Мотивационный пример про интуиционистскую логику

ВНК-интерпретация — про конструкции, построенные объекты. А пусть конструкция — тип значения, которое может быть вычислено. Тогда:

- ightharpoonup lpha & eta тип упорядоченной пара значений
- ightharpoonup $\alpha o \beta$ тип функций из α в β
- ▶ ⊥ значение, не имеющее построения.

Доказательство — значение, *обитающее* в указанном типе. Вот и давайте подоказываем:

$$\vdash$$
 fun x -> x+1: int \rightarrow int

Алгебраический тип (тип-сумма)

Определение

Отмеченное (дизъюнктное) объединение:

$$A \uplus B := \{ \langle x, 0 \rangle \mid x \in A \} \cup \{ \langle y, 1 \rangle \mid y \in B \}$$

Значение типа $\alpha\lor\beta$ — значение либо типа α , либо типа β и мы знаем, какого именно. std::variant в C++.

Пример

$$\alpha$$
 option — $\ni \tau o \ \alpha \lor ()$

type 'a option = Some of 'a | None

let print_int_option v = match v with

Some x -> print_int x

let csqrt $x = if x \ge 0$. then Some (sqrt x) else None

Ложь (необитаемый тип)

Перепишем старый пример чуть иначе:

```
let csqrt x =
   if x >= 0. then sqrt x
        else failwith "Cannot compute square root"
```

Какой тип у csqrt? Рассмотрим ветки if

- ▶ then: \sqrt{x} :float
- ightharpoonup else: failwith s: \bot , и поэтому failwith s: \bot \vdash failwith s: float

Ветка else не возвращает результата — поэтому возвращает любой тип; «из лжи следует всё, что угодно».

Почему мы рассматриваем интуиционистскую логику?

- lacktriangle Рассмотрим закон снятия двойного отрицания: $M: ((lpha
 ightarrow oldsymbol{\perp})
 ightarrow oldsymbol{\perp})
 ightarrow lpha.$
- ▶ Аргумент M функция $f:(\alpha \to \bot) \to \bot$. Функция f, видимо (?), по аргументу $g:\alpha \to \bot$ угадывает $x:\alpha$ и выполняет вызов g x.
- Выражение M должно по функции f как-то угадывать значение x. Необходима отдельная конструкция с отдельной семантикой.
- Однако, похожие конструкции в языках бывают. Например, закон Пирса как тип для call/cc из Scheme.

Изоморфизм Карри-Ховарда

исчисление высказываний
доказательство
высказывание
импликация
Конъюнкция
Дизъюнкция
Ложь

Непрерывность

Определение

Функция $f:X \to Y$ непрерывна, если прообраз любого открытого множества открыт.

Пример

Функция $f:\mathbb{N}\to\mathbb{R}$ всегда непрерывна (при дискретной топологии на \mathbb{N}), поскольку любое множество в \mathbb{N} открыто.

Компактность

Определение

Будем говорить, что множество компактно, если из любого его открытого покрытия можно выбрать конечное подпокрытие

Пример

Множество $\{0,1\}$ в дискретной топологии компактно.

Пример

Интервал (0,1) в $\mathbb R$ не компактен — например, рассмотрим покрытие $\{(arepsilon,1)\mid arepsilon\in(0,1)\}$

Подпространства и связные множества

Определение

Пространство $\langle X_1,\Omega_1\rangle$ — подпространство пространства $\langle X,\Omega\rangle$, если $X_1\subseteq X$ и $\Omega_1=\{A\cap X_1|A\in\Omega\}$.

Пример

[0,1] с евклидовой топологией на отрезке — подпространство \mathbb{R} . [0,0.5) открыто в [0,1], так как $[0,0.5)=(-0.5,0.5)\cap[0,1]$.

Определение

Пространство $\langle X,\Omega \rangle$ связно, если нет $A,B\in \Omega$, что $A\cup B=X$, $A\cap B=\varnothing$ и $A,B\neq \varnothing$.

Пример

Пространство $(0,1] \cup [2,3)$ в $\mathbb R$ несвязно: возьмём A=(0,1] и B=[2,3). Дискретное топологическое пространство $\langle X, \mathcal P(X) \rangle$ несвязно при |X|>1: пусть $a \in X$, тогда $A=\{a\}$ и $B=X\setminus A$.

Топология на деревьях

Определение

Пусть некоторый лес задан конечным множеством вершин V и отношением (\preceq) , связывающим предков и потомков ($a \preceq b$, если b — потомок a). Тогда подмножество его вершин $X \subseteq V$ назовём открытым, если из $a \in X$ и $a \preceq b$ следует, что $b \in X$.

Пример

Связность деревьев

Лемма

Лес связен (является одним деревом) тогда и только тогда, когда соответствующее ему топологическое пространство связно.

Доказательство.

- 1. Лес связен: пусть не так и найдутся открытые непустые A,B, что $A \cup B = V$ и $A \cap B = \varnothing$. Пусть $v \in V$ корень дерева и пусть $v \in A$ (для определённости). Тогда $A = \{x \mid v \leq x\}$ и $B = \varnothing$.
- 2. Пусть лес топологически связен, но есть несколько разных корней v_1, v_2, \ldots, v_k . Возьмём $A_i = \{x \mid v_i \leq x\}$. Тогда все A_i открыты, непусты, дизъюнктны и $V = \cup A_i$.

Пишем скобки или нет?

Вы как пишете: $\sin x$ или $\sin(x)$?

Пишем скобки или нет?

```
Bы как пишете: sin x или sin(x)?
int main () {
    return sizeof 0;
}
```

Пишем скобки или нет?

```
Вы как пишете: \sin x или \sin(x)?
int main () {
      return sizeof 0;
Соглашение о записи:
                                       size of \emptyset = \operatorname{sizeof}(\emptyset) = 0
HO:
                                    sizeof\{\emptyset\} = sizeof(\{\emptyset\}) = 1
```

Минимальные и максимальные элементы

Определение

Множество нижних граней $X\subseteq \mathcal{U}$: $\mathsf{lwb}_\mathcal{U} X=\{y\in \mathcal{U}\mid y\preceq x\ \textit{при всех }x\in X\}.$ Множество верхних граней $X\subseteq \mathcal{U}$: $\mathsf{upb}_\mathcal{U} X=\{y\in \mathcal{U}\mid x\preceq y\ \textit{при всех }x\in X\}.$

Определение

минимальный $(m \in X)$: нет меньшего максимальный $(m \in X)$: нет большего наименьший $(m \in X)$: меньше всех наибольший $(m \in X)$: больше всех инфимум: наибольшая нижняя грань супремум: наименьшая верхняя грань

при всех $y \in X$, $y \leq m$ влечёт y = m при всех $y \in X$, $m \leq y$ влечёт y = m при всех $y \in X$ выполнено $m \leq y$ при всех $y \in X$ выполнено $y \leq m$ inf $_{\mathcal{U}} X = \text{наи} \text{ б}(\text{lw} \text{b}_{\mathcal{U}} X)$ sup $_{\mathcal{U}} X = \text{наи} \text{ м}(\text{upb}_{\mathcal{U}} X)$

Пример

Пример: делимость

На $\mathbb N$ положим $a \leq b$, если b : a.

Пример

Множество {2, 3, 6}

Минимальные: 2,3
$$2 : x$$
 влечёт $x = 1$ или $x = 2$, то же про 3 Наименьший: отсутствует $2 \not\preceq 3$ и $3 \not\preceq 2$ Инфимум: $1 : \exists x$ при всех $x \in \mathbb{N}$

Пример: делимость

На $\mathbb N$ положим $a \leq b$, если b : a.

Пример

Множество {2, 3, 6}

Минимальные: 2,3
$$2 : x$$
 влечёт $x = 1$ или $x = 2$, то же про 3 Наименьший: отсутствует $2 \not\preceq 3$ и $3 \not\preceq 2$ Инфимум: $1 : \exists x$ при всех $x \in \mathbb{N}$

Пример

Рассмотрим $X = \{1; 1.4; 1.41; 1.414; 1.4142; \ldots\}$ — множество десятичных приближений $\sqrt{2}$, $\leq = \leq$. Тогда $\operatorname{upb}_{\mathbb{Q}} X$ состоит из рациональных чисел, бо́льших $\sqrt{2}$. При этом $\sqrt{2} \notin \operatorname{upb}_{\mathbb{Q}} X$, а значит $\sup_{\mathbb{Q}} X$ не определён.

Пример: внутренность множества

Определение (внутренность множества)

Pассмотрим $\langle X,\Omega \rangle$ и возьмём (\subseteq) как отношение частичного порядка на $\mathcal{P}(X)$. Тогда $A^\circ:=\inf_\Omega(\{A\})$.

Теорема

 A° определена для любого A.

Доказательство.

Пусть $V=\mathsf{lwb}_\Omega\{A\}=\{Q\in\Omega\mid Q\subseteq A\}$. Тогда $\mathsf{inf}_\Omega\{A\}=\bigcup V$. Напомним, $\mathsf{inf}_\mathcal{U}\ T=\mathsf{haub}(\mathsf{lwb}_\mathcal{U}\ T)$.

- 1. Покажем принадлежность: $\bigcup V \subseteq A$ и $\bigcup V \in \Omega$ как объединение открытых.
- 2. Покажем, что все из V меньше или равны: пусть $X \in V$, то есть $V = \{X, \dots\}$, тогда $X \subseteq X \cup \dots$, тогда $X \subseteq V$

Решётка

Определение

Решёткой называется упорядоченная пара: $\langle X, (\preceq) \rangle$, где X — некоторое множество, а (\preceq) — частичный порядок на X, такой, что для любых $a,b \in X$ определены $a+b=\sup\{a,b\}$ и $a\cdot b=\inf\{a,b\}$.

To есть, a+b — наименьший элемент c, что $a \leq c$ и $b \leq c$.

Пример

$$\langle \Omega, (\subseteq)
angle$$
 — решётка. $\langle \mathbb{N} \setminus \{1\}, (\vdots)
angle$ — не решётка.

Псевдодополнение

Псевдодополнением $a \to b$ называется наибольший из $\{x \mid a \cdot x \leq b\}$.

Пример

$$a \cdot b = a$$

 $b \cdot b = b$
 $c \cdot b = a$
 $d \cdot b = b$

$$3$$
десь $b o c =$ наиб $\{x \mid b \cdot x \leq c\} =$ наиб $\{a,c\} = c$

Пример (нет псевдодополнения: диамант и пентагон)

Особые решётки

Определение

Дистрибутивной решёткой называется такая, что для любых a,b,c выполнено $a\cdot(b+c)=a\cdot b+a\cdot c.$

Определение

Импликативная решётка — такая, в которой для любых элементов есть псевдодополнение.

Лемма

Любая импликативная решётка — дистрибутивна.

Ноль и один

Определение

0 — наименьший элемент решётки, а 1 — наибольший элемент решётки

Лемма

В любой импликативной решётке $\langle X, (\preceq)
angle$ есть 1

Доказательство.

Рассмотрим a o a, тогда $a o a=\mathsf{hau}\mathsf{b}\{c\mid a\cdot c\preceq a\}=\mathsf{hau}\mathsf{b}X=1.$

Определение

Импликативная решётка с 0 — псевдобулева алгебра (алгебра Гейтинга). В такой решётке определено \sim $a:=a \to 0$

Определение

Булева алгебра — псевдобулева алгебра, в которой а $+\sim$ а =1 для всех а.

Булева алгебра является булевой алгеброй в смысле решёток

Доказательство.

Символы булевой алгебры: $(\&), (\lor), (\neg), Л, И$.

Символы решёток: $(+), (\cdot), (\to), (\sim), 0, 1$

Упорядочивание: $\Pi \leq \mathsf{И}$.

- 1. $a \& b = \min(a, b)$, $a \lor b = \max(a, b)$ (анализ таблицы истинности), отсюда $a \cdot b = a \& b$ и $a + b = a \lor b$.
- 2. $a \rightarrow b = \neg a \lor b$, так как:

$$a o b=$$
 наиб $\{c|c\ \&\ a\le b\}=\left\{egin{array}{ll}
eg a, & b=\Pi\ ec{\mathsf{N}}, & b=ec{\mathsf{N}} \end{array}
ight.$

3. $0 = \min\{\mathcal{N}, \Pi\} = \Pi$, $1 = \max\{\mathcal{N}, \Pi\} = \mathcal{N}$, $\sim a = a \to 0 = \neg a \lor \Pi = \neg a$. Заметим, что $a + \sim a = a \lor \neg a = \mathcal{N}$.

Итого: булева алгебра — импликативная решётка с 0 и с $a+\sim a=1$.

Множества и топологии как решётки

Лемма

$$\langle \mathcal{P}(X), (\subseteq)
angle$$
 — булева алгебра.

Доказательство.

$$a o b = \text{наиб}\{c \subseteq X \mid a \cap c \subseteq b\}$$
. Т.е. наибольшее, не содержащее точек из $a \setminus b$. Т.е. $X \setminus (a \setminus b)$. То есть $(X \setminus a) \cup b$.

$$a + \sim a = a \cup (X \setminus a) \cup \varnothing = X$$

Лемма

 $\langle \Omega, (\subseteq)
angle -$ псевдобулева алгебра.

Доказательство.

$$a o b = \mathsf{нau6}\{c \in \Omega \mid a \cap c \subseteq b\}$$
. Т.е. нauбольшее открытое, нe содержащее точек из $a \setminus b$. То есть, $(X \setminus (a \setminus b))^\circ$. То есть, $((X \setminus a) \cup b)^\circ$.

Решётки и исчисление высказываний

Определение

Пусть некоторое исчисление высказываний оценивается значениями из некоторой решётки. Назовём оценку согласованной с исчислением, если $[\![\alpha\ \&\ \beta]\!] = [\![\alpha]\!] \cdot [\![\beta]\!]$, $[\![\alpha\lor\beta]\!] = [\![\alpha]\!] + [\![\beta]\!]$, $[\![\alpha\to\beta]\!] = [\![\alpha]\!] \to [\![\beta]\!]$, $[\![\neg\alpha]\!] = \sim [\![\alpha]\!]$, $[\![A\&\neg A]\!] = 0$, $[\![A\to A]\!] = 1$.

Теорема

Любая псевдобулева алгебра, являющаяся согласованной оценкой интуиционистского исчисления высказываний, является его корректной моделью: если $\vdash \alpha$, то $[\![\alpha]\!] = 1$.

Теорема

Любая булева алгебра, являющаяся согласованной оценкой классического исчисления высказываний, является его корректной моделью: если $\vdash \alpha$, то $[\![\alpha]\!]=1$

Алгебра Линденбаума

Определение

Определим предпорядок на высказываниях: $\alpha \preceq \beta := \alpha \vdash \beta$ в интуиционистском исчислении высказываний. Также $\alpha \approx \beta$, если $\alpha \preceq \beta$ и $\beta \preceq \alpha$.

Определение

Пусть L — множество всех высказываний. Тогда алгебра Линденбаума $\mathcal{L} = L/_{pprox}.$

Теорема

 \mathcal{L} — псевдобулева алгебра.

Схема доказательства.

Надо показать, что (\preceq) есть отношение порядка на \mathcal{L} , что $[\alpha \vee \beta]_{\mathcal{L}} = [\alpha]_{\mathcal{L}} + [\beta]_{\mathcal{L}}$, $[\alpha \& \beta]_{\mathcal{L}} = [\alpha]_{\mathcal{L}} \cdot [\beta]_{\mathcal{L}}$, импликация есть псевдодополнение, $[A \& \neg A]_{\mathcal{L}} = 0$, $[\alpha]_{\mathcal{L}} \to 0 = [\neg \alpha]_{\mathcal{L}}$.

Полнота псевдобулевых алгебр

Теорема

Пусть $[\![\alpha]\!] = [\alpha]_{\mathcal{L}}$. Такая оценка интуиционистского исчисления высказываний алгеброй Линденбаума является согласованной.

Теорема

Интуиционистское исчисление высказываний полно в псевдобулевых алгебрах: если $\models \alpha$ во всех псевдобулевых алгебрах, то $\vdash \alpha$.

Доказательство.

Возьмём в качестве модели исчисления алгебру Линденбаума: $[\![\alpha]\!] = [\alpha]_{\mathcal{L}}$. Пусть $\models \alpha$. Тогда $[\![\alpha]\!] = 1$ во всех псевдобулевых алгебрах, в том числе и $[\![\alpha]\!] = 1_{\mathcal{L}}$. То есть $[\![\alpha]\!]_{\mathcal{L}} = [\![A \to A]\!]_{\mathcal{L}}$. То есть $A \to A \approx \alpha$. Значит, в частности, $A \to A \vdash \alpha$. Значит, $\vdash \alpha$.