Trabajo T5

Ejercicio 1.1

Algoritmo batch

Entrada: Topología, pesos iniciales θ^l_{ij} , $1 \le l \le L$, $1 \le i \le M_l$, $0 \le j \le M_{l-1}$, factor de aprendizaje ρ , condiciones de convergencia, N datos de entrenamiento S, momentum $0 \le v < 1$.

Salidas: Pesos de las conexiones que minimizan el error cuadrático medio de S.

Mientras no se cumplan las condiciones de convergencia

```
Para 1 \le l \le L, 1 \le i \le M_l, 0 \le j \le M_{l-1}, inicializar \Delta \theta^l_{ij} = 0
```

Para cada muestra de entrenamiento $(x, t) \in S$

Desde la capa de entrada a la de salida (I = 0, . . ., L):

Para
$$1 \le i \le M_1 \text{ si } l = 0 \text{ entonces } s_i^0 = x_i \text{ sino calcular } \phi_i^l \text{ y } s_i^l = g(\phi_i^l)$$

Desde la capa de salida a la de entrada (I = L, ..., 1),

Para cada nodo $(1 \le i \le M_I)$

Calcular
$$\delta^l_i$$
 = si (I == L) then $g'(\phi^l_i)$ ($t_{ni} - s^l_i$), else $g'(\phi^l_i)$ ($\sum_r \delta_r^{l+1} \theta_{ri}^{l+1}$)

Para cada peso
$$\theta^{l}_{ij}$$
 ($0 \le j \le M_{l-1}$) calcular: $\Delta \theta^{l}_{ij} = v\Delta \theta^{l}_{ij} + \rho \delta^{l}_{i} s^{l-1}_{j}$

Para $1 \le l \le L$, $1 \le i \le M_l$, $0 \le j \le M_{l-1}$, actualizar pesos: $\theta^l_{ij} = \theta^l_{ij} + (1/N) \Delta \theta^l_{ij}$

Luis López Cuerva

Algoritmo incremental

Entrada: Topología, pesos iniciales θ^l_{ij} , $1 \le l \le L$, $1 \le i \le M_l$, $0 \le j \le M_{l-1}$, factor de aprendizaje ρ , condiciones de convergencia, N datos de entrenamiento S, momentum $0 \le v < 1$.

Salidas: Pesos de las conexiones que minimizan el error cuadrático medio de S.

Mientras no se cumplan las condiciones de convergencia

Para
$$1 \le l \le L$$
, $1 \le i \le M_l$, $0 \le j \le M_{l-1}$, inicializar $\Delta \theta^l_{ij} = 0$

Para cada muestra de entrenamiento $(x, t) \in S$

Desde la capa de entrada a la de salida (I = 0, . . ., L):

Para
$$1 \le i \le M_i$$
 si $I = 0$ entonces $s_i^0 = x_i$ sino calcular ϕ_i^1 y $s_i^1 = g(\phi_i^1)$

Desde la capa de salida a la de entrada (I = L, ..., 1),

Para cada nodo $(1 \le i \le M_I)$

Calcular
$$\delta_i^l = \text{si} (l == L)$$
 then $g'(\phi_i^l) (t_{ni} - s_i^l)$, else $g'(\phi_i^l) (\sum_r \delta_r^{l+1} \theta_{ri}^{l+1})$

Para cada peso θ^{l}_{ij} ($0 \le j \le M_{l-1}$) calcular: $\Delta \theta^{l}_{ij} = \rho \delta^{l}_{i} s^{l-1}_{j}$

Para $1 \le l \le L$, $1 \le i \le M_l$, $0 \le j \le M_{l-1}$, actualizar pesos: $\theta^l_{ij} = v\theta^l_{ij} + (1/N) \Delta \theta^l_{ij}$

Ejercicio 1.2

Algoritmo batch

Entrada: Topología, pesos iniciales θ^{l}_{ij} , $1 \le l \le L$, $1 \le i \le M_{l}$, $0 \le j \le M_{l-1}$, factor de aprendizaje ρ , condiciones de convergencia, N datos de entrenamiento S, factor de regularización λ .

Salidas: Pesos de las conexiones que minimizan el error cuadrático medio de S.

Mientras no se cumplan las condiciones de convergencia

Para
$$1 \le l \le L$$
, $1 \le i \le M_l$, $0 \le j \le M_{l-1}$, inicializar $\Delta \theta_{ij}^l = 0$

Para cada muestra de entrenamiento $(x, t) \in S$

Desde la capa de entrada a la de salida (I = 0, . . ., L):

Para
$$1 \le i \le M_1$$
 si $I = 0$ entonces $s_i^0 = x_i$ sino calcular ϕ_i^l y $s_i^l = g(\phi_i^l)$

Desde la capa de salida a la de entrada (I = L, ..., 1),

Para cada nodo $(1 \le i \le M_I)$

Calcular
$$\delta_i^l = \text{si } (l == L) \text{ then } g'(\phi_i^l) (t_{ni} - s_i^l)$$
, else $g'(\phi_i^l) (\sum_r \delta_r^{l+1} \theta_{ri}^{l+1})$

Para cada peso
$$\theta^{l}_{ij}$$
 ($0 \le j \le M_{l-1}$) calcular: $\Delta \theta^{l}_{ij} = \Delta \theta^{l}_{ij} - \rho \lambda \delta^{l}_{i} s^{l-1}_{j}$

Para $1 \le l \le L$, $1 \le i \le M_l$, $0 \le j \le M_{l-1}$, actualizar pesos: $\theta^l_{ij} = \theta^l_{ij} + (1/N) \Delta \theta^l_{ij}$

Luis López Cuerva

Algoritmo incremental

Entrada: Topología, pesos iniciales θ^l_{ij} , $1 \le l \le L$, $1 \le i \le M_l$, $0 \le j \le M_{l-1}$, factor de aprendizaje ρ , condiciones de convergencia, N datos de entrenamiento S, factor de regularización λ .

Salidas: Pesos de las conexiones que minimizan el error cuadrático medio de S.

Mientras no se cumplan las condiciones de convergencia

Para
$$1 \le l \le L$$
, $1 \le i \le M_l$, $0 \le j \le M_{l-1}$, inicializar $\Delta \theta^l_{ij} = 0$

Para cada muestra de entrenamiento $(x, t) \in S$

Desde la capa de entrada a la de salida (I = 0, . . ., L):

Para
$$1 \le i \le M_i$$
 si $l = 0$ entonces $s_i^0 = x_i$ sino calcular ϕ_i^l y $s_i^l = g(\phi_i^l)$

Desde la capa de salida a la de entrada (I = L, ..., 1),

Para cada nodo $(1 \le i \le M_I)$

Calcular
$$\delta_i^l = \text{si} (l == L)$$
 then $g'(\phi_i^l) (t_{ni} - s_i^L)$, else $g'(\phi_i^l) (\sum_r \delta_r^{l+1} \theta_{ri}^{l+1})$

Para cada peso
$$\theta^l_{ij}$$
 ($0 \le j \le M_{l-1}$) calcular: $\Delta \theta^l_{ij} = \rho \delta^l_i s^{l-1}_j - p \lambda \Delta \theta^l_{ij}$

Para
$$1 \le l \le L$$
, $1 \le i \le M_l$, $0 \le j \le M_{l-1}$, actualizar pesos: $\theta^l_{ij} = \theta^l_{ij} + (1/N) \Delta \theta^l_{ij}$

Luis López Cuerva

Ejercicio 2

$$\Delta \theta_{ij}^{l} = \frac{\partial qs(\theta)}{\partial \theta_{ij}^{l}} = p \frac{t_i}{s_i^2} f'(z_i^l) s_j^{l-1} = p \delta^l s_j^{l-1}$$