Syntax Analysis (Part 2)

CSE 415: Compiler Construction

Parsing

- Parsing is the process of constructing a parse tree for a sentence generated by a given grammar
- If there are no restrictions on the language and the form of grammar used, parsers for context-free languages require O(n³) time (n being the length of the string parsed)
 - Cocke-Younger-Kasami's algorithm
 - Earley's algorithm
- Subsets of context-free languages typically require O(n) time
 - Predictive parsing using LL(1) grammars (top-down parsing method)
 - Shift-Reduce parsing using LR(1) grammars (bottom-up parsing method)

Top-down Parsing using LL Grammars

- Top-down parsing using predictive parsing, traces the left-most derivation of the string while constructing the parse tree
- Starts from the start symbol of the grammar, and "predicts" the next production used in the derivation
- Such "prediction" is aided by parsing tables (constructed off-line)
- The next production to be used in the derivation is determined using the next input symbol to lookup the parsing table (look-ahead symbol)
- Placing restrictions on the grammar ensures that no slot in the parsing table contains more than one production
- At the time of parsing table constrcution, if two productions become eligible to be placed in the same slot of the parsing table, the grammar is declared unfit for predictive parsing

LL(1) Parsing Algorithm


```
Initial configuration: Stack = S, Input = w$,
where, S = \text{start symbol}, \$ = \text{end of file marker}
repeat {
  let X be the top stack symbol;
  let a be the next input symbol /*may be \$*/;
  if X is a terminal symbol or $ then
      if X == a then {
          pop X from Stack;
          remove a from input;
      } else ERROR();
  else /* X is a non-terminal symbol */
      if M[X,a] == X \rightarrow Y_1Y_2...Y_k then {
            pop X from Stack;
            push Y_k, Y_{k-1}, ..., Y_1 onto Stack;
                  (Y_1 \text{ on top})
} until Stack has emptied;
```

Top-down Parsing

LL(1) Parsing Algorithm Example

Testable conditions for LL(1) Grammars

- We call strong LL(1) as LL(1) from now on and we will not consider lookaheads longer than 1
- The classical condition for LL(1) property uses FIRST and FOLLOW sets
- If α is any string of grammar symbols (α ∈ (N ∪ T)*), then FIRST(α) = {a | a ∈ T, and α ⇒* ax. x ∈ T*} FIRST(ε) = {ε}
- If A is any nonterminal, then
 FOLLOW(A) = {a | S ⇒* αAaβ, α,β ∈ (N ∪ T)*, a ∈ T ∪ {\$}}
- FIRST(α) is determined by α alone, but FOLLOW(A) is determined by the "context" of A, i.e., the derivations in which A occurs

FIRST and FOLLOW Computation Example

• Consider the following grammar

$$S^{J} \rightarrow S$$
, $S \rightarrow aAS \mid c, A \rightarrow ba \mid SB, B \rightarrow bA \mid S$

- $FIRST(S^{J}) = FIRST(S) = \{a, c\}$ because $S^{J} \Rightarrow S \Rightarrow \underline{c}$, and $S^{J} \Rightarrow S \Rightarrow \underline{a}AS \Rightarrow \underline{a}baS \Rightarrow \underline{a}bBS \Rightarrow \underline{a}$
- $FIRST(A) = \{a, b, c\}$ because $A \Rightarrow \underline{b}a$, and $A \Rightarrow SB$, and therefore all symbols in FIRST(S) are in FIRST(A)
- $FOLLOW(S) = \{a, b, c, \$\}$ because $S^{J} \Rightarrow \underline{S\$},$ $S^{J} \Rightarrow^{*} aAS\$ \Rightarrow a\underline{S}BS\$ \Rightarrow a\underline{S}\underline{b}AS\$,$ $S^{J} \Rightarrow^{*} a\underline{S}BS\$ \Rightarrow a\underline{S}SS\$ \Rightarrow a\underline{S}\underline{a}ASS\$,$ $S^{J} \Rightarrow^{*} a\underline{S}SS\$ \Rightarrow a\underline{S}\underline{c}S\$$
- $FOLLOW(A) = \{a, c\}$ because $S^{J} \Rightarrow^{*} a\underline{A}S\$ \Rightarrow a\underline{A}\underline{a}AS\$,$ $S^{J} \Rightarrow^{*} a\underline{A}S\$ \Rightarrow a\underline{A}\underline{c}$

FIRST Computation: Algorithm Trace - 1

Consider the following grammar

S'
$$\rightarrow$$
 S\$, S \rightarrow aAS | ϵ , A \rightarrow ba | SB, B \rightarrow cA | S

- Initially, $FIRST(S) = FIRST(A) = FIRST(B) = \emptyset$
 - Iteration 1
 - FIRST(S) = $\{a, \epsilon\}$ from the productions S \rightarrow aAS | ϵ
 - FIRST(A) = {b} \cup FIRST(S) { ϵ } \cup FIRST(B) { ϵ } = {b, a} from the productions A \rightarrow ba | SB (since $\epsilon \in$ FIRST(S), FIRST(B) is also included; since FIRST(B)= φ , ϵ is not included)

```
FIRST(B) = {c} \cup FIRST(S) - {\epsilon} \cup {\epsilon} = {c, a, \epsilon} from the productions B \rightarrow cA | S (\epsilon is included because \epsilon \in FIRST(S))
```

FIRST Computation: Algorithm Trace - 2

• The grammar is $S' \rightarrow S\$$, $S \rightarrow aAS \mid \epsilon$, $A \rightarrow ba \mid SB$, $B \rightarrow cA \mid S$

• From the first iteration, $FIRST(S) = \{a, \epsilon\}, FIRST(A) = \{b, a\}, FIRST(B) = \{c, a, \epsilon\}$

• Iteration 2 (values stabilize and do not change in iteration 3)

 $FIRST(S) = \{a, \epsilon\}$ (no change from iteration 1)

 $FIRST(A) = \{b\} \cup FIRST(S) - \{\epsilon\} \cup FIRST(B) - \{\epsilon\} \cup \{\epsilon\}$

= $\{b, a, c, \epsilon\}$ (changed!)

FIRST(B) = $\{c, a, \epsilon\}$ (no change from iteration 1)

Follow Computation: Algorithm Trace - 1

Consider the following grammar

S'
$$\rightarrow$$
 S\$, S \rightarrow aAS | ϵ , A \rightarrow ba | SB, B \rightarrow cA | S

- Initially, follow (S) = {\$}; follow (A) = follow (B) = Ø
 first (S) = {a, ε}; first (A) = {a, b, c, ε}; first (B) = {a, c, ε};
- Iteration 1 /* In the following, x ∪ = y means x = x ∪ y */ S → aAS:
 follow (S) ∪ = {\$}; rest = follow (S) = {\$} follow (A) ∪ = (first (S) {ε}) ∪
 rest = {a, \$}
 A → SB: follow (B) ∪ = follow (A) = {a, \$}
 rest = follow (A) = {a,\$}
 follow (S) ∪ = (first (B) {ε}) ∪ rest = {a, c, \$}
 B → cA: follow (A) ∪ = follow (B) = {a,\$}
 B → S: follow (S) ∪ = follow (B) = {a, c,\$}
 At the end of iteration 1
 follow (S) = {a, c,\$}; follow (A) = follow (B) = {a, \$}

FIRST Computation: Algorithm Trace - 2

first (S) = {a, ε}; first (A) = {a, b, c, ε}; first (B) = {a, c, ε};
At the end of iteration 1
follow (S) = {a, c, \$}; follow (A) = follow (B) = {a, \$\$}
Iteration 2
S → aAS: follow (S) ∪ = {a, c, \$}; rest = follow (S) = {a, c, \$}
follow (A) ∪ = (first (S) - {ε}) ∪ rest = {a, c, \$} (changed!)
A → SB: follow (B) ∪ = follow (A) = {a, c, \$} (changed!)
rest = follow (A) = {a, c, \$}
follow (S) ∪ = (first (B) - {ε}) ∪ rest = {a, c, \$} (no change)
At the end of iteration 2
follow (S) = follow (A) = follow (B) = {a, c, \$};

The follow sets do not change any further