Exam Mathematics of Learning Solution sketches

Name							
Student registration : (Matrikelnummer)	no						
Signature			••••				
• Do not turn ov	1 0			so by the ex	kaminer!		
• The time for co	1 0						
The exam consi	ists of 4 que	estions with a	a total of 40) points.			
• Answers have	to be readal	ole and justif	ied.				
• Write in black of	or blue.						
• As auxiliary to sides). There are		•			aper (DinA4, both or or phone).		
Good luck!							
Q1 (8P)	Q2 (12P)	Q3 (13P)	Q4 (7P)	$\Sigma = 40P$	Grade:		

Question 1. (8 points)

Let input data $x^1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $x^2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, $x^3 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $x^4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ be given. Compute for all data points the first principal component (i.e. dimension k = 1).

Solution Question 1:

1. (1P) Compute mean value

$$\overline{X} = \frac{1}{4} \sum_{i=1}^{4} x^i = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- 2. (1P) Center data $y^{i} = x^{i} {1 \choose 0}$.
- 3. (2P) Compute covariance matrix

$$C = \frac{1}{4} \sum_{i=1}^{4} y^{i} (y^{i})^{T} = \frac{1}{4} \left(\begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} + \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

(Alternative: $Y = (y^1 \ y^2 \ y^3 \ y^4), C = \frac{1}{4} Y Y^T)$

4. (2P) Compute eigenvalues and eigenvectors. First, compute the roots of the characteristic polynomial of *C*:

$$\chi_C(\lambda) = (\lambda - 2)(\lambda - 2) - 1 = \lambda^2 - 4\lambda + 3.$$

Using the quadratic formula we can calculate the eigenvalues $\lambda = 3$ and $\lambda = 1$. Therefore, the largest eigenvalue is $\lambda = 3$ and since we want to compute one principal component it is enough to calculate the eigenvector for $\lambda = 3$.

5. (1P) This can be done with Gaussian elimination:

$$C - 3 \cdot 1 = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}.$$

This implies that the eigenvector is given by $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

6. (0P)
$$T = (v) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

7. (1P) Compute the first principal components for each data point:

$$z^{1} = T^{T}y^{1} = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 4,$$

$$z^{2} = T^{T}y^{2} = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \end{pmatrix} = -2,$$

$$z^{1} = T^{T}y^{1} = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = -2,$$

$$z^{1} = T^{T}y^{1} = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0.$$

alternative solution without centralizing (2 points less)

3. (2P) Compute covariance matrix

$$C = \frac{1}{4} \sum_{i=1}^{4} x^{i} (x^{i})^{T} = \frac{1}{4} \left(\begin{pmatrix} 9 & 6 \\ 6 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$$

4. (2P) Compute eigenvalues and eigenvectors. First, compute the roots of the characteristic polynomial of *C*:

$$\chi_C(\lambda) = (\lambda - 3)(\lambda - 2) - 1 = \lambda^2 - 4\lambda + 3.$$

Using the quadratic formula we can calculate the eigenvalues $\lambda = \frac{5+\sqrt{5}}{2}$ and $\lambda = \frac{5-\sqrt{5}}{2}$. Therefore, the largest eigenvalue is $\lambda = \frac{5+\sqrt{5}}{2}$ and since we want to compute one principal component it is enough to calculate the eigenvector for $\lambda = \frac{5+\sqrt{5}}{2}$.

5. (1P) This can be done with Gaussian elimination:

$$C - \frac{5 + \sqrt{5}}{2} \cdot \mathbb{1} = \begin{pmatrix} \frac{1 - \sqrt{5}}{2} & 1\\ 1 & \frac{-1 - \sqrt{5}}{2} \end{pmatrix} \Leftrightarrow \begin{pmatrix} \frac{1 - \sqrt{5}}{2} & 1\\ 0 & 0 \end{pmatrix}.$$

This implies that the eigenvector is given by $v = \begin{pmatrix} -1 \\ \frac{1-\sqrt{5}}{2} \end{pmatrix}$.

6. (0P)
$$T = (v) = \begin{pmatrix} -1 \\ \frac{1-\sqrt{5}}{2} \end{pmatrix}$$

7. (1P) Compute the first principal components for each data point:

$$z^{1} = T^{T}y^{1} = \begin{pmatrix} -1 & \frac{1-\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = -2 - \sqrt{5},$$

$$z^{2} = T^{T}y^{2} = \begin{pmatrix} -1 & \frac{1-\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix} = 1,$$

$$z^{1} = T^{T}y^{1} = \begin{pmatrix} -1 & \frac{1-\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = -2 + \sqrt{5},$$

$$z^{1} = T^{T}y^{1} = \begin{pmatrix} -1 & \frac{1-\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -1.$$

Question 2. (10+2=12 points)

Consider the following network with 3 neurons P_1 , P_2 , P_3

with initial weights (as denoted in the graph)

$$w_{P_1x_1}=1$$
, $w_{P_1x_2}=1$, $w_{P_2P_1}=2$, $w_{P_3P_1}=4$

initial biases (as denoted in the graph) $b_{P_1}=-1$, $b_{P_2}=\frac{1}{2}$, $b_{P_3}=0$, and activation functions

$$\psi_{P_1}(t) = \frac{1}{1+3^{-t}}, \ \psi_{P_2}(t) = t^2, \ \psi_{P_3}(t) = t^2.$$

You may use without proof that the derivative of ψ_{P_1} is given by

$$\psi'_{P_1}(t) \approx \psi_{P_1}(t)(1 - \psi_{P_1}(t)).$$

Let

$$\theta = (w_{P_1x_1}, w_{P_1x_2}, w_{P_2P_1}, w_{P_3P_1}, b_{P_1}, b_{P_2}, b_{P_3})^T$$

and let $f_{\theta}(x) = (z_{P_2}, z_{P_3})^T \in \mathbb{R}^2$ denote the output of the network using parameters θ and input $x = (x_1, x_2)^T \in \mathbb{R}^2$. Consider the loss function $C(\theta; x, y) = \frac{1}{2} ||f_{\theta}(x) - y||^2$ for a given training pair (x, y).

- a) Perform one training iteration using the input data $x^1 = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$, $y^1 = \begin{pmatrix} 3 \\ 8 \end{pmatrix}$, and step size $\eta = 0.1$. State the updated weights and biases.
- b) Assume that you are given a second point (x^2, y^2) with

$$\nabla C(\theta; x^2, y^2) = (6, 2, 1, 5.5, 10, -4, 2)^T.$$

What are the updated weights and biases if you use both points and the mean squared loss function in the first training iteration instead of only using x^1 as in a) (again with stepsize $\eta = 0.1$)?

Solution Question 2:

a) We start computing the layers' outputs using a forward pass (3P in total):

$$a_{P_1} = w_{P_1x_1} \cdot x_1 + w_{P_1x_2} \cdot x_2 + b_{P_1} = 1 \cdot (-1) + 1 \cdot 3 - 1 = 1 \ (0.5P)$$

$$z_{P_1} = \psi_{P_1}(a_{P_1}) = \frac{1}{1+3^{-1}} = \frac{1}{1+\frac{1}{3}} = \frac{3}{4} \ (1P)$$

$$a_{P_2} = w_{P_2P_1} \cdot z_{P_1} + b_{P_2} = 2 \cdot \frac{3}{4} + \frac{1}{2} = 2 \ (0.5P)$$

$$z_{P_2} = \psi_{P_2}(a_{P_2}) = 2^2 = 4$$

$$a_{P_3} = w_{P_3P_1} \cdot z_{P_1} + b_{P_3} = 4 \cdot \frac{3}{4} + 0 = 3 \ (0.5P)$$

$$z_{P_3} = \psi_{P_3}(a_{P_3}) = 3^2 = 9 \cdot (z_{P_2} + z_{P_3} : 0.5P)$$

We need the derivatives of the activation functions:

$$\psi'_{P_1}(t) \approx \psi_{P_1}(t)(1 - \psi_{P_1}(t))$$

 $\psi'_{P_2}(t) = \psi'_{P_3}(t) = 2t.$

Now, we compute the partial derivatives of the loss function C with respect to all elements in θ using backpropagation (5P in total):

$$\frac{\partial C}{\partial b_{P_2}} = (z_{P_2} - y_1) \cdot \psi'_{P_2}(a_{P_2}) = (4 - 3) \cdot 2 \cdot 2 = 4 (1P)$$

$$\frac{\partial C}{\partial b_{P_3}} = (z_{P_3} - y_2) \cdot \psi'_{P_3}(a_{P_3}) = (9 - 8) \cdot 2 \cdot 3 = 6 (1P)$$

$$\frac{\partial C}{\partial b_{P_1}} = \left(\frac{\partial C}{\partial b_{P_2}} \cdot w_{P_2 P_1} + \frac{\partial C}{\partial b_{P_3}} \cdot w_{P_3 P_1}\right) \cdot \psi'_{P_1}(a_{P_1})$$

$$= (4 \cdot 2 + 6 \cdot 4) \cdot z_{P_1} \cdot (1 - z_{P_1})$$

$$= (8 + 24) \cdot \frac{3}{4} \cdot \left(1 - \frac{3}{4}\right) = 32 \cdot \frac{3}{4} \cdot \frac{1}{4} = 6 (1P)$$

$$\frac{\partial C}{\partial w_{P_2 P_1}} = \frac{\partial C}{\partial b_{P_2}} \cdot z_{P_1} = 4 \cdot \frac{3}{4} = 3 (0.5P)$$

$$\frac{\partial C}{\partial w_{P_3 P_1}} = \frac{\partial C}{\partial b_{P_3}} \cdot z_{P_1} = 6 \cdot \frac{3}{4} = 4,5 (0.5P)$$

$$\frac{\partial C}{\partial w_{P_1 x_1}} = \frac{\partial C}{\partial b_{P_1}} \cdot x_1 = 6 \cdot (-1) = -6 (0.5P)$$

$$\frac{\partial C}{\partial w_{P_1 x_2}} = \frac{\partial C}{\partial b_{P_1}} \cdot x_2 = 6 \cdot 3 = 18. (0.5P)$$

Therefore, the gradient reads:

$$\nabla C(\theta) = \begin{pmatrix} -6\\18\\3\\4,5\\6\\4\\6 \end{pmatrix}.$$

We update the parameters with a gradient step (1P):

$$\theta^{new} = \theta - \eta \nabla C(\theta) = \begin{pmatrix} 1\\1\\2\\4\\-1\\0.5\\0 \end{pmatrix} - 0.1 \cdot \begin{pmatrix} -6\\18\\3\\4,5\\6\\4\\6 \end{pmatrix} = \begin{pmatrix} 1,6\\-0,8\\1,7\\3,55\\-1,6\\0,1\\-0,6 \end{pmatrix}.$$

The updated parameters are therefore given by (1P, aber wenn Zahlen oben stimmen auch)

$$w_{P_1x_1}^{new} = 1,6$$
 $w_{P_1x_2}^{new} = -0,8$ $w_{P_2P_1}^{new} = 1,7$ $w_{P_3P_1}^{new} = 3,55$ $b_{P_1}^{new} = -1,6$ $b_{P_2}^{new} = 0,1$ $b_{P_3}^{new} = -0,6.$

b) Using a second data point we have to compute the averaged gradient $\overline{\nabla}C(\theta)$ and use it for the update step. The averaged gradient is given by (1P)

$$\overline{\nabla}C(\theta) = \frac{1}{2}(\nabla(\theta, x^1, y^1) + \nabla(\theta, x^2, y^2)) = \frac{1}{2} \begin{pmatrix} 0 \\ 20 \\ 4 \\ 10 \\ 16 \\ 0 \\ 8 \end{pmatrix} = \begin{pmatrix} 0 \\ 10 \\ 2 \\ 5 \\ 8 \\ 0 \\ 4 \end{pmatrix}.$$

The update is given by (1P):

$$\theta^{new} = \theta - \eta \overline{\nabla} C(\theta) = \begin{pmatrix} 1\\1\\2\\4\\-1\\0.5\\0 \end{pmatrix} - 0.1 \cdot \begin{pmatrix} 0\\10\\2\\5\\8\\0\\4 \end{pmatrix} = \begin{pmatrix} 1\\0\\1,8\\3,5\\-1,8\\0,5\\-0,4 \end{pmatrix}.$$

The updated parameters are therefore given by

$$w_{P_1x_1}^{new} = 1$$
 $w_{P_1x_2}^{new} = 0$ $w_{P_2P_1}^{new} = 1,8$ $w_{P_3P_1}^{new} = 3,5$ $b_{P_1}^{new} = -1,8$ $b_{P_2}^{new} = 0,5$ $b_{P_3}^{new} = -0,4.$

- a) Show or give a counterexample: the output of the k-means algorithm for k=2 is the same clustering for any initial cluster centers.
- b) Write a short paragraph on the analysis of the convergence of stochastic gradient descent. Cover at least three main ingredients of the analysis.

Let $N, p \in \mathbb{N}$, $X \in \mathbb{R}^{N \times p}$, and $0 \neq Y \in \mathbb{R}^N$. Consider the corresponding linear regression problem minimizing the squared error

$$\min_{\beta \in \mathbb{R}^p} ||X\beta - Y||_2^2. \tag{1}$$

c) Prove or disprove: Assume that we add the column $X_{p+1} = \sum_{i=1}^{p} X_i$ (where X_i are the columns of X) to X to obtain $\tilde{X} = (X, X_{p+1})$. Then, the minimal squared error does not change, i.e.,

$$\min_{\beta \in \mathbb{R}^p} ||X\beta - Y||_2^2 = \min_{\tilde{\beta} \in \mathbb{R}^{p+1}} ||\tilde{X}\tilde{\beta} - Y||_2^2.$$

d) Prove or disprove: If the optimal solution β to (1) is unique, then $N \geq p$.

Solution Question 3:

- a) Wrong: any counterexample where different centers give different clusterings, for example in a triangle. (3P if counterexample, 1-2P if explanation but no counterexample, 0P if only "wrong")
- b) 1P for any of those: $E(g(x)) = \nabla \mathcal{L}$, \mathcal{L} L-cont, $\sum \eta = \infty$ and $\sum \eta^2 < \infty$, subsequence converges to local minimum ...
- c) True: Let β^* be optimal for the left. Then, $b\tilde{e}ta = (\beta^*, 0)^T$ (1P) is feasible for the right. $\tilde{\beta}$ yields same objective value for the right and thus \geq (1P). Let $\tilde{\beta}^*$ be optimal for the right. Then, β given by $\beta_i = \tilde{\beta}_i^* + \tilde{\beta}_{p+1}^*$ (1P) is feasible for the left. It has same objective value and thus \leq (1P).
- d) True: The optimal solution satisfies $\nabla = 0$ and thus $X^TY X^TX\beta = 0$. If X^TX has full rank, the solution is uniquely given by $\beta = (X^TX)^{-1}X^TY$ (1P). X^TX has full rank if X has full column rank (1P). If X has full column rank, then $X \geq p$ (1P).

Question 4. (2+5=7 points)

Consider a list of samples $(x^i, y^i)_{i=1}^N$ with $x^i \in \mathbb{R}^p$ and $y^i \in \{-1, 1\}$ and the soft margin SVM problem

$$\min_{\beta \in \mathbb{R}^{p}, \beta_{0} \in \mathbb{R}, z \in \mathbb{R}^{N}} F(\beta, \beta_{0}, z) = \frac{1}{N} \sum_{i=1}^{N} z_{i} + \frac{1}{2} ||\beta||_{2}^{2}$$
s.t.
$$1 - y^{i} (\beta^{T} x^{i} + \beta_{0}) \leq z_{i}, \qquad i = 1, ..., N,$$

$$z_{i} \geq 0, \qquad i = 1, ..., N.$$
(2)

Note that $(0,0,\mathbb{1}_N)$, where $\mathbb{1}_N \in \mathbb{R}^N$ denotes the vector containing only ones, is always feasible for (2).

- a) Show that the objective function *F* is bounded from below on the feasible set of (2).
- b) Assume that samples from both classes exist. Show that we can bound the feasible set of (2) (i.e., all variables) without changing the optimal value.

Solution Question 4:

- a) $z_i \ge 0$, therefore $F(\beta, \beta_0, z) \ge 0$ for all (β, β_0, z) . (2P)
- b) $(0,0,\mathbb{1}_N)$ is feasible and thus, for an optimal solution (β,β_0,z) we know that $F(\beta,\beta_0,z) \le 1$ (1P). This implies $0 \le z \le N \cdot \mathbb{1}_N$ (1P) and $\frac{1}{2}||\beta||_2^2 \le 1$ (1P).

There is a point with $y^i = 1$ and thus

$$\beta_0 \ge -\beta^T x^i + 1 - z_i \ge -2||x^i||_2 + 1 - N$$

(0.5P for $y^i=1$ and the constraint, 0.5P for inserting the other bounds). There is a point with $y^i=-1$ and thus

$$\beta_0 \le -\beta^T x^i - 1 + z_i \le 2||x^i||_2 - 1 + N$$

(0.5P for $y^i = -1$ and the constraint, 0.5P for inserting the other bounds).