近代物理实验报告 11.5: 电磁波传播

xv 学号 匡亚明学院

2019年2月29日

1 实验目的

- 1. 了解电磁波测试平台的结构,掌握工作原理.
- 2. 利用相干波原理,测定自由空间内电磁波波长 λ.
- 3. 验证反射定律.

2 实验仪器

微波信号发生器、电磁波测试平台、反射金属板、半透射玻璃板.

3 实验原理

3.1 自由空间电磁波参量的测量

当两束等幅,同频率的均匀平面电磁波,在自由空间内沿着相同或者反方向传播时,由于相位不同发生干涉现象,在传播路径上可以形成驻波场分布. 本实验正是利用相干波的原理,通过测定驻波场节点的分布,求的自由空间中电磁波波长 λ,再由

$$K = 2\pi/\lambda$$
,

$$v = \lambda f = \omega / K$$

得到电磁波的主要参数 K 和 v 等.

电磁波测试平台与**迈克尔逊干涉仪**的原理类似,用 P_T 和 P_R 分别表示发射和接收喇叭天线,A 和 B 分别表示固定和可移动的金属反射板,C 表示半透射板. 由 P_T 发射平面电磁波,在平面波前进的方向上放置成 45° 角的半透射板,由于该板的作用,将入射波分成两束波,一束向 A 板方向传播,另一束向 B 板方向传播. 由于 A 和 B 为金属全反射板,两列波就再次返回到半透射板并达到接收喇叭天线 P_R 处. 于是 P_R 收到两束同频率,振动方向一致的两个波. 如果这两个波的相位差为 π 的偶数倍,则干涉加强,如果相位差为 π 的奇数倍,则干涉减弱.

移动反射板 B,当 P_R 的表头从一次极小变到另一次极小的时候,则反射板 B 就移动了 $\lambda/2$ 的距离,由这个距离就可以求得平面波的的波长.

设入射波为垂直极化波

$$\vec{E}_i = E_0 e^{-j\phi}$$

当入射波以入射角 θ_1 向介质板 C 斜入射时,在分界面上产生反射波 \vec{E}_r 和折射波 \vec{E}_t . 设 C 板的反射系数为 R, T_0 为由空气进入介质板的折射系数, T_c 为由介质板进入空气的折射系数. 固定板

A 和可移动板 B 都是金属板,反射系数均为-1. 在一次近似的条件下,接收喇叭天线 P_R 处的相干波分别为

$$\vec{E}_{r1} = -RT_0T_c\vec{E}_0e^{-j\phi_1}$$
$$\vec{E}_{r2} = -RT_0T_c\vec{E}_0e^{-j\phi_2}$$

这里

$$\phi_1 = K(l_1 + l_3) = KL_1$$

$$\phi_2 = K(l_2 + l_3) = K(l_1 + l_3 + \Delta L) = KL_2$$

其中, $\Delta L = |L_2 - L_1|$ 为 B 板移动距离,而 \vec{E}_{r1} 与 \vec{E}_{r2} 传播的路程差为 $2\Delta L$. 由于 \vec{E}_{r1} 与 \vec{E}_{r2} 的相位差为 $\Delta \phi = \phi_2 - \phi_1 = 2K\Delta L$,因此,当 $2\Delta L$ 满足

$$2\Delta L = n\lambda, (n = 0, 1, 2, ...)$$

 \vec{E}_{r1} 和 \vec{E}_{r2} 同相叠加,接收指示为最大.

当 $2\Delta L$ 时满足

$$2\Delta L = (2n+1)\lambda/2, (n=0,1,2,...)$$

 \vec{E}_{r1} 和 \vec{E}_{r2} 反相抵消,接收指示为零. 这里,n 表示相干波合成驻波场的波节点数.

沿一个方向改变反射板 B 的位置,使 P_R 输出重复出现最大指示,或重复出现零指示即可测出电磁波波长 λ . 为了测准 λ 值,一般采用 P_R 零指示的方法.

相干波 \vec{E}_{r1} 和 \vec{E}_{r2} 的分布中 n=0 的节点处 ΔL_0 作为第一个波节点,对于 $n\neq 0$ 的各个值则有

$$n=1,2\Delta L_1=rac{3}{2}\lambda$$
,对应第二个波节点,或第一个半波长数. $n=2,2\Delta L_2=rac{5}{2}\lambda$,对应第三个波节点,或第二个半波长数.

.

$$n=N, 2\Delta L_N=rac{2N+1}{2}\lambda$$
,对应第 $N+1$ 个波节点,或第 N 个半波长数.

由此可知,两个相邻波节点间的距离为 $\Delta L_n - \Delta_{n-1} = \lambda/2(n+1)$ 个波节点之间共有 n 个半波长,即 $(\Delta L_n - \Delta L_0) = n\lambda/2$,可得波长的平均值为

$$\lambda = 2(\Delta L_n - \Delta L_0)/n$$

实验中可移动板 B 移动时不可能出现无限多个驻波节点,测试中一般选取 n=4 已经足够,它相当于 5 个驻波节点,这时被测电磁波波长的平均值为

$$\lambda = 2(\Delta L_4 - \Delta L_0)/4$$

3.2 验证反射定律

选取一定入射角,测量反射角,验证反射定律.

4 实验内容

- 1. 整体机械调整,使 P_T 和 P_R 相向,轴线在同一水平面线上,调整信号电平,使得 P_R 表头指示接近满刻度.
- 2. 安装反射板 A 和 B,半透射板 C,注意 AB 轴向成 90° 角,C 板法向与 A 板法向成 45° 角,并注意反射板 A、B 的法向分别与 P_R 、 P_T 的轴向重合.
- 3. 固定 A 板,用旋转手柄移动 B 板,使得 P_R 表头指示接近零,记下零指示的起始位置.
- 4. 用旋转手柄使 B 板移动,再从表头上测出 n 个极小值,同时从读数机构上得到响应于 (3) 的起始零指示位置求得反射板移动的距离 $\Delta L_n \Delta L_0$,连续测三次,求平均值,取 n=3 或 n=4 即可.
- 5. 根据测得的 4 个 ΔL_n , 计算波长 λ .

5 实验数据

5.1 测量电磁波波长

实验所用的微波源的频率为:

$$f_0 = 9.37 \text{GHz}$$

可算出对应的波长理论值为:

$$\lambda_0 = \frac{c}{f_0} = \frac{3 \times 10^8}{9.37 \times 10^9} \approx 32.02 \text{mm} \tag{1}$$

实验测得 4 个波节处对应的位置读数如表 (1):

表 1: 测量电磁波波长

位置编号	x_1	x_2	x_3	x_4
位置数据/mm	15.670	30.045	46.104	62.575

1. 逐项相减计算波长

将 4 个 x_i 数据逐项相减,得到 3 个 Δx_i ,取平均数 $\Delta x_1 = 15.635$ mm,计算实验波长值为:

$$\lambda_1 = 2 \times \Delta x_1 = 31.27 \text{mm} \tag{2}$$

误差为:

$$Error_1 = \frac{31.27 - 32.02}{32.02} \times 100\% \approx -2.34\%$$
 (3)

2. 逐差法计算波长

$$\Delta x_2 = \frac{(62.575 + 46.104) - (30.045 + 15.670)}{4} = 15.741 \text{mm}$$
 (4)

计算实验波长

$$\lambda_2 = 2 \times \Delta x_2 = 31.482 \text{mm} \tag{5}$$

误差为:

$$Error_2 = \frac{31.482 - 32.02}{32.02} \times 100\% \approx -1.68\%$$
 (6)

可见使用逐差法计算的实验波长的误差较小.

5.2 验证反射定律

验证反射定律的数据如表 (2):

表 2: 验证反射定律

入射角 $\theta_I/^\circ$	20	30	40	50	60	70	80		
反射角 $\theta_R/^\circ$	21	27.8	41.0	49.0	60.4	74.3	80.0		
电流计读数/μA	62	52	60	63	64	46	46		

6 误差分析

参考文献

[1] 黄润生. 近代物理实验. 南京大学出版社, 2 edition, 2008.