ЛЕКЦИЯ №9

9. Квантовые числа

Итак, из решения уравнения Шредингера для электрона, находящегося в атоме, следует, что его энергия W_n , а значит и импульс p_n и волновое число k_n не могут быть любыми, они квантуются.

Атом водорода в квантовой механике

Поэтому и волновая функция, описывающая поведение каждого электрона, находящегося в разных состояниях, должна быть разной даже для одного электрона.

Так как электрон в атоме обладает значительными волновыми свойствами

$$\lambda_B = \frac{h}{mv}$$
 $m \sim 10^{-30} \text{ M}, v_1 \sim 10^6 \text{ M/c}.$
 $\lambda_B \sim 10^{-10} \text{ M} \sim \text{pasmep atoma !}$

поэтому его нельзя рассматривать в виде частицы, понятие «траектория движения» = «орбита электрона» неприменимы!

Зная, что квадрат модуля волновой функции определяет вероятность нахождения электрона в атоме, можно представлять электрон в

виде некоторого отрицательно заряженного облака, имеющего разную форму в зависимости от его состояния.

Для описания с помощью волновой функции поведения конкретного электрона, находящегося в атоме в разных состояниях, используются квантовые числа:

1. Главное квантовое число n, которое определяет значение энергии электрона в атоме

$$W_n = -\frac{const}{n^2}, \qquad n = 1, 2, 3, ..., \infty$$

2. Орбитальное (азимутальное) квантовое число ℓ , которое определяет форму электронного облака (форму электронной орбитали).

Электронная орбита \rightarrow электронная орбиталь !!!

Так как электрон в атоме находится в непрерывном движении, то он обладает орбитальным моментом импульса \boldsymbol{L} , который так же как и энергия, квантуется

$$L = \sqrt{\ell(\ell+1)}\hbar, \tag{9-1}$$

где
$$\ell = 0, 1, 2, 3, ..., n - 1$$
.

В спектроскопии электронным орбиталям различной формы (с разным орбитальным квантовым числом ℓ) сопоставимы свои обозначения

$$\ell = 0, 1, 2, 3, ..., n - 1$$

s p d f

3. Магнитное квантовое число m, которое характеризует ориентацию электронной орбитали в пространстве по отношению к какому-либо направлению (например, по отношению к направлению внешнего магнитного поля).

Если классическая электродинамика считала, что момент импульса электрона может быть произвольно ориентирован по отношению к любому направлению (например, к направлению внешнего магнитного поля), то квантовая механика (это следует из решения уравнения Шредингера) утверждает, что вектор момента импульса электрона может иметь только такие ориентации в пространстве, при которых его проекции на направление внешнего магнитного поля принимают квантовые значения, кратные постоянной Планка:

$$L_{H} = m\hbar, \tag{9-2}$$

где $m = 0, \pm 1, \pm 2, ..., \pm \ell$, т. е. всего $2\ell + 1$ значений.

О квантовых числах

Орбитальное квантовое число определяет модуль орбитального момента импульса электрона

$$L=\hbar\sqrt{\ell\left(\ell+1\right)}$$

Из решения уравнений Шредингера следует также, что вектор момента импульса электрона может иметь лишь такие ориентации в пространстве, при которых его проекция на направление z внешнего магнитного поля принимает квантованные значения, кратные ħ:

$$L_{\star} = m\hbar$$

Хотя энергия электрона и зависит только от главного квантового числа n, но каждому собственному значению энергии W_n (кроме W_1) соответствует несколько волновых функций $\psi_{n\ell m}$, отличающихся значением ℓ и m.

Следовательно, атом может иметь одно и то же значение энергии, находясь в нескольких различных состояниях.

Согласно квантовой механике каждому энергетическому состоянию соответствует своя волновая функция, квадрат модуля которой определяет вероятность обнаружения электрона в единице объема атома.

Вероятность обнаружения электрона в разных частях атома различна. Электрон при своем движении как бы «размазан» по всему объему, образуя электронное облако, плотность которого характеризует вероятность нахождения электрона в различных точках объема атома.

Квантовые числа n и ℓ характеризуют размер и форму электронного облака, а квантовое число m характеризует ориентацию электронного облака в пространстве.

Квантовые числа n, ℓ , и m позволяют точнее описать спектр испускания (поглощения) атома (в частности, атома водорода, описанный в теории Бора).

Излучение водородоподобного атома

Состояние 1s - основное.

В этом состоянии атом имеет минимальную энергию.

Чтобы перевести атом в одно из возбужденных состояний, ему надо сообщить энергию.

Это можно осуществить за счет теплового удара (соударения с другим атомом в нагретом газе), за счет электронного удара (например, в электрическом разряде) или за счет поглощения атомом фотона.

Характерное время жизни атома в возбужденном состоянии составляет 10⁻⁸ с.

Далее происходит спонтанный переход в одно из нижележащих состояний.

Переход атома из состояния 2 в состояние 1 будет сопровождаться излучением кванта с энергией

$$W = h\nu$$

В квантовой механике доказывается, что возможны только такие переходы, при которых орбитальное квантовое число / меняется на единицу. Говорят, квантовое число / имеет правило отбора

В квантовой механике вводятся <u>правила отбора</u>, ограничивающие число возможных переходов электронов в атоме, связанных с испусканием и поглощением света.

Теоретически доказано и экспериментально подтверждено, для электрона в атоме могут осуществляться только такие переходы, для которых:

1) орбитальное квантовое число ℓ изменяется только на единицу

$$\Delta \ell = \pm 1$$
,

2) изменение магнитного квантового числа m удовлетворяет условию

$$\Delta m = 0, \pm 1.$$

С учетом этого спектральные серии линий излучения атома водорода должны соответствовать переходам:

Это правило есть следствие закона сохранения момента количества движения. Изменение главного квантового числа n может быть любое.

$$\ell = 0$$
 $\ell = 1$ $\ell = 2$ $\ell = 3$

4. Согласно законам классической механики электрон, двигаясь в атоме, обладает не только орбитальным моментом импульса \vec{L} , но и магнитным моментом \vec{p}_m , направленным $\vec{p}_m \uparrow \downarrow \vec{L}$.

Отношение магнитного момента электрона в атоме p_m к орбитальному моменту импульса L называется <u>гиромагнитным отношением</u>

$$\frac{p_m}{L} = \frac{e}{2m} \tag{9-3}$$

где e — электрический заряд электрона,

m — масса электрона.

Но эксперименты, проведенные Эйнштейном и де Гаазом, по измерению гиромагнитного отношения дали результат вдвое больший:

$$\left(\frac{p_m}{L}\right)_{_{\mathfrak{HCH}}} = \frac{e}{m}$$

$$? ? ?$$

Более того, Штерн и Герлах, проведя прямые измерения магнитных моментов, обнаружили, что узкий пучок атомов водорода, заведомо находящийся в основном состоянии 1s, в неоднородном магнитном поле расщепляется на два пучка.

В этом состоянии $\ell=0$, поэтому момент импульса, а значит и магнитный момент такого электрона (атома водорода) равен нулю и магнитное поле не должно оказывать влияние на движение атомов водорода в основном состоянии, т.е. расщепления быть не должно.

Однако эксперимент показал, что в *s*-состоянии даже в отсутствие внешнего магнитного поля, существует расщепление.

Штерн и Герлах

Опыты Штерна и Герлаха обнаружили ошибочность классического предположения о том, что магнитный момент p_m и механический момент импульса L атома произвольно ориентируются относительно направления внешнего поля

Опыт Штерна и Герлаха

Для объяснения этого факта, американские физики Уленбек и Гаудсмит предположили, что электрон обладает кроме орбитальных момента импульса и магнитного момента, еще и собственным неуничтожимым механическим моментом импульса — спином L_s и собственным магнитным моментом p_{ms} , которые тоже квантуются:

$$L_{s} = \sqrt{s(s+1)}\hbar, \tag{9-5}$$

где s — спиновое квантовое число (для электрона $s = \frac{1}{2}$).

Проекция \vec{L}_s на направление внешнего магнитного поля удовлетворяет условию:

$$L_{\rm SH}=m_{\rm S}\hbar,$$

где m_s — магнитное спиновое квантовое число (для электрона m_s может принимать только два значения $\pm \frac{1}{2}$).

Гипотеза о спине электрона

Из квантовой теории следует, что вследствие симметрии электронного "облака" механический и магнитный моменты атома, находящегося в основном, невозбужденном состоянии, равны нулю

Следовательно, если в опыте Штерна — Герлаха обеспечить условия, при которых в атомном пучке будут двигаться невозбужденные атомы, то такой атомный пучок не должен расщепляться магнитным полем

Однако, эксперимент не подтвердил такой вывод квантовой теории

Сам электрон является носителем "собственных" механического и магнитного моментов, не связанных с движением электрона в пространстве.

Эта гипотеза получила название гипотезы о спине электрона

Спиновое квантовое число

$$L_{s}=\hbar\sqrt{m_{s}\left(m_{s}+1\right)}$$

Численные значения т. были определены в опытах Штерна и Герлаха

$$m_s = \pm \frac{1}{2}$$

По отношению к внешнему магнитному полю проекция собственного механического момента импульса электрона может принимать значения кратные

$$L_{sz} = m_s \hbar$$

Т.о. для полного описания состояния электрона в атоме необходимо наряду с главным, орбитальным и магнитным квантовыми числами задавать еще и магнитное спиновое квантовое число.

$$\psi_{n\ell mm_s}(x,y,z).$$

Квантовые числа

С учетом спинового квантового числа состояние электрона в атоме определится набором четырех квантовых чисел

Главное квантовое число n = 1, 2, 3,

Орбитальное квантовое число $\ell = 0, 1, 2, ..., n-1$

Магнитное квантовое число $m = \ell, \ell - 1, \ell - 2, \dots 0, \dots - \ell + 2, -\ell + 1, -\ell$

Спиновое квантовое число $m_s = \pm \frac{1}{2}$

10. Распределение электронов в атоме по состояниям

Распределение электронов в любом атоме по состояниям подчиняется <u>принципу минимума энергии</u>:

- наиболее выгодное энергетическое состояние для электрона в атоме — это состояние с минимальной энергией.

Далее электроны занимают свободные состояния в соответствии с набором четырех квантовых чисел n, ℓ , m и m_s .

Кроме того, распределение электронов в атоме подчиняется <u>прин</u>ципу запрета <u>Паули</u>:

- в одном и том же атоме не может быть даже двух электронов с одинаковым набором всех четырех квантовых чисел.

Таким образом, принцип Паули утверждает, что два электрона, связанные в одном и том же атоме, различаются значениями по крайней мере одного квантового числа.

Максимальное количество электронов, находящихся в состояниях, определяемых данным главным квантовым числом, равно

$$\sum_{\ell=0}^{n-1} 2(2\ell+1) = 2n^2. \tag{9-6}$$

Кроме того при заполнении различных состояний электронами руководствуются **правилом Хунда (Гунда)**:

Принципы заполнения

Электроны заполняют орбитали в порядке увеличения энергии последних: на орбиталях с большей энергией электроны располагаются после того, как уже заполнены орбитали с меньшей энергией.

Заполнение подуровней происходит в последовательности увеличения суммы главного и побочного квантовых чисел (n+ I), причем при одинаковом значении суммы (n+ I) заполнение подуровней идет в направлении увеличения п (с меньшим значением n, но большим значением I).

Принципы заполнения

Правило Клечковского

Номер периода	1	2	3	4	5	6	7					
Номер и тип подуровня	1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f%5d<6p<7s<5f%6d<7p											

Никакие два электрона в одном атоме не могут характеризоваться одинаковым набором всех четырех квантовых чисел n, l, m, m_s

В невозбужденных атомах электроны в пределах данного подуровня занимают максимальное число свободных орбиталей, при этом суммарное спиновое число максимально.

Орбитали

Вероятность местонахождения электрона зависит от его энергетического состояния.

В принципе электрон может находиться в любом месте пространства атома

В области, где значения

$$|\psi|^2$$

выше, он бывает чаще и эти области соответствуют минимальной энергии электрона.

Часть атомного пространства, где вероятность пребывания электрона составляет свыше 90%, называется атомной орбиталью (электронной орбиталью, электронным облаком).

Орбитали

Пример: атом натрия ${}^M_zNa={}^{23}_{11}Na$

 $Na: 1s^2 2s^2 2p^6 3s^1$

Совокупность электронов в многоэлектронных атомах, имеющих одно и то же главное квантовое число n, называется электронной оболочкой (K, L, M, N, \ldots) .

В каждой из оболочек электроны распределяются по <u>подоболоч-</u> <u>кам</u>, соответствующим данному ℓ .

Таблица

Главное квантовое число <i>п</i>		2		3		
Символ оболочки		L M				
Максимальное число электронов в оболочке		8		18		
Орбитальное квантовое число ℓ		0	1	0	1	2
Символ подоболочки		2 s	2 p	3 s	3 p	3 d
Максимальное число электронов в подоболочке		2	6	2	6	10