Lecture 7

Chapter 4

Web Ontology Language: OWL Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder Grigoris Antoniou

Frank van Harmelen

A Semantic Web Layer Stack

A reasoner expands the number of triples based on relations like rdfs:subClassOf, rdfs:range, rdfs:domain, etc.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

In this lecture you will learn about OWL:

- ➤ OWL adds semantics to the schema.

 Assignment Project Exam Help
- ➤ With OWL yoursampaddomoreoabout classes and properties. WeChat powcoder
- ➤ OWL has the ability to say two entities are the same, useful when merging datasets.

Lecture Outline

- 1. Basic Ideas of OWL
- 2. The OWL Language Assignment Project Exam Help
- 3. Examples https://powcoder.com
- 4. The OWL Namespace
- Add WeChat powcoder

 5. Future Extensions

Requirements for Ontology Languages

- Ontology languages allow users to write explicit, formal conceptualizations of domain models
- There are five requirements with any Ontology language: https://powcoder.com
 - a well-defined syntax Add Wechat powcoder efficient reasoning support

 - III. a formal semantics
 - IV. sufficient expressive power
 - V. convenience of expression

Tradeoff between **Expressive** Power and Efficient **Reasoning** Support

 The richer the language is, the more inefficient the reasoning support.

Therefore, we need a compromise:

- >On the one Intamed/aplanguage.supported by
- reasonably efficient reasoners.
 Add WeChat powcoder
 On the other hand, a language that can express large classes of ontologies and knowledge.

ssignment Project Exam Help

Why does efficient reasoning conflict with expressiveness?
Add WeChat powcoder

Reasoning About Knowledge in Ontology Languages

- Class membership
 - If x is an instance of a class C, and C is a subclass of Assignment Project Exam Help
 D, then we can infer that x is an instance of D
- Equivalence of the agreement of the Equivalence o
 - If class A is equivalent to class C, then A is equivalent to C, too

Reasoning About Knowledge in Ontology Languages (2)

- Consistency
 - X instance of classes A and B, but A and B are disjoint
 - This is an improved the tries and the series and the series are the series and the series are the series are
- Classification
 https://powcoder.com
 Certain property-value pairs are a sufficient condition for membership in a class to it an individual x satisfies such conditions, we can conclude that x must be an instance of A

If it **looks like a duck**, swims **like a duck**, and quacks like a duck, then it probably is a duck.

Uses for Reasoning

- Reasoning support is important for
 - checking the consistency of the ontology and the knowledgesignment Project Exam Help
 - checking for unintended relationships between classes
 automatically classifying instances in classes
- Checks like the prededing of eatape valuable for
 - designing large ontologies, where multiple authors are involved
 - integrating and sharing ontologies from various sources

Reasoning Support for OWL

- Semantics is a prerequisite for reasoning support
- Formal semantics and reasoning support are usually provided by
 - Assignment Project Exam Help
 mapping an ontology language to a known logical formalism
- using automated reasoners that already exist for those formalisms
 OWL is (partially) mapped on a description logic, and makes use of reasoners Auth as Bellett Factorial BACER
- Description logics are a subset of predicate logic for which efficient reasoning support is possible

Three Species of OWL

- W3C'sWeb Ontology Working Group defined OWL as three different sublanguages:

 Assignment Project Exam Help

 OWL Full

 - https://powcoder.com - OWL DL
 - OWL Lite Add WeChat powcoder
- Each sublanguage geared toward fulfilling different aspects of requirements

OWL Full

- uses all the OWL languages primitives
- allows the combination of these primitives in Assignment Project Exam Help arbitrary ways with RDF and RDF Schema
- OWL Full is fully upward-compatible with RDF, both syntactically and semantically
- OWL Full is is undecidable
 - No complete (or efficient) reasoning support

OWL DL

- OWL DL (Description Logic) is a sublanguage of OWL Full
- OWL DL permits efficient reasoning support
- Not every RDF document is a legal OWL DL document.

 - Every legal OWLINE BOUND THE COME TO BE SEED TO COME THE COME TO SEED TO TO SEE

Add WeChat powcoder

OWL Lite

- Easier to
 - grasp, for users
 - implementation to implement the interest of the implementation o
- Restricted expressivity https://powcoder.com

Add WeChat powcoder

Upward Compatibility between OWL Species

Every legal OWL Litej on to logy legal OWL DL ontology https://powcoder.com
 Every legal OWL DL ontology is a legal OWL

Every legal OWL DL ontology is a legal OWL Full ontology

A Figure showing OWL Compatibility with RDF Schema

All varieties of OWI just Exam/Help RDF for their syntax https://powcoder.com
 Instances are declared

• Instances are declared as in RDF, using RDF powcoder descriptions

rdfs:Resource

owl:Class

Lecture Outline

- 1. Basic Ideas of OWL
- 2. The OWL Language Assignment Project Exam Help
- 3. Examples https://powcoder.com
- 4. The OWL Namespace
- Add WeChat powcoder

 5. Future Extensions

OWL Syntactic Varieties

- OWL builds on Refine problems (RPF's XMII-based syntax
- Other syntactic forms for OWL have also been defined:
 - An alternative Programme An alternative Pro
 - An abstract syntax, that is much more compact and readable than the XML languages hat powcoder
 - A graphic syntax based on the conventions of UML

OWL XML/RDF Syntax: Header

owl:Ontology

- owl:imports is a transitive property
- about="" means the xml:base (current document), show in the next slide

```
<rdf:RDF
 xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.co-ode.org/ontologies/pizza/2005/10/18/pizza.owl#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"lp
 xmlns:dc="http://purl.org/dc/elements/1.1/"
https://powcoder.com
xml:base="http://www.co-ode.org/ontologies/pizza/2005/10/18/pizza.owl">
                       Add WeChat powcoder
```

Source: https://protegewiki.stanford.edu/wiki/How Owl Imports Work

owl:imports http://protege.stanford.edu/plugins/owl/protege.

This statement tells to be successful to the pizza ontology should import an ontology whose name is http://protege.stanford.edu/plugins/ovvl/protege.

Add WeChat powcoder

Source: https://protegewiki.stanford.edu/wiki/How_Owl_Imports_Work

Classes

- Classes are defined using owl:Class
- owl:Classifgamhelass Profesche Exam Help
 Disjointness is defined using owl:disjointWith https://powcoder.com

```
<owl:disjointWith</pre>
 rdf:resource="#assistantProfessor"/>
</owl:Class>
```

Classes (2)

 owl:equivalentClass defines equivalence of classes

- Add WeChat powcoder
 owl:Thing is the most general class, which contains everything
- owl:Nothing is the empty class

Properties

- In OWL there are two kinds of properties
 - Object properties, which relate objects to other Assignment Project Exam Help
 - E.g. is-TaughttBy;/spperviseler.com
 - Data type properties, which relate objects to datatype values
 - E.g. phone, title, age, etc.

Datatype Properties

 OWL makes use of XML Schema data types, using the layered architecture of the Semantic Assignment Project Exam Help

Object Properties

• User-defined gata type Project Exam Help

```
<owl:ObjectProperty rdf:iD="is faughtBy">
    <owl:domain_xdf:resourceat"#coursetter
    <owl:range rdf:resource=
        "#academicStaffMember"/>
        <rdfs:subPropertyOf rdf:resource="#involves"/>
        </owl:ObjectProperty>
```

Inverse Properties

Equivalent Properties

```
owl:equivalentProperty

<owl:ObjectProperty rdf:ID="lecturesIn">
<owl:equivalentProperty Projdf:rds@arceFl#tpaches"/>
</owl:ObjectProperty>
https://powcoder.com

Add WeChat powcoder
```

Property Restrictions

- In OWL we can declare that the class C satisfies certain conditions
 - Assignment Project Exam Help

 All instances of C satisfy the conditions
- This is equivalent to saying that C is subclass of a class C', where V'ecollepts all debjects that satisfy the conditions
 - C' can remain anonymous

Property Restrictions (2)

- A (restriction) class is achieved through an owl:Restriction element
 Assignment Project Exam Help
 This element contains an owl:onProperty
- This element contains an owl:onProperty element and brie or more restriction declaration and WeChat powcoder
- One type defines cardinality restrictions (at least one, at most 3,...)

Property Restrictions (3)

- The other type defines restrictions on the kinds of values the property may take Assignment Project Exam Help owl:allValuesFrom specifies universal
 - owl:allValuesFrom specifies universal quantifications://powcoder.com
 - ∀ (the universal true ntifier symbol)
 - owl:hasValue must have at least one value X
 - owl:someValuesFrom specifies existential quantification
 - ∃ (read: "there exists").

owl:allValuesFrom Write the equivalence in English

ANSWER

Assignment Project Exam Help
Only professors teach first-year subjects
https://powcoder.com

Add WeChat powcoder

41

owl:hasValue

Write the equivalence in English

Which one is correct?

SSISM METAL MATROICES FIXAMIVE A PARTIE #949352 for their is TaugBy property.

2) the post codes is aught by #949352

3) All math courses must be taught by #949352 AND maybe othered WeChat powcoder

Cardinality Restrictions

- We can specify minimum and maximum numbersignerow transfer Eardin Hips
 owl:maxCardinality
 https://powcoder.com
- It is possible to specify a precise number by Add WeChat powcoder using the same minimum and maximum number
- For convenience, OWL offers also owl:cardinality

Cardinality Restrictions (2)

Special Properties

- owl:TransitiveProperty (transitive property)

 E.g. "has better grade than", "is ancestor of"
- owl:SymmetrigProperty (sydenetow)
 - E.g. "has same grade as", "is sibling of"
- owl:FunctionalProperty defines a property that has at most one value for each object
 - E.g. "age", "height", "directSupervisor"
- owl:InverseFunctionalProperty defines a property for which two different objects cannot have the same value

Assignment Project Exam Help

Write three examples for each of transitive and symmetric properties.

Add WeChat powcoder

ANSWFR

SYMETRIC:

- 1]"X isMarriedTo Y" means "Y isMarriedTo X".
- 2]"Z equals D" means "D equals Z"
- 3]" A co-workersof A"

TRANSITIVE:

https://powcoder.com

- 1]if A implies B and B implies C, then A implies C Add Wechat powcoder
- 2]if "Z equals D" and "D equals E" means
 - "Z equalls E"
- 3]if "X sub-set-of Y" and "Y sub-set-of Z" means
 - "X sub-set Z"

Special Properties (2)

More on OWL

https://www.siggroegr/PRoj2004x/RffCHelwl-guide-20

<u>040210/</u>

https://powcoder.com

Add WeChat powcoder

 The complementOf construct selects all individuals from the domain of discourse that do not belong to a certain class. Usually this refers to a very large set of individuals:

Source Asshetp://www.wProngiete.trdf-spangh-quites/p

Boolean Combinations

We can combine classes using Boolean operations (union, intersection, complement)

Boolean Combinations (2)

Add WeChat powcoder

 The new class is not a subclass of the union, but rather equal to the union

Boolean Combinations (3)

A Question:

Assuming #staffMember, #faculty, and #techSupportStaff" have all been defined as cllasses, by the use of nesting Boolean operators, complete the following code for defining adminStaff. Please indent statements for the sake of clarity.

Assignment Project Exam Help

"attpinstpff"wcoder.com
Add WeChat powcoder
••••••

Hint:

ANSWER

```
<owl:Class rdf:ID="adminStaff">
    <owl:intersectionOf rdf:parseType="Collection">
           <owl:Class rdf:about="#staffMember"/>
           <owl>Class>
           Assignifiemplementele Exam Help
                   <owl>Class
                <pw!:Class rdf:about=#techSupportStaff"/>
hat:powcoder
                   </owl: Class>
                                                       The Diagram:
           </owl:complementOf>
           </owl: Class>
    </owl:intersectionOf>
</owl:Class>
#staffMember = #adminStaff+#faculty+#techSupportstaff
```

EXAMPLES:

```
<owl:Class rdf:ID="Winery"/>
<owl:Class rdf:ID="Region"/>
<owl:Class rdf:ID="ConsumableThing"/>
           Assignment Project Exam Help
               https://powcoder.com
<owl:Class rdf:ID="PotableLiquid">
 <rdfs:subClassOfrdf:resource="#ConsumableThing"/>
</owl:Class>
```

EXAMPLES:

<Region rdf:ID="CentralCoastRegion" />

Note that, the same as abbreviating in RDF, the following is identical in meaning to the example above.

```
<owl:Thing rdf:ID="CentralCoastRegion" />
<owl:Thing rdf:about="#CentralCoastRegion">
<owl:Thing rdf:about="#CentralCoastRegion">
<rdf:type rdf:resource="#Region"/>
```

</owl:Thing

EXAMPLES:

```
<owl:ObjectProperty rdf:ID="madeFromGrape">
 <rdfs:domain rdf:resource="#Wine"/>
 <rdfs:range/rdfigesaukee-"#WineGrappe"/>
<owl:ObjectProperty rdf:ID="course">
 <rdfs:domain rdf:resource=#Meal*/>
 <rdfs:range rdf:resource="#MealCourse"/>
</owl:ObjectProperty>
```

Interestingly, it is now possible to expand the definition of Wine to include the notion that a wine is made from at leastworker Wirfe Orlande. As with property definitions definitions have multiple supparts that are implicitly conjoined.

In the next slide you can see it:

Source: https://www.w3.org/TR/owl-guide/

```
<owl: Class rdf:ID="Wine">
 <rdfs:subClassOf rdf:resource="&food;PotableLiquid"/>
 <rdfs:subClassOf>
  <owl:Restriction>
     <owl:onProperty_rdf:resource="#medeFromGrape"/>
     <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">
                    https://powcoder.com
     </owl:minCardinality WeChat powcoder
  </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
```

• https://www.youtube.com/watch?v=LdsYkpFv
YxU&ab channel=MinhTr%E1%BA%A7n%C4%
90%E1%BB%Apent Project Exam Help

https://powcoder.com

Add WeChat powcoder