Table-based Fact Verification _{彭凯龙}

Introduction

United States House of Representatives Elections, 1972

District	Incumbent	Party	Result	Candidates
California 3	John E. Moss	democratic	re-elected	John E. Moss (d) 69.9% John Rakus (r) 30.1%
California 5	Phillip Burton	democratic	re-elected	Phillip Burton (d) 81.8% Edlo E. Powell (r) 18.2%
California 8	George Paul Miller	democratic	lost renomination democratic hold	Pete Stark (d) 52.9% Lew M. Warden , Jr. (r) 47.1%
California 14	Jerome R. Waldie	republican	re-elected	Jerome R. Waldie (d) 77.6% Floyd E. Sims (r) 22.4%
California 15	John J. Mcfall	republican	re-elected	John J. Mcfall (d) unopposed
	Entailed St	atement		Refuted Statement

Entailed Statement

- 1. John E. Moss and Phillip Burton are both re-elected in the house of representative election.
- 2. John J. Mcfall is unopposed during the re-election.
- 3. There are three different incumbents from democratic.

John E. Moss and George Paul Miller are both re-elected in the house of representative election.

- 2. John J. Mcfall failed to be re-elected though being unopposed.
- There are five candidates in total, two of them are democrats and three of them are republicans.

Related work:

- Natural Language Inference & Reasoning
- Table Question Answering
- Program Synthesis & Semantic Parsing
- Fact Checking

TABFACT: A LARGE-SCALE DATASET FOR TABLE-BASED FACT VERIFICATION

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, William Yang Wang University of California, Santa Barbara, CA, USA Tencent AI Lab, Bellevue, WA, USA

TAB-FACT Verification Dataset

- Extract 16K tables from WikiTables with captions
- Manually annotated 118K statements classified as ENTAILED and REFUTED
- Less than 50 rows and 10 columns
- Overly complicated tables were filtered out (e.g. multirow, multicolumn, latex symbol)

Positive two-channel annotation:

- Simple channel:
 - corresponding to a single row/record in the table with unary fact mention the cell values without dramatic modification or paraphrasing
- Complex channel:
 - involving multiple rows in the tables with higher-order semantics rephrase the table records to involve more semantic understanding

Negative rewriting

rewrite the collected entailed statements retain the sentence style/length to prevent artificial cues

TAB-FACT Verification Dataset

Proportion of different Higher-order Operations

Figure 2: Proportion of different higher-order operations from the simple/complex channels.

Channel	#Sentence	#Table	Len(Ent)	Len(Ref)	Split	#Sentence	Table	Row	Col
Simple Complex	50,244 68,031	9,189 7,392	13.2 14.2	13.1 14.2	Train Val	92,283 12,792	13,182 1,696	14.1 14.0	5.5 5.4
Total	118,275	16,573	13.8	13.8	Test	12,779	1,695	14.2	5.4

- Dataset (T, S, L): Table $\mathbf{T} = \{T_{i,j} | i \leq R_T, j \leq C_T\}$, Statement $S = s_1, \dots, s_n$, Label $L \in \{0,1\}$
- Entity link
 longest string match
 minimum edit distance
- Do not feed the caption to the model

District	Incumbent	Party	Result	Candidates
California 3	John E. Moss	democratic	re-elected	John E. Moss (d) 69.9% John Rakus (r) 30.1%
California 5	Phillip Burton	democratic	re-elected	Phillip Burton (d) 81.8% Edlo E. Powell (r) 18.2%
california 8	George Paul Miller	democratic	lost renomination democratic hold	Pete Stark (d) 52.9% Lew M. Warden , Jr. (r) 47.1%
California 14	Jerome R. Waldie	republican	re-elected	Jerome R. Waldie (d) 77.6% Floyd E. Sims (r) 22.4%
California 15	John J. Mcfall	republican	re-elected	John J. Mcfall (d) unopposed

Statement: John E. Moss is a democratic who is from California 3 district

Two models:

- Latent Program Algorithm (LPA)
- TABLE-BERT

Latent Program Algorithm (LPA)

Formulate the table fact verification as a program synthesis problem

- 1. Latent program search
- 2. Discriminator ranking

1. Latent program search

parse the statement into programs

- define the plausible API set with 50 functions
- use trigger words to prune the API set

Trigger	Function
'average'	average
'difference', 'gap', 'than', 'separate'	diff
'sum', 'summation', 'combine', 'combined', 'total', 'add', 'all', 'there are'	ddd, sum
'not', 'no', 'never', "didn't", "won't", "wasn't", "isn't, "haven't", "weren't", "won't", 'neither', 'none', 'unable, 'fail', 'different', 'outside', 'unable', 'fail'	not_eq, not_within, Filter_not_eq, none
'not', 'no', 'none'	none
'first', 'top', 'latest', 'most'	first
'last', 'bottom', 'latest', 'most'	last
'R R', 'JJR', 'more', 'than', 'above', 'after'	filter_greater, greater
'RBR', 'JJR', 'less', 'than', 'below', 'under'	filter_less, less
'all', 'every', 'each'	all_eq, all_less, all_greater,

Name	Arguments	Output
Count	View	Number
Within	View, Header String, Cell String/Number	Bool
Without	View, Header String, Cell String/Number	Bool
None	String	Bool
Before/After	Row, Row	Row
First/Second/Third/Fourth	View, Row	Bool
Average/Sum/Max/Min	View, Header String	Number
Argmin/ Argmax	View, Header String	Row
Нор	Row, Header String	Number/ String
Diff/Add	Number, Number	Number
Greater/Less	Number, Number	Bool
Equal/ Unequal	String, String/ Number, Number	Bool

Latent Program Algorithm (LPA)

Algorithm 1 Latent Program Search with Comments

25: Return the triple (T, S, P) # Return (Table, Statement, Program Set)

```
1: Initialize Number Cache \mathcal{N}, String Cache \mathcal{R}, Bool Cache \mathcal{B}, View Cache \mathcal{V} \to \emptyset
 2: Push linked numbers, strings from the given statement S into \mathcal{N}, \mathcal{R}, and push T into \mathcal{V}
 3: Initialize the result collector \mathcal{P} \to \emptyset and an empty program trace P = \emptyset
 4: Initialize the Queue Q = [(P, \mathcal{N}, \mathcal{R}, \mathcal{B}, \mathcal{V})], we use Q to store the intermediate states
 5: Use trigger words to find plausible function set F, for example, more will trigger Greater function.
 6: while loop over time t = 1 \rightarrow MAXSTEP do:
          while (P, \mathcal{N}, \mathcal{R}, \mathcal{B}, \mathcal{V}) = \mathcal{Q}.pop() do:
 7:
 8:
              while loop over function set f \in \mathcal{F} do:
 9:
                   if arguments of f are in the caches then
10:
                        Pop out the required arguments arg_1, arg_2, \cdots, arg_n for different cachess.
11:
                        Execute A = f(arg_1, \dots, arg_n) and concatenate the program trace P.
12:
                        if Type(A)=Bool then
13:
                             if \mathcal{N} = \mathcal{S} = \mathcal{B} = \emptyset then
14:
                                  \mathcal{P}.push((P,A)) # The program P is valid since it consumes all the variables.
15:
                                  P = \emptyset # Collect the valid program P into set P and reset P
16:
                                  \mathcal{B}.push(A) # The intermediate boolean value is added to the bool cache
17:
18:
                                  Q.push((P, \mathcal{N}, \mathcal{R}, \mathcal{B}, \mathcal{V})) # Add the refreshed state to the queue again
19:
                        if Type(A) \in {Num, Str, View} then
                             if \mathcal{N} = \mathcal{S} = \mathcal{B} = \emptyset then
20:
                                  P = \emptyset:break # The program ends without consuming the cache, throw it.
21:
22:
23:
                                 push A into \mathcal{N} or \mathcal{S} or \mathcal{V} # Add the refreshed state to the queue for further search
24:
                                  Q.push((P, \mathcal{N}, \mathcal{R}, \mathcal{B}, \mathcal{V}))
```


Get potential program candidate

$$\mathcal{P} = \{(P_1, A_1), \cdots, (P_n, A_n)\}$$

Latent Program Algorithm (LPA)

2. Discriminator

• weakly supervised training algorithm:

viewing all the label-consistent programs $\{P_i|(P_i,A_i);A_i=L\}$ as positive instances

Transformer-based encoder:

$$Enc^P(P) \in \mathbb{R}^{m \times D}$$

$$Enc^S(S) \in \mathbb{R}^{n \times D}$$

Concatenated both [CLS] output

Less(Count(Filter(incumbent==republican)), Count(Filter(incumbent==democratic)))=True
Greater(Count(Filter(incumbent==republican)), Count(Filter(incumbent==democratic)))=False
Greater(Count(Filter(incumbent==democratic)), Count(Filter(incumbent==republican)))=True
Within((Filter(incumbent==democratic), incumbent, republican)=False
Within((Filter(incumbent==republican)), incumbent, democratic)=False
And(Same(all_rows, incumbent, democratic), Same(all_rows, incumbent, republican))=True
Or(Same(all_rows, incumbent, democratic), Same(all_rows, incumbent, republican))=True
Eq(Count(Filter(incumbent==republican)), Count(Filter(incumbent==democratic)))=False

Statement: There are more democratic than republican in the election.

Less(Count(Filter(incumbent==democratic)), Count(Filter(incumbent==republican)))=False

Program Encoder Statement Encoder

Linear projection layer:

$$p_{\theta}(S, P) = \sigma(v_p^T[Enc^S(S); Enc^P(P)])$$

Aggregate with weights or rank the highest-confident

TABLE-BERT

Two-sequence binary classification problem

- 1. linearizing a table ${\bf T}$ into a sequence $\widetilde{{\bf T}}$ only retaining the columns containing entities linked to the statement
- (1) Concatenation
- (2) Template
- 2. concatenate $\widetilde{\mathbf{T}}$ with \mathbf{S}

$$H = f_{BERT}([\tilde{\mathbf{T}}, S])$$
$$p_{\theta}(\tilde{\mathbf{T}}, S) = \sigma(f_{MLP}(H))$$

3. Classify as ENTAILED when $p_{ heta} > 0.5$

Model	Val	Test	Test (simple)	Test (complex)	Small Test
BERT classifier w/o Table	50.9	50.5	51.0	50.1	50.4
Table-BERT-Horizontal-F+T-Concatenate	50.7	50.4	50.8	50.0	50.3
Table-BERT-Vertical-F+T-Template	56.7	56.2	59.8	55.0	56.2
Table-BERT-Vertical-T+F-Template	56.7	57.0	60.6	54.3	55.5
Table-BERT-Horizontal-F+T-Template	66.0	65.1	79.0	58.1	67.9
Table-BERT-Horizontal-T+F-Template	66.1	65.1	79.1	58.2	68.1
NSM w/ RL (Binary Reward)	54.1	54.1	55.4	53.1	55.8
NSM w/ LPA-guided ML + RL	63.2	63.5	77.4	56.1	66.9
LPA-Voting w/o Discriminator	57.7	58.2	68.5	53.2	61.5
LPA-Weighted-Voting	62.5	63.1	74.6	57.3	66.8
LPA-Ranking w/ Discriminator	65.2	65.0	78.4	58.5	68.6
LPA-Ranking w/ Discriminator (Caption)	65.1	65.3	78.7	58.5	68.9
Human Performance	-	-	-	-	92.1

Only 58% of sentences have been correctly linked systematic search has a recall of 51%

Reasoning depth

• Error analysis

1. Symbolic

Jordi Arrese

outcome	date	tournament	surface	partner	opponents in the final	score in the final
runner - up	1985	Bologna , Italy	clay	Alberto Tous	Paolo Canè Simone Colombo	5-7,4-6
winner	1986	Bordeaux , France	clay	David De Miguel	Ronald Agénor Mansour Bahrami	7-5,6-4
winner	1989	Prague , Czechoslovakia	clay	Horst Skoff	Petr Korda Tomáš šmíd	6-4,6-4

• Error analysis

2. BERT

Jordi Arrese

outcome	date	tournament	surface	partner	opponents in the final	score in the final
runner - up	1985	Bologna , Italy	clay	Alberto Tous	Paolo Canè Simone Colombo	5-7,4-6
winner	1986	Bordeaux , France	clay	David De Miguel	Ronald Agénor Mansour Bahrami	7-5,6-4
winner	1989	Prague , Czechoslovakia	clay	Horst Skoff	Petr Korda Tomáš šmíd	6-4,6-4

Template

Given the table titled "Jordi Arrese", in row one, the outcome is runner-up, the date is 1985, ..., the surface is clay , In row two, the outcome is ..., ... the surface is clay.

Long Dependency

The three "Clay" are separated by more over 20 words

Jordi Arrese played all of his games on clay surface.

• Error analysis

3. Statistics

Error Analysis of LPA/Table-BERT

Program Enhanced Fact Verification with Verbalization and Graph Attention Network

Xiaoyu Yang[†]*, Feng Nie[§]*, Yufei Feng[†], Quan Liu[‡], Zhigang Chen[‡], Xiaodan Zhu[†]

† ECE & Ingenuity Labs Research Institute, Queen's University

§ Sun Yat-sen University

[‡] State Key Laboratory of Cognitive Intelligence, iFLYTEK Research

• Program-enhanced Verbalization and Graph ATtention Network

Program selection

Select z^* from candidate programs Z

Former method:

- 1. Only one of the label-consistent program is correct
- 2. Consider every program in training but only one most relevant program selected in testing

$$p_{ heta}(z|S,T) = \sigma(W_r m{h})$$
 aroundoss $I(heta) = \max \left(m_r(z'-|S|T) - m_r(z') \right)$

Margin loss $J(\theta) = \max \left(p_{\theta}(z_{neg}^{'}|S,T) - p_{\theta}(z_{pos}^{'}|S,T) + \gamma, 0 \right)$

Program Selection

Table

Year	Tournaments Played	
2008	29	

Verbalization with program execution

Convert the execution into natural language sentences

Verbalization with Program Execution

Selected Program:

eq { max { all rows ; tournaments played } ; hop { filter eq { all_rows; year; 2008 }; tournaments played }}

Post-order traversal

Verbalized Evidence:

- The max value of column tournaments played is 29.
- The table where column year equal to 2008 is row 2.
- The value of column tournaments played in the table where column year with value 2008 is 29.
- 29 is equal to 29.

Convert

Algorithm 1 Verbalization

Require Statement and evidence table pair (S, T), and parsed program $z^* = \{op_i\}_{i=1}^M$; Pre-defined operator $P = \{p_i\}_{i=1}^R$; A template function $\mathcal{F}(.)$ maps operation and operation results into sentences.

```
1: function VERBALIZATION(op, ret)
        args = \{\}, verb\_args = \{\}
        for a_i in arguments of operation op do
 3:
            if a_i is an operator in P then
 4:
                arg\_ans, verb\_arg = VERBALIZA-
 5:
    TION(a_j, ret)
                args \leftarrow args \cup arg\_ans
 6:
                verb\_args \leftarrow verb\_args \cup verb\_arg
 7:
 8:
            else
 9:
                args \leftarrow args \cup a_i
                verb\_args \leftarrow verb\_args \cup str(a_i)
10:
11:
            end if
        end for
12:
        Apply operation (op.t, args) over evi-
    dence table T, obtain operation result ans
        Apply \mathcal{F}(op.t, verb\_args, ans), obtain
    verbalized operation result verb_ans and ver-
    balized operation verb\_op
        Update ret \leftarrow ret \cup verb\_ans
15:
        Return ans, verb_op
17: end function
Set verbalized program execution ret = \{\}
VERBALIZATION(op_1, ret)
Return ret
```

Graph-based Verification Network

1.Definition

Nodes:

- 1) verbalized program executions $(n_0, ..., n_{M-1})$
- 2) program entities $(n_M, ..., n_{K-2})$
- 3) utilize information in table and statements n_{K-1}

Edges:

- 1) between executions
- 2) between execution and entity
- 3) between execution and Table-BERT node

Graph-based Verification [CLS] **Table** [SEP] Statement [SEP] Table-BERT Final Prediction **Gated Attention Graph Attention Module** Table-BERT Node Prog-Exe Nodes Entity Nodes **Transformer Layers**

[SEP]

[CLS]

2.Graph construction and initialization

• Table-BERT node:

$$\boldsymbol{h}_{K-1} = f_{BERT}([\widetilde{\boldsymbol{T}}; S])$$

- Prog-Exec node: document-level BERT*
 [CLS] and [SEP] for every sentence
- Entity node:

take the contextualized embeddings at positions corresponding to the entities in the top layer of BERT (average pooling for multiple words)

*Yang Liu and Mirella Lapata. 2019. Text summarization with pretrained encoders. EMNLP-IJCNLP.

3. Reasoning with graph attentions

Propagation:

Edge: shared attention $e_{ij} = a(\boldsymbol{U}\boldsymbol{h}_i, \boldsymbol{U}\boldsymbol{h}_j)$

Normalized attention coefficient: $\alpha_{ij}^d = \frac{exp(e_{ij})}{\sum_{k=1}^K A_{i,k}^d exp(e_{ik})}$ Update node: $\mathbf{\textit{h}}_i^{new} = f\big(\begin{array}{c} D \\ \\ \end{array} \ \, \sigma(\sum \alpha_{ij}^d \mathbf{\textit{W}} \mathbf{\textit{h}}_j) \big)$

Gated attention: $\pmb{h}_{final} = \sum_{i=0}^{n} p_i \pmb{h}_i^{new}; p_i = \sigma(\pmb{h}_{K-1}^T \pmb{h}_i^{new}),$ $y = \sigma(\mathbf{W_f}([\mathbf{h}_{final}||\mathbf{h}_{K-1}]))$

Graph-based Verification

Overall performance

Model	Val	Test	Test (simple)	Test (complex)	Small Test
Human Performance	=	=	=	9	92.1
Table-BERT-Horizontal-S+T-Concatenate	50.7	50.4	50.8	50.0	50.3
Table-BERT-Vertical-S+T-Template	56.7	56.2	59.8	55.0	56.2
Table-BERT-Vertical-T+S-Template	56.7	57.0	60.6	54.3	55.5
Table-BERT-Horizontal-S+T-Template	66.0	65.1	79.0	58.1	67.9
Table-BERT-Horizontal-T+S-Template	66.1	65.1	79.1	58.2	68.1
LPA-Voting w/o Discriminator	57.7	58.2	68.5	53.2	61.5
LPA-Weighted-Voting	62.5	63.1	74.6	57.3	66.8
LPA-Ranking w/ Discriminator	65.2	65.0	78.4	58.5	68.6
LogicalFactChecker (Zhong et al., 2020)	71.8	71.7	85.4	65.1	74.3
ProgVGAT	74.9	74.4	88.3	67.6	76.2

• Effect of program operations

Model	Val	Test
Table-BERT w/ prog	70.3	70.0
LogicalFactChecker	71.8	71.7
Table-BERT w/ verb. prog	71.8	71.6
Table-BERT w/ verb. prog exec	72.4	72.2
ProgVGAT	74.9	74.4

• Effect of graph attention

Model	Val	Test
ProgVGAT w/o graph attention	73.6	73.4
ProgVGAT	74.9	74.4

• Effect of derived programs

		Final Verification				
		Val	Test	$\Delta \mathrm{Test}$		
LPA	Val	Test	73.3	72.8		
w/CE	65.2	65.0	13.3	12.0	_	
LPA+ BERT	Val	Test	73.9	73.4	+0.6	
w/CE	67.7	67.3	13.9	73.4	+0.0	
LPA +BERT	Val	Test	74.9	74.4	+1.6	
w/ Margin loss	69.4	68.5	74.9	/4.4	+1.0	

TAPAS: Weakly Supervised Table Parsing via Pre-training

Jonathan Herzig^{1,2}, Paweł Krzysztof Nowak¹, Thomas Müller¹, Francesco Piccinno¹, Julian Martin Eisenschlos¹

¹Google Research ²School of Computer Science, Tel-Aviv University

Understanding tables with intermediate pre-training

Julian Martin Eisenschlos, Syrine Krichene, Thomas Müller

Google Research, Zürich

Flatten the table into a sequence of words, split words into word pieces (tokens) and concatenate the question tokens before the table tokens

For training set $\{(x_i, T_i, y_i)\}_{i=1}^N$: utterance x_i , table T_i , denotation y_i Translate y to a tuple (C, s): cell coordinates C (and a scalar s when y is a scalar)

- 1. Additional embeddings
- 2. Cell selection
- 3. Aggregation operator prediction

1. Additional embeddings

- Position ID: same as in BERT
- Segment ID: 0 for the question, 1 for the table header and cells
- Column/Row ID: index of the column/row, 0 for question
- Rank ID: if column values can be floats or dates, 0 for not comparable, 1 for smallest, i + 1 for rank i

Table	
col1	col2
0	1
2	3

											4	
Token Embeddings	[CLS]	query	?	[SEP]	col	##1	col	##2	0	1	2	3
	+	+	+	+	+	+	+	+	+	+	+	+
Position Embeddings	POS _o	POS ₁	POS ₂	POS ₃	POS ₄	POS ₅	POS ₆	POS ₇	POS ₈	POS ₉	POS ₁₀	POS ₁₁
2000 0 400 A Section 6 400 A S	+	+	+	+	+	+	+	+	+	+	+	+
Segment Embeddings	SEGo	SEG _o	SEG ₀	SEG _o	SEG ₁	SEG ₁	SEG ₁	SEG ₁	SEG ₁	SEG ₁	SEG ₁	SEG ₁
2000	+	+	+	+	+	+	+	+	+	+	+	+
Column Embeddings	+ COL _o	+ COL _o	COL _o	+ COL _o	+ COL,	+ COL ₁	+ COL ₂	+ COL ₂	COL ₁	+ COL ₂	+ COL ₁	COL ₂
Embeddings	COL _o	COL _o	COL _o	COL _o	COL,	COL,	COL ₂	COL ₂	COL ₁		COL ₁	COL ₂
	COL _o ROW _o	COL _o ROW _o		0	COL, + ROW _o		COL ₂ + ROW ₀		COL ₁ + ROW ₁	COL ₂	COL ₁ + ROW ₂	
Embeddings Row	+	+	+	+	+	+	+	+	+	COL ₂	+	+

2. Cell selection

- 1) token logit: BERT output into one linear layer
- 2) cell logit: average tokens logits in the cell, one linear layer $p_{\mathcal{S}}^{(c)}$
- 3) column logit: average cell logits in the column, one linear layer & softmax $p_{col}^{(co)}$ (one additional logit for selecting no column/cell)

Select the column with most cells in C

Loss function:

1) column:
$$\mathcal{J}_{\text{columns}} = \frac{1}{|\text{Cols}|} \sum_{\text{co} \in \text{Cols}} \text{CE}(p_{\text{col}}^{(\text{co})}, \mathbb{1}_{\text{co} = \text{col}})$$

2) cell:
$$\mathcal{J}_{\text{cells}} = \frac{1}{|\text{Cells(col)}|} \sum_{c \in \text{Cells(col)}} \text{CE}(p_s^{(c)}, \mathbb{1}_{c \in C})$$

$$\mathcal{J}_{\text{CS}} = \mathcal{J}_{\text{columns}} + \mathcal{J}_{\text{cells}} + \alpha \mathcal{J}_{\text{aggr}}$$

3) aggregation (no operation occurs, use op_0): $\mathcal{J}_{aggr} = -\log p_a(op_0)$

3. Aggregation operator prediction

BERT output of [CLS] token into a linear layer & softmax $p_a(op)$ Applying aggregation over cells $p_{\rm S}^{(c)}>0.5$

op	$compute(op, p_s, T)$
COUNT	$\sum_{c \in T} p_{ ext{s}}^{(c)} \ \sum_{c \in T} p_{ ext{s}}^{(c)} \cdot T[c] \ ext{compute}(ext{SUM}, p_{ ext{s}}, T)$
SUM	$\sum_{c \in T} p_{\mathrm{s}}^{(c)} \cdot T[c]$
AVERAGE	$\frac{ ext{compute}(ext{SUM}, p_{ ext{s}}, T)}{ ext{compute}(ext{COUNT}, p_{ ext{s}}, T)}$

Scalar answer

normalized probability excluding NONE
$$\hat{p}_{\mathrm{a}}(op_i) = rac{p_{\mathrm{a}}(op_i)}{\sum_{i=1}p_{\mathrm{a}}(op_i)}$$

predict result
$$s_{ ext{pred}} = \sum_{i=1} \hat{p}_{ ext{a}}(op_i) \cdot ext{compute}\left(op_i, p_{ ext{s}}, T
ight)$$

scalar answer loss
$$a = |s_{ ext{pred}} - s|$$
 $\mathcal{J}_{ ext{scalar}} = egin{cases} 0.5 \cdot a^2 & a \leq \delta \ \delta \cdot a - 0.5 \cdot \delta^2 & ext{otherwise} \end{cases}$

aggregation loss*
$$\mathcal{J}_{ ext{aggr}} = -\log igg(\sum_{i=1} p_{ ext{a}}(op_i) igg)$$
 $\mathcal{J}_{ ext{SA}} = \mathcal{J}_{ ext{aggr}} + eta \mathcal{J}_{ ext{scalar}}$

Ambiguous answer

Scalar answer can be selected or inferenced through aggregation

Dynamically let the model choose the supervision according to policy

Use cell selection if $p_a(op_0) \ge S$, or scalar answer otherwise

Rank	Name	No. of reigns	Combined days
1	Lou Thesz	3	3,749
2	Ric Flair	8	3,103
3	Harley Race	7	1,799
4	Dory Funk Jr.	1	1,563
5	Dan Severn	2	1,559
6	Gene Kiniski	1	1,131

Example questions

#	Question	Answer	Example Type
1	Which wrestler had the most number of reigns?	Ric Flair	Cell selection
2	Average time as champion for top 2 wrestlers?	AVG(3749,3103)=3426	Scalar answer
3	How many world champions are there with only one reign?	COUNT(Dory Funk Jr., Gene Kiniski)=2	Ambiguous answer
4	What is the number of reigns for Harley Race?	7	Ambiguous answer
5	Which of the following wrestlers were ranked in the bottom 3?	{Dory Funk Jr., Dan Severn, Gene Kiniski}	Cell selection
	Out of these, who had more than one reign?	Dan Severn	Cell selection

Pre-training tasks

Learn correlations between text and table, and between cells of a columns and their header Extract 6.2M tables and 21.3M snippets from relevant text

Mask-LM: Whole word masking for the text, whole cell masking to the tables

- 1) Counterfactual statements
- 2) Synthetic statements

1) Counterfactual statements

Create a minimally differing refuted example from positive examples

- Replace mention occur in the same column
- Supporting mention

entity that occurs in the same row	Rank	Player	Country	Earnings	Events	Wins
	1	Greg Norman	Australia	1,654,959	16	3
e.g.	2	Billy Mayfair	United States	1,543,192	28	2
	3	Lee Janzen	United States	1,378,966	28	3
[Greg Norman] is [Australian]	4	Corey Pavin	United States	1,340,079	22	2
	5	Steve Elkington	Australia	1,254,352	21	2

2) Synthetic statements

Improve the handling of numerical operations and comparisons

⟨statement⟩ ⟨expr⟩	$\overset{\rightarrow}{\rightarrow}$	\langle expr \rangle \langle compare \rangle \langle expr \rangle \langle select \rangle when \langle where \rangle						
⟨select⟩	\rightarrow	⟨select⟩ ⟨column⟩ the ⟨aggr⟩ of ⟨column⟩	Rank	Player	Country	Earnings	Events	Wins
		the count	1	Greg Norman	Australia	1,654,959	16	3
$\langle where \rangle$	\rightarrow	$\langle column \rangle \langle compare \rangle \langle value \rangle$	2	Billy Mayfair	United States	1,543,192	28	2
/		(where) and (where)	3	Lee Janzen	United States	1,378,966	28	3
⟨aggr⟩	\rightarrow	first last lowest greatest	4	Corey Pavin	United States	1,340,079	22	2
		sum average range	5	Steve Elkington	Australia	1,254,352	21	2
⟨compare⟩	\rightarrow	is is greater than is less than	Synthetic:		an wins when Play			200 211
⟨value⟩	\rightarrow	$\langle \text{string} \rangle \mid \langle \text{number} \rangle$		The sum of	f Earnings when C	ountry is Ausi	trana is 2, 9	909, 311.

Table pruning

- 1) Selecting the first token of every cell, then the second until reach the maximal length
- 2) Ranking columns by relevance score and added in order of decreasing relevance

Jaccard coefficient:
$$\left| \frac{T_S \cap T_C}{T_S \cup T_C} \right|$$

Result

TABFACT

Model	Val	Test	${ m Test}_{ m simple}$	Test complex	${ m Test}_{ m small}$
BERT classifier w/o Table	50.9	50.5	51.0	50.1	50.4
${\bf TABLE\text{-}BERT\text{-}Horizontal\text{-}T\text{+}F\text{-}Template}$	66.1	65.1	79.1	58.2	68.1
LPA-Ranking w/ Discriminator (Caption)	65.1	65.3	78.7	58.5	68.9
LFC (program from LPA)	71.7	71.6	85.5	64.8	74.2
LFC (program from Seq2Action)	71.8	71.7	85.4	65.1	74.3
$\operatorname{ProgVGAT}$	74.9	74.4	88.3	67.6	76.2
OURS-Base-MASK-LM	$69.6_{\pm4.4}$	$69.9_{\pm 3.8}$	$82.0_{\pm 5.9}$	$63.9_{\pm 2.8}$	$72.2_{\pm 4.7}$
OURS-Base-SQA	$74.9_{\pm0.2}$	$74.6_{\pm0.2}$	$87.2_{\pm 0.2}$	$68.4_{\pm0.4}$	$77.3_{\pm0.3}$
OURS-Base-Counterfactual	$75.5_{\pm0.5}$	$75.2_{\pm0.4}$	$87.8_{\pm 0.4}$	$68.9_{\pm0.5}$	$77.4_{\pm0.3}$
OURS-Base-Synthetic	$77.6_{\pm0.2}$	$77.9_{\pm0.3}$	$89.7_{\pm0.4}$	$72.0_{\pm0.2}$	$80.4_{\pm0.2}$
OURS-Base-Counterfactual + Synthetic	78. $6_{\pm 0.3}$	78.5 $_{\pm 0.3}$	$\textbf{90.5}_{\pm0.4}$	${f 72.5}_{\pm 0.3}$	$81.0_{\pm0.3}$
OURS-Large-Counterfactual + Synthetic	81.0 $_{\pm 0.1}$	81.0 $_{\pm 0.1}$	92. ${f 3}_{\pm 0.3}$	75.6 $_{\pm 0.1}$	$83.9_{\pm0.3}$
Human Performance	_	_	-	_	92.1

Zero-shot accuracy and low resource regimes

Result

Ablations

	SQA	SQA (SEQ)		ISQL	WIKITQ	
all	39.0		84.7		29.0	
-pos	36.7	-2.3	82.9	-1.8	25.3	-3.7
-ranks	34.4	-4.6	84.1	-0.6	30.7	+1.8
-{cols,rows}	19.6	-19.4	74.1	-10.6	17.3	-11.6
-table pre-training	26.5	-12.5	80.8	-3.9	17.9	-11.1
-aggregation	-		82.6	-2.1	23.1	-5.9

Limitations

- 1) This model would fail to capture large tables or multiple tables
- 2) Its expressivity is limited to a form of AN aggregation over a subset of table cells

Thanks!

