การคัดเลือกสนิปตัวแทนจากการศึกษาความสัมพันธ์ทั้งจีโนม

นายธรรมนูญ กิจรัสอนันต์ นาวสาววรากร มณีแสง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร วิศวกรรมศาสตร์บัณฑิต สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ปีการศึกษา 2563

Tag Single Nucleotide Polymorphism Selection from Genome-Wide Association

Mr. Tummanoon Kitcharasanan

Ms. Warakorn Maneesang

FOR THE DEGREE OF BACHLOR ELECTRICAL ENGINEERING DEPARTMENT OF COMPUTER ENGINEERING

FACULTY OF ENGINEERING

KING MONGKUT'S UNIVERSITY OF TECHNOLOGY NORTH BANGKOK

ACADEMIC YEAR 2020

ใบรับรองปริญญานิพนธ์

ปริญญานิพนธ์เรื่อง	: การคัดเลือกสนิปตัวแทร	นจากการศึกษาความสัมพันธ์ทั้งจิโนม
ชื่อ	: นายธรรมนูญ กิจรัสอนั่า	นต์ รหัสนักศึกษา 6001012630047
	นางสาววรากร มณีแสง	รหัสนักศึกษา 6001012630136
สาขาวิชา	: วิศวกรรมคอมพิวเตอร์	
ภาควิชา	: วิศวกรรมไฟฟ้าและคอม	มพิวเตอร์
คณะ	: วิศวกรรมศาสตร์	
ที่ปรึกษา	: รองศาสตราจารย์ ดร.ณ	ชล ไชยรัตนะ
	ผู้ช่วยศาสตราจารย์ดร.ว	วรัญญู วงษ์เสรี
	ผู้ช่วยศาสตราจารย์ดร.เ	กำรงค์ฤทธิ์ เศรษฐ์ศิริโชค
ปีการศึกษา	: 2563	
		ทามหลักสูตรวิศวกรรมศาสตร์บัณฑิต สาขาวิชาวิศวกรรม
		หัวหน้าภาควิชาวิศวกรรมไฟฟ้า
(ผู้ช่วยศาสตราจารย์	์ ดร.นภดล วิวัชรโกเศศ)	และคอมพิวเตอร์
		ประธานกรรมการ
(ศาสตราจารย์ ดร.		
		กรรมการ
(ผู้ช่วยศาสตราจารย์	์ ดร.วรัญญู วงษ์เสรี)	
		กรรมการ
(ผู้ช่วยศาสตราจารย์ ดร	ร.ดำรงค์ฤทธิ์ เศรษฐ์ศิริโชค)	

Approval Project Certificate

Project	: Tag Single Nucleot	ide Polymorphism Sel	ection from Genome-Wide
Association			
Name	: Mr. Tummanoon	Kitcharasanan	ID. 6001012630047
	Ms. Warakorn	Maneesange	ID. 6001012630136
Major	: Computer Engineerin	ng	
Department	: Electrical and Comp	uter Engineering	
Faculty	: Engineering		
Project Advisors	: Prof. Dr. Nachol Chai Asst. Prof. Dr. Warany Asst. Prof. Dr. Damro	yu Wongseree	
Academic Year	: 2020		
Engineering			of Bachelor of Computer
		Chairperson of Depa	artment of Electrical
(Asst. Prof. Dr. Nopha	adon Wiwatcharagoses)	and Computer Engi	neering
		Chairperson	
(Prof. Dr. Nachol (Chaiyaratana)		
		Member	
(Asst. Prof. Dr. W	/aranyu Wongseree)	Member	
		Member	
(Asst. Prof. Dr. Da	mrongrit Setsirichok)		

บทคัดย่อ

โครงการนี้นำเสนอโปรโตคอลสำหรับการเชื่อมโยงข้อมูล Single Nucleotide Polymorphism หรือสนิป (SNP) จากศูนย์ข้อมูลเทคโนโลยีชีวภาพแห่งชาติ (NCBI) ที่สร้างครั้งที่ 36 ให้เป็นไปตามครั้งที่ 37 โปรโตคอลนี้ใช้ข้อมูลจากแหล่งต่าง ๆ ทั้งจาก NCBI, บทความ และข้อมูลจาก แพลตฟอร์มสำหรับเก็บข้อมูลจีโนไทป์ การใช้โปรโตคอลนี้ถูกแสดงให้เห็นบนชุดข้อมูลจากการศึกษา ความสัมพันธ์ทั้งจีโนมทั้งเจ็ดชุดข้อมูล ซึ่งดำเนินการโดย Wellcome Trust Case Control Consortium (WTCCC) การศึกษานี้มุ่งที่จะระบุถึงปัจจัยทางพันธุกรรมที่มีส่วนต่อโรคที่มีผลต่อการ เกิดโรคซับซ้อนทั้งเจ็ดโรค ได้แก่ โรคอารมณ์สองขั้ว, โรคหลอดเลือดโคโรนารีหรือภาวะหัวใจขาด เลือด, โรคโครห์นหรือโรคที่เกิดการอักเสบเรื้อรังของระบบทางเดินอาหาร, โรคความดันโลหิตสูง, โรค ข้ออักเสบรูมาตอยด์, โรคเบาหวานชนิดที่ 1 และโรคเบาหวานชนิดที่ 2 ชุดข้อมูลทั้งหมดมี 500,568 สนิป ซึ่งได้จากการเก็บข้อมูลจีโนไทป์โดย Affymetrix GeneChip Human Mapping 500K Array Set โปรโตคอลนี้สามารถนำไปใช้กับชุดข้อมูลทั้งหมดได้สำเร็จ ซึ่งทำให้เกิดการเชื่อมโยงข้อมูลสนิปที่ สมบูรณ์ ด้วยข้อมูลสนิปที่พร้อมใช้งานตาม NCBI ที่สร้างครั้งที่ 37 จึงเป็นไปได้ที่จะคัดเลือกตัวแทนส นิปจาก 364,772 สนิปที่ผ่านการตรวจสอบคุณภาพที่กำหนดโดย WTCCC, Affymetrix และมีความถึ่ ของอัลลีลที่พบมากกว่า 0.05 วิธีการสำหรับการคัดเลือกตัวแทนสนิปคือ Tagger ซึ่งเป็นส่วนหนึ่งของ ซอร์ฟแวร์ Haploview Tagger ได้เลือกสนิปประมาณ 55.45% เพื่อใช้เป็นตัวแทนสนิปจากแต่ละชุด ข้อมูลควบคุมเมื่อกำหนดค่า r^2 ไว้ที่ 0.8 ซึ่งเป็นค่าขีดเริ่มเปลี่ยนทั่วไปสำหรับการกำหนดค่าภาวะ ความไม่สมดุลการเชื่อมโยงของโรคระหว่างสองตำแหน่ง เปอร์เซ็นต์ของตัวแทนสนิปที่ถูกเลือกนี้ มี ความใกล้เคียงกับผลในรายงานการศึกษาก่อนหน้านี้ที่ใช้ชุดข้อมูล CEU (ชาวยูทาห์ที่มีเชื้อสายยุโรป เหนือและยุโรปตะวันตก) ซึ่งได้มาจากโครงการ International HapMap

Abstract

This project presents a protocol for mapping single nucleotide polymorphism (SNP) information from that according to the National Center for Biotechnology Information (NCBI) build 36 to that according to NCBI build 37. The protocol exploited information from various sources including NCBI, early literature and information provided by a genotyping platform manufacturer. The applicability of the protocol was demonstrated on the datasets from seven genome-wide association studies conducted by the Wellcome Trust Case Control Consoritium (WTCCC). The studies attempt to identify genetic factors contributing to seven complex diseases: bipolar disorder, coronary artery disease, Crohn's disease, hypertension, rheumatoid arthritis, type 1 diabetes and type 2 diabetes. All datasets contain 500,568 SNPs, which were genotyped using the Affymetrix GeneChip Human Mapping 500K Array Set. The protocol was successfully applied to the datasets resulting in a complete SNP information mapping. With the availability of SNP information according to NCBI build 37, it is possible to extract tag SNPs from 364,772 SNPs that passed the quality control dictated by WTCCC, Affymetrix and a minor allele frequency threshold of 0.05. The chosen technique for tag SNP extraction was Tagger, which is a part of the Haploview software. Tagger chose approximately 55.45% of SNPs as tag SNPs from each casecontrol dataset when the r^2 threshold setting was 0.8, which is a common default threshold for defining linkage disequilibrium between two loci. The percentage of chosen tag SNPs was close to that reported in an early study involving the CEU (Utah residents with Northern and Western European ancestry) dataset obtained from the International HapMap Project.

กิตติกรรมประกาศ

ปริญญานิพนธ์เล่มนี้ไม่อาจเสร็จสมบูรณีได้หากปราศจากความช่วยเหลือจากศาสตราจารย์ ดร.ณชล ไชยรัตนะ ผู้ช่วยศาสตราจารย์ ดร.ดำรงค์ฤทธิ์ เศรษฐ์ศิริโชค และผู้ชาวยศาสตราจารย์ ดร. วรัญญู วงษ์เสรี ที่คอยให้คำแนะนำและให้การสนับสนุน ตลอดทั้งการให้ความช่วยเหลือในทุก ๆ ด้าน จนทำให้ปริญญานิพนธ์เล่มนี้เสร็จสมบูรณ์ออกมาครบถ้วน ต้องขอขอบพระคุณอาจารย์ทุกท่านมา ณ โอกาสนี้

ข้าพเจ้าขอขอบคุณอาจารย์ท่านอื่น ๆ ในภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะ วิศวกรรมศาสตร์ ทุก ๆ ท่านที่คอยให้ความรู้ คำแนะนำ และคอยสั่งสอนข้าพเจ้าตลอดระยะเวลาที่ ศึกษาอยู่ ณ ที่แห่งนี้ จนข้าพเจ้าสามารถนำความรู้ที่ได้นำไปใช้ในการประกอบอาชีพในอนาคต

สุดท้ายนี้ต้องขอขอบคุณ นายอิสระ กุลอุดมชัยวัฒน์ รวมถึงเพื่อน ๆ ทุกคน รุ่นพี่ รุ่นน้อง และบุคลากรของสาขาวิชาวิศวกรรมคอมพิวเตอร์ทุกท่าน ที่คอยให้ความช่วยเหลือในตลอดระยะเวลา ที่ผ่านมา

ธรรมนูญ กิจรัสอนันต์

วรากร มณีแสง

สารบัญ

	หน้า
ใบรับรองปริญญานิพนธ์	ก
Approval Project Certificate	ข
บทคัดย่อ	ନ
Abstact	٩
กิตติกรรมประกาศ	จ
สารบัญภาพ	গ্
สารบัญตาราง	ฌ
บทที่ 1 บทนำ	1
1.1 ที่มาและความสำคัญ	1
1.2 วัตถุประสงค์	1
1.3 ขอบเขตของการทำโครงการ	1
1.4 ผลประโยชน์ที่คาดว่าจะได้รับ	1
1.5 แผนการดำเนินงาน	2
บทที่ 2 ทฤษฎี	3
2.1 ความหลากหลายทางพันธุกรรม	3
2.2 Tagger	3
2.3 ความถี่ของอัลลีลกลุ่มน้อย(Minor allele frequency : MAF)	4
2.4 โปรแกรม Haploview	7
2.4.1 การใช้งานโปรแกรม Haploview	10
2.4.2 ผลการศึกษาโปรแกรม Haploview	11
2.4.3 Haploview – Command line options	13
2.5 สเปคคอมพิวเตอร์ที่ใช้	15
บทที่ ขั้นตอนการดำเนินงาน	16
3.1 ข้อมูลที่ใช้	16
3.2 ขั้นตอนการเตรียมข้อมูล	17

สารบัญ (ต่อ)

	หน้
3.2.1 ตรวจสอบข้อมูล WTCC กับ NSP และ STY annotations	18
3.2.2 นำสนิปมาค้นหาในเว็บ ncbi เพื่อหา RSID ตัวปัจจุบัน	20
3.2.3 นำสนิปมาค้นหาในเว็บ ncbi เพื่อหา RSID ตัวเก่า	22
3.2.4 ตรวจสอบสนิปกับไฟล์ GRCh37_hg19_AffyID2rsnumbers.txt	24
3.2.5 ตรวจสอบสนิปกับไฟล์ exclusion-list-snps-26_04_2007.txt	25
3.2.6 ตรวจสอบสนิปกับไฟล์ RsMergeArch.txt	26
3.2.7 ตรวจสอบสนิปโดยนำไปค้นหาบนเว็บ ncbi	27
3.2.8 ตรวจสอบข้อมูล WTCC ที่เหลือโดยใช้ String matching	28
3.2.9 นำสนิปเทียบเลขโครโมโซมกับ NSP และ STY annotations	29
3.3 จัดการข้อมูลให้อยู่ในรูปแบบ .ped และ .info	30
3.4 การใช้ Command line ในการคัดเลือกสนิปตัวแทน	33
บทที่ 4 ผลการดำเนินงาน	34
4.1 ผลลัพธ์การคัดเลือกสนิปตัวแทน	34
4.2 การศึกษาความสัมพันธ์ทั้งจีโนมโดยใช้ข้อมูลทางพันธุกรรม	
Mapping250K_NSP.na32.annot รวมกับ Mapping250K_STY.na32.annot	35
4.3 การศึกษาความสัมพันธ์ทั้งจีโนมโดยใช้ข้อมูลทางพันธุกรรม	
Mapping250K_NSP.na32.annot	43
4.4 การศึกษาความสัมพันธ์ทั้งจีโนมโดยใช้ข้อมูลทางพันธุกรรม	
Mapping250K_STY.na32.annot	51
เอกสารอ้างอิง	59
ประวัติผู้แต่ง	61

สารบัญภาพ

ภาพที่		หน้า
2.1	แสดงข้อมูล (input) นามสกุล .ped ที่ใช้ในการศึกษาด้วยโปรแกรม Haploview	8
2.2	แสดงข้อมูล (input) นามสกุล .info ที่ใช้ในการศึกษาด้วยโปรแกรม Haploview	9
2.3	แสดงหน้าจอหลักของโปรแกรม Haploview	10
2.4	แสดงผลการวิเคราะห์จากการตรวจสอบคุณสมบัติของตำแหน่งสนิป	11
2.5	แสดงผลการวิเคราะห์ Linkage disequilibrium (LD Plot)	12
2.6	แสดงผลการวิเคราะห์บล็อก (Blocks) และแฮโพลไทป์ (Haplotype)	13
3.1	แสดงข้อมูลของโครโมโซม 22	16
3.2	แสดงข้อมูลที่ใช้ในการอ้างอิงของไฟล์ NSP Annotations	16
3.3	แสดงข้อมูลที่ใช้ในการอ้างอิงของไฟล์ STY Annotations	17
3.4	แสดงขั้นตอนการเตรียมข้อมูล	17
3.5	แสดงแผนภาพการคัดเลือก Prob Set ID และ RS ID	18
3.6	ผลลัพธ์ของการคัดเลือก Probe Set ID และ RS ID จากไฟล์ข้อมูล	18
3.7	แสดงแผนภาพการเปรียบเทียบข้อมูล WTCC กับข้อมูล annotations	19
3.8	ผลลัพธ์ของ Probe Set ID และ RS ID ที่ไม่ปรากฏกับ NSP annotations	
และ S	TY annotations	19
3.9	แสดงการค้นหาสนิปจากเว็บ ncbi	20
3.10	แสดงผลลัพธ์การค้นหาสนิปจากเว็บ ncbi	20
3.11	แสดงการใช้งาน BeautifulSoup package	21
3.12	แสดงการใช้งาน Regular Expression	21
3.13	แสดงผลลัพธ์การค้นหาสนิปจากเว็บ ncbi ในรูปแบบไฟล์ text	21
3.14	แสดงผลลัพธ์การค้นหาสนิปจากเว็บ ncbi	22
3.15	แสดงผลลัพธ์การค้นหาสนิปจากเว็บ ncbiแสดงผลลัพธ์การค้นหาสนิปจาก	
เว็บ no	cbi ในรูปแบบไฟล์ text	23
3.16	แสดงผลลัพธ์การเปรียบเทียบสนิปกับ NSP และ STY annotations	23

สารบัญภาพ (ต่อ)

ภาพที่		หน้า
3.17	ข้อมูลไฟล์ GRCh37_hg19_AffyID2rsnumbers.txt	24
3.18	แสดงผลลัพธ์การตรวจสอบสนิปว่าปรากฏในไฟล์	
GRCh3	37_hg19_AffyID2rsnumbers.txt	25
3.19	ข้อมูลไฟล์ exclusion-list-snps-26_04_2007.txt	25
3.20	แสดงผลลัพธ์การตรวจสอบสนิปว่าปรากฏในไฟล์	
exclus	sion-listsnps-26_04_2007.txt	25
3.21	ข้อมูลไฟล์ RsMergeArch.txt	26
3.22	แสดงผลลัพธ์การตรวจสอบการปรากฏของสนิปในไฟล์ RsMergeArch.txt	26
3.23	แสดงผลลัพธ์จากการค้นหาสนิปบนเว็บ ncbi	27
3.24	แสดงผลลัพธ์จากการค้นหาสนิปทั้งหมดบนเว็บ ncbi	27
3.25	แสดงการหา flank	28
3.26	ผลลัพธ์การทำ string matching	28
3.27	แสดงการเปรียบเทียบสนิปกับไฟล์ annotations	29
3.28	แสดงข้อมูลนามสกุล .ped ที่ใช้ในการศึกษาด้วยโปรแกรม Haploview	30
3.29	แสดงข้อมูลนามสกุล .info ที่ใช้ในการศึกษาด้วยโปรแกรม Haploview	30
3.30	แสดงการใช้งาน Command line ในการคัดเลือกสนิปตัวแทน	33
3.31	แสดงผลการคัดเลือกสนิปตัวแทน	33

สารบัญตาราง

ตารางที่	หน้า
2.1 แสดงการคัดเลือกความถี่ของอัลลีลของ NSP และ STY annotations	4
2.2 แสดงการคัดเลือกความถี่ของอัลลีลของ NSP annotations	5
2.3 แสดงการคัดเลือกความถี่ของอัลลีลของ STY annotations	6
3.1 แสดงให้เห็นการผิดพลาดของเลขโครโมโซม	31
3.2 แสดงให้เห็นสนิปที่ไม่พบ position จากข้อมูล NSP และ STY Annotation	32
4.1 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค BD โดย ใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation	35
4.2 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค CAD โดยใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation	36
4.3 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค CD โดย ใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation	37
4.4 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค HT โดย ใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation	38
4.5 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค RA โดย ใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation	39
4.6 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค T1D โดยใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation	40
4.7 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค T2D โดยใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation	41
4.8 แสดงค่าเฉลี่ยของจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิป	
ที่สัมพันธ์กับ โรคทั้ง 7 โรค โดยใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation	42
4.9 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค BD โดย ใช้ข้อมูลทางพันธุกรรม NSP Annotation	43
4.10 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค CAD โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation	44

สารบัญตาราง (ต่อ)

ตารางที่	หน้า
4.11 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค CD โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation	45
4.12 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค HT โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation	46
4.13 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค RA โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation	47
4.14 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค T1D โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation	48
4.15 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค T1D โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation	49
4.16 แสดงค่าเฉลี่ยของจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิป	
ที่สัมพันธ์ กับโรคทั้ง 7 โรค โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation	50
4.17 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค BD โดยใช้ข้อมูลทางพันธุกรรม STY Annotation	51
4.18 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค CAD โดยใช้ข้อมูลทางพันธุกรรม STY Annotation	52
4.19 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค CD โดยใช้ข้อมูลทางพันธุกรรม STY Annotation	53
4.20 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค HT โดยใช้ข้อมูลทางพันธุกรรม STY Annotation	54
4.21 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค RA โดยใช้ข้อมูลทางพันธุกรรม STY Annotation	55

สารบัญตาราง (ต่อ)

ตารางที่	หน้า
4.22 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค T1D โดยใช้ข้อมูลทางพันธุกรรม STY Annotation	56
4.23 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ	
โรค T2D โดยใช้ข้อมูลทางพันธุกรรม STY Annotation	57
4.24 ตารางที่ 4.24 แสดงค่าเฉลี่ยของจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของส	หนิปทิ
สัมพันธ์ กับโรคทั้ง 7 โรค โดยใช้ข้อมูลทางพันธุกรรม STY Annotation	58

บทที่ 1 บทนำ

1.1 ที่มาและความสำคัญ

เป้าหมายของการศึกษาความสัมพันธ์ทั้งจีโนม (Genome-Wide Association Study) คือ การ ค้นหาสนิป (Single Nucleotide Polymorphism หรือ SNP) ในจีโนม (Genome) ที่สัมพันธ์กับโรค ซับซ้อน (Complex Disease) ที่สนใจ เนื่องจากสนิปในข้อมูลมีจำนวนมาก ดังนั้นจึงคัดเลือกสนิป ตัวแทน (Tag SNP) ซึ่งสามารถใช้เป็นตัวแทนของสนิปที่อยู่ในภาวะความไม่สมดุลการเชื่อมโยง (Linkage Disequilibrium) กับสนิปตัวแทนจึงเป็นเรื่องจำเป็นสำหรับการวิเคราะห์ข้อมูล WTCC โดย ใช้เทคนิคทางชีวสนเทศศาสตร์ (Bioinformatics)

1.2 วัตถุประสงค์

เพื่อค้นหาวิธีที่เหมาะสมสำหรับคัดเลือกสนิปตัวแทนจากการศึกษาความสัมพันธ์ทั้งจิโนม

1.3 ขอบเขตของการทำโครงการ

ทำการคัดเลือกสนิปตัวแทนจากการศึกษาความสัมพันธ์ทั้งจีโนมโดยใช้ข้อมูลทางพันธุกรรม เฉพาะจาดฐานข้อมูลที่เข้าถึงได้เท่านั้น

1.4 ผลประโยชน์ที่คาดว่าจะได้รับ

ได้สนิปตัวแทนซึ่งสามารถใช้เป็นตัวแทนของสนิปที่อยู่ในภาวะความไม่สมดุลการเชื่อมโยงกับสนิป ตัวแทนในการศึกษาความสัมพันธ์ทั้งจีโนม

1.5 แผนการดำเนินงาน

ขั้นตอน	y 0 0						เรี	ี่กือน	ที่				
ที่	ขั้นตอนการดำเนินงาน	1	2	3	4	5	6	7	8	9	10	11	12
1	ศึกษาข้อมูลเกี่ยวกับเรื่องที่สนใจ												
2	ศึกษาทฤษฎีและเครื่องมือที่เกี่ยวข้อง												
3	เริ่มการดำเนินงาน												
4	ตรวจสอบผลของการดำเนินงาน												
5	ประยุกต์ใช้ผลที่ได้จากการดำเนินงาน												
6	สรุปผล												
7	จัดทำรูปเล่มปริญญานิพนธ์												

บทที่ 2

ทฤษฎี

2.1 ความหลากหลายทางพันธุกรรม (Single Nucleotide polymorphism : SNP) หรือ สนิป

สนิป หมายถึง ความแตกต่างหรือความหลากหลายทางพันธุกรรมระหว่างมนุษย์แต่ละคน ที่ เกิดจากการปลี่ยนแปลงลำดับเบสบนสายนิวคลีโอไทด์เพียงตำแหน่งเดียวที่ก่อให้เกิดผลที่แตกต่างกัน เช่น การเปลี่ยนลำดับเบสบนดีเอ็นเอจาก ATGGCTAA เป็น ATGGCTTA

สนิปจะถูกถ่ายทอดทางพันธุกรรมตามกฎของเมนเดล ความแตกต่างทางพันธุกรรมในแต่ละ จุดนี้ทำให้มนุษย์แต่ละคนแตกต่างกันออกไป เช่น ความสูงต่างกัน ผิวสีต่างกัน เป็นโรคแตกต่างกัน เป็นต้น ความแตกต่างนั้นสามารถนำมาใช้เป็นเครื่องหมายชีวภาพสำหรับการสร้างแผนที่พันธุกรรม (genetic map) หรือนำมาศึกษายีนส์ที่ก่อให้เกิดโรคทั้งโรค ซึ่งจะเป็นประโยชน์ต่อการวินิจฉัยโรค

2.2 Tagger

Tagger คือ เครื่องมือสำหรับการทำ selection และ evaluation ของ tag SNPs จากข้อมูล จีโนไทป์ ซึ่งเป็นการรวมความเรียบง่ายของวิธีการทำ pairwise tagging เข้ากับประโยชน์ด้าน ประสิทธิภาพของวิธี multimarker haplotype

อินพุตที่ผู้ใช้ต้องนำเข้าข้อมูลคือ ข้อมูลจีโนไทป์ในรูปแบบ HapMap หรือ รูปแบบ pedigree ซึ่งจะคำนวณรูปแบบการเชื่อมโยงที่เป็นโรค หรืออีกวิธีหนึ่งคือผู้ใช้สามารถระบุ position ของ โครโมโซม เพื่อระบุจีโนมที่สนใจ ซึ่งคุณลักษณะนี้จะเป็นประโยชน์อย่างยิ่งสำหรับการออกแบบ multiplex tag SNP ส่วนเอาต์พุตของ Tagger จะสร้างรายการ SNP ของแท็กและการทดสอบทาง สถิติที่เกี่ยวข้องเพื่อรวบรวมตัวแปรที่สนใจทั้งหมดและรายงานความครอบคลุมโดยสรุปของ SNPs ของแท็กที่เลือก

Tagger ได้รับการพัฒนาโดย Paul de Bakker ในห้องทดลองของ David Altshuler และ Mark Daly ที่ศูนย์วิจัยพันธุกรรมมนุษย์ของโรงพยาบาล Massachusetts General Hospital และ Harvard Medical School และ Broad Institute

2.3 ความถี่ของอัลลีลกลุ่มน้อย (Minor allele frequency : MAF)

ความถี่ของอัลลีลกลุ่มน้อย คือ ความถี่ของอัลลีลที่พบบ่อยเป็นอันดับสองของประชากรที่ สนใจ MAF ใช้กันอย่างแพร่หลายในการศึกษาพันธุศาสตร์ประชากร เนื่องจากใช้เพื่อแยกความ แตกต่างระหว่างตัวแปรที่พบบ่อยและหายากในประชากร

จำนวนสนิปทั้งหมดที่จะใช้ในการวิเคราะห์จะต้องมีความถี่ของอัลลีลกลุ่มน้อย (Minor allele frequency) ต้องไม่ต่ำกว่า 0.05 เพื่อเป็นการขจัดสนิปที่อาจทำให้เกิดความเคลื่อนออกไป

2.4 โปรแกรม Haploview

โปรแกรมแฮโพลวิว (Haploview) ใช้ในการวิเคราะห์ผลสถิติทางด้านพันธุศาสตร์จากข้อมูลจี โนไทป์ของตัวอย่างแต่ละราย โปรแกรมสามารถแสดงค่าทางสถิติได้หลายรูปแบบ เช่น ค่าเฮเทอโรไซ โกซิตี้ (Heterozygosity) ค่าฮาร์ดี-ไวเบิร์กที่สภาวะสมดุล (Hardy-Weinberg equilibrium: HWE) ร้อยละของจีโนไทป์และความถี่ของอัลลีลกลุ่มน้อย (Minor allele frequency) อีกทั้งศึกษา Linkage disequilibrium (LD) ของตำแหน่งสนิปแต่ละตำแหน่งในแต่ละยีนส์และตำแหน่งสนิปว่ามีสนิปดังกล่าวอยู่ใน LD บล็อกเดียวกันหรือไม่ หรือมีการถ่ายทอดไปด้วยกันหรือไม่ ซึ่งเป็นโปรแกรมที่ใช้งานได้ สะดวก นำเสนอข้อมูลในรูปแบบที่เข้าใจได้ง่าย

การนำเข้าข้อมูล (Input) สามารถนำเข้าข้อมูลได้หลายลักษณะ แต่ที่นิยมใช้แบบ standard linkage format โดยข้อมูลที่นำมาศึกษานั้นเป็น PED file และ INFO file

PED file ประกอบด้วย Family ID , Individual ID , Paternal ID , Maternal ID , Sex , Phenotype

Family ID	Individual ID		rnal & rnal ID	Sex	Phenoty	pe			Gen	otyp	е	
WTCCC125760	WTCCC125760	0	0	1	1	1	1	3	3	1	1	4
WTCCC126352	WTCCC126352	0	0	2	1	1	3	3	3	1	1	4
WTCCC126179	WTCCC126179	0	0	1 1	1	1	1	3	3	1	1	4
WTCCC126013	WTCCC126013	0	0	2	1	1	1	3	3	1	1	4
WTCCC126214	WTCCC126214	0	0	1 1	1	1	1	3	3	1	1	4
WTCCC127641	WTCCC127641	0	0	1 1	1	3	3	3	3	1	1	4
WTCCC126470	WTCCC126470	0	0	2	1	1	1	3	3	1	1	4
WTCCC126474	WTCCC126474	0	0	1 1	1	1	1	3	3	1	1	4
WTCCC126042	WTCCC126042	0	0	2	1	1	1	3	3	1	1	4
WTCCC126864	WTCCC126864	0	0	1 1	1	1	3	3	3	1	1	4
WTCCC126050	WTCCC126050	0	0	1 1	1	1	3	3	3	1	1	4
WTCCC126693	WTCCC126693	0	0	1 1	1	1	3	3	3	1	1	4
WTCCC127526	WTCCC127526	0	0	2	1	1	3	3	3	1	1	4
WTCCC126795	WTCCC126795	0	0	2	1	1	1	3	3	1	1	4
WTCCC126888	WTCCC126888	0	0	2	1	1	3	3	3	1	1	4
WTCCC126978	WTCCC126978	0	0	1 1	1	1	1	3	3	1	1	4
WTCCC126043	WTCCC126043	0	0	1 1	1	1	1	3	3	1	1	4
WTCCC127116	WTCCC127116	0	ø	2	1	1	1	3	3	1	1	4

ภาพที่ 2.1 แสดงข้อมูล (input) นามสกุล .ped ที่ใช้ในการศึกษาด้วยโปรแกรม Haploview

Family ID เป็นตัวเลขแสดง Individual family โดยตัวเลขจะเหมือนกันใน

กรณีที่เป็นข้อมูลที่มาจากครอบครัวเดียวกัน แต่ถ้าเป็นข้อมูลที่มา

จากต่างครอบครัวตัวเลขจะไม่เหมือนกัน

Individual ID เป็นหมายเลขประจำตัวจำเพาะของแต่ละบุคคล

Paternal ID เป็นหมายเลขประจำตัวจำเพาะของแต่ละบุคคลที่เป็นบิดาของบุล

คลนั้น ในกรณีวิเคราะห์แบบ Association analysis ไม่ใช้ข้อมูล

ครอบครัวจึงกำหนดค่าบิดาเป็น 0

Maternal ID เป็นหมายเลขประจำตัวจำเพาะของแต่ละบุคคลที่เป็นมารดาของ

บุลคลนั้น ในกรณีวิเคราะห์แบบ Association analysis ไม่ใช้

ข้อมูลครอบครัวจึงกำหนดค่ามารดาเป็น 0

Sex เป็นการระบุเพศ โดยใช้เลข 1 แทนเพศชาย และใช้เลข 2 แทน

เพศหญิง และให้ค่าเป็น 0 เมื่อไม่ทราบเพศ

Affectation status เป็นการระบุสภาวะการเป็นโรค โดยเลข 1 แทนสภาวะที่ไม่เป็น

โรค เลข 2 แทนสภาวะที่เป็นโรค และเลข 0 แทนสภาวะที่ไม่

ทราบ

Marker genotype แต่ละ marker แสดงจิโนไทป์ของแต่ละสนิป โดยกำหนดจีโนไทป์

เป็นลำดับเบส A, T, C, G หรือหมายเลข 1 – 4 (1 = A, 2 = C, 3

= G, 4 = T)

INFO file รูปแบบไฟล์จะเป็น Marker information ภายในไฟล์จะประกอบด้วย 2 คอลัมน์ คือ Marker name และ position

Marker name	Position					
rs2471469	12238077					
rs17036071	12244544					
rs12490159	12266404					
rs7614818	12270285					
rs17036088	12271056					
rs17671592	12273414					
rs310751	12273621					
rs310749	12273768					
rs167467	12281183					
rs11929414	12285628					
rs1562041	12285734					
rs17036126	12287863					

ภาพที่ 2.2 แสดงข้อมูล (input) นามสกุล .info ที่ใช้ในการศึกษาด้วยโปรแกรม Haploview

Marker name ชื่อของตำแหน่งสนิป

Position ระยะห่างของลำดับคู่เบส

2.4.1 การใช้งานโปรแกรม Haploview

1. เปิดโปรแกรม Haploview ขึ้นมา โดยสามารถเรียกใช้งานผ่าน shortcut ที่หน้า Desktop หรือจาก Start Menu > Programes > Haploview > Haploview

ภาพที่ 2.3 แสดงหน้าจอหลักของโปรแกรม Haploview

2. เลือกไฟล์ข้อมูลที่ต้องการนำมาศึกษาโดยใน Data file ระบุนามสกุลไฟล์เป็น .data เช่น Sample.data และใน Locus Information File ระบุนามสกุลไฟล์เป็น .info เช่น Sample.info โดยโปรแกรมจะทำการนำเข้าไฟล์ทั้งสองแบบอัตโนมัติ

2.4.2 ผลการศึกษาโปรแกรม Haploview

 การตรวจสอบคุณสมบัติของตำแหน่งสนิป (Check Markers) โปรแกรมจะทำการ คำนวณข้อมูลพื้นฐานของแต่ละสนิป และรายงานผลสำหรับการตรวจสอบคุณสมบัติ ต่าง ๆ

ภาพที่ 2.4 แสดงผลการวิเคราะห์จากการตรวจสอบคุณสมบัติของตำแหน่งสนิป

#	เลขตำแหน่งสนิป
Name	ชื่อของนิปส์จากไฟล์ Marker Information
Position	ตำแหน่งของสนิปจากไฟล์ Marker Information
ObsHET	ค่าที่ได้จากการนับ Observed heterozygosity
PredHET	ค่าที่ได้จากการคำนวณ Predicted heterozygosity
HWpval	ค่า P-value ของ Hardy-Weinberg equilibrium คือโอกาส ความน่าจะเป็นที่ข้อมูลจีโนไทป์นี้มีการกระจายแบบสมดุล
%Gene	ค่าเปอร์เซ็นต์ของการศึกษาจีโนไทป์ที่ได้ผลของแต่ละตำแหน่ง สนิป
FamTrio	จำนวนของครอบครัวที่มีผลจีโนไทป์ครบ
MendErr	จำนวนครอบครัวที่มีผลจีโนไทป์ไม่ครบไม่เป็นไปตามกฎของ เมนเดล

MAF ค่า minor allele frequency ของแต่ละแอลลีล

Allele แสดง Major และ Minor ของสนิปแต่ละตำแหน่ง

Rating ค่าที่บอกให้โปรแกรมวิเคราะห์ผล ถ้ามีเครื่องหมายถูกอยู่แสดงว่า

ตำแหน่งสนิปนั้นผ่านการทดสอบ แต่ถ้าไม่มีแสดงว่าตำแหน่งสนิป

นั้นไม่ผ่านการทดสอบ

2. การวิเคราะห์ Linkage disequilibrium (LD Plot) การศึกษาว่าตำแหน่งสนิปที่อยู่ใกล้ กันมีโอกาสถ่ายทอดไปด้วยกันมากกว่าหรือน้อยกว่าค่าคาดหวัง ซึ่งพิจารณาจากค่า Lewontin's coefficient (D') ที่คำนวณจากระยะทางและความถี่แอลลีลของแต่ละ คู่สนิป หากค่า D' มากกว่า 0.8 หมายความว่า มีการถ่ายทอดไปด้วยกันของคู่ เครื่องหมายพันธุกรรมได้บ่อยจนถือว่ามี Linkage disequilibrium ที่จะวิเคราะห์ว่าเป็น LD Blok เดียวกัน

ภาพที่ 2.5 แสดงผลการวิเคราะห์ Linkage disequilibrium (LD Plot)

3. การวิเคราะห์ (Blocks) และแฮโพลไทป์ (Haplotype) โปรแกรมสามารถสร้าง Haplotype block ได้หลายแบบ การศึกษานี้เลือกรูปแบบ Confidence intervals เป็นรูปแบบเริ่มต้น โปรแกรมจะตัดตำแหน่งสนิปที่ศึกษาที่มีค่า MAF < 0.05 ออก ส่วนการแสดงผลแฮโพลไทป์ ในแต่ละบล็อกจะประกอบด้วยความถี่ของแฮโพลไทป์ในแต่ละแฮโพลไทป์และเส้นเชื่อมโยง จากบล็อกหนึ่งไปอีกบล็อกหนึ่งที่อยู่ติดกันหากมีหลายบล็อกของสนิปหลายตำแหน่ง โปรแกรมจะแสดงเฉพาะแฮโพลไทป์หรือแอลลีลที่มีการแสดงออกมาที่หน้าจอเท่านั้น

ภาพที่ 2.6 แสดงผลการวิเคราะห์บล็อก (Blocks) และแฮโพลไทป์ (Haplotype)

2.4.3 Haploview - Command line options

Haploview สามารถรันจาก command line โดยมีหรือไม่มีหน้าต่างแสดงผลได้ทั้งคู่ บางครั้ง ด้วยข้อจำกัดทางหน่วยความจำหรือความคุ้นชินของผู้ใช้งาน อินเตอร์เฟซแบบปกติมักจะช้า และมีความยุ่งยากมากกว่า command line เพื่อที่จะทำการประมวลผลชุดข้อมูลหลายชุดหรือ ต้องการการคำนวณอย่างรวดเร็วบนชุดข้อมูลที่ใหญ่มาก ๆ จึงขอแนะนำให้สร้างความคุ้นชินกับ command line ที่ Haploview รองรับ

Haploview สามารถเริ่มได้จาก terminal โดยใช้

java -jar Haploview.jar

หากต้องการที่จะรัน Haploview โดยตรงจาก terminal จะเป็นต้องปิดการใช้งาน GUI หรือ graphical user interface ใช้คำสั่งดังต่อไปนี้

java -jar Happloview.jar -nogui

หากต้องการจะแสดงคำสั่งหลัก ๆ บน command line ใช้คำสั่งต่อไปนี้

java -jar Happloview.jar -nogui -help

คำสั่งที่ต้องการข้อมูลอินพุตเพิ่มเติม จะเห็นได้ในลักษณะต่อไปนี้

-chromosome <chrom#>; -startpos <start# in kb>; -panel <PanelName>

โดย <> จะเป็นตัวระบุที่ที่จำเป็นต้องใส่พารามิเตอร์เพิ่มเข้าไป หากเว้นว่างไว้จะทำให้โปรแกรม ไม่ทำงานตามที่ระบุไว้

General options

คำสั่งต่อไปนี้สามารถใช้เป็นอาร์กิวเมนต์เมื่อเริ่มใช้งาน Haploview ได้

-h, -help

แสดงข้อมูล help information

-n, -nogui

Command line mode - ไม่แสดงหน้าจอ

-q, quiet

Quiet mode - ย่อขนาดของข้อมูลเอาต์พุตไปที่ command line

-log <filename>

สร้าง logfile information ไปยัง filename ที่ระบุ (ค่าเริ่มต้นคือ Haploview.log หากไม่มีการระบุ)

-out <fileroot>

ระบุตำแหน่ง fileroot ที่จะใช้สำหรับไฟล์ output ทั้งหมด

-memory <memsize>

จัดสรรหน่วยความจำ <memsize> megabytes ของหน่วยความจำไปที่ process ของ Haploview (ค่าเริ่มต้นคือ 512MB)

2.5 สเปคคอมพิวเตอร์ที่ใช้

Specifications

Operating System:

Windows 10 Education 64-bit (10.0, Build 19041)

Processor:

Name: AMD Ryzen 5 3600

Number of CPU cores: 6

Number of Threads: 12

Base Clock: 3.6GHz

Technology: 7nm

Caches:

Total L1 Data-Cache: 192KB

Total L1 Instruction-Cache: 192KB

Total L2 Cache: 3MB

Total L3 Cache: 32MB

Mainboard:

Model: AM4 GIGABYTE B450M S2H

Memory:

Type: DDR4

Channel: Dual

Size: 16GB

Note : ข้อมูลชุดนี้ได้มาจาก CPU-Z ซึ่งเป็น software สำหรับรวบรวมข้อมูลต่าง ๆ ของอุปกรณ์บน เครื่องคอมพิวเตอร์ (System information software) รวมกับข้อมูลบนเว็บไซต์อย่างเป็นทางการของ AMD

บทที่ 3

ขั้นตอนการดำเนินงาน

3.1 ภาพรวมการดำเนินงาน

การทำงานจะเริ่มต้นจาก การนำข้อมูลสนิปทั้งหมด 500,568 สนิปซึ่งมาจากข้อมูล WTCCC ซึ่งเป็นข้อมูลของกลุ่มตัวอย่าง นำมาเชื่อมโยงสนิปให้มีความเป็นปัจจุบันโดยเปลี่ยนสนิปจาก NCBI ที่ สร้างครั้งที่ 36 ให้เป็นข้อมูลสนิปที่พร้อมใช้งานตาม NCBI ที่สร้างครั้งที่ 37 จากนั้นนำสนิปมา ตรวจสอบคุณภาพที่กำหนดโดย ตัดสนิปที่ไม่พบตำแหน่ง , ตัด Exclusion list และตัดสนิปที่มี ความถี่อัลลีลน้อยที่พบน้อยกว่า 0.05 จะเหลือสนิปสำหรับคัดเลือกกตัวแทนสนิป 363,028 ที่ผ่าน การตรวจสอบคุณภาพ

ภาพที่ 3.1 ภาพรวมของโปรเจค

3.1 ข้อมูลที่ใช้

ข้อมูล WTCC ข้อมูลของกลุ่มตัวอย่างถูกจัดเก็บมาเป็นชุดของสนิปตั้งแต่สนิปของ โครโมโซม 1 ถึง โครโมโซม X ซึ่งในแต่ละสนิปประกอบด้วย ชื่อสนิป , ข้อมูลจีโนไทป์ เป็นต้น ซึ่งไฟล์ นี้มาจากบริษัท Affymetrix ซึ่งเป็นแบรนด์ของผลิตภัณฑ์ DNA microarray ที่ขายโดย Thermo Fisher Scientific ซึ่งมีต้นกำเนิดจากบริษัท วิจัยและพัฒนาเทคโนโลยีชีวภาพแห่งสหรัฐอเมริกา

ภาพที่ 3.2 ข้อมูลของโครโมโซม 22

Mapping250K_NSP Annotations ข้อมูลที่ใช้จะอ้างอิงจากไฟล์ NSP Annotations ไฟล์ จากปี 2532 เป็นข้อมูลจาก ศูนย์ข้อมูลเทคโนโลยีชีวภาพแห่งชาติหอสมุดแพทยศาสตร์แห่งชาติ สหรัฐอเมริกา หลังจากนี้จะเรียกชุดข้อมูลนี้โดยย่อว่า NSP Annotations

ภาพที่ 3.3 ข้อมูลที่ใช้ในการอ้างอิงของไฟล์ NSP Annotations

Mapping250K_STY Annotations ข้อมูลที่ใช้จะอ้างอิงจากไฟล์ STY Annotations ไฟล์ จากปี 2532 เป็นข้อมูลจาก ศูนย์ข้อมูลเทคโนโลยีชีวภาพแห่งชาติหอสมุดแพทยศาสตร์แห่งชาติ สหรัฐอเมริกา หลังจากนี้จะเรียกชุดข้อมูลนี้โดยย่อว่า STY Annotations

ภาพที่ 3.4 ข้อมูลที่ใช้ในการอ้างอิงของไฟล์ STY Annotations

3.2 ขั้นตอนการเตรียมข้อมูล

จุดประสงค์ในการเตรียมข้อมูลคือ ต้องการเชื่อมโยงสนิปของข้อมูล WTCCC ตั้งแต่ โครโมโซม 1 ถึง โครโมโซม X นำมาเชื่อมโยงสนิปให้มีความเป็นปัจจุบันโดยเปลี่ยนสนิปจาก NCBI ที่ สร้างครั้งที่ 36 ให้เป็นข้อมูลสนิปที่พร้อมใช้งานตาม NCBI ที่สร้างครั้งที่ 37 ซึ่งมีขั้นตอนการเตรียม ข้อมูลดังนี้

ภาพที่ 3.5 ขั้นตอนการเตรียมข้อมูล

3.2.1 เชื่อมโยงข้อมูล WTCCC กับ NSP และ STY annotations

 นำข้อมูล WTCCC ตั้งแต่ โครโมโซมที่ 1 ถึง โครโมโซม X มาทำการคัดเลือกสนิป โดยแต่ละสนิปจะมีซ้ำกันอยู่ 1,504 สนิป นำมาคัดแยก Probe Set ID และ RS ID ที่ไม่ซ้ำกันออกจากกัน โดยเก็บเป็น text ไฟล์

ภาพที่ 3.6 แผนภาพการคัดเลือก Prob Set ID และ RS ID

ภาพที่ 3.7 ผลลัพธ์ของการคัดเลือก Probe Set ID และ RS ID จากไฟล์ข้อมูล

• ตรวจสอบข้อมูล WTCCC ที่ผ่านการคัดเลือก Probe Set ID และ RS ID ซึ่งได้มา เป็นไฟล์ text ดังแสดงในภาพที่ 4 มาทำการตรวจสอบกับ NSP annotations และ STY annotations ว่ามีสนิปที่ตรงกันหรือไม่ ซึ่งจะใช้โค้ดในการตรวจสอบ และเก็บ ผลลัพธ์เป็นไฟล์ text

ภาพที่ 3.8 แสดงแผนภาพการเปรียบเทียบข้อมูล WTCC กับข้อมูล annotations

ภาพที่ 3.9 ผลลัพธ์ของ Probe Set ID และ RS ID ที่ไม่ปรากฏกับ NSP และ STY annotations

สรุป เมื่อทำการตรวจสอบ Probe Set ID และ RS ID ของข้อมูล WTCCC ตั้งแต่โครโมโซมที่ 1 ถึงโครโมโซม X จากข้อมูลทั้งหมด 500,568 ตัว ซึ่งมีข้อมูลที่ตรงกับ NSP และ STY annotations ทั้งหมด 486,176 ตัว ดังนั้นข้อมูลที่ไม่ตรงกับ NSP และ STY annotations มีทั้งหมด 6,379 ตัว

3.2.2 นำสนิปของข้อมูล WTCCC มาค้นหาบนเว็บ NCBI เพื่อค้นหา RSID ปัจจุบัน (Forward)

- เข้าที่เว็บ https://www.ncbi.nlm.nih.gov/snp/?term ใช้ RS ID ในการค้นหา ว่าสนิปที่ทำการค้นหานั้นเปลี่ยนแปลงไปเป็น RS ID ใด
- ใช้การค้นหาสนิปแบบ Forward ซึ่งเป็นการนำสนิปจากข้อมูล WTCCC ไปทำการ ค้นหาบนเว็บ ncbi และเลือกผลลัพธ์สนิปปัจจุบันมาใช้เพื่อตรวจสอบกับ NSP และ STY annotations ซึ่งมีขั้นตอนการทำดังนี้
 - นำสนิปมาค้นหาในเว็บ ncbi โดยเลือกตัวเลือกในช่องแรกเป็น SNP และใส่ RS ID ลงในช่องค้นหา

ภาพที่ 3.10 การใช้สนิปในการค้นหาสนิปปัจจุบันจากเว็บ ncbi

- ผลลัพธ์ที่เราต้องการคือ RS ID ปัจจุบันของ RS ID เดิม

ภาพที่ 3.11 ผลลัพธ์การค้นหาสนิปจากเว็บ ncbi

- ใช้แพคเกจ Beautifulsoup ของ python ในการดึงข้อมูลจากหน้าเว็บเพื่อ ค้นหาข้อมูลที่เราต้องการ

```
import re
import re
import requests
from bs4 import BeautifulSoup

page = requests.get("https://www.ncbi.nlm.nih.gov/snp/?term=rs3818569")
soup = BeautifulSoup(page.content, 'html.parser')
print(soup)

{?xml version="1.0" encoding="utf-8"?>
{!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

khtml lang="en" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
khead xmlns:xi="http://www.w3.org/2001/XInclude">kmeta content="text/html; charset=utf-8" http-equiv="Content-Type"/>
{!-- meta -->
wmeta content="dbSNP is a public-domain archive for human single nucleotide variations, microsatellites, and small-scale ins ertions and deletions along with publication, population frequency, molecular consequence, and genomic and RefSeq mapping in formation for both common variations and clinical mutations." name="description"/>kmeta content="noindex,nofollow,noarchive" name=""robots"/>
kmeta content="entrez" name="ncbi_app"/>kmeta content="spp" name="ncbi_do"/*kmeta content="20" name="ncbi_pagesize"/>kmeta content="spp:um" name="ncbi_pagesize"/>kmeta content="spp:um" name="ncbi_pagesize"/>kmeta content="search" name="ncbi_pagesize"/>kmeta content="search" name="ncbi_pagesize"/>kmeta content="search" name="ncbi_pagesize"/>kmeta content="search" name="ncbi_pagesize"/>kmeta content="search" name="ncbi_pagesize"/>kmeta content=""sassisiond"/>kmeta content="all" name="ncbi_filter"/>kmeta content="false" name="ncbi_stat"/>kmeta content="false" na
```

ภาพที่ 3.12 การใช้งาน BeautifulSoup package

- ใช้ Regular Expression ในการค้นหาข้อความที่มีลักษณะตรงกับที่ต้องการ

```
1  get_rs = soup.find('a', attrs={'href': re.compile("^/snp/rs")})
2  get_rs = str(get_rs)
3  print(get_rs)
4  rs = re.search("rs[0-9]+",get_rs)
5  print(rs.group())

<a href="/snp/rs1128977">rs1128977</a>
rs1128977
```

ภาพที่ 3.13 การใช้งาน Regular Expression

- ผลลัพธ์การค้นหาสนิปจากเว็บ ncbi

ภาพที่ 3.14 ผลลัพธ์การค้นหาสนิปจากเว็บ ncbi ในรูปแบบไฟล์ text

สรุป เมื่อทำการค้นหา RS ID เดิมของข้อมูล WTCC ทั้งหมด 6,379 ตัว เมื่อนำไปค้นหาที่เว็บ ncbi จะได้ผลลัพธ์เป็น RS ID ปัจจุบัน ซึ่งเมื่อทำการค้นหาจะได้ผลลัพธ์ดังนี้ พบ RS ID ปัจจุบัน ทั้งหมด 5,085 ตัว และไม่พบ RS ID ปัจจุบันทั้งหมด 1,294 ตัว

3.2.3 นำสนิปจาก NSP และ STY มาค้นหาบนเว็บ NCBI เพื่อหา RSID ตัวเก่า (Backward)

- ใช้ https://www.ncbi.nlm.nih.gov/snp/?term เพื่อทำการใช้ RS ID ในการ ค้นหาว่าสนิปที่ทำการค้นหานั้นมี RS ID ตัวก่อนหน้าเป็น RS ID ใด
- ใช้การค้นหาสนิปแบบ Backward ซึ่งเป็นการนำสนิปจาก annotations ที่ยังไม่ ปรากฏทั้งหมดไปทำการค้นหาบนเว็บ ncbi และเลือกผลลัพธ์เป็นสนิปตัวก่อนหน้า ทั้งหมดมาใช้เพื่อตรวจสอบกับข้อมูล WTCC ซึ่งมีขั้นตอนการทำดังนี้
 - นำสนิปของข้อมูล WTCC ที่ตรงกับ NSP annotations และ STY annotations ทั้งหมด มาตัดสนิปที่พบแล้วออกจาก NSP และ STY annotations ซึ่งเมื่อ

ตัดสนิปแล้วจะเหลือจำนวนสนิปใน NSP และ STY annotations ทั้งหมด 13.797 ตัว

- นำสนิปจำนวน 13,797 ตัว มาทำการค้นหาในเว็บ ncbi เพื่อทำการค้นหา RS
- ค้นหา RS ID ที่ต้องการและนำผลลัพธ์คือ RS ID เก่าทั้งหมดนำมาใช้

ภาพที่ 3.15 แสดงผลลัพธ์การค้นหาสนิปจากเว็บ ncbi

- ผลลัพธ์การค้นหาสนิปจากเว็บ ncbi

```
RSID_old_dict - Notepad
   File Edit Format View
                                                                           Help
'rs57457955']
'rs56600057',
'rs57078581',
'rs56614655',
'rs57445747',
'rs60161005',
                                                                                                                                    "rs56727218", "rs118197140", "rs792556"]
"rs118193620", "rs58643569"]
"rs57067746", "rs62414827"]
"rs56774880", "rs10781128"]
"rs59213011", "rs111033955", "rs4439240"]
"rs58923995", "rs4420110", "rs61375926"]
"rs589239312", "rs47404887", "rs58453455", "rs55968216"]
"rs11921723", "rs56513339", "rs58940162", "rs57145763"]
"rs10822332", "rs112287101", "rs2947585"]
"rs57192527", "rs56435672", "rs10738076", "rs10434829", "rs60072808", "rs60165356"]
  rs34227797
  rs679735
  rs28588020
  rs35261662
 rs35261662
rs10116234
rs1126122
rs1304712
rs2544654
rs9984025
rs2438996
                                                                            'rs60161005',
'rs6577422',
'rs7380075',
'rs111033983',
'rs61695962',
'rs59175373',
  rs3128952
                                                                                                                                                                                                'rs56435672',
'rs60165356']
rs10407412 ['rs11084509', 'rs60072808', 'rs60165356']
rs10151 ['rs16845509', 'rs60150906', 'rs56516002', 'rs3198453']
rs2750 ['rs58430704', 'rs60707688', 'rs6852031']
rs4417255 ['rs8175630', 'rs72484163', 'rs11246401', 'rs58946387']
rs2753548 ['rs7140393', 'rs6112108']
rs1120209 ['rs4606226', 'rs58670881', 'rs56625614', 'rs58679016']
rs35527803 ['rs56608027', 'rs60348956']
rs10243704 ['rs58177425', 'rs12534030', 'rs61039950']
rs17419388 ['rs59824434', 'rs57013366']
rs9934599 ['rs61149551', 'rs11075775']
rs46464040 ['rs54144951', 'rs11767115', 'rs6542938', 'rs61030341', 'rs61241265']
  rs10407412
                                                                              rs11084509',
                                                                                                                                        'rs60072808'
                                                                                                                                                              Ln 54, Col 26
                                                                                                                                                                                                                                         100% Windows (CRLF)
```

ภาพที่ 3.16 แสดงผลลัพธ์การค้นหาสนิปจากเว็บ ncbi ในรูปแบบไฟล์ text

- นำสนิปที่ไม่พบจากการค้นหา ncbi แบบค้นหา RS ID ปัจจุบัน ทั้งหมด 1,294 ตัว มาทำการตรวจสอบกับผลลัพธ์ของการค้นหาสนิปตัวเก่า
- ผลลัพธ์การเปรียบเทียบสนิปกับ NSP และ STY annotations

ภาพที่ 3.17 แสดงผลลัพธ์การเปรียบเทียบสนิปกับ NSP และ STY annotations

สรุป นำสนิปของ NSP และ STY annotations โดยตัดตัวที่ปรากฏแล้วว่าตรงกับสนิปใน ข้อมูล WTCCC ออก จากนั้นนำมาค้นหาบนเว็บ ncbi เพื่อค้นหา RS ID ตัวก่อนหน้า หรือ ตัวเก่า นำ ผลลัพธ์ที่ได้นำมาเช็คกับสนิปของข้อมูล WTCCC ที่ยังไม่ปรากฏใน annotations โดยจะได้ว่าเมื่อ เปรียบเทียบข้อมูลแล้วมีสนิปที่ตรงกันทั้งหมด 1,239 ตัว ทำให้เหลือข้อมูลของโครโมโซมที่ยังไม่พบ ทั้งหมด 509 ตัว

3.2.4 เชื่อมโยงสนิปกับไฟล์ GRCh37 hg19 AffyID2rsnumbers.txt

นำสนิปที่ยังไม่ปรากฏกับข้อมูล annotations ทั้งหมด 509 ตัว มาตรวจสอบกับไฟล์ GRCh37_hg19_AffyID2rsnumbers.txt โดยใช้ RS ID ในการตรวจสอบ ถ้า RS ID ตรงกัน เก็บ Probset ID นำมาใช้เพื่อนำไปตรวจสอบว่าปรากฏในไฟล์ annotations หรือไม่ โดยมีขั้นตอน การทำดังนี้

ภาพที่ 3.18 ข้อมูลไฟล์ GRCh37 hg19 AffyID2rsnumbers.txt

• ผลลัพธ์ตรวจสอบสนิปว่าปรากฏในไฟล์ GRCh37_hg19_AffyID2rsnumbers

ภาพที่ 3.19 แสดงผลลัพธ์การเชื่อมโยงสนิปว่าปรากฏในไฟล์ GRCh37 hg19 AffyID2rsnumbers

• นำผลลัพธ์มาตรวจสอบในไฟล์ NSP และ STY annotations โดยนำ Prob set ID ไปตรวจสอบว่าปรากฏอยู่ใน annotations หรือไม่

สรุป จากสนิปทั้งหมดที่ยังไม่ปรากฏใน annotations ทั้งหมด 509 ตัว พบ RS ID ที่ปรากฏ ในไฟล์ GRCh37_hg19_AffyID2rsnumbers.txt ทั้งหมด 371 ตัว และยังไม่พบทั้งหมด 138 ตัว

3.2.5 เชื่อมโยงสนิปกับไฟล์ exclusion-list-snps-26_04_2007.txt

นำสนิปที่ยังไม่ปรากฏในไฟล์ annotation ทั้งหมด 138 ตัว มาตรวจสอบกับไฟล์ exclusion-list-snps-26_04_2007.txt โดยใช้ RS ID ในการตรวจสอบ ถ้า RS ID ตรงกัน เก็บ Probset ID นำมาใช้เพื่อนำไปตรวจสอบว่าปรากฏในไฟล์ annotations หรือไม่ โดยมีขั้นตอน การทำดังนี้

exc	lusion-list-snps-26_04_200	7 - Notepad		-		\times
File Ed	it Format View Help					
CHR	AFFY_ID RS_ID	FILTER				^
1	SNP_A-2169457	rs3817856	2			
1	SNP_A-2218153		1			
1	SNP_A-1842509	rs2292857	1			
1	SNP_A-4218776	rs262683	2			
1	SNP_A-2038545	rs4648515	1			
1	SNP A-1785968	rs12119163	2			
1	SNP A-4242198	rs4648451	1			
1	SNP_A-4250429	rs2981884	1			
1	SNP A-2242875	rs6704012	1			
1	SNP A-2107218	rs2651912	1			
1	SNP A-4218510	rs6670518	1			
1	SNP A-2206691	rs6690558	1			
1	SNP A-2219183	rs2483280	1			
1	SNP_A-1786405	rs16823663	1			
1	SNP A-2258506	rs13375075	1			
1	SNP A-2103234	rs2794345	1			
1	SNP_A-4224815	rs2887275	1			
1	SNP A-4192975	rs9426475	1			
1	SNP A-1841477	rs10915657	1			
1	SNP A-2021209		2			
1	SNP A-2024173		1			
1	SNP 4-2082635		2			~
<						>
	Ln 1, Col 1	100% Unix (LF)		UTF-	-8	

ภาพที่ 3.20 ข้อมูลไฟล์ exclusion-list-snps-26_04_2007.txt

• ผลลัพธ์ตรวจสอบสนิปว่าปรากฏในไฟล์ exclusion-list-snps-26_04_2007.txt

ภาพที่ 3.21 แสดงผลลัพธ์การตรวจสอบสนิปว่าปรากฏในไฟล์ exclusion-list-

นำผลลัพธ์มาตรวจสอบในไฟล์ NSP annotations และ STY annotations โดยนำ
 Prob set ID ไปตรวจสอบว่าปรากฏอยู่ใน annotations หรือไม่

สรุป จากสนิปทั้งหมดที่ยังไม่ปรากฏใน annotations ทั้งหมด 138 ตัว พบ RS ID ที่ปรากฏ ในไฟล์ exclusion-list-snps-26_04_2007.txt ทั้งหมด 38 ตัว และยังไม่พบทั้งหมด 100 ตัว

3.2.6 เชื่อมโยงสนิปกับกับไฟล์ RsMergeArch.txt

นำสนิปที่ยังไม่ปรากฏกับข้อมูล annotations ทั้งหมด 509 ตัว มาตรวจสอบกับไฟล์ RsMergeArch.txt โดยใช้ RS ID ในการตรวจสอบ ถ้า RS ID ตรงกัน เก็บ RS ID ปัจจุบันนำมาใช้ เพื่อนำไปตรวจสอบว่าปรากฏในไฟล์ annotations หรือไม่ โดยมีขั้นตอนการทำดังนี้

File	Edit	View	Language						
1 110		71011	Lui-gauga						
1	3418	3431	*10710027	*151*0	*33:41	.1*33	:41.1**	- 4	≖rsr
2	3610	6465	*35937617	#151#0	×33:41	.1*33	:41.1*		rsr
3	7136	9126	×59193406	*151*0	×33:41	.1 33	:41.1*	-11	⊬rsr
4	1447	35719	112348376	#151#0	-#33:41	.1#33	:41.1*		#rsr
5	1455	10384	-*3070005*15	51*0 ×33	3:41.1*3	3:41.	1 11	×rs	sm
6	1511	01600	35181795	#151#0	×33:41	.1433	41.1		≓rsr
7	2004	07829	×57274482	*151*0	×33:41	.1*33	:41.1*	- H	rsr
8	3705	30057	#57201464	#151#0	33:41	.1433	:41.1*	- н	rsr
9	3976	90673	*34500058	*151**0	×33:41	.1*33	:41.1**		rsı
10	3976	96453	#60788024	*151*0	-#33:41	.1 33	:41.1*		rsr
11	3977	31120	3065054 *15	31*0 *33	3:41.1=3	3:41.	1 11 11	- rs	sm
12	3977	43744	×34179230	*151*0	-×33:41	.1#33	:41.1**	- 9(rsi
13	3977	66717	*56267673	#151#0	*33:41	1433	:41.1*	91	#rsi
14	3977	74871	35133309	#151#0	33:41	.1#33	:41.1*		- rsi
15	3977	95250	*57143660	*151*0	#33:41	.1=33	:41.1**		≕rsr
16	3977	98091	35333524	#151#0	×33:41	.1 433	:41.1=		rsr
17	3978	08846	×58673069	#151#0	-×33:41	.1#33	:41.1*	- 4	rsr
18	3978	36435	-#3044307#15	51×0 ×33	3:41.1*3	3:41.	1 11 11	- ars	sm

ภาพที่ 3.22 ข้อมูลไฟล์ RsMergeArch.txt

ผลลัพธ์การตรวจสอบการปรากฏของสนิปในไฟล์ RsMergeArch.txt

ภาพที่ 3.23 แสดงผลลัพธ์การตรวจสอบการปรากฏของสนิปในไฟล์ RsMergeArch.txt

• นำผลลัพธ์มาตรวจสอบในไฟล์ NSP annotations และ STY annotations โดยนำ RS ID ไปตรวจสอบว่าปรากฏอยู่ใน annotations หรือไม่

สรุป จากสนิปทั้งหมดที่ยังไม่ปรากฏใน annotations ทั้งหมด 509 ตัว พบ RS ID ที่ปรากฏ ในไฟล์ RsMergeArch.txt ทั้งหมด 10 ตัว และยังไม่พบทั้งหมด 90 ตัว

3.2.7 ตรวจสอบสนิปโดยนำไปค้นหาบนเว็บ ncbi

นำสนิปที่ยังไม่ปรากฏข้อมูลในไฟล์ annotations มาทั้งหมด 90 ตัว มาทำการค้นหาบนเว็บ https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs="">https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?d

ตัวอย่างทำการค้นหาสนิป rs16969329 ในเว็บ ncbi จะได้

ภาพที่ 3.24 แสดงผลลัพธ์จากการค้นหาสนิปบนเว็บ ncbi

rs2099870	SNP_A-4193165			
rs2611045				
rs7987360	SNP_A-2030054			
rs6974319				
rs6008833	SNP_A-1863986			
rs13126656	SNP_A-1931068			
rs1405371	SNP_A-1963269			
rs4887245	SNP_A-1870909			
rs17109001	SNP_A-2217864			
rs2645549				
rs237407	SNP_A-4276865			
rs12716283		rs6869312	was withdrawn on June 16	, 2015.
rs16917285	SNP_A-1825047	rs3178681	rs1134429	
rs10805714		rs9686984	rs4975915	

ภาพที่ 3.25 แสดงผลลัพธ์จากการค้นหาสนิปทั้งหมดบนเว็บ ncbi

• นำผลลัพธ์มาตรวจสอบในไฟล์ NSP annotations และ STY annotations โดยนำ
Probe set ID หรือ RS ID ไปตรวจสอบว่าปรากฏอยู่ใน annotations หรือไม่
สรุป จากสนิปทั้งหมดที่ยังไม่ปรากฏใน annotations ทั้งหมด 90 ตัว พบสนิปที่ปรากฏใน
ไฟล์ annotations ทั้งหมด 70 ตัว และยังไม่พบทั้งหมด 20 ตัว

3.2.8 ตรวจสอบข้อมูล WTCC ที่เหลือโดยใช้ String matching

นำสนิปจากข้อมูล WTCC ที่ยังไม่ปรากฏในข้อมูล annotations ไปค้นหาบนเว็บ https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?do_not_redirect&rs= จากนั้นเลื่อนลงไปที่ Fasta sequence เพื่อหา flank ของสนิป โดยต้องหาทั้ง 5' Near Seq 30 bp และ 3' Near Seq 30 bp ดังภาพที่ 3-32 จากนั้นนำไปตรวจสอบกับ flank ของ ข้อมูลอ้างอิงที่ยังไม่ตรงกับข้อมูลโครโมโซมโดยต้องเช็คทั้ง forward และ reverse ถ้าตรงกัน แสดงว่าสนิปนั้นคือสนิปของข้อมูลอ้างอิง

ภาพที่ 3.26 แสดงการหา flank

• แสดงการแปลง flank โดยใช้ string matching

flankinverse	flank	rsid	
tagcatcaacatcaacaaaagcacatcaacac	gtgttgatgtgcttttgttgatgttgatgcta	rs2611045	0
gatggcataaagttaaataatttgatcctctt	aagaggatcaaattatttaactttatgccatc	rs6974319	1
attttgctttatggttaaaaattgatcacaag	cttgtgatcaatttttaaccataaagcaaaat	rs2645549	2
acagtgtaaaagtgttgttcaacccaccaaca	tgttggtgggttgaacaacacttttacactgt	rs6869312	3
gttgaatattgaacccactctcttctggtttg	caaaccagaagagagtgggttcaatattcaac	rs4975915	4
gtgtaggtgtgtgtagggtgtatgtagctgta	tacagctacatacaccctacacacacacctacac	rs16992891	5
tggaaacactggatgccaggaaaaagtttgct	agcaaactttttcctggcatccagtgtttcca	rs12677255	6
aaaatgaaatcctaagtcccaactgactgaac	gttcagtcagttgggacttaggatttcatttt	rs10949768	7
gggcctgggtctcattaggacagatagagagc	gctctctatctgtcctaatgagacccaggccc	rs6608401	8
aaagtgttcctatttgccatatcctctccag	ctggagaggatatggcaaataggaacactttt	rs10996500	9
ctgaggcatccgttctttccattggcctatat	atataggccaatggaaagaacggatgcctcag	rs4300971	10
tggtgtgaaatggcatgcactgtggttttgat	atcaaaaccacagtgcatgccatttcacacca	rs10141046	11
tgacttgacaatgtggctcatttttggttcca	tggaaccaaaaatgagccacattgtcaagtca	rs4859065	12
cacacagaggcttacaacagactcatacacac	gtgtgtatgagtctgttgtaagcctctgtgtg	rs4917351	13
caggaatcaccacacttgttctacaatggttg	caaccattgtagaacaagtgtggtgattcctg	rs10017381	14
tcttaaacttgtagaaacgtggaagctctttt	aaaagagcttccacgtttctacaagtttaaga	rs9498958	15
ccattgtggcagacaagtagcgattcctcagg	cctgaggaatcgctacttgtctgccacaatgg	rs4362999	16
agagaagactgaaaaatgtctactggtactat	atagtaccagtagacatttttcagtcttctct	rs2364212	17

ภาพที่ 3.27 ผลลัพธ์การทำ string matching

• นำ flank ของสนิป มาตรวจสอบกับข้อมูล flank ของไฟล์ annotation

rs2611045 tagcatcaacatcaacaaaagcacatcaacac fw SNP A-1980085 rs6974319 gatggcataaagttaaataatttgatcctctt fw SNP A-2286738 rs2645549 attttgctttatggttaaaaattgatcacaag fw SNP_A-2162858 rs6869312 tgttggtgggttgaacaacacttttacactgt rev SNP_A-1916230 gttgaatattgaacccactctcttctggtttg fw SNP_A-1818663 rs12677255 tggaaacactggatgccaggaaaaagtttgct fw SNP_A-4202345 rs10949768 gttcagtcagttgggacttaggatttcatttt rev SNP_A-4245737 rs6608401 gctctctatctgtcctaatgagacccaggccc rev SNP_A-4261601 rs10996500 ctggagaggatatggcaaataggaacactttt rev SNP A-4296772 rs4300971 atataggccaatggaaagaacggatgcctcag rev SNP_A-2133172 rs10141046 atcaaaaccacagtgcatgccatttcacacca rev SNP A-2135664 rs4859065 tggaaccaaaaatgagccacattgtcaagtca rev SNP_A-1899331 rs4917351 cacacagaggcttacaacagactcatacacac fw SNP A-2173868 rs10017381 caaccattgtagaacaagtgtggtgattcctg rev SNP A-4287601 rs4362999 ccattgtggcagacaagtagcgattcctcagg fw SNP_A-2207466 rs2364212 agagaagactgaaaaatgtctactggtactat fw SNP A-2097515

ภาพที่ 3.28 แสดงการเปรียบเทียบสนิปกับไฟล์ annotation

สรุป จากสนิปทั้งหมดที่ยังไม่ปรากฏใน annotations ทั้งหมด 18 ตัว พบสนิปที่ปรากฏใน ไฟล์ annotations ทั้งหมด 70 ตัว และยังไม่พบทั้งหมด 2 ตัว

3.2.9 นำสนิปของข้อมูล WTCCC มาเทียบเลขโครโมโซม

นำสนิปจากไฟล์ annotations มาเทียบกับสนิปที่ยังไม่ปรากฏจะใช้เลขโครโมโซม ในการเปรียบเทียบ เนื่องจากข้อมูลเลขโครโมโซมไม่เหมือนกันสามารถทำให้เทียบได้ว่าสนิป นี้ตรงกับสนิปจากข้อมูล annotations ตัวใด

สรุป จากจำนวนสนิปทั้งหมด 500,568 ตัว สามารถเทียบกับสนิปกับไฟล์ annotations ได้ ทั้งหมดทุกตัว

เนื่องจากข้อมูล WTCC ที่เป็นกลุ่มตัวอย่างมีการเปลี่ยนแปลงชื่อ เราจึงต้องทำการเทียบ ข้อมูล WTCC กับไฟล์ annotations ให้เป็นสนิปปัจจุบัน เพื่อเตรียมข้อมูลสำหรับการคัดเลือกสนิป ตัวแทนต่อไป

3.3 จัดการข้อมูลให้อยู่ในรูปแบบ pedigree

นำข้อมูลแต่ละโครโมโซมที่ผ่านกระบวนการเตรียมข้อมูลมาทำการตัดสนิปที่ไม่ผ่านการคัด กรองโดยใช้เปรียบเทียบกับไฟล์ exclusion list โดยจำนวนสนิปทั้งหมดของแต่ละโครโมโซมที่จะใช้ ในคัดเลือกสนิปตัวแทนจะต้องมีความถี่ของอัลลีลกลุ่มน้อยไม่ต่ำกว่า 0.05 ซึ่งต้องผ่านกระบวนการ การคัดเลือก Minor allele frequency จากนั้นจัดการข้อมูลให้อยู่ในรูปแบบ pedigree เพื่อนำไป คัดเลือกสนิปตัวแทนผ่านการใช้โปรแกรม Haploview

ata.ped - Note	pad									_		>	×
File Edit Format V	/iew Help												
WTCCC126664	WTCCC126664	0	0	2	1	1	1	3	3	1	1	4	. ^
WTCCC125697	WTCCC125697	0	0	2	1	1	1	3	3	1	1	4	
WTCCC126749	WTCCC126749	0	0	2	1	1	3	3	3	1	1	4	
WTCCC125770	WTCCC125770	0	0	1	1	1	1	3	3	1	1	4	
WTCCC126403	WTCCC126403	0	0	1	1	1	1	3	3	1	1	4	
WTCCC127319	WTCCC127319	0	0	2	1	1	1	3	3	1	1	4	
WTCCC125881	WTCCC125881	0	0	1	1	1	1	3	3	1	1	4	
WTCCC126531	WTCCC126531	0	0	1	1	1	1	3	3	1	1	4	
WTCCC126076	WTCCC126076	0	0	1	1	1	1	3	3	1	1	4	
WTCCC126150	WTCCC126150	0	0	1	1	1	1	3	3	1	4	4	
WTCCC127709	WTCCC127709	0	0	1	1	1	1	3	3	1	1	4	
WTCCC125859	WTCCC125859	0	0	2	1	1	1	3	3	1	1	4	
WTCCC125937	WTCCC125937	0	0	1	1	1	1	3	3	1	1	4	
WTCCC125876	WTCCC125876	0	0	1	1	1	1	3	3	1	1	4	
WTCCC126059	WTCCC126059	0	0	1	1	1	1	3	3	1	1	4	
WTCCC126628	WTCCC126628	0	0	2	1	1	3	3	3	1	1	4	
WTCCC126876	WTCCC126876	0	0	2	1	1	1	3	3	1	1	4	
WTCCC125960	WTCCC125960	0	0	2	1	1	3	3	3	1	1	4	
WTCCC127301	WTCCC127301	0	0	1	1	1	1	3	3	1	1	4	
WTCCC125759	WTCCC125759	0	0	1	1	1	1	3	3	1	1	4	
WTCCC127682	WTCCC127682	0	0	2	1	1	1	3	3	1	1	4	
WTCCC126459	WTCCC126459	0	0	1	1	1	1	3	3	1	1	4	
WTCCC127180	WTCCC127180	0	0	1	1	1	3	3	3	1	1	4	
<												>	
			Ln 48	62, Col 275	100	0% W	indow	s (CRI	.F)	UTF	-8		

ภาพที่ 3.28 แสดงข้อมูลนามสกุล .ped ที่ใช้ในการศึกษาด้วยโปรแกรม Haploview

data - Notepad				_	×
File Edit Format					
rs2471469	12238077				
rs17036071	12244544				
rs12490159	12266404				
rs7614818	12270285				
rs17036088	12271056				
rs17671592	12273414				
rs310751	12273621				
rs310749	12273768				
rs167467	12281183				
rs11929414	12285628				
rs1562041	12285734				
rs17036126	12287863				
rs12330874	12302242				
rs9878908	12302462				
rs6785890	12335816				
rs11709077	12336507				
rs9817428	12340267				
rs17036188	12340925				
rs11710969	12343591				
rs7620165	12344441				
rs11128597	12344636				
rs13061415	12349924				
rs11715073	12352971				
nc1006E710	17050100				
					>

ภาพที่ 3.29 แสดงข้อมูลนามสกุล .info ที่ใช้ในการศึกษาด้วยโปรแกรม Haploview

จากการเปรียบเทียบข้อมูล WTCC กับข้อมูล NSP และ STY Annotation โดยสังเกตเห็นข้อมูล ที่ผิดพลาดจากเลขของโครโมโซมที่ไม่ตรงกัน ซึ่งจะแสดงให้เห็นดังตารางที่ โดยจากการตรวจสอบสนิ ปจากเว็บ NCBI สังเกตได้ว่าข้อมูลตัวเลขโครโมโซมของ WTCC นั้นถูกต้อง

ตารางที่ 3.1 แสดงให้เห็นการผิดพลาดของเลขโครโมโซม โดยเปรียบเทียบจากข้อมูล WTCC กับ ข้อมูล NSP และ STY Annotation

SNP ID from NSP-	SNP ID from	Chromosome from NSP-STY	Chromosome from
STY Annotation	WTCC data	Annotation	WTCC data
rs10029864	rs12511652	X	04
rs10059910	rs12697429	04	05
rs10176963	rs12467570	10	02
rs4640846	rs9327509	12	05
rs9686472	rs12653450	X	05
rs9798668	rs13373187	20	21
SNP_A-1831731	rs7774545	01	06
SNP_A-1899331	rs11710841	01	03
SNP_A-1916230	rs12716283	X	05
SNP_A-2078697	rs11975333	04	07
SNP_A-2135664	rs11159743	08	14
SNP_A-2207466	rs12213858	14	06
SNP_A-4287601	rs11100945	12	04
SNP_A-4296772	rs10996500	06	10

จากข้อมูล NSP และ STY Annotation สังเกตได้ว่า มีสนิปบางส่วนที่ไม่สามารถค้นหา position ของสนิปได้ โดยจะแสดงดังตารางที่ ซึ่งสนิปถูกตัดโดย exclusion list ทั้งหมด

ตารางที่ 3.2 แสดงให้เห็นสนิปที่ไม่พบ position จากข้อมูล NSP และ STY Annotation

Chromosome	SNP
1	SNP_A-1876089 , SNP_A-4255977 , SNP_A-2128780 , SNP_A-1845230 ,
1	SNP_A-2000157 , SNP_A-1781105
7	SNP_A-1782317 , SNP_A-4273084 , SNP_A-2196787 , SNP_A-1813412 ,
/	SNP_A-2049537 , SNP_A-2024620
13	SNP_A-4237637, SNP_A-1782274, SNP_A-1895472

3.4 การใช้ Command line ในการคัดเลือกสนิปตัวแทน

- 1. เปิดหน้าต่าง Command Prompt โดยเปลี่ยนตำแหน่งการทำงานโดยใช้คำสั่ง cd ไปที่ "C:\Program Files\Haploview"
- 2. เลือกวิธีในการวิเคราะห์ผล เลือกตัวอย่างไฟล์ input และกำหนดไฟล์ output โดยใช้คำสั่ง แตกต่างกัน เช่น java -jar Haploview.jar -pedfile data.ped -info data.info -out data-pairwise-0.8 -pairwiseTagging -nogui -tagrsqcutoff 0.8 -skipcheck ดังแสดงในภาพที่ 36

```
Administator.Command Prompt

C:\Program Files (x86)\HaploView)java -jar Haploview.jar -pedfile data.ped.txt -info data.info.txt -out data-pairwise-0.8 -pairwiseTagging -nogui -tagrsqcutoff 0.8 -skipche ck

Haploview 4.2 Java Version: 1.8.0_261

Arguments: -pedfile data.ped.txt -info data.info.txt -out data-pairwise-0.8 -pairwiseTagging -nogui -tagrsqcutoff 0.8 -skipcheck

Skipping genotype file check
Using data file: data.ped.txt data-pairwise-0.8

Using marker information file: data.pinfo.txt

Starting tagging.

Writing output to data-pairwise-0.8.TAGS

Writing output to data-pairwise-0.8.TAGS
```

ภาพที่ 3.29 แสดงการใช้งาน Command line ในการคัดเลือกสนิปตัวแทน

การคัดเลือกสนิปตัวแทน โปรแกรมจะเริ่มสร้างไฟล์ output ไว้สำหรับเก็บข้อมูลที่ ได้จากการวิเคราะห์ข้อมูล input ตามชื่อที่ผู้ใช้งานทำการกำหนดไว้ เช่น ตั้งชื่อ output เป็น data-pairwise-0.8.out ผลจากการศึกษาจะแสดงเป็นไฟล์ Notepad ที่แสดงผลการศึกษา การจับคู่สนิปที่สามารถเป็นตัวแทนของกันได้ ดังแสดงในภาพที่ 37

```
data-pairwise-0.8 - Notepad
File Edit Format View Help
         Alleles Captured
                    rs9817428,rs10865710,rs11128598,rs6785890
rs11709077,rs1801282,rs17036328
rs11710969
rs11709077
rs1373641
                    rs709149,rs2938397,rs1373641
rs7620165,rs10510418,rs12490265
rs7620165
rs4135283
                    rs4135280,rs4135283
rs12490159,rs17036188
rs17036188
rs10510420
                    rs4135304,rs10510420
                    rs7626560,rs7650895
rs12330874,rs9878908
rs7626560
rs12330874
rs17036088
                     rs17036088
rs17036126
                    rs17036126
rs17671592
                     rs17671592
rs4498025
                    rs4498025
                    rs709163
rs17036321
rs709163
rs17036321
rs6442313
                     rs6442313
rs11929414
                     rs11929414
rs2972162
                     rs2972162
                                     Ln 5, Col 10
```

ภาพที่ 3.30 แสดงผลการคัดเลือกสนิปตัวแทน

บทที่ 4

สรุปผลการวิจัย

4.1 ผลลัพธ์การคัดเลือกสนิปตัวแทน

การศึกษาความสัมพันธ์ของจีโนมกับเครื่องหมาย SNP ได้กลายเป็นเครื่องมือมาตรฐานใน การค้นหายืนที่มีพื้นฐานของโรคที่ซับซ้อน โดยใช้ tagSNP เพื่อให้ได้สนิปตัวแทนซึ่งสามารถใช้เป็น ตัวแทนของสนิปที่อยู่ในภาวะความไม่สมดุลการเชื่อมโยงกับสนิปตัวแทนในการศึกษาความสัมพันธ์ ซึ่งจะแบ่งการศึกษาความสัมพันธ์ทั้งจีโนมโดยใช้ข้อมูลทางพันธุกรรมแตกต่างกัน โดยมีโรคทั้งหมด 7 ประเภท ได้แก่

- 1. Bipolar Disorder (BD) โรคอารมณ์สองขั้ว
- 2. Coronary Artery Disease (CAD) โรคหลอดเลือดโคโรนารี หรือ ภาวะหัวใจขาดเลือด
- 3. Crohn's Disease (CD) โรคโครห์น หรือ โรคที่เกิดการอักเสบเรื้อรังของระบบทางเดิน อาหาร
- 4. Hypertension (HT) โรคความดันโลหิตสูง
- 5. Rheumatoid Arthritis (RA) โรคข้ออักเสบรูมาตอยด์
- 6. Type 1 diabetes (T1D) โรคเบาหวานชนิดที่ 1
- 7. Type 2 diabetes (T2D) โรคเบาหวานชนิดที่ 2

โดยการคัดเลือกสนิปตัวแทนจะแบ่งออกเป็น 3 ส่วนคือ

- การศึกษาความสัมพันธ์ ทั้งจีโนมโดยใช้ ข้อมูลทางพันธุกรรม Mapping250K_NSP.na32.annot รวมกับ Mapping250K_STY.na32.annot ซึ่ง เวลาในทำการคัดเลือกสนิปตัวแทนใช้เวลาไปทั้งหมด 3 ชั่วโมง 20 นาที
- การศึกษาความสัมพันธ์ ทั้งจีโนมโดยใช้ ข้อมูลทางพันธุกรรม
 Mapping250K_NSP.na32.annot ซึ่งเวลาในทำการคัดเลือกสนิปตัวแทนใช้เวลา
 ไปทั้งหมด 50 นาที
- การศึกษาความสัมพันธ์ ทั้งจีโนมโดยใช้ ข้อมูลทางพันธุกรรม Mapping250K.STY.na32.annot ซึ่งเวลาในทำการคัดเลือกสนิปตัวแทนใช้เวลาไป ทั้งหมด **50 นาที**

4.2 การศึกษาความสัมพันธ์ทั้งจีโนมโดยใช้ข้อมูลทางพันธุกรรม Mapping250K_NSP.na32.annot รวมกับ Mapping250K_STY.na32.annot

ตารางที่ 4.1 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค BD โดย ใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	28393	14924	0.5256
2	29853	15590	0.5222
3	24790	13078	0.5276
4	22921	11847	0.5169
5	23774	12380	0.5207
6	23826	12238	0.5136
7	19207	10419	0.5425
8	20112	10553	0.5247
9	16995	9288	0.5465
10	20778	10632	0.5117
11	19320	9693	0.5017
12	18244	9663	0.5297
13	13910	7399	0.5319
14	11184	6237	0.5577
15	10183	5959	0.5852
16	10909	6357	0.5827
17	8158	4795	0.5878
18	10662	5890	0.5524
19	4635	2921	0.6302
20	9054	4949	0.5466
21	5285	2893	0.5474
22	4442	2700	0.6078
Χ	7293	2908	0.3987
Total	363928	193313	0.5396

ตารางที่ 4.2 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค CAD โดยใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	28393	14895	0.5246
2	29853	15576	0.5218
3	24790	13058	0.5267
4	22921	11829	0.5161
5	23774	12383	0.5209
6	23826	12218	0.5128
7	19207	10417	0.5424
8	20112	10544	0.5243
9	16995	9279	0.5460
10	20778	10637	0.5119
11	19320	9687	0.5014
12	18244	9661	0.5295
13	13910	7391	0.5313
14	11184	6223	0.5564
15	10183	5950	0.5843
16	10909	6351	0.5822
17	8158	4789	0.5870
18	10662	5887	0.5521
19	4635	2923	0.6306
20	9054	4962	0.5480
21	5285	2887	0.5463
22	4442	2707	0.6094
X	7293	3904	0.5353
Total	363928	194158	0.5453

ตารางที่ 4.3 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค CD โดย ใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	28393	14927	0.5257
2	29853	15592	0.5223
3	24790	13079	0.5276
4	22921	11845	0.5168
5	23774	12394	0.5213
6	23826	12234	0.5135
7	19207	10421	0.5426
8	20112	10545	0.5243
9	16995	9298	0.5471
10	20778	10644	0.5123
11	19320	9694	0.5018
12	18244	9669	0.5300
13	13910	7402	0.5321
14	11184	6234	0.5574
15	10183	5954	0.5847
16	10909	6361	0.5831
17	8158	4798	0.5881
18	10662	5895	0.5529
19	4635	2920	0.6300
20	9054	4966	0.5485
21	5285	2888	0.5465
22	4442	2708	0.6096
X	7293	3909	0.5360
Total	363928	194377	0.5458

ตารางที่ 4.4 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค HT โดย ใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	28393	14895	0.5246
2	29853	15586	0.5221
3	24790	13066	0.5271
4	22921	11821	0.5157
5	23774	12378	0.5207
6	23826	12237	0.5136
7	19207	10418	0.5424
8	20112	10543	0.5242
9	16995	9283	0.5462
10	20778	10634	0.5118
11	19320	9692	0.5017
12	18244	9661	0.5295
13	13910	7394	0.5316
14	11184	6224	0.5565
15	10183	5956	0.5849
16	10909	6356	0.5826
17	8158	4792	0.5874
18	10662	5890	0.5524
19	4635	2925	0.6311
20	9054	4957	0.5475
21	5285	2891	0.547
22	4442	2710	0.6101
Χ	7293	3909	0.536
Total	363928	194218	0.5455

ตารางที่ 4.5 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค RA โดย ใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	28393	14921	0.5255
2	29853	15590	0.5222
3	24790	13066	0.5271
4	22921	11839	0.5165
5	23774	12377	0.5206
6	23826	12232	0.5134
7	19207	10405	0.5417
8	20112	10540	0.5241
9	16995	9279	0.546
10	20778	10632	0.5117
11	19320	9694	0.5018
12	18244	9672	0.5301
13	13910	7385	0.5309
14	11184	6228	0.5569
15	10183	5940	0.5833
16	10909	6338	0.581
17	8158	4786	0.5867
18	10662	5891	0.5525
19	4635	2920	0.63
20	9054	4958	0.5476
21	5285	2886	0.5461
22	4442	2708	0.6096
X	7293	3906	0.5356
Total	363928	194193	0.5453

ตารางที่ 4.6 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค T1D โดยใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	28393	14910	0.5251
2	29853	15593	0.5223
3	24790	13061	0.5269
4	22921	11841	0.5166
5	23774	12390	0.5212
6	23826	12243	0.5139
7	19207	10419	0.5425
8	20112	10536	0.5239
9	16995	9282	0.5462
10	20778	10648	0.5125
11	19320	9694	0.5018
12	18244	9666	0.5298
13	13910	7395	0.5316
14	11184	6230	0.557
15	10183	5955	0.5848
16	10909	6354	0.5825
17	8158	4797	0.588
18	10662	5894	0.5528
19	4635	2921	0.6302
20	9054	4960	0.5478
21	5285	2891	0.547
22	4442	2709	0.6099
X	7293	3906	0.5356
Total	363928	194295	0.5456

ตารางที่ 4.7 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค T2D โดยใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	28393	14899	0.5247
2	29853	15578	0.5218
3	24790	13058	0.5267
4	22921	11835	0.5163
5	23774	12383	0.5209
6	23826	12232	0.5134
7	19207	10418	0.5424
8	20112	10548	0.5245
9	16995	9302	0.5473
10	20778	10635	0.5118
11	19320	9702	0.5022
12	18244	9669	0.53
13	13910	7402	0.5321
14	11184	6232	0.5572
15	10183	5958	0.5851
16	10909	6351	0.5822
17	8158	4788	0.5869
18	10662	5897	0.5531
19	4635	2923	0.6306
20	9054	4957	0.5475
21	5285	2893	0.5474
22	4442	2708	0.6096
×	7293	3912	0.5364
Total	363928	194280	0.5457

ตารางที่ 4.8 แสดงค่าเฉลี่ยของจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับ โรคทั้ง 7 โรค โดยใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation

Disease	Using Tag SNPs	remain
BD	193313	0.5396
CAD	194158	0.5453
CD	194377	0.5458
НТ	194218	0.5455
RA	194193	0.5453
T1D	194295	0.5456
T2D	194280	0.5457
	Mean	0.5445

พิจารณาจากตารางที่ โดยใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation จะเห็นได้ว่า ค่าเฉลี่ยของจำนวนสนิปที่ใช้เป็นตัวแทนสนิปที่สัมพันธ์กับโรคทั้ง 7 โรคนั้นอยู่ที่ประมาณ 0.5445

4.3 การศึกษาความสัมพันธ์ทั้งจีโนมโดยใช้ข้อมูลทางพันธุกรรม Mapping250K_NSP.na32.annot

ตารางที่ 4.9 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค BD โดย ใช้ข้อมูลทางพันธุกรรม NSP Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	14437	9051	0.6269
2	16404	10013	0.6104
3	13854	8526	0.6154
4	13849	8232	0.5944
5	12999	7926	0.6097
6	13339	7976	0.5979
7	10662	6673	0.6259
8	11153	6836	0.6129
9	9119	5800	0.636
10	10737	6527	0.6079
11	10082	5929	0.5881
12	9777	6081	0.622
13	8206	4994	0.6086
14	6006	3886	0.647
15	5097	3456	0.678
16	5216	3563	0.6831
17	3631	2471	0.6805
18	5955	3796	0.6374
19	1975	1435	0.7266
20	4370	2859	0.6542
21	2956	1829	0.6187
22	1848	1326	0.7175
Χ	4024	2548	0.6332
Total	195696	121733	0.6362

ตารางที่ 4.10 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค CAD โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	14437	9038	0.626
2	16404	10014	0.6105
3	13854	8521	0.6151
4	13849	8223	0.5938
5	12999	7926	0.6097
6	13339	7981	0.5983
7	10662	6672	0.6258
8	11153	6829	0.6123
9	9119	5799	0.6359
10	10737	6527	0.6079
11	10082	5933	0.5885
12	9777	6080	0.6219
13	8206	4985	0.6075
14	6006	3884	0.6467
15	5097	3458	0.6784
16	5216	3561	0.6827
17	3631	2475	0.6816
18	5955	3798	0.6378
19	1975	1434	0.7261
20	4370	2864	0.6554
21	2956	1826	0.6177
22	1848	1326	0.7175
X	4024	2555	0.6349
Total	195696	121709	0.6362

ตารางที่ 4.11 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค CD โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	14437	9054	0.6271
2	16404	10031	0.6115
3	13854	8532	0.6159
4	13849	8235	0.5946
5	12999	7927	0.6098
6	13339	7977	0.598
7	10662	6673	0.6259
8	11153	6836	0.6129
9	9119	5800	0.636
10	10737	6527	0.6079
11	10082	5929	0.5881
12	9777	6081	0.622
13	8206	4994	0.6086
14	6006	3886	0.647
15	5097	3456	0.678
16	5216	3563	0.6831
17	3631	2471	0.6805
18	5955	3796	0.6374
19	1975	1435	0.7266
20	4370	2859	0.6542
21	2956	1829	0.6187
22	1848	1326	0.7175
X	4024	2548	0.6332
Total	195696	121765	0.6363

ตารางที่ 4.12 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค HT โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation

Chromosome	Number of SNPs	Number of Tag SNPs	ratio
1	14437	9042	0.6263
2	16404	10023	0.611
3	13854	8519	0.6149
4	13849	8220	0.5935
5	12999	7925	0.6097
6	13339	7980	0.5982
7	10662	6673	0.6259
8	11153	6834	0.6127
9	9119	5791	0.635
10	10737	6520	0.6072
11	10082	5935	0.5887
12	9777	6082	0.6221
13	8206	4987	0.6077
14	6006	3882	0.6464
15	5097	3459	0.6786
16	5216	3554	0.6814
17	3631	2472	0.6808
18	5955	3799	0.638
19	1975	1436	0.7271
20	4370	2866	0.6558
21	2956	1827	0.6181
22	1848	1327	0.7181
Χ	4024	2554	0.6347
Total	195696	121707	0.6362

ตารางที่ 4.13 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค RA โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	14437	9051	0.6269
2	16404	10015	0.6105
3	13854	8518	0.6148
4	13849	8233	0.5945
5	12999	7937	0.6106
6	13339	7976	0.5979
7	10662	6670	0.6256
8	11153	6831	0.6125
9	9119	5797	0.6357
10	10737	6529	0.6081
11	10082	5937	0.5889
12	9777	6087	0.6226
13	8206	4985	0.6075
14	6006	3890	0.6477
15	5097	3453	0.6775
16	5216	3554	0.6814
17	3631	2472	0.6808
18	5955	3800	0.6381
19	1975	1436	0.7271
20	4370	2863	0.6551
21	2956	1825	0.6174
22	1848	1331	0.7202
Х	4024	2549	0.6334
Total	195696	121739	0.6363

ตารางที่ 4.14 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค T1D โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	14437	9041	0.6262
2	16404	10019	0.6108
3	13854	8519	0.6149
4	13849	8222	0.5937
5	12999	7935	0.6104
6	13339	7988	0.5988
7	10662	6677	0.6262
8	11153	6835	0.6128
9	9119	5802	0.6363
10	10737	6535	0.6086
11	10082	5936	0.5888
12	9777	6079	0.6218
13	8206	4991	0.6082
14	6006	3888	0.6474
15	5097	3465	0.6798
16	5216	3565	0.6835
17	3631	2473	0.6811
18	5955	3800	0.6381
19	1975	1435	0.7266
20	4370	2864	0.6554
21	2956	1828	0.6184
22	1848	1327	0.7181
Χ	4024	2549	0.6334
Total	195696	121773	0.6365

ตารางที่ 4.15 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค T2D โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	14437	9045	0.6265
2	16404	10016	0.6106
3	13854	8515	0.6146
4	13849	8221	0.5936
5	12999	7935	0.6104
6	13339	7979	0.5982
7	10662	6675	0.6261
8	11153	6839	0.6132
9	9119	5803	0.6364
10	10737	6530	0.6082
11	10082	5938	0.589
12	9777	6082	0.6221
13	8206	4994	0.6086
14	6006	3889	0.6475
15	5097	3458	0.6784
16	5216	3551	0.6808
17	3631	2472	0.6808
18	5955	3794	0.6371
19	1975	1435	0.7266
20	4370	2865	0.6556
21	2956	1825	0.6174
22	1848	1330	0.7197
Χ	4024	2558	0.6357
Total	195696	121749	0.6364

ตารางที่ 4.16 แสดงค่าเฉลี่ยของจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์ กับโรคทั้ง 7 โรค โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation

Disease	Using Tag SNPs	remain
BD	121733	0.6362
CAD	121709	0.6362
CD	121765	0.6363
HT	121707	0.6362
RA	121739	0.6363
T1D	121773	0.6365
T2D	121749	0.6364
	Mean	0.6363

พิจารณาจากตารางที่ โดยใช้ข้อมูลทางพันธุกรรม NSP Annotation จะเห็นได้ว่าค่าเฉลี่ยของ จำนวนสนิปที่ใช้เป็นตัวแทนสนิปที่สัมพันธ์กับโรคทั้ง 7 โรคนั้นอยู่ที่ประมาณ 0.6363

4.3 การศึกษาความสัมพันธ์ทั้งจีโนมโดยใช้ข้อมูลทางพันธุกรรม Mapping250K_STY.na32.annot

ตารางที่ 4.17 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค BD โดยใช้ข้อมูลทางพันธุกรรม STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	13956	9238	0.6619
2	13449	9084	0.6754
3	10936	7426	0.679
4	9072	6194	0.6828
5	10775	7229	0.6709
6	10487	7031	0.6704
7	8545	5906	0.6912
8	8959	6050	0.6753
9	7876	5407	0.6865
10	10041	6497	0.647
11	10082	5929	0.5881
12	8467	5687	0.6717
13	5704	3985	0.6986
14	5178	3599	0.6951
15	5086	3577	0.7033
16	5693	3945	0.693
17	4527	3152	0.6963
18	4707	3252	0.6909
19	2660	1933	0.7267
20	4684	3181	0.6791
21	2329	1610	0.6913
22	2594	1835	0.7074
Χ	3269	2192	0.6705
Total	169076	113939	0.6805

ตารางที่ 4.18 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค CAD โดยใช้ข้อมูลทางพันธุกรรม STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	13956	9227	0.6611
2	13449	9082	0.6753
3	10936	7427	0.6791
4	9072	6197	0.6831
5	10775	7227	0.6707
6	10487	7023	0.6697
7	8545	5903	0.6908
8	8959	6055	0.6759
9	7876	5411	0.687
10	10041	6492	0.6465
11	10082	5934	0.5886
12	8467	5688	0.6718
13	5704	3981	0.6979
14	5178	3590	0.6933
15	5086	3573	0.7025
16	5693	3950	0.6938
17	4527	3148	0.6954
18	4707	3260	0.6926
19	2660	1932	0.7263
20	4684	3184	0.6798
21	2329	1609	0.6909
22	2594	1838	0.7086
X	3269	2190	0.6699
Total	169076	113921	0.6805

ตารางที่ 4.19 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค CD โดยใช้ข้อมูลทางพันธุกรรม STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	13956	9230	0.6614
2	13449	9071	0.6745
3	10936	7437	0.68
4	9072	6194	0.6828
5	10775	7226	0.6706
6	10487	7036	0.6709
7	8545	5904	0.6909
8	8959	6049	0.6752
9	7876	5412	0.6872
10	10041	6497	0.647
11	10082	5937	0.5889
12	8467	5688	0.6718
13	5704	3985	0.6986
14	5178	3599	0.6951
15	5086	3572	0.7023
16	5693	3946	0.6931
17	4527	3150	0.6958
18	4707	3259	0.6924
19	2660	1932	0.7263
20	4684	3184	0.6798
21	2329	1612	0.6921
22	2594	1838	0.7086
Χ	3269	2195	0.6715
Total	169076	113953	0.6807

ตารางที่ 4.20 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค HT โดยใช้ข้อมูลทางพันธุกรรม STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	13956	9223	0.6609
2	13449	9082	0.6753
3	10936	7428	0.6792
4	9072	6188	0.6821
5	10775	7230	0.671
6	10487	7027	0.6701
7	8545	5903	0.6908
8	8959	6052	0.6755
9	7876	5409	0.6868
10	10041	6499	0.6472
11	10082	5935	0.5887
12	8467	5689	0.6719
13	5704	3983	0.6983
14	5178	3591	0.6935
15	5086	3572	0.7023
16	5693	3947	0.6933
17	4527	3153	0.6965
18	4707	3254	0.6913
19	2660	1930	0.7256
20	4684	3182	0.6793
21	2329	1611	0.6917
22	2594	1837	0.7082
Χ	3269	2197	0.6721
Total	169076	113922	0.6805

ตารางที่ 4.21 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค RA โดยใช้ข้อมูลทางพันธุกรรม STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	13956	9235	0.6617
2	13449	9080	0.6751
3	10936	7425	0.679
4	9072	6191	0.6824
5	10775	7224	0.6704
6	10487	7026	0.67
7	8545	5895	0.6899
8	8959	6045	0.6747
9	7876	5410	0.6869
10	10041	6494	0.6467
11	10082	5937	0.5889
12	8467	5683	0.6712
13	5704	3980	0.6978
14	5178	3595	0.6943
15	5086	3569	0.7017
16	5693	3942	0.6924
17	4527	3150	0.6958
18	4707	3253	0.6911
19	2660	1929	0.7252
20	4684	3179	0.6787
21	2329	1610	0.6913
22	2594	1833	0.7066
×	3269	2196	0.6718
Total	169076	113881	0.6802

ตารางที่ 4.22 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค T1D โดยใช้ข้อมูลทางพันธุกรรม STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	13956	9222	0.6608
2	13449	9081	0.6752
3	10936	7428	0.6792
4	9072	6203	0.6838
5	10775	7223	0.6703
6	10487	7028	0.6702
7	8545	5901	0.6906
8	8959	6045	0.6747
9	7876	5411	0.687
10	10041	6497	0.647
11	10082	5936	0.5888
12	8467	5689	0.6719
13	5704	3986	0.6988
14	5178	3594	0.6941
15	5086	3575	0.7029
16	5693	3950	0.6938
17	4527	3153	0.6965
18	4707	3254	0.6913
19	2660	1928	0.7248
20	4684	3187	0.6804
21	2329	1610	0.6913
22	2594	1838	0.7086
Χ	3269	2201	0.6733
Total	169076	113940	0.6807

ตารางที่ 4.23 แสดงจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรค T2D โดยใช้ข้อมูลทางพันธุกรรม STY Annotation

Chromosome	Number of SNPs	Using Tag SNPs	Remain
1	13956	9230	0.6614
2	13449	9078	0.675
3	10936	7424	0.6789
4	9072	6192	0.6825
5	10775	7222	0.6703
6	10487	7025	0.6699
7	8545	5910	0.6916
8	8959	6042	0.6744
9	7876	5413	0.6873
10	10041	6500	0.6473
11	10082	5938	0.589
12	8467	5693	0.6724
13	5704	3983	0.6983
14	5178	3594	0.6941
15	5086	3575	0.7029
16	5693	3950	0.6938
17	4527	3146	0.6949
18	4707	3261	0.6928
19	2660	1930	0.7256
20	4684	3181	0.6791
21	2329	1609	0.6909
22	2594	1836	0.7078
Χ	3269	2195	0.6715
Total	169076	113927	0.6805

ตารางที่ 4.24 แสดงค่าเฉลี่ยของจำนวนการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์ กับโรคทั้ง 7 โรค โดยใช้ข้อมูลทางพันธุกรรม STY Annotation

Disease	Using Tag SNPs	remain
BD	113939	0.6805
CAD	113921	0.6805
CD	113953	0.6807
HT	113922	0.6805
RA	113881	0.6802
T1D	113940	0.6807
T2D	113927	0.6805
	Mean	0.6805

พิจารณาจากตารางที่ โดยใช้ข้อมูลทางพันธุกรรม STY Annotation จะเห็นได้ว่าค่าเฉลี่ยของ จำนวนสนิปที่ใช้เป็นตัวแทนสนิปที่สัมพันธ์กับโรคทั้ง 7 โรคนั้นอยู่ที่ประมาณ 0.6805

เมื่อพิจารณาการคัดเลือกสนิปตัวแทนที่ใช้เป็นตัวแทนของสนิปที่สัมพันธ์กับโรคทั้ง 7 โรค โดย ใช้ข้อมูลทางพันธุกรรม NSP และ STY Annotation นั้นจะได้ค่าเฉลี่ยอยู่ที่ 0.5457 ซึ่งมีจำนวนสนิปที่ ใช้เป็นตัวแทนสนิปนั้นน้อยกว่าการใช้ข้อมูลทางพันธุกรรม NSP Annotation และ ข้อมูลทาง พันธุกรรม STY Annotation โดยจะมีค่าเฉลี่ยอยู่ที่ประมาณ 0.6 ซึ่งเกิดจากเมื่อทำการรวมข้อมูลทาง พันธุกรรมของไฟล์ NSP และ STY Annotation เข้าด้วยกัน จะสังเกตได้ว่ามีสนิปบางส่วนที่สามารถ เป็นตัวแทนของทั้งข้อมูลของ NSP และ STY Annotation ได้ ดังนั้นเมื่อแยกข้อมูลของ NSP และ STY Annotation ออกจากกัน จึงทำให้จำเป็นต้องคัดเลือกสนิปตัวแทนเพิ่มในกลุ่มของข้อมูลนั้น เป็นผลทำ ให้จำนวนสนิปตัวแทนที่ได้จากการคัดเลือกตัวแทนสนิปของข้อมูล NSP Annotation รวมเข้ากับ STY Annotation มีจำนวนสนิปตัวแทนที่ได้จากการคัดเลือกตัวแทนสนิปของข้อมูล NSP Annotation รวมเข้ากับ STY

เอกสารอ้างอิง

- D. O. Stram et al., "Choosing Haplotype-Tagging SNPS Based on Unphased Genotype Data Using a Preliminary Sample of Unrelated Subjects with an Example from the Multiethnic Cohort Study," Hum Hered, vol. 55, no. 1, pp. 27–36, 2003.
- [2] D. O. Stram, "Software for tag single nucleotide polymorphism selection," Hum Genomics, vol. 2, no. 2, p. 144, 2005.
- D. O. Stram, "Tag SNP selection for association studies," Genet. Epidemiol., vol. 27, no. 4, pp. 365–374, Dec. 2004.
- [4] P. I. W. de Bakker, R. Yelensky, I. Pe'er, S. B. Gabriel, M. J. Daly, and D. Altshuler, "Efficiency and power in genetic association studies," Nat Genet, vol. 37, no. 11, pp. 1217–1223, Nov. 2005.
- [5] Broad Institute, "Haploview,", May 16, 2008. https://www.broadinstitute.org/Haploview/Haploview (accessed Mar. 25, 2021).
- [6] J. M. VanLiere and N. A. Rosenberg, "Mathematical properties of the measure of linkage disequilibrium," Theoretical Population Biology, vol. 74, no. 1, pp. 130–137, Aug. 2008.
- [7] The Wellcome Trust Case Control Consortium, "Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls," Nature, vol. 447, no. 7145, pp. 661–678, Jun. 2007.
- [8] Thermo Fisher, "GeneChip Array Annotation Files Mapping250K_NSP Annotations, CSV format, Release 32 (83 MB, 7/15/11) and Mapping250K_STY Annotations, CSV format, Release 32 (76 MB, 7/15/11)" www.thermofisher.com/id/en/home/life-science/microarray-analysis/microarray-data-analysis/genechip-array-annotation-files.html (accessed Mar. 25, 2021).
- [9] Enhancing Neuro Imaging Genetics Through Meta Analysis, "GRCh37_hg19_AffyID2rsnumbers.txt," http://enigma.ini.usc.edu/wp-content/uploads/2012/04/GRCh37_hg19_AffyID2rsnumbers.txt (accessed Mar. 25, 2021).

เอกสารอ้างอิง (ต่อ)

- [10] National Center for Biotechnology Information, "RsMergeArch.bep.gz," https://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/database/organism_d ata/RsMergeArch.bcp.gz (accessed Mar. 25, 2021).
- [11] E. Candès, Y. Fan, L. Janson, and J. Lv, "Panning for gold: 'model-X' knockoffs for high dimensional controlled variable selection," Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 80, no. 3, pp. 551–577, 2018.

ประวัติผู้แต่ง

ปริญญานิพนธ์เรื่อง : การคัดเลือกสนิปตัวแทนจากการศึกษาความสัมพันธ์ทั้งจิโนม

สาขาวิชา : วิศวกรรมคอมพิวเตอร์

ภาควิชา : วิศวกรรมไฟฟ้าและคอมพิวเตอร์

คณะ : วิศวกรรมศาสตร์

ชื่อ : นายธรรมนูญ กิจรัสอนันต์

ประวัติ :

เกิดเมื่อวันที่ 10 ธันวาคม พ.ศ. 2541 อยู่บ้านเลขที่ 1931 ซอยกาญจนาภิเษก 008 แขวงบาง แค เขตบางแค จังหวัดกรุงเทพ ๆ สำเร็จการศึกษาระดับมัธยมศึกษาตอนปลายจากโรงเรียนมัธยมวัด สิงห์ สาขาวิทยาศาสตร์-คณิตศาสตร์ ปีการศึกษา 2559 และสำเร็จการศึกษาในระดับปริญญาตรี สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ปีการศึกษา 2562

ชื่อ : นางสาววรากร มณีแสง

ประวัติ :

เกิดเมื่อวันที่ 17 ธันวาคม พ.ศ. 2541 อยู่บ้านเลขที่ 51/11 หมู่ 1 ตำบลท่าเสา อำเภอกระทุ่ม แบน จังหวัดสมุทรสาคร สำเร็จการศึกษาระดับมัธยมศึกษาตอนปลาย จากโรงเรียนนวมินทราชินูทิศ สตรีวิทยา พุทธมณฑล สาขาวิทยาศาสตร์-คณิตศาสตร์ ปีการศึกษา 2559 และสำเร็จการศึกษาใน ระดับปริญญาตรี สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะ วิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ปีการศึกษา 2562