CORRECTED VERSION

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 8 August 2002 (08.08.2002)

PCT

(10) International Publication Number WO 2002/061113 A3

(51) International Patent Classification⁷: A61K 39/00, C07H 21/04, C12N 15/00, 15/63, 15/85

(21) International Application Number:

PCT/US2002/002598

(22) International Filing Date: 1 February 2002 (01.02.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/265,334 1 February 2001 (01.02.2001) Us

(71) Applicant (for all designated States except US): THE JOHNS HOPKINS UNIVERSITY [US/US]; 720 Rutland Avenue, Baltimore, MD 21205 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): WU, Tzyy-Choou [—/US]; 11002 Nacirema Lane, Stevenson, MD 21153 (US). HUNG, Chien-Fu [—/US]; 6605 Sanzo Road, Baltimore, MD 21209 (US).
- (74) Agent: LIVNAT, Shmuel; Venable, Baetjer, Howard & Civiletti, LLP, 1201 New York Avenue, NW, Suite 1000, P.O. Box 34385, Washington, DC 20043-9998 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report:

12 December 2002

(48) Date of publication of this corrected version:

6 May 2004

(15) Information about Correction:

see PCT Gazette No. 19/2004 of 6 May 2004, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NUCLEIC ACID DERIVED VACCINE THAT ENCODES AN ANTIGEN LINKED TO A POLYPEPTIDE THAT PRO-MOTES ANTIGEN PRESENTATION

(57) Abstract: Improved molecular vaccines comprise nucleic acid vectors that encode a fusion polypeptide that includes polypeptide or peptide physically linked to an antigen. The linked polypeptide is one that (a) promotes processing of the expressed fusion polypeptide via the MHC class I pathway and/or (b) promotes development or activity of antigen presenting cells, primarily dendritic cells. These vaccines employ one of several types of nucleic acid vectors, each with its own relative advantages: naked DNA plasmids, self-replicating RNA replicons and suicidal DNA-based on viral RNA replicons. Administration of such a vaccine results in enhance immune responses, primarily those mediated by CD8+ cytotoxic T lymphocytes, directed against the immunizing antigen part of the fusion polypeptide. Such vaccines are useful against tumor antigens, viral antigens and antigens of other pathogenic microorganisms and can be used in the prevention or treatment of diseases that include cancer and infections.

SUPERIOR MOLECULAR VACCINE BASED ON SELF-REPLICATING RNA, SUICIDAL DNA OR NAKED DNA VECTOR, THAT LINKS ANTIGEN WITH POLYPEPTIDE THAT PROMOTES ANTIGEN PRESENTATION

STATEMENT OF RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH

This invention was made in part with federal government support under National Institutes of Health grants NIH 5 PO1 34582-01, U19 CA72108-02, RO1 CA72631-01, which provides to the United States government certain rights in this invention.

BACKGROUND OF THE INVENTION

Field of the Invention

5

10

15

20

25

30

The present invention in the fields of molecular biology, immunology and medicine relates to chimeric nucleic acids encoding fusion proteins and their use as vaccines to enhance immune responses, primarily cytotoxic T lymphocyte (CTL) responses to specific antigens such as tumor antigens. The fusion proteins comprise an antigenic polypeptide fused to a protein that promotes processing via the MHC class I pathway and/or promotes development or activity of antigen presenting cells (APCs), primarily dendritic cells (DCs). Preparation of the foregoing nucleic acid constructs as naked DNA plasmids, self-replicating RNA replicons and suicidal DNA-based viral RNA replicons confer various advantages on these molecular vaccines.

Description of the Background Art

Antigen-specific cancer immunotherapy has emerged as a promising approach because it is capable of engendering specific immunity against neoplastic cells while sparing normal cells. Increasing evidence suggests that professional antigen-presenting cells (APCs), particularly dendritic cells (DCs), are central players in this process. An effective vaccine strategy includes targeting the tumor antigen to professional APCs that in turn activate antigen-specific T cells (for review, see (Chen, CH *et al.*, *J Biomed Sci.* 5:231-52, 1998.).

Recently, DNA vaccines have become attractive as an approach for generating antigen-specific immunotherapy (for review, see (Robinson, HL *Vaccine* 15:785-778, 1997; Robinson, HL *et al.*, *Semin Immunol.* 9:271-83, 1997; Pardoll, DM *et al.*, *Immunity.* 3:165-9, 1995; Donnelly, JJ *et al.*, *Annu Rev Immunol.* 15: 617-48, 1997). The advantages of naked DNA include purity, ease of preparation and stability. In addition, DNA-based vaccines can be prepared inexpensively and rapidly in large-scale. Furthermore, multiple DNA vaccines can be administered simultaneously. However, naked DNA vaccines raise concerns such as potential integration into the host genome and cell transformation. Because they do not have the intrinsic ability to amplify *in vivo* as do viral vaccines, DNA vaccines may be more limited in their potency.

The present inventors conceived that a directing a DNA vaccine encoding an antigen (in the form of a fusion protein) to cells which activate immune responses, such as DCs, would enhance the vaccine's potency. Others demonstrated that linking DNA encoding the cytokine GM-CSF gene to DNA encoding an HIV or hepatitis C antigen enhanced the potency of DNA vaccines (Lee, AH *et al., Vaccine 17*: 473-9, 1999; Lee, SW *et al., J Virol. 72*: 8430-6, 1998). The chigmeric GM-CSF/antigen is believed to act as an immunostimulatory signal to DCs, inducing their differentiation from an immature form (Banchereau, J *et al., Nature 392*: 245-52, 1998). Since DCs and their precursors express high levels of GM-CSF receptors, the chimeric GM-CSF/antigen should target and concentrate the linked antigen to the DCs and further improve the vaccine's potency.

10

5

Use of self-replicating RNA vaccines (RNA replicons) has also been identified as an important strategy in nucleic acid vaccine development. RNA replicon vaccines may be derived from alphavirus vectors, such as Sindbis virus (Hariharan, MJ et al., 1998. J Virol 72:950-8.), Semliki Forest virus (Berglund, PM et al., 1997. AIDS Res Hum Retroviruses 13:1487-95; Ying, HT et al., 1999. Nat Med 5:823-7.) or Venezuelan equine encephalitis virus (Pushko, PM et al., 1997. Virology 239:389-401). These self-replicating and self-limiting vaccines may be administered as either (1) RNA or (2) DNA which is then transcribed into RNA replicons in cells transfected in vitro or in vivo (Berglund, PC et al., 1998. Nat Biotechnol 16:562-5; Leitner, WW et al., 2000. Cancer Res 60:51-5).

20

15

Self-replicating RNA infects a diverse range of cell types and allows the expression of a linked antigen of interest at high levels (Huang, HV 1996. *Curr Opin Biotechnol* 7:531-5) Because viral replication is toxic to infected host cells, such self-replicating RNA preparations eventually causes lysis of the transfected cells (Frolov, I *et al.*, 1996. *J Virol* 70:1182-90). These vectors cannot integrate into the host genome, and therefore do not raise concerns of associated with naked DNA vaccines. This is particularly important for vaccine development where target proteins are potentially oncogenic, such as human papillomavirus (HPV) E6 and E7 proteins.

25

30

The present inventors and their colleagues recently demonstrated that linkage of HPV-16 E7 antigen to *Mtb* heat shock protein 70 (Hsp70) leads to the enhancement of DNA vaccine potency (Chen, CH *et al.*, 2000. *Cancer Research* 60:1035-1042). (See also co-pending patent applications USSN 09/501,097, filed 09 February 2000; and USSN 099/421,608, filed 20 October 1999, all of which are incorporated by reference in their entirety.) Immunization with HSP complexes isolated from tumor or virus-infected cells induced potent anti-tumor immunity (Janetzki, S *et al.*, 1998. *J Immunother 21*:269-76) or antiviral immunity (Heikema, AE *et al.*, *Immunol Lett* 57:69-74). In addition, immunogenic HSP-peptide complexes dould be reconstituted *in vitro* by mixing the peptides with HSPs (Ciupitu, AM *et al.*, 1998. *J Exp Med* 187:685-91). Furthermore, HSP-based protein vaccines have been created by fusing antigens to HSPs (Suzue, K *et al.*, 1996. *J Immunol* 156:873-9). The results of these investigations

point to HSPs a attractive candidates for use in immunotherapy. However, prior to the present inventors' work, HSP vaccines were all peptide/protein-based vaccines or, in more recent cases, were in the form of naked DNA. To date, there have been no reports of HSPs incorporated into self-replicating RNA vaccines.

5

10

15

20

25

30

Another molecule that stimulates growth of DC precursors and can help in generating large numbers of DCs *in vivo* is Flt3-ligand ("FL") (Maraskovsky, E *et al.*, *J Exp Med 184*: 1953-62, 1996, Shurin, MR *et al.*, *Cell Lmmunol. 179*: 174-84, 1997). FL has emerged as an important molecule in the development of tumor vaccines that augment numbers and action of DCs *in vivo*. Flt3, a murine tyrosine kinase receptor, first described in 1991 (Rosnet, O *et al.*, *Oncogene*. 6: 1641-50, 1991), was found to be a member of the type III receptor kinase family which includes -kit and c-fms (for review, see (Lyman, SD *Curr Opin Hematol*. 5:192-6, 1998). In hematopoietic tissues, the Flt3expression is restricted to the CD34+ progenitor population. Flt3 has been used to identify and subsequently clone the corresponding ligand, Flt3-ligand or "FL" (Lyman, SD *et al.*, *Cell. 75*: 1157-67, 1993; Hannum, C *et al.*, *Nature*. *368*: 643-8, 1994).

The predominant form of FL is synthesized as a transmembrane protein from which the soluble form is believed to be generated by proteolytic cleavage. The soluble form of FL (the extracellular domain or "ECD") is functionally similar to intact FL (Lyman, SD *et al., Cell. 75*: 1157-67, 1993). These proteins function by binding to and activating unique tyrosine kinase receptors. Expression of the Flt3 receptor is primarily restricted, among hematopoietic cells, to the most primitive progenitor cells, including DC precursors. The soluble ECD of FL induced strong anti-tumor effects against several murine model tumors including fibrosarcoma (Lynch, DH *et al., Nat Med. 3*: 625-31, 1997), breast cancer (Chen, K et al *Cancer Res. 57*: 3511-6, 1997; Braun, SE *et al., Hum Gene Ther. 10*: 2141-51, 1999), liver cancer (Peron, JM *et al., J Immunol. 161*: 6164-70, 1998), lung cancer (Chakravarty, PK *et al., Cancer Res. 59*: 6028-32, 1999), melanoma and lymphoma (Esche, C *et al., Cancer Res. 58*: 380-3, 1998).

There is a need in the art for improved molecular vaccines, such as nucleic acid vaccines, that combine potency and safety. The present invention helps meet this need by its design of novel fusion or chimeric polypeptides and nucleic acids coding therefor, that link the antigen with specialized polypeptides that promote antigen presentation by various mechanisms and that exploit delivery of these constructs by various nucleic acid vectors.

Partial List of Abbreviations used

APC, antigen presenting cell; BHK, baby hamster kidney; CMV, cytomegalovirus; CTL, cytotoxic T lymphocyte; DC, dendritic cell; ECD, extracellular domain; ELISA, enzyme-linked immunosorbent assay; FL, Flt3 ligand; GFP, green fluorescent protein; HPV, human papillomavirus; HSP, heat shock

protein; Hsp70, mycobacterial heat shock protein 70; IFN- γ , interferon- γ ; i.m., intramuscular(ly); i.v., intravenous(ly); MHC, major histocompatibility complex; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; β -gal, β -galactosidase

5

10

15

20

25

30

SUMMARY OF THE INVENTION

Self-replicating RNA vaccines (RNA replicons) have emerged as an important strategy for nucleic acid vaccine development. The present inventors evaluated the effect of linking HPV type 16 (HPV-16) E7 as a model antigen to *Mycobacterium tuberculosis* (*Mtb*) heat shock protein 70 (Hsp70) on the potency of antigen-specific immunity generated by a Sindbis virus self-replicating RNA vector, SINrep5. The results indicated that this RNA replicon vaccine containing E7/Hsp70 fusion genes generated significantly greater E7-specific T cell-mediated immunity than vaccines comprising wild type E7 DNA.

HPV-16 E7 was selected as a model antigen for vaccine development because HPVs, particularly HPV-16, are associated with most cervical cancers. HPV oncogenic proteins, E6 and E7, are co-expressed in most HPV-containing cervical cancers and are important in the induction and maintenance of cell transformation. Therefore, vaccines targeting E6 or E7 provide an opportunity to prevent and treat HPV-associated cervical malignancies. HPV-16 E7 is a well-characterized cytoplasmic/nuclear protein that is more conserved than E6 in HPV-associated cancer cells; E7 has been tested in a variety of HPV vaccines.

Furthermore, *in vitro* studies demonstrated that E7 antigen from apoptotic cells that have been transfected with E7/Hsp70 RNA replicons is taken up by bone marrow-derived dendritic cells (DC's) and presented more efficiently through the MHC class I pathway compared to antigen from than apoptotic cells transfected by wild-type E7 RNA replicons.

Importantly, the fusion of Hsp70 to E7 converted a less effective vaccine into one with significant potency against E7-expressing tumors. This antitumor effect involved NK cells and CD8⁺ T cells. Thus, fusion of a nucleic acid sequence encoding Hsp70 to nucleic acid encoding an antigen of interest in the form of a self-replicating RNA vaccine greatly enhances the potency of this vaccine.

Naked DNA vaccines represent an attractive approach for generating antigen-specific immunity because of their stability and simplicity of delivery. Concerns with DNA vaccines include potential integration into the host genome, cell transformation, and limited potency. The use of DNA-based alphaviral RNA replicons ("suicidal DNA vectors"), as disclosed herein, may alleviate concerns surrounding DNA integration or cell transformation since suicidal DNA vectors eventually cause lysis of the cells they transfect.

To further improve the potency of suicidal DNA vaccines, the present inventors linked Hsp70 to E7 (as a model antigen) using DNA-based Semliki Forest virus (SFV) RNA vector, pSCA1. This suicidal DNA vaccine containing E7/Hsp70 fusion DNA produced a significantly greater E7-specific T cell-

mediated immune response in mice than did vaccines containing the wild type E7 DNA alone. Importantly, this fusion converted a less effective vaccine into one with significant therapeutic potency against established E7-expressing metastatic tumors. The antitumor effect was dependent upon CD8+ T cells. Thus, linkage of Hsp70 to an antigen enhances the potency of a suicidal DNA vaccine.

5

10

Flt3 (fms-like tyrosine kinase 3)-ligand is an important cytokine in the development and differentiation of professional APCs, particularly DCs. A recombinant chimeric or fusion polypeptide molecule comprising the extracellular domain (ECD) of Flt3-ligand (FL) linked to an antigen targets the antigen to DCs and their precursors. Using HPV-16 E7 as a model antigen, the present inventors linked FL to E7 and caused stimulation of an antigen-specific immune response by a naked DNA vaccine administered intradermally via gene gun. Vaccines that included DNA encoding a chimeric FL-E7 fusion polypeptide dramatically increased the frequency of E7-specific CD8+ T cells when compared to vaccines of only E7 DNA. Cells transfected in vitro with FL-E7 DNA presented E7 via the MHC class I pathway more efficiently than did cells transfected with wild-type E7 DNA. Furthermore, bone marrowderived DCs pulsed with lysates of cells that had been transfected to express an FL-E7 fusion protein presented E7 (via the MHC class I pathway) more efficiently than did DCs pulsed with lysates of cells expresssing (after transfection) E7 protein alone. More importantly, this fusion construct rendered a less effective vaccine highly potent in inducing a therapeutic response against established E7-expressing metastatic tumors. The FL-E7 fusion vaccines mainly targeted CD8+T cells as anti-tumor effects were completely independent of CD4+ T cells. Thus, fusion of DNA encoding the ECD of FL to DNA encoding an antigen markedly enhances the potency of a DNA vaccine acting via CD8-dependent

20

pathways.

15

In one embodiment, the antigen (e.g., the MHC class I-binding peptide epitope) is derived from a pathogen, e.g., it comprises a peptide expressed by a pathogen. The pathogen can be a virus, such as, e.g., a papilloma virus, a herpesvirus, a retrovirus (e.g., an immunodeficiency virus, such as HIV-1), an adenovirus, and the like. The papilloma virus can be a human papilloma virus; for example, the antigen (e.g., the Class I-binding peptide) can be derived from an HPV-16 E7 polypeptide. In one embodiment, the HPV-16 E7 polypeptide is substantially non-oncogenic, i.e., it does not bind retinoblastoma polypeptide (pRB) or binds pRB with such low affinity that the HPV-16 E7 polypeptide is effectively non-oncogenic when expressed or delivered in vivo.

30

25

In alternative embodiments, the pathogen is a bacteria, such as Bordetella pertussis; Ehrlichia chaffeensis; Staphylococcus aureus; Toxoplasma gondii; Legionella pneumophila; Brucella suis; Salmonella enterica; Mycobacterium avium; Mycobacterium tuberculosis; Listeria monocytogenes; Chlamydia trachomatis; Chlamydia pneumoniae; Rickettsia rickettsii; or, a fungi, such as, e.g., Paracoccidioides brasiliensis; or other pathogen, e.g., Plasmodium falciparum.

In another embodiment, the MHC class I-binding peptide epitope is derived from a tumor cell. The tumor cell-derived peptide epitope can comprise a tumor associated antigen, *e.g.*, a tumor specific antigen, such as, *e.g.*, a HER-2/neu antigen.

In one embodiment, the isolated or recombinant nucleic acid molecule is operatively linked to a promoter, such as, e.g., a constitutive, an inducible or a tissue-specific promoter. The promoter can be expressed in any cell, including cells of the immune system, including, e.g., antigen presenting cells (APCs), e.g., in a constitutive, an inducible or a tissue-specific manner.

5

10

15

20

25

30

In alternative embodiments, the APCs are dendritic cells, keratinocytes, astrocytes, monocytes, macrophages, B lymphocytes, a microglial cell, or activated endothelial cells, and the like.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

All publications, patents, patent applications, GenBank sequences and ATCC deposits, cited herein are hereby expressly incorporated by reference for all purposes.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic diagram showing the SINrep5 self-replicating RNA transcripts. A methylated M⁷G, "cap" is located at the 5' end of the mRNA, followed by a sequence responsible for the self-replication (replicase), the gene of interest (i.e. E7, Hsp70, E7/GFP or E7/Hsp70), and a polyadenylated tail (AAAA).

Figure 2. Antigen ppecific CD8⁺ T cell cytotoxic activity. Mice (5 per group) were immunized with various RNA vaccines via intramuscular (i.m.) injection. Splenocytes from each group (5 mice per group) were pooled 14 days after vaccination. To perform the cytotoxicity assay, pooled splenocytes from the various self-replicating RNA vaccines were cultured with E7 peptide (aa 49-57, RAHYNIVTF, SEQ ID NO:22, which includes a MHC class I epitope) for 6 days and used as effector cells. TC-1 tumor target cells were mixed with splenocytes at various effector/target (E/T) ratios. Cytolysis was determined by quantitative measurement of LDH release. The self-replicating RNA E7/Hsp70 vaccine generated significantly higher lysis than the other RNA vaccines (p<0.001). Error bars reflect 3 samples for each group. CTL assays shown are from one representative experiment of three performed.

Figure 3. IFN-γ secretion by E7-specific CD8⁺ T cells. Mice were immunized i.m. with various self-replicating RNA vaccines. Splenocytes were collected 14 days after vaccination. Splenocytes from various self-replicating RNA vaccines were cultured *in vitro* with E7 peptide RAHYNIVTF, with or without peptide for 6 days. The culture supernatants were collected for measurement of IFN-γ concentration by ELISA. The CD8⁺ T cells were induced by the MHC class I epitope of E7.

Splenocytes from the self-replicating E7/Hsp70 RNA group stimulated with the E7 RAHYNIVTF secreted the most IFN- γ compared to the other RNA vaccines (p<0.001, one-way ANOVA). Results from the ELISA are from one representative experiment of three performed.

5

10

15

20

25

30

Figure 4. IFN-γ secretion by E7-specific CD4⁺ T cells. Splenocytes from mice vaccinated with various self-replicating RNA vaccines were cultured *in vitro* with E7 peptide containing the MHC class II epitope (aa 30-67, DSSEEEDEIDGPAGQAEPDRAHYNIVTFCCKCDSTLRL, (SEQ ID NO:23), or no peptide (control). The culture supernatants were collected for measurement of IFN-γ concentrations by ELISA. There was no significant increase in secretion of IFN-γ by splenocytes from the self-replicating E7/Hsp70 RNA group stimulated with the above peptide compared to the other RNA vaccines (one-way ANOVA). Results from the ELISA are from one representative experiment of three performed.

Figure 5. Various SINrep5 self-replicating RNA vaccines induce tumor protection. Mice (5 per group) were immunized i.m. with the RNA vaccines. Two weeks later, mice were challenged with TC-1 tumor cells i.v. (tail vein) at 10⁴ cells/mouse. Mice were monitored twice weekly and sacrificed on day 21 after challenge. Lungs were dissected from the mice 35 days after vaccination with SINrep5, SINrep5-Hsp70, SINrep5-E7, SINrep5-E7 mixed with SINrep5-Hsp70, SINrep5-E7/GFP or SINrep5-E7/Hsp70 RNA. The mean number of tumor nodules on the lung surface of the vaccinated mice were counted, wher a decrease was an indication of vaccine effectiveness at controlling growth of a tumor expressin HPV-16 E7. There were fewer mean pulmonary nodules in mice vaccinated with self-replicating E7/Hsp70 RNA vaccines (0.1 μg, 1μg, and 10 μg) compred to mice vaccinated with the other RNA vaccines (10 μg) (p<0.001, one-way ANOVA). Self-replicating SINrep5-E7/Hsp70 RNA vaccines protect mice from intravenous tumor challenge even at the low dose of 0.1 μg whereas mice vaccinated with 10 μg of all the other vaccines developed numerous lung nodules. These tumor protection experiments were repeated three times with similar results.

Figure 6 shows representative photographs of lung tumors in each group. C57BL/6 mice were vaccinated i.m. with various RNA replicon-based vaccines (10 μg/mouse) and challenged with TC-1 tumor i.v., as above. Mice were sacrificed 35 days after vaccination. There are multiple grossly visible lung tumors in unvaccinated control mice and mice vaccinated with SINrep5 or SINrep5-E7 RNA vaccines. Lung tumors in SINrep5-E7/Hsp70 RNA vaccinated group are not evident at the magnification used.

Figure 7 shows the effect of lymphocyte subset depletion on the potency of self-replicating SINrep5-E7/Hsp70 RNA vaccine. Mice were immunized with 1 μ g of thils vaccine i.m.. Two weeks after vaccination, mice were challenged with $1x10^4$ TC-1 cells/ mouse i.v. Depletions were initiated one week prior to tumor challenge and were carried out for 28 days. Three weeks after tumor challenge,

7

mice were sacrificed. The mean number of pulmonary nodules in vaccinated mice was determined as above. Depletion of $CD8^+$ T cells or of NK1.1 cells resulted in a higher number of pulmonary nodules vs. animals receiving control IgG_{2a} isotype antibody. The mean number of lung nodules in mice depleted of $CD4^+$ T cells were similar to those in mice receiving control antibody, indicating that $CD4^+$ T cells were not critical for the antitumor effect. Depletion of NK1.1+ cells had a greater impact on antitumor activity than did loss of $CD8^+$ T cells.

5

10

15

20

25

30

Figure 8 shows flow cytometric analysis of NK cells in mice immunized with various self-replicating SINrep5 RNA vaccines. Splenocytes were stained for CD3 and NK1.1 immediately, without stimulation. Fig. 8A shows numbers of NK cells in mice immunized with various self-replicating RNA vaccines. The percentage of NK cells among the spleen cells is indicated in the upper left corner. Fig. 8B is a histogram demonstratinge the percentages of NK cells in vaccinated mice. The percentage of NK cells in mice immunized with self-replicating RNA vaccines was higher than in unimmunized controls. There was no significant difference between the percentage of NK cells among mice given various self-replicating RNA vaccines. These results are from one representative experiment of two performed.

Figure 9 shows apoptotic death of host cells induced by self-replicating RNA vaccines. To determine if self-replicating RNA vaccines killed host cells, RNA transcribed *in vitro* from various SINrep5 plasmids was transfected into BHK21 cells. BHK 21 cells that were electroporated in the absence of RNA or unhandled BHK21 cells served as controls. The percentages of apoptotic and necrotic BHK21 cells were determined by staining with annexin V-FITC and propidium iodide (PI) and flow cytometric analysis. Transfection with SINrep5 RNA vaccines caused a decline in the percentages of apoptotic cells 24 hr to 72 hr after electroporation (representative with SIN5-E7/Hsp70 70.3±3.6% for 24 hr, 49.3±4.2% for 48 hr, 18.0±3.1% for 72 hr, p<0.001, one-way ANOVA). Thus no statistically significant difference were observed whe comparing the percentage of apoptotic cells transfected with various SINrep5 RNA vaccines. This experiment was repeated twice with similar results.

Figure 10. Enhanced MHC class I presentation of E7 to in bone marrow derived DCs pulsed with BHK21 cells transfected by SINrep5-E7/Hsp70 RNA as measured in CTL assays. BHK21 cells were electroporated with various self-replicating RNA constructs and co-cultured with BM-derived DCs. The DCs were then used as target cells for E7-specific CD8⁺ T effector cells (28). Cytolysis was determined by quantitative measurements of LDH as described herein. Self-replicating E7/Hsp70 RNA vaccines generated significantly higher lysis (at 3:1 and 9:1 E/T ratios) compared to the other RNA vaccines (p<0.001). CTL assays shown here are from one representative experiment of two performed.

Figure 11 is a schematic diagram of pSCA1-E7, pSCA1-Hsp70 and pSCA1-E7/Hsp70 constructs. The DNA-based SFV replicon vector, pSCA1, encodes the alphaviral replicon from Semliki

Forest virus. E7, Hsp70, and E7/Hsp70 DNA were cloned into the BamHI/SmaI sites of pSCA1. The HCMV IE promoter with subgenomic promoter are indicated with arrows.

5

10

15

20

25

30

Figures 12A and 12B show measurement of E7-specific CD8⁺ T cell precursors ("Tp") by intracellular cytokine staining and flow cytometric analysis. C57BL/6 mice were immunized with DNA-based self-replicating pSCA1-E7, pSCA1-Hsp70, pSCA1-E7/Hsp70, or pSCA1 without insert, using a gene gun and were boosted with the same regimen one week later. Fig. 12A): splenocytes from vaccinated mice were cultured with E7 peptide RAHYNIVTF (see above) overnight, stained for both CD8 and intracellular IFN-γ, and analyzed by flow cytometry. Mice vaccinated with E7/Hsp70 DNA generated the highest number of IFNγ-secreting CD8⁺ "double positive" T cells compared to other groups. (Fig. 12B). Flow cytometry was performed in the presence (solid columns) and absence (open columns) of RAHYNIVTF peptide. Results are expressed as the mean number of IFN-γ-secreting CD8⁺ T cells/3x10⁵ splenocytes (± SEM). Results shown here are from one representative experiment of two performed.

Figures 13A and 13B show flow cytometry analysis of IFN-γ secreting or inteleukin-4 (IL-4)-secreting E7-specific CD4⁺ T cells in mice vaccinated with various suicidal DNA vaccines. Mice were immunized as described in the description of Figure 12 (Fig. 13). Splenocytes from vaccinated mice were stimulated *in vitro* with the T-helper E7 peptide DSSEEEDEIDGPAGQAEPDRAHYNIVTFCCKCDSTLRL (see above) overnight and were stained for both CD4 and intracellular IFN-γ and subjected to flow cytometry. No significant differences in the frequency of E7-specific IFN-γ-secreting CD4⁺ cells was observed in mice immunized with various recombinant DNA vaccines vs control. Fig. 13B: Splenocytes from vaccinated mice were cultured *in vitro* with the above E7 peptide overnight and stained for both CD4 and intracellular IL-4. The number of IL-4 secreting CD4⁺ T cells was analyzed by flow cytometry. No significant difference in the frequency of IL-4 secreting E7-specific CD4⁺ cells was observed among mice immunized with various recombinant DNA vaccines. This figure represents the mean value of three experiments ± SEM.

Figure 14 shows E7-specific antibody responses in mice immunized with various pSCA1 suicide DNA vaccines. E7-specific antibodies were measured with ELISA using a serial dilution of serum. The results from the 1:100 dilution are presented, showing mean absorbance (OD_{450}) (\pm SEM). The results are from one representative experiment of two performed.

Figure 15 shows *in vivo* tumor protection against the growth of TC-1 tumors. Mice were immunized with various suicidal DNA vaccines and inoculated with tumors as described below. 80% of mice vaccinated with the pSCA1-E7/Hsp70 suicidal DNA vaccine remained tumor-free 70 days after TC-1 challenge. The results shown here are from one representative experiment of two performed.

9

Figure 16A and 16B show results of *in vivo* tumor therapy against pre-existing metastatic TC-1 tumor cells. Mice were first inoculated i.v. with tumors and then treated with various suicidal DNA vaccines. Fig. 16A shows that the pSCA1-E7/Hsp70 group had the lowest number of pulmonary metastatic nodules of all the groups (ANOVA, P<0.001). Results are from one representative experiment of two performed. Fig. 16B shows representive lung tumors in each vaccinated group. Multiple grossly visible lung tumors were observed in unvaccinated control mice and mice vaccinated with Hsp70, E7, or vector DNA alone. No lung tumors were observed at this maginification in the pSCA1-E7/Hsp70 vaccinated group.

5

10

15

20

25

30

Figure 17. *In vivo* antibody depletion experiments determined the requirement for cells of certain lymphocyte subsets on the potency of the pSCA1-E7/Hsp70 suicidal DNA vaccine. Mice were inoculated i.v. with tumors and treated with the pSCA1-E7/Hsp70 suicidal DNA vaccine as described herein. CD4, CD8 or NK1.1 depletion were initiated one week prior to tumor challenge and lasted 40 days after tumor challenge. All naïve mice and mice depleted of CD8⁺ T cells grew tumors within 10 days

Figure 18A and 18B show aschematic domain structure of the Flt3-ligand protein and FL-E7 fusion peptide (Fig. 18A) and the sequence of the FL-E7 construct, comprising the ECD of FL (Fig. 18B; SEQ ID NO:11 and 12). Residues 1-189 are FL-derived, residues 191-287 are E7-derived. The remaining residues (*e.g.*, 288-302) are from the vector DNA.

Figure 19A and 19B. Intracellular cytokine staining with flow cytometry analysis to determine E7-specific CD8 $^+$ T cell precursors in C57BL/6 mice . Mice were immunized with FL DNA, E7 DNA (E7), FL-E7 DNA or FL mixed with E7 DNA (FL+E7) via gene gun, or received no vaccination. For vaccinated mice, 2 μ g DNA /mouse was administered twice. Splenocytes were harvested 7 days after the last DNA vaccination. E7-specific CD8 $^+$ T cells. (Fig 19A) Splenocytes from vaccinated mice were cultured *in vitro* with E7 peptide (aa 49-57) overnight and were stained for both CD8 and intracellular IFN- γ . The number of IFN- γ secreting CD8 $^+$ T cell precursors in mice immunized with various recombinant DNA vaccines was analyzed by flow cytometry. Mice vaccinated with FL-E7 DNA generated the highest IFN- γ $^+$ CD8 $^+$ double positive T cells compared to other groups. (Fig. 19B) The number of IFN- γ -producing E7-specific CD8 $^+$ T cells was determined using flow cytometry in the presence (solid columns) and absence (open columns) of E7 peptide (aa 49-57). Data are expressed as mean number of CD8 $^+$ IFN- γ $^+$ cells/3x10 5 splenocytes \pm SEM. The data from intracellular cytokine staining shown here are from one representative experiment of two performed.

Figure 20A and 20B. Flow cytometry analysis of IFN-γ secreting and IL-4-secreting E7-specific CD4⁺ cells in mice vaccinated with various recombinant DNA vaccines. Mice were immunized as

described in Figure Legend 2. (Fig. 20A) Splenocytes from vaccinated mice were cultured *in vitro* with E7 peptide (aa 30-67) overnight and were stained for both CD4 and intracellular IFN-γ. The number of IFN-γ-secreting CD4⁺ T cells was analyzed using flow cytometry. No significant difference in the frequency of E7-specific IFN-γ-secreting CD4⁺ cells was observed in mice immunized with various recombinant DNA vaccines. (Fig. 20B) Splenocytes from vaccinated mice were cultured *in vitro* with E7 peptide (aa 30-67) overnight and stained for both CD4 and intracellular IL-4. The percentage of IL-4 secreting CD4⁺ T cells was analyzed by flow cytometry. The IL-4 secreting activated mouse splenocytes (MiCK-2) from PharMingen were used as positive controls to assure the success of intracytoplasmic IL-4 staining for this study. The specificity of IL-4 staining was demonstrated by the absence of CD4⁺ IL-4⁺ T cells when the IL-4 antibody was omitted. No significant difference in the frequency of IL-4 secreting E7-specific CD4⁺ cells was observed in mice immunized with various recombinant DNA vaccines. The intracellular cytokine staining shown here are from one representative experiment of two performed.

5

10

15

20

25

30

Figure 21. *In vivo* tumor protection experiments against the growth of TC-1 tumors. Mice were immunized with FL DNA, E7 DNA, FL-E7 DNA or FL mixed with E7 DNA (FL+E7) via gene gun and boosted with the same regimen one week later. One week after the last vaccination, mice were challenged with 1x10⁴ TC-1 cells/ mouse subcutaneously. Mice were monitored for evidence of tumor growth by palpation and inspection twice a week. 100% of mice receiving FL-E7 DNA vaccination remained tumor-free 60 days after TC-1 challenge. The data collected from the *in vivo* tumor protection experiments shown here are from one representative experiment of two performed.

Figure 22A and 22B. *In vivo* tumor treatment experiments against pre-existing metastatic TC-1 tumor cells. The mice were intravenously challenged with 1xl0⁴ cells/mouse TC-1 tumor cells in the tail vein on day 0. Three days after challenge with TC-1 tumor cells, mice received 2 μg of FL DNA, E7 DNA, FL-E7 DNA, FL mixed with E7 (FL+E7), via gene gun or unvaccinated. One week later, these mice were boosted with the same regimen as the first vaccination. The mice were sacrificed on day 25. The FL-E7 group has (Fig. 22A) the least number of pulmonary metastatic nodules and (Fig. 22B) the lowest lung weight as compared with the other vaccinated groups (one-way ANOVA, P<0.001). The data obtained from these *in vivo* treatment experiments are from one representative experiment of two performed.

Figure 23. Representative gross pictures of the lung tumors in each vaccinated group. Following *in vivo* tumor treatment experiments against pre-existing metastatic TC-1 tumor cells, there are multiple grossly visible lung tumors in unvaccinated control mice and mice vaccinated with FL, wild-type E7 DNA or FL mixed with E7 DNA. The lung tumors in FL-E7 vaccinated group cannot be seen at the magnification provided in this figure.

Figure 24. *In vivo* antibody depletion experiments to determine the effect of lymphocyte subset on the potency of FL-E7 DNA vaccine. Mice were immunized with 2 μ g FL-E7 DNA via gene gun and boosted with 2 μ g FL-E7 DNA one week later. One week after the last vaccination, mice were challenged with 1×10^4 TC-1 cells/ mouse subcutaneously. CD4, CD8 and NK1.1 depletions were initiated one week prior to tumor challenge and lasted 40 days after tumor challenge. Note: all of the unvaccinated mice and all of the mice depleted of CD8⁺ T cells grew tumors within 14 days after tumor challenge. The data of antibody depletion experiments shown here are from one representative experiment of two performed.

5

10

15

20

25

30

Figure 25. CTL assays to demonstrate enhanced presentation of E7 through the MHC class I pathway in cells transfected with FL-E7 DNA. 293 D^bK^b cells were transfected with various DNA vaccines with lipofectamine and collected 40-44 hr after transfection. Transfected 293 D^bK^b cells were used as effector cells. CTL assays with various E/T ratios were performed. Note: The 293 D^bKb cells transfected with FL-E7 DNA generated significantly higher percentages of specific lysis as compared to 293 D^bKb cells transfected with other DNA vaccines. CTL assays shown here are from one representative experiment of two performed.

Figure 26. CTL assays to demonstrate enhanced MHC class I presentation of E7 in bone marrow derived dendritic cells pulsed with cell lysates containing chimeric FL-E7 protein. Bone marrow-derived DCs were pulsed with cell lysates from 293 D b Kb cells transfected with various DNA vaccines in different concentration (50 µg/ml, 10 µg/ml, 2 µg/ml, and 0.4 µg/ml) for 16-24 hrs. D b -restricted E7-specific CD8 $^+$ T cells were used as effector cells. CTL assays was performed at fixed E/T (9/1) ratio with 9x10 4 of E7-specific T cells mixed with 1x10 4 of prepared DCs in a final volume of 200 µl. Results of CTL assays were assessed using by quantitative measurements of LDH as described in the Materials and Methods. Note: DCs pulsed with lysates from cells transfected with FL-E7 DNA generated significantly higher percentages of specific lysis compared to DCs pulsed with lysates from cells transfected with other DNA vaccines. CTL assays shown here are from one representative experiment of two performed.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention provides compositions and methods for enhancing the immune responses, particularly cytotoxic T cell immune responses, induced by *ex vivo* or *in vivo* administration of chimeric polypeptides or, preferably, nucleic acid vaccines that encode these chimeric polypeptides. The preferred chimeric or fusion polypeptide comprises(1) at least one first polypeptide or peptide that, upon

introduction to cells of the host immune system, *in vitro* or *in vivo*, promotes (a) processing via the MHC class I pathway and/or (b) development or activity of APCs, primarily DCs, and (2) at least one second polypeptide or peptide that is an antigenic polypeptide or peptide in the host. As noted, in a preferred embodiment, the chimeric or fusion polypeptides are "indirectly" administered by administration of a nucleic acid that encodes the chimeric molecule; the nucleic acid construct, and thus the fusion protein, is expressed *in vivo*. The chimeric nucleic acids are administered in the form of DNA vaccines, either naked DNA or suicidal DNA, or a self-replicating RNA replicons.

5

10

15

20

25

30

The fusion protein comprises at least two domains or repeats thereof. The first domain again comprises a polypeptide that promotes (a) processing via the MHC class I pathway and/or (b) development or activity of APCs, and the second domain comprises a peptide or polypeptide, that includes one or several epitopes, derived from an antigen against which it is desired to induce an immune response.

For convenience, a polypeptide or peptide that promotes processing via the MHC class I pathway is abbreviated herein as "MHC-I-PP." A polypeptide or peptide that promotes development or activity of APCs, preferably DC's, is abbreviated DC-PP.

The exemplary MHC-I-PP protein describec herein is Hsp70. However, it is understood that any protein, or functional fragment or variant thereof, that has this activity can be used in the invention. A preferred fragment is a C-terminal domain ("CD") of Hsp70, which is designated "Hsp70_{CD}". One Hsp70_{CD} spans from about residue 312 to the C terminus of Hsp70 (SEQ ID NO:4). A preferred shorter polypeptide spans from about residue 517 to the C-terminus of SEQ ID NO:4. Shorter peptides from that sequence that have the ability to promote protein processing via the MHC-1 class I pathway are also included, and may be defined by routine experimentation.

The second type of domain of the chimeric molecule comprises an antigenic peptide, which can be derived from a pathogen, a cancer cell, or any source to which induction, enhancement or suppression of an immune response is desired. In a preferred embodiment, the peptide comprises at least one MHC class I-binding peptide epitope that helps stimulate CD8+ CTLs and is recognized by such cells and their precursors.

The order in which the two (or more) component polypeptides of the fusion protein are arranged, and therefore, the order of the encoding nucleic acid fragments in the nucleic acid vector, can be altered without affecting immunogenicity of the fusion polypeptides proteins and the utility of the composition. For example, the Hsp70-encoding (or FL -encoding) DNA sequences may be located 5' or 3' to the target antigen-encoding sequences. In one embodiment, these polypeptide-encoding nucleic acid domains are in-frame so that the DNA construct encodes a recombinant fusion polypeptide in which the antigen is located N- terminal to the Hsp70 or FL derived polypeptide.

The vaccines of the present invention include, the antigenic epitope itself and an MHC-I-PP such as Hsp70 or its active domain (CD), or DC-PP intercellular spreading protein such as FL. In addition to the specific antigens and vectors employed in the Examples, the present invention is intended to encompass a vector such as naked DNA, naked RNA, self replicating RNA replicons and viruses including vaccinia, adenoviruses, adeno-associated virus (AAV), lentiviruses and RNA alphaviruses.

In addition to the MHC-I-PP and/or DC-PP, the vaccine construct of the present invention optionally, may also include

5

10

15

20

25

30

- (a) an additional antigen targeting or processing signal such as proteins that promote intercellular transport, e.g., VP22 protein from herpes simplex virus and related herpes viruses; an endoplasmic reticulum chaperone polypeptide such as calreticulin, ER60, GRP94 or gp96, well-characterized ER chaperone polypeptide that representatives of the HSP90 family of stress-induced proteins (Argon (1999) Semin. Cell Dev. Biol. 10:495-505; Sastry (1999) J. Biol. Chem. 274:12023-12035; Nicchitta (1998) Curr. Opin. Immunol. 10:103-109; U.S. Patent 5,981,706)); cytoplasmic translocation polypeptide domains of pathogen toxins, such as domain II of Pseudomonas exotoxin ETA (ETAdII) or of similar toxins from Diptheria, Clostridium, Botulinum, Bacillus, Yersinia, Vibrio cholerae, or Bordetella pertussis; or active fragments or domains of any of the foregoing polypeptides.
- (b) an immunostimulatory cytokine, preferably those that target APCs, preferably DC's, such as granulocyte macrophage colony stimulating factor (GM-CSF), or active fragments or domains thereof; and
- (c) a costimulatory signal, such as a B7 family protein, including B7-DC (see commonly assigned U.S. patent application Serial No. 09/794,210), B7.1, B7.2, soluble CD40, etc.).
 (For description of some of the foregoin, see, for example, commonly owned International patent applications PCT/US01/23966, PCT/US01/24134, PCTUS/00/41422))

In the methods of the invention, the chimeric polypeptide or nucleic acid that encodes it are employed to induce or enhance immune responses. In one embodiment, the compositions of the invention synergistically enhance immune responses and antitumor effects through both immunological and anti-angiogenic mechanisms.

The experiments described herein demonstrate that the methods of the invention can enhance a cellular immune response, particularly, tumor-destructive CTL reactivity, induced by a DNA vaccine encoding an epitope of a human pathogen. Human HPV-16 E7 was used as a model antigen for vaccine development because human papillomaviruses (HPVs), particularly HPV-16, are associated with most human cervical cancers. The oncogenic HPV protein E7 is important in the induction and maintenance of cellular transformation and co-expressed in most HPV-containing cervical cancers and their precursor

lesions. Therefore, cancer vaccines, such as the compositions of the invention, that target E7 can be used to control of HPV-associated neoplasms (Wu (1994) *Curr. Opin. Immunol. 6*:746-754).

Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art of this invention. As used herein, the following terms have the meanings ascribed to them unless specified otherwise.

5

10

15

20

25

30

The term "antigen" or "immunogen" as used herein refers to a compound or composition comprising a peptide, polypeptide or protein which is "antigenic" or "immunogenic" when administered (or expressed *in vivo* by an administered nucleic acid, *e.g.*, a DNA vaccine) in an appropriate amount (an "immunogenically effective amount"), *i.e.*, capable of inducing, eliciting, augmenting or boosting a cellular and/or humoral immune response either alone or in combination or linked or fused to another substance (which can be administered at once or over several intervals). An immunogenic composition can comprise an antigenic peptide of at least about 5 amino acids, a peptide of 10 amino acids in length, a polypepide fragment of 15 amino acids in length, 20 amino acids in length or longer. Smaller immunogens may require presence of a "carrier" polypeptide *e.g.*, as a fusion protein, aggregate, conjugate or mixture, preferablyl linked (chemically or otherwise) to the immunogen. The immunogen can be recombinantly expressed from a vaccine vector, which can be naked DNA comprising the immunogen's coding sequence operably linked to a promoter, *e.g.*, an expression cassette as described herein. The immunogen includes one or more antigenic determinants or epitopes which may vary in size from about 3 to about 15 amino acids.

The term "epitope" as used herein refers to an antigenic determinant or antigenic site that interacts with an antibody or a T cell receptor (TCR), e.g., the MHC class I-binding peptide compositions (or expressed products of the nucleic acid compositionsof the invention) used in the methods of the invention. An "antigen" is a molecule or chemical structure that either induces an immune response or is specifically recognized or bound by the product or mediator of an immune response, such as an antibody or a CTL. The specific conformational or stereochemical "domain" to which an antibody or a TCR bind is an "antigenic determinant" or "epitope." TCRs bind to peptide epitopes which are physically associated with a third molecule, a major histocompatibility complex (MHC) class I or class II protein.

The term "recombinant" refers to (1) a nucleic acid or polynucleotide synthesized or otherwise manipulated *in vitro*, (2) methods of using recombinant DNA technology to produce gene products in cells or other biological systems, or (3) a polypeptide encoded by a recombinant nucleic acid. For example, the FL-encoding nucleic acid or polypeptide, the nucleic acid encoding an MHC class I-binding peptide epitope (antigen) or the peptide itself can be rececombinant. "Recombinant means" includes ligation of nucleic acids having various coding regions or domains or promoter sequences from

15

different sources into a single unit in the form of an expression cassette or vector for expression of the coding sequences in the vectors resulting in production of the encoded polypeptide.

The term "self-replicating RNA replicon" refers to a construct based on an RNA viruses, such as alphavirus genome RNAs (e.g., Sindbis virus, Semliki Forest virus, etc.), that have been engineered to allow expression of heterologous RNAs and proteins. These recombinant vectors are self-replicating ("replicons") which can be introduced into cells as naked RNA or DNA, as described in detail, below. In a preferred embodiment, the self-replicating RNA replicon comprises a Sindbis virus self-replicating RNA vector SINrep5, which is described in detail in U.S. Patent No. 5,217,879.

SEQUENCES OF POLYPEPTIDES AND NUCLEIC ACIDS

The section that follows lists the sequences of the MHC-I-PP and DC-PP polypeptides alone or in fusion with E7 antigen, the nucleic acids encoding some of these peptides and nucleic acids of the vectors into which the sequences encoding these polypeptides are cloned.

15 <u>HPV-E7</u> (nucleic acid is SEQ ID NO:1; amino acids are SEQ ID NO:2)

```
1/1
atg cat gga gat aca cct aca ttg cat gaa tat atg tta gat ttg caa cca gag aca act
Met his gly asp thr pro thr leu his glu tyr met leu asp leu gln pro glu thr thr
61/21
gat ctc tac tgt tat gag caa tta aat gac agc tca gag gag gag gat gaa ata gat ggt
asp leu tyr cys tyr glu gln leu asn asp ser ser glu glu glu asp glu ile asp gly
121/41
cca gct gga caa gca gaa ccg gac aga gcc cat tac aat att gta acc ttt tgt tgc aag
pro ala gly gln ala glu pro asp arg ala his tyr asn ile val thr phe cys cys lys
181/61
tgt gac tct acg ctt cgg ttg tgc gta caa agc aca cac gta gac att cgt act ttg gaa
cys asp ser thr leu arg leu cys val gln ser thr his val asp ile arg thr leu glu
241/81
gac ctg tta atg ggc aca cta gga att gtg tgc ccc atc tgt tct cag gat aag ctt
asp leu leu met gly thr leu gly ile val cys pro ile cys ser gln asp lys leu
```

GENBANK Accession No. AAD33353 ("native" sequence). After cloning the last 9 nucleotides (3 amino acids were modified, as shown above underscored and/or bold.

The original GENBANK sequence has a Lys-Pro after the Gln in position 96 (encoded by aaa/cca/taa, rather than Asp-Lys-Leu (encoded by gat/aag/ctt).

Hsp70 from M. tuberculosis

5

10

35

(nucleic acid is SEQ ID NO:3; amino acids are SEQ ID NO:4)

```
40

1/1

atg gct cgt gcg gtc ggg atc gac ctc ggg acc acc aac tcc gtc gtc tcg gtt ctg gaa

Met ala arg ala val gly ile asp leu gly thr thr asn ser val val ser val leu glu

61/21

ggt ggc gac ccg gtc gtc gcc aac tcc gag ggc tcc agg acc acc ccg tca att gtc

gly gly asp pro val val val ala asn ser glu gly ser arg thr thr pro ser ile val

121/41

gcg ttc gcc cgc aac ggt gag gtg ctg gtc ggc cag ccc gcc aag aac cag gca gtg acc

ala phe ala arg asn gly glu val leu val gly gln pro ala lys asn gln ala val thr
```

	181/61	an+								211	/71								
	aac gtc asn val 241/81	asp	arg	thr	val	arg	ser	val	aag lys	arg 271	his	met	ggc gly	agc ser	gac asp	tgg trp	tcc ser	ata ile	gag glu
5	att gac ile asp 301/101	gly	aag lys	aaa 1ys	tac tyr	acc thr	gcg a1a	ccg pro	gag glu	atc ile	agc ser	gcc ala	cgc arg	att ile	ctg leu	atg met	aag Tys	ctg leu	aag lys
10	cgc gac arg asp	gcc ala	gag glu	gcc ala	tac tyr	ctc leu	ggt gly	gag glu	gac asp	att ile	thr	asp	gcg ala	gtt val	atc ile	acg thr	acg thr	ccc pro	gcc ala
10	361/121 tac ttc tyr phe	aat asn	gac asp	gcc ala	cag gln	cgt arg	cag gln	gcc ala	acc thr	aaa	/131 gac asp	acc	ggc gly	cag gln	atc ile	gcc ala	ggc gly	ctc leu	aac asn
15	421/141 gtg ctg val leu	cgg arg	atc	gtc	aac	gag	cca	acc	aca	451, acc	/151 aca	cta	acc	tac	aac	ctc	gac	aad	aac
	481/161 gag aag glu lys	gag	cag	cga	atc	cta	atc	ttc	aac	511, tta	/171 aat	aat	aac	act	ttc	aac	att	tcc	cta
20	ctg gag	atc	qqc	gag	aat	ata	att	aaa	atc	571, cat	/191 acc	act	tca	aat	gac	aac	cac	ctc	aac
	leu glu 601/201 ggc gac	gac	tgg	gac	cag	cgg	gtc	atc	gat	631, taa	/211 cta	ata	aac	aaa	ttc	aaa	aac	acc	agc
25	gly asp 661/221 ggc atc	asp	trp	asp	gın	arg	vaı	vaı	asp	691	1eu /231	val	asp	lys	phe	lys	gly	thr	ser
	721/241	asp	reu	tnr	ıys	asp	ıys	met	aıa	met 751	g In /251	arg	leu	arg	glu	ala	ala	glu	lys
30	gca aag ala lys 781/261	ile	gag glu	leu	agt ser	tcg ser	agt ser	cag gln	tcc ser	thr	tcg ser /271	atc ile	aac asn	ctg leu	ccc pro	tac tyr	atc ile	acc thr	gtc val
	gac gcc asp ala 841/281	gac asp	aag 1ys	aac asn	ccg pro	ttg leu	ttc phe	tta leu	gac asp	gag glu	caq	ctg leu	acc thr	cgc arg	gcg ala	gag glu	ttc phe	caa gln	cgg arg
35	atc act ile thr 901/301	cag gln	gac asp	ctg leu	ctg leu	gac asp	cgc arg	act thr	cgc arg	aag lys	ccg pro	ttc phe	cag gln	tcg ser	gtg val	atc ile	gct ala	gac asp	acc thr
40	ggc att gly ile	tcg ser	gtg val	tcg ser	gag glu	atc ile	gat asp	cac his	gtt val	ata	/311 ctc leu	gtg val	ggt gly	ggt gly	tcg ser	acc thr	cgg arg	atg met	ccc pro
40	961/321 gcg gtg ala val	acc	gat	cta	atc	aaa	aaa	ctc	acc	991/	/331 aac	aaa	gaa	ccc	aac	aad	aac	atc	aac
45	1021/341 ccc gat pro asp	gag	att	atc	aca	ata	aaa	acc	act	1051 cta	L/351 cad	acc	aac	atc	ctc	aad	aac	gag	ata
	aaa gac	L gtt	cta	cta	ctt	gat	att	acc	cca	1111 cta	L/371 aαc	cta	aat	atc	gag	acc	aad	aac	aaa
50	lys asp 1141/381 gtg atg	acc	agg	ctc	atc	gag	cac	aac	acc	1171 acα	L/391 atc	ccc	acc	aaa	caa	tca	gag	act	ttc
	val met 1201/401 acc acc	tnr L	arg	Teu	ıle	glu	arg	asn	thr	thr 1231	ile ./411	pro	thr	lys	arg	ser	glu	thr	phe
55	1261/421	a i a	asp	asp	asn	gın	pro	ser	vaı	g in 1291	пе ./431	gin	val	tyr	gIn	gly	glu	arg	gTu
	atc gcc ile ala 1321/441	aıa	cac his	aac asn	aag lys	leu	leu	ggg gly	tcc ser	phe	gag glu ./451	leu	acc thr	ggc gly	atc ile	ccg pro	ccg pro	gcg ala	ccg pro
60	cgg ggg arg gly 1381/461	11e	ccg pro	cag gln	atc ile	gag glu	gtc val	act thr	ttc phe	gac asp	atc	gac asp	gcc ala	aac asn	ggc gly	att ile	gtg val	cac his	gtc val
	acc gcc thr ala 1441/481	ıys	gac asp	aag lys	ggc gly	acc thr	ggc gly	aag lys	gag glu	aac asn	aca	atc ile	cga arg	atc ile	cag gln	gaa glu	ggc gly	tcg ser	ggc gly
65	ctg tcc leu ser 1501/501	aag lys	gaa glu	gac asp	att ile	gac asp	cgc arg	atg met	atc ile	aag lys	gac asp	gcc ala	gaa glu	gcg ala	cac his	gcc ala	gag glu	gag glu	gat asp
70	cgc aag arg lys	cgt arg	cgc arg	gag glu	gag glu	gcc ala	gat asp	gtt val	cgt arg	asn	caa g1n	gcc ala	gag glu	aca thr	ttg leu	gtc val	tac tyr	cag gln	acg thr
70	1561/521 gag aag glu lys 1621/541	ttc phe	gtc	aaa	gaa	caq	cat	aaa	acc	1591 gag	/531 ggt gly	ggt gly	tca	aaa	ata	cct	gaa	aac	aca
	•										,								

	ctg aac aag leu asn lys 1681/561	gtt g val a	gat gco asp ala	gcg ala	gtg val	gcg ala	gaa glu	gcg ala 1711	aag 1ys L/571	gcg ala	gca ala	ctt leu	ggc gly	gga gly	tcg ser	gat asp	att ile	560
5	tcg gcc atc ser ala ile 1741/581	iys s	ser ala	met	gıu	ıys	leu	ggc gly 1771	cag gln /591	gag glu	ser	gIn	ala	leu	gly	gln	ălă	580
10	atc tac gaa ile tyr glu 1801/601 gat gaA AGC asp glu ser	gca g ala a	gct cag ala glr	gct ala	gcg ala	tca ser	cag gln	gcc ala	act thr	ggc gly	gct ala	gcc ala	cac his	ccc pro	ggc gly	<u>tcg</u> ser	gct ala	

GENBANK Z95324 AL123456; encoded by nucleotides 10633-12510 of *Mycobacterium tuberculosis* genome). As a result of cloning, this has been modified from the original GENBANK sequence which had at its 3' end:

ggc gag ccg ggc ggt gcc cac ccc ggc tcg gct gat gac gtt gtg gac gcg gag gtg gtc gac gac ggc cgg gag gcc aag (SEQ ID NO:5)

which was replaced in the cloned version used herein, by tcg gct gat gaa agc (SEQ ID NO:6) which is bold and underlined above.

E7-Hsp70 Fusion

15

20

(nucleic acid is SEQ ID NO:7; amino acids are SEQ ID NO:8)

E7 coding sequence is capitalized and underscored.

	1/1									31/	1.1								
~ -	ATG CAT	GGA	GAT	ACA	CCT	ACA	TTG	CAT	GAA	TAT	ATG	TTA	GAT	TTG	CAA	CCA	GΔG	ΔζΔ	ΔCΤ
25	Mer III2	gly	asp	thr	pro	thr	Teu	his	glu	tyr	met	Teu	asp	Teu	aln	pro	alu	thr	thr
	$\rho T \setminus \nabla T$									917	31						_		
	GAT CTC	TAC	TGT	TAT	GAG	<u>CAA</u>	TTA	AAT	GAC	AGC	TCA	GAG	GAG	GAG	GAT	GAA	ATA	GAT	GGT
	asp leu 121/41	tyr	cys	tyr	glu	gln	leu	asn	asp	ser	ser	glu	glu	glu	asp	glu	ile	asp	gly
30	CCA GCT	GGA	CAA	GCA	GAA	CCG	GAC	ΔGΔ	GCC	151,	ΤΛC 2Τ	ΛΛΤ	A TT	СΤΛ	۸۵۲		тст	TCC	A A C
	pro ara	gly	gln	ala	glu	pro	asp	arg	ala	his	tvr	asn	ile	val	thr	phe	CVS	CVS	Tvs
	TOT\ OT									211	/71								-
	TGT GAC	TCT	ACG	<u>ÇTT</u>	CGG	ŢTG	TGC	GTA	CAA	AGC	_ACA	CAC	GTA	GAC	ATT	CGT	ACT	TTG	GAA
35	241/81	ser	thr	reu	arg	reu	cys	vaı	gın	ser 271.	thr /91	his	val	asp	ile	arg	thr	leu	glu
	GAC CTG	TTA	ATG	GGC	ACA	CTA	GGA	ATT	GTG	TGC	CCC	ATC	TGT	TCT	CAA	GGA	TCC	ata	act
	asp reu	leu	met	gly	thr	leu	gly	ile	va]	cys	pro	ile	cys	ser	gln	gly	ser	met	ăla
	20T/TOT									331,	/111								
40	cgt gcg	yal	999	atc	gac	CTC	ggg	acc	acc	aac	tcc	gtç	gtç	tcg	gtţ	çtg	gaa	ggt	ggc
•0	arg ala 361/121	vai	gıy	116	asp	reu	gıy	CIII	CIII	301	/131	vai	vai	ser	vaı	reu	gıu	gıy	gıy
	gac ccg	atc	atc	atc	acc	aac	tcc	gag	aac	tcc	300	acc	acc	cca	†ca	2++	atc	aca	ttc
	asp pio	vаl	vаТ	va1	ãla	asn	ser	ต์โน้	άĨν	ser	arg	thr	thr	pro	ser	ile	val	ala	nhe
15	421/141									451/	/151								-
45	gcc cgc	aac	ggt	gag	gtg	ctg	gtç	ggc	cag	ccc	gcc	aag	aac	cag	gca	gtg	acc	aac	gtc
	ala arg 481/161	asn	gıy	glu	val	Teu	val	gly	gin	pro	ala	lys	asn	gln	ala	val	thr	asn	val
	401/101	acc	ata	cac	tca	atc	220	600	c2.c	511/	, T \ T		~~-						
	gat cgc asp arg	thr	val	ara	ser	val	lvs	ara	his	met	ggc	sor	yac	tgg	TCC	ata	gag	att	gac
50	34T/ TOT									5/1/	191								-
	ggc aag	aaa	tac	acc	gcg	ccg	gag	atc	agc	acc	cac	att	ctg	atg	aaq	cta	aaa	cac	aac
	giy iys	lys	tyr	thr	ala	pro	glu	ile	ser	ala	arg	ile	leŭ	met	Туš	leũ	lyš	arg	asp
	OUT/ ZOT									631.4	7211								-
55	gcc gag ala glu	ala	tvr	1011	991	gag	yac	ila	acc thr	gac	aca	gtt	atc	acg	acg	CCC	gçc	tac	ttc
	661/221	uıu	Cy i	icu	gıy	gru	asp	116	CIII	691/	/231	vai	He	CUL	cur.	br.o	aıa	tyr	pne
	aat gac	gcc	cag	cat	caq	acc	acc	aaa	aac	acc,	aac	cad	atc	acc	aac	ctc	aac	ata	cta
	asii asp	ala	glñ	arg	glñ	ãΊa	thr	lyš	ãsp	ăla	ğΪy	gln	ile	ālā	ซีโง	Ĩeu	asn	val	leu
60	/ Z T / Z 4 T									751/	251								
UU	cgg atc	gtc	aac	gag	ccg	acc	gçg	gcc	gçg	çtg	gçc	tac	ggc	ctc	gac	aag	ggc	gag	aag
	arg ile 781/261	vai	asii	yıu	hr.o	unr	ala	aıa	aıa	leu 011	ala	tyr	gly	leu	asp	lys	gly	glu	lys
	, 01/201									811/	Z/1								

	gag cag cg glu gln ar 841/281	a ato	ctg leu	gtc val	ttc phe	gac asp	ttg leu	ggt gly	' alv	ggc gly /291	' tnr	ttc phe	gac asp	gtt val	tcc	ctg leu	ctg leu	gag glu
5	atc ggc gag ile gly gli 901/301	ı gıy	vai	vai	gru	vai	arg	aıa	act thr 931	tcg ser /311	ggt gly	asp	asn	his	Teu	gly	gly	asp
	gac tgg gad asp trp asp 961/321	gili	ary	vai	vai	asp	trp	reu	gtg val 991	gac asp /331	aag lys	pne	lys	gly	thr	ser	gly	ile
10	gat ctg acc asp leu thi 1021/341	ıys	asp	ıys	met	ala	met	gın	cgg arg 105	ctg leu 1/35	cgg arg 1	glu	ala	ala	glu	lys	ala	lys
15	atc gag cto ile glu lei 1081/361	1 261	Sei	ser	gin	ser	thr	ser	atc ile 111	aac asn 1/37	ctg leu 1	pro	tyr	ile	thr	val	asp	ala
	gac aag aad asp lys asr 1141/381	pro	reu	pne	reu	asp	gıu	gın	1eu 117	thr 1/39	arg 1	ala	glu	phe	g]n	arg	ile	thr
20	cag gac cto gln asp led 1201/401	i ieu	asp	ai y	LIII.	arg	Tys	pro	pne 123	g i n 1 / 4 1	ser 1	vaı	ı.le	ala	asp	thr	gly	ile
25	tcg gtg tcg ser val ser 1261/421	giu	116	asp	1112	vai	vai	reu	129	919 1/43	giy 1	ser	tnr	arg	met	pro	ala	val
25	acc gat ctg thr asp leu 1321/441	vai	1 9 3	giu	reu	LIII	gıy	gıy	135	g i u L/45:	pro 1	asn	ıys	gıy	vaı	asn	pro	asp
30	gag gtt gto glu val val 1381/461	aia	Vai	gry	aıa	aıa	ıeu	gın	a I a 1411	g I y L / 47:	va! 1	leu	lys	gly	glu	val	lys	asp
	gtt ctg ctg val leu leu 1441/481	reu	asp	vai	tnr	pro	reu	ser	1eu 1471	g l y 1/49	ıle 1	glu	thr	lys	gly	gly	val	met
35	acc agg ctc thr arg leu 1501/501	He	gıu	arg	asn	tnr	tnr	пе	pro 1531	thr /51	lys	arg	ser	glu	thr	phe	thr	thr
40	gcc gac gac ala asp asp 1561/521	asii	giii	ρισ	ser	vai	gın	пе	g in 1591	va i /531	tyr	gın	gly	glu	arg	glu	ile	ala
40	gcg cac aac ala his asn 1621/541	1 y S	reu	reu	gıy	ser	pne	gıu	1eu 1651	tnr /551	gly	ıle	pro	pro	ala	pro	arg	gly
45	att ccg cag ile pro gln 1681/561	116	gru	vai	CHI.	pne	asp	пе	asp 1711	a I a /571	asn	gly	пle	val	his	val	thr	ala
	aag gac aag lys asp lys 1741/581	gıy	CH1.	gıy	Tys	gıu	asn	tnr	11e 1771	arg /591	ıle	gin	glu	gly	ser	gly	leu	ser
50	aag gaa gac lys glu asp 1801/601	116	asp	ary	met	ı ie	ıys	asp	1831	g ru 7611	aıa	nıs	aıa	gıu	giu	asp	arg	iys
55	cgt cgc gag arg arg glu 1861/621	gru	ala	asp	vaı	arg	asn	gın	a I a 1891	g I u 7631	thr	leu	val	tyr	gln	thr	glu	lys
33	ttc gtc aaa phe val lys 1921/641	gru	gin	arg	gıu	aıa	gıu	gıy	g 19 1951	ser /651	lys	val	pro	glu	asp	thr	leu	asn
60	aag gtt gat lys val asp 1981/661	aıa	aia	vai	aia	y i u	ala	rys	a i a 2011	a I a /671	reu	gıy	gıy	ser	asp	ile	ser	ala
	atc aag tcg ile lys ser 2041/681	uiu	iiie c	gıu	ıys	leu	угу	yııı	2071.	ser /691	gın	ala	reu	gıy	gın	aıa	пе	tyr
65	gaa gca gct glu ala ala 2101/701 AGC a	gln	ala	ala	ser (gln :	gcc ala	act thr	ggc gly	gct ala	gcc ala	cac his	ccc pro	ggc gly	tcg ser	gct ala	gat asp	gaA glu
	ser																	

Flt3 Ligand (FL) extracellular domain

(nucleic acid is SEQ ID NO:9; amino acids are SEQ ID NO:10)

```
31/11
             atg aca gtg ctg gcg cca gcc tgg agc cca aat tcc tcc ctg ttg ctg ctg ttg ctg ctg
Met thr val leu ala pro ala trp ser pro asn ser ser leu leu leu leu leu leu leu
   5
              61/21
                                                                                          91/31
             ctg agt cct tgc ctg cgg ggg aca cct gac tgt tac ttc agc cac agt ccc atc tcc leu ser pro cys leu arg gly thr pro asp cys tyr phe ser his ser pro ile ser ser
                                                                                         cys tyr phe ser his ser pro ile ser ser
151/51
              121/41
 10
             aac ttc aaa gtg aag ttt aga gag ttg act gac cac ctg ctt aaa gat tac cca gtc act
asn phe lys val lys phe arg glu leu thr asp his leu leu lys asp tyr pro val thr
181/61 211/71
                                                                                          211/71
             gtg gcc gtc aat ctt cag gac gag aag cac tgc aag gcc ttg tgg agc ctc ttc cta gcc val ala val asn leu gln asp glu lys his cys lys ala leu trp ser leu phe leu ala 241/81
15
             cag cgc tgg ata gag caa ctg aag act gtg gca ggg tct aag atg caa acg ctt ctg gag gln arg trp ile glu gln leu lys thr val ala gly ser lys met gln thr leu leu glu 301/101
             gac gtc aac acc gag ata cat ttt gtc acc tca tgt acc ttc cag ccc cta cca gaa tgt asp val asn thr glu ile his phe val thr ser cys thr phe gln pro leu pro glu cys
20
                                                                                         ser cys thr phe glm pro leu pro glu cys
             361/121
                                                                                         391/131
             ctg cga ttc gtc cag acc aac atc tcc cac ctc ctg aag gac acc tgc aca cag ctg ctt leu arg phe val gln thr asn ile ser his leu leu lys asp thr cys thr gln leu leu 421/141
             gct ctg aag ccc tgt atc ggg aag gcc tgc cag aat ttc tct cgg tgc ctg gag gtg cag
ala leu lys pro cys ile gly lys ala cys gln asn phe ser arg cys leu glu val gln
25
             481/161
                                                                                         511/171
             tgc cag ccg gac tcc tcc acc ctg ctg ccc cca agg agt ccc ata gcc cta gaa gcc acg cys gln pro asp ser ser thr leu leu pro pro arg ser pro ile ala leu glu ala thr 541/181
30
             gag ctc cca gag cct cgg ccc agg cag
glu leu pro glu pro arg pro arg gln
```

FL-E7 Fusion Polypeptide

35 (nucleic acid is SEQ ID NO:11; amino acids are SEQ ID NO:12)

N-terminal sequence is FL, followed by E7 (underscored, cap)

```
atg aca gtg ctg gcg cca gcc tgg agc cca aat tcc tcc ctg ttg ctg ctg ttg ctg ctg
Met thr val leu ala pro ala trp ser pro asn ser ser leu leu leu leu leu leu leu
40
               61/21
                                                                                                91/31
              ctg agt cct tgc ctg cgg ggg aca cct gac tgt tac ttc agc cac agt ccc atc tcc tcc
leu ser pro cys leu arg gly thr pro asp cys tyr phe ser his ser pro ile ser ser
                                                                                               cys tyr phe ser his ser pro ile ser ser
151/51
              121/41
              aac ttc aaa gtg aag ttt aga gag ttg act gac cac ctg ctt aaa gat tac cca gtc act asn phe lys val lys phe arg glu leu thr asp his leu leu lys asp tyr pro val thr 211/71
45
              gtg gcc gtc aat ctt cag gac gag aag cac tgc aag gcc ttg tgg agc ctc ttc cta gcc val ala val asn leu gln asp glu lys his cys lys ala leu trp ser leu phe leu ala 241/81 271/91
50
              cag cgc tgg ata gag caa ctg aag act gtg
gln arg trp ile glu gln leu lys thr val
301/101
                                                                                               gca ggg tct aag atg caa acg ctt ctg gag
ala gly ser lys met gln thr leu leu glu
331/111
              gac gtc aac acc gag ata cat ttt gtc acc tca tgt acc ttc cag ccc cta cca gaa tgt asp val asn thr glu ile his phe val thr ser cys thr phe gln pro leu pro glu cys 361/121 391/131
55
              ctg cga ttc gtc cag acc aac atc tcc cac ctc ctg aag gac acc tgc aca cag ctg ctt
leu arg phe val gln thr asn ile ser his leu leu lys asp thr cys thr gln leu leu
421/141 451/151
             gct ctg aag ccc tgt atc ggg aag gcc tgc cag aat ttc tct cgg tgc ctg gag gtg cag ala leu lys pro cys ile gly lys ala cys gln asn phe ser arg cys leu glu val gln 481/161
60
              tgc cag ccg gac tcc tcc acc ctg ctg ccc cca agg agt ccc ata gcc cta gaa gcc acg cys gln pro asp ser ser thr leu leu pro pro arg ser pro ile ala leu glu ala thr 571/191
                                                                                               571/191
             gag ctc cca gag cct cgg ccc agg cag gaa ttc <u>ATG CAT GGA GAT ACA CCT ACA TTG CAT</u> glu leu pro glu pro arg pro arg gln glu phe met his gly asp thr pro thr leu his
65
```

	601/201 GAA TAT ATG TTA GAT TTG CAA CCA GAG ACA ACT GAT CTC TAC TGT TAT GAG CAA TTA AAT glu tyr met leu asp leu gln pro glu thr thr asp leu tyr cys tyr glu gln leu asn 661/221 691/231
5	GAC AGC TCA GAG GAG GAG GAT GAA ATA GAT GGT CCA GCT GGA CAA GCA GAA CCG GAC AGA
	asp ser ser glu glu glu asp glu ile asp gly pro ala gly gln ala glu pro asp arg 721/241 751/251
	GCC CAT TAC AAT ATT GTA ACC TIT TGT TGC AAG TGT GAC TCT ACG CTT CGG TTG TGC GTA
10	ala his tyr asn ile val thr phe cys cys lys cys asp ser thr leu arg leu cys val 781/261 811/271
	CAA AGC ACA CAC GTA GAC ATT CGT ACT TTG GAA GAC CTG TTA ATG GGC ACA CTA GGA ATT
	gln ser thr his val asp ile arg thr leu glu asp leu leu met gly thr leu gly ile 841/281
15	GTG TGC CCC ATC TGT TCT CAA GGA TCC val cys pro ile cys ser gln gly ser

FL-E7-GFP Fusion Polypeptide

(nucleic acid is SEQ ID NO:13; amino acids are SEQ ID NO:14)

N-terminal sequence is FL, followed by E7 (underscored, cap) followed by GFP (italic)

												- /			•	`	•		
20																			
	1/1									31/	11								
	atg aca	gtg	çtg	gcg	cca	gcc	tgg	agc	cca	aat	tcc	tcc	ctg	ttg	ctg	ctg	ttg	ctg	ctg
	Met thr 61/21	vai	reu	aıa	pro	ala	trp	ser	pro	asn	ser	ser	leu	leu	leu	leu	leu	leu	leu
25		cct	tac	cta	caa	aaa	363	cc+	a2.c	91/		++-			~ ~ 4				
20	ctg agt leu ser	pro	CVS	leu	ara	999	thr	nro	asn	CVS	tvr	nho	ayc	hic	agt	CCC	atc	TCC	TCC
	121/41	F · -	٠,٠		u. 9	9.,	Ciri	p. 0	изр	151	/51	piic	361	1113	361	ρισ	116	261	561
	aac ttc	aaa	gtg	aag	ttt	aga	gag	ttg	act	gac	cac	ctg	ctt	aaa	gat	tac	cca	atc	act
20	asn pne	lys	val	lys	phe	arg	ğΊū	leū	thr	ãsp	his	leŭ	leu	lys	ãsp	tyr	pro	val	thr
30	TQT/PT									211	/71								
	gtg gcc	yıc	aat	100	cag	gac	gag	aag	cac	tgc	aag	gcc	ttg	tgg	agc	ctc	ttc	cta	gcc
	val ala 241/81	vui	4511	reu	gııı	asp	gru	ıys	1115	271	/91	ald	reu	rrb	ser	reu	pne	reu	aıa
	cag cgc	taa	ata	aaa	caa	cta	aaa	act	ata	gca,	aga	tct	aad	ato	caa	aca	ctt	cta	aaa
35	gin arg	trp	ile	ğ٦ŭ	gln	7eŭ	lyš	thr	val	ăla	ต์ไข้	ser	Ĩvs	met	aln	thr	Teu	leu	alu
	30T/T0T									331.	/111								_
	gac gtc	aac	acc	gag	ata	cat	ttt	gtç	acc	tca	tgt	acc	ttc	cag	ccc	cta	cca	gaa	tgt
	āsp val 361/121	asii	CHI	gru	He	nis	pne	vai	tnr	ser	cys /131	tnr	pne	gın	pro	Teu	pro	glu	cys
40	ctg cga	ttc	atc	caa	acc	aac	atc	tcc	cac	CTC	C‡a	aad	aac	acc	tac	aca	cau	cta	ctt
	reu arq	phe	val	gln	thr	asn	ile	ser	his	leu	leu	lvs	asp	thr	CVS	thr	aln	leu	len
	421/141									451	/151						-		
	gct ctg	aag	CCC	tgt	atc	ggg	aag	gçc	tgc	cag	aat	tţc	tct	cgg	tgc	ctg	gag	gtg	cag
45	ăla leŭ 481/161	iys	pro	cys	тте	gıy	ıys	aıa	cys	gin	asn /171	phe	ser	arg	cys	leu	glu	va]	gln
73	tgc cag	cca	nac	tcc	tcc	acc	cta	cta	ccc	OCS DTT	/171	ant-	ccc	2+2	acc	cta	~~~	966	
	cys gln	pro	asp	ser	ser	thr	leu	leu	pro	nro	arg	ser	nro	ile	ala	lan	gaa	ala	acy +hr
	241/181									571,	/191						_		
50	gag ctc	cca	gag	cct	cgg	CCC	agg	cag	gaa	ttc	ATG	CAT	GGA	GAT	ACA	CCT	ACA	TTG	CAT
50	glu leu	pro	glu	pro	arg	pro	arg	gln	glu	phe	met	his	gly	asp	thr	pro	thr	leu	his
	601/201	ΔTG	ттл	GAT	TTG	$C\Lambda\Lambda$	CCA	CAC	۸۲۸	631/	ZII	CTC	TAC	тст	~~~	CA.C	C 4 4		
	GAA TAT glu tyr	met	leu	asp	Teu	aln	nro	alu	thr	thr	asn	Ten	tvr	CVS	tyr	alu alu	<u>CAA</u>	TAU	AA I
	00T/22T									691	/231				-	-	_		
55	GAC AGC	TCA	<u>GAG</u>	GAG	GAG	GAT	GAA	ATA	GAT	<u>GGT</u>	CCA	GCT	GGA	CAA	GCA	GAA	CCG	GAC	AGA
	asp ser 721/241	ser	glu	glu	glu	asp	glu	ile	asp	gly	pro	ala	gly	gln	ala	glu	pro	asp	arg
	GCC CAT	TAC	ΛΛ Τ	ATT	СΤΛ	۸۵۵	ттт	тст	TCC	751/	Z51	CA C	тст		CTT	~~~			
	ala his	tvr	asn	ile	val	thr	nhe	CVS	CVS	TVS	CVS	asn	SAR	thr	Jau	CGG	116	CVC	GTA
60	/8T/7PT									811/	/271							_	
	CAA AGC	ACA_	CAC	GTA	GAC_	ATT	CGT	ACT	TTG	GAA	GAC	CTG	TTA	ATG	GGC	ACA	CTA	GGA	ATT
	gin ser	thr	his	val	asp	ile	arg	thr	leu	glu	asp	leu	leu	met	gly	thr	leu	gly	ile
	841/281	ccc	ΛТС	тст	тст	C	CC 1	T-C-C	a + -	871/	291							-	
65	GTG TGC val cys	nro	AIC ile	CVS	SAP	<u>CAA</u>	alv	FOR	dTg	gtg	agc	aag	ggc	gag	gag	ctg	ttc	acc	ggg
-	901/301	P1 0	116	СуЗ	261	9 111	gıy	201	IIIC L	931/	327 311	145	yıy	yıu	yıu	reu	рпе	נחד	giy
	gtg gtg	ссс	atc	ctg	gtc	gag	ctg	gac	ggc	gać	ata	aac	aac	cac	aaa	ttc	aac	ata	tcc
	val val	pro	i1e	1eu	va 1	gĨu	1ĕu	asp	g I y	asp	va I	asn	$g\overline{7}y$	his	7ys	phe	ser	va I	ser
	961/321								-	991/	331				•	•			_ =•

	ggc gag ggc gly glu gly 1021/341	gru g	ry asp	ala	TH	tyr	gıy	105	<i>leu</i> 1/35	<i>thr</i> i	leu	lys	phe	11e	CY5	thr	thr
5	ggc aag ctg gly lys leu 1081/361	pi o v	ar pro	Lrp	pro	THE	reu	<i>Va I</i> 1111	<i>thr</i> 1/37	<i>thr</i> I	phe	thr	tyr	g1y	va1	gIn	cys
10	ttc agc cgc phe ser arg 1141/381	Lyr p	o asp	1115	met	IYS	gin	<i>h15</i> 117	<i>asp</i> 1/391	phe	phe	Tys	ser	a1a	met	pro	glu
10	ggc tac gtc gly tyr val 1201/401	gin g	u arg	thr	TIE	pne	pne	1ys 1231	asp 1/411	asp	gly	asn	tyr	lys	thr	arg	ala
15	gag gtg aag glu val lys 1261/421	pile y	u giy	asp	LIII	reu	va i	<i>asn</i> 1291	<i>arg</i> 1/431	7 <i>1e</i>	glu	leu	lys	gly	ile	asp	phe
	aag gag gac <i>lys glu asp</i> 1321/441	gly as	on Tie	reu	gıy	nīs	IY5	ctg <i>1eu</i> 1351	gag <i>g7u</i> /451	tac <i>tyr</i>	asn	tyr	asn	ser	his	asn	va1
20	tat atc atg tyr ile met 1381/461	did di	p iys	gın	IYS	asn	g_{Iy}	1 <i>1e</i> 1411	/ <i>ys</i> ./471	va I	asn	phe	7 <i>ys</i>	i1e	arg	his	asn
2.5	atc gag gac ile glu asp 1441/481	gly se	er vai	gın	1eu	a/a	asp	<i>cac</i> <i>his</i> 1471	<i>tac</i> <i>tyr</i> /491	cag gIn	g1n	asn	thr	pro	11e	<i>g</i> 1y	asp
25	ggc ccc gtg gly pro val 1501/501	ieu ie	u pro	asp	asn	nıs	tyr	ctg leu 1531	<i>agc</i> ser /511	<i>acc</i> thr	gIn	ser	ala	leu	ser	lys	asp
30	ccc aac gag pro asn glu 1561/521	iys ai	y asp	птѕ	met	gtc va1	cta	cta	gag	ttc	gtg va1	acc thr	gcc a1a	gcc ala	999 g 1 y	atc ile	act thr
	ctc ggc atg <i>leu gly met</i>	gac ga asp gi	g ctg <i>u leu</i>	tac <i>tyr</i>	aag 7 <i>ys</i>												

pcDNA3 plasmid vector:

(SEQ ID NO:15)

```
35
40
45
50
55
60
65
70
```

	TCTCCATCAC	CATCATCTCC	1561161661				
	CCCCCCATCC	GAIGAICIGG	ACGAAGAGCA	TCAGGGGCTC	GCGCCAGCCG	AACTGTTCGC	CAGGCTCAAG
	AAAATCCCCC	CCGACGGCGA	GGATCTCGTC	GIGACCCATG	GCGATGCCTG	CTTGCCGAAT	ATCATGGTGG
	CTTCCCTACC	COTCATATTO	CTCATCGACT	GIGGCCGGCT	GGGTGTGGCG	GACCGCTATC	AGGACATAGC
5	ATCCCCCCTC	CGIGATATIG	CIGAAGAGCI	TGGCGGCGAA	TGGGCTGACC	GCTTCCTCGT	GCTTTACGGT
5	CCCCTTCCAA	ATCACCCACC	GCGCATCGCC	TTCTATCGCC	TTCTTGACGA	GTTCTTCTGA	GCGGGACTCT
	TATCAAACCT	TOCCOTTOCC	AAGCGACGCC	CAACCTGCCA	TCACGAGATT	TCGATTCCAC	CGCCGCCTTC
	TCCTCCACTT	CTTCCCCCAC	AAICGITTIC	CGGGACGCCG	GCTGGATGAT	CCTCCAGCGC	GGGGATCTCA
	CACAAATTTC	ACAAATAAAC	CCCAACTIGT	TTATTGCAGC	TTATAATGGT	TACAAATAAA	GCAATAGCAT
10	TOTTATOATO	ACAAATAAAG	CATTITITE	ACTGCATTCT	AGTTGTGGTT	TGTCCAAACT	CATCAATGTA
10	TCTCAAATTC	TENTICOCCETO	GICGACCICI	AGCTAGAGCT	TGGCGTAATC	ATGGTCATAG	CTGTTTCCTG
	TCCCTAATCA	CTCACCTAAC	ACAATTCCAC	ACAACATACG	AGCCGGAAGC	ATAAAGTGTA	AAGCCTGGGG
	TCCTCCCACC	TCCATTAAC	ICACATTAAT	IGCGIIGCGC	TCACTGCCCG	CTTTCCAGTC	GGGAAACCTG
	CTTCCTCCCT	CACTCACTCC	AATCGGCCAA	CGCGCGGGGA	GAGGCGGTTT	GCGTATTGGG	CGCTCTTCCG
15	CCTAATACCC	TTATCCACAC	CIGCGCICGG	TCGTTCGGCT	GCGGCGAGCG	GTATCAGCTC	ACTCAAAGGC
13	CCCACCAACC	CTAAAAACCC	AATCAGGGGA	TAACGCAGGA	AAGAACATGT	GAGCAAAAGG	CCAGCAAAAG
	AAAATCCACC	GTAAAAAGGC	CGCGIIGCIG	GCGTTTTCC	ATAGGCTCCG	CCCCCCTGAC	GAGCATCACA
	AAAATCGACG	CTCAAGTCAG	AGGTGGCGAA	ACCCGACAGG	ACTATAAAGA	TACCAGGCGT	TTCCCCCTGG
	CCAACCCTCC	GIGCGCICIC	ATTECTED	CCTGCCGCTT	ACCGGATACC	TGTCCGCCTT	TCTCCCTTCG
20	TCCCCTCTCT	CGCTTTCTCA	AIGCICACGC	IGIAGGTATC	TCAGTTCGGT	GTAGGTCGTT	CGCTCCAAGC
20	CAACCCCCTA	GCACGAACCC	CCCGTTCAGC	CCGACCGCTG	CGCCTTATCC	GGTAACTATC	GTCTTGAGTC
	CTACCCCCTC	AGACACGACT	TATCGCCACT	GGCAGCAGCC	ACTGGTAACA	GGATTAGCAG	AGCGAGGTAT
	TCTCCCCTCT	CTACAGAGTI	CIIGAAGIGG	IGGCCTAACT	ACGGCTACAC	TAGAAGGACA	GTATTTGGTA
	CCCTCCTACC	CCTCCTTTTT	GITACCITCG	GAAAAAGAGT	TGGTAGCTCT	TGATCCGGCA	AACAAACCAC
25	CCTTTCATCT	TTTCTACCCC	CTCTCACCCT	GCAGCAGATT	ACGCGCAGAA	AAAAAGGATC	TCAAGAAGAT
23	CATTATCAAA	AACCATCTTC	ACCTACATOC	CAGIGGAACG	AAAACTCACG	TTAAGGGATT	TTGGTCATGA
	ATATCACTAA	AAGGATCTTC	ACCTAGATCC	ITTIAAATTA	AAAATGAAGT	TTTAAATCAA	TCTAAAGTAT
	TTTCCTTCAT	ACTIGGICIG	ACAGITACCA	ATGCTTAATC	AGTGAGGCAC	CTATCTCAGC	GATCTGTCTA
	CCCCCACTCC	TCCAATCATA	CIGACICCCC	GICGIGIAGA	TAACTACGAT	ACGGGAGGC	TTACCATCTG
30	ACCCCCAGIGC	CCCCACCCCA	CCGCGAGACC	CACGCTCACC	GGCTCCAGAT	TTATCAGCAA	TAAACCAGCC
50	CCCCAACCTA	CACTAACTAC	TTCCCCACT	IGCAACIIIA	TCCGCCTCCA	TCCAGTCTAT	TAATTGTTGC
	TEGTETEACE	CTCCTCCTTT	CCTATCCCTT	AATAGITIGC	GCAACGTTGT	TGCCATTGCT	ACAGGCATCG
	TGGTGTCACG	TTCTCCAAAA	AACCCCTTAC	CATTCAGCTC	CGGTTCCCAA	CGATCAAGGC	GAGTTACATG
	ATCCCCCATG	CACTCATCCT	AAGCGGTTAG	CICCIICGGI	CCTCCGATCG	TTGTCAGAAG	TAAGTTGGCC
35	GCAGTGTTAT	TOCTCACTAC	TAIGGCAGCA	CIGCATAATI	CICITACIGT	CATGCCATCC	GTAAGATGCT
55	TTTCTGTGAC	ATACCCCATA	1 CAACCAAGT	CATTCTGAGA	ATAGTGTATG	CGGCGACCGA	GTTGCTCTTG
	CCCGGCGTCA	CAAAACTCTC	ATACCGCGCC	ACATAGCAGA	ACTITAAAAG	TGCTCATCAT	TGGAAAACGT
	TCTTCGGGGC	TTCACCATCT	AAGGAICIIA	CCGCTGTTGA	GATCCAGTTC	GATGTAACCC	ACTCGTGCAC
	CCAACTGATC	CCAATAACCC	THACHICA	CCAGCGTTTC	IGGGTGAGCA	AAAACAGGAA	GGCAAAATGC
40	CGCAAAAAAG	ACCCTTATTC	CGACACGGAA	AIGITGAATA	CICATACTCT	TCCTTTTTCA	ATATTATTGA
40	AGCATTTATC	CACATTTCCC	CCAAAACTCC	GGATACATAT	IIGAATGTAT	TTAGAAAAAT	AAACAAATAG
	GGGTTCCGCG	CACATTICCC	CGAAAAG I GC	CACCIGACGT	C		

SINrep5 self replicating replicon (SEQ ID NO:16)

(includes cloning sites)

4.5							
45	ATTGACGGCG	TAGTACACAC	TATTGAATCA	AACAGCCGAC	CAATTGCACT	ACCATCACAA	TGGAGAAGCC
	AGTAGTAAAC	GTAGACGTAG	ACCCCCAGAG	TCCGTTTGTC	GTGCAACTGC	AAAAAAGCTT	CCCGCAATTT
	GAGGTAGTAG	CACAGCAGGT	CACTCCAAAT	GACCATGCTA	ATGCCAGAGC	ATTTTCGCAT	CTGGCCAGTA
	AACTAATCGA	GCTGGAGGTT	CCTACCACAG	CGACGATCTT	GGACATAGGC	AGCGCACCGG	CTCGTAGAAT
50	GTTTTCCGAG	CACCAGTATC	ATTGTGTCTG	CCCCATGCGT	AGTCCAGAAG	ACCCGGACCG	CATGATGAAA
50	TACGCCAGTA	AACTGGCGGA	AAAAGCGTGC	AAGATTACAA	ACAAGAACTT	GCATGAGAAG	ATTAAGGATC
	TCCGGACCGT	ACTTGATACG	CCGGATGCTG	AAACACCATC	GCTCTGCTTT	CACAACGATG	TTACCTGCAA
	CATGCGTGCC	GAATATTCCG	TCATGCAGGA	CGTGTATATC	AACGCTCCCG	GAACTATCTA	TCATCAGGCT
	ATGAAAGGCG	TGCGGACCCT	GTACTGGATT	GGCTTCGACA	CCACCCAGTT	CATGTTCTCG	GCTATGGCAG
	GTTCGTACCC	TGCGTACAAC	ACCAACTGGG	CCGACGAGAA	AGTCCTTGAA	GCGCGTAACA	TCGGACTTTG
55	CAGCACAAAG	CTGAGTGAAG	GTAGGACAGG	AAAATTGTCG	ATAATGAGGA	AGAAGGAGTT	GAAGCCCGGG
	TCGCGGGTTT	ATTTCTCCGT	AGGATCGACA	CTTTATCCAG	AACACAGAGC	CAGCTTGCAG	AGCTGGCATC
	TTCCATCGGT	GTTCCACTTG	AATGGAAAGC	AGTCGTACAC	TTGCCGCTGT	GATACAGTGG	TGAGTTGCGA
	AGGCTACGTA	GTGAAGAAAA	TCACCATCAG	TCCCGGGATC	ACGGGAGAAA	CCGTGGGATA	CGCGGTTACA
C O	CACAATAGCG	AGGGCTTCTT	GCTATGCAAA	GTTACTGACA	CAGTAAAAGG	AGAACGGGTA	TCGTTCCCTG
60	TGTGCACGTA	CATCCCGGCC	ACCATATGCG	ATCAGATGAC	TGGTATAATG	GCCACGGATA	TATCACCTGA
	CGATGCACAA	AAACTTCTGG	TTGGGCTCAA	CCAGCGAATT	GTCATTAACG	GTAGGACTAA	CAGGAACACC
	AACACCATGC	AAAATTACCT	TCTGCCGATC	ATAGCACAAG	GGTTCAGCAA	ATGGGCTAAG	GAGCGCAAGG
	ATGATCTTGA	TAACGAGAAA	ATGCTGGGTA	CTAGAGAACG	CAAGCTTACG	TATGGCTGCT	TGTGGGCGTT
65	TCGCACTAAG	AAAGTACATT	CGTTTTATCG	CCCACCTGGA	ACGCAGACCT	GCGTAAAAGT	CCCAGCCTCT
65	TTTAGCGCTT	TTCCCATGTC	GTCCGTATGG	ACGACCTCTT	TGCCCATGTC	GCTGAGGCAG	AAATTGAAAC
	TGGCATTGCA	ACCAAAGAAG	GAGGAAAAAC	TGCTGCAGGT	CTCGGAGGAA	TTAGTCATGG	AGGCCAAGGC
	TGCTTTTGAG	GATGCTCAGG	AGGAAGCCAG	AGCGGAGAAG	CTCCGAGAAG	CACTTCCACC	ATTAGTGGCA
	GACAAAGGCA	TCGAGGCAGC	CGCAGAAGTT	GTCTGCGAAG	TGGAGGGGCT	CCAGGCGGAC	ATCGGAGCAG
70	CATTAGTTGA	AACCCCGCGC	GGTCACGTAA	GGATAATACC	TCAAGCAAAT	GACCGTATGA	TCGGACAGTA
70	TATCGTTGTC	TCGCCAAACT	CTGTGCTGAA	GAATGCCAAA	CTCGCACCAG	CGCACCCGCT	AGCAGATCAG

	GTTAAGATCA	TAACACACTO	CGGAAGATCA	GGAAGGTACG	CGGTCGAACC	· ATACGACGCT	AAAGTACTGA
	TGCCAGCAGG	ACCTCCCCTA	CCATCCCCAC	AATTCCTACC	ACTCACTOAC	ATACCACCE	TAGTGTACAA
	CCAAACACAC	Addideedia	CCAIGGCCAG	AATICCIAGO	- ACIGAGIGAG	AGCGCCACGI	TAGIGIACAA
	CGAAAGAGAG	i IIIGIGAACC	. GCAAACTATA	\ CCACATTGC(C ATGCATGGCC	CCGCCAAGAA	TACAGAAGAG
	GAGCAGTACA	AGGTTACAAA	GGCAGAGCTT	GCAGAAACAG	ACTACCTCTT	TCACCTCCAC	AAGAAGCGTT
5	CCCTTAACAA	CCAACAACC	TOLOGRAPH	GCAGAAACAG	AGIACGIGII	I GACG I GGAC	AAGAAGCGII
5	GCGTTAAGAA	JODAAGAAGCC	. ICAGGICIGG	I ICCICICGG	AGAACTGACC	: AACCCTCCCT	ATCATGAGCT
	AGCICIGGAG	i GGACTGAAGA	CCCGACCTGC	: GGTCCCGTAC	` ΔΔGGTCGΔΔΔ	CAATAGGAGT	CATACCCACA
	CCGGGGTCGG	GCAAGTCAGC	TATTATCAAC	TCAACTCTCA	CCCCACCACA	TOTTOTALO	AGCGGAAAGA
	ccaaaaicac	GCAAG I CAGC	IATTATCAAG	ICAACIGICA	N CGGCACGAGA	LICITGITACC	. AGCGGAAAGA
	AAGAAAATIG	CGCGAAATT	GAGGCCGACG	TGCTAAGACT	GAGGGGTATC	CAGATTACCT	CCAACACACT
	AGATTCGGTT	ATGCTCAACG	GATGCCACAA	ACCCCTACAA	CTCCTCTACC	TTCACCAACC	GTTCGCGTGC
10	CACCCACCAC	CACCICATO	GATGCCACA	AGCCGTAGAA	GIGCIGIACO	IIIGACGAAGC	GIICGCGIGC
10	CACGCAGGAG	CACIACIIGO	. CIIGAITGCT	ATCGTCAGGC	CCCGCAAGAA	GGTAGTACTA	TGCGGAGACC
	CCATGCAATG	CGGATTCTTC	AACATGATGC	· AACTAAAGGT	ACATTTCAAT	CACCCTCAAA	AAGACATATG
	CACCAACACA	TTCTACAACT	ATATOTOGO	CCCTTCCA	ACATTICAAT	CACCCIGAAA	AAGACATATG
	CACCAAGACA	ITCTACAAGT	ATATCTCCCG	i GCGTTGCACA	CAGCCAGTTA	CAGCTATTGT	ATCGACACTG
	CATTACGATG	GAAAGATGAA	AACCACGAAC	CCGTGCAAGA	AGAACATTGA	ΔΔΤΓΓΕΔΤΑΤΤ	ACAGGGGCCA
	CAAAGCCGAA	GCCAGGGGAT	ATCATCCTCA	CATCETECCO	CCCCTCCCTT	AACCAATTCC	AAATCGACTA
15	TOCOCOA	GCCAGGGAI	AICAICCIGA	CAIGILICCG	LEGGGLGGGLL	AAGCAATIGC	AAATCGACTA
13	I CCCGGACA !	GAAGTAATGA	CAGCCGCGGC	: CTCACAAGGG	i CTAACCAGAA	AAGGAGTGTA	TGCCGTCCGG
	CAAAAAGTCA	ATGAAAACCC	ACTGTACGCG	ATCACATCAG	ACCATCTCAA	CCTCTTCCTC	ACCCGCACTG
	ACCACACCCT	ACTCTCCAAA	ACCUTACOCO	ATCACATCAG	AGCATGTGAA	Caldilacic	ACCCGCACIG
	AGGACAGGC	AGIGIGGAAA	ACCITGCAGG	GCGACCCATG	i gattaagcag	CCCACTAACA	TACCTAAAGG
	AAACTTTCAG	GCTACTATAG	AGGACTGGGA	AGCTGAACAC	ΔΑΘΘΘΔΑΤΔΑ	TTGCTGCAAT	AAACAGCCCC
	ACTCCCCCTC	CCAATCCCTT	CACCTCCAAC	ACCAACCETT	COTOGGAAIAA	ITGCTGCAAT	AAACAGCCCC
20	ACTOCCOGIG	CCAATCCGTT	CAGCIGCAAG	ACCAACGIII	GCTGGGCGAA	AGCATTGGAA	CCGATACTAG
20	CCACGGCCGG	TATCGTACTT	ACCGGTTGCC	AGTGGAGCGA	ACTGTTCCCA	CAGTTTGCGG	ΔΤGΔCΔΔΔCC
	ACATTCGGCC	ATTTACGCCT	TAGACGTAAT	TTCCATTAAC	TTTTTCCCCA	TGGACTTGAC	ALCCCALCEC
	TETTOTALA	ATTRECCE	IAGACGIAAI	TIGCATIAAG	IIIIICGGCA	IGGACTIGAC	AAGCGGACIG
	HILICIAAAC	AGAGCATCCC	ACTAACGTAC	CATCCCGCCG	ATTCAGCGAG	GCCGGTAGCT	CATTGGGACA
	ACAGCCCAGG	AACCCGCAAG	TATGGGTACG	ATCACGCCAT	TGCCGCCGAA	CTCTCCCGTA	CATTTCCCCT
	CTTCCACCTA	CCTCCCAACC	CCACACAACT	TOATTECH	I GCCGCCGAA	CICICCCGIA	GATTICCGGT
25	GITCCAGCIA	GC I GGGAAGG	GCACACAACT	IGATITGCAG	⊢ACGGGGAGAA	CCAGAGTTAT	CTCTGCACAG
25	CATAACCTGG	TCCCGGTGAA	CCGCAATCTT	CCTCACGCCT	TAGTCCCCGA	GTACAAGGAG	AAGCAACCCG
	GCCCGGTCAA	AAAATTCTTC	AACCACTTCA	AACACCACTC	A CTA CTTCTC	GTATCAGAGG	AAGCAACCCG
	GCCCGGT CAA	AAAATICIIG	AACCAGTICA	AACACCACIC	AGIACIIGIG	GIAICAGAGG	AAAAAATTGA
	AGCTCCCCGT	AAGAGAATCG	AATGGATCGC	CCCGATTGGC	ATAGCCGGTG	CAGATAAGAA	$CT\Delta C\Delta \Delta CCTG$
	GCTTTCGGGT	TTCCGCCGCA	GGCACGGTAC	CACCTCCTCT	TCATCAACAT	TGGAACTAAA	TACACAAAGG
	ACCACTTTCA	COLCECCA	GGCACGGTAC	GACCIGGIGI	I CAI CAACA I	IGGAACTAAA	TACAGAAACC
20	ACCACTITCA	GCAGTGCGAA	GACCATGCGG	CGACCTTAAA	AACCCTTTCG	CGTTCGGCCC	TGAATTGCCT
30	TAACCCAGGA	GGCACCCTCG	TGGTGAAGTC	CTATGGCTAC	GCCGACCGCA	ACAGTGAGGA	CCTACTCACC
	CCTCTTCCCA	CAAACTTTCT	CACCCTCTCT	CCACCCACAC	SIGNATURE	ACAGIGAGGA	CGTAGTCACC
	GCTCTTGCCA	GAAAGIIIGI	CAGGGIGICI	GCAGCGAGAC	CAGATIGIGI	CTCAAGCAAT	ACAGAAATGT
	ACCIGALITT	CCGACAACTA	GACAACAGCC	GTACACGGCA	ATTCACCCCG	CACCATCTGA	ATTGCGTGAT
	TTCGTCCGTG	TATGAGGGTA	CAAGAGATGG	ACTTCCACCC	CCCCCCTCAT	ACCGCACCAA	AACCCACAAT
	ATTCCTCACT	CTCAACACCA	CAAGAGATGG	AGTIGGAGCC	GCGCCGTCAT	ACCGCACCAA	AAGGGAGAAT
2.5	ATTGCTGACT	GICAAGAGGA	AGCAGIIGIC	AACGCAGCCA	ATCCGCTGGG	TAGACCAGGC	GAAGGAGTCT
35	GCCGTGCCAT	CTATAAACGT	TGGCCGACCA	GTTTTACCGA	TTCAGCCACG	GAGACAGGCA	CCCCAACAAT
	GACTGTGTGG	CTACCAAACA	AACTCATCCA	CCCCCTCCCC	CCTCACCACG	GAGACAGGCA	CCGCAAGAAT
	GACTGTGTGC	CIAGGAAAGA	AAGIGAICCA	CGCGG I CGGC	CCIGATITIC	GGAAGCACCC	AGAAGCAGAA
	GCCTTGAAAT	TGCTACAAAA	CGCCTACCAT	GCAGTGGCAG	ACTTAGTAAA	ΤGΔΔCΔΤΔΔC	ATCAAGTCTG
	TCGCCATTCC	ACTGCTATCT	ACACCCATTT	ACCCACCCC	1011/101/101/	CTTGAAGTAT	AICAAGICIG
	CTTCLCATICC	ACTOCIATO	ACAGGCATTI	ACGCAGCCGG	AAAAGACCGC	CIIGAAGIAI	CACTTAACTG
4.0	CITGACAACC	GCGCTAGACA	GAACTGACGC	GGACGTAACC	ATCTATTGCC	TGGATAAGAA	GTGGAAGGAA
40	AGAATCGACG	CGGCACTCCA	ACTTAAGGAG	TCTGTAACAG	ACCTGAAGGA	TGAAGATATG	CACATCCACC
	ATCACTTACT	ATCCATTCAT	CCICACOCA	TCTGTAACAG	AGCIGAAGGA	IGAAGATATG	GAGATCGACG
	AIGAGIIAGI	AIGGALICAL	CCAGACAGII	GCTTGAAGGG	AAGAAAGGGA	TTCAGTACTA	CAAAAGGAAA
	ATTGTATTCG	TACTTCGAAG	GCACCAAATT	CCATCAAGCA	GCAAAGACA	TGGCGGAGAT	AAACCTCCTC
	TTCCCTAATG	ACCAGGAAAG	TAATCAACAA	CTCTCTCCCT	ACATATTECE	TGAGACCATG	AAAGGICCIG
	CCCLAATG	ACCAGGAAAG	IAAIGAACAA	CIGIGIGCCI	ACATATIGGG	TGAGACCATG	GAAGCAATCC
	GCGAAAAGTG	CCCGGTCGAC	CATAACCCGT	CGTCTAGCCC	GCCCAAAACG	TTGCCGTGCC	TTTGCATGTA
45	TGCCATGACG	CCAGAAAGGG	TCCACAGACT	TAGAAGCAAT	AACCTCAAAC	AAGTTACAGT	ATCCTCCTCC
	ACCCCCCTTC	CTAACCACAA	1 CCACAGACT	TAGAAGCAAT	AACGICAAAG	AAGITACAGI	AIGCICCICC
	ACCCCCCTTC	CTAAGCACAA	AATTAAGAAT	GTTCAGAAGG	TTCAGTGCAC	GAAAGTAGTC	CTGTTTAATC
	CGCACACTCC	CGCATTCGTT	CCCGCCCGTA	AGTACATAGA	AGTGCCAGAA	CAGCCTACCG	CTCCTCCTCC
	ACAGGCCGAG	GAGGCCCCC	AACTTCTACC	CACACCCTCA	CCATCTACAC	CTGATAACAC	CTCCTCCTGC
	CTCACACACA	TOTALOTEC	AAGIIGIAGC	GACACCGTCA	CCATCTACAG	CIGATAACAC	CICGCIIGAI
~ 0	GICACAGACA	TCTCACTGGA	TATGGATGAC	AGTAGCGAAG	GCTCACTTTT	TTCGAGCTTT	AGCGGATCGG
50	ACAACTCTAT	TACTAGTATG	GACAGTTGGT	CGTCAGGACC	TAGTTCACTA	GAGATAGTAG	ACCCAACCCA
	CCTCCTCCTC	CCTCACCTTC	ATCCCCTCC	COTCAGGACC	IAGITCACIA	GAGATAGTAG	ACCGAAGGCA
	GGTGGTGGTG	GCTGACGTTC	AIGCCGICCA	AGAGCCTGCC	CCIAITCCAC	CGCCAAGGCT	AAAGAAGATG
	GCCCGCCTGG	CAGCGGCAAG	AAAAGAGCCC	ACTCCACCGG	CAAGCAATAG	CTCTCACTCC	CTCCACCTCT
	CTTTTTGGTGG	GGTATCCATG	TCCCTCCCAT	CAATTTTCCA	CCCACACACC	6666666466	CICCACCICI
	ACCCCTCCC:	ACACCCCCC	CCCTCGGAI	CAATITICGA	COUAGAGACG	GCCCGCCAGG	CAGCGGTACA
	ACCCCTGGCA	ACAGGCCCCA	CGGATGTGCC	BAIGICLITC	GGATCGTTTT	$CCG\Delta CGG\Delta G\Delta$	CATTCATCAC
55	CTGAGCCGCA	GAGTAACTGA	GTCCGAACCC	GTCCTGTTTG	GATCATTTCA	ACCGGGCGAA	GTGAACTCAA
	TTATATCCTC	CCCATCACCC	CTATCTTTTC	CACTACCCA	GATCATTIGA	ACCOGGCGAA	GIGAACICAA
	TIATATCGTC	CCGATCAGCC	GIAICIIIIC	CACTACGCAA	GCAGAGACGT	AGACGCAGGA	GCAGGAGGAC
	IGAATACIGA	CTAACCGGGG	TAGGTGGGTA	CATATTTTCG	ACGGACACAG	GCCCTGGGCA	CTTCCAAAAC
	AAGTCCGTTC	TGCAGAACCA	CCTTACACAA	CCCACCTTCC	ACCCCAATCT	CCTGGAAAGA	ATTENTAGE
	CCCTCCTCCA	CACCACCA	GCTTACAGAA	CCGACCTTGG	AGCGCAATGT	CCTGGAAAGA	ATTCATGCCC
60	CGGTGCTCGA	CACG I CGAAA	GAGGAACAAC	TCAAACTCAG	GTACCAGATG	ATGCCCACCG	$\Delta \Lambda G C C \Lambda \Lambda C \Lambda \Lambda$
60	AAGTAGGTAC	CAGTCTCGTA	ΑΔGΤΔGΔΔΔΔ	TCAGAAAGCC	ATAACCACTC	AGCGACTACT	CTCACCACTA
	CCACTCTATA	ACTCTCCCAC	ACATCACCCA	CAATCCTATA	ACATCACCACTG	AGCGACTACT	GICAGGACIA
	CGACTGTATA	ACTORGECAC	AGATCAGCCA	GAATGCTATA	AGATCACCTA	TCCGAAACCA	TTGTACTCCA
	GTAGCGTACC	GGCGAACTAC	TCCGATCCAC	AGTTCGCTGT	AGCTGTCTGT	ΔΔCΔΔCTΔTC	TCCATCACAA
	CTATCCGACA	GTAGCATCTT	ATCAGATTAC	TGACGACTAC	CATCCTTACT	TGGATATGGT	ACACCCCA CA
	CTCCCCTCCC	TOCATACTO	AACOMITAL	COACGAGIAC	GAIGCLIACI	IGGATATGGT	AGACGGGACA
C =	GICGCCIGCC	IGGATACIGC	AACCTTCTGC	CCCGCTAAGC	TTAGAAGTTA	$CCCG\Delta\Delta\Delta\Delta\Delta\Delta$	CATGAGTATA
65	GAGCCCCGAA	TATCCGCAGT	GCGGTTCCAT	CAGCGATGCA	GAACACGCTA	CAAAATGTGC	TCATTCCCCC
	ΔΑζΤΆΛΛΛζΛ	AATTGCAACC	TCACCCACAT	CCCTCAACTC	CCAACACTC	JULI INVIVO	- CATIBUCUL
	ANCIAMANNA CALTOCOMO	AATTIGCAACG	I CACGCAGA I	GCGTGAACTG	CCAACACTGG	ACTCAGCGAC	AITCAATGTC
	GAATGCTTIC	GAAAATATGC	ATGTAATGAC	GAGTATTGGG	AGGAGTTCGC	TCGGAAGCCA	ATTACCATTA
	CCACTGAGTT	TGTCACCGCA	TATGTAGCTA	GACTGAAACC	CCCTAACCCC	GCCGCACTAT	TTCCAAACAC
	CTATAATTTC	CTCCCATTCA	ALCONICIA	UNC I GAAAGG	CCCTAAGGCC	GCGCACTAT	LIGCAAAGAC
70	GILIAAIIIG	GICCCATIGC	AAGAAG I GCC	TATGGATAGA	I FCGTCATGG	ACATGAAAAG	AGACGTGAAA
70	GTTACACCAG	GCACGAAACA	CACAGAAGAA	AGACCGAAAG	TACAAGTGAT	ACAAGCCGCA	GAACCCCTCC
	CGACTGCTTA	CTTATECCCC	ATTCACCCCC	AATTACTCCC	TACCCTTACC	CCCCTCTCC	
	TOACAGGGG	TTTCACCTC	MITCACCOOL	MATTAGTGCG	TAGGCTTACG	GCCGTCTTGC	LICCAAACAT
	ICACACGCIT	TTTGACATGT	CGGCGGAGGA	TTTTGATGCA	ATCATAGCAG	ΑΑΓΑΓΤΤΓΔΑ	GCAAGGCGAC
	CCGGTACTGG	AGACGGATAT	CGCATCATTC	GACAAAACCC	AAGACGACCC	TATCCCCTTA	ACCCCTCTC*
			COUNTEMPLE	ンプジャナトトントレ	JUJAUJAUGA	IAIUUULGIIA	ACCGGICIGA

	TC.T.						
	IGAICIIGGA	GGACCIGGGT	GTGGATCAAC	CACTACTCGA	CTTGATCGAG	TGCGCCTTTG	GAGAAATATC
	ATCCACCCAT	CTACCTACGG	GTACTCGTTT	TAAATTCGGG	GCGATGATGA	AATCCGGAAT	GTTCCTCACA
	CITITIGICA	ACACAGIIII	GAATGTCGTT	ATCGCCAGCA	GAGTACTAGA	AGAGCGGCTT	AAAACGTCCA
5	GATGTGCAGC	GITCATIGGC	GACGACAACA	TCATACATGG	AGTAGTATCT	GACAAAGAAA	TGGCTGAGAG
3	GIGCGCCACC	TGGCTCAACA	TGGAGGTTAA	GATCATCGAC	GCAGTCATCG	GTGAGAGACC	ACCTTACTTC
	IGCGGCGGAT	TIATCTIGCA	AGATTCGGTT	ACTTCCACAG	CGTGCCGCGT	GGCGGATCCC	CTGAAAAGGC
	IGIIIAAGII	GGGTAAACCG	CTCCCAGCCG	ACGACGAGCA	AGACGAAGAC	AGAAGACGCG	CTCTGCTAGA
	IGAAACAAAG	GCGTGGTTTA	GAGTAGGTAT	AACAGGCACT	TTAGCAGTGG	CCGTGACGAC	CCGGTATGAG
10	GIAGACAAIA	TIACACCIGI	CCTACTGGCA	TTGAGAACTT	TTGCCCAGAG	CAAAAGAGCA	TTCCAAGCCA
10	TCAGAGGGGA	AATAAAGCAT	CTCTACGGTG	GTCCTAAATA	GTCAGCATAG	TACATTTCAT	CTGACTAATA
	CIACAACACC	ACCACCICIA	GACGCGTAGA	TCTCACGTGA	GCATGCAGGC	CTTGGGCCCA	ATGATCCGAC
	CAGCAAAACT	CGATGTACTT	CCGAGGAACT	GATGTGCATA	ATGCATCAGG	CTGGTACATT	AGATCCCCGC
	11ACCGCGGG	CAATATAGCA	ACACTAAAAA	CTCGATGTAC	TTCCGAGGAA	GCGCAGTGCA	TAATGCTGCG
15	CAGIGIIGCC	ACATAACCAC	TATATTAACC	ATTTATCTAG	CGGACGCCAA	AAACTCAATG	TATTTCTGAG
13	GAAGCGIGGI	GCATAATGCC	ACGCAGCGTC	TGCATAACTT	TTATTATTTC	TTTTATTAAT	CAACAAAATT
	TIGITITIAA	CATTICAAAA	AAAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAGGGAATT	CCTCGATTAA
	TTAAGCGGCC	GCTCGAGGGG	AATTAATTCT	TGAAGACGAA	AGGGCCAGGT	GGCACTTTTC	GGGGAAATGT
	GCGCGGAACC	CCTATTIGIT	TATTTTCTA	AATACATTCA	AATATGTATC	CGCTCATGAG	ACAATAACCC
20	IGATAAATGC	TTCAATAATA	TTGAAAAAGG	AAGAGTATGA	GTATTCAACA	TTTCCGTGTC	GCCCTTATTC
20	CCITITIEC	GGCATTTTGC	CTTCCTGTTT	TTGCTCACCC	AGAAACGCTG	GTGAAAGTAA	AAGATGCTGA
	AGATCAGTIG	GGTGCACGAG	TGGGTTACAT	CGAACTGGAT	CTCAACAGCG	GTAAGATCCT	TGAGAGTTTT
	CGCCCCGAAG	AACGTTTTCC	AATGATGAGC	ACTTTTAAAG	TTCTGCTATG	TGGCGCGGTA	TTATCCCGTG
	TIGACGCCGG	GCAAGAGCAA	CTCGGTCGCC	GCATACACTA	TTCTCAGAAT	GACTTGGTTG	AGTACTCACC
25	AGTCACAGAA	AAGCATCTTA	CGGATGGCAT	GACAGTAAGA	GAATTATGCA	GTGCTGCCAT	AACCATGAGT
23	GATAACACTG	CGGCCAACTT	ACTTCTGACA	ACGATCGGAG	GACCGAAGGA	GCTAACCGCT	TTTTTGCACA
	ACATGGGGGA	TCATGTAACT	CGCCTTGATC	GTTGGGAACC	GGAGCTGAAT	GAAGCCATAC	CAAACGACGA
	GCGTGACACC	ACGATGCCTG	TAGCAATGGC	AACAACGTTG	CGCAAACTAT	TAACTGGCGA	ACTACTTACT
	CIAGCIICCC	GGCAACAATT	AATAGACTGG	ATGGAGGCGG	ATAAAGTTGC	AGGACCACTT	CTGCGCTCGG
30	CCCTTCCGGC	TGGCTGGTTT	ATTGCTGATA	AATCTGGAGC	CGGTGAGCGT	GGGTCTCGCG	GTATCATTGC
30	AGCACTGGGG	CCAGATGGTA	AGCCCTCCCG	TATCGTAGTT	ATCTACACGA	CGGGGAGTCA	GGCAACTATG
	GATGAACGAA	ATAGACAGAT	CGCTGAGATA	GGTGCCTCAC	TGATTAAGCA	TTGGTAACTG	TCAGACCAAG
	TTTACTCATA	TATACTTTAG	ATTGATTTAA	AACTTCATTT	TTAATTTAAA	AGGATCTAGG	TGAAGATCCT
	TTTTGATAAT	CTCATGACCA	AAATCCCTTA	ACGTGAGTTT	TCGTTCCACT	GAGCGTCAGA	CCCCGTAGAA
25	AAGATCAAAG	GATCTTCTTG	AGATCCTTTT	TTTCTGCGCG	TAATCTGCTG	CTTGCAAACA	AAAAAACCAC
35	CGCTACCAGC	GGTGGTTTGT	TTGCCGGATC	AAGAGCTACC	AACTCTTTTT	CCGAAGGTAA	CTGGCTTCAG
	CAGAGCGCAG	ATACCAAATA	CTGTCCTTCT	AGTGTAGCCG	TAGTTAGGCC	ACCACTTCAA	GAACTCTGTA
	GCACCGCCTA	CATACCTCGC	TCTGCTAATC	CTGTTACCAG	TGGCTGCTGC	CAGTGGCGAT	AAGTCGTGTC
	TTACCGGGTT	GGACTCAAGA	CGATAGTTAC	CGGATAAGGC	GCAGCGGTCG	GGCTGAACGG	GGGGTTCGTG
40	CACACAGCCC	AGCTTGGAGC	GAACGACCTA	CACCGAACTG	AGATACCTAC	AGCGTGAGCA	TTGAGAAAGC
40	GCCACGCTTC	CCGAAGGGAG	AAAGGCGGAC	AGGTATCCGG	TAAGCGGCAG	GGTCGGAACA	GGAGAGCGCA
	CGAGGGAGCT	TCCAGGGGGA	AACGCCTGGT	ATCTTTATAG	TCCTGTCGGG	TTTCGCCACC	TCTGACTTGA
_	GCGTCGATTT	TTGTGATGCT	CGTCAGGGGG	GCGGAGCCTA	TGGAAAAACG	CCAGCAACGC	GAGCTCGTAT
-	GGACATATTG	TCGTTAGAAC	GCGGCTACAA	TTAATACATA.	ACCTTATGTA	TCATACACAT	ACGATTTAGG
	GGACACTATA	G		·			

pSCA1 suicide DNA vector SEQ ID NO:17:

(includes cloning sites

45

	ATGGCGGATG	TGTGACATAC	ACGACGCCAA	AAGATTTTGT	TCCAGCTCCT	GCCACCTCCG	CTACGCGAGA
5 0	GATTAACCAC	CCACGATGGC	CGCCAAAGTG	CATGTTGATA	TTGAGGCTGA	CAGCCCATTC	ATCAAGTCTT
50	TGCAGAAGGC	ATTTCCGTCG	TTCGAGGTGG	AGTCATTGCA	GGTCACACCA	AATGACCATG	CAAATGCCAG
	AGCATTTTCG	CACCTGGCTA	CCAAATTGAT	CGAGCAGGAG	ACTGACAAAG	ACACACTCAT	CTTGGATATC
	GGCAGTGCGC	CTTCCAGGAG	AATGATGTCT	ACGCACAAAT	ACCACTGCGT	ATGCCCTATG	CGCAGCGCAG
	AAGACCCCGA	AAGGCTCGAT	AGCTACGCAA	AGAAACTGGC	AGCGGCCTCC	GGGAAGGTGC	TGGATAGAGA
	GATCGCAGGA	AAAATCACCG	ACCTGCAGAC	CGTCATGGCT	ACGCCAGACG	CTGAATCTCC	TACCTTTTGC
55	CTGCATACAG	ACGTCACGTG	TCGTACGGCA	GCCGAAGTGG	CCGTATACCA	GGACGTGTAT	GCTGTACATG
	CACCAACATC	GCTGTACCAT	CAGGCGATGA	AAGGTGTCAG	AACGGCGTAT	TGGATTGGGT	TTGACACCAC
	CCCGTTTATG	TTTGACGCGC	TAGCAGGCGC	GTATCCAACC	TACGCCACAA	ACTGGGCCGA	CGAGCAGGTG
60	TTACAGGCCA	GGAACATAGG	ACTGTGTGCA	GCATCCTTGA	CTGAGGGAAG	ACTCGGCAAA	CTGTCCATTC
	TCCGCAAGAA	GCAATTGAAA	CCTTGCGACA	CAGTCATGTT	CTCGGTAGGA	TCTACATTGT	ACACTGAGAG
	CAGAAAGCTA	CTGAGGAGCT	GGCACTTACC	CTCCGTATTC	CACCTGAAAG	GTAAACAATC	CTTTACCTGT
	AGGTGCGATA	CCATCGTATC	ATGTGAAGGG	TACGTAGTTA	AGAAAATCAC	TATGTGCCCC	GGCCTGTACG
	GTAAAACGGT	AGGGTACGCC	GTGACGTATC	ACGCGGAGGG	ATTCCTAGTG	TGCAAGACCA	CAGACACTGT
	CAAAGGAGAA	AGAGTCTCAT	TCCCTGTATG	CACCTACGTC	CCCTCAACCA	TCTGTGATCA	AATGACTGGC
C=	ATACTAGCGA	CCGACGTCAC	ACCGGAGGAC	GCACAGAAGT	TGTTAGTGGG	ATTGAATCAG	AGGATAGTTG
65	TGAACGGAAG	AACACAGCGA	AACACTAACA	CGATGAAGAA	CTATCTGCTT	CCGATTGTGG	CCGTCGCATT
70	TAGCAAGTGG	GCGAGGGAAT	ACAAGGCAGA	CCTTGATGAT	GAAAAACCTC	TGGGTGTCCG	AGAGAGGTCA
				ACGAGGAAGA			CCAGACACCC
				ACTCGTTCGT			CAGGCCTCGC
			TTAAGATGCT		AAGACCAAGC	GAGAGTTAAT	ACCTGTTCTC
	GACGCGTCGT	CAGCCAGGGA	TGCTGAACAA	GAGGAGAAGG	AGAGGTTGGA	GGCCGAGCTG	ACTAGAGAAG
	CCTTACCACC	CCTCGTCCCC	ATCGCGCCGG	CGGAGACGGG	AGTCGTCGAC	GTCGACGTTG	AAGAACTAGA

	GTATCACGCA	GGTGCAGGGG	TCGTGGAAAC	ACCTCGCAGC	GCGTTGAAAG	TCACCGCACA	GCCGAACGAC
	GTACTACTAG	GAAATTACGT	AGTTCTGTCC	CCGCAGACCG	TGCTCAAGAG	CTCCAAGTTG	GCCCCCGTGC
	ACCCTCTAGC	AGAGCAGGTG	ΔΔΔΔΤΔΔΤΛΛ	CACATAACGO	CAGGGGGGGG	GGTTACCAGG	TCCACCCATA
	TGACGGCAGG	CTCCTACTAC		CACATAACGC	CTCCCTCACT	TTCAACCAGG	ICGACGGAIA
5	CCCACTATCC	TOTACIAC	CATGIGGATC	. GGCCATICCO	GICCCIGAGI	TTCAAGCTTT	GAGCGAGAGC
5	GCCACTATGG	TGTACAACGA	AAGGGAGTTC	. GTCAACAGGA	. AACTATACCA	TATTGCCGTT	CACGGACCGT
	CGCTGAACAC	CGACGAGGAG	AACTACGAGA	N AAGTCAGAGC	: TGAAAGAACT	GACGCCGAGT	ACGTGTTCGA
	CGTAGATAAA	AAATGCTGCG	TCAAGAGAGA	GGAAGCGTCG	CCTTTCCTCT	TGGTGGGAGA	CCTAACCAAC
	CCCCCGTTCC	ΔΤGΔΔΤΤCGC	CTACGAAGGG	CTGAAGATCA	CCCCCTCCCC	ACCATATAAG	CTAACCAAC
	TACCACTCTT	TCCCCTTCCC	CCATCACCCA	CIGAAGAICA	GGCCGTCGGC	ACCATATAAG	ACTACAGTAG
10	TAGGAGICII	1000011000	GGA I CAGGCA	AGICIGCIAI	TATTAAGAGC	CTCGTGACCA	AACACGATCT
10	GGTCACCAGC	GGCAAGAAGG	AGAACTGCCA	GGAAATAGTT	· AACGACGTGA	AGAAGCACCG	CGGGAAGGGG
	ACAAGTAGGG	AAAACAGTGA	CTCCATCCTG	CTAAACGGGT	GTCGTCGTGC	CGTGGACATC	CTATATGTGG
	ACGAGGCTTT	CGCTaGCCAT	TCCGGTACTC	TECTECCCCT	AATTGCTCTT	GTTAAACCTC	CCACCAAACT
	GGTGTTATGC	GGAGACCCCA	ACCAATGCCC	. 10C100CCC1	ATCATCCACC	TTAAGGTGAA	GGAGCAAAGT
	AACATCTCCA	CTCAACTATC	TCATAAACT	ATICITCAAT	ATGATGCAGC	TTAAGGTGAA	CITCAACCAC
15	AACATCTGCA	CIGAAGIAIG	ICATAAAAGI	ATATCCAGAC	GTTGCACGCG	TCCAGTCACG	GCCATCGTGT
15	CTACGTTGCA	CTACGGAGGC	AAGATGCGCA	CGACCAACCC	GTGCAACAAA	CCCATAATCA	TAGACACCAC
	AGGACAGACC	AAGCCCAAGC	CAGGAGACAT	CGTGTTAACA	TGCTTCCGAG	GCTGGGCAAA	GCAGCTGCAG
	TTGGACTACC	GTGGACACGA	AGTCATGACA	GCAGCAGCAT	CTCAGGGCCT	CACCCGCAAA	CCCCTATACC
	CCGTAAGGCA	GAAGGTGAAT	CAAAATCCCT	TCTATCCCCC	TCCCTCCCAC	CACCEGCAAA	GGGGTATACG
	CCCCACTCAC	CATACCCTCC	TOTOGRAPHO	TGTATGCCCC	TGCGTCGGAG	CACGIGAAIG	TACTGCTGAC
20	GCGCACTGAG	GATAGGCTGG	I G I GGAAAAC	GCTGGCCGGC	GATCCCTGGA	TTAAGGTCCT	ATCAAACATT
20	CCACAGGGTA	ACTITACGGC	CACATTGGAA	GAATGGCAAG	AAGAACACGA	CAAAATAATG	AAGGTGATTG
	AAGGACCGGC	TGCGCCTGTG	GACGCGTTCC	AGAACAAAGC	GAACGTGTGT	TGGGCGAAAA	CCTCCTCC
	TGTCCTGGAC	ACTGCCGGAA	TCAGATTGAC	AGCAGAGGAC	TCCACCACCA	TAATTACAGC	ATTTAACCAC
	GACAGAGCTT	ACTCTCCACT	CCTCCCCTTC	AATCAAATTT	CCACCAACCA	TAATTACAGC	ATTTAAGGAG
	GACAGAGCTT	ACTOTOCAGE	GGIGGCCIIG	AATGAAATTI	GCACCAAGTA	CTATGGAGTT	GACCTGGACA
25	GIGGCCIGII	TTCTGCCCCG	AAGGTGTCCC	TGTATTACGA	GAACAACCAC	TGGGATAACA	GACCTGGTGG
25	AAGGATGTAT	GGATTCAATG	CCGCAACAGC	TGCCAGGCTG	GAAGCTAGAC	ATACCTTCCT	GAAGGGGCAG
	TGGCATACGG	GCAAGCAGGC	AGTTATCGCA	GAAAGAAAA	TCCAACCGCT	TTCTGTGCTG	GACAATGTAA
	TTCCTATCAA	CCGCAGGCTG	CCGCACGCCC	TEGTEGETEA	GTACAAGACG	GTTAAAGGCA	CTACCCTTCA
	CTCCCTCCTC	AATAAACTAA	CACCCTACCA	CCTCCTCCTC	GTACAAGACG	ACAACCTGGC	GTAGGGTTGA
	CCCACCCTCA	CTTCCTTCTC	ACCCCTCLA	CGICCIGCIG	GIGAGIGAGI	ACAACCTGGC	TTTGCCTCGA
20	CGCAGGGTCA	CIIGGIIGIC	ACCGCTGAAT	GTCACAGGCG	CCGATAGGTG	CTACGACCTA	AGTTTAGGAC
30	TGCCGGCTGA	CGCCGGCAGG	TTCGACTTGG	TCTTTGTGAA	CATTCACACG	GAATTCAGAA	TCCACCACTA
	CCAGCAGTGT	GTCGACCACG	CCATGAAGCT	GCAGATGCTT	GGGGGAGATG	CGCTACGACT	GCTAAAACCC
	GGCGGCATCT	TGATGAGAGC	TTACGGATAC	GCCGATAAAA	TCAGCGAAGC	CGTTGTTTCC	TCCTTAACCA
	GAAAGTTCTC	GTCTGCAAGA	CTCTTCCCCC	CCCATTCTCT	CACCACCAAT	ACAGAAGTGT	TCCTTAAGCA
	CTCCAACTT	CACAACCCAA	ACACACCCCC	COGATIGIGI	CACCAGCAAT	ACAGAAGIGI	ICHGCIGIT
25	CICCAACIII	GACAACGGAA	AGAGACCCTC	TACGCTACAC	CAGATGAATA	CCAAGCTGAG	TGCCGTGTAT
35	GCCGGAGAAG	CCATGCACAC	GGCCGGGTGT	GCACCATCCT	ACAGAGTTAA	GAGAGCAGAC	ATAGCCACGT
	GCACAGAAGC	GGCTGTGGTT	AACGCAGCTA	ACGCCCGTGG	AACTGTAGGG	GATGGCGTAT	GCAGGGCCGT
	GGCGAAGAAA	TGGCCGTCAG	CCTTTAAGGG	AGCAGCAACA	CCAGTGGGCA	CAATTAAAAC	ACTCATCTCC
	GGCTCGTACC	CCCTCATCCA	CCCTCTACCC	CCTAATTTCT	CTCCCACCAC	TGAAGCGGAA	AGICATGIGC
	AATTCCCCCC	TOTOTALCOCA	CGCTGTAGCG	CCTAATTICE	CIGCCACGAC	TGAAGCGGAA	GGGGACCGCG
40	AATTGGCCGC	IGICIACCGG	GCAG I GGCCG	CCGAAGTAAA	CAGACTGTCA	CTGAGCAGCG	TAGCCATCCC
40	GCTGCTGTCC	ACAGGAGTGT	TCAGCGGCGG	AAGAGATAGG	CTGCAGCAAT	CCCTCAACCA	TCTATTCACA
	GCAATGGACG	CCACGGACGC	TGACGTGACC	ATCTACTGCA	GAGACAAAAG	TTGGGAGAAG	AAAATCCAGG
	AAGCCATTGA	CATGAGGACG	GCTGTGGAGT	TGCTCAATGA	TGACGTGGAG	CTGACCACAG	ACTTCCTCAC
	AGTGCACCCG	GACAGCAGCC	TECTECCTCC	TAACCCCTAC	ACTACCACTC	ACGGGTCGCT	ACTIGGIGAG
	TTTCAACCTA	CCAAATTCAA	CCACCCTCCT	TAAGGGCTAC	AGTACCACTG	ACGGGTCGCT	GIACICGIAC
15	IIIGAAGGIA	CGAAATTCAA	CCAGGCTGCT	AIIGAIAIGG	CAGAGATACT	GACGTTGTGG	CCCAGACTGC
45	AAGAGGCAAA	CGAACAGATA	TGCCTATACG	CGCTGGGCGA	AACAATGGAC	AACATCAGAT	CCAAATGTCC
	GGTGAACGAT	TCCGATTCAT	CAACACCTCC	CAGGACAGTG	CCCTGCCTGT	GCCGCTACGC	AATGACAGCA
	GAACGGATCG	CCCGCCTTAG	GTCACACCAA	GTTAAAAGCA	TEGTEGTTTE	CTCATCTTTT	CCCCTCCCCA
	AATACCATGT	AGATGGGGTG	CAGAACCTAA	ACTCCCACAA	CCTTCTCCTC	TTCGACCCGA	CCCCTCCCGA
	ACTCCTTACT	CCCCCAACT	ATCCCCCATC	AGTGCGAGAA	GGITCICCIG	TTCGACCCGA	CGGTACCTTC
50	AGIGGIIAGI	CCGCGGAAGT	ATGCCGCATC	TACGACGGAC	CACTCAGATC	GGTCGTTACG	AGGGTTTGAC
30	LIGGACIGGA	CCACCGACTC	GTCTTCCACT	GCCAGCGATA	CCATGTCGCT	ACCCAGTTTG	CAGTCGTGTG
	ACATCGACTC	GATCTACGAG	CCAATGGCTC	CCATAGTAGT	GACGGCTGAC	GTACACCCTG	AACCCGCAGG
	CATCGCGGAC	CTGGCGGCAG	ATGTGCACCC	TGAACCCGCA	GACCATGTGG	ACCTCGAGAA	CCCGATTCCT
	CCACCGCGCC	CGAAGAGAGC	TGCATACCTT	GCCTCCCGCG	CCCCCCACCC	ACCGGTGCCG	CCCCCCCCC
	AGCCGACGCC	TCCCCCAACC	ACTCCCTTTA	CCAACAACCT	COGCOGAGCG	TTCCCCC	GCGCCGAGAA
55	CCACCTCCAT	CCCCCAAGG	ACTOCGITIA	GGAACAAGCI	GCCTTTGACG	TTCGGCGACT	LIGACGAGCA
55	CGAGGTCGAT	GCGTTGGCCT	CCGGGATTAC	TTTCGGAGAC	TTCGACGACG	TCCTGCGACT	AGGCCGCGCG
	GGIGCATATA	TITTCTCCTC	GGACACTGGC	AGCGGACATT	TACAACAAAA	ATCCGTTAGG	CAGCACAATC
	TCCAGTGCGC	ACAACTGGAT	GCGGTCCAGG	AGGAGAAAAT	GTACCCGCCA	AAATTGGATA	CTGAGAGGGA
	GAAGCTGTTG	CTGCTGAAAA	TGCAGATGCA	CCCATCGGAG	CCTAATAACA	GTCGATACCA	CTCTCCCAAA
	GTGGAGAACA	TCAAACCCAC	CCTCCTCCAC	ACCCTCACAT	GCTAATAAGA	GICGAIACCA	GICICGCAAA
60	GIGGAGAACA	IGAAAGCCAC	GGTGGTGGAC	AGGCTCACAT	CGGGGGCCAG	ATTGTACACG	GGAGCGGACG
OU	TAGGCCGCAT	ACCAACATAC	GCGGTTCGGT	ACCCCCGCCC	CGTGTACTCC	CCTACCGTGA	TCGAAAGATT
	CTCAAGCCCC	GATGTAGCAA	TCGCAGCGTG	CAACGAATAC	CTATCCAGAA	ATTACCCAAC	AGTGGCGTCG
	TACCAGATAA	CAGATGAATA	CGACGCATAC	TTGGACATGG	TTGACGGGTC	GGATAGTTGC	TTGGACAGAG
	CGACATTCTG	CCCGGCGAAG	CTCCGGTGCT	ACCCGAAACA	TCATCCCTAC	CACCAGCCGA	CTCTACCCAC
	TECCETCCC	TCACCCTTTC	ACAACACT	ACACAACCTC	CTACCCCCCC	CALCAGUCGA	CIGIACGCAG
65	CTCACCCCC	TCCCACCLITIC	AGAACACACI	ACAGAACGIG	CTAGCGGCCG	CCACCAAGAG	AAACTGCAAC
05	GICACGCAAA	IGCGAGAACT	ACCCACCATG	GACTCGGCAG	TGTTCAACGT	GGAGTGCTTC	AAGCGCTATG
	CCTGCTCCGG	AGAATATTGG	GAAGAATATG	CTAAACAACC	TATCCGGATA	ACCACTGAGA	ΑΓΑΤΓΑΓΤΑΓ
	CTATGTGACC	AAATTGAAAG	GCCCGAAAGC	TGCTGCCTTG	TTCGCTAAGA	CCCACAACTT	GGTTCCGCTC
	CAGGAGGTTC	CCATGGACAG	ATTCACGGTC	GACATGAAAC	GAGATGTCAA	AGTCACTCCA	CCCACCAAAC
	ACACAGAGGA	AAGACCCAAA	CTCCACCTAA	TTCAACCACC	CCACCCATTC	AGICACICCA	A COTOTOTO
70			GICCAGGIAA	TOCANGCAGC	GGAGCCATIG	GCGACCGCTT	ACCIGIGCGG
70	CATCCACAGG	GAATTAGTAA	GGAGACTAAA	IGCIGTGTTA	CGCCCTAACG	TGCACACATT	GTTTGATATG
	TCGGCCGAAG	ACTITGACGC	GATCATCGCC	TCTCACTTCC	ACCCAGGAGA	CCCGGTTCTA	GAGACGGACA
	TTGCATCATT	CGACAAAAGC	CAGGACGACT	CCTTGGCTCT	TACAGGTTTA	ATGATCCTCG	AAGATCTAGG
	GGTGGATCAG	TACCTGCTGG	ACTTGATCGA	GGCAGCCTTT	GGGGAAATAT	CCACCTGTCA	CCTACCAACT
					2320NAIAI	CCAGCIGICA	CCIACCAACI

	GGCACGCGCT	TCAAGTTCGG	AGCTATGATG	AAATCGGGCA	TGTTTCTGAC	TTTGTTTATT	AACACTGTTT	-
	TGAACATCAC	CATAGCAAGC	AGGGTACTGG	AGCAGAGACT	CACTGACTCC	GCCTGTGCGG	CCTTCATCGG	i
	CGACGACAAC	ATCGTTCACG	GAGTGATCTC	CGACAAGCTG	ATGGCGGAGA	GGTGCGCGTC	GTGGGTCAAC	•
	ATGGAGGTGA	AGATCATTGA	CGCTGTCATG	GGCGAAAAAC	CCCCATATTT	TTGTGGGGGA	TTCATACTIT	:
5	TTGACAGCGT	CACACAGACC	GCCTGCCGTG	TTTCAGACCC	ACTTAAGCGC	CTCTTCAACT	TCCCTAACCC	•
-	GCTAACAGCT	GAAGACAAGC	AGGACGAAGA	CAGGGGAGGA	CCACTGACTC	ACCACCTTAC	DUDANTODO	
	CGGACAGGCT	TEGGGGGCCGA	ACTCCACCTC	CAGGCGACGA	CTACCTATCA	ACGAGGITAG	CAAGIGGIIC	•
	TCCTCATACC	CATCCCCACC	ACTGGAGGTG	GCACTAACAT	CIAGGIAIGA	GGTAGAGGGC	IGCAAAAGTA	1
	CCTCTACCCC	CATGGCCACC	TTGGCGAGGG	ACATTAAGGC	GIIIAAGAAA	TTGAGAGGAC	CTGTTATACA	L
10	CCTCTACGGC	GGTCCTAGAT	TGGTGCGTTA	ATACACAGAA	TTCTGATTgg	atccCGGGTA	ATTAATTGAA	
10	HACATCCCI	ACGCAAACGT	TTTACGGCCG	CCGGTGGCGC	CCGCGCCCGG	CGGCCCGTCC	TTGGCCGTTG	!
	CAGGCCACTC	CGGTGGCTCC	CGTCGTCCCC	GACTTCCAGG	CCCAGCAGAT	GCAGCAACTC	ATCAGCGCCG	
	TAAATGCGCT	GACAATGAGA	CAGAACGCAA	TTGCTCCTGC	TAGGCCTCCC	AAACCAAAGA	ΔGΔΔGΔΔGΔC	•
	AACCAAACCA	AAGCCGAAAA	CGCAGCCCAA	GAAGATCAAC	GGAAAAACGC	AGCAGCAAAA	GAAGAAAGAC	•
	AAGCAAGCCG	ACAAGAAGAA	GAAGAAACCC	GGAAAAAGAG	AAAGAATGTG	CATCAACATT		•
15	GTATCTTCGT	ATGCGGCTAG	CCACAGTAAC	GTACTCTTTC	CACACATCTC	CCCCACCCA	GAAAATGACT	i
10	TGCAGAAAAT	CTCGGGTGGT	CTGGGGGCCT	TCCCAATCCC	CCCTATCCTC	GGGCACCGCA	CIAICAIGGG	
	CATTCCCCTC	CCCACATAAC	TTAGGGGGCCI	CLACAATCGG	CGCTATCCTG	GIGCIGGIIG	TGGTCACTTG	ı
	CATTOGGGCTC	CGCAGATAAG	TTAGGGTAGG	CAATGGCATT	GATATAGCAA	GAAAATTGAA	AACAGAAAAA	
	GITAGGGTAA	GCAATGGCAT	ATAACCATAA	CTGTATAACT	TGTAACAAAG	CGCAACAAGA	CCTGCGCAAT	•
20	1000000	GICCGCCICA	CGGAAACTCG	GGGCAACTCA	TATTGACACA	TTAATTGGCA	ATAATTGGAA	
20	GCTTACATAA	GCTTAATTCG	ACGAATAATT	GGATTTTTAT	TTTATTTTGC	AATTGGTTTT	TAATATTTCC	
	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	ΑΑΑΑΑΑΑΑΑ	ΑΑΑΑΑΑΑΑΑ	
	CTAGTgatca	taatcagcca	taccacattt	gtagaggttt	tacttocttt	aaaaaacctc	ccacacctcc	•
	ccctgaacct	gaaacataaa	atgaatgcaa	ttattattat	taacttottt	attacaactt	2+22+00++2	
	caaataaaac	aatancatca	caaatttcac	2221222002	tttttttcc	tacattata	ataatyytta	
25	treasactes	tcaatotato	ttatcatata	+aaaTCTACT	CTCCATTAAT	CAATCCCCCA	Ligiggilig	
23	ACACCCCCTT	TCCCTATTCC	ttatcatgtc	COTTOCTAGE	CIGCATIAAT	GAATCGGCCA	ACGCGCGGG	
	TCCCCCCACC	CCTATCACCT	GCGCTCTTCC	GCTTCCTCGC	TCACTGACTC	GCTGCGCTCG	GTCGTTCGGC	
	IGCGGCGAGC	GGTATCAGCT	CACTCAAAGG	CGGTAATACG	GTTATCCACA	GAATCAGGGG	ATAACGCAGG	
	AAAGAACATG	IGAGCAAAAG	GCCAGCAAAA	GGCCAGGAAC	CGTAAAAAGG	CCGCGTTGCT	GGCGTTTTTC	
20	CATAGGCTCC	GCCCCCCTGA	CGAGCATCAC	AAAAATCGAC	GCTCAAGTCA	GAGGTGGCGA	AACCCGACAG	
30	GACTATAAAG	ATACCAGGCG	TTTCCCCCTG	GAAGCTCCCT	CGTGCGCTCT	CCTGTTCCGA	CCCTGCCGCT	
	TACCGGATAC	CTGTCCGCCT	TTCTCCCTTC	GGGAAGCGTG	GCGCTTTCTC	AATGCTCGCG	CTGTAGGTAT	
	CTCAGTTCGG	TGTAGGTCGT	TCGCTCCAAG	CTGGGCTGTG	TGCACGAACC	CCCCGTTCAG	CCCGACCGCT	
	GCGCCTTATC	CGGTAACTAT	CGTCTTGAGT	CCAACCCGGT	AAGACACGAC	TTATCCCCAC	TCCCACCACC	
	CACTGGTAAC	AGGATTAGCA	GAGCGAGGTA	TCTACCCCCT	CCTACACACT	TCTTCAACTC	CTCCCCTAAC	
35	TACGGCTACA	CTAGAAGGAC	ACTATTTCCT	ATCTCCCCTC	TCCTCAACCC	ACTTACCTTC	GIGGCCIAAC	
33	TTCCTACCTC	TTCATCCCCC	AGTATTTGGT	ATCTGCGCTC	IGCIGAAGCC	AGTIACCTIC	GGAAAAAGAG	
	TACCCCCACA	AAAAAAAA	AAACAAACCA	CCGCTGGTAG	CGGIGGIIII	TITGTTTGCA	AGCAGCAGAT	
	AACGCGCAGA	AAAAAAGGAT	CTCAAGAAGA	ICCITIGATO	TTTTCTACGG	GGCatTCTGA	CGCTCAGTGG	
	AACGAAAACI	CACGITAAGG	GATTTTGGTC	ATGAGATTAT	CAAAAAGGAT	CTTCACCTAG	ATCCTTTTAA	
40	ATTAAAAATG	AAGTTTTAAA	TCAATCTAAA	GTATATATGA	GTAAACTTGG	TCTGACAGTT	ACCAATGCTT	
40	AATCAGTGAG	GCACCTATCT	CAGCGATCTG	TCTATTTCGT	TCATCCATAG	TTGCCTGACT	CCCCGTCGTG	
	TAGATAACTA	CGATACGGGA	GGGCTTACCA	TCTGGCCCCA	GTGCTGCAAT	GATACCGCGA	GACCCACGCT	
	CACCGGCTCC	AGATTTATCA	GCAATAAACC	AGCCAGCCGG	AAGGGCCGAG	CGCAGAAGTG	GTCCTGCAAC	
	TTTATCCGCC	TCCATCCAGT	CTATTAATTG	TTGCCGGGAA	CCTACACTAA	GTAGTTCGCC	ACTTAATACT	
	TTGCGCAACG	TTGTTGCCAT	TGCTACAGGC	ATCCTCCTCT	CACCCTCCTC	CTTTCCTATC	CCTTCATTCA	
45	CCTCCCCTTC	CCAACGATCA	AGGCGAGTTA	CATCATCCCC	CATGUTCUTC	AAAAAAAAA	GCITCATICA	
	CCCTCCTCCC	ATCCTTCTCA	CAACTAACTT	CATGATCCCC	CAIGIIGIGC	AAAAAAGCGG	HAGCICCH	
	AATTCTCTTA	CTCTCATCCC	GAAGTAAGTT	GGCCGCAGTG	TIATCACTCA	IGGITATGGC	AGCACTGCAT	
	CACAATACTC	CIGICAIGCC	ATCCGTAAGA	IGCITITCIG	TGACTGGTGA	GTACTCAACC	AAGTCATTCT	
	GAGAATAGTG	I A I GCGGCGA	CCGAGTTGCT	CTTGCCCGGC	GTCAATACGG	GATAATACCG	CGCCACATAG	
50	CAGAACTITA	AAAGTGCTCA	TCATTGGAAA	ACGTTCTTCG	GGGCGAAAAC	TCTCAAGGAT	CTTACCGCTG	
50	TTGAGATCCA	GTTCGATGTA	ACCCACTCGT	GCACCCAACT	GATCTTCAGC	ATCTTTTACT	TTCACCAGCG	
	TITCIGGGTG	AGCAAAAACA	GGAAGGCAAA	ATGCCGCAAA	AAAGGGAATA	AGGGCGACAC	GGAAATGTTG	
	AATACTCATA	CTCTTCCTTT	TTCAATATTA	TTGAAGCATT	TATCAGGGTT	ATTGTCTCAT	GAGCGGATAC	
	ATATTTGAAT	GTATTTAGAA	AAATAAACAA	ATAGGGGTTC	CGCGCACATT	TCCCCGAAAA	GTGCCACCTG	
	ACGTCTAAGA	ΔΑΓΓΑΤΤΑΤΤ	ATCATGACAT	TAACCTATAA	AAATACCCCT	ATCACCACCC	CCTTTCCTCT	
55	CCCCCCTTTC	GGTGATGACG	GTGAAAACCT	CTCACACATC	CACCTCCCCC	ACACCACGACGC	ACCUTACE	
55	TAAGCGGATC	CCCCCACCAC	ACAACCCCCT	CACCCCCCC	CAGCICCCGG	AGACGGICAC	AGCITCIGIC	•
	TTAACCAGAIG	CCGGGAGCAG	ACAAGCCCGT	CAGGGCGCGT	CAGCGGGIGI	1 GGCGGG I G I	CGGGGCTGGC	
	TOGATTAGG	GGCATCAGAG	CAGATTGTAC	TGAGAGTGCA	CCATATCGAC	GCTCTCCCTT	ATGCGACTCC	
	TGCATTAGGA	AGCAGCCCAG	TACTAGGTTG	AGGCCGTTGA	GCACCGCCGC	CGCAAGGAAT	GGTGCATGCG	
60	TAATCAATTA	CGGGGTCATT	AGTTCATAGC	CCATATATGG	AGTTCCGCGT	TACATAACTT	ACGGTAAATG	
60	GCCCGCCTGG	CTGACCGCCC	AACGACCCCC	GCCCATTGAC	GTCAATAATG	ACGTATGTTC	CCATAGTAAC	
	GCCAATAGGG	ACTTTCCATT	GACGTCAATG	GGTGGAGTAT	TTACGGTAAA	CTGCCCACTT	GGCAGTACAT	
	CAAGTGTATC	ATATGCCAAG	TACGCCCCCT	ATTGACGTCA	ATGACGGTA A	ATGGCCCGCC	TEECATTATE	
	CCCAGTACAT	GACCTTATGG	GACTTTCCTA	CTTGGCACTA	CATCTACCTA	TTAGTCATCC	CTATTACCAT	
	GGTGATGCGG	TTTTGGCAGT	ACATCAATGG	CCCTCCATAC	CCCTTTCACT	CACCCCCATT	TOCANCTOTO	
65	CACCCCATTG	ACGTCAATGC	GAGTTTGTTT	TCCCACCAAA	ATCAACCCCA	CTTTCCAAAA	TCTCCTAAGICIC	
	ACTCCCCATIG	ATTGACCCAA	ATGGGGGGGTA	CCCCTCTACC	ATCCCACCTC	CITICCAAAA	IGICGIAACA	
	CCTAACTACA	CAACCCACTC	ATGGGCGGTA	TTATCCAAAT	G I GGGAGG I C	TATATAAGCA	GAGCICICTG	
	ADATOMATOD	GHACCCACIG	CTTAACTGGC	TIATCGAAAT	TAATACGACT	CACTATAGGG	AGACCGGAAG	CTTGAATTC

40 50 60 70 80 90 91 90 91 90 91 91 9	cgttgacatt 2 cgttacataa 3	ttcccatagt		catgacctta	agtacatcaa		acygryyyay ctcactatad	gcagaattcc	CCAGAGACAA	SCIGG ACAAGCAGAA 1120	AAAGCACACA	CICAA GGAICCAIGG 1280	CGTCGTCGCC	AGCCCCCAA 144	ATAGAGATTG	CTACCTCGGT	ACGCCGCCA	-	THESTST	16G16GACAA	CCCGTTGTTC	CGTTCCAGTC	ATGCCCGCGG 2	TTGT CGCGGTGGGA 2320	GCCTGGGTAT 2	ACTITCACCA 2	CAAGTIGCIC		TCGACGCCAA	TCGACGCCAA	TCGGCCCAA TCGGGCCTGT GGAGGCCGAT	TCGGCCCAA TCGGGCCTGT GGAGGCCGAT GTGGTTCGAA
atgtacgggc cagatatacg agcccatata tggagttccg gacgtcaata atgacgtatg aaactgccca cttoqcaata						uugaagtaaa tgggagtttg Gaaatgggga ataggagttt				_	_	_	_			-	CCAGCGTCAG GCCACCAAGG		icciecies Asalcescea CCAGCGGGTC GTCGATTGGC	_	_	•	TCGTGGGTGG TTCGACCCGG		•					-	AGAGGAGUGT GAGGCCGAGG	•
	ctgcttcgcg atg attagttcat agc					ctccaccca tig cccattdaca raa	-		-	_				_	-	_	TCAATGACGC CCA	_				CICAGGACCI GCI	_	_				_	AAGGAGAACA CGAJ		-	GCGGAAGCGA AGGC
40 ggtcgactct gagtagtgcg	gcgttttgcg ttacggggtc			ccaargacgg t					-	_	•				e ferecection					-		CAACGGATCA C	_	_	-	•	_	_	Secretary and a		•	in coccepted di
			arryacyca action	_				_	-		TATTGIAACC		-	TOTO TOTO TOTO TOTO TOTO TOTO TOTO TOT		•	-	-		TCGATCTGAC	_	_	_		_	_		CATCCGCCG	ATGATCAAGG	ATTGGTCTAC	10 E E C C K K C K	WOT TODEWOOD
			gggacticc	Ctantt	tagggo	ggactttcca	gcagagctct	gctggctagc	actagtggat	CIGITATEAG	CCCAL LACAA	りられていりませらい	CGGGGATCGAC	ひしゃをししゃひ上む	りつせているこれ上々	上でもしせしるせしし	CICAACGIGC	AATCCTGGTC	CCACTTCGGG	ACCAGCGGCA	GAGTTCGAGT	AGCTGACCCG	GACACCGGCA	GGTCAAGGAA	AGGCCGGCGT.	GGCGGGGTGA	CAACCAACCG	かりつく でしゅうしゅう	CATTGACCGC	AAGCCGAGAC	をが出しない ないない	55 インランボンボン
gacggatcgg ctgctccctg	gattattgac gattattgac	cttacggtaa	atcatatocc	tagaacttc	tagacataga	aaaatcaacg	gtctatataa	ggagacccaa	accacactgg CTCATACTCTG	でながないなかせつ でながないなかがり	ではないないないかい	エフザンでしていたし	できるさしてようでする	GAACCAGGCA	ACGGCAAGAA	GAGGACATTA	GATCGCCGGC	AGGAGCAGCG	GAGGTCCGTG	GTTCAAGGGC	AGATCGAGCT	TTAGACGAGC	GGTGATCGCT	こうにならつうならて	プラインエンランフラ で 4 4 2 2 4 2 4 2 2	450450550	せのいまりついりつつ	CGGCATTGTG	CCAAGGAAGA			
8 1 1 2 1 2 1 2 1	241	321 401	481	561	641	721	801	7 L 0 0	104 1041	1121	1201	1281	1361	1441	1521	1601	1681	1761	1841	1921	2001	2081	7241	7321	2401	2481	2561	2641	2721	2801	2881	9

3200	3280	3440	3520	3600	3680	2040	2000	4000	4080	4160	4240	4320	4400	4480	4560	4640	4720	4800	4880	4960	5040	5120	5200	5280	5360	5440	5520	5600	5680	5760	5840	5920	0009	6080	6160	6240	6320	0400	56
actgtccttt	ರ್ಷವಿರ್ವಹಿತ್ತರ ಇತ್ತಾರತ್ತಾರ್ಣವು	cgcagcgtga	aggatttaa	aacttgatta	tttaata tttaaatt	1004+10000	adatatadaa	gaaataaat	tttatacaga	tacaaaaac	acaaqatqqa	gctgctctga	ctgaatgaac	tgtcactgaa	ccgagaaagt	gcgaaacatc	ggggctcgcg	atgcctgctt	cgctatcagg	ttacggtatc	gttcgaaatg	gcttcggaat	aacttgttta	gcattctagt	cgtaatcatg	aagtgtaaag	aaacctgtcg	cctcgctcac	tccacagaat	gttgctggcg	cgacaggact	ggatacctgt	ggtcgttcgc	ttgagtccaa	ggcggtgcta	gaagccagtt	tttgcaagca	rygaacgaaa ataaaattt	totcagogat
	yrggggrggg tctgaggcgg			gaccccaaaa	tataaddccacg	ddaatotot	gradcaacc	ccataqtccc	attttttta	cctaggcttt	gcatqattqa	cagacaatcg	gtaaggtgaa	tgctcgacgt	cttgctcctg	cgaccaccaa	aagagcatca	acccatggcg	tgtggcggac	tactagtgat	ggactctggg	gaaaggttgg	cgcccaccc	tttttcact	tagagcttgg	cggaagcata	tccagtcggg	tcttccgctt	aatacggtta	aaaaggccgc	tggcgaaacc	gccgcttacc	gttcggtgta	aactatcgtc		gagatatgat	ggtttttg tgaggtgag	tgacycrcay tasattasas	gaggcaccta
	atteratgget ctetatgget			acygcacctc					tggctgacta	tttttggagg	ggatcgtttc	ctgggcacaa	agaccgacct	tgcgcagctg	gtcatctcac	cctgcccatt	gatctggacg	tctcgtcgtg	gccggctggg	gctgaccgct	cttctgagcg	cgccttctat	tggagttctt	aataaagcat	gacctctagc	acatacgagc	ctgcccgctt	tattgggcgc	caaaggcggt	aggaaccgta	aagtcagagg	ttccgaccct	aggtatctca	cttatccggt	ttagcagagc	tttggtatct	rggragaggt rtangagggt	1000000000000 1000101111	cttaatcagt
ccttccttga		_		atttt	ctcaatctat	ttaacqcqaa	caaagcatgc	gcatctcaat	ctccgcccca	tgaggaggct	gacaggatga	tcggctatga	ctttttgtca	gggcgttcct	aggatctcct	gatccggcta	cgatcaggat	acggcgagga	atcgactgtg	cggcgaatgg	ttgacgagtt	attccaccgc	gatctcatgc	aaatttcaca	gtataccgtc	attccacaca	gttgcgctca	gagattaaa	tcagctcact	gcaaaaggcc	arcgacgete	cgctctcctg	ctcacgctgt	accgctgcgc	ggtaacagga	aaggacagta	aaaccaccgc ++ca+c++++	gatetteace	gttaccaatg
ctcccccgtg	catgctgggg	ctgtagcggc	ctcctttcgc	gggereegae	tcaaccctat	taacaaaat	cagaagtatg	tgcaaagcat	tacgacatt	ccagaagtag	ctgatcaaga	gagaggctat	gagacaggtt	tggccacgac	graccagaga	gcatacgctt	ccggtcttgt	cgcatgcccg	ttctggattc	aagagcttgg	tatcgccttc	cgagatttcg	ccagcgcggg	atagcatcac	tatcatgtct	tccgctcaca	cattaattgc	gcggggagag	gcgagcggta	caaaaggcca	carcacaaaa	crectegtg	tttctcaatg	gttcagcccg	agcagccact	gcracactag	adaadatcct	tatcaaaaa	tggtctgaca
ttgtttgccc	טו		Chagogooog		ggaacaacac	tgagctgatt	cccaggcagg	ggcagaagta	tccgcccagt	ctgagctatt	attttcggat	cgcttgggtg	cagcgcaggg	ctatcgtggc	arigggcgaa	rgcggcggcr	cggatggaag	gctcaaggcg	arggaagatt	gatattgctg	catcgccttc	cctgccatca	ggatgatcct	aaataaagca	caatgtatct	gaaattgtta	agctaactca	cggccaacgc	rrcggcrgcg	aacargrgag	cccryacyay	ccccggaag	agcgrggcgc	dgaaddcccc	cyccactyge	taggtgttg	aaqqatctca	gtcatgagat	tgagtaaact
cagccatctg tqaqqaaatt		agggggtatc		tcacqtaqtq	gttccaaact	ggttaaaaaa	ccccaggctc	ctccccagca	cgcccctaac	gactatgact	ttgtatatcc	gttat	20	190ag		9000	00000000000000000000000000000000000000	rg r cgccag	arggragaaa	ggcra	attcg	cgacc	gacgo			רבנכנ	ctaatgagtg	arradigadi	cycleggleg	CUCACURARAC	Sycecopics States	caggegeeee	cccrcggga	ט נ	ט כ ז ד	gaagagttaa	מ מ	g	L)
ttctagttgc cctaataaaa	m	ctggggctct	מ ל	gggtgatggt	gtggactctt	toggcctatt	tgtggaaagt	agtccccagg	ccgcccatcc	ggccgaggcc	tcccgggagc	ttgcacgcag	tyceyceyry tygoggaga	יו פיינ פיינ	9 C S S S S S S S S S S S S S S S S S S	acccarcary gastagaga	gcarcgagcg	CCAGCCGAAC	googaarare	acatagogut	deedereed	accgaccaag	cgrereagg	trgcagetta	rgrggrrrgr atartogr	grcaragery	ccragagarac	+0400000000000000000000000000000000000	927778C	d +−) u	ם 1 1	tageactici	י ה ה	2 5	acttaaa	υ	tcacgt	aaatcaatct
3121				_	_		~	•, •			, ,	4 1.	, \	440T	4561	4641	4721	4801	1007	, ,	,, c	ノド	٦ (чc	VΥ) <	044 7501	ìω	v) r	, 4	5 6	1 5	2 0	16	2.4	6321	40	4 8

9	6720	0089	0000	0969	7040	7120	7200	7280	7360	440	7518	
ccatctggcc	cadaaaaaacc	taaataatta	atdacttcat	cttaggtagt	ttactgtcat	cgaccgagtt	aaaacgttct	actgatcttc	ataagggcga	catqaqcqqa	ctdacqtc	. 80
ggagggctta	accadccadc	gaaggtagag	gtcatttaat	cggttagctc	cataattctc	gtgtatgcgg	tcatcattgg	cgtgcaccca	aaaaaaggga	gttattgtct	aaagtgccac	70
ctacgatacg	tcagcaataa	ttattaccaa	tatcacactc	tgcaaaaag	ggcagcactg	tctgagaata	ttaaaagtgc	gtaacccact	aaaatgccgc	atttatcagg	atttccccga	9
gtgtagataa	tccagattta	agtctattaa	ggcatcgtgg	cccatgttg	tcatggttat	accaagtcat	tagcagaact	ccagttcgat	acaggaaggc	ttattgaagc	ttaagagaac	50
actccccgtc	gctcaccggc	gcctccatcc	cattgctaca	ttacatgatc	gtgttatcac	tgagtactca	ccgcgccaca	ctgttgagat	gtgagcaaaa	tttttcaata	caaatagggg	40
ctgtctattt cgttcatcca tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta ccatctggcc	ccagigotgo aatgalaccg cgagacccac gotcaccggo tecagaitta tcaqcaataa accagocago cggaaggge	gagegeagaa giggiceige aactitaice gectecaice aqictaitaa iiqiitocogo gaagciada taagatar	gccagttaat agtttgcgca acgttgttgc cattgctaca ggcatcqtqq tqtcacqctc qtcqtttqqt atqqctttcat	ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag cggttagctc cttcggtcct	ccgatcgitg tcagaagtaa gitggccgca gigitaicac icaiggitat ggcagcacig caiaaiicic itacigicai	gocatoogta agatgotttt otgigacigg igagiacica accaagicat icigagaata gigiaigogg ogacogagit	gotottgoco ggogtoaata ogggataata cogogocaca tagoagaact ttaaaagtgo toatoattgg aaaaogttot	toggggogaa aacteteaag gatettaeeg etgttgagat eeagttegat gtaaeeeeaet egtgeaeeea aetgafette	actitcacca gogiticigg gigagcaaaa acaggaaggo aaaatgoogo aaaaaaggga ataagggoga	cacggaaatg ttgaatactc atactettee titticaata ttattgaage atttateagg gitattgiet eatgagega	tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga aaagtgccac ctgacgtc	30
cgttcatcca	aatgataccg	gtggtcctgc	agtttgcgca	ttcccaacga	tcagaagtaa	agatgctttt	ggcgtcaata	aactctcaag	actttcacca	ttgaatactc	aatgtattta	20
ctgtctattt	ccagtgctgc	gagcgcagaa	gccagttaat	tcagctccgg	ccgatcgttg	gccatccgta	garartgaca	toggggogaa	agcarcttt	cacggaaatg	tacatatttg	10
6561	664 <u>T</u>	6721	6801	6881	6961 1961	7041	717T	720T	7887 1377	736T	7441	

bS
cab
ئ
6
1 bold
.⊟
Ä
6
sh
13.
é
ŭ
ä
n sequen
S
5
usi
Ĥ
2
E7-Hsp7
Ĥ
<u>;</u>
щ
Ĕ
Ξ
19
ö
ž
Ξ.
Ö
SEQ ID NO:19 The E

L				3 2						ja 800															
80	adtadtaaag	Cacadcacact	Cathadanaa	acceptacet	acaadaactt	cacaacdatd	tcatcaggct	gttcqtaccc	ctgagtgaag	aggatcgaca	aqtcqtacac	acqqqaqaaa	agaacqqqta	tatcacctga	aacaccatdc	taacqaqaa	cattttatca	acqacctctt	ctcqqaqqaa	cacttccacc	atcqqaqcaq	tatcottotc	taacacactc	ccatqqccaq	111001111
10	tagagaagg	gadataatad	actagagatt	attotototo	aagattaga	gctctgcttt	gaactatcta	gctatggcag	cagcacaaag	atttctccgt	aatggaaagc	tecegggate	cagtaaaagg	gccacggata	caggaacacc	atgatcttga	aaaqtacatt	gtccgtatgg	tgctgcaggt	ctccqaqaaq	ccaqqcqqac	toggacagta	gttaagatca	addtdccdta	
09	accatcacaa	cccccaattt	aactaatcga	caccaqtatc	aaaagcdtgc	aaacaccatc	aacgctcccg	catgttctcg	teggaetttg	tegegggttt	gttccacttg	tcaccatcag	gttactgaca	tggtataatg	gtaggactaa			ttcccatgtc	gaggaaaaac			gaccgtatga			
50	caattgcact	aaaaaactt	ctddccaqta	gttttccgag	aactggcgga	ccggatgctg	cgtgtatatc	ccacccagtt	gcgcgtaaca	gaagcccggg	ttccatcggt	gtgaagaaaa	gctatgcaaa	atcagatgac	gtcattaacg	atgggctaag	tgtgggcgtt	tttagcgctt	accaaagaag	aggaagccag	gtctgcgaag	tcaagcaaat	cgcacccgct	aaagtactga	,
40	aacagccgac	gtgcaactgc	attttcgcat	ctcgtagaat	tacgccagta	acttgatacg	tcatgcagga	ggcttcgaca	agtccttgaa	agaaggagtt	agctggcatc	aggctacgta	agggcttctt	accatatgcg	ccagcgaatt	ggttcagcaa	tatggctgct	cccagcctct	tggcattgca	gatgctcagg	cgcagaagtt	ggataatacc	ctcgcaccag	atacgacgct	
30	tattgaatca	teegtttgte	atgccagagc	agcgcaccgg	catgatgaaa	tccggaccgt	gaatattccg	gtactggatt	ccgacgagaa	ataatgagga	cagcttgcag	tgagttgcga	cacaatagcg	catcccggcc	ttgggctcaa	atagcacaag	caagcttacg	gcgtaaaagt	aaattgaaac	tgcttttgag	tcgaggcagc	ggtcacgtaa	gaatgccaaa	cggtcgaacc	
20	tagtacacac	acccccagag	gaccatgcta	ggacataggc	acccggaccg	attaaggatc	catgcgtgcc	tgaggaaact	accaactggg	aaaattgtcg	aacacagagc	gatacagtgg	cgcggttaca	tgtgcacgta	aaacttctgg	tctgccgatc	ctagagaacg	acgcagacct	gctgaggcag	aggccaaggc	gacaaaggca	aaccccgcgc	ctgtgctgaa	ggaaggtacg	1 - 1
10	attgacggcg	gtagacgtag	cactccaaat	cgacgatctt	agtccagaag																				the state of the contract of t
	H	81	161	241	321	401	481	26T	64 L	1.7.7	T.08	881	1961	T047	1121	1201	1281	1361	1441	1521	1091	1681	1761	L84.	, ככ

2080 2160 2240 2320	4 4 8 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	2640	80	2880	2960	3120	3200	3280	3360	3440 0730	3600	3680	3760	3840	3920	4000	4080	4160	4240	4320	4400	4480	4640	4720	4800	4880	4960	04	5120	5200	2780	5440
agtacgtgtt aaccctccct gataggcaca aagaaaattg	arycicaacy cttgattgct aactaaaqqt	cagccagtta	aaatcqacta	caaaaagtca	agtgtggaaa	accaacattt	actgttccca	tggacttgac	cattgggaca	griccaycia	aaccadttca	cccdattqqc	tcatcaacat	cgttcggccc	cgtagtcacc	acctgatttt	tatgagggta	agcagttgtc	gttttaccga	cctgatttcc	tgaacataac	cacttaactg	agaarraarg	gcaccaaatt	ctatatacct	gcccaaaacg	aagttacagt	ctgtttaatc	acaggccgag	tctcactgga	ס כ	ayayccaycc caagcaatag
gcagaaacag agaactgacc caataggagt agcggaaaga	ayarreyyrr cactacttgc aacatgatgc	gcgttgcaca	aagcaattgc	tgccgtccgg	aggacaggct	cadctdcaad	agtggagcga	tttttcggca	gccggtagct	garrrccggr	aaaattetta	aatqqatcqc	gacctggtgt	aaccctttcg	acagtgagga	acagaaatgt	ttcgtccgtg	gtcaagagga	tggccgacca	cgcggtcggc	acttagtaaa	cttgaagtat	gragarggar	tacttcqaaq	taatgaacaa	cgtctagccc	aacgtcaaag	gaaagtagtc	ctcctcctgc	gtcacagaca	ractagrary	actccaccgg
ggcagagett tecteteggg aaggtegaaa tettgttaee	cacgcaggag cacgcaggag cggattcttc	atatctcccg	cegracust cegesteesett	aaggagtgta	acccgcactg	ccaatccqtt	accggttgcc	ttgcattaag	attdagcgag	いたいたいのでは、	gcccaatcaa	aagagaatcq	ggcacggtac	cgaccttaaa	gccgaccgca	ctcaagcaat	attgcgtgat	attgctgact	ctataaacgt	aagtgatcca	gcagtggcag	aaaagaccgc tccataacaa	gagatcgacg	attgtattcg	accaggaaag	cataacccgt	tagaagcaat	ttcagtgcac	cagcctaccg	ctcgcttgat	מכלמסכרנימנ	aaaagagccc
aggttacaaa tcaggtctgg ggtcccgtac cggcacgaga cagattacot	cagarracyr gttcgcgtgc ccatgcaatg	ttctacaagt	catgtttccg	ctaaccagaa	cgtgttgctc	actccccgtg	tatcgtactt	tagacgtaat	carcccgccg	Cyccyccyaa Cragacttat	aadcaacccd	agctccccgt	ttccgccgca	gaccatgcgg	ctatggctac	cagattgtgt	caccatctga	aagggagaat	gccgtgccat	ctaggaaaga	cgcctaccat	acgcagcagg	tgaagatatg	caaaaggaaa	ttccctaatg	cccggtcgac	tccacagact	gttcagaagg	agtgccagaa	ctgataacac	ageggaeegg	cagcggcaag
gagcagtaca ggaagaagcc cccgacctgc tcaactgtca	sassasaacs ttgacgaagc tgcggagacc	caccaagaca	atcatcctga	ctcacaaggg	agcatgtgaa cccactaaca	aaacagcccc	ccacggccgg	atttacgcct	actaacgtac	accacgean	gtacaaqqaq	aaaaaattga	gctttcgggt	gcagtgcgaa	tggtgaagtc	gcagcgagac	attcaccccg	accgcaccaa	gaaggagtct	gactgtgtgc	rgcracaaaa	acaggcartr	agctgaagga	ttcagtacta	aaaggtcctg	gcgaaaagtg	ರದಿತ್ತಡಿತ್ತಾತ್ತು	aattaagaat	agtacataga	ccatctacag ttccattt	accaaaaca	gcccgcctgg
tacagaagag gcgttaagaa ggactgaaga tattatcaag	gtgctgtacg ggtagtacta	aagacatatg	gccaggggat	cagccgcggc	atcacatcag qattaaqcaq	ttgctgcaat	ccgatactag	acattoggoo	tatagates tatagataga	taatttacaa	tagtccccqa	g			ggcaccctcg	cagggtgtct	gtacacggca	gcgccgtcat	tagaccaggc	ccgcaagaat	gccrcgaaar	gaactgaggg	tetgtaacag	aagaaaggga	tggcggagat	gaagcaatcc	tgccatgacg	ctaagcacaa	cccgcccgta	gadaddgtda	gadatadtad	aaagaagatg
aggaagcgtt aggtctggag gcaagtcagc	gagagaa agaagaa caagaagaa	caccctgaaa atcgacactg	caaag	gaagt	actgracgcg qcqacccatq	aagggaataa	agcat	atgac	aacccccaac	gcaca	cctca	agtactigtg	cagataagaa	tacagaaacc	taacc	gaaag	gacaa	agttç	atccg	gagac	agaagcagaa tagaanttag	acact	actta	gcttgaaggg	taz	tgagaccatg	7)	ე ე	cgcattcgtt	aagttgtage	taqttcacta	cgccaaggct
atgcatggcc tgacgtggac atcatgagct ccggggtcgg tcgcgaaatt	10 10	acatttcaat caqctattqt	acaggggcca	tcccggacat	argaaaaccc accttqcaqq	agctgaacac	gctgggcgaa	cagittigagg	acadacada	gctgggaagg	ccgcaatctt	aacaccactc	atagccggtg	tggaactaaa	tgaattgcct	gatattgada	ccgacaacta	caagagatgg	aacgcagcca	rrcagacaag	44844CACCC	cttdacaacc	cggcactcca	ccagacagtt				י מס	gcacac	gaggeeeeg	ນິດ	
2001 2081 2161 2241 2321	40.40	u, w		ωų	וט ט	041	121	Z07	361	4	L)	vo	vo i	_	∞ (ס כ	- 0	Э г	⊣ (401	481	561	9	72	80	ω <i>(</i>	ν. ο .	4 ر د	5201	28	36

5520 5600 5680 5760 5760	6000 6000 6080	6160 6240	6320 6400	6480	6560 6640	6720	0899	0969	7040	7120	7200	7280	7360	7440	7600	7680	7760	7840	7920	8000	8080	0700	· C	4	8480	56	4.	8720	8800	o
gcccgccagg gattgatgag ttatatcgtc ctaaccgggg gcttacagaa	ataaccactg tccgaaacca	tgcatgagaa gtcgcctgcc	tatccgcagt tcacqcaqat	gagtattggg	ccctaaggcc acatgaaaag	gaacccctgg	tcacacgett	agacggacac qtqqatcaac	taaattoggg	gagtactaga	gacaaagaaa	accttacttc	tgtttaagtt	gcgtggttta	occacigges officitaaata	tqctqqatat	TTAGATTTGC	TGGTCCAGCT	GGTTGTGCGT	ATCTGTTCTC	TGGCGACCCG	ありてものようりで	CGACGCCGAG	AGGCCACCAA	TACGGCCTCG	GGAGATCGGC	TCGTCGATTG	CGGGAAGCCG	CGCCGACAAG	はないらいすいないら
cggagagacg ccgacggaga gtgaactcaa tgaatactga tgcagaacca	guggaaagcc tcagaaagcc agatcaccta	aacaactatc agacgggaca	gagccccgaa aattgcaacg	atgtaatgac	gactgaaagg ttcgtcatgg	acaagccgca	cccaaacat	ggacctgqqt	gtactcgttt	atcgccagca	agtagtatct	gtgagagacc	ctgaaaaggc	ttacacctot	ctctacqqtq	gacgacaata	TGAATATATG	ATGAAATAGA	TCTACGCTTC	TGTGTGCCCC	TTCTGGAAGG	ACACATGGGC	AGCTGAAGCG	GCCCAGCGTC	CGCGCIIGGCC	TTTCCCTGCT	GACCAGCGGG	GCAGCGGCTG	TCACCGTCGA))(5))1)
caattttcga ggatcgtttt accgggcgaa gcaggaggac aagtccgttc	aagtagaaaa gaatgctata	agctgtctgt tggatatggt	catgagtata aactaaaaga	gaaaatatgc	tatggataga tatggataga	tacaagtgat	gccgrcrrgc	tgatcttgga	ctacctacgg	gaatgtcgtt	tcatacatgg	gcagtcatcg	ggcggarccc	ctctgctaga qtagacaata	aataaagcat	gactcgagcg	CTACATIGCA	GAGGAGGAGG	CAAGTGTGAC	CACTAGGAAT	GICGICICGO	CGGTCAAGCG	ATTCTGATGA	CTTCAATGAC	CGACCGCGGC	ACTTTCGACG	CGACGACTGG	AGATGGCGAT	CTGCCCTACA) · · · · · · · · · · · · · · · · · · ·
tccctcggat tatgtctttc gatcatttga agacgcagga cttgcaaaag	cagtctcgta agatcagcca	gatgettaet	cccgaaaaaa tcattgccgc	gaatgctttc	aagaagtgcc	agaccgaaag	raggerraeg aacaetteaa	accggtctga	atccacccat	acacagtttt	gacgacaaca	gatcatcgac	ಇಡುವಿದ್ದಾರೆಗಳು	agaagacgcg ccqqtatqaq	tcagaggga	accacctcta	GGAGATACAC	TGACAGCTCA	CCLTTTGTTG	TTAATGGGCA	CACCAACTCC	ACCGTGCGCT	CAGCGCCGC	CGCCCGCCTA	GTCAACGAGC	GGGTGGTGGC	Accircacaca	ACCAAGGACA	CICGAICAAC TCCAACGGAI	
ggtatccatg cggatgtgcc gtcctgtttg gcagagacgt gccctgggca	aagtaggtac actctgccac	tgacgagtac	rrayaagrra caaaatgtgc	attcaatgtc	gtcccattgc	cacagaagaa aattagt	atcatagcag	tatggcgtta	gagaaatatc	ctttttgtca	gttcattggc	rggaggrraa	acticiacay	agacgaagac ccgtgacgac	ttccaagcca	ctacaacacc	atcc ATGCAT	AGCAATTAAA	AATATTGTAA	GGAAGACCTG	ACCACCCCGT	CGTCGATCGC	CGCCGGAGAT	GTTATCACGA	GCTGCGGATC	TCTTCGACTT	GGTGACAACC	CALCGALCEG	CGCGCGGAGT	
cttttggtgg acaggcccca gtccgaaccc cactacgcaa acggacacag	aagccaacaa cgactgtata	atcagattac	cccycraayc gaacacgcta	actcagcgac	gtataatttg	gcacgaaaca	ttttgatgca	aagacgacgc	tgagaatttg	gttcctcaca	gatgtgcagc	rggcrcaaca	agarraggrr	ttagcagtgg	caaaagagca	ctgactaata	ggactagtgg	TACTGTTATG	AGCCCATTAC	T.T.C.G.T.AC.T.T.T.	GGGCTCCAGG	CAGTGACCAA	AAATACACCG	TACCGACGCG	GCCTCAACGT	CGAATCCTGG	TGCCACTTCG	のことではいるのよう	GCAGCTGACC	
ctccacctct accctggca gagtaactga gtatctttc catattttcg agcgcaatgt	atgcccaccg gtcaggacta	gtagcatctt	cagoga	ccaacactgg tcqqaaqcca	ttgcaa	gttadaddag	cggcggagga	gacaaaagcc	cttgat	aarccg	aaaacgreca	y ry ry ry r	ctcccaqcca	aacaggcact	ttgcccagag	tacatttcat	ccaccacact	AACTGATCTC	AACCGGACAG	CACGIAGACA	CCAACTCCGA	AAGAACCAGG	TGACGGCAAG	GTGAGGACAT	CAGATCGCCG	GAAGGAGCAG	A L'EMBGICCE A AGTITCA A GG	AAAGATCGAG	TCTTAGACGA	
ctctgagtcc cagcggtaca ctgagccgca ccgatcagcc taggtgggta	gtaccagatg agcgactact ttotactcca	ctatccgaca	gagattacat	gcgrgaactg aqqaqttcqc	gaagaactat	agacgrgaaa caactactta	tttgacatgt	cgcatcattc	cactactcga	gcyargarga	tagatagaar tagatagaar	tacaacaaat	qqqtaaaccq	gagtaggtat	ttgagaactt	gtcagcatag	ctgcagaatt	AACCAGAGAC	GGACAAGCAG	ACAGAGCACA	GTCGTCGTCG	CCAGCCCGCC	CCATAGAGAT	GCCTACCTCG	Searcecceer.	ACAGGGGGA	ひゅつきょうかいがら	CCGAGAAGGC	AACCCGTTGT	
5441 5521 5601 5681 5761 5841	5921 6001 6081	6161	6321	6401 6481	6561	6721	6801	6881	6961 7041	7121	7201	7281	7361	7441	7521	1097	T89/	7761	7 0 4 T	1008	8081	8161	8241	8321	040T	ס ע	8641	ľ	0	

0 9 8	****	9120	9200	9280	9360	4	9520	000	0000	9260	9840	0407	10000	10080	10160	10240	10320	10400	10480	10560	10640	10720	10800	10880	10960	11040	11120	11200	11280	11360	11440	11520	11600	11680	11760	11840	11920	12000	ω	12110	
JUJUSTILEB .		TTACCCCGCT	AAGCGGTCGG		TCACTTTCGA		_	_		_		taatacatta	aatactacac	aagcataata	atttcaaaaa	attaattett	atacattcaa	tattcaacat	tgaaagtaaa	gagagtttc	taacaccaaa	addatattar	cttctdacaa	ttqqqaaccq	gcaaactatt	ggaccacttc	tatcattgca	atgaacgaaa	atactttaga	aatcccttaa	ttctgcgcgt	actctttttc	ccacttcaag	agtcgtgtct	acacagccca	cgaagggaga	acgcctggta	cggagcctat	ccttatgtat		80
GCTCGTGGGT	GCGTCAACCC	CTGCTTGATG	GATCCCCACC	AGCGTGAGAT	CAGATCGAGG	CACGATCCGA	AGGAGGATCG	AAAGAACAGC	GAAGGCGGCA	GGCAAGCGAT	agtttgtgag	tacatcagac	cqcaqtqcat	atttctqaqq	tgtttttaac	ctcgagggga	atttttctaa	agagtatgag	qaaacqctqq	taagatcett	tatcccqtqt	gtcacagaaa	gaccaactta	gccttgatcg	acaacgttgc	taaagttgca	ggtctcgcgg	gcaactatgg	ttactcatat	tcatgaccaa	gatccttttt	agagctacca	agttaggcca	agtggcgata	gggttcgtgc	ccacgettee	ccagggggaa	gtcagggggg	taatacataa	-	70
ATCACGTTGT	CCCAACAAGG	AGACGTTCTG	GCAACACCAC	TATCAGGGGG	GGGGATTCCG	GCAAGGAGAA	GCGCACGCCG	GAAGTTCGTC	TGGCGGAAGC	CAGGCTCTGG	TGAAAGCTTa	atqtqcataa	tccgaggaag	aactcaatgt	aacaaaattt	taagcggccg	ctatttgttt	tgaaaaagga	tgctcaccca	tcaacagcgg	ggcgcggtat	gtactcacca	ataacactgc	catgtaactc	agcaatggca	tggaggcgga	ggtgagcgtg	ggggagtcag	cagaccaagt	tttgataatc	atcttcttga	tgccggatca	gtgtagccgt	ggatgatgaa	gctgaacggg	tgagaaagcg	gagggagctt	tgtgatgctc	cggctacaat	-	09
TCGGAGATCG	CGGCAAGGAA	GCGAGGTGAA	CTCATCGAGC	GATCCAGGTC	ರೀತದಿಂದರು	AAGGGCACCG	GGACGCCGAA	ACCAGACGGA	GATGCCGCGG	CCAGGAGTCG	GCTCGGCTGA	cgaggaactg	tcgatgtact	ggacgccaaa	tttattaatc	ctcgattaat	cgcggaaccc	tcaataatat	ttaatgtttt	gaactggatc	tctgctatgt	acttggttga	accatgagtg	catgggggat	cgatgcctgt	atagactgga										-	•		cgttagaacg (- C L	50
CATTTCGGTG	AACTCACCGG	GTCCTCAAGG	GATGACCAGG	CGTCGGTGCA	GGCATCCCGC	CGCCAAGGAC	GCATGATCAA	ACATTGGTCT	GAACAAGGIT	AGAAGCTGGG	GCCCACCCCG	gatgtacttc	cactaaaaac	tttatctagc	tattatttct	aagggaattc	gggaaatgtg	gataaatgct	gcattttgcc	gggttacatc	cttttaaagt	tctcagaatg																_	gacatattgt (-	††
CTGACACCGG	CTGGTCAAGG	GCAGGCCGGC	AGGGCGGGGT	GACAACCAAC	CGAGCTGACC	TGCACGTCAC	GACATTGACC	TCAAGCCGAG	AAGACACGCT	TCGGCGATGG	CACTGGCGCT	agcaaaactc	aatatagcaa	atattaacca	gcataacttt	ааааааааа						catacactat							gracecaer (aycrcyrary c	30 J	2
TCGGTGATCG	GGTGACCGAT	SECUCION OF STATES	ALCGAGACCA	CACCGCCGAC	TTOOTSSST	AACGGCATTG	GTCCAAGGAA	ATGTTCGTAA	AAGGTACCTG	GGCCATCAAG	CGTCACAGGC	tgatccgacc	taccgcgggc	cataaccact	cgcagcgtct	aaaaaaaaa	gggccaggtg	gctcatgaga	ccttattcc	gatcagttgg	acgttttcca	taggtagaag	gag		ည္ပ	ctc.	gct	רמ מ מ	80008888888888888888888888888888888888	נ נ נ נ	יי טיינ טינ	ט נ ט ט	ე ი ე ი	ָ ט ני	ນ 4 ລຸດ ວິ		999 7		מ מ מ	ກ ກ	
GCCGTTCCAG	GGATGCCCGC	かりてものしかしてある。	できる世世代である。	AGACTITCAC		CATCGACGCC	GCTCGGGCCT	GAGGAGGCCG	GGGTGGTTCG	CGGATATTTC	GCTCAGGCTG	ttgggcccaa	gatccccgct	agrgrrgdda	cataatgcca	aaaaaaaaa	gaagacgaaa	atargratec										# # # # # # # # # # # # # # # # # # #							arttagagerg .		44444444444444444444444444444444444444				
ω ,	836T	ዞດ	Iς	ο α	1 0	1926 1977	9441	9521	1096 000	1898 1898	19/6	9841 9951	12661	T000T	1008T	TOTO:	10241	10201	10401	10401	10561	10541	10721	1080T	1000T	11041	11121	11201	11281	11361	11441	11521	11601	11681	176	١ 🖯	4 0	000	0		

SEQ ID NO:20 The E7-Hsp70 fusion sequence is shown in bold, caps

2220 280 320 320 4400 4400 1120 1120 1120 1120 1120 11	3040 3120 3200 3280 3360
gattaacca attrecgto ccaaattg acgacatag cctgaactt gctgtacai ccttgcgac ccttgcgac ccttgcgac agaaaatca aatgactgg agaaactacta agaacatgg agacaagacta agacaaga agacaaga agacaaga agacaaga agacaaga agacaaga btcacaga agacaaga agacaaga catgtggat agacaaga agacaaga ccatacaga agacaaga agacaaga agacaaga agacaaga agacaaga agacaaga agaaacaaga agacaaga agacaaga agacaaga agacaaga agaaaacaga agaaaacaga	cacatiggaa agaacaaagc tggagcacca ctatggagtt gacctggtgg
ctacgcgaga ctacgcgaga cacctggcta agaaactggc aggacgtgtat ttgacaccac ttgacaccac ttgacattgaa ggaattgta attcctagtg tcgtgatta attctagtg tcgtgatta aggatagttg tttggccaa gggatttg tttggccaa ggggagttc agggaggttc aagggagttc acctataca accatataa	actttacggc gacgcgttcc agcagaggag gcaccaagta tgggataaca
gccacctccg atcaagtctt atcaagtctttcg cttccaggag agctatcca cggtatacca tggagcaggtg tcgcaagag tcgcaagag tcgcaagag atgtgaaggg atgtgaaggg ccttcaacca attgaggaggg atgtgaaggg atgtgaaggg agtggaaggg aggggaaggg agtcgtcaacca ttaagaggc ttaagaggc tgaagggaagg	cacagggta gcgcctgtg cagattgac latgaaattt laacaaccac
tccagctcct cagcccattc cagaccattc caatgccag ggcagtgcga acggcagtgg acctgcagtgg acctgcagtgg acctgcagtgg ccgaagtgg ccgaagtgg ccgaagtgg cgaagaggg gggaggggg cgattgtgg agaccattgtgg ccactatgg cccactatgg cccactatgg ctccaagttg tcgaagaaca tccaagtgga ccactatgg ccacg ccacacg ccacacg cca	atcaaacatt c aaggaccggc t actgccggaa t ggtggccttg a tgtattacga g
aagattttgt ttgaggctga catggatatc aagacccatg catggatatc aagaccccga aagatccccga aagatccccga aagatccccga aaggtgtcag acctcggcaaa acctcggcaaa acctcgcacc tccctgtatg gcacagaagt ctatctgctt ttgggtgtccg ccagccaggaagt ccagacacc aatcccagtc ccagccaggaa atcgcgccaggaa acctcgcagaa acctcgcagaa acctcgcagaa acctcgcagaa acctcgcagcc aatcccagtc cagccagaagg acctcgcagcc aatcccagtc cagccagaagg acctcgcagc ccagccagaagg acctcgcagcc aatcccagtc cagccagaagg acctcgcagcc cagccagaagg acctcgcagcc cagccagaagg acctcgcagcc cagccagaagg acctcgcaacc cagccagaagg ccagaagga ccagaaggg acctcgcaacc aaatgctgcaacc caccgaaagga ccacagaaggg ccacagaaggg ccacagaaggg ccacagaaggg agctcgctat aacctcgcaacc ccacagaaggg ccacagaaggg ccacagaaggg ccacagaaggc ccagaaagt	ttaaggtcct aaggtgattg tgtcctggac actctccagt aaggtgtccc
acgaccaa acatgitgata ggtcacaaca acacactaca gatcacacag gatcacagga acgtcacgga acgtcacgga acgtcacgga acgtcacgt tttacctgt tttaccat tracaagaaa aggcctcac tccgtcac tccgtcac acgaccg acgaccg tcctcaa acgaccg acgacca acgaccg tccaaagaaa acgaccaa acgaccaa acgaccaa acgacca accaaa	garccctgga caaaataatg gcctggtgcc gacagagctt ttctgccccg
tgtgacatac cgccaaagtg agtcattgca actgacaaga atgcctatga atgcctatgaga ctgcatacag gctgtaccat tagcaggaga ccgaaggaga ccgaaggaga ccgaaggaga cctgatgatac aacactaaca ccttgataga ccgaaggaga cctgaaga cctgaaga ccttaccac ccttaccac ggtgcaagaga acctgttct ccttaccac ccttaccac ccttaccac ggtgcagaga acctgttct ccttaccac ccttaccac ggtgcagaga acctgttct ccttaccac ccttaccac ccttaccac ggtgcagaga acctgttct ccttaccac cccatacaga acctgttct ccttaccac ggtgcagaga acctgttct ccttaccac cacataacga ggaactgcc agaactgcc taaaacggt agaactgcc taaaaggtgaa ggaactgcc taaaacggt agaactgcc taaaacggt agaactgcc taaaacgg agaactgcc taaaacggt	griggedge aagaacacga tgggcgaaaa atttaaggag gtggcctgtt
treaggedgaggeggaggeggaggegggagggaggggggggg	yaaaac ggcaag gtgtgt tacagc tggaca
241 161 161 161 161 161 161 161 162 163 163 163 163 163 163 163 163 163 163	3041 3121 3201 3281

cattcacacg tccttaagca gagggtacca ccatgcacac aacgcagcta agcagcaaca ctgccacgac ctgagcagcg ctccaacttt tctattcaca aagccattga gacagcagcc cgctgggcga ccctgcctgt cggtaccttc ttggactgga gatctacgag atgtgcaccc gcctcccgcg gcctttgācā cagcacaatc gaagctgttg caccagccga ccaggctgct ctcatcttt gcggttcggt ttgacgggtc cctgctccgg tcctdcgact aaactgcaac aaattgaaag ttcaagcagc cgccctaacg cccggttcta aagatctagg cgctacgaci ggcacgcgct tgaaagccad catagcaagc gagtgatctc ggcgaaaaac caacgaata attcacggto tggtggtttg ttcgacccga ttcctatcaa aataaagtaa accgctgaat tctītgīgaa ggggagatg cgttgtītcc tčttgctgtt gccggagaag ggctgtggtt cctttaaggg cctaatttct cagactgtca aaaatccagg agtgcacccg cgaaattcaa tgcctatacg căggacagtğ agggtttgac acatogacto gtggagaaca ccctcaacca ctggcggcag ctatgtgacc tgcatacctt ggaacaagct ttcgacgacg atccgttagg ctgagaggga accaacatac tcgcagcgtg tcatgcgtac ccaccaagag tgctgtgtta ttggacatgg aagcgctatg ccatggacag gtccaggtaa acccaqqaqa atgatcctcg tgaacatcac cctaccaact cgacgacaac atcgttcacg cgctgtcatg gtggctggtc cttggttgtc ttcgactigg gcagatgctt ttgggagaag acttggtgag tttgaaggta cgctgtagcg ccgaagtaaa gacaatgtaa cgaacagata ggtcgttacg catcgcggac cgaagagagc tacaacaaaa ataccttcct tcagcgaagc tgccgtgtat tggccgtcag gttaaaagca ggttctcctg acagaagtgt gcacagaagc ctgcagcaat caacacctcc cagtcgtgtg actgcgttta tttcggagac aaattggata gtctcgcaaa taggccgcat gatgtagcaa cgacgcatac acccgaaaca ctagcggccg ggagtgcttc acatcactac caggaggttc aagacccaaa tacaggttta atggaggtǧa aǧatčattga ggagactaaa tctcacttcc ccaqctqtca aacactottt ggagcggacg ctcaagcccc ggttccgctg c acacagagga a acagaacgtg tgttcaacgt ttctgtgctg cgccggcagg caccagcaat ccaagctgag gaattāgīaa gtagggttga cgcagggtca ccatgaagct gccgataaaa atagccacgt gcagtggccg aagagatagg gagacaaaag ctgaccacag tccgattcat gtcācaccaa acccagittg tgccccaagg ctccggtgct accactgaga tttatttatt ggcgaagaaa ccgtcatcca gtactcgtac aagaggcaaa aacccgcagg ccaccgcgcc ccgggattac agcggacatt cagatgaata gatcatcgcc agtgcgagaa cactcagatc gtacccgcca gtcgatacca ccttggctct gggaaatat cctťcatcgg tgtctáccgg tcagcggcgg atctactgca catccacagg actttgacgc gcctgtgcgg gtgggtcaac gttaaaggca tttgcctcga tgcčggctga gagagcagac tccaaccgct gtcgaccacg cggattgtgt cagatgaata ggctcgtacc ccatgtcgct ttacqqatac gcagggccgt tgacgtggag acgggtcgct cccagactgc ggtgaacgat cccgccttag cagaaggtaa tacgacggac gtacaccctg cccgattcct agccgacgcc gcgtťggčct ggacactggc aggagaaat gactcggcag tgtttctgac gctaataaga attgtacacg tcgaaagatt taccagataa cccggcgaag tatccggata gggacgaaac agaacacact cccacaactt caggacgact ggcagccttt gtacaagacg acaacctggc gacgttgtgg ccaaatgtcc agtttaggac tgatgagagc gaaagaaaa ccagcagtgt gtgttgcgcc tacgctacac acagagttaa agtcatgtgc aattggccgc acaggagtgt tgacgtgacc agtaccactg agatggggtg gatggcgtat tgctcaatga gaacggatcg gccagcgata acctcgagaa gcgccgagaa cčťáčcgtga agtggcgtcg atgccgcatc gacggctgac titictcctc cgacattctg tcaccette ttcgctaaga cgaggtcgat gcggtccagg čcčatcggag cgggggccag acccaccatg ctaaacaacc agtcactcca acctgtgcgg tcggccgaag acttgatcga aaatcgggca cactgactcc ggtgcgcgtc cgacaaaagc ggattcaatg agttatcgca ccacggacgc tggtggctga gtgagtgagt taagggčtác ctacgaccta tccaccacta gtctgcaaga agagaccctc ăactgtaggg caattaaaac ggggaccgcg gctgctgtcc gctgtggagt cagagatact aatāccatgt ccgcggaagt ccatagtagt gaccatgtgg ttgacgagca gaagaatatg ggcggcatct gcaccatcct aacatcagat gtcttccact ggtgcatata acaactggat tgcagatgca tgccgtcccg **tgctgccttg** aatgacagca accggtgccg aggctcacat cgtgtactcc attacccaac ttggacagag tgcgagaact gagatgtcaa cgaccgctt gtttgatatg atggcggaga tacctgctgg agctatgatg tgcatcatt agcagagact attgatatgg aacaatggac gcaagcaggc cgřcctgctg agggtactgg cgacaagctg ccgataggtg gaattcagaa acgcccgtgg ccagtgggca aaggatgtat ccgcacgccc gctaaaaccc gaaagttctc tgaagcggaa gccgctacgc tccagtgcgc ggtggtggac gacaacggaa ggccgggtgt tagccatccc gcaatggacg catgaggacg tggtgggtcg ccctcccga agtggttagt ccaccgactc ccaatggctc tgaacccgca cggcggagcg ttcggcgact aggccgcgcg ctgtacgcag gacatgaaac ctgctgaaaa accccgccc ctatccagaa ggatagttgc gtcacgcaaa agaatattgg gcccgaaagc ggtggatcag ťčaagttcgg ggagccattg gagacggaca tgcacacatt 3521 3601 3681 3761 3761 3841 4001 4081 4161 4401 4401 4481 4561 4641 4721 4801 4881 4961

7120 7280 7280 7280 7280 7280 7280 7280 72
gcctgccgtg tttcagaccc acttaagcgc caggcgacga gcactgagtg acgaggttag ctaggcaacgt ttgagaaggc tgcaaaagta ttgagaaggac ctgttataca cctctacggc GGAGATACAC CTACATTGCA TGAATATATGGGAGATACAC CTACATTGCA TGAATATATGGGAGATACAC CTACATTGCA TGAATATATGGGAGATACAC CTACATTGCA TGAATATATGGGCTCC CACACTCGG TTCGACGCGC ATTCTGAAGG ACACAGGGCTGGCT CACACTCG GTTCGAAGCG ACACAGGGC CACAGGGCC CACAGGGC CACAGGGCC CACAGGGC CACAGGGGC CACAGGGGC CACAGGGC CACAGGGC CACAGGGC CACAGGGC CACAGGGC CACAGGGGC CACAGGGGC CACAGGGGC CACAGGGGC CACAGGGGC CACAGGGGC ATCACGTTGT GTCGTGGGC CACAGGGGC CACAGGGC CACAGGGGC CACAGGGCC CACAGGGC CACAGGGGC CACAGGGC CACAGGGC CACAGGGC CACAGGCC CACAGGGC CACAGGCC CACAGGCC CACAGGGC CACAGGGC CACAGGGC CACAGGCC CACAGGC CACAGGCC CACAGGCC CACAGGCC CACAGGCC CACAGGCC CACAGGCC CACAGGCC CACAGGCC CACAGGC CACACAGGC CACAGGC CACAGGC CACAGGC CACAGGC CACACACA
ttgacagcgt cacacagacc gaagacaaga actggaaggg gcactaacat cacattaaggc gtttaagaaa tttctgattgg atccATGCAT GTTTATG AGCAATTAAA GGCCCATTAC AATATTGTAAA GGCCCATTAC AATATTGTAAA GGCCCATTAC AATATTGTAAA TTCGTACTTT GGAGGACCGG GTTCGGGATCG ACCACCCGG GTTCGGATCG GCTCCAACGG GTTCTCGGATC GCTCCAACGG GTTCTCGGATC GCTCCAACGG GTTCTCGGATC GCTCCACGG GTTCTCGGATC GCTCCAACGG GTTCTCAACGG GTTCTCAACGG GTTCTCAACGG GTTCTCAACGG GATCCACCGG GTTCTCAACGG GATCCACCGG GTGACAACCAC GCTCGGTGCAC GCTCCAAGG ACATTCGGTG TCTAACCGGG GATCCAACGG GATCCAACGG GATCGATCAA GAACACCAAC GCTCGGTGG GATCCACCGG GATCGATCAA GAACACCGAC GCTCCAAGG ACATTCGGTC TCGAGCTGG GATCCACCGG GATCGATCAA GAACACCGAC GAACACGGT GAACACCGG GATCGATCCAACGG GATCGATCCAACGG GATCGATCCAACGG GATCGATCCAACGG GATCGATCCAACGG GATCGATCCACCG GATCGATCCAC GCCACCCGC GATCGATCCAC GCCACCCCG GATCGATCAACGG ACATTGGTCT AAGACACGGT GAACACCGG GATCGATCGG GATCGGTGG AACACCCCC GATCGATCGG GATCGGTGG AACACCCCC GATCGATCGG GATCGGTGG AACACCCCC GATCGATCGG GATCGGTGG AACACCCCC GATCGGTGGT AACACCCCC GATCGGTGGT AACACCCCC GATCGGTGGT AACACCCC GATCGGTGGT AACACCCCC GATCGGTGGT AACACCCCC GATCGGTGGT AACACCCCC GATCGGTGGT AACACCCCC GA
ttcatagttt gctaacagtt ttggggggccga ttggggggccga atacacagaa AACTGATCGC CCAACTCCGA GGCTCGTCGA GGCTCGTCGA GGGTCCTC TGAGGTCCG TTGAGGCATTG GAGGCGCTCT AAGTTCAAGG AAGTTCAAGG AAGTTCGAGGA TCCTAGACGA TCGGGTCCTT AAGGTCCT AAGGTCCT TCGGGTCCC TCGGGTCCT TCGGGTCCC TCGCGCCCC TCGCGCCCC TCGCGCCCCC TCGCGCCCCC TCGCGCCCCC TCGCGCCCC TCGCGCCCCC TCGCCCCC TCGCCCCCC TCGCCCCCCC TCGCCCCCCCC
ttgtgggggga tgggtaagcc catggcaacagct catggcacacc tggtggcacacc GGACAGGCAG GGACAGCACA GGACGCCGC CCATGGGGG GGCTGGTGG GCCTTCA GCCTTCA GCCGTTCA GCCGTTCA GCGTTCA GCGTTCA GCGGTGGC GCGTTCA GCGGTGGC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGGCC GCTCGGCCC CGGATATITC GCGGTGCC GCCGTTCA GCCGTTCA GCCGTTCC GCCGTTCC GCCGTTCC GCCGTTCC GCCGTTCC GCCGTTCC GCCGTTCC GCCGCTCC GCCGCTCC GCGTGCCC GCGGTGCC GCCCCCC GCGGTGCCC GCGGTGCCC GCGGTGCCC GCGGTGCCCC GCGGTGCCC GCGGTGCCC GCGGTGCCC GCGGTGCCC GCGGTGCCC GCGGTGCCC GCGCTCCC GCGGTGCCCC GCGGTGCCCC GCGGTGCCCC GCGGTGCCCCC GCGGTGCCCCC GCGGTGCCCCCCC GCGGTGCCCCCCCC
ccccatattt caagtggttc tcctcatagc ggtcctagat TGGTCCAGCT TGGTGACTGT TGCTGATCGG TGCTGATCGG TGCTGATCGG TGCTGATCGG TGCTGATCGG TGCTGGTCGG TGCTGATCGG TGCTGATCGG TGCTGGTCGG TGCTCGATGG TGCTGGTCGG TGCTCGCAA TACGGCTCGC TCGTCGATGG TCGTCGAGAGC TCGTCGATGG TCGTCGATGG TCGTCGATGG TCGTCGAGAGC TCGTCGAGAGC TCGTCGAGAGC TCGTTGGCGGAT TTACCCCGC TCGTTGGCGGAT TTACCCCGCT TCGTCGAGAGC TCGTTGGCGGAT TCATTTCGA TCATTTCGA TCATTTCGA TCATTTTCATTTCGA TCATTTTCGA TCATTTTCGA TCATTTTCGA TCATTTTCGA TCATTTTCGA TCATTTTCGA TCATTTTCGA TCATTTTCGA TCATTTTCGA TCATTTTCGA TCATTTTCGA TCATTTTCATTTCGA TCATTTTCATTTCA
7041 7221 7221 7281 7281 7281 7281 7281 728

10800 10880 10960 11040 11120	11280 11360 11440 11520	11680 11760 11840	12000 12000 12080 12160	12240 12320 12400	12560 12560 12640 12720	12800 12880 12960	13040 13120 13200	13360 13440 13520	59
aaagaacatg gccccctga tttccccctg gggaagcgtg tgcacgaacc ttatcgccac	gtggcctaa ttggtagct aaaaaagga gattttggt		ccaacgatca gaagtaagtt tgcttttctg	gtcaatacgg tctcaaggat ttcaccagcg	aaracicata gtatttagaa atcatgacat ctgacacatg	cagcgggtgť gctctccctt ggtgcatgcg	gcccgcctgg actttccatt tacgccccct	cogittoact ctitccaaaa gagctctctg	cttgaattc 80
					ggaaargreg atatttgaat aaccattatt gtgaaaacct	cagggcgcgt ccatatcgac cgcaaggaat	acggtaaatg gccaataggg atatgccaag	gactecta gcgtggatag atcaacggga tatataagca	agaccggaag
				acgttcttcg gatcttcagc	agggata gagcggata acgtctaag ggtgatgac		catagtaac Ccatagtaac Caagtgtatc	acatcaatgg tggcaccaaa gtgggaggtc	cactataggg 60
gttatcca ccgcgttg aacccgac taccggat tgtaggtc	tgtaggcggt tgctgaagcc tttgtttgca cgctcagtgg		gtttggtatg ttagctcctt aattctctta	tatycyycya tcattygaaa gcacccaact	attgtctcat gtgccacctg cgcgcgtttc	ccgggagcag cagattgtac aggccgttga	agricigis acgtatgttc ggcagtacat		raaracgact 50
cggtaatac cgtaaaaag gaggtggcg ccctgccgc ctcagttcg	gagcgaggta atctgcgctc cggtggtttt ggcattctga atccttttaa		cacgctcgtc aaaaaagcgg agcactgcat	gagaarayiy aaagtgctca acccactcgt atgccgcaaaa	tatcagggtt tccccgaaaa cctttcgtct	taagcggatg ggcatcagag tactaggttg	ocacacacay gtcaataatg ctgcccactt tqqcattatq		Llattyadat 40
	aggattagca agtatttggt ccgctggtag ttttctacgg cttcacctag		atcgtggtgt catgttgtgc tggttatggc	cagaacttta gttcgatgta gqaaqqcaaa	ttgaagcatt cgcgcacatt atcacgaggc	agcttctgtc ttaactatgc agcagcccag	gcccattgac ttacggtaaa atqqcccqcc	ctattaccat Caccccattg attgacgcaa	1 30 30
gtatca ccagca aaaatc gtgcgc atgctc	cactggtaac ctagaaggac aaacaaacca tcctttgatc caaaaaagat	tctgaca ccccgtc caccggc tccatcc	tgctaca catgatc ttatcac	gracea Cgccaca ttgagat agcaaaa	tťcaata atagggg aaatagg	agacggt cggggct tgcatta	aacgaccccc ggtggagtat atgacggtaa	ttagtcatcg tccaagtctc actccgccc	20
tgcggcgagc g tgagcaaaag g cgagcatcac a gaagctccct o gcgctttctc a	typtaytage tacggctaca ttgatccggc ctcaagaaga atgagattat	gtaaacttgg ttgcctgact gacccacgct ttatccgcc	ttgttgccat aggcgagtta ggccgcagtg	gataataccg cttaccgctg tttctgggtg	ctcttccttt aaataaacaa taacctataa	tagetecegg tagegggtgt atgegaetec taateaatta	ctgaccgccc gacgtcaatg attgacgtca	catctacgta cacggggatt tgtcgtaaca ortaactaga	10
10721 10801 10881 10961 11121 11121	11281 11361 11441 11521	11601 11681 11761 11841	11921 12001 12081 12161	12241 12321 12401	12481 12561 12641	12801 12881 12881			- 1

SEQ ID NO:21 FL- E7 fusion sequence is shown in bold, caps

pcDNA3-FL-E7

	80 160	320	400	480	560	640	720	800	880	096	1040	1120	1200	1280	1360	1440	1520	1600	1680	1760	1840	1920	00	2080	2160	2240	2320	2400	2480	2560	2640	2720	2800	88	96	3040 3120
'		cgttgacatt cgttacataa	ttcccatagt	catcaagtgt	catgacctta	agtacatcaa	ttttggcacc	acdatadaad	ctcactatad	AATTCCTCCC	CATCTCCTCC	ATCTTCAGGA	GCAGGGTCTA	ACCAGAATGT	CCTGTATCGG	CCAAGGAGTC	TACATTGCAT	AGGAGGAGGA	AAGTGTGACT	ACTAGGAATT	tgccagccat	aaatgaggaa	aggattggga	tctagggggt	acttgccagc	ctctaaatcg	ggttcacgta	cttgttccaa	attggttaaa	agtccccagg	aggctcccca	tacagaaat	gaagaatatg	agcttgtata	caggttctcc	grgrrccggc cgaggcagcg
70	ccycatagtt acaaggcaag	cagatatacg tqqaqttccq	atgacgtatg	cttggcagta	atgcccagta	cggttttggc	tgggagtttg	qtaqqcqtqt	attaatacqa	CTGGAGCCCA	GCCACAGTCC	GIGGCCGICA	GAAGACTGTG	TCCAGCCCCT	GCTCTGAAGC	CCTGCTGCCC	GAGATACACC	GACAGCTCAG	CTTTTGTTGC	TAATGGGCAC	gccttctagt	tttcctaata	agcaaggggg	cagctggggc	tgaccgctac	ccccgtcaag	ttagggtgat	atagtggact	atttcggcct	gggtgtggaa	gaaagtcccc	actccgccca	agaggccgag	agctcccggg	ggarrgcacg	rgargeegee aactgeagga
60	ttaagotaca	atgtacgggc agcccatata	gacgtcaata	aaactgccca	gcctggcatt	catggtgatg	ttgacgtcaa	caaatqqqcq	gcttatcgaa	TGGCGCCAGC	TGTTACTTCA	CCCAGTCACT	TAGAGCAACT	TCATGTACCT	ACAGCTGCTT	ACTCCTCCAC	TCCATGCATG	GCAATTAAAT	ATATTGTAAC	GAAGACCTGT	cctcgactgt	cccactgtcc	ggggcaggac	cggaaagaac	acgcgcagcg	agaaggafff	aaaaacttga	acgttcttta	gattttgggg	gtgtcagtta	accaggtgtg	accgaacata	ttatttatgc	ttttgcaaaa tgaaaaa	Lyaacaayac toggataataata	gccctgaatg
50 50	cgagcaaaat	cugettegeg attagtteat	cccgcccatt	tatttacggt	taaatggccc	tcgctattac	ctccaccca	cccattgacg	ctgcttactg	ATGACAGTGC	GACACCTGAC	TTAAAGATTA	CAGCGCTGGA	TTTTGTCACC	ACACCTGCAC	TGCCAGCCGG	CAGGCAGGGA	ACTGTTATGA	GCCCATTACA	TCGTACTTTG	cgctgatcag	aggtgccact	ggggtggggt	gcttctgagg	tgtggtggtt	tegecaegtt	crcgacccca	gttggagtcc	atttataagg	tgtggaatgt	ttagtcagca	caaccatagt	ctaatttttt	aggcctaggc ++ccc+c+	กลอกอกอกอา	catgtaaggt
aatcaactct	gagtagtgcg	gcgrrrrgcg ttacggggtc	cccaacgacc	atgggtggac	tcaatgacgg	gtattagtca	atttccaagt	acaactccgc	agagaaccca	gccctctaga	GCCTGCGGGG	GACCACCTGC	CTTCCTAGCC	CCGAGATACA	CTCCTGAAGG	GGAGGTGCAG	AGCCTCGGCC	ACTGATCTCT	ACCGGACAGA	ACGTAGACAT	aagtttaaac	tgaccctgga	tctattctgg	gggctctatg	ರ್ವತ್ತಿಕ್ಕಾಗಿತ್ತು	cetteette	rrracygoac	gcccrrgac	raccccccg	gaattaattc	tgcatctcaa	aattagtcag	ccarggcrga	gerrrragg Faaggatogt	taactaaaca taactaaaca	tcaagaccga
30 qatcccctat			tggctgaccg	attgacgtca	cctattgacg	gtacatctac	actcacgggg	aaatgtcgta	ctggctaact	gtttaaacgg	CTGAGTCCTT	AGAGTIGACT	TGTGGAGCCT	GACGICAACA	CATCTCCCAC	CTCGGTGCCT	GAGCTCCCAG	ACCAGAGACA	GACAAGCAGA	CAAAGCACAC	GGATAAGCTT	grgccttcct	taggtgtcat	gggargcggt	ggcgcarraa	cgcrrccrc	garrragrac	acygriring totatagagta	catttoggte	aarttaacge	argcaaagda	catgcatctc	arrcreegee	caycyayyay	tattcddcta	gttctttttg
20 gagatotoco	D a	tagttattaa	atggcccgcc	gggacttcc		ctacttggca	tageggtttg	ggactttcca	gcagagctct	gctggctagc	GTTGCTGCTG	TGAAGTTTAG	TGCAAGGCCT	GCTTCTGGAG	TCCAGACCAA		AGAAGCCACG	TAGATTTGCA	GGTCCAGCTG	GTTGTGCGTA		cccccccccc	arrgrergag	aggcargcrg	gccctgragc	++************************************	77774777777777777777777777777777777777	g((((ga)	これでになることに	מרררממנימממ	71 <i>(</i>	grarycadag	agriccycec attagagaa	arrccagaag qatctqatca	gtggagagg	
10 gacggatcgg	ctgctccctg	gattattgac	cttacggtaa	aacyccaaca atcatatat	tanaryce	Lyggacttc	rgggcgrgga	aaaatcaacg	grctatataa	ggagacccaa	TGTTGCTGCT	AACTTCAAAG	CGAGAAGCAC	AGATGCAAAC	CTGCGATTCG	GAAGGCCTGC	CCATAGCCCT	GAATATATGT	TGAAATAGAT	CTACGCTTCG	GTGTGCCCCA	cryrcycry	accycaccyc	משלמתמשלמ	45555 75557 7557 757 7557 7557 7557 7557 7557 7557 7557 7557 7557 7557 7557 7557 757 7557 7557 7557 7557 7557 7557 7557 7557 7557 7557 7557 7557 757 7557 7557 7557 7557 7557 7557 7557 7557 7557 7557 7557 7557 757	gccccagcgc	0+000000000000000000000000000000000000								sttgg	ord .
ᆏ	81	241	32T	404	7 7 10 11 11 11	707	4 6 6	T7/	30 T	Ž Č	961	T 7 7 7	1001	T071	1781	1361	1441	1521	9	TPST	9 6	ο σ	1741 2001	2001 2081	161	241	321	401	184	25C	2641	7721	2801	2881	2961	3041

0000	2 0	o w	44	5.7	3 6	2 8	3760	48	9.0	2 0	80	4160	4240	4320	4400	48	4560	4640	4720	4800	4880	4960	04	5120	5200	N	36	5440	5520	9	5680	5760	5840	5920	0009	6080	6160	6221	
+0227	ataactaata	gcgagcacgt	aactdttcgc	atcatootoo	attaactacc	ccaattcaca	aadddadddc	cadaacacca	ttataatoot	tatccaaact	ctatttccta	tacctaataa	tgcattaatg	ctgcgctcgg	taacgcagga	ataggctccg	taccaddcdt	tatacattag	tgggctgtgt	agacacgact	cttqaaqtqq	gaaaaaqaqt	acgcgcagaa	ttaagggatt	tctaaagtat	tttcgttcat	tgcaatgata	gaagtggtcc	aatagtttgc	cggttcccaa	ttgtcagaag	gtaagatgct	cccggcgtca	gaaactctc	tttactttca	atgttgaata	ttgaatgtat		80
gabaaaaaaa	adtatccatc	atogoatoga	gagaaadadd	cttqccqaat	addacatadd	atcdccdctc	atdaccdacc	aatcqttttc	ttattqcaqc	agttgtggtt	atddtcatad	aagcctgggg	tegtgecage	cactgactcg	aatcagggga	gagtttttcc	actataaaga	tgtccgcctt	cgctccaagc	caacccggta	ctacagagtt	gttaccttcg	gcagcagatt	aaaactcacg	tttaaatcaa	gatctgtcta	gccccagtgc	gccgagcgca	ttcgccagtt	cattcagctc	cctccgatcg	catgccatcc	gttgctcttg	tcttcggggc	ttcagcatct	cgacacggaa	ggatacatat	ָט	70
cattataact			tcaggggctc	gcgatgcctg	gaccactatc	gctttacqqt	qqqqttcqaa	tgggcttcgg	cccaacttgt	actgcattct	tggcgtaatc	ataaagtgta	gggaaacctg	cttcctcgct	ttatccacag	agadttgatg	acccgacagg	accggatacc	gtaggtcgtt	gtcttgagtc	gtaggcggtg	gctgaagcca	ttgtttgcaa	cagtggaacg	aaaatgaagt	ctatctcagc	ttaccatctg	agccggaagg	gagtaagtag	ggtatggctt	ctccttcggt	ctcttactgt	cggcgaccga	tggaaaacgt			tctcatga	gagg	09
ctatactcaa	caccttgctc	attcgaccac	acgaagagca	gtgacccatg	gggtgtgggg	gcttcctcgt	gegggactet	tatgaaaggt	cttcgcccac	cattittttc	agctagagct	agccggaagc	ctttccagtc	agatattaag	ggtaatacgg	gtaaaaaggc	aggtggcgaa	cctgccgctt	tcagttcggt	ggtaactatc	agcgaggtat	tctgcgctct	ggtggttttt	gtctgacgct	ttttaaatta	agtgaggcac	acgggagggc	taaaccagcc	cgggaagcta	ctcgtcgttt	aagcggttag	ctgcataatt	atagtgtatg	tgctcatcat	actcgtgcac	cgcaaaaaag	agggttattg	cgaaaagtgc	20
ccttqcqcaq	cctgtcatct	ctacctgccc	gatgatctgg	ggatctcgtc	gtggccggct	tgggctgacc	gttcttctga	agaagaatta	tgctggagtt	acaaataaag	gtcgacctct	acaacatacg	tcactgcccg	gcgtattggg	actcaaaggc	gccaggaacc	ctcaagtcag	ctgttccgac	tgtaggtatc	cgccttatcc	ggattagcag	gtatttggta	cgctggtagc	tttctacggg	acctagatcc	atgcttaatc	taactacgat	ttatcagcaa	taattgttgc	tggtgtcacg	ttgtgcaaaa	tatggcagca	cattctgaga	actttaaaag		gcaaaatgc	gcatttatc	בבכככ	40
gacgggcgtt	_			ccgacggcga	ttcatcgact	tggcggcgaa	ttcttgacga	tcgattccac	ggggatctca	cacaaatttc	tctgtatacc	acaattccac	tgagttgaga	gaggcggttt	gtatcagctc	ccagcaaaag	aaaatcgacg	gtgagatata	atgctcacgc	ccgaccgctg	actggtaaca	tagaaggaca	aacaaaccac	cctttgatct	aaggatcttc	acagttacca	gregrgtaga	ggctccagat	rccagrctat	acaggcatcg	arccccatg	cactcatggt	tcaaccaagt	acatagcaga	gatccagttc	aaaacaggaa	cattatt		30
ggctggccac	gaagtgccgg	gctgcatacg	aagccggtct	gagadatga	cttttctgga	ctgaagagct		tcacgagatt	cctccagcgc	α	tcttatc	ttatccg	tcacatt	<u>පුරපුරපුල</u>	gcggcga	gagcaaa	gagcatcaca	aagctcc	agattta		ggcagca	acggcta	tgatece	rcaagaagar	gattato	actiggt	crgacto	cacgeteace	Lecyceteca	_	gagrracarg		tggtgagtac		11	tgggtgagda tagtttta	CCCCCCCCC	ממלבר המממר	
cggctatcgt	gctattgggc	caatgcggcg	മ	caggctcaag	aaaatggccg	cgtgatattg	gagaatagaa	caacctgcca	gctggatgat	tacaaataaa	catcaatgta	tgtgaaattg	gtgagctaac	aarcggccaa	ncdrrcddar	aagaacatgt	rgac	ttccccctgg	ggaagcgtgg	gcacgaaccc	rarcgccact	rggccraact	rggragerer		crggreatga	arargagraa	Ccaragrige	ccgcgagace tagesattte	rycaacttra ggoggettat	gcaacgrigi	Cyarcaaggo	gcc	tretgtgae	Lacygyara	aggaretra	CCaycyrrrc 7†79†97†97	tagaaaa	-434444 10) 1
H	Ñ (3281	ή,	4, j	'n	७ ।	ر 19	$\tilde{\sim}$	ဆိုင်	9	57	õ	ું તે	7 0	7 5	# 5		, ה	0 t	7 6	ם ל	ה ל		1. C	7 2	ט כ	9 0	2 2	1 r	1 7 7	J F	7 5	9 5	1 C	<i>A</i> 6	> C	6 6	}	

There is no page 41

GENERAL RECOMBINANT DNA METHODS

5

10

15

20

25

30

Basic texts disclosing general methods of molecular biology, all of which are incorporated by reference, include: Sambrook, J et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Press, Cold Spring Harbor, NY, 1989; Ausubel, FM et al. Current Protocols in Molecular Biology, Vol. 2, Wiley-Interscience, New York, (current edition); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); Glover, DM, ed, DNA Cloning: A Practical Approach, vol. I & II, IRL Press, 1985; Albers, B. et al., Molecular Biology of the Cell, 2nd Ed., Garland Publishing, Inc., New York, NY (1989); Watson, JD et al., Recombinant DNA, 2nd Ed., Scientific American Books, New York, 1992; and Old, RW et al., Principles of Gene Manipulation: An Introduction to Genetic Engineering, 2nd Ed., University of California Press, Berkeley, CA (1981).

Unless otherwise indicated, a particular nucleic acid sequence is intended to encompasses conservative substitution variants thereof (e.g., degenerate codon substitutions) and a complementary sequence. The term "nucleic acid" is synonymous with "polynucleotide" and is intended to include a gene, a cDNA molecule, an mRNA molecule, as well as a fragment of any of these such as an oligonucleotide, and further, equivalents thereof (explained more fully below). Sizes of nucleic acids are stated either as kilobases (kb) or base pairs (bp). These are estimates derived from agarose or polyacrylamide gel electrophoresis (PAGE), from nucleic acid sequences which are determined by the user or published. Protein size is stated as molecular mass in kilodaltons (kDa) or as length (number of amino acid residues). Protein size is estimated from PAGE, from sequencing, from presumptive amino acid sequences based on the coding nucleic acid sequence or from published amino acid sequences.

Specifically, cDNA molecules encoding the amino acid sequence corresponding to the fusion polypeptide of the present invention or fragments or derivatives thereof can be synthesized by the polymerase chain reaction (PCR) (see, for example, U.S. 4,683,202) using primers derived the sequence of the protein disclosed herein. These cDNA sequences can then be assembled into a eukaryotic or prokaryotic expression vector and the resulting vector can be used to direct the synthesis of the fusion polypeptide or its fragment or derivative by appropriate host cells, for example COS or CHO cells.

This invention includes isolated nucleic acids having a nucleotide sequence encoding the novel fusion polypeptides that comprise a MHC-I-PP or a DC-PP and an antigen, fragments thereof or equivalents thereof. The term nucleic acid as used herein is intended to include such fragments or equivalents. The nucleic acid sequences of this invention can be DNA or RNA.

A cDNA nucleotide sequence the fusion polypeptide can be obtained by isolating total mRNA from an appropriate cell line. Double stranded cDNA is prepared from total mRNA. cDNA can be inserted into a suitable plasmid, bacteriophage or viral vector using any one of a number of known techniques.

5

10

15

20

25

30

In reference to a nucleotide sequence, the term "equivalent" is intended to include sequences encoding structurally homologous and/or a functionally equivalent proteins. For example, a natural polymorphism Hsp70 or FL nucleotide sequence (especially at the third base of a codon) may be manifest as "silent" mutations which do not change the amino acid sequence. Furthermore, there may be one or more naturally occurring isoforms or related, immunologically cross-reactive family members of these proteins. Such isoforms or family members are defined as proteins that share function amino acid sequence similarity to, for example, Hsp70 or FL.

Fragment of Nucleic Acid

A fragment of the nucleic acid sequence is defined as a nucleotide sequence having fewer nucleotides than the nucleotide sequence encoding the full length MHC-I-PP or DC-PP protein, antigenic polypeptide or the fusion thereof.. This invention includes such nucleic acid fragments that encode polypeptides which retain (1) the ability of the fusion polypeptide to induce increases in frequency or reactivity of T cells, preferably CD8+ T cells, that are specific for the antigen part of the fusion polypeptide.

For example, a nucleic acid fragment as intended herein encodes a FL polypeptide that retains the ability to improve the immunogenicity of an antigen when administered as a fusion polypeptide with an antigenic polypeptide or peptide.

Generally, the nucleic acid sequence encoding a fragment of a FL or Hsp70 polypeptide comprises of nucleotides from the sequence encoding the mature protein (or an active fragment thereof such as the FL ECD or the C-terminal domain of Hsp70.

Nucleic acid sequences of this invention may also include linker sequences, natural or modified restriction endonuclease sites and other sequences that are useful for manipulations related to cloning, expression or purification of encoded protein or fragments. These and other modifications of nucleic acid sequences are described herein or are well-known in the art.

The techniques for assembling and expressing DNA coding sequences for MHC-I-PP or DC-pp types of proteins, and DNA coding sequences for antigenic polypeptides, include synthesis of oligonucleotides, PCR, transforming cells, constructing vectors, expression systems, and the like; these are well-established in the art such that those of ordinary skill are familiar with standard resource materials, specific conditions and procedures.

EXPRESSION VECTORS AND HOST CELLS

This invention includes an expression vector comprising a nucleic acid sequence encoding a MHC-I-PP/antigen fusion polypeptide or a DC-PP/antigen fusion polypeptide operably linked to at least one regulatory sequence.

The term "expression vector" or "expression cassette" as used herein refers to a nucleotide sequence which is capable of affecting expression of a protein coding sequence in a host compatible with such sequences. Expression cassettes include at least a promoter operably linked with the polypeptide coding sequence; and, optionally, with other sequences, *e.g.*, transcription termination signals. Additional factors necessary or helpful in effecting expression may also be included, *e.g.*, enhancers.

5

10

15

20

25

30

"Operably linked" means that the coding sequence is linked to a regulatory sequence in a manner that allows expression of the coding sequence. Known regulatory sequences are selected to direct expression of the desired protein in an appropriate host cell. Accordingly, the term "regulatory sequence" includes promoters, enhancers and other expression control elements. Such regulatory sequences are described in, for example, Goeddel, *Gene Expression Technology*. *Methods in Enzymology*, vol. 185, Academic Press, San Diego, Calif. (1990)).

Thus, expression cassettes include plasmids, recombinant viruses, any form of a recombinant "naked DNA" vector, and the like. A "vector" comprises a nucleic acid which can infect, transfect, transiently or permanently transduce a cell. It will be recognized that a vector can be a naked nucleic acid, or a nucleic acid complexed with protein or lipid. The vector optionally comprises viral or bacterial nucleic acids and/or proteins, and/or membranes (e.g., a cell membrane, a viral lipid envelope, etc.). Vectors include, but are not limited to replicons (e.g., RNA replicons (see Example 1, below), bacteriophages) to which fragments of DNA may be attached and become replicated. Vectors thus include, but are not limited to RNA, autonomous self-replicating circular or linear DNA or RNA, e.g., plasmids, viruses, and the like (U.S. Patent No. 5,217,879), and includes both the expression and nonexpression plasmids. Where a recombinant microorganism or cell culture is described as hosting an "expression vector" this includes both extrachromosomal circular and linear DNA and DNA that has been incorporated into the host chromosome(s). Where a vector is being maintained by a host cell, the vector may either be stably replicated by the cells during mitosis as an autonomous structure, or is incorporated within the host's genome.

Those skilled in the art appreciate that the particular design of an expression vector of this invention depends on considerations such as the host cell to be transfected and/or the type of protein to be expressed.

The present expression vectors comprise the full range of nucleic acid molecules encoding the various embodiments of the fusion polypeptide and its functional derivatives (defined herein) including polypeptide fragments, variants, *etc*.

Such expression vectors are used to transfect host cells (*in vitro*, *ex vivo* or *in vivo*) for expression of the DNA and production of the encoded proteins which include fusion proteins or peptides. It will be understood that a genetically modified cell expressing the fusion polypeptide may transiently express the exogenous DNA for a time sufficient for the cell to be useful for its stated purpose.

5

10

15

20

25

30

The present in invention provides methods for producing the fusion polypeptides, fragments and derivatives. For example, a host cell transfected with a nucleic acid vector that encodes the fusion polypeptide is cultured under appropriate conditions to allow expression of the polypeptide.

Host cells may also be transfected with one or more expression vectors that singly or in combination comprise DNA encoding at least a portion of the fusion polypeptide and DNA encoding at least a portion of a second protein, so that the host cells produce yet further fusion polypeptides that include both the portions.

A culture typically includes host cells, appropriate growth media and other byproducts. Suitable culture media are well known in the art. The fusion polypeptide can be isolated from medium or cell lysates using conventional techniques for purifying proteins and peptides, including ammonium sulfate precipitation, fractionation column chromatography (e.g. ion exchange, gel filtration, affinity chromatography, etc.) and/or electrophoresis (see generally, "Enzyme Purification and Related Techniques", *Methods in Enzymology*, 22:233-577 (1971)). Once purified, partially or to homogeneity, the recombinant polypeptides of the invention can be utilized in pharmaceutical compositions as described in more detail herein.

The term "isolated" as used herein, when referring to a molecule or composition, such as a MHC-I-PP or nucleic acid coding therefor, means that the molecule or composition is separated from at least one other compound (protein, other nucleic acid, *etc.*) or from other contaminants with which it is natively associated or becomes associated during processing. An isolated composition can also be substantially pure. An isolated composition can be in a homogeneous state and can be dry or in aqueous solution. Purity and homogeneity can be determined, for example, using analytical chemical techniques such as polyacrylamide gel electrophoresis (PAGE) or high performance liquid chromatography (HPLC). Even where a protein has been isolated so as to appear as a homogeneous or dominant band in a gel pattern, there are trace contaminants which co-purify with it.

Prokaryotic or eukaryotic host cells transformed or transfected to express the fusion polypeptide or a homologue or functional derivative thereof are within the scope of the invention. For example, the fusion polypeptide may be expressed in bacterial cells such as *E. coli*, insect cells (baculovirus), yeast, or mammalian cells such as Chinese hamster ovary cells (CHO) or human cells. Other suitable host cells may be found in Goeddel, (1990) *supra* or are otherwise known to those skilled in the art.

Expression in eukaryotic cells leads to partial or complete glycosylation and/or formation of relevant inter- or intra-chain disulfide bonds of the recombinant protein.

Although preferred vectors are described in the Examples, other examples of expression vectors are provided here. Examples of vectors for expression in yeast *S. cerevisiae* include pYepSec1 (Baldari *et al.*, (1987) *EMBO J.* 6:229-234), pMFa (Kurjan *et al.* (1982) *Cell* 30:933-943), pJRY88 (Schultz *et al.*, (1987) *Gene* 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, Calif.). Baculovirus vectors available for expression of proteins in cultured insect cells (SF 9 cells) include the pAc series (Smith *et al.*, (1983) *Mol. Cell Biol.* 3:2156-2165,) and the pVL series (Lucklow, V. A., and Summers, M. D., (1989) *Virology* 170:31-39). Generally, COS cells (Gluzman, Y., (1981) *Cell* 23:175-182) are used in conjunction with such vectors as pCDM 8 (Aruffo A. and Seed, B., *supra*, for transient amplification/expression in mammalian cells, while CHO (*dhfr*-negative CHO) cells are used with vectors such as pMT2PC (Kaufman *et al.* (1987), *EMBO J.* 6:187-195) for stable amplification/expression in mammalian cells. The NS0 myeloma cell line (a glutamine synthetase expression system.) is available from Celltech Ltd.

15

10

5

Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the reporter group and the target protein to enable separation of the target protein from the reporter group subsequent to purification of the fusion protein. Proteolytic enzymes for such cleavage and their recognition sequences include Factor Xa, thrombin and enterokinase.

20

25

Typical fusion expression vectors include pGEX (Amrad Corp., Melbourne, Australia), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase, maltose E binding protein, or protein A, respectively, to the target recombinant protein.

Inducible non-fusion expression vectors include pTrc (Amann *et al.*, (1988) *Gene* 69:301-315) and pET 11d (Studier *et al.*, *Gene Expression Technology:Methods in Enzymology* 185, Academic Press, San Diego, Calif. (1990) 60-89). While target gene expression relies on host RNA polymerase transcription from the hybrid trp-lac fusion promoter in pTrc, expression of target genes inserted into pET 11d relies on transcription from the T7 gn10-lacO fusion promoter mediated by coexpressed viral RNA polymerase (T7gn1). Th is viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7gn1 under the transcriptional control of the lacUV 5 promoter.

30

One embodiment of this invention is a transfected cell which expresses novel fusion polypeptide.

Vector Construction

5

10

15

20

25

30

Construction of suitable vectors containing the desired coding and control sequences employs standard ligation and restriction techniques which are well understood in the art. Isolated plasmids, DNA sequences, or synthesized oligonucleotides are cleaved, tailored, and re-ligated in the form desired.

The DNA sequences which form the vectors are available from a number of sources. Backbone vectors and control systems are generally found on available "host" vectors which are used for the bulk of the sequences in construction. For the pertinent coding sequence, initial construction may be, and usually is, a matter of retrieving the appropriate sequences from cDNA or genomic DNA libraries. However, once the sequence is disclosed it is possible to synthesize the entire gene sequence *in vitro* starting from the individual nucleotide derivatives. The entire gene sequence for genes of sizeable length, *e.g.*, 500-1000 bp may be prepared by synthesizing individual overlapping complementary oligonucleotides and filling in single stranded nonoverlapping portions using DNA polymerase in the presence of the deoxyribonucleotide triphosphates. This approach has been used successfully in the construction of several genes of known sequence. See, for example, Edge, M. D., *Nature* (1981) 292:756; Nambair, K. P., *et al.*, *Science* (1984) 223:1299; and Jay, E., *J Biol Chem* (1984) 259:6311.

Synthetic oligonucleotides are prepared by either the phosphotriester method as described by references cited above or the phosphoramidite method as described by Beaucage, S. L., and Caruthers, M. H., *Tet Lett* (1981) 22:1859; and Matteucci, M. D., and Caruthers, M. H., *J Am Chem Soc* (1981) 103:3185 and can be prepared using commercially available automated oligonucleotide synthesizers. Kinase treatment of single strands prior to annealing or for labeling is achieved using an excess, e.g., about 10 units of polynucleotide kinase to 1 nmole substrate in the presence of 50 mM Tris, pH 7.6, 10 mM MgCl₂, 5 mM dithiothreitol, 1-2 mM ATP, 1.7 pmoles γ -³²P-ATP (2.9 mCi/mmole), 0.1 mM spermidine, 0.1 mM EDTA.

Once the components of the desired vectors are thus available, they can be excised and ligated using standard restriction and ligation procedures. Site-specific DNA cleavage is performed by treating with the suitable restriction enzyme (or enzymes) under conditions which are generally understood in the art, and the particulars of which are specified by the manufacturer of these commercially available restriction enzymes. See, e.g., New England Biolabs, Product Catalog. In general, about 1 mg of plasmid or DNA sequence is cleaved by one unit of enzyme in about 20 ml of buffer solution; in the examples herein, typically, an excess of restriction enzyme is used to insure complete digestion of the DNA substrate. Incubation times of about one hour to two hours at about 37°C. are workable, although variations can be tolerated. After each incubation, protein is removed by extraction with phenol/chloroform, and may be followed by ether extraction, and the nucleic acid recovered from aqueous fractions by precipitation with ethanol. If desired, size separation of the cleaved fragments may

be performed by polyacrylamide gel or agarose gel electrophoresis using standard techniques. A general description of size separations is found in *Methods in Enzymology* (1980) 65:499-560.

Restriction cleaved fragments may be blunt ended by treating with the large fragment of *E. coli* DNA polymerase I (Klenow) in the presence of the four deoxynucleotide triphosphates (dNTPs) using incubation times of about 15 to 25 min at 20° to 25° C. in 50 mM Tris pH 7.6, 50 mM NaCl, 6 mM MgCl₂, 6 mM DTT and 0.1-1.0 mM dNTPs. The Klenow fragment fills in at 5′ single-stranded overhangs but chews back protruding 3′ single strands, even though the four dNTPs are present. If desired, selective repair can be performed by supplying only one of the, or selected, dNTPs within the limitations dictated by the nature of the overhang. After treatment with Klenow, the mixture is extracted with phenol/chloroform and ethanol precipitated. Treatment under appropriate conditions with S1 nuclease or BAL-31 results in hydrolysis of any single-stranded portion.

5

10

15

20

25

30

Ligations are typically performed in 15-50 ml volumes under the following standard conditions and temperatures: for example, 20 mM Tris-HCl pH 7.5, 10mM MgCl₂, 10 mM DTT, 33 μ g/ml BSA, 10-50mM NaCl, and either 40 μ M ATP, 0.01-0.02 (Weiss) units T4 DNA ligase at 0° C. (for "sticky end" ligation) or 1mM ATP, 0.3-0.6 (Weiss) units T4 DNA ligase at 14° C. (for "blunt end" ligation). Intermolecular "sticky end" ligations are usually performed at 33-100 μ g/ml total DNA concentrations (5-100 nM total end concentration). Intermolecular blunt end ligations are performed at 1 mM total ends concentration.

In vector construction employing "vector fragments", the fragment is commonly treated with bacterial alkaline phosphatase (BAP) or calf intestinal alkaline phosphatase (CIAP) in order to remove the 5' phosphate and prevent self-ligation. Digestions are conducted at pH 8 in approximately 10 mM Tris-HCl, 1 mM EDTA using BAP or CIAP at about 1 unit/mg vector at 60° for about one hour. The preparation is extracted with phenol/chloroform and ethanol precipitated. Alternatively, re-ligation can be prevented in vectors which have been double digested by additional restriction enzyme and separation of the unwanted fragments.

Any of a number of methods are used to introduce mutations into the coding sequence to generate the variants of the invention. These mutations include simple deletions or insertions, systematic deletions, insertions or substitutions of clusters of bases or substitutions of single bases.

For example, modifications of the MHC-I-PP or DC-pp or the antigenic polypeptide DNA sequence are created by site-directed mutagenesis, a well-known technique for which protocols and reagents are commercially available (Zoller, MJ et al., Nucleic Acids Res (1982) 10:6487-6500 and Adelman, JP et al., DNA (1983) 2:183-193)). Correct ligations for plasmid construction are confirmed, for example, by first transforming E. coli strain MC1061 (Casadaban, M., et al., J Mol Biol (1980) 138:179-207) or other suitable host with the ligation mixture. Using conventional methods,

transformants are selected based on the presence of the ampicillin-, tetracycline- or other antibiotic resistance gene (or other selectable marker) depending on the mode of plasmid construction. Plasmids are then prepared from the transformants with optional chloramphenicol amplification optionally following chloramphenicol amplification ((Clewell, DB et al., Proc Natl Acad Sci USA (1969) 62:1159; Clewell, D. B., J Bacteriol (1972) 110:667). Several mini DNA preps are commonly used. See, e.g.,, Holmes, DS, et al., Anal Biochem (1981) 114:193-197; Birnboim, HC et al., Nucleic Acids Res (1979) 7:1513-1523. The isolated DNA is analyzed by restriction and/or sequenced by the dideoxy nucleotide method of Sanger (Proc Natl Acad Sci USA (1977) 74:5463) as further described by Messing, et al., Nucleic Acids Res (1981) 9:309, or by the method of Maxam et al. Methods in Enzymology (1980) 65:499.

Vector DNA can be introduced into mammalian cells via conventional techniques such as calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming host cells can be found in Sambrook *et al. supra* and other standard texts.

Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the reporter group and the target protein to enable separation of the target protein from the reporter group subsequent to purification of the fusion protein. Proteolytic enzymes for such cleavage and their recognition sequences include Factor Xa, thrombin and enterokinase.

Known fusion expression vectors include pGEX (Amrad Corp., Melbourne, Australia), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase, maltose E binding protein, or protein A, respectively, to the target recombinant protein.

Inducible non-fusion expression vectors include pTrc (Amann *et al.*, (1988) *Gene* 69:301-315) and pET 11d (Studier *et al.*, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, Calif. (1990) 60-89). While target gene expression relies on host RNA polymerase transcription from the hybrid trp-lac fusion promoter in pTrc, expression of target genes inserted into pET 11d relies on transcription from the T7 gn10-lacO fusion promoter mediated by coexpressed viral RNA polymerase (T7gn1). Th is viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7gn1 under the transcriptional control of the lacUV 5 promoter.

Promoters and Enhancers

5

10

15

20

25

30

A promoter region of a DNA or RNA molecule binds RNA polymerase and promotes the transcription of an "operably linked" nucleic acid sequence. As used herein, a "promoter sequence" is the nucleotide sequence of the promoter which is found on that strand of the DNA or RNA which is

transcribed by the RNA polymerase. Two sequences of a nucleic acid molecule, such as a promoter and a coding sequence, are "operably linked" when they are linked to each other in a manner which permits both sequences to be transcribed onto the same RNA transcript or permits an RNA transcript begun in one sequence to be extended into the second sequence. Thus, two sequences, such as a promoter sequence and a coding sequence of DNA or RNA are operably linked if transcription commencing in the promoter sequence will produce an RNA transcript of the operably linked coding sequence. In order to be "operably linked" it is not necessary that two sequences be immediately adjacent to one another in the linear sequence.

5

10

15

20

25

30

The preferred promoter sequences of the present invention must be operable in mammalian cells and may be either eukaryotic or viral promoters. Although preferred promoters are described in the Examples, other useful promoters and regulatory elements are discussed below. Suitable promoters may be inducible, repressible or constitutive. A "constitutive" promoter is one which is active under most conditions encountered in the cell's environmental and throughout development. An "inducible" promoter is one which is under environmental or developmental regulation. A "tissue specific" promoter is active in certain tissue types of an organism. An example of a constitutive promoter is the viral promoter MSV-LTR, which is efficient and active in a variety of cell types, and, in contrast to most other promoters, has the same enhancing activity in arrested and growing cells. Other preferred viral promoters include that present in the CMV-LTR (from cytomegalovirus) (Bashart, M. et al., Cell 41:521 (1985)) or in the RSV-LTR (from Rous sarcoma virus) (Gorman, C.M., Proc. Natl. Acad. Sci. USA 79:6777 (1982). Also useful are the promoter of the mouse metallothionein I gene (Hamer, D., et al., J. Mol. Appl. Gen. 1:273-288 (1982)); the TK promoter of Herpes virus (McKnight, S., Cell 31:355-365 (1982)); the SV40 early promoter (Benoist, C., et al., Nature 290:304-310 (1981)); and the yeast gal4 gene promoter (Johnston, S.A., et al., Proc. Natl. Acad. Sci. (USA) 79:6971-6975 (1982); Silver, P.A., et al., Proc. Natl. Acad. Sci. (USA) 81:5951-5955 (1984)). Other illustrative descriptions of transcriptional factor association with promoter regions and the separate activation and DNA binding of transcription factors include: Keegan et al., Nature (1986) 231:699; Fields et al., Nature (1989) 340:245; Jones, Cell (1990) 61:9; Lewin, Cell (1990) 61:1161; Ptashne et al., Nature (1990) 346:329; Adams et al., Cell (1993) 72:306. The relevant disclosure of all of these above-listed references is hereby incorporated by reference.

The promoter region may further include an octamer region which may also function as a tissue specific enhancer, by interacting with certain proteins found in the specific tissue. The enhancer domain of the DNA construct of the present invention is one which is specific for the target cells to be transfected, or is highly activated by cellular factors of such target cells. Examples of vectors (plasmid or retrovirus) are disclosed in (Roy-Burman *et al.*, U.S. Patent No. 5,112,767). For a general discussion

of enhancers and their actions in transcription, see, Lewin, B.M., *Genes IV*, Oxford University Press, Oxford, (1990), pp. 552-576. Particularly useful are retroviral enhancers (e.g., viral LTR). The enhancer is preferably placed upstream from the promoter with which it interacts to stimulate gene expression. For use with retroviral vectors, the endogenous viral LTR may be rendered enhancer-less and substituted with other desired enhancer sequences which confer tissue specificity or other desirable properties such as transcriptional efficiency.

The nucleic acid sequences of the invention can also be chemically synthesized using standard techniques. Various methods of chemically synthesizing polydeoxynucleotides are known, including solid-phase synthesis which, like peptide synthesis, has been fully automated with commercially available DNA synthesizers (See, *e.g.*, Itakura *et al.* U.S. Pat. No. 4,598,049; Caruthers *et al.* U.S. Pat. No. 4,458,066; and Itakura U.S. Pat. Nos. 4,401,796 and 4,373,071, incorporated by reference herein).

PROTEINS AND POLYPEPTIDES

5

10

15

20

25

30

The terms "polypeptide," "protein," and "peptide" when reeferring to compositions of the invention are meant to include variants, analogues, and mimetics with structures and/or activity that substantially correspond to the polypeptide or peptide from which the variant, etc. was derived.

The present invention includes an "isolated" fusion polypeptide comprising a MHC-I-PP and/or a DC-PP linked to an antigenic polypeptide. A preferred MHC-I-PP is Hsp70. A preferred DC-PP if FL or the ECD or FL. Preferred fusion polyhpeptides are Hsp70/E7 (SEQ ID NO:8) and FL-E7 (SEQ ID NO:12). While the present disclosure exemplifies the full length Hsp70 and the ECD of FL, it is to be understood that homologues of Hsp70 from other bacteria or from eukaryotic origin, homologues of FL or its ECD,, and mutants thereof that possess the characteristics disclosed herein are intended within the scope of this invention.

The term "chimeric" or "fusion" polypeptide or protein refers to a composition comprising at least one polypeptide or peptide sequence or domain that is chemically bound in a linear fashion with a second polypeptide or peptide domain. One embodiment of this invention is an isolated or recombinant nucleic acid molecule encoding a fusion protein comprising at least two domains, wherein the first domain comprises an MHC-I-PP or a DC-PP e.g., Hsp60 or FL, and the second domain comprising an antigenic epitope, e.g., an MHC class I-binding peptide epitope. Additional domains can comprise a polypeptide, peptide, polysaccharide, or the like. The "fusion" can be an association generated by a peptide bond, a chemical linking, a charge interaction (e.g., electrostatic attractions, such as salt bridges, H-bonding, etc.) or the like. If the polypeptides are recombinant, the "fusion protein" can be translated from a common mRNA. Alternatively, the compositions of the domains can be linked by any chemical or electrostatic means. The chimeric molecules of the invention (e.g., MHC-I-PP- fusion proteins) can also include additional sequences, e.g., linkers, epitope tags, enzyme cleavage recognition sequences,

signal sequences, secretion signals, and the like. Alternatively, a peptide can be linked to a carrier simply to facilitate manipulation or identification/ location of the peptide.

5

10

15

20

25

30

Also included is a "functional derivative" of Hsp70 or FL, which refers to an amino acid substitution variant, a "fragment," or a "chemical derivative" of the protein, which terms are defined below. A functional derivative retains measurable (a) Hsp70-like or (b) FL-like activity, preferably that of promoting immunogenicity of one or more antigenic epitopes fused thereto by either (a) promoting presentation by class I pathways or (b) promoting maturation or activation of APCs, which permits the "functional derivative's" utility in accordance with the present invention. "Functional derivatives" encompass "variants" and "fragments" regardless of whether the terms are used in the conjunctive or the alternative herein.

A functional homologue must possess the above biochemical and biological activity. In view of this functional characterization, use of homologous Hsp70 or FL proteins including proteins not yet discovered, fall within the scope of the invention if these proteins have sequence similarity and the recited biochemical and biological activity.

To determine the percent identity of two amino acid sequences or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred method of alignment, Cys residues are aligned.

In a preferred embodiment, the length of a sequence being compared is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, or 90% of the length of the reference sequence (e.g., Hsp70, SEQ ID NO:4 and FL-ECD, SEQ ID NO:10). The amino acid residues (or nucleotides) at corresponding amino acid (or nucleotide) positions are then compared. When a position in the first sequence is occupied by the same amino acid residue (or nucleotide) as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (*J. Mol. Biol.*

48:444-453 (1970) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

5

10

15

20

25

30

The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against public databases, for example, to identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul *et al.* (1990) *J. Mol. Biol. 215*:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to Hsp70 or FL nucleic acid molecules. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to HVP22 protein molecules. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.* (1997) *Nucleic Acids Res. 25*:3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (*e.g.*, XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov.

Thus, a homologue of Hsp70 or of FL described above is characterized as having (a) functional activity of native Hsp70 or FL and (b) sequence similarity to a native Hsp70 protein (such as SEQ ID NO:4) or native FL (SEQ ID NO:10) when determined as above, of at least about 20% (at the amino acid level), preferably at least about 40%, more preferably at least about 70%, even more preferably at least about 90%.

It is within the skill in the art to obtain and express such a protein using DNA probes based on the disclosed sequences of Hsp70 or FL. Then, the fusion protein's biochemical and biological activity can be tested readily using art-recognized methods such as those described herein, for example, a T cell proliferation, cytokine secretion or a cytolytic assay, or an *in vivo* assay of tumor protection or tumor therapy. A biological assay of the stimulation of antigen-specific T cell reactivity will indicate whether the homologue has the requisite activity to qualify as a "functional" homologue.

A "variant" refers to a molecule substantially identical to either the full protein or to a fragment thereof in which one or more amino acid residues have been replaced (substitution variant) or which has

one or several residues deleted (deletion variant) or added (addition variant). A "fragment" of Hsp70 or FL refers to any subset of the molecule, that is, a shorter polypeptide of the full-length protein.

A number of processes can be used to generate fragments, mutants and variants of the isolated DNA sequence. Small subregions or fragments of the nucleic acid encoding the spreading protein, for example 1-30 bases in length, can be prepared by standard, chemical synthesis. Antisense oligonucleotides and primers for use in the generation of larger synthetic fragment.

5

10

15

20

25

A preferred group of variants are those in which at least one amino acid residue and preferably, only one, has been substituted by different residue. For a detailed description of protein chemistry and structure, see Schulz, GE et al., Principles of Protein Structure, Springer-Verlag, New York, 1978, and Creighton, T.E., Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, 1983, which are hereby incorporated by reference. The types of substitutions that may be made in the protein molecule may be based on analysis of the frequencies of amino acid changes between a homologous protein of different species, such as those presented in Table 1-2 of Schulz et al. (supra) and Figure 3-9 of Creighton (supra). Based on such an analysis, conservative substitutions are defined herein as exchanges within one of the following five groups:

1	Small aliphatic, nonpolar or slightly polar residues	Ala, Ser, Thr (Pro, Gly);
2	Polar, negatively charged residues and their amides	Asp, Asn, Glu, Gln;
3	Polar, positively charged residues	His, Arg, Lys;
4	Large aliphatic, nonpolar residues	Met, Leu, Ile, Val (Cys)
5	Large aromatic residues	Phe, Tyr, Trp.

The three amino acid residues in parentheses above have special roles in protein architecture. Gly is the only residue lacking a side chain and thus imparts flexibility to the chain. Pro, because of its unusual geometry, tightly constrains the chain. Cys can participate in disulfide bond formation, which is important in protein folding.

More substantial changes in biochemical, functional (or immunological) properties are made by selecting substitutions that are less conservative, such as between, rather than within, the above five groups. Such changes will differ more significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Examples of such substitutions are (i) substitution of Gly and/or Pro by another amino acid or deletion or insertion of Gly or Pro; (ii) substitution of a hydrophilic residue, e.g., Ser or Thr, for (or by) a hydrophobic residue, e.g., Leu, Ile, Phe, Val or Ala; (iii) substitution of a Cys residue for (or by) any other residue; (iv) substitution of a residue having an electropositive side chain, e.g., Lys, Arg or His, for (or by) a

5

10

15

20

25

30

residue having an electronegative charge, e.g.,, Glu or Asp; or (v) substitution of a residue having a bulky side chain, e.g., Phe, for (or by) a residue not having such a side chain, e.g., Gly.

Most acceptable deletions, insertions and substitutions according to the present invention are those that do not produce radical changes in the characteristics of the wild-type or native protein in terms of its intercellular spreading activity and its ability to stimulate antigen specific T cell reactivity to an antigenic epitope or epitopes that are fused to the spreading protein. However, when it is difficult to predict the exact effect of the substitution, deletion or insertion in advance of doing so, one skilled in the art will appreciate that the effect can be evaluated by routine screening assays such as those described here, without requiring undue experimentation.

Whereas shorter chain variants can be made by chemical synthesis, for the present invention, the preferred longer chain variants are typically made by site-specific mutagenesis of the nucleic acid encoding the polypeptide, expression of the variant nucleic acid in cell culture, and, optionally, purification of the polypeptide from the cell culture, for example, by immunoaffinity chromatography using specific antibody immobilized to a column (to absorb the variant by binding to at least one epitope).

The term "chemically linked" refers to any chemical bonding of two moieties, e.g., as in one embodiment of the invention, where an MHC-I-PP or DC-PP is chemically linked to an antigenic peptide. Such chemical linking includes the peptide bonds of a recombinantly or *in vivo* generated fusion protein.

Chemical Derivatives

"Chemical derivatives" of the polypeptide or fusion polypeptide of the invention contain additional chemical moieties not normally a part of the protein. Covalent modifications of the polypeptide are included within the scope of this invention. Such derivatized moieties may improve the solubility, absorption, biological half life, and the like. Moieties capable of mediating such effects are disclosed, for example, in *Remington's Pharmaceutical Sciences*, 16th ed., Mack Publishing Co., Easton, PA (1980).

Such modifications may be introduced into the molecule by reacting targeted amino acid residues of the polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or terminal residues. Another modification is cyclization of the protein. Examples of chemical derivatives of the polypeptide follow.

Lysinyl and amino terminal residues are derivatized with succinic or other carboxylic acid anhydrides. Derivatization with a cyclic carboxylic anhydride has the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride;

trinitrobenzenesulfonic acid; O-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate.

Carboxyl side groups, aspartyl or glutamyl, may be selectively modified by reaction with carbodiimides (R-N=C=N-R') such as 1-cyclohexyl-3-(2-morpholinyl-(4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues can be converted to asparaginyl and glutaminyl residues by reaction with ammonia.

Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the amino group of lysine (Creighton, *supra*, pp. 79-86), acetylation of the N-terminal amine, and amidation of the C-terminal carboxyl groups.

Also included are peptides wherein one or more D-amino acids are substituted for one or more L-amino acids.

Multimeric Peptides

5

10

15

20

25

30

The present invention also includes longer polypeptides in which a basic peptidic sequence obtained from the sequence of either the MHC-I-PP or the DC-PP, or the antigenic polypeptide or peptide unit, is repeated from about two to about 100 times, with or without intervening spacers or linkers. It is understood that such multimers may be built from any of the peptide variants defined herein. Moreover, a peptide multimer may comprise different combinations of peptide monomers and the disclosed substitution variants thereof. Such oligomeric or multimeric peptides can be made by chemical synthesis or by recombinant DNA techniques as discussed herein. When produced chemically, the oligomers preferably have from 2-12repeats of the basic peptide sequence. When produced recombinantly, the multimers may have as many repeats as the expression system permits, for example from two to about 100 repeats.

In tandem multimers, preferably dimers and trimers, of the fusion polypeptide, the chains bonded by interchain disulfide bonds or other "artificial" covalent bonds between the chains such that the chains are "side-by-side" rather than "end to end."

THERAPEUTIC COMPOSITIONS AND THEIR ADMINISTRATION

A vaccine composition comprising the nucleic acid encoding the fusion polypeptide, or a cell expressing this nucleic acid is administered to a mammalian subject, preferably a human. The vaccine composition is administered in a pharmaceutically acceptable carrier in a biologically effective or a therapeutically effective amount. The composition may be given alone or in combination with another protein or peptide such as an immunostimulatory molecule. Treatment may include administration of an adjuvant, used in its broadest sense to include any nonspecific immune stimulating compound such as

an interferon. Adjuvants contemplated herein include resorcinols, non-ionic surfactants such as polyoxyethylene oleyl ether and n-hexadecyl polyethylene ether.

5

10

15

20

25

30

A therapeutically effective amount is a dosage that, when given for an effective period of time, achieves the desired immunological or clinical effect.

A therapeutically active amount of a nucleic acid encoding the fusion polypeptide may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the peptide to elicit a desired response in the individual. Dosage regimes may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. A therapeutically effective amounts of the protein, in cell associated form may be stated in terms of the protein or cell equivalents.

Thus an effective amount is between about 1 nanogram and about 10 milligram per kilogram of body weight of the recipient, more preferably between about 0.1 μ g and 1 μ g/kg. Dosage forms suitable for internal administration preferably contain (for the latter dose range) from about 0.01 μ g to 100 μ g of active ingredient per unit. The active ingredient may vary from 0.5 to 95% by weight based on the total weight of the composition. Alternatively, an effective dose of cells expressing the nucleic acid is between about 10^4 and 10^8 cells. Those skilled in the art of immunotherapy will be able to adjust these doses without undue experimentation.

The active compound may be administered in a convenient manner, e.g., injection by a convenient and effective route. Preferred routes include subcutaneous, intradermal, intravenous and intramuscular routes. Other possible routes include oral administration, intrathecal, inhalation, transdermal application, or rectal administration. For the treatment of existing tumors which have not been completely resected or which have recurred, direct intratumoral injection is also intended.

Depending on the route of administration, the active compound may be coated in a material to protect the compound from the action of enzymes, acids and other natural conditions which may inactivate the compound. Thus it may be necessary to coat the composition with, or co-administer the composition with, a material to prevent its inactivation. For example, an enzyme inhibitors of nucleases or proteases (e.g., pancreatic trypsin inhibitor, diisopropylfluorophosphate and trasylol).or in an appropriate carrier such as liposomes (including water-in-oil-in-water emulsions as well as conventional liposomes (Strejan et al., (1984) J. Neuroimmunol 7:27).

As used herein "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof

in the therapeutic compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

5

10

15

20

25

30

Preferred pharmaceutically acceptable diluents include saline and aqueous buffer solutions. Pharmaceutical compositions suitable for injection include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. Isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride may be included in the pharmaceutical composition. In all cases, the composition should be sterile and should be fluid. It should be stable under the conditions of manufacture and storage and must include preservatives that prevent contamination with microorganisms such as bacteria and fungi. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms.

The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.

Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.

Compositions are preferably formulated in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form refers to physically discrete units suited as unitary dosages for a mammalian subject; each unit contains a predetermined quantity of active material (e.g., the nucleic acid vaccine) calculated to produce the desired therapeutic effect, in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of, and sensitivity of, ndividual subjects

For lung instillation, aerosolized solutions are used. In a sprayable aerosol preparations, the active protein may be in combination with a solid or liquid inert carrier material. This may also be packaged in a squeeze bottle or in admixture with a pressurized volatile, normally gaseous propellant. The aerosol preparations can contain solvents, buffers, surfactants, and antioxidants in addition to the protein of the invention.

Other pharmaceutically acceptable carriers for the nucleic acid vaccine compositions according to the present invention are liposomes, pharmaceutical compositions in which the active protein is

contained either dispersed or variously present in corpuscles consisting of aqueous concentric layers adherent to lipidic layers. The active protein is preferably present in the aqueous layer and in the lipidic layer, inside or outside, or, in any event, in the non-homogeneous system generally known as a liposomic suspension. The hydrophobic layer, or lipidic layer, generally, but not exclusively, comprises phospholipids such as lecithin and sphingomyelin, steroids such as cholesterol, more or less ionic surface active substances such as dicetylphosphate, stearylamine or phosphatidic acid, and/or other materials of a hydrophobic nature. Those skilled in the art will appreciate other suitable embodiments of the present liposomal formulations.

ANTIGENS ASSOCIATED WITH PATHOGENS

5

10

15

20

25

30

A major use for the present invention is the use of the present nucleic acid compositions in therapeutic vaccine for cancer and for major chronic viral infections that cause morbidity and mortality worldwide. Such vaccines are designed to eliminate infected cells - this requires T cell responses as antibodies are often ineffective. The vaccines of the present invention are designed to meet these needs.

Preferred antigens are epitopes of pathogenic microorganisms against which the host is defended by effector T cells responses, including cytotoxic T lymphocyte (CTL) and delayed type hypersensitivity. These typically include viruses, intracellular parasites such as malaria, and bacteria that grow intracellularly such as Mycobacteria and Listeria species. Thus, the types of antigens included in the vaccine compositions of this invention are any of those associated with such pathogens (in addition, of course, to tumor-specific antigens). It is noteworthy that some viral antigens are also tumor antigens in the case where the virus is a causative factor in cancer.

In fact, the two most common cancers worldwide, hepatoma and cervical cancer, are associated with viral infection. Hepatitis B virus(HBV) (Beasley, R.P. et al., Lancet 2, 1129-1133 (1981) has been implicated as etiologic agent of hepatomas. 80-90% of cervical cancers express the E6 and E7 antigens (exemplified herein) from one of four "high risk" human papillomavirus types: HPV-16, HPV-18, HPV-31 and HPV-45 (Gissmann, L. et al., Ciba Found Symp. 120, 190-207 (1986); Beaudenon, S., et al. Nature 321, 246-249 (1986). The HPV E6 and E7 antigens are the most promising targets for virus associated cancers in immunocompetent individuals because of their ubiquitous expression in cervical cancer. In addition to their importance as targets for therapeutic cancer vaccines, virus associated tumor antigens are also ideal candidates for prophylactic vaccines. Indeed, introduction of prophylactic HBV vaccines in Asia have decreased the incidence of hepatoma (Chang, M.H., et al. New Engl. J. Med. 336, 1855-1859 (1997), representing a great impact on cancer prevention.

Among the most important viruses in chronic human viral infections are HPV, HBV, hepatitis C Virus (HCV), human immunodeficiency virus (HIV-1 and HIV-2), herpesviruses such as Epstein Barr

Virus (EBV), cytomegalovirus (CMV) and HSV-1 and HSV-2 and influenza virus. Useful antigens include HBV surface antigen or HBV core antigen; ppUL83 or pp89 of CMV; antigens of gp120, gp41 or p24 proteins of HIV-1; ICP27, gD2, gB of HSV; or influenze nucleoprotein (Anthony, LS *et al.*, *Vaccine* 1999; 17:373-83). Other antigens associated with pathogens that can be utilized as described herein are antigens of various parasites, includes malaria, preferably malaria peptide (NANP)40.

5

10

15

30

In addition to its applicability to human cancer and infectious diseases,, the present invention is also intended for use in treating animal diseases in the veterinary medicine context. Thus, the approaches described herein may be readily applied by one skilled in the art to treatment of veterinary herpesvirus infections including equine herpesviruses, bovine viruses such as bovine viral diarrhea virus (for example, the E2 antigen), bovine herpesviruses, Marek's disease virus in chickens and other fowl; animal retroviral and lentiviral diseases (e.g., feline leukemia, feline immunodeficiency, simian immunodeficiency viruses, etc.); pseudorabies and rabies; and the like.

As for tumor antigens, any tumor-associated or tumor-specific antigen that can be recognized by T cells, preferably by CTL, can be used. In addition to the HPV-E7 antigen exemplified herein is mutant p53 or HER2/neu or a peptide thereof. Any of a number of melanoma-associated antigens may be used, such as MAGE-1, MAGE-3, MART-1/Melan-A, tyrosinase, gp75, gp100, BAGE, GAGE-1, GAGE-2, GnT-V, and p15 (see, US 6,187,306).

The following references set forth principles and current information in the field of basic, medical and veterinary virology and are incorporated by reference: Fields Virology, Fields, BN et al., eds., Lippincott Williams & Wilkins, NY, 1996; Principles of Virology: Molecular Biology, Pathogenesis, and Control, Flint, S.J. et al., eds., Amer Society for Microbiology, Washington, 1999; Principles and Practice of Clinical Virology, 4th Edition, Zuckerman. A.J. et al., eds, John Wiley & Sons, NY, 1999; The Hepatitis C Viruses, by Hagedorn, CH et al., eds., Springer Verlag, 1999; Hepatitis B Virus: Molecular Mechanisms in Disease and Novel Strategies for Therapy, Koshy, R. et al., eds., Eds., World Scientific Pub Co, 1998; Veterinary Virology, Murphy, F.A. et al., eds., Academic Press, NY, 1999; Avian Viruses: Function and Control, Ritchie, B.W., Iowa State University Press, Ames, 2000; Virus Taxonomy: Classification and Nomenclature of Viruses: Seventh Report of the International Committee on Taxonomy of Viruses, by M. H. V. Van Regenmortel, MHV et al., eds., Academic Press; NY, 2000.

DELIVERY OF VACCINE NUCLEIC ACID TO CELLS AND ANIMALS

Examples I-III describe certain preferred approaches to delivery of the vaccines of the present invention: naked DNA, self-replicating RNA and virally-based suicide DNA. A broader description of other approaches including viral and nonviral vectors and delivery mechanisms follow.

DNA delivery involves introduction of a "foreign" DNA into a cell *ex vivo* and ultimately, into a live animal or directly into the animal. Several general strategies for gene delivery (= delivery of nucleic acid vectors) for purposes that include "gene therapy" have been studied and reviewed extensively (Yang, N-S., *Crit. Rev. Biotechnol. 12*:335-356 (1992); Anderson, W.F., *Science 256*:808-813 (1992); Miller, A.S., *Nature 357*:455-460 (1992); Crystal, R.G., *Amer. J. Med. 92(suppl 6A)*:44S-52S (1992); Zwiebel, J.A. *et al.*, *Ann. N.Y. Acad. Sci. 618*:394-404 (1991); McLachlin, J.R. *et al.*, *Prog. Nucl. Acid Res. Molec. Biol. 38*:91-135 (1990); Kohn, D.B. *et al.*, *Cancer Invest.* 7:179-192 (1989), which references are herein incorporated by reference in their entirety).

5

10

15

20

25

30

One approach comprises nucleic acid transfer into primary cells in culture followed by autologous transplantation of the *ex vivo* transformed cells into the host, either systemically or into a particular organ or tissue.

The term "systemic administration" refers to administration of a composition or agent such as a molecular vaccine as described herein, in a manner that results in the introduction of the composition into the subject's circulatory system or otherwise permits its spread throughout the body. "Regional" administration refers to administration into a specific, and somewhat more limited, anatomical space, such as intraperitoneal, intrathecal, subdural, or to a specific organ. The term "local administration" refers to administration of a composition or drug into a limited, or circumscribed, anatomic space, such as intratumoral injection into a tumor mass, subcutaneous injections, intramuscular injections. One of skill in the art would understand that local administration or regional administration may also result in entry of a composition into the circulatory system.

For accomplishing the objectives of the present invention, nucleic acid therapy would be accomplished by direct transfer of a the functionally active DNA into mammalian somatic tissue or organ *in vivo*. DNA transfer can be achieved using a number of approaches described below. These systems can be tested for successful expression *in vitro* by use of a selectable marker (*e.g.*, G418 resistance) to select transfected clones expressing the DNA, followed by detection of the presence of the antigen-containing expression product (after treatment with the inducer in the case of an inducible system) using an antibody to the product in an appropriate immunoassay. Efficiency of the procedure, including DNA uptake, plasmid integration and stability of integrated plasmids, can be improved by linearizing the plasmid DNA using known methods, and co-transfection using high molecular weight mammalian DNA as a "carrier".

Examples of successful "gene transfer" reported in the art include: (a) direct injection of plasmid DNA into mouse muscle tissues, which led to expression of marker genes for an indefinite period of time (Wolff, J.A. et al., Science 247:1465 (1990); Acsadi, G. et al., The New Biologist 3:71 (1991)); (b) retroviral vectors are effective for *in vivo* and *in situ* infection of blood vessel tissues; (c) portal vein

injection and direct injection of retrovirus preparations into liver effected gene transfer and expression in vivo (Horzaglou, M. et al., J. Biol. Chem. 265:17285 (1990); Koleko, M. et al., Human Gene Therapy 2:27 (1991); Ferry, N. et al., Proc. Natl. Acad. Sci. USA 88:8387 (1991)); (d) intratracheal infusion of recombinant adenovirus into lung tissues was effective for in vivo transfer and prolonged expression of foreign genes in lung respiratory epithelium (Rosenfeld, M.A. et al., Science 252:431 (1991); (e) Herpes simplex virus vectors achieved in vivo gene transfer into brain tissue (Ahmad, F. et al., eds, Miami Short Reports - Advances in Gene Technology: The Molecular Biology of Human Genetic Disease, Vol 1, Boehringer Manneheim1 Biochemicals, USA, 1991).

5

10

15

20

25

30

Retroviral-mediated human therapy utilizes amphotrophic, replication-deficient retrovirus systems (Temin, H.M., *Human Gene Therapy 1*:111 (1990); Temin *et al.*, U.S. Patent 4,980,289; Temin *et al.*, U.S. Patent 4,650,764; Temin *et al.*, U.S. Patent No. 5,124,263; Wills, J.W. U.S. Patent 5,175,099; Miller, A.D., U.S. Patent No. 4,861,719). Such vectors have been used to introduce functional DNA into human cells or tissues, for example, the adenosine deaminase gene into lymphocytes, the NPT-II gene and the gene for tumor necrosis factor into tumor infiltrating lymphocytes. Retrovirus-mediated gene delivery generally requires target cell proliferation for gene transfer (Miller, D.G. *et al.*, *Mol. Cell. Biol. 10*:4239 (1990). This condition is met by certain of the preferred target cells into which the present DNA molecules are to be introduced, *i.e.*, actively growing tumor cells. Gene therapy of cystic fibrosis using transfection by plasmids using any of a number of methods and by retroviral vectors has been described by Collins *et al.*, U.S. Patent 5,240,846.

The DNA molecules encoding the fusion polypeptides of the present invention may be packaged into retrovirus vectors using packaging cell lines that produce replication-defective retroviruses, as is well-known in the art (see, for example, Cone, R.D. et al., Proc. Natl. Acad. Sci. USA 81:6349-6353 (1984); Mann, R.F. et al., Cell 33:153-159 (1983); Miller, A.D. et al., Molec. Cell. Biol. 5:431-437 (1985),; Sorge, J., et al., Molec. Cell. Biol. 4:1730-1737 (1984); Hock, R.A. et al., Nature 320:257 (1986); Miller, A.D. et al., Molec. Cell. Biol. 6:2895-2902 (1986). Newer packaging cell lines which are efficient an safe for gene transfer have also been described (Bank et al., U.S. 5,278,056.

This approach can be utilized in a site specific manner to deliver the retroviral vector to the tissue or organ of choice. Thus, for example, a catheter delivery system can be used (Nabel, EG et al., Science 244:1342 (1989)). Such methods, using either a retroviral vector or a liposome vector, are particularly useful to deliver the nucleic acid to be expressed to a blood vessel wall, or into the blood circulation of a tumor.

Other virus vectors may also be used, including recombinant adenoviruses (Horowitz, M.S., In: *Virology*, Fields, BN *et al.*, eds, Raven Press, New York, 1990, p. 1679; Berkner, K.L., *Biotechniques* 6:616 9191988), Strauss, S.E., In: *The Adenoviruses*, Ginsberg, HS, ed., Plenum Press, New York, 1984,

chapter 11), herpes simplex virus (HSV) for neuron-specific delivery and persistence. Advantages of adenovirus vectors for human gene delivery include the fact that recombination is rare, no human malignancies are known to be associated with such viruses, the adenovirus genome is double stranded DNA which can be manipulated to accept foreign genes of up to 7.5 kb in size, and live adenovirus is a safe human vaccine organisms. Adeno-associated virus is also useful for human therapy (Samulski, R.J. et al., EMBO J. 10:3941 (1991) according to the present invention.

5

10

15

20

25

30

Another vector which can express the DNA molecule of the present invention, and is useful in the present therapeutic setting, particularly in humans, is vaccinia virus, which can be rendered non-replicating (U.S. Patents 5,225,336; 5,204,243; 5,155,020; 4,769,330; Sutter, G et al., Proc. Natl. Acad. Sci. USA (1992) 89:10847-10851; Fuerst, T.R. et al., Proc. Natl. Acad. Sci. USA (1989) 86:2549-2553; Falkner F.G. et al.; Nucl. Acids Res (1987) 15:7192; Chakrabarti, S et al., Molec. Cell. Biol. (1985) 5:3403-3409). Descriptions of recombinant vaccinia viruses and other viruses containing heterologous DNA and their uses in immunization and DNA therapy are reviewed in: Moss, B., Curr. Opin. Genet. Dev. (1993) 3:86-90; Moss, B. Biotechnology (1992) 20:345-362; Moss, B., Curr Top Microbiol Immunol (1992) 158:25-38; Moss, B., Science (1991) 252:1662-1667; Piccini, A et al., Adv. Virus Res. (1988) 34:43-64; Moss, B. et al., Gene Amplif Anal (1983) 3:201-213.

In addition to naked DNA or RNA, or viral vectors, engineered bacteria may be used as vectors. A number of bacterial strains including *Salmonella*, BCG and *Listeria monocytogenes*(LM) (Hoiseth & Stocker, *Nature* **291**, 238-239 (1981); Poirier, TP *et al. J. Exp. Med.* **168**, 25-32 (1988); (Sadoff, J.C., *et al.*, *Science* **240**, 336-338 (1988); Stover, C.K., *et al.*, *Nature* **351**, 456-460 (1991); Aldovini, A. *et al.*, *Nature* **351**, 479-482 (1991); Schafer, R., *et al.*, *J. Immunol.* **149**, 53-59 (1992); Ikonomidis, G. *et al.*, *J. Exp. Med.* **180**, 2209-2218 (1994)). These organisms display two promising characteristics for use as vaccine vectors: (1) enteric routes of infection, providing the possibility of oral vaccine delivery; and (2) infection of monocytes/macrophages thereby targeting antigens to professional APCs.

In addition to virus-mediated gene transfer *in vivo*, physical means well-known in the art can be used for direct transfer of DNA, including administration of plasmid DNA (Wolff *et al.*, 1990, *supra*) and particle-bombardment mediated gene transfer (Yang, N.-S., *et al.*, *Proc. Natl. Acad. Sci. USA* 87:9568 (1990); Williams, R.S. *et al.*, *Proc. Natl. Acad. Sci. USA* 88:2726 (1991); Zelenin, A.V. *et al.*, *FEBS Lett.* 280:94 (1991); Zelenin, A.V. *et al.*, *FEBS Lett.* 244:65 (1989); Johnston, S.A. *et al.*, *In Vitro Cell. Dev. Biol.* 27:11 (1991)). Furthermore, electroporation, a well-known means to transfer genes into cell *in vitro*, can be used to transfer DNA molecules according to the present invention to tissues *in vivo* (Titomirov, A.V. *et al.*, *Biochim. Biophys. Acta* 1088:131 ((1991)).

"Carrier mediated gene transfer" has also been described (Wu, C.H. et al., J. Biol. Chem. 264:16985 (1989); Wu, G.Y. et al., J. Biol. Chem. 263:14621 (1988); Soriano, P. et al., Proc. Natl.

Acad. Sci. USA 80:7128 (1983); Wang, C-Y. et al., Proc. Natl. Acad. Sci. USA 84:7851 (1982); Wilson, J.M. et al., J. Biol. Chem. 267:963 (1992)). Preferred carriers are targeted liposomes (Nicolau, C. et al., Proc. Natl. Acad. Sci. USA 80:1068 (1983); Soriano et al., supra) such as immunoliposomes, which can incorporate acylated mAbs into the lipid bilayer (Wang et al., supra). Polycations such as asialoglycoprotein/polylysine (Wu et al., 1989, supra) may be used, where the conjugate includes a molecule which recognizes the target tissue (e.g., asialoorosomucoid for liver) and a DNA binding compound to bind to the DNA to be transfected. Polylysine is an example of a DNA binding molecule which binds DNA without damaging it. This conjugate is then complexed with plasmid DNA according to the present invention for transfer.

Plasmid DNA used for transfection or microinjection may be prepared using methods well-known in the art, for example using the Quiagen procedure (Quiagen), followed by DNA purification using known methods, such as the methods exemplified herein.

Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

EXAMPLE I

Enhancement of Sindbis Virus Self-Replicating RNA Vaccine Potency by Linkage of Nucleic Acid encoding *Mycobacterium Tuberculosis* <u>Heat Shock Protein 70 and an Antigen</u>

The present study investigated whether DNA linking full-length E7 to Hsp70 can enhance the potency of self-replicating Sindbis RNA vaccines. We showed that a Sindbis RNA vaccine linking E7 with Hsp70 significantly increased expansion and activation of E7-specific CD8⁺ T cells and NK cells, bypassing the requirement for CD4+ T cell-mediated help and resulting in potent anti-tumor immunity against E7-expressing tumors. Mechanistic studies confirmed that the Sindbis E7/Hsp70 RNA vaccine induced apoptotic death of host cells and promoted processing of this apoptotic material by dendritic cells (DCs), leading to significantly increased expansion and activation of E7-specific CD8⁺T cells. This enhanced CD8 response resulted in a state of potent anti-tumor immunity against an E7-expressing tumor cell line.

MATERIALS AND METHODS

Plasmid DNA Constructs and Preparation

5

10

15

20

25

30

The generation of pcDNA3-Hsp70, pcDNA3-E7, and pcDNA3-E7/Hsp70 has been described previously (Chen *et al.*, *supra*). The Sindbis virus RNA replicon vector, SINrep5 has also been described previously (Bredenbeek, PJ *et al.*, 1993. *J Virol* 67:6439-46). For the generation of SINrep5-

Hsp70, SINrep5-E7, and SINrep5-E7/Hsp70, DNA fragments encoding Mtb Hsp70, HPV-16 E7, and chimeric E7/Hsp70 were isolated by cutting pcDNA3-Hsp70, pcDNA3-E7, and pcDNA3-E7/Hsp70 respectively with Xba I and Pme I restriction enzymes, followed by gel recovery from the digested products. These isolated DNA fragments were further cloned into the corresponding Xba I and Pme I sites of the SINrep5 vector to generate SINrep5-Hsp70, SINrep5-E7, and SINrep5-E7/Hsp70 constructs. SINrep5-E7/GFP constructs were generated to evaluate the effect of linkage of E7 to an irrelevant protein. For the generation of SINrep5-E7/GFP, we first constructed pcDNA3-GFP. For the generation of pcDNA3-GFP, a DNA fragment encoding the green fluorescent protein (GFP) was first amplified with PCR using pEGFPN1 DNA (Clontech, Palo Alto, CA) and a set of primers: 5'ateggatecatggtgageaagggegaggag-3' (SEQ ID NO:24) and 5'-gggaagetttacttgtacagetegtecatg-3' (SEQ ID NO:25). The amplified product was digested with BamHI/ HindIII and further cloned into the BamHI /HindIII cloning sites of pcDNA3 vector. For the generation of pDNA3-E7/GFP, a DNA fragment encoding HPV-16 E7 first amplified with PCR using pcDNA3-E7 as a template and a set of primers: 5'-ggggaatt
catggagatacaccta-3' (SEQ ID NO:26) and $\,5$ '-ggtggatccttgagaacagatgg-3' (SEQ ID NO:26) and $\,5$ NO:27). The amplified product was then digested with EcoRI/BamHI and further cloned into the EcoRI /BamHI cloning sites of pcDNA3-GFP. E7/GFP was cut with XbaI/PmeI from pcDNA3-E7/GFP and cloned into XbaI/PmeI sites of SIN5rep. The accuracy of these constructs was confirmed by DNA sequencing.

In Vitro RNA Preparation

5

10

15

20

25

30

The generation of RNA transcripts from SINrep5-Hsp70, SINrep5-E7, SINrep5-E7/GFP, SINrep5-E7/Hsp70 and SINrep5 was performed using the protocol described by Mandl *et al.*, (Mandl, CW *et al.*, 1998. *Nat Med* 4:1438-40). SpeI was used to linearize DNA templates for the synthesis of RNA replicons from SINrep5-Hsp70, SINrep5-E7, SINrep5-E7/Hsp70 and SINrep5. RNA vaccines were transcribed *in vitro* and capped using SP6 RNA polymerase and capping analog from the *in vitro* transcription kit (Life Technologies, Rockville, MD) according to vendor's manual. After synthesis, DNA was removed by digestion with DNase I. Synthesized RNA was quantified and analyzed using denaturing formaldehyde agarose gels (Mandl *et al.*, *supra*). The purified RNA was divided into aliquots to be used for vaccination in animals and for transfection of a baby hamster kidney (BHK21) cell line. The protein expression of the transcripts was assessed by transfection of the RNA into BHK21 cells using electroporation.

Cell Lines

BHK21 cells were obtained from the ATCC (Rockville, MD) and grown in Glasgow MEM supplemented with 5% FBS, 10% tryptose phosphate broth, 2 mM glutamine, and antibiotics. Cells

were kept at 37°C in a humidified 5% CO₂ atmosphere and were passaged every 2 days. The production and maintenance of TC-1 cells has been described previously (Lin, KY *et al.*, 1996. *Cancer Research* 56:21-26). On the day of tumor challenge, TC-1 cells were harvested by trypsinization, washed twice with 1X Hanks buffered salt solution (HBSS), and finally resuspended in 1X HBSS to the designated concentration for injection.

ELISA to detect E7 Protein Expression of SINrep5 RNA vaccines

The expression of E7 protein from SINrep5-E7 and SINrep5-E7/Hsp70 RNA was determined by indirect ELISA. The quantity of E7 protein was determined using cell lysates from SIN5rep-E7 or -E7/Hsp70 transfected BHK21 cells. Briefly, 10⁷ BHK21 cells were transfected with the 4µg SINrep5, SINrep5-E7, SINrep5-Hsp70, SINrep5-E7/GFP or SINrep5-E7/Hsp70 RNA transcripts respectively via electroporation as described by Liljestrom et al., (Liljestrom, PS et al., 1991. J Virol 65:4107-13). We used SINrep5-vector containing the β -gal gene and determined the transfection efficiency. The transfected cells were fixed and stained for lacZ expression using X-Gal (Sanes, JR et al., 1986. Embo J 5:3133-42). In general, the transfection efficiency in our electroporation was consistent and measured around 30%. The transfected BHK21 cells were collected 16-20 hrs after electroporation. A 96microwell plate was coated BHK 21 cell lysates that were transfected with various SINrep5 RNA constructs in a final volume of 100 μ l, and were incubated at 4°C overnight. The bacteria-derived HPV- $16~\mathrm{E7}$ proteins were used as a positive control. The wells were then blocked with PBS containing 20%fetal bovine serum. Diluted anti-E7 Ab (Zymed, San Francisco, CA) were added to the ELISA wells, and incubated on 37°C for 2 hr. After washing with PBS containing 0.05% Tween-20, the plate was incubated with 1/2000 dilution of a peroxidase-conjugated rabbit anti-mouse IgG antibody (Zymed, San Francisco, CA) at room temperature for one hour. The plate was washed, developed with 1-Step™ Turbo TMB-ELISA (Pierce, Rockford, IL), and stopped with 1M H₂SO₄. The ELISA plate was read with a standard ELISA reader at 450 nm. The quantity of E7 protein of the cell lysates was then calculated and determined by comparing with the standardized E7 protein.

Mice

5

10

15

20

25

30

6 to 8-week-old female C57BL/6 mice from the National Cancer Institute (Frederick, MD) were purchased and kept in the oncology animal facility of the Johns Hopkins Hospital (Baltimore, MD). All animal procedures were performed according to approved protocols and in accordance with recommendations for the proper use and care of laboratory animals.

RNA Vaccination

All SINrep5 RNA vaccines were generated using *in vitro* transcription as described earlier. RNA concentration was determined by optical density measured at 260 nm. The integrity and quantity of RNA transcripts were further checked using denaturing gel electrophoresis. Mice were vaccinated intramuscularly with 10 μg of SINrep5-Hsp70, SINrep5-E7, SINrep5-E7 mixed with SINrep5-Hsp70, SINrep5-E7/GFP or SINrep5 RNA vaccines in the right hind leg while SINrep5-E7/Hsp70 was administered in 0.1, 1, and 10 μg quantities.

ELISA to Measure Anti-E7 Antibodies

5

10

15

20

25

30

Anti-HPV 16 E7 antibodies in the sera were determined by direct ELISA as described previously (Wu, TC 1995. *Proc Natl Acad Sci USA* 92:11671-5). A 96-microwell plate was coated with 100 μl bacteria-derived HPV-16 E7 proteins (5 μg/ml) and incubated at 4°C overnight. The wells were then blocked with PBS containing 20% fetal bovine serum. Sera obtained from mice on day 14 post-immunization were serially diluted in PBS, added to the ELISA wells, and incubated at 37°C for 2 hr. After washing with PBS containing 0.05% Tween-20, the plate was incubated with 1/2000 dilution of a peroxidase-conjugated rabbit anti-mouse IgG antibody (Zymed, San Francisco, CA) at room temperature for one hour. The plate was washed, developed with 1-StepTM Turbo TMB-ELISA (Pierce, Rockford, IL), and stopped with 1M H₂SO₄. The ELISA plate was read with a standard ELISA reader at 450 nm.

ELISA to Measure IFNy

Splenocytes were harvested 2 weeks after vaccination and cultured with the E7 peptide (aa 49-57) containing the MHC class I epitope (RAHYNIVTF, SEQ ID NO:22) (Feltkamp, MC et al., 1993. Eur J Immunol 23:2242-9) or the E7 peptide (aa 30-67) containing the class II epitope (DSSEEEDEIDGPAGQAEPDRAHYNIVTFCCKCDSTLRL; SEQ ID NO:23) (Tindle, RW 1991. Proc Natl Acad Sci USA 88:5887-91) in a total volume of 2 ml of RPMI 1640, supplemented with 10% (vol/vol) fetal bovine serum, 50 units/ml penicillin and streptomycin, 2 mM L-glutamine, 1 mM sodium pyruvate, 2 mM nonessential amino acids in a 24-well tissue culture plate for 6 days. The supernatants were harvested and assayed for the presence of IFNy using a commercial ELISA kit (Endogen, Woburn, MA) according to the manufacturer's protocol.

Cytotoxic T Lymphocyte (CTL) Assays

Cytolysis was determined by quantitative measurements of lactate dehydrogenase (LDH) released from cells using CytoTox96®, a non-radioactive cytotoxicity assay kit (Promega, Madison, WI) according to the manufacturer's protocol. Briefly, splenocytes were harvested and pooled 2 weeks after RNA vaccination. Five mice were used for each vaccinated group. Splenocytes were cultured with the E7 peptide (aa 49-57) in a total volume of 2 ml of RPMI 1640, supplemented with 10% (vol/vol) fetal

bovine serum, 50 units/ml penicillin/ streptomycin, 2mM L-glutamine, 1mM sodium pyruvate, 2mM nonessential amino acids in a 24-well tissue culture plate for 6 days as effector cells. TC-1 tumor cells were used as target cells. The TC-1 cells mixed with splenocytes at various effector/target (E/T) ratios. After 5 hr incubation at 37°C, 50µl of the culture medium was collected to assess the amount of LDH present. The percentage of lysis was calculated from the formula: 100 x {(A-B)/(C-D)}, where A is the reading of experimental-effector signal value, B is the effector spontaneous background signal value, C is maximum signal value from target cells, D is the target spontaneous background signal value.

In Vivo Tumor Protection Experiments

5

10

15

20

25

30

For the tumor protection study, mice (5 per group) were immunized i.m. with 10μg/mouse of SINrep5-Hsp70, SINrep5-E7, SINrep5-E7 mixed with SINrep5-Hsp70, SINrep5-E7/GFP or SINrep5 RNA, or 0.1μg/mouse, 1 μg/mouse, or 10μg/mouse of SINrep5-E7/Hsp70 RNA. 14 days after immunization, mice were injected intravenously with 1x 10⁴ cells/mouse TC-1 tumor cells in the tail vein. Three weeks after tumor challenge, mice were euthanized. The number of tumor nodules on the lung surface in each mouse was evaluated and counted by experimenters in a blinded fashion.

In Vivo Depletion of Cells using Monclonal Antibodies

The procedure was described previously (Lin, KY et al., 1996. Cancer Research 56:21-26; Wu, TC et al., 1995. J. Exp. Med 182:1415-1421). In brief, each mouse was vaccinated with 1 µg self-replicating SINrep5-E7/Hsp70 RNA i.m. and challenged with 10⁴ TC-1 tumor cells i.v. (via tail vein). Depletions were initiated one week prior to tumor challenge. IgG_{2a} antibody (PharMingen, San Diego, CA) was used as a non-specific isotype control. MAb GK1.5 (Dialynas, DP 1983. J. Immunol. 131:2445) was used for depletion of CD4+ cells; mAb 2.43 (Sarmiento, MA et al., 1980. J. Immunol. 125:2665) was used for depletion of CD8+ cells; and mAb PK136 (Koo, GC et al., J Immunol. 137:3742) was used for depletion of NK1.1+ cells. Flow cytometry analysis revealed that >95% of the cells of the appropriate lymphocyte subset were depleted while numbers of cells of other subsets were unchanged. Depletion treatment was discontinued on day 21 after tumor challenge.

Cell Surface Marker Staining and Flow Cytometric Analysis

Splenocytes from naïve or vaccinated mice were immediately stained for cell surface markers according to Ji, H *et al.*, 1999, *Human Gene Therapy* 10:2727-2740. Cells were then washed once in FACScan® buffer and stained with PE-conjugated monoclonal rat anti-mouse NK1.1 antibody or FITC-conjugated monoclonal rat anti-mouse CD3 antibody (PharMingen, San Diego, CA). NK cells are NK1.1+ and CD3-negative. Flow cytometry was used to determine the percent of splenocytes that were NK cells.

In Vitro Analysis of Cell Death

5

10

15

20

25

30

10⁷ BHK21 cells were transfected with 4 μg SINrep5, SINrep5-E7, SINrep5-Hsp70 or SINrep5-E7/Hsp70 RNA transcripts as mentioned above. The transfection efficiency was around 20-30%. Native BHK21 cells or BHK21 cells that were electroporated without SINrep5 RNA served as controls. BHK21 cells were collected and assessed every 24 hr, until hour 72. The percentages of apoptotic and necrotic BHK21 cells were determined using annexin V apoptosis detection kits (PharMingen, San Diego, CA) according to the manufacturer's protocol, followed by flow cytometry.

Generation and Culture of Dendritic Cells (DCs) from Bone Marrow

DCs were generated by culturing bone marrow cells in the presence of GM-CSF as described previously (Lu, Z et al., 2000. J Exp Med 191:541-550). Briefly, bone marrow was collected from the tibias of mice. Erythrocytes were lysed, and the remaining cells were passed through a nylon mesh to remove small pieces of bone and debris. The cells were collected and 10⁶ cells/ml were placed in 24-well plates in RPMI 1640, supplemented with 5% FCS, 2mM β-mercaptoethanol, 1% nonessential amino acids, 100 U/ml penicillin and 100 μg/ml streptomycin (Life Technologies, Rockville, MD), and 100 U/ml GM-CSF (PharMingen, San Diego, CA). Two-thirds of the medium was replaced every 2 days, and nonadherent cells were harvested on day 7. The collected cells were characterized by flow cytometry for DC markers as previously described (Wang, TL et al., 2000. J Exp Med 191:541-550).

CTL Assay Using DCs Pulsed with BHK21 Cells that had been Transfected with Various RNA Transcripts as Target Cells

CTL assays using DCs pulsed with BHK21 cells that had been transfected with various RNA transcripts as target cells were performed using a protocol similar to that described by Albert, ML *et al.*, 1998. *Nature 392:86-9* and Albert ML, *et al.*, 1998. *J Exp Med 188:1359-68*). Briefly, 10⁷ BHK21 cells were transfected with 4μg of various self-replicating SINrep5 RNA constructs via electroporation. The cells were collected 16-20 hr later. The levels of E7 protein expression in BHK21 cells transfected with SINrep5-E7, or SINrep5-E7/Hsp70 RNA transcripts were similar, as determined by ELISA. 3 x 10⁵ transfected BHK21 cells were co-incubated with 10⁵ of bone marrow-derived DCs at 37°C for 48 hr. These "prepared" DCs were then used as target cells (T) and the H-2Db-restricted E7-specific CD8+T cells were used as effector cells (E) (Wang, *et al.*, *supra*). CTL assays were performed with 10⁴ target cells and effector cells numbers yielding E/T ratios of 1, 3 and 9, incubated in a final volume of 200 μl. After 5 hrs at 37°C, 50 μl of culture supernatant were collected to assess the amount of LDH as described above. Negative controls included DCs co-incubated with untransfected BHK21 cells, transfected BHK21 cells incubated alone, untreated DCs incubated alone, and cells of the CD8+ T cell line incubated alone.

RESULTS

5

10

15

20

25

30

Construction and Characterization of Self-replicating RNA Constructs

Generation of plasmid DNA constructs and subsequent preparation of self-replicating SINrep5 RNA constructs was performed as described above. The SINrep5 vector includes DNA encoding Sindbis virus RNA replicase and the SP6 promoter ((Bredenbeek, PJ *et al.*, 1993. *J Virol* 67:6439-46)). A schematic diagram of SINrep5, SINrep5-Hsp70, SINrep5-E7, SINrep5-E7/GFP and SINrep5-E7/Hsp70 RNA transcripts using SP6 RNA polymerase is shown in Figure 1. An ELISA to test expression of E7 protein by BHK21 cells transfected with the various self-replicating RNA constructs showed that SINrep5-E7 and SINrep5-E7/Hsp70 expressed similar amounts of E7 protein.

Vaccination with Self-replicating SINrep5-E7/Hsp70 RNA Enhances an E7-Specific Cytotoxic T cell Response

CD8⁺ T lymphocytes are important effectors of anti-tumor immunity. Generation of E7-specific CD8⁺ CTLs following vaccination was assessed. Figure 2 shows results of a study wherein splenocytes from the various self-replicating SINrep5 RNA vaccines were cultured with the E7 peptide (aa 49-57) for 6 days and were examined as effector cells against TC-1 tumor cell targets. The self-replicating SINrep5-E7/Hsp70 generated a significantly greater lytic activity in the lymphocyte population compared to cells from mice vaccinated with the other SINrep5 RNA vaccines (p<0.001, one-way ANOVA). The capacity of SINrep5-E7/Hsp70 RNA to generate lytic activity was approximately 7 times that induced by self-replicating SINrep5-E7 RNA (57.2±6.8 % versus 8.0±1.3 %, E/T ratio 45, p<0.001).

The concentration of IFN-γ in the supernatant of stimulated splenocytes was assessed by ELISA. Splenocytes from mice given the various self-replicating RNA vaccines were cultured *in vitro* with E7 peptide (aa 49-57) (MHC class I epitope (Feltkamp *et al., supra*)) for 6 days. As a negative control, the stimulatory peptide was omitted. Culture supernatants were collected for measurement of IFN-γ concentration. As shown in Figure 3, peptide-stimulated splenocytes from mice vaccinated with self-replicating E7/Hsp70 RNA secreted the highest concentration of IFN-γ compared to cells from mice given the other RNA vaccines (p<0.001, one-way ANOVA). Fusion of Hsp70 to E7 significantly enhanced IFN-γ-secreting E7-specific CD8⁺ T cell activity.

Vaccination with Self-replicating SINrep5-E7/Hsp70 RNA Did Not Enhance IFN-γ-secreting E7-Specific CD4⁺ T cells or Anti-E7 Antibodies

ELISA was used to assess the E7-specific CD4⁺ T cell responses generated by the vaccines by measuring concentration of IFN- γ in the supernatant of cultured splenocytes. Splenocytes were cultured in the presence of with E7 peptide (aa 30-67) (that includes an MHC class II epitope (Tindle *et al.*, *supra*) for 6 days. The peptide was omitted in the negative control. As shown in Figure 4, there was no

significant increase in the concentration of IFN-γ from splenocytes obtained from mice vaccinated with self-replicating E7/Hsp70 RNA compared to the other RNA vaccines. Therefore, a vaccine in which Hsp70 is fused to E7 does appear to enhance IFN-γ-secreting E7-specific CD4⁺ T cell activity.

The quantity of anti- E7 antibodies in the sera of the vaccinated mice was determined y direct ELISA two weeks after vaccination. Sera of mice vaccinated with SINrep5-E7/Hsp70 did have higher titers of E7-specific antibodies compared to mice vaccinated with other RNA vaccine constructs.

<u>Vaccination with Self-Replicating SINrep5-E7/Hsp70 RNA Protects Mice Better Against the Growth of E7-Expressing TC-1 Tumors</u>

An in vivo tumor protection experiment was performed using different doses of SINrep5-E7/Hsp70 RNA administered intramuscularly in the right hind leg. Each mouse was vaccinated with 10 μg of one of the following constructs: self-replicating SINrep5, SINrep5-E7, SINrep5-Hsp70, SINrep5-E7 mixed with SINrep5-Hsp70, SINrep5-E7/GFP or SINrep5-E7/Hsp70 RNA. Self-replicating E7/Hsp70 RNA was also tested at doses of 0.1 and 1 μg/mouse. E7-expressing TC-1 cells were injected i.v. 14 days later. Such tumor challenge simulates hematogenous spread of the tumor cells, allowing evaluation of vaccine effects on metastasis to the lungs via he bloodstream. Pulmonary nodules were assessed 21 days after tumor challenge. Figure 5 shows a lower mean number of pulmonary nodules in mice vaccinated with the self-replicating E7/Hsp70 RNA vaccines (0.1 µg, 1µg, and 10 µg) compared to mice given the other RNA vaccines (p<0.001, one-way ANOVA). Representative photographs of the lung tumors (unmagnified) are shown in Figure 6. The results demonstrated that self-replicating RNA SINrep5-E7/Hsp70 vaccines protected mice from i.v. tumor challenge even at the lower dose of 0.1 µg whereas vaccination with 10 µg of SINrep5 without insert, SINrep5-E7, SINrep5-Hsp70, SINrep5-E7 mixed with SINrep5-Hsp70, or SINrep5-E7/GFP RNA showed no or little protection, developing numerous tumor nodules. These results also showed that linkage of RNA encoding E7 to RNA encoding an irrelevant protein such as GFP did not result in an antitumor effect, but rather that and that antitumor protection offered by Hsp70 required physical linkage of E7 to Hsp70 at the nucleic acid level.

CD8⁺ T Cells and NK cells Are Important for the Anti-tumor Effect

5

10

15

20

25

30

To determine the types of lymphocytes required for protection against E7-expressing tumors, *in vivo* antibody depletion experiments were done in which depletion was initiated one week before tumor challenge and terminated on day 21 after tumor challenge. As shown in Figure 7, the mean number of pulmonary nodules from mice depleted of CD8⁺ T cells or of NK1.1+ cells was significantly higher than that observed in mice treated with control IgG2a isotype antibody (which was similar to no antibody depletion). Furthermore, depletion of NK1.1+ cells resulted in a higher number of tumor lung nodules than depletion of CD8⁺ cells. In contrast, the mean number of pulmonary nodules from mice depleted of

5

10

15

20

25

30

CD4⁺ T cells resembled the isotype controls, indicating that CD4⁺ T cells were not critical for this effect. Therefore, it was concluded that (Hariharan *et al.*, *supra*). CD8⁺ T cells are essential for generation of antigen-specific anti-tumor immunity by SINrep5-E7/Hsp70 RNA vaccine and (Berglund, PM *et al.*, 1997. *AIDS Res Hum Retroviruses* 13:1487-95) NK cells play an important role as well.

To investigate whether NK cells were significantly expanded in mice vaccinated with various RNA constructs, flow cytometry analysis was performed, evaluating CD3(-), NK1.1+ cells. The proportion of NK cells was markedly increased in mice vaccinated with each of the all constructs (E7/Hsp70, E7, Hsp70, and control plasmid) relative to naïve mice, indicating that the expansion of NK cells is not a response limited to the E7/Hsp70 vaccine (Figure 8).

Self-Replicating RNA Vaccines Induce Apoptosis

Self-replicating RNA vaccines have been shown to induce apoptotic changes following uptake by cells (Ying *et al.*, *supra*). We evaluated apoptosis in BHK21 cells transfected with various RNA vaccines. Percentages of apoptotic BHK21 cells were normalized for transfection efficiency. As shown in Figure 9, apoptosis was induced in all groups of BHK21 cells transfected with various of the RNA vaccines compared to two negative control groups (untransfected or electroporated without RNA). There were no significant difference between the different RNA vaccines, there A steady decline in apoptosis occurred from 24 hr to 72 hr after transfection (with SIN5-E7/Hsp70: 70.3±3.6% at 24 hr, 49.3±4.2% at 48 hr, 18.0±3.1% at 72 hr, p<0.001, one-way ANOVA). These results confirm that cells transfected with each of these self-replicating RNA vaccines undergo apoptotic changes.

Enhanced Presentation of E7 through the MHC Class I Pathway in Dendritic Cells Pulsed With Cells Transfected with SINrep5-E7/Hsp70 RNA

Enhanced E7-specific CD8⁺ T cell responses *in vivo* may occur as a result of presentation of E7 via the MHC class I pathway resulting from uptake of apoptotic cellular material expressing various E7 constructs by host APCs. An experiment was performed to characterize the MHC class I presentation of E7 in DCs "pulsed" with BHK21 cells that had been transfected with various self-replicating RNA constructs. As noted above, the transfection efficiency and E7 expression is similar in BHK21 cells transfected with the various E7-containing self-replicating RNAs. Here, transfected BHK21 cells were incubated with bone marrow-derived DCs to allow antigen uptake and processing by the DCs. These DCs were then used as target cells for killing by E7-specific CD8⁺ CTL. As shown in Figure 10, DCs incubated with BHK21 cells that had been transfected with SINrep5-E7/Hsp70 RNA were lysed to a higher degree than DCs incubated with BHK21cells transfected with SINrep5-E7 RNA (p<0.001). These results suggested that the presence of Hsp70 in a fusion protein with E7 (that was "fed" to DCs in

the form of RNA-transfected BHK21 cells) resulted in more effective presentation of E7 by DCs (via the MHC class I pathway) to CD8+ T cells as compared to E7 protein alone.

DISCUSSION

5

10

15

20

25

30

A vaccine designated SINrep5-E7/Hsp70, administered *in vivo* significantly enhanced E7-specific CD8⁺ T cell responses compared to the SINrep5-E7 RNA vaccine lacking Hsp70. It is unlikely that this effect results from occurs improved direct MHC class I presentation of E7 to CTLs by the cells that actually express E7/Hsp70 -- a process known as "direct priming". Intramuscular delivery of RNA replicons is believed to deliver RNA into muscle cells, which are not "professional" APCs because they do not express co-stimulatory molecules that are important for efficient activation of T cells. Even if the various SINrep5 constructs are delivered to other cell types after i.m. administration, the self-replicating RNA eventually causes apoptosis of the cells it transfects (Frolov *et al.*, *supra*). The cell initially transfected are therefore unlikely to be efficient direct presenters of antigen.

Rather, the enhanced CD8⁺ T cell responses are likely a result of a process whereby apoptotic cells (and subcellular material) are endocytosed and processed by professional APCs via MHC class I pathways for more effective presentation to CD8⁺ T cells (Albert *et al.*, *supra*) Alternatively, apoptotic cells may release the chimeric E7/Hsp70 protein which is then taken up and processed by APCs via the MHC class I-restricted pathway (Srivastava, PK *et al.*, *Immunogenetics 39:93-8*; Arnold, D *et al.*, 1995. *J Exp Med 182:885-9*; Suto, R *et al.*, 1995. *Science 269:1585-8*). Hsp70 complexes are known to enter professional APCs by binding specifically to the cell surface followed by receptor-mediated endocytosis (Arnold-Schild, D *et al.*, 1999. *J Immunol* 162:3757-60). In recent investigations of receptors for heat shock proteins, CD91 was identified as the receptor for gp96, one member of the HSP family on APCs (Binder, RJ *et al.*, 2000 *Nat. Immuno.l* 2:151-155).

Another important factor for enhanced activation of antigen specific CD8⁺ T cells by chimeric Hsp70/E7 may be the biology of professional APCs, primarily DCs. Cho *et al.*, recently reported that a mycobacterial HSP fused to an antigen stimulates DCs to upregulate expression of MHC class I, class II and co-stimulatory molecules (Cho, BK 2000. *Immunity* 12:263-272). Thus, induction of DC "maturation" by Hsp70 linked to antigen may augment T cell activity, explaining the results described herein with the chimeric E7/Hsp70 RNA vaccine.

The present study demonstrated that depletion of NK cells reduced the antitumor effect induced by the E7/Hsp70 RNA replicon-based vaccine (Figure 7), indicating that these cells are a necessary component. However, NK cell activity alone cannot account for the observed antitumor effect because other of the RNA replicon-based compositions produced a similar change in NK cell number (Figure 8). The *in vivo* antibody depletion study suggested that CD8⁺ CTLs were important for this antitumor effect

(Figure 7). Thus, it was concluded that both NK cells and CD8⁺ T cells are important contributors to the antitumor effect of the E7/Hsp70 RNA vaccine. Interactions among these two cell populations might also be of interest in understanding the outcome of such vaccination.

A comparison of the study described above with previous studies of the present inventors and their colleagues reveals that different forms of nucleic acid vaccines may activate different subsets of effector cells in the vaccinated host and act via different mechanisms.

5

10

15

20

25

30

Even though NK cells appeared to play a role in the anti-tumor effects induced by E7/Hsp70 RNA replicons, NKs were not essential when the vaccine was a naked E7/Hsp70 DNA vaccine. Thus,, depletion of NK1.1⁺ cells in mice vaccinated with naked E7/Hsp70 DNA did not decrease the anti-tumor immunity (Chen *et al.*, *supra*).

In contrast, CD8⁺ T cells were important for antitumor effects induced by both E7/Hsp70 DNA and E7/Hsp70 RNA replicon-based vaccines.

The apoptotic changes promoted by the self-replicating RNA vaccine raise potential safety concerns. With RNA replicon-based vaccines, increased apoptotic changes and inflammatory responses are localized to the injection sites. However, microscopic examination of the vital organs of E7/Hsp70-vaccinated mice did not show any significant histopathological changes. Potential risks attend the presence of HPV-16 E7 protein in host cells as E7 happens to be a viral oncoprotein that disrupts cell cycle regulation by binding to tumor suppressor pRB protein in nuclei (Lukas, JH *et al.*, 1994. *J Cell Biol* 125:625-38), leading to potential incidence and accumulation of genetic aberrations and eventual malignant transformation. Use of a self-replicating RNA vector eases the concern about oncogenicity of E7 protein since the transfected cells eventually undergo apoptosis.

In summary, the results reveal that fusion of DNA encoding *Mtb* Hsp70 to DNA encoding HPV-16 E7 in an RNA replicon results in a vaccine composition that induces a marked antigen (E7)-specific CD8⁺ T cell-mediated immune response that produces a state of anti-tumor immunity against tumors expressing the antigen. Fusion of Hsp70 DNA to DNA encoding an antigen further enhances the potency of the RNA replicon-based vaccine. These findings are applicable to other tumors and types of cancer where tumor-specific antigens can be identified. Further, these findings are directly applicable to vaccines against organisms responsible for infectious diseases such as viruses, protozoa, fungi and bacteria.

EXAMPLE II

Enhancement of Suicidal DNA Vaccine Potency by Linking <u>Mycobacterium Tuberculosis Heat Shock Protein 70 to an Antigen</u>

Recently, RNA replicon vaccines have emerged as an important strategy to alleviate the concerns for potential chromosomal integration and cell transformation noted above (Ying et al., supra). These vaccines are self-replicating, self-limiting and may be administered either as RNA or as DNA which is then transcribed into RNA replicons in transfected cells in vitro or in vivo. DNA-based self-replicating RNA replicons, also known as "suicidal DNA," eventually cause lysis of transfected cells(Berglund et al., supra; Leitner et al., supra).

The present vaccine was developed using the Semliki Forest virus suicidal DNA vector, pSCA1 (DiCiommo, DP *et al.*, *J Biol Chem* 1998; 273:18060-6). Such vectors alleviate some concern about naked DNA because they eventually cause apoptosis of transfected cells. This feature is particularly desirable for vaccines that encode potentially oncogenic proteins, such as the HPV E7 protein (Wu, TC. *Curr Opin Immunol* 1994; 6:746-754). Because suicidal DNA vectors eventually kill transfected cells, any expression of DNA from these vectors is necessarily transient, conceivably compromising their potency. Therefore, the present inventors have conceived of strategies to enhance the potency of suicidal DNA vaccines.

Disclosed herein are the findings of an investigation of the impact of linking full-length Hsp70 to E7 on the potency of suicidal DNA vaccines. The suicidal DNA vaccine, pSCA1-E7/Hsp70, significantly increased expansion and activation of E7-specific CD8⁺ T cells compared to a vaccine comprising only pSCA1-E7. This enhanced response resulted in potent anti-tumor immunity against E7-expressing tumor cells.

Materials and Methods

5

10

15

20

25

30

Plasmid DNA Constructs and Preparation

pSCA1 vector (DiCiommo *et al.*, *supra*) was a gift from Dr. Bremner at the University of Toronto. This vector contains the human CMV immediate early gene (HCMV IE) promoter upstream of the Semliki Forrest virus (SFV) replicon. The subgenomic promoter is located after the SFV replicon, upstream of a multiple cloning sites for insertion of DNA of interest. For the generation of pSCA1-E7, E7 was cut from pcDNA3-E7 by BamHI/PmeI (Chen *et al.*, *supra*) and cloned into BamHI/SmaI sites of pSCA1. To construct pSCA1-Hsp70, Hsp70 was cut from pcDNA3-Hsp70 ⁸by BamHI/PmeI and cloned into BamHI/SmaI sites of pSCA1. For the generation of pSCA1-E7/Hsp70, E7/Hsp70 DNA was cut from pcDNA3-E7/Hsp70 (Chen *et al.*, *supra*) by BamHI/PmeI and cloned into BamHI/SmaI sites of

pSCA1. The accuracy of these constructs was confirmed by DNA sequencing. Plasmid DNA vectors encoding pSCA1-E7, pSCA1-Hsp70, pSCA1-E7/Hsp70 or pSCA1 with no insert were transfected into subcloning efficient DH5TM cells (Life Technologies, USA). The DNA was then amplified and purified (Chen *et al.*, *supra*). The integrity of plasmid DNA and the absence of *Escherichia coli* DNA or RNA were checked in each preparation using 1% agarose gel electrophoresis. DNA concentration was determined by optical density measured at 260 nm. The presence of the inserted E7 fragment was confirmed by restriction enzyme digestion and gel electrophoresis.

Cell Lines

5

10

15

20

25

30

The production and maintenance of TC-1 cells has been described previously (Lin et al., supra). In brief, HPV-16 E6, E7 and ras oncogene DNA were used to transform primary lung epithelial cells from C57BL/6 mice. The cells were grown in RPMI 1640, supplemented with 10% (vol/vol) fetal bovine serum, antibiotics, L-glutamine, sodium pyruvate, nonessential amino acids at 37°C with 5% CO₂. On the day of tumor challenge, TC-1 cells were harvested by trypsinization, washed twice with 1X Hanks buffered salt solution (HBSS) and finally resuspended in 1X HBSS to the designated concentration for injection.

Mice.

6- to 8-week old female C57BL/6 mice from the National Cancer Institute (Frederick, MD) were purchased and kept in the oncology animal facility of the Johns Hopkins Hospital (Baltimore, MD). All animal procedures were performed according to approved protocols and in accordance with recommendations for the proper use and care of laboratory animals.

DNA Vaccination

Gene gun particle-mediated DNA vaccination was performed using a helium-driven gene gun (Bio-rad, Hercules, CA) according to the protocol provided by the manufacturer. Briefly, DNA coated gold particles were prepared by combining 25 mg of 1.6 µm gold microcarriers (Bio-rad, Hercules, CA) and 100 µl of 0.05 M spermidine (Sigma, St, Louis, MO). Plasmid DNA (50 µg) and 1.0 M CaCl₂ (100 µl) were added sequentially to the microcarriers while mixing by vortex. This mixture was allowed to precipitate at room temperature for 10 minutes. The microcarrier/DNA suspension was then centrifuged (10,000 rpm. for 5 sec) and washed 3 times in fresh absolute ethanol before resuspending in 3 ml of polyvinylpyrrolidone (0.1 mg/ml) (Bio-rad, Hercules, CA) in absolute ethanol. The solution was then loaded into tubing and allowed to settle for 4 min. The ethanol was gently removed and the microcarrier/DNA suspension was evenly attached to the inside surface of the tubing by rotating the tube. The tube was then dried using 0.4 liters per minute of flowing nitrogen gas. The dried tubing coated with microcarrier/DNA was then cut to 0.5-inch cartridges and stored in a capped dry bottle at

WO 2002/061113 PCT/US2002/002598 ----

4°C. As a result, each cartridge contained 1 μg of plasmid DNA and 0.5 mg of gold. The DNA coated gold particles (1 μg DNA/bullet) were delivered to the shaved abdominal region of the mice using a helium-driven gene gun (Bio-rad, Hercules, CA) with a discharge pressure of 400 p.s.i.

Intracytoplasmic Cytokine Staining and Flow Cytometry Analysis

Splenocytes from groups naïve or vaccinated mice (5 mice per group) were collected and pooled one week after the last vaccination and incubated either with the E7 peptide (aa 49-57, RAHYNIVTF; SEQ ID NO:22) containing MHC class I epitope or the E7 peptide (aa 30-67) containing MHC class II peptide. The E7 peptide was added at a concentration of 2 μg/ml for 20 hours. To detect E7-specific CD8⁺ T cell precursors and E7-specific CD4⁺ T helper cell responses, CD8⁺ CTL epitopes aa 49-57 or aa 30-67 of E7 were used, respectively. Golgistop (Pharmingen, San Diego, CA) was added 6 hr before harvesting the cells from the culture. Cells were then washed once in FACScan buffer and stained with phycoerythrin (PE)-conjugated monoclonal rat anti-mouse CD8 or CD4 antibody (Pharmingen, San Diego, CA). Cells were subjected to intracellular cytokine staining using the Cytofix/Cytoperm kit according to the manufacturer's instructions (Pharmingen). FITC-conjugated anti-IFN-γ or anti-IL-4 antibodies and the immunoglobulin isotype control antibody (rat IgG1) were all purchased from Pharmingen. Analysis was done on a Becton-Dickinson FACScan flow cytometer with CELLQuest software (Becton Dickinson Immunocytometry System, Mountain View, CA).

ELISA for anti-E7 antibody (see EXAMPLE I)

In vivo Tumor Protection

These studies were generally as Example I, except that different DNA preparations and deliver was used: gene gun with 2 μ g of pSCA1-E7, pSCA1-Hsp70, pSCA1-E7/Hsp70 DNA, or pSCA1 without insert. One week later, mice were boosted with the same regimen and, on day 14, were challenged subcutaneously with 10^4 TC-1 tumor cells in the right leg.

Tumor Therapy

5

10

15

20

25

30

The tumor cells and DNA vaccines were prepared as above. Each mouse (5 per group) was challenged i.v. with 10⁴ TC-1 tumor cells on day 0. Three days later, mice were given 2 µg of a vaccine preparation (pSCA1-E7, pSCA1-Hsp70, pSCA1-E7/Hsp70 DNA, or pSCA1 without insert) via gene gun. One week later, animals were boosted using the same regimen and were sacrificed on day 21. The number of tumor nodules on the surface of the lung of each mouse were evaluated and counted by experimenters blinded to sample identity. Statistical significance was tested using one-way ANOVA.

In vivo Antibody Depletion Experiments

The procedure was done as in Example I. Here, vaccination was with 2 μg DNA via gene gun, boosted one week later, and challenged with 5 x 10^4 TC-1 tumor cells. Depletion treatment was terminated 40 days after tumor challenge.

RESULTS

5

10

20

25

30

Construction and Characterization of the pSCA1-E7/Hsp70 Suicidal DNA Vaccine

The generation of plasmid DNA constructs and subsequent preparation of DNA-based self-replicating pSCA1 vaccines was performed as described above. The pSCA1 vector includes the HCMV IE promoter and a replicon from the SFV (DiCiommo *et al*, *supra*). A schematic diagram depicting DNA-based self-replicating pSCA1-E7, pSCA1-Hsp70, and pSCA1-E7/Hsp70 constructs is shown in **Figure 11.**

An ELISA to test expression of E7 protein by BHK21 cells transfected with the various DNA-based self-replicating E7-containing pSCA1 DNA constructs showed that similar amounts of E7 protein were expressed by each of these constructs.

15 <u>Vaccination with the pSCA1-E7/Hsp70 Suicidal DNA Vaccine Enhances E7-Specific CD8⁺ T Cell-mediated Immune Responses</u>

CD8⁺ T lymphocytes are important effectors of anti-tumor immunity. As a measure of the E7-specific CD8⁺ T cell response generated by the DNA-based self-replicating pSCA1-E7/Hsp70 vaccine, intracellular cytokine staining was evaluated in splenocytes from mice vaccinated intradermally via gene gun. As shown in **Figure 12A**, vaccination of mice with pSCA1-E7/Hsp70 suicidal DNA vaccine generated the highest number of E7-specific IFN-γ⁺ CD8⁺ T cell precursors (40 per 3x10⁵ splenocytes) compared to vaccination with pSCA1-E7 DNA (12 per 3x10⁵ splenocytes) (p<0.01). pSCA1-E7/Hsp70 DNA immunization led to a nearly 4-fold increase in the number of E7-specific CD8⁺ T cell precursors. The mean number of IFN-γ-producing E7-specific CD8⁺ T cells was determined in the presence (solid columns) and absence (open columns) of E7 peptide aa 49-57(SEQ ID NO:22) and shown in **Figure 12B**. These results indicated that linkage of Hsp70 to E7 significantly enhanced the frequency of E7-specific CD8⁺ T cell precursors in vaccinated mice.

<u>Vaccination with pSCA1-E7/Hsp70 Suicidal DNA Vaccine</u> <u>Did not Induce Significant E7-Specific T Cell Responses Mediated by CD4+ Cells</u>

To examine if various pSCA1 suicidal DNA vaccines stimulated E7-specific CD4⁺T cell precursors to produce cytokines, double staining flow cytometry for surface CD4 and intracellular IFN-γ or IL-4 was performed to enumerate CD4+ cytokine secreting cells in splenocytes from vaccinated mice. Figures 13A and 13B show no significant difference in the number of E7-specific IFN-γ-secreting (or IL-

4-secreting) CD4⁺ cells among the various groups. Thus, linkage of Hsp70 to E7 in a suicidal DNA vaccine did not lead to stimulation of E7-specific CD4⁺ T cell precursors *in vivo*.

Vaccination with pSCA1-E7/Hsp70 Suicidal DNA Vaccine Did Not Induce Antti-E7 Antibodies

The quantity of anti- E7 antibodies in the sera of the vaccinated mice was determined y direct ELISA two weeks after vaccination. Sera of the mice vaccinated with pSCA1-E7/Hsp70 did not have higher titers of E7-specific antibodies compared to those mice vaccinated with pSCA1-E7 vaccine (Figure 14).

<u>Vaccination with pSCA1-E7/Hsp70 Suicidal DNA Vaccine Protects Mice Better Against the Growth of E7-Expressing TC-1 Tumors</u>

An *in vivo* tumor protection experiments was performed using DNA-based self-replicating pSCA1-E7/Hsp70 DNA vaccine and an E7-expressing tumor, TC-1, in C57BL/6 mice. As shown in **Figure 15**, 80% of mice receiving this vaccine remained tumor-free 70 days after TC-1 challenge. In contrast, all mice receiving wild-type pSCA1-E7 and pSCA1-Hsp70 constructs as well as all naïve mice developed tumors within 2 weeks. Therefore, the DNA-based self-replicating pSCA1-E7/Hsp70 vaccine significantly enhanced anti-tumor immunity.

Treatment with pSCA1-E7/Hsp70 Suicidal DNA Vaccine Eradicates Established Tumors in the Lungs

To determine the therapeutic potential of the DNA-based self-replicating pSCA1-E7/Hsp70 vaccine for lung metastases, each mouse was challenged with 10⁴ TC-1 tumor cells i.v. Results are shown in Figure B/6A as the number of pulmonary metastatic tumor nodules ±SEM. Mice treated with the pSCA1-E7/Hsp70 suicidal DNA vaccine had the lowest number of pulmonary nodules (1.8±0.5) compared to mice vaccinated with wild-type pSCA1-E7 (47.7±4.6), pSCA1-Hsp70 (58.3±1.8), pSCA1 alone (69.0±4.9) or naïve mice (129.5±4.0) (ANOVA, p<0.001). Representative photographs of the lung tumors (unmagnified) are shown in Figure 16. These results indicate that the linkage of Hsp70 to E7 in a suicidal DNA vaccine significantly enhanced the antitumor therapeutic effect.

CD8⁺ T Cells are Essential for Antitumor Effects

5

10

15

20

25

30

To determine the types of lymphocytes required for protection against E7-expressing tumors, *in vivo* antibody depletion experiments were done. As shown in Figure 17, tumors grew out within 10 days of inoculation in all naïve mice and all mice depleted of CD8⁺ T cells. In contrast, 80% of the non-depleted mice remained tumor free 40 days after tumor challenge. Tumor grew within two weeks in 40% of mice depleted of CD4+ or of NK1.1+ cells.. These results suggest that CD8⁺ T cells are essential for E7-specific anti-tumor immunity induced by the pSCA1-E7/Hsp70 suicidal DNA vaccine. CD4+ and NK1.1+ contributed to a lesser degree to the total antitumor effect.

WO 2002/061113 PCT/US2002/002598 ---

DISCUSSION

5

10

15

20

25

30

The inventors have demonstrated that linkage of Hsp70 to E7 significantly enhanced the potency of an E7-expressing DNA that was administered as a suicidal DNA vaccine based on a replicating RNA replicon. Such suicidal DNA incorporating Hsp70 fused to E7 generated potent E7-specific CD8⁺ T cell-mediated immunity. Furthermore, this chimeric pSCA1-E7/Hsp70 suicidal DNA vaccine successfully prevented lethal pulmonary metastases in an experimental metastasis model.

Stimulation of CD8⁺ T cell activity is important in antitumor immune responses. (For review, see Chen, CH *et al.*, *J Biomed Sci* 1998, 5:231-52; Pardoll, DM *Nat Med* 1998, 4:525-31). Such immunity was augmented by administration of a pSCA1-E7/Hsp70 suicidal DNA vaccine and was manifest as protection against tumor growth and as therapy of a pre-existing tumor. The importance of this T cell subset is emphasized by the fact that depletion of CD8⁺ CTLs abolished this effect. Activated CTL function as effector cells that kill tumor cells directly or through the release of cytokines that interfere with tumor cell growth or survival. Therefore, the enhanced antigen-specific antitumor CD8⁺ T cell activity is critical to the potency of the pSCA1-E7/Hsp70 vaccine.

One mechanisms by which E7-specific CD8⁺ T cell responses are stimulated *in vivo* is the direct MHC class I-restricted presentation of E7 to CD8⁺ T cells by APCs that express E7/Hsp70. This is known as "direct priming". However, because the suicidal DNA vaccine eventually results in the apoptosis of the very cells it transfects, direct priming by directly transfected APCs is unlikely to be effective.

Rather the enhanced CD8⁺ T cell responses observed in pSCA1-E7/Hsp70-vaccinated mice is likely a result of "cross priming," (Huang, AY et al., Science 1994; 264:961-5) whereby cells expressing the E7/Hsp70 vaccine DNA release the antigen as an exogenous protein that is subsequently taken up and processed by other APCs via the MHC class I-restricted pathway. Cross-priming is the most likely mechanism for the enhanced CD8+ T cell activity because the suicidal DNA composition lyses transfected cells (Frolov et al., Proc Natl Acad Sci U S A 1996; 93:11371-7) leading to release of antigen which becomes available to other APCs. Previous studies reported that Hsp70 linked to malaria peptide (NANP)40 (Barrios, C et al., Clin Exp Immunol 1994; 98:229-33), HIV-1 p24 (Suzue et al., supra), ovalbumin (Suzue, K et al., Proc Natl Acad Sci U S A 1997; 94:13146-51), or influenza nucleoprotein (Anthony et al., supra) and administered as an exogenous protein enhanced MHC class I presentation of the linked antigens. Hsp70 fusion proteins are likely taken up by professional APCs which are known to be important in presenting exogenous Hsp70-associated antigens through the MHC class I pathway (Mitchell, DA et al., Eur J Immunol 1998; 28:1923-33; Suto, R et al., Science 1995; 269:1585-8). It was suggested that Hsp70 complexes can enter professional APCs via receptor-mediated endocytosis (Arnold-Schild et al., supra). Mtb HSP protein fused to antigen stimulated DCs in vitro and in vivo to

upregulate the level of MHC class I, MHC class II and co-stimulatory molecules (Cho *et al., supra*). According to the present invention, the lytic effect of the pSCA1 vector, the enhancement of MHC class I processing, the maturation of DCs, all of which are induced by Hsp70 fused to the antigen, all contribute to augmentation of CD8⁺ T cell activity resulting from he pSCA1-E7/Hsp70 vaccine via a cross-priming pathway.

5

10

15

20

25

30

Although use of suicidal DNA vectors and their induction of apoptosis alleviate some concerns about DNA vaccine integration into the host genome, the potency of such vaccines may be limited because of that same apoptotic outcome. The present inventors and their colleagues previously demonstrated that linkage of Mtb Hsp70 to E7 antigen enhanced the potency of a conventional naked DNA vaccine. (Chen et al., 2000, supra). Here, the inventors have successfully extended the chimeric Hsp70 strategy to a suicidal DNA vector. However, the DNA-based RNA replicon vector approach appeared to be less efficacious than the conventional DNA vector approach in generating E7-specific CD8+ T cells. For example, approximately 130 E7-specific CD8+ T cells were generated per 106 splenocytes when vaccinating mice with the pSCA1-E7/Hsp70 composition. Meanwhile, the previous study of chimeric E7/Hsp70 in a conventional mammalian expression plasmid (pcDNA3) generated about 430 E7-specific CD8+ T cells per 10⁶ splenocytes in vaccinated mice. (Chen et al., supra). Although DNA-based replicons may be expected produce more E7 than do conventional DNA plasmids because of their self-replicating nature, Leitner et al.(supra) showed that replicon-based DNA plasmids did not produce more antigen. Furthermore, the apoptotic outcome of transfection with a DNA-based replicon may limit direct presentation of antigen by transfected APCs to CD8+ T cells, also contributing to lower vaccine potency.

This induction of apoptosis also raises concerns about potential tissue damage of the administration of such a vaccine. However, here, microscopic examination of the vital organs of E7/Hsp70-vaccinated mice did not reveal any significant histopathological changes.

Another risk is the presence of E7 protein in host cells (since E7 is a viral oncoprotein that disrupts cell cycle regulation by binding to tumor suppressor pRB protein in nuclei) leading to potential incidence and accumulation of genetic aberrations and eventual malignant transformation. Use of the suicidal DNA vector eases the concern about oncogenicity of E7 protein since the transfected cells eventually undergo apoptosis. Oncogenicity of E7 can be further reduced by introducing mutations into E7 DNA that eliminate binding of the E7 protein to pRB (Heck, DV *et al.*, *Proc Natl Acad Sci USA* 1992; 89:4442-6) while the cells still maintain most of their antigenicity.

In summary, the results revealed that fusion of DNA encoding *Mtb* Hsp70 to DNA encoding HPV-16 E7 in a suicidal DNA vaccine resulted in a vaccine that induced marked antigen (E7)-specific

CD8⁺ T cell-responses manifest as a state of anti-tumor immunity against tumors expressing the antigen. Since a majority of cervical cancers express HPV E7, the present is useful for controlling of HPV-associated tumors. These findings are applicable to other tumors and types of cancer where tumor-specific antigens can be identified. Further, these findings are directly applicable to vaccines against organisms responsible for infectious diseases such as viruses, protozoa, fungi and bacteria. Because the DNA-based RNA replicon vaccines are stable and easy to prepare in mass quantities, such vaccines are particularly desirable in developing countries which have high prevalence of HPV-associated cervical malignancy while lacking facilities for storing biological agents

EXAMPLE III

10

15

20

5

Enhancement of DNA Vaccine Potency by Linking DNA Encoding Antigen to <u>DNA Encoding the Extracellular Domain of Flt3-Ligand</u>

Prior to the present invention, To date, FL had not been used as part of a chimeric DNA vaccine. The present inventors and their colleagues investigated whether linking a full-length E7 DNA to DNA encoding the ECD of FL would enhance the potency of a DNA vaccine. They chose HPV-16 E7 as a model antigen for vaccine development (see above).

Studies were done to compare DNA vaccines containing wild-type E7 with DNA vaccines containing full-length E7 fused to FL for their stimulation of immune responses and their ability to protect animals against growth or metastasis of E7-expressing tumors (Lin *et al.*, *supra*). The results presented below indicate that linking DNA encoding the ECD of FL to E7 dramatically increased the expansion and activation of E7-specific CD8⁺ T cells, completely bypassing the CD4 arm. This strategy led not only to enhanced E7-specific CD8⁺ T cell responses, but also to potent anti-tumor immunity against established metastatic tumors expressing E7.

MATERIALS AND METHODS

Plasmid DNA Constructs and Preparation

25

pcDNA3 was used as an expression vector (instead of a previously described pCMV-Neo-Bam vector (Chen *et al.*, *supra*). The pcDNA3 expression vector was selected since it was used effectively to investigate the correlation between the E7-specifc T cell responses with the antitumor effects produced various DNA vaccines. The production of HPV-16 E7-expressing plasmid, pcDNA3-E7 has been described previously (Chen *et al.*, *supra*).

30

For making the plasmid encoding the ECD of mouse FL, pcDNA3-FL, the DNA fragment encoding the signal peptide and ECD of mouse FL was first amplified with PCR using conditions described previously (Chen, CH et al., Cancer Research. 60:1035-1042., 2000) with a mouse FL DNA

template, sfHAV-EO410 (ATCC, Manassas, VA) and a set of primers: 5'-gggtctagaatgacagtgctggcgccagc-3' [SEQ ID NO:28] and 5'-gggggatccctgcctgggccgaggctctgg-3' [SEQ ID NO:29]. The amplified product was digested with XbaI and BamHI and further cloned into the XbaI and BamHI cloning sites of pcDNA3 vector (Invitrogen, Carlsbad, CA). For making pcDNA3-FL-E7, the E7 DNA fragment was isolated from pcDNA3-E7 by digestion with BamHI and HindIII and gelrecovered. The isolated fragment was cloned into the BamHI and HindIII cloning sites of pcDNA3-FL. For making pcDNA3-GFP, a DNA fragment encoding the green fluorescent protein (GFP) was first amplified in PCR using pEGFPN1 DNA (Clontech, Palo Alto, CA) and a set of primers: 5'atcggatccatggtgagcaagggcgaggag-3' [SEQ ID NO:30] and 5'gggaagctttacttgtacagctcgtccatg-3' [SEQ ID NO:31]. The amplified product was digested with BamHI and HindIII and cloned into the BamHI and HindIII cloning sites of pcDNA3 (Invitrogen). To make pDNA3-E7-GFP, the DNA fragment encoding E7 first amplified with PCR using pcDNA3-E7 as template and a set of primers: 5'ggggaattcatgcatggagatacaccta-3' [SEQ ID NO:32]and 5'-ggtggatccttgagaacagatgg-3' [SEQ ID NO:33]. The amplified product was digested with EcoRI and BamHI and cloned into the EcoRI and BamHI cloning sites of pcDNA3-GFP. For making pcDNA3-FL-E7-GFP, the DNA encoding the signal peptide and ECD of FL was amplified with PCR using pcDNA3-FL as a DNA template and a set of primers: 5'-gggtctagaatgacagtgctggcgccagc-3' [SEQ ID NO:34] and 5'-cgagaattcctgcctgggccgaggctctg-3' [SEQ ID NO:35]. The amplified product was digested with XbaI and EcoRI and cloned into the XbaI and EcoRI cloning sites of pcDNA3-E7-GFP vector. The accuracy of these constructs was confirmed by DNA sequencing. pcDNA3 DNA with FL, E7, FL-E7, E7-GFP or FL-E7-GFP inserts and the "empty" plasmid, pcDNA3 were transfected into subcloning-efficient DH5 α^{TM} cells (Life Technologies, USA). The DNA was then amplified and purified (Chen et al., supra). The integrity of plasmid DNA and the absence of E. coli DNA or RNA was checked in each preparation using 1% agarose gel electrophoresis. DNA concentration was determined by the optical density measured at 260 nm. The presence of inserted E7 fragment was confirmed by restriction enzyme digestion and gel electrophoresis.

The schematic domain structure of the Flt3-ligand protein and FL-E7 fusion peptide are shown in Figure 18A. The sequence of the FL-E7 construct, comprising the ECD of FL is shown in Figure 18B (SEQ ID NO:11 and 12). Residues 1-189 are FL-derived, residues 191-287 are E7-derived. The remaining residues (e.g.,, 288-302) are from the vector DNA.

Cell Lines

5

10

15

20

25

30

For description of TC-1 cells and their use, see above (and Lin et al., supra). A human embryonic kidney cell line,, 293, expressing MHC genes H-2D^b and H-2K^b (293 D^bK^b) (Bloom, MB et al., J Exp Med. 185: 453-9, 1997) was a gift from Dr. JC Yang (National Cancer Institute, NIH,

Bethesda). These cells were grown in DMEM containing 10% heat-inactivated fetal calf serum, 0.3% glutamine, 0.01 M HEPES, 100 U/ml penicillin, 100 μ g/ml streptomycin and 400 μ g/ml G418.

The production and maintenance of TC-1 cells has been described previously (20). On the day of tumor challenge, TC-1 cells were harvested by trypsinization, washed twice with 1X Hanks buffered salt solution (HBSS) and resuspended in 1X HBSS to the designated concentration for injection. A human embryonic kidney cell line,, 293, expressing the MHC genes H-2D^b and H-2K^b (293 D^bK^b) (24) was a gift from Dr. JC Yang (National Cancer Institute, NIH, Bethesda, MD). These cells were grown in DMEM containing 10% heat-inactivated fetal calf serum, 0.3% glutamine, 0.01 M HEPES, 100 U/ml penicillin, 100 μg/ml streptomycin and 400 μg/ml G418.

Confocal Fluorescence Microscopy

293 D^bK^b cells transfected with pcDNA E7-GFP and pcDNA FL-E7-GFP DNA were cultured for 24-36 hr, then cytocentrifuged onto glass slides. Cells were fixed with 4% paraformaldehyde in 1x PBS for 30 min at room temperature, permeabilized with 1x PBS containing 0.05% saponin and 1% BSA, and then incubated with mouse anti-calnexin mAb (Stressgen Biotechnologies, Victoria, Canada) at a concentration of 1 μg/ml for 30 min at room temperature. Unbound antibodies were removed by washing three times in 1X PBS. The cells were then incubated with Cy3-conjugated F(ab²)₂ fragment of goat anti-mouse IgG (Jackson ImmunoReseach Laboratories) at a concentration of 10μg/ml for 30 min. The slides were washed with 1x PBS containing and 1% BSA. The glass slides were mounted with antifading medium, Mowiol 4-88 (Calbiochem Inc. La Jolla, CA) and covered with coverslips. Slides in which primary antibody was omitted were used as negative controls. Samples were examined on a confocal laser scanning microscope.

Mice

5

10

15

20

25

30

6- to 8-week-old female C57BL/6 mice from the National Cancer Institute (Frederick, MD) were purchased and kept in the oncology animal facility of the Johns Hopkins Hospital (Baltimore, MD). All animal procedures were performed according to approved protocols and in accordance with recommendations for the proper use and care of laboratory animals.

DNA Vaccination

Preparation of DNA-coated gold particles and gene gun particle-mediated DNA vaccination was performed using a helium-driven gene gun (Bio-rad, Hercules, CA) (see Chen et al., supra).

Intracytoplasmic Cytokine Staining and Flow Cytometry Analysis

Pooled splenocytes from groups of naïve or vaccinated mice (5 mice per group) were incubated either with

(a) the E7 peptide (aa 49-57) including an MHC class I epitope (Fetlkamp *et al.*, *supra*) for detecting E7-specific CD8⁺ T cell precursors,, or

(b) the E7 peptide (aa 30-67) containing the MHC class II peptide (Tindle *et al.*, *supra*) for detecting E7-specific CD4⁺T helper cell precursors.

E7 peptide was added at 2µg/ml for 20 hours. Golgistop (Pharmingen, San Diego, CA) was added 6 hours before harvesting cells from the culture. Cells were washed once in FACScan buffer and stained with phycoerythrin (PE)-conjugated monoclonal rat anti-mouse CD8 or CD4 antibody (PharMingen, San Diego, CA). Cells were subjected to intracellular cytokine staining using the Cytofix/Cytoperm kit according to the manufacturer's instructions (PharMingen). FITC-conjugated anti-IFN-γ antibody and the immunoglobulin isotype control antibody (rat IgG1) were all purchased from PharMingen. Analysis was done on a Becton Dickinson FACScan with CELLQuest software (Becton Dickinson Immunocytometry System, Mountain View, CA).

ELISA for anti-E7 antibody (see EXAMPLE I)

In vivo Tumor Protection

5

10

25

30

These studies were generally as Example I and II: gene gun with 2 μg of FL DNA, E7 DNA, FL-E7 DNA, FL mixed with E7 (FL+E7), or unvaccinated. One week later, mice were boosted with the same regimen and challenged subcutaneously on day 14 with 10⁴ TC-1 tumor cells in the right leg. Statistical analysis was performed using SAS version 6.12 (SAS Institute Inc., Cary, NC, USA). Percent of tumor free mice was analyzed using the Kaplan-Meier analysis. Statistical significance was tested using log-rank statistics.

Tumor Therapy

The tumor cells and DNA vaccines were prepared as above. See Example II for description of tumor challenge. Three days later, mice were given 2 µg of a vaccine preparation ((FL DNA, E7 DNA, FL-E7 DNA via gene gun or were left unvaccinated)). One week later, animals were boosted using the same regimen and were sacrificed on day 25. Lung tumor nodules were evaluated as in Example II. Statistical significance was tested using one-way ANOVA.

In vivo Antibody Depletion Experiments

The procedure was done as in Example Π

Generation of DCs

DCs were generated by culturing bone marrow cells in the presence of GM-CSF as described previously (Fernandez, NC *et al.*, *Nat Med. 5*: 405-11, 1999). Briefly, bone marrow was collected from mouse femurs and tibias. Erythrocytes were lysed, and the remaining cells were passed through a

WO 2002/061113 PCT/US2002/002598

nylon mesh to remove small pieces of bone and debris. The cells were collected and 10⁶ cells /ml were placed in 24-well plates in RPMI 1640 medium supplemented with 5% FCS, 2mM β-mercaptoethanol, 1% nonessential amino acids, 100 U/ml penicillin and 100 µg/ml streptomycin (Life Technologies, Rockville, MD) and 100 U/ml GM-CSF (PharMingen, San Diego, CA). Two-thirds of the medium was replaced every 2 days. Non-adherent cells were harvested on day 7 and characterized by flow cytometry for DC markers as previously described (Wang, TL *et al.*, *Gene Therapy.* 7: 726-733., 2000).

Generation of E7-Specific CD8⁺ T Cell Lines

5

10

15

20

25

30

See Wang *et al.*, *supra*. Briefly, female C57BL/6 (H-2^b) mice were immunized intraperitoneally with vaccinia-Sig/E7/LAMP-1. Splenocytes were harvested on day 8. The cells were incubated with IL-2 (20 U/ml) and E7 peptide (aa 49-57) (1 μM) for 6 days. Cells of the E7-specific CTL cell line were propogated in 24-well plates by mixing, in a final volume of 2 ml, (a) 10⁶ splenocytes that included the E7-specific CTLs (b) 3 x 10⁶ irradiated splenocytes (c) IL-2 (20 U/ml) and (d) E7 peptide (aa 49-57) at 1 μM. This procedure was repeated every 6 days. The target-cell specificity of the E7 CTL line was characterized in a CTL assay. Flow cytometry was used demonstrate CD8 expression.

CTL Assay using Transfected 293 DbKb Cells as Target Cells

CTL assays were performed in 96-well round-bottom plates as described by Corr *et al.*, (Corr, M *et al.*, *J Immunol. 163:* 4721-7, 1999) and in Examples I and II. Transfected 293 D^bK^b cells were used as target cells while E7-specific CD8⁺ T cells served as effectors. 5×10^6 293 D^bK^b cells were transfected with 20 µg of pcDNA3 (empty plasmid), E7, FL, or FL-E7 DNA vaccines with lipofectamine 2000 (Life Technologies, Rockville, MD) according to manufacturer's instructions. Cells were collected 40-44 hr after transfection. Levels of E7 protein expression, determined by ELISA, were similar in E7 and FL-E7-transfected cells. Cells were incubated and lysis measured as above.

CTL Assay Using DCs Pulsed with Lysates of Transfected 293 DbKb Cells as Target Cells

CTL assays using as targets DCs pulsed with cell lysates were generally in accordance with Uger, RA *et al.*, *J Immunol.* 160: 1598-605, 1998. Briefly, 293 D^bK^b cells were transfected as above and subjected to three freeze-thaw cycles. Protein concentrations were determined using the BioRad protein assay (Bio-Rad, Hercules, CA) using the vendor's protocol. The quantity of E7 protein was determined by ELISA. Cell lysates from E7 or FL-E7 DNA transfected 293 D^bK^b cells were standardized for E7 protein concentration.

DCs were prepared for use as target cells by pulsing 10^6 DCs with different concentrations of cell lysates (50, 10, 2 and 0.4 μ g/ml) in a final volume of 2 ml for 16-20 hrs. E7-specific CD8⁺ T cells were effector cells. CTL assays were performed at a fixed E/T ratio of 9 using $9x10^4$ T cells and 10^4

prepared DC targets in a final volume of 200 μ l. Results were determined by measurements of LDH as above.

RESULTS

5

10

15

20

25

30

Linkage of the Extracellular Domain of FL to E7 Protein Re-routes E7 into the Endoplasmic Reticulum

To determine the expression and localization of wild-type E7 and E7 fusion proteins, DNA encoding the green fluorescent protein (GFP) was linked to the 3' end of E7 DNA and chimeric FL-E7 DNA as a tag. Transfection and subsequent examination by fluorescence microscopy was used to determine the expression and localization of wild-type and modified E7 protein. Levels of protein expression was quite similar between cells transfected with E7-GFP or FL-E7-GFP. As expected, cells transfected with the E7-GFP showed cytoplasmic/ nuclear distribution. In comparison, cells transfected with the chimeric FL-E7-GFP displayed a network pattern consistent with endoplasmic reticulum (ER) localization. To test whether the FL-E7-GFP chimera had in fact been distributed to the ER, cells were further stained with an antibody to calnexin and examined by immunofluorescence. Calnexin is a well-characterized marker for the ER. Colocalization of E7-GFP and calnexin was only observed in cells transfected with FL-E7-GFP but not E7-GFP, indicating that at least some of the FL-E7 fusion product but not E7-GFP was targeted to ER compartments. These results indicated that the addition of the ECD of FL to E7 facilitates the entry into ER compartments.

Vaccination with FL-E7 Fusion DNA Significantly Enhanced E7-Specific CD8⁺ T Cell Responses

CD8⁺ T lymphocytes are important effectors of anti-tumor immunity. As a measure of the E7-specific CD8⁺ T cell response generated by the FL-E7 DNA vaccine, intracellular IFNγ cytokine staining was evaluated in splenocytes from vaccinated mice. This is a sensitive functional assay for measuring IFN-γ production at the single-cell level (Murali-Kristna, K *et al.*, *Immunity*. 8: 177-87).

As shown in Figure 19A and B, vaccination of mice with FL-E7 DNA generated the highest number of E7-specific IFN-γ⁺ CD8⁺ T cell precursors (940 per 3x10⁵ splenocytes) compared to vaccination with E7 DNA (12 per 3x10⁵ splenocytes) (p<0.01). Thus, FL-E7 DNA immunization led to a nearly 8-fold increase in the number of E7-specific CD8⁺ T cell precursors. These results also indicated that fusion of E7 to FL was required for this enhancement because vaccination with a mixture of FL-DNA and E7-DNA did not generate such enhanced CD8⁺ T cell activity.

<u>Vaccination with FL-E7 Fusion DNA Did not Induce Significant E7-Specific CD4+ T Cell Responses or Anti-E7 Antibodies</u>

E7-specific CD4 $^+$ T precursor cells secreting the cytokine IFN- γ or IL-4) were assessed by double staining for surface CD4 and intracellular IFN- γ or IL-4 using flow cytometry. Splenocytes were from immunized mice. Figure 20A shows that mice vaccinated with FL-E7 DNA developed no significant increase in

CD4⁺ IFN-γ⁺ double positive cells compared to mice vaccinated with FL DNA, wild-type E7 DNA, plasmid DNA or unvaccinated naïve mice. Positive control splenocytes were from Sig/E7/LAMP-1 DNA vaccinated mice (Ji *et al.*, *supra*). Similarly, no significant increases in CD4⁺ IL-4⁺ double-positive cells were observed (FL-E7 vaccinated compared with FL DNA, wild-type E7 DNA, plasmid DNA or unvaccinated naïve mice (**Figure 20B**). IL-4-secreting activated mouse splenocytes (MiCK-2, PharMingen) were positive controls to assure successful intracellular IL-4 staining.

To determine the levels of E7-specific antibodies in the sera of the vaccinated mice, ELISA was performed 2 weeks after the last vaccination. No significant E7-specific antibody responses were detected in mice. Sera of the mice vaccinated with chimeric FL-E7 DNA did not have higher titers of E7-specific antibodies compared to mice vaccinated with FL, empty plasmids, or unvaccinated naïve mice.

<u>Vaccination with Chimeric FL-E7 DNA Vaccine Protects Mice Better Against the Growth of E7-Expressing TC-1 Tumors</u>

5

10

15

20

25

30

Results of an *in vivo* tumor protection study is shown in Figure 21. 100% of mice vaccinated with FL-E7 DNA remained tumor-free 70 days after challenge (log-rank, p<0.001). In contrast, only 20% of mice receiving wild-type E7 remained tumor free after day 32 and all unvaccinated mice, or mice given FL DNA developed tumors within 20 days of challenge. Fusion of E7 to FL was required for generating protective immunity, since only 20% of mice vaccinated with a mixture E7 DNA and FL DNA) remained tumor free after 32 days. Therefore, FL-E7 fusion DNA significantly enhanced anti-tumor immunity.

Treatment with FL-E7 Fusion DNA Eradicates Established E7-expressing Tumors in the Lungs

To determine the therapeutic potential of a chimeric FL-E7 DNA construct in treating TC-1 lung metastases, each mouse was challenged with tumor cells i.v. Results are shown in **Figure 22A** as the mean number of pulmonary metastatic tumor nodules ±SEM. Mice vaccinated with FL-E7 DNA had the lowest mean number of pulmonary nodules (5.8±3.6) compared to mice vaccinated with wild-type E7 DNA (67.5±3.5), FL DNA mixed with E7 DNA (68±15), FL DNA (65.0±5.0) or unvaccinated mice (50.7±7.3) (one-way ANOVA, p<0.001). **Figure 22B** shows lung weights (mean ±SEM in grams). Mice vaccinated with FL-E7 DNA had the lowest lung weight (0.158±0.025) compared to mice vaccinated with wild-type E7 DNA (0.462±0.02), FL DNA plus E7 DNA (0.469±0.08), or FL DNA (0.6±0.03), or unvaccinated mice (0.645±0.08) (one-way ANOVA, p<0.001). Representative photographs of the lung tumors are shown in **Figure 23**.

CD8+ T Cells But Not CD4+ T cells are Essential for Anti-tumor Effects

To determine the types of lymphocytes required for protection against E7-expressing tumors, *in vivo* antibody depletion experiments (Lin *et al.*, *supra*; Wu *et al.*, 1995, *supra*) were done. Depletion of lymphocyte subsets was assessed on the day of tumor injection, and weekly thereafter by flow cytometric analysis of spleen cells. More than 99% of cells of the appropriate subset were depleted in all cases without effect on the other subsets. As shown in **Figure 24**, 100% of unvaccinated mice and mice depleted of CD8⁺ T cells grew tumors within 14 days after challenge. In contrast, all non-depleted mice and all mice depleted of CD4⁺ T cells remained tumor-free 60 days after challenge. 40% of mice in which NK1.1+ cells were depleted grew tumors 6 weeks after challenge. Even though there appeared to have been an effect of NK cell depletion, the difference from controls is result was not statistically significant (log-rank, p=.13). It was concluded that CD8⁺ T cells are essential for E7-specific antitumor immunity induced by the FL-E7 DNA vaccine.

5

10

15

20

25

30

Enhanced Presentation of E7 via the MHC Class I Pathway in Cells Transfected with FL-E7 DNA

As noted earlier, mice vaccinated with FL-E7 generated the highest number of E7-specific CD8⁺ T cell precursors. To understand the mechanism underlying this effect, the inventors tested whether enhanced MHC class I presentation of E7 occurred in cells expressing FL-E7 (in this case, human embryonic kidney 293 cells D^bK^b transfected with FL-E7). CTL assays employing D^b-restricted E7-specific CD8⁺ effector T cells were used to determine if target 293 D^bK^b cells transfected with FL-E7 were killed more efficiently than 293 D^bK^b cells transfected with wild-type E7. 293 D^bK^b cells were selected because of their stable and high transfection efficiency (Bloom *et al.*, *supra*). In addition, levels of E7 expression in 293 D^bK^b cells transfected with FL-E7 DNA or E7 DNA were similar.

In the CTL assays, targets were 293 D^bK^b cells that had been transfected with either empty plasmid, FL DNA, E7 DNA, or FL-E7 DNA, or that were not transfected. Effector cells were added to achieve various E/T ratios (1, 3, 9, 27). As shown in **Figure 25**, 293 D^bK^b cells transfected with FL-E7 DNA were lysed at a higher level than targets cells transfected with wild-type E7 DNA. Transfection with FL-E7 DNA thus resulted in more efficient presentation of E7 antigen via the MHC class I pathway.

Enhanced Presentation of E7 Through the MHC Class I Pathway in DCs Pulsed With Chimeric FL-E7 Protein

Enhanced E7-specific CD8⁺ T cell responses *in vivo* may occur as a result of presentation of E7 via the MHC class I pathway resulting from uptake of lysed cellular material expressing various E7 constructs by host APCs ("cross-priming").

A cross priming experiment was performed to characterize the MHC class I presentation of E7 of DCs pulsed with cell lysates of 293 D^bK^b cells transfected with empty plasmid, FL, E7, or FL-E7 DNA.

Lysates of transfected 293 D^bK^b cells were obtained by repeated cycles of freeze-thaw. 10⁶ bone marrow-derived DCs were pulsed with serial dilutions (50, 10, 2 or 0.4 μg) of lysate derived from 293 D^bK^b cells transfected with different constructs. These DCs were used as target cells for lysis by D^b-restricted E7-specific CD8⁺ CTL. CTL assays were performed at a fixed E/T ratio of 9. As shown in **Figure 26**, DCs pulsed with lysates from 293 D^bK^b cells transfected with FL-E7 DNA were lysed at a higher percentage compared to DCs pulsed with lysates from 293 D^bK^b cells transfected with the other DNA constructs and non-transfected DCs. It was concluded that DCs pulsed with FL-E7 fusion protein presented E7 antigen through the MHC class I pathway more efficiently than DCs pulsed with wild-type E7 protein. Thus, the fusion of FL to E7 enhanced E7-specific CD8⁺ T cell immune responses via cross priming effects.

DISCUSSION

5

10

15

20

25

30

The foregoing study demonstrated that linking the ECD of FL to E7 significantly enhanced the potency of E7-expressing DNA vaccines to induce potent CD8⁺ T cell-immune responses that were protective and therapeutic against E7-expressing tumors, such that mice were protected from both primary tumor growth and development of lethal pulmonary metastases.

The incorporation of FL into the vaccine preferentially enhanced CD8⁺ T cell responses vs. E7-specific CD4⁺ T cell responses that were not significantly changed. Linking FL to E7 in the vaccine directly enhanced MHC class I presentation of E7 (compared to a wild-type E7 vaccine) in transfected cells *in vitro*. Since biolistic DNA delivery introduces DNA directly into dermal professional APCs, FL-E7 DNA-transfected APCs may act by directly presenting E7 via the MHC class I pathway to CD8⁺ T cells *in vivo*.

Although it is not clear how this linkage directly enhances MHC class I presentation, one mechanism involves a chaperone effect of FL. When expressed in cells, FL may be distributed to the ER (Chklovoskaia, E et al., Blood. 93: 2595-604, 1999). Fluorescence microscopic examination revealed that in cells transfected with FL-E7-GFP, most of the FL-E7-GFP fusion protein co-localized with calnexin in the ER, suggesting that this linkage facilitates entry of E7 into the ER. Several studies demonstrated that ER targeting can enhance antigen-specific MHC class I-restricted CTL activity (Shiver, JW et al., J Pharm Sci 85: 1317-24, 1996; Hsu, SC et al., Int Immunol. 10: 1441-7, 1998).

Another mechanism that may contribute to the present observations is "cross-priming," whereby lysis of cells expressing FL-E7 releases protein that is taken up and processed by other APCs via the

MHC class I-restricted pathway. The present results show that DCs pulsed with FL-E7 fusion protein are capable of presenting E7 antigen through the MHC class I pathway in a more efficient manner than DCs pulsed with wild-type E7 protein. (Figure 26). However, the "cross-priming" of chimeric FL-E7 probably does not play a major role in gene gun-mediated FL-E7 DNA vaccination. Direct priming, but not cross-priming, of CD8⁺ T cells by DNA-transfected DCs is the key event in gene gun-mediated DNA immunization (Porgador, A *et al.*, *J Exp Med. 188:* 1075-82, 1998; Akbari, O *et al.*, *J Exp Med. 189:* 169-78, 1999). However, the possibility of cross-priming cannot be ruled out, because FL-E7 might be released from other cell types, such as keratinocytes (which are also transfected by gene gun vaccination), and then enter DCs via a cross-priming mechanism.

10

15

5

No significant increases in the numbers of DCs or NK cells were detected in the spleens of mice vaccinated with FL-E7 DNA vaccines even though FL is known to expand these cell populations (Peron et al., supra; Williams, NS et al., J Exp Med. 186: 1609-14, 1997, Shaw, SG et al., J Immunol. 161: 2817-24, 1998). This may be related to small amounts of FL-E7 present in the circulation after DNA vaccination. FL-E7 protein could not be detected in sera of mice vaccinated with FL-E7 DNA, which also raises a question about the source of FL-E7 protein for cross-priming. FL-E7 protein from the lysis of transfected keratinocytes may be taken up by Langerhans' cells and further processed in the draining lymph nodes without entering the circulation in detectable quantities.

The E7 DNA vaccine described above had weaker antitumor effects compared to an E7 DNA

20

vaccine using a different mammalian expression vector (Chen et al., 1999, supra Ji et al., supra). In these previous studies, a pCMV-Neo-Bam expression vector that includes the HCMV promoter was used E7 DNA vaccine using that vector generated a very impressive antitumor effect in the relative absence of E7-specific CD8⁺ T cell responses. In the current study, a relatively weak E7-specific CD8⁺ T cell response and a relatively weak anti-tumor response were observed in mice vaccinated with E7 DNA in the form of the pcDNA3 vector. The discrepancy in the anti-tumor response evoked by the same DNA in a different vector may be explained simply by different levels of expression. Furthermore, bacterial DNA can contain immunostimulatory elements such as CpG islands (Sato, Y et al., Science. 273: 352-4, 1996; Klinman, DM et al., J Immunol. 158: 3635-9, 1997), which can cause simultaneous maturation and activation of DCs (Sparwasser, T et al., Eur J Immunol. 28: 2045-54, 1998) thereby acting as an adjuvant for tumor immunization (Weiner, GJ et al., Proc Natl Acad Sci USA. 94: 10833-7, 1997).

30

25

The FL-E7 DNA vaccine may raise certain safety concerns because DNA could integrate into the host genome, though it is estimated that the frequency of integration is much lower than that of spontaneous mutation and should not pose any real risk (Nichols, WW et al., Annals of NY Academy of Science. 772: 30-39., 1995). The risks of HPV-16 E7 protein was discussed above. There is a concern about possible autoimmune effects resulting from excessive expansion of DCs in vivo. However, here,

no significant increase in the numbers of DCs was observed in the spleen and lymph nodes of mice vaccinated with FL or FL-E7 DNA vaccines. Examination of vital organs in all of the FL-E7-vaccinated mice did not reveal any significant gross or microscopic pathology. Therefore, FL-E7 can be used as a potent DNA vaccine without observable detrimental side effects.

5

In summary, fusion of DNA encoding the ECD of the FL protein to E7 DNA generated potent E7-specific CD8⁺ T cell responses and anti-tumor effects against E7-expressing tumors. Linkage of DNA encoding FL to DNA encoding an antigen enhances the potency of DNA vaccines and are applicable to other tumors and types of cancer where tumor-specific antigens can be identified. Further, these findings are directly applicable to vaccines against organisms responsible for infectious diseases such as viruses, protozoa, fungi and bacteria.

10

The references cited above are all incorporated by reference herein, whether specifically incorporated or not. All publications, patents, patent applications, GenBank sequences and ATCC deposits, cited herein are hereby expressly incorporated by reference for all purposes.

5

Citation of the documents herein is not intended as an admission that any of them is pertinent prior art. All statements as to the date or representation as to the contents of these documents is based on the information available to the applicant and does not constitute any admission as to the correctness of the dates or contents of these documents.

WHAT IS CLAIMED IS:

5

10

15

20

25

30

1. A nucleic acid molecule encoding a fusion polypeptide useful as a vaccine composition, which molecule comprises:

- (a) a first nucleic acid sequence encoding a first polypeptide or peptide that (i) promotes processing via the MHC class I pathway (MHC-I-PP) and/or (ii) promotes development or activity of an antigen presenting cell (APC);
- (b) optionally, fused in frame with the first nucleic acid sequence, a linker nucleic acid sequence encoding a linker peptide; and
- (c) a second nucleic acid sequence that is linked in frame to said first nucleic acid sequence or to said linker nucleic acid sequence and that encodes an antigenic polypeptide or peptide.
- 2. The nucleic acid molecule of claim 1, wherein the antigenic peptide comprises an epitope that binds to a MHC class I protein.
- 3. The nucleic acid molecule of claim 2, wherein said epitope is between about 8 amino acid residues and about 11 amino acid residues in length.
- 4. The nucleic acid molecule of any of claims 1-3 wherein the first polypeptide or peptide is Hsp70, an active C-terminal domain thereof, or a functional derivative of Hsp70 or of said C-terminal domain.
- 5. The nucleic acid molecule of any of claims 1-3 wherein the first polypeptide or peptide is the Flt3 ligand (FL), the extacellular domain thereof, or or a functional derivative of FL or of said extracellular domain.
- 6. The nucleic acid molecule of claim 4, wherein the first polypeptide is SEQ ID NO:4 or the full length sequence of Hsp70 a set forth in GENBANK Z95324 AL123456 and encoded by nucleotides 10633-12510 of the *Mycobacterium tuberculosis* genome.
- 7. The nucleic acid molecule of claim 4 wherein the first polypeptide consists essentially of said C-terminal domain having a sequence from about residue 517 to about the C-terminal amino acid residue of:
 - (i) SEQ ID NO:4, or
- (ii) the full length native sequence of Hsp70 a set forth in GENBANK Z95324 AL123456 and encoded by nucleotides 10633-12510 of the *Mycobacterium tuberculosis* genome.
 - 8. The nucleic acid molecule of claim 5, wherein the first polypeptide is FL.

9. The nucleic acid molecule of claim 5, wherein the first polypeptide polypeptide consists essentially of the sequence SEQ ID NO:10.

10. The nucleic acid molecule of any of claims 1-9 wherein the antigen is one which is present on, or/ cross-reactive with an epitope of, a pathogenic organism, cell, or virus.

5

10

15

20

- 11. The nucleic acid molecule of claim 10, wherein the virus is a human papilloma virus.
- 12. The nucleic acid molecule of claim 11, wherein the antigen is the E7 polypeptide of HPV-16 or an antigenic fragment thereof.
- 13. The nucleic acid molecule of claim 12, wherein the HPV-16 E7 polypeptide is non-oncogenic.
 - 14. The nucleic acid molecule of claim 10, wherein the pathogenic organism is a bacterium.
 - 15. The nucleic acid molecule of claim 10, wherein the pathogenic cell is a tumor cell.
- 16. The nucleic acid molecule of claim 15, wherein the antigen is a tumor-specific or tumor-associated antigen, or any antigenic epitope thereof.
- 17. The nucleic acid molecule of claim 16, wherein the antigen comprises the HER-2/neu protein or a peptide thereof, mutant p53 or a melanoma-associated antigens selected from the group consisting MAGE-1, MAGE-3, MART-1/Melan-A, tyrosinase, gp75, gp100, BAGE, GAGE-1, GAGE-2, GnT-V, and p15.
 - 18. The nucleic acid molecule of any of claims 1-17 operatively linked to a promoter.
- 19. The nucleic acid molecule of claim 18, wherein the promoter is one which is expressed in an APC.
 - 20. The nucleic acid molecule of claim 21, wherein the APC is a dendritic cell.
- 21. An isolated nucleic acid molecule that, under stringent hybridization conditions, hybridizes simultaneously with:
 - (i) at least part of said first nucleic acid sequence and at least part of said second nucleic acid sequence,
 - (ii) at least part of said first nucleic acid sequence and part of said linker nucleic acid sequence,
 - (iii) at least part of said second nucleic acid sequence and part of said linker nucleic acid sequence, or

(iv) at least part of said first nucleic acid sequence, at least part of said first nucleic acid sequence and said linker nucleic acid sequence, said sequences in accordance with any of claims 1-20.

- 22. An expression vector comprising the nucleic acid molecule of any of claims 1-20 operatively linked to
 - (a) a promoter; and

5

15

- (b) optionally, additional regulatory sequences that regulate expression of said nucleic acid in a eukaryotic cell.
- 23. The expression vector of claim 22 which is a viral vector or a plasmid.
- 10 24. The expression vector of claim 22 wherein said plasmid is pcDNA3 which is derived from the sequence, prior to insertion of the nucleic acid sequences encoding said first or said second polypeptides, of SEQ ID NO:15.
 - 25. The expression vector of claim 22 which is a self-replicating RNA replicon.
 - 26. The expression vector of claim 25, wherein the self-replicating RNA replicon is a Sindbis virus self-replicating RNA replicon.
 - 27. The expression vector of any of claims 25 or 26, wherein the replicon is SINrep5 which is derived from the sequence, prior to insertion of the nucleic acid sequences encoding said first or said second polypeptides, of SEQ ID NO:16.
 - 28. The expression vector of claim 22 which is a suicidal DNA vector.
- 29. The expression vector of claim 28 wherein said suicidal DNA vector is an alphavirus DNA vector.
 - 30. The expression vector of claim 29 wherein said alphavirus is Semliki Forest virus (SFV).
 - 31. The expression vector of claim 30 wherein said SFV vector is pSCA1.
- 25 32. The expression vector of any of claims 28-30 wherein the suicidal DNA is derived from the sequence, prior to insertion of the nucleic acid sequences encoding said first or said second polypeptides, of SEQ ID NO:17.
 - 33. The expression vector of any of claims 22-32 wherein the first encoded polypeptide or peptide is Hsp70, an active C-terminal domain thereof, or a functional derivative of Hsp70 or of said C-terminal domain.

34. The expression vector of claim 33 wherein the first encoded polypeptide consists essentially of the sequence SEQ ID NO:4 or the full length sequence of Hsp70 a set forth in GENBANK Z95324 AL123456 and encoded by nucleotides 10633-12510 of the *Mycobacterium tuberculosis* genome.

- 5 35. The expression vector of claim 32 wherein the first polypeptide consists essentially of said C-terminal domain having a sequence from about residue 517 to about the C-terminal amino acid residue of:
 - (i) SEQ ID NO:4, or
- the full length native sequence of Hsp70 a set forth in GENBANK Z95324 AL123456 and encoded by nucleotides 10633-12510 of the *Mycobacterium tuberculosis* genome.
 - 36. The expression vector of an of claims 34, that is a self-replicating RNA replicon that also encodes HPV protein E7, and has the nucleotide sequence SEQ ID NO:19.
 - 37. The expression vector of claim 34, that is a suicidal DNA vector which also encodes HPV protein E7, and has the nucleotide sequence of SEQ ID NO:20.
- The expression vector of any of claims 22-32 wherein the first encoded polypeptide or peptide is the Flt3 ligand (FL), the extacellular domain thereof, or or a functional derivative of FL or of said extracellular domain.
 - 39. The expression vector of claim 38 wherein the first encoded polypeptide consists essentially of the extracellular domain of FL having a sequence SEQ ID NO:10.
- 40. The expression vector of claim 39 that comprises a naked DNA plasmid pcDNA3 that includes the coding sequence for HPV protein E7 and the FL extracellular domain, and has the nucleotide sequence SEQ ID NO:21.
 - 41. A cell which has been modified to comprise the nucleic acid or expression vector of any of claims 1-40.
- 25 42. The cell of claim 41 which expresses said nucleic acid molecule and said fusion polypeptide.
 - 43. The cell of claim 41 or 42 which is an APC.
 - 44. The cell of claim 43, wherein the APC is a dendritic cell, a keratinocyte, a macrophage, a monocyte, a B lymphocyte, a microglial cell, an astrocyte, or an activated endothelial cell.

- 45. A particle comprising the nucleic acid or expression vector of any of claims 1-40.
- 46. The particle of claim 45 which comprises a material is suitable for introduction into a cell or an animal by particle bombardment.
 - 47. The particle of claim 46, wherein the material is gold.
 - 48. A fusion or chimeric polypeptide comprising

5

10

15

20

- (a) a first polypeptide or peptide that (i) promotes processing via the MHC class I pathway and/or (ii) promotes development or activity of an APC; and
- (b) a second polypeptide comprising an antigenic peptide or polypeptide.
- 49. The fusion or chimeric polypeptide of claim 48, wherein the antigenic peptide or polypeptide comprises an epitope that binds to, and is presented on the cell surface by, MHC class I proteins.
 - 50. The fusion or chimeric polypeptide of claim 48 or 49 wherein the first polypeptide and the antigenic polypeptide or peptide are linked by a chemical linker.
 - 51. The fusion polypeptide of any of claims 48-50 wherein the first polypeptide is N-terminal to the second polypeptide.
 - 52. The fusion polypeptide of any of claims 48-50 wherein the second polypeptide is N-terminal to the first polypeptide.
 - 53. The fusion or chimeric polypeptide of any of claims 48-52 wherein the first polypeptide or peptide is Hsp70, an active C-terminal domain thereof, or a functional derivative of Hsp70 or of said C-terminal domain.
 - 54. The fusion or chimeric polypeptide of any of claims 48-52 wherein the first polypeptide or peptide is the Flt3 ligand (FL), the extacellular domain thereof, or or a functional derivative of FL or of said extracellular domain.
- 55. The fusion polypeptide of claim 53, wherein the first polypeptide is SEQ ID NO:4 or the full length sequence of Hsp70 a set forth in GENBANK Z95324 AL123456 and encoded by nucleotides 10633-12510 of the *Mycobacterium tuberculosis* genome.
 - 56. The fusion polypeptide of claim 8, wherein the first polypeptide polypeptide consists essentially of the sequence SEQ ID NO:10.
 - 57. The fusion polypeptide encoded by the nucleic acid molecule of any of claims 1-20.
 - 58. The fusion polypeptide encoded by the expression vector of any of claims 22-40.

59. A pharmaceutical composition capable of inducing or enhancing an antigen-specific immune response, comprising:

- (a) pharmaceutically and immunologically acceptable excipient in combination with;
- (b) a composition selected from:

5

10

15

20

- (i) the nucleic acid molecule or expression vector of any of claims 1-40;
- (ii) the cell of any of claims 41-44;
- (iii) the particle of any of claims 45-47;
- (iv) the fusion or chimeric polypeptide of any of claims 48-58; or
- (v) any combination of (i)-(iv).
- 60. A method of inducing or enhancing an antigen specific immune response in a subject comprising administering to the subject an effective amount of the pharmaceutical composition of claims 59, thereby inducing or enhancing said response.
- 61. The method of claim 60, wherein the response is mediated at least in part by CD8⁺ cytotoxic T lymphocytes (CTL).
 - 62. The method of claim 60, wherein the response is mediated at least in part by antibodies.
 - 63. The method of any of claims 60-62 wherein said subject is a human.
- 64. A method of inducing or enhancing an antigen specific immune response in cells or in a subject comprising contacting said cells with, or administering to said subject, an effective amount of the pharmaceutical composition of claim 59, thereby inducing or enhancing said response.
 - 65. The method of claim 64, comprising contacting said cells ex vivo with said composition.
 - 66. The method of claim 65 wherein said cells comprise APCs.
 - 67. The method of claim 66, wherein said APCs are dendritic cells.
- 68. The method of claim 66 or 67, wherein the APCs or said dendritic cells are of human origin..
 - 68. The method of any of claims 66-68, wherein the APCs are isolated from a living subject.
 - 69. The method of any of claims 65-69, further comprising a step of administering said cells to which were contacted with the composition *ex vivo* to (i) a histocompatible subject or (ii) the subject from which said cells were obtained.

70. The method of any of claims 64-69 wherein said cells are human cells and said subject is a human.

- 71. The method of any of claims 60-64 and 69-70 wherein said administering is by a intramuscular, intradermal, or subcutaneous route.
- 72. The method of any of claims 60-64 and 69-70, wherein the composition comprises said nucleic acid molecule, said expression vector or said particle, and
- 73. The method of any of claims 60-64, 69-72 wherein the administering is intratumoral or peritumoral.
- 74. A method of increasing the numbers or lytic activity of CD8⁺ CTLs specific for a selected antigen in a subject, comprising administering to said subject an effective amount of the pharmaceutical composition of claim 59, wherein
 - (i) said nucleic acid molecule, said expressio vector, said cell, said particle or said fusion or chimeric polypeptide comprises said selected antigen, and
 - (ii) said selected antigen comprises an epitope that binds to, and is presented on the cell surface by, MHC class I proteins,

thereby increasing the numbers or activity of said CTLs.

said administering is by biolistic injection.

5

10

- 75. A method of inhibiting growth or preventing re-growth of a tumor in a subject,
 comprising administering to said subject an effective amount of a pharmaceutical composition of claim
 59, wherein said nucleic acid molecule, said expression vector, said cell, said particle or said fusion or
 chimeric polypeptide comprises one or more tumor-associated or tumor-specific epitopes present on said
 tumor in said subject, thereby inhibiting said growth or preventing said re-growth.
 - 76. The method of claim 75, wherein said administering is intratumoral or peritumoral.
- The method of any of claims 63 or 64, further comprising treating said subject with radiotherapy or chemotherapy.

1/28

RNA TRANSCRIPTS

SINrep5	m ⁷ G — REPLICASE — AAAA
SINrep5-HSP70	m ⁷ G — REPLICASE — HSP70 — AAAA
SINrep5-E7	m ⁷ G — REPLICASE — E7 — AAAA
SINrep5-E7/GFP	m ⁷ G — REPLICASE — E7 GFP — AAAA
SIN5rep5-E7/HSP70	m ⁷ G — REPLICASE — E7 HSP70 — AAAA

FIG. 1

SUBSTITUTE SHEET (RULE 26)

FIG. 3

4/28

FIG. 5

SUBSTITUTE SHEET (RULE 26)

(*: CORRECTED BY TRANSFECTION EFFICIENCY)

FIG. 9

FIG. 10

SUBSTITUTE SHEET (RULE 26)

12/28

FIG. 12A

FIG. 12B

SUBSTITUTE SHEET (RULE 26)

FIG. 14

FIG. 15

FIG. 16A

FIG. 17

1/1 31/11 atg aca gtg ctg gcg cca gcc tgg agc cca aat tcc tcc ctg ttg ctg ctg ctg ctg Met thr val leu ala pro ala trp ser pro asn ser ser leu leu leu leu leu leu leu 61/2191/31 ctg agt cct tgc ctg cgg ggg aca cct gac tgt tac ttc agc cac agt ccc atc tcc tcc leu ser pro cys leu arg gly thr pro asp cys tyr phe ser his ser pro ile ser ser 121/41 151/51 aac ttc aaa gtg aag ttt aga gag ttg act gac cac ctq ctt aaa qat tac cca qtc act asn phe lys val lys phe arg glu leu thr asp his leu leu lys asp tyr pro val thr 211/71 gtg gcc gtc aat ctt cag gac gag aag cac tgc aag gcc ttg tgg agc ctc ttc cta gcc val ala val asn leu gln asp glu lys his cys lys ala leu trp ser leu phe leu ala 241/81 271/91 cag cgc tgg ata gag caa ctg aag act gtg gca ggg tct aag atg caa acg ctt ctg gag gln arg trp ile glu gln leu lys thr val ala gly ser lys met gln thr leu leu glu 301/101 $331/\bar{1}1\bar{1}$ gac gtc aac acc gag ata cat ttt gtc acc tca tgt acc ttc cag ccc cta cca gaa tgt asp val asn thr glu ile his phe val thr ser cys thr phe gln pro leu pro glu cys 391/131 ctg cga ttc gtc cag acc aac atc tcc cac ctc ctg aag gac acc tgc aca cag ctg ctt leu arg phe val gln thr asn ile ser his leu leu lys asp thr cys thr gln leu leu 421/141 451/151 get etg aag eee tgt ate ggg aag gee tge eag aat tte tet egg tge etg gag gtg eag ala leu lys pro cys ile gly lys ala cys gln asn phe ser arg cys leu glu val gln 481/161 511/171 tgc cag ccg gac tcc tcc acc ctg ctg ccc cca agg agt ccc ata gcc cta gaa gcc acg cys gln pro asp ser ser thr leu leu pro pro arg ser pro ile ala leu glu ala thr 541/181 571/191 gag ctc cca gag cct cgg ccc agg cag gga tcc atg cat gga gat aca cct aca ttg cat glu leu pro glu pro arg pro arg gln gly ser met his gly asp thr pro thr leu his 601/201 631/211 gaa tat atg tta gat ttg caa cca gaq aca act gat ctc tac tgt tat gag caa tta aat <u>glu tyr met leu asp leu gln pro glu thr thr asp leu tyr cys tyr glu gln leu asn</u> 661/221 691/231 gac agc tca gag gag gag gat gaa ata gat ggt cca gct gga caa gca gaa ccg gac aga asp ser ser glu glu glu asp glu ile asp gly pro ala gly gln ala glu pro asp arg 721/241 751/251 gcc cat tac aat att gta acc ttt tgt tgc aag tgt gac tct acg ctt cgg ttg tgc gta ala his tyr asn ile val thr phe cys cys lys cys asp ser thr leu arg leu cys val 811/271 caa agc aca cac gta gac att cgt act ttg gaa gac ctg tta atg ggc aca cta gga att gln ser thr his val asp ile arg thr leu glu asp leu leu met gly thr leu gly ile 841/281 871/291 gtg tgc ccc atc tgt tct cag gat aag ctt aag ttt aaa ccg ctg atc agc ctc gac tgt <u>val cys pro ile cys ser gln</u> asp lys leu lys phe lys pro leu ile ser leu asp cys 901/301 gcc ttc tag FIG. 18B ala phe AMB

20/28

FIG. 19A

FIG. 19B

FIG. 21

WO 2002/061113

DAYS AFTER TC-1 CHALLENGE

FIG. 24

FIG. 25

FIG. 26

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/02598

A. CLASSIFICATION OF SUBJECT MATTER						
IPC(7) : A61K 39/00; C07H 21/04; C12N 15/00, 15/63, 15/85 US CL : 424/192.1; 435/69.7, 320.1, 325; 536/23.1						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed by classification symbols) U.S.: 424/192.1; 435/69.7, 320.1, 325; 536/23.1						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Continuation Sheet						
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of document, with indication, where a	appropriate, of the relevant passages Relevant to claim No.				
Y	SUZUE, K. et al. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc. Natl. Acad. Sci., USA. November 1997, Vol. 94, pages 1316-13151, entire document.					
Y	CHU, N. R. et al. Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of a fusion protein comprising Mycobacterium bovis bacille Calmette-Guerin (BCG) hsp65 and HPV16 E7. Clin. Exp. Immunol. 2000, Vol. 121, pages 216-225, entire document.					
Y	MORE, S. et al. Activation of cytotoxic T cells in vitro by recombinant gp96 fusion proteins irrespective of the 'fused' antigenic peptide sequence. Immunology Letters. 1-9, 48-50, 56, 60-60 75-76 75-76			1-9, 48-50, 56, 60-63, 75-76		
A	CHENG et al. Enhancement of Sindbis Virus Self-Replicating RNA Vaccine Potency by Linkage of Mycobacterium tuberculosis Heat Shock Protein 70 Gene to an Antigen Gene. J. Immunology. 2001, Vol. 166, pages 6218-6226.			1-9, 48-50, 56, 60-63, 75-76		
Further	documents are listed in the continuation of Box C.		See patent family annex.			
		<u>"Т"</u>	later document published after the inte	emational filing date or priority		
"A" document defining the general state of the art which is not considered to be of particular relevance		-	date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
"E" earlier ap	plication or patent published on or after the international filing date	"X"	document of particular relevance; the considered novel or cannot be considered to the document in telephone along			
	which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as	when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination				
"O" document	referring to an oral disclosure, use, exhibition or other means		being obvious to a person skilled in th			
"P" document published prior to the international filing date but later than the "&" document member of the same patent family priority date claimed						
Date of the actual completion of the international search Date of mailing of the international search report						
06 September 2002 (06.09.2002) 2 U 3 L P 2 U 3 L						
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Authorized officer Judoffs Authorized officer Judoffs						
Box PCT Any			Cloux P			
Washington, D.C. 20231 Facsimile No. (703)305-3230		Telephon	le No. 703 308-0196			

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.

PCT/US02/02598

INTERNATIONAL SEARCH REPORT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A,P	HUNG, CF. et al. Enhancement of DNA Vaccine Potency by Linkage of Antigen Gene to a Gene Encoding the Extracellular Domain of Fms-like Tyrosine Kinase 3-Ligand. Cancer Research. February 2001, Vol. 61, pages 1080-1088.	1-9, 48-50, 56, 60 63, 75-76
	-	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/02598

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
3. Claim Nos.: 10-47, 51-55, 57-59, 67-74 and 77 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
 As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 				
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/02598

Continuation of Item 4 of the first sheet: Title is longer than 17 words, PCT Rule 4,3. Suggested new title follows:
"Nucleic Acid derived vaccine that encodes an antigen linked to a polypeptide that promotes antigen presentation".
Continuation of B. FIELDS SEARCHED Item 3: STN/CAS:Medline, CAPLUS, Embase, Biosis, WEST

Form PCT/ISA/210 (second sheet) (July 1998)