Untitled: A DirectX Game

Sam Drysdale

May 16, 2023

Contents

1	Summary	1
2	User Controls	1
3	Features	1
	3.1 Noise	1
	3.2 Procedural Terrain	1
	3.2.1 Case Study: Hexes	2
	3.2.2 Case Study: Landmarks	2
	3.3 Procedural Screen Textures	2
	3.3.1 Case Study: Blood Vessels	2
	3.3.2 Case Study: Runes	2
	3.4 Procedural Narrative	2
4	Code Organisation	2
•	4.1 Post-Processing	2
	4.2 GUI	2
	1.2 001	_
5	Evaluation	2
	5.1 Features	2
	5.2 Code Organisation	2
6	Conclusions	2
ъ		
Re	ferences	2
1	Summary	
2	User Controls	
3	Features	
3.1	Noise	
3.2	2 Procedural Terrain	

Introduce marching cubes as the central tenet of the modelling process...

[Starting point: the problem of concavity!]

Definitive... Paul Bourke's Polygonising a scalar field (1994)...

- 3.2.1 Case Study: Hexes
- 3.2.2 Case Study: Landmarks
- 3.3 Procedural Screen Textures
- 3.3.1 Case Study: Blood Vessels
- 3.3.2 Case Study: Runes
- 3.4 Procedural Narrative
- 4 Code Organisation
- 4.1 Post-Processing
- 4.2 GUI

[Include HDRR/bloom here...]

- 5 Evaluation
- 5.1 Features
- 5.2 Code Organisation
- 6 Conclusions

References

Bourke, P. (1994), 'Polygonising a Scalar Field', Available at: http://paulbourke.net/geometry/polygonise/. (Accessed: 9 February 2023).