Mathematics for Data Science - 1 Graded Assignment Week 1 Solution Jan 2022 term

Max marks: 20

1 Multiple Choice Questions (MSQ)

1. Which of the following are rational numbers? (Answer: (a),(b),(c))(1 mark)

$$\bigcirc 3\sqrt{2} + (1 - \sqrt{2})(2 - \sqrt{2})$$

$$\bigcirc (\sqrt{12} + \sqrt{3})(\sqrt{12} - \sqrt{3})$$

$$\bigcirc (\sqrt{12} - \sqrt{3})(\sqrt{12} - \sqrt{3})$$

$$3\sqrt{2} + (1 - \sqrt{2})(1 + \sqrt{2})$$

Solution: In this question we have to find rational numbers from the given options. From the definition we know that a number is a rational if it can be represented as p/q form where p and q are integers. Each of the options are explained below:

- Option (a): $3\sqrt{2} + (1 \sqrt{2})(2 \sqrt{2}) = 3\sqrt{2} + 2 2\sqrt{2} \sqrt{2} + 2 = 4$ On simplification we get 4 which can be written as p/q form. So the given number in this option is a rational number.
- Option (b): $(\sqrt{12} + \sqrt{3})(\sqrt{12} \sqrt{3}) = 12 + \sqrt{36} \sqrt{36} 3 = 9$ On simplification we get 9 which can be written as p/q form. So the given number in this option is also a rational number.
- Option (c): $(\sqrt{12} \sqrt{3})(\sqrt{12} \sqrt{3}) = 12 \sqrt{36} \sqrt{36} + 3 = 3$ On simplification we get 3 which can be written as p/q form. So the given number in this option is also a rational number.
- Option (c): $3\sqrt{2} + (1 \sqrt{2})(1 + \sqrt{2}) = 3\sqrt{2} + 1 2 = 3\sqrt{2} 1$ On simplification we get $3\sqrt{2} - 1$ which can not be written as p/q form. So the given number in this option is not a rational number. It is an irrational number.

So the correct options are (a), (b) and (c).

2. Consider the following sets.

•
$$S_1 = \{x \mid x \in \mathbb{R}, \ 0 < x < 10\}$$

•
$$S_2 = \{x \mid x \in \mathbb{Z}, -10 \le x \le 10\}$$

•
$$S_3 = \{x \mid x \in \mathbb{Q}, \ 10 \le x \le 15\}$$

Choose the set of correct options.

(Answer: (a),(d))(3 marks)

$$\bigcirc (S_2 \cap S_3) \cup (S_3 \cap S_1) = \{10\}.$$

$$\bigcirc (S_2 \setminus S_1) \cap (S_3 \setminus S_1) = \phi.$$

- \bigcirc The cardinality of the set $S_1 \cap S_2$ is 10.
- \bigcirc The cardinality of the set $(S_1 \cap S_2) \cup (S_2 \cap S_3)$ is 10.

Solution: In this question we have to choose the correct statements from the given options based on the three sets S_1, S_2 and S_3 .

- Option (a): $(S_2 \cap S_3) \cup (S_3 \cap S_1) = \{10\}$ Here, $(S_2 \cap S_3) = \{10\}$ and $(S_3 \cap S_1) = \phi$ Therefore, $(S_2 \cap S_3) \cup (S_3 \cap S_1) = \{10\}$. Hence option (a) is correct.
- Option (b): $(S_2 \setminus S_1) \cap (S_3 \setminus S_1) = \phi$ Here, $(S_2 \setminus S_1) = \{-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 10\}$, and $(S_3 \setminus S_1) = S_3$ Therefore, $(S_2 \setminus S_1) \cap (S_3 \setminus S_1) = \{10\}$ Hence option (b) is incorrect.
- Option (c): The cardinality of the set $S_1 \cap S_2$ is 10. Here, $(S_1 \cap S_2) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. So the cardinality of the set $S_1 \cap S_2$ is 9 not 10. Hence option (c) is not correct.
- Option (d): The cardinality of the set $(S_1 \cap S_2) \cup (S_2 \cap S_3)$ is 10. Here, $(S_1 \cap S_2) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, and $(S_2 \cap S_3) = \{10\}$ Now, $(S_1 \cap S_2) \cup (S_2 \cap S_3) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. So the cardinality of the set $(S_1 \cap S_2) \cup (S_2 \cap S_3)$ is 10. Hence option (d) is correct.

So the correct options are (a) and (d).

- 3. If $a \mod 3 = 1$ and $b \mod 3 = 2$, where $a, b \in \mathbb{N}$, then choose the set of correct options. (Answer: Options (b),(c))(2 marks)
 - \bigcirc (ab) mod 3 = 0.
 - \bigcirc (ab) mod 3 = 2.
 - $\bigcap (a+b) \mod 3 = 0.$
 - $\bigcap (a+b) \mod 2 = 1.$

Solution:

 $a \mod 3 = 1$ can be written as: $3k_1 + 1 = a$, where k_1 is a natural number, and $b \mod 3 = 2$ can be written as: $3k_2 + 2 = b$, where k_2 is a natural number. Now we check each options one by one.

- Option (a): $(ab) \mod 3 = 0$ Here, $(ab) = (3k_1 + 1) * (3k_2 + 2) = 3(2k_1 + k_2 + 3k_1k_2) + 2$ So, $(ab) \mod 3 = 2$ Hence option (a) is incorrect.
- Option (b): (ab) mod 3 = 2 This is correct expression. (Please check explanation given in option (a)). Hence option (b) is correct.
- Option (c): $(a + b) \mod 3 = 0$ Here, $(a + b) = (3k_1 + 1) + (3k_2 + 2) = 3(k_1 + k_2 + 1)$. So (a + b) has a factor 3. Therefore, $(a + b) \mod 3 = 0$. Hence option (c) is correct.
- Option (d): $(a + b) \mod 2 = 1$ Here, (a + b) = 2m + 1, where m is a natural number.

So,
$$3(k_1 + k_2 + 1) = 2m + 1$$
,

So,
$$2m = 3(k_1 + k_2) + 2$$

Now, consider case (i) $k_1 + k_2 = 10$, which an even number,

$$2m = 3 * 10 + 2,$$

m=16, which is a natural number. Therefore for this case expression, $(a+b) \mod 2 = 1$, is correct.

Now, consider case (ii) $k_1 + k_2 = 15$, which an odd number,

$$2m = 3 * 15 + 2,$$

m=47/2, which is not a natural number. Therefore for this case expression, $(a+b) \mod 2 = 1$, is incorrect.

So overall the given expression, $(a + b) \mod 2 = 1$, is incorrect.

- 4. Suppose $A = \{a, b, c, d\}$ and $B = \{p, q, r, s\}$ are two sets. Consider the following relations from A to B.
 - $R_1 = \{(a, p), (c, r), (d, q)\}$
 - $R_2 = \{(a, s), (b, s), (c, p), (d, r)\}$
 - $R_3 = \{(a, p), (b, r), (b, s), (d, q)\}$
 - $R_4 = \{(a, r), (b, p), (c, q), (d, s)\}$

Which of the following statements are correct? [Answer: (b),(d)](2 marks)

- \bigcirc R_2, R_3 , and R_4 are functions.
- \bigcirc R_2 and R_4 are functions.
- \bigcirc R_2 is an injective function.
- \bigcirc R_4 is a bijective function.

Solution:

Firstly, investigate every relations and then check options.

- R_1 : It is not a function because b is not mapped to any element in the set B.
- R_2 : It is also a function but not injective because a and b are mapped to s.
- R_3 : It is not a function since b is mapped for two values r and s.
- R_4 : It is one-to-one (every element of A is mapped to distinct element of B) and onto function (no any element is left in B). Therefore R_4 is a bijective function.

Now from the options, option (b) and (d) are correct.

5. Let us define a function $f: \mathbb{N} \to \mathbb{Q}$ as follows,

$$f(n) = \begin{cases} \frac{n-1}{4} & n \text{ is odd} \\ \frac{n+1}{2} & n \text{ is even} \end{cases}$$

Which of the following are true?

(Answer: (a),(b))(1 mark)

- \bigcirc f is not one to one.
- \bigcirc f is not onto.
- \bigcirc f is onto.
- \bigcirc f is one to one.

Solution:

For n = 0, f(0) = 1/2, and for n = 3, f(3) = 1/2. So, f(0) = f(3) = 1/2. Therefore f(n) is not one to one function.

For all values of domain, \mathbb{N} , can not be mapped to all elements of co-domain since co-domain is \mathbb{Q} . Therefore f(n) is also not onto function.

Hence options (a) and (b) are correct.

2 Numerical Answer Type (NAT)

6. Find the smallest natural number that leaves the remainders 3 and 4 when divided by 5 and 6 respectively.

(Answer: 28)(1 mark)

Solution:

Let n be the smallest natural number such that, $n = 5k_1 + 3$, and $n = 6k_2 + 4$. Where k_1 and k_2 are natural numbers. So here we create two sets (A and B) for $n = 5k_1 + 3$ (Table 1), and $n = 6k_2 + 4$ (Table 2).

k_1	$n = 5k_1 + 3 \text{ (Set A)}$
0	3
1	8
2	13
3	18
4	23
5	28
6	33
7	38
8	43
9	48
10	53
11	58
p	5p+3

k_2	$n = 6k_2 + 4 \text{ (Set B)}$
0	4
1	10
2	16
3	22
4	28
5	34
6	40
7	46
8	52
9	58
10	64
11	68
\overline{q}	6q + 4

Table 1 Table 2

Now, we will find the common elements from sets A and B.

 $A \cap B = \{28, 58, ...\}$

From the question we have to find the smallest one. As per the question, the smallest number will be 28.

7. Suppose $f: \mathbb{N} \longrightarrow \mathbb{N}$ is a function defined by f(x) = a(x+b), where $a, b \in \mathbb{N}$. If f is a bijective function, then find the value of a + b. (Answer: 1)(2 marks)

Solution:

If f is a bijective function then it should be one to one and onto function. Since function f is mapped to $\mathbb{N} \longrightarrow \mathbb{N}$ and an onto function then for some value of x, f(x) = 0, since 0 is a natural number. So, f(x) = 0 = a(x+b),ax + ab = 0 $ab = 0, a \neq 0$ (constant function) Therefore, b = 0 Now, f(x) = ax. f(x) will be onto function only when a = 1 because f(x) should be mapped to all N. Hence, the value of a + b = 1

8. Suppose there are 100 people in a city C. Let X be the set of people who are engineers in the city C, Y be the set of people whose age is above 40 years in the city C, Z be the set of people who has an independent house in the city C. Now, study the following Venn diagram and answer the question given below.

Figure M1T4GA-1

Find the number of engineers who do not have an independent house? (Answer: 18)(2 marks)

Solution:

We have to find here number of engineers who do not have an independent house which means $X \setminus Z$. From the Venn diagram it is pretty straight that the number of elements in set $X \setminus Z$ will be (11+7) = 18

- 9. Consider a set $S = \{a \mid a \in \mathbb{N}, a \leq 18\}$. Let R_1 and R_2 be relations from S to S defined as $R_1 = \{(x,y) \mid x,y \in S, y = 3x\}$ and $R_2 = \{(x,y) \mid x,y \in S, y = x^2\}$. Find the cardinality of the set $R_1 \setminus (R_1 \cap R_2)$.
 - Answer: 5

Solution:

```
S = \{a \mid a \in \mathbb{N}, \ a \leq 18\} \text{ then } 
R_1 = \{(0,0), (1,3), (2,6), (3,9), (4,12), (5,15), (6,18)\}, \text{ and } 
R_2 = \{(0,0), (1,1), (2,4), (3,9), (4,16)\} 
R_1 \cap R_2 = \{(0,0), (3,9)\} 
Now we have to find, R_1 \setminus (R_1 \cap R_2) = \{(1,3), (2,6), (4,12), (5,15), (6,18)\} 
|R_1 \setminus (R_1 \cap R_2)| = 5
```

10. In a Zoo, there are 6 Bengal white tigers and 6 Bengal royal tigers. Out of these tigers, 5 are males and 10 are either Bengal royal tigers or males. Find the number of female Bengal white tigers in the Zoo. (3 marks)

Answer = 2

Solution:

Let BW = Number of Bengal white tigers, BR = Number of Bengal royal tigers, M = Number of male tigers, and F = Number of female tigers

Now from the given information in the problem, BW = 6, BR = 6,Then total number of tigers = BW + BR = 6 + 6 = 12M = 5, then Number of female tigers = F = 12 - 5 = 7Also it is given, $BR \cup M = 10$ In this question We have to find, $BW \cap F = ?$

From the union formula, $BR \cup M = BR + M - BR \cap M$, $10 = 6 + 5 - BR \cap M$, Hence, $BR \cap M = 1$

Also, $BR = BR \cap M + BR \cap F$, $6 = 1 + BR \cap F$, Hence, $BR \cap F = 5$

Also, $F = BW \cap F + BR \cap F$, $BW \cap F = F - BR \cap F$, $BW \cap F = 7 - 5$, Hence, $BW \cap F = 2$