

Mühendislik Fakültesi

Bilgisayar Mühendisliği Bölümü

Proje Başlığı

BIL435 Bulanık Mantık Dönem Projesi Raporu

Öğrenci Bilgileri								
Öğrenci No	19010011014							
Öğrenci Ad Soyad	Selin YİĞİT							

DR.ÖĞR.ÜYESİ Ayşe Merve ACILAR

Ocak 2023 Konya

İçindekiler

Giri	ş	3
	Veri Setinin Oluşturulması	
2.	El İle Tasarlanan Bulanık Sistem – MyFis	4
3.	Anfis Toolbox Kullanılarak Oluşturulan Bulanık Sistem – Anfis	6
4.	Genetik Algoritma Kullanılarak Oluşturulan Bulanık Sistem	8
5.	Sistemlerin Başarılarının Değerlendirilmesi	. 11
6.	Kaynakça	. 12

Giriş

Bu proje ödevinde kişiye ait fonksiyondan oluşturulan veri seti kullanılarak üç başlık altında bulanık sistem geliştirilmesi amaçlanmıştır. Bu raporda geliştirilen bulanık sistemlerde "Sum Of Different Powers"[1] fonksiyonu kullanılmıştır.

1. Veri Setinin Oluşturulması

Giriş kısmında verilen "Sum Of Different Powers" fonksiyonu kullanılarak "eğitim seti" ve "test seti" adında iki tane veri seti oluşturuldu.

"eğitim seti" adındaki veri seti 100 adet [-1 1] değer aralığında rastgele reel sayılardan oluşmaktadır. "test seti" ise 50 adet yine [-1 1] değer aralığında rastgele reel sayılardan oluşmaktadır.

	egt × te	est ×		
	100x3 double	•		
	1	2	3	4
1	0.6294	-0.6756	0.7046	
2	0.8116	0.5886	0.8626	
3	-0.7460	-0.3776	0.6104	
4	0.8268	0.0571	0.6837	
5	0.2647	-0.6687	0.3691	
6	-0.8049	0.2040	0.6564	
7	-0.4430	-0.4741	0.3028	
8	0.0938	0.3082	0.0381	
9	0.9150	0.3784	0.8914	
10	0.9298	0.4963	0.9867	
11	-0.6848	-0.0989	0.4699	
12	0.9412	-0.8324	1.4625	
13	0.9143	-0.5420	0.9953	
14	-0.0292	0.8267	0.5658	
15	0.6006	-0.6952	0.6967	
16	-0.7162	0.6516	0.7897	
17	-0.1565	0.0767	0.0249	
18	0.8315	0.9923	1.6683	
19	0.5844	-0.8436	0.9420	
20	0.9190	-0.1146	0.8460	
21	0.3115	-0.7867	0.5839	
22	-0.9286	0.9238	1.6506	
23	0.6983	-0.9907	1.4600	
24	0.8680	0.5498	0.9196	
25	0.3575	0.6346	0.3834	

	egt × tes	×		
	0x3 double			
	1	2	3	4
1	0.2886	0.9262	0.8778	
2	-0.2428	0.0936	0.0598	
3	0.6232	0.0423	0.3884	
4	0.0657	-0.5368	0.1590	
5	-0.2985	-0.0222	0.0891	
6	0.8780	0.2481	0.7862	
7	0.7519	0.3583	0.6113	
8	0.1003	-0.2090	0.0192	
9	0.2450	-0.2651	0.0786	
10	0.1741	0.9760	0.9599	
11	-0.5845	-0.9245	1.1319	
12	-0.3975	0.7703	0.6151	
13	-0.0582	0.8266	0.5681	
14	-0.5390	0.5924	0.4984	
15	0.6886	-0.8026	0.9912	
16	-0.6105	-0.4763	0.4807	
17	-0.5482	-0.3293	0.3362	
18	-0.6586	0.3595	0.4802	
19	-0.5447	-0.7269	0.6807	
20	-0.1286	0.4425	0.1032	
21	-0.3778	-0.7865	0.6292	
22	0.8468	0.3075	0.7461	
23	-0.1396	-0.0117	0.0195	
24	-0.6304	0.5581	0.5712	
25	0.8098	0.4301	0.7353	

2. El İle Tasarlanan Bulanık Sistem – MyFis

Bu bölümde el ile bir bulanık sistem tasarlanması amaçlanmıştır. Bir bulanık sistem tasarlanırken izlenmesi gereken adımlar izlenerek verilen fonksiyonun surface grafiğine yakın bir grafik elde edilmiştir.

1. Giriş Sayısının Belirlenmesi:

İki tane giriş değişkeni bulunmaktadır. Bu bilgi proje ödevi bildirisinde verilmiştir.

2. Her Girişin İçin Dilsel Değer Sayısının Belirlenmesi:

"Sum Of Different Powers" fonksiyonun surface grafiği göz önünde bulundurularak ve elde edilecek grafiğin daha düzgün yapıda olabilmesi için hassasiyeti yükseltmek adına her girişin 7 dilsel değere sahip olmasına karar verildi. Fonksiyonun grafiğine bakıldığında aralığın [-1 1] olduğu görülmektedir. Bu durumda minimum noktaya "Çok Düşük" ve maksimum noktaya "Çok Yüksek" değeri verilerek ara değerler için sırasıyla "Düşük", "Orta Düşük", "Orta", "Orta Yüksek" ve "Yüksek" dilsel değerleri verildi.

3. Girişlere Ait Her Taneciğin Üyelik Fonksiyonunun Belirlenmesi:

"Sum Of Different Powers" fonksiyonu üstel bir fonksiyon olduğu için gauss üyelik fonksiyonun uygun olacağına karar verildi. Bu üyelik fonksiyonunun iki parametresi bulunmaktadır. Bu parametreler genişlik değeri sigma(σ) ve orta nokta c değeridir.

4. Çıkış Sayısının Belirlenmesi:

Bir tane çıkış değişkeni bulunmaktadır. Bu bilgi proje ödevi bildirisinde verilmiştir.

5. Çıkışın Dilsel Değer Sayısının Belirlenmesi:

"Sum Of Different Powers" fonksiyonun surface grafiği göz önünde bulundurularak çıkışın 7 dilsel değere sahip olmasına karar verildi. Fonksiyonun grafiğine bakıldığında çıkış aralığının [0 2] olduğu görülmektedir. Bu durumda minimum noktaya "Çok Düşük" ve maksimum noktaya "Çok Yüksek" değeri verilerek ara değerler için sırasıyla "Düşük", "Orta Düşük", "Orta", "Orta Yüksek" ve "Yüksek" dilsel değerleri verildi.

6. Çıkışa Ait Her Taneciğin Üyelik Fonksiyonunun Belirlenmesi:

"Sum Of Different Powers" fonksiyonu üstel bir fonksiyon olduğu için gauss üyelik fonksiyonun uygun olacağına karar verildi. Bu üyelik fonksiyonunun iki parametresi bulunmaktadır. Bu parametreler genişlik değeri sigma(σ) ve orta nokta c değeridir.

7. Bulanık Kuralların Belirlenmesi:

Bu bölümde verilen dilsel değerler kullanılarak bulanık kurallar belirlendi. Kurallar kullanılarak "Sum Of Different Powers" fonksiyonu surface grafiğine benzer bir grafik elde etmek amaçlandı. Kurallar belirlenirken ilk olarak uç değerlerin yükseltilmesi hedeflendi ve bunun için toplamda 4 kural yazıldı. Daha sonra grafiğin orta kısmında bulunan çöküntü için bir kural yazıldı. Ve son olarak grafiğin iki uç noktası arasında bulunan eğriliği elde etmek için kurallar yazılarak toplamda 17 kural yazılmış oldu. Bu kurallar grafik elde edilene kadar optimize edildi ve aşağıda verilen sonuçlar elde edildi.

Kurallar:

Elde Edilen Grafik

Gerçek Grafik

3. Anfis Toolbox Kullanılarak Oluşturulan Bulanık Sistem - Anfis

Uyarlanabilir bir nöro-bulanık çıkarım sistemi veya uyarlanabilir ağ tabanlı bulanık çıkarım sistemi ANFIS, Takagi—Sugeno bulanık çıkarım sistemine dayanan bir tür yapay sinir ağıdır. Hem sinir ağlarını hem de bulanık mantık ilkelerini bütünleştirdiği için, her ikisinin de faydalarını tek bir çerçevede yakalama potansiyeline sahiptir. ANFIS 'i daha verimli ve uygun bir şekilde kullanmak için genetik algoritma ile elde edilen en iyi parametreler kullanılabilir[2].

"Veri Setinin Oluşturulması" bölümünde elde edilen veri seti kullanılarak bir ANFIS yapısı oluşturulması amaçlanmaktadır. Bunun için MATLAB 'de bulunan Neuro-Fuzzy Designer kullanıldı.

2. "Generate FIS" bölümünden dilsel değer sayısı, üyelik fonksiyonu ve çıkış tipi seçildi. Bu projede dilsel değer sayısı her iki giriş içinde 6 seçildi. Üyelik Fonksiyonu için gauss fonksiyonu ve çıkış tipi için de lineer seçildi ve ANFIS yapısı elde edildi.

3. "Train FIS" bölümünde hata tipi "hybrid" seçilerek eğitim seti 100 epoch eğitildi. Bunun sonucunda hata 0.00016438 bulundu.

4. "Test FIS" bölümünde sistem hem eğitim verileri hem de test verileri test edildi.

5. Sonuç olarak "Sum Of Different Powers" fonksiyonu surface grafiği ile aynı grafik elde edildi.

4. Genetik Algoritma Kullanılarak Oluşturulan Bulanık Sistem

Bu bölümde Genetik Algoritma kullanılarak bir bulanık sistem tasarlanması istenmektedir. Bunun için üçüncü bölümde yapılan adımlar tekrarlanarak bir ANFIS sistemi tasarlandı. Daha sonra bu ANFIS sistemi üzerinden yeni bir popülasyon oluşturuldu.

1. Kromozom Yapısı:

Bir kromozom yapısı girişler ve çıkışlardan oluşur. Bu projede girişler X1 ve X2, çıkış ise 4 kural ile birlikte f1, f2, f3 ve f4 'tür. Girişlerin ilki olan X1, A1 ve A2 dilsel değerlerine sahipken ikinci giriş olan X2, B1 ve B2 dilsel değerlerine sahiptir.

2. Başlangıç Popülasyonunun Oluşturulması:

Burada MATLAB üzerinde 5 bireyden ve [-1 1] aralığında rastgele değerlerden oluşan bir popülasyon oluşturuldu. Matris 5x20 boyutundandır çünkü bir kromozomda 20 gen bulunmaktadır.

Kromoz	omlar:																			
	-0,55246	-0,9099	0,254693	0,626226	-0,44986	0,972208	0,97829	0,567473	-0,72426	0,232887	0,891158	0,324764	-0,17681	0,167141	-0,29093	-0,17315	0,565744	0,541908	-0,55145	-0,52711
	-0,25287	0,446347	-0,9567	-0,23339	-0,50274	-0,94002	-0,86611	0,068275	-0,5644	0,879322	0,353289	-0,51167	0,205276	0,02364	0,942518	-0,56454	0,387575	-0,91468	-0,46189	-0,64575
	-0,825	-0,30512	0,82114	0,234558	-0,09672	0,071328	0,878797	0,770719	-0,63572	-0,29109	0,976605	-0,40899	0,50104	-0,83481	-0,3071	-0,74869	-0,9804	-0,24363	0,346062	0,659287
	0,280233	0,321234	0,601117	0,15099	-0,54457	-0,82585	-0,96364	0,79801	-0,91636	-0,17874	0,533663	0,360357	0,167066	0,43914	0,773088	-0,38217	0,686427	0,408679	-0,04502	0,533843
	-0.63877	-0,23226	0.491695	0.060103	0.608899	0.604183	0.367677	0.251875	-0.78612	0.968699	-0.3266	0.055694	0.103585	0.992312	-0.09061	0.452209	0.844664	0.459026	0.247433	0.868957

3. Rulet Tekerleği ile Seçme İşleminin Yapılması:

Uygunluk için MSE kullanılarak hesaplamalar gerçekleştirildi ve pasta grafiği çıkarıldı. Daha sonra rastgele değerler oluşturularak seçim işlemi yapıldı.

1.170						
gunluk (fitness_mse):						
		1/Uygunluk	[1/Uygunluk]/Toplam Uyg.	Kümülatif Toplam	Rastgele Sayı	Seçilen Kromozom
Eval Kromozom 1	0,602644	1,6593	0,1609	0,1609	0,1115	Kromozom 1
Eval Kromozom 2	0,496251	2,0151	0,1955	0,3564	0,7294	Kromozom 5
Eval Kromozom 3	0,489299	2,0437	0,1982	0,5546	0,3442	Kromozom 2
Eval Kromozom 4	0,677688	1,4756	0,1431	0,6977	0,4265	Kromozom 3
Eval Kromozom 5	0,3212	3,1133	0,3023	1	0,3843	Kromozom 3
Toplam Uygunluk:		10,307	1			

Yeni Popülasyon:

Yer	ni Popüla	syon:																				
Kromozor	m1' (eski	Komozom1	-0,19302	-0,69553	0,860081	0,589364	-0,39268	0,755598	-0,42811	-0,13348	0,007776	-0,27508	-0,95689	-0,42676	0,887463	-0,10694	0,659066	0,867003	-0,18655	0,513498	-0,22223	0,827423
Kromozon	n2' (eski	Kromozom5	-0,33667	-0,81144	0,471932	-0,89042	0,443507	0,600744	0,677939	0,498037	-0,04885	-0,73299	0,961807	0,768033	-0,94829	0,874269	0,745105	-0,8559	-0,0309	0,728295	0,765675	0,799427
Kromozon	n3' (eski	Kromozom2	-0,75596	-0,30398	-0,20196	0,089812	-0,90762	0,164866	0,087326	-0,05875	0,293619	0,576227	0,119681	0,601641	0,098316	0,292604	0,698171	0,336929	0,333863	-0,16591	-0,09052	0,11657
Kromozon	n4' (eski	Kromozom3	-0,46312	-0,75668	-0,9052	0,372447	-0,60905	-0,85863	0,969552	0,121427	-0,38451	0,560592	-0,39836	0,792223	0,456774	0,042406	-0,25493	-0,58645	0,867451	0,943572	-0,50663	0,197736
Kromozon	n5' (eski	Kromozom3	-0,46312	-0,75668	-0,9052	0,372447	-0,60905	-0,85863	0,969552	0,121427	-0,38451	0,560592	-0,39836	0,792223	0,456774	0,042406	-0,25493	-0,58645	0,867451	0,943572	-0,50663	0,197736

4. Çaprazlama İşlemi:

Çaprazlama işlemi için çaprazlama oranı (Pc) 0.25 seçildi. Daha sonra popülasyon sayısı kadar rastgele değer oluşturularak Pc değerinden küçük olan değerler verilen formül kullanılarak çaprazlandı.

$$P_{veni} = \beta P_{an} + (1 - \beta) P_{bn}$$

β= 0 ve 1 arasında üretilen rasgele sayı

Pan= Anne kromozomun n. parametresi

P_{bn}= Baba kromozomun n. parametresi

aprazlama:	pc=0.25																				
Kromozom	1'	K	romozom2		k	(romozom3	!'	K	romozom4	!	K	romozom5	,								
0,1786			0,7418			0,2865			0,1014			0,8959									
Beta D	eğerleri:	0,8035	0,3341	0,6067	0,7926	0,2465	0,8108	0,1161	0,9108	0,2378	0,0217	0,1683	0,5505	0,2901	0,5848	0,7702	0,8468	0,0794	0,1774	0,0663	0,47
Krom	ozom1"	-0,246	-0,7361	0,1657	0,5443	-0,5556	0,4501	0,8072	-0,1106	-0,2912	0,5424	-0,4923	0,176	0,5816	-0,0448	0,44901	0,6442	0,7837	0,8671	-0,4877	0,49
Krom	ozom4"	-0,41	-0,7159	-0,2089	0,4174	-0,4459	-0,5531	-0,2659	0,0985	-0,854	-0,2569	-0,8628	0,1893	0,7625	-0,0197	-0,0448	-0,3637	-0,1029	0,5897	-0,2409	0,52
Krom	ozom2'	-0,33667	-0,81144	0,471932	-0,89042	0,443507	0,600744	0,677939	0,498037	-0,04885	-0,73299	0,961807	0,768033	-0,94829	0,874269	0,745105	-0,8559	-0,0309	0,728295	0,765675	0,7994
Krom	ozom3'	-0,75596	-0,30398	-0,20196	0,089812	-0,90762	0,164866	0,087326	-0,05875	0,293619	0,576227	0,119681	0,601641	0,098316	0,292604	0,698171	0,336929	0,333863	-0,16591	-0,09052	0,116
Krom	ozom5'	-0,46312	-0,75668	-0,9052	0,372447	-0,60905	-0,85863	0,969552	0,121427	-0,38451	0,560592	-0,39836	0,792223	0,456774	0,042406	-0,25493	-0,58645	0.867451	0.943572	-0,50663	0.1977

5. Mutasyon İşlem:

Burada mutasyon oranı (Pm) 0.01 olarak belirlendi. Bu değerin altında kalan değerler yerine [-1 1] aralığında rastgele reel sayı üretildi. Ve yeni popülasyon oluşturuldu.

lutasyon:	Pm = 0.01																				
Kror	nozom1"	-0,246	-0,7361	0,1657	0,5443	-0,5556	0,4501	0,8072	-0,1106	-0,2912	0,5424	-0,4923	0,176	0,5816	-0,0448	0,44901	0,6442	0,7837	0,8671	-0,4877	0,495
Kror	mozom4"	-0,41	-0,7159	-0,2089	0,4174	-0,4459	-0,5531	-0,2659	0,0985	-0,854	-0,2569	-0,8628	0,1893	0,7625	-0,0197	-0,0448	-0,3637	-0,1029	0,5897	-0,2409	0,529
Kroi	mozom2¹	-0,33667	-0,81144	0,471932	-0,89042	0,443507	0,600744	0,677939	0,498037	-0,04885	-0,73299	0,961807	0,768033	-0,94829	0,874269	0,745105	-0,8559	-0,0309	0,728295	0,765675	0,79942
Kroi	mozom3'	-0,75596	-0,30398	-0,20196	0,089812	-0,90762	0,164866	0,087326	-0,05875	0,293619	0,576227	0,119681	0,601641	0,098316	0,292604	0,698171	0,336929	0,333863	-0,16591	-0,09052	0,1165
Kroi	mozom5'	-0,46312	-0,75668	-0,9052	0,372447	-0,60905	-0,85863	0,969552	0,121427	-0,38451	0,560592	-0,39836	0,792223	0,456774	0,042406	-0,25493	-0,58645	0,867451	0,943572	-0,50663	0,19773
Kror	nozom1"	0,629447	-0,80492	0,1657	0,5443	-0,71623	0,4501	0,8072	0,698259	0,35747	0,5424	0,412092	0,176	0,5816	-0,80574	0,44901	0,6442	0,7837	0,8671	-0,62625	0,49
Kror	mozom4"	0,811584	-0,443	-0,68477	0,4174	-0,15648	0,918985	-0,92858	0,0985	0,51548	0,310956	-0,93633	0,1893	0,7625	0,646916	0,389657	0,900444	-0,23688	0,5897	-0,02047	0,529
Kroi	mozom2'	-0,74603	0,093763	0,941186	0,600561	0,443507	0,600744	0,677939	0,498037	0,486265	-0,65763	0,961807	0,768033	-0,90766	0,874269	0,745105	-0,93111	0,531034	0,728295	0,765675	0,7994
	mozom3'	0,826752	0,915014	0,914334	0,089812	0,831471	0,164866	0,087326	0,867986	0,293619	0,576227	0,119681	0,601641	0,098316	0,292604	0,698171	0,336929	0,333863	0,5904	-0,10883	0,116
Kroi				-0,02925	100	100		0,969552	0,121427		0,560592	-0,44615	0.792223		0.042406	-0,3658	-0,12251	0,867451	0,943572		0,1977

5. Sistemlerin Başarılarının Değerlendirilmesi

Test veri seti için gerçek y değerleri, MyFis için hesaplanan MyFis_y değerleri ve Anfis için hesaplanan Anfis_y değerleri aşağıda verilen tabloda karşılaştırılmıştır.

Sıra no	x1	x2	Gercek_y	MyFis_y	Anfis_y
1	0,288636	0,926177	0,877789	0,963696	0,875239
2	-0,24278	0,093611	0,059763	0,508482	0,059555
3	0,623161	0,042272	0,388405	0,637915	0,38843
4	0,065651	-0,53681	0,159001	0,622402	0,158498
5	-0,29855	-0,0222	0,089141	0,51091	0,088507
6	0,878003	0,24812	0,786165	1,044774	0,787964
7	0,751886	0,358271	0,611319	1,04167	0,611628
8	0,100313	-0,20897	0,019188	0,538457	0,01918
9	0,24495	-0,26513	0,078637	0,64667	0,078955
10	0,174089	0,975964	0,959918	0,961144	0,938207
11	-0,58452	-0,92452	1,131886	1,093961	1,139217
23	-0,39751	0,770336	0,615143	0,956996	0,612826
13	-0,05815	0,826574	0,568117	0,765358	0,568952
14	-0,53902	0,592368	0,498408	0,943437	0,499807
15	0,688618	-0,80258	0,991155	1,237083	0,990917
16	-0,61047	-0,47626	0,480701	0,957228	0,478418
17	-0,54816	-0,32929	0,33618	0,844529	0,335934
18	-0,65858	0,359456	0,480178	0,994988	0,477851
19	-0,54467	-0,72689	0,680739	1,009966	0,679786
20	-0,1286	0,442455	0,103156	0,571766	0,103523
21	-0,3778	-0,78648	0,6292	0,961921	0,626874
22	0,846759	0,307515	0,746082	1,069134	0,747872
23	-0,13959	-0,01165	0,019486	0,44695	0,019771
24	-0,63037	0,558103	0,571201	0,990685	0,570808
25	0,809762	0,430074	0,735263	1,108826	0,732948

25	0,809762	0,430074	0,735263	1,108826	0,732948
26	0,959497	0,807441	1,447054	1,486456	1,474947
27	-0,12226	0,781845	0,492875	0,804676	0,493001
28	-0,77776	-0,33167	0,6414	1,044267	0,643827
29	-0,48387	0,397492	0,296934	0,836922	0,297654
30	-0,18256	-0,60438	0,254094	0,710065	0,255033
31	0,189792	-0,93892	0,86374	0,961245	0,861292
32	-0,47558	0,488149	0,342493	0,852919	0,3426
33	0,205686	4,49E-05	0,042307	0,451336	0,042913
34	0,422432	-0,04016	0,178513	0,588726	0,178473
35	-0,55651	0,809444	0,840048	1,047872	0,836993
36	-0,76516	0,219733	0,596086	1,020296	0,595521
37	-0,40665	0,235333	0,178396	0,676667	0,179433
38	-0,36244	0,718885	0,502881	0,931066	0,500603
39	-0,15167	0,610979	0,251078	0,658622	0,252359
40	0,015717	0,153443	0,00386	0,434021	-0,001637
41	-0,82897	-0,63416	0,942216	1,153168	0,940268
42	-0,47504	-0,52014	0,366377	0,885092	0,366344
43	0,602029	0,773024	0,824372	1,131687	0,824022
44	-0,94156	-0,94265	1,724167	1,47495	1,764027
45	0,857708	-0,0202	0,735672	0,820371	0,735396
46	0,460662	-0,66415	0,505157	0,963411	0,504951
47	-0,02278	0,957361	0,87798	0,938612	0,869067
48	0,15705	0,425389	0,101641	0,569721	0,103238
49	-0,52543	0,000943	0,27608	0,615865	0,278158
50	-0,0823	-0,05782	0,006967	0,467623	0,007139

1. Gerçek y değerleri ve MyFis_y değerlerinin saçılım grafiği aşağıda verilmiştir.

2. Gerçek y değerleri ve Anfis_y değerlerinin saçılım grafiği aşağıda verilmiştir.

6. Kaynakça

- [1] https://www.sfu.ca/~ssurjano/sumpow.html
- [2] https://en.wikipedia.org/wiki/Adaptive_neuro_fuzzy_inference_system