TP Matrix multiplication Analyse de performance

Axel Fahy & Jessy Marin & Rudolf Höhn

December 7, 2015

1 Fox

1.1 Complexité

Pour trouver la complexité totale, on doit séparer le problème. On doit trouver la complexité pour le broadcast de T, la création de la matrice S et de la multiplicaiton matricielle. Dans les formules, $\beta = T_{bandepassante}$, $\alpha = T_{execution}$.

• Nombre d'étapes = $\sqrt[2]{p}$ (p = nombre de processeurs)

•
$$T_{broadcast} = \beta \frac{n^2}{p} log_2(\sqrt[2]{p}) = \beta \frac{n^2}{p} \frac{log_2(p)}{2}$$

• $T_{shift} = \beta \frac{n^2}{p}$

• $T_{communication} = T_{broadcast} + T_{shift}$

 \bullet $T_{multiplication}$

Il y a $\sqrt[2]{p}$ étapes et donc le même nombre de multiplication de sous-matrices. La taille des sous-matrices à multiplier est de $(\frac{n}{\sqrt[2]{p}} \cdot \frac{n}{\sqrt[2]{p}})$

La complexité du calcul est donc : $\alpha \sqrt[q]{p} \cdot (\frac{n}{\sqrt[q]{p}})^3 = \alpha \frac{n^3}{p}$

• $T_{par} =$

La complexité totale est donc :

$$T_{par} = T_{communication} + T_{calc} = \frac{\alpha n^3}{p} + \beta \frac{n^2}{\sqrt[3]{p}} (\frac{log_2(p)}{2} + 1)$$

2 Speedup

Le speedup théorique est : $S=\frac{T_{seq}}{T_{par}}.$ Dans notre cas, le speedup est :

$$S = \frac{n^3}{\frac{\alpha n^3}{p} + \beta \frac{n^2}{\sqrt[2]{p}} {\log_2(p) \over 2} + 1)}$$

1

3 Efficacité

$$E(p) = \frac{S(p)}{p} = \frac{\frac{n^3}{\frac{\alpha n^3}{p} + \beta \frac{n^2}{\sqrt[3]{p}} (\frac{\log_2(p)}{2} + 1)}}{p}$$

4 Isoefficacité

Pour atteindre une efficacité constante, il faut que n soit égal à $n=c\sqrt[3]{p}(\frac{\log_2(p)}{2}+1)$