PROYLEM 3-2001 THE STRESS STATE AT A POINT IS $U_x = -6 \text{ hsi}$, $U_y = 16 \text{ hsi}$, $U_{z} = -12 \text{ hsi}$, $U_{xy} = 9 \text{ hsi}$, $U_{yz} = 6 \text{ hsi}$, $U_{zx} = -15 \text{ hsi}$. TRANSFORM THES STATE OF STRESS 1) A POSITIVE 30° ABOUT THE X-AXIS, 2) 45° ABOUT THE NEW Z AXIS, AND FIWHUY 3) 60° ABOUT THE NEW Y-AXIS

FIVEN

1. THE STATE OF STRESS | 9 18 6 | RSi - 15 6 - 12

2. TRANSFORMATION: i) 30° x, ii) 45° ABOUT NEAT, iii) 60° ABOUT NEAD Y

Assomptions:

1. THE MATERIAL IS IN EQUILIBRIUM

FIND!

1. TRAUSFORMED STATE OF STRESS.

FIGURE:

18 lesi

-6 lesi

-17 lesi

-18 lesi

Homewerk Solution MER311: Advanced MECHANICS PROB 3-20a PG ZOF 4 SHIGLEY 10TH

SCLITICA:

WRITING THE TRANSFORMATION MATRIX FOR THE INITIAL 30° ROBATION ABOUT THE X-AXIS. FIGURE (B) ILLUSTRATES THE INITIAL TRANSFORMATION

WRITING THE SECOND TRANSFORM FOR A 45° ROTATION ABOUT THE NEW Z AXIS (Z'). FIGURE © ILLUSTRATES THIS TRANSFORMATION.

Homework Solution MER311: Advanced Mechanics PRCB 3-20a PG 3054 SHIGLEY 1074

THE THIRD AND PINAL TRANSFORMATION IS 60° ABOUT THE NEW Y-MAIS (Y"). FIGURE @ ILLUSTA HTES THAT TRANSFORMATION.

THE TOTAL TRANSFORMATION CAN BE WRITTEN AS A SINGLE TRANSFORMATION MATRIX, USING (1) 2 & 3

THE MATHEMATICAL CREMATIONS USED TO PETCHM THE CAPENATION SUGGESTED IN (4) ALONG WITH THE CALCULATION OF THE TRANSFORMED STRESS STATE ARE PERFORMED USING MATCHIS AND INCLUDED ON THE NEXT PAGE.

SUMMARY:

BECAUSE ROTATIONS ARE NOT HECTORS, THE ORDER OF THE TRANSFORMATICAL IS HERY IMPORTANT. THE MATCHE RESULT ON THE NEXT PAGE FIRSTS COMBINED THE THREE TRANSFORMATIONS INTO

4/13/16 2:51 PM

MATLAB Command Window

1 of 1

```
>> S=[-6 9 -15; 9 18 6; -15 6 -12]
```

S =

$$\begin{bmatrix} -6 & 9 & -15 \\ 9 & 18 & 6 \\ -15 & 6 & -12 \end{bmatrix} = \begin{bmatrix} \mathcal{O}_{\mathbf{X}} & \mathcal{C}_{\mathbf{YY}} & \mathcal{C}_{\mathbf{X}} \\ \mathcal{C}_{\mathbf{YY}} & \mathcal{O}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} \\ \mathcal{C}_{\mathbf{X}} & \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} \end{bmatrix} = \begin{bmatrix} \mathcal{O}_{\mathbf{X}} & \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} \\ \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} \end{bmatrix} = \begin{bmatrix} \mathcal{O}_{\mathbf{X}} & \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} \\ \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} \end{bmatrix} = \begin{bmatrix} \mathcal{O}_{\mathbf{X}} & \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} \\ \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} \\ \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} \end{bmatrix} = \begin{bmatrix} \mathcal{O}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} \\ \mathcal{C}_{\mathbf{Y}} \mathcal{C}_{\mathbf{Y}} \\ \mathcal{C}_{\mathbf{Y}} & \mathcal{C}_{\mathbf{Y}} \\ \mathcal{$$

>> T1=[1 0 0; 0 .866 .5; 0 -.5 .866]

T1 =

>> T2=[.7071 .7071 0; -.7071 .7071 0; 0 0 1]

T2 =

>> T3=[.5 0 -.866; 0 1 0 ; .866 0 .5]

T3 =

>> TT=T3*T2*T1

TT =

>> St=TT*S*TT'

St =