

CAUC training – Surveillance – SB508 **Surveillance systems** Tianjin, November 2016

Teacher: Marc FRAYARD - ENAC

THALES

GEA Tianjin / 中国民航大学中欧航空工程师学院

Personal presentation

- ENAC
 - Science and Engineering for Air Navigation
 - > CNS-ATM Systems Division
 - Surveillance, ATM Systems, ATM Monitoring Systems
- Marc FRAYARD
 - Trainings for engineers, ATSEP, ATCO, technicians, ...
 - Email address for contact : marc.frayard@enac.fr

How can we achieve that

- By a measurement
 - A Ground equipment detects and localizes **all** the targets of interest for ATC
- By data communication
 - The aircraft are able to determine their position and transmit it using some data link

Radar principles

Advantages / Drawbacks

- Advantages
- No need for any on board equipment
- Good accuracy
- The only sensor for non cooperative detection
- · Drawbacks
- Detection depends on the RCS and location of the target
- Huge transmitted power
- Measurement of range and azimuth only
- Complex signal processing
- Costly installation and maintenance

THALES

GEA Tianjin / 中国民航大学中欧航空工程师学院

Secondary Radar

Mode S Secondary Radar

THALES

GEA Tianjin / 中国民航大学中欧航空工程师学院

Mode S communication

Founding principles

Each Mode S station is identified by an interrogator code (II or SI)

Each Mode S aircraft is identified by a unique 24 bit address (@mode S)

Working principles

A Mode S station takes into account only the replies that contain its own interrogator code

A Mode S aircraft replies only to interrogations that contain its own address

GEA Tianjin / 中国民航大学中欧航空工程师学院

Transmission intervals

The core of the message (register) is only 56 bits long.

- -> we need to collect several messages to get the complete information on a given aircraft
- -> all messages are not sent at the same rate

Position

0.5s

Flight ID

5s

To avoid overlapping of messages coming from different aircraft

Fixed interval +/- random delay 0.5s + - 0.1s5s +/- 0,2s

THALES

GEA Tianjin / 中国民航大学中欧航空工程师学院

Quality of the positioning

• ADS-B = dependent

Advantage

The accuracy of positioning does not depend on the distance between the aircraft and the ground station

Drawback

Poor quality positioning data may imply dangerous situations

Indicators such as NIC/NAC/SIL give an estimate of the positioning and speed data quality

GEA Tianjin / 中国民航大学中欧航空工程师学院

Multilateration

$$D = D1 - D2$$

With two stations, the solutions of this equation lie on a hyperboloïd

We need 4 stations, to get the 3D position

(3 will be enough for a 2 D position)

 X_2, y_2, Z_2

X1, Y1, Z1

GEA Tianjin / 中国民航大学中欧航空工程师学院

Advantages / Drawbacks

- Advantages
- Small size
- Low energy consumption
- Non dependent

Drawbacks

- Need for a very accurate synchronization system
- Network of « n » stations (depending on the a rea to be covered)
- Garbling and reflections may appear

Cooperative system Based on Mode S squitters or ADS-B squitters

