Министерство образования Красноярского края Краевое государственное бюджетное профессиональное образовательное учреждение «Красноярский колледж радиоэлектроники и информационных технологий»

		а по учебной работе М.А. Полютова
	СКНАЯ КВАЛИФИКАЦИОННА (ДИПЛОМНЫЙ ПРОЕКТ)	
Оптимизация лока	льной компьютерной сети КГБПО технологию VLAN	У «ККГИТ», ИСПОЛЬЗУХ
	Tema	
	09.02.02 Компьютерные сети	
Студент _		/ E.B. Аверяскин
Руководитель _	подпись, дата	инициалы, фамилия / Е.В. Харитонов
Консультант _	подпись, дата	инициалы, фамилия / В.Н. Попова
Нормоконтроль _	подпись, дата	инициалы, фамилия / И. С. Богданова
Рецензент	подпись, дата	инициалы, фамилия /
_	подпись, дата	инициалы, фамилия

Красноярск, 2021г.

АННОТАЦИЯ

Данный документ является пояснительной запиской к выпускной квалификационной работе.

Целью выполнения выпускной квалификационной работе является оптимизация локальной компьютерной сети КГБПОУ «ККРИТ», используя технологию VLAN.

Были поставлены следующие задачи:

- 1) спроектировать новую схему подключения устройства;
- 2) подключить сетевое оборудование;
- 3) выполнить настройку оборудования;
- 4) выполнить настройку программного обеспечения;
- 5) провести экономический расчет;
- 6) описать правила охраны труда и техника безопасности при работе с рабочими станциями и сетевым оборудованием.

Первый раздел пояснительной записки содержит анализ организации, анализ текущей сети, оборудования и программного обеспечения.

Второй раздел содержит проектирование схемы подключения, описание настройки оборудования и программного обеспечения.

Третий раздел содержит экономический расчет.

Четвертый раздел содержит описание охраны труда и технику безопасности.

Также имеются Аннотация, Содержание, Введение, Заключение, Перечень сокращений, Библиографическое описание.

Пояснительная записка по выпускной квалификационной работе оформлена на ПЭВМ (Ryzen 5 2600, RAM 16 Gb, SDD 480 Gb) под управлением операционной системы Windows 10 в текстовом процессоре Microsoft Word 19. Пояснительная записка содержит 49 страниц, 56 рисунков, 4 таблицы.

.,					КРИТ. 09.02.02. ДП 538 ПЗ			
Изм.	Лист	№ докум.	Подпись	дата				
Разра	аб.	Аверяскин Е.В.			Оптимизация локальной	Лист.	Лист	Листов
Прове	э р.	Харитонова Е.В.			компьютерной сети КГБПОУ		2	49
Рецен	1 3.				«ККРИТ», используя			
Н. Ко	нтр.	Богданова И.С.			технологию VLAN	группа 9КС-1.17		C-1.17
Утве	рд.	Полютова М.А.						

Содержание

Введение	4
1 Организационно-техническая часть	5
1.1 Краткая характеристика организации	5
1.2 Спецификация оборудования организации	6
1.3 Спецификация программного обеспечения организации	8
1.4 Анализ существующей сети	9
2 Рабочая часть	11
2.1 Проектирование схемы подключения	11
2.2 Подключение и настройка оборудования	12
2.3 Настройка программного обеспечения	30
3 Экономическая часть	42
4 Охрана труда и техника безопасности	44
4.1 Охрана труда в колледже	44
4.2 Техника безопасности при работе с оборудованием	45
Заключение	47
Перечень сокращений	48
Библиографическое описание	49

Изм.	Лист	№ докум.	Подпись	Дата

ВВЕДЕНИЕ

Актуальность темы — в организации, которая имеет более ста рабочих станций, несколько десятков IP-камер видеонаблюдения и несколько сетевых МФУ большую опасность может сыграть широковещательный трафик на втором уровне сетевой модели ОSI, который могут генерировать все устройства в сети. При обычном режиме работы такой трафик можно контролировать, но если кто-то запустить на рабочей станции вредоносную программу, которая каждую секунду будет генерировать широковещательный трафик, то это может существенно ухудшить производительность сети, а если сетевое оборудование не сможет справиться с таким объемом трафика и попросту зависнет, что может парализовать работу все локальной сети. Для решения такой проблему существует технология VLAN.

VLAN — это технология, которая позволяет сетевым администраторам создавать логические широковещательные домены, позволяющие охватывать один или более коммутаторов, вне зависимости от физического расположения самих устройств. Это позволяет сокращать размер доменов широковещательной передачи, а также логически объединять группы, не располагая объекты в одном конкретном месте.

Оптимизация — повышение эффективности работы локальной компьютерной сети, путем логического разделения различного вида трафика друг от друга с помощью технологии VLAN.

Изм.	Лист	№ докум.	Подпись	Дата

1 Организационно-техническая часть

1.1 Краткая характеристика организации

«Красноярский колледж радиоэлектроники и информационных технологий» (далее колледж) официально начинает свою деятельность 12 января 2015 года. И вместе с тем, история эта насчитывает не одно десятилетие. Дело в том, что КГБПОУ «Красноярский колледж радиоэлектроники и информационных технологий» образовался в результате реорганизации путем слияния двух заведений среднего профессионального образования города Красноярска – КГБОУ СПО «Красноярский техникум информатики и вычислительной техники» и КГБОУ СПО «Красноярский колледж радиоэлектроники, экономики и управления».

Красноярский техникум информатики и вычислительной техники зарекомендовал себя как современное, динамично развивающееся учебное заведение, вошел в рейтинг «100 лучших ссузов России», в 2012 году стал победителем конкурсного отбора в рамках долгосрочной целевой программы по модернизации сети образовательных учреждений среднего профессионального образования в номинации «Высокотехнологичный центр профессионального образования по отрасли «Информатизация и телекоммуникация».

В настоящее время Красноярский колледж радиоэлектроники и информационных технологий приглашает получить качественное образование по 5 направлениям подготовки:

- 1) 09.00.00 Информатика и вычислительная техника.
- 2) 11.00.00 Электроника, радиотехника и системы связи.
- 3) 15.00.00 Машиностроение.
- 4) 20.00.00 Техносферная безопасность и природообустройство.
- 5) 38.00.00 Экономика и управление.

Изм.	Лист	№ докум.	Подпись	Дата

Организационная структура колледжа (рисунок 1) представляет собой структурную модель, выступающую базой распределения обязанностей сотрудников колледжа.

Рисунок 1 – Организационная структура колледжа

Колледж имеет два корпуса, один расположен по адресу пр. Свободный 67, а второй по пр. им. газеты Красноярский рабочий 156. Оптимизация локальной сети будет производиться в корпусе по адресу пр. Свободный 67.

1.2 Спецификация оборудования организации

В колледже используется сетевое оборудование (таблица 1), а также: более 100 рабочих станций, 11 сетевых МФУ, 27 камер видеонаблюдения.

Таблица 1 – Сетевое оборудование сети колледжа

Тип	Технические характеристики	Кол-
		во
1	2	3
Межсетевой экран	Модель: Cisco ASA 5505	1
	Количество портов: 8 x RJ-45	
	Пропускная способность: до 150 Мбит/с	
	Дополнительные возможности: поддерживает механизмы	
	шифрования AES	

					ı
					l
Изм.	Лист	№ докум.	Подпись	Дата	

Продолжение таблицы 1

1	2	3
Коммутатор	Модель: Cisco Catalyst 2960	3
	Объем оперативной памяти: 64 Мб	
	Объем флеш-памяти: 32 Мб	
	Количество портов коммутатора: 24 х 10/100 Мбит/сек	
	Внутренняя пропускная способность: 16 Гбит/с	
	Размер таблицы МАС адресов: 8192	
	Поддержка стандартов: Auto MDI/MDIX, Priority tags, VLAN, STP	
	Модель: 3COM Baseline Switch 2824	2
	Количество портов коммутатора: 24	
	Внутренняя пропускная способность: 16 Гбит/с	
	Размер таблицы МАС адресов: 32768	
	Поддержка стандартов: IEEE 802.1p, IEEE 802.1d, Auto MDI/MDIX	
	Модель: D-Link DES-1016D	1
	Количество портов: 16	1
	Пропускная способность: 3,2 Гбит/сек	
	Модель: TP-Link TL-SG1024D	1
	Количество портов коммутатора: 24 порта 10/100/1000	1
	Мбит/с	
	Внутренняя пропускная способность: 48 Гбит/с	
	Размер таблицы МАС адресов: 8192	
	Модель: PLANET GSD-802PS	1
	Количество портов коммутатора: 8 Gigabit PoE	1
	Внутренняя пропускная способность: 16 Гбит/с	
	Размер таблицы MAC адресов: 8192 Модель: Allied Telesis AT-GS950/24	1
		1
	Количество портов коммутатора: 24 x Ethernet 10/100/1000	
	Внутренняя пропускная способность: 32 Гбит/с	
Compon	Размер таблицы MAC адресов: 8192	1
Сервер	Модель: HP DL180 G6	1
	Процессор: 2x Xeon 4C E5640 O3У: 64 Gb	
	Хранилище: 2 SAS, 2 HDD	

Такого технического оснащения достаточно для хорошей работоспособности локальной сети.

Оптимизация локальной сети будет производиться, используя имеющийся на балансе колледже управляемый коммутатор Cisco Catalyst 2960.

Изм.	Лист	№ докум.	Подпись	Дата

1.3 Спецификация программного обеспечения организации

В колледже установлено программное обеспечение для управления локальной сетью и оборудованием (таблица 2), а также программное обеспечения для обучения студентов: КОМПАС-3D, Cisco Packet Tracer, Microsoft Office, Autodesk Inventor, Delphi, Microsoft Visual Studio.

Таблица 2 – Программное обеспечение сети колледжа

Название	Описание
Cisco Adaptive Security Device Manager	Веб-интерфейс для управления межсетевым
(ASDM)	экраном Cisco ASA 5505
PuTTY	ПО для различных протоколов удалённого
	доступа, включая SSH, Telnet, rlogin
WireShark	ПО для анализа сетевого трафика сетей
	Ethernet
AnyDesk	ПО для удаленного управления компьютером
VMWare Workstation	ПО для создания виртуальных машин
Подключение к удаленному рабочему столу	ПО для удаленного управления компьютером
Acronis True Image	ПО клонирования жестких дисков
WinSCP	ПО для защищенного подключения к FTP-
	серверу
Veeam Backup & Replication	ПО для резервного копирование виртуальных
	машин и их восстановления
Windows 10 Для образовательных учреждений	Операционная система для пользователей
Windows Server 2016	серверная операционная система

В колледже используется лицензионное программное обеспечение, которое распространяется по специальной лицензии для учебных заведений, либо распространяется свободно.

Программное обеспечение PuTTY применяется для управления через командную строку, AnyDesk применяется для подключения к рабочим станциям в бухгалтерии, а Подключение к удаленному рабочему столу применяется для подключения ко всем остальным рабочим станциям и серверам.

Изм.	Лист	№ докум.	Подпись	Дата

1.4 Анализ существующей сети

В колледже имеется локальная сеть с древовидной топологией, корнем которой является межсетевой экран Cisco ASA 5505, с его помощью осуществляется связь локальной сети со вторым учебным корпусом, находящимся по адресу пр. им. газеты Красноярский рабочий 156, а также с сетью Интернет. К межсетевому экрану подключен неуправляемый коммутатор D-Link DES-1016D, к которому подключены сервера и управляемый коммутатор Cisco Catalyst 2960. Он используется для подключения других коммутаторов, находящихся в кабинетах, камер видеонаблюдения, а также к нему подключен еще один управляемый коммутатор Cisco Catalyst 2960 для увеличения количества подключаемых устройств (рисунок 2).

Рисунок 2 – Текущая иерархия сети колледжа

Такая схема сети сложна для администрирования из-за отсутствия уровня распределения. Все устройства находятся в одном широковещательном домене, что предполагает большое количество широковещательного трафика, который

						Лист
					КРИТ. 09.02.02. ДП 538 ПЗ	0
Изм.	Лист	№ докум.	Подпись	Дата		9

значительно уменьшает производительность сети. Также из-за отсутствия сегментации сети разные типы трафика смешаны между собой и, например, трафик камер видеонаблюдения, которые 24 часа в сутки ведут запись и отправляют данные на сервер тоже нагружают сеть.

Из-за большого количества коммутаторов, к которым могут быть подключены, как и конечные устройства, такие как рабочие станции, сетевые МФУ, камеры видеонаблюдения, так и другие коммутаторы локальная сеть менее отказоустойчива ведь в случае выхода какого-нибудь коммутатора из строя без сети могут остаться устройства разного типа, разной важности и в разных местах.

Поэтому планируется добавить новый уровень распределения, установить имеющийся управляемый коммутатор, который, используя технологию VLAN будет разделять между собой трафик пользователей, кабинета 227, в которой оборудована компьютерная лаборатория, трафик управления, а также трафик камер видеонаблюдения. VLAN 7 и 8 будут иметь идентификатор по цифре в третьем октете IP-адреса подсети, VLAN 227 будет иметь идентификатор по номеру кабинета, VLAN для камер видеонаблюдения будет идентификатор 100. Кроме того, будет настроена защита от петель второго уровня, защита от неавторизованных DHPC-серверов, контроль за широковещательным трафиком. Будет организован безопасный удаленный доступ к управляемым коммутаторам по протоколу SSH.

Изм.	Лист	№ докум.	Подпись	Дата

2 Рабочая часть

2.1 Проектирование схемы подключения

В иерархию сети будет добавлен новый уровень распределения, который будет разделять сеть колледжа на три подсети для подключения рабочих станций и одну подсеть для камер видеонаблюдения. Все четыре подсети будут ограничены друг от друга с помощью VLAN, так подсеть для администрации будет иметь IP-адрес 192.168.7.0 /24 и идентификатор VLAN 7, подсеть для учебных аудиторий будет иметь IP-адрес 192.168.8.0 /24 и идентификатор VLAN 8, подсеть для кабинета 227 иметь IP-адрес 192.168.9.0 /24 идентификатор VLAN 227 и подсеть для камер видеонаблюдения будет иметь идентификатор VLAN 100 (рисунок 3).

Все также корнем сети будет межсетевой экран Cisco ASA 5505, который подключен к корпусу по адресу пр. им. газеты Красноярский рабочий 156, будет иметь три логических интерфейса, которые в свою очередь связаны с физическими интерфейсами. Логические интерфейсы будут иметь первый IP-адрес из подсети и будут выступать основными шлюзами. Каждый физический интерфейс представляет отдельную подсеть и имеет свой номер VLAN.

От межсетевого экрана будут идти три кабеля в главный управляемый коммутатор Cisco Catalyst 2960, интерфейсы которого будут иметь номер VLAN в соответствие с номером VLAN на интерфейсе Cisco ASA. Все остальные устройства будут подключены к главному коммутатору с соответствующим номером VLAN.

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 3 – Новая иерархия сети колледжа

2.2 Подключение и настройка оборудования

В этом подразделе описан процесс подключения и настройки межсетевого экрана Cisco ASA 5505 и управляемых коммутаторов Cisco Catalyst 2960.

2.2.1 Подключение уровня распределения сети

Межсетевой экран Cisco ASA имеет восемь физических интерфейсов, к интерфейсу Ethernet0/0 был подключен кабель, который идет от провайдера. К интерфейсам Ethernet0/1, Ethernet0/2 и Ethernet0/3 подключены кабели (рисунок 4), соединяющие межсетевой экран с интерфейсами коммутатора FastEthernet0/1, FastEthernet0/2 и FastEthernet0/3 (рисунок 5).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 4 – Подключение межсетевого экрана

Рисунок 5– Подключение главного коммутатора

В интерфейс FastEthernet0/4 подключен коммутатор для рабочих станций в VLAN 8 (рисунок 6)

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 6 – Коммутатор для рабочих станций в VLAN 8 В интерфейс FastEthernet0/6 подключен коммутатор для рабочих станций в VLAN 227 (рисунок 7).

Рисунок 7 – Коммутатор для рабочих станций в VLAN 227

Изм.	Лист	№ докум.	Подпись	Дата

2.2.2 Настройка межсетевого экрана Cisco ASA 5505

После подключения распределительного коммутатора был настроен межсетевой экран. Так как он был уже предварительно настроен все дальнейшие действия были выполнены с помощью программного обеспечения ASDM (рисунок 8).

Рисунок 8 – Программное обеспечение ASDM

Трем интерфейсам были заданы идентификаторы VLAN (рисунки 9–11), каждому из них были заданы IP-адреса, имена и уровень безопасности (рисунки 12–15).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 9 – Настройка идентификатора VLAN для интерфейса Ethernet0/1

Рисунок 10 – Настройка идентификатора VLAN для интерфейса Ethernet0/2

			·	
Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 11 – Настройка идентификатора VLAN для интерфейса Ethernet0/3

Рисунок 12 – Настройка IP-адреса для интерфейса Ethernet0/0

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 13 — Настройка IP-адреса для интерфейса Ethernet 0/1

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 14 — Настройка IP-адреса для интерфейса Ethernet 0/2

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 15 — Настройка IP-адреса для интерфейса Ethernet0/3 Были настроены необходимые списки доступа (ACL) (рисунок 16)

Рисунок 16 – Списки доступа

Была настроена трансляция сетевых адресов (NAT) для трёх подсетей (рисунки 17–19).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 17 – NAT для VLAN 7

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 18 – NAT для VLAN 8

ı	Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 19 – NAT для VLAN 227

Был настроен статический маршрут до второго учебного корпуса (рисунок 20).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 20 – Статический маршрут

Так как теперь DHCP-сервер находится в отдельной подсети, была настроена функция DHCP-ретрансляции (DHCP Relay), которая перехватывает запросы от DHCP-клиентов из других подсетей и отправляет их DHCP-серверу (рисунки 21–22).

Рисунок 21 – IP-адрес DHCP-сервера

Рисунок 22 – Активация DHCP Relay

Изм.	Лист	№ докум.	Подпись	Дата

Был настроен удаленный доступ к межсетевому экрану. Подключиться к нему можно с помощью протокола SSH, а также с помощью ПО ASDM (рисунок 23).

Туре	Interface ^1	IP Address	Mask/Prefix Length
SSH	admin	192.168.7.0	255.255.255.0
ASDM/HTTPS	admin	192.168.7.0	255.255.255.0

Рисунок 23 – Настройка удаленного доступа

2.2.3 Настройка управляемых коммутаторов Cisco Catalyst 2960

Для настройки коммутаторов использовалось консольное подключение и ПО PuTTY (рисунки 24–25).

Рисунок 24 – Консольное подключение

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 25 – Программное обеспечение PuTTY

Была выполнена первоначальная настройка управляемого коммутатора уровня распределения (рисунки 26–30).

Рисунок 26 – Назначение имени главному коммутатору

Рисунок 27 – Назначение домена

Изм.	Лист	№ докум.	Подпись	Дата

```
CORE (config) #username admin privilege 15 secret Ad%6dga
CORE (config) #service password-encryption
CORE (config) #
```

Рисунок 28 – Добавление пользователя и шифрование паролей

```
COME (config) #interface vlan 7

CORE (config-if) #ip

*Mar 11 10:52:47.340: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan7, changed state to do

CORE (config-if) #ip add

CORE (config-if) #ip add

CORE (config-if) #ip address 192.168.7.2 255.255.255.0

CORE (config-if) #
```

Рисунок 29 — Назначение ІР-адреса главному коммутатору

```
COM4 - PuTTY
CORE(config) #access-list 23 permit 192.168.7.0 0.0.0.255
CORE(config)#line vty 0 4
CORE(config-line) #transport input ssh
CORE(config-line) #logging synchronous
CORE(config-line)#privilege level 15
CORE(config-line) #exec-timeout 60 0
CORE(config-line) #access-class 23 in
CORE(config-line)#exit
CORE(config)#crypto key generate rsa
The name for the keys will be: CORE.svoboda.local
Choose the size of the key modulus in the range of 360 to 4096 for your
  General Purpose Keys. Choosing a key modulus greater than 512 may take
  a few minutes.
How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 3 seconds)
CORE (config) #
```

Рисунок 30— Настройка удаленного доступа SSH

Были добавлены VLAN (рисунок 31).

```
COM4-PuTTY

CORE (config) #vlan 7

CORE (config-vlan) #name admin

CORE (config-vlan) #vlan 8

CORE (config-vlan) #name study

CORE (config-vlan) #vlan 227

CORE (config-vlan) #name 227

CORE (config-vlan) #name 227

CORE (config-vlan) #vlan 100

CORE (config-vlan) #name camera

CORE (config-vlan) #
```

Рисунок 31 – Добавление VLAN

	·			
Изм.	Лист	№ докум.	Подпись	Дата

Интерфейсам были назначены идентификаторы VLAN (рисунки 32–35).

```
COM4-PuTTY

CORE (config) #interface range fastethernet 0/1-2

CORE (config-if-range) #switchport mode access

CORE (config-if-range) #switchport access vlan 7

CORE (config-if-range) #exit

CORE (config) #interface fastethernet 0/10

CORE (config-if) #switchport mode access

CORE (config-if) #switchport access vlan 7

CORE (config-if) #
```

Рисунок 32 – Назначение идентификатора VLAN 7

```
COM4-PuTTY — X

CORE (config) #interface range fastethernet 0/3-4

CORE (config-if-range) #switchport mode access

CORE (config-if-range) #switchport access vlan 8

CORE (config-if-range) #exit

CORE (config) #
```

Рисунок 33 – Назначение идентификатора VLAN 8

```
CORE (config) #interface range fastethernet 0/5-6

CORE (config-if-range) #switchport mode access

CORE (config-if-range) #switchport access vlan 227

CORE (config-if-range) #exit

CORE (config) #
```

Рисунок 34 – Назначение идентификатора VLAN 227

```
COM4-PuTTY - \( \times\) \( \times\)

CORE (config) #interface fastethernet0/12

CORE (config-if) #switchport mode access

CORE (config-if) #sw

CORE (config-if) #switchport access vlan 100

CORE (config-if) #
```

Рисунок 35 – Назначение идентификатора VLAN 100

Была настроена защита от неавторизованных DHCP-серверов (рисунок 36).

Рисунок 36 – Активация DHCP Snooping на существующих VLAN

Изм.	Лист	№ докум.	Подпись	Дата

DHCP-сервер подключен к главному коммутатору к интерфейсу FastEthernet0/10 и он был указан как доверительный интерфейс (рисунок 37).

```
COM4 - PuTTY — — X

CORE (config) #interface fastethernet0/10

CORE (config-if) #ip dhcp snooping trust

CORE (config-if) #
```

Рисунок 37 – Настройка доверительного интерфейса

Также был настроен коммутатор для подключения рабочих станций для студентов и преподавателей, который находится в VLAN 8 (рисунок 38).

```
COM4 - PuTTY
Switch(config) #ip domain name svoboda.local
Switch (config) #hostname VLAN8-1
VLAN8-1(config)#service password-encryption
VLAN8-1(config)#username admin privilege 15 secret dsfh&3sa
VLAN8-1(config)#enable secret dsfh&3sa
VLAN8-1(config)#aaa new-model
VLAN8-1(config) #access-list 23 permit 192.168.7.0 0.0.0.255
VLAN8-1(config)#line vty 0 4
VLAN8-1(config-line) #transport input ssh
VLAN8-1(config-line)#logging synchronous
VLAN8-1(config-line) #privilege level 15
VLAN8-1(config-line) #exec-timeout 60 0
VLAN8-1(config-line) #access-class 23 in
VLAN8-1(config-line)#exit
VLAN8-1(config)#crypto key generate rsa
You already have RSA keys defined named VLAN8-1.svoboda.local.
% Do you really want to replace them? [yes/no]: 1024
 Please answer 'yes' or 'no'.
Do you really want to replace them? [yes/no]: yes
Choose the size of the key modulus in the range of 360 to 4096 for your
 General Purpose Keys. Choosing a key modulus greater than 512 may take
  a few minutes.
How many bits in the modulus [512]: 102
*Mar 11 12:34:34.053: %SSH-5-DISABLED: SSH 1.99 has been disabled4
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 4 seconds)
VLAN8-1(config)#
Mar 11 12:34:42.005: %SSH-5-ENABLED: SSH 1.99 has been enabled
```

Рисунок 38 – Настройка коммутатора для VLAN 8

Теперь рабочие станции и другие сетевые устройства логически разделены друг от друга на втором уровне OSI, но всё равно могут использовать общие ресурсы локальной сети. В случае выхода из строя сетевого оборудования, стало возможно легко отследить его принадлежность к определенной сети VLAN и уменьшить время решения проблемы.

Изм.	Лист	№ докум.	Подпись	Дата

2.3 Настройка программного обеспечения

В этом подразделе описан процесс настройки DHCP-сервера в Windows Server 2016.

2.3.1 Hастройка Windows Server

Так как DHCP-сервер уже автоматически раздаёт IP-адреса из сети 192.168.7.0 /24 (рисунок 39), были добавлены еще два области IP-адресов для VLAN 8 и 227, 192.168.8.0 /24 и 192.168.9.0 /24.

Рисунок 39 – Область для VLAN 7

Создание области IP-адресов производилась в операционной системе Windows Server 2016 с помощью Мастера создания области (рисунок 40).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 40 – Мастер добавления области

Новой области было дано имя в соответствии с идентификатором VLAN, имя pool8 для VLAN 8 (рисунок 41) и pool227 для VLAN 227 (рисунок 42).

Рисунок 41 – Имя области для VLAN 8

Изм.	Лист	№ докум.	Подпись	Дата

Мастер создания области

Имя области

Необходимо обеспечить уникальное имя области. Кроме того, существует параметр, в котором можно задать описание области.

Рисунок 42 – Имя области для VLAN 227

Был указан диапазон IP-адресов для новой области, для VLAN 8 это 192.168.8.1–192.168.8.254 с маской подсети 24 бит (рисунок 43), для VLAN 227 это 192.168.9.1–192.168.9.254 с маской подсети 24 бит (рисунок 44).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 43 – Диапазон IP-адресов для VLAN 8

Мастер создания области

Диапазон адресов

Определить диапазон адресов области можно задавая, диапазон последовательных IP-адресов.

Рисунок 44 – Диапазон IP-адресов для VLAN 227

ı					
		·			·
	Изм.	Лист	№ докум.	Подпись	Дата

КРИТ. 09.02.02. ДП 538 ПЗ

Были указаны первые двадцать адресов из области, которые DHCP-сервер не должен раздавать клиентам, они будут указаны вручную системными администраторами, для VLAN 8 это 192.168.8.1–192.168.8.20 (рисунок 45), для VLAN 227 это 192.168.9.1–192.168.9.20 (рисунок 46).

Рисунок 45 – Исключаемый диапазон адресов для VLAN 8

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 46 – Исключаемый диапазон адресов для VLAN 227 Срок аренды IP-адреса для VLAN 8 и 227 был указан 12 часов (рисунок 47).

Мастер создания области

Срок действия аренды адреса

Срок действия аренды определяет, как долго клиент может использовать IP-адрес из этой области.

Рисунок 47 – Срок аренды адреса

Изм.	Лист	№ докум.	Подпись	Дата

Адресами основных шлюзов были выбраны IP-адреса логических интерфейсов Cisco ASA, для VLAN 8 это 192.168.8.1 (рисунок 48), для VLAN 227 это 192.168.9.1 (рисунок 49).

Рисунок 48 – Адрес основного шлюза для VLAN 8

Изм.	Лист	№ докум.	Подпись	Дата

Мастер создания области

Маршрутизатор (основной шлюз)

Вы можете указать маршрутизаторы или основные шлюзы, распределяемые этой областью.

Рисунок 49 – Адрес основного шлюза для VLAN 227

Адресом DNS-сервера и WINS-сервера был выбран IP-адрес данного Windows Server 2016 для VLAN 8 и 227 (рисунки 50–51).

Изм.	Лист	№ докум.	Подпись	Дата

Мастер создания области

Имя домена и DNS-серверы

DNS (Domain Name System) сопоставляет и отображает имена доменов, используемые в сети.

2одительский цомен:	svoboda.local		
	і области могли использов еса этих серверов.	ать DNS-серверы в вашей сети,	
<u>И</u> мя сервера:		IP- <u>а</u> дрес:	
control16			До <u>б</u> авить
	Со <u>п</u> оставить	192.168.7.3	<u>У</u> далить
			<u>В</u> верх
			Вни <u>з</u>

Рисунок 50 – Адрес DNS-сервера

Macтep создания области WINS-серверы Компьютеры под управлением Windows м для преобразования NetBIOS-имен компь		ерверы 🟐
Ввод IP-адреса WINS-сервера позволит ка запросы до отправки широковещательных NetBIOS-имен.		
<u>И</u> мя сервера:	IP- <u>а</u> дрес:	
control16	1	До <u>б</u> авить
Со <u>п</u> оставить	192.168.7.3	<u>Удалить</u>
		<u>В</u> верх
		Вни <u>з</u>
Чтобы изменить такое поведение DHCP-к "Тип узла WINS/NBT" в параметрах облас		параметр 046
	< <u>Н</u> азад <u>Д</u> алее	> Отмена

Рисунок 51 – Адрес WINS-сервера

Изм.	Лист	№ докум.	Подпись	Дата

КРИТ. 09.02.02. ДП 538 ПЗ

Лист

Теперь для каждой подсети есть своя область IP-адресов и устройства будут получать параметры сетевых адаптеров автоматически (рисунок 52).

Рисунок 52 – Области DHCP-сервера

Для проверки работоспособности DCHP-сервера, на рабочей станции, подключённой к коммутатору в VLAN 8, в параметрах сетевого адаптера была включена опция «Получить IP-адрес автоматически» (рисунок 53).

Рисунок 53 – Параметры сетевого адаптера

Через пару секунд рабочая станция автоматически получила IP-адрес из подсети для VLAN 8 (рисунок 54), а другая из подсети для VLAN 227 (рисунок 55).

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 54 – Сведения о сетевом подключении VLAN 8

Рисунок 55 – Сведения о сетевом подключении VLAN 227

Изм.	Лист	№ докум.	Подпись	Дата

В программе ASDM теперь отображается статистика получения DHCPзапросов и ответов, хотя на самом межсетевом экране DHCP-сервер не настроен, он является ретранслятором для Windows Server 2016 (рисунок 56).

Рисунок 56 – Статистика DHCР

Теперь все устройства получают параметры сетевого подключения автоматически, исходя из принадлежности к подсети VLAN.

Изм.	Лист	№ докум.	Подпись	Дата

3 Экономическая часть

Был выполнен расчет балансовой стоимости оборудования (таблица 3).

$$BC = C_{\text{перв}} - (N * T), \tag{1}$$

где БС – балансовая стоимость, руб;

Сперв – стоимость первоначальная, руб;

N – норма амортизации, руб;

Т – количество прошедших месяцев.

$$N = \frac{\text{Сперв}}{\text{Срок полезного использования}},$$
 (2)

где N – норма амортизации, руб;

 $C_{перв}$ – стоимость первоначальная, руб.

Таблица 3 – Балансовая стоимость оборудования

Наименование	Покупная стоимость, руб.	Срок полезного использования, мес.	Количество месяцев эксплуатации	Балансовая стоимость, руб.
Cisco ASA 5505	44433	36	32	4937
Cisco Catalyst 2960	45270	36	24	15090
3COM Baseline Switch	23800	36	34	1322
2824				
D-Link DES-1016D	3500	36	33	291
TP-Link TL-SG1024D	5190	36	18	2595
PLANET GSD-802PS	25410	36	30	4235
Allied Telesis AT-	21727	36	29	4224
GS950/24				
HP DL180 G6	206600	36	28	45911
Итого	375930			78605

Первоначальная стоимость оборудования составляла 375930 рублей, а с учётом его эксплуатации была получена балансовая стоимость 78605 рублей. Изза того, что срок эксплуатации оборудования, например коммутатора D-Link DES-1016D подходит к концу, его балансовая стоимость составляет всего 291 рубля.

За оклад сотрудника взят MPOT в городе Красноярск, который по состоянию на 2021 год составляет 12792 рубля.

Был выполнен расчет заработной платы сотрудника (таблица 4).

						Лист
					КРИТ. 09.02.02. ДП 538 ПЗ	42
Изм.	Лист	№ докум.	Подпись	Дата		42

Таблица 4 – Расчет заработной платы и отчислений

Статьи затрат	Сумма, руб.
Оклад сотрудника	12792
Районный коэффициент (30%)	3838 = 12792 * 30%
Процентная ставка к ЗП за стаж работы в районах	3838 = 12792 * 30%
крайнего севера и приравненных к ним мест (30%)	
Начисленная ЗП	20468 = 12792 + 3838 + 3838
Налог НДФЛ 13%	2661 = 20468 * 13%
Затраты на ЗП в месяц	17807 = 20468 - 2661
Итого затраты в год	213 684 = 17807 * 12

Заработная плата сотрудника с учетом надбавок и НДФЛ составила 17807 рублей в месяц.

Изм.	Лист	№ докум.	Подпись	Дата

4 Охрана труда и техника безопасности

Охрана труда — это система сохранения жизни и здоровья работников в процессе трудовой деятельности.

Основная задача охраны труда — предотвращение травматизма на производстве, профилактика профессиональных заболеваний, а также минимизация социальных последствий.

Техника безопасности — это комплекс организационных, технических мер, которые нужны для создания безопасных условий труда, и которые предотвращают несчастные производственные случаи.

4.1 Охрана труда в колледже

Работник во время работы обязан:

- выполнять только ту работу, которая ему была поручена, и по которой он был проинструктирован;
- в течение всего рабочего дня содержать в порядке и чистоте рабочее место;
 - держать открытыми все вентиляционные отверстия устройств;
- выполнять санитарные нормы и соблюдать режимы работы и отдыха,
 соблюдать установленные режимом рабочего времени регламентированные
 перерывы в работе;
- соблюдать правила эксплуатации вычислительной техники в соответствии с инструкциями по эксплуатации;
 - соблюдать расстояние от глаз до экрана консоли в пределах 60–80 см.

Во время работы запрещается:

- прикасаться к задней панели блока сервера при включенном питании;
- переключать разъемы интерфейсных кабелей при включенном питании;
- загромождать верхние панели устройств бумагами, инструментами и

						Лист
					КРИТ. 09.02.02. ДП 538 ПЗ	44
Изм.	Лист	№ докум.	Подпись	Дата		44

посторонними предметами;

- допускать захламленность рабочего места в целях недопущения накапливания органической пыли;
 - хранить личную одежду и принимать пищу на рабочем месте;
 - использовать оборудование не по назначению;
 - производить отключение питания во время выполнения активных задач;
- пользоваться штепсельными розетками и вилками с разбитыми крышками, а также поврежденными электрическими шнурами;
 - включать и выключать вилку электрического шнура мокрыми руками;
- выключать электрические приборы из электросети потянув непосредственно за электрический шнур или взявшись за электрический прибор;
 - использовать оборудование с поврежденным заземлением;
 - допускать попадание влаги на поверхность блока сервера и др. устройств;
- включать сильноохлажденное (принесенное с улицы в зимнее время)
 оборудование;
 - производить ремонт включенного оборудования;
 - использовать электроинструмент при работе на лестницах и стремянках.

4.2 Техника безопасности при работе с оборудованием

Перед тем, как включать кабель питания в розетку, проверить соответствие напряжения сети указанному для используемого оборудования значению напряжения.

Перед размоткой проводов должны быть удалены препятствия и предметы, мешающие их раскатке и подвеске.

При работах, связанных с прокладкой кабеля по стенам зданий, нужно пользоваться только исправными лестницами, стремянками.

Нижние концы приставных лестниц должны иметь резиновые башмаки при установке на полу.

Изм.	Лист	№ докум.	Подпись	Дата

Общая длина (высота) приставной лестницы должна обеспечивать рабочему возможность работать стоя на ступени, находящейся на расстоянии не менее 1 м от верхнего конца лестницы, и быть не более 5 м.

Раздвижные лестницы-стремянки должны иметь запорное устройство, исключающее возможность самопроизвольного их сдвигания.

При штроблении и пробивке отверстий в бетонных или кирпичных стенах следует пользоваться рукавицами и предохранительными очками с небьющимися стеклами.

При прокладке кабелей по стенам здания параллельно электрическим проводам расстояние между ними должно быть не менее 25 мм. На пересечениях с электропроводами (кабелем) кабель должен быть заключен в изоляционную трубку.

Изм.	Лист	№ докум.	Подпись	Дата

ЗАКЛЮЧЕНИЕ

В процессе выполнения выпускной квалификационной работы была достигнута цель, а именно: выполнена оптимизация локальной компьютерной сети КГБПОУ «ККРИТ», используя технологию VLAN.

Были выполнены следующие задачи:

- 1) спроектирована новая схему подключения устройства, согласно новой иерархии сети;
 - 2) подключено сетевое оборудование, согласно новой схеме сети;
 - 3) произведена настройка межсетевого экрана Cisco ASA 5505;
 - 4) произведена настройка управляемых коммутаторов Cisco Catalyst 2960;
 - 5) произведена настройка DHCP-сервера в ОС Windows Server 2016;
 - 6) выполнен экономический расчет;
- 7) описана охрана труда и техника безопасности при работе с рабочими станциями и сетевым оборудованием.

Изм.	Лист	№ докум.	Подпись	Дата

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ

 3Π — заработная плата.

МРОТ – Минимальный размер оплаты труда.

 ${\rm M}\Phi{\rm Y}-{\rm M}$ ногофункциональное устройство.

ОС – операционная система.

ОЗУ – оперативное запоминающее устройство.

ПО – программное обеспечение.

ПЭВМ – персональная электронно-вычислительная машина.

Изм.	Лист	№ докум.	Подпись	Дата

БИБЛИОГРАФИЧЕСКОЕ ОПИСАНИЕ

- 1. Джеймс Куроуз, Кит Росс. Компьютерные сети. Настольная книга системного администратора. 6-е изд. М.: Эксмо, 2016.
- 2. Пайпер Бен. Администрирование сетей Cisco: освоение за месяц. М.: ДМК Пресс, 2018. 316 с.
- 3. Таненбаум Э.С., Уэзеролл Д. Компьютерные сети. 5-е изд. Прогресс книга, 2021. 960 с.
- 4. Cisco ASA 8.4.2 с нуля. Часть 3. ASA и ASDM. Текст : электронный // ciscomaster.ru : [веб-сайт]. URL: http://ciscomaster.ru/content/cisco-asa-842-s-nulya-chast-3-asa-i-asdm (дата обращения: 07.05.2021).
- 5. Белов А., Как настроить DHCP-сервер в Windows Server 2016 / Белов Антон. Текст : электронный // ServerSpace : [веб-сайт]. URL: https://serverspace.ru/support/help/how-to-configure-a-dhcp-server-in-windows-server-2016/ (дата обращения: 13.05.2021).
- 6. Инструкция по охране труда для операторов и пользователей персональных электронно-вычислительных машин (ПЭВМ) и работников, занятых эксплуатацией ПЭВМ. Текст : электронный // Охрана труда в России : [веб-сайт]. URL: https://ohranatruda.ru/ot_biblio/instructions/166/149348/ (дата обращения: 09.05.2021).

Изм.	Лист	№ докум.	Подпись	Дата