Name: Caleb McWhorter — Solutions

MATH 308 Fall 2021

HW 6: Due 10/08

"So I was not born with a whole lot of natural talent. But I work hard

and I never give up. That is my gift. That is my ninja way!"

-Rock Lee, Naturo

Problem 1. (20pt) Describe all sets (if any) with...

- (a) no proper subsets.
- (b) one proper subset.
- (c) two proper subsets.

Solution.

- (a) Because \varnothing is a subset of every set, every nonempty set S has a proper subset. If $S=\varnothing$, then $\varnothing\subseteq S$ but $S=\varnothing$ so that \varnothing is not a proper subset of S. Therefore, there are no sets without at least one proper subset.
- (b) We know that \varnothing has no proper subsets. If S is a nonempty set with at least two elements, say $a,b\in S$, then $\{a\}\subseteq S$ and $\{b\}\subseteq S$ so that S has at least two proper subsets. So suppose S is a singleton set, i.e. $S=\{a\}$. Then $\varnothing\subseteq S$ and $S\neq\varnothing$. Therefore, S has exactly one proper subset. But then the only sets with exactly one proper subset are singleton sets.
- (c) We know that \varnothing has no proper subsets. From (b), we know that singleton sets have exactly one proper subset. Suppose that S has at least two elements, say $a,b\in S$. But then $\varnothing\subseteq S$, $\{a\}\subseteq S$, and $\{b\}\subseteq S$ are all proper subsets of S so that S has at least three proper subsets. Therefore, there are no sets with exactly two proper subsets.

Remark. If a set S is infinite, then S has an infinite amount of proper subsets: for all $s \in S$, $\{s\} \subseteq S$ is a proper subset. We claim that if S is a finite set with n elements, then S has $2^n - 1$ proper subsets.

Proposition. If S is a finite set with n elements, then S has $2^n - 1$ proper subsets.

Proof. Suppose that |S|=0. But then $S=\varnothing$. From (a) above, we know that $S=\varnothing$ has no proper subsets. Furthermore, $2^0-1=1-1=0$. Now let S be a singleton set, say $S=\{s\}$. From (b), we know that S has one proper subset—namely, \varnothing . Observe that |S|=1 and $2^1-1=2-1=1$. Now assume that for any finite set S with |S|=k that S has S0 has S1 has S2 has S3.

Now let S be a set with |S| = k + 1. Choose an element $s \in S$. Consider all the proper subsets of S that do not contain S. But each such subset is a subset of $S \setminus \{s\}$. Conversely, every proper subset of $S \setminus \{s\} \subseteq S$ is a subset of S that does not contain S. Therefore, the number of proper subsets of S not containing S is the number of proper subsets of $S \setminus \{s\}$. We know that $|S \setminus \{s\}| = k$. By the induction hypothesis, the number of proper subsets of $S \setminus \{s\}$ is $2^k - 1$.

Now consider the proper subsets of S containing s. Suppose that $A \subsetneq S$ is a proper subset of S with $s \in A$. Then $A \setminus \{s\} \subseteq A \subsetneq S$ is a proper subset of S not containing s. Conversely, if $B \subsetneq S$ is a proper subset of S not containing s, then $B \cup \{s\} \subseteq S$ is a proper subset of S containing S, unless $B = S \setminus \{s\}$ in which case $B \cup \{s\} = S$ is not proper. Therefore, the proper subsets of S

not containing s, except for $S \setminus \{s\}$, are in one-to-one correspondence with the proper subsets of S containing s. Then there are $(2^k-1)+(2^k-1)+1=2\cdot 2^k-1=2^{k+1}-1$ proper subsets of S. Therefore, by induction, the number of proper subsets of a set S with |S|=n is 2^n-1 .

Remark. If one knows that the number of proper subsets of a finite set S with |S| = n is 2^n , then an immediate corollary is the number of proper subsets of S is $2^n - 1$: if S is empty the result is clear, and if |S| = n > 0, then the only non-proper subset of S is S itself, making $2^n - 1$ proper subsets.

This makes the problem simple. If S is infinite, it is clear that S cannot have exactly none, on two proper subsets. If S is finite with |S|=n, then S has 2^n-1 proper subsets. But for all $n \in \mathbb{Z}_{\geq 0}$, $2^n-1 \notin \{0,2\}$. We only have $2^n-1=1$ if n=1, but then S is a singleton set.

Problem 2. (20pt) The symmetric difference of two sets A and B, denoted $A\Delta B$, is defined by $A\Delta B := (A \setminus B) \cup (B \setminus A)$.

- (a) Describe $A\Delta B$ in words.
- (b) Show that $A\Delta B = (A \cup B) (A \cap B)$.
- (c) Prove that the symmetric difference is commutative.
- (d) Prove that if $A\Delta B = \emptyset$, then A = B. Is the converse true?

Solution.

- (a) The set $A \setminus B$ is the set of elements that are in A but not in B. The set $B \setminus A$ is the set of elements that are in B but not in A. Therefore, $A \Delta B$ is the set of elements that are only in A or only in B.
- (b) Let $x \in A\Delta B := (A \setminus B) \cup (B \setminus A)$. Then $x \in A \setminus B$ or $x \in B \setminus A$. Assume that $x \in A \setminus B$. Then $x \in A$ and $x \notin B$. Because $x \in A$, we know that $x \in A \cup B$. Because $x \in A$ and $x \notin B$, we know that $x \notin A \cap B$. But then $x \in (A \cup B) (A \cap B)$. Now assume that $x \in B \setminus A$. Then $x \in B$ and $x \notin A$. Because $x \in B$, we know that $x \in A \cup B$. But because $x \in B$ and $x \notin A$, we know $x \notin A \cap B$. Therefore, $x \in (A \cup B) (A \cap B)$. Therefore, if $x \in A\Delta B$, then $x \in (A \cup B) (A \cap B)$ so that $A\Delta B \subseteq (A \cup B) (A \cap B)$.

Now let $x \in (A \cup B) - (A \cap B)$. Then $x \in A$ and $x \notin A \cap B$ or $x \in B$ and $x \notin A \cap B$. Assume that $x \in A$ and $x \notin A \cap B$. But then $x \in A$ and $x \notin B$. Therefore, $x \in A \setminus B$ so that $x \in A \triangle B = (A \setminus B) \cup (B \setminus A)$. Now assume that $x \in B$ and $x \notin A \cap B$. But then $x \in B$ and $x \notin A$. Therefore, $x \in B \setminus A$ so that $x \in A \triangle B = (A \setminus B) \cup (B \setminus A)$. But then if $x \in (A \cup B) - (A \cap B)$, then $x \in A \triangle B$ so that $(A \cup B) - (A \cap B) \subseteq A \triangle B$. Therefore, $(A \cap B) = (A \cup B) - (A \cap B)$.

OR

$$x \in A \Delta B \iff x \in (A \setminus B) \cup (B \setminus A)$$

$$\iff (x \in A \setminus B) \vee (x \in B \setminus A)$$

$$\iff (x \in A \land x \notin B) \vee (x \in B \land x \notin A)$$

$$\iff [(x \in A \land x \notin B) \lor x \in B] \land [(x \in A \land x \notin B) \lor x \notin A]$$

$$\iff [(x \in A \lor x \in B) \land (x \notin B \lor x \in B)] \land [(x \in A \lor x \notin A) \land (x \notin B \lor x \notin A)]$$

$$\iff [(x \in A \lor x \in B) \land T_0] \land [T_0 \land (x \notin B \lor x \notin A)]$$

$$\iff (x \in A \lor x \in B) \land (x \notin B \lor x \notin A)$$

$$\iff (x \in A \lor x \in B) \land (x \notin A \lor x \notin B)$$

$$\iff (x \in A \cup B) \land (x \notin A \cap B)$$

$$\iff x \in (A \cup B) - (A \cap B)$$

(c) Using the commutative of unions, observe that...

$$A\Delta B := (A \setminus B) \cup (B \setminus A) = (B \setminus A) \cup (A \setminus B) =: B\Delta A$$

(d) Suppose that $A\Delta B=\varnothing$. We then have $(A\setminus B)\cup (B\setminus A)=\varnothing$. Therefore, $A\setminus B=\varnothing$ and $B\setminus A=\varnothing$. Because $A\setminus B=\varnothing$, if $x\in A$, we must have $x\in B$. Because $B\setminus A=\varnothing$, if $x\in B$, then $x\in A$. But then $x\in A$ if and only if $x\in B$. Therefore, A=B.

The converse is also true. Suppose that A=B. Then $A\setminus B=\varnothing$ and $B\setminus A=\varnothing$ (because $x\in A$ if and only if $x\in B$). Therefore, $A\Delta B=(A\setminus B)\cup (B\setminus A)=\varnothing\cup\varnothing=\varnothing$. Then $A\Delta B=\varnothing$ if and only if A=B.

OR

Lemma. If A and B are sets, then $A \cap B^c = \emptyset$ if and only if A = B.

Proof. Assume $A \cap B^c = \emptyset$ and suppose that $A \neq B$. Then there exists $a \in A$ such that $a \notin B$. Because $a \notin B$, we know that $a \in B^c$. But then $a \in A$ and $a \in B^c$ so that $a \in A \cap B^c = \emptyset$, a contradiction. Therefore, A = B. Now assume that A = B. But then $A \cap B^c = A \cap A^c = \emptyset$.

We know use this lemma as follows (in the fourth if and only if):

$$A\Delta B = \varnothing \iff (A \setminus B) \cup (B \setminus A) = \varnothing$$
$$\iff (A \setminus B = \varnothing) \land (B \setminus A = \varnothing)$$
$$\iff (A \cap B^c = \varnothing) \land (B \cap A^c = \varnothing)$$
$$\iff (A = B) \land (B = A)$$
$$\iff A = B$$

Problem 3. (20pt) Let A, B be sets with a common universal set \mathcal{U} . Prove the following:

- (a) $A (A B) = A \cap B$
- (b) $A \subseteq B$ if and only if $A^c \supset B^c$

Solution.

(a) Let $x \in A - (A - B)$. Then $x \in A$ and $x \notin A - B$. By definition, $A - B = A \cap B^c$. Therefore, $x \notin A - B$ implies that $x \notin A \cap B^c$. But then $x \in (A \cap B^c)^c$. Now $(A \cap B^c)^c = A^c \cup B$ so that $x \in A^c \cup B$. Therefore, $x \in A^c$ or $x \in B$. But $x \in A$ so that $x \notin A^c$. Therefore, $x \in B$. But then $x \in A$ and $x \in B$ so that $x \in A \cap B$. This proves that $x \in A \cap B$.

Now assume that $x \in A \cap B$. This implies that $x \in A$ and $x \in B$. Suppose that $x \notin A - (A - B)$. From the work above, we know that $A - B = A \cap B^c$. But then $A - (A - B) = A - (A \cap B^c)$. By definition, $A - (A \cap B^c)$ is the set $A \cap (A \cap B^c)^c$. But $(A \cap B^c)^c = A^c \cup B$ so that $A \cap (A \cap B^c)^c = A \cap (A^c \cup B)$. Now the set $A \cap (A^c \cup B)$ is $(A \cap A^c) \cup (A \cap B) = \emptyset \cup (A \cap B) = A \cap B$. As $x \notin A - (A - B)$, this implies $x \notin A \cap B$, a contradiction. Therefore, $x \in A - (A - B)$. But then $A \cap B \subseteq A - (A - B)$. Therefore, $A - (A - B) = A \cap B$.

OR

$$x \in A \setminus (A \setminus B) \iff x \in A \setminus (A \cap B^c)$$

$$\iff x \in (A \cap (A \cap B^c)^c)$$

$$\iff x \in (A \cap (A^c \cup B))$$

$$\iff x \in ((A \cap A^c) \cup (A \cap B))$$

$$\iff x \in (\varnothing \cup (A \cap B))$$

$$\iff x \in A \cap B$$

(b) Assume that $A \subseteq B$. We want to show that $B^c \subseteq A^c$. Let $x \in B^c$. Now $x \in B^c$ implies that $x \notin B$. Because $A \subseteq B$, it must be that $x \notin A$; otherwise, $x \in A$ and $x \notin B$, contradicting the fact that $A \subseteq B$. But then $x \in B^c$ implies that $x \in A^c$ so that $B^c \subseteq A^c$.

Now assume that $A^c \supseteq B^c$. We want to show that $A \subseteq B$. Let $x \in A$. Because $x \in A$, we know that $x \notin A^c$. But if $x \notin A^c$, we know that $x \notin B^c$; otherwise, $x \notin A^c$ and $x \in B^c$ contradicts the fact that $A^c \supseteq B^c$. Therefore, if $x \in A$, then $x \in B$. But then $A \subseteq B$.

OR

$$A \subseteq B \iff (\forall x)(x \in A \Rightarrow x \in B)$$

$$\iff (\forall x)(\neg(x \in B) \Rightarrow \neg(x \in A))$$

$$\iff (\forall x)(x \notin B \Rightarrow x \notin A)$$

$$\iff (\forall x)(x \in B^c \Rightarrow x \in A^c)$$

$$\iff B^c \subseteq A^c$$

Problem 4. (10pt) If $A \subseteq U$ and $B \subseteq V$, is $A \times B \subseteq U \times V$? Justify your answer.

Solution. Yes. Suppose that $A\subseteq U$ and $B\subseteq V$. If either A or B are empty, then $A\times B$ is empty. Clearly, $\varnothing\subseteq U\times V$. So suppose that A and B are nonempty. Let $(x,y)\in A\times B$. Then by definition, $x\in A$ and $y\in B$. Because $A\subseteq U$ and $B\subseteq V$, this implies that $x\in U$ and $y\in V$, respectively. But then $(x,y)\in U\times V$. Therefore, $A\times B\subseteq U\times V$.

Problem 5. (10pt) Suppose that X and Y are sets with a common universal set \mathscr{U} . Show that X = Y if and only if $(X \cap Y^c) \cup (X^c \cap Y) = \varnothing$.

Solution. Suppose that X=Y. Then $Y^c=X^c$ so that $X\cap Y^c=X\cap X^c=\varnothing$. Similarly, $X^c=Y^c$ so that $X^c\cap Y=Y^c\cap Y=\varnothing$. But then $(X\cap Y^c)\cup (X^c\cap Y)=\varnothing\cup\varnothing=\varnothing$.

Now assume that $(X \cap Y^c) \cup (X^c \cap Y) = \emptyset$. This implies that $X \cap Y^c = \emptyset$ and $X^c \cap Y = \emptyset$. But we already proved in Problem 2 (see the lemma below) that $X \cap Y^c = \emptyset$ implies that X = Y. Mutatis mutandis, $X^c \cap Y = \emptyset$ implies that Y = X. But then we know that X = Y.

Lemma. If A and B are sets, then $A \cap B^c = \emptyset$ if and only if A = B.

Proof. Assume $A \cap B^c = \emptyset$ and suppose that $A \neq B$. Then there exists $a \in A$ such that $a \notin B$. Because $a \notin B$, we know that $a \in B^c$. But then $a \in A$ and $a \in B^c$ so that $a \in A \cap B^c = \emptyset$, a contradiction. Therefore, A = B. Now assume that A = B. But then $A \cap B^c = A \cap A^c = \emptyset$.

Problem 6. (20pt) Prove or disprove:

(a)
$$(A \cup B) \setminus B = A$$

(b)
$$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$$

(c)
$$A \cap (B \setminus C) = (A \cap B) \setminus C$$

(d)
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

Solution.

- (a) The statement is *false*. Let $A = \{1, 2, 3\}$ and $B = \{3, 4\}$. Then $A \cup B = \{1, 2, 3, 4\}$ and $(A \cup B) \setminus B = \{1, 2, 3, 4\} \setminus \{3, 4\} = \{1, 2, 3\} = A$.
- (b) The statement is true. Observe that...

$$A \cap (B \setminus C) = A \cap (B \cap C^c)$$

$$= (A \cap B) \cap C^c$$

$$= (A \cap B) \cap (\emptyset \cap C^c)$$

$$= (A \cap B) \cap ((A \cap A^c) \cap C^c)$$

$$= (A \cap B) \cap (A \cap (A^c \cap C^c))$$

$$= ((A \cap B) \cap A) \cap (A^c \cap C^c)$$

$$= ((A \cap A) \cap B) \cap (A^c \cap C^c)$$

$$= ((A \cap A) \cap B) \cap (A^c \cap C^c)$$

$$= (A \cap B) \cap (A \cap C)^c$$

$$= (A \cap B) \setminus (A \cap C)$$

(c) The statement is true. Observe that...

$$A \cap (B \setminus C) = A \cap (B \cap C^c) = (A \cap B) \cap C^c = (A \cap B) \setminus C$$

(d) The statement is *true*. Observe that...

$$A \setminus (B \cap C) = A \cap (B \cap C)^c = A \cap (B^c \cup C^c) = (A \cap B^c) \cup (A \cap C^c) = (A \setminus B) \cup (A \setminus C)$$

Problem 7. (20pt) Express the following sets as an interval, collection of intervals, or well known set (prove your answer):

(a)
$$\bigcap_{n>1} \left[0, 1 + \frac{1}{n}\right)$$

(b)
$$\bigcup_{n>1} \left[0, 1 + \frac{1}{n}\right)$$

(c)
$$\bigcup_{n\in\mathbb{Z}} \bigcap_{m>1} \left(n-\frac{1}{m}, n+\frac{1}{m}\right)$$

Solution.

(a) We claim that...

$$\bigcap_{n>1} \left[0, 1 + \frac{1}{n} \right) = [0, 1]$$

If x < 0, then $x \notin [0,2) = [0,1+1/1)$ so that $x \notin \bigcap_{n \ge 1} \left[0,1+\frac{1}{n}\right)$. If $x \in [0,1]$, then clearly $x \in [0,1+1/n)$ for all $n \ge 1$, so that $x \in \bigcap_{n \ge 1} \left[0,1+\frac{1}{n}\right)$. Suppose that x > 1, i.e. x - 1 > 0. It is clear that $\frac{1}{x-1} \in \mathbb{R}$ and $\frac{1}{x-1} > 0$. Choose $n_0 \in \mathbb{N}$ such that $n_0 > \frac{1}{x-1}$. But then $\frac{1}{n_0} < x - 1$ so that $1 + \frac{1}{n_0} < x$. Clearly, this implies that $x \notin [0,1+1/n_0)$. But then $x \notin \bigcap_{n \ge 1} \left[0,1+\frac{1}{n}\right)$. Therefore, $x \in \bigcap_{n \ge 1} \left[0,1+\frac{1}{n}\right)$ if and only if $x \in [0,1]$, as desired.

(b) We claim that...

$$\bigcup_{n>1} \left[0, 1 + \frac{1}{n} \right) = [0, 2)$$

Clearly, if $x \in [0,2) = [0,1+1/1)$, then $x \in \bigcup_{n \geq 1} \left[0,1+\frac{1}{n}\right)$. But if $x \in \bigcup_{n \geq 1} \left[0,1+\frac{1}{n}\right)$, then $x \in [0,1+1/n_0)$ for some $n_0 \in \mathbb{N}$. But $n_0 \geq 1$ so that $1/n_0 \leq 1$. Then we have $x \in [0,1+1/n_0) \subseteq [0,1+1/1) = [0,2)$. Therefore, $x \in \bigcup_{n \geq 1} \left[0,1+\frac{1}{n}\right)$ if and only if $x \in [0,2)$, as desired.

(c) We claim that...

$$\bigcup_{n\in\mathbb{Z}}\bigcap_{m\geq 1}\left(n-\frac{1}{m},n+\frac{1}{m}\right)=\mathbb{Z}$$

Fix $N \in \mathbb{Z}$. Then $N \in (N - \frac{1}{m}, N + \frac{1}{m})$ for all $m \ge 1$. But then $N \in \bigcup_{n \in \mathbb{Z}} \bigcap_{m \ge 1} (n - \frac{1}{m}, n + \frac{1}{m})$.

Now suppose that $x \in \bigcup_{n \in \mathbb{Z}} \bigcap_{m \geq 1} \left(n - \frac{1}{m}, n + \frac{1}{m}\right)$ and that x is not an integer. Because $x \in \bigcup_{n \in \mathbb{Z}} \bigcap_{m \geq 1} \left(n - \frac{1}{m}, n + \frac{1}{m}\right)$, there exists $N_0 \in \mathbb{Z}$ such that $x \in \bigcap_{m \geq 1} \left(N_0 - \frac{1}{m}, N_0 + \frac{1}{m}\right)$. We claim that this $N_0 \in \mathbb{Z}$ is unique.

Suppose that $x \in \left(N-\frac{1}{m},N+\frac{1}{m}\right)$ for some $N \in \mathbb{Z}, m \in \mathbb{N}$ with $N \neq N_0$. Either $N > N_0$ or $N < N_0$. Suppose that $N > N_0$. Because $N \in \mathbb{Z}$, we know that $N \geq N_0 + 1$. But as $x \in \bigcap_{m \geq 1} \left(N_0 - \frac{1}{m}, N_0 + \frac{1}{m}\right)$, $x \in (N_0 - 1/2, N_0 + 1/2)$. Therefore, $x < N_0 + 1/2$. But because $x \in \bigcap_{m \geq 1} \left(N - \frac{1}{m}, N + \frac{1}{m}\right)$, we know that $x \in (N - 1/2, N + 1/2)$. Therefore, x > N - 1/2. But then

$$x > N - \frac{1}{2} \ge N_0 + 1 - \frac{1}{2} = N_0 + \frac{1}{2},$$

a contradiction. Suppose then that $N < N_0$. Because $N \in \mathbb{Z}$, we know that $N \le N_0 - 1$. But as $x \in \bigcap_{m \ge 1} \left(N_0 - \frac{1}{m}, N_0 + \frac{1}{m}\right)$, $x \in (N_0 - 1/2, N_0 + 1/2)$. Therefore, $N_0 - 1/2 < x$. But because $x \in \bigcap_{m \ge 1} \left(N - \frac{1}{m}, N + \frac{1}{m}\right)$, we know that $x \in (N - 1/2, N + 1/2)$. Therefore, x < N + 1/2. But then

 $x < N + \frac{1}{2} \le N_0 - 1 + \frac{1}{2} = N_0 - \frac{1}{2},$

a contradiction.

Then there is a unique $N_0 \in \mathbb{Z}$ such that $x \in \bigcap_{m \geq 1} \left(N_0 - \frac{1}{m}, N_0 + \frac{1}{m}\right)$. Because $x \in \bigcap_{m \geq 1} \left(N_0 - \frac{1}{m}, N_0 + \frac{1}{m}\right)$, we know that $x \in (N_0 - 1/1, N_0 + 1/1) = (N_0 - 1, N_0 + 1)$. As x is not an integer, we know that $x \neq N_0$. But then $|x - N_0| > 0$. We know also that $|x - N_0| \in \mathbb{R}$. Choose $m_0 \in \mathbb{N}$ such that $m_0 > \frac{1}{|x - N_0|}$. But then $\frac{1}{m_0} < |x - N_0|$. This implies that either $\frac{1}{m_0} < x - N_0$ or $\frac{1}{m_0} < -(x - N_0)$. If $\frac{1}{m_0} < x - N_0$, then $N_0 + \frac{1}{m_0} < x$, contradicting the fact that $x \in \bigcap_{m \geq 1} \left(N_0 - \frac{1}{m}, N_0 + \frac{1}{m}\right)$. If $\frac{1}{m_0} < -(x - N_0)$, then $-\frac{1}{m_0} > x - N_0$, so that $N_0 - \frac{1}{m_0} > x$, contradicting the fact that $x \in \bigcap_{m \geq 1} \left(N_0 - \frac{1}{m}, N_0 + \frac{1}{m}\right)$. Therefore, $x \notin \bigcap_{m \geq 1} \left(N_0 - \frac{1}{m}, N_0 + \frac{1}{m}\right)$. As this was the only $N \in \mathbb{Z}$ such that $x \in \bigcap_{m \geq 1} \left(N - \frac{1}{m}, N + \frac{1}{m}\right)$, it must be that $x \notin \bigcup_{n \in \mathbb{Z}} \bigcap_{m \geq 1} \left(n - \frac{1}{m}, n + \frac{1}{m}\right)$. But then $x \in \bigcup_{n \in \mathbb{Z}} \bigcap_{m \geq 1} \left(n - \frac{1}{m}, n + \frac{1}{m}\right)$ if and only if $x \in \mathbb{Z}$, as desired.