# Rapport - Application de Suivi de

# Grossesse

### 1. Contexte et Objectifs

#### a. Contexte

Au Sénégal, de nombreuses femmes enceintes, en particulier dans les **zones rurales** (comme le Fouta, le Sine-Saloum ou la Casamance) ou dans les **quartiers urbains défavorisés** (banlieues de Dakar, Pikine, Guédiawaye, etc.), font face à des **difficultés d'accès au suivi médical régulier** durant leur grossesse. Plusieurs facteurs expliquent cette situation : l'éloignement des structures de santé, le coût du transport, le manque d'information ou encore la barrière de la langue.

La majorité des applications mobiles de santé existantes sont proposées en **français**, souvent dans un langage technique peu adapté au quotidien des femmes peu ou pas scolarisées. Or, au Sénégal, une large partie de la population féminine communique principalement en **wolof**, en **pulaar**, voire dans d'autres langues nationales comme le sérère ou le diola, et n'est pas toujours à l'aise à l'écrit.

C'est dans ce contexte que s'inscrit notre projet : développer une application web et mobile adaptée aux réalités linguistiques, sociales et culturelles sénégalaises, intégrant des messages vocaux en wolof et en pulaar, pour permettre aux femmes de suivre leur grossesse de manière autonome, sécurisée et contextualisée.

Il s'agit d'un outil de **santé communautaire numérique** qui ambitionne de **renforcer l'accès à l'information maternelle** dans un langage simple, audio et familier, tout en tenant compte du **niveau d'alphabétisation** et de la **connectivité parfois faible** dans certaines zones.

### b. Objectifs

### • Objectif principal :

Créer une application web et mobile simple et multilingue pour aider les femmes enceintes à suivre leur grossesse, avec des rappels, des conseils santé et des messages vocaux.

#### Objectifs spécifiques :

- Suivi personnalisé de grossesse (semaine par semaine)
- Rappels de rendez-vous médicaux
- Conseils de santé simples et contextualisés
- Messages vocaux en wolof ou pulaar
- ➤ Interface accessible et adaptée à des utilisatrices peu lettrées

#### 2. État des lieux

Avant de concevoir l'application, il est essentiel d'évaluer les solutions existantes sur le marché. Cette comparaison permet de mettre en évidence les lacunes des applications actuelles et de justifier l'intérêt de notre projet. L'accent est mis ici sur trois critères essentiels : la langue utilisée, l'adaptation au contexte africain et la présence de fonctionnalités vocales.

Le tableau suivant illustre les principales caractéristiques de quelques applications de suivi de grossesse bien connues et permet de situer notre application dans ce paysage

| État des lieux |                       |   |   |  |
|----------------|-----------------------|---|---|--|
| Application    | Langue Afrique Vocal  |   |   |  |
| Grossesse+     | Français/Anglais      | × | × |  |
| Flo            | Français/Anglais      | × | × |  |
| Notre App      | Wolof/Français/Pulaar | V | V |  |

### 3. Description du besoin et faisabilité

### Cible

Notre application s'adresse en priorité à :

- > Femmes enceintes
- > Peu ou pas alphabétisées
- > Wolof ou pulaar comme langue principale
- > Afrique de l'Ouest francophone

#### Fonctionnalités clés

Pour répondre à ces besoins spécifiques, l'application proposera :

- > Calcul automatique de la semaine de grossesse via DPA
- > Conseils santé hebdomadaires (texte + audio)
- > Notifications pour les rendez-vous et suivis
- > Lecture vocale des messages dans la langue choisie
- > Fonctionnement hors ligne partiel (cache local)

#### 4. Architecture fonctionnelle

L'architecture fonctionnelle de l'application décrit les principales fonctionnalités accessibles à l'utilisatrice. Ces fonctions sont organisées autour de la simplicité d'usage, l'accessibilité linguistique, et le respect des besoins spécifiques des femmes enceintes dans un contexte africain. L'interface est volontairement épurée, intuitive et centrée sur les usages concrets.

- Tableau de bord de suivi
- Mon Profil (langue, prénom, DPA)
- Conseils hebdomadaires
- Mes rendez-vous (ajout/rappel)
- Lecteur audio multilingue
- Paramètres (langue, alertes)

# 5. Architecture applicative

L'architecture applicative repose sur une organisation **modulaire** et **moderne**, pensée pour garantir la simplicité d'usage, la maintenabilité du code et la facilité de déploiement dans des contextes à faible connectivité.

Elle est composée de plusieurs couches clairement définies :

| Planning prévisionnel |                               |                                                                                                                                                                                      |
|-----------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Couche                | Outils/techno                 | Détail                                                                                                                                                                               |
| Frontend              | React.js (web)                | L'interface utilisateur est développée en <b>React.js</b> , un framework léger, rapide et bien adapté pour des applications web responsives accessibles depuis mobile ou ordinateur. |
| Backend               | NestJS (Node.js + TypeScript) | L'API est gérée par <b>NestJS</b> , un framework Node.js basé sur<br>TypeScript, offrant une architecture propre et évolutive.                                                       |
| Base de<br>données    | PostgreSQL                    | <b>PostgreSQL</b> , base robuste et open source, stocke toutes les données : utilisateurs, conseils, rendez-vous, notifications.                                                     |
| API vocal             | Google Text-to-Speech API     | L'intégration de <b>Google Text-to-Speech</b> permet de générer automatiquement des fichiers audio lisibles dans les langues locales (wolof, pulaar).                                |
| Notifications         | Push via web (Web Push)       | Des <b>Web Push Notifications</b> assurent des rappels automatisés pour les rendez-vous ou les conseils hebdomadaires.                                                               |
| Stockage<br>audio     | Google Cloud Storage / local  | Les fichiers vocaux sont hébergés via <b>Google Cloud Storage</b> ou en local selon les besoins et la connectivité.                                                                  |
| Authentificati<br>on  | Auth par téléphone / anonymat | Une authentification simple par numéro de téléphone (ou anonyme) garantit une prise en main facile, sans complexité inutile.                                                         |

# 6. Modèle de données (PostgreSQL)

### a. Utilisateur

Contient les informations de base de chaque femme enceinte.

| Champ           | Туре     | Description                               |
|-----------------|----------|-------------------------------------------|
| id              | UUID     | Identifiant unique                        |
| prénom          | Texte    | Prénom de l'utilisatrice                  |
| langue          | Texte    | Langue préférée (wolof, pulaar, français) |
| DPA             | Date     | Date Présumée d'Accouchement              |
| dateInscription | DateTime | Date de création du compte                |

### b. ConseilGrossesse

Stocke les conseils à fournir chaque semaine, dans plusieurs langues et avec support vocal.

| Champ    | Туре  | Description                                    |
|----------|-------|------------------------------------------------|
| id       | UUID  | Identifiant unique                             |
| semaine  | Int   | Numéro de la semaine de grossesse              |
| titre    | Texte | Titre du conseil                               |
| texte    | Texte | Contenu du message en texte                    |
| audioURL | Texte | Lien vers le fichier audio généré (Google TTS) |
| langue   | Texte | Langue du message                              |

### c. RendezVous

Permet à l'utilisatrice de suivre ses rendez-vous médicaux et recevoir des rappels.

| Champ         | Туре    | Description                                |
|---------------|---------|--------------------------------------------|
| id            | UUID    | Identifiant unique                         |
| utilisateurId | UUID    | Clé étrangère vers l'utilisateur concerné  |
| type          | Texte   | Type de rendez-vous (consultation, vaccin) |
| date          | Date    | Date prévue du rendez-vous                 |
| rappelActivé  | Booléen | Indique si un rappel est activé            |

# d. Notification

Historique des messages envoyés à chaque utilisatrice.

| Champ         | Туре     | Description                           |
|---------------|----------|---------------------------------------|
| id            | UUID     | Identifiant unique                    |
| utilisateurId | UUID     | Référence à l'utilisatrice concernée  |
| message       | Texte    | Contenu du message de notification    |
| type          | Texte    | Nature (rappel, information, conseil) |
| dateEnvoi     | DateTime | Date et heure de l'envoi              |

### 7. Modèle de données (PostgreSQL)

# a. Diagramme de cas d'utilisation

Montre les principales actions accessibles à l'utilisatrice



# b. Diagramme de séquence

Décrit la chaîne d'événements lors de la réception d'une notification



# 8. Technologies utilisées

Le projet repose sur un ensemble de **technologies modernes**, **performantes et accessibles**, sélectionnées pour répondre à la fois aux **contraintes locales** (connectivité, simplicité d'accès) et aux **exigences techniques** (modularité, maintenabilité, évolutivité).

| Technologies utilisées |                                      |  |
|------------------------|--------------------------------------|--|
| Domaine                | Outils / Langages                    |  |
| Frontend               | React.js, Tailwind CSS               |  |
| Backend API            | NestJS, TypeScript                   |  |
| Base de données        | PostgreSQL                           |  |
| Authentification       | Magic link / OTP via Twilio (option) |  |
| Notifications          | Web Push API                         |  |
| Audio                  | Google TTS / enregistrement manuel   |  |
| Hébergement            | Render, Railway, Vercel, Supabase    |  |
| Stockage fichiers      | Google Cloud ou Supabase Storage     |  |
| Versionnage            | Git + GitHub                         |  |
| Design UI              | Figma                                |  |

### 9. Architecture technique

L'application repose sur une architecture **en couches**, avec des responsabilités clairement séparées entre l'interface utilisateur, la logique métier (API), et les services de données. Elle est conçue pour être **scalable**, **sécurisée** et facilement **maintenable**.

### Schéma technique simplifié:



# 10. Estimation technique

L'objectif ici est d'évaluer la **faisabilité pratique et économique** du projet, en tenant compte des ressources disponibles, des contraintes d'hébergement, et des coûts liés aux fonctionnalités comme l'audio ou les notifications.

| Estimation technique |                                     |  |
|----------------------|-------------------------------------|--|
| Élément Estimation   |                                     |  |
| Utilisatrices test   | 100 à 300                           |  |
| Audio (par langue)   | 10-20 Mo (compressé)                |  |
| Coût Google TTS      | 0 FCFA jusqu'à 4M caractères/mois   |  |
| Notifications        | gratuites via Web Push API          |  |
| Hébergement          | Gratuit (Railway, Vercel, Supabase) |  |

# 11. Planning prévisionnel

Le planning suivant répartit les tâches de développement sur une période de **8 semaines**, en tenant compte de la phase de conception, de développement, de test, et de la démonstration..

| Planning prévisionnel |                                                   |  |
|-----------------------|---------------------------------------------------|--|
| Semaine Tâches        |                                                   |  |
| 1                     | Étude besoins, planification                      |  |
| 2                     | Maquettes UI (Figma) + Modélisation BDD           |  |
| 3                     | Dév frontend React.js (formulaires, tableau bord) |  |
| 4                     | Dév backend NestJS (routes, logique, PostgreSQL)  |  |
| 5                     | Intégration API audio TTS                         |  |
| 6                     | Notifications + tests                             |  |
| 7                     | Ajustements, validation                           |  |
| 8                     | Démo                                              |  |

# 12. Budget prévisionnel

L'objectif du projet est de **minimiser les coûts** tout en garantissant un service fonctionnel et fiable. Grâce à l'utilisation de **services cloud gratuits** dans leurs versions de base (Vercel, Supabase, Google TTS), le budget reste très réduit.

| Budget prévisionnel         |            |  |
|-----------------------------|------------|--|
| Ressource                   | Coût       |  |
| Google TTS                  | Gratuit    |  |
| Vercel / Railway / Supabase | Gratuit    |  |
| Nom de domaine (optionnel)  | 18 400 CFA |  |
| Total                       | 18 400 CFA |  |

# 13. Équipe projet

| Equipe de Projet          |                         |  |
|---------------------------|-------------------------|--|
| Membre                    | Membre                  |  |
| Elhadji abdou aziz Diagne | Frontend (React), UI/UX |  |
| ???                       | Frontend (React), UI/UX |  |

# 14. Analyse des risques

Comme tout projet technologique, cette application présente certains risques, notamment liés à la connectivité, à l'usage de services externes (API vocales), ou à la gestion du planning. Une **anticipation rigoureuse** et des **solutions concrètes** ont été envisagées pour chaque point critique.

| Analyse des risques        |        |                                              |  |
|----------------------------|--------|----------------------------------------------|--|
| Risque                     | Risque | Solution                                     |  |
| Voix locale indisponible   | Moyen  | Utiliser Google TTS avec bonne prononciation |  |
| Connexion lente ou absente | Élevé  | Cache audio/text en local                    |  |
| Retard de développement    | Élevé  | Découpage précis + Trello suivi              |  |
| Difficulté API audio       | Moyen  | Génération batch des fichiers audio          |  |