Section 2

Descriptive Statistics

Two Branches:

Hypothesis testing

Statistics

Basic Statistics

Mean or Average

- ❖ Mean = Average
- ❖ Mean of 104, 98, 90, 104, 104
- **4** (104+98+90+104+104) / 5 = 100

$$\bar{x} = \frac{\sum x}{n}$$

Mean

Median

- Median is the middle value when arranged in ascending or descending order.
- Median of 104, 98, 90, 104, 104
- Arranged in ascending order:
 - 90, 98, 104, 104, 104

Median

- Median is the middle value when arranged in ascending or descending order.
- Median of 104, 98, 90, 104, 104, 85
- Arranged in ascending order:
 - **4** 85, 90, 98, 104, 104, 104

$$\frac{98+104}{2} = \frac{202}{2} = \boxed{101}$$

Median

Mode

- Mode is the most occurring number
- ❖ Mode of 104, 98, 90, 104, 104
- ❖ Is 104 as it occurred three times in the data

Mode

Basic Statistics

Range

- ❖ Range = highest − lowest value
- Range of 104, 98, 90, 85, 104, 104
- **❖** 104 − 85 = 19

Range

Standard Deviation

- Standard Deviation of 104, 98, 90, 104, 104
- Find the average (mean) = 100
- 2. How far each item is from mean (104-100), (98-100), (90-100), (104-100), (104-100)
 ❖ 4, -2, -10, 4, 4
- Take square of the distance from mean (4)², (-2)², (-10)², (4)², (4)²
 ♣ 16, 4, 100, 16, 16
- 4. Take the mean of these squares (16+4+100+16+16)/5 = 30.4 (This is the **Variance**)
- 5. Square root of variance is the standard deviation

$$\sqrt{30.4} = 5.51$$

Variance and Standard Deviation

Standard Deviation

Sample Standard Deviation

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Population Standard Deviation

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{N}}$$

Variance and Standard Deviation

Basic Statistics

Median

- Median is the middle value when arranged in ascending or descending order.
- Median of 104, 98, 90, 104, 104, 85
- **Arranged** in ascending order:
 - **\$** 85, 90, 98, 104, 104, 104

$$\frac{98+104}{2} = \frac{202}{2} = \boxed{101}$$

Median

Quartiles

- Median divides the data into two parts. The single point of split is called the Median.
- ❖ If we divide the data into four parts, we get three points of splits called Quartiles (Q1, Q2 and Q3).
- Example: 70, 85, 90, 98, 104, 105, 107Q1 Q2 Q3

Quartile

Box and Whisker Plot

Quantiles

- Median divides the data into two parts. The single point of split is called the Median.
- ❖ If we divide the data into "n" parts, we get (n-1) points of splits called Quantiles.
- Example: Decile(10), Percentile(100)

Quantiles

Section 2

Descriptive Statistics

Classic Model

Number of outcomes in which the event occurs

Total Number of possible outcomes of an experiment

Relative Frequency of Occurrence

Number of times an event occurred

Total number of opportunities for an event to occur

Experiment/Trial: Some thing done with an expectation of result.

Event or Outcome: Result of experiment

❖ Sample Space: A sample space of an experiment is the set of all possible results of that random experiment.

 $\{1, 2, 3, 4, 5, 6\}$

Sample space: In roll of two dices

$$\{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6), \}$$

Event A: Probability of getting 1 or 4 in the roll of a dice.

Event A: Probability of getting 1 or 4 in the roll of a dice.

Event B: Probability of getting 2, 3, 5 or 6

Event A: Probability of getting 1 or 4 in the roll of a dice.

Event B: Probability of getting 2, 3, 5 or 6

Mutually Exclusive Events: When two events cannot occur at the same time

Event A: Probability of getting 1 or 4 in the roll of a dice.

Event C: Probability of getting 1, 2, 3, 5 or 6

Union:

Probability that events A <u>or</u> B occur P(A U B)

$$\{1, 2, 3, 4, 5, 6\}$$

Intersection:

Probability that events A and B occur

$$P(A \cap B)$$
 {1}

Mutually Exclusive Events: When two events cannot occur at the same time

Independent Events: The occurrence of Event A does not change the probability of Event B

Complementary Events: The probability that Event A will <u>NOT</u> occur is denoted by P(A').

* Rule of Multiplication:

The probability that Events A <u>and</u> B both occur =

Probability that Event A occurs

X

Probability that Event B occurs, given that A has occurred

$$P(A \cap B) = P(A) P(B|A)$$

* Rule of Multiplication:

The probability that Events A <u>and</u> B both occur =

Probability that Event A occurs

X

Probability that Event B occurs, given that A has occurred

$$P(A \cap B) = P(A) P(B|A)$$

❖ In two rolls of dice what is the probability of getting 6 in both? (independent event)

* Rule of Multiplication:

The probability that Events A <u>and</u> B both occur =

Probability that Event A occurs

X

Probability that Event B occurs, given that A has occurred

$$P(A \cap B) = P(A) P(B|A)$$

❖ There are 10 candies in the plate (5 Green, 2 Yellow, 2 Orange and 1 Red). If I pick 2 random ones, what is the probability of getting both Yellow?

Rule of Addition

The probability that Event A <u>or</u> Event B occurs

=

Probability that Event A occurs

+

Probability that Event B occurs

_

Probability that both Events A and B occur

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

❖ Factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n

$$5! = 5 \times 4 \times 3 \times 2 \times 1$$

$$1! = 1$$

$$0! = 1$$

Python code:

Import math Math.factorial(5)

❖ Permutation: A set of objects in which position (or order) is important.

❖ Combination: A set of objects in which position (or order) is NOT important.

Permutations Combinations

Without repetition

Python code:

Order is important.

$$n_{P_r} = \frac{n!}{(n-r)!}$$

import math math.perm(5,3)

***** Combination:

Order is NOT important.

$$n_{C_r} = \frac{n!}{(n-r)! \, r!}$$

import math math.comb(5,3)

Permutation: With repetition

- In case of the lock, total permutations are
- 4 10 x 10 x 10 x 10 = 10,000

 n^{r}

Python code: Import math math.pow(10, 4) Permutations
With repetition

Permutation: Without repetition

How many ways we can select 3 players out of 5. The first selected becomes the captain, second the vice-captain and third the treasurer.

$$n_{P_r} = \frac{n!}{(n-r)!}$$

$$\mathbf{5}_{P_3} = \frac{5!}{(5-3)!} = 5 \times 4 \times 3 = 60$$

Python code: import math math.perm(5,3)

PermutationsWithout repetition

Combination: Without repetition:

How many ways we can select 3 players out of 5

$$n_{C_r} = \frac{n!}{(n-r)! \, r!}$$

$$\mathbf{5}_{C_3} = \frac{5!}{(5-3)! \, 3!}$$

$$\mathbf{5}_{C_3} = \frac{5 \times 4 \times 3}{3 \times 2 \times 1} = 10$$

Python code: import math math.comb(5,3)

CombinationsWithout repetition

Combination: With repetition:

e.g. In the store there are 5 varieties of juice bottles. You want to buy 3 bottles. How many possible combinations you can buy?

Without repetition:
$$n_{C_r} = \frac{n!}{(n-r)! \, r!}$$

$$\frac{(r+n-1)!}{r! \, (n-1)!}$$

$$\frac{(5+3-1)!}{3!(5-1)!} = \frac{7!}{3!4!} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35$$

Python code:

Combinations With repetition

Without repetition

Python code:

Order is important.

$$n_{P_r} = \frac{n!}{(n-r)!}$$

import math math.perm(5,3)

***** Combination:

Order is NOT important.

$$n_{C_r} = \frac{n!}{(n-r)! \, r!}$$

import math math.comb(5,3)

Probability Distributions

Binomial

Poisson

03 Normal

Rolling a Die

Flipping 2 Coins

1st	2nd
Н	Н
Н	Т
T	Н
T	T

Flipping 10 Coins

Probability Distribution

- Discrete (count) vs Continuous (measurement)
- **❖** Sum of area = 1.00

Binomial Distribution

❖ A manufacturer has 12% defects rate in production. The buyer decides to test 20 random pieces and will accept the supplier if there are 2 or less defectives. What is the probability of getting accepted?

- **❖ A binomial experiment** has the following properties:
 - The experiment consists of *n* repeated trials.
 - Each trial can result in just two possible outcomes. We call one of these outcomes a success and the other, a failure.
 - The probability of success, denoted by *p*, is the same on every trial.
 - The trials are independent; that is, the outcome on one trial does not affect the outcome on other trials.

$$P(x) = n_{C_x} \cdot p^x \cdot (1-p)^{n-x}$$

$$P(x) = \frac{n!}{x! (n-x)!} p^x \cdot (1-p)^{n-x}$$

- * x: The number of successes that result from the binomial experiment.
- n: The number of trials in the binomial experiment.
- p: The probability of success on an individual trial.
- ❖ P(x): Binomial probability the probability that an n-trial binomial experiment results in exactly x successes, when the probability of success on an individual trial is p.

❖ If you flip a coin 4 times, what is the probability of getting 1 head?

$$P(x) = \frac{n!}{x!(n-x)!} \cdot p^x \cdot (1-p)^{n-x}$$

$$P(1) = \frac{4!}{1!(4-1)!} \cdot 0.5^{1} \cdot (1-0.5)^{4-1}$$

$$P(1) = (4) \cdot (0.5)^{1} \cdot (0.5)^{3}$$

$$P(1) = (4).(0.5)^4 = 0.25$$

BINOM.DIST(1,4,0.5,FALSE) = 0.25 BINOM.DIST(2,4,0.5,FALSE) = 0.375

! The mean of the distribution (μ_x) is $n \cdot p$

• The variance
$$(\sigma^2_x)$$
 is

$$n.p.(1-p)$$

 \clubsuit The standard deviation (σ_x) is

$$\sqrt{n\cdot p\cdot (1-p)}$$

 \clubsuit The mean of the distribution (μ_x) is

$$n \cdot p = 4 \times 0.5 = 2$$

! The variance (σ_x^2) is

$$n.p.(1-p)$$

$$4 \times 0.5 \times 0.5 = 1$$

 \clubsuit The standard deviation (σ_x) is

$$\sqrt{\mathbf{n}\cdot\mathbf{p}\cdot(\mathbf{1}-\mathbf{p})}$$

$$\sqrt{4 \times 0.5 \times 0.5} = 1$$

A manufacturer has 12% defects rate in production. The buyer decides to test 20 random pieces and will accept the supplier if there are 2 or less defectives. What is the probability of getting accepted?

$$\Rightarrow$$
 p = 0.12, n = 20, x = 0, 1, 2

$$P(x) = \frac{n!}{x! (n-x)!} \cdot p^{x} \cdot (1-p)^{n-x}$$

$$P(0) = \frac{20!}{0!(20-0)!} \cdot 0.12^{0} \cdot (1-0.12)^{20-0}$$

$$P(1) = \frac{20!}{1!(20-1)!} \cdot 0.12^{1} \cdot (1-0.12)^{20-1}$$

$$P(2) = \frac{20!}{2! (20-2)!} \cdot 0.12^2 \cdot (1-0.12)^{20-2}$$

P(0,1,2) = 0.077563 + 0.211535 + 0.274034 = 0.563132

$$\Rightarrow$$
 p = 0.12, n = 20, x = 0, 1, 2

The mean of the distribution (μ_x) is $n \cdot p = 20 \times 0.12 = 2.4$

! The variance (σ_x^2) is

$$n.p.(1-p)$$

$$20 \times 0.12 \times 0.88 = 2.112$$

 \clubsuit The standard deviation (σ_x) is

$$\sqrt{\mathbf{n} \cdot \mathbf{p} \cdot (\mathbf{1} - \mathbf{p})} = 1.453$$

Probability Distributions

Binomial

Poisson

03 Normal

Binomial vs Poisson Distribution

Similarities:

- Both are for discrete distribution
- Both measure the number of successes

Differences:

❖ In Poisson distribution the possibilities of success are infinite.

A **Poisson experiment** has the following properties:

- The experiment results in outcomes that can be classified as successes or failures.
- The average number of successes (μ) that occurs in a specified region is known.
- Outcomes are random. Occurrence of one outcome does not influence the chance of another outcome of interest.
- The outcomes of interest are rare relative to the possible outcomes.
 - Example: Road accidents, queue at the counter

$$P(x, \mu) = e^{-\mu} \cdot \frac{\mu^{x}}{x!}$$

- e: A constant equal to approximately 2.71828. (Actually, e is the base of the natural logarithm system)
- μ: The mean number of successes that occur in a specified region.
- x: The actual number of successes that occur in a specified region.
- $P(x; \mu)$: The **Poisson probability** that <u>exactly</u> x successes occur in a Poisson experiment, when the mean number of successes is μ .

$$P(x, \mu) = e^{-\mu} \cdot \frac{\mu^{x}}{x!}$$

- On a booking counter on the average 3.6
 people come every 10 minutes on
 weekends. What is the probability of getting
 7 people in 10 minutes?
- μ = 3.6, x=7
- $P(x; \mu) = (e^{-\mu}) (\mu^{x}) / x! = (e^{-3.6}) (3.6^{7}) / 7!$
- =0.02732 x 7836.41 / 5040 = 0.0424

- On a booking counter on the average 3.6
 people come every 10 minute on weekends.
 What is the probability of getting 7 people in
 10 minutes?
- P(7; 3.6) = 0.0424

- The Poisson distribution has the following properties:
- The mean of the distribution is equal to μ .
- The variance is also equal to μ .

Probability Distributions

Binomial

Poisson

03 Normal

Symmetrically distributed

Long Tails / Bell Shaped

Mean/ Mode and Median are same

- Two factors define the shape of the curve:
 - Mean
 - Standard Deviation

• About 68% of the area under the curve falls within **1 standard deviation** of the mean.

 About 95% of the area under the curve falls within 2 standard deviations of the mean.

 About 99.7% of the area under the curve falls within <u>3 standard deviations</u> of the mean.

- The total area under the normal curve = 1.
- The probability of any particular value is 0.
- The probability that X is greater than or less than a value = area under the normal curve in that direction

$$P(x) = \frac{e^{-\frac{(x-\mu)^2}{2\sigma^2}}}{\sigma\sqrt{2\pi}}$$

- where x is a normal random variable,
- μ = mean,
- σ = standard deviation,
- π is approximately 3.14159,
- e is approximately 2.71828.

Z Value / Standard Score

- How many standard deviations an element is from the mean.
- \Rightarrow z = (x μ) / σ

- ❖ z is the z-score,
- x is the value of the element,
- \clubsuit μ is the population mean,
- \bullet σ is the standard deviation.

Hundre dth	place	for Z	value
------------	-------	-------	-------

Z-Value	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.49601	0.49202	0.48803	0.48405	0.48006	0.47608	0.47210	0.46812	0.46414
0.1	0.46017	0.45620	0.45224	0.44828	0.44433	0.44038	0.43644	0.43251	0.42858	0.42465
0.2	0.42074	0.41683	0.41294	0.40905	0.40517	0.40129	0.39743	0.39358	0.38974	0.38591
0.3	0.38209	0.37828	0.37448	0.37070	0.36693	0.36317	0.35942	0.35569	0.35197	0.34827
0.4	0.34458	0.34090	0.33724	0.33360	0.32997	0.32636	0.32276	0.31918	0.31561	0.31207
0.5	0.30854	0.30503	0.30153	0.29806	0.29460	0.29116	0.28774	0.28434	0.28096	0.27760
0.6	0.27425	0.27093	0.26763	0.26435	0.26109	0.25785	0.25463	0.25143	0.24825	0.24510
0.7	0.24196	0.23885	0.23576	0.23270	0.22965	0.22663	0.22363	0.22065	0.21770	0.21476
8.0	0.21186	0.20897	0.20611	0.20327	0.20045	0.19766	0.19489	0.19215	0.18943	0.18673
0.9	0.18406	0.18141	0.17879	0.17619	0.17361	0.17106	0.16853	0.16602	0.16354	0.16109
1.0	0.15866	0.15625	0.15386	0.15151	0.14917	0.14686	0.14457	0.14231	0 1 4 0 0 7	0.13786
1.1	0.13567	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
1.2	0.11507	0.11314	0.11123	0.10935	0.10749	0 1 0 5 6 5	0.10383	0.10204	0.10027	0.09853
1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08691	0.08534	0.08379	0.08226
1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07215	0.07078	0.06944	0.06811
1.5	0.06681	0.06552	0.06426	0.06301	0.06178	0.06057	0.05938	0.05821	0.05705	0.05592
1.6	0.05480	0.05370	0.05262	0.05155	0.05050	0.04947	0.04846	0.04746	0.04648	0.04551

Z Value / Standard Score

- ❖ Perfume bottles are filled with the average volume of 150 cc and the standard deviation of 2 cc.
- ❖ What percent of bottles will have the volume more than 153 cc?

$$\mu = 150 \text{ cc}$$
 $\sigma = 2 \text{ cc}$
 $z = (x - \mu) / \sigma = (153 - 150)/2 = 1.5$

Hundre dth	alaca for	T. Halling
Prun ure aun	DIRCE FOR	E-value

Z-Value	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.49601	0.49202	0.48803	0.48405	0.48006	0.47608	0.47210	0.46812	0.46414
0.1	0.46017	0.45620	0.45224	0.44828	0.44433	0.44038	0.43644	0.43251	0.42858	0.42465
0.2	0.42074	0.41683	0.41294	0.40905	0.40517	0.40129	0.39743	0.39358	0.38974	0.38591
0.3	0.38209	0.37828	0.37448	0.37070	0.36693	0.36317	0.35942	0.35569	0.35197	0.34827
0.4	0.34458	0.34090	0.33724	0.33360	0.32997	0.32636	0.32276	0.31918	0.31561	0.31207
0.5	0.30854	0.30503	0.30153	0.29806	0.29460	0.29116	0.28774	0.28434	0.28096	0.27760
0.6	0.27425	0.27093	0.26763	0.26435	0.26109	0.25785	0.25463	0.25143	0.24825	0.24510
0.7	0.24196	0.23885	0.23576	0.23270	0.22965	0.22663	0.22363	0.22065	0.21770	0.21476
8.0	0.21186	0.20897	0.20611	0.20327	0.20045	0 19766	0.19489	0.19215	0.18943	0.18673
0.9	0.18406	0.18141	0.17879	0.17619	0.17361	0.17106	0.16853	0.16602	0.16354	0.16109
1.0	0.15866	0.15625	0.15386	0.15151	0.14917	0.14686	0.14457	0.14231	0 1 4 0 0 7	0.13786
1.1	0.13567	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
1.2	0.11507	0.11314	0.11123	0.10935	0.10749	0.10565	0.10383	0.10204	0.10027	0.09853
1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08691	0.08534	0.08379	0.08226
1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07215	0.07078	0.06944	0.06811
1.5	0.06681	0.06552	0.06426	0.06301	0.06178	0.06057	0.05938	0.05821	0.05705	0.05592
1.6	0.05480	0.05370	0.05262	0.05155	0.05050	0.04947	0.04846	0.04746	0.04648	0.04551

Z Value / Standard Score

- ❖ Perfume bottles are filled with the average volume of 150 cc and the standard deviation of 2 cc.
- What percent of bottles will have the volume between 148 and 152 cc?

$$\mu = 150 \text{ cc}$$
 $\sigma = 2 \text{ cc}$

$$z1 = (x - \mu) / \sigma = (148 - 150)/2 = -1$$

$$z2 = (x - \mu) / \sigma = (152 - 150)/2 = 1$$

$$P(x) = 1 - 0.15866 - 0.15866 = 0.68268$$

Hun dre dth	

Z-Value	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.49601	0.49202	0.48803	0.48405	0.48006	0.47608	0.47210	0.46812	0.46414
0.1	0.46017	0.45620	0.45224	0.44828	0.44433	0.44038	0.43644	0.43251	0.42858	0.42465
0.2	0.42074	0.41683	0.41294	0.40905	0.40517	0.40129	0.39743	0.39358	0.38974	0.38591
0.3	0.38209	0.37828	0.37448	0.37070	0.36693	0.36317	0.35942	0.35569	0.35197	0.34827
0.4	0.34458	0.34090	0.33724	0.33360	0.32997	0.32636	0.32276	0.31918	0.31561	0.31207
0.5	0.30854	0.30503	0.30153	0.29806	0.29460	0.29116	0.28774	0.28434	0.28096	0.27760
0.6	0.27425	0.27093	0.26763	0.26435	0.26109	0.25785	0.25463	0.25143	0.24825	0.24510
0.7	0.24196	0.23885	0.23576	0.23270	0.22965	0.22663	0.22363	0.22065	0.21770	0.21476
8.0	0.21186	0.20897	0.20611	0.20327	0.20045	0.19766	0.19489	0.19215	0.18943	0.18673
0.9	0.18406	0.18141	0.17879	0.17619	0.17361	0.17106	0.16853	0.16602	0.16354	0.16109
1.0	0.15866	0.15625	0.15386	0.15151	0.14917	0.14686	0.14457	0.14231	0 1 4 0 0 7	0.13786
1.1	0.13567	0.13350	0.13136	0.12924	0.12714	0.12507	0.12302	0.12100	0.11900	0.11702
1.2	0.11507	0.11314	0.11123	0.10935	0.10749	0.10565	0.10383	0.10204	0.10027	0.09853
1.3	0.09680	0.09510	0.09342	0.09176	0.09012	0.08851	0.08691	0.08534	0.08379	0.08226
1.4	0.08076	0.07927	0.07780	0.07636	0.07493	0.07353	0.07215	0.07078	0.06944	0.06811
1.5	0.06681	0.06552	0.06426	0.06301	0.06178	0.06057	0.05938	0.05821	0.05705	0.05592
1.6	0.05480	0.05370	0.05262	0.05155	0.05050	0.04947	0.04846	0.04746	0.04648	0.04551

Section 6

Inferential Statistics

SAMPLING

SAMPLING - CONFIDENCE INTERVAL

SAMPLING - HYPOTHESIS TEST

❖ For almost all populations, the sampling distribution of the mean can be approximated closely by a normal distribution, provided the sample size is sufficiently large.

Central Limit Theorem

If a variable has a mean of μ and the variance σ^2 , as the sample size n increases, the sample mean approaches a normal distribution with mean $\mu_{\bar{x}}$ and variance $\sigma_{\bar{x}}^2$

$$\mu_{\bar{x}} = \mu$$

$$\sigma_{\overline{x}}^2 = \frac{\sigma_x^2}{n}$$

$$\sigma_{\bar{\chi}} = \frac{\sigma_{\chi}}{\sqrt{n}}$$

Central Limit Theorem

- Standard deviation of the sampling distribution of the sample mean
 - Called "standard error of the mean"

$$\sigma_{\bar{\chi}} = \frac{\sigma_{\chi}}{\sqrt{n}}$$

Central Limit Theorem

CENTRAL LIMIT THEOREM

CENTRAL LIMIT THEOREM

Statistical vs practical significance

Hypothesis testing steps

Type 1 and 2 errors

The p Value

- A statistical hypothesis test is a method of statistical inference.
- Commonly used tests include:
 - Compare sample statistic with the population parameter
 - Compare two datasets

Statistical Significance

- Case of a perfume making company:
- ❖ Mean Volume 150 cc and sd=2 cc

Practical Significance

- Practical significance of an experiment tells us if there is any actionable information from the result.
- Large samples can find out statistical difference for very small difference. These small differences might not have practical significance.

- 1. State the Alternate Hypothesis.
- 2. State the Null Hypothesis.
- 3. Select a probability of error level (alpha level). Generally 0.05
- 4. Calculate the test statistic (e.g., t or z score)
- 5. Critical test statistic
- 6. Interpret the results.

- Null Hypothesis: The person is innocent
- Alternate Hypothesis: The person is guilty. You need to provide proof of this.
- Court conclusion is: Guilty or Not Guilty (not the innocent)

- Null Hypothesis: The person is innocent
- Alternate Hypothesis: The person is guilty. You need to provide proof of this.
- In statistical terms you:
 - Reject the Null Hypothesis, or
 - Fail to reject the Null Hypothesis (not accept the Null Hypothesis)

- ❖ Null Hypothesis: The machine is filling the bottles with 150 cc
- Alternate Hypothesis: The machine is "not" filling the bottles with 150 cc.

- Lower Tail Tests
 - ★ H₀: μ ≥ 150cc
 - ❖ H_a : μ < 150cc
- Upper Tail Tests
 - ♣ H₀: μ ≤ 150cc
 - ♣ H_a: μ > 150cc
- Two Tail Tests
 - ❖ H_0 : $\mu = 150cc$
 - **♦** 4 H_a: μ ≠ 150cc

- ❖ What would you conclude if you pick one sample and find the volume as:
 - ❖ 147 cc or
 - **❖** 156 cc

- 1. State the Alternate Hypothesis.
- 2. State the Null Hypothesis.
- 3. Select a probability of error level (alpha level). Generally 0.05
- 4. Calculate the test statistic (e.g t or z score)
- 5. Critical test statistic
- 6. Interpret the results.

		True State of Nature		
		H ₀ Is true	H _a Is true	
	Support H _{0/} Reject H _a	Correct Conclusion	Type II Error	
Conclusion	Support H _{a /} Reject H ₀	Type I Error	Correct Conclusion (Power)	

		True State of Nature		
		H ₀ Is true	H _a Is true	
Conclusion	Support H _{0 /} Reject H _a	Correct Conclusion	Type II Error	
	Support H _{a /} Reject H ₀	Type I Error	Correct Conclusion (Power)	

		Type I error (alpha)	Type II error (beta)						
	Name	Producer's risk/ Significance level	Consumer's risk						
	1 minus error is called	Confidence level	Power of the test						
	Example of Fire Alarm	False fire alarm leading to inconvenience	Missed fire leading to disaster						
	Effects on process	Unnecessary cost increase due to frequent changes	Defects may be produced						
	Control method	Usually fixed at a predetermined level, 1%, 5% or 10%	Usually controlled to < 10% by appropriate sample size						
3	Simple definition	Innocent declared as guilty	Guilty declared as innocent						

Confidence Level:

C = 0.90, 0.95, 0.99 (90%, 95%, 99%)

Level of Significance or Type I Error:

 $\alpha = 1 - C (0.10, 0.05, 0.01)$

	Type I error (alpha)	Type II error (beta) Consumer's risk		
Name	Producer's risk/ Significance level			
1 minus error is called	Confidence level	Power of the test		
Example of Fire Alarm	False fire alarm leading to inconvenience	Missed fire leading to disaster		
Effects on process	Unnecessary cost increase due to frequent changes	Defects may be produced		
Control method	Usually fixed at a predetermined level, 1%, 5% or 10%	Usually controlled to < 10% by appropriate sample size		
Simple definition	Innocent declared as guilty	Guilty declared as innocent		

Power

- ❖ Power = 1 β (or 1 type II error)
- Type II Error: Failing to reject null hypothesis when null hypothesis is false.
- ❖ Power: Likelihood of rejecting null hypothesis when null hypothesis is false.
- Or: Power is the ability of a test to correctly reject the null hypothesis.

		True State of Nature		
		H ₀ Is true	H _a Is true	
Conclusion	Support H _{0 /} Reject H _a	Correct Conclusion	Type II Error	
	Support H _{a /} Reject H ₀	Type I Error	Correct Conclusion (Power)	

- 1. State the Alternate Hypothesis.
- 2. State the Null Hypothesis.
- 3. Select a probability of error level (alpha level). Generally 0.05
- 4. Calculate the test statistic (e.g t or z score)
- 5. Critical test statistic
- 6. Interpret the results.

- Let's pick 1 bottle from the production line and the volume is 153.8 cc
- ❖ With 95% confidence level we will fail to reject the null hypothesis.

150

153.9

Distribution Plot

 H_0 : $\mu = 150cc$ H_a : $\mu \neq 150cc$

Let's pick 4 bottles from the production line and find the average volume as 153.8 cc.

- Let's pick 4 bottles from the production line and find the average volume as 153.8 cc.
- ❖ With 95% confidence level we will reject the null hypothesis.

 H_0 : $\mu = 150cc$

 H_a : $\mu \neq 150cc$

$$z_{cal} = \frac{(\bar{X} - \mu)}{\sigma_{\chi}/\sqrt{n}}$$
 $z_{cal} = \frac{(153.8 - 150)}{2/\sqrt{4}} = 3 \cdot 8$

For α = 0.05 Two Tails means 0.025 on both tails. Z Critical = 1.96

- 1. State the Alternate Hypothesis.
- 2. State the Null Hypothesis.
- 3. Select a probability of error level (alpha level). Generally 0.05
- 4. Calculate the test statistic (e.g t or z score)
- 5. Critical test statistic
- 6. Interpret the results.

- α = 0.01 Two Tails means 0.005 on both tails. Z Critical = 2.575
- α = 0.05 Two Tails means 0.025 on both tails. Z Critical = 1.96
- α = 0.10 Two Tails means 0.05 on both tails. Z Critical = 1.645
- \Leftrightarrow $\alpha = 0.05$ Single Tails
 - **❖** Z Critical = 1.645

z	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019 .0014
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0003	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003 .0002
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001 .0000	.0002 .0001 .0001 .0001							

p Value

- p value is the lowest value of alpha for which the null hypothesis can be rejected. (Probability that the null hypothesis is correct)
- For example, if p = 0.045 you can reject the null hypothesis at $\alpha = 0.05$
- p is low the null must go / p is high the null fly.

Section 7

Hypothesis Testing Part 1

Tests for means, variances and proportions

One Sample z Test

Conditions for z Test

- Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- Sampling distribution approximates Normal Distribution
 - ❖ Population is Normally distributed and the population standard deviation is known *** OR ***
 - **❖** Sample size ≥ 30

One Sample z Test

Calculated Test Statistic

$$H_0$$
: $\mu = 150cc$
 H_a : $\mu \neq 150cc$

$$z_{cal} = \frac{(\bar{x} - \mu)}{\sigma / \sqrt{n}}$$

- ❖ Example: Perfume bottle producing 150cc with sd of 2 cc, 100 bottles are randomly picked and the average volume was found to be 150.2 cc. Has mean volume changed? (95% confidence)
- $z_{calculated} = (150.2-150)/[2 / sqrt(100)] = 0.2/0.2 = 1$
- $z_{critical} = ?$

z	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005 .0003	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001 .0000						

- \Leftrightarrow $\alpha = 0.05$ One Tail
- Z Critical = 1.645
- \Leftrightarrow $\alpha = 0.10$ One Tail
- **❖** Z Critical = 1.282
- \Leftrightarrow $\alpha = 0.05$ Two Tails
- Z Critical = 1.96
- \Leftrightarrow $\alpha = 0.10$ Two Tail
- Z Critical = 1.645

- ❖ Example: Perfume bottle producing 150cc with sd of 2 cc, 100 bottles are randomly picked and the average volume was found to be 150.2 cc. Has mean volume changed? (95% confidence)
- $z_{calculated} = (150.2-150)/[2 / sqrt(100)] = 0.2/0.2 = 1$
- \star $z_{critical} = 1.96$

Interpret the Results

Fail to Reject H₀

- ❖ Example: Perfume bottle producing 150cc with sd of 2 cc, 100 bottles are randomly picked and the average volume was found to be 150.2 cc. Has mean volume changed? (95% confidence)
- $z_{calculated} = (150.2-150)/[2 / sqrt(100)] = 0.2/0.2 = 1$
- \star $z_{critical} = 1.96$

One Sample z Test

Interpret the Results

 H_a : $\mu > 150cc$

Fail to Reject H₀

- ***** Example: Perfume bottle producing 150cc with sd of 2 cc, 100 bottles are randomly picked and the average volume was found to be 150.2 cc. Has mean volume changed increased? (95% confidence)
- $z_{calculated} = (150.2-150)/[2 / sqrt(100)] =$ 0.2/0.2 = 1
- $z_{critical} = \frac{1.96}{1.645}$

z	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005 .0003	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001 .0000						

- \Leftrightarrow $\alpha = 0.05$ One Tail
- Z Critical = 1.645
- \Leftrightarrow $\alpha = 0.10$ One Tail
- **❖** Z Critical = 1.282
- \Leftrightarrow $\alpha = 0.05$ Two Tails
- Z Critical = 1.96
- \Leftrightarrow $\alpha = 0.10$ Two Tail
- Z Critical = 1.645

Interpret the Results

 H_a : $\mu > 150cc$

Fail to Reject H₀

- ***** Example: Perfume bottle producing 150cc with sd of 2 cc, 100 bottles are randomly picked and the average volume was found to be 150.2 cc. Has mean volume changed increased? (95% confidence)
- $z_{calculated} = (150.2-150)/[2 / sqrt(100)] =$ 0.2/0.2 = 1
- $z_{critical} = \frac{1.96}{1.645}$

Conditions for t Test

- Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- Sampling distribution approximates Normal Distribution
 - Population is Normally distributed and the standard deviation is <u>unknown</u> *** AND ***
 - ❖ Sample size < 30

One Sample t Test

Conditions for t Test

$$H_0$$
: $\mu = 150cc$
 H_a : $\mu \neq 150cc$

$$\boldsymbol{t}_{cal} = \frac{(\bar{x} - \mu)}{\boldsymbol{s}/\sqrt{n}}$$

❖ Example: Perfume bottle producing 150cc, <u>4 bottles</u> are randomly picked and the average volume was found to be 151cc and sd of the <u>sample bottles</u> was 2 cc. Has mean volume changed? (95% confidence)

$$\star$$
 $t_{\text{calculated}} = \frac{(\bar{x} - \mu)}{s/\sqrt{n}} = \frac{(151 - 150)}{2/\sqrt{4}} = \frac{1}{1} = 1$

$$\star$$
 $t_{critical} = 7$

					TAIL I	PROBAB	ILITY P					
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646

- $\alpha = 0.05$ One Tails
- Φ Df = 3
- **❖** t Critical = 2.353

- $\alpha = 0.05$ Two Tails
- ♣ Df = 3
- t Critical = 3.182

		TAIL PROBABILITY P												
lf	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005		
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6		
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60		
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92		
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610		
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869		
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959		
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408		
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041		
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781		
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587		
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437		
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318		
13	.694	970	1.070	1 350	1 771	2 160	2 282	2.650	3.012	2 272	3.852	4.221		
14	.692	.692 Distribution Plot												
15	.691		T, df=3									4.073		
16	.690	0.4								2	3.686	4.015		
17	.689					\sim				2	3.646	3.965		
18	.688									7	3.611	3.922		
19	.688	0.3 -				/ \				4	3.579	3.883		
20	.687					/ \				3	3.552	3.850		
21	.686	>-			/		\			5	3.527	3.819		
22	.686	Density -			/		\			9	3.505	3.792		
23	.685	۵			/					4	3.485	3.768		
24	.685				/		\			1	3.467	3.745		
25	.684	0.1 -								8	3.450	3.729		
26	.684									7	3.435	3.707		
27	.684			/			`			7	3.421	3.690		
28	.683	0.0	0.025						0.025	7	3.408	3.674		
29	.683			-3.182		0 X		3.182		8	3.396	3.659		
30	.683)	3.385	3.646		

❖ Example: Perfume bottle producing 150cc, <u>4 bottles</u> are randomly picked and the average volume was found to be 151cc and sd of the <u>sample bottles</u> was 2 cc. Has mean volume changed? (95% confidence)

$$\star$$
 $t_{calculated} = \frac{(\bar{x} - \mu)}{s/\sqrt{n}} = \frac{(151 - 150)}{2/\sqrt{4}} = \frac{1}{1} = 1$

$$t_{critical} = 3.182$$

Interpret the Results

Fail to Reject H₀

❖ Example: Perfume bottle producing 150cc, <u>4 bottles</u> are randomly picked and the average volume was found to be 151cc and sd of the <u>sample bottles</u> was 2 cc. Has mean volume changed? (95% confidence)

$$\star$$
 $t_{calculated} = \frac{(\bar{x} - \mu)}{s/\sqrt{n}} = \frac{(151 - 150)}{2/\sqrt{4}} = \frac{1}{1} = 1$

$$t_{critical} = 3.182$$

Conditions for One Proportion Test

- Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- The data contains only two categories, such as pass/fail or yes/no
- For Normal approximation:
 - both np≥10 and n(1-p)≥10 (data should have at least 10 "successes" and at least 10 "failures") (in some books it is 5)

One Proportion Test

One Proportion Test

$$H_0$$
: $p = p_0$

$$H_a$$
: $p \neq p_0$

$$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- Example: Smoking rate in a town in past was 21%, 100 samples were picked and found 14 smokers. Has smoking habit changed?
- Can Normality assumption be made?

$$p_0 = 0.21$$
, p=0.14

$$periode property pr$$

$$(1-p_0) = 0.79 \times 100 = 79$$

❖ >10 means sample size is sufficient.

One Proportion Test

$$H_0$$
: $p = p_0$
 H_a : $p \neq p_0$

$$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Example: Smoking rate in a town in past was 21%, 100 samples were picked and found 14 smokers. Has smoking habit

changed?
$$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.14 - 0.21}{\sqrt{\frac{0.21(1 - 0.21)}{100}}} = -1.719$$

$$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{v - p_0}{\sqrt{\frac{0.21(1 - 0.21)}{100}}} = -1.719$$

$$\star$$
 $z_{critical} = 1$

z	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0003	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003 .0002
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001 .0000	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001

- $\Delta = 0.05$ One Tail
- Z Critical = 1.645
- \Leftrightarrow $\alpha = 0.10$ One Tail
- Z Critical = 1.282
- \Leftrightarrow $\alpha = 0.05$ Two Tails
- Z Critical = 1.96
- $\alpha = 0.10$ Two Tail
- Z Critical = 1.648

One Proportion Test

Example: Smoking rate in a town in past was 21%, 100 samples were picked and found 14 smokers. Has smoking habit changed? (95% confidence)

$$z_{\text{calculated}} = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.14 - 0.21}{\sqrt{\frac{0.21(1 - 0.21)}{100}}} = -1.719$$

$$\star$$
 $z_{critical} = 1.96$

Interpret the Results

Fail to Reject H₀

- ❖ Example: Smoking rate in a town in past was 21%, 100 samples were picked and found 14 smokers. Has smoking habit changed? (95% confidence)
- $z_{\text{calculated}} = \frac{p p_0}{\sqrt{\frac{p_0(1 p_0)}{n}}} = \frac{0.14 0.21}{\sqrt{\frac{0.21(1 0.21)}{100}}} = -1.719$
- \star $z_{critical} = 1.96$

Interpret the Results

H_0 : $p \ge p_0$ H_a : $p < p_0$ Fail to Reject H₀

Example: Smoking rate in a town in past was 21%, 100 samples were picked and found 14 smokers. Has smoking habit reduced at 95% confidence? (one tail)

$$z_{\text{calculated}} = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.14 - 0.21}{\sqrt{\frac{0.21(1 - 0.21)}{100}}} = -1.719$$

$$z_{critical} = \frac{1.96}{1.645}$$

- * Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- The data follows a Normal Distribution

Variance Tests

- Chi-square test
 - For testing the population variance against a specified value
 - testing goodness of fit of some probability distribution
 - testing for independence of two attributes (Contingency Tables)
- ❖ F-test
 - for testing equality of *two* variances from different populations
 - for testing equality of several means with technique of ANOVA.

One Variance Test

Ho: $s^2 <= \sigma^2$

Ha: $s^2 > \sigma^2$

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

Example 1: A sample of 51 bottles was selected. The standard deviation of these 51 bottles was 2.35 cc. Has it increased from established 2 cc? 90% confidence level.

What is critical value of Chi Square for 50 degrees of freedom?

Percentage Points of the Chi-Square Distribution

	· · · · · · · · · · · · · · · · · · ·											
Degrees of				Probability	of a larger	value of x ²						
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01			
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63			
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21			
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34			
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28			
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09			
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81			
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48			
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09			
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67			
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21			
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72			
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22			
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69			
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14			
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58			
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00			
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41			
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80			
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19			
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57			
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29			
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98			
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64			
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28			
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89			
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69			
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15			
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38			

- $\Delta = 0.10$ One Tail
- **❖** Df = 50
- \star χ^2 Critical = 63.17

- $\alpha = 0.10$ Two Tail
- **❖** Df = 50
- χ^2 Critical = 34.76 and 67.50

Percentage Points of the Chi-Square Distribution

Degrees of				Probability	of a larger	value of x 2			
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11							.28	19.68	24.72
12			Distribu Chi-Squa	tion Plot			.55	21.03	26.22
13			Cni-Squa	re, ar=50			.81	22.36	27.69
14	0.04						.06	23.68	29.14
15							.31	25.00	30.58
16							.54	26.30	32.00
17	0.03 -		/				.77	27.59	33.41
18	₹	/					.99	28.87	34.80
19	Density 0.02	/					.20	30.14	36.19
20	Δ	/					.41	31.41	37.57
22		/					.81	33.92	40.29
24	0.01						.20	36.42	42.98
26					0.1		.56	38.89	45.64
28					0.1		.92	41.34	48.28
30	0.00			63.1	7		.26	43.77	50.89
40				Х			.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

Example 1: A sample of 51 bottles was selected. The standard deviation of these 51 bottles was 2.35 cc. Has it increased from established 2 cc? 90% confidence level.

$$* \chi^2(critical) = 63.17$$

One Variance Test

Ha: $s^2 > \sigma^2$

❖ Example 1: A sample of 51 bottles was selected. The standard deviation of these 51 bottles was 2.35 cc. Has it increased from established 2 cc? 90% confidence level.

❖
$$\chi^2$$
 (critical) = 63.17

Percentage Points of the Chi-Square Distribution

Degrees of				Probability	of a larger	value of x 2					
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01		
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63		
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21		
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34		
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28		
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09		
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81		
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48		
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09		
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67		
10								18.31	23.21		
11		Distribution Plot Chi-Square, df=50									
12			21.03	26.22							
13	0.04							22.36	27.69		
14								23.68	29.14		
15			/					25.00	30.58		
16	0.03		/					26.30	32.00		
17			/	\				27.59	33.41		
18	Density - 20.02			`	\			28.87	34.80		
19	_ 20.02 −		/					30.14	36.19		
20		/	/					31.41	37.57		
22								33.92	40.29		
24	0.01							36.42	42.98		
26		0.05				0.05		38.89	45.64		
28	0.00					0.05		41.34	48.28		
30	0.00	34.7	6	х	67.50			43.77	50.89		
40				^				55.76	63.69		
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15		
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38		

❖ Example 2: A sample of 51 bottles was selected. The standard deviation of these 51 bottles was 2.35 cc. Has it changed from established 2 cc? 90% confidence level.

What is critical value of Chi Square for 50 degrees of freedom? (two tails test)

Percentage Points of the Chi-Square Distribution

	· · · · · · · · · · · · · · · · · · ·											
Degrees of				Probability	of a larger	value of x ²						
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01			
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63			
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21			
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34			
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28			
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09			
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81			
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48			
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09			
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67			
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21			
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72			
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22			
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69			
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14			
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58			
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00			
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41			
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80			
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19			
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57			
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29			
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98			
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64			
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28			
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89			
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69			
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15			
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38			

- $\Delta = 0.10$ One Tail
- **❖** Df = 50
- \star χ^2 Critical = 63.17

- $\alpha = 0.10$ Two Tail
- **❖** Df = 50
- χ^2 Critical = 34.76 and 67.50

One Variance Test

Ha: $s^2 \neq \sigma^2$

Fail to Reject H₀

❖ Example 2: A sample of 51 bottles was selected. The standard deviation of these 51 bottles was 2.35 cc. Has it changed from established 2 cc? 90% confidence level.

$$* \chi^2(\text{critical}) = 34.76 \text{ and } 67.50$$

Section 8

Hypothesis Testing Part 2

Conditions for z Test

- Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- Sampling distribution approximates Normal Distribution
 - Population is Normally distributed and the population standard deviation is known *** OR ***
 - **❖** Sample size ≥ 30

Two Sample Z Test

Z Test

One Sample

Two Sample

$$H_0$$
: $\mu = 150cc$
 H_a : $u \neq 150cc$

$$H_0$$
: $\mu = 150cc$
 H_a : $\mu \neq 150cc$

$$z_{cal} = \frac{(\bar{x} - \mu)}{\sigma / \sqrt{n}}$$

A Null hypothesis:
$$H_0$$
: $\mu_1 = \mu_2$

$$\Phi$$
 or H_0 : $\mu_1 - \mu_2 = 0$

Alternative hypothesis:
$$H_a: \mu_1 \neq \mu_2$$

$$z_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Calculated Test Statistic

$$H_0$$
: $\mu_1 = \mu_2$
 H_a : $\mu_1 \neq \mu_2$

$$(\bar{x}_1 - \bar{x}_2)$$

$$z_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$z_{cal} = \frac{(151.2 - 151.9)}{\sqrt{\frac{2.1^2}{100} + \frac{2.2^2}{100}}}$$

Example: From two machines 100 samples each were drawn.

Machine 1: Mean = 151.2 / sd = 2.1

Machine 2: Mean = 151.9 / sd = 2.2

Is there difference in these two machines.

Check at 95% confidence level.

$$z_{critical} = ? (for alpha = 0.05, two tail test)$$

z	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0003	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005 .0003	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001 .0000	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001

- \Leftrightarrow $\alpha = 0.05$ One Tail
- ❖ Z Critical = 1.645
- $\alpha = 0.10$ One Tail
- ❖ Z Critical = 1.282
- \Leftrightarrow $\alpha = 0.05$ Two Tails
- **❖** Z Critical = 1.96
- $\alpha = 0.10$ Two Tail
- Z Critical = 1.645

Interpret the Results

Fail to Reject H₀

* Example: From two machines 100 samples each were drawn.

Machine 1: Mean = 151.2 / sd = 2.1

Machine 2: Mean = 151.9 / sd = 2.2

Is there difference in these two machines. Check at 95% confidence level.

- Arr z_{critical} = 1.96
- **Conclusion:** Reject Null Hypothesis H_0 : $\mu_1 = \mu_2$

- Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- Sampling distribution approximates Normal Distribution
 - Population is Normally distributed and the standard deviation is <u>unknown</u> *** AND ***
 - ❖ Sample size < 30

Two Sample t Test

- If two set of data are independent or dependent.
 - ❖ If the values in one sample reveal no information about those of the other sample, then the samples are independent.
 - **Example:** Volume produced by two machines
 - ❖ If the values in one sample affect the values in the other sample, then the samples are dependent.
 - Example: Blood pressure before and after a specific medicine

Two sample t test

Paired t test

Two Sample t Test

One Sample t Test

$$t_{cal} = \frac{(\bar{x} - \mu)}{s / \sqrt{n}}$$

Two Sample t Tests

Is variance for two samples equal?

Yes

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$df = n_1 + n_2 - 2$$

No

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

$$df = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\frac{(s_1^2/n_1)^2}{(n_1 - 1)} + \frac{(s_2^2/n_2)^2}{(n_2 - 1)}}$$

QG

Conditions for t Test

$$H_0$$
: $\mu_A = \mu_B$
 H_a : $\mu_A \neq \mu_B$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
$$df = n_1 + n_2 - 2$$

- Example: Samples from two machines A and B have the following volumes in bottles. (assume equal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine B:** 156, 155, 158, 155, 154 Is the mean different? Calculate with 95% confidence.
 - $n_1 = 5$, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 1.52$
 - \bar{x}_1 = 151.8, \bar{x}_2 = 155.6

$$H_0$$
: $\mu_A = \mu_B$
 H_a : $\mu_A \neq \mu_B$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$s_p = 1.50$$

- Example: Samples from two machines A and B have the following volumes in bottles. (assume equal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine B:** 156, 155, 158, 155, 154 Is the mean **different**? Calculate with 95% confidence.

$$n_1 = 5$$
, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 1.52$

$$\bar{x}_1$$
 = 151.8, \bar{x}_2 = 155.6

$$H_0$$
: $\mu_A = \mu_B$
 H_a : $\mu_A \neq \mu_B$

$$s_p = 1.50$$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$t_{cal} = -4.01$$

- Example: Samples from two machines A and B have the following volumes in bottles. (assume equal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine B:** 156, 155, 158, 155, 154 Is the mean different? Calculate with 95% confidence.

$$n_1 = 5$$
, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 1.52$

$$\bar{x}_1 = 151.8, \bar{x}_2 = 155.6$$

Critical Test Statistic

		TAIL PROBABILITY P										
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646

$$df = n_1 + n_2 - 2$$
$$df = 8$$

- \Leftrightarrow $\alpha = 0.05$ Two Tails
- **❖** Df = 8
- ❖ t Critical = 2.306

$$H_0$$
: $\mu_A = \mu_B$
 H_a : $\mu_A \neq \mu_B$

Interpret the Results

- Example: Samples from two machines A and B have the following volumes in bottles. (assume equal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine B:** 156, 155, 158, 155, 154 Is the mean **different**? Calculate with 95% confidence.
- \star t_{calculated} = 4.01
- $t_{critical} = 2.306$

One Sample t Test

$$t_{cal} = \frac{(\bar{x} - \mu)}{s / \sqrt{n}}$$

Two Sample t Tests

Is variance for two samples equal?

Yes

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

$$df = n_1 + n_2 - 2$$

No

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

$$df = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\frac{(s_1^2/n_1)^2}{(n_1 - 1)} + \frac{(s_2^2/n_2)^2}{(n_2 - 1)}}$$

$$H_0$$
: $\mu_A = \mu_C$
 H_a : $\mu_A \neq \mu_C$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{s_p \sqrt{(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

- Example: Samples from two machines A and B have the following volumes in bottles. (unequal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine C:** 144, 162, 177, 150, 140 Is the mean different? Calculate with 95% confidence.
 - $n_1 = 5$, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 15.0$
 - \bar{x}_1 = 151.8, \bar{x}_2 = 154.6

$$H_0$$
: $\mu_A = \mu_C$
 H_a : $\mu_A \neq \mu_C$

$$t_{cal} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

$$t_{cal} = -0.41$$

- Example: Samples from two machines A and B have the following volumes in bottles. (unequal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine C:** 144, 162, 177, 150, 140 Is the mean different? Calculate with 95% confidence.

$$n_1 = 5$$
, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 15.0$

$$\bar{x}_1$$
 = 151.8, \bar{x}_2 = 154.6

$$H_0$$
: $\mu_A = \mu_C$
 H_a : $\mu_A \neq \mu_C$

$$df = n_1 + n_2 - 2$$

$$df = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\frac{(s_1^2/n_1)^2}{(n_1 - 1)} + \frac{(s_2^2/n_2)^2}{(n_2 - 1)}}$$

df = 4.078 or 4 (round down to nearest integer)

- Example: Samples from two machines A and B have the following volumes in bottles. (unequal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine C:** 144, 162, 177, 150, 140 Is the mean different? Calculate with 95% confidence.

$$n_1 = 5$$
, $n_2 = 5$, $s_1 = 1.48$, $s_2 = 15.0$

$$\mathbf{\dot{x}}_1 = 151.8, \, \bar{x}_2 = 154.6$$

Critical Test Statistic

		TAIL PROBABILITY P										
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2,878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646

$$df = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\frac{(s_1^2/n_1)^2}{(n_1 - 1)} + \frac{(s_2^2/n_2)^2}{(n_2 - 1)}}$$

$$df = 4$$

- $\alpha = 0.05$ Two Tails
- **❖** Df = 4
- ❖ t Critical = 2.776

Interpret the Results

Reject H

2.776

- Example: Samples from two machines A and B have the following volumes in bottles. (unequal variance)
 - **Machine A:** 150, 152, 154, 152, 151
 - **❖ Machine C:** 144, 162, 177, 150, 140 Is the mean different? Calculate with 95% confidence.
- $t_{calculated} = -0.41$
- \star t_{critical} = 2.776

Interpret the Results

Machine A	Machine B	Machine C
150	156	144
152	155	162
154	158	177
152	155	150
151	154	140
$\bar{x}_{\mathbf{A}} = 151.8$	$, \bar{x}_{\rm B} = 155.6$	$\bar{x}_{\rm C} = 154.6$

- If two set of data are independent or dependent.
 - ❖ If the values in one sample reveal no information about those of the other sample, then the samples are independent.
 - **Example:** Blood pressure of male/female
 - ❖ If the values in one sample affect the values in the other sample, then the samples are dependent.
 - Example: Blood pressure before and after a specific medicine

Two sample t test

Paired t test

QG

$$t_{cal} = \frac{(\bar{x} - \mu)}{s/\sqrt{n}}$$

Paired t Tests

- ❖ Find the difference between two set of readings as d1, d2 dn.
- Find the mean and standard deviation of these differences.

$$t = \frac{d}{s/\sqrt{n}}$$

Paired t Tests

 H_0 : $\mu_{before} = \mu_{after}$

 H_a : $\mu_{before} \neq \mu_{after}$

Patient	Before	After
1	120	122
2	122	120
3	143	141
4	100	109
5	109	109

Example: Before and after medicine BP was measured. Is there a difference at 95% confidence level?

Paired t Tests

$$H_0$$
: $\mu_{before} = \mu_{after}$

$$H_a$$
: $\mu_{before} \neq \mu_{after}$

$$t = \frac{\bar{d}}{s/\sqrt{n}}$$

Patient	Before	After	difference
1	120	122	-2
2	122	120	2
3	143	141	2
4	100	109	-9
5	109	109	0

Example: Before and after medicine BP was measured. Is there a difference at 95% confidence level?

$$• \bar{d} = -1.4$$
, s = 4.56, n = 5

$$t_{cal} = 1.4/2.04 = -0.69$$

Critical Test Statistic

					TAIL I	PROBAB	ILITY P					
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	.685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	.683	.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.646

$$df = n - 1$$
$$df = 4$$

$$\Leftrightarrow$$
 $\alpha = 0.05$ Two Tails

$$4 \cdot df = 4$$

 H_a : $\mu_{before} \neq \mu_{after}$

H_0 : $\mu_{before} = \mu_{after}$ Interpret the Results

Fail to Reject H₀

Example: Before and after medicine BP was measured. Is there a difference at 95% confidence level?

$$t_{calculated} = -0.69$$

$$\star$$
 t_{critical} = 2.776

- Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - ❖ If sampling without replacement, the sample size should not be more than 10% of the population
- The data contains only two categories, such as pass/fail or yes/no
- For Normal approximation:
 - both np≥10 and n(1-p)≥10 (data should have at least 10 "successes" and at least 10 "failures") for each sample (in some books it is 5)

Proportions - Sample vs Population

How do we represent sample and population proportions?

One Proportion Test

$$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

One Proportion Test

$$z = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Two Proportions Tests

Test for **no** difference between proportions

$$H_0$$
: $p_1 - p_2 = 0$

$$H_a: p_1 - p_2 \neq 0$$

Yes No H_0 : $p_1 - p_2 = d$ Pooled Un-pooled H_a : $p_1 - p_2 \neq d$

$$\bar{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{(n_1 + n_2)}$$

$$z_{cal} = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$z_{cal} = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$$

$$H_0$$
: $p_1 - p_2 = 0$

$$H_a: p_1 - p_2 \neq 0$$

Test if Normality can be assumed?

$$\bar{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{(n_1 + n_2)}$$

$$z_{cal} = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.

$$\star$$
 $z_{calculated} = ?$

$$\star$$
 $z_{critical} = \hat{i}$

$$H_0$$
: $p_1 - p_2 = 0$

$$H_a: p_1 - p_2 \neq 0$$

Test if Normality can be assumed?

$$\bar{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{(n_1 + n_2)}$$

$$z_{cal} = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.

$$\hat{p}_1$$
 = 30/200 = 0.15

$$\hat{p}_2$$
= 10/100 = 0.10

$$n_1 = 200, n_2 = 100$$

Two Proportions Test

$$H_0$$
: $p_1 - p_2 = 0$

$$H_a: p_1 - p_2 \neq 0$$

Test if Normality can be assumed?

$$n_1 \hat{p}_1 \ge 10$$

$$n_1(1-\hat{p}_1) \ge 10$$

$$n_2 \hat{p}_2 \ge 10$$

$$n_1(1 - \hat{p}_2) \ge 10$$

Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.

$$\hat{p}_1 = 30/200 = 0.15$$

$$\hat{p}_2 = 10/100 = 0.10$$

$$n_1 = 200, n_2 = 100$$

Two Proportions Test

$$H_0$$
: $p_1 - p_2 = 0$

$$H_a: p_1 - p_2 \neq 0$$

$$\bar{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{(n_1 + n_2)}$$

$$\bar{p} = 0.1333$$

❖ Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.

$$\hat{p}_1 = 30/200 = 0.15$$

$$\hat{p}_2 = 10/100 = 0.10$$

$$n_1 = 200, n_2 = 100$$

$$H_0: p_1 - p_2 = 0 \\ H_a: p_1 - p_2 \neq 0 \\ \bar{p} = 0.1333 \\ z_{cal} = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$= \frac{(0.15 - 0.10)}{\sqrt{0.133(1 - 0.133)\left(\frac{1}{200} + \frac{1}{100}\right)}} \Leftrightarrow \hat{p}_1 = 30/200 = 0.15$$

$$\Rightarrow \hat{p}_2 = 10/100 = 0.10$$

 $z_{cal} = 1.20$

Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.

$$\hat{p}_1 = 30/200 = 0.15$$

$$\hat{p}_2$$
= 10/100 = 0.10

$$n_1 = 200, n_2 = 100$$

Critical Test Statistic

z	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641
0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2.5 2.6 2.7 2.8 2.9	.0062 .0047 .0035 .0026	.0060 .0045 .0034 .0025 .0018	.0059 .0044 .0033 .0024 .0018	.0057 .0043 .0032 .0023 .0017	.0055 .0041 .0031 .0023 .0016	.0054 .0040 .0030 .0022 .0016	.0052 .0039 .0029 .0021 .0015	.0051 .0038 .0028 .0021 .0015	.0049 .0037 .0027 .0020 .0014	.0048 .0036 .0026 .0019
3.0 3.1 3.2 3.3 3.4	.0013 .0010 .0007 .0005 .0003	.0013 .0009 .0007 .0005 .0003	.0013 .0009 .0006 .0005	.0012 .0009 .0006 .0004 .0003	.0012 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0006 .0004 .0003	.0011 .0008 .0005 .0004 .0003	.0010 .0007 .0005 .0004 .0003	.0010 .0007 .0005 .0003 .0002
3.5 3.6 3.7 3.8 3.9	.0002 .0002 .0001 .0001	.0002 .0002 .0001 .0001 .0000	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001 .0000	.0002 .0001 .0001 .0001

- \Leftrightarrow $\alpha = 0.05$ One Tail
- ❖ Z Critical = 1.645
- $\alpha = 0.10$ One Tail
- ❖ Z Critical = 1.282
- \Leftrightarrow $\alpha = 0.05$ Two Tails
- ❖ Z Critical = 1.96
- $\alpha = 0.10$ Two Tail
- Z Critical = 1.645

Interpret the Results

Fail to Reject H₀

- ❖ Example: From vendor A we test 200 pieces and find 30 defectives. From vendor B we test 100 pieces and we find 10 defectives. Is there a significant difference in the quality of these two vendors? Use 95% confidence level.
- $z_{calculated} = 1.20$
- \star z_{critical} = 1.96

- * Random samples
- Each observation should be independent of other
 - Sampling with replacement
 - If sampling without replacement, the sample size should not be more than 10% of the population
- The data follows a Normal Distribution

Variance Tests

- Chi-square test
 - For testing the population variance against a specified value
 - testing goodness of fit of some probability distribution
 - testing for independence of two attributes (Contingency Tables)
- ❖ F-test
 - for testing equality of *two* variances from different populations
 - for testing equality of several means with technique of ANOVA.

H₀:
$$\sigma_1^2 = \sigma_2^2$$

Ha: $\sigma_1^2 \neq \sigma_2^2$

$$F_{cal} = \frac{s_1^2}{s_2^2}$$

- ❖ Example: We took 8 samples from machine A and the standard deviation was 1.1. For machine B we took 5 samples and the variance was 11. Is there a difference in variance at 90% confidence level?
- $^{\bullet}$ n1 = 5, s²₁ = 11, df₁ = 4 (numerator)
- Arr n2 = 8, s₂ = 1.1, s²₂ = 1.21, df₂ = 7 (denominator)
- **♦** F calculated = 11/1.21 = 9.09 (higher value at top)

F - Distribution (α = 0.05 in the Right Tail)

	Numerator Degrees of Freedom									
c	յ <u>քչ\df</u> լ	1	2	3	4	5	6	7	8	9
	1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
	2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385
	3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123
	4	7.7086	9.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	6.9988
	5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725
	6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990
	7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767
	8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881
Ε	9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789
Denominator Degrees of Freedom	10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204
ě	11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962
'n.	12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964
Ŧ	13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144
S	14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458
9	15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876
Ë	16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377
ě	17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943
-	18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563
₫	19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227
g	20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928
.를	21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660
ō	22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419
e	23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201
Δ	24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002
	25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.2821
	26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655
	27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501
	28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360
	29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229
	30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107
	40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240
	60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.0401
	120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.9588
	00	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799

F - Distribution (α = 0.01 in the Right Tail)

	٠.٨	٦t		N	umerator [Degrees of	Freedom			
	df_2	df _{1 1}	2	3	4	5	6	7	8	9
	1	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5
	2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388
	3	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345
	4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659
	5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158
	6	13.745	10.925	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.976
	7	12.246	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.718
	8	11.259	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.910
_	9	10.561	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.351
Freedom	10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.942
9	11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.631
9	12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.387
ш.	13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.191
ę	14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.029
Degrees	15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.894
핕	16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.780
6	17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.682
	18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.597
ninator	19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.522
₽	20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3.5644	3.456
٠Ę	21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.398

Distribution Plot F, df1=4, df2=7

- Numerator df = 4
- ❖ Denominator df = 7

- \Leftrightarrow $\alpha = 0.10$ Two Tail
- **❖** F 0.05, 4, 7 = 4.1203

F - Distribution (α = 0.05 in the Right Tail)

	1 - Distribution (C. 0.05 in the kight fall)									
	1t/qĮ	:		N	lumerator	Degrees	of Freedo	m		
(յք <u>չ\d</u> ք	1 1	2	3	4	5	6	7	8	9
	1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
	2	18.513	19.000	19.164	19.247	19.296	19.330	19.353	19.371	19.385
	3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123
	4	7.7086	9.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	6.9988
	5		5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725
	6	6.6079 5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990
	7	5.5914	4.7374	4.7371	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767
	8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881
_	9	5.1174	4.4590	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789
Denominator Degrees of Freedom	1						3.2172	3.1355	3.0717	3.0204
b	10	4.9646	4.1028	3.7083	3.4780	3.3258 3.2039	3.2172	3.0123	2.9480	2.8962
ě	11	4.8443	3.9823 3.8853	3.5874 3.4903	3.3567 3.2592	3.1059	2.9961	2.9134	2.8486	2.7964
Œ	12 13	4.7472	3.8056	3.4903	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144
ð	14	4.6672 4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458
98										
ě	15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876
ğ	16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377
ă	17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480 2.5102	2.4943 2.4563
Ē	18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.4768	2.4363
矣	19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435		
.ĕ	20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928
Ē	21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660
2	22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419
ē	23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201
	24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002
	25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.2821
	26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655
	27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501
	28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360
	29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229
	30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107
	40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240
	60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.0401
	120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.9588
	00	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799

- Numerator df = 4
- Denominator df = 7
- $\alpha = 0.10$ Two Tail
- **♦** F 0.05, 4, 7 =
- 4.1203 **★** F 0.95, 4, 7 = ?

F - Distribution (α = 0.05 in the Right Tail)

	$\overline{}$					_				
	¹t/qt¹					Degrees				
C	ֈ <u>ք₂\atı</u>	1	2	3	4	5	6	7	8	9
	1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
	2	18.513	199.50	19.164	19.247	19.296	19.330	19.353	19.371	19.385
	3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123
	4	7.7086	9.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	6.9988
	5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725
	6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990
	7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767
	8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881
۶	9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789
Denominator Degrees of Freedom	10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204
ĕ	11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962
e.	12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964
Ŧ	13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144
0	14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458
ě	15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876
Ĕ	16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377
ě	17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943
<u> </u>	18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563
٥	19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227
g	20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928
٦.	21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660
፩	22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419
ē	23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201
Δ	24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002
	25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.2821
	26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655
	27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501
	28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360
	29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229
	30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107
	40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240
	60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.0401
	120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.9588
	00	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799

- Numerator df = 4
- Denominator df = 7
- $\alpha = 0.10$ Two Tail
- **❖** F 0.05, 4, 7 = 4.1203

$$F 0.95, 4, 7 = 1/F 0.05, 7,4$$

Two Variances Test

Ha: $\sigma_1^2 \neq \sigma_2^2$

❖ Example: We took 8 samples from machine A and the standard deviation was 1.1. For machine B we took 5 samples and the variance was 11. Is there a difference in variance at 90% confidence level?

$$\Rightarrow$$
 n1 = 5, s²₁ = 11, df₁ = 4 (numerator)

$$Arr$$
 n2 = 8, s₂ = 1.1, s²₂ = 1.21, df₂ = 7 (denominator)

$$ightharpoonup F_{critical} = 0.0164 \text{ and } 4.120$$

Variance Tests

- Chi-square test
 - For testing the population variance against a specified value
 - testing goodness of fit of some probability distribution
 - testing for independence of two attributes (Contingency Tables)
- ❖ F-test
 - for testing equality of *two* variances from different populations
 - for testing equality of several means with technique of ANOVA.

Two Sample t Tests

Machine A	Machine B	Machine C
150	156	144
152	155	162
154	158	177
152	155	150
151	154	140
$\bar{x}_{\mathbf{A}} = 151.8$	$, \bar{x}_{\rm B} = 155.6$	$\bar{x}_{\rm C} = 154.6$

2 Sample T Test

$$H_0$$
: $\mu_A = \mu_B$

$$H_a$$
: $\mu_A \neq \mu_B$

ANOVA

$$H_0$$
: $\mu_A = \mu_B = \mu_C = \mu_D \dots = \mu_k$

H_a: At least one of the means is different from others

T Test

$$H_0$$
: $\mu_A = \mu_B$
 H_a : $\mu_A \neq \mu_B$

ANOVA

 H_0 : $\mu_A = \mu_B = \mu_C = \mu_{D....} = \mu_k$ H_a : At least one of the means is different from others

❖ Why ANOVA?

- We used t test to compare the means of two populations.
- ❖ What if we need to compare more than two populations? With ANOVA we can find out if one or more populations have different mean or comes from a different population.
- We could have conducted multiple t Test.
- How many t Test we need to conduct if have to compare 4 sample means? ... 6

❖ Why ANOVA?

- We used t test to compare the means of two populations.
- ❖ What if we need to compare more than two populations? With ANOVA we can find out if one or more populations have different mean or comes from a different population.
- We could have conducted multiple t Test.
- How many t Test we need to conduct if have to compare 4 sample means? ... 6

- **❖** Why ANOVA?
 - How many t Test we need to conduct if have to compare 4 samples? ... 6
 - Each test is done with alpha = 0.05 or 95% confidence.
 - \bullet 6 tests will result in confidence level of $0.95 \times 0.95 \times 0.$

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

Machine 4	Machine 5	Machine 6
130	163	166
155	152	154
160	143	155
158	141	151
152	149	152
145	157	155
$\bar{x}_4 = 151.00$	$\bar{x}_5 = 150.83$	$\bar{x}_6 = 155.50$

Machine 4	Machine 5	Machine 6
130	163	166
155	152	154
160	143	155
158	141	151
152	149	152
145	157	155
$\bar{x}_4 = 151.00$	$\bar{x}_5 = 150.83$	$\bar{x}_6 = 155.50$

40

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
v = 151 00	v = 150 83	v = 155 50

AN	0	/ A
----	---	------------

Machine 4	Machine 5	Machine 6
130	163	166
155	152	154
160	143	155
158	141	151
152	149	152
145	157	155
$\bar{x}_4 = 151.00$	$\bar{x}_5 = 150.83$	$\bar{x}_6 = 155.50$

- ANOVA is Analysis of Variance
- Variance

$$s^2 = \frac{\sum (x_i - \overline{X})^2}{n - 1}$$

Numerator of this formula is Sum of Squares, the denominator is the degrees of freedom for the sample.

$$F = \frac{S_1^2}{S_2^2}$$

$$F = \frac{\frac{\sum (x - \bar{x}_1)^2}{n_1 - 1}}{\frac{\sum (x - \bar{x}_2)^2}{n_2 - 1}}$$

$$F = \frac{\frac{SS_1}{\mathrm{d}f_1}}{\frac{SS_2}{\mathrm{d}f_2}} \qquad F = \frac{MSS_2}{MSS_2}$$

$$F = \frac{MSS_{between}}{MSS_{within}}$$

$$F = \frac{\frac{SS_{\text{between}}}{\text{d}f_{\text{between}}}}{\frac{SS_{\text{within}}}{\text{d}f_{\text{within}}}}$$

$$F = \frac{\frac{SS_{\text{between}}}{\text{d}f_{\text{between}}}}{\frac{SS_{\text{within}}}{\text{d}f_{\text{within}}}}$$

$$F = \frac{MSS_{between}}{MSS_{within}}$$

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

- Null hypothesis: H_0 : $\mu_1 = \mu_2 = \mu_3$
- **Alternative hypothesis**: H_a : Means are not all equal

Check at 95% confidence level.

- SS between(or treatment, or column)
- SS within(or error)

$$F = \frac{\frac{SS_{\text{between}}}{\text{d}f_{\text{between}}}}{\frac{SS_{\text{within}}}{\text{d}f_{\text{within}}}} \qquad F = \frac{MSS_{\text{between}}}{MSS_{\text{within}}}$$

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

•••	SS within	= 4.00+18.83+5.50 =	28.33
-----	-----------	---------------------	-------

Machine 1	x1 - x 1	Sqr(x1 - x1)	Machine 2	x2 - x 2	Sqr(x2 - x 2)	Machine 3	x3 - x̄3	Sqr(x3 - x̄3)	
150.00	-1.00	1.00	153.00	2.17	4.69	156.00	0.50	0.25	
151.00	0.00	0.00	152.00	1.17	1.36	154.00	-1.50	2.25	
152.00	1.00	1.00	148.00	-2.83	8.03	155.00	-0.50	0.25	
152.00	1.00	1.00	151.00	0.17	0.03	156.00	0.50	0.25	
151.00	0.00	0.00	149.00	-1.83	3.36	157.00	1.50	2.25	
150.00	-1.00	1.00	152.00	1.17	1.36	155.00	-0.50	0.25	
151.00			150.83			155.50			152.44
		4.00)		18.83			5.50	

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

** 9	SS _{between}	= (2.07+2.58+9.36)	x6 = 84.06
------	-----------------------	--------------------	------------

Machine 1	x1 - x1	Sqr(x1 - x 1)	Machine 2	x2 - x 2	Sqr(x2 - x̄2)	Machine 3	x3 - x̄3	Sqr(x3 - x̄3)	
150.00	-1.00	1.00	153.00	2.17	4.69	156.00	0.50	0.25	
151.00	0.00	0.00	152.00	1.17	1.36	154.00	-1.50	2.25	
152.00	1.00	1.00	148.00	-2.83	8.03	155.00	-0.50	0.25	
152.00	1.00	1.00	151.00	0.17	0.03	156.00	0.50	0.25	
151.00	0.00	0.00	149.00	-1.83	3.36	157.00	1.50	2.25	
150.00	-1.00	1.00	152.00	1.17	1.36	155.00	-0.50	0.25	
151.00			150.83			155.50			152.44
		4.00			18.83	3		5.50)
									A .
	-1.44	2.07		-1.61	2.58	3	3.06	9.36	5

**	SS within	= 4.00 + 18.83 + 5.50 = 28	3.33
•	33 within	$-4.00 \pm 10.03 \pm 3.30 - 20$	3.33

\$ SS _{between} = (2.07+2.58+9.36)x6 = 84.06

Machine 1	Machine 2	Machine 3
150	153	156
151	152	154
152	148	155
152	151	156
151	149	157
150	152	155
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$

Machine 1	x1 - x 1	Sqr(x1 - x 1)	Machine 2	x2 - x 2	Sqr(x2 - x̄2)	Machine 3	x3 - x̄3	Sqr(x3 - x̄3)	
150.00	-1.00	1.00	153.00	2.17	4.69	156.00	0.50	0.25	
151.00	0.00	0.00	152.00	1.17	1.36	154.00	-1.50	2.25	
152.00	1.00	1.00	148.00	-2.83	8.03	155.00	-0.50	0.25	
152.00	1.00	1.00	151.00	0.17	0.03	156.00	0.50	0.25	
151.00	0.00	0.00	149.00	-1.83	3.36	157.00	1.50	2.25	
150.00	-1.00	1.00	152.00	1.17	1.36	155.00	-0.50	0.25	
151.00			150.83			155.50			152.44
		4.00			18.83			5.5	0
	-1.44	2.07		-1.61	2.58		3.00	9.3	6

Degrees of freedom

$$(N-1) = (C-1) + (N-C)$$

$$4 \cdot df_{\text{hetween}} = 3-1=2,$$

$$4 \cdot df_{total} = 17$$
, $df_{within} = 17-2=15$

Machine 1	Machine 2	Machine 3	G
150	153	156	
151	152	154	
152	148	155	
152	151	156	
151	149	157	
150	152	155	
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$	

Mean Sum of Square = SS / df

$$\$$$
 MSS_{between} = 84.06 / 2 = 42.03

$$\$$$
 MSS_{within} = 28.33/15 = 1.89

$$F = MSS_{between} / MSS_{within} = 42.03/1.89 = 22.24$$

Machine 1	Machine 2	Machine 3	G
150	153	156	
151	152	154	
152	148	155	
152	151	156	
151	149	157	
150	152	155	
$\bar{x}_1 = 151$	$\bar{x}_2 = 150.83$	$\bar{x}_3 = 155.50$	

$$\Leftrightarrow$$
 df between = 2

F - Distribution (α = 0.05 in the Right Tail)

	Numerator Degrees of Freedom									
C	յ <u>քչ\df</u> լ	1	2	3	4	5	6	7	8	9
	1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
	2	18.513	19.000	19.164	19.247	19.296	19,330	19.353	19.371	19.385
	3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123
	4	7.7086	9.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	6.9988
	5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725
	6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990
	7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767
	8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881
Ε	9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789
용	10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204
ě	11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962
۳.	12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964
Ŧ	13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144
S	14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458
Denominator Degrees of Freedom	15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876
g	16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377
e	17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943
-	18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563
₫	19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227
2	20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928
٦.	21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660
፩	22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419
ē	23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201
Δ	24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002
	25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.2821
	26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655
	27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501
	28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360
	29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229
	30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107
	40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240
	60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.0401
	120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.9588
	œ	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799

$$F = \frac{\frac{SS_{\text{between}}}{\text{d}f_{\text{between}}}}{\frac{SS_{\text{within}}}{\text{d}f_{\text{within}}}}$$

- Numerator (between) df = 2
- Denominator (within) df = 15

- $\alpha = 0.05$ One Tail
- \bullet F 0.05, 2, 1_5 = 3.68

$$F = MSS_{between} / MSS_{within} = 42.03/1.89 = 22.24$$

- Compare this with F critical
- \Leftrightarrow F (0.05, 2, 15) = 3.68
- Reject Null Hypothesis

Variance Tests

- Chi-square test
 - For testing the population variance against a specified value
 - testing goodness of fit of some probability distribution
 - testing for independence of two attributes (Contingency Tables)
- ❖ F-test
 - for testing equality of two variances from different populations
 - for testing equality of several means with technique of ANOVA.

Variance Tests - Chi-Square

- To test if the sample is coming from a population with specific distribution.
- Other goodness-of-fit tests are
 - Anderson-Darling
 - Kolmogorov-Smirnov

Goodness of Fit Test

- ♣ H₀: The data follow a specified distribution.
- ❖ Ha: The data do not follow the specified distribution.
- Calculated Statistic: $\chi^2 = \sum_{i=1}^k \frac{(O-E)^2}{E}$
- Critical Statistic: Chi square for k-1 degrees of freedom for specific alpha.

Goodness of Fit
Test

A coin is flipped 100 times. Number of heads and tails are noted. Is this coin biased? Check with 95% Confidence Level.

Head	40
Tail	60

Goodness of Fit

Test

Ho: Coin is not biased.

Ha: Coin is biased.

Alpha = 0.05

Example 1: A coin is flipped 100 times. Number of heads and tails are noted. Is this coin biased? Check with 95% Confidence Level.

Head	40
Tail	60

Goodness of Fit - Chi-Square

Ho: Coin is not biased.

Ha: Coin is biased.

Alpha = 0.05

Example 1: A coin is flipped 100 times. Number of heads and tails are noted. Is this coin biased? Check with 95% Confidence Level.

$$\chi^2 = \sum_{i=1}^{k} \frac{(O-E)^2}{E}$$

Flip	Expected	Observed	O-E	(O-E) ²	(O-E) ² /E
Head	50	40	-10	100	2
Tail	50	60	10	100	2
					$X^2 = 4$

Goodness of Fit - Chi-Square

Critical Test Statistic

Percentage Points of the Chi-Square Distribution

Degrees of				Probability	of a larger	value of x 2			
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

- $\Delta = 0.05$ One Tail
- \Rightarrow Df = 1
- χ^2 Critical = 3.84

Critical Test Statistic

60

Percentage Points of the Chi-Square Distribution

Degrees of	Probability of a larger value of x ²								
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3			D:	ъ.			19.68	24.72
12	3			Distributio Chi-Square				21.03	26.22
13	1.6	- 1			,			22.36	27.69
14	4							23.68	29.14
15	1.4-							25.00	30.58
16	<u>t</u> 1.2							26.30	32.00
17	£ 1.0-] []						27.59	33.41
18		\						28.87	34.80
19	Density .	\						30.14	36.19
20	€ 0.6-	\						31.41	37.57
22	ç							33.92	40.29
24	0.4							36.42	42.98
26	1 0.2							38.89	45.64
28	1 0.0						0.05	41.34	48.28
30	1	0)	,	3.841		43.77	50.89
40	2			,	,			55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

Example 1: A coin is flipped 100 times. Number of heads and tails are noted. Is this coin biased? Check with 95% Confidence Level.
Head
40

Tail

Goodness of Fit - Chi-Square

60

Ho: Coin is not biased.

Ha: Coin is biased.

Alpha = 0.05

Example 1: A coin is flipped 100 times. Number of heads and tails are noted. Is this coin biased? Check with 95% Confidence Level.
Head
40

Tail

Goodness of Fit – Chi-Square

H0: The data follow a specified distribution.

Ha: The data do not follow the specified

distribution.

Alpha = 0.05

Example 2: A t-shirt manufacturer expects vs actual sale.

Size	Proportions	Counts
Small	0.1	25
Medium	0.2	41
Large	0.4	91
Extra Large	0.3	68

H0: The data follow a specified distribution.

Ha: The data do not follow the specified

distribution.

Alpha = 0.05

•	Example 2: A t-shirt manufacturer
	expects vs actual sale.

$$\chi^2 = \sum_{i=1}^{k} \frac{(O-E)^2}{E}$$

Size	Proportions	Expected	Observed
Small	0.1	22.5	25
Medium	0.2	45	41
Large	0.4	90	91
Extra Large	0.3	67.5	68

Variance Tests

- Chi-square test
 - For testing the population variance against a specified value
 - testing goodness of fit of some probability distribution
 - testing for independence of two attributes (Contingency Tables)
- ❖ F-test
 - for testing equality of two variances from different populations
 - for testing equality of several means with technique of ANOVA.

Variance Tests - Chi-Square

Contingency Tables

To find relationship between two discrete variables.

	Smoker	Non Smoker	
Male	60	40	100
Female	35	40	75
	95	80	175

	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	110	115	347

	Smoker	Non Smoker	
Male	60	40	100
Female	35	40	75
	95	80	175

	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	110	115	347

- ❖ Null hypothesis is that there is no relationship between the row and column variables.
- Alternate hypothesis is that there is a relationship. Alternate hypothesis does not tell what type of relationship exists.

$$\chi^2 = \sum_{i=1}^{k} \frac{(O-E)^2}{E}$$

	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	110	115	347

<u>OBSERVED</u>	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	110	115	347

EXPECTED	Operator 1	Operator 2	Operator 3	
Shift 1	122x71/347	110x71/347	115x71/347	71
Shift 2	122x116/347	110x116/347	115x116/347	116
Shift 3	122x160/347	110x160/347	115x160/347	160
	122	110	115	347

$$\chi^2 = \sum_{i=1}^{k} \frac{(O-E)^2}{E}$$

<u>OBSERVED</u>	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	112	115	347

EXPECTED	Operator 1	Operator 2	Operator 3	
Shift 1	122x71/347	110x71/347	115x71/347	71
Shift 2	122x116/347	110x116/347	115x116/347	116
Shift 3	122x160/347	110x160/347	115x160/347	160
	122	110	115	347

EXPECTED	Operator 1	Operator 2	Operator 3	
Shift 1	24.96	22.51	23.53	71
Shift 2	40.78	36.77	38.44	116
Shift 3	56.25	50.72	53.02	160
	122	112	115	347

$$\chi^2 = \sum_{i=1}^{k} \frac{(O-E)^2}{E}$$

<u>OBSERVED</u>	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	110	115	347

<u>EXPECTED</u>	Operator 1	Operator 2	Operator 3	
Shift 1	122x71/347	110x71/347	115x71/347	71
Shift 2	122x116/347	110x116/347	115x116/347	116
Shift 3	122x160/347	110x160/347	115x160/347	160
	122	110	115	347

(<u>O-E)²/E</u>	Operator 1	Operat or 2	Operat or 3	
Shift 1	$(22-24.96)^2/24.96 = 0.35$	0.54	0.01	71
Shift 2	$(28-40.78)^2/40.78 = 4.00$	17.31	4.03	116
Shift 3	$(72-56.25)^2/56.25 = 4.41$	16.26	3.18	160
	122	112	115	347

<u>EXPECTED</u>	Operator 1	Operator 2	Operator 3	
Shift 1	24.96	22.51	23.53	71
Shift 2	40.78	36.77	38.44	116
Shift 3	56.25	50.72	53.02	160
	122	112	115	347

$$\chi^2 = \sum_{i=1}^{k} \frac{(O-E)^2}{E}$$

(<u>O-E)²/E</u>	Operator 1	Operator 2	Operator 3	
Shift 1	$(22-24.96)^2/24.96 = 0.35$	0.54	0.01	71
Shift 2	$(28-40.78)^2/40.78 = 4.00$	17.31	4.03	116
Shift 3	$(72-56.25)^2/56.25 = 4.41$	16.26	3.18	160
	122	112	115	347

$$X^2 = 50.09$$

$$\chi^2 = \sum_{i=1}^k \frac{(O-E)^2}{E}$$

Critical Test Statistic

Percentage Points of the Chi-Square Distribution

	. c. centage i onte on equal consumation								
Degrees of				Probability	of a larger	value of x 2			
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.72
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.22
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.69
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.14
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.58
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.00
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.41
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.80
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.19
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.57
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.29
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.98
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.64
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.28
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.89
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

- rightharpoonup Df = (r-1)(c-1) = 4
- \Leftrightarrow $\alpha = 0.05$ One Tail
- \star χ^2 Critical = 9.49

Percentage Points of the Chi-Square Distribution

Degrees of				Probability	of a larger	value of x 2			
Freedom	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.81
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.09
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.67
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.21
11	3.0			Distributi	on Plot			19.68	24.72
12	3.5			Chi-Squar				21.03	26.22
13	4.1	0.20						22.36	27.69
14	4.6		\bigcirc					23.68	29.14
15	5.2							25.00	30.58
16	5.8	0.15 -						26.30	32.00
17	6.4		\	\				27.59	33.41
18	7.0 Annual 7.0	0.10 -						28.87	34.80
19	7.6 💆	0.10						30.14	36.19
20	8.2							31.41	37.57
22	9.5	0.05 -						33.92	40.29
24	10.8							36.42	42.98
26	12.:					0.05		38.89	45.64
28	13.!	0.00			9.488			11.34	48.28
30	14.9				Х			13.77	50.89
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.69
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.15
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.38

<u>OBSERVED</u>	Operator 1	Operator 2	Operator 3	
Shift 1	22	26	23	71
Shift 2	28	62	26	116
Shift 3	72	22	66	160
	122	112	115	347