyze redundancy** and define **effective ways to represent** data.

Mathematical Modeling in Compression Algorithm Design

- Mathematical modeling is a crucial field in mathematics, statistics, and computer science, widely researched in data compression.
- III Common Mathematical Models in Data Compression:
 - 1 Physical Model
 - Uses known physics of the data source.
 - Based on data generation processes or empirical observations.
 - Probability Model
 - Applies probability theory to describe the data source.
 - Helps in predicting data patterns.

Mathematical Modeling in Compression Algorithm Design

- 3 Markov Model
- Utilizes Markov chain theory.
- Assumes future states depend only on the present, not past history.
- 4 Composite Model
- Combines multiple models dynamically.
- Uses a **switching mechanism** to select the appropriate model.
- - Helps in understanding data redundancy.
 - Provides a structured way to **optimize compression efficiency**.
 - Supports the design of advanced algorithms like Huffman, Arithmetic, and Lempel-Ziv coding.

Design of the Algorithm in Data Compression

- Algorithm design is a crucial step where we apply all available algorithmic knowledge and techniques to develop an effective compression solution.
- * Key Considerations in Algorithm Design:
 - 1 Mathematical Model Selection
 - The chosen **mathematical model** (e.g., probability, Markov, physical) directly influences the algorithm design.
 - 2 Refining the Model
 - Adding further details to enhance accuracy.
 - Incorporating feedback mechanisms for optimization.
 - 3 Use of Data Structures & Tools
 - Selecting efficient data structures (e.g., trees, hash tables, stacks).
 - Utilizing abstract data types and existing libraries for efficiency.

- 4 Top-Down Approach
- Breaking the problem into smaller subproblems.
- Identifying and integrating existing efficient algorithms to solve parts of the problem.
- ***** Example Approaches:
 - Huffman coding uses priority queues and trees.
 - Lempel-Ziv compression (LZ77, LZ78) uses sliding windows and hash tables.
 - Arithmetic coding relies on probability models and range division.
- Final Goal: Develop an optimized compression algorithm that balances speed, accuracy, and efficiency!

Verification of the Algorithm in Data Compression

Why is verification important?

• Ensures the correctness of the algorithm before implementation.

 Helps avoid fundamental flaws that could waste time during coding.

Verification of the algorithm

- Key Aspects of Verification:
- 1 Correctness of the Algorithm
- Mathematically prove that the algorithm works as expected.
- Use logical reasoning or comparisons with existing solutions.
- 2 Compression Quality Assessment
- Measure the compression ratio

$$Compression \: Ratio = \frac{Original \: Size}{Compressed \: Size}$$

Calculate saving percentage:

Saving Percentage =
$$\left(1 - \frac{\text{Compressed Size}}{\text{Original Size}}\right) \times 100$$

Verification of the algorithm

- **3 Coder Efficiency Analysis**
- Compare the average length of codewords to entropy (Shannon's theorem).
- Lower difference = higher efficiency.
- Deliverables at the End of Verification:

 - Correctness proofs or logical reasoning.
 Performance metrics (compression ratio, efficiency).
 Comparisons with other algorithms to validate effectiveness.
- 🎓 Final Goal: Ensure the algorithm is correct, efficient, and achieves the expected compression quality!

Estimation of Computational Complexity in Data Compression

- Why is Computational Complexity Important?
- Helps predict algorithm behavior before implementation.
- Saves time and resources by avoiding inefficient designs.
- Key Aspects of Complexity Estimation:
 - 1 Efficiency Analysis
 - Evaluate time complexity (how execution time grows with input size).
 - Evaluate space complexity (how much memory is required).
 - 2 Comparing Candidate Algorithms
 - Choose at least two compression algorithms and compare their:
 - Best-case, worst-case, and average-case time complexity.
 - Compression speed (encoding/decoding time).
 - Memory consumption (RAM usage, disk space).

Implementation Phase

- Programming Languages & Tools
- No restriction on programming language choice.
- MATLAB is popular for prototyping due to its built-in functions.
- Other options: Python (NumPy, SciPy), C++, Java, or Rust for highperformance implementations.
- Dest Practices in Implementation
 - 1 Modular Code Break algorithms into reusable functions.
 - 2 Code Optimization Use efficient data structures and minimize redundant computations.
 - 3 Scalability Ensure the algorithm works for small and large datasets.

Program Testing

- Key Aspects of Testing
 - ✓ Unit Testing Test individual functions for correctness.
 - Integration Testing Ensure different parts of the algorithm work together.
 - Performance Testing Measure compression speed & memory usage.
 - Edge Case Testing Test with very large files, random data, and worst-case inputs.
- Standard Testing Methods
 - Benchmarking: Compare against known compression algorithms.
 - Using Test Benches: Standard datasets for evaluation (e.g., Calgary Corpus, Silesia Corpus).
 - Error Checking: Ensure no unintended data loss in lossless compression.

Documentation Phase

- Why is Documentation Important?
- Helps in future maintenance and improvements.
- Enables other researchers to understand and replicate the work.
- What to Document?
 - Algorithm Description Explain compression steps and techniques used.
 - Code Comments Provide clear explanations in the source code.
 - Testing Results Include performance metrics, compression ratios, and benchmarks.
- Final Goal: A well-documented and tested compression algorithm ready for real-world use!

Key Points of Compression Methods

- Modeling: Represents knowledge about the source domain and identifies data redundancy.
 - **Coding:** Uses an **encoder (coder)** to **compress** the input based on the model.
 - ♦ Independent Coder: The coder can function with or without a model.
 - ◆ Decoding Structure: Similar to compression, consisting of a model and a decoder.
 - Compression Process: The model analyzes data patterns, while the coder generates the compressed output.
 - **Decompression Process:** A **decoder reconstructs** the original data using the corresponding model.
 - ♦ Unified Structure: Both compression and decompression rely on a model-coder framework for efficiency.

Types of Compression Algorithms

- Static (Non-Adaptive) System:
- The model remains unchanged throughout the compression and decompression process.
- It does not adapt to variations in input data.
- Adaptive System:
- The model evolves dynamically based on the input data or feedback from the output.
- Some adaptive algorithms start with an empty model and build it as they process the data.

Types of Compression Algorithms

- Fixed-to-Fixed:
- Each symbol before compression has a fixed number of bits.
- After compression, it is **encoded** using a fixed-length bit sequence.
- Example:
- Before compression: A → 8 bits, B → 8 bits, C → 8 bits, D → 8 bits (ASCII)
- After compression: A → 00, B → 01, C → 10, D → 11

- Fixed-to-Variable:
- Each symbol before compression has a fixed number of bits.
- After compression, it is encoded using a variable-length bit sequence.
- Example:
 - Before compression: A \rightarrow 8 bits, B \rightarrow 8 bits, C \rightarrow 8 bits, D \rightarrow 8 bits
 - After compression: A → 0, B → 10, C → 101, D → 0101

- Variable-to-Fixed:
- A sequence of symbols with variable-length representation before compression.
- After compression, it is **encoded** using a fixed-length bit sequence.
- Example:
- •Before compression: ABCD → 32 bits, ABCDE → 40 bits, BC → 16 bits
- •After compression: ABCD → 00, ABCDE → 01, BC → 11

- Variable-to-Variable:
- A sequence of symbols with **variable-length** representation before compression.
- After compression, it remains variable-length but optimized.
- Example:
- •Before compression: ABCD → 32 bits, ABCDE → 40 bits, BC → 16 bits, BBB → 24 bits
- •After compression: ABCD \rightarrow 0, ABCDE \rightarrow 01, BC \rightarrow 1, BBB \rightarrow 0001

Summary

- **Fixed-to-Fixed:** Same length before and after compression.
 - Fixed-to-Variable: Fixed before compression, variable after.
 - Variable-to-Fixed: Variable before compression, fixed after.
 - ✓ Variable-to-Variable: Variable before and after compression.

Symbols & Encoding in Compression

- Definition of a Symbol:
- A symbol is a unit of input data in a compression algorithm.
- It can be:
 - A letter or a special character in text.
 - An audio sample in sound data.
 - A pixel value in an image.
- Data Representation:
- A text, image, audio, or video file is a sequence of symbols, either one-dimensional (text) or multi-dimensional (image, audio, video).

Symbols & Encoding in Compression

Encoding & Decoding:

- Encoding: Assigning codewords to symbols in a source.
- **Decoding:** Reconstructing the **original symbols** from the compressed data.
- Symbol Representation in Compression:
- If the source alphabet is $S = (r_1, r_2, ..., r_n)$, its digital representation is a code set $S' = (c_1, c_2, ..., c_n)$.
- Each symbol r_j is assigned a unique codeword c_j where j = 1, 2, ..., n.

Symbols & Encoding in Compression

- Compression as Encoding & Decompression as Decoding:
- Compression = Encoding (mapping symbols to compressed codewords).
- Decompression = Decoding (recovering original symbols from codewords).

Compression vs. Data Reliability

- Compression & Reliability Are Opposites:
- Compression = Removes redundancy → Less reliable.
- Data integrity = Adds redundancy → More reliable.

(such as check bits and parity bits)

 error detection & correction is a newer field, while compression techniques have existed for centuries.

Basic Methods

Asso. Prof. Aida Nasr

Basic Coding Methods

- Digital data can be represented using two main types of codewords:
- 1 Fixed-Length Codewords
- Each symbol is assigned a code of the same length.
- Simple but inefficient for variable-frequency symbols.
- <u>Examples</u>:
 - CDC Display Code Used in early computing displays.
 - ASCII Codes Standard encoding for text characters (8-bit per character).
 - Braille Coding Fixed-dot patterns for visually impaired readers.
 - **Baudot Code** Early telegraph and teletype encoding (5-bit per character).
 - **Tunstall Code** Used in lossless data compression (fixed-length dictionary).

Basic Coding Methods

- 2 Variable-Length Codewords
- Symbols are represented by codes of different lengths based on frequency.
- More efficient for compression and transmission.
- Examples:
 - Self-Delimiting Coding Ensures no code overlaps another.
 - Suffix Coding Codes are structured based on suffix patterns.
 - Prefix Coding No code is a prefix of another (e.g., Huffman coding).
 - Unary Coding Represents numbers using a series of 1s followed by 0.
 - Phase-in Coding A structured encoding method.
 - Golomb Coding Used in data compression and image coding.
- Fixed-length coding is simple but inefficient, while variable-length coding optimizes space by adapting to symbol frequency

- Overview:
- The CDC (Control Data Corporation) Display Code is a 6-bit fixed-length encoding system.
- It was used in **second-generation computers** and some **third-generation** ones.
- Suitable for representing uppercase letters, digits, and basic symbols.

- Why Only 6 Bits?
- Early computers didn't have display monitors.
- Output was sent to **printers**, which could only print a **limited set of characters** (≤ 64 symbols).
- 6 bits = **2**⁶ = **64 possible characters**, which was sufficient

Structure:

- Uses a **fixed-length 6-bit encoding** for each character.
- The table you provided shows bit positions and their corresponding characters.
- Example Characters in CDC Code:
- Letters: A, B, C, ... Z
- **Digits:** 0, 1, 2, ... 9
- Symbols: +, -, *, /, =, \$, (,)
- Fixed-length codes like CDC are simple but inefficient for large character sets. Modern systems use variablelength codes like UTF-8

2	1	0

	Bits		I	3it	pos	itio	ns 2	10	
	543	0	1	2	3	4	5	6	7
'	0		A	В	C	D	E	F	G
1	1	H	I	J	K	L	M	N	O
	2	P	Q	\mathbf{R}	S		U	V	W
	3	X	Y	\mathbf{Z}	0	1	2	3	4
1	4	5	6	7	8	9	+	-	*
ı	5	/	()	\$	=	sp	,	
ı	6	≡	[]	:	\neq	_	V	\wedge
	7	1	\downarrow	<	>	\leq	\geq		;

- Understanding "Bit positions 210" and "Bits 543" in the Table
- 1 "Bit positions 210"
- Represents the least significant bits (LSB).
 - These 3 bits determine the column in the table.
 - \diamond Possible values: **0 to 7** (since 3 bits = 2^3 = 8 values).
- 2 "Bits 543"
- Represents the most significant bits (MSB).
 - These **3 bits determine the row** in the table.
 - \diamond Possible values: **0 to 7** (3 bits = 8 values).

- How to Find a Character Using the Table?
- Each character is determined by 3 bits from Bits 543 (row) and 3 bits from Bit positions 210 (column).

This allows 64 unique symbols (since $2^3 \times 2^3 = 8 \times 8 = 64$).

- 🔽 Given:
- Bits 543 = 3 → Row 3 (since counting starts from 0).
- Bit positions 210 = 4 → Column 4.
 The corresponding symbol is "1".

• **Example 2:**

Braille Coding (Fixed-Length Coding) ::

- Developed by: Louis Braille in the 1820s.
 - **Used for:** Reading and writing for the visually impaired.
- Structure:
- Each character is represented by a **3×2 grid** of dots (a "Braille cell").
- Dots can be raised or flat, functioning like binary data (6 bits).
- Since **2**⁶ = **64**, there are **64 possible Braille symbols**.

Table 1.1: The 26 Braille Letters.

Table 1.2: Some Words and Strings in Braille.

Braille Coding (Fixed-Length Coding) ::

- Encoding Letters and Words:
- Alphabet letters (A-Z) are mapped to unique Braille cells.
- Digits and punctuation also use unique patterns.
- Some **common words and letter sequences** (like "the", "and", "th") have dedicated symbols to improve efficiency.
- Braille is a fixed-length coding system where each symbol is always represented by 6 dots, making it both simple and efficient for tactile reading.

Braille Coding (Fixed-Length Coding) ::

Examples of Braille and Baudot Code

♦ Braille Code Examples **∷**

Braille represents letters, numbers, and common words using **6-dot cells**.

***** Example Sentence in Braille:

Chara cter	Braille Representation
А	• (1)
В	: (1-2)
С	•• (1-4)
D	: (1-4-5)
E	· (1-5)
and	: (Shortcut for "and")
the	: (Shortcut for "the")

Baudot Code (Fixed-Length Coding)

- Developed by: J. M. E. Baudot in 1880 for telegraph communication.
 - Character Length: 5-bit encoding per character.
 - ◆ Adoption: Became International Telegraph Code No. 1 by 1950 and was used in early computers (first & second generation).

Baudot Code (Fixed-Length Coding)

- How It Works
- \diamondsuit 5-bit length allows for 32 unique combinations (since $2^5 = 32$).
 - However, Baudot encodes more than 32 characters by introducing:
- Letter Shift (LS) → Switch to letter mode.
- Figure Shift (FS) → Switch to number/symbol mode.
 - This **doubles** the number of possible characters:
- 32 (letters) + 32 (figures) 2 (LS & FS codes) = 62 total characters.

Baudot Code (Fixed-Length Coding)

Example of Encoding:

■ Baudot Code was an early yet efficient fixed-length encoding system, paving the way for modern digital communication!

5-bit Code	Letter Mode	Figure Mode
10100	A	1
11001	Z	%
01011	J	?
11111	(Letter Shift - LS)	(Figure Shift - FS)

Baudot Code Examples

Baudot uses **5-bit binary codes** for letters and symbols. It switches between **Letter Mode** and **Figure Mode** using special shift codes.

Example Encoding in Baudot Code:

♦ "HELLO 123"

→ Letter Mode: 10111 10000 10011 10011 10101 (HELLO)

→ Figure Shift: 11111 (Switch to Numbers)

→ Figure Mode: 10000 10001 10010 (1 2 3)

These examples show how both Braille and Baudot use fixed-length codes to efficiently encode

5-bit Code	Letter Mode (A- Z)	Figure Mode (Numbers /Symbols)
10000	A	1
10001	В	2
10010	С	3
11111	Letter Shift (LS)	Figure Shift (FS)

Quantization

Definition:

Quantization means **restricting a variable to discrete values** instead of a continuous range.

- Quantization in Data Compression:
- It is used in two primary ways:
- • 1) Reducing Large Numbers to Small Numbers
- Large numbers take up more space, while small numbers require less storage.
- This process reduces file size, leading to compression.
- However, smaller numbers hold less information, making this a lossy compression method.

Quantization

- 2) Digitizing Analog Data
- Analog signals (e.g., voltages changing over time) are converted into digital values.
- Using smaller numbers improves compression but increases data loss.
- This technique is widely used in speech compression methods.
- In summary, quantization balances compression efficiency and data loss—the more compression, the more information is sacrificed.

Scalar Quantization: Discrete Quantization in Number-Based Compression

- **Example:** Naïve Discrete Quantization of 8-bit Numbers Method:
- 1 Take an 8-bit number (range: **0 to 255**).
 - Pemove the **least significant 4 bits** (zero them out).
 - [3] The result is a **4-bit quantized value** (only 16 possible values instead of 256).
 - 4 The compression factor is **fixed at 2** (since each quantized value requires half the original storage).

Example Calculation:				
Original 8-bit Value (Decimal)	Binary Representation (8-bit)	Quantized Value (Keep Upper 4 Bits, Set LSBs to 0)	Quantized Value (Decimal)	
43	00101011	00100000	32	
156	10011100	10010000	144	
230	11100110	11100000	224	

Scalar Quantization: Discrete Quantization in Number-Based Compression

- Limitations of This Method
- **Too much information loss** Removing 4 bits significantly reduces data accuracy.
- **Low compression gain** A factor of **2** isn't impressive compared to more advanced techniques.
- Not practical The trade-off between compression and information loss makes this method inefficient. While simple, this approach sacrifices too much detail for minimal compression benefits.

- Improved Approach: Uniform Quantization Sequences
- Uniform quantization divides the input range into equal-sized intervals, where each input value is mapped to the nearest representative value. The spacing between quantized values is determined by a parameter **s**, known as the **quantization step size**.
- We refine our approach by assuming **unsigned 8-bit numbers**, meaning the input values range from **0 to 255**.

- Defining the Quantization Process
- 1.We choose a **spacing parameter s**.
- 2. We create a **uniform sequence** of quantized values:

$$0,s,2s,\ldots,ks$$
 such that $(k+1)s>255$ and $ks\leq 255.$

3. Each input symbol n is mapped to its nearest value in this sequence.

Example 1:Here, every input number is rounded to the nearest multiple of **3**.

0,3,6,9,12,...,252,255

Example 2: Uniform Quantization with s=4

If we set **s=4**, the quantized values are:

0,4,8,12,...,252,255

Example 3: Uniform Quantization with s=8 (More Aggressive Quantization)

For **s=8**, the quantized values are:

0,8,16,24,...,248,255

Original Value	Quantized Value
5	6
23	24
151	150

Original Value	Quantized Value
5	4
23	24
151	152

Original Value	Quantized Value
5	8
23	24
151	152

Examples of Uniform Quantization Sequences

✓ If s=3**→ Quantized values:** 0,3,6,9,12,...,

✓ If $s=4 \rightarrow$ **Quantized values:** 0,4,8,12,...,252,255

- Advantages of This Method
- More control over precision Adjusting s changes the balance between compression and accuracy.
 - Better than naïve bit removal Instead of blindly discarding bits, we map values smartly, reducing information loss.
 - **Flexible compression** A larger sss increases compression but also increases quantization error.
- By choosing an optimal s, we achieve a better trade-off between compression efficiency and data retention.

General Formula for Uniform Quantization

Each input value x is quantized to:

$$Q(x) = s \times \text{round}\left(\frac{x}{s}\right)$$

where s is the quantization step size.

```
def uniform quantization(value, step size):
    """Perform uniform quantization with given step size."""
    return round(value / step size) * step size
# Example values
original values = [5, 23, 151]
step sizes = [3, 4, 8]
# Display results for different step sizes
for s in step sizes:
    quantized values = [uniform quantization(v, s) for v in original values]
    print(f"Step size {s}: {quantized values}")
```

Summary

- Smaller s → More detail retained but less compression
 - **Larger s → More compression** but **more loss of information**
 - Uniform quantization is simple but may not be optimal for non-uniform data distributions

Distance-Based Quantization Approach

• Instead of using uniform quantization, a distance-based quantization approach ensures that each number is at most a certain distance (d) away from a quantized value. This allows for better distribution of values and reduced quantization error while maintaining a small set of representative values.

Example: Quantizing 8-bit Values into Only 8 Values (Using 3 Bits)

Since 3-bit values can represent $2^3=8$ quantized values, we need to choose 8 representative values that cover the range [0, 255] efficiently.

- Step 1: Divide the range into 8 segments.
- \diamondsuit Step 2: Select one representative value for each segment, ensuring that no original value is more than d units away.

Chosen Quantized Values:

$$\{8, 41, 74, 107, 140, 173, 206, 239\}$$

Each input value will be mapped to the closest value in this set.

Distance-Based Quantization Approach

- Example with Only 8 Quantized Values (Expressed in 3 Bits)
- If we limit to 8 values, we compute the sequence: 8, 41, 74, 107, 140, 173, 206, 239
- When This Method Works Best
 - ✓ Useful when input symbols are equally probable (memoryless sources).
 - √ Good for controlled compression Balances precision and storage.
 - ✓ Better than uniform spacing in some cases, since it minimizes worst-case quantization error.
- By carefully selecting d and the number of quantized values, we can achieve a better trade-off
 between accuracy and compression!

Example Mappings

Original 8-bit Value	Closest Quantized Value	3-bit Representation
5	8	000
39	41	001
72	74	010
105	107	011
138	140	100
172	173	101
205	206	110
238	239	111

```
import numpy as np
# Define the 8 chosen quantized values
quantized values = np.array([8, 41, 74, 107, 140, 173, 206, 239])
def distance based quantization(value):
    """Map input value to the closest quantized value."""
    return quantized values[np.abs(quantized values - value).argmin()]
# Example values
original_values = [5, 39, 72, 105, 138, 172, 205, 238]
quantized_results = [distance_based_quantization(v) for v in original_values]
# Display results
for orig, quant in zip(original values, quantized results):
    print(f"Original: {orig:3d} → Quantized: {quant:3d}")
```

Distance-Based Quantization Approach

- ◆ Example with d=16
- The range [0, 255] is divided into 7 segments of size 33 each.
- The remaining 25 numbers are adjusted to start 12 units from 0.
- This produces the quantized sequence:

12, 33, 45, 78, 111, 144, 177, 210, 243, 255

• Every input number is at most 16 units away from one of these values

Example of Quantization Using These Values:

Original 8-bit Value	Closest Quantized Value
5	12
40	33
55	45
90	78
120	111
160	144
190	177
220	210
250	243

Quantization for Non-Uniformly Distributed Data

• Problem: If most input values are small (close to zero) and only a few are large, a uniform quantization method may not be efficient.

- Solution: The sequence of quantized values should follow the same distribution as the input data, meaning:
 - √ Many small values
 - √ Few large values

Method: Window-Based Quantization

• **Step 1: Choose a length parameter L.**

- Step 2: Construct a "window" of the form: 1b...bb(L bits)
- ♦ Step 3: Align this window under each bit position in the 8-bit number.
- Step 4: If the window extends beyond 8 bits, truncate the excess bits.
- **Step 5: Shift the window left and pad with zeros.**

Example Calculation

Given 8-bit input data:

$$[100, 110, 95, 105, 180, 190, 170, 185]$$

- We divide it into two windows (since window size = 4):
 - Window 1: [100, 110, 95, 105]
 - Window 2: [180, 190, 170, 185]

Step 3: Compute the Local Reference for Each Window

Let's choose the **mean** as the reference value:

Window 1 Reference:

$$(100 + 110 + 95 + 105)/4 = 102.5 \approx 102$$

Window 2 Reference:

$$(180 + 190 + 170 + 185)/4 = 181.25 \approx 181$$

Step 4: Quantize Each Value Relative to the Reference
Each value in the window is now stored as its difference from the reference
instead of the absolute value.

Original Value	Reference	Quantized Value (Relative Difference)
100 → 102 → -2	102	-2
110 → 102 → +8	102	+8
95 → 102 → -7	102	-7
105 → 102 → +3	102	+3
180 → 181 → -1	181	-1
190 → 181 → +9	181	+9
170 → 181 → -11	181	-11
185 → 181 → +4	181	+4

Method: Window-Based Quantization

Instead of storing absolute values, we only store the relative differences:

$$[-2,+8,-7,+3,-1,+9,-11,+4]$$

Since these values are **smaller** than the original values, they require **fewer bits to encode**, leading to **compression**

- Why is Window-Based Quantization Useful?
- **Reduces data range** → Smaller values require fewer bits to store.
- **Adaptive to local variations** → Better for **non-uniform data** like images and audio.
- Can improve compression efficiency in predictive coding techniques.

- What is Vector Quantization?
- Vector quantization is a **generalization of scalar quantization**, where data is compressed **in blocks** rather than as **individual values**.
- Where is Vector Quantization Used?
- 🔽 Image compression
 - Audio compression
 - Compressing digitally sampled analog data (DSAD) such as:
- Audio samples
- Scanned images
- This type of data originates from analog sources but has been digitized

- Why is Vector Quantization More Efficient than Scalar Quantization?
- **Scalar quantization** compresses **each value separately** (e.g., each pixel in an image or each audio sample).
 - Vector quantization compresses groups of values together as a unit (blocks).
- Since natural data contains repetitive patterns, compressing blocks instead of individual values leads to better compression ratios without significant quality loss.

- Relationship Between Vector Quantization and Block Coding
- When compressing data using blocks instead of individual symbols, we use block coding techniques.
 - As the **block size increases**, compression methods based on block coding can **approach the entropy limit**, achieving **optimal compression efficiency** while preserving important information.

- Simple Example
- Scalar Quantization:
- If an image consists of **individual pixels**, each pixel is compressed separately.
 - Vector Quantization:
- Instead of compressing each pixel, the image is divided into small blocks (e.g., 2×2 pixels), and each block is compressed as a unit.
- Since neighboring blocks often have similar patterns, higher compression efficiency is achieved.

- Why is Vector Quantization Effective?
- Captures relationships between adjacent values
 - Improves compression ratio without excessive information loss
 - Approaches optimal performance as defined by entropy theory
- Would you like a Python example demonstrating vector quantization?