

LIME

Local Interpretable Model-Agnostic Explanations

> Lucas Greff Meneses @greffao 10/04/2024

Local Surrogate Model

 LIME é basicamente uma implementação de um modelo substituto local. O objetivo é criar um modelo interpretável que explique uma determinada previsão do modelo não interpretável.

Local Surrogate Model

• LIME gera um novo dataset alterando as features da predição que se deseja entender e passando esses novos pontos pelo modelo não interpretável.

Local Surrogate Model

 Neste novo dataset, o método treina um novo modelo interpretável, de forma que os pontos mais próximos da instância que queremos entender tenham peso maior e usando as previsões do modelo não interpretável como label.

Matematicamente

$$\operatorname{explanation}(x) = \operatorname{arg\,min}_{g \in G} L(f,g,\pi_x) + \Omega(x)$$

- x É a instância que queremos explicar
- g É um modelo interpretável dentro de um conjunto G de possíveis modelos interpretáveis (ex: regressão linear, árvore de decisão)
- f É o modelo não interpretável (black-box) (ex: rede neural, decision forest)
- π_x Função de proximidade que pondera a importância de cada novo ponto de acordo com a sua proximidade em relação à instância x
- L Função erro do modelo interpretável (ex: erro quadrático médio)
- Ω Função que mede a complexidade do modelo g (ex: quantidade de features numa regressão linear, profundidade da árvode de decisão)

Como gerar o novo dataset?

Dados estruturados

Imagine que um algoritmo de classificação, com base nas features x1 e x2, previu as classes azul e preta de acordo com o gráfico

Dados estruturados

Para entender porque o ponto amarelo foi classificado como preto, LIME gera novos pontos seguindo uma distribuição normal em relação ao centro de massa do dataset.

Dados estruturados

Pontos perto da instância amarela recebem um peso maior, de acordo com a função pi.

Dados estruturados

Um modelo interpretável é treinado a partir daqueles pontos.

Dados estruturados - Alguns problemas

- Os novos pontos são gerados a partir de uma distribuição normal, ignorando uma possível correlação entre as variáveis.
- Por exemplo, numa possível tarefa de classificação de casas, x1 pode ser o tamanho em m² e x2, o número de quartos. Ao criar novos pontos usando uma distribuição normal, uma casa com 20 m² e 7 quartos pode ser amostrada, o que é altamente improvável na realidade.

Dados estruturados - Alguns problemas

• Além disso, na implementação do LIME, a função pi é uma *exponential smoothing kernel* e o tamanho do *kernel* é 0.75 *(raiz da quantidade de colunas).

```
if kernel_width is None:
    kernel_width = np.sqrt(training_data.shape[1]) * .75
kernel_width = float(kernel_width)

if kernel is None:
    def kernel(d, kernel_width):
        return np.sqrt(np.exp(-(d ** 2) / kernel_width ** 2))
```

$$\pi_x(d, ext{kernel_width}) = \sqrt{e^{-rac{d^2}{ ext{kernel_width}^2}}}$$

Dados estruturados - Alguns problemas

 O problema é que não sabemos qual é a melhor função kernel e qual o melhor tamanho de kernel (kernel_width).

Dados não estruturados - texto

- Para criar variações dos dados textuais, o LIME gera novos textos removendo palavras do texto original.
- O dataset é feito de forma que cada palavra é uma feature e o seu valor binário indica a presença ou ausência da palavra no novo texto.

Dados não estruturados - texto

	CONTENT							CLASS
267	PSY is a good guy							0
173	For Christmas Song visit my channel! ;)							
For	Christmas	Song	visit	my	channel!	;)	prob	weight
1	0	1	1	0	0	1	0.17	0.57
0	1	1	1	1	0	1	0.17	0.71
1	0	0	1	1	1	1	0.99	0.71
1	0	1	1	1	1	1	0.99	0.86
0	1	1	1	0	0	1	0.17	0.57

- prob é a probabilidade da nova sentença gerada ser spam.
- weight é a proximidade da nova sentença com a sentença original.

Dados não estruturados - imagens

- Para criar novas imagens, a imagem original é segmentada em superpixels que são ativados ou desativados a fim de criar o novo dataset.
- Superpixels s\(\tilde{a}\) o pixels interconectados com cores semelhantes.

Dados não estruturados - imagens

(a) Original Image

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining Labrador

Aplicações

Aplicações

Identificação de data leakages

- Data leakages refere-se a uma situação em que informações externas não intencionais são incluídas no conjunto de treinamento do modelo.
- O artigo se refere à um caso em que o ID do paciente estava sendo usado pelo modelo e era uma variável considerada importante pelo modelo em certos casos.

Aplicações

Interpretação do modelo

- É possível usar o LIME para verificar se a análise do modelo faz sentido.
- Neste caso, o modelo deveria dizer se o texto n\u00e3o era sobre ate\u00edsmo" ou "cristianismo". O algoritmo 2 obteve melhor desempenho.

Vantagens e Desvantagens

Vantagens

- É um método independente de modelo.
- Funciona para diversos tipos de dados.
- O modelo substituto pode usar features que n\u00e3o foram usadas pelo modelo original.

Desvantagens

- Não há uma definição exata do tamanho do kernel e nem da função que devemos usar.
- Usar uma distribuição normal para gerar novos dados ignora correlação entre features.
- Instabilidade nas explicações: mesmo em pontos muito próximos, dependendo do processo de geração do novo dataset, é possível gerar explicações totalmente diferentes, o que compromete a confiabilidade no método.
- As explicações podem ser manipuladas, a fim de esconder vieses.
- O usuário precisa escolher entre fidelidade e simplicidade do modelo interpretável.

