Reals Allowing Rational Approximation of Too High Order Are Negligible

Zhiyang Xun

March 17, 2020

Definition 1 A_{ϕ} is the set of reals x in (0,1] such that

$$\left| x - \frac{p}{q} \right| < \frac{1}{q^2 \phi(q)}$$

has infinitely many irreduciple rational solutions (p,q), that is, $(p,q) \in \mathbb{Z}^2$, q>0 and $\gcd(p,q)=1$.

Theorem 2 Suppose that ϕ is positive. If $\sum_{q} \frac{1}{q\phi(q)} < \infty$, then $P(A_{\phi}) = 0$.

Proof. For each $(p,q) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ satisfying $p \leq q$, we define interval $I_{(p,q)} = [\frac{p}{q} - \frac{1}{q^2\phi(q)}, \frac{p}{q} + \frac{1}{q^2\phi(q)}]$. Clearly, $A_\phi \subseteq \bigcup I_{(p,q)}$. Because each element $x \in A_\phi$ has infinitely many solutions to $\left|x - \frac{p}{q}\right| < \frac{1}{q^2\phi(q)}$, and for each $k \geq 1$, only finite (p,q) satisfying $p \leq q < k$, we can see that

$$A_{\phi} \subseteq \bigcup_{q=k}^{\infty} \bigcup_{p=1}^{q} I_{(p,q)}$$

Now we only need to prove for each $\epsilon>0$, there is a positive integer k satisfying $\sum_{q=k}^{\infty}\sum_{p=1}^{q}\left|I_{(p,q)}\right|<\epsilon$ to illustrate $P(A_{\phi})=0$.

We can see

$$\sum_{q=k}^{\infty} \sum_{p=1}^{q} |I_{(p,q)}|$$

$$= \sum_{q=k}^{\infty} \sum_{p=1}^{q} \frac{2}{q^2 \phi(q)}$$

$$= \sum_{q=k}^{\infty} \frac{2}{q \phi(q)}$$

$$= 2 \sum_{q=k}^{\infty} \frac{1}{q \phi(q)}$$

Since
$$\sum_{q} \frac{1}{q\phi(q)} < \infty$$
, for each $\epsilon > 0$, there is a $k \geq 1$ satisfying $\sum_{q=k}^{\infty} \frac{1}{q\phi(q)} < \frac{\epsilon}{2}$. It implies $\sum_{q=k}^{\infty} \sum_{p=1}^{q} \left| I_{(p,q)} \right| = 2 \sum_{q=k}^{\infty} \frac{1}{q\phi(q)} < \epsilon$. Hence, $P(A_{\phi}) = 0$.