Exercices de Statistiques

Kamila AKPAKI

January 22, 2025

Exercice 1 : Loi normale et statistiques descriptives

Énoncé complet

- 1. On mesure le poids d'un bol de céréales supposé suivre une loi normale $X\sim N(\mu,\sigma^2)$, avec $\mu=1\,{\rm kg}$ et $\sigma=0.2\,{\rm kg}$.
 - 1. \overline{X} donnera 1 kg et s donnera 0.2.
 - 2. \overline{X} ne donnera pas 1 kg et s ne donnera pas 0.2.
 - 3. \overline{X} peut donner 1 kg et s peut donner 0.2.
 - 4. \overline{X} peut donner 1 kg, mais il est peu probable que s donne 0.2.
- 2. 25 clients achètent chacun n=4 mesures de céréales. On note $\overline{X}_{\text{global}}$ la moyenne des moyennes des clients et s l'écart-type. Quelle affirmation est correcte ?
 - 1. \overline{X}_{global} donnera 1 kg et s donnera 0.2.
 - 2. \overline{X}_{global} ne donnera pas 1 kg et s ne donnera pas 0.2.
 - 3. $\overline{X}_{\text{global}}$ peut donner 1 kg mais s ne peut pas donner 0.2.
 - 4. \overline{X}_{global} peut donner 1 kg, et il est fort probable que s donne 0.2.
 - 3. Probabilité que le poids moyen des 4 mesures dépasse 1.2 kg.
 - 1. Il peut utiliser l'écart-type empirique s (non corrigé).
 - 2. Il doit utiliser l'écart-type corrigé $s.\,$
 - 3. Qu'il utilise s ou s, il aura les mêmes résultats.
 - 4. Aucune des réponses précédentes.
- 4. Nombre minimal de mesures pour que la moyenne empirique soit dans un rayon de $0.15\,\mathrm{kg}$ avec 95% de confiance :

$$n = \left(\frac{1.96 \cdot 0.2}{0.15}\right)^2$$

Solution détaillée

Question 1 : Moyenne et écart-type empiriques. - On sait que $\overline{X} \sim N(\mu, \sigma^2/n)$ et s dépend des valeurs individuelles de l'échantillon. - \overline{X} peut donner 1 kg par hasard, mais s ne donnera pas nécessairement 0.2 car il est estimé à partir d'un petit échantillon (n=4). - Réponse correcte : (d).

Question 2 : Moyenne des moyennes. - Avec n=25 clients ayant chacun n=4, $\overline{X}_{\text{global}}$ est une moyenne des moyennes individuelles. - $\overline{X}_{\text{global}}$ a une variance réduite, ce qui rend probable qu'il soit proche de 1 kg. - Pour s, l'échantillon devient plus représentatif et tend vers $\sigma=0.2$. - Réponse correcte : (d).

Question 3 : Probabilité que $\overline{X}>1.2\,\mathrm{kg}$. - On calcule avec $Z=\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$.

$$Z = \frac{1.2 - 1}{0.2/\sqrt{4}} = 2.$$

$$P(\overline{X} > 1.2) = P(Z > 2) = 1 - \Phi(2) = 1 - 0.9772 = 0.0228.$$

- Puisque n=4 est petit, on doit utiliser l'écart-type corrigé. - Réponse correcte : (b).

Question 4 : Taille minimale n. - Formule pour un intervalle de confiance donné :

$$n = \left(\frac{z_{1-\alpha/2} \cdot \sigma}{E}\right)^2,$$

où $z_{1-\alpha/2}=1.96,\,\sigma=0.2,\,E=0.15.$ - Calcul :

$$n = \left(\frac{1.96 \cdot 0.2}{0.15}\right)^2 = 6.53^2 = 54.$$

- Réponse correcte : (b).

Exercice 2 : Loi géométrique et estimation paramétrique

Énoncé complet

On suppose que le nombre de candidatures avant un recrutement suit une loi géométrique $X \sim \text{Geom}(p)$.

- 1. Donner l'information de Fisher:
 - (a) $I(p) = \frac{1}{p}$.
 - (b) $I(p) = \frac{1}{1-p}$.
 - (c) $I(p) = \frac{1}{p(1-p)}$.

(d)
$$I(p) = p(1-p)$$
.

2. Trouver l'estimateur du maximum de vraisemblance \hat{p}_n :

(a)
$$\hat{p}_n = \frac{1}{n \sum_{i=1}^n X_i}$$
.

(b)
$$\hat{p}_n = \frac{1}{\sum_{i=1}^n X_i}$$
.

(c)
$$\hat{p}_n = \frac{n}{\sum_{i=1}^n X_i}$$
.

(d)
$$\hat{p}_n = \frac{1}{n^2 \sum_{i=1}^n X_i}$$
.

3. Identifier la statistique pivotale utilisée :

(a)
$$Z = \frac{\hat{p}_n - p}{\sqrt{\hat{p}_n (1 - \hat{p}_n)/n}}$$
.

(b)
$$Z = \frac{\hat{p}_n - p}{\hat{p}_n}$$
.

(c)
$$Z = \hat{p}_n^2 (1 - \hat{p}_n)$$
.

(d)
$$Z = \hat{p}_n - p$$
.

4. Donner l'intervalle de confiance asymptotique pour p au niveau $1-\alpha$:

(a)
$$\left[\hat{p}_{n} - z_{1-\alpha/2} \sqrt{\frac{\hat{p}_{n}(1-\hat{p}_{n})}{n}}, \hat{p}_{n} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}_{n}(1-\hat{p}_{n})}{n}}\right].$$

(b)
$$\left[\hat{p}_{n} - z_{\alpha/2} \sqrt{\frac{\hat{p}_{n}(1 - \hat{p}_{n})}{n}}, \hat{p}_{n} + z_{\alpha/2} \sqrt{\frac{\hat{p}_{n}(1 - \hat{p}_{n})}{n}}\right].$$

(c)
$$\left[\hat{p}_n - z_\alpha \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}, \hat{p}_n + z_\alpha \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}\right].$$

(d)
$$\left[\hat{p}_n - z_{\alpha/2}\sqrt{\frac{1}{n}}, \hat{p}_n + z_{\alpha/2}\sqrt{\frac{1}{n}}\right].$$

Solution détaillée

Question 1 : Information de Fisher. La fonction de vraisemblance est $L(p) = p^k (1-p)^{n-k}$. L'information de Fisher est calculée à partir de la dérivée seconde de la log-vraisemblance. Réponse correcte : (c).

Question 2 : Estimateur du maximum de vraisemblance. L'estimateur du maximum de vraisemblance pour une loi géométrique est donné par $\hat{p}_n = \frac{1}{\sum_{i=1}^n X_i}$. Réponse correcte : (b).

Question 3 : Statistique pivotale. La statistique pivotale est $Z = \frac{\hat{p}_n - p}{\sqrt{\hat{p}_n(1 - \hat{p}_n)/n}}$. Réponse correcte : (a).

 $\bf Question~4: Intervalle de confiance. L'intervalle de confiance asymptotique est donné par :$

$$\left[\hat{p}_n - z_{1-\alpha/2} \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}, \hat{p}_n + z_{1-\alpha/2} \sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}\right].$$

Réponse correcte : (a).