MEETRAPPORT WEEK 1 - IMAGESHELL EN INTENSITY

NAAM EN DATUM

Nicky van Steensel van der Aa, 11-4-2019, versie 1.0

DOEL

Een algoritme vinden om de conversie van RGB-waarden naar Grijs-waarden te realiseren. Het resultaat moet bruikbaar zijn voor object herkenning. Verschillende algoritmen worden hiervoor getest op snelheid.

HYPOTHESE

Ik ga de volgende algoritmen testen:

- Averaging
- Luster
- Luma / Luminance

Door in het verleden behaalde resultaten verwacht ik met het Luma / Luminance algoritme de RGB-waarden het beste naar Grijs-waarden te kunnen converteren.

WERKWIJZE

Voor elk algoritme zal op elke afbeelding getest worden hoelang het duurt om RGB-waarden naar Grijs-waarden te converteren.

RESULTATEN

Meetresultaten over de verschillende algoritmes per afbeelding. Tijd is in milliseconden.

Afbeelding	Averaging	Luma / Luminance	Luster
Child-1	35 ms	39 ms	96 ms
Female-1	33 ms	40 ms	98 ms
Female-2	11 ms	10 ms	33 ms
Female-3	35 ms	39 ms	95 ms
Male-1	33 ms	35 ms	94 ms
Male-2	33 ms	35 ms	95 ms
Male-3	34 ms	36 ms	101 ms
Totaal	214ms	234 ms	612 ms

^{*}Female-2 is overduidelijk het geschiktst voor greyscaling, dit omdat er een aantal heel duidelijke egale vlakken in zitten.

VERWERKING

Bij de meetresultaten is goed te zien dat Averaging en Luma / Luminance ongeveer even snel zijn (3N), dit omdat zij per pixel beiden 3 berekeningen moeten doen, Luster is veel langzamer. Vervolgens heb ik gekeken wat de vervolg resultaten van de geconverteerde afbeeldingen in de rest van het gezichtsherkenningsproces opleverden.

CONCLUSIE

Aan de hand van de meetresultaten ben ik tot de conclusie gekomen dat Luma / Luminance het beste werkt. De output afbeelding kon het beste gebruikt worden voor object herkenning en het algoritme was een van de twee snelste.

EVALUATIE

Aan het begin van dit meetrapport werd gesteld dat Luma / Luminance het beste algoritme zou zijn qua tijd en output afbeelding.

Qua rekentijd bleek Averaging echter sneller te zijn. De output van Luma / Luminance bleek daarintegen geschikter te zijn.