Claims

1. An electroluminescent device, comprising a 2H-benzotriazole compound, especially a compound of the formula

$$\left[X^{2} \right]_{a}^{Ar^{1}} N \left[Y^{\frac{1}{J_{b}}} X^{1} \right]$$
(1),

a is 0, or 1,

b is 0, or 1,

X1 is a group of formula

$$-N$$
 Ar^2
 X^3
, if b is 1, or Y^3 , if b is 0, wherein

10 c is 0, or 1

5

15

20

25

X² and X³ are independently of each other a group of formula

$$-\left\{\gamma^{2}\right\}_{0}^{1} A^{3} N^{N-\gamma^{3}}$$
who

, wherein d is 0, or 1,

 Ar^1 , Ar^2 , and Ar^3 are independently of each other aryl or heteroaryl, which can optionally be substituted, especially C_6 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which can optionally be substituted,

 Y^1 and Y^2 are independently of each other a divalent linking group, and Y^3 and Y^3 are independently of each other aryl or heteroaryl, which can optionally be substituted, especially C_6 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which can optionally be substituted.

2. An electroluminescent device according to claim 1, comprising a 2H-benzotriazole compound of the formula

$$Ar^{1} = N \cdot N - Y^{3}$$

$$Ar^{1} = N \cdot N - Y^{1} - N \cdot Ar^{2}$$

$$(III),$$

$$Y^{3} - N \cdot N = Ar^{3} = Y^{2} \cdot Ar^{4} = N \cdot N - Y^{3}$$

$$(IV),$$

$$Ar^{1} = N N - Y^{1} - N N - Y^{1} - N N - Y^{2} - N N - Y^{3}$$

$$Y^{3} - N N - Ar^{3} = Y^{2} + Ar^{1} - N N - Y^{1} - N N - Y^{2} - N N - Y^{3}$$

$$N - Y^{3} - N N - Y$$

d, Ar1, Ar2, Ar3, Y1 and Y2 are defined as in claim 1,

 Ar^4 stand for C_6 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which can optionally be substituted, and

 Y^3 and Y^3 are independently of each other C_6 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which can optionally be substituted.

3. An electroluminescent device according to claim 2, wherein

$$Ar^1$$
 N and Ar^2 N N N

in formula II or III are independently of each

other a group of formula

5

10

15

$$A^{22}$$
 A^{21}
 A^{23}
 A^{21}
 A^{16}
 A^{15}
 A^{11}
 A^{11}
 A^{12}
 A^{14}
 A^{12}
 A^{14}
 A^{15}
 A^{14}
 A^{15}
 A^{14}
 A^{15}
 A^{15}
 A^{14}
 A^{15}
 A^{15}
 A^{15}
 A^{15}
 A^{15}
 A^{16}
 A^{17}
 A^{18}
 A^{18}
 A^{18}
 A^{18}
 A^{19}
 A^{19}
 A^{19}
 A^{19}
 A^{19}
 A^{19}
 A^{19}
 A^{11}
 A^{12}
 A^{13}
 A^{14}
 A^{15}
 A

 A^{21} , A^{22} , A^{23} , A^{24} , A^{11} , A^{12} , A^{13} , A^{14} , A^{15} , A^{16} , A^{17} and A^{18} are independently of each other H, halogen, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_2 -perfluoroalkyl, C_5 - C_{12} -cycloalkyl, C_5 - C_{12} -cycloalkyl which is substituted by E and/or interrupted by S-, -O-, or -NR²⁵-, -NR²⁵R²⁶, C_1 - C_2 -alkylthio, -PR³² R³², C_5 - C_{12} -cycloalkoxy, C_5 - C_{12} -cycloalkoxy which is substituted by E, C_6 - C_2 -aryl, C_6 - C_2 -aryl which is substituted by E, C_2 - C_2 -heteroaryl, C_2 - C_2 -heteroaryl which is

10

15

20

substituted by E, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by E, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by E, or -CO-R²⁸, or

 A^{22} and A^{23} or A^{11} and A^{23} are a group A^{11} , or , or two groups A^{11} , A^{12} , A^{13} , A^{14} , A^{15} , A^{16} , A^{17} and A^{18} , which are neighbouring to each

other, are a group A^{34} , or A^{32} A^{36} , wherein A^{31} , A^{32} , A^{33} , A^{34} , A^{35} , A^{36}

and A³⁷ are independently of each other H, halogen, hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by E and/or interrupted by S-, -O-, or -NR²⁵-, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by E, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by E, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by E, C₂-C₂₄alkonyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by E, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by E, or -CO-R²⁸, D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C≡C-; and

E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen; wherein

R²³, R²⁴, R²⁵ and R²⁶ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₂₄alkyl, or C₁-C₂₄alkoxy; C₁-C₂₄alkyl; or C₁-C₂₄alkyl which is interrupted by –O-; or

15

R²⁵ and R²⁶ together form a five or six membered ring, in particular

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

10 R³² is C₁-C₂₄alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl, which is substituted by C₁-C₂₄alkyl.

4. An electroluminescent device according to claim 2, wherein

$$-N$$
 Ar^3 and $-Ar^4$ N N

in formula IV are independently of each other

a group of formula

A⁴²

$$A^{41}$$
 A^{42}
 A^{41}
 A^{56}
 A^{57}
 A^{58}
 A^{51}
 A^{51}
 A^{51}
 A^{51}
 A^{51}
 A^{51}
 A^{52}
 A^{53}
 A^{54}
 A^{59}
 A^{5

wherein

A⁴¹, A⁴², A⁴³, A⁴⁴, A⁵¹, A⁵², A⁵³, A⁵⁴, A⁵⁵, A⁵⁶, A⁵⁷, A⁵⁸, A⁵⁹ and A⁶⁰ are independently of each other H, halogen, hydroxy, C1-C24alkyl, C1-C24alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by E and/or interrupted by S-, -O-, or -NR²⁵-, NR²⁵R²⁶, C₁-C₂₄alkylthio, - $PR^{32}R^{32}$, C_5-C_{12} cycloalkoxy, C_5-C_{12} cycloalkoxy which is substituted by E, C_6-C_{24} aryl, C₆-C₂₄aryl which is substituted by E, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by E, C2-C24alkenyl, C2-C24alkynyl, C1-C24alkoxy, C1-C24alkoxy which is substituted by E and/or interrupted by D, C7-C25aralkyl, C7-C25aralkyl, which is substituted by E, C7-C25aralkoxy, C7-C25aralkoxy which is substituted by E, or -CO-R28, or

A42 and A43 or A42 and A51 are a group

two groups A⁵¹, A⁵², A⁵³, A⁵⁴, A⁵⁵, A⁵⁶, A⁵⁷, A⁵⁸, A⁵⁹ and A⁶⁰, which are neighbouring to

$$A^{61}$$
 A^{62}
 A^{63}
 A^{63}
 A^{69}
 A^{69}
, wherein A^{61} , A^{62} , A^{63} , A^{64} , A^{65} ,

each other, are a group

5

10

15

20

25

 A^{66} , A^{67} , A^{68} , A^{69} and A^{70} are independently of each other H, halogen, hydroxy, C_1 -C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by E and/or interrupted by S-, -O-, or -NR²⁵-, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 -

C₂₀heteroaryl which is substituted by E, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by E, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by E, or -CO-R²⁸,

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C≡C-; and

E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen: wherein

R²³, R²⁴, R²⁵ and R²⁶ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₂₄alkyl, or C₁-C₂₄alkoxy; C₁-C₂₄alkyl; or C₁-C₂₄alkyl which is interrupted by --O-; or

R²⁵ and R²⁸ together form a five or six membered ring, in particular

$$\stackrel{\circ}{\sim}$$
 $\stackrel{\circ}{\sim}$ $\stackrel{\circ}{\sim}$

5

10

20

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

 R^{32} is C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, whereing one of the substituents A^{41} , A^{42} , A^{43} , A^{44} , A^{51} , A^{52} , A^{53} , A^{54} , A^{55} , A^{56} , A^{57} , A^{58} , A^{59} , A^{60} , A^{61} , A^{62} , A^{63} , A^{64} , A^{65} , A^{66} , A^{67} , A^{68} , A^{69} and A^{70} represents a single bond.

5. An electroluminescent device according to claim 2, 3 or 4, wherein

15 Y³ and Y^{3'} are independently of each other a group of formula

and Y° are independently of each other a group extension
$$R^{48}$$
 R^{47} R^{50} R^{51} R^{55} R^{56} R^{59} R^{60} R^{63} R^{64} R^{70} R^{68} R^{69} R^{73} R^{74} R^{68} R^{69} R^{74} R^{74} R^{75} R^{75}

, wherein

 R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} , R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{70} , R^{71} , R^{72} , R^{73} , R^{74} , R^{75} , R^{76} , R^{77} , R^{80} , R^{81} , R^{82} , R^{84} , R^{85} , R^{86} , and R^{87} are independently of each other H, C_1 - C_{24} alkyl, which is

10

15

20

25

30

optionally substituted by E and/or interrupted by D, C_1 - C_{24} alkenyl, which is optionally substituted by E, C_5 - C_{12} cycloalkyl, which is optionally substituted by E, C_6 - C_{18} aryl, which is optionally substituted by E, C_6 - C_{18} aryl, which is optionally substituted by E and/or interrupted by D, C_6 - C_{18} aryloxy, which is optionally substituted by E, C_7 - C_{18} arylalkoxy, which is optionally substituted by E, C_7 - C_{18} arylalkoxy, which is optionally substituted by E and/or interrupted by D, C_1 - C_2 4alkylselenium, which is optionally substituted by E and/or interrupted by D, C_1 - C_2 4alkyltellurium, which is optionally substituted by E and/or interrupted by D, C_2 - C_2 0heteroaryl which is substituted by E, or C_6 - C_{18} aralkyl, which is optionally substituted by E, or

two groups R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} , R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{70} , R^{71} , R^{72} , R^{73} , R^{74} , R^{75} , R^{76} , R^{77} , R^{80} , R^{81} , R^{82} , R^{83} , R^{84} , R^{85} , R^{86} , and R^{87} , which are neighbouring to each other, are a group

$$A^{90}$$
 A^{91} A^{90} A^{94} A^{95} A^{96} A^{91} A^{92} , or A^{91} A^{90} , wherein A^{90} , A^{91} , A^{92} , A^{93} , A^{94} , A^{95} , A^{96} and A^{97} are

independently of each other H, halogen, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{24} perfluoroalkyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by E and/or interrupted by S-, -O-, or -NR²⁵-, C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_2 0heteroaryl, C_2 - C_2 0heteroaryl which is substituted by E, C_2 - C_2 4alkoxy, C_1 - C_2 4alkoxy, which is substituted by E and/or interrupted by D, C_7 - C_2 5aralkyl, C_7 - C_2 5aralkyl, which is substituted by E, C_7 - C_2 5aralkoxy, C_7 - C_2 5aralkoxy which is substituted by E, or -CO- R^{28} ,

 R^{68} , R^{79} , R^{78} , R^{79} , R^{88} and R^{89} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{24} alkoxyl, C_1 - C_2 -alkoxyl, C_1 - C_2 -alkoxyl, C_1 - C_2 -alkoxyl, or

R⁶⁸ and R⁶⁹, R⁷⁸ and R⁷⁹, and/or R⁸⁸ and R⁸⁹ form a ring, especially a five- or six-membered ring, or

 R^{68} and R^{70} , R^{69} and R^{73} , R^{77} and R^{78} and/or R^{84} and R^{89} are a group

20

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C≡C-: and

E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen; wherein

R²³, R²⁴, R²⁵ and R²⁶ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₂₄alkyl, or C₁-C₂₄alkoxy; C₁-C₂₄alkyl; or C₁-C₂₄alkyl which is interrupted by -O-; or

R²⁵ and R²⁶ together form a five or six membered ring, in particular

$$\stackrel{\circ}{\sim}$$
, or

R²⁷ and R²⁸ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is 10 substituted by C₁-C₂₄alkyl, or C₁-C₂₄alkoxy; C₁-C₂₄alkyl; or C₁-C₂₄alkyl which is interrupted by -O-,

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkoxy; C_1 -C₂₄alkyl; or C₁-C₂₄alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, 15 which is substituted by C1-C24alkyl, and R^{32} is C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl.

An electroluminescent device according to any of claims 1 to 5, wherein 6. Y1 and Y2 are independently of each other

, especially
$$R^{6}$$
, R^{7} , R^{7} , R^{7} , R^{8} , R^{8} , R^{8} , R^{8} , R^{8} , especially R^{9} , R^{10} , especially

63

10

15

25

30

n1, n2, n3, n4, n5, n6 and n7 are 1, 2, or 3, in particular 1, E^1 is -S-, -O-, or -NR^{25'}-, wherein R^{25'} is C₁-C₂₄alkyl, or C₆-C₁₀aryl,

R⁶ and R⁷ are independently of each other H, halogen, hydroxy, C₁-C₂₄alkyl, C₁- C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_{24} perfluoroalkyl, C_5 -C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by E and/or interrupted by S-, -O-, or -NR²⁵-, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by E, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by E, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by E, C_2 - C_{24} alkenyl, C_2 - C_{24} alkynyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkoxy which is substituted by E and/or interrupted by D, C7-C25aralkyl, C7-C25aralkyl, which is substituted by E, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by E, or -CO-R²⁸, R^8 is C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C₇-C₂₅aralkyl,

R9 and R10 are independently of each other C1-C24alkyl, C1-C24alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by E, C2-C20heteroaryl, C2-C20heteroaryl which is substituted by E, C2-C24alkenyl, C2- C_{24} alkynyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkoxy which is substituted by E and/or interrupted by D, or C7-C25aralkyl, or

R⁹ and R¹⁰ form a ring, especially a five- or six-membered ring, 20 R¹⁴ and R¹⁵ are independently of each other H, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by E, C2-C20heteroaryl, or C2-C20heteroaryl which is substituted by E,

D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or -C≡C-, and

E is -OR²⁹, -SR²⁹, -NR²⁵R²⁶, -COR²⁸, -COR²⁷, -CONR²⁵R²⁶, -CN, -OCOOR²⁷, or halogen, wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-, or

10

15

R²⁵ and R²⁶ together form a five or six membered ring, in particular

 R^{27} and R^{28} are independently of each other H, C_8 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl, or C_1 - C_2 -alkyl which is interrupted by -O-,

 R^{29} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

 R^{32} is C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl.

7. An electroluminescent device according to claim 2, 3, or 5, wherein the 2H-benzotriazole compound is a compound of formula

$$A^{22} \xrightarrow{A^{21}} N \xrightarrow{A^{15}} N \xrightarrow{A^{16}} N \xrightarrow{A^{16}}$$

10

 A^{21} , A^{22} , A^{23} and A^{24} are independently of each other hydrogen, halogen, C_1 - C_{24} alkyl, C_1 - C_{24} perfluoroalkyl, C_6 - C_{18} aryl, -NR 25 R 26 , -CONR 25 R 28 , or -COOR 27 , or C_2 -

C₁₀heteroaryl, especially a group of formula

A²² and A²³ or A¹¹ and A²³ are a group of formula

 A^{11} , A^{12} , A^{13} , A^{14} , A^{15} , A^{16} , A^{17} , and A^{18} are independently of each other H, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₆-C₁₈aryl, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or C₂-C₁₀heteroaryl, wherein

 R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_1 - C_{24} alkyl, R^{27} is C_1 - C_{24} alkyl, and

Y3 is a group of formula

$$R^{70}$$
 R^{71}
 R^{72}
 R^{78}
 R^{76}
 R^{75}
 R^{74}
 R^{75}
 R^{74}
 R^{75}
 R^{75}

 R^{41} is hydrogen, C_1 - C_{24} alkoxy, or OC_7 - C_{18} aralkyl,

R⁴² is hydrogen, or C₁-C₂₄alkyl,

R⁴³ is hydrogen, halogen, -CONR²⁵R²⁶, -COOR²⁷,

especially

15

 E^1 is -S-, -O-, or -NR^{25'}-, wherein R^{25'} is C₁-C₂₄alkyl, or C₆-C₁₀aryl, R¹¹⁰ is H, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or

R⁴² and R⁴³ are a group of formula

R⁴⁴ is hydrogen, or C₁-C₂₄alkyl,

R⁴⁵ is hydrogen, or C₁-C₂₄alkyl,

 $A^{11'}$, $A^{12'}$, $A^{13'}$, and $A^{14'}$ are independently of each other H, CN, C_1 - C_{24} alkyl, C_1 - C_{24} alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

 R^{68} and R^{69} are independently of each other C_1 - C_{24} alkyl, especially C_4 - C_{12} alkyl, especially hexyl, heptyl, 2-ethylhexyl, and octyl, which can be interrupted by one or two oxygen atoms,

 R^{70} , R^{71} , R^{72} , R^{73} , R^{74} , R^{75} , R^{76} , R^{90} , R^{91} , R^{92} , and R^{93} are independently of each other H, CN, C_1 - C_{24} alkyl, C_6 - C_{10} aryl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

 R^{25} and R^{26} are independently of each other H, C_8 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_1 - C_{24} alkyl, and

R²⁷ is C₁-C₂₄alkyl.

15

20

5

10

8. An electroluminescent device according to claim 2, 3, or 6, wherein the 2H-benzotriazole compound is a compound of formula

$$\begin{bmatrix} A^{42} & A^{41} & A^{42} & A^{41} \\ A^{43} & A^{44} & N & A^{52} & A^{54} \\ A^{56} & A^{57} & A^{58} & A^{58} & A^{59} & A^{59} & A^{59} & A^{54} \\ A^{52} & A^{54} & A^{5$$

 A^{41} , A^{42} , A^{43} and A^{44} are independently of each other hydrogen, halogen, C_1 - C_{24} alkyl, C_1 - C_{24} perfluoroalkyl, C_6 - C_{18} aryl, -NR²⁵R²⁶, -CO NR²⁵R²⁶, or -COOR²⁷, or C_2 -

A⁴² and A⁴³ are a group of formula

 A^{51} , A^{52} , A^{53} , A^{54} , A^{55} , A^{56} , A^{57} , A^{58} , A^{59} and A^{60} are independently of each other H, CN, C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, C_6 - C_{18} aryl, -NR 25 R 26 , -CONR 25 R 26 , or -COOR 27 , or C_2 - C_{10} heteroaryl, wherein

E¹ is O, S, or -NR^{25'}-,

 R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_1 - C_{24} alkyl, R^{27} is C_1 - C_{24} alkyl, and

Y1 is a group of formula

10

5

 R^6 is C_1 - C_{24} alkoxy, or -O- C_7 - C_{25} aralkyl, R^7 is H, or C_1 - C_{24} alkyl, R^9 and R^{10} are independently of each other C_1 - C_{24} alkyl, especially C_4 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms, and $R^{25'}$ is C_1 - C_{24} alkyl, or C_6 - C_{10} aryl.

15

9. An electroluminescent device according to claim 2, 4, 5 or 6, wherein the 2H-benzotriazole compound is a compound of formula

(VIa), wherein d is 0, or 1,

20

Y² is a group of formula -O-, -S-, -NR²⁵-,

Y3 is a group of formula

^{l ``} , wherein

R⁹ and R¹⁰ are independently of each other C₁-C₂₄alkyl, especially C₄-C₁₂alkyl, which can be interrupted by one or two oxygen atoms,

 R^{25} is H, C_6 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_1 - C_{24} alkyl,

 R^{41} is C_1 - C_{24} alkoxy, or C_7 - C_{15} phenylalkoxy, and R^{44} is is H, or C_1 - C_{24} alkyl.

10. A 2H-benzotriazole compound of the formula

$$\begin{bmatrix} X^2 \end{bmatrix}_a A r^1 N N \left[Y^{\frac{1}{2}}\right]_b X^1$$
 (1),

10 a is 0, or 1,

5

25

b is 0, or 1,

X1 is a group of formula

$$-N$$
 Ar^2
 X^3
, if b is 1, or Y^3 , if b is 0, wherein

c is 0, or 1

15 X² and X³ are independently of each other a group of formula

$$-\left\{ Y^{2}\right\} \left(Ar^{3}\right) \left[\begin{matrix} N\\ N \end{matrix} N - Y^{3} \right]$$

, wherein d is 0, or 1,

 Ar^1 , Ar^2 , and Ar^3 are independently of each other aryl or heteroaryl, which can optionally be substituted, especially C_6 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which can optionally be substituted,

Y¹ and Y² are independently of each other a divalent linking group, and Y³ and Y^{3'} are independently of each other aryl or heteroaryl, which can optionally be substituted, especially C_6 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which can optionally be substituted.