Universidade Federal do Paraná

Programa de Pós-Graduação em Engenharia Elétrica

TE815 – Rede de Comunicação de Dados

Prof. Dr. Eduardo Parente Ribeiro

Aluno: Rafael Domingues Gonçalves

1. INTRODUÇÃO

A atividade proposta consiste em simular uma fonte que envia pacotes de tamanho fixo com

intervalo aleatório de distribuição exponencial, onde o fator de utilização u (Rin/Rout) varia de u=[0.5,

0.8, 0.9, 0.95] e, para cada um dos fatores, realizar ao menos sete simulações a fim de obter mais amostrar

e calcular posteriormente o intervalo de confiança. Para a seguinte atividade, foi utilizado o software

OMNeT++ para obter os dados e o Matlab para simular os gráficos desejados.

Deseja-se apresentar como resultado desta atividade um gráfico relacionando a curva obtida para

uma taxa de utilização teórica que varia de 0.1 até 0.99 a um passo de 0.01 com os valores obtidos das

médias das simulações tal como os respectivos intervalos de confiança.

2. DESENVOLVIMENTO

A fim de validar os resultados provenientes das simulações, será calculado e exibido um gráfico para

os fatores de utilização partindo de 0 indo até 0.99 com um passo de 0.01. Tendo em vista que em um

sistema M/D/1 o tempo de serviço é fixo, foi adotado para tal experimento o tempo de 0.025s. A equação

utilizada para calcular o atraso médio em fila para um sistema M/D/1 é demonstrada pela equação

seguinte:

$$E[w] = \frac{u * s}{2 * (2 - u)}$$

Onde:

s = Tempo de Serviço.

u = Taxa de Utilização (Rin/Rout).

Após calcular o tempo de atraso em fila teórico para cada um dos 100 valores de u, o gráfico contendo o resultado com os mesmos pode ser observado na Figura 1.

Figura 1-Curva teórica.

Como dito anteriormente, a simulação proposta pela atividade foi desenvolvida utilizando o ambiente OMNeT++. Nele, foi utilizado o exemplo de fila FIFO que já acompanha o código fonte do mesmo, realizando apenas algumas alterações no documento "omnetpp.ini" (Figura 2) para implementar todas as rotinas desejadas.

Um detalhe que deve ser observado é com relação a geração dos valores aleatórios utilizados na simulação. Para que a cada nova simulação fosse gerada uma nova combinação de números aleatórios, foi alterado o tipo da geração dos números (da padrão que é do tipo "cMersenneTwister" para cLCG32") e também implementada uma variáveis que auxilia na troca do valor referente a semente utilizada para gerar a sequência de números aleatórios.

Figura 2-Script omnet++ alterado.

Observa-se que o valores fornecidos para a exponencial, que indica o tempo de envio dos pacotes, foram obtidos a partir da relação entre o tempo de serviço e o fator de utilização descrita por (Castro, 2013), que pode ser observada a seguir:

$$sendlaTime = \frac{serviceTime}{u}$$

Como dito anteriormente, os valores calculados do sendlaTime foram inseridos como variável de entrada para a exponencial presente no arquivo "omnetpp.ini" e os mesmos estão disposto na tabela a seguir:

Taxa de utilização	sendlaTime
0.50	0.05000
0.80	0.03125
0.90	0.02778
0.95	0.02631

Para os testes, as simulações foram executadas ao longo de 120 segundos, e os valores extraídos foram os da variável *queueingTime:mean*. A Figura 3 apresenta os valores do tempo médio de fila em função dos respectivos valores de taxa de utilização.

Figura 3-Curva com valores da simulação.

Estando em posse dos dados adquiridos a partir da simulação realizada no OMNeT++, foi possível calcular o intervalo de confiança para o estimador da média. Primeiramente calculou-se a média dos valores referente a cada uma das taxas de utilização. Em seguida, foi possível calcular o desvio padrão entre outros dados fundamentais para o êxito do trabalho, como descrito por (RIBEIRO, 2008). Em seguida, será exibido um gráfico com a curva teórica calculada previamente, juntamente com os valores das médias e desvios padrões obtidos através das simulações.

Figura 4-Comparção entre curvas obtidas.

Em seguida está presente o *script* gerado para exibir os gráficos utilizados para a composição deste relatório tal como uma tabela apresentando um resumo dos valores obtidos.

Texa de									
Utilização (u)	Sim 1	Sim 2	Sim 3	Sim 4	Sim 5	Sim 6	Sim 7	Média	Teórico
0.5	0,011673	0,011919	0,012191	0,012915	0,012932	0,013094	0,013569	0,012613	0.0125
0.8	0,011919	0,012915	0,013094	0,044527	0,048302	0,05094	0,060752	0,034636	0.05
0.9	0,012191	0,013094	0,045174	0,05094	0,080268	0,105193	0,131975	0,062691	0.1125
0.95	0,012915	0,044527	0,05094	0,10206	0,123984	0,196524	0,3527	0,126236	0.2375

```
%% Script taxa de confiança M/D/1 %%
close all
clear all
clc
format long
%declaracao de variaveis
P = .95;
L=7;
u=[.5 .8 .9 .95];
C=size(u,2);
%% Cálculo da Curva Teórica
serviceTime=0.025;
ut=0:0.01:0.99;
Ew=((ut*serviceTime)./(2*(1-ut)));
figure
plot(ut, Ew)
title('Atraso médio na fila -TEÓRICO-')
xlabel('Utilização (u)')
ylabel('Atraso médio (Ew)')
%% Gráfico da curva simulada
EwS7=load('data.txt');
media=zeros(C,1);
d=zeros(C,1);
%calculo da media e desvio padrao
for j=1:C
    media(j,1) = mean(EwS7(j*(1:L)));
    d(j,1) = std(EwS7(j*(1:L)));
end
%calcula o desvio padrao do estimador
s=d/sqrt(L); % com desvio estimado
%calcula os intervalos de confianca
alfa=1-P;
z=tinv(alfa/2, L-1);
ci=[media'-z*s'; media'+z*s'];
figure
plot(u, media, '-ro')
hold on
title ('Atraso médio na fila -SIMULAÇÃO-')
xlabel('Utilização (u)')
```

```
ylabel('Atraso médio (Ew)')
      %% Comparação entre curvas obtidas
      figure
     plot(ut,Ew,u,media','ro')
     hold on
     %plota intervalos de confiança
     plot([u; u],ci,'k-+')
     hold on
     %verifica quais intervalos nao contem a media teorica e plota em vermelho
     fora = (ci(2,:)>u(1,:)) | (ci(1,:)<u(1,:));
     [f i]=find(fora>0);
     plot([u(i); u(i)],ci(:,i),'r-+')
     Confianca=P*100
     Nfora=sum(fora)
     Acertos=(1-Nfora/C)*100
     msg=sprintf('%d intervalos nao contem a media. %2.0f%% dos intervalos
contem a media', Nfora, Acertos);
     text(.32,.3,msg)
      title('Atraso médio na fila -COMPARAÇÃO-')
     xlabel('Utilização (u)')
      ylabel('Atraso médio (Ew)')
      axis([0.3,1,0,0.6])
```

3. CONCLUSÃO

A partir dos resultados obtidos foi possível perceber que, com o tempo de serviço utilizado, os valores que representam as médias referente a cada uma das taxas de utilização, não estão contidas dentro do intervalo de 95% de confiança proposto pelo exercício.

Para este trabalho, como foi alterado o método de geração dos números aleatórios, vale ressaltar que futuramente deve-se verificar se tal modificação pode ter gerado impactos significativos nos resultados.

REFERÊNCIA

SOUZA, D. M. de. **Simulação do Stream Control Transmission Protocol** (SCTP)

no OMNeT++. 2013. 64 f. Trabalho de Conclusão de Curso (Engenharia Elétrica)

Setor de Tecnologia, Universidade Federal do Paraná, Curitiba, 2013.

Artigo OMNet++ sobre arquitetura de números aleatórios. Disponível em:

< https://omnetpp.org/component/content/article/8-news/3533>. Acesso em 17 de julho de 2017.

RIBEIRO, E. P. Intervalo de Confiança para o Estimador da Média. 2008. Universidade Federal do Paraná, Curitiba, 2008.