

Master of Computer Applications

CAPOL403R01: Computer Organization & Architecture

Unit II: Lecture 1 – Part 1

Instruction set – Characteristics & functions

Dr. D. MURALIDHARAN
Assistant Professor
School of Computing
SASTRA Deemed to be University

Instruction set

- Instructions
 - They are commands given to the machine
- Machine instruction
 - It is in binary form so that the machine can understand and act upon.
- Instruction Set
 - The collection of all instructions which could be executed by the processor

Instruction cycle - State diagram

Elements of a machine instruction

- Operation code
- Source operand(s) reference(s)
- Destination operand(s) reference(s)
- Next instruction reference

Elements of a machine instruction

Operation code

- It specifies the operation to be performed.
- The operation is specified by a binary code.
- It is commonly known as the operation code, or opcode.

Operand reference

- It helps to find the location of source and the destination
- It may refer main memory, processor register, IO devices or the operand itself

Elements of a machine instruction

- Next instruction reference
 - Usually the next instruction of the program is fetched
 - In that case, the instruction doesn't have this field
 - Sometimes, the next instruction may be branching from the normal flow
 - In these cases, this field is included in the machine instruction
 - The reference may indicate a real memory or a virtual memory

A simple instruction format

4 Bits 6 Bits 6 Bits

Opcode Operand reference Operand reference

16 Bits

- Each instruction is represented by a sequence of bits
- Instruction is divided into fields
- An instruction set uses more than one format
- It is difficult to follow machine codes
- Hence, symbolic opcode (for ex: ADD) is used to understand instructions
- The operands may be represented symbolically
- For example: ADD R1,Y

Types of instructions

- Data processing
 - It has arithmetic and logical instructions
- Data storage
 - Movement of data into/out of register and/or memory locations.
- Data movement
 - I/O instructions
- Control
 - Test and branch instructions

Number of addresses

- Three address instructions
 - It has two source operands and a destination operand
- Two address instructions
 - It has two source operands
 - one source address becomes destination after the execution
- One address instruction
 - Accumulator is the implicit operand
- Zero address instruction
 - Operands are assumed to be in stack memory

Example:

Consider the equation

$$Y = \frac{A - B}{C + (D \times E)}$$

- Write programs to implement it using 3,2 and 1 address instructions without changing the inputs
- ADD, SUB, MPY, DIV instructions are used for addition, subtraction, multiplication and division
- MOVE is used to move the data from one location to another location
- LOAD and STOR are used to load/store accumulator data

$$\frac{A-B}{C+(D\times E)}$$

Three address instructions

Two address instructions

One address instructions

Number of addresses...

Number of Addresses	Symbolic Representation	Interpretation
3	OP A, B, C	$A \leftarrow B OP C$
2	OP A, B	$A \leftarrow A OP B$
1	OP A	$AC \leftarrow AC OP A$
0	OP	$T \leftarrow (T - 1) \text{ OP } T$

Instruction Set Design

Operation repertoire

- Number of operations
- Types of operations
- Complexity of operations

Data types

The various types of data upon which operations are performed

Instruction format

Instruction length, number of addresses, size of various fields etc.,

Registers

Number of processor registers that can be referenced by instructions, and their use

Addressing

• The mode or modes by which the address of an operand is specified.

Types of operands

- The type of the operand decides the meaning of the bit pattern
- The operands may be any one of the following four categories
 - Addresses
 - Numbers
 - Characters
 - Logical data

Operand type - Number

- Binary fixed point
- Binary floating point
- BCD
 - It avoids the binary to decimal conversion and vice versa
 - 4 bits are used to represent the numbers 0 -9 (0000 to 1001)
 - Remaining 6 combinations are not used
 - A byte may have two BCD numbers Packed BCD
 - A 4 bit combination is used to indicate the sign
 - 1100 is used for positive & 1101 is used for negative
 - Added to the left or right most place of BCD stream.
 - Arithmetic operations are same as binary (decimal carry has to be considered)

Operand type - Character

- The characters are coded in binary to process text data
- International Reference Alphabet (or) American Standard Code for Information Interchange
 - 7 bit code 128 pattern set has both printable and control characters
 - Decimal representation 011XXXX
 - 8th bit may be either 0 or parity bit
- Extended Binary Coded Decimal Interchange Code
 - 8 bit code
 - Decimal compatible 1111XXXX

Operand type - Logical

- The n bit vector may be considered as n one bits
- Each bit is considered as a logical data
- Advantages:
 - Storing an array of Boolean type data is space efficient
 - Bits can be manipulated
 - Example: To convert IRA to decimal, extract the LSB four bits

Thank you