O(1) TIME GENERATION OF MULTISET

PERMUTATION BY PREFIX REVERSALS

MULTISET: A SET IN WHICH ELEMENTS MAY BE REPEATED.

If E is a Multiset permutation can be described by $\{M_{E_1}, M_{E_2}, \dots, M_{E_{LAST}}\}$

 \geq (S): Let S, be a string $(S_1, S_2, \dots S_n)$. Then >(S) will give an integer for non-increasing length.

= 4

 $\underline{\pi_i}$ (S): prefix reversal 2 times in order.

[see Later, By BLL
$$\pi_j$$
 (S) can be computed in O(1) Time.
 $O(1) = O(1) + O(1)$

e.g.
$$\pi_4$$
 (32451341) Rough 5423.1341 1234 = (53241341)

tail (E) = String arranged in non-increasing order.

let, function mapping
$$\Delta: M_{E_K} \to M_{E_{K+1}}$$

 $K = \{1, 2, \dots, (LAET-1)\}$

means, previous string generates next string.

we've cool – lex definition

$$C_E = \bigoplus_{P = 0}^{|M_E| - 1} \Delta^P(\text{tail (E)}) - --- (1)$$

$$\underline{\Delta}$$
: let S= S_1 , S_2 , S_n ; $i = > (S)$

$$\Delta_i(S) = \begin{cases} \pi_{i+1}(S) & if \ i \leq n-2 \ \&\& \ S_{i+2} > S_i \\ \pi_{i+2}(S) & if \ i \leq n-2 \ \&\& \ S_{i+2} \leq S_i \\ \pi_n(S) & otherwise (i \geq n-1) \end{cases}$$

$$\Delta^0(S) = S$$

$$\Delta^{K}(S) = \Delta(\Delta^{K-1}(S))$$

We'll get this, relation simply replacing.

prefix shift by prefix reversals. As π_j (*S*) and σ_i (*S*) are function equivalent.

for example,

$$\sigma_i(S)$$
= prefix shift

$$\sigma_3(12345) = (31245)$$

$$\pi_i(S) = prefix reversal$$

$$\pi_{3} = \pi_{3}(12345)$$

$$= (31245)$$
Rough
$$1 \ 2 \ 3 \ 4 \ 5$$

$$3 \ 2 \ 1 \ 4 \ 5$$

$$3 \ 1 \ 2 \ 4 \ 5$$

Here in (1) \oplus is used for appending list,

e.g.
$$\bigoplus_{i=1}^{3} L_i = L_1, L_2, L_3$$
 Let,
 $i = 1$ $L_1 = 11, L_2 = 22, L_3 = 33$ (3 strings).

Now at (1) we need index of π as π_j gives operating behavior of Δ . This index will be given from previous research work as follows,

Let,
$$S=S_1, S_2, \dots S_n = tail$$
 then $j=n$

let,
$$\Delta_{j=n}(S) = S'_1 S'_2 \dots S'_n$$

Then

$$j_{next} = > (\pi_{j=n}(S)) = \begin{cases} 1 & \text{if } S_1' < S_2' \\ > (S) + 1 & \text{if } S_1' \ge S_2' \end{cases}$$
[initially j=n]

e.g E=
$$322 ext{ 11 (tail)}$$

Next => 1 3 221 Rough n=5
1 1 2 2 3
1 3 2 2 1

 $S'_1 < S'_2$

So, j=1
 $\pi_1 ext{ (1 3 2 2 1)}$

Next => = (3 1 2 2 1)

etc.

Boustrophedon linked list one kind of doubly linked list hiding information of forward and backward pointer, it can provide O(1) Time string reversals where traditional limit was \bigcirc (n).

Using BLL $\pi_j(S)$ can be computed in O(1) Time.

So, our final Algorithm for looplessly generating multiset permutation by prefix reversal can be described as below, [in cool-lex order]

- 1) Take tail of E (Make a BLL String representation)
- 2) do{
- 3) compute j= > (BLL) [2 comparison at most]
- 4) compute $\Delta_j(BLL)$ [2 comparison at most]
- 5) Visit (BLL)
- 6) { while (Again tail not generated);

Cool - tex tested generation

⇒ White pointer

→ Black pointer

It follows circular minimal change order it. Also uses "constant number of additional variables."

[consumer-producer sense]

32211	31122	12231
13221	23112	21231
31221	12312	22131
23121	21312	12213
12321	12132	21213
21321	11232	12123
32121	21132	11223
12312	32112	21123
31212	23211	22113
13122	22311	
11322		•