5 ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОЙ РАБОТЫ

5.1 Расчёт общей трудоемкости разработки программного обеспечения

Общий объём трудоёмкости разработки web-приложения по поиску потенциальных стажёров для ООО «Энвижен» на основании рейтинговой системы по результатам прохождения онлайн-тренингов (V_0) определяется исходя из количества и объёма функций, по формуле (5.1):

$$V_{0} = \sum_{i=1}^{n} V_{i}, \tag{5.1}$$

где V_i – объём отдельной функции ПО;

n – общее число функций.

$$V_0 = 130 + 490 + 7860 + 5240 + 1540 + 470 + 420 + 570 + 970 + 90 = 17780$$

Анализируя разработанную программу, уточнённый объём $\Pi O (V_y)$ определяем по формуле (5.2):

$$V_{v} = \sum_{i=1}^{n} V_{vi}, \tag{5.2}$$

где V_{yi} – уточнённый объём отдельной функции ПО в строках исходного кода (LOC).

$$V_y = 90 + 370 + 300 + 305 + 1120 + 350 + 390 + 560 + 400 + 80 = 3965$$

Сравнение исходного и уточнённых объёмов строк исходного кода представлены в таблице Б.1 приложения Б.

Разработанное в ходе выполнения дипломной работы приложение относится к третьей категории сложности.

На основании принятого к расчёту (уточнённого) объёма (V_y) и категории сложности ПО определяется нормативная трудоемкость ПО (T_H) выполняемых работ, которая приведена в таблице 5.1.

Таблица 5.1 – Нормативная трудоёмкость на разработку ПО (T_н)

Уточнённый объем, V _у	2-я категория сложности ПО	Номер нормы
3965	193	43

Дополнительные затраты труда, связанные с повышением сложности разрабатываемого ПО, учитываются посредством коэффициента повышения сложности ПО (K_c). K_c рассчитывается по формуле (5.3):

$$K_{c} = 1 + \sum_{i=1}^{n} K_{i}, \tag{5.3}$$

где K_i — коэффициент, соответствующий степени повышения сложности;

n – количество учитываемых характеристик.

Таким образом:

$$K_c = 1 + 0.12 = 1.12$$
.

Новизна разработанного ПО определяется путем экспертной оценки данных, полученных при сравнении характеристик разрабатываемого ПО с имеющимися аналогами. Влияние фактора новизны на трудоёмкость учитывается путем умножения нормативной трудоёмкости на соответствующий коэффициент, учитывающий новизну ПО (K_H). Разработанная программа обладает категорией новизны B, а значение $K_H = 0.63$.

В данном программном комплексе используется от 20% до 40% стандартных модулей, что соответствует значению коэффициента $K_T = 0.77$.

Приложение разработано на языке *Python*, что соответствует коэффициенту функционирования в глобальных сетях, учитывающему средства разработки ΠO , $K_{vp} = 0.7$.

Значения коэффициентов удельных весов трудоёмкости стадий разработки ПО в общей трудоемкости ПО определяются с учётом установленной категории новизны ПО согласно таблице 5.2.

При этом сумма значений коэффициентов удельных весов всех стадий в общей трудоёмкости равна единице. Значения коэффициентов приведены в таблице 5.2.

Таблица 5.2 – Значения коэффициентов удельных весов трудоёмкости стадий разработки ПО в общей трудоёмкости ПО

	Без применения CASE-технологии				
10.	Стадии разработки ПО				
Категория но- визны ПО	Т3	ЭП	ТΠ	РΠ	BH
визны по	Значения коэффициент				
	K _{T3}	Кэп	$K_{T\Pi}$	$K_{P\Pi}$	K _{BH}
В	0,08	0,19	0,28	0,34	0,11

Нормативная трудоёмкость $\Pi O (T_H)$ выполняемых работ по стадиям разработки корректируется с учетом коэффициентов: повышения сложности $\Pi O (T_c)$, учитывающих новизну $\Pi O (K_H)$, учитывающих степень использования стандартных модулей (K_T) , средства разработки $\Pi O (K_{yp})$ и определяются по формулам:

– для стадии ТЗ по формуле (5.4):

$$T_{y,T3} = T_{H} \cdot K_{T3} \cdot K_{c} \cdot K_{H} \cdot K_{yp}, \qquad (5.4)$$

- для стадии ЭП по формуле (5.5):

$$T_{y,\exists \Pi} = T_{H} \cdot K_{\exists \Pi} \cdot K_{c} \cdot K_{H} \cdot K_{yp}, \qquad (5.5)$$

– для стадии ТП по формуле (5.6):

$$T_{y,T\Pi} = T_{H} \cdot K_{T\Pi} \cdot K_{c} \cdot K_{H} \cdot K_{yp}, \qquad (5.6)$$

– для стадии РП по формуле (5.7):

$$T_{v,p\pi} = T_{H} \cdot K_{p\pi} \cdot K_{c} \cdot K_{H} \cdot K_{T} \cdot K_{vp}, \qquad (5.7)$$

– для стадии ВН по формуле (5.8):

$$T_{v,BH} = T_{H} \cdot K_{BH} \cdot K_{C} \cdot K_{H} \cdot K_{vp}, \qquad (5.8)$$

Коэффициенты K_c , K_H , K_{yp} вводятся на всех стадиях разработки, а коэффициент K_{τ} вводится только на стадии РП.

Таким образом:

$$\begin{split} T_{_{T3}} &= 193 \cdot 0,08 \cdot 1,12 \cdot 0,63 \cdot 0,7 \approx 8 \\ T_{_{9\Pi}} &= 193 \cdot 0,19 \cdot 1,12 \cdot 0,63 \cdot 0,7 \approx 18 \\ T_{_{T\Pi}} &= 193 \cdot 0,28 \cdot 1,12 \cdot 0,63 \cdot 0,7 \approx 27 \\ T_{_{p\Pi}} &= 193 \cdot 0,34 \cdot 1,12 \cdot 0,63 \cdot 0,77 \cdot 0,7 \approx 25 \\ T_{_{BH}} &= 193 \cdot 0,11 \cdot 1,12 \cdot 0,63 \cdot 0,7 \approx 10 \end{split}$$

Общая трудоёмкость разработки $\Pi O (T_0)$ определяется суммированием нормативной (скорректированной) трудоёмкости ΠO по стадиям разработки формуле (5.9):

$$T_{o} = \sum_{i=1}^{n} T_{vi}, \tag{5.9}$$

где T_{yi} — нормативная (скорректированная) трудоёмкость разработки ПО на i-й стадии (чел/дней);

n – количество стадий разработки.

Таким образом:

$$T_0 = 8 + 18 + 27 + 25 + 10 = 88$$
 чел/дней.

Результаты расчётов по определению скорректированной трудоёмкости ΠO по стадиям разработки и общую трудоёмкость разработки ΠO (T_o) представлены в таблице B.1 приложения B.

В общем виде совокупность капитальных вложений в проект может быть рассчитана следующим образом:

$$K = K_{o6} + K_{Ha} - K_{\pi} + K_{\pi p},$$

где K_{o6} — стоимость устанавливаемого оборудования, руб.;

 $K_{\text{на}}$ – недоамортизированная часть стоимости демонтируемого оборудования, руб.;

 K_{π} – ликвидационная стоимость (выручка от продажи) демонтируемого оборудования, руб.;

 $K_{\rm np}$ – стоимость приобретенных программных продуктов, руб.

Поскольку в качестве оборудования используется только ноутбук, то $K_{\rm Ha}$ и $K_{\rm J}$ можно опустить.

$$K = 1910 + 0 = 1910$$

5.2 Расчёт затрат на разработку программного продукта

В состав затрат на входят следующие статьи расходов:

- затраты труда на создание программного продукта (затраты по основной, дополнительной заработной плате и соответствующие отчисления) ($3_{\rm rp}$);
 - затраты на изготовление эталонного экземпляра (3_{эт});

- затраты на технологию (затраты на приобретение и освоение программных средств, используемых при разработке программного продукта; затраты на Π O, используемое как эталон) ($3_{\text{тех}}$);
- затраты на машинное время (расходы на содержание и эксплуатацию технических средств разработки, эксплуатации и сопровождения) (3_{MB});
 - затраты на материалы (информационные носители) (3_{мат});
- затраты на энергию, на использование каналов связи (для отдельных видов);
- общепроизводственные расходы (затраты на управленческий персонал, на содержание помещений) (3_{общлр});
- непроизводственные (коммерческие) расходы (затраты, связанные с рекламой, поиском заказчиков, поставками конкретных экземпляров) ($3_{\text{непр}}$).

В таблице Γ .1 приложения Γ приведены значения основных параметров, необходимых для расчёта затрат на разработку программного продукта.

Суммарные затраты на разработку $\Pi O (3_p)$ определяются по формуле (5.10):

$$3_{\rm p} = 3_{\rm Tp} + 3_{\rm 9T} + 3_{\rm Tex} + 3_{\rm MB} + 3_{\rm MT} + 3_{\rm 06III,np} + 3_{\rm Henp}$$
 (5.10)

Расходы на оплату труда разработчиков с отчислениями определяются по формуле (5.11):

$$3_{\text{тр}} = 3\Pi_{\text{осн}} + 3\Pi_{\text{доп}} + 0\text{TY}_{3\Pi},$$
 (5.11)

где $3\Pi_{\text{осн}}$ – основная заработная плата разработчиков, руб.;

 $3\Pi_{\text{доп}}$ – дополнительная заработная плата разработчиков, руб.;

 $OTH_{3\pi}$ — сумма отчислений от заработной платы (социальные нужды, страхование от несчастных случаев), руб.

Основная заработная плата разработчиков считается по формуле (5.12):

$$3\Pi_{\text{och}} = C_{\text{cp}_{\text{uac}}} \cdot T_{\text{o}} \cdot K_{\text{yB}}, \tag{5.12}$$

где $C_{cp_{ ext{\tiny час}}}-$ средняя часовая тарифная ставка;

 T_{o} – общая трудоемкость разработки, чел-час;

К_{ув} – коэффициент, учитывающий доплаты стимулирующего характера.

Средняя часовая тарифная ставка определяется по формуле (5.13):

$$C_{\text{cp}_{\text{vac}}} = \frac{\sum_{i} c_{\text{vi}} \cdot n_{i}}{\sum_{i} n_{i}}, \tag{5.13}$$

где C_{4i} — часовая тарифная ставка разработчика i — й категории;

 n_i – количество разработчиков i-й категории.

Часовая тарифная ставка разработчика i-й категории определяется по формуле (5.14):

$$C_{\rm y} = T_{\rm cr} \cdot k, \tag{5.14}$$

где T_{ct} – базовая ставка;

k – тарифный коэффициент.

Таким образом:

$$C_{cp_{uac}} = C_u = \frac{457*1,57}{168} = 4,27 \text{ py6}.$$

$$3\Pi_{\text{осн}} = 4,27 * 88 * 8 * 1,6 = 4809 \text{ руб.}$$

Дополнительная заработная плата определяется по формуле (5.15):

$$3\Pi_{\text{доп}} = 3\Pi_{\text{осн}} \cdot \frac{H_{\text{доп}}}{100\%},$$
 (5.15)

где $H_{\text{доп}}$ – норматив отчислений на дополнительную заработную плату разработчиков.

Таким образом:

$$3\Pi_{\text{доп}} = 4809 \cdot 0,15 = 721,46$$
 руб.

Отчисления от основной и дополнительной заработной платы (отчисления на социальные нужды и обязательное страхование) рассчитываются по формуле (5.16):

$$0TY_{CH} = \left(3\Pi_{OCH} + 3\Pi_{ДО\Pi}\right) \cdot \frac{H_{3\Pi}}{100\%},\tag{5.16}$$

где $H_{3\pi}$ – процент отчислений на социальные нужды и обязательное страхование от суммы основной и дополнительной заработной платы ($H_{3\pi} = 34\%$).

$$OTY_{CH} = (4809 + 721,46) \cdot 0,34 = 1880,36 \text{ py6}.$$

$$3_{\text{тр}} = 4809 + 721,46 + 1880,36 = 7410,8$$
 руб.

Затраты машинного времени определяются по формуле (5.17):

$$3_{MB} = C_{y} \cdot K_{T} \cdot t_{3BM}, \tag{5.17}$$

где $C_{\rm q}$ – стоимость 1 часа машинного времени (руб./ч.);

 $K_{\scriptscriptstyle T}$ – коэффициент мультипрограммности, показывающий распределение времени работы ЭВМ в зависимости от количества пользователей ЭВМ;

 $K_{T}=1$;

 $t_{\mbox{\tiny ЭВМ}}$ — машинное время ЭВМ, необходимое для разработки и отладки проекта (ч.).

Стоимость машино-часа определяется по формуле (5.18):

$$C_{\rm q} = \frac{3\Pi_{\rm 06c\pi} + 3_{\rm AP} + 3_{\rm AM} + 3_{\rm 9\Pi} + 3_{\rm BM} + 3_{\rm TP} + 3_{\rm \PiP}}{F_{\rm 9BM}},\tag{5.18}$$

где $3\Pi_{\text{обсл}}$ – затраты на заработную плату обслуживающего персонала с учетом всех отчислений, (руб. в год);

 3_{AP} — стоимость аренды помещения под размещение вычислительной техники, (руб. в год);

 3_{AM} – амортизационные отчисления за год, (руб. в год);

 $3_{9\Pi}$ — затраты на электроэнергию, (руб. в год);

 3_{BM} — затраты на материалы, необходимые для обеспечения нормальной работы ПЭВМ (вспомогательные), (руб. в год);

3_{тр} – затраты на текущий и профилактический ремонт ЭВМ (руб. в год);

 $3_{\Pi P}$ – прочие затраты, связанные с эксплуатацией ПЭВМ (руб. в год);

 $F_{\rm ЭВМ}$ — действительный фонд времени работы ЭВМ (час/год).

Все статьи затрат формируются в расчете на единицу ПЭВМ.

Затраты на заработную плату обслуживающего персонала ($3\Pi_{\text{обсл}}$) определяются по формуле (5.19):

$$3\Pi_{\text{обсл}} = \frac{3\Pi_{\text{осн.о6}} + 3\Pi_{\text{доп.о6}} + 0\text{TY}_{3\Pi.06}}{Q_{\text{ЭВМ}}}$$

$$3\Pi_{\text{осн.о6}} = 12\sum_{i=1}^{n} C_{\text{м.об}i} \cdot n_{i},$$

$$3\Pi_{\text{доп.о6}} = 3\Pi_{\text{осн.о6}} \cdot \frac{H_{\text{доп}}}{100\%},$$

$$0\text{TY}_{3\Pi.06} = \left(3\Pi_{\text{осн.о6}} + 3\Pi_{\text{доп.о6}}\right) \cdot \frac{H_{3\Pi}}{100\%},$$

где $3\Pi_{\text{осн.об}}$ – основная заработная плата обслуживающего персонала, руб.;

 $3\Pi_{\text{доп.об}}$ — дополнительная заработная плата обслуживающего персонала, руб.;

 $0\text{TY}_{3\text{п.об}}$ — сумма отчислений от заработной платы (социальные нужды, страхование от несчастных случаев), руб.;

 $Q_{\rm ЭВМ}$ – количество обслуживаемых ПЭВМ, шт.;

 $C_{\text{м.об}i}$ – месячная тарифная ставка *i*-го работника, руб.;

n – численность обслуживающего персонала, чел.;

 Н_{доп} – процент дополнительной заработной платы обслуживающего персонала от основной;

 $H_{\rm 3n}$ — процент отчислений на социальные нужды и обязательное страхование от суммы основной и дополнительной заработной платы.

Тарифная ставка 7-го разряда обслуживающего персонала:

$$C_{\text{м.об}i} = 457*1,57 = 717,49 \ \text{руб.}$$
 $3\Pi_{\text{осн.об}} = 12 \cdot 717,49 = 8609,88 \ \text{руб.}$ $3\Pi_{\text{доп.об}} = 8609,88 \cdot 0,15 = 1291,482 \ \text{руб.}$ $0\text{ТЧ}_{3\Pi} = (8609,88 + 1291.482) \cdot 0,34 = 3366,46 \ \text{руб.}$ $3\Pi_{\text{обсл}} = 8609 + 1291,482 + 3366.46 = 13266,942 \ \text{руб.}$

Годовые затраты на аренду помещения (3_{AP}) определяются по формуле (5.20):

$$3_{AP} = \frac{c_{AP} \cdot s}{Q_{3BM}},\tag{5.20}$$

где C_{AP} – средняя годовая ставка арендных платежей, руб./м²;

S – площадь помещения, м²;

 $Q_{\rm ЭВМ}$ – количество ПЭВМ, шт.

$$3_{AP} = 202,8 \cdot 8 = 1622,4$$
 руб.

Сумма годовых амортизационных отчислений (3_{AM}) определяется по формуле (5.21):

$$3_{\text{AM}} = \frac{3_{\text{приобр}} \cdot (1 + K_{\text{доп}}) \cdot H_{\text{AM}}}{Q_{\text{3BM}}}, \tag{5.21}$$

где $3_{\text{приобр}}$ – затраты на приобретение (стоимость) единицы ПЭВМ, руб.;

 $K_{\text{доп}}$ – коэффициент, характеризующий дополнительные затраты, связанные с доставкой, монтажом и наладкой оборудования, $K_{\text{доп}} = 12\%$ от $3_{\text{приобр}}$;

 $3_{\text{приобр}} * (1 + K_{\text{доп}}) -$ балансовая стоимость ЭВМ, руб.;

 H_{AM} – норма амортизации, %;

 $Q_{\rm ЭВМ}$ – количество ПЭВМ, шт.

$$3_{AM} = 1910 \cdot (1 + 0.12) \cdot 0.125 = 267.4$$
 руб.

Стоимость электроэнергии, потребляемой за год, $(3_{Э\Pi})$ определяется по формуле (5.22):

$$3_{\Im\Pi} = \frac{M \cdot F_{\Im BM} \cdot C_{\Im \pi} \cdot A}{Q_{\Im BM}},\tag{5.22}$$

где M – паспортная мощность ПЭВМ, (кВт), M = 0,7 кВ;

С_{эл} – стоимость одного кВт-часа электроэнергии, руб;

 $F_{\rm ЭВМ}$ — действительный годовой фонд времени работы ПЭВМ, $F_{\rm ЭВМ}$ = 1672 ч., согласно производственному календарю на 2022 год;

А – коэффициент интенсивного использования мощности;

 $Q_{\rm ЭВМ}$ – количество ПЭВМ, шт.

$$3_{9\Pi} = 0.7 \cdot 1672 \cdot 0.1003 \cdot 0.95 = 111.52 \text{ py6}.$$

Затраты на материалы (3_{BM}), необходимые для обеспечения нормальной работы ПЭВМ составляют около 1% от балансовой стоимости ЭВМ и определяются формулой (5.23):

$$3_{\text{BM}} = 3_{\text{приобр}} \cdot \left(1 + K_{\text{доп}}\right) \cdot K_{\text{M3}},\tag{5.23}$$

где 3_{приобр} – затраты на приобретение (стоимость) ЭВМ, руб.;

 $K_{\text{доп}}$ – коэффициент, характеризующий дополнительные затраты, связанные с доставкой, монтажом и наладкой оборудования, $K_{\text{доп}}=12-13\%$ от $3_{\text{приобр}}$;

 $K_{_{M3}}$ – коэффициент, характеризующий затраты на вспомогательные материалы ($K_{_{M3}}=0.01$).

$$3_{BM} = 1910 \cdot (1 + 0.12) \cdot 0.01 = 21.4$$
 руб.

Затраты на текущий и профилактический ремонт (3_{TP}) принимаются равными 5% от балансовой стоимости ЭВМ и рассчитываются по формуле (5.24):

$$3_{\text{TP}} = 3_{\text{приобр}} \cdot \left(1 + K_{\text{доп}}\right) \cdot K_{\text{тр}},\tag{5.24}$$

где $K_{\text{тр}}$ – коэффициент, характеризующий затраты на текущий и профилактический ремонт ($K_{\text{мз}} = 0.05$).

$$3_{TP} = 1910 \cdot (1 + 0.12) \cdot 0.05 = 106.96 \text{ py}6.$$

Прочие затраты, связанные с эксплуатацией ЭВМ ($3_{\Pi P}$), состоят из амортизационных отчислений на здания, стоимости услуг сторонних организаций, составляют 5 % от балансовой стоимости и рассчитываются по формуле (5.25):

$$3_{\Pi P} = 3_{\Pi P \cup Ofp} \cdot (1 + K_{QO\Pi}) \cdot K_{\Pi P}, \qquad (5.25)$$

где K_{np} – коэффициент, характеризующий размет прочих затрат, связанных с эксплуатацией ЭВМ ($K_{np}=0.05$).

$$3_{\Pi P} = 1910 \cdot (1 + 0.12) \cdot 0.05 = 106.96$$
 py6.

Для расчета машинного времени ЭВМ ($t_{\rm 9BM}$ в часах), необходимого для разработки и отладки проекта, следует использовать формулу (5.26):

$$t_{\text{\tiny 2BM}} = (t_{\text{\tiny P\Pi}} + t_{\text{\tiny BH}}) \cdot F_{\text{\tiny CM}} \cdot K_{\text{\tiny CM}}, \tag{5.26}$$

где $t_{\rm P\Pi}$ – срок реализации стадии «Рабочий проект» (РП), 25 дня;

 $t_{\rm BH}$ — срок реализации стадии «Ввод в действие» (ВП), 10 дней;

 $F_{\rm cm}$ — продолжительность рабочей смены, (ч.), $F_{\rm cm}=8$ ч.;

 K_{cm} – количество рабочих смен, $K_{cm} = 1$.

$$t_{_{\mathrm{ЭВМ}}} = (25+10) \cdot 8 \cdot 1 = 280 \text{ ч};$$

$$C_{_{\mathrm{Ч}}} = \frac{13266,942+1622,4+267,4+111,52+21,4+106,96+106,96}{1672} = 9,27 \text{ руб/ч}$$

$$3_{MB} = C_{\text{y}} \cdot K_{\text{T}} \cdot t_{3BM} = 9,27 \cdot 1 \cdot 280 = 2595,6 \text{ py6}.$$

При написании дипломной работы была использована среда разработки *Visual Studio 2022* и локальная СУБД *SQL Server 2019*, поэтому затраты на технологию ($3_{\text{тех}}$) и изготовление эталонного экземпляра ($3_{\text{эт}}$) будут нулевыми.

Затраты на материалы (носители информации и пр.), необходимые для обеспечения нормальной работы ПЭВМ рассчитываются по формуле (5.27):

$$3_{\text{мат}} = 3_{\text{приобр}} \cdot \left(1 + K_{\text{доп}}\right) \cdot K_{\text{M3}},\tag{5.27}$$

где 3_{приобр} – затраты на приобретение ЭВМ, руб.;

 $K_{\text{доп}}$ – коэффициент, характеризующий дополнительные затраты, связанные с доставкой, монтажом и наладкой оборудования, $K_{\text{доп}}=12\%$ от $3_{\text{приобр}}$;

 ${\rm K_{M3}}$ – коэффициент, характеризующий затраты материалы (${\rm K_{M3}}=0.01$). Таким образом:

$$3_{\text{мат}} = 1910 \cdot (1 + 0.12) \cdot 0.01 = 21.392$$
 руб.

Общепроизводственные затраты рассчитываются по формуле (5.28):

$$3_{\text{общ пр}} = 3\Pi_{\text{осн}} \cdot \frac{H_{\text{доп}}}{100\%},$$
 (5.28)

где Н_{доп} – норматив общепроизводственных затрат.

$$3_{\text{общ пр}} = 4809 \cdot 0.1 = 480.9 \text{ руб.}$$

Непроизводственные затраты рассчитываются по формуле (5.29):

$$3_{\text{непр}} = 3\Pi_{\text{осн}} \cdot \frac{H_{\text{непр}}}{100\%},$$
 (5.29)

где Н_{непр} – норматив непроизводственных затрат.

$$3_{\text{непр}} = 4809 \cdot 0.15 = 721.35$$
 руб.

Итого получаем суммарные затраты на разработку:

$$3_p = 7410,8 + 2595,6 + 0 + 0 + 21,4 + 480,9 + 721,35 = 11230,05$$
 руб.

Результаты расчетов приведены в таблице Д.1 приложения Д.

5.3 Формирование цены при создании программного обеспечения

Оптовая цена ПО (Цопт) определяется следующей формулой (5.30):

$$\coprod_{\text{опт}} = 3_{\text{p}} + \Pi_{\text{p}},$$
(5.30)

$$\Pi_{\mathrm{p}} = \frac{3_{\mathrm{p}} \cdot \mathrm{y}_{\mathrm{p}}}{100},$$

где 3_p – себестоимость ПО, руб.;

 Π_p – прибыль от реализации $\Pi O,$ руб.;

 y_p – уровень рентабельности ПО, % ($y_p = 30$ %).

$$\Pi_{\rm p} = \frac{11230,05 \cdot 30}{100} = 3369,015 \text{ py6}.$$

Прогнозируемая отпускная цена ПО с НДС рассчитывается по формуле (5.31):

$$I_{\text{отп}} = 3_{\text{p}} + \Pi_{\text{p}} + P_{\text{ндс}},$$
(5.31)

Налог на добавленную стоимость ($P_{\rm HДC}$) рассчитывается по формуле (5.32):

$$P_{H,C} = (3_p + \Pi_p) \cdot \frac{H_{H,C}}{100},$$
 (5.32)

где $H_{\text{ндс}}$ – ставка налога на добавленную стоимость, %, $H_{\text{ндс}}=20$ %.

$$P_{H,C} = (11230,05 + 3369,015) \cdot 0,2 = 2919,813$$
 руб.

$$\mathbf{U}_{\text{отп}} = 11230,05 + 3369,015 + 2919,813 = 17518,878$$
 руб.

Розничную цену на программный продукт ($\mathbf{L}_{\text{розн}}$) можно определить по формуле (5.33):

$$\coprod_{\text{розн}} = \coprod_{\text{отп}} \cdot T_{\text{H}}$$
(5.33)

где $T_{\rm H}$ — торговая наценка при реализации программного обеспечения через специализированные магазины (торговых посредников), ее значение принимается равным 15%.

5.4 Расчет эффекта от внедрения программного обеспечения

Для того, чтобы рассчитать годовой экономический эффект от использования нового ПО необходимо такие параметры как заработная плата специалиста, работающего с программой, стоимость 1 часа работы этого специалиста и время, сэкономленное при использовании программы.

Эффект (прибыль) может просчитываться по формуле (5.34):

$$3 = 3_{6a3} - 3, \tag{5.34}$$

где 3_{6a3} — текущие и инвестиционные затраты по базовому варианту, включающие затраты на приобретение продукта (цену), его эксплуатацию;

3 – текущие и инвестиционные затраты по варианту, предложенному студентом-дипломником.

По результатам изучения рыночных цен программных продуктов схожего функционального назначения было установлено, что средняя стоимость аналога составляет 42600 руб.

Таким образом, эффект:

$$\theta = 42600 - 20146,7 = 22453,3$$
 руб.

На основе рассчитанного эффекта от разработки программного обеспечения следует рассчитать следующие итоговые показатели, характеризующие экономическую эффективность проекта:

– рентабельность затрат (3) или инвестиций (И) на новую информационную технологию, программный продукт:

$$P = \frac{3(II)}{3(II)} \cdot 100\% \tag{5.35}$$

Таким образом, рентабельность:

$$P = \frac{22453,3}{20146.7} \cdot 100\% = 111\%$$

- срок окупаемости затрат (инвестиций):

$$T = \frac{3(\text{M})}{9(\Pi)} \tag{5.36}$$

Таким образом, срок окупаемости затрат:

$$T = \frac{20146,7}{22453.3} = 0,89$$
 лет.

Т.к. срок окупаемости составляет меньше одного календарного года, то проведение динамической оценки (расчёт динамических показателей эффективности) не целесообразно.

Годовой экономический эффект определяется:

$$\Gamma \mathfrak{I} \mathfrak{I} = \mathfrak{I}(\Pi) - P_{6a3} \cdot \mathfrak{I}(\mathfrak{I}), \tag{5.37}$$

где P_{6a3} – рентабельность затрат (инвестиций) базового варианта, 25%. Таким образом, годовой экономический эффект:

$$\Gamma \ni \ni = 22453.3 - 0.25 \cdot 20146.7 = 17416.625$$

На основании выполненных расчетов была сформирована таблица технико-экономических показателей проекта (таблица Е.1 приложения Е). После оценки технико-экономических показателей проектного программного обеспечения можно сделать вывод о том, что реализация проекта является обоснованной и экономически целесообразной, так как срок окупаемости проекта меньше года при размере годового экономического эффекта 17416,625руб. с уровнем рентабельности 111%.

прилож ение б

(справочное)

Каталог функций программного обеспечения

Таблица Б.1

Код	Объем функции строк исходного кода (LOC)			
функций	Наименование	По като-	Уточненный	
		логу V_0	$V_{\mathcal{Y}}$	
101	Организация ввода информации	130	90	
102	Контроль, предварительная	490	370	
	обработка и ввод информации			
206	Манипулирование данными	7860	300	
304	Управление файлами	5240	305	
506	Обработка ошибочных сбойных си-	1540	1120	
	туаций			
602	Вспомогательные и сервисные про-	470	350	
	граммы			
707	Графический вывод результатов	420	390	
709	Изменение состояния ресурсов в ин-	570	560	
	терактивном режиме			
809	Создание системы управления кон-	970	400	
	тентом			
811	Администрирование и обновление	90	80	
	сайта			
Итого		17780	3965	

приложение в

(справочное)

Расчет общей трудоемкости разработки ПО

Таблица В.1

N₂	Показатели	Стадии разработки				Итого	
п/п		T3	ЭП	ТΠ	РΠ	BH	
1	Общий объем ПО (V_{o}), кол-	-	-	-	-	-	17780
	во строк LOC						
2	Общий уточненный объем	-	-	-	-	-	3965
	$\Pi O\left(\mathit{V}_{\mathrm{y}}\right)$, кол-во строк LOC						
3	Категория сложности разра-	-	-	-	-	-	2
	батываемого ПО						
4	Нормативная трудоемкость	-	-	-	-	-	193
	разработки ПО $(T_{\rm H})$, чел./дн.						
5	Коэффициент повышения	1,12	1,12	1,12	1,12	1,12	-
	сложности $\Pi O (K_c)$						
6	Коэффициент, учитывающий	0,63	0,63	0,63	0,63	0,63	-
	новизну $\Pi O (K_{_{ m H}})$						
7	Коэффициент, учитывающий	-	-	-	0,77	-	0,77
	степень использования стан-						
	дартных модулей ($K_{\scriptscriptstyle T}$)						
8	Коэффициент, учитывающий	0,7	0,7	0,7	0,7	0,7	-
	средства разработки						
	$\Pi O(K_{y.p.})$						
9	Коэффициенты удельных ве-	0,08	0,19	0,28	0,34	0,11	1.0
	сов трудоемкости стадий						
	разработки ПО (K_{T3} , $K_{9\Pi}$, $K_{T\Pi}$,						
	$K_{p\pi}, K_{вH}$)						
11	Распределение скорректиро-	8	18	27	25	10	-
	ванной (с учетом K_c , K_H , K_T ,						
	К _{ур}) трудоемкости ПО по						
	стадиям, чел./дн.						
12	Общая трудоемкость разра-	-	-	-	-	_	88
	ботки ПО ($T_{\rm o}$), чел./дн.						

приложение г

(справочное)

Производственные затраты на разработку ПО

Таблица Г.1

Параметр	Единица	Значение	
	измерения		
Базовая ставка	руб.	457	
Разряд разработчика	_	1	
Тарифный коэффициент 1-го разряда (k)	_	1,57	
Коэффициент К _{ув}	_	1,6	
Норматив отчислений на доп. зарплату разработчиков ($H_{\text{доп}}$)	%	15	
Численность обслуживающего персонала	чел.	1	
Разряд обслуживающего персонала	_	7	
Базовая ставка 7-го разряда	_	457	
Средняя годовая ставка арендных платежей	руб./м ²	202,8	
(C_{AP})			
Площадь помещения (S)	M^2	8	
Количество ПЭВМ ($Q_{\rm ЭВМ}$)	шт.	1	
Затраты на приобретение единицы ПЭВМ	руб.	1910	
Стоимость одного кВт-часа электроэнергии	руб.	0,1003	
$(C_{\ni \mathcal{I}})$			
Затраты на технологию (3 _{тех})	руб.	_	
Норматив общепроизводственных затрат	%	10	
(Н _{доп})			
Норматив непроизводственных затрат (Н _{непр})	%	15	

приложение д

(справочное)

Расчет суммарных затрат на разработку ПО

Таблица Д.1

Статья затрат	Итого
Затраты на оплату труда разработчиков (3 _{тр}), руб.	7410,8
Затраты машинного времени (3 _{мв}), руб.	2595,6
Стоимость машино-часа (С _ч), руб/ч	9,2
Сумма годовых амортизационных отчислений (3 _{АМ}), руб.	267,4
Действительный годовой фонд времени работы ПЭВМ $(F_{\rm 3BM})$, дн.	1672
Затраты на текущий и профилактический ремонт (3 _{тр}), руб.	106,96
Прочие затраты, связанные с эксплуатацией ЭВМ (3 _{ПР}), руб.	106,96
Машинное время ЭВМ $(t_{9вм})$, ч.	280
Затраты на изготовление эталонного экземпляра (3_{9T}) , руб.	0
Затраты на технологию (3 _{тех}), руб.	0
Общепроизводственные затраты (3 _{общ.пр})	480,9
Непроизводственные (коммерческие) затраты (3 _{непр})	721,35
Затраты на материалы (З _{мат}), руб.	21,392
Суммарные затраты на разработку ПО (3 _p)	11230,05

приложение е

(справочное)

Технико-экономические показатели проекта

Таблица Е.1

№ п/п	Наименование показа-	Проектный	
	теля	вариант	
1	Общая трудоемкость	88	
	разработки ПО		
2	Затраты на разработку	11230,05	
	ПО	11250,05	
2.1	Затраты на оплату	7410,8	
	труда разработчиков	7 110,0	
2.2	Затраты машинного	2595,6	
	времени	20,00	
2.3	Затраты на материалы	21,392	
2.4	Общепроизводственные	106,96	
	затраты	100,90	
2.5	Непроизводственные	106,96	
	затраты	100,50	
3	Отпускная цена ПП с	17518,878	
	НДС		
4	Розничная цена ПП	20146,7	
5	Рентабельность затрат	111	
6	Простой срок окупае-	0,89	
	мости проекта		
7	Годовой экономиче-	17416,625	
	ский эффект		