Diabetics Data Analysis

Project Purpose

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether a patient has diabetes based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.2

MetaData

Pregnancies: Number of times pregnant

Glucose: The plasma glucose concentration in the oral glucose tolerance test after two hours

BloodPressure: Diastolic blood pressure (mm Hg)

SkinThickness: Triceps skin fold thickness (mm)

Insulin: 2-Hour serum insulin (mu U/ml)

BMI: Body mass index (weight in kg/(height in m)^2)

DiabetesPedigreeFunction: This function calculates the likelihood of having diabetes based on the lineage of a descendant

Age: Age (years)

Outcome: Class variable (have the disease (1) or not (0))

Import required Libraries

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns

# to suppress warnings
   import warnings
   warnings.filterwarnings('ignore')
```

Read dataset

In [2]: df= pd.read_csv("C:/Users/39375/Desktop/Gayu/VIRTUAL INTERNSHIP/MeriSkill/diabetics.csv"

[n [3]:	df									
Out[3]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Ou
	0	6	148	72	35	0	33.6	0.627	50	
	1	1	85	66	29	0	26.6	0.351	31	
	2	8	183	64	0	0	23.3	0.672	32	
	3	1	89	66	23	94	28.1	0.167	21	
	4	0	137	40	35	168	43.1	2.288	33	
				•••	•••					

48

27

23

0

31

180 32.9

0 36.8

112 26.2

0 30.1

0 30.4

0.171

0.340

0.245

0.349

0.315

63

27

30

47

23

76

70

72

60

70

768 rows × 9 columns

10

2

5

1

101

122

121

126

93

763

764

765

766

767

Exploratory Data Analysis

Show first N rows of Dataframe

In [4]: df.head(10)

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outco
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	
5	5	116	74	0	0	25.6	0.201	30	
6	3	78	50	32	88	31.0	0.248	26	
7	10	115	0	0	0	35.3	0.134	29	
8	2	197	70	45	543	30.5	0.158	53	
9	8	125	96	0	0	0.0	0.232	54	

Check shape of the dataset

In [5]: df.shape

Out[5]: (768, 9)

we have 768 rows and 9 columns

Variable name in Dataset

Information about the Dataset

```
In [7]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

Describe the Dataset

In [8]: |df.describe()

Out[8]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFun
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.00
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.47
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.33
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.07
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.24
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.37
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.62
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.42

Number of Unique values in variables

```
In [9]: df.nunique()
Out[9]: Pregnancies
                                      17
        Glucose
                                     136
        BloodPressure
                                      47
        SkinThickness
                                      51
        Insulin
                                     186
        BMI
                                     248
        DiabetesPedigreeFunction
                                     517
                                      52
        Outcome
                                       2
        dtype: int64
```

The Distribution of the Outcome variable

Data Preprocessing

Check duplicate values in Dataset

```
In [11]: df.duplicated().sum()
Out[11]: 0
```

There are no duplicate values in the dataset.

check Null values in dataset

```
In [12]: df.isna().sum()
Out[12]: Pregnancies
                                      0
         Glucose
                                      0
         BloodPressure
                                      0
                                      0
         SkinThickness
         Insulin
                                      0
         BMI
                                      0
         DiabetesPedigreeFunction
                                      0
                                      0
                                      0
         Outcome
         dtype: int64
```

There are no null values in the dataset.

Check 0 values in Dataset

```
In [13]: (df[df.columns] == 0).sum()
Out[13]: Pregnancies
                                      111
         Glucose
                                        5
                                       35
         BloodPressure
         SkinThickness
                                      227
                                      374
         Insulin
         BMI
                                      11
         DiabetesPedigreeFunction
                                       0
                                        0
                                      500
         Outcome
         dtype: int64
```

Replace 0 values with Median

```
In [14]: for i in ["Glucose","BMI","Insulin","BloodPressure"]:
    df[i].replace({0:df[i].median()},inplace = True)
```

Again checking for 0 values

```
In [15]: (df[df.columns] == 0).sum()
Out[15]: Pregnancies
                                      111
         Glucose
                                        0
                                        0
         BloodPressure
         SkinThickness
                                      227
         Insulin
                                         0
         BMI
                                         0
         DiabetesPedigreeFunction
                                        0
                                        0
         Age
         Outcome
                                      500
         dtype: int64
```

Now the zero values are replaced by median value.

Outlier Observation Analysis

Check outliers in variables

There are lot of outliers.

Outlier Detection

```
In [17]: def outlier_removal():
    l = ["BMI", "Glucose", "SkinThickness", "Age", "BloodPressure", "Insulin", "Pregnancies", "
    for i in l:
        x = np.quantile(df[i],[0.25,0.75])
        iqr = x[1]-x[0]
        uw = x[1]+1.5*iqr
        lw = x[0]-1.5*iqr
        df[i] = np.where(df[i]>uw,uw,(np.where(df[i]<lw,lw,df[i])))
    outlier_removal()</pre>
```

Outlier recheck

In [18]: plt.boxplot(df);

After the outlier detection and removal, all outliers are processed.

Visualization of the dataset

Data distribution of variables

0.6

The number of women in different age group with Diabetics

In [19]: df.hist(bins=50, figsize=(20,15));

0.6

```
In [20]: plt.hist(df[df['Outcome']==1]['Age'],bins=5)
    plt.title('Distribution of Age for Women who have Diabetes')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.show()
```


The age range of 22 to 30 has the highest proportion of women with diabetes. As age increases, the frequency of women with diabetes decreases.

The number of women in different age group with No Diabetics

```
In [21]: plt.hist(df[df['Outcome']==0]['Age'],bins=5)
    plt.title('Distribution of Age for Women who do not have Diabetes')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.show()
```


Women without diabetes are predominantly in the 22 to 35 age bracket. This age bracket also has the highest diabetes risk among women.

Checking correlation between variables

In [22]: df.corr()
Out[22]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabet
Pregnancies	1.000000	0.126856	0.210906	-0.084349	-0.061192	0.027145	
Glucose	0.126856	1.000000	0.220199	0.071090	0.338429	0.233953	
BloodPressure	0.210906	0.220199	1.000000	0.013501	-0.033847	0.286410	
SkinThickness	-0.084349	0.071090	0.013501	1.000000	0.464759	0.382740	
Insulin	-0.061192	0.338429	-0.033847	0.464759	1.000000	0.207474	
ВМІ	0.027145	0.233953	0.286410	0.382740	0.207474	1.000000	
DiabetesPedigreeFunction	-0.017398	0.118457	0.012305	0.177920	0.191870	0.138541	
Age	0.549695	0.268912	0.332898	-0.119170	-0.040448	0.035861	
Outcome	0.220392	0.492782	0.168971	0.073125	0.147295	0.313030	

Correlation of Output variable with other variables in decreasing order

```
In [23]: df.corr()['Outcome'].sort_values(ascending=False)
Out[23]: Outcome
                                      1.000000
         Glucose
                                      0.492782
         BMI
                                      0.313030
         Age
                                      0.242702
         Pregnancies
                                      0.220392
         DiabetesPedigreeFunction
                                      0.184969
         BloodPressure
                                      0.168971
         Insulin
                                      0.147295
         SkinThickness
                                      0.073125
         Name: Outcome, dtype: float64
```

Heatmap of Correlation

```
In [24]: plt.figure(figsize = (20,10))
    sns.heatmap(df.corr(), annot=True)
    plt.title("correlation of feature")
```

Out[24]: Text(0.5, 1.0, 'correlation of feature')

According to the correlation outcome ratios, the most important features are BMI, age, and pregnancies (external factors), and glucose and insulin (internal factors), in that order. The least important features are skin thickness and blood pressure. The main conclusions are:

- 1. Maintain a healthy BMI to prevent high glucose and insulin levels.
- 2. Monitor your glucose and insulin levels as you age.
- 3. If you are pregnant, be careful about your glucose and insulin levels.

Output variable distribution


```
In [26]: plt.title('Outcome')
  plt.pie(df['Outcome'].value_counts(),labels=['No','Yes'], autopct='%1.2f%%')
  plt.show()
```


The percentage of Diabetics in Pregancies are 34.90% and non- diabetics are 65.10%

Pairplot of dataset variables relation with Outcome

In [27]: sns.pairplot(df, hue='Outcome', palette="Set1")

Out[27]: <seaborn.axisgrid.PairGrid at 0x26304844df0>

High glucose levels in pregnancy make diabetes more likely. A combination of high glucose levels and a BMI above 30 boosts the risk of diabetes. The risk of diabetes increases with high glucose levels and other variables.

Histplot of dataset variables with Outcome

```
In [28]: pno = 1
            plt.figure(figsize=(18,20))
            for i in df.columns:
                       if pno<9:</pre>
                             plt.subplot(3,3,pno)
                             ax = sns.histplot(data = df , x = i , hue = df.Outcome , kde = True);
                             plt.xlabel(i)
                            pno+=1
                                                                  #to set a label on top of the bars.
                             for i in ax.containers:
                                  ax.bar_label(i,)
                                            Outcome
0
1
                                                                                               60
               150
               125
             00 ti
                                                     40
Count
               75
                                                       30
               50
                                                       20
                                                       10
                                                                        120
                                                                            140
                                                                                                             70 80
BloodPressure
                                            Outcome 0
               140
                                             ___ 1
               120
                                                      200
               100
                                                      150
                                                                                             Sount
30
                                                     Count
               60
                                                      100
                                                                                               20
                40
                                                       50
               20
                                 40
                                                                         150
                                                                                     250
               100
               80
                                                      150
                                                     100
                40
               20
                                                       25
```

Key Insights

0.2

The following factors affect the risk of diabetes, according to the data analysis:

1. Pregnancies: More pregnancies mean higher diabetes risk.

1.0

- 2. Glucose: Diabetes is more likely with high glucose levels (above 140).
- 3. Blood pressure: Blood pressure between 60 and 90 has more diabetic people than other ranges.

40

- 4. Skin thickness: Skin thickness makes diabetes more likely.
- 5. Insulin: Insulin levels influence diabetes, and higher insulin levels increase the diabetes risk.
- 6. BMI: Higher BMI (above 30) increases the risk of diabetes.
- 7. Age: Age makes diabetes more likely.