Relation

Cartesian product (review)

Let
$$A=\{a_1, a_2, ...a_k\}$$
 and $B=\{b_1, b_2, ...b_m\}$.

The Cartesian product A x B is defined by a set of ordered pairs

$$\{(a_1, b_1), (a_1, b_2), \dots (a_1, b_m), \dots, (a_k, b_m)\}.$$

Cartesian product defines a product set, or a set of all ordered arrangements of elements in sets in the Cartesian product.

Binary relation

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product A x B.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where a ϵ A and b ϵ B.
- We use the notation a R b to denote (a,b) ∈ R and a K b to denote (a,b) ∉ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- Is R={(a,1),(b,2),(c,2)} a relation from A to B? Yes.
- Is $Q=\{(1,a),(2,b)\}$ a relation from A to B? No.
- Is P={(a,a),(b,c),(b,a)} a relation from A to A? Yes.

Representing Binary relation

We can graphically represent a binary relation R as follows:

if a R b then draw an arrow from a to b.

$$a \rightarrow b$$

Example:

• Let $A = \{0, 1, 2\}, B = \{u,v\}$ and

$$R = \{ (0,u), (0,v), (1,v), (2,u) \}$$

- Note: $R \subset A \times B$
- Graph:

Representing Binary relation

We can graphically represent a binary relation R as follows:

• if a R b then draw an arrow from a to b.

$$a \rightarrow b$$

Example:

• Let $A = \{0, 1, 2\}, B = \{u,v\}$ and

$$R = \{ (0,u), (0,v), (1,v), (2,u) \}$$

- Note: $R \subseteq A \times B$
- Table:

R	u	V
0	X	X
1		X
2	X	

R	u	V
0	1	1
1	0	1
2	1	0

Relation and Function

Relations represent **one to many relationships between** elements in A and B.

Example:

 What is the difference between a relation and a function from A to B?

A function defined on sets A,B. A \rightarrow B assigns to each element in the domain set A, exactly one element from B. So it is a special relation. $a \longrightarrow 1$

$$b \xrightarrow{2} 3$$

Relation on the set

Definition: A relation on the set A is a relation from A to itself.

Example 1:

- Let A = $\{1,2,3,4\}$ and $R_{div} = \{(a,b)| a divides b\}$
- What does R_{div} consist of?

•
$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

R	1	2	3	4
1	X	X	X	X
2		X		X
3			X	
4				X

Relation on the set

Definition: A relation on the set A is a relation from A to itself.

Example 2:

- Let $A = \{1,2,3,4\}$.
- Define a R_≠ b if and only if a ≠ b.

$$R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$$

R	1	2	3	4
1		X	X	X
2	X		X	X
3	X	X		X
4	X	X	X	

Binary Relation

Theorem: The number of binary relations on a set A, where

|A| = n is: 2^{n^2}

Proof:

- If | A | = n then the cardinality of the Cartesian product
 | A x A | = n².
- R is a binary relation on A if $R \subseteq A \times A$ (that is, R is a subset of A x A).
- The number of subsets of a set with k elements: 2^k
- The number of subsets of A x A is : $2^{A \times A} = 2^{n^2}$

Binary Relation

Example: Let $A = \{1,2\}$

- What is $A \times A = \{(1,1),(1,2),(2,1),(2,2)\}$
- List of possible relations (subsets of A x A):

```
\emptyset
\{(1,1)\} \{(1,2)\} \{(2,1)\} \{(2,2)\}
\{(1,1),(1,2)\} \{(1,1),(2,1)\} \{(1,1),(2,2)\}
\{(1,2),(2,1)\} \{(1,2),(2,2)\} \{(2,1),(2,2)\}
\{(1,1),(1,2),(2,1)\} \{(1,1),(1,2),(2,2)\}
\{(1,1),(2,1),(2,2)\} \{(1,2),(2,1),(2,2)\}
\{(1,1),(1,2),(2,1),(2,2)\}
1
Use formula: \mathbf{2}^4 = \mathbf{16}
```

Reflexive Relation

Definition (reflexive relation) : A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 1:

• Assume relation $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

- Is R_{div} reflexive?
- Answer: Yes. (1,1), (2,2), (3,3), and (4,4) ∈ A.

Reflexive Relation

Reflexive relation

- $R_{div} = \{(a b), if a | b\} on A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

A relation R is reflexive if and only if R has 1 in every position on its main diagonal.

Reflexive Relation

Definition (reflexive relation) : A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 2:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
- $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} reflexive?
- No. It is not reflexive since (1,1),(4,4) ∉R_{fun}.

Irreflexive Relation

Definition (irreflexive relation): A relation R on a set A is called irreflexive if $(a,a) \notin R$ for every $a \in A$.

Example 1:

 Assume relation R≠ on A={1,2,3,4}, such that a R_≠ b if and only if a ≠ b.

$$R_{\neq}$$
 = {(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

Is R_≠ irreflexive?

Answer: Yes. Because (1,1),(2,2),(3,3) and $(4,4) \notin R_{\neq}$

Irreflexive Relation

Irreflexive relation

- R \neq on A={1,2,3,4}, such that **a** R $_{\neq}$ **b** if and only if **a** \neq **b**.
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

A relation R is irreflexive if and only if R has 0 in every position on its main diagonal

Irreflexive Relation

Definition (irreflexive relation): A relation R on a set A is called irreflexive if $(a,a) \notin R$ for every $a \in A$.

Example 2:

- R_{fun} on A = {1,2,3,4} defined as:
- $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} irreflexive?
- Answer: No. Because (2,2) and (3,3) ∈ R_{fun}

Definition (symmetric relation): A relation R on a set A is called symmetric if

$$\forall a, b \in A(a,b) \in R \rightarrow (b,a) \in R$$

Example 1:

- $R_{div} = \{(a b), if a | b\} on A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} symmetric?
- Answer: No. It is not symmetric since (1,2) ∈ R but (2,1) ∉R.

Definition (symmetric relation): A relation R on a set A is called symmetric if $\forall a,b \in A(a,b) \in R \rightarrow (b,a) \in R$

Example 2:

• R_{\neq} on A={1,2,3,4}, such that a R_{\neq} b if and only if a \neq b.

$$R_{\neq}$$
={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

Is R_≠ symmetric ?

Answer: Yes. $\forall a,b \in A(a,b) \in R \rightarrow (b,a) \in R$

Symmetric relation:

• R_{\neq} on A={1,2,3,4}, such that **a** R_{\neq} **b** if and only if **a** \neq **b**.

 $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

.

0	1	1	1
1	0	1	1
1	1	0	1
1	1	1	0

A relation R is symmetric if and only if $m_{ij} = m_{ij}$ for all i,j.

Definition (symmetric relation): A relation R on a set A is called symmetric if $\forall a,b \in A(a,b) \in R \rightarrow (b,a) \in R$

Example 3:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
- $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} symmetric?
- Answer: No. For $(1,2) \in R_{fun}$ there is no $(2,1) \in R_{fun}$

Anti-symmetric Relation

Definition (anti-symmetric relation): A relation on a set A is called anti-symmetric if

• $[(a,b) \in R \text{ and } (b,a) \in R] \rightarrow a = b \text{ where } a,b \in A.$

Example 3:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
- $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} anti-symmetric?
- Answer: Yes. It is anti-symmetric

Anti-symmetric Relation

Antisymmetric relation

• relation $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}$

0	1	0	0
0	1	0	0
0	0	1	0
0	0	0	0

A relation is antisymmetric if and only if $m_{ij} = 1 \rightarrow m_{ji} = 0$ for $i \neq j$.

Transitive Relation

Definition (transitive relation): A relation R on a set A is called transitive if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 1:
- $R_{div} = \{(a b), if a | b\} on A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- Answer: Yes.

Transitive Relation

Definition (transitive relation): A relation R on a set A is calledtransitive if

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 2:
- R_{\neq} on A={1,2,3,4}, such that a $R\neq$ b if and only if a \neq b.
- $\bullet R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- Is R_≠ transitive ?
- Answer: No. It is not transitive since $(1,2) \in \mathbb{R}$ and $(2,1) \in \mathbb{R}$ but (1,1) is not an element of \mathbb{R} .

Transitive Relation

Definition (transitive relation): A relation R on a set A is called transitive if

• $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$

Example 3:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
- $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} transitive?
- Answer: Yes. It is transitive.

Equivalence Relation

Definition: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

Example: Let $A = \{0,1,2,3,4,5,6\}$ and

• R= {(a,b)| a,b ∈ A, a ≡ b mod 3} (a is congruent to b modulo 3)

Congruencies:

•
$$0 \mod 3 = 0$$
 $1 \mod 3 = 1$ $2 \mod 3 = 2$ $3 \mod 3 = 0$

• $4 \mod 3 = 1$ $5 \mod 3 = 2$ $6 \mod 3 = 0$

Relation R has the following pairs:

Equivalence Relation

Example: Let $A = \{0,1,2,3,4,5,6\}$ and

• R= $\{(a,b)| a,b \in A, a \equiv b \mod 3\}$ (a is congruent to b modulo 3) Relation R has the following pairs:

```
• (0,0)
```

• (3,3), (3,6) (6,3), (6,6) (1,1),(1,4), (4,1), (4,4)

• (2,2), (2,5), (5,2), (5,5)

Is R reflexive? Yes

Is R symmetric? Yes

Is R transitive? Yes