Statistical Query Transformations for Question Answering in the Web

Ilya Boyandin St. Petersburg State University, 2003

Question Answering

Goal:

Find a short text fragment which answers the question.

Example:

Q: Who invented the light bulb?

A: Thomas Edison

Question Answering

- Retrieve answers rather than documents.
- Precision is important, recall isn't.
- The "correct" answer is one that can be found in the collection.
- No new knowledge is produced.

TREC: Text REtrieval Conference

TREC QA Track

- Collection of documents (newspaper)
- Test set of questions

TREC-9 (2002)

- 979,000 documents (3Gb of text)
- 682 questions (Encarta log, Excite log)
- Best resut: 65% of questions answered (Falcon)

Using Web for QA

Benefits

- Vast number of answers
- Constant updates
- Redundancy

Challenges

- Wrong and contradictory answers
- Undated information
- Heterogeneous, irregular structure

Components of a QA System

Query Formulation

Goals:

- "Translate" the question into the form the IR engine understands
- Narrow the set of documents to consider

Example:

Question: When was Nabokov born?

Query: Nabokov /4 !born

Question Transformation

Types of Transformations:

- Remove question words/other words
- Add words/phrases likely to be in the answer
- Add synonyms
- Morphological changes
- Add query language operators

– ...

Why Learning?

- Hard to predict what transformations will be better
- Far from all patterns are obvious

Evaluating Transformations

TRDR Metric:

- Query is sent to the IR engine
- Positions of the documents containing the right answers: γ_i (of the first N returned documents)

$$TRDR = \sum_{i=1}^{n_{correct}} \gamma_i^{-1} \qquad \frac{\text{Example:}}{TRDR} = \frac{1}{2} + \frac{1}{4}$$

QASM Algorithm

Atomic Operators

- E.g. add/remove/substitute words
- Transformation is a composition of atomic operators

Query Features

- E.g. type, number of words, number of nouns
- Context of a query: values of all features
- Questions/queries with the same context are treated in the same way

QASM: Learning

Training Set

Questions with answers

Iterative Learning

- Applies every atomic operator to the query
- 2. Submits to the IR engine
- 3. Evaluates results, updates the model
- 4. Applies the best operator to the query
- 5. Next iteration

Resulting Model

Allows to find the best (statistically) operators for any context

QASM: Question Transformation

Input:

Question

Iterative Transformation

- 1. Calculates the context of the query
- 2. Finds the best operator for the context
- 3. If it's IDENTITY then stops
- 4. Applies the best operator to the query
- Next iteration

Output:

IR engine query

Experimental Environment

Test set

100 questions from the Yandex log

Atomic Operators

- Remove words (based on frequency)
- Add query language operators: distance; restrict morphological changes

Query Features

Question type; Number of words; Number of nouns

QASM Analysis

Results

No quality improvement in most cases

Problem

The selectivity of the generated transformations was often too low or too high

Possible Causes

- Too small training set
- Choice of operators/features
- Irregularity

Who won the Nobel peace prize in 1975? Who won the Nobel peace prize in 1979?

"Optimal" QASM

- Same atomic operators and query features
- Use only the best transformation for each question
- Improvement ~50%

mQASM

Changes to QASM

- Generates a set of best queries ordered by selectivity
- Submits queries until there is enough results
- Weights results and builds one ordered list

Evaluation Results

Stability of the Comparisons

40 random combinations

60 questions for training, 40 for testing

- Significance level: 5%
- Wins/Losses/Draws

	Yandex			QASM		
QASM	2	29	9	_		
mQASM	37	0	3	40	0	0

Evaluation Results

Same Experiment with Google

Environment is the same as with Yandex, except using less atomic operators

	Google			QASM		
Max	15	0	25			
QASM	12	4	24	_		
mQASM	15	3	22	8	4	28