GRAU en Informàtica. UB-UPC

COMPUTACIÓ NUMÈRICA Pràctiques 2A, 2B, 2C - QP1718

©M. Àngela Grau Gotés

Departament de Matemàtiques. Secció FIB-FNB. Jordi Girona 1-3, Omega, 08034 Barcelona, Spain. Universitat Politècnica de Catalunya. Barcelona Tech.

10 de maig de 2018

Instruccions

Normes

Sobre les vostres entregues (si no es diu el contrari a classe):

- Escriviu un breu informe que contingui, per cada exercici/apartat:
 - 1. Enunciat.
 - 2. Estratègies emprades: precisió, criteri, iteracions, etc.
 - 3. Resultats (taula, gràfic, etc)
 - 4. Conclusions i comentaris.
 - 5. Annex amb el codi de Matlab emprat per l'exercici.
- En cas de no acabar, cal descriure els problemes tinguts.
- En cas de còpia l'entrega es qualificarà amb 0 i no podreu fer ús del mètode d'avaluació contínua.

Dates

Data límit d'entrega: 8 de juny de 2018 a les 9h. del matí

Abans del dia i hora indicats heu de penjar a la intranet de l'assignatura un fitxer que contingui tots els fitxers de Matlab necessaris per a resoldre la pràctica i un document de texte amb les explicacions segons les normes publicades.

El nom del fitxer ha d'èsser **DNI_prac_A.zip**, o **DNI_prac_B.zip** o **DNI_prac_C.zip** segons correspongui.

No s'accepten pràctiques amb retard.

No s'accepten pràctiques SENSE els fitxers d'instruccions de Matlab.

M. Àngela Grau Gotés

Professora responsable Computació Numèrica

Enunciat - A

1.1 Àlgebra lineal numèrica: mètodes iteratius

Sigui A la matriu i b el vector definits per:

$$A = \begin{pmatrix} -4 & 2 & 0 & . & . & . & 0 \\ 2 & -4 & 2 & 0 & . & . & 0 \\ 0 & 2 & -4 & 2 & 0 & . & 0 \\ 0 & 0 & . & . & . & 0 & 0 \\ 0 & . & 0 & . & . & . & 0 \\ 0 & . & . & 0 & 2 & -4 & 2 \\ 0 & . & . & . & 0 & 2 & -4 \end{pmatrix}, \qquad b = \begin{pmatrix} -2 \\ 0 \\ . \\ . \\ 0 \\ -2 \end{pmatrix}.$$

Per a tots els ordres **N** tals que $3 \le N \le 20$ es demana:

- (a) Calculeu el determinant i el nombre de condició de les matrius A.
- (b) Demostreu que $X = (1, 1, ..., 1)^t$ és solució exacte per a qualsevol N. (No Matlab)
- (c) Estudieu la convergència dels mètodes de Jacobi i Gauss-Seidel per a la resolució del sistema d'equacions lineals. Abans de calcular res, feu un gràfic d'evolució del radi espectral de la matriu d'iteració de cadascun dels mètodes estudiats en funció de N.
- (d) Trobeu la solució X del sistema Ax = b per ambdós mètodes amb com a mínim 8 decimals correctes. Quantes iteracions calen en cada pas? Expliqueu els avantages i inconvenients dels mètodes per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.

1.2 Àlgebra lineal numèrica: valors propis

Fent ús del mètode de la potència calculeu el valor propi de mòdul més gran i el valor propi de mòdul més petit de la matriu A definida per:

- (a) Cerca documentació sobre *les matrius de Wilkinson*. Escriu un breu resum del que has entès (màxim 1/2 full). Dóna les teves fonts bibliogràques.
- (b) Apliqueu el mètode de la potència per trobar el valor propi de mòdul més gran de la matriu A, fent ús de l'aritmètica de coma flotant de Matlab amb $tol_{min} = 10^{-8}$.
- (c) Apliqueu el mètode de la potència per trobar el valor propi de mòdul més petit de la matriu A, fent ús de l'aritmètica de coma flotant de Matlab amb $tol_{min} = 10^{-8}$.

1.3 Integració numèrica: Àrea dins una regió tancada

Doneu una aproximació de l'àrea de la regió delimitada per la vostra ma.

Referència: http://www.mathworks.es/moler/chapters.html

- (a) Obteniu una imatge de la vostra ma. Seguiu les indicacions de l'exercici 3.4 de la pàgina 20 del capítol "Interpolation" de Cleve Moler.
- (b) Obteniu per interpolació la corba que delimita la imatge de la ma seguint els indicacions de l'exercici 3.4 i l'exercici 3.5 de les pàgines 20-21-22. Responeu les preguntes que us formulen en els dos exercicis.
- (c) Què tan gran és la teva mà? Calcula l'àrea que ocupa la teva mà. Segueix les indicacions i respon les preguntes de l'exercici 6.23 de les pàgines 19-20 del capítol "Quadrature" de Cleve Moler.

1.4 Aproximació de dades

Les dades de la taula següent estan relacionats amb l'esperança de vida al nèixer dels ciutadants de dos païssos

any	1975	1980	1985	1990	1995	2000	2005	2010
Grècia								
República Centreafricana	45.9	48.9	49.8	48.7	46.2	43.9	44.4	47.5

Es demana:

(a) Useu el polinomi interpolador de grau 7 per estimar l'esperança de vida el 1970, 1992, 2007 per cada pais. Compareu els valors obtinguts, amb les xifres oficials per cada pais, que són:

any	1970	1992	2007	2015
Grecia	70.9	77.4	79.4	81.6
República Centreafricana	41.9	47.8	45.5	51.4

- (b) Busqueu un polinomi del grau escaient per mínims quadrats. Justifiqueu l'elecció mostrant una cota de l'error d'aquest i de la resta amb els que heu provat. Compareu els valors obtinguts, amb les xifres oficials per cada pais.
- (c) Extrapoleu un valor per l'any 2015 pels dos models obtinguts per cada pais. Recordant les dades oficials, i els resultats obtinguts els models estudiats són vàlids per estimar amb precissió l'esperança de vida per l'any 2015?
- (d) Feu una gràfica on apareguin les dades (representats per una rodona) i les totes solucions trobades per pais.

Comentari: Numèricament és millor que considereu la taula inicial amb abscisses $0, 1, \dots, 7$.

Enunciat - B

2.1 Àlgebra lineal numèrica: mètodes iteratius

Siguin $A(N)=(a_{ij})_{N\times N}$ i $B(N)=(b_{i1})_{N\times 1}$ la matriu i el vector d'ordre N definits per

$$a_{ij} = \begin{cases} -1 & |i-j| \le 2, \\ 5 & i = j, \\ 0 & |i-j| > 2, \end{cases} \quad i \quad b_{i1} = \begin{cases} 3 & i = 1, N, \\ 2 & i = 2, N-1, \\ 1 & i \ne 1, 2, N-1, N, \end{cases}$$

per a
$$i = 1, ..., N$$
, $j = 1, ..., N$.

Per a tots els ordres ${\bf N}$ tals que $6 \le N \le 30$ es demana:

- (a) Calculeu el determinant i el nombre de condició de les matrius A.
- (b) Demostreu que $X = (1, 1, ..., 1)^t$ és solució exacte per a qualsevol N. (**No Matlab**)
- (c) Estudieu la convergència dels mètodes de Jacobi i Gauss-Seidel per a la resolució del sistema d'equacions lineals. Abans de calcular res, feu un gràfic d'evolució del radi espectral de la matriu d'iteració de cadascun dels mètodes estudiats en funció de N.
- (d) Trobeu la solució X del sistema Ax = b per ambdós mètodes amb com a mínim 8 decimals correctes. Quantes iteracions calen en cada pas? Expliqueu els avantages i inconvenients dels mètodes per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.

2.2 Àlgebra lineal numèrica: valors propis

Fent ús del mètode de la potència calculeu el valor propi de mòdul més gran i el valor propi de mòdul més petit de la matriu A definida per:

$$A = \left(\begin{array}{cccccccc} -3 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 \end{array} \right).$$

- (a) Cerca documentació sobre *les matrius de Wilkinson*. Escriu un breu resum del que has entès (màxim 1/2 full). Dóna les teves fonts bibliogràques.
- (b) Apliqueu el mètode de la potència per trobar el valor propi de mòdul més gran de la matriu A, fent ús de l'aritmètica de coma flotant de Matlab amb $tol_{min} = 10^{-8}$.
- (c) Apliqueu el mètode de la potència per trobar el valor propi de mòdul més petit de la matriu A, fent ús de l'aritmètica de coma flotant de Matlab amb $tol_{min} = 10^{-8}$.

2.3 Integració numèrica: Àrea dins una regió tancada

Doneu una aproximació de l'àrea de la regió delimitada per la vostra ma.

Referència: http://www.mathworks.es/moler/chapters.html

- (a) Obteniu una imatge de la vostra ma. Seguiu les indicacions de l'exercici 3.4 de la pàgina 20 del capítol "Interpolation" de Cleve Moler.
- (b) Obteniu per interpolació la corba que delimita la imatge de la ma seguint els indicacions de l'exercici 3.4 i l'exercici 3.5 de les pàgines 20-21-22. Responeu les preguntes que us formulen en els dos exercicis.
- (c) Què tan gran és la teva mà? Calcula l'àrea que ocupa la teva mà. Segueix les indicacions i respon les preguntes de l'exercici 6.23 de les pàgines 19-20 del capítol "Quadrature" de Cleve Moler.

2.4 Aproximació de dades

Les dades de la taula següent estan relacionats amb l'esperança de vida al nèixer dels ciutadants de dos païssos

any	1975	1980	1985	1990	1995	2000	2005	2010
Belice	67.7	69.6	71.1	69.6	68.4	69.0	69.8	70.3
Espanya	73.3	75.3	76.2	76.8	78.0	79.0	80.2	81.6

Es demana:

(a) Useu el polinomi interpolador de grau 7 per estimar l'esperança de vida el 1970, 1992, 2007 per cada pais. Compareu els valors obtinguts, amb les xifres oficials per cada pais, que són:

any	1970	1992	2007	2015
Belize	65.5	70.7	69.5	70.3
Espanya	72.0	77.4	80.9	83.4

- (b) Busqueu un polinomi del grau escaient per mínims quadrats. Justifiqueu l'elecció mostrant una cota de l'error d'aquest i de la resta amb els que heu provat. Compareu els valors obtinguts, amb les xifres oficials per cada pais.
- (c) Extrapoleu un valor per l'any 2015 pels dos models obtinguts per cada pais. Recordant les dades oficials, i els resultats obtinguts els models estudiats són vàlids per estimar amb precissió l'esperança de vida per l'any 2015?
- (d) Feu una gràfica on apareguin les dades (representats per una rodona) i les totes solucions trobades per pais.

Comentari: Numèricament és millor que considereu la taula inicial amb abscisses $0, 1, \dots, 7$.

Enunciat - C

3.1 Sistemes lineals: mètodes iteratius

Siguin $A(N) = (a_{ij})_{N \times N}$ i $B(N) = (b_{i1})_{N \times 1}$ la matriu i el vector d'ordre N definits per

$$a_{ij} = \begin{cases} ij & |i-j| \le 3, \\ 2 & i=j, \\ 0 & |i-j| > 3, \end{cases}$$
 i $b_{i1} = \begin{cases} 1 & i=1, \\ 0 & i \ne 1, \end{cases}$

per a
$$i = 1, ..., N$$
, $j = 1, ..., N$.

Es demana:

- (a) Calculeu el determinant i el nombre de condició de les matrius A(N). Comproveu la simetria d'aquestes matrius. Preneu a $\mathbf{N} = \mathbf{3}, ..., \mathbf{30}$.
- (b) Estudieu la convergència dels mètodes de Jacobi i Gauss-Seidel per a la resolució del sistema d'equacions lineals. Abans de calcular res, feu un gràfic d'evolució del radi espectral de la matriu d'iteració de cadascun dels mètodes estudiats en funció de N.
- (c) Trobeu la solució X del sistema Ax = b per ambdós mètodes amb com a mínim 8 decimals correctes. Quantes iteracions calen en cada pas? Expliqueu els avantages i inconvenients dels mètodes per aquest cas concret, expliqueu les desviacions de la solució que s'obtenen.

3.2 Àlgebra lineal numèrica: valors propis

Fent ús del mètode de la potència calculeu el valor propi de mòdul més gran i el valor propi de mòdul més petit de la matriu A definida per:

$$A = \begin{pmatrix} 3 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -3 \end{pmatrix}.$$

- (a) Cerca documentació sobre *les matrius de Wilkinson*. Escriu un breu resum del que has entès (màxim 1/2 full). Dóna les teves fonts bibliogràques.
- (b) Apliqueu el mètode de la potència per trobar el valor propi de mòdul més gran de la matriu A, fent ús de l'aritmètica de coma flotant de Matlab amb $tol_{min} = 10^{-8}$.
- (c) Apliqueu el mètode de la potència per trobar el valor propi de mòdul més petit de la matriu A, fent ús de l'aritmètica de coma flotant de Matlab amb $tol_{min} = 10^{-8}$.

3.3 Integració numèrica: Àrea dins una regió tancada

Doneu una aproximació de l'àrea de la regió delimitada per la vostra ma.

Referència: http://www.mathworks.es/moler/chapters.html

- (a) Obteniu una imatge de la vostra ma. Seguiu les indicacions de l'exercici 3.4 de la pàgina 20 del capítol "Interpolation" de Cleve Moler.
- (b) Obteniu per interpolació la corba que delimita la imatge de la ma seguint els indicacions de l'exercici 3.4 i l'exercici 3.5 de les pàgines 20-21-22. Responeu les preguntes que us formulen en els dos exercicis.
- (c) Què tan gran és la teva mà? Calcula l'àrea que ocupa la teva mà. Segueix les indicacions i respon les preguntes de l'exercici 6.23 de les pàgines 19-20 del capítol "Quadrature" de Cleve Moler.

3.4 Aproximació de dades

Les dades de la taula següent estan relacionats amb l'esperança de vida al nèixer dels ciutadants de dos païssos

any	1975	1980	1985	1990	1995	2000	2005	2010
Grecia	72.3	73.6	75.1	77.0	77.6	77.9	79.2	80.4
Espanya	73.3	75.3	76.2	76.8	78.0	79.0	80.2	81.6

Es demana:

(a) Useu el polinomi interpolador de grau 7 per estimar l'esperança de vida el 1970, 1992, 2007 per cada pais. Compareu els valors obtinguts, amb les xifres oficials per cada pais, que són:

any	1970	1992	2007	2015
Grècia	70.9	77.4	79.4	81.6
Espanya	72.0	77.4	80.9	83.4

- (b) Busqueu un polinomi del grau escaient per mínims quadrats. Justifiqueu l'elecció mostrant una cota de l'error d'aquest i de la resta amb els que heu provat. Compareu els valors obtinguts, amb les xifres oficials per cada pais.
- (c) Extrapoleu un valor per l'any 2015 pels dos models obtinguts per cada pais. Recordant les dades oficials, i els resultats obtinguts els models estudiats són vàlids per estimar amb precissió l'esperança de vida per l'any 2015?
- (d) Feu una gràfica on apareguin les dades (representats per una rodona) i les totes solucions trobades per pais.

Comentari: Numèricament és millor que considereu la taula inicial amb abscisses $0, 1, \dots, 7$.

Bibliografia

- [1] Abramowitz, M. and Stegun, I.A. Hanbook of Mathematical Functions. Ed. Dover.
- [2] Grau, Miquel i Noguera, Miquel. Càlcul Numèric. Edicions U.P.C. 1993
- [3] Forshythe, G.E.; Malcom, M.A.; Moler, C. B.: Computer Methods for Mathematical Computations. Prentice Hall. 1977
- [4] Moler, Cleve, Numerical Computing with MATLAB. Electronic edition: The MathWorks, Inc., Natick, MA, 2004.

http://www.mathworks.es/moler/chapters.html

- [5] Help online de Matlab.
- [6] Banco Mundial Esperanza de vida al nacer, total (años)

https://datos.bancomundial.org/

https://datos.bancomundial.org/indicador/SP.DYN.LEOO.IN