MAST30001 Stochastic Modelling

Tutorial Sheet 9

1. Show that in in M/M/1 queue with arrival rate λ and service rate $\mu > \lambda$, the expected lengths of the idle and busy periods are $1/\lambda$ and $1/(\mu - \lambda)$, respectively. [Hint: the proportion of time the server is idle is equal to the stationary chance the system is empty.]

Since the arrivals follow a Poisson process (using in particular the memoryless property of the exponential), the time between the moment the system clears and the next arrival is exponential rate λ and so the expected length of an idle period is the expectation of this exponential, that is, $1/\lambda$.

If b is the expected length of a busy period and $\pi_0 = 1 - \lambda/\mu$ is the long run proportion of time the system is empty, then

$$\pi_0 = \frac{1/\lambda}{1/\lambda + b},$$

or
$$b = 1/(\mu - \lambda)$$
.

2. A rental car washing facility can wash one car at a time. Cars arrive to be washed according to a Poisson process with rate 3 per day and the service time to wash a car is expending with the 17/14 tays. Of Esc. the company 150 per day to operate the facility and the company loses \$10 per day for each car tied up in the washing facility. The company can upgrade the facility to get down to a mean service time of 1/4 days at heteroisof **per day Word Chr largest for can be for this upgrade to make economic sense?

We can model the number of cars in the wash as an M/M/1 queue with arrival rate $\lambda = 3$ and current service cate $\mu = 24/7$ and so with stationary distribution geometric—1 with parameter (21/12111) and (21/1211) are also as a sum of (21/1211) and (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also as a sum of (21/1211) and (21/1211) are also

$$150 + 10 \times 7 = 220.$$

If the company pays C dollars per day to increase their service rate to 4, then similarly their new cost per day will be

$$150 + C + 10 \times 3 = 180 + C$$
.

Thus they should spend no more than 40 dollars per day to increase their service rates.

- 3. $(M/G/\infty \text{ queue})$ In a certain communications system, information packets arrive according to a Poisson process with rate λ per second and each packet is processed in one second with probability p and in two seconds with probability 1-p, independent of the arrival times and other service times. Let N_t be the number of packets that have entered the system up to time t and X_t be the number of packets in the system (including those being served) at time t.
 - (a) Is $(X_t)_{t\geq 0}$ a Markov chain? (No detailed argument is necessary here, just think about it heuristically.)

 X_t is not a Markov chain because the chance of the chain decreasing by one in the interval (t, t+h) given the value of the chain at time t also depends on the times of the arrivals in the past.

- (b) If X₀ = 0, what is the distribution of X₂?
 If A_t are the arrivals that require one second of service, and B_t are the arrivals requiring two seconds of service, then A_t and B_t are independent Poisson processes with rates pλ and (1 p)λ. And X₂ = (N₂ N₁) + B₁; the sum of two independent Poisson variables (using independent increments) with respective means λ and (1 p)λ. So X₂ is Poisson with mean λ(2 p).
- (c) If $X_0 = 0$, is there a "stationary" limiting distribution $\pi_k = \lim_{t \to \infty} P(X_t = k)$? If so, what is it? X_t only depends on the number of arrivals of the two different types in the interval (t-2,t) since all arrivals previous to this time have left the system. As in part (b), we can write $X_t = (N_t N_{t-1}) + (B_{t-1} B_{t-2})$, and the two variables in parentheses are independent Poisson with respective means λ and $(1-p)\lambda$. So for $t \geq 2$, X_t is Poisson with mean $\lambda(2-p)$.
- (d) If $X_0 = N_0 = 0$, what is the joint distribution of X_t and N_t ? When $0 < t \le 1$, then $X_t = N_t$ and they're both distributed as Poisson mean t. The case 1 < t < 2 is similar but easier than $t \ge 2$; the latter case we show here. Assuming $t \ge 2$, then as above we write $X_t = (N_t N_{t-1}) + (B_{t-1} B_{t-2})$ and also $N_t = X_t + (A_{t-1} A_{t-2}) + N_{t-2}$, and note that by the comments of part (b), X_t is independent of $(A_{t-1} A_{t-2})$ and these variables are both independent A_t S1. Since A_t is independent of A_t which implies that for $0 \le t \le n$,

https://powcoder