Robotics DSL Zoo

An Effort to Structure, Consolidate and Harmonize DSL Developments in Robotics

Arne Nordmann

Nico Hochgeschwender Sebastian Wrede

October 20st 2014

Motivation

Goal: Online resource to "structure, consolidate and harmonize domain-specific language developments in robotics."

Targeted to:

- OSL Users:
 - domain experts, looking for method and tool support
 - provide means to assess availability and usability of DSLs
- OSL Developers:
 - robotics system developers and integrators
 - provide an overview on state of the art, common solutions and best practices
 - foster scientific exchange and community building inside the domain

Outline

- Motivation
- Prerequisites
- Survey Some facts and figures
- Oiscussion Relevant aspects of DSLs
- Robotics DSL Zoo
- Conclusion

Prerequisites

Prerequisites

Domain-Specific Languages

"programming language or executable specification language that offers, through appropriate notations and abstractions, expressive power focused on, and usually restricted to, a particular problem domain ... abstractions natural/suitable for the stakeholders who specify that particular concern." [1]

Survey Process

- Scanned 6 robotics conferences for the keywords "domain-specific language", "domain-specific modeling language", "generative programming", "specification language", "description language", and "code generation".
- Scanned 2 software conferences for the keywords "robot" and "robotics".
- \bigcirc \Rightarrow Raw list of **210** unique publications

Survey Process

- Scanned 6 robotics conferences for the keywords "domain-specific language", "domain-specific modeling language", "generative programming", "specification language", "description language", and "code generation".
- Scanned 2 software conferences for the keywords "robot" and "robotics".
- $3 \Rightarrow \text{Raw list of } 210 \text{ unique publications}$

Domain Analysis and Example

Problem: Limit the scope of the survey

- Precision Placement Test (PPT) from RoboCup@Work
 - Robot Structures
 - Coordinate Representation and Transformation
 - Operation Perception
 - Reasoning and Planning
 - Manipulation and Grasping
 - Coordination
 - Motion Control
 - 8 Architecture
 - (Software) Components

Filtering

Filtered 210 publications:

- Targets relevant concern of robotics
- 2 Technical aspects
 - must provide a language definition or meta-model
 - must be textual (internal or external) or graphical languages
 - must provide an example of their concrete syntax (notation)
 - should explain how a mapping to a target technology is achieved

 \Rightarrow **41** publications left after filtering

Filtering

Filtered 210 publications:

- Targets relevant concern of robotics
- 2 Technical aspects
 - must provide a language definition or meta-model
 - must be textual (internal or external) or graphical languages
 - must provide an example of their concrete syntax (notation)
 - should explain how a mapping to a target technology is achieved
- \Rightarrow **41** publications left after filtering

Survey

Some facts and figures

Survey: Publications per Year

- Numbers clearly support a positive trend of DSLs in robotics
- Numerous publications per year since 2010 (DSLRob start)

Survey: DSLs per Subdomain

- Numbers vary significantly between subdomains
- Task-level coordination well-explored (> 20, mature?)
- Sobot Structure and Motion Control > 10
- Manipulation and Grasping none

Indicator for maturity of the domain?

Survey: DSLs per Tool

Eclipse Modeling Project (including EMF, GMF, xtext, xpand, ...)
leading by far

Is Eclipse Modeling Project a potential integration point for robotics DSLs?

Survey Summary

- Started DSL survey with 6 robotics conferences and 2 software conferences [3]
- Filtered by robotics focus and technical aspects
- $oldsymbol{3} \Rightarrow oldsymbol{41}$ publications (will be continued)
- Preliminary results
 - Supports positive trend for DSLs in robotics
 - Varying DSL support for subdomains
 - EMF possible integration point
 - Identified further relevant aspects of DSLs in robotics

Survey Summary

- Started DSL survey with 6 robotics conferences and 2 software conferences [3]
- Filtered by robotics focus and technical aspects
- $\bullet \Rightarrow 41$ publications (will be continued)
- Preliminary results
 - Supports positive trend for DSLs in robotics
 - Varying DSL support for subdomains
 - EMF possible integration point
 - Identified further relevant aspects of DSLs in robotics

Survey Summary

- Started DSL survey with 6 robotics conferences and 2 software conferences [3]
- Filtered by robotics focus and technical aspects
- $3 \Rightarrow 41$ publications (will be continued)
- Preliminary results
 - Supports positive trend for DSLs in robotics
 - Varying DSL support for subdomains
 - EMF possible integration point
 - Identified further relevant aspects of DSLs in robotics

Discussion

Discussion

Relevant aspects of DSLs from developer and user perspective

Accessibility and Documentation

Documentation necessary for re-use of DSLs, scientific exchange and community building.

- Technical accessibility
 - Download of DSL
 - Download of language models
 - Download of tools
- 2 Licensing
- Documentation of DSL usage, examples, tutorials, . . .

Best Practice: Documentation of meta-model (Ecore, EBNF, ...), intended use-case (tutorial?), open-source download.

Accessibility and Documentation

Documentation necessary for re-use of DSLs, scientific exchange and community building.

- Technical accessibility
 - Download of DSL
 - Download of language models
 - Download of tools
- 2 Licensing
- Ocumentation of DSL usage, examples, tutorials, . . .

Best Practice: Documentation of meta-model (Ecore, EBNF, ...), intended use-case (tutorial?), open-source download.

Artifacts and Use-Case

- DSLs of same sub-domain usually generate similar artifacts
- Primary target: generation of executable code, but also documentation and visualization
- **1** Most DSLs generate *one* artifact type (e.g. C++ code)

Generation becomes more powerful when parallel M2M/M2T generators are supported, e.g.

- Computational code and glue code
- For different software platforms
- For different programming languages

Best Practice: Support for parallel generators (M2M and M2T) eases DSL re-use.

Artifacts and Use-Case

- DSLs of same sub-domain usually generate similar artifacts
- Primary target: generation of executable code, but also documentation and visualization
- **3** Most DSLs generate *one* artifact type (e.g. C++ code)

Generation becomes more powerful when parallel M2M/M2T generators are supported, e.g.

- Computational code and glue code
- For different software platforms
- For different programming languages

Best Practice: Support for parallel generators (M2M and M2T) eases DSL re-use.

Platform

"Coupling" – All tools and software libraries required to use the DSL or the generated artifacts.

- Interpreted / executed DSLs:
 - Always coupled with (DSL-specific) interpreter
- ② DSLs for code generation:
 - Proprietary (KRL, RAPID, ...) strongly tied to one platform
 - Tied to a certain software library stack or tool
 - General purpose language code without dependencies

Best Practice: Less platform dependencies ease DSL re-use.

Platform

"Coupling" – All tools and software libraries required to use the DSL or the generated artifacts.

- Interpreted / executed DSLs:
 - Always coupled with (DSL-specific) interpreter
- ② DSLs for code generation:
 - Proprietary (KRL, RAPID, ...) strongly tied to one platform
 - 2 Tied to a certain software library stack or tool
 - General purpose language code without dependencies

Best Practice: Less platform dependencies ease DSL re-use.

Evaluation

Quality/usability of the DSL or its generated artifacts.

- Qualitative evaluation
 - Discussion within a use-case (simulation or hardware)
 - Suitability, portability, . . .
 - Surprising number of publications evaluated on hardware (even on different robot platforms)
- Quantitative evaluation
 - Efficiency (benchmarking, computation time, ...)
 - Scalability (compilation time, system size, ...)
 - Productivity (change requests, dev time, ...)
 - Reliability (errors/defects per time, ...)
- **Best Practice:** Qualitative evaluation in multiple use-cases and quantitative evaluation.

Evaluation

Quality/usability of the DSL or its generated artifacts.

- Qualitative evaluation
 - Discussion within a use-case (simulation or hardware)
 - Suitability, portability, . . .
 - Surprising number of publications evaluated on hardware (even on different robot platforms)
- Quantitative evaluation
 - Efficiency (benchmarking, computation time, ...)
 - Scalability (compilation time, system size, ...)
 - Productivity (change requests, dev time, ...)
 - Reliability (errors/defects per time, . . .)
- **Best Practice:** Qualitative evaluation in multiple use-cases and quantitative evaluation.

DSL Development Process

Process of identification and formalization of domain-specific abstractions

- Adds credibility to the DSL
- Only little information available
 - Domain analysis?
 - Ontology?
 - Formalism?
 - Software examples?
 - Handbooks?

Best Practice: Link/describe sources of your DSL: domain analysis, ontology, formalism, . . .

DSL Development Process

Process of identification and formalization of domain-specific abstractions

- Adds credibility to the DSL
- Only little information available
 - Domain analysis?
 - Ontology?
 - Formalism?
 - Software examples?
 - Handbooks?

Best Practice: Link/describe sources of your DSL: domain analysis, ontology, formalism, . . .

Robotics DSL Zoo

Online resource for DSLs in robotics

Robotics DSL Zoo

Online resource to structure, consolidate and harmonize DSL developments in robotics.

- Provide a DSL "map" for (potential) DSL users
- Foster scientific exchange and community building

Structure:

- OSL Collection, inspired by the EMFText Concrete Syntax Zoo¹
- Annotated bibliography, inspired by Van Deursen et al.²

http://cor-lab.org/robotics-dsl-zoo

¹http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo

²A. van Deursen, P. Klint, and J. Visser: Domain-Specific Languages: An Annotated Bibliography, 2000.

Robotics DSL Zoo - Contribute

We invite the Robotics DSL Community to contribute.

- Find a DSL you know / use / develop
- Targets relevant concern for robotics?
- Collect metadata (publication, authors, year)
- Assess:
 - Documentation and accessibility (website, download, metamodel, . . .)
 - 2 Artifacts and use-case (e.g. controller configuration, ...)
 - 3 Platform dependencies (required tools and software library ...)
 - Evaluation (in simulation, on hardware, on different platforms, ...)
 - Sources of DSL development (domain analysis, ontology, ...)

http://cor-lab.org/robotics-dsl-zoo

Conclusion

- **1** DSLs are on the rise in robotics! [3] Yay!
- ② Community building started, but still lack of accessibility documentation and exchange
 - Technical accessibility (download)
 - Meta-model documentation and download
 - Use-cases and tutorials
- Robotics DSL Zoo is our idea to . . .
 - ... structure, consolidate and harmonize domain-specific language developments in robotics
 - ... provide a **DSL** "map" for (potential) DSL users
 - ... foster scientific exchange and community building

Conclusion

- **OSLs** are on the rise in robotics! [3] Yay!
- Community building started, but still lack of accessibility, documentation and exchange
 - Technical accessibility (download)
 - Meta-model documentation and download
 - Use-cases and tutorials
- Robotics DSL Zoo is our idea to . . .
 - ... structure, consolidate and harmonize domain-specific language developments in robotics
 - ... provide a **DSL** "map" for (potential) DSL users
 - ... foster scientific exchange and community building

Conclusion

- **1** DSLs are on the rise in robotics! [3] Yay!
- Community building started, but still lack of accessibility, documentation and exchange
 - Technical accessibility (download)
 - Meta-model documentation and download
 - Use-cases and tutorials
- Robotics DSL Zoo is our idea to . . .
 - ... structure, consolidate and harmonize domain-specific language developments in robotics
 - ... provide a **DSL** "map" for (potential) DSL users
 - ... foster scientific exchange and community building

Thank you for your attention!

Arne Nordmann, Sebastian Wrede, Bielefeld University {anordman, swrede} @cor-lab.uni-bielefeld.de

Nico Hochgeschwender, Bonn-Rhein-Sieg University nico.hochgeschwender@h-brs.de

http://cor-lab.org/robotics-dsl-zoo

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

References

Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander, Lennart Kats, Eelco Visser, and Guido Wachsmuth. *DSL Engineering Designing, Implementing and Using Domain-Specific Languages*. 2013.

2013

M. Frigerio, J. Buchli, and D.G. Caldwell.

A Domain Specific Language for Kinematic Models and Fast Implementations of Robot Dynamics Algorithms.

In Workshop on Domain-Specific Languages and models for Robotic systems, 2011.

Arne Nordmann, Nico Hochgeschwender, and Sebastian Wrede. A survey on domain-specific languages in robotics.

International Conference on Simulation, Modeling, and Programming for Autonomous Robots, 2014.