Présentation Laboratoire Polarisation des ondes

Groupe 11.64

Ecole polytechnique de Louvain

8 octobre 2015

Trouver l'indice de réfraction de la lucite

Salut cite

Angle d'incidence	Angle de réflexion (θ_a)	Angle de réfraction (θ_b)
0	0	0
10	10	7
20	20	14
30	30	20
40	40	26
50	50	31.5
60	60	36
70	70	39
80	80	41.5

Par la relation $\frac{n_b}{n_a} = \frac{\sin(\theta_a)}{\sin(\theta_b)}$ on trouve que $n_b^{-1} = 1.4$

L'angle de réflexion total et l'angle de Brewster

total excellium

C'est l'angle a partir duquel le faisceau n'est plus du tout réfracté et est totalement réfléchi.

$$\sin(\theta_{crit}) = \frac{n_b}{n_a}$$

Donc

$$heta_{crit} = asin(rac{n_a}{n_b})$$
 $heta_{crit} = 45$

L'angle de **Brewster** est l'angle à partir duquel l'onde réfléchie s'annule pour une onde incidente polarisée parallèlement au plan d'incidence.

$$\tan(\theta_p) = \frac{nb}{na}$$
$$\theta_p = 55.6 \deg$$

Par contre pour une onde polarisée perpendiculairement au plan d'incidence, la réflectance n'est pas nulle à l'ange de Brewster.

Polarisation du faisceau réfléchi en fonction de l'angle d'incidence

le faisceau spatial

Le laser est incliné et polarisé à 45 degré. Nous mesurons l'état de polarisation du faisceau réfléchi.

•		
Angle d'incidence	Etat de polarisation ²	
10	45	
20	40	
30	35	
40	20	
50	10	
55	0	
60	(-)5	
70	(-)5	

On remarque qu'à l'angle de **Brewster** le faisceau est polarisé à 0 degré (vertical), et que passé cet angle, le faisceau reste polarisé proche de 0 degré.

^{2.} par rapport a la verticale)

