TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 29.10.-02.11.2018

2. Übung Analysis III für Mathematiker(innen)

(Differentialgleichungen)

Themen der großen Übung am 22.10.

Inhomogene lineare Gleichungen, Variation der Konstanten, Methode der unbestimmten Koeffizienten

Die Wronksi-Determinante
$$W_D(y_1, \dots, y_n)(t) = \begin{vmatrix} y_1(t) & y_2(t) & \dots & y_n(t) \\ y_1'(t) & y_2'(t) & \dots & y_n'(t) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(t) & y_2^{(n-1)}(t) & \dots & y_n^{(n-1)}(t) \end{vmatrix}, t \in J,$$

für hinreichend oft differenzierbare Funktionen $y_1,\ldots,y_n\colon J\to\mathbb{R}.$ Wir zeigen, folgenden

Satz Lösen y_1, \ldots, y_n eine Differentialgleichung n-ter Ordnung und ist die Wronski-Determinante der y_i ungleich 0 an mindestens einem Punkt, dann sind y_1, \ldots, y_n linear unabhängig.

Lemma 206 Wir setzen $D^k = \frac{\mathrm{d}^k}{\mathrm{d}x^k}$.

- (i) Die "Einsetzung" $E(\varphi) := \varphi(D)$ ist ein Algebra-Homomorphismus von der Algebra der Polynome in die Algebra $L(C^{\infty}(\mathbb{R}), C^{\infty}(\mathbb{R}))$, also gilt $E(\varphi \cdot \psi) = E(\varphi) \circ E(\psi)$
- (ii) Seien $p \neq 0$ ein Polynom, $k \in \mathbb{N}$ und $\mu, \nu \in \mathbb{C}$. Dann ist $(D \mu)^k (p(t)e^{\nu t} = q(t)e^{\nu t}$ mit einem Polynom q, für das gilt: $\mu \neq \nu \to \text{Grad } q = \text{Grad } p, \ \mu = \nu \to \text{Grad } q = (\text{Grad } p) k$, Dabei soll Grad q < 0 bedeuten, dass q = 0.

Lineare Differentialgleichungen mit konstanten Koeffizienten, die Matrixexponentialfunktion exp: $M_n(\mathbb{R}) \to M_n(\mathbb{R})$, $A \mapsto \sum_{n=0}^{\infty} \frac{A^i}{i!}$. Insbesondere zeigen wir $\exp(A+B) = \exp(A) \exp(B)$ falls AB = BA.

Veranstaltungshinweis: Am 25.10 findet die Podiumsdiskussion "The Aftermath" u.a. über Berufsperspektiven für Mathematiker statt. Weitere Informationen, siehe ISIS.

Tutoriumsvorschläge

1. Aufgabe

Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y''(t) + y'(t) - 6y(t) = 5e^{-3t}.$$

2. Aufgabe

Wir betrachten vektorwertige Funktionen $u(t) = (u_1(t), u_2(t))^{\top}$ und setzen $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Bestimmen Sie $\exp(tA)$ für $t \ge 0$ und lösen Sie das Anfangswertproblem

$$u' = A \cdot u, \qquad u(0) = (0, 1)^{\top}.$$

3. Aufgabe

Seien y_1, y_2 und λ differenzierbare Funktionen $J \to \mathbb{R}$. Zeigen Sie, dass für alle $x \in J$ die Wronski'sche Determinate W_D die folgenden Eigenschaften erfüllt:

- (i) $W_D(y_1, y_2 + y_3)(x) = W_D(y_1, y_2)(x) + W_D(y_1, y_3)(x)$,
- (ii) $W_D(\lambda y_1, \lambda y_2)(x) = (\lambda(x))^2 W_D(y_1, y_2)(x),$
- (iii) $W_D(y_1, \lambda y_1)(x) = \lambda'(x)y_1^2(x)$.

4. Aufgabe

Zeigen Sie, dass $y_1(x) \equiv c \neq 0$ und $y_2(x) = \frac{1}{x^2}$ die nichtlineare DGL

$$y'' + 3xyy' = 0, \qquad x \in (0, \infty)$$

erfüllen, aber $y_1(x) + y_2(x)$ keine Lösung der DGL ist. Was verrät Ihnen dies über die allgemeine Lösungstheorie von Differentialgleichungen?

Hausaufgaben

4. Aufgabe (12 Punkte)

Wir bezeichnen mit $y^{(i)}$ die ite Ableitung einer Funktion y. Eine Differentialgleichung

$$\sum_{i=0}^{n} a_i t^i y^{(i)}(t) = 0, \qquad t > 0,$$
 (CE)

mit Konstanten a_0, \ldots, a_n nennt man eine (homogene) Cauchy-Euler-Gleichung der Ordnung n.

- (i) Finden Sie ein Polynom nten Grades P und eine Familie $\{f_k\}_{k\in\mathbb{R}}$ von (im Allgemeinen nicht konstanten) Funktionen f_k , so dass Einsetzen der f_k die linke Seite von (CE) in die Form $P(k) \cdot f_k(t)$ überführt (P(k) hängt nicht mehr von t ab).
- (ii) Diskutieren Sie, wie die allgemeine Lösung von (CE) konstruiert werden kann, wenn P aus (i) genau n verschiedene reelle Nullstellen $\lambda_1 < \lambda_2 < \cdots < \lambda_n$ besitzt.
- (iii) Überprüfen Sie Ihre Theorie, indem Sie das Anfangswertproblem

$$\begin{cases} t^2 y''(t) - 2y = \frac{1}{t+1} & t > 0, \\ y(1) = \frac{3}{2}, & y'(1) = \frac{3}{2}. \end{cases}$$

lösen.

Hinweis: Studieren Sie die Herleitung der Lösung für lineare DGLen mit konstanten Koeffizienten. **Bemerkung:** Hat P komplexe oder mehrfache Nullstellen, ist es schwieriger, die Lösung anzugeben. In diesem Fall gelangt man durch Umformen von (CE) mittels Substitution $t = \exp(z)$ zum Ziel (benötigt aber etwas komplexe Analysis).

5. Aufgabe (5 Punkte)

Sei exp: $M_n(\mathbb{R}) \to M_n(\mathbb{R})$ die Matrixexponentialfunktion.

- (i) Sei $A = \lambda I + N$, wobei $\lambda \in \mathbb{R}$, I die Identität und $N = (n_{ij})_{1 \leq i,j \leq n}$ durch $n_{ij} = \begin{cases} 1, & \text{falls } j = i+1, \\ 0 & \text{sonst} \end{cases}$ gegeben ist, d.h. A ist ein Jordan-Block. Bestimmen Sie $\exp(\lambda I)$ und $\exp(N)$ und zeigen Sie, dass $\exp(A) = \exp(\lambda I) \exp(N)$ gilt.
- (ii) Sei $A = PBP^{-1}$ für eine invertierbare Matrix P und eine Matrix B. Zeigen Sie, dass $\exp(A) = P\exp(B)P^{-1}$ gilt, und dass eine Funktion v die Differentialgleichung v' = Av genau dann löst, wenn $u = P^{-1}v$ eine Lösung der Differentialgleichung u' = Bu ist.

6. Aufgabe (3 Punkte)

Sei $A = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$ für $\alpha, \beta \in \mathbb{R}$. Bestimmen Sie die allgemeine (reelle) Lösung der Differentialgleichung u' = Au.

Gesamtpunktzahl: 20