(4) Sea $A \in \mathbb{K}^{n \times n}$, y sea $f(x) = ax^2 + bx + c$ un polinomio, con $a, b, c \in \mathbb{K}$. Sea f(A) la matriz $n \times n$ definida por

$$f(A) = aA^2 + bA + c \operatorname{Id}_n.$$

Probar que todo autovector de A con autovalor λ es autovector de f(A) con autovalor $f(\lambda)$.

See
$$v$$
 un autovector de A con autovalor λ , es decir $Av = \lambda v$, entonces

$$f(A)v = (aA^2 + bA + cId_n)v$$

=
$$\partial A^2 v + bAv + cIdn v$$

= $\partial A^2 (\lambda v) + bA(\lambda v) + cIdn (\lambda v)$

=
$$aA^{2}(\lambda v) + bA(\lambda v) + cId_{n}(\lambda v)$$

= $a\lambda A(v) + \lambda bv + cv$

= $(a\lambda^2 + \lambda b + c)v$

 $= f(y) \wedge$