Amostragem Estratificada

João Luís F. Batista Setembor de 2006

Notas para a disciplina LCF-764 Métodos de Amostragem em Levantamentos Florestais do Programa de Pós-Graduação em Recursos Florestais, ESALQ, Universidade de São Paulo.

1 Motivação

- Raramente as populações naturais em geral, e as florestas em particular, são internamente homogêneas.
- Frequentemente, existem informações sobre a variação espacial das florestas (população alvo) de modo a permitir a sua sub-divisão em sub-populações internamente mais homogêneas.
- O processo de sub-divisão da população alvo em sub-populações mais homogêneas é chamado de *estratificação* e pode resultar num sensível ganho de precisão nas estimativas.
- Tradicionalmente a "Amostragem Estratificada" é definida como um tipo de delineamento amostral baseado na Amostragem Aleatória Simples.
- Mas a estratificação pode também ser interpretada como uma técnica amostral que pode ser consorciada a muitos tipos de delineamentos amostrais diferentes.

2 Estimativas por Estrato

- Na amostragem aleatória simples, uma única estimativa é optida para toda a população alvo.
- Na amostragem estratificada (ou estratificação), a população alvo é subdividida em sub-populações internamente homogêneas chamadas *estratos*.
- Para cada estrato, é obtida uma estimativa que, dada a maior homogeneidade dos estratos, deve ser mais precisa que a estimativa da AAS para a população alvo.
- A estimativa para população alvo é obtida pela combinação das estimativas dos estratos.
- Notação utilizada:

Tamanho da População:
$$N = \sum_{h=1}^{L} N_h$$

Tamanho da Amostra:
$$n = \sum_{h=1}^{L} n_h$$

Total da População:
$$\tau = \sum_{h=1}^{L} \tau_h$$

Média da População:
$$\mu = -\frac{\tau}{N}$$

onde:

h é o índice que indica o estrato;

L é o número total de estratos.

• Em cada estrato realiza-se uma amostragem *independente* dos demais estratos com as seguintes estimativas:

Total Amostral: $\hat{\tau}$

Média Amostral: $\hat{\mu}_h$

Variância Amostral: $\hat{\sigma}_h^2$

Variância Estimada do Total: $\widehat{Var}\{\hat{\tau}_h\}$

3 Combinação das Estimativas por Estrato

- Na amostragem estratificada utiliza-se sempre o mesmo delineamento amostral em todos os estratos e a sua implementação é totalmente independente em cada estrato.
- A maneira de combinar as estimativas de cada estrato para se obter uma estimativa global para a população alvo depende o delineamento utilizado em cada estrato.
- Apresentaremos duas formas de conbinar as estimativas por estrato:
 - 1. forma geral que é válida para qualquer delineamento amostral; e
 - 2. forma específica quando se utiliza a AAS nos estratos.

3.1 Estimador para Qualquer Delineamento

A forma geral de combinação das estimativas por estrato se baseia na combinação das *estimativas dos totais*:

• Estimativa do total da população:

$$\widehat{\tau}_{st} = \sum_{h=1}^{L} \widehat{\tau}_h$$

• Estimativa da variância do total:

$$\mathbf{Var}\widehat{\{\hat{ au}_{st}\}} = \sum_{h=1}^{L} \mathbf{Var}\widehat{\{\hat{ au}_h\}}$$

• Estimativa da média da população:

$$\widehat{\mu}_{st} = \frac{\widehat{\tau}}{N}$$

• Variância da estimativa da média:

$$\widehat{\mathbf{Var}\{\widehat{\mu}_{st}\}} = \frac{1}{N^2} \widehat{\mathbf{Var}\{\widehat{\tau}\}}$$

3

3.2 Estimador para Amostragem Aleatória Simples

Na AAS, também se pode utilizar os estimadores baseados em totais, mas eles podem ser expressos em termos das estimativas das médias dos estratos:

• Estimativa do total por estrato:

$$\widehat{\tau}_h = N_h \, \widehat{\mu}_h$$

• Estimativa da média por estrato:

$$\widehat{\mu}_h = \frac{1}{n_h} \sum_{i=1}^{n_h} y_{hi}$$

• Estimativa do total da população:

$$\widehat{\tau}_{st} = \sum_{h=1}^{L} \widehat{\tau}_h \quad \Rightarrow \quad \widehat{\tau}_{st} = \sum_{h=1}^{L} N_h \ \widehat{\mu}_h$$

• Variância da estimativa do total da população:

$$\mathbf{Var}\{\widehat{\tau}_{st}\} = \sum_{h=1}^{L} \mathbf{Var}\{\widehat{\tau}_{h}\} \quad \Rightarrow \quad \mathbf{Var}\{\widehat{\tau}_{st}\} = \sum_{h=1}^{L} N_{h}^{2} \frac{\widehat{\sigma}_{h}^{2}}{n_{h}} \left(1 - \frac{n_{h}}{N_{h}}\right)$$

• Estimativa da média:

$$\hat{\mu}_{st} = \frac{\hat{\tau}}{N} \quad \Rightarrow \quad \hat{\mu}_{st} = \frac{1}{N} \sum_{h=1}^{L} N_h \hat{\mu}_h$$

• Variância da estimativa da média:

$$\begin{aligned} \mathbf{Var} \widehat{\{\widehat{\mu}_{st}\}} &= \frac{1}{N^2} \ \mathbf{Var} \widehat{\{\widehat{\tau}\}} = \frac{1}{N^2} \sum_{h=1}^{L} N_h^2 \frac{\widehat{\sigma}_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) \\ \Rightarrow \mathbf{Var} \widehat{\{\widehat{\mu}_{st}\}} &= \sum_{h=1}^{L} \left(\frac{N_h}{N} \right)^2 \frac{\widehat{\sigma}_h^2}{n_h} \left(1 - \frac{n_h}{N_h} \right) \end{aligned}$$

• Tanto a estimativa da média como a estimativa da variância da média podem ser interpretadas como "médias ponderadas" das estimativas por estrato, tendo como "peso" o tamanho dos estratos (N_h) , uma vez que:

$$N = \sum_{h=1}^{L} N_h.$$

3.3 Intervalo de Confiança

- Pelo Teorema Central do Limite, tanto a estimativa do total $(\hat{\tau})$ como da média (\bar{y}) no caso de grandes amostras teriam distribuição Gaussiana.
- Utilizando esse resultado podemos construir intervalos de confiança quando as amostras são "sufficientemente grandes em todos estratos".
- Intervalo de Confiança de $100(1-\alpha)$ %:

Estimativa do Total:
$$\hat{\tau}_{st} \pm t(1 - \alpha/2; d) \sqrt{\widehat{\mathbf{Var}\{\hat{\tau}_{st}\}}}$$

Estimativa da Média: $\hat{\mu}_{st} \pm t(1 - \alpha/2; d) \sqrt{\widehat{\mathbf{Var}\{\hat{\mu}_{st}\}}}$

• O "valor aproximado" dos graus de liberdade (d) para distribuição t de Student é

$$d = \frac{\left(\sum_{h=1}^{L} a_h \ \hat{\sigma}_h^2\right)^2}{\sum_{h=1}^{L} \left(a_h \ \hat{\sigma}_h^2\right)^2 / (n_h - 1)}$$

onde $a_h = N_h (N_h - n_h) / n_h$.

3.4 Estimando Proporções

 Para se estimar uma proporção na população alvo através da amostragem estratificada toma-se em cada estrato uma AAS de obserações, sendo que se define a seguinte variável aleatória:

$$y_{hi} = \begin{cases} 1 & \text{se sucesso,} \\ 0 & \text{se fracasso.} \end{cases}$$

onde o índice h (h = 1, 2, ..., L) indica o estrato, e o índice i ($i = 1, 2, ..., n_h$) indica as observações no estrato h.

• As estimativas por estrato são:

$$\begin{array}{rcl} \widehat{p}_h & = & \displaystyle \frac{1}{n_h} \sum_{i=1}^{n_h} y_{hi} \\ \mathbf{Var} \widehat{\{\widehat{p}_h\}} & = & \displaystyle \frac{\widehat{p}_h (1 - \widehat{p}_h)}{n_h} \left(1 - \frac{n_h}{N_h}\right) \end{array}$$

 E a combinação dessas estimativas para se obter uma estimativa de proporção para população alvo como um todo segue o mesmo raciocínio da estimativa do total:

$$\begin{array}{rcl} \widehat{p}_{st} & = & \frac{1}{N} \sum_{i=1}^{L} N_h \widehat{p}_h \\ \mathbf{Var} \widehat{\{\widehat{p}}_{st}\} & = & \frac{1}{N^2} \sum_{i=1}^{L} N_h^2 \mathbf{Var} \widehat{\{\widehat{p}}_h\} \end{array}$$

4 Amostragem Estratificada e Amostragem Aleatória Simples

- A amostragem estratificada é sempre melhor que a AAS?
- Se os estimadores dos totais (ou média) de cada estrato forem não viciados, o estimador da amostragem estratificada. também será não viciado:

$$E[\hat{\tau}_{st}] = E\left[\sum_{h=1}^{L} \hat{\tau}_{h}\right] = \sum_{h=1}^{L} E\left[\hat{\tau}_{h}\right] = \sum_{h=1}^{L} \tau_{h} = \tau$$

Vejamos o que acontece com a variância da estimativa na amostragem estratificada (sem correção para populações finitas):

$$Var\{\hat{\tau}_{st}\} = Var\{\sum_{h=1}^{L} \hat{\tau}_{h}\} = \sum_{h=1}^{L} Var\{\hat{\tau}_{h}\} = \sum_{h=1}^{L} N_{h}^{2} \frac{\sigma_{h}^{2}}{n_{h}}$$

• No caso da AAS, a variância da estimativa do total é

$$\mathbf{Var}\{\tau\} = N^2 \frac{\sigma^2}{n}.$$

5 Tamanho da Amostra e Alocação das Unidades Amostrais

 Assumindo uma AAS em cada estrato, o tamanho da amostra para erro amostral aceitável E pode ser obtido por:

$$n^* = \frac{\sum_{h=1}^{L} N_h^2 \hat{\sigma}_h^2 / W_h}{N^2 E^2 / t^2 + \sum_{h=1}^{L} N_h \hat{\sigma}_h^2}$$

onde:

 N_h é o tamanho do estrato h;

 $N = \sum N_h$ é o tamanho da população alvo;

 $\hat{\sigma}_h^2$ é a variância amostral no estrato h;

E é o erro amostral aceitável (em unidades da média);

 W_h é a proporção de undiades amostrais no estrato h.

 Quando a correção para populações finitas pode ser desprezada, a expressão simplifica para:

$$n^{\star} = \frac{t^2 \sum_{h=1}^{L} N_h^2 \hat{\sigma}_h^2 / W_h}{N^2 F^2}$$

• Note que para encontrar o tamanho de amostral, é necessário primeiramente definir a proporções W_h , isto é, como as unidades amostrais serão distribuidas nos vários estratos.

5.1 Alocação Proporcional

• Uma primeira forma de alocar as várias unidades amostrais aos estratos é proporcionalmente ao tamanho dos estratos (N_h) .

$$W_h = \frac{N_h}{N}$$

5.2 Alocação de Neyman

 Pode-se argumentar que nem sempre os maiores estratos são os que possuem maior variabilidade.

7

• Assim, pode-se considerar, além do tamanho, a variância populacional:

$$W_h = \frac{N_h \hat{\sigma}_h^2}{\sum_{h=1}^L N_h \hat{\sigma}_h^2}$$

5.3 Alocação Ótima

- Por fim, pode-se argumentar que além do tamanho dos estratos e das suas variabilidades, o custo do levantamento não é o mesmo em todos os estratos.
- Considerando que o esforço amostral deva ser *inversamente* proporcional à raiz quadrada do custo, a alocação ficaria:

$$W_h = \frac{N_h \hat{\sigma}_h^2 / \sqrt{C_h}}{\sum_{h=1}^L N_h \hat{\sigma}_h^2 / \sqrt{C_h}}$$

onde C_h é o custo (ou custo relativo) para se obter uma unidade amostral no estrato h.

6 Pós-Estratificação

- Frequentemente o tamanho dos estratos não é conhecido antes do levantamento de campo, mas pode ser estimado por procedimentos amostrais durante o levantamento de campo.
- Em algumas situações, os estratos são percebidos durante ou após o levantamento de campo e não previamente.
- Principalmente quando se utiliza a amostragem sistemática, é possível realizar uma estratificação "*a posteriori*" das unidades amostrais.
- Nesses casos, a pós-estratificação tende a gerar uma alocação das unidades amostrais próxima à alocação proporcional e isso pode ser utilizado para se "estimar" o tamanho dos estratos.

- ullet Se na pós-estratificação o tamanho dos estratos (N_h) são determinados sem erro amostral ou com um erro muito pequeno, os estimadores apresentados acima podem ser utilizados.
- Se, no entanto, o tamanho dos estratos (N_h) é *estimado* com erro amostral o delineamento amostral não é mais a amostragem estratificada.

Nesse caso, devemos utilizar os estimadores da amostragem dupla.

João Luís F. Batista

9

7 Exercícios

- 1. A tabela 1 apresenta dados de um levantamento numa área de floresta ombrófila densa na Amazônia Oriental, onde se utilizou a amostragem estratificada. As parcelas tinha $5.000 \ m^2$ e considera-se aceitável um erro amostral de 10% ao nível de siginificância de 5%.
 - (a) Encontre o intervalo de confiança de 95% para as médias de todas variáveis observadas.
 - (b) Encontre o tamanho adequado de amostra utilizando alocação proporcional.
 - (c) Encontre o tamanho adequado de amostra utilizando alocação de Neyman.
 - (d) Compare as variáveis medidas em termos dos resultados obtidos.
- 2. A tabela 2 apresenta dados de um Inventário Florestal em floresta plantada de *Eucalyptus*. Foi realizado uma amostragem aleatória simples em cada um dos seguintes estratos utilizando parcelas de $600 m^2$:
 - Estrato I: E. grandis, 1a. rotação: 350 ha;
 - Estrato II: E. grandis, 2a. rotação: 150 ha;
 - Estrato III: E. saligna, 1a. rotação: 450 ha;
 - Estrato IV: E. saligna, 2a. rotação: 50 ha.

Utilizando os estimadores da amostragem estratificada e considerando o erro amostral aceitável de 10% (nível de significância de 5%), encontre:

- (a) Encontre o intervalo de confiança de 95% para as médias de todas variáveis observadas.
- (b) Encontre o tamanho adequado de amostra utilizando alocação proporcional.
- (c) Encontre o tamanho adequado de amostra utilizando alocação de Neyman.
- (d) Compare as variáveis medidas em termos dos resultados obtidos.

Tabela 1: Dados de amostragem estratificada em floresta ombrófila densa na Amazônia Oriental utilizando parcelas de $5.000 m^2$.

Estrato	Area do	Parcela	Variáveis				
	Estrato		N. Árv.	DAP	Altura	Área	Volume
				médio	Comercial	Basal	Comercial
	(ha)		(arv/ha)	(cm)	Média (m)	(m^2/ha)	(m^3/ha)
A	73	2	358	24.98	7.63	21.77	198.35
A	73	3	332	23.98	7.49	18.73	174.54
A	73	4	290	23.70	9.15	16.32	177.16
В	50	5	304	23.95	8.22	16.36	162.51
В	50	6	268	22.11	6.90	11.52	86.89
C	123	10	242	24.28	7.10	13.88	124.14
C	123	7	256	22.21	7.03	12.56	118.64
C	123	8	244	23.20	7.51	11.99	101.49
C	123	9	216	22.20	6.97	9.32	72.55
D	154	11	288	24.68	7.81	17.08	161.89
D	154	12	322	31.13	8.63	32.13	357.82
D	154	13	234	27.27	7.54	18.44	181.67
D	154	14	276	24.36	7.84	15.45	141.53

3. Foi realizado um levantamento num fragmento florestal de $47\ ha$, utilizandose parcelas de $100\ m^2$ dipostas numa grade amostral quadrada (amostragem sistemática), cada parcela representando $1\ ha$. A tabela 3 apresenta os dados obtidos. Durante o levantamento, cada parcela foi classificada, por avaliação visual, numa das seguintes "Unidades Estruturais":

BA: bambuzal; CA: capoeira alta; CB: capoeira baxia; FM: floresta madura.

- (a) Encontre os intervalos de confiança de 95% utilizando os estimadores da amostragem sistemática.
- (b) Utilize as "unidades estruturais" para realizar uma *pós-estratificação* das parcelas e encontre os intervalos de confiança de 95% utilizando os estimadores da amostragem estratificada.
- (c) Discuta os resultados.

Tabela 2: Dados de Inventário Florestal em floresta plantada de $\it Eucalyptus,$ com parcelas de 600 $m^2.$

Espécie	Rotação	Parcela	DAP	Altura	Falha	Volume
Lispeere	rouguo	1 410014	médio	média	1 41114	Comercial
			(cm)	(m)	(%)	(m^3/ha)
E.grandis	1	1	8.89	17.09	5.93	126
	1	2	10.70	19.13	11.03	217
	1	3	9.85	16.58	10.14	133
	1	4	9.40	16.42	3.73	133
	1	5	10.04	15.67	17.42	119
	1	6	9.23	16.41	8.33	119
	1	7	11.33	21.55	6.87	231
	1	8	11.96	20.18	12.78	203
	1	9	10.96	18.35	15.15	168
	1	10	11.23	18.09	23.02	147
E.grandis	2	49	7.38	14.40	3.03	182
	2	50	8.57	15.95	14.75	208
	2	51	6.97	14.43	7.58	156
	2	52	8.21	14.74	13.64	247
	2	53	7.53	14.21	12.90	195
	2	54	8.70	16.19	18.75	247
	2	55	8.84	17.18	9.68	221
	2	56	8.29	13.87	25.81	156
	2	57	7.57	14.99	33.33	143
	2	58	8.20	15.78	24.24	156
	2	59	8.79	16.86	33.85	156
E.saligna	1	20	10.11	17.01	13.18	133
Ö	1	31	9.60	15.01	6.72	119
	1	32	8.94	10.42	11.03	70
	1	33	11.42	17.00	26.67	126
	1	34	9.96	16.18	11.43	133
	1	35	11.44	18.77	11.85	168
	1	36	9.42	14.94	8.76	119
	1	37	10.45	15.98	20.00	133
	1	38	10.50	17.28	14.39	147
	1	39	10.02	15.28	9.77	105
	1	40	10.04	15.51	20.15	105
E.saligna	2	71	9.73	15.63	56.45	378
	2	72	11.33	15.97	60.61	476
	2	74	8.14	12.19	19.67	266
	2	75	9.26	15.38	25.00	364
		76	9.19	13.61	31.75	406
	2 2	77	9.21	13.55	46.97	392
	2	78	7.35	11.57	24.19	294
	2	79	8.64	14.17	25.00	238
	2	80	8.79	12.61	35.38	420
	2	81	9.53	14.22	45.45	476

Tabela 3: Dados de levantamento em fragmento florestal de 47 ha com parcelas de $100\ m^2$.

Estrutual Mortas Ingresso Sobrevive A 1 CB 100 0 A 2 CB 100 0 A 3 CA 100 0 1	100 1.16 400 2.96 300 8.14 400 2.13
A 2 CB 100 0	100 1.16 400 2.96 300 8.14 400 2.13
A 2 CB 100 0	400 2.96 300 8.14 400 2.13
A 2 CA 100 0	300 8.14 400 2.13
A 3 CA 100 0 1	400 2.13
A 4 CB 0 0	
A 5 CA 100 0	900 5.35
B 1 CA 0 100	600 22.64
B 2 CA 100 300	900 12.57
B 3 CA 0 200	400 4.80
B 4 CA 0 100	600 40.07
B 5 CA 300 100	700 13.74
B 6 CA 100 200	300 2.98
C 1 CB 0 100	300 1.61
C 2 CB 100 0	300 11.54
C 3 CB 100 0	600 4.96
C 4 CA 0 200 1	.000 26.50
C 5 CA 0 100	700 5.17
C 6 CA 0 600	600 3.91
C 7 CA 0 200	600 3.51
D 1 CA 0 0	600 5.15
D 2 CA 100 100	700 5.70
D 3 CA 100 100 1	100 6.59
D 4 CA 0 0	600 3.26
	500 9.81
	500 12.45
	500 24.00
E 1 CA 0 0	600 28.82
	100 30.28
	400 13.91
	600 21.71
	600 7.23
E 6 CA 0 100	700 3.11
	400 14.99
	100 14.52
E 9 CB 100 200	600 5.06
E 10 CB 100 0	900 14.32
E 11 CB 0 100	300 11.62
F 1 BA 0 100	900 24.99
	300 22.49
F 3 BA 0 100	700 15.71
F 4 BA 100 100	800 20.81
	.000 7.21
	300 25.25
F 7 CA 0 0	200 2.72
F 8 FM 100 200	600 13.75
F 9 FM 0 200	500 9.11
F 10 FM 100 0	800 15.49
F 11 FM 0 100	600 21.66