Legea normală (Gauss-Laplace)

Definiția 1. Variabila aleatoare X urmează legea normală (Gauss-Laplace) (X are repartiție normală) cu parametrii m și σ ($m \in R, \sigma > 0$) dacă densitatea de sa de probabilitate (repartiție) este funcția

$$f(x; m, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}, \quad \forall x \in R$$
 (1)

O variabilă aleatoare cu repartiție normală cu parametrii m și σ se notează cu $N(m, \sigma^2)$.

Funcția f de mai sus se numește densitatea de repartiție normală sau gaussiană. Observăm că f este o densitate de probabilitate, deoarece f(x)>0, $\forall x\in R$ și $\int_{-\infty}^{\infty}f(x)dx=1$. Într-adevăr, pentru a verifica ultima relație, în integrala de mai sus facem schimbarea de variabilă $\frac{x-m}{\sigma\sqrt{2}}=y$. Rezultă că $dx=\sigma\sqrt{2}dy$. Dacă $x\to-\infty$ atunci $y\to-\infty$, iar dacă $x\to\infty$ atunci $y\to\infty$. Obținem astfel

$$\int_{-\infty}^{\infty} f(x)dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^2} dy = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-y^2} dy = 1.$$

Am folosit mai sus integrala lui Euler-Poisson $\int_0^\infty e^{-y^2} dy = \sqrt{\pi}/2$.

Graficul funcției f are formă de clopot (vezi Figura 1). Dreapta de ecuație x=m este axă de simetrie pentru acest grafic, iar pentru x=m se obține valoarea maximă a funcției f, și anume $\frac{1}{\sigma\sqrt{2\pi}}$. Punctele $x=m-\sigma$ și $x=m+\sigma$ sunt puncte de inflexiune.

Figura 1