Data Analytics

Giuseppe Magazzù

2021 - 2022

Contents

1	Introduzione			
	1.1	Definizioni	2	
	1.2	Pre-Processing	3	
		Data Cleaning	3	

Chapter 1

Introduzione

Figure 1.1: Diversi tipi di analisi per valore e difficoltà [3].

1.1 Definizioni

Un'**istanza** (instance, item, record) é un esempio descritto da un insieme finito di attributi. Il numero di attributi può variare per alcune istanze.

Un attributo (attribute, field, variable) é una misura di un aspetto di un'istanza.

Tipi di attributi:

- Quantità nominali: i valori sono simboli distinti. Non hanno relazioni come ordinamento o distanza.
 - (e.g. attributo: "outlook", valori: "sunny", "cloudy", and "rainy").
- **Quantità ordinali**: i valori hanno una relazione d'ordine, ma non di distanza. (e.g. attributo: "temperature", valori: "hot" > "mild" > "cold").
- Quantità d'intervallo:
- Quantità di rapporto:

Una **classe** (class, label) rappresenta un gruppo di istanze che condividono delle caratteristiche comuni.

Propositionalization

Figure 1.2: Processo di propositionalization [2]

1.2 Pre-Processing

I dati nel mondo reale sono **incompleti**, **rumorosi** e **inconsistenti**. Per ottenere dell'analisi di qualità é necessario effettuare prima delle operazioni sui dati.

- **Data Cleaning**: sostituire valori mancanti, smussare dati rumorosi, identificare o rimuovere outliers e risolvere inconsistenze.
- Data Integration: integrazione di diversi dati.
- Data Transformation: normalizzare o aggregare i dati
- Data Reduction: feature selection, feature extraction

1.3 Data Cleaning

Dati Mancanti

Alcuni dati possono non essere stati calcolati o possono non essere disponibili per malfunzionamenti o per errori umani.

L'assenza di questi dati **complica l'analisi** poiché non tutti i metodi di analisi non gestiscono questo problema, inoltre comporta una **perdita di efficacia** nell'estrarre dei pattern.

Categorie di valori mancanti:

- Missing Completely At Random (MCAR):
- Missing At Random (MAR):
- Not Missing At Random (NMAR):

Gestione dei valori mancanti:

- **Ignorare** le istanze o gli attributi con valori mancanti. Praticabile solo se ci sono pochi esempi mancanti poiché introdurrebbe un bias.
- Convertire i valori mancanti in un nuovo valore ("missing", "?", "NA").
- Imputare i valori mancanti basandosi sul resto del dataset.

Metodi di Imputazione

• Most Common (MC) Value

Assunzione: ogni attributo ha una distribuzione normale.

- Valori **continui**: rimpiazza con la media dell'attributo nel dataset
- Valori discreti: rimpiazza con il valore più frequente dell'attributo nel dataset

• Concept Most Common (CMC) Value

<u>Assunzione</u>: ogni attributo ha una distribuzione normale per tutte le istanze che appartengono alla stessa classe.

I valori mancanti vengono rimpiazzati con il valore medio/più frequente delle istanze della stessa **classe**.

• K-Nearest Neighbors

Le istanze vengono disposte in uno spazio metrico e i valori mancanti vengono imputati considerando le k istanze più vicine.

Dati Rumorosi

Alcuni dati possono avere errori dovuti a **strumenti difettosi**, **errori umani** o **di calcolo**, errori durante la **trasmissione** dei dati o **limitazioni tecnologiche**.

Questi errori introducono del "rumore" all'interno dei dati che può essere rimosso usando tecniche di **data smoothing**. Queste tecniche riducono il rumore e rendono i pattern più identificabili, tuttavia si riduce la quantità di dati da analizzare e inoltre gli outliers possono alterare l'analisi.

Binning

I dati vengono **ordinati** e **partizionati** in bin. Quindi ogni bin si può smussare con media, mediana dei valori all'interno o utilizzando gli estremi.

- **Equal-width** (distance) partitioning: viene diviso il range in N intervalli di uguale dimensione.
- **Equal-depth** (frequency) partitioning: viene diviso il range in N intervalli, ognuno dei quali contiene approssimatamene lo stesso numero di esempi.

Dati Sbilanciati

Esistono molti problemi di classificazione in cui una classe ha una distribuzione fortemente sbilanciata, ovvero che il numero di osservazioni per una classe è molto inferiore a un'altra (e.g. fraud detection, disease diagnosis, natural disaster, etc.). Quindi risulta difficile ottenere buoni valori di accuracy su entrambe le classi.

Un possibile approccio è quello di bilanciare i dati del train set.

- Oversampling: aggiungere istanze alla classe minoritaria tramite campionamento con rimpiazzo (i.e. duplicare alcuni valori) fino a ottenere lo stesso numero di istanze per classe. Bilancia le classi, ma non fornisce nuove informazioni al modello.
- **Undersampling**: rimuovere randomicamente istanze dalla **classe maggioritaria** fino a ottenere lo stesso numero di istanze per classe.

Figure 1.3: Rappresentazione del funzionamento del random resampling.

Synthetic Minority Oversampling Technique (SMOTE)

SMOTE è una tecnica di oversampling che genera esempi sintetici della classe minoritaria a partire dai dati esistenti. Dato un esempio della classe minoritaria vengono selezionati i k esempi più vicini, viene scelto uno a caso tra questi e viene generato un numero esempio tra questi due.

Tomek Links

Tomek Links è una tecnica di undersampling che rimuove gli esempi della classe maggioritaria che appartengono a un Tomek Link. Un **Tomek Link** é una coppia d'istanze (E_i, E_j) di classi diverse per cui non esiste nessun'altra istanza che sia più vicina a uno dei due.

La collezione di Tomek Links nel dataset definisce le frontiere delle classi.

Figure 1.4: Esempio di undersampling tramite Tomek Links [1].

Bibliography

- [1] Rahul Agarwal. The 5 most useful Techniques to Handle Imbalanced datasets. [Online; accessed 14/03/2022]. 2020. URL: https://mlwhiz.com/images/imbal/1_hubf0730b098fff787d09b5f9aa956817e_24275_500x0_resize_box_2.png.
- [2] Nada Lavrač, Blaž Škrlj, and Marko Robnik-Šikonja. "Propositionalization and embeddings: two sides of the same coin". In: *Machine Learning* 109.7 (2020), pp. 1465–1507.
- [3] Jason McNellis. *Gartner Four Analytic Types*. [Online; accessed 13/03/2022]. 2019. URL: https://blogs.gartner.com/jason-mcnellis/files/2019/11/GartnerFourAnalyticTypesV5.jpg.