Case Study - Cancer Data (Logistic Regression, D-Tree, Random Forest)

May 10, 2023

This case study is to analyse about the diagnostic data of breast cancer patients. This data is officially obtained from the University of Wisconsin Hospitals.

This model will predict which people are prone to develop cancer.

```
[2]: import warnings warnings.filterwarnings('ignore')
```

```
[3]: #import cancer dataset and look at the first five rows.
cData = pd.read_csv("Cancer_Data.csv")
cData.head()
```

[3]:	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	\
0	842302	M	17.99	10.38	122.80	1001.0	
1	842517	M	20.57	17.77	132.90	1326.0	
2	84300903	M	19.69	21.25	130.00	1203.0	
3	84348301	M	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

smoothness_mean compactness_mean concavity_mean concave points_mean \

0	0.11840		0.27760	0.3001		0.14710		
1	0.08474		0.07864	0.0	0.0869		.07017	
2	0.10960		0.15990	0.1974		0.	.12790	
3		0.14250	0.28390	0.2	414	0.	10520	
4		0.10030	0.13280	0.1	980	0.	. 10430	
	•••	texture_worst	perimeter_worst	area_worst	${\tt smoothness}$	_worst	\	
0	•••	17.33	184.60	2019.0		0.1622		
1	•••	23.41	158.80	1956.0		0.1238		
2	•••	25.53	152.50	1709.0		0.1444		
3		26.50	98.87	567.7		0.2098		
4	•••	16.67	152.20	1575.0		0.1374		
	CO	mpactness_worst	concavity_worst	concave po	ints_worst	symmetr	ry_worst	\
0	CO	mpactness_worst 0.6656	concavity_worst 0.7119	-	ints_worst 0.2654	symmetr	0.4601	\
0	CO	-	*	_		symmetr	•	\
	CO	0.6656	0.7119	-	0.2654	symmetr	0.4601	\
1	CO	0.6656 0.1866	0.7119 0.2416		0.2654 0.1860	symmetr	0.4601 0.2750	\
1 2	CO	0.6656 0.1866 0.4245	0.7119 0.2416 0.4504		0.2654 0.1860 0.2430	symmetr	0.4601 0.2750 0.3613	\
1 2 3	CO	0.6656 0.1866 0.4245 0.8663	0.7119 0.2416 0.4504 0.6869		0.2654 0.1860 0.2430 0.2575	symmetr	0.4601 0.2750 0.3613 0.6638	\
1 2 3		0.6656 0.1866 0.4245 0.8663 0.2050 actal_dimension_	0.7119 0.2416 0.4504 0.6869 0.4000 worst Unnamed:		0.2654 0.1860 0.2430 0.2575	symmetr	0.4601 0.2750 0.3613 0.6638	\
1 2 3		0.6656 0.1866 0.4245 0.8663 0.2050 actal_dimension_	0.7119 0.2416 0.4504 0.6869 0.4000 worst Unnamed:		0.2654 0.1860 0.2430 0.2575	symmetr	0.4601 0.2750 0.3613 0.6638	\
1 2 3 4		0.6656 0.1866 0.4245 0.8663 0.2050 actal_dimension_ 0.	0.7119 0.2416 0.4504 0.6869 0.4000 worst Unnamed:	32	0.2654 0.1860 0.2430 0.2575	symmetr	0.4601 0.2750 0.3613 0.6638	\
1 2 3 4		0.6656 0.1866 0.4245 0.8663 0.2050 actal_dimension_ 0.	0.7119 0.2416 0.4504 0.6869 0.4000 worst Unnamed: 11890 N	32 aN	0.2654 0.1860 0.2430 0.2575	symmetr	0.4601 0.2750 0.3613 0.6638	\
1 2 3 4 0 1		0.6656 0.1866 0.4245 0.8663 0.2050 actal_dimension_ 0. 0.	0.7119 0.2416 0.4504 0.6869 0.4000 worst Unnamed: 11890 N 08902 N	32 aN aN	0.2654 0.1860 0.2430 0.2575	symmetr	0.4601 0.2750 0.3613 0.6638	\

[5 rows x 33 columns]

Column names and meanings:

1.id: ID number

2.diagnosis: The diagnosis of breast tissues (M = malignant, B = benign)

3.radius_mean: mean of distances from center to points on the perimeter

4.texture mean: standard deviation of gray-scale values

5.perimeter_mean: mean size of the core tumor

6.area_mean: area of the tumor

7.smoothness_mean: mean of local variation in radius lengths

8.compactness_mean: mean of perimeter 2 / area - 1.0

9.concavity_mean: mean of severity of concave portions of the contour

10.concave_points_mean: mean for number of concave portions of the contour

11.symmetry_mean

12.fractal_dimension_mean: mean for "coastline approximation" - 1

13.radius_se: standard error for the mean of distances from center to points on the perimeter

14.texture_se: standard error for standard deviation of gray-scale values

15.perimeter_se

16.area se

17.smoothness se: standard error for local variation in radius lengths

18.compactness_se: standard error for perimeter^2 / area - 1.0

19.concavity se: standard error for severity of concave portions of the contour

20.concave_points_se: standard error for number of concave portions of the contour

21.symmetry_se

22.fractal_dimension_se: standard error for "coastline approximation" - 1

23.radius_worst: "worst" or largest mean value for mean of distances from center to points on the perimeter

24.texture_worst: "worst" or largest mean value for standard deviation of gray-scale values

25.perimeter_worst

 $26.\mathrm{area_worst}$

27.smoothness worst: "worst" or largest mean value for local variation in radius lengths

28.compactness_worst: "worst" or largest mean value for perimeter^2 / area - 1.0

29.concavity worst: "worst" or largest mean value for severity of concave portions of the contour

30.concave_points_worst: "worst" or largest mean value for number of concave portions of the contour

31.symmetry_worst

32.fractal dimension worst: "worst" or largest mean value for "coastline approximation" - 1

[4]: cData.shape

[4]: (569, 33)

[5]: cData.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 569 entries, 0 to 568

Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64

```
5
     area_mean
                               569 non-null
                                                float64
 6
                                                float64
     {\tt smoothness\_mean}
                               569 non-null
 7
                               569 non-null
     compactness_mean
                                                float64
 8
     concavity_mean
                               569 non-null
                                                float64
 9
     concave points mean
                               569 non-null
                                                float64
 10
     symmetry mean
                               569 non-null
                                                float64
     fractal dimension mean
                               569 non-null
                                                float64
 12
     radius_se
                               569 non-null
                                                float64
     texture se
                               569 non-null
                                                float64
 13
 14
     perimeter_se
                               569 non-null
                                                float64
 15
     area_se
                               569 non-null
                                                float64
     smoothness_se
                                                float64
 16
                               569 non-null
 17
     compactness_se
                               569 non-null
                                                float64
 18
     concavity_se
                               569 non-null
                                                float64
 19
     concave points_se
                               569 non-null
                                                float64
 20
     symmetry_se
                               569 non-null
                                                float64
 21
     fractal_dimension_se
                               569 non-null
                                                float64
 22
    radius_worst
                               569 non-null
                                                float64
 23
     texture_worst
                               569 non-null
                                                float64
 24
     perimeter worst
                               569 non-null
                                                float64
 25
     area worst
                               569 non-null
                                                float64
     smoothness worst
                               569 non-null
                                                float64
 26
 27
     compactness_worst
                               569 non-null
                                                float64
 28
     concavity_worst
                               569 non-null
                                                float64
 29
     concave points_worst
                               569 non-null
                                                float64
     symmetry_worst
 30
                               569 non-null
                                                float64
     fractal_dimension_worst
                               569 non-null
                                                float64
 31
 32 Unnamed: 32
                               0 non-null
                                                float64
dtypes: float64(31), int64(1), object(1)
memory usage: 146.8+ KB
```

The column "Id" is no longer required for our analysis and the column "Unnamed: 32" seems to have incorrect/ irrelevant data, so lets drop both of them.

```
[6]: cData = cData.drop(['id','Unnamed: 32'],axis=1)
[7]: cData.hist(stacked = False,bins = 100, figsize=(12,30),layout=(11,3))
    plt.show()
```


Refer above graph to know the frequency of the Data distribution in cancer dataset.

```
[8]: cData['diagnosis'] = cData['diagnosis'].replace({'M':1,'B':0})
     #The above code can also be achieved with map function as well.
     #cData['diagnosis'] = data['diagnosis'].map({'M':1, 'B':0})
[9]:
     cData.head()
[9]:
                    radius_mean
        diagnosis
                                  texture_mean
                                                 perimeter_mean
                                                                  area_mean
                           17.99
                                          10.38
                                                                      1001.0
     0
                 1
                                                          122.80
     1
                 1
                           20.57
                                          17.77
                                                          132.90
                                                                      1326.0
     2
                 1
                           19.69
                                          21.25
                                                          130.00
                                                                      1203.0
     3
                 1
                           11.42
                                          20.38
                                                           77.58
                                                                       386.1
     4
                 1
                           20.29
                                          14.34
                                                          135.10
                                                                      1297.0
        smoothness mean
                          compactness mean
                                              concavity_mean
                                                               concave points mean
                 0.11840
                                    0.27760
                                                       0.3001
                                                                            0.14710
     0
     1
                 0.08474
                                                                            0.07017
                                    0.07864
                                                       0.0869
     2
                 0.10960
                                    0.15990
                                                       0.1974
                                                                            0.12790
     3
                                                       0.2414
                                                                            0.10520
                 0.14250
                                    0.28390
     4
                 0.10030
                                    0.13280
                                                       0.1980
                                                                            0.10430
                                                          perimeter_worst
                            radius_worst
                                          texture_worst
        symmetry_mean
     0
                0.2419
                                   25.38
                                                   17.33
                                                                     184.60
     1
                0.1812
                                   24.99
                                                   23.41
                                                                     158.80
     2
                0.2069
                                   23.57
                                                   25.53
                                                                     152.50
     3
                0.2597
                                   14.91
                                                   26.50
                                                                      98.87
                0.1809
                                   22.54
                                                   16.67
                                                                     152.20
        area_worst
                     smoothness_worst
                                        compactness_worst
                                                             concavity_worst
     0
                                0.1622
            2019.0
                                                    0.6656
                                                                       0.7119
     1
             1956.0
                                0.1238
                                                    0.1866
                                                                       0.2416
     2
                                                                       0.4504
             1709.0
                                0.1444
                                                    0.4245
             567.7
                                0.2098
                                                    0.8663
                                                                       0.6869
     4
            1575.0
                                0.1374
                                                    0.2050
                                                                       0.4000
        concave points_worst
                                symmetry_worst
                                                 fractal_dimension_worst
     0
                       0.2654
                                        0.4601
                                                                  0.11890
     1
                       0.1860
                                        0.2750
                                                                  0.08902
     2
                       0.2430
                                        0.3613
                                                                  0.08758
     3
                                                                  0.17300
                       0.2575
                                        0.6638
                       0.1625
                                        0.2364
                                                                  0.07678
```

[10]: cData.describe()

[10]:		diagnosis radi	ıs_mean	texture_me	ean perimete	er mean	area_mean	\	
	count	-	.000000	569.0000	-	.000000	569.000000		
	mean	0.372583 14	.127292	19.2896	S49 91	. 969033	654.889104		
	std	0.483918 3	.524049	4.3010	36 24	. 298981	351.914129		
	min	0.000000 6	.981000	9.7100	000 43	.790000	143.500000		
	25%	0.000000 11	.700000	16.1700	000 75	. 170000	420.300000		
	50%	0.000000 13	.370000	18.8400	000 86	. 240000	551.100000		
	75%	1.000000 15	.780000	21.8000	000 104	.100000	782.700000		
	max	1.000000 28	.110000	39.2800	000 188	.500000	2501.000000		
		smoothness_mean	compact	ness_mean	concavity_me	ean con	cave points_	mean	\
	count	569.000000	5	69.000000	569.000	000	569.00	0000	
	mean	0.096360		0.104341	0.088	799	0.04	8919	
	std	0.014064		0.052813	0.079	720	0.03	8803	
	min	0.052630		0.019380	0.000	000	0.00	0000	
	25%	0.086370		0.064920	0.029	560	0.02	0310	
	50%	0.095870		0.092630	0.061	540	0.03	3500	
	75%	0.105300		0.130400	0.130	700	0.07	4000	
	max	0.163400		0.345400	0.4268	300	0.20	1200	
		symmetry_mean	radius	_worst tex	ture_worst	perimet	er_worst \		
	count	569.000000	569.	000000	569.000000	56	9.000000		
	mean	0.181162	16.	269190	25.677223	10	7.261213		
	std	0.027414	4.	833242	6.146258	3	3.602542		
	min	0.106000	7.	930000	12.020000	5	0.410000		
	25%	0.161900	13.	010000	21.080000	8	4.110000		
	50%	0.179200	14.	970000	25.410000	9	7.660000		
	75%	0.195700	18.	790000	29.720000	12	5.400000		
	max	0.304000	36.	040000	49.540000	25	1.200000		
		area_worst smoo	othness_	worst comp	actness_wors	st conc	avity_worst	\	
	count	569.000000	569.0	00000	569.00000	00	569.000000		
	mean	880.583128	0.1	32369	0.25426	35	0.272188		
	std	569.356993	0.0	22832	0.15733	36	0.208624		
	min	185.200000	0.0	71170	0.02729	90	0.000000		
	25%	515.300000	0.1	16600	0.14720	00	0.114500		
	50%	686.500000	0.1	31300	0.21190	00	0.226700		
	75%	1084.000000	0.1	46000	0.33910	00	0.382900		
	max	4254.000000	0.2	22600	1.05800	00	1.252000		
		concave points_w	orst sy	mmetry_wors	st fractal_d	dimensio	n_worst		
	count	569.000	0000	569.00000	00	569	.000000		
	mean	0.114	4606	0.29007	76	0	.083946		

std	0.065732	0.061867	0.018061
min	0.000000	0.156500	0.055040
25%	0.064930	0.250400	0.071460
50%	0.099930	0.282200	0.080040
75%	0.161400	0.317900	0.092080
max	0.291000	0.663800	0.207500

[8 rows x 31 columns]

[11]: Text(0.5, 1.0, 'Correlation between Mean columns')

[12]: Text(0.5, 1.0, 'Correlation between Standard Error columns')

[13]: Text(0.5, 1.0, 'Correlation between Worst or Largest mean columns')

From the above visuals, we could see that all the features are at the highest data point in case of benign tunors and not for malignant tumors. So with respect to malignancy, higher values doesnt have any accountability.

[15]:	diagnosis	0
	radius_mean	0
	texture_mean	0
	perimeter_mean	0
	area_mean	0
	smoothness_mean	0
	compactness_mean	0
	concavity_mean	0
	concave points_mean	0
	symmetry_mean	0
	fractal_dimension_mean	0
	radius_se	0
	texture_se	0
	perimeter_se	0
	area_se	0
	smoothness_se	0
	compactness_se	0
	concavity_se	0
	concave points_se	0
	symmetry_se	0
	fractal_dimension_se	0
	radius_worst	0
	texture_worst	0
	perimeter_worst	0
	area_worst	0
	smoothness_worst	0
	compactness_worst	0
	concavity_worst	0
	concave points_worst	0
	symmetry_worst	0
	fractal_dimension_worst	0
	dtype: int64	

Before splitting the train and test data, we will see the ratio of the cancer and non cancer patients.

This step will help us to identify whether the dataset is balanced or not.

```
[16]: cancer = dataMalignant.shape[0]
  benign = dataBenign.shape[0] - cancer
  print(cancer,benign)
  cancerPatients = (cancer/(cancer+benign))*100
  cancerPatients
  nonCancerPatients = (benign/(cancer+benign))*100
  cancerPatients, nonCancerPatients
```

212 145

[16]: (59.38375350140056, 40.61624649859944)

The ratio shows that the dataset is a pretty balanced one.

	radius_mean text	ture_mean	perimeter_mean	area_mean	smoothness mean	,
435	13.98	19.62	91.12	599.5	0.10600	
72	17.20	24.52	114.20	929.4	0.10710	
266	10.60	18.95	69.28	346.4	0.09688	
468	17.60	23.33	119.00	980.5	0.09289	
456	11.63	29.29	74.87	415.1	0.09357	
	compactness_mean	concavity.	_mean concave	points_mean	symmetry_mean	\
435	0.11330	0.3	11260	0.06463	0.1669	
72	0.18300	0.3	16920	0.07944	0.1927	
266	0.11470	0.0	06387	0.02642	0.1922	
468	0.20040	0.2	21360	0.10020	0.1696	
456	0.08574	0.0	07160	0.02017	0.1799	
	fractal_dimension	n_mean 1	radius_worst t	texture_worst	. \	
435	0.	.06544	17.04	30.80)	
72	0.	.06487	23.32	33.82	?	
266	0.	.06491	11.88	22.94	ŧ	
468	0.	.07369	21.57	28.87	•	
456	0 .	.06166	13.12	38.81		
	perimeter_worst	area_worst	smoothness_wo	orst compact	ness_worst \	
435	113.90	869.3	0.1	1613	0.3568	
72	151.60	1681.0	0.1	1585	0.7394	
266	78.28	424.8	0.1	1213	0.2515	
468	143.60	1437.0	0.1	1207	0.4785	
456	86.04	527.8	0.1	1406	0.2031	
	72 266 468 456 435 72 266 468 456 435 72 266 468 456	435	435	435 13.98 19.62 91.12 72 17.20 24.52 114.20 266 10.60 18.95 69.28 468 17.60 23.33 119.00 456 11.63 29.29 74.87 compactness_mean concavity_mean concave 435 0.11330 0.11260 72 0.18300 0.16920 266 0.11470 0.06387 468 0.20040 0.21360 456 0.08574 0.07160 fractal_dimension_mean radius_worst t 435 0.06487 23.32 266 0.06491 17.04 72 0.06491 11.88 468 0.07369 21.57 456 0.06166 13.12 perimeter_worst area_worst smoothness_wo 435 113.90 869.3 0 72 151.60 1681.0 0 266 78.28 424.8 0 468 143.60 1437.0 0	435 13.98 19.62 91.12 599.5 72 17.20 24.52 114.20 929.4 266 10.60 18.95 69.28 346.4 468 17.60 23.33 119.00 980.5 456 11.63 29.29 74.87 415.1 compactness_mean concavity_mean concave points_mean 435 0.11330 0.11260 0.06463 72 0.18300 0.16920 0.07944 266 0.11470 0.06387 0.02642 468 0.20040 0.21360 0.10020 456 0.08574 0.07160 0.02017 fractal_dimension_mean radius_worst texture_worst 435 0.06487 23.32 33.82 266 0.06491 11.88 22.94 468 0.07369 21.57 28.87 456 0.06166 13.12 38.81 perimeter_worst area_worst smoothness_worst compact 435 113.90 869.3 0.1613	435 13.98 19.62 91.12 599.5 0.10600 72 17.20 24.52 114.20 929.4 0.10710 266 10.60 18.95 69.28 346.4 0.09688 468 17.60 23.33 119.00 980.5 0.09289 456 11.63 29.29 74.87 415.1 0.09357 compactness_mean concavity_mean concave points_mean symmetry_mean 435 0.11330 0.11260 0.06463 0.1669 72 0.18300 0.16920 0.07944 0.1927 266 0.11470 0.06387 0.02642 0.1922 468 0.20040 0.21360 0.10020 0.1696 456 0.08574 0.07160 0.02017 0.1799 fractal_dimension_mean radius_worst texture_worst \ 23.32 33.82 266 0.06487 23.32 33.82 266 0.06491 11.88 22.94 468 0.07369 21.57 28.87 <t< td=""></t<>

```
435
                  0.4069
                                      0.18270
                                                      0.3179
     72
                  0.6566
                                      0.18990
                                                      0.3313
     266
                  0.1916
                                      0.07926
                                                      0.2940
                  0.5165
     468
                                      0.19960
                                                      0.2301
     456
                  0.2923
                                                      0.2884
                                      0.06835
          fractal dimension worst
     435
                         0.10550
     72
                         0.13390
     266
                         0.07587
     468
                         0.12240
     456
                         0.07220
     [5 rows x 30 columns]
[18]: print("{0:0.2f}% data is in training set".format((len(X_train)/len(cData.
      ⇒index)) * 100))
     print("{0:0.2f}% data is in test set".format((len(X_test)/len(cData.index)) *__
      →100))
     69.95% data is in training set
     30.05% data is in test set
[19]: #Below mentioned is a generic function to calculate accuracy score, confusion
      →matrix and classification report
     #for all the models. This function would print all the required values in a_{\sqcup}
      →matrix format.
     def print_score(clf, X_train, y_train, X_test, y_test, train=True):
         if train: # for training data
            pred = clf.predict(X train)
            clf_report = pd.DataFrame(classification_report(y_train, pred,__
      →output dict=True))
            print("Train Result:\n======="")
            print(f"Accuracy Score: {accuracy_score(y_train, pred) * 100:.2f}%")
            print("_____")
            print(f"CLASSIFICATION REPORT:\n{clf report}")
             print(f"Confusion Matrix: \n {confusion_matrix(y_train, pred)}\n")
         elif train==False: # for testing data
            pred = clf.predict(X_test)
            clf report = pd.DataFrame(classification report(y test, pred, ))
      →output dict=True))
            print("Test Result:\n========"")
```

concavity_worst concave points_worst symmetry_worst \

```
print(f"Accuracy Score: {accuracy_score(y_test, pred) * 100:.2f}%")
print("______")
print(f"CLASSIFICATION REPORT:\n{clf_report}")
print("_____")
print(f"Confusion Matrix: \n {confusion_matrix(y_test, pred)}\n")
```

Logistic Regression

```
[20]: # Fit the model on train
model = LogisticRegression(solver="liblinear")
model.fit(X_train, Y_train)
```

[20]: LogisticRegression(solver='liblinear')

Accuracy Metrics

For classification models, we will find its accuracy using the following methods.

- 1. Confusion Matrix
- 2. Overall Accuracy
- 3. Recall
- 4. Precision Score
- 5. F1 Score

Though there are in-built functions available for the above said accuracy metrics, let us manually calculate in order to understand the logic

Confusion Matrix

```
[21]: y_trainpredict = model.predict(X_train)
      cmTr=metrics.confusion_matrix(Y_train, y_trainpredict, labels=[0, 1])
      print('Confusion Matrix for Train Data:\n',cmTr)
      plt.figure(figsize = (7,5))
      sns.heatmap(cmTr, annot=True,cmap='YlGnBu')
      y_testpredict = model.predict(X_test)
      cmTs=metrics.confusion_matrix(Y_test, y_testpredict, labels=[0, 1])
      print('Confusion Matrix for Test Data:\n',cmTs)
      plt.figure(figsize = (7,5))
      sns.heatmap(cmTs, annot=True,cmap='YlGnBu')
     Confusion Matrix for Train Data:
      ΓΓ242
              81
      [ 9 139]]
     Confusion Matrix for Test Data:
      [[102
            5]
      [ 5 59]]
[21]: <Axes: >
```


The confusion matrix

True Positives (TP): we correctly predicted that they do have cancer 59

True Negatives (TN): we correctly predicted that they don't have cancer 102

False Positives (FP): we incorrectly predicted that they do have cancer (a "Type I error") 5 Falsely predict positive Type I error

False Negatives (FN): we incorrectly predicted that they don't have cancer

(a "Type II error") 5 Falsely predict negative Type II error

Overall Accuracy

First We have seen the confusion matrix, which shows the True Positive, True Negative, False Positive and False Negative.

Now let us start with overall accuracy.

The formula to calculate overall accuracy is (TP + TN)/(TP+TN+FP+FN)

TP - True Positive TN - True Negative FP - False Positive FN - False Negative

```
[22]: predTrain = model.predict(X_train)
numerator = cmTr[0][0]+cmTr[1][1]
```

```
accTrain = (numerator)/(Y_train.shape)
accTrain = accTrain * 100
print(f"Training Accuracy Score:", accTrain,"%")

predTest = model.predict(X_test)
numerator = cmTs[0][0]+cmTs[1][1]
accTest = (numerator)/(Y_test.shape)
accTest = accTest * 100
print(f"Testing Accuracy Score:", accTest,"%")
```

Training Accuracy Score: [95.72864322] % Testing Accuracy Score: [94.15204678] %

Recall

The formula to find Recall or Type II error is True Positive / (True Positive + False Negative)

```
[23]: trainRecall = cmTr[0][0]/(cmTr[0][0]+cmTr[1][0])
    trainRecall = trainRecall * 100
    print(f"Recall Score for Train Data:", trainRecall,"%")

testRecall = cmTs[0][0]/(cmTs[0][0]+cmTs[1][0])
    testRecall = testRecall * 100
    print(f"Recall Score for Test Data:", testRecall,"%")
```

Recall Score for Train Data: 96.41434262948208 % Recall Score for Test Data: 95.32710280373831 %

Precision

The formula to find Recall or Type I error is True Positive / (True Positive + False Positive)

```
[24]: trainPrecision = cmTr[0][0]/(cmTr[0][0]+cmTr[0][1])
    trainPrecision = trainPrecision * 100
    print(f"Precision Score for Train Data:", trainPrecision,"%")

testPrecision = cmTs[0][0]/(cmTs[0][0]+cmTs[0][1])
    testPrecision = testPrecision * 100
    print(f"Precision Score for Test Data:", testPrecision,"%")
```

Precision Score for Train Data: 96.8 %
Precision Score for Test Data: 95.32710280373831 %

F1 Score

The formula to find F1 Score is (2 * Precision * Recall) / (Precision + Recall)

```
[25]: f1ScoreTrain = (2*trainPrecision*trainRecall) / (trainPrecision+trainRecall)
    print(f"F1 Score for Train Data:", f1ScoreTrain,"%")

f1ScoreTest = (2*testPrecision*testRecall) / (testPrecision+testRecall)
    print(f"F1 Score for Train Data:", f1ScoreTest,"%")
```

```
F1 Score for Train Data: 96.60678642714572 %
     F1 Score for Train Data: 95.32710280373831 %
     Decision-Tree Model
     Gini Impurity
[26]: model_gini=DecisionTreeClassifier(criterion='gini')
[27]: model_gini.fit(X_train, Y_train)
[27]: DecisionTreeClassifier()
[28]: model_gini.score(X_train, Y_train)
[28]: 1.0
[29]: model_gini.score(X_test,Y_test)
[29]: 0.935672514619883
     Entropy
[30]: model_entropy=DecisionTreeClassifier(criterion='gini')
[31]: model_entropy.fit(X_train, Y_train)
[31]: DecisionTreeClassifier()
[32]: model_entropy.score(X_train, Y_train)
[32]: 1.0
[33]: model_entropy.score(X_test,Y_test)
[33]: 0.9181286549707602
[34]: dtree = DecisionTreeClassifier(random_state=42)
      dtree.fit(X_train, Y_train)
      print_score(dtree, X_train, Y_train, X_test, Y_test, train=True)
      print_score(dtree, X_train, Y_train, X_test, Y_test, train=False)
     Train Result:
     Accuracy Score: 100.00%
     CLASSIFICATION REPORT:
                         1 accuracy macro avg weighted avg
     precision
                  1.0
                         1.0
                                   1.0
                                              1.0
                                                            1.0
                                   1.0
                                              1.0
     recall
                  1.0
                        1.0
                                                            1.0
```

```
f1-score 1.0 1.0 1.0 1.0
                                                1.0
             250.0 148.0
                           1.0
                                   398.0
                                               398.0
    support
    Confusion Matrix:
     [[250 0]
     [ 0 148]]
    Test Result:
    _____
    Accuracy Score: 91.81%
    CLASSIFICATION REPORT:
                 0
                        1 accuracy macro avg weighted avg
    precision 0.979381 0.837838 0.918129 0.908610
                                                    0.926406
    recall 0.887850 0.968750 0.918129 0.928300
                                                    0.918129
    f1-score
             0.919088
    support 107.000000 64.000000 0.918129 171.000000 171.000000
    Confusion Matrix:
     [[95 12]
     [ 2 62]]
[35]: from sklearn.model_selection import GridSearchCV
    params = {
        "criterion":("gini", "entropy"),
        "splitter":("best", "random"),
        "max_depth":(list(range(1, 20))),
        "min_samples_split":[2, 3, 4],
        "min_samples_leaf":list(range(1, 20)),
    }
    dtree = DecisionTreeClassifier(random_state=42)
    dtreeXv = GridSearchCV(
        dtree,
        params,
        scoring="f1",
        n_{jobs=-1},
        verbose=1,
        cv=5
```

dtreeXv.fit(X_train, Y_train)
best_params = dtreeXv.best_params_

```
print(f"Best paramters: {best_params})")
     dtree = DecisionTreeClassifier(**best_params)
     dtree.fit(X_train, Y_train)
     print_score(dtree, X_train, Y_train, X_test, Y_test, train=True)
     print_score(dtree, X_train, Y_train, X_test, Y_test, train=False)
     Fitting 5 folds for each of 4332 candidates, totalling 21660 fits
     Best paramters: {'criterion': 'entropy', 'max_depth': 4, 'min_samples_leaf': 1,
     'min_samples_split': 2, 'splitter': 'random'})
     Train Result:
     _____
     Accuracy Score: 94.97%
     CLASSIFICATION REPORT:
                           1 accuracy macro avg weighted avg
                       0
    precision 0.967480 0.921053 0.949749 0.944266
                                                            0.950215
    recall 0.952000 0.945946 0.949749 0.948973 0.949749 f1-score 0.959677 0.933333 0.949749 0.946505 0.949881
     support 250.000000 148.000000 0.949749 398.000000 398.000000
     Confusion Matrix:
      [[238 12]
      [ 8 140]]
     Test Result:
     _____
     Accuracy Score: 93.57%
     CLASSIFICATION REPORT:
                  0
                             1 accuracy macro avg weighted avg
     precision 0.989796 0.863014 0.935673 0.926405
                                                            0.942345
    recall 0.906542 0.984375 0.935673 0.945459
                                                             0.935673
     f1-score
               0.946341 0.919708 0.935673 0.933025
                                                             0.936373
     support 107.000000 64.000000 0.935673 171.000000 171.000000
     Confusion Matrix:
      [[97 10]
      [ 1 63]]
     The suitable parameters to create best fit D-Tree model as per grid cross validation are : {'criterion':
     'entropy', 'max depth': 4, 'min samples leaf': 1, 'min samples split': 2, 'splitter': 'random'}
[36]: from IPython.display import Image
     from six import StringIO
     from sklearn.tree import export_graphviz
     import pydot
```

```
features = list(cData.columns)
features.remove("diagnosis")
```

```
[37]: import os
    os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
    dot_data = StringIO()
    export_graphviz(dtree, out_file=dot_data, feature_names=features, filled=True)
    graph = pydot.graph_from_dot_data(dot_data.getvalue())
    Image(graph[0].create_png())
```

[37]:

Random Forest Model

```
[38]: from sklearn.ensemble import RandomForestClassifier

ranFC = RandomForestClassifier(n_estimators=100)
ranFC.fit(X_train, Y_train)

print_score(ranFC, X_train, Y_train, X_test, Y_test, train=True)
print_score(ranFC, X_train, Y_train, X_test, Y_test, train=False)
```

Train Result:

Accuracy Score: 100.00%

CLASSIFICATION REPORT:

	0	1	accuracy	macro avg	weighted avg
precision	1.0	1.0	1.0	1.0	1.0
recall	1.0	1.0	1.0	1.0	1.0
f1-score	1.0	1.0	1.0	1.0	1.0
support	250.0	148.0	1.0	398.0	398.0

```
Confusion Matrix:
     [[250
            0]
     [ 0 148]]
     Test Result:
     _____
     Accuracy Score: 97.08%
     CLASSIFICATION REPORT:
                       0
                                 1 accuracy macro avg weighted avg
     precision 0.990385 0.940299 0.97076 0.965342
                                                            0.971639
                0.962617 0.984375 0.97076 0.973496
                                                            0.970760
    recall
     f1-score 0.976303 0.961832 0.97076 0.969068
                                                            0.970887
    support 107.000000 64.000000 0.97076 171.000000 171.000000
     Confusion Matrix:
     [[103 4]
     [ 1 63]]
[39]: from sklearn.ensemble import RandomForestClassifier
     from sklearn.model_selection import RandomizedSearchCV
     n_estimators = [int(x) for x in np.linspace(start=200, stop=2000, num=10)]
     max features = ['auto', 'sqrt']
     max_depth = [int(x) for x in np.linspace(10, 110, num=11)]
     max_depth.append(None)
     min_samples_split = [2, 5, 10]
     min_samples_leaf = [1, 2, 4]
     bootstrap = [True, False]
     random_grid = {
         'n_estimators': n_estimators,
         'max_features': max_features,
         'max_depth': max_depth,
         'min_samples_split': min_samples_split,
         'min_samples_leaf': min_samples_leaf,
         'bootstrap': bootstrap
     }
     ranFC = RandomForestClassifier(random_state=42)
     randomizedSrchCV = RandomizedSearchCV(
         estimator=ranFC,
         scoring='f1',
```

```
param_distributions=random_grid,
   n iter=200,
   cv=5.
   verbose=1,
   random_state=42,
   n_{jobs=-1}
)
randomizedSrchCV.fit(X_train, Y_train)
rf_best_params = randomizedSrchCV.best_params_
print(f"Best paramters: {rf_best_params})")
ranFC = RandomForestClassifier(**rf_best_params)
ranFC.fit(X_train, Y_train)
print_score(ranFC, X_train, Y_train, X_test, Y_test, train=True)
print_score(ranFC, X_train, Y_train, X_test, Y_test, train=False)
Fitting 5 folds for each of 200 candidates, totalling 1000 fits
Best paramters: {'n_estimators': 1000, 'min_samples_split': 2,
'min_samples_leaf': 1, 'max_features': 'auto', 'max_depth': 50, 'bootstrap':
False})
Train Result:
_____
Accuracy Score: 100.00%
CLASSIFICATION REPORT:
          0 1 accuracy macro avg weighted avg
precision 1.0 1.0 1.0 1.0
                                            1.0
         1.0 1.0
                                1.0
                       1.0
                                            1.0
recall
         1.0 1.0
                                1.0
                                            1.0
                       1.0
f1-score
support 250.0 148.0
                       1.0 398.0
                                          398.0
Confusion Matrix:
ΓΓ250
      07
Γ 0 148]]
Test Result:
_____
Accuracy Score: 96.49%
-----
CLASSIFICATION REPORT:
                    1 accuracy macro avg weighted avg
            0
precision 0.990291 0.926471 0.964912 0.958381 0.966405
recall
         0.953271 0.984375 0.964912 0.968823
                                                 0.964912
f1-score
         0.971429 0.954545 0.964912 0.962987
                                                0.965110
support 107.000000 64.000000 0.964912 171.000000 171.000000
```

```
[ 1 63]]
[40]: n_estimators = [100, 500, 1000, 1500]
      max_features = ['auto', 'sqrt']
      max_depth = [2, 3, 5]
      max depth.append(None)
      min_samples_split = [2, 5, 10]
      min_samples_leaf = [1, 2, 4, 10]
      bootstrap = [True, False]
      params_grid = {
          'n_estimators': n_estimators,
          'max_features': max_features,
          'max_depth': max_depth,
          'min_samples_split': min_samples_split,
          'min_samples_leaf': min_samples_leaf,
          'bootstrap': bootstrap
      }
      ranGS = RandomForestClassifier(random state=42)
      ranGSCV = GridSearchCV(
          ranGS.
          params_grid,
          scoring="f1",
          cv=5,
          verbose=1,
```

Confusion Matrix:

51

 $n_{jobs=-1}$

ranGSCV.fit(X_train, Y_train)

ranGS.fit(X_train, Y_train)

best_params = ranGSCV.best_params_

print(f"Best parameters: {best_params}")

ranGS = RandomForestClassifier(**best_params)

)

ΓΓ102

```
Fitting 5 folds for each of 768 candidates, totalling 3840 fits
Best parameters: {'bootstrap': False, 'max_depth': None, 'max_features': 'auto',
'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 500}
Train Result:
```

print_score(ranGS, X_train, Y_train, X_test, Y_test, train=True)
print_score(ranGS, X_train, Y_train, X_test, Y_test, train=False)

Accuracy Score: 100.00%

CLASSIFICATION REPORT:

	0	1	accuracy	macro avg	weighted avg
precision	1.0	1.0	1.0	1.0	1.0
recall	1.0	1.0	1.0	1.0	1.0
f1-score	1.0	1.0	1.0	1.0	1.0
support	250.0	148.0	1.0	398.0	398.0

Confusion Matrix:

[[250 0] [0 148]]

Test Result:

Accuracy Score: 96.49%

CLASSIFICATION REPORT:

	0	1	accuracy	macro avg	weighted avg
precision	0.990291	0.926471	0.964912	0.958381	0.966405
recall	0.953271	0.984375	0.964912	0.968823	0.964912
f1-score	0.971429	0.954545	0.964912	0.962987	0.965110
support	107.000000	64.000000	0.964912	171.000000	171.000000

Confusion Matrix:

[[102 5] [1 63]]

The suitable parameters to create best fit random forest model as per randomized search cross validation are: {'n_estimators': 1000, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'auto', 'max_depth': 50, 'bootstrap': False}

The suitable parameters to create best fit random forest model as per grid cross validation are : {'bootstrap': False, 'max_depth': None, 'max_features': 'auto', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 500}

Looking at the hyper parameter tuning results, both provided same hyperparameters variables except for the n_estimators. However, the overfitting issue is handled well in Randomized Search Cross Validation comparatively.

Summary

The result of how likely a person have the chances of developing cancer always depends on numerous factors like food, lifestyle, environment, kind of medication they take etc. However, we tried to do our best to predict with the diagnostic results.

As per the data visualisation results, the value range for beningn tumors were high compared to the malignant tumors. This shows that the size of the tumor have nothing to do with the final result. With the limited & uncertain information we are able to predict a person with cancer with 98.4% accuracy and non cancer patients with 95.3% accuracy (based on the recall method) in this well balanced dataset. Here we have taken Recall results because, more than False Positives, False Negatives are pretty dangerous in this case.

Though we tried Logistic regression, Decision Tree and Random Forest, as per the accuracy range and the percentage of type I and Type II errors, we could conclude that the Random Forest regressor as our Final Model. In this we used Randomized search cross validation method to arrive at the best parameters to be passed in order to attain maximum accuracy / minimum error along with handling overfitting.