

Introduction & Objective

- Urban tree coverage is crucial to the success of urban environments¹
 - \$60.1M in health impact reduction in NYC²
 - Stormwater mitigation
 - Urban heat effect
 - Increase property values
 - Community integration

Introduction & Objective

- Using data from NYC Opendata, create a machine-learning model to predict whether a tree is in need of care and/or replacement
 - Provide NYC Parks department with an optimized model to prioritize trees needing care, minimizing resources to fix and increase the canopy across the city

Data Background

- Majority of trees are alive this is good!
 - May cause some issues when creating a prediction model – to be discussed
- More % of all trees have "Problems" that could lead to future decay/death
 - Dataset range of health: No Problems, Problems (with a wide range of values, assuming all "problems" carry equal importance)
 - Determine trees with problems as a firstresponse to care

Predicting if a Tree is Dead / Stump in plot

- Dataset binary classification: Alive or Dead/Stump
- Predictions on Life status resulted in 100% Accuracy
 - Dataset not diverse enough to use this target variable

Predicting Problems – Baseline model

- Factors included:
 - Community support (community board, steward(s), assessor)
 - Tree details (species, guards, trunk diameter, alive/dead status)
 - Geography (block location, district, borough, geo-coordinates)
- Predictions on Problems resulted in 98% precision, 88% Accuracy, and 70% recall
 - Aiming for higher recall, to minimize chance a tree with problems is classified as "normal"

Optimized Logistic Regression Model

- Predictions on Problems resulted in 90% precision, 87% Accuracy, and 75% recall
- Fine-tuned model includes:
 - Increased iterations
 - Threshold of 35%
 - Lower regularization strength
- Critical factors: guards, root system, steward availability
- Decision tree modeling was assessed in process, and deemed unfit for success
- Balancing data set did not result in improvements

Conclusion and next steps

- Prioritize re-planting at these sites with dead trees (or stumps)
- Predictions on Health status vary the model is good at predicting if the tree is alive, but more information is needed to predict if it is in sub-optimal health
- Most importantly: just go outside and check! Call 311 if you see a tree in need.

- Next Steps:
 - Partner with parks department to revisit trees in suboptimal health, and gather better data parameters in order to better tune the mode
 - Gather incremental data to increase performance:
 - Zoning district, air quality, demographics of surrounding population

Questions

