《抽象代数》第一次作业

姓名:姜岚曦 学号: 19375233 姓名:魏来 学号: 20374104 姓名:曹建钬 学号: 20375177 姓名:李璞 学号: 20376164 姓名:刘炅 学号: 21374261

\$1.2: 映射

1. $A = \{1, 2, 3, \dots, 100\}$. 找一个 $A \times A$ 到 A 的映射.

解:

定义 ϕ : $(a_1, a_2) \longrightarrow \lfloor \frac{1}{2}(a_1 + a_2) \rfloor = \phi(a_1, a_2)$ 为 $A \times A$ 到 A 的一个映射 其中 $\lfloor \frac{1}{2}(a_1 + a_2) \rfloor$ 表示不超过 $\frac{1}{2}(a_1 + a_2)$ 的最大整数

2. 在你为习题 1 所找到的映射之下,是不是 A 的每一个元都是 $A \times A$ 的一个元的象?

解:

是, 对于 $\forall x \in A, \exists (a_1, a_2) = (x, x), s.t. \phi(x, x) = x$

\$1.3: 代数运算

1. $A = \{$ 所有不等于零的偶数 $\}$. 找一个集合 D,使得普通除法是 $A \times A$ 到 D 的代数运算,是不是找得到一个以上的这样的 D?

解:

可以找到一个以上这样的 D

那么包含 D_0 的任意集合都是符合要求的 D, 故 D 肯定不止一个

2. $A = \{a, b, c\}$. 规定 A 的两个不同的代数运算.

解:

 R_1 和 R_2 都是 $A = \{a, b, c\}$ 的代数运算:

 R_1 :

 R_2 :

\$1.4: 结合律

1. $A = \{$ 所有不等于零的实数 $\}$. \circ 是普通除法: $a \circ b = \frac{a}{b}$. 这个代数运算适合不适合结合律?

解:

考虑:

$$(a \circ b) \circ c = \frac{a}{b} \circ c = \frac{a}{bc}$$

 $a \circ (b \circ c) = a \circ \frac{b}{c} = \frac{ac}{b}$

由于 $a,b,c\in A=\{x|x\in R,x\neq 0\}$ 任意性,一般没有 $\frac{a}{bc}=\frac{ac}{b}$,即 $(a\circ b)\circ c=a\circ (b\circ c)$ 未必成立,故代数运算。不适合结合律

$$\circ$$
: $(a,b) \rightarrow a + 2b = a \circ b$

这个代数运算适合不适合结合律?

解:

$$(a \circ b) \circ c = (a+2b) \circ c = a+2b+2c$$
$$a \circ (b \circ c) = a \circ (b+2c) = a+2b+4c$$

由于 $a,b,c \in A = \{$ 所有实数 $\}$ 任意性,代数运算 \circ 不适合结合律

3.
$$A = \{a, b, c\}$$
. 由表:

所给的代数运算适合不适合结合律?

解:

$$a \circ b \circ c = a$$
 $a \circ (b \circ c) = a \circ a = a$

依次替换 33 = 27 次进行验证可证得此代数运算适合结合律

\$1.5: 交換律

1. $A = \{$ 所有实数 $\}$. \circ 是普通减法: $a \circ b = a - b$. 这个代数运算适合不适合交换律?

解:

$$a \circ b = a - b$$
$$b \circ a = b - a$$

显然, 此代数运算不适合交换律

2.
$$A = \{a, b, c, d\}$$
. 由表:

所给的代数运算适合不适合交换律?

解:

若代数运算是符合交换律的,则其运算应为对称阵可见 $c \circ d = d \neq a = d \circ c$,故不适合交换律

\$1.6: 分配率

1. 假定 \bigcirc , \bigoplus 是 A 的两个代数运算,并且 \bigoplus 适合结合律, \bigcirc , \bigoplus 适合两个分配率. 证明

$$(a_1 \odot b_1) \oplus (a_1 \odot b_2) \oplus (a_2 \odot b_1) \oplus (a_2 \odot b_2)$$
$$= (a_1 \odot b_1) \oplus (a_2 \odot b_1) \oplus (a_1 \odot b_2) \oplus (a_2 \odot b_2)$$

证明:

$$(a_1 \odot b_1) \oplus (a_1 \odot b_2) \oplus (a_2 \odot b_1) \oplus (a_2 \odot b_2)$$
$$= (a_1 \odot (b_1 \oplus b_2)) \oplus (a_2 \odot (b_1 \oplus b_2))$$
$$= (a_1 \oplus a_2) \odot (b_1 \oplus b_2)$$

$$(a_1 \odot b_1) \oplus (a_2 \odot b_1) \oplus (a_1 \odot b_2) \oplus (a_2 \odot b_2)$$
$$= ((a_1 \oplus a_2) \odot b_1) \oplus ((a_1 \oplus a_2) \odot b_2)$$
$$= (a_1 \oplus a_2) \odot (b_1 \oplus b_2)$$

两式相等,原命题得证。