МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ « ЛЭТИ » ИМ. И.В. УЛЬЯНОВА (ЛЕНИНА)

Кафедра физики

ОТЧЁТ

по лабораторной работе №2

по дисциплине « Физика »

Тема: «ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ИСПОЛЬЗОВАНИЕМ БИПРИЗМЫ»

Четвериков Л.А.

Студент гр. 3584

Преподаватель		Ходьков Д.А.
Вопросы	— Даты коллоквиума	Итог

Санкт-Петербург

Цель работы: определение длины световой волны интерференционным методом.

Экспериментальная установка состоит из оптической скамьи с мерной линейкой; бипризмы Френеля, закреплённой в держателе; источника света со светофильтром; раздвижной щели; окуляра со шкалой. Взаимное расположение элементов установки соответствует схеме, приведенной на рис. 2.1. Источником света служит лампа накаливания. Светофильтр, расположенный перед лампой, пропускает определенную часть спектра излучения лампы, которую и надлежит изучить. На оптической скамье, снабженной линейкой с миллиметровой шкалой, помещены укрепленные на держателях вертикальная щель S, бипризма P и окуляр О. Ширину щели можно изменять с помощью винта, находящегося в верхней части его оправы. Щель и бипризма могут быть повернуты вокруг горизонтальной оси, а бипризма также и вокруг вертикальной оси. Для получения отчетливых интерференционных полос необходимо, чтобы плоскости щели и основания бипризмы были параллельны. Это достигается соответствующим поворотом бипризмы и/или щели. Окуляр О служит для наблюдения интерференционной картины. Для измерения расстояния между полосами он снабжен шкалой, цена малого деления которой составляет 0.1 мм.

Основные сведения.

Один из способов наблюдения интерференции световых волн основан на использовании бипризмы Френеля. Бипризма Френеля представляет собой две призмы с очень малым преломляющим углом θ , сложенные основаниями. От источника света S (щели) лучи падают на обе половины бипризмы P, преломляются в ней и за призмой распространяются так, как если бы исходили из двух мнимых источников S1 и S2. Действительно, если смотреть через верхнюю половину бипризмы, то светящаяся щель S будет казаться расположенной в точке S1, а если смотреть через нижнюю половину

бипризмы, то расположенной в точке S2. За призмой имеется область пространства, в которой световые волны, преломлённые верхней и нижней половинами бипризмы, перекрываются (на рис. 2.1 эта область заштрихована).

Рис. 2.1. Получение интерференционной картины с использованием бипризмы Френеля

Экспериментально определяемая ширина полос рассчитывается по $\Delta x = \frac{(N_2 - N_1)c}{m-1},$

где m— число полос, которые по яркости хорошо видны на экране, N1 и N2 – положения первой и последней полосы этого набора в делениях шкалы окуляра, — масштабный множитель. Ширина области перекрытия волн на экране (рис. 2.1) имеет протяженность

$$AB = 2b \operatorname{tg} \varphi = 2b \varphi = 2b(n-1)\theta.$$

Тогда максимальное число интерференционных полос, которое можно наблюдать на экране с учетом формулы (2.13) равно

$$N_{\text{max}} = \frac{AB}{\Delta x} = \frac{2b(n-1)\theta}{\Delta x}$$
.

Подставляя выражение для Δx из формулы (2.13), получим

$$N_{\max} = \frac{4ab(n-1)^2 \theta^2}{l\lambda_0}.$$

Протокол наблюдений

Лабораторная работа №2 «ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ИСПОЛЬЗОВАНИЕМ БИПРИЗМЫ»

Выполнил: студент группы 3584 Четвериков Д.А.

Преподаватель: Ходьков Д.А.

Tаблица 2.1 Константы эксперимента n, θ , cзаносятся с панели установки. см. п.7 указаний по проведению эксперимента

С	θ	n	$N_{\rm max}$
мм/дел	Рад	7	=

№	а, мм	1, мм	N ₁ , дел	N ₂ , дел	m
1					
2					
3					
4					
5					