CSC236 Midterm 2 Version 1 Solution

Hyungmo Gu

May 11, 2020

Question 1

Rough Works:

Let $n, q \in \mathbb{N}$. Let $r \in \{0, 1\}$

Assume n > 2.

I need to find a closed form for T(2q+r), using repeated subtitution.

1. Find T(2q+r) in closed form

Starting from T(n), we have

$$T(n) = n + T(n-2)$$
 [By def. since $n > 2$]

(1)

$$T(2q+r) = 2q+r+T(2q+r-2)$$
 [By replacing n for $2q+r$]

$$= 2q + r + T(2(q-1) + r)$$
(3)

(4)

$$= \sum_{i=0}^{i=q-1} (2(q-i)+r) + T(r)$$
 [After $q-1$ repeatitions]

(5)

$$=2\sum_{i=0}^{i=q-1}(q-i)+\sum_{i=0}^{i=q-1}r+T(r)$$
(6)

$$= 2\sum_{i=0}^{i=q-1} (q-i) + \sum_{i=0}^{i=q-1} r$$
 [Since $T(r) = 0$]

(7)

$$=2\sum_{i'=1}^{i=q}i'+\sum_{i=0}^{i=q-1}r$$
(8)

$$=2\sum_{i'=1}^{i'=q}i'+\sum_{i=0}^{i=q-1}r$$
(9)

$$=2\sum_{i'=1}^{i'=q}i'+\sum_{i=0}^{i=q-1}r$$
(10)

$$= 2(q(q+1))/2 + \sum_{i=0}^{i=q-1} r$$
 [By using $\sum_{i=1}^{i=n} i = (n(n+1))/2$]

(11)

$$= q(q+1) + rq \tag{12}$$

$$=q(q+1+r) \tag{13}$$