通过COMSOL进行虚拟样机建模探究 影响自行车自平衡的因素

2019.5.13

小组成员: 聂文恺、陈华辰、邱锦盛、李懿轩

报告人: 陈华辰

第一部分: 科学问题

- 影响自行车自平衡的因素是什么?
- 自十九世纪八十年代用链条传动的安全自行车面世以来,现代自行车并没有 从根本上发生改变。
- 在一个多世纪后的今天,科学家们仍在试图找出使自行车保持平衡的关键所 在。这里,我们重点探究在没有人操作情况下影响自行车稳定运动的一些因 素。
- 为了简化模型并且便于操作,我们将通过COMSOL软件对自行车运动进行虚 拟样机模拟,并且对使用的模型做出一些合理的假设。

第二部分: 科学意义

- 早期的研究大多集中注意于如何加速的问题。事实已经证明,自行车是一种 最省力最优秀的非机动交通工具。不过要讲清楚行进中的自行车为什么不倒 的问题,即自行车的自平衡的稳定性的问题,可不那么简单。
- 一百多年来这项研究吸引了许多著名的力学家、物理学家乃至数学家参加,累计发表的有名的论文,包括以英、德、法、俄、意大利等各种语言的论文,在百篇以上,其中还有博士、硕士和学士的毕业论文,包括著名力学家铁木辛科和杨(Timoshenko and Young)【1】.
- 令人惊异的是, 迄今这个问题很难说已经最后解决了。人们还在继续研究。

第二部分: 科学意义

- 最近,代尔夫特和康奈尔大学的一组研究人员发表了一篇综合性评论,他们使用自己的研究成果展示了自行车的自稳定性。该研究表明,这种现象并非仅仅是某个简单的原因引起的。而是多种因素的组合,包括陀螺效应和前叉倾角、自行车几何结构、速度及质量分布,都对保持无人操控自行车的直立前进发挥了作用。
- 我们在COMSOL软件的论坛博客上【3】找到了一个受此项研究启发的模型, 该模型用来演示无人自行车的自稳定行驶情况。

第三部分: 研究内容

- 探究影响自行车的平衡的因素。
- 我们的猜测:

• 可能因素一: 初始车速

• 可能因素二: 前叉倾角

• 可能因素三: 自行车重心的位置

第三部分 研究内容

- 所用comsol模型介绍:
- 该模型做出以下假设:
- 假设所有组件均为刚性。
- 所有接头均视为无摩擦。
- 建模时,假设自行车车轮与地面只有点接触。
- 车轮做纯滚动。
- 假设自行车在平面上移动。
- 该自行车模型假设具有无后座车架,通过在后车架上添加的质量来定义。

这辆自行车由四个刚性 组件组成:后轮;后车 架,包括无后座车架; 前车架,包括车把;以 及前轮。

车轮偏航

车轮倾斜

无滑滚动模型

前进方向无滑移: $\frac{d\mathbf{u}}{dt}.\mathbf{e}_2 = r\frac{d\theta_s}{dt}$

面内横向无滑移: $\frac{d\mathbf{u}}{dt} \cdot \mathbf{e}_3 = r \frac{d\theta_l}{dt}$

面外方向无滑移: $\frac{d\mathbf{u}}{dt}.\mathbf{e}_4 = 0$

其中, \mathbf{e}_2 , \mathbf{e}_3 , \mathbf{e}_4 (\mathbf{e}_4 = $\mathbf{e}_2 \times \mathbf{e}_3$) 分别是瞬时前进方向(倾轴)、面内横 $d\theta_s$ 向(旋转轴)及面外方向 ; $\frac{d\mathbf{u}}{dt}$ 是重心的平移速度; r 是车轮半径; $\frac{d\theta_t}{dt}$ 是倾斜角速度。

相关参数

1	III	0.02[m]	倾斜杆长
2	llr	0.01[m]	倾斜杆半径
3	vf	4.6[m/s]	初始前进速度
4	xHB	0.80757	方向控制铰链中心x坐标
5	zHB		方向控制铰链中心z坐标
6	IBxx	9.2[kg*m^	后框架惯性张量xx分量
7	IBxz		后框架惯性张量xz分量
8	IByy		后框架惯性张量yy分量
9	IBzz	2.8[kg*m^	后框架惯性张量zz分量
10	mB	85[kg]	后框架质量
11	xВ	0.3[m]	后框架质心x坐标
12	zB	-0.9[m]	后框架质心z坐标
13	rR	0.3[m]	后轮半径
14	IRxx	0.0603[kg*	后轮惯性张量xx分量
15	IRyy	0.12[kg*m	后轮惯性张量yy分量
16	mR	2[kg]	后轮质量
17	sll_r	0.065[m]	后轮旋转杆长
18	st	18[deg]	前叉倾角
19	wb		前后轮中心距
20	IHxx	0.05892[kg	前框架惯性张量xx分量
21	IHxz	-0.00756[k	前框架惯性张量xz分量
22	lHyy	0.06[kg*m	前框架惯性张量yy分量
23	IHzz		前框架惯性张量zz分量
24	mH	4[kg]	前框架质量
25	хH		前框架质心x坐标
26	zH	-0.7[m]	前框架质心z坐标
27	rF		前轮半径
28	IFxx	0.1405[kg*	前轮惯性张量xx分量
29	IFyy		前轮惯性张量yy分量
30	С	0.08[m]	前轮尾迹
31	mF		前轮质量
32	sll f	0.0675[m]	前轮旋转杆长

其中,我们假设将人的质量与后框架质量合并。考虑人的质量时后框架质量为85KG,不考虑人时则为10KG。

制造扰动:

考虑人质量时:在后框架质心上作用一个大小为500N的力,方向沿+y方向。持续时间从os到o.08s.

不考虑人质量时:在后框架质心上作用一个大小为6oN的力,方向沿+y方向。持续时间从os到o.o8s.

• 衡量平衡程度:通过模拟o-5s内自行车的运动,分别绘制倾斜角速率-时间、倾斜角-时间、偏航角速率-时间、偏航角-时间的图像进行分析。

第四部分: 研究结果

- ·初速度(vf)对自平衡的影响(3组):
- •后框架质量为85kg,干扰力为500N,vf区间2.6m/s-6.6m/s,间距为1m/s
- 后框架质量为10kg,干扰力为60N,vf区间2.6m/s-6.6m/s,间距为1m/s

后框架质量为10kg,干扰力为6oN,vf区间8m/s-14m/s,间距为2m/s

第一组:后框架质量为85kg,干扰力为500N

第二组:后框架质量为10kg,干扰力为6oN

第三组:后框架质量10kg,干扰力6oN

前叉倾角:

• 第一组:后框架质量为85kg,干扰力为500N,初速度4.6m/s

第二组:后框架质量10kg,干扰力60N,初速度3.6m/s

• (详情请见PDF)

重心位置:

第一组

- 控制变量:
- 后框架质量85kg,
- 重心位置的Z坐标为-o.9

第二组

- 控制变量:
- 后框架质量85kg,
- 重心位置的x坐标为o.3
- (详情请见PDF)

第五部分任务分工

- 聂文恺、邱锦盛主要负责理论分析(研究模型)、搜集资料。
- 李懿轩、陈华辰主要进行虚拟样机模拟、对实验数据进行分析。
- (该分配方案根据现实情况灵活调整)

第六部分:参考文献

- 【1】Timoshenko and Young, Advanced dynamics, McGraw-Hill Book Company, New York,1948
- 【2】http://blog.sciencenet.cn/blog-39472-770407.html
- 【3】http://cn.comsol.com/blogs/simulating-the-motion-of-a-self-stable-bicycle/

谢谢欣赏