

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики

Лабораторная работа № 3

по дисциплине «Методы оптимизации»

МЕТОД ШТРАФНЫХ ФУНКЦИЙ

Бригада 2 БУДАНЦЕВ ДМИТРИЙ

Группа ПМ-13 ГОЛУБЬ АНДРЕЙ

Вариант 2

Преподаватели ФИЛИППОВА ЕЛЕНА ВЛАДИМИРОВНА

ЛЕМЕШКО БОРИС ЮРЬЕВИЧ

Новосибирск, 2024

1. Цель работы:

Ознакомиться с методами штрафных функций при решении задач нелинейного программирования. Изучить типы штрафных и барьерных функций, их особенности, способы и области применения, влияние штрафных функций на сходимость алгоритмов, зависимость точности решения задачи нелинейного программирования от величины коэффициента штрафа.

Задания:

- 2.1. Применяя методы поиска минимума *О-го порядка*, реализовать программу для решения задачи нелинейного программирования с использованием *метода штрафных функций*
- 2.2. Исследовать сходимость метода штрафных функций в зависимости
 - 2.2.1. от выбора штрафных функций,
 - 2.2.2. начальной величины коэффициента штрафа,
 - 2.2.3. стратегии изменения коэффициента штрафа,
 - 2.2.4. начальной точки,
 - 2.2.5. задаваемой точности ε . Сформулировать выводы
- 2.3. Применяя методы поиска минимума *0-го порядка*, реализовать программу для решения задачи нелинейного программирования с ограничением типа неравенства (*только задача а*) с использованием метода барьерных функций
- 2.4.Исследовать сходимость метода барьерных функций (*только задача а*) в зависимости
 - 2.4.1. от выбора барьерных функций,
 - 2.4.2. начальной величины коэффициента штрафа,
 - 2.4.3. стратегии изменения коэффициента штрафа,
 - 2.4.4. начального приближения,
 - 2.4.5. задаваемой точности arepsilon . Сформулировать выводы

Первая задача:
$$f(x,y) = 10 \left(y - x \right)^2 + y^2 \rightarrow \min, \quad x + y \ge 1, \quad \overline{x}_{\min} = \left(\frac{21}{41}, \frac{20}{41} \right) = \\ = \left(0.512195121..., \ 0.487804878... \right), \quad f\left(\overline{x}_{\min} \right) \approx 0.243902439$$

Вторая задача:
$$f(x,y) = 10 (y-x)^2 + y^2 \rightarrow \min, \quad 2-y=x, \quad \overline{x}_{\min} = \left(\frac{42}{41}, \frac{40}{41}\right) = \\ = \left(1.024390243..., \ 0.975609756...\right), \quad f(\overline{x}_{\min}) \approx 0.975609756$$

Метод минимизации 0-го порядка: Симплексный метод Нелдера—Мида, с коэффициентами $\alpha=1,\beta=0.5,\gamma=2,t=1$

3. Исследование

3.1. Метод штрафных функций

3.1.1. Исследовать сходимость метода штрафных функций в зависимости от выбора штрафных функций

3.1.1.1. Первая задача

Начальные условия: $\bar{x}_0 = (-10, -5)$, $\varepsilon = 0.01$, $r_0 = 3$

Штрафная функция: $G\left[g\left(\overline{x}\right)\right] = \frac{1}{2}\left(g\left(\overline{x}\right) + \left|g\left(\overline{x}\right)\right|\right), \ g\left(\overline{x}\right) = 1 - \left(x + y\right)$

i	$\overline{\mathcal{X}}_{\min}$	$f_{\min}\left(\overline{x}\right)$	$ f_i(\overline{x}) - f_{i-1}(\overline{x}) $	Calc Func	Penalty Function
0	[-10.000 -5.000]	323	0	3	48
1	[-9.034 -4.741]	251.0938841	71.90611589	5	44.32576539
2	[-9.069 -6.544]	156.418747	94.67513714	7	49.83711731
3	[-7.154 -6.927]	93.74593053	62.67281644	8	45.24432404
4	[-7.154 -6.927]	93.74593053	0	10	45.24432404
5	[-7.154 -6.927]	93.74593053	0	11	45.24432404
6	[-7.154 -6.927]	93.74593053	0	13	45.24432404
7	[-7.154 -6.927]	93.74593053	0	15	45.24432404
8	[-7.154 -6.927]	93.74593053	0	16	45.24432404
9	[-7.154 -6.927]	93.74593053	0	18	45.24432404
10	[-5.520 -6.265]	83.16102444	10.58490609	20	38.35513414
11	[-5.893 -5.356]	68.31596585	14.84505859	22	36.74765649
12	[-2.811 -3.578]	40.85519534	27.46077051	24	22.16553787
13	[-2.015 -0.871]	25.50725048	15.34794486	26	11.65952327
14	[1.067 0.907]	1.078072994	24.42917749	28	0
15	[1.067 0.907]	1.078072994	0	29	0
16	[1.067 0.907]	1.078072994	0	31	0
17	[1.067 0.907]	1.078072994	0	32	0
18	[1.067 0.907]	1.078072994	0	34	0
19	[1.067 0.907]	1.078072994	0	35	0
20	[1.067 0.907]	1.078072994	0	37	0
21	[1.067 0.907]	1.078072994	0	39	0
22	[1.067 0.907]	1.078072994	0	41	0
23	[1.067 0.907]	1.078072994	0	42	0
24	[1.067 0.907]	1.078072994	0	44	0
25	[0.575 0.329]	1.000446282	0.077626712	46	0.289220327
26	[0.697 0.693]	0.480089012	0.52035727	48	0
27	[0.697 0.693]	0.480089012	0	49	0
28	[0.697 0.693]	0.480089012	0	51	0
29	[0.697 0.693]	0.480089012	0	52	0
30	[0.697 0.693]	0.480089012	0	54	0
31	[0.520 0.499]	0.253244342	0.22684467	56	0
32	[0.520 0.499]	0.253244342	0	58	0
33	[0.520 0.499]	0.253244342	0	60	0
34	[0.520 0.499]	0.253244342	0	62	0
35	[0.520 0.499]	0.253244342	0	64	0

36	[0.520 0.499]	0.253244342	0	65	0		
37	[0.520 0.499]	0.253244342	0.253244342 0 67				
38	[0.520 0.499]	0.253244342	0	69	0		
39	39 [0.514 0.489] 0.245165824 0.008078518 69 0						
	$\overline{x}_{\min} = [0.51]$	386443 0.488711	91] $f(\overline{x}_{\min}) = 0.24$	51658239081109			

Начальные условия: $\overline{x}_0 = (-10, -5)$, $\varepsilon = 0.01$, $r_0 = 512$ Штрафная функция: $G\left[g\left(\overline{x}\right)\right] = \frac{1}{2}\left(g\left(\overline{x}\right) + \left|g\left(\overline{x}\right)\right|\right)^2$, $g\left(\overline{x}\right) = 1 - \left(x + y\right)$

i	\overline{x}_{\min}	$f_{\min}\left(\overline{x}\right)$	$ f_i(\overline{x}) - f_{i-1}(\overline{x}) $	Calc Func	Penalty Function
0	[-10.000 -5.000]	262419	0	3	262144
1	[-9.034 -4.741]	223754.3282	38664.67183	5	223547.5601
2	[-8.163 -3.163]	155830.684	67923.64418	7	155570.6802
3	[-6.313 -3.788]	126268.3514	29562.3326	9	126190.2402
4	[-3.646 -0.944]	32068.15417	94200.19722	11	31994.26046
5	[1.387 -0.772]	198.619153	31869.53502	13	151.3906916
6	[4.055 2.072]	43.60371393	155.0154391	15	0
7	[4.055 2.072]	43.60371393	0	17	0
8	[1.129 0.252]	7.769056234	35.8346577	18	0
9	[1.129 0.252]	7.769056234	0	20	0
10	[0.871 1.275]	3.256515748	4.512540486	22	0
11	[0.871 1.275]	3.256515748	0	23	0
12	[0.871 1.275]	3.256515748	0	25	0
13	[0.871 1.275]	3.256515748	0	27	0
14	[1.382 0.927]	2.931446988	0.325068759	29	0
15	[0.491 0.687]	0.855672504	2.075774485	31	0

16	[0.491 0.687]	0.855672504	0	33	0			
17	[0.491 0.687]	0.855672504	0	34	0			
18	[0.491 0.687]	0.855672504	0	36	0			
19	[0.491 0.687]	0.855672504	0	38	0			
20	[0.494 0.615]	0.52723309	0.328439414	40	0			
21	[0.494 0.615]	0.52723309	0	42	0			
22	[0.682 0.652]	0.433860187	0.093372904	43	0			
23	[0.682 0.652]	0.433860187	0	45	0			
24	[0.682 0.652]	0.433860187	0	47	0			
25	[0.588 0.616]	0.386762954	0.047097233	49	0			
26	[0.588 0.616]	0.386762954	0	50	0			
27	[0.588 0.616]	0.386762954	0	52	0			
28	[0.509 0.531]	0.286510908	0.100252046	54	0			
29	[0.509 0.531]	0.286510908	0	56	0			
30	[0.509 0.531]	0.286510908	0	57	0			
31	[0.509 0.531]	0.286510908	0	58	0			
32	[0.509 0.531]	0.286510908	0	60	0			
33	[0.524 0.505]	0.258853973	0.027656936	62	0			
34	[0.524 0.505]	0.258853973	0	64	0			
35	[0.510 0.488]	0.246116046	0.012737926	66	0.002965985			
36	[0.510 0.488]	0.246116046	0	68	0.002965985			
37	[0.517 0.485]	0.245245588	0.000870459	70	0			
38	[0.517 0.485]	0.245245588	0	72	0			
	$\overline{x}_{\min} = [0.52]$	1660712 0.48508	$[3997] \ f\left(\overline{x}_{\min}\right) = 0.2$	24524558795329	576			

3.1.1.2. Вторая задача

Начальные условия: $\bar{x}_0 = (-10, -5)$, $\varepsilon = 0.01$, $r_0 = 32$

Штрафная функция: $H\left[h\left(\overline{x}\right)\right] = \left|h\left(\overline{x}\right)\right|, h\left(\overline{x}\right) = 2 - (x + y)$

i	\overline{x}_{\min}	$f_{\min}\left(\overline{x} ight)$	$\left f_i(\overline{x}) - f_{i-1}(\overline{x})\right $	Calc Func	Penalty Function
0	[-10.000 -5.000]	819	0	3	544
1	[-9.034 -4.741]	711.5762828	107.4237172	5	504.8081641
2	[-9.069 -6.544]	670.1775476	41.39873524	7	563.5959179
3	[-7.154 -6.927]	563.1077296	107.069818	9	514.6061231
4	[-7.154 -6.927]	563.1077296	0	11	514.6061231
5	[-7.154 -6.927]	563.1077296	0	12	514.6061231
6	[-7.154 -6.927]	563.1077296	0	14	514.6061231
7	[-5.870 -5.714]	467.5873509	95.52037871	15	434.6915202
8	[-5.870 -5.714]	467.5873509	0	17	434.6915202
9	[-2.423 -4.483]	347.4970511	120.0902998	19	284.9664597
10	[-1.870 -2.275]	203.4522122	144.0448389	21	196.6317359
11	[1.577 -1.043]	116.6775219	86.77469029	23	46.90667532
12	[2.130 1.164]	52.11910998	64.55841188	25	41.42804853
13	[2.130 1.164]	52.11910998	0	26	41.42804853
14	[2.130 1.164]	52.11910998	0	28	41.42804853
15	[0.545 1.100]	15.64176794	36.47734204	30	11.35080078
16	[0.545 1.100]	15.64176794	0	31	11.35080078
17	[0.545 1.100]	15.64176794	0	33	11.35080078
18	[0.545 1.100]	15.64176794	0	35	11.35080078
19	[1.368 0.860]	10.61088276	5.030885177	37	7.295461475
20	[1.368 0.860]	10.61088276	0	39	7.295461475
21	[1.368 0.860]	10.61088276	0	41	7.295461475
22	[1.416 0.649]	8.376252159	2.234630602	43	2.07078537
23	[1.416 0.649]	8.376252159	0	45	2.07078537
24	[1.138 0.746]	5.797498764	2.578753395	47	3.709245705
25	[1.138 0.746]	5.797498764	0	48	3.709245705
26	[1.138 0.746]	5.797498764	0	50	3.709245705
27	[1.044 0.877]	3.590875488	2.206623276	52	2.541915421
28	[1.044 0.877]	3.590875488	0	54	2.541915421
29	[1.207 0.795]	2.380929544	1.209945944	55	0.056267545
30	[1.207 0.795]	2.380929544	0	57	0.056267545
31	[1.207 0.795]	2.380929544	0	59	0.056267545
32	[1.102 0.868]	2.250381188	0.130548356	61	0.950991367
33	[1.102 0.868]	2.250381188	0	63	0.950991367
34	[1.134 0.879]	1.810381136	0.440000051	65	0.388117959
35	[1.029 0.952]	1.584503562	0.225877574	66	0.619140953
36	[1.029 0.952]	1.584503562	0	68	0.619140953
37	[0.956 1.035]	1.421414127	0.163089435	70	0.28729054
38	[0.956 1.035]	1.421414127	0	72	0.28729054
39	[1.027 0.978]	1.113056675	0.308357452	74	0.133376313
40	[1.027 0.978]	1.113056675	0	76	0.133376313

41	[1.027 0.978]	1.113056675	0	77	0.133376313
42	[1.027 0.978]	1.113056675	0	79	0.133376313
43	[1.032 0.964]	1.09801803	0.015038645	81	0.122525984
44	[1.055 0.946]	1.052445758	0.045572272	83	0.039021492
45	[1.055 0.946]	1.052445758	0	85	0.039021492
46	[1.035 0.966]	1.026763691	0.025682067	87	0.045812034
47	[1.035 0.966]	1.026763691	0	89	0.045812034
48	[1.038 0.960]	1.023205443	0.003558249	91	0.04005461
49	[1.018 0.981]	1.009082389	0.014123053	93	0.033264069
50	[1.018 0.981]	1.009082389	0	95	0.033264069
51	[1.032 0.968]	0.982447498	0.026634891	96	0.004576347
52	[1.032 0.968]	0.982447498	0	98	0.004576347
53	[1.032 0.968]	0.982447498	0	99	0.004576347
54	[1.032 0.968]	0.982447498	0	101	0.004576347
	$\overline{x}_{\min} = [1.$	03165744 0.968	48557 $f(\overline{x}_{\min}) = 0$.9824474978644	

Начальные условия: $\overline{x}_0 = (-10, -5)$, $\varepsilon = 0.01$, $r_0 = 124$ Штрафная функция: $H\left[h(\overline{x})\right] = \left|h(\overline{x})\right|^2$, $h(\overline{x}) = 2 - (x + y)$

i	\overline{x}_{\min}	$f_{\min}\left(\overline{x} ight)$	$ f_i(\overline{x}) - f_{i-1}(\overline{x}) $	Calc Func	Penalty Function
0	[-10.000 -5.000]	36111	0	3	35836
1	[-9.034 -4.741]	31065.24374	5045.756259	5	30858.47562
2	[-8.163 -3.163]	22279.43069	8785.813047	7	22019.42687
3	[-6.313 -3.788]	18236.01366	4043.417035	9	18157.90249
4	[-3.646 -0.944]	5458.4365	12777.57716	11	5384.542789

5	[1.387 -0.772]	284.9176447	5173.518855	12	237.6891832
6	[1.387 -0.772]	284.9176447	0	14	237.6891832
7	[1.387 -0.772]	284.9176447	0	15	237.6891832
8	[1.387 -0.772]	284.9176447	0	17	237.6891832
9	[1.387 -0.772]	284.9176447	0	19	237.6891832
10	[2.259 0.806]	162.3837647	122.5338799	21	140.6404276
11	[2.259 0.806]	162.3837647	0	23	140.6404276
12	[2.259 0.806]	162.3837647	0	25	140.6404276
13	[2.000 -0.160]	49.8227889	112.5609758	27	3.16480543
14	[1.293 0.547]	9.018426629	40.80436227	29	3.16480543
15	[1.293 0.547]	9.018426629	0	30	3.16480543
16	[1.293 0.547]	9.018426629	0	31	3.16480543
17	[1.293 0.547]	9.018426629	0	32	3.16480543
18	[1.293 0.547]	9.018426629	0	34	3.16480543
19	[1.293 0.547]	9.018426629	0	36	3.16480543
20	[1.092 1.054]	3.784478581	5.233948047	38	2.658710983
21	[1.092 1.054]	3.784478581	0	40	2.658710983
22	[0.889 1.028]	2.107004773	1.677473808	42	0.858594318
23	[0.889 1.028]	2.107004773	0	43	0.858594318
24	[0.889 1.028]	2.107004773	0	45	0.858594318
25	[0.889 1.028]	2.107004773	0	47	0.858594318
26	[1.054 0.983]	1.180453427	0.926551346	49	0.164227591
27	[1.054 0.983]	1.180453427	0	51	0.164227591
28	[1.054 0.983]	1.180453427	0	53	0.164227591
29	[1.054 0.983]	1.180453427	0	54	0.164227591
30	[1.054 0.983]	1.180453427	0	56	0.164227591
31	[1.003 0.991]	0.9887174	0.191736027	58	0.004452308
32	[1.003 0.991]	0.9887174	0	60	0.004452308
33	[1.003 0.991]	0.9887174	0	62	0.004452308
34	[1.003 0.991]	0.9887174	0	64	0.004452308
35	[1.037 0.963]	0.98266727	0.006050131	64	4.16E-06
	$\overline{x}_{\min} = [1.0]$	3743299 0.96275013	$B] f(\overline{x}_{\min}) = 0.9826$	672695079623	

Вывод: В результате по полученному исследованию можно сделать вывод, что на данных функциях, при каждой штрафной функции метод сошёлся с указанной точностью. Так же можно заметить, изменение траектории в зависимости от смены степени штрафных функций. При увеличении степени, метод в начальный момент, устремляется к минимальной точке. Это вызвано более большим штрафом в начальный момент времени.

3.1.2. Исследовать сходимость метода штрафных функций в зависимости коэффициента штрафа

3.1.2.1. Первая задача

Начальные условия: $\bar{x}_0 = (-10, -5)$, $\varepsilon = 0.01$

Штрафная функция:
$$G\left[g\left(\overline{x}\right)\right] = \frac{1}{2}\left(g\left(\overline{x}\right) + \left|g\left(\overline{x}\right)\right|\right), g\left(\overline{x}\right) = 1 - \left(x + y\right)$$

r_0	\overline{x}_{\min}	$f_{\min}\left(\overline{x}\right)$	Iteration	Выполнение	$ f(\overline{x})-f^* $
				условия	' '
	[0.4975078	0.23030	37	Hem	0.0136
1	0.4742071]				
	[0.46448853	0.32983	46	Hem	0.08593
2	0.53250941]				
	[0.52276759	0.26377	40	Да	0.01986
4	0.51257255]				
	[0.51208788	0.24526	43	Да	0.00135
8	0.49052073]				

3.1.2.2. Вторая задача

Начальные условия: $\bar{x}_0 = (-10, -5), \varepsilon = 0.01$

Штрафная функция: $H\left[h\left(\overline{x}\right)\right] = \left|h\left(\overline{x}\right)\right|, h\left(\overline{x}\right) = 2 - (x + y)$

r_0	$\overline{\mathcal{X}}_{\min}$	$f_{\min}\left(\overline{x}\right)$	Iteration	Выполнение	$ f(\overline{x})-f^* $
				условия	
1	[0.98581011 0.94233614]	0.90689	36	Нет	0.06871
2	[1.02476199 0.97048629]	0.97130	37	Нет	0.00430
4	[1.0238093 0.97475916]	0.97421	45	Да	0.00139

3.1.3. Исследовать сходимость метода штрафных функций є зависимости начальной точки

3.1.3.1. Первая задача

До этого уже было показано, как метод сходится при условии, что начальная точка не находится в указанной области.

Покажем, что произойдет, если поместить начальную точку в указанную область.

Начальные условия: $\bar{x}_0 = (10, 5), \ \varepsilon = 0.01, \ r_0 = 1$

Штрафная функция: $G\left[g\left(\overline{x}\right)\right] = \frac{1}{2}\left(g\left(\overline{x}\right) + \left|g\left(\overline{x}\right)\right|\right), g\left(\overline{x}\right) = 1 - \left(x + y\right)$

i	$\overline{\mathcal{X}}_{\min}$	$f_{\min}\left(\overline{x} ight)$	$ f_i(\overline{x}) - f_{i-1}(\overline{x}) $	Calc Func	Penalty Function
0	[10.000 5.000]	275	0	3	0
1	[10.259 5.966]	219.8815928	55.11840715	5	0
2	[8.456 5.931]	98.94236085	120.939232	7	0
3	[8.073 7.846]	62.07144664	36.87091421	8	0
4	[8.073 7.846]	62.07144664	0	10	0
5	[8.073 7.846]	62.07144664	0	12	0
6	[7.814 6.880]	56.05828393	6.013162707	14	0
7	[7.814 6.880]	56.05828393	0	15	0
8	[7.814 6.880]	56.05828393	0	17	0
9	[6.236 6.009]	36.61926635	19.43901758	18	0
10	[6.236 6.009]	36.61926635	0	20	0
11	[4.140 3.206]	19.00199957	17.61726678	22	0
12	[3.433 3.913]	17.61405237	1.387947199	24	0
13	[1.337 1.110]	1.746785593	15.86726678	25	0
14	[1.337 1.110]	1.746785593	0	27	0
15	[1.337 1.110]	1.746785593	0	29	0
16	[1.337 1.110]	1.746785593	0	31	0
17	[1.337 1.110]	1.746785593	0	32	0

i	1			•	
18	[1.337 1.110]	1.746785593	0	34	0
19	[1.004 1.098]	1.292013582	0.454772012	36	0
20	[1.004 1.098]	1.292013582	0	38	0
21	[0.755 0.763]	0.582762673	0.709250909	40	0
22	[0.755 0.763]	0.582762673	0	42	0
23	[0.553 0.654]	0.529903393	0.05285928	44	0
24	[0.657 0.576]	0.396818693	0.1330847	46	0
25	[0.529 0.541]	0.294174008	0.102644685	48	0
26	[0.529 0.541]	0.294174008	0	50	0
27	[0.529 0.501]	0.258697831	0.035476177	52	0
28	[0.529 0.501]	0.258697831	0	54	0
29	[0.529 0.501]	0.258697831	0	55	0
30	[0.529 0.501]	0.258697831	0	57	0
31	[0.529 0.501]	0.258697831	0	59	0
32	[0.515 0.494]	0.248514391	0.01018344	61	0
33	[0.515 0.494]	0.248514391	0	62	0
34	[0.515 0.494]	0.248514391	0	64	0
35	[0.520 0.484]	0.247313447	0.001200945	64	0
	$\overline{x}_{\min} = [0.51]$	999278 0.48440	632] $f(\overline{x}_{\min}) = 0.2$	47313446544688	76

3.1.3.2. Вторая задача

До этого уже было показано, как метод сходится при условии, что начальная точка не находится в указанной области.

Покажем, что произойдет, если поместить начальную точку в указанную область.

Начальные условия: $\bar{x}_0 = (10,5)$, $\varepsilon = 0.01$, $r_0 = 8$

Штрафная функция: $H\left[h\left(\overline{x}\right)\right] = \left|h\left(\overline{x}\right)\right|, h\left(\overline{x}\right) = 2 - (x + y)$

i	$\overline{\mathcal{X}}_{\min}$	$f_{\min}\left(\overline{x}\right)$	$ f_i(\overline{x}) - f_{i-1}(\overline{x}) $	Calc Func	Penalty Function
0	[7.000 -5.000]	1465	0	3	0
1	[7.259 -4.034]	1292.792872	172.2071282	5	1.224744871
2	[5.456 -4.069]	924.4473975	368.3454743	7	0.612372436
3	[5.073 -2.154]	527.8588028	396.5885947	9	0.918558654
4	[1.276 -1.266]	68.23415595	459.6246468	11	1.990210416
5	[0.893 0.648]	1.476491777	66.75766418	13	0.459279327
6	[0.893 0.648]	1.476491777	0	15	0.459279327
7	[0.893 0.648]	1.476491777	0	16	0.459279327
8	[0.893 0.648]	1.476491777	0	18	0.459279327
9	[0.893 0.648]	1.476491777	0	19	0.459279327
10	[0.893 0.648]	1.476491777	0	21	0.459279327
11	[0.893 0.648]	1.476491777	0	22	0.459279327
12	[0.893 0.648]	1.476491777	0	24	0.459279327
13	[0.893 0.648]	1.476491777	0	25	0.459279327
14	[0.893 0.648]	1.476491777	0	27	0.459279327
15	[0.893 0.648]	1.476491777	0	29	0.459279327
16	[0.646 0.722]	1.211037662	0.265454115	31	0.631509074
17	[0.996 0.837]	1.119804682	0.09123298	33	0.167445588
18	[0.996 0.837]	1.119804682	0	35	0.167445588
19	[1.012 0.901]	1.023260933	0.096543749	37	0.087011904
20	[1.012 0.901]	1.023260933	0	39	0.087011904
21	[0.895 0.857]	0.996989278	0.026271655	40	0.24840254
22	[0.895 0.857]	0.996989278	0	42	0.24840254
23	[0.895 0.857]	0.996989278	0	44	0.24840254
24	[0.958 0.895]	0.987801025	0.009188254	46	0.147598801
25	[0.958 0.895]	0.987801025	0	47	0.147598801
26	[0.958 0.895]	0.987801025	0	49	0.147598801
27	[1.026 0.975]	0.977468953	0.010332072	51	0.000929734
28	[1.026 0.975]	0.977468953	0	53	0.000929734
29	[1.026 0.975]	0.977468953	0	54	0.000929734
	$\overline{x}_{\min} = [1.0]$	02560219 0.975	32754] $f\left(\overline{x}_{\min}\right) = 0$).9774689528740)341

Вывод: По таблицам видно, что метод ведёт себя ожидаемо. Если начальное приближение находится в рассматриваемой области, то штрафные функции не прибавляют значение к целевой функции и таким образом, не как не влияют на неё, до того пока метод не перейдёт через границу области. Соответственно, если начальное приближение находится вне рассматриваемой области, то штрафные функции устремляют метод к рассматриваемой области.

3.1.4. Исследовать сходимость метода штрафных функций в зависимости задаваемой точности ε .

3.1.4.1. Первая задача

Начальные условия: $\bar{x}_0 = (-10, -5)$

Штрафная функция:
$$G\left[g\left(\overline{x}\right)\right] = \frac{1}{2}\left(g\left(\overline{x}\right) + \left|g\left(\overline{x}\right)\right|\right), g\left(\overline{x}\right) = 1 - \left(x + y\right)$$

\mathcal{E}	r_0	\overline{x}_{\min}	$f_{\min}\left(\overline{x} ight)$	Iteration	Calc	$ f(\overline{x})-f^* $
					Func	'
10^{-3}	4	[0.51477122 0.48598941]	0.2444696308318764	50	87	0,00056
10 ⁻⁴	1	[0.51157694 0.48853175]	0.24397407830576112	59	109	7.16e-05
10^{-5}	2	[0.51208321 0.48793492]	0.24391188526118746	119	214	9.45e-06
10^{-6}	1	[0.51225121 0.4877503]	0.2439032979992676	78	145	8.59e-07
10 ⁻⁷	4	[0.51219793 0.48780214]	0.24390247095883708	90	158	3.2e-08

3.1.4.2. Вторая задача

Начальные условия: $\bar{x}_0 = (-10, -5)$

Штрафная функция: $H \lceil h(\overline{x}) \rceil = |h(\overline{x})|, h(\overline{x}) = 2 - (x + y)$

\mathcal{E}	r_0	\overline{x}_{\min}	$f_{\min}\left(\overline{x} ight)$	Iteration	Calc	$ f(\overline{x})-f^* $
					Func	
10^{-3}	1	[1.02700176 0.97332707]	0.9765041358192098	41	75	0,00089
10^{-4}	32	[1.02355822 0.97644384]	0.9757063262973142	77	139	9.66e-05
10^{-5}	4	[1.02454357 0.97545671]	0.9756113884308935	73	129	2.36e-06
10 ⁻⁶	1	[1.02430179 0.97569825]	0.9756101617165851	72	127	4.06e-07
10 ⁻⁷	4	[1.02438278 0.97561722]	0.9756097640690709	89	158	8.07e-09

Вывод: Из таблиц, которые приведены выше ,видно то, что метод с использованием штрафных функций сходится при увеличении точности.

3.2. Метод барьерных функций

3.2.1. Исследовать сходимость метода барьерных функций в зависимости от выбора штрафных функций

Начальные условия: $\overline{x}_0 = (10,5)$, $\varepsilon = 0.01$, $r_0 = 2^{-9}$ Барьерная функция: $G \left\lceil g\left(\overline{x}\right) \right\rceil = -\ln\left(-g\left(\overline{x}\right)\right)$, $g\left(\overline{x}\right) < 0$, $g\left(\overline{x}\right) = 1 - \left(x + y\right)$

i	$\overline{\mathcal{X}}_{\min}$	$f_{\min}\left(\overline{x}\right)$	$\left f_i(\overline{x}) - f_{i-1}(\overline{x}) \right $	Calc Func	Penalty Function
0	[10.000 5.000]	274.9948456	0	3	-0.005154409
1	[10.259 5.966]	219.8762746	55.11857095	5	-0.005318207
2	[8.456 5.931]	98.9372938	120.9389808	7	-0.005067053
3	[8.073 7.846]	62.06616811	36.87112569	8	-0.005278527
4	[8.073 7.846]	62.06616811	0	10	-0.005278527
5	[8.073 7.846]	62.06616811	0	12	-0.005278527
6	[7.814 6.880]	56.05317271	6.012995398	14	-0.005111219
7	[7.814 6.880]	56.05317271	0	15	-0.005111219
8	[7.814 6.880]	56.05317271	0	17	-0.005111219
9	[6.236 6.009]	36.61454006	19.43863265	18	-0.004726296
10	[6.236 6.009]	36.61454006	0	20	-0.004726296
11	[4.140 3.206]	18.99839074	17.61614931	22	-0.003608831
12	[3.433 3.913]	17.61044354	1.387947199	24	-0.003608831
13	[1.337 1.110]	1.746064785	15.86437876	25	-0.000720808
14	[1.337 1.110]	1.746064785	0	27	-0.000720808
15	[1.337 1.110]	1.746064785	0	28	-0.000720808
16	[1.337 1.110]	1.746064785	0	30	-0.000720808

17	[1.337 1.110]	1.746064785	О	32	-0.000720808		
18	[1.337 1.110]	1.746064785	0	33	-0.000720808		
19	[1.337 1.110]	1.746064785	0	34	-0.000720808		
20	[1.337 1.110]	1.746064785	0	36	-0.000720808		
21	[0.753 0.736]	0.546331339	1.199733446	38	0.001395123		
22	[0.753 0.736]	0.546331339	0	40	0.001395123		
23	[0.691 0.557]	0.492086481	0.054244858	42	0.002723821		
24	[0.554 0.597]	0.378480921	0.11360556	44	0.003699386		
25	[0.557 0.497]	0.288334477	0.090146445	46	0.005699817		
26	[0.557 0.497]	0.288334477	0	50	0.005699817		
27	[0.557 0.497]	0.288334477	0	52	0.005699817		
28	[0.557 0.497]	0.288334477	0	54	0.005699817		
29	[0.557 0.497]	0.288334477	0	56	0.005699817		
30	[0.557 0.497]	0.288334477	0	57	0.005699817		
31	[0.557 0.497]	0.288334477	0	59	0.005699817		
32	[0.509 0.505]	0.263572728	0.024761749	61	0.00829617		
33	[0.523 0.485]	0.259227931	0.004344797	63	0.009374229		
34	[0.523 0.485]	0.259227931	0	65	0.009374229		
	\overline{x}_{\min} = [0.52325278 0.48498022] $f(\overline{x}_{\min})$ = 0.24985370144719352						

Начальные условия: $\overline{x}_0 = (10,5)$, $\varepsilon = 0.01$, $r_0 = 2^{-14}$ Барьерная функция: $G\left[g\left(\overline{x}\right)\right] = -\frac{1}{g(\overline{x})}$, $g\left(\overline{x}\right) < 0$, $g\left(\overline{x}\right) = 1 - \left(x + y\right)$

i	$\overline{\mathcal{X}}_{\min}$	$f_{\min}\left(\overline{x}\right)$	$ f_i(\overline{x}) - f_{i-1}(\overline{x}) $	Calc Func	Penalty Function
0	[10.000 5.000]	275.0000044	0	3	4.36E-06
1	[10.259 5.966]	219.8815969	55.1184075	5	4.01E-06
2	[8.456 5.931]	98.94236541	120.9392314	7	4.56E-06
3	[8.073 7.846]	62.07145073	36.87091468	8	4.09E-06
4	[8.073 7.846]	62.07145073	0	10	4.09E-06
5	[8.073 7.846]	62.07145073	0	12	4.09E-06
6	[7.814 6.880]	56.05828839	6.013162341	14	4.46E-06
7	[7.814 6.880]	56.05828839	0	15	4.46E-06
8	[7.814 6.880]	56.05828839	0	17	4.46E-06
9	[6.236 6.009]	36.61927178	19.43901661	18	5.43E-06
10	[6.236 6.009]	36.61927178	0	20	5.43E-06
11	[4.140 3.206]	19.00200919	17.61726259	22	9.62E-06
12	[3.433 3.913]	17.61406199	1.387947199	24	9.62E-06
13	[1.337 1.110]	1.746827792	15.8672342	25	4.22E-05
14	[1.337 1.110]	1.746827792	0	27	4.22E-05
15	[1.337 1.110]	1.746827792	0	28	4.22E-05
16	[1.337 1.110]	1.746827792	0	30	4.22E-05
17	[1.337 1.110]	1.746827792	0	32	4.22E-05
18	[1.337 1.110]	1.746827792	0	33	4.22E-05
19	[1.337 1.110]	1.746827792	0	34	4.22E-05
20	[1.337 1.110]	1.746827792	0	36	4.22E-05
21	[0.753 0.736]	0.545060896	1.201766896	38	0.00012468
22	[0.753 0.736]	0.545060896	0	40	0.00012468
23	[0.691 0.557]	0.489608836	0.05545206	42	0.000246176
24	[0.554 0.597]	0.375187203	0.114421633	44	0.000405668
25	[0.557 0.497]	0.283764415	0.091422788	46	0.001129755
26	[0.557 0.497]	0.283764415	0	50	0.001129755
27	[0.557 0.497]	0.283764415	0	52	0.001129755
28	[0.557 0.497]	0.283764415	0	54	0.001129755
29	[0.557 0.497]	0.283764415	0	56	0.001129755
30	[0.557 0.497]	0.283764415	0	57	0.001129755
31	[0.557 0.497]	0.283764415	0	59	0.001129755
32	[0.509 0.505]	0.259545362	0.024219053	61	0.004268805
33	[0.523 0.485]	0.257267182	0.00227818	63	0.007413481
34	[0.523 0.485]	0.257267182	0	65	0.007413481
35	[0.523 0.485]	0.257267182	0	66	0.007413481
	$\overline{x}_{\min} = [0.5]$	2325278 0.484980	$[022] f(\overline{x}_{\min}) = 0.24$	9853701447193	52

Вывод: В результате по полученному исследованию можно сделать вывод, что на данных функциях, при каждой барьерной функции метод сошёлся с указанной точностью.

3.2.2. Исследовать сходимость метода барьерных функций в зависимости коэффициента штрафа

Начальные условия: $\bar{x}_0 = (10,5)$, $\varepsilon = 0.01$

Барьерная функция: $G\left[g\left(\overline{x}\right)\right] = -\ln\left(-g\left(\overline{x}\right)\right),\ g\left(\overline{x}\right) < 0,\ g\left(\overline{x}\right) = 1 - \left(x + y\right)$

r_0	$\overline{\mathcal{X}}_{\min}$	$f_{\min}\left(\overline{x} ight)$	Iteration	$\left f_{\min}\left(\overline{x}\right)-f^*\right $	$ P(\overline{x}) $
2^{-4}	[0.56292833 0.53748596]	0.2 <mark>9</mark> 536	34	0.05146	0.14365
2^{-5}	[0.55242498 0.5335936]	0.2 <mark>8</mark> 826	32	0.04436	0.07666
2^{-6}	[0.5318993 0.5102606]	0.26504	36	0.02114	0.04947
2^{-7}	[0.52636053 0.49559485]	0.25507	37	0.01117	0.02983
2^{-8}	[0.52325278 0.48498022]	0.24985	36	0.01117	0.01874
2^{-9}	[0.52325278 0.48498022]	0.24985	36	0.00595	0.00937

Начальные условия: $\bar{x}_0 = (10,5)$, $\varepsilon = 0.01$

Барьерная функция: $G\left[g\left(\overline{x}\right)\right] = -\frac{1}{g(\overline{x})}, \ g(\overline{x}) < 0, \ g\left(\overline{x}\right) = 1 - \left(x + y\right)$

r_0	\overline{x}_{\min}	$f_{\min}\left(\overline{x} ight)$	Iteration	$\left f_{\min}\left(\overline{x}\right)-f^*\right $	$ P(\overline{x}) $
2^{-9}	[0.53486271 0.51749214]	0.2708	34	0.02691	0.03730
2^{-10}	[0.5318993 0.5102606]	0.2 <mark>6</mark> 50	36	0.02114	0.02316
2^{-11}	[0.5318993 0.5102606]	0.26504	35	0.02114	0.01158
2^{-12}	[0.51542748 0.50183677]	0.25368	35	0.00978	0.01414
2^{-13}	[0.52636053 0.49559485]	0.2 <mark>5</mark> 507	37	0.01117	0.00555
2^{-14}	[0.52325278 0.48498022]	0.24985	37	0.00595	0.00741

3.2.3. Исследовать сходимость метода штрафных функций в зависимости начальной точки

До этого уже было показано, как метод сходится при условии, что начальная точка находится в указанной области.

Барьерные функции не предназначены для нахождения минимума при начальном приближении находящимся не в рассматриваемой области. Поскольку в таком случае мы выйдем из области определения барьерной функции. Таким образом, метод не прийдёт к решению задачи.

3.2.4. Исследовать сходимость метода барьерных функций в зависимости задаваемой точности ε .

Начальные условия: $\bar{x}_0 = (10, 5)$

Барьерная функция: $G\left[g\left(\overline{x}\right)\right] = -\ln\left(-g\left(\overline{x}\right)\right),\ g\left(\overline{x}\right) < 0,\ g\left(\overline{x}\right) = 1 - \left(x + y\right)$

\mathcal{E}	r_0	$\overline{\mathcal{X}}_{\min}$	$f_{\min}\left(\overline{x} ight)$	Iteration	Calc	$ f(\overline{x})-f^* $
					Func	1
10^{-3}	2^{-13}	[0.51071421	0.2443854	47	85	0.00048
		0.48999053]				
10^{-4}	2^{-17}	[0.51262523	0.2439291	502	1908	2.67e-05
10		0.4874155]				
10^{-5}	2-20	[0.51262523	0.243929	1002	3908	2.67e-05
		0.4874155]				

Вывод: Из таблицы, которая приведена выше, видно то, что метод с использованием барьерной функции сходится при увеличении точности до $\varepsilon = 10^{-5}$ и дальше застревает и выходит по максимальному количеству итераций.

4. Программа

```
import numpy as np
from math import sqrt, log
import matplotlib.pyplot as plt
import pandas as pd
track method = np.array([])
Name_OutFile = "OutputFile"
def penalty_function(point):
        r0 = 1
        def g1(point):
            return -point[0] - point[1] + 1
        return r0 * (g1(point) + abs(g1(point)))/2
def f(point):
    def objective_function(point):
        return 10*(point[1]-point[0])**2 + point[1]**2
    return objective_function(point) + penalty_function(point)
def fg(point):
    def objective_function(point):
        return 10*(point[1]-point[0])**2 + point[1]**2
    return objective_function(point)
def matrix to string(vector, flag=False):
    if flag:
        out = ""
        for i in range(2):
            out += '[ '
            for j in range(2):
                out += "{0:.1f}".format(vector[i][j]) + " "
            out += "1\n"
    else:
        out = '[ '
        for i in range(2):
            out += "{0:.3f}".format(vector[i]) + " "
        out += "]\n"
    return out
def Nelder_Mid(func, x0, eps, alpha : float = 1, beta : float = 0.5, gamma :
float = 2, t : float = 1, max_iter : int = 100, _table : bool = False,
_track : bool = True):
```

```
def norm(f res, f min):
        return sqrt(sum([(f_res[i] - f_min)**2 for i in range(len(f_res))]))
    if table:
        df = pd.DataFrame(columns=np.array(["xmin", 'fmin(x, y)', '|fi -
fm1|', 'count calc func', 'penalty function']))
    N = len(x0)
    count iter = 0
    count_calc_func = 0
    if N < 2:
        return -1
    D = np.zeros((N, N+1))
    d1 = t*(sqrt(N+1) + N - 1)/(N * sqrt(2))
    d2 = t * (sqrt(N + 1) - 1)/(N*sqrt(2))
    for i in range(N):
        D[i, 0] = x0[i]
        for i in range(N):
            D[i, i+1] = x0[i] + d1
            for j in range(i+2, N+1):
                D[i, j] = x0[i] + d2
                D[j - 1, i + 1] = x0[j - 1] + d2
    if track:
        global track_method
        track method = np.array([D])
    res f = np.array([func(D[:, i]) for i in range(N+1)])
    count_calc_func += N+1
    func c = 0
    index_min = 0
    if table:
        old func = func(x0)
        df.loc[len(df)] = np.array([matrix to string(x0), old func, 0,
count_calc_func, penalty_function(x0)])
    while norm(res f, func c) >= eps and count iter < max iter:
        func c = min(res f)
        index max = np.where(res f == max(res f))[0][0]
        index_min = np.where(res_f == min(res_f))[0][0]
        temp_res = sorted(res_f)
        xc = np.zeros((N,))
        for i in range(N + 1):
            if i != index_max:
                xc += D[:, i]
        xc /= N
        xr = (1 + alpha)*xc - alpha*D[:, index max]
        f r = func(xr)
```

```
count calc func += 1
        if f r < temp res[0]:</pre>
            xe = (1 - gamma)*xc + gamma*xr
            f_e = func(xe)
            count_calc_func += 1
            if f_e < f_r:</pre>
                D[:, index max] = xe
                res_f[index_max] = f_e
            else:
                D[:, index_max] = xr
                res f[index max] = f r
        elif f_r < temp_res[1]:</pre>
            D[:, index_max] = xr
            res_f[index_max] = f_r
        else:
            if f r > res f[N]:
                D[:, index_max] = xr
                temp_res[N] = f_r
            xs = beta*D[:, index max] + (1-beta)*xc
            f_s = func(xs)
            count calc func += 1
            if f s < temp res[N]:</pre>
                D[:, index_max] = xs
                res f[index max] = f s
            else:
                xl = D[:, index_min]
                for i in range(N+1):
                    if i != index_min:
                         D[:, i] = xl + (D[:, i] - xl)
                         res_f[i] = func(D[:, i])
                         count calc func += 1
        count_iter += 1
        if table:
            df.loc[len(df)] = np.array([matrix to string(D[:, index min]),
func_c ,abs(func_c - old_func), count_calc_func, penalty_function(D[:,
index_min])])
            old_func = func_c
        if track:
            track_method = np.vstack((track_method, [D]))
    index min = np.where(res f == min(res f))[0][0]
    if _table:
        df.loc[len(df)] = np.array([matrix_to_string(D[:, index_min]),
res_f[index_min], abs(res_f[index_min] - old_func), count_calc_func,
penalty function(D[:, index min])])
        return df, D[:, index_min]
```

```
return D[:, index min]
def create_grafic_track(res):
    x_{grid} = np.arange(-15, 10, 0.5)
    y_grid = np.arange(-15, 10, 0.5)
    x, y = np.meshgrid(x grid, y grid)
    func z = 10 * (y - x) ** 2 + y ** 2
    cs = plt.contour(x, y, func_z, zorder=1, levels=[10, 25, 50, 100, 150,
300, 600, 1200, 2400, 4200])
    plt.clabel(cs)
    if len(track method) > 0:
        for i in range(len(track_method)):
            temp_x, temp_y = track_method[i][0], track_method[i][1]
            plt.plot(np.append(temp_x, temp_x[0]), np.append(temp_y,
temp_y[0]), zorder=2)
        plt.scatter(res[0], res[1], zorder=3)
    plt.title("Nelder Mid Method")
    plt.show()
def out exel(df):
    if Name_OutFile != "":
        with pd.ExcelWriter(Name_OutFile + ".xlsx") as writer:
            df.to_excel(writer, sheet_name="Nelder Mid Method",
index label='i', float format="%.8f")
def main():
    df, res = Nelder_Mid(f, np.array([10, 5]), 1e-5, _table=True,
max iter=1000)
    out exel(df)
    print(res, len(df), fg(res), fg(res) - 0.243902439, sum(res),
abs(penalty_function(res)))
    create grafic track(res)
if __name__ == "__main__":
    main()
```