

PROJEKT: ENERGY HARBESTING POWERED BICYCLE COMPUTER

Protokoll

Thema: Layout und Firmware

Ort: InES

Datum: 10. März 2016

Teilnehmer:Institution:Verteiler:Prof. Dr. Marcel MeliInESE-MailDario DündarInESE-MailKatrin BächliInESE-MailManuel KönigE-Mail

Für das Protokoll: Katrin Bächli (bachlkat@students.zhaw.ch)

Traktanden:

- 1. Abnahme Protokoll 26.2 und 3.3.16
- 2. Stand der Arbeit
- 3. Weiteres Vorgehen
- 4. Projektplanung / Termine
- 5. Diverses

Beilage:

Zuständig Termin

1. Abnahme Protokolle

Protokolle 26.Feb und 3. März sind abgenommen.

bachlkat erledigt

2. Stand der Arbeit

Inbetriebnahme der Simulation der Speichenumdrehung mit Elektromotor

erledigt

Der Versuchsaufbau ist umgebaut und die Messungen können mit reproduzierbaren Geschwindigkeiten durchgeführt werden

Energieverbrauch des SensorTags ermitteln

Bachlkat 17.03.16

Parallel zur Firmwareentwicklung wird der Energieverbrauch mit dem Power-Analyser gemessen.

Sensortag drei Firmwareversionen

- V0: SimpleBroadcastBLE von Dario:
 Läuft im Standby-Modus, keine IO-Abfrage, kein SPI-Kommunikation
- V1: SimpleBroadcastBLE neu aufgesetzt und mit Code von PA ergänzt: Standby-Modus und Idle-Modus, ein IO wird abgefragt (Impuls Reed Relais), keine SPI-Kommunikation
- Vx: Firmware der Machbarkeitsstudie der Projektarbeit. Laden der Firmware auf Sensortag gibt Memory Map Fehler.

Ergebnisse Energiemessung (siehe Messprotokoll Energiemessung Sensortag)

- V0 braucht druchschnittlich 8.3 μW im Standby und 11 mW beim Senden
- V1 braucht 2.6 mW im Standby und kann die Daten nicht mehr senden.

Diskussion

Priorität beim Umbau der Firmware: BLE-Pakete müssen immer ankommen.

Hardware optimieren

Koenigma

17.03.16

Neue Bauteile (Spule, Dioden, Limiter) wurden evaluiert und bestellt

- Schwerpunkt: wenig Energieverbrauch, sehr geringe Leckströme

Schema gezeichnet

- Grobes Schema wurde gezeichnet
- Footprints müssen noch überprüft und evtl. neu gemacht werden
- Genaue Definition der Bauteile im Schema im Gange

Diskussion

- Energieeffizienz der neuen Schaltung soll noch überprüft werden.
- Testpunkte in den Print einbauen
- Reed-Relais: Überprüfen, ob es Vibration aushält

3. Weiteres Vorgehen

Hardware-Entwicklung Koenigma 17.03.16

- Layout fertig stellen
- Neue Bauteile in Machbarkeitsstudie einbauen und ausmessen

Firmware-Entwicklung

Bachlkat 17.03.16

- Die Sensortag-IO m

 üssen auf Interruptsf

 ähigkeit

 überpr

 üft werden
- V1 : V0 als Basis. PA-Code verwerfen.
 Ziel: IO einlesen im Standby Mode als Basis für Energiekalkulation

EM-Board

- Aufgrund des Energieverbrauchs des Sensortags, die Konfiguration einstellen
- Ladezeit der Kondensatoren LTS, STS berechnen

4. Projektplanung / Termine

Keine Änderungen. Nächste Woche erster Meilenstein.

alle

Einladung von Fachleuten durch Dario Dündar für Layout-Review

duen

5. Diversers

Der Power-Analyser sollte zu Beginn in Begleitung benutzt werden

mema