Introduction to Networks

NETWORKING TODAY

- Is an integral part of life and business
- Network has no boundary and supports the way we:
 - ✓ Communicate
 - ✓ Share
 - ✓ Work
 - ✓ Learn
 - ✓ Play

NETWORKS AND STANDALONE COMPUTERS

- Network
 - Group of computers and other devices connected by some type of transmission media
 - Networks enable users to share devices and data, collectively called a network's resources
- Standalone computer
 - Uses programs and data only from its local disks and is not connected to a network

COMMUNICATION BEFORE NETWORK

 Method of sharing data by copying it to a disk and carrying the disk from computer to computer

Figure 1-1: Data sharing before the advent of networks

LOCAL AND REMOTE COMPUTERS

- Local computer
 - Computer on which user is working
- Remote computer
 - Computer that user controls or works on via network connection

LAN

a. Single-building LAN

b. Multiple-building LAN

MANS AND WANS

- Metropolitan area network (MAN)
 - Network connecting clients and servers in multiple buildings within limited geographic area
- Wide area network (WAN)
 - Network that spans large distance and connects two or more LANs
 - The Internet is an example of a very intricate and extensive WAN that spans the globe

MAN

WAN

Figure 1-5: A simple WAN

TYPES OF NETWORK MODEL

- Peer-to-Peer Network
- Client/Server Network

PEER-TO-PEER NETWORK

- Computers communicate on single segment of cable and share each other's data and devices
- Simple example of a local area network (LAN)
- Also know as Workgroup Model

Figure 1-2: Simple peer-to-peer network

CLIENT/SERVER NETWORK

INTRANET

- It is a worldwide system which has the following characteristics:
- Internet is a world-wide / global system of interconnected computer networks.
- Internet uses the standard Internet Protocol (TCP/IP)
- Every computer in internet is identified by a unique IP address.
- IP Address is a unique set of numbers (such as 110.22.33.114) which identifies a computer's location.
- A special computer DNS (Domain Name Server) is used to give name to the IP Address so that user can locate a computer by a name.
- Internet is accessible to every user all over the world.

INTRANET

- Intranet is system in which multiple PCs are connected to each other.
- PCs in intranet are not available to the world outside the intranet.
- Usually each company or organization has their own Intranet network and members/employees of that company can access the computers in their intranet.
- Each computer in Intranet is also identified by an IP Address which is unique among the computers in that Intranet.

INTRANET FIG.

SIMILARITIES IN INTERNET AND INTRANET

- Intranet uses the internet protocols such as TCP/IP and FTP.
- Intranet sites are accessible via web browser in similar way as websites in internet. But only members of Intranet network can access intranet hosted sites.
- In Intranet, own instant messengers can be used as similar to yahoo messenger/ gtalk over the internet.

DIFFERENCES IN INTERNET AND INTRANET

- Internet is general to PCs all over the world whereas Intranet is specific to few PCs.
- Internet has wider access and provides a better access to websites to large population whereas Intranet is restricted.
- Internet is not as safe as Intranet as Intranet can be safely privatized as per the need.

NETWORKS

- Networks of many sizes
 - Small Home / Office Networks
 - Medium to Large Networks
 - World Wide Network

- Two main type
 - Clients and Servers
 - Peer-to-Peer

NETWORK TOPOLOGY

Refers to the physical layout of the network

NETWORK TOPOLOGY

Refers to the physical layout of the network

NETWORK TOPOLOGY

 Exercise – read about some specialist network topologies and identify their strengths and weaknesses and complete the provided table

NETWORKS COMMUNICATION

- Consists of 4 main elements
 - Message
 - Message source
 - Message destination
 - Medium/Channel

COMPONENTS OF THE NETWORK - DEVICES

- ✓ End devices
- ✓ Intermediate devices

INTERMEDIATE DEVICES

- ✓ Switches used to filter and forward traffic in a LAN
 - ✓ Hardware based Fast
 - ✓ Uses MAC address of devices to remember their location
 - ✓ Keeps dynamic MAC address table

- ✓ Routers used to filter and forward traffic in a WAN
 - ✓ Software + hardware based More expensive
 - ✓ Uses Routing protocols to locate subnetworks
 - ✓ Keeps a dynamic routing table

COMPONENTS OF THE NETWORK - MEDIA

- Provide the pathway for data transmission
- Interconnect devices

NETWORK MEDIA

NETWORK MEDIA CONT.

NETWORK SYMBOLS

Common Data Network Symbols

EXERCISE

- Compare the commonly used network media based on these features
 - The distance the media can successfully carry a signal.
 - The environment in which the media is to be installed.
 - The amount of data and the speed at which it must be transmitted.
 - The cost of the media and installation

TOPOLOGY DIAGRAMS

 Physical topology diagrams - Identify the physical location of intermediary devices and cable installation.

TOPOLOGY DIAGRAMS CONT.

Logical topology diagrams - Identify devices, ports, and addressing scheme.

NETWORK TYPES

- Local Area Network (LAN)
- Wide Area Network (WAN)

NETWORK TYPES CONT.

- Intranets
- Extranets

CONVERGED NETWORKS

Traditional Networks

- Different network infrastructure and technology for various data types
 - Data Internet
 - Voice PSTN
 - Video TV Broadcast

The Converging Networks –

Capable of delivering data, voice, and video over the same network infrastructure

RELIABLE NETWORKS

- Four Basic Characteristics of Network Architecture
 - ✓ Fault Tolerance
 - ✓ Scalability
 - ✓ Quality of Service (QoS)
 - ✓ Security

DISCUSSION

 Read regarding the 4 main characteristics of modern networks and participate in the class discussion

ELEMENTS OF COMMUNICATION

- ✓ Message source
- The channel
- ✓ Message destination

- ✓ Rules
 - Common language and grammar
 - Speed and timing of delivery
 - Confirmation or acknowledgment requirements

MESSAGE DELIVERY OPTIONS

REFERENCE MODEL FOR NETWORK COMMUNICATION

- A reference model defines how applications can communicate over a network (the full process)
- A layered reference model divides the full process into specific related groups of actions at each layer
- These actions are implemented via protocols or protocol suites
- Typically Defines :-
 - The format or structure of the message
 - The method by which networking devices share information about pathways with other networks
 - How and when error and system messages are passed between devices
 - The setup and termination of data transfer sessions

BENEFITS OF USING A LAYERED MODEL

- Provides a common language for vendors
- Fosters competition between vendors
- Changes in one layer do not affect other layers

Using a layered model helps in the design of complex, multi-use, multi-vendor networks.

LAYERED REFERENCE MODELS

OSI Model TCP/IP Model 7. Application 6. Presentation Application 5. Session 4. Transport Transport 3. Network Internet 2. Data Link Network Access 1. Physical

INDUSTRY STANDARDS CONT.

ISO/OSI MODEL

To translate, encrypt, and compress data

To provide reliable process-toprocess message delivery and error recovery

To organize bits into frames; to provide hop-to-hop delivery

Application

Presentation

Session

Transport

Network

Data link

Physical

To allow access to network resources

To establish, manage, and terminate sessions

To move packets from source to destination; to provide internetworking

To transmit bits over a medium; to provide mechanical and electrical specifications

TCP/IP MODEL

TCP/IP Model

Application

Represents data to the user plus encoding and dialog control.

Transport

Supports communication between diverse devices across diverse networks.

Internet

➤ Determines the best path through the network.

Network Access Controls the hardware devices and media that make up the network.

NETWORK PROTOCOLS

- Define a common format and a set of rules for the data communication
 - · Number and type of messages
 - The header fields in each message
 - · Meaning and content of each header field

Let's all agree that sessions will end after 60 seconds of inactivity.

Questions