Lecture 1

Rings:

Definition 0.1. A ring R is an abelian group (R, +) together with multiplication

$$R \times R \mapsto R$$
$$(r,s) \mapsto r \cdot s$$

such that

- **1.** $r_1 \cdot (r_2 \cdot r_3) = (r_1 \cdot r_2) \cdot r_3$ for all $r_1, r_2, r_3 \in R$. In other words, multiplication is associative.
- **2.** $r_1 \cdot (r_2 + r_3) = r_1 \cdot r_2 + r_1 \cdot r_3$ for all $r_1, r_2, r_3 \in R$. That is, \cdot distributes over +.
- **3.** There is an element $1 \in R$ such that $1 \cdot r = r \cdot 1 = r$ for all $r \in R$. This is multiplicative identity.
- Remark. The multiplication is not assumed to be commutative. If it is, we say R is a commutative ring.
 - The above definition (including 3) is sometimes called *ring with identity*. An object which satisfies all of these except 3 is sometimes called a *rng* (pronounced "rung").

Example 0.1. 1. The integers \mathbb{Z} with the usual addition and multiplication.

2. For any $n \in \mathbb{N}$, $n \geq 1$, $\mathbb{Z}/n\mathbb{Z}$ is a ring under the operations

$$+ : \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \mapsto \mathbb{Z}/n\mathbb{Z}$$

$$(\overline{a}, \overline{b}) \mapsto \overline{a + b}$$

$$\times : \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \mapsto \mathbb{Z}/n\mathbb{Z}$$

$$(\overline{a}, \overline{b}) \mapsto \overline{ab}$$

- **3.** $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all rings (in fact they are fields).
- **4.** The set of $n \times n$ matrices with entries in a ring R.
- **5.** R[x], the ring of all polynomials with coefficients in a ring R

6. Let G be an abelian group, and let

$$R = \{ \text{all group homomorphisms } G \to G \}$$

Define, for all $\phi, \psi \in R$, for all $g \in G$,

$$(\phi + \psi)(g) = \phi(g) + \psi(g)$$
$$(\phi \cdot \psi(g) = \phi(\psi(g))$$

 $1 = \mathrm{Id}_G$.

Exercise: Check that R is a ring.

7. Let X be any set, and let $R = \mathcal{P}(X)$, the power set of X. Define, for all $E, F \in R$,

$$E + F = E \triangle F$$
$$E \cdot F = E \cap F$$

1 = X Exercise: Check R is a (commutative) ring.

Definition 0.2. Let R and S be rings. A <u>ring homomorphism</u> is a map $f: R \to S$ such that for all $r_1, r_2 \in R$,

$$f(r+s) = f(r) + f(s)$$
$$f(r \cdot s) = f(r) \cdot f(s)$$
$$f(1_R) = 1_S$$

Example 0.2. The quotient map $\phi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ given by $a \mapsto \overline{a}$ is a ring homomorphism.

Let R be a ring.

Definition 0.3. A subset $S \subseteq R$ is a <u>subring</u> if S is an additive subgroup of R, is closed under multiplication, and contains $\overline{1}$.

Definition 0.4. 1. A subset $I \subseteq R$ is a <u>left ideal</u> of R if I is an additive subgroup of R such that $R \cdot I \subseteq I$, i.e. for all $r \in R, s \in I$, $rs \in I$.

A subset $I \subseteq R$ is a right ideal of R if I is an additive subgroup of R such that $I \cdot R \subseteq I$, i.e. for all $s \in I$, $r \in I$.

An <u>ideal</u> is both a left and right ideal (a "two-sided" ideal).

2. Suppose I is an ideal. Then the quotient

$$R/I \stackrel{\mathrm{def}}{=} \{ \overline{r} = r + I : r \in R \}$$

inherits an addition and multiplication from R:

$$(r+I) + (r'+I) = (r+r'+I)$$

 $(r+I) \cdot (r'+I) = (r \cdot r'+I)$

making it a ring with identity 1+I. This is called the <u>quotient ring</u> or <u>residue class</u>. Note that the quotient map

$$\pi: R \to R/I$$
$$r \mapsto \overline{r} = r + I$$

is a ring homomorphism.

Two Exercises:

1. ("Correspondence Theorem")

Let R be a ring, $I \subseteq R$ an ideal, and $\phi : R \to R/I$ the quotient map. Then there is a bijective orderpreserving correspondence between $\{J \subset R, J \text{ is an ideal, } I \subseteq J \subseteq R\}$ and ideals of R/I, which sends J to $\overline{J} = \phi(J) = (I+J)/I$.

2. ("First Isomorphism Theorem")

Let $\phi: R \to S$ be a ring homomorphism. Then

- $\ker(\phi) = \{r \in R : \phi(R) = 1_S\} \subset R$ is an ideal of R.
- $\operatorname{Im}(\phi) = \{ s \in S : \exists r \in Rs.t.s = \phi(r) \}$ is an ideal of S.
- ϕ induces a ring isomorphism (i.e. a bijective ring homomorphism whose inverse is also a ring homomorphism)

$$R/\ker(\phi) \to \operatorname{Im}(\phi)$$

given by

$$\overline{r} \mapsto \phi(r)$$

Lecture 2, 1/11/23

Definition 0.5. 1. A <u>zero divisor</u> in a ring R is an element $x \in R$ such that there exists a $y \in R, y \neq 0$, such that xy = yx = 0.

Examples:

 $\overline{2} \in \mathbb{Z}/6\mathbb{Z}$ is a zero divisor. 0 is always a zero divisor unless $R = \{0\}$.

- 2. A nonzero commutative ring R without nonzero zero divisors is called an <u>integral domain</u>. Examples: \mathbb{Z} , all polynomial rings, $\mathbb{Z}/p\mathbb{Z}$ where p is prime are all integral domains.
- 3. An element $r \in R$ is <u>nilpotent</u> if $r^n = 0$ for some n > 0. Note: r nilpotent $\implies r$ a zero divisor. The converse is false (e.g. $\overline{2} \in \mathbb{Z}/6\mathbb{Z}$)
- **4.** An element $R \in R$ is <u>a unit</u> (or <u>invertible</u>) if there exists an $s \in R$ such that rs = sr = 1.

Examples: $\overline{5} \in \mathbb{Z}/6\mathbb{Z}$. A matrix $A \in M_{n \times n}(R)$ with entries in a ring R is a unit in the matrix ring if and only if $\det(A)$ is a unit in R.

Note that R^{\times} , denoting the units, is a multiplicative group.

- **5.** Let $x \in R$ The multiples $r \cdot x$ (or $x \cdot r$) form a left (or right) ideal, denoted \underline{Rx} (or \underline{xR}). If R is commutative, we write (x) for Rx = xR.
- **6.** A <u>field</u> is a nonzero commutative ring R in which every nonzero element is a unit. Note: Since being a unit implies <u>not</u> being a zero divisor, all fields are integral domains. The converse does not hold, and \mathbb{Z} is a witness to its failure.

Proposition 1. Let R be a nonzero commutative ring. Then the following are equivalent:

- **1.** R is a field.
- **2.** The only ideals are $\{0\}$ and R.
- **3.** Every ring homomorphism $R \to S$ with $S \neq \{0\}$ is injective
- $Proof.1 \rightarrow 2$ Suppose R is a field. Let I be a nonzero ideal. Then there exists $x \in I$ nonzero. Since R is a field, x is a unit. Thus $R = (x) \subseteq I$. So I = R.
- $2 \to 3$ For $S \neq \{0\}$, let $\phi : R \to S$ be a ring homomorphism. Then $\ker(\phi) \subseteq R$ is a proper ideal (since $\phi(1) = 1 \neq 0$). By 2, $\ker(\phi) = \{0\}$, so ϕ is injective.

 $3 \to 1$ Let $x \in R$ be nonzero. We want to show that X is a unit. Consider the quotient map $\phi: R \to R/(x)$. Notice $\ker(\phi) = (x) \neq \{0\}$, i.e. ϕ is not injective. By $3, R/(x) \cong \{0\}$, so (x) = R, i.e. $x \in R^{\times}$.

Definition 0.6. Let R be a commutative ring.

1. An ideal I is a prime ideal if it is a proper ideal and for all $r, s \in R$, $rs \in I$ if and only if $r \in I$, $s \in I$, or both.

Note $p \in \mathbb{N}$ is prime if and only if for all $a, b \in \mathbb{Z}, p \mid ab$ implies $p \mid a, p \mid b$, or both.

Equivalently, $ab \in (p)$ implies $a \in (p), b \in (p)$, or both.

2. An ideal $I \subset R$ is a <u>maximal ideal</u> if I is proper and, if J is an ideal such that $I \subset J \subset R$, then J = I or J = R.

Proposition 2. Let R be a commutative ring and I a proper ideal. Then R/I is an integral domin if and only if I is a prime ideal.

Proof. =>

Let $r, s \in R$ such that $rs \in I$. We want to show that $r \in I$ or $s \in I$. Then the elements $\overline{r}, \overline{s} \in R/I$ are such that $\overline{r} \cdot \overline{s} = \overline{rs} = \overline{0}$. Since R/I is an integral domain, either $\overline{r} = \overline{0}$ or $\overline{s} = \overline{0}$, or both. In other words, either $r \in I$, or $s \in I$.

<=

Since $I \neq R$, the ring R/I is nonzero. Choose $\overline{r}, \overline{s} \in R/I$ such that $\overline{r} \cdot \overline{s} = \overline{0}$. We want to show that either $\overline{r} = \overline{0}, \overline{s} = \overline{0}$, or both . Since $\overline{rs} = \overline{r} \cdot \overline{s} = \overline{0}$, $rs \in I$. Since I is a prime ideal, either $r \in I$ or $s \in I$, or both. So $\overline{r} = \overline{0}, \overline{s} = \overline{0}$, or both. Thus, R/I is an integral domain.