Lecture Notes 07: Numerical Algorithms & Errors

CPSC 302: Numerical Computation for Algebraic Problems

Jessica Bosch
 jbosch@cs.ubc.ca
http://www.cs.ubc.ca/~jbosch

University of British Columbia Department of Computer Science

2017/2018 Winter Term 1

1. Waitlist

2. Roundoff Errors

Goal

Roundoff Error Propagation and Accumulation

3. Reflection

- 1. Waitlist
- 2. Roundoff Errors
- 3. Reflection

Waitlist Problem

SOLVED!!!

We are 81 students!

- 1. Waitlist
- Roundoff Errors
 Goal
 Roundoff Error Propagation and Accumulation
- 3. Reflection

Goal

Identify & avoid different sources of roundoff error growth.

Roundoff Errors

- Roundoff error is generally inevitable in numerical algorithms involving real numbers.
- People often like to pretend they work with exact real numbers, ignoring roundoff errors, which may allow concentration on other algorithmic aspects.
- However, carelessness may lead to disaster!

Example: Patriot missile failure in 1991

Roundoff Error Accumulation

• In general, if E_n is error after n elementary operations, cannot avoid linear roundoff error accumulation

$$E_n \simeq c_0 n E_0$$
.

Will not tolerate an exponential error growth such as

$$E_n \simeq c_1^n E_0$$
 for some constant $c_1 > 1$

- an unstable algorithm.
- Example: recursive formula $y_n = \frac{1}{n} 100y_{n-1}$
 - ightharpoonup magnitude of roundoff errors gets multiplied by 100 each time

Roundoff Error Accumulation

When we design an algorithm, we must keep error accumulation in mind:

The computer may run millions of operations, and what may look like a meaningless error may quickly have a disastrous effect.

Cancellation Error

When two nearby numbers are subtracted, the relative error is large. That is, if $x \simeq y$, then x - y has a large relative error.

This occurs in practice consistently and naturally, as we will see.

Review Example

Review Example

Function evaluation at nearby arguments:

- If $g(\cdot)$ is a smooth function then g(t) and g(t+h) are close for h small.
- But rounding errors in g(t) and g(t+h) are unrelated, so they can be of opposing signs!
- For numerical differentiation, e.g.

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}, \quad 0 < h \ll 1,$$

if the relative rounding error in the representation is bounded by ε_{mach} then in |g(t+h)-g(t)|/h it is bounded by $2\varepsilon_{mach}/h$. This (tight) bound is much larger than ε_{mach} when h is small.

Another Example

Compute $y = \sinh(x) = \frac{1}{2}(e^x - e^{-x})$.

- Naively computing y at an x near 0 may result in a (meaningless) 0.
- Instead use Taylor's expansion

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$$

to obtain

$$\sinh(x) = x + \frac{x^3}{6} + \dots$$

• If x is near 0, can use $x + \frac{x^3}{6}$, or even just x, for an effective approximation to $\sinh(x)$.

So, a good library function would compute $\sinh(x)$ by the regular formula (using exponentials) for |x| not very small, and by taking a term or two of the Taylor expansion for |x| very small.

Another Example

Compute $y = \sqrt{x+1} - \sqrt{x}$ for $x = 1 \cdot 10^5$ in \mathbb{F} with t = 5.

However, $x+1=1.00001\cdot 10^5\notin \mathbb{F}$ and $\mathrm{fl}(x+1)=1\cdot 10^5=x$. This results in \mathbb{F} in x+1=x and hence y=0.

Instead use the identity

$$\sqrt{x+1} - \sqrt{x} = \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{(\sqrt{x+1} + \sqrt{x})} = \frac{1}{\sqrt{x+1} + \sqrt{x}}.$$

The Rough Appearance of Roundoff Errors

Run program Example2_2Figure2_2.m

Note how the sign of the floating point representation error at nearby arguments t fluctuates as if randomly: as a function of t it is a "non-smooth" error.

Avoiding Overflow

Suppose $a \gg b$ and we wish to compute $c = \sqrt{a^2 + b^2}$.

Then it may be better to rescale and compute

$$c = a\sqrt{1 + (b/a)^2}.$$

This principle is actually used in the computation of the ℓ_2 norm of a vector:

$$\|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Floating Point Arithmetic: Summary

- The order in which operations are performed matters.
 - Algebraically equivalent formulas may have very different roundoff errors, depending on their arguments.
 - For a single operation, roundoff error is usually small (around ϵ_{mach}), but poor formulas can make it **much** bigger in just a few operations (such as through cancellation).
- Algorithms using floating point will always be approximate, even if there is no discretization error.
- Algorithm design must keep error accumulation in mind.
 - Computers can run a lot of operations very fast.
 - Computational errors can compound and not just add up.

- 1. Waitlist
- 2. Roundoff Errors
- 3. Reflection

Reflection

On a piece of paper, answer the following question:

What was the muddiest point in the first course topic on "Numerical Algorithms & Errors"?

Put the paper into the "Suggestion Box" or just on the table.