Departamento de Engenharia Elétrica - FT - UnB
Disciplina: Dispositivos e Circuitos Eletrônicos - Período 2017.1
Professor: Geovany Araújo Borges
Prova 3: Transistores bipolares, MOSFETs e Optoeletrônica - Data: 26/06/2017
Nota:

Nome:	Matrícula:

Instruções:

- Tempo máximo de duração: 2 horas.
- Explique o desenvolvimento das questões. Resultados sem justificativa não serão aceitos;
- Não use aproximações, exceto quando explicitamente indicado;
- É permitido o uso de máquina calculadora;
- Quando forem solicitados resultados analíticos (*i.e.*, fórmulas literais), estes devem ser desenvolvidos envolvendo as variáveis de interesse e os parâmetros do modelo. Outras variáveis dependentes não devem estar presentes nas fórmulas.

Principais fórmulas:

- Transistor MOSFET (NMOS):

$$i_D = \begin{cases} 0 & \text{operando na região de corte } (v_{GS} < V_t) \\ K \left[2(v_{GS} - V_t)v_{DS} - v_{DS}^2 \right] & \text{operando na região de triodo } (v_{GS} \ge V_t \text{ e } v_{DS} < v_{GS} - V_t) \\ K (v_{GS} - V_t)^2 & \text{operando na região de saturação } (v_{GS} \ge V_t \text{ e } v_{DS} \ge v_{GS} - V_t) \end{cases}$$

$$K = \frac{1}{2} \mu_N C_{OX} \frac{W}{L}$$

- Transistor bipolar:
- Modelo físico:

$$i_C = \left\{ egin{array}{l} I_S \exp(v_{BE}/V_T) & ext{para transistor NPN em modo ativo} \\ I_S \exp(v_{EB}/V_T) & ext{para transistor PNP em modo ativo} \end{array}
ight.$$

- Relação entre as correntes: $i_C = \beta i_B$ $i_C = \alpha i_E$ $i_E = i_C + i_B$
- Supondo queda de tensão constante na junção base-emissor (JBE), esta conduz quando $v_{BE} = 0,7V$ (NPN) ou $v_{EB} = 0,7V$ (PNP)
- Parâmetro que delimita a saturação: $0 < v_{CE} \le V_{CESAT}$ (NPN) ou $0 < v_{EC} \le V_{ECSAT}$ (PNP)

Questões:

- 1. Na tentativa de montar um alarme, um estudante propôs o circuito da Figura 1 para a detecção de abertura de janelas e portas. Neste circuito, um opto-acoplador composto de um LED e de um foto-transistor foi usado para isolar os circuitos de sensoreamento (resistor R₁ e interruptor S ideal) e o circuito de decodificação, cuja saída é V_s. O opto-acoplador é completamente opaco, de forma que nenhuma luz externa incide na junção base-coletor do foto-transistor. O manual deste dispositivo indica que as correntes i₁ e i₂ se relacionam por i₂ = 10 · i₁ com o foto-transistor em modo ativo, e que o LED, quando ativado por uma corrente de 10mA, apresenta uma diferença de potencial direta de 2,0V entre seus terminais. Com o LED desativado, assume-se i₂ nulo. Pede-se:
 - (a) Quanto deveria ser a tensão V_s se o interruptor S estiver em aberto? Por quê? (pontos: 1,0)
 - (b) Determine as resistências R_1 e R_2 de forma que a corrente pelo LED seja 10mA, com o interruptor S fechado, tenhamos $V_s = 0.5V$ (acima do V_{CESAT} do foto-transistor, estando este em modo ativo). (**pontos: 2,0**)

Figura 1: Circuito da questão 1.

Figura 2: (a) Circuito da questão 2. (b) Circuito da questão 3.

- 2. No circuito da Figura 2(a), considere a resistência R de valor nominal $10k\Omega$ e o transistor NMOS de crescimento com parâmetros $\mu_N C_{OX} = 50 \mu_A/V^2$, $W = 600 \mu m$ e $L = 60 \mu m$. Responda os itens abaixo:
 - (a) Sendo $V_t = 1.5V$ e $R_A = R_B = 1M\Omega$, determine o valor em volts da tensão V_s (**pontos: 1,0**).
 - (b) Mostre que, para uma tensão de limiar $V_t = 2,0V$, quaisquer valores de resistências R_A e R_B físicas satisfazendo simultâneamente as relações

$$\frac{R_A}{R_B} > 1.5 \tag{1}$$

$$100\Omega \quad < \quad R_A + R_B < 1M\Omega \tag{2}$$

levam a $V_s = 5V$ (pontos: 2,0)

- 3. No circuito da Figura 2(b), considere os transistores com queda de tensão constante na JBE quando em condução (ver a primeira página de fórmulas). Considere também $V_{CESAT} = V_{ECSAT} = 0,4V$. Determine a tensão V_s e a corrente I_s quando
 - (a) O ganho β dos transistores é infinito (**pontos: 2,0**);
 - (b) O ganho β dos transistores é 100 (**pontos: 2,0**).

BOA PROVA!