Universidade do Minho

12 de dezembro de 2018

2º Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2h15min

Este teste é constituído por 5 questões. Todas as respostas devem ser devidamente justificadas.

- 1. Seja $h: \mathbb{N}_0^3 \to \mathbb{N}_0$ a função obtida por recursão primitiva das funções $f: (x,y) \mapsto xy$ e $g:(x, y, z, w) \mapsto x^2 + w + 3.$
 - \nearrow Identifique a função h.
 - Mostre que h é uma função recursiva primitiva.
 - \mathbf{c}) Determine a função M_e de minimização da função

$$e(x,y) = monus(x,y+1) = \begin{cases} x-y-1 & \text{se } x > y+1 \\ 0 & \text{se } x \le y+1 \end{cases}$$

- \nearrow Mostre, sem construir uma máquina de Turing, que M_e é uma função computável.
- **2**. Seja $A:\mathbb{N}_0^2\to\mathbb{N}_0$ a função de Ackermann que, recorde, é definida por:
- i) A(0,y) = y + 1; ii) A(x+1,0) = A(x,1); iii) A(x+1,y+1) = A(x,A(x+1,y)).
- Sabendo que A(2,1) = 5, determine A(2,2).
- **b** Prove que A(x,y) > y para quaisquer $x,y \in \mathbb{N}_0$.
- Sem solução |Sugestão: use indução sobre x e, no passo indutivo, depois de assumir a hipótese de $indução \ A(x,y) > y$, prove que A(x+1,y) > y por $indução \ sobre \ y$.
- 3. Mostre que a função $f(n) = \frac{n^4 + 3n^2 + 100}{n^2 + 1}$ é de ordem $\mathcal{O}(n^3)$. Sem solução
 - 4. Seja $A = \{a, b\}$ e seja $\mathcal T$ a seguinte máquina de Turing sobre A com duas fitas,

$$(a,\Delta)/(a,a),(D,D)$$

$$(b,\Delta)/(a,\Delta),(D,C)$$

$$(\Delta,a)/(a,\Delta),(D,E)$$

$$(a,\Delta)/(a,\Delta),(E,C)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(D,D)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(C,E)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(E,C)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(C,C)$$

$$(\Delta,\Delta)/(\Delta,\Delta),(C,C)$$

- **a)** Indique a sequência de configurações que podem ser computadas a partir de $(0, \underline{\Delta}aabab, \underline{\Delta})$.
- b) Identifique a função $g: A^* \to A^*$ calculada por \mathcal{T} .
- C Determine a função $tc_{\mathcal{T}}$, de complexidade temporal da máquina \mathcal{T} .
- $\overline{\mathbf{d}}$ Mostre que a função g é computável em tempo polinomial.
- **5.** Seja $A = \{a, b\}$ e seja $L = \{w \in A^* : |w|_a = |w|_b\}$.
 - a) Sendo $L' = \{ w \in A^* : |w|_a = |w|_b + 1 \}$, mostre que $L \leq_p L'$.
 - b) Prove que, se K é uma linguagem tal que $K \leq_p L$, então $K \in P$.