

Extraction plan for APCL18_659-APCL18_732

2018-07-26

Organize samples into plate format:

1. Sample_id plate locations

	1	2	3	4	5	6	7	8	9	10
A	APCL18_659	APCL18_667	APCL18_674	APCL18_682	APCL18_690	APCL18_698	APCL18_706	APCL18_714	APCL18_721	APCL18_729
В	APCL18_660	APCL18_668	APCL18_675	APCL18_683	APCL18_691	APCL18_699	APCL18_707	APCL18_715	APCL18_722	APCL18_730
$^{\rm C}$	APCL18_661	APCL18_669	APCL18_676	APCL18_684	APCL18_692	APCL18_700	APCL18_708	APCL18_716	APCL18_723	APCL18_731
D	APCL18_662	XXXX	APCL18_677	APCL18_685	APCL18_693	APCL18_701	APCL18_709	APCL18_717	APCL18_724	APCL18_732
\mathbf{E}	$APCL18_663$	$APCL18_670$	$APCL18_678$	APCL18_686	APCL18_694	$APCL18_702$	APCL18_710	XXXX	$APCL18_725$	NA
F	APCL18_664	APCL18_671	APCL18_679	APCL18_687	APCL18_695	APCL18_703	APCL18_711	APCL18_718	APCL18_726	NA
G	APCL18 665	APCL18 672	APCL18 680	APCL18 688	APCL18 696	APCL18_704	APCL18_712	APCL18 719	APCL18_727	NA
Η	APCL18_666	$APCL18_673$	APCL18_681	APCL18_689	APCL18_697	APCL18_705	APCL18_713	APCL18_720	APCL18_728	NA

2. Extraction_id plate locations

	1	2	3	4	5	6	7	8	9	10
A	E5223	E5231	E5239	E5247	E5255	E5263	E5271	E5279	E5287	E5295
В	E5224	E5232	E5240	E5248	E5256	E5264	E5272	E5280	E5288	E5296
\mathbf{C}	E5225	E5233	E5241	E5249	E5257	E5265	E5273	E5281	E5289	E5297
D	E5226	E5234	E5242	E5250	E5258	E5266	E5274	E5282	E5290	E5298
\mathbf{E}	E5227	E5235	E5243	E5251	E5259	E5267	E5275	E5283	E5291	NA
\mathbf{F}	E5228	E5236	E5244	E5252	E5260	E5268	E5276	E5284	E5292	NA
G	E5229	E5237	E5245	E5253	E5261	E5269	E5277	E5285	E5293	NA
Н	E5230	E5238	E5246	E5254	E5262	E5270	E5278	E5286	E5294	NA

Write the newly assigned extraction_ids to the database

```
lab <- write_db("Laboratory")</pre>
```

Loading required package: DBI

dbWriteTable(lab, "extraction", plate, row.names = F, overwrite = F, append = T)

[1] TRUE

dbDisconnect(lab)

[1] TRUE

rm(lab)

Prepare a solution of Lifton's Buffer

Lifton's Buffer							
ingredient	initial_conc	$initial_vol_mL$	final_conc	final_vol_mL			
mM_EDTA	500	50.00	100	250			
mM_Tris-HCl_pH7.5	1000	6.25	25	250			
perc_SDS	20	12.50	1	250			
pH2O	NA	181.25	NA	250			

Prepare Lifton's buffer with protein ase ${\bf K}$

Lifton's with Proteinase K								
ingredient	initial_conc	initial_vol_uL	final_conc	final_vol_uL				
mM_DTT	1000	262.5	75.0	3500				
mg/ml_ProteinaseK	20	735.0	4.2	3500				
Liftons	NA	2502.5	NA	3500				

Prepare hybridization solution

Hybridization Buffer								
ingredient	initial_conc	initial_vol	final_conc	final_vol				
M_NaCl	4.45	2808.98876	2.5	5000				
perc_PEG_8000	50.00	2000.00000	20.0	5000				
mM_DTT	1000.00	125.00000	25.0	5000				
pH2O	NA	66.01124	NA	5000				

Prepare low TE solution

Low TE buffer								
ingredient	initial_conc	initial_vol	final_conc	final_vol				
mM_Tris-HCl_pH7.5	1000	150	10.0	15000				
mM_EDTA	500	3	0.1	15000				
pH2O	NA	14847	NA	15000				

Load samples for lysis

- 1. Add 80uL Lifton's buffer to each well of a 96 well plate.
- 2. Add fin clips measuring 2-25mm² to each well.
- 3. Add 40uL enzyme solution to each well, pipet up and down to mix.
- 4. Seal plate and incubate at 55C overnight.

Extract DNA from lysate

- 1. To a new plate add 45uL hybridization buffer to each well.
- 2. Add 15uL Agencourt Ampure beads.
- 3. Add 45uL of the lysate and pipet up and down to mix.
- 4. Incubate at room temperature for 5 minutes, then place on magnet and allow the wells to clear.
- 5. Remove supernatant.
- 6. Remove from the magnet and use 150uL freshly prepared 80% EtOH to resuspend the beads.
- 7. Wash with ethanol again
- 8. wash with ethanol a 3rd time.
- 9. Allow beads to air dry on the magnet
- 10. Add 100uL low TE to elute DNA from the beads