MA10002 Mathematics-II: Assignment - 7

- 1. Find the value of integrals (i) $\int_{0}^{\infty}e^{-x^2}dx$ (ii) $\int_{0}^{\infty}e^{-x}x^{\frac{3}{2}}dx$ (iii) $\int_{0}^{\infty}x^me^{-ax^n}dx$, where m,n, and a are positive integers. (iv) $\int_{0}^{\frac{\pi}{2}}\sin^4x\cos^4xdx$ (v) $\int_{r}^{s}(x-r)^{k-1}(s-x)^{l-1}dx$.
- 2. Given $\int\limits_0^\infty \frac{x^{n-1}}{1+x} dx = \frac{\pi}{\sin n\pi}$, prove that $\Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi}$ where 0 < n < 1.
- 3. Show that (i) $\int\limits_0^1 \sqrt{1-x^4} dx = \frac{\left\{\Gamma(\frac{1}{4})\right\}^2}{6\sqrt{2\pi}}$ (ii) $\int\limits_0^{\frac{\pi}{2}} \sqrt{\tan x} dx = \frac{\pi}{\sqrt{2}}$ (iii) $\int\limits_0^{\frac{\pi}{2}} \sqrt{\cos x} dx = \frac{(2\pi)^{\frac{3}{2}}}{[\Gamma(\frac{1}{4})]^2}$.
- 4. (i) Show that $\int_0^1 x^m \left(\log \frac{1}{x}\right)^n dx = \frac{\Gamma(n+1)}{(m+1)^{n+1}}$, where m > -1, n > -1. (ii) If m is a nonnegative integer and n is a positive constant, then show that $\int_0^\infty x^m n^{-x} dx = \frac{m!}{(\log n)^{m+1}}$.
- 5. Show that if m is a positive integer then $\Gamma(m+\frac{1}{2})=\frac{(2m-1)(2m-3)(2m-5)\cdots\cdots(3)(1)\sqrt{\pi}}{2^m}$
- 6. If m is positive integer and $x-m\neq 0, -1, -2, -3, \cdots$, then find the value of $\frac{\Gamma(x+m)}{\Gamma(x-m)}$.
- 7. Show that if m is a positive integer then
 - (i) 2.4.6.8.10.12., ..., $.2m = 2^m \Gamma(m+1)$
 - (ii) $1.3.5.7.9.11., \dots, (2m-1) = \frac{2^{1-m}\Gamma(2m)}{\Gamma(m)}$
- 8. Show that $\sqrt{\pi}\Gamma(2m+1)=2^{2m}\Gamma(m+\frac{1}{2})\Gamma(m+1)$ for any positive integer m. Hence, deduce the Legendre's duplication formula $\sqrt{\pi}\Gamma(2m)=2^{2m-1}\Gamma(m)\Gamma(m+\frac{1}{2})$.
- 9. Show that $\int\limits_0^\infty \frac{x^m}{x^n+a} dx = \frac{1}{na\left(\frac{n-m-1}{n}\right)} \Gamma\left(\frac{m+1}{n}\right) \Gamma\left(1-\frac{m+1}{n}\right)$, where the constants m,n, and a are such that a>0 and n>m+1>0.

1

10. Show that if m is a positive integer then $\Gamma(\frac{1}{m})\Gamma(\frac{2}{m})\cdots\Gamma(\frac{m-1}{m})=\frac{(2\pi)^{\frac{m-1}{2}}}{\sqrt{m}}$.