Reduction Techniques and other Combinatorial Tools in tau-tilting Theory

Håvard Utne Terland January 19, 2021

Abstract

1 Introduction

1.1 Setting

We closely follow the notation of [ASS06]. An algebra A will always refer to a finite dimensional algebra over a field k, which need not be algebraically closed. All algebras encountered in this thesis will be, unless otherwise stated, on the form $k\Gamma/I$ for some finite quiver Γ and admissible ideal I. The number n is, unless otherwise stated, reserved for the number of indecomposable projective summands of A. By mod A we denote the category of finite dimensional left A-modules (in contrast to [ASS06], who employ right modules). We denote by D the duality on modules, and by Tr the transpose. The Auslander-Reiten translate DTr is denoted τ .

A module M is called basic if no two nonzero summands are equal, that is $M=A\oplus X\oplus X$ implies X=0.

2 Tau-tilting theory

 τ -tilting theory was introduced in [AIR13] as a possible generalization of tilting theory, which has had tremendous impact on the field of representation theory of finite dimensional algebras as a whole. Although first introduced in [AIR13], some of the main results of τ -tilting theory stem from (cite smalø). We here recall some important definitions and results from τ -tilting theory. We start by discussing τ -rigid modules, which are the building blocks of τ -tilting theory.

Definition 2.1. A module M in mod A is called τ -rigid if Hom $(M, \tau M) = 0$.

Note that X,Y being τ -rigid does not imply $X\oplus Y$ being τ -rigid. In fact, studying how indecomposable τ -rigid modules together form larger τ -rigid modules is part of τ -tilting theory.

Definition 2.2. A pair (M, P) where M is basic τ -rigid and P basic projective such that Hom (P, M) = 0 is called a partial support τ -tilting module.

3 Tau-exceptional sequences

Tau-exceptional sequences were introduced in [BM20] as a generalization of exceptional sequences to any finite dimensional algebra.

References

- [AIR13] Takahide Adachi, Osamu Iyama, and Idun Reiten. τ -tilting theory. 2013. arXiv: 1210.1036 [math.RT].
- [ASS06] Ibrahim Assem, Andrzej Skowronski, and Daniel Simson. Elements of the Representation Theory of Associative Algebras: Techniques of Representation Theory. Vol. 1. London Mathematical Society Student Texts. Cambridge University Press, 2006. DOI: 10.1017/CB09780511614309.
- [BM20] Aslak Bakke Buan and Bethany Marsh. τ -exceptional sequences. 2020. arXiv: 1802.01169 [math.RT].