1.1. Hard margin - (20 pts). Recall that the hard margin SVM profollowing primal form	blem can be written in the
$\min_{\mathbf{w},b} rac{1}{2} \ \mathbf{w}\ _2^2$	
s.t. $t_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1$ $i = 1, \dots, N$	
(a) Write down the Lagrangian for this problem with Lagrangian part	rameters denoted with α_i 's.
The lagrangian for this problem become	25
$L(\omega,b,\alpha) = \frac{1}{2} \ \omega\ _2^2 - \sum_{i=1}^{N} \alpha_i \left[t_i \left(\omega^T X_i - \sum_{i=1}^{N} \alpha_i \right) \right] $	-6)-1] and α≥>0 ∀α
235	
(b) Show that the equivalent dual problem can be written	
$\max_{\alpha} W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} t_i$	$t_j lpha_i lpha_j \mathbf{x}_i^T \mathbf{x}_j$
s.t. $0 \le \alpha_i$ $i = 1, 2,, N$.	
$\sum^{N} \alpha_i t_i = 0.$	
i=1	
Using Previous lagrangian problem we b	
$L(\omega,b,\alpha) = \frac{1}{2}\ u\ _2^2 - \sum_{i=1}^N \alpha_i \left[t_i(w^T x_i + \frac{1}{2})\right]$	6)-1]
The goal of the lagrangian is to so	ilve for,
min max w,b & L(w,b,x)	
ω, b α Γ(ω, b, κ)	
or equivantley,	
max min L(w,b,a)	
max min 1 ω 2 - Σ α α [tε(w	
	-
$\bigcirc \text{ Then } \frac{\partial L}{\partial w} = w - \sum_{j=1}^{N} \alpha_j t_j x_j = 0$	$\text{ and } \frac{2L}{2b} = -\sum_{i=1}^{N} \alpha_i t_i$
Let it equal to 0 we have	Let it equal to 0 we have
$\hat{\mathbf{w}} = \sum_{i=1}^{N} \mathbf{x}_{i} t_{i} \mathbf{x}_{i}$	$\sum_{i=1}^{N} \alpha_i t_i = 0$
<u> </u>	<u> </u>
Sulckil iter there has been in towards	
Substituting these back into Lagrangian	
(Dual):	$\sum_{i} \alpha_{i} \left[t_{i} \left(\sum_{\alpha_{i}} t_{i} x_{i} + b \right) - 1 \right]$
$= \max_{\alpha} \frac{1}{2} \sum_{i=1}^{n} (\alpha_i t_i x_i) \cdot \sum_{i=1}^{n} (\alpha_i t_i x_i)$	$-\sum_{j\neq i}^{n}\alpha_{i}t_{i}\left(\sum_{j\neq i}^{n}\alpha_{j}t_{j}x_{j}\right)x_{i}-b\sum_{j\neq i}^{n}\alpha_{i}t_{i}+\sum_{j\neq i}^{n}\alpha_{i}$
	This is 0 (constrain+)

$$= \max_{\alpha} \frac{1}{2} \sum_{i,j=1}^{N} t_i t_j \alpha_i \alpha_j x_i^{\mathsf{T}} x_j - \sum_{i,j=1}^{N} t_i t_j \alpha_i \alpha_j x_i^{\mathsf{T}} x_j + \sum_{i=1}^{N} \alpha_i$$

$$= \max_{\alpha} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{N} t_{i} t_{j} \alpha_{i} \alpha_{j} x_{i}^{T} x_{j}$$

Here we have I more constraints

$$\alpha_{i} > 0$$
 , $\sum_{i=1}^{N} \alpha_{i} t_{i} = 0$

So (Dual) =
$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} t_i t_j \alpha_i \alpha_j x_i^{\mathsf{T}} x_j$$
 S.t $\alpha_i > 0$
$$\sum_{i=1}^{N} \alpha_i t_i = 0$$

(c) Assume that we solved the above dual formulation and obtained the optimal α . For a given test data point \mathbf{x} , how can we predict its class?

Assume optimal & is given from above dual formulation

Then we have $W = \sum_{i=1}^{N} \alpha_i t_i x_i$ as previously shown.

Using the primal formulation:

so, with optimal α , we have W and b.

Using our classifier
$$f(x) = sign(w^Tx + b)$$

we can predict the class of a new test data X

1.2. Soft margin - (20 pts). Recall that the soft margin SVM problem can be written in the following primal form
$\min_{\mathbf{w},b,\xi} \frac{1}{2} \ \mathbf{w}\ _2^2 + \gamma \sum_{i=1}^{N} \xi_i$
i=1
s.t. $t_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1 - \xi_i$ $i = 1,, N$ $\xi_i \ge 0$ $i = 1,, N$
(a) Use the Lagrangian provided in the lecture to show that the equivalent dual problem can be written as
$\max_{\alpha} W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} t_i t_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j$
$i=1 \qquad i,j=1$ s.t. $0 \le \alpha_i \le \gamma \qquad i=1,\ldots,N$
$\sum_{i=1}^{N} \alpha_i t_i = 0.$
$\sum_{i=1}^{n} a_i t^{i}$
The Lagrangian is given as the following:
• •
$L(\omega, b, \xi, \alpha, r) = \frac{1}{2} \ \omega\ _{2}^{2} + r \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \alpha_{i} \left[t_{i} (\omega^{r} x_{i} + b) - I + \xi_{i} \right] - \sum_{i=1}^{N} \beta_{i} \xi_{i}$
Uhere α_i , B_i are lagrange multipliers, Constrained to be > 0
5.6.6 2, 12 die 18 ji 5. 30 ji 6.7 ji
O Setting derivative with respect to w to be 0:
$\frac{2L}{2W} = W - \sum_{i=1}^{N} \alpha_i t_i X_i = 0$
ΔW - W Z ₂₌₁ × 2 + 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2
so $W = \sum_{i=1}^{N} \alpha_i t_i X_i$
2) Setting derivative with respect to b to be 0:
$\frac{\partial L}{\partial b} = -\sum_{i=1}^{N} \alpha_i t_i = 0$
$\frac{\delta o \sum_{i=1}^{N} \alpha_i t_i = o}{}$
3 Setting derivative with respect to 5 to be 0:
$\frac{\Delta L}{\Delta g} = \gamma - \alpha_i - \beta_i = 0$
so $\gamma = \alpha_i + \beta_i$
<u>so</u>
Since B≥ ≥ 0 because Lagrange multiplier
we have $\gamma - \alpha_{\bar{1}} = \beta_{\bar{1}} \geq 0$
ac nave v 2 /2 /2
50 α <u>;</u> ≤ γ
Then 0 < 0 < 5 Since 0 < 0 \(\alpha \) is lagrange multiplier.

Substitute W and Evaluate:

$$L(\omega,b,\xi,\alpha,\gamma) = \frac{1}{2} \sum_{i=1}^{N} (\alpha_i t_i x_i)^T \sum_{i=1}^{N} (\alpha_i t_i x_i) + \gamma \sum_{i=1}^{N} \xi_i$$

$$-\sum_{i=1}^{N} \alpha_{i} \left[t_{i} \left(\sum_{i} \alpha_{i} t_{i} x_{i}^{2} + b \right) - l + \xi_{i} \right] - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

$$L(\omega,b,\xi,\alpha,\gamma) = \frac{1}{2} \sum_{i,j=1}^{N} t_i t_j \alpha_i \alpha_j X_i^{\mathsf{T}} X_j + \gamma \sum_{i=1}^{N} \xi_i$$

$$-\sum_{i=1}^{N} \alpha_{i} t_{i} \left(\sum_{j=1}^{N} \alpha_{j} t_{j} x_{j} \right) x_{i} - b \sum_{i=1}^{N} \alpha_{i} t_{i} + \sum_{i=1}^{N} \alpha_{i} - \sum_{j=1}^{N} \alpha_{i} \xi_{i} - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

$$L(w,b,\xi,\alpha,\gamma) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{N} t_{i} t_{j} \alpha_{i} \alpha_{j} x_{i}^{T} x_{j} + \gamma \sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \alpha_{i} \xi_{i} - \sum_{i=1}^{N} \beta_{i} \xi_{i}$$

$$= \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{N} t_{i} t_{j} \alpha_{i} \alpha_{j} X_{i}^{\mathsf{T}} X_{j} + \sum_{i=1}^{N} (\gamma - \alpha_{i} - \beta_{i}) \xi_{i}$$

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{N} t_{i} t_{j} \alpha_{i} \alpha_{j} x_{i}^{T} x_{j} \quad \text{such that } 0 \leq \alpha_{i} \leq \gamma \quad \forall \alpha_{i}$$

$$\sum_{i=1}^{N} \alpha_{i} t_{i} = 0$$

(b) Assume that we solved the above dual formulation and obtained the optimal α . For a given test data point \mathbf{x} , how can we predict its class?

Assume optimal & is given from above dual formulation

Then we have $W = \sum_{i=1}^{N} \alpha_i t_i x_i$ as previously shown.

Using the primal formulation:

$$t_{i}^{2}(\omega^{T}x_{i}+6) = t_{i}$$

so, with optimal α , we have W and b.

Using our classifier
$$f(x) = sign(w^Tx + 6)$$

we can predict the class of a new test data X