Semiconductor

1. Semiconductor কাকে বলে? ধর্ম/বৈশিষ্ট্য লিখ।

যে সকল পদার্থের সর্বশেষ অর্বিটালে চারটি ইলেক্ট্রন থাকে, তাকে সেমিকডাট্টর বলে। বৈশিষ্ট্যঃ

- রেজিস্টিভিটি কন্ডাক্টর ও ইনসুলেটরের মাঝামাঝি।
- ০° তাপমাত্রায় ইনসুলেটরের ন্যায় কাজ করে।
- তাপমাত্রা বাডলে রেজিস্টিভিটি কমে ৷
- ভ্যালেন্স ব্যান্ত ও কন্ডাকশন ব্যান্ডের মধ্যে সামান্য এনার্জি গ্যাপ থাকে।
- 2. Semiconductor কত প্রকার ও কি কি?

সেমিকডাক্টর ২ প্রকার:- (ক) বিশুদ্ধ (খ) অবিশুদ্ধ

3. Majority charge carrier ও minority charge carrier কাকে বলে?

কোন অবিশুদ্ধ সেমিকভাূটরে ইলেক্ট্রন ও হোলের মধ্যে যেটির পরিমান আধিক্য থাকে তাকে মেজোরিটি চার্জ এবং যেটির পরিমাণ কম থাকে তাকে মাইনোরিটি চার্জ বলে।

4. Doping কি? Doping এর প্রয়োজনীয়তা লিখ।

বিঙদ্ধ সেমিকভাষ্টরের সাথে ভেজাল মিশ্রিত করে অবিশুদ্ধ সেমিকভাষ্টর তৈরির প্রক্রিয়াকে ভোপিং বলে। প্র<u>য়োজনীয়তা:</u> কারেন্টকে প্রয়োজন অনুযায়ী নিয়ন্ত্রণ করার জন্য ভোপিং করা প্রয়োজন। ভোপিং কম *হলে* কারেন্ট প্রবাহ কম হয় এবং বেশী *হলে* কারেন্ট প্রবাহ বেশী হয়।

Diode

1. Biasing কি? কত প্রকার ও কি কি?

ৰায়াসিং অৰ্থ চাপ দেওয়া। বায়সিং ২ প্ৰকার- (i) Forward bias (ii) Reverse bias

2. জিনার ডায়োড বলতে কি বুঝায়? ব্যবহার সহ লিখ।

যে ডায়োড রিভার্স ভোল্টেজে কারেন্ট কন্ডাকশন ঘটাইয়া আউটপুট ভোল্টেজকে স্থির রাখে। ব্যবহার:

- বিভিন্ন ইলেক্ট্রনিক ডিভাইসে ভোল্টেজ স্টাবিলাইজার হিসেবে।
- ইলেক্ট্রনিক ডিভাইসে প্রটেকটিভ ডিভাইস হিসেবে।

3. সাধারন ডায়োড এবং জিনার ডায়োডের মধ্যে পার্থক্য লিখ

সাধারন ভায়োড	জিনার ডায়োড
১.ফরোয়ার্ড বায়াসে কাজ করে।	১. রিভার্স বায়সে কাজ করে।
২. ভেজাল মিশানোর পরিমান জিনার ডায়োড অপেক্ষা কম।	২. ভেজাল মিশানোর পরিমান সাধারন ডায়োড অপেক্ষা বেশী।
৩.পিক ইনভার্স ভোল্টেজে নষ্ট হয়।	৩. পিক ইনভার্স ভোল্টেজে কাজ করে।

4. ফটো ডায়োড, লাইট ইমিটিং ডায়োড কাকে বলে?

ফটো ডায়োড: আলো পড়লে কারেন্ট প্রবাহিত হয়। লাইট ইমিটিং ডায়োড: কারেন্ট প্রবাহিত হলে আলো নির্গত হয়।

Rectifier

1. রেকটিফায়ার কি? কত প্রকার ও কি কি?

রেক্টিফায়ার এমন একটি ডিভাইস যা এসিকে ডিসি করে। এটি ২ প্রকার:- (ক) Half wave (খ) Full wave

2. Half wave, Full wave ও Bridge rectifier এর চিত্র আঁক। Half wave:

Full wave:

3. Half wave, Full wave ও Bridge rectifier এর সুবিধা ও অসুবিধা লিখ।

HWR

১.যে রেষ্টিকায়ারের সাহায্যে এসি ইনপুট এ পজেটিভ অর্ধ সাইকেলকে আউটপুটে

১. যে রেষ্টিকায়ারের সাহায্যে এসি ইনপুট এ উভয় অর্ধ সাইকেল আউটপুটে ডিসি পাওয়া যায়

ভিসি পাওয়া যায়, তাকে HWR বলে।

২.কারেন্ট কম পাওয়া যায়।	২.কারেন্ট বেশি পাওয়া যায়।
৩.একটি মাত্র ডায়োড লাগে।	৩. চারটি ডায়োড লাগে।
৪.ট্রান্সফরমার এ সেকেন্ডারি ট্যাপিং করতে হয় না	৪.ট্রান্সফরমার এ সেকেভারি ট্যাপিং করতে হয় না

Transistor

1. Transistor কাকে বলে? কত প্রকার ও কি কি?

ট**্**রানজিস্টর একটি <u>অর্ধপরিবাহী যন্ত্র,</u> যা সাধারণত <u>আমেগ্লিফায়ার</u> এবং বৈদ্যুতিকভাবে নিয়ন্ত্রিত সুইচ হিসেবে ব্যবহৃত হয়। প্রকারভেদ:

2. Transistor এর Biasing কি? কত প্রকার ও কি কি?

ট্রানজিস্টরকে সঠিকভাবে কার্যপযোগী করার জন্য ভোল্টেজ প্রয়োগ করার পদ্ধতিকে বায়াসিং বলে। বায়াসিং ৩ প্রকার-

🕽 । ফিক্সড ২ । ফিডব্যাক ৩ । ভোল্টেজ ডিভাইডার বায়াস।

3. Transistor এর configuration কত প্রকার ও কি কি?

Transistor ্রর configuration ৩ প্রকার। যথা:

- Common base
- Common emitter
- Common collector

4. Transistor কিভাবে switch হিসেবে কাজ করে?

যখন ট্রানজিস্টরে ইনপুট সিগন্যাল এর মান V_{BE} এর মানের চেয়ে বেশী হলে বেস কারেন্ট প্রবাহিত হয়। ফলে কারেন্ট এর মাল্টিপলিকেশন ফ্যাক্টর অনুসারে কালেক্টরে কারেন্ট প্রবাহিত হলে বাল্ব জ্বলে ওঠে। আবার ইনপুট সিগন্যাল এর মান V_{BE} এর মানের চেয়ে কম হলে বাল্ব অফ থাকে।

5. α , β , γ এর মধ্যে সম্পর্ক দেখাও।

We know,

$$\gamma = {\Delta I_E \over \Delta I_B}$$
 , $\beta = {\Delta I_C \over \Delta I_B}$, $\alpha = {\Delta I_C \over \Delta I_E}$ Again,

 $|_{E} = |_{B} + |_{C.....(i)}$

$$1 = \frac{\Delta I_B}{\Delta I_E} + \frac{\Delta I_C}{\Delta I_E}$$
$$1 = \frac{1}{-} + \alpha$$

$$1 - \frac{1}{x} = \alpha_{....(i)}$$

$$\frac{\Delta I_E}{\Delta I_C} = \frac{\Delta I_B}{\Delta I_C} + 1$$

$$\frac{1}{\alpha} = 1 + \frac{1}{\beta}$$

$$\frac{1}{\alpha} = 1 + \frac{1}{\beta}$$

$$\alpha = 1 - \frac{1}{\gamma} = \frac{\beta}{1 + \beta}$$

FET

1. Bipolar Transistor (BJT) ও Unipolar Transistor (UJT) এর 4 টি পার্থক্য লিখ।

	ВЈТ	UJT
1.	ট্রানজিস্টর একটি কারেন্ট অপারেটেড ডিভাইস।	1. ফেট একটি ভোল্টেজ অপারেটেড ডিভাইস।
2.	তিনটি টার্মিনাল। বেস, ইমিটার, কালেক্টর	2. তিনটি টার্মিনাল। গেইট, ড্রেইন, সোর্স।
3.	এতে ইলেক্ট্রন এবং হোল উভয় চার্জ এর জন্য কারেন্ট প্রবাহিত হয়।	3. এতে ইলেক্ট্রন এবং হোল উভয় চার্জ এর জন্য কারেন্ট প্রবাহিত হয়।
4.	বেসকে ফরোয়ার্ড বায়াস দেয়া হয়।	4. গেটকে রিভার্স বায়াস দেয়া হয়।

2 FET এর ব্যবহার লিখ।

- কম্পিউটারের মেমোরিতে
- ডিজিটাল সার্কিটে
- বাফার অ্যাম্পলিফায়ার হিসেবে
- ফেজ শিফট অসিলেটর এ

DIODE MATH

1. Find out V_D, V_R & I_D:

 $\begin{aligned} & \textbf{Solution:} V_D = 0.7V \\ & V_R = E - V_D = 8 - 0.7 = 7.3V & (Ans) \\ & I_D = I_R = \frac{7.3}{2.2} = 3.32 \text{mA} & (Ans) \end{aligned}$

2. Find out the value of V₀, I_R, I_D: Solution: V₀=12-0.7-0.3=11V (Ans) $I_D = I_R = \frac{11}{5.6} = 1.96 mA \text{ (Ans)}$

3. Find out the value of V_0 , I, V_2 : $I = \frac{10+5-0.7}{4.7+2.2} = \frac{14.3}{6.9} = 2.072 \text{ mA} \qquad \text{(Ans)}$ $V_2 = IR_2 = 2.072 * 2.2 = 4.56 \lor \qquad \text{(Ans)}$ $V_0 = 4.56-5 = -0.44 \lor \qquad \text{(Ans)}$

4. Find out the value of V_0 Solution: V_0 =12-0.3=11.7V (Ans)

5. Find out V_D , V_R , I_D :

 $V_R=0*1.2=0V$ (Ans) $V_D=0.5V$ (Ans)

6. Find out the value of I₁, I₂, I_{D2}:

Solution: $I_1 = \frac{0.7}{3.3} = 0.212 \text{ mA}$ (Ans) $I_2 = \frac{20 - 0.7 - 0.7}{5.6} = 3.32 \text{ mA}$ (Ans) $I_{D2} = I_2 - I_1 = 3.32 - 0.212 = 3.108 \text{mA}$ (Ans)

7. Find out V_0 , I_1 , I_{D1} , I_{D2} :

$$\begin{split} &V_0 = 0.7V \qquad \text{(Ans)} \\ &I_1 = \frac{10 - 0.7}{0.33} = 28.18 \quad \text{mA} \qquad \text{(Ans)} \\ &I_{D1} = I_{D2} = \frac{I_1}{2} = \frac{28.18}{2} = 14.09 \text{mA} \qquad \text{(Ans)} \end{split}$$

TRANSISTOR MATH

1. একটি ট্রানজিস্টরের বেস কারেন্ট ০.০৪mA,ইমিটার কারেন্ট 9.6mA. $lpha_{
m dc}$ $eta_{
m dc}$ & $\gamma_{
m dc}$ বের কর।

[Ans: 0.992, 119 & 120] Solution: $\alpha = \frac{l_C}{l_E} = \frac{l_E - l_B}{l_E} = 1 - \frac{l_B}{l_E} = 1 - \frac{0.08}{9.6} = 0.992 \text{mA}.$ (Ans $\beta = \frac{l_C}{l_B} = \frac{l_{E-l_B}}{l_B} = \frac{l_E}{l_B} = \frac{1}{9.6} = \frac{9.6}{0.08} - 1 = 119 \text{ Ans}$) Find out Gamma.

2. একটি PNP transistor কে কমন ইমিটার সংযোগ করা আছে। এ অবস্থায় উক্ত circuit খেকে কারেন্টের পাঠ পাওয়া গেল। যখাক্রমে বেস কারেন্ট 2mA ও কালেকটর কারেন্ট 98mA। ভাহলে বের কর:-(ক) কারেন্ট গেইন (খ) ইমিটার কারেন্ট । [Ans: 49, 100mA]

Solution: Current gain $\beta = \frac{l_C}{l_B} = \frac{98}{2} = 49$ (Ans) We know, $l_E = l_B + l_C$ = 98+2 = 100 (Ans)

4.নি িচের সার্কিট হতে I_E, I_B ও I_C নির্ণয় কর (V_{BE} =Negligible, β=100

Ans: $I_E = 0.919 \text{ mA}$, $I_B = 0.0091 \text{mA}$, $I_C = 0.91 \text{mA}$

Solution: For emitter bias, $I_C = \frac{V_{CC} - V_{BE}}{R_E + \frac{R_B}{B}}$

 $I_{C} = \frac{10 - 0}{1 + \frac{1000}{100}} = 0.9091 \text{mA}$ (Ans.) $I_{C} \cong I_{E}$

We also solve it use KVL. It's your home work. (tRy)

4.निराठत प्रार्किं राख RB 3 Rc मान निर्ने कत?

যখন V_{BE} =0.6V, B=100, V_{CC} =15V, V_{CE} =8V, I_{C} =2mA [Ans: R_{B} =720K Ω , R_{C} =3.5 K Ω]

Solution: Same as #Qs 3.

3. Find out V_{CB}.

[Ans:- V_{CB}=3.4V]

Solution: Apply KVL in input, $-4+0.7+(1.2*I_E)=0$ I_E=2.75mA V_{CB}=V_C-V_B=10-(2.4*2.75) =3.4V (Ans.)

4. নিচের ckt হতে নির্ণয় কর? (i)lc (ii)V_{CE} যখন B=90 [Ans:- 1.07mA, 3.687V]

Solution: For feedback bias, $I_C = \frac{V_{CC} - V_{BE}}{R_C + R_E + \frac{R_B}{R_C}}$

$$I_C = \frac{10-7}{4.7+1.2 + \frac{250}{90}} = 1.071 \text{mA} \qquad \text{(Ans)}$$
Apply KVI, output, -10+(4.7+4.2)

Apply KVL output, -10+(4.7+4.2)*1.071+V_{CE}=0 V_{CE}=3.686V (Ans)

7. নিচের সার্কিট হতে I_{c} , V_{e} & V_{ce} নির্ণয় কর?

[Ans:- 6.333mA, 1.139V, 4.935V]

Solution: For voltage divider method, $I_C = \frac{\left(\frac{V_{CC} \cdot R_2}{R_2 + R_1}\right) - V_{BE}}{R}$

$$I_{C} = \frac{\left(\frac{10*2.7}{12+2.7}\right) - 0.7}{\frac{180}{1000}} = 6.3151 \text{(Approximately)} \quad \text{(Ans)}$$

$$V_{E} = I_{C} * R_{C} = 6.315 * \frac{180}{1000} = 1.1367 \text{ V}$$
 (Ans)

We take output loop,(Take first sign)

-10+(
$$\frac{620+180}{1000}$$
*6.315)+V_{CE}=0
V_{CE}=4.948 V (Ans)

For saturation condition,
$$\begin{split} I_{\text{C}} = & 0 \text{ then } V_{\text{CE}} = 0 \text{ (It is only use for output)} \\ \text{Firstly } I_{\text{C}} = & 0, \\ V_{\text{cc}} = & V_{\text{CE}} = 20V \text{ (Ans.)} \\ \text{Secondly } V_{\text{CE}} = & 0, \\ R_{\text{C}} = & \frac{V_{\textit{CC}}}{I_{\textit{C}}} = \frac{20}{8} = 2.5 \text{K}\Omega \text{ Ans.} \\ R_{\text{B}} = & \frac{V_{\textit{CC}} - V_{\textit{BE}}}{I_{\textit{B}}} = \frac{20 - 0.7}{40 * 10^{-3}} = 482.5 \text{K}\Omega \text{ (Ans.)} \end{split}$$

SPECIAL THANKS TO MESON CHAKMA EEE , DUET