sample-pratice-age-and-sales

09/03/2022

1

Contents

statistics pratice

Data Frame Pratice	2
Build a Data Frame	2
Retrive rows/columns from dataframe	2
Determine statistics	3
Display Data	3
Predict Age	3
Predict Salary	4
explore other plots	5
explore plot of whole dataframe	7
statistics pratice	
# create a variable	
scores = c(75, 80, 85)	
# Do statistics	
scores * 2	
## [1] 150 160 170	
## [1] 130 100 170	
mean(scores) # mean()	
WW [4] 00	
## [1] 80	
<pre>median(scores) # median()</pre>	
## [1] 80	
sd(scores) # sd()	
## [1] 5	

Data Frame Pratice

Build a Data Frame

```
# Build a group of related vectors
Names = c("Mike Hussey", "Aaron Finch", "Brad Hogg", "Steve Smith",
           "George Bailey", "Mitchell Johnson", "Shaun Marsh", "Glenn Maxwell", "Pat Cummins", "Mitchell Starc", "David Warner")
Ages = c(39,28,44,25,32,33,31,26,22,25,28)
IPLSals = c(310,662,103,828,672,1340,455,1240,207,1030,1140)
# Combine different vectors
df = data.frame(Names, Ages, IPLSals)
##
                 Names Ages IPLSals
## 1
          Mike Hussey
                         39
## 2
          Aaron Finch
                         28
                                 662
## 3
                                 103
           Brad Hogg
                        44
          Steve Smith
                         25
## 4
                                828
        George Bailey
                         32
## 5
                                672
## 6 Mitchell Johnson
                         33
                             1340
## 7
          Shaun Marsh
                        31
                                455
## 8
       Glenn Maxwel 1 26
                              1240
          Pat Cummins 22
                                207
## 9
## 10 Mitchell Starc 25
                             1030
## 11
        David Warner
                          28
                                1140
```

Retrive rows/columns from dataframe

```
df[1,] # (row1, columns*)
           Names Ages IPLSals
## 1 Mike Hussey
                  39
df[,1]
      # (row*,column1)
  [1] "Mike Hussey"
                          "Aaron Finch"
                                             "Brad Hogg"
## [4] "Steve Smith"
                          "George Bailey"
                                             "Mitchell Johnson"
## [7] "Shaun Marsh"
                          "Glenn Maxwel 1"
                                             "Pat Cummins"
## [10] "Mitchell Starc"
                          "David Warner"
df[2:3] # (column2, column3)
##
     Ages IPLSals
## 1
       39
              310
## 2
       28
              662
```

```
## 4
       25
              828
## 5
       32
              672
## 6
       33
             1340
## 7
       31
              455
## 8
       26
             1240
## 9
       22
              207
## 10
             1030
       25
## 11
       28
             1140
df[2:3,] # (row2, row3)
           Names Ages IPLSals
## 2 Aaron Finch 28
                          662
## 3
      Brad Hogg
                          103
Determine statistics
mean(df[,2])
## [1] 30.27273
mean(df[,"Ages"])
## [1] 30.27273
mean(df$Ages)
## [1] 30.27273
var(df[,2]) # run help("var") for explaination
## [1] 42.81818
sd(df[,2])
## [1] 6.54356
Display Data
Predict Age
plot(df$Ages ~ df$IPLSals, main = "Cricket$") # Add a plot
abline(lm(df$Ages ~ df$IPLSals), col = "red") # Adding a linear regression
```

3

44

103

Cricket\$


```
fit = lm(df$Ages ~ df$IPLSals) # lm() Function to Fit Linear Models
fit
```

```
##
## Call:
## lm(formula = df$Ages ~ df$IPLSals)
##
## Coefficients:
## (Intercept) df$IPLSals
## 34.899143 -0.006372
```

NOTES

Ages: as response variable IPLSales: as a predictor

I.e. predict a player's age from his IPL cricket salary $\,$

So the regression equation is: estimated age = -0.006372 x salary + 34.899143

Predict Salary

```
plot(df$IPLSals ~ df$Ages, main = "Cricket$") # Plot it
abline(lm(df$IPLSals ~ df$Ages), col="red")
```

Cricket\$


```
fit2 = lm(df$IPLSals ~ df$Ages) # lm() Function to Fit Linear Models
fit2

##
## Call:
## lm(formula = df$IPLSals ~ df$Ages)
```

##

NOTES

IPLSales: as response variable

Ages: as a predictor

I.e. predict a player's IPL cricket salary from his age.

So the regression equation is: estimated salary = -27.18 x age + 1548.85

explore other plots

```
sorted = sort(Ages)
plot(sorted, IPLSals, xlab = "Ages", col = "green" )
```



```
plot(Ages, IPLSals, col = "blue" )
points(sorted, IPLSals, col = "red" )  # add points to a plot
```


explore plot of whole dataframe

plot(df)

