گسسته

محمدياسين داوده

۱۰ مهر ۱۳۹۹

فهرست مطالب

١	منطق و گزاره
١	۱.۱ آ رابطهای اولیه و جدول درستی ۲۰۰۰، ۲۰۰۰،
١	۱۰۱۰ نقیض (Not) ۱۰۱۰
٢	۲۰۱۰۱ ترکیب عطفی (And)
٢	۳.۱.۱ ترکیب فصلی (Or)
٢	۴.۱.۱ یای مانع جمّع (انحصاری) (Exclusive or)
٣	۵.۱.۱ ترکیب شرطی
۴	۶.۱.۱ ترکیب دوشرطی
۴	۲.۱ خواص گزاُرهها ُ

۱ منطق و گزاره

گزاره ٔ یک جمله خبری است که یا درست است و یا نادرست. امکان درستی و نادرستی همزمان یک گزاره وجود ندارد.

۱۰۱ رابطهای اولیه و جدول درستی

تعداد ترکیبهای جدول درستی برای n گزارهٔ مبنا معادل 2^n است. رابطهای گزارهای (جدول ۱) ابزارهایی برای ایجاد گزارههای ترکیبی بکار می روند.

مفهوم	نماد	نام
چنین نیست	\sim یا \neg	نقیض (Not)
q p	\wedge	ترکیب عطفی (And)
q یا p	V	ترکیب فصلی (Or)
q فقط p یا فقط	\oplus	یای مانع جمع (Exclusive or)
q آنگاه p	\Rightarrow	تركيب شرطي (الزام)
q اگر و فقط اگر p	\Leftrightarrow	ت <i>رکیب</i> دوشرطی

جدول ۱: جدول رابطهای اصلی گزارهای و نمادهای آنها

۱۰۱۰۱ نقیض (Not)

اگر p یک گزاره باشد، نقیض آن را به صورت p یا p نشان می دهیم. (جدول ۲) این گزاره زمانی درست است که p نادرست باشد.

$$\begin{array}{c|c} p & \neg p \\ \hline \mathbb{T} & \mathbb{F} \\ \mathbb{F} & \mathbb{T} \end{array}$$

جدول ۲: جدول رابطهای اصلی گزارهای و نمادهای آنها

¹Statement

با توجه به جدول مقادیر (۲) میتوان نتیجه گرفت:

$$\neg(\neg p) \stackrel{*_{\sigma} \mid_{(\zeta \circ \mathcal{D}^*)}}{\equiv} p \tag{1}$$

۲.۱.۱ ترکیب عطفی (And)

اگر q و p دو گزاره باشند و بخواهیم از صحت هر دو اطمینان حاصل کنیم از ترکیب عطفی $(p \wedge q)$ استفاده می کنیم. (جدول ۳)

p	q	$p \wedge q$
\mathbb{T}	\mathbb{T}	\mathbb{T}
\mathbb{T}	\mathbb{F}	\mathbb{F}
\mathbb{F}	\mathbb{T}	\mathbb{F}
F	T	F

جدول ٣: جدول مقادير تركيب عطفى

۳.۱.۱ ترکیب فصلی (Or)

اگر q و p دو گزاره باشند و بخواهیم از صحت یکی از آنها اطمینان حاصل کنیم از ترکیب فصلی $(p \lor q)$ استفاده می کنیم. (جدول p)

۴.۱.۱ یای مانع جمع (انحصاری) (Exclusive or)

اگر q و p دو گزاره باشند و بخواهیم از صحت فقط یکی از آنها اطمینان حاصل کنیم از یای انحصاری $(p \oplus q)$ استفاده می کنیم. (جدول ۵)

سرف نظر از ارزش مؤلفههای آنها - ارزشهای یکسان * هرگاه دو گزاره مرکب - صرف نظر از ارزش مؤلفههای آنها - داشته باشند از لحاظ منطقی همارز هستند که آنرا با نماد - نشان میدهیم. - Exclusive or (Xor)

p	q	$p \lor q$
\mathbb{T}	\mathbb{T}	\mathbb{T}
\mathbb{T}	\mathbb{F}	${\mathbb T}$
\mathbb{F}	${\mathbb T}$	${\mathbb T}$
\mathbb{F}	\mathbb{F}	\mathbb{F}

جدول ۴: جدول مقادیر ترکیب فصلی

p	q	$p \oplus q$
$\overline{\mathbb{T}}$	\mathbb{T}	\mathbb{F}
\mathbb{T}	\mathbb{F}	\mathbb{T}
\mathbb{F}	${\mathbb T}$	\mathbb{T}
\mathbb{F}	\mathbb{F}	\mathbb{F}

جدول ۵: جدول مقادیر پای انحصاری

۵.۱.۱ ترکیب شرطی

هرگاه بخواهیم از گزاره p گزاره p را نتیجه بگیریم، از ترکیب شرطی استفاده می کنیم (جدول ۶). برای بیان آن مینویسیم $p \Rightarrow q$ که به شکلهای زیر میتواند خوانده شود:

- اگر p آنگاه p.
- q،p را نتیجه میدهد.
- از q نتیجه می دهد. q

در عبارت $q \Rightarrow q$ مقدم و q تالی است.

با توجه به جدول مقادیر (۶) میتوان نتیجه گرفت:

$$\neg p \lor q \equiv p \Rightarrow q \tag{7}$$

^{*} هرگاه دو گزاره مرکب - صرف نظر از ارزش مؤلفههای آنها - ارزشهای یکسان داشته باشند از لحاظ منطقی همارز هستند که آنرا با نماد \equiv نشان میدهیم.

p	q	$p \Rightarrow q$
\mathbb{T}	\mathbb{T}	\mathbb{T}
\mathbb{T}	\mathbb{F}	\mathbb{F}
\mathbb{F}	\mathbb{T}	\mathbb{T}
\mathbb{F}	\mathbb{F}	\mathbb{T}

جدول ۶: جدول مقادیر ترکیب شرطی

۶.۱.۱ ترکیب دوشرطی

اگر بخواهیم از گزاره p گزاره p را نتیجه بگیریم و از گزاره p گزاره p را، مینویسیم $p\Leftrightarrow q$ (جدول ۷).

p	q	$p \Rightarrow q$	$q \Rightarrow p$	$p \Leftrightarrow q$
\mathbb{T}	\mathbb{T}	T	\mathbb{T}	\mathbb{T}
${\mathbb T}$	\mathbb{F}	\mathbb{F}	\mathbb{T}	\mathbb{F}
\mathbb{F}	\mathbb{T}	\mathbb{T}	\mathbb{F}	\mathbb{F}
\mathbb{F}	\mathbb{F}	Т	\mathbb{T}	Т

جدول ۷: جدول مقادیر ترکیب دوشرطی

با توجه به جدول مقادیر (۷) میتوان نتیجه گرفت:

$$p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p) \equiv (\neg p \lor q) \land (\neg q \lor p)$$
 (Υ)

۲۰۱ خواص گزارهها

گزارهها خواصی دارند که به شرح زیر است:

خودتوانی
$$\begin{cases} p \lor p &\equiv p \\ p \land p &\equiv p \end{cases}$$
 خودتوانی

جذبی
$$\begin{cases} p \lor (p \land q) & \equiv & p \\ p \land (p \lor q) & \equiv & p \end{cases}$$
 (۵)

جابهجایی
$$\begin{cases} p \lor q &\equiv q \lor p \\ p \land q &\equiv q \land p \end{cases}$$

شرکتپذیری
$$\begin{cases} p \lor (q \lor r) & \equiv & (p \lor q) \lor r \\ p \land (q \land r) & \equiv & (p \land q) \land r \end{cases}$$
 (Y)

متمم
$$\begin{cases} p \vee \neg p & \equiv & \mathbb{T} \\ p \wedge \neg p & \equiv & \mathbb{F} \end{cases} \tag{A}$$

(De Morgan) قانون دمورگان
$$\begin{cases} \neg (p \lor q) & \equiv & \neg p \land \neg q \\ \neg (p \land q) & \equiv & \neg p \lor \neg q \end{cases}$$
 (٩)