- **1.1.** Порождается ли борелевская σ -алгебра на \mathbb{R}^2 всевозможными (a) конечными множествами; (b) замкнутыми правильными треугольниками, одна из сторон которых параллельна оси абсцисс?
- **1.2.** Пусть X множество, \mathscr{F} некоторое семейство его подмножеств, $X \in \mathscr{F}$. Положим $\mathscr{A}_0 = \{\bigcap_{i=1}^n A_i : A_i \in \mathscr{F}, \ n \in \mathbb{N}\}$ и $\mathscr{A}_1 = \{\bigcup_{i=1}^n B_i : B_i \in \mathscr{A}_0, \ n \in \mathbb{N}\}$. Наконец, пусть $\mathscr{A} = \{\bigcup_{i=1}^n (A_i \setminus B_i) : A_i, B_i \in \mathscr{A}_1, \ n \in \mathbb{N}\}$. Докажите, что \mathscr{A}_1 замкнуто относительно конечных пересечений, и что \mathscr{A} алгебра, порожденная \mathscr{F} .
- **1.3.** Пусть \mathscr{P} полуалгебра подмножеств \mathbb{Q} , состоящая из множеств вида $I \cap \mathbb{Q}$, где $I \subset \mathbb{R}$ промежуток (т.е. отрезок, интервал, полуинтервал, луч или вся прямая). Определим меру μ на \mathscr{P} , полагая $\mu(I \cap \mathbb{Q}) =$ длина I, и продолжим μ на алгебру, порожденную \mathscr{P} . Опишите внешнюю меру μ^* на $2^{\mathbb{Q}}$ и соответствующую σ -алгебру измеримых множеств.
- **1.4.** Докажите, что каждое множество положительной меры Лебега в \mathbb{R}^n содержит компакт положительной меры, не имеющий внутренних точек.
- **1.5.** Приведите пример такой измеримой по Лебегу функции $f:[0,1] \to \mathbb{R}$, что множество f([0,1]) неизмеримо.