1 Primitives d'une fonction

1. Définition

f est une fonction définie sur un intervalle I de \mathbb{R} .

On appelle primitive de f sur / toute fonction F dérivable sur / dont la dérivée F' est égale à f. Pour tout nombre réel x de f, F'(x) = f(x).

2. Théorèmes

- · Toute fonction dérivable sur un intervalle / admet des primitives sur /.
- Si F est une primitive de f sur l'intervalle I, alors toutes les primitives de f sur / sont les fonctions G définies sur / par G(x) = F(x) + C où C désigne un nombre réel arbitraire.
- · Si f admet des primitives sur l'intervalle /, alors il existe une et une seule primitive G de f telle que $G(x_0) = y_0$; x_0 et y_0 donnés.

3. Les résultats à connaître pour déterminer les primitives d'une fonction

Linéarité

F et G sont des primitives respectives de f et g sur un intervalle I; k est un nombre réel. Alors, F + G est une primitive de f + g sur l et kF est une primitive de kf sur 1.

· Primitives usuelles

Dans les tableaux suivants, C désigne un nombre réel arbitraire.

Fonction f	Primitives F	Fonction f	Primitives F	
f(x) = a; a réel	F(x) = ax + C	$f(x) = e^x$	$F(x) = e^x + C$	
$f(x) = \frac{1}{x}(x > 0)$	$F(x) = \ln x + C$	$f(x) = \sin x$	$F(x) = -\cos x + C$	
		$f(x) = \cos x$	$F(x) = \sin x + C$	
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + C$	$f(x) = \sin(ax + b)$	F(v) 1	
$f(x) = \frac{1}{\sqrt{x}} \ (x > 0)$	$F(x) = 2\sqrt{x} + C$	(a ≠ 0)	$F(x) = -\frac{1}{a}\cos(ax + b) + C$	
$f(x) = x^n$ (n entier relatif; $n \neq -1$)	$F(x) = \frac{x^{n+1}}{n+1} + C$	$f(x) = \cos(ax + b)$ $(a \neq 0)$	$F(x) = \frac{1}{a}\sin(ax + b) + C$	

Fonction f	Primitives F	
$f(x) = (u(x))^n \times u'(x)$ (n entier relatif; $n \neq -1$)	$F(x) = \frac{(u(x))^{n+1}}{n+1} + C$	
$f(x) = \frac{u'(x)}{u(x)} (u(x) > 0)$	$F(x) = \ln (u(x)) + C$	
$f(x) = e^{u(x)} \times u'(x)$	$F(x) = e^{v(x)} + C$	

2 Intégrale d'une fonction sur un intervalle [a; b]

1. Définition

f est une fonction dérivable sur un intervalle I de \mathbb{R} , F est une primitive de f sur I, a et b sont deux nombres réels de I.

On appelle intégrale de a à b de f le nombre réel F(b) - F(a).

On le note
$$\int_a^b f(x) dx$$
; on écrit: $\int_a^b f(x) dx = [F(x)]_a^b = F(b) - F(a)$.

2. Interprétation géométrique dans le cas d'une fonction positive

L'unité d'aire est l'aire du rectangle de côtés OI et OJ.

A est l'aire du domaine délimité par la courbe $\mathscr C$ d'équation y = f(x), l'axe des abscisses et les droites d'équations x = a et x = b.

$$\mathcal{A} = \int_a^b f(x) \, \mathrm{d}x$$

Si f est négative, $\mathcal{A} = -\int_{\partial}^{b} f(x) dx$.

3. Propriétés

f et g sont des fonctions dérivables sur l'intervalle I.

a, b et c sont des nombres de l.

$$\bullet \int_{a}^{b} (f+g)(x) \, \mathrm{d}x = \int_{a}^{b} f(x) \, \mathrm{d}x + \int_{a}^{b} g(x) \, \mathrm{d}x$$

$$\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx (k \text{ réel})$$

$$\cdot \int_a^c f(x) \, dx = \int_a^b f(x) \, dx + \int_b^c f(x) \, dx$$

On suppose a < b

- si sur
$$[a; b]$$
, $f(x) \ge 0$,

alors
$$\int_a^b f(x) dx \ge 0$$

- si sur
$$[a; b]$$
, $f(x) \leq g(x)$,

alors
$$\int_a^b f(x) dx \le \int_a^b g(x) dx$$

- si sur $[a; b], m \leq f(x) \leq M,$

$$m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a).$$

 La valeur moyenne de f sur [a; b] est le nombre:

$$\frac{1}{b-a}\int_a^b f(x) \ \mathrm{d}x.$$

4. Intégration par parties

u et v sont deux fonctions dont les dérivées u' et v' sont dérivables sur l; a et b sont des nombres de l.

$$\int_{a}^{b} u(x) \ v'(x) \ dx = [u(x) \ v(x)]_{a}^{b} - \int_{a}^{b} u'(x) \ v(x) \ dx$$
(formule dite d'intégration par parties)

Comment déterminer à la main les primitives d'une fonction ?

- · Il suffit de déterminer une primitive de cette fonction.
- Pour déterminer une primitive F d'une fonction f, on utilise les tableaux de résultats et les règles concernant f + g et kf donnés page 239.

Exemple 1. Déterminer les primitives de f définie sur \mathbb{R} par $f(x) = 2x^3 + 4x - 3e^x$.

- L'écriture de f (x) fait intervenir uniquement la somme et le produit par un nombre de fonctions données dans les tableaux page 241.
- · On lit dans les tableaux :
- En multipliant par les nombres convenables, on obtient:

Fonctions	X3	X	e ^x
Primitives	X4 4	$\frac{x^2}{2}$	e ^x

Fonctions	2x3	4x	- 3e×
Primitives	$2\frac{x^4}{4}$	$4\frac{x^2}{2}$	- 3e×

• Par addition, on obtient donc une primitive F de f: $F(x) = \frac{x^4}{2} + 2x^2 - 3e^x$; donc les primitives de f sont les fonctions G définies sur \mathbb{R} par $G(x) = \frac{x^4}{2} + 2x^2 - 3e^x + C$.

Exemple 2. Déterminer les primitives de f définie sur \mathbb{R} par $f(x) = 5e^{3x}$.

• On pense à écrire f(x) sous la forme $f(x) = ke^{u(x)} \times u'(x)$ avec k réel. On pose u(x) = 3x d'où u'(x) = 3.

$$e^{u(x)} \times u'(x) = e^{3x} \times 3$$
; on écrit alors $f(x) = 5 \times \frac{1}{3} \times e^{3x} \times 3$.

Ainsi
$$f(x) = \frac{5}{3} e^{u(x)} \times u'(x)$$
 d'où une primitive F de f : $F(x) = \frac{5}{3} e^{u(x)} = \frac{5}{3} e^{3x}$.

• Primitives de f : les fonctions G définies sur
$$\mathbb{R}$$
 par $G(x) = \frac{5}{3}e^{3x} + C$.

Exemple 3. Déterminer les primitives de f définie sur $[0; +\infty[$ par $f(x)=\frac{3}{2x+1}$.

• On pense à écrire f(x) sous la forme $f(x) = k \frac{u'(x)}{u(x)}$ avec k réel.

On pose u(x) = 2x + 1 d'où u'(x) = 2.

$$\frac{u'(x)}{u(x)} = \frac{2}{2x+1} \text{ ; on \'ecrit alors } f(x) = 3 \times \frac{1}{2} \times \frac{2}{2x+1}.$$

Ainsi,
$$f(x) = \frac{3}{2} \times \frac{u'(x)}{u(x)}$$
; sur $[0; +\infty[$ on a $u(x) > 0;$

d'où une primitive F de f:
$$F(x) = \frac{3}{2} \ln (u(x)) = \frac{3}{2} \ln (2x + 1)$$
.

Primitives de f: les fonctions G définies sur $[0; +\infty[$ par $G(x)=\frac{3}{2}$ In (2x+1)+C.

Comment calculer à la main une intégrale ?

Pour calculer l'intégrale $I = \int_{a}^{b} f(x) dx$:

- 1. On détermine une primitive F de f;
- **2.** On calcule le nombre F(b) F(a); I = F(b) F(a).

Exemple. Calculer $I = \int_1^2 \left(x + \frac{1}{x} + e^{2x} \right) dx$.

1. On obtient facilement une primitive de f:

la fonction F définie sur J0; $+ \infty$ [par $F(x) = \frac{x^2}{2} + \ln x + \frac{1}{2}e^{2x}$.

2.
$$\int_{1}^{2} f(x) dx = F(2) - F(1)$$
; $\int_{1}^{2} f(x) dx = \left(\frac{4}{2} + \ln 2 + \frac{1}{2} e^{4}\right) - \left(\frac{1}{2} + \ln 1 + \frac{1}{2} e^{2}\right)$.

D'où
$$\int_{1}^{2} \left(x + \frac{1}{x} + e^{2x}\right) dx = \frac{3}{2} + \ln 2 + \frac{1}{2} \left(e^{4} - e^{2}\right); \int_{1}^{2} \left(x + \frac{1}{x} + e^{2x}\right) dx \approx 25.8.$$

Comment calculer une intégrale en utilisant l'intégration par parties ?

Pour calculer l'intégrale $I = \int_a^b f(x) dx$ en utilisant l'intégration par parties :

- 1. On écrit f(x) sous la forme $f(x) = u(x) \times v'(x)$. Il faut choisir convenablement les expressions de u(x) et v'(x)!
- 2. On calcule u' et on détermine une primitive v de v'.
- 3. On applique la formule d'intégration par parties.

Exemple 1. Calculer $\int_{1}^{2} x \ln x \, dx$.

Posons
$$\begin{cases} u(x) = \ln x \\ v'(x) = x \end{cases}$$
, on obtient $\begin{cases} u'(x) = \frac{1}{x} \\ v(x) = \frac{x^2}{2} \end{cases}$

D'où
$$\int_{1}^{2} x \ln x \, dx = \left[\frac{x^{2}}{2} \ln x\right]_{1}^{2} - \int_{1}^{2} \frac{x}{2} \, dx = 2 \ln 2 - \left[\frac{x^{2}}{4}\right]_{1}^{2} = 2 \ln 2 - \frac{3}{4}.$$

Exemple 2. Calculer $\int_0^1 x e^x dx$.

Posons
$$\begin{cases} u(x) = x \\ v'(x) = e^x \end{cases}$$
; on obtient $\begin{cases} u'(x) = 1 \\ v(x) = e^x \end{cases}$

$$D^*où \int_0^1 x e^x \, dx = [x e^x]_0^1 - \int_0^1 e^x \, dx = e - [e^x]_0^1 = 1.$$

Exercices:

Dans chacun des cas suivants, vérifier que la fonction F est une primitive sur \mathbb{R} de la fonction f.

a)
$$F(x) = \frac{x^3}{3} + 2x^2 + 4$$
; $f(x) = x^2 + 4x$.

b)
$$F(x) = 2e^x + \frac{1}{2}x^2$$
; $f(x) = 2e^x + x$.

c)
$$F(x) = e^{-2x} + 3e^x + 5$$
; $f(x) = 3e^x - 2e^{-2x}$.

2 Dans chacun des cas suivants, indiquer en justifiant la réponse si la fonction *F* est une primitive sur l'intervalle *I* de la fonction *f*.

a)
$$I = \mathbb{R}$$
; $F(x) = -\frac{4}{3}x^3 + 4x^2 - 5x + 2$;

$$f(x) = -4x^2 + 8x - 5.$$

b)
$$I =]0; + \infty[; F(x) = 3 \ln x + 5x^2 + 4;$$

$$f(x) = \frac{3}{x} + 10x.$$

c)
$$I = \mathbb{R}$$
; $F(x) = 3e^{-2x} + 5e^{x}$;

$$f(x) = e^{-2x} + 5e^x.$$

d)
$$I =]0; + \infty[; F(x) = \frac{1}{x^2} + \frac{3}{x};$$

$$f(x) = -\frac{2}{x^3} + 3 \ln x.$$

Pour chacun des exercices 3 à 17, les fonctions f et g admettent sur l'intervalle I des primitives. Pour chacune d'elles, déterminer les primitives.

$$3I = \mathbb{R}$$

$$f(x) = x^2 - 3x$$
; $g(x) = -2x^3 + 4x - 5$.

4 R
$$I=\mathbb{R}$$
.

$$f(x) = 4e^x - 2x$$
; $g(x) = 3x^2 + 5e^x$.

$$[5] I =]0; + \infty[.$$

$$f(x) = \frac{1}{x} + 3x$$
; $g(x) = x^2 - \frac{2}{x^2}$.

6 R
$$I =]0; + \infty[$$
.

$$f(x) = 3x^2 - \frac{4}{x^2}$$
; $g(x) = 1 + \frac{2}{x^2} - \frac{1}{x^4}$.

7 R
$$I =]0; + \infty[$$
.

$$f(t) = t + \frac{2}{t}$$
; $g(t) = 3e^{t} + \frac{5}{t}$.

9 R
$$I = \mathbb{R}$$
; $f(x) = 2e^{2x}$.

10
$$I = \mathbb{R}$$
; $f(x) = e^{-x}$.

11
$$I = \mathbb{R}$$
; $f(x) = 2e^{3x+1}$.

12 R
$$I = \mathbb{R}$$
; $f(x) = x + 4e^{-3x}$.

13 C
$$I = \mathbb{R}$$
; $f(x) = 2x(e^{x^2})$.

14
$$I =]2; + \infty[; f(x) = \frac{1}{(x-2)^2}.$$

15
$$I =]-1; +\infty[; f(x) = \frac{3}{(x+1)^2}.$$

16
$$I = \mathbb{R}$$
; $f(x) = x(x^2 + 1)^3$.

17
$$I =]2; + \infty[; f(x) = \frac{1}{x-2}.$$

Pour déterminer la primitive G d'une fonction f telle que $G(x_0) = y_0$:

- on détermine les primitives de f;
- on calculer la constante C de manière que $G(x_0) = y_0$.
- Pour chacun des exercices 18 à 24, la fonction f est définie sur l'intervalle I de ℝ. Dans chaque cas, déterminer la primitive G qui satisfait à la condition donnée.

18 G
$$I = \mathbb{R}$$
; $f(x) = x^2 - x + 1$.

$$G(1) = 0.$$

19
$$I =]0; + \infty[; f(x) = x - \frac{2}{x}.$$

$$G(1) = 0.$$

20
$$I =]0; +\infty[; f(x) = 2x + \frac{1}{x}.$$

$$G(2) = 0.$$

21 R
$$I = \mathbb{R}$$
; $f(x) = 4x + e^x$.

$$G(0) = 2.$$

22
$$I =]0; +\infty[; f(x) = \frac{2}{x} + e^{x}.$$

$$G(1) = 0.$$

Pour chacun des exercices 25 à 30, calculer les intégrales proposées.

25
$$\int_{-1}^{1} (x^2 + 1) dx$$
; $\int_{-1}^{1} (x^2 + 3x + 5) dx$.

26
$$\int_1^4 \frac{3}{x} dx$$
; $\int_1^4 \left(x - \frac{2}{x}\right) dx$.

28
$$\int_0^1 \frac{t}{t^2+1} dt$$
; $\int_0^{\ln 2} (e^t + e^{2t}) dt$.

30 C
$$\int_0^{\ln 2} (e^x - e^{-x}) dx$$
; $\int_e^{e^2} \frac{1}{x \ln x} dx$.

0

Pour les exercices 32 à 39, la fonction f admet sur l'intervalle I des primitives

Dans chaque cas, déterminer les primitives de f à l'aide d'une calculatrice ou d'un logiciel de calcul formel.

32
$$I = \mathbb{R}$$
; $f(x) = x^2 + 2e^{-2x}$.

33
$$I =]-1; +\infty[; f(x) = \frac{x^2}{x+1}.$$

34
$$I = \mathbb{R}$$
; $f(x) = xe^{x^2+1}$.

35 C
$$I = \left] -\infty; \frac{1}{2} \right[; f(x) = \frac{x^2}{2x-1}.$$

36
$$I =]0; + \infty[; f(x) = x + 3 - \frac{4}{x^3}]$$

37
$$I = \mathbb{R}$$
; $f(x) = x(x^2 + 1)^2$.

38
$$I = \mathbb{R}$$
; $f(x) = \frac{2e^x}{e^x + 1}$.

Pour les exercices 40 à 45, calculer à l'aide de la calculatrice ou d'un logiciel de calcul les intégrales proposées.

$$\int_{-1}^{1} (x+1)^3 dx; \int_{1}^{2} \left(x^2 - 5 - \frac{4}{x^2}\right) dx.$$

$$\int_0^1 \frac{x \, dx}{x^2 + 1} \; ; \; \int_0^1 \frac{e^{2x}}{e^x + 1} \, dx.$$

43 R
$$\int_0^1 \frac{e^x}{e^x + 1} dx$$
; $\int_0^{\ln 2} \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$.

45
$$\int_2^3 \frac{\mathrm{d}x}{\sqrt{x+1}}$$
; $\int_3^4 \frac{x+1}{(x-2)^2} \, \mathrm{d}x$.

Pour chacun des exercices 46 à 51, calculer les intégrales proposées.

46 C
$$\int_1^e (x^2 + 1) \ln x \, dx$$
; $\int_0^1 x e^{2x} \, dx$.

47
$$\int_0^2 x e^{-x} dx$$
; $\int_1^e \ln x dx$.

48 R
$$\int_0^1 3x e^{-2x} dx$$
; $\int_1^e \ln(2x) dx$.

$$\int_{0}^{1} (x+2)e^{-x} dx; \quad \int_{1}^{4} (x-1) \ln x dx.$$

50 R
$$\int_{1}^{2} (t+1) \ln (3t) dt$$
; $\int_{-1}^{0} (2t+1)e^{3t} dt$.

Calcul d'aires.

53 Soit *f* la fonction définie sur [1; + ∞[par :

$$f(x) = \frac{\ln x}{x^2}.$$

1. Étudier les variations de *f* et tracer sa courbe représentative dans un repère orthogonal.

Unités graphiques : 2 cm sur l'axe des abscisses et 10 cm sur l'axe des ordonnées.

2. Calculer l'aire, en cm², de l'ensemble des points M(x; y) du plan tels que :

$$1 \le x \le 4$$
 et $0 \le y \le f(x)$.

On effectuera une intégration par parties. Donner la valeur arrondie au mm² de cette aire.

- Soit f la fonction définie sur l'intervalle [-1; 1] par $f(x) = xe^x e^x$.
- **1.** Étudier les variations de *f* et donner l'allure de sa courbe représentative dans un repère orthonormal d'unité graphique 4 cm.
- **2.** Calculer l'aire \mathcal{A} , en cm², de l'ensemble des points M(x; y) du plan tels que :

$$-1 \le x \le 1$$
 et $f(x) \le y \le 0$.

On effectuera une intégration par parties. Donner la valeur arrondie au mm^2 de \mathcal{A} .

- **55** Le plan est muni d'un repère orthonormal d'unité graphique 2 cm.
- **1.** Tracer les courbes \mathscr{C} et \mathscr{C}' qui représentent respectivement les fonctions f et g définies sur [1;2]

$$par f(x) = x^2 et g(x) = \frac{1}{x}.$$

2. On note \mathfrak{D} le domaine ensemble des points M(x; y) du plan tels que :

$$1 \le x \le 2 \text{ et } \frac{1}{x} \le y \le x^2.$$

- a) Calculer, en unités d'aire, l'aire de D.
- **b)** Exprimer cette aire en cm².
- Soit f la fonction définie sur [0; 1] par $f(x) = e^x$ et g la fonction définie sur [0; 1] par $g(x) = \frac{1}{x}$.
- **1.** Dans le plan rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$ d'unité graphique 4 cm, tracer les représentations graphiques \mathscr{C}_1 et \mathscr{C}_2 de f et de g.
- **2.** Soit α l'abscisse du point d'intersection de \mathscr{C}_1 et \mathscr{C}_2 .

On appelle E la partie du plan limitée par les courbes \mathscr{C}_1 et \mathscr{C}_2 et les droites d'équations $x = \alpha$ et x = 1.

- a) Calculer, en fonction de α , l'aire \mathcal{A} , exprimée en cm², de E.
- **b)** On admet qu'une valeur approchée à 10^{-2} de α est 0,57.

Donner la valeur arrondie à 10^{-2} de A.

Correction:

$$F(x) = 4e^{x} - x^{2} + C.$$

$$G(x) = x^{3} + 5e^{x} + C.$$

6
$$F(x) = x^3 + \frac{4}{x} + C.$$

$$G(x) = x - \frac{2}{x} + \frac{1}{3x^3} + C.$$

7
$$F(t) = \frac{t^2}{2} + 2 \ln t + C.$$

$$G(t) = 3e^t + 5 \ln t + C.$$

9
$$F(x) = e^{2x} + C$$
.

12
$$F(x) = \frac{x^2}{2} - \frac{4}{3} e^{-3x} + C.$$

On a
$$f = e^u \times u'$$
 avec $u(x) = x^2$ d'où $F(x) = e^{u(x)} + C = e^{x^2} + C$.

Les primitives de f sont les fonctions F définies sur \mathbb{R} par $F(x) = \frac{x^3}{3} - \frac{x^2}{2} + x + C$.

De
$$G(1) = \frac{1}{3} - \frac{1}{2} + 1 + C = 0$$
 on déduit $C = -\frac{5}{6}$.

$$G(x) = \frac{x^2}{3} - \frac{x^2}{2} + x - \frac{5}{6}$$

21
$$G(x) = 2x^2 + e^x + 1$$
.

30 •
$$I = \int_0^{\ln 2} (e^x - e^{-x}) dx = \left[e^x + e^{-x} \right]_0^{\ln 2};$$

$$I = (e^{\ln 2} + e^{-\ln 2}) - (2) = \left(2 + \frac{1}{2}\right) - 2 = \frac{1}{2}.$$

$$\bullet J = \int_{e}^{e^2} \frac{1}{x \ln x} \, \mathrm{d}x;$$

 $\frac{1}{x \ln x} \text{ est de la forme } \frac{u'}{u} \text{ avec } u(x) = \ln x. \text{ Sur } [e \ ; e^2],$ on a $\ln x > 0$, donc la fonction $x \mapsto \ln (\ln x)$ est une primitive de $x \mapsto \frac{1}{x \ln x}$. Ainsi $J = \left[\ln (\ln x)\right]_e^{e^2} = \ln 2$.

35
$$G(x) = \frac{x^2}{4} + \frac{x}{4} + \frac{\ln(1-2x)}{8} + C.$$

43
$$\int_0^1 \frac{e^x}{e^x + 1} dx = \ln \left(\frac{1 + e}{2} \right)$$

$$\int_0^{\ln 2} \frac{e^x - e^{-x}}{e^x + e^{-x}} dt = \ln \frac{5}{4}.$$

46 •
$$I = \int_{1}^{e} (x^2 + 1) \ln x \, dx$$
.

Posons
$$\begin{cases} u(x) = \ln x \\ v'(x) = x^2 + 1 \end{cases}$$
 d'où
$$\begin{cases} u'(x) = \frac{1}{x} \\ v(x) = \frac{x^3}{2} + x \end{cases}$$

Ainsi,
$$I = \left[\left(\frac{x^3}{3} + x \right) \ln x \right]_1^e - \int_1^e \left(\frac{x^2}{3} + 1 \right) dx;$$

$$I = \frac{e^3}{3} + e - \left[\frac{x^3}{9} + x\right]_1^e = \frac{2e^3}{9} + \frac{10}{9}.$$

$$\bullet J = \int_0^1 x e^{2x} dx.$$

Posons
$$\begin{cases} u(x) = x \\ v'(x) = e^{2x} \end{cases}$$
 d'où
$$\begin{cases} u'(x) = 1 \\ v(x) = \frac{1}{2} e^{2x} \end{cases}$$

Ainsi,
$$J = \left[\frac{1}{2} x e^{2x} \right]_0^1 - \int_0^1 \frac{1}{2} e^{2x} dx$$

$$J = \frac{1}{2} e^2 - \left[\frac{1}{4} e^{2x} \right]_0^1 = \frac{1}{2} e^2 - \left(\frac{1}{4} e^2 - \frac{1}{4} \right)$$

$$J = \frac{1}{4} e^2 + \frac{1}{4}$$
.

48
$$\int_0^1 3x e^{-2x} dx = \frac{3}{4} (1 - 3e^{-2}).$$

$$\int_{1}^{e} \ln (2x) \, dx = (\ln 2)(e-1) + 1.$$

$$\int_{1}^{2} (t+1) \ln (3t) dt = \frac{\ln 62208}{2} - \frac{7}{4}$$

$$\int_{-1}^{0} (2t+1)e^{3t} dt = \frac{5e^{-3}}{9} + \frac{1}{9}.$$

1. La figure obtenue est représentée ci-dessous à l'échelle $\frac{1}{2}$.

2. a) L'unité d'aire est 16 cm²; $\mathcal{A} = 16 \int_{\alpha}^{1} \left(e^{x} - \frac{1}{x} \right) dx$. $\mathcal{A} = 16 \left(e - e^{\alpha} + \ln \alpha \right)$.

b) $\mathcal{A} \approx 6.21$ cm².