

COMMISSIONER FOR PATENTS
UNITED STATES PATENT AND TRADEMARK OFFICE
WASHINGTON, D.C. 2023 I
WWW.USDIO.000

#24

NOV 20 2001

David T. Read Acting Director Health Assessment Policy Staff, CDER Food and Drug Administration 1451 Rockville Pike, HFD-7 Rockville, MD 20852

Dear Mr. Read:

Transmitted herewith is a copy of the application for patent term extension of U.S. Patent No. 4,690,951. The application was filed on February 18, 2000, under 35 U.S.C. § 156.

The patent claims a product that was subject to regulatory review under the Federal Food, Drug and Cosmetic Act. Subject to final review, the subject patent is considered to be eligible for patent term restoration. Thus, a determination by your office of the applicable regulatory review period is necessary. Accordingly, notice and a copy of the application are provided pursuant to 35 U.S.C. § 156(d)(2)(A).

Inquiries regarding this communication should be directed to the undersigned at (703) 306-3159 (telephone) or (703)872-9411 (facsimile).

Karin Tyson

Senior Legal Advisor

Office of Patent Legal Administration
Office of the Deputy Commissioner
for Patent Examination Policy

cc:

Frederick D. Hunter

Eli Lilly & Co.

Patent Division (FDH), Lilly Corporate Center

Indianapolis IN 46285

Re: Paylean

Docket No. 01E-0229

Ractopamine Patent Extension Exhibit Listing

Exhibit No.:	Description :
I	Label for Paylean [™]
II	Copy of U.S. Patent 4,690,951
III	Certificate of Correction
IV	Maintenance Fee Receipt
V	Letter Transmitting INAD to FDA
VI	Copy of FDA Letter Acknowledging Receipt and Assigning INAD No. 4231
VII	Letter Transmitting NADA to fDA
VIII	FDA Letter Acknowledging Receipt
IX	FDA Approval Letter
X	Description of Significant Activities
XI	U.S. Patent 4,734,437
XII	U.S. Patent 4,849,453
XIII	U.S. Patent 4,992,473
XIV	U.S. Patent 5,643,967

Exhibit I

Label for Paylean[™]

ELANCO

Net Weight 25 lb (11.34 kg)

Type A Medicated Article

Do not feed undiluted.

Active Drug Ingredient: ractopamine hydrochloride – 9 g per lb (20 g per kg)

Important: Must be thoroughly mixed into feeds before use. Follow label

directions.

Indication: For increased rate of weight gain, improved feed efficiency, and

increased carcass leanness in finishing swine fed a complete ration containing at least 16% crude protein from 150 lb (68 kg)

to 240 lb (109 kg) body weight.

Indications	Appropriate Concentration of Ractopamine in Type C Medicated Feed
Increased Rate of Weight Gain, Improved Feed Efficiency, and Increased Carcass Leanness	4.5 grams/ton (5 ppm)
Improved Feed Efficiency and Increased Carcass Leanness	4.5 to 18 grams/ton (5 ppm to 20 ppm)

Inert ingredients: Ground corncobs.

Carcass Measurements	Effect of Ractopamine		
	4.5 grams/ton (5 ppm)	9 - 18 grams/ton (10 - 20 ppm)	
Carcass Fat	NC	↓	
10th Rib Backfat (3/4 location)	NC	↓	
Last Rib Backfat (midline)	NC	NC	
Loineye Area (10th rib)	NC	↑	
Rate of Lean Gain	NC	1	
Efficiency of Lean Gain	NC	↑	
Dressing Percentage	NC	↑	

NC= No Change, \uparrow = increased, \downarrow = decreased

Mixing Directions: Thoroughly mix Paylean 9 Type A Medicated Article into one ton of appropriate feed ingredients or diluents according to the table below to obtain the proper concentration in the Type B Medicated Feed (maximum 3600 g/ton). The following table gives examples of how some Type B Medicated Feed concentrations can be prepared:

Pounds of Paylean 9 To Add Per Ton	Resulting Ractopamine Concentration in Type B Medicated Feed	
To Make a Type B Medicated Feed		
100	900	0.45
200	1,800	0.90
300	2,700	1.35
400	3,600	1.80

Thoroughly mix Paylean 9 Type A Medicated Article into one ton of complete swine feed according to the table below to obtain the proper concentration in the Type C Medicated Feed. Prepare an intermediate pre-blend of the premix prior to mixing in a complete feed. Thoroughly mix the required amount in a convenient quantity of feed ingredients then add to the remaining feed ingredients to make a ton of complete feed.

Pounds Paylean 9 To Add Per Ton of Type C Medicated Feed	1	actopamine Concentration in e C Medicated Feed
0.5	4.5	grams/ton (5 ppm)
1.0	9	grams/ton (10 ppm)
1.5	13.5	grams/ton (15 ppm)
2.0	18	grams/ton (20 ppm)

Feeding Directions: Feed continuously to finishing swine as the sole ration from 150 lb (68 kg) to 240 lb (109 kg) body weight.

CAUTION: Not for use in breeding swine.

WARNING: The active ingredient in Paylean, ractopamine hydrochloride, is a beta-adrenergic agonist. Individuals with cardiovascular disease should exercise special caution to avoid exposure. Not for use in humans. Keep out of the reach of children. The Paylean 9 formulation (Type A Medicated Article) poses a low dust potential under usual conditions of handling and mixing. When mixing and handling Paylean, use protective clothing, impervious gloves, protective eye wear, and a NIOSH-approved dust mask. Operators should wash thoroughly with soap and water after handling. If accidental eye contact occurs, immediately rinse eyes thoroughly with water. If irritation persists, seek medical attention. The material safety data sheet contains more detailed occupational safety information. To report adverse effects, access medical information, or obtain additional product information, call 1-800-428-4441.

Store at room temperature.

Expiration Date and Lot Number are printed on the bag. Not to be used after the expiry date.

Paylean® 9

Elanco Animal Health A Division of Eli Lilly and Company Indianapolis, IN 46285, U.S.A.

Questions or Comments: Call 1-800-428-4441

Paylean® is a registered trademark of Eli Lilly and Company

Exhibit II

Copy of U.S. Patent 4,690,951

United States Patent [19]

Anderson et al.

[11] Patent Number:

4,690,951

[45] Date of Patent:

Sep. 1, 1987

[54] GROWTH PROMOTION

[75] Inventors: David B. Anderson, Greenfield; Klaus K. Schmiegel, Indianapolis; Edward

L. Veenhuizen, Greenfield, all of Ind.

[73] Assignee: Eli Lilly and Company, Indianapolis,

Ind.

[21] Appl. No.: 811,059

[22] Filed: Dec. 19, 1985

Related U.S. Application Data

[60] Division of Ser. No. 628,002, Jul. 5, 1984, abandoned, which is a continuation of Ser. No. 462,587, Jan. 31, 1983, abandoned.

		A611	
[52]	U.S. Cl.	••••••	514/653
		Search	

[56] References Cited

U.S. PATENT DOCUMENTS

4,086,272	4/1978	Baile et al	60/559 D
4,279,925	7/1981	Keasling Haynes Haynes	. 424/311
4,338,333	7/1982	Ainsworth et al	. 424/309

FOREIGN PATENT DOCUMENTS

19241	9/1983	Australia .
0007205	1/1980	European Pat. Off
6735	1/1980	European Pat. Off
26298	4/1981	European Pat. Off.
49728	4/1982	European Pat. Off
673994	3/1967	South Africa.
793295	2/1981	South Africa .
793296	2/1981	South Africa .

OTHER PUBLICATIONS

Van Dijk et al., Recueil, 92, 1281-1297 (1973). Baker et al., Use of an Adrenergic Agonist to Alter Muscle and Fat Deposition in Lambs, Fed. Prod., 42, 1983 (3069).

Ricks et al., Use of a β -Agonist to Alter Fat and Muscle Deposition in Steers, Fed. Proc., 42, 1983 (3070). Dalrymple et al., Use of the β -Agonist Clenbuterol to Alter Carcass Composition in Poultry, Fed. Proc., 42, 1983 (2203).

Borsini et al., Life Sciences, 30, pp. 905-911 (1982).

Primary Examiner—Frederick E. Waddell
Attorney, Agent, or Firm—Charles W. Ashbrook; Leroy
Whitaker

[57] ABSTRACT

β-Phenethanolamines are effective in promoting growth and improving feed efficiency and leanness in animals.

9 Claims, No Drawings

GROWTH PROMOTION

This is a division of Ser. No. 628,002 filed July 5,1984, now abandoned, which was a continuation of Ser. No. 5 462,587 filed Jan. 31, 1983, now abandoned.

BACKGROUND OF THE INVENTION

The chemistry and use of β -phenethanolamines has been extensively investigated. A number of these compounds have been reported to have beneficial cardiac activities; see U.S. Pat. No. 3,987,200. Such compounds also are known to have sympathomimetic activity, and have found utility as utero-relaxing agents; Van Dijk et al., Recueil. 92, 1281 (1973). More recently, a group of β -phenethanolamines have been reported as possessing anti-hyperglycemic activity, and have been found effective in promoting the loss of weight in animals, EPO No. 6735 published Jan. 9, 1980.

An object of this invention is to provide a new use for certain β -phenethanolamines. This invention provides a method for promoting the growth of domesticated animals employing β -phenethanolamines.

SUMMARY OF THE INVENTION

This invention provides a method for increasing weight gain in animals and improving the efficiency of feed utilization and the quality of the carcass. The invention is more particularly directed to a method for promoting growth and improving feed efficiency and leanness comprising administering an effective amount of a compound having the formula

wherein:

R1 is hydrogen, hydroxy, or methoxy;

R2 is hydrogen or fluoro,

R3 is hydrogen or C1-C2 alkyl;

R4 is hydrogen or methyl;

R⁵ is hydrogen, fluoro, nitro, hydroxy, SO₂CH₃ or CONH₂; provided that R¹ is hydrogen only when R⁵ is nitro or SO₂CH₃; and the acid addition salts thereof.

A preferred method for promoting growth and improving feed efficency and leanness according to this invention employs a compound of the above formula 50 wherein R¹ is hydroxy, R² is hydrogen, R³ is hydrogen or methyl and R⁴ is methyl. The method is most preferably practiced employing a compound wherein R¹ and R⁵ both are hydroxy and R² and R³ both are hydrogen and R⁴ is methyl. When R¹ is hydroxy or methoxy, it preferably is in the para position. When R⁵ is other than hydrogen, it also is preferably in the para position.

This invention also provides an animal feedstuff comprising a β -phenethanolamine of the above formula together with a suitable carrier therefor.

DETAILED DESCRIPTION OF THE INVENTION

The compounds employed in the method provided by this invention are either known in the art or are 65 readily prepared by well known synthetic procedures. A particularly preferred method employs 1-(3-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-

propylamino]-ethanol. This β -phenethanolamine is disclosed in South African Patent No. 673,994 published in May, 1967. The most preferred embodiment of this invention employs 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-propylamnol]ethanol, a compound disclosed as having utero-relaxing activity by Van Dijk et al. in *Recueil*, 92 1281 (1973).

The compounds to be employed in the method of this invention are readily prepared by reaction of a styrene oxide with a 3-phenylpropylamine derivative. For example, a styrene oxide such as 2-fluorostyrene oxide can be reacted with about an equimolar quantity of an amine such as 1-methyl-3-(4-nitrophenyl)propylamine in an unreactive organic solvent such as ethanol, methanol, n-propanol, dioxane, or the like. The reaction generally is carried out at a temperature of about 50° to about 120° C., and at such temperature the reaction routinely is substantially complete within about 6 to about 10 hours. The product, a β -phenethanolamine, is readily isolated by simply removing the reaction solvent, for instance by evaporation under reduced pressure, and further purification can be accomplished if desired by standard techniques, including crystallization, chromatography, acid-base extraction, and the like.

An alternative method for preparing the β -phenethanolamines to be employed in the present method comprises reacting a mandelic acid derivative with a 3-phenylpropylamine derivative to provide an amide, which upon subsequent reduction provides a compound of the above formula. For example, a phenylpropylamine derivative such as 1-methyl-3-(3-fluorophenyl)-propylamine can be reacted with an acylating agent such as a hydroxy protected mandelic acid halide, or preferably simply reacted with a mandelic acid in the presence of a common peptide coupling reagent such as N,N'-dicyclohexylcarbodiimide, carbonyldiimidazole, N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline,

commonly referred to as EEDQ. The direct coupling reaction generally is conducted in an organic solvent such as benzene or N,N-dimethylformamide, and normally is complete after about 2 to 48 hours when carried out at about -30° to about 100° C. The product is an amide that is readily isolated by simply filtering the reaction mixture and then removing the reaction solvent. The amide thus formed is next reduced by reaction with a common reducing agent such as diborane or the like to provide a β -phenethanolamine defined by the above formula.

A similar, yet alternative, method of synthesis comprises reacting a phenethanolamine with a phenylethyl ketone to provide a Schiff base, which upon reduction gives a compound to be employed in the present method. For example, a phenethanolamine such as 2-hydroxy-2-(4-hydroxyphenyl)ethylamine can be reacted with a ketone such as methyl 2-(4-hydroxyphenyl)ethyl ketone to provide the corresponding imine, which upon reduction, for instance with 5% palladium on carbon, provides 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol.

It should be noted that the compounds to be employed in the method of this invention possess at least one asymmetric center (i.e. the carbinol center), and when R^3 and R^4 differ, the compounds possess two asymmetric centers. Since employment of individual optical isomers necessitates preparing the β -phenethanolamines from optically active starting materials, or using costly separation procedures, a preferred embodi-

ment of this invention employs a mixture of optical isomers. For example, 1-(4-hydroxyphenyl)-2-[1-meth-yl-3-(4-hydroxyphenyl)propylamino]ethanol is preferably prepared from racemic mixtures of starting materials, e.g. dl-1-methyl-3-(4-hydroxyphenyl)propylamine and dl-4-hydroxystyrene oxide, to provide a mixture of all four possible optical isomers of the product. The mixture of optical isomers is employed in the method without subsequent separation of isomers.

Since the β-phenethanolamines to be employed in the present method are inherently basic, they readily form acid addition salts with any number of inorganic and organic acids. These salts can be employed in the method of the invention, and often are preferred to the free base since they generally are more soluble in solvents such as water and are more conveniently formulated as an animal feedstuff. Acids commonly employed to form acid addition salts include mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, perchloric acid and the like; and organic acids such as acetic acid, citric acid, succinic acid, para-toluene sulfonic acid, methanesulfonic acid, lactic acid and the like. Preferred salts to be employed in the present method include the hydrochlorides and hydrobromides.

Typical β -phenethanolamines to be employed in the method of this invention include the following:

- 1-(3-hydroxyphenyl)-2-[1-methyl-1-ethyl-3-(4-
- aminocarbonylphenyl)propylamino]ethanol;
- dl-(2-fluoro-4-hydroxyphenyl)-2-[1-methyl-3-(4-fluoro-phenyl)propylamino]ethanol;
- 1-(4-hydroxyphenyl)-2-[3-(3-nitrophenyl)
 - propylamino]ethanol;
- 1-(3-hydroxy-2-fluorophenyl)-2-[3-(4-methylsulfonyl)propylamino]ethanol;
- 1-(4-methoxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol;
- 1-phenyl-2-[1,1-dimethyl-3-(3-methylsulfonylphenyl)propylamino]ethanol;
- -1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-(4-hydroxy-phenyl)propylamino]ethanol hydrochloride;
- 1-(phenyl)-2-[1-methyl-3-(4-nitrophenyl)propylamino]ethanol;
- 1-(3-hydroxyphenyl)-2-[1-methyl-3-(4-fluorophenyl)propylaino]ethanol succinate;
- 1-(4-hydroxyphenyl)-2-[1-methyl-1-ethyl-3-(aminocarbonylphenyl)propylamino]ethanol;
- 1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-phenyl-propylamino]ethanol hydrobromide; and
- d-1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-(4-hydroxyphenyl)propylamino]ethanol.

The method of promoting growth and improving leanness and feed efficiency provided by this invention is practiced by administering an effective amount of a compound defined above to a warm-blooded animal 55 that receives a nutritionally adequate diet. The method generally will be practiced on domesticated animals raised for human meat consumption, for example grower/finisher swine, poultry, ruminants and the like. In a preferred embodiment, the growth of pigs, chickens and 60 turkeys is promoted employing a β -phenethanolamine. Another preferred embodiment is practiced in ruminants such as cattle, sheep and goats. The method of improving leanness is not limited to meat producing animals, and can be practiced on other warm-blooded 65 animals, including dogs and cats. This latter embodiment is particularly useful when it is desired to maintain mature animals in a relatively lean physical state.

The method of the invention is preferably practiced by orally administering an effective amount of a β phenethanolamine to an animal. Other routes of administration can be employed, for instance intramuscular or intravenious injection; however, such routes are less practical. The amount to be administered to an animal is an amount that is effective in causing a promotion of growth, or an improvement in the efficiency of utilization of food, or an improvement in carcass quality of the animal, for instance in the form of less fatty tissue and improved leanness. The effective amount to be administered will vary somewhat depending upon the particular animal species being treated and the particular active ingredient employed, but generally will be from about 1 to about 1000 parts per million (ppm) of total daily feed intake. Such amount will provide a dosage of about 0.05 to about 50 mg/kg. A preferred embodiment employs about 1 to about 200 ppm, and more preferably from about 5 to about 100 ppm. A typical amount of active ingredient to be administered to swine will be from about 5 to about 40 ppm. For example, when practicing the method in animals such as ruminants or swine, the compound will be added to the daily feed ration at about 5 to about 100 parts per million of the daily feed

For oral administration, the active β -phenethanolamine is preferably admixed with suitable carriers or diluents commonly employed in animal husbandry. 30 Animal feedstuffs comprising a β -phenethanolamine growth promoter as defined herein are provided as a further embodiment of this invention. Typical carriers and diluents commonly employed in such feedstuffs include corn meal, soybean meal, alfalfa meal, rice hulls, soybean mill run, cottonseed oil meal, bone meal, ground corn, corncob meal, sodium chloride, urea, cane molasses and the like. Such carriers promote a uniform distribution of the active ingredient in the finished feed ration into which such compositions are added, thereby 40 ensuring proper distribution of the active ingredient throughout the feed. The feedstuff composition provided by the invention will contain about 5 to about 95 percent by weight of active ingredient, and more typically about 10 to about 50 percent by weight. As al-45 ready noted, the acid addition salts of the active phenethanolamines are generally preferred for oral administration, and are thus the preferred form of active ingredient for the feedstuff compositions of the invention.

While the preferred method for orally administering the growth promoters is via the daily feed rations, the compounds can be incorporated into salt blocks and mineral licks, as well as being added directly to drinking water for convenient oral consumption. The compounds can additionally be formulated with polymorphous materials, waxes and the like for long-term controlled release, and administered to an animal as a bolus or tablet only as needed to maintain the desired daily payout of active ingredient.

For parenteral administration, the β -phenethanolamines can be admixed with conventional carriers such as corn oil, sesame oil, carbowax, calcium stearate and the like. Such formulations can be molded into pellets and administered as an injection or as a slowrelease subcutaneous implant. Such administrations can be made as often as needed to ensure the proper dosing of active ingredient to obtain the desired rate of growth promotion and improvement in leanness and feed efficiency.

While the compounds described herein are effective in promoting average daily weight gain and improving feed efficiency in animals, they also cause observable improvement in the quality of the meat produced. For example, the compounds appear to mobilize free fatty 5 acids from fatty tissue and depress the deposition of fat as the animals gain weight. This reduction of fat is beneficial since the animal being treated according to the invention gains weight in the form of more useable lean meat, thereby reducing waste and improving the value 10 of the animal thus treated. Also, mature animals that are not subject to additional weight gain can be maintained in a desirably lean form by administering a compound as described herein.

The practice of the present invention is more fully 15 illustrated by the following detailed examples.

EXAMPLE 1

Preparation of dl-4-(benzyloxy)mandelic acid

A solution of 5.0 g of dl-4-hydroxy mandelic acid, 11.0 g of benzyl chloride and 10.0 g of potassium carbonate in 50 ml of methanol was heated to reflux and stirred for seventy-two hours. The reaction mixture was cooled to room temperature and diluted with 50 ml of 25 water. The aqueous solution was washed twice with 50 ml portions of benzene, and then was acidified with concentrated hydrochloric acid. The aqueous acid solution was extracted three times with 50 ml portions of ethyl acetate. The organic extracts were combined, 30 washed with water and with saturated sodium chloride solution and dried. Removal of the solvent by evaporation under reduced pressure provided 5.7 g of a solid which was then recrystallized from 300 ml of toluene to 153°-155° C.

Analysis calc. for C15H14O4: Theory: C, 69.76; H, 5.46; Found: C, 69.96; H, 5.33.

EXAMPLE 2

Resolution of dl-4-(benzyloxy)mandelic acid to provide R(-)-(4-benzyloxy)mandelic acid

To a stirred solution of 185.6 g of dl-4-benzyloxy)mandelic acid in 2500 ml of ethyl acetate at 80° C. was 45 added in one portion 43.6 g of R(+)- α -methylbenzylamine. The reaction mixture was cooled to room temperature, and the precipitated solid which had formed was collected by filtration and washed with fresh ethyl acetate. The solid was recrystallized twice from a solution 50 of ninety percent ethanol in water to provide 91.4 g of the R(+)- α -methylbenzylamine salt of R(-)-4-(benzyloxy)mandelic acid. M.P. $208.5-209.5^{\circ}$ C. $[\alpha]_D$ -38.6° , $[\alpha]_{365} - 155.3^{\circ}$ (MeOH)

Analysis calc. for C23H25NO4: Theory: C, 72.80; H, 6.64; N, 3.69; Found: C, 72.95; H, 6.83; N, 3.95.

To a stirred suspension of 91.4 g of the above-named salt in 2000 ml of ethyl acetate was added 50 ml of ten percent aqueous hydrochloric acid solution. The aque- 60 ous acid solution was separated, and the organic layer washed with water and dried. Removal of the solvent by evaporation under reduced pressure afforded 54.5 g of R(-)-4-(benzyloxy)mandelic acid, i.e. R(-)-2-(4benzyloxyphenyl)-2-hydroxyacetic acid. 155°-161° C. $[\alpha]_D - 102.2$ °; $[\alpha]_{365} - 410.6$ ° (MeOH) Analysis calc. for C15H14O4: Theory: C, 69.76; H, 5.46;

Found: C, 69.67; H, 5.41. EXAMPLE 3

Preparation of

dl-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 40.0 g of methyl 2-(4-benzyloxyphenylethyl ketone and 160 ml of anhydrous ammonia in 300 ml of ethanol was heated at 75° C. and stirred for two hours. After cooling the reaction mixture to room temperature, 4.0 g of Raney nickel was added in one portion, and the reaction mixture then was stirred at 25° C. for twelve hours under a hydrogen atmosphere at 300 psi. The reaction mixture next was filtered and the filtrate was concentrated by evaporation of the solvent under reduced pressure to provide an oil. The oil was dissolved in 120 ml of 3 N hydrochloric acid, from which the product as a hydrochloride salt precipitated. The salt so formed was collected by filtration and recrystallized from methanol and toluene to provide 36.2 g of dl-1-methyl-3-(4-benzloxyphenyl)propylaminium chloride. M.P. 195-197.5° C.

EXAMPLE 4

Resolution of

dl-1-methyl-3-(4-benzyloxyphenyl)propylamine to provide

R-(-)-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 629.3 g of dl-1-methyl-3-(4-benzyloxyphenyl)propylaminium chloride was converted to the free amine by reaction with 95 g of sodium hydroxide in 400 ml of water. The free amine was then dissolved in 2000 ml of methylene chloride and added to a solution of 328 g of D-(-)-mandelic acid in 1000 ml of methanol. afford 5.33 g of dl-4-(benzyloxy)mandelic acid. M.P. 35 The mandelic acid salt of the free amine precipitated out of solution and was recrystallized three ties from methanol to provide 322 g of the R-mandelic acid salt of R-1-methyl-3-(4-benzyloxyphenyl)propylamine. 166°-167° C. $[\alpha]_D - 30$ °, $[\alpha]_{365} - 119$ ° (MeOH).

The salt so formed was converted to R-1-methyl-3-(4benzyloxyphenyl)propylamine as the free base by reaction with aqueous sodium hydroxide.

EXAMPLE 5

R,R-N-[2-(4-Benzyloxyphenyl)-2-hydroxy-1-oxoethyl]-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 93.9 g or R-1-methyl-3-(4-benzyloxyphenyl)propylamine in 500 ml of N,N-dimethylformamide containing 63.0 g of 1-hydroxybenzotriazole and 104.6 g of R-2-(4-benzyloxyphenyl)-2-hydroxyacetic acid was cooled to 0° C. and stirred while a solution of 83.6 g of N,N'-dicyclohexylcarbdiimide in 300 ml of dimethylformamide was added dropwise over one hour. The reaction mixture was stirred for twelve hours at 3° C. and then was diluted with 10 ml of water. stirred for an additional hour, and then cooled to -30° C. in an ice-acetone bath. The reaction mixture was filtered to remove dicyclohexylurea, and then the filtrate was concentrated by evaporation of the solvent under reduced pressure. The concentrated solution was diluted with ethyl acetate and washed with saturated aqueous sodium carbonate solution, with water, with 300 ml of 1N hydrochloric acid, and again with water. The organic layer was dried and the solvent was re-M.P. 65 moved by evaporation under reduced pressure to provide the product as a white solid. The solid was recrystallized once from acetonitrile and again from methanol to provide 159.7 g of R,R-N-[2-(4-benzyloxyphenyl)-2hydroxy-1-oxoethyl]-1-methyl-3-(4-benzyloxyphenyl)propylamine. M.P. 145-148° C. $[\alpha]_D$ -15.9°, $[\alpha]_{365}$ -50.1° (MeOH).

Analysis calc for C₃₂H₃₃NO₄: Theory: C, 77.55; H, 6.71; N, 2.83; Found: C, 77.04; H, 6.84; N, 2.53.

EXAMPLE 6

R,R-N-[2-(4-Benzyloxyphenyl)-2-hydroxyethyl]-1methyl-3-(4-benzyloxyphenyl)propylamine

To a stirred solution of 10.0 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxy-1-oxoethyl]-1-methyl-3-4 benzyloxyphenyl)propylamine in 500 ml of freshly distilled tetrahydrofuran under a nitrogen gas atmosphere 15 was added dropwise over thirty minutes 41 ml of 2 molar borane-dimethyl sulfide complex in tetrahydrofuran. The reaction mixture was stirred at 25° C. for twenty hours, and then was heated to reflux and stirred for an additional three hours. After cooling the reaction 20 mixture to 25° C. and stirring for another eighteen hours, the excess borane was decomposed by the slow portion-wise addition or 400 ml of methanol. The solvent was then removed fro the reaction mixture by evaporation under reduced pressure to provide the 25 product as an oil. The oil so formed was dissolved in 250 ml of hot methanol, and after concentrating the volume to 125 ml, the product began crystallizing out of solution. The crystalline product was collected by filtration and recrystallized twice from methanol to provide 6.65 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl]1-methyl-3-(4-benzYloxyphenyl)propylamine. M.P. 119*-123.5* C.

The amine so formed was dissolved in methanol and 35 Found: C, 63.77; H, 6.80; N, 3.91; Cl, 10.68. added to a solution of ethereal hydrogen chloride, thereby providig 6.49 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-benzyloxyphenyl)propylaminium chloride. M.P. 214.5-216° C. $[\alpha]_D - 13.4^{\circ}$, $[\alpha]_{365} - 30.2^{\circ}$ (MeOH). Analysis calc. for C₃₂H₃₆NO₃Cl: Theory: C, 74.19; H, 7.00; N, 2.70; Cl, 6.84;

Found: C, 74.20; H, .98; N, 2.65; Cl, 6.63.

EXAMPLE 7

R,R-1-(4-Hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride, also name

R,R-N-[2-(4-Hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl)propylaminum chloride

A mixture of 51.6 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-benzyloxyphenyl)propylaminium chloride and 5.0 g of Raney nickel in 2 liters of ethanol and 2 liters of ethyl acetate 55 was stirred at 25° C. for four and one-half hours under a hydrogen atmosphere of 60 psi. The reaction mixture was then filtered to remove the residual Raney nickel. and the filtrate was concentrated to an oil by evaporation of the solvent under reduced pressure, and the oil 60 was crystallized from fresh ethanol and diethyl ether to provide 29.8 g of R,R-N-[2-(4-hydroxyphenyl)-2hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl)propylaminium chloride. M.P. 176°-176.5° C. (dec.) $[a]_D - 22.7^{\circ}$, $[a]_{365} - 71.2^{\circ}$ (3.7 mg/ml MeOH). Analysis calc. for C₁₈H₂₄NO₃Cl: Theory: C, 63.99; H, 7.16; N, 4.15;

Found: C, 63.70; H, 7.26; N, 4.32.

EXAMPLE 8

As pointed out above, a preferred embodiment of this invention employs a mixture of all four optical isomers 5 of the compound of Example 7. This racemic mixture can be prepared by the method described above by reaction of dl-4-(benzoyloxy)mandelic acid with dl-1methyl-3-(4-benzyloxyphenyl)propylamine in the presence of DCC to give racemic 1-(4-benzyloxyphenyl)-2oxo-2-[1-methyl-3-(4-benzyloxypnenyl)propylamino]ethanol. Reduction of the latter compound and subsequent removal of the benzyl groups provides racemic 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol. This compound is more preferably prepared by the following procedure.

A solution of 32.8 g. (0.2 m) of methyl 2-(4-hydroxyphenyl)ethyl ketone and 42.6 g. (0.2 m) of 1-(4-hydroxyphenyl)-2-aminoethanl in 380 ml. of ethanol containing 3.8 g. of five percent palladium on carbon was stirred for sixteen hours at 60° C. under hydrogen at 55 psi. The reaction mixture was then filtered, and the filtrate was diluted by addition of 350 ml. of water. The aqueous mixture was concentrated to a volume of about 400 ml., and then washed with dichloromethane. The aqueous mixture was acidified by addition of 50 ml. of conc. hydrochloric acid. After standing at room temperature for two hours, the aqueous acid mixture was filtered and the filter cake was washed with 40 ml. of ice water and dried at 50° C. in vacuum to provide 47 g. of 1-(4hydroxyphenyl-2[1-methyl-3-4-hydroxyphenyl)propylamino]ethanol hydrochloride. M.P. 124°-129° C. Analysis calc. for C₁₈H₂₄NO₃Cl: Theory: C, 63.99; H, 7.16; N, 4.15; Cl, 10.49.

13C NMR studies demonstrated the product to be comprised of 51% RR,SS diastereame and 49% RS,SR diastereomer.

EXAMPLE 9

1-Phenyl-2-[1-methyl-3-(4-nitrophenyl)propylamino]ethanol

A solution of 5.0 g. (25.9 mM) of 2-amino-1-phenyle-45 thanol and 3.55 g. (25.9 mM) of methyl 2-(4-nitrophenyl)ethyl ketone in 60 ml. of toluene containing 10 mg, of para-toluenesulfonic acid was heated at reflux for six hours in a flask equipped with a Dean-Stark trap. The water that formed during the reaction was removed via the trap, and then the reaction mixture was cooled to room temperature and concentrated to dryness by evaporation of the solvent under reduced pressure. The solid product that remained was dissolved in 50 ml. of tetrahydrofuran and the solution was heated to reflux. A solution of 13.5 ml. of 2N borane-methyl sulfide complex in tetrahydrofuran was then added dropwise to the reaction mixture, and the mixture was refluxed for an additional ninety minutes. After cooling the reaction mixture to room temperature, it was diluted by addition of diethyl ether saturated with hydrogen chloride. The precipitate that formed was collected by filtration and crystallized from ethanol and diethyl ether to give 3.29 g. of 1-phenyl-2-[1-methyl-3-(4-nitrophenyl)propylamino]ethanol hydrochloride. 203°-213° C.

Analysis calc. for C₁₈H₂₃ClN₂O₃: Theory: C, 61.62; H, 6.61; N, 7.98; Cl, 10.11. Found: C, 61.76; H, 6.62; N, 7.76; Cl, 10.13.

EXAMPLE 10

1-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3-phenylpropylamino]ethanol

A solution of 32.6 g. (0.2 m) of 1,1-dimethyl-3-phenylpropylamine and 22.9 g. (0.1 m) of 2-(4-methoxyphenyl)-2-oxoethyl bromide in 75 ml. of tetrahydrofuran was heated at reflux for thirty-six hours. The reaction mixture was then cooled and added to 2 liters of diethyl ether. The precipitate was removed by filtra- 10 tion, and the filtrate was acidified with hydrobromic acid to give 18.15 g. of 1-(4- methoxyphenyl)-1-oxo-2-(1,1-dimethyl-3-phenylpropylamino) ethane hydrobromide. M.P. 174°-178° C.

of glacial acetic acid containing 35 ml. of hydrobromic acid, and the solution was heated at reflux for nine hours. The solution was then cooled and the solvent was removed by evaporation to provide, following 1-(4-hydroxyphenyl)-1-oxo-2-(1,1-dimethyl-3-phenylpropylamino)ethane hydrobromide. M.P. 228°-230° C.

Catalytic hydrogenation of 5.0 g. of the compound from above in 44 ml. of ethanol containing 1.25 g. of crystallization from acetone and diethyl ether, 2.3 g. of 1-(4-hydroxypheyl)-2-(1,1-dimethyl-3-phenylpropylamino)ethanol hydrobromide. M.P. 168°-170° C. Analysis calc. for C₁₉H₂₆BrNO₂:

Theory: C, 60.00; H, 6.89; N, 3.68. Found: C, 60.28; H, 6.67; N, 3.62.

EXAMPLE 11

1-(3-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4-fluorophenyl)propylamino]ethanol

To a stirred solution of 67.2 g. (0.22M) of 2-(3-benzyloxyphenyl)-2-oxoethyl bromide in 200 ml. of acetonitrile was added a solution of 54.3 g. (0.20 M) of N-benzyl-1,1-dimethyl-3-(4-fluorophenyl)propylamine in 600 ml. of acetonitrile containing 42 ml. (0.22M) of diiso-40 propylethylamine. The reaction mixture was stirred for about six hours at reflux, and then was cooled and stored at room temperature for forty-eight hours. The reaction mixture was next diluted by addition of aqueous sodium hydroxide, and the organic solvents were 45 removed by evaporation under reduced pressure. The aqueous alkaline mixture was extracted with ethyl acetate, which was than washed with water, dried, and concentrated to dryness to give an oil. The oil was dissolved in ethanol and diethyl ether and converted to 50 the hydrochloride salt by addition of excess hydrogen chloride. The precipitated solid was collected by filtration and recrystallized from ethyl acetate to give 51.3 g. 1-(3-benzyloxyphenyl)-1-oxo-2-[(N-benzyl)-1,1dimethyl-3-(4-fluorophenyl) propylamino]ethane hy- 55 drochloride. M.P. 137*-145* C.

The compound thus prepared was reduced by reaction with 16 g. of sodium borohydride in ethanol, Isolation of the product, followed by conversion to the hydrochloride salt and crystallization from diethyl ether 60 afforded 55.0 g. of 1-(3-benzyloxyphenyl)-2-[(N-benzyl)-1,1-dimethyl-3-(4-florophenyl)propylamino]ethanol hydrochloride. M.P. 186.5°-191° C.

A solution of 10.0 g. of the product thus produced in 200 ml. of ethanol containing 3.0 g. of Raney Nickel 65 was shaken for two hours at 25° C. under hydrogen at 44 psi. The reaction mixture was then filtered, and the solvent was removed from the filtrate by evaporation

under reduced pressure to give a white solid. The solid was triturated with ethyl acetate and air dried to provide 5.9 g. of 1-(3-hydroxyphenyl)-2-[1,1-dimethyl-3-(4fluorophenyl)propylamino]ethanol hydrochloride. M.P. 196.5°-198.5° C.

Analysis calc. for C₁₉H₂₅ ClFNO₂: Theory: C, 64.49; H, 7.12; N, 3.96; Cl, 10.02. Found: C, 64.29; H, 6.97; N, 4.06; Cl, 9.89.

EXAMPLE 12

1-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4aminocarbonylphenyl)propylamino]ethanol

A suspension of 10.0 g. (50 mM) of 1,1-dimethyl-3-(4-The compound thus formed was dissolved in 85 ml. 15 aminocarbonylphenyl)propylamine and 15.0 g. (50 mM) of 1-(4-benzyloxyphenyl)-1-oxoethyl bromide in 1000 ml. of acetonitrile containing 32.0 g. (0.3M) of sodium carbonate and 100 ml. of water was stirred for one hour at 25° C. The precipitate that formed was collected by crystallization from ethanol and diethyl ether, 7.8 g. of 20 filtration, washed with water and with diethyl ether, and air dried to provide 8.0 g. of 1-(4-benzyloxyphenyl)-1-oxo-2-[1,1-dimethyl-3(4-aminocarbonylphenyl)propylamino]ethane. M.P. 184-187° C. This product was converted to the hydrochloride salt by reaction five percent palladium on carbon afforded, following 25 with hydrogen chloride in diethyl ether. M.P. 219°-224° C.

> The compound thus prepared was reacted with so-n dium borohydride in methanol to provide, following conversion to the hydrochloride salt and crystallization 30 from methanol and diethyl ether, 5.8 g. of 1-(4- benzyloxyphenyl)-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylamino]ethanol hydrohloride. M.P. 141-143°

Reaction of the above compound with hydrogen in 35 the presence of Raney Nickel effected cleavage of the hydroxy protecting group to afford, following crystallization of the hydrochloride salt, 1.3 g. of 1-(4-aminocarbonylphenyl)propylamino]ethanol hydrochloride. M.P. 185° C. (dec.)

Analysis calc. for C22H27ClN2O3: Theory: C, 63.40; H, 7.18; N, 7.39; Cl, 9.36. Found: C, 63.26; H, 7.01; N, 7.45; Cl, 9.42.

The compounds of Examples 13 and 14 were prepared by the general procedure of Example 12.

EXAMPLE 13

1-(2-Fluorophenyl)-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylamino]ethanol hydrochloride; M.P. 227°-230° C.

EXAMPLE 14

1-(3-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrobromide; M.P. 161°-165° C.

EXAMPLE 15

1-Phenyl-2-[1-methyl-3-(4-methylsulfonylphenyl)propylamino]ethanol hydrochloride

Methyl 2-(4-methylthiophenyl)ethyl ketone was oxidized by reaction with m-chloroperbenzoic acid to give methyl 2-(4-methylsulfonylphenyl)ethyl ketone. A solution of 6.73 g. of 2-amino-1-phenylethanol and 1.10 g. of methyl 2-(4-methylsufonylphenyl)ethyl ketone in 500 ml. of toluene containing 200 mg. of p-toluenesulfonic acid was heated at reflux for twenty-four hours. The reaction mixture was cooled and the solvent was removed by evaporation to give the Schiff base 1-phenyl-

25

30

35

40

2-[1-methyl-3-(4-methylsulfonylphenyl)propylimino]e-thanol. The Schiff base thus prepared was reacted with 3.7 g. of sodium borohydride in 500 ml. of ethanol at 0° C. for sixteen hours. The reaction mixture was diluted by addition of 50 ml. of acetone and 20 ml. of 3N hydrochloric acid. The mixture was concentrated to an oil by evaporation of the solvent. The oil crystallized upon standing at room temperature. Recrystallization of the product from 200 ml. of hot ethanol afforded 8.96 g. (48% yield) of 1-phenyl-2-[1-methyl-3-(4-methylsul-10 fonylphenyl)propylamino]ethanol hydrochloride. M.P. 164°-170° C.

Analysis calc. for C₁₉H₂₆ClNO₃S:

Theory: C, 59.44; H, 6.83; N, 3.65; Cl, 9.23; S, 8.35. Found: C, 59.28; H, 6.57; N, 3.70; Cl, 9.36; S,8.11.

EXAMPLE 16 Premix for Chickens

Ingredient	% by weight
1-(4-hydroxyphenyl)-2-[1.1- dimethyl-3-phenylpropylamino]- ethanol succinate	25
Ground Corn	74
Sodium Chloride	_1_
	100

EXAMPLE 17 Premix for ruminants

Ingredient	% by weight
1-(2-fluorophenyl)-2-[1,1- dimethyl-3-(4-aminocarbonyl- phenyl)propylaminolethanol	30
Ground yellow corn	60
Alfalfa meai	10
	100

EXAMPLE 18 Premix for Swine

Ingredient	% by weight	4
1-(4-hydroxyphenyl)-2-[1-methyl- 3-(4-hydroxyphenyl)propylamino]- ethanol hydrochloride	. 10	
Soybean mill run	88	
Mineral oil	. 2	5
	100	

The above ingredients are blended to uniformity to provide a dry flowable premix that can be admixed with a typical animal feed ration at a rate to provide about 20 ppm of active ingredient in the final feed ration. For example, the premix can be added to the following swine grower ration for covenient oral administration of the β -phenethanolamine to swine.

Ingredient :	% by weight	lbs/Ton
Corn, yellow, ground	76.70	1534
Soybean Oil Meal, solvent extracted, dehulled	19.35	387
Calcium Carbonate	1.20	24
Dicalcium Phosphate, feed grade	1.20	24
Salt (sodium chloride)	0.50	10
Trace mineral premix, AN-031	0.10	2

-continued

Ingredient	% by weight	lhs/Ton
Swine Vitamin Premix, SW-03 ²	0.65	13
Vitamin A Premix, 3M USP units/lb.3	0.05	1
Methionine Hydroxy Analogue, 93%	0.20	4
Selenium Premix ⁴	0.005	1
	100.00	2000

¹Each Kg of premix contains: 50 g, manganese as manganese sulfate: 100 g, zine as zine carbonate; 50 g, iron as ferrous sulfate; 5 g, copper as copper oxide; 1,5 g, iodine as potassium iodide and 150 g, maximum and 130 g, minimum calcium as calcium carbonate.

²Each Kg of premia contains: 77,161 IU Vitamin D₂: 2,205 IU Vitamin E; 411 mg, riboflavin; 1,620 mg, pantothenic acid; 2,205 mg, niacin; 4,4 mg, Vitamin B₁₂: 441 mg, Vitamin K; 19,180 mg, choline; 110 mg, folic acid; 165 mg, pyridoxine; 110 mg, thiamine; 22 mg, biotin.

³Each Kg of premix contains 6,613,800 IU Vitamin A.

15 4Each Kg of premix contains 200 mg, of selenium as sodium selenite.

EXAMPLE 19
Feed Ration for Lambs

Ingredient	Percent	lbs/T
Yellow corn	61.00	1220.0
Corn cobs .	20.00	400.0
Alfalfa Meal, dehydrated	5.40	108.0
Soybean oil meal	8.00	160.0
Urea, feed grade	0.50	10.0
Molasses, cane	3.00	60.0
Dicalcium phosphate	0.43	8.6
Salt	0.30	6.0
Calcium carbonate	0.14	2.3
Trace mineral premix1	0.03	0.6
Vitamin A + D ₃ Premix ²	0.10	2.0
Vitamin E Premix ³	0.10	2.0
1-(4-Hydroxyphenyl)-2-(1.1-	1.00	20.0
dimethyl-3-phenylpropylamino)- ethano!	100.00	2000.0

Trace mineral premix contains: 2.5% manganese as manganese oxide, 0.07% iodine as potassium iodide, 0.3% cobalt as cobalt carbonate, 0.5% copper as copper oxide, and 20.0% zine as zine sulfate.

and 200% line as zine suitate.

Facility nound of vitamin A and D₃ premix contains 2,000,000 USP units Vitamin A and 225,750 USP units Vitamin D₃.

³Each pound of Vitamin E premix contains 20,000 IU Vitamin E.

The compounds to be employed in the method of this invention have demonstrated efficacy in animal tests designed to establish beneficial nutritional effects. In one test designed to show lipolytic activity, normal swine, either barrows or gilts, were employed to analyze the effect of compounds on blood glucose, insulin, and non-esterifed fatty acids (NEFA).

Test animals were maintained in metabolism crates, and following a period of adaptation, catheters were placed in their femoral veins. Prior to administration of the test compounds, all animals were fasted for a period of forty hours. Such fasting causes an elevation of NEFA's in the blood. On the day of the test, all animals were fed a norml feed ration, and one group of animals were held as controls while another group of animals received a test compound. The test compounds were administered at 200 mcg/kg intravenously, or orally at 1 mg/kg. Blood samples were taken from each animal immediately prior to treatment and then at one hour intervals fo a period of six hours following treatment. The blood plasma was analyzed for glucose, insulin and NEFA content.

When the fasted pigs were fed the normal feed ration without a test compound, the NEFA levels in the blood drop dramatically and remained low. A β -phenethanolamine as defined herein cased either an elevation in NEFA's, or inhibited the drop in NEFA's. Blood

15

levels of glucose and insulin were also elevated with the β -phenethanolamines.

The following Table presents the lipolytic activity of several preferred β -phenethanolamines when evaluated according to the test described above. The results are averages of several tests.

TABLE I

Lipolytic Activity (increase in NEFA's)
OH R3 CHCH2NHC-CH2CH2 R2 R5

R ¹	R ²	R³	R ⁴	R ⁵	% increase in NEFA's over control	% increase in glucose over control
н	н	н	CH ₃	SO ₂ CH ₃	131	9
р-ОН	н	CH_3	CH ₃	H	445	48
m-OH	Н	CH ₃	CH ₃	Н	71	31
m-OH	Н	CH ₃	CH ₃	F	28	72
р-ОН	Н	CH ₃	CH ₃	OH	141	35
р-ОН	Н	CH ₃	CH ₃	CONH ₂	18	169
m-OH	Н	CH ₃	CH ₃	ОН	68	40
H	Н	H	н	NO ₂	199	7
p-OCH ₃	Н	CH ₃	CH ₃	H	84	25
p-OCH ₃	н	CH ₃	CH ₃	OH	249	. 5
н	Н	Н	CH ₃	NO ₂	1458	27

A ten day in vivo study was employed to determine the effect of β -phenethanolamines on feed efficiency and rate of growth. In these studies, barrows and gilts weighing approximately 60 kg were maintained in individual pens. Each treatment was replicated six times in randomly assigned animals, with each test animal forming an experimental unit. A group of control animals received a noral swine grower feed ration comprising the following igredients:

Ingredient	% by weight	
Ground yellow corn	76.70	
Soybean oil meal	19.35	45
Calcium carbonate	1.20	
Dicalcium phosphate	1.20	
Salt	0.50	
Trace mineral premix	0.10	
Swine Vitamin premix	0.65	50
Vitamin A premix, 3M USP units/lb.	0.05	30
Methionine Hydroxy analogue, 93%	0.20	
Selenium premix	0.05	
	100.00	

The test animals received the same feed ration plus the test compound. All animals received feed and water ad libitum. All animals were weighed on day 1 and again on day 10, and feed consumption as measured by recording all feed issued and any remaining feed on day 10. The results of two series of this 10 day test for several β -phenethanolamines are given in Table II. In the Table, the column labelled "ADG" is the average daily weight gain in pounds; "ADF" is the average daily feed consumption (in pounds) by the test animals; and F/G is the feed efficiency calculated as ADF divided by ADG.

TABLE II

Growth Promotion and Feed Efficiency

OH R³
CHCH₂NHC-CH₂CH₂
R⁵
CH₃

R1	R ²	R ³	R ⁵	dose ppm	ADG	ADF	F/G
			E	periment l	_		
Control					1.60	4.7	2.98
р-ОН	н	н	OH	20	2.19	5.0	2.33
Ħ	н	Н	NO ₂	20	1.78	4.22	2.37
			Ex	periment II	_	•	
Control					1.34	4.16	3.22
p-OH	H	CH ₃	н	20	1.60	4.26	2.66
<u>г</u> -ОН <u>т</u> -ОН	H	CH ₃	F	20	1.52	4.57	3.01

The β -phenethanolamines to be employed in the 20 method of this invention can be administered in combination with other compounds known to have a beneficial effect upon animals. Typical compounds to be coadministered with the β -phenethanolamines include antibiotics, for example any of the tetracyclines, tylosin, 25 penicillins, cephalosporins, polyether antibiotics, glycopeptides, orthosomycins and related compounds commonly administered to swine, poultry, ruminants and the like. A preferred combination to be employed in the present method is an antibiotic such as tylosin or a tetracycline, together with 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxypnenyl)propylamino]ethanol. combinations will comprise the respective components in a ratio of about 1 to about 2 parts by weight of β phenethanolamine and about 1 to about 10 parts by weight of the partner component.

In a typical treatment, 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol was evaluated in a 42-day study employing finishing swine. Each treatment was replicated four times, with three pigs per replication. All treatments included a normal feed diet plus tylosin at 40 g/T. The animals were tested for growth performance and feed efficiency enhancement. Carcass quality was determined by analysis for fat and muscling. The results of the study are given in Table III. Both β -phenethanolamine treatments resulted in improved growth performance and carcasses with less fat and more muscle.

TABLE III

C	Growth Promotion, Feed Efficiency and Carcass Quality							
	β-phenethanolamine ²							
•	Con- trol ¹	20 g∕T	% change	40 g/T	% change			
ADG	1.94	2.07	(6.7)	2.05	(5.7)			
ADF	6.28	6.63	(5.6)	6.64	(5.7)			
F/G	3.24	3.20	(-1.2)	3.24	(0)			
Live Wt. at Slaughter, lb	217.0	223.0	(2.8)	221.0	(1.8)			
Chilled Carcass Wt., lb	154.6	160.5	(3.8)	159.8	(3.4)			
Fat Depth at 10th Rib, in	1.15	1.09	(-5.2)	1.05	(-8.7)			
Loin Eye Area S	p., in 4.64	4.91	(5.8)	4.84	(4.3)			
Estimated pounds Fat Free Muscle	of 74.2	78.8	(6.1)	78.4	(5.7)			

all diets contained 40 g/T of tylosin

1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]-ethanol hydrochloride

³A regression equation was employed in arriving at the numerical predictions of careass muscle (J. Animal Science, 1977, Vol. 44:8-17).

The data reported in Table III further demonstrates that the β -phenethanolamines described herein promote growth, improve feed efficiency and improve leaness.

In a similar study conducted over a 61 day period, a group of control animals received a normal daily feed 5 ration with no additive. Another group of animals received the feed ration plus tylosin at 40 g/T, while another group received the feed ration plus 1-(4hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride (compound A) at 10 20 g/T. A final group of finishing swine received the feed ration plus the combination of 40 g/T of tylosin and 20 g/T of the phenethanolamine. The results of this trial are given in Table IV.

TABLE IV

	Control	Tylosin	A	Tylosin + A	•
ADG	1.63	1.64	1.36	1.50	•
ADF	5.64	5.77	5.10	5.38	
F/G	3.46	3.51	3.77	3.59	20
Slaughter Wt. (lbs)	210	211	193	201	
Carcass Wt. (ibs)	150.3	151.5	140.1	146.3	
Fat Depth, 10th rib, (in) ¹	0.96	0.96	0.80	0.85	
Loin Eye Area (in2)1	4.60	4.68	4.92	5.00	
Est. % Muscle?	49.2	49.2	51.4	51.2	25
Est. Pounds Muscle ²	75.3	76.5	74.1	76.8	23

¹These results are based upon measurement of fat at the 10th rib after the careass is

split in half across the backbone.

A regression equation is employed in arriving at the numerical predictions of careass muscle (J. Animal Science, 1977, Vol. 44:8-17).

As in the previous study, both phenethanolamine treatments resulted in carcasses with less fat and more muscle. It should also be noted that the estimated amount of carcass muscle produced with the Tylosin +A treatment was similar to that produced in the con- 35 trol and the Tylosin treatment alone. This result was achieved, however, with less feed consumption than either the control or the Tylosin treatments.

Additional studies have been carried out to demonstrate the anabolic effect of β -phenethanolamines in 40 swine. The effect of the compounds on nitrogen retention in finishing barrows was determined. Nitrogen retention is the difference between nitrogen intake and nitrogen excreted. Increased nitrogen retention is known to be associated with increased anabolic activity, 45 resulting in improved carcass muscling and leanness.

In a typical study, barrows weighing about 172 pounds (78 Kg) were orally administered various doses 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride (Com- 50 pound A). All animals received water and a constant amount of normal swine feed ration. The results of this study are presented in Table V, and show that all β phenethanolamine treatments improved nitrogen retention compared to controls.

TABLE V

Treatment	Nitrogen Retention Animals per treatment	Nitrogen Retained (g/day)
Control	6	21.0
Compound A (5 g/T)	3	23.6
Compound A (10 g/T)	3	23.9
Compound A (20 g/T)	3	25.0

As pointed out above, the method of this invention 65 can be practiced with individual isomers of β -phenethanolamines or with mixtures of isomers and diastereomers. In a study to determine the effect on weight gain

and feed efficacy of various mixtures of diastereomers, barrows initially weighing about 177 pounds were fed a normal swine diet plus a β -phenethanolamine at 20 g/T of feedstuff. Each treatment was replicated in twelve individually fed animals. The results are presented in Table VI and show that growth performance was improved by both β -phenethanolamine treatments with very little change in feed intake.

TABLE VI

Treatment	Average Daily Feed (lbs)	Average Daily Gain (lbs)
Control	5.89	1.58
1-(4-hydroxyphenyl)-2-[1-methyl-3- (4-hydroxyphenyl)propylámino]ethanol hydrochloride 57.5% RR.SS 42.5% RS.SR	5.94	2.15
I-(4-hydroxyphenyi)-2-[1-methyl-3-(4- hydroxyphenyi)propylamino]ethanol hydroxhloride 477% RR.SS 53% RS,SR	5.86	1.95

The data in Table VI demonstrates that the method of improving feed efficiency and promoting growth can be practiced with any desired mixture of β -phenethanolamine optical isomers.

The efficacy of the β -phenethanolamines described herein also has been demonstrate in poultry. In a typical study, broilers, that were twenty-one days old were administered an oral dosing of a β -phenethanolamine in their normal daily feed ration. All animals received the following broiler finisher ration:

Ingredients	% by weight	lbs/T
Ground yellow com	66.40	1328.00
Animal-vegetable fat	1.53	30.60
Corn Glut. meal (60%)	4.00	80.00
Soybean meal (48%)	19.19	383.80
Fish meal-menhaden	2.50	50.00
Dicalcium phosphate	1.01	34.20
Feather meal-Hydr.	2.50	50.00
Ground limestone	0.83	16.60
Salt	0.30	6.00
Vitamin Premix ¹	0.50	10.00
Trace mineral premix ²	0.10	2.00
Methionine Hyd. Anal.	0.15	3.00
Lysine HCl	0.29	5.80
•	100.00	2000.00

Vitamin premix provides 3000 IU of vitamin A, 900 ICU of vitamin D₃, 40 mg, of vitamin E, 0.7 mg, of vitamin K, 1000 mg of choline, 70 mg, of niscin, 4 mg of pantothenic acid, 4 mg of riboflavin, 100 mcg of vitamin B₁₂, 100 mcg of biotin and 125 mg of ethoxyquin per kg of complete feed.

²Trace mineral premix provides 75 mg of manganese, 50 mg of zinc, 25 mg of iron and 1 mg of iodine per kg of complete feed.

Test animals received with the above ration varying doses of 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride (compound A). Each treatment was replicated sixteen times, and the test was terminated when the animals reached fifty-six days of age. The animals were analyzed for weight gain and feed efficiency. The results of this test in broilers is presented in Table VII as mean weight gain and mean feed to gain ratios.

TABLE VII

Growth Performance of Broilers								
				Feed	Efficiency			
		Wei	ght Gain	Feed/	% change			
Treatment	Dose (g/T)	grams	% im- provement	Gain Ratio	from control			
Control		1473	0	2.336	0			
Compound A	10	1585	7.6	2.292	1.9			
Compound A	20	1613	9.5	2.298	1.6			
Compound A	40	1550	5.2	2.312	1.0			
Compound A	80	1669	13.3	2.221	4.9			

The results of this study demonstrate that the β phenethanolamines described herein are effective in promoting growth and improving feed efficiency in

The compounds of the invention also have demonstrated efficacy in ruminants. Forty-eight crossbred 20 wether lambs were employed in a test designed to show the effects of Compound A (1-(4-hydroxyphenyl)-2-[1methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride) at varying doses. Sixteen animals were 25 propylamino]ethanol, or an acid addition salt thereof. held as controls, while sixteen received 40 ppm of Compound A, and another sixteen received 80 ppm of Compound A. All animals received a normal daily feed ration and water ad libitum. Average daily weight gain and average daily feed consumption after twenty-eight 30 hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)days is given below in Table VIII. The data demonstrates that a β -phenethanolamine as defined herein is effective in promoting growth and improving feed efficiency in ruminants. 35

	1772	LE VIII			_
· · <u> </u>	rowth Perfe	ormance of I	ambs		
Treatment	Dose (ppm)	ADG · (lbs)	ADF (lbs)	F/G	
Control	0	0.414	3.68	8.89	4
Compound A	40	0.418	3.61	8.64	
Compound A	80	0.472	3.57	7.56	

1. A method for promoting the growth of a ruminant comprising administering to the ruminant a growth promoting amount of a compound of the formula

or an acid addition salt thereof.

2. A method for improving the efficiency of feed utilization by ruminants comprising administering to the ruminant an effective amount of a compound of the formula

or an acid addition salt thereof.

3. The method of claim 1 employing 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride.

4. The method of claim 1 employing R,R-1-(4hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-

5. The method of claim 2 employing 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride.

6. The method of claim 2 employing R,R-1-(4propylamino]ethanol, or an acid addition salt thereof.

7. A method for improving leanness in domesticated animals comprising administering to the anixal an effective amount of a compound of the formula

or an acid addition salt thereof.

8. The method of claim 7 employing 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride.

9. The method of claim 7 employing R,R-1-(4hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol, or an acid addition salt thereof.

50

55

60

Exhibit III

Certificate of Correction

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 4,690,951

DATED : September 1, 1987 Page 1 of 2

INVENTOR(S): D. B. Anderson, K. K. Schmiegel, E. L. Veenhuizen

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: On the title page Item (75)

Add as Inventor - Ronald R. Tuttle -.

Column 2, line 5, "(4-hydroxyphenyl)-propylamnol]" should be -- (4-hydroxyphenyl)-propylamino] --.

Column 5, line 59, "50 ml" should be - 150 ml -.

Column 6, line 36, "ties" should be — times —; and line 52, "dicyclo-hexylcarbdiimide" should be — dicyclohexylcarbdiimide —.

Column 7, line 24, "fro" should be — from —; line 43, "H, .98" should be — H, 6.98 —; and line 50, "yl-3-(4-hydroxyphenyl)propylaminum" should be — yl-3-(4-hydroxyphenyl)propylaminium —.

Column 8, line 31, "hydroxyphenyl-2[1-methyl-3-4-hydroxyphenyl)-" should be -- hydroxyphenyl-2-[1-methyl-3-(4-hydroxyphenyl)- --.

Column 9, line 27, "l-(4-hydroxypheyl)-2-(1,1-dimethyl-3-phenyl-" should be — l-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-phenyl- —; and line 48, "than" should be — then —; and line 62, "zyl)-1,1-dimethyl-3-(4-florophenyl)-propylamino]e-" should be — zyl)-1,1-dimethyl-3-(4-fluorophenyl)-propylamino]e- —.

UNITED STATES ATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 4,690,951

DATED

September 1, 1987

Page 2 of 2

INVENTOR(S): D. B. Anderson, K. K. Schmiegel, E. L. Veenhuizen

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 10, line 11, "1-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4aminocar-" should be - 1-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4-aminocar- --; line 22, "1-oxo-2-[1,1-dimethyl-3(4-aminocarbonylphenyl)-" should be -- 1oxo-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)- -; and line 63, "1.10 g." should be -- 11.10 g. --.

Column 12, line 67, "cased" should be - caused -.

Column 18, claim 7, line 33, "anixal" should be - animal --.

Signed and Sealed this

Twenty-second Day of November, 1988

Attesting Officer

Commissioner of Patents and Trademarks

DONALD J. QUIGG

Exhibit IV

Maintenance Fee Receipt

UNITED STATES DEPARTMENT OF COMMERCE Patent and Trademark Office

ress: COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D. C. 20231

PAYOR NUMBER 000139

M75N4

ELI LILLY & COMPANY ATTENTION: PATENT DIVISION/PFEE LILLY CORPORATE CENTER INDIANAPOLIS IN 46285

MAINTENANCE FEE STATEMENT

The data shown below is from the records of the Patent and Trademark Office. If the maintenance fees and any necessary surcharges have been timely paid for the patents listed below, the notation "PAID" will appear in column 10, "status" below.

If a maintenance fee payment is defective, the reason is indicated by code in column 10, "status" below. An explanation of the codes appears on the reverse of the Maintenance Fee Statement. TIMELY CORRECTION IS REQUIRED IN ORDER TO AVOID EXPIRATION OF THE PATENT. NOTE 37 CFR 1.377. THE PAYMENT(S) WILL BE ENTERED UPON RECEIPT OF ACCEPTABLE CORRECTION. IF PAYMENT OR CORRECTION IS SUBMITTED DURING THE GRACE PERIOD, A SURCHARGE IS ALSO REQUIRED. NOTE 37 CFR 1.20(k) and (i).

If the statement of small entity status is defective the reason is indicated below in column 10 for the related patent number. THE STATEMENT OF SMALL ENTITY STATUS WILL BE ENTERED UPON RECEIPT OF ACCEPTABLE CORRECTION.

NBR	NUMBER		AMOUNT	CHARGE	NUMBER	DATE	FILE DATE			STAT
1	4,690,951	185	2910		06/811,059	09/01/87	12/19/85	12	NO	PAID

RECEIVED

JAN 4 1999

ELI LILLY AND COMPANY Patent Division

If the "status" column for a patent number listed above does not indicate "PAID" a code or an asterisk (*) will appear in the "status" column. Where an asterisk (*) appears, the codes are set out below by the related item number. An explanation of the codes indicated in the "status" column and as set out below by the related item number appears on the reverse of the maintenance fee statement.

ITM NBR ATTY DKT NUMBER

1

X-5683B

DIRECT THE RESPONSE TOGETHER WITH ANY QUESTIONS ABOUT THIS NOTICE TO: COMMISSIONER OF PATENTS AND TRADEMARKS, BOX M. FEE, WASHINGTON, DC 20231

\$7 U.S. 6P0:1998-437-690/79138

Exhibit V

Letter Transmitting INAD to FDA

Elanco Regulatory Services Elanco Products Company A Division of Eli Lilly and Company

740 South Alabama Street Indianapolis, Indiana 46285 Telephone (317) 261-3221

April 23, 1984

Lonnie Luther, Ph.D.
Group Leader Swine and Poultry Production Drugs
Group, HFV-128
Division of Biometrics and Production
Drugs
Center for Veterinary Medicine
Food and Drug Administration
Rockville, Maryland 20857

Dear Dr. Luther:

Re: INAD Request - Notice of Claimed Investigational Exemption for a New Animal Drug - Phenethanolamine

Elanco Products Company wishes to request an INAD number for this compound in order to establish a file in the FDA. Further data will need to be compiled before a slaughter authorization will be requested.

Sincerely,

ELANCO PRODUCTS COMPANY

Signed

S. E. Poe, Ph.D. Product Registration Manager Animal Products Regulatory Services

SEP:djr

Exhibit VI

Copy of FDA Letter Acknowledging Receipt and Assigning INAD No. 4231

DEPARTMENT OF HEALTH & HUMAN SERVICES

Public Health Service

Food and Drug Administration Rockville MD 20857

May 9, 1984

INAD-4231

Stanley E. Poe, Ph.D.
Product Registration Manager
Animal Products Regulatory Services
Elanco Products Company
A Division of Eli Lilly and Company
740 South Alabama Street
Indianapolis, Indiana 46285

Dear Dr. Poe

We acknowledge receipt of your submission dated April 23, 1984 which pertains to the investigational use of Phenethalolamine.

Your submission has been assigned INAD number 4231, and is being forwarded to the proper reviewer for consideration.

Please refer to this number when submitting any future correspondence which pertains to the use of the aforementioned drug.

This is not an authorization letter.

Sincerely yours,

Signed

Edward H. Ross, Acting Supervisor Document Control Staff Center for Veter9inary Medicine

Exhibit VII

Letter Transmitting NADA to fDA

DEPARTMENT OF HEALTH AND HUMAN SERVICES NEW ANIMAL DRUG APPLICATION Form Approved; OM8 No. 0910-0632 Expiration Date: December 31, 1986 **PUBLIC HEALTH SERVICE** (Drugs for Animal Use) FOOD AND DRUG ADMINISTRATION (Title 21, CFR 514) NADA GENERIC NAME: PROPRIETARY NAME Ractopamine Hydrochloride PAYLEAN IN TYPE OF.SUBMISSION (Check one) NAME OF APPLICANT Elanco Products Company x ORIGINAL APPLICATION (CFR 514.1(a)) Division of Eli Lilly and Company AMENDMENT TO AN UNAPPROVED ORIGINAL APPLICATION (CFR 514.6) ADDRESS (Street Number, City, and Zip Code) Lilly Corporate Center SUPPLEMENT TO AN APPROVED APPLICATION Indianapolis, IN 46285 (CFR 514.8(a)) AMENDMENT TO AN UNAPPROVED SUPPLEMENT TO AN APPROVED APPLICATION (CFR 514.6) SPECIAL SUPPLEMENT TO AN APPROVED APPLICATION - CHANGES BEING EFFECTED (CFR 514.8 (a)) No new animal drug application may be processed unless a completed application form has been received (21 CFR 514.1) INSTRUCTIONS FOR PREPARING AND SUBMITTING THE NEW ANIMAL DRUG APPLICATION Repeating in each application basic information pertinent to all Assemble and bind three identical copies of the submission dosage forms is unnecessary if reference is made to the application containing such information. Such references should be made by volume and page. Include in each application information applicable to the specific dosage form, such as, labeling, composition, stability data, efficacy data, method of manufacture and investigational new animal drug application number. Identify each front cover with the name of the applicant, the ü. proprietary name, if available, the name of the new animal drug and the dosage form. Use separate pages for each numbered heading consistent with subparagraph (1) through (12) of this application form. Number the pages of the new animal drug application. Each copy should bear application number. Forward amendments, supplements, reports and other correspondence submitted after the original application in the above format. Identify the submission with the assigned NADA number. If the submission is a supplemental application, full information shall be provided on each proposed change concerning any statement made in the approved application. the same page numbering. Each copy of an original new animal drug application shall contain three complete sets of labeling. Submit separate applications for each different dosage form of the ug proposed [NOTE: Only this front page need be submitted with additional or supplemental information.] Food and Drug Administration Center for Veterinary Medicine vii, Submit to: (HFV-16) 5600 Fishers Land Rockville, MD 20857 The undersigned official submits this application for a new animal drug pursuant to section 512(b) of the Federal Food, Drug, and Cosmetic Act. It is understood that the labeling and advertising for the new animal drug will prescribe, recommend, or suggest its use only under the conditions stated in the labeling which is part of this application and if the article is a prescription new animal drug, it is understood that any labeling which furnishes or purports to furnish information for use or which prescribes, recommends, or suggests a dosage for use of the new animal drug will also contain, in the same language and emphasis, information for its use including indications, effects, dosages, routes, methods, and frequency and duration of administration, any relevant hazards, contraindications. side effects, and precautions contained in the labeling which is part of this application in accordance with 21 CFR 201.105. It is understood that all representations in this application apply to the drug produced until changes are made in conformity with 21 CFR 514.8. It is further understood that new animal drugs as defined in 21 CFR 510.3, intended for use in the manufacture of animal feeds in any State will be shipped only to persons who may receive such drugs in accordance with 21 CFR 510.7. The official agent by signing below certifies, that the methods, facilities, and controls described under item 5 of this application conform to the appropriate section of the current good manufacturing practice regulations in 21 CFR PART 200. administration, any relevant hazards, contraindications, (WARNING: A willfully false statement is a criminal offense. U.S.C. Title 18, sec. 1001.) SIGNATURE OF RESPONSIBLE OFFICIADOR AUTHORIZED AGENT **DATE RECEIVED:** Harley DATE OF APPLICATION FOR FDA USE ONLY TITLE OF AUTHORITY Product Registration Manager August 27, 1987

Product Ragistration Manager

August 27, 1987

NOTE: This application must be signed by the applicant or by an authorized attorney, agent, or official. If the anolicant does not have a place of business within the United States, the application must also provide the and address of and be countersigned by an authorized agent or official residing or maintaining a place of business within the United States

FORM FDA 356V (7/86) PREVIOUS EDITIONS ARE OBSOLETE

1. IDENTIFICATION

DATE: August 27, 1987

ORIGINAL APPLICATION:

21 CFR 514 Subpart A, §514.1

NAME OF APPLICANT:

ADDRESS:

Elanco Products Company
Division Eli Lilly and Company

Lilly Corporate Center Indianapolis, IN 46285

CHEMICAL NAME:

DL-4-hydroxy-•[[[3-(4-hydroxyphenyl)-1-methylpropyl]amino] methyl]benzenemethanol, hydrochloride

GENERIC NAME:

Ractopamine Hydrochloride

PROPRIETARY NAME:

Paylean™

Exhibit VIII

FDA Letter Acknowledging Receipt

DEPARTMENT OF HEALTH & HUMAN SERVICES

Public Health Service

Rockville MD 20857

September 1, 1987

NADA 140-863

Stanley E. Poe, Ph.D.
Elanco Products Company
A Division of Eli Lilly and Company
Lilly Corporate Center
Indianapolis, IN 46285

Dear Dr. Poe

We acknowledge receipt of your submission dated August 27, 1987 which pertains to a New Animal Drug Application for Ractopamine Hydrochloride for in swine.

Your submission has been assigned NADA number 140-863 and is being forwarded to the proper reviewer for consideration.

Please refer to this number when submitting any future correspondence which pertains to the use of the aforementioned drug in this species.

This is not an authorization letter.

Sincerely yours,

Signed

Doriel J. Christensen, Supervisor Document Control Staff Center for Veter9inary Medicine

Exhibit IX

FDA Approval Letter

DEPARTMENT OF HEALTH & HUMAN SERVICES

Food and Drug Administration Rockville MD 20857

DEC 22 1999

NADA 140-863, E0076

Bruce W. Martin, DVM, Ph.D.
Manager, Animal Science Regulatory Affairs
Elanco Animal Health
2001 W. Main Street
P.O. Box 708
Greenfield, IN 46140

Dear Dr. Martin:

We refer to your letter dated October 8, 1999, which reactivated your original new animal drug application on (NADA 140-863) for the use of ractopamine hydrochloride in finishing swine feeds. We also refer to your letters dated October 12, November 3, and December 12, 1999, that contained final Copies of the Type A medicated article label and Type B and C medicated feed labels as well as the missing pages from your environmental assessment and corrected patent information. These submissions fulfill the requirements for approval of your original NADA for ractopamine hydrochloride (Paylean®) in finishing swine.

We have completed our review of your new animal drug application and find that it supports the approval of ractopamine hydrochloride (Paylean®) in finishing swine for increased rate of weight gain, improved feed efficiency, and increased carcass leanness when fed at 4.5 g ractopamine hydrochloride/ton of feed when swine are fed a complete ration containing at least 16% crude protein from 150 lb (68 kg) to 240 lb (109 kg) body weight, and for improved feed efficiency and increased carcass leanness when fed at 4.5 to 18 g ractopamine hydrochloride/ton of feed when swine are fed a complete ration containing at least 16% crude protein from 150 lb (68 kg) to 240 lb (109 kg) body weight. Further, a zero-day withdrawal period is approved for the indications listed above. A copy of the Freedom of Information Summary is enclosed for your files.

The application is approved as of the date of this letter. You may initiate distribution and marketing of this product upon completion of manufacturing process validation and after submitting three (3) copies of each component of the final printed labeling (FPL).

The FPL should be submitted under separate cover directly to:

Document Control Unit (UFV- 199) Attention: HFV- 120 Center for Veterinary Medicine Food and Drug Administration 7500 Standish Place Rockville, MD 20855 NADA 140-863, E0076, T0077, T0078, and T0079 Page 2

The stability data submitted with this application supports a 24 months expiration date for the Paylean® Type A medicated article. A 24 months expiration date should be placed on the labeling for the drug product. Labeling must be identical to the labeling submitted in your application.

Although the completion of manufacturing process validation is not a requirement for preapproval, it is a cGMP requirement that must be met before any shipments of drug product are made. Manufacturing process validation is based on the documented successful evaluation of multiple full scale batches (usually a minimum of three (3)) and provides assurance that the processes will reliably meet predetermined specifications. This information may have been available for evaluation by the FDA District Office during the pre-approval inspection and may have been found acceptable, However, if this information was not available at that time or process validation deficiencies were noted by the FDA Investigator during the pre-approval inspection, the appropriate FDA District Office should be contacted after manufacturing process validation has been completed and prior to shipment of the drug product. This will provide (he FDA District Office the opportunity to inspect and verify the validation of the manufacturing process. Regulatory action, such as seizure, will be considered in instances where there is shipment of the drug product prior to completion of the process validation.

Under section 512(cX2)(F)(i) of the FFDCA, this approval qualifies for FIVE years of marketing exclusivity beginning on the date of approval because no active ingredient (including any ester or salt of the active ingredient) has been approved in any other application.

Future correspondence regarding this approval should reference the correspondence date of this submission and our file number, NADA 140-863, E0076. Any request to change the conditions of the original approval for this NADA will be considered a supplement to your original NADA.

Sincerely yours,

signed

Stephen F. Sundlof, DVM, Ph.D. Director, Center for Veterinary Medicine

Enclosure (FOI Summary)

Exhibit X

Description of Significant Activities

Ractopamine hydrochloride INAD / NADA

Correspondence Chronology

Date // Code	From	RE:	Technical Section
4/23/84	Elanco	Request for establishing INAD file	Efficacy
5/3/84	Elanco	Protocol for residue study	Residue
5/9/84 // INAD 4231	CVM	Acknowledge receipt of 5/7/84 request for	Efficacy
(III)		INAD & assign INAD number 4231	******
6/7/84 // INAD 4231	Elanco	Protocol for acute toxicology study	HHSafety
7/2/84 // INAD 4231	CVM	Protocol for acute toxicology study	HHSafety
7/16/84 // INAD 4231	CVM	Protocol for residue study	Residue
7/19/84 // INAD 4231	Elanco	Request for meeting	HHSafety
8/13/84 // INAD 4231	Elanco	Protocol: swine reproductive safety study	TASS
8/13/84 // INAD 4231	Elanco	Protocol: residue depletion study	Residue
8/27/84 // INAD 4231	Elanco	Request for meeting on 9/13/84	HHSafety
9/20/84 // INAD 4231	CVM	8/13/84 Protocol	TASS .
11/23/84 // INAD 4231	CVM	8/13/84 Protocol	Residue
12/21/84 // INAD 4231	Elanco	Reports: threshold assessment evaluation:	HHSafety
1/17/85 // INAD 4231	Elanco	Request for slaughter authorization	HHSafety
1/30/85 // INAD 4231	Elanco	Protocol: clinical efficacy	Efficacy
2/21/85 // INAD 4231	Elanco	Additional tox info	HHSafety
3/14/85 // INAD 4231	Elanco	Protocols: TAS and tolerance studies	TASS
4/4/85 // INAD 4231	Elanco	Tox study report	HHSafety
4/11/85 // INAD 4231	Elanco	Protocol: tox study	HHSafety
4/15/85 // INAD 4231	CVM	Slaughter authorization	HHSafety;
		9.445.44.44.44.44.44.44.44.44.44.44.44.44	Residue
5/16/85 // INAD 4231	Elanco	Protocols: stability studies	CM&C
5/29/85 // INAD 4231	CVM	Response: Protocol	Efficacy
6/7/85 // INAD 4231	CVM	Response: Protocols for stability studies	CM&C
6/13/85 // INAD 4231	Elanco	Protocol for tox study:	HHSafety
6/13/85 // INAD 4231	Elanco	Reports: residue studies	Residue
6/25/85 // INAD 4231	CVM	Protocol for TAS and tolerance study	TASS
7/10/85 // INAD 4231	CVM	4/11/85 tox Protocol	HHSafety
7/12/85 // INAD 4231	CVM	tox studies for threshold assessment	HHSafety
8/23/85 // INAD 4231	Elanco	Submission: first (NCIE)	Efficacy
8/28/85 // INAD 4231	CVM	Protocol for tox study	HHSafety
10/17/85 // INAD 4231	Elanco	Protocol has been modified	Efficacy
	Elanco		Efficacy
12/19/85 // INAD 4231		Protocol: Efficacy study	
12/19/85 // INAD 4231	Elanco	Environmental testing plan	EA
2/13/86 // INAD 4231	Elanco	Tox Study outline	HHSafety
2/25/86 // INAD 4231	CVM	Protocol is OK	Efficacy
3/18/86 // INAD 4231	CVM	Ractopamine is non-gentoxic	HHSafety
3/19/86 // INAD 4231	CVM	12/19/85 Protocol	Efficacy
3/25/86 // INAD 4231	CVM	2/13/86 Study outline	HHSafety
4/2/86 // INAD 4231	CVM	12/19/85 Environmental testing	EA
4/10/86 // INAD 4231	Elanco	Published paper	HHSafety
6/12/86 // INAD 4231	Elanco	Protocol: radiolabeled tissue residue study	Residue
8/14/86 // INAD 4231	Elanco	Statistical evaluation of clinical data	Efficacy

9/27/96 // INIAD 4221	CVDA	Dedicted at a consequence of the second consequence	Dasidos
8/27/86 // INAD 4231	CVM	Radiolabeled tissue residue study protocol	Residue
8/28/86 // INAD 4231	Elanco	Environmental fate package	EA
10/29/86 // INAD 4231	Elanco	Radiolabeled tissue residue study protocol	Residue
11/6/86 // INAD 4231	CVM	Statistical evaluation of clinical data	Efficacy
11/20/86 // INAD 4231	CVM	8/28/86 Environmental fate	EA
12/19/86 // INAD 4231	Elanco	Additional environmental study reports	EA
1/7/87 // INAD 4231	Elanco	Balance-Excretion Study	Residue
1/22/87 // INAD 4231	Elanco	Protocol: clinical efficacy	Efficacy
1/28/87 // INAD 4231	CVM	Residue study protocol	Residue
1/29/87 // INAD 4231	Elanco	Comparative metabolism	Residue
2/19/87 // INAD 4231	CVM	Balance-Excretion Study	Residue
3/23/87 // INAD 4231	CVM	Comparative metabolism	Residue
3/23/87 // INAD 4231	CVM	Clinical efficacy protocol	Efficacy
3/23/87 // INAD 4231	CVM	Environmental study reports	EA
3/31/87 // INAD 4231	Elanco	Lab animal bioavailability studies	HHSafety
4/22/87 // INAD 4231	Elanco	Residue study	Residue
4/30/87 // INAD 4231	Elanco	Clinical protocol	Efficacy
5/14/87 // INAD 4231	Elanco		Residue
5/15/87 // INAD 4231	CVM	Tissue Residue Study	Efficacy
5/28/87 // INAD 4231		Request for slaughter authorization	-
·-·*· · · · · · · · · · · · · · · · ·	Elanco	Bioavailability study report	Efficacy
6/4/87 // INAD 4231	Elanco	Reports of corroborative efficacy studies:	Efficacy
7/15/87 // INAD 4231	CVM	Bioavailability studies	HHSafety
7/15/87 // INAD 4231	CVM	Residue studies	Residue
8/27/87 // Original NADA	Elanco	Original NADA,	ALL *
9/1/87 // NADA 140-863	CVM	Acknowledge receipt of 8/27/87 original NADA,	ALL
		assigned number 140-863	
9/14/87 // INAD 4231	CVM	Bioavailability study	Efficacy
10/1/87 // NADA 140-863	Elanco	VMF assigned for bulk drug mnfg.	CM&C
10/21/87 // INAD 4231	CVM	Slaughter Authorization	Efficacy
12/1/87//NADA 140-863	Elanco	Reproductive safety in swine protocol	TASS
2/5/88 // INAD 4231	Elanco	Request for add'l slaughter authorization	Residue
3/18/88 // NADA 140-863	CVM	Response: 8/27/87 original application -	ALL
3/18/88 // INAD 4231	CVM	Repro safety Protocol	TASS
4/22/88	CVM	Slaughter Authorization	Efficacy
6/2/88 // NADA 140-863	Elanco	Revised label	Label
6/2/88 // NADA 140-863	Elanco	Summary report of three efficacy trials	Efficacy
8/11/88 // NADA 140-863	Elanco	Target Animal Safety section	TASS
8/18/88 // NADA 140-863	Elanco	M&C and Labeling	Label
8/30/88 // NADA 140-863	Elanco	Revised labeling	Label
9/15/88 // NADA 140-863	Elanco	EA studies	EA.
10/27/88 // NADA 140-863	Elanco	Stability study	CM&C
10/27/88 // NADA 140-863	Elanco	EA studies	EA
10/28/88 // NADA 140-863	CVM	Worker safety study	EA
10/28/88 // NADA 140-863	CVM	protocol	EA
11/22/88 // NADA 140-863	Elanco	TASS data	TASS
11/28/88 // NADA 140-863	Elanco	Revised FOI summary	FOI
11/30/88 // NADA 140-863	Elanco	Manufacturing	CM&C
12/1/88 // NADA 140-863	Elanco	Feed Stability Protocols	CM&C
12/1/88 // NADA 140-863	Elanco	Bag specifications	CM&C
12/1/88 // NADA 140-863	Elanco	Statistical summaries of clinical data	Efficacy
12/15/88 // NADA 140-863	Elanco	Statistical summaries of clinical data	Efficacy
12/15/88 // NADA 140-863	Elanco	Patent info	Patent
12/19/88 // NADA 140-863	CVM	Clinical data	Efficacy
1/2/89 // NADA 140-863	Elanco	EA study	EA
1/9/89 // INAD 4231	CVM	Slaughter Authorization	Efficacy
1/11/89	CVM	Stability protocols	CM&C
111107	C + 1/1	Stability protocols	Ciriac

د

1/24/89 // NADA 14-863;	Elanco	Manufacturing	CM&C
2/2/89 // NADA 140-863	Elanco	Updated labeling	Label
2/9/89 // NADA 140-863	Elanco	Tox study	EA
2/16/89 // NADA 140-863	Elanco	Tox study	TASS
2/28/89 // NADA 140-863	CVM	M&C and labeling	Label
3/2/89 // NADA 140-863	Elanco	EA information	EA
3/2/89 // NADA 140-863	Elanco	EA information	EA
3/2/89 // NADA 140-863	Elanco	Revised complete EA	EA
4/3/89 // NADA 140-863	CVM	Manufacturing	CM&C
4/3/89 // NADA 140-863	CVM	Partial response to 8/11/88 submission	TASS
4/3/89 // NADA 140-863	CVM	Efficacy evaluation	Efficacy
4/3/89 // NADA 140-863	CVM	" ractopamine does not have to meet section	Microbio
1,5,05 // 1111511 110 005	C 1.1.1	558.15 criteria."	Safety
4/3/89 // NADA 140-863	CVM	FOI evaluation	FOI
4/4/89 // NADA 140-863	CVM	Approving 1/24/89 M&C submission	CM&C
4/6/89 // NADA 140-863	CVM	Approving 11/30/88 M&C submission	CM&C
4/14/89 // NADA 140-863	CVM	Response	various
5/25/89 // NADA 140-863	Elanco	Acknowledge 4/14/89 letter	Residue
6/8/89 // NADA 140-863	Elanco	Partial response to 4/3/89 letter	TASS; Effic
7/17/89 // NADA 140-863	CVM	Response: 2/16/89 submission	TASS
8/9/89 // NADA 140-863	Elanco	Completion of response to 4/3/89 letter	TASS; Effic
8/9/89 // NADA 140-863	Elanco	Response to 7/17/89 letter	TASS
9/14/89 // NADA 140-863	Elanco	Swine feed assay method	Feed Method
10/12/89 // NADA 140-863	Elanco	INAD trial report	Efficac 9
10/31/89 // NADA 140-863	CVM	Response to 2/2/89 submission	various
12/13/89 // NADA 140-863	Elanco	INAD trial report	Efficacy
1/11/90 // NADA 140-863	Elanco	Efficacy discussion	Efficacy
2/28/90 // NADA 140-863	CVM	Response: 8/9/89 submission	TASS
3/1/90 // NADA 140-863	Elanco	Response: 10/31/89 letter	various
3/8/90 // NADA 140-863	CVM	Method is ready for method trial	Feed Method
3/12/90 // NADA 140-863	CVM	Efficacy discussion	Label; Effic
5/9/90 // NADA 140-863	CVM	Tox studies	HHSafety
5/24/90 // NADA 140-863	Elanco	Tox summary	HHSafety
6/18/90 // NADA 140-863	Elanco	TASS data	TASS
7/19/90 // NADA 140-863	Elanco	Two residue protocols	Residue
8/20/90 // NADA 140-863	CVM	Residue protocols	Residue
9/5/90 // INAD 4231	CVM	Slaughter Authorization	Residue
9/13/90 // NADA 140-863	Elanco	Residue protocol	Residue
10/18/90 // NADA 140-863	Elanco	Protocol: efficacy trials	Efficacy
11/8/90 // NADA 140-863	CVM	Residue protocol	Residue
1/7/91 // NADA 140-863	Elanco	Residue protocol	Residue
1/17/91 // NADA 140-863	CVM	Laboratory trial of the feed method	Feed Method
1/22/91 // NADA 140-863	CVM	Tox studies	HHSafety
2/13/91 // NADA 140-863	Elanco	Data from batches of medicated feed	Feed Method
3/5/91 // NADA 140-863	Elanco	Additional patent information	Patent
3/12/91 // NADA 140-863	CVM	Efficacy protocol	Efficacy
4/8/91 // NADA 140-863	Elanco	Feed samples	Feed Method
4/12/91 // NADA 140-863	Elanco	Summary of residue data	Residue
5/10/91 // INAD 4231	Elanco	Efficacy protocols, proposed label	Label; Effic
5/30/91 // INAD 4231	Elanco	Revised efficacy protocols	Efficacy
6/28/91 // NADA 140-863	Elanco	Tissue residue studies	Residue
7/1/91 // INAD 004-231	CVM	Efficacy protocol	Efficacy
7/11/91 // NADA 140-863	Elanco	Tissue Residue Studies	Residue
7/22/91 // INAD 004-231	CVM	Revised efficacy protocols	Efficacy
7/29/91 // NADA 140-863	CVM	Residue section status	Residue
7/30/91 // INAD 4231	Elanco	Efficacy protocol	Efficacy
•			
		4	

	7/30/91 // NADA 140-863	CVM	Swine feed assay method	Feed Method
	9/10/91 // INAD 4231	Elanco	Efficacy study protocol	Efficacy
	9/10/91 // NADA 140-863	Elanco	Tissue residue studies	Residue
	9/11/91 // INAD 4231	Elanco	Revised efficacy study protocol	Efficacy
	9/16/91 // NADA 140-863	CVM	Non-pivotal efficacy studies	Efficacy
	9/19/91 // NADA 140-863	CVM	Residue Studies	Residue
	9/25/91 // NADA 140-863	Elanco	Residue data	Residue
	10/7/91 // NADA 140-863	CVM	Tissue Residue	Residue
	11/4/91 // INAD 004-231	CVM	Efficacy study protocol	Efficacy
	11/4/91 // INAD 004-231	CVM	Efficacy study protocol	Efficacy
	11/14/91 // NADA 140-863	Elanco	Tox data	•
	11/15/91 // NADA 140-863	Elanco	Tox data Tox data	HHSafety
	2/21/92 // NADA 140-863	CVM	Tox data Tox data	HHSafety
	3/12/92 // INAD 004-231	CVM		HHSafety
	3/17/92 // INAD 4231	Elanco	Efficacy studies	Efficacy
-	4/14/92 // NADA 140-863	Elanco	Protocol: tox study	HHSafety
	4/15/92 // INADA 140-803	Elanco	Response: tox data	HHSafety Residue
	7/1/92 // INAD 004-231	CVM	Request for add'l slaughter authorization	
	7/24/92 // NADA 140-863	Elanco	Protocol: tox study Tox data	HHSafety
				HHSafety
	8/4/92 // INAD 004-231 12/22/92 // NADA 140-863	CVM CVM	Slaughter authorization	Efficacy
		Elanco	Response: several submissions	various
	1/11/93 // NADA 140-863		Two tissue residue analytical methods	Tissue Method
	3/3/93 // INAD 4231	Elanco	Protocol: Toxicity Study	HHSafety
	4/27/93 // INAD 004-231	CVM	Protocol: Toxicity Study	HHSafety
	5/21/93 // NADA 140-863	CVM	Response to several sections	various
	7/6/93 // INAD 4231	Elanco	Revised protocol for tox study	HHSafety
	7/7/93 // NADA 140-863	Elanco	Response: Feed Method data	Feed Method
	8/12/93 // NADA 140-863	Elanco	Status request	TASS
	9/16/93 // NADA 140-863	CVM	Sponsor Monitored Method Trial	Feed Method
	9/30/93 // INAD 4231	Elanco	Updated and complete EA	EA
	10/7/93 // INAD 004-231	CVM	7/6/93 protocol	HHSafety
	10/7/93 // INAD 4231	Elanco	Tox study reports	HHSafety
	10/21/93 // NADA 140-863 10/22/93 // INAD 4231	Elanco	Manufacture of bulk drug	CM&C
		Elanco	Data	HHSafety
	10/22/93 // NADA 140-863	Elanco	Manufacture of Type A Medicated Article	CM&C
	11/3/93 // INAD 4231 11/4/93 // INAD 4231	Elanco	Updated efficacy section	Efficacy
	2/1/94 // INAD (T) 004-231	Elanco	Patent information, labeling, and FOI summary	Label, FOI,Pat
		CVM	Target animal safety section is complete	TASS
	3/4/94 // NADA 140-863 3/8/94 // NADA 140-863	Elanco Elanco	Feed method and validation	Feed Method
		CVM	Data Tox data	Tissue Method
	3/14/94 // INAD (H) 004-231 3/16/94 // NADA 140-863	CVM	Manufacturing & EA	HHSafety CM&C EA
	4/14/94 // NADA 140-863	Elanco	Amendment to feed method	Feed Method
	4/20/94 // NADA 140-863	CVM		Feed Method
	4/22/94 // NADA 140-863	Elanco	Feed Method protocol Amendment to feed method	
	4/29/94 // N-140-863	CVM	Feed method	Feed Method Feed Method
	5/13/94 // INAD 4231	Elanco	Tox data	
		CVM		HHSafety
	5/16/94 // NADA 140-863 5/19/94 // INAD 4231	Elanco	Desk review has begun	Tissue Method Patent
	8/4/94 // NADA 140-863	Elanco	Amendment to the patent information	Feed Method
	8/10/94 // N-140863	CVM	Revised protocol Method Trial	Tissue Method
	8/18/94 // INAD (Z) 004-231	CVM	EA	EA
	8/25/94 // N-140863	CVM	Revised Protocol	Feed Method
	9/30/94 // INAD (E) 004-231	CVM	Effectiveness data are acceptable, dose rage of 5-	Label
	213017411 II (E) 004-231	C + 1+1	20 ppm is accepted for F/G and Carcass claims	CM&C
			with 5-day w/d	Efficacy; FOI
			July mu	Dillowey, I OI

This	10/05/94 // INAD (H) 4-231	CVM	Tou does NODI	III 10 - f - t -
III/I494 // NADA 140-863 Elanco Sponsor Monitored Method Trial Feed Method II/699 // NADA 140-863 Elanco Update of patent information Patent HISafety III/399 // NADA 140-863 Elanco CVM Method trial Tissue Method Patent III/399 // NADA 140-863 CVM Manufacturing CM&C CVM CVM Manufacturing CM&C CVM CVM Manufacturing CM&C M&C	• • •		Tox data, NOEL	HHSafety
1/695 / N ADA 140-863				
I/18/05 // I/NAD 4231 Elanco CVM Method trial Tissue Method trial Tissue Method trial CVM Method trial Tissue Method				
2/3/95 N - 140863		-		
2/15/95 // NOD5 82-C-004				
272/19/5 // INAD 4231 Elanco Final report tox study HHSafety Feed Method CVM Sponsor monitored feed method trial Feed Method Response: 117/19/4 submission CM&C Albel, CM&C Al				-
27.8795 // N-140863				CM&C
3/19/5 N N N N N N N N N N N N N N N N N N	2/21/95 // INAD 4231		Final report tox study	HHSafety
3/9/95 // NADA 140-863 Elanco Felleted swine feed stability study Label, CM&C A710/95 // NADA 140-863 Elanco Revised freed cedures for tissue residues Tissue Method A725/95 // INAD 140-863 Elanco Kevised feed method trial protocol Feed Method A725/95 // INADA 140-863 Elanco Kequest PAI CM&C CM&	2/28/95 // N-140863	CVM	Sponsor monitored feed method trial	Feed Method
	3/7/95 // N-140863-G-0064	CVM	Response: 11/7/94 submission	CM&C
Sizzy S	3/9/95 // NADA 140-863	Elanco	Pelleted swine feed stability study	Label, CM&C
A/25/95 // INAD 4231 Elanco VMF CM&C CM	3/10/95 // NADA 140-863	Elanco	Revised procedures for tissue residues	Tissue Method
A/27/95 // NADA 140-863	3/22/95 // NADA 140-863	Elanco	Revised feed method trial protocol	Feed Method
5/2/95 // INAD 4231 Elanco VMF HHSafety 5/4/95 // INAD 4231 Elanco Updated and complete EA EA 5/19/95 // INAD 4231 Elanco Pivotal clinical trial data analysis Efficacy 5/11/95 // INAD 4231 Elanco TASS data TASS 6/19/95 // INAD 4231 Elanco TASS data TASS 6/8/95 // INAD 4231 Elanco TASS data TASS 6/8/95 // INAD 4231 Elanco Update of patent information Patent * 7/17/95 // I-004231 CVM Pelleting stability Label, CM&C 7/17/95 // I-004231 CVM Method for ractopamine in feed Feed Method 8/22/95 // INAD 4231 CVM Method trial & revised analytical method Feed Method 8/23/95 // I-004231 CVM Sponsor Monitored Method Trial Residue 8/23/95 // INAD 4231 CVM Sponsor Monitored Method Trial HHSafety; 8/23/95 // INAD 4231 Elanco Lyfate of patent information Residue 10/23/95 // INAD 4231 Elanco Update of patent information Patent <	4/25/95 // INAD 4231	Elanco	VMF	CM&C
S/4/95	4/27/95 // NADA 140-863	Elanco	Request PAI	CM&C
S/4/95 / INAD 4231 Elanco Updated and complete EA EA	5/2/95 // INAD 4231	Elanco	VMF	HHSafety
5/5/9/5 // INAD 4231 Elanco Pivotal clinical trial data analysis Efficacy 5/11/95 // INAD 4231 Elanco TASS data TASS 5/16/95 // INAD 4231 Elanco TASS data TASS 6/5/95 // INAD 4231 Elanco TASS data TASS 6/5/95 // INAD 4231 Elanco TASS data TASS 6/5/95 // INAD 4231 Elanco Update of patent information Patent • 7/17/95 // I-004231 CVM Pelleting stability Label, CM&C 7/17/95 // I-004231 CVM Method for ractopamine in feed Method Feed Method 8/2/95 // INAD 4231 Elanco Method trial & revised analytical method Feed Method 8/2/95 // INAD 4231 CVM O-day w/d is acceptable Residue 8/2/95 // INAD 4231 CVM Sponsor Monitored Method Trial Residue 8/2/95 // INAD 4231 Elanco Update of patent information Patent 10/12/95 // INAD 4231 Elanco Elanco Patent 10/24/95 // INAD 4231 Elanco Residue Patent 10/25/95 // Z 004	5/4/95 // INAD 4231	Elanco	Updated and complete EA	•
S/11/95 / INAD 4231 Elanco CVM	5/5/95 // INAD 4231	Elanco		Efficacy
S/16/95 // N-140863 CVM	5/11/95 // INAD 4231	Elanco		•
Fig.	5/16/95 // N-140863	CVM		
6/5/95 // INAD 4231 Elanco 6/8/95 // NADA 140-863 Elanco 7/17/95 // I-004231 CVM Pelleting stability 7/17/95 // I-004231 CVM Method for ractopamine in feed Feed Method 8/2/95 // INAD 4231 Elanco 7/2/95 // INAD 4231 CVM Sponsor Monitored Method Trial Trissue Method 10/24/95 // INAD 4231 Elanco 10/25/95 // INAD 4231 Elanco 11/15/95 // I-004231 CVM Method trial Protocol 11/15/95 // I-004231 CVM Method trial 11/21/95 // INAD 4231 Elanco 11/27/95 // INAD 4231 Elanco 11/26/95 // T 004-231 Elanco 11/26/95 // T 004-231 Elanco 11/26/95 // T 004-231 Elanco 11/26/96 // INAD 4231 Elanco 11/26/96 // I		Elanco		
6/8/95 NADA 140-863 Elanco CVM Pelleting stability Label, CM&C 7/17/95 1-004231 CVM Pelleting stability Label, CM&C 7/17/95 1-004231 CVM Method for ractopamine in feed Feed Method 8/2/95 NADA 4231 Elanco Method trial & revised analytical method Feed Method 8/22/95 NADA 4231 CVM Sponsor Monitored Method Trial Tissue Method 9/22/95 NADA 140-863 Elanco CVM Sponsor Monitored Method Trial Protocol Tissue Method 10/23/95 NADA 140-863 Elanco Revised methods Patent 10/23/95 NADA 140-863 Elanco Update of patent information Patent 10/23/95 NADA 140-863 Elanco Revised methods Tissue Method 10/23/95 NADA 140-863 Elanco Revised methods Tissue Method 10/24/95 NADA 4231 Elanco Revised method for Feed approved, Feed Method 10/25/95 O4231 CVM EA Analytical Method for Feed approved, Feed Method 11/15/95 N-1004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 11/15/95 N-1004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 11/21/95 E 004-231 CVM Method trial Protocol Tissue Method 11/27/95 N-1004231 CVM EA EA EA 11/15/95 N-1004231 CVM Effectiveness data (performance, carcass) are acceptable, dose rage of 5-20 ppm is accepted for F/G and Carcass claims with 0-day w/d - effectiveness component is complete 11/27/95 N-1004231 CVM Target animal safety section is complete TASS 12/19/96 N-1004231 Elanco Confirmatory Method Trial Protocol Tissue Method 1/19/96 N-1004231 CVM Determinative Method Trial Protocol Tissue Method 1/19/96 N-1004231 CVM Determinative Method Trial Protocol Tissue Method 1/19/96 N-1004231 CVM Determinative Method Trial Protocol Tissue Method 1/19/96 N-1004231 CVM Determinative Method Trial Protocol Tissue Method 1/19/96 N-1004231 CVM Determinative Method Trial Protocol Tissue Method 1/19/96 N-1004231 CVM Determinative Tissue Residue Metho		Elanco		
7/17/95 / 1-004231				
Till	7/17/95 // I-004231			
S/2/95 / INAD 4231				•
8/22/95 // INAD 4231 CVM 0-day w/d is acceptable Residue 8/23/95 // I-004231 CVM Sponsor Monitored Method Trial Tissue Method 9/22/95 // INAD 4231 CVM Safe tissue concentrations of 0.25 ppm (muscle), 0.75 ppm (liver), 1.5 ppm (kidney or fat) Residue 10/16/95 // NADA 140-863 Elanco Update of patent information Patent 10/23/95 // INAD 4231 Elanco Revised methods Tissue Method 10/24/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 10/25/95 // I-004231 CVM Analytical Method for Feed approved, regulatory limits in feed set at 80 to 110% of label claim Feed Method 10/25/95 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 11/15/95 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 11/27/95 // INAD 4231 CVM Method trial Tissue Method 11/27/95 // INAD 4231 Elanco Updated environmental assessment EA 11/27/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231				
8/23/95 // I-004231 CVM Sponsor Monitored Method Trial Tissue Method 9/22/95 // INAD 4231 CVM Safe tissue concentrations of 0.25 ppm (muscle), 0.75 ppm (liver), 1.5 ppm (kidney or fat) HHSafety; Residue 10/16/95 // NADA 140-863 Elanco Update of patent information Patent 10/23/95 // INAD 4231 Elanco Revised methods Tissue Method 10/24/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 10/25/95 // I-004231 CVM Analytical Method for Feed approved, regulatory limits in feed set at 80 to 110% of label claim Feed Method 10/25/95 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 11/15/95 // I-004231 CVM Method trial Tissue Method 11/21/95 // INAD 4231 CVM Method trial Tissue Method 11/27/95 // INAD 4231 Elanco Updated environmental assessment EA 12/7/95 // INAD 4231 Elanco Updated environmental assessment EA 12/7/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 11/996 // INAD 4231 E			•	
9/22/95 INAD 4231				
10/16/95 // NADA 140-863 Elanco Update of patent information Patent				
10/16/95 // NADA 140-863 Elanco Update of patent information Revised methods Tissue Method 10/23/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method Tissue Metho	7/22/75 // 11 (/11D 4251	CVIVI		•
10/23/95 / INAD 4231 Elanco Revised methods Tissue Method 10/24/95 / INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 10/25/95 / I-004231 CVM Analytical Method for Feed approved, regulatory limits in feed set at 80 to 110 % of label claim EA 11/15/95 / I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 11/15/95 / I-004231 CVM Method trial Tissue Method Tissue Method 11/21/95 / E 004-231 CVM effectiveness data (performance, carcass) are acceptable, dose rage of 5-20 ppm is accepted for F/G and Carcass claims with 0-day w/d - effectiveness component is complete 11/27/95 / INAD 4231 Elanco Updated environmental assessment EA 12/6/95 / T 004-231 CVM Target animal safety section is complete TASS 12/77/95 / INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 1/19/96 / I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 / INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 1/25/96 / I-004231 CVM Determinative Method Trial Protocol Tissue Method 2/19/96 / I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 2/19/96 / I-004231 CVM Determinative Tissue Residue Method Tissue Method 3/8/96 / V-005182 CVM Dutk drug manufacturing CM&C CM&C CM&C 4/17/96 / V-005477 CVM Limits for Type A Med Article are 85 – 105 % of labeled claim or NLT 7.7 g/lb (17 g/kg) and CM&C	10/16/95 // NADA 140-863	Flanco		
Invariance Inv				
CVM Analytical Method for Feed approved, regulatory limits in feed set at 80 to 110% of label claim				
regulatory limits in feed set at 80 to 110% of label claim 10/25/95 // Z 004231				
label claim	10/23/73 // 1-004231	CVIVI		reed Method
10/25/95 // Z 004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 11/15/95 // I-004231 CVM Method trial Tissue Method 11/21/95 // E 004-231 CVM effectiveness data (performance, carcass) are acceptable, dose rage of 5-20 ppm is accepted for F/G and Carcass claims with 0-day w/d effectiveness component is complete 11/27/95 // INAD 4231 Elanco Updated environmental assessment EA 12/6/95 // T 004-231 CVM Target animal safety section is complete TASS 12/7/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 1/19/96 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/19/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method 3/5/96 // V-005182 CVM Determinative Tissue Residue Method Tissue Method 3/8/96 // V-005182 CVM Limits for Type A Med Article are 85 – 105% of labeled claim or NLT 7.7 g/lb (17 g/kg) and			•	
11/15/95 // I-004231 CVM Method trial Tissue Method 11/15/95 // I-004231 CVM Method trial Tissue Method 11/21/95 // E 004-231 CVM effectiveness data (performance, carcass) are acceptable, dose rage of 5-20 ppm is accepted for F/G and Carcass claims with 0-day w/d - effectiveness component is complete 11/27/95 // INAD 4231 Elanco Updated environmental assessment EA 12/6/95 // T 004-231 CVM Target animal safety section is complete TASS 12/7/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 1/19/96 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/19/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method 3/5/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 – 105% of labeled claim or NLT 7.7 g/lb (17 g/kg) and	10/25/95 // 7 00/231	CVM		ΕA
11/15/95 // I-004231 CVM Method trial Tissue Method 11/21/95 // E 004-231 CVM effectiveness data (performance, carcass) are acceptable, dose rage of 5-20 ppm is accepted for F/G and Carcass claims with 0-day w/d effectiveness component is complete 11/27/95 // INAD 4231 Elanco Updated environmental assessment EA 12/6/95 // T 004-231 CVM Target animal safety section is complete TASS 12/7/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 1/19/96 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/19/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method 3/8/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 - 105% of labeled claim or NLT 7.7 g/lb (17 g/kg) and				
11/21/95 // E 004-231 CVM effectiveness data (performance, carcass) are acceptable, dose rage of 5-20 ppm is accepted for F/G and Carcass claims with 0-day w/d effectiveness component is complete 11/27/95 // INAD 4231 Elanco Updated environmental assessment 12/6/95 // T 004-231 CVM Target animal safety section is complete TASS 12/7/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol 1/19/96 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/19/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 2/20/96 // I-004231 CVM Determinative Tissue Residue Method Tissue			•	
acceptable, dose rage of 5-20 ppm is accepted for F/G and Carcass claims with 0-day w/d - effectiveness component is complete 11/27/95 // INAD 4231 Elanco Updated environmental assessment EA 12/6/95 // T 004-231 CVM Target animal safety section is complete TASS 12/7/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 1/19/96 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/20/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 2/20/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method 3/8/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 – 105% CM&C of labeled claim or NLT 7.7 g/lb (17 g/kg) and				
for F/G and Carcass claims with 0-day w/d - effectiveness component is complete 11/27/95 // INAD 4231 Elanco Updated environmental assessment EA 12/6/95 // T 004-231 CVM Target animal safety section is complete TASS 12/7/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 1/19/96 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/20/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method 3/5/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 - 105% CM&C of labeled claim or NLT 7.7 g/lb (17 g/kg) and	11/21/93 // E 004-231	CVIVI		
effectiveness component is complete 11/27/95 // INAD 4231 Elanco Updated environmental assessment EA 12/6/95 // T 004-231 CVM Target animal safety section is complete TASS 12/7/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 1/19/96 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/20/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method 3/8/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 - 105% CM&C of labeled claim or NLT 7.7 g/lb (17 g/kg) and				Efficacy
11/27/95 // INAD 4231 Elanco Updated environmental assessment EA 12/6/95 // T 004-231 CVM Target animal safety section is complete TASS 12/7/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 1/19/96 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/20/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method 3/8/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 – 105% CM&C				
12/6/95 // T 004-231 CVM Target animal safety section is complete TASS 12/7/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 1/19/96 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/20/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method 3/8/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 – 105% CM&C of labeled claim or NLT 7.7 g/lb (17 g/kg) and	11/27/05 // TNIATS 4221	Eleman		E 4
12/7/95 // INAD 4231 Elanco Sponsor Monitored Method Trial Protocol Tissue Method 1/19/96 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/20/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method 3/8/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 – 105% CM&C of labeled claim or NLT 7.7 g/lb (17 g/kg) and				
1/19/96 // I-004231 CVM Sponsor Monitored Method Trial Protocol Tissue Method 1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/20/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method 3/8/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 – 105% CM&C of labeled claim or NLT 7.7 g/lb (17 g/kg) and				
1/25/96 // INAD 4231 Elanco Confirmatory Method Trial Protocol Tissue Method 2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/20/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method Tissue Method Over Method Tissue Method Determinative Tissue Residue Method Tissue Method Determinative Tissue Residue Method Tissue Method Over Method Determinative Tissue Residue Method Determinative Tissue Residue Method Tissue Method Determinative Tissue Method Tissue Method Tissue Method Tissue Method Tissue Method Tissue Method Determinative Tissue Residue Method Tissue Method T				
2/19/96 // INAD 4231 Elanco Determinative Method Trial Protocol Tissue Method 2/20/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method Tissue Method CVM Determinative Tissue Residue Method CVM CVM Determinative Tissue Residue Method Tissue Method CVM				
2/20/96 // I-004231 CVM Confirmatory Method Trial Protocol Tissue Method 3/5/96 // I-004231 CVM Determinative Tissue Residue Method Tissue Method 3/8/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 - 105% CM&C of labeled claim or NLT 7.7 g/lb (17 g/kg) and				
3/5/96 // I-004231 CVM Determinative Tissue Residue Method 3/8/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 – 105% CM&C of labeled claim or NLT 7.7 g/lb (17 g/kg) and				
3/8/96 // V-005182 CVM bulk drug manufacturing CM&C 4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 – 105% CM&C of labeled claim or NLT 7.7 g/lb (17 g/kg) and			•	
4/17/96 // V-005477 CVM Limits for Type A Med Article are 85 105% CM&C of labeled claim or NLT 7.7 g/lb (17 g/kg) and				
of labeled claim or NLT 7.7 g/lb (17 g/kg) and				
	4/1//V // V-UU34//	CVM		CM&C
NIVIT 10.5 g/lb (21 g/kg).			+ • • • •	
			NW11 10.5 g/lb (21 g/kg).	

			 .
6/3/96 // I-004231	CVM	EA technical section complete	EA
7/12/96 // INAD 4231	CVM	tox study	HHSafety
9/12/96 // INAD 4231	Elanco	Confirmatory Method Trial & Method	Tissue Method
9/17/96 // INAD 4231	Elanco	Determinative Method Trial & Method	Tissue Method
10/22/96 // I-004231	CVM	Confirmatory Method is acceptable	Tissue Method
12/13/96 // INAD 4231	Elanco	Tox data	HHSafety
12/16/96 // I-004231	CVM	Determinative method is acceptable at 6 ppb	Tissue Method
12,10,70 // 1-004231	C 1111	and above.	110000 111001100
12/17/96 // INAD 4231	Elanco	FOI and Labeling	Label
12/18/96 // INAD 4231	Elanco	Reactivate Efficacy Technical Section	Efficacy
		•	•
1/22/97 // VMF 5477	Elanco	Stability data and proposed expiry dating	CM&C
6/2/97 // INAD 4231	Elanco	Technical Section complete letter	CM&C
6/20/97 // VMF 005-477	CVM	VMF is complete, and 24 months expiration	CM&C
		dating on Type A Article approved	
7/30/97//INAD 004321	CVM	Tox data	HHSafety
8/11/97// INAD 4231	Elanco	Protocols for tox studies	HHSafety
8/12/97//INAD 4231	CVM	Technical section status	CM&C
1/16/98//INAD 004-231	CVM	Label claim	Label; Effic
2/25/98//INAD 4231	Elanco	Tox data	HHSafety
2/26/98//INAD 4231	Elanco	Label claim	Label; Effic
2/26/98//INAD 004-231	CVM	FOI and Labeling	Label; FOI
3/10/98//INAD 4231	Elanco	Tox data	HHSafety
	CVM	Tox data	HHSafety
6/2/98//INAD 004231			•
7/9/98 // INAD	Elanco	Proposed swine muscle tolerance	Residue
9/9/98// INAD 4231	CVM	Safe concentration is set at 0.25 ppm in muscle	Tissue
		and the muscle tolerance is set at 50 ppb parent	Method;
		ractopamine.	Residue
10/27/98//INAD 4231	Elanco	Tox data	HHSafety
11/12/98//INAD 004-231	CVM	Effectiveness Technical Section complete	Label; Effic
11/19/98 // INAD 4231	Elanco	Tox data	HHSafety
12/11/98//INAD 4231	Elanco	C,M & C Technical Section status	CM&C
12/14/98//INAD 4231	Elanco	Validated muscle tissue methods	Tissue Method
12/17/98 // INAD 4231	Elanco	Updated FOI	FOI
2/17/99 // INAD 4231	Elanco	Updated FOI	FOI
2/18/99 // INAD 4231	Elanco	Labels	Label
3/26/99//INAD 004-231	CVM	C,M & C technical section is complete.	CM&C
04/08/99 // INAD 4231	Elanco	Camera-ready paper and electronic copy of EA	EA
5/24/99 // INAD 4231	CVM	Human Health Safety Technical Section	HHSafety
3/24/99 // INAD 4231	CVIVI		rifisalety
		Complete. Liver tolerance of parent compound is	
		0.150 ppm and for muscle is 0.05 ppm. No	
6/17/00 // INIAD 4221	CVM	withdrawal period is required in swine.	LILICafatti
6/17/99 // INAD 4231	CVM	Tox data	HHSafety
7/09/99 // INAD 4231	CVM	Environmental Assessment technical section	EA
0/07/00/17/14 70 4024	CVD (complete letter. FONSI attached.	T: 1 (-4) - 1
9/27/99//INAD 4231	CVM	Methods are acceptable for both Muscle and	Tissue Method
		Liver tissues, therefore residue technical section	
		is complete.	
10/06/99 // INAD 004-231	CVM	Freedom of Information technical section	Label;
		complete; Labeling Technical Section	FOI
		Complete.	
10/8/99 // NADA 140-863	Elanco	Administrative NADA	ALL
10/12/99 // NADA 140-863	Elanco	1 st Amendment to Admin NADA – amended Type	Label
		B&C labels	
11/3/99 // NADA 140-863	Elanco	2 nd Amendment to Admin NADA – amended Type	Label
		A&B labels	
12/12/99 // NADA 140-863	Elanco	3 rd Amendment to Admin NADA – amended EA	EA; Patent

Exhibit XI

U.S. Patent 4,734,437

Anderson et al. Date of Patent: Mar. 29, 1988 [54] GROWTH PROMOTION [56] References Cited U.S. PATENT DOCUMENTS [75] Inventors: David B. Anderson, Greenfield; Klaus 3,818,101 6/1974 Baile et al. 424/300 K. Schmiegel, Indianapolis; Edward 4,271,195 6/1981 Keasling 424/330 L. Veenhuizen, Greenfield, all of Ind. FOREIGN PATENT DOCUMENTS [73] Assignee: Eli Lilly and Company, Indianapolis, 67/3994 3/1967 South Africa . OTHER PUBLICATIONS Baker et al., Use of an adrenergic agonist to alter muscle [*] Notice: The portion of the term of this patent and fat deposition in lambs, Fed. Prod., 42,1983 (3069). subsequent to Sep. 1, 2004 has been Ricks et al., Use of a β -agonist to alter fat and muscle disclaimed. deposition in steers, Fed. Proc., 42, 1983 (3070). Dalrymple et al., Use of the β -agonist clenbuterol to [21] Appl. No.: 860,719 alter carcass composition in poultry, Fed. Proc., 42, 1983 (2203).[22] Filed: May 7, 1986 Borsini et al., Life Sciences, 30, pp. 905-911 (1982). Primary Examiner-Frederick E. Waddell Attorney, Agent, or Firm-Charles W. Ashbrook; Leroy Related U.S. Application Data Whitaker Continuation of Ser. No. 628,002, Jul. 5, 1984, abandoned, which is a continuation of Ser. No. 462,587, **ABSTRACT** Jan. 31, 1983, abandoned. β-Phenethanolamines are effective in promoting growth and improving feed efficiency and leanness in [51] Int. Cl.4 A61K 31/135 animals. [52] U.S. Cl. 514/653

Patent Number:

8 Claims, No Drawings

4,734,437

[11]

United States Patent [19]

GROWTH PROMOTION

This application is a continuation of application Ser. No. 628,002, filed July 5, 1984, now abandoned which 5 was a continuation of Ser. No. 462,587 filed Jan. 31, 1983, now abandoned.

BACKGROUND OF THE INVENTION

The chemistry and use of β -phenethanolamines has 10 been extensively investigated. A number of these compounds have been reported to have beneficial cardiac activities; see U.S. Pat. No. 3,987,200. Such compounds also are known to have sympathomimetic activity, and have found utility as utero-relaxing agents; Van Dijk et 15 al., Recueil. 92, 1281 (1973). More recently, a group of β -phenethanolamines have been reported as possessing anti-hyperglycemic activity, and have been found effective in promoting the loss of weight in animals, EPO No. 6735 published January 9, 1980.

An object of this invention is to provide a new use for certain β -phenethanolamines. This invention provides a method for promoting the growth of domesticated animals employing β -phenethanolamines.

SUMMARY OF THE INVENTION

This invention provides a method for increasing weight gain in animals and improving the efficiency of feed utilization and the quality of the carcass. The invention is more particularly directed to a method for 30 promoting growth and improving feed efficiency and leanness comprising administering an effective amount of a compound having the formula

$$\begin{array}{c|c} OH & R^3 \\ \hline & CHCH_2NH_C-CH_2CH_2 \\ \hline & R^4 \end{array}$$

wherein:

R¹ is hydrogen, hydroxy, or methoxy;

R² is hydrogen or fluoro.

R3 is hydrogen or C1-C2 alkyl;

R⁴ is hydrogen or methyl;

R⁵ is hydrogen, fluoro, nitro, hydroxy, SO₂CH₃ or CONH₂; provided that R¹ is hydrogen only when R⁵ is nitro or SO₂CH₃; and the acid addition salts thereof.

A preferred method for promoting growth and improving feed efficency and leanness according to this invention employs a compound of the above formula wherein R¹ is hydroxy, R² is hydrogen, R³ is hydrogen or methyl and R⁴ is methyl. The method is most preferably practiced employing a compound wherein R¹ and R³ both are hydroxy and R² and R³ both are hydrogen and R⁴ is methyl. When R¹ is hydroxy or methoxy, it preferably is in the para position. When R³ is other than hydrogen, it also is preferably in the para position.

This invention also provides an animal feedstuff comprising a β -phenethanolamine of the above formula together with a suitable carrier therefor.

DETAILED DESCRIPTION OF THE INVENTION

The compounds employed in the method provided by this invention are either known in the art or are readily prepared by well known synthetic procedures. A particularly preferred method employs 1-(3-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-

propylamino]ethanol. This β-phenethanolamine is disclosed in South African Patent No. 673,994 published in May, 1967. The most preferred embodiment of this invention employs 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol, a compound disclosed as having utero-relaxing activity by Van Dijk et al. in *Recueil*, 92 1281 (1973).

The compounds to be employed in the method of this invention are readily prepared by reaction of a styrene oxide with a 3-phenylpropylamine derivative. For example, a styrene oxide such as 2-fluorostyrene oxide can be reacted with about an equimolar quantity of an amine such as 1-methyl-3-(4-nitrophenyl)propylamine in an unreactive organic solvent such as ethanol, methanol, n-propanol, dioxane, or the like. The reaction generally is carried out at a temperature of about 50° to about 120° C., and at such temperature the reaction routinely is substantially complete within about 6 to about 10 hours. The product, a β -phenethanolamine, is readily isolated by simply removing the reaction solvent, for instance by evaporation under reduced pressure, and further purification can be accomplished if desired by standard techniques, including crystallization, chromatography, acid-base extraction, and the like. 5 An alternative method for preparing the β -phenethanolamines to be_ employed in the present method comprises reacting a mandelic acid derivative with a 3-phenylpropylamine derivative to provide an amide, which upon subsequent reduction provides a compound of the above formula. For example, a phenylpropylamine derivative such as 1-methyl-3-(3-fluorophenyl)propylamine can be reacted with an acylating agent such as a hydroxy protected mandelic acid halide, or preferably simply reacted with a mandelic acid in the presence of a common peptide coupling reagent such as N,N'-dicyclohexylcarbodiicarbonyldiimidazole, N-ethoxycarbonyl-2ethoxy-1,2-dihydroquinoline, commonly referred to as EEDQ. The direct coupling reaction generally is conducted in an organic solvent such as benzene or N,Ndimethylformamide, and normally is complete after about 2 to 48 hours when carried out at about -30° to about 100° C. The product is an amide that is readily isolated by simply filtering the reaction mixture and then removing the reaction solvent. The amide thus formed is next reduced by reaction with a common reducing agent such as diborane or the like to provide a β -phenethanolamine defined by the above formula.

A similar, yet alternative, method of synthesis comprises reacting a phenethanolamine with a phenylethyl ketone to provide a Schiff base, which upon reduction gives a compound to be employed in the present method. For example, a phenethanolamine such as 2-hydroxy-2-(4-hydroxyphenyl)ethylamine can be reacted with a ketone such as methyl 2-(4-hydroxyphenyl)ethyl ketone to provide the corresponding imine, which upon reduction, for instance with 5% palladium on carbon, provides 1-(4-hydroxyphenyl)-2-[1-methyl-3(4-hydroxyphenyl)propylamino]ethanol.

It should be noted that the compounds to be employed in the method of this invention possess at least one asymmetric center (i.e. the carbinol center), and 65 when R³ and R⁴-differ, the compounds possess two asymmetric centers. Since employment of individual optical isomers necessitates preparing the β-phenethanolamines from optically active starting materials, or

using costly separation procedures, a preferred embodiment of this invention employs a mixture of optical isomers. For example, 1-(4-hydroxyphenyl)2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol is preferably prepared from racemic mixtures of starting materials, e.g. dl-1-methyl-3-(4-hydroxyphenyl)propylamine and dl-4-hydroxystyrene oxide, to provide a mixture of all four possible optical isomers of the product. The mixture of optical isomers is employed in the method without subsequent separation of isomers.

Since the β-phenethanolamines to be employed in the present method are inherently basic, they readily form acid addition salts with any number of inorganic and organic acids. These salts can be employed in the method of the invention, and often are preferred to the free base since they generally are more soluble in solvents such as water and are more conveniently formulated as an animal feedstuff. Acids commonly employed to form acid addition salts include mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, perchloric acid and the like; and organic acids such as acetic acid, citric acid, succinic acid, para-toluene sulfonic acid, methanesulfonic acid, lactic acid and the like. Preferred salts to be employed in the present method include the hydrochlorides and hydrobromides.

Typical β -phenethanolamines to be employed in the method of this invention include the following:

1-(3-hydroxyphenyl)-2-[1-methyl-1-ethyl-3-(4aminocarbonylphenyl)propylamino]ethanol;

1-(2-fluoro-4-hydroxyphenyl)-2-[1-methyl-3-(4fluoro-phenyl)propylamino]ethanol;

1-(4-hydroxyphenyl)-2-[3-(3-nitrophenyl)propylamino]ethanol;

i-(3-hydroxy-2-fluorophenyl)-2-[3-(4-methylsulfonyl)-propylamino]ethanol;

1-(4-methoxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol;

1-phenyl-2-[1,1-dimethyl-3-(3-methylsulfonylphenyl)-propylamino]ethanol;

1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-(4 - hydroxyphenyl)propylamino]ethanol hydrochloride;

1-(phenyl)-2-[1-methyl-3-(4-nitrophenyl)-propylamino]ethanol;

1-(3-hydroxyphenyl)-2-[1-methyl-3-(4-fluorophenyl)propylamino]ethanol succinate;

1-(4-hydroxyphenyl)-2-[1-methyl-1-ethyl-3(4-aminocarbonylphenyl)propylamino]ethanol; 1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-phenyl-propylamino]ethanol hydrobromide; and d-1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3(4-hydroxyphenyl)propylamino]ethanol.

The method of promoting growth and improving leanness and feed efficiency provided by this invention 55 is practiced by administering an effective amount of a compound defined above to a warm-blooded animal that receives a nutritionally adequate diet. The method generally will be practiced on domesticated animals raised for human meat consumption, for example grower/finisher swine, poultry, ruminants and the like. In a preferred embodiment, the growth of pigs, chickens and turkeys is promoted employing a β-phenethanolamine. Another preferred embodiment is practiced in ruminants such as cattle, sheep and goats. The method of 65 improving leanness is not limited to meat producing animals, and can be practiced on other warm-blooded animals, including dogs and cats. This latter embodi-

ment is particularly useful when it is desired to maintain mature animals in a relatively lean physical state.

The method of the invention is preferably practiced by orally administering an effective amount of a β phenethanolamine to an animal. Other routes of administration can be employed, for instance intramuscular or intravenious injection; however, such routes are less practical. The amount to be administered to an animal is an amount that is effective in causing a promotion of growth, or an improvement in the efficiency of utilization of food, or an improvement in carcass quality of the animal, for instance in the form of less fatty tissue and improved leanness. The effective amount to be administered will vary somewhat depending upon the particular animal species being treated and the particular active ingredient employed, but generally will be from about 1 to about 1000 parts per million (ppm) of total daily feed intake. Such amount will provide a dosage of about 0.05 to about 50 mg/kg. A preferred embodiment employs about 1 to about 200 ppm, and more preferably from about 5 to about 100 ppm. A typical amount of active ingredient to be administered to swine will be from about 5 to about 40 ppm. For example, when practicing the method in animals such as ruminants or swine, the compound will be added to the daily feed ration at about 5 to about 100 parts per million of the daily feed ration.

For oral administration, the active β -phenethanola-30 mine is preferably admixed with suitable carriers or diluents commonly employed in animal husbandry. Animal feedstuffs comprising a β -phenethanolamine growth promoter as defined herein are provided as a further embodiment of this invention. Typical carriers and diluents commonly employed in such feedstuffs include corn meal, soybean meal, alfalfa meal, rice hulls, soybean mill run, cottonseed oil meal, bone meal, ground corn, corncob meal, sodium chloride, urea, cane molasses and the like. Such carriers promote a uniform distribution of the active ingredient in the finished feed ration into which such compositions are added, thereby ensuring proper distribution of the active ingredient throughout the feed. The feedstuff composition provided by the invention will contain about 5 to about 95 45 percent by weight of active ingredient, and more typically about 10 to about 50 percent by weight. As already noted, the acid addition salts of the active phenethanolamines are generally preferred for oral administration, and are thus the preferred form of active ingre-50 dient for the feedstuff compositions of the invention.

While the preferred method for orally administering the growth promoters is via the daily feed rations, the compounds can be incorporated into salt blocks and mineral licks, as well as being added directly to drinking water for convenient oral consumption. The compounds can additionally be formulated with polymorphous materials, waxes and the like for long-term controlled release, and administered to an animal as a bolus or tablet only as needed to maintain the desired daily payout of active ingredient.

For parenteral administration, the 3-phenethanolamines can be admixed with conventional carriers such as corn oil, sesame oil, carbowax, calcium stearate and the like. Such formulations can be molded into pellets and administered as an injection or as a slow-release subcutaneous implant. Such administrations can be made as often as needed to ensure the proper dosing of active ingredient to obtain the desired rate of growth

promotion and improvement in leanness and feed efficiency.

While the compounds described herein are effective in promoting average daily weight gain and improving feed efficiency in animals, they also cause observable 5 improvement in the quality of the meat produced. For example, the compounds appear to mobilize free fatty acids from fatty tissue and depress the deposition of fat as the animals gain weight. This reduction of fat is beneinvention gains weight in the form of more useable lean meat, thereby reducing waste and improving the value of the animal thus treated. Also, mature animals that are not subject to additional weight gain can be maintained in a desirably lean form by administering a compound as 15 described herein.

The practice of the present invention is more fully illustrated by the following detailed examples.

EXAMPLE 1

Preparation of dl-4-(benzyloxy)mandelic acid

A solution of 5.0 g of dl-4-hydroxy mandelic acid. 11.0 g of benzyl chloride and 10.0 g of potassium carbonate in 50 ml of methanol was heated to reflux and stirred for seventy-two hours. The reaction mixture was cooled to room temperature and diluted with 50 ml of water. The aqueous solution was washed twice with 50 ml portions of benzene, and then was acidified with concentrated hydrochloric acid. The aqueous acid solution was extracted three times with 50 ml portions of ethyl acetate. The organic extracts were combined, washed with water and with saturated sodium chloride solution and dried. Removal of the solvent by evaporation under reduced pressure provided 5.7 g of a solid 35 which was then recrystallized from 300 ml of toluene to afford 5.33 g of dl-4-(benzyloxy)mandelic acid. M.P. 153°-155° C.

Analysis calc. for C₁₅H₁₄O₄: Theory: C, 69.76; H, 5.46; Found: C, 69.96; H, 5.33.

EXAMPLE 2

Resolution of dl-4-(benzyloxy)mandelic acid to R(-)-(4-benzyloxy)mandelic acid

To a stirred solution of 185.6 g of dl-4benzyloxy)mandelic acid in 2500 ml of ethyl acetate at 80° C. was added in one portion 43.6 g of R(+)- α -methylbenzylamine. The reaction mixture was cooled to room temperature, and the precipitated solid which had formed was 50 collected by filtration and washed with fresh ethyl acetate. The solid was recrystallized twice from a solution of ninety percent ethanol in water to provide 91.4 g of the R(+)- α -methylbenzylamine salt of R(-)-4-(benzyloxy)mandelic acid. M.P. 208.5-209.5 C. [α]_D 55 -38.6° , [α]₃₆₅ -155.3° (MeOH)

Analysis calc. for C23H25NO4: Theory: C, 72.80; H, 6.64; N, 3.69; Found: C, 72.95; H, 6.83; N, 3.95.

To a stirred suspension of 91.4 g of the above-named 60 salt in 2000 ml of ethyl acetate was added 150 ml of ten percent aqueous hydrochloric acid solution. The aqueous acid solution was separated, and the organic layer washed with water and dried. Removal of the solvent by evaporation under reduced pressure afforded 54.5 g 65 of R(-)-4-(benzyloxy)mandelic acid, i.e. R(-)-2-(4benzyloxyphenyl)-2-hydroxyacetic acid. 155°-161° C. $[\alpha]_D$ - 102.2°; $[\alpha]_{365}$ - 410.6° (MeOH)

Analysis calc. for C15H14O4: Theory: C, 69.76; H, 5.46; Found: C, 69.67; H, 5.41.

EXAMPLE 3

Preparation of

dl-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 40.0 g of methyl 2-(4-benzyloxyphenylficial since the animal being treated according to the 10)ethyl ketone and 160 ml of anhydrous ammonia in 300 ml of ethanol was heated at 75° C. and stirred for two hours. After cooling the reaction mixture to room temperature, 4.0 g of Raney nickel was added in one portion, and the reaction mixture then was stirred at ° C. for twelve hours under a hydrogen atmosphere at 300 psi. The reaction mixture next was filtered and the filtrate was concentrated by evaporation of the solvent under reduced pressure to provide an oil. The oil was dissolved in 120 ml of 3N hydrochloric acid, from which the product as a hydrochloride salt precipitated. The salt so formed was collected by filtration and recrystallized from methanol and toluene to provide 36.2 g of dl-1-methyl-3-(4-benzyloxyphenyl)propylaminium chloride. M.P. 195°-197.5° C.

EXAMPLE 4

Resolution of

dl-1-methyl-3-(4-benzyloxyphenyl)propylamine to provide

R-(--)-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 629.3 g of dl-1-methyl-3-(4benzyloxyphenyl)propylaminium chloride was converted to the free amine by reaction with 95 g of sodium hydroxide in 400 ml of water. The free amine was then dissolved in 2000 ml of methylene chloride and added to a solution of 328 g of D-(-)-mandelic acid in 1000 ml of methanol. The mandelic acid salt of the free amine precipitated out of solution and was recrystallized three times from methanol to provide 322 g of the R-mandelic acid salt of R-1-methyl-3-(4-benzyloxyphenyl)propylamine. 166–167° C. $[\alpha]_D$ –30°, $[\alpha]_{365}$ –119° (MeOH).

The salt so formed was converted to R-1-methyl-3-(4benzyloxyphenyl)propylamine as the free base by reaction with aqueous sodium hydroxide.

EXAMPLE 5

R,R-N-[2-(4-Benzyloxyphenyl)-2-hydroxy-1-oxoethyl]-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 93.9 g of R-1-methyl-3-(4-benzyloxyphenyl)propylamine in 500 ml of N,N-dimethylformamide containing 63.0 g of 1-hydroxybenzotriazole and 104.6 g of R-2-(4-benzyloxyphenyl)-2-hydroxyacetic acid was cooled to 0° C. and stirred while a solution of 83.6 g of N,N'-dicyclohexylcarbodiimide in 300 ml of dimethylformamide was added dropwise over one hour. The reaction mixture was stirred for twelve hours at 3° C. and then was diluted with 10 ml of water, stirred for an additional hour, and then cooled to -30° C. in an ice-acetone bath. The reaction mixture was filtered to remove dicyclohexylurea, and then the filtrate was concentrated by evaporation of the solvent under reduced pressure. The concentrated solution was diluted with ethyl acetate and washed with saturated aqueous sodium carbonate solution, with water, with 300 ml of 1N hydrochloric acid, and again with water. The organic layer was dried and the solvent was removed by evaporation under reduced pressure to pro4,/34

vide the product as a white solid. The solid was recrystallized once from acetonitrile and again from methanol to provide 159.7 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxy-1-oxoethyl]-1-methyl-3-(4-benzyloxyphenyl)-propylamine. M.P. 145°-148° C. [α]_D -15.9°, [α]₃₆₅ 5 -50.1° (MeOH).

Analysis cale for C₃₂H₃₃NO₄: Theory: C, 77.55; H, 6.71; N, 2.83; Found: C, 77.04; H, 6.84; N, 2.53.

EXAMPLE 6

R,R-N-[2-(4-Benzyloxyphenyl)-2-hydroxyethyl]-1-methyl3-(4-benzyloxyphenyl)propylamine

To a stirred solution of 10.0 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxy-1-oxoethyl]-1-methyl-3-(4benzyloxyphenyl)propylamine in 500 ml of freshly distilled tetrahydrofuran under a nitrogen gas atmosphere was added dropwise over thirty minutes 41 ml of 2 molar borane-dimethyl sulfide complex in tetrahydrofuran. The reaction mixture was stirred at 25° C. for twenty hours, and then was heated to reflux and stirred for an additional three hours. After cooling the reaction mixture to 25° C. and stirring for another eighteen hours, the excess borane was decomposed by the slow 25 portion-wise addition of 400 ml of methanol. The solvent was then removed from the reaction mixture by evaporation under reduced pressure to provide the product as an oil. The oil so formed was dissolved in 50 ml of hot methanol, and after concentrating the volume 30 to 125 ml, the product began crystallizing out of solution. The crystalline product was collected by filtration and recrystallized twice from methanol to provide 6.65 g of R,R-N-[2-(4-benzyloxyphenyl)-2hydroxyethyl]-1methyl-3-(4-benzyloxyphenyl)propylamine. 119°-123.5° C.

The amine so formed was dissolved in methanol and added to a solution of ethereal hydrogen chloride, thereby providing 6.49 g of R,R-N-[2-(4-benzyloxy-phenyl)-2-hydroxyethyl]-1-methyl-3-(4-benzyloxy-phenyl)propylaminium chloride. M.P. 214.5°-216° C. [α]_D -13.4°, [α]₃₆₅ -30.2° (MeOH).

Analysis calc. for C₃₂H₃₆NO₃Cl: Theory: C, 74.19; H, 7.00; N, 2.70; Cl, 6.84; Found: C, 74.20; H, 6.98; N, 2.65; Cl, 6.63.

EXAMPLE 7

R,R-1-(4-Hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-propylamino]ethanol hydrochloride, also named as

R,R-N[2-(4-Hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4hydroxyphenyl)propylaminium chloride

A mixture of 51.6 g of R,R-N-[2-(4-benzyloxy-phenyl)-2-hydroxyethyl]-1-methyl-3-(4-benzyloxy-phenyl)propylaminium chloride and 5.0 g of Raney 55 nickel in 2 liters of ethanol and 2 liters of ethyl acetate was stirred at 25° C. for four and one-half hours under a hydrogen atmosphere of 60 psi. The reaction mixture was then filtered to remove the residual Raney nickel, and the filtrate was concentrated to an oil by evaporation of the solvent under reduced pressure, and the oil was crystallized from fresh ethanol and diethyl ether to provide 29.8 g of R,R-N-[2-(4-hydroxyphenyl)-2hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl)-propylaminium chloride. M.P. 176°-176.5° C. (dec.) 65 [a]_D -22.7°, [a]₃₆₅ -71.2° (3.7 mg/ml MeOH).

Analysis calc. for C₁₈H₂₄NO₃Cl: Theory: C, 63.99; H, 7.16; N, 4.15; 8

Found: C, 63.70; H, 7.26; N, 4.32.

EXAMPLE 8

As pointed out above, a preferred embodiment of this invention employs a mixture of all four optical isomers of the compound of Example 7. This racemic mixture can be prepared by the method described above by reaction of dl-4-(benzoyloxy)mandelic acid with dl1-methyl-3-(4-benzyloxyphenyl)propylamine in the pres10 ence of DCC to give racemic 1-(4-benzyloxyphenyl)-2-oxo-2-[1-methyl-3-(4-benzyloxyphenyl)propylamino]e-thanol. Reduction of the latter compound and subsequent removal of the benzyl groups provides racemic 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-15 propylamino]ethanol. This compound is more preferably prepared by the following procedure.

A solution of 32.8 g. (0.2 m) of methyl 2-(4-hydroxyphenyl)ethyl ketone and 42.6 g. (0.2 m) of 1-(4-hydroxyphenyl)-2-aminoethanol in 380 ml. of ethanol containing 3.8 g. of five percent palladium on carbon was stirred for sixteen hours at 60° C. under hydrogen at 55 psi. The reaction mixture was then filtered, and the filtrate was diluted by addition of 350 ml. of water. The aqueous mixture was concentrated to a volume of about 400 ml., and then washed with dichloromethane. The aqueous mixture was acidified by addition of 50 ml. of conc. hydrochloric acid. After standing at room temperature for two hours, the aqueous acid mixture was filtered and the filter cake was washed with 40 ml. of ice water and dried at 50° C. in vacuum to provide 47 g. of 1-(4hydroxyphenyl-2[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride. M.P. 124°-129° C.

Analysis calc. for C₁₈H₂₄NO₃Cl:

Theory: C, 63.99; H, 7.16; N, 4.15; Cl, 10.49. Found: C, 63.77; H, 6.80; N, 3.91; Cl, 10.68.

¹³C NMR studies demonstrated the product to be comprised of 51% RR,SS diastereamer and 49% RS,SR diastereomer.

EXAMPLE 9

1-Phenyl-2-[1-methyl-3-(4-nitrophenyl)propylamino]ethanol

A solution of 5.0 g. (25.9 mM) of 2-amino-1-phenyle-45 thanol and 3.55 g. (25.9 mM) of methyl 2-(4-nitrophenyl)ethyl ketone in 60 ml. of toluene containing 10 mg. of para-toluenesulfonic acid was heated at reflux for six hours in a flask equipped with a Dean-Stark trap. The water that formed during the reaction was removed via the trap, and then the reaction mixture was cooled to room temperature and concentrated to dryness by evaporation of the solvent under reduced pressure. The solid product that remained was dissolved in 50 ml. of tetrahydrofuran and the solution was heated to reflux. A solution of 13.5 ml. of 2N borane-methyl sulfide complex in tetrahydrofuran was then added dropwise to the reaction mixture, and the mixture was refluxed for an additional ninety minutes. After cooling the reaction mixture to room temperature, it was diluted by addition of diethyl ether saturated with hydrogen chloride. The precipitate that formed was collected by filtration and crystallized from ethanol and diethyl ether to give 3.29 g. of 1-phenyl-2-[1-methyl-3-(4-nitrophenyl)propylaminolethanol hydrochloride. 203-213° C.

Analysis calc. for C₁₈H₂₃ClN₂O₃: Theory: C, 61.62; H, 6.61; N, 7.98; Cl, 10.11. Found: C, 61.76; H, 6.62; N, 7.76; Cl, 10.13.

EXAMPLE 10

l-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3-phenylpropylamino]ethanol

A solution of 32.6 g. (0.2 m) of 1,1- dimethyl-3- 5 phenylpropylamine and 22.9 g. (0.1 m) of 2-(4-methoxyphenyl)-2-oxoethyl bromide in 75 ml. of tetrahydrofuran was heated at reflux for thirty-six hours. The reaction mixture was then cooled and added to 2 liters of diethyl ether. The precipitate was removed by filtration, and the filtrate was acidified with hydrobromic acid to give 18.15 g. of 1-(4- methoxyphenyl)-1-oxo-2-(1,1-dimethyl-3-phenylpropylamino)ethane hydrobromide. M.P. 174*-178° C.

The compound thus formed was dissolved in 85 ml. 15 of glacial acetic acid containing 35 ml. of hydrobromic acid, and the solution was heated at reflux for nine hours. The solution was then cooled and the solvent was removed by evaporation to provide, following crystallization from ethanol and diethyl ether, 7.8 g. of 20 1-(4-hydroxyphenyl)-1-oxo-2-(1,1-dimethyl-3-phenyl-propylamino)ethane hydrobromide. M.P. 228°-230° C.

Catalytic hydrogenation of 5.0 g. of the compound from above in 44 ml. of ethanol containing 1.25 g. of five percent palladium on carbon afforded, following 25 crystallization from acetone and diethyl ether, 2.3 g. of 1-(4-hydroxyphenyl)-2-(1,1-dimethyl3-phenyl-propylamino)ethanol hydrobromide. M.P. 168°-170° C.

Analysis calc. for C₁₉H₂₆BrNO₂: Theory: C, 60.00; H, 6.89; N, 3.68. Found: C, 60.28; H, 6.67; N, 3.62.

5; n, 6.67; N, 3.62 EXAMPLE 11

1-(3-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4-fluorophenyl)propylamino]ethanol

To a stirred solution of 67.2 g. (0.22 M) of 2-(3-benzyloxyphenyl)-2-oxoethyl bromide in 200 ml. of acetonitrile was added a solution of 54.3 g. (0.20 M) of N-benzyl-1,1-dimethyl-3-(4-fluorophenyl)propylamine in 600 ml. of acetonitrile containing 42 ml. (0.22 M) of diiso- 40 propylethylamine. The reaction mixture was stirred for about six hours at reflux, and then was cooled and stored at room temperature for forty-eight hours. The reaction mixture was next diluted by addition of aqueous sodium hydroxide, and the organic solvents were 45 removed by evaporation under reduced pressure. The aqueous alkaline mixture was extracted with ethyl acetate, which was then washed with water, dried, and concentrated to dryness to give an oil. The oil was dissolved in ethanol and diethyl ether and converted to 50 the hydrochloride salt by addition of excess hydrogen chloride. The precipitated solid was collected by filtration and recrystallized from ethyl acetate to give 51.3 g. 1-(3-benzyloxyphenyl)-1-oxo-2-[(N-benzyl)-1,1dimethyl-3-(4-fluorophenyl)propylamino]ethane hydro- 55 chloride. M.P. 137°-145° C.

The compound thus prepared was reduced by reaction with 16 g. of sodium borohydride in ethanol. Isolation of the product, followed by conversion to the hydrochloride salt and crystallization from diethyl ether 60 afforded 55.0 g. of 1-(3-benzyloxyphenyl)-2-[(N-benzyl)-1,1-dimethyl-3-(4-fluorophenyl)propylamino]ethanol hydrochloride. M.P. 186.57-191° C.

A solution of 10.0 g. of the product thus produced in 200 ml. of ethanol containing 3.0 g. of Raney Nickel 65 was shaken for two hours at 25° C. under hydrogen at 44 psi. The reaction mixture was then filtered, and the solvent was removed from the filtrate by evaporation

under reduced pressure to give a white solid. The solid was triturated with ethyl acetate and air dried to provide 5.9 g. of 1-(3-hydroxyphenyl)2-[1,1-dimethyl-3-(4-fluorophenyl)propylamino]ethanol hydrochloride. M.P. 196.5°-198.5° C.

Analysis calc. for C₁₉H₂₅ClFNO₂: Theory: C, 64.49; H, 7.12; N, 3.96; Cl, 10.02. Found: C, 64.29; H, 6.97; N, 4.06; Cl, 9.89.

EXAMPLE 12

1-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4aminocarbonylphenyl)propylamino]ethanol

A suspension of 10.0 g. (50 mM) of 1,1-dimethyl-3-(4-aminocarbonylphenyl)propylamine and 15.0 g. (50 mM) of 1-(4-benzyloxyphenyl)-1-oxoethyl bromide in 1000 ml. of acetonitrile containing 32.0 g. (0.3 M) of sodium carbonate and 100 ml. of water was stirred for one hour at 25° C. The precipitate that formed was collected by filtration, washed with water and with diethyl ether, and air dried to provide 8.0 g. of 1-(4-benzyloxyphenyl)-1-oxo-2-[1,1-dimethyl-3(4-aminocarbonylphenyl)-propylamino]ethane. M.P. 184-187° C. This product was converted to the hydrochloride salt by reaction with hydrogen chloride in diethyl ether. M.P. 219°-224° C.

The compound thus prepared was reacted with sodium borohydride in methanol to provide, following conversion to the hydrochloride salt and crystallization 30 from methanol and diethyl ether, 5.8 g. of 1-(4-benzyloxyphenyl)-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylamino]ethanol hydrochloride. M.P. 141°-143° C.

Reaction of the above compound with hydrogen in the presence of Raney Nickel effected cleavage of the hydroxy protecting group to afford, following crystallization of the hydrochloride salt, 1.3 g. of 1-(4-aminocarbonylphenyl)propylamino]ethanol hydrochloride. M.P. 185°-C. (dec.)

Analysis caic. for C₂₀H₂₇ClN₂O₃: Theory: C, 63.40; H, 7.18; N, 7.39; Cl, 9.36. Found: C, 63.26; H, 7.01; N, 7.45; Cl, 9.42. The compounds of Examples 13 and 14 were prepared by the general procedure of Example 12.

EXAMPLE 13

l-(2-Fluorophenyl)-2-[1,1-dimethyl-3-(4aminocarbonyl-phenyl)propylamino]ethanol hydrochloride

M.P. 227°-230° C.

EXAMPLE 14

1-(3-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4-hydroxyphenyl) propylamino]ethanol hydrobromide

M.P. 161°-165° C.

EXAMPLE 15

1-Phenyl-2-[1-methyl-3-(4-methylsulfonylphenyl)propylamino]ethanol hydrochloride

Methyl 2-(4-methylthiophenyl)ethyl ketone was oxidized by reaction with m-chloroperbenzoic acid to give methyl 2-(4-methylsulfonylphenyl)ethyl ketone. A solution of 6.73 g. of 2-amino-1-phenylethanol and 11.10 g. of methyl 2-(4-methylsulfonylphenyl)ethyl ketone in 500 ml. of toluene containing 200 mg. of p-toluenesulfonic acid was heated at reflux for twenty-four hours. The reaction mixture was cooled and the solvent was

removed by evaporation to give the Schiff base 1-phenyl-2-[1-methyl-3-(4-methylsulfonylphenyl)-

propyliminolethanol. The Schiff base thus prepared was reacted with 3.7 g. of sodium borohydride in 500 ml. of ethanol at 0° C. for sixteen hours. The reaction mixture 5 was diluted by addition of 50 ml. of acetone and 20 ml. of 3N hydrochloric acid. The mixture was concentrated to an oil by evaporation of the solvent. The oil crystallized upon standing at room temperature. Recrystallization of the product from 200 ml. of hot ethanol afforded 10 8.96 g. (48% yield) of 1-phenyl-2-[1-methyl-3-(4methylsulfonylphenyl)propylamino]ethanol hydrochloride. M.P. 164°-170° C.

Analysis calc. for C19H26ClNO3S: Theory: C, 59.44; H, 6.83; N, 3.65; Cl, 9.23; S. 8.35. Found: C, 59.28; H, 6.57; N, 3.70; Cl, 9.36;

S, 8.11.

EXAMPLE 16 Premix for Chickens

Ingredient	% by weight	
i-(4-hydroxyphenyi)-2-[1,1- dimethyi-3-phenylpropylamino]- ethanol succinate	25	25
Ground Corn Sodium Chloride	74 1	
	100	20

EXAMPLE 17 Premix for ruminants

Ingredient	% by weight	
1-(2-fluorophenyl)-2-[1,i- dimethyl-3-(4-aminocarbonyl- phenyl)propylamino]ethanol	30	
Ground yellow corn	60	40
 Alfaifa meal	10_	
•	100	

EXAMPLE 18 Premix for Swine

Ingredient	% by weight
l-(4-hydroxyphenyl)-2-[1-methyl- 3-(4-hydroxyphenyl)propylamino]- ethanol hydrochloride	10
Soybean mill run	88
Mineral oil	2
	100

The above ingredients are blended to uniformity to provide a dry flowable premix that can be admixed with a typical animal feed ration at a rate to provide about 20 ppm of active ingredient in the final feed ration. For example, the premix can be added to the following swine grower ration for convenient oral administration of the β -phenethanolamine to swine.

Ingredient	% by weight	lbs/Ton
Corn, yellow, ground	76.70	1534
Soybean Oil Meal,	19.35	387
solvent extracted, debuiled		

-continued

Ingredient	% by weight	ibs/Ton
Calcium Carbonate	1.20	24
Dicalcium Phosphate, feed grade	1.20	24
Salt (sodium chloride)	0.50	10
Trace mineral premix, AN-031	0.10	2
Swine Vitamin Premix, SW-03 ²	0.65	13
Vitamin A Premix, 3M USP units/lb.3	0.05	1
Methionine Hydroxy Analogue, 93%	0.20	4
Selenium Premix	0.005	ī
	100.00	2000

¹Each Kg of premix contains: 50 g. manganese as manganese sulfate: 100 g. zinc as Each Kg of premix contains: 90 g, manganese as manganese sullate; 100 g, zinc as tinc carbonate, 50 g, iron as ferrous sulfate; 5 g, copper as copper oxide; 1.5 g, iodine as potassium iodide and 150 g, maximum and 130 g, minimum calcium as calcium carbonate.

Each Kg of premix contains: 77,161 IU Vitamin D₂; 2,205 IU Vitamin E; 411 mg, riboflavin; 1,620 mg, pantothenic acid; 2,205 mg, niacin; 4.4 mg, Vitamin B₁₂; 441 mg, Vitamin K; 19,180 mg, choline; 110 mg, folic acid; 165 mg, pyridoxine; 110 mg.

thiamine; 22 mg. biotin.

³Each Kg of premix contains 6,613,800 IU Vitamin A.

⁴Each Kg of premix contains 200 mg. of selenium as sodium selenite.

EXAMPLE 19 Feed Ration for Lambs

Ingredient	Percent	lbs/I
Yellow com	61.00	1220.0
Com cobs	20.00	400.0
Alfalfa Meal, dehydrated	5.40	108.0
Soybean oil meal	8.00	160.0
Urea, feed grade	0.50	10.0
Molasses, cane	3.00	60.0
Dicalcium phosphate	0.43	8.6
Salt	0.30	6.0
Calcium carbonate	0.14	2.3
Trace mineral premix1	0.03	0.6
Vitamin A + D ₃ Premix ²	0.10	2.0
Vitamin E Premix ³	0.10	2.0
1-(4-Hydroxyphenyl)-2-(1,1-	1.00	20.0
dimethyl-3-phenylpropylamino)- ethanol		
	100.00	2000.0

¹Trace mineral premix contains: 2.5% manganese as manganese oxide, 0.07% iodine Trace mineral premix contains: 2.3% manganese as manganese oxude, 0.07% todine as potassium iodide, 0.3% cobalt as cobalt carbonate, 0.5% copper as copper oxide, and 20.0% zinc as zinc sulfate.
 Each pound of vitamin A and D₃ premix contains 2,000,000 USP units Vitamin A and 225,750 USP units Vitamin D₃.
 Jeach pound of Vitamin E premix contains 20,000 IU Vitamin E.

The compounds to be employed in the method of this invention have demonstrated efficacy in animal tests designed to establish beneficial nutritional effects. In one test designed to show lipolytic activity, normal swine, either barrows or gilts, were employed to ana-50 lyze the effect of compounds on blood glucose, insulin, and non-esterified fatty acids (NEFA).

Test animals were maintained in metabolism crates, and following a period of adaptation, catheters were placed in their femoral veins. Prior to administration of the test compounds, all animals were fasted for a period of forty hours. Such fasting causes an elevation of NEFA's in the blood. On the day of the test, all animals were fed a normal feed ration, and one group of animals were held as controls while another group of animals 60 received a test compound. The test compounds were administered at 200 mcg/kg intravenously, or orally at 1 mg/kg. Blood samples were taken from each animal immediately prior to treatment and then at one hour intervals for a period of six hours following treatment. 65 The blood plasma was analyzed for glucose, insulin and NEFA content.

When the fasted pigs were fed the normal feed ration without a test compound, the NEFA levels in the blood

drop dramatically and remained low. A β -phenethanolamine as defined herein caused either an elevation in NEFA's, or inhibited the drop in NEFA's. Blood levels of glucose and insulin were also elevated with the β -phenethanolamines.

The following Table presents the lipolytic activity of several preferred β -phenethanolamines when evaluated according to the test described above. The results are averages of several tests.

TABLE I

R ¹	R²	R ³	R ⁴	R ⁵	% increase in NEFA's over control	% increase in glucose over control	20
Н	Н	Н	CH ₃	SO ₂ CH ₃	131	9	
p-OH	Н	CH ₃	CH ₃	H	445	48	
т.ОН	Н	CH ₃	CH ₃	н	71	31	
m-OH	Н	CH ₃	CH ₃	F	28	72	25
p-OH	H	CH ₃	CH ₃	OH	141	35	
р-ОН	H	CH ₃	CH ₃	CONH ₂	18	169	
<u>т</u> -ОН	H	CH ₃	CH ₃	OH	68	40	
_H	H	H	H	NO ₂	199	7	
p-OCH ₃	H	CH ₃	CH ₃	н	84	25	
p-OCH ₃	H	CH ₃	CH ₃	ОН	249	5	70
H	H	H	CH ₃	NO ₂	1458	27	30

A ten day in vivo study was employed to determine the effect of β -phenethanolamines on feed efficiency and rate of growth. In these studies, barrows and gilts weighing approximately 60 kg were maintained in individual pens. Each treatment was replicated six times in randomly assigned animals, with each test animal forming an experimental unit. A group of control animals received a normal swine grower feed ration comprising 40 the following ingredients:

Ingredient	% by weight	
Ground yellow corn	76.70	
Soybean oil meal	19.35	•
Calcium carbonate	1.20	
Dicalcium phosphate	1.20	
Salt	0.50	
Trace mineral premix	0.10	
Swine Vitamin premix	0.65	
Vitamin A premix, 3M USP units/lb.	0.05	:
Methionine Hydroxy analogue, 93%	0.20	
Selenium premix	0.05	
	100.00	

The test animals received the same feed ration plus the 55 test compound. All animals received feed and water ad libitum. All animals were weighed on day 1 and again

on day 10, and feed consumption was measured by recording all feed issued and any remaining feed on day 10. The results of two series of this 10 day test for several β -phenethanolamines are given in Table II. In the Table, the column labelled "ADG" is the average daily weight gain in pounds; "ADF" is the average daily feed consumption (in pounds) by the test animals; and F/G is the feed efficiency calculated as ADF divided by ADG.

TABLE II

0	Ri	R ²	R ³	R ⁵	dose ppm	ADG	ADF	F/G
_	Experiment I							
	Control					1.60	4.7	2.98
	р-ОН Н	H	H	ОН	20	2.19	5.0	2.33
		H	Н	NO_2	20	1.78	4.22	2.37
	Experiment II					•		
5	Control					1.34	4.16	3.22
	p-OH	H	CH ₃	н	20	1.60	4.26	2.66
	<u>m</u> -OH	н	CH ₃	F	20	1.52	4.57	3.01

The β -phenethanolamines to be employed in the method of this invention can be administered in combination with other compounds known to have a beneficial effect upon animals. Typical compounds to be coadministered with the β -phenethanolamines include antibiotics, for example any of the tetracyclines, tylosin, penicillins, cephalosporins, polyether antibiotics, glycopeptides, orthosomycins and related compounds commonly administered to swine, poultry, ruminants and the like. A preferred combination to be employed in the present method is an antibiotic such as tylosin or a tetracycline, together with 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol. combinations will comprise the respective components in a ratio of about 1 to about 2 parts by weight of β phenethanolamine and about 1 to about 10 parts by weight of the partner component.

In a typical treatment, 1-(4-hydroxyphenyl)2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol was evaluated in a 42-day study employing finishing swine. Each treatment was replicated four times, with three pigs per replication. All treatments included a normal feed diet plus tylosin at 40 g/T. The animals were tested for growth performance and feed efficiency enhancement. Carcass quality was determined by analysis for fat and muscling. The results of the study are given in Table III. Both β -phenethanolamine treatments resulted in improved growth performance and carcasses with less fat and more muscle.

TABLE III

	Growth Promotion, Fo		ency			
		β-phenethanolamine ²				
	Control l	20 g/T	% change	40 g/T	% change	
ADG	1.94	2.07	(6.7)	2.05	(5.7)	
ADF	6.28	6.63	(3.6)	6.64	(5.7)	
F/G	3.24	3.20	(-1.2)	3.24	(0)	
Live Wt. at Slaughter, lb	217.0	223.0	(2.8)	221.0	(1.8)	
Chilled Carcass Wt., lb	154.6	160.5	(3.8)	159.8	(3.4)	

TABLE III-continued

Growth	Pro	notion,	Feed	Efficiency
	and (Carcass	Quali	itu

	β-phenethanolamine ²				
	Control ¹	20 g∕T	% change	40 g∕T	% change
Fat Depth at 10th Rib, in	1.15	1.09	(-5.2)	1.05	(-8.7)
Loin Eye Area Sp., in	4.64	4.91	(5.8)	4.84	(4.3)
Estimated pounds of Fat Free Muscle ³	74.2	78.8	(6.1)	78.4	(5.7)

all diets contained 40 g/T of tylosin

²1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]-ethanol hydrochloride

The data reported in Table III further demonstrates that the β -phenethanolamines described herein promote growth, improve feed efficiency and improve leaness.

In a similar study conducted over a 61 day period, a group of control animals received a normal daily feed 20 ration with no additive. Another group of animals received the feed ration plus tylosin at 40 g/T, while another group received the feed ration plus 1-(4hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride (compound A) at 25 20 g/T. A final group of finishing swine received the feed ration plus the combination of 40 g/T of tylosin and 20 g/T of the phenethanolamine. The results of this trial are given in Table IV.

TABLE IV

				_
	Control	Tylosin	A	Tylosin + A
ADG	1.63	1.64	1.36	1.50
ADF	5.64	5.77	5.10	5.38
F/G	3.46	3.51	3.77	3.59
Slaughter Wt, (lbs)	210	211	193	201
Carcass Wt, (lbs)	150.3	151.5	140.1	146.3
Fat Depth, 10th rib, (in) ¹	0.96	0.96	0.80	0.85
Loin Eye Area (in ²)!	4.60	4.68	4.92	5.00
Est. % Muscle ²	49.2	49.2	51.4	51.2
Est. Pounds Muscle ²	75.3	76.5	74.1	76.8

¹These results are based upon measurement of fat at the 10th rib after the carcass is

As in the previous study, both phenethanolamine treatments resulted in carcasses with less fat and more muscle. It should also be noted that the estimated amount of carcass muscle produced with the Tylosin +A treatment was similar to that produced in the con- 50 trol and the Tylosin treatment alone. This result was achieved, however, with less feed consumption than either the control or the Tylosin treatments.

Additional studies have been carried out to demonstrate the anabolic effect of β -phenethanolamines in 55 swine. The effect of the compounds on nitrogen retention in finishing barrows was determined. Nitrogen retention is the difference between nitrogen intake and nitrogen excreted. Increased nitrogen retention is known to be associated with increased anabolic activity, 60 resulting in improved carcass muscling and leanness.

In a typical study, barrows weighing about 172 pounds (78 Kg) were orally administered various doses 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride (Com- 65 pound A). All animals received water and a constant amount of normal swine feed ration. The results of this study are presented in Table V, and show that all β -

15 phenethanolamine treatments improved nitrogen retention compared to controls.

TABLE V

Treatment	Nitrogen Retention Animals per treatment	Nitrogen Retained (g/day)
Control	6	21.0
Compound A (5 g/T)	3	23.6
Compound A (10 g/T)	3	23.9
Compound A (20 g/T)	3	25.0

As pointed out above, the method of this invention can be practiced with individual isomers of β -phenethanolamines or with mixtures of isomers and diastereomers. In a study to determine the effect on weight gain 30 and feed efficacy of various mixtures of diastereomers, barrows initially weighing about 177 pounds were fed a normal swine diet plus a β -phenethanolamine at 20 g/T of feedstuff. Each treatment was replicated in twelve individually fed animals. The results are presented in 35 Table VI and show that growth performance was improved by both β -phenethanolamine treatments with very little change in feed intake.

TABLE VI

Treatment	Average Daily Feed (lbs)	Average Daily Gain (lbs)
Control 1-(4-hydroxyphenyl)-2-[1-methyl-3- (4-hydroxyphenyl)propylamino]ethanol hydrochloride 77.5% RR,SS 42.5% RS,SR	5.89 5.94	1.58 2.15
1-(4-hydroxyphenyl)-2-[1-methyl-3-(4- hydroxyphenyl)propylamino]ethanol hydrochloride 47% RR,SS 53% RS,SR	5.86	1.95

The data in Table VI demonstrates that the method of improving feed efficency and promoting growth can be practiced with any desired mixture of β -phenethanolamine optical isomers.

The efficacy of the β -phenethanolamines described herein also has been demonstrated in poultry. In a typical study, broilers that were twenty-one days old were administered an oral dosing of a β -phenethanolamine in their normal daily feed ration. All animals received the following broiler finisher ration;

-	Ingredients	% by weight	lbs/T
, -	Ground yellow corn	66.40	1328.00
	Animal-vegetable fat	1.53	30.60
	Corn Glut. meal (60%)	4.00	80.00
	Soybean meal (48%)	19.19	383.80

¹A regression equation was employed in arriving at the numerical predictions of carcass muscle (J. Animal Science, 1977, Vol. 44:3-17).

split in half across the backbone.

A regression equation is employed in arriving at the numerical predictions of careass muscle (I. Animal Science, 1977, Vol. 44:8-17).

-continued

Ingredients	% by weight	ibs/T	_				
Fish meal-menhaden	2.50	50.00	_				
Dicalcium phosphate	1.01	34.20					
Feather meal-Hydr.	2.50	50.00)				
Ground limestone	0.83	16.60					
Salt	0.30	6.00					
Vitamin Premix ¹	0.50	10.00					
Trace mineral premix ²	0.10	2.00					
Methionine Hyd. Anal.	0.15	3.00					
Lysine HCl	0.29	5.80	10				
	100.00	2000.00					

Vitamin premix provides 3000 IU of vitamin A, 900 ICU of vitamin D1, 40 mg, of vitamin E. 0.7 mg. of vitamin K. 1000 mg of choline, 70 mg. of niacin, 4 mg of pantothenic acid, 4 mg of riboflavin, 100 mcg of vitamin B₁₂, 100 mcg of biotin and pantothenic acid, 4 mg of nounavan, 100 mg of 200 mg of

Test animals received with the above ration varying doses of 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride (com- 20 or an acid addition salt thereof. pound A). Each treatment was replicated sixteen times, and the test was terminated when the animals reached fifty-six days of age. The animals were analyzed for weight gain and feed efficiency. The results of this test in broilers is presented in Table VII as mean weight 25 gain and mean feed to gain ratios.

TABLE VIII

Growth Performance of Lambs				
Treatment	Dose (ppm)	ADG (lbs)	ADF (lbs)	F/G
Control	0	0.414	3.68	8.89
Compound A	40	0.418	3.61	8.64
Compound A	80	0.472	3.57	7.56

We claim:

1. A method for promoting the growth of swine comprising administering to the animal a growth promoting amount of a compound having the formula

2. A method for improving the efficiency of feed utilization by swine comprising administering to swine an effective amount of a compound of the formula

TABLE VII

		Growtl	Performance of I	Proilers .					
Feed Efficiency									
		V	Veight Gain	_	% change				
Treatment	Dose (g/T)	grams	% improvement	Feed/Gain Ratio	from control				
Control		1473	0	2.336	G				
Compound A	10	1585	7.6	2.292	1.9				
Compound A	20	1613	9.5	2.298	1.6				
Compound A	40	1550	5.2	2.312	1.0				
Compound A	80	1669	13.3	2.221	4.9				

phenethanolamines described herein are effective in promoting growth and improving feed efficiency in

poultry.

The compounds of the invention also have demonstrated efficacy in ruminants. Forty-eight crossbred 50 wether lambs were employed in a test designed to show the effects of Compound A (1-(4-hydroxyphenyl)2-[1methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride) at varying doses. Sixteen animals were held as controls, while sixteen received 40 ppm of Com- 55 pound A, and another sixteen received 80 ppm of Compound A. All animals received a normal daily feed ration and water ad libitum. Average daily weight gain and average daily feed consumption after twenty-eight days is given below in Table VIII. The data demon- 60 strates that a β -phenethanolamine as defined herein is effective in promoting growth and improving feed efficiency in ruminants.

or an acid addition salt thereof.

3. The method of claim 1 employing R,R-N-[2-(4hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-The results of this study demonstrate that the β - 45 hydroxyphenyl)propylamine, or an acid addition salt thereof.

- 4. The method of claim 2 employing R,R-N-2-(4hydroxyphenyl)-2-hydroxyethyl]-1-methyl-R,R-N-[-(4hydroxyphenyl)propylamine, or an acid addition salt thereof.
- 5. The method of claim 1 employing N-[2-(4-hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl)propylamine hydrochloride.
- 6. The method of claim 2 employing N-[2-(4-hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl)propylamine hydrochloride.

7. The method of claim 3 employing R,R-N-[2-(4hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4hydroxyphenyl)propylamine hydrochloride.

8. The method of claim 4 employing R,R-N-[2-(4hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4hydroxyphenyl)propylamine hydrochloride.

Exhibit XII

U.S. Patent 4,849,453

United States Patent [19]

Anderson et al.

[11] Patent Number:

4,849,453

[45] Date of Patent:

Jul. 18, 1989

[54]	GROWTH	PROMOTION	OTHER PUBLICATIONS
[75]	Inventors:	David B. Anderson, Greenfield; Klaus K. Schmiegel, Indianapolis; Edward L. Veenhuizen, Greenfield, all of Ind.; Ronald R. Tuttle, Escondido, Calif.	Fed. Proc., 42, #4 (1983); 42, #3 (1983). J. Pharm. Pharmacol., 18(3), 188-189 (1966), "The Effects of Some Derivatives of Noradrenaline and 2-amino-1-p-hydroxy-phenylethanol on the In Vitro Mobilisation of Fat".
[73]	Assignee:	Eli Lilly and Company, Indianapolis, Ind.	Rec. trav. chim., 74, 919-936 (1955), "Synthesis of B-Phenyl-Ethylamine Derivatives. III) Bronchodilators", H. D. Moed et al.
[21]	Appl. No.:	153,640	Rec. trav. chim., 71, 933-944 (1952) ("Synthesis of B-
[22]	Filed:	Feb. 8, 1988	Phenyl-Ethylamine Derivatives. II), Condensation of Phenols with Amino-Acetonitriles", H. D. Moed et al.
	Relat	ted U.S. Application Data	Chemical Abstracts, 47:2360g. Chemical Abstracts, 54:25264b.
[60]	4,734,437, w Jul. 5, 1984,	Ser. No. 860,719, May 7, 1986, Pat. No. hich is a continuation of Ser. No. 628,002, abandoned, which is a continuation of Ser. , Jan. 31, 1983, abandoned.	Chemical Abstracts, 62:10372d. Chemical Abstracts, 45:1252g. Chemical Abstracts, 46:11427h. Chemical Abstracts, 49:1793i.
[51] [52] [58]	U.S. Cl		Chemical Abstracts, 65:15942. Baker et al., Use of an Adrenergic Agonist to Alter Muscle and Fat Deposition in Lambs, Fed. Prod., 42, 1983 (3069).
[56]		References Cited	Ricks et al., Use of a β-Agonist to Alter Fat and Muscle
	U.S. I	PATENT DOCUMENTS	Deposition in Steers, Fed. Proc., 42, 1983 (3070). Dairymple et al., Use of the β -Agonist Clenbuterol to
	3,966,814 6/ 4,086,272 4/ 4,279,925 7/ 4,305,960 12/ 4,338,333 7/ 4,391,826 7/	1974 Baile et al. 424/300 1976 Schromm et al. 260/570.6 1978 Cox et al. 260/559 D 1981 Haynes 424/311 1981 Haynes 424/330 1982 Ainsworth et al. 424/309 1983 Mills et al. 424/324	Alter Carcass Composition in Poultry, Fed. Proc., 42, 1983 (2203). Borsini et al., Life Sciences, 30, pp. 905-911 (1982). Van Dijk et al., Recueil, 92, 1281-1297 (1973). Primary Examiner—Frederick E. Waddell Attorney, Agent, or Firm—Donald R. Stuart; Leroy
		N PATENT DOCUMENTS	Whitaker; C. W. Ashbrook [57] ABSTRACT
	7206 1/ 26298 4/ 49728 4/ 793295 2/	1980 European Pat. Off 1980 European Pat. Off 1981 European Pat. Off 1982 European Pat. Off 1981 South Africa .	[57] ABSTRACT β-Phenethanolamines are effective in promoting growth and improving feed efficiency and leanness in animals.
		1980 United Kingdom 514/653	2 Claims, No Drawings

GROWTH PROMOTION

this application is a division of application Ser. No. 860,719, filed 5/7/86, now U.S. Pat. No. 4,734,437, 5 which is a continuation of Ser. No. 628,002, filed 7/5/84, now abandoned, which is a continuation of Ser. No. 462,587, filed 1/31/83, now abandoned.

BACKGROUND OF THE INVENTION

The chemistry and use of β -phenethanolamines has been extensively investigated. A number of these compounds have been reported to have beneficial cardiac activities; see U.S. Pat. No. 3,987,200. Such compounds also are known to have sympathomimetic activity, and have found utility as utero-relaxing agents; Van Dijk et al., Recueil, 92, 1281 (1973). More recently, a group of β -hyperglycemic activity, and have been found effective in promoting the loss of weight in animals, EPO 6735 published Jan. 9, 1980.

An object of this invention is to provide a new use for certain β -phenethanolamines. This invention provides a method for promoting the growth of domesticated animals employing β -phenethanolamines.

SUMMARY OF THE INVENTION

This invention provides a method for increasing weight gain in animals and improving the efficiency of feed utilization and the quality and the quality of the carcass. The invention is more particularly directed to a method for promoting growth and improving feed efficiency and leanness comprising administering an effective amount of a compound having the formula

wherein:

R1 is hydrogen, hydroxy, or methoxy;

R² is hydrogen or fluoro,

 R^3 is hydrogen or C_1 - C_2 alkyl;

R4 is hydrogen or methyl;

R⁵ is hydrogen, fluoro, nitro, hydroxy, SO₂CH₃ or CONH₂; provided that R¹ is hydrogen only when R⁵ is nitro or SO₂CH₃; and the acid addition salts thereof.

A preferred method for promoting growth and improving feed efficiency and leanness according to this invention employs a compound of the above formula wherein R¹ is hydroxy, R² is hydrogen, R³ is hydrogen or methyl and R⁴ is methyl. The method is most preferably practiced employing a compound wherein R¹ and S⁵ R⁵ both are hydroxy and R² and R³ both are hydrogen and R⁴ is methyl. When R¹ is hydroxy or methoxy, it preferably is in the para position. When R⁵ is other than hydrogen, it also is preferably in the para position.

This invention also provides an animal feed-stuff 60 comprising a β -phenethanolamine of the above formula together with a suitable carrier therefor.

DETAILED DESCRIPTION OF THE INVENTION

The compounds employed in the method provided by this invention are either known in the art or are readily prepared by well known synthetic procedures. A particularly preferred method employs 1-(3-hydroxy-phenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-

propylamino]-ethanol. This β -phenethanolamine is disclosed in South African Pat. No. 673,994 published in May, 1967. The most preferred embodiment of this invention employs 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-propylamino]ethanol, a compound disclosed as having utero-relaxing activity by Van Dijk et al. in *Recueil*, 92 1281 (1973).

The compounds to be employed in the method of this invention are readily prepared by reaction of a styrene oxide with a 3-phenylpropylamine derivative. For example, a styrene oxide such as 2-fluorostyrene oxide can be reacted with about an equimolar quantity of an amine such as 1-methyl-3-(4-nitrophenyl)propylamine in an unreactive organic solvent such as ethanol, methanol, n-propanol, dioxane, or the like. The reaction generally is carried out at a temperature of about 50° to about 120° C., and at such temperature the reaction routinely is substantially complete within about 6 to about 10 hours. The product, a β -phenethanolamine, is readily isolated by simply removing the reaction solvent, for instance by evaporation under reduced pressure, and further purification can be accomplished if desired by standard techniques, including crystallization, chromatography, acid-base extraction, and the like.

An alternative method for preparing the β-phenethanolamines to be employed in the present method comprises reacting a mandelic acid derivatives with a_w 3-phenylpropylamine derivative to provide an amide, which upon subsequent reduction provides a compound of the above formula. For example, a phenylpropylamine derivative such as 1-methyl-3-(3-fluorophenyl)propylamine can be reacted with an acrylating agent such as a hydroxy protected mandelic acid halide, or preferably simply reacted with a mandelic acid in the presence of a common peptide coupling reagent such as N,N'-dicyclohexylcarbodiimide, carbonyldiimidazole, N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, commonly referred to as EEDO. The direct coupling

commonly referred to as EEDQ. The direct coupling reaction generally is conducted in an organic solvent such as benzene or N,N-dimethylformamide, and normally is complete after about 2 to 48 hours when carried out at about -30° to about 100° C. The product is an amide that is readily isolated by simply filtering the reaction mixture and then removing the reaction solvent. The amide thus formed is next reduced by reaction with a common reducing agent such as diborane or 50 the like to provide a β-phenethanolamine defined by the above formula.

A similar, yet alternative, method of synthesis comprises reacting a phenethanolamine with a phenylethyl ketone to provide a Schiff base, which upon reduction gives a compound to be employed in the present method. For example, a phenethanolamine such as 2-hydroxy-2-(4-hydroxyphenyl)ethylamine can be reacted with a ketone such as methyl 2-(4-hydroxyphenyl)ethyl ketone to provide the corresponding imine, which upon reduction, for instance with 5% palladium on carbon, provides 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylaminolethanol.

It should be noted that the compounds to be employed in the method of this invention possess at least one asymmetric center (i.e. the carbinol center), and when R³ and R⁴ differ, the compounds possess two asymmetric centers. Since employment of individual optical isomers necessitates preparing the β-phene-

ment is particularly useful when it is desired to maintain mature animals in a relatively lean physical state.

thanolamines from optically active starting materials, or using costly separation procedures, a preferred embodiment of this invention employs a mixture of optical isomers. For example, 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol is preferably prepared from racemic mixtures of starting materials, e.g. dl-1-methyl-3-(4-hydroxyphenyl)propylamine and dl-4-hydroxystyrene oxide, to provide a mixture of all four possible optical isomers of the product. The mixture of optical isomers is employed in the method without subsequent separation of isomers.

Since the β -phenethanolamines to be employed in the present method are inherently basic, they readily form acid addition salts with any number of inorganic and organic acids. These salts can be employed in the method of the invention, and often are preferred to the free base since they generally are more soluble in solvents such as water and are more conveniently formulated as an animal feedstuff. Acids commonly employed to form acid addition salts include mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, perchloric acid and the like; and organic acids such as acetic acid, citric acid, succinic acid, para-toluene sulfonic acid, methanesulfonic acid, lactic acid and the like. Preferred salts to be employed in the present method include the hydrochlorides and hydrobromides.

Typical β -phenethanolamines to be employed in the method of this invention include the following:

1-(3-hydroxyphenyl)-2-[1-methyl-1-ethyl-3-(4-aminocarbonylphenyl)propylamino]ethanol;

1-(2-fluoro-4-hydroxyphenyl)-2-[1-methyl-3-(4-fluorophenyl)propylamino]ethanol;

1-(4-hydroxyphenyl)-2-[3-(3-nitrophenyl)-propylamino]ethanol;

1-(3-hydroxy-2-fluorophenyl)-2-[3-(4-methylsulfonyl)propylamino]ethanol;

1-(4-methoxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol;

1-phenyl-2-[1,1-dimethyl-3-(3-methylsulfonylphenyl)propylamino]ethanol;

1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride;

1-(phenyl)-2-[1-methyl-3-(4-nitrophenyl)-propylamino]ethanol;

1-(3-hydroxyphenyl)-2-[1-methyl-3-(4-fluorophenyl)propylamino]ethanol succinate;

1-(4-hydroxyphenyl)-2-[1-methyl-1-ethyl-3-(4-aminocarbonylphenyl)propylamino]ethanol;

1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-phenylpropylamino]ethanol hydrobromide; and

d-1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-(4-hydroxyphenyl)propylaminolethanol.

The method of promoting growth and improving leanness and feed efficiency provided by this invention 55 is practiced by administering an effective amount of a compound defined above to a warm-blooded animal that receives a nutritionally adequate diet. The method generally will be practiced on domesticated animals raised for human meat consumption, for example grower/finisher swine, poultry, ruminants and the like. In a preferred embodiment, the growth of pigs, chickens and turkeys is promoted employing a β -phenethanolamine. Another preferred embodiment is practiced in ruminants such as cattle, sheep and goats. The method of 65 improving leanness is not limited to meat producing animals, and can be practiced on other warm-blooded animals, including dogs and cats. This latter embodi-

The method of the invention is preferably practiced by orally administering an effective amount of a β phenethanolamine to an animal. Other routes of administration can be employed, for instance intramuscular or intravenious injection; however, such routes are less practical. The amount to be administered to an animal is an amount that is effective in causing a promotion of growth, or an improvement in the efficiency of utilization of food, or an improvement in carcass quality of the animal, for instance in the form of less fatty tissue and improved leanness. The effective amount to be administered will vary somewhat depending upon the particular animal species being treated and the particular active ingredient employed, but generally will be from about 1 to about 1000 parts per million (ppm) of total daily feed intake. Such amount will provide a dosage of about 0.05 to about 50 mg/kg. A preferred embodiment employs about 1 to about 200 ppm, and more preferably from about 5 to about 1000 ppm. A typical amount of active ingredient to be administered to swine will be from about 5 to about 40 ppm. For example, when practicing the method in animals such as ruminants or swine, the compound will be added to the daily feed ration at about 5 to about 100 parts per million of the daily feed ration.

For oral administration, the active β -phenethanola-30 mine is preferably admixed with suitable carriers or diluents commonly employed in animal husbandry. Animal feedstuffs comprising a β -phenethanolamine growth promoter as defined herein are provided as a further embodiment of this invention. Typical carriers and diluents commonly employed in such feedstuffs include corn meal, soybean meal, alfalfa meal, rice hulls, soybean mill run, cottonseed oil meal, bone meal, ground corn, corncob meal, sodium chloride, urea, cane molasses and the like. Such carriers promote a uniform distribution of the active ingredient in the finished feed ratio into which such compositions are added, thereby ensuring proper distribution of the active ingredient throughout the feed. The feedstuff composition provided by the invention will contain about 5 to about 95 percent by weight of active ingredient, and more typically about 10 to about 50 percent by weight. As already noted, the acid addition salts of the active phenethanolamines are generally preferred for oral administration, and are thus the preferred form of active ingre-50 dient for the feedstuff compositions of the invention.

While the preferred method for orally administering the growth promoters is via the daily feed rations, the compounds can be incorporated into salt blocks and mineral licks, as well as being added directly to drinking water for convenient oral consumption. The compounds can additionally be formulated with polymorphous materials, waxes and the like for long-term controlled release, and administered to an animal as a bolus or tablet only as needed to maintain the desired daily payout of active ingredient.

For parenteral administration, the β -phenethanolamines can be admixed with conventional carriers such as corn oil, sesame oil, carbowax, calcium stearate and the like. Such formulations can be molded into pellets and administered as an injection or as a slow-release subcutaneous implant. Such administrations can be made as often as needed to ensure the proper dosing of active ingredient to obtain the desired rate of growth

5

promotion and improvement in leanness and feed efficiency.

While the compounds described herein are effective in promoting average daily weight gain and improving feed efficiency in animals, they also cause observable 5 improvement in the quality of the meat produced. For example, the compounds appear to mobilize free fatty acids from fatty tissue and depress the deposition of fat invention gains weight in the form of more useable lean meat, thereby reducing waste and improving the value of the animal thus treated. Also, mature animals that are not subject to additional weight gain can be maintained in a desirably lean form by administering a compound as 15 described herein.

The practice of the present invention is more fully illustrated by the following detailed examples.

EXAMPLE 1

Preparation of dl-4-(benzyloxy)mandelic acid

A solution of 5.0 g of dl-4-hydroxy mandelic acid, 11.0 g of benzyl chloride and 10.0 g of potassium carbonate in 50 ml of methanol was heated to reflux and stirred for seventy-two hours. The reaction mixture was cooled to room temperature and diluted with 50 ml of water. The aqueous solution was washed twice with 50 ml portions of benzene, and then was acidified with concentrated hydrochloric acid. The aqueous acid solution was extracted three times with 50 ml portions of ethyl acetate. The organic extracts were combined, washed with water and with saturated sodium chloride solution and dried. Removal of the solvent by evaporation under reduced pressure provided 5.7 g of a solid which was then recrystallized from 300 ml of toluene to afford 5.33 g of dl-4-(benzyloxy)mandelic acid. M.P. 153°-155° C.

Analysis calc. for C15H14O4. Theory: C, 69.76; H, 5.46. Found: C, 69.96; H, 5.33.

EXAMPLE 2

Resolution of dl-4-(benzyloxy)mandelic acid to provide R(-)-(4-benzyloxy)mandelic acid

To a stirred solution of 185.6 g of dl-4-benzyloxy)mandelic acid in 2500 ml of ethyl acetate at 80° C. was added in one portion 43.6 g of R(+)-α-methylbenzylamine. The reaction mixture was cooled to room temperature, and the precipitated solid which had formed was 50 collected by filtration and washed with fresh ethyl acetate. The solid was recrystallized twice from a solution of ninety percent ethanol in water to provide 91.4 g of the R(+)- α -methylbenzylamine salt of R(-)-4-(benzyloxy)mandelic acid. M.P. 208.5°-209.5° C. [α]_D 55 -38.6°, [α]₃₆₅ -155.3° (MeOH).

Analysis calc. for C23H25NO4. Theory: C, 72.80; H, 6.64; N, 3.69. Found: C, 72.95; H, 6.83; N, 3.95.

To a stirred suspension of 91.4 g of the above-named 60 salt in 2000 ml of ethyl acetate was added 150 ml of ten percent aqueous hydrochloric acid solution. The aqueous acid solution was separated, and the organic layer washed with water and dried. Removal of the solvent by evaporation under reduced pressure afforded 54.5 g 65 of R(-)-4-(benzyloxy)mandelic acid, ie. R(-)-2-(4-M.P. benzyloxyphenyl)-2-hydroxyacetic acid. 155°-161° C. $[\alpha]_D = 102.2^\circ$; $[\alpha]_{365} = 410.6^\circ$ (MeOH).

Analysis calc. for C15H14O4. Theory: C. 69.76; H. 5.46.

Found: C, 69.67; H, 5.41.

EXAMPLE 3

Preparation of

dl-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 40.0 g of methyl 2-(4-benzyloxyphenylficial since the animal being treated according to the 10 ethyl ketone and 160 ml of anhydrous ammonia in 300 hours. After cooling the reaction mixture to room temperature, 4.0 g of Raney nickel was added in one portion, and the reaction mixture then was stirred at 25° C. for twelve hours under a hydrogen atomsphere at 300 psi. The reaction mixture next was filtered and the filtrate was concentrated by evaporation of the solvent under reduced pressure to provide an oil. The oil was dissolved in 120 ml of 3N hydrochloric acid, from which the product as a hydrochloride salt precipitated. The salt so formed was collected by filtration and recrystallized from methanol and toluene to provide 36.2 g of dl-1-methyl-3-(4-benzyloxyphenyl)propylaminium chloride. M.P. 195'-197.5' C.

EXAMPLE 4

Resolution of

dl-1-methyl-3-(4-benzyloxyphenyl)propylamine to provide

R-(-)-1-methyl-3-(4-benzyloxyphenyl)-propylamine

A solution of 629.3 g of dl-1-methyl-3-(4-benzyloxyphenyl)propylaminium chloride was converted to the free amine by reaction with 95 g of sodium hydroxide in 400 ml of water. The free amine was then dissolved in 2000 ml of methylene chloride and added to a solution of 328 g of D-(-)-mandelic acid in 1000 ml of methanol. The mandelic acid salt of the free amine precipitated out of solution and was recrystallized three times from methanol to provide 322 g of the R-mandelic acid salt of R-1-methyl-3-(4-benzyloxyphenyl)propylamine. $166^{\circ}-167^{\circ}$ C. $[\alpha]_D - 30^{\circ}$, $[\alpha]_{365} - 119^{\circ}$ (MeOH).

The salt so formed was converted to R-1-methyl-3-(4benzyloxyphenyl)propylamine as the free base by reaction with aqueous sodium hydroxide.

EXAMPLE 5

R,R-N-[2-(4-Benzyloxyphenyl)-2-hydroxy-1-oxoethyl]-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 93.9 g of R-1-methyl-3-(4-benzyloxyphenyl)propylamine in 500 ml of N,N-dimethylformamide containing 63.0 g of 1-hydroxybenzotriazole and 104.6 g of R-2-(4-benzyloxyphenyl)-2-hydroxyacetic acid was cooled to 0° C. and stirred while a solution of 83.6 g of N,N'-dicyclohexylcarbodiimide in 300 ml of dimethylformamide was added dropwise over one hour. The reaction mixture was stirred for twelve hours at 3° C. and then was diluted with 10 ml of water, stirred for an additional hour, and then cooled to -30° C. in an ice-acetone bath. The reaction mixture was filtered to remove dicyclohexylurea, and then the filtrate was concentrated by evaporation of the solvent under reduced pressure. The concentrated solution was diluted with ethyl acetate and washed with saturated aqueous sodium carbonate solution, with water, with 300 ml of 1N hydrochloric acid, and again with water. The organic layer was dried and the solvent was removed by evaporation under reduced pressure to pro-

vide the product as a white solid. The solid was recrystallized once from acetonitrile and again from methanol to provide 159.7 g of R,R-N-[2-(4-benzyloxyphenyl)-2hydroxy-1-oxoethyl]-1-methyl-3-(4-benzyloxyphenyl)--50.1° (MeOH).

Analysis calc for C32H33NO4. Theory: C, 77.55; H, 6.71; N, 2.83. Found: C, 77.04; H, 6.84; N, 2.53.

EXAMPLE 6

R,R-N-[2-(4-Benzyloxyphenyl)-2-hydroxyethyl]-1methyl-3-(4-benzyloxyphenyl)propylamine

To a stirred solution of 10.0 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxy-1-oxoethyl]-1-methyl-3-(4benzyloxyphenyl)propylamine in 500 ml of freshly distilled tetrahydrofuran under a nitrogen gas atmosphere was added dropwise over thirty minutes 41 ml of 2 molar borane-dimethyl sulfide complex in tetrahydrofuran. The reaction mixture was stirred at 25° C. for twenty hours, and then was heated to reflux and stirred for an additional three hours. After cooling the reaction mixture to 25° C. and stirring for another eighteen hours, the excess borane was decomposed by the slow portion-wise addition of 400 ml of methanol. The solvent was then removed from the reaction mixture by evaporation under reduced pressure to provide the product as an oil. The oil so formed was dissolved in 250 ml of hot methanol, and after concentrating the volume to 125 ml, the product began crystallizing out of solution. The crystalline product was collected by filtration and recrystallized twice from methanol to provide 6.65 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxyethyi]-1-methyl-3-(4-benzyloxyphenyl)propylamine. M.P. 119°-123.5° C.

The amine so formed was dissolved in methanol and added to a solution of ethereal hydrogen chloride, thereby providing 6.49 g of R,R-N-[2-(4-benzyloxy-phenyl)-2-hydroxyethyl]-1-methyl-3-(4-benzyloxyphenyl)-propylaminium chloride. M.P. 214.5√-216° C. $[a]_D - 13.4^{\circ}$, $[a]_{365} - 30.2^{\circ}$ (MeOH).

Analysis calc. for C₃₂H₃₆NO₃Cl. Theory: C, 74:19; H, 7.00; N, 2.70; Cl, 6.84. Found: C, 74.20; H, 6.98; N, 2.65; Cl, 6.63.

R,R-1-(4-Hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-propylamino]ethanol hydrochloride, also named as

R,R-N-[2-(4-Hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl)propylaminium chloride

A mixture of 51.6 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-benzyloxyphenyl)propylaminium chloride and 5.0 g of Raney 55 nickel in 2 liters of ethanol and 2 liters of ethyl acetate was stirred at 25° C. for four and one-half hours under a hydrogen atmosphere of 60 psi. The reaction mixture was then filtered to remove the residual Raney nickel, and the filtrate was concentrated to an oil by evapora- 60 tion of the solvent under reduced pressure, and the oil was crystallized from fresh ethanol and diethyl ether to provide 29.8 g of R,R-N-[2-(4-hydroxyphenyl)-2hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl)propylaminium chloride. M.P. 176°-176.5° C. (dec.) 65 $[a]_D - 22.7^{\circ}$, $[a]_{365} - 71.2^{\circ}$ (3.7 mg/ml MeOH).

Analysis calc. for C₁₈H₂₄NO₃Cl. Theory: C, 63.99; H, 7.16; N, 4.15.

Found: C, 63.70; H, 7.26; N, 4.32.

EXAMPLE 8

As pointed out above, a preferred embodiment of this propylamine. M.P. 145°-148° C. $[\alpha]_D - 15.9$ °, $[\alpha]_{365}$ 5 invention employs a mixture of all four optical isomers of the compound of Example 7. This racemic mixture can be prepared by the method described above by reaction of dl-4-(benzoyloxy)mandelic acid with dl-1methyl-3-(4-benzyloxyphenyl)propylamine in the pres-10 ence of DCC to give racemic 1-(4-benzyloxyphenyl)-2oxo-2-[1-methyl-3-(4-benzyloxyphenyl)propylaminolethanol. Reduction of the latter compound and subsequent removal of the benzyl groups provides racemic 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]-ethanol. This compound is more preferably prepared by the following procedure.

A solution of 32.8 g. (0.2 m) of methyl 2-(4-hydroxyphenyl)ethyl ketone and 42.6 g. (0.2 m) of 1-(4-hydroxyphenyl)-2-aminoethanol in 380 ml. of ethanol containing 3.8 g. of five percent palladium on carbon was stirred for sixteen hours at 60° C. under hydrogen at 55 psi. The reaction mixture was then filtered, and the filtrate was diluted by addition of 350 ml. of water. The aqueous mixture was concentrated to a volume of about 400 ml., and then washed with dichloromethane. The aqueous mixture was acidified by addition of 50 ml. of conc. hydrochloric acid. After standing at room temperature for two hours, the aqueous acid mixture was filtered and the filter cake was washed with 40 ml. of ice water and dried at 50° C. in vacuum to provide 47 g. of 1-(4hydroxyphenyl-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride. M.P. 124°-129° C.

Analysis calc. for C₁₈H₂₄NO₃Cl.

Theory: C, 63.99; H, 7.16; N, 4.15; Cl, 10.49. Found: C, 63.77; H, 6.80; N, 3.91; Cl, 10.68. 13C NMR studies demonstrated the product to be comprised of 51% RR,SS diastereamer and 49% RS,SR diastereomer.

EXAMPLE 9

1-Phenyl-2-[1-methyl-3-(4-nitrophenyl)propylamino]ethanol

A solution of 5.0 g. (25.9 mM) of 2-amino-1-phenyle-45 thanol and 3.55 g. (25.9 mM) of methyl 2-(4-nitrophenyl)ethyl ketone in 60 ml. of toluene containing 10 mg. of para-toluenesulfonic acid was heated at reflux for six hours in a flask equipped with a Dean-Stark trap. The water that formed during the reaction was removed via the trap, and then the reaction mixture was cooled to room temperature and concentrated to dryness by evaporation of the solvent under reduced pressure. The solid product that remained was dissolved in 50 ml. of tetrahydrofuran and the solution was heated to reflux. A solution of 13.5 ml. of 2N borane-methyl sulfide complex in tetrahydrofuran was then added dropwise to the reaction mixture, and the mixture was refluxed for an additional ninety minutes. After cooling the reaction mixture to room temperature, it was diluted by addition of diethyl ether saturated with hydrogen chloride. The precipitate that was formed was collected by filtration and crystallized from ethanol and diethyl ether to give 3.29 g. of 1-phenyl-2-[1-methyl-3-(4-nitrophenyl)-propylamino]ethanol hydrochloride. M.P. 203°-213° C.

Analysis calc. for C₁₈H₂₃ClN₂O₃. Theory: C, 61.62; H, 6.61; N, 7.98; Cl. 10.11. Found: C, 61.76; H, 6.62; N, 7.76; Cl, 10.13.

EXAMPLE 10

1-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3-phenyl-. propylamino]ethanol

A solution of 32.6 g. (0.2 m) of 1,1-dimethyl-3-phenylpropylamine and 22.9 g. (0.1 m) of 2-(4-methoxyphenyl)-2-oxoethyl bromide in 75 ml. of tetrahydrofuran was heated at reflux for thirty-six hours. The reaction mixture was then cooled and added to 2 liters of diethyl ether. The precipitate was removed by filtra- 10 tion, and the filtrate was acidified with hydrobromic acid to give 18.15 g. of 1-(4-methoxyphenyl)-1-oxo-2-(1,1-dimethyl-3-phenylpropylamino)ethane hydrobromide. M.P. 174°-178° C.

of glacial acetic acid containing 35 ml. of hydrobromic acid, and the solution was heated at reflux for nine hours. The solution was then cooled and the solvent was removed by evaporation to provide, following 1-(4-hydroxyphenyl)-1-oxo-2-(1,1-dimethyl-3-phenylpropylamino)ethane hydrobromide. M.P. 228°-230° C

Catalytic hydrogenation of 5.0 g of the compound from above in 44 ml. of ethanol containing 1.25 g. of crystallization from acetone and diethyl ether, 2.3 g. of 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-phenylpropylamino)ethanol hydrobromide. M.P. 168°-170° C.

Analysis calc. for C₁₉H₂₆BrNO₂. Theory: C, 60.00; H, 6.89; N, 3.68. Found: C, 60.28; H, 6.67; N, 3.62.

EXAMPLE 11

1-(3-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4-fluorophenyl)propylamino]ethanol

To a stirred solution of 67.2 g. (0.22M) of 2-(3-benzyloxyphenyl)-2-oxoethyl bromide in 200 ml. of acetonitrile was added as solution of 54.3 g. (0.20M) of Nbenzyl-1,1-dimethyl-3-(4-fluorophenyl)propylamine in 600 ml. of acetontrile containing 42 ml. (0.22M) of diiso-40 propylethylamine. The reaction mixture was stirred for about six hours at reflux, and then was cooled and stored at room temperature for forty-eight hours. The reaction mixture was next diluted by addition of aqueous sodium hydroxide, and the organic solvents were 45 removed by evaporation under reduced pressure. The aqueous alkaline mixture was extracted with ethyl acetate, which was then washed with water, dried, and concentrated to dryness to give an oil. The oil was dissolved in ethanol and diethyl ether and converted to 50 the hydrochloride salt by addition of excess hydrogen chloride. The precipitated solid was collected by filtration and recrystallized from ethyl acetate to give 51.3 g. 1-(3-benzyloxyphenyl)-1-oxo-2-[(N-benzyl)-1,1dimethyl-3-(4-fluorophenyl)-propylamino]ethane hy- 55 drochloride. M.P. 137°-145° C.

The compound thus prepared was reduced by reaction with 16 g. of sodium borohydride in ethanol. Isolation of the product, followed by conversion to the hydrochloride salt and crystallization from diethyl ether 60 afforded 55.0 g. of 1-(3-benzyloxyphenyl)-2-[(N-benzyl)-1,1-dimethyl-3-(4-fluorophenyl)propylamino]ethanol hydrochloride. M.P. 186.5°-191° C.

A solution of 10.0 g. of the product thus produced in 200 ml. of ethanol containing 3.0 g. of Raney Nickel 65 was shaken for two hours at 25° C. under hydrogen at 44 psi. The reaction mixture was then filtered, and the solvent was removed from the filtrate by evaporation

under reduced pressure to give a white solid. The solid was triturated with ethyl acetate and air dried to provide 5.9 g. of 1-(3-hydroxyphenyl)-2-[1,1-dimethyl-3-(4fluorophenyl)propylamino]ethanol hydrochloride. M.P. 196.5°-198.5° C.

Analysis calc. for C19H25C1FNO2. Theory: C, 64.49; H, 7.12; N, 3.96; Cl, 10.02. Found: C, 64.29; H, 6.97; N, 4.06; Cl, 9.89.

EXAMPLE 12

1-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylamino]ethanol

A suspension of 10.0 g. (50 mM) of 1,1-dimethyl-3-(4-The compound thus formed was dissolved in 85 ml. 15 aminocarbonylphenyl)propylamine and 15.0 g. (50 mM) of 1-(4-benzyloxyphenyl)-1-oxoethyl bromide in 1000 ml. of acetonitrile containing 32.0 g. (0.3M) of sodium carbonate and 100 ml. of water was stirred for one hour at 25° C. The precipitate that formed was collected by crystallization from ethanol and diethyl ether, 7.8 g. of 20 filtration, washed with water and with diethyl ether, and air dried to provide 8.0 g. of 1-(4-benzyloxyphenyl)-1-oxo-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylaminolethane. M.P. 184°-187° C. This product was converted to the hydrochloride salt by reaction five percent palladium on carbon afforded, following 25 with hydrogen chloride in diethyl ether. M.P. 219°-224° C.

> The compound thus prepared was reacted with sodium borohydride in methanol to provide, following conversion to the hydrochloride salt and crystallization 30 from methanol and diethyl ether, 5.8 g. of 1-(4-benzyloxyphenyl)-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylamino]ethanol hydrochloride. 141°-143° C.

> Reaction of the above compound with hydrogen in 35 the presence of Raney Nickel effected cleavage of the hydroxy protecting group to afford, following crystallization of the hydrochloride salt, 1.3 g. of 1-(4-aminocarbonylphenyl)propylamino]ethanol hydrochloride. M.P. 185° C. (dec.)

Analysis calc. for C20H27ClN2O3. Theory: C, 63.40; H, 7.18; N, 7.39; Cl, 9.36. Found: C, 63.26; H, 7.01; N, 7.45; Cl, 9.42. The compounds of Examples 13 and 14 were prepared by the general procedure of Example 12.

EXAMPLE 13

1-(2-Fluorophenyl)-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylamino]ethanol hydrochloride M.P. 227°-230° C.

EXAMPLE 14

1-(3-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrobromide

M.P. 161°-165° C.

EXAMPLE 15

1-Phenyl-2-[1-methyl-3-(4-methylsulfonylphenyl)propylamino]ethanol hydrochloride

Methyl 2-(4-methylthiophenyl)ethyl ketone was oxidized by reaction with m-chloroperbenzoic acid to give methyi 2-(4-methylsulfonylphenyl)ethyl ketone. A solution of 6.73 g. of 2-amino-1-phenylethanol and 11.10 g. of methyl 2-(4-methylsulfonylphenyl)ethyl ketone in 500 ml. of toluene containing 200 mg. of p-toluenesulfonic acid was heated at reflux for twenty-four hours. The reaction mixture was cooled and the solvent was

20

25

30

removed by evaporation to give the Schiff base 1-phenyl-2-[1-methyl-3-(4-methylsulfonylphenyl)-

propylaminolethanol. The Schiff base thus prepared was reacted with 3.7 g. of sodium borohydride in 500 ml. of ethanol at 0° C. for sixteen hours. The reaction mixture was diluted by addition of 50 ml. of acetone and 20 ml. of 3N hydrochloric acid. The mixture was concentrated to an oil by evaporation of the solvent. The oil crystallized upon standing at room temperature. 10 Recrystallization of the product from 200 ml. of hot ethanol afforded 8.96 g. (48% yield) of 1-phenyl-2-[1methyl-3-(4-methylsulfonylphenyl)propylaminolethanol hydrochloride. M.P. 164°-170° C.

Analysis calc. for C₁₉H₂₆ClNO₃S.

Theory: C, 59.44; H, 6.83; N, 3.65; Cl, 9.23; S, 8.35. Found: C, 59.28; H, 6.57; N, 3.70; Cl, 9.36; S, 8.11.

Ingredient	% by weight
Example 16	
Premix for Chickens	<u>_</u> :
I-(4-hydroxyphenyl)-2-[1,1-	25
dimethyl-3-phenylpropylamino]-	
ethanol succinate	
Ground Corn	74
Sodium Chloride	1_
	100
Example 17	
Premix for ruminants	_
1-(2-fluorophenyl)-2-[1,1-	
dimethyl-3-(4-aminocarbonyl-	
phenyl)propylaminolethanol	
Ground yellow corn	60
Alfalfa meai	10
	100
Example 18	
Premix for Swine	
l-(4-hydroxyphenyl)-2-[1-methyl-	10
3-(4-hydroxyphenyi)propylamino]-	
ethanol hydrochloride	
Soybean mill run	88
Mineral oil	2

The above ingredients are blended to uniformity to provide a dry flowable premix that can be admixed with a typical animal feed ration at a rate to provide about 20 50 ppm of active ingredient in the final feed ration. For example, the premix can be added to the following swine grower ration for convenient oral administration of the β -phenethanolamine to swine.

Ingredient	% by weight	lbs/Ton	•
Corn, yellow, ground	76.70	1534	-
Soybean Oil Meal,	19.35	387	
solvent extracted, dehulled			•
Calcium Carbonate	1.20	24	
Dicalcium Phosphate, feed grade	1.20	24	
Salt (sodium chloride)	0.50	10	
Trace mineral premix, AN-031	0.10	2	
Swine Vitamin Premix, SW-03 ²	0.65	13	-
Vitamin A Premix, 3M USP units/lb.3	0.05	1	
Methionine Hydroxy Analogue, 93%	0.20	4	
Selenium Premix ⁴	0.005	1	

COSTINI	•

Ingredient	 % by weight	lbs/Ton
	100.00	2000

Each Kg of premis contains: 50 g. manganese as manganese sulfate; 100 g. zinc as time carbonate; 50 g. iron as ferrous sulfate; 5 g. copper as copper oxide; 1.5 g. iodine as potassium iodine and 150 g. maximum and 130 g. minimum calcium as calcium Each Kg of premix contains: 77.161 IU Vitamin D2; 2,205 IU Vitamin E; 411 mg.

riboflavin; 1,620 mg, pantothenic acid; 2,205 mg, niacin; 4.4 mg, Vitamin B₁₂; 441 mg, Vitamin K; 19,180 mg, choline; 110 mg, folic acid; 165 mg, pyridoxine; 110 mg, thiamine; 22 mg, biotin.

Each Kg of premis contains 6,613,800 IU Vitamin A.

Each Kg of premix contains 200 mg, of selenium as sodium selenite.

Example 19 Feed Ration for Lambs						
Ingredient	Percent	lbs/T				
Yellow corn	61.00	1220.0				
Corn cobs	20.00	400.0				
Alfalfa Meal, dehydrated	5.40	108.0				
Soybean oil meal	8.00	160.0				
Urea, feed grade	0.50	10.0				
Molasses, cane	3.00	60.0				
Dicalcium phosphate	0.43	8.6				
Salt	0.30	6.0				
Calcium carbonate	0.14	2.3				
Trace mineral premix 1	0.03	0.6				
Vitamin A + D ₃ Premix ²	0.10	2.0				
Vitamin E Premix ³	0.10	2.0				
1-(4-Hydroxyphenyl)-2-(1,1-	1.00	20.0				
dimethyl-3-phenylpropylamino)- ethanol						
	100.00	2000.00				

Trace mineral premix contains: 2.5% manganese as manganese oxide, 0.07% iodine as potassium iodide, 0.3% cobalt as cobalt carbonate, 0.5% copper as copper oxide, and 20.0% zine as zine sulfate.

²Each pound of vitamin A and D₃ premix contains 2,000,000 USP units Vitamin A and 225,750 USP units Vitamin D₃.

Bach pound of Vitamin E premix contains 20,000 IU Vitamin E.

The compounds to be employed in the method of this invention have demonstrated efficacy in animal tests designated to establish beneficial nutritional effects. In one test designed to show lipolytic activity, normal swine, either barrows or gilts, were employed to analyze the effect of compounds on blood glucose, insulin, and non-esterified fatty acids (NEFA).

Test animals were maintained in metabolism crates, and following a period of adaptation, catheters were placed in their femoral veins. Prior to administration of the test compounds, all animals were fasted for a period of forty hours. Such fasting causes an elevation of NEFA's in the blood. On the day of the test, all animals were fed a normal feed ration, and one group of animals were held as controls while another group of animals received a test compound. The test compounds were administered at 200 mcg/kg intravenously, or orally at 55 1 mg/kg. Blood samples were taken from each animal immediately prior to treatment and then at one hour intervals for a period of six hours following treatment. The blood plasma was analyzed for glucose, insulin and NEFA content.

When the fasted pigs were fed the normal feed ration without a test compound, the NEFA levels in the blood drop dramatically and remained low. A β -phenethanolamine as defined herein caused either an elevation in NEFA's, or inhibited the drop in NEFA's. Blood 65 levels of glucose and insulin were also elevated with the β -phenethanolamines.

The following Table presents the lipolytic activity of several preferred β -phenethanolamines when evaluated according to the test described above. The results are averages of several tests.

the Table, the column labelled "ADG" is the average daily weight gain in pounds; "ADF" is the average

TABLE I

R¹	R²	R ³	R ⁴	R ⁵	% increase in NEFA's over control	% increase in glucose over control
H	н	Н	CH ₁	SO ₂ CH ₃	131	9
p-OH	Н	CH ₃	CH ₃	H	445	48
<u>m</u> -OH	Н	CH3	CH ₃	H	71	31
щ-Он	н	CHi	CH ₃	F	28	72
p-OH	Н	CH ₃	CH ₃	OH	141	35
p-OH	н	CHi	CH ₃	CONH ₂	18	169
	H	CH ₃	CH ₃	OH	68	40
<u>т</u> -ОН Н	H	Н	Н	NO ₂	199	7
p-OCH ₃	H	CH ₁	CH ₃	н	84	25
5-OCH	Н	CHi	CH ₃	OH	249	5
Ħ	H	H	CH ₃	NO ₂	1458	27

A ten day in vivo study was employed to determine the effect of β -phenethanolamines on feed efficiency and rate of growth. In these studies, barrows and gilts

daily feed consumption (in pounds) by the test animals; and F/G is the feed efficiency calculated as ADF divided by ADG.

TABLE II

TABLE II	
Growth Promotion and Feed Efficiency	
OH R ³ CHCH ₂ NHC-CH ₂ CH ₂ CH ₂ -R ⁵	

		K-						
	R!	R ²	R ³	R ⁵	dose ppm	ADG	ADF	F/G
Experiment	Control					1.60	4.7	2.98
· I	p-OH	H	H	OH	20	2.19	5.0	2.33
_	Ħ	H	H	NO ₂	20	1.78	4.22	2.37
Experiment	Control			• •		1.34	4,16	3.22
11	р-ОН	H	CH ₃	H	20	1.60	4.26	2.66
	m-OH	H	CH ₃	F	20	1.52	4.57	3.01

weighing approximately 60 kg were maintained in individual pens. Each treatment was replicated six times in randomly assigned animals, with each test animal forming an experimental unit. A group of control animals received a normal swine grower feed ration comprising the following ingredients:

Ingredient	% by weight	
Ground yellow corn	76.70	_
Soybean oil meal	19.35	
Calcium carbonate	1.20	
Dicalcium phosphate	1.20	
Salt	0.50	
Trace mineral premix	0.10	
Swine Vitamin premix	0.65	
Vitamin A premix, 3M USP units/lb.	0.05	
Methionine Hydroxy analogue, 93%	0.20	
Selenium premix	0.05	
•	100.00	

The test animals received the same feed ration plus the test compound. All animals received feed and water ad libitum. All animals were weighed on day 1 and again on day 10, and feed consumption was measured 65 by recording all feed issued and any remaining feed on day 10. The results of two series of this 10 day test for several β -phenethanolamines are given in Table II. In

The β -phenethanolamines to be employed in the method of this invention can be administered in combination with other compounds known to have a beneficial effect upon animals. Typical compounds to be coadministered with the β -phenethanolamines include 50 antibiotics, for example any of the tetracyclines, tylosin, penicillins, cephalosporins, polyether antibiotics, glycopeptides, orthosomycins and related compounds commonly administered to swine, poultry, ruminants and the like. A preferred combination to be employed in the 55 present method is an antibiotic such as tylosin or a tetracycline, together with 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]-ethanol. combinations will comprise the respective components in a ratio of about 1 to about 2 parts by weight of β phenethanolamine and about 1 to about 10 parts by weight of the partner component.

In a typical treatment, 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol was evaluated in a 42-day study employing finishing swine. Each treatment was replicated four times, with three pigs per replication. All treatments included a normal feed diet plus tylosin at 40 g/T. The animals were tested for growth performance and feed efficiency enhance-

ment. Carcass quality was determined by analysis for fat and muscling. The results of the study are given in Table III. Both β -phenethanolamine treatments resulted in improved growth performance and carcasses with less fat and more muscle.

TABLE III

		rowth Promotion, Feed Efficiency and Carcass Quality 8-phenethanolamine ²							
	Control ¹	20 g/T	% change	40 g∕T	% change	- 10 -			
ADG	1.94	2.07	(6.7)	2.05	(5.7)	_			
ADF	6.28	6.63	(5.6)	6.64	(5.7)				
F/G	3.24	3.20	(-1.2)	3.24	(0)				
Live Wt. at Slaughter, lb	217.0	223.0	(2.8)	221.0	(1.8)	15			
Chilled Carcass Wt., lb	154.6	160.5	(3.8)	159.8	(3.4)				
Fat Depth at 10th Rib. in	1.15	1.09	(-5.2)	1.05	(-8.7)				
Loin Eye Area Sp., in	4.64	4.91	(5.8)	4.84	(4.3)	20			
Estimated pounds of Fat Free Muscle ³	74.2	78.8	(6.1)	78.4	(5.7)				

¹all diets contained 40 g/T of tylosin
²l-(4-hydroxyphenyl)-2-[l-methyl-3-(4-hydroxyphenyl)propylamino]-ethanol hydro-

chloride

A regression equat ¹A regression equation was employed in arriving at the numerical predictions of carcass muscle (J. Animal Science, 1977, Vol. 44:8-17).

The data reported in Table III further demonstrates that the β -phenethanolamines described herein promote growth, improve feed efficiency and improve leaness.

In a similar study conducted over a 61 day period, a group of control animals received a normal daily feed ration with no additive. Another group of animals received the feed ration plus tylosin at 40 g/T, while another group received the feed ration plus 1-(4-35 hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride (compound A) at 20 g/T. A final group of finishing swine received the feed ration plus the combination of 40 g/T of tylosin and 20 g/T of the phenethanolamine. The results of this 40 trial are given in Table IV.

TABLE IV

					_
	Control	Tylosin	A	Tylosin +A	45
ADG	1.63	1.64	1.36	1.50	
ADF	5.64	5.77	5.10	5.38	
F/G	3.46	3.51	3.77	3.59	
Slaughter Wt, (lbs)	210	211	193	201	
Carcass Wt. (lbs)	150.3	151.5	140.1	146.3	
Fat Depth, 10th rib, (in) ¹	0.96	0.96	0.80	0.85	50
Loin Eye Area (in ²) ¹	4.60	4.68	4.92	5.00	
Est. % Muscle ²	49.2	49.2	51.4	51.2	
Est. Pounds Muscle ²	75.3	76.5	74.1	76.8	

¹These results are based upon measurement of fat at the 10th rib after the carcass is Fig. 11 half across the backbona.

A regression equation is employed in arriving at the numerical predictions of carcass muscle (J. Animal Science, 1977, Vol. 44:8-17).

As in the previous study, both phenethanolamine treatments resulted in carcasses with less fat and more muscle. Is should also be noted that the estimated 60 amount of carcass muscle produced with the Tylosin +A treatment was similar to that produced in the control and the Tysolin treatment alone. This result was achieved, however, with less feed consumption than either the control or the Tylosin treatments.

Additional studies have been carried out to demonstrate the anabolic effect of β -phenethanolamines in swine. The effect of the compounds on nitrogen reten-

tion in finishing barrows was determined. Nitrogen retention is the difference between nitrogen intake and nitrogen excreted. Increased nitrogen retention is known to be associated with increased anabolic activity, resulting in improved carcass muscling and leanness.

In a typical study, barrows weighing about 172 pounds (78 Kg) were orally administered various doses 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride (Com-10 pound A). All animals received water and a constant amount of normal swine feed ration. The results of this study are presented in Table V, and show that all β phenethanolamine treatments improved nitrogen retention compared to controls.

TABLE V

	Treatment	Nitrogen Retention Animals per treatment	Nitrogen Retained (g/day)
n	Control	6	21.0
•	Compound A (5 g/T)	3	23.6
	Compound A (10 g/T)	3	23.9
	Compound A (20 g/T)	.3	25.0

As pointed out above, the method of this invention can be practiced with individual isomers of β -phenethanolamines or with mixtures of isomers and diastereomers. In a study to determine the effect on weight gain and feed efficacy of various mixtures of diastereomers, barrows initially weighing about 177 pounds were fed a normal swine diet plus a β -phenethanolamine at 20 g/T of feedstuff. Each treatment was replicated in twelve individually fed animals. The results are presented in Table VI and show that growth performance was improved by both β -phenethanolamine treatments with very little change in feed intake.

TABLE VI

Treatment	Average Daily Feed (lbs)	Average Daily Gain (lbs)
Control	5.89	1.58
1-(4-hydroxyphenyl)-2-[1-methyl-3- (4-hydroxyphenyl)propylamino]ethanol hydrochloride 57.5% RR.SS	5.94	2.15
42.5% RS,SR 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4- hydroxyphenyl)propylamino]ethanol hydrochloride 47% RR,SS 53% RS,SR	5.86	1.95

The data in Table VI demonstrates that the method of improving feed efficiency and promoting growth can be practiced with any desired mixture of β -phenethanolamine optical isomers.

The efficacy of the β -phenethanolamines described herein also has been demonstrated in poultry. In a typical study, broilers that were twenty-one days old were administered an oral dosing of a β -phenethanolamine in their normal daily feed ration. All animals received the following broiler finisher ration:

Ingredients	% by weight	lbs/T
Ground yellow com	66.40	1328.00
Animal-vegetable fat	1.53	30.60
Corn Glut. meal (60%)	4.00	80.00
Soybean meal (48%)	19.19	383.80
Fish meal-menhaden	2.50	50.00

	٠.	 _	_
~~~~			

~ <u>~</u> ~	<del></del>		
Ingredients	% by weight	lbs/T	_
Dicalcium phosphate	1.01	34.20	
Feather meal-Hydr.	2.50	50.00	
Ground limestone	0.83	16.60	
Salt	0.30	6.00	
Vitamin Premix ¹	0.50	10.00	
Trace mineral premix ²	0.10	2.00	1
Methionine Hyd. Anal.	0.15	3.00	
Lysine HCl	0.29	5.80	
	100.00	2000.00	

²Trace mineral premix provides 75 mg of manganese, 50 mg of zinc, 25 mg of Iron and 1 mg of iodine per kg of complete feed.

Test animals received with the above ration varying doses of 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride (compound A). Each treatment was replicated sixteen times, 25 and the test was terminated when the animals reached fifty-six days of age. The animals were analyzed for weight gain and feed efficiency. The results of this test in broilers is presented in Table VII as mean weight 30 gain and mean feed to gain ratios.

TABLE VII

	Gn	owth Per	formance of B	roilers		35
				Fee	d Efficiency	
		We	ight Gain	Feed/		
Treatment	Dose (g/T)	grams	% improve- ment	Gain Ratio	% change from control	- 40
Control	·	1473	0 .	2.336	0 .	• 40
Compound A	10	1585	7.6	2.292	1.9	
Compound A	20	1613	9.5	2.298	1.6	45
Compound A	40	1550	5.2	2.312	1.0	
Compound	80	1669	13.3	2.221	4.9	

TABLE VII-continued

Growth Performance of Broilers						
				Fee	d Efficiency	
		We	ight Gain	Feed/		
_	Dose		% improve-	Gain	% change	
Treatment	(g/T)	grams	ment	Ratio	from control	
A					•	

The results of this study demonstrates that the  $\beta$ phenethanolamines described herein are effective in promoting growth and improving feed efficiency in poultry.

The compounds of the invention also have demon-Vitamin premix provides 3000 IU of vitamin A, 900 ICU of vitamin D₂, 40 mg, of 15 strated efficacy in ruminants. Forty-eight cross-bred vitamin E, 0.7 mg, of vitamin K, 1000 mg of choline, 70 mg, of discin, 4 mg of pantothenic acid, 4 mg of ribollavin, 100 mg of vitamin B₁₂, 100 mcg of biotin and 125 mg of ethoxyquin per kg of complete feed.

**Strated efficacy in ruminants. Forty-eight cross-bred wether lambs were employed in a test designed to show the effects of Compound A (1-(4-hydroxyphenyl)-2-[1methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride) at varying doses. Sixteen animals were held as controls, while sixteen received 40 ppm of Compound A, and another sixteen received 80 ppm of Compound A. All animals received a normal daily feed ration and water ad libitum. Average daily weight gain and average daily feed consumption after twenty-eight days is given below in Table VIII. The data demonstrates that a  $\beta$ -phenethanolamine as defined herein is effective in promoting growth and improving feed efficiency in ruminants.

#### **TABLE VIII**

_	Growth Perf			
Treatment	Dose (ppm)	ADG (lbs)	ADF (lbs)	F/G
Control	0	0.414	3.68	8.89
Compound A	40	0.418	3.61	8.64
Compound A	80	0.472	3.57	7.56

#### We claim:

- 1. An improved method of raising a meat producing animal which comprises administering to the animal a growth promoting, feed efficiency improving, or carcass quality improving amount of 1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-phenylpropylamino]ethanol or an acid addition salt thereof.
  - 2. An animal feedstuff comprising 1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-phenylpropylamino]ethanol or an acid addition salt thereof together with a suitable carrier therefor.

50

55

60

# **Exhibit XIII**

U.S. Patent 4,992,473

# United States Patent [19]

# Anderson et al.

[11] Patent Number:

4,992,473

[45] Date of Patent:

Feb. 12, 1991

[54] GROWTH PROMOTION

[75] Inventors: David B. Anderson, Greenfield; Klaus K. Schmiegel, Indianapolis; Edward

L. Veenhuizen, Greenfield, all of Ind.

[73] Assignee: Eli Lilly and Company, Indianapolis,

Ind.

[*] Notice: The portion of the term of this patent

subsequent to Mar. 29, 2005 has been disclaimed.

[21] Appl. No.: 328,996

[22] Filed: Mar. 27, 1989

# Related U.S. Application Data

[60] Division of Ser. No. 153,640, Feb. 8, 1988, Pat. No. 4,849,453, which is a division of Ser. No. 860,719, May 7, 1986, Pat. No. 4,734,437, which is a continuation of Ser. No. 628,002, Jul. 5, 1984, abandoned, which is a continuation of Ser. No. 462,587, Jan. 31, 1983, abandoned.

[51] Int. Cl. A61K 31/135 [52] U.S. Cl. 514/653

 [56] References Cited

**U.S. PATENT DOCUMENTS** 

4,391,826 7/1983 Mills et al. ...... 424/324

FOREIGN PATENT DOCUMENTS

49728 4/1982 European Pat. Off. .

# OTHER PUBLICATIONS

J. Pharm. Pharmacol., 18(3), 188-189 (1966), "The Effects of Some Derivatives of Noradrenaline and 2-Amino-1-p-hydroxy-Phenylethanol on the In Vitro Mobilization of Fat".

Primary Examiner—Frederick E. Waddell Attorney, Agent, or Firm—Donald R. Stuart; Leroy Whitaker

# [57] ABSTRACT

 $\beta$ -Phenethanolamines are effective in promoting growth and improving feed efficiency and leanness in animals.

8 Claims, No Drawings

## **GROWTH PROMOTION**

This application is a division of Ser. No. 07/153,640, Feb. 8, 1988, U.S. Pat. No. 4,849,453, which is a division 5 of Ser. No. 860,719, May 7, 1986, U.S. Pat. No. 4,734,437, which is a continuation of Ser. No. 628,002, July 5, 1984, abandoned, which is a continuation of Ser. No. 462,587, Jan. 31, 1983, abandoned.

# BACKGROUND OF THE INVENTION

The chemistry and use of  $\beta$ -phenethanolamines has been extensively investigated. A number of these compounds have been reported to have beneficial cardiac activities; see U.S. Pat. No. 3,987,200. Such compounds also are known to have sympathomimetic activity, and have found utility as utero-relaxing agents; Van Dijk et al., *Recueil*, 92, 1281 (1973). More recently, a group of  $\beta$ -phenethanolamines have been reported as possessing 20 anti-hyperglycemic activity, and have been found effective in promoting the loss of weight in animals, EPO No. 6735 published Jan. 9, 1980.

An object of this invention is to provide a new use for certain  $\beta$ -phenethanolamines. This invention provides a 25 method for promoting the growth of domesticated animals employing  $\beta$ -phenethanolamines.

# SUMMARY OF THE INVENTION

This invention provides a method for increasing weight gain in animals and improving the efficiency of feed utilization and the quality of the carcass. The invention is more particularly directed to a method for promoting growth and improving feed efficiency and 35 leanness comprising administering an effective amount of a compound having the formula

wherein:

R¹ is hydrogen, hydroxy, or methoxy;

R² is hydrogen or fluoro.

R3 is hydrogen or C1-C2 alkyl;

R⁴ is hydrogen or methyl;

R⁵ is hydrogen, fluoro, nitro, hydroxy, SO₂CH₃ or CONH₂; provided that R¹ is hydrogen only when R⁵ is nitro or SO₂CH₃; and the acid addition salts thereof.

A preferred method for promoting growth and improving feed efficency and leanness according to this invention employs a compound of the above formula wherein R¹ is hydroxy, R² is hydrogen, R³ is hydrogen or methyl and R⁴ is methyl The method is most preferably practiced employing a compound wherein R¹ and R⁵ both are hydroxy and R² and R³ both are hydrogen and R⁴ is methyl. When R¹ is hydroxy or methoxy, it preferably is in the para position. When R⁵ is other than hydrogen, it also is preferably in the para position.

This invention also provides an animal feedstuff comprising a  $\beta$ -phenethanolamine of the above formula together with a suitable carrier therefor.

# DETAILED DESCRIPTION OF THE INVENTION

The compounds employed in the method provided by this invention are either known in the art or are readily prepared by well known synthetic procedures. A particularly preferred method employs 1(3-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-

propylamino]-ethanol. This β-phenethanolamine is disclosed in South African Patent No. 673,994 published in May, 1967. The most preferred embodiment of this invention employs 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-propylamino]ethanol, a compound disclosed as having utero-relaxing activity by Van Dijk et al. in *Recueil*, 92 1281 (1973).

The compounds to be employed in the method of this invention are readily prepared by reaction of a styrene oxide with a 3-phenylpropylamine derivative. For example, a styrene oxide such as 2-fluorostyrene oxide can be reacted with about an equimolar quantity of an amine such as 1-methyl-3-(4-nitrophenyl)propylamine in an unreactive organic solvent such as ethanol, methanol, n-propanol, dioxane, or the like. The reaction generally is carried out at a temperature of about 50° to about 120° C., and at such temperature the reaction routinely is substantially complete within about 6 to about 10 hours. The product, a  $\beta$ -phenethanolamine, is readily isolated by simply removing the reaction solvent, for instance by evaporation under reduced pressure, and further purification can be accomplished if desired by standard techniques, including crystallization, chromatography, acid-base extraction, and the like.

An alternative method for preparing the  $\beta$ -phenethanolamines to be employed in the present method comprises reacting a mandelic acid derivative with a 3-phenylpropylamine derivative to provide an amide, which upon subsequent reduction provides a compound of the above formula. For example, a phenylpropylamine derivative such as 1-methyl-3-(3-fluorophenyl)propylamine can be reacted with an acylating agent such as a hydroxy protected mandelic acid halide, or preferably simply reacted with a mandelic acid in the presence of a common peptide coupling reagent such as N,N'-dicyclohexylcarbodiimide, carbonyldiimidazole, carbonyl-2-ethoxy-1,2-dihydroquinoline, commonly referred to as EEDQ. The direct coupling reaction generally is conducted in an organic solvent such as benzene or N,N-dimethylformamide, and normally is complete after about 2 to 48 hours when carried out at about -30° to about 100° C. The product is an amide that is readily isolated by simply filtering the reaction mixture and then removing the reaction solvent. The amide thus formed is next reduced by reaction with a common reducing agent such as diborane or the like to provide a  $\beta$ -phenethanolamine defined by the above formula.

A similar, yet alternative, method of synthesis comprises reacting a phenethanolamine with a phenylethyl ketone to provide a Schiff base, which upon reduction gives a compound to be employed in the present method. For example, a phenethanolamine such as 2-hydroxy-2-(4-hydroxyphenyl)ethylamine can be reacted with a ketone such as methyl 2-(4-hydroxyphenyl)ethyl ketone to provide the corresponding imine, which upon reduction, for instance with 5% palladium on carbon, provides 1-(4-hydroxyphenyl)-2[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol.

It should be noted that the compounds to be employed in the method of this invention possess at least one asymmetric center (i.e. the carbinol center), and when R3 and R4 differ, the compounds possess two asymmetric centers. Since employment of individual 5 optical isomers necessitates preparing the  $\beta$ -phenethanolamines from optically active starting materials, or using costly separation procedures, a preferred embodiment of this invention employs a mixture of optical 3-(4-hydroxyphenyl)propylamino]ethanol is preferably prepared from racemic mixtures of starting materials, e.g. dl-1-methyl-3-(4-hydroxyphenyl)propylamine and dl-4-hydroxystyrene oxide, to provide a mixture of all four possible optical isomers of the product. The mix- 15 ture of optical isomers is employed in the method without subsequent separation of isomers.

Since the  $\beta$ -phenethanolamines to be employed in the present method are inherently basic, they readily form acid addition salts with any number of inorganic and 20 organic acids. These salts can be employed in the method of the invention, and often are preferred to the free base since they generally are more soluble in solvents such as water and are more conveniently formulated as an animal feedstuff. Acids commonly employed 25 to form acid addition salts include mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, perchloric acid and the like; and organic acids such as acetic acid, citric acid, succinic acid, para-toluene acid, methanesulfonic acid, lactic acid and the like. Preferred 30 salts to be employed in the present method include the hydrochlorides and hydrobromides.

Typical  $\beta$ -phenethanolamines to be employed in the method of this invention include the following:

1-(3-hydroxyphenyl)-2-[1-methyl-1-ethyl-3-(4aminocarbonylphenyl)propylamino]ethanol;

1-(2-fluoro-4-hydroxyphenyl)-2-[1-methyl-3-(4fluorophenyl)propylamino]ethanol;

1-(4-hydroxyphenyl)-2-[3-(3-nitrophenyl)propylaminolethanol:

1-(3-hydroxy-2-fluorophenyl)-2-[3-(4-methylsulfonyl)propylamino]ethanol;

1-(4-methoxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino|ethanol;

1-phenyl-2-[1,1-dimethyl-3-(3-methylsulfonylphenyl)propylamino]ethanol;

1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride;

1-(phenyl)-2-[1-methyl-3-(4-nitrophenyl)propylamino]ethanol; phenyl)propylamino]ethanol 50

1-(4-hydroxyphenyl)-2-[1-methyl-1-cthyl-3-(4aminocarbonylphenyl)propylaminolethanol;

1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-phenylpropylaminolethanol hydrobromide; and

d-1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-(4-hydroxyphenyl)propylamino]ethanol.

The method of promoting growth and improving leanness and feed efficiency provided by this invention is practiced by administering an effective amount of a 60 compound defined above to a warm-blooded animal that receives a nutritionally adequate diet. The method generally will be practiced on domesticated animals raised for human meat consumption, for example grower/finisher swine, poultry, ruminants and the like. In a 65 preferred embodiment, the growth of pigs, chickens and turkeys is promoted employing a  $\beta$ -phenethanolamine. Another preferred embodiment is practiced in rumi-

nants such as cattle, sheep and goats. The method of improving leanness is not limited to meat producing animals, and can be practiced on other warm-blooded animals, including dogs and cats. This latter embodiment is particularly useful when it is desired to maintain mature animals in a relatively lean physical state.

The method of the invention is preferably practiced by orally administering an effective amount of a  $\beta$ phenethanolamine to an animal. Other routes of adminisomers. For example, 1-(4-hydroxyphenyl)2-[1-methyl- 10 istration can be employed, for instance intramuscular or intravenious injection; however, such routes are less practical. The amount to be administered to an animal is an amount that is effective in causing a promotion of growth, or an improvement in the efficiency of utilization of food, or an improvement in carcass quality of the animal, for instance in the form of less fatty tissue and improved leanness. The effective amount to be administered will vary somewhat depending upon the particular animal species being treated and the particular active ingredient employed, but generally will be from about 1 to about 1000 parts per million (ppm) of total daily feed intake. Such amount will provide a dosage of about 0.05 to about 50 mg/kg. A preferred embodiment employs about 1 to about 200 ppm, and more preferably from about 5 to about 100 ppm. A typical amount of active ingredient to be administered to swine will be from about 5 to about 40 ppm. For example, when practicing the method in animals such as ruminants or swine, the compound will be added to the daily feed ration at about 5 to about 100 parts per million of the daily feed ration.

For oral administration, the active  $\beta$ -phenethanolamine is preferably admixed with suitable carriers or diluents commonly employed in animal husbandry. 35 Animal feedstuffs comprising a  $\beta$ -phenethanolamine growth promoter as defined herein are provided as a further embodiment of this invention. Typical carriers and diluents commonly employed in such feedstuffs include corn meal, soybean meal, alfalfa meal, rice hulls, soybean mill run, cottonseed oil meal, bone meal, ground corn, corncob meal, sodium chloride, urea, cane molasses and the like. Such carriers promote a uniform distribution of the active ingredient in the finished feed ration into which such compositions are added, thereby ensuring proper distribution of the active ingredient throughout the feed. The feedstuff composition provided by the invention will contain about 5 to about 95 percent by weight of active ingredient, and more typically about 10 to about 50 percent by weight. As already noted, the acid addition salts of the active phenethanolamines are generally preferred for oral administration, and are thus the preferred form of active ingredient for the feedstuff compositions of the invention.

While the preferred method for orally administering 55 the growth promoters is via the daily feed rations, the compounds can be incorporated into salt blocks and mineral licks, as well as being added directly to drinking water for convenient oral consumption. The compounds can additionally be formulated with polymorphous materials, waxes and the like for long-term controlled release, and administered to an animal as a bolus or tablet only as needed to maintain the desired daily payout of active ingredient.

For parenteral administration, the  $\beta$ -phenethanolamines can be admixed with conventional carriers such as corn oil, sesame oil, carbowax, calcium stearate and the like. Such formulations can be molded into pellets and administered as an injection or as a slow-release

subcutaneous implant. Such administrations can be made as often as needed to ensure the proper dosing of active ingredient to obtain the desired rate of growth promotion and improvement in leanness and feed effi-

While the compounds described herein are effective in promoting average daily weight gain and improving feed efficiency in animals, they also cause observable improvement in the quality of the meat produced. For example, the compounds appear to mobilize free fatty acids from fatty tissue and depress the deposition of fat as the animals gain weight. This reduction of fat is beneficial since the animal being treated according to the invention gains weight in the form of more useable lean meat, thereby reducing waste and improving the value of the animal thus treated. Also, mature animals that are not subject to additional weight gain can be maintained in a desirably lean form by administering a compound as described herein.

The practice of the present invention is more fully illustrated by the following detailed examples.

#### EXAMPLE 1

Preparation of dl-4-(benzyloxy)mandelic acid

A solution of 5.0 g of dl-4-hydroxy mandelic acid, 11.0 g of benzyl chloride and 10.0 g of potassium carbonate in 50 ml of methanol was heated to reflux and stirred for seventy-two hours. The reaction mixture was cooled to room temperature and diluted with 50 ml of 30 water. The aqueous solution was washed twice with 50 ml portions of benzene, and then was acidified with concentrated hydrochloric acid. The aqueous acid solution was extracted three times with 50 ml portions of ethyl acetate. The organic extracts were combined, 35 washed with water and with saturated sodium chloride solution and dried. Removal of the solvent by evaporation under reduced pressure provided 5.7 g of a solid which was then recrystallized from 300 ml of toluene to afford 5.33 g of dl-4-(benzyloxy)mandelic acid. M. P. 153°-155° C.

Analysis calc. for C₁₅H₁₄O₄: Theory: C, 69.76; H, 5.46; Found: C, 69.96; H, 5.33.

#### **EXAMPLE 2**

Resolution of di-4-(benzyloxy)mandelic acid to provide R(-)-(4-benzyloxy)mandelic acid

To a stirred solution of 185.6 g of dl-4-benzyloxy)mandelic acid in 2500 ml of ethyl acetate at 80° C. was added in one portion 43.6 g of R(+)-a-methylbenzylamine. The reaction mixture was cooled to room temperature, and the precipitated solid which had formed was collected by filtration and washed with fresh ethyl aceof ninety percent ethanol in water to provide 91.4 g of the R(+)- $\alpha$ -methylbenzylamine salt of R(-)-4-(benzyloxy)mandelic acid. M. P. 208.5°-209.5°  $[\alpha]_D - 38.6^{\circ}, [\alpha]_{365} - 155.3^{\circ}$  (MeOH)

6.64; N, 3.69; Found : C, 72.95; H, 6.83; N, 3.95.

To a stirred suspension of 91.4 g of the above-named salt in 2000 ml of ethyl acetate was added 150 ml of ten percent aqueous hydrochloric acid solution. The aqueous acid solution was separated, and the organic layer 65 1N hydrochloric acid, and again with water. The orwashed with water and dried. Removal of the solvent by evaporation under reduced pressure afforded 54.5 g of R(-)-4-(benzyloxy)mandelic acid, ie. R(-)-2-(4-

benzyloxyphenyl)-2-hydroxyacetic acid. 155°-161° C.  $[\alpha]_D$ -102.2°;  $[\alpha]_{365}$ -410.6° (MeOH) Analysis calc. for C15H14O4: Theory: C, 69.76; H, 5.46; Found: C, 69.67; H, 5.41.

#### **EXAMPLE 3**

# Preparation of

dl-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 40.0 g of methyl 2-(4-benzyloxyphenyl-)ethyl ketone and 160 ml of anhydrous ammonia in 300 ml of ethanol was heated at 75° C. and stirred for two hours. After cooling the reaction mixture to room temperature, 4.0 g of Raney nickel was added in one portion, and the reaction mixture then was stirred at 25° C. for twelve hours under a hydrogen atmosphere at 300 psi. The reaction mixture next was filtered and the filtrate was concentrated by evaporation of the solvent under reduced pressure to provide an oil. The oil was dissolved in 120 ml of 3N hydrochloric acid, from which the product as a hydrochloride salt precipitated. The salt so formed was collected by filtration and recrystallized from methanol and toluene to provide 36.2 g of dl-1-methyl-3-(4-benzyloxyphenyl)propylaminium 25 chloride. M. P. 195°-197.5° C.

# **EXAMPLE 4**

Resolution of dl-1-methyl-3-(4-benzyloxyphenyl)propylamine to provide R-(-)-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 629.3 g of dl-1-methyl-3-(4-benzyloxyphenyl)propylaminium chloride was converted to the free amine by reaction with 95 g of sodium hydroxide in 400 ml of water. The free amine was then dissolved in 2000 ml of methylene chloride and added to a solution of 328 g of D-(-)-mandelic acid in 1000 ml of methanol. The mandelic acid salt of the free amine precipitated out of solution and was recrystallized three times from methanol to provide 322 g of the R-mandelic acid salt of R-1-methyl-3-(4-benzyloxyphenyl)propylamine. M. P. 166°-167° C.  $[\alpha]_D$ -30°,  $[\alpha]_{365}$  -119° (MeOH).

The salt so formed was converted to R-1-methyl-3-(4benzyloxyphenyl)propylamine as the free base by reaction with aqueous sodium hydroxide.

# **EXAMPLE 5**

R,R-N-[2-(4-Benzyloxyphenyl)-2-hydroxy-1-oxoethyl]-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 93.9 g of R-1-methyl-3-(4-benzyloxyphenyl)propylamine in 500 ml of N,N-dimethylformamide containing 63.0 g of 1-hydroxybenzotriazole and 104.6 g of R-2-(4-benzyloxyphenyl)-2-hydroxyacetic acid was cooled to 0° C and stirred while a solution of tate. The solid was recrystallized twice from a solution 55 dimethylformamide was added dropwise over one 83.6 g of N,N'-dicyclohexylcarbodiimide in 300 ml of hour. The reaction mixture was stirred for twelve hours at 3° C and then was diluted with 10 ml of water, stirred for an additional hour, and then cooled to  $-30^{\circ}$  C. in an ice-acetone bath. The reaction mixture was filtered to Analysis calc. for C23H25NO4: Theory: C, 72.80; H, 60 remove dicyclohexylurea, and then the filtrate was concentrated by evaporation of the solvent under reduced pressure. The concentrated solution was diluted with ethyl acetate and washed with saturated aqueous sodium carbonate solution, with water, with 300 ml of ganic layer was dried and the solvent was removed by evaporation under reduced pressure to provide the product as a white solid. The solid was recrystallized

once from acetonitrile and again from methanol to provide 159.7 g of R,R-N-[2-(4-benzyloxyphenyl)-2hydroxy-1-oxoethyl]-1-methyl-3-(4-benzyloxyphenyl)propylamine. M. P.  $145^{\circ}-148^{\circ}$  C.  $[\alpha]_{D}-15.9^{\circ}$ ,  $[\alpha]_{365} - 50.1^{\circ}$  (MeOH).

Analysis calc for C₃₂H₃₃NO₄: Theory: C, 77.55; H, 6.71; N, 2.83; Found: C, 77.04; H, 6.84; N, 2.53.

#### **EXAMPLE 6**

R,R-N-[2-(4-Benzyloxyphenyl)-2-hydroxyethyl]-1methyl3-(4-benzyloxyphenyl)propylamine

To a stirred solution of 10.0 g of R,R-N-[2-(4-benzyloxyphenyi)-2-hydroxy-1-oxoethyi]-1-methyl-3-(4benzyloxyphenyl)propylamine in 500 ml of freshly distilled tetrahydrofuran under a nitrogen gas atmosphere 15 was added dropwise over thirty minutes 41 ml of 2 molar borane-dimethyl sulfide complex in tetrahydrofuran. The reaction mixture was stirred at 25° C. for twenty hours, and then was heated to reflux and stirred for an additional three hours. After cooling the reaction 20 mixture to 25° C. for another eighteen hours, the excess borane was decomposed by the slow portion-wise addition of 400 ml of methanol. The solvent was then removed from the reaction mixture by evaporation under oil so formed was dissolved in 250 ml of hot methanol, and after concentrating the volume to 125 ml, the product began crystallizing out of solution. The crystalline product was collected by filtration and recrystallized twice from methanol to provide 6.65 g of R,R-N-[2-(4-30 benzyloxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-benzyloxyphenyl)propylamine. M. P. 119°-123.5° C.

The amine so formed was dissolved in methanol and added to a solution of ethereal hydrogen chloride, thereby providing 6.49 g of R,R-N-[2-(4-benzyloxy- 35 phenyl)-2-hydroxyethyl]-1-methyl-3-(4-benzyloxyphenyl)-propylaminium chloride. M. P. 214.5°-216° C.  $[\alpha]_D - 13.4^{\circ}$ ,  $[\alpha]_{365} - 30.2^{\circ}$  (MeOH).

Analysis calc. for C₃₂H₃₆NO₃Cl: Theory: C, 74.19; H, 7.00; N, 2.70; Cl, 6.84; Found: C, 74.20; H, 6.98; N, 40 2.65; Cl, 6.63.

#### EXAMPLE 7

R,R-1-(4-Hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-propylamino]ethanol hydrochloride, named as R,R-N-[2-(4-Hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl)propylaminium chloride

A mixture of 51.6 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-benzyloxyphenyl)propylaminium chloride and 5.0 g of Raney nickel in 2 liters of ethanol and 2 liters of ethyl acetate was stirred at 25° C. for four and one-half hours under a hydrogen atmosphere of 60 psi. The reaction mixture was then filtered to remove the residual Raney nickel, 55 and the filtrate was concentrated to an oil by evaporation of the solvent under reduced pressure, and the oil was crystallized from fresh ethanol and diethyl ether to provide 29.8 g of R,R-N-[2-(4-hydroxyphenyl)-2hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl)propylaminium chloride. M. P. 176°-176.5° C. (dec.)  $[\alpha]_D-22.7^{\circ}$ ,  $[\alpha]_{365}-71.2^{\circ}$  (3.7 mg/ml MeOH).

Analysis calc. for C₁₈H₂₄NO₃Cl: Theory: C, 63.99: H, 7.16; N, 4.15; Found C, 63.70; H, 7.26; N, 4.32.

# **EXAMPLE 8**

As pointed out above, a preferred embodiment of this invention employs a mixture of all four optical isomers 8

of the compound of Example 7. This racemic mixture can be prepared by the method described above by reaction of dl-4-(benzoyloxy)mandelic acid with dllmethyl-3-(4-benzyloxyphenyl)propylamine in the presence of DCC to give racemic 1-(4-benzyloxyphenyl)-2oxo-2-[1-methyl-3-(4-benzyloxyphenyl)propylaminolethanol. Reduction of the latter compound and subsequent removal of the benzyl groups provides racemic 10 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]-ethanol. This compound is more preferably prepared by the following procedure.

A solution of 32.8 g. (0.2 m) of methyl 2-(4-hydroxyphenyl)ethyl ketone and 42.6 g. (0.2 m) of I-(4-hydroxyphenyl)-2-aminoethanol in 380 ml. of ethanol containing 3.8 g. of five percent palladium on carbon was stirred for sixteen hours at 60° C. under hydrogen at 55 psi. The reaction mixture was then filtered, and the filtrate was diluted by addition of 50 ml. of water. The aqueous mixture was concentrated to a volume of about 400 ml., and then washed with dichloromethane. The aqueous mixture was acidified by addition of 50 ml. of conc. hydrochloric acid. After standing at room temperature reduced pressure to provide the product as an oil. The 25 for two hours, the aqueous acid mixture was filtered and the filter cake was washed with 40 ml. of ice water and dried at 50° C. in vacuum to provide 47 g. of 1-64hydroxyphenyl-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride. M. P. 124°-129°

> Analysis calc. for C₁₈H₂₄NO₃Cl: Theory: C, 63.99: H, 7.16; N, 4.15; Cl, 10.49. Found: C, 63.77; H, 6.80; N. 3.91; Cl, 10.68.

> ³C NMR studies demonstrated the product to be comprised of 51% RR,SS diastereamer and 49% RS,SR diastereomer.

### EXAMPLE 9

1-Phenyl-2-[1-methyl-3-(4-nitrophenyl)propylaminolethanol

A solution of 5.0 g. (25.9 mM) of 2-amino-1-phenylethanol and 3.55 g. (25.9 mM) of methyl 2-(4-nitrophenyl)ethyl ketone in 60 ml. of toluene containing 10 mg. of para-toluenesulfonic acid was heated at reflux for six hours in a flask equipped with a Dean-Stark trap. The water that formed during the reaction was removed via the trap, and then the reaction mixture was cooled to room temperature and concentrated to dryness by evaporation of the solvent under reduced pressure. The solid product that remained was dissolved in 50 ml. of tetrahydrofuran and the solution was heated to reflux. A solution of 3.5 ml. of 2N borane-methyl sulfide complex in tetrahydrofuran was then added dropwise to the reaction mixture, and the mixture was refluxed for an additional ninety minutes. After cooling the reaction mixture to room temperature, it was diluted by addition of diethyl ether saturated with hydrogen chloride. The precipitate that formed was collected by filtration and crystallized from ethanol and diethyl ether to give 3.29 g. of 1-phenyl-2-[1-methyl-3-(4-nitrophenyl)-propylamino]ethanol hydrochloride. M. P. 65 203-213° C.

Analysis calc. for C₁₈H₂₃ClN₂O₃: Theory: C, 61.62: H, 6.61; N, 7.98; Cl, 10.1. Found: C, 61.76; H, 6.62; N, 7.76; Cl, 10.13.

#### **EXAMPLE 10**

1-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3-phenylpropylaminolethanol

A solution of 32.6 g. (0.2 m) of 1,1-dimethyl-3-phenyl-5 propylamine and 22.9 g. (0.1 m) of 2-(4-methoxyphenyl)-2-oxoethyl bromide in 75 ml. of tetrahydrofuran was heated at reflux for thirty-six hours. The reaction mixture was then cooled and added to 2 liters of diethyl ether. The precipitate was removed by filtra- 10 tion, and the filtrate was acidified with hydrobromic acid to give 18.15 g. of 1-(4-methoxyphenyl)-1-oxo-2-(1,1-dimethyl-3-phenylpropylamino)ethane hydrobromide. M. P. 174*-178* C.

of glacial acetic acid containing 35 ml. of hydrobromic acid, and the solution was heated at reflux for nine hours. The solution was then cooled and the solvent was removed by evaporation to provide, following crystallization from ethanol and diethyl ether, 7.8 g. of 20 1-(4-hydroxyphenyl)-1-oxo-2-(1,1-dimethyl-3-phenylpropylamino) ethane hydrobromide. M. P. 228°-230° C.

Catalytic hydrogenation of 5.0 g. of the compound from above in 44 ml. of ethanol containing 1.25 g. of five percent palladium on carbon afforded, following 25 crystallization from acetone and diethyl ether, 2.3 g. of 1-(4-hydroxyphenyl)-2-(1,1-dimethyl3-phenylpropylamino)ethanol hydrobromide. M. P. 168°-170°

Analysis calc. for C19H26BrNO2: Theory: C, 60.00; 30 H, 6.89; N, 3.68. Found: C, 60.28; H, 6.67; N, 3.62.

#### **EXAMPLE 11**

1-(3-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4-fluorophenyl)propylaminolethanol

To a stirred solution of 67.2 g. (0.22 M) of 2-(3-benzyloxyphenyl)-2-oxoethyl bromide in 200 ml. of acetonitrile was added a solution of 54.3 g. (0.20 M) of N-benzyl-1,1-dimethyl-3-(4-fluorophenyl)propylamine in 600 ml. of acetonitrile containing 42 ml. (0.22 M) of diisopropylethylamine. The reaction mixture was stirred for about six hours at reflux, and then was cooled and stored at room temperature for forty-eight hours. The reaction mixture was next diluted by addition of aqueous sodium hydroxide, and the organic solvents were 45 removed by evaporation under reduced pressure. The aqueous alkaline mixture was extracted with ethyl acetate, which was then washed with water, dried, and concentrated to dryness to give an oil. The oil was dissolved in ethanol and diethyl ether and converted to 50 the hydrochloride salt by addition of excess hydrogen chloride. The precipitated solid was collected by filtration and recrystallized from ethyl acetate to give 51.3 g. 1-(3-benzyloxyphenyl)1-oxo-2-[(N-benzyl)-1,1dimethyl-3-(4-fluorophenyl)-propylamino]ethane drochloride. M. P. 137°-145° C.

The compound thus prepared was reduced by reaction with 16 g. of sodium borohydride in ethanol. Isolation of the product, followed by conversion to the hydrochloride salt and crystallization from diethyl ether 60 afforded 55.0 g. of 1-(3-benzyloxyphenyl)-2-[(N-benzyl)-1,1-dimethyl-3-(4-fluorophenyl)propylamino]ethanol hydrochloride. M. P. 186.5°-191° C.

A solution of 10.0 g. of the product thus produced in 200 ml. of ethanol containing 3.0 g. of Raney Nickel 65 500 ml. of toluene containing 200 mg. of -toluenesulwas shaken for two hours at 25° C. under hydrogen at 44 psi. The reaction mixture was then filtered, and the solvent was removed from the filtrate by evaporation

under reduced pressure to give a white solid. The solid was triturated with ethyl acetate and air dried to provide 5.9 g. of 1-(3-hydroxyphenyl)-2-[1,1-dimethyl-3-(4fluorophenyl)propylamino]ethanol hydrochloride. M. P. 196.5°-198.5° C.

Analysis calc. for C19H25C1FNO2: Theory: C, 64.49; H, 7.12; N, 3.96; Cl, 10.02. Found: C, 64.29; H, 6.97; N, 4.06; Cl. 9.89.

#### **EXAMPLE 12**

1-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylamine ethanol

A suspension of 10.0 g. (50 mM) of 1,1-dimethyl-3-(4-The compound thus formed was dissolved in 85 ml. 15 aminocarbonylphenyl)propylamine and 15.0 g. (50 mM) of 1-(4-benzyloxyphenyl)-1-oxoethyl bromide in 1000 ml. of acetonitrile containing 32.0 g. (0.3 M) of sodium carbonate and 100 ml. of water was stirred for one hour at 25° C. The precipitate that formed was collected by filtration, washed with water and with diethyl ether, and air dried to provide 8.0 g. of 1-(4-benzyloxyphenyl)-1-oxo-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylamino]ethane. M. P. 184°-187° C. This product was converted to the hydrochloride salt by reaction with hydrogen chloride in diethyl ether. M. P. 219°-224° C.

> The compound thus prepared was reacted with sodium borohydride in methanol to provide, following conversion to the hydrochloride salt and crystallization from methanol and diethyl ether, 5.8 g. of 1-(4-benzyloxyphenyl)-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylaminolethanol hydrochloride. M. P. 141°-143° C.

Reaction of the above compound with hydrogen in 35 the presence of Raney Nickel effected cleavage of the hydroxy protecting group to afford, following crystallization of the hydrochloride salt, 1.3 g. of 1-(4-aminocarbonylphenyl)propylamino]ethanol hydrochloride. M. P. 185° C. (dec.)

Analysis calc. for C₂₀H₂₇ClN₂O₃: Theory: C, 63.40; H, 7.18; N, 7.39; Cl, 9.36. Found: C, 63.26; H, 7.01; N, 7.45; Cl, 9.42.

The compounds of Examples 13 and 14 were prepared by the general procedure of Example 12.

#### **EXAMPLE 13**

1-(2-Fluorophenyl)-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylamino]ethanol hydrochloride M. P. 227°-230° C.

#### **EXAMPLE 14**

1-(3-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrobromide

M. P. 161°-165° C.

## **EXAMPLE 15**

1-Phenyi-2-[1-methyl-3-(4-methylsulfonylphenyl)propylamino]ethanol hydrochloride

Methyl 2-(4-methylthiophenyl)ethyl ketone was oxidized by reaction with m-chloroperbenzoic acid to give methyl 2-(4-methylsulfonylphenyl)ethyl ketone. A solution of 6.73 g. of 2-amino-1-phenylethanol and 11.10 g. of methyl 2-(4-methylsulfonylphenyl)ethyl ketone in fonic acid was heated at reflux for twenty-four hours. The reaction mixture was cooled and the solvent was removed by evaporation to give the Schiff base 1-phe-

nyl-2-[1-methyl-3-(4-methylsulfonylphenyl)-propylimino]ethanol. The Schiff base thus prepared was reacted with 3.7 g. of sodium borohydride in 500 ml. of ethanol at 0° C. for sixteen hours. The reaction mixture was diluted by addition of 50 ml. of acetone and 20 ml. 5 of 3N hydrochloric acid. The mixture was concentrated to an oil by evaporation of the solvent. The oil crystallized upon standing at room temperature. Recrystallization of the product from 200 ml. of hot ethanol afforded 8.96 g. (48% yield) of 1-phenyl-2-[1-methyl-3-(4-10 methylsulfonylphenyl)propylamino]ethanol hydrochloride. M. P. 164°-170° C.

Analysis calc. for  $C_{19}H_{26}ClNO_3S$ : Theory: C, 59.44; H, 6.83; N, 3.65; Cl, 9.23; S, 8.35. Found: C, 59.28; H, 6.57; N, 3.70; Cl, 9.36; S, 8.11.

# EXAMPLE 16 Premix for Chickens

Premix for Chicken	is	_
Ingredient	% by weight	
I-(4-hydroxyphenyl)-2-[1,1- dimethyl-3-phenylpropylamino]- ethanol succinate	25	_
Ground Corn	74	
Sodium Chloride	1_	
	100	

# EXAMPLE 17 Premix for ruminants

Premix for rumin	ants	
Ingredient	% by weight	35
l-(2-fluorophenyl)-2-[1,1- dimethyl-3-(4-aminocarbonyl- phenyl)propylamino ethanol	30	
Ground yellow com	60 .	
Alfaifa meal	10	40
•	100	70

# EXAMPLE 18 Premix for Swine

Premix for Swine				
Ingredient	% by weight			
1-(4-hydroxyphenyl)-2-[1-methyl- 3-(4-hydroxyphenyl)propylamino}- ethanol hydrochloride	10			
Soybean mill run	88			
Mineral oil	2			
	100			

The above ingredients are blended to uniformity to provide a dry flowable premix that can be admixed with a typical animal feed ration at a rate to provide about 20 ppm of active ingredient in the final feed ration. For example, the premix can be added to the following swine grower ration for convenient oral administration of the  $\beta$ -phenethanolamine to swine.

Ingredient	% by weight	ibs/Ton	- 65
Corn, yellow, ground	76.70	1534	_
Soybean Oil Meal,	19.35	387	
solvent extracted, dehulled			

-continued

Ingredient	% by weight	lbs/Ton
Calcium Carbonate	1.20	24
Dicalcium Phosphate, feed grade	1.20	24
Salt (sodium chloride)	0.50	10
Trace mineral premix, AN-031	0.10	2
Swine Vitamin Premix, SW-03 ²	0.65	13
Vitamin A Premix, 3M USP units/lb.3	0.05	1
Methionine Hydroxy Analogue, 93%	0.20	4
Selenium Premix ⁴	0.005	ı
•	100.00	2000

¹Each Kg of premix contains: 50 g. manganese as manganese sulfate; 100 g. zinc as zinc carbonate; 50 g. iron as ferrous sulfate; 5 g. copper as copper oxide; 1.5 g. iodine as potassium iodide and 150 g. maximum and 130 g. minimum calcium as calcium carbonate.

²Each Kg of premix contains: 77,161 (U Vitamin D₂: 2,205 (U Vitamin E; 411 mg. riboflavin; 1,620 mg. pantothenic acid: 2,205 mg. niacin: 4.4 mg. Vitamin B₁₂: 441 mg. Vitamin K; 19,180 mg. choline: 110 mg. folic acid: 165 mg. pyridoxine: 110 mg. thiamine: 22 mg. biotin.

Each Kg of premix contains 6.613,800 IU Vitamin A.

Each Kg of premix contains 200 mg. of selenium as sodium selenite.

EXAMPLE 19
Feed Ration for Lambs

Feed Ration for Lambs		
Ingredient	Percent	lbs/T
Yellow corn	61.00	1220.0
Corn cobs	20.00	400.0
Alfalfa Meal, dehydrated	5.40	108.0
Soybean oil meal	8.00	160.0
Urea, feed grade	0.50	10.0
Molasses, cane	3.00	60.0
Dicalcium phosphate	0.43	8.6
Salt	0.30	6.0
Calcium carbonate	0.14	2.3
Trace mineral premix 1	0.03	0.6
Vitamin A + D ₃ Premix ²	0.10	2.0
Vitamin E Premix ³	0.10	2.0
I-(4-Hydroxyphenyi)-2-(1,1-	1.00	20.0
dimethyl-3-phenylpropylamino)- ethanol		
	100.00	2000.0

Trace mineral premix contains: 2.5% manganese as manganese oxide, 0.07% iodine as potassium iodide, 0.3% cobalt as cobalt carbonate, 0.5% copper as copper oxide, and 20.0% zinc as zinc sulfate.

²Each pound of vitamin A and D₃ premix contains 2,000,000 USP units Vitamin A and 225,750 USP units Vitamin D₃.

Each pound of Vitamin E premix contains 20,000 IU Vitamin E.

The compounds to be employed in the method of this invention have demonstrated efficacy in animal tests designed to establish beneficial nutritional effects. In one test designed to show lipolytic activity, normal swine, either barrows or gilts, were employed to analyze the effect of compounds on blood glucose, insulin, and non-esterified fatty acids (NEFA).

Test animals were maintained in metabolism crates, and following a period of adaptation, catheters were placed in their femoral veins. Prior to administration of the test compounds, all animals were fasted for a period of forty hours. Such fasting causes an elevation of NEFA's in the blood. On the day of the test, all animals were fed a normal feed ration, and one group of animals were held as controls while another group of animals received a test compound. The test compounds were administered at 200 mcg/kg intravenously, or orally at 1 mg/kg. Blood samples were taken from each animal immediately prior to treatment and then at one hour intervals for a period of six hours following treatment. The blood plasma was analyzed for glucose, insulin and NEFA content.

When the fasted pigs were fed the normal feed ration without a test compound, the NEFA levels in the blood drop dramatically and remained low. A  $\beta$ -phenethanolamine as defined herein caused either an elevation in NEFA's, or inhibited the drop in NEFA's. Blood 5 levels of glucose and insulin were also elevated with the  $\beta$ -phenethanolamines.

The following Table presents the lipolytic activity of several preferred  $\beta$ -phenethanolamines when evaluated according to the test described above. The results are 10 averages of several tests.

the feed efficiency calculated as ADF divided by ADG.

TABLE II

Growth Promotion and Feed Efficiency

#### TABLE I

Lipolytic Activity (increase in NEFA's)

R ¹	R ²	R ³	R ⁴	R ⁵	% increase in NEFA's over control	% increase in glucose over control
H	H	Н	CH ₃	SO ₂ CH ₃	131	0
р-ОН	H	CH ₃	CH ₁	н	445	48
m-OH	H	CH ₃	CH ₃	н	71	
m-OH	H	CH ₃	CH ₃	F	28	31
р-ОН	Н	CH ₃	CH ₃	OH	141	72
P-OH	Н	CH ₃	CH ₃		18	35
m-OH	н	CH	CH ₃	OH	68	169
m-OH H	H	H	Н	NO ₂	199	40
p-OCH ₃	н	CH ₃	CH	H		7
p-OCH ₃	н	CH ₃	CH		84	25
н Н			-	OH	249	5
	Н	H	CH ₃	NO ₂	1458	27

A ten day in vivo study was employed to determine the effect of  $\beta$ -phenethanolamines on feed efficiency and rate of growth. In these studies, barrows and gilts weighing approximately 60 kg were maintained in individual pens. Each treatment was replicated six times in 40 randomly assigned animals, with each test animal forming an experimental unit. A group of control animals received a normal swine grower feed ration comprising the following ingredients:

Ingredient	% by weight
Ground yellow corn	76.70
Soybean oil meal	19.35
Calcium carbonate	1.20
Dicalcium phosphate	1.20
Sait	0.50
Trace mineral premix	0.10
Swine Vitamin premix	0.65
Vitamin A premix, 3M USP units/lb.	0.05
Methionine Hydroxy analogue, 93%	0.20
Selenium premix	0.05
	100.00

The test animals received the same feed ration plus the test compound. All animals received feed and water ad libitum. All animals were weighed on day 1 and again 60 on day 10, and feed consumption was measured by recording all feed issued and any remaining feed on day 10. The results of two series of this 10 day test for several  $\beta$ -phenethanolamines are given in Table II. In the Table, the column labelled "ADG" is the average daily 65 feed diet plus tylosin at 40 g/T. The animals were tested weight gain in pounds; "ADF" is the average daily weight gain in pounds; "ADF" is the average daily feed consumption (in pounds) by the test animals; and F/G is

5		R ^I	R²	R ³	R ⁵	dose ppm	ADG	ADF	F/G
		Control					1.60	4.7	2.98
	ment I	р-ОН	H	H	ОН	20	2.19	5.0	2.33
	_	H	Н	H	$NO_2$	20	1.78	4.22	2.37
		Control					1.34	4.16	3.22
0	ment II		Н	CH ₃	H	20	1.60	4.26	2.66
		<u>т</u> -ОН	H	CH ₃	F	20	1.52	4.57	3.01

The  $\beta$ -phenethanolamines to be employed in the method of this invention can be administered in combination with other compounds known to have a beneficial effect upon animals. Typical compounds to be coadministered with the  $\beta$ -phenethanolamines include antibiotics, for example any of the tetracyclines, tylosin, penicillins, cephalosporins, polyether antibiotics, glycopeptides, orthosomycins and related compounds commonly administered to swine, poultry, ruminants and the like. A preferred combination to be employed in the present method is an antibiotic such as tylosin or a tetracycline, together with 1(4-hydroxyphenyl)-2-[1-methyl-55 3-(4-hydroxyphenyl)propylamino]-ethanol. Such combinations will comprise the respective components in a ratio of about 1 to about 2 parts by weight of  $\beta$ -phenethanolamine and about 1 to about 10 parts by weight of the partner component.

In a typical treatment, 1-(4-hydroxyphenyl)-2-[1methyl-3-(4-hydroxyphenyl)propylamino]ethanol was evaluated in a 42-day study employing finishing swine. Each treatment was replicated four times, with three pigs per replication. All treatments included a normal for growth performance and feed efficiency enhancement. Carcass quality was determined by analysis for fat and muscling. The results of the study are given in

Table III. Both  $\beta$ -phenethanolamine treatments resulted in improved growth performance and carcasses with less fat and more muscle.

~		-	
ΙA	BI	Æ	11

_	Growth Pro	omotion, I Carcass		ciency	•	- :
		β-	phenethan	olamine ²		
	Con- trol I	20 g/T	% change	40 g∕T	% change	-
ADG	1.94	2.07	(6.7)	2.05	(5.7)	- 1
ADF	6.28	6.63	(5.6)	6.64	(5.7)	
F/G	3.24	3.20	(-1.2)	3.24	(0)	
Live Wt. at Slaughter, lb	217.0	223.0	(2.8)	221.0	(1.8)	
Chilled Carcass Wt., lb	154.6	160.5	(3.8)	159.8	(3.4)	1:
Fat Depth at 10th Rib, in	h 1.15	1.09	(-5.2)	1.05	(8.7)	1.
Loin Eye Area Sp., in	4.64	4.91	(5.8)	4.84	(4.3)	
Estimated pounds of Fat Free Muscle ³	74.2	78.8	(6.1)	78.4	(5.7)	20

all diets contained 40 g/T of tylosis

The data reported in Table III further demonstrates that the  $\beta$ -phenethanolamines described herein promote growth, improve feed efficiency improve leaness.

In a similar study conducted over a 61 day period, a group of control animals received a normal daily feed ration with no additive. Another group of animals received the feed ration plus tylosin at 40 g/T, while another group received the feed ration plus 1-(4hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride (compound A) at 35 20 g/T. A final group of finishing swine received the feed ration plus the combination of 40 g/T of tylosin and 20 g/T of the phenethanolamine. The results of this trial are given in Table IV.

TABLE IV

	Control	Tylosin	A	Tylosin + A
ADG	1.63	1.64	1.36	1.50
ADF	5.64	5.77	5.10	5.38
F/G	3.46	3.51	3.77	3.59
Slaughter Wt, (lbs)	210	211	193	201
Carcass Wt, (lbs)	150.3	151.5	140.1	146.3
Fat Depth, 10th rib, (in) ¹	0.96	0.96	0.80	0.85
Loin Eye Area (in ² ) ¹	4.60	4.68	4.92	5.00
Est. % Muscle ²	49.2	49.2	51.4	51.2
Est. Pounds Muscie ²	75.3	76.5	74.1	76.8

These results are based upon measurement of fat at the 10th rib after the carcass is

As in the previous study, both phenethanolamine treatments resulted in carcasses with less fat and more muscle. It should also be noted that the estimated amount of carcass muscle produced with the Tylosin +A treatment was similar to that produced in the con- 60 trol and the Tylosin treatment alone. This result was achieved, however, with less feed consumption than either the control or the Tylosin treatments.

Additional studies have been carried out to demonstrate the anabolic effect of  $\beta$ -phenethanolamines in 65 swine. The effect of the compounds on nitrogen retention is the difference between nitrogen intake and nitrogen excreted. Increased nitrogen retention is known to

be associated with increased anabolic activity, resulting in improved carcass muscling and leanness.

In a typical study, barrows weighing about 172 pounds (78 Kg) were orally administered various doses 5 of 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride (Compound A). All animals received water and a constant amount of normal swine feed ration. The results of this study are presented in Table V, and show that all  $\beta$ phenethanolamine treatments improved nitrogen retention compared to controls.

TABLE V

5	Treatment	Nitrogen Retention Animals per treatment	Nitrogen Retained (g/day)
	Control	6	21.0
	Compound A (5 g/T)	3	23.6
	Compound A (10 g/T)	3	23.9
	Compound A (20 g/T)	3	25.0

As pointed out above, the method of this invention can be practiced with individual isomers of  $\beta$ -phenethanolamines or with mixtures of isomers and diastereomers. In a study to determine the effect on weight gain and feed efficacy of various mixtures of diastereomers, barrows initially weighing about 177 pounds were fed a normal swine diet plus a β-phenethanolamine at 20 g/T of feedstuff. Each treatment was replicated in twelve individually fed animals. The results were presented in Table VI and show that growth performance was improved by both  $\beta$ -phenethanolamine treatments with very little change in feed intake.

TABLE VI

Treatment	Average Daily Feed (lbs)	Average Daily Gain (lbs)
Control	5.89	1.58
l-(4-hydroxyphenyl)-2-[1-methyl-3- (4-hydroxyphenyl)propylamino]etha- nol hydrochloride 57.5% RR,SS 42.5% RS,SR	5.94	2.15
l-(4-hydroxyphenyl)-2-(1-methyl-3-(4- hydroxyphenyl)propylamino]ethanol hydrochloride 47% RR,SS 53% RS,SR	5.86	1.95

The data in Table VI demonstrates that the method of 50 improving feed efficiency and promoting growth can be practiced with any desired mixture of  $\beta$ -phenethanolamine optical isomers.

The efficacy of the  $\beta$ -phenethanolamines described herein also has been demonstrated in poultry. In a typical study, broilers that were twenty-one days old were administered an oral dosing of a  $\beta$ -phenethanolamine in their normal daily feed ration. All animals received the following broiler finisher ration:

Ingredients	% by weight	lbs/T
Ground yellow corn	66.40	1328.00
Animal-vegetable fat	1.53	30.60
Corn Glut. meal (60%)	4.00	80.00
Soybean meal (48%)	19.19	383.80
Fish meal-menhaden	2.50	50.00
Dicalcium phosphate	1.01	34.20
Feather meal-Hydr.	2.50	50.00
Ground limestone	0.83	16.60
Sait	0.30	6.00

²I-(4-hydroxyphenyl)-2-[I-methyl-3-(4-hydroxyphenyl)propylamino]-ethanol hy-

drochloride

A regression equation was employed in arriving at the numerical predictions of carcass muscle (J. Animal Science, 1977, Vol. 44:8-17).

split in half across the backbone.

A regression equation is employed in arriving at the numerical predictions of carcass muscle (J. Animal Science, 1977, Vol. 44:8-17).

-continued

Ingredients	% by weight	lbs/T
Vitamin Premix ¹	0.50	10.00
Trace mineral premix ²	0.10	2.00
Methionine Hyd. Anal.	0.15	3.00
Lysine HCI	0.29	5.80
	100.00	2000.00

Vitamin premix provides 3000 IU of vitamin A, 900 ICU of vitamin D3, 40 mg. of vitamin E, 0.7 mg, of vitamin K, 1000 mg of choline, 70 mg, of niacin, 4 mg of pantothenic acid, 4 mg of riboflavin, 100 meg of vitamin B₁₂, 100 meg of biotin and 10 125 mg of ethoxyquin per kg of complete feed.

Trace mineral premix provides 75 mg of manganese, 50 mg of zinc, 25 mg of iron

and 1 mg of iodine per kg of complete feed.

Test animals received with the above ration varying doses of 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydrox-15 yphenyl)propylamino]ethanol hydrochloride (compound A). Each treatment was replicated sixteen times, and the test was terminated when the animals reached fifty-six days of age. The animals were analyzed for weight gain and feed efficiency. The results of this test 20 in broilers is presented in Table VII as mean weight gain and mean feed to gain ratios.

TABLE VII

	Grov	vth Perfo	rmance of Broile	ers.		•
				Feed I	Miciency	25
Treatment	Dose (g/T)	grams	eight Gain % improvement	Feed/ Gain Ratio	% change from control	-
Control		1473	0	2.336	0	30
Compound A	10	1585	7.6	2.292	1.9	
Compound A	20	1613	9.5	2.298	1.6	
Compound A	40	1550	5.2	2.312	1.0	
Compound A	80	1669	13.3	2.221	4.9	

The results of this study demonstrate that the  $\beta$ phenethanolamines described herein are effective in promoting growth and improving feed efficiency in poultry.

The compounds of the invention also have demon- 40 strated efficacy in ruminants. Forth-eight crossbred wether lambs were employed in a test designed to show the effects of Compound A (1-(4-hydroxyphenyi)-2-[1methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride) at varying doses. Sixteen animals were 45 held as controls, while sixteen received 40 ppm of Compound A, and another sixteen received 80 ppm of Compound A. All animals received a normal daily feed ration and water ad libitum. Average daily weight gain and average daily feed consumption after twenty-eight 50 key. days is given below in Table VIII. The data demon-

strates that a  $\beta$ -phenethanolamine as defined herein is effective in promoting growth and improving feed efficiency in ruminants.

TABLE VIII

Growth Performance of Lambs				
Treatment	Dose (ppm)	ADG (lbs)	ADF (lbs)	F/G
Control	0	0.414	3.68	8.89
Compound A	40	0.418	3.61	8.64
Compound A	80	0.472	3.57	7.56

We claim:

1. A method for promoting the growth of poultry comprising administering to a the poultry a growth promoting amount of a compound of the formula

$$\begin{array}{c} \text{OH} & \text{CH}_3 \\ \text{IO-CH-CH}_2 - \text{NH-CH-(CH}_2)_2 - \end{array} \\ \begin{array}{c} \text{OH} \end{array}$$

or an acid addition salt thereof.

2. A method for improving the efficiency of feed 25 utilization by poultry comprising administering to a the poultry an effective amount of a compound of the for-

or an acid addition salt thereof.

- 3. The method of claim 1 employing 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride.
- 4. The method of claim 1 employing R,R-1-(4hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol, or an acid addition salt thereof.
- 5. The method of claim 2 employing 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride.
- 6. The method of claim 2 employing R,R-1-(4hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol, or an acid addition salt thereof.
- 7. The method of claim 1 wherein the fowl is a chicken.
- 8. The method of claim 1 wherein the fowl is a tur-

55

60

## **Exhibit XIV**

U.S. Patent 5,643,967



### United States Patent [19]

#### Anderson et al.

[11] Patent Number:

5,643,967

[45] Date of Patent:

Jul. 1, 1997

[54] GROWTH PROMOTION

[75] Inventors: David B. Anderson, Greenfield; Klaus K. Schmiegel, Indianapolis; Edward L.

Veenhuizen, Greenfield, all of Ind.; Ronald R. Tuttle, Escondido, Calif.

[73] Assignee: Eli Lilly and Company, Indianapolis,

Ind.

[21] Appl. No.: 37,789

[22] Filed: Mar. 18, 1993

#### Related U.S. Application Data

[60] Continuation of Ser. No. 606,670, Oct. 31, 1990, abandoned, which is a division of Ser. No. 328,996, Mar. 27, 1989, Pat. No. 4,992,473, which is a division of Ser. No. 153,640, Feb. 8, 1988, Pat. No. 4,849,453, which is a division of Ser. No. 860,719, May 7, 1986, Pat. No. 4,734,437, which is a continuation of Ser. No. 628,002, Jul. 5, 1984, abandoned, which is a continuation of Ser. No. 462,587, Jan. 31, 1983, abandoned.

[51] Int. Cl.⁶ ....... A61K 31/135

[52] U.S. Cl. ...... 514/653

[58] Field of Search ...... 514/653

[56] References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

0049728 4/1982 European Pat. Off. . 2028801 3/1980 United Kingdom .

OTHER PUBLICATIONS

Fed Proc. 42 #3 (1983). Fed Proc 42 #4 (1983).

Primary Examiner—Kevin E. Weddington
Attorney, Agent, or Firm—Paul R. Cantrell; Kathleen R. S.

Page; David E. Boone

[57]

ABSTRACT

β-Phenethanolamines are effective in promoting growth and improving feed efficiency and leanness in animals.

38 Claims, No Drawings

#### GROWTH PROMOTION

This application is a continuation of application Ser. No. 07/606,670, filed Oct. 31, 1990, now abandoned which was a division of Ser. No. 07/328,996, filed Mar. 27, 1989, U.S. 5 Pat. No. 4,992,473 which was a division of Ser. No. 07/153, 640, filed Feb. 8, 1988, U.S. Pat. No. 4,849,453, which was a division of Ser. No. 06/860,719, filed May 7, 1986, U.S. Pat. No. 4,734,437, which was a continuation of Ser. No. 06/628,002, filed Jul. 5, 1984, now abandoned, which was a continuation of Ser. No. 06/462,587, filed Jan. 31, 1983, now abandoned.

#### BACKGROUND OF THE INVENTION

The chemistry and use of  $\beta$ -phenethanolamines has been extensively investigated. A number of these compounds have been reported to have beneficial cardiac activities; see U.S. Pat. No. 3,987,200. Such compounds also are known to have sympathomimetic activity, and have found utility as utero-relaxing agents; Van Dijk et al., *Recueil*, 92, 1281 (1973). More recently, a group of  $\beta$ -phenethanolamines have been reported as possessing anti-hyperglycemic activity, and have been found effective in promoting the loss of weight in animals, EPO 6735 published Jan. 9, 1980.

An object of this invention is to provide a new use for certain  $\beta$ -phenethanolamines. This invention provides a method for promoting the growth of domesticated animals employing  $\beta$ -phenethanolamines.

#### SUMMARY OF THE INVENTION

This invention provides a method for increasing weight gain in animals and improving the efficiency of feed utilization and the quality of the carcass. The invention is more particularly directed to a method for promoting growth and improving feed efficiency and leanness comprising administering an effective amount of a compound having the formula

wherein:

R¹ is hydrogen, hydroxy, or methoxy;

R² is hydrogen or fluoro,

R³ is hydrogen or C₁-C₂ alkyl;

R4 is hydrogen or methyl;

R⁵ is hydrogen, fluoro, nitro, hydroxy, SO₂CH₃ or CONH₂; provided that R¹ is hydrogen only when R⁵ is nitro or SO₂CH₃; and the acid addition salts thereof.

A preferred method for promoting growth and improving 55 feed efficiency and leanness according to this invention employs a compound of the above formula wherein R¹ is hydroxy, R² is hydrogen, R³ is hydrogen or methyl and R⁴ is methyl. The method is most preferably practiced employing a compound wherein R¹ and R⁵ both are hydroxy and R² 60 and R³ both are hydrogen and R⁴ is methyl. When R¹ is hydroxy or methoxy, it preferably is in the para position. When R⁵ is other than hydrogen, it also is preferably in the para position.

This invention also provides an animal feedstuff comprising a  $\beta$ -phenethanolamine of the above formula together with a suitable carrier therefor. 2

## DETAILED DESCRIPTION OF THE INVENTION

The compounds employed in the method provided by this invention are either known in the art or are readily prepared by well known synthetic procedures. A particularly preferred method employs 1-(3-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol. This  $\beta$ -phenethanolamine is disclosed in South African Patent No. 673,994 published in May, 1967. The most preferred embodiment of this invention employs 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-propylamino]ethanol, a compound disclosed as having utero-relaxing, activity by Van Dijk et al. in *Recueil*, 92 1281 (1973).

The compounds to be employed in the method of this invention are readily prepared by reaction of a styrene oxide with a 3-phenylpropylamine derivative. For example, a styrene oxide such as 2-fluorostyrene oxide can be reacted with about an equimolar quantity of an amine such as 1-methyl-3-(4-nitrophenyl)propylamine in an unreactive organic solvent such as ethanol, methanol, n-propanol, dioxane, or the like. The reaction generally is carried out at a temperature of about 50° to about 120° C., and at such temperature the reaction routinely is substantially complete within about 6 to about 10 hours. The product, a B-phenethanolamine, is readily isolated by simply removing the reaction solvent, for instance by evaporation under reduced pressure, and further purification can be accomplished if desired by standard techniques, including crystallization, chromatography, acid-base extraction, and 30 the like.

An alternative method for preparing the B-phenethanolamines to be employed in the present method comprises reacting a mandelic acid derivative with a 3-phenylpropylamine derivative to provide an amide, which upon subsequent reduction provides a compound of the above formula. For example, a phenylpropylamine derivative such as 1-methyl-3-(3-fluorophenyl)propylamine can be reacted with an acylating agent such as a hydroxy protected mandelic acid halide, or preferably simply reacted with a mandelic acid in the presence of a common peptide coupling reagent such as N,N'-dicyclohexylcarbodiimide, carbonyldiimidazole, N-ethoxy-carbonyl-2-ethoxy-1,2dihydroquinoline, commonly referred to as EEDQ. The 45 direct coupling reaction generally is conducted in an organic solvent such as benzene or N,N'-dimethylformamide, and normally is complete after about 2 to 48 hours when carried out at about -30° to about 100° C. The product is an amide that is readily isolated by simply filtering the reaction mixture and then removing the reaction solvent. The amide thus formed is next reduced by reaction with a common reducing agent such as diborane or the like to provide a β-phenethanolamine defined by the above formula.

A similar, yet alternative, method of synthesis comprises reacting a phenethanolamine with a phenylethyl ketone to provide a Schiff base, which upon reduction gives a compound to be employed in the present method. For example, a phenethanolamine such as 2-hydroxy-2-(4-hydroxyphenyl)ethylamine can be reacted with a ketone such as methyl 2-(4-hydroxyphenyl)ethyl ketone to provide the corresponding imine, which upon reduction, for instance with 5% palladium on carbon, provides 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl) propylamino]ethanol.

It should be noted that the compounds to be employed in the method of this invention possess at least one asymmetric center (i.e. the carbinol center), and when R³ and R⁴ differ,

the compounds possess two asymmetric centers. Since employment of individual optical isomers necessitates preparing the β-phenethanolamines from optically active starting materials, or using costly separation procedures, a preferred embodiment of this invention employs a mixture of optical isomers. For example, 1-(4-hydroxyphenyl)-2-[1methyl-3-(4-hydroxyphenyl)propylamino]ethanol is preferably prepared from racemic mixtures of starting materials. e.g. d1-1-methyl-3-(4-hydroxyphenyl)propylamine and d1-4-hydroxystyrene oxide, to provide a mixture of all four 10 possible optical isomers of the product. The mixture of optical isomers is employed in the method without subsequent separation of isomers.

3

Since the β-phenethanolamines to be employed in the present method are inherently basic, they readily form acid 15 addition salts with any number of inorganic and organic acids. These salts can be employed in the method of the invention, and often are preferred to the free base since they generally are more soluble in solvents such as water and are more conveniently formulated as an animal feedstuff. Acids 20 commonly employed to form acid addition salts include mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, perchloric acid and the like; and organic acids such as acetic acid, citric acid, succinic acid, para-toluene sulfonic acid, methanesulfonic acid, lactic acid and the like. Preferred salts to be employed in the present method include the hydrochlorides and hydrobromides.

Typical \( \beta - phenethanolamines to be employed in the method of this invention include the following:

- 1-(3-hydroxyphenyl)-2-[1-methyl-1-ethyl-3-(4-30 aminocarbonylphenyl)propylamino]ethanol;
- 1-(2-fluoro-4-hydroxyphenyl)-2-[1-methyl-3-(4fluorophenyl)propylamino]ethanol;
- 1-(4-hydroxyphenyl)-2-[3-(3-nitrophenyl)propylamino] ethanol;
- 1-(3-hydroxy-2-fluorophenyl)-2-[3-(4-methylsulfonyl) propylamino]ethanol;
- 1-(4-methoxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl) propylamino]ethanol;
- 1-phenyl-2-[1,1-dimethyl-3-(3-methylsulfonyl-phenyl) 40 propylamino]ethanol;
- 1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-(4-hydroxyphenyl) propylamino]ethanol hydrochloride;
- 1-(phenyl)-2-[1-methyl-3-(4-nitrophenyl)-propylamino]
- 1-(3-hydroxyphenyl)-2-[1-methyl-3-(4-fluorophenyl) propylamino]ethanol succinate;
- 1-(4-hydroxyphenyl)-2-[1-methyl-1-ethyl-3-(4aminocarbonylphenyl)propylamino]ethanol;
- phenylpropylamino]ethanol hydrobromide; and
- d-1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3-(4hydroxyphenyl)propylamino]ethanol.

The method of promoting growth and improving leanness and feed efficiency provided by this invention is practiced by administering an effective amount of a compound defined above to a warm-blooded animal that receives a nutritionally adequate diet. The method generally will be practiced on domesticated animals raised for human meat consumption. for example grower/finisher swine, poultry, ruminants and the like. In a preferred embodiment, the growth of pigs, chickens and turkeys is promoted employing a β-phenethanolamine. Another preferred embodiment is practiced in ruminants such as cattle, sheep and goats. The method of improving leanness is not limited to meat pro- 65 ducing animals, and can be practiced on other warmblooded animals, including dogs and cats. This latter

embodiment is particularly useful when it is desired to maintain mature animals in a relatively lean physical state.

The method of the invention is preferably practiced by orally administering an effective amount of a B-phenethanolamine to an animal. Other routes of administration can be employed, for instance intramuscular or intravenious injection; however, such routes are less practical. The amount to be administered to an animal is an amount that is effective in causing a promotion of growth, or an improvement in the efficiency of utilization of food, or an improvement in carcass quality of the animal, for instance in the form of less fatty tissue and improved leanness. The effective amount to be administered will vary somewhat depending upon the particular animal species being treated and the particular active ingredient employed, but generally will be from about 1 to about 1000 parts per million (ppm) of total daily feed intake. Such amount will provide a dosage of about 0.05 to about 50 mg/kg. A preferred embodiment employs about 1 to about 200 ppm, and more preferably from about 5 to about 100 ppm. A typical amount of active ingredient to be administered to swine will be from about 5 to about 40 ppm. For example, when practicing the method in animals such as ruminants or swine, the compound will be added to the daily feed ration at about 5 to about 100 parts per million of the daily feed ration.

For oral administration, the active  $\beta$ -phenethanolamine is preferably admixed with suitable carriers or diluents commonly employed in animal husbandry. Animal feedstuffs comprising a \( \beta\)-phenethanolamine growth promoter as defined herein are provided as a further embodiment of this invention. Typical carriers and diluents commonly employed in such feedstuffs include corn meal, soybean meal, alfalfa meal, rice hulls, soybean mill run, cottonseed oil meal, bone meal, ground corn, corncob meal, sodium 35 chloride, urea, cane molasses and the like. Such carriers promote a uniform distribution of the active ingredient in the finished feed ration into which such compositions are added, thereby ensuring proper distribution of the active ingredient throughout the feed. The feedstuff composition provided by the invention will contain about 5 to about 95 percent by weight of active ingredient, and more typically about 10 to about 50 percent by weight. As already noted, the acid addition salts of the active phenethanolamines are generally preferred for oral administration, and are thus the preferred 45 form of active ingredient for the feedstuff compositions of the invention.

While the preferred method for orally administering the growth promoters is via the daily feed rations, the compounds can be incorporated into salt blocks and mineral 1-(4-hydroxyphenyl)-2-[1,1-dimethyl-3- 50 licks, as well as being added directly to drinking water for convenient oral consumption. The compounds can additionally be formulated with polymorphous materials, waxes and the like for long-term controlled release, and administered to an animal as a bolus or tablet only as needed to maintain the desired daily payout of active ingredient.

> For parenteral administration, the β-phenethanolamines can be admixed with conventional carriers such as corn oil, sesame oil, carbowax, calcium stearate and the like. Such formulations can be molded into pellets and administered as an injection or as a slow-release subcutaneous implant. Such administrations can be made as often as needed to ensure the proper dosing of active ingredient to obtain the desired rate of growth promotion and improvement in leanness and feed efficiency.

> While the compounds described herein are effective in promoting average daily weight gain and improving feed efficiency in animals, they also cause observable improve-

5

ment in the quality of the meat produced. For example, the compounds appear to mobilize free fatty acids from fatty tissue and depress the deposition of fat as the animals gain weight. This reduction of fat is beneficial since the animal being treated according to the invention gains weight in the 5 form of more useable lean meat, thereby reducing waste and improving the value of the animal thus treated. Also, mature animals that are not subject to additional weight gain can be maintained in a desirably lean form by administering a compound as described herein.

The practice of the present invention is more fully illustrated by the following detailed examples:

#### EXAMPLE 1

#### Preparation of d1-4-(benzyloxy)mandelic acid

A solution of 5.0 g of d1-4-hydroxy mandelic acid, 11.0 g of benzyl chloride and 10.0 g of potassium carbonate in 50 ml of methanol was heated to reflux and stirred for seventy-two hours. The reaction mixture was cooled to room temperature and diluted with 50 ml of water. The aqueous solution was washed twice with 50 ml portions of benzene, and then was acidified with concentrated hydrochloric acid. The aqueous acid solution was extracted three times with 50 ml portions of ethyl acetate. The organic extracts were combined, washed with water and with saturated sodium chloride solution and dried. Removal of the solvent by evaporation under reduced pressure provided 5.7 g of a solid which was then recrystallized from 300 ml of toluene to afford 5.33 g of d1-4-(benzyloxy)mandelic acid. M.P. 30

Analysis calc. for  $C_{15}H_{14}O_4$  Theory: C, 69.76; H, 5.46; Found: C, 69.96; H, 5.33.

#### **EXAMPLE 2**

#### Resolution of d1-4-(benzyloxy)mandelic Acid to Provide R(-)-(4-benzyloxy)mandelic Acid

To a stirred solution of 185.6 g of d1-4-benzyloxy) mandelic acid in 2500 ml of ethyl acetate at 80° C. was added in one portion 43.6 g of R(+)- $\alpha$ -methyl-benzylamine. The reaction mixture was cooled to room temperature, and the precipitated solid which had formed was collected by filtration and washed with fresh ethyl acetate. The solid was recrystallized twice from a solution of ninety percent ethanol in water to provide 91.4 g of the R(+)- $\alpha$ -methylbenzylamine salt of R(-)-4-(benzyloxy)mandelic acid. M.P. 208.5°-209.5° C. [ $\alpha$ ]_D -38.6°, [ $\alpha$ ]₃₆₅ -155.3° (MeOH)

Analysis calc. for C₂₃H₂₅NO₄ Theory: C, 72.80; H, 6.64; N, 3.69; Found: C, 72.95; H, 6.83; N, 3.95.

To a stirred suspension of 91.4 g of the above-named salt in 2000 ml of ethyl acetate was added 150 ml of ten percent aqueous hydrochloric acid solution. The aqueous acid solution was separated, and the organic layer washed with water and dried. Removal of the solvent by evaporation under reduced pressure afforded 54.5 g of R(-)-4-(benzyloxy) mandelic acid, ie. R(-) -2-(4-benzyloxyphenyl)-2-hydroxyacetic acid. M.P. 155°-161° C.  $[\alpha]_D$ -102.2°;  $[\alpha]_{365}$ -410.6° (MeOH)

Analysis calc. for  $C_{15}H_{14}O_4$  Theory: C, 69.76; H, 5.46; 60 Found: C, 69.67; H, 5.41.

#### **EXAMPLE 3**

#### Preparation of d1-1-methyl-3-(4-benzyloxyphenyl) propylamine

A solution of 40.0 g of methyl 2-(4-benzyloxyphenyl) ethyl ketone and 160 ml of anhydrous ammonia in 300 ml

6

of ethanol was heated at 75° C. and stirred for two hours. After cooling the reaction mixture to room temperature, 4.0 g of Raney nickel was added in one portion, and the reaction mixture then was stirred at 25° C. for twelve hours under a hydrogen atmosphere at 300 psi. The reaction mixture next was filtered and the filtrate was concentrated by evaporation of the solvent under reduced pressure to provide an oil. The oil was dissolved in 120 ml of 3N hydrochloric acid, from which the product as a hydrochloride salt precipitated. The salt so formed was collected by filtration and recrystallized from methanol and toluene to provide 36.2 g of d1-1-methyl-3-(4-benzyloxyphenyl)propylaminium chloride. M.P. 195-197.5° C.

#### **EXAMPLE 4**

# Resolution of d1-1-methyl-3-(4-benzyloxyphenyl) propylamine to provide R-(-)-1-methyl-3-(4-benzyloxyphenyl)propylamine

A solution of 629.3 g of d1-1-methyl-3-(4-benzyloxyphenyl)propylaminium chloride was converted to the free amine by reaction with 95 g of sodium hydroxide in 400 ml of water. The free amine was then dissolved in 2000 ml of methylene chloride and added to a solution of 328 g of D-(-)-mandelic acid in 1000 ml of methanol. The mandelic acid salt of the free amine precipitated out of solution and was recrystallized three times from methanol to provide 322 g of the R-mandelic acid salt of R-1-methyl-3-(4-benzyloxyphenyl)propylamine. M.P  $166^{\circ}-167^{\circ}$  C.  $[\alpha]_{D}-30^{\circ}, [\alpha]_{365}-119^{\circ}$  (MeOH).

The salt so formed was converted to R-1-methyl-3-(4-30 benzyloxyphenyl)propylamine as the free base by reaction with aqueous sodium hydroxide.

#### **EXAMPLE 5**

#### R,R-N-[2-(4-Benzyloxyphenyl)-2-hydroxy-1oxoethyl]-1-methyl-3-(4-benzyloxyphenyl) propylamine

A solution of 93.9 g of R-1-methyl-3-(4benzyloxyphenyl)propylamine in 500 ml of N,Ndimethylformamide containing 63.0 g of 1-hydroxybenzotriazole and 104.6 g of R-2-(4benzyloxyphenyl)-2-hydroxyacetic acid was cooled to 0° C. and stirred while a solution of 83.6 g of N,N'dicyclohexylcarbodiimide in 300 ml of dimethylformamide was added dropwise over one hour. The reaction mixture was stirred for twelve hours at 3° C. and then was diluted with 10 ml of water, stirred for an additional hour, and then cooled to  $-30^{\circ}$  C. in an ice-acetone bath. The reaction mixture was filtered to remove dicyclohexylurea, and then the filtrate was concentrated by evaporation of the solvent under reduced pressure. The concentrated solution was diluted with ethyl acetate and washed with saturated aqueous sodium carbonate solution, with water, with 300 ml of 1N hydrochloric acid, and again with water. The organic layer was dried and the solvent was removed by evaporation under reduced pressure to provide the product as a white solid. The solid was recrystallized once from acetonitrile and again from methanol to provide 159.7 g of R,R-N-[2-(4benzyloxyphenyl)-2-hydroxy-1-oxoethyl]-1-methyl-3-(4benzyloxyphenyl)propylamine. M.P. 145°-148° C. [α]_D  $-15.9^{\circ}$ ,  $[\alpha]_{365}$   $-50.1^{\circ}$  (MeOH).

Analysis calc for  $C_{32}H_{33}NO_4$  Theory: C, 77.55; H, 6.71; N, 2.83; Found: C, 77.04; H, 6.84; N, 2.53.

#### **EXAMPLE 6**

#### R,R-N-[2-(4-Benzyloxyphenyl)-2-hydroxyethyl]-1methyl-3-(4-benzyloxyphenyl)propylamine

To a stirred solution of 10.0 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxy-1-oxoethyl]-1-methyl-3-(4-

benzyloxyphenyl)propylamine in 500 ml of freshly distilled tetrahydrofuran under a nitrogen gas atmosphere was added dropwise over thirty minutes 41 ml of 2 molar boranedirecthyl sulfide complex in tetrahydrofuran. The reaction mixture was stirred at 25° C. for twenty hours, and then was heated to reflux and stirred for an additional three hours. After cooling the reaction mixture to 25° C. and stirring for another eighteen hours, the excess borane was decomposed by the slow portion-wise addition of 400 ml of methanol. The solvent was then removed from the reaction mixture by 10 evaporation under reduced pressure to provide the product as an oil. The oil so formed was dissolved in 250 ml of hot methanol, and after concentrating the volume to 125 ml, the product began crystallizing out of solution. The crystalline product was collected by filtration and recrystallized twice 15 from methanol to provide 6.65 g of R,R-N-[2-(4benzyloxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4benzyloxyphenyl)propylamine. M.P. 119°-123.5° C.

The amine so formed was dissolved in methanol and added to a solution of ethereal hydrogen chloride, thereby providing 6.49 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-benzyloxyphenyl) propylaminium chloride. M.P. 214.5°-216° C.  $[\alpha]_D$  -13.4°,  $[\alpha]_{365}$  -30.2° (MeOH).

Analysis calc. for  $C_{32}H_{36}NO_3Cl$  Theory: C, 74.19; H, ²⁵ 7.00; N, 2.70; Cl, 6.84; Found: C, 74.20; H, 6.98; N, 2.65; Cl, 6.63.

#### **EXAMPLE 7**

R,R-1-(4-Hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride, also named as R,R-N-[2-(4-Hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl) propylaminium chloride

A mixture of 51.6 g of R,R-N-[2-(4-benzyloxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-benzyloxyphenyl) propylaminium chloride and 5.0 g of Raney nickel in 2 liters of ethanol and 2 liters of ethyl acetate was stirred at 25° C. for four and one-half hours under a hydrogen atmosphere of 60 psi. The reaction mixture was then filtered to remove the residual Raney nickel, and the filtrate was concentrated to an oil by evaporation of the solvent under reduced pressure, and the oil was crystallized from fresh ethanol and diethyl ether to provide 29.8 g of R,R-N-[2-(4-hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl)-2-hydroxyethyl]-1-methyl-3-(4-hydroxyphenyl) propylaminium chloride. M.P. 176°-176.5° C. (dec.)  $[\alpha]_D$ -22.7°,  $[\alpha]_{365}$ -71.2° (3.7 mg/ml MeOH).

Analysis calc. for  $C_{18}H_{24}NO_3Cl$  Theory: C, 63.99; H, 50 7.16; N, 4.15; Found: C, 63.70; H, 7.26; N, 4.32.

#### **EXAMPLE 8**

As pointed out above, a preferred embodiment of this invention employs a mixture of all four optical isomers of 55 the compound of Example 7. This racemic mixture can be prepared by the method described above by reaction of d1-4-(benzoyloxy)mandelic acid with d1-1-methyl-3-(4-benzyloxyphenyl)propylamine in the presence of DCC to give racemic 1-(4-benzyloxyphenyl)-2-oxo-2-[1-methyl-3-(4-benzyloxyphenyl)propylamino]ethanol. Reduction of the latter compound and subsequent removal of the benzyl groups provides racemic 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol. This compound is more preferably prepared by the following procedure.

A solution of 32.8 g. (0.2 m) of methyl 2-(4-hydroxyphenyl)ethyl ketone and 42.6 g. (0.2 m) of 1-(4-

8

hydroxyphenyl)-2-aminoethanol in 380 ml. of ethanol containing 3.8 g. of five percent palladium on carbon was stirred for sixteen hours at 60° C. under hydrogen at 55 psi. The reaction mixture was then filtered, and the filtrate was diluted by addition of 350 ml. of water. The aqueous mixture was concentrated to a volume of about 400 ml., and then washed with dichloromethane. The aqueous mixture was acidified by addition of 50 ml. of conc. hydrochloric acid. After standing at room temperature for two hours, the aqueous acid mixture was filtered and the filter cake was washed with 40 ml. of ice water and dried at 50° C. in vacuum to provide 47 g. of 1-(4-hydroxyphenyl-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride. M.P. 124°–129° C.

Analysis calc. for  $C_{18}H_{24}NO_3Cl$  Theory: C, 63.99; H, 7.16; N, 4.15; Cl, 10.49. Found: C, 63.77; H, 6.80; N, 3.91; Cl, 10.68.

¹³C NMR studies demonstrated the product to be comprised of 51% RR,SS diastereamer and 49% RS,SR diastereomer.

#### **EXAMPLE 9**

## 1-Phenyl-2-[1-methyl-3-(4-nitrophenyl) propylamino]ethanol

A solution of 5.0 g. (25.9 mM) of 2-amino-1phenylethanol and 3.55 g. (25.9 mM) of methyl 2-(4nitrophenyl)ethyl ketone in 60 ml. of toluene containing 10 mg. of para-toluenesulfonic acid was heated at reflux for six hours in a flask equipped with a Dean-Stark trap. The water that formed during the reaction was removed via the trap, and then the reaction mixture was cooled to room temperature and concentrated to dryness by evaporation of the solvent under reduced pressure. The solid product that remained was dissolved in 50 ml. of tetrahydrofuran and the solution was heated to reflux. A solution of 13.5 ml. of 2N borane-methyl sulfide complex in tetrahydrofuran was then added dropwise to the reaction mixture, and the mixture was refluxed for an additional ninety minutes. After cooling the reaction mixture to room temperature, it was diluted by addition of diethyl ether saturated with hydrogen chloride. The precipitate that formed was collected by filtration and crystallized from ethanol and diethyl ether to give 3.29 g. of 1-phenyl-2-[1-methyl-3-(4-nitrophenyl)-propylamino] ethanol hydrochloride. M.P. 203°-213° C.

Analysis calc. for  $C_{18}H_{23}CIN_2O_3$  Theory: C, 61.62; H, 6.61; N, 7.98; Cl, 10.11. Found: C, 61.76; H, 6.62; N, 7.76; Cl, 10.13.

#### **EXAMPLE 10**

#### 1-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3phenylpropylamino]ethanol

A solution of 32.6 g. (0.2 m) of 1,1-dimethyl-3-phenylpropylamine and 22.9 g. (0.1 m) of 2-(4-methoxyphenyl)-2-oxoethyl bromide in 75 ml. of tetrahydrofuran was heated at reflux for thirty-six hours. The reaction mixture was then cooled and added to 2 liters of diethyl ether. The precipitate was removed by filtration, and the filtrate was acidified with hydrobromic acid to give 18.15 g. of 1-(4-methoxyphenyl)-1-oxo-2-(1,1-dimethyl-3-phenylpropylamino)ethane hydrobromide. M.P. 174°–178° C.

The compound thus formed was dissolved in 85 ml. of glacial acetic acid containing 35 ml. of hydrobromic acid, and the solution was heated at reflux for nine hours. The

solution was then cooled and the solvent was removed by evaporation to provide, following crystallization from ethanol and diethyl ether, 7.8 g. of 1-(4-hydroxyphenyl)-1-oxo-2-(1,1-dimethyl-3-phenylpropylamino)ethane hydrobromide. M.P. 228°-230° C.

Catalytic hydrogenation of 5.0 g. of the compound from above in 44 ml. of ethanol containing 1.25 g. of five percent palladium on carbon afforded, following crystallization from acetone and diethyl ether, 2.3 g. of 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-phenylpropylamino)ethanol hydrobromide. 10 M.P. 168°-170° C.

Analysis calc. for C₁₉H₂₆BrNO₂ Theory: C, 60.00; H, 6.89; N, 3.68. Found: C, 60.28; H, 6.67; N, 3.62.

#### **EXAMPLE 11**

#### 1-(3-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4fluorophenyl)propylamino]ethanol

To a stirred solution of 67.2 g. (0.22M) of 2-(3benzyloxyphenyl)-2-oxoethyl bromide in 200 ml. of acetonitrile was added a solution of 54.3 g. (0.20M) of N-benzyl-1,1-dimethyl-3-(4-fluorophenyl)propylamine in 600 mL of acetonitrile containing 42 ml. (0.22M) of diisopropylethylamine. The reaction mixture was stirred for about six hours at reflux, and then was cooled and stored at room temperature for forty-eight hours. The reaction mixture was next diluted by addition of aqueous sodium hydroxide, and the organic solvents were removed by evaporation under reduced pressure. The aqueous alkaline mixture was extracted with ethyl acetate, which was then washed with water, dried, and concentrated to dryness to give an oil. The oil was dissolved in ethanol and diethyl ether and converted to the hydrochloride salt by addition of excess hydrogen chloride. The precipitated solid was collected by filtration and recrystallized from ethyl acetate to give 51.3 g. of 1-(3-benzyloxyphenyl)-1-oxo-2-[(N-benzyl)-1,1-dimethyl-3-(4-fluorophenyl)-propylamino]ethane hydrochloride. M.P. 137°-145° C.

The compound thus prepared was reduced by reaction 40 with 16 g. of sodium borohydride in ethanol. Isolation of the product, followed by conversion to the hydrochloride salt and crystallization from diethyl ether afforded 55.0 g. of 1-(3-benzyloxyphenyl)-2-[(N-benzyl)-1,1-dimethyl-3-(4fluorophenyl) propylamino]ethanol hydrochloride. M.P. 45 186.5°-191° C.

A solution of 10.0 g. of the product thus produced in 200 ml. of ethanol containing 3.0 g. of Raney Nickel was shaken for two hours at 25° C. under hydrogen at 44 psi. The removed from the filtrate by evaporation under reduced pressure to give a white solid. The solid was triturated with ethyl acetate and air dried to provide 5.9 g. of 1-(3hydroxyphenyl)-2-[1,1-dimethyl-3-(4-fluorophenyl)

Analysis calc. for C₁₉H₂₅ClFNO₂ Theory: C, 64.49; H, 7.12; N, 3.96; Cl, 10.02. Found: C, 64.29; H, 6.97; N, 4.06; Cl. 9.89.

#### **EXAMPLE 12**

1-(4-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4aminocarbonylphenyl)propylamino]ethanol

A suspension of 10.0 g. (50 mM) of 1,1-dimethyl-3-(4aminocarbonylphenyl)propylamine and 15.0 g. (50 mM) of 65 1-(4-benzyloxyphenyl)-1-oxoethyl bromide in 1000 ml. of acetonitrile containing 32.0 g. (0.3M) of sodium carbonate

and 100 ml. of water was stirred for one hour at 25° C. The precipitate that formed was collected by filtration, washed with water and with diethyl ether, and air dried to provide 8.0 g. of 1-(4-benzyloxyphenyl)-1-oxo-2-[1,1-dimethyl-3-(4-aminocarbonylphenyl)propylamino]ethane. M.P. 184°-187° C. This product was converted to the hydrochloride salt by reaction with hydrogen chloride in diethyl ether. M.P. 219°-224° C.

The compound thus prepared was reacted with sodium borohydride in methanol to provide, following conversion to the hydrochloride salt and crystallization from methanol and diethyl ether, 5.8 g. of 1-(4-benzyloxyphenyl)-2-[1,1dimethyl-3-(4-aminocarbonylphenyl)propylamino]ethanol hydrochloride. M.P. 141°-143° C.

Reaction of the above compound with hydrogen in the presence of Raney Nickel effected cleavage of the hydroxy protecting group to afford, following crystallization of the hydrochloride salt, 1.3 g. of 1-(4-aminocarbonylphenyl) propylamino]ethanol hydrochloride. M.P. 185° C. (dec.)

Analysis calc. for C₂₀H₂₇CIN₂O₃ Theory: C, 63.40; H, 7.18; N, 7.39; Cl, 9.36. Found: C, 63.26; H, 7.01; N, 7.45; CI, 9.42.

The compounds of Examples 13 and 14 were prepared by 25 the general procedure of Example 12.

#### **EXAMPLE 13**

1-(27Fluorophenyl)-2-[1,1-dimethyl-3-(4aminocarbonylphenyl)propylaminolethanol hydrochloride

M.P. 227°-230° C.

#### **EXAMPLE 14**

1-(3-Hydroxyphenyl)-2-[1,1-dimethyl-3-(4hydroxyphenyl)propylamino]ethanol hydrobromide

M.P. 161°-165 ° C.

#### **EXAMPLE 15**

1-Phenyl-2-[1-methyl-3-(4-methylsulfonylphenyl) propylamino]ethanol hydrochloride

Methyl 2-(4-methylthiophenyl)ethyl ketone was oxidized by reaction with m-chloroperbenzoic acid to give methyl 2-(4-methylsulfonylphenyl)ethyl ketone. A solution of 6.73 g. of 2-amino-1-phenylethanol and 11.10 g. of methyl 2-(4reaction mixture was then filtered, and the solvent was 50 methylsulfonylphenyl)ethyl ketone in 500 ml. of toluene containing 200 mg. of p-toluenesulfonic acid was heated at reflux for twenty-four hours. The reaction mixture was cooled and the solvent was removed by evaporation to give the Schiff base 1-phenyl-2-[1-methyl-3-(4propylamino]ethanol hydrochloride. M.P. 196.5°-198.5° C. 55 methylsulfonylphenyl)propylimino]ethanol. The Schiff base thus prepared was reacted with 3.7 g. of sodium borohydride in 500 ml. of ethanol at 0° C. for sixteen hours. The reaction mixture was diluted by addition of 50 ml. of acetone and 20 ml. of 3N hydrochloric acid. The mixture was concentrated to an oil by evaporation of the solvent. The oil crystallized upon standing at room temperature. Recrystallization of the product from 200 ml. of hot ethanol afforded 8.96 g. (48% yield) of 1-phenyl-2-[1-methyl-3-(4-methylsulfonylphenyl) propylamino]ethanol hydrochloride. M.P. 164°-170° C.

Analysis calc. for C₁₉H₂₆CINO₃S Theory: C, 59.44; H, 6.83; N, 3.65; Cl, 9.23; S, 8.35. Found: C, 59.28; H, 6.57; N, 3.70; Cl, 9.36; S, 8.11.

30

Ingredient

% by weight

lbs/Ton

Premix for Chick	ens
Ingredient	% by weight
1-(4-hydroxyphenyl)-2-[1,1- dimethyl-3-phenylpropylamino]- ethanol succinate	25
Ground Corn	74
Sodium Chloride	1
	· 100

T-37		TAT	D	17
EXA	٩M	$\mathbf{PL}$	Ŀ	1/

Premix for ruminants				
Ingredient	% by weight	21		
1-(2-fluorophenyl)-2-[1,1- dimethyl-3-(4-aminocarbonyl- phenyl)propylamino jethanol	30			
Ground yellow corn	60			
Alfalfa meal	10	2		
	100			

#### **EXAMPLE 18**

Premix for Swine					
Ingredient	% by weight				
1-(4-hydroxyphenyl)-2-[1-methyl- 3-(4-hydroxyphenyl)propylamino]- ethanol hydrochloride	10				
Soybean mill run	88				
Soybean mill run Mineral oil	2				
	100				

The above ingredients are blended to uniformity to provide a dry flowable premix that can be admixed with a typical animal feed ration at a rate to provide about 20 ppm of active ingredient in the final feed ration. For example, the premix can be added to the following swine grower ration for convenient oral administration of the 50 β-phenethanolamine to swine.

Ingredient	% by weight	lbs/Ton
Com, yellow, ground	76.70	1534
Soybean Oil Meal,	19.35	387
solvent extracted, dehalled		
Calcium Carbonate	1.20	24
Dicalcium Phosphate, feed grade	1.20	24
Salt (sodium chloride)	0.50	10
Trace mineral premix, AN-031	0.10	2
Swine Vitamin Premix, SW-03 ²	0.65	13
Vitamin A Premix, 3M USP units/lb.3	0.05	1
Methionine Hydroxy Analogue, 93%	0.20	4
Selenium Premix ⁴	0.005	1
	100.00	2000

¹ Each Kg of premix contains: 50 g. manganese as manganese sulfate; 100 g
zinc as zinc carbonate; 50 g. iron as ferrous sulfate; 5 g. copper as copper
oxide: 1.5 g indine as notassium indide and 150 g maximum and 130 g

minimum calcium as calcium carbonate.

Each Kg of premix contains: 77,161 IU Vitamin D₂; 2,205 IU Vitamin E; 411 mg. riboflavin; 1,620 mg. pantothenic acid; 2,205 mg. niacin; 4.4 mg. Vitamin B₁₂; 441 mg. Vitamin K; 19,180 mg. choline; 110 mg. folic acid; 165 mg.

pyridoxine; 110 mg. thiamine; 22 mg. biotin. Each Kg of premix contains 6,613,800 IU Vitamin A.

⁴Each Kg of premix contains 200 mg. of selenium as sodium selenite.

#### **EXAMPLE 19**

Ingredient	Percent	lbs/T
Yellow com	61.00	1220.0
Com cobs	20.00	400.0
Alfalfa Meal, dehydrated	5.40	108.0
Soybean oil meal	00.8	160.0
Urea, feed grade	0.50	10.0
Molasses, cane	3.00	60.0
Dicalcium phosphate	0.43	8.6
Salt	0.30	6.0
Calcium carbonate	0.14	2.3
Trace mineral premix ¹	0.03	Ö.6
Vitamin A + D ₃ Premix ²	0.10	2.0
Vitamin E Premix ³	0.10	2.0
1-(4-Hydroxyphenyl)-2-(1,1-	1.00	20.0
dimethyl-3-phenylpropylamino)- ethanol		
	100.00	2000.0

¹Trace mineral premix contains: 2.5% manganese as manganese oxide, 0.07% iodine as potassium iodide, 0.3% cobalt as cobalt carbonate, 0.5% copper as copper oxide, and 20.0% zinc as zinc sulfate.

copper oxide, and 20.0% zinc as zinc sulfate.

Each pound of vitamin A and D₃ premix contains 2,000,000 USP units Vitamin A and 225,750 USP units Vitamin D₃.

Bach pound of Vitamin E premix contains 20,000 IU Vitamin E.

The compounds to be employed in the method of this invention have demonstrated efficacy in animal tests designed to establish beneficial nutritional effects. In one test designed to show lipolytic activity, normal swine, either barrows or gilts, were employed to analyze the effect of compounds on blood glucose, insulin, and non-esterified fatty acids (NEFA).

Test animals were maintained in metabolism crates, and following a period of adaptation, catheters were placed in their femoral veins. Prior to administration of the test compounds, all animals were fasted for a period of forty hours. Such fasting causes an elevation of NEFA's in the blood. On the day of the test, all animals were fed a normal feed ration, and one group of animals were held as controls while another group of animals received a test compound. The test compounds were administered at 200 mcg/kg intravenously, or orally at 1 mg/kg. Blood samples were taken from each animal immediately prior to treatment and then at one hour intervals for a period of six hours following treatment. The blood plasma was analyzed for glucose, insulin and NEFA content.

60 When the fasted pigs were fed the normal feed ration without a test compound, the NEFA levels in the blood drop dramatically and remained low. A β-phenethanolamine as defined herein caused either an elevation in NEFA's, or inhibited the drop in NEFA's. Blood levels of glucose and insulin were also elevated with the β-phenethanolamines.

The following Table presents the lipolytic activity of several preferred \( \beta - \text{phenethanolamines} \) when evaluated

according to the test described above. The results are averages of several tests.

TABLE I

Lipolytic Activity (increase in NEFA's)

R ¹	R²	R³	R ⁴	R ⁵	% increase in NEFA's over control	% increase in glucose over control
н	н	H	CH ₃	SO ₂ CH ₃	131	9
p-OH	H	CH ₃	CH ₃	H	445	48
m-OH	H	CH ₃	CH ₃	H	71	31
ш-ОН	H	CH ₃	CH ₃	F	28	72
P-OH	H	CH,	CH,	OH	141	35
p-OH	H	CH,	CH ₃	CONH ₂	18	169
<u>т</u> -ОН	H	CH,	CH ₃	OH _	68	40
Ħ	H	H	H	NO ₂	199	7
p-OCH ₃	H	CH,	CH,	н	84	25
p-OCH ₃	H	CH,	CH ₃	OH	249	5
Ĥ	H	н	CH ₂	NO ₂	1458	27

A ten day in vivo study was employed to determine the effect of β-phenethanolamines on feed efficiency and rate of growth. In these studies, barrows and gilts weighing approximately 60 kg were maintained in individual pens. Each treatment was replicated six times in randomly assigned animals, with each test animal forming an experimental unit. A group of control animals received a normal swine grower feed ration comprising the following ingredients:

Ingredient	% by weight
Ground yellow com	76.70
Soybean oil meal	19.35
Calcium carbonate	1.20
Dicalcium phosphate	1.20
Salt	0.50
Trace mineral premix	0.10
Swine Vitamin premix	0.65
Vitamin A premix, 3M USP units/lb.	0.05
Methionine Hydroxy analogue, 93%	0.20
Selenium premix	0.05
	100.00

The test animals received the same feed ration plus the test compound. All animals received feed and water ad libitum. All animals were weighed on day 1 and again on day 10, and feed consumption was measured by recording all feed issued and any remaining feed on day 10. The results of two series of this 10 day test for several β-phenethanolamines are given

in Table II. In the Table, the column labelled "ADG" is the average daily weight gain in pounds; "ADF" is the average daily feed consumption (in pounds) by the test animals; and F/G is the feed efficiency calculated as ADF divided by

TABLE II

Growth Promotion and Feed Efficiency

15		R ¹	R²	R³	R ⁵	dose ppm	ADG	ADF	F/G
	Experi-	Control p-OH	н	н	он	20	1.60 2.19	4.7 5.0	2.98
	I	Ħ	н	H	NO ₂	20	1.78	4.22	2.37
20	Experi- ment	Control p-OH	н	СН,	н	20	1.34 1.60	4.16 4.26	3.22 2.66
	Π	<u>m</u> -OH	H	CH ₃	P	20	1.52	4.57	3.01

The  $\beta$ -phenethanolamines to be employed in the method of this invention can be administered in combination with other compounds known to have a beneficial effect upon animals. Typical compounds to be co-administered with the β-phenethanolamines include antibiotics, for example any of the tetracyclines, tylosin, penicillins, cephalosporins, polyether antibiotics, glycopeptides, orthosomycins and related compounds commonly administered to swine, poultry, ruminants and the like. A preferred combination to be employed 35 in the present method is an antibiotic such as tylosin or a tetracycline, together with 1-(4-hydroxyphenyl)-2-[1methyl-3-(4-hydroxyphenyl)propylaminolethanol. Such combinations will comprise the respective components in a ratio of about 1 to about 2 parts by weight of 40 β-phenethanolamine and about 1 to about 10 parts by weight of the partner component.

In a typical treatment, 1-(4-hydroxyphenyl)-2-[1-methyl-45] 3-(4-hydroxyphenyl)propylamino]ethanol was evaluated in a 42-day study employing finishing swine. Each treatment was replicated four times, with three pigs per replication. All treatments included a normal feed diet plus tylosin at 40 g/T. The animals were tested for growth performance and feed efficiency enhancement. Carcass quality was determined by analysis for fat and muscling. The results of the study are given in Table III. Both β-phenethanolamine treatments resulted in improved growth performance and carcasses with less fat and more muscle.

TABLE III

	Growth Promotion, Feed Efficiency and Carcass Quality					
		β-phenethanolamine²				
	Control ¹	20 g/T	% change	40 g/T	% change	
ADG	1.94	2.07	(6.7)	2.05	(5.7)	
ADF F/G	6.28 3.24	6.63 3.20	(5.6) (-1.2)	6.64 3.24	(5.7) (0)	

TABLE III-continued

#### Growth Promotion, Feed Efficiency and Carcass Quality

		β-phenethanolamine ²						
	Control ¹	20 g/T	% change	40 g/T	% change			
Live Wt. at Slaughter, Ib	217.0	223.0	(2.8)	221.0	(1.8)			
Chilled Carcass Wt., lb	154.6	160.5	(3.8)	159.8	(3.4)			
Fat Depth at 10th Rib, in	1.15	1.09	( <del>-</del> 5.2)	1.05	(-8.7)			
Loin Eye Area Sp., in	4.64	4.91	(5.8)	4.84	(4.3)			
Estimated Pounds of Fat Free Muscle ³	74.2	78.8	(6.1)	78.4	(5.7)			

¹all diets contained 40 g/T of tyrosin

The data reported in Table III further demonstrates that the  $\beta$ -phenethanolamines described herein promote growth, improve feed efficiency and improve leaness.

In a similar study conducted over a 61 day period, a group of control animals received a normal daily feed ration with no additive. Another group of animals received the feed ration plus tylosin at 40 g/T, while another group received the feed ration plus 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)-propylamino]ethanol hydrochloride (compound A) at 20 g/T. A final group of finishing swine received the feed ration plus the combination of 40 g/T of tylosin and 20 g/T of the phenethanolamine. The results of this trial are given in Table IV.

TABLE IV

	Control	Tylosin	A	Tylosin + A
ADG	1.63	1.64	1.36	1.50
ADF	5.64	5.77	5.10	5.38
F/G	3.46	3.51	3.77	3.59
Slaughter Wt, (fbs)	210	211	193	201
Carcass Wt, (Ibs)	150.3	151.5	140.1	146.3
Fat-Depth, 10th rib, (in) ¹	0.96	0.96	0.80	0.85
Loin Bye Area (in²) ¹	4.60	4.68	4.92	5.00
Est. % Muscle ²	49.2	49.2	51.4	51.2
Est. Pounds Muscle ²	75.3	76.5	74.1	76.8

¹These results are based upon measurement of fat at the 10th rib after the carcass is split in half across the backbone.

²A regression equation is employed in arriving at the numerical predictions

As in the previous study, both phenethanolamine treatments resulted in carcasses with less fat and more muscle. It should also be noted that the estimated amount of carcass 50 muscle produced with the Tylosin +A treatment was similar to that produced in the control and the Tylosin treatment alone. This result was achieved, however, with less feed consumption than either the control or the Tylosin treatments.

Additional studies have been carried out to demonstrate the anabolic effect of  $\beta$ -phenethanolamines in swine. The effect of the compounds on nitrogen retention in finishing barrows was determined. Nitrogen retention is the difference between nitrogen intake and nitrogen excreted. Increased nitrogen retention is known to be associated with increased anabolic activity, resulting in improved carcass muscling and leanness.

In a typical study, barrows weighing about 172 pounds (78 Kg) were orally administered various doses of 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl) 65 propylamino]ethanol hydrochloride (Compound A). All animals received water and a constant amount of normal swine

feed ration. The results of this study are presented in Table V, and show that all  $\beta$ -phenethanolamine treatments improved nitrogen retention compared to controls.

TABLE V

Nitrogen Retention					
Treatment	Animals per treatment	Nitrogen Retained (g/day)			
Control	6	21.0			
Compound A (5 g/T)	3	23.6			
Compound A (10 g/T)	3	23.9			
Compound A (20 g/T)	3	25.0			

As pointed out above, the method of this invention can be practiced with individual isomers of β-phenethanolamines or with mixtures of isomers and diastereomers. In a study to determine the effect on weight gain and feed efficacy of various mixtures of diastereomers, barrows initially weighing about 177 pounds were fed a normal swine diet plus a β-phenethanolamine at 20 g/T of feedstuff. Each treatment was replicated in twelve individually fed animals. The results are presented in Table VI and show that growth performance was improved by both β-phenethanolamine treatments with very little change in feed intake.

TABLE VI

Treatmen	t	Average Daily Feed (lbs)	Average Daily Gain (lbs)
Control		5.89	1.58
methyl-3	r, ss	5.94	2.15
1-(4-hydr methyl-3-	oxyphenyl)-2-{1- (4-hydroxyphenyl)- ino]ethanol uride SS	5.86	1.95

The data in Table VI demonstrates that the method of improving feed efficiency and promoting growth can be practiced with any desired mixture of  $\beta$ -phenethanolamine optical isomers.

The efficacy of the  $\beta$ -phenethanolamines described herein also has been demonstrated in poultry. In a typical study, broilers that were twenty-one days old were administered an oral dosing of a  $\beta$ -phenethanolamine in their normal daily

²1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]-ethanol hydrochloride

³A regression equation was employed in arriving at the numerical predictions of carcass muscle (J. Animal Science, 1977, Vol. 44:8-17).

A regression equation is employed in arriving at the numerical predictions of carcass muscle (J. Animal Science, 1977, Vol. 44:8-17).

feed ration. All animals received the following broiler finisher ration:

Ingredients	% by weight	lbs/T
Ground yellow com	66.40	1328.00
Animal-vegetable fat	1.53	30.60
Com Glut. meal (60%)	4.00	80.00
Soybean meal (48%)	19.19	383.80
Fish meal-menhaden	2.50	50.00
Dicalcium phosphate	1.01	34.20
Feather meal-Hydr.	2.50	50.00
Ground limestone	0.83	16.60
Salt	0.30	6.00
Vitamin Premix ¹	0.50	10.00
Trace mineral premix ²	0.10	2.00
Methionine Hyd. Anal.	0.15	3.00
Lysine HCl	0.29	5.80
	100.00	2000.00

¹Vitamin prenix provides 3000 IU of vitamin A, 900 ICU of vitamin D₃, 40 mg. of vitamin E, 0.7 mg. of vitamin K, 1000 mg of choline, 70 mg. of niacin, 4 mg of pantothenic acid, 4 mg of riboflavin, 100 mcg of vitamin B₁₂, 100 mcg of biotin and 125 mg of ethoxyquin per kg of complete feed.

²Trace mineral premix provides 75 mg of manganese, 50 mg of zinc, 25 mg of iron and 1 mg of iodine per kg of complete feed.

Test animals received with the above ration varying doses of 1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl) propylamino]ethanol hydrochloride (compound A). Each treatment was replicated sixteen times, and the test was terminated when the animals reached fifty-six days of age. The animals were analyzed for weight gain and feed efficiency. The results of this test in broilers is presented in 30 Table VII as mean weight gain and mean feed to gain ratios.

TABLE VIII

	Growth Performance of Lambs				
5	Treatment	Dose (ppm)	ADG (lbs)	ADF (lbs)	F/G
_	Control	0	0.414	3.68	8.89
	Compound A	40	0.418	3.61	8.64
n _	Compound A	80	0.472	3.57	7.56

We claim:

1. A method for promoting the growth of a domesticated warm blooded animal other than a ruminant, swine, or poultry, which comprises administering to the animal an effective amount of 1-(4-hydroxyphenyl)-2-(1-methyl-3-(4hydroxyphenyl)propylamino)ethanol or an acid addition salt thereof.

2. The method of claim 1 wherein the animal is one raised for human meat consumption.

3. A method for improving the feed efficiency of a domesticated warm blooded animal other than a ruminant, swine, or poultry, which comprises administering to the animal an effective amount of 1-(4-hydroxyphenyl)-2-(1-methyl-3-(4-hydroxyphenyl)propylamino)ethanol or an acid addition salt thereof.

4. The method of claim 3 wherein the animal is one raised for human meat consumption.

5. A method for promoting the growth of a domesticated warm blooded animal which comprises administering to the animal an effective amount of a compound having the formula

TABLE VII

Growth Performance of Broilers					
				Feed Efficiency	
	Dose	Weight Gain		Feed/Gain	% change
Treatment	(g/T)	grams	% improvement	Ratio	from control
Control		1473	, 0	2.336	0
Compound A	10	1585	7.6	2.292	1.9
Compound A	20	1613	9.5	2.298	1.6
Compound A	40	1550	5.2	2.312	1.0
Compound A	80	1669	13.3	2.221	4.9

The results of this study demonstrate that the  $\beta$ -phenethanolamines described herein are effective in promoting growth and improving feed efficiency in poultry.

The compounds of the invention also have demonstrated efficacy in ruminants. Forty-eight crossbred wether lambs were employed in a test designed to show the effects of Compound A (1-(4-hydroxyphenyl)-2-[1-methyl-3-(4-hydroxyphenyl)propylamino]ethanol hydrochloride) at varying doses. Sixteen animals were held as controls, while sixteen received 40 ppm of Compound A, and another sixteen received 80 ppm of Compound A. All animals received a normal daily feed ration and water ad libitum. Average daily weight gain and average daily feed consumption after twenty-eight days is given below in Table VIII. The data demonstrates that a β-phenethanolamine as defined 65 herein is effective in promoting growth and improving feed efficiency in ruminants.

55 wherein

R¹ is hydrogen, hydroxy, or methoxy;

R² is hydrogen or fluoro;

 $\mathbb{R}^3$  is hydrogen or  $\mathbb{C}_1$ - $\mathbb{C}_2$  alkyl;

R⁴ is hydrogen or methyl;

R⁵ is hydrogen, fluoro, nitro, hydroxy, SO₂CH₃ or CONH₂; provided that R¹ is hydrogen only when R⁵ is nitro or SO₂CH₃, or an acid addition salt thereof; excluding the compounds 1-(4-hydroxyphenyl)-2-(1-methyl-3-(4-hydroxyphenyl)propylamino)ethanol and 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-phenylpropylamino)ethanol and their acid addition salts.

6. The method of claim 5 employing 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-(4-hydroxyphenyl)propylamino)ethanol or an acid addition salt thereof.

7. The method of claim 5 wherein the animal is one raised for human meat consumption.

The method of claim 7 wherein the animal is a ruminant.

9. The method of claim 7 wherein the animal is a swine.
10. The method of claim 7 wherein the animal is poultry.

11. The method of claim 10 employing 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-(4-hydroxyphenyl) propylamino)ethanol or an acid addition salt thereof.

12. The method of claim 11 wherein the poultry is a

13. The method of claim 11 wherein the poultry is a chicken.

14. A method for improving the efficiency of feed utilization by a domesticated warm blooded animal which comprises administering an effective amount of a compound of the formula

$$\mathbb{R}^{1} \overset{OH}{\underbrace{\hspace{1cm}} \begin{array}{c} CH \\ I \\ CH-CH_{2}-NH-C-CH_{2}-CH_{2}-CH_{2} \end{array}} \mathbb{R}^{3}$$

wherein:

R¹ is hydrogen, hydroxy, or methoxy;

R² is hydrogen or fluoro;

 $R^3$  is hydrogen or  $C_1$ - $C_2$  alkyl;

R⁴ is hydrogen or methyl;

R⁵ is hydrogen, fluoro, nitro, hydroxy, SO₂CH₃ or CONH₂; provided that R¹ is hydrogen only when R⁵ is nitro or SO₂CH₃, or an acid addition salt thereof; excluding the compounds 1-(4-hydroxyphenyl)-2-(1-methyl-3-(4-hydroxyphenyl)propylamino)ethanol and 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-phenylpropylamino)ethanol and their acid addition salts.

15. The method of claim 14 employing 1-(4-40 hydroxyphenyl)-2-(1,1-dimethyl-3-(4-hydroxyphenyl) propylamino)ethanol or an acid addition salt thereof.

16. The method of claim 14 wherein the animal is one raised for human meat consumption.

17. The method of claim 16 wherein the animal is a 45 ruminant.

18. The method of claim 16 wherein the animal is a swine.

19. The method of claim 16 wherein the animal is poultry.

20. The method of claim 19 employing 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-(4-hydroxyphenyl) propylamino)ethanol or an acid addition salt thereof.

21. The method of claim 20 wherein the poultry is a turkey.

22. The method of claim 20 wherein the poultry is a chicken.

23. A method for improving leanness in a domesticated 55 warm blooded animal which comprises administering to the animal an effective amount of a compound of the formula

$$\mathbb{R}^{1} \underbrace{\left\langle \begin{array}{c} OH \\ I \\ -CH-CH_{2}-NH-CC-CH_{2}-CH_{2}-CH_{2} \\ I \\ R^{4} \end{array} \right\rangle}_{\mathbb{R}^{5}}$$

wherein:

R¹ is hydrogen, hydroxy, or methoxy;

20

R² is hydrogen or fluoro;

R⁴ is hydrogen or methyl;

 $R^3$  is hydrogen or  $C_1$ – $C_2$  alkyl;

R⁵ is hydrogen, fluoro, nitro, hydroxy, SO₂CH₃ or CONH₂; provided that R¹ is hydrogen only when R⁵ is nitro or SO₂CH₃, or an acid addition salt thereof; excluding the compounds 1-(4-hydroxyphenyl)-2-(1-methyl-3-(4-hydroxyphenyl)propylamino)ethanol and 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-phenylpropylamino)ethanol and their acid addition salts.

24. The method of claim 23 employing 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-(4-hydroxyphenyl) propylamino)ethanol or an acid addition salt thereof.

25. The method of claim 23 wherein the animal is one raised for human meat consumption.

26. The method of claim 25 wherein the animal is a ruminant.

27. The method of claim 25 wherein the animal is a swine.
28. The method of claim 25 wherein the animal is poultry.

29. The method of claim 28 employing 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-(4-hydroxyphenyl) propylamino)ethanol or an acid addition salt.

30. The method of claim 23 wherein the animal is a dog. 31. The method of claim 23 wherein the animal is a cat.

32. An animal feedstuff comprising a β-phenethanolamine of the formula

35 wherein:

R¹ is hydrogen, hydroxy, or methoxy;

R² is hydrogen or fluoro;

R³ is hydrogen or C₁-C₂ alkyl;

R⁴ is hydrogen or methyl;

R⁵ is hydrogen, fluoro, nitro, hydroxy, SO₂CH₃ or CONH₂; provided that R¹ is hydrogen only when R⁵ is nitro or SO₂CH₃, or an acid addition salt thereof; excluding the compound 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-phenylpropylamino)ethanol and its acid addition salts.

33. The feedstuff of claim 32 wherein the β-phenethanolamine is 1-(4-hydroxyphenyl)-2-(1-methyl-3-(4-hydroxyphenyl)propylamino)ethanol or an acid addition salt thereof.

34. The feedstuff of claim 32 wherein the  $\beta$ -phenethanolamine is 1-(4-hydroxyphenyl)-2-(1,1-dimethyl-3-(4-hydroxyphenyl)propylamino)ethanol or an acid addition salt thereof.

35. The feedstuff of claim 32 containing from about 5 to about 95 percent by weight of the  $\beta$ -phenethanolamine.

36. The feedstuff of claim 35 comprising corncob meal as a carrier.

37. The feedstuff of claim 36 wherein the β-phenethanolamine is 1-(4-hydroxyphenyl)-2-(1-methyl-3-(4-hydroxyphenyl)propylamino)ethanol or an acid addition salt thereof.

38. The feedstuff of claim 37 wherein the β-phenethanolamine is 1-(4-hydroxyphenyl)-2-(1-methyl-3-(4-hydroxyphenyl)propylamino)ethanol hydrochloride.