CS131 Notes

Sean Wu

May 20, 2020

Contents

1	Introduction									
	1.1	What is Computer Vision and why is it hard								
	1.2	Definition of Vision and Comparisons to Human Vision								
	1.3	Human Vision Strengths and Weaknesses								
	1.4	Extracting info from images								
		1.4.1 Measurement in Vision								
		1.4.2 Obtaining Semantic Info from Vision								
	1.5	Applications of Computer Vision								
2	Linear Algebra Review									
	2.1	Vectors								
	2.2	Matrix								
		2.2.1 Images								
	2.3	Basic Matrix Operations								
		2.3.1 Addition								
		2.3.2 Scaling								
		2.3.3 Vector Norms								
		2.3.4 Inner Product (Dot Product)								
	2.4	Matrix Multiplication								
		2.4.1 Properties of Matrix Multiplication								
	2.5	Matrix Powers								
	2.6	Matrix Transpose								
	2.7	Determinant								
		2.7.1 Properties of the determinant								
	2.8	Trace								
		2.8.1 Properties of trace								
	2.9	Special Matrices								
		2.9.1 Identity Matrix								
		2.9.2 Diagonal Matrix								
		2.9.3 Symmetric Matrix								
		2.9.4 Skew-symmetric Matrix								
	2 10	Transformation Matrices								

	2.10.1	Scaling Transformation							10
	2.10.2	Converting to a rotated reference frame							10
	2.10.3	2D Rotation Matrix							11
	2.10.4	Normal Matrices							11
	2.10.5	Multiple Transformation Matrices							11
2.11		genous System							12
	2.11.1	Translation							12
	2.11.2	Division							12
	2.11.3	2D translation using Homogenous Coordinates							13
	2.11.4	Scaling Matrix in Homogenous Coordinates							13
	2.11.5	Scaling and Translating							13
	2.11.6	Scaling & Translating != Translating & Scaling							13
	2.11.7	Rotation Matrix in Homogenous Coordinates							14
		Scaling + Rotation + Translation							14
2.12	Matrix	x Inverse							14
	2.12.1	Properties of the Matrix Inverse							14
	2.12.2	Pseudo Inverse							15
2.13	Linear	r Independence							15
		x Rank							15
2.15	Eigenvector & Eigenvalues							16	
	2.15.1	Properties of Eigenvectors and Eigenvalues							16
	2.15.2	Spectral Theory							17
2.16	Diagonalization							17	
	2.16.1	Symmetric Matrices							18
		Applications of Eigenvalues and Eigenvectors							18
2.17	Matrix	x Calculus							18
	2.17.1	Gradient							18
	2.17.2	Properties of the Gradient							19
2.18	Hessia	an Matrix							20
2.19	Singula	lar Value Decomposition							21
	2.19.1	SVD Applications							21
		Principal Component Analysis							21
	2 19 3	SVD Algorithm							22

1 Introduction

1.1 What is Computer Vision and why is it hard

Computer Vision: extracting info from digital images OR developing algorithms to understand image content for other applications

- Computer Vision is a hard interdisciplinary problem that is still unsolved
- Hard to convert data storing RGB values in many pixels to semantic info (ex. this blob of black pixels is a chair)
- Vision (extracting meaningful info) is harder than 3D modelling

1.2 Definition of Vision and Comparisons to Human Vision

sensing device: captures details from a scene interpreting device: processes image from sensing device to extract meaning

- Humans use eyes as sensing devices while computers use cameras
- For sensing devices, computer vision is actually better than human vision because cameras can see infrared, have longer range, and capture greater detail
- For interpreting devices, the human brain is way more advanced than computer systems

1.3 Human Vision Strengths and Weaknesses

- Human vision evolved to quickly recognize danger for survival
- It is very fast $\longrightarrow \sim 150$ ms to recognize an animal
- For speed, humans focus only on "relevant" areas of interest
- Thus, small signals/changes in the background can be difficult to detect and segment
- Humans also use *context* to infer clues
- Used to determine next area of focus, when to expect certain objects in certain positions, and colour compensation in shadows
- However, context can be used to trick human vision
- Context is very hard to include in computer vision

1.4 Extracting info from images

• 2 types of info extracted in computer vision: measurements and semantic info

1.4.1 Measurement in Vision

- Robots scan surroundings to make a map of its environment
- Stereo vision gives depth information (like 2 eyes) using triangulation
- Depth info represented as a depth map
- With multiple viewpoints of an object, a 3D surface can be created (or even a 3D model)

1.4.2 Obtaining Semantic Info from Vision

- Labelling objects (or scene)
- Recognizing people, actions, gestures, faces

1.5 Applications of Computer Vision

- Video special effects
- 3D object modelling
- Scene recognition
- Face detection
- Note: face recognition is harder than face detection
- Optical Character Recognition (OCR)
- Reverse image search
- Vision based interaction (ex. Microsoft Kinect)
- Augmented reality
- Virtual reality

2 Linear Algebra Review

2.1 Vectors

• a column vector $\mathbf{v} \in \mathbb{R}^{n \times 1}$ where

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \tag{1}$$

• a row vector $\mathbf{v}^T \in \mathbb{R}^{1 \times n}$ where

$$\mathbf{v}^T = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \tag{2}$$

- The transpose of a matrix/vector is denoted with a subscript T
- Note: with numpy in python, you can transpose a vector v with v.T
- In 2D and 3D, vectors have a geometric interpretation as points
- Can also use vectors to represent pixels, gradients at an image keypoint, etc
- In this use case, vectors do not have a geometric interpretation, but calculations like "distance" are still useful
- The distance measures "similarity" between 2 vectors

2.2 Matrix

- A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is an array of numbers with size m by n
- \bullet i.e. m rows and n columns

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{d1} & a_{d2} & a_{d3} & \dots & a_{dn} \end{bmatrix}$$
(3)

• if m = n, we say that **A** is square

2.2.1 Images

- Python represents an *image* as a matrix of pixel brightnesses
- Note: the upper left corner has indices $\underbrace{[x,y]}_{\text{row, column}} = (0,0)$
- Python indices start at 0
- MATLAB indices start at 1
- Images can be also be represented as a vector of pixels by stacking rows into a single tall column vector

grayscale image: 1 number per pixel; stored as a $m \times n$ matrix **color image**: 3 numbers per pixel \longrightarrow red, green, blue brightnesses (RGB); stored as a $m \times n \times 3$ matrix

2.3 Basic Matrix Operations

2.3.1 Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a+1 & b+2 \\ c+3 & d+4 \end{bmatrix}$$
 (4)

• Can only add matrices with matching dimensions or a scalar

2.3.2 Scaling

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} * 3 = \begin{bmatrix} 3a & 3b \\ 3c & 3d \end{bmatrix}$$
 (5)

2.3.3 Vector Norms

$$\ell_1$$
 Norm - Manhattan Norm $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_1|$

$$\ell_2$$
 Norm - Euclidean Norm $\|\mathbf{x}\|_2 = \sqrt{\sum\limits_{i=1}^n x_i^2}$

$$\ell_{\infty}$$
 Norm - Max Norm $\|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$

$$\ell_p \text{ Norm } \|\mathbf{x}\|_p = \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$$

$$\mathbf{Matrix~Norm} \quad \left\| \mathbf{A} \right\|_F = \sqrt{\sum\limits_{i=1}^m \sum\limits_{j=1}^n A_{ij}^2} = \sqrt{\mathrm{tr}(\mathbf{A}^T\mathbf{A})}$$

- Note: a matrix norm is a vector norm in a vector space whose elements (vectors) are matrices (of a given dimension)
- Formally, a **norm** is any $f: \mathbb{R}^n \to \mathbb{R}$ that satisfies these 4 properties
- 1. Non-negativity: $\forall \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) \geq 0$
- 2. **Definiteness**: $f(\mathbf{x}) = 0 \iff \mathbf{x} = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}$

- 3. Homogeneity: $\forall \mathbf{x} \in \mathbb{R}^n, t \in \mathbb{R}, f(t\mathbf{x}) = |t| f(\mathbf{x})$
- 4. Triangle Inequality: $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$

2.3.4 Inner Product (Dot Product)

- The inner product (dot product) $\mathbf{x} \cdot \mathbf{y}$ or $\mathbf{x}^T \mathbf{y}$ is calculated by multiplying the corresponding entries of 2 vectors and adding up the result
- Note: the inner product takes 2 vectors as input and outputs a single scalar

$$\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}||\mathbf{y}|\cos(\theta) \tag{6}$$

$$\mathbf{x}^{T}\mathbf{y} = \mathbf{x} \cdot \mathbf{y} = \begin{bmatrix} x_{1} & x_{2} & \dots & x_{n} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} = \sum_{i=1}^{n} x_{i} y_{i}$$
 (7)

• if **y** is a unit vector, then $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| \cos(\theta)$ gives the length of **x** which lies in the direction of **y**

2.4 Matrix Multiplication

- Inner dimensions of matrices must match
- For $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, the product $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{m \times p}$ where $\mathbf{C}_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots \\ - & a_m^T & - \end{bmatrix} \begin{bmatrix} | & | & & | \\ b_1 & b_2 & \dots & b_p \\ | & | & & | \end{bmatrix} = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \dots & a_1^T b_p \\ a_2^T b_1 & a_2^T b_2 & \dots & a_2^T b_p \\ \vdots & \vdots & \ddots & \vdots \\ a_m^T b_1 & a_m^T b_2 & \dots & a_m^T b_p \end{bmatrix}$$
(8)

• i.e. matrix multiplication gives a matrix where the entries are the dot product of the rows of A and columns B

2.4.1 Properties of Matrix Multiplication

- 1. Associative: (AB)C = A(BC)
- 2. Distributive: A(B+C) = AB + AC
- 3. Not Commutative: Generally, $AB \neq BA$
- ex. if $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, then the matrix product $\mathbf{B}\mathbf{A}$ does not exist if $m \neq p$

2.5 Matrix Powers

matrix powers: repeated matrix multiplication of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with itself

$$\mathbf{A}^2 = \mathbf{A}\mathbf{A} \qquad \mathbf{A}^3 = \mathbf{A}\mathbf{A}\mathbf{A} \tag{9}$$

• Note: only square matrices can have powers because the dimensions must match

2.6 Matrix Transpose

matrix transpose: flip matrix across the main diagonal so that the rows become the columns, and vice versa

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \tag{10}$$

• Identity: $(\mathbf{A}\mathbf{B}\mathbf{C})^T = \mathbf{C}^T\mathbf{B}^T\mathbf{A}^T$

2.7 Determinant

determinant: represents the area (or volume) of the parallelogram described by the vectors in the rows of the matrix

- $\bullet\,$ Note: $\det(\mathbf{A})$ takes a matrix input and returns a scalar
- For $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\det(\mathbf{A}) = ad bc$

2.7.1 Properties of the determinant

- 1. det(AB) = det(BA)
- 2. $\det(A^{-1}) = \frac{1}{\det(1)}$
- 3. $det(A^T) = det(A)$
- 4. $det(A) = 0 \iff A \text{ is singular}$

2.8 Trace

trace: sum of the main diagonal elements

$$\operatorname{tr}\left(\begin{bmatrix} 1 & 3\\ 5 & 7 \end{bmatrix}\right) = 1 + 7 = 8 \tag{11}$$

- Note: the tr(A) is only defined for square matrices
- tr(A) is invariant to a lot of transformations so it is sometimes used in proofs

2.8.1 Properties of trace

- 1. tr(AB) = tr(BA)
- $2. \operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$

2.9 Special Matrices

2.9.1 Identity Matrix

Identity Matrix: a square matrix $\mathbf{I} \in \mathbb{R}^{n \times n}$ with 1's along the main diagonal and 0's everywhere else

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \tag{12}$$

- For any matrix A (with proper dimensions)
- $\bullet \ \mathbf{I} \cdot \mathbf{A} = \mathbf{A}$
- $\bullet \ \mathbf{A} \cdot \mathbf{I} = \mathbf{A}$
- i.e. matrix multiplication with I is commutative (special case)

2.9.2 Diagonal Matrix

Diagonal Matrix: a square matrix $\mathbf{D} \in \mathbb{R}^{n \times n}$ with scalars along the diagonal, 0's everywhere else

$$\mathbf{D} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 2.5 \end{bmatrix} \tag{13}$$

- For any matrix $\mathbf{B} \in \mathbb{R}^{n \times p}$, \mathbf{DB} scales the rows of \mathbf{B}
- Note: the identity matrix **I** is a special diagonal matrix that scales all the rows by 1

2.9.3 Symmetric Matrix

Symmetric Matrix : $A^T = A$

$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 1 & 7 \\ 5 & 7 & 1 \end{bmatrix} \tag{14}$$

2.9.4 Skew-symmetric Matrix

Skew-symmetric Matrix : $A^T = -A$

$$\begin{bmatrix} 0 & -2 & -5 \\ 2 & 0 & -7 \\ 5 & 7 & 0 \end{bmatrix} \tag{15}$$

2.10 Transformation Matrices

Matrix transformation: transforms vectors by matrix multiplication: Ax = x'

2.10.1 Scaling Transformation

Scaling matrix: scales components of vector

$$\underbrace{\begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix}}_{\text{Scaling Matrix}} * \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} S_x x \\ S_y y \end{bmatrix} \tag{16}$$

2.10.2 Converting to a rotated reference frame

Rotation Matrix: matrix that describes a rotation of a vector or equivalently changing to a rotated reference frame

- i.e. have the same data point but represent it in a new rotated frame
- Note: rotating a reference frame left == rotating a data point to the right
- Recall: a 2D vector stores a component in the x-direction and a component in the y-direction
- Thus the transformation for $\begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow \begin{bmatrix} x' \\ y' \end{bmatrix}$ is found by computing the dot product of the original vector with the new unit vectors for the x'-direction and y'-direction
- Thus, the new coordinates $\begin{bmatrix} x' \\ y' \end{bmatrix}$ represent the length of the original vector lying in the direction of the new x-, y- axes

• Equivalently, can express the original x-, y- unit vectors in terms of the new x'-, y- unit vectors

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} (\text{new x'-axis}) \\ (\text{new y'-axis}) \end{bmatrix} * \begin{bmatrix} x \\ y \end{bmatrix}$$
 (17)

$$= \left[(\hat{x} \text{ in new x'-,y'- axes}) \quad (\hat{y} \text{ in new x'-,y'- axes}) \right] * \begin{bmatrix} x \\ y \end{bmatrix}$$
 (18)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \underbrace{\mathbf{R}}_{2 \times 2 \text{ Rotation Matrix}} * \begin{bmatrix} x \\ y \end{bmatrix}$$
 (19)

$$\mathbf{P}' = \mathbf{RP} \tag{20}$$

2.10.3 2D Rotation Matrix

• For a CCW rotation of a point (aka a CW rotation of ref. frame)

$$x' = x\cos(\theta) - y\sin(\theta) \tag{21}$$

$$y' = x\sin(\theta) + y\cos(\theta) \tag{22}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
 (23)

$$\mathbf{P}' = \mathbf{RP} \tag{24}$$

• Note: transpose of a rotation matrix produces a rotation in the opposite direction

2.10.4 Normal Matrices

- Note: R belongs to the category of **normal** matrices
- Properties of normal matrices
- 1. $\mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I}$
- $2. \det \mathbf{R} = 1$
- Rows of a rotation matrix are always mutually perpendicular (aka orthogonal) unit vectors
- Same with columns

2.10.5 Multiple Transformation Matrices

• For multiple transformation matrices, the transformations are applied one by one from **right** to left

$$\mathbf{P}' = \mathbf{R}_2 \mathbf{R}_1 \mathbf{S} \mathbf{P} \tag{25}$$

$$\mathbf{P}' = (\mathbf{R}_2(\mathbf{R}_1(\mathbf{SP}))) \tag{26}$$

• By associativity, the result is the same as multiplying the matrices first to form a single transformation matrix

$$\mathbf{P}' = (\mathbf{R}_2 \mathbf{R}_1 \mathbf{S}) \mathbf{P} \tag{27}$$

- In general, matrix multiplication allows us to linearly combine components of a vector
- This is sufficient for scaling, rotating, skewing, but we <u>cannot</u> add a constant (not a linear operation)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cd + dy \end{bmatrix}$$
 (28)

2.11 Homogenous System

2.11.1 Translation

• Hacky Fix: can add translation by representing the problem in a higher n+1 dimension and stick a 1 at the end of every vector

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$
 (29)

• Note: $\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ and $\begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$ are homogenous coordinates

- Now we can rotate, scale, skew, and translate
- Matrix multiplication with translation matrix results in adding the rightmost column of the translation vector to the original vector
- Generally, homogenous transformation matries have a bottom row of $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ so that the resulting vector $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$ has a 1 at the bottom too

2.11.2 Division

- ex. want to divide a vector by a coordinate y_0 to make things scale down as they get farther away in a camera image
- Matrix multiplication can't actually divide so use this convention
- Convention: in homogenous coordinates, divide the resulting vector by its last coordinates after matrix multiplication

$$\begin{bmatrix} x \\ y \\ 7 \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{x}{7} \\ \frac{y}{7} \\ 1 \end{bmatrix} \tag{30}$$

2.11.3 2D translation using Homogenous Coordinates

•
$$P = (x, y) \to (x, y, 1)$$

•
$$T = (t_x, t_y) \rightarrow (t_x, t_y, 1)$$

$$\mathbf{P}' = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ 0 & 1 \end{bmatrix} * \mathbf{P}$$
(31)

• Thus $\mathbf{P}' = \mathbf{T} \cdot \mathbf{P}$ where \mathbf{T} is the translation matrix

2.11.4 Scaling Matrix in Homogenous Coordinates

•
$$P = (x, y) \rightarrow (s_x x, s_y y, 1)$$

•
$$T = (t_x, t_y) \rightarrow (t_x, t_y, 1)$$

•
$$P' = (x + t_x, y + t_y) \to (x + t_x, y + t_y, 1)$$

$$\mathbf{P}' = \begin{bmatrix} s_x x \\ s_y y \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{S}} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}' & 0 \\ 0 & 1 \end{bmatrix} * \mathbf{P}$$
(32)

• Thus $P' = S \cdot P$ where S is the scaling matrix

2.11.5 Scaling and Translating

• Recall: matrix transformations are applied right to left for $\mathbf{P}'' = \mathbf{TSP}$

$$\mathbf{P}'' = \mathbf{TSP} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{S}' & \mathbf{t}' \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_x \\ s_y y + t_y \\ 1 \end{bmatrix}$$

$$(33)$$

2.11.6 Scaling & Translating != Translating & Scaling

- Recall: matrix multiplication is generally **not** commutative, so order matters
- If you scale after you translated, both the original vector and the translation will be scaled

2.11.7 Rotation Matrix in Homogenous Coordinates

• Rotation $\mathbf{P}' = \mathbf{R} \cdot \mathbf{P}$ in homogenous coordinates is the same as regular rotation, just with the extra 1 in the bottom row

$$\mathbf{P}' = \begin{bmatrix} x\cos(\theta) - y\sin(\theta) \\ x\sin(\theta) + y\cos(\theta) \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{R}} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}' & 0 \\ 0 & 1 \end{bmatrix} * \mathbf{P}$$
(34)

2.11.8 Scaling + Rotation + Translation

$$\mathbf{P}' = (\mathbf{TRS})\mathbf{P} \tag{35}$$

$$= \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{S} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
(36)

$$= \begin{bmatrix} \mathbf{RS} & \mathbf{t} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \tag{37}$$

• Therefore, the general transformation matrix is $\begin{bmatrix} \mathbf{RS} & \mathbf{t} \\ 0 & 1 \end{bmatrix}$

2.12 Matrix Inverse

• Given an invertible matrix A, its inverse A^{-1} is a matrix such that $AA^{-1} = A^{-1}A = I$

• ex.
$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$

- The inverse A^{-1} doesn't always exist
- $\bullet\,$ If \mathbf{A}^{-1} exists, \mathbf{A} is invertible (aka nonsingular)
- $\bullet\,$ Otherwise, it is non-invertible/singular

2.12.1 Properties of the Matrix Inverse

1.
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

2.
$$(AB)^{-1} = B^{-1}A^{-1}$$

3.
$$\mathbf{A}^{-T} \triangleq (\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$$

2.12.2 Pseudo Inverse

• if inverse A^{-1} exists, we can solve Ax = b with $x = A^{-1}b$

$$np.linalg.inv(A) * b$$

• If inverse A^{-1} doesn't exist or the matrix is too large (too expensive to compute), we can use the pseudo-inverse to find x

- ullet Python will try several numerical methods (including pseudoinverse) and return solution for ullet
- if no exact solution \longrightarrow Python returns the closest value
- if many solutions \longrightarrow Python returns the smallest one

2.13 Linear Independence

- For a set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$, if we can express \mathbf{v}_1 as a **linear combination** of other vectors $\mathbf{v}_2, \dots, \mathbf{v}_n$, then \mathbf{v}_1 is **linearly dependent** on the other vectors
- ex. $\mathbf{v}_1 = 0.7\mathbf{v}_2 0.7\mathbf{v}_n$

Linearly independent set: no vector in a set is linearly dependent on the rest of the vectors

• ex. a set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ is always linearly independent if each vector is perpendicular to every other vector (and nonzero)

2.14 Matrix Rank

Rank: the rank of a transformation matrix tells you how many dimensions it transforms a vector to; i.e. the dimensions of the output vecor

col-rank: number of linearly independent column vectors of A

row-rank: number of linearly independent row vectors of A

• Note: column rank always equals row rank

$$rank(\mathbf{A}) \triangleq col-rank(\mathbf{A}) = row-rank(\mathbf{A})$$
(38)

• ex. if $rank(\mathbf{A}) = 1$, then the transformation $\mathbf{P}' = \mathbf{AP}$ maps points onto a line

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ 2x+2y \end{bmatrix}$$
 (39)

• Here all the points are mapped to the line y = 2x

full rank: if an $m \times m$ matrix has rank m, we say it is full rank. It maps an $m \times 1$ vector uniquely to another $m \times 1$ vector. Also has an inverse matrix

singular: if an $m \times m$ matrix has rank < m, then at least one dimension is getting collapsed to zero. Thus there is no way to look at the output and find the input (not invertible)

• If an $m \times m$ matrix has full rank \iff it is invertible

2.15 Eigenvector & Eigenvalues

Eigenvector: an eigenvector \mathbf{x} of a linear transformation \mathbf{A} is a nonzero vector that when \mathbf{A} is applied to it, does not change direction

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}, \qquad \mathbf{x} \neq 0 \tag{40}$$

- Applying A to an eigenvector only scales the eigenvector by the scalar value λ , called an eigenvalue
- An $m \times m$ matrix will have $\leq m$ eigenvectors where the eigenvalue λ is nonzero
- To find all eigenvalues of A solve this eqn for $\mathbf{x} \neq 0$

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{41}$$

$$\mathbf{A}\mathbf{x} = (\lambda \mathbf{I})\mathbf{x} \tag{42}$$

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0 \tag{43}$$

• Since $\mathbf{x} \neq 0$, $(\mathbf{A} - \lambda \mathbf{I})$ cannot be invertible/nonsingular and its determinant is zero (i.e. nonzero nullspace)

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0 \tag{44}$$

2.15.1 Properties of Eigenvectors and Eigenvalues

1. The trace of **A** is the sum of its eigenvalues

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i \tag{45}$$

2. The determinant of **A** equal to product of its eigenvalues

$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i \tag{46}$$

- 3. The rank of A is equal to the number of non-zero eigenvalues
- 4. Eigenvalues of a diagonal matrix $\mathbf{D} = \operatorname{diag}(d_1, \dots, d_n)$ are just the diagonal entries d_1, \dots, d_n

2.15.2 Spectral Theory

eigenpair : an eigenvalue λ and its associated eigenvector \mathbf{x}

eigenspace : the eigenspace associated with eigenvalue λ is the space of vectors where $\mathbf{A} - \lambda \mathbf{I} = 0$

spectrum of A: the set of all eigenvalues of a matrix A

$$\sigma(\mathbf{A}) = \{ \lambda \in \mathbb{C} \mid \det(\mathbf{A} - \lambda \mathbf{I}) = 0 \}$$
(47)

spectral radius: magnitude of the largest eigenvalue

$$\rho(\mathbf{A}) = \max\{|\lambda_1|, \dots, |\lambda_n|\}$$
(48)

Theorem 1 (Spectral radius bound). Spectral radius is bounded by the infinity norm of a matrix

$$\rho(\mathbf{A}) = \lim_{k \to \infty} \left\| \mathbf{A}^k \right\|^{\frac{1}{k}} \tag{49}$$

Proof. let $|\lambda|^k ||\mathbf{v}|| = ||\lambda|^k \mathbf{v}|| = ||\mathbf{A}^k \mathbf{v}||$

By the triangle rule,

$$|\lambda|^k \|\mathbf{v}\| \le \|\mathbf{A}^k\| \cdot \|\mathbf{v}\| \tag{50}$$

and since $\mathbf{v} \neq 0$

$$|\lambda|^k \le \|\mathbf{A}^k\| \tag{51}$$

which gives us

$$\rho(\mathbf{A}) = \lim_{k \to \infty} \left\| \mathbf{A}^k \right\|^{\frac{1}{k}} \tag{52}$$

2.16 Diagonalization

- A $n \times n$ matrix **A** is diagonalizable if it has n linearly independent eigenvectors
- Most square matrices are diagonalizable
- Normal matrices are diagonalizable
- Matrices w/ n distinct eigenvectors are diagonalizable

Lemma 1. Eigenvectors associated with distinct eigenvalues are linearly independent

• Eigenvalue equation can be written as AV = VD

• D is the matrix of eigenvalues and V is the matrix of corresponding eigenvectors

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \dots \mathbf{v}_n \end{bmatrix}$$
(53)

- Assuming all λ_i 's are unique, can diagonalize **A** by $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$
- ullet Recall: eigenvectors are independent so ${f V}$ is invertible
- if the eigenvectors are also all mutually orthogonal, then V is an orthogonal matrix and its inverse is its transpose so $A = VDV^T$

2.16.1 Symmetric Matrices

- if A is symmetric, then all of its eigenvalues are real and its eigenvectors are orthonormal
- So we can diagonalize **A** by $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^T$
- Given $y = \mathbf{V}^T x$

$$x^{T}\mathbf{A}x = x^{T}\mathbf{V}\mathbf{D}\mathbf{V}^{T}x = y^{T}\mathbf{D}y = \sum_{i=1}^{n} \lambda_{i}y_{i}^{2}$$
(55)

• Thus, for the following maximization

$$\max_{x \in \mathbb{R}^n} x^T \mathbf{A} x \text{ subject to } \|x\|_2^2 = 1$$
 (56)

ullet Then the maximizing x can be found by finding the eigenvector that corresponds to the largest eigenvalue of ${f A}$

2.16.2 Applications of Eigenvalues and Eigenvectors

- 1. PageRank
- 2. Schrodinger equation
- 3. Principle Component Analysis (PCA)
- 4. Image compression

2.17 Matrix Calculus

2.17.1 Gradient

• Let a function $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ take as input a matrix $A \in \mathbb{R}^{m \times n}$ and returns a real value

• Then the **gradient of f** is

$$\nabla_{\mathbf{A}} f(\mathbf{A}) = \begin{bmatrix} \frac{\partial f(\mathbf{A})}{\partial A_{11}} & \frac{\partial f(\mathbf{A})}{\partial A_{12}} & \dots & \frac{\partial f(\mathbf{A})}{\partial A_{1n}} \\ \frac{\partial f(\mathbf{A})}{\partial A_{21}} & \frac{\partial f(\mathbf{A})}{\partial A_{22}} & \dots & \frac{\partial f(\mathbf{A})}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{A})}{\partial A_{m1}} & \frac{\partial f(\mathbf{A})}{\partial A_{m2}} & \dots & \frac{\partial f(\mathbf{A})}{\partial A_{mn}} \end{bmatrix}$$

$$(57)$$

• Every entry in the matrix is

$$\nabla_{\mathbf{A}} f(\mathbf{A})_{ij} = \frac{\partial f(\mathbf{A})}{\partial A_{ij}} \tag{58}$$

- The size of $\nabla_{\mathbf{A}} f(\mathbf{A})$ is always the same size as \mathbf{A}
- So if A is just a vector x, then

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}$$
(59)

• ex. for $\mathbf{x} \in \mathbb{R}^n$, let $f(\mathbf{x}) = \mathbf{b}^T \mathbf{x}$ for some known vector $\mathbf{b} \in \mathbb{R}^n$

$$f(\mathbf{x}) = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n b_i x_i$$
 (60)

$$\frac{\partial f(\mathbf{x})}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k \tag{61}$$

2.17.2 Properties of the Gradient

1.
$$\nabla_{\mathbf{x}}(f(\mathbf{x}) + g(\mathbf{x})) = \nabla_{\mathbf{x}}f(\mathbf{x}) + \nabla_{\mathbf{x}}g(\mathbf{x})$$

2. For
$$t \in \mathbb{R}$$
, $\nabla_{\mathbf{x}}(tf(\mathbf{x})) = t\nabla_{\mathbf{x}}f(\mathbf{x})$

2.18 Hessian Matrix

• The **Hessian matrix** with respect to the vector $\mathbf{x} \in \mathbb{R}^n$ can be written as $\nabla_{\mathbf{x}}^2 f(\mathbf{x})$ or as **H** and is an $n \times n$ matrix of partial derivatives

$$\nabla_{\mathbf{x}}^{2} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} \end{bmatrix}$$

$$(63)$$

• Each entry is

$$\nabla_{\mathbf{x}}^2 f(\mathbf{x})_{ij} = \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} \tag{64}$$

- Note: Hessian is the gradient of every entry of the gradient of the vector
- ex. 1st column of the Hessian is the gradient of $\frac{\partial f(\mathbf{x})}{\partial x_1}$
- Note: Hessian is always symmetric because of Schwarz's Theorem

Theorem 2 (Schwarz's Theorem).

$$\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} = \frac{\partial^2 f(\mathbf{x})}{\partial x_j \partial x_i} \tag{65}$$

Order of partial derivatives doesn't matter as long as the 2^{nd} derivative exists and is continuous

• ex. Consider quadratic function $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$

$$f(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j$$
 (66)

$$\frac{\partial f(\mathbf{x})}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j \tag{67}$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$
 (68)

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$
 (69)

$$= \sum_{i=1}^{n} A_{ik} x_i + \sum_{j=1}^{n} A_{kj} x_j = 2 \sum_{i=1}^{n} A_{ki} x_i$$
 (70)

$$\frac{\partial^2 f(\mathbf{x})}{\partial x_k \partial x_l} = \frac{\partial}{\partial x_k} \left[\frac{\partial f(\mathbf{x})}{\partial x_l} \right] = \frac{\partial}{\partial x_k} \left[\sum_{i=1}^n 2A_{li} x_i \right]$$
(71)

$$=2A_{lk}=2A_{kl}\tag{72}$$

• Thus $\nabla_{\mathbf{x}}^2 f(\mathbf{x}) = 2\mathbf{A}$

2.19 Singular Value Decomposition

- Several computer algorithms can "factorize" a matrix into the product of other matrices
- Singular Value Decomposition is the most useful

Singular Value Decomposition (SVD): represent a matrix A as a product of 3 matrices U, S, V^T, where U and V^T are rotation matrices and S is a scaling matrix

- MATLAB: $[U,S,V] = \mathbf{svd}(A)$
- ex.

$$\underbrace{\begin{bmatrix} -0.40 & 0.916 \\ -0.916 & 0.40 \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} 5.39 & 0 \\ 0 & 3.154 \end{bmatrix}}_{\mathbf{S}} \underbrace{\begin{bmatrix} -0.05 & 0.999 \\ 0.999 & 0.05 \end{bmatrix}}_{\mathbf{V}^T} = \underbrace{\begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}}_{\mathbf{A}} \tag{73}$$

- In general, if **A** is $m \times n$, then **U** will be $m \times m$, **S** will be $m \times n$ and **V**^T will be $n \times n$
- ex.

$$\underbrace{\begin{bmatrix} -0.39 & -0.92 \\ -0.92 & 0.39 \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} 9.51 & 0 & 0 \\ 0 & 0.77 & 0 \end{bmatrix}}_{\mathbf{S}} \underbrace{\begin{bmatrix} -0.42 & -0.57 & -0.70 \\ 0.81 & 0.11 & -0.58 \\ 0.41 & -0.82 & 0.41 \end{bmatrix}}_{\mathbf{V}^T} = \underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}}_{\mathbf{A}} \tag{74}$$

- Note: U and V are always rotation matrices
- also called "unitary" matrices because each column is a unit vector
- S is a diagonal matrix whose number of nonzero entries is the rank A

2.19.1 SVD Applications

- Each product of (column i of \mathbf{U}) · (value i from \mathbf{S}) · (row i of \mathbf{V}^T) produces a component of the final \mathbf{A}
- We are building A as a linear combination of the columns of U
- If we use all columns of U, we can rebuild the original A perfectly
- ullet But with real-world data, we can often just use the first few columns of ${\bf U}$ and get something close to ${\bf A}$
- Thus we call the first few columns of U the **Principal Components** of the data
- Principal components show the major patterns that can be added together to produce the columns of the original matrix
- ullet Rows of ${f V}^T$ show how the principal components are mixed to produce the columns of ${f A}$
- For SVD with images, can use first few principal components to reproduce a recognizable picture

2.19.2 Principal Component Analysis

• Recall: columns of U are the Principal Components of the data

Principal Component Analysis (PCA): construct a matrix A where each column is a separate data sample. Run SVD on A and look at the first few columns of U to see the common patterns

- Often raw data can have a lot of redundancy and patterns
- PCA allows you to represent data samples as weights on the principal components, rather than using the original raw form of the data
- This minimal PCA representation makes machine learning and other algorithms much more efficient

2.19.3 SVD Algorithm

• Computers can find eigenvectors \mathbf{x} such that $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ using this iterative algorithm

```
x = random unit vector
while (x not converged)
x = Ax
normalize x
```

- \bullet **x** will quickly converge to an eigenvector
- Some adjustments let this algorithm find all eigenvectors
- Note: eigenvectors are for square matrices, but SVD is for all matrices
- To do svd(A), computers do this
- 1. Take eigenvectors of $\mathbf{A}\mathbf{A}^T$
- These eigenvectors are the columns of U
- Square root of eigenvalues are the singular values (the entries of S)
- 2. Take eigenvectors of $\mathbf{A}^T \mathbf{A}$
- These eigenvectors are columns of V (or rows of V^T)
- SVD is fast (even for large matrices)