Topics in Behavioral Decisons in Finance

Discussion by Christian Hilpert November 6, 2023

5. Alternative Theories of Choice under Risk

5.1 Reference-Dependent Risk Attitudes

Kszegi, Rabin (2007, AER)

- choice of reference point in CPT exogenous.
- has huge impact for economic choices
- ▶ ⇒ literature on disposition effect
- new model:
 - combines gain/loss utility with standard consumption utility
 - ► Rabin(2000): $(50/50, +550, -500) \Rightarrow (+100, 000, 000, 000, 000, -4, 000) \Rightarrow \text{reject}$
 - endogenously determines reference point
 - allows for stochastic reference points.

5.1 Reference-Dependent Risk Attitudes

- 1. surprise, low probability decisions, exogenous expectations; say pay \$55 to insure \$100 risk, 50%
 - (a) status quo:0. \rightarrow diminishing sensitivity do not insure
 - (b) expect to pay 55: lose 45 gain 55 . loss aversion \rightarrow insure.
- 2. anticipated risks
 - (a) macdimahing personal equilibrium (UPE)
 behaviour where the stochastic outcome generated by utility-maximizing choices conditional on expectations equals expectations. i.e. follows planned behavior
 ⇒ selects preferred personnal equilibrium (PPE)
 - (b) choice-acclimating personal equilibrium(CPE) committed decision long before outcomes ⇒ reference point influenced by choice. maximize expected utility given that if determines reference lottery and outcome lottery.
- 1&2: linear consumption utility⇒ small gambles.
 now large gambles, consumption utility non-linear ⇒ reference point not very important.

- $w \in \mathbb{R}$ wealth, $r \in \mathbb{R}$ reference: $U(w|r) = m(w) + \mu(m(w) - m(r))^2$
- reference point: belief of outcomes, g probility measure $U(w|g) = \int u(w|r) dg(r)$ \Rightarrow mixed feelings, 50:500/100;50:gain to 0, loss to 100.
- ▶ w has measure F $U(F|g) = \iint u(w|r)dg(r)dF(w)$, no probability weighting for simplicity.

Assumptions on μ

▶ A0:
$$\mu(x)$$
 continuous , twice differentiable for $x \neq 0, \mu(0) = 0$.

► A1:
$$\mu(x)$$
 strictly increasing.

► A2: if
$$y > x > 0$$
, then $\mu(y) + \mu(-y) < \mu(x) + \mu(-x)$.

▶ A3:
$$\mu''(x) \le 0$$
 for $x > 0$ and $\mu''(x) \ge 0$ for $x < 0$.

▶ A4:
$$\frac{\mu_{-}^{'}(0)}{\mu_{+}^{'}(0)} \equiv \lambda > 1$$
, where $\mu_{+}^{'}(0) \equiv \lim_{x \to 0} \mu_{-}^{'}(|x|)$ and $\mu_{-}^{'}(0) \equiv \lim_{x \to 0} \mu_{-}^{'}(-|x|)$.

A3':
$$\forall x \neq 0, \mu''(x) = 0 \Rightarrow$$
 no diminishing sensitivity.

■ general assumption, reference point ≠ expectations; rational expectations, generally people have some idea how they behave and their own environment.

1. Risk aversion in surprise situations

- ightharpoonup m is linear: m(w) = w
 - reference point fixed

Proposition (1)

Suppose $m(\cdot)$ is linear and $\mu(\cdot)$ satisfies A3'(no diminishing sensitivity). For any lotteries F, G, H, and constant w, if $U(w + F|g) \ge U(w|w)$, the U(H + F|G) > U(H|G).

- \Rightarrow
 - ▶ If willing to accept F relative to riskless r, positive values of F are gains, negative ones are lossed.
 - ▶ If F is added to lottery H relative to lottery G, positive outcomes of F eliminate losses from H relative to G, losses from F merely eliminate gains from H.
 - ightharpoonup \Rightarrow more willing to accept F.
 - ▶ If H = w, G = F ⇒ less risk averse in eliminating risk that is expected.

1. Risk aversion in surprise situations

Proposition (2)

Suppose $m(\cdot)$ is linear. For any lottery F with positive expected value:

- (i) There exist $A, \varepsilon > 0$ such that if G has $\Pr_G[r \in (k A, k + A)] < \varepsilon$ for all constants k, then U(H + F|G) > U(H|G) > U(H F|G) for any lottery H.
- (ii) For any continuously distributed lottery G, there is a $\overline{t} > 0$ s.t. for any $t \in (0, \overline{t}]$ and any lottery H, $U(H + t \cdot F|G) > U(H|G) > U(H t \cdot F|G)$.

Identifies attitudes towards F in which risk neutral.

- (i) If sufficiently widely distributed reference lottery, accept F, and reject -F.
- (ii) If fixed continuously distributed reference lottery, accept sufficiently small multiple of F, reject the same multiple of -F.

Prop. 1&2 do not imply no risk aversion, just lower risk aversion!

2. UPE and PPE Risk Attitudes

- now correctly anticipates choice set.
- connot commit to choice untill shortly before outcome $L = \{D_1, 1 q; D_2, q\}, D_1, D_2 \in \triangle(\mathbb{R})$
- ▶ for now q = 0 ⇒ choice set is certain
- beliefs are set, reference point exogenous.

Definition (UPE)

A selection $F_1 \in D_1, F_2 \in D_2$ is an unacclimating personal equilibrium (UPE) if for each $I \in 1, 2$ and any $F_I' \in D_I$, $U(F_I \mid (1-q)F_1 + qF_2) \ge U(F_I' \mid (1-q)F_1 + qF_2)$. (Koszegi, 2005 proves existence.)

- ▶ If the person expects to choose F_1 and F_2 from choice sets D_1 and D_2 , then she expects the distribution of outcomes $(1-q)F_1 + qF_2$.
- ▶ Def. 1: If this is the expectation. she should be willing to choose F_1 and F_2 .

2. UPE and PPE Risk Attitudes

Example:

wealth w, 50/50 chance 0, -100 or pay -55, when is the lottery a UPE?

$$\left[\frac{1}{2}(w - 100) + \frac{1}{2}w\right] + \left[\frac{1}{4}\mu(100) + \frac{1}{4}\mu(-100)\right] \\
\ge [w - 55] \\
+ \left[\frac{1}{2}\mu(45) + \frac{1}{2}\mu(-55)\right]$$

- UPE generally not unique.
- expectation: plan what to do at the time.
- idea: select best plan she will follow through on.

2. UPF and PPF Risk Attitudes.

Definition (PPE)

A selection $F_1 \in D_1$, $F_2 \in D_2$ is a preferred personal equilibrium(PPE) if it is a UPE, and

 $U((1-q)F_1+qF_2\mid (1-q)F_1+qF_2)\geq U((1-q)F_1'+q|F_2'\mid (1-q)F_1'+q|F_2')$ for all *UPE* selections $F'_1 \in D_1, F'_2 \in D_2$.

 \Rightarrow choice optimal given expectations!

2. UPE and PPE Risk Attitudes

Proposition (3)

Suppose $m(\cdot)$ is linear. For any $w \in \mathbb{R}$ and mean-zero lottery $F \neq 0$ with bounded support, there exist $\bar{k}, \bar{t} > 0$ such that for any positive $t < \bar{t}, k < \bar{k}$, the unique PPE with the choice set $\{w, w + t(F + k)\}$ is to choose w.

- select riskless w over a sufficiently small, better-than-fair but unattractive bet.
- loss aversion makes gamble unattractive.
- ▶ key point: CPT: costs ≠ loss in status quo. here: expected costs, such as insurance premium is a cost, not a loss.
- ► ⇒ explain insurance for likely events

2. UPE and PPE Risk Attitudes

Proposition (4)

Suppose $m(\cdot)$ is linear, $\mu(\cdot)$ satisfies A3'. If w+F is a PPE in the choice set $\{w,w+F\}$, then for any lottery H, $U(w+F\mid H)>U(w\mid H)$.

- ⇒ If choose between risk and insurance, at least a risk aversion as ????
- \Rightarrow in experiments , people generally are in surprise settings / don't know what comes
- ⇒ underestimate risk aversion

Additionally (see papers) expecting risk decreases risk aversion.

3. CPE Risk Attitudes

long committed choices

Definition (CPE)

For any choice set $D, F \in D$ is a choice-acclimating personal equilibrium (CPE) if $U(F \mid F) \ge U(F' \mid F')$ for all $F' \in D$.

 \Rightarrow selecting F determines it as reference point.

Example: (2, 100) : CDE ::

lottery 50/50 with (0,-100) is CPE if:

$$\left[\frac{1}{2}(w - 100) + \frac{1}{2}w\right] + \left[\frac{1}{4}\mu(100) + \frac{1}{4}\mu(-100)\right] > [w - 55] + [0].$$

- ▶ UPE: premium 55 can be gain or loss;
- ▶ CPE: premium 55 is neither gain nor loss.

3. CPE Risk Attitudes

Some implications:

- unlike as UPE,PPE, for CPE pepple may want to choose stochastialy dominated options
- ▶ idea: give up unlikely gain to avoid losses

5.2 Salience Theory

Bordalo, Gennaioli, Shleifer (2012,QJE)

- risk preferences not stable
- ▶ Allais (1953) paradoxes:irrelevant choice implies risk lottery behavior.
- idea: salience to prominent outcomes
- building blocks:
 - ordering
 - diminishing sensitivity
 - ▶ salience weighting (≠ probility weighting)
- say consumer choice: speed, price, design

5.2 Salience Theory

Allais (1953) paradoxes

$$L_1(z) = \begin{cases} \$2500 & \text{with prob.} & 0.33\\ \$0 & 0.01\\ \$z & 0.66 \end{cases}$$

$$L_2(z) = \begin{cases} \$2400 & \text{with prob.} & 0.34\\ \$z & 0.66 \end{cases}$$

In experiments: z = 2400

$$L_1(2400) = \begin{cases} 2500 \text{ with prob.} & 0.33 \\ 0 & 0.01 \prec L_2(2400) = 2400 \\ 2400 & 0.66 \end{cases}$$

⇒ risk averse

5.2 Salience Theory

In experiments: z = 0

$$L_1(0) = \begin{cases} 2500 \text{ with prob.} & 0.33 \\ 0 & 0.67 \end{cases} \succ L_2(0) = \begin{cases} 2400 \text{ with prob.} & 0.34 \\ 0 & 0.66 \end{cases}$$

- \Rightarrow risk loving
 - ▶ CPT: in last gamble w(p = 0.01) overweighted
 - Salience theory: $L_1(2400), L_2(2400) \rightarrow 2500$ only slightly higher than 2400; 0 a lot lower than 2400.
 - ▶ Salience theory: $L_1(0), L_2(0) \rightarrow$ outcome zero is standard; 2500 stands out more.

- \triangleright $s \in S$: state
- $\blacktriangleright \pi_s$: probability, s.t. $\sum_{s \in S} \pi_s = 1$
- \blacktriangleright { L_1, L_2 }: choice set
- $\triangleright x_s^i$: payoffs
- ▶ value function as before, reference dependent V without decision weights, only local thinking:

$$V(L_i) = \sum_{s \in S} \pi_s v\left(x_s^i\right).$$

- With salience distortion:
- lacktriangle two steps: salience ranking, then decision weight π^i_s
- ▶ Formally: $x_s = (x_s^i)_{i=1,2}$, payoffs in state s
- $\triangleright x_{\varepsilon}^{-i}$: payoff of lottery L_i , $i \neq i$
- $\triangleright x_s^{\min}, x_s^{\max}$: largest / smallest payoffs in x_s

Definition (1)

The salience of state s for lottery L_i , i = 1, 2, is a continuous and bounded function $\sigma(x_s^i, x_s^{-i})$ that satisfies three conditions:

▶ 1. Ordering. If for states $s, \tilde{s} \in S$ we have that $[x_s^{\min}, x_s^{\max}] \in [x_{\tilde{s}}^{\min}, x_{\tilde{s}}^{\max}]$, then

$$\sigma\left(x_{s}^{i}, x_{s}^{-i}\right) < \sigma\left(x_{\tilde{s}}^{i}, x_{\tilde{s}}^{-i}\right).$$

▶ 2. Diminishing sensitivity. If $x_s^j > 0$ for j = 1, 2, then for any $\epsilon > 0$,

$$\sigma\left(x_s^i + \epsilon, x_s^{-i} + \epsilon\right) < \sigma\left(x_s^i, x_s^{-i}\right).$$

▶ 3. Reflection. For any two states $s, \tilde{s} \in S$ s.t. $x_s^j, x_{\tilde{s}}^j > 0, (j = 1, 2)$, we have $\sigma\left(x_s^i, x_s^{-i}\right) < \sigma\left(x_{\tilde{s}}^i, x_{\tilde{s}}^{-i}\right)$ if and only if $\sigma\left(-x_s^i, -x_s^{-i}\right) < \sigma\left(-x_{\tilde{s}}^i, -x_{\tilde{s}}^{-i}\right)$.

Example:

$$\sigma\left(x_{s}^{i}, x_{s}^{-i}\right) = \frac{\left|x_{s}^{i} - x_{s}^{-i}\right|}{\left|x_{s}^{i}\right| + \left|x_{s}^{-i}\right| + \theta}, \theta > 0$$

- ordering: salience rises if distance of x_s^i and x_s^{-i} rises
- diminishing sensitivity: as average payoff gets farther from zero, salience reduces $|x_s^1| + |x_s^2|$
- reflection: salience is shaped by the magnitude, not sign
- ightharpoonup (example: symmetric additional dropped for N>2)
- Results mostly driven by ordering and diminishing sensitivity.

$$\sigma(-x_s^1, -x_s^2) = \sigma(x_s^1, x_s^2)$$

FIGURE I

Properties of a Salience Function, Equation (5)

Definition (2)

Given states $s, \tilde{s} \in S$, we say that for lottery L_i s s is more salient than \tilde{s} if $\sigma\left(x_s^i, x_s^{-i}\right) > \sigma\left(x_{\tilde{s}}^i, x_{\tilde{s}}^{-i}\right)$. Let $k_s^i \in \{1, \dots, |S|\}$ be the salience ranking of state s for L_i , with lower k_s^i indicating higher salience. All states with the same salience obtain the same ranking(no jumps). Then the local thinker transforms the odds $\frac{\pi_{\tilde{s}}}{\pi_s}$ of \tilde{s} relative to s into the odds $\frac{\pi_s^i}{\pi_s^i}$, given by:

By normalizing
$$\sum_s \pi_s^i = 1$$
 and defining $\omega_s^i = \frac{\delta^{k_s^i}}{\left(\sum_r \delta^{k_r^i \cdot \pi_r}\right)}$

the decision weight is: $\pi_{s}^{i}=\pi_{s}\cdot\omega_{s}^{i}$

 \Rightarrow local thinker overweights most salient states.

- $\delta = 1 \Rightarrow$ standard model, $\omega_s^i = 1$
- $ightharpoonup \delta < 1 \Rightarrow$ local thinker
- lacktriangle state s is overweighted, if $\left(\omega_s^i>1$, or $\delta^{k_s^i}>\sum_r \delta_r^{k_r^i}\cdot \pi_r
 ight)$
- $lackbox{ }\delta
 ightarrow 0$: decision based on most salient state
- lacksquare δ is independent of objective state probabilities!

Some remarks:

- weighting depends on salience, not low-probability
- low-probility can be most overweighted, but also underweighted
- choice of state space / atternative lottery unclear
- ightharpoonup some cases: no atternative \Rightarrow take zero? Open question

Risk attitudes:

- suppose linear value function
- $ightharpoonup L_0 = (x, 1)$: sure prospect
- L₁ = $(x + g, \pi_g; x I, 1 \pi_g)$, with $g\pi_g = (1 \pi_g)I$: mean preserving spread, x, g, x I > 0
- $ightharpoonup s_g = (x + g, x), s_l = (x l, x), : two states$
- $V^{LT}(L) = \sum_{s \in S} \pi_s^i v(x_s^i) = \sum_{s \in S} \pi_s \omega_s^i v(x_s^i)$

Risk attitudes:

- $\delta < 1 \Rightarrow$ prefer L_1 if s_g more salient, $\sigma(x+g,x) > \sigma(x-l,x)$
- ▶ Using $g\pi_g = (1 \pi_g)I$, $\sigma\left(x + \frac{1 \pi_g}{\pi_g} \cdot I, x\right) > \sigma(x I, x)$
- lacktriangle holds, if $\pi_g \simeq 0$ (gain unlikely) because g is high \Rightarrow risk taking
- ▶ diminishing sensitivity: if g = I, x I < g + x implies that the loss is salient, $\pi_g = \frac{1}{2}$ ⇒ risk averse
- $ightharpoonup \pi_{
 m g}^* < rac{1}{2}$, below risk seeking, above averting

Context-Dependent Probability Weighting Function

Risk attitudes:

Definition (3)

A salience function is convex if, for any state with positive payoffs (y,z) and any $x, \epsilon > 0$, the difference $\sigma(y+x, z+x) - \sigma(y+x+\epsilon, z+x+\epsilon)$ is a decreasing function of the payoff level x. (concave if increasing in x).

Lemma (1)

If the salience function is convex, then $r = v^{LT}(L_0) - v^{LT}(L_1)$ weakly decreases with x.

(concave if increases with x).

 \Rightarrow if diminishing sensitivity weakens with x, a higher payoff level raises the relative attractiveness of L_1 .

 $(\pi_g^* \text{ increases, raises risk seeking})$

Some critical remarks:

- ► Kontek (2016, EL): certainty equivatent not necessarily defined
- ightharpoonup monotonicity for N > 2 violated
- mixed experimental evidence if estimated from indifference curves
- also strong empirical support
- ▶ ⇒ room for research