第6章

ホモロジー・de Rham コホモロジー

6.1 多様体のホモロジー

X を位相空間とする. X の l 次元ホモロジー群 $H_l(X)$ とは, X 中の「l 次元のサイクル」と呼ばれる量が 本質的に何個あるかを示すものである. ホモロジーの定義には何通りかあるが, 一般に l 単体と呼ばれる単位 に分割し(三角形分割). 組み合わせ的な構造を利用して定義する.

6.1.1 単体·三角形分割

手始めに、まずl単体を定義しよう.

定義 6.1: *l*-単体

 \mathbb{R}^N の l+1 個の点 v_0, v_1, \ldots, v_l は、l 個のベクトル v_i-v_0 $(i=1,\ldots l)$ が線型独立のとき、**一般** の位置にあるという.

一般の位置にある l+1 個の点の集合 $\sigma=\{v_0,\ldots,v_l\}$ に対して、それらの点を含む最小の凸集合

$$|\sigma| := \left\{ a_0 v_0 + \dots + a_l v_l \mid a_i \ge 0, a_0 + \dots + a_l = 1 \right\}$$

を l-単体 (l-simplex) と呼ぶ. σ の空でない部分集合 $\tau \subset \sigma$ に対して、単体 $|\tau|$ のことを $|\sigma|$ の辺 (face) と呼ぶ.

定義 6.2: 単体複体

 \mathbb{R}^N の中の単体の集合 K は、次の条件を充たすとき (Euclid) 単体複体 (Euclidean simplicial complex) と呼ぶ:

- $|\sigma| \in K$ ならば $|\sigma|$ の任意の辺はまた K に属する.
- (2) 二つの単体 $|\sigma|, |\tau| \in K$ が空でない共通部分を持つならば $|\sigma| \cap |\tau|$ は $|\sigma| \ge |\tau|$ の共通の辺である.
- (3) $\forall |\sigma| \in K$ の任意の点 $x \in |\sigma|$ に対して、x 開近傍 U を適切に取れば U と交わる K の単体は有限個しか存在しないようにできる.

定義 6.3: 多面体・三角形分割

単体複体 K に対して、集合

$$|K| \coloneqq \bigcup_{|\sigma| \in K} |\sigma|$$

を定める. $|K| \subset \mathbb{R}^N$ を**多面体** (polyhedron) と呼ぶ.

位相空間 X に対して適当な単体複体 K を選び,同相写像 $t\colon |K| \xrightarrow{\approx} X$ が与えられたとき,同相写像 t を X の三角形分割 (triangulation) と呼ぶ.

6.1.2 ホモロジー群

定義 6.4: 単体の向き

l 単体 $|\sigma|$ の頂点 $\{v_0,\ldots,v_l\}$ の順序付き添字 $I=(i_0,\ldots,i_l)$ 全体の集合 $\mathcal I$ に以下の同値関係を定める:

$$\sim := \{(I, J) \in \mathcal{I} \times \mathcal{I} \mid \exists \tau \in \mathfrak{S}_{l+1} \text{ s.t.}$$
 偶置換, $I = \tau J\}$

このとき, $I \in \mathcal{I}$ の ~ による同値類 [I] のことを単体 $|\sigma|$ の**向き** (orientation) と呼ぶ.

単体 $|\sigma|$ に向きが指定されているとき, σ の同値類を**向き付けられた単体**と呼び, $\langle \sigma \rangle$ と表す.頂点が $I=(i_0,\ldots,i_l)$ によって向き付けられているとき,対応する向き付けられた単体を $\langle v_{i_0}\cdots v_{i_l} \rangle$ と書く.

定義 6.5: *l*-chain

単体複体 $K=\{|\sigma|_i\}$ の各単体に向きを指定し、それぞれ $\langle \sigma_i \rangle$ とする. K の l-単体 $\langle \sigma_i \rangle_l$ 全体によって生成される自由加群を K の l 次元鎖群 $C_l(K)$ と呼び、 $C_l(K)$ の元を l-チェイン と呼ぶ.

 $\forall c \in C_l(K)$ は形式和として

$$c = \sum_{i \in I_l} c_i \left\langle \sigma_i \right\rangle_l, \quad c_i \in \mathbb{Z}$$

と書かれる. 群 $C_l(K)$ の二項演算 +, 単位元 0, 逆元 -c はそれぞれ

$$c + c' := \sum_{i} (c_i + c'_i) \langle \sigma_i \rangle_l,$$
$$0 := \sum_{i} 0 \langle \sigma_i \rangle_l,$$
$$-c := \sum_{i} (-c_i) \langle \sigma_i \rangle_l$$

である. ただし, $\langle \sigma_i \rangle_l$ と反対に向き付けられた l 単体は $(-1)\langle \sigma_i \rangle_l \in C_l(K)$ と同一視する. このとき,自然に

$$C_l(K) \cong \bigoplus_{I_l} \mathbb{Z}$$

である.

定義 6.6: 境界作用素

準同型写像

$$\partial_l \colon C_l(K) \to C_{l-1}(K)$$

を向き付けられた各 l-単体上

$$\partial_l \langle v_0 v_1 \cdots v_l \rangle \coloneqq \sum_{i=0}^l (-1)^i \langle v_0 \cdots \hat{v_i} \cdots v_l \rangle$$

と定義する. ただし, $\hat{v_i}$ は v_i を省くことを意味する.

命題 6.1: 境界の境界

$$\partial_l \circ \partial_{l+1} = 0$$

<u>証明</u> ∂_l は $C_l(K)$ 上の線型作用素なので生成元 $\sigma := \langle v_0 v_1 \cdots v_{l+1} \rangle \in C_{l+1}(K)$ に対して示せば十分. l=0 のときは自明なので l>0 とする.

$$\begin{aligned} &\partial_{l} \circ \partial_{l+1} \sigma \\ &= \sum_{i=0}^{l+1} (-1)^{i} \partial_{l} \left\langle v_{0} \cdots \hat{v}_{i} \cdots v_{l+1} \right\rangle \\ &= \sum_{i=0}^{l+1} (-1)^{i} \left(\sum_{j=0}^{i-1} (-1)^{j} \left\langle v_{0} \cdots \hat{v}_{j} \cdots \hat{v}_{i} \cdots v_{l+1} \right\rangle + \sum_{j=i+1}^{l+1} (-1)^{j-1} \left\langle v_{0} \cdots \hat{v}_{i} \cdots \hat{v}_{j} \cdots v_{l+1} \right\rangle \right) \\ &= \sum_{i>j} (-1)^{i+j} \left\langle v_{0} \cdots \hat{v}_{j} \cdots \hat{v}_{i} \cdots v_{l+1} \right\rangle - \sum_{i< j} (-1)^{i+j} \left\langle v_{0} \cdots \hat{v}_{i} \cdots \hat{v}_{j} \cdots v_{l+1} \right\rangle = 0. \end{aligned}$$

命題 6.1 より、

$$Z_{l}(K) := \left\{ c \in C_{l}(K) \mid \partial_{l} c = 0 \right\} = \operatorname{Ker} \partial_{l}$$

$$B_{l}(K) := \left\{ \partial_{l+1} c \in C_{l}(K) \mid c \in C_{l+1}(K) \right\} = \operatorname{Im} \partial_{l+1}$$

とおくと

$$B_l(K) \subset Z_l(K)$$

となる.

 $Z_l(K)$ を l-輪体群もしくはサイクル, $B_l(K)$ を l-境界輪体群もしくはバウンダリーと呼ぶ.

定義 6.7: ホモロジー群

上で定義した $Z_l(K)$, $B_l(K)$ に対して、部分群の剰余類を考えることにより

$$H_l(K) := Z_l(K)/B_l(K)$$

は商群を作る. これを K の l 次元ホモロジー群と呼ぶ.

サイクル $c \in Z_l(K)$ を代表元にもつホモロジー類 $[c] \in H_l(K)$ に対して、別のサイクル $d \in Z_l(K)$ が $d \in [c]$ であるとき、i.e. $c - d \in B_l(K)$ であるとき、c, d は**ホモローグ** (homologue) であるという.

定理 6.1: ホモロジー群は位相不変量

ホモロジー群は位相不変量である. i.e. 位相空間 X,Y が互いに同相であるとし、それぞれの三角形 分割 $f\colon |K| \stackrel{\simeq}{\to} X, g\colon |L| \stackrel{\simeq}{\to} Y$ を与える. このとき

$$H_l(K) \cong H_l(L) \quad (l = 0, 1, ...)$$

が成り立つ.

6.2 $\det \mathrm{Rham}$ コホモロジー

6.2.1 特異ホモロジー

定義 **6.8**: 標準 *k*-単体

 \mathbb{R}^k の部分集合

$$\Delta^k := \{ (x^1, \dots, x^k) \in \mathbb{R}^k \mid x^i \ge 0, \ x^1 + \dots + x^k \le 1 \}$$

は標準 k-単体 (standard k-simplex) と呼ばれる.

定義 6.9: C^{∞} 特異 k-単体

 C^{∞} 多様体 M に対して、任意の C^{∞} 写像

$$\sigma \colon \varDelta^k \to X$$

を X の C^{∞} 特異 k 単体 (singular k-simplex) と呼ぶ. M の C^{∞} 特異 k 単体全体によって生成される自由加群を $S_k(X)$ と書き,その元を M の C^{∞} 特異 k-チェインと呼ぶ.

定義 6.10: 境界作用素

 $i=0,\,\ldots,\,k$ に対して連続写像 $\varepsilon_i\colon \Delta^{k-1} o \Delta^k$ を

$$\varepsilon_0(x_1, \dots, x_{k-1}) \coloneqq \left(1 - \sum_{i=1}^{k-1} x_i, x_1, \dots, x_{k-1}\right),$$

$$\varepsilon_i(x_1, \dots, x_{k-1}) \coloneqq (x_1, \dots, x_{i-1}, 0, x_i, x_{k-1})$$

と定義する. このとき, 境界作用素

$$\partial \colon S_k(M) \to S_{k-1}(M)$$

を次のように定義する:

$$\partial \sigma := \sum_{i=0}^{k} (-1)^i \sigma \circ \varepsilon_i$$

サイクル $Z_k(M)$ および k-境界輪体群 $B_k(M)$ を

$$Z_k(M) \coloneqq \operatorname{Ker} \partial_k$$

$$B_k(M) := \operatorname{Im} \partial_{k+1}$$

と定めると、相変わらず $\partial \circ \partial = 0$ であるから $B_k(M) \subset Z_k(M)$ が従う.故に部分群の剰余類を考えることができる:

定義 6.11: 特異ホモロジー群

 $B_k(M)$, $Z_k(M)$ に対して、商群

$$H_k(M) := Z_k(M)/B_k(M)$$

を M の特異ホモロジー群と呼ぶ.

6.2.2 微分形式のチェイン積分と Stokes の定理

M を C^∞ 多様体, $S_\bullet(M)\coloneqq\{S_k(M),\,\partial\}$ を M の C^∞ 特異チェイン複体とする. M の特異 k 単体

$$\sigma \colon \Delta^k \to M$$

は C^∞ 写像であるから,k-形式 $\omega \in \Omega^k(M)$ の引き戻し(命題??付近を参照) $\sigma^*\omega \in \Omega^k(\Delta^k)$ が定義される.

定義 6.12: 特異 k 単体上の積分

 $\omega \in \Omega^k(M)$ の σ 上の積分を

$$\int_{\sigma} \omega \coloneqq \int_{\Delta^k} \sigma^* \omega$$

により定義する. 右辺はただの k-中積分である.

一般の C^{∞} 特異 k-チェイン $c \in S_k(M)$ が $c = \sum_i a_i s_i$ と表示されているときは

$$\int_{c} \omega \coloneqq \sum_{i} a_{i} \int_{\sigma_{i}} \omega$$

と定義する.

定理 6.2: チェイン上の Stokes の定理

 C^∞ 多様体 M の特異 k-チェイン $c \in S_k(M)$ と k-1-形式 $\omega \in \Omega^{k-1}(M)$ に対し、以下の等式が成立する:

$$\int_c \mathrm{d}\omega = \int_{\partial c} \omega.$$

6.3 de Rham の定理

6.3.1 de Rham コホモロジー

定義 6.13: 閉形式・完全形式

k-形式 $\omega \in \Omega^k(M)$ は

- $d\omega = 0$ のとき閉形式 (closed form)
- $\exists \eta \in \Omega^{k-1}(M), \ \omega = \mathrm{d}\eta$ のとき完全形式 (exact form)

と呼ばれる.

M 上の閉じた k -形式全体を $Z^k(M)$, 完全な k-形式全体を $B^k(M)$ と書く:

$$Z^k(M) := \operatorname{Ker}(d: \Omega^k(M) \to \Omega^{k+1}(M)),$$

$$B^k(M) := \operatorname{Im}(d : \Omega^{k-1}(M) \to \Omega^k(M)).$$

 $d \circ d = 0$ $\mathcal{L} \circ \mathcal{C}$, $B^k(M) \subset Z^k(M)$ resc.

定義 6.14: de Rham コホモロジー群

 $\Omega^k(M)$ の部分ベクトル空間 $B^k(M)$, $Z^k(M)$ に対して, 商空間

$$H^k_{\mathrm{DR}}(M) \coloneqq Z^k(M)/B^k(M)$$

は M の k 次 de Rham コホモロジー群と呼ばれる.

k -形式 $\omega \in \Omega^k(M)$ に対し、それを代表元に持つ剰余類 $[\omega] \in H^k_{\mathrm{DR}}(M)$ を ω の表す de Rham コホモロジー類と呼ぶ.

$$H_{\mathrm{DR}}^{\bullet}(M) \coloneqq \bigoplus_{k=0}^{n} H_{\mathrm{DR}}^{k}(M)$$

を M の de Rham コホモロジー群と呼ぶ.

 $x\in H^k_{\mathrm{DR}}(M),\ y\in H^l_{\mathrm{DR}}(M)$ が $\omega\in\Omega^k(M),\ \eta\in\Omega^l(M)$ によって $x=[\omega],\ y=[\eta]$ と書かれるとき, $H^\bullet_{\mathrm{DR}}(M)$ 上の積 $:H^\bullet_{\mathrm{DR}}(M)\times H^\bullet_{\mathrm{DR}}(M)\to H^\bullet_{\mathrm{DR}}(M)$ を以下のように定義する:

$$x \cdot y := [\omega \wedge \eta] \in H^{k+l}_{\mathrm{DR}}(M)$$

このとき二項演算・は well-defined である, i.e. ω , η の取り方によらない.

上で定義した積構造の入った $(H_{DR}^{\bullet}(M), \cdot)$ のことを M の de Rham コホモロジー代数と呼ぶ.

6.3.2 de Rham の定理

コホモロジー群とホモロジー群は、Stokes の定理によって双対性を持つ.

 C^{∞} 多様体 M および M の C^{∞} 特異 r-チェイン $S_k(M)$ を与える. $\forall c \in S_k(M), \ \forall \omega \in \Omega^k(M) \ (1 \leq k \leq n)$ をとる. ここで双対内積 (duality pairing) を

$$\langle , \rangle \colon S_k(M) \times \Omega^k(M) \to \mathbb{R}, \ (c, \omega) \mapsto \int_{\mathbb{R}} \omega$$

と定義する.このとき $\langle c,\omega \rangle$ は双線型であり, $\langle \;,\omega \rangle$: $S_k(M) \to \mathbb{R},\; \langle c, \; \rangle$: $\Omega^k(M) \to \mathbb{R}$ はどちらも線型写像である:

$$\langle c_1 + c_2, \boldsymbol{\omega} \rangle = \int_{c_1 + c_2} \omega = \int_{c_1} \omega + \int_{c_2} \omega = \langle c_1, \boldsymbol{\omega} \rangle + \langle c_2, \boldsymbol{\omega} \rangle$$
$$\langle \boldsymbol{c}, \omega_1 + \omega_2 \rangle = \int_{c} (\omega_1 + \omega_2) = \int_{c} \omega_1 + \int_{c} \omega_2 = \langle \boldsymbol{c}, \omega_1 \rangle + \langle \boldsymbol{c}, \omega_2 \rangle$$

Stokes の定理は

$$\langle c, d\omega \rangle = \langle \partial c, \omega \rangle$$

と書かれ、この意味で d と ∂ は互いに随伴写像である.

duality pairing \langle , \rangle は内積 $\Lambda: H_k(M) \times H^k_{DR}(M) \to \mathbb{R}$ を誘導する. それは以下のように定義される:

$$\Lambda([c], [\omega]) := \langle c, d\omega \rangle$$

定義 6.3.2 は well-defined である.

定理 6.3: Poincaré 双対

M がコンパクトな C^{∞} 多様体ならば $H_k(M),\,H^k_{\mathrm{DR}}(M)$ はともに有限次元である.さらに写像

$$\Lambda \colon H_k(M) \times H^k_{\mathrm{DR}}(M) \to \mathbb{R}$$

は双線型かつ非退化である. i.e. $H_r(M) = \left(H_{\mathrm{DR}}^k(M)\right)^*$ (双対ベクトル空間)である.

補題 6.1: Poincaré の補題

 \mathbb{R}^n の de Rham コホモロジーは自明である:

$$H^k_{\mathrm{DR}}(\mathbb{R}^n) = H^k_{\mathrm{DR}}($$
一点 $p_0 \in \mathbb{R}^n) = \begin{cases} \mathbb{R} & : k = 0 \\ 0 & : k > 0 \end{cases}$

i.e. $\omega \in \Omega^k(\mathbb{R})$ を任意の閉形式とすると、ある k-1 形式 η が存在して $\omega = \mathrm{d}\eta$ を充たす.