Linguistically Motivated Neural Machine Translation

Haiyue Song NICT, Kyoto, Japan

Hour Kaing
NICT, Kyoto, Japan

Raj Dabre NICT, Kyoto, Japan IIT Madras, India IIT Bombay, India

Get access to the slides here (update)

https://github.com/prajdabre/eamt24-linguistic-mt

(under construction)

Self Introduction: Haiyue **Song**

- Technical Researcher at National Institute of Information and Communications Technology (NICT)
- Research
 - O Low-Resource Machine Translation
 - O Subword Segmentation
 - O Large Language Models for Machine Translation

> haiyue.song@nict.go.jp

Self Introduction: Hour Kaing (hour.kaing@nict.go.jp)

Experience

- 2022 Present: Researcher at NICT
- 2018 2022 : Technical Researcher at NICT
- 2018 2022 : Ph.D. at Nara Institute of Science and Technology (NAIST), Japan
 - Low-Resource Morphological and Syntax Analysis
- o 2013 2014 : M.Sc at University of Grenoble 1, France

Research interests

- Machine Translation, Language Modeling, Linguistic Analysis, and Speech Processing
- Low-Resource and Linguistically-Motivated NLP
- Cross-Lingual Transfer and Multilingual Learning

Self Introduction: Raj Dabre (raj.dabre@nict.go.jp)

- Experience
 - O 2018-present: Researcher at NICT, Japan
 - Adjunct Faculty at IIT Madras
 - Visiting Researcher at IIT Bombay
 - O 2014-2018: MEXT Ph.D. scholar at Kyoto University, Japan
 - O 2011-2014: M.Tech. Government RA at IIT Bombay, India
- Research
 - O Low-Resource Natural Language Processing
 - **■** Multilingual Machine Translation: 2012-present
 - Document Level Machine Translation: 2021-
 - Large Scale Pre-training for Generation: 2021-
 - O Efficient Deep Learning:
 - Compact, flexible and fast models (2018-present)

Table of Contents

- Introduction to Neural Machine Translation (20 minutes)
- Augmenting NMT Architectures with Linguistic Features (60 minutes)
- Linguistically Motivated Tokenization and Transfer Learning (30 minutes)
- Linguistically Aware Decoding (20 minutes)
- Linguistically Motivated Evaluation (20 minutes)
- Limitations and Future Directions (10 minutes)
- Summary and Conclusion (5 minutes)

Introduction to Neural Machine Translation

Why Machine Translation is still an important task?

Inclusivity and Accessibility

Data Augmentation for Multilingual Performance Enhancement

Bridge gap between low-resource languages (HRL) and high-resource languages (HRL)

Improve language coverage (only covers ~1K of ~7K in the world)

Transfer Learning via Translation

Unlocking Multilingual Capabilities of LLMs

Evolution of Machine Translation

Rule-Based Machine Translation (RBMT) Example-Based Machine Translation (EBMT) Statistical Machine Translation (SMT)

Neural Machine Translation (NMT)

- Direct MT
- Transfer-based MT
- Interlingua MT

1950 - 1980

1980 - 1990

Word-based

Syntax-based

Phrase-based

1990 - 2015

RNNs

LSTMs

Transformers

2015 -

Why NMT? (Good for transfer learning)

Data Distribution over language pairs (Arivazhagan et al., 2019)

Quality of NMT Compared to Phrase-based SMT

Evolution of Machine Translation

Rule-Based Machine Translation (RBMT) Example-Based Machine Translation (EBMT) Statistical Machine
Translation
(SMT)

Neural Machine Translation (NMT)

- Direct MT
- Transfer-based MT
- Interlingua MT

1950 - 1980

1980 - 1990

- Word-based
- Syntax-based
- Phrase-based

1990 - 2015

- RNNs
- LSTMs
- Transformers

2015 -

This Tutorial

Neural MT Basics: Encoder-Decoder Paradigm

<u>image credits</u> <u>Sutskever et al. 2014</u>

Neural MT Basics: **Encoder-Decoder with** *Attention*

<u>image credits</u> <u>Bahdanau et al. 2015</u>

<u>image credits</u> <u>Vaswani et al. 2017</u>

Is Linguistics dead?

No not quite!

Lets re-think!

Why Linguistic Features?

Supplementary information in low-resource settings

• Reduce burden on model to learn complex features

Reuse existing tools rather than waste them

In This Tutorial

What linguistic features can be leveraged?

How do we incorporate them in models?

What is the impact of linguistic features?

Limitations and Future Directions

Limitations

- Mostly impactful in low-resource settings :-(
 - Most languages are low-resource :-)
- Identifying useful features needs exhaustive study :-(
 - In low-resource settings its fine :-)
- Interpretability analysis is hard :-(
 - Extrinsically performance improves :-)
 - But proving it intrinsically is challenging :-(
- Slow speed and error propagation :-(
 - Requires high quality feature extractors (typically available for English)

Future Directions

- Identifying approaches for high-resource settings
 - Also in multilingual settings
- Methods to auto-choose features
- Intrinsic analysis of models to show impact of features
- Speed improvement
 - Latent features as opposed to explicit features
- Incorporation in LLMs
 - Mostly open area

Summary

Summary

- Basic overview of NMT and motivation
- Methods to incorporate features at various points in the system
 - Data: tokenization and related languages
 - Model: inputs, encoder, representation, and self-attention
 - Decoding: tree-structure decoding
 - Evaluation: linguistic benchmark
- Comparison of effective practices
- Limitations and Future Work

Q&A

Thank You