Genereren van signalen, FFT en filteren van signalen

Opgave 1

- 1. Genereer een sinus met frequentie f=20Hz en sample dit signaal met 1000 samples per seconde. Wat is de frequentie Ω van de gesampelde sinus? ($\Omega = \omega . T_s = 2\pi f T_s$) En wat is de periode N?
- 2. De FFT gebruikt als basisfrequentie $\frac{2\pi}{128}$ en veelvouden daarvan. Bij welke veelvouden ligt de frequentie van de sinus het dichtst in de buurt?
- 3. Vul de volgende tabel in:

f	Ω met $T_s = 0.001$	periode N	?de harm $< \Omega <$?de harm
20Hz			
30Hz			

4. Bekijk de FFT van deze sinus. Verklaar de piek in het frequentiespectrum. Idem voor f=30Hz.

Opgave 2

- 1. Genereer een sinus met frequentie f = 20Hz en 500 samples per seconde. Wat is de frequentie Ω van de gesampelde sinus? En wat is de periode N?
- 2. Vul de volgende tabel in:

f	Ω met $T_s = 0.002$	periode N	?de harm $< \Omega <$?de harm
20Hz			
30Hz			

3. Bekijk de FFT van deze sinus. Verklaar de piek in het frequentiespectrum. Idem voor f=30Hz.

Opgave 3

- 1. Genereer een blok met f=20Hz en 1000 samples per seconde. Wat zijn de basisfrequentie Ω en de periode N van dit gesampelde blok?
- 2. Bekijk de FFT die veelvouden van $\frac{2\pi}{128}$ bevat. Tussen welke harmonische frequenties (veelvouden van $\frac{2\pi}{128}$) ligt de basisfrequentie van het blok?
- 3. Welke harmonischen zijn het meest aanwezig?
- 4. Laat op dit blok een laagdoorlaatfilter los met een pool in het z-vlak op $z_p = 0.9$, een nulpunt in $z_n = 0$ en een gain factor K = 0.5. Hoe ziet de overdrachtsfunctie H(z) eruit?
- 5. Wat is de bijbehorende differentievergelijking?

- 6. De maximale versterking van dit laagdoorlaatfilter treedt op bij een frequentie Ω gelijk aan 0, dus bij z=1. Wat is de maximale versterking (ook wel gain genoemd, dus |H(z)| voor z=1)?
- 7. Bekijk in het frequentiespectrum of de lage frequenties inderdaad met deze gain versterkt worden.

Opgave 4

- 1. Genereer een ramp met f = 20Hz en 1000 samples per seconde. Wat zijn de basisfrequentie Ω en de periode N van deze gesampelde ramp?
- 2. Bekijk de FFT die veelvouden van $\frac{2\pi}{128}$ bevat. Tussen welke harmonische frequenties (veelvouden van $\frac{2\pi}{128}$) ligt de basisfrequentie van de ramp?
- 3. Welke harmonischen zijn het meest aanwezig?
- 4. Met welke z-waarde op de eenheidscirkel corresponderen de twee meest voorkomende harmonische frequenties?
- 5. Laat op de ramp hetzelfde laagdoorlaatfilter los, maar nu met een gain factor K = 1. Hoe ziet de overdrachtsfunctie H(z) er nu uit?
- 6. Wat is de versterking voor de twee z-waarden op de eenheidscirkel? Klopt dat met de FFT van het gefilterde signaal?

Opgave 5

- 1. Stel een differentievergelijking op van een filter met twee nulpunten in het z-vlak op $z_{n1}=e^{j\frac{\pi}{10}}$ en $z_{n2}=e^{-j\frac{\pi}{10}}$, en twee polen in z=0. Gebruik voor de coëfficiënten 6 cijfers achter de komma.
- 2. Laat op verschillende sinussen met frequenties 20Hz, 30Hz, 40Hz, 50Hz en 60Hz met 1000 samples per seconde dit filter los. Geef in de volgende tabel aan met welke Ω 's deze frequenties corresponderen.

f	Ω met $T_s = 0.001$	$ H(e^{j\Omega)} $
10Hz	$2\pi \times 10 \times 0.001 = \frac{\pi}{50}$	$ H(e^{j\frac{\pi}{50}}) = 0.0021$
20Hz		
30Hz		
40Hz		
50Hz		
60Hz		

3. Geef verder in de laatste kolom aan wat het effect is van het filter op de verschillende frequenties. Leg uit.