Jean Peyen

Department of Statistics - University of Leeds

August 2023

Isaac Berger clean

Tommy Kono jerk

The Stimulus Recovery Adaptation paradigm

Activity. Discuss how an injury would qualitatively affect the profile of the SRA curve.

Dataset

Covariates

Covariates	Responses		
sex OA age_dec age_start_dec nutrition train_total pown pa sport0	1.0 1.0 4.2 4.1 1.0 1.6 0.0 1.0	shoulder knees back wrist hips	0 1 0 0 0
Sporto	1.0		

Two approaches

Predictive Modelling

Goal: predict outcomes

Establishing Influence

Goal: understand relationships

Activity. Download the dataset and the code from the links provided in the references.

Logistic regression: model

Each subject $i \in [1, n]$ is characterised by a set of covariates $\mathbf{x}_i = (x_{i1}, x_{i2}, \cdots, x_{ip})$ and a binary response y_i . In the model, the probability of response is given by:

$$logit(p_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

Logistic regression: interpretation and challenges

Interpretation of Coefficients (Log-Odds)

For a one-unit increase in the covariate j, the odds of the event occurring are multiplied by e^{β_j} .

- If $\beta_j < 0$: the covariate j reduces the odds of the response.
- If $\beta_j > 0$: the covariate j increases the odds of the response.

Likelihood

$$L(\beta) = \prod_{i=1}^{n} p_i^{y_i} \cdot (1 - p_i)^{1 - y_i}.$$

Multicollinearity

The model is harder to interpret when one variable can be linearly predicted from the others, leading to unstable estimates and inflated standard errors. Regularisation techniques or variable selection may be employed to address multicollinearity

Data analysis : multicollinearity

Variance Inflation Factors

features	VIF Factor
const	57.237730
sex	1.315278
OA	1.030166
age_dec	1.333104
age_start_dec	1.518194
nutrition	1.102661
train_total	1.119851
pown	1.505378
pa	1.033219
sport0	1.025428

Activity. Which covariates may cause problems of collinearity in the original dataset?

Data analysis : fit summary

Logit Regression Results

Dep. Variable Model: Method: Date: Time:	e:	Log I	git Df Re MLE Df Mo Pseud Log-I	odel: do R-squ.: Likelihood:		976 966 9 0.04895 -484.57
converged:		Tı	rue LL-Ni	111:		-509.51
Covariance Ty	/pe:	nonrobi	ıst LLR p	o-value:		1.133e-07
=========	coef	std err	z	P> z	[0.025	0.975]
const	-1.0106	0.614	-1.646	0.100	-2.214	0.193
sex	0.7403	0.181	4.090	0.000	0.386	1.095
OA	0.4459	0.162	2.745	0.006	0.127	0.764
age_dec	-0.3128	0.087	-3.602	0.000	-0.483	-0.143
age_start_ded	-0.0087	0.074	-0.118	0.906	-0.154	0.136
nutrition	0.1069	0.093	1.150	0.250	-0.075	0.289
train_total	0.2488	0.091	2.719	0.007	0.069	0.428
pown	0.0558	0.207	0.270	0.787	-0.349	0.461
- pa	0.0166	0.151	0.110	0.912	-0.279	0.312
sport0	-0.0811	0.311	-0.261	0.794	-0.691	0.528

Data analysis: regression coefficients

Activity. Based on this analysis, what are your conclusions? Use the downloaded code to analyse other types of injuries. Identify key predictors and their impacts. Did you find any unexpected results?

➢Bonus. How might a coach or an athlete benefit from this analysis? Suggest additional covariates and expected effects. You may refer to the supplementary resources available on the GitHub repository.

Sources

David G. Kleinbaum , Mitchel Klein, *Logistic Regression A Self-Learning Text* 3rd edition, Springer New York

Seabold Skipper, and Josef Perktold, *statsmodels: Econometric and statistical modeling with python*, Proceedings of the 9th Python in Science Conference, 2010,

https://conference.scipy.org/proceedings/scipy2010/pdfs/seabold.pdf

Marianne Huebner, Weightlifting during the COVID-19 pandemic. A transnational study regarding motivation, barriers, and coping of master athletes..

https://datadryad.org/stash/dataset/doi:10.5061/dryad.qfttdz0hto

GitHub repository of the presentation, https://github.com/Etamunu/weightliftingLogitReg

Bob Takano, Weightlifting programming: a winning coach's guide Catalyst Athletics