UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i: MEK 1100 — Feltteori og vektoranalyse.

Eksamensdag: Tirsdag 19. mars 2013.

Tid for eksamen: 15:00-17:00.

Oppgavesettet er på 3 sider.

Vedlegg: Formeltillegg på 2 sider.

Tillatte hjelpemidler: K. Rottmann: Matematische Formelsamlung,

godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Det er 10 delspørsmål. Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for fullstendig svar, 0 for blank). Maksimal oppnåelig poengsum er 100. Kontroller at du ikke overser noen av spørsmålene.

Oppgave 1

Vi skal betrakte et svømmebasseng med en litt spesiell form: Bunnen i bassenget er gitt ved z = -h(x, y) hvor dybden er

$$h(x,y) = h_0 - x - \alpha y^2$$
 for $x \ge 0$.

Her er x og y horisontale koordinater, z-aksen peker oppover, og både α og h_0 er positive konstanter. Ved x=0 er det en vertikal vegg. Bassenget er fylt opp med vann i området $z \leq 0$.

1a

Tegn noen dybdekonturer (h lik konstant verdi) for utvalgte dyp i intervallet $0 \le h \le h_0$. Marker spesielt dybdekonturen h = 0 som svarer til vannkanten. Gitt at h, x og y har dimensjon lengde, forklar hva som er dimensjonene til h_0 og α .

1b

Bestem i hvilken retning bassengets bunn stiger brattest i punktet x = y = 0. Finn stigningstallet til bunnen i denne retningen i dette punktet.

1c

Bestem enhetsnormalvektoren n til bunnen for vilkårlig x og y. La n være orientert slik at den peker inn i vannet.

(Fortsettes på side 2.)

Oppgave 2

Vi skal betrakte vektorfeltet $\mathbf{v} = (2x - y)\mathbf{i} - y^2\mathbf{j} - y^2z\mathbf{k}$. La sirkelen γ være gitt ved $x^2 + y^2 = 1$ og z = 1.

2a

Finn divergensen til \boldsymbol{v} .

2b

Finn virvlingen til \boldsymbol{v} .

2c

Finn sirkulasjonen til v rundt γ ved direkte utregning.

2d

Finn sirkulasjonen til v rundt γ indirekte ved å beregne et flateintegral over en passende flate S. Forklar hvilken flate S du velger og hvilken integralsats du bruker.

Oppgave 3

Et glass (G) er fylt med vann og holdes med bunnen (B) opp og med åpningen ned mot ei skål (S) uten å komme i berøring med skåla. Bunnen av skåla (S_A) er horisontal med areal A. Vannet har høyde h fra bunnen av skåla til fri luft, og har høyde H fra bunnen av skåla til bunnen av glasset. Lufta har konstant trykk p_0 . Vannet har tetthet ρ . Tyngdens akselerasjon \boldsymbol{g} er rettet ned. La z-aksen peke opp.

Finn trykket i vannet like oppunder glassets bunn B. Finn kraften som virker fra vannet på skålas bunn S_A .

(Fortsettes på side 3.)

Oppgave 4

Vi skal se på vektorfeltet

$$\boldsymbol{v} = xy\boldsymbol{i} + v_y(x,y)\boldsymbol{j}$$

hvor v_y er en funksjon som har egenskapen $v_y(0,0)=0$.

4a

Bestem $v_y(x,y)$ slik at feltet blir divergensfritt og virvelfritt.

4b

Finn strømfunksjonen for feltet og skisser strømlinjene.

Marker eventuelle stagnasjonspunkter (hvor ${\pmb v}=0$) med symbolet ${\pmb \bullet}$ og framhev spesielt eventuelle strømlinjer som går igjennom eventuelle stagnasjonspunkter.

Marker retningen til feltet med piler.

SLUTT