Building a Robot Judge: Data Science for Decision-Making

7. Instrumental Variables

Q&A Padlet

http://bit.ly/BRJ_Padlet7

Recap: Reading Response Essays

- ► Critical reading is an important skill:
 - useful for writing/reading reports
 - understanding the structure/code behind a paper why have papers and not textbooks?

Recap: Reading Response Essays

- Critical reading is an important skill:
 - useful for writing/reading reports
 - understanding the structure/code behind a paper why have papers and not textbooks?
- Some common patterns in the responses:
 - great summaries
 - more mixed on the evaluation

Another nice guide (now on HW Assignments page): https://www.icpsr.umich.edu/files/instructors/How_to_Read_a_Journal_Article.pdf

Recap: Study on Trustworthiness in Artworks

http://bit.ly/BRJ-W6-A3-padlet

Learning Objectives

- 1. Implement and evaluate machine learning pipelines.
- 2. Implement and evaluate causal inference designs.
 - ► Today: Instrumental Variables
- 3. Understand how (not) to use data science tools (ML and CI) to support expert decision-making.

Objectives in an Empirical Project

1. What is the policy problem or research question?

Objectives in an Empirical Project

- 1. What is the policy problem or research question?
- 2. Data:
 - obtain, clean, preprocess, and link.
 - Produce descriptive visuals and statistics on the text and metadata

Objectives in an Empirical Project

1. What is the policy problem or research question?

- 2. Data:
 - obtain, clean, preprocess, and link.
 - Produce descriptive visuals and statistics on the text and metadata
- 3. Econometrics:
 - Articulate a research design and the identification assumptions for procuring causal estimates.
 - Run regressions to produce the estimates.
 - Run identification checks and specification checks to enhance confidence in results.

Outline

Instrumental Variables

IV with Machine Learning

Deep IV

- \triangleright Example from Week 3: Causal effect of schooling S_i on earnings Y_i .
- ▶ There is an unobserved confounder (say ability A_i) correlated with schooling and earnings

$$Y_i = \alpha + \rho S_i \underbrace{\left(+\phi A_i\right)}_{\text{unobserved}} + \eta_i$$

▶ OLS estimates for $\hat{\rho}$ will be biased.

Instrumental Variable (IV): a variable Z_i , that is correlated with S_i , but not correlated with anything else affecting Y_i .

Instrumental Variable (IV): a variable Z_i , that is correlated with S_i , but not correlated with anything else affecting Y_i .

$$Y_i = \alpha + \rho S_i + \underbrace{\left(+\phi A_i\right)}_{\text{unobserved}} + \epsilon_i$$

$$\operatorname{Cov}[Z_i, S_i] \neq 0, \operatorname{Cov}[Z_i, A_i] = 0$$

ullet With a valid instrument, can procure causal estimates for $\hat{
ho}$

Instrumental Variables: Main Intuition

- ▶ We identify a source of variation in treatment assignment that is as good as random orthogonal to any relevant unobserved confounder.
- ▶ We compare individuals that, due to the instrument, are shifts between the control group and treatment group.

What is a valid instrumental variable?

1. Correlated with the causal variable, e.g. S_i :

$$Cov[Z_i, S_i] \neq 0$$

2. Uncorrelated with any other determinants of outcome Y:

$$Cov[Z_i, \epsilon_i] = 0$$

Identification requirement has two dimensions:

Exogeneity: None of the unobserved factors affects the instrument:

$$\epsilon_i \nrightarrow Z_i$$

► No"*Z*-confounders"

Violation of exogeneity:

Identification requirement has two dimensions:

Exogeneity: None of the unobserved factors affects the instrument:

$$\epsilon_i \nrightarrow Z_i$$

► No"Z-confounders"

Exclusion: Instrument only affects outcome through treatment variable:

$$Z_i \not \to \epsilon_i$$

Violation of exogeneity:

Violation of exclusion:

Good instruments are hard to find

- ▶ Good instruments come from a combination of three ingredients:
 - ► Good institutional knowledge
 - Economic theory
 - ► Last but not least: Originality

Good instruments are hard to find

- ▶ Good instruments come from a combination of three ingredients:
 - Good institutional knowledge
 - Economic theory
 - Last but not least: Originality
- Some usual sources of instruments:
 - ► Nature (e.g. genes, weather)
 - Assignment rules (e.g. random assignment of judges to cases)
 - 'Natural' experiments (e.g. the quarter of birth, conscription lottery, electoral timing...)

Zoom Poll 7.1: Good instruments for schooling

Zoom Poll 7.1: Good instruments for schooling

Violation of relevance:

Violation of exogeneity:

IV estimator

We have

$$Y_i = \alpha + \rho S_i + \epsilon_i$$

and an instrument Z_i where $Cov[Z_i, S_i] \neq 0$ and $Cov[Z_i, \epsilon_i] = 0$.

IV estimator

We have

$$Y_i = \alpha + \rho S_i + \epsilon_i$$

and an instrument Z_i where $Cov[Z_i, S_i] \neq 0$ and $Cov[Z_i, \epsilon_i] = 0$.

 \triangleright We can write ρ in terms of the population moments

$$Cov[Z_i, Y_i] = \rho Cov[Z_i, S_i] + \underbrace{Cov[Z_i, \epsilon_i]}_{=0}$$

IV estimator

We have

$$Y_i = \alpha + \rho S_i + \epsilon_i$$

and an instrument Z_i where $Cov[Z_i, S_i] \neq 0$ and $Cov[Z_i, \epsilon_i] = 0$.

ightharpoonup We can writeho in terms of the population moments

$$Cov[Z_i, Y_i] = \rho Cov[Z_i, S_i] + \underbrace{Cov[Z_i, \epsilon_i]}_{=0}$$

► Thus:

$$\rho = \frac{\mathsf{Cov}[Z_i, Y_i]}{\mathsf{Cov}[Z_i, S_i]}$$

with sample estimate

$$\hat{\rho}_{\text{IV}} = \frac{\sum_{i=1}^{n} Z_i Y_i}{\sum_{i=1}^{n} Z_i S_i}$$

// stata
ivreghdfe wages (schooling = instrument), absorb(FE) cluster(FE)

Examples

Have to look at papers if curious

- Immigration
 - ► Networks of immigrants (Card 1991)
- ► Does police decrease crime?
 - ► Electoral cycles (Levitt 1997)
- The impact of violent movies on crime
 - Blockbuster movies (Dahl and DellaVigna 2009)

- ➤ The effect of preschool television exposure on standardized test scores during adolescence:
 - Gentzkow and Shapiro 2008
- ► The Potato's Contribution to Population and Urbanization:
 - Nunn and Nancy Qian 2011
- Influence of mass media on U.S. government response to natural disasters
 - Eisensee and Strömberg 2007

Two-Stage Least Squares (2SLS)

IV estimates are equivalent to running two separate OLS regressions:

1. Estimate "first stage", regressing treatment on instrument:

$$S_i = \gamma Z_i + \nu_i$$

Two-Stage Least Squares (2SLS)

IV estimates are equivalent to running two separate OLS regressions:

1. Estimate "first stage", regressing treatment on instrument:

$$S_i = \gamma Z_i + \nu_i$$

2. Form prediction $\hat{S}_i = \hat{\gamma} Z_i$ and estimate the "second stage", regressing outcome on first-stage-predicted treatment:

$$Y_i = \rho \hat{S}_i + \epsilon_i$$

Can we test validity of IV?

- ls Z_i correlated with causal variable of interest, S_i ?
 - ▶ YES: check for significance of first stage (first-stage F-statistic)

Can we test validity of IV?

- ▶ Is Z_i correlated with causal variable of interest, S_i ?
 - ▶ YES: check for significance of first stage (first-stage F-statistic)
- ▶ Is Z_i uncorrelated with any other determinants of Y_i ?
 - ► Not directly testable relies on institutional knowledge
 - but often indirect ways to probe exogeneity and exclusion

Weak Instruments

The bias of 2SLS can be written as:

$$\mathsf{plim}\hat{\rho} = \rho + \frac{\mathsf{Corr}[Z, \epsilon]}{\mathsf{Cov}[S, Z]} \cdot \frac{\sigma_{\epsilon}}{\sigma_{S}}$$

- ▶ When the instrument is weakly correlated with the endogenous regressor, the bias increases.
- ▶ Kleibergen-Paap First-stage F-statistic (reported automatically by ivreghdfe with cluster() option) should be higher than 10.

Reduced Form

"Reduced Form" (RF) means regressing the outcome directly on the instrument:

$$Y_i = \alpha + \phi Z_i + \epsilon_i$$

- papers will normally report this along with 2SLS estimates.
- for causal interpretation, RF requires exogeneity but not exclusion.

Instruments with Observed Confounders

▶ Recall that with OLS, observed confounders are not a problem because we can adjust for them.

Instruments with Observed Confounders

- ▶ Recall that with OLS, observed confounders are not a problem because we can adjust for them.
- ▶ WithZ-confounders, we have the same property.

▶ IV independence assumption can be written as $Cov[Z_i, \epsilon_i | X] = 0$.

Practice: Effect of Fox News on COVID-19 Social Distancing

http://bit.ly/BRJ-W7-FNC-doc

Fuzzy RD = IV

▶ Sharp RD (regression discontinuity): treatment status is deterministic/discontinuous function of running variable (x_i) , with cutoff c:

$$Y_i = \alpha + \rho \mathbb{I}[x_i > c] + f(x_i)'\beta + \epsilon_i$$

// stata
reghdfe death_rate above_21 age age_squared, noabsorb cluster(FE)

Fuzzy RD = IV

Sharp RD (regression discontinuity): treatment status is deterministic/discontinuous function of running variable (x_i) , with cutoff c:

$$Y_i = \alpha + \rho \mathbb{I}[x_i > c] + f(x_i)'\beta + \epsilon_i$$

// stata

reghdfe death_rate above_21 age age_squared, noabsorb cluster(FE)

► **Fuzzy RD:** being above threshold increases **probability** of receiving treatment, rather than deterministically changing treatment. Use RD as first stage in 2SLS:

$$D_{i} = \alpha + \gamma \mathbb{I}[x_{i} > c] + \eta_{i}$$
$$Y_{i} = \alpha + \rho D_{i} + \epsilon_{i}$$

- instrument is a dummy variable for being above cutoff
- endogenous variable is whether treatment is actually assigned.
- include polynomials in running variable as covarates.

reghdfe death_rate (drinker = above_21) age age_squared, noabsorb cluster(FE)

Outline

Instrumental Variables

IV with Machine Learning

Deep IV

Lasso IV with Weak Instruments

Consider the problem of a sparse first stage:

$$S_i = \alpha + \mathbf{Z}_i' \boldsymbol{\phi} + \nu_i$$

- \triangleright Z_i is a high-dimensional vector
- ▶ many elements of $\phi = (\phi_1, ... \phi_{n_z})$ are zero, $\phi_k \approx 0$
- but we don't know which.

Lasso IV with Weak Instruments

Consider the problem of a sparse first stage:

$$S_i = \alpha + \mathbf{Z}_i' \boldsymbol{\phi} + \nu_i$$

- \triangleright Z_i is a high-dimensional vector
- ▶ many elements of $\phi = (\phi_1, ... \phi_{n_z})$ are zero, $\phi_k \approx 0$
- but we don't know which.

Solution:

- ▶ Train lasso (or elastic net), $S \sim \text{Lasso}(Z)$
 - use CV grid search across the whole dataset to select L1 penalty
 - ightharpoonup get subset of instruments with non-zero coefficients, Z_{Lasso} .
- ▶ Run 2SLS with Z_{Lasso} as instrument(s).
- This is the optimal set of instruments under sparsity(Belloni et al 2014).

Heterogeneous Instrument Compliance

- Instruments do not usually affect all individuals equally.
 - e.g., some people won't go to school even if they win a scholarship.

Heterogeneous Instrument Compliance

- Instruments do not usually affect all individuals equally.
 - e.g., some people won't go to school even if they win a scholarship.
 - first stage is driven by "compliers" (responders to instrument).

Heterogeneous Instrument Compliance

- Instruments do not usually affect all individuals equally.
 - e.g., some people won't go to school even if they win a scholarship.
 - first stage is driven by "compliers" (responders to instrument).
- Standard 2SLS estimates give a "local average treatment effect" on the complier population.

Estimating Heterogeneous First Stage

► Can use machine learning to estimate treatment effect heterogeneity in the first stage:

$$S = \gamma(X)Z + \nu$$

Estimating Heterogeneous First Stage

► Can use machine learning to estimate treatment effect heterogeneity in the first stage:

$$S = \gamma(X)Z + \nu$$

- ▶ E.g., if instrument is binary, use T-Learner Method (any machine learning model):
 - $\blacktriangleright \text{ Learn } \eta_0(X) = \mathbb{E}(S|X,Z=0)$
 - $\blacktriangleright \text{ Learn } \eta_1(X) = \mathbb{E}(S|X,Z=1)$
- ▶ Conditional first stage effect estimate is $\hat{\gamma}(X) = \eta_1(X) \eta_0(X)$.

Estimating Heterogeneous First Stage

Can use machine learning to estimate treatment effect heterogeneity in the first stage:

$$S = \gamma(X)Z + \nu$$

- ▶ E.g., if instrument is binary, use T-Learner Method (any machine learning model):
 - $\blacktriangleright \text{ Learn } \eta_0(X) = \mathbb{E}(S|X,Z=0)$
 - ▶ Learn $\eta_1(X) = \mathbb{E}(S|X,Z=1)$
- ▶ Conditional first stage effect estimate is $\hat{\gamma}(X) = \eta_1(X) \eta_0(X)$.
- ► Can be used to analyze complier population, or to re-weight regressions to get closer to an average treatment effect.

Outline

Instrumental Variables

IV with Machine Learning

Deep IV

Deep Instrumental Variables

Deep Instrumental Variables

- ▶ Deep IV: A Flexible Approach for Counterfactual Prediction
 - ► Hartford, Lewis, Leyton-Brown, and Taddy (2017)
 - use deep learning to extend 2SLS to high-dimensional settings

Deep Instrumental Variables

- ▶ Deep IV: A Flexible Approach for Counterfactual Prediction
 - ► Hartford, Lewis, Leyton-Brown, and Taddy (2017)
 - use deep learning to extend 2SLS to high-dimensional settings
- Causal effect of interest:

$$f(S;\theta) = \mathbb{E}\{Y|S\}$$

where w could be high-dimensional and $f(\cdot)$ could be highly non-linear.

First stage

In first stage, approximate $g(S|\gamma(Z))$, the distribution of S:

- ▶ assume that $g(\cdot)$ is a mixture density network (a mixture of gaussian distributions) where the parameter vector $\gamma(\cdot)$ includes the weights, means, and variances (Bishop 2006).
 - $ightharpoonup \gamma(Z)$ is a modeled as a feed-forward neural network.

First stage

In first stage, approximate $g(S|\gamma(Z))$, the distribution of S:

- ▶ assume that $g(\cdot)$ is a mixture density network (a mixture of gaussian distributions) where the parameter vector $\gamma(\cdot)$ includes the weights, means, and variances (Bishop 2006).
 - $ightharpoonup \gamma(Z)$ is a modeled as a feed-forward neural network.
- $g(\cdot)$ has to be a parametrized distribution because Deep IV requires that the distribution be integrated in the second stage.
- validate first-stage relevance in in held-out test set.

Second Stage

lacktriangle In second stage, want to predict $\hat{Y}(S; \theta)$, approximated by feed-forward neural net.

Second Stage

- In second stage, want to predict $\hat{Y}(S;\theta)$, approximated by feed-forward neural net.
- ▶ Hartford et al (2017) show that causal estimates for θ are obtained by minimized the conditional loss function

$$\mathcal{L}(\theta) = \sum_{i} [Y_i - \int \hat{Y}(S; \theta) d\hat{g}(S|\gamma(Z_i))]^2$$

▶ this is the true Y minus predicted \hat{Y} , but \hat{Y} is conditioned on the instrument-predicted treatment distribution \hat{g} .

Second Stage

- In second stage, want to predict $\hat{Y}(S;\theta)$, approximated by feed-forward neural net.
- ▶ Hartford et al (2017) show that causal estimates for θ are obtained by minimized the conditional loss function

$$\mathcal{L}(\theta) = \sum_{i} [Y_i - \int \hat{Y}(S; \theta) d\hat{g}(S|\gamma(Z_i))]^2$$

- ▶ this is the true Y minus predicted \hat{Y} , but \hat{Y} is conditioned on the instrument-predicted treatment distribution \hat{g} .
- ▶ The integral in $\mathcal{L}(\theta)$ is approximated by

$$\int \hat{Y}(S;\theta)d\hat{g}(S|\gamma(Z_i)) \approx \frac{1}{m} \sum_{i}^{m} \hat{Y}(\tilde{S}(Z_i);\theta)$$

where you make m draws from the estimated treatment distribution given Z_i (the instruments for observation i).

Like 2SLS, a prediction for the endogenous regressor with the instruments is used during second-stage estimation.

Practice: Adding Instruments to Custom Causal Graphs

http://bit.ly/BRJ-W7-graphs-doc

Outline

Appendix Slides

$$\beta_{OLS} = (X'X)^{-1}(X'Y)$$

 $\beta_{IV} = (Z'X)^{-1}(Z'Y)$

$$\beta_{OLS} = (X'X)^{-1}(X'Y)$$
$$\beta_{IV} = (Z'X)^{-1}(Z'Y)$$

$$\mathbb{E}[\beta_{OLS}] = \mathbb{E}[(X'X)^{-1}(X'Y)] = \mathbb{E}[(X'X)^{-1}(X'(X'\beta + U))]$$
$$= \beta + \mathbb{E}[(X'X)^{-1}(X'U)]$$

$$\beta_{OLS} = (X'X)^{-1}(X'Y)$$
$$\beta_{IV} = (Z'X)^{-1}(Z'Y)$$

$$\mathbb{E}[\beta_{OLS}] = \mathbb{E}[(X'X)^{-1}(X'Y)] = \mathbb{E}[(X'X)^{-1}(X'(X'\beta + U))]$$

= $\beta + \mathbb{E}[(X'X)^{-1}(X'U)]$

$$\mathbb{E}[IV] = \mathbb{E}[(Z'X)^{-1}(Z'Y)] = \mathbb{E}[(Z'X)^{-1}(Z'(X'\beta + U))]$$

= $\beta + \mathbb{E}[(Z'X)^{-1}(Z'U)]$

$$\beta_{OLS} = (X'X)^{-1}(X'Y)$$
$$\beta_{IV} = (Z'X)^{-1}(Z'Y)$$

$$\mathbb{E}[\beta_{OLS}] = \mathbb{E}[(X'X)^{-1}(X'Y)] = \mathbb{E}[(X'X)^{-1}(X'(X'\beta + U))]$$

= $\beta + \mathbb{E}[(X'X)^{-1}(X'U)]$

$$\mathbb{E}[IV] = \mathbb{E}[(Z'X)^{-1}(Z'Y)] = \mathbb{E}[(Z'X)^{-1}(Z'(X'\beta + U))]$$

= $\beta + \mathbb{E}[(Z'X)^{-1}(Z'U)]$

$$\mathbb{E}[(X'X)^{-1}(X'U)] \geqslant \mathbb{E}[(Z'X)^{-1}(Z'U)]?$$