Teoria współbieżności – sieci Petriego Sprawozdanie

Patryk Skupień

Zadanie 1:

Własna maszyna stanów:

Petri net state space analysis results

Bounded true
Safe true
Deadlock false

Osiągalne są znakowania: {1,0,0,0}, {0,1,0,0}, {0,0,1,0},{0,0,0,1}

Masymalna liczba znaczników wynosi 1. Oznacza to, że jest ograniczona, a dokładniej 1-ograniczona czyli bezpieczna.

Każde przejście jest przedstawione jako krawędź w grafie.

Wychodząc z dowolnego węzła grafu można wykonać dowolne przejście (przy odpowiedniej sekwencji przejść). Sieć jest zatem żywotna

Zakleszczenie nie jest możliwe w tej sieci.

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) + M(P3) = 1$$

Z niezmienników przejść możemy wywnioskować, że sieć jest odwracalna.

Z niezmienników miejsc można wywnioskować, że sieć jest zachowawcza oraz 1-ograniczona

Zadanie 2:

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

Sieć nie jest odwracalna.

Sieć jest żywotna, czyli możemy wywołać każde przejście z dowolnego stanu początkowego przy odpowiedniej sekwencji przejść.

Sieć nie jest ograniczona, ponieważ P3 może mieć nieskończoną liczbę znaczników.

Zadanie 3:

Petri net invariant analysis results

T-Invariants

то	T1	T2	Т3	T4	T5
1	0	1	0	1	0
0	1	0	1	0	1

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	P3	P4	P5	P6
0	0	1	1	0	0	1
0	1	0	1	1	0	0
1	1	0	0	0	1	0

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P2) + M(P3) + M(P6) = 1$$

 $M(P1) + M(P3) + M(P4) = 1$
 $M(P0) + M(P1) + M(P5) = 1$

Równania M(P2) + M(P3) + M(P6) = 1 oraz M(P0) + M(P1) + M(P5) = 1 symulują działanie procesów.

Równanie M(P1) + M(P3) + M(P4) = 1 pokazuje działanie ochrony sekcji krytycznej, czyli miejsca P1 i P3 nigdy nie będą miały w tym samym czasie tokenów.

Wyobrażeniem może być, że dwa niezależne procesy muszą odczytywać i nadpisywać tę samą zmienną odpowiednio w miejscach P1 i P3.

Zadanie 4:

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P1	P2	P3	P4	P5	P6	P7
1	1	1	0	0	0	0	0
0	0	0	1	1	1	0	0
0	0	0	0	0	0	1	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$
 $M(P6) + M(P7) = 3$

Sieć jest zachowawcza – suma znaczników pozostaje stała.

Równanie M(P6) + M(P7) = 3 mówi nam o rozmiarze bufora.

Zadanie 5:

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 1$$

 $M(P3) + M(P4) + M(P5) = 1$

Porównując równania niezmienników miejsc z poprzednim zadaniem – nie ma równania które ograniczałoby bufor. Bufor jest zatem niegraniczony. Równanie nie pokrywa miejsca P6, które jest naszym buforem.

Zadanie 6:

Znakowania, dla których występuje zakleszczenie – {0,0,1,1,0,0} oraz {0,1,0,0,1,0}.

Petri net state space analysis results

Bounded true Safe true Deadlock true

Shortest path to deadlock: T0 T4