Lecture: Prof. Dr. Christian Fries, Exercises: Dr. Andrea Mazzon, Tutorium: Lorenzo Berti

Wintersemester 2022/23

Exercise 3

Let P(t,T) be the continuously compounded time-t price of a bond maturing at time T, and assume that it is a deterministic function of t and T: in other words

$$P(t,T) = e^{-\int_t^T r(u)du}$$

for some deterministic positive short rate function r(t).

(a) Prove, via discussion of arbitrage possibilities, that for $t \leq T \leq S$ it has to hold

$$P(t,S) = P(t,T)P(T,S).$$

(b) Define the continuously compounded forward rate prevailing at t of reset date T and maturing S as the unique solution to the equation

$$e^{f(t,T,S)(S-T)} := \frac{P(t,T)}{P(t,S)},$$

and the instantaneous forward rate as

$$f(t,T) = \lim_{S \to T} f(t,T,S).$$

Prove that

$$P(t,T) = \exp\left(-\int_{t}^{T} f(t,u)du\right)$$

and

$$r(t) = \lim_{T \to t} f(t, T).$$

(c) Establish in which of the points (a) and (b) the assumption of deterministic rates is necessary or can be relaxed to some class of stochastic short rates r(t).

Solution to exercise 3

- (a) Suppose that P(t, S) > P(t, T)P(T, S), for some times $t \le T \le S$. Then we can apply the following strategy:
 - at time t, we sell an S-bond and buy P(T,S) units of a T-bond: the total cost is

$$-P(t,S) + P(T,S)P(t,T) < 0,$$

by assumption.

• At time T, we receive P(T, S) euros from the T-bond we have bought in t, and buy an S-bond: the total cost is

$$-P(T,S) + P(T,S) = 0.$$

• At time S, we receive one euro (from the S-bond we have bought in T) and pay one euro (for the S-bond we have sold in t).

The strategy above gives us a net gain of

$$P(t,S) - P(T,S)P(t,T) > 0,$$

so it is an arbitrage.

If P(t,S) < P(t,T)P(T,S), the same profit can be made just changing the signs in the strategy. We have then seen that in order to avoid arbitrage opportunities, it has to hold

$$P(t,S) = P(t,T)P(T,S).$$

(b) Suppose again $t \leq T \leq S$.

The continuously compounded forward rate prevailing at t of reset date T and maturing S, called f(t, T, S), is defined as the unique solution to the equation

$$e^{f(t,T,S)(S-T)} := \frac{P(t,T)}{P(t,S)},$$
 (1)

and the instantaneous forward rate f(t,T) by

$$f(t,T) := \lim_{S \to T} f(t,T,S).$$

We want first to see that

$$P(t,T) = e^{-\int_t^T f(t,u)du}.$$

From (1) we get

$$f(t,T,S)(S-T) = \ln\left(\frac{P(t,T)}{P(t,S)}\right),$$

and so

$$f(t,T,S) = -\frac{\ln P(t,S) - \ln P(t,T)}{S - T}.$$

Hence

$$f(t,T) := \lim_{S \to T} f(t,T,S) = -\frac{\partial \ln P(t,T)}{\partial T}.$$
 (2)

Since at the same way we can show that

$$f(t, u) = -\frac{\partial \ln P(t, u)}{\partial u}$$

for every $u \geq t$, integrating we get

$$-\int_{t}^{T} f(t,u)du = \int_{t}^{T} \frac{\partial \ln P(t,u)}{\partial u} du = \ln P(t,T) - \ln P(t,t) = \ln P(t,T).$$

Then we have

$$P(t,T) = e^{-\int_t^T f(t,u)du}$$

We now want to see that

$$r(t) = \lim_{T \to t} f(t, T).$$

From

$$e^{-\int_t^T r(u)du} = P(t,T)$$

we get

$$-\int_{t}^{T} r(u)du = \ln P(t,T) = \ln P(t,T) - \ln P(t,t),$$

so that dividing both sides by T-t and taking the limit for $T\to t$ we get

$$-r(t) = \lim_{T \to t} \frac{\partial \ln P(t, T)}{\partial T} = -\lim_{T \to t} f(t, T),$$

where the last equality follows by equation (2).