

Quantum Machine Learning

Quantum Support Vector Machines

Maximilian Forstenhäusler

Chair of Scientific Computing in Computer Science TUM Department of Informatics Technical University of Munich

December 10th, 2021

Outline

- Introduction to Quantum Machine Learning
- Support Vector Machines
- Quantum Support Vector Machines
- 4 Results
- 5 References

Introduction to Quantum Machine Learning Machine Learning

- Training machines to learn from the algorithms implemented to handle the data [1].
- Classical machine learning helps to classify images, recognize patterns and speech, handle big data, ...[1].
- Nowadays, more and more data is being generated.
 - ightarrow Classical algorithms become less efficient [1]

Introduction to Quantum Machine Learning Machine Learning

- Training machines to learn from the algorithms implemented to handle the data [1].
- Classical machine learning helps to classify images, recognize patterns and speech, handle big data, ...[1].
- Nowadays, more and more data is being generated.
 - → Classical algorithms become less efficient [1]
- ⇒ Need to find alternative methods

Introduction to Quantum Machine Learning Quantum Machine Learning

Quantum Machine Learning (QML) is the intersection between quantum computing and machine learning.

Motivation:

- ☐ QML is expected to speed up the performance of ML programs through the use of quantum mechanical properties, i.e. entanglement, superposition.
- Quantum speed up in supervised machine learning has recently been shown by researchers of IBM Quantum and University of California, Berkley. [2]

How does QML work in general?

- QML integrates quantum algorithms within machine learning programs
 - ⇒ Data can be classified, sorted and analyzed using quantum algorithms on a quantum computer.

Outline

- Introduction to Quantum Machine Learning
- Support Vector Machines
 - Linear Classification
 - Support Vectors
 - Kernel Methods
 - Limitations to SVM
- Quantum Support Vector Machines
- 4 Results
- 5 References

Linear ClassificationIntro

Linear Classification, i.e. Perceptron, SVM, seeks to find an optimal separating hyperplane between two classes of data in a dataset such that, with high probability, all training examples of one class are found only on one side of the hyperplane [3].

Linear Classification

Linear Classification, i.e. Perceptron, SVM, seeks to find an optimal separating hyperplane between two classes of data in a dataset such that, with high probability, all training examples of one class are found only on one side of the hyperplane [3].

Setup:

- Input vector $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\} \ x_i \in \mathbb{R}^D$
- lacksquare Labels: $\mathbf{y} = \{\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_N\} \ y_i \in \mathcal{C}$
- Classes: $C = \{1, ..., C\}$

Figure 1 Linearly Separable Data.

Linear ClassificationIntro

Setup:

- Input vector $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\} \ x_i \in \mathbb{R}^D$
- Labels: $\mathbf{y} = \{\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_N\} \ y_i \in \mathcal{C}$
- Classes: $C = \{1, ..., C\}$

Find

- $f(\cdot): \mathbb{R}^D \to \mathcal{C}$
- In the case of a linear decision function: $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0$
- Famous perceptron algorithm [4] $y_i(\mathbf{w}^T\phi(x_i) + \mathbf{w}_0) > 0$

Figure 1 Illustration of Hyperplane Decision Function [4].

Linear Classification Limitations of LDA

- 1. No uncertainty measure
- 2. Hard to optimize
- 3. Poor generalization
- 4. Can not handle noisy data

Linear Classification Limitations of LDA

- 1. No uncertainty measure
- 2. Hard to optimize
- 3. Poor generalization
- 4. Can not handle noisy data

Extension: Introduce variables that allow to maximize the margin of the hyperplane between the classes.

Support VectorsHard Margin - Introduction

- Add two hyperplanes to the decision function that are parallel to the decision function.
- Extend the additional hyperplanes until the first datapoint of a data cluster is reached.
- The distance between the two support hyperplanes is called the margin.

$$\mathcal{M} = \frac{2s}{||w||}$$

A datapoint that is on the hyperplane is called a Support Vector.

Figure 2 Illustration of Margin and Support Vectors.

Support Vectors

Hard Margin - Optimization Constraints

This setup leads to the following constraints, (s = 1):

$$w^T x + b \ge +1 \text{ if } y = 1 \tag{1}$$

$$w^T x + b \ge -1 \text{ if } y = -1 \tag{2}$$

 \implies Maximize the margin \mathcal{M} (for mathematical convenience, minimize $\mathcal{M}=\frac{1}{2}||w||^2$) given the above constraints [4].

$$\min_{s.t. \ f_i(\theta) > 0 \text{ for } i = 1, ..., N}$$
(3)

Support Vectors

Hard Margin - Optimization Constraints

This setup leads to the following constraints, (s = 1):

$$w^T x + b \ge +1 \text{ if } y = 1 \tag{1}$$

$$w^T x + b \ge -1 \text{ if } y = -1 \tag{2}$$

 \implies Maximize the margin \mathcal{M} (for mathematical convenience, minimize $\mathcal{M}=\frac{1}{2}||w||^2$) given the above constraints [4].

$$\min \frac{1}{2} ||w||^2$$
s.t. $y_i(w^T x_i + b - 1) > 0$ for $i = 1, ..., N$ (3)

Support VectorsHard Margin - Quadratic Programming

This formulated optimization problem is a *quadratic programming* problem, which, in Python, can be solved with the CVXOPT library.

$$\min_{x} \frac{1}{2} \mathbf{x}^{T} \mathbf{P} \mathbf{x} + \mathbf{q}^{T} \mathbf{x}$$

$$s.t. \ \mathbf{G} \mathbf{x} \leq \mathbf{h}, \mathbf{A} \mathbf{x} = \mathbf{b}$$

$$\mathbf{q} \to N \times 1$$
 vector

$$\mathbf{P} o N imes N$$
 symmetric matrix

$$\mathbf{G} o N imes N$$
 diagonal matrix

$$\mathbf{h} \to N \times 1 \ \mathrm{vector}$$

$$\mathbf{A} \to M \times M$$
 matrix

$$\mathbf{b} \to M \times 1 \text{ vector}$$

Support VectorsHard Margin - Lagrangian

In order to solve the optimization problem, eq. (3), we introduce the Lagrangian,

$$\mathcal{L}(\theta, \alpha) = f_0(\theta) - \alpha_i f_i(\theta) \tag{4}$$

and the Duality perspective.

The principle of Duality in optimization theory states that there are two perspectives of approaching an optimization problem [5]. The two approaches:

- Primal
- Dual

Support Vectors

Hard Margin - Lagrangian

In order to solve the optimization problem, eq. (3), we introduce the Lagrangian and the Duality perspective.

Primal Problem: Solves the lower bound of the constrained optimization ($f_0(\theta^*) = p^*$)

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} w^T w - \sum_{i=1}^{N} \alpha_i (y_i(w^T x_i + b) - 1)$$
 (5)

$$g(\alpha) = \min_{w, b} \mathcal{L}(w, b, \alpha) \tag{6}$$

$$\nabla_{w} \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \stackrel{!}{=} 0$$
(7)

$$\nabla_b \mathcal{L}(w, b, \alpha) = -\sum_{i=1}^N \alpha_i y_i \stackrel{!}{=} 0$$
 (8)

Support Vectors Hard Margin - Lagrangian

Dual Problem: The best lowest bound to the solution of the primal problem $(g(\alpha^*) = d^*)$ \rightarrow Substitute eq. (7) and eq. (8) back into the Langrangian, $\mathcal{L}(w^*, b^*, \alpha)$.

$$g(\alpha) = \mathcal{L}(w^*, b^*, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j$$
 (9)

From here, set up a new constraint optimization problem:

$$\max_{\alpha} g(\alpha)$$

$$s.t. \sum_{i=1}^{N} \alpha_i y_i = 0, \ \alpha_i \ge 0 \text{ for } i = 1, ..., N$$
(10)

Support VectorsHard Margin - Implementation

With the constraint optimization problem, eq. (10), we can formulate a quadratic programming problem that can be implemented in Python with the CVXOPT library

$$\max_{\alpha} \alpha \mathbf{1}_{N} - \frac{1}{2} \alpha^{T} \mathbf{Q} \alpha \quad \| \text{ where } \mathbf{Q} = \mathbf{y} \mathbf{y}^{T} \circ \mathbf{x}^{T} \mathbf{x}$$

$$s.t. \sum_{i=1}^{N} \alpha_{i} y_{i} = 0, \ \alpha_{i} \geq 0 \text{ for } i = 1, ..., N$$
(11)

Support Vectors Hard Margin - Implementation

With the constraint optimization problem, eq. (10), we can formulate a quadratic programming problem that can be implemented in Python with the CVXOPT library

$$\min_{\alpha} \frac{1}{2} \alpha^{T} \mathbf{P} \alpha - \mathbf{1}_{N}^{T} \alpha
s.t. \ y^{T} \alpha = 0, \ -\alpha_{i} \leq 0 \text{ for } i = 1, ..., N$$

$$\mathbf{q} := -\mathbf{1} \in \mathbb{R}^{Nx1}
\mathbf{P} := \mathbf{Q} \in \mathbb{R}^{NxN}
\mathbf{G} := -\mathbf{diag}(\mathbf{1}) \in \mathbb{R}^{NxN}
\mathbf{h} := \mathbf{0} \in \mathbb{R}^{Nx1}
\mathbf{h} := \mathbf{0} \in \mathbb{R}$$

Support Vectors Hard Margin - Support Vectors

Duality: We use the duality gap between the Primal and Dual solution, $p^* - d^* = 0$, to find the Support Vector:

→ Strong duality holds if,

$$\alpha_i(y_i(w^T x_i + b) - 1) = 0$$

implying that given $\alpha_i > 0$, if

$$y_i(w^T x_i + b) = 1$$

⇒ Support Vector

Support Vectors Hard Margin - Classification

Parameters:

$$w^* = \sum_{i=1}^{N} \alpha_i y_i x_i = (\boldsymbol{\alpha} \cdot \mathbf{y})^T \mathbf{X}$$
 (12)

$$b = y_i - w^T x_i (13)$$

Classification:

$$\mathbf{y}_{pred} = \operatorname{sign}((w^*)^T \mathbf{x} + b) \tag{14}$$

Support Vectors Hard Margin - Implementation

Link to the implementation on GITHUB:

soft-margin-linear- classifier

Support Vectors Hard Margin - Example Plot

Figure 3 Custom Hard Margin SVC versus scikit-learn linear SVC.

Figure 4 Confusion Matrices for custom hard margin SVC and SCIKIT baseline gard margin SVC.

- Hard Margin classification assumes that the data is linearly separable, i.e. does not overlap.
- Unrealistic in real world problems
- Extend the previous Support Vector method to allow misclassification.

- Hard Margin classification assumes that the data is linearly separable, i.e. does not overlap.
- Unrealistic in real world problems
- Extend the previous Support Vector method to allow misclassification.
- Introduce slack variables, $\xi_i \ge 0$, which measure the violation of the margin (in units of ||w||).

Figure 5 Depiction of Slack Variables ξ [4].

$$\min f_0(\theta)$$
 $s.t. \ f_i(\theta) \ge 0 \ \text{for } i = 1, ..., N$

(15)

$$\min \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^N \xi_i$$

$$s.t. \ y_i(w^T x_i + b - 1) \ge 1 - \xi_i \ \forall_i$$
(15)

$$\min \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^N \xi_i$$

$$s.t. \ y_i(w^T x_i + b - 1) > 1 - \xi_i \ \forall_i$$
(15)

Repeat the procedure:

- 1. Calculate the Primal
- Calculate the Dual
- 3. Use Duality to determine support vectors and to calculate the decision function to perform the classification.

Support VectorsSoft Margin - Primal

$$\mathcal{L}(w, b, \xi, \alpha, \mu) = \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^N \xi_i - \sum_{i=1}^N (\alpha_i (y_i(w^T x_i + b) - 1 + \xi_i) - \sum_{i=1}^N \mu_i \xi_i$$
 (16)

$$g(\alpha) = \min_{w,b,\xi} \mathcal{L}(w,b,\xi,\alpha,\mu)$$
(17)

KKT conditions:

$$\alpha_i \ge 0 \tag{21}$$

$$y_i(w^T x_i + b) - 1 + \xi_i \ge 0$$
 (19) $\xi_i \ge 0$ (22)

$$\alpha_i(y_i(w^Tx_i+b)-1+\xi_i)=0$$
 (20) $\mu_i\xi_i=0$ (23)

■ Determine w^*, b^* and ξ^*

Support Vectors Soft Margin - Dual

$$g(\alpha) = \mathcal{L}(w^*, b^*, \xi^*, \alpha) = \sum_{i=0}^{N} \alpha_i - \frac{1}{2} \sum_{i=0}^{N} \sum_{j=0}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j$$
 (24)

$$\max g(\alpha) \tag{25}$$

$$s.t. \ 0 \le \alpha_i \le C \tag{26}$$

$$\sum_{i=1}^{N} \alpha_i y_i = 0 \quad \text{for } i = 1, ..., N$$
 (27)

Similarly, as with eq. (11), we reformulate eq. (24) as a quadratic programming problem.

Support VectorsSoft Margin - Quadratic Programming

$$\min_{\alpha} \frac{1}{2} \alpha^T \mathbf{P} \alpha - \mathbf{1}_N^T \alpha \qquad (28)$$

$$s.t. \ y^T \alpha = 0 \qquad (29)$$

$$-\alpha_i \le 0 \text{ for } i = 1, ..., N \qquad (30)$$

$$\alpha_i \le C \text{ for } i = 1, ..., N \qquad (31)$$

$$egin{aligned} \mathbf{q} &:= -\mathbf{1_N} \in \mathbb{R}^{Nx1} \ \mathbf{P} &:= \mathbf{Q} \in \mathbb{R}^{NxN} \ \mathbf{G} &:= - \begin{pmatrix} -\mathbf{diag}(\mathbf{1_N}) \\ \mathbf{diag}(\mathbf{1_N}) \end{pmatrix} \in \mathbb{R}^{2NxN} \ \mathbf{h} &:= \begin{pmatrix} \mathbf{0_N} & C \cdot \mathbf{1_N} \end{pmatrix} \in \mathbb{R}^{2N \times 1} \ \mathbf{A} &:= \mathbf{y} \in \mathbb{R}^{Nx1} \ \mathbf{b} &:= \mathbf{0} \in \mathbb{R} \end{aligned}$$

Support VectorsSoft Margin Implementation

Link to the implementation on GITHUB:

nonlinear- classifier

Support Vectors Soft Margin - Example Plot

Figure 6 Classification result of the custom soft margin SVC and SCIKIT baseline soft SVC.

Figure 7 Confusion Matrices for custom soft margin SVC and SCIKIT baseline soft margin SVC.

Kernel Methods Hard Margin - Example Plot

Figure 8 Displays the classification result of the custom soft margin SVC and SCIKIT baseline soft SVC.

Figure 9 Confusion Matrices for custom soft margin SVC and SCIKIT baseline soft margin SVC.

Kernel Methods

- lacksquare So far, we still considered the data to be linearly separable in a feature space ${f X}$.
- In **extending** the Support Vector Machines for higher-dimensional data or non-linear data, we can further generalize the previous approaches by mapping d-dimensional data vectors into an n-dimensional feature space:

$$\phi: \mathbf{X} \to \mathcal{R}^n$$

Further, we make use of the *Kernel Trick*:

$$-\frac{1}{2}\sum_{i=0}^{N}\sum_{i=0}^{N}\alpha_{i}\alpha_{j}y_{i}y_{j}\phi(x_{i})^{T}\phi(x_{j})$$

$$-\frac{1}{2}\sum_{i=0}^{N}\sum_{j=0}^{N}\alpha_{i}\alpha_{j}y_{i}y_{j}k(x_{i},x_{j}), \quad \text{where } k(x_{i},x_{j})=\phi(x_{i})^{T}\phi(x_{j})$$

→ Increase computational speed for higher dimensional finite data.

Kernel Methods

- \blacksquare So far, we still considered the data to be linearly separable in a feature space X.
- In **extending** the Support Vector Machines for higher-dimensional data or non-linear data, we can further generalize the previous approaches by mapping d-dimensional data vectors into an n-dimensional feature space:

$$\phi: \mathbf{X} \to \mathcal{R}^n$$

■ Further, we make use of the *Kernel Trick*. Therefore eq. (24) can be written as,

$$g(\alpha) = \sum_{i=0}^{N} \alpha_i - \frac{1}{2} \sum_{i=0}^{N} \sum_{j=0}^{N} \alpha_i \alpha_j y_i y_j k(x_i, x_j)$$
 (32)

Kernel can be seen as a measure of similarity.

Kernel Methods

Linear:

$$k(x_1, x_2) = x_1^T x_2$$

Polynominal:

$$k(x_1, x_2) = (c + x_1^T x_2)^d$$

Radial Basis Function:

$$k(x_1, x_2) = \exp(-\gamma ||x_1 - x_2||^2)$$

Sigmoid:

$$k(x_1, x_2) = \tanh(\gamma x_1^T x_2 + c)$$

Classification: If the kernel is not linear, the classification function, eq. (14), has to be adopted,

$$y_{pred} = \sum_{i \in SV} \alpha_i y_i k(x, x_i) \tag{33}$$

Kernel Methods Implementation

Link to the implementation on GITHUB

nonlinear- classifier

Kernel Methods Kernel Method - Example Plot

Figure 10 Displays the classification result of the custom RBF SVC and SCIKIT baseline RBF SVC.

Figure 11 Confusion Matrices for custom RBF SVC and SCIKIT baseline RBF SVC.

Limitations to SVM

- Feature space becomes large ⇒ Kernel functions become computationally expensive.
- No probabilistic interpretation of the classification.
- Not suitable for large datasets.

Outline

- Introduction to Quantum Machine Learning
- Support Vector Machines
- Quantum Support Vector Machines
 - Quantum Kernel Estimation
 - Implementation of Quantum Support Vector Machines
- 4 Results
- 5 References

Quantum Kernel Estimation Introduction

- Idea: use the quantum advantage to speed up the computational speed of support vector classifiers (potential use of the exponentially large quantum state space)
- two methods:
 - 1. Quantum Variational Classifier
 - 2. Quantum Kernel Estimation

Quantum Kernel Estimation Introduction

- Idea: use the quantum advantage to speed up the computation of support vector classifiers (potential use of the exponentially large quantum state space).
- two methods:
 - 1. Quantum Variational Classifier
 - 2. Quantum Kernel Estimation
- In order to make use of the quantum advantage, the classical data needs to be transformed into the quantum state space.
 - Requires a data map (encoding function)
 - Requires a quantum feature map as a parameterized circuit
- From the quantum state space, we can estimate a kernel matrix that can be used with a classical Support Vector Classifier.

Quantum Kernel Estimation **Quantum Feature Map**

Transforms low dimensional real space onto high dimensional quantum state space [6]

$$\Phi: \mathbf{x} \in \Omega \to |\Phi(x)\rangle \langle \Phi(x)| [7]$$
 (34)

This is facilitated by a unitary operator $\mathcal{U}_{\Phi(x)}$ on a initial state $|0\rangle^n$ with n= number of qubits [8].

$$\Phi(x) = \mathcal{U}_{\Phi(x)} |0\rangle^{\otimes n} \tag{35}$$

$$\Phi(x) = \mathcal{U}_{\Phi(x)} |0\rangle^{\otimes n}$$

$$\mathcal{U}_{\Phi(x)} = \prod_{d} \mathbf{U}_{\Phi(x)} \mathcal{H}^{\otimes n}$$
(35)

- Dimensions of the feature fpace have to align with the number of qubits.
- Feature maps have a high influence on the classification accuracy, as they are the basis for the kernel estimation \implies Careful analysis of the feature space is necessary [6].

Quantum Kernel Estimation Quantum Feature Map - Quantum Circuit

Quantum Kernel EstimationPauli Feature Map

The Pauli-Feature Map is a customizable example of a *quantum feature map* where the $\mathbf{U}_{\Phi(x)}$ from eq. (36) is a diagonal gate in the Pauli basis,

$$\mathbf{U}_{\Phi(x)} = \exp\left\{i \sum_{S \subseteq [n]} \phi_S(x) \prod_{k \in S} P_i\right\}$$
(37)

with

- \square $P_i \in \{I, Pauli-X, Pauli-Y, Pauli-Z\}$
- $\square S \in \left\{ \binom{n}{k} \text{ combinations}, k = 1, ..., n \right\}$
- \square $\phi_S \rightarrow$ data mapping function (encoding function)
- Gives rise the the *Z-Feature Map* and the *ZZ-Feature Map*

Quantum Kernel Estimation Data Mapping functions

Standard function used in QISKIT,

$$\phi_S: x \to \begin{cases} x_i & \text{if } S = \{i\} \\ (x_i - \pi)(x_j - \pi) & \text{if } S = \{i, j\} \end{cases}$$

Further examples [6]:

$$\phi_S: x \to \begin{cases} x_i & \text{if } S = \{i\} \\ \exp\left(\frac{|x_i - x_j|^2}{8/\ln(\pi)}\right) & \text{if } S = \{i, j\} \end{cases}$$
(38)

$$\phi_S: x \to \begin{cases} x_i & \text{if } S = \{i\} \\ \frac{\pi}{3\cos x_i \cos x_i} & \text{if } S = \{i, j\} \end{cases}$$
 (39)

Quantum Kernel Estimation Quantum Feature Map - Example

■ Given eq. (37), if k = 2, $P_0 = Z$ and $P_1 = ZZ \implies ZZ$ -Feature Map:

$$\mathbf{U}_{\Phi(x)} = \exp\left\{ \left(i \sum_{jk} \phi_S(j,k) Z_j \otimes Z_k \right) \left(i \sum_j \phi_S(j) Z_j \right) \right\} \tag{40}$$

$$\mathcal{U}_{\Phi(x)} = \left(\exp\left\{ \left(i \sum_{jk} \phi_S(j,k) Z_j \otimes Z_k \right) \left(i \sum_j \phi_S(j) Z_j \right) \right\} \mathcal{H}^{\otimes n} \right)^d$$

$$\mathcal{U}_{\Phi(x)} = \left(\exp\left(i x_0 Z_0 + i x_1 Z_1 + i (x_0 - \pi) (x_1 - \pi) Z_0 Z_1 \right) \mathcal{H}^{\otimes n} \right)^d \tag{41}$$

Quantum Kernel Estimation Quantum Kernel

Quantum feature maps $\Phi(x)$ naturally give rise to *quantum kernels*:

$$k(x_i, x_j) = \Phi(x_i)^{\dagger} \Phi(x_j) \tag{42}$$

- As the kernel entries are the fidelities between two feature vectors, we need to establish a way to estimate the fidelities of a quantum state.
- For finite data, this scan be achieved by estimating the transition amplitude [7]:

$$K_{ij} = |\langle \Phi(x_i)^{\dagger} | \Phi(x_j) \rangle|^2 \tag{43}$$

Plugging in eq. (35) into eq. (43):

$$K_{ij} = |\langle 0|^{\otimes n} \mathcal{U}_{\Phi(x)}^{\dagger} \mathcal{U}_{\Phi(x)} |0\rangle^{\otimes n}|^2$$
(44)

Quantum Kernel Estimation Quantum Kernel

Quantum feature maps $\Phi(x)$ naturally give rise to *quantum kernels*:

$$k(x_i, x_j) = \Phi(x_i)^{\dagger} \Phi(x_j) \tag{42}$$

- As the kernel entries are the fidelities between two feature vectors, we need to establish a way to estimate the fidelities of a quantum state.
- For finite data, this scan be achieved by estimating the transition amplitude [7]:

$$K_{ij} = |\langle \Phi(x_i)^{\dagger} | \Phi(x_j) \rangle|^2 \tag{43}$$

Plugging in eq. (35) into eq. (43):

$$K_{ij} = |\langle 0|^{\otimes n} \mathcal{U}_{\Phi(x)}^{\dagger} \mathcal{U}_{\Phi(x)} |0\rangle^{\otimes n}|^2$$
(44)

⇒ Quantum kernel matrix estimate

 Build a parameterized quantum circuit that emulates a quantum feature map for each data pair.

Example: ZZ-Feature Map for 2-dimensional input

Recall: eq. (41)

$$\mathcal{U}_{\Phi(x)} = \left(\exp\left(ix_0 Z_0 + ix_1 Z_1 + i(x_0 - \pi)(x_1 - \pi) Z_0 Z_1\right) \mathcal{H}^{\otimes n}\right)^d$$

Figure 12 ZZ-Feature Map Circuit.

- 1. Built a parameterized quantum circuit that emulates a *quantum feature map* for each data pair.
- 2. Construct the quantum kernel circuits for each data pair.

Recall: eq. (44) and eq. (41)

$$K_{ij} = |\langle 0|^{\otimes n} \, \mathcal{U}_{\Phi(x)}^{\dagger} | \mathcal{U}_{\Phi(x)} | 0 \rangle^{\otimes n} |^2$$

$$q_0 - \mathbf{H} \qquad \mathbf{U}_{0,0,12} \qquad \mathbf{H} \qquad \mathbf{U}_{0,0,-126} \qquad \mathbf$$

Figure 13 Parameterized Quantum Kernel Circuit.

- 1. Built a parameterized quantum circuit that emulates a *quantum feature map* for each data pair.
- 2. Construct the *quantum kernel* circuits for each data pair.
- 3. Measure the number of all zero strings 0^n .

- 1. Built a parameterized quantum circuit that emulates a *quantum feature map* each data pair.
- 2. Construct the quantum kernel circuits for each data pair.
- 3. Measure the number of all zero strings 0^n .
- 4. Calculate the frequency of the zero strings to find the transition probability \implies Kernel entry of the the *quantum kernel*.

Note:** Step 3. and 4. computes the kernel values from the results of the inner products based on the measurements of the quantum circuits created for the *quantum kernel estimate*.

- 1. Built a parameterized quantum circuit that emulates a *quantum feature map* each data pair.
- 2. Construct the *quantum kernel* circuits for each data pair.
- 3. Measure the number of all zero strings 0^n .
- 4. Calculate the frequency of the zero strings to find the transition probability \implies Kernel entry of the the *quantum kernel*.

example:

- \square Given a dataset $\mathbf{X} \in \mathbb{R}^{10 \times 2}$
- ☐ Build parameterized kernel circuit from parameterized feature map circuits for each data pair ⇒ 100 circuits.

Implementation of Quantum Support Vector Machines Quantum Feature Map and Quantum Kernel Estimation

Links to the implementation on GITHUB:

- quantum-feature-map
- quantum-kernel-estimation

Implementation of Quantum Support Vector Machines Quantum SVC

How is the Quantum Kernel embedded into the SVM protocol?

How is the Quantum Kernel embedded into the SVM protocol?

Instead of using a classical kernel in the constraint optimization problem, eq. (25), just insert the quantum kernel estimate, eq. (44).

Implementation of Quantum Support Vector Machines Quantum SVC

How is the Quantum Kernel embedded into the SVM protocol?

Instead of using a classical kernel in the constraint optimization problem, eq. (25), just insert the quantum kernel estimate, eq. (44).

Now we, have a Quantum Support Vector Machine.

Outline

- Introduction to Quantum Machine Learning
- Support Vector Machines
- Quantum Support Vector Machines
- 4 Results
- 5 References

Results Benchmark SVC

	Linear	Polynomoinal	Sigmoid	RBF C=10	RBF C=100		Linear	Polynomoinal	Sigmoid	RBF C=10	RBF C=100
Linearly Separately Data	0.975	0.975	0.975	0.975	0.975	Linearly Separately Data	0.975	0.975	0.95	0.975	0.975
XOR Data	0.350	0.950	0.400	1.000	1.000	XOR Data	0.500	0.950	0.35	1.000	1.000
Circles Data	0.400	1.000	0.275	1.000	1.000	Circles Data	0.400	0.800	0.30	1.000	1.000
Moons Data	0.750	0.750	0.750	0.750	0.850	Moons Data	0.750	0.725	0.75	0.725	0.875
Adhoc Data	0.300	0.250	0.300	0.500	0.550	Adhoc Data	0.350	0.300	0.40	0.500	0.550

(a) Test accuracy Custom SVC.

(b) Test accuracy benchmark SVC.

(c) Example plot on XOR data.

Figure 14 Benchmark SVC.

Results Benchmark Quantum Kernel

Figure 15 Comparison of Custom Quantum Kernel and QISKIT quantum kernel.

Results Benchmark Quantum SVC

Figure 16 Comparison of Custom Quantum SVC and QISKIT baseline Quantum SVC.

Figure 17 Confusion Matrices for custom Quantum SVC and SCIKIT baseline Quantum SVC.

	Default Data Map	Exp Data Map	Sin Data Map	Cos Data Map
XOR Data	0.9375	1.000	1.0000	1.0000
Cirles Data	1.0000	1.000	1.0000	1.0000
Moons Data	0.6875	0.625	0.8125	0.8125
Adhoc Data	1.0000	0.500	0.7500	0.7500

Figure 18 Test accuracy of different data maps on different data.

Results

Comparison of the Z-Feature Map and the ZZ-Feature Map

Figure 19 Comparison of the Z-Feature Map and the ZZ-Feature Map on the Adhoc data [7].

Figure 20 Confusion Matrix of Z-Feature Map and ZZ-Feature Map on the Adhoc data [7].

Results

Comparison of a quantum kernel and a rbf kernel on adhoc Data

Figure 21 Benchmark on Adhoc data.

	Custom Quantum SVC	Custom RBF SVC
Adhoc Data	1.0	0.7

Figure 22 Test accuracy of custom QSVC and custom rbf SVC.

Results

ТИП

Comparison of Different Kernels on Different Data

Figure 23 Comparison of different classification models.

	Linear	Polynomoinal	Sigmoid	RBF C=10	RBF C=100	Quantum
Linearly Separately Data	0.975	0.975	0.975	0.975	0.975	0.950
XOR Data	0.350	0.950	0.400	1.000	1.000	0.950
Circles Data	0.400	1.000	0.275	1.000	1.000	0.975
Moons Data	0.750	0.750	0.750	0.750	0.850	0.850
Adhoc Data	0.300	0.250	0.300	0.500	0.550	1.000

Figure 24 Comparison of different classification models.

Results Conclusion

- Implemented a classical Support Vector Machine
- Implemented a Quantum Kernel Estimation
- Implemented a Quantum Support Vector Classifier
- Benchmarked of custom implementations against implementations of established libraries.
- Showed that quantum kernels can perform better on high dimensional data.

Potential Improvements:

- Improve efficiency of code
 - Remove unnecessary for-loops
 - Mirror quantum kernel in estimation as $K_{ij} = K_{ji}$
 - Initialize the diagonal elements as 1
- Implement a general Pauli-Feature Map
 - Implement a state vector calculation scheme for the quantum kernel estimation.

Outline

- Introduction to Quantum Machine Learning
- Support Vector Machines
- Quantum Support Vector Machines
- 4 Results
- 5 References

References I

- N. Mishra, M. Kapil, H. Rakesh, A. Anand, N. Mishra, A. Warke, S. Sarkar, S. Dutta, S. Gupta, A. P. Dash, *et al.*, "Quantum machine learning: A review and current status", *Data Management, Analytics and Innovation*, pp. 101–145, 2021.
- Y. Liu, S. Arunachalam, and K. Temme, "A rigorous and robust quantum speed-up in supervised machine learning", *Nature Physics*, vol. 17, no. 9, pp. 1013–1017, 2021.
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, "Quantum machine learning", *Nature*, vol. 549, no. 7671, pp. 195–202, 2017.
- C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
- S. Boyd, S. P. Boyd, and L. Vandenberghe, *Convex optimization*. Cambridge university press, 2004.

References II

- Y. Suzuki, H. Yano, Q. Gao, S. Uno, T. Tanaka, M. Akiyama, and N. Yamamoto, "Analysis and synthesis of feature map for kernel-based quantum classifier", *Quantum Machine Intelligence*, vol. 2, no. 1, pp. 1–9, 2020.
- V. Havlıček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, "Supervised learning with quantum-enhanced feature spaces", *Nature*, vol. 567, no. 7747, pp. 209–212, 2019.
- A. Phan. (2021), 2021 qiskit global summer school on quantum machine learning lab 3: Introduction to quantum kernels and svms, [Online]. Available: https://learn.qiskit.org/summer-school/2021/lab3-introduction-quantum-kernels-support-vector-machines (visited on 11/29/2021).