Quiz, 10 questions

~	Congra	tulations! Yo	u passed!	Next Item
•	331.613			
	~	1 / 1 points		
	1.	atatia a wawlal wa wa wa		
		the 7th example from	e to denote the 3rd layer's activation the 8th minibatch?	ons when the
		$a^{[3]\{7\}(8)}$		
	0	$a^{[3]\{8\}(7)}$		
	Corre	ct		
		$a^{[8]\{7\}(3)}$		
		$a^{[8]\{3\}(7)}$		
	×	0 / 1 points		
	2.			
	Which with?	f these statements ab	out mini-batch gradient descent d	o you agree
		an explicit for-loop	ent mini-batch gradient descent over different mini-batches, so t s all mini-batches at the same tir	hat the

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient

descent.

Training one epoch (one pass through the training set) using mini-Optimization algoridhemsent descent is faster than training one epoch using batch gradient descent.

8/10 points (80%)

Quiz, 10 questions

This should not be selected

\	1 / 1 points			
-	the best mini-batch size usually not 1 and not m, but instead ning in-between?			
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.			
Correct				
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.			
Un-selected is correct				
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.			
Correct				
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.			
Un-selected is correct				

Optimization algorithms

8/10 points (80%)

Quiz, 10 questions

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
 Correct
 If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
 Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
 Whether you're using batch gradient descent or mini-batch
 Whether you're using batch gradient descent or mini-batch

gradient descent, something is wrong.

Quiz, 10 questions

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
 , $v_2^{corrected}=10\,$

Correct

$$v_2=10$$
, $v_2^{corrected}=10$

$$igcup v_2=7.5$$
, $v_2^{corrected}=7.5$

$$igcup v_2=10$$
, $v_2^{corrected}=7.5$

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha = 0.95^t lpha_0$$

$$igcap lpha = e^t lpha_0$$

8/10 points (80%)

$$\alpha = \frac{1}{\sqrt{t}} \, \alpha_0$$
 Optimization algorithms
$$\alpha = \frac{1}{1+2*t} \, \alpha_0$$
 Quiz, 10 questions

X

0/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing eta will shift the red line slightly to the right.

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

This should be selected

Decreasing β will create more oscillation within the red line.

Optimization algorithms

Correct

8/10 points (80%)

Quiz, 10 questions

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing $\boldsymbol{\beta}$ will create more oscillations within the red line.

This should not be selected

False. Increasing eta will cause fewer oscillations

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

8/10 points (80%)

	(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
Optimization	on algorithms
Quiz, 10 questions	(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
	1/1 points 9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)
	Try better random initialization for the weights Correct
	Try using Adam
	Correct
	Try mini-batch gradient descent Correct
	Try initializing all the weights to zero Un-selected is correct
	lacksquare Try tuning the learning rate $lpha$

Optimization algorithms

8/10 points (80%)

Quiz, 10 questions

10.

Which of the following statements about Adam is False?

Adam should be used with batch gradient computations, not with mini-batches.

- Adam combines the advantages of RMSProp and momentum
- The learning rate hyperparameter α in Adam usually needs to be tuned.
- We usually use "default" values for the hyperparameters eta_1,eta_2 and arepsilon in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)

