

Mathematik

KAI 19a / ITA 19

ANR

Aufgabe 1 (Binary Choice)

Die Funktion $G(x) = a \cdot x^2 + b \cdot x + c$ ist eine Gewinnfunktion. Der zugehörige Break-Even-Point liegt bei x_{BEP} und die Gewinngrenze bei x_{GG} .

Entscheiden Sie für jede der folgenden Aussagen, ob diese entweder wahr oder falsch ist.

Aussage	wahr	falsch
Es gilt $G'(x_{GG}) > 0$.		
Die Länge der Gewinnzone ist $2 \cdot x_{BEP}$.		
Da G eine Gewinnfunktion ist, gilt $a < 0$.		
Es gilt $G''(x) = 2 \cdot a + b$.		
Wenn $a + b + c = 0$ gilt, dann $G(1) = 0$.		

Aufgabe 2 (Erlösfunktion)

Sei $E(x) = -2x^2 + 32x$ eine Erlösfunktion.

- (a) Jemand behauptet, der Erlös für 10 ME liege bei 120 GE. Prüfen Sie diese Behauptung.
- (b) Berechnen Sie die Produktionsmengen x so, dass E(x) = 96 gilt.
- (c) Ermitteln Sie die erlösmaximale Ausbringungsmenge und den maximalen Erlös.
- (d) Geben Sie die Sättigungsmenge an und bestimmen Sie den Prohibitivpreis.

Aufgabe 3 (Gewinnfunktion)

Sei $G(x) = -3x^2 + 60x - 225$ eine Gewinnfunktion.

- (a) Geben Sie G(0) an und interpretieren Sie das Ergebnis im Sachzusammenhang.
- (b) Berechnen Sie die Gewinnschwelle (Break-Even-Point).
- (c) Zeigen Sie, dass für die gewinnmaximale Ausbringungsmenge x_M hier $x_M = 10$ gilt.
- (d) Jemand behauptet, dass die gewinnmaximale Ausbringungsmenge bei allen quadratischen Gewinnfunktionen genau in der Mitte zwischen der Gewinnschwelle und der Gewinngrenze liegt. Prüfen Sie diese Behauptung.