1. Réaliser le circuit suivant :

- a. Que pouvez-vous dire de l'éclat de l'ampoule ?
- b. Réalisez les mesures suivantes :

U _{AB}	U _{CD}	U _{EF}	i

- c. En supposant que la résistance d'une ligne à haute tension est de $0,1~\Omega/km$, quelle est la longueur de la ligne simulée par notre montage (on supposera qu'une ligne est purement résistive)?
- d. Calculer la puissance P_f fournie par le générateur, la puissance P_J dissipée dans la ligne et la puissance P_r reçue par l'ampoule.

$$P_f =$$

$$P_J =$$

$$P_r =$$

e. Vérifier qu'on a bien $P_J=Ri^2$

2. Réaliser le circuit suivant :

- a. Que pouvez-vous dire de l'éclat de l'ampoule?
- b. Réalisez les mesures suivantes :

U _{AB}	U _{CD}	U _{EF}	U _{GC}	U _{HD}	i ₁	i ₂	i ₃

c. Calculer la puissance P_f fournie par le générateur, la puissance P_J dissipée dans la ligne, la puissance P_r reçue par l'ampoule et la puissance P_s en sortie du transformateur élévateur de tension.

$$P_f =$$

$$P_J =$$

$$P_r =$$

$$P_s =$$

d. Que vaut le rendement du transformateur élévateur de tension ?

Quel est l'intérêt des transformateurs pour le transport de l'électricité?