Extensive Games

Sometimes games are played by n players, in the following manner:

- The game starts.
- Player i_1 chooses and takes an action.
- Player i_2 chooses and takes an action.
- Player i_3 chooses and takes an action.
- •

The game continues until there is an outcome. Such games are called **extensive games**.

DEFINITION. An **extensive game with perfect information** has the following components.

- A set *N* (the set of **players**).
- A set *H* of sequences (finite or infinite) that satisfies the following three properties.
 - The empty sequence \emptyset is a member of H.
 - If $(a^k)_{k=1,\dots,K} \in H$ (where K may be infinite) and L < K then $(a^k)_{k=1,\dots,L} \in H$.
 - If an infinite sequence $(a^k)_{k=1}^{\infty}$ satisfies $(a^k)_{k=1,\dots,L} \in H$ for every positive integer L then $(a^k)_{k=1}^{\infty} \in H$.

- (H is the set of **histories**. A history $(a^k)_{k=1,\dots,K} \in H$ is **terminal** if it is infinite, or if there is no a^{K+1} such that $(a^k)_{k=1,\dots,K+1} \in H$. $Z \subseteq H$ is the set of terminal histories.)
- A function *P* that assigns to each nonterminal sequence (each member of *H\Z*) a member of *N*.
 (*P* is the **player function**, *P*(*h*) being the player who takes an action <u>after</u> the history *h*.)
- For each player $i \in N$ a preference relation \gtrsim_i on Z (the **preference relation** of player i on terminal histories).

An Extensive Game with Perfect Information:

 $\langle N, H, P, (\gtrsim_i) \rangle$.

If *H* is finite, then the game is *finite*.

If the longest history is finite, then the game has a *finite horizon*.

	with Finite Horizon	with Infinite Horizon		
Finite Game	$H = \left\{ \begin{array}{c} \\ \end{array} \right\}$	$H = \left\{ \begin{array}{c} \\ \end{array} \right\}$		
Infinite Game	$H = \left\{ \begin{array}{c} \\ \\ \vdots \end{array} \right\}$	$H = \left\{ \begin{array}{c} \\ \\ \vdots \end{array} \right\}$		

Ø is the *initial history*.

$$\underbrace{\frac{a \in A(h) \text{ by player } P(h)}{\text{player } P(h)}}_{h \in H} \qquad A(h) = \{a: (h, a) \in H\}$$

EXAMPLE. Two people agree to use the following procedure to share two gold coins.

- Player 1 proposes an allocation, and Player 2 accepts or rejects.
- If Player 2 rejects, no one receives any gold coin.

$$N = \{1,2\}$$

$$H = \{\emptyset, (2,0), (1,1), (0,2), ((2,0),y), ((2,0),n),$$

$$((1,1),y), ((1,1),n), ((0,2),y), ((0,2),n)\}$$

$$P(\emptyset) = 1; \text{ and } P(h) = 2 \text{ for any nonterminal } h \neq \emptyset.$$

$$((2,0),y) \succ_1 ((1,1),y) \succ_1 ((0,2),y) \sim_1 ((2,0),n) \sim_1 ((1,1),n) \sim_1 ((0,2),n)$$

$$((0,2),y) \succ_2 ((1,1),y) \succ_2 ((2,0),y) \sim_2 ((2,0),n) \sim_2 ((1,1),n) \sim_2 ((0,2),n)$$

A Possible Strategy for	A Possible Strategy for		
Player 1	Player 2		
	h = (2,0) : y		
$h = \emptyset: (2,0)$	h = (1,1) : n		
	h = (0,2) : n		

Is this a strategy for	Is this a strategy for		
Player 1?	Player 2?		
$h = \emptyset : (2,0)$	h = (1,1) : n		
h = (2,0) : y	h = (0,2) : n		

A Possible Strategy for	Is this a Strategy for		
Player 1	Player 2?		
$h = \emptyset$: (2,0)	h = (2,0) : y		
$n = \emptyset. (2,0)$	h = (0,2) : n		

Strategies

DEFINITION. A **strategy of player** $i \in N$ in an extensive game with perfect information $\langle N, H, P, (\succeq_i) \rangle$ is a function that assigns an action in A(h) to each nonterminal history $h \in H \setminus Z$ for which P(h) = i.

EXAMPLE. Consider the following extensive game with perfect information

Possible strategies for Player 1: ___, ___, and ___.
Possible strategies for Player 2: ___ and ___.

Consider the strategies of player 1.

- The strategy AE is the following function: $\{\emptyset \mapsto A, (A, C) \mapsto E\}.$
- The strategy BF is the following function: $\{\emptyset \mapsto B, (A, C) \mapsto F\}.$

Suppose strategy profile is s = (AE, D). The **outcome** O(s) of this strategy profile s is the history $(A, D) \in H$.

What is the outcome of the strategy profile (AE, C)?

EXAMPLE. Consider the following extensive game with perfect information

Q: What are the possible strategies for Player 1?

Q: What are the possible strategies for Player 2?

Nash Equilibrium

DEFINITION. A Nash equilibrium of an extensive game with perfect information $\Gamma = \langle N, H, P, (\geq_i) \rangle$ is a strategy profile s^* such that for every player $i \in N$ we have

$$O(s_{-i}^*, s_i^*) \gtrsim_i O(s_{-i}^*, s_i)$$

for every strategy s_i of player i.

Class Discussion

Q: Is (AE, D) a Nash equilibrium?

Q: Is (*AE*, *C*) a Nash equilibrium?

Preference Ordering on Strategy

Profiles

• Player 1 has four strategies: $S_1 = \{AE, AF, BE, BF\}.$

• Player 2 has two strategies: $S_2 = \{C, D\}$.

- Player 1 evaluates each $s \in S_1 \times S_2$. For instances, $(AE, C) \gtrsim_1' (AF, C)$, $(AF, C) \gtrsim_1' (BF, D)$, and so on.
- Player 2 evaluates each $s \in S_1 \times S_2$. For instances, $(AE, C) \gtrsim_2' (AF, D)$, $(AF, C) \gtrsim_2' (BF, D)$, etc.

This reminds us of Strategic Games...

DEFINITION. The strategic form of the extensive game with perfect information $\Gamma = \langle N, H, P, (\succeq_i) \rangle$ is the strategic game $\langle N, (S_i), (\succeq_i') \rangle$ in which for each player $i \in N$

- S_i is the set of strategies of player i in Γ .
- \succeq_i' is defined by $s \succeq_i' s'$ if and only if $O(s) \succeq_i O(s')$ for every $s \in \times_{i \in N} S_i$ and $s' \in \times_{i \in N} S_i$.

A Nash equilibrium of an extensive game with perfect information is a Nash equilibrium of its strategic form.

Reduced Strategies

Consider player 1's strategies

- $BE = \{\emptyset \mapsto B, (A, C) \mapsto E\}$ and
- $BF = \{\emptyset \mapsto B, (A, C) \mapsto F\}.$

The components $(A, C) \mapsto E$ and $(A, C) \mapsto F$ are in fact unnecessary because the history (A, C) is inconsistent with the action B taken.

These strategies BE and BF can be reduced.

Reduced Strategies

However, strategies

- $AE = \{\emptyset \mapsto A, (A, C) \mapsto E\}$ and
- $AF = \{\emptyset \mapsto A, (A, C) \mapsto F\}.$

cannot be reduced.

Reduced Strategies

Reduced strategies for Player 1: AE, AF, and B.

Reduced strategies for Player 2: *C* and *D*.

Strategy $BE = \{\emptyset \mapsto B, (A, C) \mapsto E\}$ reduced to a **reduced strategy** $B = \{\emptyset \mapsto B\}$.

The domain of a strategy s_i of player i is the set $\{h \in H: P(h) = i\}.$

The domain of a reduced strategy f_i of player i is a subset of the set $\{h \in H: P(h) = i\}$.

The domain of a reduced strategy f_i of player i is a subset of the set $\{h \in H: P(h) = i\}$.

We include a history $h = (a^k)$ with P(h) = i in the domain of a reduced strategy f_i if and only if all the actions of player i in h are those dictated by f_i :

If $h' = (a^k)_{k=1,\cdots L}$ is a subsequence of h with P(h') = i, then $f_i(h') = a^{L+1}$.

A reduced strategy of player i is a function f_i whose domain is a subset of $\{h \in H: P(h) = i\}$:

- f_i associates with each h in the domain of f_i an action in A(h).
- A history $h = (a^k)$ is in the domain of f_i if and only if the following condition holds:

If
$$h' = (a^k)_{k=1,...,L}$$
 is a subsequence of h with $P(h') = i$, then $f_i(h') = a^{L+1}$.

Q: Is BE a reduced strategy of Player 1? Is BF? **A:** Consider h = (A, C) and $h' = \emptyset$.

We see that for other players, the strategies *BE* and *BF* are effectively equivalent, regardless of whatever strategies other players may take.

This reduced strategy corresponds to the equivalent class {*BE, BF*}.

So we can actually call this reduced strategy $\{\emptyset \mapsto B\}$ by the name of BE, BF, or B.

Each reduced strategy of player *i* corresponds to <u>a</u> set of strategies of player *i*; for each vector of strategies of the other players each strategy in this set yields the same outcome (*i.e.*, these strategies are all outcome-equivalent).

Therefore,

The set of Nash equilibria of an extensive game with perfect information corresponds to the Nash equilibria of the strategic game in which the set of actions of each player is the set of its reduced strategies.

DEFINITION. Let $\Gamma = \langle N, H, P, (\geq_i) \rangle$ be an extensive game with perfect information and let $\langle N, (S_i), (\succeq_i') \rangle$ be its strategic form. For any $i \in N$ define the strategies $s_i \in S_i$ and $s_i' \in S_i$ of player i be *equivalent* if for each $s_{-i} \in S_{-i}$ we have $(s_{-i}, s_i) \sim'_i (s_{-i}, s'_i)$ for all $j \in N$. The **reduced strategic form of** Γ is the strategic game $\langle N, (S'_i), (\gtrsim''_i) \rangle$ in which for each $i \in N$ each set S'_i contains one member of each set of equivalent strategies in S_i , and \gtrsim_i'' is the preference ordering over $\times_{i \in N} S'_i$ induced by \gtrsim'_i .

Strategic Form

Reduced Strategic Form

Class Discussion

Q: What is its strategic form?

Q: What are the Nash equilibria?

Q: (*B*, *L*)? What's that?

Class Discussion

Q: What is its strategic form?

Q: What are the Nash equilibria?

yyy yyn yny ynn nyy nyn nny nnn

(2,0)	2,0	2,0	2,0	2,0	0,0	0,0	0,0	0,0
(1,1)	1,1	1,1	0,0	0,0	1,1	1,1	0,0	0,0
(0,2)	0,2	0,0	0,2	0,0	0,2	0,0	0,2	0,0

A: ((2,0), yyy), ((2,0), yyn), ((2,0), yny), ((2,0), ynn), ((1,1), nyy), ((1,1), nyn), ((0,2), nny), ((2,0), nny), and ((2,0), nnn).

Subgames

- $H|_a$ contains h if and only if H contains (a,h).
- $P|_{a}(h) = P(a,h)$.

Subgames

- $h \in H|_{(a,c)}$ if and only if $(a,c,h) \in H$.
- $P|_{(a,c)}(h) = P(a,c,h)$.

Subgames

Subgame $\Gamma(b)$

• $P|_{b}(h) = P(b, h)$.

Subgames

Subgames

DEFINITION. The subgame of the extensive game with perfect information $\Gamma = \langle N, H, P, (\geq_i) \rangle$ that **follows the history** h is the extensive game $\Gamma(h) =$ $\langle N, H|_h, P|_h, (\geq_i|_h) \rangle$, where $H|_h$ is the set of sequences h' of actions for which $(h,h') \in H$, $P|_h$ is defined by $P|_h(h') = P(h, h')$ for each $h' \in H|_h$, and $\geq_i|_h$ is defined by $h' \geq_i|_h h''$ if and only if $(h, h') \gtrsim_i (h, h'')$.

h

For a strategy s_i of player i, denote by $s_i|_h$ the strategy that s_i induces in the subgame $\Gamma(h) = \langle N, H|_h, P|_h, (\geq_i|_h) \rangle$.

Recall that a strategy is a function mapping from

histories to actions, we have, $s_i|_h(h') = s_i(h,h')$ for each $h' \in H|_h$.

$$s_{1} = \{\emptyset \mapsto a, (a, c) \mapsto h, \\ (b, f) \mapsto p\}$$

$$s_{1}|_{a} = \{c \mapsto h\}$$

A strategy profile s^* is a subgame perfect equilibrium of $\Gamma = \langle N, H, P, (\gtrsim_i) \rangle$,

if and only if

for <u>any</u> history h, $s^*|_h$ is a Nash equilibrium of the subgame $\Gamma(h) = \langle N, H|_h, P|_h, (\geq_i|_h) \rangle$.

Nash equilibria

Any of these are subgame perfect equilibria?

Q: What are the Nash equilibria?

Q: What are the subgame perfect equilibria?

Q: What are the Nash equilibria?

Q: What are the subgame perfect equilibria?

Class Discussion

Q: What are the Nash equilibria?

Q: What are subgame perfect equilibria?

A: Check for every player and every subgame.

DEFINITION. The subgame perfect equilibrium of an extensive game with perfect information $\Gamma = \langle N, H, P, (\succeq_i) \rangle$ is the strategy profile s^* such that for every player $i \in N$ and every nonterminal history $h \in H \setminus Z$ for which P(h) = i we have

$$O_h(s_{-i}^*|_h, s_i^*|_h) \gtrsim_i |_h O_h(s_{-i}^*|_h, s_i)$$

for every strategy s_i of player i in the subgame $\Gamma(h)$. (Note: O_h is the outcome function of $\Gamma(h)$.)

Existence of Subgame Perfect Equilibrium

Proposition. (Kuhn's theorem) Every finite extensive game with perfect information has a subgame perfect equilibrium.

DEFINITION. The subgame perfect equilibrium of an extensive game with perfect information $\Gamma = \langle N, H, P, (\succeq_i) \rangle$ is the strategy profile s^* such that for every player $i \in N$ and every nonterminal history $h \in H \setminus Z$ for which P(h) = i we have

$$O_h(s_{-i}^*|_h, s_i^*|_h) \gtrsim_i |_h O_h(s_{-i}^*|_h, s_i)$$

for every strategy s_i of player i in the subgame $\Gamma(h)$. (Note: O_h is the outcome function of $\Gamma(h)$.)

In other words, the strategy profile s^* is a subgame perfect equilibrium of $\Gamma = \langle N, H, P, (\geq_i) \rangle$,

if and only if

for <u>any</u> history h, $s^*|_h$ is a Nash equilibrium of the subgame $\Gamma(h) = \langle N, H|_h, P|_h, (\geq_i|_h) \rangle$.

For player 2 in subgame $\Gamma(A)$, we check CH, DH, CG, and DG

For player 2 in subgame $\Gamma(A)$, we check CH, DH, CG,

and DG. (1,-3) (-3,1)W

(2,1)(1,0)(1,1)(1,0)

Q: Can we (be lazy and) only check, for each subgame, the player who makes the first move cannot obtain a better outcome by *changing only his* **initial action** in the subgame? E.g., for player 2 in subgame $\Gamma(A)$, we check that taking D as the first action is not better than C.

(By definition) To verify a strategy profile is a subgame perfect equilibrium, we check for every subgame, the player who makes the first move cannot obtain a better outcome by <u>changing his</u> <u>strategy</u> in the subgame.

(By definition) To verify a strategy profile is a subgame perfect equilibrium, we check for every subgame, the player who makes the first move cannot obtain a better outcome by <u>changing his</u> <u>strategy</u> in the subgame.

However,

for a game Γ with a finite horizon, actually we <u>only</u> need to check for each subgame, the player who makes the first move cannot obtain a better outcome by <u>changing only his initial action</u> in the subgame.

LEMMA. (*The one deviation property*) Let $\Gamma = \langle N, H, P, (\succeq_i) \rangle$ be a finite horizon extensive game with perfect information.

The strategy profile s^* is a **subgame perfect equilibrium** of Γ if and only if for every player $i \in N$ and every history $h \in H$ for which P(h) = i we have

$$O_h(s_{-i}^*|_h, s_i^*|_h) \gtrsim_i |_h O_h(s_{-i}^*|_h, s_i)$$

for every strategy s_i of player i in the subgame $\Gamma(h)$ that differs from $s^*|_h$ only in the action it prescribes after the initial history \emptyset of $\Gamma(h)$.

In other words, when checking

$$O_h(s_{-i}^*|_h, s_i^*|_h) \gtrsim_i |_h O_h(s_{-i}^*|_h, s_i),$$

we only need to verify that for player i, $s_i^*|_h$ is better than every s_i with which player i should take a different initial action in the subgame $\Gamma(h)$,

instead of having to verify that for player i, $s_i^*|_h$ is better than every s_i .

There are two extensions to extensive games with perfect information.

Extensive Games with Perfect Information and Chance Moves

Extensive Games with Perfect Information and Chance Moves

 $\langle N, H, P, f_c, (\gtrsim_i) \rangle$

Original	With chance moves
$P: (H \setminus Z) \to N$	$P: (H\backslash Z) \to N \cup \{c\}$
	If $P(h) = c$, then $f_c(a h)$ is
_	the probability that a occurs
	after h.
≿ _i is a preference	\gtrsim_i is a preference relation on
relation on Z	lotteries over Z

Extensive Games with Perfect Information and Simultaneous Moves

Extensive Games with Perfect Information and Simultaneous Moves

 $\langle N, H, P, (\gtrsim_i) \rangle$

Original	With simultaneous moves
$P: (H\backslash Z) \to N$	$P: (H\backslash Z) \to \mathcal{S}(N)$
A history is a sequence of	A history is a sequence of
actions.	profiles of actions.
For $h = (a_1, a_2, \dots a_{k-1}),$	For $h = (a^1, a^2, \dots a^{k-1}),$
$a_k \in A_i(h)$, where $i =$	$a^k \in A(h) = \times_{i \in P(h)} A_i(h).$
P(h).	$\alpha \subset \Pi(n) - \lambda_{i \in P(h)} \Pi_i(n).$

The Centipede Game

A centipede game with T = 6. A player prefers stopping \underline{now} than the opponent stopping at $\underline{the\ next\ period}$. The best outcome, however, is that the game stops after period T.

Each player alternatively decides whether to continue or stop. The whole game stops after T periods, where T is even.

Class Discussion

Q: What are the subgame perfect equilibria?

Class Discussion

Q: What are the subgame perfect equilibria?

A: Unique: $(S \cdots S, S \cdots S)$.

Q: Are there Nash equilibria that are not subgame perfect equilibria?