Comparação de Diversos Modelos CNN Aplicados à Classificação de Imagens

1st Alison Augusto Miranda Pereira

Programa de Pós-Graduação em Ciência da Computação

ICT-UNIFESP

São José dos Compos Procil

São José dos Campos, Brasil alisonamp.eco@gmail.com

• https://github.com/aaperei/data-science/blob/main/benchmark_deep_neural_networks.ipynb

Resumo—O presente trabalho tem o objetivo de comparar diversos modelos de Redes Neurais Convolucionais na tarefa de classificação de imagens. Utilizou-se da técnica de transferência de aprendizado a fim de se reutilizar modelos pré-treinados, fazendo apenas pequenos ajustes na camada de saída do modelo para a adaptação para o conjunto de dados em questão.

Palavras-chave—Redes Neurais Convolucionais, classificação de imagens, transferência de aprendizado, modelos pré-treinados

I. Introdução

A tarefa de classificação de imagens por meio de aprendizado de máquina tem ampla utilização prática nos dias atuais. Na resolução desse problema ganham destaque as redes neurais convolucionais ou simplesmente CNN (Convolutional Neural Networks) [4]. Tal problema pode ser definido da seguinte forma: dada uma imagem e uma lista de possíveis classes, qual a classe dessa imagem ou probabilidade dessa imagem pertencer a cada uma dessas classes?

No processo de escolha de qual modelo CNN utilizar, estão entre os critérios aplicados: acurácia apresentada pelo modelo escolhido para os dados de validação, tamanho/complexidade do modelo e tempo gasto nas etapas de treinamento e classificação [1]. Num cenário ideal, sempre se busca pelo modelo com maior acurácia e menor tempo. Entretanto, encontrar um modelo que cumpra com excelência os dois critérios nem sempre é fácil, visto que um modelo com maior acurácia será possivelmente mais complexo e executará um maior número de operações. Isto, consequentemente, dará a esse mesmo modelo um tempo elevado nas etapas de treinamento e predição.

Diante do cenário apresentado, entra em campo um conceito chamado transferência de aprendizado (do inglês *transfer learning*). No contexto de redes neurais artificiais, transferência de aprendizado é o processo de se reaproveitar um modelo já treinado para um problema específico e aplicá-lo na resolução de um problema similar. Apenas alguns ajustes na camada de saída desse modelo são necessários, de forma que esse mesmo modelo esteja apto a resolver o novo problema.

Neste trabalho foram escolhidos alguns modelos CNN prétreinados, realizou-se a transferência de aprendizado e utilizou-se tais modelos na tarefa de classificação da base de imagens *cats vs dogs*. Feito isso, foi apresentada uma comparação dos resultados encontrados.

II. METODOLOGIA

Nesta seção, é apresentada a metodologia utilizada para a análise e comparação dos diferentes modelos CNN.

A. Critérios

Os três critérios considerados foram **acurácia** durante a etapa de validação, **tamanho/complexidade** do modelo e **tempo** de processamento nas etapas de classificação e predição. Como citado anteriormente, o objetivo é encontrar o modelo com maior acurácia e menor tempo de processamento.

Utilizou-se de modelos pré-treinados através do conjunto de dados *ImageNet*. A seguir, é apresentada uma comparação entre diferente modelos treinados para a base de dados *ImageNet* [1]:

Figura 1. Acurácia vs. Tamanho e Número de Operações na tarefa de classificação de imagens (*ImageNet*) [1].

B. Processo

Todo o experimento foi desenvolvido utilizando a linguagem de programação *Python* com o auxílio do pacote *tensor-flow.keras*. Tal pacote já possui uma série de modelos prétreinados a partir da base de dados *ImageNet*. De forma macro, o método aplicado pode ser descrito por meio dos seguintes passos:

Figura 2. Fluxo do Método Aplicado no Experimento.

Na etapa de pré-processamento é feito o redimensionamento das imagens, pois alguns modelos exigem imagens no tamanho (224, 224, 3), enquanto outros no tamanho (331, 331, 3). Também foi aplicado *one-hot-encoding* às possíveis classes, de forma que seja possível utilizar *categorical crossentropy*.

A lista completa de todos os modelos disponíveis pode ser encontrada no site oficial https://www.tensorflow.org/versions/r2.7/api_docs/python/tf/keras/applications. Durante a execução desse experimento, *tensorflow* possuía 28 modelos disponíveis na versão 2.7:

— DenseNet121 — DenseNet169 — DenseNet201 — EfficientNetB0 EfficientNetB1 — EfficientNetB2 — EfficientNetB3 — EfficientNetB4 — EfficientNetB5 — EfficientNetB6 — EfficientNetB7 — InceptionResNetV2 — InceptionV3 — MobileNet — MobileNetV2 — MobileNetV3Large — MobileNetV3Small — NASNetLarge — NASNetMobile — ResNet101 — ResNet101V2 — ResNet152 — ResNet152V2 — ResNet50 — ResNet50V2 — VGG16 — VGG19 — Xception —

C. Configurações

Nesta subseção foram listadas todas as configurações e detalhes relevantes do experimento, de forma que o mesmo seja reproduzível:

- Principais pacotes Python utilizados: tensorflow e pandas
- Base de dados utilizada: *Cats vs Dogs*. Baixado diretamente via tensorflow https://www.tensorflow.org/datasets/catalog/cats_vs_dogs
- Divisão treinamento/validação: 70% treinamento e 30% validação
- *Batch size*: 32 (podendo ser alterado de acordo com seus recursos disponíveis de processamento)
 - Quantidade de épocas de treinamento: 3
 - Função de perda: categorical crossentropy
 - Métrica: acurácia
- Camada de saída: camada densa com função de ativação softmax, pois o objetivo é encontrar uma distribuição de probabilidade de cada uma das classes.
- Ambiente de execução: plataforma *Google Colaboratory PRO*, utilizando a GPU de *back-end* do *Google Compute Engine* em *Python 3* (NVIDIA Tesla P100), 27.3GB memória RAM e 170GB de disco.

III. RESULTADOS

Como mencionado anteriormente, foram treinados os 28 modelos de redes CNN pré-treinados do *tensorflow* e validados os resultados. Na tabela I são apresentados a acurácia para fase de validação, tamanho do modelo e tempo gasto na etapa de treinamento, ordenados de forma crescente pelo tamanho do modelo.

Tabela I RESUMO DOS RESULTADOS OBTIDOS

Modelo	Tamanho	Acurácia	Treinamento
MobileNetV3Small	1529968	0.629317	58.74655
MobileNetV2	2257984	0.984095	62.38765
MobileNet	3228864	0.987964	54.21614
EfficientNetB0	4049571	0.50437	92.57281
MobileNetV3Large	4226432	0.610403	65.70144
NASNetMobile	4269716	0.989253	132.2419
EfficientNetB1	6575239	0.503797	128.1187
DenseNet121	7037504	0.986818	135.2614
EfficientNetB2	7768569	0.518699	132.6468
EfficientNetB3	10783535	0.560539	164.7093
DenseNet169	12642880	0.98997	164.0186
VGG16	14714688	0.910446	139.2497
EfficientNetB4	17673823	0.496203	216.4068
DenseNet201	18321984	0.99083	207.4677
VGG19	20024384	0.894971	159.0307
Xception	20861480	0.987964	167.872
InceptionV3	21802784	0.98911	103.4869
ResNet50V2	23564800	0.985385	126.2637
ResNet50	23587712	0.653532	121.7114
EfficientNetB5	28513527	0.523714	310.976
EfficientNetB6	40960143	0.587047	388.8864
ResNet101V2	42626560	0.988394	203.5168
ResNet101	42658176	0.676171	202.4899
InceptionResNetV2	54336736	0.992979	247.2473
ResNet152V2	58331648	0.987821	343.2831
ResNet152	58370944	0.672589	288.5863
EfficientNetB7	64097687	0.496203	552.7204
NASNetLarge	84916818	0.994555	1270.618

Além disso, as figura 3 e 4 ilustram de forma gráfica e mais visual os resultado tabulados:

Figura 3. Acurácia na Etapa de Validação vs. Tamanho do Modelo

Figura 4. Acurácia na Etapa de Validação vs. Tempo de Treinamento

Analisando os resultados, nota-se que, conforme mostrado por [1], o modelo *NASNetLarge* é o maior (maior número de parâmetros) e apresentou maior tempo de treinamento e maior acurácia nos dados de validação. Trata-se de uma rede neural do tipo *Neural Search Space* [2], na qual foi possível atingir uma acurácia de 99,45% na classificação da base de imagens *cats vs dogs*. Por outro lado, a família de modelos *EfficientNet* foi a que apresentou menor acurácia (variando entre 49% e 58%).

Já os modelos da família *MobileNet* são simplificados, pois, como o nome sugere, foram modelos criados para dispositivos móveis e aplicações embarcadas [3]. Sendo assim, tais modelos são os menores (menor quantidade de parâmetros) e

com baixo tempo de treinamento. Mesmo assim, alguns desses modelos possuem excelente acurácia. Alguns exemplos são os modelos *MobileNet* e *MobileNetV2* com 98% de acurácia apresentada para os dados de validação.

As diferentes acurácias apresentadas possuem desvio padrão de 0.212358354, o que é um número bastante elevado considerando que a acurácia é um número no intervalo [0, 1]. Isso demonstra uma alta variação na performance dos modelos, ocasionada pelas diferentes arquiteturas e quantidades de parâmetros. Comparando as figures 3 e 4, fica evidente que há uma forte relação entre tamanho do modelo e tempo de processamento. Também é possível concluir a partir dessas imagens, que nem sempre um modelo maior implica em uma acurácia maior. A partir dos resultos, é possível observar modelos de tamanhos variados com acurácia muito próximo de 100%.

IV. CONSIDERAÇÕES FINAIS

Neste trabalho, foi apresentada uma comparação entre diferentes modelos CNN aplicados na classificação da base de imagens *cats vs dogs*. Tal experimento pode ser facilmente replicado para outras tarefas semelhantes, de forma que torna possível uma decisão baseada em dados concretos sobre qual é o melhor modelo para um determinado problema em questão. Além disso, a técnica de transferência de aprendizado possibilitou experimentar diversos modelos com um baixo tempo de processamento (todo o experimento foi processado em cerca de 104 minutos com os recursos descritos anteriormente), pois apenas a última camada de cada modelo foi de fato treinada.

REFERÊNCIAS

- [1] S. Bianco, R. Cadene, L. Celona, e P. Napoletano, "Benchmark Analysis of Representative Deep Neural Network Architectures," ar-Xiv:1810.00736v2 [cs.CV] 19 Oct 2018.
- [2] B. Zoph, V Vasudevan, J. Shlens, e Q. V. Le, "Learning Transferable Architectures for Scalable Image Recognition," arXiv:1707.07012v4 [cs.CV] 11 Apr 2018.
- [3] A. G. Howard, M. Zhu, B. Chen, e D. Kalenichenko, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications," arXiv:1707.07012v4 [cs.CV] 11 Apr 2018.
- [4] F. Sultana, A. Sufian, e P. Dutta, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications," arXiv:1905.03288v1 [cs.CV] 8 May 2019.