

Towards Efficient Audio-Visual Learners via Empowering Pre-trained Vision Transformers with Cross-Modal Adaptation

Kai Wang¹, Yapeng Tian², Dimitrios Hatzinakos¹ ¹University of Toronto ²University of Texas at Dallas

Proposed Method

AV Adapter: consists of two parallelly connected vanilla adapters with a cross-attention interaction module for multimodal interaction.

Modality-specific Temporal Adaptation: adapt the frozen ViTs to capture the temporal information of audio and video signals.

Cross-modal Spatial Adaptation: adapt the frozen ViTs to interact with audio and video for learning the refined temporal information with the cue from the counterpart modality.

Cross-modal Global Adaptation: adapt the frozen ViTs for global interaction between audio and visual branches.

- ❖ Both audio and visual branches in each adaptation stage share the same weights from frozen pre-trained ViT.
- Only added adapters and task-specific modules are trainable while all other layers are frozen.

Experimental Results

Table1: Comparison with state-of-the-art AVE methods

Method	Encoder		Pretrain	Dataset	Trainable	Total	A 00 A	
Method	Visual Audio		Visual Audio		Param \downarrow	Param \downarrow	Acc ↑	
PSP [46]	VGG-19 🌼	GG-19 🌼 VGGish 🏶		AudioSet	1.7M	217.4M	77.8%	
AVT [23]	VGG-19 🌼 VGGish 🌼		ImageNet	AudioSet	15.8M	231.5M	76.8%	
RFJC [7]	VGG-19 * VGGish *		ImageNet	AudioSet	22.8M	238.5M	76.2%	
AVEL [37]	ResNet-152 🌼	VGGish 🌼	ImageNet	AudioSet	3.7M	136.0M	74.0%	
CMRAN [42]	ResNet-152 🌼	VGGish 🌼	ImageNet	AudioSet	15.9M	148.2M	78.3%	
MM-Pyramid [44]	ResNet-152 * VGGish *		ImageNet	AudioSet	44.0M	176.3M	77.8%	
CMBS [40]	ResNet-152 🌼	VGGish 🌼	ImageNet	AudioSet	14.4M	216.7M	79.7%	
AVSDN [24]	ResNet-152 * VGGish *		ImageNet	AudioSet	8.0M	140.3M	75.4%	
$MBT^*[30]$	ViT-B-16 🔥 AST 🧑		ImageNet	AudioSet	172.0M	172.0M	77.8%	
DG-SCT [8]	Swin-L 🌼	HTS-AT 🌼	ImageNet	AudioSet	43.6M	461.3M	82.2%	
LAVISH [25]	ViT-B-16 🕸, shared		ImageNet	×	4.7M	107.2M	75.3%	
	ViT-L-16 🌼, shared		ImageNet	×	14.5M	340.1M	78.1%	
STG-CMA (Tiny), ours	ViT-B-16 🔅, shared		CLIP	×	3.5M	89.6M	76.3%	
	ViT-L-14 🌼, shared		CLIP	×	10.7M	324.1M	82.2%	
STC CMA (Rose) ours	ViT-B-16		CLIP	×	11.5M	97.5M	78.7%	
STG-CMA (Base), ours	ViT-L-14 🌼, shared		CLIP	×	20.1M	323.6M	83.3%	
LAVISH [25]	Swin-B 🐞, shared		ImageNet	×	5.0M	114.2M	78.8%	
	Swin-L **, shared		ImageNet	×	10.1M	238.8M	81.1%	
STG-CMA (Tiny), ours	Swin-B 🐞, shared		ImageNet	ImageNet x		92.3M	81.1%	
	Swin-L **, shared		ImageNet	×	11.7M	206.7M	82.0%	
STG-CMA (Base), ours	Swin-B		ImageNet	×	10.1M	96.8M	81.4%	
	Swin-L 🐞, shared		ImageNet	×	19.0M	214.0M	82.5%	

Table2: Comparison with state-of-the-art AVS methods

Method	Encoder		Pretrain	Dataset	Trainable	Total	mIoU ↑
	Visual Audio		Visual	Audio	Param ↓	Param \downarrow	шос
LVS [3]	ResNet-18	ResNet-18	ImageNet	AudioSet	N/A	N/A	37.8%
MMSL [33]	ResNet-18	CRNN	ImageNet	AudioSet	N/A	N/A	44.9%
AVS [47]	PVT-V2 🧑	VGGish 🌼	ImageNet	AudioSet	102.4M	174.5M	78.7%
LAVISH [25]	ResNet-152 🌼	VGGish 🌼	ImageNet	AudioSet	8.0M	140.3M	75.4%
LAVISH [25]	Swin-L **, shared		ImageNet	×	37.2M	266.4M	80.1%
DG-SCT [8]	Swin-L 🌼	HTS-AT 🌼	ImageNet	AudioSet	61.5M	594.8M	80.9%
STG-CMA (Base), ours	Swin-B 🗱, shared		ImageNet	×	29.7M	116.5M	81.0%
	Swin-L 🍇, shared		ImageNet	×	38.6M	233.6M	81.8%

Table3: Comparison with state-of-the-art AVQA methods

Method	Encoder		Pretrain Dataset		Trainable	Total	Question ↑			
	Visual	Audio	Visual	Audio	Param ↓	Param ↓	AQ	VQ	AVQ	Avg
AVSD [35]	VGG-19	ResNet-18	ImageNet	AudioSet	N/A	N/A	68.5%	70.8%	65.5%	67.4%
Pano-AVQA [45]	Faster RCNN	VGGish	ImageNet	AudioSet	N/A	N/A	70.7%	72.6%	66.6%	68.9%
ST-AVQA [19]	ResNet-18 🌼	VGGish 🏶	ImageNet	AudioSet	10.6N	94.4M	74.1%	74.0%	69.5%	71.5%
LAVISH [25]	Swin-L ***, shared		ImageNet	×	21.1M	249.8M	75.7%	80.4%	70.4%	74.0%
STG-CMA-B (ours)	Swin-L **, shared		ImageNet	×	26.9M	221.9M	77.1 %	80.8%	70.7 %	74.5 %
DG-SCT [8]	Swin-L *	HTS-AT 🌞	ImageNet	AudioSet	110.4M	520.2M	77.4%	81.9%	70.7%	74.8%
STG-CMA-L (ours)	Swin-L **, shared		ImageNet	×	83.1M	278.1M	78.7%	83.0%	72.3%	76.2%

Visualization examples on AVS task

Audio Ground Truth

Conclusion

- > We proposed an STG-CMA to adapt the frozen pre-trained ViTs to efficiently learn the audio-visual representation without full finetuning paradigm and audio-specific pre-training.
- > Our STG-CMA outperforms better than existing SOTA methods in AVE, AVS, and AVQA tasks using fewer tunable parameters.
- > In future, we will explore the robust generalization ability of STG-CMA in more audio-visual scenarios.

Overview of Proposed STG-CMA Cross-modal Global Adaptation

Introduction

Motivations: 1. Pre-training audio and visual encoders on audio-visual pairs requires massive data and expensive computing resources. 2. Retraining pre-trained audio-visual models on downstream tasks increases the extra training budget and causes overfitting problems. 3. Existing parameter-efficient methods either neglect the spatial-temporal adaptation of modality-specific signals (i.e. LAVISH) or rely on audiospecific pretraining (i.e. DG-SCT).

Raised Question: Is it possible to adapt shared pre-trained image-only foundation models for interacting audio-visual modality towards efficient audio-visual representation? The answer is **Yes**.

Contributions:

- 1. Propose an Audio-Visual Adapter to interact with audio and video.
- 2. Propose a spatial-temporal-global cross-modal adaptation (STG-CMA) to empower the frozen ViTs to efficiently learn spatial, temporal, and global information of audio-visual modality.
- 3. STG-CMA achieves state-of-the-art performance in AVE, AVS, and AVQA tasks while involving reduced trainable parameters.