74	(OR)				
b.	Illustrate the three different networks topologies with example.	10	3	2	1, 2, 12
28. a.	Explain the various errors that occurs during gradient descent optimization process with a neat sketch.	10	3	3	1,1 2
	(OR)				
b.	A single layer perception is only capable of representing linearly separable data. Justify with example.	10	3	3	1,1 2
29. a.	Differentiate the working process of radial basis function network and mutli-layer perceptron network.	10	3	4	1,1 2
	(OR)				
b.	With a neat sketch, explain the working principle of the following networks:	10	2	4	1,1 2
	(i) Jordan network(ii) Elman network				
30. a.	Illustrate the top down and bottom up learning process of adaptive resonance theory network with example.	10	2	5	1,1
b.i.	(OR) Define the learning rule of self-organizing maps and describe all the factors involved in it.	5	2	5	.1,1

Connections

Weight matrix

(iii)

* * * * *

ii. Illustrate the training process of self – organizing maps.

Page 4 of 4 23NF6/7/18CSE388T

		0	2-125	S	
Reg. No.					

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth/ Seventh Semester

18CSE388T – ARTIFICIAL NEURAL NETWORKS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:

Page 1 of 4

(i)		t - A should be answered in OMR slot to hall invigilator at the end of 40 th r		within first 40 minutes and OMR sheet.	t shou	ld be	han	ded		
(ii)	Par	t - B should be answered in answer be	ooklet	i.						
Time: 2	Time: 2½ Hours									
	Marks	BL	СО	PO						
	$PART - A (25 \times 1 = 25 Marks)$ Answer ALL Questions									
1	Inte	1	1	1	1,1					
	. ,	Cerebrum Spinal cord	. ,	Cerebellum Diencephalon			*	2		
2	. Fuk	ushima introduces to rec	1	1	1	1,1 2				
		Self – organizing maps Quantums	• •	Neocognitron Soft computing						
3	. The	membrane potential of neuron in	ng state is,	1	1	1	1,1			
	(A)	– 70 mV	(B)	.70 mV				_		
	` ′	85 mV	` ,	- 85 mV						
4	. Info	rmation processing in human boo	-		1	1	1	1,1 2		
	(A) (C)	Happens only in cerebrum Happens only in receptors	` '	Happens only in cerebellum Is entirely decentralized						
5	. Hov	1	1	1	1,1					
	(A)	Continuously along axon	(B)	Jumps from one node of ranvier to the next				_		
	(C)	Jumps from cell body directly to synapse	(D)	Jumps from synapse to synapse						
6	. Con	1	1	2	1,1 2					
	(A)	Lateral recurrence	(B)	Direct recurrence						
	(C)	Indirect recurrence	(D)	Horizontal recurrence						
7	. An	1	2	2	1,1 2					
	\ -/	Feedforward network	V /-	Recurrent network						
	(C)	Self – organizing map	(D)	Convolutional network						
8	. The	other name of bias neuron is			1	1	2	1,1 2		
	(A)	Controlling neuron	(B)	Central neuron				-		
			` '	On neuron						

23NF6/7/18CSE388T

9. Fermi function is also called as	1	1 2		1, 12	20.	. Wha	at is the purpose of pseudo-inverse	e for RBFNN?	1	1	4 1	,1
(A) Heaviside function (B) Hyperbolic tangent (C) Binary classifier (D) Linear function				12				(B) Compute initial weights, when number of example greater than				2
10. The other name of weight matrix is	1	2 1	1, 12			(C)		RBF neurons (D) Compute initial weights, when				
(A) Symmetric matrix (C) Sparse matrix (D) Hinton diagram		1	12					number of example lesser than RBF neurons				
11 is an identity neuron.	1	1 3	3 1	,1	21.			ext layer per information processing	1	1	5 1	,1 2
(A) Input neuron (B) Output neuron (C) Hidden neuron (D) Convolutional neuron				2		` ′	Elman networks	(B) Jordan networks(D) RBF neural networks				
12. The perceptron can learn anything in finite time is called	1	1 3	3]	.,1	22	SON	M and ART are .		1	1	5 1	.1
 (A) Las Vegas algorithm (B) Mote Carlo algorithm (C) Perceptron convergence (D) Gradient descent theorem 				2	22.		Examples of supervised learning	(B) Examples of unsupervised learning			:	2
13 activation functions are used for backpropagation of error.	1	1 3	3 1	,1 2		(C)	Examples of reinforced learning	(D) Examples of semi-supervised learning				
(A) Simple unit (B) Semi – linear				-		~~	9					= "
(C) Constant (D) Increasing					23.		at is the main benefit of ART netw		1	1	5 1	,1 2
learning omits the summation in delta rule to learn the patterns	I	1 3	3 1	,1 2			- ·	(B) Stable and plasticity(D) Unstable with plasticity				
(A) Streaming (B) Offline (C) Online (D) Distributed					24.		weight matrix is used in equition.	n ART network for binary pattern	1	1	5 1	,1 2
15. How is the input to a neuron accumulated?	1	1 3	3 1	,1				(B) Top – down				
(A) Threshold value(B) Propagation function(C) Activation function(D) Output function				۷.	25,		ral gas is used to realize a	(D) Incomplete	1	1	5 1	,1
16. Which among the following are types of activation of neurons?	1	2 4	4 1	,1		(A)	SOM without grid structure	(B) SOM with grid structure			•	2
 (A) Synchronous, asynchronous (B) Symmetric, asymmetric (C) Symbolic, asymbolic (D) Folded, unfolded 				2		(C)	SOM with structured neurons	(D) SOM without structured neurons				
17. Which is true of the bias neuron?	1	1 4	4 1				$PART - B (5 \times 10 =$	50 Marks)	Marks	BL	CO P	0
(A) Each layer has single bias (B) It is optional neuron				2			Answer ALL Qu	,				
(C) Each neuron has separate bias (D) One bias neuron exists for a neuron network					26. a.		s of the brain:	in the functionalities of the following	10	2	1 1	,1 2
18. What is generalization?	1	1 4	4 1	,1 2		(i	i) Cerebellum					
(A) An indication of a good learner (B) Ability to solve unknown problems of same class				-			ii) Diencephalon v) Brain stem					
(C) An important benefit of (D) Used for weak learner learning							(OR)					
19. Which among the following is true regarding reinforcement learning?	1	1 4	4 1	,1 2	b.	. Witl	h a neat sketch, illustrate the electron	rochemical process in neuron.	10	2	1 1,	,1 2
 (A) Subset of supervised (B) Subset of unsupervised (C) Uses rewards for actions (D) Subset of structure learning 				.	27. a.	. Sum	nmarize the following components) Neurons	of network:	10	2	2 1 2	; 2
Page 2 of 4	3NF6/7/1	BCSE3	88T		Page 3 of 4				3NF6/7/	18CSI	E388T	