ESP32-Series Power Limit Tool

关于本文档

本文档为用户提供 Phy Init Bin 相关的技术信息。

文档版本

日期	版本	更新说明
2021-03-02	V1.0	首次发布

文档变更通知

用户可以通过乐鑫官网订阅页面 <u>www.espressif.com/zh-hans/subscribe</u> 订阅技术文档变更的电子邮件通知。您需要更新订阅以接收有关新产品的文档通知。

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。

本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

目录

1 PowerLimit Tool	4
1.1 工具界面	4
1.2 功率表配置	5
1.2.1 功率表说明	6
1.2.2 写入功率值	
1.3 生成 Phy Init Bin 文件	
实例演示:	8
单国认证-CE	8
填写 Actual_Result:	8
计算衰减值 :	
填写 CE 功率表:	9
生成 CE Phy Init Bin:	
多国认证-Multiple Country	11
2 Download and RF test	12
2.1 Flash Download	12
下载步骤:	13
2.2 RF Test with Phy Init	14
测试步骤:	14
附录	15
FSP32-Series 平均输出功率曲型值	15

1 PowerLimit Tool

1.1 工具界面

从 ESPRFTestTool 主界面菜单栏 Tool 中选择 PowerLimit Tool, 进入 PowerLimit 工具, 如图 1-1。

图 1-1: ESPRFTestTool 主界面

ESPPowerLimitTool 工具可配置生成包括 SRRC, CE, FCC 等单个或多国认证所需的 Phy Init Bin 文件,如图 1-2。

图 1-2: ESPPowerLimitTool 主界面

1.2 功率表配置

点击 Select Table,双击选择文件夹下的 TX_Power_setting.xlsx 文件,导入功率表,如图 1-3。

图 1-3: 导入 TX_Power_Setting

点击 Open Table, 主界面显示 Actual_Result 及七国认证的信道功率列表, 如图 1-4。

图 1-4: TX_Power_Setting 列表

1.2.1 功率表说明

Actual Result: 产品的实测功率,代表产品本身性能,参考 ESP32系列芯片目标功率。

SRRC_1: 中国大陆认证,主要关注 PSD 等功率限制。

FCC_2: 美国认证,主要关注谐波、带外发射杂散限制。

CE_3: 欧盟认证,主要关注 PSD、RE 及接收杂散限制。

NCC 4: 中国台湾认证,主要关注 RE 及接收杂散限制。

KCC_5: 韩国认证,主要关注接收杂散限制。

MIC_6: 日本认证,主要关注特定频段杂散、PSD 限制。 IC_7: 加拿大认证,主要关注谐波、带外发射杂散限制。

1.2.2 写入功率值

Actual_Result: 建议测试 11b、g、n20、n40 最低速率全信道平均功率,并填入表中。如果

信道间功率接近,可以仅测试对应速率的高中低3个信道,其他信道功率值

会使用三个信道的平均值用于后续计算。

各认证功率表: 认证会测试各模式下高中低三个信道满足认证所需的最大功率值,记录此时

对应的衰减值。最终认证填写的实际功率值是由 Actual Result 减去对应信

道的衰减值。

Note:

- 认证仅测试高中低三个信道,但认证功率表需填写所有规定信道。在认证功率表中计算信道所需功率时,高低信道分别按认证报告中高低信道的衰减值计算,而其它信道均按认证报告中的中间信道衰减值计算。
- 认证一般采用 Tx Continue 模式测试,但测试模组的实际功率(Actual_Result) 时需使用 Tx Packet 测试。
- 认证记录的衰减值以1/4 dB 为单位, 计算时需转换为 dB 单位, 如认证衰减 4, 代表衰减 1dB, 以此类推。

1.3 生成 Phy Init Bin 文件

填写认证功率值后点击 Save Table 保存功率配置,在 Certification Code 下拉项中选择需要的认证,点击 Generate 即在指定文件夹中生成对应的 Phy Init Bin 文件。

Phy Init bin 文件包含了满足当前认证所有信道的功率值,可用于RF测试和实际应用,详见下文。

Note:

• 下拉选项 Certification Choose 中包含单个认证和 Multiple Country 及Custom。选择单认证会生成对应认证的单独 Phy Init Bin 文件,文件包含除校验控制信息外共128bit 字节; 选择 Multiple Country 会生成包含 Default 和 SRRC, FCC, CE, NCC, KCC, MIC, IC 七国认证的 Combined Phy Init Bin 文件,包含了 8*128bit 字节; 选择 Custom, 根据自定义选择生成单个或多国认证 Phy Init Bin文件。

选择和保存生成 Phy Init Bln 文件如图1-5和图1-6所示。

图 1-5: 选择需要的认证

图 1-6: 生成所需认证的 Phy Init Bin 文件

实例演示:

单国认证-CE

填写 Actual Result:

使用 Tx Packet 实测模组的平均输出功率,点击查看如何进行 RF 非信令测试。

本例因信道间功率接近,只测试了低、中、高3个信道: 11b 测试 1m 速率,低、中、高信道分别为 19.5dBm、19.2dBm、19dBm; 11g/11n-20M 分别测试 6m 和 MCS0 速率,填写其中功率最高的三个信道,分别为 17.5dBm、17.3dBm、17dBm;测试 11n-40M 三个信道分别为 17.2dBm、17dBm、16.8dBm,如图1-7所示。

图 1-7: 填写实测功率值

计算衰减值:

通过认证测试报告或实验室验证后,确认模组能满足 CE 认证所需的最大功率,并记录对应衰减值,如下表中 Attenuation 一栏,并将其转换成实际功率后记录在对应速率和信道中。由于认证一般只选择测试低中高3个信道,因此除首末信道使用实测衰减值外,其余信道均使用中间信道衰减值。

本例中满足认证的信道功率衰减值设置如下:

11b 中功率最高的为 1m 速率, 11g 中功率最高的为 6m 速率, 11n-20M 中功率最高的为 MCS0 速率, 11n-40M 中功率最高的为 MCS0 速率。其中 11g 和 11n-20M 取高者作为信道功率值, 如表1。

表 1: 实测功率与 CE 认证功率计算

Mode	Data Rate	Channel	Attenuation	Attenuation*0.25(dB)	Actual_Result	Power Table
		2412	12	3	19.5	16.5
802.11b	1Mbps	2437	12	3	19.2	16.2
		2472	10	2.5	19	16.5
		2412	10	2.5		
802.11b	11Mbps	2437	10	2.5		
		2472	10	2.5		
		2412	8	2	17.5	15.5
802.11g	6Mbps	2437	8	2	17.3	15.3
		2472	6	1.5		
		2412	0	0		
802.11g	54Mbps	2437	0	0		
		2472	0	0		
		2412	8	2		
802.11n-HT20	MCS0	2437	6	1.5		
		2472	8	2	17	15
		2412	0	0		
802.11n-HT20	MCS7	2437	0	0		
		2472	0	0		
		2422	16	4	17.2	13.2
802.11n-HT40	MCS0	2437	16	4	17	13
		2462	16	4	16.8	12.8

填写CE功率表:

Power Table中要填写的功率值=实测功率-衰减值

计算11b CE 功率值,低、中、高信道分别为16.5dBm、16.2dBm、16.5dBm; 计算 11g/n20 信道功率, 选择 6Mbps 和 MCS0 两者中衰减值高者用于计算,三个信道分别为15.5dBm、15.3dBm、15dBm; 计算 11n40M 三个信道分别为13.2dBm、13dBm、12.8dBm。将功率值填入 CE 栏中,非首末信道均填写中间信道的功率值,如图1-8。

图 1-8: 填写 CE 认证功率值

生成 CE Phy Init Bin:

在 Certification 下拉选项中选择 CE, 点击Save Table 保存所有修改, 如图1-9。

图 1-9: 选择 CE 并保存设置

点击 Generate 即可生成带有CRC校验的 CE phy init bin 文件,如图1-10。

图 1-10: 生成 CE Phy Init Bin 文件

多国认证-Multiple Country

Actual_Result 和各认证所需功率测试过程与前述单认证 CE 相似,经计算后写入功率表。在 Certification 下拉选项中选择 Multiple Country,点击 Save Table 保存所有修改,如图1-11。

图 1-11: 选择 Multiple Country 并保存设置

点击 Generate 生成 Combined 文件,如图1-12。

图 1-12: 生成 Combined Phy Init Bin 文件

2 Download and RF test

2.1 Flash Download

从 Tool 选项栏中选择 Download Tool, 进入 Flash Download 界面,如图2-1和图2-2.

图 2-1: ESPRFTestTool 主界面

图 2-2: Download Tool 主界面

下载步骤:

如图2-3:

- ✓ 选择对应的 Chip, Com, Baud Rate, 点击 Open 打开串口;
- ✓ Boot 接低电平使模组进入下载模式;
- ✓ 选择烧录至 Flash;
- ✓ 选择 Phy init 固件并填写对应地址: 0x1fc000
- ✓ 选择 RF 测试固件并配置对应地址: 0x1000
- ✓ 点击 Start Load 开始下载, 烧录完成后显示 SUCC Mark;
- ✓ 点击 Close 关闭串口,关闭 Download Tool 工具界面。

图 2-3: 烧录 Phy Init Bin 文件

Note:

- ESP32/S2 Boot 键为 GPIO0, ESP32-C3 Boot 键为 GPIO9。
- Download Tool 工具默认烧录到 RAM,如需填写烧录地址,需先先择至 Flash。
- Phy Init Bin 烧录地址可改动,后续用于 RF 测试时需做相应调整即可。
- 对于 Multiple Country Phy Init Bin 与单认证烧录地址一样,建议均选择 0x1fc000 地址。

2.2 RF Test with Phy Init

使用 Wi-Fi 仪器测试输出功率, RF Test 可以用于确认 Phy Init 是否生效。

测试步骤:

如图2-4:

- ✓ 选择 Manual Test 界面,选择对应的 Chip, Com, Baud Rate,点击 Open 打开串口;
- ✓ 选择 Wi-Fi Test 界面,选择 Test Mode, Rate, BandWidth, Channel;
- ✓ 设置 Attenuation 默认值0, 选择 Duty Cycle 为10%;
- ✓ 不勾选 Certification EN 代表不使能 Phy init, 此时 start 发包测试代表模组的初始性能。
- ✓ 勾选 Certification EN 代表使能 Phy init, 此时 start 发包测试代表模组的认证功率性能。
- ✓ 输入地址为 Phy Init Bin 的烧录地址,如烧录地址变动,此处需做相应改变。
- ✓ 对于Multiple Country, 在 Certification Code 中可选择其所包含的认证。

图 2-4: RF Test 设置界面

Note:

• Phy Init Bin 文件同样适用于产品应用固件。

附录

ESP32-Series 平均输出功率典型值

表 2: ESP32 Series Target TX Power

Rates	ESP32 (dBm)	ESP32-S2 (dBm)	ESP32-C3 (dBm)
11b 1M	19.5	19.5	20.5
11b 11M	19.5	19.5	20.5
11g 6M	18	18	20
11g 54M	14	15	18
11n-20 MCS0	18	18	19
11n-20 MCS7	13	13.5	17.5
11n-40 MCS0 18		18	18.5
11n-40 MCS7	13	13.5	17

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此 声明。

版权归 2021 乐鑫所有。保留所有权利。