A. Let H be a set of all points (x, y) on \mathbb{R}^2 , we also have $H = \{(x,y) \in \mathbb{R} \mid x^2 + 3y^2 = 123\}$. Now in H, we have a seq $(x_n, y_n) \Rightarrow t - 0 \neq converges in \mathbb{R}^2$ $x_n \to x + y \in \mathbb{R}^2, so x_n + y_n \to x_n + y_n$
Since $(xn, yn) \in H$ rece get $xn^2 + 3yn^2 = 12$ from (x) and it we square both sides we get: $xn^2 + yn^2 \rightarrow x^2 + y$. Since this holds we get that $x^2 + 3y^2 = 12$ $(x_1y_1 \in H_1)$ it also follows that the limit of the seq. is also in the set, so from this and the definition of close c set $(x_1y_2) \in H_2$ is closed set.
=> It is claved set. We know that It is subset of R ² , so It is a closed subset of R ² . X+3y ² =12 is a corcle, and me know that the max. distance between two points is the diameter => x ² +3y ² =12 is bounded. Since this two points are in It we get that It is bounded.
B. We have metric space M with metri d(M, d? W.T.S: any E-ball is open set at M, where a is a point From the def for E-ball rue have Be(a) = E x EM: d(x, a) < E3 or Be (a). Now we take E* s.t.
Using the A-inequality (we get: $d(x,a) \leq d(x,y) + d(y,a) < E - d(y,a) = E^*$ $d(x,a) \leq d(x,y) + d(y,a) < E + d(y,a) = E$ or $d(x,a) \leq E$

Homework 10 So we get that Be a is open ball, also we have that Betty = Be (a). 50 from the definition the open set => PE (an is open set so any E-ball is an open set. C. Eveledean metric dz = V(xx-yx2 + (xx-yx2)2 Manhattan metric de= 1/4 yait 1 x2-y21 far any point 2 dz Let A be a set and a sA and Exo, there w Som 3-6 0>0 and we apply det for open sets. We choose & & 50 me have: da(a, b) & 8 => dz(a, b) e (i) and delaps > 8 = dz (a, b) 2 (ib) WTS: That these metries define the same open set A. il delasti & 220a, b) then Brea, 81 @ B2(a, E) Do 14 A is an open set in agy for each a GA, 8>0 and E>0 B1(a, 8) CA => B2(a, E) e A => A is open set. ii) Now we have d2(a,b) & d1(a,b) then B2(a, E) @ B1(a, S) if A is an open set in dz, for each a 6 A, S>0 and Exo B2(a, E) CA => B, (a, 8) CA => A is open set D. We know that L is the set of ace points of a sea. in A So AUL contains all of these points ar AUL contains the limit of sed in A.

Since AUL contains all limit points. AUL is closed
WTP: ICAUL Let a & A, so we have RCA a RCA \A. So a GA is trivial so we only work wit a GALA We get that a KA and a EA Because A doesn't contain (imit points =) a

So from at A and a & L we get that ACAUL

point of A, ach

~
E. Let A be a set which contains two point x, y
with 2((x1, x2, 42), (x2, 42, 43)) = x1-y1+1x2-y2 + x1-y3
and let A CR3, the sea the sea compared
WTP: ASR3 is seq. comp <=> A closed + A bounded
i) for A GR3 is seq. comp => A closed 4 A bounded
Let tan) be a sea in A, whice converges to a a R,
Su every subsed of A converges to a.
of closed.
If the lomit of every convergent sea, of set belongs to the
If the lomit of every convergent seq. of set belongs to the set, then the set is closed => A is closed
Next suppose that A is unbounded, which is contradiction.
So every subseq. of can is unbounded and diverges; and
this implies that (an) has no convergent sebseq.
Since this contradicts the A to sep-compact => A is bounded
ii) For ACR3 is seq-comp <= A cosed + A bounded
For (an) being a seq. in A; we get that can? is bounded
since A is bounded
Since every bounded seq. of reel numbers has a convergent subseq. => (an) has a convergent subseq.
We know that A is closed and the it contains the Comin
of the subsect. => A.O. seg. comp