

	1		
Batch: A	3	Roll No.:	16014022050
Name :K	etaki 1	achay	an
Course :	EXLP		
Experiment /	a ssignmen	tutorial N	No
Grade:	Signa	ture of the	Faculty with date

0.1	Find z kansform of $3^{K+1}5^{K}$, $K \ge 0$.
Ψ.	The 2 harrison of 5 5 5,
	z transformed is defined as,
	$\chi(z) = \sum_{k=0}^{\infty} \chi(k) z^{-k}$
	κ=0
	Z transform of 3^k , $\chi_1(2) = \sum_{k=0}^{\infty} 3^k 2^{-k}$.
	Using formula for sum of geometric series, $\chi_1(z) = \sum_{k=0}^{\infty} (3z^{-1})^k$
	= _1_
	= <u>1</u> 1-3/2
	Similarly, z transform of 5K is 1
	1-51/2
-	Now using cinearity properly, $X(2) = X_1(2) + X_2(2) = 01 + 1$ $1^{-3/2} 1^{-5/2}$
	1-3/2 1-5/2
	$= 1 - \frac{5}{2} + 1 - \frac{3}{2} = 2 - \frac{8}{2}$ $= 1 + \frac{15}{2^2} - \frac{8}{2} = \frac{2 - \frac{8}{2}}{15/2^2} - \frac{8}{2} + 1$
	$(mulhiphying by = 22^2 - 82$
	13 82 12
	$= 22^{2} - 82 $ $(2-3)(2-5)$
	4
Q·2.	Find Z transform of e-3k sin 2k.
	We know, $Z \left\{ sin bk \right\} = Z sin b$ $Z^{2} - 2z losb + 1$
	$\therefore Z\left\{\sin 2\kappa\right\} = \frac{Z\sin 2}{Z^2 - 2Z\cos 2 + 1}$
	$= \frac{e^{-3}z \sin(2)}{z^2 - 2e^{-3} \cdot 2(os(2) + e^{-6})}$

Q.3.	Find 2 transform of K2 aK-1, K > 0.
	We know that $2\{f(\kappa-n)\}=z^{-n}.F(n)$
	:. $2 \left\{ a^{k-1} \right\}^2 = 2^{-1} F(2)$ when $F(2) = 2(a^k) = 2$
	$\therefore z\left\{a^{k-1}\right\} = z^{-1} \cdot z = 1$ $z-q = 2-q$
	$\therefore 2 \left\{ \frac{K \cdot a^{K-1}}{dz} \right\} = -2 \frac{d}{dz} \cdot \left(\frac{1}{2-\alpha} \right)$
	$= -2 \cdot (-1) = 2$ $(2-a)^2 (2-a)^2$
	$\therefore z\left\{K^2 \cdot a^{k-1}\right\} = 2\left\{K \cdot \left(Ka^{k-1}\right)\right\}$
	$= - Z \left[\frac{(2-\alpha)-2z}{(2-\alpha)^3} \right]$
	$= \frac{Z(z+q)}{(z-q)^3}$, $ z > a $
Q.4.	Find inverse z transform of $F(2) = \frac{1}{Z-2}$ when
	(i) (2 <2 (ii) (2 >2
,	(i). When 121<2, if 121<121 i.e 12/21<1, we take '2' outside,
	$F(z) = 2 \left\{ \frac{f(k)}{f(k)} \right\} = \frac{1}{2 - 2} = \frac{1}{2} = \frac{-1 \cdot 1}{2 \cdot 1 - (2/2)} = \frac{-1}{2} \left(\frac{1 - 2}{2} \right)^{-1}$
	$F(2) = -\frac{1}{2} \left[\frac{1+z+2^2++2^k+}{2^2++2^2++2^k+} \right]$

	2
Batch: A	-3 Roll No.: 16014022050
Name :K	etaki Mahajan
Course :	EXCP U
Experiment/	assignment / tutorial No
Grade:	Signature of the Faculty with date

	Grade. Signature of the Faculty with date
	$ = - \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$= - \begin{bmatrix} 2^{-1} + 2^{-2} & 4 & 3 & 2 \\ & & & & & \\ & & & & & \\ & & & & &$
	2 2 2 7 2 2 7 + 2 2 2 7
	$\therefore \text{ loefficient of } 2^{K} = -9 \cdot 2^{-K-1} K \geqslant 0$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$z^{-1}[F(2)] = \{f(K)\} = \{-2^{K-1}\}, K \leq 0$
	(ii). When 121 > 121,
	(ii). When 121 > 121, if 121 > 121, 2 > 1 i.e 3 <1, we take larger
	term '2' outside,
	$F(2) = 2[f(k)] = \frac{1}{2-2} = \frac{1}{2[1-2/2]} = \frac{1}{2}(1-2)^{-1}$
	$= \frac{1}{2} \left(\frac{1+2}{2} + \frac{2^{2}}{2^{2}} + \cdots + \frac{2^{k-1}}{2^{k-1}} + \cdots \right)$
	$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2^{k-1}} + \dots$
	: loefficients of z-k = 2 k-1, k > 1
	$Z^{-1}\left[f(2)\right] = \left\{f(k)\right\} = \left\{2^{k-1}\right\}, k \geqslant 1$
Q :5.	Find inverse 2 transform of $F(2) = 2+2$, $ 2 >1$.
	We have, $F(2) = 2+2 = 2+2 = 3 + 1$ $2^{2}17+1$ $(2-1)^{2}$ $(2-1)^{2}$ $(2-1)^{2}$ $(2-1)^{2}$
	Since, 12/21, 1/21, We take 2 out