Nama : Innama Maesa Putri

Kelas: TI 2A

No. Abs : 13

1. Perbedaan Media Transmisi: Kabel Tembaga, Fiber Optik, dan Jaringan Nirkabel

Kabel Tembaga (UTP/STP)

Kecepatan Transmisi:

- UTP: Bervariasi berdasarkan kategori (Cat5, Cat5e, Cat6)
- Cat5: Mendukung Fast Ethernet (100Mbps)
- Cat5e/Cat6: Mendukung Gigabit Ethernet (1000Mbps)

Jarak Maksimal:

• Umumnya terbatas hingga 100 meter tanpa penguat sinyal

Kelebihan:

- Biaya relatif rendah dibandingkan fiber optik
- Mudah dipasang dan dipelihara
- Tidak memerlukan peralatan khusus untuk instalasi dan pemeliharaan

Kekurangan:

- Rentan terhadap interferensi elektromagnetik dan "noise"
- Terbatas dalam jarak dan kecepatan transmisi
- Memiliki kemungkinan crosstalk (interferensi antar kabel)

Contoh Penggunaan:

- Jaringan LAN dalam gedung perkantoran
- Koneksi antara komputer dengan switch atau router
- Jaringan rumah dan kabel internal pada gedung

Fiber Optik

Kecepatan Transmisi:

- Sangat tinggi dengan bandwidth berkapasitas besar
- Dapat mencapai puluhan atau ratusan Gbps

Jarak Maksimal:

• Single-mode: Dapat mencapai beberapa kilometer

Multimode: Jarak lebih terbatas karena modal dispersion

Kelebihan:

- Tidak terpengaruh interferensi elektromagnetik
- Dapat mentransmisikan data jarak jauh tanpa penguatan sinyal
- Bandwidth sangat tinggi
- Keamanan data lebih baik (sulit disadap)

Kekurangan:

- Biaya tinggi untuk instalasi dan peralatan
- Membutuhkan keahlian dan peralatan khusus
- Lebih sulit dalam pemeliharaan dan pembuatan

Contoh Penggunaan:

- Backbone jaringan untuk trafik data tinggi
- Koneksi point-to-point antara gedung
- Koneksi jarak jauh antar fasilitas
- Jaringan backbone internet dan telekomunikasi

Jaringan Nirkabel (Wireless)

Kecepatan Transmisi:

- Bervariasi tergantung standar (802.11, Bluetooth, WiMAX, GSM)
- WiFi modern dapat mencapai ratusan Mbps hingga Gbps

Jarak Maksimal:

- WiFi: Beberapa puluh meter
- Bluetooth: 1-100 meter
- WiMAX: Jangkauan lebih luas untuk area metropolitan
- Satelit: Jangkauan global

Kelebihan:

- Mobilitas dan fleksibilitas tinggi
- Tidak memerlukan kabel fisik
- Mudah ditambahkan ke jaringan yang sudah ada
- Cocok untuk area yang sulit dijangkau kabel

Kekurangan:

- Rentan terhadap interferensi dari peralatan lain
- Jangkauan terbatas oleh material bangunan
- Keamanan lebih rentan (sinyal dapat ditangkap tanpa akses fisik)
- Kecepatan dan stabilitas dapat dipengaruhi oleh kondisi lingkungan

Contoh Penggunaan:

- Akses internet di rumah, kantor, atau tempat umum
- Jaringan ad-hoc untuk perangkat mobile
- Daerah terpencil yang sulit dijangkau kabel
- Koneksi perangkat IoT dan perangkat mobile

2. Perbandingan Metode Pensinyalan: NRZ dan Manchester Encoding

Non-Return to Zero (NRZ)

Representasi Bit:

- Bit '0' direpresentasikan dengan voltase rendah
- Bit '1' direpresentasikan dengan voltase tinggi

Sinkronisasi:

- Tidak memiliki mekanisme sinkronisasi yang baik
- Ketika ada rangkaian bit '0' atau '1' yang panjang, tidak ada perubahan voltase yang dapat digunakan untuk sinkronisasi

Efisiensi Bandwidth:

- Lebih efisien dalam penggunaan bandwidth
- Membutuhkan 1 transisi untuk 1 bit data

Kekurangan:

- Rentan terhadap gangguan elektromagnetik
- Batasan antara bit-bit individual bisa hilang saat terjadi urutan bit yang sama secara berturutan
- Sulit melakukan sinkronisasi ulang

Manchester Encoding

Representasi Bit:

- Bit '0' direpresentasikan dengan transisi dari voltase tinggi ke rendah di tengah bittime
- Bit '1' direpresentasikan dengan transisi dari voltase rendah ke tinggi di tengah bittime

Sinkronisasi:

- Memiliki transisi di tengah setiap bit-time yang memastikan sinkronisasi
- Transisi ini dapat digunakan untuk memastikan bit-time pada node penerima tetap sinkron dengan node pengirim

Efisiensi Bandwidth:

- Kurang efisien dalam penggunaan bandwidth
- Membutuhkan minimal 1 transisi untuk setiap bit, bahkan dapat membutuhkan 2 transisi

Alasan Dipilih untuk Ethernet 10BaseT: Manchester Encoding dipilih untuk Ethernet 10BaseT meskipun kurang efisien karena:

- 1. Memberikan kehandalan sinkronisasi yang tinggi melalui transisi di tengah setiap bit
- 2. Memastikan ada perubahan sinyal yang cukup untuk sinkronisasi clock
- 3. Mencegah hilangnya batasan antar bit pada rangkaian bit yang sama
- 4. Memudahkan deteksi kesalahan karena pola transisi yang konsisten
- 5. Kecepatan 10Mbps masih dapat ditangani meskipun dengan overhead bandwidth yang lebih tinggi

3. Keuntungan Grup Kode 4B/5B dalam Transmisi Data

Keuntungan Grup Kode 4B/5B:

1. Mengurangi Kesalahan Bit:

- Memastikan ada cukup transisi sinyal untuk menjaga sinkronisasi
- Mencegah rangkaian bit '0' atau '1' yang panjang yang dapat merusak sinkronisasi
- Setiap simbol 5-bit memiliki minimal satu transisi yang digunakan untuk sinkronisasi

2. Membatasi Energi Transmisi (DC Balancing):

- Menjaga keseimbangan antara bit '0' dan '1' (DC balancing)
- Mencegah kelebihan energi yang dikirimkan pada media yang dapat menyebabkan interferensi
- Mencegah temperatur tinggi pada perangkat transmisi dan penerima yang berpotensi menyebabkan kesalahan pembacaan

3. Membedakan Data dan Kontrol:

- Menggunakan simbol unik untuk data dan informasi kontrol
- Memungkinkan lapisan fisik pada perangkat penerima membedakan antara data dan informasi kontrol
- Menyediakan tiga tipe simbol: simbol data, simbol kontrol, dan simbol invalid

4. Meningkatkan Deteksi Kesalahan:

- Menyediakan simbol invalid yang dapat menandakan adanya kesalahan
- Jika node penerima menangkap pola yang tidak valid, dapat diasumsikan terjadi kesalahan pada penerimaan data

Contoh Simbol Kontrol dalam 4B/5B:

Dalam skema 4B/5B, dari 32 kemungkinan kode, 16 digunakan untuk data, sedangkan 6 simbol digunakan untuk fungsi kontrol khusus:

- Simbol untuk menandai awal frame
- Simbol untuk menandai akhir frame
- Simbol untuk menandai kondisi idle (saat tidak ada transmisi aktif)
- Simbol untuk transisi dari kondisi idle ke kondisi pengiriman frame data

Fungsi-fungsi simbol kontrol ini membantu dalam:

- Identifikasi batas-batas frame
- Sinkronisasi antara pengirim dan penerima
- Pengontrolan aliran data pada media fisik

4. Interferensi pada Kabel Tembaga dan Teknik Mitigasi

Sumber Interferensi pada Kabel Tembaga:

1. Interferensi Elektromagnetik Eksternal:

- Gelombang radio
- o Peralatan elektromagnetik seperti lampu fluorescent
- Motor elektrik
- o Peralatan elektronik lainnya

2. Crosstalk:

- Interferensi yang disebabkan oleh medan magnet dari kabel-kabel yang berdekatan
- Sinyal dari satu kabel mempengaruhi sinyal pada kabel lain yang berdekatan

Teknik Pemilinan (Twisting):

• Cara Kerja:

- o Kabel-kabel dipilin bersama-sama sehingga selalu berdekatan secara fisik
- Jika ada interferensi elektromagnetik eksternal, akan mempengaruhi kedua kabel secara seimbang
- Perangkat penerima akan memproses interferensi secara terbalik, menetralkan efeknya
- Arah arus yang berlawanan pada kabel yang dipilin menghasilkan medan magnet yang saling menetralkan

Efektivitas:

- o Setiap pasangan kabel memiliki jumlah putaran/uliran yang berbeda per meter
- o Ini membantu mengurangi crosstalk antar pasangan kabel
- Semakin ketat dan konsisten pilinannya, semakin baik perlindungan terhadap interferensi

Teknik Pelindung (Shielding):

• Cara Kerja:

- Menambahkan lapisan pelindung konduktif (foil atau anyaman tembaga) di sekitar kabel
- Pelindung menangkap interferensi elektromagnetik dan mengalihkannya ke ground
- o Mencegah sinyal dari luar masuk ke kabel dan sinyal dari dalam keluar

• Jenis Pelindung:

- STP (Shielded Twisted-Pair): Memiliki pelindung untuk setiap pasangan kabel dan pelindung keseluruhan
- o Kabel Coaxial: Memiliki konduktor pusat dengan pelindung di sekelilingnya

Contoh Situasi Pentingnya Teknik-Teknik Mitigasi:

1. Lingkungan Industri:

- Di pabrik dengan banyak motor dan mesin berat yang menghasilkan interferensi elektromagnetik kuat
- Kabel STP atau koaksial lebih cocok untuk menjaga integritas sinyal

2. Instalasi Gedung dengan Banyak Peralatan Listrik:

Seperti rumah sakit dengan banyak peralatan medis

 Pemilinan dan pelindung penting untuk menghindari gangguan pada komunikasi data

3. Instalasi Jarak Jauh:

- Kabel yang melintasi area dengan banyak sumber interferensi seperti jalur listrik tegangan tinggi
- Pelindung tambahan diperlukan untuk menjaga kualitas sinyal

4. Transmisi Data Kecepatan Tinggi:

- o Pada jaringan berkecepatan tinggi seperti 10 Gigabit Ethernet
- Kategori kabel yang lebih tinggi dengan pemilinan yang lebih baik (Cat6 atau lebih tinggi) dan kadang pelindung diperlukan untuk menjaga integritas sinyal

5. Organisasi Standar untuk Teknologi Lapisan Fisik

1. IEEE (Institute of Electrical and Electronics Engineers)

Kontribusi:

- Mengembangkan standar untuk teknologi Ethernet (802.3)
- Menentukan karakteristik kelistrikan dari pengkabelan
- Mendefinisikan kategori kabel UTP berdasarkan performanya (Cat5, Cat5e, Cat6)
- Mengembangkan standar untuk jaringan wireless seperti WiFi (802.11), Bluetooth (802.15), dan WiMAX (802.16)

Contoh Spesifik:

- IEEE 802.3 mendefinisikan standar Ethernet termasuk 10BaseT, Fast Ethernet, dan Gigabit Ethernet
- IEEE menentukan spesifikasi untuk pensinyalan pada media, seperti Manchester Encoding untuk 10BaseT

2. ITU (International Telecommunication Union)

Kontribusi:

- Mengatur standar global untuk teknologi telekomunikasi
- Mendefinisikan standar untuk transmisi data jarak jauh
- Mengkoordinasikan alokasi spektrum radio global
- Mengembangkan standar untuk teknologi fiber optik dan telekomunikasi

Contoh Spesifik:

• Standar untuk komunikasi DSL dan broadband

- Rekomendasi untuk teknologi fiber optik dan transmisi optik
- Koordinasi penggunaan spektrum frekuensi untuk komunikasi wireless

3. EIA/TIA (Electronics Industry Alliance/Telecommunications Industry Association)

Kontribusi:

- Mengembangkan standar untuk pengkabelan komersial dan instalasi LAN
- Menetapkan TIA/EIA-568A yang mengatur instalasi dan spesifikasi kabel komersial
- Menstandarkan tipe kabel, panjang kabel, konektor, terminasi kabel, dan metode pengetesan

Contoh Spesifik:

- TIA/EIA-568 mendefinisikan standar kode warna untuk kabel UTP
- Menentukan jarak maksimum kabel UTP (100 meter)
- Menetapkan standar untuk instalasi kabel dan konektorisasi

4. ISO (International Organization for Standardization)

Kontribusi:

- Mengembangkan standar media fisik secara global
- Menetapkan model referensi OSI yang mendefinisikan lapisan-lapisan jaringan
- Berkontribusi pada standarisasi berbagai teknologi komunikasi data

Contoh Spesifik:

- Mendefinisikan karakteristik fisik dan elektris dari media komunikasi
- Mengembangkan standar untuk koneksi antar perangkat jaringan

5. ANSI (American National Standards Institute)

Kontribusi:

- Mengkoordinasikan pengembangan standar di Amerika Serikat
- Berpartisipasi dalam standarisasi teknologi jaringan
- Mendukung pengembangan standar untuk media fisik dan protokol komunikasi

Contoh Spesifik:

- Berkolaborasi dengan TIA/EIA dalam pengembangan standar kabel
- Mengadopsi dan mempromosikan standar internasional di Amerika Serikat

Organisasi-organisasi ini bekerja sama dalam mendefinisikan dan mengembangkan standar yang memastikan interoperabilitas perangkat jaringan dari berbagai produsen, sehingga teknologi jaringan dapat berfungsi secara konsisten dan dapat diandalkan.