Understanding Liposome Flux Assays in the context of a Bacterial Sodium Voltage Gated Channels (NavAb)

Biological data analysis in R

Tingwei Adeck July 23, 2022

AlphaPrime University

Table of contents

- 1. Introduction
- 2. Diagnostic results in Excel
- 3. Normalized Results (Makes all the sense in the world)
- 4. Noise vs Signal
- 5. Conclusion

Introduction

Ion(s)	Affinity Constant(Ka)
Na [†]	1.0

Ion(s)	Affinity Constant(Ka)
Na ⁺	1.0
K^{+}	0.14

Ion(s)	Affinity Constant(Ka)
Na ⁺	1.0
K ⁺	0.14
Rb^{+}	0.02

Ion(s)	Affinity Constant(Ka)
Na ⁺	1.0
K^{+}	0.14
$Rb^{\scriptscriptstyle +}$	0.02
Cs ⁺	0.005

Ion(s)	Affinity Constant(Ka)
Na⁺	1.0
K^{+}	0.14
$Rb^{\scriptscriptstyle +}$	0.02
Cs ⁺	0.005
H^{+}	??

Table 1: NavAb affinity constants

Channel-insert liposomes

- Channel-insert liposomes
- · A fluorophore is present within the channel-insert liposome

- Channel-insert liposomes
- · A fluorophore is present within the channel-insert liposome
- · liposomes are a form of lipid bilayers

Figure 1: Na⁺-insert liposome

Practical image of experiment

Figure 2: experiment

Diagnostic results in Excel

Figure 3: Na⁺-insert liposome

Normalized Results (Makes all the sense in the world)

Fluorescence measured at 2,3,5 μ M

Figure 4: Legend: Noramlized fluorescence in R within the signal zone

Fluorescence measured with K^{\dagger} vs Cs^{\dagger} inside the liposome μM

Figure 5: NavAb K-conductivity is stronger than Cs-conductivity as indicated by the initial affinity table

Fluorescence measured with K^{\dagger} vs Cs^{\dagger} inside the liposome μM

Figure 6: NavAb K-conductivity is stronger than Cs-conductivity as indicated by the initial affinity table

ACMA dosage at 2,3,4,5 μ M

Figure 7: Fluorophore dosage is not a factor in its quenching, rather system properties (Ion conductivity etc.) determine quenching

Noise vs Signal

Fluorescence measured at 0.2 and 20 μ M

Figure 8: Legend: Noramlized fluorescence in R within the signal zone

Quenching drivers

We showed that the Nernst Potential (Valinomycin) and proton flux (CCCP) should be investigated as potential factors in ACMA quenching behavior.

Quenching drivers

We showed that the Nernst Potential (Valinomycin) and proton flux (CCCP) should be investigated as potential factors in ACMA quenching behavior.

ACMA concentration

We showed that there is a concentration for ACMA to make it useful as a signaling molecule in flux assays.

Quenching drivers

We showed that the Nernst Potential (Valinomycin) and proton flux (CCCP) should be investigated as potential factors in ACMA quenching behavior.

ACMA concentration

We showed that there is a concentration for ACMA to make it useful as a signaling molecule in flux assays.

Noise vs Signal

Quenching drivers

We showed that the Nernst Potential (Valinomycin) and proton flux (CCCP) should be investigated as potential factors in ACMA quenching behavior.

ACMA concentration

We showed that there is a concentration for ACMA to make it useful as a signaling molecule in flux assays.

Noise vs Signal

Quenching drivers

We showed that the Nernst Potential (Valinomycin) and proton flux (CCCP) should be investigated as potential factors in ACMA quenching behavior.

ACMA concentration

We showed that there is a concentration for ACMA to make it useful as a signaling molecule in flux assays.

Noise vs Signal

Quenching drivers

We showed that the Nernst Potential (Valinomycin) and proton flux (CCCP) should be investigated as potential factors in ACMA quenching behavior.

ACMA concentration

We showed that there is a concentration for ACMA to make it useful as a signaling molecule in flux assays.

Noise vs Signal

Quenching drivers

We showed that the Nernst Potential (Valinomycin) and proton flux (CCCP) should be investigated as potential factors in ACMA quenching behavior.

ACMA concentration

We showed that there is a concentration for ACMA to make it useful as a signaling molecule in flux assays.

Noise vs Signal

Thanks and Questions?

References

- [1] Zhenwi. Su. Novel cell-free high-throughput screening method for pharmacological tools targeting K+ channels. PNAS, 113(5744-5788), 2016.
- [2] Joshua V. A Single Molecule Study on The Structural Basis of Ion Selective Permeation in Voltage-Gated Sodium Channels. , 2021.