executed. If there aren't many in the source code to begin with, it doesn't seem to matter much.

4. Short relative instructions are higher in dynamic frequency and long relative are lower.

These conclusions are pretty solid and I feel they could be used to extrapolate static data into dynamic data.

Indexed addressing occurs more frequently in the dynamic case. Immediate and extended occur less frequently. For the indexed subclasses, auto increment and the register offsets occur more frequently and the constant and no offset submodes occur less frequently

The addressing mode conclusions are not very solid and probably could not be used to extrapolate static into dynamic data.

8.7. HOW WELL DID I DO?

When I started this project I had three major objectives. They were:

- To do an extensive analysis of the M6809 and provide sufficient raw data for future architects.
- To test the decisions that were made in the M6809 design (i.e., to learn from my past successes and

failures).

3. To determine whether static data can be used to determine dynamic characteristics in an M6809-like architecture.

I do feel I provided a great deal of good, representative M6809 data. I also feel the following areas could be improved upon by me or someone else at a later date:

- a. Figure out a reasonable way to take some dynamic data where the number of cycles per instruction is saved.

 This would allow the average percent of time an opcode takes to be calculated.
- b. More dynamic addressing mode data is needed before I will feel comfortable with the addressing mode results.
- I cannot completely explain. I suspect that they are being used for multi-bit or multi-precision shifts, but I don't know which. In the future it would be nice to gather some more data in this area.

For question 2 above -- How good were our decisions?

The ledger seems to be on the positive side. It seems we did
an excellent job of designing the postbyte for the indexed

addressing mode. It only requires .17 bytes more per indexed instruction than the M6800 and only takes about .2 more cycles.

We did a good job of estimating what type of programs would be written for the M6809. They are position independent, modular, and use a great deal of stack addressing just as we had hoped.

We also made good tradeoffs when we decided which instructions should be on page 1, 2 and 3. (A last minute decision in the M6809 design to move 1bra and 1bsr from page 2 to page 1 saved us here.)

The new instructions we added are very heavily used. Three of them are the most frequently executed single opcodes.

Into each life some bits must fall. The decision to include the direct page register and to expand the direct addressing mode to include read-modify-write instructions was a big mistake. The M6800 data told us this was a useful extension. Our gut told us differently. In this case we went with the data, and the result is that we designed in a feature that was losing popularity due to lower memory prices.

Indirect addressing was another mistake. In this case we followed our gut and ignored the existing data that suggested that indirect addressing was not used. Fortunately,

this mistake didn't cost a lot of silicon (silicon = \$).

I don't feel I completely answered the third question (Can static data be used to predict dynamic characteristics?). I feel that static <u>instruction set</u> data <u>can</u> be extrapolated into dynamic characteristics, at least for an architecture similar to the M6809. However, I am not sure it would apply to a greatly differing architecture. More work needs to be done here. Further, I don't feel confident that the static addressing mode data (especially indexed) can be used to determine the dynamic performance. More data needs to be taken here too.

APPENDIX I -- THE M6809 INSTRUCTION SET

This appendix contains a brief description of the instruction set of the M6809.

```
Add the B register to the X register
ABX
        Add carry bit and memory to accumulator A or B
ADCx
ADDx
        Add memory to accumulator A, B or D
ANDx
        And memory with accumulator A or B
ANDCC
        And immediate value with condition code register
        Arithmetic shift left memory or accumulator A or B
ASL
        Arithmetic shift right memory or accumulator A or B
ASR
(L)BCC Branch if carry is clear
(L)BCS Branch if carry is set
(L) BEQ Branch if equal
(L) BGE Branch if greater than or equal (signed)
(L) BGT Branch if greater than
                                         (signed)
(L)BHI Branch if higher
                                        (unsigned)
(L) BHS Branch if higher or same
                                        (unsigned)
(L) BLE Branch if less than or equal
                                        (signed)
(L) BLO Branch if lower
                                        (unsigned)
(L)BLS Branch if lower or same
                                        (unsigned)
(L) BLT Branch if less than
                                        (signed)
(L) BMI Branch if minus
(L) BNE Branch if not equal
(L) BPL Branch if plus
(L) BRA Branch always
(L) BSR Branch to subroutine
(L)BVC Branch if v clear
(L)BVS
        Branch if v set
        And memory with A or B (don't store result)
BITx
        Clear memory or accumulator A or B
CLR
CMPx
        Compare memory with A,B,D,X,Y,U, or S
        Complement memory or accumulator A or B
COM
        Clear interrupt mask; wait for interrupt
CWAI
        Decimal adjust accumulator A (follows an ADD)
DAA
DEC
        Decrement memory or accumulator A or B
        Exclusive or memory with accumulator A or B
EOR
        Exchange Rl with R2
EXG
INC
        Increment memory or accumulator A or B
JMP
        Jump
JSR
        Jump to subroutine
        Load A, B, D, X, Y, U, or S from memory
LDx
        Load effective address into X,Y,U or S
LEAx
LSL
        Logical left shift memory or accumulator A or B
LSR
        Logical right shift memory or accumulator A or B
        A * B --> D
MUL
NEG
        Negate memory or accumulator A or B
```

NOP	No-operation
ORx	Or memory with accumulator A or B
ORCC	Or immediate value with condition code register
PSHx	Push register(s) on U or S stack
PULx	Pull register(s) from U or S stack
ROL	Rotate left thru carry memory or accumulator A or B
ROR	Rotate right thru carry memory or accumulator A or B
RTI	Return from interrupt
RTS	Return from subroutine
SBCx	Subtract carry bit and memory from accumulator A or B
SEX	Sign extend B accumulator thru A
STx	Store A,B,D,X,Y,U or S to memory
SUBx	Subtract memory from accumulator A, B or D
SWIn	Software interrupt 1, 2 or 3
SYNC	Synchronize with external event
TFR	Transfer Rl to R2
TST	Test memory or accumulator A or B for zero

APPENDIX II -- OPCODE MAP AND INDEXING FORMATS

	ſ							M	ost-Signiff	cent Four E	Hes						
	-	DAN		MEL		ACCA	ACCE	940	DCT	10-00-0	CRIN	Cless	DAT	69/84	CHR	Class	EXT
	-	C2000	6601	0010	0011	0100	0701	0110	0111	1000	1001	1010	1011	11939	1107	1110	1111
	9	0	1	2	3	a	8		7	0	[»	<u>La</u>	8	<u> </u>	<u> </u>	E	F
1	10	3		3 BRA	4+1	2	2	8+1	7	2	4	4+1	5	2	4	4+1	5
000	စစေါ	NEG	PAGE2		LEAX		M	EG			-	IBA			SU.		************
	1			3 8RN/	4+1	***	distribution of the con-		DATE CHANGE	2	4	4+1 8PA	5	2	- € CR/	4+1	5
000	1 1		NAME OF TAXABLE PARTY.	SLSAN	LEAY					<u> </u>		6+1	5	 2	4	4+1	6
1				3 8HI/ 5(6) L8HI	LEAS	-100			-	3		CA T		4		CB TT	
001	mende			3 BLS/	4+1	2	2	8+1		4.6.6+1	www.www.woodowa.wo		5.7.7+1.8	1 8	8	8+1	7
1000	136			5/6/ LBLS	LEAU	4		DMC	,	SUBO		APO /	CMPU		AD		•
1001	1			3 RHS	5+1/by	2	2	8+1	7	2	4	4+1	5	2	4	4+1	5
010		LSR		546) (BCC)	PSHS	-		SR			AA.	#DA			AN	O8	
-	-	-		3 910	5+1/bv					2	4	4+1	5	2	4	4+1	5
010	n 51	******	establisher.	5460 (BCS)	PULS	-					8	TA		1	81		
	10	6	5	3 BNE/	5+1/by	2	2	6+1	7	2	4	4+1	5	2	4	4+1	5
011	0 6	ROR	LBAA	SHEJ (BHE	PSHU	<u> </u>	Pi:	DR				DA			L		-
: \$		6		3 BEQ/	5+1/by	2	2	6+1	7		4	4+1 STA	5	-	4	4 + 1 ST8	5
	11 7		LBSR	546) LBEQ	PULU			SR		<u> </u>		4+1	5	 	4	4+1	5
100		6 ASL		3 8VC/	***************************************	2	2	6+1 (LSL)	7	2		AP:	9	1 4		キャ! 特員	0
100	8 00	(LSL)		548) LBVC	5	1-2-	W31	6+1	7	 	4	4+1	8	1-2-	4	4+1	6
il	21 9	6		3 BYS/	RTS	1 '	· #	OF OA.	•	1 .		DCA T	•			xc8	•
100	1 91	HUNL H	3	3 921/	3	2	2	6+1	7	2	4	4+1	5	2	4	4+1	5
103	o ali	DEC		SIGI LBPL	ABX	-		EC		_	O	AA			0	RB	
-	-	000		3 BMI/	8/15	 				2	4	4+1	5	2	4	4+1	5
101	11 8	outstands.		SIGI LEMI	RT1	-	ALTONOMIC STREET, SALVE STATES		Managara		and the second second	XXA		1	AND DESCRIPTION OF THE PERSON NAMED IN	XD8	
-		6	3	B BGE/	20	2	2	8+1	7	4.6.6+1			5,7,7+1,8	3	5	5+1	8
110	20 c	INC.	ANDCO	BIEL LOCE	CWAI	1		∜C		CMPX	/ CI	APY /	CMP5	1		00	
		ô	2	3 BLT/	11	1	2 _	6+1	,	858	7	7 + 1 JSR	8	-	5	5+1 SYD	6
110	ום וכ	TST	SEX	SIGI LBLT	MUL		7	ST							1		B . 1 7
1		3	8	9 8GT/	-		continue de con-	3+1	a Mp		. 1,6 OX		6 + 1.7 .DY		5+1.8 DU /		8 ÷ 1,7 DS
111	10 E	JNSP	EXG	SIGN LBGT				6+1	7	ļ	5.8+1.6		8,6+1,7		6.5	_	8.6 + 1.7
and the same of th		8	7	3 8LE/	19/20/20	2	2	Γ₩ 8+1	,		STX		5TY	S CHARLES STATES		τυ° /	STS
1 1 1 1	93 F 👸	CLA	TFR	SIGN LBLE	SW1/2/3	1	Ų	£77		1	31A	<i>[</i>	Ø11	<u> </u>	<u> </u>	·~	J 1 J

Figure 10-1: The M6809 Opcode Map.

The small numbers in the map are the execution cycles for each opcode. For indexed addressing the number of cycles from the indexed format table must be added to the base cycle count.

						91	Indirect		
Type	Forms	Assembler Form	Postbyte OP Code	×	÷ #	Assembler Form	Postbyte OP Code	-	Ι.
Constant Offset From R	No Offset	,R	18800100	0	0	(,R)	18810100	3	To
(twos complement offset)	5 Bit Offset	n, R	ORRannan	1	0	defaults	to 8-bit	П	Г
114409 5011 3111	8 Bit Offset	n, R	18R01000	1	1	[n R]	1RR11000	4	Ī
	16 Bit Offset	n, R	18801001	4	2	(n. A)	18811001	7	7
Accumulator Offset From R	A - Register Offset	A, R	1RR00110	1	0	[A, R]	18810110	4	To
twos complement offset)	B - Register Offset	8. R	18800101	1	0	(6 P)	18810101	4	10
	D - Register Offset	D. R	18801011	4	0	[D. R]	18811011	7	C
Auto Increment/Decrement R	Increment By 1	.R+	18800000	2	0	not a	llowed		Т
	Increment By 2	,R++	18R00001	3	0	[,19++]	18810001	6	10
	Decrement By 1	, A	1RR00010	2	0	not a	lowed		I
	Decrement By 2	R	18800011	3	0	[8]	18R10011	6	Q
Constant Offset From PC	8 Bit Offset	n. PCR	1XX01100	1	1	(n. PCR)	1XX11100	4	1
(twos complement offset)	16 Bit Offset	n, PCR	1XX01101	5	2	(n PCR)	1XX11101	8	2
Extended Indirect	16 Bri Address	_	T -	E	<u> </u>	[n]	10011111	5	I_2
	R = X, Y, U or S X = Don't Care	X = 00 Y = U = 10 S =	01						

• and • Indicate the number of additional cycles and bytes for the particular variation.

Figure 10-2: Indexed Addressing Mode Formats.

APPENDIX III -- STATIC DATA

The following represents the concatenation of all the static data. The data for the individual program classes and the individual programs is available from the author.

M6809 Static Statistics Sorted by Opcode Frequency

Total number of instructions = 26330

Total number of bytes = 61977

Average size of instruction = 2.35 bytes

Total number of page 1 instructions = 24960

Percent of total = 94.80

Total number of page 1 bytes = 56863

Percent of total = 91.75

Opcode(hex)	Count	Percent	Bytes	Percent
17 30 34 86 20 8e 26 27 ed	2307 922 910 906 877 862 804 800 739 722	8.76 3.50 3.46 3.44 3.33 3.27 3.05 3.04 2.81 2.74 2.52	6921 2653 1820 1812 1754 2586 1608 1600 1584 2166	11.17 4.28 2.94 2.92 2.83 4.17 2.59 2.58 2.56 3.49 2.34
ес 35 ae	663 645 613	2.45 2.33	129Ø 1272	2.Ø8 2.Ø5

bd a6	605 588	2.30	1815 1261	2.93 2.03
c6	564	2.14	1128	1.82
81	517	1.96	1034	1.67
36	516	1.96	1032	1.67
lf	486	1.85	972	1.57
39	434	1.65	434	0.70
e6	425	1.61	907	1.46
a7	417 405	1.58 1.54	889 955	1.43 1.54
32 16	403	1.53	1209	1.95
e7	366	1.39	886	1.43
8d	347	1.32	694	1.12
b7	293	1.11	879	1.42
de	255	Ø.97	51Ø	Ø.82
af	251	Ø.95	534	Ø.86
31	241	Ø.92	616	Ø.99
b6	202	Ø.77	606	Ø.98
cl	183	Ø.70	366	Ø.59
3 f	167	Ø.63	198	0.32
5f	150	Ø.57	15Ø 282	Ø.24 Ø.46
84 33	141 140	Ø.54 Ø.53	405	Ø.45
6f	131	Ø.5Ø	273	0.44
2b	127	Ø.48	254	Ø.41
4 f	123	Ø.47	123	0.20
5a	117	0.44	117	0.19
be	111	Ø.42	333	0.54
25	110	0.42	220	0.35
24	109	Ø.41	218	Ø.35
6c	105	0.40	271	Ø.44
96	101	Ø.38	202 297	Ø.33 Ø.48
83 69	99 89	Ø.38 Ø.34	178	Ø.40 Ø.29
6d	89	Ø.34	183	Ø.3Ø
9e	88	Ø.33	176	Ø.28
8 a	87	Ø.33	174	Ø.28
al	84	0.32	191	Ø.31
85	83	0.32	166	Ø.27
ld	82	0.31	82	0.13
c3	82	Ø.31	246	0.40
9f	81	Ø.31	162	Ø.26
bf	81 78	Ø.31 Ø.3Ø	243 158	Ø.39 Ø.25
aa 2d	76 76	Ø.29	152	Ø.25
7£	73	Ø.28	219	Ø.35
2a	72	Ø.27	144	Ø.23
37	71	Ø.27	142	0.23
2c	69	Ø.26	138	0.22
fc	68	Ø.26	204	Ø.33

8c f6	65 64	Ø.25 Ø.24	195	Ø.31 Ø.31
fd e3	63 62	Ø.24 Ø.24	189 126	Ø.3Ø Ø.2Ø
66	61	0.23	122	Ø.2Ø
7 e	54	0.21	162	Ø.26
97	53	0.20	106	Ø.17
5c	52 52	Ø.20	52	Ø. Ø8
ac 6a	52 51	0.20 0.19	110 136	Ø.18 Ø.22
c4	51	Ø.19	102	Ø.16
f7	51	Ø.19	153	Ø.25
C	48	0.18	96	Ø.15
4 C	48	Ø.18	48	Ø.Ø8
5,8	47	Ø.18	47	Ø. Ø8
ab 40	46 45	Ø.17 Ø.17	1 <i>0</i> 4 45	Ø.17 Ø.07
49 6e	45	0.17	121	0.20
a3	45	Ø.17	93	0.15
f	44	Ø.17	88	0.14
7d	44	0.17	132	0.21
2 f	42	Ø.16	84	Ø.14
c5	42	Ø.16	84	0.14
ea lc	42 41	0.16 0.16	84 82	Ø.14 Ø.13
le	40	Ø.15	80	Ø.13
44	40	Ø.15	4 Ø	0.06
2e	39	0.15	78	0.13
d7	39	0.15	78	Ø.13
a	38	0.14	76	0.12
4a	38	0.14	38	0.06
ce la	37 35	Ø.14 Ø.13	111 7ø	Ø.18 Ø.11
22	35	Ø.13	70	Ø.11
bl	34	Ø.13	102	Ø.16
cb	34	0.13	68	0.11
ee	3 4	0.13	70	0.11
43	33	Ø.13	33	0.05
el	33 32	Ø.13	74 64	0.12
ef d	31	Ø.12 Ø.12	62	Ø.10 Ø.10
a 4	31	Ø.12	64	0.10
ad	3Ø	Ø.11	90	Ø.15
e4	30	0.11	60	0.10
dd	29	0.11	58	0.09
40	28	0.11	28	0.05
23 3d	24 24	Ø.09 Ø.09	48 24	Ø.08 Ø.04
cØ	24	Ø.09	48	Ø.04 Ø.08
48	23	Ø. Ø9	23	0.04

bb e bb 4d 50 8 3 6 c a 46 c d 3 4 b 6 e 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	23 21 21 19 19 18 17 17 16 16 15 14 14 12 12 11	Ø.Ø9 Ø.Ø8 Ø.Ø8 Ø.Ø8 Ø.Ø7 Ø.Ø7 Ø.Ø7 Ø.Ø6 Ø.Ø6 Ø.Ø6 Ø.Ø6 Ø.Ø5 Ø.Ø5 Ø.Ø5 Ø.Ø6 Ø.Ø6 Ø.Ø6 Ø.Ø6 Ø.Ø6 Ø.Ø6	69 52 21 21 19 38 18 36 51 34 16 32 15 30 14 28 12 24 11	0.11 0.08 0.08 0.08 0.08 0.08 0.08 0.09
3a 88 47 98	10 10 9 9	0.04 0.04 0.03 0.03	10 20 9 18	0.02 0.03 0.01 0.03
ba c8 dc 82 a8	9 9 9 8 8	0.03 0.03 0.03 0.03 0.03	27 18 18 16 23	Ø. Ø4 Ø. Ø3 Ø. Ø3 Ø. Ø3 Ø. Ø4
fe 6Ø db fl 7a	8 7 7 7 7 6	Ø.03 Ø.03 Ø.03 Ø.03 Ø.02	24 14 14 21 18	0.04 0.02 0.02 0.03 0.03
9b bc d3 e 89	6 6 5 5	0.02 0.02 0.02 0.02 0.02	12 18 12 10 10	Ø.02 Ø.03 Ø.02 Ø.02 Ø.02
aØ ff b3 3 64 68	5 5 5 4 3 3	0.02 0.02 0.02 0.01 0.01 0.01	10 15 12 6 6 6	0.02 0.02 0.02 0.01 0.01 0.01
7Ø 73 79 a9 df	3 3 3 3 3 3 3	0.01 0.01 0.01 0.01 0.01	9 9 9 6 6	0.01 0.01 0.01 0.01 0.01

fØ	3	0.01	9	Ø.Øl
£3	3	0.01	9	0.01
19	2	0.01	2	0.00
91	2	0.01	4	0.01
93	2	0.01	4	0.01
d8	2	0.01	4	0.01
fb	2	0.01	6	0.01
28	1	Ø.ØØ	2	0.00
57	1	Ø.ØØ	1	0.00
76	1	0.00	3	0.00
9a	1	Ø.ØØ	2	0.00
b4	1	0.00	3	0.00
dØ	1	0.00	2	0.00

Total number of page 2 instructions = 1354

Percent of total = 5.14

Total number of page 2 bytes = 5058

Percent of total = 8.16

Opcode(hex)	Count	Percent	Bytes	Percent
8 e	341	1.30	1364	2.20
ae	182	Ø.69	571	Ø.92
26	126	0.48	504	Ø.81
27	111	Ø.42	444	0.72
83	106	0.40	424	Ø.68
a3	75	Ø.28	248	0.40
af	66	Ø.25	210	0.34
be	63	Ø.24	252	0.41
8c	58	0.22	232	0.37
9 e	44	Ø.17	132	Ø.21
2d	29	Ø.11	116	Ø.19
25	24	0.09	96	0.15
ac	16	0.06	48	0.08
2c	14	0.05	56	0.09
9 f	12	0.05	36	Ø.Ø6
2e	10	0.04	40	0.06
bf	lØ	0.04	40	0.06
24	9	Ø.Ø3	36	0.06
2b	7	ø.ø3	28	0.05
2f	7	0.03	28	0.05
3f	7	0.03	14	0.02
b3	7	0.03	28	0.05
ee	5	0.02	16	0.03
ce	4	0.02	16	0.03

fe	4	0.02	16	0.03
22	3	0.01	12	0.02
bc	3	0.01	12	0.02
23	2	0.01	8	0.01
29	2	0.01	8	0.01
9c	2	0.01	6	0.01
ff	2	0.01	8	0.01
de	1	0.00	3	0.00
df	1	Ø.ØØ	3	0.00
ef	1	0.00	3	0.00

Total number of page 3 instructions = 16

Percent of total = $\emptyset.06$

Total number of page 3 bytes = 56

Percent of total = 0.09

Opcode(hex)	Count	Percent	Bytes	Percent
83	7	0.03	28	0.05
a3	7	0.03	21	0.03
93	1	0.00	3	0.00
b3	1	Ø.00	4	0.01

*** Instruction Classes ***

op	count	8	bytes	8
ldl6	4114	15.62	11291	18.22
ld	2868	10.89	6144	9.91
lbsr	23Ø7	8.76	6921	11.17
lea	1708	6.49	4629	7.47
psh	1426	5.42	2852	4.60
stl6	1376	5.23	3155	5.09
st	1219	4.63	2991	4.83
bra	877	3.33	1754	2.83
cmp	860	3.27	1792	2.89
bne	8Ø4	3.05	1608	2.59
beq	800	3.04	1600	2.58
pul	716	2.72	1432	2.31
jsr	635	2.41	1905	3.07
clr	521	1.98	853	1.38
tfr	486	1.85	972	1.57
rts	434	1.65	434	0.70

sbc 8 0.03 16 0.03		cmp16 lbra ind ind cortsiadd16 sr ind cortswidd16 bit q bit expressed ab compression of the corts additional corts additional corts about the corts are corts about the corts about the corts are corts and corts are corts about the corts are corts and corts are corts are corts are corts and corts are	423 347 407 253 407 407 407 407 407 407 407 407	1.65323669876698766987669876698766987669876698	1409 1209 694 518 5115 3873 2153 3404 2153 3404 2153 3404 2153 3404 2153 3404 2153 3404 2153 3404 2153 3404 2153 3404 2154 3404 2154 3404 3404 3404 3404 3404 3404 3404 34	2.952442277744734734734734734734734734735775243522100.1333311198543922662633200.13333111985433922662633200.13333111985433922662633200.13333111985433922662633200.13333111985433922662633200.13333111985433922662633200.13333111985433922662633200.13333111985433922662633200.133331111985433922662633200.133331111985433922662633200.133331111985433922662633200.133331111985433922662633200.133331111985433922662633200.133331111985433922662633200.133331111985433922662633200.133331111985433922662633200.1333311119854339222662633200.1333311119854339222662633200.1333311119854339222662633200.1333311119854339222662633200.1333311119854339222662633200.1333311119854339222662633200.1333311119854339222662633200.1333311119854339222662633200.1333311119854339222662633200.133331111198543433331111111111111111111111111111111
--------------------	--	---	--	--	--	---

lble	7	0.03	28	0.05
1 bm i	7	0.03	28	0.05
lbhi	3	0.01	12	0.02
daa	2	0.01	2	0.00
lbls	2	0.01	8	0.01
lbvs	2	0.01	8	0.01
bvc	1	0.00	2	0.00
brn	Ø	0.00	Ø	Ø.90
bvs	Ø	0.00	Ø	0.00
cwai	. · Ø	0.00	Ø	0.00
illop	Ø	0.00	Ø	0.00
lbpl	Ø	0.00	Ø	0.00
lbrn	Ø	0.00	Ø	0.00
lbvc	Ø	0.00	Ø	0.00
svnc	Ø	0.00	Ø	0.00

*** Larger Instruction Classes ***

Class	count	Ş	bytes	S
load call cond_br store psh_pul addr cmp_tst xfr arith logical inc_dec shifts	6982 3289 2652 2595 2142 1708 1482 1384 538 526 520 378	26.52 12.49 10.07 9.86 8.14 6.49 5.63 5.26 2.04 2.00 1.97 1.44	17435 9520 5992 6146 4284 4629 3614 3256 1315 1073 903 542	28.13 15.36 9.67 9.92 6.91 7.47 5.83 5.25 2.12 1.73 1.46 Ø.87
tot	22234	84.44	58709	94.73

*** Addressing Mode Usage ***

Addressing mode	count	percent
indexed	7371	27.99
immediate	5132	19.49
short relative	3532	13.41
inher e nt	3466	13.16
long_relative	3Ø54	11.60
extended	1937	7.36
direct	958	3.64

accumulator_b	456	1.73
accumulator_a	424	1.61
indirect	175	Ø.66

Indexed Addressing Statistics:

subgroup	addr mode	number	% of total	% of subgrp.
<pre>inc/dec inc/dec inc/dec inc/dec</pre>	÷ ++ - 	286 120 43 273	3.88 1.63 Ø.58 3.70	39.61 16.62 5.96 37.81
offset offset offset offset	5 8 16 pc8 pc16	3940 631 572 92 139	53.45 8.56 7.76 1.25 1.89	73.32 11.74 10.64 1.71 2.59
reg_offset reg_offset reg_offset	a b d	85 99 113	1.15 1.34 1.53	28.62 33.33 38.05
no_offset	Ø	961	13.04	100.00
ext_indirect		17	0.23	100.00

Average additional bytes for indexed = 1.17

Index register usage:

reg	number	S
u	2411	32.71
S	1801	24.43
X	1762	23.90
У	1149	15.59
рc	231	3.13

Total number of relative instructions = 6586

Total short = 3532 53.63 percent

Total long = 3054 46.37 percent

*** Push/Pull Statistics ***

Total number of push/pulls = 2142

Average number of registers push/pulled per instr. = 2.25

Register	push/pulled	count	percent	
	а	1216	25.23	
	x	1091	22.63	
	b	844	17.51	
	У	837	17.37	
	pc	442	9.17	
	u	299	6.20	
	CC	62	1.29	
	dpr	27	0.56	
	~	2	a az	

*** Direct Page Register Statistics ***
Number of loads of the dpr = 9

BIBLIOGRAPHY

- [BON1] Boney, Joel and Ritter, Terry, "A Microprocessor For the Revolution, Part 1: Design Philosophy", Byte, Vol. 4, No. 1, January 1979, pp. 14-42.
- [BON2] Boney, Joel and Ritter, Terry, "A Microprocessor For the Revolution, Part 2: Instruction Set Dead Ends, Old Trails, and Apologies", Byte, Vol. 4, No. 2, February 1979, pp. 32-42.
- [BON3] Boney, Joel and Ritter, Terry, "A Microprocessor For the Revolution, Part 3: Final Thoughts", Byte, Vol. 4, No. 3, March 1979, pp. 46-52.
- [BON4] Boney, Joel, "M6800 Instruction Analysis", Internal Motorola memo, March 2, 1977. (Available from author)
- [KER] Kernighan, Brian W. and Plauger, P.J., Software Tools, Yourdon Inc., 1976, pp. 163-219.
- [LUN] Lunde, Amund, "Empirical Evaluation of Some Features of Instruction Set Processor Architectures", Communications of the ACM, Vol. 20, No. 3, March 1977, pp. 143-152.

- [MAR] Marathe, Madhav, Excerpt from his thesis on the PDP-11 instruction mix (personal correspondence to Dr. Skip Stritter), August 8, 1977.
- [MOT1] MC6801 8-Bit Single-Chip Microcomputer Reference
 Manual, MC6801RM(AD), Motorola Literature Distribution
 Center, 1980.
- [MOT2] MC6809 MC6809E Microprocessor Programming Manual,
 M6809PM(AD), Motorola Literature Distribution Center,
 March 1, 1981.
- [PEU] Peuto, Bernard L., and Shustek, Leonard J., "An Instruction Timing Model of CPU Performance", 4th Symposium on Computer Architecture, March 1977, pp. 165-177.
- [SHU] Shustek, Leonard Jay, "Analysis and Performance of Computer Instruction Sets", Stanford Linear Accelerator Center Report No. 205, STAN-CS-78-658, January 1978.
- [STO] Stone, Harold S., editor, <u>Introduction to Computer</u>

 <u>Architecture</u>, Science Research Associates, 1975, pp.

 525-528.

	•