Exercise Sheet 9

These exercises cover part of chapter 5. Full answers will be published on moodle.

1. Suppose that X_1, \ldots, X_n are independent random variables, each uniformly distributed on $(0, \theta)$. Let $\overline{X} = \{\sum_{i=1}^n X_i\}/n$ and $X_{(n)} = \max\{X_i, i=1, \ldots, n\}$.

Find the expectations of \overline{X} and $X_{(n)}$ in terms of θ .

Hint: For the expectation of $X_{(n)}$ you will first need to find the pdf of $X_{(n)}$. Hence propose two unbiased estimators of θ based on each of \overline{X} and $X_{(n)}$. Compare the mean square errors of these estimators. Which estimator would you prefer and why?

- 2. Let X_1, \ldots, X_n be independent and identically distributed $N(\theta, \sigma^2)$ random variables, where the variance σ^2 is known but the mean θ is unknown. Obtain the Cramér–Rao lower bound for the variance of any unbiased estimator of θ . Find an unbiased estimator of θ that achieves this lower bound.
- 3. Let X_1, \ldots, X_n be independent, identically distributed Poisson random variables with mean θ . Use the method of moments to find an estimator of θ .

Determine the bias of this estimator and compare its variance with the Cramér–Rao lower bound.

4. Let X_1, \ldots, X_n be a random sample from a $Gam(\alpha, \lambda)$ distribution, where both α and λ are unknown. Show that the method of moments estimator of α is given by $\hat{\alpha} = 1/c^2$, where $c = S/\bar{X}$ is the sample coefficient of variation and $S^2 = \sum_i (X_i - \bar{X})^2/n$.