Chapter 2 analysis

Analyse Algorithm's performance

Completeness: all case take into considering

Optimality: it's an optimal solution

Time complexity: It takes not long to execute it

space complexity: How much memory is needed to perform such task

Polynomial-time

1. brute force:

there is a natural brute force to search algorithm ==> to check all the possible solution typically takes 2^n time ==> unacceptable

2. desirable scaling property

algorithm should only ${f slow}$ down by some constant factor ${f C}$, we defautly say that it should be bound by cN^d steps

3. definition

an algorithm is poly - time if the above scaling property hold

worst-case analysis

1. worst-case running time:

largest possible running time of algorithm on input of a given size N

2. average case running time:

algorithm tuned for a certain distribution may perform poorly on toher inputs

3. worst-case polynomial-time

definition: an alforithm is efficient if its running time is polynomail-time

Asymptotic order of growth

1. Asymptotic Order of Growth

upperbound:

$$T(n)$$
 is $O(f(n))$ if there exist constants $c>0$ and $n_0\geq 0$ such that for all $n\geq n_0$ we have $T(n)\leq c\cdot f(n)$.

lowerbound:

$$T(n) \ is \ \Omega(f(n)) \ if \ there \ exist \ constants \ c>0 \ and \ n_0\geq 0 such \ that \ for \ all \ n\geq n_0 \ we \ have \ T(n)\geq c\cdot f(n).$$

tight bounds:

$$T(n)$$
 is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

2. Notation

Slight abuse of notation. T(n) = O(f(n))

Better notation: $T(n) \in O(f(n))$.

3. trasitivity

If
$$f = O(g)$$
 and $g = O(h)$ then $f = O(h)$
If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$
If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$

4. additivity

$$\begin{split} &If\ f = O(h)\ and\ g = O(h)\ then\ f + g = O(h)\\ &If\ f = \Omega(h)\ and\ g = \Omega(h)\ then\ f + g = \Omega(h)\\ &If\ f = \Theta(h)\ and\ g = \Theta(h)\ then\ f + g = \Theta(h) \end{split}$$

5. polynomials

$$a_0+a_1n+\ldots+a_dn^d\ is\ \Theta(n^d)\ if\ a_d>0.$$

logarithms

$$O(log_a n) = O(log_b n), \ orall a, \ b > 0$$
 $orall x > 0, \ log \ n = O(n^x)$

exponetials

$$\forall r > 1, \ n^d = O(r^n)$$

A Survey of Common Running Times

- 1. Linear time: O(n)
 - ${\tt 1.}\,Computing\,the\,maximum:\\$

Computing rhe maximum of n numbers a_1,\dots,a_n

2. Merge:

combine two sorted list $A=a_1,\ldots,a_n$ with $B=b_1,\ldots,b_n$ into a sorted whole.

- 2. O(logn) time: arise in divide-and-conquer algorithm
 - 1. sorting:

Mergesort and heapsort are sorting algorithms that perform O(logn) comparisions.

 $2. Largest\ empty\ interval:$

Given n time-stamps x_1, \ldots, x_n on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

3. Quadratic time: $O(n^2)$

Closest pair of points

Given a list of n points in the plane (x1, y1), ..., (xn, yn), find the pair that is closest

solution: Try all pairs of points.

Remark: $O(n^2)$ seems inevitable, but this is just an illusion.

4. Cubic time: $O(n^3)$

 $Set\ disjointness:$

Given n sets S_1, \ldots, S_n each of which is a subset of 1, 2, ..., n, is there some pair of these which are disjoint?

solution: For each pairs of sets, determine if they are disjoint.

5. polymal time: $O(n^k)$

 $Independent \ set \ of \ size \ k:$

Given a graph, are there k nodes such that no two are joined by an edge

solution: Enumerate all subsets of k nodes.

check whether S is an independent set: $O(k^2)$

number of k element subsets: $O(n^k)$

$$\binom{n}{k} = \frac{n(n-1)...(n-k+1)}{k(k-1)...1} \le \frac{n^k}{k!}$$

total complexity: $O(n^k)$

6. exponential time

 $maximum\ independent\ set:$

Given a graph, what is maximum size of an independent set?

solution: Enumerate all subsets. Then check any subset whether independent

time complexity: $O(n^2 \ 2^n)$