Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10	BS	10/08/21
----------------	----	----------

CONTINUOUS INTERNAL EVALUATION- 2

Dept:BS	Sem /Div:II/A,B,C,D,E	Sub:Advanced Calculus and	S Code:18MAT21
	&F	Numerical Methods	
Date:30-08-2021	Time: 9:30-11:00 am	Max Marks: 50	Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

- QN	Questions	Marks	RBT	COs		
VI	PART A	Marks	KDI	COS		
1 a	Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} + a^2y = secax$	8	L2	CO2		
b	Solve: $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 9 y = 3 x^2 + \sin(3 \log x)$	8	L3	CO2		
С	Solve: $(3x+2)^2 \frac{d^2 y}{dx^2} + 3(3x+2) \frac{dy}{dx} - 36y = 3x^2 + 4x + 1$	9	L3	CO2		
	Using variation of parameters find the solution of $(D^2-2D+1)y = \frac{e^x}{x}$	8	L2	CO2		
b	Solve $(2x+1)^2 y^{11} - 6(2x+1)y^1 + 16y = 8(2x+1)^2$	8	L3	CO2		
c	Solve $xy^{11} - \frac{2y}{x} = x + \frac{1}{x^2}$	9	L3	CO2		
	PART B					
3 a	Discuss the nature of series $\frac{1}{2} + (\frac{2}{3})x + (\frac{3}{4})^2 x^2 + (\frac{4}{5})^3 x^3 + \dots$	8	L3	CO4		
b	Express $f(x)=x^3+2x^2-x-3$ interms of Legendre polynomials	8	L2	CO4		
С	With usual notation, show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} sinx$	9	L3	CO4		
4 a	Test for the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n!}{(n^n)^2}$	8	L3	CO4		
b	Prove that $J_{\frac{-1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$	8	L3	CO4		
c	If $x^3+2x^2-x+1=aP_0(x)+bP_1(x)+cP_2(x)+dP_3(x)$ find a,b,c,d	9	L2	CO4		

Pair.

Atamala.

Prepared by: Ravishankar N K HOD: M. Ramananda Kamath