Computer Science 452 - Homework Assignment #3

Hari Amoor, NetID: hra25

February 11, 2020

Problem 1.2.1: Convert the following finite automata to regular expressions.

- (a) The given automaton computes the regular expression ba^* .
- (b) The given automaton computes the regular expression $((a \cup b)a^*b(bb)^*a)^*$.

Problem 1.29b, Claim: The language $A = \{www \mid w \in \{a,b\}^*\}$ is not regular.

Proof. Suppose for contradiction that A is regular. Let p be the Pumping length of A, and $w = a^p b^p$. Then, $x = www \in A$.

The string x is sufficiently large, so the decomposition x = qrs must exist as per the Pumping lemma. Since $|qr| \le p$ and $r \ne \varepsilon$, r must consist only of the symbol "a". Then, the string qr^2s has more "a"s than "b"s, so it cannot be in A.

This result contradicts the Pumping lemma; thus, it is true that A is not regular.

Problem 1.32, Claim: The language B as defined is regular.

NOTE: Arithmetic is done in \mathbb{Z}_2 when describing δ .

Proof. It suffices to show that B^R is regular. We construct a DFA to recognize B^R .

We assume w.l.o.g. that $\varepsilon \in B^R$. The DFA $M_B = (Q, \sum_3, \delta, q_0, F)$, where:

$$Q = \{q_0, q_1, q_e\}; \tag{1}$$

$$F = \{q_0\}; \tag{2}$$

$$\delta \begin{pmatrix} q_i, \begin{bmatrix} a \\ b \\ c \end{bmatrix} \end{pmatrix} = \begin{cases} q_{a+b+i} & q_i \neq q_e \text{ and } a+b+i=c \\ q_e & \text{otherwise} \end{cases}$$
 (3)

recognizes B. Thus, the claim holds.

Proof. Suppose for contradiction that E is regular. Let p be the Pumping length of E, and choose $s = \begin{bmatrix} 0 \\ 1 \end{bmatrix}^p \begin{bmatrix} 1 \\ 0 \end{bmatrix}^p$.

By definition, $s \in E$. Furthermore, since |s| > p, it holds that s = xyz as per the Pumping lemma. That is, xy must have length at most p. Therefore, it holds that y only contains symbols $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

So, the number of symbols of the form $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and those of the form $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ must be unbalanced in xy^2z , so $xy^2z \notin E$. This contradicts the Pumping lemma. Thus, the claim holds.

Problem 1.40: Prove the following claims.

(a) NOPREFIX closes the set of regular languages.

Proof. Let $M=(Q,\Sigma,\delta,q_0,F)$ be a finite-state machine, i.e. a DFA, that computes a regular language A. Define $M'=(Q,\Sigma,\delta',q_0,F)$ be a finite-state machine with $\delta'(q,a)=\delta(r,a)$ if $r\notin F$ and $\delta'(q,a)=\emptyset$ otherwise (remove all edges from the accepting states). Then, M' computes the language NOPREFIX(A).

Hence, NOPREFIX(A) is regular, as required.

(b) NOEXTEND closes the set of regular languages.

Proof. Suppose A is a regular language and that the DFA $M=(Q,\Sigma,\delta,q_0,F)$ recognizes A. Let $M'=(Q,\Sigma,\delta,q_0,F\setminus F')$, where F' is the set of accepting states that have a path of length at least 1 to another accepting state.

Here, M' recognizes NOEXTEND(A), so NOEXTEND(A) is regular, as required.

Problem 1.4.6: Prove that the following languages are not regular.

(a) $L = \{0^n 1^m 0^n \mid m, n \ge 0\}$

Proof. Suppose for contradiction that L is regular. Let p be the Pumping length of L, and $s = 0^p 1^p 0^p \in L$. Then, s = xyz as per the Pumping lemma.

Now, since $|xy| \leq p$, it holds that y consists entirely of 0s. Then, $s' = xy^2z$ is of the form $0^q1^p0^p$, where q > p. Thus, it holds that $s' \notin L$.

This contradicts the Pumping lemma; thus, the claim holds.

(b) $L = \{w \mid wis \text{ not a palindrome}\}$

Proof. It suffices to show that L^{\complement} is not regular. Suppose for contradiction that L^{\complement} is regular, and let p be the Pumping length of L^{\complement} .

Take $s = aa^R \in L^{\complement}$ where $|a| \ge p$ and a^R is the reversal of a. We know that s = xyz as per the Pumping lemma. Since $|xy| \le p$, we know that xy is some prefix of a. So, $s' = xy^2z \notin L^{\complement}$.

This is a contradiction of the Pumping lemma. Thus, the claim holds.

(c) $L = \{wtw \mid w, t \in \{0, 1\}^+\}$

Proof. Suppose for contradiction that L is regular, and let p be the Pumping length of L. Fix $w = 0^p 1^p$, and let $s = wtw \in L$ with $t \in L$ arbitrary.

We know that s=xyz with $|xy|\leq p$, as per the Pumping lemma, so xy consists entirely of 0s. Thus, $s'=xy^2z$ has an unbalanced number of 0s; consequently, $s'\notin L$.

This contradicts the Pumping lemma; thus, the claim holds.

Problem 1.49: Prove the following.

(a) The language B as given is regular.

Proof. Let k in the context of B be arbitrary. We know there exists a regular language L_1 of strings of the form 1^k , and that there exists a regular language L_2 of strings y s.t. y contains at least k instances of the symbol Γ . Observe that B is the concatenation of L_1 and L_2 , which implies that B is regular since regular languages are closed under concatenation.

(b) The language C as given is not regular.

Proof. Suppose for contradiction that C is regular. Let p be the Pumping length of C.

Let $s = 1^p y \in C$, and suppose that y has $k \le p$ instances of the symbol 1. We know that s = xyz with $|xy| \le p$, as per the Pumping lemma, so y consists of all 1s.

Now, consider $s' = xy^nz$ for n > p. It must be the case that $s' \notin C$. This contradicts the Pumping lemma; thus, the claim holds.