

Today's Class

- Random Variables
- Discrete Random Variables
- Probability Mass Function
- Cumulative Distribution Function
- Expected Values
- Variances

Random Variables

- A random variable (rv) associates a number with each outcome in the sample space
 - We denote random variables with upper case letter, X
 - The observed numerical value once the experiment is run is denoted by the corresponding lower case letter, x
- In mathematical terms, a rv is a function whose domain is the sample space and the range is the set or real numbers

Random Variable Example

 A tall antenna is built on a mountain top where an extreme wind event occurs.
 Either the antenna fails (F) or survives (S)

$$s = \{F, S\}$$

 If the rv X is associated with the outcomes,

$$X(S) = 1, X(F) = 0$$

1 indicates that the antenna survived0 indicates that the antenna failed

Types of Random Variables

- o Discrete Random Variable:
 - takes a finite number of values
 e.g. the number of cars lined up at the
 FasTrak Entrance
- o Continuous Random Variable:
 - takes all values in an interval
 e.g. the time each car must

Probability Mass Function Example

- Suppose you flip two coins, a rv, X, is the number of heads in the experiment
 - What is the sample space?
 - What is the probability of each outcome in the sample space?

Probability Mass Function

 A Probability Mass Function (pmf), also called probability distribution, is a function p(x) that assigns to each possible value x that the random variable X can take, its probability

$$p(x) = P(X = x)$$
$$= P(all s \in S : X(s) = x)$$

- $p(x_i) \ge 0$ for each possible value x_i of X
- $\sum_{\text{all } x_i} p(x_i) = 1$

Example: pmf

- Consider 10 truckloads of rebar are delivered to the job site. On each of those truckloads, there will be some damaged bars (X).
 - What is the sample space?
 - What is the pmf?

Truckload	1	2	3	4	5	6	7	8	9	10
Number of damaged bars	0	0	1	0	1	0	2	1	0	2

Cumulative Distribution Function

• The cumulative distribution function (cdf) of a r.v. X is

$$F(x) = P(X \le x) = \sum_{x \le x} P(X = x_i)$$

which gives the sum of the probabilities up to that value x

Cumulative Distribution Function

- Any probability distribution must follow the axioms of probability
 - $F(-\infty)=0$; $F(\infty)=1$
 - F(x) ≥ 0 and is weakly increasing
 - It is continuous in x
- Any function that satisfies these axioms is a cdf

• • •

Expected Value Example

- Let X = number of working bulldozers after 6 months. Assume the probability that a bulldozer is working after 6 months is 0.8, and there are 3 dozers.
 - Find the pmf
 - Find the cdf
 - What is the expected value of the number of dozers working after 6 months?

Expected Value

 The expected value is the long run expected mean, if you were to see X over and over again

$$\text{E}\!\left[\boldsymbol{X}\right]\!=\boldsymbol{\mu}_{_{\boldsymbol{X}}}=\textstyle\sum_{\boldsymbol{x}\in\boldsymbol{D}}\boldsymbol{X}\ \cdot\ \boldsymbol{p}\!\left(\boldsymbol{x}\right)$$

Example: Expected Values

 In previous example, at least 2 dozers are needed to finish a \$100K job. Every dozer that was brought in after 6 months costs \$10K. What is your expected profit if you start with 3 dozers?

Expected Value of a Function

 Consider that there might be a functional relationship with X with a set of possible values D and pmf p(x) such that we have a probability of h(X)

$$\text{E}\big[h(X)\big] = \sum_{D} h(x) \cdot p(x)$$

Example: E[X] Properties

 Your profit is equal to \$6000 plus \$10 for every dozer that is working at 6 months.
 What is the expected value of your profit?

• • • Properties of Expected Value

$$E(X_1 + X_2) = E[X_1] + E[X_2]$$

$$E(aX+b) = a \times E[X] + b$$

Variance Example

 In the previous example of bull dozer, find variance of the number of dozers working after 6 months?

X	0	1	2	3
P(x)	.008	.096	.384	.512

• • •

Variance

o The variance is defined as

$$V(X) = \sigma^{2}$$

$$= E[(X - \mu)^{2}]$$

$$= \sum_{D} (x - \mu)^{2} \cdot p(x)$$

$$= E[X^{2}] - \mu^{2}$$

• • •

Properties of Variance & Standard Deviation

$$V(aX+b) = a^2\sigma^2x$$

$$\sigma_{aX+b} = |a|\sigma_X$$

- In previous example, at least 2 dozers are needed to finish a \$100K job. Every dozer that was brought in after 6 months costs \$10K. Suppose you start with 3 dozers.
 - What is the variance of your profit?