Отчёт по лабораторной работе №1

Установка ОС

Даваасурэн Цэгцтур

Содержание

1	Цель работы	4
2	Выполнение лабораторной работы	5
3	Вывод	11
4	Контрольные вопросы	12

List of Figures

2.1	Создание новой виртуальной машины	5
2.2	Конфигурация жёсткого диска	5
2.3	Конфигурация жёсткого диска	6
	1 /1 '	6
2.5	Установка языка	7
2.6	Параметры установки	7
2.7	Этап установки	8
2.8	Создание пользователя	8
2.9	Команда dmesg	9
2.10	Команда dmesg	0

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов

2 Выполнение лабораторной работы

Создаю виртуальную машину

Figure 2.1: Создание новой виртуальной машины

Задаю конфигурацию жёсткого диска — VDI, динамический виртуальный диск.

Figure 2.2: Конфигурация жёсткого диска

Figure 2.3: Конфигурация жёсткого диска

Добавляю новый привод оптических дисков и выбираю образ

Figure 2.4: Конфигурация системы

Запускаю виртуальную машину и выбираю установку системы на жёсткий диск. Устанавливаю язык для интерфейса и раскладки клавиатуры

Figure 2.5: Установка языка

Указываю параметры установки

Figure 2.6: Параметры установки

Figure 2.7: Этап установки

Создаю пользователя

Figure 2.8: Создание пользователя

Захожу в созданную учётную запись.

Информация по машине.

- 1. Версия ядра Linux (Linux version).
- 2. Частота процессора (Detected Mhz processor).
- 3. Модель процессора (СРИО).
- 4. Объем доступной оперативной памяти (Memory available).
- 5. Тип обнаруженного гипервизора (Hypervisor detected).

```
dtsegtstur@fedora:~
                                                                 x-HPI-Hybrid-Graphics)
        0.225330] ACPI: Added _OSI(Lin
                                                  uxPPS API ver. 1 registered
        0.286353] pps_core: Li
        0.802757] Linux agpgart interface v0.103

0.816407] usb usb1: Manufacturer: Linux 6.0.7-301.fc37.x86_64 ehci_hcd

0.896729] usb usb2: Manufacturer: Linux 6.0.7-301.fc37.x86_64 ohci_hcd
       0.896729] usb usb2: Manufacturer: Linux 6.0.7-301.fc37.x86_64
6.079157] SELinux: policy capability network_peer_controls=1
6.079163] SELinux: policy capability open_perms=1
6.079164] SELinux: policy capability extended_socket_class=1
6.079166] SELinux: policy capability always_check_network=0
6.079167] SELinux: policy capability nnp_nosuid_transition=1
        6.079168] SELinux: policy capability genfs_seclabel_symlinks=1
6.079169] SELinux: policy capability ioctl_skip_cloexec=0
        6.127824] systemd[1]: Successfully loaded SELi
                                                                                                  policy in 159.226ms.
       12.312125] 11:22:09.909310 main
                                                                       OS Product:
 [dtsegtstur@fedora ~]$ dmesg | grep Mem
                              mory: 1975332K/2096696K available (16393K kernel code, 3227K rw
[ 0.025397] Memory. 1913227/2090990 avaitable (18395) Kernet Code, 3227k
data, 12820K rodata, 3024K init, 4680K bss, 121104K reserved, 0K cma-reserved)
[ 0.171264] x86/mm: Memory block size: 128MB
[ 2.955704] systemd[1]: memstrack.service - Memstrack Anylazing Service was
                                                                                          strack Anylazing Service was s
kipped because all trigger condition checks failed.
        8.725389] systemd[1]: Listening on systemd-oomd.socket - Userspace Out-Of-
   ory (00M) Killer Socket.
 [dtsegtstur@fedora ~]$
```

Figure 2.9: Команда dmesg

- 6. Тип файловой системы корневого раздела.
- 7. Последовательность монтирования файловых систем

```
[dtsegtstur@redora ~]$
[dtsegtstur@fedora ~]$ df
Файловая система IK-блоков Использовано Доступно Использовано% Смонтировано в
devtmpfs 4096 0 4096 0% /dev
tmpfs 1008440 0 1008440 0% /dev/shm
tmpfs 403376 3032 400344 1% /run
/dev/sda3 40891392 3249644 37443140 8% /
tmpfs 1008440 16 1008424 1% /tmp
/dev/sda3 40891392 3249644 37443140 8% /home
/dev/sda3 40891392 3249644 37443140 8% /home
/dev/sda2 996780 191948 736020 21% /boot
tmpfs 201688 156 201532 1% /run/user/1000
[dtsegtstur@fedora ~]$
```

Figure 2.10: Команда dmesg

3 Вывод

Мы приобрели практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

4 Контрольные вопросы

- 1. Какую информацию содержит учётная запись пользователя?
- входное имя пользователя (Login Name);
- пароль (Password);
- внутренний идентификатор пользователя (User ID);
- идентификатор группы (Group ID);
- анкетные данные пользователя (General Information);
- домашний каталог (Home Dir);
- указатель на программную оболочку (Shell).
- 2. Укажите команды терминала и приведите примеры:
- для получения справки по команде man;
- для перемещения по файловой системе cd;
- для просмотра содержимого каталога ls;
- для определения объёма каталога ls -l;
- для создания / удаления каталогов / файлов touch, mkdir, rm, rmdir;
- для задания определённых прав на файл / каталог chmod;
- для просмотра истории команд history.
- 3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система (англ. file system) — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании. FAT. Числа в FAT12, FAT16 и FAT32 обозначают количество бит, используемых для перечисления блока файловой системы. FAT32 является фактическим стандартом и устанавливается на большинстве видов сменных носителей по умолчанию. Одной из особенностей этой версии ФС является возможность применения не только на современных моделях компьютеров, но и в устаревших устройствах и консолях, снабженных разъемом USB. Пространство FAT32 логически разделено на три сопредельные области: зарезервированный сектор для служебных структур; табличная форма указателей; непосредственная зона записи содержимого файлов.

Стандарт NTFS разработан с целью устранения недостатков, присущих более ранним версиям ФС. Впервые он был реализован в Windows NT в 1995 году, и в настоящее время является основной файловой системой для Windows. Система NTFS расширила допустимый предел размера файлов до шестнадцати гигабайт, поддерживает разделы диска до 16 Эб (эксабайт, 1018 байт). Использование системы шифрования Encryption File System (метод «прозрачного шифрования») осуществляет разграничение доступа к данным для различных пользователей, предотвращает несанкционированный доступ к содержимому файла. Файловая система позволяет использовать расширенные имена файлов, включая поддержку многоязычности в стандарте юникода UTF, в том числе в формате кириллицы. Встроенное приложение проверки жесткого диска или внешнего накопителя на ошибки файловой системы chkdsk повышает надежность работы харда, но отрицательно влияет на производительность.

Ext2, Ext3, Ext4 или Extended Filesystem – стандартная файловая система, первоначально разработанная еще для Minix. Содержит максимальное количество функций и является наиболее стабильной в связи с редкими изменениями кодовой базы. Начиная с ext3 в системе используется функция журналирования. Сегодня версия ext4 присутствует во всех дистрибутивах Linux.

XFS рассчитана на файлы большого размера, поддерживает диски до 2 терабайт. Преимуществом системы является высокая скорость работы с большими файла-

ми, отложенное выделение места, увеличение разделов на лету, незначительный размер служебной информации. К недостаткам относится невозможность уменьшения размера, сложность восстановления данных и риск потери файлов при аварийном отключении питания.

- 4. Как посмотреть, какие файловые системы подмонтированы в ОС? командой du.
- 5. Как удалить зависший процесс?

командой kill.