## Smaller project in third week

$$y''(x) - y(x) = 0$$
 [0,1]

$$y_{general}(x) = C_1 e^x + C_1 e^{-x}$$

## Problem 1&2

$$x_1 = 0 < x_2 < ... < x_{n-1} < x_n = 1$$

$$f''(x) \simeq \frac{f(x-h)-2f(x)+f(x+h)}{h^2/\sqrt{y_{i-1}}}$$

$$y''(x_i) = \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2}$$

Rewrite as: 
$$A\bar{y} = b$$
 where  $\bar{y} = \begin{pmatrix} y \\ \vdots \end{pmatrix}$ 

$$\bar{y} = \begin{pmatrix} y_n \\ \vdots \\ y_n \end{pmatrix}$$

| 1 | 0        | 0        | 0        |   |       | 0 | 0          | 0      |  |
|---|----------|----------|----------|---|-------|---|------------|--------|--|
| 1 | - (2-h²) | 1        | 0        |   |       | 0 | 0          | 0      |  |
| 0 | 1        | - (2·h2) | 1        | 0 |       | 0 | 0          | 0      |  |
| 0 | 0        | 1        | - (2-h²) | 1 |       | 0 | Ö          | 0      |  |
| : | <i>:</i> | :        |          | ; |       | : |            | •<br>• |  |
| 0 | 0        | 0        | 0        | 0 | , , , | 1 | $-(2-h^2)$ | 1      |  |
| 0 | 0        | 0        | 0        | 0 |       | 0 | 0          | 1      |  |
|   |          |          |          |   |       |   |            |        |  |

Because the solution is almost linear, the difference by using n=2 is relatively small between the approximation and the real function.



## <u>Problem 3</u> - Neumann boundary equations

$$y'(0) = 0$$
  $y'(1) = 1$ 

$$f'(x) \simeq \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h} \qquad \text{at } x = 0$$

$$f'(x) \simeq \frac{-3f(x) + 4f(x-h) - f(x-2h)}{2h}$$
 at  $x = 1$ 

$$0 = \frac{-3y_i + 4y_{i+1} - y_{i+2}}{2h} \implies 0 = -3y_i + 4y_{i+1} - y_{i+2}$$
 i=1 -because of the left side boundary

$$\begin{bmatrix}
-3 & 4 & -1 & 0 & \dots & 0 & 0 & 0 \\
1 & -(2-h^2) & 1 & 0 & \dots & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & -(2-h^2) & 1 & 0 & \dots & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 & -(2-h^2) & 1 & \dots & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & \dots & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & \dots & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & \dots & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & \dots & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & \dots & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & \dots & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & \dots & 1
\end{bmatrix}$$

In the following we show the difference to the approximation by using n=10 and n=100 as seen in the graph.



## <u>Problem 4</u> - Robin boundary conditions

$$y'(0) = y(0) + 1$$
  $y'(1) = -y(1)$ 

$$f'(x) \simeq \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h}$$
 at  $x = 0$ 

$$f'(x) \simeq \frac{-3f(x) + 4f(x-h) - f(x-2h)}{-2h}$$
 at  $x = 1$ 

$$y(0) + 1 = \frac{-3y_{i} + 4y_{i+1} - y_{i+2}}{2h} \implies (y_{i} + 1) \cdot 2h = -3y_{i} + 4y_{i+1} - y_{i+2}$$

$$2hy_{i} + 2h = -3y_{i} + 4y_{i+1} - y_{i+2}$$

$$2h = -y_{i}(2h + 3) + 4y_{i+1} - y_{i+2}$$

$$-y(1) = \frac{-3y_n + 4n_{-1} - y_{n-2}}{-2h} \implies 2hy_n = -3y_n + 4n_{-1} - y_{n-2}$$

$$0 = -(2h+3)y_n + 4n_{-1} - y_{n-2}$$

| -(2h+3) | ) 4      | -1      | 0        |   |       | 0  | 0          | 0        | 2h    |  |
|---------|----------|---------|----------|---|-------|----|------------|----------|-------|--|
| 1       | - (2-h2) | 1       | 0        |   | , , , | 0  | 0          | 0        | 0     |  |
| 0       | 1        | -(2-h2) | 1        | 0 |       | 0  | 0          | 0        | _ 0   |  |
| 0       | 0        | 1       | - (2-h²) | 1 |       | 0  | O          | 0        | Ū = : |  |
| :       | :        | :       | :        |   |       | ÷  | <u>:</u>   | :        | ) 0   |  |
| 0       | 0        | 0       | 0        | 0 |       | 1  | $-(2-h^2)$ | 1        | 0     |  |
| _ 0     | 0        | 0       | 0        | 0 |       | -1 | 4          | - (2h+3) | 0_    |  |

In the following we show the difference to the approximation by using n=10 and n=100 as seen in the graph.

