University of Waterloo CS240 Winter 2018 Sample Solutions Assignment 5

Note: you may assume all logarithms are base 2 logarithms: $\log = \log_2$.

Problem 1 [8+8+9 = 25 marks]

c) Idea: We obtain $\delta(q,c)$ by simulating the KMP-automaton for the next symbol c: Follow a (potentially empty) chain of failure links starting at q until we can traverse an arc with label c (using a $\sqrt{-\text{link}}$). The state we reach that way is $\delta(q,c)$.

Code:

```
computeDelta():
    F = failureArray(P)
    delta[:] = 0 // initalize all to 0
    delta[0,P[0]] = 1;
    for q = 1,...,m-1
        for c in \( \Sigma \)
    if c == P[q]
        delta[q,c] = q+1
    else
        delta[q,c] = delta[F[q-1],c]
    for c in \( \Sigma \)
    delta[m,c] = m
```

Correctness: We use the following observation on the transition function:

$$q \notin \{0, m\} \land P[q] \neq c \implies \delta(q, c) = \delta(F[q - 1], c)$$

Proof: by induction on q.

For q = 1, we could only match the first character of P with the text. As the next

character does not extend this match by assumption $(P[q] = P[1] \neq c)$, we can only end in states 0 or 1. Indeed, we end in state 1 iff P[0] = c. For q = 1, we always have F[q-1] = F[0] = 0, and $\delta(0,c) = 1$ if P[0] = c and 0 otherwise. Hence the claim is true for q = 1.

Now assume the claim holds for all values < q. If in state q the next character c does not extend the current best match $(c \neq P[q])$, we have to find the (length q' of the) longest prefix P[0..q'-1] that is strict suffix of $P[0..q-1] \cdot c$. By the definition of the failure array, F[q-1] is the longest prefix of P[0..q-1] that is a strict suffix of P[0..q-1]. This is the first candidate for our prefix of P[0..q-1]c since any longer prefix for P[0..q-1]c would imply a longer prefix for P[0..q-1] in contradiction to the definition of F[q-1]. However, F does not guarantee us that we can extend that match to the next text character c. The situation is illustrated below:

Now there are two cases. If we can extend the match, i. e., P[F[q-1]] = c, the resulting state is $\delta(q,c) = F[q-1] + 1 = \delta(F[q-1],c)$ as claimed. The second equality holds because c is a match transition from there. If $P[F[q-1]] \neq c$, we have to consider the next shorter prefix. This situation is the same as our initial situation, but with q replaced by F[q-1], so our best the next guess is F[F[q-1]-1]. By the inductive hypothesis we know that in this case $\delta(F[q-1],c) = \delta(F[F[q-1]-1],c)$ holds, so we again find $\delta(q,c) = \delta(F[q-1],c)$ as claimed.

Since we compute δ for increasing values of q and F[q-1] < q, delta[F[q-1],c] has already been computed when we use it in line 10.

Runtime: The nested loops take $O(m \cdot |\Sigma|)$ time, since each computation runs in constant time.

Problem 2 [20 marks]

The idea is that we can reduce this problem to pattern matching, by searching for pattern P = w in string T = xx.

```
isCyclicShift(x,w)
if (|x| != |w|) return false

P = w

T = x + x // + is string concatenation
return KMP(T,P) != FAIL
```

To see the correctness, we prove both implications of

w is cyclic shift of $x \iff w$ occurs in xx

- \Rightarrow If w is a cyclic shift of x, then it must be contained in xx, because the beginning of w matches the end of x, and the rest of w matches the beginning of x.
- \Leftarrow If xx contains w, then some suffix of x plus some prefix of x equals w. Since w and x have the same length, this implies that w is in fact a cyclic shift of x.

Hence any string matching algorithm would work correctly, but to be efficient, we use the Knuth-Morris-Pratt algorithm. Then the run time of this algorithm is O(|T| + |P|), which is O(n).

Alternatives: Since here $|P| = \Theta(|T|)$, we can also use suffix trees to achieve the same running time. (They are more complicated to build, but it is possible in linear time.)

Problem 3 $[10+3+2+20 \neq 30 \text{ marks}]$

a) Human-readable version:

Compressed trie version:

Hint: A helpful intermediate step to build a suffix tree by hand is a *sorted list* of all suffixes. This allows to easily identify the edge labels without first building the trie of suffixes.

```
$ der$ der$ der$ ender$ ender$ ender$ ender$ ender$ ender$ ergender$ ergender$ ergender$ der$ nder$ nder$ nder$ rgender$ rs rgender$ rs rgender$ tendergender$
```

- c) The search stops at an internal node, namely the one shaded in the pictures above.
- d) Idea: If P occurs twice in T, then there are at least two suffixes of T that start with P. Hence there is an internal node, reached by traversing along this repeated pattern, at which these two suffixes first differ.

Code:

b) $R = \text{ender}, \ \ell = 5, \ (i, j) = (1, 7).$

```
computeLongestRepeatedPattern(T)

T = suffixTree(T)

maxDepth = 0

maxDepthNode = root of T

for each internal node v in T

// v.index is the index of the character compared at this node

if v.index > maxDepth

maxDepth = v.index

maxDepthNode = v

leaf = maxDepthNode.someLeafInSubtree() // as in slides

i = leaf.startIndex
```

13

Correctness: In compressed tries, internal nodes store in index their "string depth", i.e., the length of the string leading to this internal node in a traversal starting at the root. Let v be an internal node of maximal string depth in \mathcal{T} , the suffix tree for T, and let R be the string that leads to it starting at the root. (This is the concatenation of the edge labels in the human-readable version of the suffix tree.) Since it is a compressed trie, there are at least to leaves reachable from v, so there are two distinct suffixes of T starting with R, so R is indeed a repeat.

Let conversely R' be any locally maximal repeat in T, i.e., if R' occurs at positions $i \neq j$ and has length ℓ , then $T_{i+\ell} \neq T_{j+\ell}$. (In other words, R' cannot be extended to the right.) Then traversing \mathcal{T} with R' leads to an internal node, where the paths to leaves i and j fork. Any globally longest repeat must be locally maximal, as well, so any longest repeat corresponds to an internal node. But then our algorithm finds such a globally longest because it selects an internal node of maximal string depth.

Runtime: Constructing the suffix tree \mathcal{T} take $\mathcal{O}(n)$ time. For finding the deepest internal node, we traverse all internal nodes once. Since suffix trees are compressed tries, there are O(n) internal nodes, so this step is again linear in |T|.

[10+10=20] marks Problem 4

a) Let $\Sigma = \{0, 1\}$. Assume, A is a compression method that always reduces its input size. That means, $A(\Sigma^n) \subseteq \Sigma^{\leq n-1}$. But we have $|\Sigma^n| = 2^n$ whereas $|\Sigma^{\leq n-1}| = \sum_{i=0}^{n-1} 2^i = 2^n - 1$,

$$|\Sigma^{\leq n-1}| = \sum_{i=0}^{n-1} 2^i = 2^n - 1,$$

so A cannot be injective, a contradiction.

An alternative argument is by applying A iteratively. If A would always reduce the input size, after at most n steps, we have $A(A(\cdots(w))\cdots)=\Lambda$ the empty string, for any input $w \in \Sigma^n$. Since A has a unique inverse A^{-1} , its decoder, applying A^{-1} some $k \leq n$ times to Λ must reproduce every $w \in \Sigma^n$, but obviously $(A^{-1})^k(\Lambda)$ can produce at most n different preimages (for k = 1, ... n) in Σ^n , whereas $|\Sigma^n| = 2^n > n$ for $n \ge 2$.

b) We note that

$$\left| \Sigma^{\leq n} \right| = \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$
.

Consider $A(\Sigma^{\leq n})$, i. e., the set of codewords assigned to all strings up to length n. These are $2^{n+1}-1$ many strings, but there are only $|\Sigma^{\leq n-1}|=2^n-1$ bit strings that are strictly shorter than n. That means $A(\Sigma^{\leq n})$ has to contain $2^{n+1}-1-(2^n-1)=2^n$ strings w of length at least n; for any of these holds $A(w) \geq |w|$, and they comprise more than half of $\Sigma^{\leq n}$.

Problem 5 [7+2+7+4=20 marks]

	Symbol	Frequency	Codeword	Codeword Length
a)	a	3	10	2
	b	2	110	3
	е	1	1110	4
	1	1	1111	4
	n	2	00	\searrow^2
	S	1	010	3
	u	1	011	3

b) ananasbubbles

(I agree that "ananas bubbles" is not exactly a very meaningful phrase, but it compares reasonably favorably with "banana blues", doesn't it?)

	Symbol	codelen	Codeword			
	a	2	09>			`
	b	3	100	\mathcal{A}		_
	е	4	1110	0 1	0	1
$\mathbf{c})$	1	4	\1111	a n	Ø	Ö
	n	2	01		0 1	0 1
	s	3	101		bs	u >
	u	3	110			
						0 1
						e 1

d) It is not possible to obtain the above code tree using Huffman's algorithm, since there is no valid execution that would group b and s directly. Since we have four letters of minimal frequency - e, 1, s and u - any valid execution of Huffman's algorithm will start by grouping these four letters into two pairs. In the above tree, however, b and s instead form a pair, so it cannot be produced.