So many different kinds of instruments had hitherto to be used when making electrical measurements of the intensity and electromotive force of a battery, or when finding the resistance of a conductor of either high or low resistance, that it was considered desirable to construct an instrument combining in itself the arrangements necessary for all these operations, so as to afford every facility to the telegraph engineer for making his usual experiments. With this view the Siemens' Universal Galvanometer was constructed, and it serves for the following purposes ; minimo slipe seas for south out to sue

- 1. For measuring electrical resistances;
- 2. For comparing electromotive forces;
 - 3. For measuring the intensity of a current, a I stall q & and bulk

For measuring electrical resistances the instrument is arranged as a Wheatstone's bridge; for the comparison of electromotive forces, Professor E. du Bois-Reymond's modification of Poggendorff's compensation method is used; and to measure the intensity of a curren the instrument is simply used as a sine galvanometer.

The instrument consists of a sensitive galvanometer, which can be turned in a horizontal plane, combined with a resistance bridge (the wire of which bridge instead of being straight is stretched round part of a circle). The galvanometer has an astatic needle, suspended by a cocoon fibre, and a flat bobbin frame, wound with fine wire. The needle swings above a cardboard dial divided in degrees; as, however, when using the instrument the deflection of the needle is never read off, but the needle instead always brought to zero, two ivory limiting pins are placed at about 20 degrees on each side of zero.

The galvanometer is fixed on a graduated slate disc, round which the platinum wire is stretched. Underneath the slate disc three resistance coils of the value of 10, 100 and 1000 Siemens' Units are wound on a hollow wooden block, which protrudes at one side, and on the projection carries the terminals for the reception of the leading wires from the battery and unknown resistance. The adoption of three different resistance coils enables the measuring of large as well as small resistances with sufficient accuracy.

The whole instrument is mounted on a wooden disc, which is supported by three levelling screws, so that it may be turned round its axle. On the same axle a lever is placed which bears at its end an upright arm, carrying a contact roller. This roller is pressed against the platinum wire round the edge of the slate disc by means of a spring acting on the upright arm, and forms the junction between the A and B resistances of a Wheatstone's bridge, which resistances are formed by the platinum wire on either side of the contact roller, one of the three resistance coils forming the third resistance of the bridge.

In the accompanying drawings, fig. 1, Plate I. shows an elevation, and fig. 2, Plate I. a plan of the instrument. G is the galvanometer, k a milled head from which the needles are suspended, and by turning k they can be raised or lowered, m is the head of a screw which arrests or frees the needle when in motion. h_1 , h_2 , h_3 , h_4 , are the terminals of the respective ends of the three resistance coils, viz. 10, 100 and 1000 units which are wound on the wooden block C; these terminals may be connected to each other by means of stoppers, and therefore one or more of the resistances may be brought into circuit as desired, and to the ends of these terminals the wires of the artificial resistances are connected as shown on diagrams Plate II. figs. 1, 2, 3a and 3b; f is the graduated slate disc, round which the platinum wire is stretched in a slight groove at the edge of the disc, and is inserted in such manner that about half its diameter protrudes beyond the slate. The ends of the platinum wire are

soldered to two brass terminals l and l', which are placed at the angles formed by the sides of the gap in the slate disc, and which form the functures, as in the ordinary resistance bridge, between A, n, and the galvanometer on one side, and B, X, and the galvanometer on the other side, of the parallelogram. The terminal l is permanently connected by a thick copper wire or metal strip, to terminal k_1 , and the other terminal l' is connected in a similar manner to terminal III.

Slate is adopted for the material of which to make the disc f_i because it is found by experience to be the material which is the least sensitive to variations in the weather or temperature.

The slate disc is graduated on its upper edge through an arc of 300 degrees, zero being in the centre, and the graduations figured up to 150 on each side at the terminals l and l of the bridge wire, l and l of the bridge wire l and l of the bridge l and l and l of the bridge l and l

In the centre of the circular Plate E of polished wood, supported upon three levelling screws b b b, a metal boss is inserted, in which turns the vertical pin a which carries the instrument. This pin, being well fitted to the boss, supports the instrument firmly, but at the same time allows it to be turned freely round its vertical axis without losing its horizontal position when once obtained.

On the arm D D, which turns on the pin a, and somewhat behind the handle g, there is a small upright brass arm d turning between two screw points r, and carrying in a gap at its upper end a small platinum jockey pulley e turning on a vertical axis. This pulley forms the moveable contact point along the bridge wire, against which it is kept firmly pressed by means of a spring acting on the arm d. The arm D D, which is insulated from the other parts of the apparatus, is permanently connected with the terminal L. On the top of d a pointer Z or a vernier, is fixed, which laps over the upper edge of the slate disc and points to the graduations.

To the pin a is attached a circular disc of polished wood C_i about one inclithick, and having a groove turned in its edge for the reception of the insulated wires composing the resistances. The disc C has a projection c, which carries the five insulated terminals marked I, II, IV, V, as shown on figs 1 and 2, Plate L Terminals III and IV

can be connected by a plug, II and V by the contact key K. Terminal I is in connection with the lever D D.

Figs. 3 and 4, Plate I, show the shunt box supplied with the galvanometer if specially desired; the copper connecting arms a, a are screwed to the terminals II and IV. By inserting a plug at e (fig. 4, Plate I) the galvanometer is put out of circuit altogether, whilst by plugging either of the other holes shunts of the value of b, b, a plug are introduced into the circuit, and the effect upon the galvanometer is reduced to 10, 100, 1000, respectively of what it would have been without the insertion of the shunt.

Figs. 5 and 6, Plate I, show a battery commutator allowing to bring into the circuit four different amounts of battery power. It is placed in the battery circuit whenever consecutive tests with different batteries are desired to be made, it being only necessary to change the place of the stopper in the battery commutator, the terminal very even at the battery commutator being connected to terminal V of the galvanometer, and the serews b, b, b, b to various sections of the battery; see diagram of connections, fig. 4, Plate II.

The application of the Universal Galvanometer will be clear from the diagrams on Plate II.; instructions, however, for its practical use are added further on, and also tables for use when measuring conducting resistances.

ducting resistances.

As will be seen from diagram, fig. 1, Plate II. the proportion between the unknown resistance X, and the artificial resistance n is, when the deflection is read off on the side of the slate disc marked A:

for the veolo
$$(\alpha - 150 + \alpha + 150) = n : X \log w$$
 with the veology $(\alpha - 150 + \alpha + 150) = n : X \log w$ which it where $(\alpha - 150 + \alpha + 150) = n : X \log w$ and $(\alpha - 150 + \alpha + 150) = n : X \log w$.

but if read off on the B side of the disc-, y houdant it is at a se

$$X$$
 $= \frac{1}{2} \frac{1}{2$

The values of these two fractions, for every half degree, will be found in the columns headed A and B of the accompanying table.

III, IV, V, as all vn red 2 thou a Termin . III and IV

TABLE. GAT

Arc	Α 150 + α	Β 150 4- α	Arc	A 150 + ×	B 150 - α	Are.	Α 150 + α	B - 150 — a
+ 2011	150 — α	150 + α	« ·	150 ÷ α	150: + α	- a	150 z	150 + 0
	0 -	2	- 0	1	-			1- 1
145	59:00	0.017	124.5	10.76	0.093	104	5.52	0.182
144.5	53.54	0.019	124	10.54	0.095	103.5	5.45	0.183
1440	49:00	0.020	123.5	10.32	0.097	103	5:38	0.186
143.5	45.15	0.022	123	10.11	0.099	102:5	5.31	0.188
1430	41.86	0.024	122.5	9.91	0.101	102	5.25	0.190
142.5	39:00	0.026	122	9.72	0.103	101.5	5:18	0.193
142.0	36.50	0.028	121.5	9.53	0.105	101	5.12	0.195
141.5	34.29	0.029	121	9.35	0.107	100.5	5:06	0.198
141:	32.33	0.031	120.5	9.17	0.109	1000	5:00	0.200
140.5	30:58	0.033	120	89.00	0.111	99.5	4.94	0.202
140-0	29.00	0.035	119.5	18:84	0.113	8990	4.88	0.205
139.5	27.57	0.036	119		0.115	898.5	4:82	0.207
139	26:27	0.038	118.5	8:52	0.117	698-0	4:77	0.209
138.5	25.09	0.040	118	88:37	0.119	97.5	4:71	0.212
138	24:00	0.042	117.5	18:23	0.113	97 0	4.66	0.212
137.5	23.00	0.044	117.5	8.09	0.121	796.5	4.61	0.213
137 0	22:08	0.044	116.5	7:96	0.126	(96.0	4.55	0.220
136.5	21:22	0.045			0.126		4.50	0.220
136-0	20.48	0.047	116	7:82		95.5	84:45	0.222
135.5	19.69		115.5	67:69	0.130	8950	74:40	0.224
		0.051	115.0	07:57	0.132	094.5		
135	19.00	0.052	114.5	87.45	0.134	294.0	14:36	0.230
134.5	18:35	0.054	114.0	77:33	0.186	398.5	34:31	0.232
134-0	17:75	0.056	113.5	17:22	0.139	1893.0	14.26	0.235
133.5	17.18	0.058	113.0	7:11	0.141	192.5	04:22	0.237
133.0	16:65	0.060	112.5	7:00	0.143	9.2-()	\$4:17	0.240
132.5	16:14	0.062	112	6.89	0.145	791.5	74.18	0.242
132.0	15.67	0.064	111.5	6.79	0 147	091.0	84.08	0.245
131.5	15.22	0.066	111.0	6.69	0.150	190-5	4.04	0.247
1310	14:79	0.068	110.5	6:59	0.152	790 0	4.00	0.250
130.5	14.38	0.070	110.0	6.50	0.154	89.5	3.96	0.253
130.0	14:00	0.071	109.5	16.41	0.156	889 0	03:92	0.255
129.5	13.63	0.07.3	1.09.	6.32	0.158	88.5	3:88	0.258
129	13.28	0.075	108.5	6.23	0.160	(88,-0)	33.84	0.260
128.5	12.95	0.077	108-0	86.14	0.163	87.5	13.80	0.263
128 ()	12.64	0.079	107:5	6.06	0.165	87:-0	3.76	0:266
127.5	12.33	0.081	107:0	3:97	0:168	(86.5)	13.72	0.269
127:0	12:04	0.083	106.5	75:89	0.170	986:∙0	3.69	0.271
126.5	11.76	0.085	106	5:82	0.172	(85:5)	3.65	0.274
126.0	11.50	0:087	105.5	5:74	0.174	85:0	3:62	0.276
125.5	11.24	0.089	105	5:67	0:176	84.5	3:58	0.279
125	11.00	0.091	104.5	5.59	0.179	V84 0	3.54	0.282

TABLE—continued.

						_		
- Arc.	Α 150 + α	B 150 — α	Arc.	A 150 + a	B 150 - α	Arc.	A 150 + «	Β 150 — α
æ	150 — a	150 + α	-i a	150 — α	150 + a	æ.	150 - 2	150 + a
				-		Charles and Company	-	-
83.5	3.51	0.285	6 63:)	2.448	0.408	742.5	1.790	0.558
8830	3.48	0.288	62.5	2.428	0.412	42	1.777	
82.5	3.44	0.290	62	2.409	0.415	41.5	1.765	0.567
82	8.41	0:293	61.5	2:389	0.418	2410	1.752	0.571
81.5	3.38	0.296	161	2.370	0.422	40.5	1.739	0.575
81	3:35	0.299	60.5	2:352	0.425	240	1.727	0.579
80.5	3:31	0.302	60	2.333	0.429	39.5	1.714	0.283
8800	3.28	0.304	59.5	2.315	0.432	39	1.702	0.587
079.5	3.25	0.307	059 €	2.296	0.435	38.5	1.690	9.592
\$790	3.22	0.310	58.5	2.278	0.439	(38)	1.679	0.596
78.5	3.19	0.318	8580	2.261	0.442	37.5	1.667	0.600
778	3.17	0.316	57.5	2.243	0.446	37	1.655	0.604
077.5	3.14	0.319	1570	2.226	0.449	86.5	1.643	0.609
277	3.11	0.322	656.5	2.208	0.453	36	1.631	0.613
676.5	3.08	0.325	1560	2.191	0.456	35.5	1.620	0.617
776	3.05	0.327	55.5	2.174	0.460	350	1.608	0.622
75.5	3.03	0.330	1550	2.158	0.463	84.5	1.597	0.626
275.0	3.00	0.333	54.5	2.141	0.467	134 0	1.586	0.630
174.5	2.973	0.336	0540	2.125	0.471	133.5	1.575	0.635
774:0	2.947	0.339	453.5	2.109	0.474	133	1.564	0.639
073.5	2.921	0.342	1530	2.093	0.478	832.5	1.553	0.644
973.0	2.896	0.345	52.5	2.077	0.481	32 0	1.542	0.648
672.5	2.871	0.848	52	2.061	0.485	31.5	1.531	0.653
772 9	2.846	0.351	151.5	2.045	0.489	831 0	1.521	0.657
071.5	2.822	0.354	851°	2.030	0.492	30.5	1.510	0.662
271	2.797	0.357	50.5	2.015	0.496	230	1.500	0.667
70.5	2.773	0.360	750 0	2.000	0.500	29.5	1.489	0.671
770.0	2.750	0.364	049.5	1.985	0.504	329.0	1.479	0.676
69.5	2.726	0.367	949.0	1.970	0.508	28.5	1.469	0.681
169.0	2.703	0.370	148.5	1.955	0.511	(28.0)	1.459	0.685
68.5	2.680	0.373	48	1.941	0.515	27.5	1.449	0.690
68 0	2.658	0.376	47.5	1.926	0.519	27 ()	1.439	0.695
67.5	2.636	0.379	: 047.0	1.913	0.523	26.5	1.429	0.700
67: 9	2.614	0.382	46.5	1.898	0.527	726 0	1.419	0.705
66.5	2.592	0.386	(46.0)	1.884	0.531	25.5	1.409	0.709
66.0	2.571	0.389	45.5	1.870	0.535	25.0		0.714
65.5	2.550	0.392	(45.0	1.857	0.538	24.5	1.390	0.719
65 0		0.395	944.5	1.843	0.542	24.0	1.380	0.724
64.5	2.509	0.398	144'0	1.830	0.546	23.5		0.729
64 0		0.402	43.5	1.816	0.550	(23:0)	1.362	0.734
63.5	2.468	0.405	43.0	1.803	0.554	122.5	1352	0.739
		0 200	70	1.000	0.994	122'9	1.992	0.199

			_			1	100	
400 00 Arc.	150 + α	ο B 150 — α	Arc, 1		B a [Arc.	150 + α	Β 150 — α
nncete	150 - a	150 + @	BC J III	150 — α Lisg on	150 + a	og ow) s	150 - «	150 + a
22	1·343 1·334	0.744	14·5	1·214 1·206	0.823 0.829	. 7	1.097	0.911
21 20.5	1.325 1.316	0.754 0.760	13·5 13	1·198 1·189	0.835 0.841	5.5	1:083 1:076	0.923
20 19.5 19	1·307 1·298 1·290	0.765 0.770 0.775	12·5 12·5 11·5	1·181 1·173 1·166	0.847 0.852 0.858	4.5	1.068 1.061 1.054	0.935 0.942 0.948
18.5	1.281 1.272	0.780 0.786	11 10:5	1·158 1·150	0.863 0.869	1 6 3 5 10113 111	1.047 1.040	0.954 0.960
17·5 17 16·5	1.264 1.255 1.247	0.791 0.796 0.802	9.5	1·143 1·135 1·127	0.875 0.881 0.887	10 2·5	1.027	0.967 0.974 0.980
16 15:5	1·238 1·230	0·807 0·813	8.5	1·120 1·112	0.893	1 0.5	1:013 1:006	0.987 0.993
15 senle	1.222 etal of	0.818 To all	7·5	1.105	0.905	liofw'	e taken	bul Bine

Instructions for the use of Siemens "Universal Galvanometer."

ole Firstly. For finding an unknown resistance X, see figs. I and

- (a) The needle i is to be brought to the zero point of the small cardboard scale by turning the galvanometer G round its vertical axis, taking care that the needle moves with perfect freedom; 1, 051
- (b) The pointer or vernier Z is to be brought, by means of the handle g, to the zero point of the large scale on the
- 20. If you have the terminal market with the terminal market the terminal market with the termin
- (d) The holes 10, 100 and 1000 are, two of them, to be plugged and one left open according to the extent of the

unknown resistance to be measured; either 10 or 100 must be left open if the resistance is small, and 1000 if it is large;

- (e) The two ends of the unknown resistance are to be connected to terminals II and IV;
- (f) The two poles of some galvanic battery are to be connected to terminals I and V;

When the above-mentioned connections have been made, and on depressing the key K, the battery-current is sent into the combination and deflects the needle, say, to the right hand or B side of the instrument, the pointer or vernier Z must then be pushed, by means of the handle g, to the B side of the instrument. If this is found to increase the deflection of the needle i, the pointer Z should be pushed to the other or A side of the instrument beyond the zero point of the large scale until the needle remains stationary when the key K is depressed:

The number indicated by the vernier Z should be read off carefully, and notice taken whether it is on the A or B side of the large scale. This number must then be referred to the accompanying Table, when the figure opposite to the number, multiplied by the resistance unplugged, is the resistance of X. The value of the resistance to be determined will be thus found by a single operation.

In Supposing the reading to be 50° on the A side of the large scale, the resistance n unplugged having been 100 units, we get according to the before-mentioned law of resistance-bridge the following proportion (see fig. 5, Plate II.):

von elleen a
$$X:100 = 150 + 50:150 - 50$$
 may $X = \frac{150 + 50}{150 - 50}:100$ and find the state of different at $X = \frac{150 + 50}{150 - 50}:$ to the state of $X = 200$ runits, the state of the state of $X = 200$ runits.

For measuring very small resistances a single cell will be found sufficient; but for large resistances more should be used, say, 15 to 20. If very accurate measurements of small resistances are to be taken, the screw at the end of the moving arm DD should receive one batterywire, terminal V receiving the other.

Secondly. For comparing two electromotive forces E_1 and E_2 , a third electromotor of higher electromotive force E_0 is used, and two separate tests taken. (See figs. 2 and 6, Plate II.)

The manipulations (a) and (b) are to be the same as before

- (c) The hole between III and IV to be left unplugged.
- (d) Plugs to be inserted in 10, 100 and 1000.
- (e) The two poles of the electromotor of an electromotive force E_0 are to be connected to the terminals III and V.
- (f) The poles of the battery whose electromotive force E₁ is to be compared are connected to terminals I and IV in such a manner that the similar poles of the two electromotors are joined to terminals I and III and to IV and V respectively.

box, and with the battery commute

When depressing the key K the galvanometer needle will be deflected and can be brought back to zero by turning the pointer Z either to the right or the left. Should for instance the pointer have to be brought to 30° on the A side we have the following equation—

$$E_1 = E_0 \frac{150 - 30}{300 + n} \dots \dots (1),$$

where n is the resistance of the battery E_0 .

The electromotor E_2 is now to be inserted in the place of E_1 , and the galvanometor needle, when it deflects, again brought back to zero by moving the pointer Z. If for instance the pointer has to be pushed to 40° on the B side to obtain equilibrium we have—

$$E_2 = E_0 \frac{150 + 40}{300 + n} \cdot \dots (2).$$

By eliminating n from equations 1 and 2 we have

$$E_1: E_2 = (150-30): (150+40) = 12: 19....(3).$$

The two electromotive forces are in the same proportion as the two observed distances of the pointer Z from 150° on the A side of the instrument.

THIRDLY. As a sine galvanometer, a m s To T. Juliona A. Louis and T. Company of the company of t

The manipulations a, b, c and d, same as in the second case.

- (e) Connect one pole of a battery to terminal II. and put the other pole to earth.
 - (f) Connect the line to terminal IV. wid lod odT a)

The galvanometer is then to be turned in the same direction as the needle is deflected until the needle coincides with the zero point. Whilst this is being done the large scale on the slate disc will move under the pointer Z, which must be left stationary; the sine of the angle indicated by Z will thus give the value proportionate to the strength of the current. Should the shunt box be required, it has to be connected with terminals II, and IV.

Fig. 4 shows the same connections as fig. 7, but without the shuntbox, and with the battery commutator. Fig. 3^a shows diagram of the same connections but with the key K_J and fig. 3^b the same without the key singular diagram and advantage for the coffel of the coffee of the coffel of the coffel of the coffee of the coffel of the coffee of the co

cities to be right on the de. Should for in tance the pointer hard to be byught to 30? on the A side we have the following equation.

where n is the resistance of t . Buttery E_0

The electromotor E, is now to be insected in the place of Rep 1 the gaveanom or ne dle, when it deflects, again brought lack to zero by moving the pointer Z. If for instance the pointer has to be

pushed to 40° on the B side to obtain equilibrium we have-

$$E_g = E, \frac{150 + 40}{3(0 + n)} \dots \dots (2).$$

Ly liminating n from _ junti us.1 and 2 we have $E_1\colon E_2=(150-3):(150+40)=12:19....(3).$

The two electrom i.e.f. rocs are in the same p_1 partial as the two observed distance of the pointer Z from 1.0 on the Δ side of the

