BRANCH AND BOUND

- OSSIA È INTERA, L'ALGORITMO DEL SIMPLESSA DIVENTA INAPPLICABILE!
- · CONSIDERIAMO UN ESEMPIO

- [] RISOLVIAMO IL PROBLEMA, CHIAMOLO PO, SENZA , VINCOLI DI INTEREZZA.
 - -IL SIMPLESSO RESTITUISCE LA SOLUZIONE OTTIMA $x^{\circ} = \begin{pmatrix} 3 & 5 \\ 2 & 2 \end{pmatrix}$, WHE HA VALORE OTTIMO -4. MEGLIO DI COSÌ, NEL PROBLEMA ORIGINARIO, NON SI DUÒ FARE!
- PARTIZIONIAMO LA REGIONE AMMISSIBILE

 DEL PROBLEMA P° OTTENDO DUE

 PROBLEMI P⁴ E P²

X₁>, 2

LA SOLUZIONE OTTIMA DI P SARA LA MIGLIORE TRA LA SOLUZIONE OTTIMA DI P1 E QUELLA DI P2.

POSSIAMO SCEGLIERE

P2 E PROCEDIAMO

RILASSANDO I VINCOLI

DI INTEREZZA E

RISOLVENDO (TRAMITE

IL SIMPLESSO) OTTENENDO $x^2 = (2, \frac{3}{2}) \quad z^2 = -\frac{7}{2}$

PARTIZIONIAMO IL
PROBLEMA P2 IN
DVE PROBLEMI P3 E

IL RILASSAMENTO "REALE" DI P_3 AVRA OTTIMO IN $X_2=1$ E $X_1=9/4$

VU 07 0

DOBBIAMO PERÒ PREDCWPARCI DI P1.

RILASSIAMO IL PROBLEMA, OTTENENDO

SOLUZIOME OTTIMA $\chi^{1}=\left(1,\frac{3}{2}\right)$ IL (UI

VALORE OTTIMO È $Z^{1}=-5$ TALE VALORE

È SUPERIORE A Z^{5} , PER CUI L'INTE MO

ALBERO RADICATO IN P1 PUÒ ESSERE

"SCARTATO".