Building Software Systems

Lecture 5.3

Privacy Issues in Al

SAURABH SRIVASTAVA
ASSISTANT PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
IIT (ISM) DHANBAD

What is Privacy?

Privacy is considered as the "ability of an individual (or an organisation) to control what information about her (or them) gets exposed to the outside world"

- The data could be personal information like birthday or PAN
- Or organisational information such as Sales Targets or Employee Remunerations

Consequently, a "breach of Privacy" is an event where some information about the individual (or the organisation) is "leaked" to a source that was not explicitly authorised

For instance, to an eavesdropper or a rival firm

In some parts of the world, e.g. the European Union, a Privacy breach can fetch substantial fines

Of the order of €20 million, or 4% annual global turnover – whichever is higher !!

Any organisation that works with user data is therefore liable to take measures to protect its users' Privacy concerns

Privacy in Al-intensive Systems (1/2)

Al-intensive Systems are usually "data centric"

- Machine Learning techniques rely on substantial amount of data to produce accurate real-world models
- While synthetic data could be used in initial stages, often the training data is curated out of user data

What data to capture and store?

- Systems that interact with end-users have the choice of capturing and storing large amount of data
- This may include user's personal information, browsing routine, preferences etc.
- Organisations may be tempted to store as much data as possible, but considering the risks associated to a Privacy breach, it may not be wise to do so

Privacy by Design [1]

- A set of seven principles to keep privacy concerns in the loop while designing a system
- The principles however are mostly theoretical and implementing them in practice is not straightforward

Privacy in Al-intensive Systems (2/2)

Collection Limitation and Data Minimisation [1]

- Nevertheless, the principles do provide useful hints to avoid common Privacy pitfalls
- The idea of Collection Limitation says "the collection of personal information must be fair, lawful and limited to that which is necessary for the specified purposes"
- Data Minimisation stresses that "the collection of personally identifiable information should be kept to a strict minimum"

Utilising user data while honouring Privacy concerns

- Machine Learning techniques attempt to find correlations among input attributes to guess the output
- Privacy preserving techniques attempt to remove or obfuscate correlations in data
- There is a *trade-off* between Privacy and "Utility" some correlations must remain in data for it to be useful, while others must be removed to minimise risks in case of a Privacy breach

In a nutshell,

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"

Name	Roll Number	Department	Program	Income Range
Bob	1003	ME	BT	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	PHY	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
José	1006	MTH	BS	350 - 500K

This data can be used to identify financially weaker students

Name	Roll Number	Department	Program	Incon . finan
Bob	1003	ME	ВТ	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	PHY	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
José	1006	MTH	BS	350 - 500K

				Alice 't want
Name	Roll Number	Department		ormation ange
Bob	1003	ME	to be	public 100K
Alice	1002	CSE	MS	>500K
John	1004	PHY	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
José	1006	MTH	BS	350 - 500K

In a nutshell,

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"

What are the ways to remove "correlations" here?

Anonymise data

Name	Roll Number	Department	Program	Income Range
Bob	1003	ME	ВТ	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	PHY	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
José	1006	MTH	BS	350 - 500K

Anonymised Data

Name	Roll Number	Department	Program	Income Range
P1	1003	ME	BT	50K - 100K
P2	1002	CSE	MS	>500K
Р3	1004	PHY	MT	100K - 350K
P4	1005	CSE	PHD	50K - 100K
P5	1006	MTH	BS	350 - 500K

In a nutshell,

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"

What are the ways to remove "correlations" here?

- Anonymise data
- Add "noise" following the "same distribution"

Name	Roll Number	Department	Program	Income Range
Bob	1003	ME	ВТ	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	PHY	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
José	1006	MTH	BS	350 - 500K

	Name	Rol	l Number	De	partment	P	rogram	Inco	me Range	
	Bob		1003		ME		ВТ	50	K - 100K	
	Name		Roll Num	ber	Departm	ent	Prograr	n	Income Ra	ang
	Eve		1011		CHEM		PHD		200K - 30	ЭОК
	Grace		1013		ART		MS		300K - 35	50K
	John		1004		PHY		MT		100K - 35	50K
	Frank		1012		ENG		BS		150K - 20	ЭОК
\	Mary		1005		CSE		PHD		50K - 10	OK
	Hank		1014		LAW		ВТ		100K - 15	50K
	Charlie	ā	1010		ВІО		MS		<50K	
	Bob		1003		ME		ВТ		50K - 10	OK
	José		1006		MTH		BS		350K - 50	ОК

Inclusion of

Spurious Rows

Alice

1002

CSE

MS

>500K

In a nutshell,

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"

What are the ways to remove "correlations" here?

- Anonymise data
- Add "noise" following the "same distribution"
- Remove "sensitive" columns

Name	Roll Number	Department	Program	Income Range
Bob	1003	ME	ВТ	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	PHY	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
José	1006	MTH	BS	350 - 500K

Department	Program	Income Range
ME	ВТ	50K - 100K
CSE	MS	>500K
PHY	MT	100K - 350K
CSE	PHD	50K - 100K
MTH	BS	350 - 500K

Name	Roll Number	Department	Program	Income Range
Bob	1003	ME	ВТ	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	PHY	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
José	1006	MTH		W.

The correlation between individuals and their incomes has been removed

Department	Program	Income Range
ME	BT	50K - 100K
CSE	MS	>500K
PHY	MT	100K - 350K
CSE	PHD	50K - 100K
MTH	BS	350 - 500K

Name	Roll Number	Department	Program	Income Range
Bob	1003	ME	ВТ	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	PHY	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
But some utility	y of the data is	MTH	BS	350 - 500K

But some utility of the data is also "lost" (e.g. selecting financially weaker students for "scholarships")

Department	Program	Income Range
ME	BT	50K - 100K
CSE	MS	>500K
PHY	MT	100K - 350K
CSE	PHD	50K - 100K
MTH	BS	350 - 500K

In a nutshell,

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"

What are the ways to remove "correlations" here?

- Anonymise data
- Add "noise" following the "same distribution"
- Remove "sensitive" columns

Irrespective of what options we choose, the data almost always uses "some utility"

So, there is a trade-off here, and we need to find a mid-way out of it!!

- Usually, the decision here lies with Lead Architect of the system
- The solution may be a part of the Solution Architecture itself (e.g., deciding upon what data attributes to use)

Identifiers vs Quasi-Identifiers

Identifiers

- Definition: Data that uniquely identifies an individual
- Examples: Aadhaar Number, Voter Id Card Number, Passport Number etc.
- Characteristics: Direct identifiers that can pinpoint an individual without additional data
- Privacy Approach: Typically removed or encrypted to prevent direct linkage to an individual

Quasi-Identifiers

- Definition: Data that does not uniquely identify an individual itself but can do so when combined with other data
- Examples: Date of Birth, PIN Code, Gender, Category
- Characteristics: Can indirectly identify individuals when linked with other quasi-identifiers or external data
- Privacy Approach: Generalized or obfuscated to prevent re-identification

Name	Roll Number	Department	Program	Income Range
Bob	1003	ME	ВТ	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	PHY	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
José	1006	MTH	BS	350 - 500K

Department	Program	Income Range
ME	ВТ	50K - 100K
CSE	MS	>500K
PHY	MT	100K - 350K
CSE	PHD	50K - 100K
MTH	BS	350 - 500K

Name	Roll Number	Department	Program	Income Range
Bob	1003	ME	ВТ	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	PHY	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
We removed t	the Identifiers	MTH	BS	350 - 500K

We removed the Identifiers here, but if you know that Mary is the only PhD scholar in CSE, she can be identified

Department	Program	Income Range
ME	BT	50K - 100K
CSE	MS	>500K
PHY	MT	100K - 350K
CSE	PHD	50K - 100K
MTH	BS	350 - 500K

Identifiers vs Quasi-Identifiers

Identifiers

- Definition: Data that uniquely identifies an individual
- Examples: Aadhaar Number, Voter Id Card Number, Passport Number etc.
- Characteristics: Direct identifiers that can pinpoint an individual without additional data
- Privacy Approach: Typically removed or encrypted to prevent direct linkage to an individual

Quasi-Identifiers

- Definition: Data that does not uniquely identify an individual itself but can do so when combined with other data
- Examples: Date of Birth, PIN Code, Gender, Category
- Characteristics: Can indirectly identify individuals when linked with other quasi-identifiers or external data
- Privacy Approach: Generalized or obfuscated to prevent re-identification

It is the Quasi-Identifiers, which are often subjected to sophisticated privacy-breach attacks

A concept that is often used to tackle these issues with Quasi-Identifiers is k-anonymity

The concept of *k*-Anonymity

What Is *k*-Anonymity?

- A model that prevents the re-identification of individuals in a dataset by ensuring each record is indistinguishable from at least k-1 others
- For the last example, it would mean that irrespective of any background knowledge (e.g., knowledge that Mary is the only PhD in CSE), there are still at least *k* rows in the dataset, within which, Mary's row is hidden

Ways to achieve *k*-anonymity

Generalisation – Involves creating broader categories to hide individual rows

Department	Program	Income Range
ME	BT	50K - 100K
CSE	MS	>500K
PHY	MT	100K - 350K
CSE	PHD	50K - 100K
MTH	BS	350 - 500K

Department	Program	Income Range
ME	UG	50K - 100K
CSE	PG	>500K
PHY	PG	100K - 350K
CSE	PG	50K - 100K
MTH	UG	350 - 500K

The concept of *k*-Anonymity

What Is *k*-Anonymity?

- A model that prevents the re-identification of individuals in a dataset by ensuring each record is indistinguishable from at least k-1 others
- For the last example, it would mean that irrespective of any background knowledge (e.g., knowledge that Mary is the only PhD in CSE), there are still at least k rows in the dataset, within which, Mary's row is hidden

Ways to achieve *k*-anonymity

- Generalisation Involves creating broader categories to hide individual rows
- Suppression Omit or remove rows where privacy risk is higher (e.g., remove Mary's row from the data)
- Data Manipulation Add more rows with spurious data to hide the individuals at risk

However, achieving optimal k-anonymity for a given value of k is not that easy for a dataset

- It is because the problem is proven to be NP Hard (in simple terms, there is no efficient algorithm for it, yet !!)
- There are, however, some tools that can achieve a best-effort approach towards anonymity (check the Further Reading section)

Homework

Privacy Breaches are a huge threat to Individual's privacy

Go through some of the previous such incidents:
 https://www.ekransystem.com/en/blog/real-life-examples-insider-threat-caused-breaches
 https://www.upguard.com/blog/biggest-data-breaches-in-healthcare
 https://www.upguard.com/blog/biggest-data-breaches-australia

Further Reading

Have a look at this section of the Sensitive Data Protection tutorial by Google:

https://cloud.google.com/sensitive-data-protection/docs/compute-k-anonymity

Some tools that you may check out:

- AlJack
- pyCANON
- Pynonymizer

Also have a look at this comics on Federated Learning

https://federated.withgoogle.com/