Introduction

Methodology

- ▶ Phase 1: Requirements...
 - ► Initial requirements
 - ► Eliciting detail
- Phase 2: Verification...
 - ► Automatic output from FRET (2A)
 - ► Guided by requirements in FRET (2B)
- ▶ Phase 3: Reporting...
 - ► Traceability evidence
 - ► Verification evidence

Aircraft Controller

Postlethwaite et al., 1995

Aircraft Engine Software Controller

- ► FADEC: Full Authority Digital Engine Control
- Responds to pilot input and sensor data
- Monitors and controls the engine. . .
 - ► Thrust control
 - ► Fuel control
 - Power management
 - System health monitoring
 - ▶ etc

Requirements Elicitation

Requirements

FRETISH Example: Requirement 1

- ▶ Natural-Language Requirement 1: "Under sensor faults, while tracking pilot commands, control objectives shall be satisfied (e.g. settling time, overshoot, and steady state error will be within predefined, acceptable limits)"
- ► In FRETISH: if sensorfaults & trackingPilotCommands Controller shall satisfy controlObjectives

Using FRET

ASSISTANT TEMPI ATES GLOSSARV

ENFORCED: in the interval defined by the entire execution, TRIGGER: first point in the interval if (sensorfaults & trackingPilotCommands) is true and any point in the interval where (sensorfaults &

trackingPilotCommands) becomes true (from false). REQUIRES: for every trigger, RES must hold at some time point between (and including) the trigger and the end of the interval.

(controlObjectives).

Diagram Semantics

Formalizations

Requirements

FRETISH Example: Requirement 13

- ▶ Natural-Language Requirement 13: "While tracking pilot commands, controller operating mode shall appropriately switch between nominal and surge/stall prevention operating state"
- ► In FRETISH: if trackingPilotCommands Controller shall satisfy changeMode(nominal) | changeMode(surgeStallPrevention)

Using FRET

ASSISTANT TEMPLATES

ENFORCED: in the interval defined by the entire execution, TRIGGER: first point in the interval if ((trackingPilotCommands)) is true and any point in the interval where ((trackingPilotCommands)) becomes true (from false). REQUIRES: for every trigger, RES must hold at some time point between (and including) the trigger and the end of the interval.

Diagram Semantics

Formalizations

Refactoring – MU-FRET

Analysis: Aircraft Engine Controller Requirements

- ► Traceability: one-to-one mapping in FRETISH

 scope condition component shall timing response

 UC5_R_1: if((sensorFaults)&(trackingPilotCommands)) Controller shall satisfy (controlObjectives).
- ► Repetition of *fragments*.

Requirements: Demo-FSM

Extract Requirement: FSM-001						
Definition:	Definition FSM shall always satisfy if (limits & !standby & !apfail & supported) then pullu	ıp				
String to Extract:	Extract					
New Requirement Name:	New Name					
Apply to all Matching Fragments:						
	C	ANCEL	ОК			

Extract Requirement: FSM-001 Definition Definition: FSM shall always satisfy if (limits & !standby & !apfail & supported) then pullup String to Extract: Extract !standby & !apfail New Requirement Name: New Name Live Apply to all Matching Fragments:

CANCEL

OK

Extract Requirement: FSM-001

Checks Passed. The original and new requirements behave the same.

CLOSE

ID	Fragment Name	№ of (Re)Definitions		
	Fragment ivame	Before Refactoring	After Refactoring	
F1	Sensor Faults	8	1	
F2	Tracking Pilot Commands	13	1	
F3	Control Objectives	18	1	
F4	Regulation Of Nominal Operation	14	1	
F5	Operating Limit Objectives	6	1	
F6	Mechanical Fatigue	8	1	
F7	Low Probability Hazardous Events	8	1	
F8	Active	28	1	
F9	Not Active	28	1	
Total (Re)Definitions		132	9	

Table 1: The number of times each fragment's definition occurs in a child requirement.

FRET-Guided Toolchain

Modelling in Event-B

Modelling in Event-B

Event-B

- Set-based modelling language
- Development done using the Rodin platform

Modelling in Event-B


```
MAGHNE | MAG
```

```
Switch Logic True: not extended ordinary >
WHERE
   grd1: S diffs summed = TRUE not theorem >
           S Switch set = FALSE not theorem >
           S WFE set = FALSE not theorem >
   grd4: diff1 > Switch Th not theorem >
THEN
o act1: Switch Value = TRUE >
   act3: S Switch set = TRUE >
FND
Switch Logic False: not extended ordinary >
WHERE
   grd1: S diffs summed = TRUE not theorem >
          S Switch set = FALSE not theorem >
   grd3: S WFE set = FALSE not theorem >
   grd4: diff1 ≤ Switch Th not theorem >
THEN
   act1: Switch Value = FALSE >
   act3: S_Switch_set = TRUE >
END
```

FRET-Supported Toolchain

CoCoSim and CoPilot

CoCoSim: Contract based Compositional verification of Simulink models.

- ► FRET can generate CoCoSpec assume-guarantee contracts for Simulink blocks.
- ► CoCoSpec contracts are added to the Simulink diagram.
- Contracts are checked during simulations of the diagram using the Kind2 model checker.

CoPilot: Runtime monitoring framework.

- ▶ Copilot allows users to specify monitors and compile them to hard real-time C code.
- ▶ Supported by the Ogma tool, FRET users can automatically generate CoPilot monitors.

CoCoSpec Variable Mapping

Generated CoCoSpec Contract

UC5_R_3

```
(* Req text: if (sensorfaults) & (trackingPilotCommands)
   Controller shall satisfy (operatingLimitObjectives) *)

guarantee ''UC5_R_3'' ((H( not (( sensorfaults ) and ( trackingPilotCommands ))))
  or ( not (SI( ((( sensorfaults ) and ( trackingPilotCommands )))
   and ((pre ( not (( sensorfaults ) and ( trackingPilotCommands )))) or FTP)),
   ( not (( operatingLimitObjectives ))) ))));
```

LTL and CoCoSpec Operators in UC5_R_3

- ► H: historically
- ► SI: since inclusive
- ► FTP: first time point of trace
- pre: previous value

Attach Contract to Simulink Model

