数据可视化

Lecture 02
Data visualization design (I)

虞思逸

可视化分析框架的 定义

可视化分析框架的 分析框架

What? Why? How?

可视化分析框架的 标志与通道

可视化分析框架的 定义

可视化设计的定义

Design computer-based visualization systems that provide visual representations of datasets designed to help people carry out tasks more effectively.

可视化设计的应用场景

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

- 提供人类认识过程中所需细节
- ●尚未有得到可信结论
 - -doesn't know exactly what questions to ask in advance
 - –exploratory data analysis
 - speed up through human-in-the-loop visual data analysis
 - -present known results to others
 - -stepping stone towards automation
 - -before model creation to provide understanding
 - -during algorithm creation to refine, debug, set parameters
 - -before or during deployment to build trust and monitor

为什么要进行数据的外在可视化?

Computer-based visualization systems provide visual representations of datasets esigned to help people carry out tasks more effectively.

• external representation: 将认知变为感知

为什么有时候需要展示所有数据?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- summaries lose information, details matter
 - confirm expected and find unexpected patterns
 - -assess validity of statistical model

Anscombe's Quartet

Identical statistics		
x mean	9	
x variance	10	
y mean	7.5	
y variance	3.75	
x/y correlation	0.816 n/watch?v=DbJyPELmhJc	

Same Stats, Different Graphs

关于任务与效率

Computer-based visualization systems provide visual representations of datasets designed to help people carry of t tasks nor effectively.

- effectiveness requires match between data/task and representation
 - -set of representations is huge
 - -many are ineffective mismatch for specific data/task combo
 - -increases chance of finding good solutions if you understand full space of possibilities
- what counts as effective?
 - –novel: enable entirely new kinds of analysis
 - -faster: speed up existing workflows
- how to validate effectiveness
 - -many methods, must pick appropriate one for your context

可视化设计过程中的局限性

- computational limits
 - –processing time
 - –system memory
- human limits
 - –human attention and memory
- display limits
 - -pixels are precious resource, the most constrained resource
 - -information density: ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and wasting space, find sweet spot between dense and sparse

数据可视化分析的目的

- imposes structure on huge design space
 - –scaffold to help you think systematically about choices
 - –analyzing existing as stepping stone to designing new
 - most possibilities ineffective for particular task/data combination

SpaceTree

[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57–64.]

TreeJuxtaposer

[TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453–462, 2003.]

可视化分析框架的分析框架的

What? Why? How?

分析框架: 四个层次, 三个问题

Domain situation
Observe target users using existing tools

Data/task abstraction

Wisual encoding/interaction idiom Justify design with respect to alternatives

Algorithm

Measure system time/memory Analyze computational complexity

Analyze results qualitatively

Measure human time with lab experiment (lab study)

Observe target users after deployment (field study)

Measure adoption

分析框架: 四个层次, 三个问题

- domain situation 领域形势
 - —who are the target users?
- abstraction 抽象
 - —translate from specifics of domain to vocabulary of vis
 - •what is shown? data abstraction
 - •why is the user looking at it? task abstraction
- idiom 风格
 - -how is it shown?
 - visual encoding idiom: how to draw
 - •interaction idiom: how to manipulate
- algorithm 算法
 - –efficient computation

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

[A Multi-Level Typology of Abstract Visualization Tasks Brehmer and Munzner. IEEE TVCG 19(12):2376-2385, 2013 (Proc. InfoVisualization)

Why is validation difficult?

solution: use methods from different fields at each level

anthropology/ Domain situation Observe target users using existing tools ethnography Data/task abstraction cognitive psychology problem-driven work Wisual encoding/interaction idiom design Justify design with respect to alternatives M Algorithm computer Measure system time/memory technique-driven work science Analyze computational complexity Analyze results qualitatively Measure human time with lab experiment (lab study) Observe target users after deployment (*field study*) anthropology/ ethnography Measure adoption

What? Why? How?

→ Geometry (Spatial)

- **Dataset Availability**
 - → Static

→ Dynamic

What?

Datasets

Data Types

Tables

Items

→ Attributes → Items

→ Data and Dataset Types

Networks &

Items (nodes)

Attributes

Trees

Links

→ Links

Fields

Grids

Positions

Attributes

→ Positions

Geometry

Items

Positions

- → Grids

Clusters,

Sets, Lists

Items

Attributes

→ Ordered

→ Attribute Types

→ Categorical

→ Ordinal

→ Quantitative

Ordering Direction

→ Dataset Types

Attributes

→ Tables

→ Networks

→ Fields (Continuous)

→ Diverging

→ Sequential

→ Cyclic

→ Multidimensional Table

Attributes

→ Trees

四种数据类型

Dataset Types

→ Tables

→ Networks

→ Fields (Continuous)

→ Geometry (Spatial)

→ Multidimensional Table

→ Trees

- visualization vs computer graphics
 - geometry is design decision

Dataset and data types

Data and Dataset Types

- Data Types
 - → Items → Attributes → Links → Positions → Grids
- Dataset Availability
 - → Static → Dynamic · · · · · →

属性类型

- Attribute Types
 - → Categorical

- → Ordered
 - → Ordinal

→ Quantitative

- Ordering Direction
 - → Sequential

→ Diverging

→ Cyclic

- {action, target} pairs
 - -discover distribution
 - -compare trends
 - -locate outliers
 - –browse topology

Why?

- Analyze
 - → Consume

→ Produce

- Search (\mathbf{r})

	Target known	Target unknown
Location known	·.·· Lookup	·. Browse
Location unknown	⟨`@.> Locate	< • ○ Explore

Query

⊘ Targets

All Data

Attributes

- **Network Data**
 - → Topology

→ Paths

- **Spatial Data**
 - → Shape

Actions: Analyze

consume

- **Analyze**
- -Discover/present → Consume
 - classic split
 - aka explore vs explain
- —enjoy
 - newcomer
 - aka casual, social

→ Discover

→ Present

→ Enjoy

- → Produce
 - → Annotate

→ Record

→ Derive

- produce
 - -annotate, record
 - -derive
 - crucial design choice

Derive

- don't just draw what you're given!
 - —decide what the right thing to show is
 - -create it with a series of transformations from the original dataset
 - -draw that
- one of the four major strategies for handling complexity

 $trade\ balance = exports - imports$

Analysis example: Derive one attribute

- Strahler number
 - -centrality metric for trees/networks
 - -derived quantitative attribute
 - —draw top 5K of 500K for good skeleton [Using Strahler numbers for real time visual exploration of huge graphs. Auber.

Task 2

Tree

What?

In Tree

Out Filtered tree

Actions: Search, query

- Search
- what does user know?
 - –target, location
- how much of the data matters?
 - -one, some, all

	Target known	Target unknown
Location known	• • • Lookup	• Browse
Location unknown	₹ O C Locate	< Explore

- independent choices for each of these three levels
 - -analyze, search, query
 - -mix and match

→ Identify

→ Compare

→ Summarize

Why: Targets

All Data

→ Trends

→ Outliers

→ Features

Attributes

→ One

→ Many

→ Distribution

- → Dependency
- → Correlation

→ Similarity

- **Network Data**
 - → Topology

→ Paths

- **Spatial Data**
 - → Shape

How?

Encode

Arrange

→ Express

→ Separate

→ Order

→ Use

→ Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Motion Direction, Rate, Frequency, ...

Manipulate

→ Change

→ Select

Navigate

Facet

Reduce

 \odot Juxtapose

→ Filter

Partition

Aggregate

→ Superimpose

Embed

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
 - -Chap 2: What: Data Abstraction
 - -Chap 3: Why: Task Abstraction
- A Multi-Level Typology of Abstract Visualization Tasks. Brehmer and Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis) 19:12 (2013), 2376–2385.
- Low-Level Components of Analytic Activity in Information Visualization. Amar, Eagan, and Stasko. Proc. IEEE InfoVis 2005, p 111–117.
- A taxonomy of tools that support the fluent and flexible use of visualizations. Heer and Shneiderman. Communications of the ACM 55:4 (2012), 45–54.
- Rethinking Visualization: A High-Level Taxonomy. Tory and Möller. Proc. IEEE InfoVis 2004, p 151–158.
- Visualization of Time-Oriented Data. Aigner, Miksch, Schumann, and Tominski. Springer, 2011.

可视化分析框架的标志与通道

Definitions: Marks and channels

- marks
 - geometric primitives

Marks as Items/Nodes

Points

Lines

→ Areas

Marks as Links

- **→** Containment
- **→** Connection

channels

- –controlappearance ofmarks
- -can redundantly code with multiple channels

Position

→ Color

→ Size

Visual encoding

- analyze idiom structure
 - -as combination of marks and channels

Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)

Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

- Identity Channels: Categorical Attributes
 - Color hue

Spatial region

Motion

Shape + ● ■ ▲

- expressiveness principle
 - match channel and data characteristics

- Identity Channels: Categorical Attributes
 - Spatial region

 Color hue

 Motion

 Shape

 The state of th

- expressiveness principle
 - match channel and data characteristics
- effectiveness principle
 - encode most important attributes with highest ranked channels

Identity Channels: Categorical Attributes

- expressiveness principle
 - match channel and data characteristics
- effectiveness principle
 - encode most important attributes with highest ranked channels
 - spatial position ranks high for both
- distinguishability
 - enough levels in channel to match data

Accuracy: Fundamental Theory Steven's Psychophysical Power Law: S= I^N

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203–212.]

Discriminability: How many usable steps?

- must be sufficient for number of attribute levels to show
 - -linewidth: few bins

[mappa.mundi.net/maps/maps 014/telegeography.html]

Separability vs. Integrality

Position

+ Hue (Color)

Fully separable

2 groups each

Size

+ Hue (Color)

Some interference

2 groups each

Width

+ Height

Some/significant interference

3 groups total: integral area

Red

+ Green

Major interference

4 groups total: integral hue

Popout

- find the red dot
 - -how long does it take?
- parallel processing on many individual channels
 - -speed independent of distractor count
 - speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
 - -speed depends on number of distractors

- many channels: tilt, size, shape, proximity, shadow direction, ...
- but not all! parallel line pairs do not pop out from tilted pairs

Grouping

- containment
- connection

- proximity
 - -same spatial region
- similarity
 - same values as other categorical channels

Marks as Links

→ Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
 - -that's why accuracy increases with common frame/scale and alignment
 - -Weber's Law: ratio of increment to background is constant
 - filled rectangles differ in length by 1:9, difficult judgement
 - white rectangles differ in length by 1:2, easy judgement

Relative luminance judgements

 perception of luminance is contextual based on contrast with surroundings

Relative color judgements

color constancy across broad range of illumination conditions

参考

• 书籍网站: <u>Visualization Analysis and Design</u> https://www.cs.ubc.ca/~tmm/vadbook/

• 作者: <u>Tamara Munzner</u>

https://www.cs.ubc.ca/~tmm/