

Customer Behavior Prediction Model

Using RFM and Logistic Regression

Latifah Al-Rasheedi

Since marketing campaigns consume a lot of companies' resources, companies nowadays understand the importance of analyzing their customers' behavior and its impact on the campaign's success.

Therefore I decided to build a model that predicts the next purchase day of the customer, which will help companies prepare special offers to their customers based on their level.

Project steps

Find suitable dataset

O2 Data Cleaning O3 Feature Engineering

04 Data Visualization 05 RFM method 06 Data Modeling

The data used is an E-Commerce dataset from Kaggle, which contains actual transactions from UK retailers

Transactions period:	From 01/12/2010 to 09/12/2011
Number of features:	8
Number of observations:	541,908
Features data types:	Categorical: Invoice_Number , Stock_Code, Description, Invoice_Date, Country Numerical: Customer_ID ,Unit_Price, Quantity

Cleaning Process

- Change data type:
 invoice Date to date time type.
 customer ID to integer type.
- Make columns names lowercased.

Change 'description' to lower case.

Handling Null and duplicates

Null Values

Description: 1454 Customer ID: 135080

Drop

Duplicated values

Cancelled orders

Zero quantity = Cancelled orders

Drop

Number of duplicates: 5225

Drop

New Features added

Feature Splitting

Invoice_date

2010-12-01 08:26:00

Invoice_date	year	month	day	hour
2010-12-01 08:26:00	2010	12	1	8

Creating Features

Quantity X Unit_Price

Total spent

Which country with the highest number of customers?

Total Revenues By Country

Which countries with the highest revenues?

Total Revenues By Month

Which month ranked the highest revenues?

What time is the best for launching a new campaign/Advertisement?

RFM METHOD

RECENCY

Days since last purchase

FREQUENCY

Total number of purchases

MONETARY

Total money this customer spent

RFM Clusters

56% of the customers are active

82% of the customers with few number of orders

99% of the customers spent the least

Models used

My target

Day Range: it 0 if a customer took more than 3 months to purchase. It 1 if customer purchased within 3 months.

Model	Accuracy
Logistic Regression	88%
Random Forest	88%
KNN	75%

Customers who purchased within 3 months

I chose logistic regression model, since it has the highest accuracy and F1-score!

