COSE312: Compilers

Lecture 15 — Semantic Analysis (5)

Hakjoo Oh 2017 Spring

Announcement

- No class on next week (5/22, 5/24)
- Homework 3 is out (due 5/28)

Semantic Analysis (Static Analysis)

The goal is to prove the absence of certain types of semantic errors. For example, we aim to prove that

If x is a positive value, f(x) is never 0

for the following function:

```
int f(int x) {
  y := 1;
  while (x != 0) {
    v := v * x;
    x := x - 1;
  return y;
x = f(5); y = 10 / x;
x = f(7); y = 10 / x;
x = f(2); y = 10 / x;
```

Semantic Analysis is Undecidable

For example, we cannot statically decide the possible values of \boldsymbol{x} at the last statement:

if
$$\cdots$$
 then $x := 1$ else $(S; x := -1); y := x$

The value of x is 1 if S does not terminate; otherwise, x can be either 1 or -1. Determining the value of x requires to solve the halting problem, which is undecidable in general.

Principle of Static Anaylsis

Static analysis aims to compute safe approximations of the program semantics.

$$12345 + 9873 * 5925 + (-5918) * (-881) = ?$$

- Concrete semantics: 63,723,628
- Static analysis: [50,000,000, 100,000,000]
- Static analysis: a positive number
- Static analysis: an even number

"Abstract interpretation" of programs: e.g.,

$$p \; \hat{+} \; p \; \hat{*} \; p \; \hat{+} \; n \; \hat{*} \; n = p \; \hat{+} \; p \; \hat{+} \; p = p \; \hat{+} \; p = p$$

Example: Sign Analysis

```
int f(int x) {
  y := 1;
  while (x != 0) {
    y := y * x;
    x := x - 1;
  }
  return y;
}
```

Abstract Domain and Semantics

Static analysis is defined with abstract domain and abstract semantics:

- abstract domain: abstract representation of program values
 - represented by a CPO
- abstract semantics: abstract interpretation of the concrete semantics of the program
 - lacktriangleright represented by a monotone function F

Abstract Domain of Sign Analysis

We abstract integers by the complete lattice (**Sign**, \sqsubseteq):

Abstract Domain of Sign Analysis

The meaning is defined by the abstraction and concretization functions:

$$\begin{array}{lll} \alpha_{\mathbb{Z}} & : & \mathcal{P}(\mathbb{Z}) \rightarrow \mathsf{Sign} \\ \alpha_{\mathbb{Z}}(Z) & = & \bigsqcup_{z \in Z} \alpha_1(z) \\ & \text{where } \alpha_1(z) = \left\{ \begin{array}{lll} \mathrm{NEG} & \cdots z < 0 \\ \mathrm{ZERO} & \cdots z = 0 \\ \mathrm{POS} & \cdots z > 0 \end{array} \right. \\ & \gamma_{\mathbb{Z}} & : & \mathsf{Sign} \rightarrow \mathcal{P}(\mathbb{Z}) \\ & \gamma_{\mathbb{Z}}(\mathrm{NONE}) & = & \emptyset \\ & \gamma_{\mathbb{Z}}(\mathrm{POS}) & = & \{z \mid z > 0\} \\ & \gamma_{\mathbb{Z}}(\mathrm{NEG}) & = & \{z \mid z < 0\} \\ & \gamma_{\mathbb{Z}}(\mathrm{ZERO}) & = & \{0\} \\ & \gamma_{\mathbb{Z}}(\mathrm{NON-POS}) & = & \{z \mid z \leq 0\} \\ & \gamma_{\mathbb{Z}}(\mathrm{NON-NEG}) & = & \{z \mid z \geq 0\} \\ & \gamma_{\mathbb{Z}}(\mathrm{NON-ZERO}) & = & \{z \mid z \neq 0\} \\ & \gamma_{\mathbb{Z}}(\mathrm{ANY}) & = & Z \end{array}$$

Abstract Domain of Sign Analysis

The truth values $\mathbf{T} = \{true, false\}$ are abstracted by the complete lattice $(\widehat{\mathbf{T}}, \sqsubseteq)$:

Exercise) Define the abstraction and concretization functions:

$$\alpha_T: \mathcal{P}(T) \to \widehat{\mathsf{T}}, \qquad \gamma_T: \widehat{\mathsf{T}} \to \mathcal{P}(T)$$

Abstract Memory State

The complete lattice of abstract states:

$$\widehat{\mathsf{State}} = \mathit{Var} o \mathsf{Sign}$$

with the pointwise ordering \sqsubseteq :

$$\hat{s}_1 \sqsubseteq \hat{s}_2 \iff \forall x \in Var. \ \hat{s}_1(x) \sqsubseteq \hat{s}_2(x).$$

The least upper bound: for $Y \subseteq \widehat{\mathsf{State}}$,

$$\bigsqcup Y = \lambda x. \bigsqcup_{\hat{s} \in Y} \hat{s}(x)$$

Lemma

Let S be a non-empty set and (D,\sqsubseteq) be a poset. Then, the poset $(S o D,\sqsubseteq)$ with the ordering

$$f_1 \sqsubseteq f_2 \iff \forall s \in S. \ f_1(s) \sqsubseteq f_2(s)$$

is a complete lattice if D is a complete lattice, and it is a CPO if D is a CPO.

Abstract Memory State

The abstraction and concretization functions for the abstract states:

$$lpha: \mathcal{P}(\mathrm{State})
ightarrow \widehat{\mathsf{State}}$$
 $lpha(S) = \lambda x. igsqcup lpha_{\mathbb{Z}}(\{s(x)\})$ $\gamma: \widehat{\mathsf{State}}
ightarrow \mathcal{P}(\mathrm{State})$ $\gamma(\hat{s}) = \{s \in \mathrm{State} \mid orall x \in \mathit{Var}. \ s(x) \in \gamma_{\mathbb{Z}}(\hat{s}(x))\}$

The abstract semantics of arithmetic expressions:

$$\begin{split} \widehat{\mathcal{A}} \llbracket \ a \ \rrbracket & : \quad \widehat{\mathsf{State}} \to \mathsf{Sign} \\ \widehat{\mathcal{A}} \llbracket \ n \ \rrbracket (\hat{s}) & = \quad \alpha_{\mathbb{Z}}(\{n\}) \\ \widehat{\mathcal{A}} \llbracket \ x \ \rrbracket (\hat{s}) & = \quad \hat{s}(x) \\ \widehat{\mathcal{A}} \llbracket \ a_1 + a_2 \ \rrbracket (\hat{s}) & = \quad \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) +_S \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{A}} \llbracket \ a_1 \star a_2 \ \rrbracket (\hat{s}) & = \quad \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) \star_S \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{A}} \llbracket \ a_1 - a_2 \ \rrbracket (\hat{s}) & = \quad \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) -_S \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \end{split}$$

$+_S$	NONE	NEG	ZERO	POS	NON- POS	NON- ZERO	NON- NEG	ANY
NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE
NEG	NONE	NEG	NEG	ANY	NEG	ANY	ANY	ANY
ZERO	NONE	POS	ZERO	POS	NON- POS	NON- ZERO	NON- NEG	ANY
POS	NONE	ANY	POS	POS	ANY	ANY	POS	ANY
NON- POS	NONE	NEG	NON- POS	ANY	NON- POS	ANY	ANY	ANY
NON- ZERO	NONE	ANY	NON- ZERO	ANY	ANY	ANY	ANY	ANY
NON- NEG	NONE	ANY	NON- NEG	POS	ANY	ANY	NON- NEG	ANY
ANY	NONE	ANY	ANY	ANY	ANY	ANY	ANY	ANY

\star_S	NEG	ZERO	POS
NEG	POS	ZERO	NEG
ZERO	ZERO	ZERO	ZERO
POS	NEG	ZERO	POS

S	NEG	ZERO	POS
NEG	ANY	NEG	NEG
ZERO	POS	ZERO	NEG
POS	POS	POS	ANY

The abstract semantics of boolean expressions:

$$\begin{split} \widehat{\mathcal{B}} \llbracket \ b \ \rrbracket & : \quad \widehat{\mathsf{State}} \to \widehat{\mathsf{T}} \\ \widehat{\mathcal{B}} \llbracket \ \mathsf{true} \ \rrbracket (\hat{s}) & = \quad \mathsf{TT} \\ \widehat{\mathcal{B}} \llbracket \ \mathsf{false} \ \rrbracket (\hat{s}) & = \quad \mathsf{FF} \\ \widehat{\mathcal{B}} \llbracket \ a_1 = a_2 \ \rrbracket (\hat{s}) & = \quad \widehat{\mathcal{B}} \llbracket \ a_1 \ \rrbracket (\hat{s}) =_S \ \widehat{\mathcal{B}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}} \llbracket \ a_1 \leq a_2 \ \rrbracket (\hat{s}) & = \quad \widehat{\mathcal{B}} \llbracket \ a_1 \ \rrbracket (\hat{s}) \leq_S \ \widehat{\mathcal{B}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}} \llbracket \ \neg b \ \rrbracket (\hat{s}) & = \quad \neg_S \widehat{\mathcal{B}} \llbracket \ b \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}} \llbracket \ b_1 \wedge b_2 \ \rrbracket (\hat{s}) & = \quad \widehat{\mathcal{B}} \llbracket \ b_1 \ \rrbracket (\hat{s}) \wedge_S \ \widehat{\mathcal{B}} \llbracket \ b_2 \ \rrbracket (\hat{s}) \end{split}$$

$=_S$	NEG	ZERO	POS
NEG	ANY	FF	$\mathbf{F}\mathbf{F}$
ZERO	$\mathbf{F}\mathbf{F}$	TT	$\mathbf{F}\mathbf{F}$
POS	FF	FF	ANY

\leq_S	NEG	ZERO	POS
NEG	ANY	TT	TT
ZERO	FF	TT	TT
POS	FF	$\mathbf{F}\mathbf{F}$	ANY

\neg_T	
NONE	NONE
TT	FF
FF	TT
ANY	ANY

\wedge_T	NONE	TT	FF	ANY
NONE	NONE	NONE	NONE	NONE
TT	NONE	TT	FF	ANY
FF	NONE	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	FF
ANY	NONE	ANY	FF	ANY

$$\widehat{\mathcal{C}} \llbracket \ c \ \rrbracket \ : \ \widehat{\mathbf{State}} \to \widehat{\mathbf{State}}$$

$$\widehat{\mathcal{C}} \llbracket \ x := a \ \rrbracket \ = \ \lambda \hat{s}. \hat{s} [x \mapsto \widehat{\mathcal{A}} \llbracket \ a \ \rrbracket (\hat{s})]$$

$$\widehat{\mathcal{C}} \llbracket \ \text{skip} \ \rrbracket \ = \ \operatorname{id}$$

$$\widehat{\mathcal{C}} \llbracket \ c_1; c_2 \ \rrbracket \ = \ \widehat{\mathcal{C}} \llbracket \ c_2 \ \rrbracket \circ \widehat{\mathcal{C}} \llbracket \ c_1 \ \rrbracket$$

$$\widehat{\mathcal{C}} \llbracket \ \text{if} \ b \ c_1 \ c_2 \ \rrbracket \ = \ \widehat{\mathbf{cond}} (\widehat{\mathcal{B}} \llbracket \ b \ \rrbracket, \widehat{\mathcal{C}} \llbracket \ c_1 \ \rrbracket, \widehat{\mathcal{C}} \llbracket \ c_2 \ \rrbracket)$$

$$\widehat{\mathcal{C}} \llbracket \ \text{while} \ b \ c \ \rrbracket \ = \ fix \widehat{F}$$

$$\text{where} \ \widehat{F}(g) = \widehat{\mathbf{cond}} (\widehat{\mathcal{B}} \llbracket \ b \ \rrbracket, g \circ \widehat{\mathcal{C}} \llbracket \ c \ \rrbracket, \operatorname{id})$$

$$\widehat{\mathbf{cond}} (f, g, h)(\hat{s}) = \begin{cases} \bot & \cdots f(\hat{s}) = \operatorname{NONE} \\ f(\hat{s}) & \cdots f(\hat{s}) = \operatorname{FF} \\ f(\hat{s}) \sqcup g(\hat{s}) & \cdots f(\hat{s}) = \operatorname{ANY} \end{cases}$$

Examples

```
• x := 0;
 y := 1;
 if (x == y)
  z := 1
 else
   z := -1
• x := 0;
 y := -1;
 while (x < 10) {
   x := x + 1;
   y := y + 1;
```

cf) Other Abstract Domains

Motivating example:

```
char a[10], b[10];
int x = input();
if (x > 0)
  if (x < 10)
    memcpy(a, b, x);</pre>
```

cf) Other Abstract Domains

The interval complete lattice:

$$\mathbb{I} = \{\bot\} \cup \{[l,u] \mid l,u \in \mathbb{Z} \cup \{-\infty,+\infty\} \ \land \ l \leq u\}$$

cf) Other Abstract Domains

The interval domain cannot infer the relationships between variables:

Summary

- Approaches to specifying semantics of programs
 - ▶ Big-step operational semantics
 - Small-step operational semantics
 - Denotational semantics
- Semantic analysis by safely approximating the program semantics
 - ► Sign analysis, interval analysis, octagon analysis, etc