Name and Surname: IPEK SEN	EEEN 322 Spring 2019
D:	QUIZ #2 16.05.2019
2	(Section 01)

The mathematical expression for a frequency-modulated signal is given as

$$\varphi_{FM}(t) = 2\cos(2\pi \times 10^8 t + 0.5\sin 3000\pi t)$$

and we are also given that $k_f = 500\pi$.

- a) Find the carrier frequency f_c and the carrier amplitude A.
- b) Write the mathematical expression for the message signal m(t).
- c) Find the power of $\varphi_{FM}(t)$.
- d) Find the frequency deviation Δf .
- e) Estimate the bandwidth B_{FM} .

a)
$$V_{Fm}(t) = A GO \left(w_c t + k_f \int_{-\infty}^{t} m(x) dx \right)$$

$$= 2 GS \left(2\pi x 10^8 t + 0.5 \sin 3000\pi t \right)$$

$$\Rightarrow A = 2 \frac{10}{2\pi}$$

$$w_c = 2\pi x 10^8 = 2\pi f_c \Rightarrow f_c = \frac{2\pi x 10^6}{2\pi} = 10^8 \text{ Hz} = 100 \text{ MHz} \frac{10}{2\pi}$$
b) $k_f \int_{-\infty}^{t} m(x) dx = 500\pi \int_{-\infty}^{t} m(x) dx = 0.5 \sin 3000\pi t$

$$\Rightarrow \int_{-\infty}^{t} m(x) dx = \frac{0.5}{500\pi} \sin 3000\pi t$$

$$\Rightarrow m(t) = \frac{d}{dt} \left(\frac{0.5}{500\pi} \sin 3000\pi t + \frac{0.5}{500\pi} \cos 3000\pi t \right)$$

$$= \frac{0.5}{500\pi} \times 3000\pi \times 6003000\pi t$$

$$= 3 GOS 3000\pi t \times 20000000$$

c)
$$P = A_2^2 = \frac{2^2}{2} = 2$$
 20

d)
$$m_p = 3 \Rightarrow \Delta f = \frac{k_f m_p}{27i} = \frac{5007i \times 3}{27i} = 750 Hz$$

e)
$$B = \frac{300071}{271} = 1500 H2 \Rightarrow B_{FM} = 2(A_f + B)$$

= $2(750 + 1500) = 4500 H2 = 4.5 kH2$