1. Review: Classical Logic

Reading: The Handbook, Chapter 1.

In Problems 1.1-1.5, we consider propositional logic.

1.1 (a) Find a formula F of the signature $\{p, q, r\}$ such that (1) is the only interpretation satisfying F.

$$\begin{array}{c|cccc}
p & q & r \\
\hline
f & f & t
\end{array}$$
(1)

(b) Find a formula F of the signature $\{p,q,r\}$ whose truth table is

p	q	$\mid r \mid$	$\mid F \mid$
f	f	f	f
f	f	t f	t
f	t	f	f f
f	t	t	f
t	t f f	t f	t
t	f	t f	t f
t	t	f	f
t	t	t	f

In the following two problems, we assume that the underlying signature is finite: $\sigma = \{p_1, \dots, p_n\}$.

- **1.2**^e Prove this: For any interpretation I, there exists a formula F such that I is the only interpretation satisfying F.
- 1.3° Prove this: For any function α from interpretations to truth values, there exists a formula F such that, for all interpretations I, $F^I = \alpha(I)$.
- **1.4** Prove this: A set $\{F_1, \ldots, F_n\}$ is unsatisfiable iff $\neg (F_1 \land \cdots \land F_n)$ is a tautology.
- **1.5** Prove this: For any set Γ of formulas and any formula F, $\Gamma \models F$ iff the set $\Gamma \cup \{\neg F\}$ is unsatisfiable.

In Problems 1.6–1.9 we consider first-order logic.

Let σ be the signature $\{a, P, Q\}$ where a is an object constant, P is a unary predicate constant, and Q is a binary predicate constant. Let I be the following interpretation:

$$|I| = \mathbf{N},$$

$$a^{I} = 10,$$

$$P^{I}(n) = \begin{cases} \mathsf{t}, & \text{if } n \text{ is prime,} \\ \mathsf{f}, & \text{otherwise,} \end{cases}$$

$$Q^{I}(m, n) = \begin{cases} \mathsf{t}, & \text{if } m < n, \\ \mathsf{f}, & \text{otherwise.} \end{cases}$$

$$(2)$$

1.6 Represent the following English sentence by a first-order formula of signature σ and prove that I satisfies it.

There are infinitely many prime numbers.

- 1.7 Determine whether the following set of sentences is satisfiable.
- (a) P(a), $\exists x \neg P(x)$.
- (b) P(a), $\forall x \neg P(x)$.
- (c) $\forall x \exists y P(x, y), \forall x \neg P(x, x), \forall x y z ((P(x, y) \land P(y, z)) \rightarrow P(x, z)).$

Recall that the *transitive closure* of Q of a binary relation P on a set X is the smallest *transitive relation* on X that contains P. In the following we will prove that transitive closure cannot be expressed in first-order logic, even using infinitely many formulas. We will assume the following fact, known as the *compactness theorem* for first-order logic, without proving it.

Compactness Theorem. For any set Γ of first-order formulas, if every finite subset of Γ is satisfiable then Γ is satisfiable also.

In the following two problems, we assume that Γ is a set of sentences of the signature consisting of binary predicate constants P, Q, such that an interpretation I of that signature is a model of T iff Q^I is the transitive closure of P^I . Let Δ be the following set of formulas:

- 1. Γ
- 2. $\forall xy(P(x,y) \leftrightarrow y = f(x)),$

- 3. $\forall x(x = a \lor Q(a, x)),$
- 4. $\neg (b = a), \neg (b = f(a)), \neg (b = f(f(a))), \dots$
- 1.8 Show that Δ is unsatisfiable.
- **1.9** Show that every finite subset of Δ is satisfiable.

These two statements are in conflict with the compactness theorem. Consequently, Γ does not exist.