MathLinks EveryOne

IMO Shortlist 2002

Algebra

 $\boxed{1}$ Find all functions f from the reals to the reals such that

$$f(f(x) + y) = 2x + f(f(y) - x)$$

for all real x, y.

Let a_1, a_2, \ldots be an infinite sequence of real numbers, for which there exists a real number c with $0 \le a_i \le c$ for all i, such that

$$|a_i - a_j| \ge \frac{1}{i+j} \forall i, j \text{ with } i \ne j.$$

Prove that $c \geq 1$.

3 Let P be a cubic polynomial given by $P(x) = ax^3 + bx^2 + cx + d$, where a, b, c, d are integers and $a \neq 0$. Suppose that xP(x) = yP(y) for infinitely many pairs x, y of integers with $x \neq y$. Prove that the equation P(x) = 0 has an integer root.

 $\boxed{4}$ Find all functions f from the reals to the reals such that

$$(f(x) + f(z)) (f(y) + f(t)) = f(xy - zt) + f(xt + yz)$$

for all real x, y, z, t.

5 Let n be a positive integer that is not a perfect cube. Define real numbers a, b, c by

$$a = \sqrt[3]{n}, \qquad b = \frac{1}{a - [a]}, \qquad c = \frac{1}{b - [b]},$$

where [x] denotes the integer part of x. Prove that there are infinitely many such integers n with the property that there exist integers r, s, t, not all zero, such that ra + sb + tc = 0.

6 Let A be a non-empty set of positive integers. Suppose that there are positive integers $b_1, \ldots b_n$ and c_1, \ldots, c_n such that

- for each i the set $b_iA + c_i = \{b_ia + c_i : a \in A\}$ is a subset of A, and

- the sets $b_i A + c_i$ and $b_j A + c_j$ are disjoint whenever $i \neq j$

Prove that

$$\frac{1}{h_1} + \ldots + \frac{1}{h_n} \le 1.$$

Combinatorics

- Let n be a positive integer. Each point (x, y) in the plane, where x and y are non-negative integers with x + y < n, is coloured red or blue, subject to the following condition: if a point (x, y) is red, then so are all points (x', y') with $x' \le x$ and $y' \le y$. Let A be the number of ways to choose n blue points with distinct x-coordinates, and let B be the number of ways to choose n blue points with distinct y-coordinates. Prove that A = B.
- For n an odd positive integer, the unit squares of an $n \times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A it tromino is an L-shape formed by three connected unit squares. For which values of n is it possible to cover all the black squares with non-overlapping trominos? When it is possible, what is the minimum number of trominos needed?
- 1 Let n be a positive integer. A sequence of n positive integers (not necessarily distinct) is called **full** if it satisfies the following condition: for each positive integer $k \geq 2$, if the number k appears in the sequence then so does the number k-1, and moreover the first occurrence of k-1 comes before the last occurrence of k. For each n, how many full sequences are there
- 4 Let T be the set of ordered triples (x, y, z), where x, y, z are integers with $0 \le x, y, z \le 9$. Players A and B play the following guessing game. Player A chooses a triple (x, y, z) in T, and Player B has to discover A's triple in as few moves as possible. A move consists of the following: B gives A a triple (a, b, c) in T, and A replies by giving B the number |x + y a b| + |y + z b c| + |z + x c a|. Find the minimum number of moves that B needs to be sure of determining A's triple.
- Let $r \geq 2$ be a fixed positive integer, and let F be an infinite family of sets, each of size r, no two of which are disjoint. Prove that there exists a set of size r-1 that meets each set in F.
- 6 Let n be an even positive integer. Show that there is a permutation x_1, x_2, \ldots, x_n of $1, 2, \ldots, n$ such that for every $1 \le i \le n$ the number x_{i+1} is one of $2x_i, 2x_i 1, 2x_i n, 2x_i n 1$ (where we take $x_{n+1} = x_1$).
- [7] Among a group of 120 people, some pairs are friends. A weak quartet is a set of four people containing exactly one pair of friends. What is the maximum possible number of weak quartets?

Geometry

- Let B be a point on a circle S_1 , and let A be a point distinct from B on the tangent at B to S_1 . Let C be a point not on S_1 such that the line segment AC meets S_1 at two distinct points. Let S_2 be the circle touching AC at C and touching S_1 at a point D on the opposite side of AC from B. Prove that the circumcentre of triangle BCD lies on the circumcircle of triangle ABC.
- 2 Let ABC be a triangle for which there exists an interior point F such that $\angle AFB = \angle BFC = \angle CFA$. Let the lines BF and CF meet the sides AC and AB at D and E respectively. Prove that

$$AB + AC > 4DE$$
.

- [3] The circle S has centre O, and BC is a diameter of S. Let A be a point of S such that $\angle AOB < 120^{\circ}$. Let D be the midpoint of the arc AB which does not contain C. The line through O parallel to DA meets the line AC at I. The perpendicular bisector of OA meets S at E and at F. Prove that I is the incentre of the triangle CEF.
- [4] Circles S_1 and S_2 intersect at points P and Q. Distinct points A_1 and B_1 (not at P or Q) are selected on S_1 . The lines A_1P and B_1P meet S_2 again at A_2 and B_2 respectively, and the lines A_1B_1 and A_2B_2 meet at C. Prove that, as A_1 and B_1 vary, the circumcentres of triangles A_1A_2C all lie on one fixed circle.
- [5] For any set S of five points in the plane, no three of which are collinear, let M(S) and m(S) denote the greatest and smallest areas, respectively, of triangles determined by three points from S. What is the minimum possible value of M(S)/m(S)?
- 6 Let $n \geq 3$ be a positive integer. Let $C_1, C_2, C_3, \ldots, C_n$ be unit circles in the plane, with centres $O_1, O_2, O_3, \ldots, O_n$ respectively. If no line meets more than two of the circles, prove that

$$\sum_{1 \le i < j \le n} \frac{1}{O_i O_j} \le \frac{(n-1)\pi}{4}.$$

- The incircle Ω of the acute-angled triangle ABC is tangent to BC at K. Let AD be an altitude of triangle ABC and let M be the midpoint of AD. If N is the other common point of Ω and KM, prove that Ω and the circumcircle of triangle BCN are tangent at N.
- Let S_1 and S_2 be circles meeting at the points A and B. A line through A meets S_1 at C and S_2 at D. Points M, N, K lie on the line segments CD, BC, BD respectively, with MN

parallel to BD and MK parallel to BC. Let E and F be points on those arcs BC of S_1 and BD of S_2 respectively that do not contain A. Given that EN is perpendicular to BC and FK is perpendicular to BD prove that $\angle EMF = 90^{\circ}$.

Number Theory

1 What is the smallest positive integer t such that there exist integers x_1, x_2, \ldots, x_t with

$$x_1^3 + x_2^3 + \ldots + x_t^3 = 2002^{2002}$$
?

- 2 Let $n \ge 2$ be a positive integer, with divisors $1 = d_1 < d_2 < \ldots < d_k = n$. Prove that $d_1d_2 + d_2d_3 + \ldots + d_{k-1}d_k$ is always less than n^2 , and determine when it is a divisor of n^2 .
- 3 Let p_1, p_2, \ldots, p_n be distinct primes greater than 3. Show that $2^{p_1p_2...p_n} + 1$ has at least 4^n divisors.
- $\boxed{4}$ Is there a positive integer m such that the equation

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{abc} = \frac{m}{a+b+c}$$

has infinitely many solutions in positive integers a, b, c?

- 5 Let $m, n \ge 2$ be positive integers, and let a_1, a_2, \ldots, a_n be integers, none of which is a multiple of m^{n-1} . Show that there exist integers e_1, e_2, \ldots, e_n , not all zero, with $|e_i| < m$ for all i, such that $e_1a_1 + e_2a_2 + \ldots + e_na_n$ is a multiple of m^n .
- 6 Find all pairs of positive integers $m, n \geq 3$ for which there exist infinitely many positive integers a such that

$$\frac{a^m + a - 1}{a^n + a^2 - 1}$$

is itself an integer.

Laurentiu Panaitopol, Romania