RBE550 Motion Planning Theoretical Issues

Constantinos Chamzas www.cchamzas.com www.elpislab.org

Disclaimer and Acknowledgments

The slides are a compilation of work based on notes and slides from Constantinos Chamzas, Erion Plaku, Lydia Kavraki, Howie Choset, Morteza Lahijanian, David Hsu, Greg Hager, Mark Moll, G. Ayorkor Mills-Tetty, Hyungpil Moon, Zack Dodds, Zak Kingston, Nancy Amato, Steven Lavalle, Seth Hutchinson, George Kantor, Dieter Fox, Vincent Lee-Shue Jr., Prasad Narendra Atkar, Kevin Tantiseviand, Bernice Ma, David Conner, and students taking comp450/comp550 at Rice University.

Last time

- Multi-query and Single-query planners
- RRT and variants
- PRM and variants

Overview

- Probabilistic Completeness
- Analysis of PRM
- Characterization of space
 - *ϵ*-good
 - β -lookout
 - $(\epsilon, \alpha, \beta)$ -expansive
 - Theoretical results

Sampling-based planners

- How to specify motion for rigid bodies?
- C-space gives us a point robot
- Sampling-based technique:

Advantages

- Computationally efficient
- Solves high-dimensional problems
- Easy to implement

Disadvantages

- Not complete:
 - cannot report when no solution exists
- Probabilistically complete:
 - If a path exists, the probability of not finding it → 0 as number of samples → ∞

Probabilistic RoadMap

- PRM-based planners aim to construct a roadmap that captures the whole connectivity of the configuration space
- Steps: sampling configurations and connecting k nearest

Probabilistic RoadMap

- PRM-based planners aim to construct a roadmap that captures the whole connectivity of the configuration space
- Steps: sampling configurations and connecting k nearest

Analysis of Probabilistic RoadMap

Probabilistic completeness definition:

• Suppose $a,b \in Q_{free}$ can be connected by a path in Q_{free} . A planner is probabilistically complete if

$$\lim_{N\to\infty} \frac{\Pr((a,b) \ Failure)}{\Pr(a,b) \ Failure)} = 0$$
Probability that PRM fails to answer query (a,b) with N samples

- For analysis, assume:
 - random sampling with uniform distribution in a bounded space
 - $Q_{free} \subset \mathbb{R}^d$

Random Sampling Scheme

- How do various parameters affect performance?
- Can properties of the C-space be related to parameters of the scheme?
- Are there properties of the C-space that make the scheme even more efficient?

- To answer these questions, we consider two notions:
 - Path clearance
 - ϵ –goodness

- $a, b \in F$ can be connected by a path $\gamma: [0, L] \to F$
- L is the length of γ
- R is the minimum distance of γ from O, aka: path clearance radius

Theorem: the probability of failing to connect a and b by a PRM with N samples is

$$\Pr((a,b), Failure) \le \left\lceil \frac{2L}{R} \right\rceil \left(1 - \alpha R^d\right)^N \le \left\lceil \frac{2L}{R} \right\rceil e^{(-\alpha R^d N)}$$

where

•
$$\alpha = \frac{\operatorname{Vol}(B_1(.))}{2^d \operatorname{Vol}(F)}$$

• Vol(F) is the volume of region (set) F, and $B_1(.)$ is a ball of radius 1.

Proof

- Idea: Cover γ with large balls that overlap to a certain extent
- Let $k = \left\lceil \frac{L}{R/2} \right\rceil$

- Choose $x_0 = a, \dots, x_k = b$ on γ s.t. $\left| x_j x_{j+1} \right| \le \frac{R}{2}$
- $B_r(x)$: the ball (sphere) with radius r centered at x
- Then:
 - $B_{\frac{R}{2}}(x_j) \subseteq B_R(x_{j+1})$
 - Line $\overline{cd} \subset Q_{free}$ if $c \in B_{R/2}(x_j)$ and $d \in B_{\frac{R}{2}}(x_{j+1})$

Proof(cont.)

• PRM succeeds in answering query (a,b) if there is a sample in every $B_{\frac{R}{2}}(x_i)$ for all i=0,...,k

- Let I_i indicate that $B_{\frac{R}{2}}(x_i)$ contains no sample point
- Then, $\Pr((a,b) \ Failure) \leq \Pr(I_0 \lor I_1 \lor \dots \lor I_k) \leq \Pr(I_0) + \dots + \Pr(I_k)$ • 1st point not in $B_{\frac{R}{2}}(x_i)$: $\Pr(I_i) = \left(1 - \frac{\operatorname{vol}\left(B_{\frac{R}{2}}(x_i)\right)}{\operatorname{vol}(F)}\right)$ (Union Bound)
- N points not in $B_{\frac{R}{2}}(x_i)$: $\Pr(I_i) = \left(1 \frac{\operatorname{vol}\left(B_{\frac{R}{2}}(x_i)\right)}{\operatorname{vol}(F)}\right)^N$ (Independence of Samples)

Proof(cont.)

•
$$Pr((a,b) Failure) \le Pr(I_0) + \dots + Pr(I_k)$$

$$= k \left(1 - \frac{\operatorname{vol}\left(B_{R}(x_{i})\right)}{\operatorname{vol}(F)}\right)^{N} \quad \text{where d is the dimension of the space}$$

$$= \left[\frac{L}{R/2}\right] \left(1 - \frac{\left(\frac{R}{2}\right)^{d} \operatorname{vol}(B_{1}(.))}{\operatorname{vol}(F)}\right)^{N}$$

$$= \left[\frac{2L}{R}\right] \left(1 - \frac{R^{d} \operatorname{vol}\left(B_{1}(.)\right)}{2^{d} \operatorname{vol}(F)}\right)^{N} \quad (1 - x) \leq e^{-x}$$

$$= \left[\frac{2L}{R}\right] \left(1 - R^{d} \alpha\right)^{N} \leq \left[\frac{2L}{R}\right] e^{-\alpha R^{d} N}$$

Random Sampling Scheme

- How do various parameters affect performance?
- Can properties of the C-space be related to parameters of the scheme?
- Are there properties of the C-space that make the scheme even more efficient?
- To answer these questions, we consider two notions:
 - Path clearance
 - ϵ –goodness

Coverage

almost any point of the configuration space can be connected by a straight line segment to some sampled node

Connectivity

1-1 correspondence between the connected components of the roadmap and those of F

Narrow Passages

- Connectivity is difficult to capture when there are narrow passages
 - A narrow passage is difficult to define!

How to characterize coverage/connectivity (expansiveness)?

Visibility

• Visibility:

• All the configurations in free space that can be seen by a free configuration q

ϵ -good

- ϵ -good:
 - Every free configuration "sees" at least an ϵ fraction of the free space

What is the fraction ε that this configuration can see?

0.1

0.4

0.5

1.0

What is the fraction ε that this configuration can see?

What is the fraction ε that this configuration can see?

ϵ -good

- ϵ -good:
 - Every free configuration "sees" at least an ϵ fraction of the free space

How about this point?

What is the fraction ε that this other configuration can see?

0.1

0.4

0.5

1.0

What is the fraction ε that this other configuration can see?

What is the fraction ε that this other configuration can see?

ϵ -good

• ϵ -good:

- Every free configuration "sees" at least an ϵ fraction of the free space
- A space F is ϵ -good if every configuration can see at least an ϵ fraction of the free space

How about the whole space?

What is ε-goodness of the free space F?

0.1 0.2 0.5 1.0

What is ε-goodness of the free space F?

What is ε-goodness of the free space F?

ϵ –good

- *ϵ*–good:
 - Every free configuration "sees" at least an ϵ fraction of the free space

$$\epsilon \in (0,1]$$

How about the whole Free space?

β –Lookout

- β -lookout of a subspace S:
 - Subset of points in S that can see at least β fraction of $F \setminus S$.

 $\beta \in (0,1]$

This is a different space!

Expansiveness

- $(\epsilon, \alpha, \beta)$ -expansive:
 - The free space F is $(\epsilon, \alpha, \beta)$ -expansive if
 - Free space F is ϵ -good
 - For each subspace S of F, its β -lookout is at least α fraction of S

$$\epsilon, \alpha, \beta, \in (0,1]$$

$$F ext{ is } \epsilon ext{-good} \qquad o \quad \epsilon = 0.5$$

$$\beta$$
-lookout $\rightarrow \beta = 0.3$

$$\alpha = \frac{\text{Vol}(\beta \text{ lookout})}{\text{Vol}(S)} \rightarrow \alpha = 0.2$$

F is $(\epsilon, \alpha, \beta)$ -expansive, where

$$\epsilon = 0.5$$
, $\alpha = 0.2$, $\beta = 0.3$

Linking Sequences

Linking sequence

Definition 2 The linking sequence of a point $p \in \mathcal{F}$ is a sequence of points $p_0 = p, p_1, p_2, \ldots$ and a sequence of sets $V_0 = \mathcal{V}(p_0), V_1, V_2, \ldots \subseteq \mathcal{F}$ such that for all $i \geq 1$, $p_i \in \text{LOOKOUT}(V_{i-1})$ and $V_i = V_{i-1} \cup \mathcal{V}(p_i)$.

- Linking sequence of length t
- p_{n+1} is chosen from the lookout of the subset seen by p, p_1 , ..., p_n

Proof sketch

- 1. Given a sequence of points we have defined a visibility set F, and unvisible F'
- 2. The probability of sampling inside the β -Lookout is α .
- 3. If we sample inside β -lookout the unvisible F' will decrease my β -percent

Uniform sampling

Lemma 1 Suppose that a set M of n milestones is chosen independently and uniformly at random from the free space \mathcal{F} . Let $s = 1/\alpha \epsilon$. Given any milestone $p \in M$, there exists a linking sequence in M of length t for p with probability at least $1 - se^{-(n-t-1)/s}$.

□ **Theorem 1**: A roadmap of $\frac{16\ln(1/\gamma)}{\epsilon\alpha} + \frac{6}{\beta}$

uniformly-sampled milestones has the correct connectivity with probability at least $1-\gamma$.

Expansiveness

Theorem:

Probability of achieving good connectivity increases exponentially with the number of sampled nodes in an expansive space.

• As $(\epsilon, \alpha, \beta)$ decreases then the number of milestones needs to increase to maintain good connectivity.

Theorem:

The probability of achieving good coverage, increases exponentially with the number of sampled nodes in an expansive space.

Probabilistic Completeness

• In an expansive space, the probability that a PRM planner fails to find a path when one exists goes to 0 exponentially in the number of sampled nodes.

Expansiveness Decomposition

• Expansive decomposition, by inserting q1, q2 we create three spaces

Summary

Main result:

- If a C-space is expansive, then a roadmap can be constructed efficiently with good connectivity and coverage
- Placing samples in narrow passages, improves the e,a,b values

Limitation in implementation

- No theoretical guidance about the stopping time
- Calculating expansiveness is often as hard as solving the actual problem
- A planner stops when either a path is found or maximum number of steps have been taken