Pandas

As described at https://pandas.pydata.org (https://pandas.pydata.org (https://pandas.pydata.org (https://pandas.pydata.org (https://pandas.pydata.org (https://pandas.pydata.org (https://pandas.pydata.org)

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.

Resources

- 1. Ch 5-6 in Python for Data Analysis, 2nd Ed, Wes McKinney (UCalgary library and https://github.com/wesm/pydata-book))
- Ch 3 in Python Data Science Handbook, Jake VanderPlas (Ucalgary library and https://github.com/jakevdp/PythonDataScienceHandbook)
 (PythonDataScienceHandbook)

Let's explore some of the features.

First, import Pandas, and Numpy as a good companion.

```
In [1]: import numpy as np
import pandas as pd
```

Create pandas DataFrames

There are several ways to create Pandas DataFrames, most notably from reading a csv (comma separated values file). DataFrames are 'spreadsheets' in Python. We will often use df as a variable name for a DataFrame.

If data is not stored in a file, a DataFrame can be created from a dictionary of lists

where dictionary keys become column headers.

An alternative is to create from a numpy array and set column headers seperatly:

```
In [2]:
        # From a numpy array
         df = pd.DataFrame( np.arange(20).reshape(5,4), columns=['alpha', 'beta', 'gamm']
Out[2]:
            alpha beta gamma delta
               0
                     1
                            2
         0
          1
                                  7
                4
                     5
                            6
         2
               8
                     9
                           10
                                 11
          3
               12
                    13
                           14
                                 15
          4
               16
                    17
                                 19
                           18
In [3]: # checking its type
         type(df)
```

Indexing

Out[3]: pandas.core.frame.DataFrame

Accessing data in Dataframes is done by rows and columns, either index or label based.

```
In [4]: # select a column
         df['alpha']
Out[4]:
               0
               4
         1
         2
               8
         3
              12
              16
         Name: alpha, dtype: int32
In [5]: # select two columns
         df[['alpha', 'gamma']]
Out[5]:
            alpha gamma
         0
               0
                       2
          1
                4
                       6
         2
               8
                      10
          3
               12
                      14
               16
                      18
```

```
In [6]: # select rows
         df.iloc[:2]
Out[6]:
            alpha beta gamma delta
         0
               0
                     1
                            2
                                  3
          1
                     5
                            6
                                  7
                4
In [7]: # select rows and columns
         df.iloc[:2, :2]
Out[7]:
            alpha beta
         0
               0
                     1
          1
               4
                     5
         # select rows and columns, mixed
In [8]:
         df.loc[:2, ['alpha', 'beta']]
Out[8]:
            alpha beta
         0
               0
                     1
          1
                4
                     5
          2
               8
                     9
```

DataFrame math

Similar to Numpy, DataFrames support direct math

```
In [9]: # direct math
df2 = (9/5) * df + 32
df2
```

```
Out[9]:
             alpha beta gamma delta
               32.0 33.8
                             35.6
                                   37.4
           1
               39.2 41.0
                            42.8
                                   44.6
          2
              46.4 48.2
                             50.0
                                   51.8
           3
               53.6 55.4
                             57.2
                                   59.0
               60.8 62.6
                                   66.2
                             64.4
```

```
# add two dataframes of same shape
In [10]:
          df + df2
Out[10]:
              alpha beta gamma delta
           0
               32.0 34.8
                            37.6
                                  40.4
           1
               43.2 46.0
                            48.8
                                  51.6
           2
               54.4 57.2
                            60.0
                                  62.8
           3
                            71.2
               65.6 68.4
                                  74.0
               76.8 79.6
                            82.4
                                  85.2
In [11]:
          # map a function to each column
          f = lambda x: x.max() - x.min()
          df.apply(f)
Out[11]: alpha
                    16
          beta
                    16
          gamma
                    16
          delta
                    16
          dtype: int64
```

DataFrame manipulation

Adding and deleting columns, as well as changing entries is similar to Python dictionaries.

Note that most DataFrame methods do not change the DataFrame directly, but return a new DataFrame. It is always good to check how the method you are invoking behaves.

```
# add a column
In [12]:
          df['epsilon'] = ['low', 'medium', 'low', 'high', 'high']
          df
Out[12]:
              alpha beta gamma delta epsilon
           0
                 0
                       1
                               2
                                     3
                                           low
           1
                       5
                               6
                                     7 medium
           2
                 8
                       9
                              10
                                    11
                                           low
           3
                 12
                      13
                              14
                                    15
                                           high
                      17
                 16
                              18
                                    19
                                           high
```

```
In [13]: # What is the size?
df.shape

Out[13]: (5, 5)
```

```
In [14]: # delete column
df_dropped = df.drop(columns=['gamma'])
df_dropped
```

Out[14]: alpha beta delta epsilon 0 1 3 low 7 medium 1 4 5 2 8 9 11 low 3 12 13 15 high 17 19 4 high 16

```
In [15]: # the original dataframe is unaffected
df
```

Out[15]:		alpha	beta	gamma	delta	epsilon
	0	0	1	2	3	low
	1	4	5	6	7	medium
	2	8	9	10	11	low
	3	12	13	14	15	high
	4	16	17	18	19	high

Let's create a copy and assign new values to the first column:

```
In [16]: df_copy = df.copy()
    df_copy['alpha'] = 20
    print(df)
    print(df_copy)
```

	alpha	beta	gamma	delta	epsilon
0	0	1	2	3	low
1	4	5	6	7	medium
2	8	9	10	11	low
3	12	13	14	15	high
4	16	17	18	19	high
	alpha	beta	gamma	delta	epsilon
0	20	1	2	3	low
4					
1	20	5	6	7	medium
2	20 20	5 9	6 10	7 11	medium low
_		_	_	•	

DataFrames can be sorted by column:

4

2

1

16

0

8

high

low

low

7 medium

Load data from file

17

1

9

5

18

2

10

6

19

3

11

Most often data will come from somewhere, often csv files, and using pd.read_csv() will allow smooth creation of DataFrames.

Let's load that same heart-attack.csv that we used in Numpy before:

```
In [18]: data = pd.read_csv('auto-mpg.csv')
```

After loading data, it is good practice to check what we have. Usually, the sequences is:

- 1. Check dimension
- 2. Peek at the first rows
- 3. Get info on data types and missing values
- 4. Summarize columns

```
In [19]: # Check dimension (rows, columns)
data.shape

Out[19]: (398, 9)
```

```
# Peek at the first rows
In [20]:
          data.head()
Out[20]:
                                                                                                  car
              mpg cylinders displacement horsepower weight acceleration model_year origin
                                                                                                name
                                                                                             chevrolet
           0
              18.0
                           8
                                    307.0
                                                  130
                                                         3504
                                                                     12.0
                                                                                   70
                                                                                          1
                                                                                              chevelle
                                                                                               malibu
                                                                                                buick
              15.0
                           8
                                    350.0
                                                  165
                                                         3693
                                                                     11.5
                                                                                  70
            1
                                                                                               skylark
                                                                                                  320
                                                                                             plymouth
              18.0
                                    318.0
                                                  150
                                                         3436
                                                                      11.0
                                                                                   70
                                                                                              satellite
                                                                                                 amc
              16.0
                           8
                                    304.0
                                                  150
                                                         3433
                                                                     12.0
                                                                                   70
                                                                                              rebel sst
                                                                                                 ford
              17.0
                           8
                                    302.0
                                                  140
                                                                     10.5
                                                                                  70
                                                                                          1
                                                         3449
                                                                                                torino
In [21]:
          # Column names are
          data.columns
Out[21]: Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight',
                   'acceleration', 'model_year', 'origin', 'car name'],
                 dtype='object')
In [22]:
          # Get info on data types and missing values
          data.info()
           <class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 398 entries, 0 to 397 Data columns (total 9 columns): # Column Non-Null Count Dtype ____ _____ _ _ _ 0 398 non-null float64 mpg 1 398 non-null int64 cylinders 2 displacement 398 non-null float64 3 horsepower 398 non-null object 4 weight 398 non-null int64 5 acceleration 398 non-null float64 6 model_year 398 non-null int64 7 origin 398 non-null int64 8 398 non-null car name object dtypes: float64(3), int64(4), object(2)

Summarize values

memory usage: 28.1+ KB

What is the mean, std, min, max in each column?

```
In [ ]:
```

In [37]: data.mean()

C:\Users\ryana\AppData\Local\Temp\ipykernel_1868\531903386.py:1: FutureWarnin g: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=N one') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data.mean()

Out[37]: mpg 23.514573 cylinders 5.454774 displacement 193.425879 horsepower 104.469388 weight 2970.424623 acceleration 15.568090 model_year 76.010050 origin 1.572864

dtype: float64

In [24]: data.head()

Out[24]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

In [25]: # where are the other columns? Check data types data.dtypes

Out[25]: mpg

float64 cylinders int64 displacement float64 horsepower object weight int64 acceleration float64 model_year int64 int64 origin car name object dtype: object

Notice that many columns are of type object, which is not a number. Maybe this has to do with missing values? We know from peeking at the first rows that there are '?' values in there. Let's replace these with the string NaN for not-a-number.

```
In [26]: # replace '?' with 'NaN'

data = data.replace({'?': np.NAN})
   data.head()
```

Out[26]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

Pandas knows that 'NaN' probably means that numbers are missing. Now we can convert the data type from object to float

```
In [27]:
         data.horsepower.astype("float")
Out[27]: 0
                 130.0
         1
                 165.0
          2
                 150.0
          3
                 150.0
         4
                 140.0
         393
                  86.0
          394
                  52.0
                  84.0
          395
          396
                  79.0
          397
                  82.0
```

Name: horsepower, Length: 398, dtype: float64

```
In [28]:
         # convert dtypes
         # data = data.astype('float', errors='ignore')
         float_cols=[col for col in data.columns if col !="car name"]
         data[float_cols] = data[float_cols].astype('float')
         data.dtypes
Out[28]: mpg
                         float64
                         float64
         cylinders
         displacement
                         float64
         horsepower
                         float64
                         float64
         weight
         acceleration
                         float64
                         float64
         model_year
         origin
                         float64
                          object
         car name
         dtype: object
```

We could have loaded the data with the na_values argument to indicate that '?' means missing number:

```
data = pd.read_csv('auto-mpg.csv', na_values='?')
In [29]:
         data.dtypes
Out[29]:
         mpg
                         float64
         cylinders
                           int64
         displacement
                         float64
                         float64
         horsepower
                           int64
         weight
                         float64
         acceleration
         model_year
                           int64
         origin
                           int64
         car name
                          object
         dtype: object
```

This worked nicely. Now we can describe all columns, meaning printing basic statistics. Note that by default Pandas ignores NaN, whereas Numpy does not.

In [30]:	data.d	escribe()	# ignores	NaN				
Out[30]:		mpg	cylinders	displacement	horsepower	weight	acceleration	model_year
	count	398.000000	398.000000	398.000000	392.000000	398.000000	398.000000	398.000000
	mean	23.514573	5.454774	193.425879	104.469388	2970.424623	15.568090	76.010050
	std	7.815984	1.701004	104.269838	38.491160	846.841774	2.757689	3.697627
	min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000
	25%	17.500000	4.000000	104.250000	75.000000	2223.750000	13.825000	73.000000
	50%	23.000000	4.000000	148.500000	93.500000	2803.500000	15.500000	76.000000
	75%	29.000000	8.000000	262.000000	126.000000	3608.000000	17.175000	79.000000
	max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000

We could be interested by these statistics in each of the genders. To get these, we first group values by gender, then ask for the description. We will only look at age for clarity

In [31]:	data.g	roupby	(by='orig	g <mark>in'</mark>).des	cribe	e().m	pg		
Out[31]:		count	mean	std	min	25%	50%	75%	max
	origin								
	1	249.0	20.083534	6.402892	9.0	15.0	18.5	24.00	39.0
	2	70.0	27.891429	6.723930	16.2	24.0	26.5	30.65	44.3
	3	70 N	30.450633	6 000048	18 N	25.7	31.6	3/1.05	46 6

Find NaNs

How many NaNs in each column?

We can ask which entries are null, which produces a boolean array

In [32]: data.isnull()

Out[32]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin	car name
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
393	False	False	False	False	False	False	False	False	False
394	False	False	False	False	False	False	False	False	False
395	False	False	False	False	False	False	False	False	False
396	False	False	False	False	False	False	False	False	False
397	False	False	False	False	False	False	False	False	False

398 rows × 9 columns

Applying sum() to this boolean array will count the number of True values in each column

```
In [33]: data.isnull().sum()
```

Out[33]: mpg

0 cylinders 0 displacement 0 6 horsepower weight 0 acceleration 0 model_year 0 origin 0 0 car name dtype: int64

We get complementary information from info()

In [34]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	392 non-null	float64
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model_year	398 non-null	int64
7	origin	398 non-null	int64
8	car name	398 non-null	object
dtyp	es: float64(4)	, int64(4), obje	ct(1)
	20.4		

memory usage: 28.1+ KB

We can fill (replace) these missing values, for example with the minimum value in each column

In [35]: data.fillna(data.min()).describe()

Out[35]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	103.587940	2970.424623	15.568090	76.010050
std	7.815984	1.701004	104.269838	38.859575	846.841774	2.757689	3.697627
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000
25%	17.500000	4.000000	104.250000	75.000000	2223.750000	13.825000	73.000000
50%	23.000000	4.000000	148.500000	92.000000	2803.500000	15.500000	76.000000
75%	29.000000	8.000000	262.000000	125.000000	3608.000000	17.175000	79.000000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000

Count unique values (a histogram)

We finish off, with our good friend the histogram

```
In [36]: data['mpg'].value_counts()
Out[36]: 13.0
                  20
         14.0
                  19
         18.0
                  17
         15.0
                  16
         26.0
                  14
                  . .
         31.9
                  1
         16.9
                  1
         18.2
                  1
         22.3
                  1
         44.0
                  1
         Name: mpg, Length: 129, dtype: int64
```