Tutoriat 6 - Rezolvări Grupul de permutări

Savu Ioan Daniel, Tender Laura-Maria

- 9 decembrie 2020 -

Exercitiul 1

Fie permutarea $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 3 & 4 & 5 & 7 & 9 & 2 & 8 & 6 & 1 & 11 & 10 \end{pmatrix} \in S_{11}$

- 1. Descompuneți σ în produs de cicli dijuncți.
- 2. Descompuneți σ în produs de transpoziții.
- 3. Calculați $sgn(\sigma)$ și $ord(\sigma)$.
- 4. Există permutări de ordin 35 în S_{11}
- 5. Rezolvații ecuația $x^{2011} = \sigma$.

Rezolvare:

- 1. $\sigma = (1, 3, 5, 9)(2, 4, 7, 8, 6)(10, 11)$
- 2. având descompusă permutarea în cicli dec
scompunerea în transpoziții este $\sigma=(1,3)(3,5)(5,9)~(2,4)(4,7)(7,8)(8,6)~(10,11)$
- 3. Signatura unui produs de ciclii este produsul signaturiilor ciclilor. Un ciclu de lungime n are signatura $(-1)^{n-1}$. Deci $\operatorname{sgn}(\sigma) = (-1)^3 \cdot (-1)^4 \cdot (-1)^1 = 1$. Ordinul permutării este cel mai mic multiplu comun al lungimilor cicliilor în care acesta se descompune. $\operatorname{ord}(\sigma) = \operatorname{cmmmc}(4, 5, 2) = 20$.
- 4. Cum $35 = 7 \cdot 5$ rezultă că permutarea ar trebui să conțină cel puțin un ciclu de lungime 7 și un ciclu de lungime 5. Însă lungimea acestor cicli este 12 > 11 și deci prin urmare nu poate exista o permutare din S_{11} cu ordinul 35.
- 5. Trebuie să argumentăm de unde poate proveni fiecare ciclu din permutarea σ (spre exemplu 2 2-ciclu pot proveni dintr-un ciclu de lungime 4 ridicat la pătrat). Luând pe rând ciclii din σ , cel de lungime 5 poate proveni doar dintr-un ciclu de lungime 5, cel de lungime 4 în mod analog iar

cel de lungime 2 tot dintr-un ciclu de lungime 2. Ne rămâne să vedem ce ciclu de lungime 5 ridicat la 2011 da ciclul de lungime 5 din σ . Folosindu-ne de ordinul unui ciclu, găsim pe rând ciclii și deci x = (1,9,5,3)(2,4,7,8,6)(10,11)

Exercițiul 2

Fie $\sigma = (1324) \in S_4$.

- 1. Determinați soluțiile ecuației $x^2 = \sigma, x \in S_4$
- 2. Determinați soluțiile ecuației $x^3 = \sigma, x \in S_4$.
- 3. Aflați numărul de elemente din $H = \langle \sigma \rangle$ (subgrupul generat de σ în S_4 .
- 4. Aflați indicele lui H în S_4 .
- 5. Arătați că H nu e subgrup normal în S_4 .
- 6. Determinați cel mai mic subgrup normal al lui S_4 care-l conține pe H.

(Examen algebră, 31.01.2020, seria 13)

Rezolvare:

1. Pentru ca ecuația $x^2=\sigma, x\in S_4$ să aibă soluție, σ trebuie să fie o permutare pară.

Putem scrie σ astfel

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$$

 $\operatorname{ord}(\sigma)=2+3=5\Rightarrow\operatorname{sgn}(\sigma)=\text{-1},\;\sigma$ este impară deci ecuația nu are solutie.

2. Trebuie să știm că atunci când ridicăm o transpoziție la puterea a treia obținem aceeași transpoziție, când ridicăm un ciclu de lungime trei la puterea a treia obținem permutarea identică, iar când ridicăm un ciclu de lungime patru la puterea a treia obținem tot un ciclu de lungime patru. Astfel, soluția ecuației $x^3 = \sigma, x \in S_4$ poate fi doar un ciclu de patru. Fie permutarea

$$x = \left(\begin{smallmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{smallmatrix} \right)$$

$$x^2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\sigma = x^3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$$

- 3. σ este un ciclu de lungime patru, deci $\sigma^4 = e$. Astfel numărul de elemente din $H = <\sigma>$ este 4, $H = \{e, \sigma, (12)(34), (1423)\}$.
- 4. S_4 are 4!=24 elemente. Indicele lui H în S_4 , $[S_4:H]=\frac{\operatorname{ord}(S_4)}{\operatorname{ord}(H)}=6$.

5. Dacă H ar fi subgrup normal în S_4 , atunci $\forall x \in S_4, \forall y \in H \ xyx^{-1} \in H$. Fie x=(123)

$$x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$$

$$x^{-1} = (132)$$

$$x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$$

 $x\sigma x^{-1} = (123)(1324)(132) = (1342) \notin H \Rightarrow H$ nu e subgrup normal.

6. Vom demonsta la exercițiul următor că S_4 are următoarele subgrupuri normale $\{e\}, K, A_4, S_4$. Dintre acestea, cel mai mic subgrup care îl conține pe H este S_4 .

Exercitiul 3

Fie $K = \{e, (12)(34), (13)(24), (14)(23)\} \subseteq S_4$. Să se arate că:

- 1. K este subgrup normal în S_4 (deci și în A_4).
- 2. S_4/K este izomorf cu S_3 .
- 3. A_4 nu are subgrupuri de ordin 6.
- 4. Subgrupurile normale ale lui S_4 sunt $\{e\}, K, A_4, S_4$.

Referință: Cornel Băețică, Crina Boboc, Sorin Dăscălescu, Gabriel Mincu, "Probleme de algebră", capitolul 3, exercițiul 66

Rezolvare:

- 1. Fie $\sigma \in S_4$. Dacă K este subgrup normal în S_4 , atunci $\sigma x \sigma^{-1} \in K$, $x \in S_4$. $\sigma(12)(34)\sigma^{-1} = (\sigma(1)\sigma(2))(\sigma(3)\sigma(4)) \in K$. Analog și pentru celelalte elemente din K, deci K subgrup normal.
- 2. $|S_4/K| = 6$, deci S_4/K este izomorf cu \mathbf{Z}_6 sau S_3 (demonstație tutoriat 3, exercițiul 3). Dacă S_4/K ar fi izomorf cu \mathbf{Z}_6 atunci acesta ar fi grup ciclic și ar conține un element de ordin 6, pe care îl notez cu $\widehat{\sigma}$. Dar $\sigma \in S_4$ permutare deci ord $(\sigma) \in \{1,2,3,4\}$. Atunci $\widehat{\sigma}$ nu poate avea ordin 6. Deci S_4/K nu este izomorf cu $\mathbf{Z}_6 \Rightarrow S_4/K \cong S_3$.
- 3. A_4 este subgrupul permutărilor pare din S_4 . ord $(A_4) = 12$. $A_4 = \{e, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)\}$. A_4 are un element de ordin 1, trei elemente de ordin 2 și opt elemente de ordin 3. Dacă X este un subgrup cu 6 elemente, atunci X nu poate fi izomorf cu \mathbf{Z}_6 pentru că nu are niciun element de ordin 6. Deci X ar trebui să fie izomorf cu S_3 . Astfel X trebuie să conțină două elemente de ordin 2, și acestea pot fi doar (12)(34), (13)(24), (14)(23). Alegând oricare dintre ele o vor genera pe cea de-a treia. Deci nu putem obține un subgrup cu 6 elemente al lui A_4 .

- 4. Fie X subgrupurile normale al lui S_4 . Vom analiza două cazuri:
 - a) $X \subseteq A_4$
 - b) $X \nsubseteq A_4$
 - a) În acest caz, conform teoremei lui Lagrange, un subgrup propriu al lui A_4 are ordinul 2, 3, 4 sau 6. Deja am demonstrat că nu există subgrupuri cu 6 elemente. Un grup cu ordinul 4 nu are elemente de ordin 3 (nu ar respecta Langrange, $3 \nmid 4$). Deci singurul grup cu 4 elemente este K. Subgrupurile cu 3 sau 2 elemente sunt ciclice, generate de o transpoziție sau un ciclu de trei. Acestea nu pot fi grupuri normale.
 - b) În acest caz, există $\sigma \in X$ permutare impară. σ poate fi o transpoziție sau un ciclu de lungime 4. Dacă σ este transpoziție $\sigma = (ij)$, atunci $\tau \sigma \tau^{-1} = (\tau(i)\tau(j)) \in X \ \forall \ \tau \in S_4$. Deci X conține toate transpozițiile, iar acestea generează S_4 (vezi problema următoare). Dacă σ este ciclu de lungime 4, $\sigma = (ijkl)$, atunci X va conține toti ciclii de lungime 4. $\sigma^2 = (ik)(jl) \in X$, deci X va conține și toate produsele de câte două transpoziții. Dar (ijkl)(iljk) = (jlk) $\in X$, deci X conține toți ciclii de lungime $3 \Rightarrow X = S_4$.

Exercițiul 4

Să se arate că S_n este generat de fiecare din următoarele mulțimi de permutări:

- 1. (12), (13), ..., (1,n)
- 2. (12), (23), ..., (n-1, n)
- 3. (12), (12...n)

Rezolvare:

Știm ca orice permutare poate fi descompusa in transpoziții. Este deci suficient să demonstrăm ca având permutările date putem forma orice transpoziție. Astfel, fiecare permutare din S_n poate fi descompusă in transpoziții iar fiecare transpoziție în permutările date.

- 1. Vrem să obținem în cazul general transpoziția (a, b), cu $a, b \le n$. Având permutările de forma (1, x), se poate observa că (a, b) = (1, a)(1, b)(1, a). Cum avem (1, a) și (1, b) pentru orice a și b în setul nostru de permutări, putem obține orice transpoziție și deci S_n este generat de acest set.
- 2. Observăm că în acest set de mulțimi dacă facem produsul elementelor în stilul (1,2)(2,3)(3,4)...(a-1,a) vom obține o permutare circulară a primelor a elemente la stânga. $\begin{pmatrix} 1 & 2 & 3 & \dots & a-1 & a \\ 2 & 3 & 4 & \dots & a & 1 \end{pmatrix} \in S_{11}$. Vedem că dacă am permuta circular la dreapta primele a-1 elemente acum am obține permutarea (1, a) pentru orice a. Deci, am obține toate permutările de la punctul anterior iar desrpre ele știm deja că genereaza pe S_n . Pentru a permuta circular la dreapta primele a-1 elemente trebuie să permutam circular la stanga de a-1 ori primele n elemente. Deci (1, a)

- $(1,2)(2,3)(3,4)...(a-1,a)\ ((1,2)(2,3)(3,4)...(a-2,a-1))^{a-2}.$ Prin urmare, setul dat de permutări generează $S_n.$
- 3. În mod analog ca subpunctul de mai sus, putem să incercăm să generăm elementele de forma (a-1, a) avand permutările date. Dacă le putem genera pe toate ne putem folosi de punctul anterior în a argumenta concluzia. Observăm că $(a-1,a)=(1,2,...,n)^{a-1}(1,2)(1,2,3,...,n)^{n-a+1}$. Astfel, putem genera orice element din multimea anterioară de permutări iar cum acestea generează toată mulțimea S_n , avem deci concluzia că elementele date generează toată mulțimea.