

Data Mining

Practical Machine Learning Tools and Techniques

Slides for Chapter 6 of *Data Mining* by I. H. Witten, E. Frank and M. A. Hall

Part 2

Implementation:

Real machine learning schemes

- 6.8 Clustering: hierarchical, incremental, probabilistic
 - Hierarchical, incremental, probabilistic, Bayesian
- 6.9 Semisupervised learning
 - Clustering for classification, co-training

Clustering: how many clusters?

- How to choose *k* in *k*-means? Possibilities:
 - Choose *k* that minimizes cross-validated squared distance to cluster centers
 - Use penalized squared distance on the training data (eg. using an MDL criterion)
 - Apply k-means recursively with k = 2 and use stopping criterion (eg. based on MDL)
 - Seeds for subclusters can be chosen by seeding along direction of greatest variance in cluster (one standard deviation away in each direction from cluster center of parent cluster)
 - Implemented in algorithm called *X*-means (using Bayesian Information Criterion instead of MDL)

Hierarchical clustering

- Recursively splitting clusters produces a hierarchy that can be represented as a *dendogram*
 - Could also be represented as a Venn diagram of sets and subsets (without intersections)
 - Height of each node in the dendogram can be made proportional to the dissimilarity between its children

Agglomerative clustering

- Bottom-up approach
- Simple algorithm
 - Requires a distance/similarity measure
 - Start by considering each instance to be a cluster
 - Find the two closest clusters and merge them
 - Continue merging until only one cluster is left
 - The record of mergings forms a hierarchical clustering structure – a binary dendogram

Distance measures

- Single-linkage
 - Minimum distance between the two clusters
 - Distance between the clusters closest two members
 - Can be sensitive to outliers
- Complete-linkage
 - Maximum distance between the two clusters
 - Two clusters are considered close only if all instances in their union are relatively similar
 - Also sensitive to outliers
 - Seeks compact clusters

Distance measures cont.

- Compromise between the extremes of minimum and maximum distance
- Represent clusters by their centroid, and use distance between centroids *centroid linkage*
 - Works well for instances in multidimensional Euclidean space
 - Not so good if all we have is pairwise similarity between instances
- Calculate average distance between each pair of members of the two clusters *average-linkage*
- Technical deficiency of both: results depend on the numerical scale on which distances are measured

More distance measures

- Group-average clustering
 - Uses the average distance between all members of the merged cluster
 - Differs from average-linkage because it includes pairs from the same original cluster
- Ward's clustering method
 - Calculates the increase in the sum of squares of the distances of the instances from the centroid before and after fusing two clusters
 - Minimize the increase in this squared distance at each clustering step
- All measures will produce the same result if the clusters are compact and well separated

The University of Waikato Example hierarchical clustering

• 50 examples of different creatures from the zoo data

Example hierarchical clustering 2

Single-linkage

Incremental clustering

- Heuristic approach (COBWEB/CLASSIT)
- Form a hierarchy of clusters incrementally
- Start:
 - tree consists of empty root node
- Then:
 - add instances one by one
 - update tree appropriately at each stage
 - to update, find the right leaf for an instance
 - May involve restructuring the tree
- Base update decisions on category utility

Clustering weather data

ID	Outlook	Temp.	Humidity	Windy
Α	Sunny	Hot	High	False
В	Sunny	Hot	High	True
С	Overcast	Hot	High	False
D	Rainy	Mild	High	False
Е	Rainy	Cool	Normal	False
F	Rainy	Cool	Normal	True
G	Overcast	Cool	Normal	True
Н	Sunny	Mild	High	False
I	Sunny	Cool	Normal	False
J	Rainy	Mild	Normal	False
K	Sunny	Mild	Normal	True
L	Overcast	Mild	High	True
М	Overcast	Hot	Normal	False
N	Rainy	Mild	High	True

Clustering weather data

ID	Outlook	Temp.	Humidity	Windy
Α	Sunny	Hot	High	False
В	Sunny	Hot	High	True
С	Overcast	Hot	High	False
D	Rainy	Mild	High	False
Е	Rainy	Cool	Normal	False
F	Rainy	Cool	Normal	True
G	Overcast	Cool	Normal	True
Н	Sunny	Mild	High	False
I	Sunny	Cool	Normal	False
J	Rainy	Mild	Normal	False
K	Sunny	Mild	Normal	True
L	Overcast	Mild	High	True
М	Overcast	Hot	Normal	False
N	Rainy	Mild	High	True

Consider *splitting* the best host if merging doesn't help

Final hierarchy

14

Example: the iris data (subset)

Clustering with cutoff

Category utility

 Category utility: quadratic loss function defined on conditional probabilities:

$$CU(C_1, C_2, ..., C_k) = \frac{\sum_{l} Pr[C_l] \sum_{i} \sum_{j} (Pr[a_i = v_{ij} | C_l]^2 - Pr[a_i = v_{ij}]^2)}{k}$$

Every instance in different category ⇒
 numerator becomes

Numeric attributes

Assume normal distribution:

$$f(a) = \frac{1}{\sqrt{(2\pi)}\sigma} \exp\left(-\frac{(a-\mu)^2}{2\sigma^2}\right)$$

• Then:

$$\sum_{j} Pr[a_i = v_{ij}]^2 \equiv \int f(a_i)^2 da_i = \frac{1}{2\sqrt{\pi}\sigma_i}$$

• Thus $CU(C_1, C_2, ..., C_k) = \frac{\sum_{l} Pr[C_l] \sum_{i} \sum_{j} (Pr[a_i = v_{ij} | C_l]^2 - Pr[a_i = v_{ij}]^2)}{k}$

$$CU(C_1, C_2, \dots, C_k) = \frac{\sum_{l} Pr[C_l] \frac{1}{2\sqrt{\pi}} \sum_{i} \left(\frac{1}{\sigma_i} - \frac{1}{\sigma_i}\right)}{k}$$

- Prespecified minimum variance
 - acuity parameter

Probability-based clustering

- Problems with heuristic approach:
 - Division by k?
 - Order of examples?
 - Are restructuring operations sufficient?
 - Is result at least *local* minimum of category utility?
- Probabilistic perspective ⇒ seek the *most likely* clusters given the data
- Also: instance belongs to a particular cluster with a certain probability

Finite mixtures

- Model data using a *mixture* of distributions
- One cluster, one distribution
 - governs probabilities of attribute values in that cluster
- Finite mixtures: finite number of clusters
- Individual distributions are normal (usually)
- Combine distributions using cluster weights

Two-class mixture model

data

model

$$\mu_{\Delta} = 50, \ \sigma_{\Delta} = 5, \ p_{\Delta} = 0.6$$

$$\mu_{A}=50$$
, $\sigma_{A}=5$, $p_{A}=0.6$ $\mu_{B}=65$, $\sigma_{B}=2$, $p_{B}=0.4$

Using the mixture model

• Probability that instance x belongs to cluster A:

$$Pr[A|x] = \frac{Pr[x|A]Pr[A]}{Pr[x]} = \frac{f(x;\mu_A,\sigma_A)p_A}{Pr[x]}$$

with

$$f(x;\mu,\sigma)=\frac{1}{\sqrt{(2\pi)}\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

Probability of an instance given the clusters:

$$Pr[x|\text{the_clusters}] = \sum_{i} Pr[x|\text{cluster}_{i}] Pr[cluster_{i}]$$

Learning the clusters

- Assume:
 - we know there are k clusters
- Learn the clusters \Rightarrow
 - determine their parameters
 - I.e. means and standard deviations
- Performance criterion:
 - probability of training data given the clusters
- EM algorithm
 - finds a local maximum of the likelihood

EM algorithm

- EM = Expectation-Maximization
 - Generalize *k*-means to probabilistic setting
- Iterative procedure:
 - E "expectation" step: Calculate cluster probability for each instance
 - M "maximization" step: Estimate distribution parameters from cluster probabilities
- Store cluster probabilities as instance weights
- Stop when improvement is negligible

More on EM

Estimate parameters from weighted instances

$$\mu_A = \frac{w_1 x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n}$$

$$\sigma_A = \frac{w_1(x_1 - \mu)^2 + w_2(x_2 - \mu)^2 + \dots + w_n(x_n - \mu)^2}{w_1 + w_2 + \dots + w_n}$$

- Stop when log-likelihood saturates
- Log-likelihood:

$$\sum_{i} \log(p_{A} Pr[x_{i}|A] + p_{B} Pr[x_{i}|B])$$

Extending the mixture model

- More then two distributions: easy
- Several attributes: easy—assuming independence!
- Correlated attributes: difficult
 - Joint model: bivariate normal distribution with a (symmetric) covariance matrix
 - n attributes: need to estimate n + n (n+1)/2 parameters

More mixture model extensions

- Nominal attributes: easy if independent
- Correlated nominal attributes: difficult
 - Two correlated attributes $\Rightarrow v_1 v_2$ parameters
- Missing values: easy
- Can use other distributions than normal:
 - "log-normal" if predetermined minimum is given
 - "log-odds" if bounded from above and below
 - Poisson for attributes that are integer counts
- Use cross-validation to estimate *k*!

Bayesian clustering

- Problem: many parameters ⇒ EM overfits
- Bayesian approach: give every parameter a prior probability distribution
 - Incorporate prior into overall likelihood figure
 - Penalizes introduction of parameters
- Eg: Laplace estimator for nominal attributes
- Can also have prior on number of clusters!
- Implementation: NASA's AUTOCLASS

Discussion

- Can interpret clusters by using supervised learning
 - post-processing step
- Decrease dependence between attributes?
 - pre-processing step
 - E.g. use principal component analysis
- Can be used to fill in missing values
- Key advantage of probabilistic clustering:
 - Can estimate likelihood of data
 - Use it to compare different models objectively

WEKA The University of Waikato Semisupervised learning

- Semisupervised learning: attempts to use unlabeled data as well as labeled data
 - The aim is to improve classification performance
- Why try to do this? Unlabeled data is often plentiful and labeling data can be expensive
 - Web mining: classifying web pages
 - Text mining: identifying names in text
 - Video mining: classifying people in the news
- Leveraging the large pool of unlabeled examples would be very attractive

Clustering for classification

- Idea: use naïve Bayes on labeled examples and then apply EM
 - First, build naïve Bayes model on labeled data
 - Second, label unlabeled data based on class probabilities ("expectation" step)
 - Third, train new naïve Bayes model based on all the data ("maximization" step)
 - Fourth, repeat 2nd and 3rd step until convergence
- Essentially the same as EM for clustering with fixed cluster membership probabilities for labeled data and #clusters = #classes

- Has been applied successfully to document classification
 - Certain phrases are indicative of classes
 - Some of these phrases occur only in the unlabeled data, some in both sets
 - EM can generalize the model by taking advantage of co-occurrence of these phrases
- Refinement 1: reduce weight of unlabeled data
- Refinement 2: allow multiple clusters per class

University Vaikato Co-training

- Method for learning from *multiple views* (multiple sets of attributes), eg:
 - First set of attributes describes content of web page
 - Second set of attributes describes links that link to the web page
- Step 1: build model from each view
- Step 2: use models to assign labels to unlabeled data
- Step 3: select those unlabeled examples that were most confidently predicted (ideally, preserving ratio of classes)
- Step 4: add those examples to the training set
- Step 5: go to Step 1 until data exhausted
- Assumption: views are independent

33

EM and co-training

- Like EM for semisupervised learning, but view is switched in each iteration of EM
 - Uses all the unlabeled data (probabilistically labeled) for training
- Has also been used successfully with support vector machines
 - Using logistic models fit to output of SVMs
- Co-training also seems to work when views are chosen randomly!
 - Why? Possibly because co-trained classifier is more robust