Epidemiological models

Model SIS

Symbol	Importance	Value	Units	
S	population suscepteble to infection	199990	ind	Var
I	infested population	10	ind	√ariab
a	rate of recovery from illness	0.018	time-1	Param
r	rate of spread infection	1.5·10-6	time-1	ms.

Differential equations:

$$S'(t) = a \cdot I(t) - r \cdot S(t) \cdot I(t)$$

$$I'(t) = r \cdot S(t) \cdot I(t) - a \cdot I(t)$$

Determination of character of an epidemy

 $\rho = 0.18/0.0000015 = 120\ 000 < S(0) = 199990$ i.e. epidemic isn't spreading

To stop spreading the infection healing rate should be changed to make I'=0. I. e.:

$$0 = r \cdot S(t) \cdot I(t) - a \cdot I(t)$$

$$a \cdot I(t) = r \cdot S(t) \cdot I(t)$$

 $a = r \cdot S(t)$

 $a = 0.0000015 \cdot 199990 = 0.3$, while current is 0.18

Population constantly susceptible means that S'=0.

$$r \cdot S(t) \cdot I(t) - a \cdot I(t) = 0$$

$$S(t) = a/r = \rho = 0.18/0.0000015 = 120000$$

Figure 1: constant number of healthy people

Figure 2: Recovery of population and stopping the epedemy.

Figure3: Epidemic break out.

Model SIR & SIRV

Symbol	Importance	Value	Units	
S	population suscepteble to infection	99	ind	Va
I	infested population	1	ind	Variables
R	died individuals	0	ind	les
V	vaccinated individuals	0	ind	P
a	virus death rate	0.5	time ⁻¹	aran
r	rate of spread infection	0.01018	time ⁻¹	Parameters
N	number of vaccination	5	time-1	SJ

Differential equations for model without vaccination

$$S'(t) = -r \cdot S(t) \cdot I(t)$$

$$I'(t) = r \cdot S(t) \cdot I(\tilde{t}) - a \cdot I(t)$$

$$R'(t) = a \cdot I(t)$$

Differential equations for model with vaccination

$$S'(t) = -r \cdot S(t) \cdot I(t) - N$$

$$I'(t) = r \cdot S(t) \cdot I'(t) - a \cdot I(t)$$

$$R'(t) = a \cdot I(t)$$

$$V'(t) = N$$

Figure 4: illustration of a herd prospect without vaccination

Figure 5: illustration of a herd prospect with vaccination

If farmer don't use vaccination only 19 cows will survive. If he starts vaccination he will save 74 cows and spend 74.840 = 62160 CZK.