Math 302 Fall 2011 Homework #4

Due Oct. 10, Mon. in class

- 1. Consider the metric induced by the 1-norm on \mathbb{R}^2 : $d(x,y) = |x_1 y_1| + |x_2 y_2|, \forall x, y \in \mathbb{R}^2$. Let the set $A = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 1 \text{ and } x_2 \ge 1\}$. Prove that the set A is closed using the sequential criterion.
- 2. Given a metric space (M, d). Prove the following statements:
 - (1) In (M, d), a convergent sequence has a unique limit (*Hint*: by contradiction);
 - (2) In (M, d), a convergent sequence is Cauchy;
 - (3) In (M, d), a Cauchy sequence is bounded.
- 3. Textbook, page 123, Ex. 2.
- 4. Let (x_n) be a bounded sequence in \mathbb{R} . Assume that $x_n x_{n-1} \leq x_{n+1} x_n$ for all $n \geq 2$. Consider the sequence (s_n) with $s_n := x_n x_{n-1}$.
 - (1) Show that (s_n) is monotone, bounded and convergent.
 - (2) Show that $\lim(s_n) = 0$ (*Hint*: by contradiction and using the boundedness of (x_n)).