සියලු ම හිමිකම් ඇව්රිණි / (ආ(කුට් ටනිට්ටු)ම් කාව	படையது/All Rights R	eserved]

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලික්ක්ෂ්ය ලෙසා විභාග දෙපාර්තමේන්තුව ලෙසා විභාග දෙපාර්තමේන්තුව ලෙසා විභාග දෙපාර්තමේන්තුව ලෙසා විභාග දෙපාර්තමේන්තුව ලික්ක්ෂ්ය ලෙසා විභාග දෙපාර්තමේන්තුව ලෙසා විභාග දෙපාර්තමේන්ත් ලෙසා විභාග දෙපාර්තමේන්ත් ලෙසා විභාග දෙපාර්තමේන්තුව ලෙසා විභාග දෙපාර ලෙසා විභාග දෙපාර්තමේ

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்லிப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

2018.08.06 / 0830 - 1140

පැය භූනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය			Γ.			l	,
	ව්භාග	අංකය					

උපදෙස්:

💥 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- stනියමිත කාලය අවසන් වූ පසු f A කොටසෙහි පිළිතුරු පතුය, f B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- 🔆 පුශ්න පතුයෙහි **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණී.

(10) සංයුක්ත ගණිතය I				
කොටස	උශ්න අංකය	ලකුණු		
	1			
	2			
	3			
	4			
A	5			
A	6			
	7			
	8			
ļ	9			
	10			
	11			
	12			
	13			
В	14			
	15			
†	16			
	17			
	එකතුව			
	පුතිශතය			

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

	·	 	
ඉලක්කමෙන්			
අකුරෙන්			

සංකේත අංක

උත්තර පතු පරීක්ෂඃ	ක	
පරීක්ෂා කළේ:	1	
ටටක්මා ක්ලේ.	2	
අධීක්ෂණය කළේ:	_	

	A කොටස
1.	ගණිත අභපුහන මූලධර්මය භාවිතයෙන්, සියලු $n\in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n r^3 = \frac{1}{4} n^2 (n+1)^2$ බව සාධනය කරන්න.

2.	එක \emptyset රූප සටහනක $y=3- x $ හා $y= x-1 $ හි පුස්තාරවල දළ සටහන් අඳින්න.
	ඒ නගින් හෝ අන් අගුරකින් හෝ , $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	·······
	,

	4022 වී විභාග අංකය
AL/	2018/10/S-I
3.	දළ සටහනක් අරින්න .
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $\operatorname{Arg}(\overline{z}+3i)=rac{\pi}{3}$ වන පරිදි $ z-1 $ හි අවම අගය සොයන්න.
4.	$\left(x^2+rac{3k}{x} ight)^8$ හි ද්විපද පුසාරණයේ x හා x^4 හි සංගුණක සමාන වේ. k නියකයෙහි අගය සොයන්න.
	· · · · · · · · · · · · · · · · · · ·

4	5. $\lim_{x \to 0} \frac{1 - \cos\left(\frac{\pi x}{4}\right)}{x^2 (x+1)} = -\frac{1}{2}$	$rac{\pi^2}{32}$ බව පෙන්වන්න.		
ŀ	n (n+1)	. –		
	***************************************	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**********************
ĺ	***************************************	••••••••••••••••		
ĺ	**********************	·*************************************		
	********************			•••••
ĺ	***************************************	***************************************	***************************************	
	***************************************	***************************************	***************************************	
	*	***************************************		

	***************************************	***************************************	•••••	***************************************
	***************************************	******************************		••••••
		••••••••••••		***************************************
	***************************************	•••••••••••••••••		***********
	***************************************			•••••
	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	
	*************************	******************************	•••••	
6.	6. $y = e^{2x}$, $y = e^{3-x}$, $x =$ බව පෙන්වන්න.	0, x = 3 හා $y = 0$ වකු මගින්	ආවෘත පෙදෙසෙහි වර්ගඵලය, 8	වර්ග ඒකක $rac{3}{2}(e^2-1)$

	***********	***********		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

	•	***************		
	*********************		•••••	
		•••••••••••••••••••••••••••••••••••••••		

7.	$\frac{\pi}{2} < t < \pi$ සඳහා $x = \ln\left(\tan\frac{t}{2}\right)$ හා $y = \sin t$ පරාමිතික සමීකරණ මගින් C වකුයක් දෙනු ලැබේ.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos t \sin t$ බව පෙන්වන්න.
	$t=rac{2\pi}{3}$ ට අනුරූප ලක්ෂායෙහි දී C වකුයට ඇඳි ස්පර්ශ රේඛාවෙහි අනුකුමණය $-rac{\sqrt{3}}{4}$ බව අපෝහනය
	කරන්න.
	•••••••••••••••••••••••••••••••••••••••

8.	l_1 යනු $x+y-5=0$ සරල රේඛාව යැයි ගනිමු. $P\equiv (3,4)$ ලක්ෂාය හරහා යන හා l_1 ට ලම්බ වූ l_2 සරල
	• —
	රේඛාවෙහි සමීකරණය සොයන්න.
	\cdot
	රේඛාවෙහි සමීකරණය සොයන්න.
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
	රේඛාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද

9.	$P\equiv (1,2)$ හා $Q\equiv (7,10)$ යැයි ගනිමු. P හා Q ලක්ෂා විෂ්කම්භයක අන්ත ලෙස වූ වෘත්තයෙහි සමීකරණය $S\equiv (x-1)(x-a)+(y-2)(y-b)=0$ වන පරිදි a හා b නියතවල අගයන් ලියා දක්වන්න.
	$S'\equiv S+\lambda(4x-3y+2)=0$ යැයි ගනිමු; මෙහි λ \in \mathbb{R} වේ. P හා Q ලක්ෂා $S'=0$ වෘත්තය මත පිහිටන බව පෙන්වා, මෙම වෘත්තය $R\equiv (1,4)$ ලක්ෂාය හරහා යන පරිදි λ හි අගය සොයන්න.
	······
10.	$x \neq (2n+1)\frac{\pi}{2}$ සඳහා $\sec^3 x + 2\sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{\left(1 - \sin x\right)^2}$ බව පෙන්වන්න; මෙහි $n \in \mathbb{Z}$ වේ.
	•••••••••••••••••••••••••••••••••••••••
•	
	· · · · · · · · · · · · · · · · · · ·

සියලු ම හිමිකම් ඇවිටිනි / (முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

இ ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තුම් පුළුණු ලේක් පිහුදුණු දෙප්පාල්ගන්නුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் படிகளாக திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் Department of Examinations, Sri Lanka Department of **இலங்கைப் Sri Linka Department of Examinations**, Sri Lanka Department of Examinations, Sri Lanka Department of Examina

අධානයන පෞදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

கಂයුක්ත ගණිතය I இணைந்த கணிதம் **I** Combined Mathematics **I**

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

 $a,b\in\mathbb{R}$ යැයි ගනිමු. $3x^2-2\left(a+b\right)x+ab=0$ සමීකරණයේ විවේචකය a හා b ඇසුරෙන් ලියා දක්වා **ජ නයින්**, මෙම සමීකරණයේ මූල තාත්ත්වික බව පෙන්වන්න.

මෙම මූල lpha හා eta යැයි ගනිමු. a හා b ඇසුරෙන් lpha+eta හා lphaeta ලියා දක්වන්න.

දැන්, $\beta=\alpha+2$ යැයි ගනිමු. $a^2-ab+b^2=9$ බව පෙන්වා,

 $|a| \leq \sqrt{12}$ බව **අපෝගනය** කර, a ඇසුරෙන් b සොයන්න.

- (b) $c \neq 0$) හා d තාත්ත්වික සංඛන යැයි ද $f(x) = x^3 + 4x^2 + cx + d$ යැයි ද ගනිමු. (x+c) මගින් f(x) බෙදූ විට ශේෂය $-c^3$ වේ. තව ද (x-c) යන්න f(x) හි සාධකයක් වේ. c=-2 හා d=-12 බව පෙන්වන්න. c හා d හි මෙම අගයන් සඳහා (x^2-4) මගින් f(x) බෙදූ විට ශේෂය සොයන්න.
- 12. (a) එක එකක පිරිමි ළමයින් තිදෙනකු හා ගැහැනු ළමයින් දෙදෙනකු සිටින කණ්ඩායම් දෙකක සාමාජිකයන් අතුරෙන්, සාමාජිකයන් හයදෙනකුගෙන් යුත් කමිටුවක් තෝරා ගත යුතුව ඇත්තේ කමිටුවේ සිටින ගැහැනු ළමයින් සංඛාාව වැඩි තරමින් දෙදෙනකු වන පරිදි ය.
 - (i) කමිටුවට එක් එක් කණ්ඩායමෙන් සාමාජිකයන් ඉරට්ටේ සංඛාභවක් තෝරා ගත යුතු නම්,
 - (ii) කම්ටුවට එක් ගැහැනු ළමයකු පමණක් තෝරා ගත යුතු නම්,

සෑදිය හැකි එවැනි වෙනස් කමිටු ගණන සොයන්න.

$$(b) \ r \in \mathbb{Z}^+$$
 සඳහා $f(r) = \frac{1}{(r+1)^2}$ සහ $U_r = \frac{(r+2)}{(r+1)^2(r+3)^2}$ යැයි ගනිමු.

 $r \in \mathbb{Z}^+$ සඳහා $f(r) - f(r+2) = 4U_r$ බව පෙන්වන්න.

ඊ නයින්,
$$n\in\mathbb{Z}^+$$
සඳහා $\sum_{r=1}^n U_r = \frac{13}{144} - \frac{1}{4(n+2)^2} - \frac{1}{4(n+3)^2}$ බව පෙන්වන්න.

 $\sum_{r=1}^\infty U_r$ අපරිමිත ශ්ලේණිය අභිසාරී බව **අපෝහනය** කර එහි ඓකාසය සොයන්න.

$$n\!\in\! {\mathbb Z}^+$$
සඳහා $t_n=\sum_{r=n}^{2n}U_r$ යැයි ගනිමු.

 $\lim_{n\to\infty} t_n = 0$ බව පෙන්වන්න.

$$egin{aligned} \mathbf{13.} & (a) & \mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & -1 \end{pmatrix}$$
 හා $\mathbf{B} = \begin{pmatrix} 3 & 2a \\ -1 & 0 \\ 1 & 3a \end{pmatrix}$ යැයි ගනිමු; මෙහි $a \in \mathbb{R}$ වේ.

 ${f P}={f A}{f B}$ මගින් අර්ථ දැක්වෙන ${f P}$ නාහසය සොයා, a හි කිසිදු අගයකට ${f P}^{-1}$ නොපවතින බව පෙන්වන්න.

$$\mathbf{P}igg(egin{array}{c}1\2\end{array}igg)=5igg(egin{array}{c}2\1\end{array}igg)$$
 නම්, $a=2$ බව පෙන්වන්න.

a සඳහා මෙම අගය සහිත ව, ${f Q}={f P}+{f I}$ යැයි ගනිමු; මෙහි ${f I}$ යනු ගණය ${f 2}$ වන ඒකක නාහසයයි.

$$\mathbf{Q}^{-1}$$
 ලියා දක්වා $\mathbf{A}\mathbf{A}^{\mathrm{T}} - \frac{1}{2}\mathbf{R} = \left(\frac{1}{5}\mathbf{Q}\right)^{-1}$ වන පරිදි \mathbf{R} නාහසය සොයන්න.

- (b) z=x+iy යැයි ගනිමු; මෙහි x,y∈ \mathbb{R} වේ. z හි, මාපාංකය |z| හා පුතිබද්ධය \overline{z} අර්ථ දක්වන්න.
 - (i) $z\overline{z} = |z|^2$,
 - (ii) $z + \overline{z} = 2 \operatorname{Re} z$ so $z \overline{z} = 2i \operatorname{Im} z$
 - බව පෙන්වන්න.

$$z \neq 1$$
 හා $w = \frac{1+z}{1-z}$ යැයි ගනිමු. $\operatorname{Re} w = \frac{1-\left|z\right|^2}{\left|1-z\right|^2}$ හා $\operatorname{Im} w = \frac{2\operatorname{Im} z}{\left|1-z\right|^2}$ බව පෙන්වන්න.

 $z=\cos\,lpha\,+\,i\,\sin\,lpha\,\,(0<lpha<2\pi)$ නම්, $w=i\cotrac{lpha}{2}$ බව තව දුරටත් පෙන්වන්න.

- (c) අාගන්ඩ සටහනක, A හා B ලක්ෂා පිළිවෙළින් -3i හා 4 සංකීර්ණ සංඛාා නිරූපණය කරයි. C හා D ලක්ෂා පළමුවන වෘත්ත පාදකයේ පිහිටන්නේ ABCD රොම්බසයක් හා $B\hat{A}D=\theta$ වන පරිදි ය; මෙහි $\theta=\sin^{-1}\left(\frac{7}{25}\right)$ වේ. C හා D ලක්ෂා මගින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛාා සොයන්න.
- **14.** (a) $x \neq -1$, $\frac{1}{3}$ සඳහා $f(x) = \frac{16(x-1)}{(x+1)^2(3x-1)}$ යැයි ගනිමු.

 $x \neq -1$, $\frac{1}{3}$ සඳහා f(x)හි වයුත්පන්නය, f'(x) යන්න $f'(x) = \frac{-32x(3x-5)}{(x+1)^3(3x-1)^2}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝත්මුඛ හා හැරුම් ලක්ෂාා දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

පුස්තාරය භාවිතයෙන්, $k(x+1)^2 (3x-1) = 16(x-1)$ සමීකරණයට හරියටම එක් මූලයක් පවතින පරිදි $k \in \mathbb{R}$ හි අගයන් සොයන්න.

(b) අරය $3r \, {\rm cm} \, {\rm so} \, - {\rm cm} \, 5h \, {\rm cm} \, 2n \, {\rm so} \, {\rm$

15. (a) (i) x^2, x^1 හා x^0 හි සංගුණක සැසඳීමෙන්,

සියලු $x \in \mathbb{R}$ සඳහා $Ax^2(x-1) + Bx(x-1) + C(x-1) - Ax^3 = 1$ වන පරිදි A, B හා C නියතවල අගයන් සොයන්න.

ඒ නයින්, $\frac{1}{x^3(x-1)}$ යන්න භින්න භාග වලින් ලියා දක්වා $\int \frac{1}{x^3(x-1)} \, \mathrm{d}x$ සොයන්න.

(ii) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int x^2 \cos 2x \, \mathrm{d}x$ සොයන්න.

(b) $\theta = an^{-1}(\cos x)$ ආදේශය භාවිතයෙන්, $\int\limits_0^\pi \frac{\sin x}{\sqrt{1+\cos^2 x}} \,\mathrm{d}x = 2\ln\left(1+\sqrt{2}\right)$ බව පෙන්වන්න.

a නියතයක් වන $\int\limits_0^a f(x)\,\mathrm{d}x = \int\limits_0^a f(a-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්, $\int\limits_0^\pi \frac{x\sin x}{\sqrt{1+\cos^2 x}}\,\mathrm{d}x$ සොයන්න.

16. $A\equiv (-2,-3)$ හා $B\equiv (4,5)$ යැයි ගනිමු. AB රේඛාව සමග l_1 හා l_2 රේඛා එක එකක් සාදන සුළු කෝණය $rac{\pi}{4}$ වන පරිදි A ලක්ෂාය හරහා යන l_1 හා l_2 රේඛාවල සමීකරණ සොයන්න.

P හා Q ලක්ෂා පිළිවෙළින් l_1 හා l_2 මත ගෙන ඇත්තේ APBQ සමචතුරසුයක් වන පරිදි ය.

PQ හි සමීකරණය සොයා, P හා Q හි ඛණ්ඩාංක සොයන්න.

තව ද $A,\,P,\,B$ හා $\,Q\,$ ලක්ෂා හරහා යන $\,S\,$ වෘත්තයේ සමීකරණය සොයන්න.

 $\lambda > 1$ යැයි ගනිමු. $R \equiv (4\lambda\,,5\lambda\,)$ ලක්ෂාය, S වෘත්තයට පිටතින් පිහිටන බව පෙන්වන්න.

R ලක්ෂායේ සිට S වෘත්තයට ඇඳි ස්පර්ශකවල ස්පර්ශ ජාහයේ සමීකරණය සොයන්න.

 λ (> 1) විචලනය වන විට, මෙම ස්පර්ශ ජාාායන් අචල ලක්ෂාායක් හරහා යන බව පෙන්වන්න.

17. (a) $0 \le \theta \le \pi$ සඳහා $\cos 2\theta + \cos 3\theta = 0$ විසඳන්න. $\cos \theta \ \text{අැසුරෙන් } \cos 2\theta \ \text{හා } \cos 3\theta \ \text{ලියා } \text{දක්වා, } \cos 2\theta + \cos 3\theta = 4t^3 + 2t^2 - 3t - 1 \ \text{බව පෙන්වන්න;}$ මෙහි $t = \cos \theta$ වේ.

ඒ නයින්. $4t^3+2t^2-3t-1=0$ සමීකරණයෙහි මූල තුන ලියා දක්වා $4t^2-2t-1=0$ සමීකරණයෙහි මූල $\cos\frac{\pi}{5}$ හා $\cos\frac{3\pi}{5}$ බව පෙන්වන්න. $\cos\frac{3\pi}{5}=\frac{1-\sqrt{5}}{4}$ බව **අපෝහන**ය කරන්න.

(b) ABC තිකෝණයක් යැයි ද D යනු BD:DC=m:n වන පරිදි BC මත වූ ලක්ෂාය යැයි ද ගනිමු; මෙහි $m,\,n>0$ වේ. $B\hat{A}D=\alpha$ හා $D\hat{A}C=\beta$ බව දී ඇත. BAD හා DAC තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන්, $\frac{mb}{nc}=\frac{\sin\alpha}{\sin\beta}$ බව පෙන්වන්න; මෙහි b=AC හා c=AB වේ.

ඒ නයින්, $\frac{mb-nc}{mb+nc}=\tan\left(\frac{\alpha-\beta}{2}\right)\cot\left(\frac{\alpha+\beta}{2}\right)$ බව පෙන්වන්න.

(c) $2 \tan^{-1} \left(\frac{1}{3}\right) + \tan^{-1} \left(\frac{4}{3}\right) = \frac{\pi}{2}$ බව පෙන්වන්න.

සියලු	0	හිමිකම්	ඇවිරිණි / ගුඟුධ	பதிப்புரிமையுடை	.யது/All	Rights	Reserved]

ම් ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව පිරිසුතු පාප්පාර්තමේන්තුව විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ඉබාහනසට பුර්ධනෙන් නිකකාස්සභාග ඉබාහනසට පුර්ධනෙන් නිකකාස්සභාග ප්‍රතියේ ප්‍රධාන දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව Department of Examinations, Sri Lanka Department රැ**න්මාන්තමේ LSriithi මෙන් සභාග සභාග විභාග** දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලේකා විභාග දෙපාර්තමේන්තුව ලී ලේකා විභාග දෙපාර්තමේන්තුව ලී ලේකා විභාග දෙපාර්තමේන්තුව ලී ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර දෙපාර ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර ලේකා වෙන්න වෙන්න දෙපාර ලේකා වෙන්න දෙපාර ලේකා විභාග දෙපාර ලේකා විභාග දෙපාර ලේකා

අධායන පොදු සහනික පනු (උසස් පෙළ) විභාගය, 2018 අශෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகள்ந் General Certificate of Education (Adv. Level) Examination, August 2018

සංයුක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II

2018.08.08 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours **අමතර කියවීම කාලය** - **මිනිත්තු 10 යි** மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඩත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය

උපදෙස්:

🛠 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

 ${f A}$ කොටස (පුශ්න 1 - 10) සහ ${f B}$ කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්ත පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- ※ නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පනුයෙහි $oldsymbol{B}$ කොටස පමණක් විභාග ශාලාවෙන් පිටකට ගෙන යාමට ඔබට අවසර ඇක.
- st මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුකත ගණතය 11		
කොටස පුශ්න අංකය		ලකුණු
	1	_
	2	·
	3	
	4	···
	5	
A	6	
	7	
	8	
	9	
	10	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11	
1	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශතය	

I පතුය	·
II පතුය	
එකතුව	
අවසාන ලකුණු	·

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීක්ෂා	ක	
පරීක්ෂා කලළ්:	1	
	2	
අධීක්ෂණය කළේ:		

A	කො	<u> </u>
-	чыы.	LAG

1.	සුමට තිරස් මේසයක් මත එකම සරල රේබාවක් දිගේ එකිනෙක දෙසට එකම u වේගයෙන් චලනය වෙමින තිබෙන, ස්කන්ධ පිළිවෙළින් $2m$ හා m වූ A හා B අංශු දෙකක් සරල ලෙස ගැටේ. ගැටුමෙන් මොහොතකට
	පසු A අංශුව නිශ්චලතාවට පැමිණෙයි. පුතාාගති සංගුණකය $\frac{1}{2}$ බව ද ගැටුම නිසා B මත යෙදෙන ආවේගයෙහි විශාලත්වය $2mu$ බව ද පෙන්වන්න.
	
2.	තිරස් බිම මත වූ ලක්ෂායක සිට තිරසට $lpha\Big(0 කෝණයකින් u=\sqrt{2gR} ආරම්භක චේගයෙන්$
	21 amammo m - 12000 alo 10 10 10 10 10 10 10 10 10 10 10 10 10
	අංශවක් පක්ෂේප කරන ලැබේ: මෙහි R යන. බිම මත පක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක පුක්ෂේපණ දිශා දෙක අතර කෝණය $\frac{\pi}{3}$ බව පෙන්වන්න.
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක
	අංශුවක් පුක්ෂේප කරනු ලැබේ; මෙහි R යනු, බිම මත පුක්ෂිප්තයේ තිරස් පරාසය වේ. තිබිය හැකි ආරම්භක

3.	ස්කන්ධය m වූ P අංශුවක් හා ස්කන්ධය λm වූ Q අංශුවක් අචල, සුමට කප්පියක් උඩින් යන සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට ඈඳා ඇත. රූපයේ දැක්වෙන පරිදි, තන්තුව	
	තදව ඇතිව, පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිනු ලබයි. P අංශුව $rac{g}{2}$ ත්වරණයකින්	•
	පහළට චලනය වේ. $\lambda=\frac{1}{3}$ බව පෙන්වන්න.	:
	P අංශුව තිරස් අදානසස්ථ ගෙබිමක $ u$ වේගයෙන් ගැටෙයි නම් හා Q අංශුව කිසිවිටෙකත් \dot{Q} \dot{Q}	
	කප්පිය කරා ළඟා නොවේ නම්, P අංශුව බීම ගැටුණු මොහොතේ සිට Q අංශුව උපරිම උසට ළඟා වීමට ගන්නා කාලය සොයන්න.	
•		
	· · · · · · · · · · · · · · · · · · ·	•
		•
		•
		٠
		•
	•••••••••••••••••••••••••••••••••••••••	•
		•
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
4.	ස්කන්ධය 1200 kg වූ කාරයක් එන්ජිම කිුිිියා වීරහිත කර තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිලේ	3
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිි කර තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගෙ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=rac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms}^{-2}$ ලෙස	
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිි කිර තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=rac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms}^{-2}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න.	8
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිි කර තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගෙ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=rac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms}^{-2}$ ලෙස	8
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිිිිි කර තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=rac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $rac{1}{6}~{ m ms^{-2}}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විට	8
4 .	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිිිිි කර තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=rac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $rac{1}{6}~{ m ms^{-2}}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විට	8
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිිිිි කර තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=rac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $rac{1}{6}~{ m ms^{-2}}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විට	8
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිිිිි කර තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=rac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $rac{1}{6}~{ m ms^{-2}}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විට	8
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිිිිි කර තිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිගේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=rac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $rac{1}{6}~{ m ms^{-2}}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විට	8
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිිිිිි කර හිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිශේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=\frac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}~{ m ms^{-2}}$ ක්වරණයක් සහිත ව එම පාරම දිශේ ඉහළට ගමන් කරන විට එහි වේගය $15~{ m ms^{-1}}$ වන මොහොතේ දී එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න.	8
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිිිිිි කර හිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිශේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=\frac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}~{ m ms^{-2}}$ ක්වරණයක් සහිත ව එම පාරම දිශේ ඉහළට ගමන් කරන විට එහි වේගය $15~{ m ms^{-1}}$ වන මොහොතේ දී එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න.	8
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිිිිිි කර හිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිශේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=\frac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}~{ m ms^{-2}}$ ක්වරණයක් සහිත ව එම පාරම දිශේ ඉහළට ගමන් කරන විට එහි වේගය $15~{ m ms^{-1}}$ වන මොහොතේ දී එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න.	8
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිිිිිි කර හිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිශේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=\frac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}~{ m ms^{-2}}$ ක්වරණයක් සහිත ව එම පාරම දිශේ ඉහළට ගමන් කරන විට එහි වේගය $15~{ m ms^{-1}}$ වන මොහොතේ දී එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න.	8
4.	ස්කන්ධය $1200~{ m kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිිිිිි කර හිරසට $lpha$ කෝණයක් ආනත වූ සෘජු පාරක් දිශේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sinlpha=\frac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{ m ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}~{ m ms^{-2}}$ ක්වරණයක් සහිත ව එම පාරම දිශේ ඉහළට ගමන් කරන විට එහි වේගය $15~{ m ms^{-1}}$ වන මොහොතේ දී එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න.	
4.	ස්කන්ධය $1200~{\rm kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිි කර තිරසට α කෝණයක් ආනත වූ ඍජු පාරක් දිලේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sin\alpha=\frac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{\rm ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}~{\rm ms^{-2}}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විට එහි වේගය $15~{\rm ms^{-1}}$ වන මොහොතේ දී එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න.	
4.	ස්කන්ධය $1200~{\rm kg}$ වූ කාරයක් එන්ජිම කිුිිිිිිිිිිිිිිිිි කර තිරසට α කෝණයක් ආනත වූ ඍජු පාරක් දිලේ පහළට යම් නියත වේගයකින් චලනය වේ; මෙහි $\sin\alpha=\frac{1}{30}$ වේ. ගුරුත්වජ ත්වරණය $g=10~{\rm ms^{-2}}$ ලෙස ගනිමින් කාරයේ චලිතයට පුතිරෝධය නිව්ටන වලින් සොයන්න. කාරය, එම පුතිරෝධයටම යටත්ව $\frac{1}{6}~{\rm ms^{-2}}$ ත්වරණයක් සහිත ව එම පාරම දිගේ ඉහළට ගමන් කරන විට එහි වේගය $15~{\rm ms^{-1}}$ වන මොහොතේ දී එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න.	

	5.	සුපුරුදු අංකනයෙන්, $3i$ හා $2i+3j$ යනු O අචල මූලයකට අනුබද්ධයෙන් පිළිවෙළින් A හා B ලක්ෂාය දෙකක පිහිටුම් දෙශික යැයි ගනිමු. C යනු $O\hat{C}A = \frac{\pi}{2}$ වන පරිදි OB සරල රේඛාව මත පිහිටි ලක්ෂාය යැයි ගනිමු. \overrightarrow{OC} දෙශිකය i හා j ඇසුරෙන් සොයන්න.
123		යැය ගන්මු. එර මෛද්ශකය I හා J ඇසුරෙන මසායනන.
4(
		· · · · · · · · · · · · · · · · · · ·
		•••••••••••••••••••••••••••••••••••••••
		······································
	6.	දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක්, BC සැහැල්ලු අවිතනා තන්තුවක් $\qquad \qquad \qquad$
		මගින් හා A කෙළවරේ දී යොදන ලද P ති්රස් බලයක් මගින් රූපයේ
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45°
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන $ heta$ කෝණය
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන $ heta$ කෝණය
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන $ heta$ කෝණය
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
-		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.
		දැක්වෙන පරිදි සමතුලිතතාවේ අල්වා තබා ඇත. දණ්ඩ, තිරස සමග 45° කෝණයක් සාදන බව දී ඇත්නම්, BC තන්තුව තිරස සමග සාදන θ කෝණය $B = 2$ මගින් දෙනු ලබන බව පෙන්වන්න.

7	. A හා B යනු S නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A)=rac{1}{3},P(B)=rac{1}{4}$ හ $P(A\cap B)=rac{1}{6}$ වේ. $P(A B'),P(A'\cap B')$ හා $P(B' A')$ සොයන්න; මෙහි A' හා B' මගින් පිළිවෙළින් A හ
	B සිද්ධිවල අනුපූරක සිද්ධි දැක්වේ.
	· · · · · · · · · · · · · · · · · · ·
	එක බැගින් පුතිස්ථාපනයෙන් තොරව, බෝල හතරක් සසම්භාවී ලෙස මල්ලෙන් ඉවතට ගනු ලැබේ.
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,
	(i) ඉවතට ගනු ලබන බෝල එකම පාටින් යුක්ත වීමේ, (ii) ඕනෑම අනුයාත ඉවතට ගැනීම් දෙකක දී ඉවතට ගනු ලබන බෝල වෙනස් පාටින් යුක්ත වීමේ,

9	. එක එකක් 8 ට අඩු ධන නිඛිල පහකට එක මාතයක් පමණක් ඇත. ඒවායේ මධානාය, මාතය හා මධාස්ථය
	6: 10:5 අනුපාතවලට පිහිටයි. මෙම නිඛිල පහ සොයන්න.
ŀ	

10.	එක්තරා නගරයක උෂ්ණත්වය දින 20ක් සඳහා දිනපතා වාර්තාගත කරන ලදී. මෙම දත්ත කුලකය සඳහා
	මධාෘනාෳය μ හා සම්මත අපගමනය σ පිළිවෙළින් $28^{\circ}\mathrm{C}$ හා $4^{\circ}\mathrm{C}$ ලෙස ගණනය කර තිබුණි. කෙසේ නමුත්
	ඉහත උෂ්ණත්වවලින් දෙකක් $35^{ m o}{ m C}$ හා $21^{ m o}{ m C}$ ලෙස වැරදියට ඇතුළත් කර ඇති බව සොයා ගැනීමෙන් පසුව
	ඒවා $25^\circ\mathrm{C}$ හා $31^\circ\mathrm{C}$ ලෙස නිවැරදි කරන ලදී. μ හා σ හි නිවැරදි අගයන් සොයන්න.

සියලු ම හිමිකම් ඇව්රිණි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved}

ලි ලංකා විතාග දෙපාර්තමේත්තුව ලි ලංකා විතාග දෙපාර්ත**ල් නියුතිය විපාහා දෙපාර්තල්වන්නව**ාන දෙපාර්තමේත්තුව ලි ලංකා විතාග දෙපාර්තමේත්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பட කරන නිකුණේසේගේ ඉලාස්කයට ගැරීමෙන් නිකුණේසෙන් இலங்கைப் பரீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **இலங்கின்ன Sri Lanka** Department of Examinations, Sri Lanka Operatment of

අධානයන පෞදු සහනික පනු (උසස් පෙළ) විශාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

සංයුක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II 10 S II

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

B කොටස

(මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.)

11.(a) මීටර 4d ගැඹුරු පතලක චලනය වන සෝපානයක් t=0 කාලයේ දී A ලක්ෂායකින් නිශ්චලතාවේ සිට සිරස් ව පහළට චලනය වීමට පටන් ගනී. එය, පළමුව $\frac{g}{2}$ m s^{-2} නියත ත්වරණයෙන් මීටර d දුරක් චලනය වී ඊළඟට එම චලිතය අවසානයේ ලබාගත් පුවේගයෙන් තව මීටර d දුරක් චලනය වේ. සෝපානය ඉන්පසු A සිට මීටර 4d දුරක් පහළින් පිහිටි B ලක්ෂායේ දී නිශ්චලතාවට පැමිණෙන පරිදි නියත මන්දනයකින් ඉතිරි දුර ද චලනය වේ.

සෝපානයෙහි චලිතය සඳහා පුවේග-කාල වකුයේ දළ සටහනක් අඳින්න.

ඒ නයින්, A සිට B දක්වා පහළට චලිතය සඳහා සෝපානය ගනු ලබන මුළු කාලය සොයන්න.

(b) පොළොවට සාපේක්ෂව $u \ \mathrm{km} \ \mathrm{h}^{-1}$ ඒකාකාර වේගයකින් උතුරු දිශාවට නැවක් යාතුා කරයි. එක්තරා මොහොතක දී නැවේ සිට, දකුණෙන් නැගෙනහිරට β කෝණයකින්, **නැවේ පෙතෙහි සිට** $p \ \mathrm{km}$ දුරකින් B_1 බෝට්ටුවක් නිරීක්ෂණය කරනු ලැබේ. මෙම මොහොතේ දී ම, B_2 බෝට්ටුවක් නැවේ සිට බටහිරින් $q \ \mathrm{km}$ දුරකින් නිරීක්ෂණය කරනු ලැබේ. බෝට්ටු දෙකම පොළොවට සාපේක්ෂව $v(>u) \ \mathrm{km} \ \mathrm{h}^{-1}$ ඒකාකාර වේගයෙන් සරල රේඛීය පෙත්වල, නැව අල්ලා ගැනීමේ අපේක්ෂාවෙන් යාතුා කරයි. පොළොවට සාපේක්ෂව බෝට්ටුවල පෙත් නිර්ණය කිරීම සඳහා පුවේග තිකෝණවල දළ සටහන් එකම රූපයක අඳින්න. පොළොවට සාපේක්ෂව B_1 බෝට්ටුවේ පෙත උතුරෙන් බටහිරට $\beta - \sin^{-1}\left(\frac{u \sin \beta}{v}\right)$ කෝණයක් සාදන බව පෙන්වා, පොළොවට සාපේක්ෂව B_2 බෝට්ටුවේ පෙත සොයන්න.

 $eta=rac{\pi}{3}$ හා $v=\sqrt{3}u$ යැයි ගනිමු. $3q^2>8p^2$ නම්, B_1 බෝට්ටුව B_2 බෝට්ටුවට පෙර නැව අල්ලා ගන්නා බව පෙන්වන්න.

12.(a) AB = a හා $B\hat{A}D = \frac{\pi}{6}$ වන පරිදි වූ රූපයේ දැක්වෙන ABCD තුපීසියම, ස්කන්ධය 2m වූ සුමට ඒකාකාර කුට්ටියක ගුරුත්ව කේන්දුය තුළින් වූ සිරස් හරස්කඩකි. AD හා BC රේඛා සමාන්තර වන අතර AB රේඛාව එය අඩංගු මුහුණතෙහි උපරිම බෑවුම් රේඛාවකි. AD අයත් මුහුණත සුමට තිරස් ගෙබීමක් මත ඇතිව කුට්ටිය තබනු ලබයි. රූපයේ දැක්වෙන පරිදි ස්කන්ධය m වූ P අංශුවක් A ලක්ෂායෙහි තබා, එයට \overrightarrow{AB} දිගේ u පුවේගයක් දෙනු ලබයි; මෙහි $u^2 = \frac{7ga}{3}$ වේ. කුට්ටියට සාපේක්ෂව P හි මන්දනය $\frac{2g}{3}$ බව පෙන්වා, P අංශුව B කරා ළඟා වන විට, කුට්ටියට සාපේක්ෂව P අංශුවෙහි පුවේගය සොයන්න.

තව ද $BE=rac{\sqrt{3}a}{2}$ වන පරිදි කුට්ටියෙහි උඩත් මුහුණතෙහි BC මත වූ E ලක්ෂායේ කුඩා සිදුරක් ඇත. කුට්ටියට සාපේක්ෂව චලිතය සැලකීමෙන්, P අංශුව E හි ඇති සිදුරට වැටෙන බව පෙන්වන්න.

(b) දිග a වූ සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් O අචල ලක්ෂායකට ද අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ද ඇඳා ඇත. අංශුව O ට සිරස් ව පහළින් නිශ්චලව එල්ලී තිබෙන අතර එයට විශාලත්වය $u=\sqrt{kag}$ වූ තිරස් පුවේගයක් දෙනු ලැබේ; මෙහි 2< k< 5 වේ. තන්තුව θ කෝණයකින් හැරී තවමත් නොබුරුල්ව තිබෙන විට අංශුවේ v වේගය $v^2=(k-2)ag+2ag\cos\theta$ මගින් දෙනු ලබන බව පෙන්වන්න.

මෙම පිහිටීමේ දී තන්තුවේ ආතතිය සොයන්න.

heta=lpha වන විට තන්තුව බුරුල් වන බව **අපෝහනය** කරන්න; මෙහි $\coslpha=rac{2-k}{3}$ වේ.

13. ස්කන්ධය m වූ P අංශුවක් එක එකක ස්වාභාවික දිග a හා මාපාංකය mg වූ සමාන සැහැල්ලු පුතාහස්ථ තන්තු දෙකක කෙළවර දෙකකට ඇඳා ඇත. එක තන්තුවක නිදහස් කෙළවර A අචල ලක්ෂායකට හා අනික් තන්තුවේ නිදහස් කෙළවර A ට සිරස් ව පහළින් 4a දුරකින් පිහිටි B අචල ලක්ෂායකට ඇඳා ඇත. (රූපය බලන්න.) තන්තු දෙකම නොබුරුල්ව, A ට $\frac{5a}{2}$ දුරක් පහළින් අංශුව සමතුලිතව තිබෙන බව පෙන්වන්න.

P අංශුව දැන්, AB හි මධා ලක්ෂායට ඔසවා එම පිහිටීමේ දී නිසලතාවේ සිට සීරුවෙන් මුදාහරිනු ලැබේ. තන්තු දෙකම නොබුරුල් හා AP තන්තුවේ දිග x වන විට, $\ddot{x}+\frac{2g}{a}\Big(x-\frac{5a}{2}\Big)=0$ බව පෙන්වන්න.

මෙම සමීකරණය $\ddot{X}+\omega^2X=0$ ආකාරයෙන් නැවත ලියන්න; මෙහි $X=x-\frac{5a}{2}$ හා $\omega^2=\frac{2g}{a}$ වේ.

 ${\dot X}^2 = \omega^2 (c^2 - X^2)$ සූතුය භාවිතයෙන් මෙම චලිතයේ විස්තාරය c සොයන්න.

P අංශුව එහි පහත් ම පිහිටීමට ළඟා වන මොහොතේ දී PB තන්තුව කපනු ලැබේ. නව චලිතයේ දී x=a වන විට අංශුව එහි උච්චතම පිහිටීමට ළඟා වන බව පෙන්වන්න.

P අංශුව x=2a හි වූ එහි ආරම්භක පිහිටීමේ සිට පහළට a දුරක් ද ඊළඟට ඉහළට $\frac{a}{2}$ දුරක් ද චලනය වීමට ගනු ලබන මුළු කාලය $\frac{\pi}{3}\sqrt{\frac{a}{2g}}\left(3+\sqrt{2}\right)$ බව තව දුරටත් පෙන්වන්න.

(b) Oxy-තලයේ වූ බල පද්ධතියක් පිළිවෙළින් (-a, 2a), (0, a) හා (-a, 0) ලක්ෂාවල දී කි්ුයාකරන $3P\mathbf{i} + 2P\mathbf{j}$, $2P\mathbf{i} - P\mathbf{j}$ හා $-P\mathbf{i} + 2P\mathbf{j}$ යන බල තුනෙන් සමන්විත වේ; මෙහි P හා a යනු පිළිවෙළින් නිව්ටන හා මීටරවලින් මනින ලද ධන රාශි වේ. O මූලය වටා, පද්ධතියේ දක්ෂිණාවර්ත සූර්ණය, 12Pa Nm බව පෙන්වන්න.

තව ද පද්ධතිය, විශාලත්වය 5P N වූ තති සම්පුයුක්ත බලයකට තුලx වන බව පෙන්වා, එහි දිශාව හා කිුිිියා රේඛාවේ සමීකරණය සොයන්න.

දැන්, අතිරේක බලයක් පද්ධතියට ඇතුළත් කරනු ලබන්නේ නව පද්ධතිය දක්ෂිණාවර්ත සූර්ණය $24\,Pa~{
m N\,m}$ වූ යුග්මයකට තුලා වන පරිදි ය. අතිරේක බලයෙහි විශාලත්වය, දිශාව හා කිුිිිිියා රේඛාවේ සමීකරණය සොයන්න.

P @ - 1

- 15.(a) බර W හා දිග 2a වූ ඒකාකාර AB දණ්ඩක A කෙළවර රළු තිරස් බිමක් මත හා B කෙළවර සුමට සිරස් බිත්තියකට එරෙහිව තබා ඇත. දණ්ඩ බිත්තියට ලම්බ සිරස් තලයක පිහිටන අතර, එය තිරස සමග θ කෝණයක් සාදයි; මෙහි $\tan \theta = \frac{3}{4}$ වේ. AC = x ලෙස දණ්ඩ මත වූ C ලක්ෂායට බර W වූ අංශුවක් සවී කර ඇත. අංශුව සහිත දණ්ඩ සමතුලිතතාවයේ ඇත. දණ්ඩ හා බිම අතර ඝර්ෂණ සංගුණකය $\frac{5}{6}$ වේ. $x \leq \frac{3a}{2}$ බව පෙන්වන්න.
 - (b) යාබද රූපයෙහි පෙන්වා ඇති රාමු සැකිල්ල, AB,BC,AC,CD හා AD සැහැල්ලු දඬු පහක් ඒවායේ කෙළවරවලින් නිදහසේ සන්ධි කර සාදා ඇත. AB = a, BC = 2a, AC = CD හා $C\hat{A}D = 30^\circ$ බව දී ඇත. බර W වූ භාරයක් D හි එල්ලෙන අතර පිළිවෙළින් A හා B හි දී **රූපයේ දක්වා ඇති දිශාවලට** කියාකරන P හා Q සිරස් බලවල ආධාරයෙන් AB තිරස් ව හා AC සිරස් ව රාමු සැකිල්ල සිරස් තලයක සමතුලිතව තිබේ. Q හි අගය W ඇසුරෙන් සොයන්න. බෝ අංකනය භාවිතයෙන් පුතාහබල සටහනක් ඇඳ, **ඒ නගින්**, දඬු පහේ පුතාහබල සොයා, මෙම පුතාහබල ආතති ද තෙරපුම් ද යන්න පුකාශ කරන්න.

16.අරය a වූ ඒකාකාර ඝන අර්ධ ගෝලයක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට $\frac{3}{8}a$ දුරකින් පිහිටන බව පෙන්වන්න.

අරය a, උස a හා සනත්වය ρ වූ ඒකාකාර සන සෘජු වෘත්තාකාර සිලින්ඩරයකින් අරය a වූ අර්ධ ගෝලාකාර කොටසක් කපා ඉවත් කරනු ලැබේ. දැන්, යාබද රූපයේ දැක්වෙන පරිදි සිලින්ඩරයේ ඉතිරි කොටසෙහි වෘත්තාකාර මුහුණතට අරය a හා සනත්වය $\lambda\rho$ වූ ඒකාකාර සන අර්ධ ගෝලයක වෘත්තාකාර මුහුණත සවි කරනු ලබන්නේ, ඒවායේ සමමිතික අක්ෂ දෙක සම්පාත වන පරිදි ය. මෙලෙස සාදාගනු ලබන S වස්තුවෙහි ස්කන්ධ කේන්දුය, එහි සමමිතික අක්ෂය මත, ගැටියේ O කේන්දුයේ සිට $\frac{(11\lambda+3)a}{4(2\lambda+1)}$ දුරකින් පිහිටන බව පෙන්වන්න.

 $\lambda=2$ යැයි ද A යනු S වස්තුවෙහි වෘත්තාකාර ගැටිය මත වූ ලක්ෂායක් යැයි ද ගනිමු.

මෙම S වස්තුව රළු සිරස් බිත්තියකට එරෙහිව සමතුලිතව තබා ඇත්තේ, A ලක්ෂායට හා සිරස් බිත්තිය මත වූ B අචල ලක්ෂායකට ඇඳා ඇති සැහැල්ලු අවිතනා තත්තුවක ආධාරයෙනි. මෙම සමතුලිත පිහිටීමේ දී S හි සමමිතික අක්ෂය බිත්තියට ලම්බව පිහිටන අතර S හි අර්ධ ගෝලාකාර පෘෂ්ඨය B ලක්ෂායට 3a දුරක් සිරස් ව පහළින් වූ C ලක්ෂායේ දී බිත්තිය ස්පර්ශ කරයි. (යාබද රූපය බලන්න.) O,A,B හා C ලක්ෂා බිත්තියට ලම්බ සිරස් තලයක පිහිටයි.

 μ යනු බිත්තිය හා S හි අර්ධ ගෝලීය පෘෂ්ඨය අතර ඝර්ෂණ සංගුණකය නම්, $\mu \geq 3$ බව පෙන්වන්න.

- 17.(a) අායතනයක එක්තරා රැකියාවකට අයදුම් කරන සියලු ම අයදුම්කරුවන් අභියෝගානා පරීක්ෂණයකට පෙනීසිටීම අවශා වේ. මෙම අභියෝගානා පරීක්ෂණයෙන් A ශ්‍රේණියක් ලබන අය රැකියාව සඳහා තෝරාගනු ලබන අතර, ඉතිරි අයදුම්කරුවන් සම්මුඛ පරීක්ෂණයකට මුහුණ දිය යුතු ය. අයදුම්කරුවන්ගෙන් 60% ක් A ශ්‍රේණි ලබන බව ද ඒ අයගෙන් 40% ක් ගැහැනු අය බව ද සමීක්ෂණයක දී සොයා ගෙන ඇත. සම්මුඛ පරීක්ෂණයට මුහුණ දෙන අයදුම්කරුවන්ගෙන් 10% ක් පමණක් තෝරාගනු ලබන අතර එයින් 70% ක් ගැහැනු අය වෙති.
 - (i) මෙම රැකියාව සඳහා පිරිමි අයකු තෝරාගනු ලැබීමේ,
 - (ii) රැකියාවට තෝරාගනු ලැබූ පිරිමි අයකු අභියෝගාතා පරීක්ෂණයට A ශේණියක් ලබා තිබීමේ, සම්භාවිතාව සොයන්න.
 - (b) එක්තරා රෝහලක රෝගීන් 100 දෙනකුගේ පුතිකාර ලබා ගැනීමට පෙර රැඳී සිටි කාල (මිනිත්තුවලින්) එක් රැස් කරනු ලැබේ. එම එක් එක් කාලයෙන් මිනිත්තු 20ක් අඩු කිරීමෙන් ලැබෙන අන්තර එක එකක් 10න් බෙදීමෙන් ලැබෙන අගයන්ගේ වාහප්තිය පහත වගුවෙන් දෙයි.

අගයන්ගේ පරාසය	රෝගීත් ගණන
-2 - 0	30
0 — 2	40
2 - 4	15
4 — 6	10
6 — 8	5

මෙම වගුවෙහි දී ඇති වනාප්තියෙහි මධානාභය හා සම්මත අපගමනය නිමානය කරන්න.

ඒ නයින්, රෝගීන් 100 දෙනා රැඳී සිටි කාලවල මධාෘනාෘය μ සහ සම්මත අපගමනය σ නිමානය කරන්න. කව ද $\kappa = \frac{\mu - M}{\sigma}$ මගින් අර්ථ දක්වනු ලබන කුටිකතා සංගුණකය κ නිමානය කරන්න; මෙහි M යනු රෝගීන් 100 දෙනා රැඳී සිටි කාලවල මාතය වේ.