Apellido y nombre:	Nº de Padrón:				
Fecha de la evaluación: / /	Año cursada :	Cuatrimestre:	Nota:	()

Evaluación Integradora Tema 1

Pregunta 1: Para obtener las raíces de la ecuación cuadrática $x^2 - 10^8 x + \frac{1}{4}$ se programaron dos métodos en una computadora:

- Uno algebraico $(x_{1;2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a});$ Uno numérico $(x_1 = \frac{-b + \sqrt{b^2 4ac}}{2a})$ si b < 0 o $x_1 = -\frac{b + \sqrt{b^2 4ac}}{2a}$ si b > 0 y

Los resultados obtenidos fueron:

- Algoritmo algebraico $(x_1 = 10^8, x_2 = 0);$
- Algoritmo numérico $(x_1 = 10^8, x_2 = 2.5 \cdot 10^{-9}).$

¿Puede explicar la razón de la diferencia? ¿Cuál de los dos arroja el resultado correcto?

Pregunta 2: Suponga que dispone de un conjunto de 20 pares $[t_i; y_i]$ que representan puntos de una trayectoria en función del tiempo y se necesita aproximar la velocidad instantánea en esos puntos.

- 1. Indique algún método para obtener la velocidad pedida.
- 2. Alguien sugiere usar un método de interpolación polinomial para obtener un polinomio y luego derivarlo. ¿Qué opina acerca de esa sugerencia?

Pregunta 3: Un método numérico para resolver una ecuación diferencial ordinaria de orden 2 es el siguiente:

$$y_{i+1} = y_i + h y_i' + \frac{h^2}{2!} f(x_i; y_i; y_i')$$

$$y_{i+1}' = y_i' + h f(x_i; y_i; y_i')$$

- 1. ¿Puede determinar el orden de convergencia del método?
- 2. ¿Cómo podría mejorar ese orden?

Apellido y nombre:		Nº de	Padrón:		
Fecha de la evaluación: / /	Año cursada :	Cuatrimestre:	Nota:	(,

Evaluación Integradora Tema 2

Pregunta 1: Para la función $F(x) = (x-2)^5$ usted disponde de dos algoritmos:

- 1. Algoritmo 1: $P(x) = (x-2)^5$;
- 2. Algoritmo 2: $P_1(x) = x^5 10x^4 + 40x^3 80x^2 + 80x 32$,

que se han graficado en la figura a continuación:

¿Por qué al calcular los valores de F(x) en el intervalo [1,995; 2,005], los resultados son tan diferentes? (Referencia, la curva roja representa $P_1(x)$)

Pregunta 2: La Interpolación por Trazadores Cúbicos (o por «splines») es una alternativa para interpolar un conjunto de gran cantidad de puntos y una distribución uniforme de los mismos. Se propone la siguiente expresión para aproximar la derivada primera en x_0 :

$$f'(x_0) \cong \frac{-25y_0 + 48y_1 - 36y_2 + 16y_3 - 3y_4}{12h}.$$

Indique que tipo de «spline» necesita las derivadas en los extremos y evalúe si la propuesta es conveniente para ser aplicada.

Pregunta 3: Usted debe programar una calculadora de bolsillo para que calcule:

$$\int_{a}^{b} f(x) \, \mathrm{d}x.$$

- 1. ¿Qué método sugiere para obtener la mejor aproximación posible?;
- 2. Suponga que una posibilidad incluye conocer las derivadas en los extremos. ¿Cómo puede obtener un algoritmo que las utilice?

Firma	alumno

Apellido y nombre:		Nº de	Padrón:	
Fecha de la evaluación://	Año cursada :	Cuatrimestre:	Nota:	(

Evaluación Integradora Tema 3

Pregunta 1: En el libro **Análisis Numérico** de Burden & Faires se incluye la siguiente fórmula de integración numérica:

$$\int_{a}^{b} f(x)dx = \frac{3h}{8} [f(a) + 3f(a+h) + 3f(b-h) + f(b)],$$

donde $h=\frac{b-a}{3}$, también conocida como **Regla de tres octavos de Simpson**. El error está dado por: $E(h)=(b-a)\,\frac{h^4}{80}f^{iv}(\xi),\,\mathrm{con}\,\,\xi\in[a;b].$

- 1. ¿Lo utilizaría para programarla en una calculadora de bolsillo?;
- 2. ¿Es posible obtener un algoritmo cuyos resultados aproximen mejor la integral?
- Pregunta 2: El Método de los Gradientes Conjugados (MGC) para resolver Sistemas de Ecuaciones Lineales requiere que la matriz de coeficientes del sistema sea simétrica y definida positiva:
 - 1. Indique si este método puede aplicarse para resolver un sistema que surge de plantear una interpolación polinomial mediante trazadores cúbicos («spline») de cualquier tipo, justificando su respuesta;
 - 2. Asimismo, ¿puede aplicarse para resolver el sistema que surge de plantear una aproximación por cuadrados mínimos?
 - 3. Finalmente, ¿cuál es la ventaja del MGC respecto de los métodos iterativos estacionarios?

Pregunta 3: El Método de Extrapolación de Richardson se basa en la condición de que el error puede expresarse como:

$$E(h) = M - N(h) = K_1 \cdot h + K_2 \cdot h^2 + K_3 \cdot h^3 + \dots,$$

donde M es la solución considerada «exacta» en tanto que N(h) es la solución aproximada.

- 1. Caracterice al error E(h), según los tipos de errores que conoce.
- 2. Si N(h) es una aproximación de la derivada primera, ¿qué debería cumplir f(x) para aplicar este método?
- 3. ¿En que otras aproximaciones podría usar la Extrapolación de Richardson? Justifique su respuesta.

Firma	alumno

Apellido y nombre:		Nº de Padrón:			
Fecha de la evaluación: / /	Año cursada :	Cuatrimestre:	Nota:	(

Evaluación Integradora Tema 4

Pregunta 1: Al tratar de obtener una aproximación numérica de una derivada se obtuvieron los siguientes resultados:

$\mathbf{h} =$	0,1	0,05	0,025	0,0125
$\mathbf{f}'(\mathbf{a}) =$	-0,5701	-0,5471	-0,5354	-0,5236

Si se sabe que el método utilizado es el de diferenciación progresiva, ¿cómo podría mejorar el resultado? Sin realizar cálculo alguno,¿hasta qué orden de convergencia podría mejorar la aproximación?

Pregunta 2: La obtención mediante una aproximación numérica de la inversa de una matriz de Hilbert de dimensión 3×3 con una representación numérica de un decimal, resulta ser:

$$\tilde{H} = \begin{bmatrix} 1.0 & 0.5 & 0.3 \\ 0.5 & 0.3 & 0.3 \\ 0.3 & 0.3 & 0.2 \end{bmatrix} \rightarrow \tilde{H}^{-1} = \begin{bmatrix} 1.8 & 0.6 & -3.5 \\ 0.6 & -6.5 & 8.8 \\ -3.5 & 8.8 & -2.9 \end{bmatrix}$$

Si la matriz se expresa en forma simbólica, se obtiene el siguiente resultado:

$$H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix} \to H^{-1} = \begin{bmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{bmatrix}$$

¿Puede explicar la razón de esta gran diferencia?

Pregunta 3: Al tratar de aproximar la raíz de la siguiente ecuación

$$f(x) = \sin\left(\frac{2\pi}{5}x\right) - \cos\left(\frac{2\pi}{9}x\right) = 0$$

en el intervalo [1,5; 3,5], se obtuvieron los siguientes resultados:

- Método de la bisección: $\tilde{x}_n = 2,8125$;
- Método de Newton-Raphson: $\hat{x}_n = -2,4107$.

Explique la o las causas de esta diferencia.

Apellido y nombre:		Nº de Padrón:			
Fecha de la evaluación: / /	Año cursada :	Cuatrimestre:	Nota:	(

Evaluación Integradora Tema 5

Pregunta 1: El MS Excel genera una curva (curva «suavizada») sin definir qué método aplica para ello. En cambio, el OpenOffice/LibreOffice Calc, para generar una curva aplica una interpolación por «splines», como se ve en la figura siguiente: Esa dife-

rencia hace que los gráficos que entrega el segundo programa sean más confiables. ¿Qué opina al respecto?

- **Pregunta 2**: Durante el curso se han analizado los errores que se cometen al aplicar diferentes métodos que resuelven numéricamente problemas analíticos. Según lo visto:
 - 1. ¿Cuál es el fin de analizar el error, si por definición no se conoce la solución analítica?
 - 2. ¿Es posible despreciar la incidencia del error de redondeo en la diferenciación numérica?
- Pregunta 3: Un método de integración numérica que no suele encontrarse en los libros es el denominado Método de Weddle cuya fórmula es:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{20} \left\{ f(a) + f(b) + f(a+2h) + f(b-2h) + 5 \left[f(a+h) + f(b-h) \right] + 12 f\left(\frac{a+b}{2}\right) \right\},$$

con $h = \frac{b-a}{6}$. El error del método es: $E(h) \approx (b-a)\frac{h^6}{840} f^{vi}(\xi)$ con $\xi \in [a;b]$.

- 1. Indique si se trata de una fómula de Newton-Cotes Abierta o Cerrada;
- 2. ¿Qué otro método conoce que permita alcanzar el mismo orden de convergencia?

Firma	alumno

Apellido y nombre:		Nº de	Padrón:		
Fecha de la evaluación: / /	Año cursada :	Cuatrimestre:	Nota:	(,

Evaluación Integradora Tema 6

Pregunta 1: Un método para resolver Ecuaciones Diferenciales Ordinarias con Valores Iniciales de segundo orden es el siguiente:

$$y_{i+1} = 2y_i - y_{i-1} + h^2 f\left(t_i; w_i; \frac{y_{i+1} - y_{i-1}}{2h}\right) \text{ para } i \ge 2;$$

$$y_1 = y_0 + h y_0' + \frac{h^2}{2!} f(x_0; y_0; y_0').$$

- 1. Clasifique al método.
- 2. ¿Qué puede decir de la aproximación de y_1 ?

Pregunta 2: Para aproximar una derivada primera en un punto x de una función cualquiera, se implementó un algoritmo compuesto por el Método de Diferenciación Progresiva y Extrapolación de Richardson. Para establecer si este algoritmo podría ser usado en algún programa o calculadora de bolsillo, se realizaron comparaciones para distintos valores de n, esto es, iteraciones por Extrapolación de Richardson, respecto de la solución analítica. Para un caso, los resultados obtenidos fueron:

- Para n = 6 el error de la aproximación fue $-9.24 \cdot 10^{-13}$.
- Para n = 9 el error de la aproximación fue $-8.27 \cdot 10^{-12}$.

Si un valor de n mayor significa una mejor aproximación, ¿por qué en este caso no fue así?

Pregunta 3: En el gráfico siguiente pueden verse los resultados de aplicar dos métodos interpolantes:

- ¿Cuál de los dos métodos elegiría?
- Si no elige ninguno, justifique su decisión.

Firma alumno

Apellido y nombre:		Nº de P	adrón:
Fecha de la evaluación:/	Año cursada :	Cuatrimestre:	Nota: (

Evaluación Integradora Tema 7

- Pregunta 1: La Interpolación Polinomial es muy útil para poder representar un conjunto de puntos definidos en forma discreta. Enumere:
 - 1. Las principales ventajas;
 - 2. ¿Qué diferencia existe entre una interpolación por el método de Lagrange y otra por trazadores cúbicos?
- Pregunta 2: Usted tiene dos algoritmos propuestos para calcular la raíz de una ecuación cuadrática:

•
$$x_{1;2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

•
$$x_{1;2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

• $x_1 = -\frac{b + \text{signo}(b)\sqrt{b^2 - 4ac}}{2a} \text{ y } x_2 = \frac{c}{a x_1}.$

Uno de los dos algoritmos se incorporará en una calculadora científica -con una representación numérica determinada. Se pide que:

- 1. Analice cada algoritmo para los casos $b^2 >> 4ac$ y $b^2 \approx 4ac$, teniendo en cuenta la incidencia de la representación numérica;
- 2. Según lo analizado en el punto anterior, elija el algoritmo más conveniente.
- Pregunta 3: La matriz de coeficientes de un Sistema de Ecuaciones Lineales tiene la siguiente forma:

$$\begin{bmatrix} \times & \times & \times & \dots & \times \\ \times & \times & \times & \dots & \times \\ 0 & \times & \times & \dots & \times \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \times & \times \end{bmatrix}$$

donde el símbolo × representa a un coeficiente no nulo.

- 1. Represente de la misma forma cómo quedaría la matriz ${f L}$ al aplicar la Factorización L U por el Método de Doolittle;
- 2. Si supiera que la matriz es estrictamente diagonal dominate, ¿qué ventajas tendría al aplicar el método indicado en el punto anterior?
- 3. ¿Podría aplicar el Método de Cholesky?

Jutifique las respuestas de los puntos 2 y 3.

Firma alumno	

Apellido y nombre: ______ Nº de Padrón: ______ Fecha de la evaluación: __/__/ __ Año cursada : ___ Cuatrimestre: ___ Nota: __ (____)

Evaluación Integradora Tema 8

Pregunta 1: Para la función $F(x) = (x-2)^5$ usted disponde de dos algoritmos:

- 1. Algoritmo 1: $P(x) = (x-2)^5$;
- 2. Algoritmo 2: $P_2(x) = \{\{[(x-10)x+40]x-80\}x+80\}x-32.$

¿Por qué al calcular los valores de F(x) en el intervalo [1,995; 2,005], los resultados son tan diferentes, como puede verse en la figura anterior? (Como referencia, la curva en rojo representa $P_2(x)$)

Pregunta 2: El Método de Romberg permite calcular la integral definida de cualquier función. Para el caso de la siguiente integral

$$\int_{a}^{b} \sin\left(\frac{\pi}{8} \cdot x\right) \mathrm{d}x,$$

- 1. ¿Qué condición debe cumplir f(x) para poder aplicarlo?
- 2. Si tuviera que elegir entre el método de Simpson y el de Romberg, ¿cuál de los dos elegiría?

Pregunta 3: Hay dos algoritmos muy usuales para resolver ecuaciones no lineales. Son los siguientes:

- 1. Método de la secante: $x_{i+1} = x_i \frac{f(x_i) \cdot (x_i x_{i-1})}{f(x_i) f(x_{i-1})}$;
- 2. Método de Steffensen: $x_{i+1} = x_i \frac{[f(x_i)]^2}{f[x_i + f(x_i)] f(x_i)}$.

¿Cuál de los dos elegiría para incorporar como algoritmo básico en un programa de análisis numérico?

Apellido y nombre:		Nº de	Padrón:	
Fecha de la evaluación:/	Año cursada :	Cuatrimestre:	Nota:	(

Evaluación Integradora Tema 9

Pregunta 1: Al tratar de aproximar la raíz de la siguiente ecuación

$$f(x) = \sin\left(\frac{2\pi}{5}x\right) - \cos\left(\frac{2\pi}{9}x\right) = 0$$

en el intervalo [1,5;3,5], se obtuvieron los siguientes resultados:

• Método de la bisección: $\tilde{x}_n = 2,8125$ con n = 4;

■ Método de la Secante: $\hat{x}_n = 0.803571$ con n = 6.

¿Puede explicar semejante diferencia y la razón por la cual el método de la Secante requiere más iteraciones que el método de la bisección?

Pregunta 2: Al tratar de calcular la siguiente función $(x) = 1 + x^2 + \frac{\log(|1 + 3(1 - x)|)}{80}$ en el punto $x = \frac{4}{3}$ con dos programas diferentes, se obtuvieron los siguientes resultados

1. Programa 1: 2,58210828;

2. Programa 2: Err:502 (argumento no válido).

 $\ensuremath{\mathcal{C}}$ Cuál de los dos resultados es el correcto? $\ensuremath{\mathcal{C}}$ A qué causa le atribuye el resultado erróneo?

Pregunta 3: En el gráfico siguiente pueden verse los resultados de aplicar dos métodos interpolantes:

- ¿Cuál de los dos métodos elegiría?
- Si no elige ninguno, justifique su decisión.

Apellido y nombre: ______ Nº de Padrón: ______ Fecha de la evaluación: / / Año cursada : Cuatrimestre: Nota: ()

Evaluación Integradora Tema 10

Pregunta 1: Para la función $F(x) = (x-2)^5$ usted disponde de dos algoritmos:

- 1. Algoritmo 1: $P(x) = (x-2)^5$;
- 2. Algoritmo 2: $P_1(x) = x^5 10x^4 + 40x^3 80x^2 + 80x 32$.

¿Por qué al calcular los valores de F(x) en el intervalo [1,995; 2,005], los resultados son tan diferentes, como puede verse en la figura anterior? (Como referencia, la curva en rojo representa $P_1(x)$)

Pregunta 2: En algunos textos de Análisis Numérico se incluyen los *Métodos de las Diferencias Regresivas* para resolver **Ecuaciones Diferenciales Ordinarias con Valores Iniciales**. Uno de ellos es el siguiente:

$$w_{i+1} = \frac{48 w_i - 36 w_{i-1} + 16 w_{i-2} - 3 w_{i-3}}{25} + \frac{12}{25} h f(t_{i+1}; w_{i+1}).$$

- 1. Ensaye una clasificación del método;
- 2. Estime el error de truncamiento local, e;
- 3. Indique cuántos valores de w_j necesita para poder empezar a iterar, y cómo obtendría esos valores.

Pregunta 3: Una interpolación polinomial tradicional requiere resolver un sistema de ecuaciones lineales cuya matriz de coeficientes A tiene una particularidad que incide notablemente en los resultados. ¿Con qué nombre se la conoce y cual es esa particularidad?

Apellido y nombre:		No de	Padrón:		
Fecha de la evaluación://	Año cursada :	Cuatrimestre:	Nota:	(

Evaluación Integradora Tema 11

- **Pregunta 1**: Suponga que dispone de los siguientes datos: a, f(a), f'(a), b y f(b), y necesita calcular $\int_a^b f(x) \, dx$. En base a los métodos vistos en clase y teniendo como referencia el **Método del Trapecio Mejorado**, ¿cómo podría desarrollar una expresión que permita la integración numérica en el intervalo dado que utilice todos los datos disponibles?
- Pregunta 2: En algunos libros de Análisis Numérico se incluyen los denominados *Métodos de las Diferencias Regresivas* para resolver Ecuaciones Diferenciales Ordinarias con Valores Iniciales. Uno de esos métodos es el siguiente:

$$w_{i+1} = \frac{1}{3} (4 w_i - w_{i-1}) + \frac{2}{3} h f(t_{i+1}; w_{i+1}).$$

- 1. Ensaye una clasificación del método;
- 2. Estime el error de truncamiento local, e;
- 3. Indique cuántos valores de w_j necesita para poder empezar a iterar, y cómo obtendría esos valores.
- Pregunta 3: La Interpolación por Trazadores Cúbicos (o por «splines») es una alternativa para interpolar un conjunto con gran cantidad de puntos y una distribución uniforme de los mismos. Se proponen las siguientes expresiones para aproximar las derivadas primera en los extremos:

$$f'(x_0) \cong \frac{-25 y_0 + 48 y_1 - 36 y_2 + 16 y_3 - 3 y_4}{12 h},$$

$$f'(x_n) \cong \frac{25 y_n - 48 y_{n-1} + 36 y_{n-2} - 16 y_{n-3} + 3 y_{n-4}}{12 h}.$$

Indique que tipo de «spline» necesita las derivadas en los extremos y evalúe si la propuesta es conveniente para ser aplicada.

Firma	alumno

Apellido y nombre:		Nº de I	Padrón:_		
Fecha de la evaluación://	Año cursada :	Cuatrimestre:	Nota:_	_ ()

Evaluación Integradora Tema 12

Pregunta 1: Para obtener una aproximación numérica de una derivada segunda en un punto x puede aplicarse el siguiente algoritmo:

$$f''(x) \approx \frac{f(x) - 2f(x+h) + f(x+2h)}{h^2}.$$

- 1. ¿Cuál es el orden de convergencia de esta aproximación?
- 2. ¿Cómo podría mejorar el orden de convergencia de un resultado en particular sin desarrollar un nuevo algoritmo?
- Pregunta 2: Algunos textos de Análisis Numérico incluyen los denominados *Métodos de las Diferencias Regresivas* para resolver Ecuaciones Diferenciales Ordinarias con Valores Iniciales. Uno de estos métodos es:

$$w_{i+1} = \frac{18 w_i - 9 w_{i-1} + 2 w_{i-2}}{11} + \frac{6}{11} hf(t_{i+1}; w_{i+1}).$$

- 1. Ensaye una clasificación del método;
- 2. Estime el error de truncamiento local, e;
- 3. Indique cuántos valores de w_j necesita para poder empezar a iterar, y cómo obtendría esos valores.
- Pregunta 3: En el Método de los Cuadrados Mínimos los coeficientes de ajuste de la curva se obtienen resolviendo un Sistema de Ecuaciones Lineales.
 - 1. ¿Qué características tiene la matriz de coeficientes de ese sistema?
 - 2. ¿Qué métodos recomendaría usar para resolver el sistema en función de la respuesta del punto anterior?
 - 3. Suponga que le ofrecen dos programas que resuelven sistemas de ecuaciones lineales para obtener los coeficientes. En uno de esos programas el código incluye el *Método del Refinamiento Iterativo de la Solución*, en tanto que el otro no. ¿Cuál de los dos elegiría? Justifique su respuesta.

Firma	alumno

Apellido y nombre:		Nº de Pa	adrón:
Fecha de la evaluación:/	Año cursada :	Cuatrimestre:	Nota: (

Evaluación Integradora Tema 13

- **Pregunta 1**: Para obtener las raíces de la ecuación cuadrática $x^2 10^8x + \frac{1}{4}$ se programaron dos métodos en una computadora:
 - Uno algebraico $(x_{1;2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a});$
 - Uno numérico $(x_1 = \frac{-b + \sqrt{b^2 4ac}}{2a}$ si b < 0 o $x_1 = -\frac{b + \sqrt{b^2 4ac}}{2a}$ si b > 0 y $x_2 = \frac{c}{a x_1}$).

Los resultados obtenidos fueron:

- Algoritmo algebraico $(x_1 = 10^8, x_2 = 0);$
- Algoritmo numérico $(x_1 = 10^8, x_2 = 2.5 \cdot 10^{-9}).$

¿Puede explicar la razón de la diferencia? ¿Cuál de los dos arroja el resultado correcto?

- Pregunta 2: Para aproximar la derivada segunda en el punto x=2 de una función determinada, se aplicó conjuntamente un método de **Diferenciación Progresiva** y **Extrapolación de Richardson**. Para saber si esta combinación es útil para programar, se compararon los resultados obtenidos para diferentes valores de n, esto es, iteraciones de la *Extrapolación de Richardson*, con la solución analítica. En una de las comparación se obtuvo lo siguiente:
 - Para n = 5, el error de la aproximación fue $2.8 \cdot 10^{-10}$.
 - Para n = 7, el error de la aproximación fue $1.9 \cdot 10^{-9}$.

Si un valor de n mayor significa una mejor aproximación, ¿por qué en este caso no fue así?

Pregunta 3: En el libro **Análisis Numérico** de Burden & Faires se incluye la siguiente fórmula de integración numérica:

$$\int_{a}^{b} f(x) dx = \frac{4h}{3} \left[2f(a+h) - f\left(\frac{a+b}{2}\right) + 2f(b-h) \right],$$

donde $h = \frac{b-a}{4}$. El error está dado por: $E(h) = (b-a)\frac{7h^4}{90} f^{iv}(\xi)$, con $\xi \in [a;b]$.

- 1. ¿Con qué otro método conocido es comparable?;
- 2. ¿Lo utilizaría para programarla en una calculadora de bolsillo?

Firma	alumno

Apellido y nombre:		Nº de	Padrón:		
Fecha de la evaluación: / /	Año cursada :	Cuatrimestre:	Nota:	(,

Evaluación Integradora Tema 14

Pregunta 1: En la figura abajo puede verse la comparación entre los resultados obtenidos al resolver una ecuación diferencial ordinaria por los métodos de Adams-Moulton (curva azul) y de Adams-Bashforth (curva roja), ambos de orden 4.

¿Qué causa o causas explican la disparidad de resultados entre uno y otro método?

Pregunta 2: Un ejemplo usual para el cálculo de raíces de ecuaciones no lineales es el siguiente:

$$L = \frac{g \cdot T^2}{2 \cdot \pi} \tanh\left(\frac{2 \cdot \pi}{L}d\right)$$

con $L_0 = \frac{g \cdot T^2}{2 \cdot \pi}$ y $\frac{L_0}{20} \le d \le \frac{L_0}{2}$. Para los valores T = 12 y d = 14 se obtuvieron los siguientes resultados:

- Por Aproximaciones sucesivas: L = 131,4214; número de iteraciones n = 64.
- Por Steffensen: L = 131,4214; número de iteraciones n = 6.

¿Qué conclusión puede sacar al respecto?

Pregunta 3: Al aproximar una derivada segunda con una combinación del Método de Diferenciación Progresiva y Extrapolación de Richardson, se obtuvieron los siguientes resultados:

- Con n=5, f''(2)=-0.94970313; orden de convergencia estimado: ~ 5.6 ;
- Con n = 8, f''(2) = -0.94970312; orden de convergencia estimado: ~ 3 .

¿A qué causa atribuye el empeoramiento del orden de convergencia para n = 8?

Firma	alumno

Apellido y nombre:		Nº de	Padrón:_		
Fecha de la evaluación: / /	Año cursada :	Cuatrimestre:	Nota:	(

Evaluación Integradora Tema 15

Pregunta 1: En el gráfico siguiente pueden verse los resultados de aplicar dos métodos interpolantes:

- ¿Cuál de los dos métodos elegiría?
- Si no elige ninguno, justifique su respuesta.

Pregunta 2: Algunos textos de Análisis Numérico incluyen los denominados *Métodos de las Diferencias Regresivas* para resolver Ecuaciones Diferenciales Ordinarias con Valores Iniciales. Uno de estos métodos es:

$$w_{i+1} = \frac{1}{11} \left(18w_i - 9w_{i-1} + 2w_{i-2} \right) + \frac{6}{11} hf(t_{i+1}; w_{i+1}).$$

- 1. Ensaye una clasificación del método;
- 2. Estime el error de truncamiento local, e;
- 3. Indique cuántos valores de w_j necesita para poder empezar a iterar, y cómo obtendría esos valores.

Pregunta 3: Un método de integración numérica que se incluye en el libro Análisis Numérico de Burden & Faires es el siguiente:

$$\int_{a}^{b} f(x) dx \approx \frac{2h}{45} \left\{ 7 \left[f(a) + f(b) \right] + 32 \left[f(a+h) + f(b-h) \right] + 12 f\left(\frac{a+b}{2}\right) \right\},\,$$

también conocido como **Método de Boole**, con $h=\frac{b-a}{4}$ y el error dado por: $E(h)=-\frac{8\,h^7}{945}f^{(vi)}(\xi)$ con $\xi\in[a;b]$.

- 1. Indique si se trata de método de Newton-Cotes Abierto o Cerrado.
- 2. ¿Com qué otro método podría obtener el mismo orden de convergencia?

Firma	alumno

Apellido y nombre:		Nº de I	Nº de Padrón:		
Fecha de la evaluación://	Año cursada :	Cuatrimestre:	Nota:_	_ ()

Evaluación Integradora Tema 16

Pregunta 1: La cuadratura de Gauss-Legendre permite calcular una integral en forma numérica en el intervalo [-1;1]. La expresión es:

$$I(f) = \int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} c_i f(x_i).$$

- 1. Explique brevemente qué son los valores c_i y x_i .
- 2. ¿Cómo debe procederse para calcular la misma integral pero con un intervalo cualquier [a;b]?
- 3. ¿Qué ventajas tiene aplicar este método para integrar funciones polinómicas?

Pregunta 2: Existen varios métodos para resolver ecuaciones no lineales de una sola variable.

Dos de ellos son los siguientes:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)},$$

 $x_{i+1} = x_i - \frac{[f(x_i)]^2}{f[x_i + f(x_i)] - f(x_i)}.$

- 1. Identifique ambos métodos;
- 2. ¿Cuál de los dos converge más rápido?
- 3. ¿Cuál de los dos eligiría como método a ser programado en una calculadora de bolsillo?

Pregunta 3: La Interpolación por Trazadores Cúbicos (o por «splines») es una alternativa para interpolar un conjunto con gran cantidad de puntos y una distribución uniforme de los mismos. Se proponen las siguientes expresiones para aproximar las derivadas primera en los extremos:

$$f'(x_0) \cong \frac{-11 y_0 + 18 y_1 - 9 y_2 + 2 y_3}{6 h},$$

$$f'(x_n) \cong \frac{11 y_n - 18 y_{n-1} + 9 y_{n-2} - 2 y_{n-3}}{6 h}.$$

Indique que tipo de «spline» necesita esta información y evalúe si la propuesta es conveniente para ser aplicada.

Apellido y nombre:		Nº de Padrón:		
Fecha de la evaluación:/	Año cursada :	Cuatrimestre:	Nota: (

Evaluación Integradora Tema 17

Pregunta 1: En algunos libros de Análisis Numérico se incluyen los denominados *Métodos de las Diferencias Regresivas* para resolver Ecuaciones Diferenciales Ordinarias con Valores Iniciales. Uno de esos métodos es el siguiente:

$$w_{i+1} = \frac{1}{3} (4 w_i - w_{i-1}) + \frac{2}{3} h f(t_{i+1}; w_{i+1}).$$

- 1. Ensaye una clasificación del método;
- 2. Estime el error de truncamiento local, e;
- 3. Indique cuántos valores de w_j necesita para poder empezar a iterar, y cómo obtendría esos valores.
- **Pregunta 2**: Para obtener la raíz de $F(x) = sin(\frac{\pi}{3}x) + e^{-\frac{x}{2.5}}$ se utilizó la función «solve» incluida en un programa. Así, se obtuvo el siguiente valor: $x_p = 3,2623$. Al reemplazar ese valor en F(x), el resultado obtenido fue: $F(x_p) = 4,43 \cdot 10^{-10}$. Como la respuesta no se consideró satisfactoria, se desarrolló una función propia aplicando el método de Steffensen. Al ser utilizada, arrojó el siguiente resultado: $x_R = 3,2623$. Esta vez, al reemplazar en F(x), el resultado obtenido fue: $F(x_R) = -5,5087 \cdot 10^{-16}$. Este resultado fue considerado aceptable. Indique:
 - 1. Posibles causas que justifiquen la diferencia de resultados para F(x);
 - 2. Por qué el resultado obtenido para x no muestra diferencias apreciables.
- Pregunta 3: En el gráfico siguiente se pueden observar los resultados de interpolar un conjunto de datos usando cuatro métodos diferentes: una interpolación lineal segmentada, una por trazadores cúbicos (o «splines»), una por el método de Lagrange baricéntrico y una por el método de Akima.

¿Qué conclusiones puede sacar al revisar las curvas resultantes?

Firma alumno	

Apellido y nombre:		Nº de Padrón:			
Fecha de la evaluación:/	Año cursada :	Cuatrimestre:	Nota: (

Evaluación Integradora Tema 18

Pregunta 1: En el libro **Análisis Numérico** de Burden & Faires se incluye la siguiente fórmula de integración numérica:

$$\int_{a}^{b} f(x) dx = \frac{3h}{2} [f(a+h) + f(b-h)],$$

donde $h = \frac{b-a}{3}$. El error está dado por: $E(h) = \frac{b-a}{4} h^2 f''(\xi)$, con $\xi \in [a;b]$.

- 1. Indique si se trata de un método de Newton-Cotes Abierto o Cerrado;
- 2. ¿Con qué otro método conocido es comparable?;
- 3. ¿Es posible obtener un algoritmo cuyos resultados aproximen mejor la integral?
- **Pregunta 2**: Para obtener la raíz de $f(x) = \frac{1}{2}\log_2(x) e^{\frac{x}{2}}$ se utilizó la función «solve» incluida en un programa. Así, se obtuvo el siguiente valor: $x_p = 1,7714$. Al reemplazar ese valor en f(x), el resultado obtenido fue: $f(x_p) = -6,08 \cdot 10^{-11}$. Para comprobar si el resultado obtenido era aceptable, se desarrolló una función propia aplicando el método de Newton-Raphson. Al ser utilizada, arrojó el siguiente resultado: $x_R = 1,7714$. Esta vez, al reemplazar en f(x), el resultado obtenido fue: $f(x_R) = 1,105 \cdot 10^{-15}$. Indique:
 - 1. Posibles causas que justifiquen la diferencia de resultados para f(x);
 - 2. Por qué el resultado obtenido para x no muestra diferencias apreciables.
- Pregunta 3: Para aproximar una derivada primera en un punto x de una función cualquiera, se implementó un algoritmo compuesto por el Método de Diferenciación Progresiva y Extrapolación de Richardson. Para establecer si este algoritmo podría ser usado en algún programa o calculadora de bolsillo, se realizaron comparaciones para distintos valores de n, esto es, iteraciones por Extrapolación de Richardson, respecto de la solución analítica. Para un caso, los resultados obtenidos fueron:
 - Para n = 4 el error de la aproximación fue $-4.94 \cdot 10^{-11}$.
 - Para n = 9 el error de la aproximación fue $-1.35 \cdot 10^{-7}$.

Si en general un valor de n mayor significa una mejor aproximación, ¿por qué en este caso no fue así?

Firma alumno	