6. Implicitní funkce Studijní text

6. Implicitní funkce

Uvažujme rovnici f(x,y)=0, kde f(x,y) je funkce dvou proměnných a nechť $\Omega=\{[x,y]\in Df; f(x,y)=0\}$ je množina všech řešení této rovnice. Na následujících příkladech ukažme, že množina Ω může být velmi rozmanitá.

- 1. Pro $f(x,y) = x^6 + x^2 + 1$ je $\Omega = \emptyset$.
- 2. Pro $f(x,y) = x^4 + y^4$ je $\Omega = \{[0,0]\}.$
- 3. Pro f(x,y)=xy-|xy| je $\Omega=\{[x,y]; x,y\geq 0 \ \forall \ x,y\leq 0\},$ tj. celý první a třetí kvadrant.
- 4. Pro $f(x,y)=x^2-y^2$ je $\Omega=\{[x,x];x\in\mathbb{R}\}\cup\{[x,-x];x\in\mathbb{R}\}$. Množinu Ω tedy tvoří dvojice přímek y=x a y=-x.
- 5. Pro $f(x,y)=x^3+x^2-y^2$ se nedá struktura množiny Ω již snadno uhodnout. Snadno se ale spočítá, že $y=\pm\sqrt{x^3+x^2}$. Odtud plyne, že množina Ω bude symetrická podle osy x. Stačí tedy vyšetřit průběh funkce $g(x):=\sqrt{x^3+x^2}$. Viz Obrázek 6.1.

Obr. 6.1: Graf funkce dané implicitně rovnicí $x^3 + x^2 - y^2 = 0$

Je zřejmé, že množina Ω není grafem žádné funkce. V okolí některých konkrétních bodů ji však lze za graf funkce považovat. Tyto úvahy přirozeným způsobem vedou k zavedení pojmu funkce dané implicitně rovnicí.

Definice 6.1. Buď $A = [x_0, y_0] \in Df$ bod definičního oboru funkce f(x, y) takový, že $A \in \Omega$. Existuje-li okolí $K(A, \delta)$ tak, že $\Omega \cap K(A, \delta)$ je totožná s grafem nějaké funkce y = g(x), pak říkáme, že funkce g(x) je v okolí bodu A určena **implicitně rovnicí** f(x, y) = 0.

Věta 6.2. (O existenci) Nechť f(x,y) je spojitá na δ-okolí bodu $A = [x_0, y_0]$ a $A \in \Omega$. Má-li funkce f(x,y) spojitou parciální derivaci $f'_y(x,y)$ v bodě A a platí $f'_y(A) \neq 0$, pak existuje okolí bodu A v němž je rovnicí f(x,y) = 0 definována implicitně právě jedna spojitá funkce y = g(x).

Poznámka 6.3. Věta 6.2 nemá konstruktivní charakter, tj. neumožňuje funkci g nalézt. Funkce g daná implicitně rovnicí f(x,y)=0 může být totiž vyšší funkce, i když f je elementární. Podmínka $f'_x(x_0,y_0)\neq 0$ je postačující, nikoli však nutná pro existence implicitní funkce. Viz například rovnice $x-y^3=0$.

Věta 6.4. (O derivaci) Nechť jsou splněny předpoklady Věty 6.2 a nechť f má v okolí bodu $A = [x_0, y_0]$ spojité parciální derivace prvního řádu. Pak má funkce y = g(x), která je v okolí A určena implicitně rovnicí f(x,y) = 0 derivaci v bodě x_0 a platí

$$g'(x_0) = -\frac{f'_x(x_0, y_0)}{f'_y(x_0, y_0)}.$$

ÚM FSI VUT v Brně

6. Implicitní funkce Studijní text

Poznámka 6.5. Vysvětleme hlavní ideu důkazu. Rovnici f(x,y)=0 zderivujeme podle x, přičemž f považujeme za složenou funkci proměnné x. Tedy y považujeme ze funkci proměnné x. Platí $f'_x \cdot x'_x + f'_y \cdot y'_x = 0 \Leftrightarrow f'_x + f'_y y' = 0 \Leftrightarrow y' = -\frac{f'_x}{f'_y}$. Analogicky lze počítat i vyšší derivace. Odvoďme vzorec pro y''. Rovnici $f'_x + f'_y y' = 0$ znovu zderivujeme podle x. $f''_{xx} + f''_{xy} y' + (f''_{yx} + f''_{yy} y')y' + f'_y y'' = 0$. Odtud po dosazení za y' a krátké úpravě dostaneme

$$y'' = -\frac{f''_{xx}(f'_y)^2 - 2f''_{xy}f'_xf'_y + f''_{yy}(f'_x)^2}{(f'_y)^3}.$$

Příklad 6.6. Nalezněte y'(0) pro funkci danou implicitně rovnicí $e^{xy} - x^2 + y^3 = 0$.

Řešení. Nejprve postupujme podle vzorce $y' = -\frac{F_x'}{F_y'}$. Spočteme $F_x' = y e^{xy} - 2x$ a $F_y' = x e^{xy} + 3y^2$. Odtud plyne

$$y' = -\frac{ye^{xy} - 2x}{xe^{xy} + 3y^2} = \frac{2x - ye^{xy}}{xe^{xy} + 3y^2}.$$

Ke stejnému výsledku lze dojít zderivováním zadané rovnice podle x. Platí

$$e^{xy}(y + xy') - 2x + 3y^2y' = 0.$$

 $y'(xe^{xy} + 3y^2) = 2x - ye^{xy}.$

Odtud však opět plyne

$$y' = \frac{2x - y\mathrm{e}^{xy}}{x\mathrm{e}^{xy} + 3y^2}.$$

Abychom mohli do posledně uvedeného vztahu dosadit, musíme vědět čemu je rovno y. To zjistíme tak, že dosadíme x=0 do zadané rovnice. Platí $\mathrm{e}^0-0+y^3=0$. Odtud $y^3=-1$ a tedy y=-1. Nyní $y'(0)=\frac{2\cdot 0-(-1)\mathrm{e}^{0(-1)}}{3(-1)^2+0\cdot \mathrm{e}^{0\cdot (-1)}}=\frac{1}{3}$. Z kladnosti derivace plyne, že funkce daná implicitně je v bodě x=0 rostoucí.

Příklad 6.7. Nalezněte lokální extrémy funkce dané implicitně rovnicí $x^2 - y^2 + 1 = 0$.

Řešení. Nejprve vypočteme derivaci y' podle vzorce $y' = -\frac{F_x'}{F_y'}$. Platí $y' = -\frac{2x}{-2y} = \frac{x}{y}$.

Podobně zderivováním rovnice $x^2 - y^2 + 1 = 0$ dostáváme 2x - 2yy' = 0, odkud plyne $y' = \frac{2x}{2y} = \frac{x}{y}$. Derivace existuje kdykoliv, když $y' \neq 0$. Nalezneme stacionární body. Zřejmě $y' = 0 \Leftrightarrow \frac{x}{y} = 0 \Leftrightarrow x = 0$. Ze zadané rovnice dosazením x = 0 dopočítáme y.

Platí $y^2 = 1$ a odtud y = -1 nebo y = 1. Získali jsme dva stacionární body $S_1 = [0, -1]$ a $S_2 = [0, 1]$. Dále spočteme y''. Rovnici 2x - 2yy' = 0 znovu zderivujeme podle x. Platí 2 - 2y'y' - 2yy'' = 0. Odtud $y'' = \frac{2-2(y')^2}{2y} = \frac{1-(y')^2}{y}$.

Pomocí druhé derivace rozhodneme existenci extrémů ve stacionárních bodech. Pro bod S_1 platí $y''(0) = \frac{1-(y')^2}{y}$.

Pomocí druhé derivace rozhodneme existenci extrémů ve stacionárních bodech. Pro bod S_1 platí $y''(0) = \frac{1-(\frac{0}{-1})^2}{-1} = -1 < 0$. Tedy v bodě S_1 je lokální maximum. Pro bod S_2 platí $y''(0) = \frac{1-(\frac{0}{1})^2}{1} = 1 > 0$. V S_2 je lokální minimum. Viz Obrázek 6.2.

Obr. 6.2: Lokální extrémy funkce dané implicitně rovnicí $x^2 - y^2 + 1 = 0$

ÚM FSI VUT v Brně 24