Exos Bac : Convexité et compléments sur les dérivées

Exercice 1

Partie A

On considère la fonction f définie sur l'intervalle $[0; +\infty]$ par

$$f(x) = (ax+b)e^{-\frac{1}{2}x}$$

où a et b désignent deux nombres réels. On admet que cette fonction est dérivable sur l'intervalle $[0; +\infty[$ et on note f' sa fonction dérivée.

Sa courbe représentative C_f est tracée ci-dessous.

Elle coupe l'axe des ordonnées au point d'ordonnée 1 et admet une tangente horizontale au point d'abscisse 1.

- 1. Donner les valeurs de f(0) et f'(1).
- 2. Démontrer que, pour tout réel positif x, $f'(x) = \left(-\frac{1}{2}ax \frac{1}{2}b + a\right)e^{-\frac{1}{2}x}$.
- 3. Déterminer les valeurs de a et b.

Partie B

Pour la suite de l'exercice, on admet que la fonction f est définie sur $[0; +\infty[$ par :

$$f(x) = (x+1)e^{-\frac{1}{2}x}.$$

- 1. (a) Justifier que, pour tout réel x positif, $f(x) = 2\left(\frac{\frac{1}{2}x}{e^{\frac{1}{2}x}}\right) + e^{-\frac{1}{2}x}$.
 - (b) Calculer la limite de la fonction f en $+\infty$,
- 2. Étudier les variations de la fonction f sur $[0; +\infty[$ et construire son tableau de variations.
- 3. Démontrer que l'équation f(x) = 0.07 admet une unique solution α sur l'intervalle $[0; +\infty[$.
- 4. Donner l'arrondi de α à l'unité.

1. Dans le repère ci-dessous, on note C_f la courbe représentative d'une fonction f définie et deux fois dérivable sur $]-\infty$; $+\infty[$.

On a placé les points A(0; 2), B(2; 0) et C(-2; 0).

On dispose des renseignements suivants :

- Le point B appartient à la courbe C_f .
- La droite (AC) est tangente en A à la courbe \mathcal{C}_f .
- La tangente à la courbe C_f au point d'abscisse 1 est une droite horizontale.

Répondre aux questions suivantes par lecture graphique.

- (a) Indiquer les valeurs de f(0) et de f'(1).
- (b) Donner une équation de la tangente à la courbe \mathcal{C}_f au point A.
- (c) Déterminer l'intervalle sur lequel la fonction f est convexe, et celui sur lequel elle est concave.
- 2. Dans cette partie, on cherche à vérifier par le calcul les résultats lus graphiquement dans la question 1. On admet que la fonction f est définie $\mathbb R$ par :

$$f(x) = (2 - x)e^x.$$

- (a) Calculer f(0) et f'(1).
- (b) Déterminer par le calcul, une équation de la tangente à la courbe \mathcal{C}_f au point d'abscisse 0.
- (c) Déterminer les limites aux bornes de son ensemble de définition.
- (d) Dresser le tableau des variations de la fonction f sur \mathbb{R} .
- (e) Déterminer une expression de de f''(x) pour tout réel x.
- (f) Étudier la convexité de f sur \mathbb{R} .
- (g) Préciser si la courbe C_f admet un point d'inflexion. Si oui, que peut-on dire de la tangente à C_f en ce point?

Dans une usine, on se propose de tester un prototype de hotte aspirante pour un local industriel.

Avant de lancer la fabrication en série, on réalise l'expérience suivante : dans un local clos équipé du prototype de hotte aspirante, on diffuse du dioxyde de carbone (CO₂) à débit constant.

Dans ce qui suit, t est le temps exprimé en minute.

À l'instant t = 0, la hotte est mise en marche et on la laisse fonctionner pendant 20 minutes. Les mesures réalisées permettent de modéliser le taux (en pourcentage) de CO_2 contenu dans le local au bout de t minutes de fonctionnement de la hotte par l'expression f(t), où f est la fonction définie pour tout réel t de l'intervalle [0; 20] par :

$$f(t) = (0.8t + 0.2)e^{-0.5t} + 0.03$$

On donne ci-dessous le tableau de variation de la fonction f sur l'intervalle $[0\,;\,20].$

Ainsi, la valeur f(0) = 0.23 traduit le fait que le taux de CO_2 à l'instant 0 est égal à 23 %.

- 1. Dans cette question, on arrondira les deux résultats au millième.
 - (a) Calculer f(20).
 - (b) Déterminer le taux maximal de CO₂ présent dans le local pendant l'expérience.
- 2. On souhaite que le taux de CO_2 dans le local retrouve une valeur V inférieure ou égale à 3,5 %.
 - (a) Justifier qu'il existe un unique instant T satisfaisant cette condition.
 - (b) On considère l'algorithme suivant :

$$t \leftarrow 1,75$$

 $p \leftarrow 0,1$
 $V \leftarrow 0,7$
Tant que $V > 0,035$
 $t \leftarrow t + p$
 $V \leftarrow (0,8t + 0,2)e^{-0,5t} + 0,03$
Fin Tant que

Quelle est la valeur de la variable t à la fin de l'algorithme?

Que représente cette valeur dans le contexte de l'exercice?

Paul, étudiant de 19 ans de corpulence moyenne et jeune conducteur, boit deux verres de rhum. La concentration C d'alcool dans son sang est modélisée en fonction du temps t, exprimé en heure, par la fonction f définie sur $[0; +\infty[$ par

$$f(t) = 2te^{-t}.$$

- 1. Étudier les variations de la fonction f sur l'intervalle $[0; +\infty[$.
- 2. À quel instant la concentration d'alcool dans le sang de Paul est-elle maximale? Quelle est alors sa valeur? Arrondir à 10^{-2} près.
- 3. Déterminer la limite de f(t) en $+\infty$. Interpréter le résultat dans le contexte de l'exercice.
- 4. Paul veut savoir au bout de combien de temps il peut prendre sa voiture. On rappelle que la législation autorise une concentration maximale d'alcool dans le sang de 0,2 g.L⁻¹ pour un jeune conducteur.
 - (a) Démontrer qu'il existe deux nombres réels t_1 et t_2 tels que $f(t_1) = f(t_2) = 0, 2$.
 - (b) Quelle durée minimale Paul doit-il attendre avant de pouvoir prendre le volant en toute légalité?

 Donner le résultat arrondi à la minute la plus proche.
- 5. La concentration minimale d'alcool détectable dans le sang est estimée à 5×10^{-3} g.L⁻¹. sang n'est plus détectable.

On donne l'algorithme suivant où f est la fonction définie par $f(t) = 2te^{-t}$.

$$t \longleftarrow 3, 5$$

$$p \leftarrow 0, 25$$

$$C \leftarrow 0, 21$$
Tant que $C > 5 \times 10^{-3}$:
$$t \leftarrow t + p$$

$$C \leftarrow f(t)$$
Fin Tant que

(a) Recopier et compléter le tableau de valeurs suivant en exécutant cet algorithme. Arrondir les valeurs à 10^{-2} près.

	Initialisation	Étape 1	Étape 2
p	$0,\!25$		
t	3,5		
C	0,21		

(b) Que représente la valeur affichée par cet algorithme?