COMP9313: Big Data Management

Lecturer: Xin Cao

Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter 8.1: Finding Similar Items

A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in high-dimensional space

Examples:

- Pages with similar words
 - For duplicate detection, classification by topic
- Customers who purchased similar products
 - Products with similar customer sets
- Images with similar features
 - Google image search

Images with Similar Features

Similarity Search in One Dimensional Space

- Just numbers, use binary search, binary search tree, B+-Tree...
- The essential idea behind: objects can be sorted

Similarity Search in 2D Space

- * k nearest neighbour (kNN) query: find the top-k nearest spatial object
 to the query location
- E.g., find the top-5 closest restaurants to UNSW

Similarity Search in 2D Space

In Euclidean Space

Similarity Search in 2D Space

In road networks: Distance is computed based on the network distance (such as the length of the shortest path)

 p_5 is the closest in the spatial network setting p_1 is the closest in the Euclidean space

The Problem in 2D Space

- Euclidean space
 - Grid index
 - Quad-tree
 - > k-d tree
 - R-tree (R+-tree, R*-tree, etc.)
 - m-tree, x-tree,
 - > Space filing curves: Z-order, Hilbert order,
- Road Networks
 - > G-tree
 - Contraction Hierarchy
 - 2-hop labeling
 - **>**

Curse of Dimensionality

- Refers to various phenomena that arise in high dimensional spaces that do not occur in low dimensional settings.
- Specifically, refers to the decrease in performance of similarity search query processing when the dimensionality increases.
- In high dimensional space, almost all points are far away from each other.
 - To find the top-10 nearest neighbors, what is the length of the average neighborhood cube?

Problem

- **\Leftrightarrow** Given: High dimensional data points $x_1, x_2, ...$
 - > For example: Image is a long vector of pixel colors

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- **\diamond** And some distance function $d(x_1, x_2)$
 - \triangleright Which quantifies the "distance" between x_1 and x_2
- ❖ Goal: Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_i) \le s$
- * Note: Naïve solution would take $O(N^2)$ \otimes where N is the number of data points
- **♦ MAGIC:** This can be done in *O(N)*!! How?

Distance Measures

- Goal: Find near-neighbors in high-dim. space
 - We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Today: Jaccard distance/similarity
 - The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:
 sim(C₁, C₂) = |C₁∩C₂|/|C₁∪C₂|
 - > Jaccard distance: $d(C_1, C_2) = 1 |C_1 \cap C_2|/|C_1 \cup C_2|$

3 in intersection 8 in union Jaccard similarity= 3/8 Jaccard distance = 5/8

Task: Finding Similar Documents

❖ Goal: Given a large number (*N* in the millions or billions) of documents, find "near duplicate" pairs⋅

Applications:

- Mirror websites, or approximate mirrors
 - Don't want to show both in search results
- Similar news articles at many news sites
 - Cluster articles by "same story"

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

3 Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!

The Big Picture

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

- Step 1: Shingling: Convert documents to sets
- Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles!

Define: Shingles

- ❖ A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- * Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
 - Option: Shingles as a bag (multiset), count ab twice: S'(D₁) = {ab, bc, ca, ab}

Shingles and Similarity

- Documents that are intuitively similar will have many shingles in common.
- Changing a word only affects k-shingles within distance k-1 from the word.
- Reordering paragraphs only affects the 2k shingles that cross paragraph boundaries.
- Example: k=3, "The dog which chased the cat" versus "The dog that chased the cat".
 - Only 3-shingles replaced are g_w, _wh, whi, hic, ich, ch_, and h_c.

7.19

Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- **❖** Represent a document by the set of hash values of its *k*-shingles
 - Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- **Example:** k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca} Hash the singles: $h(D_1)$ = {1, 5, 7}

Similarity Metric for Shingles

- ❖ Document D₁ is a set of its k-shingles C₁=S(D₁)
- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- If we pick k too small, then we would expect most sequences of k characters to appear in most documents
 - We could have documents whose shingle-sets had high Jaccard similarity, yet the documents had none of the same sentences or even phrases
 - Extreme case: when we use k = 1, almost all Web pages will have high similarity.
- Caveat: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - \mathbf{k} = 10 is better for long documents

Motivation for Minhash/LSH

- **Suppose we need to find near-duplicate documents among** N = 1 million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
 - $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - > At 10⁵ secs/day and 10⁶ comparisons/sec, it would take **5 days**
- \bullet For N = 10 million, it takes more than a year...

Step 2: Minhashing: Convert large sets to short signatures, while preserving similarity

Encoding Sets as Bit Vectors

Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- **Example:** $C_1 = 101111$; $C_2 = 10011$
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - > Distance: $d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- * Each document is a column:

Documents

	1	1	1	0
	1	1	0	1
	0	1	0	1
9.60	0	0	0	1
)	1	0	0	1
	1	1	1	0
	1	0	1	0

From Sets to Boolean Matrices

Example: $S_1 = \{a, d\}, S_2 = \{c\}, S_3 = \{b, d, e\}, \text{ and } S_4 = \{a, c, d\}$

Element	S_1	S_2	S_3	S_4
\overline{a}	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

- > sim(S₁, S₃) = ?
 - Size of intersection = 1; size of union = 4,
 Jaccard similarity (not distance) = 1/4
 - \rightarrow d(S₁, S₃) = 1 (Jaccard similarity) = 3/4

Outline: Finding Similar Columns

- ❖ So far:
 - ➤ Documents → Sets of shingles
 - > Represent sets as boolean vectors in a matrix
- **❖ Next goal:** Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures

Outline: Finding Similar Columns

- Next Goal: Find similar columns, Small signatures
- Naïve approach:
 - > 1) Signatures of columns: small summaries of columns
 - > 2) Examine pairs of signatures to find similar columns
 - ▶ Essential: Similarities of signatures and columns are related
 - > 3) Optional: Check that columns with similar signatures are really similar

Warnings:

- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures)

- Key idea: "hash" each column C to a small signature h(C), such that:
 - (1) h(C) is small enough that the signature fits in RAM
 - \triangleright (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- **Goal:** Find a hash function $h(\cdot)$ such that:
 - If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - ▶ If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- **Goal:** Find a hash function $h(\cdot)$ such that:
 - \rightarrow if $sim(C_1,C_2)$ is high, then with high prob. $h(C_1)=h(C_2)$
 - ightharpoonup if $sim(C_1,C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Min-Hashing Example

Signature Matrix

Input Matrix

7.33 33

Min-Hashing Example

7	1	0	1	1	0
6	2	0	0	1	1
5	3	1	0	0	0
4	4	0	1	0	1
3	5	0	0	0	(1)
2	6	1		0	0
1	7	0	0	1	0

Signature Matrix

Input Matrix

7.34 34

Min-Hashing Example

Signature Matrix

Input Matrix

7.35 35

Min-Hashing Exar

Note: Another (equivalent) way is to

store row indexes: 1 5 1 5 2 3 1 3

6 4 6 4

2nd element of the permutation is the first to map to a 1

Permutation π Input matrix (Shingles x Documents)

Signature matrix M

			_	/			
2	4	3		1	0	1	0
3	2	4		7	0	0	7
7	1	7		0	\frac{1}{2}	0	1
6	3	2		0	1	0	7
1	6	6		0	1	0	1
5	7	1		1	0	1	0
4	5	5		1	0	1	0

2	1	2	1
2	1	4	1
1	2 /	1	2

4th element of the permutation is the first to map to a 1

The Min-Hash Property

- Choose a random permutation π
- $\Leftrightarrow \underline{Claim:} \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why?
 - ▶ Let X be a doc (set of shingles), y∈ X is a shingle
 - > Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the min element
 - Let **y** be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
 - ▶ So the prob. that **both** are true is the prob. $y \in C_1 \cap C_2$
 - Pr[min(π(C₁))=min(π(C₂))]=|C₁∩C₂|/|C₁∪C₂|= sim(C₁, C₂)

One of the two cols had to have 1 at position **y**

Four Types of Rows

❖ Given cols C₁ and C₂, rows may be classified as:

	<u>C₁</u>	<u> </u>
Α	1	1
В	1	0
С	0	1
D	0	0

- \rightarrow **a** = # rows of type A, etc.
- Note: $sim(C_1, C_2) = a/(a + b + c)$
- ***** Then: $Pr[h(C_1) = h(C_2)] = Sim(C_1, C_2)$
 - Look down the cols C₁ and C₂ until we see a 1
 - If it's a type-A row, then $h(C_1) = h(C_2)$ If a type-B or type-C row, then not

Similarity for Signatures

Permutation π

Input matrix (Shingles x Documents)

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix *M*

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

Col/Col Sig/Sig

1-3	2-4	1-2	3-4
0.75	0.75	0	0
0.67	1.00	0	0

Similarity for Signatures

- Arr We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hash Signatures

- Pick K=100 random permutations of the rows
- Think of sig(C) as a column vector
- sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- Note: The sketch (signature) of document C is small ~100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
 - Pick K = 100 hash functions k_i
 - Ordering under k_i gives a random row permutation!
- One-pass implementation
 - For each column C and hash-func. k_i keep a "slot" for the min-hash value
 - Initialize all sig(C)[i] = ∞
 - Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i :
 - If $k_i(j) < sig(C)[i]$, then $sig(C)[i] \leftarrow k_i(j)$

How to pick a random hash function h(x)?
Universal hashing:

 $h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N$ where:

a,b ... random integers p ... prime number (p > N)

Implementation Example

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	0	1	0	0	3

□ 0. Initialize all sig(C)[i] = ∞

	S_1	S_2	S_3	S_4
h_1	∞	∞	∞	∞
h_2	∞	∞	∞	∞

Row 0: we see that the values of h₁(0) and h₂(0) are both 1, thus sig(S₁)[0] = 1, sig(S₁)[1] = 1, sig(S₄)[0] = 1, sig(S₄)[1] = 1,

Row 1, we see $h_1(1) = 2$ and $h_2(1) = 4$, thus $sig(S_3)[0] = 2$, $sig(S_3)[1] = 4$

Implementation Example

 Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

* Row 2: $h_1(2) = 3$ and $h_2(2) = 2$, thus $sig(S_2)[0] = 3$, $sig(S_2)[1] = 2$, no update for S_4

	S_1	S_2	S_3	S_4
h_1	1	3	2	1
h_2	1	2	4	1

Row 3: $h_1(3) = 4$ and $h_2(3) = 0$, update $sig(S_1)[1] = 0$, $sig(S_3)[1] = 0$, $sig(S_4)[1] = 0$,

Row 4: $h_1(4) = 0$ and $h_2(4) = 3$, update $sig(S_3)[0] = 0$,

	S_1	S_2	S_3	S_4
h_1	1	3	0	1
h_2	0	2	0	0

Implementation Example

					$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	1 0 0 1 0	0	1	0	0	3

- We can estimate the Jaccard similarities of the underlying sets from this signature matrix.
 - > Signature matrix: $SIM(S_1, S_4) = 1.0$
 - > Jaccard Similarity: $SIM(S_1, S_4) = 2/3$

References

Chapter 3 of Mining of Massive Datasets.

End of Chapter 7.1