

what is LI-FI?!

- LI-FI Stands for "Light Fidelity".
-A type of wireless communication using visible light.

How wireless communication works ?!

- Simply instead of using wires to transfer "Data Signal" we mix it with a "carrier wave" using any type of signal modulation like AM (Amplitude Modulation) in our case.

How AM works ?!

AM [Amplitude Modulation]

And when it is received it is "Demodulated" and converted to a "data signal" again.

Arduino LI-FI Project

First how to connect two Arduinoes together ?!

There are a lot of protocols like (SPI,I2C,UART,...) in our case we wil use UART.

How UART works ?!

UART communication

<---- common GND

Just kidding: D.

Here how it looks in real life:

{ Code;}

Transmitter

```
serial | Arduino 1.8.4
File Edit Sketch Tools Help
 serial §
//transmitter .
void setup()
  Serial.begin(9600);
String msg="Hello there!.";
void loop()
     //send message every second .
     Serial.print(msg);
     delay(1000);
```

Done compiling.

Archiving built core (caching) in: /tmp/arduino_cache_44/bbl/core/core_arduino_avr_uno_c053fef0950352f3c6b3b06b2496f0da.a Sketch uses 1642 bytes (5%) of program storage space. Maximum is 32256 bytes. Global variables use 188 bytes (9%) of dynamic memory, leaving 1860 bytes for local variables. Maximum is 2048 bytes.

Arduino/Genuino Uno on /dev/ttyACM0

Receiver

```
serial | Arduino 1.8.4
File Edit Sketch Tools Help
//receiver
void setup() {
  // put your setup code here, to run once:
Serial.begin(9600);
void loop() {
 // put your main code here, to run repeatedly:
if(Serial.available()){
char x=Serial.read();
Serial.println(x);
delay(10);
Done compiling
```

16 Arduino/Genuino Uno on /dev/ttyACM0

Global variables use 188 bytes (9%) of dynamic memory, leaving 1860 bytes for local variables. Maximum is 2048 bytes.

Sketch uses 1642 bytes (5%) of program storage space. Maximum is 32256 bytes.

Now lets get rid of wires and use Light as our Transmitting signal (AM).

How ?!

Mostly they use a Light source (LED) at the Transmitter side.

And a Light sensor (Solar Cell) at the Receiver side.

But its hard to get a Solar Cell and if you can it will be expensive.

Solution:

You can use an LED as a Solar Cell.

Yes, LEDs and Solar Cells has the same internal structure.

If you give an LED electricity it will emit light but if you give an LED light it will generate electricity.

Using LED as a solar cell

takes electricity Generates electricity

Again we have a Problem :(

The LED can only generate 2 volts Maximum

Again where is the problem ?!

In the physical world a logic 1 is (3.5-5) volts and a logic 0 is (0-2.5) volts.

That means that whatever signal the LED generates it will be logic 0 (0-2) volts.

In other words it will be read as 0 all the time.

Solution:

Using a simple circuit(module) that acts as an amplifier and a filter(using threshold).

LIFI RX

fritzing

