

Dozent: Prof. MARTIN.KELLER-RESSEL

30. Oktober 2019

In halts verzeichnis

Ι	Einführung					
	1	Zentra	ale Fragestellung der Finanzmathematik	2		
	2 Mathematisches Finanzmodell					
	4	Elementare Replikations und Arbitrage-Argumente				
	5	Bedin	gte Erwartungswerte und Martingale	7		
		5.1	Bedingte Dichte und bedingter Erwartungswert	7		
		5.2	Bedingte Erwartung - maßtheoretischer Zugang	9		
		5.3	Martingale	11		
Anh	nang	3		15		
Inde	x			16		

Vorwort

Kapitel I

Einführung

1. Zentrale Fragestellung der Finanzmathematik

Bewertung:

Bewertung von Derivaten und Absicherung gegen aus Kauf/Verkauf entstehenden Risiken.

Definition (Derivat)

FInanzprodukt, dessen auszahlungen sich vom Preis einer oder mehrer $\underline{\text{Basisg\"{u}ter}}$ (underlying) ableitet (ableiten entspricht derivate)

■ Beispiel

- Recht, in 3 Monaten 100.000 GBP gegen 125.000 EUR zu erhalten (<u>Call-Option</u>, Underlying: Wechselkurs GBP/EUR)
- Recht, innerhalb des nächsten Jahres 100.000 Mwh elektrischer Energie zum Preis von 30EUR/M-wh zu konsumieren mit Mindestabnahme 50.000 Mwh (<u>Swing-Option</u>, Underlying: Strompreis)
- Kauf- und Verkaufsoptionen aus Aktien (Underlying: Aktienkurs)

Fragestellung: Was ist der "faire" Preis für solch ein Derivat? ("Pricing"/Bewertung). Wie kann sicher der Verkäufer gegen eingegangenen Risiken absichern? ("Hedging"/Absicherung)

Optimale Investition

Zusammenstellung von Portofolios, welche nach Risiken/Ertragsgesichtspunkten optimal sind

- Wie wäge ich Risiken gegen Ertrag ab?
- Was genau bedeutet "optimal"?
- Lösung des resultierenden Optimierungsproblems

Risikomangement + Risikomessung

 \bullet Gesetzliche Vorschriften (Basel + Solvency) sollen Stabilität des Banken-/Verischerunssystems auch angesichts verschiedener Risiken sicherstellen \implies mathematische Theorie der konvexen und kohärenten Risikomaße

Mathematische Werkzeuge: Wtheorie + stochastische Prozesse (Dynamik in der Zeit), etwas lineare Algebra, Optimierung, Maßtheorie

2. Mathematisches Finanzmodell

Wir betrachten

- 1. WRaum $(\Omega, \mathscr{F}, \mathbb{P})$, später auch weitere W-Maße Q, \ldots auf demselben Maßraum $(\Omega, \mathscr{F}), \omega \in \Omega$ Elementarereignisse bzw. "Szenarien"
- 2. <u>Zeitachse</u> I entweder $I = \{t_0, t_1, \dots, t_N = T\}$ N-Periode Modell (diskretes Modell) oder I = [0, T] (zeitstetiges Modell), wobei T = Zeithorizont

Ein stochasticher Prozess S ist eine messbare Abbildung $S:(\Omega,\mathscr{F})\to\mathbb{R}^d$ mit $(\omega,t)\mapsto S_t(\omega)$ insbesondere ist

- $t \mapsto S_t(\omega)$ Funktion $I \to \mathbb{R}^d$ für jedes $\omega \in \Omega$ ("Pfad")
- $\omega \mapsto S_t(\omega)$ Zufallsvariable $\Omega \to \mathbb{R}^d$ für jedes $t \in I$
- 3. <u>Filtration</u> ist Folge von ω -Algebren $(\mathscr{F}_t)_{t\in I}$ mit der Eigenschaft $\mathscr{F}_S\subseteq\mathscr{F}_t \ \forall s,t\in I,x\leq t$ und $\mathscr{F}_t\subseteq\mathscr{F} \ \forall t\in I$

Interpretation: \mathscr{F}_t =dem Marktteilnehmer zum Zeitpunkt t bekannte/ verfügbare Informationen Ereignisse $A \in \mathscr{F}_t$ gelten als "zum Zeitpunkt t" bekannt

Eine \mathbb{R}^d -wertige ZV X heißt $\underline{\mathscr{F}_t$ -messbar, wenn $E = X^{-1}(B) \in \mathscr{F}_t \ \forall$ Borelmengen $B \subseteq \mathbb{R}^d$ (dabei ist E das Urbild von B)

■ Beispiel

Ein stochastischer Prozess $(S_t)_{t\in I}$ auf (Ω, \mathscr{F}) heißt <u>adaptiert</u> bezüglich einer Filtration $(\mathscr{F}_t)_{t\in I}$, wenn gilt:

$$S_t$$
 ist \mathscr{F}_t – messbar $\forall t \in I$

Interpretation: "der Wert S_t ist zum Zeitpunkt t bekannt" Warum Filtration in der Finanzmathematik (FiMa)?

- Unterscheidung Zukunft / Vergangenheit
- unterschiedliche Information (Insider/Outsider) entspricht unterschiedlicher Filtration $(\mathscr{F}_t)_{t\in I}$ bzw. $(\mathscr{G}_t)_{t\in I}$
- 4. Anlagegüter (assets) \mathbb{R}^{d+1} -wertiger stochastischer Prozess mit Komponenten

$$S^i: (\Omega \times I) \to \mathbb{R} \quad (\omega, t) \mapsto S^i_t(\omega) \text{ mit } i \in \{0, 1, \dots, d\}$$

wobei S^i_t = Preis des *i*-ten Anlageguts zum Zeitpunkt t $S^i, i \in \{1, \ldots, d\}$ ist typischerweise

- Aktie (Stock), Unternehmensanteil
- Währung (currency) bzw. Wechselkurs
- Rohstoff (commodity) wie z.B. Öl, Edelmetall, Elektriziät, etc
- Anleihe (bond) ... Schuldverschreibung

Hauptannahme: S^i ist liquide gehandelt (z.B. an Börse), d.h. Kauf/Verkauf zum Preis S^i_t jederzeit möglich

 S^0 ... "Numeraire" hat Sonderrolle: beschreibt Verzinsung von <u>nicht</u> in $(S^1, ..., S^d)$ angelegten Kapital, wird meist risikolos betrachtet

Definition I.1 (Finanzmodell)

Ein Finanzmodell (FMM) mit Zeitachse I ist gegeben durch

- 1. einen WRaum $(\Omega, \mathscr{F}, \mathbb{P})$ mit Filtration $(\mathscr{F}_t)_{t \in I}$
- 2. einen an $(\mathscr{F}_t)_{t\in I}$ adaptieren, \mathbb{R}^{d+1} -wertigen stochastischen Prozess $S_t = (S_t^0, S_t^1, \dots, S_t^d), t \in I$
- Beispiel (Cox-Rubinstein (CRR)-Modell (zeitdiskret))
 - $S_n^0 = (1+r)^n$, d.h. Verzinsung mit konstanter Rate r
 - $S_n^1 = S_0^1 \prod_{k=1}^n (1+Ru)$, wobei (R_1, R_2, \dots) unabhängig ZVen mit zwei möglichen Werten a < b

Bild: "rekonbinierter Baum" mit Ereignissen ω entsprechen Pfaden in dem Baum

- Beispiel (Block-Scholes-Modell (zeitstetig))
 - $S_t^0 = e^{rt}$, d.h. Verzinsung mit konstanter Rate r
 - $S_t^1 = S_0^1 \cdot \exp((\mu \frac{\sigma^2}{2}t + \sigma\beta_t))$ mit $\mu \in \mathbb{R}, \sigma > 0, S_0^1 > 0$ und β_t entspricht Brownscher Bewegung (stochastischer Prozess in stetiger Zeit) und $\mu \frac{\omega^2}{2}$ entspricht Trendkomponente

Bild: Börsenkurve = $S_t(\omega)$, wobei zeitstetiges Modell auf unendlichen W-Raum

3. Anleihen und grundeliegende Beispiele für Derivate

Hier betrachten wir immer nur ein Basisgut $S_t = S_t^1$

1. $\underline{\text{Anleihe}(\text{bond})}$: (genauer: Null-Coupon-Anleihe [zero-coupon-bond]) Der $\underline{\text{Emittent}}$ (Herausgeber) einer Anleihe mit Endfälligkeit T [maturity] garantiert dem Käufer zum Zeitpunkt T den Betrag N (EUR/USD/...) zu zahlen.

Typische Emittenten:

- Staaten [government bond]
- Unternehmen (als Alternative zur Kreditaufnahme)

Nach Emission werden Anleihen auf den Sekundärmarkt weiterverkauft, d.h. liquide gehandelte Wertpapiere

Preis bei Emission: B(0,T)

Preis bei Weiterverkauf zum Zeitpunkt $t \leq T$: B(t,T)

Wir normieren stets $N = 1 \implies B(T, T) = 1$

Anleihen von West/Nord/Mitteleuropäischen Staaten + USA/Kananda werden als risikolos betrachtet (sichere Zahlung).

Sonst: Kreditrisiko

Risikofreie Anleihen können als Numerale $S_t^0 = B(t,T)$ genutzt werden

Bild: kann ich gerade nicht beschreiben:/

2. Terminvertrag

Aus Käufersicht: <u>Vereinbarung</u> zu bestimmten, zukünftigen Zeitpunkt T eine Einheit des Basisguts S zum Preis zu kaufen (Kaufverpflichtung)

Beliebt bei Rohstoffen + Elektrizität

Auszahlunsprofil: $F_T = S_T - K$

Bild: "Eine Gerade mit Schnittpunkt der x-Achse bei K und Schnittpkt der y-Achse bei $S_T \ge 0$, ist ja nur einer Polynom 1. Ordnung"

Preis zum Zeitpunkt t: F_t

- 3. <u>Europäische Put-/Call-Option</u>: Recht zu einem zukünftigen Zeitpunkt T eine Einheit des Basisguts S zum Preis K zu verkaufen (Put) bzw. zu kaufen (Call) **keine (Ver-)Kaufsverpflichtung**
 - Call:

$$C_T := \begin{cases} S_T - K & S_T \ge K \\ 0 & S_T < K \end{cases} = (S_T - K)_+$$

ightharpoonup Bemerkung

$$X_{+} = \max(X, 0)$$
 $X_{+} - X_{=X}$
 $X = \min(X, 0)$ $X_{+} + X_{=|X|}$

Bild: (hockey stick function)

• Put:

$$P_{t} = \begin{cases} 0 & S_{T} \ge K \\ K - S_{T} & S_{t} < K \end{cases} = (K - S_{T})_{+}$$

Bild: "inversed" hockey stick function xD

4. Amerikanische Put/Call-Option: Wie Put/Call aber mit Ausübung zu beliebigen Zeitpunkt $t \in [0, T]$

Preis zum Zeitpunkt $t: P_t^{AM}, C_t^{AM}$

Auszahlungsprofil zum zeitpunkt $\tau: (S_{\tau} - K), (K - S_{\tau})_{+}$

Zeitpunkt τ muss im Allgemeinen als Lösung eines stochastischen Optimierungsproblems bestimmt werden ("Optimales Stopproblem")

4. Elementare Replikations und Arbitrage-Argumente

Was können wir (mit elementaren Mitteln) über die "fairen" Preise $B(t,T), F_t, C_t, P_t$ aussagen? Wir verwenden:

• Replikationsprinzip: Zwei identische zukünftige Zahlungsströme haben auch heute denselben Wert. (ein Zahlungstrom "repliziert" den anderen)

- No-Arbitage-Prinzip: "Ohne Kapiteleinsatz kann sicherer Gewinn ohne Verlustrisiko erzielt werden"
- Arbitrage: risikofreier Gewinn
- Schwächere Form des Replikationsprinzips:
 Superpositionsprinzip: Ist ein Zahlungsstrom in jedem Fall größer als ein anderer, so hat er auch heute den größeren Wert

stark Rep. Prinzip eingeschränkt anwendbar
$$\downarrow \qquad \text{Superrep. Prinzip} \qquad \uparrow$$
 schwach No-Arbitrage-Prinzip immer anwendbar

Lemma I.2

Für den preis C_t des europäischen Calls gilt:

$$(S_t - K \cdot B(t, T))_+ \le C_t \le S_t$$

Beweis. • untere Schranke: Für Widerspruch $S_t - K \cdot (B(t,T)) - C_t = \varepsilon > 0$

Portofolio	Wert in t	Wert in $T, S_t \leq K$	Wert in $T, S_t > K$
Kaufe Call	C_t	0	$S_T - K$
Verkaufe Basisgut	$-S_t$	$-S_T$	$-S_T$
Kaufe Anleihe	$\varepsilon + K \cdot B(t,T)$	$\frac{\varepsilon}{B(t,T)} + K$	$\frac{\varepsilon}{B(t,T)} + K$
Σ	0	$K - S_T + \frac{\varepsilon}{B(t,T)} > 0$	$\frac{\varepsilon}{B(t,T)} > 0$
	keine Anfangskapital	sicherer Gewinn	sicherer Gewinn

⇒ Widerspruch zu No-Arbitrage

 $\implies S_t - K \cdot B(t,T) \le C_t$ und Ausserdem $C_t \ge 0 \implies C_t \ge (S_t - K \cdot B(t,T))_+$

• obere Schranke: UE

Lemma I.3 (Put-Call-Parität)

Für Put P_t , Call C_t mit demselben Ausübungspreis K und Basisgut S_t gilt

$$C_t - P_t = S_t - B(t, T)K$$

Bild: need to add ..., but should be fast to do ...

Beweis. mit Replikation:

Portofolio 1 Wert in
$$t$$
 Wert in $T, S_t \leq K$ Wert in $T, S_t > K$

Kaufe Call C_t 0 $S_T - K$

Kaufe Anleihe $K \cdot B(t,T)$ K K

Wert Portofolio 1 $C_t + K \cdot B(t,T)$ K S_T

Portofolio 2 Wert in t Wert in $T, S_t \leq K$ Wert in $T, S_t > K$

Kaufe Put P_t $K - S_T$ 0

Kaufe Basisgut S_t S_T S_T

Wert Portofolio 2 $P_t + S_t$ K

Replikationsprinzip: $C_t + K \cdot B(t,T) = P_t + S_t$
 $\Rightarrow C_t - P_t 0 S_t - K \cdot B(t,T)$

5. Bedingte Erwartungswerte und Martingale

5.1. Bedingte Dichte und bedingter Erwartungswert

Motivation: Gegeben: Zwei ZVen (X,Y) mit Werten in $\mathbb{R}^m \times \mathbb{R}^n$ und gemeinsame Dichte $f_{XY}(x,y)$. Aus f_{XY} können wir ableiten:

- $f_Y(y) := \int_{\mathbb{R}^m} f_{XY}(x,y) \, \mathrm{d}x$ mit Randverteilung von Y
- $S_Y := \{ y \in \mathbb{R}^n \colon f_Y(y) > 0 \}$ Träger von Y Bild?

Definition (Bedingte Dichte von X bezüglich Y)

Bedingte Dichte von X bezüglich Y ist definiert als

$$f_{X|Y}(x,y) = \begin{cases} \frac{f_{XY}(x,y)}{f_Y(y)} & y \in S_Y \\ 0 & y \notin S_Y \end{cases}$$

Betrachte folgende Problemstellung:

Was ist die beste Vorhersage von X gegeben einer Beobachtung Y = y?

Kriterium:

Minimiere quadratischen Abstand/zweite Moment/ L_2 -Norm.

Vorhersage:

Messbare Funktion $g: \mathbb{R}^n \to \mathbb{R}^m$ mit $y \mapsto g(y)$, d.h,.

$$\min \left\{ \mathbb{E}[(X-g(Y))]^2 \colon g \text{ messbar } \mathbb{R}^n \to \mathbb{R}^m \right\} \tag{min-1}$$

Satz I.4

Wenn (X,Y) eine gemeinsame Dichte besitzen mit $\mathbb{E}[|X|^2] < \infty$ gilt, dann wird (min-1) minimiert durch die bedingte Erwartung

$$g(y) = \mathbb{E}[X \mid Y = y] := \int_{\mathbb{R}^m} x f_{X|Y}(x, y) \, \mathrm{d}x$$

(wobei $\mathbb{E}[X \mid Y = y]$ "Erwartungswert von X bedingt auf Y = y")

Allgemeiner gilt:

Theorem I.5

Seien (X,Y) ZVen mit gemeinsamer Dichte auf $\mathbb{R}^m \times \mathbb{R}^n$, $h: \mathbb{R}^m \to \mathbb{R}^n$ messbar mit $\mathbb{E}[h(X,y)^2]$. Dann wird das Minimierungsproblem

$$\min \big\{ \mathbb{E}[(h(X,Y) - g(y))^2] \big\} \quad \text{gmessbar von } \mathbb{R}^n \text{ nach } \mathbb{R}$$

gelöst durch

$$g(y) = \mathbb{E}[h(X,Y) \mid Y = y] = \int_{\mathbb{R}^m} h(X,Y) f_{X|Y}(x,y) \, \mathrm{d}x$$

Beweis (nur Prop, Theorem analog, für n=1). Setze $g(y)=\int_{\mathbb{R}}f_{X|Y}(x,y)\,\mathrm{d}x$. Sei $p:\mathbb{R}\to\mathbb{R}$ beliebige messbare Funktion mit $\mathbb{E}[p(y)^2]<\infty$. Setze $g_{\varepsilon}(y)=g(y)+\varepsilon p(y)$. Minimiere

$$\begin{split} F(\varepsilon) &:= \mathbb{E}[(X - g_{\varepsilon}(y))^2] = \mathbb{E}[(X - g(y) - \varepsilon p(y))^2] \\ &= \mathbb{E}[(X - g(y))^2] - 2\varepsilon \mathbb{E}[(X - g(y))p(y)] + \varepsilon^2 \mathbb{E}[p(y)^2] \\ \frac{\partial F}{\partial \varepsilon}(\varepsilon) &= 2\varepsilon \mathbb{E}[p(y)^2] - 2\mathbb{E}[(X - g(y))p(y)] \\ &\Longrightarrow \varepsilon_* := \frac{\mathbb{E}[(X - g(y))p(y)]}{\mathbb{E}[p(y)^2]} = \frac{A}{B} \end{split}$$

wobei

$$\begin{split} A &= \mathbb{E}[Xp(y)] - \mathbb{E}[g(y)p(y)] \\ &= \int_{\mathbb{R} \times \mathbb{R}^n} xp(y) f_{XY}(x,y) \, \mathrm{d}x \, \mathrm{d}y - \int_{S_y} g(y) p(y) f_Y(y) = [\text{Einsetzen von } g + \text{Fubini}] \\ &= \int_{\mathbb{R} \times \mathbb{R}^n} xp(y) f_{XY}(x,y) \, \mathrm{d}x \, \mathrm{d}y - \int_{\mathbb{R} \times S_y} xp(y) \underbrace{f_{X|Y}(x,y) f_Y(y \, \mathrm{d}y)}_{=f_{XY}(x,y)} = 0 \end{split}$$

also $\varepsilon^* = 0$ unabhängig von $p \implies g(y)$ minimiert (min-1).

■ Beispiel

Seien (X,Y) normalverteilt auf $\mathbb{R} \times \mathbb{R}$ mit

$$\mu = (\mu_x, \mu_y)^T \quad \Sigma = \begin{pmatrix} \sigma x^2 \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix} = \begin{pmatrix} \mathbb{V}\mathrm{ar}(X) & \mathbb{C}\mathrm{ov}(X, Y) \\ \mathbb{C}\mathrm{ov}(X, Y) & \mathbb{V}\mathrm{ar}(Y) \end{pmatrix} \text{ mit } \rho \in [-1, 1]$$

Dann ist die beliebige Dichte $f_{X|Y}(x,y)$. (Σ Kovarianzmatrix). wieder die Dichte einer Normalverteilung mit

$$\mathbb{E}[X \mid Y = y] = \mu_x + \rho \frac{\sigma_x}{\sigma_y} (y - \mu_y)$$

$$\mathbb{V}ar(X \mid Y = y) = \sigma_x^2 (1 - \rho^2)$$

(ist ÜA!). Die Abbildung $y \mapsto \mu_x + g(y) \frac{\sigma_x}{\sigma_y} (y - \mu_y)$ heißt Regressionsgerade für X gegeben Y = y. Bild: μ_x, μ_y sind Werte auf x, y-Achse und die σ 's bilden das Steigungsdreieck (Steigung im Wesentlichen durch ρ bekannt)

Für diskrete ZVen, d.h. wenn X, Y nur endlich viele $\{x_1, \ldots, x_m\}$ bzw. $\{y_1, \ldots, y_m\}$ annehmen dann erhalten wir mit ähnlichen Überlegungen als Lösung von (min-1)

$$\mathbb{E}[X \mid Y = y_j] = \sum_{i=1}^{m} X_i \mathbb{P}(X = x_i \mid Y = y_j)$$

wobei direkt die bedingten Wahrscheinlichkeiten

$$\mathbb{P}(X = x_i \mid Y = y_j) = \begin{cases} \frac{\mathbb{P}(X = x_i \land Y = y_j)}{\mathbb{P}(Y = y_j)} & \text{wenn } \mathbb{P}(Y = y_j) > 0\\ 0 & \text{wenn } \mathbb{P}(Y = y_j) = 0 \end{cases}$$

5.2. Bedingte Erwartung - maßtheoretischer Zugang

Wir betrachten W
Raum $(\Omega, \mathscr{F}, \mathbb{P})$. Für ZV $X: \Omega \to \mathbb{R}$ und $p \in [1, \infty)$ definieren wir die L_p -Norm

$$||X||_p = \mathbb{E}[|X|^p]^{1/p} = \left(\int_{\Omega} |X(\omega)|^p d\mathbb{P}(\omega)\right)^{1/p}$$

und L_p -Raum $L_p(\Omega, \mathscr{F}, \mathbb{P}) := \{X : \Omega \to \mathbb{R} : \mathscr{F} - \text{messbar}, \|X\|_p < \infty \}$. Dabei identifzieren wir ZVen, die sich nur auf Nullmengen unterscheiden, d.h. $\mathbb{P}(X \neq X') = 0 \implies X = X' \text{ (in } L_p)$.

Aus Maßtheorie bekannt: (?)

Die Räume $L_p(\Omega, \mathscr{F}, \mathbb{P})$ mit Norm $\|\cdot\|_p, p \in [1, \infty)$ sind stets BANACH-Räume (lineare, vollständig, normierte Vektorräume). Für p = 2 auch Hilbertraum mit inneren Produkt

$$\langle X, Y \rangle = \mathbb{E}[XY] = \int_{\Omega} X(\omega)Y(\omega) \, d\mathbb{P}(\omega)$$

Für $\mathscr{G} \subseteq \mathscr{F}$ Unter- σ -Algebra ist $L_p(\Omega, \mathscr{F}, \mathbb{P}) \subseteq L_p(\Omega, \mathscr{F}, \mathbb{P})$ abgeschlossen Unterraum.

Wir verallgemeinern "Vorhersageproblem" aus dem letzten Abschnitt (1.3?)

Gegeben ZVe X aus $L_2(\Omega, \mathcal{F}, \mathbb{P})$ ist $\mathscr{G} \subseteq \mathcal{F}$ Unter- σ -Algebra.

Was ist die beste \mathscr{G} -messbare Vorhersage für Y?

$$\min\{\mathbb{E}[(X-G)^2]: G \in L_2(\Omega, \mathcal{F}, \mathbb{P})\}$$
 (min-2)

wobei $\mathbb{E}[(X - G)^2] = ||X - G||_2^2$.

Aus Hilbertraumtheorie:

(min-2) besitzt eine eindeutige Lösung $G_* \in L_2(\mathscr{F}, \mathscr{G}, \mathbb{P})$. G_* ist Optimierung (bezüglich $\langle \cdot, \cdot \rangle$) von $X \in L_2(\Omega, \mathscr{F}, \mathbb{P})$ auf abgeschlossenen Unterraum $L_2(\Omega, \mathscr{G}, \mathbb{P})$

Bild: eventuell von Eric (Orthogonal Projektion auf den Unterraum)

Wir bezeichnen mit G_* mit $\mathbb{E}[X \mid \mathscr{G}]$ bedingte Erwartungswert von X bezüglich \mathscr{G} .

Theorem I.6 (Eigenschaften bedingter Erwartungswert)

Seien $X, Y \in L_2(\Omega, \mathcal{F}, \mathbb{P})$ und $\mathscr{G} \subseteq F$ Unter- σ -Algebra. Dann gilt

- 1. (Linearität) $\mathbb{E}[aX+bY]=a\mathbb{E}[X\mid \mathcal{G}]+b\mathbb{E}[Y\mid \mathcal{G}]$
- 2. (Turmregel) Für jede weitere σ -Algebra $\mathscr{H} \subseteq \mathscr{G}$ gilt

$$\mathbb{E}[E[X \mid \mathcal{G} \mid \mathcal{H}]] = \mathbb{E}[X \mid \mathcal{H}]$$

3. (Pullout-Property) $\mathbb{E}[XZ \mid \mathcal{G}] = Z\mathbb{E}[X \mid \mathcal{G}]$, wenn Z beschränkt und \mathcal{G} -messbar ist. zweite Version: Für Z \mathcal{G} -messbar mit $\mathbb{E}[|XZ|] < \infty$ gilt:

$$\mathbb{E}[XZ \mid \mathcal{G}] = Z \cdot \mathbb{E}[X \mid \mathcal{G}]$$

insbesondere gilt

$$X\mathscr{G}$$
-messbar $\Longrightarrow \mathbb{E}[X \mid \mathscr{G}] = X$

- 4. (Monotonie) $X \leq Y \implies \mathbb{E}[X \mid \mathcal{G}] \leq \mathbb{E}[Y \mid \mathcal{G}]$
- 5. (Δ -Ungleichung) $|\mathbb{E}[X \mid \mathcal{G}]| \leq \mathbb{E}[|X| \mid \mathcal{G}]$
- 6. (Unabhängigkeit) X unabhängig von $G \implies \mathbb{E}[X \mid \mathscr{G}] = \mathbb{E}[X]$
- 7. (triviale σ -Algebra) $\mathscr{G} = \{\varnothing, \Omega\} \implies \mathbb{E}[X \mid \mathscr{G}] = \mathbb{E}[X]$

Beweis. (ohne Beweis, siehe VL W-Theorie mit Martingalen oder auch STOCH-Skript SS19.)

▶ Bemerkung

- Die für $X \in L_2(\Omega, \mathscr{F}, \mathbb{P})$ definierte vedingte Erwartung $\mathbb{E}[X \mid \mathscr{G}]$ lässt sich durch Approximation auf alle $X \in L_1(\Omega, \mathscr{F}, \mathbb{P})$ erweitern. Alle Eigenschaften aus Theorem I.I.6 bleiben erhalten!
- Sei Y eine ZVe und $\mathscr{G} = \sigma(Y)$ die von Y erzeugte σ -Algebra. Wir schreiben:

$$\mathbb{E}[X \mid Y] = \mathbb{E}[X \mid \sigma(Y)]$$
 σ -messbare ZVe

• Maßtheorie: Doob-Dynkin-Lemma $\implies \exists$ messbare Funktion $g: \mathbb{R}^n \to \mathbb{R}$ sodass

$$\mathbb{E}[X \mid Y] = g(Y)$$

Dabei ist q genau die Funktion aus (min-1).

Zusammenfassung:

Sei X, Y aus $L_1(\Omega, \mathscr{F}, \mathbb{R}), \mathscr{G} \subseteq \mathscr{F}$ Unter- σ -Algebra

1. $\mathbb{E}[X \mid Y = y]$ ist messbare Funktion $g : \mathbb{R}^n \to \mathbb{R}^n$. Falls bedingte Dichte existiert, gilt:

$$\mathbb{E}[X \mid Y = y] = \int_{\mathbb{R}^m} f_{X|Y}(x, y) \, \mathrm{d}x$$

2. $\mathbb{E}[X \mid Y]$ ist eine $\sigma(y)$ -messbare ZVe, diese kann als g(Y) dargestellt werden. Falls bedingte Dichte existiert, gilt

$$\mathbb{E}[X \mid Y](\omega) = \int_{\mathbb{R}^n} x f_{X|Y}(x, Y(\omega)) \, \mathrm{d}x$$

3. $\mathbb{E}[X \mid \mathcal{G}]$ ist eine \mathcal{G} -messbare ZVe. Falls $\mathcal{G} = \sigma(y)$ tritt 2) ein.

In allgemeinen Fall kann $\mathbb{E}[\bar{X} \mid \cdot]$ interpretiert werden als beste Vorhersage für X, gegeben

- 1. punktweise Beobachtung Y = y
- 2. Beobachtung Y
- 3. Information \mathscr{G}

5.3. Martingale

Prototyp eines "neutralen" stochastischen Prozesses, der weder Aufwärts- noch Abwärtstrend besitzt. Hier nur in diskrete Zeit $Z = \mathbb{N}_0$.

Definition (Martingal ohne Filtration)

Sei $(X_n)_{n\in\mathbb{N}_0}$ stochastischer Prozess. Wenn gilt

- 1. $\mathbb{E}[|X_n|] < \infty \ \forall n \in \mathbb{N}$ 2. $\mathbb{E}[X_{n+1}, \dots, X_n] = X_n \ \forall n \in \mathbb{N}$

dann heißt (X_n) Martingal. Wen wir $\mathscr{F}_n^* = \sigma(X_1, \dots, X_n)$ definieren, können wir 2) schreiben als

$$\mathbb{E}[X_{n+1} \mid \mathscr{F}_n^*] = X_n \quad \forall n \in \mathbb{N}$$

Interpretation:

- Beste Vorhersage für zukünftigen Wert X_{n+1} , basierend auf Vergangenheit $\sigma(X_1,\ldots,X_n)$ ist der momentane Wert X_n .
- Aus der Turmregel folgt

$$\mathbb{E}[X_{n+k} \mid \mathscr{F}_n^*] = X_n \quad n, k \in \mathbb{N}_0$$

denn

$$\mathbb{E}[X_{n+k}\mid \mathscr{F}_n^*] = \mathbb{E}[\mathbb{E}[X_{n+k}\mid \mathscr{F}_{n+k-1}\mid \mathscr{F}_n^*]] = \mathbb{E}[X_{n+k-1}\mid \mathscr{F}_n^*] = (k\text{-mal}) = X_n$$

Kann von $(\mathscr{F}_n)_{n\in\mathbb{N}}$ auf beliebige Filtrationen $(\mathscr{F}_n)_{n\in\mathbb{N}_0}$ erweitert werden.

Definition (Martingal mit Filtration)

Sei $(X_n)_{n\in\mathbb{N}_0}$ ein stochastischer Prozess, adaptiert an eine Filtration $(\mathscr{F}_n)_{n\in\mathbb{N}_0}$. Wenn gilt

1. $\mathbb{E}[|X_n|] < \infty \ \forall n \in \mathbb{N}_0$ 2. $\mathbb{E}[X_{n+1} \mid \mathscr{F}_n] = X_n \ \forall n \in \mathbb{N}_0$ dann heißt $(X_n)_{n \in \mathbb{N}_0}$ Martingal bezüglich Filtration $(\mathscr{F}_n)_{n \in \mathbb{N}_0}$

Interpretation:

Beste Vorhersage für zukünftige Werte X_{n+1} , basierend auf verfügbarer Information \mathscr{F}_n ist momentane Wert X_n .

Definition (Supermartingal, Submartingal)

Falls in Punkt 2) statt "=" die Ungleichung \leq oder \geq gilt, so heißt $(X_n)_{n\in\mathbb{N}}$ Supermartingal bzw. Submartingal.

Erste Beobachtung:

• X Martingal $\Longrightarrow \mathbb{E}[X_n] = X_0$, d.h. $n \mapsto \mathbb{E}[X_n]$ ist konstant. Begründung:

$$\mathbb{E}[X_{n+1}\mid \mathscr{F}_n] = X_n \implies \mathbb{E}[\mathbb{E}[X_{n+1}\mid \mathscr{F}_n]] = \mathbb{E}[X_n] = \mathbb{E}[X_{n+1}] \implies (n\text{-mal Anwendung }\mathbb{E}[X_n] = X_0)$$

Bild: Erwartungswert konstant, aber kein Martingal.

- X Submartingal $\implies n \mapsto \mathbb{E}[X_n]$ ist monoton steigend
- X Supermartingal $\implies n \mapsto \mathbb{E}[X_n]$ ist monoton fallend

Um sich den Unterschied zwischen Super- und Submartingal zu merken, hier eine kleine Hilfe:

"Das leben ist ein Supermartingal, die Erwartungen fallen mit der Zeit."

■ Beispiel

• Seien $(Y_n)_{n\in\mathbb{N}}$ unabhängige ZVen in $L_1(\Omega, \mathscr{F}, \mathbb{P})$ mit $\mathbb{E}[Y_n] = 0$. Definiere $X_n := \sum_{k=1}^n Y_k$ mit $X_0 = \sum_{k=1}^n Y_k$ 0. Dann ist $(X_n)_{n\in\mathbb{N}_0}$ Martingal, denn

1.
$$\mathbb{E}[|X_n|] \leq \sum_{k=1}^n \mathbb{E}[|Y_k|] < \infty \quad \forall n \in \mathbb{N} \checkmark$$

2.

$$\mathbb{E}[X_{n+1} \mid \mathscr{F}_n^*] = \mathbb{E}[Y_{n+1} + X_n \mid \mathscr{F}_n^*]$$

$$= \mathbb{E}[Y_{n+1} \mid \mathscr{F}_n^*] = \mathbb{E}[X_n \mid \mathscr{F}_n^*] \quad (\text{ Turm und } \mathscr{F}_n^*\text{-messbar})$$

$$= \underbrace{\mathbb{E}[Y_{n+1}]}_{=0} + X_n = X_n \checkmark$$

• weitere Beispiele auf dem ersten Übungsblatt!

Definition (vorhersehbar)

Sei $(\mathscr{F}_n)_{n\in\mathbb{N}_0}$ eine Filtration. Ein stochastischer Prozess $(X_n)_{n\in\mathbb{N}}$ heißt <u>vorhersehbar</u> (predictable) bezüglich $(\mathscr{F}_n)_{n\in\mathbb{N}_0}$, wenn gilt:

$$H_n$$
 ist \mathscr{F}_{n-1} -messbar $\forall n \in \mathbb{N}$

▶ Bemerkung

Stärkere Eigenschaft als "adaptiert".

Definition (diskretes stochastische Integral)

Sei X adaptierter und H ein vorhersehbarer stochastischer Prozess bezüglich $(\mathscr{F}_n)_{n\in\mathbb{N}}$. Dann heißt

$$(H \cdot X)_n := \sum_{k=1}^n H_k(X_k - X_{k-1}) \tag{*}$$

diskretes stochastische Integral von H bezüglich X.

▶ Bemerkung

Summe (*) heissen in der Analysis RIEMANN-STIELTJES-Summen. Werden für Konstruktionen des RS-Integrals $\int h \, \mathrm{d}\rho$ verwendet.

Definition (lokal beschränkt)

Ein stochastischer Prozess $(H_n)_{n\in\mathbb{N}}$ heißt <u>lokal beschränkt</u>, wenn eine (definierte) Folge $c_{\in\mathbb{R}\geq 0}$ existiert, sodass

$$|H_n| \le c_n \text{ f.s.} \quad \forall n \in \mathbb{N}$$

Theorem I.7

Sei X adaptiert stochastischer Prozess (bezüglich Filtration $(\mathscr{F}_n)_{n\in\mathbb{N}}$). Dann sind äquivalent:

- 1. X ist Martingal
- 2. $(H \cdot X)$ ist Martingale für alle lokal beschränkten, vorhersehbaren $(H_n)_{n \in N}$

Das heisst: stochastische Integral erhält die Martingal-Eigenschaft.

Beweis. 8.11.2019!

▶ Bemerkung

Die ZV H wird später die Analagestrategie sein.

Literaturverzeichnis					

Index

\mathscr{F}_t -messbar, 3	Martingal, 8		
Anlagegüter (assets), 3	Martingal bezüglich Filtration, 9		
Basisgüter, 2	Optimale Investition, 2		
Bewertung, 2	${\bf Risikomangement+Risikomessung,2}$		
Call-Option, 2	stochasticher Prozess, 3		
Derivat, 2 diskretes stochastische Integral, 10	stochasticher Prozessadaptiert, 3 Submartingal, 9 Supermontingal, 0		
Finanzmodell, 4	Supermartingal, 9 Swing-Option, 2		
lokal beschränkt, 10	vorhersehbar, 10		