Exercise 3.1

1. Write the following sets in set builder notation: (i) $\{1,4,9,16,25,36,\dots,484\}$

$$\{1,4,9,16,25,36, \dots,484\}$$

= $\{x | x = n^2, n \in N \land 1 \le n \le 22\}$

Note: This set consists of perfect squares from 1^2 to 22^2 (since $22^2 = 484$).

(ii)
$$\{2, 4, 8, 16, ..., 256\}$$

 $\{2,4,8,16, ..., 256\}$
 $= \{x | x = 2^n, n \in N \land 1 \le n \le 8\}$

Note: This set consists of powers of 2 from 2^1 to 2^8 (since $2^8 = 256$).

(iii)
$$\{0, \pm 1, \pm 2, \dots, \pm 1000\}$$

 $\{0, \pm 1, \pm 2, \dots, \pm 1000\}$
 $= \{x \mid x \in Z \land -1000 \le x \le 1000\}$

Note: This set includes all integers from -1000 to 1000.

(iv)
$$\{6, 12, 18, ..., 120\}$$

$$= \{x | x = 6n, n \in \mathbb{N} \land 1 \le n \le 20\}$$

Note: This set consists of multiples of 6 from 6×1 to 6×20 (since $6 \times 20 = 120$).

(v)
$$\{100, 102, 104, ..., 400\}$$

 $\{100, 102, 104, ..., 400\}$
 $= \{x | x = 100 + 2n, n \in W \land 0 \le n \le 150\}$

Note: This set includes even numbers from 100 to 400.

(vi)
$$\{1, 3, 9, 27, 81, ...\}$$

 $\{1, 3, 9, 27, 81, ...\}$
 $= \{x | x = 3^n, n \in W\}$

Note: This set consists of powers of 3 starting from $3^0 = 1$.

=
$$\{x | x \text{ is divisor of } 100, n \in N \land 1 \le x \le 100\}$$

Note: This set includes all positive divisors of 100.

(viii)
$$\{5, 10, 15, ..., 100\}$$

 $\{5, 10, 15, ..., 100\}$
 $= \{x | x = 5n, n \in N \land 1 \le n \le 20\}$

Note: This set consists of multiples of 5 from 5×1 to 5×20 (since $5 \times 20 = 100$).

(ix) The set of all integers between -100 and 1000.

$$= \{x | x \in Z \land -100 \le x \le 1000\}$$

Note: This set includes all integers from -100 to 1000.

2. Write each of the following sets in tabular form:

(i) $\{x \mid x \text{ is a multiple of } 3 \land x \leq 36\}$

$$\{x \mid x \text{ is a multiple of } 3 \land x \le 36\}$$

= $\{3,6,9,12,15,18,21,24,27,30,33,36\}$

(ii)
$$\{x \mid x \in R \land 2x + 1 = 0\}$$

$$2x + 1 = 0$$

$$2x = -1$$

$$x = -\frac{1}{2}$$

$$\{x \mid x \in R \land 2x + 1 = 0\}$$

$$= \left\{-\frac{1}{2}\right\}$$

(iii)
$$\{x \mid x \in P \land x < 12\}$$

$$\{x \mid x \in P \land x < 12\}$$

= \{2,3,5,7,11\}

(iv) $\{x \mid x \text{ is a divisor of } 128\}$

$${x \mid x \text{ is a divisor of } 128}$$

= {1,2,4,8,16,32,64,128}

(v)
$$\{x | x = 2^n, n \in N \land n < 8\}$$

$$\{x|x = 2^n, n \in N \land n < 8\}$$

= \{2,4,8,16,32,64,128\}

(vi)
$$\{x \mid x \in N \land x + 4 = 0\}$$

$$\{x \mid x \in N \land x + 4 = 0\}$$

$$= \{ \}$$

As
$$x + 4 = 0 \Rightarrow x = -4 \notin N$$

(vii)
$$\{x \mid x \in N \land x = x\}$$

$${x \mid x \in N \land x = x}$$

= ${1,2,3,...}$

(viii) $\{x \mid x \in Z \land 3x + 1 = 0\}$

$${x \mid x \in Z \land 3x + 1 = 0}$$

= { }

As
$$3x + 1 = 0 \Rightarrow x = -\frac{1}{3} \notin Z$$

3. Write two proper subsets of each of the following sets:

(i) $\{a, b, c\}$

The Proper subsets of $\{a, b, c\}$ are $\{a\}$, $\{b\}$

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Mobile: 03338114798

(ii) {0, 1}

The Proper subsets of $\{0, 1\}$ are $\{0\}$, $\{1\}$

(iii) N

The Proper subsets of N are Prime Numbers, Even Natural Numbers

(iv) **Z**

The Proper subsets of Z are Prime Numbers, Whole Numbers

(v) Q

The Proper subsets of ${\it Q}$ are Integers, Natural Numbers

(vi) $\{x | x \in Q \land 0 < x \le 2\}$

The Proper subsets of $\{x | x \in Q \land 0 < x \le 2\}$ are $\left\{\frac{1}{2}\right\}$

4. Is there any set which has no proper subset? If so, name that set.

Yes, there exist a set which has no proper subset, that is called 'empty set' { }.

5. What is the difference between $\{a,b\}$ and $\{\{a,b\}\}$?

 $\{a,b\}$ set has two elements: a and b. While $\{\{a,b\}\}$ set has only one element $\{a,b\}$.

6. What is the number of elements of the power set of each of the following sets?

(i) { }

No. of elements of the power set = 2^n = 2^0 = 1

(ii) $\{0, 1\}$

No. of elements of the power set = 2^n = 2^2 = 4

(iii) {1, 2, 3, 4, 5, 6, 7}

No. of elements of the power set = 2^n = 2^7 = 128

(iv) $\{0, 1, 2, 3, 4, 5, 6, 7\}$

No. of elements of the power set = 2^n = 2^8 = 256

(v) $\{a, \{b, c\}\}$

No. of elements of the power set $= 2^n$

Website: https://hira-science-academy.github.io

$$= 2^2$$

=4

(vi)
$$\{\{a,b\},\{b,c\},\{d,e\}\}$$

No. of elements of the power set = 2^n = 2^3 = 8

7. Write down the power set of each of the following sets:

(i) {9, 11}

Let

$$A = \{9, 11\}$$

$$P(A) = \{\emptyset, \{9\}, \{11\}, \{9, 11\}\}$$

(ii)
$$\{+, -, \times, \div\}$$

Let

$$A = \{+, -, \times, \div\}$$

$$P(A) = \{\emptyset, \{+\}, \{-\}, \{\times\}, \{\div\}, \{+, -\}, \{+, \times\}, \{+, \div\}, \{-, \times\}, \{-, \times\}, \{-, \times\}, \{-, \times\}, \{+, -, \times\}, \{+, -, \times\}, \{+, -, \times, \div\}\}$$

$$\{+, \times, \times\}, \{+, -, \times, \star\}\}$$

(iii) {Ø}

Let

$$A = \{\emptyset\}$$

$$\mathsf{GHS} \ \mathsf{ChP}(A) = \{\emptyset\} \} \mathsf{Daska}$$

(iv) $\{a, \{b, c\}\}$

Let

$$A = \{a, \{b, c\}\}\$$

$$P(A) = \{\emptyset, \{a\}, \{\{b, c\}\}, \{a, \{b, c\}\}\}\}$$

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska.

Mobile: 03338114798