

Maharaja Education Trust (R), Mysuru MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

An Autonomous Institute, affiliated Visvesvaraya Technological University, Belagavi Belawadi, Srirangapatna Taluk, Mandya – 571 477 Approved by AICTE, New Delhi [Recognized by Govt. of Karnataka]

First Semester B.E Degree Examination, February/March 2024 Mathematics-1 for Computer Science and Engineering Stream

Duration: 3 hrs

Max. Marks: 100

Note: 1. Answer five full questions choosing one complete question from each module.

2. Formula Hand Book is permitted

3. M: Marks, L: Bloom's level, C: Course outcomes.

b) F c) S r b) F c) U r 3 a) E	With usual notation prove that $tan\emptyset = r \frac{d\theta}{dr}$ Find the angle between the curves $r^2 sin2\theta = 4$ and $r^2 = 16 sin2\theta$ Show that the radius of curvature of the curve $x = a(cost + t sint)$ $y = a(sint - t cost)$ is at OR Show that the angle of intersection of the curves $r = a \log \theta$ and $r = \frac{a}{\log \theta}$ is $tan^{-1} \left[\frac{2e}{1-e^2} \right]$.	6 7 7	CO1 CO1	L2 L2 L2
b) F c) S r b) F c) U r 3 a) E	With usual notation prove that $tan\emptyset = r \frac{d\theta}{dr}$ Find the angle between the curves $r^2 sin 2\theta = 4$ and $r^2 = 16 sin 2\theta$ Show that the radius of curvature of the curve $x = a(cost + t sint)$ $y = a(sint - t cost)$ is at OR Show that the angle of intersection of the curves	7 7	CO1	+
b) F c) S r b) F c) U r 3 a) E	Find the angle between the curves $r^2 sin 2\theta = 4$ and $r^2 = 16 sin 2\theta$. Show that the radius of curvature of the curve $x = a(cost + t sint)$ $y = a(sint - t cost)$ is at OR Show that the angle of intersection of the curves	7		+
2 a) S r b) F c) U r 3 a) E	Show that the radius of curvature of the curve $x = a(cost + t sint) \ y = a(sint - t cost) \text{ is } at$ OR Show that the angle of intersection of the curves	7		+
2 a) S r b) F c) U r 3 a) E	x = a(cost + t sint) $y = a(sint - t cost)$ is at OR Show that the angle of intersection of the curves			122
2 a) S r b) F c) U r 3 a) E	OR Show that the angle of intersection of the curves	7		1
3 a) E	The state of the s	7		
b) F c) U r 3 a) E 4 b) 1	$r = a \log \theta$ and $r = \frac{a}{\log \theta}$ is $tan^{-1} \left[\frac{2e}{1 - e^2} \right]$.	1 /	C01	L2
3 a) E				
3 a) E	Find the pedal equation of the curve $r^m = a^m(cosm\theta + sinm\theta)$	7	CO1	L2
3 a) E	Using modern mathematical tool, write a program/code to plot the curve	6	CO5	L3
κ b) ∐	$r = a(1 + \cos\theta)$ and $r = a(1 - \cos\theta)$.			
κ b) ∐	Module 2		T 60 1	
() E	Expand $\log(1 + \sin x)$ by Maclaurin's series up to the fourth degree term.	6	C01	L2
c) E	If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.	7	CO1	L2
c) 1	Find the extreme values of the function $x^3 + 3xy^2 - 3x^2 - 3y^2 + 4$.	7	CO1	L2
	OR			
4 a)	Evaluate (i). $\lim_{x \to 0} (\cot x)^{\frac{1}{\log x}}$ (ii). $\lim_{x \to 0} \left(\frac{a^x + b^x + c^x + d^x}{4} \right)^{\frac{1}{x}}$	7	CO1	L3
p) 1	If $u = x^2 + y^2 + z^2$, $v = xy + yz + zx$, $w = x + y + z$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.	7	CO1	L2
J	Using modern mathematical tool, write a program/code to show that			ø.
	$xu_x + yu_y = 1, ifu = \log\left(\frac{x^2 + y^2}{x + y}\right)$	6	CO5	L3
	Module 3			
5 a) x 5	Solve: $(8xy - 9y^2)dx + 2(x^2 - 3xy)dy = 0$	6	CO2	L2
b) ⊀ I	Find the orthogonal trajectories of the family $r = 2a(\cos\theta + \sin\theta)$	7	CO ₂	L2 L2
c) S	Solve: $4y^2p^2 + 2pxy(3x + 1) + 3x^3 = 0$	7	CO2	L2
	OR		CO2	LZ
6 a)	- OR	6		

_b)	Show that the family of parabola $x^2 = 4a(y + a)$ is self-orthogonal.	7	CO ₂	L2
c)	Find the general solution of the equation $e^{4x}(p-1) + e^{2y}n^2 = 0$ by	7	CO2	LI
	reducing in to Clairut's form by taking the substitution $u = e^{2x}$, $v = e^{2y}$.		002	
	Module 4		1	
7a)	(i) Find the remainder when 2 ¹⁰⁰⁰ is divided by 13.	6	CO3	L2
	(ii) Find the last digit of 7 ²⁰¹³			~~
b)	Solve the system of linear congruence	7	CO3	L2
	$x \equiv 3 \pmod{5}$, $x \equiv 1 \pmod{7}$, $x \equiv 6 \pmod{8}$			
	Using Chinese remainder theorem.			
c)	Find the general solution of linear Diophantine equation	7	CO3	L2
	123x + 57y = 531			
	OR			
8a)	(i) Find the remainder when 2(26)! is divided by 29.	6	CO3	L2
	(ii) Find the remainder when 5 ¹¹ is divided by 7 using Fermat's			
	Little theorem.			
b)	Solve the system of linear congruence	7	CO3	L2
	$3x + 4y \equiv 5 \pmod{13}, \qquad 2x + 5y \equiv 7 \pmod{13}$			
c)	(i) Solve $x^3 + 2x - 3 \equiv 0 \pmod{9}$	7	CO3	L2
	(ii) Find the remainder when $347 \times 74 \times 36$ is divided by 3			
	Module 5			
9 a)	$\begin{bmatrix} 1 & -2 & -1 & 3 \end{bmatrix}$	6	CO4	L2
•	Find the rank of the matrix $\begin{vmatrix} 2 & 5 & -4 & 7 \\ -1 & -2 & -1 & 2 \end{vmatrix}$			
	-1 -2 -1 2			
	3 3 -5 10			
L. S	For what values of k the equations	_		
D)K	$x + y + z = 1$, $x + 2y + 4z = k$, $x + 4y + 10z = k^2$	7	CO4	L2
	have a solution. Solve completely.			
c)	Solve the system of equations by Gauss-Jordan method.	7	CO4	L2
	2x + y + 3z = 1, $4x + 4y + 7z = 1$, $2x + 5y + 9z = 3$			
	OR			
10a	Solve the system of equations	7	CO4	L2
20	28x + 4y - z = 32, $2x + 17y + 4z = 35$, $x + 3y + 10z = 24$			
	by Gauss Seidel method. Perform five iterations.			
b)	Use Rayleigh's power method to find the largest Eigen value and	7	CO4	L3
	corresponding Figure vector of the matrix 2 2 1 take V = 0.0			
	corresponding Eigen vector of the matrix $\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ take $X_0 = \begin{bmatrix} 1 \\ 0.8 \\ -0.8 \end{bmatrix}$			
	Perform five iterations.			
c)	Using modern mathematical tool, write a program/code to test the consistency	6	CO5	L3
-,	of the equations	U	003	LS
	x + 2y - z = 1, $2x + y + 4z = 2$, $3x + 3y + 4z = 1$			
	2, 2, 2, 2, 1, 1, 2, 3, 3, 1, 1, 1, 2, 1			