PES University

Department of Computer science and Engineering

Digital Design and Computer Organization Logic Minimization and K-maps

1. Simplify the following Boolean equations using Boolean theorems. Check for correctness using a truth table or K-map.

a) Y=AC+A'B'C

c)

Y=A'B'C'D'+AB'C'+AB'CD'+ABD+A'B'CD'+BC'D+A'

2. Simplify the following Boolean equations using Boolean theorems. Check for correctness using a truth table or K-map.

(a) Y = A'BC + A'BC'

(b) Y = A + (A'B + A'B')' + (A + B')

(c) Y = ABC+ABD+ABE+ACD+ACE+(A+D+E)'+B'C'D+B'C'E+

B'D'E'+C'D'E'

3. Simplify each of the following Boolean equations. Sketch a reasonably simple combinational circuit implementing the simplified equation.

(a) Y = A'BC + (BC')' + BC

(b) Y = (A + B + C)'D + AD + B

(c) Y = ABCD + A'BC'D + (B'+D)'E

4. Write Boolean equations for the circuit in Figure given below. You need not minimize the equations

5. Find a minimal Boolean equation for the function in truth table given below. Remember to take advantage of the don't care entries.

Truth Table

A	В	C	D	Y
0	0	0	0	X
0	0	0	1	X
0	0	1	0	X
0	0	1	1	0

0	1	0	0	0
0	1	0	1	X 0 X 1
0	1	1	0	0
0	1	1	1	X
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0 X 1 1 1 X
1	0	1	1	1
1 1	1	0	0	1
1	1	0	1	1
1	1	1	0	X
1	1	1	1	1

6. Find a minimal Boolean equation for the function in Figure below Remember to take advantage of the don't care entries.

Α	В	C	D	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	X
0	0	1	1	X
0	1	0	0	0
0	1	0	1	X
0	1	1	0	X
0	1	1	1	X
0 0 0 0 0 0 0 0 1 1 1	1 1 0	0	0	1
1	0	0	1	0
1	0 0	1	0	0
1	0	1	1	1
1	1	0	0	0
1 1 1	1	0 0 1 1 0 0 1 1 0 0 1 1 0	1 0 1 0 1 0 1 0 1 0 1	1 X X 0 X X X 1 0 0 1 X 1
1	1	1	0	X
1	1	1	1	1

- 7. Complete the design of the seven-segment decoder segments Sc through Sg.
- (a) Derive Boolean equations for the outputs Sc through Sg assuming that inputs greater than 9 must produce blank (0) outputs.
- (b) Derive Boolean equations for the outputs Sc through Sg assuming that inputs greater than 9 are don't cares.
- (c) Sketch a reasonably simple gate-level implementation of part (b). Multiple outputs can share gates where appropriate.
 - 8. A circuit has four inputs and two outputs. The inputs, *A*3:0, represent a number from 0 to 15. Output *P* should be TRUE if the number is prime (0 and 1 are not prime, but 2, 3, 5, and so on, are prime). Output *D* should be TRUE if the number is divisible by 3. Give simplified Boolean equations for each output and sketch a circuit
 - 9. Design a circuit that will tell whether a given month has 31 days in it. The month is specified by a 4-bit input, *A*3:0. For example, if the inputs are 0001, the month is January, and if the inputs are 1100, the month is December. The circuit output, *Y*, should be HIGH only when the month specified by the inputs has 31 days in it. Write the simplified equation, and draw the circuit diagram using a minimum number of gates. (Hint: Remember to take advantage of don't cares.).
 - 10. Simplify the Boolean function: $F(x, y, z) = \Sigma(2, 3, 4, 5)$
 - 11. Simplify the Boolean function: $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$

12. Simplify the following Boolean function into (a) sum-of-products form and (b) product-of-sums form:

$$F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$$

13. Simplify the Boolean function $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ which has the don't-care conditions

$$d(w, x, y, z) = \Sigma(0, 2, 5)$$

- 14. Simplify the Boolean function by finding all its prime implicants and essential prime implicants: $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$
- 15. Simplify the following Boolean expressions, using four-variable maps:

(a)
$$A'B'C'D' + AC'D' + B'CD' + A'BCD + BC'D$$
 (b) $x'z + w'xy' + w(x'y + xy')$

(c)
$$w'z + xz + x'y + wx'z$$
 (d) $AD' + B'C'D + BCD' + BC'D$

- 16. Simplify the following Boolean functions by first finding the prime and essential prime implicants:
 - (a) $F(w, x, y, z) = \Sigma(0, 2, 5, 7, 8, 10, 12, 13, 14, 15)$
 - (b) $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 10, 11, 14, 15)$
 - (c) $F(A, B, C, D) = \Sigma(1, 3, 4, 5, 10, 11, 12, 13, 14, 15)$
 - (d) $F(w, x, y, z) = \Sigma(0, 1, 4, 5, 6, 7, 9, 11, 14, 15)$