MONASH UNIVERSITY FOUNDATION YEAR

MUF0092 MATHEMATICS UNIT 2: CALCULUS, PROBABILITY AND STATISTICS FORMULA SHEET

CALCULUS

$\frac{d}{dx}(x^n) = nx^{n-1},$	$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1,$	
where n is a rational number	where n is a rational number	
$\frac{d}{dx}(e^{ax}) = ae^{ax}$	$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx}(\log_e x) = \frac{1}{x}$, where $x > 0$	$\int \frac{1}{x} dx = \log_e x + c, \text{ where } x \neq 0$	
$\frac{d}{dx}(\sin ax) = a\cos ax$	$\int \sin ax dx = -\frac{1}{a} \cos ax + c$	
$\frac{d}{dx}(\cos ax) = -a\sin ax$	$\int \cos ax dx = \frac{1}{a} \sin ax + c$	
$\frac{d}{dx}(\tan ax) = \frac{a}{\cos^2 ax} = a\sec^2 ax$	Average Value of $f(x) = \frac{1}{b-a} \int_a^b f(x) dx$	

PROBABILITY AND PROBABILITY DISTRIBUTIONS

$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$	${}^{n}P_{r} = \frac{n!}{(n-r)!}$
$\Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)}$	${}^{n}C_{r} = \frac{n!}{(n-r)! r!}$

PROBABILITY DISTRIBUTIONS FOR DISCRETE RANDOM VARIABLE X

$E(X) = \sum x \cdot p(x) = \sum x \cdot \Pr(X = x)$	E(aX+b)=aE(X)+b	
$Var(X) = \sum (x - \mu)^2 p(x) = \sum (x - \mu)^2 Pr(X = x) = E(X^2) - [E(X)]^2$		
$Var(aX + b) = a^2 Var(X)$	$SD(X) = \sqrt{Var(X)}$	

BINOMIAL DISTRIBUTION FOR DISCRETE RANDOM VARIABLE X

$Pr(X = x) = {}^{n}C_{x}p^{x}(1-p)^{n-x}$	E(X) = np
Var(X) = np(1-p)	

CONTINUOUS PROBABILITY DISTRIBUTION

$$Pr(a < X < b) = \int_{a}^{b} f(x)dx$$

$$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x)dx$$

$$\mu = \int_{-\infty}^{\infty} x f(x)dx$$

NORMAL DISTRIBUTION

$$z = \frac{x - \mu}{\sigma}$$

STATISTICS

Mean		$\bar{x} = \frac{\sum x}{n}$		
Interval for identifying	outliers	$[Q_1 - 1.5 \times$	$IQR, Q_3 + 1.5 \times IQR$	
Population standard deviation		$\sigma_x = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$		
Sample standard deviation		$s_x = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$		
Coefficient of determination	r^2	Pearson's correlation coefficient	$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{(n - 1)s_x s_y}$	
Least-squares regression	s regression line If $y = ax + b$ then, $a = r \frac{s_y}{s_x}$ and $b = \overline{y} - a\overline{x}$			
Residual = observed value - predicted value				