Problem

Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts, the alphabet is {0,1}.

- Aa. The language (wl w ends with 00) with three states
- b. The language of Exercise 1.6c with five states
- c. The language of Exercise 1.6I with six states
- d. The language $\{0\}$ with two states
- e. The language 0*1*0+ with three states
- Af. The language $1^*(001^+)^*$ with three states
- g. The language { $\boldsymbol{\mathcal{E}}$ } with one state
- **h.** The language 0* with one state

Step-by-step solution

Step 1 of 8

a.

Consider the Language $L = \{w \mid w \text{ ends with } 00\}$ with three states over the alphabet $\Sigma = \{0,1\}$. The language states that the Finite automata should consist of three states that accept the strings over the alphabet $\Sigma = \{0,1\}$ and ends with 00. Let M be the NFA that recognizes L. The state diagram of M is as follows:

Comment

Step 2 of 8

b.

Consider the Language

 $L = \{w \mid w \text{ contains the substring } 0101 \text{ i.e., } w = x0101y \text{ for some } x \text{ and } y\}$ with five states over the alphabet $\Sigma = \{0,1\}$. The language states that the Finite automata should consist of five states that accept the strings over the alphabet $\Sigma = \{0,1\}$ and contains the substring 0101. Let M be the NFA that recognizes L. The state diagram of M is as follows:

C.

Consider the Language

 $L = \{w \mid w \text{ contains an even number of 0s, or contains exactly two 1s}\}$ with 6 states over the alphabet $\Sigma = \{0,1\}$. Let M be the NFA that recognizes L. Divide L into 2 languages L₁ and L₂.

 $L_1 = \{ w \mid w \text{ contains on even number of } 0s \}$

 $L_2 = \{ w \mid w \text{ contains exactly two 1s} \}$

Let M_1, M_2 be the NFAs recognizes L_1, L_2 respectively.

State diagram of M_1 is as follows:

The state diagram of M_2 is as follows:

Now $L = L_1 \cup L_2$

The sate diagram of M that recognizes L is as follows:

Comments (2)

Step 4 of 8

d.

Consider the Language $L_1 = \{w \mid w \text{ contains only } 0\}$ with 2 states over the alphabet $\Sigma = \{0,1\}$. Let M be the NFA that recognizes L_1 . The state diagram of M is as follows:

Comment

Step 5 of 8

e.

Consider the Language $L = \{w \mid w \text{ contains only } 0*1*0^+\}$ with 3 states over the alphabet $\Sigma = \{0,1\}$. The language states that the finite automata accept all the strings containing any number of zeroes and ones followed by at least one zero. Let M be the NFA that recognizes L. The state diagram of M is as follows:

f.

Comments (21)

Step 6 of 8

Consider the Language L that accepts the strings of the form $1*(001^+)*$ with 3 states over the alphabet $\Sigma = \{0,1\}$. Let M be the NFA that recognizes L. The state diagram of M is as follows:

Comment

Step 7 of 8

~

Consider the Language $L_1 = \{w \mid w \text{ the language results in empty string } \epsilon\}$ with one state over the alphabet $\Sigma = \{0,1\}$. The language states that the finite automata accept a null string. Let M be the NFA that recognizes L_1 . The state diagram of M is as follows:

Comment

Step 8 of 8

h.

Consider the Language L that accepts the strings of the form 0* with one state over the alphabet $\Sigma = \{0,1\}$. Let M be the NFA that recognizes L. The state diagram of M is as follows:

Comment