

FIG. I

HPP-CFC (Colony #)

FIG. 2

HPP-CFC (Colony #)

FIG.3

MC/9 CPM ($\times 10^{-3}$) OR EPP-CFC (COL. #)

FIG. 4

MC/9 CPM ($\times 10^{-3}$)

FIG.5

FIG. 6

FIG. 7

MC/9 CPM

FIG. 8

FIG. 9

FIG.10

FIG. 1

1 10 20
 P E I C R N P V T D N V K D I T K L V A N L P N D
 ----- Sequencing after
 ----- T-5a -----
 30 40 50
 Y M I T L N Y V A G M D V L P S H C W L R D M V T
 <Glu Aminopeptidase Treatment ----->
 ----- T-5a -----
 ----- CB-6a ----- CB-8; CB-10 -----
 60 70
 H L S V S L T T L L D K F S N I S E G L S N Y S I
 ----- Sequencing after Trp Cleavage -----
 80 90 100
 I D K L G K I V D D L V A C M E E N A P K N V K E
 ----->
 ----- T-3 -----
 ----- CB-14; CB-15; CB-16 -----
 ----- S-1 -----
 110 120
 S I K K P E T R N F T P E E F F S I F N R S I D A
 --- T-1 ----- T-4 (N109 nonglyco) -----
 ----- T-7 (N120 glyco); T-8 (N109 nonglyco) -----
 ----- CB-14; CB-15; CB-16 -----
 ----- S-5 or S-6 (N109 nonglyco) -----
 130 140 150
 F K D E M V A S D T S D C V L S S E L G P E K D S
 ----- T-5b -----
 ----- CB-6B -----
 ----- S-5 or S-6 -----
 160
 R V S V E K P F M I P P V A (A)
 --- T-2 ---
 ----- CB-6B -----
 ----- S-2 -----

FIG.12A

OLIGO	SEQUENCE	LOCATION
219-21	ACATTCTTGGGATTCCTCCAT G T G T T	393-368
219-22	AAAAGCTCCTGGGGAAATT G T T G G	447-425
219-25	GTTCNGGTTTT C C C	420-407
219-26	ATGGAAAACGGCCCCAAAACGT G G T G T	368-393
222-11	CCNAATGATTATATGATAAC C C C C T	167-186
222-12	GGNGGNAACATAAANGGCTT G G T	566-505
223-6	ACCATAAAATCTTTAAACGATC G G C G G	492-470
224-24	GTATTTCAATAGATCCATGA	450-471
224-25	CCAACTATGTCGCC	190-202
224-27	GTAGTCAAGCTGACTGATAAG	273-253

FIG. 12 A cont.

224-28	TAAACCAACATGACTAGGCAA	235-215
225-31	TTCCCAAGTCACTGTC	547-562
227-29	GGCAAGCTTGCCTTCTTAAAGAGA	16-35 *
227-30	GGGCCGGTACGGTACATGAAAGGCTTGTGA	586-561 *
228-30	GATAATACTGATAATCC	45-65
230-25	GGGGTCAACCCGGAACTTTAAGTCCATGCAACAC	705-685 *
237-19	CACCCGGGTATGCCAACGGGTAAATGG	569-592 *
237-20	CACCCGGGTAGGCTGCCAACGGGGTAAATGA	572-595 *

FIG.12B

OLIGO	SEQUENCE	LOCATION
231-27	CTTAATGTTGAAGAAACC	703-666
233-13	GATGGTAGTACAATTGTCAGAC	410-431
233-14	GTCTGACAATTGTACTACCATC	431-410
235-29	CAATTTAGTGACGTCTTTACA	302-323
235-30	TTAGATGAGTTTCTTCACGCAC	556-533
235-31	AAATCATTCAAGAGCCAGAACCC	566-589
236-31	AACATCCATCCCGGGGAC	366-383
238-31	CTGGCAATATTTAAGTCTCAAGAAGACC	
241-6	GCGCCGCGGCTCCTATAGGTGCTAATTGG	
254-9	CCTCACCACTGTTGTGCTGGATCGCA	153-179
262-13	GGTGTCTAGACTTGTGTCTTCTTCATAAGGA	209-190

FIG.12C

OLIGO	SEQUENCE
201-7	CCCCCCCCGG T A
220-3	TTTTTTTTTTTTTTTTTGG
220-7	TTTTTTTTTTTTTTTTTAG
220-11	TTTTTTTTTTTTTTTCG
221-11	TTCGGCCGATCAGGCCCCCCCC
221-12	TTCGGCCGGATAGGCCTTTTTTTTTT
228-28	GGCCGGATAGGCCTCACNNNNNNNT
228-29	GGCCGGATAGGCCTCAC

FIG.13A

FIG. 13B

FIG. 14A

FIG.14B

AAAGTATCTTCTATTGGCGAAGGACATGTTTCC	45
AAACAACTGTCTGCACATAATAATTATCTTGCTGCCGTAAAGAT	90
TAGGTTAAATTCTGcCTTCGATCTAAAAACACACCCCTGTCAA	135
TCCGAGGAGCAGTGTGCTAGTCTAGAGGTCTAAATGAAGGCTCCT	180
TTCACGGTTGTATTCTGCTCCCCAAATTGTCCACATTTAAAAGG	225
AGAGTGCTTCTTTCAGCCTTAGGCTCTGAATTICATGCATTCC	270
CCATTTCGAGGTCCCCcAAAGTGATAATTCTGTTACACGTTG	315
CTACAAGTTCATCCCTAATTGCCGTCAAGAAACTGACTGTAGAAG	360
GCTTACACAGACGTTGTAACCGACAGTAAAGCCATTGAAAGAGT	405
AATTCAAACAGGATGGAAGCCAGGAGTATTITGGCTGTTGCTC	450
TTTTCTTTCAAGTTGGTGAGAGCAGCTGAAATGCTAACATT	495
AAGCCATCAGCTAAAACAAAACAAAACAAAAAAACCC	540
CGCTCTGGCATATTGCACTAACACACACGGTATAAGGTGTTAC	585
TGGTTTGCATAGTTCTGGATTTTTTTAAAAACTGATGGAC	630
-20	
ThrTyrIleIleThrC	
ACCAAGAAATGTTCTGTTCTTGTAGACTGGATTATCACTT	675
-10	
ysIleTyrLeuGlnLeuLeuLeuPheAsnProLeuValLysThrG	
GCATTATCTCAACTGCTCCTATTAAATCCTCTCGTCAAAACTC	720
1 10	
lnGluIleCysArgAsnProValThrAspAsnValLysAspIleT	
AGGAGATCTGCAGGAATCCTGTGACTGATAATGTAAAAGACATT	765

FIG.14B CONT.'

CAAAACTGGTAAGTAAAGAATGATTTGGCATCTATAAGTCTTCC	810
CTGTGCTTGCTGACCACATAGGTTCAGGGCACTCCCGACAGGAGT	855
TCCCAGCTTCTAAGATAAGGAATCACTGTACGAGTCTGAAGTGC	900
TTCTTCTGGCAAATGGGAGATGCTTAGGTATGGAGGGTTATC	945
TGTATAACTGGCCCTTGACACCAACAAAGTGACTGACTGGCTT	990
TTGCCTGTTACCTACTG	1007

Intervening sequence of unknown length

TCTCCAGTCCTGGGCATGGTATATACTTAGGCACCCAAGATTGGA	45
TTTACAACCTCAAGCATTATATATTGGACAAACnACGGGGTATGAGA	90
TATTAATGATATGTCAGGTTGGATGGATGAGTTTCTCAAGAAAT	135
19 Val	
TCTCTTGTATTTACTCACGTTTCATTCTGGTCTCTGTAGGTG	180

30 AlaAsnLeuProAsnAspTyrMetIleThrLeuAsnTyrValAla GCGAACCTTCCAAATGACTATATGATAACCCTCAACTATGTCGCC	225
--	-----

39 GlyMetAspValLeu GGGATGGATGTTTGGTATGTAGTCCACACACACTTCTGAGTTGCCT	270
TTTAGTAGCTAATGGGTGACCTGTGCTTATTCACATTGAAGACAT	315
TATTTGCTTTGTCGTTTAGATGTTGACCTATAATTTTCCCT	360
TCAAGCTGCTGCTAAGATTATCAGTGAGCATTCACTATGTGTTT	405
TAAGCCTACTCATTAAAAGGAAATGGCTCATCTTAGACGTAGCAA	450

FIG.14B CONT.'

CCGATGTTAATTTCCCCAGGCATCTCTCAGAGGGACTTGAATG	495
TTAAAATCATGTTAAATTCCTCCTGGCTATGTTATTCATG	540
GCTATGTTATTCCATTCTGATTTAAAGGGACGGAAATATT	585
TATTGTATTCTGAACCTTTCAGGCATGCATCCGGGTCTTGAA	630
TAAAAA	635

Intervening sequence of unknown length

CACTAAGACTCCTCTAGTAATGTTGTAATCCTGTCTGTATCGA	45
ATGTCTTGAAAACGCAGTGACTAAGCCATAAAATAATCTTCCACA	90
GAACGTCCAGTGGTCATGAACCTTGTATGTGGGGTGGGGCAAG	135
AATTGTCTCACTATTGGTCAAGGAAGAGAAGGTAAAGGTATGCAAG	180
GGTGGTTAACATCTTCTTCCGTGGAAGGACAAAATCATCTATCATT	225
TCCTCTGATCTCTATGCATTGTTGTTGAACGTAAATCTGACT	270
TGAGCAAGAGTTGGCGTCCTGTGTTCTGAGGAAACTCTTGTCT	315
GCAGTCAGTGACTAAAAGTGCTGAGAGATCTGAAGAGCACTCTGA	360
ATCTGCCATATTTAATAGATGCTTGTCTCTTTGAATTTC	405

40.	50
ProSerHisCysTrpLeuArgAspMetValThrHisLeu	
TTCCAGCCTAGTCATTGTTGGTTACGAGATATGGTAACACACTTA	450

60	
SerValSerLeuThrThrLeuLeuAspLysPheSerAsnIleSer	
TCAGTCAGCTTGACTACTCTTCTGGACAAAGTTCAAATATTCCT	495

70	80
GluGlyLeuSerAsnTyrSerIleIleAspLysLeuGlyLysIle	

FIG.14B CONT.'

GAAGGCTTGAGTAATTATTCCATCATAGACAAACTGGGAAATA	540
90	96
ValAspAspLeuValAlaCysMetGluGluAsnAlaProLys	
GTGGATGACCTCGTGGCATGTATGGAAGAAAATGCACCTAAGGTA	585
ACTTGGTATTCATCAGAATTATTTCTTACT	619
Intervening sequence of unknown length	
GAGCTCATGATGAGCAATTACAACCACTTGTATTCCAGCTCCA	45
GAGGACATTATCCCCTCTTGGATGCCATAGGAATCTGCTCTCAA	90
ATATGTAGATACCACCTCTGCCACCTCAGCACATAACACATA	135
ATTAAAAAAATAGAAACATTAAAGGAGTTCCAATCAATCCTTATT	180
TTTCTGTATTCACTATGCCAGATGTAAATTCTAGGAATATGTT	225
TTAAAGGCTAATTCTTATTTGTAAATAAGCAGCTTAAAATTCTT	270
AATTGTTTTTCGGGTCACTTATTGTCCTATTGCCACGACATTG	315
TCCTGTCCCATTGTCGTATTCCCTCTGTTTGTATTGTTCC	360
CTAGTTACTTGATCATGAGATTGACCTGTTACCCGTTATTGTTCC	405
TCTGTAGCCATTTGAGTTGTGTCTATTAGAACAGCTGTTAAATT	450
ACTTGAATCATTGAGGACATAGTCATAATCTATTATGCTGATCC	495
AGTCAAGTCTATGAGTTATTGAAAACAGAACATCTTGTAAATT	540
97	
AsnValLys	
TTTGTGCTTGTGTTGTTATTATTGTCTAGAACATGTAA	585
100	110
GluSerLeuLysLysProGluThrArgAsnPheThrProGluGlu	

FIG.14B CONT.'

GAATCACTGAAGAAGCCAGAAACTAGAAACTTACTCCTGAAGAA	630
120	
PhePheSerIlePheAsnArgSerIleAspAlaPheLysAspPhe TTCTTTAGTATTTCAATAGATCCATTGATGCCTCAAGGACTTC	675
130	
MetValAlaSerAspThrSerAspCysValLeuSerSerThrLeu ATGGTGGCATCTGACACTAGTGATTGTGCTCTCTAACATTAA	720
148	
GlyProGluLysA GGTCCTGAGAAAGGTAAAGGCTTTAACGCATTCTTGTAAATGT	765
ACATAGAAAGCCTGAACCTCTGTAAGCCTCTACTGCTGAATCAAC	810
TAAATGTGTTGCTGTAGAAAGAACGTGTGGGTTTCTGATAAAA	855
ACAAAAAGCAAATATCAATGACTACCAATGATTATTATCTAGCTT	900
GAGAGATATGCCCTAACAGACAGCGATTCTCGATATTCTAAATTAA	945
AGAATTGTGATGGTGGCTCACATATTTCTAACTGTGATATT	990
GCCAGGAGAGTAGAATAATGTTATTCTTCAATCCCCAGAACCTCTA	1035
AGATTTCACGTCTCATGTCCTTCCATAAGGTTCAAACCTCTGAGA	1080
CTTGAGTTCTGAGCCTCAGCAGGTCAATTCTGAATCCCCACTCTCC	1125
CCGAGCTGGGTCCCTATGGGGAACTAACTTCATTGCTTCTTT	1170
AAAACATGACGGAGTTACCAACAGCTCCTCGCTATTATAAACATGT	1215
TCCTAACGCATGTCTGCAATAAGCCTCACTCTACAAGAC	1260
AGTTATGGTGTATCGCTTGACAAAAGTGAGCAGCCAAGCTGAGTA	1305
TGAAATAATAATCTAGACTTGGGAGGCAGACCCAGCACCTACTGT	1350
GATATTGCACCTCGCCTTGGGGACTCTATGATTCAAAAGTTCA	1395

FIG.14B CONT.

150	
spSezArgV	
CCATGTAAACACTGACACATTATTGCTTCATTTAGATTCCAGAG	1440
160	
alSerValThzLysProPheMetLeuProProValAlaAlaSerS	
TCAGTGTACAAAACCATTATGTTACCCCTGTtGCAGCCAGTT	1485
170	176
erLeuArgAsnAspSerSerSerSerAsn	
CCCTTAGGAATGACAGCAGTAGCAGTAATAGTAAGTACACATATC	1530
TGATTTACTGCATGCATGGCTCCAAGTATCCTCTATAGGAGTGT	1575
GCATGGACTTAAAGTTATAAAATCACTACTAATAATGCTGTTCTG	1620
TCACTGTTATTCTTGTATGGGCTTCCTGACAATTAAATATCTGG	1665
TTTGTAGAACATCGGATCTCCTTAGAGGTTAAGATGACCATGACAAA	1710
ATTAGGCCAATCAACTTCTGCGAAGGTTATTTAAATAAGGCAC	1755
GAAATTAAATTGAAGGAAAAAAAATACAAGCAAGGCCTTATTTG	1800
AATCATGGTAGGCTAAAAATAGACTTTGTGGAGAATGTCCCTGAT	1845
CAAAGTGGAGTTTCAGATTCAAGTGCATGTGCTAACTCTCCAC	1890
AATGTCAAGGCTATTTCAGTTGTGTCTCCATATTTACTACTG	1935
CATGTTGGAAATTGCTGATGCTGTTAGATTACCTAAGAATGTA	1980
TGTTGAAGAAGAATGGACTTCTTCCCTAAAATTCTGTCCCTTT	2025
TGcCCAAGAACCCAcGTTCTGGAAAGACTATCTTATTTCATGTC	2070
TGTGCAATGATCATTATAAAGATTATTGAATATACTGGGAATACT	2115
CTGGTTCTGTTTACAGATTCAATAGCTTATTCACTCTTAA	2160
AAGAAAAGTTCTCTGAAGTCCATGCTTAGAATGTTCTATCAA	2205

FIG.14B CONT.'

AACTTGACCTGGACCTTAAATAAAGCTATATTAGTCTTTTATC	2250
CCTGAAAAATATATTCACAGTGTAGACATTGATATACTACATCTAA	2295
GGGAAGGATGCTGCCAGAATGCTCGGGCTGGCAGTCTACAAAGTC	2340
CACTGCTCTCAGGATGGACTTCTGAAAGCGGAAATTGTGAAC TGC	2385
ATGCATATAACATATCAGATCCTCGAGC	2413

FIG. 14C

CTGGATGGCAGGCTGCCTTCTCTTATGAAGAACACAAACTGGATTATCACTTGCAT 60

Y L Q L L F N P L V K T Q E I C R N P 10

TTATCTTCAACTGCTCCTATTAAATCCTCTCGTCMAAAACTCAAGGAGATCTGCAGGAATCC 20

V T D N V K D I T K L V A N L P N D Y M 30

TGTCACTGATAATGTAAGACATTACAAAGCTTCAAAATGACTATAT 40

I T L N Y V A G M D V L P S H C W L R D 50

GATAACCCCTCAACTATGTCGCCCGGATGGATGTTGCCTAGTCATTGTTGGTTACGAGA 60

H V T H L S V S L T T L D K F S N I S 70

TATGGTAACACACTTATCAGTCAGCTTCAACTCTTCTGGACAAGTTTCAGATTTTC 80

E G L S N Y S I I D K L G K I V D D L V 90

TGAAGGCTTGAGTAATTATCCATCATAGACAAACTGGAAATAATGGCATGACCTCGT 100

A C M E E N A P K N V K E S L K K P E T 110

GGCATGTATGGAAAGAAAATGCACCTAACGAAATGTAAAAGAAATCACTGAAGAAGCCAGAMC 120

R N F T P E E F F S I F N R S I D A F K 130

TAGAAAACCTTACTCCTGAAGAAATTCTTAACTTCAATAGATCCATTGATGCCTTC 140

FIG. 14C CONT.

130 D F M V A S D T S D C V L S S T L G P E
 GGACTTCATGGGGCATCTGACACTAGTGATTGTCCTCTCTACATTAGGTCTCTGA 540
 140
 150 K D S R V S V T K P F M L P P V A A S S
 GAAAGATTCCAGACTCAGTGTCAACAAACATTATGTTACCCCTGTGGAGCCAGTC 600
 160
 170 L R N D S S S N R K A A K S P E D P G
 CCTTAGGAATGACAGCAGTAGCAGTAATAGGAAAGCCGAAAGTCCCCTGAAAGCCAGG 660
 180
 190 L Q W T A M A L P A L I S L V I G F A F
 CCTACAAATGGACAGCAATGGCACTGGCACTGGCGCTCTCATTTGCTTTGCTTT 720
 200
 210 G A L Y W K K Q S S L T R A V E N I Q
 TGGACCCTTATACTGGAAAGGAAGAACAGTCAGTCTAACAGGCAGTTGAAATATAACA 780
 220
 230 I N E E D N E I S M L Q Q R E R E F Q E
 GATTAAATGAGGATAATGAGATTAATGTTGCAACAGAAAGAGAGAGAGTCAGA 840
 240
 248 V
 GGTGTAATT 849

FIG. 15A

FIG.15B

-21

h-Gln

CACAAAGTGA GTAGGGCGCGCCCGGGAGCTCCAGGCTCTCCAGGA	45
AAAATCGCGCCCGGTGCCCGGGAGCCGGCGCTCCCTGGGACT	90
TGCAGCTGGGGCGTGCAGGGCTGTGCCTGCCGGGTG	126

Intervening sequence of unknown length

AGATACTACAAAGATAAAATCAGTTGCACAAGTTCTTGAAACTCTA	45
CAGTGTAAATAAGGAAAAATAAGTCATGCATAAAAGCAACTATAAT	90
ACATAATAGAAAATGTTATTTCAAGCCGATGTGTAGGTTATGTG	135
TGTTCGAGAGAGAGAGAGAGAGAAGACAGATTACTTCTGCTAGGGT	180
TCAAGAATGCCTTCCTGTTGGCTAAGGAAATATTTCTTAAGTG	225
GCTAAAAAGCTGTGTTCAAAATATTCTTTGATGTCTCACAAAT	270
TCAGTGGAATTCTCTTAGGTCTAAAAATATACATCTCTCACTT	315
TAACTTGGTGTGCTATTGTAGATTATTGGATTAAAGCACTGCTCA	360
GGGATTATGCTGCTTCTTGCCAAGCAGTCTACATTAAAGTAGAA	405
ATAAGATGTTCTTGGTGCCATAAGGTATAACATTTATGCATT	450
CTCTAGTTTAAAGATAACCTAAGGGCTAAGTCTTTAACATGC	495
TGCTACAAGTTATTCTAATTGCCATTGGGAAATTGGCTGAAGA	540
AAGTTTTAACAAAAGTTAACAAATATTGTCATTGAGAGAATAATT	585
CAAAATGGATTTAACTAAAAGCTTTAAAAACTTGGTGAGCAT	630
AGCTTGAATGCGTAATATTAATTGCATTAAGCCAATAACATAT	675

FIG.15B CONT.'

ATTAGACTGGCTTTGTGCATCAAGGCATTAGATGTTAAAAGT	720
TTGAATGATTACAGATCTIACTGATGATCACCAAGCAATTTC	765
-20	
Thr-Tyr-Ile-Leu-Thr-Cys-Ile-Tyr-Leu-Gln-Le	
TGTTTCATTTAGACTTGGATTCTCACTGCATTTATCTTCAGCT	810
1	
uLeuLeuPheAsnProLeuValLysThrGluGlyIleCysArgAs	
GCTCCTATTTAACCTCTCGTCAAAACTGAAGGGATCTGCAGGAA	855
10 18	
nArgValThrAsnAsnValLysAspValThrLysLeu	
TCGTGTGACTAATAATGTAAAAGACGTCACTAAATTGGTAAGTAA	900
GGAATGCTTACCGTGCTGTGTAAAAAGAGCTGTGGCTTTTT	945
CCTGTGCTTGTGATAAAAGATTAGATTTCTTGCCTTAAAGT	990
AATGTTTCCTAAAGTGGGAAAGTAATCACTGGGTTACAATAAA	1035
GGGTTATAGAAAGCAGGTAGTGAGATATTAGGGTCATGGATAA	1080
TTTGTGGTAAAAGCTGGCTAGTTGCACACCACTGCTGTGACTGCT	1125
TCTTGTGGTCTTCTCCCCATCCTCATAGGCAGTGAAGGACCT	1170
TGGAGAGTTCGCTGTGTGCTGATGGCTTGCCTCAGCTTGTCCC	1215
CATAATCTCTCCAGTGGTTCCCAGCATGTTCTATTCCCCTCA	1260
CATGTCTTCCTACTCTTAAAAAGCCTAACGAAAGGAAATCT	1305
GAAATGGCTATTCTCCAATTCAATCAGCAGGAAGACCCCTGTCAC	1350
ATGTCAGTGGGTGTTGCTCCTCAGGGAACATAGAGAGGTGATT	1395
CATTGCCACATGTTGAAGGGACTCATCTCCCTGGTTGTCACAT	1440
TGAACTCTTCCCTCAGCGAAAGCATTGCATTGCTTCCC	1479

FIG.15B CONT.'

Intervening sequence of unknown length

GAATTCCAAGATCACAGGTGGAAGCTGAAATTCAAGATCATGTTTC	45
CAAAACTCAGTAGGTTATACCTAGCCAGGCATAACTGAATTGGA	90
GTCTAAAAGATCTGTATTATCACTTTTTATTTGAAGGATGCCT	135
TTTGATTACAGAGGGAAATCAAGGATTAAAAATCAATATACATGT	180
AAATATTGAAATTCAATTGGTAACTTAAAAAGCACAACAGTTTG	225
TGTGCTTTCTCCAAAGCACTACAAATATGATTAATTGATGTATA	270

19	
ValAlaA	
AGAATTTCCTATGGAATTTTTTTGTCTCTGTAGGTGGCAA	315

30	
snLeuProLysAspTyrMetIleThrLeuLysTyrValProGlyM	
ATCTTCCAAAAGACTACATGATAACCCTCAAATATGTCCCCGGGA	360

39	
etAspValLeu	
TGGATGTTGGTATGTAAACTACATTCTGAGTTCTTTAGT	405
AGCTCATAGAAGAAATGGGATCATTCAATTGAGATAGTACACTA	450
GCTGCTATTAGGAGCTTGCTTATTGTCAGGATTGAAGAATTAA	495
TCTTGGAAATTGACTTGCAGGCTTTTTCCCCCTCTT	535

Intervening sequence of unknown length

CCTGTTACAAGAGTCCCTCCTCCTATTAGAATAGTCCCTCCTCCT	45
CCTGTCACACTAGTCCCTCTTCTGTTACAATAACCCCTGTC	90

FIG.15B CONT.'

CTCCTATTACAACATTTAAGTAATGTAATATTAATTTAAAAAT	135
CTGGCCAGGCACGGTGGTCATGCTTGTAAATCCCAGCACATTGGG	180
AAGCTGAGACGGGTGGATCATTGAGGTAGGAAGTTGAGACAG	225
CCTGGCCAACATGGTGAAACTTCCTCTCTACTAAAAATAAAAAG	270
TAGCCAGGCATGGTGGCAGGCACTTGTAATCTGAGCTACTCGAGA	315
GGCTGAGGCAGGAGAACACTTGAGTAACTAAAACGATAGCTTG	360
AAGAGTACTCCGAGTTTATGGCACTTACTTATTAAAATAGCTGT	405
40	
ProSerHisCysTrpIleS	
TTTGTCTCTTTTCATATCTTGCAGCCAAGTCATTGTTGGATAA	450
50	
erGluMetValValGlnLeuSerAspSerLeuThrAspLeuLeuA	
GCGAGATGGTAGTACAATTGTCAGACAGCTGACTGATCTCTGG	495
70	
spLysPheSerAsnIleSerGluGlyLeuSerAsnTyrSerIleI	
ACAAGTTTCAAATATTCTGAAGGCTTGAGTAATTATTCCATCA	540
80	
leAspLysLeuValAsnIleValAspAspLeuValGluCysValL	
TAGACAAACTTGTGAATATAGTGGATGACCTTGTGGAGTGCCTGA	585
96	
ysGluAsnSerSerLys	
AAGAAAACATCTAAGGTAACTTGTGTTCATGGGATTATT	630
TCATTACGCTTCTCTAAAAACCATGCTTCTGGTGCCTGGGG	675
AAAATGAGGCACCTTATTTATGATATTTGATTGTATAAACTTC	720
AAATTTAAAAATCTGTTCAAGATGAGCAAAGAAAACAAGTATTG	765
CAGTTATACTGCAATACTGAAGTGCACATTC	796

FIG.15B CONT.'

Intervening sequence of unknown length

TTGTGTTCACTGCCCGAGATTCAACTTGTGATCCCACGGGATCA	45
CTACCCCTGCATTACCAATCTGAATTACATACTGTTAAAACAGCCAT	90
CTAAAAGTGTAGTTGTAAGAGTCTAAATACTTGAATCTTGAGA	135
GACATATTTATAGTCCATTATCTTCACCTCAGTTAAGTCTGAAGA	180
97	
AspLeuLysL	
CTATTGAAAAATGTAATCCTATTTTTCTTAGGATCTAAAAA	225
110	
ysSerPheLysSerProGluProArgLeuPheThrProGluP	
AATCAATTCAAGAGGCCAGAACCCAGGCTCTTACTCCTGAAGAAT	270
120	
hePheArgIlePheAsnArgSerIleAspAlaPheLysAspPheV	130
TCTTTAGAATTTTAATAGATCCATTGATGCCCTCAAGGACTTG	315
140	
alValAlaSerGluThrSerAspCysValValSerSerThrLeuS	
TAGTGGCATCTGAAACTAGTGATTGTGGTTCTCAACATTAA	360
148	
erProGluLysA	
GTCCTGAGAAAGGTAAAGACATGTAAGCATTCCAGTTCAAATGTA	405
AACAAACAAACTTAAATCTCCCTATGTAGTAAGAATCTACCTCTG	450
TGTTAAGCTGTAGCAAGATACTGCATGTACGTCTAATAAAAAG	495
CAGATATCAATAGCACAGAAGAAA	519

Intervening sequence of unknown length

FIG.15B CONT.'

CTCTATAACTCATACAAATCACCATATAACACTGACACATTATTG 45
150 spSerArgValSerValThrLysProPheMetL
CTTTCTATTTAGATTCCAGAGTCAGTGTACAAAACCATTATGT 90
160
euProProValAlaAlaSerSerLeuArgAsnAspSerSerSerS
TACCCCCCTGTTGCAGCCAGCTCCCTTAGGAATGACAGCAGTAGCA 135
170
erAsnA
GTAATAGTAAGTACATATATCTGATTTAATGCATGCATGGCTCCA 180
176
ATTAGCACCTATAGGAGTATTGCATGGGCTTCAAGGAAACTTCT 225
ACATTATTATTATTGATACTGTTCTGTTACTGTTATTCCCTTTA 270
TGGTCTTCTTGAGACTTAAGTTGTAGAATTAAATTCCCTAGAG 315
CTGGAGATAATGTTAGAGAATTAGGCCAATAAATT 352

FIG. 15C

M K K T Q T W I L T C I Y L Q
-25
AAGCTTGCCTTCTTATGAAGAAGACACAAACTTGGATTCTCACTTGCATTTATCTTCAG
-10
L L L F N P L V K T E G I C R N R V T N
CTGCTCCTATTAAATCCTCTCGTCMAAACTGAAGGGATCTGCAGGAATCGTGTGACTAT
1 10
N V K D V T K L V A N L P K D Y M I T L
MTGTAAGACGTCACTAAATTGGTGGCAAAATCTTCCAAAGACTACATGATAACCCCTC
20 30
K Y V P G M D V L P S H C W I S E M V V
AAATATGTCGGGGATGGATGGATGGCCAAAGTCATGGTGGATAAGCGAGATGGTAGTA
40 50
Q L S D S L T D L L D K F S N I S E G L
CAATTGTCAGACAGCTTGACTGATCTTGTGACAAGTTCAATATTTCTGAAGGCTTG
60 70
S N Y S I I D K L V N I V D D L V E C V
AGTAAATTCCATAGACAAACTTGGATATAGTGGATGACCTTGTGGAGTGGCTTG
80 90
K E N S S K D L K S F K S P E P R L F
AAAAGAAACTCATCTAAGGATCTAAAGAAATCATTCAAGGCCAGAACCCAGGCTCTT
100 110
421

FIG. 15C CONT.

T P E E F F R I F N R S I D A F K D F V	120	ACTCCCTGAAGAATTCTTAGAATTTCATTGATCCATTGCTTCAGGACTTTGTA	481
V A S E T S D C V V S S T L S P E K D S	140	G'GGCATCTGMAACTGCTATTGTGTGGTTCTCAACATTAAGTCCTGAGMAGATTCC	541
R V S V T K P F M L P P V A A S S L R N	160	AGAGTCAGTGTCAACAAACCATTTATGTTACCCCCCTGTTGCAGGCCAGCTCCCTAGGAAAT	601
D S S S N S K Y I Y L I	180	GACAGCAGTAGCAGTAATAGTGTACATATATCTGATTAAATGCATGGCTCCAAAT	661
TAGGACCTATAGGAGTATTGCATGGGCTTCAGGAAACTTCTACATTATTATGTGA	183	TACTGTTCTGTACTGTTATTCTTATGGTCTCTGAGACTTAAGTTGAGGTTA	721
AATTTCCTAGAGCTGAGATAATGTTAGAGAATTAGG			781

FIG. 15D

GAGCTCCGAGCCCTCTGGGGCgAGGTATTCTGCTCTGGAGCCAGTAACTGCAGGGTAC	60
GCCCCAGGGATCCGGAGGGTAAAGCTGGACTCCCTGGAGCCAGTAACTGCAGGGTAC	120
AAAGCTTGGCCCTCTGGTCCCCGGCTTGGGTCTCCGGCAGTGCAGGTCCGGGGCC	180
CCCCGGGGACAAAGGTTGGCCTAAATCTGCCAAACCTTCTGGCATTACCGTGCTC	240
TGGCGCCCTCCCGATTCCTCCCTCCGGCCATTGGCTCTCGCTAACCCGGGCTC	300
CGGAAGGGAGGGCTGTCCGGAGGGGGGGAGGGGGAGGGGGAGGGGGGGGG	360
CTCAGGAGGGGGCTTCGGCTGGGGCTGGGGCTGGGGAGGGGGAGGGGGGG	420
GACAGTGGAGAGGGCTGGCTGGGCTACCCGAGTGGAGCTATCTGCCGGGCTGT	480
TCGTTGGAGAGGGCTCCAGGAGCTMMCGAGCTMMCGAGCTCCAGGAGCT	540
	-25
	-21
Met Lys Lys Thr Gln	
TCGATTCGTTGGCTTCTCTATGAGAGACACAAGTGA	600
GGCTCCAGGCCTCCAGGAAATTCGCGCCGGTGGCCGGAGCCGGCTCCCTGG	660
GACTTGCAAGCTGGGGCTGTGATCCGAGGGCTGTGGCTGGGGGTGAGAACAGGGATGGGGAA	720
GGCCGGCTGCTGCTGAGCCAGGAGCCAGGGAGGAAAGGGAGTGGGGAA	780
GtnCTGAGAGGGAGCCAGTGTCAAGTTGGAGCCCTCAGCAGTTAAAGTTGAGCTGTCA	840
TCGGAAACCGTAATTCCCGTCTGGTGGAAAGATTGGCTTTTnGnCCACCGGAATGTAAGTT	900
ATCAC	905

FIG. 15D CONT.

Intervening sequence of unknown length

AGATACTACAGATAAAATCAGTTGCACAGTCTGAACTACAGTGTAAATMGGM 60
AATTAAGTCATGGATAAAAGCCAACTATAATACATMAGAAATGTTATTTCAAGCGA 120
TGTAGGTATGTGTCTCCGTGGCTMGGMATAATTTCCTTAAAGCTTCTGCTAGGCT 180
TCAGAGATGCTTCCGTGGCTMGGCTAAAGCTTCTGCTGT 240
TTCAAAATATCTTTGATGTCTCAGTGAATTCTCTTAGGTCTAAAGTAT 300
ACATCTCTCACTTAACTTGGTGTGCTATTGTAGATTATTGGATTAAAGCACTGCTCA 360
GGGATTATGCCAGCTTGGCAGCTACATTAAAGTAAAGATAAGATGTTCTTT 420
TGCTGCCATTAAGGTATACATTATGCCATTCTAGTTAGAAAGATAACCCCTAAAGGCT 480
AGTCTTAAAGCTAACAGTTACAGTTATCTCTAGTTAGCTTAAAGGAAATGGCTGAA 540
AGTTTTAAAGTTAACATAATTGTCAATTGAGAAATTCAAAATGGATTAA 600
CTAAAGCTTTAAAGCTTGGTGGCTAGCTGAATGCCATTATTTAAATTGCATT 660
AGCCAAATACATATAATAGACTGGTCTTGTGCATCAAGGCATTAGATGTTAAAGT 720
-20 Th
-10 rTriPleuThrCysIleTyrlLeuGlnLeuLeuPheAlaProLeuValLy9ThrG1
TTGGATTCTCACTTGCATTATCTCAGCTGCTCCATTAAATCCTCTCGTCAAAAGTGA 840

FIG. 15D CONT.

Intervening sequence of unknown length

GAATTCCAAGATCACAGGCTGGAAAGGTGAAATTCAAGATCATGTTCCAAAAGTCAGTAGGT
TATACCTAGGCCAGGCATAACTGAAATTGGAGTCATAAAGAATCTGTATTATCACTTTTA
TTTGAAGGATGCCCTTTGATTACAGAGGGAAATCAAGGATTAAAMTCAAATACATGT
60
120
180

FIG. 15D CONT.

AAATATTGAAATTCAATTGGTAACCTTAAAGGCAAAACAGTTTGTGCTTTCTCCAA 240
AGCACTACAAATTGATTAAATTGATGTATAGAAATTCTTATGGAAATTGTTTTGT 300

19 30
Val Ile Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr Val Pro G1y M
CTCTCTAGGGTGGCAAAATCTTCCAAAGACTACATGATACCCCTCAAAATTATGTCCCCGGAA 360

39 40
et Asp Val Leu
TGGATCTTCAATTGAGATAGTACACTAGCTATTAGGAGCTTCTTATTGCTAG 420

TGGGATCTTCAATTGAGATAGTACACTAGCTATTAGGAGCTTCTTATTGCTAG 480

GATTGAAAGAAATTCTTGGAAATTGACTTGCAGGCTTTTCCCCCTCTT 535

Intervening sequence of unknown length

CCTGTTACAAAGTCCTCTTATTACAACTAGTCCTCCTCTGTCACACTAGTC 60
CCCTCTCTTACAAATACCCCTGTCCTTATTACAACTAGTCCTCCTGTCACACTAGTC 120
ATTAATTCTTAAATCTGGCCAGGCACGGGGTTCATGCTTTGTAATCCCAGCACATTGGG 180
AAGCTGAGACGGGTGGATCATTTGAGGTCAAGGAAGTTGAGACAGGCCTGGCCAAACATGGT 240
GAAACTTCCTCTACTAAAAAATAAAAAAGTAGCCAGGCATGGTGGCAGGCACATTGTAAT 300
CTGAGCTACTCGAGGGCTGAGGAGGAGAACTGAGTAACTAAACGATAAGCTTG 360
AAGAGTACTCCGAGTTTATGGCACTTACTTAAATAGCTGTTCTCTTTTC 420

FIG. 15D CONT.

40 ProSerLisCysTrpIleSerGluMetValValGlnLeuSerAspSerL
ATATCTTGGCCAGTCATTGGATAGCGAGTGGTAGTACATTGTCAGACAGCT 480

60 euThrAspLeuAspLysPheSerSerIleSerGluGlyLeuSerAlaSerIleI
TGACTGATCTTCTGGACAAAGTTCAAAATTTCTGAAGGCTTGAGTAAATTCCATCA 540

80 LeAspLysLeuValAlaSerIleAspAspLeuValGluCysValLysGluAsnSerSerL
TGAACAACTCTGAAATAGTGGCATGACCTGTGGAGTGCCTGAAAGAAAATCTCATCA 600

96 Y9 AGGTAACTTGTGTTCATGGATTATTTCATTCAGCTTCTCTTACGCTTCTTACGCTTC 660

TTGGTGCCTGTTGGGAAATGGGCACCTTATTATGATATTGATTGTATAAACCTTC 720

AAATTTAAATACTCTGTTCAAGTGAGCTGGCAAAAGAAAAGTATTGCACGTTAACTGCCAT 780

ACAGAGTCAGCATTC 796

Intervening sequence of unknown length

TTGGTGCCTGCCCCAGATTCACTTGTGATCCCCACTGGGATCACTACCCCTGCATTAC 60

AATCTGAATACATACGTTAAACAGCCATCTAAAGTGCATGTTAGACTCTAAATA 120

CTTGAATCTTTGAGAGACATATTATAGTCCATTATCTTCACCTCAGTTAGTCTGAAGA 180

97 AspLeuLysLysSerPheLysSerP
CTATTTGAAATGTAATCCTTATTTCTAGGATCTAAAGAAATCATTCAAGAGGCC 240

FIG. 15D CONT.

FIG. 15D CONT.

360 TAAATTTCCCTAGGGCTGGAGATTAATGTTAGAGMATTAGGCCAATTAATTTCTGCTGA
420 GGTATTTAAATAGACATAAATTAAATTAGAAATAATGATTTAGCTTTGCTTGTGAA
434 TCATTAACATATAT

Intervening sequence of unknown length

ACGAAATCCCTCTAGCTGATAATTACGGCTTAAGAATTAGGAACT	360
TAGCTTATACTAAACAAAATTAAATTATTTATTAAGTTTGTCTGTTCTACCT	300
ATTAATTATCATCTTTCTCTAGMAATGATCCCTTAAGMAAACAGTGAATTCTACCT	240
GAGCCTTATACTGGCAATTCTGGATAGCTGGTAACCAATTCCCTttTTTMMMTATGCTATGTtTAC	180
euuistrpAlaAlaLeuProAlaLeuPheSerLeuIleIleGlyPheAlaPheG	120
TTCACTGGCAATTCTGGATAGCTGGATAGCTGGTAACCAATTCCCTttTTTMMMTATGCTATGTtTAC	120
rglyssAlaIysAsnProProGlyAspSerSerL	178
TTCATCAGTGTGTTCTTAAATTAGGAAATGGATATGCTGTA	120

Intervening sequence of unknown length

FIG. 15D CONT.

AAA	ACTGTTATTGGACTTATTGCCATTAAAGCATAAAAGTGGACTCCACCTTACCTCTTAA	60	
		214	LysArgG
	TATTAGCATTCAATTGATTATTACGTATATGCTCTTCTTCCAGMAGAGAC		
		220	ProSerLeuThrArgAlaValGluSerIleGlnIleArgGluSerProGluIleS
	AGCCAAAGTCTTACAAGGGCAGTTGAAATAACATTATAATGAGGATAATGAGATA	120	
		230	
		235	
			180

Intervening sequence of unknown length

FIG. 15D CONT.

420

CTTAAAGTTCTAGGGTACATGCAACATTGCAAGGTTGTTACGTATGTTACATGTGC

CATGTT 426

FIG.16A

-25

Human	MKKTQTWIIT	CYIQLLNFN	PLVKTEGICR	NRVTNNVKDV	TKLVANLPKD
Monkey	MKKTQTWIIT	CYIQLLNFN	PLVKTEGICR	NRVTNNVKDV	TKLVANLPKD
Dog	MKKTQTWIIT	CYIQLLNFN	PLVKTKGICG	KRVTDDVKDV	TKLVANLPKD
Cat	MKKTQTWIIT	CYIQLXLLNFN	PLVTKGLCR	NRVTDDVKDV	TKLVANLPKD
Cow	MKKTQTWIIT	CYIQLLNFN	PLVHTQGICS	NRVTDDVKDV	TKLVANLPKD
Rat	MKKTQTWIIT	CYIQLLNFN	PLVKTQEICR	NPVTDNVKDI	TKLVANLPND
Mouse	MKKTQTWIIT	CYIQLLNFN	PLVKTKEICG	NPVTDNVKDI	TKLVANLPND
Chicken	TWIIT	CFCLQLLNFN	PLVKAQSSCG	NPVTDDVNDI	AKLVGNLPND
Scfpep	MKKTQTWIIT	CYIQLLNFN	PLVKT.gicr	nrvtd.vkdv	tklvanlpkd

25

Human	YMITLKYPVG	MDVLPNSICWI	SEMVVQLSDS	LTDLLDKFSN	ISEG...LSN
Monkey	YMITLKYPVG	MDVLPNSICWI	SEMVVQLSDS	LTDLLDKFSN	ISEG...LSN
Dog	YKIALKYPVG	MDVLPNSICWI	SVHVEQLSVS	LTDLLDKFSN	ISEG...LSN
Cat	YKIALKYPVG	MDVLPNSICWI	SVHVEQLSVS	LTDLLDKFSN	ISEG...LSN
Cow	YMITLKYPVG	MDVLPNSICWI	SEMVEQLSVS	LTDLLDKFSN	ISEG...LSN
Rat	YMITLNYVAG	MDVLPNSICWL	RDHVTHLGSVS	LTTLLDKFSN	ISEG...LSN
Mouse	YMITLNYVAG	MDVLPNSICWL	RDMVVIOLSLS	LTTLLDKFSN	ISEG...LSN
Chicken	YLITLKYPVK	MDSLPNICWL	ILMVPFEF9RS	LINLLQRFSD	19DM3DVLSN
Scfpep	YmitLKYPVG	MDVLPNSICWI	SEHVeq1SVS	LtdLLdkfsn	Iseg...LSN

26

Human	YIIIDRLVNI	VDDLVECVKE	N9SKD.LKKS	FK9PEPHLFT	PEEFFRIFNR
Monkey	YIIIDRLVNI	VDDLVECVKE	N9SKD.LKKS	FK9PEPHLFT	PEEFFRIFNR
Dog	YIIIDRLVKI	VDDLVECTEG	YSFEN.VKRA	PKSPPEPLFT	PEEFFRIFNR
Cat	YIIIDRLVKI	VDDLVEVEG	HSSEN.VKRS	SKSPEPRLFT	PEEFFRIFNR
Cow	YCIIDRLVKI	VDDLVECMEX	H9SEN.VKES	SKSPEPRQFT	PERFFGIFIK
Rat	YCIIDRLGKI	VDDLVAACME	NAPKN.VKES	LKKPETRHT	PEEFFSIFIR
Mouse	YCIIDRLGKI	VDDLVLCEE	NAPKN.IKES	PKRPETRSET	PEEFFSIFIR
Chicken	YIINNLTRI	INDLMAACLAF	DRNKFDEFIREN	GILYEEDRFI	PENFFRLF13
Scfpep	YIIIDRLVKI	vDDLveC.88	neskn.vkks	.k9Pepr1ft	PEEFFRIFIR

72

73

121

FIG.16B

122

Human	SIDAFKDF.V	VASETSDCVV	SSTL.	SPEKD	SRVSVTKPFM	LPPVMASSLR
Monkey	SIDAFKDF.A	VASETSDCVV	SSTL.	SPEKD	SRVSVTKPFM	LPPVMASSLR
Dog	SIDAFKDFLET	VASKSSECVV	SSTL.	SPDKD	SRVSVTKPFM	LPPVMASSLR
Cat	SIDAFKDFLEM	VASKTSECVV	SSTL.	SPERD	SRVSVTKPFM	LPPVMASSLR
Cow	SIDAFKDFEI	VASKMSECVI	SSTL.	SPEKD	SRVSVTKPFM	LPPVMASSLR
Rat	SIDAFKDF.M	VASDTSDCVL	SSTL.	SPEKD	SRVSVTKPFM	LPPVMASSLR
Mouse	SIDAFKDF.M	VASDTSDCVL	SSTL.	GPEKD	SRVSVTKPFM	LPPVMASSLR
Chicken	TIEVYKFAAD	SLDK.NDCIM	PSTVETPEND	SRAVATKTIS	FPPVMASSLR	
Scfpep	sidafkdf.m	vaektdCvv	sst1.	spekd	SRVSVTKPFM	LPPVMASSLR

170

Human	NDSSSSSNRKA	KNPPGDSSLWAMM	ALPALSILII	GFAFGALYWK
Monkey	NDSSSSSNRKA	KNPTGDSSLWAMM	ALPAFFSLII	GFAFGALYWK
Dog	NDSSSSSNRKA	SNSIGDSNLQWAMM	ALPAFFSLVI	GFAFGALYWK
Cat	NDSSSSSNRKA	TNPIEDSSIQWAMM	ALPACFSLVI	GFAFGAFYWK
Cow	NDSSSSSNRKA	SHSIEDSSLQWAMM	ALPAFFSLVI	GFAFGALYWK
Rat	NDSSSSSNRKA	AKSPEDPGLQWTAM	ALPALISLVI	GFAFGALYWK
Mouse	NDSSSSSNRKA	AKAPEDSGLQWTAM	ALPALISLVI	GFAFGALYWK
Chicken	ND9IGCSNTSS	NSNKEALGFI	SSSSSLQGISI	ALTSLLLLI	GFILGAIYWK	
Scfpep	NDSSSSSNRKA	.n..edSS1QWAAM	ALPALSILVI	GFAFGALYWK

169

Human	SRVSVTKPFM	LPPVMASSLR				
Monkey	SRVSVTKPFM	LPPVMASSLR				
Dog	SRVSVTKPFM	LPPVMASSLR				
Cat	SRVSVTKPFM	LPPVMASSLR				
Cow	SRVSVTKPFM	LPPVMASSLR				
Rat	SRVSVTKPFM	LPPVMASSLR				
Mouse	SRVSVTKPFM	LPPVMASSLR				
Chicken	SRVSVTKPFM	LPPVMASSLR				
Scfpep	SRVSVTKPFM	LPPVMASSLR				

214

Human	KRQPSLTRAV	ENIQIN...	E	EDNEISMLQE	KEREFOEV	
Monkey	KRQPSLTRAV	ENIQIN...	E	DDNEISMLQE	KEREFOEV	
Dog	KKQPNLRTV	ENIQIN...	E	EDNEISMLQE	KEREFOEV	
Cat	KKQPNLRTV	ENIQIN...	E	EDNEISMLQE	KEREFOEV	
Cow	KKQPNLRTV	ENRQIN...	E	EDNEISMLQE	KEREFOEV	
Rat	KKQSSLTRAV	ENIQIN...	E	EDNEISMLQQ	KEREFOEV	
Mouse	KKQSSLTRAV	ENIQIN...	E	EDNEISMLQQ	KEREFOEV	
Chicken	KTUPKSRPES	NETIQCHGCQ	EENEISMLQQ	KEREHILQV		
Scfpep	Kkqpsltrav	eniqin...	e	edNEISMLQE	KEREFQEV	

213

Human	ALPALSILII	GFAFGALYWK				
Monkey	ALPAFFSLII	GFAFGALYWK				
Dog	ALPAFFSLVI	GFAFGALYWK				
Cat	ALPACFSLVI	GFAFGAFYWK				
Cow	ALPAFFSLVI	GFAFGALYWK				
Rat	ALPALISLVI	GFAFGALYWK				
Mouse	ALPALISLVI	GFAFGALYWK				
Chicken	ALTSLLLLI	GFILGAIYWK				
Scfpep	ALSS1QWAAM	ALPALSILVI	GFAFGALYWK			

FIG. 16C

FIG. 16D

EcoRI

ta a t t t a a t t c g t a
GAATTCTTCCGTATCTCAACCGTTCCATCGACGCTTCAAAGACTTCGTT
E F F R I F N R S I D A F K D F V

g a t t a g t t t g t a a t a a g t g
GTTGCTTCCGAAACCTCCGACTGCGTTGTTCTCCACCCCTGTCTCCGGAA
V A S E T S D C V V S S T L S P E

BstEII

t a a c a g t c a a t t a c t . a
AAAGACTCCCGTGTTCGGTTACCAAACCGTTCATGCTGCCGCCGGTTGCT
K D S R V S V T K P F M L P P V A

c a g t a g t a g a g t a g t a g t g a t
GCTTCCTCCCTGCGTAACGACTCCTCCTCCAACTCCAAATACATCTAC
A S S L R N D S S S S N S K Y I Y

BamHI

^t
CTGATCTAATAGGATCC
L I . .

FIG. 16E

BstEII GGTTACCAAAACCGTTCATGCTGCCGCCGGTTGCTGCTTAATAGGATCC BamHI
V T K P F M L P P V A A . .

FIG. 17

FIG.18

FIG. 9

FIG.20A

FIG. 20B

FIG. 21

FIG. 22

FIG. 22A

FIG. 23

FIG. 24A

FIG. 24 B

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29A

FIG. 29B

FIG.30A

FIG. 30B

FIG. 31A

FIG. 31B

FIG. 31C

FIG. 32A

97.4 —

66.2 —

42.7 —

31.1 —

21.5 —

14.4 —

FIG. 32B

97.4 —

66.2 —

42.7 —

31.1 —

21.5 —

14.4 —

FIG. 33

NaCl (mM) -----

FIG. 34A

FIG. 34B

FIG. 36
MC/9 CPM ($\times 10^{-3}$)

FIG. 37

MC/9 CPM ($\times 10^{-3}$)

FIG. 38

FIG. 39

FIG. 40A

FIG. 40B

FIG. 4

FIG. 42A

CCGCCTCGCCGAGACTAGAGCGCTGGAGGAGGAGCTGGAGGGCTGGCGC 61

TCGGGCTACCCAAATGGGTGGACTATCTGCCGCCGCTGTCTCGAATATGCTGGAGGCTCCAA 122

GAACAGCTAAACGGAGTGGCCACACCACTGTTGTGGCTGGATGCCAGGCCCTTCCTT 183

Met Lys Lys Thr Gln Thr Trp Ile Leu Thr Cys Ile Tyr Leu Gln
ATG MAG AGA CAA ACT TGG ATT CTC ACT TGC ATT TAT CTT CAG 228

Leu Leu Leu Phe Asn Pro Leu Val Lys Thr Glu Gly Ile Cys Arg
CTG CTC CTA TTT ATT CCT CTC GTC AAA ACT GAA GGG ATC TGC AGG 273

Asn Arg Val Thr Asn Asn Val Lys Asp Val Thr Lys Leu Val Ala
ATT CGT GTC ACT ATT ATT GTC AAA GAC GTC ACT AAA TTG GTC GCA 318

Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr Val Pro Gly
AAT CTT CCA AAA GAC TAC ATG ATA ACC CTC AAA ATT GTC CCC GGG 363

Met Asp Val Leu Pro Ser His Cys Trp Ile Ser Glu Met Val Val
ATG GAT GTG CCA AGT CAT TGT TGG ATA AGC GAG ATG GTA GTA 408

Gln Leu Ser Asp Ser Leu Thr Asp Leu Asp Lys Phe Ser Asn
CAA TTG TCA GAC AGC TTG ACT GAT CTT CTG GAC AAG TTT TCA ATT 457

FIG. 42B

FIG. 42 C

Lys	Pro	Phe	Met	Leu	Pro	Pro	Val	Ala	Ala	Ser	Ser	Leu	Arg	Asn	160
AAA	CCA	TTA	ATG	TTA	CCC	CCT	GTG	GCA	GCC	AGC	TCC	CTT	AGG	ATT	768
Asp	Ser	Ser	Ser	Asn	Ser	Arg	Lys	Ala	Lys	Asn	Pro	Pro	Gly	Asp	170
GAC	AGC	AGT	AGC	AGT	ATT	AGG	AGG	GCC	AAA	ATT	CCC	CCT	GGA	GAC	813
Ser	Ser	Leu	Ile	Trp	Ala	Ala	Met	Ala	Leu	Pro	Ala	Leu	Phe	Ser	190
TCC	AGC	CTA	CAC	TGG	GCA	GCC	ATG	GCA	TTG	CCA	GCA	TTG	TCT	TCT	858
Leu	Ile	Ile	Gly	Phe	Ala	Phe	Gly	Ala	Leu	Tyr	Trp	Lys	Arg	200	
CTT	ATA	ATP	GGC	TTT	GCT	TTT	GGT	GGC	TTA	TAC	TGG	AGG	AGA	AGA	903
Gln	Pro	Ser	Leu	Thr	Arg	Ala	Val	Glu	Asn	Ile	Gln	Ile	Asn	Glu	210
CAG	CCA	AGT	CTT	ACA	AGG	GCA	GTT	GAA	ATT	ATA	CAA	ATT	ATT	GAA	948
Glu	Asp	Asn	Glu	Ile	Ser	Met	Leu	Gln	Glu	Lys	Glu	Arg	Glu	Phe	220
GAG	GAT	AAT	GAG	ATA	AGT	ATG	TTG	CAA	GAG	AAA	GAG	AGA	GAG	TTT	230
Gln	Glu	Val	End												248
CAA	GAA	GTG	TAA												1044
TTGTGGCTGTATCAACACTGTTACTTCTGATACATTGGC															

FIG. 42D

TGGTAAACAGTTCATGTTTGCTTCATTTGAAAGCAGCTTTAACMAATTCAATTCTGTGTC 1104
TGGAGTGACAGCCACATCTT'TAT'CTGTCTTGCTTACCCATGACTTTATGGATGATTGTC 1164
AGAAAT'TGGAAACAGAAATGTTTACTGTGAAACTGGCACTGAATTAAATCATCTATAAAGAA 1224
GAACTTGGCATGGAGGAGACTCTATTAGGACTCTGGGGACTTGGGTCTCATTTAGAAC 1284
TTGCAGCTGATGTTGGAAAGAGAACGTGTCTCAGACTGCATGTACCATTTGCATGGC 1344
TCCAGAAATGTCTAAATGCTGMAAAAACACCTAGCTTTATTCTCAGATAACAAACTGCAG 1404

FIG. 43

FIG. 44 A

AGCAGGGACAGTGGAGGGGGCTGGCTCCGCTGTTCTGCATATGGCTGGAGGCTCCAG	90
GGCTACCCATGCGTGGACTATCTGCCGCCGCTGTTCTGCATATGGCTGGAGGCTCCAG	30
AAAGCTAACGGAGTCGCCACCACTGTTCTGGATCGCAGGGCTGCCTTTCCTT	150
Met Lys Lys Thr Gln Thr Trp Ile Leu Thr Cys Ile Tyr Leu Gln	195
ATG AUG AGC ACA CAA ACT TGG ATT CTC ACT TGC ATT TAT CTT CAG	240
Leu Leu Leu Phe Asn Pro Leu Val Lys Thr Glu Gly Ile Cys Arg	1
CTG CTC CTA TTT AAT CCT CTC GTC GAA ACT GAA GGG ATC TGC AGG	20
Asn Arg Val Thr Asn Asn Val Lys Asp Val Thr Lys Leu Val Ala	10
AAT CGT GTG ACT AAT AAT GTA AAA GAC GTC ACT AAA TAT GTG GTG GCA	205
Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr Val Pro Gly	30
AAT CTT CCA AAA GAC TAC ATG ATA ACC CTC AAA TAT GTC CCC GGG	330
Met Asp Val Leu Pro Ser His Cys Trp Ile Ser Glu Met Val Val	40
ATG GAT GTT TTG CCA AGT CAT TGT TGG ATA AGC GAG ATG GTC GAA	50

FIG. 44B

Gln	Leu	Ser	Asp	Ser	Leu	Thr	Asp	Leu	Leu	Asp	Lys	Phe	Ser	Asn		
CAA	TTC	TCA	GAC	AGC	TTC	ACT	GAT	CTT	CTG	GAC	AGC	TTT	TCA	ATT	420	
Ile	Ser	Glu	Gly	Leu	Ser	Asn	Tyr	Ser	Ile	Ile	Asp	Lys	Leu	Val	80	
ATT	TCT	GAA	GGC	TTG	AGT	AAT	TAT	TCC	ATC	ATA	GAC	AAA	CTT	GTG	465	
Asn	Ile	Val	Asp	Asp	Leu	Val	Glu	Cys	Val	Lys	Glu	Asn	Ser	Ser	90	
AAT	ATA	GTG	GAT	GAC	CTT	GTG	GAG	TGC	GTG	AAA	GAA	AAC	TCA	TCT	510	
Lys	Asp	Leu	Lys	Lys	Ser	Phe	Lys	Ser	Pro	Glu	Pro	Arg	Leu	Phe	100	
AAG	GAT	CTA	AAA	AAA	TCA	TTC	AAG	AGC	CCA	GAA	CCC	AGG	CTC	TTT	555	
Thr	Pro	Glu	Glu	Phe	Phe	Arg	Ile	Phe	Asn	Arg	Ser	Ile	Asp	Ala	110	
ACT	CCT	GAA	GAA	TTC	TTT	AGA	ATT	TTT	AAT	AGA	TCC	ATT	GAT	GCC	600	
Phe	Lys	Asp	Phe	Val	Val	Ala	Ser	Glu	Thr	Ser	Asp	Cys	Val	Val	130	
TTG	AAG	GAC	TTT	GTA	GTG	GCA	TCT	GAA	ACT	AGT	GAT	TGT	GTG	GTT	645	
Ser	Ser	Thr	Leu	Ser	Pro	Glu	Lys	Gly	Lys	Ala	Lys	Asn	Pro	Pro	150	
TCT	TCA	ACA	ACA	TTA	AGT	CCT	GAG	AAA	GGG	GGG	AAG	GCC	AAA	AAT	CCT	690

FIG. 44C

160	Gly Asp Ser Ser Leu His Trp Ala Ala Met Ala Leu Pro Ala Leu	170
165	GAC TCC AGC CTA CAC TGG GCA GCC ATG GCA TTT GCA GCA TTG	1735
180	Phe Ser Leu Ile Ile Gly Phe Ala Phe Gly Ala Leu Tyr Trp Lys	190
185	TTT TCT CTT ATA ATT GGC ATT GCT TTT GCA GGC TTA TAC TGG MAG	200
190	Lys Arg Gln Pro Ser Leu Thr Arg Ala Val Glu Asn Ile Gln Ile	200
195	AGA AGA CAG CCA AGT CTT ACA AGG GCA GTC GAA ATT ATA CAA ATT	205
210	Asn Glu Glu Asp Asn Glu Ile Ser Met Leu Gln Glu Lys Glu Arg	220
215	ATT GAA GAG GAT ATT GAG ATA AGT ARG TTG CAA GAG AAA GAG AGA	230
220	Glu Phe Gln Glu Val End	240
225	GAG TTT CAA GAA GTG TAA	250
230	CATTGGCTTACAGTTCATGTTATCTGCTTACATGAACTTTATTCATA	260
235	TTCTGCTGGAGTACAGACACATCTTATCTGCTTACCCATGAACTTTATTCATA	270
240	ATGATTCAAGAACAGAAATTGGAAACAGAACATGTTTACTGTGAAACTGGCACTGA	280

FIG. 45

FIG. 46

FIG. 47

FIG. 48

SCF RADIOPROTECTION (1163 RAD)

Normal Female BDF1 mice, n=30

FIG. 49

SCF RADIOPROTECTION (1159 RAD)
Normal Female BDF1 mice

FIG. 50

FIG. 51

FIG. 52

FIG. 53

in vivo Administration of SCF-Platelet Counts

FIG. 54

Dose/Response of rrSCF-PEG on Platelet Counts

FIG. 55

Effect of 5-FU on platelet levels

FIG. 56

5-FU Effect on ACH+ Cells in Marrow

5-FU Effect on ACH+ Cells in Spleen

FIG. 57

FIG. 58

FIG. 59

FIG. 60

FIG. 61

FIG. 62

EFFECT OF SCF ON AZT SUPPRESSION OF BMC

FIG. 63

EFFECT OF SCF ON AZT SUPPRESSION OF BMC

FIG. 64

EFFECT OF SCF ON GANCICLOVIR SUPPRESSION OF BMC

FIG. 65

EFFECT OF SCF ON GANCICLOVIR SUPPRESSION OF BMC

FIG. 66

Effects of SCF on CFU-S Number

FIG. 67

EFFECTS OF SCF ON SHORT TERM REPOPULATING ABILITY (35 DAYS)

FIG. 69A

FIG. 69B

FIG. 70

