§ 3 向量的内积

一物体在常力 \vec{F} 作用下沿直线从点 M_1 移动到点 M_2 ,以 \vec{s} 表示位移,则力 \vec{F} 所作的功为 $W = |\vec{F}||\vec{s}|\cos\theta$ (其中 θ 为 \vec{F} 与 \vec{s} 的夹角)

启示 两向量作这样的运算,结果是一个数量.

1.射影和分量

对于单位向量 \vec{e} 和任一向量 \vec{a} , $\vec{a} = \vec{a}_1 + \vec{a}_2$, 其中 $\vec{a}_1 /\!/ \vec{e}$, $\vec{a}_2 \perp \vec{e}$ 。这样的分解是唯一的.

定义: 若 \bar{a}_1 是 \bar{a} 在方向 \bar{e} 上的内射影,则∃唯一的实数 λ ,使得 $\bar{a}_1 = \lambda\bar{e}$,这个实数 λ 称为 \bar{a} 在 \bar{e} 的分量记作 $\Pi_{\bar{e}}\bar{a}$, \bar{a} 与 \bar{e} 的夹角记为〈 \bar{a},\bar{e} 〉、 $(0 \le \langle \bar{a},\bar{e} > \langle \pi \rangle)$.

命题 1 向量 \bar{a} 在方向 \bar{e} 上的分量为:

$$\Pi_{\vec{e}}\vec{a} = |\vec{a}| \cos \langle \vec{a}, \vec{e} \rangle$$
.

命题 2 设 \bar{e} 为一个单位向量,则对任意向量 \bar{a} , \bar{b} 有

$$\Pi_{\vec{e}}(\vec{a} + \vec{b}) = \Pi_{\vec{e}}\vec{a} + \Pi_{\vec{e}}\vec{b}$$

$$\Pi_{\vec{e}}(\lambda \vec{a}) = \lambda(\Pi_{\vec{e}}\vec{a})$$

2.向量的内积的定义和性质

定义:两向量 \bar{a},\bar{b} 的数积(内积) $\bar{a}\cdot\bar{b}$ (或 $\bar{a}\bar{b}$)

是指数量

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \langle \vec{a}, \vec{b} \rangle$$

内积也称为"点积"、"数积"。

定理: 两向量垂直的充要条件是它们的内积为零。

根据射影的定义 $\vec{a} \cdot \vec{b} = (\Pi_{\vec{b}}\vec{a}) \cdot |\vec{b}|$

当 $\vec{a} \neq 0, \vec{b} \neq 0$ 时,

两向量的夹角
$$\cos \langle \vec{a}, \vec{b} \rangle = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

向量的长度 $|\bar{a}| = \sqrt{\bar{a} \cdot \bar{a}}$.

运算规律:

对于任意的向量 \bar{a},\bar{b},\bar{c} ,任意实数 λ ,有

$$(1) \, \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

$$(2) (\lambda \vec{a}) \cdot \vec{b} = \lambda \vec{a} \cdot \vec{b}$$

$$(3) (\vec{a} + \vec{c}) \cdot \vec{b} = \vec{a} \cdot \vec{b} + \vec{c} \cdot \vec{b}$$

(4) 若
$$\bar{a} \neq 0$$
,则 $\bar{a} \cdot \bar{a} > 0$

例1: 平行四边形为菱形的充要条件是对角线互相垂直。

例 2: 已给三角形两边上的向量 \bar{a},\bar{b} ,第三边上

的矢量为
$$\bar{a} + \bar{b}$$
,证明不等式 $|\bar{a} + \bar{b}| \le |\bar{a}| + |\bar{b}|$.

例 3 证明向量 \vec{c} 与向量 $(\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a}$ 垂直.

3.用坐标计算向量的内积

坐 标 系 仿 射
$$[O, \bar{e}_1, \bar{e}_2, \bar{e}_3]$$
 , 设 $\bar{a} = (a_1, a_2, a_3), \bar{b} = (b_1, b_2, b_3)$, 则 $\bar{a} \cdot \bar{b} = a_1 b_1 \bar{e}_1 \bar{e}_1 + a_1 b_2 \bar{e}_1 \bar{e}_2 + a_1 b_3 \bar{e}_1 \bar{e}_3$ $+ a_2 b_1 \bar{e}_2 \bar{e}_1 + a_2 b_2 \bar{e}_2 \bar{e}_2 + a_2 b_3 \bar{e}_2 \bar{e}_3$ $+ a_3 b_1 \bar{e}_3 \bar{e}_1 + a_3 b_2 \bar{e}_3 \bar{e}_2 + a_3 b_3 \bar{e}_3 \bar{e}_3$ $\bar{e}_1, \bar{e}_2, \bar{e}_3$ 任意两个向量的内积,这九个参数称为仿射坐标架 $[O, \bar{e}_1, \bar{e}_2, \bar{e}_3]$ 的度量参数.

特别为直角坐标系,

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

长度
$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

在直角坐标系中,两个向量的内积等于它们对应坐标的乘积之和。

例 1 在直角坐标系下,已知 $\vec{a} = \{1,1,-4\}$, $\vec{b} = \{1,-2,2\}$,求(1) $\vec{a} \cdot \vec{b}$;(2) $\vec{a} = \vec{b}$ 的夹角;(3) \vec{a} 在 \vec{b} 上的分量.

4.方向角和方向余弦

直角坐标架 $\left[o, \vec{e}_1, \vec{e}_2, \vec{e}_3\right]$ 向量 $\vec{a} = a_1\vec{e}_1 + a_2\vec{e}_2 + a_3\vec{e}_3$

$$\therefore \vec{a} \cdot \vec{e}_1 = a_1, \vec{a} \cdot \vec{e}_2 = a_2, \vec{a} \cdot \vec{e}_3 = a_3$$

$$\vec{a}$$
 的单位向量 $\vec{a}^0 = \frac{\vec{a}}{|\vec{a}|} = (x, y, z)$

$$x = \cos \langle \vec{a}, \vec{e}_1 \rangle, y = \cos \langle \vec{a}, \vec{e}_2 \rangle, z = \cos \langle \vec{a}, \vec{e}_3 \rangle$$

记向量 \bar{a} 与坐标基向量 \bar{e}_1 , \bar{e}_2 , \bar{e}_3 的夹角分别为 α , β , γ 称为 \bar{a} 的方向角,则 $\cos \alpha$, $\cos \beta$ 。 $\cos \gamma$ 为方向 \bar{a} 的方向余弦。

$$\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = 1.$$