Lecture 09 Optimization Day 1

Ryan McWay[†]

† Applied Economics, University of Minnesota

Mathematics Review Course, Summer 2023 University of Minnesota $August\ 17th,\ 2023$

1/27

•000

LAST LECTURE REVIEW

- ► Numbers:
 - ► Triangle Inequality
 - ► Neighborhoods
- ► Functions:
 - ► Homogeneity
 - ► Euler's Theorem
 - ► Quasiconcavity & Quasiconvexity
 - Concavity & Convexity
 - Continuity
 - ► Upper- and Lower-Hemicontinuity
 - ► Brouwer's Fixed-point Theorem
 - ► Kakutani's Fixed-point Theorem

2/27

REVIEW ASSIGNMENT

- 1. Problem Set 08 solutions are available on Github.
- 2. Any issues or problems **You** would like to discuss?

DAILY ICEBREAKER

- ► Attendance via prompt:
 - ► Name
 - ► Program and track
 - ▶ Daily icebreaker subject...

OPTIMIZATION

Lecture Review 000

BUT AT SOME POINT. THE

50 I NEED TO FIGURE OUT

WHERE THAT POINT IS, AND

- ► General background
 - ► Simplest form of optimization.
 - ▶ Solution involves finding critical points of the function.
- ▶ Why do economists' care?
 - Used in simple applications for testing first order conditions and second order conditions.
- ► Application in this career
 - ▶ Unconstrained optimization is primarily used to determine FOC and SOC.

7/27

- ► General background
 - ► Simplest form of optimization.
 - ▶ Solution involves finding critical points of the function.
- ▶ Why do economists' care?
 - ▶ Used in simple applications for testing first order conditions and second order conditions.
- ► Application in this career
 - ► Unconstrained optimization is primarily used to determine FOC and SOC

- ► General background
 - ► Simplest form of optimization.

Unconstrained Optimization

- ▶ Solution involves finding critical points of the function.
- ▶ Why do economists' care?
 - ▶ Used in simple applications for testing first order conditions and second order conditions.
- ► Application in this career
 - ► Unconstrained optimization is primarily used to determine FOC and SOC.

7/27

OVERVIEW

- 1. First Order Conditions
- 2. Second Order Conditions
- 3. Global Min and Max

1. First Order Conditions

- ▶ Let $F: U \to \mathbb{R}$ be a differentiable defined on subset U of \mathbb{R}^n .
- ▶ If $x^* \in \mathbb{R}^n$ is a local minimum or local maximum of $F(\cdot)$ and x^* is an interior point of U, then:

$$\nabla F(x^*) = 0 \text{ or } \frac{\partial F(x^*)}{\partial x_n} \forall n$$

▶ The FOC can be summarized by the Jacobian matrix.

$$J = \nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

- ▶ Let $F: U \to \mathbb{R}$ be C^2 whose domain is an open set $U \in \mathbb{R}^n$.
- ► Suppose $\nabla F(x^*) = 0$.
 - ▶ If $D^2f(x^*)$ is negative (positive) definite, then x^* is a strict local max (min).
 - ▶ If $D^2f(x^*)$ is indefinite, then x^* is neither a local max nor \min .
- ightharpoonup Suppose x^* is a local max (min) of F.
 - ▶ Then, $\nabla F(x^*) = 0$ and the symmetric $n \times n$ matrix $D^2 f(x^*)$ is negative (positive) semi-definite.

The graph of the indefinite form $Q_3(x_1, x_2) = x_1^2 - x_2^2$.

2. SECOND ORDER CONDITIONS

▶ The SOC is captured by the Hessian matrix.

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

3. GLOBAL MIN AND MAX

- Any point x^* of a concave (convex) function $f(\cdot)$ satisfying $\nabla F(x^*) = 0.$
- ▶ Note this may be a boundary point (corner solution) or an interior point (critical point).

$Df(x^*)$	$D^2f(x^*)$	Max/Min
= 0	Negative Semi-definite	Local Max
= 0	Positive Semi-definite	Local Min
= 0	Indefinite	Saddle point or Inflexion

PRACTICE: UNCONSTRAINED OPTIMIZATION

1.

(Equality) Constrained Optimization

- ► General background
 - ▶ Optimization of a function considering a constraint from other function(s).
 - ► Leads to 'interior solutions'.
- ▶ Why do economists' care?
 - ► This is the most typical case for optimization.
- ► Application in this career
 - ▶ Used throughout microeconomics.

- ► General background
 - ▶ Optimization of a function considering a constraint from other function(s).
 - ► Leads to 'interior solutions'.
- ▶ Why do economists' care?
 - ▶ This is the most typical case for optimization.
- ► Application in this career
 - ▶ Used throughout microeconomics.

- ► General background
 - ▶ Optimization of a function considering a constraint from other function(s).
 - ► Leads to 'interior solutions'.
- ▶ Why do economists' care?
 - ► This is the most typical case for optimization.
- ► Application in this career
 - ▶ Used throughout microeconomics.

OVERVIEW

- 1. Lagrangian Method
- 2. Second Order Conditions
- 3. Bordered Hessian

- \blacktriangleright Let f and h be C^1 functions.
- ▶ Suppose $x^* = (x_1^*, x_2^*)$ is a **solution** to the problem:

$$\max f(x_1, x_2)$$

s.t. $h(x_1, x_2) = c$

- ▶ Consider (x_1^*, x_2^*) are **not** critical points of h.
- ▶ Then μ^* is a real number such that (x_1^*, x_2^*, μ^*) is a critical point of the following Lagrangian function.

$$L(x_1, x_2, \mu) \equiv f(x_1, x_2) - \mu[h(x_1, x_2) - c]$$

► That is...

$$\frac{\partial L}{\partial x_1} = 0, \ \frac{\partial L}{\partial x_2} = 0, \ \frac{\partial L}{\partial u} = 0$$

McWay

► Intuition:

$$\mu = -\frac{\frac{\partial f}{\partial x_1}(x^*)}{\frac{\partial f}{\partial x_2}(x^*)} = -\frac{\frac{\partial h}{\partial x_1}(x^*)}{\frac{\partial h}{\partial x_2}(x^*)}$$

► So, we have two equations represented by $\nabla f(x^*) = \mu^* \nabla h(x^*)$.

$$\frac{\partial f}{\partial x_1}(x^*) - \mu^* \frac{\partial h}{\partial x_1}(x^*) = 0$$
$$\frac{\partial f}{\partial x_2}(x^*) - \mu^* \frac{\partial h}{\partial x_2}(x^*) = 0$$

▶ Consider there may be **many** constraints in the constraint set C_h with local max/min $x^* \in C_h$.

$$C_h = \{x = (x_1, \dots, x_n) : (h_1(x = a_1), \dots, h_m(x = a_m)\}\$$

▶ If x^* is not the critical point of $h = (h_1, \ldots, h_m)$ (i.e., $rank(Dh(x^*) < m)$ – unique value for all constraints), then there are μ_1^*, \ldots, μ_m^* real numbers such that $(x_1^*, \ldots, x_n^*, \mu_1^*, \ldots, \mu_m^*)$ is the critical point of the Lagrangian function:

$$L(x^*, \mu^*) \equiv f(x) - \mu_1[h(x) - a_1] - \dots - \mu_m[h(x) - a_m]$$

 \blacktriangleright Alternatively, all partials for x_n and μ_m are set to zero.

2. SECOND ORDER CONDITIONS

- ▶ To ensure a maximum, we need to know that the second differential of the objective function f at the critical point is decreasing along the constraint.
- ▶ Let $y = f(x_1, x_2(x_1))$ be the value of the objective function subject to the constraint.
- ▶ By the implicit function theorem:

$$\frac{dx_2}{dx_1} = \frac{\partial h/\partial x_1}{\partial h/\partial x_2}$$

▶ By chain rule:

$$\frac{dy}{dx_1} = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial x_1} = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2} \frac{\partial h/\partial x_1}{\partial h/\partial x_2}$$

3. Bordered

▶ The sufficient condition for a critical point is:

$$\frac{d^2y}{dx_1^2} < 0$$

▶ It can be shown that

$$\frac{d^2y}{dx_1^2} = \frac{-1}{(\partial h/\partial x_2)^2}\bar{D}$$

- \blacktriangleright Where \bar{D} is the **bordered Hessian** of L.
- ► The determinant of the bordered Hessian tests for quasiconcavity or convexity to ensure a local max/min
- ▶ Negative definite assuming $\nabla f(x) \neq 0 \forall x$ and $f(\cdot)$ is strictly quasiconcave.

3. Bordered

▶ Local minima (x_1^*, x_2^*) if $B(x_1^*, x_2^*, \lambda^*) < 0$. Local maximum (x_1^*, x_2^*) if $B(x_1^*, x_2^*, \lambda^*) > 0$.

$$B(x_1, x_2, \lambda) = \left| \begin{bmatrix} 0 & \frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} \\ \frac{\partial h}{\partial x_1} & \frac{\partial^2 L}{\partial x_1^2} & \frac{\partial^2 L}{\partial x_1 \partial x_2} \\ \frac{\partial h}{\partial x_2} & \frac{\partial^2 L}{\partial x_2 \partial x_1} & \frac{\partial^2 L}{\partial x_2^2} \end{bmatrix} \right| > 0$$

PRACTICE: (EQUALITY) CONSTRAINED OPTIMIZATION

1

UNCONSTRAINED OPTIMIZATION

- 1. First Order Conditions
- 2. Second Order Conditions
- 3. Global Min and Max

(EQUALITY) CONSTRAINED OPTIMIZATION

- 1. Lagrangian Method
- 2. Second Order Conditions
- 3. Bordered Hessian

ASSIGNMENT

- ► Assignment:
 - ► Problem Set 09 (PS09)
 - ▶ Solution set will be available following end of Lecture 10
- ► Struggling?
 - 1. Read the 'Encouraged Reading'
 - 2. Review 'Supplementary material'
 - 3. Reach out directly