Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного

образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУК «Информатика и управление» ИУК4 «Программное обеспечение ЭВМ, КАФЕДРА информационные технологии»

ПРАКТИЧЕСКАЯ РАБОТА №3

«Основные типы данных. Способы адресации»

(Суриков Н.С.

ДИСЦИПЛИНА: «Системное программирование»

Выполнил: студент гр. ИУК4-31Б	(ходпись)	_ (Суриков Н.С. (Ф.И.О.)	_)
Проверил:	(подпись)	_ (Амеличева К.А.	_)
Дата сдачи (защиты):				
Результаты сдачи (защиты): - Балльная	оценка:			
- Оценка:				

Цель: Практическое овладение навыками разработки программного кода на языке Ассемблер. Изучение различных способов адресации операндов. Практическое освоение основных функций отладчика TD.

Постановка задачи:

- 1. Написать программу с именем Prog_№.asm используя различные виды режимов адресации, сделать исполняемый файл, и проследить за работой в Турбоотладчике (фрагмент программы Приложение 1).
- 2. Опишите в сегменте данных следующую информацию:

```
B_TAB db 1Ah,2Bh,3Ch,4Dh,5Eh,6Fh,7Ah,8Bh
W_TAB dw 1A2Bh,3C4Dh,5E6Fh,7A8Bh
B_TAB1 db 0Ah,8 dup(1)
W_TAB1 dw 8 dup(1)
W_TAB2 dw 11h,12h,13h,14h,15h,16h,17h,18h
```

3. На основе работы программы в таблице 1, в графы 2 и 3 зафиксировать значение операнда приемника на каждом шаге программы.

		Таблица 1
Оператор	Операнд-приемник	
	до выполнения	После выполнения
1	2	3

- **4.** Выполнить задание варианта (Приложение_2). На основе работы программы в таблице 1, в графы 2 и 3 зафиксировать значение операнда приемника на каждом шаге программы.
- 5. Ответить на контрольные вопросы

Листинг программы 1:

```
1 .model small
    .stack 100h
3 .data
       B_TAB db 1Ah, 2Bh, 3Ch, 4Dh, 5Eh, 6Fh, 7Ah, 8Bh
4
       W_TAB dw 1A2Bh, 3C4Dh, 5E6Fh, 7A8Bh
6
       B_TAB1 db 0Ah,8 dup(1)
       W_TAB1 dw 8 dup(1)
7
8
       W_TAB2 dw 11h, 12h, 13h, 14h, 15h, 16h, 17h, 18h
9
10 .code
    start:
11
             mov ax, @data
13
             mov ds, ax
14
15
       ; Непосредственная адресация
             mov al, -3
                                               ; Расширение знака
16
17
             mov ax, 3
                                                ; Переместить значение 3 в регистр ах
             mov B_TAB, -3
18
                                               ; Переместить значение -3 в массив В_ТАВ
             mov W_TAB, -3
                                               ; Переместить значение -3 в массив W_ТАВ
20
             mov ax, 2A1Bh
                                               ; Переместить значение 2A1Bh в регистр ах
21
      ; Регистровая адресация
23
             mov bl, al
                                                ; Переместить значение регистра al в регистр bl
24
             mov bh, al
                                                ; Переместить значение регистра al в регистр bh
25
                                               ; Переместить разность регистров ах и bx в регистр ах
             sub ax, bx
26
                                               ; Переместить разность регистров ах и ах в регистр ах
             sub ax, ax
27
28
      ; Прямая адресация
                                               ; Переместить в ах 1-ый элемент W_ТАВ
29
          mov ax, W_TAB
             mov ax, W_{TAB} + 3
30
                                               ; Переместить в регистр ах
             mov ax, W_TAB + 5
                                                ; Переместить в регистр ах
31
```

```
32
               mov al, byte ptr W_TAB + 6
                                                    ; Переместить в регистр al
33
               mov al, B_TAB
                                                    ; Переместить в al 1-ый элемент B_TAB
               mov al, B_TAB + 2
                                                    ; Переместить в регистр al
35
               mov ax, word ptr B_TAB
                                                    ; Переместить в регистр ах
               mov es:W_TAB2 + 4, ax
36
                                                    ; B W_TAB2 ax
37
38
        ; Косвенная адресация
39
               mov bx, offset B_TAB
                                                    ; Переместить в bx адрес 1-ого элемента В_ТАВ
               mov si, offset B_TAB + 1
                                                    ; Переместить в si адрес 2-ого элемента B_TAB
40
               mov di, offset B_TAB + 2
                                                    ; Переместить в di адрес 3-ого элемента В_ТАВ
                                                    ; Переместить в dl 1-ый элемент B_TAB
42
               mov dl, [bx]
                                                   ; Переместить в dl 2-ый элемент B_TAB
43
               mov dl, [si]
                                                    ; Переместить в dl 3-ый элемент B_TAB
               mov dl, [di]
45
               mov ax, [di]
                                                ; Переместить в ах 3-ий элемент В_ТАВ ; Переместить значение регистра bx в l ; Переместить в al 1-ый элемент В_ТАВ ; Переместить в al 1-ый элемент В_ТАВ ; Переместить в dl 1-ый элемент В_ТАВ : Переместить в dl 1-ый элемент В_ТАВ :
                                                    ; Переместить в ах 3-ий элемент В_ТАВ
               mov bp, bx
                                                    ; Переместить значение регистра bx в bp
46
47
               mov al, [bp]
               mov al, ds:[bp]
49
               mov al, es:[bx]
               mov ax, cs:[bx]
                                                     ; Переместить в dl 1-ый элемент B_TAB
50
51
52
        ; Базовая адресация
               mov ax, [bx] + 2
53
               mov ax, [bx] + 4
55
               mov ax, [bx + 2]
56
               mov ax, [4 + bx]
57
               mov ax, 2 + [bx]
               mov ax, 4 + [bx]
58
               mov al, [bx] + 2
59
               mov bp, bx
60
61
               mov ax, [bp + 2]
62
               mov ax, ds:[bp] + 2
63
               mov ax, ss:[bx + 2]
64
65
        ; Индексная адресация
66
               mov si, 2
                                                    ; Загрузка индекса
               mov ah, B_TAB[si]
                                                    ; Переместить в ah 2-ой элемент В_ТАВ
67
               mov al, [B_TAB + si]
                                                    ; Переместить в al 2-ой элемент B_TAB
69
               mov bh, [si + B_TAB]
                                                    ; Переместить в bh 2-ой элемент B_TAB
70
               mov bl, [si] + B_TAB
                                                    ; Переместить в bl 2-ой элемент B_TAB
71
               mov bx, es:W_TAB2[si]
72
               mov di, 4
                                                     ; Загрузка индекса
               mov bl, byte ptr es:W_TAB2[di]
73
74
               mov bl, B_TAB[si]
                                                     ; Переместить в bl 2-ой элемент B_TAB
75
76
        ; Базовая индексная адресация
               mov bx, offset B_TAB
77
                                                     ; Загрузка базы
78
               mov al, 3[bx][si]
79
               mov ah, [bx + 3][si]
               mov al, [bx][si + 2]
80
               mov ah, [bx + si + 2]
81
               mov bp, bx
83
               mov ah, 3[bp][si]
84
               mov ax, ds:3[bp][si]
85
               mov ax, word ptr ds:2[bp][si]
86
87
               mov ax, 4c00h
88
               int 21h
89 end start
```

Результат выполнения

Оператор	Операнд-приёмник	
	До выполнения	После выполнения

mov ax, @data	0000	11DE
mov ds, ax	11C2	11DE
mov al, -3	DE	FD
mov ax, 3	11FD	0003
mov B_TAB, -3	1A	FD
mov W_TAB, -3	1A2B	FFFD
mov ax, 2A1Bh	0003	2A1B
mov bl, al	00	1B
mov bh, al	00	1B
sub ax, bx	2A1B	0F00
sub ax, ax	0F00	0000
mov ax, W_TAB	0000	FFFD
mov ax, W_TAB + 3	FFFD	6F3C
mov ax, W_TAB + 5	6F3C	8B5E
mov al, byte ptr W_TAB + 6	5E	8B
mov al, B_TAB	8B	FD
mov al, B_TAB + 2	FD	3C
mov ax, word ptr B_TAB	8B3C	2BFD
mov es:W_TAB2 + 4, ax	48	FD
mov bx, offset B_TAB	1B1B	0000
mov si, offset B_TAB + 1	0000	0001
mov di, offset B_TAB + 2	0000	0002
mov dl, [bx]	00	FD
mov dl, [si]	FD	2B
mov dl, [di]	2B	3C
mov ax, [di]	2BFD	4D3C
mov bp, bx	0000	0000

mov al, [bp]	3C	00
mov al, ds:[bp]	00	FD
mov al, es:[bx]	FD	CD
mov ax, cs:[bx]	4DCD	D3B8
mov ax, [bx] + 2	D3B8	4D3C
mov ax, [bx] + 4	4D3C	6F5E
mov ax, [bx + 2]	6F5E	4D3C
mov ax, [4 + bx]	4D3C	6F5E
mov ax, 2 + [bx]	6F5E	4D3C
mov ax, 4 + [bx]	4D3C	6F5E
mov al, [bx] + 2	5E	3C
mov bp, bx	0000	0000
mov ax, [bp + 2]	6F3C	06FE
mov ax, ds:[bp] + 2	06FE	4D3C
mov ax, ss:[bx + 2]	4D3C	06FE
mov si, 2	0001	0002
mov ah, B_TAB[si]	06	3C
mov al, [B_TAB + si]	FE	3C
mov bh, [si + B_TAB]	00	3C
mov bl, [si] + B_TAB	00	3C
mov bx, es:W_TAB2[si]	3C3C	ADFF
mov di, 4	0002	0004
mov bl, byte ptr es:W_TAB2[di]	FF	FD
mov bl, B_TAB[si]	FD	3C
mov bx, offset B_TAB	AD3C	0000
mov al, 3[bx][si]	3C	6F
mov ah, [bx + 3][si]	3C	6F

mov al, [bx][si + 2]	6F	5E
mov ah, [bx + si + 2]	6F	5E
mov bp, bx	0000	0000
mov ah, 3[bp][si]	5E	00
mov ax, ds:3[bp][si]	005E	7A6F
mov ax, word ptr ds:2[bp][si]	7A6F	6F5E
mov ax, 4c00h	6F5E	4C00

ПРИЛОЖЕНИЕ 2

- 1. Задан одномерный массив, состоящий из 10 элементов (4,7,0,5,1,2,9,3,6,8)
- 2. Заполнить массив числовыми константами. Размер элементов массива для четных номеров.
- 3. Разместить элементы массива в регистры общего назначения, используя различные способы адресации, по следующей схеме:
 - в АХ элемент массива, номер которого соответствует первой цифре Вашего дня рождения,
 - в BX элемент массива, номер которого соответствует второй цифре Вашего дня рождения,
 - в СХ элемент массива, номер которого соответствует первой цифре Вашего месяца рождения,
 - в DX элемент массива, номер которого соответствует второй цифре Вашего месяца рождения,
 - \bullet в SI элемент массива, номер которого соответствует первой цифре Вашего года рождения,
 - в DI элемент массива, номер которого соответствует второй цифре Вашего года рождения,
 - в BP элемент массива, номер которого соответствует третьей цифре Вашего года рождения, в SP элемент массива, номер которого соответствует четвертой цифре Вашего года рождения.
- 4. Назначить переменной fio Вашу фамилию, имя, отчество. Определить физические адреса заглавных букв. Разместить в регистр AL среднюю букву ФИО (значение округлить до целого).
- 5. По адресу равному дню и месяцу Вашего рождения (например, 23 февраля 2302) занести год Вашего рождения, представив его как шестнадцатеричное число.
- 6. Определить переменную const, присвоив ей день и месяц Вашего рождения в формате описанном выше. Разместить это значение в регистре СХ.
- 7. Поместить в переменную name уменьшительно-ласкательную форму Вашего имени. Определить адрес name.

Листинг программы 2:

```
1 .model small
2 .stack 100h
3 .data
4 arr dw 4, 7, 0, 5, 1, 2, 9, 3, 6, 8 ; Массив из 10 элементов
5 fio db "Surikov Nikita Sergeevich", "$" ; ФИО
```

```
6
       _const dw 0A29H
                                                   ; День и месяц рождения - 2601
7
       _name db "Nikitushka", "$"
                                                    ; Уменьшительно-ласкательная форма имени
9
     start:
10
             mov ax, @data
11
             mov ds, ax
12
13
            mov ax, arr + 4
                                        ; Поместить в регистр ах 2-ой элемент arr (прямая адресация)
14
             mov bx, offset arr
                                       ; Поместить в регистр bx адрес 0-ого элемента arr
             mov bx, [bx] + 12
16
                                           ; Поместить в регистр bx значение 6-ого элемента arr
(базовая адресация)
17
             mov si, offset arr
                                         ; Поместить в регистр si адрес 0-ого элемента arr
             mov cx, [si]
                                               ; Поместить в регистр сх значение 0-ого элемента arr
(косвенная адресация)
21
             mov si, 2
                                         ; Определяем значение индекса
             mov dx, arr[si]
                                             ; Поместить в регистр dx значение 1-ого элемента arr
(индексная адресация)
23
                                               ; Поместить в регистр si значение 2-ого элемента arr
               mov si, ax
24
(регистровая адресация)
26
           mov di, arr
                                        ; Поместить в регистр di значение 0-ого элемента arr (прямая
адресация)
27
28
             mov bp, di
                                               ; Поместить в регистр bp значение 0-ого элемента arr
(регистровая адресация)
30
             mov sp, arr + 10
                                        ; Поместить в регистр sp значение 5-его элемента arr (прямая
адресация)
31
             lea bx, fio
32
                                        ; Поместить в регистр bx адрес буквы S
             lea cx, 8[bx]
33
                                        ; Поместить в регистр сх адрес буквы N
             lea dx, 15[bx]
                                        ; Поместить в регистр dx адрес буквы S
34
                                        ; Поместить в регистр al значение буквы t
             mov al, byte ptr fio + 12
36
           mov ds:[0A29H], 7D5H
37
                                        ; Поместить в регистр ds по адресу ОА29Н значение year
38
39
           mov cx, _const
                                        ; Поместить в регистр сх значение переменной _const
40
              lea bx, _name
                                             ; Поместить в регистр bx адрес переменной _name (адрес
первой буквы)
42
43
             mov ax, 4C00h
             int 21h
45 end start
```

Результат выполнения

Оператор	Операнд-приёмник		
	До выполнения	После выполнения	
mov ax, @data	0000	11D7	
mov ds, ax	11C2	11D7	
mov ax, arr + 4	11D7	0000	
mov bx, offset arr	0000	0000	

mov bx, [bx] + 12	0000	0009
mov si, offset arr	0000	0000
mov cx, [si]	0000	0004
mov si, 2	0000	0002
mov dx, arr[si]	0000	0007
mov si, ax	0002	0000
mov di, arr	0000	0004
mov bp, di	0000	0004
mov sp, arr + 10	0100	0002
lea bx, fio	0009	0014
lea cx, 8[bx]	0004	001C
lea dx, 15[bx]	0007	0023
mov al, byte ptr fio + 12	00	74
mov ds:[0A29H], 7D5H	0000	11D7
mov cx, _const	001C	0A29
lea bx, _name	0014	0030
mov ax, 4C00h	0074	4C00

Вывод: в ходе выполнения практического задания были получены навыки разработки программного кода на языке Ассемблер, изучены различные способы адресации операндов, освоены основные функции отладчика TD.