

MQTT-Daten

Zeitstempel (ms)	Leistung (W)
1716136790000	21219
1716136490000	22318
1716136480000	22340
1716136470000	22413
1716136460000	22300
1716136430000	23561
1716136380000	24343
1716136360000	24369
1716136270000	24516
1716136220000	24554
1716136190000	22538
1716136180000	22561
1716136170000	22720
1716136090000	21078
1716136050000	21054
1716135890000	21323
1716135850000	20410
1716135590000	21921

Der Gesamtenergieverbrauch, der durch numerische Integration der kumulierten kWh-Werte für jedes Zeitintervall berechnet wurde, beträgt **7.356 kWh**.

Energie-Gesamt-HTL

May 19, 2024

```
[1]: import datetime
     # Daten: Zeitstempel in Millisekunden und Leistung in Watt
         {"time": 1716136790000, "value": 21219},
         {"time": 1716136490000, "value": 22318},
         {"time": 1716136480000, "value": 22340},
         {"time": 1716136470000, "value": 22413},
         {"time": 1716136460000, "value": 22300},
         {"time": 1716136430000, "value": 23561},
         {"time": 1716136380000, "value": 24343},
         {"time": 1716136360000, "value": 24369},
         {"time": 1716136270000, "value": 24516},
         {"time": 1716136220000, "value": 24554},
         {"time": 1716136190000, "value": 22538},
         {"time": 1716136180000, "value": 22561},
         {"time": 1716136170000, "value": 22720},
         {"time": 1716136090000, "value": 21078},
         {"time": 1716136050000, "value": 21054},
         {"time": 1716135890000, "value": 21323},
         {"time": 1716135850000, "value": 20410},
         {"time": 1716135590000, "value": 21921}
     ]
     # Daten sortieren (aufsteigend nach Zeitstempel)
     data_sorted = sorted(data, key=lambda x: x["time"])
     # Berechnung der Energie für jedes Zeitintervall
     energies = []
     for i in range(1, len(data_sorted)):
         # Zeitdifferenz in Stunden
         dt = (data_sorted[i]["time"] - data_sorted[i-1]["time"]) / 3600000.0
         # Durchschnittliche Leistung
         avg_power = (data_sorted[i]["value"] + data_sorted[i-1]["value"]) / 2
         # Energie in kWh
         energy_kWh = avg_power * dt / 1000
         energies.append(energy_kWh)
```

```
# Gesamtenergie in kWh
total_energy = sum(energies)
print(f"Gesamtenergieverbrauch: {total_energy} kWh")
```

Gesamtenergieverbrauch: 7.355852777777778 kWh