ENE 104 Electric Circuit Theory

Lecture 02: Voltage and Current Laws

Week #2: Dejwoot KHAWPARISUTH

office: CB40906 Tel: 02-470-9065

Email: dejwoot.kha@mail.kmutt.ac.th

http://webstaff.kmutt.ac.th/~dejwoot.kha/

Objectives:

- Definition of nodes, paths, loops, and branches
- Kirchhoff's current law (KCL)
- Kirchhoff's voltage law (KVL)
- Analyzing simple series and parallel circuits
- Simplify series and parallel connected sources
- Reducing series and parallel resistor combinations
- Voltage and current division

Nodes, Paths, Loops, and Branches !"

(a) A circuit containing three nodes and five branches.

(b) Node 1 is redrawn to look like two nodes; it is still one node.

Kirchoff's Current Law (KCL):

The algebraic sum of the currents entering any node is zero

Kirchoff's Current Law (KCL):

Entering the node: $i_A + i_B + (-i_C) + (-i_D) = 0$

Leaving the node: $(-i_A) + (-i_B) + i_C + i_D = 0$

Or: $i_{A} + i_{B} = i_{C} + i_{D}$

Example: 3.1

Compute the current through resister R3 if it is known that the voltage source supplies a current of 3 A.

Example:

Compute the current through resister R3 if it is known that the voltage source supplies a current of 3 A.

Count the number of branches and nodes in the circuit. If $i_x = 3$ A. and the 18-V source delivers 8 A. of current, what is the value of R_A ?

Kirchoff's Voltage Law (KVL):

The algebraic sum of the voltages around any closed path is zero

The potential difference between points A and B is independent of the path selected

Find v_x and i_x

Example:

Find v_x and i_x

$$-5 - 7 + v_x = 0$$

$$\therefore v_x = 12V.$$

Determine i_x and v_x

Example: 3.4

Determine v_x

Example:

Determine v_x

$$v_8 = 40 \text{ Volts}$$

$$i_{10} = \frac{20V.}{10\Omega} = 2 \text{ Amp.}$$

Practice: 3.3

Determine v_x

The Single Loop Circuit:

$$-v_{s1} + v_{R1} + v_{s2} + v_{R2} = 0$$

$$-v_{s1} + R_1 i + v_{s2} + R_2 i = 0$$

$$\therefore i \qquad = \frac{v_{s1} - v_{s2}}{R_1 + R_2}$$

Practice: 3.5

Find the power absorbed by each of the five elements in the circuit.

The Single Node-Pair Circuit:

$$-120 + i_1 + 30 + i_2 = 0$$

$$-120 + 30v + 30 + 15v = 0$$

$$\therefore v = 2 \text{ Volts}$$

Determine v

Practice: 3.7

For the single-node-pair circuit of the figure, find i_A , i_B and i_C

Example: 3.8

Find i_1, i_2, i_3 , and i_4

(a) A single-node-pair circuit. (b) Circuit with points labeled to assist in redrawing. (c) Redrawn circuit.

Example:

Find i_1, i_2, i_3 , and i_4

$$\frac{v_1}{25} - 0.2v_1 + \frac{v_1}{10} + 2.5 + \frac{v_1}{100} = 0$$

Solving, we find $v_1 = \frac{250}{5} = 50 \text{ V}.$

$$i_1 = \frac{-v_1}{25} = -2$$
 Amp

,...

Series and Parallel Connected: Page 23

Independent Sources:

(a) Series connected voltage sources can be replaced by a single source. (b) Parallel current sources can be replaced by a single source.

Series and Parallel Connected: Page 24

Examples of circuits with multiple sources, some of which are "illegal" as they violate Kirchhoff's laws.

Determine v in the circuit of the figure by first combing the three current sources.

Resistors in Series and Parallel Page 26

(a) Series combination of N resistors. (b) Electrically equivalent circuit.

First, apply KVL:

$$v_s = v_1 + v_2 + \cdots + v_N$$

and then Ohm's law:

$$v_s = R_1 i + R_2 i + \cdots + R_N i = (R_1 + R_2 + \cdots + R_N) i$$

circuit shown

$$v_s = R_{\rm eq}i$$

Thus, the value of the equivalent resistance for N series resistors is

$$R_{\rm eq} = R_1 + R_2 + \dots + R_N$$

Resistors in Series and Parallel Page 27

Practice: 3.9

Determine i in the circuit

Resistors in Series and Parallel Page 29

(a) A circuit with *N* resistors in parallel. (b) Equivalent circuit.

Beginning with a simple KCL equation,

$$i_s = i_1 + i_2 + \cdots + i_N$$

or
$$i_S = \frac{v}{R_1} + \frac{v}{R_2} + \dots + \frac{v}{R_N} = \frac{v}{R_{eq}}$$

Thus,
$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

A special case worth remembering is

$$R_{\text{eq}} = R_1 || R_2 = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$$

Determine v in the circuit by first combing the three current sources, and then the two 10 Ω resistors.

Example: 3.11

Calculate the power and voltage of the dependent source

Example:

Calculate the power and voltage of the dependent source

Example:

Calculate the power and voltage of the dependent source

From the top node:
$$-0.9i_3 - 2 + i_3 + \frac{v}{6} = 0$$

The other equation: $v = 3i_3$

$$\therefore i_3 = \frac{10}{3} \text{ Amp.}$$

$$\therefore v = 3i_3 = 10 \text{ Volts}$$

The dependent source furnishes:

$$v \times 0.9i_3 = 10(0.9) \left(\frac{10}{3}\right) = 30 \text{ Watts.}$$

Practice: 3.11

Find the voltage v

Voltage and Current division:

An illustration of voltage division.

We may find v_2 by applying KVL and Ohm's law:

$$v = v_1 + v_2 = iR_1 + iR_2 = i(R_1 + R_2)$$

SO

$$i = \frac{v}{R_1 + R_2}$$

Thus,
$$v_2 = i R_2 = \left(\frac{v}{R_1 + R_2}\right) R_2$$

or

$$v_2 = \frac{R_2}{R_1 + R_2} v$$

For a string of *N* series resistors, we may write:

$$v_k = \frac{R_k}{R_1 + R_2 + \dots + R_N} v$$

Practice: 3.12

Use voltage division to determine v_x in the adjacent circuit.

Voltage and Current division:

An illustration of current division.

The current flowing through R_2 is

$$i_2 = \frac{v}{R_2} = \frac{i(R_1 || R_2)}{R_2} = \frac{i}{R_2} \frac{R_1 R_2}{R_1 + R_2}$$

or

$$i_2 = i \frac{R_1}{R_1 + R_2}$$

For a parallel combination of N resistors, the current through R_k is

$$i_k = i \frac{\frac{1}{R_k}}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}}$$

Determine the current I_x if $I_1 = 100$ mA.

Practice: 3.13

Find i_1, i_2 , and v_3

Find i_1, i_2 , and v_3

Current division:

$$i_1 = \left(\frac{125}{125 + 25}\right) \times 120 \text{ mA.} = 100 \text{ mA.}$$

$$i_2 = \left(\frac{50}{50 + 50}\right) \times i_1 = 50 \,\text{mA}.$$

$$i_{20\Omega} = \left(\frac{240}{240 + 60}\right) \times i_2 = 40 \,\text{mA}.$$

$$v_3 = i_{200} \times 20\Omega = 0.8 \text{ Volts.}$$

$$\frac{(((40\Omega + 20\Omega)//240\Omega) + 2\Omega)//50\Omega}{= ((60\Omega//240\Omega) + 2\Omega)//50\Omega}$$

$$= \frac{(60 \times 240}{60 + 240} + 2\Omega)//50\Omega$$

Homework:

Ch4-Nodal and Mesh Analysis:

Nodal Analysis: is based on KCL

Obtain values for the unknown voltages across the elements in the circuit below.

At node 1

Practice: 4.1

Compute the voltage across each current source.

Example: 4.2

find the nodes voltages:

find the nodes voltages:

find the nodes voltages:

A KCL equation for node 1:

$$\frac{v_1 - v_3}{4} - (-3) + \frac{v_1 - v_2}{3} - (-8) = 0$$

Node 2:

$$\frac{v_2 - v_3}{7} + \frac{v_2}{1} + \frac{v_2 - v_1}{3} + (-3) = 0$$

$$\frac{v_3 - v_2}{7} + \frac{v_3}{5} + (-25) + \frac{v_3 - v_1}{4} = 0$$

find the nodes voltages:

A KCL equation for node 1:

$$\frac{v_1 - v_3}{4} - (-3) + \frac{v_1 - v_2}{3} - (-8) = 0$$

Node 2:

$$\frac{v_2 - v_3}{7} + \frac{v_2}{1} + \frac{v_2 - v_1}{3} + (-3) = 0$$

Node 3:

$$\frac{v_3 - v_2}{7} + \frac{v_3}{5} + (-25) + \frac{v_3 - v_1}{4} = 0$$

Node 1:

$$0.5833v_1 - 0.33333v_2 - 0.25v_3 = -11$$

Node 2:

$$-0.3333v_1 + 1.4762v_2 - 0.1429v_3 = 3$$

$$-0.25v_1 - 0.1429v_2 + 0.5929v_3 = 25$$

find the nodes voltages: (matrix methods)

$$0.5833v_1 - 0.33333v_2 - 0.25v_3 = -11$$

Node 2:

Node 2.

$$-0.3333v_1 + 1.4762v_2 - 0.1429v_3 = 3$$
 v_1

$$-0.25v_1 - 0.1429v_2 + 0.5929v_3 = 25$$

find the nodes voltages: (matrix methods)

Node 1:

$$0.5833v_1 - 0.33333v_2 - 0.25v_3 = -11$$

Node 2:

$$-0.3333v_1 + 1.4762v_2 - 0.1429v_3 = 3$$

Node 3:

$$-0.25v_1 - 0.1429v_2 + 0.5929v_3 = 25$$

$$v_2 = \frac{\begin{vmatrix} 0.5833 & -11 & -0.2500 \\ -0.33333 & 3 & -0.1429 \\ -0.2500 & 25 & 0.5929 \end{vmatrix}}{0.3167}$$
$$= \frac{2.45}{0.3167} = 7.736 \text{ Volts.}$$

$$v_3 = \frac{\begin{vmatrix} 0.5833 & -0.3333 & -11 \\ -0.3333 & 1.4762 & 3 \\ -0.2500 & -0.1429 & 25 \end{vmatrix}}{0.3167}$$
$$= \frac{14.67}{0.3167} = 46.32 \text{ Volts.}$$

Basic Nodal and Mesh Analysis

Practice: 4.2

Compute the voltage across each current source.

The Supernode:

find the nodes voltages:

The Supernode:

find the nodes voltages:

A KCL equation for

Node 1:

$$\frac{v_3}{4} - (-3) + \frac{v_1 - v_2}{3} - (-8) = 0$$

Node 2:

$$i + \frac{v_2}{1} + \frac{v_2 - v_1}{3} + (-3) = 0$$

$$-i + \frac{v_3}{5} + (-25) + \frac{v_3 - v_1}{4} = 0$$

Reference:

W.H. Hayt, Jr., J.E. Kemmerly, S.M. Durbin, Engineering Circuit Analysis, Sixth Edition.

Copyright ©2002 McGraw-Hill. All rights reserved.

