Crittografia simmetrica

Alessandro Armando

Laboratorio di sicurezza informatica (CSec) DIBRIS, Università di Genova

Sicurezza del computer

Contorno

- Cifrari a blocchi e a flusso
- Crittografia simmetrica
- Modalità di funzionament
- Posizionamento della crittografia
- Distribuzione delle chiavi

Cifrari a blocchi e a flusso

- i cifrari a blocchi elaborano i messaggi in blocchi, ognuno dei quali viene quindi decrittografato
- come una sostituzione su un alfabeto molto grande
- 64 bit o più
- i cifrari a flusso elaborano i messaggi un bit o un byte alla volta quando la crittografia/
- decrittografia di molti codici correnti sono cifrari a blocchi
- gamma di applicazioni più ampia

Contorno

- 🕕 Cifrari a blocchi e a flusso
- Crittografia simmetrica
- Modalità di funzionament
- Posizionamento della crittografia
- 5 Distribuzione delle chiav

Cifrario a blocchi ideale

- I cifrari a blocchi sembrano una sostituzione estremamente ampia
- Avrebbe bisogno di un tavolo da 2n voci per a n-bit blocco e quindi una dimensione "chiave" di $n \times 2n$
- Un totale di 2n! le trasformazioni sono possibili
- La cifratura ideale come informazione statistica del testo in chiaro è persa, ma irrealizzabile.

Figura 3.1 Generale n-po-n-bit Block Sostituzione (mostrato con n = 4)

Tabella 3.1 Tabelle di crittografia e decrittografia per la cifratura di sostituzione di Figura 3.4

Tendo in chiaro	testo cifrato	testo cifrato	Teste in chias
0000	1110	0000	1110
0001	0100	0001	001
0010	1101	0010	0100
0011	0001	0011	1000
0100	0010	0100	000
0101	1111	0101	1100
0110	1011	0110	1010
0111	1000	0111	111
1000	0011	1000	011
1001	1010	1001	110
1010	0110	1010	100
1011	1100	1011	0110
1100	0101	1100	101
1101	1001	1101	0010
1110	0000	1110	0000
1111	0111	1111	010

- **Idea:** approssimare il cifrario a blocchi ideale utilizzando il concetto di a *cifratura del prodotto*, cioè una combinazione di semplici cifrari in modo tale che il risultato finale o il prodotto sia crittograficamente più forte di qualsiasi cifrario componente.
- In pratica: sviluppare un cifrario a blocchi con una lunghezza chiave di *K* bit e una lunghezza di blocco di *n*bit, consentendo un totale di 2*k* possibili trasformazioni, piuttosto che il 2*n*!trasformazioni disponibili con il cifrario a blocchi ideale
- La maggior parte dei cifrari a blocchi simmetrici si basa su questa idea
- Necessario poiché deve essere in grado di decifrare il testo cifrato per recuperare i messaggi in modo efficiente

Claude Shannon e i cifrari a sostituzione-permutazione

- Claude Shannon ha introdotto l'idea delle reti di sostituzione-permutazione (SP) nel documento del 1949
- forma base dei moderni cifrari a blocchi
- Le reti SP si basano sulle due operazioni crittografiche primitive viste in precedenza:
 - sostituzione (S-box)
 confuso bit di ingresso.
 - permutazione (P-box)
 diffondere bit attraverso gli ingressi della S-box
- fornire confusione e diffusione del messaggio e della chiave

Confusione e diffusione

- il cifrario deve oscurare completamente le proprietà statistiche del messaggio originale
- un one-time pad fa questo
- più praticamente Shannon ha suggerito di combinare elementi S & P per ottenere:
 - diffusione dissipa la struttura statistica del testo in chiaro sulla maggior parte del testo cifrato
 - confusione rende la relazione tra testo cifrato e chiave il più complessa possibile

- Horst Feistel ha ideato il cifrario feistel
 - basato sul concetto di cifrario prodotto invertibile
- Partiziona il blocco di input in due metà
 - elaborare attraverso più round che eseguono una
 - sostituzione sulla metà dei dati a sinistra in base alla funzione
 - round della metà destra e della sottochiave guindi hanno
 - metà di scambio di permutazione
- implementa il concetto di rete SP di Shannon

- La funzione rotonda F può essere una rete SP o qualsiasi cifrario (non necessariamente invertibile).
- La crittografia e la decrittografia sono strutturalmente identiche, sebbene le sottochiavi utilizzate durante la crittografia ad ogni round vengano prese in ordine inverso durante la decrittografia.

- La funzione rotonda *F* può essere una rete SP o qualsiasi cifrario (non necessariamente invertibile).
- La crittografia e la decrittografia sono strutturalmente identiche, sebbene le sottochiavi utilizzate durante la
 crittografia ad ogni round vengano prese in ordine inverso durante la decrittografia.
- Più precisamente, l'input nell'algoritmo di decrittazione è la coppia (RR, LR) al posto della coppia (lo, Ro), e il io-la sottochiave è Kr-i+1, non Kio. Ciò significa che otteniamo(Rr-i, Lr-i) invece di (lio, Rio) dopo il io-esimo giro.

$$I_R = R_{r-1} \tag{1}$$

$$RR = I_{r-1} ? R(K_R, R_{r-1})$$

Fatto: $R_R ? I_{r-1} = F(K_R, R_{r-1})$

Prova: Mettendo entrambi i lati di (2) in ?insieme a Ir-1

noi abbiamo:

$$R_R ? I_{r-1} = I_{r-1} ? F(K_R, R_{r-1}) ? I_{r-1}$$

Questa equazione semplifica il fatto di cui sopra sfruttando le proprietà di ?.

Proprietà di ? X?X = 0 X?0 = X X?si = si?XX?(si?z) = (X?si)?z

$$I_R = R_{r-1} \tag{1}$$

$$R_R = I_{r-1} ? F(K_R, R_{r-1})$$

Fatto: $R_R ? I_{r-1} = R K_R . R_{r-1}$)

Prova: Mettendo entrambi i lati di (2) in ? insieme a l_{r-1}

noi abbiamo:

$$R_R ? I_{r-1} = I_{r-1} ? F(K_R, R_{r-1}) ? I_{r-1}$$

Questa equazione semplifica il fatto di cui sopra sfruttando le proprietà di ?.

Proprietà di ?

Proprietà di ?

$$X?X = 0$$

$$X?0 = X$$

$$X?si = si?X$$

$$X?(si?z) = (X?si)?z$$

$$I_R = R_{r-1} \tag{1}$$

$$R_R = I_{r-1} ? F(K_R, R_{r-1})$$

Fatto: $R_R ? I_{r-1} = F(K_R, R_{r-1})$

Prova: Mettendo entrambi i lati di (2) in ?insieme a Ir-1

noi abbiamo:

$$R_R ? I_{r-1} = I_{r-1} ? F(K_R, R_{r-1}) ? I_{r-1}$$

Questa equazione semplifica il fatto di cui sopra sfruttando le proprietà di ?.

Proprietà di ?

$$X?X = 0$$

 $X?0 = X$
 $X?si = si?X$
 $X?(si?z) = (X?si)?z$

$$I_R = R_{r-1} \tag{1}$$

$$RR = I_{r-1} ? F(K_R, R_{r-1})$$

Fatto: $R_R ? I_{r-1} = R(K_R, R_{r-1})$

Prova: Mettendo entrambi i lati di (2) in ?insieme a Ir-1

noi abbiamo:

$$R_R ? I_{r-1} = I_{r-1} ? F(K_R, R_{r-1}) ? I_{r-1}$$

Questa equazione semplifica il fatto di cui sopra sfruttando le proprietà di *?*.

Proprietà di ? X?X = 0 X?0 = X X?si = si?X X?(si?z) = (X?si)?z

$$I_R = R_{r-1} \tag{1}$$

$$R_R = I_{r-1} ? F(K_R, R_{r-1})$$

Fatto: $R_R ? I_{r-1} = R(K_R, R_{r-1})$

Prova: Mettendo entrambi i lati di (2) in ?insieme a Ir-1

noi abbiamo:

$$R_R ? I_{r-1} = I_{r-1} ? F(K_R, R_{r-1}) ? I_{r-1}$$

Questa equazione semplifica il fatto di cui sopra sfruttando le proprietà di ?.

Proprietà di ? X?X = 0 X?0 = X X?si = si?XX?(si?z) = (X?si)?z

$$I_R = R_{r-1} \tag{1}$$

$$R_R = I_{r-1} ? F(K_R, R_{r-1})$$

Fatto: $R_R ? I_{r-1} = R(K_R, R_{r-1})$

Prova: Mettendo entrambi i lati di (2) in ?insieme a Ir-1

noi abbiamo:

$$R_R ? I_{r-1} = I_{r-1} ? F(K_R, R_{r-1}) ? I_{r-1}$$

Questa equazione semplifica il fatto di cui sopra sfruttando le proprietà di *?*.

Proprietà di ? X?X = 0 X?0 = X X?si = si?XX?(si?z) = (X?si)?z

$$I_R = R_{r-1} \tag{1}$$

$$RR = I_{r-1} ? F(K_R, R_{r-1})$$

Fatto: $R_R ? I_{r-1} = R(K_R, R_{r-1})$

Prova: Mettendo entrambi i lati di (2) in ?insieme a Ir-1

noi abbiamo:

$$R_R ? I_{r-1} = I_{r-1} ? F(K_R, R_{r-1}) ? I_{r-1}$$

Questa equazione semplifica il fatto di cui sopra sfruttando le proprietà di *?*.

Proprietà di ? X?X = 0 X?0 = X X?si = si?XX?(si?z) = (X?si)?z

$$I_R = R_{r-1} \tag{1}$$

$$RR = I_{r-1} ? P(K_R, R_{r-1})$$

Fatto: $R_R ? I_{r-1} = F(K_R, R_{r-1})$

Prova: Mettendo entrambi i lati di (2) in ?insieme a Ir-1

noi abbiamo:

$$R_R ? I_{r-1} = I_{r-1} ? F(K_R, R_{r-1}) ? I_{r-1}$$

Questa equazione semplifica il fatto di cui sopra sfruttando le proprietà di ?.

Proprietà di ? X?X = 0 X?0 = X X?si = si?X X?(si?z) = (X?si)?z

Elementi di design di cifratura Feistel

- misura del blocco
- dimensione della chiave
- numero di round
- funzione rotonda dell'algoritmo di
- generazione della sottochiave
- software veloce en/decrittazione
- facilità di analisi

DES

Standard di crittografia dei dati, 1993
 Basato su invenzione IBM, LUCIFER

- Cifratura a blocchi, crittografia di blocchi a 64 bit
 Utilizza chiavi a 56 bit
 - Espresso come numeri a 64 bit (controllo di parità a 8 bit)
- Primo standard crittografico.
 - 1977 Standard federale degli Stati Uniti (US Bureau of Standards)
 - 1981 ANSI standard del settore privato
- Molto utilizzato nelle applicazioni bancarie.
 Estensioni come triple-DES utilizzate per superare brevi lunghezze di chiave.

DES – forma generale

- Cifrario Feistel a 16 round + schedulatore chiavi.
- L'algoritmo di pianificazione delle chiavi deriva le sottochiavi K
 io dalla chiave originale K.
- Dentroial permutazione all'inizio e permutazione inversa alla fine.
- F consiste di due permutazioni e una sostituzione s-box.

DES – 1 round

Effetto valanga

- proprietà chiave desiderabile dell'algoritmo di crittografia
- dove la modifica di un bit di input o chiave determina la modifica di circa la metà dei bit di output
- DES mostra un forte effetto valanga

Forza di DES - Dimensione chiave

- Le chiavi a 56 bit hanno 256 = 7.2 × 1016 valori
- la ricerca della forza bruta sembra difficile che i recenti
- progressi abbiano dimostrato che è possibile
 - nel 1997 su Internet in pochi mesi
 - nel 1998 su h/w dedicato (EFF) in pochi giorni nel
 - 1999 sopra combinato in 22 ore!
- deve ancora essere in grado di riconoscere il testo in
- chiaro deve ora considerare alternative a DES

Forza del DES – Attacchi analitici

- ora hanno diversi attacchi analitici su DES questi
- utilizzano una struttura profonda del cifrario
 - raccogliendo informazioni sulla crittografia può eventualmente
 - recuperare alcuni/tutti i bit della sottochiave se necessario,
 - quindi cercare in modo esauriente il resto
- generalmente questi sono attacchi statistici
- includono
 - crittoanalisi differenziale
 - crittoanalisi lineare
 - attacchi chiave correlati

Forza del DES – Attacchi a tempo

- attacca l'effettiva implementazione della cifratura
- utilizzare la conoscenza delle conseguenze dell'implementazione per ricavare
- informazioni su alcuni/tutti i bit della sottochiave
- utilizzare specificamente il fatto che i calcoli possono richiedere tempi variabili a seconda del valore degli input ad esso
- particolarmente problematico sulle smartcard

Sicurezza di DES

Le persone hanno a lungo messo in dubbio la sicurezza di DES. Ci sono state molte speculazioni sulla lunghezza della chiave, sul numero di iterazioni e sul design delle S-box. Le S-box erano particolarmente misteriose: tutte quelle costanti, senza alcuna ragione apparente sul perché oa cosa servano. Sebbene IBM sostenesse che i meccanismi interni fossero il risultato di 17 anni-uomo di crittoanalisi intensiva, alcune persone temevano che la NSA avesse incorporato una botola nell'algoritmo in modo da avere un mezzo facile per decifrare i messaggi.

- Bruce Schneier, Crittografia applicata p278.

La National Security Agency ha anche fornito consulenza tecnica a IBM. E Konheim è stato citato come dicendo "abbiamo spedito le S-box a Washington. Sono tornati ed erano tutti diversi. Abbiamo fatto i nostri test e li hanno superati". La gente ha indicato questo come prova che la NSA ha messo una botola nel DES.

- Bruce Schneier, Crittografia applicata p279.

Aumento della sicurezza DES - Doppio DES

• **Idea**: esegue due crittografie

Equivalente a 112 chiavi hit?

- attacco: Incontro nel mezzo
 - Per $C = E_K(E_K(P))$ permettere $X = E_K(P) = D_K(C)$.
 - Dato noto Pe C crittografare P per tutti 256 possibile K1. Memorizza
 - nella tabella, ordinato perX.
 - decifrare C con tutto 256 possibile K_2 e cercare una corrispondenza.
 - Ogni hit deve essere convalidato rispetto a una coppia aggiuntiva di testo normale/cifrato. (Per un dato testo in chiaro Pil numero medio di diverse chiavi a 112 bit che produrranno un dato testo cifrato Cè 2112/264 = 248.
 - Un noto attacco di testo in chiaro contro il doppio DES (chiavi a 112 bit) riesce con uno sforzo dell'ordine di 256 operazioni.

Aumento della sicurezza DES – Triple DES

- Utilizza tre fasi di crittografia invece di due.
- Notare che K1 è usato due volte ? Chiave a 112 bit. La compatibilità
- viene mantenuta con il DES standard se $K_2 = K_1$.
- Nessun attacco pratico noto? ricerca a forza bruta con 2112 operazioni.
- Per ulteriore sicurezza viene utilizzato 3DES a tre chiavi (ad es. in PGP e S/MIME):

$$C = E\kappa(\mathcal{Q}\kappa(E_{\chi}(P)))$$

• Compatibilità con le versioni precedenti di DES con $K_3 = K_2$ e $K_1 = K_2$.

Standard di crittografia avanzata (AES)

- Selezionato come standard NIST nel 2001 (su 15 cifrari concorrenti)
- Basato sul cifrario Rijndael sviluppato dai crittografi belgi, Joan Daemen e Vincent Rijmen
- Rijndael è una famiglia di cifrari con chiavi e blocchi di diverse dimensioni.
- Per AES, il NIST ha selezionato tre membri della famiglia Rijndael:
 - dimensione del blocco di 128 bit,
 - tre diverse lunghezze di chiave: 128, 192 e 256 bit.
- Veloce sia nel software che nell'hardware.
- AES è ora utilizzato in tutto il mondo e sostituisce DES

Standard di crittografia avanzata (continua)

- AES si basa su una rete di sostituzione-permutazione A
- differenza di DES, AES non utilizza una rete Feistel.
- Mentre AES ha una dimensione di blocco fissa di 128 bit e una dimensione di chiave di 128, 192 o 256 bit, Rijndael funziona con dimensioni di blocco e chiave che possono essere multipli di 32 bit, sia con un minimo di 128 che un massimo di 256 bit.
- La dimensione della chiave utilizzata per un cifrario AES specifica il numero di ripetizioni dei cicli di trasformazione che convertono il testo in chiaro in testo cifrato:
 - 10 cicli di ripetizione per chiavi a 128 bit.
 - 12 cicli di ripetizione per chiavi a 192 bit.
 - 14 cicli di ripetizione per chiavi a 256 bit.

Contorno

- Cifrari a blocchi e a flusso
- Crittografia simmetrica
- Modalità di funzionamento
- 4 Posizionamento della crittografia
- 5 Distribuzione delle chiav

Modalità di funzionamento – Codebook elettronico

- Come viene utilizzato un cifrario a blocchi quando i messaggi superano la larghezza di blocco? Diverso possibilemodalità di funzionamento. Consideriamo (solo) due!
- Il più semplice è Modalità registro elettronico
 Messaggio suddiviso in m blocchi. Ciascuno crittografato individualmente.
- Limitazioni:

Fuga di informazioni: blocchi di testo cifrato identici si associano a blocchi di testo in chiaro identici **Integrità limitata:** la decrittazione non indica se i blocchi di testo cifrato sono stati modificato, cancellato o duplicato.

Figura 6.3 Modalità Electronic Codebook (ECB)

Modalità di funzionamento – Concatenamento di blocchi cifrati

- L'input di cifratura è XOR del blocco di testo in chiaro con testo cifrato precedente.
- Per $C_0 = IV$ (un vettore di inizializzazione), io = 1..m:

Crittografia:
$$Cio = EK(Pio ? Cio-1)P$$

Decrittografia: $io = Cio-1 ? DK(Cio)$

Correttezza?

$$P_{io} = C_{io-1} ? D\kappa(C_{io})$$

= $C_{io-1} ? D\kappa(E\kappa(P_{io} ? C_{io-1}))$
= $C_{io-1} ? (P_{io} ? C_{io-1})$
= P_{io}

- Proprietà
 - Blocchi di testo in chiaro identici mappati su testo cifrato diverso Dipendenze di concatenamento: Cj
 - dipende da tutto il testo in chiaro precedente. Auto-sincronizzazione: se si verifica un errore (bit
 - modificati, blocchi persi) in *C_J* ma no *C_{J+1}*, poi *C_{J+2}* è correttamente decifrato.

28/44

Figura 6.4 Modalità Cipher Block Chaining (CBC)

Cifrari a flusso

 Stessa idea del cifrario di Vernam ma usa un generatore pseudocasuale (al posto di un generatore veramente casuale), cioè

$$E_{K_1\cdots K_n}(m_1\cdots m_n) = (m_1?K_1)\cdots(m_n?K_n) (C_1 \cdots C_n)$$

$$D_{K_1\cdots K_n}(C_1\cdots C_n) = 1?K_1)\cdots(C_n?K_n)$$

Usa il seme come chiave

Cifrari a flusso e cifrari a blocchi

Cifra	Lunghezza chiave	Velocità (Mbps)
DES	56	9
3DES	168	3
RC4	variabile	45

- I codici di flusso sono
 solitamente più veloce e più facile da implementare
- Con un generatore di numeri pseudocasuali adeguatamente progettato, un cifrario a flusso può essere sicuro quanto un cifrario a blocchi di lunghezza di chiave comparabile
- Con i cifrari a blocchi le chiavi possono essere riutilizzate
- Con cifrari a flusso se due testi in chiaro, Pio e Pio io insieme a io = 1, 2, . . ., sono crittografati con la stessa chiave usando un cifrario a flusso, cioè Cio = Pio? Kio e Cio io = Pido? Kio, poi Cio? Cioio = Pio? Pio io.

- Progettato nel 1987 da Rivest, segreto commerciale pubblicato anonimamente su Internet nel 1994
- Utilizzato in SSL/TLS, WEP e WiFi Protected Access (WPA)

```
# definire SWAP(a,b) (((a) ^{(b)}) && ((b) ^{(b)} (a) ^{(b)}, (a) ^{(b)})int principale() {
        carattere non firmato S[256],
        chiave[]="Chiave":corto senza segno i. i.
        lunghezza chiave=3:per(i=0;i<256;i++)</pre>
          S[i]=i;
6
       j=0;
        per(i=0;i<256;i++) {
          i=(i+S[i]+tasto[i%lunghezza chiave])%256;
          SCAMBIO(S[i],S[i]):
10
        int K:
12
        io=i=0:
        mentre(1) {
14
          i=(i+1)%256; j=(j+S[i])%256; SCAMBIO(S[i],S[j]); K=S[(S[i]+S[j])
          %2561:
16
          printf("%X",K);
```

Contorno

- 🕕 Cifrari a blocchi e a flusso
- Crittografia simmetrica
- Modalità di funzionament
- Posizionamento della crittografia
- Distribuzione delle chiav

Posizionamento della crittografia

- La crittografia può essere posizionata a vari livelli in il modello di riferimento OSI
- crittografia dei collegamenti ai livelli 1 o 2

- Figura 7.4 Implicazioni sulla copertura della crittografia delle comunicazioni Store-and-Forward
- crittografia end-to-end ai livelli 3, 4, 6, 7 man mano
- che ci spostiamo più in alto nello stack OSI
 - meno informazioni sono
 - crittografate più sicure, ma
 - più complesso e con più entità e chiavi

Posizionamento della crittografia (continua)

- Quando si utilizza la crittografia end-to-end, le intestazioni devono essere lasciate in chiaro
 - in modo che la rete possa instradare correttamente le informazioni
- Quindi, sebbene i contenuti siano protetti, i flussi del modello di traffico non lo sono. Idealmente
- vogliamo entrambi contemporaneamente
 - la crittografia end-to-end protegge i contenuti dei dati su tutto il percorso e fornisce l'autenticazione
 - collegamento protegge i flussi di traffico dal monitoraggio

Link-H Net-H I	Р-Н ТСР-Н	Dati	Link-T	l
----------------	-----------	------	--------	---

(a) Crittografia a livello di applicazione (su collegamenti e su router e gateway)

Sui link e sui router

Link-H	Net-H	IP-H	тср-н	Dati	Link-T
--------	-------	------	-------	------	--------

nei gateway

(b) Crittografia a livello TCP

Sui link

Nei router e gateway

(c) Crittografia a livello di collegamento

L'ombreggiatura indica la crittografia. TCP-H = Intestazion
IP-H = Intestazione

1F-YI = Internations IP

Net-H = Internations iP solved of rate (ad exemple, internatione del parchetto X25, intentazione LLC) Internatione
LLC ink-H = del protocolo de controlo del collegemento dell'

Ink-T = Trains del controlo del confidence dell'

Crittografia dei collegamenti	Crittografia end-to-end
Sicurezza all'interno dei sistem	ni finali e dei sistemi intermedi
Messaggio esposto nell'host di invio/ricezione Messaggio esposto nei nodi intermedi	Messaggio crittografato nell'host mittente/ricevente Messaggio crittografato nei nodi intermedi
Ruolo d	lell'utente
Applicato inviando/ricevendo host	
Trasparente per l'utente	
Problemi di im	plementazione
Richiede una chiave per coppia (host-nodo intermedio) e coppia (nodo intermedio-nodo intermedio)	
Fornisce l'autenticazione dell'host	

Crittografia dei collegamenti	Crittografia end-to-end
Sicurezza all'interno dei sistem	ni finali e dei sistemi intermedi
Messaggio esposto nell'host di invio/ricezione	Messaggio crittografato nell'host di invio/ricezione
Messaggio esposto nei nodi intermedi	Messaggio crittografato nei nodi intermedi
Ruolo c	dell'utente
Applicato inviando/ricevendo host	
Problemi di im	plementazione
Richiede una chiave per coppia (host-nodo intermedio) e coppia (nodo intermedio-nodo intermedio)	
Fornisce l'autenticazione dell'host	

Crittografia dei collegamenti	Crittografia end-to-end
Sicurezza all'interno dei sistem	ni finali e dei sistemi intermedi
Messaggio esposto nell'host di invio/ricezione	Messaggio crittografato nell'host di invio/ricezione
Messaggio esposto nei nodi intermedi	Messaggio crittografato nei nodi intermedi
Ruolo d	lell'utente
Applicato inviando/ricevendo host	
Problemi di im	plementazione
Richiede una chiave per coppia (host-nodo intermedio) e coppia (nodo intermedio-nodo intermedio)	
Fornisce l'autenticazione dell'host	

Crittografia dei collegamenti	Crittografia end-to-end
Sicurezza all'interno dei sistem	i finali e dei sistemi intermedi
Messaggio esposto nell'host di invio/ricezione Messaggio esposto nei nodi intermedi	Messaggio crittografato nell'host mittente/ricevente Messaggio crittografato nei nodi intermedi
Ruolo d	ell'utente
Applicato inviando/ricevendo l'host	Applicato tramite processo di invio/ricezione
Trasparente per l'utente	
Problemi di im	plementazione
Richiede una chiave per coppia (host-nodo intermedio) e coppia (nodo intermedio-nodo intermedio)	
Fornisce l'autenticazione dell'host	
Fornisce l'autenticazione dell'host	

Cuitte augetic and to and

Crittografia dei collegamenti	Crittografia end-to-end
Sicurezza all'interno dei sister	ni finali e dei sistemi intermedi
Messaggio esposto nell'host di invio/ricezione Messaggio esposto nei nodi intermedi	Messaggio crittografato nell'host mittente/ricevente Messaggio crittografato nei nodi intermedi
Ruolo	dell'utente
Applicato inviando/ricevendo l'host	
Trasparente per l'utente	L'utente applica la crittografiaL'utente deve
Problemi di in	nplementazione
Richiede una chiave per coppia (host-nodo intermedio) e coppia (nodo intermedio-nodo intermedio)	
Fornisce l'autenticazione dell'host	

Crittografia dei collegamenti	Crittografia end-to-end
Sicurezza all'interno dei siste	mi finali e dei sistemi intermedi
Messaggio esposto nell'host di invio/ricezione Messaggio esposto nei nodi intermedi	Messaggio crittografato nell'host mittente/ricevente Messaggio crittografato nei nodi intermedi
Ruolo	dell'utente
Applicato inviando/ricevendo host	
L'host mantiene la funzione di crittografia	L'utente deve determinare l'algoritmo Gli
Problemi di i	mplementazione
Richiede una chiave per coppia (host-nodo intermedio) e coppia (nodo intermedio-nodo intermedio)	
Fornisce l'autenticazione dell'host	

Crittografia dei collegamenti	Crittografia end-to-end
Sicurezza all'interno dei sister	ni finali e dei sistemi intermedi
Messaggio esposto nell'host di invio/ricezione Messaggio esposto nei nodi intermedi	Messaggio crittografato nell'host mittente/ricevente Messaggio crittografato nei nodi intermedi
Ruolo	dell'utente
Applicato inviando/ricevendo host	
Trasparente per l'utente	
	L'utente deve determinare l'algoritmo Gli
Una struttura per tutti gli utentiPuò essere	utenti selezionano lo schema di crittografia
Problemi di in	nplementazione
Richiede una chiave per coppia (host-nodo intermedio) e coppia (nodo intermedio-nodo intermedio)	
Fornisce l'autenticazione dell'host	

Crittografia dei collegamenti	Crittografia end-to-end
Sicurezza all'interno dei sisten	ni finali e dei sistemi intermedi
Messaggio esposto nell'host di invio/ricezione Messaggio esposto nei nodi intermedi	Messaggio crittografato nell'host mittente/ricevente Messaggio crittografato nei nodi intermedi
Ruolo	dell'utente
Applicato inviando/ricevendo host	
Può essere fatto dall'hardwareTutti o	Implementazione del software
Problemi di in	plementazione
Richiede una chiave per coppia (host-nodo intermedio) e coppia (nodo intermedio-nodo intermedio)	
Fornisce l'autenticazione dell'host	

Crittografia dei collegamenti	Crittografia end-to-end
Sicurezza all'interno dei sistem	i finali e dei sistemi intermedi
Messaggio esposto nell'host di invio/ricezione Messaggio esposto nei nodi intermedi	Messaggio crittografato nell'host mittente/ricevente Messaggio crittografato nei nodi intermedi
Ruolo d	ell'utente
Applicato inviando/ricevendo host	
Può essere fatto dall'hardware Tutti o	
nessun messaggio crittografato	L'utente sceglie di crittografare o meno per ogni messaggio
Problemi di im	plementazione
Richiede una chiave per coppia (host-nodo intermedio) e coppia (nodo intermedio-nodo intermedio)	
Fornisce l'autenticazione dell'host	

Crittografia dei collegamenti	Crittografia end-to-end	
Sicurezza all'interno dei sistemi finali e dei sistemi intermedi		
Messaggio esposto nell'host di invio/ricezione	Messaggio crittografato nell'host mittente/ricevente	
Messaggio esposto nei nodi intermedi	Messaggio crittografato nei nodi intermedi	
	Ruolo dell'utente	
Applicato inviando/ricevendo host		

Richiede una chiave per coppia (host-nodo intermedio) e coppia (nodo intermedio-nodo intermedio)

Richiede una chiave per coppia di utenti

Cuitta aurafia and ta and

Fornisce l'autenticazione dell'host

Fornisce l'autenticazione dell'utente

Crittografia dei collegamenti	Crittografia end-to-end	
Sicurezza all'interno dei sistemi finali e dei sistemi intermedi		
Messaggio esposto nell'host di invio/ricezione	Messaggio crittografato nell'host mittente/rice	

Ruolo dell'utente

Applicato inviando/ricevendo host

Trasparente per l'utent

'host mantiene la struttura di crittografia

Una struttura per tutti gli utenti

Può essere eseguito dall'hardware Tutt

o nessun messaggio crittografato

Applicato dal processo di invio/ricezione

'utente applica la crittografia

L'utente deve determinare l'algoritmo Gli

Implementazione del software

utente sceglie di crittografare o meno per ogni messaggic

Problemi di implementazione

Richiede una chiave per coppia (host-nodo intermedio) e coppia (nodo intermedio-nodo intermedio)

Fornisce l'autenticazione dell'host

Richiede una chiave per coppia di utenti

Fornisce l'autenticazione dell'utente

Analisi del traffico

- Monitoraggio dei flussi di comunicazione tra le parti
 - utile sia in ambito militare che commerciale può essere
 - utilizzato anche per creare un canale nascosto
- La crittografia del collegamento oscura i dettagli dell'intestazione
 - ma i volumi di traffico complessivi nelle reti e agli end-point sono ancora visibili
- Il riempimento del traffico può oscurare ulteriormente i flussi
 - ma a scapito del traffico continuo

Contorno

- Cifrari a blocchi e a flusso
- Crittografia simmetrica
- Modalità di funzionament
- 4 Posizionamento della crittografia
- Distribuzione delle chiavi

Distribuzione delle chiavi

- Gli schemi simmetrici richiedono che entrambe le parti condividano una chiave segreta comune. Il
- problema è come distribuire in modo sicuro questa chiave.
- Spesso il guasto del sistema sicuro è dovuto a un'interruzione dello schema di distribuzione delle chiavi.

Approcci alla distribuzione delle chiavi

Date le parti A e B hanno varie alternative di distribuzione delle chiavi:

- A può selezionare la chiave e consegnarla fisicamente a B La terza
- parte può selezionare e consegnare la chiave ad A e B
- Se A e B hanno comunicato in precedenza, possono utilizzare la chiave precedente per crittografare una nuova chiave
- Se A e B hanno comunicazioni sicure con una terza parte C, C può inoltrare la chiave tra A e B

Gerarchia dei tasti

In genere viene utilizzata una gerarchia di chiavi:

Chiave di sessione: utilizzato per la crittografia dei dati tra utenti per una sessione logica quindi scartato

Chiave principale: utilizzato per crittografare le chiavi di sessione

condiviso dall'utente e dal centro di distribuzione delle chiavi

Scenario di distribuzione delle chiavi

Scenario di distribuzione delle chiavi

Debolezza: *B* non è possibile controllare la freschezza di *Ks.* Se *Ks* è compromesso, quindi può essere riprodotto dall'attaccante.

Problemi di distribuzione delle chiavi

- Gerarchie di KDC necessarie per reti di grandi dimensioni, ma devono fidarsi l'una dell'altra Le durate delle
- chiavi di sessione dovrebbero essere limitate per una maggiore sicurezza
- Uso della distribuzione automatica delle chiavi per conto degli utenti, ma deve fidarsi del sistema Uso
- della distribuzione delle chiavi decentralizzata
- Controllo dell'utilizzo delle chiavi

