Lecture 3 Worksheet

May 14, 2021

- 1. Calculate the cross products.
 - (a) $\langle -2, 5, 1 \rangle \times \langle 1, 2, -3 \rangle$
 - (b) $(\hat{i} 4\hat{j} + 2\hat{k}) \times (-\hat{j} \hat{k})$
- 2. If $\|\vec{u}\|=6$, $\|\vec{v}\|=9$, and the angle between \vec{u} and \vec{v} is $\frac{\pi}{4}$, then find $\|\vec{u}\times\vec{v}\|$.
- 3. Find the area of the parallelogram spanned by
 - (a) $\vec{u} = (\hat{i} 4\hat{j} + 2\hat{k})$ and $\vec{v} = (-\hat{j} \hat{k})$
 - (b) $\vec{u} = \langle -1, 1, 2 \rangle$ and $\vec{v} = \langle 2, 0, 1 \rangle$
- 4. Given that $\vec{u} \times \vec{w} = \langle 0, 8, 7 \rangle$ and $\vec{v} \times \vec{w} = \langle 5, -3, 4 \rangle$, calculate the cross product $\vec{w} \times (\vec{u} + \vec{v})$ using the properties of cross products.
- 5. Let \vec{u} , \vec{v} , and \vec{w} be vectors in \mathbb{R}^3 , and let $a \in \mathbb{R}$. Which of the following properties are necessarily true?

Commutative	$ec{v}\cdotec{w}=ec{w}\cdotec{v}$	$\vec{v} imes \vec{w} = \vec{w} imes \vec{v}$
Distributive	$\vec{u} \cdot (\vec{v} + \vec{w}) = (\vec{u} \cdot \vec{v}) + (\vec{u} \cdot \vec{w})$	$\vec{u} \times (\vec{v} + \vec{w}) = (\vec{u} \times \vec{v}) + (\vec{u} \times \vec{w})$
Associative	$\vec{u} \cdot (\vec{v} \cdot \vec{w}) = (\vec{u} \cdot \vec{v}) \cdot \vec{w}$	$\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \times \vec{w}$
Compatible with	$(a\vec{v}) \cdot \vec{w} = a(\vec{v} \cdot \vec{w})$	$(a\vec{v}) \times \vec{w} = a(\vec{v} \times \vec{w})$
scalar multiplication		