Abstract

1 BACKGROUND

A reinforcement learning environement is modelled as a Markov decision process (MDP) $M = \langle S, A, r, P, P_0, \gamma \rangle$, where S is the state space and A is the set of available actions. At time t=0 a state s_0 is sampled from the distribution $P_0(\cdot)$. At each timestep an action $a_t \sim \pi(\cdot|s_t)$ is selected and the agent transitions to a new state state $s_{t+1} \sim P(\cdot|s_t, a_t)$. A scalar reward $r_{t+1} = r(\cdot|s_{t+1}, s_t, a_t)$ is observed. As the agent and environement interact in a sequence of time steps, a history of observations \mathcal{H}_t = $(s_0, a_0, s_1, r_1, a_1, s_2, r_2, \dots, s_t, r_t)$ is collected. The goal is to find a policy π^* , such that sampling actions $a \sim$ $\pi^*(\cdot|s)$ maximizes the expected future reward, $J^\pi \; := \;$ $\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}\right]$. An efficient agent must be able to learn from the data it collects, but since the data is dependent on the policy, it must also prioritize to explore states and actions that the agent can learn a lot from.

The Q-function, $Q^{\pi}(s, a)$, is defined as the expected reward of taking action a in state s and then following policy π thereafter: $Q^{\pi}:=\mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}|s_{0}=0,a_{0}=0\right]$. The Bellman operator on Q^{π} is defined as $\mathcal{B}[Q^{\pi}](s_{t},a_{t}):=$ $\mathbb{E}_{P(s_{t+1}|s_t, a_t)\pi(a_{t+1}|s+t)} \left[r(s_{t+1}, s_t, a) + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) \right]$ With the Q-function we can define a policy $\pi(a|s) = \arg \max_a Q(s,a)$. In deep RL, we model Q with a neural network \hat{Q}_{ω} . One way to facilitate exploration in this policy is to introduce uncertainty in the Q-value. Fortunato et al. [2019] introduced noisy networks for exploration. These are networks with stochastic weights, where each weight $w_{ij}^{(l)}$ has an added pertrubation sampled from a noise distribution with standard deviation $\sigma_{ii}^{(l)}$. After initializing μ and σ such that the network has sufficient stochasticity for exploration, both parameters are learned using standard backpropagation. The approach is similar to variational inference schemes such as bayes

by backprop Blundell et al. [2015] where the weights are normally distributed with mean $\mu_{ij}^{(l)}$ and standard deviation $\sigma_{ij}^{(l)}$,

Fellows et al. [2021] does this by defining the Bayesian Bellman operator (BBO). They define $P_B(b|s,a,\omega)$ as the distribution over Bellman functions such that for a noisy sample $b_i \sim P_B(b|s,a,\omega)$, $b_i = \mathcal{B}[\hat{Q}_\omega](s_i,a_i) + \eta_i$. Then we approximate this with a distribution parameterized by ϕ such that $P(b|s,a,\phi) \approx P(b|s,a,\omega)$.

$$\mathcal{B}_{\omega,N}^{\star}(s,a) := \mathbb{E}_{P(\phi|\mathcal{D}_{\omega}^{N})} \left[\hat{B}_{\phi}(s,a) \right]. \tag{1}$$

Here, $\hat{B}_{\phi}(s,a) = \mathbb{E}_{P(b|s,a,\phi)}[b]$, is the conditional mean of $P(b|s,a,\phi)$, and the data \mathcal{D}_{ω}^{N} is defined as the collection of sampled Q-values, states and actions $\mathcal{D}_{\omega}^{N} := \{b_{i},s_{i},a_{i}\}_{i=1:N}$. Under the assumption that each state s_{i} is drawn i.i.d from a distribution with support over \mathcal{S} , or from an ergodic Markov chain defined over a σ -algebra that is countably generated from \mathcal{S} they find that ω^{\star} such that $\hat{Q}_{\omega^{\star}} = \mathcal{B}_{\omega^{\star},N}^{\star}$ can be found by minimising the mean squared Bayesian Bellman error (MSBBE):

$$MSBBE_N(\omega) := \|\hat{Q}_{\omega} - \mathcal{B}_{\omega,N}^{\star}\|_{\rho,\pi}^2, \tag{2}$$

And that an unbiased estimate of $\nabla_{\omega} \mathrm{MSBBE}_{N}(\omega)$ can be calculated as long as we can sample from $P(\phi|\mathcal{D}_{\omega}^{N})$.

Nonlinear function approximators such as neural networks typically have an intractable posterior, so we cannot calculate the posterior analytically. Instead we use a posterior approximation $q(\phi|\mathcal{D}^N_\omega)\approx P(\phi|\mathcal{D}^N_\omega)$, together with an algorithm for approximate inference. Fellows et al. [2021] presents the Bayesian Bellman Actor-Critic using randomized priors [Osband et al., 2018], and show state of the art exploratory behaviour.

For most approximate inference methods in deep learning, it is difficult to incorporate domain knowledge into the prior. Typically the prior distribution is defined on the parameters as $P(\phi)$, while the knowledge exists in the function space P(a|s)

Functional variational Bayesian neural networks [Sun et al., 2019] lets us define a prior on the *function space*. In a Q-learning algorithm, this would be a function $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$. For now we generalize, and say that $f: \mathcal{X} \to \mathcal{Y}$. Sun et al. [2019] show that for two stochastic processes P and Q:

$$\mathrm{KL}[P\|Q] = \sup_{n \in \mathbb{N}, \mathbf{X} \in \mathcal{X}^n} \mathrm{KL}\left[P_{\mathbf{X}}\|Q_{\mathbf{X}}\right],\tag{3}$$

where $X \in \mathcal{X}^n$ is a finite measurement set and P_X, Q_X are the marginal distributions at X. They further show that if f^X are the function values at points X, then

$$\nabla_{\phi} \text{KL}[q_{\phi}(\mathbf{f}^{X}) || p(\mathbf{f}^{X})]$$

$$= \mathbb{E}\left[\nabla_{\phi} \mathbf{f}^{X} (\nabla_{\mathbf{f}} \log q(\mathbf{f}^{X}) - \nabla_{\mathbf{f}} \log p(\mathbf{f}^{X}))\right]. \quad (4)$$

The difficult part in (4) is to estimate $\nabla_{\mathbf{f}} \log q(\mathbf{f}^{\mathbf{X}})$ and $\nabla_{\mathbf{f}} \log p(\mathbf{f}^{\mathbf{X}})$. To estimate these log-density gradients, they use a spectral Stein gradient estimator [Shi et al., 2018]. Given enough function value samples, the spectral Stein gradient estimator can estimate score functions for both in-distribution and out-of-distribution samples. This means that we can use it to estimate both gradients. $\nabla_{\mathbf{f}} \log q(\mathbf{f}^{\mathbf{X}})$ is likely intractable intractable, considering q_{ϕ} is a neural network with stochastic weights. Depending on how we define the prior, however, $\nabla_{\mathbf{f}} \log p(\mathbf{f}^{\mathbf{X}})$ can be easy to compute analytically. To reduce variance in the gradients we aim to define tractable priors.

2 METHOD

Instead of a prior on the parameter space, we would like to have a prior on the Q-function space. Using the functional variational neural network framework explored earlier, our maximization target becomes:

$$\log p(\mathcal{D}_{\omega}^{N}|f) - \text{KL}\left[q(\mathbf{f}^{\mathcal{D}_{\omega}^{N}}, \mathbf{f}^{M}) \| p(\mathbf{f}^{\mathcal{D}_{\omega}^{N}}, \mathbf{f}^{M})\right], \quad (5)$$

where $\mathbf{f}^{\mathcal{D}_{\omega}^{N}}$ is f applied to the dataset \mathcal{D}_{ω}^{N} , and \mathbf{f}^{M} is f applied to a set of i.i.d. random points $M = \{m_{i} \sim c \mid i = 1, \ldots, k\} \subseteq \mathcal{S} \times \mathcal{A}$ with full support. We will let

$$M = \{ (s_i, a_j) \ \forall s_i \in \mathcal{D}^N_\omega, \ \forall a_j \in \mathcal{A} \}.$$
 (6)

To justify this we need to show that $supp(c) = \mathcal{S} \times \mathcal{A}$. Under the same assumption about the distribution of each state s_i from BBO, $supp(c) = \mathcal{S} \times \mathcal{A}$ follows trivially.

Since we are modeling q_{ϕ} with a Bayesian neural network, and Q_{ω} with a neural network, we have a bilevel optimization problem. To solve this, we employ a similar strategy to

Fellows et al. [2021], where we have a two-timescale gradient update. ϕ and ω are updated using stochastic gradient descent at different timescales to ensure stable convergence.

Algorithm 1 Functional Bayesian RL

```
\mathcal{D} \leftarrow \emptyset
s \sim P_0
Initialize \phi, \omega
while not converged do
       f \sim q_{\phi}
       a \sim \arg\max_{a} f(s, a)
       s' \sim P(\cdot|s, a)
       r = r(s', a, s)
       \mathcal{D} \leftarrow \mathcal{D} \cup \{s, a, r, s'\}
       UPDATEPOSTERIOR(\phi, \omega, \mathcal{D})
end while
function UPDATEPOSTERIOR(\phi, \omega, \mathcal{D})
       while not converged do
              T \sim \mathcal{D}
             \mathbf{f} \leftarrow \{f_i \sim q_\phi \text{ for } i = 1, \dots, k\}
              for \{s, a, r, s'\} \in T do
                     \hat{a} \leftarrow \arg \max_{a} \mathbf{f}(s, a)
                     \mathcal{F} \leftarrow \mathcal{F} \cup \mathbf{f}(s, a)
                    G \leftarrow r + \gamma Q_{\omega}(s, a) 
\Delta_{\mathcal{L}} \leftarrow \Delta_{\mathcal{L}} - \frac{1}{k} \frac{1}{|T|} \nabla_{\phi} \log p(\hat{a}|G)
              \Delta_{\mathrm{KL}} \leftarrow SSGE(p, \mathcal{F})
             \phi \leftarrow \phi + \eta_{\phi} (\Delta_{\mathcal{L}} - \Delta_{\mathrm{KL}})
             \hat{B}_{\phi} \leftarrow \frac{1}{k} \frac{1}{|T|} \sum_{i=1}^{k} \sum_{b \in \mathcal{F}} b
             end while
end function
```

References

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty in Neural Network. In Francis Bach and David Blei, editors, *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pages 1613–1622, Lille, France, July 2015. PMLR. URL http://proceedings.mlr.press/v37/blundell15.html.

Matthew Fellows, Kristian Hartikainen, and Shimon Whiteson. Bayesian Bellman Operators. *arXiv:2106.05012* [cs], June 2021. URL http://arxiv.org/abs/2106.05012. arXiv:2106.05012.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves, Vlad Mnih,

- Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg. Noisy Networks for Exploration. *arXiv:1706.10295 [cs, stat]*, July 2019. URL http://arxiv.org/abs/1706.10295. arXiv: 1706.10295.
- Ian Osband, John Aslanides, and Albin Cassirer. Randomized Prior Functions for Deep Reinforcement Learning. *arXiv:1806.03335 [cs, stat]*, November 2018. URL http://arxiv.org/abs/1806.03335. arXiv: 1806.03335.
- Jiaxin Shi, Shengyang Sun, and Jun Zhu. A Spectral Approach to Gradient Estimation for Implicit Distributions.

 June 2018. URL https://arxiv.org/abs/1806.02925v1.
- Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional Variational Bayesian Neural Networks. *arXiv:1903.05779 [cs, stat]*, March 2019. URL http://arxiv.org/abs/1903.05779. arXiv: 1903.05779.