

Detailed Course 2.0 on Function of One and Several Variable - IIT JAM, 23

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months
Save 67%

Total ₹ 21,780

You get 6 months extra for free

Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Difference between continuity and uniformly continuity:

Continuity of a function is at point and uniformly continuity is in interval.

Example: f(x) = x is continuous at 0.

But it is uniformly continuous in [0, 1]

Lipschitz function:

A function $f: I \rightarrow R$ is said to be satisfy a Lipschitz condition

on I, if \(\extremath{\frac{1}{2}} \) a positive integer M such that

$$|f(x_1)-f(x_2)| \leq M|x_1-x_2|, \text{ for any two } x_1,\, x_2 \in I$$

Some direct result for uniformly continuity:

- (1) If a function f(x) is Lipschitz function then f is uniformly continuous.
- (2) If f(x) is continuous on closed interval [a, b] then it is uniformly continuous on [a, b].
- (3) If a function is UC then it is continuous
 - i.e. If a function is not continuous then it is not UC

Sequential definition:

Let $f: D \to R$ be a function. If $\langle x_n \rangle$ & $\langle y_n \rangle$ are two convergent sequence which converge to same limit and $f(\langle x_n \rangle)$ and $f(\langle y_n \rangle)$ are also converges to same limit then this function is uniformly continuous on D.

Conclusion: If f(x) is bounded and continuous on I, then f(x) may not be uniformly continuous on I.

- (4) Let a function f be continuous on an open bounded interval (a, b), then f is uniformly continuous on (a, b) if $\lim_{x\to a^+} f(x) \& \lim_{x\to b^-} f(x)$ both exist finitely. it is necessary condition.
- (5) If derivative of f(x) is bounded on I, then f(x) is uniformly continous on I.
- (6) If f(x) is uniformly continuous on [a, c] and [c, b] both & f(x) is continuous at c, then f(x) is uniformly continuous on [a, b].

Q.1. Let f,g: $(0,1) \rightarrow R$. Let $f(x) = x\sin(1/x^2)$ and $g(x) = x^2$ then

- (a) Both are uniformly continuous
- (b) f is uniformly continuous but g is not
- (c) g is uniformly continuous but f is not
- (d) None of the above

Which of the following functions is uniformly Q.2. continuous on the domain as stated? IIT JAM

(a)
$$f(x) = x^2, x \in R$$

(a)
$$f(x) = x^2, x \in \mathbb{R}$$
 (b) $f(x) = \frac{1}{x}, x \in [1, \infty)$

(c)
$$f(x) = \tan x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

(d)
$$f(x) = [x], x \in [0, 1]$$

([x] is the greatest integer less than or equal to x]

Q.3. Let $f:(0, \infty) \to R$ be defined by $f(x) = \frac{\sin(x^3)}{x}$. then f(x) is TIFR 2019

- (a) bounded and uniformly continuous
- (b) bounded but not uniformly continuous
- (c) Not bounded but uniformly continuous
- (d) Neither bounded nor uniformly continuous

Q4. Let $f(x) = e^{-x}$ and $g(x) = e^{-x^2}$.

Which of the following statements are true?

- (a) Both f and g are uniformly continuous on R
- (b) f is uniformly continuous on every interval of the form $[a, +\infty)$, $a \in R$
- (c) g is uniformly continuous on R
- (d) f(x) g(x) is uniformly continuous on R

Q5. Which of the following functions are uniformly continuous on (0, 1)? CSIR NET NOV 2020

(a)
$$\frac{1}{x}$$

(b)
$$\sin \frac{1}{x}$$

(c)
$$x \sin \frac{1}{x}$$

$$\frac{\sin x}{x}$$

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Differentiability

Let $f : [a, b] \rightarrow R$ is a real valued function it is said to be a differentiable at x = c.

If
$$\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$$
 finitely exist.

Right Hand Derivative:

$$Rf'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

Left Hand Derivative:

$$Rf'(c) = \lim_{h \to 0} \frac{f(c-h) - f(c)}{-h}$$

Note: If f(x) is differentiable at x = c

Iff
$$Rf(c) = Lf(c)$$

Q.1. Let
$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$$
, then f is

- (a) Discontinuous
- (b) Continuous but not differentiable
- (c) Differentiable only once
- (d) Differentiable more than once.

Necessary condition for differentiable:

If a function is differentiable at x = c, then it is continuous at x = c but converse may not be true.

Conclusion:

$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x^{\beta}}; & x \neq 0 \\ 0; & x = 0 \end{cases}$$

- (i) f(x) is continuous at x = 0 for $\alpha > 0$
- (ii) f(x) is differentiable at x = 0 for $\alpha > 1$

Result:

(1)
$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x^{\beta}}; & x \neq 0 \\ 0; & x = 0 \end{cases}$$

then f(x) is differentiable
$$\left[\frac{p}{q}\right]$$
 times and

$$f^{\left[\frac{p}{q}\right]} = \begin{pmatrix} continuous & if p is odd \\ discontinuous & if p is even \end{pmatrix}$$

(2) Let
$$f: R \to R$$
 be defined by $f(x) = \begin{cases} \phi_1(x) & x \in Q \\ \phi_2(x) & x \in Q^c \end{cases}$

f(x) is differentiable at the double root of $\phi_1(x) - \phi_2(x) = 0$

(3) A function is not differentiable at that point at which graph of function is sharp edge. Consider the function $f(x) = |\cos x| + |\sin(2 - x)|$.

At which of the following points is f not differentiable?

(a)
$$\left\{ (2n+1)\frac{\pi}{2} : n \in Z \right\}$$
 (b) $\left\{ n \pi : n \in Z \right\}$
(c) $\left\{ n \pi + 2 : n \in Z \right\}$ (d) $\left\{ \frac{n\pi}{2} : n \in Z \right\}$

(c)
$$\{n \pi + 2 : n \in Z\}$$
 (d) $\{\frac{n\pi}{2} : n \in Z\}$

Q.3. The function $f(x) = a_0 + a_1|x| + a_2|x|^2 + a_3|x|^3$ is differentiable at x = 0

- (a) for no values of a₀, a₁, a₂, a₃
- (b) for any value of a0, a1, a2, a3
- (c) only if $a_1 = 0$
- (d) only if both $a_1 = 0$ and $a_3 = 0$

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo	
Save 67%	₹ 21,700 ₹ 19,602	
You get 6 months extra for free	Offer expires 15 Jun 2022	

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR