

Term End Examination - November 2014

Course : MAT105 - Differential and Difference Equations Slot : D1+TD1

Class NBR : 1366 / 1545

Time : Three Hours Max.Marks:100

PART - A (10 X 3 = 30 Marks) Answer ALL the Questions

- 1. Find the Eigen values of A, where $A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & -2 \\ 1 & -1 & 2 \end{bmatrix}$
- 2. Write the matrix of the quadratic form $x^2 + 3y^2 2yz + 3z^2$. Find the Eigen values and hence determine the nature of the quadratic form.
- 3. Determine whether the BVP $(xy')'+[x^2+1+\lambda e^x]y=0$, y(1)+2y'(1)=0, y(2)-3y'(2)=0 is a SLP.
- 4. Prove $J'_n(x) \frac{n}{x}J_n(x) = -J_{n+1}(x)$.
- 5. Obtain the Fourier co-efficient b_n for the function $f(x) = \begin{cases} -1 & -\pi < x < 0 \\ 1 & 0 \le x \le \pi \end{cases}$
- 6. Find a_n , using Fourier series for the function $f(x) = x\cos x$ from 0 to 2π .
- 7. Find the Z transform of sin^2t .
- 8. Solve the following difference equation using Z transform, $y_{n+1} 2y_n = 0$, given that $y_0 = 3$.
- 9. A particle is executing a simple harmonic motion about the origin 0, from which the distance x of the particle is measured. Initially, x = 20 and velocity equal to 0 and the equation of the motion is $\frac{d^2x}{dt^2} + x = 0$. Solve for x and find the period and amplitude of the motion.
- 10. In a culture of Bacteria, the rate of increase is proportional to the number present. If the number doubles in 4 hours, how many may be expected at the end of 12 hours.

PART - B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

- a) Reduce the quadratic form $3x_1^2 + 2x_2^2 + 3x_3^2 2x_1x_2 2x_2x_3$ into canonical form by an orthogonal transformation. [7]
 - b) Diagonalize the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$ by means of an orthogonal [7]
- a) Find the solution of the differential equation using power series method
 y" + x²y = 0.
 b) Find the value of d/dx [x-nJ_n(x)].
- 13. a) Find the Fourier series to represent $x x^2$ from $x = -\pi to \pi$. Hence show that $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots = \frac{\pi^2}{12}.$
 - b) The following values of y gives the displacement in inches of a certain machine part for the rotation x of the flywheel. Expand y in the form of a Fourier series up to second harmonics.

x	0	$\frac{\pi}{6}$	$\frac{2\pi}{6}$	$\frac{3\pi}{6}$	$\frac{4\pi}{6}$	$\frac{5\pi}{6}$
у	0	9.2	14.4	17.8	17.3	11.7

- 14. a) Find the $Z^{-1}\left[\frac{z^{-2}}{(1-z^{-1})(1-2z^{-1})(1-3z^{-1})}\right]$ by partial fraction method. [7]
 - b) Solve the difference equation using Z transform $y_{n+2} + y_n = 2^n n$. [7]
- a) The differential equation of motion of a particle, which executes forced oscillations with damping is $\frac{d^2x}{dt^2} + k\frac{dx}{dt} + n^2x = n^2a\sin nt$ (k < 2n). If the particle starts from rest from the origin initially, find the displacement of the particle at time t. Show that the ultimate motion of the particle will be a simple harmonic oscillation of amplitude less than $\frac{3a}{4}$, provided $k > \frac{4n}{3}$.
 - b) A particle of mass m is projected vertically upwards with an initial velocity v_0 . The resisting force is k times to the velocity. Formulate the differential equation of motion and show that the distance s covered by the particle at time t is given by, $s = \left[\frac{g}{k^2} + \frac{v_0}{k}\right] (1 e^{-kt}) \frac{g}{k}t.$

- 16. a) Verify Cayley Hamilton theorem for the matrix, $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 1 & -1 \\ 2 & -1 & 2 \end{bmatrix}$ [6]
 - b) Reduce the differential equation $x^2 \frac{d^2y}{dx^2} + \left(x^2 n^2 + \frac{1}{4}\right)y = 0$, to the Bessel's equation and write its solution.
- 17. a) Find the Fourier cosine series for $x(\pi x)$ in $o < x < \pi$, and show that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$ using Parseval's identity. [7]
 - b) Find the Z transform of $r^n \cos n \theta$ and $r^n \sin n \theta$. [7]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$