5/12 9-25 PM

Digital Signal Processing (Lecture Note 8)

Jin Ho Chang
Professor

Dept. of Electrical Engineering and Computer Science

EE401

Transform Analysis of LTI systems (Chap. 5)

EE401

(さりかけ)

Ideal Digital Filters

- Filters are closely related to spectral analysis since the <u>goal of filtering is to reshape the spectrum</u> to one's advantage.
- Most noise is broadband (for example, white noise) and most signals are narrowband
 - Filters, that appropriately reshape a waveform's spectrum, will almost always provide some improvement in SNR. Alternated power 1. -> SNROLEGIAL
 - As a general concept, a basic filter can be viewed as a <u>linear process</u> in which the input signal's spectrum is reshaped in some well-defined manner.

 An ideal filter is of rectangular function shape, which cannot be realized. → Why?

> DG/ST 대구검복과학기술원 Despudyeroptok besture of Science & Technology

Sinc function? नर्मिम्बर्ण -०५९००म्य रिश्म युना (?) हिला या देंगे.

H(w) * W(w).

olign to the state of the stat

LTI Systems with Sinusoidal Inputs

$$y(t) = FT^{-1} [Y(\omega)]$$

$$= A |H(\omega_0)| \cos(\omega_0 t + \theta_0 + \angle H(\omega_0))$$

$$\theta_0 \to \theta_0 + \angle H(\omega_0)$$

- Ideal Filter
 - Designed to pass signal components of certain frequencies without distortion, which has a frequency response equal to 1 at these frequencies, and has a frequency response equal to 0 at all other frequencies.
 - Passband → the range of frequencies where the frequency response takes the value of one.
 - Stopband → the range of frequencies where the frequency response takes the value of zero.
 - Cutoff Frequency → the transition frequency from a passband to stopband region.

DGIST 대구검복과학기술원
Degu Gyeongbuk
Staffin di Staffin di Technology

Dagu Oysenybu.

- It is convenient to look at filters in the frequency domain in order to specify:
 - Filters' amplitude responses: $|H(\omega_0)|$
 - Filters' phase responses: $\angle H(\omega_0)$

Next, we need to specify the phase response $\angle H(\omega)$ of the filter. We will call a filter $H(\omega)$ ideal if $|H(\omega)| = \left\{ \begin{array}{ccc} 1, & \text{if } \omega \text{ is in the passband} \\ 0, & \text{if } \omega \text{ is in the stopband} \end{array} \right.$ lowpass highpass and $\angle H(\omega) = \left\{ \begin{array}{cccc} -\omega t_{d,1} & \text{if } \omega \text{ is in the passband} \\ 0, & \text{if } \omega \text{ is in the passband} \\ 0, & \text{if } \omega \text{ is in the passband} \end{array} \right.$ where $t_d > 0$ is some constant. The reason for calling such filters "ideal" will become clear shortly. $B_1 = B_2 + B_3 + B_4 +$

• Let's see what happens when we feed a sinusoidal signal

$$x(t) = A\cos(\omega_0 t + \theta_0)$$

into an ideal filter $H(\omega)$.

$$y(t) = A |H(\omega_0)| \cos(\omega_0 t + \theta_0 + \angle H(\omega_0))$$

– Since $|H(\omega)|=1$ when ω is in the passband and 0 when ω is in the stopband, while $\angle H(\omega_0)=-\omega t_a$ when ω is in the passband and 0 otherwise.

$$y(t) = \begin{cases} A\cos(\omega_0(t - t_d) + \theta_0) & \text{if } \omega_0 \text{ is in the passband} \\ 0 & \text{, if } \omega_0 \text{ is in the stopband} \end{cases}$$

- If the frequency of the sinusoid is in the passband of the filter, the output y(t) of the filter is a time-delayed version of the input:

$$y(t) = x(t - t_d)$$

直接が
UP검복과학기술원
Degy Gyeonybuk
Institute of Science & Technology

- An ideal filter does not distort the input signal, only delay it provided the input frequency is in the passband.
- Let us consider in detail the ideal lowpass filter:

$$|H_{LP}(\omega)| = A \cdot rect(\omega) \quad \text{and} \quad \angle H_{LP}(\omega) = -\omega t_d$$

$$H_{LP}(\omega) = A \cdot rect(\omega) \cdot e^{-j\omega t_d}$$

$$h_{LP}(\omega) = ET^{-1}[A \cdot rect(\omega)] \cdot e^{-j\omega t_d}$$

$$\begin{split} h_{LP}(t) &= FT^{-1} \big[A \cdot rect(\omega) \cdot e^{-j\omega t_d} \big] \\ &= \frac{A}{2\pi} \sin c \left[\frac{A}{2\pi} (t - t_d) \right] \end{split}$$

– The frequency response $H_{\mathbb{P}}(\omega)$ is band-limited, therefore the impulse response $h_{\mathbb{P}}(t)$ cannot be time-limited.

9

- The impulse response of an ideal filter:
 - It is not summable because of its infinite length of response
 - The corresponding transfer function is <u>not bounded-input bounded-output stable</u>.
 - It is not causal, i.e., doubly infinite length.
 - → The ideal filters cannot be realized with finite dimensional LTI filter. নামান খ্লান্ডা

- In order to develop a stable and realizable filter transfer function
 - The ideal frequency response specifications are relaxed by including a transition band between the passband and the stopband
 - This permits the magnitude response to decay slowly from its maximum value in the passband to the zero value in the stopband
 - The magnitude response is allowed to vary by a small amount both in the passband and the stopband

7:51 PM

Z-transform of a LTI system

• LTI system

$$x[n] - \underbrace{h[n]}_{Y(z) = X[n] * h[n]}_{Y(z) = X(z)H(z)}$$

• System function: z-transform of an output sequence over z-transform of the input sequence

$$H(z) = \frac{Y(z)}{X(z)}$$

$$h[n] \quad z\text{-transform}$$

System function H(z): z-transform of the impulse response, h[n]

Revisiting Transfer Function in Z-Plane

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + L + b_M z^{-M}}{1 + a_1 z^{-1} + a_2 z^{-2} + L + a_N z^{-N}}$$

$$= z^{(N-M)} \frac{b_0 \prod_{l=1}^{M} (z - \alpha_l)}{a_0 \prod_{l=1}^{N} (z - \beta_l)} \longrightarrow \text{Poles}$$

- Filter design is simply the determination of appropriate filter coefficients, a(n) and b(n), that provide the desired spectral shaping.
- A digital filter is designed by placing appropriate number of
 - zeros at the frequencies (z-values) to be suppressed
 - Poles at the frequencies to be amplified

Magnitude and Phase Response

$$\left|H\left(e^{j\omega}\right)\right| = \left|\frac{b_0}{a_0}\right| \prod_{l=1}^{M} \left|\left(e^{j\omega} - \alpha_l\right)\right|$$

$$\arg H\left(e^{j\omega}\right) = \arg \left(\frac{b_0}{a_0}\right) + \omega \left(N - M\right) + \sum_{l=1}^{M} \arg \left(e^{j\omega} - \alpha_l\right) - \sum_{l=1}^{N} \arg \left(e^{j\omega} - \beta_l\right)$$

- The magnitude response at a specific value of ω is given by the product of the magnitudes of all zero vectors divided by the product of the magnitudes of all pole vectors.
- The phase response at a specific value of ω is obtained by adding the phase of the term b_0/a_0 , and the linear-phase term $\omega(N-M)$ to the sum of the angles of the zero vectors minus the angles of the pole vectors.

- From the magnitude and phase responses of the transfer function of an LTI digital filter,
 - It is learned that the examination of pole and zero locations leads to developing an approximate plot of frequency response of the LTI digital filter.
- Frequency response has
 - the smallest magnitude at zero locations
 - the largest magnitude at pole locations
- As a result,
 - To highly attenuate signal components in a specified frequency range, zeros should be placed very close to or on the unit circle in this range.
 - To highly emphasize signal components in a specified frequency range, poles should be placed very close to or on the unit circle in this range.

15

Graphical Interpretation

• In $H(z) = \frac{b_0}{a_0} z^{(N-M)} \frac{\prod\limits_{l=1}^{M} (z - \alpha_l)}{\prod\limits_{l=1}^{N} (z - \beta_l)}$, α_l, β_l are generally a complex number

and thus those can be rewritten by $\alpha_i = p_i e^{j\phi_i}$, $\beta_i = q_i e^{j\phi_i}$

on the unit circle

- The term $(e^{j\omega}-p_le^{j\phi_l})$ represents a vector in the z-plane
 - Starting at the point $z = p_l e^{j\phi_l}$
 - Ending at the point $z = e^{j\omega}$

• As ω varies from 0 to 2π , the tip of the vector moves counterclockwise tracing the unit circle.

- The magnitude vector corresponding to the factor α_l will be the smallest at $\omega = \phi_l$. If α_l is on the unit circle, then this magnitude will be zero.
- Therefore, if α_l is a zero, i.e., a numerator factor, the overall magnitude vector of $H(\omega)$ will be small at frequencies around ϕ_l , and will be exactly zero if α_l is on the unit circle, causing $H(\phi_l)=0$.

- Conversely, if α_l is a pole, i.e., a denominator factor, the overall magnitude vector of $H(\omega)$ will be large at frequencies around ϕ_l , and will go to infinity if α_l is on the unit circle.
- This is why the zeros and the poles that are at or close to the unit circle have a larger impact on the overall frequency response than are further away from the unit circle.
- The phase of $H(\omega)$ can be computed in a similar way, except , we now add each phase component corresponding to zeros, and subtract those corresponding to the poles.

7

& TUIN GOT EM HAS HARM LICTAGE

Example Im(z) $\frac{1+z^{-1}+0.5z^2}{1+z^{-1}+0.5z^2} = \frac{1}{z^2+z+0.5}$ 0.866 $\overline{(z+0.5+j0.5)(z+0.5-j0.5)}$ Point of observation One zero at z = 0One pair of conjugate poles at $z = -0.5000 \pm j0.5000$ Re(z)Then. -0.5 $\rho_{\rm s} = \sqrt{(0.5)^2 + (0.865)^2} = 1$ $2\pi/3 = 1/(1.366)(0.366)$ Did we do this right? Credit to Dr. Robi Polikar, Rowan University [대구경북교학기술원 **LG/**\S1

在北州地义, 机学州 和红川 erord农叶

AB这个队上 matlab 站街

• [h,w] = freqz(b,a,N,'whole')

- Calculates the frequency response of a filter whose constant coefficient linear difference equation coefficients are given as b and a, using N number of points around the unit circle. If 'whole' is included, it returns a frequency base of w from 0 to 2π , otherwise, from 0 to π .
- [hz, hp, hi]=zplane(zeros, poles)
 - Plots the zeros specified in column vector z and the poles specified in column vector p in the current figure window.
 - The symbol 'o' represent a zero and the symbol 'x' represents a pole.
 The plot includes the unit circle for reference.
 - Hz is a vector of handles to the zeros lines, hp is a vector of handles to the poles lines, and hi is a vector of handles to the axes/unit circle line.

고당하기 대구경북과학기술원 Deepu dyperoptuk Institute of Science & Technology 4-1284

M-point Moving-Average FIR Filter

$$h[n] = \begin{cases} 1/M, & 0 \le n \le M - 1\\ 0, & otherwise \end{cases}$$

$$H(z) = \frac{1}{M} \sum_{n=0}^{M-1} z^{-n} = \frac{1 - z^{-M}}{M(1 - z^{-1})} = \frac{z^{M} - 1}{M \left[z^{M-1}(z - 1)\right]}$$

- The transfer function has M zeros on the unit circle at

$$z = e^{j\frac{2\pi k}{M}}, \quad 0 \le k \le M - 1$$

- The ROC is the entire z-plane except z=0

고당하기 대구경북과학기술원 Deepu Gyenoria Rechnology

Moving Average Filter

b1=1/5*[1 1 1 1 1]; a1=1; b2=1/9*[1 1 1 1 1 1 1 1 1]; a2=1; [H1 w]=freqz(b1, 1, 512); [H2 w]=freqz(b2, 1, 512);

subplot(221)
plot(w/pi, abs(H1)); grid
title('Transfer Function of 5 point MAF')

subplot(222) zplane(b1,a1); title('Pole-zero plot of 5 point MAF')

subplot(223) plot(w/pi, abs(H2)); grid title('Transfer Function of 9 point MAF')

subplot(224) zplane(b2,a2); title('Pole-zero plot of 9 point MAF')

교명하다 대구경북교학기술원 Begu Gyergitok

4/12

Phase of Filters

• A frequency selective system (filter) with frequency response

$$H(\omega) = |H(\omega)| \angle H(\omega) = |H(\omega)| e^{j\theta(\omega)}$$

changes the amplitude of all frequencies in the signal by a factor of $|H(\omega)|$, and adds a phase of $\theta(\omega)$ to all frequencies.

- Both the amplitude change and the phase delay are functions of ω .
- The phase $\theta(\omega)$ can be expressed in terms of time, which is called the **phase delay**. The phase delay at a particular frequency ω_0 is given as

Phase delay in cont. time
$$\tau_{p}\left(\omega_{0}\right)=-\frac{\theta\left(\omega_{0}\right)}{\omega_{0}}\quad\left(\text{c.f.}\ \Rightarrow\ t_{\theta}=\frac{\theta}{2\pi f}=\frac{\theta}{\omega}\right)$$

다 대구경북과학기술원 Deegu Gyeongbok Institute of Science & Technology

- If an input system consists of many frequency components (which most practical signals do), we can also define **group delay**, the phase shift by which the envelope of the signal shifts.
- This can also be considered as the average phase delay, in seconds (or in samples), of the filter as a function of frequency, given by

$$\tau_{g}\left(\omega_{c}\right) = \frac{d\theta\left(\omega\right)}{d\omega}\bigg|_{\omega=\omega_{c}}$$

DG/S7 대구경북과학기술원
Deegu Gyeongbus,
Institute of Science & Technology

- [gd, w] = grpdelay(b, a, N, fs)
 - Returns the N-point group delay of the digital filter H(z) given its numerator and denominator coefficients in vectors "b" and "a".
 - grpdelay returns both gd, the group delay, which has units of samples, and w, a vector containing the N frequency points in radians.
 - grpdelay evaluates the group delay at N points equally spaced around the upper half of the unit circle, so w contains N points between 0 and π .
 - Specifies a positive sampling frequency fs in hertz. It returns a length N vector containing the actual frequency points at which the group delay is calculated, also in hertz.
 - ✓ f contains N points between 0 and fs/2.
 - [gd, w]=grpdelay(b,a,N,'whole') use N points around the whole unit circle (from 0 to 2π , or from 0 to fs).

Zero-Phase Filter

- One way to avoid any phase distortion is to make sure the frequency response of the filter does not delay any of the spectral components.
 - Such a transfer function is said to have a zero-phase characteristic.
- A zero-phase transfer function has no phase component, that is, the spectrum is purely real (no imaginary component) and nonnegative
- However, it is NOT possible to design a causal digital filter with a zero phase. Why?
- For non-real-time processing of real-valued input signals of finite length, zero-phase filtering can be implemented by relaxing the causality requirement.

29

- A zero-phase filtering scheme can be obtained by the following procedure:
 - Process the input data (finite length) with a causal real-coefficient filter H(z).
 - Time reverse the output of this filter and process by the same filter
 - Time reverse once again the output of the second filter
 - The resulting filter will have an effective order that is twice that of H(z).

$$V(\omega) = H(\omega)X(\omega) \qquad W(\omega) = H(\omega)U(\omega)$$

$$U(\omega) = V^*(\omega) \qquad Y(\omega) = W^*(\omega) = H^*(\omega)U^*(\omega)$$

$$(\text{if } u[n] = v[-n]) \qquad (\text{if } y[n] = w[-n])$$

$$Y(\omega) = H^*(\omega)V(\omega) = H^*(\omega)H(\omega)X(\omega) = |H(\omega)|^2 X(\omega)$$

- Y = filtfilt(b, a, x) performs zero-phase digital filtering by processing the input data in both the forward and reverse directions.
 - After filtering in the forward direction, it reverses the filtered sequence and runs it back through the filter.
 - The result has <u>precisely zero-phase</u> <u>distortion</u>, the magnitude is <u>the</u> <u>square of the filter's magnitude</u> <u>response</u>, and the filter order is <u>double the order of the filter</u> <u>specified by b and a</u>.

DG/S/ 대구경북과학기술원 Deepu Gyeongbuk Institute of Science & Technology

 This figure shows the magnitude and phase responses of the zero-phase filter.

- The phase response is zero throughout the passband and transition band.
- Each zero-crossing in the stopband results in a phase jump of π radians, so that the phase alternates between zero and π in the stopband.

32

Linear Phase

- A zero-phase filter cannot be implemented for real-time application.
- For a causal transfer function with a nonzero phase response, the phase distortion can be avoided by ensuring that the transfer function has (preferably) a unity magnitude and a linear-phase characteristic in the frequency band of interest.

$$H(\omega) = e^{-j\alpha\omega}$$
 $|H(\omega)| = 1$ $\angle H(\omega) = \theta(\omega) = -\alpha\omega$

- This phase characteristic is linear for all ω in [0 2π].
- The phase delay at any given frequency ω₀ is
- If we have linear phase, that is, $\theta(\omega)$ =- $\alpha\omega$, then the total delay at any frequency ω_0 is

35

$$\tau_0 = -\frac{\theta(\omega_0)}{\omega_0} = -\frac{\alpha\omega_0}{\omega_0} = \alpha$$

– Note that this is identical to the group delay evaluated at ω_0

$$\tau_{g}\left(\omega_{0}\right) = -\frac{d\theta\left(\omega\right)}{d\omega}\bigg|_{\omega=\omega_{0}}$$

- If the phase spectrum is linear, the phase delay is independent of the frequency, and it is the same constant α for all frequencies.
 - \checkmark All frequencies are delayed by α seconds, or equivalently, the entire signal is delayed by α seconds.
 - ✓ Since the entire signal is delayed by a constant amount, there is no distortion.
- If the filter does not have linear phase, different frequency components are delayed by different amounts, causing significant distortion.

• If it is desired to pass input signal components in a certain frequency range undistorted in both magnitude and phase, the transfer function should exhibit a unity magnitude response and a linear-phase response in the band of interest.

- Generalized Linear Phase
 - Consider $H(\omega) = e^{-j\alpha\omega}G(\omega)$
 - , where $G(\omega)$ is real, i.e., no phase
 - The exponential term introduces a phase delay, that is, normally independent of frequency.

37

- ✓ If $G(\omega)$ is positive, the phase term is $\theta(\omega) = -\alpha \omega$, hence the system has linear phase.
- ✓ If $G(\omega)$ <0, then a 180° (π rad) phase term is added to the phase spectrum. Therefore, the phase response is $\theta(\omega)$ =- $\alpha\omega$ + π , the phase delay is no longer independent of frequency.
- ✓ From this, $H'(\omega)=-H(\omega)$, which is still linear phase → No distortion. The negative signs simply flips the signal.
- ✓ As long as the system response does not change signs for different values of ω , it can be written as a linear phase transfer function. \rightarrow Generalized Linear Phase (GLP).
- In general, a system whose group delay is constant α , for all passband frequencies is considered as a GLP filter.

DG/S/ 대구검복과학기술원 Deepu dysecoptuk Tolence & Technolog