Practica 4 VDC

Alumno: Javier Meliá Sevilla

Parte 1, Representar el campo vectorial con glifos:

En este apartado simplemente se coge la dirección dada por el valor de la muestra y la flecha viene dado por una línea con dos vértices donde uno es la posición inicial y el final el inicial es el que ya obtenemos de usar la función g.getSamplePosition(i); y el final de sumarle la dirección y multiplicarlo por el factor de longitud k. Luego se representa como en todas las practicas anteriores construyendo una malla encima del modelo.

Parte 2, Cálculo de la divergencia de una malla vectorial:

En esta parte, lo que hacemos es calcular primero que todo el índice de las muestras siguientes de x e y, luego se calculan sus respectivas derivadas primero calculando la distancia entre muestras en el eje correspondiente y por último sumamos estas derivadas para obtener la divergencia.

Los problemas que hemos obtenido en esta práctica es que los bordes no se calculan ya que no tienen muestra siguiente y al poner que hagan la derivada con la misma muestra la distancia y la diferencia es 0. Las posibles soluciones que he pensado es propagar el penúltimo valor a la última muestra.

Parte 3. Cálculo de la vorticidad de una malla vectorial:

Esta parte de la práctica es igual que el apartado anterior calculando las muestras siguientes y sacando sus derivadas, pero para sacar la vorticidad restando en ver de sumando sus respectivas derivadas. Donde también se obtiene el mismo problema que el anterior apartado.

Parte 4. Implementación del algoritmo básico de cálculo de líneas de corriente:

En esta última parte se ha intentado hacer una adaptación del código de las transparencias usando los métodos de los que disponemos y no ha sido posible hacer que funcione correctamente, esta comentado en el código mi implementación para su revisión.