mjon238 Stats 326 Assignment 3 Q1

mjon238

13/05/2022

Problem 1: ETS Modelling

First load the data

Part 1: Plot the Data

Plot variable not specified, automatically selected `.vars = Productivity`

Labour Productivity for Primary Industries in New Zealand 1978 – 2021

- There is a linear increasing trend in labour productivity for primary industries in New Zealand.
- The steepest increase is from 1978 to 1998, afterwards productivity continues to increase, however at a slightly slower rate.
- There are cyclical fluctuation sin labour productivity, with a number of decreases, notably after 1998 and 2010.
- Productivity does pick-up after these cyclical decreases.

Part 2

1) Fit the Two Models

```
dfTrain <- df%>%
  filter(Year < 2017)

modelLinear <- dfTrain%>%
  model(Linear = ETS(Productivity ~ error("A") + trend("A") + season("N")))

modelDamped <- dfTrain%>%
  model(Linear = ETS(Productivity ~ error("A") + trend("Ad") + season("N")))
```

2) Intrepret Model Parameters and Compare AICc

```
report(modelLinear)
```

```
## Series: Productivity
## Model: ETS(A,A,N)
```

```
##
     Smoothing parameters:
       alpha = 0.4889942
##
##
       beta = 0.0001000043
##
##
     Initial states:
##
        1[0]
                 b[0]
    880.7263 68.67191
##
##
##
     sigma^2: 19414.32
##
##
        AIC
                 AICc
                           BIC
## 533.7355 535.5536 542.0533
beta star = 0.0001000043/0.4889942
beta_star
```

[1] 0.0002045102

Parameters in Holts Linear Trend Method

- $\alpha = 0.489$, which means the level equation is an approximately 50/50 split of the previous observations level and the observations before.
- $\beta^* = 0.0002 \approx 0$, which means the slope is just the previous estimate of the slope $(b_t = b_{t-1})$.

report (modelDamped)

```
## Series: Productivity
## Model: ETS(A,Ad,N)
##
     Smoothing parameters:
##
       alpha = 0.5939802
##
       beta = 0.0001001014
##
             = 0.98
       phi
##
##
     Initial states:
##
       1[0]
                b[0]
    879.452 86.63342
##
##
     sigma^2:
               20988.5
##
##
        AIC
                 AICc
                           BIC
## 537.6455 540.2705 547.6269
beta_star = 0.0001001014/0.5939802
beta_star
```

[1] 0.0001685265

Parameters in Holts Linear Damped Trend Method

- $\alpha = 0.594$, which means the level equation has slightly more weighting to the previous observation than the older past.
- $\beta^* = 0.0002 \approx 0$, which means the slope is just the previous estimate of the slope $(b_t = \phi b_{t-1})$.
- $\phi = 0.98$, this is the maximum value ϕ can take, which indicates that the trend is approximately linear (as opposed to a decaying slope).

3) Compare AICc

Holts Linear Trend Method has an AICc of 535.55 and Holts Linear Damped Trend Method has an AICc of 540.27. Holts Linear Trend Method has a slightly better fit to the training data, but not by much.

Part 3

1) Create Forecasts

```
fcLinear <- modelLinear%>%
  forecast(h = 5)

fcDamped <- modelDamped%>%
  forecast(h = 5)
```

2) Create Plot of Point Forecats

```
#Create data frame, overlay point forecasts on original data
forecasts <- data.frame(Year = c(1978:2021),</pre>
                   fcDamped = c(rep(NA,39), fcDamped$.mean),
                   fcLinear = c(rep(NA,39), fcLinear$.mean),
                   Actual = df$Productivity)%>%
 pivot_longer(cols = c(Actual, fcLinear, fcDamped),
               names_to = "Data Type",
               values_to = "Productivity")%>%
 mutate(`Data Type` = factor(`Data Type`, levels = c("Actual", "fcLinear", "fcDamped")))
#Create Plots
ggplot(aes(x = Year, y = Productivity, colour = `Data Type`),
       data = forecasts) +
  geom_line(size = 0.6) +
 labs(y = "Productivity (Index)",
       title = "Labour Productivity for Primary Industries in New Zealand",
       subtitle = "Actual and Forecasts (1978 - 2021)")+
  scale_color_manual(labels = c("Actual", "Linear Method", "Damped Method"),
                     values= c("black", "chocolate2", "dodgerblue3"))
```

Labour Productivity for Primary Industries in New Zealand Actual and Forecasts (1978 – 2021)

3) Compute Measures of Accuracy

```
#Holts Linear Trend Method
accuracy(fcLinear, df)
## # A tibble: 1 x 10
##
     .model .type
                      ME RMSE
                                       MPE MAPE
                                                  MASE RMSSE
                                                                 ACF1
                                 MAE
     <chr> <chr> <dbl> <
## 1 Linear Test -194.
                               194. -5.43 5.43 1.52 1.31 -0.115
                          208.
#Holts Linear Damped Trend Method
accuracy(fcDamped, df)
## # A tibble: 1 x 10
##
     .model .type
                      ME
                        RMSE
                                 MAE
                                       MPE MAPE MASE RMSSE
                                                                 ACF1
     <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
##
## 1 Linear Test -83.8 99.4 83.8 -2.37 2.37 0.659 0.628 -0.657
Holts Linear Damped Trend provides better forecasts. It has significantly lower MAE and RMSE. It is also
```

4) Prediction Intervals

fits the data more appropriately.

```
fc22 <- modelDamped%>%
forecast(h = 6)
```

```
fc22[6,]%>%
hilo(level = 95)
```

The 95% prediction interval for the year 2022 with the Holt Linear Damped Model is (3285.73, 4230.18).

The model estimates there is a 95% probability the New Zealand Labour Productivity for Primary Industries Index in 2022 will be between 3285.73 and 4230.18.

5) Discuss how you would reduce forecast uncertainty

The formula for the prediction interval in with additive errors is $y_{T+h|T} \pm z_{\alpha/2} \times \hat{\sigma_h}$. The primary way to reduce the prediction intervals would be to reduce the forecast standard deviation $(\hat{\sigma_h})$ and therefore the variance, σ_h^2 .

The formula for the variance is as follows:

$$\sigma_h^2 = \sigma^2 \left[1 + \alpha^2 (h - 1) + \frac{\beta \phi h}{(1 - \phi)^2} \left\{ 2\alpha (1 - \phi) + \beta \phi \right\} - \frac{\beta \phi (1 - \phi^h)}{(1 - \phi)^2} \left\{ 2\alpha (1 - \phi)^2 + \beta \phi (1 + 2\phi - \phi^h) \right\} \right]$$

We can reduce σ_h^2 by:

- Reducing h, we can do this by increasing our training data set to include observations up-to 2021.
- Reducing α , this will increase weighting on the older past.
- Reducing $\beta = \beta^* \alpha$, this can be done by reducing alpha or reducing β^* , ie. have the slope change less often.

 ϕ is a less clear variable.

Problem 2: ARIMA Modelling

Part 1: Determining an Appropriate ARIMA Model

1) Construct a KPSS Unit Root Test

Our null hypothesis is H0: The data is stationary.

Firstly, with no differencing:

```
dfTrain%>%
  features(`Productivity`, unitroot_kpss)
```

```
## # A tibble: 1 x 2
## kpss_stat kpss_pvalue
## <dbl> <dbl>
## 1 1.06 0.01
```

We have a p-value of 0.01, therefore we reject the null hypothesis, the data is non-stationary.

Using differencing of order 1, with 1 lag and the same null hypothesis.

```
dfTrain%>%
  features(difference(Productivity, lag = 1), unitroot_kpss)
```

```
## # A tibble: 1 x 2
## kpss_stat kpss_pvalue
## <dbl> <dbl>
## 1 0.0520 0.1
```

We have a p-value of 0.1, therefore we accept the null hypothesis, the data is stationary.

2) Ploting ACF and PACF

ACF Plot for Differenced Data With Order 1, Lag 1 Labour Productivity for Primary Industries in New Zealand

The ACF Plot is good, the differences series acts like a white-noise series.

PACF Plot for Differenced Data With Order 1, Lag 1

Labour Productivity for Primary Industries in New Zealand

The second lag is approximately a white noise series, there is one observation outside of the "blue-line" interval, however it is only marginally outside.

3) Suggested ARIMA Model

I would fit an ARIMA (p,d,q) model with the following parameters:

- p =, because
- d=1, because we achieved stationarity with one difference.
- q =, because

In backshift notation this is: $(1 - B)y_t = ... \#\#$ Part 2: ARIMA Model Fitting

The stepwise selected model and the non-stepwise (search) selected model are identical, ARIMA(0,1,1) with a drift.

In backshift notation this is: $(1 - B)y_t = c + (1 + \theta_1 B)\varepsilon_t$

Where c is a constant.

Part 3: Model Checking and Forecasting

1) Residuals

```
bestARIMA <- dfTrain%>%
  model(ARIMA(Productivity ~ pdq(0,1,1)))

bestARIMA%>%
  gg_tsresiduals()
```


The looks, overall, look very good

- They are normally distributed
- $\bullet\,$ Have approximately zero mean and constant variance.
- They resemble a white-noise series

2) Forecasts

```
fc <- bestARIMA%>%
  forecast(h = 5)
fc
```

A fable: 5 x 4 [1Y] ## # Key: .model [1]

3) Plotting

```
fc%>%
  autoplot(df, level = c(90, 99)) +
  labs(title = "5 Year Forecast Using an ARIMA(0,1,1) with Drift",
        subtitle = "Labour Productivity for Primary Industries in New Zealand",
        y = "Index")
```

5 Year Forecast Using an ARIMA(0,1,1) with Drift Labour Productivity for Primary Industries in New Zealand

