Limpando a Caverna

TL: 2 segundos (~30 casos) ML: 128 MB

Jorge acaba de comprar uma espada com força de ataque **A**. Espadas recém compradas são bem fracas inicialmente e precisam ser melhoradas com itens encontrados apenas em cavernas.

Cada caverna possui **N** câmaras (numeradas de 0 até N-1) que são ligadas por **M** corredores. A entrada da caverna fica na câmara 0 que não possui nenhum item. Todas as outras câmaras possuem cada uma um item diferente que melhora a força de ataque da arma em **a**_i. O problema é que cada corredor possui um monstro level **L** que só pode ser derrotado com uma arma com força de ataque maior que L. Dado uma caverna, Jorge gostaria de saber se é possível pegar todos os itens nela.

Note que não há dois corredores que ligam o mesmo par de camaras e não há corredores que ligam uma câmara a ela mesma. Se a caverna não tivesse nenhum monstro, seria possível chegar a qualquer câmara.

Importante: Para este problema **não** use cin e cout.

Entrada

A entrada é composta por vários casos de teste. A primeira linha de cada caso de teste terá três inteiros \mathbf{N} ($2 \le N \le 10^4$), \mathbf{M} ($N\text{-}1 \le M \le 10^4$) e $\mathbf{A}(1 \le A \le 10^3)$ indicando o número de câmaras e o número de corredores. A segunda linha terá N-1 inteiros sendo que o i-ésimo inteiro indica o poder de melhora $\mathbf{a_i}$ ($1 \le \mathbf{a_i} \le 10^4$) do item que está na caverna i. Cada uma das \mathbf{M} próximas linhas terão 3 inteiros \mathbf{A} , $\mathbf{B}(0 \le A, \mathbf{B} \le N\text{-}1)$, e $\mathbf{L}(1 \le L \le 10^8)$ com as informações de cada corredor. Esses inteiros indicam as câmaras que o corredor liga e o nível do monstro que está nele.

Saída

Para cada caso de teste imprima "SIM" se é possível pegar todos os itens e "NAO" se não é possível.

Exemplos

D (1 1 M)	0 (1 1 75)
Entrada de Teste	Saída de Teste
4 3 3	SIM
1 4 1	NAO
0 1 2	
123	
1 3 6	
4 4 3	
2 2 10	
0 1 2	
0 2 10	
1 2 3	
1 3 7	