library(dplyr) library(magrittr)

rladies global %>% filter(city == 'Resistencia') && filter(city == 'Corrientes')

Resistencia - Corrientes

Viernes 7 de Diciembre de 2018

Hoy hablamos sobre...

PARTE 1: DATOS ORDENADOS
CON TIDYR

PARTE 2: MANIPULACIÓN DE DATOS CON DPLYR

Operador %>%

DATA SCIENCE WORKFLOW

PARTE 1 ORDENAR DATOS CON tidyr

- 1. Cada **variable** está en su **columna**
- 2. Cada **observación** está en una **fila**
- 3. Cada unidad de experimentación está en una tabla aparte

Las bases de datos para nuestro trabajo

install.packages("devtools")
devtools::install_github("rstudio/EDAWR")

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

pollution

city	particle size	amount (μg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

Tidy data

R

storms

storm	wind	pressure	date
Alberto	10	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Alia	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arvur	*	100	1996 6-21

cases

pollution

° ∆∨	particle size	amount (μg/m³)
New York	large	> 23 \
New York	small	14
Lordon	large	>22
Lordon	small	16
Be ing	large	121
Beving	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year
- Count

- City
- Amount of large particles
- Amount of small particles

2014 DOLLES LA Allainte

Tidy data

- Instalamos el paquete tidyr install.packages("tidyr")
- Cargamos la librería library(tidyr)
- 1. Funciones importantes: gather() y spread()
 - ?gather
 - ?spread

Ordenamos teniendo en cuenta 3 variables: country, year, n.

	cas	es					
Country	2011	2012	2013	Country	\leftarrow	2012	- 20
FR	7000	6900	7000	T	7000	0300	70
DE	5800	6000	6200	DE	800	6000	620
US	15000	14000	13000	*	15000	4	130

Función gather()

set de datos

Colapsar varias columnas en una sola columna

- 1. Una columna key que contiene los nombres de las columnas
- 2. Un valor que contiene los valores de las columnas.

gather (cases, year, n, 2:4) ____ número de columnas que colapsan

columna key columna values

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

gather (cases, year, n, 2:4)

número de columnas que colapsan

set de datos

columna key columna values

Ordenamos teniendo en cuenta 3 variables: city, large, small.

р	ollution				
city	size	amount	оïv	particle size	amc (μg
New York	large	23	New York	large	>2
New York	small	14	New York	small	(1
London	large	22	Lordon	large	>2
London	small	16	Lordon	small	(1
Beijing	large	121	Be ing	large	12
Beijing	small	56	Beling	small	5

Genera varias columnas a partir de dos columnas.

- 1. Un único valor en la columna *key* se convierte en una columna única.
- 2. Cada valor *value* se convierte en una fila en una nueva columna

spread (pollution, size, amount)
set de datos
nuevas columnas

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

New York 3 4

Lordon 2 16

Belling 121 36

spread (pollution, size, amount)

set de datos

nuevas columnas

nuevas filas

Función separate()

Permite separar una columna en varias con un separador

separate(storms, date, c("year", "month", "day"), sep = "-")

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storms2

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	80	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

Función unite()

Permite unir columnas en una sola

unite(storms2, "date", year, month, day, sep = "-")

storms2

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

Recapitulamos

- * gather(): realizar observaciones a partir de variables
- * spread(): realizar variables de observaciones
- * Unir y separar columnas con unite() y separate()

dplyr

- Paquete que nos ayuda a transformar datos tabulares.
- El paquete dplyr fue desarrollado por Hadley Wickham y es un versión optimizada de su paquete plyr.
- Proporciona una "gramática" (particularmente verbos) para la manipulación y operaciones con data frames.
- Instalación:

```
install.packages("dplyr")
library(dplyr)
install.packages("nycflights13")
library(nycflights13)
```


Extraer variables existentes: select()

Extraer **observaciones** existentes: **filter()**

Derivar nuevas **variables**: **mutate()**

Cambiar la unidad de análisis: summarise()

Organizar filas por variables: arrange()

Función **SELECT()**

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	pressure
Alberto	1007
Alex	1009
Allison	1005
Ana	1013
Arlene	1010
Arthur	1010

select(storms, storm, pressure)

Función **SELECT()**

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

wind	pressure	date
110	1007	2000-08-12
45	1009	1998-07-30
65	1005	1995-06-04
40	1013	1997-07-01
50	1010	1999-06-13
45	1010	1996-06-21

select(storms, -storm)

Función **SELECT()**

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

wind	pressure	date
110	1007	2000-08-12
45	1009	1998-07-30
65	1005	1995-06-04
40	1013	1997-07-01
50	1010	1999-06-13
45	1010	1996-06-21

select(storms, wind:date)

Función FILTER()

filter()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04
Arlene	50	1010	1999-06-13

filter(storms, wind >= 50)

Función FILTER()

filter()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04

Función MUTATE()

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date	ratio
Alberto	110	1007	2000-08-12	9.15
Alex	45	1009	1998-07-30	22.42
Allison	65	1005	1995-06-04	15.46
Ana	40	1013	1997-07-01	25.32
Arlene	50	1010	1999-06-13	20.20
Arthur	45	1010	1996-06-21	22.44

mutate(storms, ratio = pressure / wind)

Función MUTATE()

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date	ratio	inverse
Alberto	110	1007	2000-08-12	9.15	0.11
Alex	45	1009	1998-07-30	22.42	0.04
Allison	65	1005	1995-06-04	15.46	0.06
Ana	40	1013	1997-07-01	25.32	0.04
Arlene	50	1010	1999-06-13	20.20	0.05
Arthur	45	1010	1996-06-21	22.44	0.04

mutate(storms, ratio = pressure / wind, inverse = ratio^-1)

Función **SUMMARISE()**

summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

mean	sum	n
42	252	6

pollution %>% summarise(mean = mean(amount), sum = sum(amount), n = n())

Función ARRANGE()

arrange()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Alex	45	1009	1998-07-30
Arthur	45	1010	1996-06-21
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

arrange(storms, wind)

Función ARRANGE()

arrange()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Arthur	45	1010	1996-06-21
Alex	45	1009	1998-07-30
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

arrange(storms, wind, date)

Recapitulamos

- * select(): extraer variables
- * filter(): extraer observaciones
- * mutate() : crear nuevas variables
- * summarize(): cambiar unidad de análisis
- * arrange(): organizar filas por variables

Con %>% podemos reescribir

los comandos anteriores

select(storms, storm, pressure)

storms %>% select(storm, pressure)

storms %>% filter(wind >= 50)

```
storms %>%
  filter(wind >= 50) %>%
  select(storm, pressure)
```


El operador pipe nos permite una sintaxis clara y entendible

select(storms, storm, pressure)

Empieza con un verbo

storms %>% select(storm, pressure)

storms %>% filter(wind >= 50)

storms %>%
 filter(wind >= 50) %>%
 select(storm, pressure)

Empieza con un sustantivo (dataset) y luego la operación se indica con un verbo

Use R!

Bradley C. Boehmke

Data Wrangling with R

- Learning R (Github) http://bit.ly/2Aaq6d3
- R studio cheatsheets (dplyr, data.table)
- Documentación del CRAN
- Libros

Fuentes de consulta

- Learning R (Github) http://bit.ly/2Aaq6d3
- R studio cheatsheets (dplyr, data.table)
- Documentación del CRAN
- Libros

There's no failure, only feedback

Gabriela de Queiroz R-Ladies Founder

"If you're not having fun, you're not learning."

Richard Feynman (1918 - 1988) Nobel de Física -1965

Package 'dplyr' June 29, 2018 Trile A Grammar of Data Manipulation Description: A fast, consistent tool for working with data frame like objects. Type Package both in memory and out of memory TRL bits //dolyr.tidaverse drg.https://github.com/tidaverse/dely/ BugReports https://giymin.com/sixyverse/scity//issues Imports: assentiat (>= 0.2.0), bindrept (>= 0.2.0,9000), give (>= 1.11), magnin (2=1.5), methods plageoring (2=2.0.1), R6 >= 2.2.2), Repp (>= 0.12.15), days (>= 0.20), While (>= Suggests: bittle (See 0.9.7), calls, conv. (See 3.0.1), DBI (See 0.7.14). abply t>=1.20, deply t>=0.02), $\exp(sz)=2.21$, $\cos s$ (2=0.4.1), knir (2s. (19), Lahman (2s. 3.0-1), knir (2s. MASS, mgcy (50: 1.8.23), mucroberchmark (50: 1.4.4), ayetteh OS 0.2.21; markdown OS 1.8; RMySQL (SS 0.10.13). RPostgreSQL (>> 0.6.2), RSQLate (>> 2.0), teambat (>= 2.00) LinkingTo BH (>= 1.58.0.1), bindicpp (>= 0.2.0.9000), piogr (>= 0.1.10), Repp (>s 0.12.15) Vignette Builder knitt Encoding UTF-8 Author Harley Wickham Laut, crel (chttps://orcid.org/0000-0003-4757-11782). LazyData yes RoxygenNote 6.0.1.9000 Romain François [ant] chupe/loccid-org/0002-2444-4236>). NeedsCompilation yes Kirill Miller James Lebenge there is d. org/10009-0002-1416-3412->). RStudio (cph. frd)

Muchas gracias!!!

HASTA EL 2019!!!