IMO 1987/4

Ezra Guerrero Alvarez

June 30, 2022

IMO 1987/4

IMO 1987/4

Prove that there is no function $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ satisfying f(f(n)) = n + 1987 for every $n \in \mathbb{Z}_{\geq 0}$.

Indeed, we prove the statement replacing 1987 by any odd positive integer M. First, note that if f(a) = f(b), then a + M = f(f(a)) = f(f(b)) = b + M, so a = b. Hence, f is injective. Furthermore, evidently every integer at least M has a pre-image (take f(a - M)). Now, suppose b < M has a pre-image. Then, there exists c such that f(c) = b. Now, if c had a pre-image, then there exists d such that f(d) = c. Hence, d + M = f(f(d)) = f(c) = b. But $d + M \ge M$ and b < M which is impossible. Hence, c does not have a pre-image. It also follows c < M. Thus, at most $\frac{M-1}{2}$ integers less than M have a pre-image, implying at least $\frac{M+1}{2}$ do not have one.

Now, consider the directed graph with vertices corresponding to $\mathbb{Z}_{\geq 0}$ and edges pointing from a to f(a). Suppose it has a cycle of length k. Then, going around the cycle twice, $a = f^{(2k)} = a + k \cdot M$. It follows the graph has no cycles. Since f is injective, every vertex has in-degree at most 1. It follows the graph is a union of chains. Note that every chain must "start" at some vertex of in-degree 1, since else we have some infinite sequence of non-negative integers a_0, a_1, \ldots such that $a_0 = f^{(k)}(a_k)$. This implies $a_{2k} = a_0 - k \cdot M$, which directly contradicts that every a_i is non-negative. Hence, the graph is a union of chains that have a vertex of in-degree 0. Because of the previous discussion, these vertices must correspond to a number less than M. Hence, there are at least $\frac{M+1}{2}$ such chains (and at most M). Now, if the first vertex in a chain is k, it follows every non-negative integer that is $k \pmod{M}$ is in the chain (and is an even distance away from k). Now, consider f(k). Since it is a distance 1 from k, it is not $k \pmod{M}$. Suppose it is $k \pmod{M}$. Then, $k \pmod{M}$ cannot be in any other chain, since that would imply $k \pmod{M}$ is in that other chain. Hence, $k \pmod{M}$. Thus, the chains give a pairing of non-negative integers less than $k \pmod{M}$. However, there are $k \pmod{M}$ of these. Since $k \pmod{M}$ is odd, we cannot pair them up, so this is impossible. Hence, such a function $k \pmod{M}$