

OSPF: Link State Database

Формат пакета

• Каждый пакет OSPFv2 имеет следующий формат заголовка:

Version	Type	Packet Length			
VCISIOII					
Router ID					
Area ID					
Chec	cksum	AuType			
Authentication (8 байт)					
Authentication Data (опционально)					

- Version = 2
- Type
 - 1 Hello
 - 2 DBD
 - 3 LS Request
 - 4 LS Update
 - 5 LS Acknowledgment

- Router ID уникальный в AS ID
- Checksum Internet Checksum
 - От всего пакета, кроме Authentication
- AuType тип аутентификации
 - 0 аутентификация не используется
 - 1 открытый пароль
 - 2 криптографическая аутентификация

Типы пакетов

- OSPFv2 использует следующие типы пакетов
 - Hello
 - Для установления соседства и обнаружения отказа соседа
 - Database Description (DBD)
 - Для первичной синхронизации LSDB
 - LS Request
 - Для первичной синхронизации LSDB
 - LS Update
 - Для синхронизации LSDB
 - LS Acknowledgment
 - Для подтверждения полученных данных

Типы канальных сред

- OSPF ведет себя по-разному в разных канальных средах
- Выделяются следующие канальные среды (по RFC 2328):

Среда	Multicast	Full mesh	Соседство	DR/BDR	Таймеры	Анонс
Broadcast	есть	да	авто	да	10/40	сеть
Point-to-point	есть	-	авто	нет	10/40	сеть
Point-to-multipoint	нет	нет	авто	нет	30/120	хост
Nonbroadcast	нет	да	статика	да	30/120	сеть
OSPF Virtual Link	нет	нет	статика	нет	-	-

• Совпадение типа среды не проверяется при установлении соседства

Full State Machine

• В таблице соседств каждый сосед находится в одном из состояний:

- Down
- Attempt
- Init
- 2-Way
- ExStart
- Exchange
- Loading
- Full

Hello

• Формат пакета Hello:

Network Mask						
Hello Interval	Options	Priority				
Dead Interval						
DR IP address						
BDR IP address						
Neight	oor List					

- Использование Hello позволяет:
 - Убедиться в двусторонней связности между соседними роутерами
 - Убедиться в непротиворечивости конфигурации соседних роутеров

Hello protocol

- Пакеты Hello отправляются в сторону соседа (соседей)
 - Ha broadcast и point-to-point каналах
 - IP-адрес получателя: 224.0.0.5 (All SPF Routers)
 - Один пакет раз в Hello Interval
 - Ha OSPF Virtual Link и NBMA каналах
 - ІР-адрес получателя: юникастовый адрес соседа
 - Один пакет раз в Hello Interval каждому соседу независимо
- Hello не требуют подтверждения
- Immediate Hello расширение OSPF
 - На Hello от нового соседа немедленно отправляется юникастовый ответ

Состояния Hello Protocol

- Состояния Hello Protocol:
 - Down: IP-адрес соседа известен, канальный адрес неизвестен
 - Attempt: IP и канальный адреса известны, соседу отправлено Hello
 - Init: от соседа получено Hello без нашего RID в Neighbor List
 - 2-Way: от соседа получено Hello с нашим RID в Neighbor List
- При переводе соседа в 2-Way маршрутизатор должен:
 - Определить IP-адреса DR и BDR в канале
 - Определить необходимость дальнейшей синхронизации LSDB с соседом

Выбор DR/BDR

- DR и BDR оптимизируют топологию multiaccess-каналов
 - Выбираются только в broadcast и NBMA средах
- При инициализации интерфейса DR=BRD=0.0.0.0
 - Слушаем Hello в течение Wait Timer (по умолчанию равен Dead Interval)
 - Если получено Hello от соседа, указавшего себя DR выбираем его
 - Если получено несколько Hello выбираем по максимальным Priority и RID
- Составляем список маршрутизаторов, которые могут стать DR
 - "Мы" и все "наши" 2-Way соседи (кроме тех, у кого priority=0)
 - Выбираем соседа с максимальными Priority и RID
- Повторяем процедуру для BDR
 - DR до выборов BDR не допускается

Первичная синхронизация LSDB

- В состояние ExStart из 2-Way соседи переходят, если:
 - В канальной среде не выбираются DR/BDR
 - Point-to-point
 - Point-to-multipoint
 - OSPF Virtual Link
 - В канале выбираются DR/BDR, и кто-то из соседей выбран DR или BDR
 - DROTHER'ы между собой напрямую LSDB не реплицируют и остаются в 2-Way
- B ExStart соседи принимают решение о порядке обмена DBD
 - Определяются роли Master/Slave и проверяется совпадение MTU

Database Description

• Формат пакета DBD:

Interface MTU	Options	0	1	M	MS	
DD Sequence Number						
LSA Headers List						

- Interface MTU для Virtual Link указывается равным 0
 - Нужно выполнить Path MTU Discovery или ограничить пакеты 576 байтами
- Sequence Number увеличивается на 1 с каждым пакетом (как в EIGRP)
 - Стартовое значение случайное, как в ТСР
- Флаги:
 - I (Init) обозначает инициализацию Sequence Number (аналог SYN в TCP)
 - М (More) указывает на то, что фаза Exchange не закончена
 - MS (Master/Slave) указывает на роль мастера

Выбор Master/Slave

- Мастером выбирается маршрутизатор с большим RID (без priority)
- B ExStart оба соседа отправляют DBD с I=1, M=1 и MS=1
 - Один должен сдаться и отправить ответное DBD с I=0, M=1 и MS=0
 - Формально это сообщение уже относится к фазе Exchange на обоих роутерах, в нем начинают передаваться заголовки LSA
- Маршрутизатор, получивший DBD с Interface MTU, превышающим его собственный, должен проигнорировать такой пакет
 - Сосед останется висеть в ExStart и не перейдет в Exchange (классика!)

Обмен пакетами DBD

- DBD всегда отправляются парой Master>Slave; Slave>Master
 - Флаг М указывает на необходимость продолжения процесса
 - Master будет отправлять DBD, если Slave отправляет M=1
 - Роутер может отправить пустой DBD, если больше отправлять нечего
 - Если подтверждение не получено будет ретрансмит
- Хитрая схема подтверждения доставки
 - Slave, подтверждая предыдущий пакет, отправляет пакет с SN=X
 - Master, подтверждая предыдущий пакет, отправляет пакет с SN=X+1
 - Slave не ждет подтверждения на пакет, когда оба соседа отправили M=0
 - Это не страшно, т.к. Master не получит подтверждения на свой пакет и переотправит его

Exchange

• Маршрутизаторы синхронизируют заголовки LSA из LSDB

LS Age	Options	LS Type			
LS ID					
Advertising Router					
LS Sequence Number					
LS Checksum Length		gth			

- LS Age время в секундах, прошедшее с выпуска LSA
- LS ID идентификатор LSA
- Advertising Router RID выпустившего маршрутизатора
- LS Sequence Number версия LSA
- LS Checksum

Loading

- Networking For everyone
- В фазе Loading маршрутизатор запрашивает нужные LSA у соседае very
 - Отправляется запрос LS Request с заголовками нужных LSA
 - Принимается LS Update с запрошенным содержимым
 - Получение подтверждается пакетом LS Acknowledge с заголовками LSA

• После получения всех запрошенных LSA сосед переводится в Full

Жизненный цикл LSA

- LS Sequence Number номер версии LSA (signed int32)
 - Увеличивается на 1 при внесении изменений в LSA
 - LSA создается с SN=0x80000001, при достижении 0x7FFFFFF флашится
- LS Age время в секундах, прошедшее с выпуска LSA
 - Если LS Age больше 1800 (30 минут), LSA перевыпускается
 - Если LS Age больше 3600 (1 час), LSA исключается из топологии и флашится
 - Распространение LSA с MaxAge эффективно убирает ее из LSDB на всех роутерах

Обновление LSA в среде без DR

- Networking For everyone
- При обновлении LSDB роутер раздает новые LSA соседям
 - Отправляет LSU с новыми LSA
 - Ждет подтверждения с идентичными заголовками (LSU или LSAck)
- В среде без DR каждому соседу в канале отправляется LSU:
 - point-to-point: multicast на 224.0.0.5
 - point-to-multipoint: unicast на адрес соседа

Обновление LSA в среде с DR

- Networking For everyone
- В среде с DR отправлять LSU каждому роутеру в канале наклад<mark>но everyone</mark>
- При обновлении LSDB на DROTHER сначала уведомляется DR:
 - multicast на 224.0.0.6 (AllDRouters)
- DR уведомляет остальных участников (подтверждая полученную LSA)
 - multicast на 224.0.0.5 (AllSPFRouters)

• Ответные юникастовые LSAck подтверждают полученную LSA

Аутентификация

• Заголовок OSPFv2 содержит поля для аутентификации пакетов:

Checksum	AuType				
Authentication (8 байт)					
Authentication Data (опционально)					

- AuType тип аутентификации
 - 0 нет аутентификации; в Authentication нули, Authentication Data отсутствует
 - 1 открытый пароль; в Authentication первые 8 символов пароля, Data отсутствует
 - 2 криптографическая аутентификация с использованием цифровой подписи

Checksum	0x0002			
0x0000	Key ID	Auth Data Len		
Cryptographic Sequence Number				

Authentication Data

OSPF: Link State Database

Networking For everyone