Assignment 4

Controllo robusto e adattativo

Modello Simulink

Modelli Teorici:MRAC

$$\dot{\tilde{k}} = \gamma_1 \epsilon_1 x \text{sign}(b) = \dot{\hat{k}}$$

Assignment4Sim/Controllore Adattativo					
Differential Equation Editor (Fcn block syntax)					
Name:	Stimatore				
# of inp	its: 1				
First order equations, f(x,u):			x0		
dx/dt=	gammaMRAC*(u(1)^2)	^	0	^	
	Number of states = 1	v	Total = 1	~	
			10tal = 1		
y =	Output Equations, f(x,u): x(1)			^	
				~	
	Help Rebuild Undo		Done		
Status: READY					

Modelli Teorici: 1&1

$$\dot{\hat{a}} = a_m \frac{\partial \beta}{\partial x} x$$

$$u = -a_m x - a_{est} x$$

$$a_{\text{est}} = \hat{a} + \beta(x)$$
 $\dot{z} = -\left(\frac{\partial \beta}{\partial x}x\right)z$

Istruzioni per l'esecuzione

Definizione dei parametri di simulazione tramite script Matlab.

Modificare i collegamenti su Simulink per cambiare gli ingressi e/o aggiungere il disturbo.

È inoltre possibile modificare la funzione Beta nel metodo l&l con i collegamenti opportuni.

```
Assignment4Mat.m
       % Definizione parametri assignment 4
       % Gianluca Coccia 0300085, Alessandro Lomazzo 0294640
       % 01/12/2020
       clearvars
       close all
       clc
       % Parametri sistema
10
       \times 0 = 1:
12
13
       % Parametri variazione a
       amp1 = 1/10:
15
       freg1 = 10:
16
       amp2 = 10:
17
       freg2 = 1/10;
18
19
       % Parametro modello riferimento
20
       am = 1:
21
22
       % Parametri stimatori
23
       gammaMRAC = 1:
24
25
       % Parametri disturbo stato
       ampD = 0.1:
       freaD = 1/5:
```

Simulazioni

Nelle diapositive successive abbiamo preso in analisi i seguenti casi :

- -MRAC stazionario $\gamma = 1.3 + rumore$
- -MRAC ingressi variati
- -l&l stazionario con β_1 , β_2 + rumore
- -I&I ingressi variati per β_1, β_2

 $\gamma=1$ Parametro a costante Simulazione senza rumore quindi

 $x \equiv x_D$ Tempo di convergenza di circa 5 secondi

Parametro a costante Simulazione senza rumore quindi $x \equiv x_D$ Tempo di convergenza di circa 5 secondi, leggera sottoelongazione dell'errore

 $\gamma = 1$

Parametro a costante Simulazione con rumore.

L'errore rimane limitato ma gli stati variano con andamento sinusoidale dovuto al disturbo.

$$\gamma=1$$

Simulazione senza
rumore $x\equiv x_D$, con

$$a(t) = 1 + \frac{1}{10} * sin(10t)$$

Le prestazioni restano buone, molto simili al sistema stazionario data la variazione lieve della a.

$$\gamma = 1$$

Simulazione senza rumore $x \equiv x_D$, con

$$a(t) = 1 + 10 * sin(\frac{t}{10})$$

Le prestazioni peggiorano, con tempo di convergenza di circa 18 secondi. In questo caso la variazione é sostanziale ed e' necessaria un' azione di controllo più forte.

1&1

Parametro a costante

$$\beta = \frac{x^2}{2}$$

Simulazione senza rumore quindi $x \equiv x_D$.

Tempo di convergenza di circa 6 secondi, con azione di controllo più regolare.

1&1

Parametro a costante

$$\beta = \frac{x^2}{2}$$

Simulazione con rumore.

Le stime in questo caso non convergono, ma l'errore resta limitato data la variazione sinusoidale degli stati.

Parametro a costante

$$\beta = \frac{1}{2} + \log(1 + x^2)$$

Simulazione senza rumore quindi $x \equiv x_D$. Anche per questa scelta di β la convergenza è buona, con tempi simili alla β quadratica.

Parametro a costante

$$\beta = \frac{1}{2} + \log(1 + x^2)$$

Simulazione con rumore. Si ottengono risultati simili alla β quadratica, con un errore iniziale leggermente più alto. Anche in questo caso le stime non convergono ma l' errore resta limitato.

Simulazione con

$$a(t) = 1 + \frac{1}{10} * sin(10t)$$

$$\beta = \frac{x^2}{2}$$

Senza rumore quindi

$$x \equiv x_D$$
.

Prestazioni simili al caso a costante, data la lieve variazione temporale.

Simulazione con

$$a(t) = 1 + 10 * sin(\frac{t}{10})$$

$$\beta = \frac{x^2}{2}$$

Senza rumore quindi $x \equiv x_D$.

Prestazioni molto peggiori, con tempo di convergenza di circa 20 secondi e azione di controllo molto più forte, dovute alla variazione ampia del parametro a.

Simulazione con

$$a(t) = 1 + \frac{1}{10} * sin(10t)$$

$$\beta = \frac{1}{2} + \log(1 + x^2)$$

Senza rumore quindi $x \equiv x_D$.

La convergenza è buona con tempo di circa 6 secondi.

Azione di controllo regolare.

Simulazione con

$$a(t) = 1 + 10 * sin(\frac{t}{10})$$

$$\beta = \frac{1}{2} + \log(1 + x^2)$$

Senza rumore quindi $x \equiv x_D$.

In questo caso i tempi sono molto lunghi (circa 20 secondi), con intensità del controllo molto elevata e un picco dell'errore maggiore dei casi precedenti.

