School of Computer Science

Deep Reinforcement Learning and Control

Determinist PG, Pathwise derivatives

Spring 2020, CMU 10-403

Katerina Fragkiadaki

Computing Gradients of Expectations

Policy objective:

$$\max_{\theta} . \ \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$

Likelihood ratio gradient estimator:

$$\mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \right]$$

$$\mathbb{E}_{s \sim d^0(s), \ a \sim \pi_{\theta}(a|s)} \nabla_{\theta} \log \pi_{\theta}(a|s) \left[Q(s, a, \mathbf{w}_1) - V(s, \mathbf{w}_2) \right]$$

- Do we have access to the reward function $R(\tau)$?
- Do we have access to the analytic gradients of rewards $R(\tau)$ w.r.t. actions a?
- For continuous actions a, do we have access to the analytic gradients of Q(s,a,w) or Q(s,a,w_1)-V(s,w_2) w.r.t. actions a?
- Have we used the later anywhere?

What if we have a deterministic policy?

Q: does this expectation depend on theta?

$$a = \pi_{\theta}(s)$$

$$\max_{\theta} \cdot \mathbb{E} \sum_{t=1}^{T} R(s_t, a_t)$$

$$a = \pi_{\theta}(s)$$

$$\max_{\theta} \cdot \mathbb{E} \sum_{t=1}^{T} Q(s_t, a_t)$$

Qs:

Can we backpropagate through R?

Qs:

Can we backpropagate through Q?

$$\mathbb{E} \sum_{t} \frac{dQ(s_t, a_t)}{d\theta} = \mathbb{E} \sum_{t} \frac{dQ(s_t, a_t)}{da_t} \frac{da_t}{d\theta}$$

Deep Deterministic Policy Gradients

$$a = \pi_{\theta}(s)$$

$$\mathbb{E} \sum_{t} \frac{dQ(s_t, a_t)}{d\theta} = \mathbb{E} \sum_{t=1}^{T} \frac{dQ(s_t, a_t)}{da_t} \frac{da_t}{d\theta}$$

Deep Deterministic Policy Gradients

We are following a stochastic behavior policy to collect data. DDPG: Deep Q learning for continuous actions

Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process \mathcal{N} for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^\mu + (1 - \tau)\theta^{\mu'}$$

end for end for

Computing Gradients of Expectations

When the variable w.r.t. which we are differentiating appears in the distribution:

$$\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} f(x) = \mathbb{E}_{x \sim P_{\theta}(x)} \nabla_{\theta} \log P_{\theta}(x) f(x)$$

likelihood ratio gradient estimator

When the variable w.r.t. which we are differentiating appears inside the expectation:

$$\nabla_{\theta} \mathbb{E} f(x(\theta)) = \mathbb{E}_{x \sim P(x)} \nabla_{\theta} f(x(\theta)) = \mathbb{E}_{x \sim P(x)} \frac{df(x(\theta))}{dx} \frac{dx}{d\theta}$$

Re-parametrization trick: For some distributions $P_{\theta}(x)$ we can switch from one gradient estimator to the other.

Q: From which to which? Why would we want to do so?

Imagine we knew the reward function $\rho(s, a)$

Deterministic policy

$$a = \pi_{\theta}(s)$$

I want to learn θ to maximize the average reward obtained.

$$\max_{\theta}$$
. $\rho(s_0, a)$

I can compute the gradient with the chain rule.

$$\nabla_{\theta} \rho(s, a) = \frac{d\rho}{da} \frac{da}{d\theta}$$

Derivative of the *known* reward function w.r.t. the action

Stochastic policy

I want to learn θ to maximize the average reward obtained.

$$\max_{\theta}$$
. $\mathbb{E}_a \rho(s_0, a)$

$$\nabla_{\theta} \mathbb{E}_a \rho(s_0, a)$$

Stochastic policy

I want to learn θ to maximize the average reward obtained.

$$\max_{\theta}$$
. $\mathbb{E}_a \rho(s_0, a)$

Likelihood ratio estimator, works for both continuous and discrete actions

$$\mathbb{E}_a \nabla_{\theta} \log \pi_{\theta}(s) \rho(s_0, a)$$

Example: Gaussian policy

I want to learn θ to maximize the average reward obtained.

$$\max_{\theta}$$
. $\mathbb{E}_a \rho(s_0, a)$

Likelihood ratio estimator, works for both continuous and discrete actions

$$\mathbb{E}_a \nabla_{\theta} \log \pi_{\theta}(s) \rho(s_0, a)$$

If σ^2 is constant:

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \frac{(a - \mu(s; \theta)) \frac{\partial \mu(s, \theta)}{\partial \theta}}{\sigma^2}$$

Example: Gaussian policy

- Learn $\sigma(s,\theta)$ one value for all action coordinates (spherical or isotropic Gaussian)
- Learn $\sigma^l(s,\theta), i=1\cdots n$ (diagonal covariance)
- Learn a full covariance matrix $\Sigma(s, \theta)$

Example: Gaussian policy

- deterministic node: the value is a deterministic function of its input stochastic node: the value is sampled based on its input (which parametrizes
- deterministic computation node

- Learn $\sigma(s,\theta)$ one value for all action coordinates (spherical or isotropic Gaussian)
- Learn $\sigma^l(s,\theta)$, $i=1\cdots n$ (diagonal covariance)
- Learn a full covariance matrix $\Sigma(s,\theta)$

Instead of: $a \sim \mathcal{N}(\mu(s, \theta), \Sigma(s, \theta))$

We can write: $a = \mu(s, \theta) + z\sigma(s, \theta)$ $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{n \times n})$

Because:
$$\mathbb{E}_{z}(\mu(s,\theta) + z\sigma(s,\theta)) = \mu(s,\theta)$$

 $\operatorname{Var}_{z}(\mu(s,\theta) + z\sigma(s,\theta)) = \sigma(s,\theta)^{2}\mathbf{I}_{n\times n}$

Qs:

 $\max_{\theta} \cdot \mathbb{E}_{a} \rho(s_{0}, a)$ $\max_{\theta} \cdot \mathbb{E}_{z} \rho(s_{0}, a(z))$

- Does a depend on θ ?
- Does z depend on θ ?

Instead of: $a \sim \mathcal{N}(\mu(s, \theta), \Sigma(s, \theta))$

We can write: $a = \mu(s, \theta) + z\sigma(s, \theta)$ $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{n \times n})$

What do we gain?

$$\nabla_{\theta} \mathbb{E}_{z} \left[\rho \left(a(\theta, z), s \right) \right] = \mathbb{E}_{z} \frac{d\rho \left(a(\theta, z), s \right)}{da} \frac{da(\theta, z)}{d\theta}$$

$$\frac{da(\theta, z)}{d\theta} = \frac{d\mu(s, \theta)}{d\theta} + z \frac{d\sigma(s, \theta)}{d\theta}$$

$$\max_{\theta} \cdot \mathbb{E}_{a} \rho(s_{0}, a)$$

 \max_{θ} . $\mathbb{E}_{z}\rho(s_{0},a(z))$

Instead of: $a \sim \mathcal{N}(\mu(s, \theta), \Sigma(s, \theta))$

We can write: $a = \mu(s, \theta) + z\sigma(s, \theta)$ $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{n \times n})$

What do we gain?

$$\nabla_{\theta} \mathbb{E}_{z} \left[\rho \left(a(\theta, z), s \right) \right] = \mathbb{E}_{z} \frac{d\rho \left(a(\theta, z), s \right)}{da} \frac{da(\theta, z)}{d\theta}$$

$$\frac{da(\theta, z)}{d\theta} = \frac{d\mu(s, \theta)}{d\theta} + z \frac{d\sigma(s, \theta)}{d\theta}$$

$$\max_{\theta} \cdot \mathbb{E}_{a} \rho(s_{0}, a)$$

max. $\mathbb{E}_z \rho(s_0, a(z))$

Sample estimate:

$$\nabla_{\theta} \frac{1}{N} \sum_{i=1}^{N} \left[\rho \left(a(\theta, z_i), s \right) \right] = \frac{1}{N} \sum_{i=1}^{N} \frac{d\rho \left(a(\theta, z), s \right)}{da} \frac{da(\theta, z)}{d\theta} \big|_{z=z_i}$$

Likelihood ratio grad estimator:

$$\mathbb{E}_a \nabla_{\theta} \log \pi_{\theta}(s, a) \rho(s, a)$$

Pathwise derivative:

$$\mathbb{E}_{z} \frac{d\rho\left(a(\theta,z),s\right)}{da} \frac{da(\theta,z)}{d\theta}$$

The pathwise derivative uses the derivative of the reward w.r.t. the action!

Known MDP with known deterministic reward and dynamic functions

Can we apply the chair rule through deterministic policies?

Can we apply the chain rule through sampled actions?

Episodic MDP:

We want to compute: $\nabla_{\theta} \mathbb{E}[R_T]$

The problem is: we do not know the reward function, neither the dynamics function.

Solution: we will approximate it with the Q function!!!!

• Episodic MDP:

We want to compute: $\nabla_{\theta} \mathbb{E}[R_T]$

• Reparameterize: $a_t = \pi(s_t, z_t, \theta)$. z_t is noise from fixed distribution

• Episodic MDP:

We want to compute: $\nabla_{\theta} \mathbb{E}[R_T]$

• Reparameterize: $a_t = \pi(s_t, z_t, \theta)$. z_t is noise from fixed distribution

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}\left[R_T\right] = \mathbb{E}\left[\sum_{t=1}^T \frac{\mathrm{d}R_T}{\mathrm{d}a_t} \frac{\mathrm{d}a_t}{\mathrm{d}\theta}\right] = \mathbb{E}\left[\sum_{t=1}^T \frac{\mathrm{d}}{\mathrm{d}a_t} \mathbb{E}\left[R_T \mid a_t\right] \frac{\mathrm{d}a_t}{\mathrm{d}\theta}\right]$$

The problem is: we do not know the reward function!

Solution: we will approximate it with the Q function!!!!

Learn Q_ϕ to approximate $Q^{\pi,\gamma}$, and use it to compute gradient estimates

Stochastic Value Gradients V0

Learn Q_{ϕ} to approximate $Q^{\pi,\gamma}$, and use it to compute gradient estimates

```
Algorithm:
```

```
for iteration=1,2,... do Execute policy \pi_{\theta} to collect T timesteps of data Update \pi_{\theta} using g \propto \nabla_{\theta} \sum_{t=1}^{T} Q(s_t, \pi(s_t, z_t; \theta)) Update Q_{\phi} using g \propto \nabla_{\phi} \sum_{t=1}^{T} (Q_{\phi}(s_t, a_t) - \hat{Q}_t)^2, e.g. with \mathsf{TD}(\lambda) end for
```

Stochastic Value Gradients VO

$$z \sim \mathcal{N}(0,1)$$

$$\downarrow z$$

$$s \rightarrow \bigcup_{(\theta^{\mu})}^{\text{DNN}} \rightarrow a$$

$$s \rightarrow \bigcup_{(\theta^{Q})}^{\text{DNN}} \rightarrow \mathcal{Q}(s,a)$$

$$a = \mu(s; \theta) + z\sigma(s; \theta)$$

Compare with: Deep Deterministic Policy Gradients

$$a = \mu(\theta)$$

No z!