Uso do método dos mínimos quadrados para a frota de veículos na cidade de videira.

Arthur Abitante, Jean Carlo Corso

Curso de Bacharelado em Ciência da Computação – Instituto Federal de Educação, Ciência e Tecnologia Catarinense (IFC) – Campus Videira.

89560-000 - Videira - SC Brasil

arthur.abitante@gmail.com, jeancarlocorso@hotmail.com

Abstract. This article presents an explanation of the method of least squares can be applied on the vine from city vehicle fleet. It was made a survey data of the last 5 years and then applied the method also made a program to assist in the arrival of the results.

Resumo. Este artigo apresenta uma explicação sobre o método dos mínimos quadrados podendo ser aplicado na frota de veículos da cidade de videira. Foi feito um levantamento de dados dos últimos 5 anos e depois aplicado o método, também feito um programa para auxiliar na chegada dos resultados.

1. Introdução.

O Método dos mínimos quadrados é uma técnica de otimização matemática que procura encontrar o melhor ajuste para um conjunto de dados tentando minimizar a soma dos quadrados das diferenças entre o valor estimado e os dados observados, muito utilizado na econometria.

A cidade de Videira tem crescido bastante nos últimos tempos em questão de frota de carros. Se encontra um bom exemplo para se aplicar o método dos mínimos quadrados que explicaremos nesse artigo.

2. Levantamento dos dados.

Para o Levantamento de dados, foi se pesquisado a quantidade de veículos crescendo em videira pelo site do Detran-SC, para isso, foi visto o ano e a quantidade de carros, começando de 2011 a 2015.

2.1. Tabela da frota de veículos e seus respectivos anos.

Anos	Frota de veiculos		
2011	31.125		
2012	33.362		
2013	35.415		
2014	37.060		
2015	38.323		

Tabela 1. Frota de veículos nos últimos 5 anos em Videira.

2.2. Porcentagem de crescimento por ano.

Porcentagem de crescimento por ano:

2011 - 2012: 6,705233499 %

2012 - 2013: 5,796978681 %

2013 - 2014: 4, 438747976 %

2015 - 2015: 3,295671007 %

Media percentual de crescimento ao ano: 5,0591577908 %

2.3. Gráfico do número da frota de veículos.

No gráfico abaixo, é mostrado graficamente a quantidade de carros e seu aumento durante os anos de 2011 a 2015.

Gráfico 1. Frota de veículos nos últimos 5 anos em Videira.

3. Demonstração do método dos mínimos quadrados.

A formula para o cálculo dos mínimos quadrados é em sua essência é um somatório dos termos a serem aproximados como mostra a formula contida na imagem a seguir:

$$\begin{cases} n.b + a \sum x = \sum y \\ b \sum x + a \sum x^2 = \sum x.y \end{cases}$$

Figura 1. Formula dos mínimos quadrados caso linear

4. Resolução.

O método dos Mínimos quadrados é muito simples pois consiste em apenas sucessivas somas e multiplicações. Para encontrarmos a tendência do crescimento da frota de videira (representado na Tabela 1) é necessário seguir os seguintes passos:

Primeiro, calcular os quadrados de x e o produto de xy:

X^2	XY	
4044121	62592375	
4048144	67124344	
4052169	71290395	
4056196	74638840	
4060225	77220845	

Tabela 2. Calculo de x² e x*y em relação a tabela 1.

Para a obtenção de x² foi feito a multiplicação da coluna x da tabela 1, por ela mesma.

Para obter x*y foi multiplicado a coluna x pela coluna y da tabela 1.

Segundo, obter a soma dos dados:

	X	Υ	X^2	XY
	2011	31.125	4044121	62592375
	2012	33.362	4048144	67124344
	2013	35.415	4052169	71290395
	2014	37.060	4056196	74638840
	2015	38.323	4060225	77220845
SOMA	10065	175.285	20.260.855	352.866.799

Tabela 3. Somatório dos dados

Nesta etapa basta somar todos os valores de x, y, x^2 e xy.

Após a obtenção dos dados listados acima teremos:

$$a = (((10065*175285)-5*352866799)/((10065*10065)-5*20260855799))$$

$$b = ((352866799*10065) - (20260855*175285)) / ((20260855) - 5*20260855))$$

Portanto:

$$a = 1616 e b = -3220626.25$$

Por meio destes resultados obteremos a equação f(x) = 1616x -3220626.25 que se substituirmos o X pelos dados da coluna X obteremos uma nova coluna Y na forma linear.

X	Υ
2011	29149,75
2012	30765,75
2013	32381,75
2014	33997,75
2015	35613,75

Tabela 4. Nova coluna Y

Na tabela 4 a coluna y foi substituída conforme a equação f(x) = 1616x - 3220626.25.

Gráfico 2. Frota de veículos em videira

No gráfico 2 apresentado acima temos os pontos azuis representando os dados reais e a linha pontilhada representa a nova coluna Y.

5.Implementação.

Todos os passos de resolução listados acima podem ser resolvidos fazendo o uso do algoritmo a seguir:

```
Poold MMQ(int quantia, float x[], float y[])
{
    float somaX = 0, somaY = 0, somaX2 = 0, somaXY = 0, somaXnew = 0, somaXYnew = 0;
    double a = 0, b = 0;
    for (int i = 0; i < quantia; i++){
        somaX += x[i];
        somaY += y[i];
        somaX2 += pow(x[i], 2);
        somaXY += x[i] * y[i];
    }
    printf("somaX: %f somaY: %f somaX2: %f somaXY: %f \n\n\n", somaX, somaY, somaX2, somaXY);
    a = (((somaX*somaY) - quantia*somaXY) / ((somaX*somaX) - quantia*somaX2));
    b = ((somaXY*somaX) - (somaX2*somaY)) / ((pow(somaX, 2) - quantia*somaX2));
    system("cls");
    printf("f(x) = %fx + (%f)\n\n\n", a, b);
    printf("Novos valores:\n");
    for (int i = 0; i < quantia; i++){
            y[i] = (a*x[i]) + b;
            printf("\n\n: %f y: %f", x[i], y[i]);
    }
    printf("\n\n");
    system("pause");
}</pre>
```

Figura 2. Algoritmo em C

A função contida na figura 2 mostra o algoritmo e C para o cálculo do mínimo quadrado. A função recebe quantia que é o número de dados a ser calculado (neste casso 5), os vetores x e y recebem respectivamente os dados da coluna x e y da nossa tabela, e no final dela, é apresentado os valores em ponto flutuante.

6. Conclusão.

No artigo apresentado, concluímos que o método dos mínimos quadrados ajuda no desenvolvimento de cálculos para se chegar a certos resultados, como um método diferente dos outros, porém também demonstra que é de grande utilidade sendo usado para coisas do cotidiano, como no exemplo mostrado, para quantidade de veículos.

Referências

FROTA de veículos. 2016. Disponível em: http://www.denatran.gov.br/frota.htm. Acesso em: 15 mai. 2016.