

GENERAL SCIENCE EXPLORER

विज्ञान-प्रौद्योगिकी

WWW.SARKARIHELP.COM

For All One Day Exams

By: Ajay Singh

समीर प्लाजा, मनमोहन पार्क, कटरा, बांसमण्डी के सामने, इला० 0532-3266722, 9956971111, 9235581475

WWW.SARKARIHELP.COM

टीम को

यह Notes प्रस्तुत करते हुए बड़ी खुशी की अनुभूति हो रही है। यह Notes सभी One Day Exam के पैटर्न को ध्यान में रखकर बनाया गया है। आज बदलते हुए One Day पैटर्न को देखते हुए यह Notes, One Day Exam के अभ्यर्थियों के लिए मददगार साबित होगा। इसमें अनावश्यक भ्रमपूर्ण सामाग्रियों से परहेज किया गया है और हर एक शब्द को आपके लिए उपयोगी बनाने की कोशिश की गयी है।

इसमें मैप, चार्ट और ग्राफ के जिरए विषय को अति सरल बनाया गया है। यह Notes क्लास लेक्चर को Supplement करने के लिए बनाया गया है। यह संपादन कार्य क्लास लेक्चर के साथ मिलकर संपूर्ण होता है और यह क्लास लेक्चर को सुदृण करने के लिए बनाया गया है। बिना क्लास लेक्चर के यह Notes अधूरा है।

इसमें बाजारू सामाग्रियों के सभी त्रुटियों को दूर किया गया है और अन्य प्रकार की त्रुटियों को सुधारने की पूरी कोशिश की गयी है यदि इसके बाद भी कोई मानवीय या मशीनी गलती हुई हो तो संस्था क्षमाप्रार्थी है।

इसके अतिरिक्त यह Notes आप सभी के सहयोग से बना है और इसमें किसी भी प्रकार का सुझाव सदैव स्वीकार्य है। संस्था अपने छात्रों से यह उम्मीद करता है कि छात्र इस Notes का पूरा उपयोग करेगा और संस्था के उम्मीदों पर खरा उतरेगा क्योंकि आप वहाँ पढ़ते हैं 'जहाँ सेलेक्शन एक जिद है'।

धन्यवाद

विज्ञान-प्रौद्योगिकी

(Science and Technology)

By: अजय सिंह (M.Sc., B.Ed.)

'विज्ञान एवं प्रौद्योगिकी' किसी भी प्रतियोगी परीक्षा के 'सामान्य अध्ययन' प्रश्न पत्र का एक प्रमुख भाग होता है। सामान्य अध्ययन के तहत पूछे जाने वाले प्रश्नों में प्रायः सर्वाधिक प्रश्न– लगभग 20 से 25% इसी भाग पर आधारित होते हैं। किन्तु इस भाग के प्रश्न जहाँ 'विज्ञान वर्ग' के छात्रों के लिए अपेक्षाकृत सरल होते हैं, वहीं कला तथा वाणिज्य वर्ग के छात्रों के लिए कठिन।

विज्ञान Science : किसी भी द्रव्य का सुव्यवस्थित, सूसंगठित एवं क्रमबद्ध अध्ययन करना विज्ञान कहलाता है।

द्रव्य (Matter) : संसार की वे सभी वस्तुएँ जो स्थान घेरती हैं जिनमें भार होता है और जिसकाआकलन हम अपनी ज्ञानेन्द्रियों (आँख, नाक, कान, तवचा, जिह्वा) द्वारा कर लेते हैं उन्हें द्रव्य कहा जाता है।

द्रव्य की अवस्थाएँ :

ठोस : कुर्सी, पंखा, मारकर द्रव्य: चाय, जल, काफी गैस : मीथेन, एथेन, CO2

प्लाज्मा : शहद, ग्लीसरीन, दही, रुधिर

'विज्ञान एवं प्रौद्योगिकी' : का अध्ययन 3 भागों में विभक्त कर किया जाता है- 1. जीव विज्ञान (Biological Science), 2. भौतिक विज्ञान (Physical Science) एवं 3. प्रौद्योगिकी (Technology) |

भौतिक विज्ञान के अन्तर्गत प्रकृति के निर्जीव पदार्थों के विभिन्न पहलुओं का अध्ययन किया जाता है तथा जीव विज्ञान के अन्तर्गत सभी जीवित पदार्थों तथा जीवों के विविध पहलुओं का अध्ययन किया जाता है। इन्हें पुनः दो भागों में विभक्त किया जाता है। भौतिक विज्ञान को- 1. भौतिक विज्ञान (Physics) तथा 2. रसायन विज्ञान (Chemistry) में एवं जीव विज्ञान को 1. जन्त् विज्ञान (Zoology) तथा 2. वनस्पति विज्ञान (Botany)।

चूंकि '**'सामान्य विज्ञान''** पर पूछे जाने वाले कुछ प्रश्नों के 75 से 80% प्रश्न जीव विज्ञान (जन्तु विज्ञान एवं वनस्पति विज्ञान) पर आधारित होते हैं, इसलिए हम इस भाग पर ही विस्तृत सामग्री प्रस्तुत कर रहे हैं।

Affairs

lobs

SSC

SSC

_ जीव विज्ञान (Biology)

विज्ञान की वह शाखा, जिसके अन्तर्गत प्रत्येक प्रकार के जीवन का अध्ययन किया जाता है, 'जीव विज्ञान' कहलाती है। इस शब्द का सर्वप्रथम प्रयोग फ्रांसीसी वैज्ञानिक लैमार्क (lamarck) तथा जर्मन वैज्ञानिक ट्रैविरेनस (Treviranus) ने 1802 में किया था। 'जीव विज्ञान' शब्द ग्रीक के 'Biology' शब्द का हिन्दी रूपान्तरण है। Biology ग्रीक भाषा के दो शब्दों Bios तथा Logos से बना है, जिसमें Bios का अर्थ है- Life (जीवन) तथा Logos का अर्थ है-Study (अध्ययन)। इस प्रकार 'जीव विज्ञान' का अर्थ है- जीवन का अध्ययन (Study of Life) अर्थात इस विषय के अन्तर्गत सभी सजीव पदार्थी तथा जीवों के समस्त पहलुओं का क्रमबद्ध, गहन एवं सूक्ष्म अध्ययन किया जाता है। पृथ्वी पर जीवन दो प्रकार का है– एक 'जन्तु जीवन' (Animal life) तथा दूसरा 'पादप जीवन' (Plant life)। इसी आधार पर जीव जगत को दो भागों में विभक्त किया जाता है— (i) जन्तु जगत (Animal kingdom) तथा (ii) पादप जगत' (Plant kingdom)। अंग्रेजी में जन्तू जगत के लिए Fauna तथा पादप जगत के लिए Flora शब्द का भी प्रयोग किया जाता है। यद्यपि Fauna का प्रयोग किसी क्षेत्र विशेष या जीव वैज्ञानिक काल विशेष के जन्तुओं के लिए तथा इसी प्रकार Flora शब्द का प्रयोग भी किसी क्षेत्र विशेष या काल विशेष (Geological period) के पादपों के लिए किया जाता है।

जीव विज्ञान का जनक अरस्तू को माना जाता है। जीव विज्ञान शब्द को 1802 ई. में लैमार्क और ट्रेविरेनस ने दिया। वनस्पति विज्ञान का जनक थियोफ्रेस्टस को माना जाता है।

'जीव विज्ञान' का अध्ययन 2 भागों में विभक्त कर किया जाता है– (i) जन्तु विज्ञान (Zoology) तथा (ii) वनस्पति विज्ञान (Botany)।

जन्तु विज्ञान (Zoology)

जीव विज्ञान की वह शाखा, जिसके अन्तर्गत जन्तुओं की संरचना तथा उनकी विभिन्न क्रियाओं का अध्ययन किया जाता

है, 'जन्तु विज्ञान' कहलाती है। जन्तु विज्ञान ग्रीक भाषा के Zoology शब्द का हिन्दी रूपान्तरण है। Zoology दो शब्दों Zoon तथा Logos से बना है, जिसमें Zoon का अर्थ है-'जन्त्' तथा Logos का अर्थ है अध्ययन। अर्थात् Zoology शब्द का अर्थ है- 'जन्तु जगत का अध्ययन'। प्रख्यात दार्शनिक अरस्तू (Aristotle) प्रथम ऐसे व्यक्ति थे, जिन्होंने जन्तु इतिहास (Historia Animalium) नामक पुस्तक लिखी, जिसमें उन्होंने जन्तुओं की रचना, स्वभाव, जनन आदि के बारे में वर्णन किया तथा जन्तुओं का वर्गीकरण भी किया। इसलिए अरस्तू को 'जन्त विज्ञान का पिता' (Father of Zoology) कहा जाता है। किन्तु स्वीडिश वैज्ञानिक- 'कैरोल्स लीनियस' (Carolus Linnaeus) ने 'द्वि-नाम-पद्यति' (Binomial Nomenclature) को जन्म दिया तथा अपनी पुस्तक- 'सिस्टिमा नेचुरी' (Systema Naturae) में जीव-जन्तुओं का आधुनिक वर्गीकरण किया। इसलिए इन्हें (लीनियस को), आधुनिक वर्गिका की पिता माना जाता है।

वनस्पति विज्ञान (Botany)

जीव की वह शाखा, जिसके अन्तर्गत पादपों की संरचना तथा उनकी विभिन्न जैविक क्रियाओं का अध्ययन किया जाता है, **'वनस्पति विज्ञान'** कहलाती है। वनस्पति विज्ञान की ग्रीक भाषा के Botane शब्द का हिन्दी रूपान्तरण है, जिसका अर्थ है– बूटी या पादप, चूँकि पादप जगत का वर्गीकरण उनके गुण, रूप और परिमाण (Size) के आधार पर सर्वप्रथम 'थियोफ्रेस्टस' (Theophrastus) ने किया, इसलिए इन्हें 'वनस्पति विज्ञान का **जनक'** (Father of Botany) माना जाता है। हम यहाँ जन्त् विज्ञान एवं वनस्पति विज्ञान का क्रमशः अध्ययन करेंगे।

BANK, RAILWAY, B.Ed., UP सिपाही

डला0 9235581475 पाक, कटरा,

Jobs

सामान्य विज्ञान

भाग-1: जन्तु विज्ञान (Zoology)

सजीवों का संगठन (Organisation In Living Organism)

कोशिका (Cell)

कोशिका की खोज :

कोशिका (Cell) किसी जीव की 'संरचनात्मक' एवं 'कार्यात्मक' इकाई (Structural and Functional Unit) होती है। इसकी सर्वप्रथम खोज 'राबर्ट हुक' ने स्वनिर्मित 'माइक्रोस्कोप' से की थी (1665 में)। सजीव माध्यम में कोशिका की खोज 1683 ई. में **एन्टोनीवॉन ल्युवेनहॉक** नामक वैज्ञानिक ने किया। कोशिका को 'प्रकाश सूक्ष्मदर्शी' (Light Microscope) द्वारा देखा जा सकता है। इलेक्ट्रॉन सूक्ष्मदर्शी की खोज नॉल एवं रस्का नामक वैज्ञानिकों ने किया।

कोशिकाएं 2 प्रकार की होती हैं— (i) अविकसित कोशिका (Prokariotic Cell) तथा (ii) विकसित कोशिका (Eukariotic

कोशिका के भाग (Parts of Cell) :

कोशिका के मुख्यतया 2 भाग होते हैं- (i) कोशिका भित्ति या कोशाभित्ति (Cell Wall) तथा (ii) जीव द्रव्य (Protoplasm) |

'कोशिका भित्ति' किसी भी कोशिका का वाह्य आवरण बनाती हैं यह सिर्फ 'वनस्पति कोशिका' में पायी जाती है। यह 'सेल्यूलोज' (Cellulose) की बनी होती है। जबकि जन्तु कोशिका की वाह्य झिल्ली प्लाज्मा झिल्ली (Plasma Membrane) कहलाती है। यह 'लाइपो प्रोटीन' की बनी होती है।

'जीव द्रव्य'— किसी भी कोशिका के कोशाभित्ति को छोडकर शेष सम्पूर्ण भाग 'जीवद्रव्य' (Protoplasm) कहलाता है। यह 'जीवन का भौतिक आधार' (Physical Basis of Life) है। 'जीव द्रव्य' (Protoplasm) को 2 भागों में विभाजित किया गया है— (1) **'कोशिका द्रव्य'** (Cytoplasm) तथा (2) **'केन्द्रक'** (Nucleus) |

1. कोशिका द्रव्य (Cytoplasm)

'केन्द्रक' और 'प्लाज्मा मेम्ब्रेन' (Plasma Membrane – यह जन्तु कोशिकाओं का वाह्य आवरण है) के बीच का भाग 'कोशाद्रव्य' या 'कोशिकाद्रव्य' कहलाता है। कोशिका के सभी आवश्यक अंग इसी भाग में पाये जाते हैं. जो कि 'कोशिका अंगक' (Cell orgenelles) कहलाते हैं। 'कोशिका अंगक' निम्न

- 1. अन्तःप्रद्रव्यीय जालिका (Endoplasmic Reticulam)-यह कोशिका का 'कंकाल तन्त्र' कहलाता है। अर्थात् इसका मुख्य कार्य है कोशिका को ढाँचा तथा मजबूती प्रदान करना। इस पर 'राइबोसोम्स' (Ribosomes) लगे होते हैं, जो 'प्रोटीन संश्लेषण' का कार्य करते हैं।
- 2. माइटोकांड्रिया (Mitochondria)– इस कोशिका का 'ऊर्जा गृह' (Power House) कहते हैं। क्योंकि इसमें भोजन (सिर्फ कार्बोहाइड्रेट) का आक्सीकरण' होता है। भोजन के ऑक्सीकरण को कोशिकीय स्वशन या अन्तः स्वशन (Internal Respiration) कहते हैं। भोजन के ऑक्सीकरण के फलस्वरूप ही ऊर्जा **ए.टी.पी**. के रूप में बनती तथा संगृहीत होती है।

lobs

SSC

3. लवक (Plastids)- ये 3 प्रकार के होते हैं-

- (i) अवर्णीलवक (leucoplast)- ये पौधे के रंगहीन भागों में पाये जाते हैं और इनका मुख्य कार्य भोजन का संचय करना है। जैसे– आलू, शकरकंद, गन्ना आदि।
- (ii) वर्णी लवक (Chromoplast)- ये पौधों के रंगीन भागों में पाये जाते हैं। जैसे-फलों एवं पृष्पों के रंगीन भाग में। टमाटर का लाल रंग। **'लाइकोपीन'** के कारण होता है। इसी प्रकार गाजर व मिर्च का रंग 'कैरोरीन' के कारण, चुकन्दर का 'बिटानीन' ओर बैगन का रंग **'जैन्थोसाइनीन'** के कारण होता है अर्थात् 'लाइकोपीन', कैरोटीन, बिटानीन, जैन्थोसाइनीन एक प्रकार के 'वर्णी (Chromoplast) है।
- (iii) हरित लवक (Chloroplast)- इसे पादप कोशिका का रसाई घर (Kitchen room) कहा जाता है। पौधों का हरा रंग इसी के कारण होता हरित लवक का मुख्य (Component) क्लोरोफिल (Chlorophyll) है, जिसमें मैग्नीशियम धातु पायी जाती है। इसका मुख्य कार्य सूर्य के प्रकाश की उपस्थिति तथा वायु मण्डल के कार्बन डाईऑक्साइड उपस्थिति में भोजन का निर्माण करना है।

नोट : लवक (Plastids) केवल वनस्पति कोशिका में ही पाये जाते हैं।

- लाइसोसोम (Lysosomes)-इसमें हाइड्रोलिटिक एन्जाइम्स भरे होते हैं। इनका मुख्य कार्य भोजन पाचन' (Food Digestion) होता है। जब यह फट जाती है तो कोशिका को नष्ट कर देती है, जिसके कारण इसे कोशिका की आत्म हत्या की थैली (Suicidal Bag of the Cell) कहते हैं। यह मुख्यतया जन्तु कोशिका में पायी जाती है। यह कोशिका के अविशष्ट पदार्थों (Waste Material) का अवशोषणा (Absorb) कर लेता है।
- 5. राइबोसोम (Ribosome)- यह प्रोटीन-निर्माण का कार्य करता है। इसलिए इसे **'प्रोटीन संश्लेषण का प्लेटफार्म'** (Plateform of Protein Synthesis) कहते हैं।
- 6. सेन्ट्रोसोम (Centrosome)- यह केवल जन्तु कोशिका में पाया जाता है। इसका मुख्य कार्य कोशिका-विभाजन में सहायता करना है।
- 7. गॉल्जी बाडी (Golgie Body)- इसे कोशिका Traffic Police कहा जाता है। इसका मुख्य कार्य वसा (Fat) का संचय करना है और स्रावण करना है।

नोट : उपर्युक्त सभी कोशिकांग 'कोशिका द्रव्य' के भाग हैं।

2. केन्द्रक (Nucleous)

इसे कोशिका का Director and Controller कहा जाता है। केन्द्रक की खोज 1831 में राबर्ट ब्राउन (Robert Brown) ने की। यह कोशिका के बीच में स्थित होता है और यह कोशिका के सभी कार्यों पर नियन्त्रण रखता है। केन्द्रक छिद्रयुक्त झिल्ली से घिरा होता है, जिसे 'केन्द्रक झिल्ली' (Nuclear Membrane) कहते हैं। केन्द्रक के 2 भाग होते हैं- (i) केन्द्रिका (Nucleolus) तथा (ii) केन्द्रिक द्रव्य (Nucleoplasm)।

डी.एन.ए. और आर. एन. ए. केन्द्रिक द्रव्य में पाये जाते हैं।

नोट :

- (i) सबसे छोटी कोशिका **प्लूरोनियोनिया** (**P.P.L.U.**)
- (ii) सबसे बडी कोशिका –

शुतुरमुर्ग का अंडा (170 × 155 mm)

(iii) सबसे लम्बी कोशिका – तन्त्रिका कोशिका (न्यूरान)

कोशिका में पाये जाने वाले विभिन्न अवयव :

- सर्वाधिक जल 75-85%
- प्रोटीन 9% 12% 2
- कार्बोहाईड्रेट 2%
- वसा 2% 3%
- डी.एन.ए. 0.4%
- आर.एन.ए. 0.7%
- कार्बनिक पदार्थ 0.4%
- अकार्बनिक पदार्थ 1.5%

कोशिका में पाये जाने वाले विभिन्न तत्व:

- ऑक्सीजन 65% 1.
- कार्बन 18% 2
- हाईड्रोजन 10%
- नाईट्रोजन 2.5% 4.
- कैल्सियम 0.15%
- सोडियम 2%
- कोशिका के अध्ययन को 'कोशिका विज्ञान' (Cytology)

नोट : 'कोशिका की संरचना' देखें चित्र नं. 1

कोशिका विभाजन (Cell Division)

- कोशिका विभाजन के प्रक्रिया की जानकारी सर्वप्रथम 1855 ई. में विरचाऊ को हुई।
- कोशिका में विभाजन तीन तरीके से होता है
 - असूत्री विभाजन (Amitosis) : जीवाणु, नील–हरित शैवाल, यीस्ट, अमीबा तथा कुछ अन्य प्रोटोजोआ आदि जिनमें अविकसित कोशिकाएँ होती हैं, उनमें 'असूत्री विभाजन' होती है।
 - समसूत्री विभाजन (Mitosis) : समसूत्री विभाजन सिर्फ कायिक कोशिकाओं (Somatic Cells) में होता
 - 1882 ई. में 'वाल्टर फ्लेमिंग' द्वारा ही कोशिका के इस विभाजन को Mitosis (समसूत्री विभाजन) नाम दिया गया।
 - समसूत्री विभाजन इंटरफेज, प्रोफेज, मेटाफेज, एनाफेज तथा टेलोफेज जैसी 5 अवस्थाओं में संपन्न होता है।
 - दो कोशिका विभाजनों के बीच की वह अवधि जिसमें कोशिका स्वयं को विभाजन के लिए तैयार करती है, इंटरफेज कहलाती है।
 - प्रोफेज विभाजन की प्रथम अवस्था है। इसके अंत तक केंद्रक विलुप्त हो जाता है।
 - 'गुणसूत्र' मध्य रेखा (Equitorial Plate) पर मेटाफेज में आते हैं।
 - एनाफेज सबसे कम अवधि (2-3 मिनट) में संपन्न होने वाली अवस्था है। इसमें क्रोमैटिड U.V. या L की आकृति ले लेते हैं।
 - समसूत्री विभाजन की अंतिम अवस्था टेलोफेज है ।

Jobs

Bank

- समसूत्री विभाजन के परिणामस्वरूप एक जनक कोशिका से दो संतति कोशिकाओं का जन्म होता है।
- समसूत्री विभाजन के परिणाम स्वरूप बने प्रत्येक संतति कोशिका में गुणसूत्रों की संख्या जनक कोशिका के समान ही होती है।
- समसूत्री विभाजन के कारण जीवों में वृद्धि एवं विकास होता है। कुछ सूक्ष्म जीवों में इसी विभाजन के द्वारा अलैंगिक प्रजनन की क्रिया होती है।
- समस्त्री विभाजन द्वारा शरीर में नवीन कोशिकाओं का निर्माण होता है, इस प्रकार शरीर की मरम्मत होती है एवं घाव भरते

- अर्द्धसूत्री विभाजन (Meiosis) : इसे न्यूनकारी विभाजन भी कहते हैं-
 - इस विभाजन का नाम 'Meiosis' 1905 ई. में फार्मर तथा मूरे ने रखा।
 - अर्द्धसूत्री विभाजन की ओर वीज मैन द्वारा की गई तथा इसका सर्वप्रथम विस्तृत अध्ययन 1888 ई. में स्ट्रॉसवर्गर ने किया।
 - यह विभाजन सिर्फ जनन कोशिकाओं (Sex cells) में होता है।
 - अर्द्धसूत्री विभाजन की दो अवस्थाएँ होती हैं-अर्द्धसूत्री-I एवं अर्द्धसूत्री-II।
 - अर्द्धसूत्री-। विभाजन में चार अवस्थायें आती हैं-प्रोफेज—I, मेटाफेज—I, एनाफेज—I टेलोफेज—I।
- कोशिका में जीवद्रव्य पाया जाता है जिसे **वैज्ञानिक हक्सले** ने जीवन का भौतिक आधार बताया।
- जीवद्रव्य में सर्वाधिक मात्रा में जल पाया जाता है जबिक कार्बनिक पदार्थ के रूप में सर्वाधिक मात्रा में प्रोटीन पायी जाती है।
- 'लाइसोसोम' (Lysosome) का मुख्य कार्य क्या है ?

-भोजन–पाचन (Food Digestion)।

- लाइसोसोम को कोशिका का एटमबम कहा जाता है।
- लाइसोसोम को कोशिका का पाचक थैला माना जाता है जिसमें जल अपघटनीय एंजाइम पाये जाते हैं जिसके द्वारा ये वाह्य एवं अन्तःकोशकीय पाचन में सहायता करता है।
- 'प्रोटीन-संश्लेषण का प्लेटफार्म' (Plateform of Protein Synthesis) कहते हैं ?

-'राइबोसोम' (Ribosome) को।

- 'वसा' (Fat) का संचय कोशिका का कौन-सा अंग करता है ?
- –'गाल्जीबाडी' (Golgie Body)।

'डी.एन.ए.' होते हैं ?

- –केन्द्रिक द्रव्य (Nucleoplasm) में।
- 'कोशिका की आत्महत्या की थैली' (Suicidal Bag of the Cell) किसे कहते हैं ?

-लाइसोसोम (Lysosome) को।

'गाजर व मिर्च' के लिए उत्तरदायी 'वर्णी लवक' कौन है ?

–कैरोटीन।

भोजन (सिर्फ कार्बोहाइड्रेट) का ऑक्सीकरण कहाँ होता है ?

–माइटोकांड्रिया (Mitochondria) में।

कोशिका का 'ऊर्जा-गृह' (Power House) किसे कहते हैं ?

-'माइटोकांड्रिया' को।

'जीवन का भौतिक आधार' (Physical Basis of Life) है ?

-जीव द्रव्य (Protoplasm)। टमाटर का लाल रंग किस 'वर्णी लवक' (Chromoplast) के कारण होता है ? –'लाइकोपीन'।

'पर्णहरिम' (Chlorophyll) में कौन-सा तत्व पाया जाता है ?

–मैग्नीशियम।

प्रकृति की सबसे बडी कोशिका

-Ostrich Egg (श्त्रम्र्ग का अण्डा) है।

जबकि सबसे छोटी कोशिका

–PPLO (Pleuro Pneumonia Like Organism) या Mycoplasma है। जो एक जीवाणु कोशिका है ।

कोशिका का सबसे छोटा कोशिकांग

–राइबोसोम होता है

जन्तु कोशिका का सबसे बडा कोशिकांग

–केन्द्रक Nucleus होता है।

- जबिक पादप कोशिका का सबसे बडा कोशिकांग लवक (Plastid) को माना जाता है।
- मनुष्य के शरीर की सबसे लम्बी कोशिका तन्त्रिका कोशिका (Nerve Cells) या Neuron होती है।

Jobs

ऊतक (Tissue)

कोशिकाओं का वह समूह, जिनकी उत्पत्ति, संरचना एवं कार्य समान हों, 'फतक' (Tissue) कहलाता है। ऊतकों का अध्ययन हिस्टोलॉजी या औतकीय में किया जाता है। ये जन्तु एवं वनस्पति में भिन्न–भिन्न प्रकार के होते हैं।

जन्तु—ऊतक (ANIMAL TISSUE)

ये 5 प्रकार के होते हैं-

- (i) इपीथीलियल ऊतक (Ephithilial Tissue) : यह मुख्यतया अंगों के वाह्य एवं आन्तरिक सतह पर पाये जाते हैं। ये कुछ 'सावित ग्रन्थियाँ' (Secratory Glands) जैसे— दुग्ध ग्रन्थियाँ (Mammalary Glands), स्वेद ग्रन्थियाँ (Sweat Glands पसीने की ग्रन्थियाँ) आदि में भी पाये जाते हैं।
- (ii) पेशीय ऊतक (Muscular Tissue) : ये मुख्यतया मांसल भागों एवं खोखले अंगों की दीवारों का निर्माण कहते हैं। ये अंगों के आन्तरिक भाग में पाये जाते हैं। जैसे– हृदय (Heart) ऊतक, यकृत (Liver) ऊतक, वृक्क (Kidney) ऊतक आदि।
- (iii) संयोजी ऊतक (Connective Tissue) : ये 2 या 2 से अधिक ऊतकों को जोड़ने का कार्य करते हैं। जैसे— रक्त ऊतक, लिगामेन्ट (Ligament), कार्टिलेज (Cartilage), आदि।
- (iv) तिन्त्रका ऊतक (Nervous Tissue) : तिन्त्रका ऊतक की इकाई न्यूरान (Neuron) कहलाती है। तिन्त्रका ऊतक का मुख्य कार्य संवेदनाओं (Sensations) को ग्रहण कर मितिष्क तक पहुँचाना तथा मितिष्क द्वारा दिये गये आदेश को अभीष्ट अंग तक पहुँचाना होता है जो कि 'न्यूरान्स' (Neurons) के माध्यम से करता है। संवेदनाओं का चालन केमिको मैग्नेटिक वेव' के रूप में होता है। इस केमिकल (रासायनिक पदार्थ) का नाम एसिटिलकोलीन (Acetylcholin) है।
- (v) जनन ऊतक (Reproductive Tissue) : ये जनन कोशिकाओं में पाये जाते हैं जो नर में 'स्पर्म' (Sperm) एवं मादा में 'ओवा' (Ova) का निर्माण करते हैं।
- जंतुओं के शरीर में पाए जाने वाले ऊतकों को निम्न श्रेणियों में बाँटा गया है— उपकला ऊतक, संयोजी ऊतक, पेशी ऊतक एवं तंत्रिका ऊतक।
- जंतुओं की बाहरी, भीतरी या स्वतंत्र सतहों पर उपकला ऊतक (Epithelial Tissue) पाये जाते हैं।

- उपकला ऊतक में रुधिर कोशिकाओं का अभाव होता है तथा इनकी कोशिकाओं में पोषण विकसरण (Diffusion) विधि से लसीका द्वारा होता हैं
- उपकला ऊतक त्वचा की बाह्य सतह, हृदय, फेफड़ा एवं वृक्क के चारों ओर तथा जनन ग्रंथियों की दीवार (wall) पर पाये जाते हैं।
- उपकला ऊतक शरीर के आंतरिक भागों को सुरक्षा प्रदान करता है।
- शरीर के सभी अंगों एवं अन्य ऊतकों को अपास में जोड़ने वाला ऊतक संयोजी ऊतक (Connective Tissue) कहलाता है।
- संयोजी ऊतकों का प्रमुख कार्य शरीर के तापक्रम को नियंत्रित करना तथा मृत कोशिकाओं को नष्ट कर ऊतकों को नवीन कोशिकाओं की आपूर्ति करना है।
- रुधिर एवं लसीका जैसे तरल ऊतक (Fluid tissue) संवहन में सहायक है।
- शरीर की सभी 'पेशियों' का निर्माण करने वाला ऊतक पेशी ऊतक (Muscle Tissue) कहलाता है।
- पेशी ऊतक अरेखित (Unstriped), रेखित (Striped) तथा हृदयक (Cardiac) जैसे तीन प्रकारों में बँटे हुए हैं—
- अनैच्छिक रूप से गित करनेवाले अंगों आहार नाल,
 मलाशय, मूत्राशय, रक्त वाहिनियाँ आदि में अरेखित ऊतक पाये जाते हैं।
- अरेखित पेशियाँ उन सभी अंगों की गतियों को नियंत्रित करती हैं जो स्वयं गति करती हैं।
- रेखित पेशियाँ शरीर के उन भागों में पायी जाती हैं, जो इच्छानुसार गति करती हैं। प्रायः इन पेशियों के एक या दोनों सिरे रूपांतरित होकर टेण्डन के रूप में अस्थियों से जुड़े होते हैं।
- हृदयक पेशी केवल हृदय की दीवारों में पायी जाती हैं। हृदय की गति इन्हीं पेशियों की वजह से होती है।
- मानरव शरीर में कुल 639 मांस—पेशियाँ पायी जाती हैं।
 ग्लूटियस मैक्सीमस (कूल्हे की मांसपेशी) मानव शरीर की सबसे बड़ी तथा स्टैपिडियस सबसे छोटी मांसपेशी हैं
- जंतुओं में तंत्रिका तंत्र का निर्माण तंत्रिका उत्तक (Nervous Tissue) द्वारा होता है।
- तंत्रिका उत्तक न्यूरॉन्स एवं न्यूरोग्लिया जैसे दो विशिष्ट प्रकार की कोशिकाओं द्वारा निर्मित होते हैं।
- तंत्रिका उत्तक शरीर में होने वाली सभी प्रकार की अनैच्छिक एवं ऐच्छिक क्रियाओं को नियंत्रित करती हैं।

Jobs

वनस्पति ऊतक (Plant Tissue

ये 2 प्रकार के होते हैं-

- (i) वधीं ऊतक (Meristmatic Tissue) : यह सबसे तेज विभाजित होने वाला ऊतक होता है। ये पौधों के शीर्ष भाग (कार्य-ऊँचाई में वृद्धि), पार्श्व भाग (कार्य- तने की मोटाई में वृद्धि) अन्तः सन्धि (Inter Calary) भाग (कार्य-शाखाओं का निर्माण) में पाये जाते हैं। ये ऊतक हरित लवक की उपस्थिति में भोजन-निर्माण का भी कार्य करते हैं। ये भोजन-संचय (पैरनकाइमा ऊतक-Parenchyma Tissue में) का भी कार्य करते हैं।
- (ii) स्थाई ऊतक (Permanent Tissue) : जब वधीं ऊतक की विभाजन क्षमता समाप्त हो जाती है, तो वे स्थाई ऊतक

का निर्माण करते हैं। इसका मुख्य कार्य–भोजन निर्माण, भोजन-संचय और आन्तरिक सहायता (कोशिका को मजबूती प्रदान करना) है।

जटिल ऊतक (Complex Tissue): एक से अधिक स्थाई ऊतक के मिलने पर 'ज**िटल ऊतक**' का निर्माण होता है। ये 2 प्रकार के होते हैं। (i) 'जाइलम' (Xylem) तथा (ii) 'फ्लोयम' (Phloem)। 'जाइलम' का मुख्य कार्य- जमीन से जल एवं खनिज लवण (Minerals) का अवशोषण कर पौधे के सम्पूर्ण अंग तक पहुँचाना होता है। **'फ्लोयम'** का कार्य- पत्तियों द्वारा बनाये गये भोजन को पौधे की जड तक पहुँचाना होता है।

'जाइलम' गुरूत्वाकर्षण बल के विरूद्ध तथा **'फ्लोयम'** गुरूत्वाकर्षण बल की ओर कार्य करता है।

- लिगामेन्ट (स्नायू ऊतक) ये एक अस्थि को दूसरी अस्थि से जोड़ता है।
- टेन्डन (कान्ड्रा ऊतक) मांसपेशियों को अस्थियों से जोड़ता है।
- 'तिन्त्रिका ऊतक' (Nervous Tissue) की इकाई है ?

–'न्यूरान' (Neuron)।

- 'तन्त्रिका ऊतक' संवेदनाओं का मस्तिष्क तक सम्प्रेषण किसके माध्यम से करता है ? –'न्यूरान्स'।
- पत्तियों द्वारा बनाये गये भोजन को जड़ तक पहुँचाने का कार्य कौन करता है ? पलोयम (Phloem)।
- तन्त्रिका ऊतक में संवेदनाओं का चालन किस रूप में होता है ?

केमिको मैग्नेटिव वेव।

जमीन से जल एवं खनिज लवण को अवशोषित कर पौधों के सम्पूर्ण अंगों तक पहुँचाने का कार्य कौनसा ऊतक करता है ? **–जाइलम (Xylem)**।

Jobs

अगतन्त्र (Organ System)

पित्त वसा को पानी में घुलनशील बना देता है। जो ऊतक कार्य को सम्पादित करते हैं तो उन ऊतकों के समूह को 'अंगतन्त्र' कहते हैं। प्रमुख 'अंगतन्त्र' निम्नलिखित हैं-

- 1. पाचन तन्त्र,
- 2. रक्त परिसंचरण तन्त्र,
- 3. श्वसन तन्त्र,
- 4. अन्तःस्रावी तन्त्र,
- 5. तन्त्रिका तन्त्र.
- 6. जनन तन्त्र।

पाचन तन्त्र (Digestive System) :

मनुष्य में पाचन 'मुख' से प्रारम्भ होकर 'गुदा' (Anus) तक होता है। इसके निम्नलिखित भाग हैं— (i) मुख (Mouth), (ii) ग्रसनी (Oesophagous), (iii) आमाशय (Stomach), (jv) छोटी ऑत (Small Intestine), (v) बड़ी आँत (Large Intestine), (vi) मलाशय (Rectum)।

उपर्युक्त अंगों में पाचन निम्नवत् होता है-

(i) मुख : इसमें लार ग्रन्थि (Saliva Gland) से लार निकलकर भोजन से मिलकर भोजन को अम्लीय रूप प्रदान करती हैं तथा लार में पायी जाने वाली एनजाइम-'इमाइलेज' (Amylase) अथवा टायलिन मंड (Starch) को आंशिक रूप से पचाने का कार्य करते हैं। मुख में गरम भोजन का स्वाद बढ़ जाता है, क्योंकि जीभ का पृष्ठ क्षेत्र (Surface Area) बढ़ जाता है। मुख में पाया जाने वाला एक एन्जाइम- 'लाइसोजाइम' बैक्टीरिया को मारने का कार्य करता है। भोजन मुख से आगे के पाचन तन्त्र में क्रमाकुचन (Contractile or Peristalsis) गति से बढ़ता है। उदाहरण : सर्पों में पायी जानी वाली विष ग्रन्थियाँ मनुष्य के

किस ग्रन्थि की रूपान्तरण होती हैं ?

- (a) पाचक ग्रन्थियों की
- (b) लार ग्रन्थियों की
- (c) आंतीय ग्रन्थियों की
- (d) थाइराइड ग्रन्थि की

उत्तर : (b)

Affairs

Jobs

(ii) ग्रसनी : इस भाग में कोई पाचन—क्रिया नहीं होती। यह सिर्फ मुख और आमाशय (Stomach) को जोड़ने का कार्य करती है।

(iii) आमाशय : आमाशय में भोजन का पाचन अम्लीय माध्यम में होता है। मनुष्य के आमाशय में जटर ग्रन्थियाँ (Gastric Glands) पायी जाती हैं जो जठर रस का स्नावण करती हैं। जंडर रस के रासायनिक संगंडन में सर्वाधिक मात्रा में जल पाया जाता है। इसके अतिरिक्त HCl तथा विभिन्न प्रकार के एन्जाइम पाये जाते हैं।

आमाशय में निम्न एन्जाइम पाये जाते हैं जिनके कार्य इस प्रकार हैं-

- (a) पेप्सिन एन्जाइम : इसके द्वारा प्रोटीन का पाचन होता है।
- (b) रेनिन एन्जाइम : इसके द्वारा दूध में पायी जाने वाली केसीन प्रोटीन का पाचन होता है।
- (c) लाइपेज़ एन्जाइम : इसके द्वारा वसा का पाचन होता है।
- (d) एमाइलेज एन्जाइम : इसके द्वारा मण्ड का पाचन

HCl आमाशय में भोजन के पाचन के माध्यम को अम्लीय

भोजन के साथ आये हानिकारक जीवाणुओं तथा कंकड़ तथा पत्थर जैसे कणों को गला देता है।

(iv) **छोटी आँत :** छोटी आँत में भोजन का पाचन क्षारीय माध्यम में होता है क्योंकि आंतीय रस का pH मान 8.0 से 8.3 होता है।

छोटी ऑत को आहार नाल का सबसे लम्बा भाग माना जाता है। जिसकी लम्बाई लगभग 6 से 7 मीटर होती है। कार्य तथा संरचना के आधार पर छोटी आँत के तीन भाग होते हैं जिन्हें क्रमशः ग्रहणी, मध्यान्त्र तथा शेषान्त्र कहा

छोटी आँत के ग्रहणी भाग में भोजन के पाचन में पित्तरस और अगन्याशिक रस सहायक होते हैं।

पित्त रस का निर्माण यकृत में और अगन्याशिक रस का निर्माण अगन्याशय में होता है।

यकृत (Liver): यकृत मनुष्य के शरीर की सबसे बड़ी वाहय स्रावी ग्रन्थी होती है। भार के आधार पर यकृत को शरीर को सबसे बड़ा अंग माना जाता है जिसका भार लगभग 1500 ग्राम होता है। लम्बाई के आधार पर शरीर का सबसे बड़ा अंग त्वचा को माना जाता है। मनुष्य में एक यकृत पाया जाता है जो दो पिण्डों में विभाजित होता है जिसमें दाएँ पिण्ड में नीचे की ओर एक थैलीनुमा संरचना पायी जाती है जिसे पिताशय कहते हैं। पित्ताशय (Gall Bladder) में पित्त रस का संचयन होता है जबकि पित्तरस का निर्माण यकृत में होता है। कुछ स्तनधारी प्राणियों में पित्ताशय नहीं पाया जाता है। जैसे-घोड़ा, जेब्रा, गधा, खच्चर तथा चूहा आदि। यकृत में बना पित्त रस क्षारीय प्रकृति का होता है जिसका pH मान लगभग 7.7 होता है। पित्त रस में एन्जाइम नहीं पाये जाते हैं फिर भी इसके द्वारा वसा का पाचन होता है जिसे एमल्शीकरण कहा जाता है। एमल्शीकरण क्रिया का सम्बन्ध यकृत से होता है। अगन्याशय (Pancreas) : अगन्याशय मनुष्य के शरीर का

ऐसा अंग है जो मिश्रित ग्रंथि (Mixed Glands) की तरह कार्य करता है। अगन्याशय में वाह्य स्नावी भाग के रूप में अगन्याशिक नलिका पायी जाती है जबकि अन्तःस्रावी भाग के रूप में **लैंगरहैंस की द्वीपकाएं** (Isleit of Langerhans) पायी जाती हैं। लैंगरहैंस की द्वीपकाओं का निर्माण तीन प्रकार की कोशिकाओं से होता है जिन्हें क्रमशः अल्फा, बीटा और गामा कोशिकाएँ कहा जाता है।

अल्फा कोशिका : अल्फा कोशिकाओं से ग्लूकेगॉन हार्मोन का स्रावण होता है। ये हार्मीन रुधिर में ग्लूगोज़ की मात्रा

बीटा कोशिका : ये कोशिकाएँ इन्सुलिन हार्मीन का स्रावण करती हैं जो रुधिर में ग्लूकोज़ की मात्रा को नियंत्रित

इन्सुलिन हार्मीन के अल्पस्रावण से रुधिर में ग्लूकोज़ की मात्रा बढ़ जाता हैं जिसे मधुमेह रोग (Sugar Diabetes Malletus) कहा जाता है।

अगन्याशय में अगन्याशिक रस का निर्माण होता है जिसे पूर्ण पाचक रस के नाम से जाना जाता है क्योंकि इसमें सभी प्रकार के पोषक तत्वों को पूर्णतया पचाने वाले एनजाइम पाये जाते हैं। जैसे–

प्रोटीन के पाचन के लिए **ट्रिप्सिन एन्जाइम** पाया जाता है। छोटी आँत में पाये जाने वाली आंतीय ग्रन्थियाँ जिन्हें **ब्रुनर्स ग्रन्थियाँ** कहा जाता है। जिनमें आंतीय रस का निर्माण होता है। जिसमें सभी प्रकार के पोषक तत्वों को पूर्णतः पचाने वाले एन्जाइम पाये जाते हैं जो इस प्रकार

कार्बोहाइड्रेट को पचाने वाले एन्जाइम :

सुक्रेज एन्जाइम : इसके द्वारा सुक्रोज़ शर्करा का पाचन होता है।

लैक्टेज एन्जाइम : इसके द्वारा दूध में पायी जाने वाली लैक्टोज़ शर्करा का पाचन होता है।

माल्टेज़ एन्ज़ाइम : इसके द्वारा बीजों में पायी जाने वाली **माल्टोज शर्करा** का पाचन होता है।

प्रोटीन पाचक एन्जाइम

इरेप्सिन एन्जाइम : इसके द्वारा प्रोटीन का पूर्ण पाचन होता है। अर्थात् ये एन्जाइम प्रोटीन को अमीनो अम्ल में तोड़ देता है।

वसा पाचक एन्जाइम :

लाइपेज़ एन्जाइम : इसके द्वारा वसा का पाचन वसीय अम्ल तथा ग्लीसराल में होता है।

 $\left(\mathbf{v}\right)$ **बड़ी ऑत** : इस भाग में बचे भोजन का तथा शेष 90%जल का अवशोषण होता है।

बडी आँत की लम्बाई 1 से 1.5 मीटर होती है जहाँ पर भोजन का पाचन नहीं होता है।

कार्य तथा संरचना के आधार बड़ी ऑत के तीन भाग होते हैं जिन्हें क्रमशः अन्धनाल, कोलोन तथा मलाशय कहा

(vi) मलाशय : इस भाग में अवशिष्ट भोजन का संग्रहण होता है। यहीं से समय–समय पर बाहर निष्क्रमण होता है।

नोट- सेलुलोज (एक प्रकार का जटिल कार्बोहाइड्रेट) का पाचन हमारे शरीर में नहीं होता है। सेलुलोज का पाचन 'सीकम' (Ceacum) में होता है। 'सीकम' शाकाहरी जन्तुओं में पाया जाता है। मनुष्य में **सीकम**' निष्क्रिय अंग के रूप में बचा है।

अन्धनाल (Ceacum) से जुड़ी नलिका का संरचना को कृमि रूप परिशेषिका (Vermiform Appendix) कहा जाता है जो मनुष्य में एक अवशेषी संरचना होती है अथात वर्तमान समय में मनुष्य के शरीर में इस संरचना का कोई कार्य नहीं है।

शाकाहारी जन्तुओं में कृमि रूप परिशेषिका सेलुलोज के पाचन में सहायता करती है। मांसाहारी जन्तुओं में ये संरचना नहीं पायी जाती है।

कृमि रूप परिशेषिका के बढ़ जाने पर **एपेन्डी साइटिस** नामक रोग हो जाता है।

Jobs

Railway

रक्त परिसंचरण तन्त्र (Blood Vascular System)

इस तन्त्र द्वारा शुद्ध रुधिर का परिसंचरण (Circulation) हृदय से धमनी (Artery) द्वारा सम्पूर्ण शरीर को तथा अशुद्ध रक्त का परिसंचरण सम्पूर्ण शरीर से हृदय को शिराओं (Veins) द्वारा होता है।

रुधिर परिसंचरण तन्त्र की खोज 1628 ई. में विलियम हार्वे नामक वैज्ञानिक ने किया।

परिसंचरण तंत्र के दो प्रकार होते हैं जिन्हें क्रमशः खुला और बन्द परिसंचरण तंत्र कहा जाता है।

खुला परिसंचरण तंत्र (Open Circulatory System) :

आर्थोपोडा संघ (काकरोज, केकड़ा, प्रान (झींगा मछली), मच्छर, मक्खी आदि) तथा मोलस्का संघ (घोंघा, सीपी, आक्टोपस आदि) के जन्तुओं में खुला परिसंचरण तंत्र विकसित प्रकार का होता है।

बन्द परिसंचरण तंत्र (Closed Circulatory System) :

सभी विकसित जन्तुओं में जैसे— मछली, मेढ़क, सर्प, पक्षी, केंचुआ, ऐस्केरिस तथा स्तनधारी संघ (मनुष्य) में इस प्रकार का परिसंचरण तंत्र पाया जाता है।

मनुष्य में बन्द विकसित तथा दोहरे प्रकार का परिसंचरण तंत्र पाया जाता है।

मनुष्य का परिसंचरण तंत्र तीन घटकों से मिलकर बना होता है। जिन्हें क्रमशः रुधिर, हृदय तथा रुधिर वाहिनिकाएँ कहा जाता है।

रूधिर (Blood)

रूधिर एक तरल संयोजी ऊतक है जिसका निर्माण मनुष्य में अस्थिमज्जा से होता है जबिक भ्रूणावस्था में रूधिर का निर्माण यकृत और प्लीहा से होता है।

एक सामान्य मनुष्य के शरीर में 5 से 6 लीटर रूधिर पाया जाता है जो प्रतिशत में 7 से 8 प्रतिशत पाया जाता है।

रूधिर का निर्माण दो घटक से होता है जिन्हें क्रमशः रूधिर प्लाज्मा और रूधिर कणिकाएँ कहा जाता है।

रूधिर प्लाज्मा :

रूधिर प्लाज्मा का निर्माण जल, कार्बनिक तथा अकार्बनिक पदार्थों से होता है। रूधिर प्लाज्मा में जल 90 से 92 प्रतिशत पाया जाता है जबकि कार्बनिक पदार्थ के रूप में सर्वाधिक मात्रा में प्रोटीन पायी जाती है।

रूधिर कणिकाएँ (Blood Corpuscles) :

रूधिर कणिकाएँ सम्पूर्ण रूधिर का 40 से 45 प्रतिशत भाग बनाती हैं जो कार्य एवं संरचना के आधार पर तीन प्रकार की होती हैं जिन्हें क्रमशः **RBC**, **WBC** एवं **Blood Platelets** कहा जाता है।

लाल रूधिर कणिकाएँ (Red Blood Corpuscles):

- RBC को एरिथ्रोसाइट्स के नाम से जाना जाता है
 जिनका निर्माण लाल अस्थिमज्जा वाले भाग से होता है।
- भ्रूणावस्था में RBC का निर्माण यकृत तथा प्लीहा से होता है।

- RBC संरचना में अण्डाकार होती हैं।
- RBC का जीवनकाल मनुष्य के शरीर में 120 दिन का होता है। संसार के समस्त स्तनधारी प्राणियों के RBC में केन्द्रक नहीं पाया जाता है लेकिन ऊँट और लामा दो ऐसे स्तनधारी प्राणी हैं जिनके RBC में केन्द्रक पाया जाता है।
- RBC का रंग लाल या रूधिर का रंग लाल हीमोग्लोबिन के कारण होता हैं
- हीमोग्लोबिन के केन्द्र में आयरन धातु पायी जाती है।
- > ऊँट एक ऐसा स्तनधारी प्राणी है जिसकी RBC का आकार सबसे बड़ा होता है।
- हिरन की RBC का आकार सबसे छोटा होता है।
- यदि किसी व्यक्ति को कुछ दिनों के लिए अंतिरक्ष या माउण्ट एवरेस्ट पर्वत पर छोड़ दिया जाए तो RBC की संख्या और आकार दोनों बढ़ जाएंगे।
- RBC की संख्या मनुष्य के शरीर में 5 से 5.5 लाख प्रति
 घन मिली मीटर होती है।
- > RBC का मुख्य कार्य ऑक्सीजन का परिवहन करना है।

श्वेत रूधिर कणिकाएँ (White Blood Corpuscles):

- WBC को ल्यूकोसाइट के नाम से जाना जाता है।
- WBC का निर्माण मनुष्य के शरीर में श्वेत अस्थिमज्जा से होता है।
- WBC का जीवनकाल मनुष्य के शरीर में लगभग 8 से 10
 दिन का होता है।
- ▶ WBC की संख्या मनुष्य के शरीर में लगभग 5000 हजार से 9000 प्रति घन मिली मीटर होती है।
- > RBC और WBC का अनुपात रूधिर में 600:1 होता है।
- > WBC आकार में अमीबा के आकार की होती है अर्थात इनका कोई निश्चित आकार नहीं होता है।
- WBC का मुख्य कार्य हानिकारक जीवाणुओं से शरीर की सुरक्षा करना है।
- > आकार में सबसे बड़ी WBC मोनोसाइट्स होती है।
- लिम्फोसाइट प्रकार की WBC आकार में सबसे छोटी होती
 है।
- संख्या में सबसे अधिक न्यूट्रोफिल प्रकार की WBC पायी जाती है।

रूधिर पटलिकाएँ (Blood Platelets) :

- रूधिर पटलिकाओं को थ्रोम्बोसाइट्स के नाम से जाना जाता है।
- रूधिर पटलिकाओं का निर्माण लाल अस्थिमज्जा वाले भाग से होता है जो संरचना में प्लेट के आकार के होते हैं।
- रूधिर पटलिकाओं का जीवनकाल लगभग 8 से 10 दिन का होता है।
- रूधिर पटलिकाएँ रूधिर का थक्का बनाने में सहायता करती है।
- इनकी संख्या मनुष्य के शरीर में लगभग 3 से 5 लाख प्रति घन मिली मीटर होती है।
- डेंगू जैसे विषाणुजनित बिमारी में शरीर में प्लेटलेट्स की संख्या कम हो जाती है क्योंिक डेंगू के विषाणु प्लेटलेट्स को खा जाते हैं।

{जहाँ सेलेक्शन एक जिद है.} समीर प्लाजा, मनमोहन पार्क, कटरा, बांसमण्डी के सामने, इलाहाबाद फोन नं. : 0532.3266722, 9956971111, 9235581475

रूधिर परिसंचरण तन्त्र में निम्नलिखित अंग कार्य करते हैं— (i) हृदय (Heart), (ii) धमनी (Artery), (iii) शिरा (Vein), (iv) केशिका (Cappilary)। इनमें— हृदय का मुख्य कार्य है— रक्त का आदान—प्रदान धमनी एवं शिराओं के माध्यम से (पिम्पंग क्रिया द्वारा) शरीर की सभी कोशिकाओं तक।

हृदय की संख्या और चैम्बर :

मनुष्य में 1 हृदय 4 कोष्ठकीय होते हैं। मत्स्य वर्ग में 1 हृदय 2 कोष्ठीय , सरीसृप (रेंगकर चलने वाले जन्तु) और उभय चरों में 1 हृदय 3 कोष्ठीय होता है। मगरमच्छ 'क्रोकोडाइल' (घड़ियाल) ऐसा सरीसृप है, जिसमें हृदय 4 कोष्ठीय (Chambered) होता है। पंक्षीवर्ग एवं स्तनधारी वर्ग में हृदय 4 कोष्ठीय होता है।

केचुए में हृदय की संख्या 4 जोड़ी (8 हृदय) पाये जाते हैं। काररोच के हृदय में 13 चैम्बर पाये जाते हैं।

The heart and blood vessels

मनुष्य का हृदय 4 कोष्ठकों (वेष्मों) में बंटा होता है जिसमें ऊपर के 2 आलिंद (Auricle) तथा नीचे के 2 निलय (Ventricle) कहलाते हैं। बागाँ आलिंद और बागाँ निलय एक 'कपाट' द्वारा जुड़े होते हैं। इसी प्रकार दायाँ आलिन्द और दायाँ निलय भी एक कपाट द्वारा जुड़े होते हैं। आलिंद की दीवारें पतली तथा निलय की दीवारें (Walls) मोटी होती हैं। अशुद्ध रक्त दाहिने आलिंद में शिराओं (Interior Venacava तथा Posterior Venacava) द्वारा पहुँचते हैं तथा यहाँ से अशुद्ध रक्त दाहिने निलय को पहुँचा दिये जाते हैं। दाहिने निलय द्वारा अशुद्ध रक्त शुद्धीकरण (Purification) के लिए 2 पल्मोनरी धमनी (यक एक अपवाद है) द्वारा दोनों फेफड़ों (Lungs) को पहुँचाया जाता है। यहाँ (फेफड़ों) से शुद्ध रक्त पल्मोनरी शिरा (यह भी एक अपवाद है) द्वारा बायें आलिंद को पहुँचाया जाता है। शुद्ध रक्त बायें आलिंद से बायें निलय को तथा बायें निलय से रक्त सम्पूर्ण शरीर को पम्प कर धमनियों द्वारा पहुँचाया जाता है।

- धमनी में रक्त रूक—रूक कर तथा शिरा में लगातार बहता है।
- मनुष्य में धड़कन की दर औसतन 72 बार प्रतिमिनट है किन्तु उत्तेजनाओं के समय 200 बार तक पहुँच जाती है।
- मानव जाति में नर का हृदय 350 ग्राम तथा मादा का 250-300 ग्राम का होता है।
- हृदय को रक्त पहुँचाने वाली धमनी 'कोरोनरी धमनी' कहलाती है और इस धमनी में 'कोलेस्ट्राल' की मात्रा बढ़ जाने पर हृदय आघात (Heart Attack) हो जाता है।
- सामान्य मनुष्य में रक्त दाब (Blood Pressure) 120/80 mmHg पारे के दाब के बराबर होता है।
- सामान्य मनुष्य में रक्त की मात्रा 5 से 6 लीटर तक होती है। रक्त शरीर भार का 7 से 8% (लीटर में) होता है, अर्थात् रक्त की मात्रा शरीर के भार का लगभग 1/13 वाँ भाग होती है।
- मानव रक्त में हीमोग्लोबिन की मात्रा 12 से 15 ग्राम प्रति 100 मिलीलीटर पाया जाता है।
- चिकित्सालयों के 'ब्लडबैंक' में रक्त को लगभग 40 डिग्री फारेनहाइट ताप पर एक महीने तक सुरक्षित रखा जाता है। इसमें रक्त को जमने से रोकने के लिए सोडियम साइट्रेट तथा सोडियम ऑक्सजलेट रसायन मिलाये जाते हैं। ये रसायन रक्त को जमाने वाले तत्व कैल्शियम को प्रभावहीन कर देते हैं।
- उच्च रक्त दाब की स्थिति हृदय के संकुचित होने पर बनती है, जिसे 'सिस्टोल' (Systole) कहते हैं तथा निम्न रक्त दाब की स्थिति हृदय के फैलने पर बनती है, जिसे 'डायस्टोल' (Distole) कहते हैं।
- हृदय धड़कन का नियन्त्रण 'साइनोएट्रियल' (S.A. Node)
 द्वारा होता है।
- रक्त में 55% प्लाज्मा तथा 45% ब्लड कणिकाएं पायी जाती है। प्लाज्मा का अधिकांश भाग जल तथा कुछ भाग खिनज लवण, प्रोटीन, वसा इत्यादि से बना होता है। रक्त कणिकाएं 3 प्रकार की होती हैं (i) लाल रक्त कणिकाएं (कार्य—ऑक्सीजन और कार्बन डाई आक्साइड का पिरसंचरण) (ii) श्वेत रक्तकणिकाएं (कार्य— हानिकारक जीवाणुओं से रक्षा) (iii) प्लेटलेट्स (कार्य— रक्त के जमने में सहायता करना)।
- रुधिर का निर्माण लम्बी हिड्डियों के लाल अस्थि मज्जा (Red Bone Marrow) में तथा शुद्धिकरण (Purification) फेफडे में होता है।
- प्लीहा (Spleen) को 'रक्त का कब्रिस्तान' कहते हैं, क्योंकि
 मृत रक्त कोशिकाएं यहाँ संगृहीत होती हैं।
- रक्त में पायी जाने वाली प्रमुख धातु 'लोहा' (Iron) होती है।
- कृत्रिम रक्त रासायनिक रूप में 'फ्लोराकार्बन' होते हैं, जो ऑक्सीजन के अच्दे वाहक (Carrier) होते हैं। कोई रक्त ग्रुप न होने के कारण यह किसी भी व्यक्ति को दिया जा सकता है।
- 'कृत्रिम हृदय', जिसका दूसरा नाम— 'जार्विका—7' (Zarvic-7) है, प्लास्टिक एवं एल्युमिनियम धातु का बना होता है। इसका वजन 300 ग्राम होता है।

हृदय का प्रत्यारोपण :

- विश्व परिप्रेक्ष्य में हृदय का सफल प्रत्यारोपण क्रिश्चियन बर्नार्ड (दक्षिण अफ्रीका) ने किया।
- भारत में हृदय का सफल प्रत्यारोपण डॉ. वेणूगोपाल (केरल) 1994 में किये थे।

रूधिर समूह (Blood Group)

'रक्त समूह' की खोज K. Landsteiner ने 1900—1902 में की। रक्त समूह 4 हैं—

Blood Group	Antigen	Antibody
A	A	b
В	В	a
AB	AB	_
0	_	ab

- AB Blood Group: Universal Acceptor सर्वग्राही
- O Blood Group : Universal Donor सर्वदाता होता है।

समूह 'A'- इसमें एन्टीजन A और ऐण्टीबाडी B पाये जाते हैं। समूह 'B'- इसमें एन्टीजन B और ऐण्टीबाडी A पाये जाते हैं। समूह 'AB'- इसमें एन्टीजन A और B दोनों पाये जाते हैं और कोई ऐण्टीबाडी (Antibody) नहीं होते हैं।

समूह 'O'- इसमें कोई भी एण्टीजन नहीं पाया जाता और A तथा B एण्टीबाडी पाये जाते हैं।

इनमें रक्त समूह 'A' रक्त समूह A और O से रक्त ले सकता है। रक्त समूह 'B' वाला व्यक्ति रक्त समूह B और O से रक्त ले सकता है। रक्त समूह 'B' वाला व्यक्ति रक्त समूह B और O से रक्त ले सकता है तथा B और AB को रक्त दे सकता है। रक्त समूह AB किसी भी रक्त समूह के व्यक्ति से रक्त ले सकता है। रक्त समूह O का दि एन्टीजन नहीं पाया जाता, परन्तु एन्टीबाडी A तथा B दोनों पाया जाता है, इसलिए रक्त समूह O काा व्यक्ति सिर्फ 'O' समूह से रक्त ले सकता है। तथा सभी रक्त समूह को दे सकता है। अर्थात् 'AB' सर्वग्राही (Universal Acceptor) तथा 'O' सर्व दाता (Universal Donor) है।

नोट : माता-पिता के रक्त समूह के आधार पर बच्चे के रक्त समूह के निर्धारण से सम्बन्धित प्रश्न भी पूंछे जाते हैं। इसका निर्धारण निम्नांकित चार्ट के अनुसार होता है—

रूधिर आधान (Blood Transfusion)

		,
Blood Group	Can be donate	Can be received
A	A, AB	A, O
В	B, AB	B, O
AB	AB	A, B, AB, O
0	A, B, AB, O	0

Rh कारक : यह व्यक्ति की लाल रक्त कणिकाओं में पाये जाने वाला एक प्रकार का Antibody है। इसे सर्व प्रथम 'रीसस' जाति के बन्दर में Landsteiner तथा A.S. Wiener द्वारा 1940 में खोजा गया। जिनमें यह पाया जाता है, उन्हें RH⁺ (Positive) तथा जिनमें नहीं पाया जाता, उनहें Rh (Negative) कहते हैं। लगभग 90% लोगों में Rh कारक पाया जाता है। Rh+ रक्त के व्यक्ति को Rh रक्त देने पर उसका रक्त संलयित हो जायेगा और व्यक्ति की मृत्यु हो जायेगी। यदि Rh निगेटिव वाली माता के उदर में Rh पॉॅंजिंटिव वाला शिश् है (Rh+ पिता से प्राप्त होता है) तो शिश् में बन रहा Rh पॉजिटिव रक्त की कुछ मात्रा माता में स्थानान्तरित हो जाती है, जिससे Rh पॉजिटिव के खिलाफ माता के रक्त में Antibodies का निर्माण होता है (क्योंकि माता के रक्त में शिशु से पहुँचा Rh⁺ माता के लिए एण्टीजन (Antigen) का काम किया)। यह Antibody माता के रक्त से बच्चे को आहार के रूप में प्राप्त होता है। यह एण्टीबाडी शिशु के शरीर में एण्टीजन का काम करता है और लाल रक्त कण को नष्ट कर देता है जिससे शिशु की प्रायः मृत्यु हो जाती है। इस अवस्था को Erythroblastosis Foetalis' कहते हैं। इस अवस्था की सम्भावना प्रथम गर्भधारण में कम होती है।

• 'लार' (Saliva) में कौन सी एन्जाइम पायी जाती है ?

–एमाइलेज (Amylase)।

• दूध को पचाने वाली एन्जाइम कौन-सी है ?

–'रेनीन' (Rennin)।

• पाचन तन्त्र का सबसे लम्बा भाग कौन है ?

–'छोटी आँत'।

• सेलुलोज का पाचन कहाँ होता है ?

–सीकम (Caecum) में।

, , , , , , , , ,

–क्रोकोडाइल (घड़ियाल)।

वह कौन—सा सरीसृप है जिसमें 4 कोष्ठीय हृदय होता है ?

किस 'धमनी' (Artery) में अपवाद स्वरूप 'अशुद्ध रूधिर' का परिसंचरण (Circulation) होता है ?

• किस 'शिरा' (Vein) में अपवाद स्वरूप 'शुद्ध रक्त' का परिसंचरण होता है ?

–पल्मोनरी।

मनुष्य में हृदय धड़कन (स्पंदन) की दर प्रतिमिनट औसतन कितनी है ?

–72 बार।

• किस धमनी में 'कोलेस्ट्राल की मात्रा बढ़ जाने पर 'हृदय आघात' (Heart Attack) हो जाता है ?

–कोरोनरी में।

• 'रक्त' का शुद्धिकरण कहाँ होता है ?

–फेफडों में।

'रक्त का कब्रिस्तान' किसे कहते हैं ?

-प्लीहा (Spleen) को।

• रक्त में पायी जाने वाली प्रमुख धातु कौन-सी है ?

-लोहा (Iron) ।

• कृत्रिम रक्त रासायनिक रूप से क्या होते हैं ?

–फ्लोरो कार्बन।

• 'जार्विक-7' (Zarvic-7) क्या है ?

-कृत्रिम हृदय।

• मुख में बैक्टीरिया को मारने का काम कौन सा एन्जाइम करता है ?

-लाइसोजाइम (Lysozym)।

श्वसन तन्त्र (Respiratory System)

a. parts of the respiratory system

शरीर के अन्दर श्वास के रूप में वायु का निश्श्वसन एवं उत्श्वसन (Inhalation and Exhalation) करने वाले तन्त्र 'श्वसन—तन्त्र' कहलाते हैं। इसके अन्तर्गत नाम, कण्ठ (Larynx), एपिग्लाटिस (Epiglotis), श्वास नली, श्वसनी और फेफड़े आते हैं। ये तन्त्र शरीर के भीतर मुख्यतया वायु—मार्ग का कार्य करते हैं। इनमें— 'एपिग्लाटिस' (Epiglotis) भोजन निगलते समय श्वॉस मार्ग को बन्द कर देता है। श्वास नली उपास्थि (Cartilage- लचीली हड्डी) की बनी होती है। फेफड़े (Lungs- फुफ्फुस) में रूधिर का शुद्धिकरण गैसों के आदान—प्रदान से होता है। गैसों का आदान—प्रदान वायु कूपिकाओं (Alveoli) के माध्यम से होता है। ऑक्सीजन कूपिकाओं से रक्त में तथा कार्बनडाईऑक्साइड रक्त से कूपिकाओं में प्रवेश करता है। वयस्क मनुष्य के फेफड़ों में 30 से 40 करोड़ वायु कुप्पिकाएं होती हैं।

- मनुष्य में दायां फेफड़ा तीन पिण्डों में तथा बायां फेफड़ा दो पिण्डों में विभाजित होता है।
- कूपिकाओं में गैसीय आदान—प्रदान की क्रिया विसरण (Diffusion) के द्वारा होती है।
- एम्फिसेमा (Emphycema) बिमारी का सम्बन्ध फेफड़ों से होता है। ये बिमारी अधिक सिगरेट पीने से होती है जिसमें फेफड़ों की कूपिकाएं क्षतिग्रस्त हो जाती हैं और गैसीय आदान—प्रदान की क्रिया प्रभावित होती हैं।
- फेफड़ों की सुरक्षा हेतु इनके ऊपर प्ल्यूरा (Pleura) नामक
 झिल्ली का आवरण पाया जाता है।

ग्लूकोज़ के आक्सीकरण के द्वारा उत्पन्न ऊर्जा को श्वसन कहा जाता है।

श्वसन जीवों में 24 घण्टे चलने वाली क्रिया है।

श्वसन के प्रकार :

श्वसन के दो प्रकार होते हैं जिन्हें क्रमशः ऑक्सी और अनॉक्सी श्वसन कहा जाता है।

ऑक्सी श्वसन (Aerobic Respiration) :

- ऑक्सीजन की उपस्थिति में ग्लूकोज का पूर्ण जारण ऑक्सी श्वसन कहलाता है। ऑक्सी श्वसन की क्रिया में 38 ATP के रूप में ऊर्जा का उत्पादन होता है।
- ऑक्सी श्वसन की क्रिया कोशिका के कोशिका द्रव्य और माइटोकॉड्रिया के अन्दर सम्पन्न होती है।
- कोशिका द्रव्य में ग्लाइकोलिसिस क्रिया के द्वारा ग्लूकोज़ पायरविक अम्ल में तोड़ा जाता है। इस विखण्डन के दौरान 2 ATP के रूप में ऊर्जा का उत्पादन होता है।
- ग्लाइकोलिसिस क्रिया को ऑक्सी और अनॉक्सी श्वसन का कॉमन स्टेप माना जाता है।
- क्रेब्स चक्र की क्रिय मॉइटोकॉड्रिया के अन्दर सम्पन्न होती है। क्रेब्स चक्र के दौरान पायरविक अम्ल कार्बन डाइऑक्साइड और जल में विखण्डित हो जाता है।
- इस विखण्डन के दौरान 36 ATP के रूप में ऊर्जा का उत्पादन होता है।
- पायरविक अम्ल का विखण्डन ऑक्सीजन की उपस्थिति और अनुपस्थिति दोनों में होता है।
- जब मनुष्य अधिक कार्य करता है तो मांसपेशियों में ऑक्सीजन के अभाव में पायरविक अम्ल का विखण्डन लैक्टिक अम्ल और कार्बन डाइऑक्साइड में हो जाता है।
- लैक्टिक अम्ल के जमाव के कारण मांसपेशियों में दर्द होता है।

अनॉक्सी श्वसन (Anaerobic Respiration) :

- ऑक्सीजन की अनुपस्थिति में ग्लूकोज़ का ऑक्सीकरण या जारण अनॉक्सी श्वसन कहलाता है।
- मांसपेशियों में दर्द का कारण सम्बन्धित कोशिकाओं में ऊर्जा की कमी को भी माना जाता है क्योंकि अनॉक्सी श्वसन की क्रिया में 2 ATP के रूप में ऊर्जा का उत्पादन होता है।
- जब अनॉक्सी श्वसन की क्रिया जीवाणु और कवक में होती है तो इसे किण्डवन (Fermentation) कहा जाता है।
- किण्डवन क्रिया के द्वारा शराब तथा सिरके का निर्माण होता है।

श्वासच्छोसवास (Breating)

- सामान्यतः सास लेने की क्रिया को श्वासच्छोसवास कहा जाता है। इस क्रिया में ऊर्जा का उत्पादन नहीं होता है।
- वायुमण्डलीय ऑक्सीजन का फेफडों में ग्रहण करना और शरीर के विभिन्न भागों से आयी हुई कार्बन डाइऑक्साइड गैस को वायुमंडल में मुक्त करने की क्रिया को श्वासच्छोसवास कहा जाता है।
- श्वसन क्रिया की शुरूआत 'डायफ्राग्म' (Diaphragm) के क्रियाशील होने से होती है।
- श्वसन के दौरान सर्वाधिक मात्रा में नाइट्रोजन गैस (78%) ग्रहण की जाती है और सबसे ज्यादा नाइट्रोजन (78%) ही छोडी जाती है।
- ऑक्सीजन 21% ग्रहण की जाती है तथा 16% छोड़ी जाती है।
- कार्बन डाई ऑक्साइड .03% (वातावरण में भी इतनी ही मात्रा में है) ग्रहण की जाती है तथा 4% छोडी जाती है।
- गहरी साँस लेने पर $3\frac{1}{2}$ लीटर गैस ग्रहण की जाती है, इस क्षमता को 'वाइटल क्षमता' (Vital Capacity) कहते हैं। सामान्य साँस में $\frac{1}{2}$ लीटर गैस ग्रहण की जाती है, जिसे 'टाइडल क्षमता' (Tidal Capacity) कहते हैं।

- 1 1/2 लीटर गैस फेफड़ों में प्रत्येक दशा में बनी रहती है जिसे 'रेसीडुअल क्षमता' (Residual Capacity) कहते हैं। फेफडे की गैस–धारण की अधिकतम क्षमता 5 लीटर है।
- ऑक्सीजन का ग्रहण एवं कार्बन डाई ऑक्साइड का उत्सर्जन 'हीमोग्लोबिन' की मात्रा पर निर्भर होता है।
- > गैसों का विनिमय परासरण (Diffusion) क्रिया द्वारा होता है।
- कोशिकीय श्वसन कोशिकाओं के अन्दर 2 चक्रों—ग्लाइकोलिसिस एवं क्रेव के माध्यम से पूरा होता है और कार्बनडाई ऑक्साइड तथा जल का निर्माण होता है।
- ऑक्सीजन की अनुपिश्यित में अनाक्सीश्वसन होता है। इसमें कार्बोहाइड्रेट के अपघटन के फलस्वरूप एथिल अल्कोहल और जल का निर्माण होता है।
- अधिक परिरम करने पर 'लैक्टिक एसिड' का निर्माणहोता है, जिससे थकाने महसूस होती है।
- कार्बन डाई ऑक्साइड का संवहन मुख्यतया बाई कार्बोनेट आयन (HCO₃⁻) के रूप में होता है।
- हीमोग्लोबिन की अनुपस्थिति में भी रुधिर 2% ऑक्सीजन का आदान-प्रदान कर सकता है।

उत्सर्जन (Excretion) :

- शरीर में कार्बोहाइड्रेट तथा वसा के उपापचय से कार्बन डाइऑक्साइड तथा जलवाष्प का निर्माण होता है।
- प्रोटीन के उपापचय से नाइट्रोजन जैसे उत्सर्जी पदार्थों का निर्माण होता है। जैसे— अमोनिया, यूरिया तथा यूरिक अम्ल।
- कार्बन डाइऑक्साइड जैसे उत्सर्जी पदार्थों को फेफड़ों के द्वारा शरीर से बाहर निकाला जाता है।
- सोडियम क्लोराइड जैसे उत्सर्जी पदार्थ त्वचा के द्वारा शरीर के बाहर निकाले जाते हैं।
- यूरिया जैसे उत्सर्जी पदार्थ वृक्क के द्वारा शरीर के बाहर निकाले जाते हैं।

उत्सर्जन के प्रकार :

उत्सर्जन के तीन प्रकार होते हैं-

- 1. अमोनोटेलिक उत्सर्जन: इस प्रकार के उत्सर्जन में उत्सर्जी पदार्थ के रूप में अमोनिया को शरीर से बाहर निकाला जाता है। इस प्रकार का उत्सर्जन जिन जन्तुओं में पाया जाता है उन्हें अमोनोटेलिक जन्तु कहा जाता है। इस प्रकार के उत्सर्जी पदार्थ को निकालने के लिए सबसे अधिक जल की आवश्यकता होती है। अमोनिया को सर्वाधिक विषेला उत्सर्जी पदार्थ माना जाता है। इस प्रकार का उत्सर्जन ज़लीय जन्तुओं में पाया जाता है।
- 2. यूरियोटेलिक उत्सर्जन : इस प्रकार के उत्सर्जन में उत्सर्जी पदार्थ के रूप में यूरिया को शरीर से बाहर निकाला जाता है। कुछ उभयचर वर्ग तथा स्तनधारी वर्ग के जन्तुओं में इस प्रकार का उत्सर्जन पाया जाता है। जैसे मेढ़क, मनुष्य, हिरन, खरगोश आदि।
- 3. यूरिकोटेलिक उत्सर्जन : इस प्रकार के उत्सर्जन में उत्सर्जी के पदार्थ के रूप में यूरिक अम्ल का निर्माण होता है। यूरिक अम्ल को उत्सर्जित करने के लिए सबसे कम जल की आवश्यकता होती है क्योंकि ये सबसे कम विषेला उत्सर्जी पदार्थ होता है। इस प्रकार का उत्सर्जन पक्षी वर्ग तथा सरीसृप वर्ग के जन्तुओं में पाया जाता है। जैसे— कबूतर, मोर, सर्प, मगरमच्छ, कछ्आ आदि।

- मेंढ़क एक ऐसा प्राणी है जिसमें तीनों प्रकार का उत्सर्जन पाया जाता है।
- मेढक के लार्वा को टैडपोल कहा जाता है। जिसमें अमोनोटेलिक प्रकार का उत्सर्जन पाया जाता है।
- वयस्क मेढक में यूरियोटेलिक प्रकार का उत्सर्जन पाया जाता है।
- जब मेढ़क सुसुप्ता अवस्था में होता है तो इसमें यूरिकोटेलिक प्रकार का उत्सर्जन पाया जाता है।
- मेंद्रक में सुसुप्ता अवस्था के दो प्रकार होते हैं जिन्हें ग्रीष्म सुसुप्ता अवस्था (Aestivation) तथा शीत सुसुप्ता अवस्था को हाइबरनेशन कहा जाता है।
- मनुष्य के शरीर में यूरिया का निर्माण यकृत में होता है जबिक वृक्क के द्वारा यूरिया को छान करके शरीर के बाहर निकाला जाता है।

शरीर के हानिकारक पदार्थों को बाहर निकालने वाले तन्त्र उत्सर्जी तन्त्र कहलाते हैं। जैसे– त्वचा, आँसू ग्रन्थि, वृक्क (Kidney) आदि।

Section of a kidney

हमारे शरीर का सर्वप्रमुख उत्सर्जी अंग 'वृक्क' है। वृक्क की इकाई 'नेफ्रान' (Nephron) है। 'नेफ्रान' में मूत्र (Urine) का निर्माण होता है। मूत्र का संग्रहण 'मूत्राशय' (Urinary Bladder) में होता है। मूत्र में 95% जल तथा शेष यूरिया, यूरिक अम्ल, क्रिएटिनीन, हिप्यूरिक अम्ल, साधारण लवण इत्यादि होते हैं। मूत्र में जल के बाद सर्वाधिक मात्रा यूरिक की होती है। मूत्र का पीला रंग 'क्रिएटिनीन' (Creatinine) के कारण होता है। मूत्र का निर्माण सामान्य यमनुष्य में 24 घंटे में लगभग 100 लीटर होता है, लेकिन अन्तिम रूप से $1\frac{1}{2}$ लीटर ही मूत्र का उत्सर्जन होता है। शेष जल का पुनः अवशोषण हो जाता है।

वृक्क के कार्य न करने पर **'डायलिसिस'** (Dialisis) का उपयोग किया जाता है। मूत्र का निष्यंदन (Filtration) **'बाऊमैन** सम्पूट' (Bowmann (एक वैज्ञानिक का नाम) Capsul) में होता है।

- मनुष्य में दो वृक्क पाये जाते हैं जिन्हें दायां और बायां वृक्क कहा जाता है।
- 🕨 मनुष्य के वृक्क का भार लगभग 300 से 350 ग्राम होता है।
- वृक्क के द्वारा छाने गये मूत्र में सबसे अधिक मात्रा में जल पाया जाता है जबिक कार्बनिक पदार्थ के रूप में सर्वाधिक यूरिया पायी जाती है।
- मूत्र का पीला रंग यूरोक्रोम पदार्थ की उपस्थिति के कारण होता है।
- मूत्र का pH मान 6 होता है। अर्थात मूत्र अम्लीय प्रकृति का होता है।
- मनुष्य के मूत्र के द्वारा विटामिन सी शरीर के बाहर निकाली जाती है।

- अमोनिया सर्वाधिक विषेला उत्सर्जी पदार्थ है जबिक यूरिक अम्ल सबसे कम विषेला उत्सर्जी पदार्थ है।
- मनुष्य में Urea यूरिया का निर्माण अमोनिया से यकृत में होता है, जिसको रुधिर से अलग करने का कार्य वृक्क (Kidney) करते हैं।

अन्तःस्रावी तन्त्र (Endocrine System)

अन्तःस्रावी तन्त्र (Endocrine System)

- यह नलिका युक्त एवं नलिका विहीन ग्रंथियों का तन्त्र होता है, जिसमें विभिन्न ग्रन्थियों द्वारा स्नावित (Secreted) हार्मोन्स शरीर की क्रियाओं पर नियन्त्रण रखते हैं।
- अन्तःस्रावी ग्रन्थियाँ निलकाविहीन ग्रन्थियाँ होती हैं जिनका अध्ययन जीव विज्ञान की अन्तःस्रावी विज्ञान के अन्तर्गत किया जाता है।
- अन्तःस्रावी विज्ञान का जनक वैज्ञानिक एडिसन को माना जाता है।
- अन्तःस्रावी ग्रन्थियों से हार्मोन जैसे रासायनिक पदार्थ का निर्माण होता है।

हार्मोन :

- हार्मोन शब्द को स्टारलिंग तथा बेलिस नामक वैज्ञानिकों ने किया था।
- हार्मोन जीव शरीर के अन्दर रासायनिक संदेशवाहक के रूप में कार्य करते हैं।
- जैविक क्रियाओं को उत्तेजित करने वाले पदार्थों को हार्मोन कहा जाता है जिनका निर्माण प्रोटीन के अतिरिक्त कोलेस्ट्रॉल तथा अमिनो अम्ल जैसे पदार्थों से होता है।

मनुष्य के शरीर में निम्न अन्तःस्रावी ग्रन्थियाँ पायी जाती हैं जो इस प्रकार हैं।

पीयूष ग्रन्थि (Pituitary Gland), थायराइड (Thyroid) ग्रन्थि, पैराथायराइड, थाइमस ग्रन्थि, एड्रिनल (Adrenal) ग्रन्थि लैंगर हैन्स की द्वीपिका (Islets of Langerhans), यौन ग्रन्थि (Sex Gland) आदि प्रमुख अन्तः स्नावी ग्रंथियाँ हैं। इनमें मात्र 'लेंगरहैन्स द्वीपिका' नलिका युक्त होती है। यह अन्तःस्नावी तन्त्र एवं पाचन यतन्त्र दोनों से सम्बद्ध है।

पीयूष ग्रन्थि (Pituitary): यह मस्तिष्क के निचले भाग में स्थित होती है। यह अन्य सभी अन्तःसावी ग्रन्थियों पर नियन्त्रण रखती है। इसी कारण इसे 'मास्टर ग्रन्थि' (Master Gland) कहते हैं। इससे वृद्धि—हार्मोन्स, थायराइंड उत्तेजक हार्मोन्स, फाल्किल्स उत्तेजक हार्मोन्स इत्यादि 11 हार्मोन्स निकलते हैं। हार्मोन्स प्रोटीन तथा स्टीराएड (वसीय पदार्थ) से बने होते हैं जो जैविक प्रक्रियाओं का नियन्त्रण करते हैं। पीयूष ग्रन्थि से निकलने वाले हार्मोन्स के प्रमुख कार्य— शरीर वृद्धि पर नियन्त्रण रखना, मादा में अण्डे (Eggs) तथा नर में शुक्राणु (Sperm) का निर्माण, दुग्ध—उत्पादन पर नियन्त्रण, शरीर में जल—संतुलन, उपापचय (Metabolism) पर नियन्त्रण रखना है। पीयूष ग्रन्थि से निकलने वाले 'वृद्धि—हार्मोन्स' (Growth Hormon) के अधिक स्नावण (Secretion) की दशा में व्यक्ति अधिक लम्बा एवं कम स्नावण की दशा में बौना (Dwarf) होता है।

थायराइड (Thyroid): इसे Tempo Of Life के नाम से जाना जाता है। यह पीयूष ग्रन्थि के ठीक नीचे होती है। यह शरीर में सबसे बड़ी अन्तःस्रावी ग्रन्थि है। इससे निकलने वाले

हार्मोन— 'थायराक्सिन' (Thyroxin) का मुख्य कार्य है— श्वॉस—दर को नियन्त्रित करना। 'थायराक्सिन' में 'आयोडीन' नामक तत्व पाया जाता है। इसी कारण 'थायराक्सिन' के अल्प स्रावण से 'घेंघा रोग' (Goitre Disease) हो जाता है। 'थायराइड' ग्रन्थि को एक अन्य नाम — 'एडम एपिल' (Adam Apple) से भी जाना जाता है।

पैरा थायराइड (Para Thyroid): यह थायराइड के नीचे पाया जाता है। इससे स्नावित होने वाला 'पैरा थ्रोमोन' हार्मोन हड्डी में कैल्सियम एवं फास्फोरस की मात्रा को नियन्त्रित करता है।

एड्रिनल (Adrenal): एड्रिनल ग्रन्थि को आपात कालीन ग्रन्थि (Emergency Gland) कहा जाता है। यह वृक्क (Kidney) के ऊपर स्थित होती है। इससे एड्रिनलीन (Adrenaline) हार्मोन का स्रावण होता है। इस हार्मोन का मुख्य कार्य 'कार्बाहाइड्रेट, प्रोटीन और वसा' के उपापचय (Metabolism) पर नियन्त्रण रखना है। भय और आवेश की स्थिति में अधिवृक्क ग्रन्थि (एड्रिनल ग्रन्थि) के अन्तस्थ भाग से अचानक स्नावित 'एड्रिनलीन' हार्मोन मनुष्य को विषम परिस्थितियों से सामना करने के लिए प्रेरित करता है। इसे लड़ो या उड़ो हार्मोन कहा जाता है। यह इस हार्मोन का दूसरा कार्य है।

लैंगर हैन्स द्वीपिका (Islets of Langerhans): ये अग्न्याशय में पायी जाती हैं। यह एक ऐसा भाग है जो पाचन तन्त्र से अंग के रूप में जाना जाता है तथा अनतः स्नावी तन्त्र में ग्रंथि के रूप में जाना जाता है, जो मंड (Starch) ओर शक्कर (Sugar) की प्रतिक्रिया को नियन्त्रित करता है। इसकी कमी से शक्कर रूधिर में चला जाता है जो कि रक्त के घनत्व को बढा देता है, जिससे रक्त का दबाव **'रक्त वाहिनियाँ**' (Blood Vessels) में बढ जाता है, जो कि 'ब्रेन हैमरेज' (Brain Hammarage) एवं 'हृदय आघात' (Heart Attack) का कारण बन सकता है। इसी प्रकार इन्सुलीन की कमी 'रुफ िर में शक्कर के स्तर' (Blood Sugar Level) को बढ़ाती है, जिससे 'डायबिटीज' (Diabetes- मधुमेह) नामक रोग होता है ('डायबिटीज' स्थिति में–उच्च रक्त Hypertension)), हृदय आघात एवं ब्रेन हैमरेज की संभावना बनी रहती है।

यौन ग्रन्थि (Sex Gland): यह 2 प्रकार की होती है-

- (i) नर हार्मोन ग्रन्थि, इसे 'टेस्टिस' (Testes) कहते हैं। इसमें से 2 हार्मोन्स— टेस्टोस्टेरोन तथा **इन्ड्रोस्टेरोन**— निकलते हैं।
- (ii) मादा हार्मोन ग्रन्थि, इसे 'ओवरी' (Ovaries) कहते हैं। इससे 2 हार्मोन्स— एस्ट्रोजेन तथा प्रोजेस्ट्रेरान निकलते हैं। एस्ट्रोजेन (Estrogen) स्त्रियों में यौन परिपक्वता, स्तन ग्रन्थि का विकास और ऋतु स्राव (Menstruation) का नियन्त्रण करता हैं प्रोजेस्टेरान (Progesteron) गर्भावस्था में नियन्त्रण रखता है। इसीलिए इसे 'प्रिगनैन्सी हार्मोन' (Pregnancy Hormone) भी कहते हैं। Estrogen एस्ट्रोजेन द्वितीयक लैंगिक लक्षणों के विकास के लिए उत्तरदायी होता है।

श्वास नली किसकी बनी होती है ?

-उपास्थि (Cartilage-लचीली हड्डी) की।

• वयस्क मनुष्य के फेफड़े में किनी 'वायु कुप्पिकाएं' (Alveoli) होती है ?

-30 से 40 करोड।

• श्वसन के दौरान सर्वाधिक मात्रा में कौन-सी गैस ग्रहण की जाती है ?

–नाइट्रोजन (78%)।

श्वसन क्रिया के दौरान कार्बन डाई ऑक्साइड 4% छोड़ी जाती है, किन्तु यह कितनी ग्रहण की जाती है?

-0.03% |

• फेफडे (Lungs) की गैस-धारण की अधिकतम क्षमता कितनी है ?

-5 लीटर।

गैसों का विनिमय किस क्रिया द्वारा होता है ?

-परासरण (Diffusion)।

• अधिक परिश्रम करने पर किस अम्ल का निर्माण होता है, जिससे थकावट महसूस होती है ?

-लैक्टिक एसिड।

• 'वृक्क' (Kidney) की इकाई क्या है ?

–'नेफ्रान' (Nephron) ।

• 'मूत्र' (Urine) का पीला रंग किसके कारण होता है ?

-क्रिएटिनीन (Creatinine)।

• मूल का निष्पंदन (Filtration) कहाँ होता है ?

-बाउमैन सम्पुट (Bowmann Capsul) में।

जनन तन्त्र (Reproductive System)

सन्तानोत्पत्ति के उत्तरदायी अंगों के तन्त्र जनन-जन्त्र कहलाते हैं। ये नर और मादा में भिन्न-भिन्न होते हैं।

नर जनन अंगों के अन्तर्गत् वृषण (Testes), शुक्राशय (Seminal Vesicle), शिशन (Penis) आदि 17 अंग आते हैं, जिनमें 2 काउपर एवं प्रास्टेट ग्रंथियाँ हैं।

वृषण में शुक्र (Sperm- नर जनन कोशिका) का निर्माण होता है। इनका संग्रहण शुक्राशय में होता है। अर्थात् वृषण एक फैक्ट्री का कार्य करता है, जबिक शुक्राशय भण्डार गृह (Storage) का कार्य करता है। 'शुक्रीय द्रव्य' का निर्माण प्रॉस्टेट ग्रन्थि (prostate Gland) में होता है और इस द्रव्य में शुक्र मिले रहते हैं।

मादा प्रजनन तन्त्र के अन्तर्गत योनि (Vagina), गर्माशय (Uterus), डिम्ब वाहिनी (Fallopian Tube) डिब्ब ग्रन्थियाँ (Ovaries) आदि लगभग 16 अंग एवं ग्रन्थि आते हैं। इनमें डिम्ब ग्रन्थियों से प्रति 28 दिन (चान्द्र मास) पर एक परिपक्व डिम्ब (Ova) निर्मित होकर मुक्त होता है और डिम्ब वाहिनी में आता है, जहाँ पर इसका सम्पर्क शुक्र से होने पर निषेचन (Fertilization) होता है। निषेचन के पश्चात निषेचित अण्डे का विकास गर्भाशय में होता है और विकास के फलस्वरूप शिशु का जन्म होता है। उदरस्थ शिशु का भरण—पोषण 'फ्लेसेन्टा' (Placenta) के माध्यम से होता है।

- सभी जीवों मेंअपने ही जैसे संतान उत्पन्न करने का गुण होता है इसी गुण को प्रजनन कहते हैं।
- प्रजनन के द्वारा पुरुष और स्त्री के जननांगों से स्नावित श्क्राण् और अण्डाण् मिलकर नया भ्र्ण बनाते हैं।
- पुरुष और स्त्री का प्रजनन तंत्र भिन्न-भिनन अंगों से मिलकर बना होता है।
- पुरुष प्रजननतंत्र (Male Reproductive System) के प्रमुख अंग हैं— अधिवृषण (Epididymis), वृषण (Testes), शुक्रवाहिका (Vas Deferens), शुक्राशय (Seminal Vesicle), पुरस्थ (Prostate), शिश्न (Penis) आदि।
- स्त्री प्रजननतंत्र (Female Reproductive System) के प्रमुख अंग हैं— शर्तशेल (Mons veneris), वृहत्त भगोष्ठ (Labium major), लघु भगोष्ठक, भगशिश्निका (Clitoris), योनि (Vagina), अंडाशय (Ovaries), डिम्बवाहिनी नली तथा गर्भाशय (Uterus) आदि।

विभिन्न जन्तुओं का गर्भाधान समय			
जन्तु का नाम	गर्भाधान समय		
घोड़ा (Horse)	340 दिन		
हाथी (Elephant)	606-610 दिन		
बाघ (Tiger)	103 दिन		
कंगारू (Kangaroo)	6—11 दिन		
गधा (Ass)	340 दिन		
सूअर (Pig)	101-120 दिन		
भेंड़ (Sheep)	135—160 दिन		
भेड़िया (Wolf)	61-63 दिन		
जेबरा (Zebra)	340 दिन		
गोरिल्ला (Gorilla)	250-270 दिन		
तेंदुआ (Leopard)	90-105 दिन		
चूहा (Rat)	21 दिन		
गिलहरी (Squirrel)	40 दिन		
भैंस (Buffalo)	310-330 दिन		
चीता (Panther)	91—95 दिन		
बिल्ली (Cat)	50 दिन		
हिरण (Deer)	150-180 दिन		
जिराफ (Giraffe)	453-464 दिन		
बकरी (Goat)	150 दिन		
सियार (Jackal)	63 दिन		
शेर (Lion)	100-120 दिन		
खरहा (Hare)	28—35 दिन		
	.0 4 -/ 4 4		

- वृषण (Testes) नर जनन ग्रंथि है, जो अण्डाकार होता है।
 इसका कार्य शुक्राणु (sperms) उत्पन्न करना है।
- शुक्राणु की लंबाई 5 मइक्रॉन होती है।
- शुक्राणु शरीर में 30 दिन तक जीवित रहते हैं, जबिक मैथुन के बाद स्त्रियों में केवल 72 घंटे तक जीवित रहते हैं।
- शिश्न पुरुषों का संभोग करने वाला अंग है।
- स्त्रियों में दो अंडाशय (ovaries) बादाम के आकार के भूरे रंग के होते हैं।
- इनका मुख्य कार्य अण्डाणु पैदा करना हैं
- अंडाशय में ऑस्ट्रोजन (oestrogen) तथा प्रोजेस्टेरॉन (Progesterone) का स्नाव होता है, जो ऋतुस्राव को नियंत्रित करते हैं।

- एशियाई हाथी का गर्भाधानकाल सबसे अधिक 609 दिन होता है।
- अंडाणु की परिधि 100-125 मिमी. तक होती है।
- गर्भाशय नाशपाती के आकार का होता जो मूत्राशय के पीछे तथा मलाशय के आगे स्थित होता है।
- शुक्राणु और डिम्ब के मिलन को निषेचन (Fertilization) कहते हैं।
- ऋतुस्राव (Menstruation) को रजोधर्म, आर्तव या मासिक धर्म भी कहते हैं।
- ऋतुस्राव स्त्रियों में प्रायः 12–14 वर्ष की अवस्था से प्रारंभ होकर 45–50 वर्ष की आयु तक होता है।

शिशु का लिंग-निर्धारण (Sex Determination)

How the sex of a baby is determined

नव शिशु में लिंग निर्धारण गैमिटोजेनिसिस एवं लिंग गुणसूत्र (Gametogenisis and Sex Chromosomes) के विभाजन पर निर्भर करता है। मानव में 23 जोड़े गुणसूत्र (Chromosomes) होते हैं, जिनमें 22 जोड़त्रे Autosomes तथा एक जोड़ा लिंग गुण सूत्र (Sex Chromosome) होता है। इस एक जोड़े को X एवं Y द्वारा प्रवर्शित किया जाता है। नर में लिंग गुण सूत्र XY प्रकार का तथा मादा में XX प्रकार का होता है। लिंग निर्धारण में नर (Male) की ही भूमिका होती है, न कि मादा की। यदि X मादा और X नर गुण सूत्र मिलते हैं तो शिशु मादा (Female) होगा। यदि मादा और Y नर गुणसूत्र मिलेंगे तो शिशु 'नर' (Male) होगा।

लिंग गुणसूत्र (Sex Chromosomes) पर कुछ बीमारियों या शारीरिक असमानता (Disorder) के जीन (Gene) उपस्थित होते हैं। ऐसी स्थिति में शारीरिक असमानता (Disorder) का होना या न होना शिशु लिंग पर निर्भर करता है। इस प्रक्रिया को 'लिंग वंशानुक्रम संपर्क' (Sex Link Inheritance) कहते हैं जो नर या मादा में किसी को भी एक पीढ़ी से दूसरी पीढ़ी में हो जाता है। जैसे— Piles। किन्तु 'गंजापन' (Bladness) ऐसी असमानता (Disorder) है, जो अगली पीढ़ी के केवल पुरुषों में देखा जाता है। वर्णान्धता (Colour Blindness), हीमोफीलिया, डाउन सिन्ड्रोम आदि शारीरिक असमानता से सम्बन्धित रोग हैं।

जुड़वा शिशु (Twin)— सामान्य रूप से एक शुक्र (Sperm) एक अण्डा (Ova) को निषेचित (Fertilize) कर पाता है, क्योंकि एक मासिक चक्र (Manstruation Cycle) की समाप्ति के पश्चात मात्र एक अण्डे का निश्काषन होता है, किन्तु कभी—कभी असमानता होती है, जिसके कारण जुड़वा बच्चे पैदा होते हैं। ये स्थितियाँ 2 हैं—

- (i) यदि एक अण्डे की जगह 2 अण्डे का निर्माण होता है तो यह 2 अलग—अलग शुक्राणु के द्वारा निषेचित होता है। परिणामतः 2 निषेचित अण्डे गर्भाशय (Ovary) में उतरते हैं और 2 अलग—अलग प्लेसेन्टा (Placenta) के द्वारा माता की उदर की दीवार से जुड़ जाते हैं हैं, जिससे 2 अलग—अलग मिन्न प्रकार के शिशु पैदा होते हैं जो असमान जुड़वां बच्चे (Non-Identical Twin) कहे जाते हैं तथा ये नर या मादा कुछ भी हो सकते हैं। इन बच्चों के गुण एवं प्रवृत्ति 2 अलग—अलग बच्चों की तरह होती है। इनका जन्म एक साथ होता है।
- (ii) इसके विपरीत यदि एक अण्डा एक शुक्राणु से निषेचन के पश्चात गर्भाशय में पहुँचने बाद नव शिशु के विकास के पहले ही 2 भागों में विभाजित हो जाता है तो इन दोनों भाग से अलग—अलग शिशुओं का विकास होता है, जो सदैव एक ही लिंग के होते हैं और एक ही प्लेसेन्टा द्वारा जुड़त्रे होते हैं। इन्हें पहचानना भी कठिन हो जाता है। इन्हें 'सम—जुड़वा' (Identical Twin) कहते हैं। भ्रूणावस्था के समय शिशु को माता के उदर से भोजन पहुँचाने का कार्य करने वाला अंग Placenta कहलाता है।
- अन्तःस्रावी ग्रन्थियों में कौन-सी ग्रन्थि नलिका युक्त होती है ?
- –लैंगर हैन्स द्वीपिका।
- व्यक्ति के बौनेपन के लिए उत्तरदायी हार्मीन- 'वृद्धि-हार्मीन' (Growth Hormon) किस ग्रन्थि से स्नावित होता है ?
- शरीर की सबसे बड़ी अन्तःस्रावी ग्रन्थि कौन-सी है ?

- –थायराइड (Thyroid)।
- किस हार्मीन के अल्प स्नावण के कारण 'घेंघा रोग' (Goitre Disease) हो जाता है?—थायराक्सिन (Thyroxin) ।
- हड्डी में कैल्सियम एवं फास्फोरस की मात्रा को कौन—सा हार्मोन नियन्त्रित करता है ? **–पैराथ्रार्मोन**
- 'हार्मीन्स' किसके बने होते हैं ?

- –प्रोटीन तथा एस्टीरायड (वसीय पदार्थ)।
- भय या आवेश की स्थिति में अचानक स्नावित वह हार्मोन कौन—सा है, जो व्यक्ति को विषम परिस्थिति का सामना करने के लिए प्रेरित करता है ?
 —एड्रिनेलीन (Adrenaline) |
- किस हार्मोन की कमी के कारण शक्कर रूधिर में चला जाता है और रक्त वाहिनियों में रक्त के दबाव को बढ़ाकर 'ब्रेन हैमरेज' या 'हृदय आघात' (Heart Attack) का कारण बन सकता है ?

–इन्सुलीन (Insuline) ।

- किस हार्मीन को गर्भावस्था में नियन्त्रण के कारण 'प्रिगनैन्सी हार्मीन' (Pregnancy Hormone) के नाम से जाना जाता है ?
- गर्भस्थ भ्रूण (शिशु) का भरण—पोषण किसके माध्यम से होता है ?

-प्लेसेन्टा (Placenta) ।

कंकाल तंत्र (Skeletal System)

यह छोटी—बड़ी कुल 206 हड़िडयों से बना एक ढाँचा है, जो शरीर को आकृति, इसके अंगों को गति एवं सुरक्षा प्रदान करता है। कंकाल तन्त्र को 2 भागों —बाह्य कंकाल और अन्तः कंकाल में विभाजित किया गया है। अन्तः कंकाल तन्त्र की अस्थियों (हिड्डयों— Bones) को 5 भागों में विभाजित किया गया है। (1) खोपड़ी (Skull), (2) वक्ष (Thorax), (3) स्कन्ध मेंखला (Shoulder Girdle or Pectoral Girdle), (4) श्रोणि मेखला (Pelvic Girdle), (5) कशेरूक दण्ड (रीढ़— Vertebral Column)। बच्चों में 300 हिड्डयॉं पायी जाती हैं। जबिक विज्ञान की दृष्टि से बच्चों में हिड्डयों की संख्या 213 होती हैं।

The human skeleton

1. खोपडी (Skull) : सिर के अस्थि-भाग को खोपडी या

कपाल कहते हैं। मस्तिश्क इसी भाग में स्थित होता है। इसी भाग में स्वाद, घ्राण, दुष्टि तथा श्रवण इन्द्रियाँ भी स्थित होती

हैं। खोपड़ी में कुल 29 हड़िडयाँ होती हैं।

इस भाग में 'फीमर' (Femer-शरीर की सबसे लम्बी हड्डी— पैर के ऊपरी भाग में स्थित, अर्थात् कमर से घुटने तक की

हड़डी को 'फीमर' कहते हैं), टीबिया-फीबुला (Tibia-Fibula-

घूटने से टखने (एडी) तक की हडफी, टार्सल एवं मेटा टार्सल

हंडिडयाँ पायी जाती हैं।

- 5. कशेरूक दण्ड (Vertebral Column): इसे रीढ़ की हड्डी भी कहते हैं। इसमें बच्चों में 33 हड्डियाँ एवं व्यस्कों में 26 अस्थियाँ होती हैं। इनका वितरण इस प्रकार है— ग्रीवा में 7, वक्ष में 12, किट में 5, त्रिक में 5 और अनुत्रिक में 4 हड्डियाँ होती हैं। वयस्क व्यक्ति के त्रिक और अनुत्रिक भागों के कशेरूक आपस में मिलकर 2 कशेरूक के रूप धारण कर लेते हैं। इस प्रकार कशेरूक दण्ड में अस्थियों की कुल संख्या 26 हो जाती है। एक कशेरूक दूसरे कशेरूक के साथ इस प्रकार जुड़े रहते हैं कि इनके भीतर एक नली सी रचना बन जाती है, जिसे 'मेरू रज्जु' (Spinal Cord) कहते हैं। शरीर में सूचनाओं / सन्देशों का परिसंचरण इसी के माध्यम से होता है।
- वयस्क मनुष्य में कुल हिड्डयों की संख्या 206 (बच्चों में 300) होती है। खोपड़ी में कुल 29, कशेरूक दण्ड में 33, हाँथ में 60 तथा पैर में 60 हिड्डयाँ होती हैं।
- सबसे लम्बी हड्डी 'फीमर' तथा सबसे छोटी हड्डी स्टेपीज (Stapes-कान की हड्डी) है।
- अस्थियों (हिड्डियों) की कठोरता का कारण कैल्सियम व मैग्नीशियम फास्फेट लवण है।
- मानव शरीर में कठोरतम भाग है— 'दाँत' के शिखर की 'इनैमल' हड्डी (93% कैल्शियम व मैग्नीशियम फास्फेट)।
- वाह्य कंकाल के अन्तर्गत बाल और नाखून आते हैं।
 इनकी रचना 'किरैटीन' नामक प्रोटीन से होती है।

तन्त्रिका तन्त्र (Nervous System)

- तंत्रिका तंत्र का निर्माण तंत्रिका कोशिकाओं से होता है। तंत्रिका कोशिकाओं को न्यूरॉन के नाम से जाना जाता है। न्यूरॉन शरीर की सबसे बड़ी या लम्बी कोशिकाएं होती हैं।
- तंत्रिका कोशिकाओं में पुनरूद्भवन की क्षमता सबसे कम होती है अर्थात मस्तिष्क में पुनरूद्भवन की क्षमता सबसे कम होती है।
- यकृत मनुष्य के शरीर का ऐसा अंग है जिसमें पुनरूद्भवन की संख्या सबसे ज्यादा होती है।
- कार्य और संरचना के आधार पर तंत्रिका कोशिकाएं दो प्रकार की होती हैं जिन्हें क्रमशः संवेदी और प्रेरक तंत्रिका कोशिकाएं कहा जाता है।
- संवेदी तंत्रिका कोशिकाएं संवेदी अंगों के द्वारा ग्रहण की गई सूचनाओं को मस्तिष्क में पहँचाती हैं।
- प्रेरक तंत्रिका कोशिकाएं मस्तिष्क के द्वारा दी गई सूचनाओं को शरीर के विभिन्न भागों में पहुँचाती हैं।
- शरीर में सूचनाओं या सन्देशों का आदान—प्रदान करने वाले अंग सामूहिक रूप से 'तिन्त्रकातन्त्र' कहलाते हैं। इसमें मुख्यतया 4 अंग हैं— (1) तिन्त्रका कोशिका, (2) तिन्त्रका गुच्छिका, (3) मिस्तष्क, (4) मेरूरज्जु। संपूर्ण तिन्त्रका तन्त्र को कार्यों के आधार पर 2 भागों में विभाजित किया गया है— (1) केन्द्रीय तिन्त्रका तन्त्र (मुख्यतया इसमें मिस्तष्क, मेरूरज्जु तथा तिन्त्रकाएं आती हैं।) (2) स्वायत्त तिन्त्रका तन्त्र (इसमें मुख्यतया स्वतः संचालित होने वाले अंग, जैसे— हृदय, फेफड़ा, पाचन तन्त्र, उत्सर्जी तन्त्र आते हैं।) केन्द्रीय तिन्त्रका तन्त्र पर व्यक्ति का नियन्त्रण होता है, जबिक स्वायत्त शाली तन्त्र स्वतन्त्र होते हैं।

1. केन्द्रीय तिन्त्रका तन्त्र (Central Nervous System)– इसके 3 भाग हैं— (i) मस्तिष्क, (ii) मेरूरज्ज, (iii) तिन्त्रकाएं।

- (i) मस्तिष्क (Brain): यह तिन्त्रका तन्त्र का सबसे महत्वपूर्ण भाग है। यह शरीर का नियन्त्रण केन्द्र होता है। मनुष्य के मस्तिष्क का भार लगभग 1300 से 1400 ग्राम होता है। मस्तिष्क के ऊपर मेनिनजेस नामक झिल्ली पायी जाती है। यह भी 3 उप–भागों में विभक्त किया जाता है–
 - अ. प्रमस्तिष्क (Cerebrum): यह मस्तिष्क का अग्रभाग होता है। इसका बाह्य भाग धूसर (Gray) द्रव्य और आन्तिरिक भाग— श्वेत पदार्थों (White Matter) का बना होता है। इसका कार्य ऐच्छिक क्रियाओं (दृष्टि, स्पर्श, श्रवण, स्वाद, गन्ध आदि) और बुद्धि—विवेक पर नियन्त्रण करना है। यह मस्तिष्क का सबसे बड़ा भाग होता है। शरीर में ताप का नियन्त्रण इसी भाग से होता है।
 - ब. अनुमस्तिष्क (Cerebellum): यह मस्तिष्क का पश्च भाग होता है। इसमें धूसर (Gray) पदार्थ की मात्रा कम होती है। यह शरीर सन्तुलन का कार्य करता है। खड़े होने, नृत्य, टहलने, दौड़ने, साइकिल चलाने इत्यादि के दौरान शरीर का सन्तुलन अनुमस्तिष्क करता है।
 - स. अन्तस्था (Medulla Oblongata): यह मस्तिष्क का सबसे पिछला भाग होता है जो रीढ़ रज्जु से जुड़ा हुआ है। यह अनैच्छिक एवं स्वचालित क्रियाओं, जैसे— फेफड़े के कार्य, हृदय के कार्य, पाचन तन्त्र, रक्त प्रणाली, उत्सर्जन तन्त्र के कार्यों, श्वास—दर, रक्त दाब, शरीर—ताप इत्यादि पर नियन्त्रण रखता है।
- (ii) मेरूरज्जु (Spinal Cord) : अन्तस्थ मस्तिष्क आगे चलकर मेरूरज्जु में परिवर्तित हो जाता है। मेरूरज्जु, मेयदण्ड के भीतर 3 झिल्लयों— क्रमशः मृदुतानिका (Piamater), जालतानिका (Archnoid), क्लूरामेटर (Cluramater) से घिरी होता है। मेरूरज्जु का मुख्य कार्य—संवेदी अंगों से संवेदना (संदेश) को मस्तिष्क के अभीष्ट अवयवों तक पहुँचाना तथा मस्तिष्क के आदेश को कार्य स्थल तक पहुँचाना होता है।
- (iii) तिन्त्रकाएं (Nerves) : ये तन्तुओं (Fibres) के समूह होते हैं। ये संवेदी अंगों की सूचनाओं को मेरूरज्जु या मस्तिष्क तक पहुँचाती हैं। मेरूरज्जु आगे बढ़कर शाखाओं में विभाजित होकर तिन्त्रकाओं में परिवर्तित हो जाता है।

- 2. स्वायत्त तिन्त्रका तन्त्र (Autonomic or Peripheral Nervous System) : शरीर में ये तिन्त्रकाएं अनैच्छिक क्रियाओं (जिस पर शरीर का कोई नियन्त्रण नहीं होता), जैसे— हृदय के कार्य, फेफड़ों के कार्य, पाचन तन्त्र के कार्य, रक्तवाहिनियों के कार्य इत्यादि को नियन्त्रित करते हैं। स्वायत्त तिन्त्रका तन्त्र 2 उप—भागों में विभक्त किये जाते हैं— अनुकम्पी (Sympathetic) तथा सहानुकम्पी (Para-Sympathetic)।
 - अ. अनुकम्पी तिन्त्रका तन्त्र : इसके अन्तर्गत मेरूरण्जु के पार्श्व श्रृंग (Lateral Horn), अनुकम्पीय धड़ (Sympathetic Trunk) और अनुकम्पी कोशिकाएं आती हैं। इस तन्त्र का केन्द्रीय भाग पार्श्व श्रृंग है। इसके कोशिका प्रवर्द्ध मेरूरण्जु से निकलते हैं और अलग होकर अनुकम्पीय धड़ में प्रवेश करते हैं। इसका कार्य हृदय की धड़कनों को उत्तेजित करना है।
 - ब. सहानुकम्पी तिन्त्रका तन्त्र : इस तन्त्र के अन्तर्गत सहानुकम्पी नाभिक गुच्छिका और तिन्त्रका तंतु आते हैं। इनका कार्य अनुकम्पी तिन्त्रका तंत्र के कार्यों के विपरीत कार्य करना है। अनुकम्पी और सहानुकम्पी तिन्त्रकाएं अंगों के कार्यों में समायोजन की स्थिति निर्मित करती है। अनुकम्पी तन्त्र पुतिलयों को विस्तारित, लार और अश्रु ग्रन्थियों के साव को कम, लघु धमनियों और शिराओं को संकुचित, हृदय धमनियों को विस्तारित, रक्त चाप (दाब) तथा हृदय—धड़कन की दर को बढ़ाने का कार्य करते हैं। इसके विपरीत—सहानुकम्पी तिन्त्रका तन्त्र पुतिलयों को संकुचित, लार और अश्रुग्रन्थियों के साव में वृद्धि, लघु धमनियों एवं शिराओं को विस्तारित, हृदय धमनियों को संकुचित, रक्त दाब तथा हृदय—धड़कन की दर को घटाने का कार्य करते हैं।

प्रतिवर्ती क्रिया (Reflex Action)

प्रतिवर्ती क्रिया की खोज **मार्शल हॉल** नामक वैज्ञानिक ने किया। शरीर में अचानक होने वाली अनैच्छिक क्रियाओं को प्रतिवर्ती क्रिया कहा जाता है।

किसी उद्दीपन के प्रति—उत्तर में किसी अंग में केन्द्रीय तिन्त्रका तन्त्र की जो प्रतिक्रिया होती है, उसे परिवर्ती क्रिया कहते हैं। इस क्रिया का नियन्त्रण मेरूरज्जु करता है। ऐसी क्रियाओं पर मिरतष्क का कोई नियन्त्रण नहीं होता। उदाहरणार्थ— किसी में पिन चुभ जाती है तो 'आरोही तिन्त्रका' (Ascending Nerves) इसकी सूचना मेरूरज्जु को देती है, मेरूरज्जु के आदेश को 'अवरोही' (Descending) तिन्त्रका अँगुली तक पहुँचाती है। परिणामतः हाथ वहाँ से हट जाता है। हाँ का सुई चुभने की दशा में हट जाना परिवर्ती क्रिया कहलाती है।

ज्ञानेन्द्रियाँ (Sense Organs)

ये 5 हैं— (i) त्वचा, (ii) आँख, (iii) नाक, (iv) कान, (v) जिहवा।
(i) त्वचा (Skin) : इसे स्पर्श इन्द्रिय भी कहते हैं। इन्हें सपर्श ग्राही भी कहा जाता है। स्पर्श के कारा हम वस्तुओं के आकार—प्रकार, कठोरता—कोमलता का अनुभव करते हैं। त्वचा में संवेदना ग्राही तन्त्रिकाएं होती हैं जो शरीर में असमान रूप से वितरित होती हैं। जब त्वचा में आघात होता है तो सर्वप्रथम इसकी उत्तेजना पीड़ा ग्राही में अनुभव की जाती है। इसकी सूचना मस्तिष्क के अग्रभाग (प्रान्तस्था— Cerebrum) में संवेदी तन्त्रिकाओं के माध्यम से पहुँचती है। प्रान्तस्था भाग में पीड़ा के प्रति संवेदना उत्पन्न होती है।

त्वचा की 2 परतें होती हैं— (i) ऊपरी परत, इसे अधिचर्म (Epidermish) कहते हैं तथा (ii) भीतरी परत, इसे चर्म (Dermish) कहते हैं। 'चर्म' में तेल ग्रन्थियाँ (Sebaceous Glands), श्वेत (Sweat) ग्रन्थियाँ, रक्त निलकाएं, स्पर्श कण आदि पाये जाते हैं। 'अधिचर्म' समय—समय पर शरीर से बाहर निकलते रहते हैं, जिसे 'त्वचा का निर्मोचन' (Keratinisis or Moulding of Skin) कहते हैं। सर्प का कसेचुल इसका उदाहरण है।

शरीर में ताप रक्त वाहिनियों के संकुचन एवं प्रसारण से नियन्त्रित होता हैं अल्पताप की स्थिति में रक्त वाहिकाएं संकुचित हो जाती हैं, जिससे रक्त वाहिकाओं में रक्त का दाब बढ़ जाता है। ऐसी स्थिति में रक्त संचालन हेतु हृदय को अधिक कार्य करना पड़ता है। इस स्थिति में हृदय को अधिक ऊर्जा की आवश्यकता पड़ती है और इस ऊर्जा के लिए कोशिकाओं को अधिक कार्य करना पड़ता है, जिससे ताप में वृद्धि हो जाती है। अधिक ताप की स्थिति में रक्त वाहिनियाँ फैल जाती हैं। परिणामतः रक्त वाहिनियों में रक्त दाब कम हो जाता है।

त्वचा का रंग 'मिलैनीन' (Milanine) नामक रंगाकण (Pigment) के कारण होता है।

(ii) नेत्र (Eyes): नेत्र एक संवेदी अंग हैं, जिनके माध्यम से वसतुओं का दृष्टि ज्ञान होता है। नेत्र में निम्नलिखित भाग होते हैं— कार्निया (Cornea), तारिका (Iris), तारा (Pupil), दृष्टि पटल (Retina), लेन्स (Lens), सिलियरी पिण्ड (Ciliary Body) और श्वेत पटल (Sclera), आदि।

कार्निया पारदर्शी होती है, जो नेत्र—गोलक (जिसमें पूरा नेत्र स्थित है, उसे नेत्र गोलक कहते हैं) के ट्यूनिका फाइब्रोसा आकुली की बाह्य परत होती हैं। नेत्र—दान में 'कार्निया' का ही दान किया जाता है।

आइरिस (तारिका) : नेत्र गोलक के आन्तरिक भाग— द्यूनिका वेस्कुलासा वल्वी आकुली' के वाह्य भाग को परितारिका और पाश्च भाग को रंजित पटल (Choroid) कहते हैं। परितारिका के मध्य भाग में एक गोलाकार छिद्र होता है, जिसे 'पुतली' (Pupil- तारा) कहते हैं।

पुतली (तारा— Pupil) के काले रंग का कारण उसमें पायी जाने वाली 2 पेशियाँ—पुतली अवरोधनी (Sphincter Pupillae) और पुतली विसतारिणी (Dialator Pupillae) हैं, जो प्रकाश को परावर्तित नहीं होने देती। (जब कोई वसतु प्रकाश कसी सभी रंग की किरणों को अवशोषित कर लेती हैं, तो वह काली दिखाई पडती है।)

सिलियरी पिण्ड लेन्स के फोकस' (नाम्यंतर) को नियन्त्रित करता है। इसमें शलाका (Rods) तथा शंकु (Cones) नामक 2 पेशियाँ होती हैं। रेटिना के पश्चभाग को नेत्र फन्डस (Fundus Oculi) कहते हैं। इसके 2 उप—भाग— पीत बिन्दु (Macula Lutea) और दृक् बिन्दु (Optic Disk) होते हैं। दृक बिन्दु से दृष्टि तन्त्रिकाएं निकलती हैं, जो प्रतिबिम्ब की सूचना मस्तिष्क को देती हैं। दृक बिन्दु (Optic Disk or Blind Spot) पर ही किसी वस्तु का प्रतिबिम्ब बनता है। पीत बिन्दु में शंकु कोशिकाओं (Cones) की संख्या बहुत अधिक होती हैं, जो वसतु को स्पष्ट देखने के लिए उत्तरदायी हैं। रेटिना की शलाकाएं अत्यल्प रोशनी (अंधेरे में) की स्थित में वस्तु को देखने में मदद करती हैं, जबिक शंकु वसतु के रंगों के प्रति संवेदनशील होत हैं।

रेटिना की कुल कोशिकाओं की संख्या 13,00,00,000 होती है। आँख का लेंस 'उत्तल लेंस' (Convex Lens) की भाँति काम करता है।

प्रकाश की तीव्रता का आँख में नियन्त्रण 'तारिका' (Iris) द्वारा होता है। प्रखर प्रकाश में ये फैलकर तारा (Pupil) को संक्चित कर देते हैं, जिससे प्रकाश की कम मात्र लेंस में प्रवेश करें तथा मंद प्रकाश की स्थिति में तारिका (Iris) संकृचित होकर तारा (Pupil) के आकार को विस्तारित कर देते हैं, ताकि प्रकाश की अधिक मात्रा लेंस पर पड सके।

आयरिस (Iris) के बीच में एक छिद्र होता है, इसे पुतली तारा (Pupil) कहते हैं, जो कैमरा के डायफ्राम (Diaphragm) की तरह कार्य करता है।

नोट ऑख पर चित्र बनने से सम्बन्धित बीमारियों का अध्ययन भौतिक विज्ञान में प्रकाश के अन्तर्गत करेंगे।

(iii) नाक (Nose): यह घ्राण संवेदी अंग है। घ्राण (गन्ध) का अनुभव प्रमस्तिष्क (Cerebrum) में होता है।

(iv) कान (Ears) : इसके 3 भाग हैं— वाह्य कर्ण, मध्य कर्ण एवं आन्तरिक कर्ण। वाह्य कर्ण उपास्थि (Cartilageलचीली हड्डी) का बना होता है। मध्य कर्ण वाह्य और आन्तरिक कर्ण को जोडने का कार्य करता हैं मध्य कर्ण में मैलियस, इन्कस तथा स्टैपीज नामक 3 कर्णास्थिकाओं (कान के इस भाग की हिंड्डयाँ) से बनी होती हैं, जो ध्वनि कम्पनों को कर्ण पटह (वाह्य भाग) से आन्तरिक कर्ण तक पहुँचाती है। आन्तरिक कर्ण अर्द्ध पारदर्शक झिल्ली का बना होता है, जिसे 'कला गहन' (membranous Labyrinth) कहते हैं। कला गहन के बाहर 2 छिद्र होते हैं, जिन्हें अण्डाकार गवाच्छ तथा वृत्ताकार गवाच्छ कहते हैं। वृत्ताकार गवाच्छ 2 थैली सदृश छोटे-छोटे कोषों यूट्रीकुलस तथा सैकुलस में बंटा होता है।

कान शरीर संतुलन एवं श्रवण का कार्य करते हैं।

(v) चिह्वा (Tung) : यह स्वाद ग्राही अंग है। जिह्वा पर स्वाद कलिकाएं (Taste Buds) पायी जाती हैं। किसी वसत् का स्वाद तभी मालूम होता है, जब पहले श्लेष्म (Mucus) भोजन के कणों को घुला दे। घुलित अवस्था में तन्त्रिका संवेदी कोशिकाएं उत्तेजित होकर स्वाद के उददीपनों को ग्रहण करती हैं। जिह्वा पर 4 प्रकार के स्वाद का अनुभव होता है। ये हैं-मीठा, तीता, नमकीन और खट्टा।

शरीर की सबसे बडी हड़डी कौन-सी है ?

बाल एवं नाखुनों की रचना किस प्रोटीन से होती है ?

कौन-सी हड्डी मानव शरीर में कठोरतम भाग है ?

सिर के अस्थि भाग-'खोपड़ी' (Skull) में कुल कितनी हिंड्डियाँ होती हैं ?

शरीर की सबसे छोटी हड्डी- 'स्टेपीज' (Stapes) कहाँ होती है ?

शरीर में ताप का नियन्त्रण मस्तिष्क के किस भाग से होता है ?

साइकिल चलाने के दौरान शरीर का संतुलन मस्तिष्क का कौन-सा भाग रखता है?

किसी उद्दीपन के प्रत्युत्तर में किसी अंग में केन्द्रीय तिन्त्रका तन्त्र की जो प्रतिक्रिया होती है, उसे क्या कहते हैं ?

परिवर्ती क्रिया का नियंत्रण शरीर का कौन सा अंग करता है ?

त्वचा का रंग किस पिगमेन्ट (Pigment) के कारण होता है ?

'त्वचा का निर्मोचन' (Keratinisis) क्या है ?

वस्तू का प्रतिबिम्ब आँख के किस भाग पर बनता है ?

नेत्रदान की स्थिति में आँख के किस भाग का दान दिया जाता है ?

आँखों में बाहर से पडने वाले प्रकाश को कौन-सा भाग नियन्त्रित करता है ?

आँख का लेंस किस लेंस की भाँति काम करता है ?

–फीमर (Femer)।

–किरैटीन। –इनैमल हड्डी।

-28 I

–कान ।

-प्रमस्तिष्क (Cerebrum) |

–अनुमस्तिष्क (Cerebellum)

-परिवर्ती क्रिया (Reflex Action)।

—मेरू रज्ज़ (Spinal Cord)।

-मिलैनीन (Milanine) ।

—अधिचर्म का बाहर निकलना।

-रेटिना (Ratina)।

-कार्निया (Cornea)।

—आइरिस (Iris)।

–उत्तर लेंस (Convex Lens)।

स्वास्थ्य विज्ञान (Health Science)

विज्ञान की वह शाखा, जो मानव स्वास्थ्य का अध्ययन करती है तथा मनुष्य में होने वाले विभिन्न रोगों के कारणों की पहचान एवं उनके निराकरण का उपाय करती है,

विज्ञान' कहलाती है। इसके तहत हम संतुलित आहार (i) प्रोटीन, (ii) वसा, (iii) कार्बोहाइड्रेट, (iv) खनिज लवण, (v) विटामिन, (vi) जल तथा विभिन्न रोगों, उनके कारकों, प्रभावित अंगों, आदि का अध्ययन करेंगे।

संतुलित आहार (Balance Diet)

भोज्य पदार्थों के वे सभी आवश्यक अवयव, जो मनुष्य की शारीरिक क्षमता एवं 'कार्यकीय सक्रियता' (Physiological Activities) को अक्षुण्ण रखने तथा उनमें अभिवृद्धि हेतु आवश्यक होते हैं, 'संतुलित आहार' कहलाते हैं। संतुलित आहार के मुख्य 6 अंग हैं—

कार्य के आधार पर इन्हें 3 वर्गों में विभाजित किया गया है—

- 1. शरीर निर्माणकारी उदाहरण— प्रोटीन
- 2. ऊर्जा- उत्पादक उदाहरण- कार्बोहाइड्रेट तथा वसा
- शरीर
 नियन्त्रक (उपापचयी नियन्त्रक)
 उदाहरण
 खनिज लवण तथा विटामिन

प्रोटीन— यह कार्बन, हाइड्रोजन, ऑक्सीजन, नाइट्रोजन, सल्फर, लोहा तथा ताँबा का बना होता है। ये (प्रोटीन) जीव द्रव्य (Protoplasm) के प्रमुख आवश्यक अवयव हैं। ये 'अमीनों अम्ल' (प्रोटीन की इकाई) से निर्मित होते हैं। इनका मुख्य कार्य शरीर में वृद्धि, जीव द्रव्य की उत्पत्ति तथा टूटे—फूटे ऊतकों (Tissues) की मरम्मत करना है। हमारे शरीर के लिए कुल 20 'अमीनों अम्ल' की आवश्यकता होती हैं, जिनमें 10 अमीनों अम्ल का निर्माण शरीर के अन्दर स्वतः होता है, जो गैर—आवश्यक (Non Essential) अमीनों अम्ल कहलाते हैं तथा अन्य 10 भोजन के माध्यम से प्रापत होते हैं जो 'आवश्यक' (Essential) अमीनों अम्ल कहलाते हैं।

अण्डे और 'सीरम' में— 'अल्ब्यूमीन' प्रोटीन, रक्त में— 'ग्लोबीन' प्रोटीन, दूध में— 'केसीन', बालों एवं सींगों में— 'किरैटीन', गेहूँ में— 'ग्लाइएडीन', अकशेरूक जन्तुओं के रक्त में— 'हीमोसाइनीन' प्रोटीन पाया जाता है।

01 ग्राम प्रोटीन का पूर्ण ऑक्सीकरण होने पर 4.1 किलो कैलोरी ऊर्जा प्राप्त होती है। हमारे शरीर के लिए कुल आवश्यक ऊर्जा का 15% भाग प्रोटीन से प्राप्त होता है।

प्रोटीन के स्रोत— अण्डा, सोयाबीन, मांस, मछली, दालें इत्यादि हैं। इनमें— सोयाबीन में 43.2%, मांस में 21.4%, गेहूँ में— 12.1%, मछली में 16.6%, अण्डा में 13%, प्राप्त होता है। प्रोटीन की कमी से— मैरेमस और क्वासर कोर रोग हो जाते हैं।

वसा (Fat)— वसा— कार्बन, हाइड्रोजन और ऑक्सीजन के बने होते हैं। इनमें ऑक्सीजन का अनुपात हाइड्रोजन की अपेक्षा कम होता है, इसलिए ऑक्सीकरण पर प्रोटीन और कार्बोहाइड्रेट की अपेक्षा अधिक ऊर्जा (दो—गुनी) प्राप्त होती है। (हाइड्रोजन का कैलोरिक मूल्य अधिक होता है।) वसा के ऑक्सीकरण पर वसीय अम्ल और ग्लिसराल नामक 2 उत्पाद प्राप्त होते हैं। वसा का संचय वसा—ऊतकों (Adipose Tissue) में होता है। 1 ग्राम वसा के ऑक्सीकरण से लगभग 9.3 किलो कैलोरी ऊर्जा प्राप्त होती है। हमारे शरीर के लिए आवश्यक ऊर्जा का 35% भाग 'वसा' से प्राप्त होता है। वनस्पित तेल, बादाम, मांस, घी, वसा के मुख्य स्रोत हैं। बादाम में— 58.9%, मूंगफली में— 40%, सोयाबीन में— 19.5%, चना में 5.6%, मछली में— 1.4%, वसा होती है।

कार्बोहाइड्रेट (Carbohydrate)— यह कार्बन, हाइड्रोजन तथा ऑक्सीजन से मिलकर बना होता है। इसमें हाइड्रोजन एवं ऑक्सीजन का अनुपात 2: 1 होता है। काइटीन कार्बोहाइड्रेट में नाइट्रोजन भी पाया जाता है। कार्बोहाइड्रेट के प्रमुख स्रोत हैं— गेहूँ, चावल, केला, गन्ना, आदि। गेहूँ में— 79.2%, चावल में— 78.2%, केला में— 20, चना में— 59.8%, मूंगफली में— 46.1% कार्बोहाइड्रेट होता है।

कार्बोहाइड्रेट 3 प्रकार के होते हैं-

- (1) मोनोसैकराइड्स— ये अंगूर, शहद और दूध से प्राप्त होते हैं। अंगूर की शर्करा को 'ग्लूकोज', शहद की शर्करा को— फ्रक्टोज। फ्रक्टोज को फलों की शर्करा कहा जाता है। फ्रक्टोज सबसे मोटी प्राकृतिक शर्करा है। सैक्रीन सबसे मीठी कृत्रिम शर्करा होती है जिसका उपयोग मधुमेह के रोगी करते हैं।
- (2) डाइसैकराइड्स ये 2 मोनोसैकराइड्स अणुओं के मिलने से बनते हैं। ये दूध, मीठे फल, गाजर, गन्ना, चुकन्दर इत्यादि में पाये जाते हैं। दूध की शर्करा को— लैक्टोज, (ग्लूकोज और गैलक्टोज के संयुक्त होने से), गन्ने की शर्करा को सुक्रोज (सबसे मीठा), (ग्लूकोज और फ्रक्टोज के मिलने से) कहते हैं। दूध की शर्करा लैक्टोज को कहते हैं।
- (3) पाली सैकराइड्स (Polysaccharides)— ये जटिल कार्बोहाइड्रेट होते हैं। (कई मोनो सैक्रराइड्स अणुओं के मिलने से) और जल में अघुलनशील (Nonsolible) होते हैं। ये वनस्पतियों से प्राप्त होते हैं। आलू एवं अनाज की शर्करा को—मंड (Starch), कोशिका मित्त की शर्करा को सैलुलोज, मनुष्य में संचित शर्करा को—ग्लाइकोजन कहते हैं। ग्लाइकोजन यकृत (Liver) में संचित होते हैं। Chitin कुछ जन्तुओं के वाहय कंकाल के निर्माण में सहायक होता है जैसे— घोंघा, सिपी आदि। Chitin की कठोरता का कारण इसके रासायनिक संगठन में केल्शियम कार्बोबोनेट यौगिक पाया जाता है।
- ग्राम कार्बोहाइड्रेट से 4.1 किलो कैलोरी ऊर्जा प्राप्त होती है। शरीर के लिए आवश्यक कुल ऊर्जा का 50% भाग कार्बोहाइड्रेट से प्राप्त होता है।
- मधुमिक्खयों पुष्प का पराग (अर्थात् सुक्रोज) चूस कर इसे शहद (अर्थात् फ्रक्टोज) में रूपान्तरित कर देती है।

आवश्यक कैलोरी ऊर्जा

- एक सामान्य व्यक्ति को प्रतिदिन भोजन में 450 ग्राम कार्बोहाइड्रेट, 100 ग्राम प्रोटीन तथा 80 ग्राम वसा लेनी चाहिए।
- कठिन शारीरिक परिश्रम करने वाले व्यक्ति को 600 ग्राम कार्बोहाइड्रेट तथा 420 ग्राम प्रोटीन लेनी चाहिए।
- ▶ किसी भोजन में 100 ग्राम से जितनी ऊर्जा मिलती है/निकलती है, उसे 'कैलोरी मान' कहते हैं। बादाम में 655 कैलोरी/100 ग्राम, काजू में 596, मूंगफली में 567, सोयाबीन में 432, चना में 372, चावल में 347, गेहूँ में 344, मांस में 194, अण्डा में 173, दूध में 117 कैलोरी ऊर्जा प्रति 100 में होती है।
 - (i) मानसिक कार्य / श्रम करने वाले व्यक्ति (जैसे— वैज्ञानिक, डॉक्टर, इंजीनियर) को— 3000 से 3200 कि0कै0
 - (ii) मशीन चलाने वालों (टर्नर, मोटर ड्राइवर, वस्त्र उद्योग के मजदूर) को— 3500 किलो कैलोरी
 - (iii) आंशिक मशीनीकृत शारीरिक कार्य में लगे व्यक्ति (जैसे— यन्त्र बनाने वाले, कृषि मजदूर, फिटर) को— 4000 किलो कैलोरी

- (iv) कठिन शारीरिक परिश्रम करने वाले (जैसे– कुली, गोदी मजदूर, आदि) को 4500 से 5000 किलो कैलोरी।
- (v) गर्भवती महिला को— 2800 किलो कैलोरी ऊर्जा आवश्यक होती है।
- दूध को एक संतुलित या पूर्ण आहार माना जाता है लेकिन इसमें विटामिन—सी तथा आयरन नहीं पाये जाते, जबिक अन्य सभी अवयव एवं तत्व पाये जाते हैं।
- दूध का सफेद रंग दूध में उपस्थित— 'केसीन' प्रोटीन के कारण, हल्का पीला रंग (गाय का दूध)— राइबोफ्लेवीन (Riboflavin) के कारण (कहीं—कहीं कैरोटीन का उत्तरदायी माना गया है) तथा मीठापन— 'लैक्टोज' सुगर (Sugar- शर्करा) के कारण होता है।
- केवल दूध का लगातार सेवन करते रहने से 'एनीिमया'
 (रक्त हीनता—लोहा की कमी के कारण) रोग हो जाता है।

खनिज लवण (Mineral-Salts)

ये भोजन के अकार्बनिक घटक होते हैं, जो शरीर की उपापचयीय क्रियाओं (Metabotic Activities) का नियन्त्रण करते हैं। ये शरीर में तत्व के रूप में न ग्रहण कर यौगिक के रूप में ग्रहण किये जाते हैं। प्रमुख खनिज लवण निम्न हैं—

- 1. कैल्शियम (Calcium)— इसका कार्य शरीर का कंकाल बनाना, रक्त का थक्का जमाना, तिन्त्रकाओं को उत्तेजित करना आदि है। हिड्ड्याँ एवं दाँत मुख्यतया कैल्शियम और फास्फेट (कैल्शियम फास्फेट) के बने होते हैं। दूध, घी, अण्डा, सन्तरा व गाजर में कैल्शियम पाया जाता है। हरी सिब्जियाँ भी कैल्शियम की प्रमुख स्रोत हैं। इसकी कमी से कंकाल का विकास ठीक से नहीं हो पाता। कैल्शियम की कमी से 'ओसटिओपोरोसिस' (Oesteoporosis) रोग हिड्ड्यों में हो जाता है। हिड्ड्याँ छिद्रित हो जाती हैं।
- 2. फास्फोरस (Phosphorus) इसका कार्य कंकाल की बनाने, रक्त एवं दाँतों के निर्माण में भाग लेना है। ये वसा उपापचय का नियन्त्रण करते हैं। ये नयूक्लिक अम्ल और प्रोटीन के निर्माण में भी भाग लेते हैं। ये दूध, अण्डा, मछली,

सब्जी आदि में पाये जाते हैं। इसकी कमी से दाँत के मसूड़े कमजोर हो जाते हैं तथा हिंडयाँ लचीली हो जाती हैं।

- 3. पोटेशियम (Potassium) यह शरीर में परासरण दाब (Osmotic Pressure) को नियन्त्रित करता हैं यह सभी प्रकार की सब्जियों में पाया जाता है। इसकी कमी से मस्तिश्क का संतुलन खराब हो जाता है और हृदय भी ठीक से काम नहीं कर पाता है। पोटेशियम की कमी से 'हाइपोकैलेमिया' रोग हो जाता है। ये हृदय धड़कन को नियन्ति करता है।
- 4. लोहा (Iron)- यह रक्त में 'हीमोग्लोबिन' का निर्माण करता है। इसकी कमी से 'एनीमिया' (Anaemia) रोग हो जाता है। यह हरी सब्जियों, केला आदि में मुख्यतया प्राया जाता है। लोहा मुख्यतया 'लाल रक्त कणिकाओं' का निर्माण करता है। रक्त का लाल रंग हीमोग्लोबिन अथवा आयरन (लोहा) के कारण होता है।
- 5. सोडियम (Sodium) यह शरीर में जल-नियन्त्रण का कार्य करता है। इसकी कमी से शरीर में जल की कमी हो जाती है। यह नमक में पर्याप्त मात्रा में मिलता है। इसकी कमी से 'जल-निर्जलीकरण' (Dehydration) हो जाता है। सोडियम की कमी से 'हाइपोनेट्रेमिया' रोग हो जाता है।
- 6. ताँबा (Copper) यह 'हीमोसाइनीन' (मनुष्येतर में पाया जाने वाला एक प्रकार का रक्त) का घटक होता है। यह रक्त निर्माण एवं एन्जाइम निर्माण में भाग लेता है। इसकी कमी से शरीर का संत्लन खराब हो जाता है।
- 7. आयोडीन (Iodine)— यह थायराइड ग्रन्थि के थायराक्सिन हामीन्स में पाया जाता है। इसकी कमी से घेंघा रोग हो जाता है। इसका प्रमुख स्रोत जल एवं समुद्री नमक और आयोडाइज्ड नमक है।
- 8. क्लोरीन (Chlorine)– यह शरीर में अम्ल, क्षार तथा जल के संतुलन को नियन्त्रित करता है। इसका प्रमुख स्रोत नमक है।
- 9. कोबाल्ट (Cobalt) यह विटामिन बी 12 का प्रमुख घटक है। यह रक्त के निर्माण में भाग लेता है। इसकी भी कमी से 'एनीमिया' रोग हो जाता है।

विटामिन्स (Vitamins)

विटामिन की खोज 1881 में लुनिन ने की थी। रासायनिक दृष्टि से ये कार्बनिक यौगिक होते हैं जो कि शरीर की उपापचयी क्रियाओं को नियन्त्रित करते हैं। इनके बिना 'उपापचय' (Metabolism) असम्भव होता है। इनकी कमी से शरीर में अनेक बीमारियाँ हो जाती हैं। ये स्वयं ऊर्जा प्रदान नहीं करते हैं, लेकिन ऊर्जा सम्बन्धी सभी रासायनिक क्रियाओं को नियन्त्रित करते हैं। मनुष्य इनका 'संश्लेषण' (Synthesis) स्वतः नहीं कर पाता, इसलिए ये भोजन के माध्यम से प्राप्त किये जाते हैं। जबिक वनस्पतियाँ इनका स्वतः संश्लेषण करती हैं। विटामिन शब्द या विटामिनवाद 1912 ई. में वैज्ञानिक फुंक (Funk) के द्वारा दिया गया। विटामिन्स—एल्कोहल, स्टेरोल और किवनोन होते हैं। विटामिन्स को 2 वर्गों में विभक्त किया गया है— (i) वसा में घुलनशील तथा (ii) जल में घुलनशील।

(i) वसा में घुलनशील विटामिन्स— विटामिन ए, डी, ई और के। (ii) जल में घुलनशील विटामिन्स— बिटामिन बी, सी।

वसा में घुलनशील विटामिन्स

विटामिन ए : रासायनिक नाम— रेटिनाल। इसे वृद्धिकर विटामिन (Vitamin of Growth) और संक्रमण रोधी (Anti infection) विटामिन कहते हैं। इसकी कमी से रतोंधी (Nightblindness), जीरोपथैल्मिया (Xerophthalmia), डरमेटोसिस (Dermatosis), मन्दित बुद्धि (Retarted Growth), शरीर में पथरी (Stone), आँख में सफेदी आदि बीमारियाँ होती हैं। इस विटामिन के स्रोत— गाजर, दूध, मक्खन, अण्डा, मछली का तेल, पालक आदि हैं।

विटामिन डी: इसका रासायनिक नाम— 'कैस्सीफेराल' है। यह हिंड्डियों एवं दाँतों को मजबूती प्रदान करता है। इसका निर्माण हमारे शरीर में सूर्य की पराबैंगनी किरण के 'अर्गोस्टेराल' (एक रसायन) के ऊपर पड़ने से होता है। इसकी कमी से बच्चों में सूखा रोग (Rickets) तथा वयस्कों में 'अस्थिमृदुता' (Osteomalacia) नामक रोग हो जाता है। ये मछलियों के तेल, दूध, अण्डे, यकृत तथा मक्खन से प्राप्त होते हैं। इसे Hormonal Vitamin कहा जाता है।

विटामिन ई : इसे (Beauty) सुन्दरता का विटामिन कहते हैं। रासायनिक नाम— टोकोफेराल। यह झुर्रियों की रोक थाम करता है, त्वचा की सुरक्षा व चेहरे की ओज तथा कान्ति बनाये रखता है, प्रजनन अंगों का विकास करता है, कोशिकाओं में उपस्थित एन्जाइमों की रक्षा करता है। स्रोत—कपास के बीजों के तेल, चावल के छिलके के तेल, सायाबीन के तेल तथा सलाद—पत्ते (Alfalfa) से यह विटामिन प्राप्त होती है। इसकी कमी से नप्सकता आ जाती है।

विटामिन के: रासायनिक नाम— नैष्याक्चिनोन। यह खून का थक्का बनने में मदद करता है, जिससे रक्त स्राव नियन्त्रित होता है। यह हरी सब्जियों, अण्डा, गाजर आदि से प्रापत होता है। इसकी कमी के कारण चोट लगने पर जारी रक्त स्राव आसानी से नहीं रूकता।

जल में घुलनशील विटामिन्स

विटामिन बी₁: इसका रासायनिक नाम— 'थाइमीन' है। यह सर्वप्रथम चावल के छिलके से प्रापत किया गया। इसकी कमी से मनुष्य में बेरी—बेरी (Beri-Beri) रोग तथा जानवरों में पालीन्यूराइटिस नामक रोग हो जाता है। बेरी—बेरी से मस्तिष्क का संतुलन बिगड़ जाता है। बेरी—बेरी से मस्तिष्क का संतुलन बिगड़ जाता है। बेरी—वेरी से मस्तिष्क का संतुलन बिगड़ जाता है, हृदय आहार नाल व पेशियों की क्रियाशिक्त

क्षीण हो जाती हैं यह विटामिन कार्बोहाइड्रेट उपापचय के लिए आवश्यक होता है। बेरी—बेरी से तिन्त्रका तन्त्र एवं स्नायु क्षीण हो जाते हैं, जो लकवा (Paralysis) का कारण बनते हैं। अनाजों के छिल्के, दाल, दूध, यकृत आदि इस विटामिन के स्रोत हैं।

विटामिन बी₂ : रासायनिक नाम— 'रीबोफलेविन' (Riboflavin) है। इसकी कमी से त्वचा फट जाती है, जीभ में सूजन आ जाती है, नेत्र कमजोर हो जाते हैं, ओठ फटकर सूज जाते हैं। इसकी कमी से फीलोसिस रोग हो जाता है। स्रोत—यकृत मांस, फल, सब्जी आदि।

विटामिन बी₆: रासायनिक नाम— 'पेरिडाक्सिन'। यह प्रोटीन, कार्बोहाइड्रेट तथा वसा के उपापचय को नियन्त्रण करता है। कमी से पेलाग्रा के समान लक्षण उत्पनन हो जाते हैं। कभी—कभी अरक्तता (Anaemia) भी हो जाती है। स्रोत— यकृत, मांस, दूध, मछली, मटर, आदि। इस विटामिन का शरीर में संश्लेषण बैक्टीरिया आँत में करते हैं।

विटामिन बी₁₂: रासायनिक नाम— 'कोबालैमाइन'। यह न्यूक्लियक अम्ल तथा न्यूक्लिओ प्रोटीन के संश्लेषण में भाग लेता है। इसकी कमी से रक्त क्षीणता (Anaemia) रोग हो जाता है। इस विटामिन में 'कोबाल्ट' नामक तत्व पाया जाता है। स्रोत— यकृत, सुअर का मांस, अण्डा, दूध फल आदि। इसका भी निर्माण आँत में बैक्टीरिया करते हैं।

विटामिन सी: रासायनिक नाम— एस्कार्बिक अम्ल। यह शरीर में रोग सेधन क्षमता की वृद्धि करता है। इसकी कमी से मसूड़ों में सूजन आ जाती है, इससे रक्त व पस का स्राव होने लगता है, जिसे स्कर्वी (Scurvy) रोग कहते हैं। स्रोत— नींबू, सन्तरा, अंगूर, टमाटर, मुसम्मी, आँवला (आँवला में सर्वाधिक), इमली आदि हैं। नाविकों को ताजे फल एवं सब्जियाँ न मिल पाने के कारण 'स्कर्वी' रोग हो जाता है। ये प्रतिरोधक क्षमता को बढ़ाती हैं। भोजन को अधिक पकाने पर ये Vitamin C नष्ट हो जाती है। मनुष्य के द्वारा इसी विटामिन का उत्सर्जन किया जाता है।

जल (Water)

यह जीव द्रव्य का एक प्रमुख घटक है। हमारे शरीर का लगभग 60% भाग जल होता है, जो शरीर में असमान रूप से वितरित रहता है। जल की मात्रा— मूत्र में 95%, रक्त प्लाज्मा में 92%, रक्त में 83%, वृक्क में— 80%, मांसपेशियों में 76%, हिंड्डियों में 22% होती है। यदि हमारे शरीर में लगभग 12% निर्जलीकरण हो जाय तो घातक सीमा प्रारम्भ होती है, जिसकी अधिकतम सीमा 15% होती है।

जल शरीर में भोज्य पदार्थों एवं खनिज लवणों के संवहन के लिए माध्यम प्रदान करता है। यह शरीर के ताप का नियन्त्रण करता है। यह उत्सर्जी पदार्थों को उनके निर्माण स्थल से उत्सर्जी अंगों में पहुँचाने का कार्य करता है।

जीवाणु (BACTERIA)

- 'जीवाणु' की खोज 1683 ई. में एंटोनी वॉन ल्यूवेनहॉक द्वारा की गई तथा जीवाणु नाम 1829 ई. में एहरेनबर्ग द्वारा रखा गया।
- गॅबर्ट कोच (1843–1910 ई.) ने जर्म-सिद्धांत (Germ theory) का प्रतिपादन किया तथा कॉलरा एवं तपेदिक के जीवाणुओं की खोज की।
- **लुई पाश्चर** (1812–92 ई.) द्वारा दूध के पाश्चुराइजेशन तथा रेबीज के टीके की खोज की गई।

- जीवाणुओं की आकृति कई प्रकार की होती है।
- कुछ जीवाणु आकृति में **छड़नुमा या बेलनाकार** (Bacillus) होते हैं।
- सबसे छोटे जीवाणुओं का आकार **गोलाकार** (cocus) होता है।
- कुछ जीवाणुओं का आकार कौमा (,) की तरह होता है। उदाहरण–विब्रियो कॉलेरी।
- कुछ जीवाणु सर्पिलाकार (Spiral), स्प्रिंग या स्क्रू के आकार के होते हैं।
- स्वतंत्र रूप से मिट्टी में निवास करने वाले जीवाणु अजोटोबैक्टर, एजोस्पाइरिलम एवं क्लोस्ट्रीडियम मिट्टी के कणों के बीच स्थित वायु के नाइट्रोजन का स्थिरीकरण (Nitrogen fixation) करते हैं।
- वायु मंडल में नाइट्रोजन–स्थिरीकरण का कार्य एनाबीना तथा नॉस्टॉक नामक सायनों–बैक्टीरिया द्वारा होता है।
- मटर के पौधों की जड़ों में नाइट्रोजन—स्थिरीकरण का कार्य इनके जड़ों में रहने वाले सइजोबियम तथा ब्रैडीराइजोबियम नामक जीवाण्ओं द्वारा होता है।
- दूध को अधिक दिनों तक सुरक्षित रखने के लिए इसका 'पाश्च्रराइजेशन' करना आवश्यक है।
- चमड़ा उद्योग में चमड़े से बालों एवं वसा को हटाने का कार्य जीवाणुओं द्वारा होता है। इसे टैनिंग (Tanning) कहा जाता है।
- जीवाणु कोशिका में Curcular DNA पाया जाता है।
- वे पदार्थ जो सूक्ष्म—जीवों (Micro-organisms) द्वारा उत्पन्न किये जाते हैं तथा सूक्ष्म जीवों को ही नश्ट करते हैं प्रतिजैविक (Antibiotic) कहलाते हैं।
- एंटीबायोटिक शब्द का इस्तेमाल सर्वप्रथम सेलमन वाक्समैन ने किया।

विषाणु (VIRUS)

- तंबाकू के मोजाइक रोक का अध्ययन करने के दौरान रूसीवैज्ञानिक इवानोवस्की ने 1892 ई. में 'विषाणु' की खोज की।
- इनकी प्रकृति सजीव एवं निर्जीव दोनों से मिलती है अतः इन्हें 'सजीव–निर्जीव' के बीच संयोजक कड़ी (connecting link) कहा जाता है।
- 'वाइरस' शब्द Virum शब्द से बना है जिसका अर्थ विष होता है।
- वाइरस मुक्त अवस्था में निर्जीव की तरह व्यवहार करते हैं परंतु किसी सजीव कोशिका में पहुँचते ही सक्रिय हो जाते हैं तथा एंजाइमों का विश्लेषण करने लगते हैं।
- परपोषी प्रकृति (Parasitic nature) के आधार पर विषाणुओं का तीन प्रकार माना गया।
- जिन विषाणुओं के न्यूक्लियिक अम्ल में RNA होता है, वे पादप विषाणु (Plant Virus) कहलाते हैं।
- जिन विषाणुओं में DNA (कभी–कभार RNA भी) पाया जाता है वे जंतु विषाणु (Animal Virus) कहलाते हैं।
- ऐसे विषाणु जो सिर्फ जीवाणुओं पर आश्रित रहते हैं तथा जीवाणुओं को मार डालते हैं, जीवाणुभोजी विषाणु (Bacteriophage Virus) कहलाते हैं।
- रेट्रो–विषाणुओं में आनुवांशिक पदार्थ RNA होता है।
- 1898 ई. में लोफलर एवं फ्रोस्य ने जानवरों में विषाणु जनित रोगों के संबंध में जानकारी जुटाने में महत्वपूर्ण सफलता प्राप्त की, तब इन जीवों को विषाणु (Virus) कहा गया।

मनुष्यों में होने वाली प्रमुख बीमारियाँ (Diseases)

बीमारियाँ 3 प्रकार की होती हैं— (i) संक्रामक (Communicable or Infectious), (ii) असंक्रामक (Non-Communicable or Non Infectious) तथा (iii) अल्पता जन्य या अभाव जन्य रोग (Deficiency Disease)।

रोग / बीमारी	कारक	संक्रमण का तरीका	प्रभावित अंग	
विषाणु जन्य रोग				
1. चेचक	वैरिओला	सम्पर्क	त्वचा त्वचा पर दाने निकलना तथा बुखार आना।	
2. सर्दी—जुकाम	रीनो विषाणु	सम्पर्क	फेफड़ा तथा श्वसन तंत्र	
3. इन्पलुएन्जा (फ्लू)	ऑर्थोमिक्सो	विषाणु	सिरदर्द, हल्का बुखार, कफ, खांसी, आदि हवा बुखार, शारीरिक दर्द, कफ, ठंड, प्रभावित अंग–फेफड़ा	
4. मम्स (Mumps)	पैरामिक्सो	लार, नाक से निकलने वाला द्रव	मुँह लक्षण छाले पड़ना।	
5. पोलियो	इन्टीरो विषाणु	भोजन एवं जल	तन्त्रिका तंत्र।	
6. रैबीज अथवा हाइड्रोफोविया	रैबडो विषाणु	पागल कुत्ता, सियार, लोमड़ी, बिल्ली के काटने से		
7. डेंगू बुखार (अस्थि ज्वर)	अरबों विषाणु	एडीज मच्छर	हिड्डियों के जोड़, इसमें प्लेटलेट्स की संख्या घट जाती है।	

8. एड्स (AIDS)	HIV/HTLV	रक्त एवं मैथून	रक्त कणिकाएं		
9. स्वाईन फ्लू	H1N1	सुअर द्वारा	श्वसन तन्त्र		
10. इन्सीफ्लाइटिस : ये एक विषाणु	, जनित बिमारी है जिसमें म	। स्तिष्क की झिल्ली प्रभ	वित होती है।		
बैक्टीरिया / जीवाणु जन्य रो	बैक्टीरिया / जीवाणु जन्य रोग				
1. डिप्थीरिया	कोरिनेवैक्टीरियम डिप्थीरी	भोजन एवं जल	श्वसन अंग		
2. निमोनिया	डिप्लोकोकस निमोनी	ਯਕ	श्वसन अंग		
3. तपेदिक या क्षय (TB)	माइकोवैक्टीरियम ट्यूबरकुलोसिस	भोजन, दूध, जल	फेफड़ा		
4. प्लेग (कालीमौत)	एसीनिया पेस्टिस	चूहा	लिम्फ		
5. टिटनेस (धनुष टंकार)	क्लोस्ट्रीडियम टिटेनी	मिट्टी, गोबर	तिन्त्रका तंत्र (इसमें सम्बन्धित रोगी का जबड़ा बन्द हो जाता है।)		
6. टायफाइड (मोतीझरा)	सैल्मोनेलाटाइफी	मक्खी, भोजन, जल	आँत		
7. कालरा / हैजा	वेब्रीयोकालरी	भोजन, जल	पाचन तन्त्र		
8. काली खांसी (Whooping Cough)	परट्यूसिस				
9. कोढ़ (कुष्ठ रोग) (Leprocy) / (Hences Disease)	लेप्री	रोगी के सर्म्क में लम्बे समय तक रहने से	अंगुलियाँ, त्वचा		
10. सिफलिस (Syphilis)	पायलिङम				
11. गोनोरिया	नाइसेरिया गोनोरियाई	संक्रमण द्वारा	मादा जनन तंत्र		
प्रोटोजोआ जन्य रोग					
1. मलेरिया	प्लाज्मोडियम	मादा एनाफिलीज मच्छर	रक्त, RBC तथा यकृत (Liver), प्लीहा (Spleen)		
2. पेचिस (Dysentery)	एण्ट—अमीबा हिस्टोलिटिका	जल, भोजन, कच्ची सब्जियाँ	बड़ी आँत		
3. निद्रा रोग (Sleeping Sickness)	ट्रिपैनोसोमा	सी. सी. मक्खी	लिम्फ, रक्त, मस्तिष्क		
4. डेलही उबाल (Delhi Boil)	लैस्येनिया ट्रोपिका	सैण्ड मक्खी	चेहरा, हाँथ और पैर		
5. কালা जार (Kala-azar) (Dum-Dum Fever)		सैण्ड मक्खी	तिल्ली, यकृत		
6. डायरिया (Diarrhoea)	जीआरडिया	जल, भोजन	पित्ताशय, ग्रहणी		
फंजाई (कवक) जन्य रोग					
1. दाद (Ring Worm)	माइक्रोस्पोरम	कुत्ता, बिल्ली तथा रोगियों के सम्पर्क	त्वचा		
2. एथली फूट	ट्रीकोफाइटॉन	भोजन	त्वचा		
3. मदुरा फूट	मदुरेला	हवा	त्वचा		
4. धोबी इच (Dhobie Itch) (एक प्रकार का दाद)	अनेक फंजाइ	हवा	त्वचा		
क्रिमि जन्य रोग					
1. टीनिएसिस	टीनिया सोलियम (फीता क्रिमि)	सुअर का मांस	छोटी आँत		
2. एन्सिलोइस्टो	हुकवर्म	मल, दूषित भोजन	छोटी ऑत		
3. एस्केरियेसिस	- एस्केरिस	मल, दूषित भोजन	छोटी आँत		
4. इन्टोरोवियासिस परिशेषिका	पिनवर्म	जल एवं भोजन	सीकम, क्रीमीरूप		
5. फाइलेरिसिस फाइलेरिया	वूचेरिया	मच्छर	पैर (लिम्फ नोड)		

आनुवंशिक रोग (Genetic Disorder)

1. वर्णान्धता (Colour Blindness) इसके रोगी 'लाल' एवं 'हरे' रंग में भेद नहीं कर पाते हैं। यह रोग 'X गुणसूत्र पर उपस्थित रहता है। यदि वर्णान्ध पुरुष की शादी सामान्य महिला से होती है तो उसके बच्चों में लड़की वर्णान्ध होगी तथा लड़के सामान्य। यदि वर्णान्ध महिला कसी शादी सामान्य पुरुष से होती है तो उनकी सन्तानों में आधे वर्णान्ध एवं आधे सामान्य होंगे।

 हीमोफिलिया (Heamophilia) यह रोग केवल पुरुषों में पाया जाता है। महिलाएं इस रोग के जीन की वाहक (Carrier) होती हैं। महिलाएं भी इस रोग से ग्रस्त हो सकती हैं, किन्तु ऐसा तभी हीमोफीलिक जबकि हीमोफीलिया वाहक स्त्री से विवाह करे। चॅंकि हीमोफीलिक जीन घातक होते हैं जिसके कारण हीमोफीलिक पुरुष युवा होने से पूर्व मर जाते हैं और शादी की स्थिति ही नहीं बन पाती। अतः यह रोग महिलाओं में प्राय: नहीं होता 🛚 हीमोफिलिया की स्थिति में चोट लग जाने पर रक्त का थक्का नहीं बन पाता और अत्यधिक रक्त श्राव होने पर व्यक्ति की मृत्यु हो जाती है।

- 3. रतौंधी (Night Blindness)
- इसके रोगी को शाम एवं रात्रि के समय स्पष्ट नहीं दिखाई पडता।
- 4. उाउन सिन्ड्रोम (Down Syndrome)

इसे मंगोलायड रोग भी कहते हैं, इस रोग की स्थिति में गुणसूत्रों की संख्या 46 के स्थान पर 47 हो जाती है। परिणामतः चेहरा बाहर की ओर उभर आता है, ओठ फट जाते हैं, त्वचाएं शुष्क हो जाती हैं, लम्बाई छोटी हो जाती है।

5. हसिया कार एनीमिया (Sickle Cell Anaemia) इस रोग की स्थिति में लाल रक्त कणिकाएं ऑक्सीजन की अनुपस्थिति में हसिया कार हो जाती हैं। परिणामतः लाल रक्त-कणिकाओं की संख्या घट जाती हैं।

- 6. फेनिलकीटोनूरिया (Phynylketonuria)
- इसके रोगी के शरीर में अमीनों अम्ल का निर्माण नहीं हो पाता, जिससे शरीर में विष एकत्र हो जाता है और मस्तिश्क एवं शरीर का समुचित विकास अवरुद्ध हो जाता है।
- एल्बिनिज्म (Alibinism)

इस रोग की स्थिति में त्वचा की रोग किंगिकाओं का निम्मण नहीं हो पाता, परिणामतः व्यक्ति रंगहीन हो जाता है।

8. थैलेसेमिया (Thalassemia) इसे कूलीएनीमिया भी कहते हैं। यह रोग हीमोग्लोबिन को प्रभावित करता है।

संक्षिप्त <u>टिप्पणियाँ</u> :

- एलर्जी, एण्टीजन, एण्टीबाडी, एण्टीपाय रेटिक्स,
- एनेस्थेटिक्स, एनलजेसिक, एण्टीहिस्टामिन,
- ट्रानक्वैलाइजर, वैक्सीन, कैंसर।

एलर्जी (Allergy): एलर्जी कोई बीमारी नहीं है, अपितु यह असंक्रामक अवस्था है, जिसमें कुछ बस्तुओं, जैसे— औषि, धूलकण, परागकण, पौधे, जन्तु, उष्णता, ठंडक आदि के प्रति व्यक्ति आन्तरिक उत्तेजनात्मक प्रतिक्रिया प्रदर्शित करता है। प्रतिक्रिया के लक्षण त्वचा तथा स्युकस झिल्ली में परिलक्षित होते हैं। प्रतिक्रिया के लक्षण त्वचा तथा स्युकस झिल्ली में परिलक्षित होते हैं। हे बुखार (Hay Fever), अस्थामा (Asthma), एक्जिमा (Eczema) एलर्जी हैं। जब एलर्जी पदार्थ प्रोटीन होते हैं, तब ये 'एण्टीजन' (Antizen) कहलाते हैं।

एण्टीजन (Antizen): ये एक प्रकार के बाह्य सूक्ष्म जीव या पदार्थ होते हैं, जो स्वभावतः प्रोटीन होते हैं और व्यक्ति के रक्त पर प्रतिकूल प्रभाव डालते हैं। जीवाणु, विषाणु (Foreign Agent) एण्टीजन हैं। एण्टीजन हमारे शरीर में एण्टीबाडी के निर्माण को प्रेरित करते हैं।

एण्टीबाडी (Antibody): एण्टीजन के विरुद्ध हमारे रक्त में प्रोटीन का निर्माण होता है जिसे 'एण्टीबाडी' कहते हैं। एण्टीबाडी हमारे शरीर में, रोग रोधक का कार्य करत हैं। पन्सिलीन, स्ट्रेप्टोमाइसीन, टेरामाईसीन आदि एण्टीबाडी हैं।

एण्टीपायरेटिक्स (Antipyratics) : यह शरीर के ताप (बुखार) का नियंत्रण करने वाली एक प्रकार की औषधि है।

एनेस्थेटिक्स (Anaesthetics): इसका प्रयोग आपरेशन के समय व्यक्ति को मूर्छित (बेहोश) करने के लिए किया जाता है। क्लोरोफार्म, ईथर, सोडियम पेन्टाथाल और नाइट्रस ऑक्साइड (हंसाने वाली गैस) एनेस्थेटिक्स के उदाहरण हैं।

एनलजेसिक्स (Analgesics) : ये दर्द निवारक औषधियाँ हैं। एस्प्रीन, (Acetylsalicyclin Acid) मारफीन और हीरोइन एनलजेसिक्स के उदाहरण हैं।

एन्टीहिस्टामिन (Antihistamin) : एलर्जी की स्थिति में औषधि के रूप में, अर्थात् अस्थमा, हे बुखार के उपचार हेतु प्रयुक्त औषधियाँ एण्टीहिस्टामिन कहलाती हैं।

ट्रानक्वैलाइजन (Tranquilizer): ये अत्यधिक उत्तेजना की स्थिति में तिन्त्रकाओं को शिथिल एवं शान्त (Calm) करने के लिए प्रयुक्त की जाने वाली औषधियाँ हैं। अर्थात् ये अतयधिक उत्तेजना की स्थिति मेंशारीरिक व मानसिक गतिविधियों को शिथिल करती है।

वैक्सीन (Vaccine): इसका प्रयोग शरीर के अन्दर बीमारियों से लड़ने के लिए प्रतिरोधक क्षमता बढ़ाने के लिए किया जाता है। 'वैक्सीन' (टीका) में कमजोर एवं मृत जर्म्स होते हैं, जो शरीर में इंजेक्शन, स्क्रैंच और मुख के माध्यम से प्रवेश कराये जाते हैं। डिप्धीरिया, चेचक, पोलियो, टिटनेस, काली खांसी, आदि के वैक्सीन तैयार किये गये हैं। वैक्सीन का सर्व प्रथम प्रयोग 'एडवर्ड जेनर' ने 1796 में चेचक पर विजय प्राप्त करने के लिए किया था।

- > बच्चे के जन्म के समय BCG का टीका दिया जाता है।
- 4 माह के बच्चे को ट्रिपुल एण्टीजन (DPT) का टीका लगाया जाता है।
- 5 वें और 6ठें महीने में भी DPT का टीका लगाया जाता है।
- 18वें माह में बूस्टर खुराक (Booster Dose) और ट्रिपुल एण्टीजन (DPT) दिये जाते हैं।
- DPT- डिप्थीरिया, पोलियो एवं टिटनेस के लिए दिया जाता है।

- चेचक, टिटनेस और टाइफाइड के टीके जीवन में कभी भी दिये जा सकते हैं।
- बच्चों में दूसरे, तीसरे महीने में चेचक के टीके, तीसरे तथा पाँचवें महीने में डिप्थीरिया के, तीसरे महीने में टिटनेस े, 2.5 महीने में पोलियों के साल्क वैक्सीन, तीसरे में सबिन (Sabin) टीके दिये जाते हैं।
- कालरा, प्लेग और टाइफाइड के वैक्सीन बच्चों में 1 साल का होने पर दिया जाता है।

कैन्सर (Cancer) : यह एक घातक बीमारी है, जिसमें शरीर की कोशिकाएं अत्यधिक वृद्धि करने लगती हैं, परिणामतः गाँठें बन जाती हैं, जो अन्ततः फूट कर घाव में परिवर्तित हो जाती हैं। ये घाव कभी भी ठीक नहीं होते और मृत्यू का कारण बनते हैं। इससे शरीर का कोई भी भाग या अंग प्रभावित हो सकता है। इसका कारण पराबैगनी किरणें, रासायनिक पदार्थ, नशीले पदार्थ, विषाण् आदि हो सकते हैं। ब्लंड के कैंसर को 'ल्यूकेमिया' (Leukemia), त्वचा के कैंसर को- 'कार्सिनोमास' (Carcinomas), आन्तरिक अंगों के कैंसर को **'सार्कोमास'** (Sarcomas), तन्त्रिका तन्त्र के कैंसर को 'ग्लिओमास' (Gliomas), लिम्फ के कैंसर को 'लिम्फोमास' (Limphomas), आँख के कैंसर को 'रेटिनोब्लास्टोमा' (Retino-Blastoma- यह आन्वंशिक कैंसर है), मस्तिष्क के कैंसर को मस्तिष्क ट्यूमर (Brain Tumour) कहते हैं। कुल 14 प्रकार के कैंसर आनुवंशिक हैं। **रोडेन्ट अल्सर** (Rodent Ulcer) एक प्रकार का त्वचा कैंसर है, जो चेहरे (Face) को प्रभावित करता है।

आनुवंशिकता (Genetics)

1980 के बाद का समय 'जैव प्रौद्योगिकी' (Bio Technology) का समय कहलाता है। (1940 का दशक—प्लास्टिक का दश, 1950 का दशक— ट्रांजिस्टर का दशक, 1960 का दशक— कम्प्यूटर दशक, 1970 का दशक— माइक्रो कम्प्यूटर का दशक कहलाता है।) यह विज्ञान की एक शाखा है, जिसमें ऐसे आनुवंशिक लक्षणों का अध्ययन किया जाता है, जो एक पीढ़ी से दूसरी पीढ़ी में माता—पिता से उनकी सन्तियों को प्राप्त होते हैं। आनुवंशिक गुणों (विशेषकों) के एक पीढ़ी से दूसरी पीढ़ी में पहुँचने की प्रक्रिया को वंशागित या आनुवंशिकता (Heredity or Inheritance) कहते हैं। आनुवंशिक विशेषक (लक्षण / गुण) एक पीढ़ी से दूसरी पीढ़ी में जीन (Gene) के माध्यम से स्थानान्तरित होते हैं। ग्रेगर जान मेन्डल को आनुवंशिकता का जनक कहा जाता है। क्योंकि सर्वप्रथम मेंडल ने ही मटर के पीधे पर प्रयोग कर आनुवंशिकता के लक्षण को पहचाना था।

- वह गुणसूत्र (Chromosome), जो आनुवंशिक गुणों को रासायनिक पदार्थ के रूप में एक पीढ़ी से दूसरी पीढ़ी को स्थानान्तरित करता है, 'जीन' (Gene) कहलाता है।
- 'गुणसूत्र' (Chromosomes) न्यूक्लिक अम्ल (DNA और RNA) और प्रोटीन से बने होते हैं। इनकी संख्या प्रत्येक जीव में अलग—अलग होती है। मनुष्य में ये 23 जोड़े होते हैं। केचुए में इनकी संख्या 32 होती है। इस गुण सूत्र के ऊपर जीन लगे होते हैं। इनकी संख्या मनुष्य की प्रत्येक कोशिका में 10000 से अधिक होती है।
- → न्यूक्लिक एसिड डी.एन.ए. और आर. एन. ए. से बना होता है। डी.एन.ए. कोशिका के केन्द्रक में पाया जाता है और प्रोटीन तथा आर.एन.ए. कोशिका के सभी भागों में पाय जाते हैं। डी.एन.ए. की मात्रा एक विशेष जाति के जीव या वनस्पति की प्रत्येक कोशिका में समान होते हैं, जबिक आर.एन.ए. की संख्या भिन्न—भिनन होती है।

 डॉ. हरगोविन्द खुराना को 1968 में डी.एन.ए. निर्माण के लिए नोबेल पुरस्कार प्राप्त हुआ था। इन्होंने ही 1970 में प्रथम कृत्रिम मानव जीन का निर्माण किया था।

मेंडल के नियम (Mendel's Law)

प्रभाविकता का नियम (Law of Dominance): मेंडल के अनुसार यदि 2 विरोधी गुण के जीवों का परस्पर 'संयुग्मन' कराया जाता है तो नयी पीढ़ी की संतान में केवल एक गुण प्रभावी होता है, जबिक दूसरा अप्रभावी। जैसे— लाल रंग के मटर के फूल को यदि सफेद रंग की मटर के फूल से संयुग्मन कराया जाता है तो उससे उत्पनन पौधे में केवल लाल रंग दिखाई देता है।

स्वतन्त्र अपव्यूहन का नियम (Law of Independent Assortment): यदि 2 परस्पर विपरीत गुणों के पौधों में संयुग्मन (Crossbred) कराया जाता है तो प्रथम पीढ़ी में सिर्फ प्रभावी गुण दिखाई देता है। किन्तु दूसरी पीढ़ी के पौधे में दोनों गुण—प्रभावी और अप्रभावी—दिखाई पड़ते हैं जो 15 : 1 के अनुपात में होते हैं। लेकिन यह अपवाद है कि मेंडल का नियम सभी जीवों पर लागू नहीं होता है। जैसे— पीले रंग के गुलाब का संयुग्मन यदि सफेद रंग के गुलाब से कराया जाता है तो उसकी संतान क्रीम रंग की होती है।

'जीन्स' जोड़े के रूप, में होते हैं जिन्हें 'एलिल्स' (Alleles) कहते हैं। यदि जोड़े में समान 'एलिल्स' हैं तो जीव शुद्ध (Homozygous) होता है और यदि एलिल्स भिन्न–भिनन प्रकार के होते हैं तो जीव संकर प्रवृत्ति (Heterozygous) के होते हैं।

उत्परिवर्तन (Mutation)

किसी जीव के लक्षणों में आया अचानक परिवर्तन उत्परिवर्तन कहलाता है। उत्परिवर्तन जीन की संरचना में परिवर्तन के कारण होता है। जीन की संरचना में परिवर्तन 'पराबैगनी किरण' कुछ रासायनिक पदार्थों और रेडियोधर्मी विकरण के कारण होता है। उत्परिवर्तन लाभदायक एवं हानिकारक दोनों हो सकते हैं।

लामदायक उत्परिवर्तन— (i) डॉ. मुलर के कृत्रिम उत्परिवर्तन के प्रयोगों के आधार पर आज वैज्ञानिक विकिरण (एक्स किरणों, पराबैगनी किरणों तथा कारिमक किरणों) द्वारा पुष्प वाटिकाओं, फसलों, मछलियों तथा फलों में कृत्रम उत्परिवर्तन पैदा करके नयी—नयी उत्कृष्ट नस्लें तैयार कर रहे हैं।

- (ii) 'काल्विसिन' नामक रासायनिक पदार्थ द्वारा गेंदा व जीनिया (फूल) की बड़े फूलों वाली जातियाँ तैयार की जाती हैं।
- (iii) भारतीय कृषि अनुसन्धान संस्थान (I.A.R.I.) नई दिल्ली ने गामा विकरण द्वारा अधिक प्रोटीन की मात्रा युक्त गेहूँ की सोनारा—64 तथा शर्वती सोनारा—64 किस्में (अल्प मात्रा की प्रोटीन वाली जीन को हटाकर अधिक प्रोटीन पैदा करने वाली जीन को गामा किरण द्वारा प्रत्यस्थापित किया जाता है। गामा किरण की तरंग दैर्ध्य कम तथा भेदन क्षमता और ऊर्जा अधिक होती है।) विकसित की है।
- (iv) परमाणुवीय विकिरण द्वारा भी जन्तुओं एवं पौधों की नयी—नयी लाभप्रद जातियाँ उत्पन्न की जा रही हैं।

हानिकारक उत्परिवर्तन जीव की मृत्यु का कारण बनते हैं। उत्परिवर्तन के फलस्वरूप नयी प्रजातियों (New Species) का जन्म होता है। जैसे— सफेद चूहे, छोटे पैर वाले भेंड़, छोटे कान वाले खरगोश आदि। आज जीवों में दृष्टिगत हो रही विभिन्नता लगभग 2 अरब वर्षों का परिणाम है। उत्परिवर्तन सिद्धान्त के जनक 'ह्यगों डी ब्रीज' (Hugo de Vries) है।

सुजननिकी (Eugenics)

मंडल के नियमों तथा आनुवंशिकता के सिद्धान्तों की सहायता से मानव जाति की भावी पीढ़ियों को सुधारने तथा उनके स्तर को ऊँचा उठाने के अध्ययन को 'सुजनिकी' कहते हैं। इसके जनक सर फ्रांसिस गाल्टन हैं। अनावश्यक, हानिकारक गुणों को समाप्त करने के लिए 'जीन प्रौद्योगिकी' (Genetic Engineering) की सहायता ली जाती है। इसके अन्तर्गत क्लोनिंग (Cloning) एवं 'डी.एन.ए. रिकाम्बिनेन्ट तकनीकी' (DNA Recombinant Technique) का प्रयोग किया जाता है।

'क्लोनिंग' जनन का एक ऐसा तरीका है जिस में जनन अंग (Sex Organ) की आवश्यकता नहीं होती। इस तकनीकी में किसी एक जीव के केन्द्रक (Nucleus) को किसी दूसरे जीव के केन्द्रक को हटाकर उसके स्थान पर स्थानानतरित किया जाता है। इसमें जिस जीव का केन्द्रक प्रत्यस्थापित किया जाता है, अगली संतान उसी जीव गुण वाली होती है।

जब किसी जीव के 'गुण सुत्र' को 'रेस्ट्रिक्शन एन्जाइम' (Restriction Enzyme) से विभाजित कर वैसे ही जीव का अलग गुणसूत्र जोड़ा जाता है, जिससे जीव के गुण सूत्र पर जीन की व्यवस्था बदल जाती है और नये गुण प्रकट होते हैं, अथवा अनावश्यक गुण हटाये जाते हैं तो इस विधि को DNA Recombinant Technique कहते हैं। इसका उपयोग इन्टर फेरान, इन्सुलीन और हार्मोन्स के बनाने में किया जाता है।

क्लोन (Clone): जब दो कोशिकाओं की जीन संरचना एक दूसरे के समान होती है तो उन्हें परस्पर क्लोन कहा जाता है।

1997 ई. में **इयान विल्मुट** नामक वैज्ञानिक ने 'डोली भेंड़' का क्लोन **नाभिकीय स्थानांतरण विधि** के विकसित किए।

डी. एन. ए. फिंगर प्रिंट (DNA Finger Print)

जब डी.एन.ए. को कई टुकड़ों में विभक्त कर फोटोग्राफ लिया गया तो हर टुकड़े से अंगुलीनुमा संरचना पायी गई। यह संरचना हर व्यक्ति में भिन्न-भिन्न होती है। इसका उपयोग अंगूठा निशानी (Finger Print) के स्थान पर किया जाता है और सम्बन्धित व्यक्ति को पहचानने में मदद मिलती है। भविष्य में बढ़ते अपराध को नियन्त्रित करने में इसकी काफी निर्णायक भूमिका हो सकती है।

DNA फिंगर प्रिंट का भारत में एकमात्र केन्द्र हैदराबाद में स्थित है जिसे कोशिकीय एवं आणुविक जीव विज्ञान केन्द्र, हैदराबाद के नाम से जाना जाता है।

जैव विकास (Organic Evolution)

प्राणियों में होने वाला वह परिवर्तन, जिसके फलस्वरूप जटिल एवं अति संगठित प्राणियों का विकास साधारण संरचना वाले प्राणियों से हुआ, जैव विकास कहलाया।

समजात अंग (Homologous Organ) : वे अंग, जिनकी मौलिक रचना तथा उद्भव समान होते हैं, किन्तु कार्य के अनुसार वाहा रचना भिन्न—भिन्न होती है, समजात अंग कहलाते हैं। जैसे—मनुष्य का हाथ, घोड़े का अगला पैर, पक्षी के पंख तथा चमगादड़ (एक स्तनधारी) के पंख, आदि।

संवृत्ति अंग (Analogour Organ) : वे अंग, जिनके कार्यों में समानता, किन्तु मौलिक रचना व उद्भव में अन्तर होता है, संवृत्ति अंग कहलाते हैं। जैसे चमगादड़ तथा कीटों के पंख।

अवशेषी अंग (Vestigial Organ) : वे अंग, जो अक्रियाशील और बेकार हो जाते हैं, किन्तु शरीर में एक पीढ़ी से दूसरी पीढ़ी में चले आ रहे हैं, अवशेषी अंग कहलाते हैं। जैसे— निमेषक पटल, क्रीमीरूप परिशेषिका, कण पल्लव, त्वचा के बाल, पूँछ कोशिकाएं, अकिल दाढ़ (Wisdom Teeth) आदि 180 अवशेषी अंग मानव में हैं।

संयोजी जीव (Intergrading Animal): ये जन्तु 2 वर्गों या 2 समुदायों को आपस में जोड़ते हैं। जैसे— पेरीपेटस— आश्रोपोड़ा और एनीलीड़ा के बीच, निओपिलाइना— एनीलीड़ा और मोलस्का के बीच, प्रोटाप्टेरस— मछली तथा उभयचर के बीच, आर्किओप्टेरिक्स— सरीसृप और पक्षीवर्ग के बीच तथा एकीडना— सरीसृप और स्तनधारी के बीच संयोजी जीव का कार्य करते हैं।

लैमार्कवाद (Lamarckism)

- जे.बी.डी. लैमार्क फ्रांसीसी वैज्ञानिक है। इन्होंने सर्वप्रथम 1809 में अपनी पुस्तक 'फिलॉसफीक जूलॉजिक' (Philosophic Zoologique) में विकास का सिद्धान्त प्रतिपादित किया।
- लैमार्कवाद के अनुसार जीवों तथा उनके अंकों में स्वयं एवं निरंतर बड़े होने की प्राकृतिक प्रवृत्ति होती हैं।
- जीवों में पड़ने वाले वातावरणीय परिवर्तन के प्रभावों के कारण जीवों में विभिन्न अंगों का उपयोग घटता—बढ़ता रहता है।
- अधिक उपयोग में आने वाले अंग अधिक विकसित होते हैं जब की कम उपयोग वाले अंकों का विकास बहुत कम होता है।
- इस प्रकार जो संरचनात्मक परिवर्तन होते हैं उन्हें 'उपार्जित' लक्षण (Acquired characters) कहा जाता है।
- जीवों द्वारा उपार्जित लक्षणों की वंशानुगति (Inheritance of acquired characters) होती है तथा नयी प्रजातियों का निर्माण होता है।

आनुवंशिकता

- आनुवंशिक गुण / लक्षण एक पीढ़ी से दूसरी पीढ़ी में किसके माध्यम से स्थानान्तरित होते हैं ?
 - -जीन (Gene)।
- गेंदा एवं जीनिया (फूलों) की बड़े फूलों वाली जातियाँ किस रासायनिक पदार्थ द्वारा तैयार की जाती हैं ?
 —काल्चिसिन।
- 'उत्परिवर्तन' (Mutation) सिद्धान्त के जनक कौन हैं ? —ह्यूगो डी व्रीज (Hugo-de-Vries)।
- मानव जाति की भावी पीढ़ियों को सुधारने तथा उनके स्तर को ऊँचा उठाने के अध्ययन को क्या कहा जाता है ?

 —सुजनिकी (Eugenics) ।
- किसी जीव में नये गुण / लक्षण विकिसत करने के लिए किस तकनीिक में नये 'गुणसूत्र' को जोड़ा जाता
 है ?
- जनन कसी वह नव—आविष्कृत तकनीकि कौन—सी है, जिसमें जनन अंग की आवश्यकता नहीं होती ? —क्लोनिंग (Cloning)।
- जिस व्यक्ति का बुद्धि भागफल (I.Q.) 110 से 139 होगा, वह व्यक्ति क्या कहलायेगा ?

–बुद्धिमान (Superior)

• अपराध जगत पर नियन्त्रण के लिए 'ॲंगूठा—निशानी' (Finger Print) के स्थान पर प्रयोग में लाने के लिए कौन—सी नयी तकनीकि आविष्कृत की गई है ? —डी.एन.ए. फिंगर प्रिन्ट (D.N.A. Finger Print)।

डार्विनवाद (Darwinism)

चार्ल्स डार्विन ब्रिटेन के प्रकृतिवादी (Naturalist) वैज्ञानिक हैं। इन्होंने अपना **'प्राकृतिक वरण का सिद्धान्त'** (Natural Selection Theory) 1859 में अपनी पुस्तक **'प्राकृतिक वरण** द्वारा नयी जातियों का उद्भव' (Origin of New Species by Natural Selection) में प्रतिपादित किया।

- जैव विकास के सिद्धांतों में 'डार्विनवाद' विश्व में सबसे अधिक प्रसिद्ध है।
- चार्ल्स डारविन (1809—1882 ई.) द्वारा बीगल नामक जहाज पर संपूर्ण विश्व का भ्रमण किया गया।
- चार्ल्स डार्विन ने 1859 ई. में प्रकाशित अपनी पुस्तक ओरिजिन ऑफ स्पेसीज (Origin of Species) में प्रसिद्ध प्रकृतिक चयन का सिद्धान्त (Theory of Natual Selection) प्रतिपादित किया।
- डार्विन के सिद्धांतों को निम्नलिखित नियमों में संकलित किया जा सकता है
 - प्रमुणन की तेज दर (Enormous Power of Fertility): जीव—जंतु गुणोत्तर या रेखागणित के अनुपात में प्रजनन करते हैं। जनन विभिन्न विधियों में द्विभाजन स्पोरुलेशन, कंजुगेशन एम्फिमिक्सिस द्वारा हो सकती है।
 - विभिन्नताएँ (Variations): किसी भी जाति के दो जीव सदैव किसी न किसी रूप में असमान होते हैं। इन विगीन्नताओं में कुछ अनुपयोगी होती हैं। उपयोगी विभिननता जीव—अस्तित्व संघर्ष में जीवित रहने में समर्थ होती है।
 - अस्तित्व के लिए संघर्ष (Struggle for Existence): जीवों में प्रगुणन की प्रचुरता, भोजन तथा आवास की सीमित मात्रा में उपस्थिति के कारण आपस में अस्तित्व के लिए संघर्ष अवश्यम्भावी तथा आवश्यक है।

- सामर्थवान का जीवत्व (Survival of the Fittest): डार्विन के अनुसार जीवन संघर्ष में सफलता प्राप्त करने के लिए जीव का वातावरण के साथ अनुबूलन ही सर्वोच्च है तथा जो सर्वाधिक सामर्थवान है उसका अस्तित्व कायम रहता हैं
- * उपयोगी गुणों की वंशागित (Inheritance of Adaptive Traits): प्राकृतिक वरण के कारण उत्तम लक्षणों वाले जीवों को प्रजनन के अधिक तथा निक्रिष्ठों को कम अवसर मिलते हैं इस प्रकार पृथ्वी पर धीरे—धीरे उत्तम लक्षणों वाले जीव हो रह जाते हैं, जिसके कारण जाति का विकास होता हैं
- नव—डारविनवाद (Neo-Darwinism) : डार्विन के विचारों की कुछ वैज्ञानिकों द्वारा आलोजना की गई है तथा हैंस्के, मेयर, हक्सले, सेवाल तथा स्टेबिंस जैसे वैज्ञानिकों द्वारा डार्विनवाद की विसंगतियों को दूर कर एक नया 'डार्विनवाद' प्रतिपादित किया इसे नव—डारविनवाद कहते हैं।
- उत्परिवर्तनवाद (Theory of Mutation): यह सिद्धांत ह्यूगो डी वेराईज ने दिया—
 - लक्षणों में छोटी—छोटी एवं स्थिर विभिन्नताओं के प्राकृतिक चयन द्वारा पीढ़ी दर पीढ़ी संचय एवं क्रमिक विास के फलस्वरूप नये जीव—जातियों की उत्पत्ति नहीं होती, बल्कि यह उत्परिवर्तनों (Mutations) के कारण होती है।
 - उत्परिवर्तन अनिश्चित होते हैं। ये किसी अंग—विशेष में अथवा अनेक अंगों में एक साथ उत्पन्न हो सकते हैं।
 - सभी जीव—जातियों में उत्परिवर्तन की प्राकृतिक प्रवृत्ति होती है।
 - जाति के विभिन्न सदस्यों में उतपरिवर्तन भिन्न–भिनन हो सकते हैं।
 - उत्परितर्वन के फलस्वरूप अचानक ऐसे जीव उत्पन्न हो सकते हैं जिसे एक नयी जाति माना जा सके।

सजीवों का वर्गीकरण (Classification of Living Organism)

सजीवों को 2 भागों में वर्गीकृत किया गया है— (1) जन्तु जगत तथा (2) पादप जगत।

जन्तु जगत का वर्गीकरण (Classification of Animal Kingdom) : इसके जन्मदाता (Father of Taxonomy) 'लीनियस' हैं। इन्होंने द्वि—नाम पद्धति स्थापित की, जिसमें किसी प्राणी को उसके जेनरिक (Generic) नाम तथा स्पेसिफिक नाम से सम्बोधित किया जाता है। जैसे— मनुष्य का आधुनिक नाम— 'होमोसेपियन' (Homosapien), मेढ़क का— रानाटेग्रिना, हाथी का— एलीफस इंडिकस, आम का— मैंगीफेरा इण्डिका, मटर का— पाइजम सेटाइवम है।

सम्पूर्ण जन्तु जगत (Animal Kingdom) को 2 उप-जगतों 'प्रोटोजोआ' (Protozoa- एक कोशिकीय) तथा 'मेटाजोआ' (Metazoa- बहुकोशिकीय) में विभाजित किया गया है। 'प्रोटोजोआ' के अन्तर्गत अमीबा, पैरामिसियम, एण्टअमीबा हिस्टोलिटिका (पेचिस पैदा करता है), एण्ट अमीबा जिन्जीवालिस (पायिरया पैदा करता है), एण्ट अमीबा जिन्जीवालिस (पायिरया पैदा करता है), एलाज्मोडियम (मलेरिया पैदा करता है) और एण्टअमीबा कोलाइ (हमारी आँत में अन्तः परजीवी के रूप में पाये जाते हैं तथा आंत्रीय जीवाणुओं को मारने का काम एवं अपच्य भीजन को पचाने का कार्य करते हैं) 'अमीबा' (Amoeba) कभी न मरने वाला (Immortal) जन्तु है। 'युग्लीन' (Euglena) ऐ ऐसा सजीव है जिसमें जन्तु एवं पादप-दोनों के गुण पाये जाते हैं। इसके अन्दर क्लोरोफिल पाया जाता है जो कि एक पादप का लक्षण है। 'पैरामिशियम' को स्लीपर (Sleeper) जन्तु कहते हैं।

जन्तु जगत का वर्गीकरण (Taxonomy of Animal Kingdom)

नोट :

- अकशेरूक (Non-Chordata, प्रोटोजोआ सिहत) जन्तुओं की संख्या 90% है, जबिक कशेरूक (Chordata) जन्तुओं की संख्या मात्र 10% है।
- 2. जन्तुओं के वर्गीकरण का सर्वप्रथम प्रयास ग्रीक वैज्ञानिक 'अरस्तू' ने किया था, अतः इन्हें जन्तु शास्त्र का पिता (Father of Zoology) कहा जाता है। किन्तु चूँकि जन्तुओं के आधुनिक वर्गीकरण तथा नामकरण (द्वि—नाम पद्धति) की आधारशिला स्वीडिस वैज्ञानिक 'कैरोलस लीनियस' ने रखी, इसलिए लीनियस को 'आधुनिक वर्गिकी का जन्मदाता' (Father of Modern Taxonomy) कहा जाता है।

प्रोटोजोआ (Protozoa)

- इस संघ के तहत एक कोशिकीय जीव (Unicellular organisms) आते हैं जिनके जीव द्रव्य में एक या अनेक केंद्रक पाये जाते हैं।
- इस संघ के प्राणियों में चलन (locomotion) पादाभ (Pseudopoda) या कशाभिका (Flagella) या सिलिया (Cilia) के द्वारा होता है।
- ये स्वतंत्र—जीवी या परजीवी होते हैं तथा इनकी समस्त जैविक क्रियाएँ एक कोशिका में ही संपन्न होती हैं।
- प्रमुख उदाहरण— युग्लीना, ट्रिपनोसोमा, अमीबा, एंटाअमीबा, प्लाजमोडियम, लिश्मानिया डोनोवानी आदि।
- तिल्ली एवं RBC को प्रभावित करने वाला मलेरिया रोग प्लाज्मोडियम के कारण होता है जिसका वाहक मादा एनोफिलिज मच्छर होता हैं
- पायरिया रोग एंटअमीबा जिंजिवेलिस के कारण होता है जो मसुढों को प्रभावित करता हैं
- मस्तिष्क को प्रभावित करने वाला निंद्रा रोग द्रिप्नोसोमा गोम्बियन्स के कारण होता है। इसका वाहक Tse-Tse मक्खी है।
- आँत को प्रभावित करने वाली अमीबीय पेचिस नामक बीमारी एंटअमीबा—हिस्टोलिटिका की वजह से होती है।
- 'बालू-मक्खी (Sand fly) द्वारा फैलाया जाने वाला कालाजार नामक रोग जो कि अस्थि मज्जा (Bone-Marrow) को प्रभावित करता है- लिश्मानिया डोनोवानी के कारण होता हैं
- पारामीशियम को "Slipper animalcule" कहा जाता है।

'मेटाजोआ' के अन्तर्गत— बहु कोशीय जीव आते हैं। इसे कई संघों (Phylums) में विभक्त किया गया है जो इस प्रकार है—

- (1) पोरी-फेरा (Porifera): ये द्वि-स्तरीय जन्तु होते हैं। इनमें नाल प्रणाली (Canal System) होती हैं जिससे ऑक्सीजन एवं भोज्य पदार्थ जन्तु के शरीर में प्रवेश करते हैं। इनमें मुख का अभाव होता है। जैसे- स्पंजिला, ल्यूकोसोलोनिया, यूस्पंजिया (Bath Spange)। स्पंजिला (Spongilla) के अन्दर शैवाल (Algae) पाये जाते हैं जो कि सहजीवी जीवन (Symbiotic life) व्यतीत करते हैं।
 - इस संघ के तहत आने वाले सभी जंतु खारे पानी में मिलते हैं। जिन्हें स्पंज कहा जाता है।
 - बहुकोशिकीय जंतु होते हुए भी इनकी कोशिकाएँ नियमित उतकों का निर्माण नहीं करती हैं।
 - इनके शरीर पर असंख्य छिद्र (Ostia) पाये जाते हैं।
 इनके शरीर पर स्पंज गुहा नामक एक गुहा (Cavity)
 पाई जाती है।
 - साइकॉन एवं स्पंज इसके प्रमुख उदाहरण हैं। स्पंज का प्रयोग ध्विन के अवशोषण में किया जाता है।
- (2) सीलेंण्ट्रेटा (Coelenterata): इस संघ के जीव की सबसे प्रमुख विशेषता पॅलिप (Polyp) तथा मेडुसा (Medusa) अवस्था का पाया जाता है। पालिव जन्तु स्थान बद्ध एवं अलिंगी होते हैं, जबिक मेडुसा गतिशील एवं लिंगी होते हैं। जैसे— हाइड्रा (Hydra)। पुनरूद्भवन (Regeneration) की प्रचुर क्षमता के कारण इस जन्तु को हाइड्रा (यूरोप का एक जल दैत्य जिस का सिर काटने पर प्रतिदिन एक नया सिर बन जाता था) की संज्ञा दी गई। इस संघ का एक अन्य उदाहरण समुद्री एनीमोन' है। इसके अन्दर क्रेप्स (केकड़ा के समान जन्तु) भरे

- होते हैं जो कि सहजीवी हैं। पुर्तगाली युद्ध पोत भी इसी संघ का जन्तु है।
- यह संघ निडेरिया के नाम से भी पुकारा जाता है। इसके तहत आने वाले अधिकांश जीव समुद्री जल में तथा कुछ स्वच्द जल में निवास करते हैं।
- इस संघ के जीवों में उतक—स्तर संगठन पाया जाता है। इस संघ के कुछ जंतु प्रवाल भित्ति (Coral-Reef) का निर्माण करते हैं।
- प्रवाल—भित्ती अपने चारों ओर रक्षात्मक—अस्थि का स्राव करते हैं जो बाद में मूंगा—रीफ बन जाते हैं।
- संसार का सबसे बड़ा मूंगा—रीफ ग्रेट बैरियर रीफ (ऑस्ट्रेलिया) है।
- इस संघ के अंतर्गत आने वाले जंतुओं के मुख के पास धागेन्मा संरचना पाई जाती है।
- इस संघ के अंतर्गत आने वाले प्रमुख जीव हैं—हाइड्रा, जेलीिफश, सी. एनीमोन तथा मूंगा आदि।
- 3) प्लेटीहेल्मिन्थीज (Platyhelminthes): इस संघ के जन्तु फीते के समान चपटे होते हैं तथा अग्रभाग पर चूसक या कांटे लगे होते हैं। ये जन्तु उभयलिंगी तथा परजीवी होते हैं। जैसे—फीताक्रिमि (Tapewarm)। इसका प्रथम पोषद मनुष्य तथा द्वितीय पोषद सुअर है। फैसिओला हिपैटिका में मुख गुहा और गूदा नहीं होते। इनमें फीता क्रिमी में ज्वाला कोशिकाएं (Flame Cells) पायी जाती हैं जो उत्सर्जी अंग का कार्य करती हैं। इस संघ के जन्तु खण्ड युक्त (Septed) होते हैं।
 - इस संघ के तहत आने वाले जंतुओं का शरीर तीन—स्तरीय होता है, परंतु इनमें देहगुहा (Body Cavity) नहीं होती।
 - इन जंतुओं में पाचन तंत्र विकसित नहीं होते हैं, उत्सर्जन फ्लोएम कोशिकाओं द्वारा होता है।
 - यह एक उभयलिंगी (Bi-sexual) जंतुओं का संघ है।
 - प्लेनिरिया, लीवर पलुक, टेप वार्म, आदि इस संघ के जीवों के प्रमुख उदाहरण है।
- (4) ऐस्चेलिम-थीज (Aschelminthes): इस संघ के जन्तु धागा नुमा (Threadlike) होते हैं। ये भी परजीवी (paracite) होते हैं तथा गुहा युक्त कृमि होते हैं। जैसे— ऐस्केरिस, बूचेरिया (Wuchereria— पीलपॉव (Elepheantasis) का जन्म देने वाला क्रिमि), पिनवर्म (Pinworm— पेट में मिलने वाले छोटे कीड़े) इसके उदाहरण हैं।
 - इस संघ के तहत लंबे, बेलनाकार अखंडित कृमि (Worm) आते हैं।
 - इन जीवों में आहार नाल (Alimentary Canal) स्पष्ट होता है।
 - इस संघ के अंतर्गत आने वाले जीवों में श्वसन अंग (respiratory organ) नहीं होते परंतु तंत्रिका तंत्र (Nervous System) विकसित होते हैं।
 - इस संघ के तहत आने वाले जीव एकलिंगी (Unisexual) होते हैं तथा इनमें प्रोटोनेफ्रीडिया द्वारा उत्सर्जन होता है।
 - एस्केरिस, थ्रेडवर्म एवं वुचेरिया बैंक्रोफ्टी इस समूह के जंतुओं के प्रमुख उदाहरण हैं।
 - फाइलेरिया रोग का कारण गोलकृमि वुचेरिया बैंक्रोफ्टी होता है।

- (5) एनीलिडा (Annelida): इस संघ के जन्तु गोल एवं खण्ड युक्त होते हैं। ये द्वि—िलंगी (Bisexual or Hermaphrodite) होते हैं। इस संघ के जन्तु में रक्त परिसंचरण बन्द प्रकार (Closed Blood Vascular System) का होता है अर्थात् इन जन्तुओं का रक्त शुद्ध एवं अशुद्ध दोनों का मिश्रण होता है। केंचुआ, जोंक, नेरिस आदि इसी श्रेणी के जन्तु हैं। जोंक (Leech) में रक्त का थक्का न बनने देने के लिए उत्तरदायी 'हीरूडीन' (Hirudine) नामक प्रोटीन एन्जाइम पायी जाती है। केचुए में उत्सर्जन 'नेफ्रीडिया' द्वारा होता है। इसे किसानों का मित्र कहते हैं।
 - इस संघ के तहत आने वाले जंतुओं का शरीर लंबा,
 पतला, द्वि—पार्श्व समित तथा खंडों में बंटा हुआ होता है।
 - इस संघ के जंतुओं में 'प्रचलन (locomotion)' काइटिन निर्मित सीटी (Setae) द्वारा होता हैं
 - इस संघ के जीवों में आहार नाल पूर्णतः विकसित होता है तथा श्वसन त्वचा (skin) के द्वारा होता है। इनमें रूधिर लाल तथा तंत्रिका तंत्र साधारण होता है।
 - इनमें उत्सर्जन वृक्क (Kidney) द्वारा होता है तथा ये एकलिंगी एवं उभयलिंगी दोनों प्रकारों के होते हैं।
 - केंचुआ, जोंक एवं नेरीस जैसे जीव इस संघ के प्रमुख उदाहरण हैं।
 - केंच्आ में चार जोड़ी (8) हृदय होता है।
- (6) अर्थ्भोपोडा (Arthropoda) : इस संघ (Phylum) के जन्त के शरीर एवं पैर खण्ड युक्त होते हैं। इनमें रक्त परिसंचरण तन्त्र खुले प्रकार के होते हैं। इनमें हृदय पृष्ठ भाग में (पीछे) पाये जाते हैं। इस संघ के जन्तुओं की संख्या सर्वाधिक है जो जल, थल एवं वायु तीनों में पाये जाते हैं। जैसे- टिड्डियाँ, काकरोच, बिच्छू, मकड़ी, मच्छर, मक्खी, तितली, केकड़ा इत्यादि। इस संघ के जन्तुओं में संयुक्त आँख (Compound eyes) पायी जाती हैं। इनमें प्रत्येक आँख की लगभग 2000 नेत्रांशकों (Ommatidia-आँख की इकाई) के बने होते हैं और प्रत्येक नेत्रांशक एक स्वतन्त्र आँख के समान कार्य करता है। इसलिए इनकी आँखों में हजारों चित्र बनते हैं। इस तरह इनकी, आँख में बिना प्रतिबिम्ब 'सुपर पोजीशन प्रतिबिम्ब' कहलाता है और देखने की विधि 'मोजेक दृष्टि' (Mosaic Vision) कहलाती है। बिच्छू (Scorpian) में श्वसन 'बुकलंग्स' (Booklungs) द्वारा होता है। इस संघ के जन्तुओं में उत्सर्जन (Excretion) 'मलपीगी नलिकाओं' द्वारा होते हैं।
 - इस संघ के जुतंओं का शरीर सिर, वक्ष एवं उदर जैसे तीन भागों में बंटा हुआ होता है।
 - इनके पाद संधि-युक्त होते हैं तथा रूधिर परिसंचरण तंत्र (Blood circulation System) खुले प्रकार (open type) के होते हैं।
 - इस संघ के जंतुओं में पायी जाने वाली देहगुहा (body cavity) को हीमोसील कहते हैं।
 - इनमें श्वसन ट्रैकिया, बुक लंग्स एवं सामान्य सतह द्वारा संपन्न होता हैं
 - इस संघ के जंतु प्रायः एकलिंगी होते हैं तथा इनमें निषेचन आंतरिक होता है।
 - तिलचट्टा (Cockroach), झींगा मछली, केकड़ा, खटमल, मक्खी, मच्छर, मधुमक्खी एवं टिड्डी आदि इस संघ के प्रमुख उदाहरण हैं।

- कीटों (insects) में 6 पाद एवं 4 पंख पाये जाते हैं
- तिलचट्टे (Cockroach) का हृदय 13 कक्षों का बना होता है।
- 'चींटी' एक 'सामाजिक तंतु' है एवं इनमें श्रम—विभाजन (Division of labour) की प्रवृत्ति होती है।
- 'दीमक' भी एक सामाजिक प्राणी है तथा कालोनी में रहता है।
- (7) मोलस्का (Mollusca): इस संघ के जन्तुओं के मांशल शरीर खोल (Shell) से ढके होते हैं। इनके जीवन में ट्रोकोफोर एवं वेलीजर लार्वा अवस्थाएं पायी जाती हैं। घोंघा (Snail), सीपी (Unio) ऑक्टोपस, इत्यादि इस संघ के जन्तु हैं। सीपी से मोती प्राप्त होते हैं। सीपी के अन्दर कैल्सियम कार्बोनेट पहुँचते रहते हैं, जो सीपी से स्नावित एन्जाइम द्वारा मोती में परिवर्तित कर दिये जाते हैं। ऑक्टोपस में 8 भुजाएं पायी जाती हैं जिसे शैतान मछली कहा जाता है।
 - इस संघ का नामकरण 1650 ई. में जोस्टन नामक वैज्ञानिक द्वारा किया गया।
 - इनका शरीर सिर, अंतरांग तथा पाद जैसे तीन भागों में विभक्त होता है।
 - इस संघ के अधिकांश सदस्य सागरीय—जल में एवं कुछ स्वच्छ जल में पाये जाते हैं
 - इनके चारों ओर एक कड़ा खोल पाया जाता है जिसे कवच कहते हैं
 - इस संघ के जीवों में आहारनाल पूर्णतः विकसित होते

 हैं।
 - मोलस्का संघ के प्राणियों में श्वसन गिल्स या टिनीडिया द्वारा होता है।
 - इनमें उत्सर्जन वृक्क द्वारा होता है तथा रक्त रंगहीन होता है।
 - इस संघ के कुछ जीव मोती (Pearl) का निर्माण करते हैं।
 - दुनिया का सबसे बड़ा अकशेरूक जंतु जायंट स्क्वीड है।
- (8) इकाइनोडर्मेटा (Echinodermata): ये केवल समुद्री जीव होते हैं। इनकी सर्वप्रमुख विशेषता 'जल संवहन तन्त्र' (Water Vasular System) अथवा वीथि संस्थान (Ambulacral System) का पाया जाना है। इनकी सहायता से जन्तु प्रचलन एवं श्वसन करते हैं। तारा मछली (Star Fish), ब्रिटल स्टार (Brittle Star), समुद्री अर्चिन, समुद्री लिली, समुद्री खीरा (Sea Cucumber) आदि इस संघ के प्रमुख जन्तु हैं। तारा मछली में 5 भुजाएं होती हैं।
 - इस संघ के सभी जंतु समुद्री होते हैं तथा इनमें जल संवहन तंत्र उपस्थिति रहता है।
 - इनके तंत्रिका तंत्र में मिस्तिष्क विकसित नहीं रहता है।
 - सितारा मछली (Starfish), समुद्री अर्चिन, समुद्री खीरा, पंख तारा, ब्रिटल स्टार आदि इस संघ में आने वाले प्राणियों के प्रमुख उदाहरण हैं।

नोट : उपर्युक्त सभी संघों के जन्तुओं में कॉर्डेटा (Chordata– रीढ़ की हड्डी–पृष्ठ रज्जु) नहीं पाये जाते हैं।

- (9) **कार्डटा** (Chordata) : इस संघ के जन्तुओं की प्रमुख विशेषता 'पृष्ठ रज्जु' (Dorsal Notochord) या रीढ़ की हड्डी (Vertebral Column) का पाया जाना है। इस संघ के जन्तुओं को 2 उपसंघों— प्रोटो कार्डटा एवं वर्टीब्रेटा में विभाजित किया जाता है।
 - इस संघ के जीवों में नोटोकॉर्ड (Notochord) पाया जाता है।
 - इस संघ के जीवों में नालदार तंत्रिक रज्जू की उपस्थिति अनिवार्य है।

'प्रोटोकार्डेटा' (Protochordata) के जन्तुओं में पृष्ठ रज्जु अविकसित होते हैं। जैसे— वैलेनो ग्लासस, एम्फिआक्सस, आदि। वर्टीब्रेटा (Vertibrata) उपसंघ के जन्तुओं में पूर्ण विकसित रीढ़ रज्जु पायी जाती है। 'वर्टीब्रेटा' उपसंघ को 5 वर्गों (Phylum) में विभक्त किया गया है—

- (i) मत्स्य वर्ग (Pisces): इस वर्ग के जन्तुओं में श्वसन क्लोम दरार (Gill Slit) द्वारा होता है। इस संघ के जनतु जलीय तथा असमतापी (Cold Blooded) होते हैं। इस संघ के जन्तुओं के हृदय 2 कोष्ठीय (एक आलिंद और एक निलय) होते हैं। उदाहरण— सार्क मछली, ह्वेल मछली, तार पीड़ो (इसके अन्दर विद्युत पैदा होती है), ईल (Eel) मछली (इसमें 7000 बैटरी पायी जाती है और प्रत्येक बैटरी में 1 बोल्ट, कुल 700 वोल्ट विद्युत पैदा होती है), समुद्री घोड़ा (Sea Horse-Hippocampus— नर समुद्री घोड़े के उदर पर एक भ्रूण कोष्ठ (Brood Pouch) होता है जिसमें अण्डे (Eggs) तब तक बने रहते हैं जब तक ये बच्चे बनकर बाहर न निकल आयें, अर्थात् अण्डे का पालन—पोषण नर समुद्री घोड़ा करता है।) आदि।
 - इस वर्ग में आने वाले जंतु असमतापी होते हैं। इनके हृदय द्वारा सिर्फ अशुद्ध रक्त ही पम्प किये जाते हैं।
 - इस वर्ग के जंतुओं में श्वसन गिल्स (Gills) द्वारा होता है।
 - ये शीत-रुधिर (cold blooded) एवं जलीय जंतु होते हैं।
 - रोहू, शार्क मछली, स्कोलियोडन, दिरयाई घोड़ा तथा टारपीडो इस वर्ग के प्रमुख उदाहरण हैं।
 - टारपीडो को विद्युत मछली (Electric Fish) भी कहते हैं।
- (ii) उभयचर (Amphibia) : इस संघ के जन्तु भी असमतापी होते हैं। ये जल तथा स्थल दोनों स्थानों के लिए अनुकूलित होते हैं। इनके हृदय 3 कोष्ठीय होते हैं। जैसे—मेंढक, टोड, इत्यादि। मेढक अत्यधिक गर्मी तथा सर्दी से बचने के लिए जमीन के अन्दर चले जाते हैं। इसे मेढ़क की सुषुप्तावस्था कहते हैं। गर्मी की सुषुप्तावस्था को एस्टीनेशन (Aestination) तथा जाड़े की सुषुप्तावस्था को हाइबरनेशन (Hibernation) कहते हैं। नर मेंढ़क में 'वाक् कोष' (Vocal Sacs) होते हैं, जो टर्र—टर्र की आवाज करते हैं, जो कि मादा मेंढक को आकर्षित करने के लिए होती है।
 - इस वर्ग के सभी प्राणी उभयचर जल एवं स्थल दोनों जगह निवास करने वाले होते हैं।
 - इस वर्ग के जंतु असमतापी होते हैं तथा क्लोमों, त्वचा एवं फेफडे को सहायता से श्वसन क्रिया करते हैं।
 - इस वर्ग के जंतुओं में त्वचा नम व चिकनी तथा भुजाओं में प्रायः 5 अंगुलियाँ पायी जाती हैं।
 - इस वर्ग के जंतुओं का हृदय 3—प्रकोष्ठीय होता है।

 मेढ़क, टोड, रेकोफोरस (Flying frog), हाइला, न्यूट एवं प्रोटियस इस वर्ग के प्राणियों के प्रमुख उदाहरण हैं।

(iii) सरीसुप (Reptilia) - इस वर्ग के जन्तु भी असमतापी, जल, स्थलीय होते हैं। ये स्थल पर रेंग कर चलते हैं। इनके हृदय 3 कोष्ठीय (2 आलिन्द तथा 1 अविकसित निलय) होते हैं। किन्तु क्रोकोडाइल (Crocodile- घड़ियाल) तथा कछुआ में हृदय 4 कोष्ठीय होते हैं। छिपकली, सर्प, घड़ियाल, अजगर, कोबरा, गोह, यूरो मैस्टिक्स, इत्यादि इस वर्ग के जन्तु हैं। विषैले सर्पों में लार ग्रन्थियाँ रूपान्तरित होकर विष ग्रन्थियों में परिवर्तित हो जाती हैं। 'कोबरा' सर्वाधिक विषेला भारतीय साँप है। यह घोंसला बनाकर रहता है। 'गोह' के नखर (नाखून) अत्यन्त शक्तिशाली होते हैं, इसलिए दुर्गम दीवारों एवं पहाड़ों पर चढ़ने के कार्य में इनका प्रयोग किया जाता है। 'छिपकलियों8 के पैर में गदिदयाँ पायी जाती हैं, जिससे ये सरलता पूर्वक दीवारों पर रेंग लेती हैं। 'अजगर' विषहीन तथा भारत का सबसे मोटा एवं विशाल सर्प है। सर्प में 'कर्णपटह' की अनुपस्थिति के कारण सुनने की क्षमता का आाव होता है। फिर भी शरीर की वाह्य त्वचा में तरंग गति को पहचानने की क्षमता होती है जिससे ये ध्वनि के आने की दिशा जान लेते हैं। साँपों (कोबरा) का विष मस्तिष्क को प्रभावित करता हैं यूरोमैस्टिक (साण्डा) की आँत में जल का संग्रह होता है।

- इस वर्ग के तहत रेंगकर चलने वाले उभयचर आते हैं।
- इनमें प्रारंभिक अवस्था में गिल द्वारा एवं विकसित अवस्था में फेफड़े द्वारा श्वसन क्रिया संपन्न होती है।
- इस वर्ग के तहत आने वाले प्राणियों को वास्तविक कशेरूक (Vertebrate) जंतु माना जाता है।
- इनमें कंकाल पूर्णतः अस्थिल होता है।
- इस वर्ग के तहत आने वाले जीवों के अंडे कैल्सियम कार्बोनेट की बनी कवच से ढंके रहते हैं।
- छिपकली, घड़ियाल, कछुआ, सांप आदि इस वर्ग के उदाहरण हैं।
- ऐसा माना जाता है कि सरीसृप वर्ग । उदय मेसोजोइक महाकल्प में हुआ था।
- एक मात्र ऐसा सर्प नागराज जो घोसला बनाता है।
- विश्व का सबसे लंबा एवं सबसे बड़ा सांप अजगर होता है।
- विश्व में सबसे तेज भागने वाला सांप मम्बा (अफ्रीका) होता है, इसकी रफ्तार 30-40 किमी. / घंटा हो सकती है।
- हाइड्रोफिश नामक समुद्री—सर्प विश्व का सर्वाधिक विषेला सांप है।
- भारतीय करैत जमीन पर रेंगने वाला सर्वाधिक विषेला सांप है।
- विश्व की एकमात्र जहरीली छिपकिली हेलोडमी है।
- स्किंक नाम से प्रचलित छिपकली मेबुईया बिल बनाती है।

- (iv) पक्षिवर्ग (Aves): इस वर्ग के जन्तु समतापी (Warm Blooded) होते हैं। इनमें हृदय 4 काष्ठीय होते हैं। किसी भी पक्षी में दाँत नहीं पाये जाते। इनके फेफड़े में वायु कोष्ठक (Air Sacs) पाये जाते हैं जो पक्षी को उड़ने में सहायता करते हैं। इनके अग्रपाद रूपान्तरित होकर पंख (Wings) का निर्माण करते हैं। इनमें निक्टिटेटिंग झिल्ली पायी जाती है जिसके कारण इनकी आँखें सोते समय भी बंद नहीं होती। वैक्टेल पक्षी भारत के बाहर घोंसला बनाती है। सभी पक्षी अण्डज (Oviparous) होत हैं। शुतुरमुर्ग, कौआ, कबूतर, एमू उड़ नहीं पाते हैं। शुतुमुर्ग का अण्डा सबसे बड़ा होता है।
 - इस वर्ग के प्राणियों में अगला पाद उड़ने के लिए पंखों के रूप में रूपांतरित होता है।
 - इस वर्ग के प्राणियों का हृदय चार—कोष्ठीय (four-Chambered) होता है।
 - इनका श्वसन फेफडे द्वारा संपन्न होता है।
 - इस वर्ग के प्राणी समतापी होते हैं तथा इनमें मूत्राशय अनुपस्थित रहता है।
 - विश्व का तीव्रतम पक्षी अवावील तथा सबसे बड़ा जीवित पक्षी शुतुर्मुक है।
 - िकवी एवं एमू न उड़ सकने वाले पक्षी (Flightless Birds) तथा हिमंग बर्ड संसार का सबसे छोटा पक्षी है।
 - अलीपुर (कोलकाता) में भारत का सबसे बड़ा तथा क्रूजर नेशनल पार्क (दक्षिण—अफ्रीका) में विश्व का सबसे बड़ा चिड़ियाघर स्थित है।
 - विलुप्त पक्षी डोडो है जो मॉरीशस में पाया जाता है।
- (v) स्तन धारी वर्ग (Mammalia) : इस संघ के जन्तु समस्त जन्तु वर्गों में सर्वाधिक बुद्धिमान होते हैं। ये समतापी होते हैं। शरीर पर सामान्यतया बाल पाये जाते हैं। त्वचा पर श्वेत ग्रन्थियाँ तथा तेल ग्रन्थियाँ शरीर के ताप को नियन्त्रित करती हैं, जबिक तेल ग्रन्थियाँ (Sebaceous Glands) बालों को चिकना बनाती हैं तथा जल रोधक का कार्य करती हैं। इस वर्ग के जन्त् विषम दन्ती (भिन्न-भिन्न प्रकार के) होते हैं। हृदय 4 कोष्ठीय होते हैं। भ्रूण का पोषण गर्भाशय में 'प्लेसेन्टा' के द्वारा होता है। इस वर्ग के जन्तु की एक प्रमुख विशेषता स्तन ग्रन्थियों का पाया जाना है। इस वर्ग के जन्तुओं की लाल रक्त कणिकाएं गोल, उभयावतल तथा अकेन्द्रित होती हैं। किन्तु ऊँट एक ऐसा स्तनधारी जन्तु है, जिसकी लाल रक्त कणिकाओं में केन्द्रक पाया जाता है। सभी स्तनधारियों में वृषण (Testis) शरीर के बाहरी भाग में पाया जाता है, जबकि हाथी एक ऐसा स्तनधारी है, जिसमें यह आन्तरिक भाग में पाया जाता है। इस वर्ग में पाये जाने वाले दाँत 4 प्रकार के होते हैं— (i) कृन्तक (भोजन को छोटे—छोटे टुकड़ों में विभक्त करता है) (ii) रदनक (भोज्य पदार्थ को चीडने-फाडने का कार्य करते हैं। ये मांसाहारी जन्तुओं में अधिक विकसित होते हैं।) (iii) अग्र चर्वणक (भोजन को चबानें का कार्य करता है), (iv) चर्वणक (ये भोजन को पीसने का कार्य करते हैं।) मनुष्य में दाँत 2 बार निकलते हैं अक्ल दाढ़ (Visdom Teeth) 20 वर्ष अवस्था के बाद निकलते हैं। मादा कंगारू के उदर भाग में शिशू धारी

कोष्ठ (Marsupium Pouch) पाये जाते हैं, जिसमें ये अपने अपरिपक्व बच्चों को जन्म देते हैं।

जदाहरण : कंगारू, शाही (वृषण उदरीय), सल्लू साँप, कुत्ता, बिल्ली, समुद्री शेर, शील, वालरस, ह्वेल, समुद्री गाय, हाथी, भेड़, दिरियाई घोड़ा (Hippopotamus), चींटी खोर, बन्दर, गुरिल्ला, गधा, घोड़ा, ऊँट, चमगादड़, मनुष्य आदि इसी वृग के जन्तु हैं।

- ह्वेल की त्वचा के नीचे चर्बी (वसा) की एक मोटी परत होती है, जिसे 'तिमिवसा' (Blubber) कहते हैं। ह्वेल के वॉत समरूपी होते हैं।
- डाल्फिन (मनुष्य के बाद) सर्वाधिक बुद्धिमान स्तनधारी जन्तु है।
- > घोडा, गधा, जेब्रा तथा गैंडा में पिताशय अनुपस्थित होता है।
- > सुअर, ऊँट, भेंड, हिरण के सिर पर गन्ध ग्रन्थियाँ होती हैं।
- ऊँट कसी कूबड़ में वसा का संचय होता है।
- हाथी के ऊपरी जबड़ी में कृन्तक दन्त (Incisor) गज दन्त (Tusk) के रूप में परिवर्तित होते हैं। हाथी में रदनक तथा
 अग्र चर्वणक दाँतों का अभाव होता हैं
- चमगादड़ में अत्यधिक तरंग आवृत्ति (Ultrasonic-20000 से अधिक आवृत्ति की तरंग) की आवाज को सुनने की क्षमता होती है। चमगादड़ को उड़ लोमडत्री भी कहते हैं। चमगादड़ बच्चे को जन्म देता है, अण्डे को नहीं।
- 🔪 'डोडो' अभी कुछ समय पूर्व विलुप्त हुआ जन्तु है।
- इस वर्ग के प्राणियों में स्वेद एवं तैल (Seat & Oil glands) पाये जाते हैं।
- इस वर्ग के प्राणी नियततापी (warm blooded animal) होते हैं।
- इस वर्ग के प्राणियों के मादाओं में बच्चों को दूध पिलाने के लिए स्तन—ग्रंथियाँ (Mammary glands) होती हैं।
- इस वर्ग के प्राणियों का शरीर बालों से ढंका रहता है तथा करोटि (skull) की अस्थियाँ आपस में जुडत्री रहती हैं तथा बाह्य कर्ण (Pinna) उपस्थित रहता है।
- इनका हृदय चार-कोष्ठीय (four chambered) होता है।
- इस वर्ग के प्राणियों के लाला रुधिराणुओं (R.B.Cs.) में नाभिक उपस्थित नहीं होते, सिवाय ऊँट के लाल रुधिराणुओं के।
- इस वर्ग को निम्न तीन उपवर्गों में बाँटा गया है-
 - प्रोटोथीरिया : अंडा देने वाले प्राणी, उदाहरण–एकिडना।
 - मेटाथीरिया : अपरिपक्व बच्चों को जन्म देने वाले प्राणी, उदाहरण—कंगारू।
 - यूथीरिया : परिपक्व बच्चों को जन्म देने वाले प्राणी, उदाहरण—मनुष्य।
- इस वर्ग के प्राणियों में बकरी कारक्त सबसे गर्म 39°C तापमान होता है।
- इस वर्ग में एक मात्र विषैला प्राणी डकविल्ड प्लैटीपस है।

जन्त् जगत का वर्गीकरण

- मनुष्य का आधुनिक जीव वैज्ञानिक नाम (Zoological Name) क्या है ? **—होमोसेपियन सेपियन।**
- 'प्रोटोजोआ' जगत का कौन–सा ऐसा जन्तु है, जो मलेरिया पैदा करता है ? **–प्लाज्मोडियम।**
- 'पील पाँव' (हाथी पाँव–Elepheantasis) को जन्म देने वाला क्रिमि कौन है ? **–वूचेरिया (Wuchereria)।**
- जोंक में रक्त का थक्का न बनने देने के लिए उत्तरदायी प्रोटीन / एन्जाइम कौन-सी है ?

–हीरूडीन (Hirudine)।

- विश्व में किस संघ (Phylum) के जन्तुओं की संख्या सर्वाधिक है ? —अर्थ्योपोडा (Arthropoda)।
- 'अर्थ्रोपोडा' संघ के जन्तुओं की आँखां में किसी जीव या वस्तु के हजारों चित्र बनने का कारण है ?

—आँखों में हजारों नेत्रांशकों का होना।

- 'ब्रिटल स्टार' (Brittle Star) किस संघ का जन्तु है ?
- —इकाइनोडर्मेटा (Echinodermata) |
- 'तारामछली' (Star Fish) में कितनी भुजाएं होती हैं ?

–घोंसला में।

-5 I

सर्वाधिक विषैला भारतीय साँप 'कोबरा' कहाँ रहता है ?

–मस्तिष्क।

• मनुष्य के बाद सर्वाधिक बुद्धिमान स्तनधारी जन्तु कौन है ?

साँप के काटने पर व्यक्ति का सर्वप्रथम कौन-सा अंग प्रभावित होता है ?

–डाल्फिन।

_		$\overline{}$				
	मानव शरीर की उ	ऊर्जा आवश्यक	ताएँ	•	होम्योपैथी	हैनीमैन
	कार्य की प्रकृति	पुरुष	महिला	•	हृदय प्रत्यारोपण	क्रिश्चियन बर्नार्ड
•	हल्के कार्य करने वाले	2000 कैलोरी	2100 कैलोरी	•	स्ट्रैप्टोमाइसिन	बॉम्समैन
•	8 घंटे कार्य करने वाले	3000 कैलोरी	2500 कैलोरी	•	सल्फा ड्रग्स	डागमैक
•	कठोर परिश्रम करने वाले	3600 कैलोरी	3000 कैलोरी	•	आर.एन.ए.	जेम्स वाटसन तथा अर्थर अर्ग
	·	बंध आविष्कार		•	डी.एन.ए.	जेम्स वाटसन तथा क्रिक
	आविष्कार	आविष्		•	एंटीजन	लैंडस्टीनर
•	मलेरिया परजीवी व चिकि			•	इंसुलिन	बेटिंग एवं वेस्ट
•	पेचिश तथा प्लेग की चिवि			•	क्लोरोफार्म	हैरिसन तथा सिम्पसन
•	इलेक्ट्रोकार्डियोग्राफ	आइन्य		•	चेचक का टीका	एडवर्ड जेनर
•	प्रथम परख नली शिशु	एडवर्ड	स एवं स्टेप्टो	•	टेरामाइसिन	फिनेल
•	गर्भनिरोधक गोलियाँ	पिनक		•	रक्त परिवर्तन	कार्ल–लैंडस्टीनर
•	ओपन हार्ट सर्जरी		लिलेहल	•	बैक्टीरिया	ल्यूवेनहॉक
•	लिंग हारमोन	स्टेनाच	1	•	टी.बी. बैक्टीरिया	रॉबर्ट कोच
•	विटामिन	फंक		•	बी.सी.जी.	यूरिन कालमेट
•	विटामिन 'ए'	मैकुल•	न	•	डायबिटीज	ू बेटिंग
•	विटामिन 'बी'	मैकुल•	Ŧ	•	पोलियो वैक्सीन	जॉन ई. साल्क
•	विटामिन 'सी'	होल्कर	Ţ.	•	पेनिसलीन	अलेक्जेंडर फ्लेमिंग
•	विटामिन 'डी'	हॉपिक	न्स		II I SISTE I	SICI-SIGN INITI

{जहाँ सेलेक्शन एक जिद है.} समीर प्लाजा, मनमोहन पार्क, कटरा, बांसमण्डी के सामने, इलाहाबाद फोन नं. : 0532.3266722, 9956971111, 9235581475

	महत्वपूर्ण जानक	गरियाँ •	•	सबसे बड़ा पुष्प	रेफ्लेशिया ओरनोल्डाई,
•	सबसे बड़ा सर्प	 पाइथन		-	व्यास 1 मी. तथा भार
•	सबसे बड़ा अण्डा	शुतुरमुर्ग का			लगभग ८ किग्रा. हो
•	सबसे बड़ा कपि	कोरिल्ला			सकता है।
•	सबसे छोटा स्तनी	छदुंदर •	•	सबसे छोटा पुष्प	वुल्फिया (Wolfia),
•	सबसे छोटा पक्षी	हमिंग पक्षी			इसका व्यास 0.1 मिमी.
•	सबसे बड़ा जीवित पक्षी	शुतुरमुर्ग			का होता है।
•	सबसे बड़ा तथा भारी स्तनी	नीली ह्वेल	•	सबसे छोटा टेरिडोफाइटा	एजोला यह एक जलीय
•	सबसे बड़ा जीवित सरीसृप	समुद्री टरटिल (कछुआ)			पादप है।
•	सबसे बड़ा स्थली स्तनी	अफ्रीकन हाथी	•	सबसे छोटे बीज	आर्किड (Orchid)
•	सबसे व्यस्त मानव अंग	हृदय	•	सबसे कम गुणसूत्र वाला पादप	हेप्लोपोपस ग्रेसिलिस
•	सबसे ऊँचा स्तनी	जिराफ (अफ्रीका)		सबसे ज्यादा गुणसूत्र वाला पौधा	
•	अंडप्रजनक स्तनी	ऐकिडना तथा डकबिल्ड		(14)(1-4)(4)(3)(4)(4)(4)(4)(4)	जिसके डिप्लॉयड
		प्लेटीपस			कोशिका में 1266
•	अंड-जरायुज स्तनी	कंगारू	4		गुणसूत्र होते हैं।
•	सबसे तेज उड़ने वाला पक्षी	कटिपुंज पक्षी (स्थाइनी टेल्ड स्वीफ्ट)		सबसे लम्बे गुणसूत्र	ट्राइलियम में
•	सबसे तेज दौड़ने वाला जन्तु	चीता		सबसे छोटे गुणसूत्र	शैवाल में
•	सबसे बड़ी पत्ती वाला पौधा	विक्टोरिया रीजिया,		सबसे बड़ा बीजांड	साइकस
		यह भारत में बंगाल में		जीवित जीवाश्म	साइकस
		पाया जाने वाला जलीय		सबसे बड़ा नरयुग्म	साइकस, यह एक
		पादप है।			नग्नबीजी पादप है।
•	सबसे बड़ा फल	लोडोसिया (Lodoicea), इसे डबल कोकोनट भी		सबसे भारी काष्ठ वाला पौधा	हार्डविचिया बाइनेका
		कहते हैं यह केरल में	•	सबसे हल्की काष्ठ वाला पौधा	ओक्रोमा लेगोपस
		पाया जाता है।	•	सबसे छोटा नग्न बीजी पादप	जेमिया पिगमिया
•	सबसे बड़ा आवृत्तबीजी वृक्ष	युकेलिप्टस	•	सबसे छोटी कोशिका	माइकोप्लाज्मा
•	सबसे छोटा (आकार में)	लैम्ना (Lemna), यह			` गेलिसेप्टिकम
	आवृत्तबीजी पौधा	जलीय आवृत्तबीजी है,	•	काफी देने वाला पौधा	कोफिया अरेबिका, इसमें
		जो भारत में भी पाया जाता है।			कैफीन होती है।
	संसार में सबसे लम्बा वृक्ष	सिकोया, यह एक	•	कोक देने वाला पौधा	थियोब्रोमा केकओ, इसमें
	रासार । सम्रा रामा हुना	नग्नबीजी है। इसकी			थिओब्रोमीन व कैफीन
		ऊँचाई 120 मी. है। इसे			होती है।
		कोस्ट रेड वुड ऑफ	•	अफीम देने वाला पौधा	पोपी (पैपावर
		कैलिफोर्निया भी			सेमेनिफेरम) इसमें
	man shar success of	कहते हैं			मोपीन होती है।
	सबसे छोटा आवृत्तबीजी परजीवी पादप	आरसीथोबियम, यह एक द्विबीजपत्री है, जो	•	टेनिस गेंद जैसा फल	केन्थ
		नग्नबीजियों के तने पर	•	जंगल की आग	ढाक
		पूर्ण परजीवी है।			

सामान्य विज्ञान

भाग-2 : वनस्पति विज्ञान (Botany)

पादप जगत का वर्गीकरण (Classification of Plants)

सम्पूर्ण पादप-जगत को 2 उप-जगत-थैलोफाइटा तथा एम्ब्रियोफाइटा में विभाजित किया गया है।

पौधों का वर्गीकरण (Classification of Plants) क्रिप्टोगैमी (अपूष्पीय पौधो) फैनीरोगैमी (पृष्पीय पौधे) (Cryptogamae) (Phanaerogamae) थैलोफाइटा ब्रायोफाइटा टेरिडोफाइटा (Thallophyta) (Bryophyta) (Pteridophyta) उदा. मांस, रिक्सिया उदा. फर्न, सिलैजिनेला शैवाल कवक जीवाण नग्नबीजी आवन्त बीजी पौधी (Fungi) (Bacteria) (Algae) (Angiospermae) (Gymnospermae) उदा. साइकस, पाइनस एक बीजपत्री पौधे द्विबीजपत्री पौधे (Monocotyledon) (Dicotyledon) उदा. ग्रहूँ, धान, मक्का उदा. मटर, चना, सरसो

थैलोफाइटा (Thalophyta) के अन्तर्गत- शैवाल (Algae), कवक (Fungi), जीवाणु (Bacteria) का अध्ययन करते है। (अ) शैवाल- ये स्वपोषी (Autrophic) होते हैं, अर्थात् अपना भोजन स्वयं बनाते है। शैवाल ताजे जल (नदी, तालाब, झरने आदि) तथा खरे जल (समुद्री जल), पहाड़ों, पेड़ों, जीवों आदि पर उगते हैं। जब ये जलीय पौधों तथा जीवों पर उगते हैं तो ये 'अधिपादपी' (Epiphytes) शैवाल कहलाते हैं। जैसे-साइकस पौधे की कोर लायड जड में 'एनाबिना' (शैवाल), एन्थेसिरास के थैलस में 'नास्टाक' (शैवाल) पादप अधिपादप के तथा 'समुद्री एनीमोन' जीव अधिपादप शैवाल के उदाहरण हैं। इसी तरह जब शैवाल कवक के साथ संघ बनाता है तो 'लाइकेन' (Lichen) कहलाता है। कल्प शैवाल से 'आयोडीन लवण' प्राप्त होते हैं। भारत में 'स्पाइरोगाइरा' (Spirogyra) नामक शैवाल का प्रयोग खाद के रूप में होता है। 'अल्वा' (Ulva) शैवाल को समुद्री सलाद के नाम से जाना जाता है। 'क्लोरेला' नामक शैवाल में 70% प्रोटीन तथा शेष वसा एवं कार्बोहाइड्रेट होते हैं। अन्तरिक्ष यात्री इसे भोजन एवं ऑक्सीजन के लिए इसका उपयोग करते हैं। क्लोरेला से एण्टीबायोटिक्स भी तैयार किये जाते हैं।

शैवाल में विटामिन ए, बी, सी तथा ई पायी जाती है। 'अगर-अगर' (शैवाल) का उपयोग मरहम तथा दवा

का उपयोग डायनामाइट बनाने में किया जाता है। 'स्पाइरोगाइरा' को तालाबों का रेशम कहते हैं। शैवाल के अध्ययन को फाइकोलॉजी (Phycology) कहते हैं। (ब) कवक— ये परपोषी (Heterotrophic) होते हैं। ये अन्य जीवों या वनस्पतियों पर परजीवी (Parasite) के रूप में पलते हैं। जब कवक सड़े-गले एवं मृत कार्बनिक पदार्थों से भोजन प्राप्त करते हैं तो वे 'मृत जीवी' (Saprophyte) कहलाते हैं। ये एक कोशिकीय अथवा शाखावत तन्तुओं के 'थेलस' होते हैं। कवकों की कोशिका भित्तियाँ एक जटिल नाइत्रजनीय पदार्थ की बनी होती हैं जिसे कवक सेल्लोज कहते हैं। कवक जब शैवाल के साथ जीवन निर्वहन करता है तो यह 'लाइकेन' कहलाता है। लाइकेन में कवक जल तथा खनिज लवणों को अवशोषण कर शैवाल को देता है तथा शैवाल खाद्य पदार्थी का संश्लेषण कर कवक को देता है। अर्थात लाइकेन में कवक पौधे की जड का काम करता है, जबकि शैवाल पत्तियों का काम करता है। कवक उच्च कुल के पौधों की जड़ों के साथ माइकोरा इजा' बनाते हैं। अर्थात् कवक उच्च कुल के पौधे की जडत्र से भोजन लेते हैं तथा उसे जल एवं खनिज लवण उपलब्ध कराते हैं। कुछ कवक, जैसे– अगैरिकस, गुच्छी (मार्सेला), मशरूम, आदि भाजन के रूप में प्रयोग किये जाते हैं। मशरूम

बनाने में किया जाता है। 'डाएटम' (Diatom) शैवाल

को '**साँप की छतरी**' कहते हैं। खमीर या यीस्ट (दूध से बनता है) के किण्वन (Fermentation- वायु की अन्परिथिति में श्वसन क्रिया) से गिइमीन, निकोटिनिक अम्ल तथा राइबोफ्लोबीन विटामिन प्राप्त होते हैं। मशरूम तथा मर्सेला में 'प्रोटीन, विटामिन व खनिज लवण' होते हैं जिसके कारण इसका सब्जी के रूप में उपयोग किया जाता है। अनेक मदिराएं '**यीस्ट**' से बनायी जाती हैं। यीस्ट-कोशिकाएं शर्करा (Sugar) का किण्वन करके एथिल अल्कोहल का निर्माण करती हैं। यह क्रिया **'यीस्ट'** की एनजाइम– 'जाइमेज' द्वारा है। कवकों से कुछ एण्टीबायोटिक्स, जैसे—पेन्सिलीन, स्ट्रेप्टोमाइसीन, क्लोरोमाइसिटीन, अरगोटीन तैयार की जाती है। अरगोरीन या अरगोट एण्टीबायोटिक्स बच्चा पैदा होने में देरी की स्थिति में माताओं को दिया जाता है। भारत में पिम्परी और ऋषिकेश में एण्टीबायोटिक्ट निर्मित किये जाते हैं। पौधों के कृत्रिम वृद्धि हार्मीन—'**जिबरैलीन'** कवक द्वारा निर्मित किये जाते हैं।

कभी—कभी कवक हमारे भोजन पर आक्रमण कर विषेला बना देते हैं। रोटी या डबल रोटी पर लाल या काले रंग के धब्बे, कवक के ही कारण होते हैं। कवक के अध्ययन को **'माइकालॉजी'** (Mycology) कहते हैं।

(स) जीवाणु— इसकी खोज सर्वप्रथम 1683 में, हालैण्ड के वैज्ञानिक 'एण्टीनीवान ल्यूवेनहाक' ने स्व—निर्मित सूक्ष्मदर्शी से की। जीवाणु को सर्वप्रथम 'वैक्टीरिया' नाम 'एहरेनवर्ग' ने 1829 में कदया। वैक्टीरिया के अध्ययन को 'बैक्टीरिओलॉजी' (Bacteriology) कहते हैं।

जीवाणु एक कोशीय होते हैं तथा सभी जगह जल, थल, वायु में पाये जाते हैं। इनकी कोशाभित्ति लिपिड, प्रोटीन, हेक्सामीन तथा पाली सैकराइड्स की बनी होती हैं। जीवाणु 2 प्रकार के होते हैं— ग्राम पॉजिटिव तथा ग्राम निगेटिव। ग्रामनिगेटिव जीवाणु ही रोग उत्पन्न करते हैं। जीवाणु कैप्सुलेटेड अवस्था में ही जन्तुओं में रोग फैलाते हैं।

एम्ब्रियोफाइटा— इसे 4 उप—भागों में विभक्त किया जाता है— (i) ब्रायोफाइटा, (ii) टेरिडेफाइटा, (iii) जिम्नोस्पर्म, (iv) एन्जियोस्पर्म।

(i) ब्रायोफाइटा (Bryophyta)-

इन्हें पादप जगत का उभयचर कहा जाता है। ये आदिम (सबसे प्राचीनतम) स्थलीय पौधे हैं। ये नमी एवं छाया वाले स्थानों पर पाये जाते हैं। रिक्सिया, पयूनेरिया, (माँस— Moss), मरकेन्सिया आदि इसके उदाहरण हैं। इन पौधों का उपयोग मृदा—अपरदन (Soil Erosion) रोकने में किया जाता है।

- (ii) टेरिडोफाइटा (Pteridophyta)— ये पुष्प रहित तथा बीज रहित पाँध होते हैं। ये उभयचर होते हैं। फर्न, सालवीनिया, मार्सीलया, एजोला आदि उदाहरण हैं। इसवर्ग के इक्वीसीटम पौधे में सिलिका का जमाव होता है।
- (iii) जिम्नोस्पर्म (Gymnosperm)— ये नग्नबीजी होते हैं। अर्थात् इनके बीजाण्ड तथा उनसे विकसित बीज या फल किसी खोल में बन्द नहीं होते। ये सदाबहारी होते हैं। इनकी जाइलम ऊतक में वाहिनियों तथा फलोयम ऊतक में सह—कोशा का अभाव होता हैं साइकस, पाइनस, इफेड्रा (झाड़ीनुमा) इत्यादि इसके उदाहरण हैं। 'साइकस' की कोरलायड जड़ों में एनाबिना तथा नास्टाक शैवाल होते हैं। जिम्नोस्पर्म पौधे 'शंकुधारी' (Coniferous) होते हैं। तारपीन का

तेल पाइन वृक्ष से प्राप्त होता है। इसी से चिलगोला प्रापत होता है। इफेड़ा पौधे से दमा एवं श्वसन सम्बन्धी रोगों में दी जाने वाली औषधि 'इफेड्रीन' प्राप्त होती है। 'साइकस' (Cycas) के तने में पर्यापत मात्रा में 'मंड' (Starch) भरा रहता है, जिससे 'सागो' (Sago- साबूदाना) तैयार किया जाता है। इसलिए साइकस के पौधे को 'साइगोपाम' (Sago Palm) कहते हैं। पाइनस (Pinus) के पौधे अत्यन्तविशाल होते हैं। इनमें परागण हवा द्वारा होता है। इनके पराग-कणों की संख्या बहुत अधिक होती है। ये कण पीले रंग के होते हैं। परागण के दौरान ये परागकण पाइनास के जंगलों के ऊपर वायु मण्डल में पीले बादल की तरह छा जाते हैं। इन बादलों को 'सल्फर वर्षा' (Sulpher Shpert) कहते हैं। इन बादलों के कारण महीनों प्रकाश की किरणें धरातल तक नहीं पहुँच पाती। विश्व में सर्वाधिक जंगल जिम्नोस्पर्म के हैं। सर्वाधिक लकड़ी भी इसी से प्राप्त होती है।

(iv) एन्जियोस्पर्म (Angio sperm)— इस वर्ग के पौधों में पुष्प, बीज एवं फल पाये जाते हैं। बीजों के ऊपर खोल या बीजपत्र लगे होते हैं। ये एक बीजपत्री तथा द्वि—बीजपत्री होते हैं। धान, गेहूँ, ज्वार, बाजरा एक बीज पत्री तथा चना, मटर, अरहर, मसूर आदि द्वि—बीज पत्री (द्विदालीय) के उदाहरण हैं। अर्थात् खाद्य फसलें (Cereles Crops) एक दालीय तथा दाल की फसलें (Pulse Crops) द्वि—बीज पत्री या द्वि—दालीय होती है। आम, महुआ, जामुन नीम, पीपल, बरगद, गूलर, शीशम, कथा, बेर, बेल आदि एंजियो स्पर्म के उदाहरण हैं। वुल्फिया सबसे छोटा पुष्पी पौधा है। सिनकोना जिससे मलेरिया की दवा कुनैन प्राप्त होती है, भी इसी वर्ग का उदाहरण है।

पौधों के भाग (Parts of the Plants)

पौधों के 3 भाग होते हैं— (1) जड़, (2) तना तथा (3) पत्ती।

- (1) जड़— जड़ जल तथा खनिज लवण का अवशोषण करते हैं। जड़ें प्रकाश के विपरीत गति करती हैं। जड़ें केवल कोशिका जल का अवशोषण परासरण (Osmosis) क्रिया द्वारा ही कर पाती हैं। रेगिस्तानों में पौधों की जड़ें पानी को अवशोषित करने के लिए काफी गहराई तक जाती हैं। द्वि—बीजीय पौधों की जड़ें मुसलाधार तथा एक बीजीय पौधों की जड़ें झकड़ादार (Adventious) होती हैं। कुछ जड़ें, जैसे—मूली, गाजर, सलजम, चुकन्दर की जड़ें रूपान्तरित होकर भोजन संग्रह का कार्य करती हैं।
- (2) तना— तना पौधों का वायवीय भाग होता है। इन पर पत्तियाँ लगी होती हैं। लकड़ी (टिम्बर) हमें पौधे के तने से ही प्राप्त होती हैं। तने रूपान्तरित होकर भोजन संचय का भी कार्य करते हैं। वैसे तने का मुख्य कार्य पौधो को सहारा प्रदान करना है। गन्ना, प्याज, लहसुन, आलू, शकरकन्द आदि भोजन संग्रह का कार्य करते हैं। शकरकन्द, आलू, प्याज, लहसुन, अदरक, हल्दी तना हैं।
- (3) पत्ती— पत्तियाँ पौधों की सर्वाधिक महत्वपूर्ण अंग होती हैं। ये पापैधों के लिए भोजन का निर्माण करती हैं तथा परिवर्तित होकर पुष्प का निर्माण करती हैं। पत्तियाँ भोजन का निर्माण सूर्य के प्रकाश, वायुमण्डल की कार्बनडाई ऑक्साइड तथा पर्णहरिम की उपस्थिति में प्रकाश संश्लेषण (Photosyn thesis) की क्रिया द्वारा करती हैं।

पौधों में पोषण (भोजन–निर्माण) (Nutrition in Plants)

पौधों में पोषण 2 प्रकार से होता है— (1) **स्वपोषण,** (2) **परपोषण**।

(1) स्वपोषण— स्वपोषण पौधे के हरे भाग में होता है। स्वपोषी अपना भोजन स्वयं बनाते हैं। स्वपोषी पौधे अपना भोजन प्रकाश प्रकाश संश्लेषण क्रिया द्वारा बनाते हैं। इस क्रिया के दौरान मंड (Starch) का यनिक अभिक्रिया द्वारा प्रदर्शित करते हैं—

सूर्य-ऊर्जा

कार्बनडाई ऑक्साइड + जल → मंड + ऑक्सीजन पर्णहरिम

 $= 6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

अर्थात् इस क्रिया में 1 अणु मंड के निर्माण के लिए 6 अणु कार्बनडाई ऑक्साइड तथा 6 अणु जल क्रिया करते हैं तथा इस क्रिया के फलस्वरूप 6 अणु ऑक्सीजन के वायु मण्डल में उत्सर्जित होते हैं।

जब 2 भिन्न या समान मंड के अणु आपस में मिलते हैं तो 'डाइसैकराइड्स' (जटिल शर्करा) का निर्माण करते हैं, जैसे— सुक्रोज, लैक्टोज और माल्टोज। जब 2 से अधिक मंड (मोनो सैकराइड्) के अणु आपस में मिलते हैं तो पाली सैकराइड्स (जटिलतम शर्करा) का निर्माण होता है, जैसे— सेलुलोज। मोनोसैकराइड, डाइसैकराइड्स तथा पाली सैकराइड्स को सम्मिलित रूप से कार्बोहाइड्रेट कहते हैं। वनस्पतियों में वसा, प्रोटीन, खनिज लवण (Mineral Salt) इत्यादि का निर्माण जमीन द्वारा अवशोषित जल से किया जाता है। हरे रंग की अनुपस्थित में भी पौधे भोजन का निर्माण कैरोटीन और जन्थोफिल नामक पिगमेन्ट (Pigment) से करते हैं।

(2) परपोषण— परपोषी पौधे दूसरे पौधों के ऊपर परजीवी के रूप में अपना जीवन निर्वाह करते हैं। जैसे—जीवाणु, विषाणु इत्यादि।

जब—जब पौधे एक—दूसरे के साथ सहजीवन यापन करते हैं तो वे पौधे सहजीवी कहलाते हैं। अधिपादपों (epiphytes) में सह—जीवन पाया जाता है। बाण्डा, अमरवेल, आर्किड अधिपादप के उदाहरण हैं। बाण्डा में विलामिन कोशिकाएं पायी जाती हैं जो कि जल अवशोषण का कार्य करती हैं।

कुछ पौधे नाइट्रोजन की कमी वाले स्थानों पर उगते हैं और नाइट्रोजन की प्राप्ति के लिए ये कीटों का भक्षण करते हैं। ये कीटभक्षी पौधे मांसाहारी (Carnivorous) पौधे (Plants) कहलाते हैं। भारत में इनकी कुल 30 तथा विश्व में 440 जातियाँ हैं। ये 4 प्रकार के होते हैं— (i) ग्रन्थिल— जैसे— सैन्ड्यू और बटरवर्ट (ii) बीनस फ्लाई ट्रैप— उदाहरण एल्डोवेन्डा (iii) पिचर— जैसे सरासीनिया और पिचर पौधा तथा (iv) ब्लैडर जैसे ब्लैडर वर्ट।

पौधों में जनन (Reproduction in Plants)

पौधों में जनन 2 प्रकार से होता है— (i) अलिंगी तथा (ii) लिंगी। अलिंगी जनन पौधे के किसी भाग से हो सकता है। जैसे— जड़, तना, पत्ती में कहीं से भी। पौधों में लिंगी जनन पुष्प में होता है। ये पुष्प एक लिंगी या द्वि—लिंगी होते हैं। पुष्प में निम्नलिखित 4 भाग होते हैं— (i) वाहय दल (Calyx)— ये पुष्प के सबसे बाहर होते हैं। ये रंगहीन या हल्के हरे रंग के होते हैं। ये पुष्प की सुरक्षा करते हैं। (ii) दल पुंज (Corolla)— ये पुष्प के रंगीन भाग होते हैं। पुष्प का रंगीन होना इसी पर निर्भर करता है। परागण के समय ये कीटों को आकर्षित करने का कार्य करते हैं। (iii) पुंकेशर

(Androcium)— ये पुष्प के नर भाग होते हैं। इनमें परागकण का निर्माण होता है। (iv) स्त्रीकेशर (Gynocium)— ये पुष्प के मादा भाग होते हैं। इनसे फल ओर बीज प्रापत होते हैं। इसके 3 उप—भाग होते हैं— (i) वर्तिकाग्र (Stigma)— ये परागकण के लिए प्लेटफार्म का काम करते हैं, (ii) वर्तिका (Style)— ये परागकण को अण्डाशय (Ovary) तक पहुँचने के लिए मार्ग का कार्य करते हैं, (iii) अण्डाशय (Ovary)— यह स्त्रीकेशर का सबसे निचला भाग होता है। यही विकसित होकर फल एवं बीज का रूप लेता है। लिंगी जनन में जब एक पुष्प का परागकण उसी पुष्प के वर्तिकाग्र (Stigma) पर या उसी जाति के दूसरे पीधे के पुष्प पर पहुँचता है तो इसे परागण (Polination) कहते हैं। परागण के पश्चात परागकण मादा के बीजाण्ड (Dvules) से संयोग कर भ्रूण (Zygote/Embrio) का निर्माण कर लेते हैं! इस क्रिया को निषेचन (Fertilization) कहते हैं।

परागण (Polination) हवा, जल, कीट, पक्षी आदि द्वारा होते हैं। जब परागण हवा द्वारा होता है तो उसे 'एनीमोफीली', जल द्वारा होता है, तो उसे 'हाइड्रोफीली' (Hydrophily), कीट के माध्यम से होने पर, 'इन्टेमोफीली' (Entemophily) तथा पक्षी के माध्यम से होने को 'अर्थिनोफीली' (Orthinophily) कहते हैं। चमगादड़ से परागण होने को चीराप्टीरोफीली' (Chiropterophily) कहते हैं। विश्व के सबसे बड़े पुष्प रेफलेसिया (Refflesia) में परागण हाथी द्वारा होता है।

स्व परागण— एक पुष्प के परागकण का उसी पौधे के उसी पुष्प या दूसरे पुष्प के वर्तिकाग्र पर पहुँचना स्व—परागण (Self Polination) कहते हैं।

पर-परागण— एक पुष्प के परागकण का उसी जाति के अन्य पौधे के पुष्प के वर्तिकाग्र (Stigma) पर पहुँचना पर परागण कहलाता है। पर परागण के पश्चात निषेचन होता है जो भ्रूण (Zygote) का निर्माण करते हैं। भ्रूण विकसित होकर फल और बीज का निर्माणकरते हैं।

फल और बीज (Fruits and Seeds)

पके हुए अण्डाशय को फल कहते हैं। इसका मुख्य उद्देश्य अपने अन्दर बीज उत्पन्न कर उनकी रक्षा करना तथा उनके प्रकीर्णन (Scatthering) में सहायता करना है। फल 3 प्रकार के होते हैं— (1) सत्यफल (True Fruits), (2) आभाषी फल या कूट फल (False Fruit or Pseudocarp) तथा (3) अनिषेक फल (Parthenopcarpic Fruits)।

- (i) निषेचन के पश्चात अण्डाशय की वृद्धि से जो फल बनता है उसे सत्य फल कहते हैं। जैसे— आम, पपीता, बेर, जामुन, नारियल आदि।
- (ii) जब कोई फल अण्डाशय से न बनकर पुष्प के किसी अन्य भाग, जैसे—पुष्पासन, पात्र, वाह्य दल—पुंज अथवा पुष्प—क्रम से बनतसे हैं तो आभासी फल कहलाते हैं। जैसे—सेब, इस्ट्रावेरी, काजू, शहतूत, कटहल अंजीर, अनन्नास, पीपल आदि। सेव तथा नाशपाती पुष्पासन (Thalamus) से बनते हैं। काजू पुष्पासन तथा पुष्पावली वृन्त' से बनते हैं। कटहल, अंजीर, शहतूत, अनन्नास, गूलर पुष्पक्रम (Arrangement of Flower) से बनते हैं।
- (iii) जब फल अण्डाशय से बिना निषचेन के ही बन जाते हैं तो उसे अनिषेक फल कहते हैं। ऐसे फलों में बीज बनते हैं। जैसे– केला, अंगूर आदि।

एक अन्य आधार पर फल 3 प्रकार के होते हैं— (i) एकल फल (ii) सरस फल (iii) संगृहीत फल। मटर, सेम, दाल, सरसों, आम, नारियल, सिंघाड़ा, गेहूँ, चावल, मक्का आदि एकल फल के उदाहरण हैं। तरबूज, खरबूज, खीरा ककड़ी, करैला, टमाटर, पपीता, अमरूद, बैगन, नींबू, अंगूर, बेल, सेव, आदि सरस फल के तथा शहतूत, अनन्नास, साइकोनस, कटहल, गूलर, पीपल, आदि संग्रहीत फल के उदाहरण हैं।

फलों के	खाने योग्य भाग
फल का नाम	खाने योग्य भाग
आम	मध्य फल भित्ति
सेब, नाशपाती	मांसल पुष्पासन
केला	मध्य तथा अन्तः फलभित्ति
अमरूद	पेरीकार्प तथापुष्पासन
खजूर	वाह्य व मध्य फल भित्ति
काजू	पुष्पावली वृन्त तथा बीज पत्र
गेहूँ तथा मक्का	भ्रूण पोष
बादाम	बीजपत्र
कटहल	सहपत्र, परिदल पुज तथा बीज
अनार	बीज चोल
अंगूर	पेरी कार्प तथा प्लेसेन्टा
शहतूत	माँसल वाह्य दल
नारियल	तैलीय भ्रूणपोष (Endosperm)
लीची	एरिल
चना	बीजपत्र एवं भ्रूण
अंगूर	फलभित्ती, बीजाण्डसन
मूँगफली	बीजपत्र एवं भ्रूण
नारंगी	जुसी हेयर
पपीता	मध्य फल—भित्ती
टमाटर	फलभित्ती, बीजाण्डसन
अन्नानास	परिदलपुंज

पादप हार्मोन्स (Plant Hormones)

जिस प्रकार से मनुष्य की शारीरिक क्रियाओं को हार्मोन्स नियन्त्रित करते हैं, उसी प्रकार वनस्पतियों की क्रियाओं (श्वसन, वृद्धि, फूलों का लगना, पत्तियों का लगना तथा गिरना, शाखाओं का निर्माण, फलों का निर्माण आदि) को भी विभिन्न प्रकार के हार्मोन्स नियन्त्रित करते हैं। ये पादप हार्मोन्स निम्नलिखित हैं—

- 1. ऑक्सिन (Auxin): इसका रासायनिक नाम इण्डोल एसिटिक एसिड (IAA) है। यह पौधों की शीर्ष— वृद्धि, फलों के विकास, फूलों के लगने आदि के लिए उत्तरदायी है। 2, 4-D अथवा 2, 4, 5-T=कृत्रिम ऑक्सिन हार्मोन है। इसका उपयोग खेतों में घासों को नष्ट करने के लिए खर—पतवार नाशी (Weedicide)— के रूप में किया जाता है।
- 2. जिबरलिन (Gibberellin): यह पौधे की लम्बाई में तथा पुष्प की उत्पत्ति में सहायक होता है। सर्वप्रथम इसी हार्मोन को पृथक किया गया था। पौधे का नर या मादा होना इसी पर निर्भर करता है। फसलों के जीवन चक्र को कम करता है।
- 3. साइटोकाइनिन्स (Cytokinins): ये कोशा विभाजन के लिए उत्तरदायी हैं। ये पौधों की पत्तियों के क्षरण (गिरने) को रोकते हैं। पान के पौधे की पत्तियों का हरा रंग अधिक दिनों तक इसी कारण बना रहता है।
- 4. इथाइलीन (Ethylene): यह पौधों में वृद्धि रोधक का कार्य करता है। यह फलों को पकाने का कार्य करता है। यह गैसीय अवस्था में पाया जाता है।

5. एबसीसिक अम्ल (Abscisic) : यह सभी प्रकार की वृद्धि को रोकता है। यह पौधों के पुष्पों, फलों एवं पत्तियों के गिरने के लिए उत्तरदायी है। यह पर्णहरिम को नष्ट कर जीर्णावस्था को जन्म देता है। यह अम्ल, जो कि हार्मोन के रूप में कार्य करता है। पौधों में अंकरण को भी रोकता है।

पादपों में विभिन्न तत्वों की भूमिका (Role of Various Elements in Plants)

पौधों के विकास में हार्मोन्स के साथ—साथ कुछ विशिष्ट तत्वों की भी निर्णायक भूमिका होती है। ये तत्व मुख्यतया निम्न हैं—

- 1. 'न्यूक्लिक अम्ल' (RNA + DNA) के निर्माण के लिए उत्तरदायी है। इसकी कमी से पत्तियाँ पीली पड़ जाती हैं, पार्श्व किलकाएं प्रसुप्त रहती हैं, पुष्प देर से निकलते हैं, कोशिका—विभाजन रूक जाता है। इसकी अधिकता से पत्तियों में वृद्धि अधिक होती है।
- 2. फास्फोरस (Phosphorus) : ये न्यूक्लियो प्रोटीन में पाये जाते हैं। कोशिका विभाजन में सहायता करते हैं। ये फसलों के शीघ्र पकने में भी सहायक होते हैं। जड़ वाली फसलें, जैसे—मूली, सलजम, गाजर तथा भूमिगत तने जैसे—आलू, शकरकन्द आदि फॉस्फोरस की अधिकता से मोटे एवं बड़े हो जाते हैं।
- 3. पोटैशियम (Potassium) : ये कार्बोहाइड्रट तथा प्रोटीन संश्लेषण में सहायक होते हैं। इसकी अनुपस्थिति में पौधे मंड का निर्माण नहीं कर पाते। इसकी उपलब्धता से पौधों में स्वस्थ फूल, फल तथा बीज बनते हैं।
- 4. मैगनीशियम (Magnesium) : यह क्लोरोफिल का सर्वप्रमुख अवयव हैं पत्तियों का हरा रंग इसी पर निर्भर करता है। इसकी कमी से पत्तियाँ पीली पड़ जाती हैं।
- 5. गन्धक (Sulpher) : यह प्रोटीन निर्माण में सहायक होता हैं यह सरसों के तेल में बहुत अधिक पाया जाता है।
- 6. सिलिका (Sillica): यह पत्तियों की सतह या किनारों पर या तनों पर पायी जाती हैं। ये मुख्यतया गेहूँ, गन्ना, कपास आदि में पाये जाते हैं। इनकी उपस्थिति से पत्तियों के किनारे काफी मजबूत हो जाते हैं।
- 7. जिंक (Zinc): यह पौधों की वृद्धि में सहायक होता है। इसकी कमी से पौधे छोटे रह जाते हैं। पत्तियाँ अविकसित रह जाती हैं, पत्तियाँ पीली, चितकबरी हो जाती हैं। पौधों के वृद्धि हार्मोन ऑक्जीन (Auxin) के निर्माण के लिए उत्तरदायी हैं। धान का 'खैरा रोग' (Blight of Rice) तथा आलू का झलसा रोग इसी की कमी से होता है।

8. ताँबा (Copper) : इसकी कमी से पौधे सूखने व मुरझाने लगते हैं। यह पौधों के एन्जाइम–एस्कार्बिक अम्ल, रायरोसिनेज, का निर्माण करता है। इसकी कमी से नींबू में 'पश्चमारी' (Die Back) रोग हो जाता है।

नोट : (1) उपर्युक्त तत्वों को 2 भागों में विभक्त किया गया है—

- (i) वृहत्, पोषक (Macro Nutrients) तथा
- (ii) सूक्ष्म पोषक (Micro Nutrients) तत्व।

वृहत् पादप पोषक तत्वों की संख्या 9 तथा सूक्ष्म पादप पोषक तत्वों की संख्या 7 है और इस प्रकार कुल पादप पोषक तत्वों की संख्या 16 है।

- (2) नाइट्रोजन, फॉस्फोरस एवं पोटैशियम को सम्मिलित रूप से क्रांतिक तत्व (Critical Element) कहते हैं। इन्हीं को प्राथमिक पोषक तत्व भी कहते हैं।
- (3) 'मालीब्डेनम' एक ऐसा तत्व है जो पौधों में नाइट्रोजन के यौगिकीकरण में सहायता करता है।

जन्तु विज्ञान से सम्बन्धित प्रमुख वैज्ञानिक

- 1. हिप्पोक्रेटस (460 ई. पू. 375 ई. पू.)— ने ग्रीक चिकित्सा ग्रंथ लिखा था जो कि प्रथम वैज्ञानिक चिकित्साशास्त्रीय रचना थी। ये चिकित्साशास्त्र के जनक के नाम से जाने जाते हैं।
- 2. अरस्तू (Aristotle) (384–322 ई. पू.) रचना Historia Animalium इन्हें जन्तु शास्त्र का पिता (Father of Zoology) कहा जाता है। इन्होंने जीवा वर्गीकरण तथा भ्रूण विज्ञान की नींव डाली।
- 3. प्लीनी (Pliny) (23—79 ई.)— रचना— प्रकृति विज्ञान (Natural History)।
- 4. एड्रियास विसैलियस (1514—64)— रचना— On the Structure of the Human Body |
- 5. विलियम हार्वे (1578 1657)— रूधिर परिसंचरण (Blood Ciculation) की प्रथम बार खोज की। यह शरीर कार्यिकी (Physiology) की प्रथम खोज कही जाती है।
- वान हेल्माट— इनके अनुसार जीव—जन्तुओं का उद्भव प्रकृति में स्वतः होता है।
- 7. फ्रान्सिस्को रेडी— इन्होंने जीव से जीव की उत्पत्ति (Life comes from Life) सिद्धान्त प्रतिपादित किया।
- 8. राबर्ट हक ने 1665 में कोशिका की सर्वप्रथम खोज की।
- 9. **डॉ**. **हरगोविन्द खुराना** ने कृत्रिम जीन का सर्वप्रथम आविष्कार किया।
- 10. एन्टोनी वाल लुईवेनहॉक (Antony Von Leeuwenhock) इन्होंने ही जीवाणुओं की सर्वप्रथम खोज की। इन्होंने ही मानव में सर्वप्रथम शुक्राणुओं

- की खोज की एवं इसका नाम '**एनी मैल कुल्स**' दिया।
- 11. 'कैरोलस लिनियस'— इनकी प्रसिद्ध पुस्तक 'Systema Nature' है। 'आधुनिक वर्गिकी के पिता' (Father of Modern Texonomy) कहे जाते हैं। ये ही 'द्वि—नाम पद्धति' के जनक हैं।
- 12. 'इरेस्मस डार्विन' (Erasmus Darwin)- इन्होंने जीवों की रचना पर वातावरण के प्रभाव के सिद्धान्त पर बल दिया।
- 13. जीन वैपटिस्ट लैमार्क— रचना— फिलोस्फी जूलोगीक (Philosophic Zoologique) इन्होंने अंगों के उपयोग, अनुपयोग तथा वातावरण के प्रभाव का जीव विकास में महत्व बतलाया।
- 14. वान बेयर— Carl Ernst Van Baer– आधुनिक भ्रौणिकी के पिता (Father of Modern Embryology) कहे जाते हैं।
- 15. जो हक्सले (J. Huxley) ने प्रोटोप्लाज्मा को 'जीवन का भौतिक आधार' (Physical basis of Life) बतलाया।
- 16. चार्ल्स डार्विन— रचना— प्राकृतिक वरण द्वारा नयी जातियों की उत्पत्ति (Origin of New Species by Natural Selection)। इन्होंने प्राकृतिक वरण (Natural Selection) सिद्धान्त प्रतिपादित किया।
- 17. ग्रेगर जॉन मेण्डल (Gregor Johann Mendel)— अनुवांशिकी के पिता (Father of Genetic) कहे जाते हैं। इन्होंने सर्वप्रथम मटर (Pisum Sativum) के पौधो पर प्रयोग किया था।

पादप बीमारियाँ (Plant Diseases)

पादपों / पौधों में रोग जीवाणुओं, विषाणुओं, कवकों, शैवालों, माइकोपलाज्म आदि द्वारा होते / फैलते हैं। प्रमुख पादप बीमारियाँ निम्न हैं—

पादप (Plant)	रोग (Disease)	कारक (Agents)
गेहूँ (Wheat)	लूजस्मट (स्लथ कंड)	कवक (Fungi)
	कर्नाल बंट	कवक
	ब्लैक रस्ट (कंडुआ)	पक्सीनिया कवक
	ब्राअन रस्ट	पक्सीनिया कवक
	एलो रस्ट	पक्सीनिया कवक
	टुण्डू	जीवाणु
धान (Paddy)	बन्ट (Bunt)	कवक
	फूट रूट	कवक
	पैडी ब्लाइट (बंगाल दुर्भिक्ष 1943, इसी रोग	जीवाणु (जन्थोमोनास ओरिजी)
	का परिणाम था जिसमें करीब 20 लाख लोग	
	कालकवलित हुए थे)	
बाजरा (Millet)	स्मट	कवक
जौ (Barley)	लूट स्मट तथा कवर्ड स्मट	कवक
आलू (Potato)	पछला झुलसा (इससे 1845 में दुर्भिक्ष फैला थ	Π,
	10 लाख लोग मरे थे)	
	अगला झुलसा	कवक
	रिंगराट	जीवाणु - क्रियाम
T-T (\$	ब्राउन राट रेड राट	जीवाणु
गन्ना (Sugar cane)	५७ शट फूट राट	कवक कवक
पपीता (Papaya)	पूट राट लीफ कर्ल	कपक जीवाण्
मूंगफली (Groundnut)	टिक्का रोग	कवक
अरहर तथा मटर	विल्ट (Wilt)	कवक
काफी (Coffee)	काफी रस्ट	कवक
तम्बाकू (Tobacco)	मोजैक (Mosaic)	TMV विषाण्
बैगन (Brinjal)	लिटिल लीफ	माइको प्लाज्म
पपीता (Papaya)	बन्च	माइको प्लाज्म

पारिस्थितिकी (Ecology)

पारिस्थितिकी का जनक **हेकल** को माना जाता है। किसी भी जीव या जीव समूह का उनके पर्यावरण के साथ सम्बन्ध स्थापित करने का अध्ययन पारिस्थितिकी कहलाता है। पारिस्थितिकी के दो प्रकार होते हैं। जिन्हें क्रमशः स्वपारिस्थितिकी और समुदाय पारिस्थितकी कहा जाता है।

स्वपारिस्थितिकी (Autecology) : जब किसी एक जीव या एक जाति का उनके पर्यावरण के साथ सम्बन्ध स्थापित करने का अध्ययन किया जाता है उसे स्वपारिस्थितिकी कहा जाता है।

समुदाय पारिस्थितिकी (Synecology) : इसके अन्तर्गत जीव समूह का उनके पर्यावरण के साथ सम्बन्ध स्थापित करने का अध्ययन समुदाय पारिस्थितिकी कहलाता है।

पारिस्थितिकी तन्त्र (Ecosystem)

'पारिस्थितिकी तन्त्र' शब्द को सर्वप्रथम 1935 में ए. जी. टान्सले (A.G. Tonsley) ने प्रतिपादित किया। 'समुदाय व वातावरण के पारस्परिक संरचनात्मक तथा कार्यात्मक सम्बन्धों को पारिस्थितिकी तन्त्र (Ecosystem) कहते हैं।' पारिस्थितिकी तन्त्र के 2 घटक होते हैं— जीवी घटक (Biotic Component) तथा अजीवी या भौतिक (Physical or Abiotic Component) घटक।

खाद्य शृंखला (Food Chain): विभिन्न प्रकार के जीवों का वह क्रम, जिसमें एक प्रकार के जीव दूसरे प्रकार के जीवों का भक्षण करते हैं तथा स्वतः दूसरे प्रकार के जीवों द्वारा खाये जाते हैं, खाद्य शृंखला कहलाती है। जैसे— 'घास पारिस्थितिकी' में घास (Grass) को टिड्डियाँ खाती हैं, टिड्डियों को मेढ़क, मेढ़क को सर्प, सर्प को चील या गिद्ध खाते हैं। इसी तरह 'वन पारिस्थितिकी' में— पादपों को हिरण खरगोश, इन्हें, भेड़िया, भेड़िया को शेर खाते हैं। इस पूरी खाद्य शृंखला में प्रत्येक सोपान पर 10% ऊर्जा व्यय होती है।

दस प्रतिशत का नियम : इस नियम को वैज्ञानिक लिंडेमान ने दिया। इस नियम के अनुसार किसी भी आहार शृंखला में ऊर्जा का वितरण दस प्रतिशत नियम के आधार पर होता है।

दस प्रतिशत नियम के आधार पर सर्वाधिक लाभ उत्पादक और प्राथमिक उपभोक्ता को जबकि सबसे कम लाभ उच्च उपभोक्ता या अपघटक को होता है।

खाद्य जाल (Food Web): प्रकृति में खाद्य शृंखलाएं अकेली तथा असम्बद्ध नहीं होतीं, अपितु ये परस्पर जुड़ी हुई होती हैं। पारिस्थितिकी तन्त्र में ये खाद्य शृंखलाएं आपस में जुड़कर जाल (Web or Net-Work) नुमा रचना बनाती हैं, जिसे खाद्य जाल' (Food Web) कहते हैं। यही खाद्य जाल पारिस्थितिकी तन्त्र को स्थायित्व प्रदान करता है। अर्थात् खाद्य जाल जितना विशाल होगा, पारिस्थितिकी तन्त्र का स्थायित्व उतना ही अधिक होगा।

• किस शैवाल से '**आयोडीन लवण**' प्राप्त होता है ?

–केल्प शैवाल

• किस शैवाल को समुद्री सलाद के रूप में जाना जाता है ?

–अल्वा (Ulva) शैवाल।

- अन्तरिक्ष यात्री किस शैवाल का प्रयोग भोजन एवं ऑक्सीजन के लिए करते हैं ?-क्लोरेला (Chlorella)।
- किस शैवाल का प्रयोग 'डायनामाइट' बनाने में होता है ?

−डाएटम (Diatom) |

• किस कवक को 'साँप की छतरी' कहते हैं ?

–मशरूम।

• 'माइकोलॉजी' (Mycology) का सम्बन्ध किससे है ?

-कवक के अध्ययन से।

वे कवक, जो सड़े-गले एवं मृत कार्बनिक पदार्थों से भोजन प्राप्त करते हैं, कहलाते हैं ?

-मृतजीवी (Saprophyte)।

- जीवाणुओं की सक्रियता से मृत जन्तुओं की हिड्डियों के फास्फोरस के जल उठने से उठे प्रकाश को क्या कहते हैं ?
- 'साबूदाना' की प्राप्ति किस वनस्पति से होती है ?

-साइकस (Cycas)।

• दमा की औषधि— इफंड्रीन किस पौधे से प्राप्त होती है ?

• 'सल्फर वर्षा' (Sulpher Shower) कहाँ होती है ?

–पाइन के जंगलों में।

सर्वाधिक जंगल किस वर्ग की वनस्पतियों के हैं?

–जिम्मोस्पर्म (Gymnosperm)।

'फर्न' किस वर्ग का पौधा है ?

–टेरिडोफाइटा।

• 'अमोनिया' को 'नाइट्राइट' में बदलने का काम कौन सा जीवाणु करता है ?

–नाइट्रोसोमोनास।

• सबसे छोटा पुष्पी पौधा कौन–सा है ?

-वुल्फिया (Woulfia)।

वस्तुनिष्ठ प्रश्न : उत्तर सहित

- मस्तिष्क संदेशों को किस रूप में ग्रहण करता है एवं संदेशों को भेजता है ?
 - (a) विद्युत तरंग के रूप में
 - (b) यान्त्रिक रूप में
 - (c) चुम्बकीय रूप में
 - (d) रासायनिक रूप में
- 2. अन्तःस्रावी ग्रंथियाँ हारमोंस का स्नावण कहाँ पर करती हैं?
 - (a) कोशिकाओं में
- (b) आहारनाल में
- (c) रुधिर में
- (d) मस्तिष्क में
- 3. मनुष्य में कार्बोहाइड्रेट का संचय शरीर के किस भाग में और किस रूप में होता है ?
 - (a) मांसपेशियों में वसा के रूप में
 - (b) यकृत में कार्बोहाइड्रेट के रूप में
 - (c) यकृत में ग्लाइकोजन के रूप में
 - (d) प्लीहा में रक्त के रूप में
- शरीर के किस भाग की अधिक सक्रियता के कारण मनुष्य अन्य सभी जन्तुओं से उच्च हैं ?
 - (a) सेरेबेलम (Cerebellum)
 - (b) मेड्ला (Medulla)
 - (c) तंत्रिका (Nerve)
 - (d) सेरेब्रम (Cerebrum)
- निम्नलिखित में कौन—सा कथन एन्जाइम के विषय में सत्य है ?
 - (a) सभी एन्जाइम प्रोटीन होते हैं
 - (b) कुछ प्रोटीन एन्जाइम होते हैं

- (c) कुछ एन्जाइम प्रोटीन होते हैं
- (d) सभी प्रोटीन एन्जाइम होते हैं
- किस ग्रंथि को आपात कालीन ग्रंथि के नाम से जाना जाता है ?
 - (a) पिट्यूटरी ग्रंथि
- (b) थाइमस ग्रंथि
- (c) एड्रीनल ग्रंथि
- (d) थायराइड ग्रंथि
- जीवाणुओं में आनुवंशिक पदार्थ के स्थानान्तरण को कहते हैं ?
 - (a) ट्रान्सलेशन (translation)
 - (b) ट्रान्सक्रिप्सन (Transcription)
 - (c) रेप्लिकेशन (Replication)
 - (d) ट्रान्सडक्सन (Transduction)
- एनीमिया रोग के समय शरीर में क्या बनता है ?
 - (a) ऑक्सीजन के बगैर हीमोग्लोबिन
 - (b) ऑक्सी हीमोग्लोबिन
 - (c) कार्बामिनो हीमोग्लोबिन
 - (d) मेथ हीमोग्लोबिन
- निम्नलिखित में कौन–कौन से उत्सर्जी पदार्थ प्रोटीन के संश्लेषण से बनते हैं?
 - (i) यूरिया
- (ii) अमोनिया
- (iii) अमीनो अम्ल
- (iv) यूरिक अम्ल
- उत्तर निम्न कूट की सहायता से दें-
- (a) (i), (ii), (iv)
- (b) (i), (ii), (iii)
- (c) (ii), (iii), (iv)
- (d) (i), (iii), (iv)

- 10. एड्स वाइरस के गुणसूत्र में होते हैं ?
 - (a) एकल तंतुक आर. एन. ए.
 - (b) एकल तंतुक डी.एन.ए.
 - (c) द्विगुणित डी.एन.ए.
 - (d) द्विगुणित आर.एन.ए.
- 11. जल प्रदूषण का मुख्य कारक है ?
 - (a) औद्योगिक अपशिष्ट
 - (b) डिटरजेंट
 - (c) वाहित मल मूत्र (सीवेज)
 - (d) अमोनिया
- 12. कौन सा अंग रोगाणुओं को नष्ट करता है ?
 - (a) टान्सिल
- (b) यकृत
- (c) वृक्क
- (d) लिसका ऊतक
- 13. शरीर में यूरिया का संश्लेषण किस भाग में होता है ?
 - (a) वृक्क
- (b) यकृत
- (c) मूत्राशय
- (d) रक्त
- 14. पहाड़ों पर रहने वाले मनुष्यों में लाल रक्त कण अधिक पाये जाते हैं क्योंकि—
 - (a) वायु दबाव अधिक है
 - (b) वायु दबाव कम है
 - (c) सूर्य प्रकाश अधिक है
 - (d) ऑक्सीजन की अधिकता है
- 15. स्तनधारियों का सबसे महत्वपूर्ण लक्षण है ?
 - (a) चार कोष्ठीय हृदय
 - (b) डायफ्राम
 - (c) दंत विन्यास
 - (d) विकसित मष्तिष्क
- 16. मधुमिक्खयाँ अपने छत्ते तक कैसे पहुँच पाती हैं ?
 - (a) गन्ध से
- (b) ध्वनि से
- (c) नाच से
- (d) उपर्युक्त सभी से
- 17. रक्त आधान में रक्त न केवल इसके वर्ग के अनुकूल होना चाहिए, बल्कि निम्न के भी अनुकूल होना चाहिए—
 - (a) दाता और प्राप्त कर्ता की प्रजाति
 - (b) लाल रक्त कणिकाओं की संख्या
 - (c) RH कारक
 - (d) श्वेत रक्त कोशिकाओं की संख्या
- 18. गन्ने के रस में खमीर मिलाकर सिरका बनाया जाता है। इस विधि को क्या कहते हैं ?
 - (a) सेटीमेन्टेशन
- (b) आसवन
- (c) वाष्पीकरण
- (d) फरमेन्टेशन
- 19. चमगादड़ के पंख निम्न में से किसके बने होते हैं ?
 - (a) पर
- (b) कार्टिलेज
- (c) हड्डी
- (d) झिल्ली
- 20. किस हारमोन के कारण बीज सुसुप्तावस्था में पड़े रहते हैं?
 - (a) साइटोकाइनिन
 - (b) जिबरलिंक अम्ल
 - (c) इथाइलीन
 - (d) एबसिसिक अम्ल

- 21. संचित अनाजों में पेस्ट के विकास के लिए उपयुक्त कारक क्या है ?
 - (a) अनाज की नमी
 - (b) अनाज की गर्मी
 - (c) अनाज की नमी तथा गर्मी दोनों
 - (d) इनमें से कोई नहीं
- 22. पौधों में वृद्धि किस यन्त्र के द्वारा मापी जाती है ?
 - (a) मीटर
- (b) एक्जेनोमीटर
- (c) स्फीग्रोमैनोमीटर
- (d) पोटो मीटर
- 23. जंगल की ज्वाला (Flame of the forest) किस पौधे को कहा जाता है ?
 - (a) मदार
- (b) टेसू
- (c) गूलर
- (d) पीपल
- 24. कवक, जल एवं भोजन किस अंग से लेते हैं ?
 - (a) चूषकांग (Haustorium) (b) जड़
 - (c) मूलरोम
- (d) पत्ती
- 25. बिना मिट्टी के पोधों को उगाने की विधि को क्या कहते हैं?
 - (a) हाइड्रोपोनिक्स
- (b) एकाबियाना
- (c) एपीकल्चर
- (d) फ्लोरीकल्चर
- 26. वृक्षों की आयु का अध्ययन करने वाली विज्ञान की शाखा को क्या कहते हैं ?
 - (a) ड्रेन्ड्रोक्रोनोलाजी
 - (b) डेन्ड्रोलाजी
 - (c) इक्टियोग्रेफी
 - (d) उपर्युक्त में से कोई नहीं
- 27. कीट भक्षी पौधे कहाँ उगते हैं ?
 - (i) दलदली स्थानों पर
 - (ii) नाइट्रोजन की कमी वाले स्थानों पर
 - (iii) ऊसर भूमि पर
 - (iv) जंगलों में

उत्तर कूट की सहायता से दें

- (a) (i) सही है
- (b) (i) तथा (iii) सही हैं
- (c) (i) तथा (ii) सही है
- (d) (i), (ii), (iii) तथा (iv) सही है।
- 28. जैव आवर्धन (Bio Magnification) से तात्पर्य है-
 - (a) उत्तरोत्तर पोषण स्तरों के जीवों में पीड़क नाशियों की मात्रा का बढ़ना
 - (b) कैन्सर कोशिकाओं का तेजी से बढना
 - (c) सूक्ष्मदर्शी द्वारा शरीर के सूक्ष्म भागों को देखना
 - (d) विशिष्ट क्षेत्र में एक जातियों के सदस्यों का बढना

ANSWER

1. (d)	2. (c)	3. (c)	4. (d)	5. (a)
6. (c)	7. (d)	8. (a)	9. (d)	10. (a)
11. (a)	12. (a)	13. (b)	14. (b)	15. (b)
16. (c)	17. (c)	18. (d)	19. (b)	20. (d)
21. (c)	22. (b)	23. (b)	24. (a)	25. (a)
26. (a)	27. (c)	28. (a)		

सामान्य विज्ञान

भाग-3: भौतिकीय विज्ञान (Physical Science)

'सामान्य विज्ञान' में हमने 'जीव विज्ञान' (Biology), (i) जन्तु विज्ञान (Zoology) एवं (ii) वनस्पति विज्ञान (Botany) पर विस्तृत विवरण प्रस्तुत किया है। इस भाग में हम— 'भौतिकीय विज्ञान' (Physical Science) पर आधारित विवरण प्रस्तुत कर रहे हैं। 'भौतिकीय विज्ञान' में प्रकृति के 'निर्जीव पदार्थों' (Non-Living Things) का अध्ययन किया जाता है। निर्जीव पदार्थों का अध्ययन 2 भागों (i) भौतिक विज्ञान (Physics) एवं (ii) रसायन विज्ञान (Chemistry) में विभक्त कर किया जाता है। अस्तु, हम यहाँ 'सामान्य विज्ञान' के इस द्वितीय भाग के तहत 'भौतिक विज्ञान' एवं 'रसायन विज्ञान' पर परीक्षा की आवश्यकताओं के अनुरूप सामग्री प्रस्तुत कर रहें हैं और अन्त में विभिन्न परीक्षाओं में पूँछे गये प्रश्नों को उत्तर सहित प्रस्तुत कर रहे हैं, तािक प्रश्नों की प्रकृति तथा उनके प्रति Approch (दृष्टिकोण) विकसित करने में मदद मिल सके।

भौतिक विज्ञान (Physics)

भौतिक विज्ञान, विज्ञान की वह शाखा है, जिसमें ऊर्जा के विभिन्न स्वरूपों तथा द्रव्य से उसकी विभिन्न क्रियाओं का अध्ययन किया जाता है।

भौतिक विज्ञान के विशद अध्ययन हेतु इसे विभिन्न शाखाओं में बाँटा गया है। कतिपय मुख्य शाखाएँ— (1) यांत्रिकी, (2) ऊष्मा, (3) ध्वनि, (4) चुम्बकत्व, (5) प्रकाश, (6) विद्युत, (7) परमाणु भौतिकी, आदि

मात्रक (Units): किसी भोतिक राशि की अभिव्यक्ति हेतु उसी राशि के मात्रक की आवश्यकता होती है। प्रत्येक राशि की माप हेतु उसी राशि का कोई मानक (Standard) स्वीकार कर लिया जाता है, इस मानक को मात्रक कहते हैं।

मूल मात्रक वे होते हैं, जो दूसरे मात्रकों से स्वतन्त्र होते हैं। S.I. पद्धति के तहत निम्न छः मूल मात्रक प्रस्तावित हैं–

राशि	मात्रक	संकेत बिन्दु	
द्रव्यमान	किलोग्राम	Kg	
समय	सेकेण्ड	S	
ताप	कैल्विन	K	
ज्योति तीव्रता	कैण्डला	Cd	
विद्युत धारा	ऐम्पियर	A	
लम्बाई	मीटर	m	

लम्बाई के शुद्ध अन्य मात्रक इस प्रकार हैं-

- रा ।।२ । पुच न ।	
मात्रक	लम्बाई (मीटर में)
1 डेकामीटर	10 मीटर
1 हेक्टोमीटर	10 ² मीटर
1 किलोमीटर	10 ³ मीटर
1 मेगा मीटर	10 ⁶ मीटर
1 गीगा मीटर	10 ⁹ मीटर
1 टेरा मीटर	10 ¹² मीटर
1 डेसी मीटर	10 ⁻¹ ਸੀਟਾ
1 सेंटीमीटर	10 ^{−2} ਸੀਟ₹
1 मिली मीटर	10 ^{−3} ਸੀਟ₹
1 माइक्रोन	10 ^{−6} ਸੀਟ₹
1 नैनोमीटर	10 ^{−9} ਸੀਟ₹
१ एंग्स्ट्राम	10 ⁻¹⁰ मीटर
1 पिको मीटर	10 ⁻¹² मीटर
1 फर्मी मीटर	10 ⁻¹⁵ मीटर

अत्यधिक लम्बी दूरी के लिए निम्न मात्रक का प्रयोग किया जाता है—

- (i) एक प्रकाश वर्ष दूरी = प्रकाश द्वारा निर्वात में एक वर्ष में चली गई दूरी = $(9.46 \times 10^{15} \, \text{Hlz})$
- (ii) एक पारसेक दूरी = 3.26 प्रकाश वर्ष या 3×10^{16} मीटर दूरी
- (iii) एक खगोलीय दूरी = पृथ्वी और सूर्य के बीच की औसत दूरी या 1.496 × 10¹¹ मीटर

दूरी नापने के अन्य इकाई-

- (i) **फैदम** समुद्र की गहराई नापने की इकाई।
- (ii) अल्टीमीटर— वायुयान की ऊँचाई मापने का यन्त्र।
- (iii) **नॉट** समुद्री जहाज की गति मापने का मात्रक 1 नॉट = 185.2 मीटर/सेकेण्ड
- (iv) **नॉटिकल मील** समुद्री दूरी के नापने का मात्रक एक नॉटिकल मील = 1852 मीटर।

राशियाँ (Quantities)

अदिश राशि (Scaler Quantities): वे भौतिक राशियाँ जिन्हें पूर्ण रूप से व्यक्त करने के लिए केवल परिमाण की आवश्यकता होती है, दिशा की नहीं, अदिश राशियाँ कहलाती हैं। जैसे— समय, चाल, द्रव्यमान, आयतन, ऊर्जा, कार्य, कोण, घनत्व, दाब, ताप, आवृत्ति आदि।

सदिश राशि (Vector Quantities): कतिपय भौतिक राशियों को प्रदर्शित करने के लिए परिणाम के साथ—साथ दिशा की भी आवश्यकता होती है। अर्थात वे भौतिक राशियाँ जिन्हें पूर्ण रूप से व्यक्त करने के लिए परिणाम एवं दिशा दोनों की आवश्यकता होती है, सदिश राशियाँ कहलाती हैं।

जैसे— संवेग, आवेग, बल, त्वरण, वेग, भार, वैद्युत क्षेत्र आदि।

कार्य (Work)

जब किसी वसतु पर कोई बल लगाकर उसकी स्थिति में परिवर्तन किया जाता है तो कहा जाता है कि उस वस्तु पर कार्य किया गया। यदि बल लगाये जाने से कोई वस्तु अपने स्थान से नहीं हटती तो उस अवस्था में कोई कार्य नहीं होता। जैसे— किसी दीवार को धक्का दिया जाना।

'किये गये कार्य की माप, वस्तु पर आरोपित बल तथा बल की दिशा में वस्तु के विस्थापन के गुणनफल के बराबर होती है।" कार्य = बल x बल की दिशा में वस्तु का विस्थापन। MKS पद्धित में कार्य का मात्रक जूल (Jule) है। यदि किसी कारक द्वारा किसी भी वस्तु पर एक न्यूटन का बल लगाने पर वस्तु का बल की दिशा में विस्थापन एक मीटर हो तो ऐसी स्थिति में कारक द्वारा किया गया कार्य एक जूल अथवा एक न्यूटन मीटर कहलाता है।

1 जूल = 1 न्यूटन × 1 मीटर

सामर्थ्य का मात्रक - जूल प्रति सेकेण्ड या वाट (Watt) है।

1 वाट = 1 जूल प्रति सेकेण्ड 1 किलोवाट = 1000 वाट = 10³ वाट

1 मेगावाट = 10⁶ वाट 1 अश्व शक्ति = 746 वाट

गुरुत्व (Gravitation)

पृथ्वी सभी वस्तु को अपने केन्द्र की ओर खींचने (आकर्षित करने) की प्रवृत्ति रखती है। इस आकर्षण बल को गुरुत्वीय बल (Gravitational Force) कहते हैं। किसी वसतु पर लगने वाला गुरुत्वीय बल ही उसका भार कहलाता है। पृथ्वी के सतह पर कुरुत्वीय बल का मान ध्रुवों पर सर्वाधिक तथा भूमध्य रेखा पर सबसे कम होता है, इसलिए व्यक्ति का भार भूमध्य रेखा की अपेक्षा ध्रुवों पर अधिक होता है, जबिक पृथ्वी तल से ऊपर या नीचे जाने पर गुरुत्वीय बल का मान कम होता है। पृथ्वी के केन्द्र पर गुरुत्वीय बल का मान कम होता है। पृथ्वी के केन्द्र पर गुरुत्वीय बल का मान शून्य होता है। अतः किसी वस्तु का भार पृथ्वी के केन्द्र पर शून्य, परन्तु द्रव्यमान वही रहेगा। चन्द्रमा (Moon) का भी एक आकर्षण बल (गुरुत्वीय बल) होता है। परन्तु वह पृथ्वी की अपेक्षा 1/6 भाग होता है अतः चन्द्रमा पर यात्री अपने हो हल्का महसूस करेगा। यदि पृथ्वी पर कोई एक मीटर उठल सकता है तो चन्द्रमा पर 6 मीटर उठल सकेगा। जबिक कृत्रिम उपग्रह पर भारहीनता की स्थिति पायी जाती है।

गुरुत्व केन्द्र (Centre of Gravity)— किसी वस्तु का समस्त भार जिस आधार बिन्दु पर होता है, उसे गुरुत्व केन्द्र कहते हैं। किसी वसतु को संतुलन में रखने के लिए आवश्यक है कि वस्तु का भार (गुरुट केन्द्र), उस वस्तु के आधार के क्षेत्रफल के ठीक नीचे हो। यदि गुरुत्व केन्द्र इससे बाहर जाता है तो वसतु असंतुलित होकर गिर पड़ेगी। पहाड़ पर चढ़ते समय मनुष्य आगे की ओर झुक कर गुरुत्व केन्द्र को अपने आधार क्षेत्रफल के अन्दर रखने का प्रयास करता है, ताकि गिरे नहीं।

पलायन वेग (Escape Velocity)– वह न्यूनतम वेग, जिससे किसी पिण्ड को पृथ्वी तल से ऊपर फेंके जाने पर इसके गुरूत्वीय क्षेत्र से बाहर अन्तरिक्ष में चला जाये और वापस पृथ्वी पर न आये, उसे पलायन वेग कहते हैं। पृथ्वी के तल पर पलायन वेग का मान 11.2 किलोमीटर/सेकेण्ड है, पलायन वेग जबकि चन्द्रमा पर लगभग किलोमीटर / सेकेण्ड है। चन्द्रमा पर वायुमण्डल न पाये जाने के कारण चन्द्रमा पर गैस के अणुओं का वेग (वर्ग माध्य, मूल वेग) पलायन वेग से अधिक होता है। जबकि बृहस्पति, शनि आदि पर गैसों के अणुओं का वेग, पलायन वेग से कम होने के कारण यहाँ वायुमण्डल पाया जाता है।

कुछ महत्वपूर्ण तथ्य :

- ब्लैक होल मृत तारे की अन्तिम पर्णित (Final Stage) होती है। जिसमें तारे का घनत्व अनंत हो जाता है और प्रकाश परावर्तित नहीं हो पाता है।
- वही तारा ब्लैक होल में परिवर्तित होता है जिसका द्रव्यमान सूर्य के द्रव्यमान का 1.4 गुना होता है।
- कृत्रिम उपग्रह (Artificial Satellite) को पलायन वेग के कम मान से प्रक्षेपित किया जाता है जबकि दूसरे ग्रह पर

- किसी पिण्ड को भेजने के लिए प्लायन वेग (11.2 km/sec) के मान से प्रक्षेपित किया जाता है।
- कृत्रिम उपग्रह दो प्रकार के होते हैं— (i) ध्रुवीय उपग्रह (Polar Satellite), (ii) भूस्थिर उपग्रह (Geostationary Satellite)।

धुवीय उपग्रह (Polar Sattelite) : ध्रुवों से लगभग 900 Km की ऊँचाई पर स्थित होते हैं। **उपयोग**— जो मौसम की जानकारी में योगदान करते हैं।

भूस्थिर उपग्रह (Geostationary Satellite) : भूमध्य रेखा से 36000 Km की ऊँचाई पर स्थित होने के साथ-साथ पृथ्वी से सदैव समान दूरी पर बने रहते हैं। उपयोग-इनका योगदान दूरसंचार के क्षेत्र में होता है।

- भारत में ध्रुवीय उपग्रह प्रक्षेपण यान (P.S.L.V. Polar Sattelite Launch Vehicle) में ठोस ईंधन के रूप में हाइड्राक्सिल ट्रमिनेटेड पॉली ब्यूटा डाई–इन तथा तरल ईंधन के रूप में मेथिल हाइड्राजीन का उपयोग होता है।
- इसमें तरल ईंधन वाला विकास इंजन प्रयुक्त होता है।
- भूरिथर उपग्रह प्रक्षेपण यान में (GSLV–Geostationary Satellite Launch Vehicle) में तरल ईंधन के रूप में द्रव हाइड्रोजन (–250°C) तथा द्रव ऑक्सिन (–183°C) प्रयुक्त किया जाता है।
- GSLV में क्रायोजेनिक इंजन (निम्न तापीय इंजन) प्रयुक्त होता है।
- भूस्थिर उपग्रह का परिक्रमण काल 24 घण्टे का होता है।
- उपग्रह कक्षा में स्थापित होने के बाद इसे पृथ्वी का चक्कर लगाने के लिए आवश्यक अभिकेन्द्रीय बल पृथ्वी के गुरुत्वाकर्षण से मिलता है जबिक इस लगे संयन्त्रों को ऊर्जा सूर्य के प्रकाश से सौर सेलों द्वारा मिलती है।
- भारत में वर्ष 1969 में ISRO (indian Space Research Organisation) इसरो का गठन किया गया।
- इसरो के विभिन्न केन्द्रों के अन्तर्गत—
 - (i) विक्रम साराभाई अन्तरिक्ष केन्द्र : तिरुअनंतपुरम में स्थापित है जिसे उपग्रह प्रक्षेपणयान का विकास कहा जाता है।
 - (ii) श्रीहरिकोटा (आन्ध्रप्रदेश) / सतीश धवन केन्द्र : ये उपग्रह प्रक्षेपण का केन्द्र है।
 - (iii) इसरो उपग्रह केन्द्र बंगलौर : ये केन्द्र भारतीय उपग्रहों की डिजाइन व डिजाइन के अनुरूप उपग्रह का निर्माण करता है।
 - (iv) इसरो केन्द्र 'हासन' कर्नाटक : ये केन्द्र उपग्रह प्रक्षेपण के पश्चात इसकी समस्त गतिविधियों का नियन्त्रण करता है। दूसरा उपग्रह नियन्त्र केन्द्र भोपाल में स्थित है।
- वर्ष 1975 में प्रथम भारतीय उपग्रह आर्यभट्ट का प्रक्षेपण पूर्व सोवियत संघ से किया गया।
- भारत में 1972 में अन्तरिक्ष आयोग की स्थापना हुई।
 मिसाइल प्रौद्योगिकी: भारत में मिसाइल के विकास के लिए एक समन्वित मिसाइल कार्यक्रम प्रारम्भ किया गया। इसके लिए DRDO (Defence Research and Development Oranisation) के 3 प्रमुख केन्द्र स्थापित किये गये—
 - I. **नई दिल्ली केन्द्र** : ये केन्द्र मिसाइल की परियोजना
 - II. **हैदराबाद केन्द्र** : ये परियोजना के अनुरूप मिसाइल का निर्माण करता है।
 - III. चाँदीपुर केन्द्र (उड़ीसा) : ये निर्मित मिसाइल का परिक्षण करता है।

अब तक इस कार्यक्रम के अन्तर्गत निम्न मिसाइले बनाई गयी—
 I. पृथ्वी और अग्नि: सतह से सतह में मार करने वाली मिसाइल।
 अग्नि मिसाइल की मारक क्षमता—

अग्नि—I एक मात्र ठोस ईंधन आधारित मिसाइल है।

अग्नि—I : 1500 — 2000 किमी. अग्नि—II : 250 — 3000 किमी.

अग्नि—III : 3500 — 4000 किमी. **पृथ्वी मिसाइल की मारक क्षमता**—

पृथ्वी—I : 150 — 250 किमी.

II. **आकाश और त्रिशूल** : सतह से वायु (Surface to Air) में मार करने वाली मिसाइल

आकाश मिसाइल की मारक क्षमता— 25 — 30 किमी. **त्रिशूल मिसाइल की मारक क्षमता**— 4 से 5 किमी.

III. नाग : एक टैंक रोधी मिसाइल है।

IV. **सूर्य एवं सागरिका** : अन्तरमहाद्वीपीय मिसाइल है।

V. P.J. 10 ब्रह्मोस मिसाइल

VI. **ब्रह्मोस मिसाइल**: एक सुपर सोनिक क्रूज मिसाइल है, जिसका मारक क्षमता 290 किमी. है। अपने वर्ग की यह मिसाइल दुनिया की सबसे तेज मिसाइल है।

भारत और रुस के समझौते से निर्मित है।

लिफ्ट के तल पर भार का अनुभव— किसी वस्तु का भार उसके द्रव्यमान तथा गुरूत्वीय त्वरण के कारण होता है, अर्थात् भार = द्रव्यमान × गुरूत्वीय त्वरण। यदि लिफ्ट पर खड़ा कोई व्यक्ति, लिफ्ट के स्थिर या समान गति से चलने पर सामान्य भार का अनुभव करेगा। यदि लिफ्ट समान वेग से ऊपर जा रही हो तो व्यक्ति को अपना भार कुछ बढ़ हुआ लगेगा। यदि लिफ्ट समान त्वरण से नीचे आ रही हो, तो व्यक्ति को अपना भार घटा हुआ प्रतीत होगा। यदि लिफ्ट स्वतन्त्र रूप से नीचे गिर रही हो तो व्यक्ति को भारहीनता का अनुभव होगा।

दाब (Pressure)

किसी सतह के एकॉक क्षेत्रफल पर लगने वाले बल को दाब कहते हैं। अतः

दाब = पृष्ठ के लम्बवत तल पृष्ठ का क्षेत्रफल

उक्त सूत्र से स्पष्ट है कि वस्तु का क्षेत्रफल जितना ही कम होगा वह सतह पर उतना ही अधिक दाब डालेगी। इसलिए लोहे की कील का नोक नुकीला बनाया जाता है ताकि वह आसानी से दीवाल में घंस सके। दलदल में फंसा व्यक्ति खड़े होने की अपेक्षा लेटने पर कम या नहीं धंसता/डूबता है।

वायुमण्डलीय दाब (Atmospheric Pressure)— पृथ्वी के चारों ओर वायुमण्डल (विभिन्न गैसों का मिरण) होता है जो हमारे ऊपर दाब डालती है। वायुमण्डलीय गैसों या वायु के इस दाब को वायुमण्डलीय दाब कहा जाता है। वायुमण्डलीय दाबवह दाब है जो समुद्र तल पर पारे के 76 सेमी. लम्बे स्तम्भ के दाब के बराबर होता है। समुद्र तल पर वायुमण्डलीय दाब 10⁵ न्यूटन/मीटर² होता है। इसी 10⁵ न्यूटन/मीटर² दाब एक बार (bar) दाब (बार दाब का मात्रक है)। पास्कल भी कहते हैं। वायुमण्डल का इतना अधिक दाब हमें महसूस नहीं होता क्योंकि हमारे शरीर में रक्त तथा अन्य कारक के दाब अन्दर से वायुमण्डलीय दाब को संतुलित करते हैं। समुद्र तल से ऊपर जाने पर वायु विरल होती जाती है और वायुमण्डलीय दाब घटता जाता है। इसलिए उच्च रक्त चाप वाले व्यक्ति को हवाई जहाज में नहीं बैठने की सलाह दी जाती है।

वायुमण्डलीय दाब या वायु के दाब को बैरोमीटर से मापा जाता है। जबिक किसी गैस का दाब मापने के लिए नैनोमीटर का प्रयोग किया जाता है। बैरोमीटर में पारे का स्तम्भ गिरना आंधी या वर्षा की सूचना देता है (क्योंकि जब आंधी या वर्षा आने वाली होती है तो वायुदाब घट जाता है।) जबिक बैरोमीटर में पारे के स्तम्भ का बढ़ना स्वच्द मौसम होने की सूचना देता है।

सभी द्रवों का क्वथनांक (Boiling point) दाब बढ़ाने पर बढ़ता है तथा दाब घटाने पर घटता है। साधारण दाब पर पानी 100°C पर खोलने लगता है जबिक पहाड़ों पर दाब कम होने के कारण कम ताप पर ही पानी खोलने लगता है। जबिक प्रेशर कुकर में अधिक दाब होने के कारण पानी अधिक ताप पर खोलता है, इसीलिए कुकर में किसी सामग्री को आसानी से पकाया जा सकता है। प्रेशर कुकर के अन्दर 15 पौण्ड का दाब तथा 120°C का ताप बनाया जाता है (पास्कल भी दाब का एक मात्रक है)।

ऊर्जा (Energy)

किसी वस्तु की कार्य करने की क्षमता उस वस्तु की ऊर्जा कहलाती है। जब कोई कारक कुछ कार्य करता है तो उसे अपनी कुछ ऊर्जा खर्च करनी पड़ती हैं जितना अधिक कार्य किया जायेगा, उतना ही अधिक ऊर्जा व्यय होगी। किसी कारक द्वारा किये गये कार्य की क्रिया को ऊर्जा का स्थानान्तरण कहते हैं।

ऊर्जा दो प्रकार की होती है।

(i) गतिज ऊर्जा (ii) स्थितिज ऊर्जा

(i) गतिज ऊर्जा (Kinetic Energy) : किसी वस्तु की गति के कारण कार्य करने की क्षमता को उसकी गतिज ऊर्जा कहते हैं। यदि m द्रव्यमान वाली किसी वसतु का वेग v है तो उसकी गतिज ऊर्जा होगी—

$$E = \frac{1}{2} \, \text{mv}^2$$

उक्त सूत्र से यह स्पष्ट है कि गतिज ऊर्जा का मान वस्तु के द्रव्यमान तथा वेग के वर्ग के अनुक्रमानुपाती होता है। यही कारण है कि बन्दूक की गोली यद्यपि कि बहुत कम द्रव्यमान की होती है, किन्तु वेग अधिक होने के कारण, विशेष चोट करती है।

(ii) स्थितिज ऊर्जा (Potential Energy)— किसी वस्तु में उसकी सिित अथवा अवस्था के कारण विद्यमान कार्य करने की क्षमता को उस वस्तु की स्थितिज ऊर्जा कहते हैं। वस्तुओं मं यह ऊर्जा विभिन्न रूपों में विद्यमान हो सकती है। जैसे— गुरूत्वीय स्थितिज ऊर्जा, वैद्युत स्थितिज ऊर्जा, रासायनिक ऊर्जा, चम्बकीय स्थितिज ऊर्जा।

प्रकाश, ध्वनि, ऊष्मा, विद्युत आदि ऊर्जा के दूसरे रूप हैं। इस ऊर्जा का एक दूसरे में परिवर्तन होता रहता है। ऊर्जा का परिवर्तन करने वाले कुछ यन्त्र इस प्रकार हैं—

	यन्त्र	ऊर्जा के स्वरूप में परिवर्तन
1.	विद्युत सेल	रासायनिक ऊर्जा से विद्युत ऊर्जा में
2.	विद्युत बल्ब	विद्युत ऊर्जा से ऊष्मा एवं प्रकाश
		ऊर्जा में
3.	डायनमो	यांत्रिक ऊर्जा से विद्युत ऊर्जा में
4.	टरबाइन	यांत्रिक ऊर्जा से विद्युत ऊर्जा में
5.	विद्युत मोटर	विद्युत ऊर्जा से यांत्रिक ऊर्जा में
6.	फोटो इलेक्ट्रिक सेल	प्रकाश ऊर्जा से विद्युत ऊर्जा में
7.	माइक्रोफोन	ध्वनि ऊर्जा से विद्युत ऊर्जा में
8.	लाउडस्पीकर	विद्युत ऊर्जा से ध्वनि ऊर्जा में
9.	वाद्य यन्त्र	यांत्रिक ऊर्जा से ध्वनि ऊर्जा में

द्रव्यमान ऊर्जा (Mass Energy)

सन् 1905 में आइन्सटाइन ने यह प्रतिपादित किया कि द्रव्यमान तथा ऊर्जा भी एक दूसरे से रूपान्तरित हो सकते हैं। आशय यह कि पदार्थ का द्रव्यमान भी ऊर्जा का ही एक स्वरूप हैं इसे द्रव्यमान ऊर्जा (Mass Energy) कहते हैं। उन्होंने यह स्पष्ट किया कि यदि किसी m द्रव्यमान की वस्तु को पूर्णतः ऊर्जा में परिवर्तित कर दिया जाये तो इससे mc^2 परिमाण की ऊर्जा उत्पन्न होगी। जबिक $c=3\times10^8$ मीटर/सेकेण्ड प्रकाश की गित है। इस सिद्धान्त के तहत m द्रव्यमान से कुल प्रापत होने वाली ऊर्जा का मान $E=mc^2$

यदि 1 ग्राम द्रव्यमान को ऊर्जा में पूर्णतः बदल दिया जाय तो इससे मिलने वाली ऊर्जा का मान

 $E = \frac{1}{100}$ किग्रा0 × (3 × 10⁸ मी / से.²) = 9 × 10¹³ जूल

इसे आइन्सटाइन का द्रव्यमान ऊर्जा सम्बन्ध कहते हैं।

सौर ऊर्जा (Solar Energy)

सूर्य द्वारा उत्सर्जित ऊर्जा को सौर ऊर्जा कहते हैं। इसे ऊर्जा का मूल स्रोत नामिकीय संलयन (Nuclear fusion) है। इस प्रक्रिया के तहत हाइड्रोजन के चार नामिक आपस में क्रिया करके हिलीयम का एक नामिक बनाते हैं। इस प्रकार की किक्रया को नामिकीय संलयन कहते हैं। हिलीयम बनने की इस प्रक्रिया में द्रव्यमान की कुछ क्षति हो जाती है एवं यह द्रव्यमान ऊर्जा में परिवर्तित हो जाता है। इस नामिकीय संलयन की प्रक्रिया से सूर्य द्वारा उत्सर्जित ऊर्जा का विवेचन भली भांति हो जाता है। सूर्य में लगभग 99% हाइड्रोजन होता है।

प्लवन का नियम (Law of Floatation)

जब कोई वस्तु आंशिक अथवा पूर्णतः किसी द्रव में डुबोई जाती है तो उसके भार में कमी आ जाती है। यह कमी वसतु पर द्रव्य के उत्क्षेप के कारण होती है। यह उत्पेक्ष ऊपर की ओर कार्य करता है। साथ ही वस्तु का भार नीचे की तरफ कार्य करता है। अतः जब कोई वस्तु किसी द्रव में डुबोई जाती है तो इस स्थिति में उस पर दो बल कार्य करते हैं—

(i) वस्तु का भार w_1 नीचे की ओर, (ii) द्रव की उछाल w_2 ऊपर की ओर। किसी वस्तु का द्रव में संतुलन इन दोनों बलों के आपेक्षिक परिमाण पर निर्भर करता है।

कोई वस्तु किसी द्रव में आंशिक अथवा पूर्ण रूप से डूबी हुई तब तैरती है जब उस वस्तु का भार वस्तु के डूबे हुए भाग द्वारा हटाये गये द्रव के भार के बराबर होता है। यही कारण है कि लोहे का जहाज पानी पर तैरता है किन्तु जहाज में लगे लोहे का एक पिण्ड बना दिया जाय तो वह डूब जायेगा।

भौतिक विज्ञान : कुछ परिभाषाएँ

विस्थापन (Displacement) : गतिशील वस्तुओं के मध्य जो न्यूनतम दूरी होती है, उसे विस्थापन कहा जाता है।

चाल (Speed): एक इकाई समय में वसतु द्वारा जो दूरी तय की जाती है, उसे उस वस्तु की चाल कहा जाता है। इसका मात्रक मीटर रेसेकेण्ड है। यह एक अदिश राशि है।

वेग (Velocity): किसी भी गतिशील वसतु के विस्थापन की दर को वेग कहा जाता है। यह सदिश राशि होती है। इसका कारण यह कि इसके स्थानान्तर की दिशा निश्चित होती है।

संवेग तथा संरक्षण का सिद्धान्त : एक वस्तु में जितना संवेग परिवर्तन होता है दूसरे में भी उतना ही संवेग विपरीत दिशा में आ जाता है, अर्थात दो या दो से अधिक वस्तुओं के निकाय में संवेग तब तक नहीं बदलेगा, जब तक उस पर बाह्य बल न लगाया जाये। इसे ही संवेग संरक्षण का सिद्धान्त कहते हैं। राकेट का ऊपर की ओर जाना संवेग संरक्षण के सिद्धान्त पर आधारित है।

त्वरण (Acceleration) : किसी वस्तु के वेग परिवर्तन की दर को उस वस्तु का त्वरण कहते हैं। इसे 'a' से प्रदर्शित किया जाता है। यह सदिश राशि है।

स्थानान्तरित गति (Translatory Motion) : यदि कोई वस्तु सीधी रेखा में गति कहती है, ऐसी गति को स्थानान्तरित गति कहते हैं।

सापेक्षिक वेग (Relative Velocity): किसी एक वस्तु की अपेक्षा दूसरी वसत् के वेग को सापेक्षिक वेग कहा जाता है।

भार (Weight) किसी वसतु पर पृथ्वी द्वारा लगाया गया आकर्षण बल उस वस्तु का भार कहलाता है। भार का माकत्र न्यूटन है।

सन्तुलित बल (Balanced Force) : जब किसी पिंड पर एक से अधिक बल कार्य करते हैं और उन सभी बलों का परिणामी बल शून्य हो तो वह पिण्ड से सन्तुलित अवस्था में होगा। इस दशा में पिण्ड पर लगने वाले सभी बल सन्तुलित बल कहलाते हैं।

अपकेन्द्रीय बल: वृत्तीय मार्गे पर चल रहे पिण्ड के केन्द्र की ओर से एक बल लगता है जिसे अपकेन्द्र (Centrifugal force) कहते हैं। उदाहरण— Washing मशीन द्वारा कपड़ा सुखाना तथा दूध से मक्खन निकालने की मशीन आदि अपकेन्द्रीय बल के सिद्धान्त पर कार्य करते हैं।

अभिकेन्द्री बल (Centripetal Force): किसी बल के परिणाम स्वरूप गतिशील वस्तु में वृत्ताकार पथ के केन्द्र की तरफ भागने की प्रवृत्ति रहती है, उसे अभिकेन्द्री बल कहा जाता है।

पृथ्वी का सूर्य के चारों ओर चक्कर लगाना तथा चौराहे पर मुंडन्नते समय सायकिल सवार का झुक जाना आदि अभिकेन्द्रीय बल के सिद्धान्त पर कार्य करते हैं।

आसंजक बल (Adhesive Force) : आकर्षण बल के कारण विभिन्न द्रव्य उससे चिपके रहते हैं। उसे आसंजक बल कहा जाता है।

प्रत्यास्थता (Elasticity): किसी भी वस्तु के पदार्थ का वह गुण जिसके कारण वह अपने ऊपर लगाये गये किसी भी प्रकार के रूपक बल (बाह्य बल) का विरोध करता है, उस गुण को प्रत्यास्थता कहते हैं।

पृष्ठ तनाव (Surface Tension): प्रत्येक द्रव का गुण होता है कि वह अपने स्वतन्त्र पृष्ठ को सिकोड़कर न्यूनतम करने की प्रवृत्ति रखता है। इसके कारण द्रव का बाह्य स्वतंत्र पृष्ठ तनी हुई झिल्ली की भांति व्यवहार करता है, द्रव के बाह्य पृष्ठ के इस तनाव को पृष्ठ तनाव कहा जाता है। पृष्ठ तनाव के कारण ही वर्षा तथा ओस की बूदें गोल दिखती हैं क्योंकि गोल पृष्ठ ही न्यूनतम क्षेत्रफल रखता है। साबुन का घोल पृष्ठ तनाव को कम कर देता है जिससे साबुन का घोल वहां पहुंच जाता है जहां तक कपड़े में साधारण जल नहीं पहुंच पाता है, इसलिए कपड़े धुल कर साफ हो जाते हैं। जल के गर्म करने पर भी पृष्ठ तनाव कम हो जाता है, इसलिए गर्म जल वाले साबुन के घोल में कपड़े और साफ हो जाते हैं। जल पर सुई का तैरना पृष्ठ तनाव के कारण है। समुद्र की लहरों को तेल डालकर शान्त कर देना पृष्ठ तनाव का उदाहरण है। पृष्ठ तनाव के कारण जल या द्रव के अणुओं के बीच ससंजक बल का होना है।

श्यानता (Viscosity): द्रव का वह गुण जिसके कारण वह अनेक परतों के मध्य आपेक्षित गति का प्रतिरोध करता है, श्यानता कहलाता है।

वायु की श्यानता द्रव की अपेक्षा कम होती है इसीलिए वायु में दौड़ना आसान तथा पानी में कठिन। बादल, वायु की श्यानता तथा अपने कम घनत्व के कारण हवा में तैरते हैं। प्रतिध्वनि (Echo) : जब ध्वनि तरंगे किसी दृढ़ वसतु से टकराकर परावर्तित होती हैं तो इस परावर्तित ध्वनि को प्रतिध्वनि कहते हैं।

पुनर्हिमायन (Regelation): दाब के परिणाम स्वरूप बर्फ का निम्न द्रवणांक पर गलना और दाब हटाये जाने पर उसे पुनः जम जाने की क्रिया को पुनर्हिमायन कहा जाता है।

निरपेक्ष आर्द्रता (Absolute humidity): वायुमण्डलीय हवा के एक घन मीटर आयतन में उपस्थित जलवाष्प की मात्रा का निरपेक्ष आर्द्रता के नाम से जाना जाता है।

प्रच्छाया (Umbra) : पूर्ण छाया को प्रच्छाया के नाम से जाना जाता है। विशेष बात यह है कि यहां से प्रकाश का स्रोत दिखाई नहीं पडता।

प्रकाशमिति (Photometry) : इसके अन्तर्गत प्रकाश करने वाली किसी वस्तु की प्रदीपन क्षमता की माप का विवेचन किया जाता है।

आपेक्षिक घनत्व (Relative Density) : दो पदार्थों, द्रवों, या गैसों का घनत्व समान नहीं हो सकता है। उनके घनत्व में कुछ न कुछ असमानता होती है। दो पदार्थों के घनत्व के अनुपात को आपेक्षिक घनत्व कहते हैं। द्रव का आपेक्षिक घनत्व हाइड्रोमीटर से मापा जाता है। दूध की शुद्धता मापने का यन्त्र लेक्टोमीटर आपेक्षिक घनत्व के सिद्धानत पर कार्य करता है। तेल, पेट्रोल, मिट्टी के तेल का आपेक्षिक घनत्व कम होने के कारण ही पानी में मिलाये जाने पर ऊपर आ जाता है, जबिक गर्म गैसों का ऊपर उठना आपेक्षिक घनत्व के सिद्धान्त पर आधारित है।

ऊष्मा (Heat)

ऊष्मा (Heat) एक प्रकार की ऊर्जा है, जो दो वस्तुओं के बीच उनके तापान्तर के परिणामस्वरूप एक वसतु से दूसरी वसतु में बहती है। ऊष्मा एक प्रकार की ऊर्जा है जिसे कार्य में बदला जा सकता है। इसका प्रमाण सर्वप्रथम **रदरफोड** (Rum ford) ने दिया था। जूल (Joule) ने यह स्पष्ट किया कि, "ऊष्मा ऊर्जा का ही एक रूप है।"

ताप का मापन (Measurement of Temperature)

ताप मापन हेतु जो उपकरण प्रयोग में लाया जाता है, उसे तापमापी कहते हैं। जो ताप (Temperature) में परिवर्तन के अनुपात में बदलता रहता है। इसे ताप मापक गुण कहते हैं।

ताप मापन के पैमाने

- (i) सेल्सियस पैमाना (Celsius Scale) : इसकी खोज स्वीडेन वैज्ञानिक सेल्सियस ने किया था, उन्हीं के नाम पर इसका नामकरण किया गया। इस पैमाने में हिमांक को 0°C एवं माप बिन्दु को 100°C में अंकित किया जाता है एवं इने बीच की दूरी को 100 बराबर भागों में विभक्त कर दिया जाता है। इसके प्रत्येक भाग को एक डिग्री सेन्टीग्रेट कहते हैं।
- (ii) फारेन हाइट पैमाना (Fahrenheit Scale) : इसका आविष्कार, जर्मन वैज्ञानिक फारेनहाइट ने किया गया था। इसमें ताप को 'F' से प्रदर्शित करते हैं। इसमें हिमांक या नीचले बिन्दु को 32°F तथा वाष्प बिन्दु या ऊपरी बिन्दु को 212 डिग्री फारेनहाइट पर प्रदर्शित किया जाता है।
- (iii) र्यूमर पैमाना (Reamure Scale) : इस पैमाने पर अधो बिन्दु अथवा हिमांक को 0° एवं उर्द्धवबिन्दु अथवा वाष्प बिन्दु को 80° पर प्रदर्शित किया यजाता है। इन दोनों बिन्दुओं के बीच कयसी दूरी को 80 बराबर भागों में विभक्त कर दिया जाता है। इस पैमाने में ताप को 'R' से प्रदर्शित करते हैं।

(iv) केल्विन पैमाना (Kelvin Scale) : इस पैमाने पर हिमांक अथवा अधोबिन्दु को 273°K एवं वाष्प बिन्दु को 373°K पर प्रदर्शित किया जाता हैं दोनों बिन्दुओं के मध्य की दूरी को 100 बराबर भागों में विभक्त किया जाता है तथा ताप को केल्विन (K) से व्यक्त करते हैं।

गुप्त ऊष्मा (Latent Heat)

स्थिर ताप पर किसी पदार्थ के अवस्था परिवर्तन के लिए आवश्यक ऊष्मा की मात्रा प्रति एकांक द्रव्यमान को उस पदार्थ की गुप्त ऊष्मा (Latent heat) कहते हैं।

गुप्त ऊष्मा दो प्रकार की होती है-

(i) गलन की गुप्त ऊष्मा (latent heat of Melting) : यह ऊष्मा की वह मात्रा है जो बिना ताप बदले एकांक द्रव्यमान के ठोस को द्रव में बदलने के लिए आवश्यक होती है।

इसका मात्रक कैलोरी / ग्राम या किलो कैलोरी / ग्राम अथवा जुल / किग्रा० है।

(ii) वाष्पन की गुप्त ऊष्मा (Latent heat of Vaporisation): यह ऊष्मा की वह मात्रा है जो एकांक द्रव्यमान के द्रव को सम्पूर्ण रूप से बिना ताप परिवर्तन के वाष्प अवस्था में बदलने के लिए आवश्यक है। इसका मात्रक कैलोरी/ग्राम या किलो कैलोरी/किलोग्राम अथवा जूल/किग्रा. है।

ऊष्मा का संचरण: ऊष्मा का एक स्थान से दूसरे स्थान जाने को ऊष्मा का संचरण कहते हैं। इसकी तीन विधियाँ हैं— (i) चालन, (ii) संवहन और (iii) विकिरण।

- चालन (Conduction): चालन के द्वारा ऊष्मा पदार्थ में एक स्थान से दूसरे स्थान तक, पदार्थ के कणों को अपने स्थान का परिवर्तन किए बिना पहुँचती है।
- ठोस में ऊष्मा का संचरण चालन विधि द्वारा ही होता है।
 ठोस तथा पारे में ऊष्मा का संचरा केवल चालन द्वारा होता है। पदार्थों का वर्गीकरण 3 प्रकार से होता है—
 - (i) **चालक**: सभी धात्, अम्लीय पदार्थ, मानव।
 - (ii) **क्चालक** : लकड़ी
 - (iii) **उष्मारोधी** : एबोनाइट, ऐस्बेस्टमस।
- संवहन (Convection): इस विधि में ऊष्मा का संचरण पदार्थ के कणों के स्थानान्तरण के द्वारा होता है। इस प्रकार पदार्थ के कणों के स्थानान्तरण से धाराएँ बहती है, जिन्हें संवहन धाराएँ कहते हैं।
- गैसों एवं द्रवों में ऊष्मा का संचरण संवहन द्वारा ही होता
- वायुमंडल संवहन विधि के द्वारा ही गरम होता है।
 केवल गैसों और द्रवों में संवहन होता है। गैस के अणु गर्म होने पर हल्के हो जाते हैं और ऊपर उठने लगते हैं।
- विकिरण (Radiation): इस विधि में ऊष्मा, गरम वस्तु से ठण्डी वस्तु की ओर बिना किसी माध्यम की सहायता के तथा बिना माध्यम को गरम किए प्रकाश की चाल से सीधी रेखा में संचरित होती है।
 - ऊष्मा के संचरण के लिए किसी माध्यम की आवश्यकता नहीं होती है। इसके द्वारा ऊष्मा का संचरण निर्वात में भी होता है। पृथ्वी तक सूर्य की ऊष्मा विकिरण द्वारा पहुँचती है।
- किरचौफ का नियम (Krichhoff's Law): इसके अनुसार अच्छे अवशोषक ही अच्छे उत्सर्जक होते हैं। अंधेरे कमरे में यदि एक काली ओर एक सफेद वस्तु को समान ताप पर गरम करके रखा जाए तो काली वस्तु अधिक विकिरण उत्सर्जित करेगी। अतः काली वस्तु अंधेरे में अधिक चमकेगी।

प्रकाश (Light)

प्रकाश एक प्रकार की ऊर्जा है जो कि विद्युत चुम्बकीय तरंगों के रूप में संचरित होता है। इसका ज्ञान हमें नेत्रों द्वारा प्राप्त होता है।

वे वस्तुएँ जो अपने आप प्रकाश उत्सर्जित नहीं करती हैं परन्तु प्रकाश को जो उन पर पड़ता है, केवल परावर्तित करती हैं अप्रदीप्त वस्तुएँ (non-luminous objects) कहलाती हैं।

प्रकाश की प्रकृति के बारे में दो सिद्धांत प्रचलित हैं-

- प्रकाश का तरंग सिद्धान्त : प्रकाश विद्युत—चुम्बकीय तरंगों का बना है जिसे उनके संचरण के लिए माध्यम ठोस, द्रव अथवा गैस की आवश्यकता नहीं होती है। दृश्य—प्रकाश तरंगों की तरंग दैर्ध्य बहुत ही छोटी होती है (केवल लगभग 4 × 10⁷ m से 8 × 10⁷ m होती है)। प्रकाश तरंगों की चाल काफी तेज होती है। (निर्वात में लगभग 3 × 10⁸ मीटर प्रति सेकण्ड होती है)।
- 2. प्रकाश का किणका सिद्धान्त : प्रकाश कणों का बना होता, जो अत्यंत उच्च चाल से सीधी रेखा में प्रगमन करते हैं। इन मूलकणों को फोटॉन कहते हैं।

प्रकाश का परावर्तन (Reflection of Light)

प्रकाश जब किसी वस्तु की सतह पर पड़ता है, तब वह अवशोषित, संचारित तथा परावर्तित हो सकता है। यदि वस्तु सम्पूर्ण प्रकाश को, जो उस पर पड़ता है, अवशोषित करता है, तो वह पूर्णरूप से काला दिखाई देगा, जैसे— श्यामपट्ट। यदि प्रकाश किरणें किसी वस्तु की सतह पर पड़ती हैं और वह वापस हो जाता है तो, यह प्रकाश का परावर्तन कहलाता है।

विभिन्न माध्यमों में प्रकाश की चाल		
माध्यम	प्रकाश की चाल	
निवात्	3×10^{8}	
पानी	2.25×10^{8}	
काँच	2×10^{8}	

प्रकाश के परावर्तन के नियम : समतल दर्पण से अथवा गोलीय सतह (अवतलन दर्पण या उत्तल दर्पण) से प्रकाश का परावर्तन दो नियमों के अनुसार होता है, जिन्हें प्रकाश के परावर्तन के नियम कहा जाता है। प्रकाश के परिवर्तन के नियमों को नीचे दिया गया है।

- 1. परावर्तन का प्रथम नियम : आपतित किरण परावर्तित किरण और अभिलम्ब (आपतन बिन्दु पर) सभी एक ही तल मेंस्थित होते हैं।
- 2. **परावर्तन का द्वितीय नियम** : आपतन कोण सदैव परावर्तन कोण के बराबर होता है। यदि आपतन कोण $i \ \hat{\epsilon} \$ और परावर्तन कोण $r \ \hat{\epsilon} \$, तो $\angle i = \angle r$

जब प्रकाश की किरणें दर्पण अथवा इसी तरह की किसी सतह पर पड़ती है, तो वे पुनः उसी समय माध्यम की तरफ एक निश्चित दिशा में लौट जाती है, जिस माध्यम से होकर आई रहती है। इसे प्रकाश का परावर्तन कहा जाता है। यह दो प्रकार का होता है—

- (i) नियमित परावर्तन— यह चिकने पालिशदार पृष्ठ से होता है, जब समानान्तर किरणें ऐसे पृष्ठ पर पड़ती हैं, तब परावर्तन के बाद किरणें समानान्तर ही रहती है।
- (ii) अनियमित परावर्तन— यह रूखड़े (खुरदरे) पृष्ठ से होता है, जब समानान्तर किरणें ऐसे पृष्ठ पर पड़ती हैं, तब परावर्तन के बाद किरणें सदा निश्चित नियमों के अनुसार होती हैं।

पूर्ण आन्तरिक परावर्तन (Total Internal Reflection): यदि किसी पदार्थ में प्रकाश के आपतन कोण का मान क्रान्तिक कोण से कुछ अधिक हो जाय तो प्रकाश विरल माध्यम में न जाकर सम्पूर्ण प्रकाश परावर्तित होकर सघन माध्यम में चला आता है। प्रकाश के इस घटना को पूर्ण आंतरिक परावर्तन कहा जाता है। तराशे हुए हीरे में चमक तथा मरीचिका (रेगिस्तान में एक प्रकाशित भ्रम) की घटना पूर्ण आन्तरिक परावर्तन के कारण ही होता है।

जब प्रकाश की कोई किरण किसी सघन माध्यम में प्रवेश करती है तो अपवर्तन के कारणअपवर्तित किरण अभिलम्ब से दूर हटती जाती है। आपतन कोण का मान बढ़ाने पर विरल माध्यम में अपवर्तित किरण अभिलम्ब से दूर हटती जाती है। इसके कारण अपवर्तन कोण का मान बढ़ता जाता है। जब एक निश्चित आपतन कोण के लिए अपवर्तन कोण का मान 90° हो जाता है, तो इसे आपतन कोण का क्रांतिक कोण कहते है।

यदि सघन माध्यम से विरल माध्यम में जाती हुई आपतित किरण दोनों माध्यमों के सीमा पृष्ठ पर इस प्रकार आपतित हो कि आपतन कोण का मान क्रांतिक कोण से बड़ा हो जाए तो इस दशा में अपवर्तित किरण पुनः सघन माध्यम में लौट आती है। अर्थात् आपतित किरण परावर्तित होकर पुनः उसी माध्यम में लौट आती है। इसे ही पूर्ण आंतरिक परावर्तन कहते हैं। पूर्ण आंतरिक परावर्तन की स्थिति में प्रकाश का परावर्तन शत प्रतिशत होती है।

पूर्ण आंतरिक परावर्तन के उपयोग :

- हीरा पूर्ण आंतरिक परावर्तन के कारण ही चमकता
 है।
- गर्मियों के मौसम में रेगिस्तान में मरीचिका दिखती है।
- चिकित्सा, प्रकाशीय सिग्नल के संचरण एवं विद्युत सिग्नल भेजने में।
- ऑप्टीकल फाइबल भी पूर्ण आंतरिक परावर्तन के सिद्धांत पर कार्य करता है।

वस्तुएँ तथा प्रतिबिंब :

- कोई चीज जो प्रकाश किरणें प्रदान करती हैं, ऑब्जेक्ट (वस्तू) कहलाती है।
- प्रतिबिंब एक प्रकाशीय छाया होती है। जब किसी वस्तु से आने वाली प्रकाश किरणें दर्पण से परावर्तित (अथवा तलों से अपवर्तित) होती है तो प्रतिबिंब बनता है।
- प्रतिबिंब दो प्रकार के होते हैं— वास्तविक प्रतिबिंब और आभासी प्रतिबिंब।

वास्तविक प्रतिबिंब : वह प्रतिबिंब जिसे पर्दे पर प्राप्त किया जा सकता है, उसे वास्तविक प्रतिबिंब कहते हैं। सिनेमा पर्दे पर बने प्रतिबिंब, वास्तविक प्रतिबिंबों का एक उदाहरण है।

आभासी प्रतिबिंब : वह प्रतिबिंब जिसे पर्दे पर प्राप्त नहीं किया जा सकता है, उसे आभासी प्रतिबिंब कहते हैं और आभासी प्रतिबिंब को केवल दर्पण के अवलोकन से देखा जा सकता है।

प्रकाश का अपवर्तन (Refraction of Light)

प्रकाश किरण जब एक माध्यम से चलकर दूसरे माध्यम में प्रवेश करती है, तब किरण अपने पूर्व पथ में मुड़ जाती है। माध्यम के बदलने से दूसरे माध्यम में किरण के इस प्रकार मुड़ने की घटना को प्रकाश का अपवर्तन कहते हैं। प्रथम माध्यम में किरण को आपतित किरण तथा दूसरे माध्यम में किरण को अपवर्तित किरण कहते हैं। आयतन बिन्दु पर पृथककारी पृष्ठ के लम्बवत् खींची गई रेखा को अभिलम्ब कहते हैं। जब प्रकाश किरण विरल माध्यम से सघन माध्यम में जाती हैं तो वह अभिलम्ब की ओर मुड़ जाती है। इसके विपरीत जब प्रकाश किरण सघन माध्यम से विरल माध्यम में जाती है तो वह अभिलम्ब से दूर हट जाती है।

अपवर्तन की घटना में प्रकाश का वेग तरंगदैर्ध्य बदल जाता है परन्तु आवृत्ति वही रहती है। पानी से भरी बाल्टी में छड़ की टेढ़ी दिखना (जिसमें छड़ का कुछ भाग बाल्टी में तथा कुछ बाल्टी से बाहर हो) तथा किसी तालाब को वासतविक गहराई का कम प्रतीक होना, अपवर्तन की घटना के कारण होता है।

रात्रि के समय तारे की टिमटिमाहट अपवर्तन की घटना के कारण होती है। प्रकाश के अपवर्तन की घटना के कारण ही सूर्य के क्षितिज से कुछ नीचे चले जाने पर भी हमें दिखाई पड़ता रहता है जिसके कारण सूर्योदय और सूर्यास्त के बीच के समय में लगभग 4 मिनट की वृद्धि हो जाती है।

प्रकाश का प्रकीर्णन (Scattering of Light)

जब प्रकाश किसी ऐसे माध्यम से गुजरता है जिसमें धूल तथा अन्य पदार्थों के अत्यन्त सूक्ष्म कण होते हैं, तो इनके द्वारा प्रकाश अन्य सभी दिशाओं में प्रसारित हो जाता है, प्रकाश की इस घटना को प्रकीर्णन कहते हैं।

जिस रंग के प्रकाश का तरंग दैर्ध्य कम होता है, उस रंग के प्रकाश का प्रकीर्णन सर्वाधिक तथा जिस रंग के प्रकाश की तरंगदेर्ध्य अधिक होता है उसका प्रकीर्णन कम होता है। प्रकाश में नीले और बैंगनी रंग के प्रकाश का प्रकीर्णन सबसे कम होता है। इसलिए सुबह और शाम को निम्न प्रकाश तरंग देर्ध्य (नीले और बैंगनी) के प्रकाश का प्रकीर्णन हो जाने के कारण सूर्य लाल दिखाई देता है। सिग्नल देने के लिए लाल प्रकाश (प्रकीर्णन कम होने के कारण) का प्रयोग किया जाता है। वायुमण्डल के गैसों और धूल के कणों के द्वारा नीले प्रकाश का प्रकीर्णन हो जाने के कारण आकाश नीला दिखाई देता है, जबिक चन्द्रमा पर खड़े यात्री को (चन्द्रमा पर वायुमण्डल न होने के कारण) आकाश काला दिखाई देता हैं समुद्र का जल भी प्रकाश के प्रकीर्णन के कारण ही नीला दिखाई देता है।

विवर्तन (Diffraction): प्रकाश को किसी अवरोधक के किनारे पर थोड़ा मुड़कर उसकी छाया में प्रवेश करने की घटना को विवर्तन कहते हैं। प्रकाश की अपेक्षा ध्वनि में विवर्तन अधिक होता है।

इन्द्रधनुष (Rainbow) : इद्रधनुष परावर्तन, पूर्ण आंतरिक परावर्तन तथा अपवर्तन द्वारा वर्ण विक्षेपण के संयुक्त प्रभाव से बनता है। इद्रधनुष मुख्यतः 2 प्रकार के होते हैं—

- 1. प्राथमिक (Primary)
- 2. द्वितीयक (Secondary)
- 1. प्राथमिक इन्द्रधनुष (Primary): जब बूँदों पर आपतित होने वाली सूर्य किरणों का दो बाद अपवर्तन व एक बार परावर्तन होता है तो प्राथमिक इन्द्रधनुष बनता है। प्राथमिक इन्द्रधनुष में लाल रंग बाहर की ओर तथा बैंगनी रंग अंदर की ओर होता है।

2. द्वितीयक इन्द्रधनुष (Secondary): जब बूँदों पर आपतित किरणों का दो बार अपवर्तन एवं दो बार परावर्तन हो तो द्वितीयक इन्द्रधनुष बनता है।

वस्तुओं के रंग (Colour of Objects): जब प्रकाश की किरणें वस्तुओं पर आपितत होती है तो वे उनसे परावर्तित होकर हमारी आँखों पर पड़ती है, इस कारण वस्तु हमें दिखाई देने लगती है। वस्तुएँ प्रकाश का कुछ भाग परावर्तित करती हैं। वस्तु प्रकाश के लिए भाग को परावर्तित करती है। वही वस्तु प्रकाश के लिए भाग को परावर्तित करती है। वही वस्तु के रंग को निर्धारित करता है। सफेद दिखाई देने वाली वस्तुएँ प्रकाश के सभी रंगों को परावर्तित कर देती है जबिक काली दिखने वाली वस्तुएँ प्रकाश को पूर्णतः अवशोषित कर लेती है।

रंगों का मिश्रण (Mixing of colour): नीला, हरा तथा लाल रंग प्राथमिक रंग (Primary colours) कहलाता है। पीला, मैंजेटा तथा पीकॉक ब्लू को द्वितीयक रंग कहा जाता है। जब दोनों रंगों को परस्पर मिलाने पर सफेद रंग प्राप्त होता है तब उसे पूरक रंग (complementary colours) कहते हैं। चित्र में प्रदर्शित रंग त्रिभुज (colour triangle) से हम विभिन्न रंगों का मिश्रण प्राप्त कर सकते हैं।

• रंगीन टेलीविजन में प्राथमिक रंगों (लाल, हरा एवं नीला) का प्रयोग होता है।

नेत्र की रचना एवं प्रणाली एक फोटोग्राफिक कैमरे के समान है। आंख का आंकार लगभग गोला होता है तथा बाहर से एक दृढ़ एवं अपारदर्शी श्वेत पर्त से आवृत्त रहती है। इस श्वेत पत्र को दृढ़ पटल कहते हैं। दृढ़ पटल के सामने का भाग कुछ उभरा हुआ एवं पारदर्शी होता है। इस भाग को कार्निया (Cornea) कहते हैं। कार्निया के पृष्ट भाग में एक पारदर्शी द्रव भरा होता है, जिसे नेत्रोद (Aqueous Humour) कहते हैं। कार्निया के ठीक पृष्ठ भाग में एक अपारदर्शी पर्दा होता है, जिसे आइरिस (Iris) के नाम से जाना जाता है। नेत्र लेन्स की पक्ष्माभिकी पेशियों (Ciliary muscles) के निलंबन स्नायुओं (Suspensory Ligaments) द्वारा लटका होता है। नेत्र लेन्स के पृष्टभाग में एक पारदर्शी द्रव भरा रहता है, जिसे काचाभ (Vitreous Humour) कहते हैं। दृढ़ पटल के अधो भाग में काली झिल्ली होती है। इसे **रक्तक पटल** (Choroid) कहते हैं। इस पटल के नीचे आभ्यन्तर में एक पारदर्शी झिल्ली होती है। इसे रेटिना कहते हैं। जिसका निर्माण तंत्रिकाओं से होता हैं जब प्रकाश रेटिना पर पड़ता है। दृक् तन्त्रिकाओं (Optic nerves) द्वारा उसका प्रभाव मस्तिष्क को पहुंचता है, तदर्थ हमें वस्तु के रूप, रंग, आकार का ज्ञान होता है।

- आँख की पेशियों द्वारा नेत्र लेन्स की फोकस दूरी को समायोजित करने की क्षमता को आंख की समंजन क्षमता कहते हैं।
- आँख से अधिकतम दूर स्थित उस बिन्दु को जिस पर रखी वस्तु को आँख स्पष्टतः देख सकती है, दूर बिन्दु (For point) कहते हैं।
- आँख से न्यूनतम दूरी पर स्थित उस बिन्दु को जिस पर रखी वस्तु को आँख स्पष्ट रूप से देख सकती है, निकट बिन्दु (Near point) कहते हैं।

प्रतिबिम्ब (Image): किसी भी वस्तु को जब हम दर्पण के सामने रखते हैं तो वस्तु से चलने वाली प्रकाश किरणें दर्पण के तल से परावर्तित होकर हमारी आँखों पर पड़ती हैं, जिससे हमें वस्तु की आकृति दिखाई देती है। इस आकृति को हम वस्तु का प्रतिबिम्ब कहते हैं। प्रतिबिम्ब मुख्य रूप से दो प्रकार के होते हैं—

(i) वास्तविक प्रतिबिम्ब (ii) आभासी प्रतिबिम्ब

वास्तविक प्रतिबिम्ब : किसी स्रोत से प्रवाहित होने वाली प्रकाश की किरणें किसी तल से परावर्तन अथवा आपवर्तन के पश्चात् जिस बिन्दु पर मिलती हैं वह बिन्दु स्रोत का वास्तविक प्रतिबिम्ब कहलाता है।

आभासी प्रतिबिम्ब : यदि किसी स्रोत से चलने वाली प्रकाश किरणें परावर्तन अथवा अपवर्तन के पश्चात् जिस बिन्दु से फैलती हुई प्रतीत होती है, वह बिन्दु स्रोत का आभासी प्रतिबिम्ब कहलाता है।

- चन्द्रमा से परावर्तित प्रकाश को पृथ्वी तक आने में 1.28 सेकेण्ड का समय लगता है। प्रकाश के प्रति व्यवहार के आधार पर वस्तुओं को निम्न भागों में बाँटा जा सकता है—
 - (i) प्रदीप्त वस्तुएँ (Luminous bodies) : वे वस्तुएँ जो स्वयं के प्रकाश से प्रकाशित होती हैं, जैसे– सूर्य, विद्युत, बल्ब आदि।
 - (ii) अप्रदीप्त वस्तुएँ (Nonluminous bodies) : वे वस्तुएँ जिनका अपना स्वयं का प्रकाश नहीं होता लेकिन उनपर प्रकाश डालने पर वे दिखाई देने लगती हैं, जैसे— मेज, कर्सी आदि।
 - (iii) पारदर्शक वस्तुएँ (Transparent bodies) : वे वस्तुएँ जिनमें से होकर प्रकाश की किरणें निकल जाती हैं। जैसे— काँच, जल आदि।
 - (iv) अर्ध पारदर्शक वस्तुएँ (Translucent bodies): कुछ वस्तुएँ ऐसी होती हैं, जिन पर प्रकाश की किरणें पड़ने से उनका कुछ भाग तो अवशोषित हो जाता है, तथा कुछ भाग बाहर निकल जाता है, ऐसी वस्तुएँ को अर्द्ध पारदर्शक वस्तुएँ कहते हैं, जैसे तेल लगा हुआ कागज।
 - (v) अपारदर्शक वस्तुएँ (Opaque bodies) : अपारदर्शक वस्तुएँ वे वस्तुएँ हैं, जिनमें होकर प्रकाश की किरणें बाहर नहीं निकल पातीं, जैसे— धातु।

लेन्स (Lenses) : लेन्स दो गोलाकार सतह अथवा पारदर्शक एवं अपवर्तक माध्यम है, जो सामान्यतः सीसे से निर्मित होता है। लेन्स मुख्यतः दो प्रकार के होते हैं—

- (i) उत्तल लेन्स (Convex Lens)
- (ii) अवतल लेन्स (Concave Lens)

उत्तल लेन्स (Convex Lens) : मध्य भाग में मोटा तथा किनारों पर पतला होता हैं जबकि अवतल लेन्स बीच में पतला एवं किनारों पर मोटा होता है। उत्तर लेन्स तीन प्रकार के होते हैं— उभयोत्तल लेन्स (Biconvex Lens), समतल उत्तल लेन्स (Plano Convex Lens) तथा अवतलीत्तल लेन्स (Concavo-Convex Lens)। इसी प्रकार अवतल लेन्स भी तीन प्रकार के होते हैं— उभयावत्तल लेन्स (Biconcave Lens), समतल अवतल लेन्स (Plano-Concave Lens) एवं उत्तलीत्तल लेन्स (Convexo Concave Lens)।

अवतल लेन्स (Concave Lens): ऐसा लेन्स होता है जो अनन्त से आने वाली किरणों को सिकोड़ता है, इसीलिए इसे अभिसारी लेन्स भी कहते हैं जबिक अवतल लेन्स अनन्त में आने वाली किरणों को फैलाती हैं। इसीलिए इसे अपसारी लेन्स (Diverging Lens) भी कहते हैं।

किसी भी लेन्स की क्षमता डायोप्टर (Diopter) से मापा जाता है।

लेन्स की क्षमता =
$$\frac{1}{\text{फोकस दूरी (मीटर में)}}$$

यदि किसी लेन्स को ऐसे माध्यम में डुबा दिया जाये जिसका अपवर्तनांक लेन्स के पदार्थ के अपवर्तनांक से अधिक हो तो लेंस की फोकस दूरी तथा अपवर्तनांक बदल जाती है अर्थात् उत्तल लेन्स, अवतल लेन्स में तथा अवतल लेन्स उत्तल लेन्स में बदल जाता है। इसलिए जल में वायु का बुलबुला उत्तल लेन्स की तरह का होत हुए भी अवतल लेन्स की तरह कार्य करने लगता है।

वाहन चालक पीछे देखने के लिए उत्तल दर्पण का प्रयोग करते हैं।

समतल दर्पण (Plane Mirror): समतल दर्पण में बना प्रतिबिंब, दर्पण के पीछे उसी दूरी पर होता है जिस दूरी पर वस्तु दर्पण के सामने होती है।

घरों में प्रयोग होने वाला दर्पण समतल दर्पण होता है। समतल दर्पण से बना वस्तु का प्रतिबिम्ब, वस्तु के बराबर, उतनी ही दूरी पर तथा आभासी होता है। समतल दर्पण से किसी व्यक्ति को अपना पूरा प्रतिबिम्ब देखने के लिए व्यक्ति को अपनी लम्बाई का कम से कम आधी लम्बाई के दर्पण का उपयोग करना होता है। किसी कोण पर रखे दो समतल दर्पण के बीच रखी किसी वस्तु के प्रतिबिम्बों की संख्या दोनों दर्पणों के बीच बनने वाले कोण पर निर्मर करता है।

समतल दर्पण द्वारा बने प्रतिबिंब की विशेषताएँ :

- समतल दर्पण में बना प्रतिबिंब आभासी होता है। उसे पर्दे पर नहीं प्राप्त किया जा सकता है।
- समतल दर्पण में बना प्रतिबिंब सीधा होता है। वस्तु के समान ही उसकी भी वही साइड ऊपर की ओर रहती है।
- समतल दर्पण में प्रतिबिंब भी वस्तु के ही आकार का होता है।
- समतल दर्पण द्वारा बना प्रतिबिंब दर्पणके पीछे उतनी ही दूरी पर होता है, जितनी दूरी पर वस्तु दर्पण के सामने होती है।
- 5. समतल दर्पण में बना प्रतिबिंब पार्श्व रूप प्रतिलोमित (या पार्श्व रीति में प्रतिवर्तित) होता है।

समतल दर्पणों के उपयोग :

- (i) समतल दर्पणों को अपने आप को देखने के लिए प्रयोग किया जाता है।
- (ii) समतल दर्पणों को कुछ व्यस्त मार्गों के अन्धे मोड़ों पर लगाया जाता है तािक चालकों को दूसरी ओर से आ रही गाड़ियां दिखाई दे सकें और दुर्घटनाएँ होने से बच सकें।
- (iii) समतल दर्पणों को परिदर्शियों (Periscopes) के बनाने में प्रयोग किया जाता है।
- किसी व्यक्ति को समतल दर्पण में अपना पूर्ण प्रतिबिम्ब देखने केलिए अपनी लम्बाई के आधे भाग के बराबर दर्पण की आवश्यकता होगी।
- यदि कोई व्यक्ति समतल दर्पण के लम्बवत किसी चाल से दर्पण के समीप आता है या दूर जाता है तो उसे अपना प्रतितिबम्ब दुगुनी चाल से पास आता या दूर जाता प्रतीत होगा।
- यदि आपतित किरण को नियम रखते हुए दर्पण को θ° कोण से घुमा दिया जाय तो, परावर्तित किरण 2θ° कोण से घूम जाएगी।
- दो समतल दर्पण के बीच रखे वस्तुओं के प्रतिबिम्बों की

संख्या =
$$\frac{360}{\mathsf{द}\mathsf{\acute{q}}\mathsf{\acute{v}}\mathsf{\acute{m}}$$

या,
$$n = \frac{360}{9} - 1$$

जहाँ n प्रतिबिम्बों की संख्या है एवं θ दोनों के बीच का बना कोण है।

जैसे यदि $\theta = 90^{\circ}$ तो प्रतिबिम्बों की संख्या

$$= \frac{360}{90} - 1$$
$$= 4 - 1$$

 यदि दो समतल कोण दूसरे के समानांतर रखे जाएं तो प्रतिबिम्बों की संख्या अनंत होगी।

गोलीय दर्पण से परावर्त्तन (Reflection from spherical mirror): गोलीय दर्पण दो प्रकार के होते हैं—

(i) अवतल दर्पण, (ii) उत्तल दर्पण

अवतल दर्पण में बने प्रतिबिम्ब की स्थिति एवं प्रकृति

क्र.	वस्तु की स्थिति	प्रतिबिम्ब की स्थिति	वस्तु की तुलना में प्रतिबिम्ब का आकार	प्रतिबिम्ब की प्रकृति
1.	अनन्त पर	फोकस पर	बहुत छोटा	उल्टा व वास्तविक
2.	वक्रता केन्द्र एवं अनन्त के बीच	फोकस एवं वक्रता केन्द्र के बीच	छोटा	उल्टा व वास्तविक
3.	वक्रता केन्द्र पर	वक्रता केन्द्र पर	समान आकार का	उल्टा व वास्तविक
4.	फोकस तथा वक्रता केन्द्र के बीच	वक्रता केन्द्र एवं अनन्त के बीच	बड़ा	उल्टा व वास्तविक
5.	फोकस पर	अनन्त पर	बहुत बड़ा	उल्टा व वास्तविक
6.	फोकस तथा ध्रुव के बीच	दर्पण के पीछे	बड़ा	सीधा व आभासी

अवतल दर्पण का उपयोग :

- (i) बड़ी फोक्स दूरी वाला अवतल दर्पण दाढ़ी बनाने में काम आता है।
- (ii) आँख, कान एवं नाक के डॉक्टर के द्वारा उपयोग में लाया जाने वाला दर्पण
- (iii) गाड़ी के हेड लाइट एवं सर्चलाइट में
- (iv) सोलर कूकर में
- उत्तल दर्पण से बने प्रतिबिम्ब : उत्तल दर्पण में प्रत्येक दशा में प्रतिबिम्ब दर्पण के पीछे, उसके ध्रुव और फोकस के बीच वस्तु से छोटा, सीधा एवं आभासी बनता है।
- उत्तल दर्पण का उपयोग :
 - (i) इसका उपयोग गाड़ी में चालक की सीट के पास पीछे के दृश्य को देखने में किया जाता है। (side mirror के रूप में)
 - (ii) सोडियम परावर्तक लैम्प में

दृष्टि दोष (Defects of Vision)

मनुष्य की सामान्य आँख के लिए दृष्टि विस्तार लगभग 25 सेमी. से लेकर अनन्त तक होता हैं मानव नेत्र में दो प्रकार के दोष होते हैं— (i) निकट दृष्टि दोष (Myopia of short sighte ness), (ii) दूरदृष्टि दोष (Hyper Metropia of Long sighted ness)।

(i) निकट दृष्टि दोष (Myopia of short sighted ness): आँख में यह बीमारी होने से दूर की वस्तुएँ स्पष्टतः नहीं दिखाई देती किन्तु नजदीक की वसतु साफ दिखाई देती है। इस दृष्टिदोष में वसतु का प्रतिबिम्ब आँख की रेटिना पर न बनकर कुछ आगे बन जाता है। यह दोष आँख की गोली अथवा अधिक लम्बी होने तथा आँख के लेन्स का सामान्य फोकस दूरी के घट जाने से उत्पन्न होता है। इस दोष को

हटाने के लिए अवतल लेन्स का प्रयोग किया जाता है क्योंकि यह लेन्स अपसारी (Divergent) प्रकृति का होने के कारण किरणों को फैलाकर रेटिना पर केन्द्रिय कर देता है।

- (ii) दूर दृष्टि दोष (Hypermetropia): इस दृष्टि दोष में दूर की वस्तुएँ तो स्पष्टतः दिखाइ देती है किन्तु नजदीक की वस्तुएँ स्पष्ट नहीं हो पाती। इसमें वस्तु का प्रतिबिम्ब रेटिना पर न बनकर उसके पीछे बन जाता है। इस दोष को हटाने के लिए उत्तल लेन्स का प्रयोग किया जाता है क्योंकि यह अभिसारी लेन्स (Convergent lens) की तरह व्यवहार करता है तथा किरणों को सिकोड़कर पुनः रेटिना पर ला देता है।
- (iii) जरा दृष्टि दोष (Pressbyopia): ये बुढ़ापे का लक्षण होता है जिसमें निकट तथा दूर दृष्टि दोष की स्थितियाँ एक साथ उत्पन्न होती हैं। इस दोष को दूर करने के लिए बाइफोकल लेंस का इस्तेमाल किया जाता है।
- (iv) अबिन्दुकता (Astigmatism) : इस दृष्टि दोष में कार्निया की वक्रता विभिन्न दिशाओं में हो जाती है। इस दोष को दूर करने के लिए **बेलनाकार लेंस** के चश्में का इस्तेमाल किया जाता है।
- (v) मोतियाबिन्द (Cotaract): इस दृष्टि दोष में नेत्र लेंस अपारदर्शी हो जाता है। इस दोष को दूर करने के लिए लेसिक लेजर पद्धति का प्रयोग किया जाता है।

सूक्ष्मदर्शी (Microscope)

सूक्ष्मदर्शी ऐसा प्रकाशित यंत्र है, जिसकी सहायता से सूक्ष्म वस्तुएं देखी जाती हैं। इस यंत्र द्वारा सूक्ष्म वस्तु का आभासी एवं आवर्धित प्रतिबिम्ब स्पष्ट दृष्टि सकी न्यूनतम दूरी पर बनता है। जिससे वह स्पष्ट दिखाई देता है। किसी वस्तु का आकार जो हमें दृष्टिगोचर होता है। उसके द्वारा हमारे नेत्र पर बने दर्शन कोण पर निर्भर रहता हैं दर्शन कोण जितना छोटा होता है, उतनी ही वस्तु छोटी दिखाई पड़ती है। वस्तु को जैसे—जैसे आँख के करीब लाया जाता है, उसके द्वारा बने दर्शन कोण का मान बढ़ता जाता है। फलतः वस्तु का आकार भी बढ़ता हुआ दिखाई पड़ता है।

संयुक्त सूक्ष्मदर्शी (Compound Microscope) : इस सूक्ष्मदर्शी की खोज गैलिलियो नामक वैज्ञानिक ने की थी। इस सूक्ष्मदर्शी की आवर्धन क्षमता दस हजार गुना होती है।

इलेक्ट्रॉन सूक्ष्मदर्शी (Electron Microscope) : इस सूक्ष्मदर्शी की खोज नॉल एवं रस्का नामक वैज्ञानिकों ने की। इस सूक्ष्मदर्शी की आवर्धन क्षमता एक लाख गुना होती है।

ध्यातव्य तथ्य

किसी वस्तु का रंग इस बात पर निर्भर करता है कि वह किस रंग का प्रकाश अवशोषित करती है और किस रंग के प्रकाश को परावर्तित। सामान्यतया सूर्य के दृश्य प्रकाश मसें 7 रंग होता है। इसमें कुछ रंग के प्रकाश को वस्तु अवशोषित कर लेती है तथा कुछ को परावर्तित वसतु जिस रंग के प्रकाश को परावर्तित करती है, उसी रंग की दिखाई देती है। जैसे—पौधों की पत्ती द्वारा हरे रंग के प्रकाश को परावर्तित करने के कारण हरे रंग की दिखाई देती है। जब वस्तु सभी रंग के प्रकाश को अवशोषित कर लेती है तो वसतु काले रंग की दिखती है। काला कोई रंग नहीं, बिल्क सभी रंग के प्रकाश के अनुपस्थित का प्रतीक है।

व्यक्ति 10 सेमी. की न्यूनतम दूरी पर स्थित किसी वस्तु को स्पष्ट देख सकता है। जबकि पढ़ते समय किताब और आँख के बीच औसत दूरी 25 सेमी. होनी चाहिए।

ध्वनि (Sound)

ध्विन की चाल ठोस में सर्वाधिक उसके बाद द्रव तथा गैस में सबसे कम होती है और निर्वात में नहीं होती है। ध्विन एक प्रकार की ऊर्जा है। इसकी उत्पत्ति कम्पायमान वस्तुओं से होती है। इसका आशय यह नहीं कि प्रत्येक कम्पनन के बीच ध्विन ही उत्पन्न हो, ध्विन संचरण के लिए द्रव्यात्मक माध्यम अर्थात् ठोस, द्रव एवं गैस आवश्यक होता है।

इसलिए चन्द्रमा तथा अन्य वायुमण्डल रहित स्थानों पर बातचीत (ध्विन) नहीं किया जा सकता है। ध्विन की चाल ठोस में सर्वाधिक, द्रव में ठोस से कम तथा गैस में सबसे कम होती है। वायु में ध्विन की चाल 332 मीटर/सेकण्ड होता है।

ध्वनि स्रोत	तीव्रता (डेसिबल)
सामान्य बातचीत की	40-45
पेट्रोल इंजन	60-65
डीजल इंजन	70-75
लाउडस्पीकर / हार्न	80—90
राकेट	160-170
मिसाइल	180—196
साइरन	190-200

तरंग गित (Wave Motion)— यह एक प्रकार का विक्षोभ है। विक्षोभ के आगे बढ़ने की गित को तरंग गित कहते हैं। तरंगों के द्वारा ऊर्जा का स्थानान्तरण एक स्थान से दूसरे स्थान तक होता है। तरंग निम्न प्रकार के होते हैं।

अनुप्रस्थ तरंग गित (Transverse wave motion): इन्हें केवल ठोस में उत्पन्न किया जा सकता है। जब तरंग गित की दिशा तथा माध्यम के कणों के दालन करने की दिशा एक दूसरे के लम्बवत् होती हैं, तो इस प्रकार की तरंगों को अनुप्रस्थ तरंग गित कहते हैं। जैसे – प्रकाश

अनुदैर्ध्य तरंग गति (Longitudinal wave motion) : इसमें माध्यम के कण अपनी माध्य स्थिति पर तरंग की दिशा में समान्तर कम्पित होते हैं। इसमें एक सम्पीडन और एक विरलन मिलकर एक तरंग की रचना करते हैं। जैसे ध्विन तरंग। इन्हें ठोस, द्रव तथा गैस तीनों में उत्पन्न किया जा सकता है।

तरंग दैर्ध्य (Wave Length): किसी तरंग गति में समान कला में दोलन करने वाले दो क्रमागत कणों के बीच की दूरी को तरंग दैर्ध्य (wave length) कहते हैं।

न्यूनतम दूरी जिसमें ध्वनि तरंग अपनी पुनरावृत्ति करती है, उसकी तरंग दैर्ध्य (wave length) कहलाती है। तरंगदैर्ध्य मापने का एस.आई. मात्रक मीटर (m) है। सरल आवर्त गति (Simple Harmonic Motion): यदि कोई वस्तु एक सरल रेखा पर मध्यमान स्थिति के इधर—उधर इस प्रकार गति करे कि वस्तु का त्वरण मध्यमान स्थिति से वसतु की दूरी के अनुक्रमानुपाती हो तथा त्वरण की दिशा मध्यमान स्थिति की ओर हो तो उसकी गति को सरल आवर्त गति (Simple Harmonic Motion) कहते हैं।

पराश्रव्य ध्वनि तरंगे (Ultransonic Waves): 20,000 हर्ट्ज की आवृत्ति वाली ध्वनि तरंग श्रव्य ध्वनि होती है। किन्तु इससे अधिक हर्ट्ज आवृत्तिा वाली तरंग पराश्रव्य ध्वनि तरंग होती है। इसके तरंग दैर्ध्य छोटे होते हैं। इसकी आवृत्ति श्रव्यता निश्चित सीमा (कानों में सुनाई पड़ने को) से परे होती है।

श्रव्य ध्विन तरंगे (Audible Wave) : वे ध्विन तरंगें, जिनकी आवृत्ति 20 से 20,000 हर्ट्ज होती है, श्रव्य तरंगे कहलाती हैं। इन्हीं ध्विन तरंग परिसर को कान द्वारा सुना जा सकता है।

अवश्रव्य ध्वनि (Inafrasonic Sound) : श्रव्यता सीमा से कम आवृत्ति की (20 कम्पन्न प्रति सेकेण्ड) ध्वनि तरंग को अपश्रव्य ध्वनि (Inafrasonic Sound) के नाम से जाना जाता है।

पराश्रव्य ध्वनि तरंगों के कुछ उपयोग

- (i) चिकित्सा क्षेत्र में अल्ट्रासाउण्ड या सोनोग्राफी (शरीर के आन्तरिक भागों के विकारों का पता लगाने की एक विधि) के लिए पराश्रव्य ध्वनि तरंगों (आवृत्ति 20,000 से अधिक) का प्रयोग किया जाता है।
- (ii) पराश्रव्य ध्विन तरंगों को मानव द्वारा सुनना सीवि नहीं हो पाता है। कुछ जन्तु, जैसे— कुत्ता, बिल्ली, चमगादड़ तथा अन्य पक्षी पराश्रव्य तरंगों को सुन सकते हैं। चमगादड़ अपने रासते या अवरोध का पता पराश्रव्य तरंगे निकालकर करते हैं, जिससे रात में उड़ पाना सम्भव हो पाता है।
- (iii) समुद्र की गहराई तथा इसमें डूबी किसी वसतु का पता पराश्रव्य तरंगों द्वारा लगाया जाता है। समुद्र तल पर भेजी गई पराश्रव्य तरंग तल से परावर्तित होकर आने वाले समय के आधार पर गहराई का पता लगाया जाता है।
- (iv) धुन्ध तथा कोहरे को समाप्त करने के लिए पराश्रव्य तरंगों का प्रयोग किया जाता है, क्योंकि पराश्रव्य तरंगे वायु में धूल तथा कोयले के कण को स्कंदित कर देते हैं।

ध्विन की चाल, वायुमण्डल की आर्द्रता, तापमान तथा वायुमण्डलीय गैसों के द्रव्यमान पर निर्भर करता है। वायुमण्डल में आर्द्रता तथा तापमान बढ़ने पर ध्विन की चाल में वृद्धि तथा गैसों के द्रव्यमान बढ़ने पर ध्विन की चाल में कमी आती है। इसलिए वर्षा ऋतु में ध्विन की चाल, अन्य ऋतु की अपेक्षा अधिक होती है जबिक वायुमण्डल में 1°C ताप बढ़ने पर ध्विन की चाल में 0.61 मीटर प्रति सेकेण्ड की वृद्धि हो जाती है।

ध्विन की चाल वायु में 332 मीटर/सेकेण्ड है जबिक प्रकाश की चाल 3 लाख किमी. प्रति सेकेण्डं इसलिए आकाशीय विद्युत में प्रकाश पहले तथा ध्विन (गङ्गड़ाहट) बाद में आती है।

ध्विन की तीव्रता को डेसीबल में मापा जाता है। मनुष्य के लिए 40–50 डेसीबल तीव्रता की ध्विन सामान्य मानी जाती है।

वायु विक्षोभ (Air Turbulance): अधिक ऊँचाई पर हवा की भिन्न-भिन्न परतों के बीच हवा की गति अलग-अलग होती है। परिणामतः इन परतों के बीच एक अन्तराल कायम हो जाती है। यह अन्तराल तरंग की चोटी के सदृश होती है, जिसे पारिभाषिक शब्दों में वायु विक्षोभ के नाम से जाना जाता है।

इको साउंडिंग (Echo-Sounding) : यह महासागरीय मापन विधि है। छोड़ गई ध्विन तरंगे महासागर के तल से टकराकर प्रतयावर्तित हो जाती है प्रतिध्विन के प्रत्यावर्तित होने में लगे समय के आधार पर इसकी गहराई निर्धारित कर ली जाती है।

रेडियो सेट पर ध्विन (कार्यक्रम) का सुनना, पृथ्वी के वायुमण्डल के आयनोस्फियर मण्डल के कारण सीवि हो पाता है। रेडियो स्टेशन से प्रसारित विशेष विद्युत तरंगे पृथ्वी के वायुमण्डल के आयनोस्फियर से परावर्तित हो रेडियोसेट तक आते हैं। रेडियो सेट इन विद्युत तरंगों को ध्विन में बदल देता है।

सुपर सोनिक यॉन तथा राकेट की गति, ध्विन की गित से अधिक होता है, इस गित को मैक संख्या में निरूपित किया जाता है।

मैक संख्या = वस्तु की चाल ध्विन की चाल

ध्वनि का परावर्तन (Reflection of Sound): जब ध्वनि तरंगें किसी कठोर सतह से टकराती हैं तो उनका परावर्तन होता है। ध्वनि, कठोर सतहों जैसे दीवार, धातु चादर, दृढ़ काष्ठ से भलीभाँति परावर्तित होती है ध्वनि तरंगें प्रकाश के परावर्तन के नियमों का पालन करती हैं। अतः हम ध्वनि के परावर्तन के नियमों को निम्न प्रकार लिख सकते हैं।

- आपितत ध्विन तरंग (incident sound wave) परावर्तित ध्विन तरंग (reflected sound wave) और आपतन बिंदु पर अभिलम्ब (normal), सभी एक ही तल मेरिथत होते हैं।
- 2. ध्विन के परावर्तन का कोण सदैव ध्विन के आपतन के कोण के बराबर होता है।

प्रतिध्वनि (Echo) : ध्वनि तरंगों के परावर्तन द्वारा होने वाली ध्वनि की पुनरावृत्ति, प्रतिध्वनि (echo) कहलाती है। जब कोई व्यक्ति बड़े खाली हॉल में चिल्लाता है तो पहले हम उसकी मूल ध्वनि सुनते हैं। थोड़ी ही देर बाद हम चिल्लाने की परावित ध्वनि सुनते हैं, यह 'परावित्त ध्वनि' ही 'प्रतिध्वनि' होती है। अतः प्रतिध्वनि साधारणतया परावर्तित ध्वनि होती है।

आधुनिक एवं परमाणु भौतिकी (Modern and Atomic Physics)

नाभिकीय विखण्डन (Nuclear Energy): किसी भारी तत्व के नाभिक के विखण्डन के परिणामस्वरूप बहुत अधिक ऊर्जा (Energy) की मात्रा प्राप्त होती है। विखण्डन से प्राप्त इस ऊर्जा को ही "नाभिकीय ऊर्जा" कहते हैं। यूरेनियम के एक नाभिक के विखण्डन के परिणामस्वरूप लगभग 200 मिलियन इलेक्ट्रॉन वोल्ट ऊर्जा की मात्रा प्राप्त होती है।

"नाभिकीय विखण्डन वह न्यूक्लीय घटना है जिसके फलस्वरूप प्रचुर परिमाण में उग्र ऊर्जा का उत्सर्जन होताहै, जिससे मौलिक तत्व दो भागों में विभाजित हो जाते हैं।" जैसे यूरेनियम 2.5 की न्यूट्रहान से बमबारी किये जाने पर बेरियम 147 तथा क्रिप्टन 88 का निर्माण होता है।

नामिकीय संलयन (Nuclear Fusion): नाभिकीय संलयन में दो सामान्य नाभिक परस्पर संलयित होकर एक भारी नाभिक का निर्माण करते हैं। इस प्रक्रिया कसे तहत संलयन (Fusion) से प्राप्त नाभिक का द्रव्यमान, इसके पूर्व के नाभिकों के द्रव्यमान से कम होता है।

"हल्के न्यूविलयस का एक साथ मिलकर अपेक्षाकृत भारी न्यूविलअस के निर्माण की क्रिया को न्यूक्लीय संलयन कहते हैं। जैसे चार प्रोटान के संलयन से हिलीयम का एक न्यूविलयस बनता है।"

नाभिकों के संलयन में लगभग 10⁸ डिग्री केल्विन के उच्च ताप तथा उत्पन्न उच्च दाब की आवश्यकता होती है। नाभिकीय संलयन के लिए इतना उच्च ताप व दाब पृथ्वी पर सहज प्राप्त नहीं है। ताप एवं दाब की ये अवस्थाएँ परमाणु बम के विस्फोट से ही प्राप्त हो जाती है।

हाइड्रोजन बम (Hydrogen Bumb) : इस बम का निर्माण एडवर्ड टेलर ने किया। इस बम का आविष्कार अमेरिकी वैज्ञानिकों द्वारा 1952 में किया गया था। यह बम नाभिकीय संलयन की प्रक्रिया पर आधारित है। परमाणु बम की तुलना में यह बम एक हजार गुना प्रभावशाली होता है। इस बम में ड्यूटीरियम तथा ट्राइटियम के संलयन से ऊपर ऊर्जा निकलती (मुक्त) है।

हाइड्रोजन बम में हाइड्रजन के चार परमाणु के संलयन से हीलियम का एक परमाणु बनता है। यहाँ भी आरम्भिक द्रव्यमान तथाअन्तिम द्रव्यमान में एक अन्तर होता है, जो प्रचुर ऊर्जा के रूप में निर्मुक्त होता है।

साधारण बम (Ordinary Bomb) : साधारण बम में विस्फोटक पदार्थ भरे रहते हैं। आग लगने पर विस्फोटक पदार्थ जल उदता है और भयंकर आवाज के साथ विस्फोट करता है। जलना एक रासायनिक प्रतिक्रिया है, जो अधिक ऊर्जा उत्सर्जित करती है।

परमाणु बम (Atom Bomb): सामान्यतया परमाणु बम को नाभिकीय बम भी कहा जाता है, इसका सिद्धान्त नाभिकीय विखण्डन पर आधारित है। परमाणु बम यूरेनियम —235 अथवा जिससे यूरेनियम या प्लूटोनियम अन्य परमाणुओं में टूट जाते हैं और न्यूट्रान को पैदा करते हैं। ये न्यूट्रान पुनः यूरेनियम या प्लूटोनियम को तोड़ने में सक्षम होते हैं। इस प्रकार एक शृंखला प्रतिक्रिया प्रारम्भ होती हैं प्रतिक्रिया में भाग लेने वाले द्रव्यमान प्रतिफल के द्रव्यमान से अधिक होता हैं द्रव्यमान में कमी प्रचुर ऊर्जा में निर्मुक्त होती है। बम का विस्फोट किये जाने पर लगभग 10⁷ डिग्री सेन्टीग्रेड ताप व लाखों वायुमण्डलीय दाब के बराबर दाब उत्पन्न होता है। यह बम (परमाणु बम) नाभिकीय संलयन विनाशकारी रूप है।

नाभिकीय रिएक्टर (Nuclear Reactor): प्रथम नाभिकीय अभिक्रिया 2 दिसम्बर, 1942 में अमेरिका में सम्पन्न की गई थी। इस क्रिया में प्रमुख योगदान इटली मूल के प्रसिद्ध वैज्ञानिक एनारिको फर्मी का रहा है।

नाभिकीय विखण्डन द्वारा विमोचित ऊर्जा पानी गरम करने में उपयुक्त होता है। इससे उत्पन्न भाप द्वारा टरबाइन को घुमाया जाता है, अंततः विद्युत उत्पन्न की जाती है।

वे स्थान जहाँ पर यह क्रिया सम्पन्न होती है तथा इस प्रकार विमोचित ऊष्मीय ऊर्जा विद्युत में परिवर्तित की जाती है, नाभिकीय रिएक्टर कहलाते हैं। यूरेनियम रिएक्टर में यूरेनियम ईंधन के रूप में इस्तेमाल होता है। प्रकृति से प्रापत यूरेनियम में U-235 की मात्रा बहुत ही कम होती है।

शृंखला अभिक्रिया (Chain Reaction)

जब यूरेनियम 235 के नाभिक का विखण्डन होता है, ऐसी स्थिति में बिखरते हुए खण्डों में दो या तीन न्यूट्रान भी होते हैं। यदि वे न्यूट्रान बहुत तेज वेग से गतिशील हो रहे हों तो कोई विशेष प्रभाव नहीं पड़ता क्योंिक विखण्डन केवल मंद वेग न्यूट्रान के कारण ही संभव है। किन्तु यदि न्यूट्रान पास के नाभिक से उचित वेग से टकराये तो इस नाभिक का भी तीन या अधिक न्यूट्रानों के उतरने के साथ—साथ विखण्डन हो जायेगा। यदि ये न्यूट्रान तीन अन्य U-235 परमाणुओं पर आघात करे, ऐसी स्थिति में तीन अन्य न्यूट्रान भी उत्पन्न करेगा।

राडार (Radar): इसका आशय 'Radio Angle Direction and Range' है। अर्थात् रेडियो अभिज्ञान एवं परासन है। राडार आकाश में स्थित वस्तु के स्थान निर्धारण के लिए प्रयुक्त होता है और इसमें रेडियो तरंग का उपयोग होता है। राडार के तीन भाग होते हैं— (i) प्रेषक, (ii) ग्राहक और (iii) कैथोड किरण, ओलिसोग्राफ।

रेडियो तरंग अल्प तरंग दैर्ध्य परन्तु उच्च आवृत्ति की होती है इन तरंगों को राडार सेट से संकेन्द्रित प्रकाश पुंज के रूप में मुक्त किया जाता है। इसके प्रकाश पुंज के बीच ऊपर की कोई वस्तु टकराती है, ऐसी स्थिति में रेडियो तरंग की ध्वनि लौटकर राडार सेट से चली आती है। फलतः हमें वस्तु की दूरी, ऊँचाई और दिशा का ज्ञान हो जाता है।

टी. एन. टी. (T.N.T.) : यह ट्राई नाइट्रो टालूइन का संक्षिप्त नाम है। यह एक प्रकार का उच्च विस्फोटक पदार्थ है। जो गोला, बम तथा तारपीडो के अन्दर भरा जाता है।

मेसर (Maser): इसका संक्षिपत नाम है— Microwave Amplification by Stimulated Emission of Radiation अर्थात् विकिरण को उद्दीपित उत्सर्जन द्वारा माइक्रो तरंगों को प्रवर्द्धन। इसके आविष्कार में जे.पी. गोरडन, एच. जे. गीगार एवं सी. एच. टाउन्स का संयुक्त योगदान था। इसकी कार्यप्रणाली लेसर जैसी है। लेसर में प्रकाश की किरणें उत्पन्न होती हैं, जबिक मेसर में सूक्ष्म तरंगे उत्पन्न होती हैं। सर्वप्रथम लेसर का निर्माण 1954 में टाउन्स द्वारा किया गया था। इसका पता राडार (Radar) में करके कृत्रिम उपग्रहों आदि का ठीक—ठीक पता लगाया जाता है एवं साथ—साथ कई ग्रहों के विषय में जानकारी भी प्राप्त होती है। समुद्र के अन्दर तरंगों को प्रेषित करने एवं आपरेशन आदि में भी इसका प्रयोग किया जाता है।

कृत्रिम उपग्रह: इनका परिक्रमण काल उसकी पृथ्वी तल से ऊँचाई पर निर्भर करता है। उपग्रह, पृथ्वी तल से जितना दूर होगा उसका परिक्रमण काल उतना अधिक होता है।

 यदि घूमते हुए किसी उपग्रह से कोई वस्तु या पैकेट छोड़ दिया जाय तो वह पृथ्वी पर न गिरकर उपग्रह के साथ उसी चाल से उसी कक्षा में घूमता रहेगा।

उपग्रह का परिक्रमण काल:

• केवल पृथ्वी तल से ऊँचाई पर ही निर्भर करता है।

 पृथ्वी के अति निकट चक्कर लगाने वाले उपग्रह का परिक्रमण काल-84 मिनट होता है।

उपग्रहों में भारहीनता :

- कृत्रिम उपग्रहों में भारहीनता की अवस्था होती है।
- उपग्रहों मेंभारहीनता के कारण ही अन्तरिक्ष यात्री अपना भोजन विशेष प्रकार के ट्यूब में ले जाते हैं।
- चन्द्रमा भी उपग्रह है किन्तु उसका द्रव्यमान अधिक होने के कारण के कारण वहाँ भारहीनता की अवस्था नहीं होती है। वहाँ भार का अनुभव नहीं होता है।

भू-स्थायी उपग्रह ;

- यह पृथ्वी तल से 36000 Km. की ऊँचाई पर होते हैं। इन्हें संचार-उपग्रह भी कहा जाता है।
- पृथ्वी के परितः घूमने वाले कृत्रिम उपग्रह से बाहर कोई गेंद गिराई जाती है तो वह पृथ्वी के परितः उपग्रह के समान आर्वत काल के साथ घूमती रहेगी।
- कृत्रिम उपग्रह में विद्युत ऊर्जा का स्रोत सौर—सेलें होती हैं।

लिफ्ट में पिण्ड का भार :

- यदि लिपट ऊपर जाती है जो व्यक्ति को अपना भार बढ़ा महसूस होता है।
- यदि लिफ्ट नीचे जाती है तो व्यक्ति को अपना भार घटा महसूस होता है।
- यदि लिफ्ट एक समानवेग सेचलती है तो व्यक्ति को अपने भार में कोई परिवर्तन महसूस नहीं होता है।
- यदि लिफ्ट की डोरी टूट जाती है तो स्वतन्त्र अवस्था में पिण्ड नीचे गिरता है और व्यक्ति को भारहीनता की स्थिति महसूस होती है।

पलायन वेग (Escape Velocity): "यदि किसी पिण्ड को पृथ्वी तल से ऊपर की ओर एक न्यूनतम वेग से फेंका जाये तो पिण्ड गुरूत्वीय क्षेत्र को पार कर जाता है तथा पिण्ड वापस पृथ्वी पर नहीं आ पाता ; इस वेग को पलायन वेग कहते हैं।"

पलायन वेग =
$$\sqrt{2gR}$$

जहाँ R = पृथ्वी की त्रिज्या।

 $R = 6.4 \times 10^6 \text{m}$

पलायन वेग = 11.2 किलोमीटर / सेकण्ड

- वायुमण्डल की उपस्थिति या अनुपस्थिति पलायन वेग पर निर्भर करती है।
- यदि ग्रह या उपग्रहों पर पलायन वेग का मान अधिक है तो वहाँ सघन वायुमण्डल उपस्थिति होता है।
- यदि पलायन वेग कामान न्यूनतम है तो वहाँ वायुमण्डल नहीं पाया जाता है।

सामान्य विज्ञान

भाग-4: रसायन विज्ञान (Chemistry)

रसायन विज्ञान (Chemistry) विज्ञान की वह शाखा है, जिसके अन्तर्गत पदार्थों के गुणों, संगठन, संरचना तथा उनमें होने वाले परिवर्तनों का अध्ययन किया जाता है। लेवायिसये को रसायन विज्ञान का जनक माना जाता है।

रासायन विज्ञान की प्रमुख शाखाएँ

अकार्बनिक रसायन (Inorganic Chemistry) : यह सभी तत्वों एवं उनके यौगिकों (कार्बनिक यौगिकों को छोड़कर) का अध्ययन है।

कार्बनिक रसायन (Organic Chemistry) : इस शाखा के अन्तर्गत कार्बन के यौगिकों का अध्ययन किया जाता है।

भौतिक रसायन (Physical Chemistry) : इस शाखा के अन्तर्गत रासायनिक अभिक्रियाओं के नियमों तथा सिद्धान्तों का अध्ययन किया जाता है।

द्रव्य (Matter): ऐसी कोई भी वस्तु जो स्थान घेरती है व जिसमें भार होता है द्रव्य कहलाती है। जैसे– मिट्टी, जल, हवा इत्यादि।

द्रव्य की 3 अवस्थाएं होती हैं जिन्हें ठाँस, द्रव तथा गैस अवस्था कहा जाता है। जबकि **प्लाज्मा** द्रव्य की चौथी अवस्था है।

परमाणु एवं परमाणु संरचना (Atomic and Atomic Structure)

परमाणु संरचना : परमाणु का केन्द्रीय भाग इोस भारी, धनावेशित होता है जो पोट्रान तथा न्यूट्रानों का बना होता है, इसे नाभिक (Nucleus) कहते हैं। नाभिक प्रोट्रान तथा न्यूट्रान का बना होता है। नाभिक के चारों ओर ऋणावेशित इलेक्ट्रान एक निश्चित कक्षा में चक्कर लगाते हैं। प्रोट्रान और इलेक्ट्रान पर समान तथा विपरीत आवेश होता है।

डाल्टन ने सर्वप्रथम कई पदार्थों की रचना का अध्ययन किया, निष्कर्ष निकाला कि सभी पदार्थ अति सूक्ष्मकणों से मिलकर बने हैं, जिन्हें पुनः विभक्त नहीं किया जा सकता। डाल्टन ने इन्हें 'परमाण्' कहा है।

परमाणु (Atom): किसी रासायनिक तत्व का वह सबसे छोटा भाग, जिसमें उस तत्व की समस्त विशिष्टताएँ सुरक्षित हैं, परमाणु कहलाता है। परमाणु का एक रासायनिक अस्तित्व होता है, अर्थात् यह विभाज्य नहीं है। प्रत्येक परमाणु, इलेक्ट्रान, प्रोट्रॉन तथा न्यूट्रान से मिलकर बना होता है।

अणु (Molecule) : किसी यौगिक का वह सूक्ष्तम विभाज्य कण होता है, जिसमें यौगिक की समस्त विशेषताएँ सुरक्षित होती हैं। अणु का निर्माण परमाणु से ही होता है।

एक परमाणु में जितने प्रोट्रान होते हैं, उतने ही इलेक्ट्रान होते हैं। अर्थात् परमाणु आवेश रहित (Nutral) होता है। परमाणु रासायनिक तत्वों की सूक्ष्मतम इकाई होती है, लेकिन उनका सामान्यतया स्वतन्त्र अस्तित्व नहीं हो सकता है। किसी तत्व के दो या दो से अधिक परमाणु मिलकर एक पृथक और स्वतन्त्र अस्तित्व का निर्माण करते हैं, इसे अणु कहा जाता है। **उदाहरण**— ऑक्सीजन O_2 के रूप में होता है, अर्थात् ऑक्सीजन के दो परमाणु मिलकर ऑक्सीजन के अणु (Molecule) का निर्माण करते हैं। ओजोन (O_3) अणु में ऑक्सीजन के तीन परमाणु होते हैं।

यदि परमाणु पर इलेक्ट्रानों की संख्या में वृद्धि हो जाये तो परमाणु ऋणावेशित हो जाता है, इसे ऋणायन कहते हैं। जब परमाणु से इलेक्ट्रान का ह्वास (Loss) हो जाता है तो परमाणु धनावेशित हो जाता है तो इसे धनायन कहा जाता है जैसे H^+ (हाइड्रोजन + आयन)।

परमाणु संख्या (Atomic Number) : वह मूलभूत संख्या जो उस परमाणु के नाभिक से प्राप्त प्रोट्रानों की संख्या को बतलाती है, परमाणु संख्या कहलाती है। यह संख्या, इलेक्ट्रानों की संख्या के भी बराबर होती है। जैसे O का परमाणु क्रमांक—8 है अर्थात O के नाभिक में 8 प्रोट्रान हैं।

परमाणु भार (Atomic Weight) : परमाणु के नाभिक में उपस्थित प्रोट्रानों तथा न्यूट्रानों की संख्या का योग परमाणु भार कहलाता है।

परमाणु के मूलकण: परमाणु में 3 मूलकण हैं— प्रोट्रान, न्यूट्रान और इलेक्ट्रान। किन्तु परमाणु के संगठन में स्थाई औ अस्थाई कणों की संख्या अब लगभग 30 तक पहुँच गई है। इनमें से अधिकतर प्रोट्रान, न्यूट्रान तथा इलेक्ट्रान के विघटन से उत्पन्न होते हैं और अधिकतर अस्थाई कण ही हैं। इनमें से कुछ कण द्रव्यमान कण तथा कुछ ऊर्जा कण के रूप में होते हैं।

इलेक्ट्रान : इलेक्ट्रान अति सूक्ष्म ऋणावेशित कण होते हैं तथा परमाणु के नाभिक के चारों ओर चक्कर लगाते हैं। इनकी खोज 1897 में जे. जे. टामसन ने किया था। इलेक्ट्रान पर 1.6×10^{-19} कूलॉम का आवेश होता है इनका द्रव्यमान 9.1×10^{-31} Kg होता है। यह एक स्थाई मूल कण होता है। इस पर एक ईकाई ऋण आवेश होता है। इलेक्ट्रान कण तथा तरंग दोनों अवस्थाई में पाया जाता है। इसकी खोज 1919 में रदरफोर्ड ने की थी।

प्रोटान : प्रोटान की खोज 1919 में रदरफोर्ड नामक वैज्ञानिक ने किया। प्रोटान परमाणु के नाभिक में पाया जाने वाला एक धनआवेशित कण होता है जिस पर आवेश 1.6×10^{-19} कूलॉम होता है। प्रोटान का द्रव्यमान इलेक्ट्रान के द्रव्यमान से अधिक होता है।

न्यूट्रान : न्यूट्रान की खोज 1932 में जेम्स चैडविक ने किया था। यह नाभिक में पाये जाने वाला उदासीन कण है अर्थात् इस पर कोई विद्युत आवेश नहीं होता है। एक न्यूट्रान का द्रव्यमान एक प्रोट्रान के द्रव्यमान के बराबर होता है।

समस्थानिक (Isotopes): किसी रासायनिक तत्व के दो या उससे अधिक रूपों, जिसमें परमाणु क्रमांक एक से ही तथा परमाणु भार भिन्न-भिन्न अर्थात् परमाणु के नाभिक में प्रोट्रानों की संख्या सामान तथा न्युट्रानों की संख्या भिन्न हो।

खोज	खोजकर्ता
परमाणु सिद्धान्त	डाल्टन
परमाणुं संरचना	वोर और रदरफोर्ड
इलेक्ट्रान	जे.जे. थामसन
प्रोट्रान	रदरफोर्ड
न्यूट्रान	चैडविक
प्लास्टिक	अलेक्जेंडर
परमाणु संख्या	माजले
रेडियो एक्टिविटी	हेनरी वेकुरल
रेडियम	मैडम क्यूरी
यूरेनियम	क्लापरोध
पाश्चुरीकरण	लुई पाश्चर
किण्वन	लुई पाश्चर
विद्युत बैटरी	वोल्टा
एन्टीवायोटिक्स	अलेक्जेण्डर फ्लेमिंग

समभारिक (Isobars): विभिन्न तत्वों के उन परमाणुओं को समभारितक कहते हैं जिनका परमाणु भार समान होता है तथा परमाणु क्रमांक भिन्न—भिन्न, अर्थात् उनमें प्रोट्रानों (और इलेक्ट्रानों) की संख्या भिन्न—भिन्न हो। उदाहरण— आर्गन, पोटेशियम तथा कैल्शियम तीनों समभारी हैं। इन तीनों का परमाणु भार 40 है जबिक परमाणु क्रमाक क्रमशः 18, 19, 20 होता है।

'रसायन विज्ञान' विशेष तथ्य

- सबसे हल्का तत्व —'हाइड्रोजन'
- सबसे भारी तत्व –आस्मियम (O₅)
- सबसे हल्का धात्विक तत्व -लिथियम (Li)
- भूपरत पर सबसे अधिक मात्रा में पाया जाने वाला तत्व -ऑक्सीजन $({\rm O_2})$
- भूपरत पर सबसे कम पाया जाने वाला तत्व —एस्टैटीन (At)
- प्रकृति में पाया जाने वाला सबसे कठोर धातु हीरा (Diamond)
- वायुमण्डल में सर्वाधिक मात्रा में पाया जाने वाला तत्व —नाइट्रोजन (N₂)(78%)

- एक—मात्र धातु जो साधारण ताप और दाब पर द्रव —द्रव (Hg)
- एकमात्र अधातु जो साधारण ताप और दाब पर द्रव अवस्था में पाये जाते हैं –ब्रोमीन (Br)
- सर्वाधिक विद्युत चालकता वाला तत्व —सिल्वर (Ag) धातु है।
- सर्वाधिक विद्युत चालकता वाला अधातु ग्रेफाइट
- सर्वाधिक श्रृंखला की प्रवृत्ति वाला तत्व –कार्बन (C)
- सर्वाधिक यौगिक (रासायनिक पदार्थ) बनाने वाला तत्व–कार्बन (C) (लगभग 10 लाख यौगिक)
- सर्वाधिक विद्युत धनात्मक तत्व –फैन्शियम (Fr)
- सर्वाधिक विद्युत ऋणात्मक तत्व —फ्लोरीन (F)
- उच्चतम इलेक्ट्रान बन्धुता वाला तत्व –क्लोरीन (Cl)
- मानव निर्मित प्रथम तत्व -पालोनियम (Po)

नोट : प्राकृतिक गैस या जैव गैस या मार्शगैस CH_4 को कहा जाता है।

रासायनिक पदार्थों के व्यावसायिक नाम तथा रासायनिक नाम तथा सूत्र

			· · · · · · · · · · · · · · · · · · ·
	व्यावसायिक नाम	रासायनिक नाम	सूत्र
1.	धावन सोडा (धोने का सोडा)	सोडियम कार्बोनेट	Na ₂ CO ₃ . 10H ₂ O
2.	बेकिंग सोडा (खाने का सोडा)	सोडियम बाई कार्बोनेट	NaHCO ₃
3.	कास्टिक सोडा	सोडियम हाइड्राक्साइड	NaOH
4.	साधारण नमक	सोडियम क्लोराइड	NaCl
5.	विरंजक चूर्ण या ब्लीचिंग पावडर	कैल्सियम ऑक्सीक्लोराइड	Ca(OCl)Cl or CaoCl ₂
6.	फिटकरी (Alum)	पोटैशियम एल्युमीनियम सल्फेट	K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$
7.	शुष्क बर्फ (Dry Ice)	ठोस कार्बन डाईआक्साइड	CO_2 (ठोस)
8.	मार्श गैस (गोबर गैस)	मीथेन	CH_4
9.	द्रव स्वर्ण (Liquid Gold)	पेट्रोल	_
	झूठा सोना (False Gold)	आइस सल्फाइट	Fes
	रेड लेड या सिंदूर	ट्राइ प्लाम्बिक टेट्राऑक्साइड	Pb_3O_4
	चूने का पानी (बुझा हुआ चूना)	कैल्सियक हाइड्रॉक्साइड	Ca (OH) ₂
	चूना बिना बुझा (क्विक लाइम)	कैल्सियम आक्साइड	CaO
		कैल्सियम सल्फेट	CaSO ₄ .5H ₂ O
	चूने का पत्थर (लाइम स्टोन या चाक)	कैल्सियम कार्बोनेट	CaCO ₃
	हरा कसीस	फेरस सल्फेट	$FeSO_4$
17.	नीला थोथा	कॉपर सल्फेट	CuSO ₄ .5H ₂ O
18.	सुहागा	बोरेक्स	$Na_2B_4O_7.10H_2O$
19.	नौसादर	अमोनियम क्लोराइड	NH ₄ Cl

मिश्रधातु (Alloy): मिश्र धातु का अर्थ है दो या दो से अधिक तत्व का मिश्रण—इनमें से कम से कम एक तत्व का धातु (Metal) होना आवश्यक है। कुछ महत्वपूर्ण मिश्रधातु तथा उपयोग इस प्रकार है।

मिश्र धात् संगठन

- 1. पीतल (Brass) Cu (70-80%), Zn (20-30%)
- 2. कॉसा (Bronze) Cu (75-90%), Sn (10-25%)
- 3. जर्मन सिल्वर Cu (50%, Zn- (25%), Ni (25%) नोट : जर्मन सिल्वर में सिल्वर (चाँदी) नहीं होता, केवल यह चाँदी की तरह दिखता है।
- 4. टांका (Solder) Sn (67%), सीसा (Pb) (33%)
- 5. जंगरोधी इस्पात Fe (73%), Cr (18%), Ni (8%),

C - (1%)

हाइड्रोजन तथा जल (H_2,H_2O)

ब्राह्माण्ड में हाइड्रोजन सर्वाधिक मात्रा में (लगभग 90%) पाया जाता है। सूर्य तथा तारों का आधा भाग हाइड्रोजन का बना हुआ है।

साधारण हाइड्रोजन एक मात्र तत्व है जिसके नाभिक में न्यूट्रान नहीं पाया जाता है।

जल की कठोरता

मृदु और कठोर जल (Soft Water and Hard Water): जो जल साबुन के साथ आसानी से झाग देता है, उसे मृदु जल ओर जो कितनाई से झाग देता है, उसे कठोर जल कहते हैं जल की कठोरता उसमें कैल्सियम और मैग्नीशियम के बाइकार्बोनेट, क्लोराइड, सल्फेट, नाइट्रेट आदि लवणों के घुले रहने के कारण होती है। जब तक कठोर जल में उपस्थित कैल्शियम और मैग्नीशियम आयनों का पूर्ण रूप से अवक्षेपण नहीं हो पाता तब तक कठोर जल साबुन के साथ झाग नहीं बनाता।

जल की कठोरता दो प्रकार की होती है— अस्थायी कठोरता और स्थायी कठोरता। यदि जल की कठोरता जल को उबालने से दूर हो जाती है तो इस प्रकार की कठोरता अस्थाई कठोरता कहलाती है। यह कठोरता जल में कैल्सियम और मैग्नीशियम के बाइकार्बोनेट घुलें होने के कारण होती है। अस्थाई कठोरता जल को उबालने से या जल में बुझा चूना अथवा दूधिया डालने से दूर हो जाती है यदि जल को उबालने से उसकी कठोरता दूर नहीं होती तो इस प्रकार की कठोरता जल की स्थायी कठोरता जल की स्थायी कठोरता उसमें मैग्नीशियम, कैल्सियम के सल्फेट, क्लोराइड, नाइट्रेट आदि लवणों के घुले रहने के कारण होती है।

- शुद्ध जल का PH-7 होता है। जल 100°C तापमान पर खौलने तथा 4°C से नीचे तापमान पर जमने लगता है। 4°C पर जल का घनत्व सर्वाधिक होता है जबिक इससे अधिक या कम ताप पर घनत्व घटने लगता है।
- पेट्रोल से लगी आग को पानी द्वारा नहीं बुझाया जा सकता, क्योंकि पेट्रोल पानी से हल्का होने के कारण जल से ऊपर आकर जलता रहता है।
- जल के शुद्धीकरण तथा रोगाणु रहित करने के लिए ब्लीचिंग पाउडर या फिटकरी का प्रयोग करते हैं। अशुद्ध जल में धूल कण, बैक्टिरिया आदि जल में कोलाइडी विलयन बनाते हैं। जल में फिटकरी मिलाने पर ये सभी स्कंदित हो जाते हैं और जल शुद्ध हो जाता है।

नोट— घाव तथा रक्त स्नाव वाले स्थानों पर फिटकरी रखने पर रक्त तथा जीवाणु स्कंदित हो जाते हैं और रक्त स्नाव बन्द हो जाता है।

- ightharpoonup हाइड्रोजन पर ऑक्साइड (H_2O_2) के तनु घोल (विलयन) का प्रयोग कीटाणुनाशक के रूप में कान, दाँत, घाव, फोडा आदि धोने के काम आता हैं
- 🕨 हाइड्रोजन पर आक्साइड विरंजक का कार्य भी करता है।

कार्बन

कार्बन एक अधातु तत्व है जिसका स्थान आवर्तसारणी के IV समूह में है। कार्बन का परमाणु संख्या 6 तथा परमाणु भार 12 है। कार्बन की संयोजकता 4 होती है।

- सभी तत्वों में कार्बन की शृंखला करने की प्रवृत्ति सर्वाधिक होता है।
- हाइड्रोकार्बन— वे यौगिक हैं जो केवल कार्बन और हाइड्रोजन के बने होते हैं। कार्बन परमाणुओं की लम्बी शृंखला बनाने के कारण अनेकों हाइड्रोकार्बन संभव है। जैसे कच्चा खनिज तेल (पेट्रोल) आदि।
- मीथेन (CH₄) को मार्श गैस (दलदली स्थानों पर पाये जाने के कारण) कहते हैं। गोबर गैस का मुख्य अवयव मीथेन (CH₄) है। जंगलों में गिरे हुए पत्तों के सड़ने से मीथेन गैस बनती है जिससे जंगल में आग लगने पर उग्र रूप धारण कर लेती है। खानों में लगने वाले आग ओर विस्फोट का कारण मीथेन है।
- आक्सी एसिटिलीन गैस को ज्वाला गैस भी कहते हैं इसका उपयोग धातुओं को काटने तथा बैल्ड करने के काम आती है।
- ठोस कार्बन डाई आक्साइड (CO₂) को शुष्क बर्फ (तापमान – 78°C) कहते हैं।
- मिथाइल आइसोसायनेट (MIC) या मिक गैस एक जहरीली गैस है जिसका उपयोग कीटनाशक बनाने में किया जाता है। 1984 के भोपाल गैस दुर्घटना में यूनियन कार्बाइड फैक्ट्री, भोपाल से इसी गैस का रिसाव हुआ जिसके कारण हजारों लोग मारे गये।

- ग्रेफाइट का उपयोग पेंसिल लीड, शुष्क श्नेहक (Dry lubricant) तथा परमाणु भट्टी में न्यूट्रान मेदक के रूप में किया जाता है।
- फलों को पकाने के लिए एथिलिन गैस का उपयोग किया जाता हैं
- ग्रीन हाउस प्रभाव के लिए उत्तरदायी गैस कार्बन डाईआक्साइड है।
- घरों में ईंधन के रूप प्रयुक्त की जाने वाली द्रवित प्राकृतिक गेस को। एल.पी.जी. (Liquid Petroleum Gas) कहते हैं। यह ब्यूटेन और प्रोपेन गैसों का मिश्रण हैं
- कार्बन डाई आक्साइड गैस (CO₂) का प्रयोग आग बुझाने वाले यन्त्रों में किया जाता है। इसके अतिरिक्त कार्बन ट्रेटाक्लोराइड का प्रयोग पायरीन के नाम से आग बुझाने के संयन्त्रों में किया जाता है।
- कार्बोहाइड्रेट, वसा, प्रोटीन तथा विटामिन पदार्थ है।

कुछ प्रमुख अधातु

नाइट्रोजन (N)- नाइट्रोजन एक अधातु है। आयतन की दृष्टि से यह वायुमण्डल का 78% भाग है जबिक वायुमण्डल सहित सम्पूर्ण पृथ्वी पर नाइट्रोजन 0.01% है। यदि वायुमण्डल में नाइट्रोजन न हो तो सिर्फ आक्सीजन की उपस्थिति से सम्पूर्ण संसार जलकर भरम हो जाता।

- ेरिफ्रिजरेटरों तथा अन्य प्रशीतक संयंत्रों में अमोनिया या क्लोरोफ्लोरो कार्बन (किसी एक का) प्रयोग होता है।
- ightharpoonup नाइट्रस आक्साइड (N_2O) को हँसाने वाली गैस या लाफिंग गैस कहते हैं। यह एक निश्तेजक भी है। (क्लोरोफार्म का प्रयोग भी निश्तेजक के रूप में होता है।)
- नाइट्रोजन का उपयोग औद्योगिक संयंत्रों में निष्क्रिय तथा अज्वलनशील वातावरण उत्पन्न करने के लिए किया जाता है।
- अमोनिया का अन्य उपयोग विस्फोटक बनाने, कृत्रिम रेशम बनाने में किया जाता है।
- मृदा में कुछ नाइट्रोजन स्थिरीकरण करने वाले जीवाणु पाये जाते हैं जो वायुमण्डलीय नाइट्रोजन को नाइट्रेट में बदल देते हैं। ये जीवाणु हैं— राइजोवियम नाइट्रोमोनास, नाइट्रोवैक्टर आदि।

फास्फोरस (P)

- फास्फोरस के 5 अपररूप हैं— पीला फास्फोरस, लाल फास्फोरस, श्वेत फास्फोरस, बैंगनी फास्फोरस, काला फास्फोरस।
- दियासलाई बनाने के लिए लाल फास्फोरस या फास्फोरस ट्राई सल्फाइड का प्रयोग किया जाता है।
- ष्टेत फास्फोरस का प्रयोग चुहानाशक विष, विस्फोटक, धमपटाके, आतिशबाजी बनाने में किया जाता है। (आतिशबाजी में विभिन्न रंगों का प्रकाश उत्पन्न करने के लिए KMnO₄ (पोटैशियम परमैंगनेट) का प्रयोग किया जाता है।)
- समुद्रों में जहाजों का सिंग्नल (होम सिंग्नल) देने के लिए फास्फीन (PH3) का प्रयोग किया जाता है।

सल्फर (S)

पेट्रोलियम शोधन संयंत्रों तथा वाहनों से प्रदूषण के रूप में सल्फर डाई आक्साइड (SO₂) निकलती है। SO₂ तथा नाइट्रोजन के आक्साइड वातावरण के जल वाष्प से क्रिया कर सल्फ्यूरिक अम्ल तथा नाइट्रिक अम्ल बनाते हैं, जो वर्षा के जल के साथ मृदा पर आकर मृदा को अम्लीय बनाते हैं। इसे ही अम्ल वर्षा कहते हैं। ताजमहल का क्षरण मथुरा तेल शोधक कारखाने से निकलने वाले SO₂ के कारण हो रहा है।

कुछ प्रमुख धातुएँ तथा इनका प्रयोग

सोडियम (Sodium): Na

- गलित सोडियम का प्रयोग नाभिकीय रियेक्टरों में शीतलकों (Coolent) के रूप में।
- > सोडियम वाष्प का प्रयोग सोडियम लैम्पों में।
- NaCl का प्रयोग खाने के नमक में।
- भोजन में सोडियम की अधिकता से रक्तदाब बढ जाता है।

पोटैशियम (Potassium) : (K)

- पोटैशियम नाइट्रेट (KNO₃) को शोरा या बारूद कहते हैं।
 इसका उपयोग विस्फोटक पदार्थ बनाने में होता है।
- भोजन या शरीर में उपस्थित K⁺ हृदय की गति को नियंत्रित करता है।
- पोटैशियम के विभिन्न यौगिकों को पोटाश उर्वरक के रूप में उपयोग होता है जैसे—
 पोटैशियम क्लोराइड (KCl), पोटैशियम सल्फेट K₂SO₄, पोटैशियम कार्बोनेट K₂CO₃, पोटैशियम नाइट्रेट KNO₂

कैल्सियम : (Ca)

- कैल्शियम तथा फास्फोरस, हड्डी और दांत के मुख्य संगठक / अवयव हैं।
- कैल्शियम कार्बोनेट (CaCO₃) का उपयोग दंत मंजन पेस्ट तथा पावडर बनाने के लिए किया जाता है।
- प्लास्टर ऑफ पेरिस (रासायनिक नाम हेमिहाइड्रेट कैल्शियम सल्फेट (Ca SO₃ 1/2 H₂O) जल से क्रिया (जल योजन) करने के बाद ठोस और कड़ा हो जाता है। इसका उपयोग हड्डी टूटने पर प्लास्टर चढ़ाने, मूर्ति तथा खिलौने का निर्माण करने में किया जाता है।

कॉपर (Copper) ताँबा : (Cu)

- ताँबा, विद्युत चालक होने के कारण विद्युत तारों तथा विद्युत उपकरणों में इसका उपयोग किया जाता हैं
- बर्तन, सिक्का, मिश्र धातु आदि का निर्माण कॉपर या ताँबा द्वारा किया जाता हैं
- कॉपर सल्फेट (CuSO₄) तथा क्यूप्रस आक्साइड का उपयोग कीटनाशक तथा पीडानाशक बनाने में होता है।

मैग्नीशियम : (Mg)

- पौधों के क्लोरोफिल का मुख्य संघटक में मैग्नीशियम होता है।
- मैग्नीशियम एल्वा (Mg (OH)2.Mg CO3 3H2) एक एंटासिड (पेट की अम्लता और गैस दूर करने वाला) है। यह बाजार में ENO के नाम से आता है।

जिंग (Zinc): (Zn)

- जिंगक आक्साइड (ZnO) का उपयोग मलहम तथा चेहरे
 की क्रीम बनाने में होता है।
- जिंक आक्साइड (ZnO) का उपयोग सफेंद पेन्ट बनाने में किया जाता है।
- लोहे की चादरों का जस्तीकरण करने में जस्ते का उपयोग किया जाता है।

सोना (Gold) : (Au)

अयस्क

 सोना इतना नरम होता है कि उसे टिकाऊ बनाने के लिए उसमें अन्य धातुएँ मिलाई जाती है जैसे–

सोने की किस्म	धातुओं का संगठन	
सफेद सोना	सोना + प्लेटिनम	
लाल सोना	सोना + ताँबा	
हरा सोना	सोना + चाँदी	
नीला सोना	सोना + लोहा	

आभूषण बनाने वाले सोने में कॉपर (ताँबा) मिलाया जाता है। मिश्र धातुओं में आमतौर सोने की मात्रा को कैरेट के रूप में व्यक्त किया जाता हैं शुद्ध सोना (100% सोना) 24 कैरेट का होता है। 50% शुद्ध सोना 12 कैरेट का होता है। अर्थात् एक कैरेट सोने में (मिश्र धातु) में लगभग 4% सोना होता है।

चाँदी (Silver): (Ag)

- चाँदी धातुओं में सर्वाधिक विद्युत तथा उश्मा की चालक धातु है।
- चाँदी सर्वाधिक संक्षारक रोधी (Corrosionless) धातुओं में से है।
- दंत गुहिकाओं में सिल्वर अमलगम (चाँदी और पारा की मिश्र धातु) भरा जाता है।
- सिल्वर नाइट्रेट का प्रयोग दर्पण बनाने के लिए किया जाता हैं
- सिल्वर ब्रोमाइड, सिल्वर क्लोराइड, सिल्वर आयोडाइड प्रकाश संवेदी होने के कारण फोटोग्राफी प्लेट बनाने में किया जाता है।
- सिल्वर आयोडाइड का प्रयोग कृत्रिम वर्षा के लिए किया जाता है।

पारा (Hg)

- ट्युब लाइट में पारा या मरकरी वाष्प भरी जाती है।
- पारा का धातुओं के साथ बने मिश्रधातु को अमलगम कहा जाता है।

अक्रिय तत्व

हीलियम (He): परमाणु क्रमांक 2 परमाणु भाग 4

- (i) हल्की गैस होने के कारण हीलियम का उपयोग मौसम सम्बन्धी गुब्बारे तथा वायुयान के टायरों में भरने के लिए किया जाता है।
- (ii) समुद्री गोताखोर तथा दमा रोगी को कृत्रिम श्वसन के लिए हीलियम तथा ऑक्सीजन का मिश्रण दिया जाता हैं
- (iii) हीलियम का अन्य उपयोग कम्पास, नाविक यन्त्रों, एटॉमिक रियेक्टर, वेल्डिंग आदि कार्यों में किया जाता है।

नियॉन (Ne) : इसे नूतन गैस भी कहा जाता है।

- विद्युत बल्बों में कम दाब पर नियॉन भरे होने के कारण चमकदार दीप्ति हैं। जिसके कारण वायुयान चालकों को संकेत संप्रेषण के प्रकाश बल्बों में नियॉन का प्रयोग किया जाता है।
- विज्ञापन चिन्हों में विभिन्न रंगों के प्रकाश उत्पन्न करने के लिए नियॉन गैस का प्रयोग किया जाता है।

आर्गन (Ar) : इसे सुस्त–सुस्त गैस कहा जाता है।

 आर्गन गैस विद्युत बल्बों में भरी जाती है क्योंिक इसके उपस्थिति में तन्तु (Filament) का जीवन काल बढ़ जाता है।

रेडॉन (Rn) :

- े कैंसर के रेडियो एक्टिव उपचार के लिए किया जाता है। नोट: वर्तमान में कैंसर के रेडियो एक्टिव उपचार (Radio therapy) के लिए कोबाल्ट 60 (Co-60) का उपयोग प्रचलित है। इससे गामा किरणें निकलती हैं जो कैंसर कोशिकाओं को नष्ट कर देती हैं।
- रेडॉन गैस वायुमण्डल में नहीं पायी जाती है। इसका अविष्कार डार्न ने रेडियम से किये थे।

बहुलक (Polymer)

वृहद अणुओं वाला वह पदार्थ जिसमें किसी अणु में कोई विशेष इकाई स्वयं को बार—बार दोहराकर बहुत विशाल अणु का निर्माण करती है, बहुलक कहते हैं, जैसे— रबड़, आइसोप्रीन नामक रासायनिक पदार्थ को एकल इकाई बार—बार जुड़कर वृहद रबर अणु का निर्माण करती है। एकल ईकाईयों के बार—बार जुड़ने को बहुलीकरण कहते हैं।

बहुलक के कुछ विशेष उदाहरण

- स्टार्च और सेल्यूलोज भी प्राकृतिक बहुलक है, जो पौधों से प्राप्त किये जाते हैं। ये दोनों बहुलक ग्लूकोज एकल इकाई के बने हैं। रूई (कपास), जूट, सन (सनई के तन्तु) आदि सेल्यूलोज (ग्लूकोज के बहुलक) हैं। प्रोटीन बहुलक एमिनो अम्ल एकल इकाई से बना है।
- प्लास्टिक भी एक बहुलक पदार्थ हैं। प्लास्टिक दो प्रकार के होते हैं— (i) प्राकृतिक प्लास्टिक— जैसे लाख, (ii) कृत्रिम प्लास्टिक— जैसे नाइलोन, पोलीथीन आदि। कृत्रिम प्लास्टिक दो प्रकार के होते हैं।

थर्मोप्लास्टिक: यह गर्म करने पर मुलायम तथा ठंडा करने पर कठोर हो जाते हैं। यह गुण इनके अन्दर सदैव विद्यमान रहता है चाहे यह क्रिया कितनी बार क्यों न दोहराई जाये। उदाहरण के लिए— पालीस्टियरीन, पोलीथीन, सेल्यूलाइड, नाइलोन, पॉली विनाइल क्लोराइड (PVC)।

थर्मोसेटिंग प्लास्टिक : वे प्लास्टिक पहली बार गर्म करते समय मुलायम तथा ठंडा करने पर इच्छित आकार में ढालकर कठोर कर लिया जाता है। पुनः ठंडा या गर्म करने पर कोई परिवर्तन नहीं होता है। उदाहरण के लिए वेकेलाइट, एल्किड रेजिन।

- नॉयलोन मानव द्वारा संशिलष्ट किया गया प्रथम रेशा है।
- रेयॉन (Rayon): सेल्यूलोज के बने कृत्रिम रेश को रेयॉन कहते हैं। इसका उपयोग सूत से मिश्रित कर कपडत्रा बनाने, कालीन बनाने, घावों पर बांधने की जाली तथा पट्टी बनाने में किया जाता है।
- रेक्सिन (Rexin): यह कृत्रिम चमड़ा है। इसका निर्माण सेल्यूलोज या वनस्पति से होता है। इसका प्रयोग कैनवास, जुता, चप्पल बनाने के लिए किया जाता है।
- बेकेलाइट : यह फिनाल तथा फार्मेल्डिहाइड को सोडियम हाइड्राक्साइड के उपस्थिति में गर्म करने से प्राप्त होता है। इसका उपयोग रेडियो, टेलीविजन आदि के केस, अटैची, बाल्टी के बनाने में किया जाता है।
- शुद्ध सेल्यूलोज से कागज बनता है।

सामान्य रसायन (परीक्षोपयोगी महत्वपूर्ण तथ्य)

- हीटर का क्वाइल (Coil) नाइक्रोम मिश्र धातु की बनी होती है।
- अम्लों को रखने का पात्र मोनल मिश्र धातु की बनाई जाती है।
- वायुमण्डल में विभिन्न गैसों का संघटन (मात्रात्मक रूप) इस प्रकार है। नाइट्रोजन 78%, ऑक्सीजन 20.3%, जल वाष्प 0.4%, आर्गन 0.90%, कार्बन डाई आक्साइड 0.03%
- ठण्डे प्रदेशों के वाहनों के रेडीयेटर के जल में एल्कोहल तथा ग्लिसरीन मिलाया जाता है जिससे पानी न जमे।
- पेट्रोल को गैसोलीन भी कहते हैं। जब पेट्रोल में 10-20% तक एथिल या मेथिल एल्कोहल मिलाते हैं तो उस मिश्रण को गैसोहाल कहते हैं।

- सैकरीन (रासायनिक नाम अर्थोसल्फाबेंजीमाइड) चीनी से 55 गुना अधिक मीठा होता है इसका भोज्य मान शून्य होता है। इसका प्रयोग मधुमेह (डायबिटीज) के रोगी करते हैं। यह कैंसरकारी पदार्थ होने के कारण इसका प्रयोग सीमित है।
- पेट की जाँच करने के लिए रोगी को बेरियम सल्फेट का घोल पिलाकर X-Ray लिया जाता है क्योंकि यह पदार्थ x-किरणों के लिए अपारदर्शी होता है।
- अति घातक विस्फोटक डायनामाइट रासायनिक रूप से नाइट्रोग्लिसरीन है। इसका आविष्कार अल्फ्रेट नोबेल (जिनके नाम पर नोबेल पुरस्कार है) ने किया था।
- कागज विशुद्ध रूप से सेलुलोज का बना होता है।

चार्ट

रासायनिक पदार्थ	कहाँ पाये जाते हैं
टार्टेरिक अम्ल	इमली
साइट्रिक अम्ल	नींबू, संतरा, मौसम्मी
एसिटिक अम्ल	सिरका
लैक्टिक अम्ल	दूध, दही
केसीन प्रोटीन	दूध, पनीर
निकोटिन	तम्बाकू
कैफीन	चाय, काफी, कोको, चाकलेट
फार्मिक अम्ल	चींटी, बिच्छू, हड्डा के डंक विष में

- कार्बन काल निर्धारण (Carbon Dating), जीवाश्मों,
 चट्टानों आदि की आयु का पता लगाने की एक विधि है।
- > CO₂ और कार्बन टेट्रा क्लोराइड (CCI₄) अग्निरोधी होने के कारण इसका प्रयोग आग बुझाने या अग्निशमन के लिए किया जाता है।
- पेट्रोल इंजन में कार्बोरेटर पेट्रोल में वायु को मिलाता है जो उसे जलने में सहायता प्रदान करता है। ऐक्सलेटर कार्बोरेटर वाल्व को खोलकर/बढ़ाकर वायु की मात्रा को बढ़ाता है।
- सेल्युलॉइड (Celluloid) एक मानव निर्मित प्लास्टिक द्रव्य है जिसका उपयोग फोटोग्राफी फिल्मों के (फिल्मों की रील) बनाने में किया जाता है।
- रात्रि के समय जुगनू से निकलने वाला प्रकाश लुसिफेरिन नामक रसायन के ऑक्सीकरण के फलस्वरूप होता है।
- फॉर्मेल्डिहाइड (23-40% तक) का जल तनु विलयन फार्मलीन कहलाता है। इसका उपयोग मृत जीवों के परिरक्षण (Preservative) के रूप में किया जाता है।
- सर्वाधिक सरल हाइड्रोकार्बन क्या है—मीथेन
- क्लोरीनीकृत जल का गृण कैसा होता है—अम्लीय
- 🕨 कौन सा पदार्थ कार्बन का सर्वाधिक शुद्ध रूप है–काजल
- काँच में कौन सा पदार्थ मिला देने पर गलने में सुविधा होती है—क्यूलेट
- सीसा किस अम्ल में गल जाता है–हाइड्रोक्लोरिक
- द्रव का घनत्व मापने का उपकरण है— हाइड्रोमीटर
- लोहे में जंग लगना कौन सा परिवर्तन है— रासायनिक
- ताँबे व टिन की मिश्रधात् क्या कहलाती है—कांसा
- वेल्डिंग करने में किस गैस का प्रयोग किया जाता है— ऑक्सीजन एवं एसीटिलीन
- > प्रयोगशाला में यूरिया का निर्माण किया था- वोल्हर
- कौन-सी गैस चाँदी की चमक को काला कर देती है-ओजोन
- खाद्य पदार्थ, मुख्यतः पिरिंक्षित (Preservative) मांस के लिए एनटबायोटिक्स तथा Ultravoilet Rays का उपयोग किया जाता है।

भौतिक परिवर्तन एवं रासायनिक परिवर्तन (Physical Changes & Chemical Changes)

ऐसे परिवर्तन जिनमें कोई नया पदार्थ नहीं बनता, भौतिक परिवर्तन कहलाती है। पदार्थों की भौतिक अवस्था, दशा, आकृति, आकार, आयतन आदि में परिवर्तन भौतिक परिवर्तन है। जैसे— जल का जमकर बर्फ बनना, चीनी का जल में विलयन, स्प्रिंग का खींचना। ऐसे परिवर्तन जिसमें नये पदार्षि बन जाते है, रासायनिक परिवर्तन कहलाते हैं। इस परिवर्तन से मूल पदार्थ का रासायनिक संगठन और इसकी अणु संरचना या केवल अणु संरचना बदल जाती है जैसे— दूध से दही का जमना, कागज का जलना, लोहे में जंग लगना।

रसायन विज्ञान कुछ शबदावली

पदार्थ : पदार्थ वह है जो कुछ स्थान घेरता, जिसमें भार हो, जो व्यक्ति को अपनी उपस्थिति का अहसास करा सके। पदार्थ ठोस, द्रव, गैस तीनों अवस्था में हो सकते हैं।

तत्व (Element): वह सरल पदार्थ जो न तो अपने से सरल पदार्थ में विभक्त हो सके न ही अन्य सरल पदार्थों के योग से बनाया जा सके, तत्व कहलाता है। जैसे— ऑक्सीजन, कार्बन।

मिश्रधातु : दो या दो से अधिक धातुओं के मिश्रण से बनी धातु को मिश्रधातु कहते हैं।

अपररूप : जब कोई तत्व दो या दो अधिक भौतिक अवस्थाओं में पाया जाता है तो उसे अपररूप कहते हैं जैसे कार्बन के दो अपररूप— ग्रेफाइट और हीरा। रासायनिक गुण समान परन्तु भौतिक गुण भिन्न—भिन्न हो।

अमलगम : किसी धातु के पारे के साथ बने मिश्रण को अमलगम कहा जाता है।

अम्ल (Acid) : वह रासायनिक यौगिक, जिसमें से हाइड्रोजन आयन (H⁺) निकलते हैं तथा जो नीले लिटमस पेपर को लाल रंग में बदल देते हैं। एवं जिसका स्वाद खट्टा होता है और जो सक्षारक होते हैं अम्ल कहलाते हैं। इसमें लोहा, टिन, जस्ता जैसी अनेक धातुये घूल जाती हैं।

क्षार (Base): ऐसा पदार्थ जो अम्ल से क्रिया करके लवण तथा जल बनाते हैं। ये लाल लिटमस को नीला बना देते हैं तथा स्वाद में कडूवे होते हैं।

उभयधर्मी पदार्थ : ऐसा पदार्थ जिसमें अम्ल तथा क्षार दोनों के गुण मौजूद होते हैं।

गैलवीनीकरण : लोहे या इस्पात को जंग या क्षरण से बचाने के लिए उस पर जस्ता (Zn) का मुल्लमा चढ़ाते हैं, इसे गैलवनीकरण कहते हैं। संसार का इस्तेमाल होने वाला 35% जस्ता गैलनवीकरण में ही प्रयोग होता है।

उर्ध्वपातन: वह क्रिया जिसमें ठीस पदार्थ बिना द्रव में बदले गैस अवस्था में आ जाते हैं, उर्ध्वपातन कहते हैं। ये पदार्थ हैं– कैम्फर, आयोडीन, नौसादर आदि।

प्रतिदीप्ति (Fluorescence) : कुछ पदार्थ दृश्य प्रकाश विकिरण अवशोषित करते ही अपने अन्दर से दृश्य प्रकाश प्रस्फुटित करने लगते हैं इसे प्रतिदीप्ति कहते हैं जैसे— इयोसिन रंजक।

स्मुरदीप्ति (Phosphorescence): कुछ पदार्थ दृश्य प्रकाश विकिरण अवशोषित करने के बाद विकिरण स्रोत हटाने के बाद भी दृश्य प्रकाश निकालते रहते हैं, इसे स्मुरदीप्ति कहते हैं। ये पदार्थ है— कैल्सियम सल्फाइट, जिंक सल्फाइट। **ऑक्सीकरण** (Oxidation) : वह रासायनिक क्रिया जिसमें तत्व से इलेक्ट्रान का हास होता है।

अवकरण (Reduction) : वह क्रिया जिसमें तत्व के इलेक्ट्रान में वृद्धि होता है।

उत्प्रेरक (Catalyst): वे पदार्थ, जो रासायनिक क्रिया की गित तीव्र या मंद कर दें परन्तु रासायनिक क्रिया में भाग न ले, उत्प्रेरक कहलाते हैं।

pH मान: यह एक स्केल हैं इस पर किसी पदार्थ की अम्लता या क्षरकता को मापा जाता है। pH किसी पदार्थ की हाइड्रोजन आयन उत्सर्जन क्षमता की गणितीय अभिव्यक्ति है। pH स्केल शून्य से 14 तक हो सकती है। pH मान 7 उदासीनता (न अम्ल, न क्षार), 7 से कम अम्लता तथा 7 से अधिक क्षरकता का द्योतक है। 7 से जितना कम pH मान हो, अम्ल उतना शक्तिशाली होगा।

विलयन : विलयन वह है, जो किसी विलयन के pH परिवर्तन को रोकता है।

ऊष्मा तथा ताप: ऊष्मा ऊर्ज़ा का एक रूप है जो किसी वस्तु में उसके बनाने वाले अणुओं की गति के कारण पैदा होता हैं जबकि ताप वस्तु की तापीय अवस्था निर्दिष्ट करता है।

कली चूना तथा सोडा चूना: कली चूना कैल्सियम तथा ऑक्सीजन का धौरिक है। कली चूना तथा सोडियम हाइड्राऑक्साइड के संयोग से सोडा चूना का निर्माण होता है।

परमाणु तथा केन्द्रक: परमाणु तत्व का वह सूक्ष्मतम कण है जिसमें तत्व के सारे गुण विद्यमान रहते हैं। परमाणु के केन्द्र में केन्द्रक होता है, जहाँ परमाणु की सारी संहति मौजूद होती है।

एमोरफस तथा एम्फोटेरिक : जिन पदार्थों का रवा नहीं होता है, वे पदार्थ एमोरफस कहलाते हैं। अम्ल तथा क्षार दोनों का गृण रखने वाले पदार्थ एम्फोटेरिक कहलाते हैं।

परमाणु भार तथा परमाणु संख्या : किसी तत्व का परमाणु भार यह बताता है कि वह तत्व हाइड्रोजन के एक परमाणु से कितना गुना भारी है। किसी तत्व की परमाणु संख्या यह स्पष्ट करती है कि उस तत्व के केन्द्रक में कितने प्रोटान हैं।

रेडियो सक्रियता : ऐसी किरणें जिनसे वेकुरेल किरणें उत्सर्जित होती हैं, रेडियो ऐक्टिव कहलाती हैं। रेडियो ऐक्टिव वेकुरेल किरणों के उत्सर्जन के प्रपंच को रेडियो ऐक्टिवता या रेडियो सक्रियता कहते हैं।

उत्प्रेरक: उत्प्रेरक ऐसा पदार्थ है जिसकी मात्रा उपस्थिति से कोई भी रासायनिक क्रिया में वृद्धि या ह्रास हो जाता है किन्तु उस पदार्थ में कोई परिवर्तन नहीं होता। जो उत्प्रेरक रासायनिक क्रिया में वृद्धि करता है, उसे धन उत्प्रेरक कहते हैं।

निष्क्रिय गैसें : साधारणतः जो। गैस रासायनिक प्रतिक्रिया में भाग नहीं लेती, उसे निष्क्रिय गैस कहा जाता है। जैसे– हीलियम, नीआन, आर्गन, क्रिप्टन, रेडोन, जोनोन।

अधातु : जिन तत्वों में धातुओं के गुण नहीं है, अधातु कहलाते हैं। अधातु भंगुर होते हैं। अधातुओं में सुघट्यता नहीं होता है।

उपधातु : जो तत्व धातुाओं एवं अधातुओं दोनों के बीच के गुण प्रदर्शित करते हैं, उपधातु कहलाते हैं।

यौगिक: वह पदार्थ जो दो या दो से अधिक तत्वों के पारस्परिक रासायनिक संयोग से बना होता है और जिसे उपयुक्त रासायनिक साधनों सहारे भिन्न गुणवाले अवयवों में विच्छेदित किया जा सकता है, यौगिक कहलाते हैं।

मिश्रण: जिन पदार्थों में भिन्न-भिन्न प्रकार के दो या दो से अधिक भाग होते हैं मिश्रण कहते हैं। मिश्रण के अवयवों को भौतिक विधियों द्वारा पृथक किया जा सकता है।

उष्माक्षेपी अभिक्रिया : ऐसी अभिक्रिया जिसमें उष्मा निकलती है, उष्माक्षेपी अभिक्रिया कहलाती है।

संयोजकता : किसी परमाणु की संयोजकता इलेक्ट्रॉन की वह संख्या है, जो परमाणु दूसरे परमाणु के साथ सम्बन्ध होने में खोता है अथवा ग्रहण करता है।

अणु : पदार्थ अणुओं से और अणु परमाणुओं से बने होते हैं। किसी पदार्थ के सूक्ष्मतम कण जो स्वतन्त्र अवस्था में रह सकते है तथा जिसमें उस पदार्थ के समस्त गुण उपस्थित रहते हैं, अणु कहलाते हैं।

अम्ल: ऐसा द्रव्य जो घोल में हाइड्रोजन आयन देता है, जिसमें हाइड्रोजन रहता है। जिसके धातु द्वारा विस्थापन से लवणका निर्माण हो सकता है, जिसमें प्रोटीन त्यागने की प्रवृत्ति हो, अम्ल कहलाता है।

कार्बन : कार्बन एक तत्व है। इसका नाम लैटिन शब्द ''कार्बो' से लिया गया है जिसका आशय है कोयला।

द्रवणांक : किसी भी ठोस का द्रव के रूप में परिवर्तित होने की क्रिया को द्रवण कहते हैं। और जिस स्थिर ताप पर ठोस पिघलकर द्रव अवस्था में आ जाता है, उसे उस द्रव का द्रवणांक कहाा जाता है।

प्रभाजी आसवन (Fractional Distilltion): इस क्रिया के तहत उन मिश्रित द्रवों को पृथक किया जाता है, जिनके क्वथनांक में बहुत कम अन्तर होता है। पृथ्वी तल से प्राप्त कच्चे तेल से शुद्ध पेट्रोल, डीजल, मिट्टी का तेल प्रभाजी आसवन विधि से ही अलग किया जाता है। जलीय वायु से भी विभिन्न गैसों का पृथक्करण भी इसी विधि से किया जाता है।

अयस्क
अजुराइट (Azurite)
कॉपर पायराइट (Copper pyrite)
कैल्कोपाइराइट (Chalcopyrite)
कैल्कोसाइट (Chalcocite)
क्यूप्राइट (Cuprite)
कैल्सियम कार्बोनेट
जिप्सम (Gypsom)
फ्लुओरस्पार (Flurospar)
फॉस्फोराइट
बॉक्साइट (Bauxite)
क्रोयोलाइट (Cryolite)
कोरनडम (Corundum)
डायस्पोर (Diaspore)
सोडियम क्लोराइड
सोडियम कार्बोनेट
सोडियम नाइट्रेट
बोरेक्स
कैसीटेराइट (Casiterite)
नेविट सिल्वर (Native silver)
अर्जेन्टाइट (Argentite)
केराजींराइट (Keragyrite)
स्फेलेराइट (Sphelerite)
जिक ब्लैन्ड (Zinc blende)
फ्रेंकलिनाइट (Franklinite)
कैलामीन (Calamine)
जिंकाइट (Zincite)

पोटेशियम	पोटेशियम क्लोराइड
	पोटेशियम कार्बोनेट
	पोटेशियम नाइट्रेट
मैग्नेशियम	मैगनेसाइट (Magnesite)
	डोलोमाइट (Dolomite)
	कार्लेलाइट (Carnallite)
	ऐपसम साल्ट (Epsom salt)
मर्करी	सिनेबार (Cinnabar)
<u>मैंगनीज</u>	पाइरोलुसाइट (Pyrolusite)
लोहा	मैग्नेटाइट (Magnanite)
	हेमाटाइट (Haematite)
	लाइमोनाइट (Limonoite)
	सिडेराइट (Siderite)
	आइरन पाइराइट (Iron Pyrite)
	कैल्कोपाइराइट (Chalcopyrites)
यूरेनियम	पिंचब्लैड
	कार्नेटाइट
लेड	गैलेना (Galena)

豖.	मिश्रधातु	संघटन
1.	पीतल	ताँबा 70%, जिंग 30%
2.	गन मेटल	ताँबा 88%, जिंक 2%, टिन 10%
3.	स्टैनलेस स्टील	आयरन 89.4%, क्रोमियम 10%, मैंगनीज 0.35%, कार्बन 25%
4.	मुंट्ज धातु	ताँबा 60% तथा जस्ता 40%
5.	डच धातु	ताँबा 80% तथा जस्ता 20%
6.	जर्मन सिल्वर	ताँबा 51%, निकिल 14%, जिंक 35%
7.	कांसा	तांबा 89%, टिन 11%
8.	मैगनेलियम	एल्युमिनियम 95%, मैग्निशियम 5%
9.	ड्यूरेलुमिन	एल्युमिनियम 95%, तांबा 4%, मैगनीज 0.5%, मैगनीशियम 0.5%
10.	मुद्रा धातु	ताँबा 89.9%, एल्युमिनियम 10.1%
11.	घंटा–धातु	ताँबा 80%, टिन 20%
12.	रोल्ड गोल्ड	ताँबा 89.9%, एल्युमिनियम 10.1%
13.	नाइक्रोम	निकिल, लोहा, क्रोमियम तथा मैंगनीज
14.	कृत्रिम सोना	तांबा 90% तथा एल्युमिनियम 10%
15.	टाँका (Solder)	सीसा 68%, टिन 32%
16.	टाइपमेटल	सीसा 81%, एण्टीमनी 16%, टिन 3%

धातुएं एवं उनके यौगिकों का उपयोग		
豖.	यौगिक	उपयोग
1.	पारा (Hg)	(i) थर्मामीटर बनाने में (ii) अमलगम बनाने में (iii) सिन्दूर बनाने में
2.	मरक्यूरिक क्लोराइड (HgCl ₂)	(i) कीटनाशक के रूप में (ii) कैलोमल बनाने में
3.	सोडियम बाईकार्बोनेट (NaHCO ₃)	(i) बेकरी उद्योग में (ii) अग्निशामक यंत्र में (iii) प्रतिकारक के रूप में
4.	मैग्नीशियम (Mg)	(i) धातु मिश्रण बनाने में (ii) प्लैश बल्ब बनाने में
5.	मैग्नीशियम कार्बोनेट (MgCO ₃)	(i) दवा बनाने में (ii) दन्तमंजन बनाने में (iii) जिप्सम साल्ट बनाने में
6.	मैग्नीशियम हाइड्रॉक्साइड Mg (OH) ₂	(i) चीनी उद्योग में मोलसिस से चीनी तैयार करने में
7.	अनार्द्र मैग्नीशियम क्लोराइड (MgCl ₂ .6H ₂ O)	(i) रूई की सजावट से
8.	कैल्सियम (Ca)	(i) पैट्रोलियम से सल्फर हटाने में (ii) अवकारक के रूप में
9.	कैल्सियम ऑक्साइड (CaO)	(i) ब्लीचिंग पाउडर बनाने में (ii) गारे के रूप में
10.	कैल्सियम कार्बोनेट (CaCO ₃)	(i) दूथपेस्ट बनाने में (ii) कार्बन डाईऑक्साइड बनाने में (iii) चूना बनाने में
11.	जिप्सम (CaSO ₄ .2H ₂ O)	(i) प्लास्टर ऑफ पेरिस बनान में (ii) अमोनियम सल्फेट बनाने में (iii) सीमेन्ट उद्योग में
12.	प्लास्टर ऑफ पेरिस (CaSO ₄) ₂ .2H ₂ O)	(i) मूर्ति बनाने में (ii) शल्य—चिकित्सा में पट्टी बांधने में
13.	ब्लीचिंग पाउडर (CaOCl ₂)	(i) कीटाणुनाशक के रूप में (ii) कागज तथा कपड़ों के विरंजन में
14.	कॉपर (Cu)	(i) बिजली का तार बनाने में (ii) मीतल बनाने में

		(i) कीटाणुनाशक के रूप में
15.	कॉपर सल्फेट या नीला थोथा (CuSO₄.5H₂OH)	(ii) विद्युत सेलों में (iii) कॉपर के शुद्धिकरण में (iv) रंग बनाने में
16.	क्यूप्रिक ऑक्साइड (CuO)	(i) पेट्रोलियम के शुद्धिकरण में (ii) ब्लू तथा ग्रीन कांच के निर्माण में
17.	क्यूप्रस ऑक्साइड (Cu ₂ O)	(i) लाल कांच के निर्माण में (ii) पेंस्टिसाइड के रूप में
18.	क्लोरीन (Cl)	(i) ब्लीचिंग पाउडर बनाने में (ii) मस्टर्ड गैस बनाने में (iii) टिंक्वर गैस बनाने में (iv) कपड़ों एवं कागज को विरंजित करने में
19.	ब्रोमीन (Br)	(i) रंग उद्योग में (ii) औषधि बनाने में (iii) टिंक्वर गैस बनाने में (iv) प्रतिकारक के रूप में
20.	आयोडीन (I)	(i) टिंक्चर आयोडीन बनाने में (ii) रंग उद्योग में (iii) कीटाणुनाशक के रूप में (iv) रंग उद्योग में
21.	सल्फर (S)	(i) कीटाणुनाशक के रूप में (ii) बारूद बनाने में (iii) औषधि के रूप में
22.	फॉस्फोरस (P)	(i) लाल-फॉस्फोरस – दियासलाई बनाने में (ii) श्वेत फॉस्फोरस – चूहे मारने में (iii) फॉस्फोरस ब्रांज बनाने में
23.	हाइड्रोजन (H_2)	(i) अमोनिया के उत्पादन में (ii) कार्बनिक योगिक के निर्माण में (iii) रॉकेट ईंधन के रूप में
24.	द्रव हाइड्रोजन	(i) रॉकेट ईंधन के रूप में

25.	भारी जल (D ₂ O)	(i) न्यूक्लियर प्रतिक्रियाओं में (ii) डयूटरेटेड यौगिक के निर्माण में
26.	हाइड्रोक्लोरिक अम्ल (HCl)	(i) क्लोरीन बनान में (ii) अम्लराज बनाने में (iii) रंग बनाने में (iv) क्लोराइड लवण के निर्माण में
27.	सल्फ्यूरिक अम्ल (H ₂ SO ₄)	(i) स्टोरेज बैटरी में (ii) प्रयोगशाला में प्रतिकार के रूप में (iii) रंग—उत्पादन में (iv) पेट्रोलियम के शुद्धिकरण में
28.	अमोनिया (NH3)	(i) आइसफैक्ट्री में (ii) प्रतिकारक के रूप में (iii) रेयॉन बनाने में
29.	नाइट्स ऑक्साइड (N ₂ O)	(i) श्रल्य-चिकित्सा में
30.	प्रोड्यूसर गैस (CO+N ₂)	(i) भट्टी गर्म करने में (ii) सस्ते ईंधन के रूप में (iii) धातु निष्कर्षण में
31.	वाटर गैस (CO+H2)	(i) वैल्डिंग के कार्य में (ii) निष्क्रिय वातावरण तैयार करने में
32.	फिटकरी [K ₂ SO ₄ . Al ₂ (SO ₄) ₃ . 24H ₂ O]	(i) जल को शुद्ध करने में (ii) औषधि—निर्माण में (iii) चमड़े के उद्योग में (iv) कपड़ों की रंगाई में
33.	जिंग (Zn)	(i) बैटरी बनाने में (ii) हाइड्रोजन बनाने में
34.	जिंग ऑक्साइड (ZnO)	(i) मलहम बनाने में (ii) पोरसेलिन में चमन लाने में
35.	जिंग सल्फाइड (ZnS)	(i) श्वेत पिंगमेंट के रूप में
36.	फेरस ऑक्साइड (FeO)	(i) हरा कांच बनाने में (ii) फेरस लवणों के निर्माण में
37.	फेरिक ऑक्साइड (Fe ₂ O ₄)	(i) जेवरात पॉलिश करने में (ii) फेरिक लवणों के निर्माण में

38.	पोटैशियम ब्रोमाइड	फोटोग्राफी
39.	पोटैशियम नाइट्रेट	बारूद
40.	पोटैशियम सल्फेट	उर्वरक
41.	मोनो पोटैशियम टार्टरेट	बेकरी

रसायन विज्ञान कि महत्वपूर्ण बिन्दु

- वायुमण्डल में उपस्थित नाइट्रोजन व ऑक्सीजन बिजली की चमक के दौरान नाइट्रोजन ऑक्साइड में परिवर्तित हो जाती है।
- अस्पतालों में कृत्रिम साँस के लिए प्रयुक्त सिलेण्डरों में
 ऑक्सीजन एवं हीलियम का मिश्रण होता है।
- यदि क्लोरोफार्म को सूर्य के प्रकाश में वायुमंडल में खुला छोड़ दिया जाए, तो वह विषैली गैश फॉस्जीन में बदल जाती है।
- पेट्रोलियम प्रायः प्राकृतिक गैस के नीचे पाया जाता है। कच्चे पेट्रोलियम को प्रभाजी आसवन (Destructive Distillation) के द्वारा शुद्ध किया जाता है। पेट्रोलियम परशिधन का उपोत्पाद पैराफिन होता है।
- ठोस कार्बन डाइऑक्साइड अर्थात् शुष्क बर्फ को गरम करने पर वह सीधे गैस में परिवर्तित हो जाती है।
- क्रीम एक प्रकार का दूध होता है, जिसमें वसा की मात्रा बढ़ जाती है तथा पानी की मात्रा कम हो जाती है।
- यदि दूध से क्रीम को अलग कर दिया जाय, तो दूध का घनत्व बढ़ जाता है।
- नाइट्रस ऑक्साइड (N_2O) को हँसाने वाली गैस कहते हैं।
- सौर सेलों में सीजियम प्रयुक्त होता है।
- खाना बनाते समय सर्वाधिक मात्रा में विटामिन नष्ट होते हैं।
- सबसे प्रबल उपचायक (Oxidizing) है— फ्लोरीन (F)
- पोलोनियम (PO) के सर्वाधिक समस्थानिक होते हैं—27
- सोना का घनत्व पारा के घनत्व से ज्यादा होता है तथा
 पारा का घनत्व इस्पात से अधिक होता हैं इसीलिए सोना
 पारा में डूब जाता है तथा इस्पात तैरता रहता है।
- वर्तमान में कंप्यूटर चिप में गेलियम आर्सेनाइड का प्रयोग किया जाता है जबिक पहले सिलिका का प्रयोग किया जाता था।
- सोडियम को मिट्टी के तेल में रखा जाता है।

वस्तुनिष्ठ प्रश्न : उत्तर सहित

- 1. निम्नलिखित में से कौन—सा एक कवकों और उच्चतर पादपों की जड़ों के बीच उपयोगी प्रकार्यक साहचर्य है ?
 - (a) जैव उर्वरक
- (b) प्रवाल मूल
- (c) लाइकेन
- (d) कवकमूल
- 2. कोबाल्ट 60 आमतौर पर विकिरण चिकित्सा में प्रयुक्त होता है, क्योंकि यह उत्सर्जित करता है—
 - (a) एल्फा किरणें
- (b) बीटा किरणें
- (c) गामा किरणें
- (d) एक्स किरणें
- 3. नीम के वृक्ष ने औद्योगिक महत्व प्राप्त कर लिया है-
 - (a) जैवकीटनाशी और प्रजननरोधी यौगिक के स्रोत के रूप में
 - (b) प्रजननरोधी यौगिक, जैव उर्वरक और कैन्सर—रोधी औषध के स्रोत के रूप में
 - (c) जैव उर्वरक, जैवकीटनाशी और प्रजननरोधी यौगिक के स्रोत के रूप में
 - (d) कैंसर रोधी औषध, जैवकीटनाशी और जैवउर्वरक के स्रोत के रूप में
- बेरियम एक उपयुक्त रूप में रोगियों को पेट के एक्स-किरण परीक्षण से पूर्व खिलाया जाता है, क्योंकि
 - (a) बेरियम एक्स—किरणों के प्रति अपनी पारदर्शिता के कारण एक्स किरणों को पेट के आर—पार गुजरने देता है।
 - (b) बेरियम यौगिक, मैग्नीशियम सल्फेट की तरह एक्स—किरण परीक्षण के पहले पेट को साफ करने में सहायता करता है।
 - (c) बेरियम एक्स-किरणों का एक अच्छा अवशोषक है और इससे चित्र में पेट को अन्य क्षेत्रों की तुलना में स्पष्टता से देखने में सहायता मिलती है।
 - (d) बेरियम लवण रंग में सफेद होते हैं और इससे चित्र में पेट को अन्य क्षेत्रों की तुलना में स्पष्टता से देखने में सहायता मिलती है।
- 5. पेट अथवा शरीर के अन्य आन्तरिक अंगों के अन्वेषण के लिए प्रयुक्त तकनीक, एन्डोस्कोपी आधारित है—
 - (a) पूर्ण आन्तरिक परावर्तन परिघटना पर
 - (b) व्यतिकरण परिघटना पर
 - (c) विवर्तन परिघटना पर
 - (d) ध्रवण परिघटना पर
- 6. निम्नलिखित में से कौन—सी कृषि क्रिया पर्यावरण के लिए अनुकूल है ?
 - (a) जैव कृषि
 - (b) झूम खेती
 - (c) अधिक उपज वाली किस्मों की खेती
 - (d) काँच-घरों में पौधे उगाना
- जब चींटियाँ काटती हैं, तो वे अंतः क्षेपित करती हैं
 - (a) ग्लेशल ऐसीटिक अम्ल
 - (b) मैथेनॉल
 - (c) फॉर्मिक अम्ल
 - (d) स्टिऐरिक अम्ल

- अन्य पशुओं के मांस की तुलना में मछली का उपभोग स्वास्थ्यक माना जाता है, क्योंकि मछली में होता है–
 - (a) बहुअसंतृप्त वसा अम्ल
 - (b) संतृप्त वसा अम्ल
 - (c) अत्यावश्यक विटामिन
 - (d) अधिक कार्बोहाइड्रेट और प्रोटीन
- 9. हीमोफीलिया एक आनुवंशिक विकार है, जो उत्पन्न करता है–
 - (a) हीमोग्लोबीन स्तर में कमी
 - (b) एमंटी हृदय रोग
 - (c) W.B.C में कमी
 - (d) रक्त का स्पन्दन न होना (Non clotting)
- 10. एसीटिलीन के बारे में निम्नलिखित कथनों पर विचार कीजिए-
 - (1) वेल्डन उद्योग में उसका उपयोग होता है,
 - (2) यह प्लास्टिक का निर्माण करने में प्रयुक्त एक कच्चा माल है
 - (3) सिलीकॉन कार्बाइड और पानी का मिश्रण कर इसकी सुगमता से प्राप्ति होती है।

कूट :

- (a) (1) का (2) सही है
- (b) (1) और (3) सही है
- (c) (2) और (3) सही है
- (d) (1), (2) और (3) सही है
- 11. उद्योगों में निम्नलिखित सूक्ष्मजीवों में से कौन—सा एक प्रकार सर्वाधिक व्यापक रूप से उपयोग में आता है ?
 - (a) जीवाण्
 - (b) जीवाण् और कवक
 - (c) जीवाण् और शैवाल
 - (d) जीवाण् सूक्ष्म शैवाल और कवक
- 12. स्टार्च और सैलुलोस के बारे में निम्नलिखित कथनों में से कौन–सा सही नहीं है–
 - (a) दोनों का वानस्पतिक उदीाव है
 - (b) दोनों बहुलक हैं
 - (c) आयोडीन के साथ दोनों रंग प्रदान करते हैं
 - (d) दोनों ग्लूकोस अणु से निर्मित हैं
- 13. अर्गटात्यय, उपभोग से होता है-
 - (a) संदूषित अन्न के
 - (b) विलगित होती हुई वनसपति से
 - (c) संदूषित जल से
 - (d) पके हुए बासी खाद्य के
- 14. ऑक्सीजन की उपस्थिति में ग्लूकोस के कार्बन डाई ऑक्साइड एवं जल में ऊर्जा निर्मुक्त होने के साथ पूर्ण रूपान्तरण होने को कहते हैं—
 - (a) वायुश्वसन
 - (b) अवायुश्वसन
 - (c) ग्लवाइकॉलिसिस
 - (d) जल-अपघटन

- 15. मानव वृक्क अशमरी (Kidney Stones) में पाया जाने वाला प्रमुख रासायनिक यौगिक है—
 - (a) यूरिक अम्ल
 - (b) कैल्सियम कार्बोनेट
 - (c) कैल्सियम ऑक्सलेट
 - (d) कैल्सियम सल्फेट
- 16. निदयों में जल प्रदूषण की माप की जाती है-
 - (a) क्लोरीन की घुली ही मात्रा से
 - (b) ओजोन की घुली हुई मात्रा से
 - (c) नाइट्रोजन की घुली हुई मात्रा से
 - (d) ऑक्सीजन की घुली ही मात्रा से
- 17. नाभिकीय रिएक्टर के निर्माण के निम्नलिखित तत्वों में से कौन—सा एक अनिवार्य है—
 - (a) कोबाल्ट
- (b) किल
- (c) जर्कोनियम
- (d) टंगस्टन
- 18. 'शहद' का प्रमुख घटक है-
 - (a) ग्लूकोस
- (b) सुक्रोस
- (c) माल्टेज
- (d) फ्रक्टोज
- 19. हृदय को रक्त का संभरण करने वाली धमनियाँ कहलाती हैं-
 - (a) ग्रीवा धमनियाँ
 - (b) यकृत धमनियाँ
 - (c) हृदय धमनियां
 - (d) फुफ्फुस धमनियाँ
- 20. सामान्य क्रियाशील महिला के लिए प्रोटीन की उपयुक्त दैनिक मात्रा है—
 - (a) 30 ग्राम (b) 37 ग्राम (c) 40 ग्राम (d) 46 ग्राम
- 21. वाशिंक मशीन का कार्य सिद्धान्त है-
 - (a) अपकेन्द्रण
- (b) अपोहन
- (c) उत्क्रम परासरण
- (d) विसरण
- 22. प्रतिजन ऐसा पदार्थ है, जी-
 - (a) शरीर ताप को कम करता है
 - (b) हानिकर बैक्टीरिया को नष्ट करता है
 - (c) प्रतिरक्षा तंत्र को प्रवर्तित करता है
 - (d) विष के प्रतिकारक के रूप में प्रयोग किया जाता है
- 23. द्रव बूंद की संकुचित होकर न्यूनतम क्षेत्र घेरने की प्रवृत्ति का कारण होता है—
 - (a) पृष्ट तनाव
- (b) श्यानता
- (c) घनत्व
- (d) वाष्प दाब
- 24. पीयूष ग्रंथि अपने प्रेरक हार्मोनों की वजह से अन्य अंतःस्रावी ग्रंथियों की स्नावी सक्रियता को नियंत्रित करती है। निम्न में से कौन—सी अंतःस्रावी ग्रंथि, पीयूष ग्रंथि से स्वतंत्र कार्य कर सकती है—
 - (a) अवटु
- (b) जनन ग्रंथि
- (c) अधिवृक्क
- (d) परावटु
- 25. निम्नलिखित में से कौन-सी एक सदिश राशि है ?
 - (a) संवेग
- (b) दाब
- (c) ऊर्जा
- (d) कार्य

- 26. लहसुन की अभिलाक्षणिक गंध का कारण है—
 - (a) क्लोरो यौगिक
- (b) सल्फर यौगिक
- (c) फ्लुओरिन यौगिक
- (d) एसीटिक अम्ल
- 27. पीत पिंड कहां पाई जाने वाली कोशिकाओं में संहित है ?
 - (a) मस्तिष्क
- (b) अंडाशय
- (c) अग्नाशय
- (d) प्लीहा
- 28. लौंग के तेल का निम्नलिखित में से कौन—सा एक प्रमुख घटक है ?
 - (a) मेथॉल
- (b) युजेनॉल
- (c) मेथैनॉल
- (d) बेन्जैल्डिहाइड
- 29. हैलोजन में सबसे अभिक्रियाशील है-
 - (a) फ्लोरीन
- (b) क्लोरीन
- (c) ब्रोमीन
- (d) आयोडीन
- 30. परिस्थितिक यंत्र में DDT का समावेश होने के बाद निम्नलिखित में से किस एक जीव में उसका संभवतः अधिकतम सांद्रण प्रदर्शित होगा ?
 - (a) टिड्डा
- (b) भेंक
- (c) सांप
- (d) मवेशी
- 31. रेफ्रीजरेटर में खाद्य पदार्थ ताजा रखने हेतु सुरक्षित तापमान है—
 - (a) 4° C (b) 0° C
 - (
- (c) 8°C (d) 10°C
- 32. ऑटोमोबाइल इन्जनों में प्रतिहिम के रूप में किसका प्रयोग होता है ?
 - (a) एथिलीन ग्लाइकोल
- (b) एथेनाल
- (c) मेथेनाल
- (d) एथिटिक
- 33. जैनिको प्रौद्योगिकी है-
 - (a) एड्स से बचने की पद्धति
 - (b) आनुवंशिकी रोगों की पूर्व सूचना प्राप्त करने की तकनीकी
 - (c) खाद्य फसलों की प्रजाति को विकसित करने की तकनीकी
 - (d) मत्स्य पालने की तकनीकी
- 34. समुद्री जल को शुद्ध जल में किस प्रक्रिया द्वारा बदला जाता है ?
 - (a) प्रस्वेदन (Deliquescence)
 - (b) उत्क्रम परासरण (Reverse Osmosis)
 - (c) विद्युत पृथक्करण (Electric Sepratron)
 - (d) उपरोक्त कोई नहीं

ANSWER

1. (d)	2. (b)	3. (c)	4. (c)	5. (a)	
6. (a)	7. (c)	8. (a)	9. (d)	10. (a)	
11. (d)	12. (c)	13. (d)	14. (a)	15. (c)	
16. (d)	17. (c)	18. (c)	19. (d)	20. (d)	
21. (a)	22. (c)	23. (a)	24. (a)	25. (a)	
26. (b)	27. (b)	28. (b)	29. (a)	30. (a)	
31. (a)	32. (a)	33. (b)	34. (b)		

औद्योगिक रसायन (INDUSTRIAL CHEMISTRY)

साबुन

(Soap)

साबुन उच्च वसा अम्लों के क्षारीय लवण हैं। इन्हें सोडियम हाइड्रॉक्साइड अथवा पोटेशियम हाइड्रॉक्साइड की उपस्थिति में वसा अथवा तेल के जल अपघटन द्वारा तैयार करते हैं।

सामान्यतः स्नान करने में प्रयुक्त साबुन वसा तेलों (असंतृप्त वसा) से तैयार किये हुए साबुन तुलनात्मक रूप से कठोर होते हैं तथा घरेलू साबुन के रूप में प्रयोग में लाये जाते हैं।

सोडियम साबुन सामान्य रूपप से कठोर होते हैं जिन्हें कठोर साबुन कहते हैं। पोटेशियम साबुन मृदु तथा अधिक विलयशील होते हैं जिन्हें मृदु साबुन कहते हैं। पोटेशियम साबुन को विशेष उद्देश्यों के लिए प्रयोग करते हैं। उदाहरणार्थ, हजामत बनाने की क्रीम तथा शैम्पू के लिए।

डिटरजेन्ट (Detergents):

डिटरजेन्ट (अपमार्जक) वे रासायनिक पदार्थ हैं जो धूल, ग्रीस या तैलीय पदार्थों को हटाकर वस्त्र आदि को साफ कर देते हैं। इन डिटरजेन्ट्स में साबुन जैसा गुण होता है। इन पर कठोर जल का प्रभाव नहीं पड़ता। अतः सतही—क्रियाशील होकर वस्तु की सफाई कर देते हैं। ये साबुन के स्थान पर प्रयोग होते हैं और इन्हें साबुन रहित डिटरजेन्ट कहते हैं। डिटरजेन्ट संश्लिष्ट (synthetic) कार्बनिक रसायन होते हैं तथा साबुन की अपेक्षा इनमें बेहतर आर्द्रण गुण होता है। साबुन, तेल तथा क्षार के संयोग से बनते हैं, परन्तु डिटरजेन्ट साबुन की तरह नहीं बनाये जा सकते हैं। साबुन धात्विक तत्वों के वसीय अम्लों द्वारा बनाये गये लवण हैं जबिक अपमार्जक सल्फोनिक अम्लों के लवण या एल्किल हाइड्रोजन सल्फेट है।

ऐसे यौगिकों को संश्लिष्ट डिटरजेन्ट कहते हैं; जैसे-सोडियम लॉरिल सल्फेट।

डिटरर्जेन्ट की विशेषता :

निम्नलिखित गुणों के कारण डिटरजेन्ट, साबुन से अधिक उत्तम है–

- (i) डिटरजेन्ट मृदु तथा कठोर दोनों प्रकार के जल में प्रयुक्त किये जा सकते हैं, क्योंकि वे कठोर जल में उपस्थित कैल्सियम और मैग्नीशियम आयनों के साथ अविलेय लवण नहीं बनाते हैं। जबिक साबुन का उपयोग कठोर जल में नहीं किया जा सकता है।
- (ii) डिटरजेन्ट का जलीय विलयन उदासीन होता है।

प्लास्टिक (Plastic)

प्लास्टिक बड़े अणु वाले यौगिक होते हैं अर्थात् ये ऐसे यौगिक होते है। प्रायः असंतृप्त हाइड्रोकार्बन की बहुलकीकरण अभिक्रियाा से प्लास्टिक तैयार किया जाता है। सेलुलोस एक बड़े आकार वाला प्राकृतिक अणु हैं और यह प्लास्टिक निर्माण में प्रयुक्त होता है।

प्लास्टिक के प्रकार ३

प्लास्टिक मुख्यतः दो प्रकार के होते हैं-

- (1) ताप सुनम्य प्लास्टिक (Thermo Plastic)
- (2) ताप दृढ़ प्लास्टिक (Thermo-setting Plastic)
- (1) ताप सुनम्य प्लास्टिक ताप सुनम्य प्लास्टिक की संरचना रेखीय (linear) होती है। ये ऐसे पदार्थों के बहुलकीकरण से बनते हैं जिनके पास एक युग्म बन्ध होता है। ये प्लास्टिक कम ताप पर ही गर्म करने पर मुलायम हो जाते हैं, जिससे इन्हें विभिन्न रूपों में ढाला जा सकता है।

उदाहरण .

- (i) पॉलीथीन, (ii) पॉलीवाइनिल क्लोराइड
- (2) ताप दृढ़ प्लास्टिक— ताप दृढ़ प्लास्टिक क्रांस बंधित (cross linked) होते हैं। ऊष्मा तथा दाब के प्रभाव से इनके अणु एक-दूसरे से और अधिक शृंखलाओं में जुड़त्रकर कठोर ठोस के रूप में किसी भी आकार में बदले जा सकते हैं। परन्तु इसके उपरान्त ये गर्म करने पर पुनः द्रव अवस्था में नहीं आते हैं।

उदाहरण :

(i) बैकेलाइट, (ii) यूरिया—फार्मेएल्डिहाइड प्लास्टिक

कृत्रिम रेशे

(Artificial Fibers)

कृत्रिम रेशे रासायनिक पदार्थों के संश्लेषण द्वारा बनाये जाते हैं। इसके अतिरिक्त प्रकृति में उपलब्ध प्राप्त रेशों को रासायनिक अभिक्रिया द्वारा कृत्रिम रेशों में रूपान्तरित किया गया है। इन्हें रेयान (rayon) कहते हैं। औद्योगिक स्तर पर कृत्रिम रेशे बनाने के लिए सर्वप्रथम सन् 1885 में फ्रांस में सेलूलोस नाइट्रेट का प्रयोग किया गया था। ये रेशे सिल्क (silk) के समान थे। इसी प्रकार के अन्य कृत्रिम रेशे जिनका उपयोग वस्त्र—निर्माण के अतिरिक्त अन्य वस्तुओं के बनाने में किया जाता है, उनके नाम हैं— ऐसीटेट रेशे और पॉलीएस्टर रेशे आदि।

कृत्रिम रेशे प्रायः दो प्रकार के होते हैं-

(1) कपास के रूपान्तरित रेशे

उदाहरण : विस्कोस रेयान एवं एसीटेट रेयान

(2) रासायनिक कृत्रिम रेशे

उदाहरण :

- (i) नायलॉन नायलॉन एक पॉलीएमाइड रेशा है। नायलॉन (NYLON) का नाम न्यूयार्क (New York, N.Y.) और लन्दन (London) दोनों शहरों के संयुक्त नाम पर रखा गया था।
 - (ii) टैरिलीन (डेकरॉन)

औषधियाँ

(Drugs)

कोई भी पदार्थ जो किसी रोग को अभिज्ञानित (Diagnosis) करने, रोकने (Prevention), आराम पहुँचाने तथा उपचार (Cure) के उपयोग में काम आता है, औषधि कहलाता है।

औषधियों का वर्गीकरण :

औषधियों को सामान्यतया उनके गुणों के आधार पर निम्नलिखित वर्गों में विभाजित किया जा सकता है—

(1) एन्टीपायरेटिक्स या ज्वरनाशक (Antipyretics)— ये शारीरिक दर्द तथा बुखार उतारने में लाभप्रद हैं। परन्तु लम्बे समय तक इन औषधियों का प्रयोग नहीं करना चाहिए, क्योंकि ये शरीर को कमजोर करती हैं।

उदाहरणार्थ, (i) ऐस्पिरिन, क्रोसिन, (ii) फिनैसिटिन, एन्टीपाएरिन, पायरोमीडोन

- (2) एनलजेसिक या पीड़ाहारी— इन औषधियों का उपयोग दर्द को दूर करने में किया जाता है। एस्पिरिन पीड़ाहारी दवा है। अधिक दर्द का अनुभव न हो, इसके लिए मार्फीन, कोडीन, हीरोइन आदि नार्कोटिक्स (narcotics) औषधियों को उपयोग करते हैं। ये औषधियाँ नींद लाती हैं और बेहोशी उत्पन्न करती हैं।
- (3) प्रतिरोधी (Antiseptics)— प्रतिरोधी सूक्ष्म जीवों (bacteria) का विकास रोकते हैं या उनहें नष्ट कर देते हैं। जैसे— डिटोल, फिनोल, टिंक्चर आयोडीन क्रमशः घावों को धाने में, उनके उपचार में, रोगाणुनाशक एवं कीटाणुनाशक के रूप में काम आती है।
- (4) एनटीबायोटिक्स या प्रतिजैविक (Antibiotics)— ये औषधियाँ कुछ निश्चित जीवाणुओं के मोल्ड्स (molds), फंजाई (fungi) या बैक्टीरिया (bacteria) आदि से बनाई जाती है। ये औषधियाँ दूसरे जीवाणुओं के विरुद्ध कार्य करती है। माध्यम के सामान्य घटकों से सूक्ष्म जीवों द्वारा उत्पन्न कोई विलेय रासायनिक पदार्थ, जो अन्य सूक्ष्म जीवों की वृद्धि को रोक देता है अथवा नष्ट कर देता है प्रतिजैविक (antibiotic), कहलाता है।

कवकों द्वारा उत्पन्न प्रतिजैविकों में केवल पैनिसिलीन है, जो पहला ज्ञात एन्टीबायोटिक है, जिसका आविष्कार एलेक्जेन्डर फ्लेमिंग ने किया था। इसका उपयोग निमोनिया, ब्रोन्काइटिस तथा गले की खराश आदि के उपचार हेतु किया जाता है।

जीवाणुओं द्वारा उत्पन्न पहली एन्टीबायोटिक्स स्ट्रेप्टोमाइसिन का आविष्कार वैज्ञानिक वाक्समैन ने किया, जिसका उपयोग सर्वप्रथम टी.बी. रोग में किया गया।

विस्फोटक

(Explosives)

विस्फोटक वे पदार्थ हैं जो एकाएक धक्के से या चोट मारने से या सुलगाये जाने पर अपने आयतन से कहीं अधिक आयतन वाले उत्पादों में परिवर्तित हो जाते हैं और काफी ऊर्जा उत्पनन करते हैं।

विस्फोटक के प्रकार:

विस्फोटकों को मुख्य रूप से तीन वर्गों में विभाजित किया जा सकता है—

- 1. मिश्र विस्फोटक (Composite explosives),
- 2. ऐलिफैटिक नाइट्रो विस्फोटक (Aliphatic nitro explosives),
- 3. ऐरोमेटिक नाइट्रो विस्फोटक (Aromatic nitro explosives)
- (1) मिश्र विस्फोटक— इस प्रकार के विस्फोटक दो या दो से अधिक रासायनिक पदार्थों को मिलाकर तैयार किये जाते हैं।

उदाहरण :

- (i) गन पाउडर— यह सबसे पुराना विस्फोटक पदार्थ है जिसे बारूद के नाम से जाना जाता है, जिसका निर्माण शोरा, गंधक तथा चारकोल से किया जाता है।
- (ii) डायनामाइट— डायनामाइट का आविष्कार एल्फ्रेड नोबल ने सन् 1863 में किया था। नोबल ने इसे नाइट्रोग्लिसरीन को कीसेलगर (Kieselguhr) में शोषित करके बनाया था।

डायनामाइट तेल के कुएँ खोदने, सड़कें बनाने, बाँध बनाने और सुरंगें बिछाने तथा चट्टानों को उड़ाने के काम आता है।

(2) ऐलिफैटिक नाइट्रो विस्फोटक— इस वर्ग में निम्नलिखित विस्फोटक आते हैं—

उदाहरण : नाइट्रो मेथेन, टेट्रानाइट्रो मेथेन

(3) ऐरोमेटिक नाइट्रो विस्फोटक— इसके अन्तर्गत निम्नलिखित विस्फोटक पदार्थ आते हैं जो इस प्रकार हैं—

उदाहरण : ट्राइनाइट्रो टॉलूईन, पिक्रिक अम्ल या टी.एन.पी.

काँच

(Glass)

काँच विभिन्न क्षारीय धातुओं के सिलिकेटों का आक्रिस्टलीय मिश्रण होता है। अक्रिस्टलीय ठोस रूप में कांच एक अतिशीतित द्रव है। जिसका निर्माण तापानुशीतल (Annealing) क्रिया द्वारा किया जाता है।

 सर्वप्रथम कांच का निर्माण प्राचीनकाल में मिश्र (Egypt) में हुआ था।

- सोडा कांच सबसे सस्ता व सर्वनिष्ठ कांच है जिसे मृदुकांच (Soft Glass) भी कहते हैं, जिसका उपयोग ट्यूबलाइट, दैनिक प्रयोग के बर्तनों तथा प्रयोगशाला के उपकरण बनाने में किया जाता हैं
- जेना कांच (Xena Glass) सर्वोत्तम श्रेणी का कांच होता है जिसका उपयोग वैज्ञानिक उपकरण तथा रासायनिक पात्रों के निर्माण में होता है।
- फिलण्ट कांच (Glint Glass) का उपयोग विद्युत बल्ब,
 कैमरा तथा दुरबीन के लेंस बनाने में।
- क्रुक्स कांच (Crook's Glass)

 इसका उपयोग धूप चश्मों
 के लेंस के निर्माण में होता है।
- क्राउन कांच (Crown Glass)

 इसका उपयोग अन्य चश्मों के लेंस बनाने में किया जाता है।
- पाइरेक्स कांच (Pyrex Glass)

 इसका उपयोग प्रयोगशाला के उपकरण बनाने में होता है। इस कांच में तापीय प्रघात प्रतिरोधक क्षमता अधिक होती है।
- Photo Chromatic Glass

 एक विशेष प्रकार का कांच होता है,
 जो तीव्र प्रकाश में काला हो जाता है। ये गुण इसमें सिल्वर क्लोराइड की उपस्थिति के कारण होता है।
- कांच को कठोर (Hard) बनाने के लिए पोटैशियम क्लोराइड का उपयोग किया जाता है।

ईंधन

(FUELS)

उन पदार्थों को जिन्हें जलाकर ऊष्मा उत्पन्न की जाती है, ईंधन कहते हैं, जैसे– लकड़ी, कोयला, मिट्टी का तेल आदि।

ईंधन का वर्गीकरण :

मूल रूप के आधार पर ईंधनों की दो भागों में बाँटा गया है—

- (1) प्राथमिक ईंधन कोयला, लकड़ी, पेट्रोल
- (2) द्वितीयक ईंधन जल गैस (CO+ H_2), प्रोड्यूसर गैस (CO+ N_2)।

भौतिक अवस्था के आधार पर ईंधन के प्रकार-

- (i) ठोस ईंधन लकड़ी, कोयला, चारकोल, कोक
- (ii) द्रव ईंधन पेट्रोल, डीजल, केरोसीन
- (iii) गैसीय ईंधन CNG, बायोगैस, प्राकृतिक गैस

बायोगैस-

बायोगेस (या जैव गेंस) एक गैसीय ईंधन है जो पशुओं के अपशिष्ट पदार्थों (जैसे— गोरब आदि), मानव—मल तथा वनस्पतियों (पेड़—पौधों) के अवशेषों से तैयार की जाती है। जब बायो गैस पशुओं के गोबर से बनायी जाती है तो उसे गोबर गैस भी कहते हैं। बायोगैस

कोई एक गैस नहीं वरन् विभिनन गैसों का एक मिश्रण है। बायोगैस में पाये जाने वाले विभिन्न अवयवों के नाम हैं— मेथेन, कार्बन डाइ—ऑक्साइड, हाइड्रोजन तथा हाइड्रोजन सल्फाइड का मिश्रण बायोगैस कहलाता है। जिसमें सर्वाधिक मात्रा में मेथेन गैस (65%) पायी जाती है।

तरल पेट्रोलियम गैस (एल.पी.जी.)-

यह एथेन, प्रोपेन तथा ब्यूटेन का मिश्रण होती है। इसका मुख्य संघटक ब्यूटेन है जो आसानी से जलकर अत्यधिक मात्रा में ऊष्मा प्रदान करती है। उच्च दाब पर ब्यूटेन सुगमता से द्रवित हो जाती है। द्रवित रूप में यह ब्यूटेन सिलिण्डरों में भरकर सप्लाई की जाती है। इसे आमतौर पर तरल पेट्रोलियम गैस (liquified petroleum gas, L.P.G.) कहते हैं। स्पष्ट है कि इण्डेन जैसे घरेलू कैस के सिलिण्डरों में मुख्यतः द्रवित ब्यूटेन ही होती है। इसका ऊष्मीय मान 50kJ/gm होता है।

तरल पेट्रोलियम गैस अति ज्वलनशील गैस है और इसके रिसने से (लीक होने से) विस्फोट हो सकता है। गैस के रिसाव का पता लगाने के लिए इस तरल गैस में एक अत्यनत तीव्र दुर्गन्ध युक्त थोड़ा—सा एथिल मर्केप्टन नामक यौगिक मिश्रित कर दिया जाता है।

प्राकृतिक गैस :

प्राकृतिक गैस में मुख्यतः मेथेन होती है। इसका निर्माण मेथेन, एथेन तथा प्रोपेन से किया जाता है। इसमें सर्वाधिक मात्रा में मेथेन गैस (95%) पायी जाती है। इसका ऊष्मीय मान सबसे अधिक (55 kJ/gm) होता है। प्राकृतिक गैस एक साफ-स्थरा तथा प्रदूषण रहित ईंधन माना जाता है।

पेट्रोल :

पेट्रोल एक जीवाश्मीय ईंधन है, जिसका उपयोग कार, मोटरसाइकिल आदि में किया जाता है। पेट्रोल इंजन में कार्बोरेटर द्वारा पेट्रोल और वायु का मिश्रण किया जाता है।

डीजल :

डीजल का उपयोग भारी वाहनों में किया जाता है, जिसमें टर्बाइन का उपयोग किया जाता है, जो डीजल और वायु को मिश्रित करता है।

प्रणोदक (Propellent) :

प्रणोदक का उपयोग राकेट ईंधन के रूप में किया जाता है। जिसका निर्माण द्रवित हाइड्रोजन सेल्युलोज, रबड़ आदि यौगिकों से किया जाता है। मनुष्य को चन्द्रमा तल पर ले जाने वाला प्रथम अपोलो राकेट में राकेट नोदक के रूप में मेथिल हाइड्रेजीन का प्रयोग किया गया था।

अम्ल, क्षार और लवण (Acid, Base & Salt)

अम्ल : अम्ल वे पदार्थ हैं जो जल में घुलकर हाइड्रोजन आयन देते हैं अर्थात् जलीय विलयन में हाइड्रोजन आयन देने वाले पदार्थ अम्ल कहलाते हैं।

अम्ल के गुण:

- 1. अम्ल स्वाद में खट्टे होते हैं।
- 2. अच्छे एवं प्रबल अम्ल विद्युत के सुचालक होते हैं।
- 3. अम्ल धातु से क्रिया करके हाइड्रोजन गैस मुक्त करते हैं।
- ये नीले लिटमस पेपर को लाल लिटमस पेपर में परिवर्तित कर देते हैं।

उदाहरण तथा उपयोग :

सल्पयूरिक अम्ल : पेट्रोलियम के सोधन में, विस्फोटक बनाने में तथा सीसा संचायक बैट्रियों में द्रव के रूप में इसका उपयोग किया जाता है।

नाइट्रिक अम्ल : औसषिधयों के निर्माण में, उर्वरक बनाने में, विस्फोटक पदार्थों के निर्माण में तथा फोटोग्राफी के साथ—साथ अम्लराज बनाने में किया जाता है।

हाइड्रोक्लोरिक अम्ल : इसका उपयोग अम्लराज बनाने में। (अम्लराज तीन भाग हाइड्रोक्लोरिक अम्ल तथा एक भाग नाइट्रिक भाग का अम्ल होता है)

फार्मिक अम्ल : इसका उपयोग फलों के संरक्षण में तथा जीवाणुनाशक के रूप में किया जाता है। फार्मिक अम्ल चीटियों, बिच्छू मधुमिक्खयों आदि जन्तुओं में विषाक्त पदार्थ के रूप में कार्य करता है।

बेंजोइक अम्ल : इसका उपयोग खाद्य पदार्थों के संरक्षण में किया जाता है।

साइट्रिक अम्ल: इसका उपयोग धातुओं को साफ करने में किया जाता है जिसका मुख्य स्रोत नींबू या खट्टे फलों का रस होता है।

क्षार : वे पदार्थ जो जलीय विलयन में हाइड्रॉक्साइड आयन देते हैं (OHT)।

क्षार के गुण:

- 1. ये स्वाद में कडूवे होते हैं।
- 2. ये लाल लिटमस पेपर को नीला कर देते हैं।
- 3. प्रबल क्षार विद्युत का सुचालक होता है।
- अम्ल से क्रिया करके लवण बनाते हैं।

उदाहरण :

सोडियम हाइड्रॉक्साइड : इसका उपयोग साबुन बनाने में तथा पेट्रोलियम के शुद्धिकरण में किया जाता है।

पोटैशियम हाइड्रॉक्साइड : इसका उपयोग मुलायम साबुन बनाने में किया जाता है।

मैग्नीशियम हाइड्रॉक्साइड : इसका उपयोग पेट की अम्लता को दूर करने में किया जाता है अर्थात् ये एन्टाएसिड के रूप में कार्य करता है।

लवण : अम्ल तथा क्षार की अभिक्रिया के फलस्वरूप लवण का निर्माण होता है जबिक दूसरा यौगिक जल बनता है। लवणों के उपयोग :

सोडियम क्लोराइड: ये मानव आहार का आवश्यक अंग है जो आचार के परिरक्षण तथा मांस एवं मछली के संरक्षण में प्रयोग किया जाता है।

सोडियम बाईकार्बोनेट : इसका उपयोग अग्निशामक यंत्रों में किया जाता है।

सोडियम कार्बोनेट: इसका उपयोग कांच के निर्माण में, अपमार्जक के निर्माण में तथा कपड़ों की धुलाई में किया जाता है।

कॉपर सल्फेंट : इसका उपयोग कीटाणुनाशक के उपयोग में किया जाता है जिसे नीला थोथा के नाम से जाना जाता है।

फिटकरी: इसे पोटाश ऐलम के नाम से जाना जाता है। इसका उपयोग जल के शुद्धिकरण में, रक्त स्कंदन में तथा औषधि निर्माण में किया जाता है।

pH मूल्य (pH Value): pH मूल्य एक संख्या होती है जो पदार्थों के अम्लीयता व क्षारीयता को प्रदर्शित करती है।

pH का मान 0 से 14 के बीच में होता है। जिन विलयनों का pH मान 7 से कम होता है वे अम्लीय होते हैं। जिन विलयनों का pH मान 7 से अधिक होता है वे क्षारीय होते हैं जो नि विलयनों का pH मान 7 होता है वे उदासीन विलयन होते हैं।

pH मूल्य का उपयोग एल्कोहल, चीनी आदि उद्योग में होता है।

कुछ सामान्य पदार्थों का pH मान

पदार्थ	pH मान	
नींबू	2.2 - 2.4	
सिरका	2.4 - 3.4	
शराब	2.8 - 3.8	
मानव मूत्र	6	
मानव रक्त	7.4	
दूध	6.4	

संयोजकता

(Valency):

तत्वों के परमाणुओं के परस्पर संयोजन करने के क्षमता को संयोजकता कहा जाता है। or

किसी भी परमाणु की वाहयतम कक्षा में पाये जाने वाली इलेक्ट्रानों की संख्या ही संयोजकता कहलाती है।

जवाहरण: सोडियम परमाणु एक इलेक्ट्रॉन को त्याग कर अक्रिय गैस नियॉन जैसी इलेक्ट्रानिक व्यवस्था को प्राप्त करता है।

संयोजकता के प्रकार: संयोजकता के तीन प्रकार होते है।

वैद्युत संयोजकता

(Electro Valency):

जब एक परमाणु से दूसरे परमाणु में इलेक्ट्रॉनों के स्थानान्तरण से उत्पन्न संयोजकता को वैद्युत संयोजकता कहा जाता है।

जैसे NaCl, $MgCl_2$, आदि में पायी जाने वाली संयोजकता।

सह–संयोजकता

(Co-Valency):

जब दो परमाणुओं के बीच इलेक्ट्रॉनों की साझेदारी जो संयोजकता उत्पन्न होती है उसे सह—संयोजकता कहा जाता है और इसके बीच बने बंध को सह—संयोजक बंध कहा जाता है। जैसे— हाइड्रोजन अणु, ऑक्सीजन अणु तथा नाइट्रोजन अणु के मध्य पायी जाने वाली संयोजकता।

उप सहसंयोजकता

(Co-ordinate Valency)

इस प्रकार की संयोजकता में एक परमाणु इलेक्ट्रॉन युग्म को दूसरे परमाणु को प्रदान करता है। इस प्रकार इलेक्ट्रॉन युग्म देने वाले परमाणु को दाता और ग्रहण परमाणु को ग्राही कहा जाता है। इस साझेदारी के मध्य बनने वाली संयोजकता को उप सहसंयोजकता कहा जाता है। जैसे— अमोनिया, सोडियम हाइड्रॉक्साइड, सल्पयूरिक अम्ल आदि में पायी जाने वाली संयोजकता।

ऑक्सीकरण-अपचयन

(Oxidation-Reduction):

ऑक्सीकरण : ऑक्सीकरण वह रासायनिक प्रक्रिया है जिसमें कोई परमाणु या आयन एक या अधिक इलेक्ट्रानों को त्यागकर उच्च विद्युत धनात्मकता या निम्न विद्युत ऋणात्मक अवस्था को प्राप्त करता है।

उदाहरण

 $2Mg + O_2 \rightarrow 2MgO$

 $2H_2 + O_2 \rightarrow 2H_2O$

अपचयन (Reduction): अपचयन वह रासायनिक प्रक्रिया है जिसमें कोई परमाणु या आयन इलेक्ट्रॉन ग्रहण करके निम्न विद्युत धनात्मक अवस्था या उच्च विद्युत ऋणात्मक अवस्था में परिवर्तित होता है।

उदाहरण $-2Na+Cl_2 \rightarrow 2NaCl$

नोट :

- जिस पदार्थ का ऑक्सीकरण होता है वह अपचायक या अवकारक (Reducing Agent) कहलाता है तथा जिस पदार्थ का अवकरण या अपचयन होता है वह पदार्थ ऑक्सीकारक कहलाता है।
- ऑक्सीकारक वे पदार्थ होते हैं जो इलेक्ट्रान ग्रहण करते हैं तथा अवकारक वे पदार्थ होते हैं तो इलेक्ट्रॉन त्याग करते हैं।
- उदाहरण : कुछ ऑक्सीकारक पदार्थ निम्न हैं— ऑक्सीजन, ओजोन, हाइड्रोजन परऑक्साइड, नाइट्रिक अम्ल, पोटैशियम परमैगनेट तथा क्लोरीन आदि।

SCIENCE

- ओजोन स्तर हमें किससे संरक्षण प्रदान करती है ?
 —पराबैगनी विकिरण
- गर्म किए जाने पर नीले काँच में किस रंग की चमक होगी ? —लाल रंग
- स्टेनलेस स्टील क्या है ?

-मिश्र धातु

- शक्ति का मात्रक (यूनिट) क्या है ?
- -वाट
- जल का अधिकतम घनत्व किस तापमान पर संभव होता है ? — 4° सें.
- "सिगरेट के एक पैक पीने की कीमत आपके जीवन के साढ़े तीन घंटे होती है।" यह कथन किस रोग के बारे में है?
- कौन–सा बल पृथ्वी पर अधोमुखी दिशा में काम करता है ? **–भार**
- मंड और शर्करा (चीनी) दोनों मिलाकर क्या कहलाते हैं ?
 - –कार्बोहाइड्रेट
- धान्य में सबसे अधिक कठोर फसल कौन—सी होती है ?
 —बाजरा
- वनस्पति तेलों को किस सूक्ष्म विभाजित वस्तु के मौजूदगी में हाइड्रोजनीकृत किया जाता है ? —निकेल
- कौन–सा विटामिन आँखों के लिए अच्छा होता है ?

-विटामिन 'ए'

- इंसुलिन कौन बनाता है ? **—लैंगरहैस द्वीप**
- प्रकाश तंतु की कार्य—विधि किस पर निर्भर करती है ?
 —प्रकाश के पूर्ण आंतरिक परावर्तन पर
- किस विटामिन में कोबाल्ट पाया जाता है ?

-विटामिन B₁₂ में

- डायनामाइट में मुख्य रूप से पाया जाता है-
 - –नाइट्रोजग्लिसरीन
- 'एम्पियर-सेकण्ड' किसका मात्रक है ?
 - –आवेश की मात्रा का
- 'इलेक्ट्रॉन-वोल्ट' किसका मात्रक है ? -ऊर्जा का
- फाइकोलॉजी में किसका अध्ययन किया जाता है ?

–शैवाल का

- दोलन करते हुए लोलक का गोलक कुछ समय पश्चात्
 विराम अवस्था में आ जाती है, यह किस कारण से होता
 है ? —वायु के घर्षण के कारण
- विद्युत वल्ब की ज्योति दक्षता का मात्रक क्या है ?

–ल्यूमेन ∕ वाट

- शरीर में एनीमिया रोग किस कारण से उत्पन्न होता है ?
 —आयरन की कमी से
- ध्विन किस रूप में यात्रा करती है ?
 - -अनुदैर्ध्य तरंग गति में
- एक जलती हुई मोमबत्ती एक टम्बलर से ढक दिए जाने पर किस कारण बुझ जाती है ?
 - –हवा की अपर्याप्त पूर्ति होने के कारण
- कमरा गर्म करने वाले बिलजी के हीटर का रेडिएटर सबसे अधिक प्रभावी तब होता है, जब वह—
 - –बहुत अधिक पॉलिश किया हुआ हो
- भारी पानी (Heavy Water) शब्द किसका सूचक है ?
 - -ड्यूटीरियम ऑक्साइड ($\mathbf{D_2O}$)

- खून की कमी को क्या कहा जाता है ? —एनीिमया
- जमगादड़ जिस सिद्धांत द्वारा संचालन करते हैं उसमें किसका गुणधर्म (तत्व) होता है ? —ध्विन
- बहुत अधिक धुएँ से भरा कुहरा क्या होता है ?

–धूम कुहरा

- पृथ्वी के पटल में सबसे अधिक मात्रा में कौन-सा गैस है ? —ऑक्सीजन
- अंतरिक्ष यात्री को अंतरिक्ष कैसा लगता है ? **–काला**
- बिजली के बल्ब में जो तंतु होता है, वह किसका बना होता है ? **–टंग्स्टन का**
- स्फीरमोमैनोमीटर नामक उपकरण किसको मापने के लिए काम में लाया जाता है ? -रक्त दाब
- हवा में छोड़े जाने पर प्रक्षेपास्त्र किस तरह के पथ का अनुसरण करता है ? —परवलयिक पथ
- पेट्रोल के कारण लगी हुई आग को बुझाने के लिए पानी प्रभावी नहीं होता है, क्योंकि—

—पानी और पेट्रोल एक—दूसरे में अघुलनशील होते हैं, पेट्रोल ऊपरी सतह पर रहता है और जलता रहता है

- प्रोटीन का सबसे अधिक समृद्ध स्रोत क्या होता है ?—सोयाबीन
- ध्विन तरंगे किससे होकर यात्रा नहीं कर सकती हैं ? —निर्वात्
- ऊर्जा प्रत्यक्ष या परोक्ष रूप से किससे प्राप्त होती है ? —सूर्य से
- जैव विकास के पक्ष में किससे प्रत्यक्ष प्रमाण मिलता है ? —जीवाश्म से
- कौन—सी फसल मिट्टी को नाइट्रोजनीय सम्मिश्रणों से उपजाऊ बना सकती है ? —दलहनी फसल
- सबसे छोटी रुधिर वाहिका क्या कहलाती है ?

–कोशिका

- पक्षियों में पंखों का मुख्य काम क्या होता है ?
 - -शरीर की ऊष्मा (गर्मी) को बनाए रखने के लिए रोधन प्रदान करना
- कौन—सा पौधा फल नहीं देता है, परंतु बीज पैदा करता है ? **—साइकैस**
- सूरजमुखी, नारियल और मूंगफली में मुख्यतः क्या सामान्य होता है? —उनसे खाद्य तेल मिलता है
- पशु जगत् में मनुष्य का निकटतम संबंधी क्या है ?
 - –गुरिल्ला
- गर्म खून वाले जानवर उच्च शारीरिक तापमान बनाए रखते हैं, ताकि
 —तेजी से चल सकें
- शव परीक्षण के अध्ययन में आमतौर पर जिगर का विश्लेषण निहित होता है। ऐसा इसलिए होता है, क्योंकि जिगर से मरे हुए व्यक्ति की किसी बात की बहुत कुछ तस्वीर मिल जाती है ?
 उसका खाया हुआ खाना
- एक मोटर वाहन का पीछे की चीजें दिखलाने वाला दर्पण (आईना) कैसा होता है ?
- जूते के तलों में तला किसको बढ़ाने के लिए लगाया जाता है?
- सबसे कठोर सामग्री (पदार्थ) क्या है ?

- आयोडीन के टिंक्चर में क्या निहित होता है ?
 —एल्कोहल में आयोडीन का विलयन
- कोई रासायनिक पिरिश्क्षक डाले बिना अचार तैयार करने का भारत में बहुत पुराना तरीका रहा है, वह कौन—सा मुख्य कारक है जो ऐसे अचार को सूक्ष्म जीवों द्वारा खराब किए जाने से बचाता है ?
- 'प्रकाश–वोल्टीय ऊर्जा' ऊर्जा का कैसा स्रोत है ?
 —अपारम्परिक ऊर्जा स्रोत
- शैवाल में बहुलता होती है— —क्लोरोफिल की
- प्रकाश—संश्लेषण की दर किस रंग के प्रकाश में सबसे अधिक होती है ? —लाल प्रकाश
- खाना पकाने की गैस किस दो गैसों का मिश्रण है ?
 —ब्यूटेन तथा प्रोपेन
- ओजोन परत का अवक्षय मुख्यतः किसके कारण होता है ?
 —क्लोरो—फ्लोरो कार्बन के कारण
- कैथोड किरणें होती हैं— **—प्रोटॉन की धारा**
- समुद्र की गहराई किस यंत्र के द्वारा मालूम की जा सकती
 है ? —सोनार
- तारे क्यों टिमटिमाते हैं ?

-वायुमंडल की विभिन्न परतों द्वारा अपवर्तन के कारण

• चमगादड़ों (Bats) में पाया जाता है-

-पराश्रव्य ध्वनि तंत्र (अल्ट्रासोनिक)

- विटामिन 'ए' की कमी के कारण सामान्यतः शरीर का कौन—सा अंग प्रभावित होता है ?
- प्राथमिक या बुनियादी रंग (Primary colours) कौन–कौन हैं ? —लाल, नीला औ हरा
- DNA Finger-printing की अद्यतन प्रौद्योगिकी किस क्षेत्र
 में प्रयुक्त होती है ? —विधि/न्याय विज्ञान
- नर मेढ़क, मादा मेढ़क से अधिक टर्राता है, क्योंकि—

-नर मेढ़क में वाक्कोश होते हैं

- किसी वस्तु को पृथ्वी से चन्द्रमा पर ले जाने पर क्या पिरवर्तन होगा ?
 —उसका भार कम हो जायेगा
- जब इलेक्ट्रॉन एक चुम्बकीय क्षेत्र में गुजरता है, तो—
 —इसकी ऊर्जा और वेग बढ़ता है
- 'पाइरीडॉक्सिन' किसका रासायनिक नाम है ?

-विटामिन B_{6}

- वन्य किस्मों के साथ संकरण (Crossing) करके उगाई गई किस्में हो सकती हैं ?
- एन्जाइम से क्या अभिप्राय है ? जैविक उत्प्रेरक
- संचायक बैटरियों में किसका प्रयोग होता है? —जस्ता
- ताजमहल किस पत्थर से बना है ?

–सफेद संगमरमर

- 'एकास्टिक्स' में किसका अध्ययन किया जाता है ? —ध्विन को
- भारतीय जनसंख्या में सबसे अधिक सामान्य कैन्सर किसका होता है ?
- हे—बुखार और दमा किस वर्ग के रोग हैं ? **—एलर्जी**
- अभिक्रिया में एक उत्प्रेरक का कार्य क्या होता है ?
 - —अभिक्रिया की दर को बढाना
- हवेल और बन्दर में मुख्यतः क्या सामान्य है ?
 —दोनों बच्चे पैदा करते हैं
- हमारे शरीर में आधारी उपापचय को नियंत्रित करने वाला हॉर्मोन किससे निकलता है ?

- कार बैटरी में कौन–सा अम्ल इस्तेमाल किया जाता है ?
 'सल्पयूरिक अम्ल
- पेड ऊर्जा का कैसा स्रोत है ? —नवीकरणीय
- बिजली के बल्ब का फिलामेन्ट (तंतु) किसका बना होता है ?
- प्राकृतिक मोम और लाख किस रूप में प्राप्त किए जाते हैं ?
- अस्वच्छ सार्वजनिक मूत्रालयों के नजदीक एक खास तरह की गैस की बदबू आती है। यह गैस कौन–सी होती है ?
 —अमोनिया
- दूध में एक विशेष तरह की चीनी होने के कारण मीठा स्वाद आता है, जबकि उस दूध से तैयार किए गए दही का स्वाद खट्टा होता है। इस परिवर्तन में किसका परिवर्तन निहित होता है? —लैक्टोज का लैक्टिक अम्ल में
- 'केशिका क्रिया' किसका परिणाम है ? —सतही तनाव का
- सामाजिक डार्विनवाद से क्या अभिप्राय है ?
 - –योग्यता की उत्तरजीविता
- बस में ड्राइवर के पास लगा दर्पण होता है— -उत्तर दर्पण
- बासी मक्खन की दुर्गन्ध का क्या कारण है ?

–ब्यूटरिक एसिड

- शीरा से मदिरा निकालने की प्रक्रिया को क्या कहते हैं ?
 -िकण्वन
- संचायक बैटरी में साधारणतः क्या होता है ? **-सीसा**
- सोडियम बाइकार्बोनेट का साधारण नाम क्या है ?

–धोवन सोडा

- वनस्पति विज्ञान की कौन—सी शाखा पौधों के रूपाकर का अध्ययन करती है ? —पारिस्थिति विज्ञान
- 'लोट्स', 'जावा', 'ओरेकल' इत्यादि ये शब्द किस क्षेत्र की गतिविधि से संबंधित हैं ?
- वाहनों के टायर किस लिए अच्छी प्रकार से फुलाए जाते
 हैं ? फिसलन से बचने तथा न्यूनतम घर्षण हेतु
- 'शुष्क सेल' का ऐनोड किससे बना होता है ?
 —ग्रेफाइट (कार्बन) से
- गर्भाशय में शिशु की विकास की जानकारी हेतु किसका प्रयोग किया जाता है ? —अल्ट्रा साउण्ड का
- रेलवे मार्ग में, दो पटिरयों के एक सिरे से दूसरे सिरे तक उनके बीच में अन्तराल छोड़ना क्यों आवश्यक होता के 2

-क्योंकि ग्रीष्म काल मेंविस्तरण से होने वाली दुर्घटनाओं से रोका जा सकता है

• पयूज के तार की प्रकृति कैसी होती है ?

–उच्च प्रतिरोध और निम्न द्रवणांक

- यदि नोड तथा संलग्न एन्टीनोड के मध्य दूरी 30 सेमी. है,
 तो तरंग कितनी दीर्घ होगी ?
 —120 सेमी.
- तरल पदार्थ का घनत्व गरम करने पर —कम हो जाता है
- नाभिकीय रिएक्टर में ईंधन का काम कौन करता है ?
 —यूरेनियम
- सिनेमा किस सिद्धांत पर निर्मित होता है ?
 —दृष्टि के पश्चदीप्ति सिद्धांत के आधार पर

ग्रीन हाउस गैस कौन–सी है ? **–कार्बन डार्डऑक्साइड**

- मानव रक्त प्लाज्मा में प्रायः पानी की प्रतिशत मात्रा में
- कितनी भिन्नता होती है ? —80—82
- 'सोडियम–पम्प' का कार्य कहाँ पर होता है ?

-तंत्रिका आवेग में

- सिन्द्री, झारखंड में उत्पादित उर्वरक का क्या नाम है ?
 —अमोनियम सल्फेट
- विश्व में सेबों का सर्वाधिक उत्पादन करने वाला देश कौन है ?

 —सं. रा. अमरीका
- सागों में सबसे अधिक पाया जाने वाला तत्व क्या है ?
 —लोहा
- पोलियो किसके कारण से होता है ? —वायरस (विषाणु)
- रेफ्रीजरेशन वह प्रक्रिया है, जिससे—
 - -कीटाणुओं की वृद्धि दर घट जाती है
- 'पेस-मेकर' का क्या कार्य है ?
 - –दिल की धडकन प्रारंभ करना
- जर्मेनियम है एक— —सेमी.—कण्डक्टर
- बिच्छू का विष कहाँ पर होता है ? **—डंक में**
- न चिपकने वाले खाना पकाने के बर्तनों में कौन—सा लेप चढा होता है ? —टेफलॉन
- गोबर गैस में मुख्यतः क्या होता है ? —मीथेन
- सिरके (Vinegar) का मुख्य अंग होता है **–एसिटिक एसिड**
- सागरीय खर-पतवार (Sea weeds) किसका महत्वपूर्ण स्रोत
 है ?
- 'प्लास्टर ऑफ पेरिस' जमाने के लिए क्या आवश्यक है ?
 —जलयोजन द्वारा अन्य हाइड्रेट बनाना
- NaOH सूत्र वाले यौगिक का सामान्य नाम क्या है ?
 —कास्टिक सोडा
- 18 कैरेट सोने में शुद्ध स्वर्ण का अनुपात कितना होता है ? — 75%
- 'हीलियम' गैस को गुब्बारों (Ballons) में क्यों भरा जाता
 है ? —क्योंकि वह वायु से हल्का है
- 'बोन ऐश' (Bone Ash) में क्या होता है ?
 - –कैल्सियम फॉस्फेट
- किडनीस्टोन (पथरी) में मुख्यतः क्या पाया जाता है ?
 —कैल्सियम ऑक्सेलेट
- सबसे न्यूनतम ज्वलनशील रेशा (फाइवर) कौन—सा है ?
 —कपास (स्त)
- ट्रांसफॉर्मर का क्या तात्पर्य है ?
 - –यह ए. सी. वोल्टता को घटाता और बढ़ाता है
- जब गरम पानी को अपेक्षतया अधिक तत्प गिलास के ऊपर छिड़का जाता है, तो वह टूट जाता है। इसका क्या कारण है? —अचानक ही गिलास संकुचित हो जाता है
- विद्युत् दीर्घ दूरी तक उच्च वोल्टता ए. सी. में पारंगता होता है। इसका क्या कारण है ?
 - -ऊर्जा की कम हानि होती है
- ट्रांजिस्टर के संविचरण में किस वस्तु का प्रयोग होता है ?
 –िसिलकॉन
- यदि धातु प्लेट में वर्तुल विवर है, तो जब प्लेट को तापित किया जाता है, तो त्रिज्या के विवर पर क्या प्रभाव होता है ?
- वायु में ध्विन का वेग तापमान पर किस प्रकार निर्भर करता है?
 —तापमान के घटने से घटता है
- धातु तार में वैद्युत धारा का प्रवाह किसके कारण होता है ?
- ध्विन ऊर्जा को वैद्युत ऊर्जा में परिवर्तित करने वाला यंत्र
 है —माइक्रोफोन

- जीवाणु (Bacteria) के निराकरण के लिए जिस प्रकाश—िकरण का परखनली के अन्दर वैकृत प्रयोगशाला में प्रयोग किया जाता है, उसका नाम क्या है ?
 - –पराबैंगनी विकिरण
- मनुष्य के शरीर में कुल कितनी हिंड्डयाँ हैं? —206
- एक प्रौढ़ मानव में औसत की गिनती में हृदयस्पन्द (Heart beats) की संख्या का परिसर कितना होगा ?
 - **-71-80**
- आहार—नाल (Alimentary canal) में स्टार्च के पाचन में अंतिम उत्पाद क्या होता है ? —**मालटोस**
- केंचुआ की कितनी आँखें होती हैं ?
 - –केंचुआ को नेत्र नहीं होता है
- 'एक्यूपंक्चर' क्या है ? —सुइयों के माध्यम से उपचार विधि
- कुछ वायरसों में आर. एन. ए. होती है, परन्तु डी. एन. ए. नहीं। इससे क्या पता चलता है ?
 - —आर. एन. ए. आनुवांशिकी जानकारी को वायरसों में सम्प्रेषित करती है
- वायुगुहिका (Air cavities) की उपस्थिति किसका अनुकूलन है ?
- 'अमीबता' से कौन—सा रोग होता है ? —आमातिसार
- पारिस्थितिक तंत्र में नाइट्रोजन का परिसंचारण किसके द्वारा होता है?
- वायु–शीतन किसके लिए अधिक उपयुक्त है ?
 —गर्म और शुष्क जलवायु
- अम्लीय श्रवण किसकी विशिष्टता है ? —**जठर**
- कम्प्यूटर का दिमाग (Brain) क्या है ? -सी. पी. यू.
- मछलियों के यकृत—तेल में किसकी प्रचुरता होती है ? —विटामिन डी
- अपोहन (डायिलिसिस) का प्रयोग किस क्रिया को पूरा करने के लिए होता है ?
- कैल्सियम अमोनियम नाइट्रेट क्या है ? उर्वरक
- 'स्लैग', यह नाम किसे दिया जाता है ?
 - -गलित कैल्सियम सिलिकेट को
- इस्पात (Steel) या आयरन वस्तु में जिंक के पतली परत का लेपन का क्या नाम है ? —**यशद लेपन**
- किस अम्ल का प्रयोग आस्कन्दन कारक (Sowing agent)
 के रूप में मृदु पेय के निर्माण में किया जाता है ?
 –फॉस्फोरिक अम्ल
- जंगरोधी इस्पात (Stainless steel) के निर्माण में इस्पात का मिश्रात्वन किससे होता है ?
 - –क्रोमियम और निकेल
- पीड़कनाशियों का प्रयोग किसे विनाश करने के लिए किया जाता है ?
- एक प्रयूज—तार में मुख्य रूप से क्या होना चाहिए ?
 —अल्प गलनांक, उच्च प्रतिरोध
- एक सामान्य नेत्र के लिए सुस्पष्ट दृष्टि की न्यूनतम दूरी क्या है ?
- एक नक्षत्र का रंग किस पर निर्भर करता है ?
 —उसकी पृष्ठीय ताप पर
- 'एड्स' वायरस शरीर के किस तंत्र को नाश करता है ? —**असंक्रामक तंत्र का**
- मसालों की सौरभ और सुवास किसके कारण होती है ?
 —अनिवार्य तेल

- बारम्बार होने वाली बारिस और प्रकाश किस क्षेत्र के विकास के लिए उपयुक्त है ?
- ऊँट बिना पानी के कुछ दिन तक मरुस्थल में रहता है। ऐसा वह कैसे कर पाता है?

-अपने ककुद (कूबर) में जमा किए चिकनाई का प्रयोग करके

- इस पृथ्वी के अपमार्जक कौन है ?
- -जीवाणु और कवक
- सौर विकिरण का जो भाग बिना गर्मी दिए पृथ्वी से परावर्तित हो जाता है, उसे क्या कहते हैं?

–धवलता

- किसी मृदा का pH मूल्य उस विशेष मृदा में किसको मापित करता है ?

 —अम्ल अंश
- तापीय विद्युत् को पैदा करने के लिए किस प्रकार का कोयला मुख्य रूप से उपयुक्त है? —ऐन्थ्रासाइट
- ऊन तंतू का विकल्प क्या है ? **—नायलॉन 6, 6**
- नाभिकीय विखंडन में ऊर्जा किस रूप में निकलती है ?
- उपास्थि तथा हिड्डयों के निर्माण और सम्पोषण में आवश्यक तत्व क्या होता है ?
- 'सोल्डर' किस धातु का मिश्रण है ?

–टिन और लैड

- केरोसीन लैम्प में चिमनी के नीचे छिद्र होते हैं, जिससे—
 —ऑक्सीजन का सप्लाई बना रहता हैं
- मानव शरीर का सामान्य तापमान कितना होता है ?
 36.9° सेल्सियस
- रक्त-स्कन्दन में कौन-सा विटामिन क्रियाशील होता है ? -विटामिन K
- एक अनिषेचित मानव अंडे में सामान्यतः होता है—
 –एक X क्रोमोसोम
- कौन—सा एमिनो अम्ल मानव पोषण के लिए अर्ध—अनिवार्य माना जाता है ? —हिस्टीडीन
- कम्प्यूटर विज्ञान में 'एक किलोबाइट' का मान कितना होता है ?
 —1024 बाइट
- एक आलू कंद को दो आधे भाग में काटा गया है। इसमें से एक कटे भाग के पृष्ठ में आयोडीन की कुछ बूंदे गिराई गई हैं। इसमें किस रंग का परिवर्तन देखा जा सकता है?

–भूरे से नीलाम–काला ज्या में अभिलेखन में प्रयुक्त

- ई. ई. जी. तकनीक किस क्रिया में अभिलेखन में प्रयुक्त होता है ?
- किसकी उपस्थिति के कारण गाय के दूध का रंग पीला होता है ?
- 'डिप्थीरिया' कैसा रोग है ? —संक्रामक
- पीलिया रोग किसके संचरण से होता है ? -यकृत
- भूमि–तल के समीप वायु–राशि क्यों अत्यधिक गरम है ?
 –वायु–राशि पार्थिव विकिरण से गरम होती है
- राशियों की कुल संख्या कितनी है ? —12 (बारह)
- जब बन्द थैली में रखे बद्धवत् खाद्य पदार्थ को सूक्ष्म तरंग में तापित किया जाता है, तब सबसे पहले थैली में छेद क्यों करते हैं ?

-थैली को भाप के दाब से फटने से बचाने के लिए

• एक निर्वात् मार्जक भाप के अंतर—नियम के अनुसार कार्य करता है। चंद्र में वह कैसे कार्य करेगा ?

–कार्य नहीं करेगा

- एक रबड़ की गेंद को 2 मीटर की ऊँचाई से गिराया जाता है। यदि प्रतिक्षिप्त होने के बाद कोई भी ऊर्जा और वेग का नुकसान नहीं है, तब कितनी ऊँचाई तक वह ऊपर उठेगी?
- एक सामान्य व्यक्ति में प्रति मिनट के हिसाब से हृदयस्पन्द का दर औसत कितना होना चाहिए ?

–72 बार

- 'एन्जाइम' मूल रूप से क्या है ? प्रोटीन
- क्यों शीतकाल की तुलना में ग्रीष्मकाल में अधिक मछिलयाँ मरती हैं ?
 —ऑक्सीजन के अपक्षय के कारण
- पोर्टलैंड सीमेंट का आविष्कार किसने किया था ?

–जोसफ अस्पडीन

- सबसे पहले ग्रह-गति नियम का निरूपण किसने किया
 था ?
- उपापचय क्या है ?

–जैव अणु का संश्लेषण और टूट जाना

कोयला किससे बनता है ?

-सम्पीड़ित और कठोरकृत जीवभार से

• व्यापारिक वैसलिन किससे निकाला जाता है ?

–पेट्रोलियम

- स्ट्रॉन्शियम लवण के द्वारा बुन्सेन ज्वाला को कौन-सा रंग प्रदान किया जाता है ? -किरमिची लाल
- निष्क्रिय प्रतिरोध सिद्धान्त का प्रथम प्रवर्तक कौन था ?
 —गोपालकृष्ण गोखले
- ईंट के बने भवनों की तुलना में कच्ची मिट्टी के मकान ग्रीष्म में ठण्डे और शीतकाल में अधिक गरम होने का क्या कारण है ?

-जल-वाष्पन से गर्मियों में ठण्डक और छिद्रों में आने वाली ध्रुप के कारण सर्दियों में गरमाई हो जाती है

लम्बी अवधि के उपयोग के बाद, बल्ब के अन्दर की ओर एक धृंधला धब्बा बन जाता है, इसका क्या कारण है ?

-टंगस्टन तन्तु की वाष्प बनकर वहाँ एकत्रित हो जाती है

- एड्स, गलसुआ और पोलियो में समान तत्व क्या है ? —ये सब विषाणुओं द्वारा फैलते हैं
- कौन—सा प्रकिण्व (एन्जाइम) प्रोटीन को पेप्टोन में बदलता है ? —पेप्सिन
- मनुष्य के शरीर में लौह की कमी का क्या परिणाम हो सकता है ?
- किस प्रोटीन के कारण एक कोशिका में विषाणुओं द्वारा आक्रमण पर आशुप्रभावित होने में कमी आती है ?

–क्लोरोमाइसेटिन

 प्रतिदिन सामान्यतः हमारे हृदय के कपाट (वाल्व) लगभग कितनी बार खुलते और बन्द होते हैं ?

-1,00,000 बार

मानव का सामान्य रक्तदाब कितना होता है ?

−80 / 120 मिमी. पारा

 ईख (गन्ना) के पौधे को प्रायः कायिक प्रवर्धन द्वारा संवर्धित करने का क्या कारण है ?

-क्योंकि इनमें बीज पैदा नहीं होते

- प्रकाश—संश्लेषी क्रिया में कौन—सा वर्णक पिग्मेंट का कार्य करता है ?
- मुक्तजीवों नाइट्रोजन यौगिकीकरण सूक्ष्म जीवों का क्या नाम है ?

- कोई डेरी किसान किस तरह से अपने पशुओं का चारा उपयोग कम करके दुग्ध उत्पादन को भी बढ़ा सकता है ?
 —हार्मेन सेवन द्वारा
- वनस्पति तेलों का घी में परिवर्तन कैसे होता है ?

–हाइड्रोजनीकरण द्वारा

- मधुमेह के रोगियों को मधुरण—कारक के रूप में दिए जाने वाले एक उत्पादन का नाम 'एसपार्टम' है। यह किस वर्ग से संबंधित है?
- हाइड्रोजन बम का आविष्कार किसने किया था ?
 —सैमुएल कोहेन
- 'हीमोफीलिया' प्रायः किस परिवार में देखने को मिलता है? —राज—परिवारों में
- यदि बर्फ के टुकड़े को, एक गिलास शुद्ध जल और एक गिलास शुद्ध अल्कोहॉल में डाला जाए तो यह किसमें तैरती रहेगी और किसमें डूब जाएगी ?

—अल्कोहॉल में तैरती रहेगी और जल में डूब जाएगी

- 'पैरासेटामॉल' मुख्यतः किसके लिए सहायक औषधि है ?
- एक व्यक्ति अवतल लेन्स वाला चश्मा पहनता है, इस कारण सामान्यतः (बिना चश्मे के) दूर स्थित वस्तुओं का प्रतिबिम्ब उसकी आँखों में कहाँ पर फोकस होंगा ?
 —दृष्टिपटल के सामने
- विषाणुओं (वायरसों) के विषय में क्या सर्वदा सत्य होता
 है? —इसमें प्रतिरक्षियों का सृजन नहीं हो सकता
- हीमोग्लोबिन क्या होता है ? प्रोटीन
- तारकोल वाली सड़कों पर टूट-फूट तब होती है, जब उसमें —सडक पर पानी स्थिर हो जाये
- प्राकृतिक जैव उर्वरक, रासायनिक उर्वरकों से अधिक अच्छा क्यों होता है ?

-क्योंकि जैव उर्वरक भूमि की उत्पादकता को बनाए रखते हैं

- मादक द्रव्य मारजुआना क्या है ? —शामक
- पारिस्थितिक प्रणाली क्या होती है ? —जैव प्रणाली
- 'मायोपिया' का दूसरा नाम क्या है ? **—समीप दृष्टि**
- 'लाइफ-जैकेट' का सिद्धान्त क्या है ?

—यह व्यक्ति को उतराता रखने के लिए उसके आयतन को घटा देती है

- सूर्य का ताप हम तक किस विधि द्वारा पहुँचता है ?
 - —विकिरण
- भिन्न कोणों वाले परन्तु समान ऊँचाई वाले दो आनत समतलों पर किसी गोले के लुढ़कने में—

-वही समय और वही गतिज ऊर्जा लगती है

- वाणिज्य में 'टेरीलीन' कहा जाने वाला पदार्थ क्या होता है?

 —कृत्रिम रेशा
- जैव पदार्थों के शवलेपन में मुख्यतः किस रसायन का प्रयोग किया जाता है?
 —एथीलीन ग्लाइकोल
- निऑन कितने परमाणु वाली गैस है ? **–एक परमाणु**
- सोडियम बाइकार्बोनेट को बाजार की भाषा में क्या कहते
 हैं ? —पकाने का सोडा
- कम्प्यूटरों के लिए 'आई सी—चिप्स' प्रायः किस पदार्थ की बनी होती है ? —**सिलिकॉन**
- भीड़ को तितर–बितर करने में पुलिस द्वारा इस्तेमाल की जाने वाली अश्रु गैस क्या होती है ?

–अमोनिया

- उंगली के नाखून में कौन–सा प्रोटीन विद्यमान रहता है ? —**कैरोटीन**
- किसी वृक्ष को अधिकतम हानि कैसे पहुँच सकती है ?
 —जब उसके सभी पत्तियों का नाश हो जाए
- विटामिन E मुख्य रूप से किसके लिए महत्वपूर्ण है ?
 —िलंग—ग्रंथियों की सामान्य क्रिया में
- एप्सम लवण (Epsom salt) का प्रयोग कहाँ होता है ?
 -रेचक (Purgative) में
- किस पदार्थ में सर्वोच्च विशिष्ट ऊष्मा का मान होता है ?
 —जल में
- विकृति विज्ञानी प्रयोगशाला में प्रयुक्त सूक्ष्मदर्शी कैसा प्रतिबिम्ब बनाता है ?

—आवर्धित, आभासी, सीधा (ऊर्ध्वशीर्ष) प्रतिबिम्ब

- घरेलू प्रशीतित्र (रेफ्रीजेरेटर) में सामान्यतः कौन–सा प्रशीतक प्रयोग में लाते हैं ? —फ्रेयॉन
- हमारे शरीर की किन कोशिकाओं में सबसे कम पुनर्योजी शक्ति (Regenerative power) होती है ?

–मस्तिष्क कोशिकाएँ

- हमारी छोड़ी हुई सांस की हवा में कार्बन डाईऑक्साइड की मात्रा लगभग कितनी होती है ? — 4%
- रक्त–दाब का नियंत्रण कौन करता है ?

–अधिवृक्क (एड्रिनल) ग्रन्थि

- 'एल्फैल्फा' (Alfalfa) किसी एक प्रकार के किस पदार्थ का नाम है ?
- किसी विशाल झरने की तली में पानी का तापक्रम, उसके ऊपरी भाग की तुलना में अधिक क्यों होता है ?

-क्योंकि गिरते हुए पानी की गतिज ऊर्जा, ऊष्मा में परिवर्तित हो जाती है

नानबाई की भट्टी में डबल रोटी बनाते समय खमीर (यीस्ट) मिलाते का क्या कारण है ?

—डबल रोटी को नरम और स्पंजी बनाने के लिए

'लाफिंग गैस' का रासायनिक नाम क्या है ?

–नाइट्रस ऑक्साइड

- पीतल किसकी मिश्र धातु है ? -जस्ता और ताँबा की
- 'गति प्रेरक' (पेस-मेकर) किससे सम्बन्धित है ?

–हृदय से

- ध्विन का वेग किसमें अधिक होता है ? **—इस्पात में**
 - रक्त के थक्के जमने का कारण है- श्राम्बिन
- सबसे बड़ा, उड़ने में असमर्थ, पक्षी जो तेज गित से दौड़ सकता है, वह है—
 —शुतुरमुर्ग (ऑस्ट्रिच)
- कान की कितनी हिंड्डियाँ होती हैं ? —छः
- किसके द्वारा, सूर्यातपन का एक भाग सोख लिया जाता है
 और पृथ्वी की विकरित ऊष्मा का संरक्षण भी किया जाता है ?
- चूहों को मारने के विष का रासायनिक नाम क्या है ?
 —िजंक फॉस्फाइड
- 'मोनाजाइट' किसका अयस्क है ? **-थोरियम का**
- रूधिर वर्ग B वाला व्यक्ति, निरापद कौन—से रूधिर वर्गों के व्यक्तियों को रक्तदान कर सकता है ?

— B तथा AB

- पौधों में जड़ों के मार्ग से पानी पहुँचने का क्या कारण है?
 —केशिकत्व
- मानव शरीर में श्वसन कार्य का केन्द्रीय नियंत्रण कहाँ से होता है ?
 —मेबुला ऑब्लांगेटा

- शीरे (मोलैसेज) से ऐल्कोहॉल प्राप्त करने के लिए कौन–सी विधि अपनाई जाती है ?
- किसी खगोलीय दूरबीन की आवर्धन क्षमता कैसे कम की
 जा सकती है?
 –नेत्रिका की फोकस दूरी बढ़ाकर
- भारत में सर्वाधिक उपयोग में आने वाला प्रधान सामान्य अन्न कौन–सा है ?
- स्कर्वी रोग किस अंग में होता है ?
- किसकी जीवसंख्या, संसार में सर्वाधिक है ? —मछली
- फ्रीऑन का मुख्य उपयोग क्या है ?

-प्रशीतन (Refrigeration) में

 मानव के दो कान होते हैं, क्योंिक दोनों कानों की सहायता से—

-विपरीत दिशाओं से आने वाली दो प्रकार की ध्वनियों को भली-भाँति पहचाना जा सकता है

- सबसे तेजी से बढ़ने वाला पौधा कौन–सा है ?
 - —यूकेलिप्टस
- अम्लीय वर्षा में प्रायः क्या अधिक मात्रा में होता है ?
 —हाइड्रोक्लोरिक अम्ल
- बिना बीज के फलों को विकसित करने की विधि को क्या कहते हैं ? —**टिश्**—कल्चर
- समुद्री शैवाल में क्या होता है ? **-आयोडाइड**
- किसी तरल पदार्थ की बूँद के गोलाकार रूप ग्रहण करने का क्या कारण है ? —पृष्ठ—तनाव
- सुदूर फोटो चित्रण में प्रकाश को कौन—सी किरणें प्रयोग में आती हैं?
 —इन्फ्रा—रेड—िकरणें
- डॉक्टरों द्वारा प्रयोग किया जाने वाला स्टेथस्कोप किस सिद्धान्त पर कार्य करता है ?
- आधुनिक शक्तिशाली चुम्बक किससे बनते हैं ?
 - -लोहा, कोबाल्ट व निकेल की मिश्र धातुओं से
- जब कोई बाहरी पदार्थ, मानव रूधिर प्रणाली में प्रविष्ट होता है, तो प्रतिक्रिया कौन प्रारम्भ करता है ?
 - श्वेत रूधिर कणिकाएँ
- 'एथलीट्स फुट' रोग का क्या कारण है ?

-जीवाणु संक्रमण

 मानव—जाति वनस्पति—विज्ञान, वनस्पति—विज्ञान की वह शाखा है जिसका अध्ययन क्षेत्र है ?

–जनजातीय औषधि से संबंधित पौधे

- सपाट–अस्थियाँ कहाँ होती हैं ? **–खोपडी में**
- बायो–गैस ऊर्जा का कैसा स्रोत है ? **–गैर–परस्परिक**
- चीनी के उत्पादन में उपोत्पाद शीरा (मौलेसेज) किस पदार्थ में बदल जाता है ?
- पेनिसिलिन किससे तैयार की जाती है? —फफूँदी से
- मलेरिया रोग किसके द्वारा फैलता है ?

–प्लाजमोडियम द्वारा

- राइबोफ्लेविन कौन—सी मद है ? -विटामिन $\mathbf{B_2}$
- वर्णान्ध व्यक्ति किन रंगों में अन्तर नहीं कर सकते हैं ?
 —लाल और हरा
- मरीचिका को क्या कहा जा सकता है ? —दृष्टि भ्रम
- चमगादड़ कैसा प्राणी है ?
- खिलाड़ी (एथलीट) किसका लाभ उठाने के लिए लम्बी कृद से पहले दौडता है ? —गित का जडत्व
- सूर्य के प्रकाश में गुलाब लाल दिखाई देता है। हरे प्रकाश में वही गुलाब कैसा दिखाई देगा ?

 —काला

अमाशय रस में कौन—सा अम्ल होता है ?

–हाइड्रोक्लोरिक अम्ल

- कौन—सा पदार्थ मानव शरीर में सबसे अधिक कठोर होता है ? —दन्तवल्क (इनैमल)
- प्रकाश संश्लेषण के दौरान कौन–सी गैस निर्मुक्त होती है?

 —ऑक्सीजन
- सोडियम बेंजोएट का उपयोग मुख्यतः किस रूप में किया जाता है ?
- सेलुलोस किसका मुख्य घटक है ? **–कोशिका–भित्ति**
- विघटनाभिकता का क्या कारण है ? -अस्थायी न्युक्लियस
- किसी रोगी की जैविक मृत्यु का अर्थ उसके किस अंग के ऊतकों के मर जाने से हैं ? —मस्तिष्क
- रक्त-चाप (दाब) किसमें उच्च होता है ? **-धमनियों में**
- एस्ट्रोजन और प्रोजेस्टेरोन किसकी वृद्धि को नियन्त्रित तथा उत्तेजित करते हैं ? —स्तन ग्रन्थि
- वृक्षों से प्रापत किया गया प्राकृतिक रबर का बुनियादी रासायनिक निर्माण ब्लॉक है— —आइसोप्रीन
- कंघ, खिलौने, कटोरे आदि किस प्लास्टिक पॉलिमर से बनाए जाते हैं ?
- 'सिरका' (विनेगर) किसका वाणिज्यिक नाम है ? —एसिटिक अम्ल
- रॉकेट की गृति पर कौन-सा संरक्षण सिद्धान्त लागू होता
 है ?
- पानी की एक बाल्टी को केवल एक हाथ में ले जाने के बजाय दो बाल्टियों को अलग—अलग दोनों हाथों में ले जाना आसान होता है, क्योंकि—

–गुरुत्व केन्द्र तथा सन्तुलन केन्द्र पैरों में होता है

- अपमार्जक मिलाने पर पानी के पृष्ठ तनाव पर क्या प्रभाव पड़ता है ? —घट जाता है
- किसी प्रशीतित्र (रेफ्रीजरेटर) में 'शीतल प्रणाली' सदैव—
 —शीर्ष (टॉप) पर होनी चाहिए
- उस युक्ति को क्या कहा जाता है, जो लम्बी दूरी के संचारणों के शुरू में अंकीय संकेतों को अनुरूप संकेतों में बदल देते हैं ?
- आलेख (ग्राफिक्स) पाठ, ध्विन, वीडियो तथा सजीवन (एनिमेशन) के संयोजन में सूचना को क्या कहा जाता है?
 —बह्-मीडिया
- पनडुब्बियाँ पानी में चलती हैं। उनके इंजनों में किस ईंधन का प्रयोग किया जाता है ? **–पेट्रोल तथा ऑक्सीजन**
- भोपाल गैस त्रासदी किस गैस के रिसाव के कारण हुई थी ? —**मिथाइल आइसोसाइनेट**
- किस गैस को एक्वालंग्स में गोताखोरों द्वारा साँस लेने के लिए ऑक्सीजन में मिलाया जाता है?
- वे कौन—से कण हैं जो परमाणु केन्द्रक के चारो ओर घूमते हैं और ऋणात्मक रूप से आवेशित होते हैं ? —इलेक्ट्रॉन
- कार्बन का सर्वाधिक कठोर अपररूप क्या होता है ?
 —हीरा

ओजोन परत के अवक्षय का मुख्य कारण कौन—सा गैस है? —क्लोरो—फ्लोरो कार्बन

- aिकस कण का शृंखला—अभिक्रिया के लिए यूरेनियम के विखंडन के दौरान बना रहना अनिवार्य है ? —न्यूट्रॉन
- प्याज में किस भाग में खाद्य जमा होता है ? **-शल्क-पत्र**
- वल्कनीकरण प्रक्रिया के दौरान किस पदार्थ को मिलाने से रबर को कठोर बनाया जा सकता है?

- भूरी शर्करा के विलयन को विरंजित करने के लिए प्रयोग में लाए जाने वाले कोयले (चारकोल) को क्या कहते हैं ?
 —जांतव चारकोल
- पुरातत्वीय महत्व की अति प्राचीन वस्तुओं के तिथि निर्धारण के लिए किस मद का प्रयोग किया जाता है ?
 —कार्बन—14 पद्धित
- शरीर की सर्वाधिक प्रबल अस्थि कहाँ होती है ?
 —जबडे में
- लाल रूधिर कोशिकाओं का उत्पादन किसके द्वारा होता है? —अस्थि मज्जा
- किसी शिशु के वंशागत जीनों की कुल संख्या में
 —माता और पिता (प्रत्येक) से प्राप्त जीनों की संख्या समान होती है
- सौर ऊर्जा को विद्युत ऊर्जा में परिवर्तित करने के लिए आवश्यक तत्व क्या है ?

 —सिलिकॉन
- दूरदर्शन (टी. वी.) के ध्विन संकेत होते हैं—
 —आवृत्ति माङ्लित
- सिग्नल के लिए लाल बत्ती का प्रयोग क्यों किया जाता
 है? —क्योंकि माध्यम में निम्न प्रकीर्णन होता है
- ऊनी कपड़े सर्दी में शरीर की रक्षा करते हैं, क्योंकि— —वे ऊष्मा के कुचालक होते हैं
 - जल्लू घोर अंधकार में भी देख सकता है, क्योंकि— —उसकी बड़ी—बड़ी आँखों के गोले आगे की तरफ निकले होते हैं जो उनको द्विनेत्री दृष्टि प्रदान करता है
- स्पिन ड्रायर्स में गीले कपड़े को किस क्रिया द्वारा सुखाया जाता है ? —अभिकेन्द्र जल
- मानव का सामान्य रक्त—दाब कितना होता है ?
 —80/120 मिमी. पारा
- सी. डी.-रोम डिस्क को पढ़ने में मुख्यतः किसकी जरूरत पड़ती है ?
- ग्लाइकोजन किसमें जमा होता है ? —**यकृत में**
- हीमोग्लोबिन का मुख्य कार्य क्या है ?
 - –ऑक्सीजन ले जाना
 - जब रक्त में नाइट्रोजनी अपशिष्ट जमा होता है तब मुख्यतः कौन—सा अंग काम नहीं कर रहा होता है ? यकृत
- हीमोफीलिया कैसा रोग है ?
- रक्त में कौन–सी धातु पाई जाती है ? **–लोहा**
- प्राकृतिक गैस का मुख्य घटक क्या है ? मिथेन
- पानी में हवा का बुलबुला कैसा व्यवहार करता है ?
 —अवतल लेंस की भाँति
- घरेलू खाना पकाने की गैस में प्रायः क्या होता है ?
 —द्रवित ब्यूटेन और आइसोब्यूटेन
- टेप रिकार्डर को मुख्यतः किस चीज के समीप नहीं रखा जाना चाहिए ?
- जब झूले पर बैठा हुआ कोई व्यक्ति उस पर खड़ा होता है, तो झूले के दोलन की आवृत्ति पर क्या प्रभाव पड़ता है?
- रात में, कुहासे और कुहरे में फोटोग्राफी करना किसका प्रयोग करके सम्भव हो पाता है ? —अवरक्त विकिरण
- पाचन क्रिया में प्रोटीन किस पदार्थ में बदल जाते हैं ?
 –ऐमीनों अम्ल
 - गेहूँ किस प्रकार के जडत्र वाला पौधा है ? —झकड़ा (रेशेदार) जड़

- पत्तियों में मंड (स्टार्च) की उपस्थिति के परीक्षण के लिए प्रयोग में लाया जाने वाला अभिकर्मक क्या होता है ?
 —आयोडीन विलयन
- किस वृक्ष से निकाली गई औषधी से मलेरिया रोग से छुटकारा पाया जा सकता है ?
 —िसनकोना वृक्ष
- प्रकाश-संश्लेषण के लिए ऊर्जा किससे मिलती है ?
 - –सूर्य के प्रकाश से
- यूरिया होता है **–नाइट्रोजनी उर्वरक**
- पौधे में पानी का संवहन कौन—सा ऊतक करता है ?
 —जाइलेम ऊतक
- भ्रूण विकास के लिए किस अंग के द्वारा खाद्य की पूर्ति की जाती है ?
- 'स्वेदन' किसके लिए महत्वपूर्ण है ?
 - शरीर के तापमान को विनियमित करने के लिए
- वलय कृमि (रिंग वर्म) किसके द्वारा फैलाने वाली बीमारी है?
- बैटरी में किस ऊर्जा का रूपांतरण किस ऊर्जा में होता है?
 —रासायनिक ऊर्जा का वैद्युत ऊर्जा में
- मानवों का एक मिनट में लगभग कितनी बार हृदय स्पंदन होता है ?
- शरीर का निर्माण करने वाला पोषक तत्व है ? -प्रोटीन
- तड़ित् किसके द्वारा उत्पन्न होती है ?
 - –विद्युत्–विसर्जन
- सिग्नल (संकेत) को निम्न प्रतिरोध क्षेत्र से उच्च प्रतिरोध क्षेत्र में अन्तरित करने वाली युक्ति क्या है ? **–ट्रांजिस्टर**
- बिजली के उच्च वोल्टता वाले तार पर बैठे पक्षी को विद्युत् मारन क्यों नहीं होता है ?
 - -क्योंकि वह विद्युत् धारा के प्रवाह के लिए संवृत्त पथ नहीं बनाता है
- संजीवन (एनीमेशन) उत्पन्न करने वाली वह कौन–सी तकनीक है जिसमें एक प्रतिबिम्ब दूसरे में बदल जाता है?
 —आकृतिक निरूपण (मार्फिंग)
- किसी बाँध की दीवार नींव (आधार) पर अधिक चौड़ी क्यों होती है ?
 - –वह क्षैतिज समतल (होरिजोंटर प्लेन) में बढ़ने वाले दाब को दहन कर सकती है
- रैबीज (अलर्क) नामक रोग किसके द्वारा होता है ?
 - –विषाणु (वाइरस)
- किसकी सहायता से रक्त द्वारा ऑक्सीजन ले जाया जाता
 है ? —लोहित कोशिकाएँ
- 'गाजर' किस विटामिन का एक सम्पन्न स्रोत है ?
 - **–विटामिन– A** स्वर्ण (Gold) प्रकृति में सदैव किस स्थिति में पाया जाता
- है ? सदय किस स्थित में पाया जाता है ? — मुक्त अवस्था में
- पुष्प का कौन—सा भाग परागकण पैदा करता है ?
 —परागकोष
- किस फल का विकास पुष्पक्रम में होता है ? **–अनन्नास**
- पौधों में रस आरोहन (चढ़ाव) किसके माध्यम से होता है ?
 —जाइलेम
- मुख्यतः किस प्रक्रिया द्वारा नाइट्रोजन वायुमण्डल में छोड़ी जाती है ?
 —जैव नाइट्रोजन यौगिकीकरण
- एथानॉल को विकृत करने के लिए सामान्यतः किसका प्रयोग किया जाता है ? —**मिथाइल एल्कोहल**

- वह गैस कौन—सी है जो पौधा घर (Green house) प्रभाव के लिए मुख्यतः जिम्म्दार है ? —कार्बन डाईऑक्साइड
- AB रूधिर वर्ग वाले किसी व्यक्ति को किस रूधिर वर्ग के व्यक्ति का रक्त दिया जा सकता है ?

-सभी रूधिर वर्ग वाले व्यक्तियों को

- कौन—सा राज्य शहतूत कीट पालन में अग्रणी है ? —कर्नाटक
- पृष्ठीय तनाव का परिणाम क्या होता है ? –केशिका क्रिया
- पुष्प के किस भाग द्वारा प्रकाश—संश्लेषण किया जा सकता है ? —बाह्य दलपुंज
- 'अदरक' है एक— **—रूपान्तरित तना**
- शहद में मुख्यतः होता है— —कार्बोहाइड्रेट
- अभ्रक विद्युत का कैसा चालक है ? —कुचालक
- लोहे को जंग लगने से बचाने के लिए उस पर कलई चढ़ाने के काम में लाई जाने वाली धातु कौन है ? —जस्ता
- फेफड़े को ढकने वाली झिल्ली को क्या कहा जाता है ?

–फुफ्फसावरण

- 'हेपेटाइटिस' किस अंग का रोग है ? जिगर का
- 'एन्टअमीबा हिस्टोलिटिका' नामक परजीवी मानव के किस अंग में पाया जाता है ? —**ऑत में**
- पॉजीट्रॉन एमीशन टोमोग्राफी (PET) फंक्शन इमेजिंग के सर्वोत्तम विधि है, कैसे ?

—क्योंकि इसमें पॉजीट्रॉन 'इमेज फार्मेशन' में स्वयं भागीदारी करते ∕हैं

• 100°C पर पानी की अपेक्षा 100°C पर भाप अधिक गस्भीर दाह क्यों करती है ?

-क्योंकि वाष्पन की गुप्त ऊष्मा होती है

- 'कैट स्कैन' कराने के लिए क्या कराना पड़ता है ?
 –कम्प्यूटरीकृत अक्षीय टॉमोग्राफी
- आती हुई कार की चाल को मापने के लिए एक पुलिस अधिकारी उस पर क्या चमकाता है ?
- कोशिकाओं की वह संरचना जिसमें प्रकाश अवरोधक वर्णक होता है, उसे क्या कहते हैं ?

—हरित लवक (क्लोरोप्लास्ट)

 वे तना—कोशिकाएँ जिनसे अन्य प्रकार की कोशिकाएँ विकसित की जा सकती हैं, वह कहाँ से आती हैं?

–भ्रूण से

- कार्बोहाइड्रेट का वह रूप जो पौधों में संश्लेषित होता है, वह क्या होता है ?
- 'इन्फ्लुएंजा' रोग किसके द्वारा फैलाया जाता है ?

—विषाणु

- दालें किसका उत्तम स्रोत होती है ? –प्रोटीनों का
- रक्त में मूत्राम्ल के उच्च स्तर के कारण कौन—सा रोग हो जाता है ?
- एक वयस्क मानव में सामान्यतः कितने चर्वणक होते हैं ?
 —12 चर्वणक
- 'चिकिन पॉक्स' मुख्यतः किससे होती है ?

–प्रोटोजोआ से

- फेफड़े से हृदय के लिए रक्त को ले जाने वाली रूधिर वाहिका को क्या कहा जाता है?
- जाली दस्तावेजों का पता मुख्यतः किन किरणों द्वारा लगाया जाता है?
 —पराबैंगनी किरणों द्वारा
- निलम्बी जल अणुओं के कारण, वर्षा के बाद 'इन्द्रधनुष'
 दिखाई देता है, क्योंकि वे— —प्रिज्मों का काम करते हैं

- समुद्र में पानी के नीले होने का क्या कारण है ?
 —जल—अणुओं द्वारा नीले प्रकाश का प्रकीर्णन
- 'क्विक सिल्वर' का रासायनिक नाम क्या है ?
 —वारद (पारा)
- दूध में परिक्षिप्त वसा क्या होता है ? —मक्खन
- व्यापक रूप से इस्तेमाल किया गया नाइट्रोजनी उर्वरक क्या है ? —यूरिया
- कछुआ कैसा प्राणी है ? —**अनियततापी प्राणी**
- हीरे की चमक का क्या कारण है ?

-प्रकाश का सम्पूर्ण आंतरिक परावर्तन

- समुद्र की धाराएँ उदाहरण है- —चालन का
- यदि ताँबे के तार को दोगुना बढ़ा दिया जाए तो उसका
 प्रतिरोध कितना गुना हो जाएगा ?
- डीजल इंजन में ईंधन को ज्वलित करने के लिए आवश्यक उच्च तापमान किसके द्वारा प्रापत किया जाता है ?

-सिलिण्डरों में वायु को सम्पीडित करके

- लम्बी दूरी के बेतार संचार के लिए अपेक्षित तरंगें हैं

 -रेडियो-तरंगें
- किसी बत्ती में तेल बढ़ने / चढ़ने का क्या कारण है ? —तेल का पृष्ठ तनाव
- प्रतिदीप्ति नलिकाा (ट्यूब) में प्रारम्भ में उत्पन्न विकिरण होता है—
 —पराबैंगनी
- प्रयोगशाला में सिल्वर नाइट्रेट घोल को ब्राउन बोतलों में क्यों रखा जाता है ?

—क्योंकि ब्राउन बोतलों में प्रकाश गुजरने का रास्ता बंद हो जाता है

- सीसा पेन्सिल (लेड पेन्सिल) में होता है— **-ग्रेफाइट**
- प्रातःकालीन धूप में मानव शरीर में कौन—सा विटामिन उत्पन्न होता है ?
- टाँका (सोल्डर) किसका मिश्र–धातु है ?

–टिन एवं सीसा की

- हड्डी का प्रयोग उर्वरक के रूप में किया जाता है, क्येांकि इसमें पौधा पोषक तत्व होता है— —फॉस्फोरस
- सूर्य की ऊर्जा का मुख्य कारण क्या है ?

–नाभिकीय संलयन

- आँवला में कौन–सा विटामिन प्रचुर मात्रा में पाया जाता है?

 —विटामिन— C
- पौधे के किस भाग से हल्दी प्राप्त होती है ? —**तना से**
- आनुवांशिक यूनिट अर्थात् 'जीन' किसमें होते हैं ?

–गुणसूत्र (क्रोमोसोम) में

किस तेल से ड्रॉप्सी (जलशोफ) हो जाता है ?

-आर्जेमोनि तेल

- सार्विक रक्तदाता का रूधिर वर्ग क्या होता है ? **–'O**'
- सर्वाधिक विकसित बुद्धि वाला जलीय प्राणी क्या है ?
 —हवेल
- वह रूधिर वाहिका कौन—सी है, जो जिगर को ऑक्सीजनित रूधिर ले जाती है?
 —यकृत धमनी
- किस कोशिका से इंसुलिन संस्रावित होता है ?

–बीटा कोशिका

मानव शरीर में वसा कहाँ जमा होती है ?

–वसा ऊतक में

- किसकी उपास्थिति में रूधिर वाहिनियों में रक्त आतंचित (Clot) नहीं होता है ? **–हैपारिन की उपस्थिति में**
- किस रोग से रक्षा के लिए शिशुओं को डी.पी.टी. का टीका लगाया जाता है ? -रोहिणी, कुकर खाँसी तथा टेटनस से
- 'हीमोफीलिया' कैसा विकार है ? —आनुवांशिक विकार
- गुर्दे को रक्त पूर्ति करने वाली रूधिर वाहिका क्या है ? -वुक्क धमनी
- मानव शरीर में कौन-सा अंग ग्लाइकोजन के रूप में कार्बोहाइड्रेट को जमा करता है?
- तार केबिलों के स्थान पर प्रकाशित तन्तुओं (ऑप्टिकल फाइबर) का प्रयोग क्यों किया जाता है ?

-क्योंकि वे अधिक सस्ते (किफायती) होते हैं

- उस उपकरण को क्या कहा जाता है जो प्रतिबिम्बों को ऐसे अंकीय आँकडों (डाटा) में बदल देता है जिन्हें कम्प्यूटर में जमा किया जा सकता है ? –स्कैनर
- एक्वा-रेजिया मुख्यतः किसको घुलाने के लिए प्रयुक्त किया जाता है ? —स्वर्ण को
- फोटोग्राफिक फिल्म पर सुग्राही पायस (इमल्शन) तैयार करने में किस हैलाइड का प्रयोग किया जाता है ?
 - -सिल्वर ब्रोमाइड
- 'दियासलाई' के विनिर्माण में प्रयुक्त मूल तत्व क्या होता –फॉस्फोरस
- तंत्रिका तंत्र का कौन-सा भाग आंतरिक अंगों की क्रियाओं को नियंत्रित करता है ? –मेडुला ऑब्लांगेटा
- जब मानव हृदय में बाएँ निलय का संकुचन होता है, तो रक्त किसकी तरफ जाता है ? -महाधमनी
- कौन-सी स्थिति विलम्बित रक्त स्कंदन की एक शर्त है ? –हीमोफीलिया
- मक्खी से मुख्यतः कौन-सी बीमारी फैलती है ? –आन्त्रज्वर
- 'लॉकजॉ' किस रोग की अन्तिम अवस्था है ? –टेटेनस
- प्रतिवर्ती (रिफ्लैक्स) क्रियाओं का नियंत्रण किसके द्वारा –मेरूरज्जु किया जाता है ?
- 'मोडेम' नाम कहाँ से लिया गया है ?
 - -मॉड्लेटर डिमॉड्लेटर
- परागण के दौरान परागकणों को ग्रहण करने वाला पुष्पी भाग क्या होता है ? **–हक्** बिन्दू
- कौन-सी शर्करा तत्काल ऊर्जा प्रदान करती है ? –ग्लूकोज
- पर्णांग (फर्न) किसके जरिए प्रजनन करता है ?
- -बीजाणुओं (स्पोर्स) के जरिए
- 'द्रवचालित ब्रेक' किस सिद्धान्त पर काम करते हैं ?
- -पॉस्कल नियम
- रात में तारे किस कारण चमकते हैं ? —अनेक अपवर्तनों के कारण
- किनकी भित्तियों पर रक्त द्वारा डाले गए दबाव को रक्त-दाब कहा जाता है ? -धमनियों की
- वह अंतःस्रावी कौन-सी है जिसे 'मास्टर ग्रंथि' कहा जाता 웅 ? –पीयुष
- 'पित्त' किसके द्वारा पैदा किया जाता है ? -यकृत
- जिलेटिन का प्रयोग प्रायः आइसक्रीम बनाने में किया जाता है, जिसका मुख्य उद्देश्य क्या होता है ?
 - –कोलॉइड को स्थायी करना और क्रिस्टलीकरण को रोकना

- वह पदार्थ कौन-सा है जिसका प्रयोग कपडे से स्याही और जंग के धब्बों को मिटाने के लिए किया जाता है ? –ऑक्लैलिक अम्ल
- कवे दो तत्व कौन से हैं जिनसे बहुत बड़ी संख्या में यौगिक तैयार किए जा सकते हैं ?

–कार्बन और हाइड्रोजन

- ऑक्सीजन मिश्रित वह निष्क्रिय गैस कौन-सी है जो अवरोधित श्वसन से पीड़ित रोगियों को दी जाती है ? –हीलियम
- दो रेल पटरियों के बीच धातु के किस प्रयोजन के लिए गैप छोडा जाता है ? -रेखीय प्रसार के लिए
- ध्वनि तरंगों को कहाँ संचरित नहीं किया जा सकता है ? -निर्वात में
- सूर्य ग्रहण को नंगी आँखों से देखना खतरनाक क्यों होता

-क्योंकि सूर्य से निकलने वाली पराबैंगनी विकिरणें हमारे दुष्टिपटल को जला देती हैं

- 'फोर स्ट्रोक पेट्रोल इंजिन' किस पर आधारित होता है ? –कोनों चक्र पर
- कौन-सा तत्व पौधों के लिए एक सूक्ष्म पोषक होता है ?
- 'पाइलट'—लक्ष्य को निशाना बनाने के लिए बम गिराता –लक्ष्य से पहले
- शेविंग दर्पण में किसका प्रयोग किया जाता है ? –परवलयिक दर्पण का
- लाल रंग को आपात या खतरा सिग्नल के रूप में क्यों प्रयोग किया जाता है ?

–क्योंकि इसका तरंगदैर्ध्य सबसे लम्बा होता है

- चमगादड बाधाओं का पता लगा सकते हैं. क्योंकि वे -पराश्रव्य ध्वनि तरंगें उत्पन्न करते हैं-
- अतिचालक का प्रतिरोध लगभग कितना होता है ? -शून्य
- किसी पौधे का खाद्य चालन ऊतक क्या होता है ? -पोषवाह (फ्लोएम)
- अधिक पैदावार वाले पौधे किस प्रकार तैयार किए जा सकते हैं ? –संकरण द्वारा
- सौर बैटरियों (सेलों) में प्रयुक्त पदार्थ क्या होता है ? —सीजियम
 - स्फटिक (क्वार्ट्ज) किसका क्रिस्टलीय रूप है ? –सिलिका का
- जब नींबू के रस को खाने के सोडे पर डाला जाता है तब उसमें तेज उत्फुल्लन होता है। यह उत्फुल्लन उससे उत्पन्न किस गैस के कारण होता है ?

–कार्बन डाईऑक्साइड

- सकवाश के लिए खाद्य परिरक्षी के रूप में किसका प्रयोग किया जाता है ? –पोटैशियम मेटाबाइसल्फाइट
- अमोनिया है एक--अतिशीतित द्रव
- स्कंध संधि (जोड़) कैसा संधि है ? –कोर–संधि
- पित्त कहाँ जमा होता है ? -पित्ताशय में
- मुख से निकली लार पाचन करती है-
- –मंड (स्टार्च) का
- -मस्तिष्क शोथ नर मच्छर क्या फैलाता है ?
- पिनियल ग्रंथि कहाँ होती है ? -यकृत में

- 'क्लोरोक्वीन' भेषज कब दी जाती है ? –आंत्रज्वर में
- किसी जीव द्वारा संश्लेषित एक रासायनिक यौगिक जो जीव के विकास को निरूद्ध करता है, उसे क्या कहते हैं? -प्रतिजैविक
- हल्दी पौधे के किस भाग से प्राप्त होता है ? –तना से
- मलेरिया किसके काटने से संक्रमित होता है ? -मादा ऐनोफेलीज मच्छर
- नीले काँच की प्लेट धूप में नीली दिखाई देती है, क्यों ? क्योंकि यह नीला रंग संक्रमित करती हैं
- तारपीन का तेल कहाँ से मिलता है ?

🛥 चीड़ का पेड़ से

- वायुमण्डल के ऊपरी भाग में ओज़ोन परत हमारी रक्षा किससे करती है ? –पराबैंगनी विकिरण से
- एल्फ्रेंड नोबेल को नोबेल पुरस्कार वितरण हेत् एक निधि स्थापित करने के लिए धनराशि किस आविष्कार से मिली
- डी. एन. ए. संरचना का सही मॉडल किसने बनाया था ? –वाट्सन और क्रिक
- खाद्य-शंखला में सबसे निचला स्तर क्या है ? -उत्पादक
- वह पौधा कौन-सा है जो अपने भोजन के लिए कीटों को पकड लेता है ? —यूट्टीकुलेरिया
- बस कसे ऊपरी डैक पर यात्रियों को खड़ा क्यों नहीं होने दिया जाता है ? -क्योंकि यात्री गति के जड़त्व में होते हैं
- निकट दुष्टि-दोष या मायोपिया को ठीक करने के लिए किस लेन्स का प्रयोग किया जाना चाहिए ?-अवतल लेन्स
- चुम्बकीय क्षेत्र की तीव्रता क्या होती है ? -एम्पियर/मीटर
 - तापमान घटने के साथ-साथ किसी धातु के प्रतिरोध पर क्या प्रभाव पडता है ? –घटता जाता है
- जीवाणुओं को नष्ट करने के लिए साधारणतया किस गैस का प्रयोग किया जाता है ? —क्लोरीन
- प्रकृति में पारिस्थितिक तंत्र में किस तत्व का प्रतिशत सबसे अधिक होता है ? –नाइट्रोजन
- वाहनों में स्नेहक तेल का प्रयोग क्यों किया जाता है ? -घर्षण कम करने के लिए
- वनस्पति-संग्रहालय (हर्बेरियम) क्या होता है ?

—पौधों के शुष्क नमूनों का परिरक्षण केन्द्र

- वह प्रकाशीय उपकरण कौन-सा है जिसकी सहायता से दोनों आँखों से एक साथ दूरवर्ती वस्तुओं का आवर्धित रूप दिखाई देता है ? –द्विनेत्री (बाइनोक्यूलर)
- दियासलाई में प्रयोग किया गया फॉस्फोरस का अपररूप क्या होता है ? -लोहित फॉस्फोरस
- रूधिर स्कंदन किस प्रोटीन के द्वारा होता है ?

–फाइब्रिनोजन

- काँच होता है--अतिशीतित द्रव
- सोडियम को आमतौर पर किस पदार्थ के नीचे रखा जाता —केरोसीन (मिट्टी का तेल)
- 'नीली क्रान्ति' (ब्लू रिवोल्यूशन) किससे सम्बन्धित है ? –मछली उत्पादन से
- हीमोग्लोबिन में मुख्यतया कौन-सा तत्व मौजूद होता है ?
- किस तत्व की सापेक्ष परमाणु संहति क्या है जो परमाणुओं से बनी है, जिसमें प्रत्येक में 17 प्रोटॉन, 18 न्यूट्रॉन और 17 इलेक्ट्रॉन हैं ?

सोने (स्वर्ण) पर बिजली से मुलम्मा करने के लिए प्रयुक्त किए जाने वाला विद्युत लेपन क्या होता है ?

—स्वर्ण क्लोराइड

- तेज बुखार में शरीर का तापमान कम करने के लिए प्रयुक्त पदार्थ होता है--ज्वरहर (Antipyretic)
- लाल चीटियों में कौन-सा अम्ल आता है ?-फॉर्मिक अम्ल
- प्रकाश संश्लेषण करने के लिए पौधों को किस गैस की आवश्यकता होती है ? –कार्बन डाईऑक्साइड की
- टेलीविजन पर बिम्ब आकृति की तीक्ष्णता को क्या कहा जाता है ? —वियोजन (रिजोलूशन)
- मानव हृदय बंद होता है-–हृदयावरण में
- मानव अस्थि-पंजर (कंकाल) में कितनी हिंडयाँ होती हैं?
- मानव त्वचा को रंग देने वाला वर्णक क्या है ? -मेलानिन
- टेटेनस रोग कैसे फैलता है ? -संदुषित खाद्य द्वारा
- एक तांबे की छड़ है और दूसरी इस्पात की। दोनों को पानी में डालने पर एक जैसा उत्क्षेप होता है। इस प्रकार दोनों का क्या समान होगा ?
- एक साधारण सूक्ष्मदर्शी में अंतिम प्रतिबिंब कैसा बनता है? -वास्तविक, ह्वासित तथा प्रतिलोम
- पानी के छोटे–छोटे बुलबुलों के गोल होने का क्या कारण 홍?
- —पृष्ठ तनाव किस द्रव्य/धातु का उपयोग हड़प्पा काल की मुद्राओं के
- निर्माण में मुख्य रूप से किया गया था ? किसी मानक फ्लॉपी डिस्क में कितना डाटा भरा जा
- सकता है ? —1.44 एम बी
- न्यूट्रॉन की खोज के लिए नोबेल पुरस्कार किसे दिया ग्या -जेम्स चैडविक को
- सफेद फॉस्फोरस किसके नीचे रखा जाता है?

-शीतल जल

- सिट्रस फल में कौन-सा विटामिन पाया जाता है ? -विटामिन-सी
 - —संश्लिष्ट पॉलीमर
- पॉलिस्टाइरीन क्या है ?
- रक्त एक प्रकार का है--ऊतक
- किस भाग में पाचक एवं श्वसन नलियाँ 'क्रॉस' करती हैं -ग्रसनी में
- 'थैलेसीमिया' किस प्रकार फैलने वाला रोग है ?

उत्परिवर्ती जीन द्वारा

- किसी एथलीट को तात्क्षणिक ऊर्जा के लिए क्या दिया जाना चाहिए ? -कार्बोहाइड्रेट्स
- मानव शरीर में वे नियंत्रण केन्द्र कहाँ हैं जो भूख, पानी सन्तुलन तथा शरीर के तापमान को विनियमित करते हैं ? –हाइपोथैलेमस
- राष्ट्रीय पादप आनुवांशिक संसाधन ब्यूरो (NBPGR) किस शहर में स्थित है ? —नई दिल्ली
- इलेक्ट्रॉन पर कैसा आवेश होता है ? -ऋण आवेश
- जर्मन सिल्वर में किस-किस धातू का मिश्रण है ?
 - -ताँबा, जस्ता और निकेल आवर्धक लेन्स क्या होता है ?

-अल्प फोकस दूरी वाला उत्तल लेंस

चलती गाडी से एक पत्थर गिराया जाता है। जमीन पर खडे एक प्रेक्षक के लिए जमीन पर पहुँचता हुआ पत्थर किस प्रकार का पथ लेता हुआ दिखाई देगा ?

-परवलयिक (पेराबोलिक) पथ

- वह कौन—सा पदार्थ हे जो 14 वर्ष की आयु तक के बच्चों की बढ़वार के लिए अत्यंत आवश्यक है ? **—प्रोटीन**
- मानव चक्षु में एक विशेष रंजक होता है जो यह निर्धारित करता है कि किसी व्यक्ति की आँखें बभ्रु, नीली या काली होगी। वह रंजक किसमें पाया जाता है ?

-परितारिका (आइरिस) में

 मानव तथा अन्य जीवों में 'जीन' आनुवंशिकता को नियंत्रित करते हैं। यह 'जीन' क्या है ?

–गुणसूत्रों पर मनका जैसी संरचना

- रोहिणी (गलघोंटू) और इन्फ्लूएंजा के होने का क्या कारण है ?
 –क्रमशः जीवाणु और विषाणु
- झाड़ी (क्षुप) के किस भाग से कपास का रेशा निकाला (Extract) जाता है ?
- चन्द्रमा पर आने—जाने की यात्रा के दौरान अधिकतम ईंधन कब खर्च होता है ?

-पृथ्वी पर पुनः प्रवेश करने और हल्का-हल्का उतरने पर पृथ्वी के गुरुत्व को पार करने में

- उन तत्वों को क्या कहा जाता है जिनमें समान संख्या में प्रोटॉन और भिन्न संख्या में न्यूट्रॉन होते हैं ?—समस्थानिक
- 'एस्बेस्टॉस' क्या होता है ? -मैग्नीशियम सिलिकेट
- डी.पी.टी. टीका मुख्यतया किस रोग के बचाव में दिया जाता है?
 —रोहिणी, कूकर खाँसी तथा टिटेनस
- 'सुगर से ऐल्कोहॉल' में रूपांतरण की प्रक्रिया को क्या कहते हैं ? —किण्वन
- ओस कब पडती है ?

-जब वायु ठण्डे धरातल पर घनीभूत हो जाती है

• नींबू में खटास किस चीज के कारण होती है ?

–सिट्रिक अम्ल

- मुख से लिये जाने वाले पोलियो वैक्सीन का विकास किसने किया था ?

 —जोनास साल्क
- हृदय और उसकी बीमारियों के अध्ययन से सम्बन्धित
 विज्ञान को क्या कहा जाता है ?
- सूक्ष्मदर्शी (Microscope) का आविष्कार किसने किया था?
 - –जैड जॉन्सन
- अंकीय सिग्नल में किसी प्रलेख को कोडन करने के बाद उसे टेलीफोन, टेलेक्स या उपग्रह के द्वारा प्राप्तकर्ता के पास भेजा जा सकता है जहाँ उसका बिकोडन किया जाता है और मूल प्रलेख की सही प्रति तैयार की जाती है। वह प्रक्रिया कौन—सी है जो इसका प्रतिनिधित्व करती है ?
- कागज पर फैली स्याही को कैसे अवशोषित किया जा सकता है ?
 —मसीचूष—पत्र द्वारा
- ट्राई नाइट्रोटोलीन (टीएनटी) का विस्फोट किसके मिश्रण द्वारा तैयार किया जाता है?
 —अमोनियम नाइट्रेट
- विटामिन 'ए' का सर्वोत्तम स्रोत क्या है ? **—गाजर**
- बर्फ पानी पर क्यों तैरते रहता है ?

-बर्फ का घनत्व पानी से अपेक्षाकृत कम होता है

- पेनिसिलीन के निर्माण का मुख्य केन्द्र किस शहर में है ?
 —िपम्परी
- आमतौर पर प्रयोग किए जाने वाला मसाला 'लौंग' पौधे के किस भाग से प्राप्त होता है ? —पुष्पकली से
- 'शहद' कैसे बनाया जाता है ?

-कर्मी मधुमिक्खयों द्वारा रसदार पौधों से फल शर्करा के चुनिंदा अवचूषण और अपने गटों में संसाधन द्वारा

- मानव की लाल रूधिर किणकाओं की आयु कितनी होती
 है ?
- मानव शरीर का तापस्थापी (थर्मोस्टेट) कहाँ स्थित होता है?
- शर्करा या मंड के किण्वन से क्या प्राप्त होता है ?
 - **-एथानॉल** एल. पी. जी. में मुख्य घटक क्या होता है ? **-ब्यूटेन**
- सार्वत्रिक आदाता रूधिर वर्ग कौन—सा है ? AB
- पोलियो का विषाणु (वाइरस) शरीर में किस प्रकार प्रवेश करता है ?
 —लार और नाक के स्राव से
- सेल्सियस और फारेनहाइट तापमापी किस विशेष तापमान पर समान रीडिंग देता है ? $-40^{\circ}\mathrm{C}$
- हृदय (हार्ट) की मर्मर किस कारण होती है ?

—च्यवन वाल्व

- कुछ तेलहनों को अनेक तेल में कोई परिवर्तन हुए बिना लम्बी अवधि तक स्टोर किया जा सकता है। यह किसकी मौजूदगी के कारण होता है?
- कांसा किसकी मिश्र–धातु है ?

-ताँबा और टिन का

 सामान्य फसलों के उगने के लिए उपयुक्त उर्वर मिट्टी में कितना pH मान होने की सम्भावना होती है ?

–छह और सात

 'एम्निओसेटिसिस' (भ्रूण परीक्षण) पर कानूनी प्रतिबंध क्यों लगाया गया है ?

—इसका प्रयोग भ्रूण के लिंग के चुनाव के लिए किया जाता है

- चाय पर लाल किट्ट (रेड रस्ट) किसके कारण लगता है? —कवक
- त्वचा का बाल-

—मूलतः अधिचर्मी होते हैं और मृत कोशिकाओं से बने होते

ग्रीन हाउस प्रभाव किसका परिणाम है ?

—अत्यधिक CO₂ का छोड़ना (निकालना)

- घेंघा किसकी कसमी के कारण होता है ? —आयोडीन
- तीर चलाने में प्रयोग की जाने वाली झूकी कमान में कौन—सी ऊर्जा होती है ? —स्थितिज ऊर्जा
- अधिक द्रव्यमान वाली एक क्रिकेट बॉल और एक टेनिस बॉल को समान वेग से फेंका जाता है। यदि उन्हें रोका जाए तो किस बॉल के लिए अधिक बल की आवश्यकता होगी?
- बिजली का बल्ब किससे अर्धित (रेटेड) होता है ?
 —शक्ति (बिजली) और वोलटता
- परमाणु का संघटन करने वाले तीन मौलिक कण कौन—कौन हैं?
 —प्रोटॉन, इलेक्ट्रॉन और न्यूट्रॉन
- घर में बिजली के तारों में इलेक्ट्रिक युक्तियाँ किस संबंधन में कनेक्ट की जाती हैं?
 —पार्श्वबद्ध संबंधन में
- रक्त धारा में ऑक्सीजन ले जाने वाला प्रोटीन होता है—
 —हीमोग्लोबिन
- फ्रीऑन का प्रयोग किस रूप में किया जाता है ?

–प्रशीतक

 किसी चुंबकीय क्षेत्र में जब कुंडली को घुमाते हैं, तो कुंडली में प्रेरित धारा पैदा होती है। इस सिद्धान्त का उपयोग किया जाता है—

-विद्युत् मोटर बनाने के लिए

- एक्वायर्ड इम्यूनो—डेफिशियंसी सिन्ड्रोम (एड्स) किसके कारण होता है ? —वायरस
- कौन—सा विटामिन हमारे शरीर में सबसे अधिक तीव्रता से बनता है ? —विटामिन—D
- ताँबा प्रकृति में किस अवस्था में पाया जाता है ?
 –मृक्त अवस्था में
- ताँबा को किस विधि द्वारा शुद्ध किया जाता है ?
- —विद्युत् अपघटन कार्बन डाईऑक्साइड है— —निर्जलीकारक
- किसी तत्व के परमाणु का परमाणु क्रमांक 17 है और द्रव्यमान 36 है। उसके न्यूक्लिअस में न्यूट्रॉनों की संख्या कितनी होगी?
- रेडियो–तरंगों के संचरण के लिए प्रयुक्त वायुमण्डल का स्तर है–
- प्रवर्धकों में ऋणात्मक पुनर्भरण-

-बैंड की चौड़ाई को बढ़ाता है और शोर को घटाता है

 विद्युत् धारा से लगी आग को बुझाने के लिए जल का प्रयोग क्यों नहीं किया जाता है ?

–उससे इलेक्ट्रोक्यूशन हो सकता है

- परिदर्शी (पेरिस्कोप) किस सिद्धान्त पर काम करता है ?
 —पूर्ण आन्तरिक परावर्तन
- ताम्र की डिस्क में एक छेद है। यदि डिस्क को गर्म किया जाए, तो छेद के आकार पर क्या प्रभाव पड़ेगा ? —घटेगा
- वाहन-चालन हेतु पश्च-दृश्य दर्पण होता है-

–उत्तल दर्पण

- वैश्लेषिक इंजन किसने बनाया ? **—चार्ल्स बैबेज**
- LAN का पूरा रूप है— **—लोकल एरिया नेटवर्क**
 - नाइलॉन के आविष्कार के साथ कौन सम्बन्धित हैं ? —**डॉ. वैलेस एच. कैराथर्स**
- सोडियम बेंजोएट का प्रमुख उपयोग क्या है ?
 —खाद्य-पदार्थों के संरक्षक में
- हीलियम एक तत्व है— —उच्चतम आयनन ऊर्जा वाला
- चौथी पीढ़ी के कम्प्यूटरों के निर्माण में प्रयोग किया जाता है— **-सूक्ष्म संसाधित्रों का**
- 'कम्प्यूटर का जनक' किसे कहा जाता है ? **–चार्ल्स बैबेज**
- 'सी. पी. यू.' का पूरा रूप क्या है ?

–सेंट्रल प्रोसेसिंग यूनिट

- शहद का मुख्य अवयव क्या है ? —फ्रूक्टोज
- नारा 'दो बूँद जिंदगी की' किस कार्यक्रम के साथ संबंधित
 है ? पल्स पोलियो अभियान
- 'भारतीय न्यूक्लियर विज्ञान का जनक' किसे कहा जाता है?
 –होमी जे. भाभा
- वायुमंडल के ऊपरी स्तरों में विद्यमान ओजोन अवशोषण करती है— —पराबैंगनी सौर विकिरण का
- भारत में स्थापित पहला परमाणु संयंत्र कौन—सा है ?
 —ताराप्र
- ग्रीन हाउस गैस है— **–कार्बन डाईऑक्साइड**
- शैक (लाइकेन) है— —सहजीवी
- काष्टीय आरोही लताएँ को क्या कहते हैं ? –कंडलता
- मानव के कुल रक्त आयतन में प्लाज्मा का प्रतिशत लगभग कितना होता है ?
 —60%
- यक्ष्मा (तपेदिक) बीमारी पैदा करने वाले कारक हैं–
 —जीवाणु (बैक्टीरिया)

डाइमेथिल ईथर किसका आइसोमर है ?

–एथिल ऐल्कोहॉल का

- फेन प्लवन प्रक्रम का प्रयोग किसके धातुकर्म के लिए किया जाता है ? —सल्फाइड अयस्क
- सुक्रोस के जल-अपघटन से क्या बनता है ?

-ग्लूकोस और फ्रक्टोस

- यदि आप स्थिर वायु में धूलकणों को देखने के लिए एक सूक्ष्मदर्शी का प्रयोग करें तो वे आपको हर समय इधर—उधर चलते हुए दिखाई देंगे। इस परिघटना को क्या कहते हैं?
- किस कोटि के फोटोप्रिन्ट की जीवन अविध सबसे लम्बी होती है ?

 —श्वेत—श्याम प्रिन्ट
- कपड़ों तथा बर्तनों को साफ करने के लिए प्रयुक्त डेटर्जेंट में क्या होता है ? —बाइकार्बोनेट
- मानव जठर में प्रोटीन पाचन के लिए उत्तरदायी अनुकुलतम परिवेश है—
 —अम्लीय
- 'समुद्री शैवाल' पद का सर्वोत्तम वर्णन किसके द्वारा किया जाता है ?
 —समुद्र तल के सुक्ष्म हरे पादप
- शिशु का लिंग किसके गुणसूत्री योगदान पर निर्भर करता है ? पिता
- ब्रायोफिलम में कायिक प्रवर्धन किसके माध्यम से होता है?
- वयस्क मानव का सामान्य रक्त—चाप कितना होता है ?
- -120/80 mm of Hg
- औसत वयस्क के शरीर में कितना रक्त होता है ?
 - 5—6 लीटर
- मानव में तापमान का नियंत्रण कौन–सी ग्रंथि करती है ?
 —हाइपोथैलेमस ग्रंथि
- -हाइपाथलमस ग्राथ • सबसे बड़ा शावक कौन−सा जानवर पैदा करता है ?
- —नीली हवेलमानव जीनोम परियोजना का नेतृत्व किसने किया था ?
- -फ्रांसिक क्रिक और जेम्स वाटसन
- दृश्य छाप किसमें बनती है ? —फोटोग्राफिक कैमरा में
- प्रकाश को सूर्य से पृथ्वी तक पहुँचाने में कितना समय लगता है ?
- पराश्रव्य तरंगों की आवृत्ति लगभग कितनी होती है ?

-20,000 हर्ट्ज से अधिक

- किसी अर्धचालक को गर्म करने पर उसके प्रतिरोध पर क्या प्रभाव पड़ता है ? —अपरिवर्तित रहता है
- प्रकाशिक तंतु का प्रयोग किसके लिए किया जाता है ?
 —संचार सेवा
- जलवाष्प में भण्डारित ऊष्मा है— **—गुप्त ऊष्मा**
- विक्षेपण बल की खोज सबसे पहले किसने की थी ?
 —कोरिओलिस ने
- वायुमण्डल में ओजोन ह्रास मुख्यतः किया जाता है–
 –क्लोरो–पल्ओरो कार्बन द्वारा
- अमरबेल (कुस्कुटा) है— पूर्ण तना परजीवी
- हृदय (Heart) का क्या कार्य है ?
 - -रूधिर को शरीर के विभिन्न अंगों में पंप करना
- मानव–रक्त का रंग लाल होता है–
 - –हीमोग्लोबिन के कारण
- वृक्क का प्रकार्यात्मक यूनिट क्या है ? **-वृक्काणु (नेफ्रॉन)**
- 'कोशिका का ऊर्जा केन्द्र' किसे कहा जाता है ?

- मृत्र कहाँ बनता है ? -संग्राहक वाहिनियों में
- काला-अजार ज्वर का संचरण कैसे होता है ?

-सिकता मक्खी के काटने से

- हानुफलक का दूसरा नाम क्या है ? -जान्विक (पटेल्ला)
- सभी मोटर वाहनों के लिए डीजल तेल अधिक पसंद किया जाता है, क्योंकि-

-कच्चे माल से उसका अधिक उत्पादन होता है

- जब लोहे में जंग लगता है, तो उसके भार पर क्या प्रभाव पडता है ? –बढ़ता है
- फलों को कृत्रिम रूप से पकाने के लिए मुख्यतः उपयोग में लाया जाता है-–इथलीन
- आंतरिक संक्रमण तत्वों की कुल संख्या कितनी है ?

- **–**ठोस कार्बन डाई ऑक्साइड सूर्खी बर्फ क्या है ?
- प्रकाश-तरंग कैसा तरंग है ? -विद्युत-चूंबकीय तरंग
- गैल्वेनोमीटर के द्वारा क्या मापा जाता है ?
- प्रकाश तरंगें अनुप्रस्थ तरंगें हैं, क्योंकि उन्हें-

-ध्रवित किया जा सकता है

- धातू की प्लेट के बीच में काट कर एक छेद बनाया गया और फिर उसे गरम किया गया तो छेद के आकार पर क्या प्रभाव पडेगा ?
- कम्प्यूटर की मुख्य स्मृति किसको कहा जाता है ?

-RAM

ऐनिमोमीटर क्या मापने के काम आता है ?

-पवन का वेग

- हमारे शरीर के किन कोशिकाओं में सबसे कम पुनर्योजी शक्ति होती है ? –मस्तिष्क कोशिकाएँ
- एक आलू कन्द को दो भाग में काटा गया है। इनमें से एक भाग के कटे हुए पृष्ठ पर आयोडिन विलयन की कुछ बूँदें गिराई गई हैं। अब किस रंग का परिवर्तन देखा जा सकता है ? –भूरे से नीलाभ काला
- मानव हृदय में कितने वाल्व सैट्स (Volve sets) होते हैं ?
- रोग प्रतिकारकों को उत्पन्न करने वाला सेल कौन-सा है? –सिस्फोसाइट
- डायस्टेस एन्जाइम का स्रोत है--लार ग्रन्थि
- समुद्र में डूबी वस्तु का पता लगाने के लिए किस यन्त्र का प्रयोग किया जाता है ?
- जब वाष्प दाब, वायुमण्डलीय दाब के बराबर हो जाता है, तो द्रव पर क्या प्रभाव पडता है ?

–द्रव उबलने लगता है

समुद्री खर-पतवार में मुख्यतः पाया जाता है-

- न्यूक्लीय रिएक्टर में भारी जल का प्रयोग किस रूप में किया जाता है ? -नियामक (Moderator)
- भीड़ को तितर-बितर करने में पुलिस द्वारा इस्तेमाल की जाने वाली अश्रु गैस क्या होती है ? –क्लोरीन
- इन्टरनेट के पते में पद http का सही वस्तृत रूप है-

- hyper text transfer protocol

'विश्व एड्स दिवस' कब मनाया जाता है ?

–1 दिसम्बर को

- किसमें सर्वोच्च विशिष्ट ऊष्मा का मान होता है ? -जल
- 'माइकोप्लाज्मा' जिस रोग से सम्बद्ध है, वह किन अवयवों को प्रभावित करता है ? –श्वास सम्बन्धी

- पद 'पीसी' का क्या अर्थ है ? -पर्सनल कम्प्यटर
- जिन संसाधनों का प्रयोग बार-बार निरंतर किया जा सकता है, उन्हें कहा जाता है-–नवीकरणीय
- पहाडों पर जल कम तापमान पर उबलता है, क्योंकि-

-पहाड़ों पर वायुदाब कम होता है

- रेफ्रिजरेटर खाद्य पदार्थों को खराब होने से बचाते हैं, -इसके न्यून तापमान पर रोगाणु मर जाते
- रक्त के AB-वर्ग वाला व्यक्ति ऐसे व्यक्ति को रक्तदान कर सकता है, जिसके रक्त का वर्ग हो-
- पक्षियों को बहुत ऊँचाई पर उड़ते समय सांस की परेशानी क्यों नहीं महसूस होती ?

—उनमें अतिरिक्त वायु—कोश होते हैं

- पारिस्थितिक–तंत्र में ऊर्जा का स्रोत क्या है ?
- वह तापमान जिसका पाठ्यांक फॉरेनहाइट और सेल्सियस दोनों पैमाने पर वही होता है-
- ऊष्मा को वैद्युत् ऊर्जा में परिवर्तन करने के लिए प्रयोग किया जाता है-–थर्मोकपल का
- किसके प्रभाव से ताजमहल सर्वाधिक दुष्प्रभावित होता है ? —अम्ल वर्षा के कारण
- भारत में राष्ट्रीय आय के प्राक्कलन किसके द्वारा तैयार किए जाते हैं ? -केन्द्रीय सांख्यिकीय संगठन द्वारा
- सबसे अधिक अपवर्तनांक वाला आँख का अंग है-

–लेन्स

- एन्जाइम मुख्यतः होते हैं--प्रोटीन
- विटीकल्चर किसके उत्पादन से संबंधित है ? -अंगूर
- शरीर के साथ सम्पर्क में स्पिरिट ठंडी अनुभूति देती है, -अत्यंत वाष्पशील है
- किसकी उपस्थिति के कारण तम्बाकू का धुआँ स्वास्थ्य के लिए हानिकारक है ? —निकोटीन
- गलसुआ (मम्प्स) एक वायरल रोग है, जो सूजन पैदा -कर्णपूर्व (Parotid) ग्रंथि में
- 'किलोवाट-घण्टा' किसका युनिट है ? –ऊर्जा का
- मानव शरीर की सबसे बडी मिश्रित ग्रंथि है-–यकृत
- मरकरी (पारा) है--द्रव धातु
- बॉल पेन किस सिद्धान्त पर काम करता है ? –पृष्ठीय तनाव

कएक आदमी 10 मीटर से दूर साफ नहीं देख पाता, वह किस रोग से ग्रसित है ? -निकट दृष्टि-दोष (Myopia)

- वायु में हाइड्रोजन जब जलने लगती है, तब क्या पैदा
- 'RBC' का कब्रिस्तान' किसको कहा जाता है ? -प्लीहा (Spleen) को
- रूमैटिक हृदय रोग का इलाज किसकी मदद से किया जाता है ? –एपिरिन
- ट्यूबरकुलोसिस संक्रमण किससे होता है ?

–माइकोबैक्टीरियम ट्यूबरकुलोसिस द्वारा

- रात के समय आवासीय क्षेत्र में शोर का अनुमत स्तर क्या -45 dB (A)
- विद्युत्–आवेश का S.I. मात्रक क्या है ? –कुलॉम
- ठोस अपशिष्ट को निचले स्तर के क्षेत्र में फेंक कर ऊपर मिट्टी डाल देने की क्रिया को क्या कहते हैं ?

–सैनिटरी लैंडफिलिंग

- पादपों में मूल रोमों द्वारा जल जिस प्रक्रिया से अवशोषित किया जाता है, वह कहलाती है— —परासरण
- 1024 बाइट बराबर है— **—1 किलोबाइट**
- वनस्पति तेलों को संतृप्त वसाओं में परिवर्तित करने के लिए किस गेस का प्रयोग किया जाता है ?

–हाइड्रोजन

• पादप द्वारा बडी मात्रा में अपेक्षित तत्व है—

–नाइट्रोजन

'बॉक्साइट' किस खनिज का अयस्क है—

—एल्यूमिनियम

- वायुमंडलीय हवा में सबसे प्रचुर घटक कौन—सा है ?
 —नाइट्रोजन
- दूध को मथने से क्रीम के अलग हो जाने का कारण है—
 —अपकेन्द्री बल
- तंतु आहार (Fiber diet) में शामिल है— **—सेलुलोस**
- कॉकरोच और सिल्वर फिश में किस प्रकार का परिसंचरण तंत्र (Circulatory system) पाया जाता है ?

-विवृत्त प्रकार (Open type) का

- हमारे शरीर को ऊर्जा कौन-सा पोषक तत्व देता है ?
 - –कार्बोहाइड्रेट
- प्रकाश किरण पुंज जो अत्यंत दिशिक हो, क्या कहलाती है ?
- जुकाम (Common cold) किस प्रकार होने वाला रोग है ?
 —वाइरल संक्रमण से
- ब्लीचिंग पाउडर का रासायनिक नाम है–

–कैल्शियम ऑक्सीक्लोराइड

- उस स्थिति को क्या कहते हैं जिसमें कुल आय कुल लागत के बराबर हो ?
 —संतुलन स्तर बिन्दु
- पद 'PC-XT' से क्या आशय है ?

-पर्सनल कम्प्यूटर एक्सपैंडिउ टेक्नोलॉजी

• गतिशील वैद्युत आवेश पैदा करता है-

—चुम्बकीय क्षेत्र

• परावर्तित प्रकाश में ऊर्जा-

-आपतन कोण के बढ़ने के साथ बढ़ती है

• मलेरिया रोग पैदा होने का कारण है-

–प्रोटोजोआ

• 'ग्रीन हाउस प्रभाव' का क्या अर्थ है ?

-वायुमंडलीय कार्बन डाईऑक्साइड के कारण सौर ऊर्जा का विपाशन

- शरीर का वह कौन—सा अंग है जिससे पानी, वसा तथा विभिन्न अपचय (कैटाबोलिक) अपशिष्ट उत्सर्जित होते रहते हैं ?
- किसी परमाणु में परिक्रमण कर रहे किसी इलेक्ट्रॉन की कुल ऊर्जा—
 —कभी धनात्मक नहीं हो सकती
- चालन बैंड इलेक्ट्रॉनों की गतिशीलता छिद्रों से अधिक होती है, क्योंकि—
 —उनमें ऋणावेश होता है

न्यूक्लियस की द्रव्यमान संख्या—

–सदा उसके परमाणु क्रमांक से अधिक होती है

- प्रिज्म से गुजारने पर प्रकाश का कौन—सा रंग सबसे अधिक विचलन दर्शाता है ?
- ट्रॉन्सफॉर्मर के क्रोड के लिए सर्वोत्तम द्रव्य कौन है ?
 —नर्म लोहा
- कोयले की खानों में प्रायः विस्फोट करने वाली गैस है— —मीथेन
- किसी परमाणु का रासायनिक व्यवहार निभ्रंर करता है, उसके— — -युक्लियस में प्रोटॉनों की संख्या पर
- सीसा (Lead) का सबसे महत्वपूर्ण अयस्क क्या है ? —गैलेना (PbS)
- किस कोशिकाद्रव्यी कोशिकांग को यूकैरियाँटिक कोशिकाओं के भीतर प्रौकैरियाँटिक कोशिकाएँ माना जाता है ?
- प्रोटीन मुख्यतः किस प्रकार का आहार है ?

–नाइट्रोजनी आहार

• जूट किस प्रकार की फसल है ?

-रेशे वाली व्यापारिक फसल

- जोड़ पर यूरिक एसिड क्रिस्टलों का एकत्र हो जाना कारण है ? —कठिया (Gout) का
- जब जल स्वयं रासायनिक रूप से किसी तत्व या खनिज के साथ मिलता है, तो उसे क्या कहते हैं ?

–जलयोजन (उदकन)

कुनैन किस पेड़ की छाल से निकाली जाती है ?

–सिनकोना

- हाइपरटेन्शन' शब्द किसके लिए प्रयोग किया जाता है ? —**रक्तचाप बढने के लिए**
- एक ही तापमान वाले स्थानों को जोड़ने वाली काल्पनिक रेखाएँ क्या कहलाती हैं?
 —समताप रेखाएँ (आइसोथर्म)
- एनियम (ENIAC) क्या था ? **-एक इलेक्ट्रॉनिक कम्प्यूटर**
- एक 'बाइट' बनता है—
 —आठ 'बिट' से
- सौर ऊर्जा का कारण है— —संलयन अभिक्रियाएँ
- हैलोजनों में सबसे अधिक अभिक्रियाशील कौन है ?
 —ब्रोमीन
- परमाणु क्रमांक '20' वाले परमाणु का इलेक्ट्रॉनिक विन्यास
 क्या होगा ?
- द्रवित पेट्रोलियम गैस (L.P.G.) का प्रमुख घटक क्या है ? —ख्यूटेन
- वर्तमान समय में ब्राह्मोस मिसाइलें कहाँ से असेंबल की जाती हैं?
 —वाँदीपुर (उड़ीसा) से
- वातावरण में क्लोरो-फ्लोरो कार्बन की वृद्धि किस घटना के लिए उत्तरदायी है?
 —ओजोन द्वास के लिए
- किस कशेरुकी में कंकाल पूर्णतः अस्थिल होता है ?
 —सरीसृप (Reptilia)

Jobs

SSC

PCS

सावधान

One Day की रिक्तियों को ध्यान में रखते हुए आज कई संस्थान खुल गए हैं जहाँ अनुभवहीन शिक्षक छात्रों के भविष्य से खिलवाड़ करते हैं।

ऐसे संस्थान सिर्फ One Day के रिक्तियों की घोषणा का इन्तजार करते हैं। यहाँ न कोई Research Work होता है न ही Material Development।

ये सिर्फ गाँव के भोले—भाले छात्रों को बरगला कर कमाई कर रहे हैं। जागरूक बने एवं हमेशा अनुभवी, प्रतिष्ठित संस्थान को चुनें, जहाँ गुणवत्ता, ईमानदारी एवं सफलता की पूजा की जाती है और जहाँ ज्ञान नहीं सेलेक्शन दिया जाता है।

्रतैयारी की पूरी जानकारी हिन्दी मे

2010-11 ਜੇ UPP, CPO, B.Ed., SSC, BANK, RAILWAY ਜੇ सर्वाधिक Selection देने के बाद अब...

Pre & Mains (New Syllabus)

(New Pattern)

OUR FACULTY

S.P. Singh, K.M. Mishra,

B.K. Dubey, **Team Maths** & Vipin Sir

R.R. Gupta Team Reasoning: & K.N. Sir

Hindi : Dr. K.B. Pandey

Sci. & Tech.: Ajay Singh

History : V.P. Singh

Geography: M.M. Khan

Polity : Ashok Pandey G.

Economics: Subhash Paul

Team Tech. : Pawan Shukla

Team English

Grammar : R.S. Singh Word Power : C. Shekhar

प्रवेश परीक्षा हेत्

प्रिंटेड नोटस एवं प्रैक्टिस पेपर के साथ सम्पूर्ण तैयारी

Individual Maths, Reasoning & English Also Available; CSAT - Maths + Reasoning

जहाँ सेलेक्शन एक जिद है.

समीर प्लाजा, मनमोहन पार्क, कटरा, बांसमण्डी के सामने, इला० Mob. :0532-3266722, 9956971111, 9235581475 website: www.theinstituteedu.com email: info@theinstituteedu.com

पूरी फीस, पूरी पढ़ाई, पूरा सेलेक्शन ; अधूरी फीस, अधूरी पढ़ाई, अधूरा सेलेक्शन

