Содержание

1	Что это такое? Теория по графам					
2						
	2.1	Определение порядка графа:	4			
	2.2	Определение смежных вершин:	4			
	2.3	Определение смежных рёбер:	4			
	2.4	Определение матрицы смежности графа:	4			
	2.5	Определение степени вершины в неориентированном графе:	<u></u>			
	2.6 Определение чётности и нечётности вершины графа:					
	2.7	Определение вершинного вектора графа:	2			

1 Что это такое?

В этом файле содержится информация по дискретной математике, которая, по моему мнению, поможет в понимании материала по дискретной математике и прольёт свет на некоторые используемые в ответах на билеты термины. Кроме того, эта информация поможет лучше подготовиться к экзамену и почувствовать себя уверенней.

2 Теория по графам

2.1 Определение порядка графа:

Число |V| вершин графа G называется его порядком.

2.2 Определение смежных вершин:

Две вершины называются смежными, если они соединены ребром.

2.3 Определение смежных рёбер:

Два ребра называются смежными, если они имеют общую вершину.

2.4 Определение матрицы смежности графа:

Матрица смежности — квадратная матрица $A=(a_{ij}), \quad i,j=\overline{1,p},$ где

$$a_{ij} = \begin{cases} 1, (i,j) \in \rho \\ 0, (i,j) \notin \rho \end{cases}$$

Запись $(i,j)\in \rho$ означает, что между вершинами i и j существует ребро.

А – матрица смежности:

A	v_1	\mathbf{v}_{2}	v_3	v_4
$\overline{v_1}$	0	1	1	1
v ₁ v ₂ v ₃ v ₄	1	0	1	0
v_3	1	1	0	1
v_4	1	0	1	0

2.5 Определение степени вершины в неориентированном графе:

Степенью вершины deg(v) в неориентированном графе называется число рёбер, непосредственно соединённых с ней.

$$deg(v_1)=deg(v_3)=3$$
; $deg(v_2)=deg(v_4)=2$.

$\Delta G = 3$, $\delta(G) = 2$.

2.6 Определение чётности и нечётности вершины графа:

Вершина графа называется четной, если ее степень четна, и нечетной в противном случае.

2.7 Определение вершинного вектора графа:

Вершинным вектором графа называется вектор (d_1,\ldots,d_n) , где d_1,\ldots,d_n — степени вершин графа.

