Verifying Snapping Mechanism

January 20, 2020

In order to verify the differential privacy proeprty of an implementation of the snapping mechanism [5], we follow the logic rules designed from [1] and the floating point error semantics from [7, 4, 2, 6].

1 Preliminary Definitions

Definition 1 (Laplce mechanism [3])

Let $\epsilon > 0$. The Laplace mechanism $\mathcal{L}_{\epsilon} : \mathbb{R} \to \mathsf{Distr}(\mathbb{R})$ is defined by $\mathcal{L}(t) = t + v$, where $v \in \mathbb{R}$ is drawn from the Laplace distribution laplace $(\frac{1}{\epsilon})$.

2 Syntax

Following are the syntax of the system. The circled operators are rounded operation in floating point computation.

```
Expr. e ::= c \mid x \mid f(x) \mid e_1 \oplus e_2 \mid e_1 \otimes e_2 \mid e_1 \oplus e_2 \mid e_1 \otimes e_2 \mid \bigoplus (e) \mid x \xleftarrow{\$} \mu

Value v ::= c

Distribution \mu ::= \text{laplce} \mid \text{unif} \mid \text{bernoulli}

Error err ::= (e_1, e_2)

Condition \Phi ::= \text{true} \mid \text{false} \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2
```

Definition 2 (Snap(a): $A \rightarrow Distr(B)$)

The ideal Snapping mechanism Snap(a) is defined as:

```
u \overset{\$}{\leftarrow} \mu; y = \textcircled{n}(u) \otimes \epsilon; s \overset{\$}{\leftarrow} \{-1, 1\}; z = s \otimes y; x = f(a); w = x \oplus z; w' = \lfloor w \rceil_{\Lambda}; r = \mathsf{clamp}_{B}(w')
```

where f is the query function over input $a \in A$, ϵ is the privacy budget, B is the clampping bound and Λ is the rounding argument satisfying $\lambda = 2^k$ where 2^k is the smallest power of 2 greater or equal to the $\frac{1}{\epsilon}$.

3 Semantics

The big step semantics with floating point computation error are shown in Figure. 1.

$$\frac{(e_1,err,\Phi) \Downarrow (v_1,err_1,\Phi_1) \qquad (e_2,err,\Phi) \Downarrow (v_2,err_2,\Phi_2)}{(e_1 \oplus e_2,err,\Phi) \Downarrow (v_1+v_2,err_1 \uplus err_2 \uplus err,\Phi_1 \land \Phi_2 \land \Phi)} \text{ PLUS} \qquad \cdots$$

Figure 1: Semantics with Floating Point Error

$$\frac{u \in \left[\textcircled{e}^{\epsilon \otimes (x \ominus \frac{\lambda}{2} \ominus f(a))}, \textcircled{e}^{\epsilon \otimes (x \ominus \frac{\lambda}{2} \ominus f(a))} \right) \sim u' \in \left[\textcircled{e}^{\epsilon \otimes (x \ominus \frac{\lambda}{2} \ominus f(a'))}, \textcircled{e}^{\epsilon \otimes (x \ominus \frac{\lambda}{2} \ominus f(a'))} \right]}{\dots}$$

$$\frac{\operatorname{Snap}''(a) \in \left[x \ominus \frac{\lambda}{2} \ominus f(a), x \ominus \frac{\lambda}{2} \ominus f(a) \right) \sim_{-} \operatorname{Snap}''(a') \in \left[x \ominus \frac{\lambda}{2} \ominus f(a'), x \ominus \frac{\lambda}{2} \ominus f(a') \right)}{\operatorname{Snap}'(a) \in \left[x \ominus \frac{\lambda}{2}, x \ominus \frac{\lambda}{2} \right) \sim_{-} \operatorname{Snap}'(a') \in \left[x \ominus \frac{\lambda}{2}, x \ominus \frac{\lambda}{2} \right)}{\operatorname{Snap}(a) = x \sim_{-} \operatorname{Snap}(a') = x}$$

Figure 2: Derivation of two Snap mechanisms: Snap(a), Snap(a')

4 Soundness Theorems

Theorem 1 (The Snap mechanism is ϵ -differentially private)

Consider Snap(a) defined as before, if Snap(a) = x given database a and privacy parameter ϵ , then its actual privacy loss is bounded by $\epsilon + 12x\epsilon\eta + 2\eta$

Proof. the proof is developed by 3 steps.

• Given $\operatorname{Snap}(a) = x$ and parameter ϵ , we consider a' be the adjacent database of a satisfying $|f(a) - f(a')| \le 1$. We first have the derivation for both the $\operatorname{Snap}(a) = x$ and $\operatorname{Snap}(a') = 1$ in parallel.

The derivations differ in value of x:

- -x=B
- $x \in (B, \lfloor f(a) \rfloor_{\Lambda})$ The derivation of this case is shown in Figure. 2
- _ ...
- Following the semantics in Figure 1, we have following evaluation results.

$$u \in [(v_1, err_1, \Phi_1), (v_2, err_2, \Phi_2)] \sim u' \in [(v'_1, err'_1, \Phi'_1), (v'_2, err'_2, \Phi'_2)]$$

• given that the probability is equivalent to the length of the range, we have the ratio between u and u' is bounded by:

$$\frac{u}{u'} \le \frac{v_2 + err_2 - (v_1 - err_1)}{v_2' - err_2' - (v_1' + err_1')} \le \epsilon + 12x\epsilon\eta + 2\eta$$

By the AxUnif rule, we have the actual privacy loss is bounded by the same value.

References

- [1] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Proving differential privacy via probabilistic couplings. In *LICS* 2016.
- [2] H. Becker, N. Zyuzin, R. Monat, E. Darulova, M. O. Myreen, and A. Fox. A verified certificate checker for finite-precision error bounds in coq and hol4. In 2018 Formal Methods in Computer Aided Design (FMCAD), 2018.
- [3] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to Sensitivity in Private Data Analysis. In *TCC*, 2016.
- [4] Matthieu Martel. Semantics of roundoff error propagation in finite precision calculations. *Higher-Order and Symbolic Computation*, 2006.
- [5] Ilya Mironov. On significance of the least significant bits for differential privacy. In *CCS 2012*, 2012.
- [6] Mariano Moscato, Laura Titolo, Aaron Dutle, and César A. Muñoz. Automatic estimation of verified floating-point round-off errors via static analysis. In Stefano Tonetta, Erwin Schoitsch, and Friedemann Bitsch, editors, *Computer Safety, Reliability, and Security*, 2017.
- [7] Tahina Ramananandro, Paul Mountcastle, Benoundefinedt Meister, and Richard Lethin. A unified coq framework for verifying c programs with floating-point computations. In *Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP)*. Association for Computing Machinery, 2016.