Contrôle 1: Analyse I

Cours de mathématiques spéciales (CMS)

10 novembre 2016 Semestre d'automne ID: -999

(écrire lisiblement s.v.p)
Nom:
Prénom :
Groupe:

Question	Barème	Points
1	5	
2	5	
3	5	
4	5	
Total	20	

Indications

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

Question 1 (à 5 points)

Points obtenus: (laisser vide)

Résoudre en $x \in \mathbb{R}$

 $\left| \frac{x^2 + 3x - 3}{x - 2} \right| \ge x + 6.$

Rép. : $S = \,] \leftarrow , \, -5 \,] \, \cup \, \left[\, \frac{3}{2} \, , 2 \, [\, \cup \,] \, 2 \, , \, 9 \, \right]$

Réponse à la question 1:

laisser la marge vide

ID: -999

laisser la marge vide

Question 2 (à 5 points)

Points obtenus: (laisser vide)

Résoudre en $x \in \mathbb{R}$, en fonction du paramètre réel m, l'équation suivante :

$$\sqrt{x - m(1 - m)} = x.$$

Rép. : si m<0 : $S=\{1-m\}$, si $0\leq m\leq 1$: $S=\{m,1-m\}$, si 1< m : $S=\{m\}$

Réponse à la question 2:

laisser la marge vide

ID: -999

ID: -999

laisser la marge vide

Question 3 (à 5 points)

Points obtenus: (laisser vide)

On considère la parabole Γ d'équation

$$\Gamma: y = P(x) = x^2 + 3x - 4$$

et la parabole ${\mathcal E}$, dépendant d'un paramètre réel m , d'équation

$$\mathcal{E}: y = Q(x) = m^2 x^2 - 2mx - 3, \qquad m \in \mathbb{R}.$$

Déterminer l'ensemble des valeurs de m tel que Γ et $\mathcal E$ ont deux points d'intersection distincts et que l'abscisse du sommet de $\mathcal E$ se trouve strictement hors de l'intervalle défini par les abscisses de ces deux points d'intersection. Rép. : $S=]-\frac{13}{12},-1[\cup]-\frac{1}{3},0[\cup]0,1[$

Réponse à la question 3:

laisser la marge vide

ID: -999

Question 4 (à 5 points)

Points obtenus: (laisser vide)

On empile des triangles rectangles semblables comme suit.

- L'hypoténuse du premier triangle est de longueur $a_1 = 4$ unités et le plus petit des autres côtés de longueur $a_1/2 = 2$ unités.
- L'hypoténuse du deuxième triangle est de longueur a_2 égale aux 2/3 du $3^{\rm e}$ côté du premier triangle.
- L'hypoténuse du troisième triangle est de longueur a_3 égale aux 2/3 du $3^{\rm e}$ côté du deuxième triangle.
- Et ainsi de suite, comme illustré sur le dessin...

- (a) Déterminer l'aire du premier et du deuxième triangle. En déduire l'aire du $n^{\rm e}$ triangle, $\forall\,n\in\mathbb{N}^*$. Rép. : $2\sqrt{3}$, $2\sqrt{3}\frac{1}{3}$, $2\sqrt{3}\left(\frac{1}{3}\right)^{n-1}$
- (b) Calculer l'aire formée des n premiers triangles. Rép. : $3\sqrt{3}\left(1-\frac{1}{3^n}\right)$
- (c) Calculer l'aire totale de tous les triangles. Rép. : $3\sqrt{3}$

Réponse à la question 4:

laisser la marge vide

ID: -999

