BLOCKCHAIN AND DEEP REINFORCEMENT LEARNING EMPOWERED INTELLIGENT 5G BEYOND

資科碩專一108971005 黃俊鈞

AGENDA

- 研究簡介
- 實證案例介紹
- 整體架構綜覽
- D2D caching 架構設計
- 區塊鏈運用機制
- 深度強化學習運用機制
- 其他區塊鏈應用場景
- 研究展望

研究簡介

本研究結合了區塊鏈與人工智慧雙方的優點,應用 在無線網路通信架構當中。在作者看來,區塊鏈與 人工智慧分別具備了以下的特性:

區塊鏈

可建構安全、去中心化之資源共享環境

人工智慧

可解決高複雜度、不確定的、時間變異的問題

本研究結合這兩項技術,提出一套資源快取機制架構的實證,以及相關的應用場景介紹

實證案例介紹

D2D caching 方案

起因

隨著資訊量越來越大,對於 MBS 的儲存空間相對形成挑戰,因此作者提出了透過 D2D 的方式進行快取儲存機制。將資料快取在 mobile devices 上,也能有效地減少回溯(backhaul)流量

區塊鏈作用點

透過區塊鏈的交易安全機制,提供 devices 之間不需 彼此信任也能夠進行資料交換與資源交易的基礎

人工智慧作用點

透過人工智慧的學習與調校,有效地預測 caching 的供需雙方連線,以優化資源分配策略、提升整體系統效益

整體架構綜覽

D2D CACHING 架構設計

區塊鏈運用機制

在 MBS 中建置區塊鏈節點,在 mobile device 上運行交易行為。當 caching provider 方提供裝置上的 caching 時,caching requester 便與之進行交易,並且這樣的交易行為會記錄在 MBS 的區塊中

系統初始化階段

- 1. 每一個 mobile device 都需要向 MBS 進行認證 (使用橢圓曲線數位簽章及非對稱式加密技術)
- 2. 取得認證成功後的 key pair 與 certification

選擇 D2D CACHING 角色

- 儲存較多資源的作為 provider
- 其他的作為 requester

進行交易

- 1. requester 將資源需求與時間發送給最近的 MBS
- 2. MBS 匯集 requests 後向 providers 發送廣播
- 3. providers 提供自己資源內容
- 4. MBS 透過 DRL 演算法計算最佳的配對與資源分配 模式
- 5. 建立配對後成立交易

打包建立區塊

- 1. MBS 匯集交易記錄,將之加密簽章,以確保精確 性
- 2. MBS 將交易記錄廣播出去
- 3. MBS 群體透過 PBFT 共識演算法,選出 leader 負責驗證交易、打包區塊

完成共識協議

- 1. 當 leader 發佈打包的區塊後
- 2. 其他的 MBS 一同驗證這個區塊,並且發佈驗證結果
- 3. leader 會確認結果,以及決定是否需要再次驗證
- 4. 沒問題後,所有的 MBS 會保存區塊以確保可溯性

DRL 運用機制

透過 DRL 學習、選擇最適的供需雙方配對,以及最佳的網路資源配置模式,以最大化系統效益。在此 DRL 演算法中,具有以下三項關鍵元素:

狀態(STATE)

狀態反映了系統每一個當下的資源情形,包含以下 三種資源:

- 1. 需求方的內容
- 2. 供給方的資源
- 3. 供給方的網路頻寬

行動(ACTION)

行動代表每一次的供需雙方配對的執行,具有以下 兩項內容:

- 1. caching 內容配對與否
- 2. 雙方頻寬

獎勵(REWARD)

基於狀態與行動的結果,每次的計算與配對均會獲得獎勵,而在這個案例中,系統效益的評估值即為 獎勵值

類神經網路結構

本研究所使用的演算法,是 deep deterministic policy gradient method 的方式,其 primary network 舆 target network 皆具有兩個不同作用的類神經網路:

- Actor Network:用以發現 policy
- Critic Network:用以決定 Actor的表現情況以及估算價值,以輔助 Actor 找出最適的 policy

DRL 執行效果

加入 LEARNING RATE 的結果

其他應用場景

頻譜共享

能源交易

運算卸載

研究展望