3 Линейные функционалы

Опр. Числовая функция f, определенная на линейном пространстве L, называется ϕ ункционалом.

Функционал f называется $a\partial \partial umueным$, если

$$f(x+y) = f(x) + f(y) \quad \forall x, y \in L;$$

Функционал f, заданный на вещественном линейном пространстве, называется однородным, если

$$f(\lambda x) = \lambda f(x) \quad \forall x \in L, \quad \forall \lambda \in \mathbb{R}.$$

Функционал f, заданный на комплексном линейном пространстве, называется однородным, если

$$f(\lambda x) = \lambda f(x) \quad \forall x \in L, \quad \forall \lambda \in \mathbb{C}.$$

Аддитивный однородный функционал f называется линейным. Для него

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y) \quad \forall x, y \in L, \quad \forall \lambda, \mu.$$

Опр. Комплекснозначный функционал f, заданный на комплексном линейном пространстве L, называется conpsженно-однородным, если

$$f(\lambda x) = \overline{\lambda}f(x) \quad \forall x \in L, \quad \forall \lambda \in \mathbb{C}.$$

Аддитивный сопряженно-однородный функционал f называется conpяженно- линейным (или nonyлинейным). Для него

$$f(\lambda x + \mu y) = \overline{\lambda}f(x) + \overline{\mu}f(y) \quad \forall x, y \in L, \quad \forall \lambda, \mu \in \mathbb{C}.$$

Примеры.

- 1. Заданный на \mathbb{R}^m функционал $f(x) = \sum_{k=1}^m c_k x_k$ является линейным.
- 2. Заданный на \mathbb{C}^m функционал $f(x) = \sum_{k=1}^m c_k \overline{x}_k$ является сопряженно-линейным.
- 3. Заданный на $L_1(a,b)$ функционал $f(x) = \int_a^b x(t) \, dx$ является линейным, а функционал $f(x) = \int_a^b \overline{x}(t) \, dx$ полулинейным.
- 4. В пространстве C[a,b] можно определить линейный функционал $\delta_{t_0}(x)=x(t_0)$, где t_0 фиксированная точка из отрезка [a,b]. Его принято называть δ -функцией и обозначать

$$\delta_{t_0}(x) = \int x(t)\delta(t - t_0) dt,$$

где $\delta(t)$ – δ -функция Дирака, введенная Полем Дираком в 1926 г.

Геометрический смысл линейного функционала

Опр. Множество $\operatorname{Ker} f = \{x \in L \mid f(x) = 0\}$ называется *ядром* линейного функционала f.

Заметим, что $\operatorname{Ker} f$ является линейным подпространством в L. Действительно,

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y) = 0 \quad \forall x, y \in \text{Ker } f, \quad \forall \lambda, \mu.$$

Опр. Функционал f называется *нулевым* или *тривиальным*, если

$$f(x) = 0 \quad \forall \, x \in L,$$

то есть если $\operatorname{Ker} f = L$.

Теорема 3.1. Для нетривиального линейного функционала f его ядро $\operatorname{Ker} f$ является линейным подпространством в L коразмерности 1.

Доказательство. Возьмем произвольный элемент $x_0 \in L$, для которого $f(x_0) \neq 0$. Можно считать, что $f(x_0) = 1$.

Достаточно взять
$$x_0' = \frac{1}{f(x_0)}x_0$$
. Тогда $f(x_0') = \frac{1}{f(x_0)}f(x_0) = 1$.

Возьмем произвольный $x \in L$ и положим $y = x - f(x)x_0 \Leftrightarrow x = f(x)x_0 + y$. Заметим, что $f(y) = f(x) - f(x)f(x_0) = 0$. Поэтому $y \in \operatorname{Ker} f$ и

$$x = \alpha x_0 + y, \quad y \in \text{Ker } f. \tag{3.1}$$

Число $\alpha = f(x)$ определяется единственным образом. Поэтому это представление элемента x единственно. Таким образом

$$L = \operatorname{span} \{x_0\} \oplus \operatorname{Ker} f.$$

Теорема доказана.

Замечание. По своему ядру $\operatorname{Ker} f$ нетривиальный линейный функционал f восстанавливается с точностью до произвольного постоянного множителя.

Действительно, пусть f_1 – другой линейный функционал с тем же ядром. Воспользуемся представлением (3.1)

$$x = f(x)x_0 + y, \quad y \in \text{Ker } f.$$

и получим

$$f_1(x) = f(x)f_1(x_0) \quad \forall x \in L.$$

Таким образом, функционалы f и f_1 пропорциональны:

$$f_1(x) = Cf(x) \quad \forall x \in L.$$

Роль коэффициента пропорциональности играет $C = f_1(x_0)$.

Теорема 3.2. Для всякого подпространства L' коразмерности 1 существует такой нетривиальный линейный функционал f, что $\operatorname{Ker} f = L'$.

Доказательство. Пусть $L = \text{span } \{x_0\} \oplus L'$. Тогда для каждого $x \in L$ существуют единственные число $\alpha = \alpha(x)$ и элемент $y = y(x) \in L'$ такие, что

$$x = \alpha x_0 + y, \quad y \in L' \quad \forall x \in L.$$

Заметим, что α зависит от x линейным образом. Действительно, если

$$x_1 = \alpha_1 x_0 + y_1, \quad y_1 \in L',$$

 $x_2 = \alpha_2 x_0 + y_2, \quad y_2 \in L',$

ТО

$$\lambda x_1 + \mu x_2 = (\lambda \alpha_1 + \mu \alpha_2) x_0 + \lambda y_1 + \mu y_2, \quad \lambda y_1 + \mu y_2 \in L'.$$

Заметим, что $\operatorname{Ker} \alpha = \{x = 0 \cdot x_0 + y', y' \in L'\} = L'.$

Таким образом, $f = \alpha$ – нужный линейный функционал.

Теорема доказана.

Опр. Пусть L' – подпространство пространства L коразмерности 1. Тогда аффинное многообразие $M=x_0+L'$ называется $\mathit{гиперплоскостью}$, $\mathit{параллельной}$

nodnpocmpaнcmey L'.

Пусть f — нетривиальный линейный функционал. Тогда существует $x_0 \in L$ такой, что $f(x_0) = 1$. Кроме того $L' = \operatorname{Ker} f$ имеет коразмерность, равную 1. Поэтому множество

$$M = \{ x \in L \mid f(x) = 1 \}$$

является гиперплоскостью в L. Действительно,

$$x = f(x)x_0 + y, \quad y \in \text{Ker } f.$$

Поэтому

$$M = \{x = x_0 + y, y \in \text{Ker } f\} = x_0 + \text{Ker } f.$$

Обратно, для всякой гиперплоскости $M = x_0 + L'$ с $x_0 \notin L'$ найдется единственный нетривиальный линейный функционал f такой, что

$${x \in L \mid f(x) = 1} = M.$$

Действительно, в силу теоремы 3.2 существует нетривиальный линейный функционал f_0 с ядром, равным L'. Взяв $f(x) = \frac{1}{f(x_0)} f_0(x)$, получим нужный функционал.

Tаким образом, между нетривиальными линейными функционалами, определенными на L, и гиперплоскостями в L, не проходящими через точку 0, существует взаимно однозначное соответствие.

Домашнее задание.

Задачи 1.11 - 1.14, 1.17 из параграфа 1.1.

Задачи 2.1 - 2.4 из параграфа 1.2.

Задачи 3.1 - 3.4 из параграфа 1.3.