Math 130B - Homework 1

- 1. Two fair dice are rolled. Let X be the smallest and Y be the largest value obtained on the dice.
 - (a) Find the probability mass functions of X and Y.
 - (b) Find the joint probability mass function of X and Y.
 - (c) Are X and Y independent?
- 2. A box of 8 light bulbs is known to contain 2 that are defective. The bulbs are tested one at a time until the defective ones are found. Let N_1 be the number of tests done until the first defective bulb is found, and let N_2 be the same for the second bulb.
 - (a) Find the joint probability mass function of N_1 and N_2 .
 - (b) Are N_1 and N_2 independent?
- 3. Let $X_1, X_2, ...$ be a sequence of independent uniform [0, 1] random variables. For a fixed constant $c \in [0, 1]$, define the random variable N by

$$N = \min\{n : X_n > c\}.$$

- (a) Explain in just a few words how N relates to the X_i 's and c.
- (b) Is N independent of X_N ? Give an intuitive explanation as well as a rigorous one.
- 4. The joint probability density function of X and Y is given by

$$f(x,y) = c(y^2 - x^2)e^{-y}$$
 $-y \le x \le y, \ 0 < y < \infty.$

- (a) Find c.
- (b) Find the marginal densities of X and Y.
- (c) Are X and Y independent?
- (d) Find $\mathbb{E}[X]$.
- 5. The joint density function of X and Y is

$$f(x,y) = x + y$$
 $0 < x < 1, 0 < y < 1.$

- (a) Are X and Y independent?
- (b) Find Pr[X + Y < 1].
- 6. Consider a stick of unit length. Break the stick at two points chosen uniformly and independently at random. What is the probability that you can form a triangle from the three pieces that remain?

1

7. Consider independent trials, each of which results in outcome i, where i can be $0, 1, \ldots, k$, with probability p_i .

Let N denote the number of trials needed to obtain an outcome not equal to 0 and let X be that outcome.

- (a) Find $Pr[N = n], n \ge 1$.
- (b) Find Pr[X = j], j = 1, ..., k.
- (c) Show that Pr[N = n, X = j] = Pr[N = n] Pr[X = j].
- (d) Is it intuitive that X and N are independent?
- 8. (a) A biased coin with head probability p is flipped n times. Let X be the number of heads and Y the number of tails. Are X and Y independent?
 - (b) Suppose instead that the coin is tossed a random number of times N, where $N \sim Poisson(\lambda)$. Show that X and Y are independent.
- 9. Let X_1 and X_2 be independent exponential random variables with respective parameters λ_1 and λ_2 .
 - (a) Find the distribution of $Z = X_1/X_2$.
 - (b) Compute $Pr[X_1 < X_2]$.
- 10. Suppose that P and Q are independent random variables, both uniformly distributed on (0,1).
 - (a) What is the joint cumulative distribution function of P and Q?
 - (b) What is the probability that all of the roots of the equation $x^2 + Px + Q = 0$ are real?