EECS 498.007 / 598.005 Deep Learning for Computer Vision Fall 2019 Sample Midterm Exam

October 21, 2019

Full Name:				
UM Uniquame (Username):			
UM-ID (Number	c):			
	Question	Score		
	True/False (8 pts)			
	Multiple Choice (12 pts)			
	Short Answer (12 pts)			
	Total (32 pts)			
• The exam is 1 hour	15 minutes			
• The sample exam should have 5 pages – make sure you have them all				
• The exam is closed-b	book, closed-internet			
• You may use one page (max $8.5^{\circ} \times 11^{\circ}$) of handwritten notes				
• This sample exam	is significantly shorter than the fu	ll exam		
I understand and agree	to uphold the Honor Code during this e	exam.		
Signature:		Date:		

Good luck!

1 True / False (8 points)

Fill in the circle next to True or False, or fill in neither. Fill it in completely like this: \bullet . No explanations are required.

Scoring: Correct answer is worth 2 points. To discourage guessing, incorrect answers are worth -1 points. Leaving a question blank will give 0 points.

1.1	After implementing a neural network, your numeric gradients do not match your analytic gradient likely cause of this problem is that you are optimizing the network using Adam instead of SGD.		
	0	True	○ False
1.2 If the input to a CNN (without batch normalization) is a zero image (all zeros), then the class probability will come out uniform.			
		True	○ False
1.3 Turning off L2 weight regularization will likely lead to higher accuracy on the training set.			
	0	True	○ False
1.4	If a neuron with the ReLU activation function $(y = relu(Wx + b))$ receives input x that is all negative then the final (not local!) gradient on its weights and biases will be zero (i.e. none of its parameters we update at all).		
	\bigcirc	True	○ False

2 Multiple Choice (12 points)

Fill in the circle(s) next to your answer(s). Fill them in completely, like this: \bullet . No explanations are required. For each question, mark all answers that apply.

Scoring: Each question is worth 4 points. Each answer within each question is worth one point. Example: If the correct answers are A and B, and you choose A and C, then you receive 2/4 points for the question: one point for correctly choosing A, and one point for correctly not choosing D.

	a start training your Neural Network but the total loss (cross entropy loss $+$ regularization loss) is nost completely flat from the start. What could be the cause?
O A	: The learning rate could be too low
ОВ	: The regularization strength could be too high
O C	: The class distribution could be very uneven in the dataset
O D	: The weight initialization scale could be incorrectly set
eve Ima	VGGNet only uses a sequence of 3x3 CONV with stride 1 pad 1 and 2x2 POOL stride 2 pad 0 layers. It needs transitions to Fully Connected layers and the classifier. There are 5 POOL layers in total. On ageNet, the VGGNet takes 224x224 images as input. If we take this VGGNet trained on ImageNet, I try to run it at test time with a 32x32 input image (e.g. CIFAR-10 image):
(A	: The code would crash on the very first CONV layer because $3x3$ filters with stride 1 pad 1 wouldn't "fit" across $32x32$ input
ОВ	: The amount of memory needed to store the forward activations in the first CONV layer would be reduced by a factor of 7 (since $224/32 = 7$)
\bigcirc C	: The network would run fine until the very first Fully Connected layer, where it would crash
O D	: The network would run forward just fine but its predictions would, of course, be ImageNet class predictions
2.3 A r	nax pooling layer in a ConvNet:
(A	: Is approximately as fast to compute in both forward and backward pass as a CONV layer (with the same filter size and strides).
ОВ	: Is similar to batch normalization in that it will keep all of your neuron activities in a similar range.
O C	: Could contribute to difficulties when comparing numeric and analytic gradients (higher error than usual, as in the ${\rm SVM}$).
O D	: Could contribute to the vanishing gradient problem (recall: this is a problem where by the end of a backward pass the gradients are very small)

3 Short Answer (12 points)

Answer each question in provided space.

3.1 Simple ConvNet (12 points)

Consider the following 1-dimensional ConvNet, where all variables are scalars:

- (a) (1 point) List the parameters in this network.
- (b) (3 points) Determine the following

$$\frac{\partial L}{\partial w_1} =$$

$$\frac{\partial L}{\partial w_0} =$$

$$\frac{\partial L}{\partial a} =$$

(c) (3 points) Given the gradients of the loss L with respect to the second layer activations v, derive the gradient of the loss with respect to the first layer activations z. More precisely, given

$$\frac{\partial L}{\partial v_1} = \delta_1 \qquad \frac{\partial L}{\partial v_2} = \delta_2$$

Determine the following

$$\frac{\partial L}{\partial z_1} =$$

$$\frac{\partial L}{\partial z_2} =$$

$$\frac{\partial L}{\partial z_3} =$$

(d) (3 points) Given the gradients of the loss L with respect to the first layer activations z, derive the gradient of the loss with respect to the convolution filter k. More precisely, given

$$\frac{\partial L}{\partial z_1} = \delta_1 \qquad \frac{\partial L}{\partial z_2} = \delta_2 \qquad \frac{\partial L}{\partial z_3} = \delta_3$$

Determine the following

$$\frac{\partial L}{\partial k_1} =$$

$$\frac{\partial L}{\partial k_2} =$$

$$\frac{\partial L}{\partial k_3} =$$

$$\frac{\partial L}{\partial b} =$$

(e) (2 points) Suppose we have a general 1D convolution layer

$$\begin{bmatrix} z_1 \\ \vdots \\ z_m \end{bmatrix} = \begin{bmatrix} k_1 & \cdots & k_d & & \\ & k_1 & \cdots & k_d & \\ & & \ddots & \\ & & & k_1 & \cdots & k_d \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} b \\ \vdots \\ b \end{bmatrix}$$

And we know that

$$\frac{\partial L}{\partial z_i} = \delta_i$$

Determine

$$\frac{\partial L}{\partial k_{i}} =$$

$$\frac{\partial L}{\partial b} =$$