Radial-Basis Function Networks

Presented By:

Avinash Kumar Singh

Research Scholar

Robotics & Artificial Intelligence

Lab

IIIT Allahabad

Radial-Basis Function Networks

Radial-Basis Function network (RBF) is a three layers architecture:

- Input Layer: The input layer is made up of source nodes that connect the network to its environment.
- Hidden Layer: In this layer a nonlinear transformation is applied from the input space to the hidden space.
- Output Layer: The output layer is linear, supplying the response of the network to the activation pattern applied to the input layer.

RBF ARCHITECTURE

One hidden layer with RBF activation functions

$$\varphi_1...\varphi_{m1}$$

Output layer with linear activation function.

$$y = w_1 \varphi_1(||x - t_1||) + ... + w_{m1} \varphi_{m1}(||x - t_{m1}||)$$

|| $x - t$ || distance of $x = (x_1, ..., x_m)$ from vector t

Example: XOR Problem

• Input space:

• Output space:

• Construct an RBF pattern classifier such that:

(0,0) and (1,1) are mapped to 0, class C1

(1,0) and (0,1) are mapped to 1, class C2

Example: the XOR problem

• In the feature (hidden layer) space:

$$\varphi_1(||x-t_1||) = e^{-||x-t_1||^2}$$

$$\varphi_2(||x-t_2||) = e^{-||x-t_2||^2}$$

with
$$t_1 = (1,1)$$
 and $t_2 = (0,0)$

TABLE 5.1 Specification of the Hidden Functions for the XOR Problem of Example 5.1

Input Pattern,	First Hidden Function, $\varphi_1(\mathbf{x})$	Second Hidden Function, $\varphi_2(\mathbf{x})$
(1,1)	1	0.1353
(0,1)	0.3678	0.3678
(0,0)	0.1353	1
(1,0)	0.3678	0.3678

• When mapped into the feature space $< \phi_1$, $\phi_2 >$ (hidden layer), C1 and C2 become *linearly separable*. So a linear classifier with $\phi_1(x)$ and $\phi_2(x)$ as inputs can be used to solve the XOR problem.

RBF NN for the XOR problem

$$\varphi_1(||x - t_1||) = e^{-||x - t_1||^2}$$
 with $t_1 = (1,1)$ and $t_2 = (0,0)$

$$\varphi_2(||x - t_2||) = e^{-||x - t_2||^2}$$

$$y = -e^{-\|x - t_1\|^2} - e^{-\|x - t_2\|^2} + 1$$

If y > 0 then class 1 otherwise class 0

Generalized Radial-Basis Function Networks

- When x_i , i=1..N is large, the one-to-one correspondence between the training input data and the Green's function produces a regularisation network that may be considered expensive.
- An approximation of the regularized network.

FIGURE 5.5 Radial-basis function network.

Example: XOR Problem

Table: Input output Transformation Computed for XOR problem			
Data point, j	Input pattern, X _j	Desired output, d _j	
1	(1, 1)	0	
2	(0,1)	1	
3	(0,0)	0	
4	(1,0)	1	

Where G is green's function defined as:

$$G = \left[\begin{array}{cccc} G(X_1,t_1) & G(X_1,t_2) & \dots & G(X_1,t_m) \\ G(X_2,t_1) & G(X_2,t_2) & \dots & G(X_2,t_m) \\ G(X_3,t_1) & G(X_3,t_2) & \dots & G(X_3,t_m) \\ G(X_N,t_1) & G(X_N,t_2) & \dots & G(X_N,t_m) \end{array} \right] \quad G = \left[\begin{array}{ccccc} 1 & 0.1353 & 1 \\ 0.3678 & 0.3678 & 1 \\ 0.1353 & 1 & 1 \\ 0.3678 & 0.3678 & 1 \end{array} \right]$$

Calculated as
$$G(||\mathbf{x} - \mathbf{t}_i||) = \exp(-(||\mathbf{x} - ti||)^2)$$
 i=1,2

Example: XOR Problem

$$d=[0 \ 1 \ 0 \ 1]^T$$
 $W=[w1 \ w2 \ b]^T$

Where $W = G^+ d = (G^T G)^{-1} G^T d$ And G^+ is a pseudo inverse of G

Thus the final input output relation of the network is defined as:

$$y(x) = \sum_{i=1}^{2} wG(||x - t_i||) + b$$