PRÓ-REITORIA DE GRADUAÇÃO - PROGRAD DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA - DCET I

LICENCIATURA EM FÍSICA FI0023 - CÁLCULO II APLICADO À FÍSICA

DIFERENCIAL EQUATIONS (ED'S) EXERCISES

1. BASIC CONCEPTS	2. SOLUTIONS
1.1 Determine para cada uma das seguintes equações diferenciais (i)ordem,(ii)grau (se possível), (iii) linearidade,	2.1 Determine a solução para as seguintes equações diferenciais. a) $\tilde{\nu} - \nu = 0$
(iv) função incognita, (v) variável independente.	b)
a)	$y``-4y`+4y=e^x$
$(y'')^2 - 3yy' + xy = 0$	2.2 Nos problemas a seguir determine C1 e C2 de modo que $y(x) = C1.sen(x) + C2.cos(x)$
$x^4y^{(4)} + xy^{\text{``}} = e^x$	satisfaça as condições dadas. Determine se tais condições são iniciais
$t^2\ddot{s} - t\dot{s} = 1 - sen(t)$	ou de contorno.
$y^{(4)} + xy^{"} + xy^{"} - xy^{"} + sen(y) = 0$	y(0) = 1, y(0) = 2
$\frac{d^n x}{dy^n} = y^2 + 1$	y(0) = 2, y(0) = 1
ay"	$y(\frac{\pi}{2}) = 1, y'(\frac{\pi}{2}) = 1$
3. ED'S DE PRIMEIRA ORDEM SEPARÁVEIS	4. ED'S DE PRIMEIRA ORDEM HOMOGÊNEAS
3.1 Resolva as seguintes equações. a) $xdx + ydy = 0$	4.1 Resolva as seguintes equações caso sejam homogêneas.
b)	$y' = \frac{y-x}{x}$
$\frac{1}{x}dx - \frac{1}{y}dy = 0$	$y' = \frac{2y + x}{x}$
$\frac{1}{x}dx + dy = 0$	$y' = \frac{x^2 + 2y^2}{xy}$
$xdx + \frac{1}{y}dy = 0$	d)
$(x^{2}+1)dx + \frac{1}{y}dy = 0 \dots y(-1) = 1$	$y = \frac{2x + y^2}{xy}$
у	$y = \frac{x^2 + y^2}{2xy}$
5. EDS DE PRIMEIRA ORDEM EXATAS	6. FATORES INTEGRANTES
5.1 Resolva as seguintes equações caso sejam exatas. a)	6.1 Determine o fator integrante apropriado para cada quesito.
$(2xy + x)dx + (x^2 + y)dy = 0$	$(y+1)\mathrm{d}x-xdy=0$

$$(y + 2xy^{3})dx + (1 + 3x^{2}y^{2} + x)dy = 0$$

$$ye^{xy}dx + xe^{xy}dy = 0$$

$$xe^{xy}dx + ye^{xy}dy = 0$$

$$3x^{2}y^{2}dx + (2x^{3}y + 4y^{3})dy = 0$$

$$ydx + (1 - x)dy = 0$$

$$(x^{2} + y + y^{2})dx - xdy = 0$$

$$(y + x^{3}y^{3})dx + xdy = 0$$

$$(y + x^{4}y^{2})dx + xdy = 0$$

BIBLIOGRAFIA BÁSICA:

- J. Stewart. Calculo: volume 1. Sao Paulo: Cengage Learning, 2016.
- G.B. Thomas, R. L. Finney, M. D. Weir, F. R. Giordano. Cálculo, Volumes 1 e 2. Editora Pearson Education do Brasil, São Paulo, 2002.
- W. E. Boyce, R. C. Di Prima. Equações Diferenciais Elementares e Problemas de Valores de Contorno, Editora LTC, Rio de Janeiro, 1996.
- M. Munen, D. Foulis. Cálculo, Volume 1. Editora LTC, Rio de Janeiro, 1982.
- H. L. Guidorizzi. Um Curso de Cálculo, Volume 1. Editora LTC, Rio de Janeiro, 2001.
- D. M. Flemming, M. B. Gonçalves. Cálculo A: Funções, limites, derivação e integração. Editora Pearson Prentice Hall, São Paulo, 2007.
- N. Piskunov. Cálculo Diferencial e Integral, Volumes 1 e 2. Editora livraria Lopes da Silva, Porto, 1986.

Colegiado de Licenciatura em Física Rua Silveira Martins nº 2555 - Cabula Salvador - BA - 41150-000 Fone / Fax: (71) 3117 2312 E-mail: Invandrade@uneb.br

Home

2 of 2 6/21/2018 10:35 PM