Support Vector Machine SVM

Dr. Mauricio Toledo-Acosta mauricio.toledo@unison.mx

Diplomado Ciencia de Datos con Python

Table of Contents

- Introducción
- 2 SVM de margen duro
- 3 SVM de margen suave
- 4 Kernel Trick

Introducción

Introducción

Support Vector Machine

Modelo supervisado de clasificación binaria que busca encontrar una frontera de decisión óptima que separe las clases de puntos.

Introducción

En lugar de aprender las caracteristicas que los separan, SVM busca manzanas que son similares a limones y viceversa. Estos son los *vectores de soporte*, sobre estos vectores el algoritmo busca encontrar el mejor hiperplano que los separa.

La distancia de los vectores de soporte a la frontera de decisión es el margen.

El modelo lineal de clasificación

Los puntos x que satisfacen $y(x) = w^T \cdot x + w_0 = 0$ forman la frontera de decisión (FD), la cual divide al espacio de datos en dos regiones.

Table of Contents

- Introducción
- 2 SVM de margen duro
- 3 SVM de margen suave
- 4 Kernel Trick

SVM de margen duro

Analicemos el caso con datos linealmente separables. Cambiaremos ligeramente la notación, FD está definida por $g(x) = w^T \cdot x - t = 0$. Queremos encontrar una FD con margen m = 1.

► Nuestro objetivo es:

$$\mathbf{w}^*, t^* = \operatorname*{argmin}_{\mathbf{w}, t} \frac{1}{2} \|\mathbf{w}\|^2$$

► Sujeto a las siguientes *N* restricciones:

<ロト < 個 ト < 重 ト < 重 ト 三 重 の < で

8 / 24

Por lo anterior, usaremos el método de los multiplicadores de Lagrange.

- ▶ Para un t óptimo $\partial_t \mathcal{L}_P = 0 \Longrightarrow \sum_{i=1}^N \alpha_i y_i = 0$
- lacktriangle Para pesos óptimos $\partial_{\mathbf{w}}\mathcal{L}_P=0\Longrightarrow \mathbf{w}=\sum_{i=1}^N \alpha_i y_i \mathbf{x}_i$

• Reinsertando estas expresiones en \mathcal{L}_P obtenemos \mathcal{L}_D el lagrangiano del problema dual:

$$\mathcal{L}_D(\alpha_1, \dots, \alpha_N) = -\frac{1}{2} \left\langle \sum_{i=1}^N \alpha_i y_i \mathbf{x}_i, \sum_{i=1}^N \alpha_i y_i \mathbf{x}_i \right\rangle + \sum_{i=1}^N \alpha_i$$

$$= -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \, \alpha_j y_i y_j \, \langle \mathbf{x}_i, \mathbf{x}_j \rangle + \sum_{i=1}^{N} \alpha_i$$

• El problema de optimización dual es el siguiente:

$$\alpha_1^*, \dots, \alpha_N^* = \underset{\alpha_1, \dots, \alpha_N}{\operatorname{argmax}} - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \, \alpha_j y_i y_j \, \langle \mathbf{x}_i, \mathbf{x}_j \rangle + \sum_{i=1}^N \alpha_i$$

Sujeto a las restricciones:

$$\alpha_i > 0$$
 , $1 \le i \le N$ y $\sum_{i=1}^N \alpha_i y_i = 0$

Ejemplo

► Encuentra W óptimo para este problema: X1=[0,0] X2=[1,0] para la clase (+1) y X3=[2,0] y X4=[0,2] para la clase (-1)

Ejemplo

$$\mathcal{L}_{D}(\alpha_{1}, \dots, \alpha_{N}) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle$$

$$\mathcal{L}_{D} = (\alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4}) - \frac{1}{2} (\alpha_{2}^{2} - 4\alpha_{2}\alpha_{3} + 4\alpha_{3}^{2} + 4\alpha_{4}^{2})$$

Diferenciando con respecto a los α 's y utilizando la restricción $\sum_{i=1}^{N} \alpha_i y_i = 0$ obtenemos:

$$\begin{cases} \alpha_1+\alpha_2-\alpha_3-\alpha_4=0 \\ \alpha_2-2\alpha_3=1 \\ -2\alpha_2+4\alpha_3=1 \\ 4\alpha_4=1 \end{cases} \text{ de donde: } \alpha_1=0, \ \alpha_2=1, \ \alpha_3=\frac{3}{4}, \ \alpha_4=1/4 \\ \text{Aplicando: } \mathbf{w}=\sum_{i=1}^N \alpha_i y_i \mathbf{x}_i, \text{ finalmente obtenemos} \\ \mathbf{w}=\begin{bmatrix} -1/2 \\ -1/2 \end{bmatrix}, w_0=3/4 \text{ y } d(x)=3-2x_1-2x_2=0 \end{cases}$$

Table of Contents

- Introducción
- 2 SVM de margen duro
- 3 SVM de margen suave
- 4 Kernel Trick

SVM de margen suave

- La SVM anterior no funciona con datos no-separables
- Introducimos variables de holgura ξ_i para cada dato de entrada, lo que les permite a algunos de ellos estar dentro del margen, o incluso del lado equivocado de la frontera de decision.

SVM de margen suave

$$\mathbf{w}^*, t^*, \boldsymbol{\xi}_i^* = \underset{\mathbf{w}, t, \boldsymbol{\xi}_i}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \boldsymbol{\xi}_i$$
 sujeto a $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle - t) \ge 1 - \boldsymbol{\xi}_i \ \ \mathbf{y} \ \boldsymbol{\xi}_i \ge 0, 1 \le i \le N$

- ► Ces un parámetro definido por el usuario que balancea la maximización del margen contra la minimización de las variables de holgura:
 - un valor alto de C significa que los errores de margen son altamente costosos,
 - un valor pequeño de C permite más errores de margen con tal de hacer mas grande el margen.
- ➤ Si permitimos más errores de margen necesitamos menos vectores de soporte, por lo tanto C controla la 'complejidad' de la SVM y por ello se le denomina el *parámetro de complejidad*.

SVM de margen suave

Buscamos soluciones mediante el nuevo Lagrangiano:

$$\mathcal{L}(\mathbf{w}, t, \xi_i, \alpha_i, \beta_i) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i - \sum_{i=1}^N \alpha_i \left(yi \left(\langle \mathbf{w}, \mathbf{x}_i \rangle - t \right) - (1 - \xi_i) \right) - \sum_{i=1}^N \beta_i \xi_i$$

$$= \mathcal{L}(\mathbf{w}, t, \alpha_i) + \sum_{i=1}^N (C - \alpha_i - \beta_i) \xi_i$$

- La solución óptima es tal que $\partial_{\xi_i}\mathcal{L}=0\Longrightarrow$ el término añadido desaparece en el problema dual.
- Además, puesto que α_i y β_i son positivos, α_i no puede ser mayor a C:

$$\alpha_{1}^{*}, \cdots, \alpha_{N}^{*} = \underset{\alpha_{1}, \cdots, \alpha_{N}}{\operatorname{argmax}} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \left\langle \mathbf{x}_{i}, \mathbf{x}_{j} \right\rangle + \sum_{i=1}^{N} \alpha_{i}$$

Sujeto a las restricciones: $0 \le \alpha_i \le \mathcal{C}$, $1 \le i \le N$ y $\sum_{i=1}^N \alpha_i y_i = 0$

4□▶ 4□▶ 4 ≧ ▶ 4 ≧ ▶ 9 Q @

Table of Contents

- Introducción
- 2 SVM de margen duro
- 3 SVM de margen suave
- 4 Kernel Trick

El truco del Kernel

Supongamos que queremos determinar qué dosis de un medicamento es la adecuada para tratar alguna condición. Coloreamos en verde las dosis que lograron una mejoría y en rojo las que no. ¿Cómo logramos una separación lineal de los datos?

El truco del Kernel

Queremos separar con *lineal-mente* estos datos.

 $\verb|https://www.geogebra.org/m/xawkavxe|$

Consideramos los datos en un espacio de dimensión superior.

https://www.geogebra.org/m/xawkavxe

El ejemplo más sencillo: kernel polinomial de grado 2

Para puntos en \mathbb{R}^2 , reemplazamos las 2 features originales por 4 features nuevas por medio de la función $\phi:\mathbb{R}^2\to\mathbb{R}^4$ dada por

$$\phi(x_1,x_2)=(x_1^2,x_1x_2,x_1x_2,x_2^2)$$

El ejemplo más sencillo: kernel polinomial de grado 2

Para puntos en \mathbb{R}^2 , reemplazamos las 2 features originales por 4 features nuevas por medio de la función $\phi:\mathbb{R}^2\to\mathbb{R}^4$ dada por

$$\phi(x_1, x_2) = (x_1^2, x_1x_2, x_1x_2, x_2^2)$$

El producto interior en estas 4 features es

$$\langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle = \langle (x_1^2, x_1 x_2, x_1 x_2, x_2^2), (y_1^2, y_1 y_2, y_1 y_2, y_2^2) \rangle$$

$$= x_1^2 y_1^2 + x_1 x_2 y_1 y_2 + x_1 x_2 y_1 y_2 + x_2^2 y_2^2$$

$$= x_1 y_1 x_1 y_1 + x_1 y_1 x_2 y_2 + x_1 y_1 x_2 y_2 + x_2 y_2 x_2 y_2$$

$$= (x_1 y_1 + x_2 y_2)^2 = \langle (x_1, x_2), (y_1 y_2) \rangle^2 = \langle \mathbf{x}, \mathbf{y} \rangle^2$$

El ejemplo más sencillo: kernel polinomial de grado 2

Para puntos en \mathbb{R}^2 , reemplazamos las 2 features originales por 4 features nuevas por medio de la función $\phi:\mathbb{R}^2\to\mathbb{R}^4$ dada por

$$\phi(x_1, x_2) = (x_1^2, x_1x_2, x_1x_2, x_2^2)$$

El producto interior en estas 4 features es

$$\langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle = \langle (x_1^2, x_1 x_2, x_1 x_2, x_2^2), (y_1^2, y_1 y_2, y_1 y_2, y_2^2) \rangle$$

$$= x_1^2 y_1^2 + x_1 x_2 y_1 y_2 + x_1 x_2 y_1 y_2 + x_2^2 y_2^2$$

$$= x_1 y_1 x_1 y_1 + x_1 y_1 x_2 y_2 + x_1 y_1 x_2 y_2 + x_2 y_2 x_2 y_2$$

$$= (x_1 y_1 + x_2 y_2)^2 = \langle (x_1, x_2), (y_1 y_2) \rangle^2 = \langle \mathbf{x}, \mathbf{y} \rangle^2$$

Nos podemos ahorrar la definición de la función ϕ si definimos el kernel

$$\kappa(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle^2$$

El siguiente ejemplo más sencillo

Para puntos en \mathbb{R}^2 , reemplazamos las 2 features originales por 4 features nuevas por medio de la función $\phi: \mathbb{R}^2 \to \mathbb{R}^7$ dada por

$$\phi(x_1, x_2) = (x_1^2, x_1x_2, x_1x_2, x_2^2, \sqrt{2r}x_1, \sqrt{2r}x_2, r)$$

El siguiente ejemplo más sencillo

Para puntos en \mathbb{R}^2 , reemplazamos las 2 features originales por 4 features nuevas por medio de la función $\phi: \mathbb{R}^2 \to \mathbb{R}^7$ dada por

$$\phi(x_1, x_2) = (x_1^2, x_1x_2, x_1x_2, x_2^2, \sqrt{2r}x_1, \sqrt{2r}x_2, r)$$

El producto interior en estas 7 features es

$$\langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle = \dots$$

$$= (x_1 y_1 + x_2 y_2 + r)^2$$

$$= (\langle (x_1, x_2), (y_1 y_2) \rangle + r)^2 = (\langle \mathbf{x}, \mathbf{y} \rangle + r)^2$$

El siguiente ejemplo más sencillo

Para puntos en \mathbb{R}^2 , reemplazamos las 2 features originales por 4 features nuevas por medio de la función $\phi:\mathbb{R}^2\to\mathbb{R}^7$ dada por

$$\phi(x_1, x_2) = (x_1^2, x_1 x_2, x_1 x_2, x_2^2, \sqrt{2r} x_1, \sqrt{2r} x_2, r)$$

El producto interior en estas 7 features es

$$\langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle = \dots$$

$$= (x_1 y_1 + x_2 y_2 + r)^2$$

$$= (\langle (x_1, x_2), (y_1 y_2) \rangle + r)^2 = (\langle \mathbf{x}, \mathbf{y} \rangle + r)^2$$

Nos podemos ahorrar la definición de la función ϕ si definimos el kernel

$$\kappa(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle + r)^2$$

Tipos de Kernel

Los cuatro principales kernels son:

Lineal	$\kappa(x,y) = \langle x,y angle$
Polinomial	$\kappa(\mathbf{x},\mathbf{y})=(\langle \mathbf{x},\mathbf{y}\rangle+r)^p,\ r\geq 0$
Gaussiano (Radial Ba-	$\kappa(\mathbf{x},\mathbf{y}) = \mathrm{e}^{-\gamma \ \mathbf{x}-\mathbf{y}\ ^2}$
sis Function)	
Sigmoide	$\kappa(\mathbf{x},\mathbf{y}) = tanh\left(\langle \mathbf{x},\mathbf{y} angle + r ight)$

Algunos criterios para escoger el kernel

- Primero veamos si los datos son linealmente separables.
- El kernel lineal suele ser bueno cuando hay muchas features. Además, es el más rápido.
- El kernel polinomial es una generalización del kernel lineal.
- El kernel RBF es un buen kernel por defecto. Suele usarse cuando no hay información adicional sobre los datos.
- El kernel sigmoide equivale a usar una red neuronal de tipo perceptron de dos capas.
- Se pueden probar los demás kernels usando grid seach y validación cruzada.

Algunos criterios para escoger el kernel

- Primero veamos si los datos son linealmente separables.
- El kernel lineal suele ser bueno cuando hay muchas features. Además, es el más rápido.
- El kernel polinomial es una generalización del kernel lineal.
- El kernel RBF es un buen kernel por defecto. Suele usarse cuando no hay información adicional sobre los datos.
- El kernel sigmoide equivale a usar una red neuronal de tipo perceptron de dos capas.
- Se pueden probar los demás kernels usando grid seach y validación cruzada.

Cawley, G. C., & Talbot, N. L. (2010). On over-fitting in model selection and subsequent selection bias in performance evaluation. The Journal of Machine Learning Research, 11, 2079-2107.