

Sunday, 07/19/20 Lesson Printable **§1**

Multiplying by Any Fraction of 100, 1000, etc. Problems §1.1

10.
$$.0625 \times .32 =$$

3.
$$138 \div 125 =$$

4. (*)
$$57381 \div 128 =$$

12. (*)
$$375.1 \times 83.33 \times 1.595 =$$

7. (*)
$$12.75 \times 28300 \div 102 =$$
 ______ 15. (*) $639 \times 375 \div 28 =$ _____

$$15 (*) 639 \times 375 \div 28 =$$

8.
$$375 \times 24.8 =$$

Number Crunchers Problems §1.2

1.
$$\sqrt{\frac{1/(18.2-11.8)}{(43.8)(17.6+75)^2}} =$$

5.
$$(161 - 132)^{0.304 - 0.142} =$$

2.
$$\sqrt[3]{4.65 - 1190/998} + 1/\sqrt{0.0205 + 0.0045} =$$
 6. $12.2^{1.2} =$

3.
$$\frac{26!+25!}{25!} =$$
 7. $(\text{deg}) \frac{\sin(30)-\cos(30)}{\cos 45} =$

7. (deg)
$$\frac{\sin(30) - \cos(30)}{\cos 45} =$$

4. (rad)
$$\frac{\sin(0.507) - \tan(0.507)}{\sin(0.507)}$$

8.
$$\sqrt[4]{\frac{1/3+2/3-4/5}{14.3-13.3+1}} =$$

§1.3 Solving Quadratics Problems

- 1. Find the roots of $3x^2 2x + 1$ using the Quadratic Formula.
- 2. Find the roots of $2x^2 4x 6$ using completing the square.
- 3. Distribute these polynomials:

(a)
$$(x-9)(x+3) =$$
______ (k) $(x-2)(x+5) =$ _____

(b)
$$(x-8)(x+1) =$$
_____(1) $(x-8)(x+9) =$ _____

(c)
$$(x-3)(x+5) =$$
 (m) $(x-7)(x+10) =$

(d)
$$(x-6)(x+8) =$$
 (n) $(x-4)(x+8) =$

(e)
$$(x-8)(x+1) =$$
 (o) $(x-10)(x+9) =$

(f)
$$(x-3)(x+1) =$$
 (p) $(x-7)(x+9) =$

(g)
$$(x-3)(x+6) =$$
 (q) $(x-9)(x+4) =$

(h)
$$(x-5)(x+3) =$$
 (r) $(x-1)(x+5) =$

(i)
$$(x-5)(x+4) =$$
_____ (s) $(x-8)(x+1) =$ _____

(j)
$$(x-6)(x+9) =$$
 (t) $(x-8)(x+5) =$

4. Factor these polynomials:

(a)
$$x^2 - 3x - 4 =$$
 _____ (k) $x^2 + x - 10 =$

(b)
$$x^2 + x - 12 =$$
 (l) $x^2 + x - 24 =$

(c)
$$x^2 - x - 72 =$$
 _____ (m) $x^2 + x - 10 =$

(d)
$$x^2 - x - 90 =$$
_____ (n) $x^2 - 9x - 10 =$ _____

(e)
$$x^2 - 2x - 8 =$$
 _____ (o) $x^2 + x - 30 =$ ____

(f)
$$x^2 + x - 27 =$$
______ (p) $x^2 - x - 72 =$ _____

(g)
$$x^2 + x - 12 =$$
______ (q) $x^2 - x - 56 =$ _____

(h)
$$x^2 + x - 63 =$$
_____ (r) $x^2 - 6x - 16 =$ ____

(i)
$$x^2 + x - 3 =$$
 _____ (s) $x^2 + x - 15 =$ _____

(j)
$$x^2 - 9x - 10 =$$
 (t) $x^2 - x - 56 =$

Remark 1. The last two problems are different from the ones in the notes, to give you more practice! Good luck, and do as many as you can!