AirBnB Price Prediction Challenge

Process Doc:

• Below are the Pre Processing, Modeling and Visualization techniques that I followed for challenge.

Data Types

Different Data Types are present in the dataset. Following are the observations on Datatypes

- id, log_price, accommodates, bathrooms, host_response_rate, latitude, longitude, number_of_reviews, review scores rating, zipcode, bedrooms, beds are Numerical Data Type.
- property_type, room_type, bed_type, cancellation_policy, city, neighbourhood are Categorical Data Type.
- cleaning_fee, host_has_profile_pic, host_identity_verified, instant_bookable are Boolean Data Type.
- amenities, description, name are Text Data.
- host_since, first_review, last_review are Dates.
- thumbnail_url are urls of room images.

Cleaning the Boolean Data:

- True and False in host_has_profile_pic, instant_bookable, host_identity_verified is noted with t and f.
- Replacing them with True and False before changing them to bool data type.
- There are 21 missing values in host_since, host_has_profile_pic and host_identity_verified and all belong to NYC city. We can get them verified manaually if needed.
- We cannot make any assumptions in host_has_profile_pic, host_identity_verified. Though the mode for each category is True. It is better to keep them as False for security reasons.
- There is no better way to impute missing values in host_since as it does not make sence to impute with mode or median.

Dependency of first_review, last_review and review_scores_rating on number_of_reviews:

- first_review, last_review and review_scores_rating are dependent on the number_of_reviews. If number_of_reviews is 0 then it is sure that the property doesnt have a first and last review.
- Replacing 2165 missing values in first_review, last_review with 'No Review'.
- Replacing 2165 missing values in review_scores_rating with 'No Review'.

Binning of host_reponse_rate

- There are around 25% of mising values in host response rate.
- As per AirBnb, host_response_rate is the number of inquiries to which a host has responded to within 24 hours divided by the total number of inquiries a host has received in the past 90 days.
- There is a chance that the NaNs are caused by division by zero errors.
- Imputing them with mode or median can cause deviations in the model. Filling them with -1 and later binning the feature and marking them and 'Unknown' seems to be the best approach.
- host_reponse_rate is binned into groups named as 'Unknown','0%-25%','25%-75%','75%-99%','100%'.

thumbnail_url

- Thumbnail URL have missing values and cannot be treated.
- For further feature engineering images can be webscrapped from the urls and values like R,G,B,brightness, Sharpness can be calculated.
- For this project this feature is dropped.

Missing values in neighbourhood and zipcode.

- Zip Codes
 - Zip codes is given as object data type and it contains decimal values and few type errors. These are cleaned using string manipulation techniques.
 - Distance matrix is calculated using euclidean_distances method on latitudes and longitudes and missing zipcodes are imputed with nearest values.
- Neighbourhood
 - Distance matrix is calculated using euclidean_distances method on latitudes and longitudes and missing zipcodes are imputed with nearest values.

Missing values in bathrooms, bedrooms, beds.

- These usually depend on accomodates. Replaced the missing values with the observations from heatmaps between accomodates and respective features.
- Bedrooms and Beds are highly correlated. So dropped beds in model building.

Model With Limited Features

- Numerical columns are scaled with minmax scaler.
- Numerical columns are scaled with minimax scaler.
 pandas get dummies are used for dummyfying the categorical variables.
- XGBoost model is built with limited features.
 After further tuning and cross validations.
- After further tuning and cross validations.
 Train RMSE 0.28
 - Train RMSE 0.28Validation RMSE 0.41

Amenities

- Amenities are cleaned and number of anemities features is created.
- Word clouds on Amenities are performed.
 - Most basic essentials are listed by many properties.
- Fire safety features are aslo listed by many properties, which is a good sign.
- Frequency Distribution of Top 50 frequently listed amenities are ploted.
 Frequency Distribution of Top 50 rarely listed amenities are ploted.

Description

• Descriptions are cleaned and processed by removing contractions, stop words and lemmatizing.

Topic Modelling on Descriptions

- LDA is performed on Descriptions.
- Plot between coherence nad number of topics showed that coherence is higest for 4 topics.
- pyldavis is used to visualize the topics.
- After Analyzing the plot following topics are interpreted.
 - Topic 1: Friendly neighbourhood with parks to walk around.
 Topic 2: Neighborhood with easily accessible transit places like Trains.
 - Topic 3: Private are with some accessibity to close by places.
 - Topic 4: Private and luxury.
 NOTE: Posults may vary if
 - NOTE: Results may vary if re-run LDA

City Wise Scatterplots

Patterns of high priced neighbourhoods are observed in each city location.

Models

- Neural Net
 - Train RMSE 0.43
 - Validation RMSE 0.46
- XGBoost CVTrain RMSE 0.31
 - Validation RMSE 0.38
- XGBoost Grid Search
 Train RMSE 0.34
 - Train RMSE 0.34Validation RMSE 0.34

Other Methods that I tried that did not improve the score are

- Used glove pretrained word embeddings on description and used an LSTM network and tried to predict log_price. It did not improve the score.
- LSTMTrain
 - Train RMSE : 0.29
 - Validation RMSE : 0.76
- NOTE: This model is excluded from the current code as it requires glove vectors file to run without errors.

Further improvements that could be done.

Clusters can be formed by analyzing the patterns in scatter plots of cities.