Vehicle Routing Problem

Efficiently optimizing the path to deliver goods

João Marinho Rodrigo Tuna Constraint Logic Programming M.EIC - FEUP

Problem Recap (VRP)

- The VRP is a classical optimization problem, problem that seeks to find the optimal set of routes for a fleet of vehicles to visit a set of locations (clients) minimizing the distance travelled.
- Introduced by Dantzig et al. in 1959 [1] as a generalization of the Travelling Salesman Problem.
- It is a NP hard problem and so several techniques can be used to solve it, optimization methods, heuristic methods.
- Several variants of the VRP exist 2 of which will be explored.

Figure 1 - Classical VRP [2]

Problem Recap (MDVRPTW)

The vehicles can depart from any of the depots.

Figure 2 - Example of MDVRP [3]

Each client i, is associated with an interval [a_i, b_i] (time window) that specifies that a vehicle should not arrive at i after b_i.

Figure 3 - Example of VRPTW[4]

Problem Definition

Vehicle Capacity

Vehicle Route Duration

Homogeneous Fleet

Time Windows

No Traffic Congestion

Optimal Solution

Cost = Σ route_cost; , $i \in list$ of vehicles

CP Model - Domain Variables

Add new depot set D' containing a copy of each depot for each vehicle in the depot.

Notation

 $Next_i \in D' \cup C, \ \forall i \in D' \cup C$

 $A_i \in [0,T]$

 $W_i \in [0,T]$

(2)

(3)

Explanation

- (1) Next node to visit
- (2) Arrival Time
- (3) Waiting Time (Only for TW)

CP Model - Constraints

Notation

$$Next_i \in \{i\} \cup C, \ \forall i \in D'$$
 (4)

$$AllDifferent(Next_i|i \in D' \cup C)$$
 (5)

$$A_{Next_i} = Time(i, Next_i), \ \forall i \in D'$$
 (6)

$$A_{Next_i} = A_i + W_i + ServTime(i) + Time(i, Next_i), \ \forall i \in C$$
 (7)

$$A_i + W_i \ge Open(i) \tag{8}$$

$$A_i \le Close(i) \tag{9}$$

Explanation

- (4) No inter-depot routing
- (5) Not visit node more than once
- (6) Define Arrival time for first node
- (7) Define Arrival time for next nodes
- (8,9) Time Window constraints

CP Model - Target

Minimize costs of all trips.

$$\sum_{i \in D' \cup C} Cost(i, Next_i)$$

Datasets

Datasets - Structure

- 1. type #vehicles #customers #depots
- vehicle_details (max duration & load)

#customers + #depots lines:

3. id x y service_time demand (+ discarded information)

Python Implementation

Dimensions

- Time (Our Cost)
 - Distance(i,j) / Speed + ServiceTime(i)
 - 0 to maxRouteTime
 - Slack time = maxRouteTime for Time Window problems
- Capacity
 - Demand(i)
 - 0 to MaxCapacity
 - No slack

Constraints

- Start and End Depots
- Add Time Window to each Client

Prolog Implementation

Variables

- Routes
 - MaterializedRoutes
- LeaveTimes
- TotalRouteTimes
 - TotalTime

Constraints

Depot, customer, demand, time window and total time

- subcircuit(R_i), $\forall i \in Routes$
- lex_chain(R_Set_i), ∀i ∈ Routes Per Depot
- Next_Start_Work #= max(Arrive_Time, Open_Time)
- Close_Time #>= Arrive_Time
- Next_Leave_Time #= Next_Start_Work + Service_Time
- sum(Materialized_Customer, #=, 1)
- scalar_product(Demands, Materialized_Route, #=<, Max_Demand)
- Total_Route_Time #=< Max_Route_Time

Or-Tools Experimental Setup

Parametres

- AUTOMATIC
- PATH_CHEAPEST_ARC
- PATH_MOST_CONSTRAINED_ARC
- BEST_INSERTION
- LOCAL_ChEAPEST_INSERTION

Time

- Timeout of 20 minutes
- Collect all solutions

Results - Or-Tools - Parameters

Results - Or-Tools - Size

Prolog Experimental Setup

Search Variation

Test all possible variations of variable ordering, value selection and ordering ...

Reduced Variations

Variable ord. - leftmost, ffc. Value select. - step, bisect. Value ord. - up, down.

Time Limits

30 seconds 1, 5, 10, 20 minutes

Obtain results

Run the solver for each problem with all 8 variations with time limits.

Results - Prolog

Results - Comparison

Solution*

Or-Tools solution is on average 2.64 times better than Prolog

Time*

Or-tools achieves the best solution 23703.70 times faster than Prolog

Conclusion

Bibliography

- [1] G. B. Dantzig, J. H. Ramser, (1959) The Truck Dispatching Problem. Management Science 6(1):80-91.
- [2] Gupta, Ashima & Saini, Sanjay. (2017). An Enhanced Ant Colony Optimization Algorithm for Vehicle Routing Problem with Time Windows. 267-274. 10.1109/ICoAC.2017.8441175.
- [3] Silva Junior, Orivalde & Lopes, Luiz & Bergmann, Ulf. (2011). A Free Geographic Information System as a Tool for Multi-Depot Vehicle Routing. Brazilian Journal of Operations & Production Management. 8. 103-120. 10.4322/bjopm.2011.006.
- [4] Feng, B., Wei, L. An improved multi-directional local search algorithm for vehicle routing problem with time windows and route balance. Appl Intell (2022).
- [5] http://neumann.hec.ca/chairedistributique/data