PROYECTO FINAL

Modelo de Machine Learning para predecir el éxito en el Saber Pro según el Saber 11

Contexto colombiano

Objetivo

Crear un árbol de decisión que identifica qué influencia el éxito de un estudiante en Colombia en el Saber Pro según el Saber 11.

¿CÓMO MEDIREMOS EL ÉXITO ACADÉMICO?

La probabilidad que tiene un estudiante de obtener un puntaje total, superior al promedio de su cohorte, en la pruebas Saber Pro.

Datos analizados

¿QUÉ SON?

Resultados del Saber 11 y Saber Pro del 2014 al 2019.

VARIABLES

Socioeconómicas

Nivel de educación de los padres Número de televisores en la casa Género Horas que pasa en internet

...

Resultados de cada área del Saber 11:

Ciencias sociales Matemáticas Inglés

*Estos datos están disponibles online en la página del ICFES

¿Cómo abordar este reto?

LECTURA Y ALMACENAMIENTO DE DATOS

Conjunto de datos n*m.

Recomendación:

Usar estructura de datos con baja complejidad para acceder. Matriz, libreria de librerias, ...

MÉTODOS AUXILIARES

Para tomar decisiones sobre cuando partir los datos.

ÁRBOL DE DECISIÓN

Investigar sobre los diferentes algoritmos y elegir el que te guste más.

Entradas y salidas

TRAINING (ENTRENAR)

TESTING (PROBAR)

Árbol de decisión

TRAINING (ENTRENAMIENTO)

Este paso depende del algoritmo que uses.

En general, en cada nodo se determina cuál variable nos reduce la incertidumbre.

TESTING (CLASIFICACIÓN DE NUEVOS DATOS)

Se pasa un set de datos nuevo y se divide según cada nodo hasta llegar a las hojas.

Algoritmo CART

ÁRBOL DE CLASIFICACIÓN Y REGRESIÓN

ÁRBOL BINARIO CON NODOS DE DECISIÓN Y HOJAS

LA IMPUREZA DE GINI COMO CRITERIO DE DECISIÓN

Puntaje en ciencias sociales

> >= 52.0

Probabilidad de éxito: 94%

Impureza de gini

Es una medida de qué tanto un elemento escogido aleatoriamente del conjunto de datos se clasificará con la etiqueta incorrecta.

PROPORCIÓN VERDADERO

$$p1 = n1/(n0 + n1)$$

PROPORCIÓN FALSO

$$p0 = n0 / (n0 + n1)$$

IMPUREZA DERECHA (ID)

$$ID = 1 - (p0^2 + p1^2)$$

IMPUREZA IZQUIERDA (II)

$$II = 1 - (p0^2 + p1^2)$$

IMPUREZA PONDERADA (IP)

$$IP = (n1 * II + n0*ID) / (n1 + n0)$$

Impureza de gini

Condición

IMPUREZA PONDERADA (IP)

$$IP = (n1 * II + n0*ID) / (n1 + n0)$$

$$IP = (6 * 0.44 + 2*0.5) / (2+6)$$

$$IP = 0.455$$

IMPUREZA IZQUIERDA (II)

$$II = 1 - (p0^2 + p1^2)$$

$$II = 1 - ((4/6)^2 + (2/6)^2)$$

$$II = 0.44$$

 $\begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

) 1

Falso

IMPUREZA DERECHA (ID)

$$II = 1 - (p0^2 + p1^2)$$

$$II = 1 - ((1/2)^2 + (1/2)^2)$$

$$II = 0.55$$

Posibles aplicaciones

Usando el algoritmo en situaciones de la vida actual.

OTORGAR BECAS

Quitando los factores socioeconomicos del dataset.

CRITERIA PARA ENTRAR A LA UNIVERSIDAD

Quitando los factores socioeconomicos del dataset.

DECIDIR SECTORES DE INVERSIÓN

CERRAR BRECHAS SOCIALES QUE AFECTAN EL ÉXITO

14 DE SEPTIEMBRE

Entregas

Mandar los equipos en un pdf (equipos de 3) Enviar las dudas generales del proyecto Entrada de datos

1 DE OCTUBRE

Diseño preliminar del código (qué algoritmo usarán) en el escrito

Carga de datos (si hubo correcciones)

Adelantar métodos auxiliares

2 DE NOVIEMBRE

Enviar el escrito Código (lo que lleven, ojalá terminado)

16 DE NOVIEMBRE

Semana de presentaciones Última versión del código Última versión del escrito

Puntos extra

INGLÉS

Entregar el escrito, el código y presentar en inglés.

UN PASO MÁS ALLÁ

Crear un bosque aleatorio (investigar sobre el tema). Esto mejora la certeza del algoritmo.

Incluido en la entrega final

ASISTIR A MONITORÍAS (5%)

Al menos una vez hayan asistido las tres personas del equipo.

DETERMINAR CUÁL ES LA CERTEZA DEL ALGORITMO

Incluir matriz de confusión. Decir qué factores afectan esta certeza.

MOSTRAR EL ÁRBOL QUE SE CREA

Imprimir una cadena y meterla en un software para visualizarlo.

Probar el árbol con diferentes profundidades de recursión.

PERFIL DE TIEMPO Y DE COMPLEJIDAD

Según las diferentes profundidades de recursión (probar al menos 4).