How are the primed coordinates related?

$$X' = (\cos \phi) X + (\sin \phi) y$$

 $y' = -(\sin \phi) X + (\cos \phi) y$

$$\Gamma^{12} = x^2 + y^2 = \Gamma^2$$
 Γ^2 is an invariant quantity

$$X'=X(x-v+t)=X(x)-(x)+7$$
 Somewhat $t'=X(t-v/2)=-(\frac{vx}{c})x+(x)t$ like a cotation

Notice,

MINKOWSKI Spacetime

Allow For Q Spacial Dimensions Fash of light @ t=0, X=Y=0

Time Like, Noul, and Spacetime intervals

The position four vector

Is there an invariant quantity, Like 12, that we can construct

$$Xu = (ct_1 \times , Y_1 \ge)$$
 $M = o_1 t_1 \ge , 3$
= (X_0, X_1, X_2, X_3)

$$5^2 = -C^2 + X^2 + Y^2 + Z^2$$
 is invariant $5^2 = 5^{12}$

For a fish of light, the sphere has a Radius of $R^2 = c^2 + c^2 = x^2 + y^2 + 2^2$

Define the spacetime interval, ΔS , is $\Delta S^2 = -(CoE)^2 + (DX)^2 + (DY)^2 + (DZ)^2$ $-40 \cdot Distance' between 2 events$ -An invariant Guartity $\Delta S^2 (an be positive, negative, or Zero)$

$$C^{2}e^{12} = x^{12} + y^{12} + z^{12}$$

$$O = -C^{2}e^{2} + x^{2} + y^{2} + z^{2}$$

When $\Delta S^2 > 0$,

- The Spatial Seperation is greater than the temporal seperation

- Spacelike Seperation

- True in all I.R.F

Notice

There exists a Frame where
$$\Delta t = 0$$
, so $\Delta S^2 = \Delta x^2 + \Delta y^2 + \Delta z^2 = \Delta l^2 / Proper / length)^2$

when DS² < 0

- The temporal Seperation is greater than the Spatial Seperation For 2 events

- Timelike Seperation

- True in all I.R.F's

Notice :

Two events occur at the same place

$$\Delta r^2 = \Delta x^2 + \Delta y^2 + \Delta z^2 = 0$$

$$\Delta s^2 = -c^2 (PL)^2 = -c^2 \Delta \gamma^2$$

For observer not at rest RT this frame

$$\Delta S^{2} = -C^{0}\Delta t^{2} + \Delta x^{2} + \Delta \gamma^{2} + \Delta z^{2}$$

$$= -C^{2}\Delta t^{2} \left(1 - \frac{1}{C^{2}} \left(\frac{\Delta x^{2}}{\Delta t^{2}} + \frac{\Delta y^{2}}{\Delta t} z + \frac{\Delta z^{2}}{\Delta t^{2}} \right) \right)$$

$$= -C^{2}\Delta t^{2} \left(1 - V^{2}/c^{2} \right) = \Delta S^{2}$$

$$\Delta S^2 = G = -C^2 \Delta t^2 + \Delta x^2$$
 $\Delta y = 0 = -0$
- Null Seperation

Internal between 2 events along a light ray ox = test

$$-c^{2}\Delta T^{2} = -c^{2}\Delta t^{2} \left(1 - v^{2}/c^{2}\right)$$

$$\Delta T^{2} = \Delta t^{2} \left(1 - v^{2}/c^{2}\right)$$

$$\Delta T = \Delta t \sqrt{1 - v^{2}/c^{2}} \quad \therefore PL \ \text{Cloch mis Slow}$$

Samp 1

According to 5 observer

Notice ! For x-axis, &= 0 everywhere For Ct-axis, X=0

For a light ray proprigating in the L+x) direction ax=cat - line with a slope of 1

L.T'S

$$x' = \delta(x - v_{\Delta t}) = 0$$
 $x' = \delta(x - v_{Ct})$
 $t' = \delta(t - v_{Cx})$ $ct' = \delta(ct - v_{Cx})$

For the ct' axis, Set x'=0 For the x'-axis, Set ct'=0 $x-\frac{1}{C}ct=0 \quad ct=\frac{1}{C}x \qquad ct-\frac{1}{C}x$ $ct-\frac{1}{C}x$

5=B, S'=C

E,: C leaves B

Eg: B fires at c

E3: C fires at B

Ey: C photon reaches B

E5: B photon reaches c

$$D_{13} = V(t_3 - t_1) = CDt_{34}$$
 $(3-5)C(x_1) = CDt_{34}$
 $\Delta x_{13} = 0$
 $\Delta t_{34} = 34wk$
 $\Delta t = \delta(\Delta t' + \frac{v_0 x_1^2}{2})$

14 = 113 + 15t34 t13=8(t13+ 1/2)

t13 = o(t13') = quk + qwk = 2 nk + = = = (week) = = = wk DE14= awk

P15 = V(t5-t1) = ((t5-t2) st26 = 15-15t12 VAt15 = ((6+15 - 0+12) 1 cwx = ((-V) 6t15 luk = (1- 1/c) Dtig = = = Dtig Atis = Suk

J-sees Ez First S-Sees Ez First