Entanglement in Featureless Mott Insulators

Brayden Ware

September 18th 2014

Outline

- 1 Motivation
 - Featureless Insulators
 - Lieb-Schultz-Mattis Theorem
 - Magnetization Plateaus
- 2 Distinguishing Featureless Insulators by Entanglement
 - Matrix Product States
- 3 Featureless Boson Mott Insulators
 - Honeycomb Featureless Insulator Proposal
 - Tensor Network Construction
 - Entanglement Spectra Results
 - Identifying CFTs by Spectra

Outline

- 1 Motivation
 - Featureless Insulators
 - Lieb-Schultz-Mattis Theorem
 - Magnetization Plateaus
- 2 Distinguishing Featureless Insulators by Entanglement
 - Matrix Product States
- 3 Featureless Boson Mott Insulators
 - Honeycomb Featureless Insulator Proposal
 - Tensor Network Construction
 - Entanglement Spectra Results
 - Identifying CFTs by Spectra

Featureless Insulators

Definition of 'Featureless Insulator'

- Gapped
- Symmetric
- No (bulk) fractionalization
- Unique ground state on torus

Bosonic Mott insulator with integer filling

Examples:

Band Insulator

Haldane phase of spin-1 Chain (AKLT)

Lieb-Schultz-Mattis Theorem

Featured states are

- either gapless
- or spontaneously break spin symmetry
- or spontaneously break translational symmetry
- or topologically ordered
- but always have (nearly) degenerate states when placed in periodic boundary conditions.

States with fractional charge per unit cell cannot be featureless.

Theorem: Lieb, Schultz, Mattis (1961)

A spin 1/2 chain with SU(2) and translational symmetry has a ground state that is either gapless or breaks symmetry.

Lieb-Schultz-Mattis Theorem

Featured states are

- either gapless
- or spontaneously break spin symmetry
- or spontaneously break translational symmetry
- or topologically ordered
- but always have (nearly) degenerate states when placed in periodic boundary conditions.

States with fractional charge per unit cell cannot be featureless.

Extension: Oshikawa (1999)

A particle-number conserving system with a fractional number of particles per unit cell cannot have a fixed energy gap on a torus. The same holds for a U(1)-symmetric spin system with total spin j per unit cell and magnetization m per unit cell, with j-m not integer.

Lieb-Schultz-Mattis Theorem

Featured states are

- either gapless
- or spontaneously break spin symmetry
- or spontaneously break translational symmetry
- or topologically ordered
- but always have (nearly) degenerate states when placed in periodic boundary conditions.

States with fractional charge per unit cell cannot be featureless.

Proof:

The Lieb-Schultz-Mattis-Laughlin-Bonesteel-Affleck-Yamanaka-Oshikawa flux-threading argument

Spin-1/2 XXZ chain

$$H_{XY} = J \sum_{i} (S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y})$$

- hS^z gapless until $m=\pm 1/2$
- $J_z S_i^z S_{i+1}^z$ gapless until AFM/FM order
- $J_2 \vec{S}_i \cdot \vec{S}_{i+2}$ gapless until SSB of translation, unit cell doubles

Spin-1/2 XXZ chain

$$H_{XY} = J \sum_{i} (S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \frac{h}{J} S_{i}^{z})$$

- lacksquare hS^z gapless until $m=\pm 1/2$
- $J_z S_i^z S_{i+1}^z$ gapless until AFM/FM order
- $J_2\vec{S}_i \cdot \vec{S}_{i+2}$ gapless until SSB of translation, unit cell doubles

Spin-1/2 XXZ chain

$$H_{XXZ} = J \sum_{i} (S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z)$$

- $\blacksquare hS^z$ gapless until $m=\pm 1/2$
- $J_z S_i^z S_{i+1}^z$ gapless until AFM/FM order
- $J_2 \vec{S}_i \cdot \vec{S}_{i+2}$ gapless until SSB of translation, unit cell doubles

Spin-1/2 XXZ chain

$$H_{XXZ} = J \sum_{i} (S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + S_i^z S_{i+1}^z + \frac{J_2}{J} \vec{S}_i \cdot \vec{S}_{i+1})$$

- hS^z gapless until $m = \pm 1/2$
- $J_z S_i^z S_{i+1}^z$ gapless until AFM/FM order
- $J_2 \vec{S}_i \cdot \vec{S}_{i+2}$ gapless until SSB of translation, unit cell doubles

Magnetization/Density Plateaus

Stable featureless insulators form magnetization or density plateaus Example Hamiltonians and phase diagrams:

Band Insulators

$$H_{FF} = \sum_{\langle ij \rangle} -t_{ij}c_i^{\dagger}c_j - \mu \sum_i N_i$$

- Symmetry protected band touchings can constrain existence of a band insulator
- Topological invariants can distinguish different types of band insulators
- Some invariants only make sense in the presence of additional symmetries (*T*, *C*, *I*)

Magnetization/Density Plateaus

Stable featureless insulators form magnetization or density plateaus Example Hamiltonians and phase diagrams:

Bose-Hubbard model

$$H_{BH} = -J \sum_{\langle ij \rangle} b_i^{\dagger} b_j - \mu \sum_i N_i + \frac{1}{2} V \sum_i N_i (N_i - 1)$$

- Interactions are always needed to stop Bose condensation
- Unlike free-fermions, not obvious how to construct fractional site filling insulators
- Tensor network states give us access to needed construction and to interacting invariants.

Magnetization/Density Plateaus

Stable featureless insulators form magnetization or density plateaus Example Hamiltonians and phase diagrams:

Haldane Phase for Spin-1 chains (j = 1, m = 0)

$$H_{AKLT} = \sum_{i} J\vec{S}_{i} \cdot \vec{S}_{i+1} + J'(\vec{S}_{i} \cdot \vec{S}_{i+1})^{2} + D(S_{i}^{z})^{2} + BS^{x}$$

Two distinct featureless insulators:

- Large-D phase
 - Contains product state wavefunction $|\psi\rangle = |000...\rangle$
- Haldane phase
 - Contains AKLT wavefunction $|\psi\rangle = \Sigma |+00-0+...\rangle$

Motivating Questions

Are there general principles for distinguishing potential featureless insulator ground states of Hamiltonians?

The theory of *symmetry protected topological phases* (SPTs) is a general framework for distinguishing different featureless insulators.

- Topological some discrete invariant that won't change under continuous (adiabatic) changes in Hamiltonian
- Invariants should be defined for interacting systems that obey certain symmetries
- Often features edge fractionalization and degeneracy in open boundary conditions
- In 1D, universally distinguished by entanglement spectra

Are there additional constraints on the existence of featureless insulators in interacting systems?

Outline

- 1 Motivation
 - Featureless Insulators
 - Lieb-Schultz-Mattis Theorem
 - Magnetization Plateaus
- 2 Distinguishing Featureless Insulators by Entanglement
 - Matrix Product States
- 3 Featureless Boson Mott Insulators
 - Honeycomb Featureless Insulator Proposal
 - Tensor Network Construction
 - Entanglement Spectra Results
 - Identifying CFTs by Spectra

When a wavefunction in a product Hilbert space cannot be written as a product state, it is **entangled**.

$$|\psi\rangle = |\psi_L\rangle \otimes |\psi_R\rangle?$$

$$|\psi\rangle = \sum \psi_{i_1 i_2 \dots i_N} |i_1 i_2 \dots i_N\rangle$$

When a wavefunction in a product Hilbert space cannot be written as a product state, it is **entangled**.

$$|\psi\rangle = |\psi_L\rangle \otimes |\psi_R\rangle$$
?

$$\begin{array}{ccc}
p \uparrow & \uparrow q & p \uparrow & & \uparrow q \\
\hline
\psi & = & \psi_L & & \psi_R
\end{array}$$

When a wavefunction in a product Hilbert space cannot be written as a product state, it is **entangled**.

$$|\psi\rangle = \sum_{i} |\psi_L^i\rangle \otimes |\psi_R^i\rangle$$

$$\begin{array}{ccc}
p & \uparrow & \uparrow q & p \\
\hline
\psi & = & \psi_L & \downarrow \psi_R
\end{array}$$

Calculate reduced density matrices

$$\rho_L = Tr_R |\psi\rangle\langle\psi|$$

Diagonalize

$$\rho_L = \sum_{\alpha} \rho_{\alpha} |\psi_L^{\alpha}\rangle \langle \psi_L^{\alpha}|$$

When a wavefunction in a product Hilbert space cannot be written as a product state, it is **entangled**.

$$|\psi\rangle = \sum_{i} |\psi_{L}^{i}\rangle \otimes |\psi_{R}^{i}\rangle$$

$$\begin{array}{ccc}
p & \uparrow & \uparrow q & p \\
\hline
\psi & = & \psi_L & \psi_R
\end{array}$$

Diagonalize and form the Schmidt decomposition

$$|\psi\rangle = \sum_{\perp} \sqrt{\rho_{\alpha}} |\psi_L^{\alpha}\rangle \otimes |\psi_R^{\alpha}\rangle$$

$$\begin{array}{ccc}
p \uparrow & \uparrow q & p \uparrow & \uparrow q \\
\hline
\psi & = & \psi_L & \stackrel{\alpha}{\longleftrightarrow} & \stackrel{\alpha}{\longleftrightarrow} & \psi_R
\end{array}$$

Quantitative measures of entanglement - rank

$$S_A^0 = \sum_{\alpha} \rho_{\alpha}^0 = \#\{\rho_{\alpha} \neq 0\}$$

When a wavefunction in a product Hilbert space cannot be written as a product state, it is **entangled**.

$$|\psi\rangle = \sum_{i} |\psi_L^i\rangle \otimes |\psi_R^i\rangle$$

$$\begin{array}{ccc}
p & \uparrow & \uparrow q & p \\
\hline
\psi & = & \psi_L & \psi_R
\end{array}$$

Diagonalize and form the Schmidt decomposition

$$|\psi\rangle = \sum_{\alpha} \sqrt{\rho_{\alpha}} |\psi_L^{\alpha}\rangle \otimes |\psi_R^{\alpha}\rangle$$

$$\begin{array}{ccc}
p \uparrow & \uparrow q & p \uparrow & \uparrow q \\
\hline
\psi & = & \psi_L & \stackrel{\alpha}{\longleftrightarrow} & \stackrel{\alpha}{\longleftrightarrow} & \psi_R
\end{array}$$

Quantitative measures of entanglement - entropy

$$S_A = -\sum_{\alpha} \rho_{\alpha} \log \rho_{\alpha}$$

Matrix product states provide a parameterization of the space of wavefunctions of a 1D or quasi-1D system.

$$|\psi^{b_0b_1}\rangle = \sum_{p_1...p_5} (b_0|A_1^{p_1}...A_5^{p_5}|b_1)|p_1...p_5\rangle$$

Coefficients of the wavefunction are calculated via a product of matrices, one per site. The matrix at each site depends on the physical state at that site.

Matrix product states provide a parameterization of the space of wavefunctions of a 1D or quasi-1D system.

$$|\psi\rangle = \sum_{p_1...p_5} Tr(BA_1^{p_1}...A_5^{p_5})|p_1...p_5\rangle$$

Matrix product states provide a parameterization of the space of wavefunctions of a 1D or quasi-1D system.

Coefficients of the wavefunction are calculated via a product of matrices, one per site. The matrix at each site depends on the physical state at that site.

Every state has a matrix product state representation formed through the process of repeated SVD.

Matrix product states provide a parameterization of the space of wavefunctions of a 1D or quasi-1D system.

Coefficients of the wavefunction are calculated via a product of matrices, one per site. The matrix at each site depends on the physical state at that site.

Every state has a matrix product state representation formed through the process of repeated SVD.

Matrix product states provide a parameterization of the space of wavefunctions of a 1D or quasi-1D system.

Coefficients of the wavefunction are calculated via a product of matrices, one per site. The matrix at each site depends on the physical state at that site.

Every state has a matrix product state representation formed through the process of repeated SVD.

Properties of matrix product states

- Representing every wavefunction with perfect accuracy requires exponentially big bond dimensions
- Ground states of gapped quantum Hamiltonians satisfy (rigorously in 1D) an area law: $S_A \approx d \cdot (\partial A)$.
- With a fixed truncation error ϵ , bond dimension needed to represent the wavefunction levels off to a constant $d(\epsilon)$.
- \blacksquare MPS representation is efficient only needs d^2L parameters

Gapped ground state

Gapless ground state

Generic State

Computing Correlation Functions in MPS

Diagram for
$$C_{OO'}(r) = \langle O_i O'_{i+r} \rangle - \langle O_i \rangle \langle O'_{i+r} \rangle$$

Computing Correlation Functions in MPS

Computing Correlation Functions in MPS

Diagram for
$$C_{OO'}(r) = \langle O_i O'_{i+r} \rangle - \langle O_i \rangle \langle O'_{i+r} \rangle$$

 $\langle O_i O'_{i+r} \rangle = (v_L | \mathbb{E}_O \mathbb{E}_I^r \mathbb{E}_{O'} | v_R)$

$$\lim_{r \to \infty} \langle O_i O'_{i+r} \rangle = (v_L | \mathbb{E}_O | v_R) (v_L | \mathbb{E}_{O'} | v_R)$$

$$C_{OO'}(r) \approx const. \times \lambda_2^r$$

Computing Entanglement in MPS

To compute the spectrum of the reduced density matrix

Step 1. Show that the following matrix $\mathcal U$ is isometric.

Computing Entanglement in MPS

To compute the spectrum of the reduced density matrix

Step 2. Insert identity...

Computing Entanglement in MPS

To compute the spectrum of the reduced density matrix

Result:

$$\rho_L = \mathcal{U}\sqrt{\sigma_L}\sigma_R\sqrt{\sigma_L}\mathcal{U}^{\dagger}$$

To get the spectrum, we only need to compute the much smaller matrix

$$\tilde{\rho}_L = \sqrt{\sigma_L} \sigma_R \sqrt{\sigma_L}$$

MPS Example: AKLT State

Haldane phase distinguished by exact double degeneracy in entire entanglement spectrum.

Properties of Featureless MPS

MPS for featureless 1D or quasi-1D systems have non-degenerate transfer matrices and are called simple. Simple MPS can be proved to have:

- Correlations are insensitive to boundary conditions
- Can construct a featureless 'parent Hamiltonian'
- Two simple MPS with equal wavefunctions are (uniquely) gauge equivalent
- Corollary: Edges can be labeled with a (possibly projective) representation of the group of physical symmetries.

Bonus: we can determine V_g by diagonalizing the transfer matrix with the insertion U_g .

Symmetry Protected Entanglement

- These edge symmetries V_g commute with the 'reduced density matrix' $\tilde{\rho}_L$ of the system and thus only act non-trivially on degenerate entanglement spectra eigenvalues.
- Because the classes of projective symmetry groups are discrete, you can't change the action on the edge continuously between classes (without going through a phase transition.)

symmetry	string order	edge states	degeneracy
$D_2 \ (= Z_2 \times Z_2)$	yes	yes	yes
time reversal	no	yes	yes
inversion	no	no	yes

Flux-Threading Arguments for SPTs?

Recall that the boundary conditions in a MPS are set by a matrix at the edge.

Inserting the group operation V_g on a single link in a periodic chain is the same as changing the boundary conditions. This is an operational procedure for 'threading a flux' that works in interacting theories or even with then symmetry is inversion or time-reversal.

The edge action can be interpreted as a 'composition of fluxes' $V_a V_b = \exp i\omega(q,h) V_{ab}$.

Outline

- 1 Motivation
 - Featureless Insulators
 - Lieb-Schultz-Mattis Theorem
 - Magnetization Plateaus
- 2 Distinguishing Featureless Insulators by Entanglement
 - Matrix Product States
- 3 Featureless Boson Mott Insulators
 - Honeycomb Featureless Insulator Proposal
 - Tensor Network Construction
 - Entanglement Spectra Results
 - Identifying CFTs by Spectra

Existence of Featureless Insulators

Given a (non-Bravais) lattice and an integer particle number per unit cell, is there always a featureless insulator? Naive constructions don't work on the honeycomb lattice because you can't pick a symmetric unit cell. For fermion band insulators, filling orbitals in a non-symmetric unit cell can still lead to symmetric wave functions to the antisymmetrization of fermions.

Does there exist a bosonic featureless Mott insulator with half-integer site filling?

Existence of Featureless Insulators

Status of existence question:

- On non-symmorphic lattices, not all integer particle-numbers can be realized.
 - Flux removal doesn't commute with glide-reflections or screw-axes where the translation vector is not a lattice translation.
- On Kagome lattice, boson insulator with 1/3 site filling constructed by filling Wannier orbitals of the lowest band of a fermion band insulator.

Existence of Featureless Insulators

On honeycomb lattice, no such band insulator.

Proposed wavefunction:

$$|\psi\rangle = \prod_{R} \sum_{i \in R} b_i^{\dagger} |\vec{0}\rangle$$

- Goals:
 - Rule out spontaneous symmetry breaking by computing correlations
 - Rule out topological order by computing topological entanglement entropy
 - Distinguish from other featureless phases using edge entanglement

Tensor Network Construction of FBI

A wavefunction written as a product of local operators acting on a product state can simply be turned into a tensor network.

Entanglement Spectra

Finite Size Analysis of Spectra

- Topological entanglement entropy is 0
- Low energy modes show gapless 1/L

Finite Size Analysis of Spectra

- Topological entanglement entropy is 0
- Low energy modes show gapless 1/L behavior

Identifying CFTs: Measuring c

Level identification in CFT spectra

To make a precise comparison with the free-boson CFT, we'll need to solve for (or look up) the solution of this model.

The free-boson CFT is created from the Lagrangian

$$\mathfrak{L} = \frac{g}{2} \int dt \int_{0}^{L} dx \left(\frac{1}{v^{2}} (\partial_{t} \phi)^{2} - (\partial_{x} \phi)^{2}\right)$$

and with the compatified field identification

$$\phi \equiv \phi + 2\pi R$$

and placed on the circle of circumference ${\cal L}$ with periodic boundary conditions

$$\phi(x) \equiv \phi(x+L).$$

Level identification in CFT spectra

$$\mathbf{L_0} \qquad \qquad 2\pi g \left(\frac{e}{4\pi g R} + \frac{mR}{2}\right)^2 + n$$

$$\bar{\mathbf{L}_0} \qquad \qquad 2\pi g \left(\frac{e}{4\pi g R} - \frac{mR}{2}\right)^2 + \bar{n}$$

$$\mathbf{P} = \frac{2\pi v}{L} (\mathbf{L_0} - \bar{\mathbf{L}_0}) \qquad \qquad \frac{2\pi v}{L} (em + n - \bar{n})$$

$$\mathbf{H} = \frac{2\pi v}{L} (\mathbf{L_0} + \bar{\mathbf{L}_0}) \qquad \frac{2\pi v}{L} \left(\frac{e^2}{4\pi g R^2} + \pi g m^2 R^2 + n + \bar{n}\right)$$

$$\tilde{\mathbf{H}} = \frac{L}{2\pi v \kappa} \mathbf{H} \qquad \qquad e^2 + \frac{m^2}{4\kappa^2} + \frac{1}{\kappa} (n + \bar{n})$$

Eigenvalues of states $|e,m\rangle_{n,\bar{n}}$. The rescaled Hamiltonian $\tilde{\mathbf{H}}$ has eigenvalues that depend on only one free-parameter, $\kappa=1/(4\pi gR^2)$.(Note: A common convention is to set $g=1/4\pi$ and describe the system using $R=\sqrt{1/\kappa}$.)

Level identification in CFT spectra

