Politechnika Warszawska

Inżynieria Procesów Przemysłowych

Projekt nr 6

Wykonali: Bartłomiej Guś, ŁJ, gr. IPAUT-161

Spis treści

1.	Ws	tęp	3
2.	2. Model układu		
3.	Pod	dstawy fizyczne	4
4.	Мо	del układu w Simulinku	6
	4.1.	Caty model	6
	4.2.	Blok regulacji	7
	4.3.	Blok transferu ciepła pochodzący od dostarczanej pary/wody wym	iany ciepła8
	4.4.	Blok C _A	8
	4.5.	Blok C _B	9
	4.6.	Blok k ₁	9
	4.7.	Blok k ₂	9
5.	Wy	kresy i wnioski	10
	5.1.	Dla warunków początkowych z wykładu	10
	5.2.	Początkowe nagrzanie i chłodzenie po 20 minutach	12
	5.3.	Początkowe nagrzanie i chłodzenie po 40 minutach	14
	5.4.	Początkowe nagrzanie i liniowe chłodzenie po 20 minutach	16
	5.5.	Utrzymywanie temperatury 0 F	17
6.	Nas	sz cel: uzyskać składnik B powyżej 0,75 w jak najkrótszym czasie	19
7.	Wn	iioski końcowe	20
8.	Wy	gląd okna	21
9.	Kod	d źródłowy programu B	łąd! Nie zdefiniowano zakładki.

1. Wstęp

Celem niniejszego projektu jest zamodelowanie modelu, za pomocą którego mogliśmy obliczać skład mieszaniny. Podczas modelowania posłużyliśmy się oprogramowaniem firmy MATLAB, który w łatwy sposób pozwolił wykonywać nam wiele tysięcy obliczeń oraz modelować wykresy. Również za pośrednictwem tego oprogramowania dokonaliśmy analizy wariantowej, w której to sterowaliśmy temperaturą pary jak i jej charakterem, co skutkowało zmianą szybkości przemian.

Założenia projektu to:

- brak wymiany ciepła z otoczeniem
- identyczna temperatura całej ścianki zbiornika
- idealne mieszadło dzięki, któremu otrzymujemy tą samą temperaturę w całej mieszaninie oraz identyczny skład mieszaniny w całej jej objętości
- niezmienne wartości współczynników np. wnikania ciepła na całej powierzchni

2. Model układu

Rysunek 1 - Schemat układu

3. Podstawy fizyczne

Zmiana ilości składnika C_A w mieszaninie:

$$\frac{dC_A}{dt} = -k_1 \cdot C_A$$

Zmiana ilości składnika C_B w mieszaninie:

$$\frac{dC_B}{dt} = k_1 \cdot C_A - k_2 \cdot C_B$$

Ilość składnika C_C w mieszaninie:

$$C_C = 1 - C_A - C_B$$

Zmiana temperatury mieszaniny w zbiorniku:

$$\frac{dT}{dt} = \frac{-\lambda_1}{\rho \cdot C_p} \cdot k_1 \cdot C_A - \frac{-\lambda_2}{\rho \cdot C_p} \cdot k_2 \cdot C_B - \frac{Q_M}{V \cdot \rho \cdot C_p}$$

Strumień ciepła przekazywany od ścianek zbiornika do mieszaniny:

$$Q_M = h_i \cdot A_i \cdot (T - T_M)$$

Zmiana temperatury ściany zbiornika:

$$\frac{dT_M}{dt} = \frac{Q_M - Q_J}{\rho_M \cdot C_M \cdot V_M}$$

Strumień ciepła przekazywany od nagrzanej pary/wody do ścianek zbiornika:

$$Q_J = -h_{os} \cdot A_{os} \cdot (T_J - T_M)$$

Szybkość przekazywania ciepła:

$$k = \alpha \cdot e^{\frac{\beta}{1,99(T+460)}}$$

gdzie:

$$\alpha_1 = 729,55 \, \frac{\scriptscriptstyle 1}{min}$$

$$\alpha_2 = 6567,6 \, \frac{1}{min}$$

$$\beta_1 = -15000 \frac{Btu}{lb \ mol}$$

$$\beta_2 = -20000 \, \frac{Btu}{lb \, mol}$$

$$\lambda_1 = -40000 \, \frac{Btu}{lbmol}$$

$$\lambda_2 = -50000 \, \frac{Btu}{lbmol}$$

 \mathcal{C}_p — ciepło właściwe mieszaniny przyjmujemy: 1 $\frac{\mathit{Btu}}{\mathit{lbm} \cdot \mathit{F}}$

ho – gęstość mieszaniny przyjmujemy: 50 $\frac{lbm}{ft^3}$

 $\it V$ – objętość mieszaniny przyjmujemy: 42,5 $\it ft^3$

 h_i – współczynnik wnikania ciepła pomiędzy ściankami zbiornika a mieszaniną przyjmujemy: 50 $\frac{Btu}{h \cdot F \cdot ft^2}$

 A_i – pole powierzchni na której następuje transfer ciepła pomiędzy ściankami zbiornikiem a mieszaniną przyjmujemy: 56,5 ft^2

 C_m – ciepło właściwe ścianek zbiornika przyjmujemy: 0,12 $\frac{Btu}{lhm \cdot F}$

 ho_m – gęstość ścianek zbiornika przyjmujemy: 512 $rac{lbm}{ft^3}$

 V_m – objętość ścianek zbiornika przyjmujemy: 9,42 ft^3

 h_{os} – współczynnik wnikania ciepła pomiędzy parą/wodą a ściankami zbiornika przyjmujemy: 1000 $\frac{Btu}{h \cdot F \cdot ft^2}$

 $A_{os}\,$ – pole powierzchni na której następuje transfer ciepła pomiędzy parą/wodą a ściankami zbiornika przyjmujemy: 56,5 ft^2

 T_J – temperatura pary przyjmujemy: 80 F

 $T_{\it M}$ – temperatura ścianek zbiornika przyjmujemy: 80 F

T – temperatura mieszaniny przyjmujemy: 80 F

 \mathcal{C}_A – ilość składnika A do całej objętości przyjmujemy: 1 $\frac{lbmol}{ft^3}$

 \mathcal{C}_B – ilość składnika B do całej objętości przyjmujemy: 0 $\frac{lbmol}{ft^3}$

 $\mathcal{C}_{\mathcal{C}}$ – ilość składnika C do całej objętości przyjmujemy: 0 $\frac{lbmol}{ft^3}$

4. Model układu w Simulinku

4.1. Cały model

Rysunek 2 - Cały model w Simulinku

4.2. Blok regulacji

Rysunek 3 - Blok regulacji

4.3. Blok transferu ciepła pochodzący od dostarczanej pary/wody wymiany ciepła

Rysunek 4 - Blok transferu ciepła od wody/pary

4.4. Blok C_A

Rysunek 5 - Blok CA

4.5. Blok C_B

Rysunek 6 - Blok C_B

4.6. Blok k₁

Rysunek 7 - Blok k₁

4.7. Blok k₂

Rysunek 8 - Blok k₂

5. Wykresy i wnioski

5.1. Dla warunków początkowych z wykładu

Rysunek 9 - Zmiana temperatury w czasie

Rysunek 10 – Wydłużenie poprzedniego wykresu: Zmiana temperatury w czasie do 10 000 minut

Rysunek 11 - Zmiana składu mieszaniny w czasie

Powyższe wykresy prezentują przemianę substancji A w B i B w C, która zachodzi nawet w temperaturze otoczenia (80 F). Największą ilość składnika B w mieszaninie otrzymaliśmy około 0,8 po czasie 4 000 minut. Na pierwszym wykresie możemy zauważyć wzrost temperatury mieszaniny powyżej temperatury otoczenia, a następnie jej spadek poniżej temperatury płaszcza. Jest to spowodowane tym, że najpierw zachodziła przemiana A w B, która jest przemianą egzotermiczną, czyli było wydzielane ciepło do reaktora. A później głównie przemiana B w C, która jest przemianą endotermiczną, czyli było pobierane ciepło z reaktora. Na wykresie 3 możemy zauważyć powrót temperatury mieszaniny do temperatury otoczenie po około 60 000 minut świadczy to o tym, że nie zachodziły już lub zachodziło bardzo mało reakcji. Analizując drugi wykres możemy zauważyć, że ilość przemian jednego składnika w drugi jest proporcjonalna do zawartości pierwszego składnika w mieszaninie, dlatego na początku szybko spada zawartość składnika A i szybko wzrasta zawartość składnika B, a później spowalnia się ten proces wraz z zmniejszeniem się składnika A. W tym samym momencie zaczyna rosnąć szybkość pojawiania się składnika C przez zwiększenie się ilości składnika B, a następnie po osiągnięciu maksymalnej ilości składnika B zauważamy także zmniejszanie się szybkości pojawiania się składnika C.

5.2. Początkowe nagrzanie i chłodzenie po 20 minutach

Rysunek 12 - Zmiana temperatury w czasie

Rysunek 13 - Zbliżenie poprzedniego wykresu: Zmiana temperatury w czasie od 0 do 500 minut

Rysunek 14 - Zmiana składu mieszaniny w czasie

Możemy zauważyć, że przy początkowym nagrzaniu do temperatury 212 F i szybkim chłodzeniu po 20 minutach do temperatury otoczenia 80 F maksymalna zawartość składnika B praktycznie się nie zmieniła. Jedynie za pomocą początkowego nagrzania otrzymaliśmy szybciej o 500 minut maksymalną zawartość składnika B niż w przypadku 5.1. Jest to spowodowane tym, że w wyższej temperaturze reakcje szybciej zachodziły.

5.3. Początkowe nagrzanie i chłodzenie po 40 minutach

Rysunek 15 - Zmiana temperatury w czasie

Rysunek 16 - Zmiana składu mieszaniny w czasie

ysunek 17 - Wydłużenie poprzedniego wykresu: Zmiana składu mieszaniny w czasie do 10 000 minut

Możemy zauważyć, że przy początkowym nagrzaniu do temperatury 212 F i szybkim chłodzeniu po 40 minutach do temperatury otoczenia 80 F, możemy zauważyć, że maksymalna zawartość składnika B wyniosła ok. 0,6. Natomiast wartość tą uzyskaliśmy już po 2 000 minut. W przeciwieństwie do podpunktu 5.2. zauważamy wzrost temperatury mieszaniny powyżej temperatury pary. Jest to spowodowane długim grzaniem, które spowodowało dużą ilość przemian A w B co skutkowało dużą ilością wydzielonej energii cieplnej, a co za tym niekontrolowany wzrost temperatury.

5.4. Początkowe nagrzanie i liniowe chłodzenie po 20 minutach

Rysunek 18 - Zmiana temperatury w czasie

Rysunek 19 - Zmiana składu mieszaniny w czasie

Na powyższych wykresach możemy zauważyć, że początkowe i powolne chłodzenie jest nieefektywne pod względem maksymalnej zawartości składnika B, ponieważ przez szybki wzrost zawartości składnika B następuje dużo przemian składnika B w C i przez to otrzymujemy małą maksymalną zawartość składnika B. Za pomocą tej metody otrzymaliśmy zawartość składnika B ok. 0,55 po jedynie 50 minutach. Dzięki schłodzeniu a nieutrzymywaniu 212 F nie następuje szybki spadek zawartości składnika B po otrzymaniu jego maksymalnej wartości.

5.5. Utrzymywanie temperatury 0 F

Rysunek 20 - Zmiana temperatury w czasie

Rysunek 21 - Zmiana składu mieszaniny w czasie

Za pomocą utrzymywania temperatury 0 F możemy osiągnąć dużą maksymalną zawartość składnika B. Jest to spowodowane tym, że przemiana B w C zachodzi bardzo powoli w niskiej temperaturze, a co za tym idzie nie tracimy dużo składnika B podczas fazy wzrostowej jego zawartości. Wadą tej metody bardzo długi czas.

6. Nasz cel: uzyskać składnik B powyżej 0,75 w jak najkrótszym czasie

Rysunek 22 - Zmiana temperatury w czasie

Rysunek 23 - Zmiana składu mieszaniny w czasie

Jak widać na powyższych wykresach udało nam się otrzymać ilość składnika B powyżej 0,75 po około 1 000 minutach.

7. Wnioski końcowe

- Zauważamy, że tempo przemiany A w B i B w C są proporcjonalne do temperatury. Czym wyższa temperatura tym szybciej te przemiany zachodzą. Dzięki tej zależności jesteśmy w stanie sterować procesem.
- Tempo przemiany jest także proporcjonalne do ilości składnika, które ulega rozpadowi.
 Czym więcej danego składnika w mieszaninie tym jego procentowa zawartość szybciej spada a innego szybciej wzrasta.
- Na wykresach zawartych w projekcie możemy wywnioskować, że przemiana A w B jest egzotermiczna, co dobrze obrazuje Rysunek 10, natomiast przemiana B w C jest endotermiczna, co również możemy zauważyć w łatwy sposób na tym samym wykresie.
- Przez to, że przemiana A w B jest egzotermiczna to, gdy podgrzejemy zbyt bardzo reaktor przemiana A w B zacznie zachodzić bardzo szybko co będzie skutkowało niekontrolowanym wzrostem temperatury reaktora i jeszcze szybszą przemianą A w B.
- Możemy zauważyć, że niemożliwością jest otrzymanie dużej ilości składnika B w bardzo krótkim czasie. Przykładowo przy utrzymaniu niskiej temperatury równej 0 F otrzymaliśmy zawartość składnika B ok. 0,9, ale dopiero po 50 000 minut, czyli 35 dniach. A na przykład zawartość 0,5 możemy otrzymać już po 50 minutach za pomocą początkowego nagrzania do 212 F i liniowemu chłodzeniu po 20 minutach do temperatury 50 F.
- W celu spowolnienia reakcji należy znacząco obniżyć temperaturę pary, co w konsekwencji wpłynie na spadek temperatury mieszaniny.
- Gdy postawiliśmy sobie za cel otrzymanie zawartości składnika B powyżej 0,75 w jak najkrótszym czasie udało nam się ten warunek spełnić po około 1 000 minutach, dzięki utrzymywaniu temperatury początkowej 120 F i nagłemu spadkowi do temperatury otoczenia.
- Możemy zauważyć, że chociaż minimalny wzrost maksymalnej zawartości składnika B powyżej 0,6 w mieszaninie wymaga znacznego wydłużenia czasu całego procesu.

8. Wygląd okna

Rysunek 24 - Wygląd okna użytkownika