Theory Assignment I

Automata Theory Monsoon 2024, IIIT Hyderabad

August 20, 2024

Total Marks: 35 points Due date: 22/08/24 11:59 pm

General Instructions: All symbols have the usual meanings (example: \mathbb{R} is the set of reals, \mathbb{N} the set of natural numbers, and so on). FSM stands for finite state machine. DFA stands for deterministic finite automata. NFA stands for non-deterministic finite automata. a^* is the Kleene Star operation.

- 1. [2 points] Given a NFA with 5 states, what is the maximum number of transitions it can have if the alphabet has 3 symbols? [CO 1]
- 2. [3 points] A Finite State Transducer (FST) is a 5-tuple $M = (Q, \Sigma, \Gamma, \delta, s)$ where-
 - Q is a finite set of states,
 - Σ is a finite set of input symbols
 - Γ is a finite set of output symbols
 - $\delta: Q \times (\Sigma \cup \{\epsilon\}) \longrightarrow Q \times (\Gamma \cup \{\epsilon\})$ is the transition function, allowing for epsilon transitions in both input and output,
 - $s \in Q$ is the start state.

Construct a transducer, that takes as input a program, and writes in the output the part of the program that is not commented. $\Sigma = \sec$ of unicode characters

- Every comment starts and ends with %%
- If the input contains the start of a comment but not its end, then the entire program after the start of the comment is commented

Eg:

Input

[CO 1, CO 2]

```
print("hi") %%testing%%
print(123)
%%this is a comment%% print("this is not") %%this is a comment again%%
Output
print("hi")
print(123)
print("this is not")
```

3. [3 points] Minimize the following DFA.

[CO 1, CO 2]

- 4. [3 points] Design a NFA to accept the set of strings of 0's and 1's that either
 - (a) end in 010 and have 011 somewhere preceding, or
 - (b) end in 101 and have 100 somewhere preceding

[CO 1, CO 2]

5. [2 points] (i) What is the language accepted by the following finite state automata?

- (ii) Let $\Sigma = \{a, b\}$. Write regular expression for the language L consisting of all strings in Σ^* with exactly one occurrence of the substring aaa. [CO 1, CO 2]
- 6. [3 points] If A is any language, let $A_{1/3-1/3}$ be the set of all strings in A with their middle thirds removed so that $A_{1/3-1/3} = \{xz \mid \text{for some } y, |x| = |y| = |z| \text{ and } xyz \in A\}$. Show that if A is regular, then $A_{1/3-1/3}$ is not necessarily regular. [CO 1, CO 2, CO 3, CO 4]
- 7. [3 points] Let M_1 and M_2 be DFAs that have k_1 and k_2 states, respectively, and then let $U = L(M_1) \cup L(M_2)$. Show that if $U \neq \emptyset$, then U contains some string s, where $|s| < \max(k_1, k_2)$. [CO 1, CO 2]

- 8. [3 points] Show that the following languages are not regular using the pumping lemma:
 - 1. $L = \{w \mid w \text{ has balanced parentheses}\}$

2.
$$L = \{a^{n!} \mid n \ge 0\}$$
 [CO 1, CO 2, CO 3, CO 4]

9. [2 points] Let the grammar G of L be the one below:

$$R \to ST \mid UV$$

$$T \to UV \mid W$$

$$V \to XY \mid Z$$

$$X \to YZ \mid T$$

The above grammar G is one whose variables and terminals are NOT named using the usual convention. Any of the symbols R through Z could be either a variable or a terminal; your task is to point out which is which, and which could be the start symbol. [CO 1, CO 2]

- 10. [3 points] Give a CFG to generate $A = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and either } i = j \text{ or } j = k\}$. Is the grammar ambiguous? Why or why not? [CO 1, CO 2, CO 3, CO 4]
- 11. [4 points] Construct a PDA for the language of all non-palindromes over {a, b}. [CO 1, CO 2]
- 12. [4 points] Consider the following PDA over the input alphabet $\Sigma = \{a, b\}$ and stack alphabet $\Gamma = \{\#, A\}$

Describe the language decided by the given PDA and then find the number strings of length 100 accepted by it. [CO 1, CO 2]