Syntax Analysis

LALR(1) Parsers

Constructing Canonical Collections of LR(1) items

Construction of LALR parsing table:

METHOD:

- 1. Construct $C = \{I_0, I_1, \dots, I_n\}$, the collection of sets of LR(1) items.
- 2. For each core present among the set of LR(1) items, find all sets having that core, and replace these sets by their union.
- 3. Let $C' = \{J_0, J_1, \ldots, J_m\}$ be the resulting sets of LR(1) items. The parsing actions for state i are constructed from J_i in the same manner as in Algorithm 4.56. If there is a parsing action conflict, the algorithm fails to produce a parser, and the grammar is said not to be LALR(1).
- 4. The GOTO table is constructed as follows. If J is the union of one or more sets of LR(1) items, that is, $J = I_1 \cap I_2 \cap \cdots \cap I_k$, then the cores of $GOTO(I_1, X)$, $GOTO(I_2, X)$, ..., $GOTO(I_k, X)$ are the same, since I_1, I_2, \ldots, I_k all have the same core. Let K be the union of all sets of items having the same core as $GOTO(I_1, X)$. Then GOTO(J, X) = K.

Ex: Consider the given Grammar:

$S \rightarrow CC$ $C \rightarrow cC \mid d$

Step1: Augmented grammar:

s'→s

s→cc

 $C \rightarrow cC | d$

Step 2: Finding the canonical set of LR(1) items:

Step 3: Parsing table:

be merged. I_3 and I_6 are replaced by their union:

$$I_{36}$$
: $C \rightarrow c \cdot C$, $c/d/\$$
 $C \rightarrow \cdot cC$, $c/d/\$$
 $C \rightarrow \cdot d$, $c/d/\$$

 I_4 and I_7 are replaced by their union:

$$I_{47}$$
: $C \rightarrow d \cdot, c/d/\$$

and I_8 and I_9 are replaced by their union:

$$I_{89}$$
: $C \rightarrow cC \cdot, c/d/\$$

The LALR action and goto functions for the condensed sets of items are shown in Fig. 4.43.

STATE	ACTION			GOTO	
	c	d	\$	S	C
0	s36	s47		1	2
1	}		acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1	ļ	
89	r2	r2	r2		

Relationship among all the parsers:

Conflicts in Shift-Reduce Parsers

- **1. Shift-Reduce:** A *shift-reduce* error occurs when the parser cannot decide whether to continue shifting or to reduce (using a different production rule).
- **2. Reduce-Reduce:** A *Reduce-Reduce* error occurs when the parser has to choose between more than one equally acceptable productions.

**Conflicts in different items:

1. LR(0)- In the same state if we have shift and reduce moves combined, then SR Conflict.

i.e.,
$$A \rightarrow .\alpha$$

 $B \rightarrow \beta$.

2. LR(1)-

SR Conflicts: A $\rightarrow \alpha$.a β , c/d [Shift on a]

 $B \rightarrow \gamma$, a/\$ [Reduce by a]

RR Conflicts: $A \rightarrow \alpha$., a [Reduce by a]

 $B \rightarrow \alpha$., a [Reduce by a]

- If there is either SR or RR conflict then the grammar is not CLR(1) and also not LALR(1).
- There is a chance a grammar to be CLR (1) but not LALR (1), if in LR (1) items there may not have any conflict but after merging the states there may be a conflict on look ahead.

Both of these productions will be placed on the table in the a and b columns. So not in LALR(1).

- If there is not any SR conflicts in CLR(1) then also not in LALR(1).
- If there is not any RR conflicts in CLR(1) but there could be RR conflict in LALR(1).

Identify a grammar is in:

LL(1): Grammar is unambiguous.

LR(0): In LR(0) items there is no SR or RR conflict.

SLR(1): In LR(0) there is no SR or RR conflict.

CLR(1): In LR(1) items there is no SR or RR conflict for look ahead symbol. **LALR(1):** In CLR(1) there is no SR or RR conflict and also no merge conflict.

Exercises:

1. Check the following grammars are in LL(1),LR(0),SLR(1),CLR(1),LALR(1) or not.

```
    i) S→AaAb | BbBa
    A→ є
    B→ є
    ii) S→Aa | bAc | dc | bda
    A→d
    iii) S→Aa | bAc | Bc | bBa
    A→d
    B→d
```

2. Find the number of SR and RR conflicts in dfa with LR(0) items.

$$S \rightarrow SS \mid a \mid \epsilon$$

- 3. $S \rightarrow$ (S) | a , where no. of states in SLR(1)=n1 , LR(1)=n2 and LALR(1)=n3.
- a) n1<n2<n3
- b) n1=n3<n2
- c) n1=n2=n3
- d) n1>=n3>=n2