Willian Amaral

Tópicos de Cálculo Diferencial e Integral

Willian Amaral

Tópicos de Cálculo Diferencial e Integral

Relatório Final de Pesquisa desenvolvido como parte do Projeto de Iniciação Científica, elaborado pelo aluno do curso de Tecnologia em Análise e Desenvolvimento de Sistemas, Willian José do Amaral e orientado pelo Prof. Dr. Sílvio César Otero-Garcia

Instituo Federal de São Paulo Campus Campos do Jordão

Campos do Jordão, SP 2018

Introdução

Este relatório tem como objetivo apresentar os estudos desenvolvidos durante este projeto de pesquisa, bem como explicar as ferramentas utilizadas em referido estudo. O objeto de pesquisa selecionado foi a área matemática de Cálculo - normalmente dividia em duas grandes áreas: o Cálculo Diferencial e o Cálculo Integral - e sua relação com a área de Desenvolvimento de Sistemas. Para isso, foram utilizadas ferramentas usadas principalmente no campo da Computação e Engenharia de Software, como a linguagem de scripts e formatação de textos LATEX, o editor de textos de código-fonte Sublime Text, e os respectivos pacotes adicionais à essas ferramentas na edição e documentação de textos científicos e matemáticos. Para isso, a metodologia de pesquisa utilizada foi a leitura, resolução e formatação de exercícios selecionados do livro Cálculo A - Funções, Limites, Derivação e Integração, de Diva Marília Flemming e Mirian Buss Gonçalves.

1 Sobre Cálculo

A fim de contextualizar o desenvolvimento do projeto de pesquisa, é importante apresentarmos uma breve análise do estudo de Cálculo. Por isso, pontuamos questões relevantes ao histório desta área de estudo.

A criação do Cálculo contou com uma variedade de pesquisadores e teóricos matemáticos, que buscavam solucionar problemas matemáticos com alto nívro de dificuldade, como a ideia de infinito, presente no estudo do movimento e as razões entre grandezas de segmentos.

Embora inicialmente não houvessem sistematizações ou lógicas estruturadas para a resolução destes problemas, foi o estudo conjunto de matemáticos ao longo da história que deu origem aos principais pilares do Cálculo: a Derivada e a Integral.

É possível traçar o desenvolvimento da área de Cálculo em diversos períodos da história, notavelmente nas eras antiga, medieval e moderna. O Cálculo Integral foi introduzido na era antiga, baseado no cálculo de volumes e áreas, como o papiro égípcio de Moscow datado do ano 1800 a.C., que mostra como os egípcios trabalhavam com o volume de um "frustum" piramidal.

As ideias dos matemáticos egípcios foram levadas adiante, gerando a criação da heurística, que se aproxima do Cálculo Integral. Os mesmos métodos foram redescobertos na China no século III d.C por Liu Hui, que o utilizou para encontrar a área do Círculo. Séculos depois, em XII d.C. o matemático persa Sharaf al-Din al-tusi descobriu a derivada de polimônios cúbicos, o que levaria a um importante passo para a criação da área de estudo do Cálculo Diferencial. Essa área também está intrínsecamente ligada ao desenvolvimento do estudo das tangentes, que acontecia desde a época dos gregos antigos, e também se tornou parte da Geometria Analítica.

2 Ferramentas Computacionais

A fim de salientar a importância desse estudo para a área de Sistemas da Informação e Computação, foram utilizadas diversas ferramentas computacionais durante o desenvolvimento do projeto de Iniciação Científica. Entre elas, o estudo da linguagem de formatação tipográfica LATEX.

3 Resolução dos Exercícios

Esse capítulo contém a resolução de exercícios selecionados da bibliografia, afim de facilitar e melhorar o entendimento dos assuntos tratados.

3.1 Números Reais

O estudo de números reais engloba os conjuntos dos números naturais, inteiros, racionais e irracionais. Os exercícios a seguir demonstram algumas operações e cálculos envolvendo o conjunto.

3.1.1 Exercícios

1. Determinar todos os intervalos de números que satisfaçam as desigualdades abaixo. Fazer a representação gráfica.

(a)
$$3 - x < 5 + 3x$$

Resolução:

$$3x + x < -5 - 3$$

$$4x < -2$$

$$x < -\frac{2}{4}$$

$$x < -\frac{1}{2}$$

Resposta: $\left(-\frac{1}{2}, +\infty\right)$

Representação Gráfica:

(b)
$$2 > -3 - 3x \ge -7$$

$$3+2 > -3x \ge -7+3$$
$$5 > -3x \ge -4$$
$$-\frac{5}{3} < x \le \frac{4}{3}$$

Resposta: $\left(-\frac{5}{3}, \frac{4}{3}\right]$

Representação Gráfica:

$$(c) x^2 \le 9$$

Resolução:

$$x \le \sqrt{9}$$
$$x(1) \le 3$$
$$x(2) \ge -3$$

Resposta: [-3,3]

Representação Gráfica:

(d)
$$1 - x - 2x^2 \ge 0$$

$$x \ge \frac{-(-1) \pm \sqrt{1 - 4(-2)1}}{2(-2)}$$

$$x \ge \frac{1 \pm \sqrt{9}}{-4}$$

$$x \ge \frac{1 \pm 3}{-4}$$

$$(1)x \ge \frac{4}{-4}$$

$$(1)x \ge -1$$

$$(2)x \ge \frac{-2}{-4}$$

$$(2)x \le \frac{1}{2}$$

3.1. Números Reais

Resposta: $[-1, \frac{1}{2}]$

Representação Gráfica:

(e)
$$x^3 + 1 > x^2 + x$$

Resposta: $(-1,1) \cup (1,+\infty)$

Representação Gráfica:

(f)
$$\frac{2}{x-2} \le \frac{x+2}{x-2} \le 1$$

Resposta: $(-\infty, 0]$

Representação Gráfica:

$$(g) \frac{x}{x-3} < 4$$

Resposta: $(-\infty, 3) \cup (4, +\infty)$

Representação Gráfica:

$$(h) \frac{3}{x-5} \le 2$$

Resposta: $(-\infty, 5) \cup [\frac{13}{2}, +\infty)$

Representação Gráfica:

(i)
$$x^3 - 3x + 2 < 0$$

Resposta: $(-\infty, -2] \cup 1)$

Representação Gráfica:

(j)
$$8x^3 - 4x^2 - 2x + 1 < 0$$

Resposta: $(-\infty, -\frac{1}{2})$

Representação Gráfica:

2. Resolver as equações em ${\rm I\!R}.$

(a)
$$|5x - 3| = 12$$

Resolução:

$$|5x - 3| = 12$$

$$5x = 12 + 3$$

$$x = \frac{15}{5}$$

$$x = 3$$
ou

$$|5x - 3| = -12$$

$$5x = -12 + 3$$

$$5x = -9$$

$$x = -\frac{9}{5}$$

Resposta: |x| = 3 ou $-\frac{9}{5}$

(b)
$$|2x - 3| = |7x - 5|$$

$$|2x - 3| = |7x - 5|$$

$$2x - 7x = -5 + 3$$

$$-5x = -2$$

$$x = \frac{-2}{-5}$$

$$x = \frac{2}{5}$$

3.1. Números Reais

ou

$$|2x - 3| = |7x - 5|$$

$$2x = -7x + 5 + 3$$

$$9x = 8$$

$$x = \frac{8}{9}$$

Resposta: $|x| = \frac{2}{5}$ ou $\frac{8}{9}$

$$(c) \left| \frac{3x+8}{2x-3} \right| = 4$$

Resolução:

$$3x + 8 = 4(2x - 3)$$

$$3x = 8x - 12 - 8$$

$$-5x = -20$$

$$x = \frac{-20}{-5}$$

$$|x| = 4$$
ou

$$3x + 8 = -4(2x - 3)$$
$$3x = -8x + 12 - 8$$
$$11x = 4$$
$$|x| = \frac{4}{11}$$

Resposta: |x| = 4 ou $\frac{4}{11}$

(d)
$$|9x| - 11 = x$$

$$|9x| = x + 11$$
$$9x - x = 11$$
$$x = \frac{11}{8}$$

ou

$$|9x| = -(x+11)$$
$$9x + x = -11$$
$$x = -\frac{11}{10}$$

Resposta: $|x| = \frac{11}{8}$ ou $\frac{11}{10}$

3.2 Funções

O conceito de função refere-se essencialmente à correspondência entre conjuntos. Uma função associa elementos de um conjunto a elementos de outro conjunto. Recursos computacionais são ainda mais importantes no estudo de funções, uma vez que auxiliam na visualização das propriedades e características das funções.

3.2.1 Exercícios

1. Usando uma ferramenta gráfica, traçar as curvas definidas pelas equações dadas, identificando as que representam o gráfico de uma função y = f(x). Neste caso, determine a função, o domínio e o conjunto imagem.

$$(a) y = 3x - 1$$

Resolução:

Resposta: É uma função

$$f(x) = 3x - 1$$

$$D(f) = \mathbb{R}$$

$$Im(f) = \mathbb{R}$$

3.2. Funções

15

$$(b) y - x^2 = 0$$

Resolução:

Resposta: É uma função

$$f(x) = x^2$$

$$D(f) = \mathbb{R}$$

$$Im(f) = \mathbb{R} \star$$

$$(c) y^2 - x = 0$$

Resolução:

Resposta: Não é uma função

(d)
$$y + \sqrt{4 - x^2} = 0$$

Resposta: É uma função

$$f(x) = -\sqrt{4 - x^2}$$

$$D(f) = [-2, 2]$$

$$Im(f) = [-2, 0]$$

(e)
$$x^2 + y^2 = 16$$

Resolução:

Resposta: Não é uma função

$$(f) y = \frac{1}{x}$$

3.2. Funções

Resposta: É uma função

$$f(x) = \frac{1}{x}$$

$$D(f) = \mathbb{R} - \{0\}$$

$$Im(f) = \mathbb{R} - \{0\}$$

$$(g) \ y - x^2 = 11$$

Resolução:

Resposta: É uma função

$$f(x) = 11 + x^2$$

$$D(f) = \mathbb{R}$$

$$Im(f) = [11, +\infty)$$