Examenul național de bacalaureat 2023 Proba E. c)

Matematică M_tehnologic

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați termenul a_1 al progresiei aritmetice $(a_n)_{n>1}$, știind că $a_2 = 7$ și $a_6 = 23$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 8x 5. Determinați numărul real a pentru care punctul A(a,3a) aparține graficului funcției f.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_4 x + \log_4 (3x) = \log_4 12$.
- **5p** | **4.** Determinați probabilitatea ca, alegând un număr n din mulțimea numerelor naturale de două cifre, \sqrt{n} să fie număr natural par.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-3,2), B(1,4) și C(6,0). Determinați distanța dintre mijloacele segmentelor AB și OC.
- **5p 6.** Se consideră triunghiul ABC, dreptunghic în A, cu BC = 16 și măsura unghiului B egală cu 30° . Arătați că aria triunghiului ABC este egală cu $32\sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricele $A = \begin{pmatrix} -3 & 3 \\ -2 & -1 \end{pmatrix}$ și $B(x) = \begin{pmatrix} x+1 & -3 \\ 2 & x-1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că det A = 9.
- **5p b**) Determinați numărul real x pentru care $B(3) \cdot B(4) = xB(1)$.
- **5p** c) Determinați numărul real a pentru care matricea B(a) este inversa matricei $C = \frac{1}{9}A$.
 - **2.** Se consideră polinomul $f = X^3 + X^2 + mX 4$, unde m este număr real.
- **5p** a) Pentru m = 1, arătați că f(2) = 10.
- **5p b)** Pentru m = -4, determinați rădăcinile polinomului f.
- **5p** c) Demonstrați că, pentru orice număr natural nenul m, polinomul f nu are toate rădăcinile reale.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(-2,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2 2x + 1}{x + 2}$.
- **5p** a) Arătați că $f'(x) = \frac{x^2 + 4x 5}{(x+2)^2}, x \in (-2, +\infty).$
- **5p b**) Arătați că $\lim_{x \to +\infty} \frac{f(x)}{e^x} = 0$.
- **5p** \mathbf{c}) Demonstrați că funcția f este convexă.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x)=x+1+\frac{1}{\sqrt{x+1}}$.
- **5p** a) Arătați că $\int_{1}^{3} \left(f(x) \frac{1}{\sqrt{x+1}} \right) dx = 6.$
- **5p b)** Arătați că $\int_{0}^{8} (f(x) x 1) dx = 4$.

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

5p c) Arătați că volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,3] \to \mathbb{R}$, g(x) = f(x), este egal cu $\pi\left(\frac{91}{3} + \ln 4\right)$.