Why topic models?

- Suppose you have a huge number of documents
- Want to know what's going on
- Can't read them all (e.g. every New York Times article from the 90's)
- Topic models offer a way to get a corpus-level view of major themes

Why topic models?

- Suppose you have a huge number of documents
- Want to know what's going on
- Can't read them all (e.g. every New York Times article from the 90's)
- Topic models offer a way to get a corpus-level view of major themes
- Unsupervised

Material adapted from David Minno | UMD Topic Models |

Roadmap

- What are topic models
- How to know if you have good topic model
- How to go from raw data to topics

Conceptual Approach

From an **input corpus** and number of topics $K \rightarrow$ words to topics

Material adapted from David Mimno | UMD Topic Models | 3 / 1

Conceptual Approach

From an input corpus and number of topics $K \to \mathbf{words}$ to topics

TOPIC 1

computer, technology, system, service, site, phone, internet. machine

TOPIC 2

sell, sale, store, product, business, advertising, market, consumer

TOPIC 3

play, film, movie, theater, production, star, director, stage

Conceptual Approach

For each document, what topics are expressed by that document?

Material adapted from David Mimno | UMD Topic Models | 4 / 1

Topics from Science

human	evolution	disease	computer
genome	evolutionary	host	$\overline{\mathrm{models}}$
$_{ m dna}$	species	bacteria	information
genetic	organisms	diseases	$_{ m data}$
genes	life	resistance	computers
sequence	origin	bacterial	system
gene	biology	new	network
$\overline{\text{molecular}}$	groups	strains	systems
sequencing	phylogenetic	$\operatorname{control}$	model
map	living	infectious	parallel
information	diversity	$_{ m malaria}$	$_{ m methods}$
genetics	group	parasite	networks
mapping	new	parasites	software
project	two	united	new
sequences	common	tuberculosis	simulations

Why should you care?

- Neat way to explore / understand corpus collections
 - E-discovery
 - Social media
 - Scientific data
- NLP Applications
 - Word Sense Disambiguation
 - Discourse Segmentation
 - Machine Translation
- Psychology: word meaning, polysemy
- Inference is (relatively) simple

Matrix Factorization Approach

- K Number of topics
- M Number of documents
- V Size of vocabulary

Material adapted from David Mimno | UMD Topic Models | 7 / 1

Matrix Factorization Approach

- K Number of topics
- M Number of documents
- V Size of vocabulary

- If you use singular value decomposition (SVD), this technique is called latent semantic analysis.
- Popular in information retrieval.

Material adapted from David Mimno | UMD Topic Models |

Alternative: Generative Model

- How your data came to be
- Sequence of Probabilistic Steps
- Posterior Inference

Alternative: Generative Model

- How your data came to be
- Sequence of Probabilistic Steps
- Posterior Inference
- Blei, Ng, Jordan. Latent Dirichlet Allocation. JMLR, 2003.

Multinomial Distribution

- Distribution over discrete outcomes
- Represented by non-negative vector that sums to one
- Picture representation

Multinomial Distribution

- Distribution over discrete outcomes
- Represented by non-negative vector that sums to one
- Picture representation

Come from a Dirichlet distribution

$$P(\boldsymbol{p} \mid \alpha \boldsymbol{m}) = \frac{\Gamma(\sum_k \alpha m_k)}{\prod_k \Gamma(\alpha m_k)} \prod_k p_k^{\alpha m_k - 1}$$

$$P(\boldsymbol{p} \mid \alpha \boldsymbol{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k} - 1}$$

$$P(\mathbf{p} \mid \alpha \mathbf{m}) = \frac{\Gamma(\sum_{k} \alpha m_{k})}{\prod_{k} \Gamma(\alpha m_{k})} \prod_{k} p_{k}^{\alpha m_{k} - 1}$$

 $\alpha = 14$, $\mathbf{m} = (\frac{1}{7}, \frac{5}{7}, \frac{1}{7}) \alpha = 14$, $\mathbf{m} = (\frac{1}{7}, \frac{1}{7}, \frac{5}{7}) \alpha = 2.7$, $\mathbf{m} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

• If $\vec{\phi} \sim \text{Dir}((\alpha), \vec{w} \sim \text{Mult}((\phi), \text{ and } n_k = |\{w_i : w_i = k\}| \text{ then } n_k = |\{w_i : w_i = k\}|$

$$p(\phi|\alpha, \vec{w}) \propto p(\vec{w}|\phi)p(\phi|\alpha) \tag{1}$$

$$\propto \prod_{k} \phi^{n_k} \prod_{k} \phi^{\alpha_k - 1}$$
 (2)

$$\propto \prod_{k} \phi^{\alpha_k + n_k - 1}$$
 (3)

Conjugacy: this posterior has the same form as the prior

• If $\vec{\phi} \sim \text{Dir}((\alpha), \vec{w} \sim \text{Mult}((\phi), \text{ and } n_k = |\{w_i : w_i = k\}| \text{ then } n_k = |\{w_i : w_i = k\}|$

$$p(\phi|\alpha, \vec{w}) \propto p(\vec{w}|\phi)p(\phi|\alpha) \tag{1}$$

$$\propto \prod_{k} \phi^{n_k} \prod_{k} \phi^{\alpha_k - 1}$$
 (2)

$$\propto \prod_{k} \phi^{\alpha_k + n_k - 1}$$
 (3)

Conjugacy: this posterior has the same form as the prior

TOPIC 1

computer, technology, system, service, site, phone, internet. machine

TOPIC 2

sell, sale, store, product, business, advertising, market, consumer

TOPIC 3

play, film, movie, theater. production, star, director, stage

computer. technology. system. service, site. phone. internet. machine

sell, sale. store, product. business. advertising. market. consumer

play, film, movie, theater, production. star, director. stage

Hollywood studios are preparing to let people download and buy electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer. technology, system. service, site. phone. internet. machine

sell, sale. store, product. business. advertising. market. consumer

play, film, movie, theater, production. star, director. stage

Hollwood studios are preparing to let people download and buy electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

Hollowood studies are preparing to let people download and the electronic copies of movies over the Internet, much as record labels now sell songs for 99 cents through Apple Computer's iTunes music store and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer play, film, movie, theater, production, star, director, stage

Hollwood studies are preparing to let people down ad and him electronic comes of movies over the Increet, much as record later now sell sens for 99 cents through Apple Computer's iTunes music story and other online services ...

• For each topic $k \in \{1, \dots, K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ

Material adapted from David Mimno | UMD Topic Models | 14/1

- For each topic $k \in \{1, ..., K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, ..., M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α

Material adapted from David Minno | UMD Topic Models

- For each topic $k \in \{1, ..., K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, ..., M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1,...,N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .

Material adapted from David Mimno | UMD Topic Models |

- For each topic $k \in \{1, ..., K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1,...,M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1,...,N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .
- Choose the observed word w_n from the distribution β_{z_n} .

Material adapted from David Mimno | UMD Topic Models |

- For each topic $k \in \{1, ..., K\}$, draw a multinomial distribution β_k from a Dirichlet distribution with parameter λ
- For each document $d \in \{1, ..., M\}$, draw a multinomial distribution θ_d from a Dirichlet distribution with parameter α
- For each word position $n \in \{1, ..., N\}$, select a hidden topic z_n from the multinomial distribution parameterized by θ .
- Choose the observed word w_n from the distribution β_{z_n} .

Material adapted from David Mimno | UMD Topic Mode

Topic Models: What's Important

- Topic models
 - Topics to word types
 - Documents to topics
 - Topics to word types—multinomial distribution
 - Documents to topics—multinomial distribution
- Focus in this talk: statistical methods
 - Model: story of how your data came to be
 - Latent variables: missing pieces of your story
 - Statistical inference: filling in those missing pieces
- We use latent Dirichlet allocation (LDA), a fully Bayesian version of pLSI, probabilistic version of LSA

Material adapted from David Mimno | UMD Topic Models | 15 / 1

Topic Models: What's Important

- Topic models (latent variables)
 - Topics to word types
 - Documents to topics
 - Topics to word types—multinomial distribution
 - Documents to topics—multinomial distribution
- Focus in this talk: statistical methods
 - Model: story of how your data came to be
 - Latent variables: missing pieces of your story
 - Statistical inference: filling in those missing pieces
- We use latent Dirichlet allocation (LDA), a fully Bayesian version of pLSI, probabilistic version of LSA

Material adapted from David Mimno | UMD Topic Models | 15 / 1

Evaluation

$$P(\mathbf{w} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u}) = \sum_{\mathbf{z}} P(\mathbf{w}, \mathbf{z} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u})$$

How you compute it is important too (Wallach et al. 2009)

Material adapted from David Mimno | UMD Topic Models | 16 / 1

Evaluation

Measures predictive power, not what the topics are

$$P(\mathbf{w} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u}) = \sum_{\mathbf{z}} P(\mathbf{w}, \mathbf{z} | \mathbf{w}', \mathbf{z}', \alpha \mathbf{m}, \beta \mathbf{u})$$

How you compute it is important too (Wallach et al. 2009)

Material adapted from David Mimno | UMD Topic Models | 16 / 1

Word Intrusion

TOPIC 1

computer, technology, system, service, site, phone, internet, machine

TOPIC 2

sell, sale, store, product, business. advertising, market. consumer

TOPIC 3

play, film, movie, theater, production, star, director, stage

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

Material adapted from David Mimno | UMD

Topic Models | 18 / 1

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

We ask users to find the word that doesn't belong

Hypothesis

If the topics are interpretable, users will consistently choose true intruder

Material adapted from David Mimno | UMD Topic Models | 18 / 1

1 / 10 crash	accident	board	agency	tibetan	safety
2 / 10 commercial	network	television	advertising	viewer	layoff
3 / 10 arrest	crime	inmate	pitcher	prison	death
4 / 10 hospital	doctor	health	care	medical	tradition

- Order of words was shuffled
- Which intruder was selected varied
- Model precision: percentage of users who clicked on intruder

Word Intrusion: Which Topics are Interpretable?

New York Times, 50 LDA Topics

Interpretability and Likelihood

Model Precision on New York Times

within a model, higher likelihood ≠ higher interpretability

Material adapted from David Mimno | UMD Topic Models | 21 / 1

Interpretability and Likelihood

Topic Log Odds on Wikipedia

across models, higher likelihood \neq higher interpretability

Material adapted from David Mimno | UMD Topic Models | 21 / 1

Evaluation Takeaway

- Measure what you care about
- If you care about prediction, likelihood is good
- If you care about a particular task, measure that

Material adapted from David Mimno | UMD Topic Models | 22 / 1

We are interested in posterior distribution

$$p(Z|X,\Theta) \tag{4}$$

We are interested in posterior distribution

$$p(Z|X,\Theta) \tag{4}$$

• Here, latent variables are topic assignments z and topics θ . X is the words (divided into documents), and Θ are hyperparameters to Dirichlet distributions: α for topic proportion, λ for topics.

$$p(\vec{z}, \vec{\beta}, \vec{\theta} | \vec{w}, \alpha, \lambda) \tag{5}$$

We are interested in posterior distribution

$$p(Z|X,\Theta) \tag{4}$$

• Here, latent variables are topic assignments z and topics θ . X is the words (divided into documents), and Θ are hyperparameters to Dirichlet distributions: α for topic proportion, λ for topics.

$$p(\vec{z}, \vec{\beta}, \vec{\theta} | \vec{w}, \alpha, \lambda) \tag{5}$$

$$p(\vec{w}, \vec{z}, \vec{\theta}, \vec{\beta} | \alpha, \lambda) = \prod_{k} p(\beta_{k} | \lambda) \prod_{d} p(\theta_{d} | \alpha) \prod_{n} p(z_{d,n} | \theta_{d}) p(w_{d,n} | \beta_{z_{d,n}})$$

Material adapted from David Mimno | UMD Topic Models | 23 / 1

- A form of Markov Chain Monte Carlo
- Chain is a sequence of random variable states
- Given a state $\{z_1, \ldots z_N\}$ given certain technical conditions, drawing $z_k \sim p(z_1, \ldots z_{k-1}, z_{k+1}, \ldots z_N | X, \Theta)$ for all k (repeatedly) results in a Markov Chain whose stationary distribution *is* the posterior.
- For notational convenience, call \vec{z} with $z_{d,n}$ removed $\vec{z}_{-d,n}$

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

Hollwood studies are preparing to let people download and but electronic comes of movies over the Incrnet, much as record labers now sell sens for 99 cents through Apple Computer's iTurns music story and other online services ...

Material adapted from David Mimno | UMD Topic Models | 25 / 1

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

Hollswood studies are preparing to let people download and low electronic comes of movies over the Incrnet, much as record labels now sell sens for 99 cents through Apple Computer's iTuns music store and other online services ...

computer, technology. system, service, site. phone. internet. machine

sell, sale, store, product, business. advertising. market. consumer

play, film, movie, theater, production, star, director. stage

Hollywood studies are preparing to let people electronic copies of movies over download and the Internet, much as record lal 99 cents through A le/Commter's iTvn and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

Hollswood studies are preparing to let people download and the electronic comes of movies over the Incenet, much as record labels now sell sens for 99 cents through Apple Computer's iTurns music story and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

Hollywood studies are preparing to let people download and the electronic comes of movies over the Incenet, much as record labels now soil somes for 99 cents through Apple Compter's iTuns music story and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

Holly ood studies are preparing to let people down and and the electronic copies of movies over the Incrnet, much as record included now coll states for 99 cents through Apple Computer's iTunes music state and other online services ...

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer

play, film, movie, theater, production, star, director, stage

Hollowood studies are preparing to let people download and how electronic comes of movies over the Incenet, much as record labels now sell sens for 99 cents through Apple Computer's iTurns music story and other online services ...

- For LDA, we will sample the topic assignments
- Thus, we want:

$$p(z_{d,n} = k | \vec{z}_{-d,n}, \vec{w}, \alpha, \lambda) = \frac{p(z_{d,n} = k, \vec{z}_{-d,n} | \vec{w}, \alpha, \lambda)}{p(\vec{z}_{-d,n} | \vec{w}, \alpha, \lambda)}$$

- For LDA, we will sample the topic assignments
- Thus, we want:

$$p(z_{d,n}=k|\vec{z}_{-d,n},\vec{w},\alpha,\lambda) = \frac{p(z_{d,n}=k,\vec{z}_{-d,n}|\vec{w},\alpha,\lambda)}{p(\vec{z}_{-d,n}|\vec{w},\alpha,\lambda)}$$

- The topics and per-document topic proportions are integrated out / marginalized
- Let n_{d,i} be the number of words taking topic i in document d. Let v_{k,w} be the number of times word w is used in topic k.

$$=\frac{\int_{\theta_{d}}\left(\prod_{i\neq k}\theta_{d}^{\alpha_{i}+n_{d,i}-1}\right)\theta_{d}^{\alpha_{k}+n_{d,i}}d\theta_{d}\int_{\beta_{k}}\left(\prod_{i\neq w_{d,n}}\beta_{k,i}^{\lambda_{i}+v_{k,i}-1}\right)\beta_{k,w_{d,n}}^{\lambda_{i}+v_{k,i}}d\beta_{k}}{\int_{\theta_{d}}\left(\prod_{i}\theta_{d}^{\alpha_{i}+n_{d,i}-1}\right)d\theta_{d}\int_{\beta_{k}}\left(\prod_{i}\beta_{k,i}^{\lambda_{i}+v_{k,i}-1}\right)d\beta_{k}}$$

Material adapted from David Mimno | UMD Topic Models | 26 / 1

- For LDA, we will sample the topic assignments
- The topics and per-document topic proportions are integrated out / marginalized / Rao-Blackwellized
- Thus, we want:

$$p(z_{d,n} = k | \vec{z}_{-d,n}, \vec{w}, \alpha, \lambda) = \frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$

Integral is normalizer of Dirichlet distribution

$$\int_{\beta_{k}} \left(\prod_{i} \beta_{k,i}^{\lambda_{i} + \nu_{k,i} - 1} \right) d\beta_{k} = \frac{\prod_{i}^{V} \Gamma(\beta_{i} + \nu_{k,i})}{\Gamma(\sum_{i}^{V} \beta_{i} + \nu_{k,i})}$$

Integral is normalizer of Dirichlet distribution

$$\int_{\beta_{k}} \left(\prod_{i} \beta_{k,i}^{\lambda_{i} + \nu_{k,i} - 1} \right) d\beta_{k} = \frac{\prod_{i}^{V} \Gamma(\beta_{i} + \nu_{k,i})}{\Gamma\left(\sum_{i}^{V} \beta_{i} + \nu_{k,i}\right)}$$

So we can simplify

$$\frac{\int_{\theta_{d}} \left(\prod_{i\neq k} \theta_{d}^{\alpha_{i}+n_{d,i}-1}\right) \theta_{d}^{\alpha_{k}+n_{d,i}} d\theta_{d} \int_{\beta_{k}} \left(\prod_{i\neq w_{d,n}} \beta_{k,i}^{\lambda_{i}+v_{k,i}-1}\right) \beta_{k,w_{d,n}}^{\lambda_{i}+v_{k,i}} d\beta_{k}}{\int_{\theta_{d}} \left(\prod_{i} \theta_{d}^{\alpha_{i}+n_{d,i}-1}\right) d\theta_{d} \int_{\beta_{k}} \left(\prod_{i} \beta_{k,i}^{\lambda_{i}+v_{k,i}-1}\right) d\beta_{k}} = \\ \frac{\frac{\Gamma(\alpha_{k}+n_{d,k}+1)}{\Gamma(\sum_{i}^{K} \alpha_{i}+n_{d,i}+1)} \prod_{i\neq k}^{K} \Gamma(\alpha_{k}+n_{d,k})}{\prod_{i\neq k}^{K} \Gamma(\alpha_{i}+n_{d,i})} \frac{\frac{\Gamma(\lambda_{w_{d,n}}+v_{k,w_{d,n}}+1)}{\Gamma(\sum_{i}^{V} \lambda_{i}+v_{k,i}+1)} \prod_{i\neq w_{d,n}}^{V} \Gamma(\lambda_{k}+v_{k,w_{d,n}})}{\prod_{i}^{V} \Gamma(\lambda_{i}+v_{k,i})}$$

Gamma Function Identity

$$z = \frac{\Gamma(z+1)}{\Gamma(z)} \tag{6}$$

$$\frac{\frac{\Gamma(\alpha_{k}+n_{d,k}+1)}{\Gamma(\sum_{i}^{K}\alpha_{i}+n_{d,i}+1)}\prod_{i\neq k}^{K}\Gamma(\alpha_{k}+n_{d,k})}{\frac{\prod_{i}^{K}\Gamma(\alpha_{i}+n_{d,i})}{\Gamma(\sum_{i}^{K}\alpha_{i}+n_{d,i})}} \frac{\frac{\Gamma(\lambda_{w_{d,n}}+v_{k,w_{d,n}}+1)}{\Gamma(\sum_{i}^{V}\lambda_{i}+v_{k,i}+1)}\prod_{i\neq w_{d,n}}^{V}\Gamma(\lambda_{k}+v_{k,w_{d,n}})}{\frac{\prod_{i}^{V}\Gamma(\lambda_{i}+v_{k,i})}{\Gamma(\sum_{i}^{V}\lambda_{i}+v_{k,i})}}$$

$$=\frac{n_{d,k}+\alpha_{k}}{\sum_{i}^{K}n_{d,i}+\alpha_{i}}\frac{v_{k,w_{d,n}}+\lambda_{w_{d,n}}}{\sum_{i}^{V}v_{k,i}+\lambda_{i}}$$

Material adapted from David Mimno | UMD Topic Models | 29 / 1

$$\frac{\mathbf{n}_{d,k} + \alpha_k}{\sum_{i}^{K} \mathbf{n}_{d,i} + \alpha_i} \frac{\mathbf{v}_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} \mathbf{v}_{k,i} + \lambda_i}$$
(7)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{\mathbf{v}_{\mathbf{k},\mathbf{w}_{d,n}} + \lambda_{\mathbf{w}_{d,n}}}{\sum_{i} \mathbf{v}_{\mathbf{k},i} + \lambda_i}$$
(7)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(7)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \frac{\lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}}{\sum_{i} v_{k,i} + \lambda_i}$$
(7)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
(7)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$
 (7)

- Number of times document d uses topic k
- Number of times topic k uses word type w_{d,n}
- Dirichlet parameter for document to topic distribution
- Dirichlet parameter for topic to word distribution
- How much this document likes topic k
- How much this topic likes word w_{d,n}

Sample Document

Etruscan	trade	price	temple	market

Sample Document

Etruscan	trade	price	temple	market

Randomly Assign Topics

3	2	1	3	1
Etruscan	trade	price	temple	market

Material adapted from David Mimno | UMD Topic Models

Randomly Assign Topics

3	2	1	3	1
Etruscan	trade	price	temple	market

Total Topic Counts

3	2	2	-	1		3		1
Etruscan	tra	ide pri		ce	temple			market
				1		2		3
		Etruscan			1		0	35
Total		mark	æt		50		0	1
from all docs	tem	price			42		1	0
		temp	ole		0		0	20
		trade	9		10		8	1

Total Topic Counts

3	2	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
and a selection	1	0	4

Total

Sampling Equation

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$

Total Topic Counts

3	2	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
and a selection	1	_	4

Total

Sampling Equation

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{\mathbf{v}_{k,\mathbf{w}_{d,n}} + \lambda_{\mathbf{w}_{d,n}}}{\sum_{i} \mathbf{v}_{k,i} + \lambda_i}$$

We want to sample this word ...

3	2	-	1		3	1
Etruscan	trade	price		temple		market
			1		2	3
/	/ Etrus	scan		1	0	35
/	mark	ĸet		50	0	1
•	price	9		42	1	0
	temp	ole		0	0	20
	trade	trade		10	8	1

We want to sample this word ...

3	2		1		3	1	
Etruscan	trade	price		temple		market	
			1		2	3	
			1		2	3	
	Etruscan			1	0	35	
	mark	æt		50	0	1	
	price			42	1	0	
	temp	ole		0	0	20	
	trade	9		10	8	1	
					1		
		•				\	

Decrement its count

3	3	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
market	50	0	1
price	42	1	0
temple	0	0	20
trade	10	7	1
		1	

What is the conditional distribution for this topic?

3	?	1	3	1
Etruscan	trade	price	temple	market

Part 1: How much does this document like each topic?

3	?	1	3	1
Etruscan	trade	price	temple	market

Part 1: How much does this document like each topic?

3	?	1	3	1
Etruscan	trade	price	temple	market

Topic 1 Topic 2 Topic 3

Part 1: How much does this document like each topic?

3	?	1	3	1
Etruscan	trade	price	temple	market

Tonic 1 Tonic 2 Tonic 3 Sampling Equation

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$

Part 1: How much does this document like each topic?

3	?	1	3	1
Etruscan	trade	price	temple	market

Tonic 3 Tonic 1 Tonic 2 Sampling Equation

$$\frac{\mathbf{n}_{d,k} + \alpha_k}{\sum_{i}^{K} \mathbf{n}_{d,i} + \alpha_i} \frac{\mathbf{v}_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} \mathbf{v}_{k,i} + \lambda_i}$$

Part 2: How much does each topic like the word?

3	?	1	3	1
Etruscan	trade	price	temple	market

Part 2: How much does each topic like the word?

3	?	1	3	1
Etruscan	trade	price	temple	market

Tonic 1 Tonic 2 Tonic 3 Sampling Equation

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$$

Part 2: How much does each topic like the word?

3	?	1	3	1
Etruscan	trade	price	temple	market

Tonic 1 Tonic 2 Tonic 3 Sampling Equation

$$\frac{n_{d,k} + \alpha_k}{\sum_{i}^{K} n_{d,i} + \alpha_i} \frac{\mathbf{v}_{k,\mathbf{w}_{d,n}} + \lambda_{\mathbf{w}_{d,n}}}{\sum_{i} \mathbf{v}_{k,i} + \lambda_i}$$

Geometric interpretation

3	?	1	3	1
Etruscan	trade	price	temple	market

Material adapted from David Mimno | UMD Topic Models

Geometric interpretation

3	?	1	3	1
Etruscan	trade	price	temple	market

Material adapted from David Mimno | UMD Topic Models

Geometric interpretation

3	?	1	3	1
Etruscan	trade	price	temple	market

Material adapted from David Mimno | UMD Topic Model:

Update counts

3	?	1	3	1
Etruscan	trade	price	temple	market

	1	2	3
Etruscan	1	0	35
market	50	0	1
price	42	1	0
temple	0	0	20
trade	10	7	1
	1		

Update counts

Update counts

3	1	1	3	1
Etruscan	trade	price	temple	market

Details: how to sample from a distribution

Algorithm

- 1. For each iteration *i*:
 - 1.1 For each document d and word n currently assigned to z_{old} :
 - 1.1.1 Decrement $n_{d,z_{old}}$ and $v_{z_{old},w_{d,n}}$
 - 1.1.2 Sample $z_{new} = k$ with probability proportional to $\frac{n_{d,k} + a_k}{\sum_{i}^{K} n_{d,i} + a_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$
 - 1.1.3 Increment $n_{d,Z_{new}}$ and $v_{Z_{new},W_{d,n}}$

Implementation

Algorithm

- 1. For each iteration i:
 - 1.1 For each document d and word n currently assigned to z_{old} :
 - 1.1.1 Decrement $n_{d,z_{old}}$ and $v_{z_{old},w_{d,n}}$
 - 1.1.2 Sample $z_{new} = k$ with probability proportional to $\frac{n_{d,k} + \alpha_k}{\sum_{i=1}^{K} n_{d,i} + \alpha_i} \frac{v_{k,w_{d,n}} + \lambda_{w_{d,n}}}{\sum_{i} v_{k,i} + \lambda_i}$
 - 1.1.3 Increment $n_{d,Z_{new}}$ and $v_{Z_{new},W_{d,n}}$

Desiderata

- Hyperparameters: Sample them too (slice sampling)
- Initialization: Random
- Sampling: Until likelihood converges
- Lag / burn-in: Difference of opinion on this
- Number of chains: Should do more than one

Available implementations

- Mallet (http://mallet.cs.umass.edu)
- LDAC (http://www.cs.princeton.edu/ blei/lda-c)
- Topicmod (http://code.google.com/p/topicmod)

Wrapup

- Topic Models: Tools to uncover themes in large document collections
- Another example of Gibbs Sampling
- In class: Gibbs sampling example

Inference