Time Series

$$44 \text{ Smoothing with k = 4} = \frac{1}{4} 7_{10} + \frac{1}{4} 7_{4} + \frac{1}{4} 7_{8} + \frac{1}{4} 7_{2}$$

Weights for Exponential Smoothing with w = 0.1

Weights for Exponential Smoothing with w = 0.5

Weights for Exponential Smoothing with w = 0.7

Exponential Smoothing

- ▶ MA distributes the weight equally to the recent observations
- \blacktriangleright Exponential Smoothing controls the weights of the recent observations by w

$$s_t = \underbrace{\frac{\mathbf{y}_t + w \mathbf{y}_{t-1} + w^2 \mathbf{y}_{t-2} + \ldots + w^t \mathbf{y}_0}{1/(1-w)}}_{1/(1-w)}$$

- ightharpoonup Smaller w smooths the series more lightly.
- lacktriangle Greater w smooths the series more strongly.

Another Formula:

Exponential Smoothing can be calculated by

$$\begin{split} s_1 &= y_1, \text{and} \\ s_t &= s_{t-1} + (1-w)(y_t - s_{t-1}) \\ &= (1-w)y_t + ws_{t-1} \end{split}$$

Notice that: when $w \to 0$, $s_t \to y_t$, or little smoothing has taken.

Exponential Smoothing with w = 0.1

Exponential Smoothing with w = 0.5

Exponential Smoothing with w = 0.9

Double Exponential Smoothing

 t
 y_t s

 1
 1
 s

 2
 s_t s_t

 3
 s_t s_t

 4
 s_t

 5
 s_t

 12

$$\begin{split} s_1 &= y_1, \text{ and} \\ s_t &= s_{t-1} + (1-w)(y_t - s_{t-1}) \\ &= \underbrace{(1-w)y_t + ws_{t-1}} \\ s_t &= t_t = 1 \\ s_2 &= (1-w)t_2 + ... + ... + ... + ... + ... + ... \\ &= ... + ... + ... + ... + ... + ... + ... + ... \\ &= ... + ... + ... + ... + ... + ... + ... + ... \\ s_3 &= (1-... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... \\ s_3 &= (1-... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... + ... \\ s_4 &= ... +$$

= .8 * 12 + .2 * 7.3

= 11.06.

Example

You are given the following time series

\overline{t}	1	2	3	4	5
y_t	1	3	5	8	13

Assume that this is a linear trend time series. Using double exponential smoothing with w=.8 to estimate the trend (slope) and forecast y_6 .