Пусть U - инвариантное подпространство V для линейного оператора $\varphi:V\to V$.

Определение. Ограничением φ на подпространство U называется отображение $\left. \varphi \right|_U : U o U$ такое, что $\forall u \in U\varphi|_{II}(u) = \varphi(u)$

Рассмотрим фактор-пространство $\overline{V} = V|_{U}: \bar{v} = v + u|u \in U$

Определение. Оператор $\overline{\varphi}: \overline{V} \to \overline{V}$ называется фактор-оператором.

 $\forall v'=v+u\text{, где }u\in U\text{, }\varphi(v')=\varphi(v)+\varphi(u)\Longrightarrow \overline{\varphi(v')}=\overline{\varphi(v)}\text{ (так как }\varphi(u)\in U)\Longrightarrow \overline{\varphi}:\overline{V}\to \mathbb{R}$ V - линейный оператор.

Теорема. 1. Если $\exists U \neq \{0\}$, U - подпространство V, $Im \varphi \subset U$, то в подходящем базисе $A_{arphi} = egin{pmatrix} B & D \ 0 & C \end{pmatrix}$ (1), где $B_{m imes n}$ - матрица линейного оператора $arphi|_U$, где m = dim U, а C -

- Z.~ Если $V=U\oplus W,$ где U~u~W инвариантные подпространства относительно arphi,~ то в nodxodящем базисе $A_{arphi}=egin{pmatrix} B&&0\0&C\end{pmatrix}$ (2), гde B=A , C=A .
- 3. Верны и обратные утверждения: если в некотором базисе A_{φ} имеет вид (1), то для φ существует инвариантое подпространство, а если A_{arphi} имеет вид (2), то V - прямая сумма двух инвариантных подпространств.

 \mathcal{A} оказательство. 1. Обозначим $\mathrm{dim}V=\mathrm{n},\,\mathrm{dim}U=\mathrm{m},\,0<\mathrm{m}<\mathrm{n}$. Выберем базис в U e_1,\ldots,e_m и дополним его до базиса в V произвольными векторами e_{m+1}, \ldots, e_n . Тогда $\forall u \in U \ u =$

$$\sum_{i=1}^m u_i e_i \Longrightarrow \varphi(u) = \sum_{i=1}^m u_i \varphi(e_i) \text{ В частности, столбцы } \varphi(e_1) \dots \varphi(e_m) \text{ имеют вид:} \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Longrightarrow \text{ они}$$

составляют матрицу
$$\binom{B}{0}$$
 Разбивка матрицы, составленной из столбцов образов базисных векторов e_{m+1},\dots,e_n , Видно, что $B=\begin{pmatrix} a_{11}&\cdots&a_{1m}\\ \vdots&&&\\ a_{m1}&\cdots&a_{mm} \end{pmatrix}=A$.

- 2. Если $V = U \oplus W$, векторы e_{m+1}, \ldots, e_n надо выбирать в W, а остольное аналогично предыдущему пункту.
- 3. В обратную сторону для второго случая: если в базисе e_1, \ldots, e_n матрица имеет вид (2), то положим в качестве $U=\langle e_1,\ldots,e_m \rangle$, а $W=\langle {}_{m+1},\ldots,e_n \rangle$ Из определения матрицы $A_{\varphi,e}$ следует, что U и W - инварианты относительно $\left. \varphi, \left. \varphi \right|_{U}$ имеет матрицу B, а $\left. \varphi, \left. \varphi \right|_{W}$ имеет матрицу C. Для первого случая: $\overline{e_j}=e_j+U$, для $\overline{m+1,n}$, является базисом в факторматрицу С. для первого си, им. I_j пространстве $overlineV = V|_{U}\overline{\varphi}(\bar{e_j}) = \varphi(e_j) = \sum_{i=1}^m a_{ij}e_i + \sum_{k=m+1}^n a_{kj}e_k = \sum_{k=m+1}^n e_{kj}\overline{e_k}$ (так как

первая сумма
$$\in U$$
) $\Longrightarrow C = \begin{pmatrix} a_{m+1,m+1} & \cdots & a_{m+1,n} \\ \vdots & & & \\ a_{n,m+1} & \cdots & a_{nn} \end{pmatrix}$ - матрица оператора $\overline{\varphi}$.

Замечание. В общем случае, если $V=U_1\oplus\ldots\oplus U_s$, то в некотором базисе, согласно разло-

жению,
$$A_{\varphi}=egin{pmatrix} B_1 & & & \\ & \ddots & \\ & & B_s \end{pmatrix}$$
, где B_i - матрица ${\varphi|}_{U_i} \forall i=1,s$

Пример. (Естественные примеры инвариантных подпространств (доказательство - упражнение)) $\varphi: V \to V$ - линейный оператор. 1. Кег φ , $\operatorname{Im} \varphi$ и любое подпространство $U: \operatorname{Im} \varphi \subset U$, тогда U является инвариантным подпространством относительно φ . 2. Если U_1 и U_2 являются инвариантными подпространствами относительно оператора φ , то $U_1 + U_2$ и $U_1 \cap U_2$ также являются инвариантными относительно оператора φ .

0.1 Действия над линейными отображениями и операторами

Пусть $\varphi: V_1 \to V_2$ - линейное отображение, тогда: 1. $\forall \lambda \in \mathbb{F}(\lambda \varphi)(x) = \lambda \varphi(x), \ \forall x \in V_1$ 2. Если $\psi: V_1 \to V_2$, то $(\varphi + \psi)(x) = \varphi(x) + \psi(x), \ \forall x \in V_1$

Утверждение. 1 Относительно этих операций множество $L(V_1, V_2)$ линейных отображений из V_1 в V_2 является векторным пространством.

Утверждение. $2 \ Ecnu \ dimV_1 = n, \ dimV_2 = m, \ mo \ L(V_1, V_2) \cong M_{m \times n}(\mathbb{F})$

Доказательство. Зафиксируем базисы в V_1 и V_2 е и f соответственно, тогда $\forall \varphi$ взаимооднозначно соответствует его матрица $A_{\varphi,e,f}$ относительно базисов e и f. $A_{\lambda\varphi} = \lambda A_{\varphi} \ \forall \lambda \in \mathbb{F}$ $(\lambda\varphi)(e_j) = \lambda\varphi(e_j) \Longrightarrow$ все столбцы A_{φ} умножаются на $\lambda \Longrightarrow A_{\varphi}$ умножается на λ . $\forall j = 1, \overline{m}(\varphi + \psi)(e_j) = \varphi(e_j) + \psi(e_j) \Longrightarrow$ столбцы $A_{\varphi+\psi}$ имеют вид $\varphi(e_j) + \psi(e_j)$.

Обозначение: $L(V_1,V_2)=\kappa(V_1,V_2)=\mathrm{Hom}(V_1,V_2)$. $\varkappa(V)$ - множество линейных операторов на V .

Определение. Произведением линейных операторов $\varphi: V_1 \to V_2$ и $\psi: V_1 \to V_2$ называется их композиция $(\varphi \circ \psi)(x) = \psi(\varphi(x))$, где $x \in V_1$.

Утверждение. 3 Композиция линейных отображений является линейным отображением, а композиция линейных операторов - линейным оператором.

Утверждение. 4 Пусть V_1, V_2, V_3 - конечномерные векторные пространства, а $\psi: V_1 \to V_2$ и $\varphi: V_2 \to V_3$ - линейные отображения, тогда, если зафиксировать базисы в этих пространствах, матрица композиции $A_{\psi \circ \varphi} = A_{\psi} A_{\varphi}$.

Доказательство. Утверждение 3 - упражнение. Утверждение 4: Пусть e - базис в V_1 , f - базис в V_2 , g - базис в V_3 . $A_{\varphi} = (\varphi(e_1) \uparrow \dots \varphi(e_n) \uparrow)$ в базисе f, $A_{\psi} = (\psi(f_1) \uparrow \dots \psi(f_m) \uparrow)$ в базисе g. $\forall x = eX$, обозначим $g = \varphi(x)$, $g = \psi(g)$ со столбцами координат $g = \psi(g)$ со Столбцам

Теорема. Множесство $\kappa(V)$ с операциями $+, \cdot \lambda, \cdot$ является ассоциативной алгеброй с единицей, равной IdV. Если $dimV = n, \ mo \ \kappa(V) \cong M_n(\mathbb{F})$.

Доказательство. Следует из утверждений 1 - 4.

Утверждение. Если φ - линейный оператор на V, то $\forall k \in \mathbb{N}$ подпространства $Ker \varphi^k$ и $Im \varphi^k$ - инварианты.

 Πpu этом $0 \equiv Ker\varphi \equiv Ker\varphi^2 \equiv \dots$ $V \supseteq Im\varphi \supseteq Im\varphi^2 \dots$

0.2 Собственные векторы и собственные значения оператора

Пусть $\varphi:V \to V$ - линейный оператор над полем \mathbb{F} .

Определение. Вектор $x \in V$ называется собственным вектором оператора φ , если $\exists \lambda \in \mathbb{F}$: $\varphi(x) = \lambda \cdot x$ и $x \neq 0$. λ называется собственным значением оператора φ , соответствующим вектору x.

Пусть $\dim V = n$, e - базис в V, в нём $\forall x = e \cdot X$, тогда равенство из вышеуказанного определения равносильно $A_{\varphi}X = \lambda X \iff (A_{\varphi} - \lambda E)X = 0$ (2) - это СЛУ для нахождения вектора x, если известна λ . Система (2) имеет ненулевое решение, только если $\det(A_{\varphi} - \lambda E) = 0$ (3). Равенство (3) называется характеристическим уравненением. Собственными значениями могут быть только корни характеристического уравнения.

Пример. Пример 1. $V=D^{\infty}(\mathbb{R})$ - множество бесконечно дифференцируемых функций. $\varphi=\frac{d}{dx}\ \forall f(x)\ \varphi(f)=f'(x).\ \forall \lambda\in\mathbb{R}(e^{\lambda x})'=\lambda e^x.$

Доказательство. Если
$$f'(x) = \lambda \cdot f(x)$$
, то $f(x) = C \cdot e^{\lambda x}$, где $C \neq 0$. Рассмотрим $(f(x)e^{-\lambda x})' = f'(x)e^{-\lambda x} - \lambda f(x)e^{-\lambda x} = 0 \Longrightarrow f(x)e^{-\lambda x} = C$.

Пример 2.
$$A_{\varphi} = \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix}$$
.

Упражнение. Какие существуют собственные векторы и собственные значения у φ во втором примере?