Задача 2

Кирилл Васильевич Новоселов

28 октября 2022 г.

1. Постановка задачи

Решается смешанная задача для уравнения Пуассона :

$$\Delta u = -f,$$

$$x \in \Omega,$$

$$f = \omega^2 (1 + 4y^2) \sin(\omega(x + y^2)) - 2\omega \cos(\omega(x + y^2))$$
(1.1)

с граничными условиями:

$$\begin{array}{ll} u(x,y) = u_{exact}, & \mathbf{x} \in \Gamma_{\mathrm{in}}, \\ u(x,y) = \frac{\partial u_{exact}}{\partial \vec{n}}, & \mathbf{x} \in \Gamma_{\mathrm{out}}, \end{array}$$

где

$$u_{exact} = sin(\omega(x+y^2)),$$

$$\omega = 0.1.$$

Рис. 1.1: Область в которой проводились рассчеты

МКЭ для смешанной задачи **2**.

Так как мы рассматриваем задачу Дирихле на внутренней границе и задачу Неймана на внешней границе, то выберем тестовую функцию

$$v|_{\Gamma_{\rm in}=0,} \tag{2.1}$$

умножим (1.1) на нее и проинтегрируем по Ω

$$-\int_{\Omega} fv dx dy = \int_{\Omega} \Delta uv dx dy =$$

$$= \int_{\Omega} {\rm div}(\nabla uv) dx dy - \int_{\Omega} \nabla u \cdot \nabla v dx dy =$$

$$= \int_{\Gamma_{\text{out}}} \frac{\partial u}{\partial \mathbf{n}} v ds - \int_{\Omega} \nabla u \cdot \nabla v dx dy$$

 $=\int_{\Gamma_{\rm out}}\frac{\partial u}{\partial \mathbf{n}}vds-\int_{\Omega}\nabla u\cdot\nabla vdxdy.$ В итоге, получаем, что нам нужно найти функцию $u\in H^1(\Omega)$, удовлетворяющую слабой постановке задачи

$$\int_{\Omega} \nabla u \cdot \nabla v dx dy = \int_{\Omega} f v dx dy + \int_{\Gamma_{\text{out}}} \frac{\partial u}{\partial \mathbf{n}} v ds. \tag{2.2}$$

3. Адаптация сетки

Для адаптации сетки были выбраны следующие параметры:

Таблица 3.1: Параметры adaptmesh

Параметры adaptmesh	Значение
err	0.01
nbvx	200000
hmin	0.0001
hmax5	0.1

При таких паарметрах получились следующие значения относительной ошибки:

Таблица 3.2: Относительная ошибка при адаптации сетки

	Относительная
	ошибка
Без адаптации	0.0036659
Адаптация 1	0.00391167
Адаптация 2	0.0039602
Адаптация 3	0.0032328
Адаптация 4	0.00110871
Адаптация 5	0.000651272
Адаптация 6	0.000318812

а) Без адаптации.

б) Адаптация 3.

в) Адаптация 5.

Рис. 3.1: Изменение сетки при адаптации.

Так же было сследование поведения численного решения на отрезке с начальной точкой (0, -8) и конечной точкой (0, -6) при адаптации сетки. Полученные кривые представлены на рис. 3.2. Так как относительная ошибка изначально была маленькая, все кривые лежат очень близко друг к другу и хорошо приближают точное решение.

а) Численное решение на отрезке при адаптации сетки

б) Увеличенное изображение

Рис. 3.2: Изменение сетки при адаптации.

4. Выводы

После построения численного решения на адаптированной сетке было установлено, что при адаптации сетки относительная ошибка уменьшается. Однако, при слишком большом количестве итераций адаптации сетки могут возникнуть проблемы, связанные с образованием дырок в сетке, что, в свою очередь, сказывается на точности численного решения.