Bayesian hypothesis testing (cont.)

Dr. Jarad Niemi

STAT 544 - Iowa State University

February 27, 2024

Outline

- Review of formal Bayesian hypothesis testing
- Likelihood ratio tests
- Jeffrey-Lindley paradox
- p-value interpretation

Consider a standard hypothesis test scenario:

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0$$

Consider a standard hypothesis test scenario:

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0$$

A Bayesian measure of the support for the null hypothesis is the Bayes Factor:

$$BF(H_0: H_1) = \frac{p(y|H_0)}{p(y|H_1)}$$

Consider a standard hypothesis test scenario:

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0$$

A Bayesian measure of the support for the null hypothesis is the Bayes Factor:

$$BF(H_0: H_1) = \frac{p(y|H_0)}{p(y|H_1)} = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

Consider a standard hypothesis test scenario:

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0$$

A Bayesian measure of the support for the null hypothesis is the Bayes Factor:

$$BF(H_0: H_1) = \frac{p(y|H_0)}{p(y|H_1)} = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

where $p(\theta|H_1)$ is the prior distribution for θ under the alternative hypothesis.

Consider a standard hypothesis test scenario:

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0$$

A Bayesian measure of the support for the null hypothesis is the Bayes Factor:

$$BF(H_0: H_1) = \frac{p(y|H_0)}{p(y|H_1)} = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

where $p(\theta|H_1)$ is the prior distribution for θ under the alternative hypothesis. Thus the Bayes Factor measures the predictive ability of the two Bayesian models.

Consider a standard hypothesis test scenario:

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0$$

A Bayesian measure of the support for the null hypothesis is the Bayes Factor:

$$BF(H_0: H_1) = \frac{p(y|H_0)}{p(y|H_1)} = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

where $p(\theta|H_1)$ is the prior distribution for θ under the alternative hypothesis. Thus the Bayes Factor measures the predictive ability of the two Bayesian models. Both models say $p(y|\theta)$ are the data model if we know θ , but

1. Model 0 says $\theta = \theta_0$

Consider a standard hypothesis test scenario:

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0$$

A Bayesian measure of the support for the null hypothesis is the Bayes Factor:

$$BF(H_0: H_1) = \frac{p(y|H_0)}{p(y|H_1)} = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

where $p(\theta|H_1)$ is the prior distribution for θ under the alternative hypothesis. Thus the Bayes Factor measures the predictive ability of the two Bayesian models. Both models say $p(y|\theta)$ are the data model if we know θ , but

1. Model 0 says $\theta = \theta_0$ and thus $p(y|\theta_0)$ is our predictive distribution for y under model H_0

Consider a standard hypothesis test scenario:

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0$$

A Bayesian measure of the support for the null hypothesis is the Bayes Factor:

$$BF(H_0: H_1) = \frac{p(y|H_0)}{p(y|H_1)} = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

where $p(\theta|H_1)$ is the prior distribution for θ under the alternative hypothesis. Thus the Bayes Factor measures the predictive ability of the two Bayesian models. Both models say $p(y|\theta)$ are the data model if we know θ , but

- 1. Model 0 says $\theta = \theta_0$ and thus $p(y|\theta_0)$ is our predictive distribution for y under model H_0 while
- 2. Model 1 says $p(\theta|H_1)$ is our uncertainty about θ

Consider a standard hypothesis test scenario:

$$H_0: \theta = \theta_0, \qquad H_1: \theta \neq \theta_0$$

A Bayesian measure of the support for the null hypothesis is the Bayes Factor:

$$BF(H_0: H_1) = \frac{p(y|H_0)}{p(y|H_1)} = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

where $p(\theta|H_1)$ is the prior distribution for θ under the alternative hypothesis. Thus the Bayes Factor measures the predictive ability of the two Bayesian models. Both models say $p(y|\theta)$ are the data model if we know θ , but

- 1. Model 0 says $\theta = \theta_0$ and thus $p(y|\theta_0)$ is our predictive distribution for y under model H_0 while
- 2. Model 1 says $p(\theta|H_1)$ is our uncertainty about θ and thus

$$p(y|H_1) = \int p(y|\theta)p(\theta|H_1)d\theta$$

is our predictive distribution for y under model H_1 .

Consider $y \sim N(\theta, 1)$ and

$$H_0: \theta = 0, \qquad H_1: \theta \neq 0$$

Consider
$$y \sim N(\theta, 1)$$
 and

$$H_0: \theta = 0, \qquad H_1: \theta \neq 0$$

and we assume $\theta|H_1 \sim N(0,C)$.

Consider $y \sim N(\theta, 1)$ and

$$H_0: \theta = 0, \qquad H_1: \theta \neq 0$$

and we assume $\theta|H_1 \sim N(0,C)$. Thus,

$$BF(H_0: H_1) = \frac{p(y|H_0)}{p(y|H_1)}$$

Consider $y \sim N(\theta, 1)$ and

$$H_0: \theta = 0, \qquad H_1: \theta \neq 0$$

and we assume $\theta|H_1 \sim N(0,C)$. Thus,

$$BF(H_0: H_1) = \frac{p(y|H_0)}{p(y|H_1)} = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta} = \frac{N(y; 0, 1)}{N(y; 0, 1 + C)}.$$

Consider $y \sim N(\theta, 1)$ and

$$H_0: \theta = 0, \qquad H_1: \theta \neq 0$$

and we assume $\theta|H_1 \sim N(0,C)$. Thus,

$$BF(H_0: H_1) = \frac{p(y|H_0)}{p(y|H_1)} = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta} = \frac{N(y; 0, 1)}{N(y; 0, 1 + C)}.$$

Now, as $C \to \infty$, our predictions about y become less sharp.

Consider a likelihood $L(\theta)=p(y|\theta)$, then the likelihood ratio test statistic for testing $H_0:\theta\in\Theta_0$ and $H_1:\theta\in\Theta_0^c$

Consider a likelihood $L(\theta)=p(y|\theta)$, then the likelihood ratio test statistic for testing $H_0:\theta\in\Theta_0$ and $H_1:\theta\in\Theta_0^c$ with $\Theta=\Theta_0\cup\Theta_0^c$ is

$$\lambda(y) = \frac{\sup_{\Theta_0} L(\theta)}{\sup_{\Theta} L(\theta)}$$

Consider a likelihood $L(\theta)=p(y|\theta)$, then the likelihood ratio test statistic for testing $H_0:\theta\in\Theta_0$ and $H_1:\theta\in\Theta_0^c$ with $\Theta=\Theta_0\cup\Theta_0^c$ is

$$\lambda(y) = \frac{\sup_{\Theta_0} L(\theta)}{\sup_{\Theta} L(\theta)} = \frac{L(\hat{\theta}_{0,MLE})}{L(\hat{\theta}_{MLE})}$$

Consider a likelihood $L(\theta)=p(y|\theta)$, then the likelihood ratio test statistic for testing $H_0:\theta\in\Theta_0$ and $H_1:\theta\in\Theta_0^c$ with $\Theta=\Theta_0\cup\Theta_0^c$ is

$$\lambda(y) = \frac{\sup_{\Theta_0} L(\theta)}{\sup_{\Theta} L(\theta)} = \frac{L(\hat{\theta}_{0,MLE})}{L(\hat{\theta}_{MLE})}$$

where $\hat{\theta}_{MLE}$ and $\hat{\theta}_{0,MLE}$ are the (restricted) MLEs.

Consider a likelihood $L(\theta)=p(y|\theta)$, then the likelihood ratio test statistic for testing $H_0:\theta\in\Theta_0$ and $H_1:\theta\in\Theta_0^c$ with $\Theta=\Theta_0\cup\Theta_0^c$ is

$$\lambda(y) = \frac{\sup_{\Theta_0} L(\theta)}{\sup_{\Theta} L(\theta)} = \frac{L(\hat{\theta}_{0,MLE})}{L(\hat{\theta}_{MLE})}$$

where $\hat{\theta}_{MLE}$ and $\hat{\theta}_{0,MLE}$ are the (restricted) MLEs. The likelihood ratio test (LRT) is any test that has a rejection region of the form $\{y:\lambda(y)\leq c\}$. (Casella & Berger Def 8.2.1)

Consider a likelihood $L(\theta)=p(y|\theta)$, then the likelihood ratio test statistic for testing $H_0:\theta\in\Theta_0$ and $H_1:\theta\in\Theta_0^c$ with $\Theta=\Theta_0\cup\Theta_0^c$ is

$$\lambda(y) = \frac{\sup_{\Theta_0} L(\theta)}{\sup_{\Theta} L(\theta)} = \frac{L(\hat{\theta}_{0,MLE})}{L(\hat{\theta}_{MLE})}$$

where $\hat{\theta}_{MLE}$ and $\hat{\theta}_{0,MLE}$ are the (restricted) MLEs. The likelihood ratio test (LRT) is any test that has a rejection region of the form $\{y:\lambda(y)\leq c\}$. (Casella & Berger Def 8.2.1)

Under certain conditions (see Casella & Berger 10.3.3), as $n \to \infty$

$$-2\log\lambda(y)\to\chi^2_{\nu}$$

Consider a likelihood $L(\theta)=p(y|\theta)$, then the likelihood ratio test statistic for testing $H_0:\theta\in\Theta_0$ and $H_1:\theta\in\Theta_0^c$ with $\Theta=\Theta_0\cup\Theta_0^c$ is

$$\lambda(y) = \frac{\sup_{\Theta_0} L(\theta)}{\sup_{\Theta} L(\theta)} = \frac{L(\hat{\theta}_{0,MLE})}{L(\hat{\theta}_{MLE})}$$

where $\hat{\theta}_{MLE}$ and $\hat{\theta}_{0,MLE}$ are the (restricted) MLEs. The likelihood ratio test (LRT) is any test that has a rejection region of the form $\{y:\lambda(y)\leq c\}$. (Casella & Berger Def 8.2.1)

Under certain conditions (see Casella & Berger 10.3.3), as $n \to \infty$

$$-2\log\lambda(y)\to\chi^2_{\nu}$$

where ν us the difference between the number of free parameters specified by $\theta \in \theta_0$ and the number of free parameters specified by $\theta \in \Theta$.

Consider a coin flipping experiment so that $Y_i \stackrel{iid}{\sim} Ber(\theta)$ and the null hypothesis $H_0: \theta = 0.5$ versus the alternative $H_1: \theta \neq 0.5$.

Consider a coin flipping experiment so that $Y_i \stackrel{iid}{\sim} Ber(\theta)$ and the null hypothesis $H_0: \theta = 0.5$ versus the alternative $H_1: \theta \neq 0.5$. Then

$$\lambda(y) = \frac{\sup_{\Theta_0} L(\theta)}{\sup_{\Theta} L(\theta)} = \frac{0.5^n}{\hat{\theta}_{MLE}^{n\overline{y}} (1 - \hat{\theta}_{MLE})^{n - n\overline{y}}} = \frac{0.5^n}{\overline{y}^{n\overline{y}} (1 - \overline{y})^{n - n\overline{y}}}$$

Consider a coin flipping experiment so that $Y_i \stackrel{iid}{\sim} Ber(\theta)$ and the null hypothesis $H_0: \theta = 0.5$ versus the alternative $H_1: \theta \neq 0.5$. Then

$$\lambda(y) = \frac{\sup_{\Theta_0} L(\theta)}{\sup_{\Theta} L(\theta)} = \frac{0.5^n}{\hat{\theta}_{MLE}^{n\overline{y}} (1 - \hat{\theta}_{MLE})^{n-n\overline{y}}} = \frac{0.5^n}{\overline{y}^{n\overline{y}} (1 - \overline{y})^{n-n\overline{y}}}$$

and $-2\log\lambda(y)\to\chi_1^2$ as $n\to\infty$ so

$$p$$
-value $pprox P(\chi_1^2 > -2\log\lambda(y))$.

Consider a coin flipping experiment so that $Y_i \stackrel{iid}{\sim} Ber(\theta)$ and the null hypothesis $H_0: \theta = 0.5$ versus the alternative $H_1: \theta \neq 0.5$. Then

$$\lambda(y) = \frac{\sup_{\Theta_0} L(\theta)}{\sup_{\Theta} L(\theta)} = \frac{0.5^n}{\hat{\theta}_{MLE}^{n\overline{y}} (1 - \hat{\theta}_{MLE})^{n - n\overline{y}}} = \frac{0.5^n}{\overline{y}^{n\overline{y}} (1 - \overline{y})^{n - n\overline{y}}}$$

and $-2\log\lambda(y)\to\chi_1^2$ as $n\to\infty$ so

$$p$$
-value $pprox P(\chi_1^2 > -2\log\lambda(y))$.

If p-value < a, then we reject H_0 at significance level a.

Consider a coin flipping experiment so that $Y_i \stackrel{iid}{\sim} Ber(\theta)$ and the null hypothesis $H_0: \theta = 0.5$ versus the alternative $H_1: \theta \neq 0.5$. Then

$$\lambda(y) = \frac{\sup_{\Theta_0} L(\theta)}{\sup_{\Theta} L(\theta)} = \frac{0.5^n}{\hat{\theta}_{MLE}^{n\overline{y}} (1 - \hat{\theta}_{MLE})^{n-n\overline{y}}} = \frac{0.5^n}{\overline{y}^{n\overline{y}} (1 - \overline{y})^{n-n\overline{y}}}$$

and $-2\log\lambda(y)\to\chi_1^2$ as $n\to\infty$ so

$$p$$
-value $\approx P(\chi_1^2 > -2\log\lambda(y)).$

If p-value < a, then we reject H_0 at significance level a. Typically a = 0.05.

 $Y \sim Bin(n,\theta)$ and, for the Bayesian analysis, $\theta|H_1 \sim Be(1,1)$ and $p(H_0) = p(H_1) = 0.5$:

Suppose n = 10,000 and y = 4,900,

Suppose n=10,000 and y=4,900, then the p-value is

$$p$$
-value $pprox P(\chi_1^2 > -2\log(0.135)) = 0.045$

Suppose n = 10,000 and y = 4,900, then the p-value is

$$p$$
-value $\approx P(\chi_1^2 > -2\log(0.135)) = 0.045$

so we would reject H_0 at the 0.05 level.

Suppose n = 10,000 and y = 4,900, then the p-value is

$$p$$
-value $\approx P(\chi_1^2 > -2\log(0.135)) = 0.045$

so we would reject H_0 at the 0.05 level.

The posterior probability of H_0 is

$$p(H_0|y) \approx \frac{1}{1 + 1/10.8} = 0.96,$$

Suppose n = 10,000 and y = 4,900, then the p-value is

$$p$$
-value $\approx P(\chi_1^2 > -2\log(0.135)) = 0.045$

so we would reject H_0 at the 0.05 level.

The posterior probability of H_0 is

$$p(H_0|y) \approx \frac{1}{1 + 1/10.8} = 0.96,$$

so the probability of H_0 being true is 96%.

Suppose n = 10,000 and y = 4,900, then the p-value is

$$p$$
-value $\approx P(\chi_1^2 > -2\log(0.135)) = 0.045$

so we would reject H_0 at the 0.05 level.

The posterior probability of H_0 is

$$p(H_0|y) \approx \frac{1}{1 + 1/10.8} = 0.96,$$

so the probability of H_0 being true is 96%.

It appears the Bayesian and LRT p-value completely disagree!

Binomial $\overline{y} = 0.49$ with $n \to \infty$

Definition

The Jeffrey-Lindley Paradox concerns a situation when comparing two hypotheses H_0 and H_1 given data y

Definition

The Jeffrey-Lindley Paradox concerns a situation when comparing two hypotheses H_0 and H_1 given data y and find

ullet a frequentist test result is significant leading to rejection of H_0 , but

Definition

The Jeffrey-Lindley Paradox concerns a situation when comparing two hypotheses H_0 and H_1 given data y and find

- ullet a frequentist test result is significant leading to rejection of H_0 , but
- our posterior belief in H_0 being true is high.

Definition

The Jeffrey-Lindley Paradox concerns a situation when comparing two hypotheses H_0 and H_1 given data y and find

- ullet a frequentist test result is significant leading to rejection of H_0 , but
- our posterior belief in H_0 being true is high.

Definition

The Jeffrey-Lindley Paradox concerns a situation when comparing two hypotheses H_0 and H_1 given data y and find

- ullet a frequentist test result is significant leading to rejection of H_0 , but
- our posterior belief in H_0 being true is high.

This can happen when

• the effect size is small.

Definition

The Jeffrey-Lindley Paradox concerns a situation when comparing two hypotheses H_0 and H_1 given data y and find

- ullet a frequentist test result is significant leading to rejection of H_0 , but
- our posterior belief in H_0 being true is high.

- the effect size is small,
- n is large,

Definition

The Jeffrey-Lindley Paradox concerns a situation when comparing two hypotheses H_0 and H_1 given data y and find

- ullet a frequentist test result is significant leading to rejection of H_0 , but
- our posterior belief in H_0 being true is high.

- the effect size is small,
- n is large,
- *H*₀ is relatively precise,

Definition

The Jeffrey-Lindley Paradox concerns a situation when comparing two hypotheses H_0 and H_1 given data y and find

- ullet a frequentist test result is significant leading to rejection of H_0 , but
- our posterior belief in H_0 being true is high.

- the effect size is small,
- n is large,
- H_0 is relatively precise,
- \bullet H_1 is relatively diffuse, and

Definition

The Jeffrey-Lindley Paradox concerns a situation when comparing two hypotheses H_0 and H_1 given data y and find

- ullet a frequentist test result is significant leading to rejection of H_0 , but
- our posterior belief in H_0 being true is high.

- the effect size is small,
- n is large,
- *H*₀ is relatively precise,
- \bullet H_1 is relatively diffuse, and
- the prior model odds is ≈ 1 .

The test statistic with point null hypotheses:

$$\lambda(y) = \frac{p(y|\theta_0)}{p(y|\hat{\theta}_{MLE})}$$

$$BF(H_0: H_1) = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

The test statistic with point null hypotheses:

$$\lambda(y) = \frac{p(y|\theta_0)}{p(y|\hat{\theta}_{MLE})}$$

$$BF(H_0: H_1) = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

A few comments:

• The LRT chooses the best possible alternative value.

The test statistic with point null hypotheses:

$$\lambda(y) = \frac{p(y|\theta_0)}{p(y|\hat{\theta}_{MLE})}$$

$$BF(H_0: H_1) = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

- The LRT chooses the best possible alternative value.
- The Bayesian test penalizes for vagueness in the prior.

The test statistic with point null hypotheses:

$$\lambda(y) = \frac{p(y|\theta_0)}{p(y|\hat{\theta}_{MLE})}$$

$$BF(H_0: H_1) = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

- The LRT chooses the best possible alternative value.
- The Bayesian test penalizes for vagueness in the prior.
- The LRT can be interpreted as a Bayesian point mass prior exactly at the MLE.

The test statistic with point null hypotheses:

$$\lambda(y) = \frac{p(y|\theta_0)}{p(y|\hat{\theta}_{MLE})}$$

$$BF(H_0: H_1) = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta}$$

- The LRT chooses the best possible alternative value.
- The Bayesian test penalizes for vagueness in the prior.
- The LRT can be interpreted as a Bayesian point mass prior exactly at the MLE.
- Generally, p-values provide a measure of lack-of-fit of the data to the null model.

The test statistic with point null hypotheses:

$$\lambda(y) = \frac{p(y|\theta_0)}{p(y|\hat{\theta}_{MLE})}$$

$$BF(H_0: H_1) = \frac{p(y|\theta_0)}{\int p(y|\theta)p(\theta|H_1)d\theta} = \frac{p(y|H_0)}{p(y|H_1)}$$

- The LRT chooses the best possible alternative value.
- The Bayesian test penalizes for vagueness in the prior.
- The LRT can be interpreted as a Bayesian point mass prior exactly at the MLE.
- Generally, p-values provide a measure of lack-of-fit of the data to the null model.
- Bayesian tests compare predictive performance of two Bayesian models (model+prior).

Let $y \sim N(\theta, 1)$ and we are testing

$$H_0: \theta = 0$$
 vs $H_1: \theta \neq 0$

Let $y \sim N(\theta, 1)$ and we are testing

$$H_0: \theta = 0$$
 vs $H_1: \theta \neq 0$

We can compute a two-sided p-value via

$$p$$
-value = $2\Phi(-|y|)$

where $\Phi(\cdot)$ is the cumulative distribution function for a standard normal.

Let $y \sim N(\theta, 1)$ and we are testing

$$H_0: \theta = 0$$
 vs $H_1: \theta \neq 0$

We can compute a two-sided p-value via

$$p$$
-value = $2\Phi(-|y|)$

where $\Phi(\cdot)$ is the cumulative distribution function for a standard normal.

Typically, we set our Type I error rate at level a, i.e.

$$P(\text{reject } H_0|H_0 \text{ true}) = a.$$

Let $y \sim N(\theta, 1)$ and we are testing

$$H_0: \theta = 0$$
 vs $H_1: \theta \neq 0$

We can compute a two-sided p-value via

$$p$$
-value = $2\Phi(-|y|)$

where $\Phi(\cdot)$ is the cumulative distribution function for a standard normal.

Typically, we set our Type I error rate at level a, i.e.

$$P(\text{reject } H_0|H_0 \text{ true}) = a.$$

But, if we reject H_0 , i.e. the p-value < a, we should be interested in

$$P(H_0 \text{ true}|\text{reject } H_0)$$

Let $y \sim N(\theta, 1)$ and we are testing

$$H_0: \theta = 0$$
 vs $H_1: \theta \neq 0$

We can compute a two-sided p-value via

$$p$$
-value = $2\Phi(-|y|)$

where $\Phi(\cdot)$ is the cumulative distribution function for a standard normal.

Typically, we set our Type I error rate at level a, i.e.

$$P(\text{reject } H_0|H_0 \text{ true}) = a.$$

But, if we reject H_0 , i.e. the p-value < a, we should be interested in

$$P(H_0 \text{ true}|\text{reject } H_0) = 1 - \text{FDR}$$

where FDR is the False Discovery Rate.

p-value interpretation

Let $y \sim N(\theta, 1)$ and we are testing

$$H_0: \theta = 0$$
 vs $H_1: \theta \neq 0$

For the following activity, you need to tell me

- 1. the observed p-value,
- 2. the relative frequencies of null and alternative hypotheses, and
- 3. the distribution for θ under the alternative.

p-value interpretation

Let $y \sim N(\theta, 1)$ and we are testing

$$H_0: \theta = 0$$
 vs $H_1: \theta \neq 0$

For the following activity, you need to tell me

- 1. the observed p-value,
- 2. the relative frequencies of null and alternative hypotheses, and
- 3. the distribution for θ under the alternative.

Then this p-value app below will calculate (via simulation) the probability the null hypothesis is true.

shiny::runGitHub('jarad/pyalue')

The idea is that a scientist performs a series of experiments.

The idea is that a scientist performs a series of experiments. For each experiment,

ullet whether H_0 or H_1 is true is randomly determined,

The idea is that a scientist performs a series of experiments. For each experiment,

- ullet whether H_0 or H_1 is true is randomly determined,
- ullet θ is sampled according to which hypothesis is true, and

The idea is that a scientist performs a series of experiments. For each experiment,

- ullet whether H_0 or H_1 is true is randomly determined,
- ullet is sampled according to which hypothesis is true, and
- the *p*-value is calculated.

The idea is that a scientist performs a series of experiments. For each experiment,

- ullet whether H_0 or H_1 is true is randomly determined,
- ullet is sampled according to which hypothesis is true, and
- the *p*-value is calculated.

The idea is that a scientist performs a series of experiments. For each experiment,

- ullet whether H_0 or H_1 is true is randomly determined,
- ullet is sampled according to which hypothesis is true, and
- the *p*-value is calculated.

This process is repeated until a p-value of the desired value is achieved, e.g. p-value=0.05,

The idea is that a scientist performs a series of experiments. For each experiment,

- ullet whether H_0 or H_1 is true is randomly determined,
- ullet is sampled according to which hypothesis is true, and
- the *p*-value is calculated.

This process is repeated until a p-value of the desired value is achieved, e.g. p-value=0.05, and the true hypothesis is recorded.

The idea is that a scientist performs a series of experiments. For each experiment,

- ullet whether H_0 or H_1 is true is randomly determined,
- ullet is sampled according to which hypothesis is true, and
- the *p*-value is calculated.

This process is repeated until a p-value of the desired value is achieved, e.g. p-value=0.05, and the true hypothesis is recorded. Thus,

$$P(H_0 \text{ true} \mid p\text{-value} = 0.05) \approx \frac{1}{K} \sum_{k=1}^{K} \mathrm{I}(H_0 \text{ true} \mid p\text{-value} \approx 0.05).$$

The idea is that a scientist performs a series of experiments. For each experiment,

- ullet whether H_0 or H_1 is true is randomly determined,
- ullet is sampled according to which hypothesis is true, and
- the *p*-value is calculated.

This process is repeated until a p-value of the desired value is achieved, e.g. p-value=0.05, and the true hypothesis is recorded. Thus,

$$P(H_0 \text{ true} \mid p\text{-value} = 0.05) \approx \frac{1}{K} \sum_{k=1}^{K} \mathrm{I}(H_0 \text{ true} \mid p\text{-value} \approx 0.05).$$

Thus, there is nothing Bayesian happening here except that the probability being calculated has the unknown quantity on the left and the known quantity on the right.

It is common for those using statistics to equate the following

$$p$$
-value $\stackrel{?}{pprox} P(\mathsf{data}|H_0 \mathsf{\ true})$

It is common for those using statistics to equate the following

$$p$$
-value $\stackrel{?}{pprox} P(\mathsf{data}|H_0 \; \mathsf{true})
eq P(H_0 \; \mathsf{true}|\mathsf{data}).$

It is common for those using statistics to equate the following

$$p$$
-value $\stackrel{?}{pprox} P(\mathsf{data}|H_0 \; \mathsf{true}) \neq P(H_0 \; \mathsf{true}|\mathsf{data}).$

but we can use Bayes rule to show us that these probabilities cannot be equated

$$p(H_0|y) = \frac{p(y|H_0)p(H_0)}{p(y)}$$

It is common for those using statistics to equate the following

$$p$$
-value $\stackrel{?}{pprox} P(\mathsf{data}|H_0 \; \mathsf{true}) \neq P(H_0 \; \mathsf{true}|\mathsf{data}).$

but we can use Bayes rule to show us that these probabilities cannot be equated

$$p(H_0|y) = \frac{p(y|H_0)p(H_0)}{p(y)} = \frac{p(y|H_0)p(H_0)}{p(y|H_0)p(H_0) + p(y|H_1)p(H_1)}$$

It is common for those using statistics to equate the following

$$p$$
-value $\stackrel{?}{pprox} P(\mathsf{data}|H_0 \; \mathsf{true}) \neq P(H_0 \; \mathsf{true}|\mathsf{data}).$

but we can use Bayes rule to show us that these probabilities cannot be equated

$$p(H_0|y) = \frac{p(y|H_0)p(H_0)}{p(y)} = \frac{p(y|H_0)p(H_0)}{p(y|H_0)p(H_0) + p(y|H_1)p(H_1)}$$

This situation is common enough that it is called The Prosecutor's Fallacy.

https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

Principles:

1. *P*-values can indicate how incompatible the data are with a specified statistical model[, the model associated with the null hypothesis].

https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

- 1. P-values can indicate how incompatible the data are with a specified statistical model[, the model associated with the null hypothesis].
- 2. P-values do not measure the probability the studied hypothesis is true, or the probability that the data were produced by random chance alone.

https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

- 1. P-values can indicate how incompatible the data are with a specified statistical model[, the model associated with the null hypothesis].
- 2. P-values do not measure the probability the studied hypothesis is true, or the probability that the data were produced by random chance alone.
- 3. Scientific conclusions and business or policy decisions should not be based solely on whether a *p*-value passes a specific threshold.

https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

- P-values can indicate how incompatible the data are with a specified statistical model[, the model associated with the null hypothesis].
- 2. P-values do not measure the probability the studied hypothesis is true, or the probability that the data were produced by random chance alone.
- 3. Scientific conclusions and business or policy decisions should not be based solely on whether a p-value passes a specific threshold.
- 4. Proper inference requires full reporting and transparency.

https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

- P-values can indicate how incompatible the data are with a specified statistical model[, the model associated with the null hypothesis].
- 2. P-values do not measure the probability the studied hypothesis is true, or the probability that the data were produced by random chance alone.
- 3. Scientific conclusions and business or policy decisions should not be based solely on whether a p-value passes a specific threshold.
- 4. Proper inference requires full reporting and transparency.
- 5. A p-value, or statistical significance, does not measure the size of an effect or the importance of the result.

https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

- P-values can indicate how incompatible the data are with a specified statistical model[, the model associated with the null hypothesis].
- 2. P-values do not measure the probability the studied hypothesis is true, or the probability that the data were produced by random chance alone.
- 3. Scientific conclusions and business or policy decisions should not be based solely on whether a p-value passes a specific threshold.
- 4. Proper inference requires full reporting and transparency.
- 5. A p-value, or statistical significance, does not measure the size of an effect or the importance of the result.
- 6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.