```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

df = pd.read_csv('//aerofit_treadmill.csv') df

→		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	E
	0	KP281	18	Male	14	Single	3	4	29562	112	
	1	KP281	19	Male	15	Single	2	3	31836	75	
	2	KP281	19	Female	14	Partnered	4	3	30699	66	ż
	3	KP281	19	Male	12	Single	3	3	32973	85	
	4	KP281	20	Male	13	Partnered	4	2	35247	47	
	175	 KP781	40	 Male	21	 Single			83416	200	
						Single	6			200	
	176	KP781	42	Male	18	Single	5	4	89641	200	
	177	KP781	45	Male	16	Single	5	5	90886	160	
	178	KP781	47	Male	18	Partnered	4	5	104581	120	
	179	KP781	48	Male	18	Partnered	4	5	95508	180	
	180 rd	ows × 9 colu	ımns								

Next steps: Generate code with df

View recommended plots

df.head()

₹		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
	0	KP281	18	Male	14	Single	3	4	29562	112
	1	KP281	19	Male	15	Single	2	3	31836	75
	2	KP281	19	Female	14	Partnered	4	3	30699	66
	3	KP281	19	Male	12	Single	3	3	32973	85
	4	KP281	20	Male	13	Partnered	4	2	35247	47

df.describe()

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

df.shape

→ (180, 9)

df.isnull().sum()

#Find the outliers for every continuous variable in the dataset
a=sns.boxplot(df['Age'])

b=sns.boxplot(df['Income'])

c=sns.boxplot(df['Miles'])

sns.boxplot(df['Education'])

sns.boxplot(df['Usage'])

sns.boxplot(df['Fitness'])

#Remove/clip the data between the 5 percentile and 95 percentile

```
remove_age= np.clip(df['Age'], np.percentile(df['Age'], 5), np.percentile(df['Age'], 95))
remove_income = np.clip(df['Income'], np.percentile(df['Income'], 5), np.percentile(df['Income'], 95))
remove_miles = np.clip(df['Miles'], np.percentile(df['Miles'], 5), np.percentile(df['Miles'], 95))
remove_fitness = np.clip(df['Fitness'], np.percentile(df['Fitness'], 5), np.percentile(df['Fitness'], 95))
remove_usage = np.clip(df['Usage'], np.percentile(df['Usage'], 5), np.percentile(df['Usage'], 95))
remove_education = np.clip(df['Education'], np.percentile(df['Education'], 5), np.percentile(df['Education'], 95))
df.head()
```

 *	F	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	remove_age	remove_income	remove_miles	remove_fitness	remove_usage	remove_education
	0	KP281	18	Male	14	Single	3	4	29562	112	20.0	34053.15	112	4	3.0	14
	1	KP281	19	Male	15	Single	2	3	31836	75	20.0	34053.15	75	3	2.0	15
	2	KP281	19	Female	14	Partnered	4	3	30699	66	20.0	34053.15	66	3	4.0	14
	3	KP281	19	Male	12	Single	3	3	32973	85	20.0	34053.15	85	3	3.0	14
	4	KP281	20	Male	13	Partnered	4	2	35247	47	20.0	35247.00	47	2	4.0	14

```
df['remove_age'] = np.clip(df['Age'], np.percentile(df['Age'], 5), np.percentile(df['Age'], 95))
df['remove_income'] = np.clip(df['Income'], np.percentile(df['Income'], 5), np.percentile(df['Income'], 95))
df['remove_miles'] = np.clip(df['Miles'], np.percentile(df['Miles'], 5), np.percentile(df['Miles'], 95))
df['remove_fitness'] = np.clip(df['Fitness'], np.percentile(df['Fitness'], 5), np.percentile(df['Fitness'], 95))
df['remove_usage'] = np.clip(df['Usage'], np.percentile(df['Usage'], 5), np.percentile(df['Usage'], 95))
df['remove_education'] = np.clip(df['Education'], np.percentile(df['Education'], 5), np.percentile(df['Education'], 95))
```

df.head()

₹	P	roduct	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	remove_age	remove_income	remove_miles	remove_fitness	remove_usage	remove_education
	0	KP281	18	Male	14	Single	3	4	29562	112	20.0	34053.15	112	4	3.0	14
	1	KP281	19	Male	15	Single	2	3	31836	75	20.0	34053.15	75	3	2.0	15
	2	KP281	19	Female	14	Partnered	4	3	30699	66	20.0	34053.15	66	3	4.0	14
	3	KP281	19	Male	12	Single	3	3	32973	85	20.0	34053.15	85	3	3.0	14
	4	KP281	20	Male	13	Partnered	4	2	35247	47	20.0	35247.00	47	2	4.0	14

```
#printing result by using subplot
fig,ax=plt.subplots(2,3,figsize=(10,8))
sns.boxplot(data=df,x=remove_age,color='g',ax=ax[0,0])
sns.boxplot(data=df,x=remove_income,color='b',ax=ax[0,1])
sns.boxplot(data=df,x=remove_education,color='y',ax=ax[0,2])
sns.boxplot(data=df,x=remove_miles,color='g',ax=ax[1,0])
sns.boxplot(data=df,x=remove_fitness,color='b',ax=ax[1,1])
sns.boxplot(data=df,x=remove_usage,color='y',ax=ax[1,2])
fig.suptitle('Removed_outliers')
```

Text(0.5, 0.98, 'Removed_outliers')

Removed_outliers

#Find if there is any relationship between the categorical variables and the output variable in the data.
sns.countplot(x='Gender',data=df,color='r')

sns.countplot(x='MaritalStatus',data=df)

sns.countplot(x='Product',data=df,color='g')

Insights: Male prefer the product more over females. Partnered people prefer the product over single. KP281 is sold the most.

#Find if there is any relationship between the continuous variables and the output variable in the data.
sns.scatterplot(x='remove_age',y='remove_income',data=df)

sns.scatterplot(x='remove_age',y='remove_income',data=df,hue='Product')

*Insights: People with higher income are preferring to buy, the costliest product, and is focusing on quality. *

sns.scatterplot(x='remove_age',y='remove_miles',data=df)

df1=df[['remove_age','remove_miles','remove_income','remove_education','remove_fitness','remove_usage']]

Double-click (or enter) to edit

Check the correlation among different factors

sns.heatmap(df1.corr())

sns.heatmap(df1.corr(),annot=True)

→ <Axes: >

sns.scatterplot(x='remove_age',y='remove_fitness',data=df)

Probability

Insight: People of age between 25-30 are more confident about their fitness

Name: proportion, dtype: float64

#Find the marginal probability (what percent of customers have purchased (KP281, KP481, or KP781) df['Product'].value_counts(normalize=True)*100 → Product KP281 44.44444 KP481 33.333333 KP781 22,222222 Name: proportion, dtype: float64 df['Gender'].value_counts(normalize=True)*100 Gender 57.777778 Male 42.222222 Female Name: proportion, dtype: float64 df['MaritalStatus'].value_counts(normalize=True)*100 → MaritalStatus Partnered 59.444444 Single 40.555556

```
df['Usage'].value_counts(normalize=True)*100
```

```
Usage
3 38.333333
4 28.888889
2 18.333333
5 9.444444
6 3.888889
7 1.111111
Name: proportion, dtype: float64
```

sns.countplot(x = df['Usage'], data = df)

sns.countplot(x = df['Age'], data = df,color='r')
plt.xticks(rotation=90)

```
→ ([0,
      1,
      2,
      4,
      5,
6,
      8,
      9,
      10,
      11,
      12,
      13,
      14,
      15,
      16,
      17,
      18,
      19,
      20,
      21,
      22,
      23,
      24,
      25,
      26,
      27,
      28,
      29,
      30,
      31j,
     [Text(0, 0, '18'),
      Text(1, 0, '19'),
      Text(2, 0, '20'),
      Text(3, 0, '21'),
      Text(4, 0, '22'),
      Text(5, 0, '23'),
      Text(6, 0, '24'),
      Text(7, 0, '25'),
      Text(8, 0, '26'),
      Text(9, 0, '27'),
      Text(10, 0, '28'),
      Text(11, 0, '29'),
      Text(12, 0, '30'),
      Text(13, 0, '31'),
      Text(14, 0, '32'),
      Text(15, 0, '33'),
      Text(16, 0, '34'),
      Text(17, 0, '35'),
      Text(18, 0, '36'),
      Text(19, 0, '37'),
      Text(20, 0, '38'),
      Text(21, 0, '39'),
Text(22, 0, '40'),
      Text(23, 0, '41'),
      Text(24, 0, '42'),
```

₹		Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	remove_age	remove_income	remove_mile
	0	KP281	18	Male	14	Single	3	4	29562	112	20.0	34053.15	11
	1	KP281	19	Male	15	Single	2	3	31836	75	20.0	34053.15	7
	2	KP281	19	Female	14	Partnered	4	3	30699	66	20.0	34053.15	6
	3	KP281	19	Male	12	Single	3	3	32973	85	20.0	34053.15	8
	4	KP281	20	Male	13	Partnered	4	2	35247	47	20.0	35247.00	4

bins=[10000,20000,30000,40000,50000,60000,70000,80000]
labels=['<10k','10k-20k','20k-30k','30k-40k','40k-50k','50k-60k','60k+']
df['Income_bins'] = pd.cut(df['remove_income'],bins=bins,labels=labels)
df.head()</pre>

	_	
τ	7	
-	_	_

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	remove_age	remove_income	remove_mile
0	KP281	18	Male	14	Single	3	4	29562	112	20.0	34053.15	11
1	KP281	19	Male	15	Single	2	3	31836	75	20.0	34053.15	7
2	KP281	19	Female	14	Partnered	4	3	30699	66	20.0	34053.15	6
3	KP281	19	Male	12	Single	3	3	32973	85	20.0	34053.15	8
4	KP281	20	Male	13	Partnered	4	2	35247	47	20.0	35247.00	4

Joins and Probability

Marginal Joint Conditional

pd.crosstab(index=df['Gender'],columns=df['Product'])

Product	KP281	KP481	KP781	
Gender				
Female	40	29	7	
Male	40	31	33	

pd.crosstab(index = df['Gender'], columns = df['Product'], margins = True)

_	Product	KP281	KP481	KP781	All
	Gender				
	Female	40	29	7	76
	Male	40	31	33	104
	All	80	60	40	180

pd.crosstab(index=df['MaritalStatus'],columns=df['Product'])

pd.crosstab(index=df['MaritalStatus'],columns=df['Product'],margins=True)

} ▼	Product MaritalStatus	KP281	KP481	KP781	All
	Partnered	48	36	23	107
	Single	32	24	17	73
	All	80	60	40	180

32

24

pd.crosstab(index=df['MaritalStatus'],columns=df['Product'],margins=True,normalize=True)*100 #Joint Probability

₹	Product	KP281	KP481	KP781	All
	MaritalStatus				
	Partnered	26.666667	20.000000	12.777778	59.444444
	Single	17.777778	13.333333	9.444444	40.555556
	All	44.44444	33.333333	22.22222	100.000000

df['Usage'].value_counts()

```
Usage
3
```

69

52

33

5 17

Name: count, dtype: int64

pd.crosstab(index=df['Gender'],columns=[df['Product'],df['Usage']],margins=True)

→	Product	KP2	81			KP4	181			KP	781				All
	Usage	2	3	4	5	2	3	4	5	3	4	5	6	7	
	Gender														
	Female	13	19	7	1	7	14	5	3	0	2	3	2	0	76
	Male	6	18	15	1	7	17	7	0	1	16	9	5	2	104
	All	19	37	22	2	14	31	12	3	1	18	12	7	2	180

pd.crosstab(index=[df['Gender'],df['Product']],columns=df['Usage'],margins=True)

	Usage	2	3	4	5	6	7	All
Gender	Product							
Female	KP281	13	19	7	1	0	0	40
	KP481	7	14	5	3	0	0	29
	KP781	0	0	2	3	2	0	7
Male	KP281	6	18	15	1	0	0	40
	KP481	7	17	7	0	0	0	31
	KP781	0	1	16	9	5	2	33
All		33	69	52	17	7	2	180

#Joint and Conditional Probability

pd.crosstab(index=df['Gender'],columns=df['Product'],margins=True,normalize=True)*100

₹	Product	KP281	KP481	KP781	All
	Gender				
	Female	22.22222	16.111111	3.888889	42.22222
	Male	22.22222	17.222222	18.333333	57.777778
	All	44.44444	33.333333	22.22222	100.000000

Joint Probability: Probability of buying KP481 by a Female is 16%

Prob of purchasing KP281 is 44.44%.

pd.crosstab(index = df['Gender'], columns = df['Product'], margins = True, normalize = 'index')*100

→ ▼	Product	KP281	KP481	KP781	
	Gender				
	Female	52.631579	38.157895	9.210526	
	Male	38.461538	29.807692	31.730769	
	All	44.44444	33.333333	22.22222	

Conditional Probability.

What is the probability of a person buying KP481 given that its a Female - 38.16% -> P(KP481 | Female) What is the probability fo a person pd.crosstab(index=df['remove_age'],columns=df['Product'],margins=True)

	Product	KP281	KP481	KP781	All
	remove_age				
	20.0	6	4	0	10
	21.0	4	3	0	7
	22.0	4	0	3	7
	23.0	8	7	3	18
	24.0	5	3	4	12
	25.0	7	11	7	25
	26.0	7	3	2	12
	27.0	3	1	3	7
	28.0	6	0	3	9
	29.0	3	1	2	6
	30.0	2	2	3	7
	31.0	2	3	1	6
	32.0	2	2	0	4
	33.0	2	5	1	8
	34.0	2	3	1	6
	35.0	3	4	1	8
	36.0	1	0	0	1
	37.0	1	1	0	2
	38.0	4	2	1	7
	39.0	1	0	0	1
	40.0	1	3	1	5