Follow Me

Overview

 Designing and training a FCN model that is applied to quadrotor on a local sim which aims to detect a specific person them follow that person around.

Network Layers

o Encoder

- The encoder portion is a convolution network that detect is the person in this image.
- IT apply separable convolutions which comprise of a convolution performed over each channel of an input layer and followed by a 1x1 convolution that takes the output channels from the previous step and then combines them into an output layer.
- This helps to reduce the parameters make separable convolutions quite efficient with improved runtime performance.

Decoder

- Help to answer where is the person as in the encoding layers the spatial information is lost their
- Bilinear upsampling technique is used then apply concatenatination

FCN layer construction

- I used FCN because in the encoding the network losses a lot of spatial information because it narrows to the details so it losses the big picture so that's why i applied FCN so that my network can answer where is the human in the picture.
- First i applied 3x layers in encoding and 3x layers in decoding and after training the accuracy was 32% but after searching for how to improve the accuracy i found that most FCN depend on 2x layers which convert each layer depth to the power of two so i started with 64 for the depth then 128 and at the conv2d_batchnorm i went for 256 as a maximum depth

This is the first arch first layer after encode picture from 3 depth (RGB) to 64 then to 128 then to 256 then to 512

But after that i removed two layers one from encoding and other from decoding

 This network can be applied to classify any other object but must change the training and validating data sets

Hyper parameters

I tried a lot first started with 10 epoch and 0.01
learning rate then i started tuning and seeing how
other people tune related networks and these
were final result

```
learning_rate = 0.001
batch_size = 64
num_epochs = 50
steps_per_epoch = 65
validation_steps = 50
workers = 120
```

Final accuracy

 First accuracy was 32% and i started tuning my hyper parameter but couldn't exceed the 40% then i applied a major change to my network to by reducing the encoding and decoding layers from 3 layers to 2 layers then i could achieve 42%