Abschlussprojekt

Ida Hönigmann

Fabian Dopf

January 17, 2022

Aufgabe 1: Aufwandsordnung numerischer Verfahren

Wir betrachten ein abstraktes numerisches Verfahren, das für $N \in \mathbb{N}$ Eingabedaten eine Laufzeit von $y_N \in \mathbb{R}_+$ hat. Man sagt, das Verfahren habe Aufwandsordnung p > 0, falls eine Konstante C > 0 existiert, sodass $y_N \leq CN^p$ für alle $N \in \mathbb{N}$.

Teilaufgabe 1a:

Die Aufwandsordnung lässt sich über die Folge $\{p_N\}_{N\in\mathbb{N}}$ mit

$$p_N = \frac{\log(y_{2N}) - \log(y_n)}{\log(2)} \text{ für } N \in \mathbb{N}$$
 (1)

quantifizieren. Beachten Sie, dass die Bestimmung von p_N die Verfügbarkeit von zwei aufeinanderfolgenden Folgengliedern y_N und y_{2N} erfordert. Verwenden Sie den Ansatz $y_N = CN^p$ und leiten Sie die Formel in 1 her!

Beweis. Annahme: $\forall N \in \mathbb{N} \text{ ist } p_N, \text{ sodass } y_N \leq CN^{p_N} \text{ für ein } C > 0.$

Für ein beliebiges $N \in \mathbb{N}$ gilt $\exists C_{1N}, C_{2N} > 0$ und $p_{1N}, p_{2N} > 0$ mit $y_N \leq C_{1N} N^{p_{1N}}$ und $y_{2N} \leq C_{2N} (2N)^{p_{2N}}$.

Für $C := \max\{C_{1N}, C_{2N}\}$ und $p_N := \max\{p_{1N}, p_{2N}\}$ gilt $y_N \leq C_{1N}N^{p_{1N}} \leq CN^{p_N}$ und $y_{2N} \leq C_{2N}(2N)^{p_{2N}} \leq C(2N)^{p_N}$.

$$\log(y_{2N}) - \log(y_N) = \log\left(\frac{y_{2N}}{y_N}\right) = \log\left(\frac{C(2N)^{p_N}}{C \cdot N^{p_N}}\right) = \log(2^{p_N}) = p_N \log(2)$$
 (2)

$$\implies p_N = \frac{\log(y_{2N}) - \log(y_N)}{\log(2)} \tag{3}$$

TODO ob das so alles passt...

Teilaufgabe 1b:

Sei $\{\delta_N\}_{N\in\mathbb{N}}\subseteq\mathbb{R}$ eine Nullfolge, d.h. es gilt $\delta_N\to 0$ für $N\to\infty$. Weiters verhalte sich die Laufzeit wie $y_N=(C+\delta_N)N^p$ mit C>0. Zeigen Sie, dass die Folge $\{p_N\}_{N\in\mathbb{N}}$ gegen p konvergiert, d.h. es gilt $p_N\to p$ für $N\to\infty$.

Beweis. Zuerst berechnen wir einen Grenzwert, den wir in späterer Folge verwenden werden. Die Gleichungen stimmen, da lim stetig ist und da laut Voraussetzung δ_N und somit auch δ_{2N} als Teilfolge, gegen 0 konvergieren.

1

$$\lim_{n \to \infty} \log \left(\frac{C + \delta_{2N}}{C + \delta_N} \right) = \log \left(\lim_{n \to \infty} \frac{C + \delta_{2N}}{C + \delta_N} \right) = \log \left(\frac{\lim_{n \to \infty} C + \delta_{2N}}{\lim_{n \to \infty} C + \delta_N} \right) = \log \left(\frac{C}{C} \right) = \log(1) = 0 \quad (4)$$

Wir berechnen $\lim_{n\to\infty} p_n$ indem wir die Gleichung 1 verwenden. Durch Einsetzen von $y_N=(C+\delta_N)N^p$ und den Rechenregeln von Limiten und dem Logarithmus erhalten wir folgendes:

$$\implies p_N = \frac{\log(y_{2N}) - \log(y_N)}{\log(2)} = \frac{\log((C + \delta_{2N})(2N)^p) - \log((C + \delta_N)N^p)}{\log(2)} = \frac{\log\left(\frac{(C + \delta_{2N})(2N)^p}{(C + \delta_N)N^p}\right)}{\log(2)}$$

$$= \frac{\log\left(\frac{(C + \delta_{2N})2^p}{(C + \delta_N)}\right)}{\log(2)} = \frac{p\log(2) + \log\left(\frac{C + \delta_{2N}}{C + \delta_N}\right)}{\log(2)} = p + \frac{\log\left(\frac{C + \delta_{2N}}{C + \delta_N}\right)}{\log(2)} \xrightarrow{n \to \infty} p + 0 = p$$
(6)

Zusammenfassend gilt nun $\lim_{n\to\infty} p_n = p$, was zu zeigen war.

Teilaufgabe 1c:

In sogenannter doppelt logarithmischer Darstellung (log-log Plots) wird für beide Koordinatenachsen eine logarithmische Skalierung verwendet, d.h. sowohl die waagrechte als auch die senkrechte Koordinatenachse wird logarithmisch unterteilt. Wie werden Potenzfunktionen der Form $y = cx^p$ in einem log-log Plot dargestellt? Wie können Sie die Ordnung p und die Konstante c > 0 aus einem log-log Plot von $y = cx^p$ direkt auslesen?

Darstellung ist Gerade. c = f(1) und p ist Steigung, wenn beide Achsen "gleich" skaliert.

Aufgabe 2: Cholesky-Verfahren und Skyline-Matrizen

Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt Skyline-Matrix, falls es für l = 1, ..., n Zahlen $p_l, q_l \in \mathbb{N}_0$ gibt, sodass für die *i*-te Zeile und *j*-te Spalte von A gilt:

- $A_{i,k} = 0$ für $k < i p_i$,
- $A_{k,j} = 0$ für $k < j q_j$,

Folgendes Beispiel illustriert diese Aussage:

$$A = \begin{pmatrix} 1 & & & 1 \\ & 1 & & 2 & 2 \\ & & 1 & 3 & 3 \\ 1 & 2 & 3 & 14 & 18 \\ & 4 & 5 & 29 & 48 \end{pmatrix}.$$

Teilaufgabe 2a:

Beweisen Sie, dass das Cholesky-Verfahren genau dann wohldefiniert ist (d.h. es wird nicht durch Null dividiert oder die Wurzel aus einer negativen Zahl gezogen), wenn die Matrix $A \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit ist.

Beweis. Wir wiederholen zuerst die relevanten Definitionen.

Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt symmetrisch, falls $A = A^T$.

Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt positiv definit, falls $\forall u \in \mathbb{R}^n \setminus \{0\} : u^T A u > 0$.

Wir zeigen $\forall A \in \mathbb{K}^{n \times n}$ symmetrisch und positiv definit $\exists L \in \mathbb{R}^{n \times n}$ untere Dreiecksmatrix : $LL^T = A$ durch vollständige Induktion nach n.

• Induktionsanfang: n=1

Wenn $A := (a_{11}) \in \mathbb{R}^{1 \times 1}$ eine beliebige symmetrische und positiv definite Matrix ist, folgt aus positiv definit, dass für

$$u := (1) \in \mathbb{R}^1 \setminus \{0\}$$
 $0 < u^T A u = (1) (a_{11}) (1) = a_{11}$

Da also $a_{11} > 0$ gilt, ist $L := (\sqrt{a_{11}}) \in \mathbb{R}^1$ wohldefiniert. Dann gilt

$$LL^{T} = (\sqrt{a_{11}}) (\sqrt{a_{11}}) = (a_{11}) = A$$

- Induktionsvoraussetzung: $\forall A \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit $\exists L \in \mathbb{R}^{n \times n}$ untere Dreiecksmatrix : $LL^T = A$.
- Induktionsschritt: $n-1 \implies n$

Sei $A \in \mathbb{R}^{n \times n}$ eine symmetrische und positiv definite Matrix. Wir definieren eine Matrix $B \in \mathbb{R}^{(n-1) \times (n-1)}$ durch $B_{i,j} := A_{i,j}$, einen Vektor $a \in \mathbb{R}^{n-1}$ durch $a_i := A_{i,n}$ und eine Zahl $\alpha \in \mathbb{R}$ durch $\alpha := A_{n,n}$.

Zusammengefasst gilt nun

$$A = \begin{pmatrix} B & a \\ a^T & \alpha \end{pmatrix}$$
 wobei sich das a^T aus der Symmetrie von A ergibt.

Für B gilt, dass es sich um eine symmetrische und positiv definite Matrix aus $\mathbb{R}^{(n-1)\times(n-1)}$ handelt. Laut Induktionsvoraussetzung existiert dazu eine untere Dreiecksmatrix $P \in \mathbb{R}^{(n-1)\times(n-1)}$ mit $PP^T = B$.

Da B positiv definit ist und somit regulär ist, folgt die eindeutige Existenz eines Vektors $l \in \mathbb{R}^{n-1}$ der die Gleichung Pl = a erfüllt.

Wir wollen nun $\beta \in \mathbb{R}$ so definieren, dass $\beta = \sqrt{\alpha - l^T l}$. Dazu müssen wir sicherstellen, dass $\alpha - l^T l > 0$.

Wenn wir die Definition von l verwenden und Umformen erhalten wir

$$\alpha - l^T l = \alpha - (P^{-1}a)^T (P^{-1}a) = \alpha - a^T (P^{-1})^T P^{-1}a$$
$$= \alpha - a^T (PP^T)^{-1}a = \alpha - a^T B^{-1}a$$

Da A positiv definit ist ergibt sich

$$0 < \begin{pmatrix} -B^{-1}a \\ 1 \end{pmatrix}^T \underbrace{\begin{pmatrix} B & a \\ a^T & \alpha \end{pmatrix}}_{=A} \begin{pmatrix} -B^{-1}a \\ 1 \end{pmatrix} = \alpha - a^T B^{-1}a$$

Also ist $\beta:=\sqrt{\alpha-l^Tl}$ wohldefiniert. Umgeformt gilt nun $l^Tl+\beta^2=\alpha$. Definieren wir nun $L\in\mathbb{R}^{n\times n}$ durch

$$L = \begin{pmatrix} P & 0 \\ l^T & \beta \end{pmatrix}$$

Dann gilt

$$LL^T = \begin{pmatrix} P & 0 \\ l^T & \beta \end{pmatrix} \begin{pmatrix} P^T & l \\ 0 & \beta \end{pmatrix} = \begin{pmatrix} PP^T & Pl \\ l^TP^T & l^Tl + \beta^2 \end{pmatrix} = \begin{pmatrix} PP^T & Pl \\ (Pl)^T & l^Tl + \beta^2 \end{pmatrix} = \begin{pmatrix} B & a \\ a^T & \alpha \end{pmatrix} = A$$

Teilaufgabe 2b:

Beweisen Sie, dass die Besetzungsstruktur der Cholesky-Zerlegung der Skyline-Matrix A erhalten bleibt, d.h. dass auch die untere Dreiecksmatrix L eine geeignete Bandstruktur aufweist.

Beweis. TODO Beweis 2b \Box

Aufgabe 3: Pseudocode für Cholesky-Zerlegung von Skyline-Matrizen

Verwenden Sie den Cholesky-Algorithmus aus der Vorlesung. Entwerfen Sie jeweils einen Pseudocode, der für eine Skyline-Matrix:

0.1 Teilaufgabe 3a:

möglichst effizient die Struktur erkennt.

```
def to_skyline(matrix):
      values = list()
      for i in range(dim(matrix)):
          up_branch = matrix[:, i][:i + 1]
          up_branch.reverse()
          while not up_branch.empty and up_branch[-1] == 0:
              up_branch.pop(-1)
          left_branch = matrix[i, :][:i]
          left_branch.reverse()
          while not left_branch.empty and left_branch[-1] == 0:
              left_branch.pop(-1)
13
14
          values.append([up_branch, left_branch])
15
16
      return values
```

Listing 1: Strukturerkennung einer Skyline-Matrix

```
def to_spd_skyline(matrix):
    values = list()

for i in range(dim(matrix)):
    branch = matrix[:, i][:i + 1]
```

```
branch.reverse()

while not branch.empty and branch[-1] == 0:

branch.pop(-1)

values.append(branch)

return values
```

Listing 2: Strukturerkennung einer symmetrischen positiv definiten Skyline-Matrix

Teilaufgabe 3b:

die Cholesky-Zerlegung berechnet.

```
def cholesky(matrix):
        n = dim(matrix)
2
        l = zero matrix of dimension n by n
3
         for k in range(n):
             s = 0
             for j in range(k):
                 s += 1[k, j] * 1[k, j]
9
             l[k, k] = sqrt(matrix[k, k] - s)
10
11
             for i in range(k+1, n):
12
13
                 s = 0
                 for j in range(k):
14
15
                     s += l[i, j] * l[k, j]
16
17
                 l[i, k] = (matrix[i, k] - s) / l[k, k]
18
         return 1
19
```

Listing 3: Algorithmus für die Cholesky Zerlegung einer Matrix

```
def cholesky_skyline(values):
        n = len(values)
2
        1 = zero matrix of dimension n by n
3
        max_width = max(len(branch) for branch in values)
5
        for k in range(n):
            start_idx = k - len(values[k]) + 1
            s = np.dot(l[k][start_idx:k], l[k][start_idx:k])
            l[k, k] = sqrt(self[k, k] - s)
10
11
            for i in range(k + 1, min(k + max_width, n)):
12
                 if k > i - len(values[i]):
                     s = np.dot(l[i][start_idx:k], l[k][start_idx:k])
14
15
                     l[i, k] = (self[i, k] - s) / l[k, k]
16
        return 1
```

Listing 4: optimierter Algorithmus für die Cholesky Zerlegung einer Skyline-Matrix

Aufgabe 4: Aufwand des Algorithmus und Verhalten in Spezialfällen Teilaufgabe 4a:

Sei $A \in \mathbb{R}^{n \times n}$ eine Skyline-Matrix. Welchen Aufwand haben Ihre Algorithmen aus Aufgabe 3 in Abhängigkeit von der Größe n der Eingabedaten und Skyline-Indices $p_l = q_l$?

```
min := min\{p_l : l \in \{1,...,n\}\}  max := max\{p_l : l \in \{1,...,n\}\}  to_skyline und to_spd_skyline hat Aufwand \mathcal{O}(n(n-min)) cholesky hat Aufwand \mathcal{O}(n^3)
```

cholesky_skyline hat Aufwand $\mathcal{O}(n \cdot max)$ wobei die zeitaufwändige Berechnung in Zeile 14 nur durchgeführt wird, falls diese nach dem Ergebnis aus Aufgabe 2b nicht 0 ist.

Teilaufgabe 4b:

Betrachten Sie Matrizen mit den Besetzungsstrukturen

Welche Besetzungsstruktur hat die Cholesky-Zerlegung für beide Matrizen? Was könnte man machen, um für Matrizen mit der "linken" Besetzungsstruktur die Cholesky-Zerlegung effizienter zu berechnen?

Ausarbeitung. Die linke Matrix ist vollbesetzt als Skyline-Matrix, in dem Sinne, dass $\forall k \in \{1,...,n\}$: $p_k = q_k = k - 1$ also immer den maximal möglichen Wert annimmt.

Die rechte Matrix hat die Skyline-Indizes $\forall k \in \{1, ..., n-1\} : p_k = q_k = 0$ und $p_n = q_n = n-1$ und ist daher nach Aufgabe 4a effizienter in der Berechnung der Cholesky-Zerlegung.

Eine effiziente Berechnung der Cholesky-Zerlegung der linken Matrix erhält man mit folgender Überlegung:

Definieren wir eine Abbildung $\sigma: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ die einer Matrix A die "gespiegelte" Matrix $\sigma(A)$ zuordnet wobei $\sigma(A)_{i,j} := A_{n+1-j,n+1-i}$.

Die Umkehrabbildung $\sigma^{-1} = \sigma$, da

$$\sigma(\sigma(A))_{ij} = \sigma(A)_{n+1-j,n+1-i} = A_{n+1-(n+1-i),n+1-(n+1-j)} = A_{i,j}$$

Weiters gilt für $A, B \in \mathbb{R}^{n \times n}$

$$\sigma(A^T)_{i,j} = A_{n+1-j,n+1-i}^T = A_{n+1-i,n+1-j} = \sigma(A)_{j,i} = \sigma(A)_{i,j}^T$$

$$(\sigma(A)\sigma(B))_{i,j} = \sum_{k=1}^n \sigma(A)_{i,k}\sigma(B)_{k,j} = \sum_{k=1}^n A_{n+1-k,n+1-i}B_{n+1-j,n+1-k}$$

$$= \sum_{k=1}^n B_{n+1-j,k}A_{k,n+1-i} = (BA)_{n+1-j,n+1-i} = \sigma(BA)_{i,j}$$

da $k \mapsto n+1-k$ eine Permutation von $\{1,..,n\}$ ist.

Wenn A eine untere Dreiecksmatrix ist, also $A_{i,j} = 0$ für i < j, so folgt, dass $\sigma(A)$ auch eine untere Dreiecksmatrix ist, da $i < j \iff n+1-j < n+1-i$.

Wenn A symmetrisch ist, so ist auch $\sigma(A)$ symmetrisch, da $\sigma(A)_{i,j} = A_{n+1-j,n+1-i} = A_{n+1-i,n+1-j} = \sigma(A)_{i,i}$.

Sei A eine Matrix von der linken, ungünstigen Art. Dann ist $\sigma(A)$ von der rechten Art, und ist es ist daher möglich die Cholesky-Zerlegung von $\sigma(A)$ effizient zu berechnen. Sei L eben diese Zerlegung von $\sigma(A)$, d.h. $LL^T = \sigma(A)$.

Nach dem oben gezeigten gilt nun $\sigma(L)^T \sigma(L) = \sigma(L^T) \sigma(L) = \sigma(LL^T) = \sigma(\sigma(A)) = A$. Womit wir eine Cholesky-Zerlegung von A erhalten.

Figure 1: Aufwand cholesky_skyline in blau und linalg.choleksy in rot; beides mit einer linearen Trendlinie

Aufgabe 5: Implementierung des Algorithmus und empirische Aufwandsschätzung

Implementieren Sie Ihren modifizierten Cholesky-Algorithmus in Python und weisen Sie empirisch nach, dass der Aufwand linear in n wächst. Vergleichen Sie die Performance Ihrer Implementierung mit der Python-Funktion scipy.linalg.cholesky, wobei die Skyline-Matrix A als vollbesetzte Matrix gespeichert ist.

TODO Anhang Python-Code (+ Grafik Performance?)