RST	Γ 1 <i>4</i> Λ	751	final	exam
יט	140	. I JI	IIIIai	еханн

Notes:

- You may not use a calculator for this exam.
- Please be neat and write legibly. Use the back of the pages if necessary.
- Good luck!

printed name

- 1. Let Y be an $n\times 1$ vector, X be an $n\times p$ full column rank matrix. Let $\mathcal{P}=\{\tilde{Y}\mid \tilde{Y}=X\beta \text{ for }\beta\in\mathbb{R}^p\}.$ (I.e. \mathcal{P} is the linear subspace spanned by the columns of X.)
 - A. Derive a function $f: \mathbb{R}^n \to \mathbb{R}^n$ that takes any data point in \mathbb{R}^n and finds its closest point in \mathcal{P} . (For Euclidean distance.) Call this point \hat{Y} .
 - B. Argue that the difference $Y \hat{Y}$ is orthogonal to any point in \mathcal{P} .
 - C. Suppose that the distance is defined as $d(Y, \tilde{Y}) = (Y \tilde{Y})'\Sigma^{-1}(Y \tilde{Y})$ (Mahalanobis distance) where Σ is positive definite. Derive a function $g: \mathbb{R}^n \to \mathbb{R}^n$ that takes any data point in \mathbb{R}^n and finds its closest point in \mathcal{P} where the distance is the Mahalanobis distance.

2. Consider the model $Y|\beta \sim N(X\beta, \Sigma)$ where Y is a vector of length N, β is a vector of length p and X is full column rank. Suppose that we assume $\beta \sim N(\mu, \Gamma)$. What is the distribution of $\beta|Y$?

- 3. Let X be an $n \times p$ full rank design matrix that contains an intercept, Y be a vector of length n and $\mathbf 1$ be a vector of length n of ones. Let \bar{Y} be the sample average of the Y.
 - A. Argue that $X(X'X)^{-1}X'\mathbf{1} = \mathbf{1}$.
 - B. Argue that $||Y \bar{Y}\mathbf{1}||^2 = ||Y \hat{Y}||^2 + ||\hat{Y} \bar{Y}\mathbf{1}||^2$.
 - C. Assume that $Y \sim N(X\beta, \sigma^2\mathbf{I})$. Calculate $E[||Y \hat{Y}||^2]$, $E[||\hat{Y} \bar{Y}\mathbf{1}||^2]$ and $E[||Y \bar{Y}\mathbf{1}||^2]$.