How long will I live? The statistics behind prognosis in cancer research

Emily C. Zabor New York R Conference, April 21, 2018

The most common questions in cancer research relate to disease survival

Survival time, and conversely time to death, is a time-to-event endpoint

Time-to-event endpoints are very common in many contexts, not just cancer

- Time from HIV infection to development of AIDS
- Time to heart attack
- Time to onset of substance abuse
- Time to initiation of sexual activity
- Time to machine malfunction

It is common for time-to-event endpoints to be analyzed incorrectly

You say tomayto, I say tomahto

What's called survival analysis in the healthcare field goes by many other names in other fields:

- ✓ Reliability analysis
- ✓ Duration analysis
- ✓ Event history analysis
- ✓ Time-to-event analysis

In cancer research we often want to know the probability of survival and survival time

- What is the probability of survival to a certain number of years?
- What is the average survival time?

If everyone is followed for a set amount of time, no problems

- All patients followed for 5 years
- 1 patient dead at 3 years
- 4 still alive
- 5-year probability of survival:

$$\left(1 - \frac{1}{5}\right) \times 100 = 80\%$$

If follow-up time is variable, problems

- 2 patients alive at 5 years
- 1 patient dead at 3 years
- 2 still alive, but censored
- 5-year probability of survival:

The Kaplan-Meier estimate of survival is appropriate for censored time-to-event data

5-year survival is the survival probability corresponding to 5 years

Ignoring censoring leads to an incorrect estimate of the probability of survival

• 2119 patients total

• 297 patients dead at 5 years

INCORRECT

5-year probability of survival:

$$\left(1 - \frac{297}{2119}\right) \times 100 = 86\%$$

Ignores the fact that 968 patients were censored before 5 years

Median survival is the time corresponding to a survival probability of 50%

Ignoring censoring leads to an incorrect estimate of median survival

• 476 patients died

INCORRECT

Median survival time among those who died: 3.5 years

*Ignores the fact that **censored** patients also contribute follow-up time*

There are also tests to compare survival between groups

```
1.00
# Add covariate to RHS to get curves by group
survfit(Surv(os_yrs, os) ~ bmi_cat, data = df) %>%
    ggsurvplot(palette = "Set2",
                                                             Survival probability
0.50
0.25
                risk.table = TRUE,
                xlab = "Years from surgery",
                legend.labs = c("Normal",
                                  "Overweight",
                                  "Obese").
                legend.title = ""
                pval = TRUE,
                                                               0.25
                                                                     p = 0.00066
                xlim = c(0, 16),
                risk.table.v.text = FALSE)
                                                               0.00
# Use survdiff for log-rank test
                                                                                                       15
survdiff(Surv(os_yrs, os) ~ bmi_cat, data = df)
                                                                                Years from surgery
                                                                   Number at risk
                                                                   420
                                                                                           57
                                                                                                       12
                                                                               166
     Log-rank test p-value: <.001
                                                                   806
                                                                               335
                                                                                           105
                                                                   893
                                                                               353
                                                                                           10
                                                                                                       15
                                                                                Years from surgery
```

Overweight — Obese

The Cox regression model can be used to fit a semi-parametric model

```
# coxph fits a Cox regression model
coxph(Surv(os_yrs, os) ~ factor(bmi_cat), data = df) %>%
    summary()
```

Factor	HR (95% CI)	p-value
ВМІ		<.001
Normal	1.00	
Overweight	0.75 (0.60 – 0.94)	
Obese	0.64 (0.51 – 0.81)	

A hazard ratio (HR) > 1 represents an increased hazard of death whereas a HR < 1 represents a reduced hazard of death

But hazard ratios are difficult to interpret and thus are commonly misunderstood

Commonly MISINTERPRETED as a 100x(1-HR)% reduction in the risk of death

Example:

HR = 0.64

There is a 36% reduced risk of death for obese vs normal weight patients.

Group	5-year OS	10-year OS
Normal	73%	54%
Obese	85%	65%

Patients commonly want updated estimates of survival after already living for some years

Does the 5-year probability of survival of 81% still apply to a patient who has already lived for 1 year? 2 years? 5 years?

Conditional survival provides an updated estimate of survival probability

Number of years already survived	Probability of surviving to 5 years
0	81%
1	84%
2	88%
3	92%
4	96%

https://github.com/zabore/condsurv

Code, data, and slides available on GitHub:

https://github.com/zabore/nyr2018

Contact me:

@zabormetrics

() @zabore

www.emilyzabor.com

Reference to original publication of the kidney and BMI data:

Hakimi, A. A., Furberg, H., Zabor, E. C., Jacobsen, A., Schultz, N., Ciriello, G., . . . Russo, P. (2013). An epidemiologic and genomic investigation into the obesity paradox in renal cell carcinoma. J Natl Cancer Inst, 105(24), 1862-1870.