Homework #6

M1522.000800 System Programming

Name:

Due Date: Tuesday, April 14, 2015, 23:59

Student-Number: _____

Submission: in paper form.

There is a drop off box in class and inside the CSAP Lab in

building 301, room 419.

Question 1

Concurrently Running Processes

Modern operating systems provide *time-shared* multitasking. In time-shared multitasking, one CPU is shared among several processes. In the following diagram, draw the control flow and write down in which mode the CPU is running.

Question 2 *Implementation of Linux/IA32 System Calls*

The following table shows some of the system calls used in Linux/IA32.

%eax	Name	%ebx	%ecx	%edx
1	sys_exit	int		
2	sys_fork	struct pt_regs		
3	sys_read	unsigned int	char*	size_t
4	sys_write	unsigned int	const char*	size_t
5	sys_open	const char*	int	int
6	sys_close	unsigned int		

Consider the following program, which consists of system calls without wrappers in Linux.

```
/* myhello.c */
int main()
{
    int len;
    char buf[10];
    my_write(1, "What is your student id? :\n", 27);
    len = my_read(2, buf, 10);
    my_write(1, "SID : ", 6);
    my_write(1, buf, len);
    my_exit(0);
}
```

When you compile and execute the above code, it will produce the following result.

```
$ gcc -o my_hello -m32 myhello.c mylib.s
$ ./my_hello
What is your student id? :
2015-12345
SID : 2015-12345
$
```

Write the assembly program that supports the above result. (follow calling conventions)

Question 3

Virtual Memory Address Spaces

Complete the following table, filling in the missing entries and replacing each question mark with the appropriate integer. Use the following units: $K = 2^{10}$ (*Kilo*), $M = 2^{20}$ (*Mega*), $G = 2^{30}$ (*Giga*), $T = 2^{40}$ (*Tera*), $P = 2^{50}$ (*Peta*), or $E = 2^{60}$ (*Exa*).

# virtual address bits (n)	# virtual address (N)	Largest possible virtual address
8		
	$2^{?} = 64K$	
		$2^{32} - 1 = ?G - 1$
	2° = 256T	
64		

Question 4

Address Translation

Given a 32-bit virtual address space and a 24-bit physical address, determine the number of bits in the *virtual page number (VPN)*, *virtual page offset (VPO)*, *physical page number (PPN)*, *physical page offset (PPO)* for the following page sizes *P*:

P	# VPN bits	# VPO bits	# PPN bits	# PPO bits
1 KB				
2 KB				
4 KB				
8 KB				