一类搜索的优化思想

——数据有序化

南京市金陵中学 刘一鸣

数据有序化

数据有序化的思想,就是将杂乱的数据,通过简单的分类和排序,变成有序的数据,从而加快搜索的速度。

- ◆ <u>为什么要进行数据有序化</u>
- ◆数据有序化的实现
- ★ 两种实现方法的比较

为什么要进行数据有序化

杂乱的数据

有序的数据

例1装箱问题

题目大意:

现有一个体积为V的集装箱和N种货物,每一种货物都有固定的体积,数量无限。你的任务是: 写一个程序,求出最少用多少个货物,就能放满 集装箱。

数据规模: V₆≤V≤10⁹

运行时间的对比

测试方法:随机生成20个数据,测试运行时间并求平均值。

N	不排序,直接搜索	先按体积从大到小 排序,再搜索
10	>160秒	9.8545秒
30	>200秒	0.1356秒
60	>200秒	0.1595秒
100	>200秒	0.2285秒

程序效率不同的原因

数据有序化的益处

- ▶对于大多数的数据,都有良好的优化效果;
- ▶简便易行;
- ▶和其他类型的优化方法一般都不冲突。

数据有序化的实现

- ◆ 预处理阶段的数据有序化
- ◆ 实时处理阶段的数据有序化

颁处理阶段的数据有序化

例2积木搭建

◆ 题目大意: 给定12种积木和一个体积小于50的构型, 求最少使用多少个积木可以将这个构型搭建起来

第1步数据有序化

第2步数据有序化

从构型中挖去一个积木

[1,10]- $\{3,6,7,9\}$ = $\{1,2,4,5,8,10\}$

试图再放一块积木

积木不能放入构型

积木的冲突

$$\{3,6,7,9 \ \cap \ | \ \{4,5,7,8\} = \{7\} \neq \varphi$$

数据有序化前后数学模型的对比

数据有序化前	数据有序化后
目标构型(3维)	目标集合(1维)
积木(3维)	小集合(1维)
积木拼接成为目标构型	小集合的合并成为目标集合
积木在3维空间里没有冲突	小集合的交集为空集

数据有序化后,数学模型得到了精简

实时处理阶段的数据有序化

传统表示方法

最小表示法

例3 N皇后问题-2

◆ 题目大意: 假定通过翻转、旋转得到的 状态与原状态属于同构状态, 求所有不 同构的n皇后状态总数。

状态表示方法

◆由于一行中只能有一个皇后,所以用一个 n元组(a₁,a₂,a₃,...,a_n)表示当前的状态,其中 a_i表示第i列的皇后所在的行。

	Q			
			Q	
Q				
		Q		
				Q

> (3,1,4,2,5)

翻转、旋转的具体过程(1)

以铅垂线为轴的翻转:

	Q_1			
			Q_2	
Q_3				
		Q_4		
				Q_5

			Q_1	
	Q_2			
				Q_3
		Q_4		
Q_5				

 $(a_1, a_2, a_3, a_4, a_5)$

 \rightarrow

 $(a_5, a_4, a_3, a_2, a_1)$

翻转、旋转的具体过程(2)

炒凝角缘外黏的翻模的旋转

$$(a_{p_1}, a_{p_2}, a_{p_3}, a_{p_4}, a_{p_5}) \rightarrow (6b_{1a}b_{11}, 6b_{22}, a_{p_5}, a_{p_5}, a_{p_4}, a_{p_5})$$

$$\rightarrow (6_{\overline{5}}, ab_{4}, 6b_{3}a_{4}b_{2}b_{3}b_{4}), 6-a_{2}, 6-a_{1})$$

$$\rightarrow$$
 (6-b₅, 6-b₄, 6-b₃, 6-b₂, 6-b₁)

应用数据有序化

新的剪枝条件

$$a_1 \le a_5$$

 $a_1 \le 6 - a_1$
 $a_1 \le b_1$
 $a_1 \le b_5$
 $a_1 \le 6 - b_1$
 $a_1 \le 6 - a_5$
 $a_1 \le 6 - b_5$

空间复杂度的降低

应用最小表示法的算法 与常规算法的比较

	状态的 生成	判断同构的费用 (或判断最小表示 的费用)	时间复杂 度	空间复杂 度
常规算法	O(a*N!) (a<1)	O(N* S)	O(a*N!* N* S)	O(N* S)
应用最小表示的算法	O(b*N!) (b< <a)< th=""><th>O(N)</th><th>O(b*N!* N)</th><th>O(N)</th></a)<>	O(N)	O(b*N!* N)	O(N)

两种实现方法的比较

阶段	预处理	实时处理
优点	精简了数学模型	对空间的要求较低, 形式多样,应用广 泛
缺点	对空间的要求较高	可能重复处理

总结

- ◆ 努力创造符合科学美的数据。
- ◆ 追求好的性价比。

谢谢!

请大家多多指教!