KNOWLEDGE

KNOWLEDGE REPRESENTATION

Knowledge and Representation

- Solve a real world problem through a computer
- Tools/Techniques required to transcribe Real World Knowledge into computer understandable format (Represent Knowledge)
- Semantic Nets, Frames, Inheritance, Logic
 (Prepositional and Predicate)

Knowledge Representation

- We need a knowledge to represent a domain knowledge
- □ There must be a method to use this knowledge
- Inference Mechanism
- □ Syntax and Semantics of a language to Laugh(Tom) ---- ????

 - □ Likes(sita,geeta) ---- ????
- □ Logic is Formal Language

Prepositional Logic

- Jerry is intelligent
- Jerry is Hard Working
- If Jerry is intelligent and Jerry is hard working then Jerry will score good marks
- Objects and Relations of Preposition Logic

Prepositions

- Intelligent(Jerry) == Jerry is Intelligent
- □ Hardworking(Jerry) == Jerry is Hard Working

Towards the Syntax

- Intelligent(Jerry)
- Hardworking(Jerry)

- : P
- = Q

V Sisperation

- □ What does P ∧ Q (P and Q) mean?
- \square What does $P \lor Q$ (P or Q) mean?

Elements of Propositional Logic

- Vocabulary
 - A set of Propositional Symbols (P,Q,R etc.) each of which can be <u>True or False</u>
 - Set of logical operators and (\land) or (\lor) not (\neg) implies (\Rightarrow) iff (\Leftrightarrow)
 - There are two special symbols
 True (T) and False (F) these are logical symbols

How to form a Prepositional Sentence

- Each symbol (either preposition or a constant) is a sentence
- If P is a sentence and Q is a sentence then
 - P is a sentence

 - $\underline{P} \vee \underline{Q}$ are a sentence
 - P is a sentence
 - $\mathcal{L} \rightarrow Q$ is a sentence
 - Nothing else is a sentence
- Sentences are also called well formed formulae (wff)

Example wff

- \square P
- □ True
- \square P \wedge Q
- \square P \vee Q \rightarrow \mathbb{R}
- $\square (P \land Q) \lor R \to S$
- $\square \neg (P \land Q)$
- $\square \neg (P \lor Q) \rightarrow R \land S$

Implications \rightarrow

- $\Box \not P \rightarrow Q$
- □ If P is true than Q is true
- If it rains than monsoon has arrived
- If I study than I will pass
- \square If I do not study than I will not pass ($\neg P \rightarrow \neg Q$)
- \square If I do not study than I will fail ($\neg P \rightarrow Q$)
- If it rains than roads are wet
- If roads are wet than it rains (Cannot be inferred or implied backwards)

Equivalence

- \square P \Leftrightarrow Q
- Example?
- If the two sides of the triangle are equal than two base angles of the triangle are equal
- □ If two base angles of a triangle are equal than two sides are equal ($Q \Leftrightarrow P$)
- Requires two sentences
- \square P \rightarrow Q and Q \rightarrow P

What does a wff mean ---Semantics

- Interpretation in a world
- □ When we interpret a sentence in a world we assign meaning to it and it evaluates to either True or False

So how do we get the meaning? Reference

- Sentences can be compound prepositions
- Interpret each atomic preposition in the same world
- Assign truth values to each interpretation
- Compute the truth values of the compound prepositions

Example

- P: likes(sneha,shivangi)
- Q: knows(richa,purnima)
- World: sneha and shivangi are friends and richa and purnima know each other
- □ P=T, Q=I
- \square \therefore P \wedge Q = T
- $\square P \wedge (\neg Q) = F$

Validity of Sentence

If a preposition sentence is true under all possible interpretation, it is VALID

Tautology

 $P \vee \neg P$ will always be true

Questions

Express the following sentences in preposition logic

- 1. It rain in July
- 2. The book is not costly
- If it rain today and Tom does not have an umbrella he will get drenched

Questions

- If P is true and Q is true then are the following true or false
- 1. $\nearrow \rightarrow Q$
- $2. \quad (\neg P \lor Q) \to Q$
- 3. $(\neg P \lor Q) \rightarrow P$
- 4. $(\neg P \vee P) \rightarrow T$

manual (tem) beinksmilk (tom) 1. Tom is a mamal 2. Tom drinks milk friends (Tom, Terry) 3. Tom and Jerry are friends goodgiel (Dizza) 4. Divya is a good gisl friends Dissa, Saumya) 5. Divya and Saumya are friends likes (Diya, choclates) 6. Diga likes choclates

1. if Dirya & cores good marker than she will get a good Tob

scores (Dirya, good marks) -> get (Dirya, good marks) -> get (Dirya, good marks)

2. If Saumyata and Lakshni prepare food then it

2. If Saurnyata and Lakshni prepare food then it would be delecious

prepare food (Saurnyata, Lakshni) -> food (delecious)