Affine Multibanking for High-Level Synthesis

Ilham Lasfar Christophe Alias Matthieu Moy Rémy Neveu Alexis Carré

The 12th International Workshop on Polyhedral Compilation Techniques (IMPACT'22)

High-Level Synthesis at a glance

Multibanking for HLS

High-Level Synthesis (HLS): Program → Hardware

- \bullet Typically: compute-intensive kernel \to hardware accelerator IP
- Target: ASIC or FPGA

Typical flow:
$$C \xrightarrow{HLS} RTL \xrightarrow{synthesis} Hardware$$

Architecture model:

- Von-Neumann (VivadoHLS)
- Synchronous dataflow (e.g. systolic networks) (AlphaZ)
- Asynchronous dataflow (e.g. KPN, RPN partitioning) (Dcc)

Focus: Efficient data mapping for Von-Neumann model

Multibanking for HLS

000000

```
for (i = 0; i < N; i++) //parallel
   for (j = 0; j < N; j++)
        y[i] += A[i][j] * x[j];
```


Multibanking for HLS

000000

```
for (i = 0; i < N; i++) //parallel
   for (j = 0; j < N; j++)
        y[i] += A[i][i] * x[i];
```


Multibanking for HLS

000000

```
for (i = 0; i < N; i++) //parallel
   for (j = 0; j < N; j++)
        y[i] += A[i][i] * x[i];
```


Multibanking for HLS

000000

```
for (i = 0; i < N; i++) //parallel
   for (j = 0; j < N; j++)
        y[i] += A[i][j] * x[j];
```


Multibanking for HLS

000000

```
for (i = 0; i < N; i++) //parallel
   for (j = 0; j < N; j++)
        y[i] += A[i][j] * x[j];
```


Solution: multibanking

Multibanking for HLS

0000000

Multibanking: Partition data across memory banks readable in parallel

Vivado HLS: language-level array partitioning

- Array dimension(s) to be partitioned
- Array partitioning:
 - (cyclic or block) + factor
 - complete

Use case 1: matrix-vector product

Multibanking for HLS

0000000

```
#pragma HLS ARRAY_PARTITION \
    variable=y complete dim=1
#pragma HLS ARRAY_PARTITION \
    variable=A complete dim=1
for (i = 0; i < N; i++)
#pragma HLS PIPELINE
    for (j = 0; j < N; j++)
        y[i] += A[i][j] * x[j];
```


Synthesis results: (VivadoHLS 2019.1, Kintex 7 FPGA)

Kernel	Version	Latency	Interval	Speed-up	BRAM18K	DSP	FF	LUT	URAM
matvec	Baseline	532	533	10.2	0	320	4799	4423	0
	With banking	52	53	10.2	0	320	67618	13518	0

Use case 2: 2D convolution

Multibanking for HLS

0000000

```
for(i=1: i<N-1: i++)
   for(j=1; j<N-1; j++)
        out[i,j] =
            in[i-1,j-1]+in[i-1,j]+in[i-1,j+1]+
            in[i,j-1] + in[i,j] + in[i,j+1] +
            in[i+1,j-1]+in[i+1,j]+in[i+1,j+1];
```

```
bank 0
bank 7
```

$$bank_{in}(i,j) = i + 3j \mod 9$$
 offset_{in} $(i,j) = j \mod N$

Methodology

- $in[u(\vec{i})] \mapsto \hat{in}[bank_{in}(u(\vec{i}))][offset_{in}(u(\vec{i}))]$
- Add pragmas to partition the bank dimensions: option cyclic, factor=9, dim=1

Multibanking problem

Multibanking for HLS

Input: Program + schedule Output: allocation mappings:

- bank_a(\vec{i}): bank number of $a[\vec{i}]$ (can be a vector)
- offset_a(\vec{i}): offset of $a[\vec{i}]$ into his bank (can be a vector)

Multibanking problem

Multibanking for HLS

Input: Program + schedule Output: allocation mappings:

- bank_a(\vec{i}): bank number of $a[\vec{i}]$ (can be a vector)
- offset_a(\vec{i}): offset of $a[\vec{i}]$ into his bank (can be a vector)

Focus: affine transformations (easier to derive)

- bank_a(\vec{i}) = $\phi_a(\vec{i}) \mod \sigma(\vec{N})$
- offset_a(\vec{i}) = $\psi_a(\vec{i}) \mod \tau(\vec{N})$

Multibanking problem

Multibanking for HLS

Input: Program + schedule Output: allocation mappings:

- bank_a(\vec{i}): bank number of $a[\vec{i}]$ (can be a vector)
- offset_a(\vec{i}): offset of $a[\vec{i}]$ into his bank (can be a vector)

Focus: affine transformations (easier to derive)

- bank_a(\vec{i}) = $\phi_a(\vec{i})$ mod $\sigma(\vec{N})$
- offset_a(\vec{i}) = $\psi_a(\vec{i}) \mod \tau(\vec{N})$

Source-to-source transformation:

- $a[u(\vec{i})] \mapsto \hat{a}[bank_a(u(\vec{i}))][offset_a(u(\vec{i}))]$
- Add pragmas to partition the bank dimensions

Contributions

Multibanking for HLS

000000

General formalization of the multibanking problem, which subsumes the previous approaches.

A general algorithm to compute our multibanking transformation.

Our approach reduces the number of banks and the maximal bank size, without hindering parallel accesses.

Outline

- Multibanking for HLS
- 2 Our algorithm
- 3 Experimental results
- 4 Conclusion

Overview

- Solve a system of affine constraints (parametric ILP)
- Code generation: $a[u(\vec{i})] \mapsto \hat{a}[\mathsf{bank}_a(u(\vec{i}))][\mathsf{offset}_a(u(\vec{i}))]$ Then, add pragmas to partition the bank dimensions

Overview

- Solve a system of affine constraints (parametric ILP)
- Code generation: $a[u(\vec{i})] \mapsto \hat{a}[\mathsf{bank}_a(u(\vec{i}))][\mathsf{offset}_a(u(\vec{i}))]$ Then, add pragmas to partition the bank dimensions

Banking constraints

Multibanking for HLS

Correctness: enforce distinct banks for concurrent access

$$a(\vec{i}) \parallel_{\theta} b(\vec{j}) \land (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow \mathsf{bank}_{a}(\vec{i}) \neq \mathsf{bank}_{b}(\vec{j})$$

Relaxed as:

$$a(\vec{i}) \parallel_{\theta} b(\vec{j}) \wedge (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow \phi_a(\vec{i}) \ll \phi_b(\vec{j})$$

Efficiency: reduce the bank number for each dimension

$$\phi_b(\vec{j}) - \phi_a(\vec{i}) \le \sigma(\vec{N})$$

Banking constraints

Multibanking for HLS

Correctness: enforce distinct banks for concurrent access

$$a(\vec{i}) \parallel_{\theta} b(\vec{j}) \land (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow \mathsf{bank}_{a}(\vec{i}) \neq \mathsf{bank}_{b}(\vec{j})$$

Relaxed as:

$$a(\vec{i}) \parallel_{\theta} b(\vec{j}) \wedge (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow \phi_a(\vec{i}) \ll \phi_b(\vec{j})$$

Efficiency: reduce the bank number for each dimension

$$\phi_b(\vec{j}) - \phi_a(\vec{i}) \le \sigma(\vec{N})$$

Analogous to affine scheduling:

operation	array cell				
dependence	concurrent access				
latency	number of banks				

Outline

- Multibanking for HLS
- 2 Our algorithm
- 3 Experimental results
- 4 Conclusion

Experimental results (1/2)

Setup:

Multibanking for HLS

- VivadoHLS 2019.1
- Target: Kintex 7 FPGA (xc6k70t-fbv676-1)

Benchmarks:

- Linear algebra: matvec, matmul
- Stencils: jacobi2d, seidel2d
- Convolutions: conv2d, canny, gaussian, median, prewitt, se

Preliminary prototyping, using fkcc

Experimental results

Multibanking for HLS

Kernel	Version	Latency	Interval	Speed-up	BRAM18K	DSP	FF	LUT	URAM
matvec	Baseline	532	533	10.2	0	320	4799	4423	0
	With banking	52	53	10.2	0	320	67618	13518	0
matmul	Baseline	1555	1556	29.9	0	10240	135581	123129	0
	With banking	52	53	29.9	0	10240	196648	152161	0
conv2d	Baseline	1442	1443	29.4	0	0	923	4290	0
	With banking	49	50	29.4	0	0	65562	33043	0
jacobi2d	Baseline	11011	11012	1.6	0	0	117140	96019	0
	With banking	6851	6852	1.0	0	0	192295	137499	0
seidel2d	Baseline	6914	6915	2.0	0	0	452	1280	0
	With banking	3458	3459	2.0	0	0	574	2903	0
canny	Baseline	10194	10195	4.3	0	0	669	1837	0
	With banking	2355	2356	4.3	0	0	6616	6085	0
gaussian	Baseline	3922	3923	1.7	0	0	449	1012	0
	With banking	2354	2355	1.7	0	0	2367	2811	0
median	Baseline	3362	3363	1.3	0	0	373	846	0
	With banking	2522	2523	1.3	0	0	2367	2501	0
prewitt	Baseline	3846	3847	2.0	0	0	371	906	0
	With banking	1924	1925		0	0	2249	2142	0

ullet Trade-off surface \leftrightarrow performance still to be explored

Outline

- Multibanking for HLS
- 2 Our algorithm
- Experimental results
- 4 Conclusion

Contributions:

- A general formalization & algorithm for affine multibanking
- Our approach reduces the number of banks and the maximal bank size, without hindering parallel accesses.
- Promising (but still preliminary) experimental validation

Perspectives:

- Common bank size, minimize each bank size
- Investigate the trade-off circuit size/latency (through tiling?)

Multibanking for HLS

Questions?

Banking algorithm

Input: Program (P, θ)

Output: Bank mapping bank_a: $(\vec{i}, \vec{N}) \mapsto \phi_a(\vec{i}) \mod \sigma(\vec{N})$, for each array a

Banking algorithm

Input: Program (P, θ)

Output: Bank mapping bank_a: $(\vec{i}, \vec{N}) \mapsto \phi_a(\vec{i}) \mod \sigma(\vec{N})$, for each array a

- $all d \leftarrow 0$
- - $\min_{\ll} \sigma^d$ coefficients s.t. $\operatorname{correct}(\mathcal{C}, \phi^d) \wedge \operatorname{efficient}(\mathcal{C}, \phi^d, \sigma^d) \wedge \phi^d \operatorname{non-constant}$

 - $\mathbf{0}$ $d \leftarrow d + 1$
- return bank

$$\begin{aligned} & \mathsf{correct}(\mathcal{C}, \phi) : (\mathsf{a}(\vec{i}), b(\vec{j})) \in \mathcal{C} \land \vec{i} \ll \vec{j} \Rightarrow \phi_\mathsf{a}(\vec{i}) \leq \phi_\mathsf{b}(\vec{j}) \\ & \mathsf{efficient}(\mathcal{C}, \phi, \sigma) : (\mathsf{a}(\vec{i}), b(\vec{j})) \in \mathcal{C} \land \vec{i} \ll \vec{j} \Rightarrow \phi_\mathsf{b}(\vec{j}) - \phi_\mathsf{a}(\vec{i}) \leq \sigma(\vec{N}) \end{aligned}$$

Offset constraints

Correctness: enforce distinct offsets for conflicting array cells

$$\mathsf{bank}_a(\vec{i}) = \mathsf{bank}_b(\vec{j}) \land a(\vec{i}) \bowtie_{\theta} b(\vec{j}) \land (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow \mathsf{offset}_a(\vec{i}) \neq \mathsf{offset}_b(\vec{j})$$

Relaxed as:

$$\phi_{a}(\vec{i}) = \phi_{b}(\vec{j}) \land a(\vec{i}) \bowtie_{\theta} b(\vec{j}) \land (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow \psi_{a}(\vec{i}) \ll \psi_{b}(\vec{j})$$

Efficiency: minimize the number of offsets (into a same bank)

$$\phi_{a}(\vec{i}) = \phi_{b}(\vec{j}) \Rightarrow \psi_{b}(\vec{j}) - \psi_{a}(\vec{i}) \leq \tau(\vec{N})$$

Offset constraints

Correctness: enforce distinct offsets for conflicting array cells $bank_a(\vec{i}) = bank_b(\vec{j}) \land a(\vec{i}) \bowtie_{\theta} b(\vec{j}) \land (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow offset_a(\vec{i}) \neq offset_b(\vec{j})$

Relaxed as:

$$\phi_{\textit{a}}(\vec{i}) = \phi_{\textit{b}}(\vec{j}) \land \textit{a}(\vec{i}) \bowtie_{\theta} \textit{b}(\vec{j}) \land (\textit{a},\vec{i}) \neq (\textit{b},\vec{j}) \Rightarrow \psi_{\textit{a}}(\vec{i}) \ll \psi_{\textit{b}}(\vec{j})$$

Efficiency: minimize the number of offsets (into a same bank)

$$\phi_{\mathsf{a}}(\vec{i}) = \phi_{\mathsf{b}}(\vec{j}) \Rightarrow \psi_{\mathsf{b}}(\vec{j}) - \psi_{\mathsf{a}}(\vec{i}) \leq \tau(\vec{N})$$

Again, analogous to affine scheduling:

operation	array cell				
dependence	liveness conflict				
latency	number of offsets				

Offsetting algorithm (almost the same)

Input: Program (P, θ) , bank_a : $(\vec{i}, \vec{N}) \mapsto \phi_a(\vec{i}) \mod \sigma(\vec{N})$ for each array a

Output: Offset mapping offset_a : $(\vec{i}, \vec{N}) \mapsto \psi_a(\vec{i}) \mod \tau(\vec{N})$, for each array a

Offsetting algorithm (almost the same)

Input: Program (P, θ) , bank_a : $(\vec{i}, \vec{N}) \mapsto \phi_a(\vec{i}) \mod \sigma(\vec{N})$ for each array a

Output: Offset mapping offset_a: $(\vec{i}, \vec{N}) \mapsto \psi_a(\vec{i}) \mod \tau(\vec{N})$, for each array a

- $\mathbf{a} d \leftarrow \mathbf{0}$
- **3** while $C \neq \emptyset$ **a** min $\ll \tau^d$ coefficients s.t.
 - correct (\mathcal{C}, ψ^d) \wedge efficient $(\mathcal{C}, \psi^d, \tau^d)$ \wedge ψ^d non-constant
 - 2 $\mathcal{C} \leftarrow \mathcal{C} \cap \{(a(\vec{i}), b(\vec{j})) \mid \psi_a^d(\vec{i}) = \psi_b^d(\vec{j})\}$ 3 $d \leftarrow d + 1$
- return offset

 $correct(\mathcal{C}, \psi) : (a(\vec{i}), b(\vec{j})) \in \mathcal{C} \land \vec{i} \ll \vec{j} \Rightarrow \psi_a(\vec{i}) \leq \psi_b(\vec{j})$ efficient(\mathcal{C}, ψ, τ) : $(a(\vec{i}), b(\vec{j})) \in \mathcal{C} \land \vec{i} \ll \vec{j} \Rightarrow \psi_b(\vec{j}) - \psi_a(\vec{i}) < \tau(\vec{N})$