

Multi-omics drug response prediction

박서연

Deep learning workflows for drug response prediction

Deep learning workflows for drug response prediction

Dataset

-CCLE database

- Gene expression data
 - CCLE Database Gene expression data 22Q4
 - : OmicsExpressionProteinCodingGenesTPMLogp1.csv
 - Genes: 16,383
 - Cell Lines: 1,408
 - Primary Diseases: 74
 - Lineages: 29
- IC50 data
 - Drug sensitivity IC50 (Sanger GDSC1)
 - Cell Lines: 962
 - Drugs: 310

Dataset

	Cell Line	Gene expression	Drug Name	IC50
1	ACH-000242	[6.729417 0 0.17632277]	cabozantinib	1.353158
2	ACH-000242	[6.729417 0 0.17632277]	Torin 2	3.097715
3	ACH-000242	[6.729417 0 0.17632277]	ZG-10	2.934035
41,460	ACH-000052	[4.2494454 0 0.13750352]	vinblastine	-6.64979
Total	695 cell lines	16,384 genes	310 drugs	41,460 IC50 values (cell line-drug pairs)

Data Preprocessing - Gene expression

Dataset

-CCLE Database Gene expression data 22Q4

OmicsExpressionProteinCodingGenesTPMLogp1.csv

- Gene expression TPM values of the protein coding genes for DepMap cell lines
- Values are inferred from RNA-seg data using the RSEM tool and are reported after log2 transformation, using a pseudo-count of 1

$$log_2(TPM + 1)$$

Genes

		TSPAN6	TNMD	DPM1	 MAGEA6
lines	ACH-001113	4.331992	0	7.36466	 0.028569
Cell					
	ACH-000052	4.249445	0	6.175724	 0.137504

Deep learning workflows for drug response prediction

Data Preprocessing - Gene expression

Data preprocessing for CCLE 22Q4 dataset

-Gene Filtering

- : exclude 20% of genes with the lowest variance assuming them not informative
- X Calculate variance only with Train data
- Do not calculate variance for the whole dataset

\sim				
(¬	ρ	n	ρ	ς
۱٦	ч	11	ı	`

	TSPAN6	TNMD	DPM1		MAGEA6
ACH-001113	4.331992	0	7.36466	•••	0.028569
ACH-000052	4.249445	0	6.175724		0.137504

	TSPAN6	DPM1	 MAGEA6
ACH-001113	4.331992	7.36466	 0.028569
ACH-000052	4.249445	6.175724	 0.137504

Genes

Total: $16,384 \rightarrow 13,106$ genes

 $1,408 \text{ cell lines} \times 13,106 \text{ genes}$

Data Preprocessing - Gene expression

Data preprocessing for CCLE 22Q4 dataset

- -Gene expression Normalization
 - : Standard Normalization

Cell lines

 \rightarrow normalize gene expression to N(0,1)

(-	Δ	n	Δ	•
v	C		C	į,

	TSPAN6	DPM1	 MAGEA6
ACH-001113	4.331992	7.36466	 0.028569
ACH-000052	4.249445	6.175724	 0.137504

Genes

	TSPAN6	DPM1	 MAGEA6
ACH-001113	0.584224	1.337422	 -0.736650
ACH-000052	0.534013	-0.481543	 -0.696717

Deep learning workflows for drug response prediction

Data Preprocessing

- Drug

Drug Representation

Data Preprocessing - Drug

-Fingerprint

- Morgan fingerprints/Extended Connectivity Fingerprints (ECFP)
- Daylight fingerprints
- ⇒ Previous models: DeepDSC, CDRScan

-SMILES Molecular Graph

- Molecular Structure → Graph
 - ConvMolFeaturizer
 - MolGraphConvFeaturizer
 - Manual
- ⇒ Previous models: PaccMann, DeepCDR

Data Preprocessing - Drug: Fingerprint

Fingerprint

Morgan Fingerprints

- Numbering invariant atom information into an initial atom identifier
- · Identifiers are generated independently of previous identifiers and intermediate results are discarded
- The iteration process is continued until every atom identifier is unique

Data Preprocessing - Drug: Fingerprint

Fingerprint

Morgan Fingerprints

Cell Line	Gene expression	Drug Name	Fingerprint	IC50
ACH-000242	[2.042524 0.6824865]	cabozantinib	[00000000000000000000000000000000000000	1.353158
ACH-000052	[0.53401330.6967168]	vinblastine	[000000010000000000000 000000]	-6.64979

Total

695 cell lines

13,106 genes

310 drugs

41,460 IC50 values (cell line-drug pairs)

Data Preprocessing - Drug: SMILES

SMILES

MolGraphConvFeaturizer

- Node Features: Atom properties
 - Feature length: 30
 - Atom type: A one-hot vector of this atom, "C", "N", "O", "F", "P", "S", "Cl", "Br", "I", "other atoms".
 - Formal charge: Integer electronic charge.
 - Hybridization: A one-hot vector of "sp", "sp2", "sp3".
 - Hydrogen bonding: A one-hot vector of whether this atom is a hydrogen bond donor or acceptor.
 - Aromatic: A one-hot vector of whether the atom belongs to an aromatic ring.
 - Degree: A one-hot vector of the degree (0-5) of this atom.
 - Number of Hydrogens: A one-hot vector of the number of hydrogens (0-4) that this atom connected.
 - Chirality: A one-hot vector of the chirality, "R" or "S". (Optional)
 - Partial charge: Calculated partial charge. (Optional)

Edge Index

- [src, dest]

Octanoic acid

Atom features: (# of nodes, 30)

 10×30

Adjacency list: $(2, 2 \times # \text{ of edges})$

0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	7	9
1	0	2	1	3	2	4	3	5	4	6	5	7	6	8	7	9	7

 2×18

- GraphData(node_features=atom_features, edge_index=np.asarray([src, dest], dtype=int), edge_features=bond_features, node_pos_features=node_pos_features)

Data Preprocessing - Drug: SMILES

SMILES

MolGraphConvFeaturizer

- Node Features: Atom properties
- Edge Index
- GraphData(node_features=atom_features, edge_index=np.asarray([src, dest], dtype=int), edge_features=bond_features, node_pos_features=node_pos_features)

Cell Line	Gene expression	Drug Name	SMILES	Graph (V, E)	IC50
ACH-000242	[2.042524 0.6824865]	cabozantinib	COCT = CCZ = C(C = CN = CZC = CTOC)OCS = CC = C(C = CS)E $C3)NC(-C)CA(CCA)C(-C)NC5 = CC = C(C = CS)E$	[GraphData(node_features=[37, 30], edge_index=[2, 82], edge_features=None, pos=[0])]	1.353158
ACH-000052	[0.53401330.6967168]		CCC1(CC2CC(C3=C(CCN(C2)C1)C4=CC=CC=C4N3) (C5=C(C=C6C(=C5)C78CCN9C7C(C=CC9)(C(C(C8N 6C)(C(=O)OC)O)OC(=O)C)OC)C(=O)OC)O	[GraphData(node_features=[59, 30], edge_index=[2, 134], edge_features=None, pos=[0])]	-6.64979

Total 695 cell lines 13,106 genes 310 drugs IC50 values (cell line-drug pairs)

Data

-Total data

Cell Line	Gene expression	Drug Name	SMILES	Graph (V, E)	IC50
ACH-000242	[2.042524 0.6824865]	cabozantinib		[GraphData(node_features=[37, 30], edge_index=[2, 82], edge_features=None, pos=[0])]	1.353158
ACH-000052	[0.53401330.6967168]	vinblastine	CCC1(CC2CC(C3=C(CCN(C2)C1)C4=CC=CC=C4N3) (C5=C(C=C6C(=C5)C78CCN9C7C(C=CC9)(C(C(C8N 6C)(C(=O)OC)O)OC(=O)C)OC)C(=O)OC)O	[GraphData(node_features=[59, 30], edge_index=[2, 134], edge_features=None, pos=[0])]	-6.64979

Total 695 cell lines 13,106 genes 310 drugs

41,460 IC50 values (cell line-drug pairs)

-Train : test = 80 : 20

Total 41,460 data		
Train	Test	
33,168 data	8,292 data	

Deep learning workflows for drug response prediction

Model Architecture

BIO-MEDICAL INFORMATICS LAB

- Gene expression

1) 1D CNN Encoder

BIO-MEDICAL INFORMATICS LAB

- Gene expression

2) Pretrained Encoder from Autoencoder

BIO-MEDICAL INFORMATICS LAB

- Gene expression

2) Pretrained Encoder from Autoencoder

Cell line

BIO-MEDICAL INFORMATICS LAB

- Drug

Integration

- -Early integration
 - : features from different data matrices are concatenated
- Middle integration
 - : uses machine learning models to consolidate data without concatenating features or merging results
- Late integration
 - : each omics layer is analyzed independently, and results are combined at the end

Model Architecture

Model Architecture

Hyperparameters

-Epoch: 100

-Batch size: 64

-Learning rate: 0.0001

-Dropout ratio: 0.1

-Optimization: Adam Optimizer

Evaluation

- MSE loss

$$MSE = \frac{1}{n} \sum_{i}^{n} (y_i - \hat{y}_i)^2$$

- Pearson Correlation

$$CC_P = \frac{\sum_{i}^{n} (y_i - \hat{y}_i)^2}{\sigma_O \sigma_Y}$$

Result

- Performance comparison in terms of CC_p and RMSE on CCLE dataset

		CC_p	RMSE
Fingerprint	Original	0.9417	1.535
	Pretrained GE Autoencoder	0.9417	1.535
SMILES Graph	Original	0.9348	1.719
	Pretrained GE Autoencoder	0.9361	1.681

BIO-MEDICAL INFORMATICS LAB

- Gene expression

- Gene expression
 - 1D CNN

Name	Output Size	Layer
Initial	(64, 13106)	
Conv 1	(64, 8, 13099)	Conv1d(1, 8, kernel_size=(8,), stride=(1,))
Pool 1	(64, 8, 4366)	MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
Conv 2	(64, 16, 4359)	Conv1d(8, 16, kernel_size=(8,), stride=(1,))
Pool 2	(64, 16, 1453)	MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
Fully Connected (FC) 1	(64, 1024)	Linear(in_features=23248, out_features=1024, bias=True)
Fully Connected (FC) 2	(64, 128)	Linear(in_features=1024, out_features=128, bias=True)

BIO-MEDICAL INFORMATICS LAB

- Drug Fingerprint

- Drug

- Fingerprint

Name	Output Size	Layer
Initial	(64, 2048)	
Conv 1	(64, 8, 2041)	Conv1d(1, 8, kernel_size=(8,), stride=(1,))
Pool 1	(64, 8, 680)	MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
Conv 2	(64, 16, 673)	Conv1d(8, 16, kernel_size=(8,), stride=(1,))
Pool 2	(64, 16, 224)	MaxPool1d(kernel_size=3, stride=3, padding=0, dilation=1, ceil_mode=False)
Fully Connected (FC) 1	(64, 1024)	Linear(in_features=3584, out_features=1024, bias=True)
Fully Connected (FC) 2	(64, 128)	Linear(in_features=1024, out_features=128, bias=True)

BIO-MEDICAL INFORMATICS LAB

- Drug SMILES Graph

- Drug
 - SMILES Graph

Name	Output Size	Layer
Initial	(64, -,30)	
GCNConv 1	(- , 64)	GCNConv(30, 64)
GCNConv 2	(- , 128)	GCNConv(64, 128)
GlobalMaxpool	(64, 128)	

Future Work

- Gene expression
 - Feature Embedding
 - Autoencoder

: pretraining with TCGA database

Future Work

- Gene expression
 - Feature Embedding
 - Variational Autoencoder

Future Work

- Multi-omics data

