矩阵的概念

由 $m \times n$ 个数 a_{ij} 排成的 m 行 n 列的数表

称为m行n列矩阵,简称 $m \times n$ 矩阵,为表示一个整体,总是加一个括弧,并用大写黑体字母表示它,记为

$$m{A} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

这 $m \times n$ 个数称为矩阵 \boldsymbol{A} 的元素, a_{ij} 称为矩阵 \boldsymbol{A} 的第 i 行第 j 列的元素,一个 $m \times n$ 矩阵 \boldsymbol{A} 也可简记为

$$\mathbf{A} = \mathbf{A}_{m \times n} = (a_{ij})_{m \times n} \text{ or } \mathbf{A} = (a_{ij})$$

如果矩阵 A = B 的行数及列数均相同,且对应元素相等,则称矩阵 A 与矩阵 B 相等,记为 A = B

几种特殊矩阵

• 实矩阵

元素均为实数的矩阵

• 复矩阵

元素为复数的矩阵

非负矩阵

元素均为非负数的矩阵

• n 阶方阵

若矩阵 A 的行数与列数都等于 n, 则称 A 为 n 阶方阵, 记为 A_n

• 同型矩阵

如果两个矩阵具有相同的行数与相同的列数,则称这两个矩阵为同型矩阵

零矩阵

所有元素均为零的矩阵,记为O

• n 阶单位矩阵

$$n$$
 阶方阵
$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
, 记为 $\boldsymbol{E} = \boldsymbol{E}_n$ or $\boldsymbol{I} = \boldsymbol{I}_n$

• 行矩阵 & 行向量

只有一行的矩阵 $\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$,为避免元素混淆,也记为 $\begin{bmatrix} a_1, & a_2, & \cdots, & a_n \end{bmatrix}$

列矩阵 & 列向量

只有一列的矩阵
$$\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

• n 阶对角矩阵

$$n$$
 阶方阵
$$\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$
, 也可记为 $\mathbf{A} = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$

• n 阶数量矩阵

当一个 n 阶对角矩阵 \mathbf{A} 的对角元素全部等于某一数 a 是,即 $\mathbf{A} = \operatorname{diag}(a, a, \dots, a) = a\mathbf{I}$

矩阵的运算

取负

设矩阵 $\mathbf{A} = (a_{ij})$,记 $-\mathbf{A} = (-a_{ij})$,称 $-\mathbf{A}$ 为矩阵 \mathbf{A} 的负矩阵

• 加法

设有两 $m \times n$ 的同型矩阵 $\mathbf{A} = (a_{ij})$ 和 $\mathbf{B} = (b_{ij})$,矩阵 $\mathbf{A} = \mathbf{B}$ 的和记作 $\mathbf{A} + \mathbf{B}$,规定为

$$\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij}) = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

• 减法

由于 A + (-A) = O, 则可定义减法 A - B = A + (-B)

• 数乘运算

数 $k 与 m \times n$ 矩阵 **A** 的乘积记作 k**A** 或 **A**k,定义为

$$k\mathbf{A} = \mathbf{A}k = (ka_{ij}) = \begin{bmatrix} ka_{11} & ka_{12} & \cdots & ka_{1n} \\ ka_{21} & ka_{22} & \cdots & ka_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ka_{m1} & ka_{m2} & \cdots & ka_{mn} \end{bmatrix}$$

• 线性运算

矩阵的加法与数乘两种运算统称为矩阵的线性运算,它们满足规律

$$> A + B = B + A$$

$$> (A + B) + C = A + (B + C)$$

 $> A + O = A$
 $> A + (-A) = O$
 $> 1A = A$
 $> k(lA) = (kl)A$
 $> (k + l)A = kA + lA$
 $> k(A + B) = kA + kB$

• 乘法

设

$$\mathbf{A} = (a_{ij})_{m \times s} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1s} \\ a_{21} & a_{22} & \cdots & a_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{ms} \end{bmatrix} \quad \mathbf{B} = (b_{ij})_{s \times n} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{s1} & b_{s2} & \cdots & b_{sn} \end{bmatrix}$$

矩阵 A 与矩阵 B 的乘积记作 AB, 定义为

$$\mathbf{AB} = (c_{ij})_{m \times n} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix} \quad \left(c_{ij} = \sum_{k=1}^{s} a_{ik} b_{kj} \right)$$

若 $m{C} = m{A}m{B}$,则矩阵 $m{C}$ 的元素 c_{ij} 即为矩阵 $m{A}$ 第 i 行元素与矩阵 $m{B}$ 第 j 行元素对应元素乘积之和,即

$$c_{ij} = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{is} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{sj} \end{bmatrix} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{is}b_{sj} = \sum_{k=1}^{s} a_{ik}b_{kj}$$

显然 $AB \neq BA$ (有时两者中只有一个有定义)

两非零矩阵的乘积可能为零矩阵,故不能从 AB = O 得出 A or B = O 矩阵乘法一般也不满足消去律,即不能从 AC = BC 得出 A = B

矩阵乘法满足运算规则(若有定义)

$$> (AB)C = A(BC)$$

 $> (A+B)C = AC + BC$
 $> C(A+B) = CA + CB$
 $> k(AB) = (kA)B = A(kB)$

可交换

如果两矩阵相乘,有 AB = BA,则称矩阵 A 与矩阵 B 可交换,简称 A 与 B 可换 (对于单位矩阵有 $I_mA_{m\times n} = A_{m\times n}I_n = A_{m\times n}$)

• 转置

把矩阵 \boldsymbol{A} 的行换成同序数的列所得到的新矩阵称为 \boldsymbol{A} 的转置矩阵,记作 \boldsymbol{A}^T or \boldsymbol{A}'

即若
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
, 则 $\mathbf{A}^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$

矩阵的转置满足运算规则(若有定义)

$$> (\mathbf{A}^T)^T = \mathbf{A}$$
 $> (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
 $> (k\mathbf{A})^T = k\mathbf{A}^t$
 $> (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$

• 方阵的幂

设方阵 $\mathbf{A} = (a_{ij})_{n \times n}$, 规定

$$oldsymbol{A}^0 = oldsymbol{I}, \, oldsymbol{A}^k = \overbrace{oldsymbol{A} \cdot oldsymbol{A} \cdot oldsymbol{A}}^{k \, ext{of} \, oldsymbol{A}}$$

矩阵的幂满足运算规则

$$> A^m A^n = A^{m+n}$$

 $> (A^m)^n = A^{mn}$

• 方阵的行列式

由 n 阶方阵 A 的元素所构成的行列式 (各元素的位置不变), 称为方阵 A 的行列式, 记作

$$|A|$$
 or $\det A$

矩阵 A 的行列式 $\det A$ 满足运算规则 (其中 A 与 B 同为 n 阶方阵)

$$> \det \mathbf{A}^T = \det \mathbf{A}$$

 $> \det(k\mathbf{A}) = k^n \det \mathbf{A}$
 $> \det(\mathbf{A}\mathbf{B}) = \det \mathbf{A} \det \mathbf{B}$
 $> \det(\mathbf{A}\mathbf{B}) = \det(\mathbf{B}\mathbf{A})$

• 对称矩阵

设 \mathbf{A} 为 n 阶方阵,如果 $\mathbf{A}^T = \mathbf{A}$,即 $a_{ij} = a_{ji}$,则称 \mathbf{A} 为对称矩阵

• 反对称矩阵

设 \boldsymbol{A} 为 n 阶方阵,如果 $\boldsymbol{A}^T = -\boldsymbol{A}$,即 $a_{ij} = -a_{ji}$,则称 \boldsymbol{A} 为反对称矩阵

• 共轭矩阵

设 $\mathbf{A} = (a_{ij})$ 为复矩阵,记 $\overline{\mathbf{A}} = (\overline{a_{ij}})$,其中 $\overline{a_{ij}}$ 为 a_{ij} 的共轭复数,称 $\overline{\mathbf{A}}$ 为 \mathbf{A} 的共轭矩阵

$$> \overline{A+B} = \overline{A} + \overline{B}$$
 $> \overline{\lambda A} = \overline{\lambda A}$

$$> \overline{AB} = \overline{AB}$$

$$> \overline{(\boldsymbol{A}^T)} = (\overline{\boldsymbol{A}})^T$$

逆矩阵

对于一个 n 阶方阵 \boldsymbol{A} ,如果存在一个 n 阶方阵 \boldsymbol{B} ,使得 $\boldsymbol{A}\boldsymbol{B}=\boldsymbol{B}\boldsymbol{A}=\boldsymbol{I}$,则称方阵 \boldsymbol{A} 为可逆矩阵,而方阵 \boldsymbol{B} 称为 \boldsymbol{A} 的逆矩阵

若矩阵 A 是可逆的,则 A 的逆矩阵是唯一的,记为 A^{-1}

如果 n 阶方阵 A 的行列式 $\det A \neq 0$,则称 A 为非奇异的,否则称 A 为奇异的

伴随矩阵与逆矩阵

行列式 $\det A$ 的各个元素的代数余子式 A_{ij} 所构成的矩阵

$$\mathbf{A}^* = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}$$

称为矩阵 A 的伴随矩阵

n 阶矩阵 A 可逆的充分必要条件是其行列式 $\det A \neq 0$,且当 A 可逆时,有

$$\boldsymbol{A}^{-1} = \frac{1}{\det \boldsymbol{A}} \boldsymbol{A}^*$$

其中 A^* 为 A 的伴随矩阵

伴随矩阵的一个基本性质

$$AA^* = A^*A = (\det A)I$$

逆矩阵的运算性质

- 若矩阵 A 可逆,则 A^{-1} 也可逆,且 $(A^{-1})^{-1} = A$
- 若矩阵 **A** 可逆,数 $k \neq 0$,则 $(kA)^{-1} = \frac{1}{k}A^{-1}$
- 两个同阶可逆矩阵 A,B 的乘积也是可逆矩阵,且 $(AB)^{-1}=B^{-1}A^{-1}$ $((A_1A_2\cdots A_n)^{-1}=A_n^{-1}\cdots A_2^{-1}A_1^{-1})$
- 若矩阵 A 可逆,则 A^T 也可逆,且有 $(A^T)^{-1} = (A^{-1})^T$
- 若矩阵 A 可逆,则 $det(A^{-1}) = (det A)^{-1}$

线性方程组的矩阵表示

对于线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

若记
$$m{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
, $m{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, $m{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$, 则利用矩阵的乘法,线性方程组可表示为

$$Ax = b$$

其中 A 称为方程组的系数矩阵,方程 Ax = b 称为矩阵方程

如果
$$x_j=c_j$$
 是方程组的解,记列矩阵 $\pmb{\eta}=\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\end{bmatrix}$,则 $\pmb{A}\pmb{\eta}=\pmb{b}$ 这是也称 $\pmb{\eta}$ 是矩阵方程的解;反之如果 $\pmb{\eta}$ 是矩阵方程

的解, 既有矩阵等式 $A\eta = b$ 成立, 则 $x = \eta$, 即 $x_j = c_j$ 也是线性方程组的解

线性变换

变量 x_1, x_2, \dots, x_n 与变量 y_1, y_2, \dots, y_m 之间的关系式

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \dots \\ y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{cases}$$

称为从变量 x_1, x_2, \cdots, x_n 到变量 y_1, y_2, \cdots, y_m 的线性变换,其中 a_{ij} 为常数; 线性变换的系数 a_{ij} 构成的矩阵 $\mathbf{A} = (a_{ij})_{m \times n}$ 称为线性变换的系数矩阵

若记
$$m{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
, $m{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, $m{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$,则线性变换关系是可表示为矩阵形式 $m{y} = m{A} m{x}$

当一线性变换的系数矩阵为单位矩阵 I 式,线性变换 y = Ix 称为恒等变换,因为 x = Ix 线性变换实际上构建了一种从矩阵 x 到矩阵 Ax 的矩阵变换关系 $x \to Ax$

矩阵方程

对标准矩阵方程

$$AX = B$$
, $XA = B$, $AXB = C$

利用矩阵乘法的运算规律和逆矩阵的运算性质,可解出

$$X = A^{-1}B$$
, $X = BA^{-1}$, $X = A^{-1}CB^{-1}$

而其它形式的矩阵方程, 可以转化标准矩阵方程

矩阵多项式及其运算

设 $\varphi(x) = a_0 + a_1 x + \cdots + a_m x^m$ 为 x 的 m 次多项式, \mathbf{A} 为 n 阶矩阵,记

$$\varphi(\mathbf{A}) = a_0 \mathbf{I} + a_1 \mathbf{A} + \dots + a_m \mathbf{A}^m$$

 $\varphi(\mathbf{A})$ 称为矩阵 \mathbf{A} 的 m 次多项式

f(A)g(A) = g(A)f(A) 总是成立,从而 A 的多项式可以像数 x 的多项式一样相乘或分解因式

如果
$$A = P\Lambda P^{-1}$$
. 则 $A^k = P\Lambda^k P^{-1}$,从而

$$\varphi(\mathbf{A}) = a_0 \mathbf{I} + a_1 \mathbf{A} + \dots + a_m \mathbf{A}^m = \mathbf{P} \varphi(\mathbf{\Lambda}) \mathbf{P}^{-1}$$

如果 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$ 为对角矩阵,则

$$\mathbf{\Lambda}^k = \operatorname{diag}(\lambda_1^k, \lambda_2^k, \cdots, \lambda_n^k)$$

从而 $\varphi(\mathbf{\Lambda}) = a_0 \mathbf{I} + a_1 \mathbf{\Lambda} + \dots + a_m \mathbf{\Lambda} = \operatorname{diag}(\varphi(\lambda_1), \varphi(\lambda_2), \dots, \varphi(\lambda_n))$

分块矩阵

若将大矩阵 A 用若干条纵线与横线分成多个小矩阵,每个小矩阵称为 A 的子块,以子块为元素的形式上的矩阵称为分块矩阵

分块矩阵的运算

• 加法

若矩阵 A 与 B 的行数、列数均相同,且采用相同的分块方法,则 A + B 的每个分块是 A 与 B 中对应分块之和

• 数乘

设 A 是一个分块矩阵, k 为一实数, 则 kA 的每个子块是 k 与 A 中相应子块的数乘

• 乘法

两分块矩阵 A 与 B 的乘积依然按照普通矩阵的乘积进行运算,即把矩阵 A 与 B 中的子块当作数量来对待,但对于乘积 AB,A 的列划分必须与 B 的行划分一致

• 转置

设
$$oldsymbol{A} = egin{bmatrix} oldsymbol{A}_{11} & \cdots & oldsymbol{A}_{1t} \\ dots & \ddots & dots \\ oldsymbol{A}_{s1} & \cdots & oldsymbol{A}_{st} \end{bmatrix}$$
,则 $oldsymbol{A}^T = egin{bmatrix} oldsymbol{A}_{11}^T & \cdots & oldsymbol{A}_{s1}^T \\ dots & \ddots & dots \\ oldsymbol{A}_{1t}^T & \cdots & oldsymbol{A}_{st}^T \end{bmatrix}$

• 分块对角矩阵

若 A 为 n 阶矩阵,若 A 的分块矩阵实在对角线上有非零子块,其余子式都为零矩阵,且在对角线上的子块都是方阵,即

$$m{A} = egin{bmatrix} m{A}_1 & & & m{O} \ & m{A}_2 & & \ & & \ddots & \ m{O} & & & m{A}_s \end{bmatrix}$$

其中 A_i 都是方阵,则称 A 为分块对角矩阵

分块对角矩阵具有性质

- 若 det $A_i \neq 0$,则 det $A \neq 0$,且 det $A = \det A_1 A_2 \cdots A_s$

 $oldsymbol{A}^{-1} = egin{bmatrix} oldsymbol{A}_1^{-1} & & & oldsymbol{O} \ & oldsymbol{A}_2^{-1} & & \ & & \ddots & \ oldsymbol{O} & & oldsymbol{A}_s \end{bmatrix}$

一同结构的分块对角矩阵的和、差、积、数乘及逆仍是分块对角矩阵,且运算表现为对应子块的运算

• 分块上(下)三角矩阵

形如

$$egin{bmatrix} m{A}_{11} & m{A}_{12} & \cdots & m{A}_{1s} \ m{O} & m{A}_{22} & \cdots & m{A}_{2s} \ dots & dots & \ddots & dots \ m{O} & m{O} & \cdots & m{A}_{ss} \end{bmatrix} ext{ or } egin{bmatrix} m{A}_{11} & m{O} & \cdots & m{O} \ m{A}_{21} & m{A}_{22} & \cdots & m{O} \ dots & dots & \ddots & dots \ m{A}_{s1} & m{A}_{s2} & \cdots & m{A}_{ss} \end{bmatrix}$$

的分块矩阵,分别称为分块上三角矩阵或分块下三角矩阵,其中 A_{pp} 是方阵;同结构的分块上(下)三角矩阵的和、 差、积、数乘及逆仍是分块上(下)三角形矩阵

矩阵的初等变换

矩阵的下列三种变换称为矩阵的初等行变换:

- 1. 交换矩阵的两行(交换 i, j 两行,记作 $r_i \leftrightarrow r_i$)
- 2. 以一个非零的数 k 乘矩阵的某一行(第 i 行乘数 k,记作 kr_i 或 $r_i \times k$)
- 3. 把矩阵的某一行的 k 倍加到另一行(第 j 行乘数 k 加到第 i 行,记为 $r_i + kr_j$) 矩阵的下列三种变换称为矩阵的初等列变换:
- 1. 交换矩阵的两列(交换 i, j 两列,记作 $c_i \leftrightarrow c_j$)
- 2. 以一个非零的数 k 乘矩阵的某一列(第 i 列乘数 k,记作 kc_i 或 $c_i \times k$)
- 3. 把矩阵的某一列的 k 倍加到另一列(第 j 列乘数 k 加到第 i 列,记为 $c_i + kc_j$)

初等行变换与初等列变换统称初等变换:初等别换的逆变换依然为初等变换,且变换类型相同

若矩阵 A 经过有限次的初等变换变成矩阵 B,则称矩阵 A 与 B 等价,记为

$$A \rightarrow B$$
 or $A \sim B$

矩阵间的等价关系具有下列基本性质

- 自反性 $A \sim A$
- 对称性若 $A \sim B$, 则 $B \sim A$
- 传递性若 $A \sim B$, $B \sim C$, 则有 $A \sim C$

称满足下列条件的矩阵为行阶梯形矩阵

- 零行(元素均为零的行)位于矩阵的下方
- 各非零行的首个非零元(从左至右的第一个不为零的元素)的列标随行标的增大而严格增大(或说其列标一定不小于行标)

称满足下列条件的阶梯形矩阵为行最简形矩阵

- 各非零行的首个非零元都是 1
- 每个首行非零元所在列的其他元素均为 0

对于任意矩阵 A 经过有限次初等线性变换,均可化为标准形矩阵(一行最简形矩阵)

任一矩阵 A 总可以经过有限次初等行变换后化为行阶梯形矩阵,并进而化为行最简形矩阵 如果 A 为 n 阶可逆矩阵,则矩阵 A 经过有限次初等变换可化为单位矩阵 I,即 $A \rightarrow I$

初等矩阵

对单位矩阵 I 施以一次初等变换得到的矩阵称为**初等矩阵**,三种初等变换分别对应着三种初等矩阵

1. I 的第 i, j 行 (列) 互换得到的矩阵

$$I(i,j) = \begin{bmatrix} 1 & & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & 0 & \cdots & \cdots & \cdots & 1 & & \\ & & \vdots & 1 & & \vdots & & \\ \vdots & & \ddots & & \vdots & & \\ \vdots & & & 1 & \vdots & & \\ & \vdots & & & 1 & \vdots & & \\ & & 1 & \cdots & \cdots & 0 & & \\ & & & & & 1 & & \\ & & & & & \ddots & \\ & & & & & & 1 \end{bmatrix}$$

2. I 的第 i 行 (列) 乘以非零数 k 得到的矩阵

$$m{I}(i(k)) = egin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & & k & & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix}$$

3. I 的第 j 行乘以数 k 加到第 i 行上, 或 I 的第 i 列乘以数 k 加到第 j 行上得到的矩阵

$$I(i \ j(k)) = egin{bmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & \cdots & k & & \\ & & & \ddots & \vdots & & \\ & & & 1 & & \\ & & & & \ddots & \\ & & & & 1 \end{bmatrix}$$

初等矩阵具有下列基本性质

- $I(i,j)^{-1} = I(i,j)$
- $I(i(k))^{-1} = I(i(k^{-1}))$
- $I(i \ j(k))^{-1} = I(i \ j(-k))$
- $\det I(i,j) = -1$
- $\det \boldsymbol{I}(i(k)) = k$
- $\det \boldsymbol{I}(i \quad j(k)) = 1$

设 A 为一个 $m \times n$ 矩阵,对 A 施行一次某种初等行(列)变换,相当一用同种的 m(n)阶初等矩阵左(右)乘 A

利用初等变换求矩阵的逆

n 阶矩阵 A 可逆的充分必要条件是 A 可以表示为若干初等矩阵的乘积

因而求求矩阵 \boldsymbol{A} 的逆矩阵 \boldsymbol{A}^{-1} 时,可构造 $n \times 2n$ 矩阵 $\begin{bmatrix} \boldsymbol{A} & \boldsymbol{I} \end{bmatrix}$,然后对其施以初等行变换将矩阵 \boldsymbol{A} 化为单位矩阵 \boldsymbol{I} ,则上述初等行变换同时也将其中的单位矩阵 \boldsymbol{I} 化为 \boldsymbol{A}^{-1} ,即

$$egin{bmatrix} m{A} & m{I} \end{bmatrix}
ightarrow m{I} & m{A}^{-1} \end{bmatrix}$$

利用初等变换求解矩阵方程

设矩阵 A 可逆,则求解矩阵方程 AX = B 等价于求矩阵 $X = A^{-1}B$,为此构造矩阵 $\begin{bmatrix} A & B \end{bmatrix}$,对其施以初等行变换将矩阵 A 化为单位矩阵 I,则上述初等变换矩阵同时将其中的矩阵 B 化为 $A^{-1}B$,即

$$egin{bmatrix} m{A} & m{B} \end{bmatrix}
ightarrow m{I} & m{A}^{-1}m{B} \end{bmatrix}$$

这样就给出了用初等变换求解矩阵方程 AX = B 的方法

同理,求解矩阵方程 XA = B 等价于计算矩阵 BA^{-1} ,亦可利用初等列变换求解矩阵 BA^{-1} ,即

$$egin{bmatrix} m{A} \ m{B} \end{bmatrix}
ightarrow egin{bmatrix} m{I} \ m{B}m{A}^{-1} \end{bmatrix}$$

矩阵的秩 The Rank of Matrix

矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所行含非零行的行数时唯一确定的(而这个数就是矩阵的秩,介于其唯一性尚未证明,先用行列式定义矩阵的秩)

在 $m \times n$ 矩阵 A 中,任取 k 行 k 列,位于这些行列交叉处的 k^2 个元素,不改变它们在 A 中的顺序而得到的 k 阶 行列式,称为矩阵 A 的 k 阶子式

设 A 为 $m \times n$ 矩阵,如果存在 A 的 r 阶子式不为零,而任一 r+1 阶子式皆为零,则称数 r 为矩阵 A 的秩,记为 r(A)(或 R(A)),并规定零矩阵的秩等于零

性质

- 若矩阵 A 中有某个 s 阶子式不为 0,则 $r(A) \ge s$
- 若 \mathbf{A} 中所有 t 阶子式全为 0,则 $r(\mathbf{A}) < t$
- 若 \mathbf{A} 为 $m \times n$ 矩阵,则 $0 \le r(\mathbf{A}) \le \min\{m, n\}$
- 当 $r(A) \min\{m, n\}$ 时,称 A 为满秩矩阵,否则称为降秩矩阵
- $r(\mathbf{A}) = r(\mathbf{A}^T)$
- $\max\{r(A), r(B)\} \le r(A, B) \le r(A) + r(B)$
- r(A + B) < r(A) + r(B)
- $r(AB) \leq \min\{r(A, B)\}$
- 若 $A_{m\times n}B_{n\times l}=O$,则 $r(A)+r(B)\leq n$

矩阵的秩的求法

若 $\boldsymbol{A} \rightarrow \boldsymbol{B}$ (\boldsymbol{A} 经过有限次初等变换为 \boldsymbol{B}),则 $r(\boldsymbol{A}) = r(\boldsymbol{B})$

用初等行变换把矩阵变成行阶梯形矩阵,行阶梯形矩阵中非零行的行数就是该矩阵的秩

由矩阵的秩及满秩矩阵的定义,显然,若一个 n 阶矩阵 \mathbf{A} 是满秩的,则 $\det \mathbf{A} \neq 0$,因而非奇异;反之亦然