Конструктивні функції

Андрій Фесенко

Функції часу роботи машини Тюрінга

• необчислювальні або важко обчислювальні функції

Функції часу роботи машини Тюрінга

- необчислювальні або важко обчислювальні функції
- ullet часова складність $2^{2^{t(n)}}$ має бути більшою за складність t(n)

Функції часу роботи машини Тюрінга

- необчислювальні або важко обчислювальні функції
- ullet часова складність $2^{2^{t(n)}}$ має бути більшою за складність t(n)
- додаткові можливості є меншими ніж ресурс на їх обчислення

Означення

Функцію $f: \mathbb{N} \to \mathbb{N}$, називають **конструктивною за часом** (англ. time-constructible), якщо існує така багатострічкова детермінована машина Тюрінга M з часом роботи $\mathcal{O}(f(n))$ з довільним вхідним словом з довжиною n, і результатом роботи машини Тюрінга M з вхідним словом 1^n є слово $1^{f(n)}$.

Означення

Функцію $f:\mathbb{N} \to \mathbb{N}$, називають **конструктивною за часом** (англ. time-constructible), якщо існує така багатострічкова детермінована машина Тюрінга M з часом роботи $\mathcal{O}(f(n))$ з довільним вхідним словом з довжиною n, і результатом роботи машини Тюрінга M з вхідним словом 1^n є слово $1^{f(n)}$.

Приклади:

- $\bullet \ f(n) = c,$ стала функція
- $f_1(n) = n$
- $f_2(n) = n \log n$
- $f_3(n) = n^3$
- $f_4(n) = 2^n$

Означення

Функцію $f:\mathbb{N}\to\mathbb{N}$ називають **конструктивною за часом**, якщо існують багатострічкова детермінована машина Тюрінга M і натуральне число $n_0\in\mathbb{N}$ такі, що для довільного значення $n\in\mathbb{N}$, $n\geq n_0$, час роботи машини Тюрінга M з довільним вхідним словом з довжиною n дорівнює O(f(n)) і машина Тюрінга M зупиняється з вхідним словом 1^n , виконавши точно f(n) тактів.

Означення

Функцію $f:\mathbb{N}\to\mathbb{N}$ називають **конструктивною за часом**, якщо існують багатострічкова детермінована машина Тюрінга M і натуральне число $n_0\in\mathbb{N}$ такі, що для довільного значення $n\in\mathbb{N}$, $n\geq n_0$, час роботи машини Тюрінга M з довільним вхідним словом з довжиною n дорівнює O(f(n)) і машина Тюрінга M зупиняється з вхідним словом 1^n , виконавши точно f(n) тактів.

Означення

Функцію $f:\mathbb{N}\to\mathbb{N}$ називають **конструктивною за часом**, якщо існує така багатострічкова детермінована машина Тюрінга M, що для довільного значення $n\in\mathbb{N}$ час роботи машини Тюрінга M з довільним вхідним словом з довжиною n дорівнює O(f(n)) та існує вхідне слово з довжиною n, з яким машина Тюрінга M зупиняється, виконавши точно f(n) тактів.

Означення

Функцію $f:\mathbb{N} \to \mathbb{N}$ називають **конструктивною за часом**, якщо існує така багатострічкова детермінована машина Тюрінга M, що для довільного значення $n \in \mathbb{N}$ час роботи машини Тюрінга M з довільним вхідним словом з довжиною n дорівнює $\mathcal{O}(f(n))$ і машина Тюрінга M є застосовною до вхідного слова 1^n , а результатом роботи машини Тюрінга M з вхідним словом 1^n є слово $\lfloor f(n) \rfloor$.

Означення

Функцію $f:\mathbb{N} \to \mathbb{N}$ називають **конструктивною за часом**, якщо існує така багатострічкова детермінована машина Тюрінга M, що для довільного значення $n \in \mathbb{N}$ час роботи машини Тюрінга M з довільним вхідним словом з довжиною n дорівнює $\mathcal{O}(f(n))$ і машина Тюрінга M є застосовною до вхідного слова 1^n , а результатом роботи машини Тюрінга M з вхідним словом 1^n є слово $\lfloor f(n) \rfloor$.

Контрольоване моделювання роботи машини Тюрінга

- запуск "годинника" паралельно **vs**
- запуск "годинника" послідовно

Твердження

Якщо функція $f:\mathbb{N}\to\mathbb{N}$ є конструктивною за часом функцією, то або $f\in\Omega(n)$, $n\in\mathbb{N}$, або функція f є сталою на асимптотиці.

Твердження

Якщо функція $f:\mathbb{N}\to\mathbb{N}$ є конструктивною за часом функцією, то або $f\in\Omega(n)$, $n\in\mathbb{N}$, або функція f є сталою на асимптотиці.

Доведення.

ullet якщо $f:\mathbb{N} \to \mathbb{N}$ — конструктивна за часом функція, то \exists машина Тюрінга M з часом $t(n) \in \mathcal{O}(f(n)), \ M(1^n) = 1^{f(n)}$

Твердження

Якщо функція $f:\mathbb{N}\to\mathbb{N}$ є конструктивною за часом функцією, то або $f\in\Omega(n)$, $n\in\mathbb{N}$, або функція f є сталою на асимптотиці.

Доведення.

- ullet якщо $f:\mathbb{N} o \mathbb{N}$ конструктивна за часом функція, то \exists машина Тюрінга M з часом $t(n) \in \mathcal{O}(f(n)),\ M(1^n) = 1^{f(n)}$
- $\bullet \Rightarrow \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N}: t(n) \leq cf(n), \forall n \geq n_0$

Твердження

Якщо функція $f:\mathbb{N}\to\mathbb{N}$ є конструктивною за часом функцією, то або $f\in\Omega(n)$, $n\in\mathbb{N}$, або функція f є сталою на асимптотиці.

Доведення.

- ullet якщо $f:\mathbb{N} o \mathbb{N}$ конструктивна за часом функція, то \exists машина Тюрінга M з часом $t(n) \in \mathcal{O}(f(n)), \ M(1^n) = 1^{f(n)}$
- ullet $\Rightarrow \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N}: t(n) \leq cf(n), \forall n \geq n_0$
- ullet нехай $f
 ot\in \Omega(n) \Rightarrow orall d \in \mathbb{R}^+$, $\exists n_1 \in \mathbb{N} \colon f(n) < dn$, $orall n \geq n_1$

Твердження

Якщо функція $f: \mathbb{N} \to \mathbb{N}$ є конструктивною за часом функцією, то або $f \in \Omega(n)$, $n \in \mathbb{N}$, або функція f є сталою на асимптотиці.

Доведення.

- ullet якщо $f:\mathbb{N} o \mathbb{N}$ конструктивна за часом функція, то \exists машина Тюрінга M з часом $t(n) \in \mathcal{O}(f(n)), \ M(1^n) = 1^{f(n)}$
- $\bullet \Rightarrow \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N}: t(n) \leq cf(n), \forall n \geq n_0$
- ullet нехай $f
 ot\in \Omega(n) \Rightarrow orall d \in \mathbb{R}^+$, $\exists n_1 \in \mathbb{N} \colon f(n) < dn$, $orall n \geq n_1$
- ullet нехай $n_2=\max\{n_0,n_1\}$ і $d=rac{1}{c}\colon t(n)\leq cf(n)< n$, $orall n\geq n_2$

Твердження

Якщо функція $f:\mathbb{N}\to\mathbb{N}$ є конструктивною за часом функцією, то або $f\in\Omega(n)$, $n\in\mathbb{N}$, або функція f є сталою на асимптотиці.

Доведення.

- ullet якщо $f:\mathbb{N} o\mathbb{N}$ конструктивна за часом функція, то \exists машина Тюрінга M з часом $t(n)\in\mathcal{O}(f(n)),\ M(1^n)=1^{f(n)}$
- ullet $\Rightarrow \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N}: t(n) \leq cf(n), \forall n \geq n_0$
- ullet нехай $f
 ot\in \Omega(n) \Rightarrow orall d \in \mathbb{R}^+$, $\exists n_1 \in \mathbb{N} \colon f(n) < dn$, $orall n \geq n_1$
- ullet нехай $n_2 = \max\{n_0, n_1\}$ і $d = \frac{1}{c}$: $t(n) \leq cf(n) < n$, $\forall n \geq n_2$
- $f(n) = f(n_2), \forall n \geq n_2$

Властивості конструктивних за часом функцій

Твердження

Нехай функції $f_1,f_2:\mathbb{N}\to\mathbb{N}$ є конструктивними за часом функціями. Тоді функції

- $f_1 + f_2$;
- $f_1 \cdot f_2$;
- $f_1^{f_2}$;
- ullet c^{f_1} , для довільного натурального числа $c\in\mathbb{N}$, c>1,

також є конструктивними за часом функціями.

Означення

Функцію $f:\mathbb{N}\to\mathbb{N}$ називають **повністю конструктивною за часом** (англ. fully time-constructible), якщо існують багатострічкова детермінована машина Тюрінга M і натуральне число $n_0\in\mathbb{N}$ такі, що для довільного значення $n\in\mathbb{N},\ n\geq n_0$, машина Тюрінга M зупиняється, виконавши точно f(n) тактів, з довільним вхідним словом з довжиною n.

Означення

Функцію $f:\mathbb{N}\to\mathbb{N}$ називають **повністю конструктивною за часом** (англ. fully time-constructible), якщо існують багатострічкова детермінована машина Тюрінга M і натуральне число $n_0\in\mathbb{N}$ такі, що для довільного значення $n\in\mathbb{N},\ n\geq n_0$, машина Тюрінга M зупиняється, виконавши точно f(n) тактів, з довільним вхідним словом з довжиною n.

Наслідок

Будь-яка повністю конструктивна за часом функція є конструктивною за часом функцією.

Означення

Функцію $f:\mathbb{N}\to\mathbb{N}$ називають **конструктивною за пам'яттю** (англ. space-constructible), якщо існує така багатострічкова детермінована машина Тюрінга M, що для довільного значення $n\in\mathbb{N}$ машина Тюрінга M є застосовною до довільного вхідного слова з довжиною n і при цьому використовується $\mathcal{O}(f(n))$ пам'яті, а результатом роботи машини Тюрінга M з вхідним словом 1^n є слово $1^{f(n)}$.

Означення

Функцію $f:\mathbb{N} \to \mathbb{N}$ називають **конструктивною за пам'яттю** (англ. space-constructible), якщо існує така багатострічкова детермінована машина Тюрінга M, що для довільного значення $n \in \mathbb{N}$ машина Тюрінга M є застосовною до довільного вхідного слова з довжиною n і при цьому використовується $\mathcal{O}(f(n))$ пам'яті, а результатом роботи машини Тюрінга M з вхідним словом 1^n є слово $1^{f(n)}$.

Приклади:

- \bullet f(n) = c, стала функція
- $f_1(n) = n$
- $f_2(n) = n \log n$
- $f_3(n) = n^3$
- $f_4(n) = 2^n$
- $f_5(n) = \log n$

Наслідок

Будь-яка конструктивна за часом функція є конструктивною за пам'яттю функцією.

Наслідок

Будь-яка конструктивна за часом функція є конструктивною за пам'яттю функцією.

Зауваження

- ullet конструктивні за часом $f(n) \geq n, \ f(n) \geq n+1, \ f(n) \geq n \log n$
- конструктивні за часом неспадні
- ullet конструктивні за пам'яттю неспадні, $f(n) \geq \log n$