Activité : mesurer le temps

1 Cadrans solaires

Point historique

Les **cadrans solaires** sont des outils pour mesurer le temps. Leur première apparition date d'il y a environ 2400 ans!

Comment ça fonctionne?

Lorsqu'il y a du soleil, l'aiguille fait de l'ombre sur le cadran : cette ombre indique l'heure qu'il est.

Vocabulaire: Schéma

Un **schéma** est une représentation simpifiée d'un objet.

On a schématisé un cadran solaire ci dessous :

1.	Compte le nombre de grandes graduations : à quoi correspondent-elles ? (rappelles toi que le cadran solaire ne fonctionne que de jour).
	Là où ce cadran est placé, le soleil se lève à droite du cadran à 8 heures, et se couche à gauche du cadran à 20 heures. Indique sur le schéma les heures de la journée.
3.	À quoi correspondent les petites graduations?

4. Quelle heure est indiquée sur ce cadran? Précise les minutes.

2 L'horloge mécanique et la montre à ressort

Point historique

L'horloge mécanique a été inventée vers le $14^{\rm ème}$ siècle, la montre à ressort au $16^{\rm \`eme}$ siècle.

Comment ça fonctionne?

Le pendule de l'horloge, ou le ressort de la montre, fait tourner un rouage à chaque battement.

On a une montre à ressort, dans laquelle il y a 3 rouages.

- Chaque rouage fait avancer le prochain d'une cran lorsqu'il finit un tour complet.
- Le premier rouage tourne d'un cran à chaque vibration du ressort.
- Lorque le 2^{ème} rouage fait un tour complet, l'aiguille des secondes avance d'un cran.
- Lorque le 3^{ème} rouage fait un tour complet, l'aiguille des minutes avance d'un cran.

Questions:

1.	Combien y-a-t'il de crans sur le troisième rouage?
2.	Supposons que le premier rouage a 10 crans, et le deuxième en a 32.
	Combien faut-il de vibrations du ressort pour faire avancer l'aiguille des secondes ?

3. Tous les combien de temps le ressort vibre-il?

3 L'horloge atomique

Point historique

La première horloge atomique a été inventée en 1948. Elles sont aujourd'hui utilisée lorqu'on a besoin de mesurer très précisément le temps (c'est-à-dire souvent!).

Comment ça fonctionne?

La plupart de ces horloges utilisent du **césium**, un type de métal. Le césium bouge (il "oscille") de manière régulière : 9 192 631 770 fois **par seconde**! L'horloge compte donc ces mouvements pour suivre l'évolution du temps, et fonctionne ensuite de manière similaire à une horloge mécanique.

1.	Le nombre de d'oscillations du césium est-il proportionnel au temps en secondes?
	Est-il proportionnel au temps en minutes? Quel est le coefficient de proportionna- lité?
2.	Une horloge atomique se trompe de temps en temps : une très bonne horloge gagne $\frac{1}{10^{13}}$ seconde de décalage chaque seconde (10 ¹³ = un 1 suivi de 13 zéros).
	Au bout de combien d'années une telle horloge aura-elle gagné 1 seconde de déca- lage?