Measuring Time Complexity

Sipser 7.1 (pages 247-256)

Solvable... in theory

Measuring Computation

• How hard is it to decide $\{0^k 1^k \mid k \ge 0\}$?

An algorithm

M_I ="On input string w:

- 1. Scan across the tape and reject if a θ is found to the right of a 1.
- 2. Repeat the following if both θ s and ts remain.
- 3. Scan across tape, crossing off a single θ and a single 1.
- 4. If either 0 or 1 remains, reject. Else, accept."

Number of steps can depend on the size of the input

Which inputs do we consider?

- For a particular input length:
 - Worst-case analysis: longest running time of all inputs
 - Average-case analysis: average of running times of all inputs

Time complexity

Definition 7.1

The **time complexity** of TM M is the function $f: N \to N$, where f(n) is the maximum number of steps that M uses on any input of length n.

Asymptotic analysis

Big-O and little-o

- Let $f, g: N \rightarrow R^+$.
- Definition 7.2

We say that f(n) = O(g(n)) if positive integers c and n_0 exist so that for every $n \ge n_0$

$$f(n) \le c g(n)$$

• Definition 7.5 We say that f(n) = o(g(n)) if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

So now...

M_I ="On input string w:

- 1. Scan across the tape and reject if a θ is found to the right of a I.
- 2. Repeat the following if both θ s and Is remain.
- 3. Scan across tape, crossing off a single θ and a single 1.
- 4. If either 0 or 1 remains, reject. Else, accept."

Time Complexity Classes

- Definition 7.7
 - Let $t:N \to N$ be a function. Define the **time complexity class,** TIME(t(n)), to be the collection of all languages that are decidable by an O(t(n)) time TM.
- Example: The language $\{0^k 1^k \mid k \ge 0\} \in TIME(n^2).*$

*And $TIME(n^3)$ and $TIME(n^4)$ and...

Losing time complexity

M_2 ="On input string w:

- 1. Scan across the tape and reject if a θ is found to the right of a 1.
- 2. Repeat the following if both θ s and 1s remain.
- 3. Scan across tape, checking whether the total number of θ s and θ s remaining on the tape is even or odd. If odd, *reject*.
- 4. Scan again across tape, crossing off every other θ , and every other 1.
- 5. If no 0s or 1s remain, accept. Else, reject."

Can we do better?

• Theorem: Let $f:N \to N$ be any function where $f(n) = o(n \log n)$.

TIME(f(n)) contains only regular languages.

Well... what if we had two tapes?

A 2-tape algorithm

- M_3 = "On input w:
 - 1. Scan across the tape and reject if a θ is found to the right of a 1.
 - 2. Scan across the θ s on tape 1 until the first 1. At the same time, copy the θ s onto tape 2.
 - 3. Scan across the ls on tape 1 until the end of the input. For each 1 read on tape 1, cross off a l0 on tape 2. If all l0s are crossed off before all the l1s are read, reject.
 - 4. If all the θ s have now been cross off, accept. If any θ s remain, reject.

How to compare?

Theorem 7.8

Let t(n) be a function, where $t(n) \ge n$. Then every t(n) time multitape Turing machine has an equivalent $O(t^2(n))$ time single-tape Turing machine.

Proof:

Compare the time complexity of the given multitape machine with the single tape equivalent given in Theorem 3.13.

Seems more powerful, but...

 Theorem 3.13: Every multitape Turing machine has an equivalent single-tape Turing machine.

