

CoCoMo

Constructive Cost Model

Práticas e Gestão de Projetos Prof° Edmir P. V. Prado

> Diego Bertolo Talitha Kamezawa Tamiris Perestrelo Thiago Shirata

CoCoMo

CoCoMo II

Exemplo

- Planejamentos com base empírica podem inviabilizar o projeto de software por:
 - Não atender requisitos básicos
 - Gerar retrabalho ou o não atendimento das necessidades previstas
 - Gerar o atraso das atividades
- Portanto, é necessária métodos de estimativas para o desenvolvimento de um projeto de software.

- Problemas das estimativas em projetos de software:
 - Tamanho
 - Esforço
 - Tempo (Prazo)
 - Qualidade
- Abordagens para estimar esforço e prazo:
 - Modelos Paramétricos
 - Relação matemática entre tamanho, esforço e prazo
 - Modelos Baseados em Atividades
 - Atividades enumeradas são avaliadas por meio do esforço e prazo de cada uma.
 - Analogia
 - Características do projeto são comparadas com outros projetos concluídos
 - Relações Simples de Estimativas
 - Simplificação do modelo Paramétrico

CoCoMo

CoCoMo II

Exemplo

CoCoMo

- Criado por Barry Boehm em 1981.
 - Na Universidade da Califórnia do Sul (USC)
- Exemplo de Modelo Paramétrico
- Busca medir esforço, prazo, tamanho de equipe e custo necessário para desenvolvimento do software.
- Necessita da dimensão do software, ou seja, do PF
- Atualmente está na sua versão CoCoMoII (2000)
- Ferramenta do software gratuita.
 - <http://csse.usc.edu/tools/COCOMOII.php>

CoCoMo

CoCoMo II

Exemplo

CoCoMo II

- Modelo prevê adicional de 20% ao tempo computado (margem de erro
- Objetivos:
 - Criar ferramentas de suporte capazes de fornecer melhoramentos do modelo
 - Fornecer um framework analítico e um conjunto de ferramentas e técnicas para avaliação dos efeitos de melhoria na tecnologia e nos custos despendidos no desenvolvimento de software.
- Há três sub-modelos para aumentar a precisão e fidelidade da estimativa
 - Application Composition:
 - aplicado na fase de prototipação o ciclo de vida espiral
 - Early Design
 - as exigências são conhecidas e as alternativas de arquitetura do software foram exploradas
 - Post-Architecture
 - o modelo o mais detalhado e envolve as etapas de construção real do software e de manutenção.

CoCoMo II - Submodelos

1. Application Composition

- Como medida de tamanho, utiliza-se Object Points.
 - Os Object Points devem ser categorizados em simples, médios, e difíceis. E pesos devem ser atribuídos a cada objeto.
 - Some todos os objetos da aplicação para contar os OP
- Para medir o *esforço*, estima-se primeiramente os new object points
 (NOP) necessários para o desenvolvimento.
 - ■Então avalie, a taxa da produtividade, na razão de: NOP/pessoamês.
 - ■E por fim compute a estimativa de pessoa-mês.

CoCoMo II - Submodelos

- 2. Early Design indicado quando as exigências são conhecidas e quando foram exploradas as alternativas de arquitetura do software
 - Utiliza-se drivers de custo para estimar o esforço necessário para terminar o projeto.
 - Esses drivers de custo contêm os níveis de avaliação (que variam de extremamente baixo a extremamente altamente) que definem o impacto do driver do custo no esforço do desenvolvimento.
 - Cada nível de avaliação tem um peso associado chamado multiplicador de esforço.

3. Post-Architeture

- Modelo mais detalhado do CoCoMo II.
- Tem novos drivers de custo, novas regras para contagem de linhas de código, e novas equações
- Estimativa mais precisa em relação aos outros modelos pela quantidade e precisão das informações disponíveis para elaboração da mesma.

CoCoMo II - Características

- Calibração do modelo
 - Ajuste de A (% de reuso do código)
- Fatores de escala
 - Determinar gastos ou economias
 - $_{\circ}$ b = 1,01 + 0,01 x \sum SFj, onde SF é Scale Factor
 - se b < 1: projeto apresenta economia
 - se b = 1: economias e gastos equilibrados
 - se b > 1: projeto apresenta gastos
- Multiplicadores de Esforço
 - Peso associado a cada driver de custo
 - Cada submodelo possui uma maneira de calcular EM.

CoCoMo II - Realizando medições

- PF são considerados quando ainda não foram ajustados
- 1° Passo Calibrar o CoCoMo II para a base histórica de projetos obtida, salvando os coeficientes em um modelo; (comum a todos os submodelos)
- 2° Passo Aplicar a fórmula para o cálculo do esforço de desenvolvimento
 - o Depende do modelo de desenvolvimento utilizado

CoCoMo II - Realizando medições

- Computar o número de Pontos de Objeto (OP) para o sistema inteiro;
- Estimar o percentual de reutilização de código e computar o número de Novos Pontos de Objeto (NOP) requeridos;
- Determinar a taxa de produtividade (PROD), que é o número de novos pontos objetos por mês que a equipe de projeto pode produzir;
- Esforço: **E = NOP/PROD**

- Calcular pontos de função não ajustados (PFNA) para o sistema;
- Converter os PFNA para KSLOC;
- Ajustar a estimativa inicial através do conjunto de drivers de custo;
- 1. Complexidade e confiabilidade do produto
- 2. Reutilização requerida
- 3. Dificuldade da plataforma
- 4. Experiência da equipe
- 5. Capacidade da equipe
- 6. Facilidades disponíveis
- 7. Programação
- Esforço:
- PM = A x KSLOC^b x ∏ EM (drivers de custo)

- A fórmula de estimativa para este modelo é dada pela equação:
- PM = a x 2,94 x (SIZE) ^b x
 ∏EM (drivers de custo);
- a: é determinado pelo tipo de projeto;
- O expoente "b" é derivado da soma dos 5(cinco) fatores de escala utilizando a fórmula:
- $b = 1,01 + 0,01 \times \sum Wi$,
- Onde Wi = [0(alto);5 (baixo)]
- Fatores são:
 - Precedência Flexibilidade de desenvolvimento -Resolução do risco/arquitetura - Coesão da equipe - Maturidade do processo

Application Composition

Early Design

CoCoMo II - Realizando medições

TDEV =
$$3.67 \times \{PM \setminus [0.28 + 0.2 \times (b - 1.01)]\}$$

Onde: B assume o mesmo valor da fórmula para PM

• **4° Passo** – Equipe Média (quantidade de homens) é obtida pela seguinte fórmula.

$$P = PM/TDEV$$

Onde: PM é o esforço calculado e TDEV é o prazo calculado

*1 mês de trabalho = 152 horas de trabalho

• **5° Passo** – Calculo do custo.

Com o prazo (TDEV) e Equipe Média (P) é possível estimar o custo do software, conhecendo, além dessas variáveis, o valor hora de cada integrante envolvido no projeto.

CoCoMo

CoCoMo II

Exemplo

CoCoMo II - Exemplo

1° Passo - Dados do projeto

- Total de Pontos de Função não Ajustados (PFNA): 1029
- Ajuste de PFNA com o peso da linguagem Visual Basic® = 32
 SIZE = (1029 x 32)/1000 = 32,928.

2° Passo - Encontrando o Esforço de Desenvolvimento

E = A x (SIZE) ^ b E = 2,94 x <u>32,928</u> ^ 1,115 = 145 meses

PM(ajustado) = E x \prod EM PM(ajustado) = 145 x 0,91 = 133 meses as estimativas são referentes ao custo dos produtos

3° Passo - Encontrando o Tempo de Desenvolvimento

TEDV = $3.67 \times PM(ajustado) ^ (0,28 + 0,2 \times (b - 1,01))$ TEDV = $3.67 \times 133 ^ (0.28 + 0,2 \times (1,115 - 1,01) = 16 meses$

CoCoMo II - Exemplo

4° Passo - Encontrando a Estimativa de RH

P = PM(ajustado) / TDEV

P = 133 meses $\frac{16}{16}$ meses ≈ 8 pessoas

5° Passo - Encontrando o Custo do Produto

- 152 horas mensais: 8 horas diárias 19 dias úteis mensais
- Custo aproximado da hora de cada integrante = R\$5,00

Total de dias = $\underline{19}$ dias x $\underline{16}$ meses = 304Total de horas por pessoa = $\underline{8}$ h/dia x $\underline{304}$ dias = 2432 horas Total de horas no projeto = $\underline{2432}$ h x $\underline{8}$ integrantes = 19.456 horas

Custo estimado = 19.456h x R\$5,00 = **R\$ 97.280**

CoCoMo II - Exemplo: Análise

	Estimado Empresa	Estimado CoCoMo II	Realizado
Status do Produto			Concluído
Tempo (dias)	400	304	325
Esforço do número de integrantes	8	8	8
Tamanho	Não aplicado	32.928	56.8502
Custo (reais)	128.000	97.280	104.000

- Tempo:
 - o defasagem entre Estimado Empresa e Realizado foi de 22,07%.
 - o diferença entre Estimado CoComo II e realizado é de 6,46%.
- Tamanho:
 - Empresa: não estima esta característica, não há maneira de comparar.
 - COCOMO: a diferença é de 41% (muita repetição de código, não foi estimada a reutilização do código)

CoCoMo

CoCoMo II

Exemplo

Referências Bibliográficas

AGUIAR, Maurício. **Estimando os Projetos com CoCoMo II no RUP.** Rio de Janeiro, set. 2002. Developers.

LOPEZ, Pablo A. do P. **COCOMO II - Um modelo para estimativa de custos de Gerência de Projetos.** Universidade do Vale do Rio dos Sinos. São Leopoldo, RS. Disponível

em: http://www.unibratec.com.br/anaisdecongresso/diretorio/01%20UNISI

NOS+PAPL.pdf> Acessado em: 30 set. 2010