Conformal equivalence between annuli

Tri Nguyen

March 13, 2024

Introduction First we give a definition for an annulus in complex plane:

Definition 1. An annulus in \mathbb{C} is the set

$$A(r,R) = \{ z \in \mathbb{C} : r < |z| < R \}$$

Given two annuli $A_1 = A(r_1, R_1)$ and $A_2 = A(r_2, R_2)$, one may ask under which conditions that two annuli are biholomorphic. It turns out that in a complex plane, the biholomorphic relation is defined using only the ratio r_1/r_2 and R_1/R_2 . This is shown in the following theorem

Theorem 1. A_1 is biholomorphic to A_2 if and only if $\frac{R_1}{r_1} = \frac{R_2}{r_2}$.

Proof. First suppose that $\frac{R_1}{R_2} = \frac{r_1}{r_2} = k$. Then clearly the linear map f(z) = kz is a biholomorphic map and $f(A_1) = A_2$. Thus A_1 is biholomorphic to A_2 . Conversely, assume that A_1 is biholomorphic to A_2 . By scaling if necessary, we could further assume that $r_1 = \frac{r_1}{r_2} = \frac{r_1}{r_2} = \frac{r_2}{r_2} = \frac{r_1}{r_2} = \frac{r_2}{r_2} = \frac{r_1}{r_2} = \frac{r_2}{r_2} = \frac{r_2}{r_$

 $r_2 = 1$. Thus now we need to show that $R_1 = R_2$. Fix some $1 < r < R_2$.