

A Brief survey for Deep Reinforcement Learning

2017- March -31

Di Wu

ID: 260562997

Outline

- Introduction
- Research results before DQN
- Recent Research Progress
- Applications
 - □ Successful applications
 - □ Potential applications

Introduction

- Deep reinforcement learning (Deep RL) combines the conception power of deep learning and decision power of reinforcement learning
- Deep reinforcement learning is reinforcement learning
- Deep learning can be used
 - ☐ Approximate value function
 - □ Approximate policy function
 - □ Predict future reward or state representation

Early Research Results before DQN

- Before the introduction of DQN there are some previous work of using neural network for Reinforcement learning
- Mainly use (shallow) neural networks as a kind of function approximator

Early Research Results before DQN

Some early research results are shown in following table:

Title	Year	Topic
Neural fitted q iteration-first experiences with a data efficient neural reinforcement learning method [1]	2004	Neural fitted Q
Deep auto-encoder neural networks in reinforcement learning [2]	2010	Small state space vision
Deep belief nets as function approximators for reinforcement learning [3]	2011	DBF Q approximator
Autonomous reinforcement learning on raw visual input data in a real world application [4]	2012	Deep fitted Q

- The DQN is formally proposed in two [5] 2013, and [6] 2015.
- Show great success of Game playing (Atari and Go).
- Then it become a hot research topic.
- The following tables lists some recent Deep RL papers in different fields.

Some major research work after DQN

Filed: Value based	Year	Topic
Playing atari with deep reinforcement learning [5], Human-level control through deep reinforcement learning [6].	2013, 2015	Introduced the idea Deep RL
Dueling network architectures for deep reinforcement learning [7]	2016	Dueling network
Deep reinforcement learning with double q-learning [8]	2016	Double Q Learning
Deep recurrent q-learning for partially [9]	2015	Use recurrent NN for Deep RL
Increasing the action gap: new operators for reinforcement learning [10]	2016	New operator in bellman equation
Prioritized experience replay [11]	2016	Prioritized experience replay

Some major research work after DQN

\boldsymbol{J}		
Filed: Policy based	Year	Topic
Deterministic policy gradient algorithms [12]	2014	Deterministic
Asynchronous methods for deep reinforcement learning [13]	2016	A3C with Multi thread
Trust region policy optimization [14]	2015	Trust region
High-Dimensional continuous control using generalized advantage function [15]	2015	generalized advantage function
End-to-end training of deep visumotor policies [16]	2016	Guided-policy search for Robot
PGQ: Combining policy gradient and q-learning [17]	2016	policy gradient with off- policy Q-learning

Some major research work after DQN

Filed: Hierarchical Deep RL	Year	Topic
Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation [18]	2016	Deep RL for HRL
Hierarchical reinforcement learning using spatio-temporal abstractions and deep neural networks [19]	2016	HRL with intra-option
Multi-Level Discovery of Deep Options [20]	2017	Deep Options Structure
FeUdal Networks for Hierarchical Reinforcement Learning [21]	2017	FeUdal Networks

Some major research work after DQN

Filed: Transfer/Multi-Task Deep RL	Year	Topic
Actor-mimic: deep multitask and transfer reinforcement learning [22]	2016	Multitask transfer
Policy distillation [23]	2015	Multitask and multi experience replay
Towards Knowledge Transfer in Deep Reinforcement Learning [24]	2016	Task similarity impacts anslysis
Multi-task learning with deep model based reinforcement learning [25]	2016	Low dimensional energy model to learn the MDP distribution
Exploration for Multi-task Reinforcement Learning with Deep Generative Models [26]	2016	Solve different tasks simultaneously

Filed: Multi-agent Deep RL	Year	Topic
Multi-Agent cooperation and competition with deep reinforcement learning [27]	2015	Deep Q-Networks can become a practical tool for studying the decentralized learning
Learning to communicate to solve riddles with deep distributed recurrent q-networks [28]	2016	Applications in in learning communication protocols
Learning to Communicate with Deep Multi-Agent Reinforcement Learning [29]	2016	Centralized learning but decentralized execution
Coordinated Deep Reinforcement Learners for Traffic Light Control [30]	2016	Application paper, new reward function
Opponent Modeling in Deep Reinforcement Learning [31]	2016	neural-based models that jointly learn a policy and the behavior of opponents.

Applications of Deep RL

■ Games:

Applications of Deep RL

IN CON FI NO DO NO

Robot &Self-Driving

Applications of Deep RL

- NLP, vision, video:
 - ☐ Text generation
 - ☐ Text analytic
 - ☐ Dialogue system
 - ☐ Future reward prediction with current image

Applications of Deep RL: Potential Applications

■ Smart Grid:

- Deep mind mentions the application of Deep RL based energy management system saves 40% energy consumption (millions of dollars) for google data center
- Fintech: personalized system, and trading
 - □ Deep Direct Reinforcement Learning for Financial Signal Representation and Trading [32]
- Medical Service, Intelligent Manufacturing

Reference

- [1] Riedmiller M. Neural fitted Q iteration—first experiences with a data efficient neural reinforcement learning method[C]//European Conference on Machine Learning. Springer Berlin Heidelberg, 2005: 317-328.
- [2] Lange S, Riedmiller M. Deep auto-encoder neural networks in reinforcement learning[C]//Neural Networks (IJCNN), The 2010 International Joint Conference on. IEEE, 2010: 1-8.
- [3] Abtahi F, Fasel I. Deep belief nets as function approximators for reinforcement learning[J]. RBM, 2011, 2: h3.
- [4] Lange S, Riedmiller M, Voigtlander A. Autonomous reinforcement learning on raw visual input data in a real world application[C]//Neural Networks (IJCNN), The 2012 International Joint Conference on. IEEE, 2012: 1-8.
- [5] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J]. arXiv preprint arXiv:1312.5602, 2013.

Reference

- [6] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
- [7]Wang Z, Schaul T, Hessel M, et al. Dueling network architectures for deep reinforcement learning[J]. arXiv preprint arXiv:1511.06581, 2015.
- [8] Van Hasselt H, Guez A, Silver D. Deep Reinforcement Learning with Double Q-Learning[C]//AAAI. 2016: 2094-2100.
- [9] Hausknecht M, Stone P. Deep recurrent q-learning for partially observable mdps[J]. arXiv preprint arXiv:1507.06527, 2015.
- [10] Bellemare M G, Ostrovski G, Guez A, et al. Increasing the Action Gap: New Operators for Reinforcement Learning[C]//AAAI. 2016: 1476-1483.
- [11] Schaul T, Quan J, Antonoglou I, et al. Prioritized experience replay[J]. arXiv preprint arXiv:1511.05952, 2015.
- [12] Lever G. Deterministic policy gradient algorithms[J]. 2014.

Reference

- [13] Mnih V, Badia A P, Mirza M, et al. Asynchronous methods for deep reinforcement learning[C]//International Conference on Machine Learning. 2016.
- [14] Schulman J, Levine S, Abbeel P, et al. Trust Region Policy Optimization[C]//ICML. 2015: 1889-1897.
- [15] Schulman J, Moritz P, Levine S, et al. High-dimensional continuous control using generalized advantage estimation[J]. arXiv preprint arXiv:1506.02438, 2015.
- [16] Levine S, Finn C, Darrell T, et al. End-to-end training of deep visuomotor policies[J]. Journal of Machine Learning Research, 2016, 17(39): 1-40.
- [17] O'Donoghue B, Munos R, Kavukcuoglu K, et al. PGQ: Combining policy gradient and Q-learning[J]. arXiv preprint arXiv:1611.01626, 2016.
- [18] Kulkarni T D, Narasimhan K, Saeedi A, et al. Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation[C]//Advances in Neural Information Processing Systems. 2016: 3675-3683.

Reference

- [19] Krishnamurthy R, Lakshminarayanan A S, Kumar P, et al. Hierarchical reinforcement learning using spatio-temporal abstractions and deep neural networks[J]. arXiv preprint arXiv:1605.05359, 2016.
- [20] Fox R, Krishnan S, Stoica I, et al. Multi-Level Discovery of Deep Options[J]. arXiv preprint arXiv:1703.08294, 2017.
- [21] Vezhnevets A S, Osindero S, Schaul T, et al. FeUdal Networks for Hierarchical Reinforcement Learning[J]. arXiv preprint arXiv:1703.01161, 2017.
- [22] Parisotto E, Ba J L, Salakhutdinov R. Actor-mimic: Deep multitask and transfer reinforcement learning[J]. arXiv preprint arXiv:1511.06342, 2015.
- [23] Rusu A A, Colmenarejo S G, Gulcehre C, et al. Policy distillation[J]. arXiv preprint arXiv:1511.06295, 2015.
- [24] Glatt R, da Silva F L, Costa A H R. Towards Knowledge Transfer in Deep Reinforcement Learning[C]//Intelligent Systems (BRACIS), 2016 5th Brazilian Conference on. IEEE, 2016: 91-96.

Reference

[25] Mujika A. Multi-task learning with deep model based reinforcement learning[J]. arXiv preprint arXiv:1611.01457, 2016.

[26] Bangaru S P, Suhas J S, Ravindran B. Exploration for Multi-task Reinforcement Learning with Deep Generative Models[J]. arXiv preprint arXiv:1611.09894, 2016.

[27] Tampuu A, Matiisen T, Kodelja D, et al. Multiagent cooperation and competition with deep reinforcement learning[J]. arXiv preprint arXiv:1511.08779, 2015.

[28] Foerster J N, Assael Y M, de Freitas N, et al. Learning to communicate to solve riddles with deep distributed recurrent q-networks[J]. arXiv preprint arXiv:1602.02672, 2016.

[29] Foerster J, Assael Y M, de Freitas N, et al. Learning to communicate with deep multi-agent reinforcement learning[C]//Advances in Neural Information Processing Systems. 2016: 2137-2145.

Reference

[30] van der Pol E, Oliehoek F A. Coordinated Deep Reinforcement Learners for Traffic Light Control[J].

[31] He H, Boyd-Graber J, Kwok K, et al. Opponent Modeling in Deep Reinforcement Learning[C]//Proceedings of The 33rd International Conference on Machine Learning. 2016: 1804-1813.

[32] Deng Y, Bao F, Kong Y, et al. Deep direct reinforcement learning for financial signal representation and trading[J]. IEEE transactions on neural networks and learning systems, 2017, 28(3): 653-664.

Thanks!