第九讲 权益估值模型

学习目标

- 基本 要求:
- ✓ 掌握: 股利贴现模型
- ✓ 熟悉: 市盈率; 自由现金流估值方法
- · 了解: 比较估值; 内在价值与市场价格
- 重点难点: 股利贴现模型

股票的基本面分析

- 基本面分析:通过对公司财务数据的分析,来估计该公司某种意义 上的"真实价值",并试图识别市场估值偏离"真实价值"的股票。
- 如果假设股票的市场价格最终将调整等于其真实价值,那么识别市场中错估的股票,就可以为投资人带来利润。
- 股票的内在价值:它能够为投资人带来的现金回报的现值。

股票的内在价值和市场价格

- 股票的内在价值:它能够为投资人带来的现金回报的现值。
- 股票的账面价值、市场价格、清算价值、重置成本。
- 账面价值是公司资产历史成本的记录,并不是决定股价的重要因素。
- 股票的市场价格,取决于公司未来能够给予股东的回报。
- > 清算价值可以视为股票市场价格的下限。
- 重置成本可以视为股票市场价格的上限。
- ▶ 托宾Q: 市值与重置成本之比。

权益估值模型

- 资产负债表模型(类比估值法)
- 股利贴现模型(DDM)
- ■市盈率
- 自由现金流模型

类比估值方法

- 假设同行业的公司在某些财务指标上应该有一致的表现,那么可以 通过比较公司的财务指标,来为公司股票估值。
- 最常见的用于类比估值的指标包括:
 - 1. 市盈率
 - 2. 市净率
 - 3. 市销率

Table 18.1

Financial highlights for Microsoft Corporation, September 12, 2012

Price per share	\$ 30.63	
Common shares outstanding (billion)	8.38	
Market capitalization (\$ billion)	\$258	
Latest 12 Months		
Sales (\$ billion)	\$ 73.72	
EBITDA (\$ billion)	\$ 30.71	
Net income (\$ billion)	\$ 16.98	
Earnings per share	\$ 2.00	
Valuation	Microsoft	Industry Avg
Price/Earnings	15.4	17.5
Price/Book	3.9	10.5
Price/Sales	3.5	
Price/Cash flow	10.9	20.5
PEG	1.1	1.2
Profitability		
ROE (%)	27.5	24.9
ROA (%)	15.0	
Operating profit margin (%)	37.9	
Net profit margin (%)	23.0	23.2

Source: Compiled from data available at finance.yahoo.com, September 12, 2012.

内在价值与市场价格

■ 股票收益是由现金股利和资本利得或损失构成的。

$$E(r) = \frac{E(D_1) + [E(P_1) - P_0]}{P_0}$$

■ 期望收益率可能高于或低于基于股票风险的必要收益率。

必要收益率

■ 资本资产定价模型可以用来估计必要收益率k:

$$k = r_f + \beta \Big[E(r_M) - r_f \Big]$$

- ·如果股价定价是正确的,k就等于期望收益率。
- · k是市场资本化率。

内在价值与市场价格

- · 内在价值(IV) 是基于模型估计的真实价值。
- 市场价格(MV) 是所有市场参与者达成共识的价格。 交易信号:
 - ✓IV > MV 购买
 - ✓ IV < MV 出售或卖空

股利贴现模型

- 股利贴现模型: 股票内在价值等于未来现金流的现值。
- 只考虑单期决策: $V_0 = \frac{D_1 + P_1}{1+k}$
- 多期决策:

$$V_0 = \frac{D_1}{1+k} + \frac{D_2}{(1+k)^2} + \dots + \frac{D_H + P_H}{(1+k)^H}$$
$$V_0 = \frac{D_1}{1+k} + \frac{D_2}{(1+k)^2} + \frac{D_3}{(1+k)^3} + \dots$$

□优先股和股利贴现模型

- · 股利增长率为0
- · 优先股的固定股利是每股2美元,贴现率是8%:

$$V_o = \frac{\$2}{0.08 - 0} = \$25$$

□固定增长的股利贴现模型

· 某公司刚派发了每股3美元的年度股利,预期股利将以8%的固定增长率增长,从资本资产定价模型计算的市场资本化率是14%。

$$V_0 = \frac{D_1}{k - g} = \frac{\$3.24}{0.14 - 0.08} = \$54$$

固定增长的股利贴现模型的含义

- 在哪些情形下,固定增长的股利贴现模型意味着股票价值将会越大?
- 1. 预期的每股收益越高
- 2. 市场资本化率k越小
- 3. 预期的股利增长率越高
- 股价与股利将按同样的增长率增长。

$$V_0 = \frac{D_1}{k - g}$$

估计股利增长率

$$g = ROE \times b$$

$$V_0 = \frac{E_1(1-b)}{k - ROE \times b}$$

g =股利增长率

ROE = 公司的投资回报率

b = 盈余再投资率或称作收益留存率

股利贴现模型

- 股票价格向内在价值的收敛:如果市场对某股票的估值偏离内在价值, 那么投资于该股票的预期收益,取决于价格如何收敛到内在价值。
- 一般认为,股票价格会在一定时间内回归到内在价值。

股价和投资机会

根据红利贴现模型,股票价格可以分解为两个部分:零增长假设下的股票价值,以及未来增长机会的现值。

$$P_0 = \frac{E_1}{k} + PVGO$$

注:只有当未来投资的 ROE 高于资本成本 k 的时候,投资机会才有价值。如果投资的 ROE 小于资本成本 k,那么应该将资金返还给股东,否则将会损害股东利益。

Figure 18.1 Dividend growth for two earnings reinvestment policies

□增长机会

· 公司把盈余的60% 再投资于净投资收益率ROE仅为10%的项目, 市场资本化率是15%, 年末派发的股利是每股2美元,每股盈 利是5美元。

$$g = ROE \times b = 10\% \times 0.6 = 6\%$$

$$P_0 = \frac{\$2}{0.15 - 0.06} = \$22.22$$

$$PVGO = \$22.22 - \frac{\$5}{0.15} = -\$11.11$$

企业的生命周期

- 企业在发展的不同阶段,会呈现出不同的特征。
- 企业的生命周期:早期企业投资机会多,增长率高,分红少或者没有;当企业和市场成熟以后,竞争者进入市场,投资机会逐步减少,此时企业常以分红利的形式将多余资金返还给投资人。

Table 18.2

Financial ratios in two industries

	Ticker	Return on Capital (%)	Payout Ratio (%)	Growth Rate 2014–2016
Computer Software				
Adobe Systems	ADBE	12.0%	0.0%	13.2%
Cognizant	CTSH	18.5	0.0	20.5
Compuware	CPWR	13.5	0.0	16.6
Intuit	INTU	20.0	22.0	10.9
Microsoft	MSFT	31.5	34.0	11.7
Oracle	ORCL	20.5	12.0	7.0
Red Hat	RHT	13.0	0.0	18.2
Parametric Tech	PMTC	15.0	0.0	16.0
SAP	SAP	16.5	28.0	9.1
Median		16.5%	0.0%	13.2%
Electric Utilities (East Coast)				
Central Hudson G&E	CHG	6.0%	66.0%	2.0%
Consolidated Edison	ED	6.5	58.0	2.9
Duke Energy	DUK	5.5	66.0	4.0
Northeast Utilities	NU	6.0	53.0	7.7
Pennsylvania Power	PPL	7.0	58.0	7.7
Public Service Enterprise	PEG	7.5	53.0	6.3
South Carolina E & G	SCG	6.0	57.0	3.8
Southern Company	SO	7.0	69.0	5.1
Tampa Electric	TE	7.5	59.0	8.3
United Illuminating	UIL	6.0	71.0	2.1
Median		6.3%	58.5%	4.5%

Source: Value Line Investment Survey, July and August, 2012. Reprinted with permission of Value Line Investment Survey. © 2012 Value Line Publishing, Inc. All rights reserved.

多阶段股利贴现模型

- 企业发展常见的模式是:早期高速增长,此后进入稳定发展时期。
- 两阶段股利贴现模型:假设股利在两个时间段内呈现出不同特征, 分别刻画。
- 对企业的估值,取决于一些关键变量的假设值。因此估值结论是否 稳健,需要做敏感性检验。

$$V_0 = \frac{D_1}{k - g}$$

生命周期与多阶段增长模型

■ 丰田公司的股利预测值:

2010 \$0.50 2012 \$0.83

2011 \$0.66 2013 \$1.00

■ 股利支付率是30%, ROE是 11%, 稳定阶段增长率是 7.7%.

□丰田公司的例子

- · 丰田公司的贝塔值是0.95, 无风险利率是3.5%。 如果市场风险溢价是8%, 那么:
- \cdot k=3.5% + 0.95x(8%) = 11.1%

$$P_{2013} = \frac{D_{2014}}{k - g} = \frac{D_{2013}(1 + g)}{k - g} = \frac{\$1(1.077)}{0.111 - 0.077} = \$31.68$$

$$V_{2009} = \frac{\$0.50}{1.111} + \frac{\$0.66}{1.111^2} + \frac{\$0.83}{1.111^3} + \frac{\$1 + \$31.68}{1.111^4}$$

✓ 2009年,丰田公司的内在价值的估计值是\$23.04。

市盈率(Price-Earnings Multiple)

■ 市盈率: 每股价格与每股收益之比。

$$P_0 = \frac{E_1}{k} + PVGO$$

$$\frac{P_0}{E_1} = \frac{1}{k} \left(1 + \frac{PVGO}{\frac{E}{k}} \right)$$

■ PVGO与E/k 的比率就是公司价值中增长机会贡献的部分与现有资产贡献的部分(即零增长模型中公司的价值E/k)之比。

市盈率与增长机会

■ 当 PVGO=0, $P_0=E_1/k$ 。即用零增长年金来对股票进行估值。

■ P/E 会随着PVGO的增加而迅速上升。

$$\frac{P_0}{E_1} = \frac{1}{k} \left(1 + \frac{PVGO}{E_k} \right)$$

■ 高市盈率表示公司拥有大量增长的机会。

市盈率与增长机会

■ 市盈率P/E:

- ▶市盈率随着ROE的增加而增加
- > 只要ROE>k, 市盈率随着再投资率的增加而增加.

$$P_0 = \frac{E_1(1-b)}{k - ROE \times b} \qquad \frac{P_0}{E_1} = \frac{1-b}{k - ROE \times b}$$

Table 18.3

Effect of ROE and plowback on growth and the P/E ratio

		Plowback Rate (b)					
	0	.25	.50	.75			
ROE		A. Growth rate, g					
10%	0	2.5%	5.0%	7.5%			
12	0	3.0	6.0	9.0			
14	0	3.5	7.0	10.5			
		B. P/E ratio					
10%	8.33	7.89	7.14	5.56			
12	8.33	8.33	8.33	8.33			
14	8.33	8.82	10.00	16.67			

Assumption: k = 12% per year.

• 单纯的增长并不一定能够创造价值,只有当投资的收益率高于资本成本的时候,增长才会提高市盈率。上表中,当 ROE=10%,低于资本成本时,利润留存比例越高,市盈率越低。

市盈率

- 市盈率分析中的陷阱:市盈率的计算依赖于会计数据,而会计数据是有缺陷的,比如高通胀时期往往高估企业盈利,导致市盈率偏低。再比如盈余管理(管理层利用会计准则的灵活性来粉饰经营的业绩)等。
- 市盈率分析和股利贴现模型可以一起用于企业估值。
- 其他一些指标也被用于估计企业的价值: 市净率、市销率、股价现金 流比率等。这些指标适用于在同行业内的比较分析。

自由现金流的估值方法

■ FCFF方法:公司自由现金流,用WACC计算的现值。

■ FCFE方法:股东自由现金流,用权益资本成本计算的现值。

自由现金流的估值方法

■ FCFF方法:公司自由现金流,用WACC计算的现值。

$$FCFF = EBIT(1-t_c)$$
+折旧-资本化支出-NWC的增加

公司价值 =
$$\sum_{t=1}^{T} \frac{FCFF_t}{(1+WACC)^t} + \frac{V_T}{(1+WACC)^T}$$
, $V_T = \frac{FCFF_{T+1}}{WACC-g}$

$$WACC = \left[\frac{D}{V} \times (1 - T_C) \times r_{debt}\right] + \left[\frac{E}{V} \times r_{equtiy}\right]$$

自由现金流的估值方法

■ FCFE方法:股东自由现金流,用权益资本成本计算的现值。

$$FCFE = FCFF -$$
 利息费用× $(1-t_c)$ +净负债的增加

公司价值 =
$$\sum_{t=1}^{T} \frac{FCFE_{t}}{(1+k_{E})^{t}} + \frac{V_{T}}{(1+k_{E})^{T}}$$
, $V_{T} = \frac{FCFE_{T+1}}{k_{E}-g}$

本讲小结

- ✓ 资产负债表模型
- ✓ 股利贴现模型(DDM)
- √ 市盈率
- 夕自由现金流模型