(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 March 2002 (14.03.2002)

PCT

(10) International Publication Number WO 02/20814 A1

(51) International Patent Classification⁷: C12N 15/86, 15/861, 5/10, 15/11, 15/63, 15/64, 15/65, A61K 48/00

(21) International Application Number: PCT/US01/27682

(22) International Filing Date:

7 September 2001 (07.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/231,053 8 September 2000 (08.09.2000) US 60/246,904 8 November 2000 (08.11.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 60/231,053 (CON)
Filed on 8 September 2000 (08.09.2000)
US 60/246,904 (CON)
Filed on 8 November 2000 (08.11.2000)

(71) Applicant (for all designated States except US): THE GENERAL HOSPITAL CORPORATION [US/US]; 55 Fruit Street, Boston, MA 02214 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SEED, Brian [US/US]; 9 Hawthorne Place #5J, Boston, MA 02114 (US). WRIGHT FREEMAN, Mason [US/US]; 203 Lincoln Road, Lincoln, MA 01773 (US). KOVTUN, Alexander [US/US]; 156 Arlington Street, Acton, MA 01720 (US). MURAKAWA, Masahiro [JP/US]; 506 Beacon Street, Apt. 6, Boston, MA 02115 (US). PARK,

Eun-Chung [KR/US]; 91 Waltham Street #1, Boston, MA 02118 (US). WANG, Xinzhong [CN/US]; 4 Woodmere Road, Framingham, MA 01701 (US).

- (74) Agent: ELBING, Karen, L.; Clark & Elbing LLP, 176 Federal Street, Boston, MA 02110-2214 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SELF-REARRANGING DNA VECTORS

(57) Abstract: Disclosed are replicatable viral DNA vectors encoding a site-specific DNA-altering enzyme and a DNA target recognized by the enzyme, the enzyme selectively converting, in a cell expressing the enzyme, the DNA vector to a rearranged form. The invention further relates to methods for assembling recombinant adenoviral DNAs. These methods include the steps of: providing a first linearized DNA vector including a restriction site and a cos site and a second linearized DNA vector including the restriction site, an adenoviral nucleic molecule, and a cos site; and ligating the first and second linearized DNA vectors, the ligation assembling a recombinant adenoviral DNA.

5

10

15

20

25

30

35

SELF-REARRANGING DNA VECTORS

Background of the Invention

The invention relates to DNA vectors.

Mammalian cell expression vectors based on DNA viruses have been widely discussed as gene delivery vehicles for genetic therapy. Among the different DNA viruses proposed for this purpose have been adenoviruses, baculovirus, Epstein Barr virus, and herpes simplex virus. In addition other smaller viruses that have an intranuclear phase in which the viral genome is present as a double stranded DNA, such as retroviruses and parvoviruses, have been proposed as gene delivery vehicles.

Adenoviral vectors (AdV), for example, have a recognized potential for gene delivery, founded in their broad host range, robust growth in culture, and capacity to infect mitotically quiescent cells (Graham and Prevec, Manipulation of adenovirus vectors, p. 109-128, In E. J. Murray (ed.), Methods in Molecular Biology, vol. 7, Humana, Clifton, NJ, 1991; Trapnell and Gorziglia, Curr. Opin. Biotechnol. 5:617-625, 1994). AdV can be propagated in a helper cell line, 293, a human embryonic kidney cell line transformed by adenovirus type 5 (Graham et al., J. Gen. Virol. 36:59-72, 1994). 293 cells express the viral E1 gene products (E1a and E1b) that are the master regulatory proteins for subsequent viral gene expression. E1 deleted viruses can propagate in 293 cells, but not in other cells. Although it would be expected that E1 deleted viruses lack the machinery to express viral genes, several studies have demonstrated that cellular E1like components can stimulate viral gene expression (Imperiale et al., Mol. Cell. Biol. 4:867-74, 1984; Onclercq et al., J. Virol. 62:4533-7,1988; Spergel et al., J. Virol. 66:1021-30, 1992). The expression of these viral genes results in the relatively rapid elimination of transduced cells in vivo as a result of cytotoxic T cell responses (Yang et al., Immunity 1:433-42, 1994;. Yang et al., Gene Ther. 3:137-44, 1996; Yang et al., J. Virol. 69:2004-15, 1995).

Thus attention has been focused on eliminating the remaining vestiges of viral expression. Viral genes that have been deleted for this purpose include the gene for E4 proteins (Armentano et al., Hum. Gene Ther. 6:1343-53, 1995; Kochanek et al., Proc.

Natl. Acad. Sci. USA 93:5731-6, 1996; and Yeh et al., J. Virol. 70:559-565, 1996), DNA binding protein (Engelhardt et al., Proc. Natl. Acad. Sci. USA 21:6196-6200, 1994; and Gorziglia et al., J. Virol. 70:4173-8, 1996), DNA polymerase (Amalfitano et al., J. Virol. 72:926-33, 1998), and the preterminal protein (Schaack et al., Proc. Natl. Acad. Sci. USA 93:14686-91, 1996). The most aggressive approach has been the creation of helper virus-dependent vectors that lack all viral genes (Hardy et al., J. Virol. 71:1842-9, 1997; Kochanek et al., Proc. Natl. Acad. Sci. USA 93:5731-6, 1996; Lieber et al., J. Virol. 70:8944-60, 1996; Mitani et al., Proc. Natl. Acad. Sci. USA 92:3854-8, 1995; and Parks et al., Proc. Natl. Acad. Sci. USA 93:13565-13570, 1996). These vectors have high capacity, evoke reduced cellular immune responses and show prolonged expression *in vivo* (Morsy et al., Proc. Natl. Acad. Sci. USA 95:7866-71, 1998). However to deploy these viruses on the scale required for human clinical application presents major challenges because a cesium chloride (CsCl) gradient is needed to remove the helper virus.

15

20

25

30

10

5

Summary of the Invention

In one aspect, the invention features a replicatable viral DNA vector encoding a site-specific DNA-altering enzyme and a DNA target recognized by said enzyme, said enzyme selectively converting, in a cell expressing said enzyme, said DNA vector to a rearranged form.

In preferred embodiments, the rearranged form includes an autonomously replicating episome and a linear DNA product. In other preferred embodiments, the vector comprises adenoviral DNA.

In yet other preferred embodiments, the vector includes a genetically-engineered recombination site (such as a target of Cre or FLP). Preferably, such a recombination site includes a recognition sequence of a site-specific DNA altering enzyme.

In another preferred embodiment, the site-specific DNA altering enzyme is a recombinase (such as Cre or FLP) or an integrase. Preferably, such an enzyme is functional in a mammalian cell. Preferred embodiments of the vector also include an origin of replication that functions in a mammalian cell (such as an Epstein Barr Virus replicon). Moreover, the vector typically includes a gene of interest (such as a therapeutic gene that encodes a protein or polypeptide or an RNA product).

5

10

15

20

25

30

In another aspect, the invention features a method for assembling a recombinant adenoviral DNA. The method, in general, includes the steps of: (a) providing a first linearized DNA vector comprising a restriction site and a cos site and a second linearized DNA vector comprising the restriction site, an adenoviral nucleic acid molecule, and a cos site; and (b) ligating the first and second linearized DNA vectors, the ligation assembling a recombinant adenoviral DNA.

In preferred embodiments, the first linearized DNA vector comprises a selectable marker (such as a gene encoding a polypeptide that confers, on a host cell expressing such a polypeptide, resistance to an antibiotic). In other preferred embodiments, the first linearized DNA vector includes an adenoviral left-end inverted terminal repeat; a gene of interest; or both. In still other preferred embodiments, the second linearized DNA vector includes a selectable marker. Preferably, the second linearized DNA vector includes an adenoviral right-end inverted terminal repeat.

The method further includes packaging the assembled adenoviral DNA into a phage and infecting a host cell. Typically the first and second linearized DNAs include cosmid vector DNA. In addition, such adenoviral DNA is typically flanked by cleavage sites (such as intron endonuclease cleavage sites).

In another aspect, the invention features an adenovirus producer cell having a nucleic acid molecule that expresses a dominant negative site-specific DNA-altering enzyme. In preferred embodiments, the site-specific DNA altering enzyme is a dominant negative recombinase (for example, a Cre recombinase such as CreY324C or a Flp recombinase). Exemplary adenovirus producer cells include, without limitation, 293 human embryonic kidney cells, per.C6 cells, and N52 cells.

In yet another aspect, the invention features a vector comprising, in the 5' to 3' direction, a first genetically engineered *cis*-acting target recognized by a site-specific DNA altering enzyme; a gene of interest; a lineage-specific gene promoter; a second genetically engineered *cis*- acting target recognized by a site-specific DNA altering enzyme; and a nucleic acid molecule encoding a site-specific DNA altering enzyme.

In still another aspect, the invention features a vector including, in the 5' to 3' direction, a first genetically engineered *cis*-acting target recognized by a site-specific DNA altering enzyme; a gene of interest; a bi-directional promoter, comprising a second genetically engineered *cis*-acting target recognized by a site-specific DNA altering enzyme; and a nucleic acid molecule encoding a site-specific DNA altering enzyme.

5

10

15

20

25

30

In related aspects, the invention features a method of gene therapy including the administration to a patient in need of gene therapy a therapeutically effective amount of the vector of the invention, which is expressed in the patient. The invention further relates to a population of cells transfected with the vector of the invention.

Accordingly, the invention further relates to the use of a recombinant viral vector or use of a recombinant viral particle for gene therapy. Such vectors and viral particles may be introduced either *in vitro* into a host cell removed from the patient, or directly *in vivo*, into the body to be treated, according to standard methods known in the art.

The invention also relates to a pharmaceutical composition that includes a therapeutically effective amount of a recombinant viral vector or viral particle prepared according to the methods disclosed herein, in combination with a vehicle that is acceptable from a pharmaceutical standpoint. Such a pharmaceutical composition may be prepared according to the techniques commonly employed and administered by any known administration route, for example systemically (in particular, by intravenous, intratracheal, intraperitoneal, intramuscular, subcutaneous, intratumoral, or intracranial routes) or by aerosolization or intrapulmonary administration.

One skilled in the art will appreciate that suitable methods of administering a vector (particularly an adenoviral vector) of the present invention to an animal for purposes of gene therapy, chemotherapy, and vaccination are available, and, although more than one route can be used for administration, one particular route may provide a more immediate and more effective reaction than another. Pharmaceutically acceptable excipients also are well known to those who are skilled in the art, and are readily available. The choice of excipient will be determined, in part, by the particular method used to administer the recombinant vector or particle. Accordingly, there are a wide variety of suitable formulations for use in the context of the present invention.

By "recombinant DNA vector" is meant a DNA sequence containing a desired sequence (such as a gene of interest) and an appropriate regulatory element(s) necessary for the expression of the operably linked sequence in a particular host organism (such as a mammal).

By "operably linked" is meant that a gene and a regulatory element(s) are connected to permit gene expression when the appropriate molecules (for example, transcriptional activator proteins) are bound to the regulatory sequence(s).

By "regulatory element" is meant a genetic element that controls some aspect of the expression of a nucleic acid sequence. For example, a promoter is a regulatory element that facilitates the initiation of transcription of an operably linked coding region. Other genetic regulatory elements include, without limitation, splicing signals, polyadenylation signals, and termination signals. For example, transcriptional regulatory elements in eukaryotes include promoter and enhancer elements. Promoters and enhancers include arrays of DNA sequences that interact directly or indirectly with cellular proteins involved in transcription. Promoter and enhancer elements have been isolated from a variety of eukaryotic sources including genes in mammalian cells and viruses.

10

15

20

25

By "transfection" is meant the introduction of foreign DNA into eukaryotic cells. Transfection is typically accomplished by a variety of means known in the art including, without limitation, calcium phosphate-DNA co-precipitation, DEAE-dextran-mediated transfection, electroporation, microinjection, liposome fusion, lipofection, protoplast fusion, and biolistics.

By "stably transfected" is meant the introduction of foreign DNA into the genome of the transfected cell. In general, transfer and expression of transgenes in mammalian cells are now routine practices to those skilled in the art, and have become major tools to carry out gene expression studies and to generate vectors useful in gene therapy.

By "gene of interest" is meant a gene inserted into a vector whose expression is desired in a host cell. Genes of interest include, without limitation, genes having therapeutic value, as well as reporter genes. A variety of such genes are useful in the invention, including genes of interest encoding a protein, which provides a therapeutic function. In addition, the gene of interest, if a therapeutic gene, can render its effect at the level of RNA, for instance, by encoding an antisense message or ribozyme, a protein which affects splicing or 3' processing (e.g., polyadenylation), or it can encode a protein which acts by affecting the level of expression of another gene within the cell (i.e., where gene expression is broadly considered to include all steps from initiation of transcription through production of a processed protein), for example, by mediating an altered rate of mRNA accumulation, an alteration of mRNA transport, and/or a change in post-transcriptional regulation.

By "reporter gene" is meant a gene sequence that encodes a reporter molecule (including an enzyme). A "reporter molecule" is detectable in any detection system, including, but not limited to, enzyme (e.g., ELISA, as well as enzyme-based histochemical assays), fluorescent, radioactive, and luminescent systems. Exemplary reporter gene systems include the *E. coli* beta-galactosidase or glucuronidase genes, green fluorescent protein (GFP), blue fluorescent protein (BFP), the human placental alkaline phosphatase gene, the chloramphenicol acetyltransferase (CAT) gene; other reporter genes are known in the art and may be employed as desired.

By "transgene" is meant any piece of DNA, which is inserted by artifice into a cell, and becomes part of the genome of the organism, which develops from that cell. Such a transgene may include a gene that is partly or entirely heterologous (i.e., foreign) to the transgenic organism, or may represent a gene homologous to an endogenous gene of the organism.

10

15

20

25

30

By "transgenic" is meant any cell that includes a DNA sequence, which is inserted by artifice into a cell and becomes part of the genome of the organism, which develops from that cell.

By "polypeptide" is meant any chain of amino acids, regardless of length or posttranslational modification (for example, glycosylation or phosphorylation).

By "derived from" is meant isolated from or having the sequence of a naturally occurring sequence (e.g., a cDNA, genomic DNA, synthetic, or combination thereof).

By "nucleic acid" is meant a polynucleotide (DNA or RNA).

By "gene" is meant any nucleic acid sequence coding for a protein or an RNA molecule.

By "gene product" is meant either an untranslated RNA molecule transcribed from a given gene or coding sequence (such as, mRNA or antisense RNA) or the polypeptide chain translated from the mRNA molecule transcribed from the given gene or coding sequence. Nucleic acids according to the invention can be wholly or partially synthetically made, can comprise genomic or complementary DNA (cDNA) sequences, or can be provided in the form of either DNA or RNA.

The presently claimed invention affords a number of advantages. For example, applicants' gene therapy vehicles particularly those based on recombinant adenoviruses, minimize the propensity of the vectors to activate host immune surveillance, and thereby maximize the persistence for the DNA transduced. The invention therefore facilitates

5

10

15

20

25

30

the development of gene delivery vectors designed to enhance persistence of virally delivered genes and evade the cellular immune response by severing the connection between the sole adenoviral enhancer and the sequences encoding potentially antigenic viral proteins.

As described in more detail below, the mechanism by which this is accomplished differs significantly from any other previous approaches. For example, to reduce the immunogenicity of vectors it is widely acknowledged that some intervention, such as the removal of key genes, or the prevention of their expression in the cells targeted for therapy, is important; however, many related approaches are directed at the host and have generally focused on the selective induction of tolerance to adenoviral antigens, or similar strategies directed at inducing a temporally restricted or antigen-specific compromise of the immune system.

In addition, the poor persistence of transduced DNA appears to be due in part to immunological rejection of transduced cells and to the inability of the viral DNA to replicate, a feature generally inherent in the design of adenoviral vectors, but one which is not associated with applicants' claimed gene therapy vehicles.

Moreover, some contemporary adenoviral vectors are designed to propagate in specific host cells which provide essential replication factors in trans. These vectors are typically based on cell lines which express the master regulatory proteins of the E1 complex, which are required for induction of adenoviral DNA replication. In cells expressing E1 genes, the best studied of which is a human embryonic kidney cell line transformed by DNA from human adenovirus 5 (called HEK293, or simply 293), viruses lacking E1 genes propagate well. Such viruses do not propagate on cell lines which do not express E1, and do not generally propagate well in the target cells to which the therapeutic gene is to be delivered. Cells transduced with E1-deleted adenovirus vectors also do not express high levels of viral genes in the absence of E1. However, the weak residual expression that remains in such vectors appears to be sufficient to induce cellular immune responses that contribute to the destruction of the transduced cells.

In addition, the gene therapy vectors claimed herein are hybrid vectors capable of self-rearrangement to form circular and linear DNA products. The linear DNA has a compromised ability to express adenoviral genes, and therefore has a lower immunological profile. And the circular DNA behaves like a mammalian plasmid, encoding the gene of interest and persisting by autonomous replication in the nucleus.

5

10

15

20

25

30

For example, the circularization of an adenoviral vector via the action of Cre recombinase beneficially places a gene of interest (for example, a therapeutic gene) on a self-replicating episome. Vector circularization occurs in a tissue-targeted manner, for example, as a result of the activation of a synthetic liver-specific promoter upstream of the recombinase Cre. Once circularized, the EBV replicon in the episome confers improved persistence on the therapeutic gene as detected by reporter gene expression and direct assay for the presence of vector DNA sequences.

Furthermore, the invention eliminates the requirement for a helper virus, thus avoiding two potential limitations of that system. First, the continuous expression of Cre recombinase may lead to toxicity in host cells, either as a direct consequence of the protein's activity or via its immunogenicity. Second, the Cre helper virus may itself produce antigenic viral proteins that contribute to the immunologic elimination of infected host cells. In contrast, the self-resolving adenovirus/EBV vector system disclosed herein advantageously provides no alternative source of viral proteins, and Cre expression is terminated upon rearrangement.

In addition, the invention described herein provides tools for analyzing the roles of the enhancer in viral gene regulation and virus growth.

The invention also provides a convenient general system for creating recombinant adenoviruses, which increase their attractiveness as gene transduction tools for basic research. The system, for example, employs two conventional plasmid vectors and a λ phage packaging step. The entire recombinant AdV genome is assembled into a single cosmid that is easily amplified in E.coli. The use of intron endonuclease recognition sequences flanking the ITRs enhances virus production while simplifying insertion of therapeutic gene sequences into the pLEP shuttle plasmid. The convenience of this vector system has facilitated the construction of over two hundred recombinant viruses to date.

Other embodiments and advantages of the invention will be apparent from the detailed description thereof, and from the claims.

Brief Description of the Drawings

FIGURE 1A is a schematic diagram of the structure of an adenoviral type A vector and its fate in a target cell. enh refers to the Ad2 enhancer; GFP refers to the marker gene green fluorescent protein; EBV refers to the Epstein Barr Virus replicon;

TetO₇ refers to a heptamer of Tet operator; TetR refers to the Tet repressor; VP16 refers to the viral protein 16 of Herpes simplex virus, SD refers to the splice donor site; and SA refers to the splice acceptor site.

FIGURE 1B is a schematic diagram of the structure of an adenoviral type B vector and its fate in a target cell. enh refers to the Ad2 enhancer; GFP refers to the marker gene green fluorescent protein; EBV refers to the Epstein Barr Virus replicon; SD refers to the splice donor site; and SA refers to the splice acceptor site.

5

10

15

20

25

30

FIGURE 2A shows a schematic diagram of the pLEP cosmid polylinker region and its position relative to the adenoviral left ITR. The adenovirus enhancer/packaging sequence (ψ) is boxed.

FIGURE 2B is a schematic diagram showing the generation of a single cosmid encoding the AdV genome by the direct ligation of two smaller plasmids. A gene expression unit, CMVGFP, was inserted into the pLEP cosmid at the polylinker region. pLEP and pREP cosmids were digested with an intron endonuclease (PI-PspI), ligated, and packaged *in vitro* to generate pAd2CMVGFP. This DNA was then digested with another intron endonuclease (I-CeuI) to expose the ITRs at both ends of the viral genome. Finally, cosmid digestion mixtures were transfected into 293 cells. Plaques generated by recombinant viruses are detected in 7-10 days.

FIGURE 3A shows the restriction analysis of cosmids carrying the full length AdV DNA showing uniform generation of the desired vector DNA. 2 μ g DNA samples from four pAd2-7CMVGFP colonies were digested with Bgl II, resolved on a 1% agarose gel and stained with ethidium bromide. The predicted sizes of the DNA fragments are: 13261, 7684, 5228, 5088, 2284, 1757, 1549, 1270, 351, and 275 base pairs (bp). The 5228 and 5088 fragments appear as a doublet, and the 351 and 275 bp fragments are too small to be seen on the gel.

FIGURE 3B shows the release of the recombinant Ad DNA from cosmids by I-CeuI digestion. $2 \mu g$ of pAd2-7CMV DNA from two clones was digested with I-CeuI. Arrows indicated the position of the released recombinant AdV DNA and the vector fragments of approximately 35 kb and 5 kb, respectively.

FIGURE 4A shows the appearance of plaques in 293 cells transfected with 10 μ g of pIAdGFPB with no ITR exposed (undigested), one ITR exposed (BsaBI or I-CeuI), or both ITRs exposed (BsaBI plus I-CeuI). Values represent the mean plaque counts per

dish and the time required for plaque development in 293 cells from three separate experiments. "T' designates I-CeuI; and "B" designates Bsa BI.

FIGURE 4B shows the viral titers obtained from plaques that were allowed to grow over 10 days after transfection. Viruses were harvested and the titer of each virus stock was determined by a GFP based semi-quantitative titration procedure described herein. Values represent the mean ± SE of three independent determinations.

FIGURE 5 is a schematic diagram showing a linear AdV that resolves into a circular episome. The elements involved in the self-directed rearrangement of the vector are shown schematically in pLEP1BHCRGFP/EBV and in the corresponding AdV. Starting from the left ITR, the elements are shown as following sequence: left ITR, 147 10 bp; first-34-bp-loxP site; 185-bp enhancer/packaging signal; 64-bp splicing acceptor (SA) from EF1 a gene first intron; 720 bp GFP cDNA; 230 bp SV40 poly(A); 1.7 kb TK-EBNA-1/OriP; 970 bp HCR12 promoter; 1 kb EF1α gene first intron containing splicing donor (SD) and acceptor (SA) sites with the second loxP site inserted at 64 bp upstream of the 3'end; 1.2 kb Cre gene tagged with AU1 and a nuclear localization signal; ~120bp 15 poly(A) signal and PI-PspI site. After infection of liver cells, the HCR12 promoter drives the expression of Cre which results in the cleavage of the two loxP sites. This results in the circularization of the fragment containing the EBV replicon. The excision severs the connection between the enhancer/packaging signals and the remainder of the AdV genome. The Cre gene becomes promoterless and is left on the AdV genome 20 fragment. After excision, the HCR12 promoter drives the expression of the GFP reporter gene. The EBV replicon maintains the excised circle as an episome in host cells.

FIGURE 6A is a schematic representation of the loxP sites and EBNA-1 locations in the AdV genome. The relevant Bgl II site is also shown.

25

30

FIGURE 6B shows the time course of rearrangement in HepG2 and Hela cells at an equal multiplicity of infection (moi) of 1,000 particles per cell. Cells were infected with Ad2HCRGFP/EBV viruses for 2 hours at 37 $^{\circ}$ C. Hirt DNA samples were extracted from the cells. ~5 μ g of Hirt DNA samples were digested with Bgl II, fractionated on a 1% agarose gel, and analyzed by Southern blot techniques using a 32 P-labeled EBNA-1 fragment as the hybridization probe.

5

10

15

20

25

30

FIGURE 6C shows the DNA blot results obtained from Hela cells infected at a moi of 10,000; and HepG2 at 1,000. The upper bands (4915 bp) represent the circularized DNA fragments whereas the lower bands (3162 bp) represent the non-circularized AdV.

FIGURE 7A shows green fluorescent protein (GFP) expression in liver and non-liver cells infected with the Ad2HCRGFP/EBV viruses. Cells were cultured in 35 mm dishes and infected with the Ad2HCRGFP/EBV virus at desired moi. HepG2 cells were infected with 1,000 particles per cell, whereas Hela cells were infected with a moi of 10,000. GFP expression was examined at the indicated time points after infection. Fluorescent cells were photographed using an Olympus SC35mm camera mounted on an Olympus IX70 fluorescent microscope, at 200x magnification, using a filter with peak excitation and emission wavelengths of 450 nm and 510 nm, respectively.

FIGURE 7B shows the expression of GFP in HepG2, Hela, A431, and HT29 cells. Cells were seeded in 35 mm dishes and infected with the Ad2HCRGFP/EBV virus at a moi of 10,000 particles per cell. GFP expression was examined at 72 hours after infection.

FIGURE 7C shows the expression of GFP in human primary hepatocytes. These cells were photographed under bright field (left) and fluorescent conditions (right).

FIGURE 8A shows the results of RT-PCR that was performed to detect the tripartite leader sequence (upper panel) for virus late gene expression; and PCR was performed in the DNA samples for detection of the AdV genomes. The specific target sequences are described in detail *infra*. PCR analyses of adenovirus late gene expression in cells infected with the first generation AdVs or the self-resolving Ad2HCRGFP/EBV was analyzed. HepG2 cells were cultured in 35 mm dishes and infected with increasing moi (0, 10, 100, 1000, 10,000, and 100,000) of adenoviral vectors. RNA and DNA were isolated in parallel from the cells at 72 hours after infection.

FIGURE 8B shows a summary of quantitative RT-PCR and PCR results. Each determinant was the average of three experiments.

FIGURE 9A is a schematic diagram depicting the deletion analysis of the OriP and EBNA-1 regions of the EBV replicon. Structures of the deletions in EBNA-1 and OriP are schematically represented. Elements considered important for episomal maintenance are indicated. FR refers to the family of repeats; DS designates the region

of dyad symmetry; LR1 refers to the so-called linker region 1; GA refers to gly-ala repeats; LR2 refers to linker region 2; and Dimerization designates the dimerization domain.

FIGURE 9B is a graph depicting fractions of GFP positive cells carrying the 5 EBV replicons represented in Figure 9A.

FIGURE 10A shows the positions and identities of Cre mutants tested for their dominant negative Cre activities.

FIGURE 10B is a schematic diagram of the substrate Cre plasmid (ad2239) used to test dominant negative functions of Cre mutants.

FIGURE 10C shows GFP expression in cells cotransfected with the substrate Cre plasmid (ad2239) and the indicated Cre mutants.

10

15

20

25

30

FIGURES 10D and 10E show Cre mutants tested for their ability to inhibit rearrangement. Only those showing the strongest inhibitory activities were retested in Fig. 10E. GFP intensity was normalized to that of cells in the absence of inhibition.

FIGURE 11 shows GFP expression in 293 TetON cells and #17 cells transfected with ad2239. The ability of #17 cells to inhibit Cre activity is demonstrated by the weak \cdot GFP signal in cells treated with 2 μ M doxycycline.

FIGURE 12 is a schematic diagram depicting the tetracycline mediated autoregulatory circuit.

FIGURES 13A and 13B show the effects of different basal elements on synthetic TetO promoter activity. FIGURE 13A shows a schematic diagram of the components of various auto-regulatory synthetic TetO promoters. FIGURE 13B shows a comparison of the strength of auto-regulatory synthetic TetO promoters bearing different basal elements, in the presence and absence of tetracycline, using GFP as a marker in HepG2 cells.

FIGURE 14 shows the structure of a Cre substrate plasmid (ad2265). The promoter, Ef1 α , and the gene, BFP, are interrupted by two loxP sites, which can be joined by Cre-mediated recombination. PA stands for poly A; BFP for blue fluorescent protein.

FIGURES 15A and 15B show the estrogen regulation of Cre recombinase activity. 293 cells infected with type B virus, AD121.5, in which the Cre enzyme is fused with estrogen ligand binding domain at both the N- and C-termini were cultured in the presence or absence of 1 μ M estrogen. Cre-mediated rearrangement in the presence

of estrogen is shown in Figure 15A, whereas blot analysis of extrachromosomal DNA from the same cells is shown in Figure 15B. L represents the position corresponding to the unrearranged adenoviral DNA; and C represents the position corresponding to the circular form of DNA.

FIGURE 16 shows the rearrangement of adenoviral sequences in vivo. Extrachromosomal DNA from the livers of Rag-2 mice sacrificed 2.5 hrs post injection of type A adenovirus, AD102.7, was analyzed by DNA blot. L represents the size corresponding to linear adenoviral DNA; and C represents the size corresponding to rearranged circular DNA.

FIGURE 17 is a photomicrograph depicting high level GFP expression in Rag2 mouse hepatic tissues 48 hrs post type A adenovirus (AD102.7) injection.

FIGURE 18A and 18B show schematic diagrams of the structures of adenoviral vectors and their fates in target cells. enh refers to Ad2 enhancer; GFP refers to green fluorescent protein; EBV refers to Epstein Barr Virus replicon; TetO₇ refers to heptamer of Tet operator; TetR refers to Tet repressor; VP16 refers to transcriptional activator domain from HSV protein 16; SD refers to splice donor site; and SA refers to splice acceptor site.

FIGURE 19A shows the structure of a FLP substrate plasmid, ad2879. The promoter, Ef1 α , and the gene, GFP, are interrupted by 2 FRT sites, which can be joined by the FLP-mediated recombination. PA stands for poly A; BFP for blue fluorescent protein.

FIGURE 19B shows the structure of a cre substrate plasmid, ad2204.

FIGURE 20 shows the structures of several FLPe anti-sense plasmids.

FIGURE 21 is a panel of photomicrographs showing inhibition of FLP enzyme activity by anti-sense FLP. 293 cells were transfected with FLP substrate (Figure 12) and plasmids indicated in each photo. High GFP intensity indicate the higher expression of FLP and less inhibition by the anti-sense expressed.

FIGURE 22 shows a schematic diagram of FRT/Cre and loxP/FLP adenovirus.

5

10

15

20

25

5

10

15

20

25

30

Detailed Description

Described herein are systems for the regulated self-rearrangement of DNA vectors, for example, gene therapy vectors. Such regulated self-rearrangement has the potential to prevent unwanted expression of vector genes not required for a therapeutic effect, and to allow the stable association of the therapeutic gene with the target cell.

The essential elements of the regulated DNA rearrangement system are a gene which encodes one or more proteins which induce DNA rearrangement, a method for regulating the activity of those proteins or their abundance, and a target DNA sequence on which those proteins act. Particularly desirable are methods for regulating the activity of the proteins or their abundance which can be easily carried out on an intact organism, such as administration or withdrawal of a drug, hormone, or environmental stimulus such as heat or irradiation, which induces the activity or abundance of the proteins which cause DNA rearrangement.

Especially desirable are regulated DNA rearrangement systems in which all of the components can be delivered in a single vector. An example of this is a virus which bears both the cis-acting sequences for DNA rearrangement as well as the protein or proteins which act on those sequences, and the regulatory apparatus which controls the activity or abundance of those proteins. However, it is not necessary that the different elements be encoded in a single nucleic acid.

The important elements of this strategy are: the compromise of vector gene function by regulated rearrangement of DNA topology, the generation of plasmid circles from vector DNA in a regulated manner, and the removal of enhancer or promoter elements from the vector DNA by regulated excision. It is also important that the circular DNA generated by site-specific recombination possesses a mechanism for stable association with the host genome in some form, here conferred by the EBV replicon. In other embodiments, the circular DNA might possess the ability to direct its integration into the host chromosomes by a site-specific integration. Site-specific integration into the host chromosomes may also be generated by the action of a regulated site-specific recombinase on a linear template without passing through a circular intermediate.

Also described herein is one particular self-rearranging vector that begins as a hybrid adenovirus vector which is capable of converting itself into two unlinked molecules, a circular and a linear DNA. After this event the linear DNA product is deleted for two important cis-acting sequences: the packaging signals, which are

10

15

20

25

30

required for insertion of the viral DNA into the viral capsid, and the enhancer, which increases the expression of other promoters encoded in the viral DNA. The remaining linear DNA is thereby compromised in its ability to express adenoviral genes, endowing the vector with a lower immunological profile. The circular DNA generated by the excision event is a mammalian cell plasmid which has the capacity to persist by autonomous replication in the nucleus. This capacity is encoded in genetic elements derived from the Epstein Barr virus (EBV). A schematic diagram of such a vector is illustrated in Figure 5.

Epstein Barr virus is a human herpes virus which is the etiologic agent of infectious mononucleosis and which has been implicated in the genesis of Burkitt's lymphoma, a B cell neoplasm, and is thought to be a predisposing factor for some forms of nasopharyngeal carcinoma. Approximately 85% of the adult Western population has a persistent population of B cells which contain a circular latent form of the viralgenome, maintained in cells by the action of Epstein Barr Nuclear Antigen 1 (EBNA1), a DNA replication protein that acts on the viral latent phase origin of replication, OriP. EBNA1 in and of itself is not thought to promote neoplasia; current thinking places greater weight on the actions of the EBNA2 proteins and LMP, latent membrane protein, in the inception of EBV-associated neoplasm.

Mammalian cell plasmids have been created which bear the EBNA1 gene and OriP. In nonrodent cells, these plasmids persist by replication with each transit of the cell cycle. Multiple transcription units can be borne by these plasmids, allowing regulated expression of diverse gene products.

Preferred adenoviral vectors, shown in Figures 1A and 1B, are linear forms of an EBV plasmid flanked by loxP sites, cis-acting sequences required for site-specific recombination directed by the bacteriophage P1 cre protein. To prepare an adenovirus bearing both the cre protein and loxP sites, it is necessary to insure that the cre protein is not expressed while the vector is being propagated in 293 cells. To lower the immunological profile of the vector, it is also desirable that the cre protein not be expressed after the vector delivered its payload to the target cell and the cre protein performed its function.

To accomplish these objectives, two general approaches have been developed for the production of adenoviral chromosomes that circularize following the regulated expression of site-specific recombinases. In each case, the vector is engineered to allow

5

10

15

20

25

30

for the production of viruses in 293 cells, and to provide transitory expression of recombinase that induces rearrangement in target tissues. The major difference between the two strategies lies in the way the deinduction of recombinase is achieved.

In the first approach, adenoviral vectors are engineered to turn an activating transcription factor into a repressor upon chromosomal rearrangement. Vectors employing this approach are referred to herein as type A vectors (Figure 1A). In the second approach, the recombinase promoter is redirected following chromosomal rearrangement. Vectors utilizing the second approach are referred to as type B vectors (Figure 1B). In both cases a linear chromosome is converted to its circular episomal form and a resulting deleted linear form. The circular DNA contains an Epstein Barr virus (EBV) replicon, which allows synchronous replication of the episome with the host mitotic cycle (Reisman et al., Mol. Cell Biol. 8: 1822-32, 1985; Yates et al., Nature 313: 812-15, 1985). The linear DNA is deleted for the enhancer and E1 genes.

One self-regulated gene switch, employing the type A vector strategy, was designed based on the bacterial transposon Tn10 tetracycline repressor (tetR) gene. In its natural context, the tetR protein binds to specific sequences (tet operator sequences) upstream of a tetracycline resistance gene, preventing transcription of the gene unless tetracycline is present. To adapt this protein for eukaryotic gene regulation, a gene fusion is created between tetR and an active portion of a strong eukaryotic transcriptional activator, the herpes simplex virus VP16 protein. The fusion protein exerts its action on a synthetic promoter created by the insertion of multiple tet operator sequences upstream of a basal promoter element. This configuration allows high-level gene expression whenever the tetR-VP16 fusion protein binds to its cognate operator sequences. Because the tetR protein normally does not bind to its operator in the presence of tetracycline, the activity of this synthetic promoter is high in the absence of tetracycline and low in its presence.

One example of a type A vector is shown in Figure 1A. This self-regulated gene expression cassette, present in a hybrid adenovirus, consists of a bi-directional promoter element in which central tetR binding sites are flanked by divergently oriented basal promoter elements. In one direction the promoter directs the formation of a transcript encoding the cre protein; in the other direction, the promoter directs the formation of a tetR-VP16 fusion protein. The latter differs from the conventional version in bearing a loxP site between the tetR component and the VP16 component. When tetracycline is

present this gene switch is silent. As shown in Figure 1A, upon introduction into a target cell in the absence of tetracycline, the tetR-loxP-VP16 fusion protein is produced, stimulating further production of the fusion protein, and the cre protein. The cre protein then acts to promote site specific recombination between the loxP site in the tetR-loxP-VP16 coding sequences, and a distant loxP site. As a result of this recombination, the fusion protein coding sequence is disrupted so that the promoter no longer directs the formation of a tetR-loxP-VP16 fusion protein, but gives rise to an inert tetR-loxP-VP16 fusion protein for binding to the promoter upstream elements, thereby extinguishing promoter activity.

As shown in Figure 1A, the excised circular DNA element contains at least two transcription units. In addition, other transcription units or internal ribosome entry site elements may be used to allow the coexpression of gene products which are useful for extending the persistence of the delivered DNA, regulating expression of the gene of interest, or providing for ablation of the transduced cells once their presence is no longer desirable. In addition, the linear DNA remaining after excision of the circular gene expression plasmid lacks both viral packaging sequences and the cis-acting enhancer. Within this linear DNA, additional loxP sites may be placed to provide for the rearrangement of the remaining vector DNA in the target cell, disrupting the normal topology of the genes, and further thwarting expression.

Using the type B vector design strategy, described in greater detail below, a recombinant adenoviral gene delivery system that is capable of undergoing growth phase-dependent site-specific recombination has also been constructed.

The following examples are presented for the purpose of illustrating, not limiting, the invention.

25

30

10

15

20

TYPE B VECTORS - EXPERIMENTAL RESULTS

Several experimental examples for constructing type B vectors and for carrying out the general approaches of the invention are now described below.

Two-Cosmid System for Efficient Construction of Recombinant AdV

To simplify and facilitate the generation of recombinant AdV, a system was established to assemble the desired AdV genome in a single plasmid by ligation (shown in Figures 2A, 2B). The system consists of two component vectors, a left end plasmid,

5

10

15

20

25

30

pLEP, and a right end plasmid, pREP. The left end Ad sequences (nt 1-376) in pLEP include the viral inverted terminal repeat, the cis-acting packaging sequences, and the viral enhancer. Nucleotide (nt) positions described herein refer to the wild type Ad2 sequence in GenBank (J019017). The Ad sequences are followed by the gene expression unit intended for delivery and an intron endonuclease (PI-PspI) cleavage site. The right end plasmid contains a PI-PspI site followed by the Ad2 genome from the end of the E1 locus rightward (nt 3527-35937).

pLEP is a small tractable vector for cloning, whereas pREP is much larger and contains less frequently manipulated genes. Both pLEP and pREP contain a bacteriophage λ cos site, oriented to generate a single cosmid of appropriate length for in vitro packaging following ligation of the two plasmids at the PI-PspI cleavage site. pLEP is tetracycline resistant (Tet¹) and pREP is ampicillin (Amp¹) resistant, allowing the recombinants to be selectively isolated by co-selection for both markers. In the resulting assembled cosmid, the adenoviral sequences are closely flanked by cleavage sites for the intron endonuclease I-CeuI. Digestion with I-CeuI liberates the entire recombinant AdV genome from the parent cosmid (see Figure 2B).

Three classes of pREP have been constructed to allow the preparation of AdVs bearing E1 (pREP7; SEQ ID NO.: 2), E1 and E3 (pREP8; SEQ ID NO.: 3), or E1, E3, and E4 (pREP12; SEQ ID NO.: 4) deletions. pREP7 (SEQ ID NO.: 2) contains nt 3527-35937 of the Ad2 genome, and pREP8 (SEQ ID NO.: 3) carries an additional deletion in the E3 region (Δ nt 27901-30841). pREP12 (SEQ ID NO.: 4) has deleted open reading frames (ORF) 1-4 of the E4 region (Δ nt 34121-35469, 1348 bp). AdV generated with these cosmids should be able to accommodate 5, 8, and 10 kb inserts, respectively.

These aforementioned vectors were constructed as follows. The EcoRI to BsaI fragment that spans the ampicillin resistance gene in pBR322 was deleted and replaced by a synthetic adapter, and the bacteriophage λ cos site was inserted between the unique StyI and BsmI sites. A PCR amplified Ad2 fragment containing the left end ITR (L.ITR), enhancer elements, and the encapsidation signal (nt 1-376) was created and inserted into the adapter (Figures 2A, 2B) to yield the tetracycline-resistant left-end plasmid pLEP. The right end of Ad2 from the AfIII site to the right end (nt 3527-35937) was assembled into an ampicillin resistant cosmid vector, pACKrr3 (SEQ ID NO.: 1), by multiple steps of PCR amplification and fragment interchange. The resultant cosmid

5

10

15

20

25

30

was termed pREP7 (SEQ ID NO.: 2). To expand vector capacity, two deletions were incorporated into the pREP7 (SEQ ID NO.: 2) cosmid, an E3 gene deletion (nt 27901-30841, 2840 bp); cosmid pREP8 (SEQ ID NO.: 3) and a 1.3 kb deletion (nt 34121-35469) in the E4 region of the Ad2 region; pREP12 (SEQ ID NO.: 4)

An example of the construction of an AdV carrying a CMV-GFP expression unit is outlined in Figure 2. pLEPCMVGFP (Tet^I) was digested with PI-PspI and ligated to the pREP7 (SEQ ID NO.: 2; Δ E1, Amp^I) digested with the same enzyme. The ligation mixture was packaged with λ phage extracts (MaxPlax lambda packaging extracts, Epicentre Technologies) and a fraction of the packaged phage was used to infect a recombination-deficient *E. coli* host, with selection for the assembled plasmid on Amp/Tet plates. Transductants containing pEEP fused to pREP were selected on agar containing 25 μ g/ml ampicillin and 12.5 μ g/ml tetracycline (Amp/Tet). Colonies were selected and DNA isolated (Qiagen). DNA was used either for restriction analysis or for transfection of 293 cells as described herein.

Figure 3A shows typical results for the Bgl II digestion pattern of a pLEP3CMVGFP/pREP7 hybrid cosmid, pAd2-7CMVGFP DNA. Because of the size minimum (~40 kbp) for λ phage *in vitro* packaging and the double antibiotic selection, most of the colonies growing on Amp/Tet plates were the desired hybrid cosmids, and undesired rearrangements were rarely seen. In the present example, all four pAd2-7CMVGFP clones exhibited the digestion pattern predicted from the inferred sequence. The entire recombinant AdV genome was then released from the cosmid by I-CeuI digestion (Figure 3B). I-CeuI digestion leaves ten nucleotides to the left of the left ITR and eight nucleotides to the right of the right ITR. Short flanking sequences have been reported to be eliminated during replication of recombinant viruses after transfecting the DNA into 293 (human embryonic kidney) cells (Hanahan et al., Mol. Cell. Biol. 4:302-309, 1984).

The digestion reaction can be transfected into 293 cells without purification as follows. 293 cells, obtained from Microbix Bisosystems (Ontario, Canada), were cultured in 10 cm dishes in complete Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% FBS, 2mM glutamine and penicillin/streptomycin (Gibco BRL), and maintained at 37 °C and 5% CO₂ atmosphere incubator. Cells were grown to ~50% confluence on the day of transfection. Ten μ g of cosmid DNA were digested with I-CeuI in a volume of 50 μ l. The reaction mixture was transfected into 293 cells by

5

10

15

20

25

30

calcium phosphate precipitation (Graham and Prevec, Manipulation of adenovirus vectors, p. 109-128, In E. J. Murray (ed.), Methods in Molecular Biology, vol. 7, Humana, Clifton, NJ, 1991) without purification. After transfection, cells were cultured and examined daily for the appearance of cytopathic effects (CPE). Virus propagation, purification, plaque assay, and viral DNA isolation were performed using established protocols (Graham and Prevec, supra). At day six post-transfection, 5-30 viral plaques/10 cm dish/10 μ g DNA were usually apparent, which compared favorably with the 30-50 plaques/10 cm dish/10 μ g DNA found for 293 cells transfected with purified wild type Ad2 DNA.

To compare the efficiency of recombinant virus production, similar viruses were also generated by homologous recombination. 20 μ g of pREP7 (SEQ ID NO.: 2) was co-transfected into 293 cells with 10 μ g of a plasmid encoding the left end of the adenoviral genome and a green fluorescent reporter gene (pLITREF1 α GFP). pLITREF1 α GFP contained the Ad2 left end nt 1-376, an EF1 α promoter/GFP expression unit and Ad2 sequence (from 3525-8120) that overlaps with the same sequence in pREP7 (SEQ ID NO.: 2). This overlap fragment served as the region for homologous recombination. Each co-transfection was performed in duplicate. Initial plaques took longer to appear (14 days post transfection) and were less abundant (0-3 plaques per plate).

Data in the literature suggest that exposed ITR ends favor efficient virus production (Hanahan et al., supra). To assess the importance of this effect, an AdV cosmid, pIAdEF1\aaGFPB, in which the AdV ITRs were flanked with a different restriction site at each end was constructed. pIAdEF1\aaGFPB DNA was digested with BsaBI to expose the right ITR, I-CeuI to expose the left ITR, or the two enzymes were used together to expose both ends. Digested cosmid DNA samples were transfected into 293 cells and plaques were allowed to develop. Virus propagation, purification, plaque assay, and viral DNA isolation were performed using established protocols described in Graham and Prevec. (Manipulation of adenovirus vectors, In E. J. Murray (ed.), Methods in Molecular Biology, vol. 7. Humana, Clifton, NJ., pp. 109-128, 1991).

Ten days after transfection the viruses were harvested and viral titers were determined. The average titer for the viral stocks (Figures 4A, 4B) was 1.3 x 10⁴ pfu/ml from transfection with undigested DNA; 2.4 x 10⁵ pfu/ml from BsaBI linearized DNA (free right ITR); 1.1 x 10⁵ pfu/ml from I-CeuI linearized DNA (free left ITR); and 2.7 x

10⁶ pfu/ml for the BsaBI/I-CeuI double digested DNA (both ITRs free). Thus liberation of each end resulted in an approximate increase in the efficiency of generating virus by a factor of ten (Figures 4A, 4B).

5 Construction of an AdV Capable of Self-Rearrangement

10

15

20

25

30

One approach to attenuating adenoviral gene expression and improving transgene persistence is the creation of viruses capable of undergoing internal, self-directed rearrangement upon delivery to the target tissue. In principle, this objective can be achieved through the regulated expression of site-specific recombinases in vectors that contain the cis-acting target of recombinase action. To allow such vectors to be created, the recombinase activity must be suppressed during propagation in the packaging cell line. As described in more detail below, the use of a lineage-specific promoter to control recombinase expression has been successfully employed to achieve this end.

An example of this is shown in Figure 5. The expression of Cre recombinase was controlled by a liver-specific promoter constructed as follows. The human hepatic control region 1 and 2 (HCR1 and 2) of the ApoE/C gene locus (Allan et al., J. Biol. Chem. 270:26278-81, 1995; and Dang et al., J. Biol. Chem. 270:22577-85, 1995) were amplified by PCR using 293 cell genomic DNA as the template. The following primers were used to amplify both HCR1 and HCR2 fragment: HCRtop-

5'gcggaattcggcttggtgacttagagaacagag 3' (SEQ ID NO.:5); HCRbot – 5' gcgggatccttgaacccggaccctctcacacta 3' (SEQ ID NO.:6). The amplified PCR fragments (~0.39 kb) were cloned into pUC19. The HCR1 and HCR2 sequences were confirmed by dideoxy DNA sequencing. The two fragments were assembled in a head to tail orientation, fused with a synthetic basal TATA element and cloned in a parental pLEP vector containing a GFP reporter gene. The resultant plasmid was named pLEPHCR12GFP. The synthetic liver-specific, as demonstrated below, provided a means to control Cre recombinase expression during propagation of the vector in 293 cells, and allowed for testing the consequences of abstracting the enhancer from the linear vector DNA upon delivery of the DNA to the target cells.

In 293 cells, this promoter is silent, allowing the viral chromosome to be propagated with minimal rearrangement. Any rearranged viruses that are formed lack packaging signals and so disappear from the pool of propagating vectors. In liver cells the Cre recombinase is induced by the action of the tissue-specific promoter. The

5

10

15

20

25

30

resulting Cre-induced recombination excises a circular episome and redirects the transcriptional output of the liver-specific promoter so that it directs the synthesis of the transgene of interest. The remaining linear fragment consists of an adenoviral genome lacking the enhancer and packaging signals and a Cre expression unit devoid of promoter sequences.

In the form discussed here, one loxP site is located at nucleotide 147 of the Ad2 genome, between the left ITR and the enhancer/packaging sequences, and the second loxP site is placed inside an intron a few bases upstream of the splice acceptor sequence. Hence the loxP site does not appear in the resulting mature transcript. The Cre coding sequence that remains on the right end linear fragment after rearrangement lies downstream from a splice acceptor that lacks a splice donor or upstream promoter sequences. This effectively terminates the expression of Cre following excision.

Prior to recombination, the Cre recombinase gene is under the control of a synthetic promoter (referred to as HCR12), consisting of hepatic locus control elements from the human ApoE/C locus fused to the first intron of the human EF1α gene. After cyclization the HCR12 promoter lies upstream of the transgene (in this case GFP) and the distal segment of the intron (beyond the loxP site) contains the adenoviral enhancer. To facilitate manipulation of the plasmids in *E. coli*, the human IgG1 hinge-CH2 intron (118 bp) was inserted in the Cre coding sequence at nucleotide 237, suppressing Cre expression in bacteria. The circularized episome contains the latent origin of replication (OriP) and trans-acting DNA replication protein (EBNA-1) of Epstein Barr virus, and hence is capable of autonomous replication in synchrony with the host mitotic cycle (Yates et al., Nature 313:812-815, 1985).

Using the two cosmid system described above, the pLEP plasmid containing the self-resolving components, pLEP1BHCR12, was ligated with pREP8 (SEQ ID NO.: 3; ΔΕ1ΔΕ3) to create pAdVHCRGFP/EBV. The latter was digested with I-CeuI and transfected into 293 cells. Appearance of plaques from AdVHCRGFP/EBV was retarded (by 8 days) compared to non-rearranging viruses, perhaps as a result of basal expression of the liver-specific promoter in 293 cells. However high titer viral stocks of 10¹² nominal (absorbance-determined) particles/ml was achieved.

Rearrangement in Target and Nontarget Cells

5

10

15

20

25

30

To test excision efficiency, HepG2 (hepatocellular carcinoma) and Hela (cervical carcinoma) cells, obtained from ATCC, were infected with virus at a multiplicity of infection (moi) of 1,000 nominal particles/cell. This titer corresponds to approximately 10 plaque forming units per cell. For these experiments, HepG2 and Hela cells were seeded in 35mm dishes and cultured to approximately 80% confluence in DMEM/FBS as described herein. Cells were infected with the desired multiplicity of virus in a volume of 1 ml at 37 °C for 2 hours. At the end of the incubation, cells were washed with PBS twice and cultured in 2 ml of medium. Cells were collected in parallel at desired points for low molecular weight DNA and RNA extraction. Cells were examined for GFP expression by fluorescence microscopy (Olympus, IX70) or microtiter plate reader (PerSeptive Biosystem, CytoFluor II) before extraction of DNA for analysis of chromosomal rearrangement.

DNA analysis of chromosomal rearrangement was performed as follows. $5 \mu g$ of Hirt DNA was digested with Bgl II and analyzed by DNA blot techniques using a labeled EBNA-1 gene fragment as probe (Figure 6). The Bgl II fragment from the non-circularized AdV is 3162 bp, generated from the 5'end of the AdV to the first BglII site in the AdV. The circularized fragment created from the two loxP sites has a size of 4915 bp (Figure 6A). Densitometry revealed that at 72 hours post infection, 95% or more of the input genomes had undergone circularization in HepG2 cells. In contrast, low but detectable levels of circularized fragment was visualized in Hela cells infected at the same time and at the same multiplicity of infection used for the HepG2 cells (Figure 6B).

At the time of infection (t=0, Figure 6B), the amount of input viral DNA detected by DNA blot was higher for HepG2 cells than for Hela cells when similar virus multiplicities were applied (moi of 1,000). This may reflect differences in AdV adsorption or infection efficiency between the two cell types, possibly as a result of the lower levels of coxsackievirus-adenovirus receptor on the Hela cells surface. To achieve similar viral genome input into HepG2 and Hela cells, Hela cells were infected with tenfold more virus (moi of ~10,000) than HepG2 cells (moi of 1,000). Episomal DNA samples were extracted and analyzed by blotting. The results (Figure 6C) indicated that when comparable amounts of viral genome are present in the nucleus, the cyclization rate in both cell types was similar. Because the level of subsequent GFP expression is

much higher in HepG2 cells than in HeLa cells (Figure 7A), it is likely that very small amounts of Cre recombinase suffice to promote rearrangement, and that recombinase expression is not limiting for rearrangement in either HepG2 or HeLa cells.

GFP expression cannot be detected until rearrangement has taken place, so the measurement of the fraction of GFP positive cells provided a simple alternate method for assessing the degree of productive rearrangement. Figure 7A shows that GFP expression developed quickly in transduced HepG2 cells, but that only a few GFP positive cells can be detected in Hela cells infected with a ten fold higher moi, conditions that allow circularization to a comparable extent to that seen in HepG2 cells (Figure 6C).

The HCR12 promoter specificity was also tested by infecting two additional non-hepatic cell lines, A431 (human epidermoid carcinoma) and HT29 (human colon adenocarcinoma), with the Ad2HCRGFP/EBV vector. Both cell lines were obtained from ATCC and cultured using DMEM/FBS as described herein. A few cells, with weak GFP signal, were detected at 72 hours after infection in these cells (Figure 7B). In contrast, these non-hepatic cells could be infected efficiently with a first generation AdV, Ad2CMVGFP virus (data not shown), indicating that the low GFP signal was not due to the low infectivity of these cells by AdV.

To further assess the utility of the AdV genome rearrangement, primary human hepatocytes were infected with the Ad2HCRGFP/EBV vector. For these experiments, primary human hepatocytes, generously provided by Dr. Albert Edge (Diacrin, Inc., Charlestown, MA) were isolated and cultured as described by Gunsalus et al. (Nat. Med. 3:48-53, 1997), infected with adenovirus, and GFP expression was analyzed. As shown in Figure 7C, GFP expression was readily detected 72 hours after infection.

25

30

5

10

15

20

Diminished Viral Gene Expression in Rearranged AdV

After excision, the adenovirus major enhancer/packaging signal segregates with the episomal DNA, yielding a linear fragment containing the remainder of the AdV genome without this important cis-element (Figure 5). To assess the impact of enhancer deletion, PCR amplification and quantitative RT-PCR measurement of late viral gene expression was performed as follows.

5

10

15

20

25

30

Four µg of total RNA was reverse transcribed into cDNA using M-MLV RT by a standard protocol (Promega). 1 µl of the cDNA from each sample was used in subsequent PCR reactions. PCR primers were designed to amplify the tripartite leader sequence of the adenovirus late genes: TPL1 - 5' act ctc ttc cgc atc gct gt 3' (SEQ ID NO.: 7) and TPL2 - 5' ctt gcg act gtg act ggt tag 3' (SEQ ID NO.:8). For detection of the AdV genome in the Hirt DNA samples, 1 µg DNA was employed in the PCR amplification using the following primers which are specific for the adenovirus DNA in the fiber gene: Fiber1 - 5' ccg cac cca cta tct tca ta 3' (SEQ ID NO.: 9) and Fiber2- 5' ggt gtc caa agg ttc gga ga 3' (SEQ ID NO.: 10). PCR reactions were performed as 95 °C 30 seconds; 54 °C 30 seconds; 72 °C 30 seconds for 30 cycles. All amplified products were analyzed on a 2% agarose gel.

For quantitative PCR, a molecular beacon based universal amplification and detection system was used (Intergen). A common leading sequence (Z sequence, 5' act gaa cct gac cgt aca 3') was added to the TPL1 and Fiber1 primers. The TPL2 and Fiber2 primers, described above, were used in the quantitative PCR reactions. 1 µl of the cDNA and one µg of Hirt DNA from each sample were used in the assay. The PCR were carried out in a 96-well spectrofluorometric thermal cycler (Applied Biosystems Prism 7700). The number of template molecules in the PCR reaction was calculated from the standard curve using linearized plasmid as templates.

As most late adenoviral genes transcripts share a common ~200 bp tripartite leader sequence (TPL) (Akusjarvi and Persson, Nature 292:420-6, 1981), the TPL sequence was chosen as a marker of viral gene expression. HepG2 cells were infected with the first generation vectors Ad2CMVGFP and Ad2HCRGFP, or the self-resolving vector, Ad2HCRGFP/EBV, using increasing multiplicities of infection. Total cellular RNA and low molecular weight DNA were isolated in parallel as described by Hirt (J. Mol. Biol. 26:365-9, 1967) and total RNA was prepared using RNAzol solution (Tel-Test. Inc.). RT-PCR was performed to quantitate the amount of RNA encoding the TPL in the cDNA samples. PCR amplification of a 201 bp fiber gene fragment from the AdV genome was used to detect the amount of viral genome in the DNA samples. A representative result of three experiments is shown in Figure 8A. TPL sequences were detected, 72 hours post-infection, with either 100 or 1000 viruses infected per cell, using both of the first generation adenoviruses (upper panel).

5

10

15

20

25

30

In contrast, no TPL signal was detected in the self-resolving Ad2HCRGFP/EBV infected cells, even at a moi of 100,000/cell. PCR amplification of the AdV fiber gene revealed comparable levels of AdV genomic DNA in cells infected at comparable moi's. (Figure 8A, lower panel). The cDNA samples in which the TPL signals were detected were further analyzed by real-time fluorescence PCR. The corresponding genomic DNA samples were also analyzed to determine the number of AdV genomes present in each sample. The results are summarized in Figure 8B. There were approximately 1×10^4 TPL per 1×10^6 AdV genomes detected in the Ad2HCRGFP infected cells, but no detectable TPL in the self-resolving Ad2HCRGFP/EBV infected cells. These results indicate that adenoviral gene expression was dramatically reduced by the separation of the viral enhancer sequences occasioned by the re-arrangement of the self-resolving vector.

TYPE A AND TYPE B VECTORS - EXPERIMENTAL RESULTS

Additional experimental examples now follow that further illustrate the general approaches of the invention relating to using and constructing type A and type B vectors. For generating such adenoviral vectors, DNA sequences important for gene expression in the target tissue were placed between two loxP sites. The first loxP site was inserted between the Ad2 left-end inverted terminal repeat (ITR) and the enhancer sequence, replacing a BspLU11I and BstZ17 fragment of Ad2. A target gene expression cassette, comprising a promoter, a gene of interest, polyadenylation signals, the EBV replicon, and site specific recombinase expression unit were inserted in place of the E1 locus.

In type A adenoviral vectors, the second loxP site is placed between TetR and VP16, preserving the coding frame of both (Figure 1A). A bidirectional promoter in which a central heptamer of tetracycline operator sites (TetO) (Gossen and Bujard, Proc. Natl. Acad. Sci. USA 89:5547-5551, 1992) was flanked by two divergently oriented basal elements, directs the expression of TetR loxP VP16 from a synthetic TATA element, whereas Cre recombinase is controlled by the same heptamer of operator upstream of the HIV LTR basal element.

In the case of type B viruses (Figure 1B), the second loxP site was inserted in the first intron of the $Efl\alpha$ gene, which contains the transcription stimulating sequences described herein. In addition, a splice acceptor sequence was added to the 5' end of the coding sequence of the gene of interest. To avoid rearrangement during plasmid

construction in bacteria, the Cre recombinase coding sequence was interrupted by the addition of the human IgG1 hinge-CH2 intron (between amino acids Q78 and A79), as described herein.

5 Designing a Compact EBV Replicon

10

15

20

25

30

Most plasmids employing the EBV latent origin of replication exceed 10 kb in length. To provide a means for increasing the capacity of the recombinant adenoviral type A or type B vectors to accommodate a therapeutic gene, a compact EBV replicon having episomal stability was designed. To this end, deletions were generated in both the cis-acting origin of replication, OriP, and the sequences encoding the trans-acting replication protein, Epstein Barr virus nuclear antigen-1 (EBNA-1) (Figure 9A). Episomal persistence was assessed with a green fluorescent protein (GFP)-bearing test plasmid by determining the fraction of cells retaining green fluorescence as a function of time, assuming that the half-life of GFP, in daughter cells that have not received an episome as a result of segregation failure, is approximately 1.4 days (Fukumura et al., Cell 94:715-725, 1998).

EBNA-1 contains a central repeated structure that consists entirely of Gly and Ala residues, termed the GA repeats (Figure 9A). Although deletion of this structure has been reported to have little consequence, a deletion mutant consisting of both a short OriP and a short EBNA-1 (SoriP + SEBNA1) was generated and found not to support plasmid maintenance effectively (approximately 40% loss per cell division). A version of this mutant, reconstructed with 40 GA repeats, in which the short OriP was paired with a short EBNA-1 provided significantly better plasmid stability (20% loss per cell division vs. 10% per cell division for the wild type) (Figure 9B). Since most target tissues are relatively quiescent mitotically, this level of segregation fidelity provides reasonable stability in a compact replicon.

Producing Cell Lines that Express Cre- or FLP-Dominant Negative Mutants

As discussed herein, one obstacle to creating adenovirus carrying both recombinase and target sites has been the difficulty of controlling recombinase activity during virus propagation. Since efficient recombinase activity is needed in target cells, recombinase activity is best tempered in the production cell line.

Vector-independent methods to suppress recombinase activity during the production phase are attractive because they allow vector design objectives to be pursued with fewer constraints. In principle, dominant negative recombinase mutants provide the desired antagonism of recombinase activity. Cell lines expressing such recombinase dominant negative mutants were produced as follows.

Dominant negative Cre mutants were selected from known point mutants (Wierzbicki et al., J. Mol. Biol. 195:785-794, 1987) that are defective in recombination function but are likely to retain dimerization function Figures 10A-E. Several mutants were screened for their abilities to inhibit Cre activity of a type B vector construct (ad2239 in Figure 10B) in a transient cotransfection assay. Under these conditions, Cre activity is detected by the expression of GFP that occurs upon rearrangement. Figures 10D and 10E show the point mutants that were assessed and their relative activities in the transient cotransfection assay. Dilution studies, in which increasing amounts of substrate/Cre plasmid were cotransfected with the mutant forms, were conducted and based on its favorable profile, one mutant recombinase, designated CreY324C, was chosen for further development (Figure 10D).

10

15

20

25

30

Strong constitutive expression of CreY324C, under control of the Ef1 \$\alpha\$ promoter failed to yield stable cell lines. Stable clones were obtained when the Ef1 \$\alpha\$ promoter was replaced with a tetracycline regulated promoter (Gossen et al., Science 268:1766-1769, 1995). Clones were then tested for the ability to inhibit Cre enzymatic activities, and one clone, designated cell line #17, was selected for additional experiments. When a plasmid bearing Cre and capable of undergoing Cre-directed rearrangement to create a GFP transcription unit (ad2239) was transfected to #17 cells or parental 293ON cells, GFP expression in the #17 cells in the presence of 2\mu M doxycycline was significantly lower than those of controls (Figure 11), showing that Cre enzyme activity can be inhibited in #17 cells.

In addition to dominant negative Cre mutants, dominant negative FLP mutants may also be identified. FLP belongs to the same family of site-specific recombinases as Cre recombinase. A number of FLP mutations that show defects in either cleavage or ligation of FRT sites have been identified. Mutant FLP defective in cleaving FRT site (for example, H309L, L315P, G328R, G28E, N329D, S336Y, S336F, A339D, Y343F, and H345L) are generated using standard methods. Mutants that inhibit the wild type enzyme are then identified for generating stable cell lines according to the methods

described above. These and the other cell lines (described herein) are then used for producing FRT/FLP containing virus.

As mentioned above, difficulties creating stable cell lines expressing Cre dominant negative mutants were occasionally encountered. This difficulty is not limited to Cre mutants, but also to the wild-type Cre enzyme. In contrast, 293 cell lines stably expressing a thermostable FLP, referred to as FLPe (Buckholz et al., Nat. Biotechnol. 16:657-662, 1998), were created, suggesting that FLPe might not be as cytostatic as Cre protein. To demonstrate this, 293 cells were transfected with plasmids expressing either Cre or FLPe, and puromycin resistant colonies were selected. To generate stable cell lines expressing Cre or FLP mutants, 293 TetON cells were transfected with linearized plasmid expressing Cre or FLP mutants and puromycin acetyltransferase and selected with 1 µg/ml of puromycin. Puromycin resistant colonies were characterized further for their ability to inhibit Cre recombinase using the cre (ad2239) or flp (ad2879) substrate plasmids. Table 1 shows that there are more puromycin resistant colonies selected from FLPe transfected cells than from Cre transfected cells. From this result, it is expected that stable cell lines expressing a reasonably high level of dominant negative FLP may be readily created.

TABLE 1

20

15

5

10

Puromycin Resistant Colonies Formed When Cre Expressing or FLPe Expressing Plasmid was Used to Transfect 293 Cells

Expression Plasmid	Number of colonies (2 µg/ml puromycin)		
Control	236		
Cre	92		
FLPe	127		

25

30

Cre or Cre dominant negative mutants were also found to inhibit FLP activity (Table 2). Accordingly, cell lines such as cell line #17, that stably express a Cre dominant negative mutant (for example, CreY324C), are useful for producing FLP/FRT carrying adenovirus.

TABLE 2

Cre Inhibition of FLP Activity in trans

Plasmids	Arbitrary GFP intensity	
Eflα FLP + FLP substrate + vector control	4.9	
Ef1α FLP + FLP substrate + Ef1α Cre	0.78	
Eflα FLP + FLP substrate + Eflα Cre R173C	2.23	

FLP enzyme activity was measured by the GFP intensity by cotransfecting with a FLP substrate plasmid, ad2879 (Figure 19A). GFP intensity was quantified using IP lab software.

Transcriptional Regulation of Cre or FLP Recombinases

5

10

15

20

25

30

It has been relatively difficult to achieve high-level promoter inducibility in a replicating adenovirus. The challenge is similar to that of achieving faithful control of transcription in a transient expression setting. One approach to increase the induction ratio in a transient setting is the use of auto-regulatory (feed-forward) circuits. One such system, based on tetracycline dependent activation, is shown in Figure 12. A central heptamer of tetracycline promoter operator sites (TetO sites) was placed between two divergently oriented basal TATA elements. The leftward TATA controls the expression of the TetR-VP16 fusion protein, in which a loxP (or FRT) site has been placed between the TetR DNA binding domain and the VP16 transcriptional activator. The rightward TATA box directs the synthesis of recombinase, either Cre or the yeast FLP enzyme. In the presence of tetracycline, the promoter has reduced activity in both directions. Upon removal of tetracycline, the synthesis of both TetR-VP16 and recombinase are induced (Figure 1A). The induced recombinase then disjoins the TetR DNA binding element from the transcriptional activation contributed by VP16. Any existing TetR-VP16 fusions thereafter promote transcription of TetR, which competes with TetR-VP16 for TetO, resulting in deinduction of recombinase transcription.

When a model target cell line, HepG2, was tested with this type of adenovirus, the efficiency of circularization was low relative to that seen in 293 cells (data not shown), indicating a cell dependence of the bidirectional TetO promoter. To correct this, the TATA element of the TetO synthetic promoter (derived from the CMV immediate early promoter) was replaced with that of the HIV LTR. Constructs bearing differing components of the HIV basal promoter were analyzed for strength and regulation in 293 and HepG2 cells (Figure 13A). Among the constructs tested, one

version bearing the HIV LTR TATA and Sp1 elements (D in Figure 13A) showed the least basal expression in 293 cells (data not shown) and the greatest induction in HepG2 cells (Figure 13B).

Using this promoter, a construct (ad3400) containing the autoregulatory structure D as shown in Figure 13A was engineered, and Cre activities in the presence and in the absence of tetracycline were assayed. Plasmid ad2265 (Figure 14) in which a blue fluorescent protein (BFP) expression unit is interrupted by two loxP sites and transcription termination sequences was used as a substrate for Cre. Cre-mediated recombination joins BFP to the promoter resulting in BFP expression. As shown in Table 3, no difference was found in the intensity of BFP expression, either in the presence or absence of tetracycline. One possible explanation for this is that very little Cre protein is required for activity. Consistent with this idea, standard imunohistochemical techniques failed to reveal the presence of Cre enzyme in cells that were fully induced (data not shown).

15

10

5

TABLE 3

Cre Recombinase Activity Regulation in Type A Constructs

20

Construct	Cre Form	+tet -tam	-tet -tam	+tet +tam	-tet +tam
ad3400	Cre	2.58	3.39	2.71	6.20
ad4394	Cre-LBD	0.081	0.22	0.056	1.02
ad4705	LBD-Cre-LBD	ND	ND	ND	ND

25

Cre enzyme activity was measured in the presence or absence of the ligands, tamoxifen, by cotransfecting with the substrate plasmid (ad2265). BFP intensity (mean intensity/area) was quantified by analyzing fluorescent images captured by a digital camera using IP lab software. ND, refers to fluorescent intensities that were too weak to measure. Tet, Tetracycline; tam, tamoxifen.

Deletion of the PolyA Consensus Sequence from Cre or FLP Transcription Units

30

35

To reduce the expression of FLP or Cre recombinase further, the consensus polyA addition signals from the Cre or FLP transcript unit were deleted from vector constructs, leaving polyadenylation dependent on distal downstream sequences, for example, in gene IX. The activity of Cre using type B proviral constructs with or without the polyA signal was measured. As shown Table 4, the construct without polyA signals (AD229.3) showed a significant reduction of GFP intensity compared to a

construct bearing the polyA signal (AD230.5). When FLPe constructs of similar structure were evaluated, similar results were found (data not shown). These data show that Cre and FLPe enzyme activity levels can be modulated by attenuating polyadenylation.

5

TABLE 4

Effect of Deleting polyA Addition Signal From the Cre Expression Unit on Cre Enzyme Activity Level

10

15

20

25

30

	polyA	Relative GFP Intensity
AD229.3	-	0.25
AD230.5	+	1

Post-Transcriptional Regulation of Cre Recombinase Activity

Post-transcriptional control mechanisms of Cre recombinase activity were also evaluated. Translational fusions between Cre and the ligand binding domain (LBD) of estrogen receptor have been reported to be regulated by estrogen (Feil et al., Proc. Natl. Acad. Sci., U.S.A 93:10887-10890, 1996; Gossen et al., Proc. Natl. Acad. Sci., U.S.A. 89:5547-5551, 1994), or, in the case of mutant estrogen receptors (Metzger et al., Proc. Natl. Acad. Sci. U.S.A. 92:6991-6995, 1995), by the partial antagonist tamoxifen.

Use of a ligand-dependent recombinase (ad4394 in Table 3), in combination with the HIV LTR-based autoregulated Tet system, allowed for a small degree of regulation by tetracycline, but not by ligand, as assayed using the ad2265 rearrangement assay (Table 3). One interpretation of this finding is that fusion of the estrogen receptor LBD to Cre provides only modest control of recombinase activity, but attenuates enzyme potency to a level so that transcriptional regulation can be measured.

To increase control of recombinase activity, the LBD was fused both to the N-terminus and C-terminus of Cre (LBD-Cre-LBD) and inserted into the coding sequence of both type A and type B vectors. When the LBD-Cre-LBD construct of type A was transfected into 293 cells, it showed no significant Cre enzyme activity even in the presence of ligand (Table 3). This result confirmed that the Cre recombinase activity is attenuated by N-terminal or C-terminal extension.

When the LBD fusion Cre enzymes were assayed in the type B vector context, only LBD-Cre-LBD fusions (pk8-ad4626) showed ligand-dependent regulation of Cre enzyme activities (Table 5). It appears that attenuated Cre activity in LBD-Cre-LBD, in the absence of ligand, is low enough to fall below the upper limit of the Cre assay.

5

TABLE 5

Cre Enzyme Activities of Type B Provirus

Cre Form	Provirus	-tam	+tam
Cre	pk8-ad2239	ND	ND
Cre-LBD	pk8-ad4332	4.1	6
LBD-Cre-LBD	pk8-ad4626	0.05	4.2

10

Cre enzyme activity was measured in the presence or absence of the ligands, tamoxifen. GFP intensity was quantified using IP lab software. tam, tamoxifen.

15

Consistent with this notion, only the construct carrying two LBDs, pk8- ad4626, was able to produce virus (AD121.5) by transfection and propagate in 293 cells, while pk8-ad4332, which carried one LBD, produced virus (AD100.9) initially (following transfection of the cognate DNA) but was unable to propagate in 293 cells (Table 6). In the case of wild type Cre, no virus was produced in 293 cells by transfection.

TABLE 6

Production and Propagation of Type B Adenovirus

25

20

Cre Form	Type B adenovirus	Viral Production in 293 cells	Viral Propagation in 293 cells	Viral Propagation in #17 cells
Cre	Pack8-2239	-	-	
Cre-LBD	AD100.9 (Pack8-4332)	+	-	+
LBD-Cre-LBD	AD121.5 (Pack8-4626)	+	+	+

30

The AD100.9 virus was able to propagate in #17 cells expressing the dominant negative Cre Y324C, demonstrating that modulation of Cre activity is important for viral production. Thus, adenovirus carrying both two loxP sites and Cre in two different configurations were generated by controlling Cre activity.

5

10

15

20

25

30

Viral Rearrangement in Culture

Cre/loxP mediated rearrangement of the adenovirus in tissue culture cells has also been analyzed. As shown in Figure 15A, the AD121.5 virus showed a significant increase in GFP expression in the presence of the ligand, estrogen, suggesting a successful rearrangement of the virus by Cre recombinases. When non-chromosomal DNA (Hirt, J. Mol. Biol. 40:141-144, 1969) was made from the cells and analyzed by DNA blot analysis, the viral DNA from estrogen treated cells was identified mostly in circular form (C in Figure 15B), while the DNA from cells not treated with estrogen was found mainly in linear form (L in Figure 15B).

To evaluate the efficiency of the self-rearranging viruses in vivo, high titer stocks of AD102.7 (a type A virus carrying LBD-Cre, pk8-ad4394) in #17 cells was prepared and purified by CsCl gradient ultracentrifugation. The titer of AD102.7 (4 –6 x 10^{12} /ml by OD) is comparable to or slightly exceeds that of control viruses (2 –4 x 10^{12} /ml by OD) which carry neither Cre nor a loxP site. To determine the efficiency of viral rearrangement in vivo and whether such rearrangement is dependent on the presence of ligand, AD102.7 virus (4 x 10^{11} pfu/mouse as determined by optical density) were injected via tail vein into Rag-2 mice that were pretreated with vehicle alone or 110 μ g/day of tamoxifen for 7 days as follows.

Rag-2 mice were injected with either PBS (mock) or 4 X 10 ¹¹ adenovirus particles (as determined by OD₂₆₀) of type A virus, AD102.7, via the tail vein. At various times after injection, animals were sacrificed and the liver tissues were removed and frozen rapidly on dry ice. To visualize GFP expression in animal tissues, mice were anaesthetized and perfused with 4% paraformaldehyde containing 0.2% glutaraldehyde intracardially (Kafri et al., Natl. Genet. 17:314-317, 1997), and the liver tissues were removed and fixed overnight at room temperature in the perfusion buffer containing 30% sucrose. The fixed tissues were sectioned serially and observed under confocal scanning laser microscopy. In experiments evaluating the responses of ligand-regulated recombinase, mice were injected either with vehicle (vegetable oil) alone or with 110 μg/day of tamoxifen for 7 days prior to adenoviral injection.

Liver tissues from these animals were harvested at 2.5 hrs post injection (the earliest time point taken after injection) and Hirt DNA from approximately 250 mg of frozen hepatic tissue was prepared and analyzed by blot analysis. As shown in Figure 16, the majority of adenoviral DNA was found in circular form in tissues from untreated mice, as well as tamoxifen-treated mice. It can be concluded from these data that the Cre enzyme activity present in the tissue, even in the absence of ligand was sufficient for efficient self rearrangement of virus. As expected, the hepatic tissues from the Rag2 mice injected with AD102.7 showed strong expression of GFP (Figure 17).

Demonstrating that AD102.7 virus, produced efficiently in 293 cells at high titres by the conventional means, can self rearrange efficiently *in vivo* provides the proof of the concept that potentially safer adenoviral gene therapy vectors can be produced.

Adenoviruses Carrying Both FRT and FLP Recombinase

Type A and type B proviral constructs carrying both FRT (FLP recombinase recognition site) and FLP recombinase were also generated. Structures of these viruses are analogous to those of loxP/Cre carrying viruses except that loxP sites are replaced by FRT sites and Cre coding sequence is replaced by FLP coding sequence (Figures 18A, 18B).

20 Virus Production at Reduced Temperature

10

15

25

30

Temperature dependence of the Ef1α promoter using GFP expression as a marker was also examined. As shown in Table 7, Ef1α promoter activity is strongly reduced at 32°C in comparison to 37°C or 39°C. The temperature sensitive nature of the Ef1α promoter was used to propagate type B adenovirus carrying FLP at 32°C following initial production of the virus by DNA transfection (pk8-ad3302) at 37°C. HepG2 cells infected with these viruses (AD41.4) showed strong GFP expression, but with an approximately 12 hr delay compared to GFP expressing viruses, suggesting that FLP recombinase activity may be impaired at 37°C. To improve the activity of FLP recombinase, viral constructs were created using a thermostable FLP (referred to as "FLPe") described by Buchholz *et al.* (Nat. Biotechnol. 16:657-662, 1998).

TABLE 7

Effects of Temperature on Ef1 a Promoter Strength as Shown by GFP Intensities

(T) -4	Arbitrary GFP Intensities			
Tester plasmids		32°C	37°C	39°C
Ef1α GFP	16 hrs	1475	7886	11409
	41 hrs	6472	36699	50787
	86 hrs	16256	53370	54424
Ef1α Cre +ad2204	16 hrs	243	1141	2132
	41 hrs	1094	9119	9784
	86 hrs	695	3219	8144

GFP intensities were measured using a Fluorescent reader.

The activities of FLP and FLPe using a FLP substrate plasmid (ad2879, Figure 19A) in 293 cells were compared. As shown in Table 8, FLPe is significantly more active than FLP under these conditions.

TABLE 8

FLPe is Significantly More Active than FLP Recombinase

15

10

5

Plasmid		Mean GFP intensity
ad4821	Efla FLPe	2.39
ad2949	Efla FLP	0.01

Plasmid coding either FLPe or FLP was cotransfected with a FLP substrate plasmid (Figure 19A) into 293 cells. GFP intensity of each transfection was measured using IP lab program.

20

25

In addition, a tamoxifen-regulated FLPe was created by fusing the ligand-binding domain from a mutant form of estrogen receptor to the FLPe coding sequence at its C-terminus (FLPe-LBD). The FLPe-LBD was found to be regulated by the ligand, tamoxifen (Table 9). Although FLP activity was retained by C-terminal fusion (FLP-LBD), addition of a short oligopeptide tag to the N-terminus of FLP abolished its activity (data not shown).

TABLE 9

Tamoxifen Regulation of FLPe as Determined by GFP Intensities

Plasmid	FLPe	-tam	+ tam
ad4821 +ad2879	FLPe	++++	1+++
ad5022 +ad2879	FLPe-LBD(tam)	+	+++

GFP intensity resulting from FLPe mediated recombination was measured using a fluorescent microscope. tam, 2 μ g/ml tamoxifen.

Inhibition of FLPe Activities by Anti-sense FLPe

5

10

15

20

25

30

An anti-sense approach to inhibit FLP enzyme activity was also employed. This approach tested the notion that incorporation of an open reading frame into an antisense transcript would stabilize the transcript and potentiate antisense activity. Two approaches were utilized. In one approach, the BFP coding sequence was placed upstream of anti-FLPe. In the second approach, an anti-FLPe was placed upstream of an internal ribosome entry sequence (IRES) and the BFP coding sequence (Figure 20). The ability of these constructs to inhibit FLPe was assayed using a FLP substrate plasmid, ad2879 (Figure 19A) and the result is shown in Figure 21. These data show that antisense FLPe is more effective in inhibiting FLPe function when it is fused to BFP, which can presumably be replaced with any other stable protein.

OTHER SELF-REARRANGING ADENOVIRUSES

Mixed Infection With Adenoviruses Carrying loxP/FLP and FRT/Cre

One of the ways to produce adenoviruses that can be rearranged in target cells but not producer cells is to engineer two separate viruses, each carrying one recombinase and the target sequence for the other. To test this system, type B adenoviral constructs carrying Cre recombinase and FRT sites and FLPe recombinase and loxP sites were created (Figure 22). In target cells infected with both viruses, Cre catalyzes recombination between the two loxP sites in the FLP virus, and FLP carries out FRT mediated recombination in the Cre virus, resulting in two circular plasmids. The loxP virus contained BFP, whereas the FRT virus contained GFP. Measurement of the fluorescent intensities of GFP and BFP, after cotransfecting the two constructs, revealed that BFP expression (mediated by Cre enzyme) was greater than GFP expression

(mediated by FLP enzyme), suggesting that the Cre enzyme functions more efficiently than FLP.

Accordingly, these two recombinase activities in the target cells need to be balanced for complete circularization of both viral vectors. Exemplary methods for modulating Cre /FLP activity include the use of transcriptional regulation (such as by varying promoter strength and/or with or without poly A addition signal sequence) and translational and/or post-translational regulation (such as by changing FLP to FLPe and making LBD fusion proteins), and post viral production control (such as by changing the ratio of two viruses).

In one approach, Cre was replaced by Cre-LBD and FLP was replaced by FLPe. To improve identification of the rearrangement products, BFP was replaced with RFP as a marker for Cre recombination. As shown in Table 10, in the presence of estrogen, expression of GFP (FLPe mediated) and RFP (Cre mediated) were similar.

TABLE 10

RFP and GFP Expression of Cells Cotransfected With Type B Proviral Constructs
Carrying Cre-LBD/FRT(GFP) or FLPe/loxP (RFP)

Plasmids	Genotypes	GFP in	tensity	RFP i	ntensity
=lc0 ada120	ds120 Cre-LBD/FRT (GFP)	Estrogen			
_		-	+		+
+pk8-ads113	+ FLPe/loxP (RFP)	3222	3183	46	1954

20

25

30

5

10

15

To insure that both Cre and FLP carrying viruses with an optimal ratio infect each target cell, these viruses can be cross-linked prior to infection. For example, Cre carrying virus is labeled by biotin while FLP carrying virus is labeled by avidin. Mixing two types of modified viruses generates virus complexes of desired proportions as well. Biotinylation or avidinylation can be carried out using commercially available reagents such as EZ-Link TFP-PEO biotin (Pierce) and EZ-Link maleimide activated NeutrAvidin (Pierce). The extent of the biotin/virus and avidin/virus will be empirically determined to ensure the viability of the virus and to obtain an optimal ratio of two viruses in the complex. Optimal ratios will be those resulting in 1:1 Cre and FLP recombinase activities in target cells. The modifications will be done following manufacture's instructions.

This approach not only increases the effective capacity of adenoviral vector but also opens new avenue of applications involving multiple proteins, some of which cannot be coexpressed in production cell line as a result of combination toxicity.

5 All references mentioned herein are hereby incorporated by reference.

Other embodiments are within the claims.

What is claimed is:

10

Claims

	·
5	 A replicatable viral DNA vector encoding a site-specific DNA-altering enzyme and a DNA target recognized by said enzyme, said enzyme selectively converting, in a cell expressing said enzyme, said DNA vector to a rearranged form.
10	2. The vector of claim 1, wherein said rearranged form comprises an autonomously replicating episome.
	3. The vector of claim 1, wherein said-rearranged-form comprises linear and circular DNAs.
15	4. The vector of claim 1, wherein said vector comprises adenoviral DNA.
	5. The vector of claim 1, wherein said vector comprises a genetically- engineered recombination site.
20	6. The vector of claim 5, wherein said recombination site comprises a target of Cre or FLP.
	7. The vector of claim 1, wherein said enzyme comprises a recombinase or an integrase.
25	8. The vector of claim 7, wherein said recombinase is Cre or FLP recombinase.
	9. The vector of claim 1, wherein said enzyme is functional in a mammalian cell.

30

10. The vector of claim 5, wherein said recombination site comprises a recognition sequence of a site-specific DNA-altering enzyme.

11. The vector of claim 1, wherein said vector comprises an origin of replication functioning in a mammalian cell.

- 12. The vector of claim 11, wherein said origin of replication is an EpsteinBarr Virus replicon.
 - 13. The vector of claim 1, wherein said vector comprises a gene of interest.
- 14. A method for assembling a recombinant adenoviral DNA said method comprising the steps of: (a) providing a first linearized DNA vector comprising a restriction site and a cos site and a second linearized DNA vector comprising said restriction site, an adenoviral nucleic acid molecule, and a cos site; and (b) ligating said first and second linearized DNA vectors, said ligation assembling a recombinant adenoviral DNA.

15

20

25

30

15. The method of 14, wherein said first linearized DNA vector comprises a selectable marker.

- 16. The method of claim 14, wherein said first linearized DNA vector comprises an adenoviral left end-inverted terminal repeat.
- 17. The method of claim 14, wherein said first linearized DNA vector comprises a gene of interest.
- 18. The method of claim 14, wherein said second linearized DNA vector comprises a selectable marker.
- 19. The method of claim 14, wherein said second linearized DNA vector comprises an adenoviral right-end inverted terminal repeat.
- 20. The method of claim 14, said method further comprising packaging said assembled adenoviral DNA into a phage and infecting a host cell.

	21. The method of claim 14, wherein said first and second linearized DNAs comprise a cosmid vector.
5	22. The method of claim 14, wherein said adenoviral DNA is flanked by cleavage sites.
	23. The method of claim 22, wherein said cleavage sites comprise intron endonuclease cleavage sites.
10	24. An adenovirus producer cell comprising a nucleic acid molecule that expresses a dominant negative site-specific DNA-altering enzyme.
	25. The producer cell of claim 24, wherein said site-specific DNA altering enzyme is a dominant negative recombinase.
15	26. The producer cell of claim 25, wherein said recombinase is a Cre or Flp recombinase.
20	27. The producer cell of claim 26, wherein said dominant negative recombinase is CreY324C.
	28. The producer cell of claim 26, wherein said Flp recombinase is Flpe.
25	29. The producer cell of claim 24, wherein said cell is a 293 human embryonic kidney cell.
	30. A vector comprising, in the 5' to 3' direction, a first genetically engineered cis-acting target recognized by a site-specific DNA altering enzyme;
30	a gene of interest; a lineage-specific gene promoter; a second genetically engineered cis- acting target recognized by a site- specific DNA altering enzyme; and
	a nucleic acid molecule encoding a site-specific DNA altering enzyme.
35	

31. A vector comprising, in the 5' to 3' direction,

a first genetically engineered cis-acting target recognized by a sitespecific DNA altering enzyme;

a gene of interest;

5

a bi-directional promoter, comprising a second genetically engineered cis-acting target recognized by a site-specific DNA altering enzyme; and a nucleic acid molecule encoding a site-specific DNA altering enzyme.

10

32. A method of gene therapy comprising the administration to a patient in need of gene therapy a therapeutically effective amount of the vector of any one of claims 1, 30, or 31 which is expressed in said patient

33. A population of cells transfected with the vector of any one of claims 1, 30, or 31.

15

34. A method of gene therapy comprising the administration to a patient in need of gene therapy a therapeutically effective amount of the population of cells of claim 33.

20

1/40

SUBSTITUTE SHEET (RULE 26)

2/40

SUBSTITUTE SHEET (RULE 26)

FIG. 2A

FIG. 2B

FIG. 3A

FIG. 3B

CPEs Time (days)	0.17	5 10	5 10	9
Digestion C	pIAd2B 0.	pIAd2B 8.5 / I-Ceul	pIAd2B 8.5 / BsaBI	pIAd2B / I-Ceul 76
	I B	I	I	I B
Ad DNA forms	1. Circular Ad DNA	2. Linearized cosmid	DNA	3. Liberated AdV DNA from cosmid

正

8/40

FIG. 5

11/40

12/40

14/40

田田田

FIG. 7C

Human primary hepatocytes

16/40

-1G. 8B

of TPL mRNA / 106 AdV DNA

d2HCRGFP

 $1.15 \pm 0.28 \times 10$

EBV Non-detectable

18/40

FIG. 9A

FIG. 9B

20/40

O 57 56 55 33 9 87 125 Mutants

FIG. 10A

21/40

FIG. 10B

FIG. 10C

23/40

SUBSTITUTE SHEET (RULE 26)

24/40

FIG. 10

FIG. 11

1

FIG. 12

27/40

FIG. 13/

28/40

29/40

<u>1</u>2. 7

30/40

FIG. 15A

 $2 \mu M$ Est.

FIG. 15B

FIG. 16

FIG. 17

34/40

SUBSTITUTE SHEET (RULE 26)

35/40

36/40

SUBSTITUTE SHEET (RULE 26)

37/40

<u>Ε</u>

SUBSTITUTE SHEET (RULE 26)

m

FIG. 21

40/40

FIG. 22

SEQUENCE LISTING

```
<110> The General Hospital Corporation
<120> Self-rearranging DNA vectors
<130> 00786/352W03
<150> US 60/231,053
<151> 2000-09-08
<150> US 60/246,904
<151> 2000-11-08
<160> 10
<170> FastSEQ for Windows Version 4.0
<21.0>1
<211> 2341
<212> DNA
<213> Artificial Sequence
<220>
<223> derived from Adenovirus
gaatcggcca gcgcgaattc gattatcatc atcataatat accttatttt ggattgaagc 60
caatatgata atgagggggt ggagtttgtg acgtggcgcg gggcgtggga acggggcggg 120
tgacgtaggt tttagggcgg agtaacttgc atgtattggg aattgtagtt tttttaaaat 180
gggaagttac gtacgcggca tcgatgcgcg ggatatcgcg gcggctagcg acatgaggtt 240
geceegtatt cagtgteget gatttgtatt gtetgaagtt gtttttaegt taagttgatg 300
cagatcaatt aatacgatac ctgcgtcata attgattatt tgacgtggtt tgatggcctc 360
cacgcacgtt gtgatatgta gatgataatc attatcactt tacgggtcct ttccggtgat 420
ccgacaggtt acggggcggc gacctcgcgg gttttcgcta tttatgaaaa ttttccggtt 480 taaggcgttt ccgttcttct tcgtcataac ttaatgtttt tatttaaaat accctctgaa 540
aagaaaggaa acgacaggtg ctgaaagcga ggctttttgg cctctgtcgt ttcctttctc 600
tgtttttgtc cgtggaatga acaatggaag ttaacggatc caggccgcga gcaaaaggcc 660
agcaaaaggc caggaaccgt aaaaaggccg cgttgctggc gtttttccat aggctccgcc 720
cccctgacga gcatcacaaa aatcaacgct caagtcagag gtggcgaaac ccgacaggac 780
tataaagata ccaggcgttt ccccctggaa gctccctcgt gcgctctcct gttccgaccc 840
tgccgcttac cggatacetg tccgcctttc tcccttcggg aagcgtggcg ctttctcata 900
gctcacgctg taggtatctc agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc 960
acquaecccc cqttcaqccc qaccgctgcg cettatccgg taactatcgt cttgagtcca 1020
acceggtaag acacgactta tegecaetgg cageagecae tggtaacagg attageagag 1080
cgaggtatgt aggcggtgct acagagttct tgaagtggtg gcctaactac ggctacacta 1140
gaagaacagt atttggtatc tgcgctctgc caaagccagt taccttcgga aaaagagttg 1200
gtagctcttg atccggcaaa caaaccaccg ctggtagcgg tggtttttt gtttgcaagc 1260
agcagattac gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt 1320
ctgacgctca gtggaacgaa aactcacgtt aagggatttt ggtcatcaga ttatcaaaaa 1380
ggatcttcac ctagatcctt ttaaattaaa aatgaagttt taaatcaatc taaagtatat 1440
atgagtaaac ttggtctgac agttaccaat gcttaatcag tgaggcacct atctcagcga 1500
totgtctatt togttcatcc atagttgcct gactccccgt agtgtagata actacgatac 1560
gggagggctt accatccggc cccagtgctg caatgatacc gcgtgaccca cgctcaccgg 1620
ctcctgattt atcagcaata aaccagccag ccggaagtgc cgagcgcaga agtggtcctg 1680
caactttatc cgcctccatc cagtctatta gttgttgccg ggaagctaga gtaagtagtt 1740
```

```
coccarttaa tagttttcgc aacgttgttg ccattgctac aggcatcgtg gtgtcacgct 1800
cgtcgtttgg tatggcttca ttcagctccg gttcccaacg atcaaggcga gttacatgat 1860
cccccatgtt gtgcaaaaaa gcggttagct ccttcggtcc tccgatagtt gtcagaagta 1920
agttggccgc agtgttatca ctcatggtta tggcagcact gcataattct cttactgtca 1980
tgccatccgt aagatgcttt tctgtgactg gtgagtattc aaccaagaat acgggataat 2040
accordcac atagcagaac tttaaaagtg ctcatcattg ggaaacgttc ttcggggcga 2100
aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaacccac tcgcgcaccc 2160
aagtgatett etgeatettt taettteace agegtttetg ggtgageaaa aacaggaagg 2220
caaaatgccg caaaaaaggg aataagggcg acacggaaat gttgaatact catacttttc 2280
ctttttcaat attattgaag catttatcag ggttattgtc tcatcagcgg atacatattt 2340
<210> 2
<211> 34616
<212> DNA
<213> Artificial Sequence
<220>
<223> derived from Adenovirus
gaatcggcca gcgcgaatta actataacgg tcctaaggta gcgtcatcat cataatatac 60
cttattttgg attgaagcca atatgataat gagggggtgg agtttgtgac gtggcgcggg 120
gcgtgggaac ggggcgggtg acgtaggttt tagggcggag taacttgcat gtattgggaa 180
ttgtagtttt tttaaaatgg gaagttacgt atcgtgggaa aacggaagtg aagatttgag 240
gaagttgtgg gttttttggc tttcgtttct gggcgtaggt tcgcgtgcgg ttttctgggt 300
gttttttgtg gactttaacc gttacgtcat tttttagtcc tatatatact cgctctgtac 360
ttggcccttt ttacactgtg actgattgag ctggtgccgt gtcgagtggt gttttttaat 420
aggttttttt actggtaagg ctgactgtta tggctgccgc tgtggaagcg ctgtatgttg 480
ttctggagcg ggagggtgct attttgccta ggcaggaggg tttttcaggt gtttatgtgt 540
ttttctctcc tattaatttt gttatacctc ctatgggggc tgtaatgttg tctctacgcc 600
tgcgggtatg tattcccccg ggctatttcg gtcgcttttt agcactgacc gatgttaacc 660
aacctgatgt gtttaccgag tcttacatta tgactccgga catgaccgag gaactgtcgg 720
tggtgctttt taatcacggt gaccagtttt tttacggtca cgccggcatg gccgtagtcc 780
gtcttatgct tataagggtt gtttttcctg ttgtaagaca ggcttctaat gtttaaatgt 840
ttttttttgt tattttattt tgtgtttaat gcaggaaccc gcagacatgt ttgagagaaa 900
aatggtgtct ttttctgtgg tggttccgga acttacctgc ctttatctgc atgagcatga 960
ctacqatqtq cttqcttttt tgcgcgaggc tttgcctgat tttttgagca gcaccttgca 1020
ttttatateg cegeceatge aacaagetta catagggget acgetggtta geatagetee 1080
gagtatgcgt gtcataatca gtgtgggttc ttttgtcatg gttcctggcg gggaagtggc 1140
cgcgctggtc cgtgcagacc tgcacgatta tgttcagctg gccctgcgaa gggacctacg 1200
qqatcqcqqt atttttqtta atgttccgct tttgaatctt atacaggtct gtgaggaacc 1260
tgaatttttg caatcatgat tcgctgcttg aggctgaagg tggagggcgc tctggagcag 1320
atttttacaa tggccggact taatattcgg gatttgctta gagacatatt gataaggtgg 1380
cqaqatqaaa attatttggg catggttgaa ggtgctggaa tgtttataga ggagattcac 1440
cctgaagggt ttagccttta cgtccacttg gacgtgaggg cagtttgcct tttggaagcc 1500
attgtgcaac atcttacaaa tgccattatc tgttctttgg ctgtagagtt tgaccacgcc 1560
accggagggg agcgcgttca cttaatagat cttcattttg aggttttgga taatcttttg 1620
gaataaaaaa aaaaaaaaca tggttcttcc agctcttccc gctcctcccg tgtgtgactc 1680
gcagaacgaa tgtgtaggtt ggctgggtgt ggcttattct gcggtggtgg atgttatcag 1740
ggcagcggcg catgaaggag tttacataga acccgaagcc agggggcgcc tggatgcttt 1800
gagagagtgg atatactaca actactacac agagcgagct aagcgacgag accggagacg 1860
cagatetgtt tgteacgece geacetggtt ttgetteagg aaatatgaet acgteeggeg 1920
ttccatttgg catgacacta cgaccaacac gatctcggtt gtctcggcgc actccgtaca 1980
gtagggatcg cctacctcct tttgagacag agacccgcgc taccatactg gaggatcatc 2040
cgctgctgcc cgaatgtaac actttgacaa tgcacaacgt gagttacgtg cgaggtcttc 2100
cctgcagtgt gggatttacg ctgattcagg aatgggttgt tccctgggat atggttctga 2160
cgcgggagga gcttgtaatc ctgaggaagt gtatgcacgt gtgcctgtgt tgtgccaaca 2220
```

ttgatatcat	gacgagcatg	atgatccatg	gttacgagtc	ctgggctctc	cactgtcatt	2280
gttccagtcc	cggttccctg	cagtgcatag	ccggcgggca	ggttttggcc	agctggttta	2340
ggatggtggt	ggatggcgcc	atgtttaatc	agaggtttat	atggtaccgg	gaggtggtga	2400
attacaacat	gccaaaagag	gtaatgttta	tgtccagcgt	gtttatgagg	ggtcgccact	2460
taatctacct	geacttatag	tatgatggcc	acgtgggttc	tgtggtcccc	gccatgagct	2520
ttggatacag	cgccttgcac	tgtgggattt	tgaacaatat	tgtggtgctg	tgctgcagtt	2580
actgtgctga	tttaagtgag	atcagggtgc	gctgctgtgc	ccggaggaca	aggcgtctca	2640
tactacagac	ggtgcgaatc	atcqctqagq	agaccactgc	catgttgtat	tcctgcagga	2700
caasacaaca	gcggcagcag	tttattcgcg	cgctgctgca	gcaccaccgc	cctatcctga	2760
tocacoatta	toactctacc	cccatgtagg	cgtggacttc	cccttcgccg	cccgttgagc	2820
aaccocaagt	tggacagcag	cctataactc	agcagctgga	cagcgacatg	aacttaagcg	2880
agetgeeegg	ggagtttatt	aatatcacto	atgagcgttt	ggctcgacag	gaaaccgtgt	2940
ggaatataac	acctaagaat	atgtctgtta	cccatgatat	gatgettttt	aaggccagcc	3000
ggaacacaa	gactgtgtac	tctatatatt	gggaggagg	tagcaggttg	aatactaggg	3060
ttctataaat	ttgattaagg	tacggtgatc	aatataagct	atgtggtggt	ggggctatac	3120
tactgaatga	aaaatgactt	gaaattttct	gcaattgaaa	aataaacacq	ttgaaacata	3180
acatocaaca	aattcacaat	tetttattee	toggcaatgt	aggagaaggt	gtaagagttg	3240
ataccasasa	tttcagtggt	gtattttcca	ctttcccagg	accatotaaa	agacatagag	3300
taagtactta	cctcactaat	ttctgtggat	tcactagtgc	cattaagtgt	aatggtaagt	3360
atcatacett	tagttttatc	accatocaao	taaacttgac	tgacaatgtt	atttttagca	3420
attacagget	agattttaa	atacactaca	aggttaggca	taaatccaac	tgcatttgtg	3480
tatagattta	cattacttca	attcccattt	ctaaagttcc	agtaatgttt	tttaagtgag	3540
gagttetes	ttagacacc	attttaatca	aatctaagga	atatactaac	acttgcaacg	3600
gageteecea	taastassa	atctccagat	acadccaaad	cagctagagt	agctagtact	3660
tanatagana	atttataaa	acceagat	aatttqcaqt	cattatctga	atgaattctg	3720
gacteccae	attetegeag	aaccadagta	addataadtt	tatcatcatt	tttgtttcct	3780
cagilaggag	acgggcccgg	atcasactt	agagecerete	caagtttagt	aatcatggca	3840
accycaacyy	tataataaat	gccadagccc	attttanttt	ttattgggtt	gatatctgga	3900
gagtgagatg	tatttatata	aaactccaga	ccctttccta	catttatage	tatggcagta	3960
thatcasact	ttagtggatt	ggatttttt	atortaactt	ccagttttt	agtattgttt	4020
catacattaa	asaggtatag	acctatatta	tagtttatgt	ccaagttatg	agatgcatta	4080
atatacagg	atacctacce	cantttaana	cataatttta	tttgaggatg	aaatgggtaa	4140
tacacaggg	geeeegeee	attattattt	atacgcatgc	caccaccat	tttaatttcc	4200
atattattta	atgaatgata	accaatacct	cctgcaactt	tagttctaag	ggagttttgt	4260
tanagatan	acquaccaca	actaactact	attactatat	cagaatttta	tgctacttgc	4320
ccaacygcga	ttattttaat	techatttt	ccattattta	cataaatagg	atcttccatg	4380
thatagaccyc	aggtagggt	aggagtagtt	aggagagata	atgcagttac	agtaagggtg	4440
traatgeeea	tagetacecyt	ggcagcagct	atttacaaa	ctacctttcc	atctgacact	4500
regergreac	chttagtag	gggggctgat	ttagagtatt	acacaatcaa	tggggcttgt	4560
graargggee	taggagaga	aatycttagt	atragageeee	caataattac	cactgttagg	4620
gaetgtaege	taayaytytt	taataaaaa	atatacasac	ttatotttoa	ctttgttttt	4680
gegeetgagg	caattycaay	cattacattt	taggagataa	aatttccaac	cttgtctagg	4740
-taagtggct	tageasttt	aaggggaagg	ataccataaa	aggtgtgtggg	aggttcggag	4800
gtaagacege	rgcccatttt	aagegeaage	tottagees	cattgggtga	aacaaatgga	4860
acgegragag	agagaacccc	tagagggaccc	atttatatat	catetgggega	cacggggttg	4920
ggggtaagaa	agggcacagt	cygagycccy	atatacaaca	atatgaagat	agtgggtgcg	4980
aaggtgtett	cagacygueu	ggegegeete	acctycaaca	tttqqaqaaa	gtttgcagct	5040
gagggacaag	aacatgagga	accigacacc	ccatttaaac	aggtgagaaa	gaataagctg	5100
aaaaggcggc	tgagatacca	gayttygyay	gaayyaaayy	atatattat	attaattaaa	5160
gacaaagatt	tgetgaetga	ancacatact	tttaataana	grande	gttagttgaa cctctggacc	5220
cggaataaga	ccccaatac	cacacatygt	ttotagaaaa	tactacatas	contrataco	5220
ctgatagggg	aagtgcaggc	agecetetgt	accetected	catacettet	cggtgatagg	5340
CTTTTCCCC	accacaagca	coagettetg	gegeegggeg	ttaacaaca	agctgaggcg	5400
grtgccggta	grggrrrrr	cgtaggtaag	ttanatta	tatttta	aaaagatacc	5460
tcttttacac	tggtgtaggt	taaccatgtc	LECARCTECE	ttaattaatt	gttctcgctc	5520
ggacgccgcc	ttgcgccttt	ctagtaggcg	ccgcccggcg	ctaattetat	ccaattctag	5500
atctagagat	tcagtcatct	ccacctgtca	aactdaagta	yctaatctca	gtgggggtgg	2200
gagaaggggg	gcgaggctga	ttgattgggg	caacaacctg	ctgcagtggt	atgacagcgg	5700
gcactgggaa	agtagggtgg	ttcatggcat	ctatggcatt	ccagccaatg	tcaaggtatg	5700

						5560
gatatatggc	tagggcaaaa	atggtactgc	aaaaaaccat	gacagagatg	arggcgrata	5/00
	tgacaaatcg					
tgaatctgca	ggaaatatgt	cttttgggag	gcgctgaggt	ttgggagcaa	agcacaggta	5880
gggcgcaaaa	aatcagcaaa	acaaaaatga	cactccgttt	cataattaaa	gaattctgag	5940
aagatcagct	atagtcctgt	ctctgtattg	cggatggtgc	ctgaggtacg	caatgcgcac	6000
acaaacccag	tcaatgaact	gaatgaaggc	gatgactaca	gtgacgaggc	tgcagatgag	6060
gataagggtg	acaaatccgt	aaagcaggta	aactgtgaaa	ggtgggatgc	aatctacttc	6120
gatgtgagcg	accgcggcca	atgtagagca	cgcacagaaa	agcgcaacaa	gggtcaataa	6180
tataagaact	cgaggaatca	tgtctcattt	aatcatactg	taaaagaaga	gaacatggtt	6240
tcagaccgtc	caatctatga	attttttcat	tgtgtgggtt	gagcacaatg	ataggcctat	6300
agatgggggg	tctggcgcgt	ctgcgcttta	ggcaacaaat	aagccacata	ataataaggc	6360
aaacaaacat	aagcgctatg	gaaaaccacc	acatgtccaa	gctcgcccag	tcattgacaa	6420
aggcatgaac	ttggggtaaa	tttagggcag	atgttagtcc	ggtagcagtg	gtgttgcgat	6480
agtccgttgt	gggcgcgatg	gttgagccgg	tcatctctgg	agcaggcaag	ctgaagctgg	6540
gtttgatcaa	atttgcagtg	caggcgctgg	cagaaatcag	gcgctaacgt	ccaggaaagt	6600
ttgatttgaa	ggttgtgggt	ataatcttgc	ccgcctggag	catatcccac	atagagtaaa	6660
ttgtccaggg	gaatacaagc	aagcggaaaa	tcaaggcatt	ttcttttcat	caataaaact	6720
gcgtctgctt	ttgtatttga	gataaagtaa	ggtacatacc	aaagcaagcg	ctgtaataag	6780
cagagcggtg	gaacaaaagg	tgccagtgtt	ctctaaacac	ttttgtgggg	gccacaactt	6840
gtactgtttg	ctcatgtaca	tggtaatatc	gcacatttca	taaaatggaa	atttatacat	6900
aaaagtttta	cgattttcac	cttggaagac	tgtgacatta	tagtcgttag	tgtcacctgg	6960
ctgccaaata	gcatatacag	catacttgcc	aattttgtct	ttgtggcgaa	taataagctt	7020
ttcatgttct	gtggtgcatt	ttataagagt	agtgcattca	ttagcttctg	atttaaatgt	7080
aacattgcaa	gctggttcct	taaactcaac	ctttttggca	gcgctgcaga	ctgccgcaag	7140
ggcgagcaag	cctaaaatca	tgtacctcat	cttggatgtt	gcccccagcg	tttaaaaagc	7200
tgacaatagg	tacaaacgtg	cgtgcagcag	gcggcaaccc	taaggcacag	aagtgctagt	7260
ataagaataa	acagaattac	aagagtaagg	ataaccccga	ccccaattcc	agaaaaatta	7320
gacaagcttg	tagagttact	tgaattgctc	atatacttaa	ttaaaaaatc	ccagcacccc	7380
gcaaaatgct	tttttgacct	gagttccggg	agttgagctc	acctcctgtt	ttggaaaaat	7440
gggagtaatg	tctggttacg	ctcaggctgt	aggtgtgggc	gcagcaaccg	gtgacgcact	7500
cgtacgttcc	cggcaggtga	ggagggtggt	ggtggtggtg	tttttcttga	cggtgtagtt	7560
gaagccgaga	aggttgtgtg	gcaaacttac	ttcgtctcgc	tggaaactgt	tgtaaattac	7620
aaatgaagag	ccgttaaagt	accaggtaag	gtacttattg	gcccgcttgt	gcaaaccgga	7680
ggtgaggttt	gctttggtct	gctttgggtg	ggtaaaaacg	gtggcgttca	caggatggcg	7740
acaggagccc	cagtagattc	taatttctgt	atttattata	ctcagcacag	agatgacaac	7800
aaagatcttg	atgtaatcca	gggttaggac	agttgcaaac	cacggtcaga	acacagggac	7860
cccgctcccg	ctccactagc	agggggcgct	tggtaaactc	ccgaatcagg	ctacgtgtaa	7920
gctctacctg	ggtggtgagc	cggacgccgt	gcgccgggcc	ctcgatatgc	tcttcgggca	7980
attcaaagta	acaaaactca	ccggagccgc	gggcaaagca	cttgtggcgg	cggcagtggt	8040
cgaggtgtgt	caggcgcagt	cgctctgcct	ctccactggt	cattcagtcg	tagccgtccg	8100
ccgagtcttt	caccgcgtca	aagttgggaa	taaactggtc	cgggtagtgg	ccgggaggtc	8160
cagaaaaggg	gttgaagtaa	accgaaggca	cgaactcctc	aataaattgt	agagttccaa	8220
tgcctccgga	gcgcggctcc	gaggacgagg	tctgcagagt	taggatcgcc	tgacggggcg	8280
taaatgaaga	gcggccagcg	ccgccgatct	gaaatgtccc	gtccggacgg	agaccaagag	8340
aggagctcac	cgactcgtcg	ttgagctgaa	tacctcgccc	tetgatttte	aggtgagtta	8400
taccctgccc	gggcgaccgc	accctgtgac	gaaagccgcc	cgcaagctgc	gcccctgagt	8460
tagtcatctg	aacttcggcc	tgggcgtctc	tgggaagtac	cacagtggtg	ggagcgggac	8520
tttcctggta	caccagggca	gcgggccaac	tacggggatt	aaggttatta	cgaggtgtgg	8580
tggtaatagc	cgcctgttcg	aggagaattc	ggtttcggtg	ggcgcggatt	ccgttgaccc	8640
gggatatcat	gtggggtccc	gcgctcatgt	agtttattcg	ggttgagtag	tcttgggcag	8700
ctccagccgc	aagtcccatt	tgtggctggt	aactccacat	gtagggcgtg	ggaatttcct	8760
tgctcataat	ggcgctgacg	acaggtgctg	gcgccgggtg	tggccgctgg	agatgacgta	8820
gttttcgcgc	ttaaatttga	gaaagggcgc	gaaactagtc	cttaagagtc	agcgcgcagt	8880
atttgctgaa	gagagcctcc	gcgtcttcca	gcgtgcgccg	aagctgatct	tegettttgt	8940
gatacaggca	gctgcgggtg	agggagcgca	gagacctgtt	ttttattttc	agctcttgtt	9000
cttggcccct	gctttgttga	aatatagcat	acagagtggg	aaaaatccta	tttctaagct	9060
cgcgggtcga	tacgggttcg	ttgggcgcca	gacgcagcgc	tectectect	gctgctgccg	9120
ccgctgtgga	tttcttgggc	tttgtcagag	tcttgctatc	cggtcgcctt	tgcttctgtg	9180

tgaccgctgc	tattactacc	gctgccgctg	ccgccggtgc	agtaggggct	gtagagatga	9240
cogtagtaat	gcaggatgtt	acgggggaag	qccacqccqt	gatggtagag	aagaaagcgg	9300
caaacaaaaa	agatgttgcc	cccacagtct	tgcaagcaag	caactatggc	gttcttgtgc	9360
ccacaccaca	agcggtagcc	ttaacactat	tattactett	gggctaacgg	cggcggctgc	9420
ttagacttac	caaccctaat	tccagtggtg	tcccatctac	gattagatca	gcgaacaggc	9480
agtaccaaca	acacctaaga	agcggaggtt	gtagcgatgc	taggaacagt	tgccaatttc	9540
tagaacacca	acaaaaaaaa	tacaaccaaa	gataacaata	tttcqtctqa	cacctcttcg	9600
acctcagaag	cttcgtctag	actateceaa	tcttccatca	tctcctcctc	ctcgtccaaa	9660
acctcctctq	cctgactgtc	ccagtattcc	tcctcatcca	taaataacaa	cggcggcagc	9720
tacaacttct	ttttaaatac	catectogga	agcaagggcc	cacaactact	gatagggctg	9780
caacaacaaa	gggagt	tgageteete	accagactag	gggtccaggt	aaaccccccg	9840
tccctttcat	accacaaact	cttggcgggc	tttgttgatg	gcttgcaatt	ggccaaggat	9900
ataaccetaa	graatgacgc	aggggggg	ctccgcattt	aacaaacaaa	attggtcttc	9960
atagaaccta	atctcataga	cataataata	ctcaggtaga	aatttgcgaa	ggtaagccga	10020
catcacaaa	cccaaataa	otttcaaccc	cadadccaca	gacttttcgt	caggcgaggg	10080
accetacage	tcaaacatac	castaattta	actttcccta	agcagttgcg	aattgcagac	10140
cananancan	tacaaagtac	ataggttgga	acaacaataa	cactccagta	ggccgtcacc	10200
actoacatot	tccatcatct	caaggeegea	accasaatsa	tragetaget	gcagaaggta	10260
gcccacgccc	caaaacaaca	gagagagata	acontactta	atoggcacaa	agtcgctagg	10320
aagggggggg	cadageggeg	gagggeatte	tgaacgctct	accataaact	tcctaaagtt	10380
ttacaacata	ctttaactaa	tasatctaa	cagaccctgt	tacagaattt	taagcaggcg	10440
ttgcaacacg	ataatataa	ccanatacac	aaccacaaa	cactcattaa	aggccgtcca	10500
taggtggaag	acaacycccy	ttaggegege	ctacaactcc	tttaggttgc	gctcctccag	10560
acattactac	cacacacaca	taaccattta	ccacatataa	cacagaaata	agtaaacgca	10620
geaccyccyc	tactegecea	acacctcacc	cttgaggggag	gaatgaagga	cgttttgccc	10680
gregeggacg	teatacasas	ttccaaaata	ananaccann	ttacagaget	ccacgttgga	10740
aattttaaaa	acataacaca	cataggca	acassaata	tagtgcaacg	tttcctctag	10800
attracactac	atctccaaat	carcasaras	ccactacata	cactcaaget	ccacggtaac	10860
aagagtgg	acceccggge	acttacatca	ctcctccaag	teggeagget	cgcgcgtctc	10920
aagcactgcg	gocaccacca	categogoeg	tacaaataaa	ccctcctcaa	tttgttcttg	10980
aagecayege	tocatataca	aggateatac	scaacacaca	atcacctccc	tcatgactgt	11040
caaguttyca	ttagagagta	anttaantan	coortages	aagtgggtga	cctcgatgct	11100
gcatttaacc	accortacc	acacattata	acceteaact	tccaccagca	ctccacagtg	11160
agtttgattt	toggttattt	cttattacaa	accettage	acacatttct	cgtcgcgtcc	11220
accectate	aagatttta	gcacttcgtc	nagegeeegee	atatcaggta	tgacagcgcc	11280
atagaccccca	acceactact	tatecactea	actacaatta	acaccaggea	ataggggtat	11340
cttacaattt	togaaaaaaa	tataataaat	geegeggeeg	tctaacacaa	caaatacggg	11400
atagaagtta	acacacaca	tagactagge	tataccattt	tettageatt	tggggggtac	11460
grayaagreg	aggegeggge	attentage	aaggetgee	tccactataa	cgaggggcac	11520
ateastasaa	tattagaaga	catcacagat	aataacacac	taacactaca	gatgcttcaa	11580
accyclycyc	totogoacat	ctaggtaggt	accetacett	taateceee	gcccgacttg	11640
ttactacttt	gastatacat	catactasta	ttacttttta	tectetatta	gtactgagcg	11700
atactactac	tetteactta	casascetor	atcatacta	ataatcactt	cctcctcctc	11760
according	gaataaaaaa	ggaaggtggt	aggrante	acaaccacca	tggaggcggt	11820
aaycyyyyyc	tassagaga	coattacact	atectectte	tractact	ccatgatett	11880
ggtggcgaac	todadaggggg	anatagagag	traggazaga	anaceacaca	aaaccacccc	11940
ccccccca	caggagaagg	adacogccag	accaaccato	gagcagcgcg	cgtccccgtc	12000
cyaycycyga	cgcggtgcgg	gegaegeee	accaaccacg	ctaaaacaac	gtctcgagtc	12060
geogregeeg	gaageteet	gogogococo	actactacca	cccacacccca	acccacaacc	12120
atagaacta	anggarast	tagagatyc	acceding	aaaaaaaaaa	gcccctctcc	12180
accyaccicg	caccacacac	caccaccaccyc	guccaaaaag	adcdaddaddc	aaagagaaga	12240
tatagasata	cycccyccat	atttaaaaa	cccaccacta	ctaatcaacc	acggcaaggg	12300
cycyycycca	caaacygcgg	guudayuda	agaggagg	ataggaggaga	atatacaasa	12360
aggraagege	acggracege	ggctgaatga	agacyaccca	accacactes	gtatgcggac	12420
ycaayaggaa	adygaagagt	ccaytyaayc	yyaaaytydd	agcacygrya	taaacccgct	12/100
gageetgeeg	accordicto	cgcyygayaa	gggcacggag	getgegegeg	cgttgatgga	12540
caagtaccac	gtggataacg	atcudadgc	adduttedag	anagagagaga	accaagtgga	12500
					tgcagctgac	
cccaccage	aacaagacct	Ligigacgat	yaryyyycga	ciccigcagg	cgtacctgca	12000

gtcgtttgca	gaggtaacct	acaagcacca	cgagcccacg	ggctgcgcgt	tgtggctgca	12720
ccgctgcgct	gagatcgaag	gcgagcttaa	gtgtctacac	gggagcatta	tgataaataa	12780
ggagcacgtg	attgaaatgg	atgtgacgag	cgaaaacggg	cagcgcgcgc	tgaaggagca	12840
gtctagcaag	gccaagatcg	tgaagaaccg	gtggggccga	aatgtggtgc	agatctccaa	12900
caccgacgca	aggtgctgcg	tgcatgacgc	ggcctgtccg	gccaatcagt	tttccggcaa	12960
gtcttgcggc	atgttcttct	ctgaaggcgc	aaaggctcag	gtggctttta	agcagatcaa	13020
ggctttcatg	caggcgctgt	atcctaacgc	ccagaccggg	cacggtcacc	ttctgatgcc	13080
actacggtgc	gagtgcaact	caaagcctgg	gcatgcaccc	tttttgggaa	ggcagctacc	13140
aaagttgact	ccgttcgccc	tgagcaacgc	ggaggacctg	gacgcggatc	tgatctccga	13200
caagagcgtg	ctggccagcg	tgcaccaccc	ggcgctgata	gtgttccagt	gctgcaaccc	13260
tgtgtatcgc	aactcgcgcg	cgcagggcgg	aggccccaac	tgcgacttca	agatatcggc	13320
gcccgacctg	ctaaacgcgt	tggtgatggt	gcgcagcctg	tggagtgaaa	acttcaccga	13380
gctgccgcgg	atggttgtgc	ctgagtttaa	gtggagcact	aaacaccagt	atcgcaacgt	13440
gtccctgcca	gtggcgcata	gcgatgcgcg	gcagaacccc	tttgattttt	aaacggcgca	13500
gacggcaagg	gtggggggta	aataatcacc	cgagagtgta	caaataaaaa	catttgcctt	13560
tattgaaagt	gtctcctagt	acattattt	tacatgtttt	tcaagtgaca	aaaagaagtg	13620
gcgctcctaa	tctgcgcact	gtggctgcgg	aagtagggcg	agtggcgctc	caggaagctg	13680
tagagctgtt	cctggttgcg	acgcagggtg	ggctgtacct	ggggactgtt	aagcatggag	13740
ttgggtaccc	cggtaataag	gttcatggtg	gggttgtgat	ccatgggagt	ttggggccag	13800
ttggcaaagg	cgtggagaaa	catgcagcag	aatagtccac	aggcggccga	gttgggcccc	13860
tgcacgcttt	gggtggactt	ttccagcgtt	atacagcggt	cgggggaaga	agcaatggcg	13920
ctacggcgca	ggagtgactc	gtactcaaac	tggtaaacct	gcttgagtcg	ttggttagaa	13980
aagccaaagg	gctcaaagag	gtagcatgtt	tttgagegeg	ggttccaggc	aaaggccatc	14100
cagtgtacgc	ccccagtctc	gcgaccggcc	gtattgacta	tggcgcaggc	gagettgtgt	14160
ggagaaacaa	agcctggaaa	gegettgtca	taggtgccca	aaaaatatgg	cccacaacca	14220
agatettega	caatggcttt	cagtteetge	teactygage	ccatggcggc	agetyttytt	14220
gatgttgctt	gettettta	tgttgtggeg	traceggeeg	agaagggcgt ccacgtcaaa	gegeaggeac	14200
acggtetega	cgacgecgeg	gracegarda	ggatggagg	caaaagtcat	atctagege	14400
tagagagag	taacateasa	aagatttag	cccagateta	tgagtgcgcc	catogacata	14460
aggttagtagt	agaataaaat	aaggeeeegg	atacastcac	aaagaaactt	tttctgggta	14520
atactatcaa	ccacaattt	gcgccattagt	gagagaaaga	cgttggcggg	gtaagcctgt	14580
ccctcgccaa	tagtaggaac	gaggtagcct	acgaatectg	agttgttatg	ctqqtqaaqa	14640
attccaacct	octgatactc	cttgtattta	gtatcgtcaa	ccacttgccg	gctcatgggc	14700
togaagtttc	tgaagaacga	gtacatgcgg	teettgtage	tttctggaat	gtagaagccc	14760
tootaoccaa	tattgtagtt	ggccaacatc	tgcaccagga	accagtcctt	ggtcatgttg	14820
cactgageta	cqttqtagcc	ctccccgtca	actgagcgtt	taatctcaaa	ctcattggga	14880
qtaagcaggc	ggtcgttgcc	cggccagcta	acagaagagt	caaaggtaat	ggccaccttc	14940
ttaaaggtgt	gattaagata	gaaggttccg	tcaaggtatg	gtatggagcc	agagtaggtg	15000
tagtaagggt	cgtagcctga	tcccagggaa	ggggtttcct	ttgtcttcaa	gcgtgtgaag	15060
gcccaaccgc	gaaatgctgc	ccagttgcgc	gatgggatgg	agatgggcac	gttggtggcg	15120
ttggcgggta	tggggtatag	catgttggcg	gcggaaaggt	agtcattaaa	ggactggtcg	15180
ttggtgtcat	ttctgagcat	ggcttccagc	gtggaggccg	tgttgtgggc	catggggaag	15240
aaggtggcgt	aaagacaaat	gctgtcaaac	ttaatgctag	ccccgtcaac	tctaagatcg	15300
tttcccagag	agctctgcag	aaccatgtta	acatccttcc	tgaagttcca	ttcatatgta	15360
tatgagcctg	gcaggaggag	gaggttttta	atggcaaaaa	acttttgggg	cacctgaatg	15420
tgaaagggca	cgtagcggcc	gtttcccaac	aacatggagc	gataacggag	gcccgcattg	15480
cggtggtggt	taaagggatt	aacgttgtcc	atgtagtcca	gagaccagcg	cgccccaagg	15540
ttaatgtagc	agtctacaag	cccgggagcc	accactcgct	tgttcatgta	gccgcaggcg	T2000
ttggggttgt	cagatatttc	cacattggtg	gggttgtatt	ttagcttgtc	rggcaggtac	15720
agcgcaatat	tggagtaaag	gaaatttctc	cataggttgg	catttaggtt	ttttatast	15700
gcaaagttgt	tacccactcc	tatttcatta	cgrgrrgcaa	aagtttcatc	ataggetetes	15040
gtagtatete	cattatcgcc	cgagccattg	ccattagcct	taatagcttg	acayycycoa	15000
grtaccccaa	Lacccccaag	aggadaacaa	caacitggca	attcatcctc	aguiccaigg	15060
ttttcaatga	totaacatc	cggaccatag	angettest	cctgattcca aggacagctc	tatatttata	16020
tatecggttc	atacaccuat	gyaaccaagc	aayayttyat	cagcaagaac	acceptate	16080
acactactat	tataataat	taggetye	aaattotoo	tgaaagcaat	gtaattgggt	16140
ccagigoigi	Lucualacat	Luggecuuta		-344490440	3	

ctgtttggca	tagattgttg	acccaacata	gctttagaat	tttcatcacc	ttttccaggt	16200
ttgtaagaca	gatgtgtgtc	tggggtttcc	atatttacat	cttcactgta	caaaaccact	16260
tttggtttag	tagcattgcc	ttgccggtcg	ttcaaagagg	tagtatttga	gaagaattgc	16320
aagtcaacct	ttggaagagg	cacccctttt	tcatccggaa	ccagaacgga	ttgaccacca	16380
				tcatgggagt		
				actgagattc		
				cttgtgtttc		
				acaaaggagc		
acatgtgttt	tcttagtagc	ctgatctcga	gcgttttgct	cttcttcttc	ctcttcttca	16680
				cgctatcttc		
				tgtaggcagt		
ggcttaaaag	taggccccct	gtccagcacg	ccgcggatgt	caaagtacgt	ggaagccata	16860
tcaagcacac	ggttgtcacc	cacagecagg	gtgaaccgcg	ctttgtacga	gtacgcggta	16920
tectegeggt	ccacagggat	gaaccgcagc	gtcaaacgct	gggaccggtc	tgtggttacg	16980
tcatacataa	gtgccaccgt	ggggtttcta	aacttgttat	tcaggctgaa	gtacgtctcg	17040
ataacacaaa	caaactgcac	cagcccgggg	ctcaggtact	ccgaggcgtc	ctggcccgag	17100
				ccatcttgga		
acggcggctc	agcageteet	ctggcggcga	catggacgca	tacatgacac	atacgacacg	17220
ttagctattt	agaagcatcg	teggegette	agggattgca	ccccagacc	cacgatgctg	17280
ttcagtgtgc	tttgccagtt	gccactggct	acgggccgca	tcgatcgcgg	accoctogco	17340
gcacggcgca	gggacgcgcg	gctagggcgg	gttacaacaa	cggcggacgg	ccctggcagc	17400
acaggtttct	gctgggtgtc	agcgggggga	ggcaggtcca	gcgttacagg	tgtgtgctgg	17460
cccagcactc	cggtagccat	gggcgcgatg	ggacgggtgg	tgggcaggcc	ttgctttagt	17520·
gcctcctcgt	acgagggagg	ctcatctatt	tgcgtcacca	gagtttcttc	cctgtcgggc	17580
cgcggacgct	tttcgccacg	cccctctgga	gacactgtct	ccacggccgg	tggaggctcc	17640
tctacqqqaq	ggcggggatc	aagcttactg	ttaatcttat	tttgcactgc	ctggttggcc	17700
				ccaccttttg		
tgctctttca	acttgtccct	cagcatctgg	cctgtgctgc	tgttccaggc	cttgctgcca	17820
tagttcttaa	tggtggaacc	gaaattttta	atgccgctcc	acagcgagcc	ccagctgaag	17880
gcgccaccgc	tcatattgct	ggtgccgata	tcttgccagt	ttcccatgaa	cgggcgcgag	17940
ccgtgtcgcg	gggccagaga	cgcaaagttg	atgtcttcca	ttctacaaaa	tagttacagg	18000
accaagcgag	cgtgagactc	cagacttttt	attttgattt	ttccacatgc	aacttgtttt	18060
taatcagtgt	ctctgcgcct	gcaaggccac	ggatgcaatt	ccgggcacgg	cgccaatcgc	18120
cgcggcgatc	agtggaataa	ggaggggcag	gataccgccg	cgcatgcgac	ggtgcgacgc	18180
gcgccgccgc	cggtggtgcg	cacgacgcat	gccgcccgtc	aggccgtggc	cggccatgcc	18240
cctcctacgg	tgcattcttc	ctcggaatcc	cggcaccggg	aaacggaggc	ggcaggtgag	18300
ggccatatct	gcaagaacca	caaagaccgg	cttttaaacg	atgctggggt	ggtagcgcgc	18360
tgttggcagc	accagggtcc	tgcctccttc	gcgagccacc	ctgcgcacgg	aaatcggggc	18420
cagcacgggc	tggcgacggc	gacggcggcg	gcgggttcca	gtggtggttc	ggcgtcgggt	18480
agtcgctcgt	cttctggggc	ggtaggtgta	gccacgatag	ccgggggtag	gcgcgatgga	18540
aggatgtagg	gcatattcgg	gcagtagtgc	gctggcggtg	ccgtacttcc	tggaacggcg	18600
cgggcgccgg	ggggctgaaa	cgcgaaacat	ccacgggtcc	gtttgcacct	ccgtagaggt	18660
tttggacgcg	gccgcagcgg	ccgcctgcac	cgcggcatct	gccaccgccg	aggcaaccgg	18720
ggacgtttgt	gtctccatgc	cctctgtggc	agtggcaata	ctagtgctac	tggtggtggg	18780
tatctgaacg	tccacggtct	gcacgcccag	teceggtgee	acctgcttga	ttggccgcac	18840
gcggacctcg	ggctccagcc	caggctccac	ggtcattttt	tccaagacat	cttccagtcg	18900
ctggcgcttg	ggtaccatca	gctgcacggt	gggtgccaag	tcaccagact	cgcgctttag	18960
gccgcgcttt	tcttcggacg	gtgcaagcgt	gggcagcacc	tgctgcagtg	tcacgggctt	19020
taggctaggt	gttgggttgc	cctcgtccag	cggcaacgcc	aacatgtcct	tatgccgctt	19080
tccgtaggca	aactccccga	ggcgctcgtt	ggcctgctca	agcaggtcct	cgtcgccgta	19140
cacctcatca	tacacgcgct	tgtaggtgcg	ggtggagcgc	tcaccgggcg	taaaaactac	19200
ggtggtgccg	ggtcgcaaaa	cacgtcttac	gcgtcgacct	ttccactgta	cccgccgcct	19260
gggcgcggtt	gcgtgcagca	gttccacctc	gtcgtcaagt	tcatcatcat	catcatcttt	19320
ctttttctt	ttgacccgct	ttagctttcg	gggcttgtaa	tcctgctctt	ccttcttcgg	19380
ggggccatag	atctccggcg	cgatgacctg	gagcatctct	tctttgattt	tgcgcttgga	19440
catagcttcg	ttgcgcgccg	ccgccgctgg	atacatacaa	cagtacgagt	ctaagtagtt	19500
ttttcttgca	atctagttgc	gcggggggcg	ggtgcgcacg	ggcacgcgca	ggccgctaac	19560
cgagtcgcgc	acccagtaca	cgttgcccct	gcgaccctga	gtcatagcac	taatggccgc	19620

ggctgctgcg	gcggccgctc	gtcgcctgga	cctggggggc	acagtgacaa	tacccgcggc	19680
cagccttcga	gcggcccgca	tggccgcccg	tcggccggtg	cgacgtgcgc	ggttaagcag	19740
ggcegeegee	gcgcgttggg	cggcagtgcc	gggtcggcgg	cggtggcgac	gtgctacgcg	19800
cctccgccgt	ctcttcattt	tagcataacg	ccgggctccg	cgcaccacgg	tctgaatggc	19860
					cctccaccac	
cgcgtcaatg	gcgtcatcga	cggtggtgcg	cccagtgcgg	ccgcgtttgt	gcgcgcccca	19980
gggcgcgcgg	tagtgcccgc	gcacgcgcac	tgggtgttgg	tcggagcgct	tctttgcccc	20040
gccaaacatc	ttgcttggga	agcgcaggcc	ccagcctgtg	ttattgctgg	gcgatataag	20100
gatggacatg	tttgctcaaa	aagtgcggct	cgataggacg	cgcggcgaga	ctatgcccag	20160
ggccttgtaa	acgtaggggc	aggtgcggcg	tctggcgtca	gtaatggtca	ctcgctggac	20220
tcctccgatg	ctgttgcgca	gcggtagcgt	cccgtgatct	gtgagagcag	gaacgttttc	20280
					cġggaaagcg	
attgaacacg	tgggtcagag	aggtaaactg	gcggatgagc	tgggagtaga	cggcctggtc	20400
gttgtagaag	ctcttggagt	gcacgggcaa	cagctcggcg	cccaccaccg	gaaagttgct	20460
gatctggctc	gtggagcgga	aggtcacggg	gtcttgcatc	atgtctggca	acgaccagta	20520
gacctgctcc	gagccgcagg	ttacgtcagg	agtgcaaagg	agggtccatg	agcggatccc	20580
ggtctgaggg	tcgccgtagt	tgtatgcaag	gtaccagctg	cggtactggg	tgaaggtgct	20640
gtcattgctt	attaggttgt	aactgcgttt	cttgctgtcc	tctgtcaggg	gtttgatcac	20700
cggtttcttc	tgaggcttct	cgacctcggg	ttgcgcagcg	ggggcggcag	cttctgccgc	20760
tgcctcggcc	-tcagcgcgct-	-tetecteege-	-ccgtgtggca-	-aaggtgtcgc-	-cgcgaatggc	-20820-
atgatcgttc	atgtcctcca	ccggctgcat	tgccgcggct	gccgcgttgg	agttctcttc	20880
cgcgccgctg	ccactgttgt	tgccgccgcc	tgcgccatcc	ccgccctgtt	cggtgtcatc	20940
ttttaagctt	gcctggtagg	cgtccacatc	caacagtgcg	ggaatgttac	caccctccag	21000
gtcatcgtag	gtgatcctaa	agccctcctg	gaagggttgc	cgcttgcgga	tgcccaacaa	21060
gttgctcagg	cggctgtggg	tgaagtccac	cccgcatcct	ggcagcaaaa	tgatgtctgg	21120
atggaaggct	tcgtttgtat	ataccccagg	catgacaaga	ccagtgactg	ggtcaaaccc	21180
cagtctgaag	ttgcgggtgt	caaactttac	cccgatgtcg	ctttccagaa	ccccgttctg	21240
cctgcccact	ttcaagtagt	gctccacgat	cgcgttgttc	ataaggtcta	tggtcatggt	21300
ctcggagtag	ttgccctcgg	gcagcgtgaa	ctccacccac	tcatatttca	gctccacctg	Z1300
tttgtcctta	gtaagcgagc	gcgacaccat	caccegegee	ttaaacttat	tggtaaacat	21420
gaactcgttc	acatttggca	tgttggtatg	caggatggtt	ccagginge	cgccccagtg	21540
cgaacggtcg	tcaagattga	cggtetgtgt	geetgeetee	bastbasaa	agtcattgtt	21500
ttgaatgace	gradina	agtigotyty	gregreery	aatagggg	atgccacatc	21660
cgrtgacttg	atattataa	ggtacacacg	ggcggcgccg	cacaaaaaaa	ccaactcaga	21720
gtaacygatg	gestgeseg	ccccggcagg	cogcaggcac	actorcocco	caaacggcgg cgctcaccac	21780
guccayyya	gcaccyaayy	gggaacccag	atacatcacc	accegacyccy	tactaagggg	21840
getetegtag	agggaggag	caataccata	acacaccycc	atttttatt	ttgcatcatg	21900
attacaayaa	ttttttta	aacattctcc	ccarcetran	acasaatac	gcaaacgggt	21960
					tcctcccaca	
ccadaccccd	ctgacggtcg	tacctttaac	aacaaataaa	caaacacaaa	ccgggcacat	22080
ccctatactc	ctgcgcatac	gtcttccatc	tactcatctt	gtccactagg	ctctctatcc	22140
cattattaaa	aaatgccgga	ggcaggttct	tttcacacta	caactacaac	agcgagttgt	22200
ttaggtactc	ctcctcaccc	agcaggcgcg	aacaaataat	acaaatacta	gtaaaagacc	22260
ctatcaagct	togaaatggg	ctactcqcat	ctgaccgcgg	ggccgcagcg	cctagatcgg	22320
acaagetget	taacetacaa	aagctttcct	ttcgcagcgc	cacctetacc	tgctcgcgct	22380
gttgcaactc	tagcagggtc	tacaattaca	gggaaaacac	gctgtcgtct	atgtcgtccc	22440
agaggaatcc	atcottaccc	tcgggcacct	caaatccccc	ggtgtagaaa	ccagggggcg	22500
gtagccagtg	cagattcaag	atggcattgg	tgaaatactc	ggggttcacg	gcggccgcgc	22560
gatgcaagta	gtccattagg	cgattgataa	acggccggtt	tgaggcatac	atgcccggtt	22620
ccatgttgcg	cgcggtcatg	tccagcgcca	cgctgggcgt	taccccgtcg	cgcatcaggt	22680
taaggctcac	gctctgctgc	acatagegea	agatgcgctc	ctcctcgctg	tttaaactgt	22740
gcaacgaggg	gatcttctgc	cgccggttgg	tcagcaggta	gttcagggtt	gcctccaggc	22800
tgcccgtgtc	ctcctgcccc	agcgcgcggc	tgacacttgt	aatctcctgg	aaagtatgct	22860
cgtccacatg	cgcctgacct	atggcctcgc	ggtacagtgt	cagcaagtga	cctaggtatg	22920
tgtcccggga	cacgctgcca	ctgtccgtga	agggcgctat	tagcagcagc	aacaggcgcg	22980
agttgggcgt	cagcaagcta	gacacggtcg	cgcggtcgcc	tgtgggagcc	cgcacccccc	23040
acagcccctg	caagttcttg	aaagcctggc	tcaggtttac	ggtctgcagg	ccttgtctac	23100
_						

togtctggaa	aaaatagtct	ggcccggact	ggtacacctc	actttgcggt	gtctcagtca	23160
ccattagccg	cagtgcgctc	acaaagttgg	tgtagtcctc	ctgtccccgc	ggcacgttgg	23220
caaactatat	actcaggaag	gcgtttagtg	caaccatgga	gcccaggttg	ccctqctqct	23280
acacacactc	acactacacc	acggeetege	gcacatcccc	caccagccgg	tccaggttgg	23340
				cagcgcgtcg		
coocctcatc	gaaccagata	accetatttt	caaccaacac	gtttacgatc	gccagcacct	23460
				cagaattgcg		
taacctacaa	ctactaccaa	aacgcgtcag	ggttacgcgc	agtcagcgac	atgatgcggt	23580
ccatcacctc	acaccaatca	tccatagaat	taaggccgga	cggctggctc	tacaacacca	23640
cccacaccac	canatecatt	gcgtcttgca	tcatctgatc	agaaacatca	ccacttagta	23700
ctcaccatcc	tetagetegt	actcatcatc	ctcgtcatat	tcctccacgc	coccoacott	23760
accaacacac	acadatacca	ccaccaaccc	aggtccggcc	ccagctgcct	ccagagagaga	23820
traacttaaa	acceaacaca	gatcagaga	cocotcaaao	taggactcgg	cctctctatc	23880
accactaccc	gtgccagcga	ggacccttta	caggetatac	atcagctcgc	ggtcgctgag	23940
ctcacaccac	caactcacac	tcacggcctt	atagatagag	tcgttgcgat	aaacgcccag	24000
				tagaacccct		
ctccttatct	atgggaacgt	aaggggtatg	gtatatettg	cgggcgtaaa	acttoccag	24120
				aggctcaagc		
				cagcggccct		
tatotttäde	agegeagua	tgaatgcctc	attateceta	ctgtgctgca	ctataaggaa	24300
				agcgcgctta		
cagatgcatc	agtcctatag	ccacctcctc	gcgcgccaca	agcgtgcgca	cataattatt	24420
aaagcttttt	tgaaagttaa	tetectaatt	caccatctac	tcgtacgcgg	ttaccaggtc	24480
aacaaccacc	acatatacac	acacaaaact	aatcccggtc	cgcgcgtcgg	gctcaaagtc	24540
ctcctcacac	agcaaccgct	cacaattcaa	accataccac	aactcgcgcc	ctgcgtggaa	24600
ctttcgatcc	cgcatctcct	cagactcctc	tccctcqcgg	tcgcgaaaca	ggttctgccg	24660
cggcacgtac	acctcacaca	tgtcacgctt	cagctgcacc	cttgggtgtc	gctcaggaga	24720
agacactcct	agccgcgcca	ggccctcgcc	ctcctccaag	tccaggtagt	gccgggcccg	24780
gcgccgcggg	ggttcgtaat	caccatctgc	cgccgcgtca	gccgcggatg	ttgcccctcc	24840
tgacgcggta	ggagaagggg	agggtgccct	gcatgtctgc	cgctgctctt	gctcttgccg	24900
ctgctgagga	ggggggcgca	tctgccgcag	caccggatgc	atctgggaaa	agcaaaaaag	24960
gggctcgtcc	ctgtttccgg	aggaatttgc	aagcggggtc	ttgcatgacg	gggaggcaaa	25020
ccccgttcg	ccgcagtccg	gccggcccga	gactcgaacc	gggggtcctg	cgactcaacc	25080
cttggaaaat	aaccctccgg	ctacagggag	cgagccactt	aatgctttcg	ctttccagcc	25140
taaccgctta	cgccgcgcgc	ggccagtggc	caaaaaagct	agcgcagcag	ccgccgcgcc	25200
tggaaggaag	ccaaaaggag	cgctccccg	ttgtctgacg	tcgcacacct	gggttcgaca	25260
cgcgggcggt	aaccgcatgg	atcacggcgg	acggccggat	ccggggttcg	aaccccggtc	25320
				ggaagagtgc		
				cgcctcaccg		
cccgaccatg	gagcactttt	tgccgctgcg	caacatctgg	aaccgcgtcc	gcgactttcc	25500
gegegeetee	accaccgccg	ccggcatcac	ctggatgtcc	aggtacatct	acggatatca	25560
tcgccttatg	ttggaagacc	tegeceeegg	agccccggcc	accctacgct	ggcccctcta	25620
ccgccagccg	ccgccgcact	ttttggtggg	atatcagtac	ctggtgcgga	cttgcaacga	25680
ctacgtcttt	gactcaaggg	cttactcgcg	tctcaggtac	accgagctct	cgcagccggg	25/40
				tacaccatca		
ataccaccgc	tttgtggaca	tggatgactt	ccagtctacc	ctcacgcagg	tgcagcaggc	25860
catattagcc	gagcgcgttg	tcgccgacct	ggccctgctt	cagccgatga	ggggcttcgg	25920
ggtcacacgc	atgggaggaa	gagggcgcca	cctacggcca	aactccgccg	ccgccgtagc	25980
gatagatgca	agagatgcag	gacaagagga	aggagaagaa	gaagtgccgg	tagaaaggct	26100
catgcaagac	tactacaaag	acctgcgccg	atgtcaaaac	gaagcctggg	geatggeega	20100
ccgcctgcgc	attcagcagg	ccggacccaa	ggacatggtg	cttctgtcga	ccatccyccy	26220
teteaagace	gcctacttta	attacatcat	caycagcacc	tecgecagaa	actacticide	26220
ccgccacccg	acgeegeeeg	ccacggtgct	caycotacet	tgcgactgtg	coctocata	26240
cgcctttctc	yayaygtttt	tattasasta	catcattaca	tegeteaggt	taccacacac	26400
cyyaytacct	acacadcadt	accordance	gaggggggg	gccgtatccc gtcttccaac	tacaccacca	26460
cayecceeg	caacccata	accygyacat	gacgggcggc	cgcggggaga	traterarer	26520
chthatass	cacatacaa	tacaccatca	tracrarrat	gtccccctc	ccccaccacc	26580
cecegecgae	·	-g-g-c-g-c-g	Juguege	500000000		

gccagaagaa	gaagaagaag	gggaggccct	tatggaagag	gagattgaag	aagaagaggc	26640
ccctgtagcc	tttgagcgcg	aggtgcgcga	cactgtcgcc	gagctcatcc	gtcttctgga	26700
ggaggagtta	accgtgtcgg	cgcgcaactc	ccagtttttc	aacttcgccg	tggacttcta	26760
cgaggccatg	gagcgccttg	aggccttggg	ggatatcaac	gaatccacgt	tgcgacgctg	26820
ggttatgtac	ttcttcgtgg	cagaacacac	cgccaccacc	ctcaactacc	tctttcagcg	26880
cctgcgaaac	tacgccgtct	tcgcccggca	cgtggagctc	aatctcgcgc	aggtggtcat	26940
gegegeeege	gatgccgaag	ggggcgtggt	ctacagccgc	gtctggaacg	agggaggcct	27000
	tcgcagctca					
	ggagatetee					
	tcaggagacg					
aattgattct	gtcgaactct	ctttcaggtt	caagctcacc	gggcccgtcg	tcttcacgca	27240
gaggcgccag	attcaggaga	tcaaccgccg	cgtcgtcgcg	ttcgccagca	acctccgcgc	27300
gcagcaccag	ctcctgcccg	cgcgcggcgc	cgacgtgccc	ctgccccctc	tcccggcggg	27360
tecegageee	cccctacctc	cgggggcccg	cccgcgtcac	cgcttttaga	tgcatcatcc	27420
aaggacaccc	ccgcggccca	ccgccgccg	cgcggtaccg	tagtcgcgcc	gcggggatgc	27480
ggcctcttgc	aagtcatcga	cgccgccacc	aaccagcccc	tggaaatcag	gtatcacctg	27540
gacctagccc	gcgccctgac	ccggctatgc	gaggtaaacc	tgcaggagct	cccgcctgac	27600
ctgtcgccgc	gggagctcca	gaccatggac	agctcccatc	tgcgcgatgt	tgtcatcaag	27660
ctccgaccgc	cgcgcgcgga	catctggact	ttgggctcgc	gcggcgtggt	ggtccgatcc	27720
accataactc	ccctcgagca	gccagacggt	caaggacaag	cagccgaagt	agaagaccac	277 80
cagccaaacc	cgccaggcga	ggggctcaaa	ttcccactct	gcttccttgt	gcgcggtcgt	27840
caggtcaacc	tcgtgcagga	tgtacagccc	gtgcaccgct	gccagtactg	cgcacgtttt	27900
tacaaaagcc	agcacgagtg	ttcggcccgt	cgcagggact	tctactttca	ccacatcaac	27960
agccactcct	ccaactggtg	gcgggagatc	cagttcttcc	cgatcggctc	gcatcctcgc	28020
accgagcgtc	tctttgtcac	ctacgatgta	gagacctata	cttggatggg	ggcctttggg	28080
aagcagctcg	tgcccttcat	gctggttatg	aagttcggcg	gagatgagcc	tctggtgacc	28140
gccgcgcgag	acctagccgt	ggaccttgga	tgggaccgct	gggaacaaga	cccgcttacc	28200
ttctactgca	tcaccccaga	aaaaatggcc	ataggtcgcc	agtttaggac	ctttcgcgac	28260
cacctgcaaa	tgctaatggc	ccgtgacctg	tggagctcat	tcgtcgcttc	caaccctcat	28320
cttgcagact	gggccctgtc	agaacacggg	ctcagctccc	ctgaggagct	cacctacgag	28380
gaacttaaaa	aattgccctc	catcaagggc	accccgcgct	tcttggaact	ttacatcgtg	28440
ggccacaaca	tcaacggctt	cgacgagatc	gtgctcgccg	cccaggtaat	taacaaccgt	28500
tccgaggtgc	cgggaccctt	ccgcatcaca	cgcaacttta	tgcctcgcgc	gggaaagata	28560
cttttcaacg	atgtcacctt	cgccctgcca	aacccgcgtt	ccaaaaagcg	cacggacttt	28620
ttgctctggg	agcagggcgg	atgcgacgac	actgacttca	aataccagta	cctcaaagtc	28680
atggttaggg	acacctttgc	gctcacccac	acctcgctcc	ggaaggccgc	gcaggcatac	28740
gcgctacccg	tagaaaaggg	atgctgcgcc	taccaggccg	tcaaccagtt	ctacatgcta	28800
ggctcttacc	gttcggaggc	cgacgggttt	ccgatccaag	agtactggaa	agaccgcgaa	28860
gagtttgtcc	tcaaccgcga	gctgtggaaa	aaaaagggac	aggataagta	tgacatcatc	28920
aaggaaaccc	tggactactg	cgccctagac	gtgcaggtca	ccgccgagct	ggtcaacaag	28980
ctgcgcgact	cctacgcctc	cttcgtgcgt	gacgcggtag	gtctcacaga	cgccagcttc	29040
aacgtcttcc	agcgtccaac	catatcatcc	aactcacatg	ccatcttcag	gcagatagtc	29100
ttccgagcag	agcagcccgc	ccgtagcaac	ctcggtcccg	acctcctcgc	tccctcgcac	29160
gaactatacg	attacgtgcg	cgccagcatc	cgcggtggaa	gatgctaccc	tacatatett	29220
ggaatactca	gagagcccct	ctacgtttac	gacatttgcg	gcatgtacgc	ctccgcgctc	29280
acccacccca	tgccatgggg	tccccactc	aacccatacg	agegegeget	tgeegeeege	29340
gcatggcagc	aggcgctaga	cttgcaagga	tgcaagatag	actacttcga	cgcgcgcctg	29400
ctgcccgggg	tctttaccgt	ggacgcagac	ccccggacg	agacgcagct	agacccacta	29460
ccgccattct	gttcgcgcaa	gggcggccgc	ctctgctgga	ccaacgagcg	cctacgcgga	ZY3ZU
gaggtagcca	ccagcgttga	ccttgtcacc	ctgcacaacc	gcggttggcg	cgtgcacctg	29580
gtgcccgacg	agcgcaccac	cgtctttccc	gaatggcggt	gcgttgcgcg	cgaatacgtg	2704U
cagctaaaca	tcgcggccaa	ggagcgcgcc	gategegaea	aaaaccaaac	cctgcgctcc	20760
accgccaagt	tgctgtccaa	cgccctctac	yggtcgtttg	ccaccaagct	Lgacaacaaa	27/00
aagattgtct	tttctgacca	gatggacgcg	gccaccctca	aaggcatcac	cgcgggccag	20000
gtgaatatca	aatcctcctc	gtttttggaa	actgacaatc	ccagcgcaga	agtcatgccc	20040
gcttttgaga	gggagtactc	accccaacag	ctggccctcg	cagacagcga	Lgcggaagag	20000
agtgaggacg	aacgcgcccc	caccccctt	Latagecece	ccccaggaac	accoggreac	30000
gtggcctaca	cctataaacc	aatcaccttc	cttgatgccg	aagagggcga	catgtgtctt	20000

_	•					
cacaccctgg	agcgagtgga	ccccctagtg	gacaacgacc	gctacccctc	ccacttagcc	30120
tecttegtge	tggcctggac	gcgagccttc	gtctcagagt	ggtccgagtt	tctatacgag	30180
gaggaccgcg	gaacaccgct	cgaggacagg	cctctcaagt	ctgtatacgg	ggacacggac	30240
	tcaccgagcg					
	ggggaaacct					
	ccgtctgcgg					
	agetetacge					
	tgcgcgccaa					
	tggccgacgc					
	gcaccctggc					
	cgaggaccct					
caccgactac	tgccgtacag	cgaaagccgc	cccaacccgc	gaaacgagga	gatatgctgg	30780
atcgagatgc	cgtagagcac	gtgaccgagc	tgtgggaccg	cctggaactg	cttggtcaaa	30840
	catgcctacg					
	atcgctgggc					
	catgettaac					
	ccagttgcag					
	gctcaggaac					
ttttcttcat	cgcccgcag	gtagacatga	tcccccatc	tgaactcaaa	gcgcgggaaa	31200
	tgagggtaac					
	cccgcgcttt					
	tgatcccaga					
tcattatgga	cgaatgcatg	gaaaatctcg	gaggtcacaa	gggcgtctcc	aagttcttcc	31440
acgcatttcc	ttctaagcta	catgacaaat	ttcccaagtg	caccggatac	actgtgctgg	31500
	caacatgaat					
	gatgcatctc					
	caccaagggc					
aacaccacac	ccagcgctcc	tactacaact	ggatcatcta	caacaccacc	ccacaacata	31740
	gtggtgctac					
togagagtea	cctttaccac	atcetagee	aaatacacac	cacgetease	daccdadacc	31860
gerggreeeg	ggcctaccgc	gegegeaaaa	CCCCLaaata	tassagant	tarasarara	21000
tgatcaaaat	ccaaacagag	tetggttttt	accacycci	Ladaccycat	Lgggagggga	37300
ggaagccttc	agggcagaaa	ccrgcrggcg	cagatccaac	agetgetgag	aaacgacatt	32040
aagttcccgg	gtcaaagaat	ccaattgtgc	caaaagagcc	gtcaacttgt	catcgcgggc	32100
ggatgaacgg	gaagctgcac	tgcttgcaag	cgggctcagg	aaagcaaagt	cagtcacaat	32160
cccgcgggcg	gtggctgcag	cggctgaagc	ggcggcggag	gctgcagtct	ccaacggcgt	32220
tccagacacg	gtctcgtagg	tcaaggtagt	agagtttgcg	ggcaggacgg	ggcgaccatc	32280
aatgctggag	cccatcacat	tctgacgcac	cccggcccat	gggggcatgc	gcgttgtcaa	32340
	acaatgcttc					
	aactacatga					
	gcaaacagct					
	tcgctgattt					
	gatacctgcg					
agettatat	atgtagatga	taatcattat	cactttacco	atecttteea	atastacasa	32700
acguigat	gcggcgacct	gagagattt	cactettat	geceettetg	coatttaaca	32760
aggeracggg	geggegaeee	cycgyytttt		gaaaaccccc	cygucuaayy	22020
egetteeget	cttcttcgtc	atadettaat	guullatu.	addataccct	ttgaaaayaa	22020
aggaaacgac	aggtgctgaa	agcgaggctt	tttggcctct	gregrifeer	ttetetgttt	32880
ttgtccgtgg	aatgaacaat	ggaagttaac	ggatccaggc	cgcgagcaaa	aggccagcaa	32940
aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	cegeceecet	33000
gacgagcatc	acaaaaatca	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	33060
agataccagg	cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	33120
cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcatagctca	33180
cgctgtaggt	atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	33240
	agcccgaccg					
	acttatcgcc					
	gtgctacaga					
acadtattta	gtatctgcgc	tetacease	ccadttacct	tcagaaaaa	anttontann	33480
tettestees	gcaaacaaac	caccactaat	accountant	tttttattta	-accadence	33540
courgatecy	gcaaacaadc	caccycryyt	ageggegget	Lucinguing	caaycaycay	22240

```
attacgcgca gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac 33600
gctcagtgga acgaaaactc acgttaaggg attttggtca tcagattatc aaaaaggatc 33660
ttcacctaga tccttttaaa ttaaaaatga agttttaaat caatctaaag tatatatgag 33720
taaacttggt etgacagtta ecaatgetta atcagtgagg cacetatete agegatetgt 33780
ctatttcgtt catccatagt tgcctgactc cccgtagtgt agataactac gatacgggag 33840
ggettaccat eeggeeceag tgetgeaatg atacegegtg acceaegete aceggeteet 33900
qatttatcaq caataaacca gccagccgga agtgccgagc gcagaagtgg tcctgcaact 33960
ttatccgcct ccatccagtc tattagttgt tgccgggaag ctagagtaag tagttcgcca 34020
qttaatagtt ttcgcaacgt tgttgccatt gctacaggca tcgtggtgtc acgctcgtcg 34080
tttgqtatgq cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatccccc 34140
atgttgtgca aaaaagcggt tagctccttc ggtcctccga tagttgtcag aagtaagttg 34200
gccgcagtgt tatcactcat ggttatggca gcactgcata attctcttac tgtcatgcca 34260
tccgtaagat gcttttctgt gactggtgag tattcaacca agaatacggg ataataccgc 34320
gccacatagc agaactttaa aagtgctcat cattgggaaa cgttcttcgg ggcgaaaact 34380
ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa cccactcgcg cacccaagtg 34440
atcttctqca tcttttactt tcaccaqcgt ttctgggtga gcaaaaacag gaaggcaaaa 34500
tgccgcaaaa aagggaataa gggcgacacg gaaatgttga atactcatac ttttcctttt 34560
tcaatattat tgaagcattt atcagggtta ttgtctcatc agcggataca tatttg
<210> 3
<211> 31672
<212> DNA
<213> Artificial Sequence
<220>
<223> derived from Adenovirus
<400> 3
gaatcggcca gcgcgaatta actataacgg tcctaaggta gcgtcatcat cataatatac 60
cttattttgg attgaagcca atatgataat gagggggtgg agtttgtgac gtggcgcggg 120
qcqtqqqaac qqqqcqqqtq acqtaqqttt taggqcqqaq taacttqcat qtattqqqaa 180
ttgtagtttt tttaaaatgg gaagttacgt atcgtgggaa aacggaagtg aagatttgag 240
gaagttgtgg gttttttggc tttcgtttct gggcgtaggt tcgcgtgcgg ttttctgggt 300
gttttttgtg gactttaacc gttacgtcat tttttagtcc tatatatact cgctctgtac 360
ttggcccttt ttacactgtg actgattgag ctggtgccgt gtcgagtggt gttttttaat 420
aggtttttt actggtaagg ctgactgtta tggctgccgc tgtggaagcg ctgtatgttg 480
ttctqqaqcq qqaqqqtqct attttgccta ggcaggaggg tttttcaggt gtttatgtgt 540
ttttctctcc tattaatttt gttatacctc ctatgggggc tgtaatgttg tctctacgcc 600
tgcgggtatg tattcccccg ggctatttcg gtcgcttttt agcactgacc gatgttaacc 660
aacctgatgt gtttaccgag tcttacatta tgactccgga catgaccgag gaactgtcgg 720
tggtgctttt taatcacggt gaccagtttt tttacggtca cgccggcatg gccgtagtcc 780
gtcttatgct tataagggtt gtttttcctg ttgtaagaca ggcttctaat gtttaaatgt 840
ttttttttgt tattttattt tgtgtttaat gcaggaaccc gcagacatgt ttgagagaaa 900
aatggtgtct ttttctgtgg tggttccgga acttacctgc ctttatctgc atgagcatga 960
ctacgatgtg cttgcttttt tgcgcgaggc tttgcctgat tttttgagca gcaccttgca 1020
ttttatatcg ccgcccatgc aacaagctta cataggggct acgctggtta gcatagctcc 1080
gagtatgcgt gtcataatca gtgtgggttc ttttgtcatg gttcctggcg gggaagtggc 1140
cacactagte catacagace tacacatta tatteageta gecetagaa gagacetaca 1200
ggatcgcggt atttttgtta atgttccgct tttgaatctt atacaggtct gtgaggaacc 1260
tgaatttttg caatcatgat tcgctgcttg aggctgaagg tggagggcgc tctggagcag 1320
atttttacaa tggccggact taatattcgg gatttgctta gagacatatt gataaggtgg 1380
cqaqatqaaa attatttggg catggttgaa ggtgctggaa tgtttataga ggagattcac 1440
cctgaagggt ttagccttta cgtccacttg gacgtgaggg cagtttgcct tttggaagcc 1500
attqtqcaac atcttacaaa tqccattatc tqttctttqq ctqtaqaqtt tqaccacqcc 1560
```

accggagggg agcgcgttca cttaatagat cttcattttg aggtttttgga taatcttttg 1620 gaataaaaaa aaaaaaaaca tggttcttcc agctcttccc gctcctcccg tgtgtgactc 1680

gcagaacgaa	tgtgtaggtt	ggctgggtgt	ggcttattct	gcggtggtgg	atgttatcag	1740
	catgaaggag					
	atatactaca					
	tgtcacgccc					
	catgacacta					
	cctacctcct					
	cgaatgtaac					
	gggatttacg					
	gcttgtaatc					
	gacgagcatg					
	cggttccctg					
	ggatggcgcc					
	gccaaaagag					
	gcgcttgtgg					
	cgccttgcac					
actgtgctga	tttaagtgag	atcagggtgc	gctgctgtgc	ccggaggaca	aggcgtctca	2640
tgctgcgggc	ggtgcgaatc	atcgctgagg	agaccactgc	catgttgtat	tcctgcagga	2700
	gcggcagcag					
	tgactctacc					
	tggacagcag					
agctgcccgg	ggagtttatt	aatatcactg	atgagcgttt	ggctcgacag	gaaaccgtgt	2940
	acctaagaat					
	gactgtgtac					
	ttgattaagg					
	aaaatgactt					
	ggttcacgat					
	tttcagtggt					
taagtgctta	cctcgctagt	ttctgtggat	tcactagtgc	cattaagtgt	aatggtaagt	3360
	tagttttatc					
gtttgacttt	gggtttttgg	ataggctaga	aggttaggca	taaatccaac	tgcatttgtg	3480
	cattagttga					
	ttagaacacc					
gtgcctgtca	tggatgaaag	atctccagat	acagccaaag	cagctacagt	agctagtact	3660
tgactcccac	attttgtaag	aaccaaagta	aatttgcagt	cattatctga	atgaattctg	3720
cagttaggag	atgggtctgg	ggttgtccac	agggtaagtt	tgtcatcatt	tttgtttcct	3780
attgtaatgg	cccctgagtt	gtcaaagctt	aaacccgctc	caagtttagt	aatcatggca	3840
	tgtaatcaat					
gactcagatg	tgtttgtatc	aaactccaga	ccctttcctg	catttatagc	tatggcagta	3960
ttatcaaagt	ttagtccact	ggatttttt	atgctaactt	ccagtttttt	agtattgttt	4020
	aaaggtatag					
atatacaggg	gtccctgccc	cagtttaaga	cgtagttttg	tttgagcatc	aaatgggtaa	4140
	gaattaacaa					
atgttgtttg	atgaatcata	accaatagct	cctgcaactt	tggttctaag	ggagttttgt	4260
tcaacggtga	cacctggtcc	agtaactact	gttagtgtat	cggagttttg	tgctacttgc	4320
	ttattttaat					
ttaatgccca	agctacccgt	ggcagtagtt	agcgggggtg	atgcagttac	agtaagggtg	4440
tcgctgtcac	tgccagagag	gggggctgat	gtttgcaggg	ctagctttcc	atctgacact	4500
gtaatgggcc	ctttagtagc	aatgcttagt	ttggagtctt	gcacggtcag	tggggcttgt	4560
gactgtacgc	taagagcgcc	gctagtaact	atcagaggag	cggtggttgc	cactgttagg	4620
gcgcctgagg	taattgtaag	tggtgcggag	gtgtccaaac	ttatgtttga	ctttgtttt	4680
	gagtaacagt					
	tgcccatttt					
	agagaactcc					
ggggtaagaa	agggcacagt	tggaggcccg	gtttctgtgt	catatggata	cacggggttg	4920
aaggtgtctt	cagacggtct	ggcgcgtttc	atctgcaaca	atatgaagat	agtgggtgcg	4980
gagggacaag	aacatgagga	atttgacatc	ccatttaaac	tttggagaaa	gtttgcagct	5040
aaaaggcggc	tgagatacca	gagttgggag	gaaggaaagg	aggtgatgct	gaataagctg	5100
gacaaagatt	tgctgactga	ttttaagtaa	gtaatttatt	cagtcgtagc	cgtccgccga	5160

gtotttcacc	acatcasaat	taaaataaa	ctaatecaaa	tagtggccgg	gaggtccaga	5220
aaaaaaatta	and	2333444444	ctcctcaata	aattgtagag	ttccaatacc	5280
tacassass	aagtaaaccg	adggcacgaa	cacattaca	atcgcctgac	agaggatasa	5340
teeggagege	ggeteegagg	acgaggicig	tatagatta	accycccyac	ggggcgcaaa	5/00
cgaagagcgg	ccagegeege	cyaccigaaa	tacacatata	ggacggagac	caayayayya	5460
gctcaccgac	tcgtcgttga	getgaatace	regeeetetg	attttcaggt	gagitatacc	2400
craccaaac	gaccgcaccc	tgtgacgaaa	geegeeegea	agctgcgccc	ccgagccagc	5520
catctgaact	tcggcctggg	cgtctctggg	aagtaccaca	gtggtgggag	egggaettte	5560
ctggtacacc	agggcagcgg	gccaactacg	gggattaagg	ttattacgag	grgrggrggr	5040
aatagccgcc	tgttcgagga	gaattcggtt	teggtgggeg	cggattccgt	tgacccggga	5/00
tatcatgtgg	ggtcccgcgc	tcatgtagtt	tattcgggtt	gagtagtctt	gggcagctcc	5760
agccgcaagt	cccatttgtg	gctggtaact	ccacatgtag	ggcgtgggaa	tttccttgct	5820
cataatggcg	ctgacgacag	gtgctggcgc	cgggtgtggc	cgctggagat	gacgtagttt	5880
tcgcgcttaa	atttgagaaa	gggcgcgaaa	ctagtcctta	agagtcagcg	cgcagtattt	5940
gctgaagaga	gcctccgcgt	cttccagcgt	gcgccgaagc	tgatcttcgc	ttttgtgata	6000
caggcagctg	cgggtgaggg	agcgcagaga	cctgtttttt	attttcagct	cttgttcttg	6060
gcccctgctt	tgttgaaata	tagcatacag	agtgggaaaa	atcctatttc	taagctcgcg	6120
ggtcgatacg	ggttcgttgg	gcgccagacg	cagcgctcct	cctcctgctg	ctgccgccgc	6180
tgtggatttc	ttgggctttg	tcagagtctt	gctatccggt	cgcctttgct	tctgtgtgac	6240
cgctgctgtt	gctgccgctg	ccgctgccgc	cggtgcagta	ggggctgtag	agatgacggt	6300
agtaatgcag	gatgttacgg	gggaaggcca	cgccgtgatg	gtagagaaga	aagcggcggg	6360
cgaaggagat	gttgccccca	cagtcttgca	agcaagcaac	tatggcgttc	ttgtgcccgc	6420
gccacgagcg	gtagccttgg	cgctgttgtt	gctcttgggc	taacggcggc	ggctgcttag	6480
acttaccggc	cctggttcca	gtggtgtccc	atctacggtt	gggtcggcga	acaggcagtg	6540
ccggcggcgc	ctgaggagcg	gaggttgtag	cgatgctggg	aacggttgcc	aatttctggg	6600
gcgccggcga	ggggaatgcg	accgagggtg	acggtgtttc	gtctgacacc	tcttcggcct	6660
cggaagcttc	gtctaggctg	tcccagtctt	ccatcatctc	ctcctcctcg	tccaaaacct	6720
cctctgcctg	actgtcccag	tattcctcct	cgtccgtggg	tggcggcggc	ggcagctgca	6780
gcttctttt	gggtgccatc	ctgggaagca	agggcccgcg	gctgctgata	gggctgcggc	6840
ggcgggggga	ttgggttgag	ctcctcgccg	gactgggggt	ccaggtaaac	ccccgtccc	6900
tttcgtagca	gaaactcttg	gcgggctttg	ttgatggctt	gcaattggcc	aaggatgtgg	6960
ccctgggtaa	tgacgcaggc	ggtaagctcc	gcatttggcg	ggcgggattg	gtcttcgtag	7020
aacctaatct	cgtgggcgtg	gtagtcctca	ggtacaaatt	tgcgaaggta	agccgacgtc	7080
cacageceeg	gagtgagttt	caaccccgga	gccgcggact	tttcgtcagg	cgagggaccc	7140
tgcagctcaa	aggtaccgat	aatttgactt	tcgctaagca	gttgcgaatt	gcagaccagg	7200
gagcggtgcg	gggtgcatag	gttgcagcga	cagtgacact	ccagtaggcc	gtcaccgctc	7260
acgtcttcca	tgatgtcgga	gtggtaggca	aggtagttgg	ctagctgcag	aaggtagcag	7320
tgaccccaaa	gcggcggagg	gcattcacgg	tacttaatgg	gcacaaagtc	gctaggaagc	7380
gcacagcagg	tggcgggcag	aattcctgaa	cgctctagga	taaagttcct	aaagttttgc	7440
aacatgcttt	gactggtgaa	gtctggcaga	ccctgttgca	gggttttaag	caggcgttcg	
gggaagataa	tgtccgccag	gtgcgcggcc	acggagcgct	cgttgaaggc	cgtccatagg	7560
tccttcaagt	tttgctttag	cagcttctgc	agctccttta	ggttgcgctc	ctccaggcat	7620
tgctgccaca	cgcccatggc	cgtttgccag	gtgtagcaca	gaaataagta	aacgcagtcg	7680
cggacgtagt	cgcggcgcgc	ctcgcccttg	agcgtggaat	gaagcacgtt	ttgcccgagg	7740
cggttttcgt	gcaaaattcc	aaggtaggag	accaggttgc	agagctccac	gttggaaatt	7800
ttgcaggcct	ggcgcacgta	gccctggcga	aaggtgtagt	gcaacgtttc	ctctagcttg	7860
cgctgcatct	ccgggtcagc	aaagaaccgc	tgcatgcact	caagctccac	ggtaacaagc	7920
actgcggcca	tcattagctt	gcgtcgctcc	tccaagtcgg	caggctcgcg	cgtctcaagc	7980
cagcgcgcca	gctgctcatc	gccaactgcg	ggtaggccct	cctcggtttg	ttcttgcaag	8040
tttgcatccc	tctccagggg	tcgtgcacgg	cgcacgatca	gctcgctcat	gactgtgctc	8100
ataaccttgg	ggggtaggtt	aagtgccggg	taggcaaagt	gggtgacctc	gatgctgcgt	8160
ttcagcacgg	ctaggcgcgc	gttgtcaccc	tcaagttcca	ccagcactcc	acagtgactt	8220
tcattttcgc	tgttttcttg	ttgcagagcg	tttgccgcgc	gtttctcgtc	gcgtccaaga	8280
ccctcaaaga	tttttggcac	ttcgtcgagc	gaggcgatat	caggtatgac	agcgccctgc	8340
cgcaaggcca	gctgcttgtc	cgctcggctg	cggttggcac	ggcaggatag	gggtatcttg	8400
cagttttgga	aaaagatgtg	ataggtggca	agcacctctg	gcacggcaaa	tacggggtag	8460
aagttgaggc	gcgggttggg	ctcgcatgtg	ccgttttctt	ggcgtttggg	gggtacgcgc	8520
ggtgagaaca	ggtggcgttc	gtaggcaagg	ctgacatccg	ctatggcgag	gggcacatcg	8580
ctgcgctctt	gcaacgcgtc	gcagataatg	gcgcactggc	gctgcagatg	cttcaacagc	8640

					•	
acgtcgtctc	ccacatctag	gtagtcgcca	tgcctttggt	cccccgccc	gacttgttcc	8700
tcgtttgcct	ctgcgtcgtc	ctggtcttgc	tttttatcct	ctgttggtac	tgagcgatcc	8760
tcgtcgtctt	cgcttacaaa	acctgggtcc	tgctcgataa	tcacttcctc	ctcctcaagc	8820
gggggtgcct	cgacggggaa	ggtggtaggc	gcgttggcgg	catcggtgga	ggcggtggtg	8880
gcgaactcaa	agggggcggt	taggctgtcc	tccttctcga	ctgactccat	gatctttttc	8940
tgcctatagg	agaaggaaat	ggccagtcgg	gaagaggagc	agcgcgaaac	caccccgag	9000
cgcggacgcg	gtgcggcgcg	acgtccacca	accatggagg	acgtgtcgtc	cccgtcgccg	9060
tegeegeege	ctccccgcgc	gcccccaaaa	aagcggctga	ggcggcgtct	cgagtccgag	9120
gacgaagaag	actcgtcaca	agatgcgctg	gtgccgcgca	cacccagccc	gcggccatcg	9180
acctcgacgg	cggatttggc	cattgcgtcc	aaaaagaaaa	agaagcgccc	ctctcccaag	9240
cccgagcgcc	cgccatcccc	agaggtgatc	gtggacagcg	aggaagaaag	agaagatgtg	9300
gcgctacaaa	tggtgggttt	cagcaaccca	ccggtgctaa	tcaagcacgg	caagggaggt	9360
aagcgcacgg	tgcggcggct	gaatgaagac	gacccagtgg	cgcggggtat	gcggacgcaa	9420
gaggaaaagg	aagagtccag	tgaagcggaa	agtgaaagca	cggtgataaa	cccgctgagc	9480
ctgccgatcg	tgtctgcgtg	ggagaagggc	atggaggctg	cgcgcgcgtt	gatggacaag	9540
taccacgtgg	ataacgatct	aaaggcaaac	ttcaagctac	tgcctgacca	agtggaagct	9600
ctggcggccg	tatgcaagac	ctggctaaac	gaggagcacc	gcgggttgca	getgacette	9000
accagcaaca	agacctttgt	gacgatgatg	gggcgattcc	tgcaggcgta	cetgeagteg	9720
tttgcagagg	taacctacaa	gcaccacgag	cccacgggct	gcgcgttgtg	getgeaeege	9780
tgcgctgaga-	-tcgaaggcga	gcttaagtgt	ctacacggga	gcattatgat	aaacaaggag	7040
cacgtgattg	aaatggatgt	gacgagcgaa	aacgggcagc	gcgcgctgaa	ggagcagtet	9900
agcaaggcca	agatcgtgaa	gaaccggtgg	ggccgaaatg	tggtgcagat	ccccaacacc	10020
gacgcaaggt	gctgcgtgca	tgacgcggcc	tgtccggcca	atcagttttc	cggcaagtct	10020
tgcggcatgt	tettetetga	aggegeaaag	geteaggtgg	cttttaagca	gateaagget	10140
ttcatgcagg	cgctgtatcc	taacgeccag	accgggcacg	gtcaccttct	gatgecacta	10240
cggrgcgagr	gcaactcaaa	geetgggeat	geacectttt	tgggaaggca	getaceaaag	10200
ttgaeteegt	regecergag	caacgeggag	gacctygacy	cggatctgat	caaccetata	10200
agegtgetgg	ccagcgtgta	acacacacac	ccyacaycyc	tccagtgctg acttcaagat	aterrore	10320
tategeaact	egegegegea	gggcggaggc	aggatataga	gtgaaaactt	caccoacto	10300
gaeetgetaa	ttatacatas	gatggtgtgt	agcocycyga	accagtatcg	caacatatac	10500
ctgcggatgg	cacatacca	tacacaacaa	aacccctttq	attttaaac	aacacaaaca	10560
acaaggggg	agaataaata	atcacccaa	agtgtagaaa	taaaaacatt	tocctttatt	10620
gcaagggcgg	cctactacat	tatttttaca	totttttcaa	gtgacaaaaa	gaagtggcgc	10680
tcctaatctc	cacactataa	ctgcggaagt	agggcgagtg	gcgctccagg	aagctgtaga	10740
actatteeta	attacaacac	agggtgggt	gtacctgggg	actgttaagc	atggagttgg	10800
gtaccccaat	aataaggttc	ataataaaat	tataatccat	gggagtttgg	ggccagttgg	10860
caaaggggtg	gagaaacatg	cagcagaata	gtccacaggc	ggccgagttg	ggcccctgca	10920
cactttagat	ggacttttcc	agcattatac	agcagtcaga	ggaagaagca	atggcgctac	10980
aacacaaaa	tgactcgtac	tcaaactggt	aaacctgctt	gagtcgttgg	tcagaaaagc	11040
caaagggctc	aaagaggtag	catgtttttg	agcgcgggtt	ccaggcaaag	gccatccagt	11100
gtacgccccc	agtctcgcga	ccggccgtat	tgactatggc	gcaggcgagc	ttgtgtggag	11160
aaacaaagcc	tggaaagcgc	ttgtcatagg	tgcccaaaaa	atatggccca	caaccaagat	11220
ctttgacaat	ggctttcagt	tectgeteae	tggagcccat	ggcggcagct	gttgttgatg	11280
ttgcttgctt	ćttttatgtt	gtggcgttgc	cggccgagaa	gggcgtgcgc	aggtacacgg	11340
tctcgatgac	gccgcggtgc	ggctggtgca	cacggaccac	gtcaaagact	tcaaacaaaa	11400
cataaagaag	ggtgggctcg	tccatgggat	ccacctcaaa	agtcatgtct	agcgcgtggg	11460
cggagttggc	gtagagaagg	ttttggccca	ggtctgtgag	tgcgcccatg	gacataaagt	11520
tactggagaa	tgggatgcgc	caaagggtgc	gatcgcaaag	aaacttttc	tgggtaatac	11580
tgtcaaccgc	ggttttgcct	attagtgggt	agggcacgtt	ggcggggtaa	gcctgtccct	11640
cgcgcatggt	gggagcgagg	tagcctacga	atcctgagtt	gttatgctgg	tgaagaattc	11700
caacctgctg	atactccttg	tatttagtat	cgtcaaccac	ttgccggctc	atgggctgga	11760
agtttctgaa	gaacgagtac	atgcggtcct	tgtagctttc	tggaatgtag	aagccctggt	11820
agccaatatt	gtagttggcc	aacatctgca	ccaggaacca	gtccttggtc	atgttgcact	11880
gagctacgtt	gtagccctcc	ccgtcaactg	agcgtttaat	ctcaaactca	ttgggagtaa	11940
gcaggcggtc	gttgcccggc	cagctaacag	aagagtcaaa	ggtaatggcc	accttcttaa	12000
aggtgtgatt	aagatagaag	gttccgtcaa	ggtatggtat	ggagccagag	taggtgtagt	12060
aagggtcgta	gcctgatccc	agggaagggg	tttcctttgt	cttcaagcgt	gtgaaggccc	12120

						10100
aaccgcgaaa	tgctgcccag	ttgcgcgatg	ggatggagat	gggcacgttg	gtggcgttgg	12180
cgggtatggg	gtatagcatg	ttggcggcgg	aaaggtagtc	attaaaggac	tggtcgttgg	12240
totcatttct	gagcatggct	tccagcgtgg	aggccgtgtt	gtgggccatg	gggaagaagg	12300
taacataaaa	acaaatacta	tcaaacttaa	tactaacccc	gtcaactcta	agatcgtttc	12360
cancacacat	ataaaaaaaa	atattaacat	ccttcctcaa	attacetta	tatgtatatg	12420
					tgaatgtgaa	
agggcacgta	gcggccgttt	cccaacaaca	tggagcgata	acggaggccc	gcattgcggt	12540
ggtggttaaa	gggattaacg	ttgtccatgt	agtccagaga	ccagcgcgcc	ccaaggttaa	12600
tgtagcagtc	tacaagcccg	ggagccacca	ctcgcttgtt	catgtagtcg	taggtgttgg	12660
gattatcaga	tatttccaca	ttggtgggt	tgtattttag	cttgtctggc	aggtacagcg	12720
caatattaga	gtaaaggaaa	tttctccata	ggttggcatt	taggttaatt	tccatggcaa	12780
acttattacc	cactcctatt	tcattacata	ttacaaaaat	ttcatcttt	gtccatgtag	12840
tatataatt	atacactacc	coattagge	taggattaat	aggttgatag	gtgtcagtta	12900
Lateteeatt	acegeetgag	ccattgccat	thecasette	agectgatag	gcgccagcca	12060
ccccaatacc	cccaagagga	aaacaacaac	ttggcaatte	acceteaget	ccatggtttt	12900
caatgattct	aacatctgga	tcatagctgt	ctacagcctg	attccacata	gaaaaatatc	13020
tggttctatc	acctatggaa	tcaagcaaga	gttgatagga	cagctctgtg	tttctgtctt	13080
gcaaatctac	cacggcattt	agctgcgatg	cctgaccagc	aagaacaccc	atgttgccag	13140
toctottata	atacattagg	ccaataaaat	tgtccctgaa	agcaatgtaa	ttgggtctgt	13200
ttggcataga	ttgttgaccc	aacatagett	tagaattttc	atcacctttt	ccaggtttgt	13260
adenenere e	tatatatataa	atttccatat	ttacatette	actotacaaa	accacttttg	13320
adyacayacy	-th-settes	gectectata	angetagt	atttaagaag	aattgcaagt	13380
gtttagtage	acceccine	eggtegttea	aayayytayt	accigagaag	aactgcaagt	12440
caacctttgg	aagaggcacc	CCTTTTCat	ccggaaccag	aacggattga	ccaccaaaag	13440
gatttgtagg	cctggcataa	gatccatagc	atggtttcat	gggagttgtt	tttttaagca	13500
ctctccctcc	tgccgcatta	gcatcagctt	cgttccactg	agattcgcca	atttgaggtt	13560
ctggttgata	ggaaggatct	gcgtatacag	gtttagcttg	tgtttctgca	ttgtctgatc	13620
ctatttqtaq	cccgcttttt	gtaattgttt	ctccagacaa	aggagcctgg	gcatagacat	13680
gtgttttctt	agtagcctga	tctcgagcgt	tttactcttc	ttcttcctct	tcttcatctt	13740
catcttcctc	ttcttcatcc	teggeaactg	cecaaccact	atcttcggtt	tgttcccact	13800
anagagagtt	2002000000	ttaggaaacta	gaggetge	aacaatacca	gagtagggct	13860
tacayyayıı	aggagegeee	cegggageea	gagagaaaaa	ggeagegeeg	gagaatataaa	13000
taaaagtagg	ccccctgtcc	ageaegeege	ggatgtcaaa	gtacgtggaa	gccatatcaa	13000
gcacacggtt	gtcacccaca	gccagggtga	accgcgcttt	gtacgagtac	gcggtatcct	13960
cgcggtccac	agggatgaac	cgcagcgtca	aacgctggga	ccggtctgtg	gttacgtcgt	14040
gcgtaggtgc	caccgtgggg	tttctaaact	tgttattcag	gctgaagtac	gtctcggtgg	14100
cgcgggcaaa	ctgcaccagc	ccggggctca	ggtactccga	ggcgtcctgg	cccgagatgt	14160
gcatgtaaga	ccactgcggc	atcatcgaag	gggtagccat	cttggaaagc	gggcgcacgg	14220
caactcaaca	actcctctaa	cggcgacatg	gacgcataca	tgacacatac	gacacgttag	14280
ctatttagaa	gcatcgtcgg	cacttcaaaa	attgcacccc	cagacccacg	atgctgttca	14340
atatacttta	ccanttacca	ctaactacaa	accacateda	tcacaaacca	ctggcggcac	14400
graces	ccagccgcca	aggacactta	googoacoga	adacadacca	ggcagcacag	14460
ggcgcaggga	cycycygcca	gggcgggcta	caacaacygc	tagacggcccc	tratagaga	14520
gtttetgetg	ggtgtcagcg	gggggaggca	ggteeagegt	cacaggigig	tgctggccca	14500
gcactccggt	agccatgggc	gcgatgggac	agaraaraaa	caggeettge	tttagtgcct	14560
cctcgtacga	gggaggctca	tctatttgcg	tcaccagagt	ttcttccctg	tegggeegeg	14640
gacgcttttc	gccacgcccc	tctggagaca	ctgtctccac	ggccggtgga	ggctcctcta	14700
cgggagggcg	gggatcaagc	ttactgttaa	tcttattttg	cactgcctgg	ttggccaggt	14760
ccaccacccc	gctaatgcca	gaggccaggc	catctaccac	cttttgttgg	aaattttgct	14820
ctttcaactt	gtccctcagc	atctggcctg	tactactatt	ccaggccttg	ctgccatagt	14880
tettaateet	ddaaccdaaa	tttttaatoc	cactccacaa	cgagccccag	ctgaaggcgc	14940
coccaatast	attactacta	ccccatatctt	acceptates	catgaacgg	cgcgagccgt	15000
caccycccac	accyctygty	cogacacece	gttagttet	account	tacaggeoge	15060
gregegggge	cagagacgca	aagttgatgt	terebete	acaaaacayc	tacaggacca	15120
agcgagcgtg	agactccaga	ctttttattt	rgarrrrcc	acatgcaact	tgtttttaat	T2T70
cagtgtctct	gcgcctgcaa	ggccacggat	gcaattccgg	gcacggcgcc	aatcgccgcg	T2T80
gcgatcagtg	gaataaggag	gggcaggata	ccgccgcgca	tgcgacggtg	cgacgcgcgc	15240
cgccgccggt	ggtgcgcacg	acgcatgccg	cccgtcaggc	cgtggccggc	catgcccctc	15300
ctacqqtqca	ttcttcctca	gaatcccggc	accgggaaac	ggaggcggca	ggtgagggcc	15360
atatetecaa	gaaccacaaa	gaccogcttt	taaacgatgc	tagaataata	gcgcgctgtt	15420
dacadaca	gaatcataaa	teetteeee	accaccctac	gcacggaaat	cggggccagc	15480
agrageataca	gggccccgcc	acaccacaca	attaceates	taattaaaa	tcgggtagtc	15540
acgggctggc	yacyycyacy	geggeggegg	greccagegg	anatacaca	gatggagagagagagagagagagagagagagagagagag	15600
gctcgtcttc	Lggggcggta	ggtgtageca	cyatayccyg	gggtaggege	gatggaagga	73000

tgtagggcat	attcgggcag	tagtgcgctg	gcggtgccgt	acttcctgga	acggcgcggg	15660
caccaaaaaa	ctgaaacgcg	aaacatccac	gggtccgttt	gcacctccgt	agaggttttg	15720
gacgcggccg	cagcggccgc	ctgcaccgcg	gcatctgcca	ccgccgaggc	aaccggggac	15780
gtttgtgtct	ccatgccctc	tgtggcagtg	gcaatactag	tgctactggt	ggtgggtatc	15840
tgaacgtcca	cggtctgcac	gcccagtccc	ggtgccacct	gcttgattgg	ccgcacgcgg	15900
acctcgggct	ccagcccagg	ctccacggtc	attttttcca	agacatcttc	cagtcgctgg	15960
cacttagata	ccatcagetg	cacqqtgggt	gccaagtcac	cagactcgcg	ctttaggccg	16020
cacttttctt	cggacggtgc	aagcgtgggc	agcacctgct	gcagtgtcac	gggctttagg	16080
ctaggtgttg	ggttgccctc	atccaacaac	aacqccaaca	tatccttata	ccgctttccg	16140
taggcaaact	ccccgaggcg	ctcattagcc	toctcaaoca	gatcctcatc	gccgtacacc	16200
tcatcataca	cgcgcttgta	aatacaaata	gagcgctcac	cagacataaa	aactacqqtq	16260
	gcaaaacacg					
	gcagcagttc					
ttctttttga	cccgctttag	ctttcagaac	ttgtaatcct	actetteett	cttcqqqqqq	16440
ccatagatct	ccggcgcgat	gacctggagc	atctcttctt	tgattttgcg	cttggacata	16500
acttcattac	gcgccgccgc	cactagatac	atacaacagt	acqaqtctaa	gtagtttttt	16560
cttgcaatct	agttgcgcgg	agaacaaata	cacacaaaca	cacacaaacc	gctaaccgag	16620
	agtacacgtt					
	ccgctcgtcg					
cttcgagcgg	cccgcatggc	cacccatcaa	ccaatacaac	atacacaatt	aagcagggc	16800
accaccacac	gttgggcggc	agtgccgggt	caacaacaat	ggcgacgtgc	tacgcgcctc	16860
	tcattttagc					
	acactggtgg					
	catcgacggt					
gcgcggtagt	gcccgcgcac	gcgcactggg	tgttggtcgg	agcgcttctt	tgccccgcca	17100
aacatcttgc	ttgggaagcg	caggccccag	cctgtgttat	tgctgggcga	tataaggatg	17160
gacatgtttg	ctcaaaaagt	gcggctcgat	aggacgcgcg	gcgagactat	gcccagggcc	17220
ttgtaaacgt	aggggcaggt	gcggcgtctg	gcgtcagtaa	tggtcactcg	ctggactcct	17280
ccgatgctgt	tgcgcagcgg	tagcgtcccg	tgatctgtga	gagcaggaac	gttttcactg	17340
acggtggtga	tggtgggggc	tggcgggcgc	gccaaaatct	ggttctcggg	aaagcgattg	17400
aacacgtggg	tcagagaggt	aaactggcgg	atgagctggg	agtagacggc	ctggtcgttg	17460
tagaagctct	tggagtgcac	gggcaacagc	tcggcgccca	ccaccggaaa	gttgctgatc	17520
tggctcgtgg	agcggaaggt	cacggggtct	tgcatcatgt	ctggcaacga	ccagtagacc	17580
tgctccgagc	cgcaggttac	gtcaggagtg	caaaggaggg	tccatgagcg	gatcccggtc	17640
tgagggtcgc	cgtagttgta	tgcaaggtac	cagctgcggt	actgggtgaa	ggtgctgtca	17700
ttgcttatta	ggttgtaact	gcgtttcttg	ctgtcctctg	tcaggggttt	gatcaccggt	17760
ttcttctgag	gcttctcgac	ctcgggttgc	gcagcggggg	cggcagcttc	tgccgctgcc	17820
teggeeteag	cgcgcttctc	ctccgcccgt	gtggcaaagg	tgtcgccgcg	aatggcatga	17880
tcgttcatgt	cctccaccgg	ctgcattgcc	gcggctgccg	cgttggagtt	ctcttccgcg	17940
ccgctgccac	tgttgttgcc	gccgcctgcg	ccatccccgc	cctgttcggt	gtcatctttt	18000
aagcttgcct	ggtaggcgtc	cacatccaac	agtgcgggaa	tgttaccacc	ctccaggtca	18060
tcgtaggtga	tectaaagee	ctcctggaag	ggttgccgct	tgcggatgcc	caacaagttg	18170
ctcaggcggc	tgtgggtgaa	gtccaccccg	catcctggca	gcaaaatgat	gtctggatgg	T8T80
aaggcttcgt	ttgtatatac	cccaggcatg	acaagaccag	tgactgggtc	aaaccccagt	18240
ctgaagttgc	gggtgtcaaa	ctttaccccg	atgtcgcttt	ccagaacccc	greergeerg	18300
cccactttca	agtagtgctc	cacgatcgcg	ttgttcataa	ggtctatggt	catggtctcg	18360
gagtagttgc	cctcgggcag	cgtgaactcc	acccactcat	atttcagete	cacctgtttg	10400
teettagtaa	gcgagcgcga	caccatcacc	egegeettaa	acttattggt	aaacatgaac	10540
tcgttcacat	ttggcatgtt	ggtatgcagg	atggttttca	ggtegeegee	ccagtgcgaa	10600
cggtcgtcaa	gattgatggt	ctgtgtgctt	geeteeceeg	ggetgtagte	actyctttga	10660
atgaccgtgg	ttagaaagtt	getgtggteg	ctetggtagt	ccagggatgc	cacacecyce	10770
gacttgttgt	ccacaaggta	cacacgggtg	yrgrcyaata	ggggtgccaa	cccayaytaa	19700
cggatgctgt	ttctccccc	ggeaggeege	aggracegeg	gaggcacada	cagogggccc	18940
agyggagcat	cgaaggggga gaggaggacc	ttaataataa	aterrerere	gcgccgcgct	aarraraata	18900
	gaggaggacc aacgctcggt					
Caagaaaacc	tttaaaaca	ttatagaga	cotagagaga	addtacacac	accorditace	19020
2010001000	aaatccagga	cactactata	atataccasa	tratrotrot	cccacaccca	19080
actedetece	aaacccayya	cyclyclycc	geergeegag	coaccyccct	cocacaccag	-2000

accccactaa	cggtcgtgcc	tttgacgacg	gatagacaga	cgcgggccgg	gcacatccct	19140
atactectae	gcatacgtct	tccatctact	catcttgtcc	actaggetet	ctatcccqtt	19200
gttgggaaat	gccggaggca	agttettte	acactacaac	tocaocaoco	agttgtttag	19260
gtactcctcc	tcgcccagca	aacacaaaca	aataatacaa	atactaataa	aagaccctat	19320
caaacttaaa	aatgggctac	tracatetaa	ccacaaaacc	gcagcgccta	gatcggacaa	19380
actacttaac	ctgcggaagc	tttcctttca	caccaccacc	tctacctact	cacactatta	19440
caactetage	agggtctgcg	attacaaaa	aaacacacta	tcatctatat	catcccadad	19500
caactccagc	ttaccctcgg	gccgcggga	tececeata	tagaaaccag	adadadada	19560
gaacccaccy	ttcaagatgg	geaccccaaa	atactcogg	ttcaccacaa	cccccccata	19620
ccagtgcggg	attaggcgat	tartarraga	acactcgggg	acatacatac	cogcycyacy	19680
caagtagtee	gtcatgtcca	ranganagat	coggettagag	ccatcacacac	trannttaan	19740
gregegegeg	tgctgcacat	aggecacyct	gggcgccacc	tagatattta	aactotocaa	19800
geteaegete	tgetgeacat	agegeaagat	gegeteette	aggettaget	aactycycaa	19860
cgaggggate	ttctgccgcc	ggttggttag	caygrayere	taataassa	tatestasts	10000
cgtgtcctcc	tgccccagcg	cgcggctgac	acttgtaate	ccctggaaag	catgetegte	10000
cacatgcgcc	tgacctatgg	ccccgcggta	cagtgtcage	aagtgaccta	ggtatgtgtt	7330U
ccgggacacg	ctgccactgt	ccgtgaaggg	cgctattagc	agcagcaaca	ggegegaget	20040
gggcgtcagc	aagctagaca	cggtcgcgcg	gregeergrg	ggagcccgca	cccccacag	20100
cccctgcaag	ttcttgaaag	cctggctcag	gtttacggtc	tgcaggcctt	grctacrggr	70790
ctggaaaaaa	tagtctggcc	cggactggta	cacctcactt	tgcggtgtct	cagtcaccat	20220
tagccgcagt	gcgctcacaa	agttggtgta	gtcctcctgt	ccccgcggca	cgttggcggg	20280
ctgtgtactc	aggaaggcgt	ttagtgcaac	catggagccc	aggttgccct	gctgctgcgc	20340
gcgctcacgc	tgcgccacgg	cctcgcgcac	atcccccacc	agccggtcca	ggttggtctg	20400
cacgttgccg	ctgttgtaac	gagccacgcg	ctgaagcagc	gcgtcgtaga	ccaggccggc	20460
ctcatcgggc	cggatggccc	tgttttcggc	cagcgcgttt	acgatcgcca	gcaccttctc	20520
gtgcgtgggg	tttgcgcgcg	ccgggaccac	cgcttccaga	attgcggaga	gccggttggc	20580
ctgcggctgc	tgccggaacg	cgtcagggtt	acgcgcagtc	agcgacatga	tgcggtccat	20640
gacctggcgc	cagtcgtccg	tggagttaag	gccggacggc	tggctctgca	gcgccgcccg	20700
caccgccggg	tccgttgcgt	cttgcatcat	ctgatcagaa	acatcaccgc	ttagtactcg	20760
ccgtcctctg	gctcgtactc	atcgtcctcg	tcatattcct	ccacgccgcc	gacgttgcca	20820
gegegegegg	gtgccaccgc	cagcccaggt	ccggccccag	ctgcctccag	ggcgcgtcgg	20880
cttggggccc	agcgcaggtc	agcgcccgcg	tcaaagtagg	actcggcctc	tctatcgccg	20940
ctgcccgtgc	cagccagggc	cctttgcagg	ctgtgcatca	gctcgcggtc	gctgagctcg	21000
cgccgccggc	tcacgctcac	ggccttgtgg	atgcgctcgt	tgcgataaac	gcccaggtcg	21060
tcgctcaagg	taagcacctt	caacgccatg	cgcatgtaga	acccctcgat	ctttacctcc	21120
ttgtctatgg	gaacgtaagg	ggtatggtat	atcttgcggg	cgtaaaactt	gcccagactg	21180
agcatggaat	agttaatggc	ggccaccttg	tcagccaggc	tcaagctgcg	ctcctgcacc	21240
actatoctct	gcagaatgtt	tatcaaatcg	agcagccagc	ggccctcggg	ctctactatg	21300
tttagcagcg	catccctgaa	tgcctcgttg	tccctgctgt	gctgcactat	aaggaacagc	21360
tacaccataa	geggettget	atttgggttt	tgctccagcg	cgcttacaaa	gtcccacaga	21420
tocatcaotc	ctatagccac	ctcctcqcqc	gccacaagcg	tgcgcacgtg	gttgttaaag	21480
cttttttgaa	agttaatctc	ctggttcacc	gtetgetegt	acgcggttac	caggtcggcg	21540
accaccacat	gtgcgcgcgc	gggactaatc	ccggtccgcg	cgtcgggctc	aaagtcctcc	21600
tcacacaaca	accgctcgcg	gttcaggcca	tgccgcaact	cgcgccctgc	gtggaacttt	21660
coatcccoca	tetecteggg	ctcctctccc	tegeggtege	gaaacaggtt	ctgccgcggc	21720
acgtacgcct	cgcgcgtgtc	acacttcaac	tgcacccttg	ggtgtcgctc	aggagagggc	21780
getectagee	gcgccaggcc	ctcaccctcc	tccaagtcca	ggtagtgccg	ggcccggcgc	21840
cacaaaaatt	cgtaatcacc	atctgccgcc	acatcaacca	cggatgttgc	ccctcctgac	21900
acaataaaaa	aaggggaggg	toccctocat	atctaccact	actettacte	ttaccactac	21960
taaaaaaaaa	ggcgcatctg	ccacaacacc	ggatgcatct	gggaaaagca	aaaaaggggc	22020
teatecetat	ttccggagga	atttgcaage	gaaatettae	atgacgggga	ggcaaacccc	22080
cattcaccac	agtccggccg	accegagact	Cdaaccdddd	gtcctgcgac	tcaaccctto	22140
raaaataara	ctccggctac	adddadddad	ccacttaato	ctttcacttt	ccaccctaac	22200
cocttacca	gegegeggee	antroccasa	aaaactaaca	cadcadecee	cacacetada	22260
aggazagga	aaggagcgct	coccattat	ctaacatca	acacctage	tegacaege	22320
aggaageeaa	gcatggatca	Caacaaaaa	ccuatcaca	anttenage	ccaatcatca	22380
ggcggtaacc	gcatygatca	ttateesees	gaggagggg	ggtttgaatt	ttacacccc	22440
yccatyatac	ccttgcgaat	actoresee	taggerage	tanagagaga	gagggtgg	22440
rectitigea	cggtctagag	cytcaacyac	ababaaaaaa	gogtoggoog	ctttccccc	22300
accatggagc	actttttgcc	gergegeaac	acceggaacc	gegeeegega	ceeeegege	22300

acctecacea	ccgccgccgg	catcacctoo	atotocaoot	acatotacon	atateatene	22620
cttatattaa	aagacctcgc	ccccacaccgg	ccaaccaccc	tacactaacc	cctctaccgc	22680
cecaegeegg	cgcacttttt	agtagastat	cagtacetag	tacacactta	caaccactac	22740
cagcegeege	caagggctta	ggcgggacac	agtacecgg	agetetegea	accaratese	22,40
geceeyace	actggtccgt	tatagagaaa	taggeacacca	agetetegea	geegggeeae	22860
cacegetttg	tggacatgga	tgaetteeag	-t-cht	cgcaggtgca	geaggeeata	22320
ttageegage	gcgttgtcgc	egacetggcc	etgetteage	cgatgagggg	ecteggggte	22300
	gaggaagagg					
gatgcaagag	atgcaggaca	agaggaagga	gaagaagaag	tgccggtaga	aaggeteatg	23100
caagactact	acaaagacct	gcgccgatgt	caaaacgaag	cctggggcat	ggccgaccgc	73T00
ctgcgcattc	agcaggccgg	acccaaggac	atggtgcttc	tgtcgaccat	cegeegtete	23220
aagaccgcct	actttaatta	catcatcagc	agcacctccg	ccagaaacaa	ccccgaccgc	23280
cacccgctgc	cgccgccac	ggtgctcagc	ctaccttgcg	actgtgactg	grragacgcc	23340
tttctcgaga	ggttttccga	tccggtcgat	gcggactcgc	ccaggcccct	cggtggcgga	23400
gtacctacac	aacaattgtt	gagatgcatc	gttagcgccg	tatccctgcc	gcacggcagc	23460
cccccgccaa	cccataaccg	ggacatgacg	ggcggcgtct	tccaactgcg	ccccgcgag	23520
aacggccgcg	ccgtcaccga	gaccatgcgc	cgtcgccgcg	gggagatgat	cgagcgcttt	23580
gtcgaccgcc	teceggtgeg	ccgtcgtcgc	cgccgtgtcc	cccctcccc	accgccgcca	23640
gaagaagaag	aagaagggga	ggcccttatg	gaagaggaga	ttgaagaaga	agaggcccct	23700
gtageetttg	agcgcgaggt	gcgcgacact	gtcgccgagc	tcatccgtct	tetggaggag	23760
gagttaaccg	tgtcggcgcg	caactcccag	tttttcaact	tcgccgtgga	cttctacgag	23820
gccatggagc	gccttgaggc	cttgggggat	atcaacgaat	ccacgttgcg	acgctgggtt	23880
atgtacttct	tcgtggcaga	acacaccgcc	accaccctca	actacctctt	tcagcgcctg	23940
cgaaactacg	ccgtcttcgc	ccggcacgtg	gagctcaatc	tcgcgcaggt	ggtcatgcgc	24000
gcccgcgatg	ccgaaggggg	cgtggtctac	agccgcgtct	ggaacgaggg	aggcctcaac	24060
gccttctcgc	agctcatggc	ccgcatctcc	aacgacctcg	ccgccaccgt	ggagcgagcc	24120
ggacgcggag	atctccagga	ggaagagatc	gagcagttca.	tggccgaaat	cgcctatcaa	24180
gacaactcag	gagacgtgca	ggagattttg	cgccaggccg	ccgtcaacga	caccgaaatt	24240
gattctgtcg	aactctctt	caggttcaag	ctcaccgggc	ccgtcgtctt	cacgcagagg	24300
cgccagattc	aggagatcaa	ccgccgcgtc	gtcgcgttcg	ccagcaacct	ccgcgcgcag	24360
caccagctcc	tgcccgcgcg	cggcgccgac	gtgcccctgc	cccctctccc	ggcgggtccc	24420
gagcccccc	tacctccggg	ggcccgcccg	cgtcaccgct	tttagatgca	tcatçcaagg	24480
acacccccgc	ggcccaccgc	ccgccgcgcg	gtaccgtagt	cgcgccgcgg	ggatgcggcc	24540
tcttgcaagt	catcgacgcc	gccaccaacc	agcccctgga	aatcaggtat	cacctggacc	24600
tagcccgcgc	cctgacccgg	ctatgcgagg	taaacctgca	ggagctcccg	cctgacctgt	24660
cgccgcggga	gctccagacc	atggacagct	cccatctgcg	cgatgttgtc	atcaagctcc	24720
gaccgccgcg	cgcggacatc	tggactttgg	gctcgcgcgg	cgtggtggtc	cgatccacca	24780
taactcccct	cgagcagcca	gacggtcaag	gacaagcagc	cgaagtagaa	gaccaccagc	24840
caaacccgcc	aggcgagggg	ctcaaattcc	cactctgctt	ccttgtgcgc	ggtcgtcagg	24900
tcaacctcgt	gcaggatgta	cagcccgtgc	accgctgcca	gtactgcgca	cgtttttaca	24960
aaagccagca	cgagtgttcg	gcccgtcgca	gggacttcta	ctttcaccac	atcaacagcc	25020
actcctccaa	ctggtggcgg	gagatccagt	tcttcccgat	cggctcgcat	cctcgcaccg	25080
agcgtctctt	tgtcacctac	gatgtagaga	cctatacttg	gatgggggcc	tttgggaagc	25140
agctcgtgcc	cttcatgctg	gttatgaagt	tcggcggaga	tgagcctctg	gtgaccgccg	25200
cgcgagacct	agccgtggac	cttggatggg	accgctggga	acaagacccg	cttaccttct	25260
actgcatcac	cccagaaaaa	atggccatag	gtcgccagtt	taggaccttt	cgcgaccacc	25320
tgcaaatgct	aatggcccgt	gacctgtgga	gctcattcgt	cgcttccaac	cctcatcttg	25380
cagactgggc	cctgtcagaa	cacgggctca	gctcccctga	ggagctcacc	tacgaggaac	25440
ttaaaaaatt	gccctccatc	aagggcaccc	cgcgcttctt	ggaactttac	atcgtgggcc	25500
acaacatcaa	eggettegae	gagatcgtgc	tcgccgccca	ggtaattaac	aaccgttccg	25560
aggtgccggg	accetteege	atcacacgca	actttatgcc	tcgcgcggga	aagatacttt	25620
tcaacgatgt	caccttcgcc	ctgccaaacc	cgcgttccaa	aaagcgcacg	gactttttgc	25680
tctgggagca	gggcggatgc	gacgacactg	acttcaaata	ccagtacctc	aaagtcatgg	25740
ttagggacac	ctttgcgctc	acccacacct	cgctccggaa	ggccgcgcag	gcatacgcgc	25800
tacccgtaga	aaagggatgc	tgcgcctacc	aggccgtcaa	ccagttctac	atgctaggct	25860
cttaccgttc	ggaggccgac	gggtttccga	tccaagagta	ctggaaagac	cgcgaagagt	25920
ttgtcctcaa	ccgcgagctg	tggaaaaaaa	agggacagga	taagtatgac	atcatcaagg	25980
aaaccctgga	ctactgcgcc	ctagacgtgc	aggtcaccgc	cgagctggtc	aacaagctgc	26040

gcgacto	ccta	cgcctccttc	gtgcgtgacg	cggtaggtct	cacagacgcc	agcttcaacg	26100
		tccaaccata					
		gcccgcccgt					
tatacga	atta	cgtgcgcgcc	agcatccgcg	gtggaagatg	ctaccctaca	tatcttggaa	26280
tactcac	gaga	gcccctctac	gtttacgaca	tttgcggcat	gtacgcctcc	gcgctcaccc	26340
accccal	tace	atggggtccc	ccactcaacc	catacgageg	cacacttacc	gcccgcgcat	26400
		gctagacttg					
		taccgtggac					
cattctc	atte	gcgcaagggc	aaccacctct	gctggaccaa	caaacaccta	cacadadada	26580
tageca	ccag	cgttgacctt	gtcaccctgc	acaaccacaa	ttaacacata	cacctggtgc	26640
ccgacga	aaca	caccaccgtc	tttcccgaat	aacaatacat	tacacacaaa	tacgtgcagc	26700
tagacat	tcac	ggccaaggag	cacaccaatc	gcgacaaaaa	ccaaaccctq	cactecatea	26760
ccaagti	tact	gtccaacgcc	ctctacgggt	catttaccac	caagettgae	aacaaaaaaa	26820
ttatati	tttc	tgaccagatg	dacdcddcca	ccctcaaagg	catcaccaca	gaccagatga	26880
atatoa	aatc	ctcctcgttt	ttanaaacta	acaatcttag	cacagaagte	atacccactt	26940
ttgagag	7772	gtactcaccc	caacaactaa	ccctcccaga	canchataca	gaagagatg	27000
ecgagag	2266	cgccccacc	cccttttata	accecette	accascaccc	gatgagagag	27060
aggacga	aacy	taaaccaatc	acetteette	ataccasaas	aggaacaccc	tatattaaa	27120
coctacac	occa	agtggacccc	attactactac	acgeegaaga	ccctccac	ttagectect	27180
tagtagi	baaa	ctggacgcga	gasttagtat	gagagtggtg	ccactttcta	tacqaqqaqq	27240
Legige	cggc	accgctcgag	gcccccgccc	tanagtatat	ataggggggg	accaragaaga	27300
accycy	yaac	cgagcgtgga	gacaggeete	teaagtetgt	acacggggac	cccatcaaaa	27360
ctttegi	ccac	cgagcgtgga	tttaaaaaa	rggaaaccag	aggraagaaa	ctcatcaaaa	27/20
agcatg	9999	aaacctggtt	tragaccecg	adcygccaya	geteacetgg	gtatttgtag	27420
gcgagad	ccgt	ctgcggggcc	tgeggegegg	acgeecaece	ceeggaateg	tactecteg	27540
egecca	agct	ctacgccctt	aaaagtetge	actgcccccc	gracageee	cccccaagg	27240
gcaagc	tgcg	cgccaagggc	cacgccgcgg	aggggetgga	ctatgacacc	atggtcaaat	27660
gctacci	tggc	cgacgcgcag	ggcgaagacc	ggcagcgctt	cagcaccagc	aggaccagce	27720
tcaagc	gcac	cctggccagc	gcgcagcccg	gagegeacee	etteaeegtg	acccagacta	27720
cgctga	cgag	gaccctgcgc	ccgtggaaag	acatgaceet	ggeeegtetg	gacgagcacc	277040
gactaci	tgcc	gtacagcgaa	agccgcccca	acccgcgaaa	cgaggagata	tgetggateg	27040
agatgc	cgta	gagcacgtga	ccgagctgtg	ggaccgcctg	gaactgettg	gtcaaacgct	27900
caaaag	catg	cctacggcgg	acggcctcaa	accgttgaaa	aaetttgett	ccttgcaaga	27900
actgcta	atcg	ctgggcggcg	agegeettet	ggcgcatttg	gccagggaaa	acatgcaagt	20020
caggga	catg	cttaacgaag	tggccccct	gctcagggat	gacggcagct	geagetetet	28080
taacta	ccag	ttgcagccgg	taataggtgt	gatttacggg	cccaccggct	gcggtaagtc	20140
gcagct	gctc	aggaacctgc	tttcttccca	gctgatctcc	cctaccccgg	aaacggtttt	28200
cttcate	cgcc	ccgcaggtag	acatgatece	cccatctgaa	ctcaaagcgt	gggaaatgca	28260
aatctgi	tgag	ggtaactacg	cccctgggcc	ggatggaacc	attataccgc	agtetggeae	28320
cctccg	cccg	cgctttgtaa	aaatggccta	tgacgatete	atcctggaac	acaactatga	28380
cgttagi	tgat	cccagaaata	tcttcgccca	ggccgccgcc	cgtgggccca	ttgccatcat	28440
tatggad	cgaa	tgcatggaaa	atctcggagg	tcacaagggc	gtctccaagt	tcttccacgc	28500
atttcc	ttct	aagctacatg	acaaatttcc	caagtgcacc	ggatacactg	tgctggtggt	28560
tctgcad	caac	atgaatcccc	ggagggatat	ggctgggaac	atagccaacc	taaaaataca	28620
gtccaa	gatg	catctcatat	ccccacgtat	gcacccatcc	cagcttaacc	gctttgtaaa	28680
		aagggcctgc					
ccacgc	ccag	cgctcctgct	acgactggat	catctacaac	accaccccgc	agcatgaagc	28800
tctgca	gtgg	tgctacctcc	accccagaga	cgggcttatg	cccatgtatc	tgaacatcca	28860
gagtca	cctt	taccacgtcc	tggaaaaaat	acacaggacc	ctcaacgacc	gagaccgctg	28920
gtcccg	ggcc	taccgcgcgc	gcaaaacccc	taaataaaga	cagcaagaca	cttgcttgat	28980
caaaat	ccaa	acagagtctg	gtttttattt	atgttttaaa	ccgcattggg	aggggaggaa	29040
gccttca	aggg	cagaaacctg	ctggcgcaga	tccaacagct	gctgagaaac	gacattaagt	29100
tcccgg	gtca	aagaatccaa	ttgtgccaaa	agagccgtca	acttgtcatc	gcgggcggat	29160
gaacgg	gaag	ctgcactgct	tgcaagcggg	ctcaggaaag	caaagtcagt	cacaatcccg	29220
cgggcg	gtgg	ctgcagcggc	tgaagcggcg	gcggaggctg	cagtctccaa	cggcgttcca	29280
gacacg	gtct	cgtaggtcaa	ggtagtagag	tttgcgggca	ggacggggcg	accatcaatg	29340
ctggag	ccca	tcacattctg	acgcaccccg	gcccatgggg	gcatgcgcgt	tgtcaaatat	29400
gagete	acaa	tgcttccatc	aaacgagttg	gcgctcatgg	cggcggctgc	tgcaaaacag	29460
atacaa	aact	acatgagacc	cccaccttat	atattctttc	ccacccttaa	gccccgccca	29520
		_					

```
tegatggeaa acagetatta tgggtattat gggtgetage gacatgaggt tgeecegtat 29580
tcaqtqtcqc tqatttqtat tqtctqaagt tgtttttacg ttaagttgat gcagatcaat 29640
taatacgata cctgcgtcat aattgattat ttgacgtggt ttgatggcct ccacgcacgt 29700
tgtgatatgt agatgataat cattatcact ttacgggtcc tttccggtga tccgacaggt 29760
tacggggcgg cgacctcgcg ggttttcgct atttatgaaa attttccggt ttaaggcgtt 29820
tccgttcttc ttcgtcataa cttaatgttt ttatttaaaa taccctctga aaagaaagga 29880
aacgacaggt gctgaaagcg aggctttttg gcctctgtcg tttcctttct ctgtttttgt 29940
ccgtggaatg aacaatggaa gttaacggat ccaggccgcg agcaaaaggc cagcaaaagg 30000
ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc cccctgacg 30060
agcatcacaa aaatcaacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat 30120
accaggedtt tecceetgga ageteetteg tgegetetee tgtteegace etgeegetta 30180
coggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcat agctcacgct 30240
gtaggtatet cagtteggtg taggtegtte getecaaget gggetgtgtg caegaacccc 30300
ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa 30360
gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg 30420
taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact agaagaacag 30480
tatttggtat ctgcgctctg ccaaagccag ttaccttcgg aaaaagagtt ggtagctctt 30540
gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta 30600
cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc 30660
agtggaacga aaactcacgt taagggattt tggtcatcag attatcaaaa aggatcttca 30720
cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa 30780
cttqqtctqa caqttaccaa tqcttaatca gtgaggcacc tatctcagcg atctgtctat 30840
ttcgttcatc catagttgcc tgactccccg tagtgtagat aactacgata cgggagggct 30900
taccatcegg ecceagtget geaatgatac egegtgacce aegeteaceg geteetgatt 30960
tatcagcaat aaaccagcca geeggaagtg eegagegeag aagtggteet geaactttat 31020
ccgcctccat ccagtctatt agttgttgcc gggaagctag agtaagtagt tcgccagtta 31080
atagttttcg caacgttgtt gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg 31140
gtatggcttc attcagctcc ggttcccaac gatcaaggcg agttacatga tcccccatgt 31200
tqtqcaaaaa aqcggttagc tccttcggtc ctccgatagt tgtcagaagt aagttggccg 31260
cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg 31320
taagatgett ttetgtgact ggtgagtatt caaccaagaa taegggataa taeegegeea 31380
catagcagaa ctttaaaagt gctcatcatt gggaaacgtt cttcggggcg aaaactctca 31440
aggatettae egetgttgag atceagtteg atgtaaceca etegegeace caagtgatet 31500
tctqcatctt ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc 31560
qcaaaaaagg gaataagggc gacacggaaa tgttgaatac tcatactttt cctttttcaa 31620
tattattgaa gcatttatca gggttattgt ctcatcagcg gatacatatt tg
<210> 4
<211> 30365
<212> DNA ·
<213> Artificial Sequence
<223> derived from Adenovirus
```

```
<220>
<223> derived from Adenovirus

<400> 4
gaatcggcca gcgcgaatta actataacgg tcctaaggta gcgtcatcat cataatatac 60
cttattttgg attgaagcca atatgataat gagggggtgg agtttgtgac gtggcgcggg 120
gcgtgggaac ggggcggtg acgtaggtt tagggcggag taacttgcat gtattgggaa 180
ttgtagtttt tttaaaatgg gaagttacgt atcgtgggaa aacggaagtg aagatttggg gttttttggc tttcgttct gggcgtaggt tcgcgtgcgg ttttctgggt 300
gtttttgtg gactttaacc gttacgtcat tttttagtcc tatatatact cgctctgtac 360
ttggcccttt ttacactgtg actgattgag ctggtgccgc tgtggaagcg ctgtatgttg 480
aggttttttt actggtaagg ctgactgtta tggctgccgc tgtggaagcg ctgtatgttg 480
```

ttctggagcg ggagggtgct attttgccta ggataacttc gtataatgta tgctatacga 540 agttatggcg cgccagatct gtttgtcacg cccgcacctg gttttgcttc aggaaatatg 600

actacateca	gcgttccatt	taacataaca	ctacqaccaa	cacgateteg	attateteaa	660
accucycecy	acagtaggga	terentacet	ccttttcaca	cadadacccd	cactaccata	720
atacacacta	atccgctgct	aggagaatat	aacactttca	castocacaa	catasattac	780
ctygaggate	ttccctgcag	tataaaattt	accactcitga	aggatagat	tattacctaa	840
gracyaggra	tgacgcggga	cgcgggaccc	atgetgacce	aggaacgggc	catatacata	900
gatatggtte	cgacgeggga	gyayettyta	atcottgagga	agegeaegea	atactacat	960
tgttgtgeea	acattgatat	catgacgage	atgatgatte	toggetacya	gccccgggcc	1020
ctccactgtc	attgttccag	teeeggttee	etgeagtgea	cageeggegg	tatatage	1000
gccagctggt	ttaggatggt	ggtggatgge	gecatgetta	accagaggcc	cacacygcac	1140
cgggaggtgg	tgaattacaa	catgccaaaa	gaggtaatgt	ttatytecag	cgcgcctatg	1140
aggggtcgcc	acttaatcta	cctgcgcttg	tggtatgatg	gccacgtggg	ttetgtggte	1200
cccgccatga	gctttggata	cagegeettg	cactgtggga	ttttgaacaa	tattgtggtg	1200
ctgtgctgca	gttactgtgc	tgatttaagt	gagatcaggg	tgcgctgctg	tgcccggagg	1320
acaaggcgtc	tcatgctgcg	ggcggtgcga	atcatcgctg	aggagaccac	tgccatgttg	1380
tattcctgca	ggacggagcg	gcggcggcag	cagtttattc	gcgcgctgct	gcagcaccac	1440
cgccctatcc	tgatgcacga	ttatgactct	acccccatgt	aggcgtggac	ttccccttcg	1500
ccgcccgttg	agcaaccgca	agttggacag	cagcctgtgg	ctcagcagct	ggacagcgac	1560
atgaacttaa	gcgagctgcc	cggggagttt	attaatatca	ctgatgagcg	tttggctcga	1620
caggaaaccg	tgtggaatat	aacacctaag	aatatgtctg	ttacccatga	tatgatgctt	1680
tttaaggcca	gccggggaga	aaggactgtg	tactctgtgt	gttgggaggg	aggtggcagg	1740
ttgaatacta	gggttctgtg	agtttgatta	aggtacggtg	atcaatataa	- g ctatgtggt-	-1-800-
ggtggggcta	tactactgaa	tgaaaaatga	cttgaaattt	tctgcaattg	aaaaataaac	1860
acqttqaaac	ataacatgca	acaggttcac	gattctttat	tcctgggcaa	tgtaggagaa	1920
ggtgtaagag	ttggtagcaa	aagtttcagt	ggtgtatttt	ccactttccc	aggaccatgt	1980
aaaagacata	gagtaagtgc	ttacctcgct	agtttctgtg	gattcactag	tgccattaag	2040
totaatoota	agtatcatag	atttaatttt	atcaccatgo	aagtaaactt	gactgacaat	2100
gttattttta	gcagtttgac	tttgggtttt	tggataggct	agaaggttag	gcataaatcc	2160
aactgcattt	gtgtatggat	ttgcattagt	tgagttccca	tttctaaagt	tccagtaatg	2220
ttttttaagt	gaggagttct	ccattagaac	accottttgg	tcaaatctaa	ggaatatact	2280
aacacttgca	acggtgcctg	tcatggatga	aagatctcca	gatacagcca	aagcagctac	2340
agtagctagt	acttgactcc	cacattttgt	aagaaccaaa	gtaaatttgc	agtcattatc	2400
tgaatgaatt	ctgcagttag	gagatgggtc	tggggttgtc	cacagggtaa	gtttgtcatc	2460
atttttqttt	cctattgtaa	tggcccctga	gttgtcaaag	cttaaacccg	ctccaagttt	2520
agtaatcatg	gcaccgtttt	cattgtaatc	aatgccagag	ccaattttag	tttttattgg	2580
gttgatatct	ggagactcag	atgtgtttgt	atcaaactcc	agaccctttc	ctgcatttat	2640
agctatggca	gtattatcaa	agtttagtcc	actggatttt	tttatgctaa	cttccagttt	2700
tttagtattg	tttgatgcat	taaaaaggta	taggcctctg	ttatagttta	tgtccaagtt	2760
atgagatgca	ttaatataca	ggggtccctg	ccccagttta	agacgtagtt	ttgtttgagc	2820
atcaaatggg	taatccacat	ctagaattaa	caagttgtta	tttatacgca	tgccaccgcc	2880
cottttaatt	tccatgttgt	ttgatgaatc	ataaccaata	gctcctgcaa	ctttggttct	2940
aagggagttt	tgttcaacgg	tgacacctgg	tccagtaact	actgttagtg	tatcggagtt	3000
ttgtgctact	tgcaaaggac	cocttatttt	aattcctatt	tttccattat	ttacataaat	3060
aggatettee	atgttaatgc	ccaagctacc	cataacaata	attagcagag	gtgatgcagt	3120
tacagtaagg	gtgtcgctgt	cactgccaga	gagggggct	gatgtttgca	gggctagctt	3180
tccatctgac	actgtaatgg	accetttagt	agcaatgctt	agtttggagt	cttgcacggt	3240
cagtagaact	tgtgactgta	coctaagage	accactaata	actatcagag	gagcggtggt	3300
taccactatt	agggcgcctg	aggtaattgt	aagtggtgcg	gaggtgtcca	aacttatqtt	3360
taactttatt	ttttaagtg	gctgagtaac	agtggttaca	ttttgggagg	tgaggtttcc	3420
gacettatet	agggtaagac	cactacccat	tttaagcgca	agcatgccgt	aggaggtatc	3480
capacettce	gagacgcgta	gagagagag	tccaggggga	ctttcttgga	aaccattggg	3540
transcent	ggaggggtaa	gagagagaac	agttggaggc	ccaatttcta	totcatatoo	3600
atagagaga	ttgaaggtgt	cttcagacgg	tetagegeat	ttcatctgca	acaatatgaa	3660
acacacgggg	gcggagggac	aaraaratra	ggagtggg	atcccattta	aactttggag	3720
gatagtgggt	gctaaaaggc	aagaacacga	ccagantton	asonasona	aggaggtgat	3780
adayıtıyca	ctggacaaag	atttactasa	trattttaar	taantaattt	atteactect	3840
accetees	cgagtctttc	according	agttgggaat	aaactootco	agatagtage	3900
coordanates	agaaaagggg	ttaaataaa	CCUSSCACE	gaactcotca	ataaattota	3960
cygyaggicc	gcctccggag	cacaacteea	annannannt	ctacaaaatt	aggategect	4020
gageeccaat	aaatgaagag	Cauchage	caccastata	aaatotooo	tecadacada	4080
gacggggggt	aaacyaayay	cygccaycyc	cyccyattig	addigectog	Jeoggaegga	1000

gaccaagaga	ggageteace	gactegtegt	tgagctgaat	acctccccct	ctgattttca	4140
gaccaagaga	accetgeeeg	aaccagcagc	ccctataaca	aaaaccaccc	acaaactaca	4200
ggcgagccac	agtcatctga	agttcagcc	agacatetet	adagecyccc	acantonton	4260
anagagana	ttcctggtac	accecggeee	gggcgccccc	aggaagtatta	acaguaguagu	4320
gagegggaet	cccccggcac	accayyycay	cgggccaacc	acggggacca	aggetattat	4300
	ggtaatagcc					
	ggatatcatg					
	tccagccgca					
	gctcataatg					
gatgacgtag	ttttcgcgct	taaatttgag	aaagggcgcg	aaactagtcc	ttaagagtca	4020
gegegeagta	tttgctgaag	agageeteeg	cgtcttccag	cgtgcgccga	agctgatctt	4080
cgcttttgtg	atacaggcag	ctgcgggtga	gggagcgcag	agacctgttt	tttattttca	4/40
gctcttgttc	ttggcccctg	ctttgttgaa	atatagcata	cagagtggga	aaaatcctat	4800
ttctaagctc	gcgggtcgat	acgggttcgt	tgggcgccag	acgcagcgct	cctcctcctg	4860
ctgctgccgc	cgctgtggat	ttcttgggct	ttgtcagagt	cttgctatcc	ggtcgccttt	4920
gcttctgtgt	gaccgctgct	gttgctgccg	ctgccgctgc	cgccggtgca	graggggcrg	4980
tagagatgac	ggtagtaatg	caggatgtta	cgggggaagg	ccacgccgtg	atggtagaga	5040
agaaagcggc	gggcgaagga	gatgttgccc	ccacagtctt	gcaagcaagc	aactatggcg	5100
ttcttgtgcc	cgcgccacga	gcggtagcct	tggcgctgtt	gttgctcttg	ggctaacggc	5160
ggcggctgct	tagacttacc	ggccctggtt	ccagtggtgt	cccatctacg	gttgggtcgg	5220
cgaacaggca	-gtgccggcgg	cycctyagya	-gċggaġgttg-	tagcgatgct	gggaacggtt	5280
gccaatttct	ggggcgccgg	cgaggggaat	gcgaccgagg	gtgacggtgt	ttcgtctgac	5340
acctcttcgg	cctcggaagc	ttcgtctagg	ctgtcccagt	cttccatcat	ctcctcctcc	5400
tcgtccaaaa	cctcctctgc	ctgactgtcc	cagtattcct	cctcgtccgt	gggtggcggc	5460
ggcggcagct	gcagcttctt	tttgggtgcc	atcctgggaa	gcaagggccc	gcggctgctg	5520
atagggctgc	ggcggcgggg	ggattgggtt	gagctcctcg	ccggactggg	ggtccaggta	5580
aaccccccgt	ccctttcgta	gcagaaactc	ttggcgggct	ttgttgatgg	cttgcaattg	5640
gccaaggatg	tggccctggg	taatgacgca	ggcggtaagc	tccgcatttg	gcgggcggga	5700
ttaatcttca	tagaacctaa	tctcgtgggc	gtggtagtcc	tcaggtacaa	atttgcgaag	5760
gtaagccgac	gtccacagcc	ccggagtgag	tttcaacccc	ggagccgcgg	acttttcgtc	5820
aggcgaggga	ccctgcagct	caaaggtacc	gataatttga	ctttcgctaa	gcagttgcga	5880
attocagace	agggagcggt	acaggataca	taggttgcag	cgacagtgac	actccagtag	5940
gccgtcaccg	ctcacgtctt	ccatgatgtc	ggagtggtag	gcaaggtagt	tggctagctg	6000
cagaaggtag	cagtgacccc	aaagcggcgg	agggcattca	cggtacttaa	tgggcacaaa	6060
gtcgctagga	agcgcacagc	aggtggggg	cagaattcct	gaacgctcta	ggataaagtt	6120
cctaaagttt	tgcaacatgc	tttgactggt	gaagtetgge	agaccctgtt	gcagggtttt	6180
aagcaggcgt	tcggggaaga	taatqtccqc	caggtgcgcg	gccacggagc	gctcgttgaa	6240
gaccatccat	aggtccttca	agttttgctt	tagcagcttc	tgcagctcct	ttaggttgcg	6300
ctcctccagg	cattgctgcc	acacacccat	gaccatttac	caggtgtagc	acagaaataa	6360
gtaaacgcag	tcgcggacgt	agtcgcggcg	cacctcaccc	ttgagcgtgg	aatgaagcac	6420
attttaccca	aggcggtttt	catacaaaat	tccaaggtag	gagaccaggt	tgcagagete	6480
cacqttqqaa	attttgcagg	cctggcgcac	gtagccctgg	cgaaaggtgt	agtgcaacgt	6540
ttcctctage	ttgcgctgca	tctccaaatc	agcaaagaac	cactacatac	actcaagctc	6600
cacootaaca	agcactgcgg	ccatcattag	cttacatcac	tcctccaagt	cggcaggctc	6660
gcgcgtctca	agccagcgcg	ccagctgctc	atcoccaact	acagatagac	cctcctcqqt	6720
ttattettae	aagtttgcat	ccctctccag	agatcataca	cggcgcacga	tcagctcgct	6780
catgactgtg	ctcataacct	tagaggatag	gttaagtgcc	gggtaggcaa	agtgggtgac	6840
ctcgatgctg	cgtttcagca	caactaaaca	cacattatca	ccctcaagtt	ccaccaccac	6900
tecacagina	ctttcatttt	cactattttc	ttattacaga	acatttacca	cacatttctc	6960
atcacatcca	agaccctcaa	agatttttgg	cacttcatca	agcgaggcga	tatcaggtat	7020
geogegeeee	tgccgcaagg	ccagctgctt	atccactcaa	ctacaattaa	cacaacaaaa	7080
taggggtate	ttgcagtttt	ggaaaaagat	gtgataggtg	gcaagcacct	ctggcacggc	7140
aaatacaaaa	tagaagttga	aacacaaatt	gagataggeg	ataccatttt	cttggcattt	7200
addadd aca	cgcggtgaga	acadatada	ttcatagge	aggetgacat	ccactataac	7260
ggggggcacg	tegetgeget	actions	atcaceaete	ataacacact	ancachacea	7320
atacttana	agcacgtcgt	ctcccacata	tarateatra	ccatacettt	autceceea	7380
acyceteade	tastaste	actotacate	atactactat	tantettet	cototototo	7440
ceegaettgt	tcctcgtttg	attagatta	gueengguee	tactactac	tastasatta	7500
atochasts	tectegtegt	agtograce	aaaacccggg	aggagatta	caacataact	7560
CLUCECCECA	agcgggggtg	ccccgacggg	yaayytyytä	ggcgcgcccgg	cyycaccyyt	1200

ggaggcggtg	gtggcgaact	caaaqqqqqc	ggttaggctg	tcctccttct	cgactgactc	7620
catgatettt	ttctgcctat	aggagaagga	aatggccagt	cgggaagagg	agcagcgcga	7680
aaccaccccc	gagcgcggac	gcggtgcggc	gcgacgtcca	ccaaccatgg	aggacgtgtc	7740
atccccatca	ccatcaccac	cgcctccccg	cgcgcccca	aaaaagcggc	tgaggcggcg	7800
tetegagtee	gaggacgaag	aagactcgtc	acaagatgcg	ctggtgccgc	gcacacccag	7860
cccacaacca	tcgacctcga	cggcggattt	ggccattgcg	tccaaaaaga	aaaagaagcg	7920
ccctctccc	aagcccgagc	gcccgccatc	cccagaggtg	atcgtggaca	gcgaggaaga	7980
aagagaagat	gtggcgctac	aaatggtggg	tttcagcaac	ccaccggtgc	taatcaagca	8040
cggcaaggga	ggtaagcgca	cggtgcggcg	gctgaatgaa	gacgacccag	tggcgcgggg	8100
tatocogaco	caaqaggaaa	aggaagagtc	cagtgaagcg	gaaagtgaaa	gcacggtgat	8160
aaacccqctq	agcctgccga	tegtgtetge	gtgggagaag	ggcatggagg	ctgcgcgcgc	8220
gttgatggac	aagtaccacg	tggataacga	tctaaaggca	aacttcaagc	tactgcctga	8280
ccaagtggaa	gctctggcgg	ccgtatgcaa	gacctggcta	aacgaggagc	accgcgggtt	8340
gcagctgacc	ttcaccagca	acaagacctt	tgtgacgatg	atggggcgat	tectgcagge	8400
gtacctgcag	tcgtttgcag	aggtaaccta	caagcaccac	gagcccacgg	gctgcgcgtt	8460
gtggctgcac	cgctgcgctg	agatcgaagg	cgagcttaag	tgtctacacg	ggagcattat	8520
gataaataag	gagcacgtga	ttgaaatgga	tgtgacgagc	gaaaacgggc	agcgcgcgct	8580
gaaggagcag	tctagcaagg	ccaagatcgt	gaagaaccgg	tggggccgaa	atgtggtgca	8640
gatctccaac	accgacgcaa	ggtgctgcgt	gcatgacgcg	gcctgtccgg	ccaatcagtt	8700
-t-tccggcaag	tcttgcggca	-tgttcttctc	tgaaggcgca	-aaggctcagg	tggcttttaa	8760
gcagatcaag	gctttcatgc	aggcgctgta	tcctaacgcc	cagaccgggc	acggtcacct	8820
tctgatgcca	ctacggtgcg	agtgcaactc	aaagcctggg	catgcaccct	ttttgggaag	8880
gcagctacca	aagttgactc	cgttcgccct	gagcaacgcg	gaggacctgg	acgcggatct	8940
gateteegae	aagagcgtgc	tggccagcgt	gcaccacccg	gcgctgatag	tgttccagtg	9000
ctgcaaccct	gtgtatcgca	actcgcgcgc	gcagggcgga	ggccccaact	gcgacttcaa	9060
gatatcggcg	cccgacctgc	taaacgcgtt	ggtgatggtg	cgcagcctgt	ggagtgaaaa	9120
cttcaccgag	ctgccgcgga	tggttgtgcc	tgagtttaag	tggagcacta	aacaccagta	9180
tcgcaacgtg	tccctgccag	tggcgcatag	cgatgcgcgg	cagaacccct	ttgattttta	9240
aacggcgcag	acggcaaggg	tggggggtaa	ataatcaccc	gagagtgtac	aaataaaaac	9300
atttgccttt	attgaaagtg	tctcctagta	cattatttt	acatgtttt	caagtgacaa	9360
aaagaagtgg	cgctcctaat	ctgcgcactg	tggctgcgga	agtagggcga	gtggcgctcc	9420
aggaagctgt	agagctgttc	ctggttgcga	cgcagggtgg	gctgtacctg	gggactgtta	9480
agcatggagt	tgggtacccc	ggtaataagg	ttcatggtgg	ggttgtgatc	catgggagtt	9540
tggggccagt	tggcaaaggc	gtggagaaac	atgcagcaga	atagtccaca	ggcggccgag	9600
ttgggcccct	gcacgetttg	ggtggacttt	tccagcgtta	tacagcggtc	gggggaagaa	9000
gcaatggcgc	tacggcgcag	gagtgactcg	tactcaaact	ggtaaacctg	cttgagtcgt	9720
tggtcagaaa	agccaaaggg	ctcaaagagg	tagcatgttt	ttgagcgcgg	gttccaggca	9/80
aaggccatcc	agtgtacgcc	cccagtctcg	cgaccggccg	tattgactat	ggcgcaggcg	9840
agcttgtgtg	gagaaacaaa	gcctggaaag	cgcttgtcat	aggtgcccaa	aaaatatggc	9900
ccacaaccaa	gatctttgac	aatggctttc	agttcctgct	cactggagec	catggeggea	10020
gctgttgttg	atgttgcttg	cttctttat	gttgtggcgt	tgeeggeega	gaagggcgtg	10020
cgcaggtaca	cggtctcgat	gaegeegegg	tgcggctggt	gcacacygac	cacyccaaay	10140
acttcaaaca	aaacataaag	aagggrygge	tcgtccatgg	gatteactet	aadagccacg	10210
tetagegegt	gggcggagtt	gycytagaya	aggttttggc	tacastcacs	agregatet	10260
atggacataa	agttactgga	gaatgggatg	cgccaaaggg cctattagtg	cgcgaccgca	attaacaaa	10320
ttctgggtaa	tactgtcaac	egeggttttg	cctattagtg	ggtagggtat	attattatac	10320
taageetgte	cctcgcgcat	ggcgggagcg	aggtagccta	tatestease	geogracyc	10440
tggtgaagaa	ttecaaeetg	ctgatactcc	ttgtatttag	cattetacat	ttctqqaatq	10500
ctcatgggct	ggaagtttet	yaayaacyay	tacatgcggt	ggaggagga	ccactcctta	10560
cagaagccct	ygrayccaat	attatagee	gccaacatct tccccgtcaa	ctgagggttt	aatctcaaac	10620
gccacgccgc	taaggggag	gregrageee	ggccagctaa	canaananto	aaaaataata	10680
ccaccgggag	taagcaggcg	attacate	aaggttccgt	caacatataa	tatagaacca	10740
gccacculct	raaayytytg	attacetest	cccagggaag	agatttcctt	tatetteaaa	10800
gagraggrat	aytaayyytt	aaatootoo	cagttgcgcg	ataggataga	gatagacaca	10860
thank-mark	tagagagatat	addigitiged	atgttggcgg	cadasarata	atcattaaan	10920
and catact	taatatastt	tetaaacata	gcttccagcg	tagagaccat	attataaacc	10980
atacaggacga	aggigicati	aadacaaatd	ctgtcaaact	taatgctagc	cccatcaact	11040
acyyyyaaya	aggeggegea	augucuuutg	o cy coadact	Januago		

ctaagatcgt	ttcccagaga	gctctgcaga	accatgttaa	catccttcct	gaagttccat	11100
tcatatgtat	atgagcctgg	caggaggagg	aggtttttaa	tggcaaaaaa	cttttggggc	11160
acctgaatgt	gaaagggcac	gtagcggccg	tttcccaaca	acatggagcg	ataacggagg	11220
cccgcattgc	ggtggtggtt	aaagggatta	acgttgtcca	tgtagtccag	agaccagcgc	11280
gccccaaggt	taatgtagca	gtctacaagc	ccgggagcca	ccactcgctt	gttcatgtag	11340
tcgtaggtgt	tggggttgtc	agatatttcc	acattggtgg	ggttgtattt	tagcttgtct	11400
ggcaggtaca	gcgcaatatt	ggagtaaagg	aaatttctcc	ataggttggc	atttaggtta	11460
atttccatgg	caaagttgtt	acccactcct	atttcattac	gtgttgcaaa	agtttcatct	11520
tttgtccatg	tagtatctcc	attatcgcct	gagccattgc	cattagcctt	aatagcttga	11580
taggtgtcag	ttaccccaat	acccccaaga	ggaaaacaat	aatttggcaa	ttcatcctca	11640
gttccatggt	tttcaatgat	tctaacatct	ggatcatagc	tgtctacagc	ctgattccac	11700
atagaaaaat	atctggttct	atcacctatg	gaatcaagca	agagttgata	ggacagctct	11760
atatttctat	cttqcaaatc	taccacggca	tttagctgcg	atgcctgacc	agcaagaaca	11820
cccatattac	cagtgctgtt	ataatacatt	aggccaataa	aattgtccct	gaaagcaatg	11880
taattgggtc	tgtttggcat	agattgttga	cccaacatag	ctttagaatt	ttcatcacct	11940
tttccaggtt	tgtaagacag	atgtgtgtct	ggggtttcca	tatttacatc	ttcactgtac	12000
aaaaccactt	ttggtttagt	agcattgcct	tgccggtcgt	tcaaagaggt	agtatttgag	12060
aagaattgca	agtcaacctt	tggaagaggc	accccttttt	catccggaac	cagaacggat	12120
tgaccaccaa	aaggatttgt	aggectggca	taagatccat	agcatggttt	catgggagtt	12180
otttttaa	gcactctccc	tcctgccgca	ttagcatcag	-cttcgttcca	ctgagattcg	1-2240
ccaatttgag	attetaatta	ataggaagga	tctgcgtata	caggittagc	ttgtgtttct	12300
gcattgtctg	atcctatttg	tagcccgctt	tttataatta	tttctccaga	caaaggagcc	12360
tgggcataga	catgtgtttt	cttagtagcc	tgatctcgag	cgttttgctc	ttcttcttcc	12420
tettetteat	cttcatcttc	ctcttcttca	tcctcqqcaa	ctgcccggcc	gctatcttcg	12480
atttattece	actcacagga	gttaggagcg	cccttgggag	ctagagcgtt	gtaggcagtg	12540
ccggagtagg	gcttaaaagt	aggcccctg	tecageacge	cgcggatgtc	aaagtacgtg	12600
gaagccatat	caagcacacg	attatcaccc	acagccaggg	tgaaccgcgc	tttgtacgag	12660
tacgcggtat	cctcacaate	cacagggatg	aaccgcagcg	tcaaacgctg	ggaccggtct	12720
gtagttacgt	catacataca	taccaccata	gggtttctaa	acttgttatt	caggetgaag	12780
tacqtctcqq	tageacagae	aaactgcacc	adcccadadc	tcaggtactc	cgaggcgtcc	12840
taacccaaga	totocatota	agaccactgc	ggcatcatcg	aaggggtagc	catcttggaa	12900
agggggggg	caacaactca	gcagctcctc	tggcggcgac	atggacgcat	acatgacaca	12960
tacgacacgt	tagctattta	gaagcatcgt	cggcgcttca	gggattgcac	ccccagaccc	13020
acgatgctgt	tcagtgtgct	ttaccaatta	ccactggcta	cgggccgcat	cgatcgcgga	13080
ccactaacaa	cacggcgcag	agacacacaa	ctagggggg	ttacaacaac	ggcggacggc	13140
cctggcagca	caggtttctg	ctgggtgtca	acadadadad	gcaggtccag	cgttacaggt	13200
atatactaac	ccagcactcc	ggtagccatg	gacacaataa	gacgggtggt	gggcaggcct	13260
tactttaata	cctcctcgta	caaaaaaaac	tcatctattt	gcgtcaccag	agtttcttcc	13320
ctatcaaacc	acagacactt	ttcaccacac	ccctctqqaq	acactgtctc	cacqqccqqt	13380
agaagateet	ctacaaaaaa	gcggggatca	agettactgt	taatcttatt	ttgcactgcc	13440
taattaacca	ggtccaccac	cccactaata	ccagaggcca	ggccatctac	caccttttgt	13500
togaaattt	gctctttcaa	cttatccctc	agcatctggc	ctgtgctgct	attccagacc	13560
ttactaccat	agttcttaat	ggtggaaccg	aaattttaa	tgccgctcca	cagcgagccc	13620
canctnaann	caccaccact	catattgctg	gtgccgatat	cttgccagtt	tcccatgaac	13680
aaacacaaac	catatcacaa	ggccagagac	gcaaagttga	tgtcttccat	tctacaaaat	13740
anttacanna	ccaaccaacc	graagactcc	agacttttta	ttttgatttt	tccacataca	13800
acttotttt	aatcagtgtc	tetacaceta	caaggccacg	gatgcaattc	caaacacaac	13860
acceptacca	accagages	atagaataaa	gaggggggg	ataccgccgc	gcatgcgacg	13920
gecaucegee	caccaccacc	gatagtacac	acgacgcatg	ccgcccgtca	aaccataacc	13980
ancestance	ctcctaccct	gcattettee	teggaateee	ggcaccggga	aacqqaqqqq	14040
acadatasca	accatateta	Caadaaccac	aaagaccggc	ttttaaacga	tactaaaata	14100
ataggraagg	attaccacce	ccaggggtcct	acctectted	cgagccaccc	tacacacaaa	14160
aatonoonoo	accaccacca	aacascaaca	accontact	cgggttccag	taataattea	14220
aaccygygcc	atcactgggct	ttctaaaaa	ataaatataa	ccacgatage	caaaaataaa	14280
gegeegggea	gregeregre	catattccc	cantantoro	ctggcggtgc	catacttact	14340
cycyatyydd	ggargraggg	agactassa	agaagagaga	cacgggtccg	tttgcacctc	14400
ggaacygcyc	ttaasaaaa	CCCCSCCCC	cacctacacc	gcggcatctg	ccaccaccas	14460
agcasaggtt	apont that a	tctccatccc	ctctgtacc	gtggcaatac	tagtgctact	14520
ggcaaccggg	gacycctyty	coccacyco	Jecegeggea	geggeddede		

ggtggtgggt	atctgaacgt	ccacggtctg	cacgcccagt	cccggtgcca	cctgcttgat	14580
tggccgcacg	cggacctcgg	gctccagccc	aggctccacg	gtcattttt	ccaagacatc	14640
ttccagtcgc	tggcgcttgg	gtaccatcag	ctgcacggtg	ggtgccaagt	caccagactc	14700
gcgctttagg	ccgcgctttt	cttcggacgg	tgcaagcgtg	ggcagcacct	gctgcagtgt	14760
				ggcaacgcca		
				gcctgctcaa		
				gtggagcgct		
				cgtcgacctt		
				tcgtcaagtt		
				ggcttgtaat		
cttcttcggg	gggccataga	teteeageae	gatgacctgg	agcatctctt	ctttgatttt	15180
gcgcttggac	atagettegt	tacacaccac	caccactaga	tacatacaac	agtacgagtc	15240
taagtagttt	tttcttgcaa	tctagttgcg	caaaaaacaa	gtgcgcacgg	gcacgcgcag	15300
gccgctaacc	gagtcgcgca	cccagtacac	attaccccta	cgaccctgag	tcatagcact	15360
				ctggggggca		
acccacaacc	agcettegag	caacccacat	aaccacccat	cggccggtgc	gacgtgcgcg	15480
gttaagcagg	accaccacca	cacattagac	ggcagtgccg	ggtcggcggc	gqtqqcgacg	15540
tactacacac	ctccaccatc	tetteatttt	agcataacgc	cgggctccgc	gcaccacggt	15600
ctgaatggc	acatccacta	togacactog	taacaacata	ggcgtgtagt	tacacacctc	15660
ctccaccacc	gcgtcaatgg	catcatcaac	aataatacac	ccagtgcggc	cacatttata	15720
cacaccccaa	aacacacaat	agtgcccgcg	cacgcgcact	gggtgttggt	cggagcgctt	15780
ctttacccca	ccaaacatct	tgcttgggaa	gcgcaggccc	cagcctgtgt	tattgctggg	15840
cgatataagg	atggacatgt	ttgctcaaaa	agtgcggctc	gataggacgc	gcggcgagac	15900
tatgcccagg	gccttgtaaa	cqtaqqqqca	ggtgcggcgt	ctggcgtcag	taatggtcac	15960
tcgctggact	cctccgatgc	tgttgcgcag	cggtagcgtc	ccgtgatctg	tgagagcagg	16020
aacgttttca	ctgacggtgg	tgatggtggg	ggctggcggg	cgcgccaaaa	tctggttctc	16080
gggaaagcga	ttgaacacgt	gggtcagaga	ggtaaactgg	cggatgagct	gggagtagac	16140
ggcctggtcg	ttgtagaagc	tcttggagtg	cacgggcaac	agctcggcgc	ccaccaccgg	16200
aaagttgctg	atctggctcg	tggagcggaa	ggtcacgggg	tcttgcatca	tgtctggcaa	16260
cgaccagtag	acctgctccg	agccgcaggt	tacgtcagga	gtgcaaagga	gggtccatga	16320
gcggatcccg	gtctgagggt	cgccgtagtt	gtatgcaagg	taccagctgc	ggtactgggt	16380
gaaggtgctg	tcattgctta	ttaggttgta	actgcgtttc	ttgctgtcct	ctgtcagggg	16440
tttgatcacc	ggtttcttct	gaggcttctc	gacctcgggt	tgcgcagcgg	gggcggcagc	16500
ttctgccgct	gcctcggcct	cagcgcgctt	ctcctccgcc	cgtgtggcaa	aggtgtcgcc	16560
gcgaatggca	tgatcgttca	tgtcctccac	cggctgcatt	gccgcggctg	ccgcgttgga	16620
gttctcttcc	gegeegetge	cactgttgtt	gccgccgcct	gcgccatccc	cgccctgttc	16680
ggtgtcatct	tttaagcttg	cctggtaggc	gtccacatcc	aacagtgcgg	gaatgttacc	16740
accctccagg	tcatcgtagg	tgatcctaaa	gccctcctgg	aagggttgcc	gcttgcggat	16800
gcccaacaag	ttgctcaggc	ggctgtgggt	gaagtccacc	ccgcatcctg	gcagcaaaat	16860
gatgtctgga	tggaaggctt	cgtttgtata	taccccaggc	atgacaagac	cagtgactgg	16920
gtcaaacccc	agtctgaagt	tgcgggtgtc	aaactttacc	ccgatgtcgc	tttccagaac	16980
cccgttctgc	ctgcccactt	tcaagtagtg	ctccacgatc	gcgttgttca	taaggtctat	17040
ggtcatggtc	tcggagtagt	tgccctcggg	cagcgtgaac	tccacccact	catatttcag	17100
ctccacctgt	ttgtccttag	taagcgagcg	cgacaccatc	acccgcgcct	taaacttatt	17220
ggtaaacatg	aactcgttca	catttggcat	gttggtatgc	aggatggttt	teaggregee	17220
gcccagtgc	gaacggtcgt	caagattgat	ggtctgtgtg	cttgcctccc	cegggetgta	17280
gtcattgttt	tgaatgaccg	tggttagaaa	gttgctgtgg	tcgttctggt	agttcaggga	17400
tgccacatcc	gttgacttgt	tgtccacaag	gtacacacgg	gtggtgtcga	acaggggtgc	17460
caactcagag	taacggatgc	tgttteteee	ceeggtagge	cgcaggtacc	geggaggeac	17520
aaacggcggg	tecaggggag	categaaggg	ggaacecaye	geegeegeea	cagactacet	17520
gctcaccacg	ctctcgtagg	agggaggagg	accuccuca	tacatcgccg	teretestes	17540
actaagggga	acacaagaaa	accaacgete	ggryccargg	ccttggtgag	casacataca	17700
tgcatcatgc		ccccctddd	gaacactact	cagcctgggg	rant cateor	17760
cadacygycc	gadadadada	taacaatcca	acctttaaca	gtcgtctgcc acgggtgggc	andcocaccac	17820
ogggggggt	cayaccccyc	tacaceteca	tetteestet	actcatcttg	treactarre	17880
tototato	attattaaa	aatoccooso	gcaggttgtt	ttcgcgctgc	aactacaaca	17940
acasattatt	taggtectco	tectereee	acsaacacac	gcgggtggtg	caaatactaa	18000
gegageegee	Laggiacie	Localgoda	2003303039	2~222~23~3	-5-5-5-59	

taaaagaccc	tatcaagctt	ggaaatgggc	tactcgcatc	tgaccgcggg	geegeagege	18060
ctagatcgga	caagetgett	ggcctgcgga	agettteett	tcgcagcgcc	geetetgeet	18120
actcacacta	ttgcaactct	agcagggtct	gcggttgcgg	ggaaaacacg	ctgtcgtcta	18180
tatcatccca	gaggaatcca	tcgttaccct	cgggcacctc	aaatcccccg	gtgtagaaac	18240
cagggggggg	tagccagtgc	gggttcaaga	tggcattggt	gaaatactcg	gggttcacgg	18300
cggcgcgcg	atgcaagtag	tccattaggc	gattgataaa	cggccggttt	gaggcataca	18360
tgcccggttc	catgttgcgc	gcggtcatgt	ccagcgccac	gctgggcgtt	accccgtcgc	18420
				gatgcgctcc		
ttaaactgtg	caacgagggg	atcttctgcc	gccggttggt	cagcaggtag	ttcagggttg	18540
cctccaggct	gcccgtgtcc	tcctgcccca	gcgcgcggct	gacacttgta	atctcctgga	18600
aagtatgctc	gtccacatgc	gcctgaccta	tggcctcgcg	gtacagtgtc	agcaagtgac	18660
.ctaggtatgt	gtcccgggac	acgctgccac	tgtccgtgaa	gggcgctatt	agcagcagca	18720
acaggcgcga	gttgggcgtc	agcaagctag	acacggtcgc	gcggtcgcct	gtgggagccc	18780
gcacccccca	cagcccctgc	aagttcttga	aagcctggct	caggtttacg	gtctgcaggc	18840
cttgtctact	ggtctggaaa	aaatagtctg	gcccggactg	gtacacctca	ctttgcggtg	18900
tctcagtcac	cattagccgc	agtgcgctca	caaagttggt	gtagtcctcc	tgtccccgcg	18960
gcacgttggc	gggctgtgta	ctcaggaagg	cgtttagtgc	aaccatggag	cccaggttgc	19020
cctgctgctg	cgcgcgctca	cgctgcgcca	cggcctcgcg	cacatccccc	accagccggt	19080
ccaggttggt	ctgcacgttg	ccgctgttgt	aacgagccac	gcgctgaagc	agcgcgtcgt	19140
agaccaggcc	ggcctcateg	ggeeggatgg	ccctgttttc	ggccagcgcg	tttacgatcg	19200
ccagcacctt	ctcgtgcgtg	gggtttgcgc	gcgccgggac	caccgcttcc	agaattgcgg	19260
agagccggtt	ggcctgcggc	tgctgccgga	acgcgtcagg	gttacgcgca	gtcagcgaca	19320
tgatgeggte	catgacctgg	cgccagtcgt	ccgtggagtt	aaggccggac	ggctggctct	19380
gcagcgccgc	ccgcaccgcc	gggtccgttg	cgtcttgcat	catctgatca	gaaacatcac	19440
cgcttagtac	tcgccgtcct	ctggctcgta	ctcatcgtcc	tcgtcatatt	cctccacgcc	19500
gccgacgttg	ccagcgcgcg	cgggtgccac	cgccagccca	ggtccggccc	cagctgcctc	19560
cagggcgcgt	cggcttgggg	cccagcgcag	gtcagcgccc	gcgtcaaagt	aggactcggc	1962U
ctctctatcg	ccgctgcccg	tgccagccag	ggccctttgc	aggctgtgca	teagetegeg	10740
gtcgctgagc	tegegeegee	ggctcacgct	cacggccttg	tggatgcgct	cgttgcgata	10000
aacgcccagg	tegtegetea	aggtaagcac	cttcaacgcc	atgcgcatgt	agaacccccc	10060
gatetttace	tccttgtcta	tgggaacgta	aggggtatgg	tatatcttgc	gggcgtaaaa	10000
cttgcccaga	ctgageatgg	aalagilaal	ggeggeeace	ttgtcagcca	aggggggggg	10000
gegeteetge	accactatge	coccatagat	gittattaaa	tcgagcagcc ttgtccctgc	tatactacec	20040
gggetetaet	acguitagea	taaaaaaatt	gaatgetteg	ttttgctcca	acacacttac	201100
aaaataaaa	agetgegeea	atcatatac	cacctcctcq	cgcgccacaa	acatacacac	20160
atagttetta	agacycatca	geeceatage	ctcctcctcg	accgtctgct	catacacaat	20220
taccacatca	aageeeeee	catatacaca	cacaggacta	atcccggtcc	acacatcaaa	20280
ctcaaagtcc	tectegeea	gcaaccactc	acaattcaaa	ccatgccgca	actegegece	20340
tacatageee	tttcgatccc	gcatctcctc	gagateetet	ccctcgcggt	coccaaacao	20400
attctaccac	ggcacgtacg	cctcacacat	gtcacgcttc	agctgcaccc	ttagatatca	20460
ctcaggagag	ggcactccta	accacaccaa	acceteacce	tcctccaagt	ccaggtagtg	20520
ccaaacccaa	caccacaaaa	gttcgtaatc	accatctqcc	gccgcgtcag	ccgcggatgt	20580
tacccctcct	gacgcggtag	gagaagggga	agatacccta	catgtctgcc	gctgctcttg	20640
ctcttaccac	tactaaagaa	gagagagat	ctgccgcagc	accggatgca	tctgggaaaa	20700
gcaaaaaagg	agetegtece	tgtttccgga	ggaatttgca	agcggggtct	tgcatgacgg	20760
ggaggcaaac	ccccattcac	cgcagtccgg	ccggcccgag	actcgaaccg	ggggtcctgc	20820
gactcaaccc	ttggaaaata	acceteegge	tacagggagc	gagccactta	atgctttcgc	20880
tttccagcct	aaccgcttac	gccgcgcgcg	gccagtggcc	aaaaaagcta	gcgcagcagc	20940
cgccgcgcct	ggaaggaagc	caaaaggagc	gctcccccgt	tgtctgacgt	cgcacacctg	21000
ggttcgacac	gcgggcggta	accgcatgga	tcacggcgga	cggccggatc	cggggttcga	21060
accccggtcg	tccgccatga	tacccttgcg	aatttatcca	ccagaccacg	gaagagtgcc	21120
cgcttacagg	ctctcctttt	gcacggtcta	gagcgtcaac	gactgcgcac	gcctcaccgg	21180
ccagagcgtc	ccgaccatgg	agcacttttt	gccgctgcgc	aacatctgga	accgcgtccg	21240
cgactttccg	cgcgcctcca	ccaccgccgc	cggcatcacc	tggatgtcca	ggtacatcta	21300
cggatatcat	cgccttatgt	tggaagacct	cgcccccgga	gccccggcca	ccctacgctg	21360
gcccctctac	cgccagccgc	cgccgcactt	tttggtggga	tatcagtacc	tggtgcggac	21420
ttgcaacgac	tacgtctttg	actcaagggc	ttactcgcgt	ctcaggtaca	ccgagctctc	21480

			•			
acaaccaant	caccagaccg	ttaactootc	cattataacc	aactgcactt	acaccatcaa	21540
cacaaacagga	taccaccgct	ttataacat	ggataeggee	cantchacce	tracgraggt	21600
acaacaaac	atattagccg	accocattat	caccaaccta	accetactte	agccgatgag	21660
gaagtaggaa	gtcacacgca	tagagagaga	aggggggggg	ctacggccaa	actecaceae	21720
caccatagea	atagatgcaa	gagatggagg	acaagaggaa	ggagaagaag	aagtgccggt	21780
agaaaggctc	atgcaagact	actacaaaga	cctacaccaa	totcaaaaco	aagcctagga	21840
	cgcctgcgca					
catcccccat	ctcaagaccg	cctactttaa	ttacatcatc	agcagcacct	ccccacaaa	21960
	cgccacccgc					
ctggttagac	gcctttctcg	agaggttttc	cgatccggtc	gatgcggact	cactcagatc	22080
cctcaataac	ggagtaccta	cacaacaatt	gttgagatgc	atcottagco	ccgtatccct	22140
accacacaac	agccccccgc	caacccataa	ccgggacatg	acqqqcqqcq	tcttccaact	22200
gegeeeeege	gagaacggcc	gcgccgtcac	cgagaccatg	cgccgtcgcc	gcggggagat	22260
gatcgagcgc	tttgtcgacc	gcctcccggt	gcgccgtcgt	cgccgccgtg	teccectee	22320
cccaccgccg	ccagaagaag	aagaagaagg	ggaggccctt	atggaagagg	agattgaaga	22380
agaagaggcc	cctgtagcct	ttgagcgcga	ggtgcgcgac	actgtcgccg	agctcatccg	22440
tcttctggag	gaggagttaa	ccgtgtcggc	gcgcaactcc	cagtttttca	acttcgccgt	22500
ggacttctac	gaggccatgg	agcgccttga	ggccttgggg	gatatcaacg	aatccacgtt	22560
gcgacgctgg	gttatgtact	tcttcgtggc	agaacacacc	gccaccaccc	tcaactacct	22620
ctttcagcgc	ctgcgaaact-	-acgccgtctt	cgcccggcac	gtggagetea	atctcgcgca	22680
ggtggtcatg	cgcgcccgcg	atgccgaagg	gggcgtggtc	tacagccgcg	tctggaacga	22740
gggaggcctc	aacgccttct	cgcagctcat	ggcccgcatc	tccaacgacc	tegeegeeae	22800
cgtggagcga	gccggacgcg	gagatctcca	ggaggaagag	atcgagcagt	tcatggccga	22860
aatcgcctat	caagacaact	caggagacgt	gcaggagatt	ttgcgccagg	ccgccgtcaa	22920
cgacaccgaa	attgattctg	tcgaactctc	tttcaggttc	aagctcaccg	ggcccgtcgt	22980
cttcacgcag	aggcgccaga	ttcaggagat	caaccgccgc	gtcgtcgcgt	tcgccagcaa	23040
cctccgcgcg	cagcaccagc	tcctgcccgc	gcgcggcgcc	gacgtgcccc	rgccccccc	23160 23100
cccggcgggt	cccgagcccc	ccctacctcc	gggggeeege	eegegreace	gettttagat	73700
gcatcatcca	aggacacccc	egeggeeeae	egeeegeege	geggtaeegt	agregegeeg	23220
cggggacgcg	gcctcttgca acctagcccg	agreatesac	geegeeacea	accagecee	ggaaaccagg	23200
aggatasa	tgtcgccgcg	ggaggtggagg	accatogaca	actcccatct	geaggagete	23400
atcatcaacc	tccgaccgcc	acacacaaac	atctggacu	tagactcaca	caccataata	23460
atcattage	ccataactcc	cctcgaggag	ccagacggtc	aaggacaagg	agccgaagta	23520
gaagaccacc	agccaaaccc	accadacaaa	gggctcaaat	teccaetete	cttccttata	23580
cacaatcatc	aggtcaacct	catacaggat	gtacagcccg	tgcaccgctg	ccagtactgc	23640
gcacgttttt	acaaaagcca	gcacgagtgt	teggeegte	gcagggactt	ctactttcac	23700
cacatcaaca	gccactcctc	caactggtgg	cgggagatcc	agttcttccc	gatcggctcg	23760
catectegea	ccgagcgtct	ctttgtcacc	tacgatgtag	agacctatac	ttggatgggg	23820
gcctttggga	agcagctcgt	gcccttcatg	ctggttatga	agttcggcgg	agatgagcct	23880
ctggtgaccg	ccgcgcgaga	cctagccgtg	gaccttggat	gggaccgctg	ggaacaagac	23940
ccgcttacct	tctactgcat	caccccagaa	aaaatggcca	taggtcgcca	gtttaggacc	24000
tttcgcgacc	acctgcaaat	gctaatggcc	cgtgacctgt	ggagctcatt	cgtcgcttcc	24060
aaccctcatc	ttgcagactg	ggccctgtca	gaacacgggc	tcagctcccc	tgaggagctc	24120
acctacgagg	aacttaaaaa	attgccctcc	atcaagggca	ccccgcgctt	cttggaactt	24180
tacatcgtgg	gccacaacat	caacggcttc	gacgagatcg	tgctcgccgc	ccaggtaatt	24240
aacaaccgtt	ccgaggtgcc	gggaccette	cgcatcacac	gcaactttat	gcctcgcgcg	24300
ggaaagatac	ttttcaacga	tgtcaccttc	gccctgccaa	accegegete	caaaaagcgc	24360
acggactttt	tgctctggga	gcagggcgga	tgcgacgaca	ctgacttcaa	ataccagtac	24420
ctcaaagtca	tggttaggga	cacctttgcg	ctcacccaca	cctcgctccg	gaaggccgcg	24480
caggcatacg	cgctacccgt	agaaaaggga	rgergegeet	accaggccgt	dadcagttc	24540
tacatgctag	gctcttaccg	tteggaggee	gacgggtttc	cgatccaaga	graciggada	24660
gaccgcgaag	agtttgtcct aggaaaccct	gazatzataa	accetacea	tacaaayyyaca	caccasacta	24720
gacaccatca	tgcgcgactc	ggactactgc	ttcatacata	accccctacc	teteacacac	24780
greadcaage	acgtcttcca	acataceeas	atatostos	actracatro	catchtcaca	24840
gecageeed	tccgagcaga	gcgcccaacc	catagrasca	traatracas	catcataagy	24900
coctoses	aactatacga	ttacatacac	gccagcatcc	acaataasa	atgctaccct	24960
coccogcacy	uuccucacya	Juang Lycyc	Julyuacut	3-22-299449		

acatatetto	gaatactcag	agagecete	tacgtttacg	acatttgcgg	catgtacgcc	25020
	cccaccccat					
accaccaca	catggcagca	ggcgctagac	ttgcaaggat	gcaagataga	ctacttcgac	25140
acacacctac	tgcccggggt	ctttaccgtg	gacqcagacc	ccccggacga	gacgcagcta	25200
gacccactac	cgccattctg	ttcgcgcaag	aacaaccacc	tctqctqqac	caacgagcgc	25260
ctacgcggag	aggtagccac	cagcgttgac	cttqtcaccc	tgcacaaccg	caattaacac	25320
atacacctaa	tgcccgacga	gcgcaccacc	atctttccca	aatggcggtg	cattacacac	25380
gaatacgtgc	agctaaacat	cacaaccaaa	gagcgcgccg	atcocoacaa	aaaccaaacc	25440
ctgcgctcca	tcgccaagtt	gctgtccaac	gccctctacg	gatcatttac	caccaagett	25500
gacaacaaaa	agattgtctt	ttctgaccag	atggacgcgg	ccaccctcaa	aggcatcacc	25560
acaaaccaaa	tgaatatcaa	atcctcctcg	tttttggaaa	ctgacaatct	tagcgcagaa	25620
atcataccca	cttttgagag	ggagtactca	ccccaacagc	tagccctcac	agacagcgat	25680
	gtgaggacga					
cccaatcaca	tggcctacac	ctataaacca	atcaccttcc	ttgatgccga	agaggggac	25800
atatatatt	acaccctgga	acasataasa	cccctagtag	acaacgacga	ctacccctcc	25860
acgigience	ccttcgtgct	gegageggae	caaacettca	teteagacta	atccaaattt	25920
atatagagaga	aggaccgcgg	ageceggacg	cadacacac	ctctcaagtc	tatatacaaa	25980
ccacacgagg	gccttttcgt	aacaccgccc	gaggacaggc	tcatcaagec	caractaac	26040
gacacygaca	aaaagcatgg	ggggggg	gyacaccygc	ccatggaaac	agaggcaag	26100
aaacgcatca	adadgeatgg	gggaaacccg	guttutgatt	ccgaacggcc	at agagettace	26160
rggcrcgrgg	aatgcgagac	'ca'rc'racaaa	-geergeggeg	-cygaegeeea	chachagas	26220
teggtattte	tcgcgcccaa	getetaegee	ettaaaagte	tgcactgccc	cccgcgcgc	26220
gcctcctcca	agggcaagct	gcgcgccaag	ggccacgccg	cggaggggct	ggactatgac	26240
accatggtca	aatgctacct	ggccgacgcg	cagggcgaag	accggcagcg	ctteageace	20340
agcaggacca	gcctcaagcg	caccctggcc	agcgcgcagc	ccggagcgca	cccctcacc	26400
gtgacccaga	ctacgctgac	gaggaccctg	cgcccgtgga	aagacatgac	cctggcccgt	26460
ctggacgagc	accgactact	gccgtacagc	gaaagccgcc	ccaacccgcg	aaacgaggag	26520
atatgctgga	tcgagatgcc	gtagagcacg	tgaccgagct	gtgggaccgc	ctggaactgc	26580
ttggtcaaac	gctcaaaagc	atgcctacgg	cggacggcct	caaaccgttg	aaaaactttg	26640
cttccttgca	agaactgcta	tcgctgggcg	gcgagcgcct	tctggcgcat	ttggtcaggg	26700
aaaacatgca	agtcagggac	atgcttaacg	aagtggcccc	cctgctcagg	gatgacggca	26760
gctgcagctc	tcttaactac	cagttgcagc	cggtaatagg	tgtgatttac	gggcccaccg	26820
gctgcggtaa	gtcgcagctg	ctcaggaacc	tgctttcttc	ccagctgatc	tcccctaccc	26880
cggaaacggt	tttcttcatc	gccccgcagg	tagacatgat	cccccatct	gaactcaaag	26940
cgtgggaaat	gcaaatctgt	gagggtaact	acgcccctgg	gccggatgga	accattatac	27000
cgcagtctgg	caccctccgc	ccgcgctttg	taaaaatggc	ctatgacgat	ctcatcctgg	27060
aacacaacta	tgacgttagt	gatcccagaa	atatcttcgc	ccaggccgcc	gcccgtgggc	27120
ccattgccat	cattatggac	gàatgcatgg	aaaatctcgg	aggtcacaag	ggcgtctcca	27180
agttcttcca	cgcatttcct	tctaagctac	atgacaaatt	tcccaagtgc	accggataca	27240
ctgtgctggt	ggttctgcac	aacatgaatc	cccggaggga	tatggctggg	aacatagcca	27300
acctaaaaat	acagtccaag	atgcatctca	tatccccacg	tatgcaccca	tcccagctta	27360
accgctttgt	aaacacttac	accaagggcc	tgcccctggc	aatcagcttg	ctactgaaag	27420
acatttttag	gcaccacgcc	cagcgctcct	gctacgactg	gatcatctac	aacaccaccc	27480
cgcagcatga	agctctgcag	tggtgctacc	tccaccccag	agacgggctt	atgcccatgt	27540
atctgaacat	ccagagtcac	ctttaccacg	tcctggaaaa	aatacacagg	acceteaacg	27600
accgagaccg	ctggtcccgg	gcctaccgcg	cgcgcaaaac	ccctaaataa	agacagcaag	27660
acacttoctt	gatcaaaatc	caaacagagt	ctggttttta	tttatgtttt	aaaccgcatt	27720
aggagggag	gaagccttca	gggcagaaac	ctactagege	agatccaaca	gctgctgaga	27780
aacgacatta	agttcccggg	tcaaagaatc	caattgtgcc	aaaaqaqccg	tcaacttgtc	27840
atcgcgggcg	gatgaacggg	aagctgcact	gcttgcaagc	gggctcagga	aagcaaagtc	27900
agtcacaatc	ccgcgggcgg	taactacaac	ggctgaagcg	acaacaaaaa	ctgcagtctc	27960
caacoocott	ccagacacgg	tctcgtaggt	caaggtagta	gagtttgcgg	gcaggacggg	28020
acaaccatca	atgctggagc	ccatcacatt	ctgacgcacc	ccacccata	ggggcataca	28080
cattataeee	tatgagetea	caatocttcc	atcaaaccac	ttagcactca	tagcagcagc	28140
tactaceee	cagatacaaa	actacatoso	acccccacct	tatatattct	ttcccaccct	28200
taagggggg	ccatcgatgg	casacaccts	ttataggtat	tatagatact	agraarataa	28260
caageeeege	tattcagtgt	caaacaycta	tattatata	acttotttt	acottaaott	28320
ggttgccccg	aattaatacg	atacctacct	catasttest	tatttaacet	actttata	28380
gatgeagate	aattatata	tataastast		actttaccc	tootttooco	20300
ceteeacgea	cgttgtgata	cycayacgat	aattattatt	actitacygg	cccccccgg	20440

```
tgatccgaca ggttacgggg cggcgacctc gcgggttttc gctatttatg aaaattttcc 28500
ggtttaaggc gtttccgttc ttcttcgtca taacttaatg tttttattta aaataccctc 28560
tgaaaagaaa ggaaacgaca ggtgctgaaa gcgaggcttt ttggcctctg tcgtttcctt 28620
tctctgtttt tgtccgtgga atgaacaatg gaagttaacg gatccaggcc gcgagcaaaa 28680
ggccagcaaa aggccaggaa ccgtaaaaaag gccgcgttgc tggcgttttt ccataggctc 28740
cqccccctq acqaqcatca caaaaatcaa cqctcaagtc agaggtggcg aaacccgaca 28800
qqactataaa qataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 28860
accetgeege ttaceggata cetgteegee tttetecett egggaagegt ggegetttet 28920
catageteae getgtaggta teteagtteg gtgtaggteg ttegeteeaa getgggetgt 28980 gtgcaegaae eeceegttea geeggaeege tgegeettat eeggtaaeta tegtettgag 29040
tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 29100
agagggaggt atgtaggggg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 29160
actaqaaqaa cagtatttgg tatctgcgct ctgccaaagc cagttacctt cggaaaaaga 29220
gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc 29280
aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg 29340
gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat cagattatca 29400
aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt 29460
atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca 29520
gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtagtgta gataactacg 29580
atacgggagg gettaccate eggececagt getgeaatga tacegegtga eccaegetea 29640
ccggctcctg atttatcagc aataaaccag ccagccggaa gtgccgagcg cagaagtggt 29700
cetgeaactt tateegeete cateeagtet attagttgtt geegggaage tagagtaagt 29760
agttegecag ttaatagttt tegeaacgtt gttgecattg ctacaggeat egtggtgtca 29820
coctegtest ttggtatage tteatteage teegetteec aacgateaag gegagttaca 29880
tgatccccca tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat agttgtcaga 29940
agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact 30000
gtcatgccat ccgtaagatg cttttctgtg actggtgagt attcaaccaa gaatacggga 30060
taataccgcg ccacatagca gaactttaaa agtgctcatc attgggaaac gttcttcggg 30120
gcgaaaactc tcaaggatct taccgctgtt gagatccagt tcgatgtaac ccactcgcgc 30180
acceaagtga tettetgeat ettttaettt caccagegtt tetgggtgag caaaaacagg 30240
aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact 30300
tttccttttt caatattatt gaagcattta tcagggttat tgtctcatca gcggatacat 30360
atttg
<210> 5
<211> 33
<212> DNA
<213> Homo sapiens
<400> 5
                                                                    33
gcggaattcg gcttggtgac ttagagaaca gag
<210> 6
<211> 33
<212> DNA
<213> Homó sapiens
<400> 6
                                                                    33
gcgggatcct tgaacccgga ccctctcaca cta
<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
```

<223> derived from Adenovirus	
<400> 7 actctcttcc gcatcgctgt	20
<210> 8 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> derived from Adenovirus	
<400> 8 cttgcgactg tgactggtta g	21
<210> 9 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> derived from Adenovirus	
<400> 9 ccgcacccac tatcttcata	20
<210> 10 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> derived from Adenovirus	
<400> 10 ggtgtccaaa ggttcggaga	20

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/27682

A. CLAS	SSIFICATION OF SUBJECT MATTER						
IPC(7) :C12N 15/86, 15/861, 5/10, 15/11, 15/63, 15/64, 15/65; A61K 48/00							
US CL: Please See Extra Sheet. According to International Patent Classification (IPC) or to both national classification and IPC							
							
	LDS SEARCHED						
Minimum d	documentation searched (classification system followed by classification symbols)						
U.S. :	424/93.1, 93.2, 93.6; 43 <i>6</i> /320.1, 69.1, 45 <i>5</i> , 456, 457, 325, 369, 91.1, 91.4, 91.42						
Documentat searched	tion searched other than minimum documentation to the extent that such documents	are included in the fields					
	data base consulted during the international search (name of data base and, where prace Extra Sheet.	cticable, search terms used)					
c. Doc	CUMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where appropriate, of the relevant passage	s Relevant to claim No					
X	US 6,080,576 A (ZAMBROWICZ et al.) 27 June 2000 (27.06.0 see entire document, especially Figure 2, claims 1-3 and columns and 16.						
A	US 5,919,676 A (GRAHAM et al.) 06 July 1999 (06.07.99), entire document, particularly claims 1-6 and columns 2 and 5-6	I I					
A	AGAH et al. Gene recombination in postmitotic cells. Journal Clinical Investigation. July 1997, Vol. 100, No. 1, pages 169-1 especially pages 171-173.	1					
Furt	ther documents are listed in the continuation of Box C. See patent family and	nex.					
• Sp		the international filing date or priorit the application but cited to understan					
	senment defining the general state of the art which is not considered the principle or theory underly be of particular relevance						
	relies document unblished on or after the international filing date. "X" document of particular relevan	unce; the claimed invention cannot be considered to involve an inventive ste					
	coment which may throw doubts on priority claim(s) or which is when the document is taken a						
		ince; the claimed invention cannot t					
		documents, such combination beis					
"P" doc	coment published prior to the international filing date but later "A" document member of the same tan the priority date claimed	patent family					
Date of the	e actual completion of the international search Date of mailing of the internation	nal search report					
oı NOVE	EMBER 2001 3 EC 2007						
Commissio Box PCT	mailing address of the ISA/US oner of Patents and Trademarks on. D.C. 20231 No. (703) 805-8230 Authorized offices Dayld Gudo Telephone No. (703) 308-018	ridges for					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US01/27682

	A. CLASSIFICATION OF SUBJECT MATTER: US CL :				
	+24/93.1, 93.2, 93.6; 435/320.1, 69.1, 455, 456, 457, 325, 369, 91.1, 91.4, 91.42				
B. FIELDS SEARCHED Electronic data bases consulted (Name of data base and where practicable terms used):					
WEST, Dialog, NTIS, Medline, Biotech, Biosis, Biosci, Chemical Abstracts Search terms: adenovirus, recombinase, target site, Cre, cleavage site, gene therapy					
ĺ					
l					
1					
İ					
ı	•				
I					
I	·				
I					
۱					
l	·				
I					
١					
l					
	•				
	·				

HPS Trailer Page for

WEST

UserID: uwinkler

Printer: cm1_8e12_gblaptr

Summary

Document	Pages	Printed	Missed	Copies
WO000220814	117	117	0	1
Total (1)	117	117	0	-