Discrete Mathematics

Homework 6

Sample Solutions

RELATIONS

- 1. Let $R1 = \{(1, 2), (2, 3), (3, 4)\}$ and $R2 = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1), (3, 4)\}$
- 2), (3, 3), (3, 4)} be relations from $\{1, 2, 3\}$ to $\{1, 2, 3, 4\}$. Find
- a) R1 ∪ R2
- b) R1 ∩ R2
- c) R1 R2
- d) R2 R1

Solution)

These are merely routine exercises in set theory. Note that $R_1 \subseteq R_2$.

- a) $\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4)\} = R_2$ b) $\{(1,2),(2,3),(3,4)\} = R_1$
- c) \emptyset d) $\{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)\}$
- 2. Determine whether the relation R on the set of all real numbers is reflexive, symmetric, antisymmetric, and/or transitive, where $(x, y) \subseteq R$ if and only if
- a) x + y = 0
- b) $x = \pm y$
- c) x y is a rational number.
- d) x = 2y
- e) $xy \ge 0$

- a) Since $1+1 \neq 0$, this relation is not reflexive. Since x+y=y+x, it follows that x+y=0 if and only if y+x=0, so the relation is symmetric. Since (1,-1) and (-1,1) are both in R, the relation is not antisymmetric. The relation is not transitive; for example, $(1,-1) \in R$ and $(-1,1) \in R$, but $(1,1) \notin R$.
- b) Since $x = \pm x$ (choosing the plus sign), the relation is reflexive. Since $x = \pm y$ if and only if $y = \pm x$, the relation is symmetric. Since (1, -1) and (-1, 1) are both in R, the relation is not antisymmetric. The relation is transitive, essentially because the product of 1's and -1's is ± 1 .
- c) The relation is reflexive, since x x = 0 is a rational number. The relation is symmetric, because if x y is rational, then so is -(x y) = y x. Since (1, -1) and (-1, 1) are both in R, the relation is not
- antisymmetric. To see that the relation is transitive, note that if $(x,y) \in R$ and $(y,z) \in R$, then x-y and y-z are rational numbers. Therefore their sum x-z is rational, and that means that $(x,z) \in R$.
- d) Since $1 \neq 2 \cdot 1$, this relation is not reflexive. It is not symmetric, since $(2,1) \in R$, but $(1,2) \notin R$. To see that it is antisymmetric, suppose that x = 2y and y = 2x. Then y = 4y, from which it follows that y = 0 and hence x = 0. Thus the only time that (x,y) and (y,x) are both is R is when x = y (and both are 0). This relation is clearly not transitive, since $(4,2) \in R$ and $(2,1) \in R$, but $(4,1) \notin R$.

3.

- (a) Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by S \circ R. Now let R be the relation $\{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)\}$, and let S be the relation $\{(2, 1), (3, 1), (3, 2), (4, 2)\}$. Find S \circ R.
- (b) Let R be a relation on the set A. The powers R^n , n = 1, 2, 3, ..., are defined recursively by $R^1 = R$ and $R^{n+1} = R^n \circ R$. Now let R be the relation on the set $\{1, 2, 3, 4, 5\}$ containing the ordered pairs $(1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 1), (3, 4), (3, 5), (4, 2), (4, 5), (5, 1), (5, 2), and (5, 4). Find <math>R^2$, R^3 , R^4 and R^5 . Solution)

(a)

Since $(1,2) \in R$ and $(2,1) \in S$, we have $(1,1) \in S \circ R$. We use similar reasoning to form the rest of the pairs in the composition, giving us the answer $\{(1,1),(1,2),(2,1),(2,2)\}$.

(b)

We just apply the definition each time. We find that R^2 contains all the pairs in $\{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$ except (2,3) and (4,5); and R^3 , R^4 , and R^5 contain all the pairs.

- 4. Suppose that R and S are reflexive relations on a set A. Prove or disprove each of these statements. (Note that $R1 \oplus R2$ consists of all ordered pairs (a, b), where student a has taken course b but does not need it to graduate or needs course b to graduate but has not taken it.)
- a) R \cup S is reflexive.
- b) R \cap S is reflexive.
- c) R \bigoplus S is irreflexive.
- d) R S is irreflexive.
- e) S o R is reflexive.

- a) Since R contains all the pairs (x, x), so does $R \cup S$. Therefore $R \cup S$ is reflexive.
- b) Since R and S each contain all the pairs (x,x), so does $R \cap S$. Therefore $R \cap S$ is reflexive.
- c) Since R and S each contain all the pairs (x, x), we know that $R \oplus S$ contains none of these pairs. Therefore $R \oplus S$ is irreflexive.
- d) Since R and S each contain all the pairs (x, x), we know that R-S contains none of these pairs. Therefore R-S is irreflexive.
- e) Since R and S each contain all the pairs (x,x), so does $S \circ R$. Therefore $S \circ R$ is reflexive.

ORDERED RELATIONS

1. Fill in the following table describing the characteristics of the given ordered sets. Answer with T for True or F for False. (Note that " \subset " indicates proper containment, that is, for two sets A and B, A \subset B if and only if A \subseteq B \wedge A \neq B.)

	Partial Order	Total Order	Well Order
< N , <>			
$<$ N , \le $>$			
$\langle Z, \leq \rangle$			
$\langle R, \leq \rangle$			
$\langle P(N), \subset \rangle$			
$\langle P(N), \subseteq \rangle$			
$\langle P(\{a\}), \subseteq \rangle$			
$\langle P(\emptyset), \subseteq \rangle$		_	_

	Partial Order	Total Order	Well Order
< N , <>	F	F	F
< N , ≤>	T	T	T
<z,≤></z,≤>	T	T	F
$\langle R, \leq \rangle$	T	T	F
$\langle P(N), \subset \rangle$	F	F	F
$\langle P(N), \subseteq \rangle$	T	F	F
< P({a}), ⊆>	T	T	T
$\langle P(\emptyset), \subseteq \rangle$	T	T	T

EQUIVALENCE RELATIONS

1. Give a specific reason why the following set R does not define an equivalence relation on the set $\{1, 2, 3, 4\}$.

$$R = \{(1,1), (2,2), (3,3), (4,4), (2,3), (3,2), (2,4), (4,2)\}$$

Solution) R contains 3R2 = (3,2) and 2R4 = (2,4) but does not contain (3,4). Therefore, the relation is not transitive and thus, not an equivalent relation.

2. The following set R defines an equivalence relation on the set $\{1, 2, 3\}$, where aRb means that $(a,b) \in \mathbb{R}$.

$$R = \{(1,1), (2,2), (3,3), (2,3), (3,2)\}$$

What are the equivalence classes?

Solution)

$$\{1\}, \{2,3\}$$

3. Let X be a finite set. For subsets, A, B $\in \mathcal{P}(X)$, let A R B if |A| = |B|. This is an equivalence relation on $\mathcal{P}(X)$. If $X = \{1, 2, 3\}$, list the equivalence classes.

Solution)

There are four equivalence classes:

$$\begin{cases} \{\emptyset\} \\ \{\{1\}, \{2\}, \{3\}\} \\ \{\{1, 2\}, \{2, 3\}, \{1, 3\}\} \\ \{\{1, 2, 3\}\} \end{cases}$$

FUNCTIONS

- 1. Let $A = \{0, 1, 2\}$ Find all total functions $f: A \rightarrow A$ for which $f^2(x) = f(x)$. (Note: $f^2 = f \circ f$)
- (a) How many such functions are there?
- (b) List all such functions.

Solution)

- (a) There are 10 such functions.
- (b) They consist of the following disjoint classes:

```
(i) The constant functions f(x) = 0, f(x) = 1 and f(x) = 2: {(0,0), (1,0), (2,0)}, {(0,1), (1,1), (2,1)}, {(0,2), (1,2), (2,2)},
(ii) The identify function f(x) are
```

(ii) The identify function f(x) = x. $\{(0,0), (1,1), (2,2)\},\$

 $\{(0,2), (1,1), (2,2)\},\$

(iii) The function which map two elements to themselves and the remaining elements to one of those two (For example, f(0) = 0, f(1) = 1 and f(2) = 1.): $\{(0,0), (1,1), (2,0)\},$ $\{(0,0), (1,1), (2,1)\},$ $\{(0,0), (1,0), (2,2)\},$ $\{(0,0), (1,2), (2,2)\},$ $\{(0,1), (1,1), (2,2)\},$

2. Let P be a set of people, and let Q be a set of occupations. Define a function f: $P \rightarrow Q$ by setting f(p) equal to p's occupation. What must be true about the people in P for f to be a total function?

Solution)

Everybody must have some occupation, and nobody can have two occupations.

3. Let $S = \{0, 1, 2, 3, 4, 5\}$, and let $\mathcal{P}(S)^*$ be the set of all nonempty subsets of S. Define a function $m: \mathcal{P}(S)^* \to S$ by

$$m(H)$$
 = the largest element in H

for any nonempty subset $H \subseteq S$.

- (a) Is *m* one-to-one? Why or why not?
- (b) Does $m \text{ map } \mathcal{P}(S)^*$ onto S? Why or why not?

- (a) No. For example, $m(\{0,3\}) = 3 = m(\{2,3\})$.
- (b) Yes. $m(\lbrace x \rbrace) = x$ for all $x \in S$.