Universality for random permutations Séminaire MEGA

Slim Kammoun

Supervisors: Mylène Maïda and Adrien Hardy

Laboratoire Paul Painlevé, Université de Lille

January 11, 2019

GUE:

	GUE
Biggest particle	T.W
Edge	Soft edge (Airy)
Global convergence	Semi circular
Fluctuations	Gaussian
Bulk	Sine process

	GUE
Biggest particle	T.W
Edge	Soft edge (Airy)
Global convergence	Semi circular
Fluctuations	Gaussian
Bulk	Sine process

Random matrices, OP ensembles, DPPs etc.

- Global (semi circular law): Wigner (1958); Pastur (1972).
- Local convergence (sine process): Lubinsky (2008); Erdos, Péché, Ramírez, Schlein, and Yau (2010).
- Edge (Airy ensemble and Tracy-Widom fluctuations): Soshnikov (1999); Tao and Vu (2011).

	GUE + Wigner
	(with a good control on moments)
Biggest particle	T.W
Edge	Soft edge (Airy)
Global convergence	Semi circular
Fluctuations	Gaussian
Bulk	Sine process

	GUE + Wigner (with a good control on moments)	Uniform permutation
Biggest particle	T.W	T.W
Edge	Soft edge (Airy)	Soft edge (Airy)
Global convergence	Semi circular	VKLS
Fluctuations	Gaussian	Gaussian
Bulk	Sine process	Discrete sine process

	GUE + Wigner (with a good control on moments)	Uniform permutation
Biggest particle	T.W	T.W
Edge	Soft edge (Airy)	Soft edge (Airy)
Global convergence	Semi circular	VKLS
Fluctuations	Gaussian	Gaussian
Bulk	Sine process	Discrete sine process

- Universality for random permutations?
- Independence?
- Moments?

Plan

- 1 Longest increasing subsequence and Ulam–Hammersley problem.
- The first arrows of random Young tableaux (edge)
- 3 The Vershik-Kerov-Logan-Shepp shape

Longest increasing subsequence

- \mathfrak{S}_n : symmetric group, (the group of permutations of $\{1,...,n\}$).
- $(\sigma(i_1),...,\sigma(i_k))$ increasing subsequence of σ of length k if $i_1 < i_2 < \cdots < i_k$ and $\sigma(i_1) < \cdots < \sigma(i_k)$.
- $\ell(\sigma)$: the length of the longest increasing subsequence of σ .
- For example:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{pmatrix}.$$

$$\ell(\sigma) = 5$$
.

Conjecture (Ulam (1961))

If
$$\sigma_n \sim U_{\mathfrak{S}_n}$$
, then

$$\lim_{n\to\infty}\frac{\mathbb{E}(\ell(\sigma_n))}{\sqrt{n}}=c.$$

Longest increasing subsequence

Theorem (Vershik and Kerov (1977); Logan and Shepp (1977))

If $\sigma_n \sim U_{\mathfrak{S}_n}$ then

$$\lim_{n\to\infty}\frac{\mathbb{E}(\ell(\sigma_n))}{\sqrt{n}}=2$$

and

$$\frac{\ell(\sigma_n)}{\sqrt{n}} \stackrel{\mathbb{P}}{\to} 2.$$

Theorem (Baik, Deift, and Johansson (1999))

If $\sigma_n \sim U_{\mathfrak{S}_n}$ then

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\ell(\sigma_n)-2\sqrt{n}}{n^{\frac{1}{6}}} \le s\right) = F_2(s).$$

 F_2 : CDF of the GUE Tracy-Widom distribution.

	GUE + Wigner (with a good control on moments)	Uniform permutation
Biggest particle	T.W	T.W
Edge	Soft edge (Airy)	Soft edge (Airy)
Global convergence	Semi circular	VKLS
Fluctuations	Gaussian	Gaussian
Bulk	Sine process	Discrete sine process

Longest increasing subsequence

Theorem (K (2018))

Assume that the sequence of random permutations $(\sigma_n)_{n\geq 1}$ satisfies:

• For all positive integer n, σ_n is invariant under conjugation i.e. $\forall \sigma, \rho \in \mathfrak{S}_n$,

$$\mathbb{P}(\sigma_n = \sigma) = \mathbb{P}(\sigma_n = \rho^{-1}\sigma\rho). \tag{H1}$$

• The number of cycles is such that: For all $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{\#(\sigma_n)}{n^{\frac{1}{6}}} > \varepsilon\right) = 0. \tag{H2}$$

Then for all $s \in \mathbb{R}$ *,*

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{\ell(\sigma_n) - 2\sqrt{n}}{n^{\frac{1}{6}}} \le s\right) = F_2(s). \tag{TW}$$

Ewens' case

Definition (Ewens distribution)

Let $\theta \ge 0$. If $\sigma_n \sim Ew(\theta)$ then

$$\mathbb{P}(\sigma_n = \sigma) = \frac{\theta^{\#(\sigma)-1}}{\prod_{k=1}^{n-1} (\theta + k)}.$$

- θ = 1: uniform distribution.
- θ = 0: uniform distribution on permutations with a unique cycle.
- $\mathbb{E}(\#(\sigma_n)) = 1 + \sum_{k=1}^{n-1} \frac{\theta}{\theta + k} \sim \theta \log(n)$.

Ewens' case

Corollary

Assume that $\sigma_n \sim Ew(\theta_n)$. If

$$\lim_{n \to \infty} \frac{\theta_n \log(n)}{n^{\frac{1}{6}}} = 0. \tag{H'2}$$

Then

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\ell(\sigma_n) - 2\sqrt{n}}{n^{\frac{1}{6}}} \le s\right) = F_2(s). \tag{TW}$$

Other applications: Ewens-Pitman, virtual permutations (Kingman), etc.

By comparision with the uniform setting. We denote by:

•
$$A_{\sigma} := \begin{cases} \{ \rho \in \mathfrak{S}_n, \rho = \sigma \circ (i,j) \text{ and } \#(\rho) = \#(\sigma) - 1 \} & \text{if } \#(\sigma) > 1 \\ \{ \sigma \} & \text{if } \#(\sigma) = 1 \end{cases}$$

• T: Markov operator associated to $\left[\frac{\mathbf{1}_{A_{\sigma_1}}(\sigma_2)}{card(A_{\sigma_1})}\right]_{\sigma_1,\sigma_2\in\mathfrak{S}_n}$.

- If σ_n is invariant under conjugation, $T(\sigma_n)$ is also invariant under conjugation.
- $\#(T(\sigma_n)) \stackrel{a.s}{=} \max(\#(\sigma_n) 1, 1).$

Consequently, if σ_n is invariant under conjugation, then

- If σ_n is invariant under conjugation, $T^{n-1}(\sigma_n)$ is also invariant under conjugation.
- Almost surely, $\#(T^{n-1}(\sigma_n)) = 1$.

Lemma

 $\forall \sigma \in \mathfrak{S}_n, \forall \tau = (i,j) \ a \ transposition,$

$$|\ell(\sigma \circ \tau) - \ell(\sigma)| \le 2.$$

Lemma

If

- σ_n is invariant under conjugation.
- Almost surely, $\#(\sigma_n) = 1$.

Then $\sigma_n \sim Ew(0)$.

If σ_n is invariant under conjugation then

- $T^{n-1}(\sigma_n) \sim Ew(0)$.
- Almost surely,

$$|\ell(T^{n-1}(\sigma_n)) - \ell(\sigma_n)| = |\ell(T^{\#(\sigma_n)-1}(\sigma_n)) - \ell(\sigma_n)| \le 2(\#(\sigma_n)-1).$$

Assume that
$$\frac{\#(\sigma_n)}{n^{\frac{1}{6}}} \stackrel{\mathbb{P}}{\to} 0$$
. We obtain $\frac{\ell(T^{n-1}(\sigma_n)) - \ell(\sigma_n)}{n^{\frac{1}{6}}} \stackrel{\mathbb{P}}{\to} 0$.

(TW): Uniform
$$\Rightarrow Ew(0) \Rightarrow$$
 Invariant under conjugation $+ \frac{\#(\sigma_n)}{n^{\frac{1}{6}}} \stackrel{\mathbb{P}}{\to} 0$

Plan

- Longest increasing subsequence and Ulam–Hammersley problem.
- 2 The first arrows of random Young tableaux (edge)
- 3 The Vershik-Kerov-Logan-Shepp shape

Young diagram

Definition (Young diagram)

 $\lambda = (\lambda_i)_{i \ge 1} \in \mathbb{N}^{\mathbb{N}^*}$ is a Young diagram of size n if

- $\forall i \geq 1, \ \lambda_{i+1} \leq \lambda_i$
- $\sum_{i=1}^{\infty} \lambda_i = n$.

Example: Young diagrams of size 3 are

$$\mathbb{Y}_3 = (3, \underline{0}), (2, 1, \underline{0}), (1, 1, 1, \underline{0})$$

Young tableau

Definition (Young tableau)

A Young tableau of shape λ is a filling of the boxes of λ using the entries $\{1,2,...,n\}$ and the entries in each row and each column are increasing.

- Example: Young tableaux of shape
 - 1 2 3, 1 2 4, 1 3 4.
- $dim(\lambda) = \#$ Young tableaux of shape λ .
- $dim(\lambda)$ = dimension of the irreducible representation of \mathfrak{S}_n indexed by λ .
- $\sum_{\lambda \in \mathbb{Y}_n} dim(\lambda)^2 = \#(\mathfrak{S}_n) = n!$.

are

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{pmatrix}.$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{pmatrix}.$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{pmatrix}.$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{pmatrix}.$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{pmatrix}.$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{pmatrix}.$$

1 2 4 5 6 , 1 2 5 6 8

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{pmatrix}.$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{pmatrix}.$$

Robinson-Schensted correspondence

- One-to-one correspondence between permutations and pairs of standard Young tableaux of the same shape.
- We denote by $\lambda(\sigma) := (\lambda_i(\sigma))_{i \ge 1}$ the shape of the image of σ by this correspondence. For example, if

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{pmatrix}$$
 then $\lambda(\sigma) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 1 & 2 & 4 & 7 & 5 & 6 \end{pmatrix}$

• $\ell(\sigma) = \lambda_1(\sigma)$.

Plancherel measure

• If $\sigma_n \sim U_{\mathfrak{S}_n}$ then $\lambda(\sigma_n) \sim PL_n$. For any $\mu \in \mathbb{Y}_n$,

$$\mathbb{P}(\lambda(\sigma_n) = \mu) = \frac{\#\{\text{pairs of Young tableaux of shape }\mu\}}{C}$$
$$= \frac{\dim(\mu)^2}{n!}.$$

• The poissonized version. If $\lambda \sim PL^{\theta}$ then for any $\mu \in \bigcup_{n \geq 1} \mathbb{Y}_n$,

$$\mathbb{P}(\lambda_{\theta} = \mu) = e^{-\theta} \frac{\theta^{|\mu|} dim(\mu)^2}{|\mu|!^2}.$$

• If $\lambda \sim PL^{\theta}$ then $\{\lambda_i - i\}_{i \ge 1}$ is determinantal with discrete Bessel kernel.

Edge: Plancherel case

Theorem (Borodin, Okounkov, and Olshanski (2000))

If $\sigma_n \sim U_{\mathfrak{S}_n}$ then $\forall k \geq 1, \forall s_1, s_2, ..., s_k \in \mathbb{R}$,

$$\lim_{n\to\infty}\mathbb{P}\left(\forall i\leq k,\ \frac{\lambda_i(\sigma_n)-2\sqrt{n}}{n^{\frac{1}{6}}}\leq s_i\right)=\mathbb{P}\left(\forall i\leq k,\ \xi_i\leq s_i\right).$$

 $\{\xi_1 \geq \xi_2 \geq \cdots \geq \xi_k \geq \ldots\}$: Airy ensemble.

	GUE + Wigner (with a good control on moments)	Uniform permutation
Biggest particle	T.W	T.W
Edge	Soft edge (Airy)	Soft edge (Airy)
Global convergence	Semi circular	VKLS
Fluctuations	Gaussian	Gaussian
Bulk	Sine process	Discrete sine process

Edge: generalization

Theorem (K (2018))

Assume that the sequence of random permutations $(\sigma_n)_{n\geq 1}$ satisfies:

• For all positive integer n, σ_n is invariant under conjugation i.e. $\forall \sigma, \rho \in \mathfrak{S}_n$,

$$\mathbb{P}(\sigma_n = \sigma) = \mathbb{P}(\sigma_n = \rho^{-1}\sigma\rho). \tag{H1}$$

• The number of cycles is such that: For all $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{\#(\sigma_n)}{n^{\frac{1}{6}}} > \varepsilon\right) = 0. \tag{H2}$$

Then for all $s \in \mathbb{R}$ *,*

$$\lim_{n\to\infty} \mathbb{P}\left(\forall i\leq k, \ \frac{\lambda_i(\sigma_n)-2\sqrt{n}}{n_6^{\frac{1}{6}}}\leq s_i\right) = \mathbb{P}\left(\forall i\leq k, \ \xi_i\leq s_i\right).$$

Greene's theorem

We denote by

$$\mathfrak{I}_{1}(\sigma) := \{ s \subset \{1, 2, \dots, n\}; \ \forall i, j \in s, \ (i - j)(\sigma(i) - \sigma(j)) \geq 0 \},$$
$$\mathfrak{I}_{k+1}(\sigma) := \{ s \cup s', \ s \in \mathfrak{I}_{k}, \ s' \in \mathfrak{I}_{1} \}.$$

We have then

Lemma (Greene (1974))

For any permutation $\sigma \in \mathfrak{S}_n$,

$$\max_{\mathbf{S}\in\mathfrak{I}_{i}(\sigma)}|\mathbf{S}|=\sum_{k=1}^{i}\lambda_{k}(\sigma).$$

In particular,

$$\max_{\mathbf{S} \in \mathfrak{I}_1(\sigma)} |\mathbf{S}| = \lambda_1(\sigma) = \ell(\sigma).$$

Lemma

For any permutation σ and transposition τ ,

$$\left| \sum_{k=1}^{i} \lambda_k(\sigma) - \lambda_k(\sigma \circ \tau) \right| \le 2$$

Consequently,

$$|\lambda_i(\sigma) - \lambda_i(\sigma \circ \tau)| \leq 4.$$

Corollary

$$\left|\lambda_i(\sigma_n) - \lambda_i\left(T^{n-1}(\sigma_n)\right)\right| \le 4(\#(\sigma_n) - 1). \tag{1}$$

Plan

- Longest increasing subsequence and Ulam–Hammersley problem.
- The first arrows of random Young tableaux (edge)
- 3 The Vershik-Kerov-Logan-Shepp shape

Russian notations

- Rotate the diagram by $\frac{3\pi}{4}$.
- Complete the high function by $x \rightarrow |x|$.
- We denote by L_{λ} the resulting function.

Vershik-Kerov-Logan-Shepp shape

Theorem (Vershik and Kerov (1977); Logan and Shepp (1977))

If $\sigma_n \sim U_{\mathfrak{S}_n}$, then for any $\varepsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\left(\sup_{s\in\mathbb{R}} \left| \frac{1}{\sqrt{2n}} L_{\lambda(\sigma_n)}\left(s\sqrt{2n}\right) - \Omega(s) \right| < \varepsilon\right) = 1,$$

where

$$\Omega(s) := \begin{cases} \frac{2}{\pi} (s \arcsin(s) + \sqrt{1 - s^2}) & if |s| < 1 \\ |s| & if |s| \ge 1 \end{cases}.$$

Vershik-Kerov-Logan-Shepp shape

 Ω is strongly related to the semi-circular law. We denote by

$$\omega(s) := \frac{\Omega(2s) - |2s|}{2}.$$

We have

$$\exp\left(\int_{\mathbb{R}} \frac{d\omega(u)}{u - \frac{1}{x}}\right) = \int_{\mathbb{R}} \frac{d\mu_{sc}(u)}{1 - ux}$$

with

$$d\mu_{sc}(u) := \frac{\sqrt{4-u^2}}{2\pi}du.$$

Vershik-Kerov-Logan-Shepp shape

Figure: Typical Young diagram under the Plancherel distribution

	GUE + Wigner (with a good control on moments)	Uniform permutation
Biggest particle	T.W	T.W
Edge	Soft edge (Airy)	Soft edge (Airy)
Global convergence	Semi circular	VKLS
Fluctuations	Gaussian	Gaussian
Bulk	Sine process	Discrete sine process

Limit shape

Theorem (K (2018))

Assume that the sequence of random permutations $(\sigma_n)_{n\geq 1}$ satisfies:

• For all positive integer n, σ_n is invariant under conjugation i.e. $\forall \sigma, \rho \in \mathfrak{S}_n$,

$$\mathbb{P}(\sigma_n = \sigma) = \mathbb{P}(\sigma_n = \rho^{-1}\sigma\rho). \tag{H1}$$

• The number of cycles is such that: For all $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{\#(\sigma_n)}{n} > \varepsilon\right) = 0. \tag{H3}$$

Then for all $\varepsilon > 0$ *,*

$$\lim_{n\to\infty} \mathbb{P}\left(\sup_{s\in\mathbb{R}} \left| \frac{1}{\sqrt{2n}} L_{\lambda(\sigma_n)} \left(s\sqrt{2n} \right) - \Omega(s) \right| < \varepsilon \right) = 1.$$

Proof

Lemma

Let $n, m \in \mathbb{N}^*$, $\lambda = (\lambda_i)_{i \ge 1} \in \mathbb{Y}_n$, $\mu = (\mu_i)_{i \ge 1} \in \mathbb{Y}_m$. Then,

$$||L_{\lambda}-L_{\mu}||_{\infty}^{2} \leq 4 \max_{i\geq 1} \left| \sum_{k=1}^{i} (\lambda_{k}-\mu_{k}) \right|.$$

Consequently,

$$\sup_{s\in\mathbb{R}}\frac{1}{\sqrt{2n}}\left|L_{\lambda(\sigma_n)}\left(s\sqrt{2n}\right)-L_{\lambda(T^{n-1}(\sigma_n))}\left(s\sqrt{2n}\right)\right|\leq 2\sqrt{\frac{\#(\sigma_n)-1}{n}}.$$

Fluctuations: Kerov's central limit theorem

Theorem (Ivanov and Olshanski (2002))

$$L_{\lambda(\sigma_n)}(s\sqrt{n}) - \sqrt{n}\Omega(s) \sim \Delta(s) = \Delta(\cos(\theta)) = \frac{1}{\pi} \sum_{k=2}^{\infty} \frac{\xi_k}{\sqrt{k}} \sin(k\theta)$$

$$\xi_k \sim \mathcal{N}(0,1) \ i.i.d$$

	GUE + Wigner (with a good control on moments)	Uniform permutation
Biggest particle	T.W	T.W
Edge	Soft edge (Airy)	Soft edge (Airy)
Global convergence	Semi circular	VKLS
Fluctuations	Gaussian	Gaussian
Bulk	Sine process	Discrete sine process

Bulk

Theorem (Borodin, Okounkov, and Olshanski (2000))

For any $|\alpha|$ < 2, *under Plancherel measure*,

$$\{\lambda_i - i - \alpha \sqrt{n}\}_{i \ge 1} \to Sin_\alpha.$$

 Sin_{α} D.P.P with kernel

$$K_{\alpha}(x,y) = \begin{cases} \frac{\sin(\arccos(\frac{\alpha}{2})(x-y))}{\pi(x-y)} & \text{if } x \neq y \\ \frac{\arccos(\frac{\alpha}{2})}{\pi} & \text{if } x = y \end{cases}$$

	GUE + Wigner (with a good control on moments)	Uniform permutation
Biggest particle	T.W	T.W
Edge	Soft edge (Airy)	Soft edge (Airy)
Global convergence	Semi circular	VKLS
Fluctuations	Gaussian	Gaussian
Bulk	Sine process	Discrete sine process

Application: Longest commun subsequence

- $(\sigma(i_1),...,\sigma(i_k))$ subsequence of σ of length k if $i_1 < i_2 <,..., < i_k$.
- $LCS(\sigma_1, \sigma_2)$ the length of the longest common subsequence of two permutations.

Conjecture (Bukh and Zhou (2016))

For any integer $n \ge 1$, for any $\sigma_{1,n}$ and $\sigma_{2,n}$ independent and identically distributed random permutations,

$$\mathbb{E}(LCS(\sigma_{1,n},\sigma_{2,n})) \geq \sqrt{n}$$
.

Application: Longest common subsequence

Theorem

For any $0 \le \alpha < 2$, there exists $n_{\alpha} \ge 1$ such that for any $n > n_{\alpha}$, for any $\sigma_{1,n}$ and $\sigma_{2,n}$ independent and identically distributed random permutations with distribution invariant under conjugation.

$$\mathbb{E}(LCS(\sigma_{1,n},\sigma_{2,n})) \geq \alpha \sqrt{n}$$
.

Conclusion

	GUE + Wigner (with a good control on moments)	Plancherel	Random permutations invariant under conjugation (with a good control on cycles' number)
Biggest particle	T.W	T.W	T.W
Edge	Soft edge (Airy)	Soft edge (Airy)	Soft edge (Airy)
Global convergence	Semi circular	VKLS	VKLS
Fluctuations	Gaussian	Gaussian	??
Bulk	Sine process	Discrete sine process	??

- Independance ~ invarience under conjugation?
- Moments ~ cycles' structure?

Conjectures

- We need only $\frac{\#(\sigma_n)}{n^{\frac{1}{2}}} \stackrel{\mathbb{P}}{\to} 0$ to obtain Tracy-Widom fluctuations.
- For any sequence of random permutations invariant under conjugation, for any $\varepsilon > 0$

$$\lim_{n\to\infty}\mathbb{P}\left(\sup_{s\in\mathbb{R}}\left|\frac{1}{2\sqrt{n}}L_{\lambda(\sigma_n)}\left(2s\sqrt{n-fix(\sigma_n)}\right)-\sqrt{1-\frac{fix(\sigma_n)}{n}}\Omega\left(s\right)\right|<\varepsilon\right)=1.$$

 Under a good control on cycles we have discrete sine process (Bulk).

Thank you for your attention

References

- J. Baik, P. Deift, and K. Johansson. On the Distribution of the Length of the Longest Increasing Subsequence of Random Permutations. *Journal of the American Mathematical Society*, 12(04):1119–1179, oct 1999.
- A. Borodin, A. Okounkov, and G. Olshanski. Asymptotics of Plancherel measures for symmetric groups. *J. Amer. Math. Soc.*, 13 (3):481–515, 2000. ISSN 0894-0347. doi: 10.1090/S0894-0347-00-00337-4.
- B. Bukh and L. Zhou. Twins in words and long common subsequences in permutations. *Israel J. Math.*, 213(1):183–209, 2016. ISSN 0021-2172. doi: 10.1007/s11856-016-1323-8.
- L. Erdos, S. Péché, J. A. Ramírez, B. Schlein, and H.-T. Yau. Bulk universality for wigner matrices. *Communications on Pure and Applied Mathematics*, pages NA–NA, 2010. doi: 10.1002/cpa.20317. URL https://doi.org/10.1002/cpa.20317.
- C. Greene. An extension of Schensted's theorem. Advances in Math., 14:254–265, 1974. ISSN 0001-8708. doi: 10.1016/0001-8708/74)90031-0.
- V. Ivanov and G. Olshanski. Kerov's central limit theorem for the plancherel measure on young diagrams. In S. Fomin, editor, Symmetric Functions 2001: Surveys of Developments and Perspectives, pages 93–151, Dordrecht, 2002. Springer Netherlands. ISBN 978-94-010-0574-1
- M. S. K. Monotonous subsequences and the descent process of invariant random permutations. *Electron. J. Probab.*, 23:31 pp., 2018. doi: 10.1214/18-EJP244. URL https://doi.org/10.1214/18-EJP244.
- $B. \, Logan \, and \, L. \, Shepp. \, A \, variational \, problem \, for \, random \, Young \, tableaux. \, \textit{Advances in Mathematics}, 26(2):206-222, 1977. \, ISSN \, 0001-8708.$
- D. S. Lubinsky. A new approach to universality limits at the edge of the spectrum. In *Integrable systems and random matrices*, volume 458 of *Contemp. Math.*, pages 281–290. Amer. Math. Soc., Providence, RI, 2008. doi: 10.1090/conm/458/08941.
- L. A. Pastur. On the spectrum of random matrices. *Theoretical and Mathematical Physics*, 10(1):67–74, Jan 1972. ISSN 1573-9333. doi: 10.1007/BF01035768.
- A. Soshnikov. Universality at the edge of the spectrum in wigner random matrices. Communications in Mathematical Physics, 207(3):697–733, Nov 1999. ISSN 1432-0916. doi: 10.1007/s002200050743.
- T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics. *Acta Math.*, 206(1):127–204, 2011. doi: 10.1007/s11511-011-0061-3.
- S. M. Ulam. Monte Carlo calculations in problems of mathematical physics. In *Modern mathematics for the engineer: Second series*, pages 261–281. McGraw-Hill, New York, 1961.
- A. M. Vershik and S. V. Kerov. Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux. *Dokl. Akad. Nauk SSSR*, 233(6):1024–1027, 1977. ISSN 0002-3264.
- E. P. Wigner. On the distribution of the roots of certain symmetric matrices. *Annals of Mathematics*, 67(2):325–327, 1958. ISSN 0003486X. URL http://www.jstor.org/stable/1970008.