四川大学期末考试试卷(A)

(2012-2013 学年第一学期)

科 目:微积分(II)-1

适用专业年级:四川大学数学二类 2012 级各专业本科生

题号			-		四		五		六		总分
得分											

考试须知

四川大学学生参加由学校组织或由学校承办的各级各类考试,必须严格执行《四川大学考试工作管理办法》和《四川大学考场规则》.有考试违纪作弊行为的,一律按照《四川大学学生考试违纪作弊处罚条例》进行处理.

四川大学各级各类考试的监考人员,必须严格执行《四川大学考试工作管理办法》、《四川大学考场规则》和《四川大学监考人员职责》.有违反学校有关规定的,严格按照《四川大学教学事故认定及处理办法》进行处理.

一、填空题(每小题3分,共15分)

1.
$$\lim_{x\to 2^+} \frac{\ln(x-2)}{\ln(e^x-e^2)} =$$
_______.

3. 不定积分
$$\int x^3 \sqrt{1 + x^2} dx =$$

4. 设
$$f(x) = \frac{(x^3 - 1)\sin x}{x(x^2 - 1)}$$
,则 $f(x)$ 的可去间断点共有________个.

二、选择题(每小题 3 分, 共 15 分)

1. 设
$$f(x) = x^2 e^{-x} (x > 0)$$
,则 $f(x)$ 单调凹增的区间是 ()。

(A)
$$(0, 2-\sqrt{2})$$
 (B) $(2-\sqrt{2}, 2)$ (C) $(2, 2+\sqrt{2})$ (D) $(2+\sqrt{2}, +\infty)$

2. 设
$$f(x) > 0, g(x) > 0$$
,且 $f'(x)g(x) - f(x)g'(x) < 0$,则当 $x \in (a,b)$,有()。

第1页 共6页

(A) f(x)g(b) > f(b)g(x)

(B) f(x)g(a) > f(a)g(x)

(C) f(x)g(x) > f(b)g(b)

(D) f(x)g(x) > f(a)g(a)

3. 设f(x)处处可导,则(

(A) 当 $\lim_{x\to\infty} f(x) = -\infty$, 必有 $\lim_{x\to\infty} f'(x) = -\infty$

(B) 当 $\lim_{x \to -\infty} f'(x) = -\infty$, 必有 $\lim_{x \to -\infty} f(x) = -\infty$

(C) 当 $\lim_{x \to +\infty} f(x) = +\infty$,必有 $\lim_{x \to +\infty} f'(x) = +\infty$

(D) 当 $\lim_{x\to +\infty} f'(x) = +\infty$, 必有 $\lim_{x\to +\infty} f(x) = +\infty$

4. 当 $x \to 0$ 时,下列三个无穷小量 $e^x - x - 1$, $\sqrt{1 + x \sin x} - 1$, $x - \sin x$ 是 x^3 的同阶无穷

小量的个数有(

(A) 0

(B) 1

(C) 2

(D) 3

5. 在(a,b)内,如果f'(x) = g'(x),则一定有(

(A) $\int f(x)dx = \int g(x)dx$

(B) $\int f'(x)dx - \int g'(x)dx = 0$

(C) $\left[\int f(x)dx\right]' = \left[\int g(x)dx\right]'$ (D) $\int df(x) = \int dg(x)$

三、计算题(每题8分,共24分)

1. $\# \lim_{x \to \infty} (x - \sqrt[3]{x^3 + x^2})$.

$$f(x) = x + \frac{1}{x} + \arctan x$$
 的新近线

3. 计算
$$\int \frac{xe^x}{\sqrt{e^x-1}} dx$$
.

四、解答题(每题8分,共16分)

1. 设
$$f(x) = \begin{cases} \ln(1+x) & , -1 < x \le 0 \\ \sqrt{1+x} - \sqrt{1-x} & , 0 < x < 1 \end{cases}$$
 , 讨论 $f(x)$ 在点 $x = 0$ 处的连续性和可导性。

2. 已知
$$f'(\ln x) = \begin{cases} 1, 0 < x \le 1 \\ x, 1 < x < +\infty \end{cases}$$
, 且 $f(0) = 0$, 求 $f(x)$.

五、(每题8分,共16分).

1. 要造一个全封闭的圆柱形油罐车,体积为 V,问底半径 r 和高 h 各等于多少时,才能使表面积最小?这时底直径与高的比是多少?

 $y=\frac{1}{x^2}$ (x>0)2. 问曲线 x=0 上哪一点处的切线被两坐标轴所截得的线段最短? 六、证明题(每题7分,共14分).

1. $1 + x \ln(x + \sqrt{1 + x^2}) \ge \sqrt{1 + x^2}$, $x \in R$

2.设 f(x) 在 [0,1] 上具有二阶导数,且满足条件 $|f(x)| \le a$, $|f''(x)| \le b$, 其中 a,b 为非负常数, 证明: $|f'(x)| \le 2a + \frac{b}{2}$, $x \in (0,1)$ 。