

Son dersimizde neler yaptık

- Verinin betimlenmesi
 - Frekans tablolari
 - Grafikler
 - Merkezi Eğilim Ölçüleri: Ortalama, ortanca ve mod
 - Dağılım ölçüleri: Ranj, varyans, standart sapma

Matematiksel Gösterimler		
Aritmetik	$\sum_{i=1}^{N} X_{i}$	
ortalama (Evren)	$\mu = \frac{\sum_{i=1}^{N} X_i}{N}$	
Evren varyansı	$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{N}$	
Evren standart	$\sum_{i=1}^{N} (X_i - \overline{X})^2$	
sapması:	$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{N}}$	
Örneklem	$S^2 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{1 + \sum_{i=1}^{N} (X_i - \bar{X})^2}$	
varyansı:	$s^2 = \frac{-\iota - \iota}{N - 1}$	
Örneklem	$s^2 = \frac{SS}{sd}$	
varyansı:	sd	
Örneklem		
standart	$s = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \bar{X})^2}{N - 1}}$	
sapması:	$\sqrt{N-1}$	

PUAN DÖNÜŞÜMLERİ VE STANDART PUANLAR

İsim	Puan	y*=Y+2	y**=Yx2
	(Y)		
Ayşe	18		
Barış	18		
Beyza	14		
Asaf	16		
Elifnaz	14		
Ortalama			
Standart			

Beş kişiye ait y puanları yanda görülmektedir.

- Y puanlarına ilişkin ortalama ve standart sapmayı hesaplayınız
- Örneklemde yer alan tüm bireylerin puanlarına 2'şer puan ekleyerek elde ettiğiniz y* puanlarının ortalamsını ve sd'sini hesaplayınız
- Örneklemde yer alan tüm bireylerin puanlarının 2 katını alarak elde ettiğiniz y** puanlarının ortalamsını ve sd'sini hesaplayınız

PUAN DÖNÜŞÜMLERİ VE STANDART PUANLAR

İsim	Puan	y*=Y+2	y**=Yx2
	(Y)		
Ayşe	18	20	36
Barış	18	20	36
Beyza	14	16	28
Asaf	16	18	32
Elifnaz	14	11	28
Ortalama	16		
Standart	2		

Beş kişiye ait y puanları yanda görülmektedir.

- Y puanlarına ilişkin ortalama ve standart sapmayı hesaplayınız
- Örneklemde yer alan tüm bireylerin puanlarına 2'şer puan ekleyerek elde ettiğiniz y* puanlarının ortalamsını ve sd'sini hesaplayınız
- Örneklemde yer alan tüm bireylerin puanlarının 2 katını alarak elde ettiğiniz y** puanlarının ortalamsını ve sd'sini hesaplayınız

PUAN DÖNÜŞÜMLERİ VE STANDART PUANLAR

İsim	Puan	y*=Y+2	y**=Yx2
	(Y)		
Ayşe	18	20	36
Barış	18	20	36
Beyza	14	16	28
Asaf	16	18	32
Elifnaz	14	11	28
Ortalama	16	18	32
Standart	2	2	4

Beş kişiye ait y puanları yanda görülmektedir.

- Y puanlarına ilişkin ortalama ve standart sapmayı hesaplayınız
- Örneklemde yer alan tüm bireylerin puanlarına 2'şer puan ekleyerek elde ettiğiniz y* puanlarının ortalamsını ve sd'sini hesaplayınız
- Örneklemde yer alan tüm bireylerin puanlarının 2 katını alarak elde ettiğiniz y** puanlarının ortalamsını ve sd'sini hesaplayınız

Bir örneklemde yer alan tüm gözlemlere bir A sayısı eklendiğinde:

- ➤ Yeni örneklem ortalaması, eski örneklem ortalaması +A ya eşittir.
- Yeni örneklemin standart sapması eski örneklemin standart sapmasına eşittir.

Bir örneklemde yer alan tüm gözlemler bir B sayısı ile çarpıldığında:

Yeni örneklem ortalaması, eski örneklem ortalaması X B' ye eşittir

➤ Yeni örneklemin standart sapması eski örneklemin standart sapması X B 'ye eşittir.

Sorular:

- Boyu 1.95 m olan birisi uzun boylu mudur?
- Bir arkadaşınız bir sınavdan 85 aldığını söyledi sizce bu iyi bir not mudur?
- Bir arkadaşınız size Alesten 85 aldığını söyledi sizce bu iyi bir not mudur?
- Bir arkadaşınız kendisine Almanya'dan bir iş teklifi geldiğini ve kendisine yıllık 30.000 Euro teklif edildiğini söyledi. Sizce bu iyi bir teklif midir?

- Bazen rakamlar ve ölçümler bize çok az şey söyler.
- Özellikler sosyal bilimlerde elimizde bir standart yok ise test puanlarını yorumlamak zordur
- Nicelikleri yorumlayabilmek için bir referans noktasına ihtiyaç duyarız.

- Referans noktası olarak neleri kullanabiliriz?
 - Ortalama ve standart sapma

Standart Puanlar

- Bir puanın dağılımdaki yerini tanımlayabilmek için genellikle ham puanları standart puanlara dönüştürürüz.
- z puanları yaygın olarak kullanılan bir standart puan türüdür.
- X_i i bireyinin test puanı, \bar{X} testin aritmetik ortalaması ve s testin standart sapması olmak üzere i bireyinin z puanı aşağıdaki gibi hesaplanır

$$z_i = \frac{X_i - \bar{X}}{S}$$

İsim	Puan (Y)	Z puani
Ayşe	18	
Barış	18	
Beyza	14	
Asaf	16	
Elifnaz	14	
Ortalama	16	
Standart Sapma	2	

Sınıfımızdaki
 öğrencilerin z puanlarını
 hesaplayalım

$$z_i = \frac{X_i - \bar{X}}{S}$$

İsim	Puan (Y)	Z puanı
Ayşe	18	1
Barış	18	1
Beyza	14	-1
Asaf	16	0
Elifnaz	14	-1
Ortalama	16	0
Standart Sapma	2	1

Sınıfımızdaki
 öğrencilerin z puanlarını
 hesaplayalım

$$z_i = \frac{X_i - \bar{X}}{S}$$

z puanlarının özellikleri

- Z puanlarının ortalaması 0 standart sapması 1'dir.
- Her bir z puanı bireyin dağılımdaki yeri hakkında bilgi verir.
- Z puanının işareti puanın ortalamanın altında veya üstünde olduğunua ilişkin bilgi verir
- Z puanı kişinin ortalamadan kaç standart sapma uzakta olduğunu söyler.
- Z puanları standartlaştırılmış bir dağılım verir ve diğer dağılımlarla karşılaştırma olanağı sunar.

Puanları z puanlarına dönüştürmek dağılımın şeklini

Puanları dönüştürme

Alıştırma1: Ortalaması 40 ($\bar{X} = 40$) standart sapması 12 (s=12) olan bir dağılım için aşağıdaki z puanlarına karşılık gelen X değerlerinin bulunuz

a.
$$z = 1$$

b.
$$z = -1$$

c.
$$z = -2$$

a.
$$z = 1$$
 b. $z = -1$ c. $z = -2$ d. $z = 1.7$

a. z=1 demek puan ortalamanın 1 standart sapma üstünde demektir. Dolayısıyla z=1 e karşılık gelen

X puan= ortalama + standart sapma = 40 + 12 = 52' dir.

b. z=-1 demek puan ortalamanın 1 standart sapma altında demektir. Dolayısıyla z=-1 e karşılık gelen

$$X puan = 40 - 12 = 28' dir.$$

c. z=-2 demek puan ortalamanın 2 standart sapma altında demektir. Dolayısıyla z=-2 ye karşılık gelen

X puan=
$$40 - (2*12) = 40-24=16$$
' dır.

d. z=1.7 demek puan ortalamanın 1.7 standart sapma üstünde demektir.

$$z_i = \frac{X_i - \bar{X}}{S}$$

$$X = (1.7*12)+40$$

$$X = 60.4$$

$$X_i = (z_i * s) + \bar{X}$$

Z puanlarını kullanarak karşılaştırma yapma

Alıştırma 2: Halil istatistik dersinden X = 60 ve biyoloji dersinden de X = 56 almıştır. Halil hangi dersten daha iyi bir not almıştır?

- İstatistik testinin ortalaması 50 standart sapması 10'dur
- Biyoloji testinin ortalaması 48 standart sapması 4'tür

Her iki dersten aldığı puanları z puanlarına dönüştürerek Halilin sınıf içindeki durumunu kıyaslayabiliriz

İstatistik dersi için:

$$z=(X-\overline{X})/s$$

$$z = (60-50)/10 = 1$$

Biyoloji dersi için:

$$z=(X-\overline{X})/s$$

$$z = (56-48)/4 = 2$$

Z puanlarını kullanarak uç değer belirleme

- Uç değerler örneklemin geri kalanı ile tutarsız olan değerlerdir.
 - Örneğin bir öğrenci testten 0 alırken sınıfın kalanı 15 ile 20 arasında puanlar almış olabilir.
 - Bu öğrencinin neden sınavda bu kadar düşük not aldığını sizin belirlemeniz gerekir.
 - Eğer öğrencinin performansı dışsal bir faktörden dolayı (Örneğin öğrenci o gün hasta olabilir) düşükse o zaman bu öğrenciyi uç değer olarak kabul edip analizden çıkarabilirsiniz.
 - Genellikle uç değerleriniz grubun %5'inden az ise çıkarmanızda bir sakınca olmaz.
 - Ancak uç değerlerin belirli bir grubu temsil edip etmediğine dikkat edin
 (Örn. Örnekleminizde yer alan öğrencilerden latin kökenli olanların tamamı uç değer olarak tanımlandıysa onları çıkarmanız bulgularınızda yanlılığa neden olabilir)

Z puanlarını kullanarak uç değer belirleme

- Z puanları uç değerlerin tanımlanmasında kullanılabilir.
 - Bir bireyin z puanı +3'den büyük veya -3'den küçükse uç değer olarak tanımlanabilir
 - Not bu değer aralıkları farklı kaynaklarda farklı şekillerde yer alabilir (Örn. +- 3.29)
 - SPSS'de z puanlarının hesaplanmasına ilişkin videoya aşağıdaki link aracılığıyla ulaşabilirsiniz

https://youtu.be/HDvDgvOxBtA

t puanları

- Puanları farklı bir ölçekte de raporlayabiliriz.
- Z puanları negatif değerler de alabildiğinden bazen raporlaması zor olabilir.
- T puanları da ortalaması 50 standart sapması 10 olan standart puanlardır.

$$T = (z * 10) + 50$$

 Z puanlarını kullanarak puanların ortalamasını ve standart sapmasını istediğimiz herhangi bir sayıda ölçekleyebiliriz.

SPSS'e veri girişi nasıl yapılır:

https://www.youtube.com/watch?v=5Ft2meVvsvE&feature=yout

u.be