STATISTICS PROBLEMS: TEAM CONTEST

May 2019

1. Consider the simple linear regression

$$Y_i = \alpha + \beta X_i + \epsilon_i, \qquad i = 1, \dots, 2n.$$

- (i) Suppose that only the first half of Y's are observed, i.e. only Y_i , i = 1, ..., n are observed and Y_i , i = n + 1, ..., 2n are missing, while all X's are observed. What would you suggest for the estimation of β ? Are there assumptions you need to make for your estimator to be valid?
- (ii) Suppose for the second half of Y's, their absolute values are observed, i.e. we observe $|Y_i|$, i = n + 1, ..., 2n. What would you suggest for the estimation of β ? Are there assumptions you need to make for your estimator to be valid? Any good properties for your estimator?
- **2.** Suppose that $X = (X_1, \ldots, X_n)'$ is an observation from the n-dimensional multivariate normal distribution $N_n(\theta, I)$ with unknown parameter $\theta \in R^n$, that is, X_i 's are independent of each other with $X_i \sim N(\theta_i, 1)$ for $i = 1, \ldots, n$. (i). Derive the maximum likelihood estimator (MLE) of $\|\theta\|^2 = \sum_{i=1}^n \theta_i^2$.
- (ii). Show that the MLE is a biased estimator.
- (iii). Find the distribution of the MLE and describe how to use this distribution to construct exact confidence intervals.
- 3. Suppose that X_1, \dots, X_n is a sample of size n from the Student-t distribution $t_{\nu}(\mu, 1)$ with known degrees of freedom $\nu \geq 1$, unit scale, and known center μ . The Student-t distribution $t_{\nu}(\mu, 1)$ has density function of the form

$$f_X(x;\mu,\nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu}\Gamma(\frac{\nu}{2})} \left(1 + \frac{(x-\mu)^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad (x \in \mathcal{R}^1).$$

- (i). Write $X_i = \mu + U_i$, where U_i are independently and identically distributed (iid) with $t_{\nu}(0,1)$ for $i = 1, \dots, n$. Find the conditional distribution of U_1 given $U_i U_1 = X_i X_1$ for $i = 2, \dots, n$.
- (ii). Describe a method to construct confidence intervals by making use of the above result, and argue for its efficiency and coverage probability.

1

(iii). Use the limiting case of $\nu \to \infty$ to verify your answers.