平成 29 年度 春定期末試験問題・解答

試験実施日 平成 30 年 1月 22 日 4 時限

出題者記入欄

試 験 科 目 名 複素関数論		出題者名	佐藤 弘康		
試 験 時 間 <u>60</u> 分	平常授業	:日 <u>月</u> 曜日_	4 時限		
持ち込みについて 可 可 不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください					
教科書 · 参考書 · ノート (手書きのみ · コピーも可) · 電卓 · 辞書 その他 ()					
本紙以外に必要とする用紙 解答用紙 0 枚 計算用紙 0 枚					
通信欄					

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

採 点 欄	評価

- 2つの複素数 z = 3 + i, w = 1 + i に対し, 次を計算し, a+bi (ただし, a,b は実数) の形にしなさい.
 - (1) z + w

(2) zw

(3) $\frac{z}{w}$

次の文の空欄に当てはまる最も適切な数または式を答え なさい.

$$i^1 + i^2 + i^3 + \dots + i^{2018} \left(= \sum_{k=1}^{2018} i^k \right)$$
 (*)

の値を求めたい. $i^1 = i$, $i^2 = | (1) |$, $i^3 = | (2) |$, $i^4 = |$ の繰

かつ, 2018 を (5) で割った余りは 2 であるから, (*) の値は (6) となることがわかる.

- (2)

- (5)

3次の文章を読んで、下の各問に答えなさい.

複素数 $1+\sqrt{3}i$ は

$$1 + \sqrt{3}i = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \tag{\sharp}$$

と表すことができる. これは以下のようにして導くこ とができる; 複素数 $1+\sqrt{3}i$ の (a) は 2 であるから, $1+\sqrt{3}i$ を 2 でくくると

$$1 + \sqrt{3}i = 2\left(\frac{1}{2} + i\,\frac{\sqrt{3}}{2}\right)$$

となる. $\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 =$ (b) より, $\cos\theta = \frac{1}{2}$, $\sin \theta = \frac{\sqrt{3}}{2}$ を満たす θ が存在する. この θ を $1 + \sqrt{3}i$ の(c) という. $1+\sqrt{3}i$ の場合は, $\theta=\frac{\pi}{3}$ である. 以上 のことから、(ま)を得る.

- (1) 空欄に当てはまる最も適切な語句,数,または式を 答えなさい.
 - (a) (b) (c)
- (2) 一般の複素数 z の (a) を表す式として正しいも のを次の選択肢 $(\overline{r}) \sim (\underline{r})$ の中から選びなさい.

選択肢

- (\mathcal{P}) z^2 (イ) $z\bar{z}$ (ウ) \bar{z}^2 (エ) $\sqrt{z\bar{z}}$

解答欄

(3) (\sharp) を利用して, $(1+\sqrt{3}i)^8$ を a+bi の形に直しな さい.

(4) (\sharp) を利用して, $1+\sqrt{3}i$ の 2 乗根をすべて求めな さい.

4 次の関数 f(z) が正則関数か否か判定し、正則ならば導関数 f'(z) を求めなさい。ただし、z=x+yi とする (x,y) は実変数).

(1)
$$f(z) = z^2$$

(2)
$$f(z) = x^2 + y^2 i$$

(3)
$$f(z) = x^2 - y^2 + y + (2xy - x)i$$

 $oxed{5}$ 次の関数 f(z) と曲線 C に対し、複素積分 $\int_C f(z)\,dz$ を求めなさい.

(1)
$$f(z) = z + 2$$
, $C: z(t) = (1+t) + it$ $(0 \le t \le 1)$

(2) $f(z)=\frac{1}{z-2},~~C:$ 原点 0 を中心とする半径 1 の円

 $f(z) = \frac{z^3 - 1}{z - i}$, C: 原点 0 を中心とする半径 2 の円