Predicting IVY League Admission Chances

Prepared by: Ranjan Mondal

Date:12-04-2025

1. Executive Summary

Jamboree launched a platform feature to predict the likelihood of a student securing admission to Ivy League graduate programs. This project leverages historical data and machine learning to create a robust and interpretable model that predicts admission chances based on academic metrics and research experience. The model achieves over 81% accuracy, offering both actionable insights and predictive value for students and counselors.

2. Problem Statement

Jamboree aims to empower students with a personalized tool to estimate their chances of admission into top U.S. universities. The core challenge is to identify key admission-driving factors and predict the probability of admission using these factors. This model is targeted toward students applying from India and reflects the typical profile seen in Jamboree's dataset.

3. Dataset Overview

- Filename: <u>Jamboree_Admission.csv</u>
- Records: 500 student applications
- ii Features:
 - o GRE Score (out of 340)
 - o TOEFL Score (out of 120)

- University Rating (1 to 5)
- o SOP Strength (1 to 5)
- o LOR Strength (1 to 5)
- o CGPA (out of 10)
- o Research Experience (0 or 1)
- Chance of Admit (target: 0 to 1)

Data preprocessing included:

- Dropping the row identifier
- Fixing column name typos (e.g., "LOR" → "LOR")
- Verifying no missing or duplicate entries

4. Exploratory Data Analysis (EDA)

Univariate Analysis:

- CGPA, GRE, and TOEFL showed reasonably normal distributions.
- SOP and LOR skewed toward the higher end (most students rate these highly).
- Binary variable Research was slightly imbalanced (slightly more students without research experience).

Bivariate Analysis:

- Strong positive relationship between CGPA and Chance of Admit.
- GRE and TOEFL showed moderate positive correlations.
- Correlation Matrix: CGPA had the highest correlation with the target variable.

Multicollinearity Check (VIF):

All features had VIF < 5, suggesting no multicollinearity concerns.

5. Modeling Approach

5.1 Linear Regression (Base Model)

• Data scaled using MinMaxScaler.

• Linear Regression trained on 80/20 split.

Performance Metrics:

• R²: 0.8188

RMSE: 0.0609MAE: 0.0427

Adjusted R²: 0.8051

Top Predictors:

• CGPA, GRE, TOEFL, Research

6. Model Assumption Testing

Assumption	Sta tus	Notes
Mean of residuals ≈ 0	<u>~</u>	3.9e-16 — excellent
Multicollinearity (VIF)	<u>~</u>	All < 5
Linearity of residuals	1	Pattern observed near predicted value = 1
Homoscedasticity	1	Funnel shape observed in residual plot
Normality of residuals	×	Shapiro-Wilk p \approx 7.7e-13, QQ plot slightly deviates from diagonal

Despite minor violations, the model is reliable and interpretable.

7. Advanced Modeling

7.1 Polynomial Regression

• Degree = 2 yielded best performance:

o R²: 0.8265

o RMSE: 0.0596

7.2 Regularization

• Ridge ($\alpha = 0.001$): $R^2 = 0.8216$

• Lasso ($\alpha = 0.001$): $R^2 = 0.7035$

Lasso underperformed; Ridge provided balance between complexity and accuracy.

8. Residual Analysis

- Residual plots showed consistent issues across all models (tight near 1.0).
- Lasso improved residual distribution with tuned alpha.
- Histogram showed high kurtosis but centered around 0.
- QQ plot showed slight deviations from normality.

9. Key Insights

- CGPA is the most significant predictor of admission success.
- GRE and TOEFL contribute meaningfully but less than CGPA.
- 🔬 Research experience adds value and improves prediction probability.
- SOP and LOR strength show weak impact in comparison.
- © Ridge and Polynomial regression (degree 2) provide strong predictive performance.

10. Business Recommendations

- Emphasize CGPA, GRE, and research experience in student counseling sessions.
- Implement this model in Jamboree's web interface to return real-time admission probability scores.
- Visualize key feature impact to guide students on where to focus.
- Collect more features like undergraduate major, work experience, internships, etc. for improved accuracy.
- In the long term, explore decision trees or ensemble methods for non-linear relationships.

11. Conclusion

This project successfully meets the objective of building a predictive and interpretable model for graduate admissions. The findings offer strong business value and can be integrated directly into Jamboree's student platform to guide thousands of applicants more effectively.

Appendix

Code snippets

https://colab.research.google.com/drive/1aeyKaE1o33bfOm-7sAFBzeg9b51yVNPs?usp=sharing

Correlation matrix

Residual plots

• Model coefficients (Base Model)

MAE: 0.042722654277053636 RMSE: 0.0608658804157831 R^2 : 0.8188432567829629

Adjusted R²: 0.8050595915381884

features	Coefficient
CGPA	0.351085
GRE Score	0.121722
TOEFL Score	0.083884
LOR	0.060333
Research	0.024027
University Rating	0.010275
SOP	0.007255