CAPITOLO 7

Derivate di funzioni reali di una variabile reale e applicazioni

7.1. Derivate: test a risposta multipla

Esercizio 7.1.1. Supponiamo che f sia derivabile e che $g(x) = f(\cos(2x))$ allora $g'(x) = \cos(2x)f'(\sin 2x)$ $\Box 2\cos(2x)f'(\cos 2x)$ $\Box -2\sin(2x)f'(\cos 2x)$ $\Box 2\sin(2x)f'(\sin 2x)$

Esercizio 7.1.2. Sia $f(x) = x^4 e^{2x-1}$ per $x \ge 0$. Se g è la funzione inversa di f allora g'(e) = $\Box 1/4e \qquad \Box 1 \qquad \Box 1/6e \qquad \Box \frac{1}{2e^{2e+2}(2+e)}$

Esercizio 7.1.3. $Sia\ f(x) = x^{1/x}\ per\ x > 0\ allora\ f'(1/2) =$ $\Box \sqrt{2}(1 - \log 2)/4 \qquad \Box (1 - \log 2)/4 \qquad \Box 1 + \log 2 \qquad \Box 4$

Esercizio 7.1.4. Sia $f(x) = x^2 e^{2x-1}$ per $x \ge 0$. Se g è la funzione inversa di f allora g'(e) = $\Box 1 \qquad \Box \frac{2e}{2e+1} \qquad \Box 1/4e \qquad \Box \frac{1}{2e^{2e}(1+e)}$

 \triangle Esercizio 7.1.5. Sia $f(x) = x^x$ per x > 0 allora $f'(1/2) = x^x$

 $\Box(1-\log 2)/\sqrt{2} \qquad \Box\sqrt{2}(1+\log 2) \qquad \Box4(1+\log 2)$

- $\Box 4$

 \triangle Esercizio 7.1.6. Sia f(x) = x|x| + 2x allora f'(0) = x|x| + 2x

 $\Box 4$

 $\square 2$ □non esiste

 $\Box 0$

 \angle Esercizio 7.1.7. Sia $f(x) = (\sin x)^x$ per $x \in (0, \frac{\pi}{2})$. Allora $f'(\pi/3) =$

 $\Box \left(\frac{1}{2}\right)^{\pi/3} \left(\log \frac{\sqrt{3}}{2} + \frac{\pi}{3\sqrt{3}}\right) \qquad \Box \left(\frac{\sqrt{3}}{2}\right)^{\pi/3} \left(-\log 2 - \frac{\sqrt{3}}{3}\pi\right)$

 $\Box \left(\frac{1}{2}\right)^{\pi/3} \left(-\log 2 - \frac{\sqrt{3}}{3}\pi\right) \qquad \Box \left(\frac{\sqrt{3}}{2}\right)^{\pi/3} \left(\log \frac{\sqrt{3}}{2} + \frac{\pi}{3\sqrt{3}}\right)$

 \triangle Esercizio 7.1.8. Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile e sia $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \sin(f(x^4))$. Allora g'(x) =

 $\Box 4\sin^3(f(x))\cos(f(x)) f'(x) \qquad \Box 4x^3\sin(f(x^4))f'(x^4)$

- $\Box 4x^3 \cos(f(x^4))f'(x^4)$ $\Box 4f(x)^3 \cos(f(x)^4)f'(x)$
- \angle Esercizio 7.1.9. Sia $f(x) = 2x + \log x$ e sia g la funzione inversa di f. Allora $g'(2) = 2x + \log x$

 $\Box 1/5$

 $\Box 1/2$

 $\Box 1/3$

 $\Box 1/4$

- \angle Esercizio 7.1.10. Sia $f(x) = 3x + \sin x$ e sia g la funzione inversa di f. Allora $g'(3\pi) =$
 - $\Box 1/5$
- $\Box 1/2$
- $\Box 1/3$
- $\Box 1/4$
- \mathbb{E} Esercizio 7.1.11. Se $f: \mathbb{R} \to \mathbb{R}$ è una funzione derivabile tale che $\lim_{x \to +\infty} f'(x) = 2$, quale delle seguenti affermazioni è sempre vera?
- $\Box f(x)$ ha un asintoto obliquo per x tendente a $+\infty$
- $\Box f(x) = 2x + c$
- $\Box \lim_{x \to +\infty} \frac{f(x)}{x} = 2$
- □ lim
- **Esercizio 7.1.12.** $f: \mathbb{R} \to \mathbb{R}$ è una funzione derivabile che si annulla in soli 3 punti dell'intervallo [0, 1]. Quale delle seguenti affermazioni è sempre vera?
- $\Box f'(x)$ si annulla in almeno 2 punti di [0,1]
- $\Box f$ cambia segno nell'intervallo [0,1]
- $\Box f$ è un polinomio di terzo grado
- $\Box f'(x)$ si annulla in 2 soli punti di [0,1]
- $\mathbb{E}_{\mathbf{z}}$ Esercizio 7.1.13. $Se\ g(x) = x^3 + e^x\ e\ g^{-1}$ è la funzione inversa di g. Allora $(g^{-1})'(1+e) = e^x$

 - $\Box \frac{1}{3+e}$ $\Box \frac{1}{3+3e}$
 - $\Box 1$ $\Box 3 + e$
- \angle Esercizio 7.1.14. Date $f(x) = \sqrt{x} x^2$ e $g(y) = \cos(\pi y)$, allora $(g \circ f)'(1) = (g \circ f)'(1)$
- $\Box \frac{3}{2}\pi$
- $\square \frac{3}{2}$
- $\Box 0$
- $\Box \frac{3}{2\pi}$

- 🗷 Esercizio 7.1.15. Date f(x) > 0 una funzione derivabile. Allora la derivata di $\sin(\sqrt{f(x)})$ è
- $\Box \frac{1}{2} (\cos \sqrt{f}) f'$
- $\Box -\frac{1}{2}(\sin\sqrt{f})f'$
- $\Box \frac{1}{2\sqrt{f}}(\cos\sqrt{f})f'$
- $\Box \frac{1}{2\sqrt{f}} (\sin\sqrt{f}) f'$
- Esercizio 7.1.16. Cosa significa il seguente enunciato?

 $\forall \epsilon > 0 \,\exists \delta > 0 \text{ tale che se } 0 < |h| < \delta \text{ allora } \left| \frac{f(2+h) - f(2) - 5h}{h} \right| < \epsilon$

- $\Box \lim_{x \to 2} f(x) = 5$ $\Box \lim_{x \to 5} f(x) = 2$ $\Box f'(2) = 5$ $\Box f'(5) = 2$
- \triangle Esercizio 7.1.17. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile che si annulla in x = 0, x = 1,x=2 (e solo in questi tre punti). Allora
- $\Box f(x)$ cambia segno tre volte
- $\Box f'(x)$ si annulla almeno due volte
- $\Box f(x)$ è un polinomio di terzo grado
- $\Box f'(x)$ si annulla esattamente due volte
- strettamente crescente, allora è sempre vero che:
- $\Box \lim_{x \to +\infty} f(x) = +\infty$
- $\Box \frac{1}{f(x)}$ è strettamente decrescente
- $\Box f'(x) > 0$ per ogni $x \in \mathbb{R}$
- $\Box f'(x)$ è strettamente crescente
- \triangle Esercizio 7.1.19. L'equazione della retta tangente al grafico di $y=2x^3+x-1$ nel punto (1,2) è:
 - $\Box y = 10x 7$ $\Box y = 7x 7$ $\Box y = 7x 5$ $\Box y = 7x 4$

Esercizio 7.1.20. Se $g(x) = x - 2x^3$ e g^{-1} è la funzione inversa di g, allora la pendenza della retta tangente al grafico di g^{-1} nel punto (g(1),1) è:

$$\Box - 1/9$$
 $\Box - 1/3$ $\Box - 1/5$ $\Box - 1/7$

 \Box Se f è due volte derivabile e $f'(x_0) = f''(x_0) = 0$ allora x_0 non è nè massimo nè minimo relativo

 \square Se, per ogni x, f(x) > 0 e se $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$ allora f ha massimo in \mathbb{R}

 $\Box \mathrm{Se}\ f$ è due volte derivabile e x_0 è un punto di massimo relativo per f allora $f''(x_0)<0$

 \Box Se f è due volte derivabile e $f''(x_0) < 0$ allora x_0 è un punto di massimo relativo

Esercizio 7.1.22. Sia $f(x) = \sqrt{x^2 + 1}(x + \sin(\pi x))$. Allora $f'(1) = \int_{-\infty}^{\infty} f(x) dx$

$$\Box - \frac{\pi}{2} \qquad \Box \frac{3 + 2\pi}{\sqrt{2}} \qquad \Box \frac{3 - 2\pi}{\sqrt{2}} \qquad \Box 12 - 4\pi$$

 \angle Esercizio 7.1.23. $Sia\ g(x) = |\tan(1+x)|$. Allora la derivata di g(x), nel punto x = 2,

- $\Box = -(\frac{1}{\cos 3})^2$
- $\Box = \log |\sin 3|$
- $\Box = \frac{\sin 3}{\cos 3}$
- □non esiste

Esercizio 7.1.24. Sia $f : \mathbb{R} \to \mathbb{R}$ una funzione due volte derviabile e sia $g(x) := f(\cos x)$. Allora g''(x) =

- $\Box \cos(x)f'(\cos x) \sin(x)f''(\cos x)$
- $\Box \cos(x) f'(\cos x)$
- $\Box \cos(x)f'(\cos(x)) + \sin^2(x)f''(\cos x)$
- $\Box \sin^2(x) f''(\cos x)$

- Esercizio 7.1.25. Sia $f(x) = x^2 + 3x$ e $g(x) = x^3 2x$. Allora $(f \circ g)'(1) = 10$
- Esercizio 7.1.26. Se f è una funzione derivabile e se f(1) = 2, f'(1) = 1 allora la derivata di $\arctan(f(x^2))$ calcolata in x = 1 è

 $\square 4/17 \qquad \square 2/17 \qquad \square 2/5 \qquad \square 1/5$

7.2. Retta tangente: test a risposta multipla

Esercizio 7.2.1. Se $f = xe^x$ e g è la funzione inversa di f, allora l'equazione della retta tangente al grafico di g nel punto di coordinate (e, 1) è:

$$\Box y = 2e(x - e) + 1$$
 $\Box y = \frac{1}{2e}(x - 1) + e$ $\Box y = \frac{1}{2e}(x - e) + 1$ $\Box y = \frac{e}{2}(x - e) + 1$

Esercizio 7.2.2. Sia $f(t) = \sin \pi t + t^2$ per $t \in \mathbb{R}$. L'equazione della retta tangente al grafico di f nel punto di ascissa x = 1 è

$$\Box y = (2 - \pi)x + 1$$
 $\Box y = \pi(x - 1) + 1$ $\Box y = \pi x + \pi - 1$ $\Box y = (2 - \pi)x + \pi - 1$

Esercizio 7.2.3. Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x + e^x$. Sia f^{-1} la sua funzione inversa di f. La retta tangente al grafico di f^{-1} nel punto (1,0) è:

$$\Box y = \frac{1}{1+e}(x-1)$$
 $\Box y = \frac{1}{1+e}x$ $\Box y = \frac{1}{2}(x-1)$ $\Box y = \frac{1}{2}x$

Esercizio 7.2.4. Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(t) = e^{t^3}$. Se $g \ è$ la funzione inversa di f, allora l'equazione della retta tangente al grafico di q nel punto di ascissa x = e è:

$$\Box y = x/3 + 1$$

$$\Box y = x/3 + e$$

$$\Box y = x/3 + 1$$
 $\Box y = x/3 + e$ $\Box y = x/3e + 2/3$ $\Box y = x/3e + 1$

$$\Box y = x/3e + 1$$

Esercizio 7.2.5. Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(t) = e^{-t^2} + t$ e sia g la funzione inversa di f. La retta tangente al grafico di q nel punto di ascissa $x = 1 + e^{-1}$ è:

$$\Box t = \frac{1}{1 - 2e^{-1}}(x - 1 - e^{-1}) + 1 \qquad \Box t = (1 - 2e^{-1})(x - 1 - e^{-1})$$
$$\Box t = \frac{1}{1 - 2e^{-1}}(x - 1 - e^{-1}) \qquad \Box t = (1 - 2e^{-1})x + 1$$

 \angle Esercizio 7.2.6. L'equazione della retta tangente al grafico della funzione $f(x) = \log(1 + x)$ x^2) nel punto x=2 è:

$$\Box y = 1/5t + 2/5 + \log 5$$

$$\Box y = -1/5t + 2/5 + \log 5$$

$$\Box y = 4/5t - 8/5 + \log 5$$

$$\Box y = -4/5t - 8/5 + \log 5$$

 $ilde{\mathbb{Z}}$ Esercizio 7.2.7. L'equazione della retta tangente al grafico di $y=5^x$ nel punto di ascissa $x = 1 \ \dot{e}$:

$$\Box y = 5x - \log 5$$

$$\Box y = 5(x\log 5 - \log 5 + 1)$$

$$\Box y = 5(x \log 5 + 1)$$

$$\Box y = 5\left(\frac{1}{\log 5}x - \frac{1}{\log 5} + 1\right)$$

Esercizio 7.2.8. Se $f(t) = t^2$ e $g(s) = e^s$ allora l'equazione della retta tangente al grafico della funzione composta $f \circ g$ nel punto di ascissa $s_0 = 1$ è:

$$\Box y = 2ex - e^2$$

$$\Box y = 2e^2x - e$$

$$\Box y = 2ex - e$$

$$\Box y = 2e^2x - e^2$$

Esercizio 7.2.9. L'equazione della retta tangente al grafico di $y = x \cos(x^2)$ nel punto $\sqrt{\pi}$ è:

$$\Box y = -x$$

$$\Box y = -x + 2\sqrt{\pi}$$

$$\Box y = -2\pi x + 2\pi \sqrt{\pi}$$

$$\Box y = -2\pi x - 2\pi \sqrt{\pi}$$

Esercizio 7.2.10. Se $f(x) = x + \log(x+1)$ allora l'equazione della retta tangente al grafico della funzione inversa f^{-1} nel punto $(1 + \log 2, 1)$ è:

$$\Box y = \frac{2}{5}x + \frac{3}{5}$$

$$\Box y = \frac{2}{3}x + \frac{1}{3}$$

$$\Box y = \frac{2}{5}x + \frac{1}{5} - \frac{2}{5}\log 2$$

$$\Box y = \frac{2}{3}x + \frac{1}{3} - \frac{2}{3}\log 2$$

Esercizio 7.2.11. Se $f(t) = \frac{t-1}{t+3}$. Allora l'equazione della retta tangente al grafico della funzione inversa f^{-1} nel punto $(2, f^{-1}(2))$ è:

$$\Box -5 + x$$

$$\Box 10 - 3x$$

$$\Box -15 + 4x$$

$$\Box 5 - 2x$$

 \triangle Esercizio 7.2.12. Siano $f(x) = \sqrt{2x^2 - 1}$ e g(x) = x + 2. L'equazione della retta tangente al grafico della funzione f(x)g(x) nel punto di ascissa $x_0 = 1$ è:

$$\Box y = \frac{3}{2\sqrt{3}}(7x - 1)$$

$$\Box y = -\frac{1}{2\sqrt{2}}(x+3)$$

$$\Box y = \frac{1}{2\sqrt{3}}(x+5)$$

$$\Box y = \frac{1}{2\sqrt{3}}(x+5)$$

$$\Box y = 7x - 4$$

è tangente al grafico della funzione $f(x) = \log(2+x)$?

$$\Box \beta = -\frac{1}{2} + \log 2$$

$$\Box \beta = -\frac{1}{2} + \log 2 \qquad \Box \beta = -\frac{1}{3} + \log \frac{3}{2} \qquad \Box \beta = 1 - \log 2 \qquad \Box \beta = 1$$

$$\Box \beta = 1 - \log 2$$

$$\Box \beta = 1$$

Esercizio 7.2.14. La retta tangente al grafico di $f(x) = -e^{x^2}$ in (1, f(1)) è data da:

$$\Box y = 2e^2x - e^2$$

$$\Box y = -2ex + e$$

$$\Box y = -\frac{2}{e}x + \frac{3}{e}$$

$$\Box y = 2ex - e$$

Esercizio 7.2.15. Sia $f(w) = 2w^3 + w + 2$. Allora la retta tangente al grafico di $f^{-1}(x)$ in $(2, f^{-1}(2))$ è data da:

$$\Box y = \frac{1}{2}x - \frac{1}{2}$$

$$\Box y = x + 2$$

$$\Box y = \frac{1}{2}x + \frac{1}{2}$$

$$\Box y = x - 2$$

al grafico della funzione $f \circ g$ nel punto x = 1

$$\Box r(x) = \log \frac{3}{2} + \frac{1}{12}(x-1)$$

$$\Box r(x) = \log \frac{3}{2} + \frac{1}{3}(x-1)$$

$$\Box r(x) = \log \frac{3}{2} + \frac{1}{6}(x-1)$$

$$\Box r(x) = \log \frac{3}{2} + \frac{1}{4}(x-1)$$

$$\Box r(x) = \log \frac{3}{2} + \frac{1}{3}(x - 1)$$

$$\Box r(x) = \log \frac{3}{2} + \frac{1}{6}(x - 1)$$

$$\Box r(x) = \log \frac{3}{2} + \frac{1}{4}(x-1)$$

 \angle Esercizio 7.2.17. Sia $f(w) = 2w + \log w$. Allora la retta tangente al grafico di $f^{-1}(x)$ in $(2, f^{-1}(2))$ è data da:

$$\Box y = (x-2)/3$$

$$\Box y = x + 1$$

$$\Box y = x - 1$$

$$\Box y = (x+1)/3$$

🗷 Esercizio 7.2.18. Sia $f(x)=xe^x$ e $g(y)=y^2+1$. La retta tangente al grafico della funzione $g \circ f$ nel punto $(1, (g \circ f)(1))$ è:

$$\Box y = 2x - 2$$

$$\Box y = -2e^{-4}x + 3e^{-4} - 1$$

$$\Box y = 4e^2x + 1 - 3e^2$$

$$\Box y = 6e^2x - 4e^2$$

 \angle Esercizio 7.2.19. Sia $f(t) = t^3 + t^2 + 2$. Allora la retta tangente al grafico di $f^{-1}(x)$ in $(5, f^{-1}(5))$ è data da:

$$\Box y = (x+1)/6$$

$$\Box y = (x+2)/7$$

$$\Box y = (x - 1)/4$$

$$\Box y = x/5$$

 \triangle Esercizio 7.2.20. L'equazione della retta tangente al grafico di $y=2x^4-2x^3+3$ nel punto di ascissa $x_0 = 1$ è:

$$\Box y = 2x + 1$$

$$\Box y = 5x + 1$$

$$\Box y = 2x + 3$$

$$\Box y = 2x - 2$$

della retta tangente al grafico di g^{-1} nel punto di ascissa $x_0 = 2$ è:

$$\Box y = 4x - 2$$

$$\Box y = 4x - 2$$
 $\Box y = 4x - 1/2$ $\Box y = x/4 - 2$ $\Box y = x/4 - 1/2$

$$\Box y = x/4 - 2$$

$$\Box y = x/4 - 1/2$$

 \angle Esercizio 7.2.22. Se $f(x) = x^5 + x^3 + 1$ e sia g la funzione inversa di f. L'equazione della retta tangente al grafico di g nel punto di ascissa x = 3 è:

$$\Box y = \frac{1}{3}(x-3) + 1$$

$$\Box y = \frac{1}{3}(x-3) + 3$$

$$\Box y = \frac{1}{8}(x-3) + 1$$

$$\Box y = \frac{1}{3}(x-3) + 1 \qquad \Box y = \frac{1}{3}(x-3) + 3 \qquad \Box y = \frac{1}{8}(x-3) + 1 \qquad \Box y = \frac{1}{8}(x-1) + 1$$

Continuità e derivabilità: test a risposta multipla 73

🛎 Esercizio 7.3.1. Per quali valori di h e k la funzione

$$f(x) = \begin{cases} 4 \arctan x & \text{per } x < 1\\ 2hx + k & \text{per } x \ge 1 \end{cases}$$

è continua e derivabile?

$$\Box h = \pi . k = 2$$

$$\Box h = \pi, k = 2$$
 $\Box h = 2\pi, k = 2\pi + 2$ $\Box h = \pi, k = \pi + 2$ $\Box h = 1, k = \pi - 2$

$$\Box h = \pi, k = \pi + 2$$

$$\Box h = 1. k = \pi - 2$$

 \angle Esercizio 7.3.2. Sia f definita da $f(x) = 5^x$ per $x \le 1$ e da f(x) = ax + b per x > 1. Per quali valori $a, b \in \mathbb{R}$ f è continua e derivabile in \mathbb{R} ?

$$\Box a = 5, b = 0$$

$$\Box a = 5 \log 5, b = 5$$

$$\Box a = 5 \log 5, b = 5$$
 $\Box a = 5 \log 5, b = 5 - 5 \log 5$ $\Box a = \log 5, b = 5 - \log 5$

$$\Box a = \log 5, b = 5 - \log 5$$

🖾 Esercizio 7.3.3. Per quali valori di h e k la funzione

$$f(x) = \begin{cases} x^2 & \text{per } x \ge 2\\ kx + h & \text{per } x < 2 \end{cases}$$

è continua e derivabile?

$$\Box h = -8 \ k = 4$$

$$\Box h = 4, k = -8$$

$$\Box h = -8, k = 4$$
 $\Box h = 4, k = -8$ $\Box h = -4, k = 4$ $\Box h = 4, k = -4$

$$\Box h = 4, k = -4$$

🗠 Esercizio 7.3.4. Determinare i valori dei parametri reali a e b affinché la funzione

$$f(x) = \begin{cases} e^{2-2x} - ax & \text{per } x < 1\\ \log(3x - 2) - bx^2 & \text{per } x \ge 1 \end{cases}$$

sia continua e derivabile nel punto $x_0 = 1$

$$\Box a = -3, b = -4$$
 $\Box a = -2, b = 3$ $\Box a = 7, b = 6$ $\Box a = -2, b = -1$

$$\Box a = -2, b = 3$$

$$\Box a = 7, b = 6$$

$$\Box a = -2, b = -1$$

🗠 Esercizio 7.3.5. Determinare i valori dei parametri reali a e b affinché la funzione

$$f(x) = \begin{cases} ax^2 - e^{x-1} & \text{per } x < 1\\ bx - \log(3x - 2) & \text{per } x \ge 1 \end{cases}$$

sia continua e derivabile nel punto $x_0 = 1$

$$\Box a = 7, b = 6$$

$$\Box a = 7, b = 6$$
 $\Box a = -2, b = -1$ $\Box a = -3, b = -4$ $\Box a = -2, b = 3$

$$\Box a = -3, b = -4$$

$$\Box a = 2 h = 3$$

🗠 Esercizio 7.3.6. Determinare i valori dei parametri reali a e b affinché la funzione

$$f(x) = \begin{cases} ax + b & \text{per } x \ge 1\\ x^2 - 3x + 2 & \text{per } x < 1 \end{cases}$$

sia continua e derivabile nel punto $x_0 = 1$

$$\Box a = -3, b = 2$$
 $\Box a = -1, b = 3$ $\Box a = -2, b = 2$ $\Box a = -1, b = 1$

$$f(x) = \begin{cases} \cos(\alpha x) - \alpha & \text{per } x \ge 0\\ \sin(x^2) - \beta x & \text{per } x < 0 \end{cases}$$

sia continua e derivabile nel punto $x_0 = 0$

$$\square \alpha = 1, \beta = -1 \qquad \square \alpha = 0, \beta = -1 \qquad \square \alpha = -1, \beta = 1 \qquad \square \alpha = 1, \beta = 0$$

Esercizio 7.3.8. Sia $f(x): \mathbb{R} \to \mathbb{R}$ una funzione continua, con f(0) = -1 ed inoltre $\lim_{x \to -\infty} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = -\infty$. Allora l'equazione f(x) = 0:

- □ha almeno una soluzione
- □ha un numero dispari di soluzioni diverse tra loro
- □ha un numero pari di soluzioni diverse tra loro
- □ha almeno due soluzioni

 \triangle Esercizio 7.3.9. Per quali valori del parametro $\alpha \in \mathbb{R}$ si ha che

$$f(x) = \begin{cases} \sin(\frac{\pi}{2}x) & \text{per } x < -1\\ |x| + \alpha & \text{per } x \ge -1 \end{cases}$$

è continua in $x_0 = -1$?

$$\Box \alpha = 0 \qquad \Box \alpha = 1 \qquad \Box \alpha = 2 \qquad \Box \alpha = -2$$

$$f(x) = \begin{cases} \sin(\alpha x^2) - 1 & \text{per } x \ge 0\\ \beta \cos x + \alpha x & \text{per } x < 0 \end{cases}$$

sia continua e derivabile nel punto $x_0 = 0$

$$\square \alpha = 0, \beta = -1 \qquad \square \alpha = -1, \beta = 1 \qquad \square \alpha = 1, \beta = 0 \qquad \square \alpha = 1, \beta = -1$$

$$f(x) = \begin{cases} \cos(\pi x) & \text{per } x < -1 \\ \alpha |x| - 1 & \text{per } x \ge -1 \end{cases}$$

 \dot{e} continua in $x_0 = -1$?

$$\square \alpha = 0 \qquad \square \alpha = 1 \qquad \square \alpha = 2 \qquad \square \alpha = -2$$

🖾 Esercizio 7.3.12. Sia

$$f(x) = \begin{cases} e^{\cos(\alpha x)} & \text{per } x \le 0\\ \frac{1 - \cos x}{\sin^2(\alpha x)} & \text{per } x > 0 \end{cases}$$

Si determini $\alpha > 0$ affinché f sia continua.

$$\Box \alpha = \sqrt{2} \qquad \Box \alpha = 1/\sqrt{2e} \qquad \Box \alpha = 1/2 \qquad \Box \alpha = 2e$$

🗷 Esercizio 7.3.13. Sia

$$g(x) = \begin{cases} \alpha x^2 - 1 & \text{per } x < 1 \\ \beta x + 1 & \text{per } x \ge 1 \end{cases}$$

Si determinino α e β affinché g(x) sia continua e derivabile.

$$\square \alpha = -1, \beta = 2 \qquad \square \alpha = 4, \beta = -4 \qquad \square \alpha = 4, \beta = 2 \qquad \square \alpha = -2, \beta = -4$$

$$g(x) = \begin{cases} x^2 + \beta x & \text{per } x < 0\\ \log(1 + 2x) & \text{per } x \ge 0 \end{cases}$$

è derivabile nel punto $x_0 = 0$?

$$\Box \beta = -1/2 \qquad \Box \beta = 1/2 \qquad \Box \beta = 2 \qquad \Box \beta = -3$$

 \triangle Esercizio 7.3.15. Per quali valori del parametro $\alpha \in \mathbb{R}$ si ha che

$$f(x) = \begin{cases} \sin(\alpha x)/x & \text{per } x < 0\\ (x+1)/(x+2) & \text{per } x \ge 0 \end{cases}$$

è continua in $x_0 = 0$?

$$\square \alpha = -2 \qquad \square \alpha = 2 \qquad \square \alpha = 1/2 \qquad \square \alpha = -1/2$$

$$f(x) = \begin{cases} 1 - x^2 & \text{per } x \le 1\\ x^2 + \alpha x + \beta & \text{per } x > 1 \end{cases}$$

è continua e derivabile?

$$\square \alpha = -4, \beta = 12 \qquad \square \alpha = -8, \beta = 3 \qquad \square \alpha = -4, \beta = 3 \qquad \square \alpha = -8, \beta = 12$$

7.4. Derivate: esercizi di ricapitolazione proposti

Esercizio 7.4.1. Date le funzioni $f(x) = \frac{1}{\sqrt{x+1}}$ e $g(y) = \sin(1-y)$, calcolare la derivata di $(g \circ f)(x)$.

Esercizio 7.4.2. Date le funzioni $f(x) = x^2 + 1$ e $g(y) = 3\log(\sqrt{y})$, calcolare la derivata di $(g \circ f)(x)$.