Homework 2

Homework designed and built for T.J. Borrelli Due September 21st Section 3

ALEXANDER KELLERMANN NIEVES

1

=	
	6

2. What is
$$2 \cdot 29 \mod 13$$
?
$$= 6$$

$$3. \ 2 \cdot 3 \bmod 13$$

$$= 6$$

4.
$$-11 \cdot 3 \mod 13$$
 = 6

2

1. $1/5 \mod 13$

$$5x = 1 \mod 13$$
 (1)
 $5(8) = 1 \mod 13$ (2)

$$x = 8 \tag{3}$$

 $2. \ 1/5 \ \text{mod} \ 7$

$$5x = 1 \mod 7 \tag{4}$$

$$5(3) = 1 \mod 7 \tag{5}$$

$$x = 3 \tag{6}$$

3. $3 \cdot 2/5 \mod 7$

$$5x = 6 \mod 7 \tag{7}$$

$$5x = 6 \mod 7 \tag{8}$$

$$5(4) = 6 \mod 7 \tag{9}$$

$$x = 4 \tag{10}$$

	+	0	1	2	3
	0	0	1	2	3
1.	1	1	2	3	0
	2	2	3	0	1
	3	3	0	1	2

		0	1	2	3
	0	0	0	0	0
2.	1	0	1	2	3
	2	0	2	0	2
	3	0	3	2	1

+	0	1	2	3	4	5
0	0 1 2 3 4 5	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

	0 0 0 0 0 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

1.
$$3^2 \mod 13$$

9 mod $13 = 9$

2.
$$7^2 \mod 13$$

 $49 \mod 13 = 10$

3.
$$3^{10} \mod 13$$

 $3^2 = 9 \mod 13 = 9$
 $3^2 \times 3^2 \times 3^2 \times 3^2 \times 3^2$

 $45 \mod 13 = 9$

 $4. \ 7^{100} \ \text{mod} \ 13$ = 11

6

$$7^x = 11 \mod 13 \tag{11}$$

$$7^5 = 7 \cdot 7^4 = 63 \mod 13 \tag{12}$$

$$7^5 = 11 \mod 13$$
 (13)

The answer is x = 5.

7

1. $\phi(4) = 2$

2. $\phi(5) = 4$

3. $\phi(9) = 6$

4. $\phi(26) = 12$

8

The cipher text is:

 ${\tt first the sentence} and {\tt then the evidence} {\tt said the queen}$