

IYKRA

Data Fellowship Program

Processing, Storing, and Organizing Data

by (Bangun Sasongko)

Trainer Profile

Bangun W. Sasongko

Data Engineer at BRI
Ex. Devops Engineer
Bachelor of Physics, Electrical and Instrumentations
@sasongkobgn
sasongkobgn@gmail.com

Table of Content

Content

OLTP vs OLAP

Storing Data

Database Design

About this Course

This course will equip you with the fundamentals of database design. We'll begin by exploring two key data processing methods, OLTP and OLAP. You'll also gain a solid understanding of various data storage formats and delve into the fundamentals of data modeling

OLTP vs OLAP

Storing Data

Database Design

The Objectives

By the end of this course, you will be able to:

- Differentiate between the two main data processing approaches: OLTP (Online Transaction Processing) and OLAP (Online Analytical Processing).
- 2. Identify and understand the different formats for data storage.
- 3. Grasp the core concepts of data modeling.
- 4. Apply these foundational concepts to design basic databases.

OLTP vs OLAP

Our motivating questions:

How should we organize and manage data?

It depends on the intended use of the data.

Our motivating questions:

How should we organize and manage data?

- **Schemas**: How should my data be logically organized?
- **Normalization**: Should my data have minimal dependency and redundancy? Views: What joins will be done most often?
- Access control: Should all users of the data have the same level of access
- **DBMS**: How do I pick between all the SQL and noSQL options?

and more!

Approaches to processing data

OLTP Online Transaction Processing

OLAP
Online Analytical Processing

Some concrete examples

OLTP task

Online Transaction Processing

- Find the price of a book
- Update latest customer transaction
- Keep track of employee hours

OLAP task

Online Analytical Processing

- Calculate books with best profit margin
- Find most loyal customers
- Decide employee of the month

OLTP vs. OLAP

	OLTP	OLAP
Purpose	support daily transactions	report and analyze data
Design	application-oriented	subject-oriented
Data	up-to-date, operational	consolidated, historical
Size	snapshot, gigabytes	archive, terabytes
Queries	simple transactions & frequent updates	complex, aggregate queries & limited updates
Users	thousands	hundreds

Working together

Takeaways

- Step back and figure out business requirements
- Difference between OLAP and OLTP
- OLAP? OLTP? Or something else?

Storing data

Structuring data

1. Structured data

- Follows a schema
- Defined data types & relationships
 _e.g., SQL, tables in a relational database _

2. Structured data

- Does not follow larger schema
- Self-describing structure
 e.g., NoSQL, XML, JSON

2. Unstructured data

- Schemaless
- Makes up most of data in the world
 e.g., photos, chat logs, MP3

```
# Example of a JSON file
"user": {
    "profile_use_background_image": true,
    "statuses_count": 31,
    "profile_background_color": "CODEED",
    "followers_count": 3066,
    ...
```

Structuring data

Easier to Analyze

More Flexibility and Scalability

¹ Flower by Sam Oth and Database Diagram by Nick Jenkins via Wikimedia Commons https://commons.wikimedia.org/wiki/File:Languages_xml.png

Storing data beyond traditional databases

Traditional databases

For storing real-time relational structured data? OLTP

Data warehouses

For analyzing archived structured data? OLAP

Data lakes

- For storing data of all structures = flexibility and scalability
- For analyzing big data

Data warehouses

- Optimized for analytics OLAP
 - Organized for reading/aggregating data
 - Usually read-only
- Contains data from multiple sources
- Massively Parallel Processing (MPP)
- Typically uses a denormalized schema and dimensional modeling

Data marts

- Subset of data warehouses
- Dedicated to a specific topic

Data lakes

- Store all types of data at a lower cost:
 - e.g., raw, operational databases, IoT device logs, real-time, relational and non-relational
- Retains all data and can take up petabytes
- Schema-on-read as opposed to schema-on-write
- Need to catalog data otherwise becomes a data swamp
- Run big data analytics using services such as Apache Spark and Hadoop
 - Useful for deep learning and data discovery because activities require so much data

ETL

ELT

Database design

What is database design?

- Determines how data is logically stored
 - How is data going to be read and updated?
- Uses database models: high-level specifications for database structure
 - Most popular: relational model
 - Some other options: NoSQL models, object-oriented model, network model
- Uses schemas: blueprint of the database
 - o Defines tables, fields, relationships, indexes, and views
 - When inserting data in relational databases, schemas must be respected

Data modeling

Process of creating a data model for the data to be stored

- 1. **Conceptual data model**: describes entities, relationships, and attributes
 - Tools: data structure diagrams, e.g., entity-relational diagrams and UML diagrams
- 2. **Logical data model**: defines tables, columns, relationships
 - Tools: database models and schemas, e.g., relational model and star schema
- 3. **Physical data model**: describes physical storage
 - Tools: partitions, CPUs, indexes, backup systems and tablespaces

Conceptual - ER diagram

Entities, relationships, and attributes

Logical - schema

Fastest conversion: entities become the tables

Other database design options

Songs			
song id	bigint		
song_title	char		
length	float		
album_title	bigint		
num_songs_album	int		
artist_name	char		
genre	char		
label	char		

Determining tables

Beyond the relational model Dimensional modeling

Adaptation of the relational model for data warehouse design

- Optimized for **OLAP** queries: aggregate data, not updating (OLTP)
- Built using the star schema
- Easy to interpret and extend schema

Elements of dimensional modeling

Organize by:

- What is being analyzed?
- How often do entities change?

Fact tables

- Decided by business use-case
- Holds records of a metric
- Changes regularly
- Connects to dimensions via foreign keys

Dimension tables

- Holds descriptions of attributes
- Does not change as often

References

Datacamp : database design A cloud guru : database design

Thank you!

nothin' is impossible until its done