Toric Surface Codes and the Periodicity of Polytopes

Amelia Gibbs, Eliza Hogan, Jenna Plute, and Nicholas Toloczko Advised by Dr. Jabbusch

The University of Michigan-Dearborn

August 14, 2024

Contents

Preliminaries

Periodicity of Polytopes

3 A Minimum Distance Formula

Preliminaries

What is a code?

- Let \mathbb{F}_q be a finite field, with $q=p^l$ elements. A code C over \mathbb{F}_q is a subset of $\mathbb{F}_q^n=\mathbb{F}_q\times\ldots\times\mathbb{F}_q$.
- ② Elements of a code are called **codewords**, and the **length** of the code is **n**, where $C \subset \mathbb{F}_a^n$.
- ② C is a **linear code** if it is a vector subspace of \mathbb{F}_q^n , and the dimension of the code is $k := \dim_{\mathbb{F}_q} C$. The dimension of the code tells us how much information each codeword contains.

What is a code?

• For $x=(x_1,\ldots,x_n),y=(y_1,\ldots,y_n)\in\mathbb{F}_q^n$, Hamming distance from x to y is

$$d(x, y) := \#\{i | x_i \neq y_i\}$$

The **Hamming weight** of x is $wt(x) = d(x, (0, 0, \dots, 0))$, or simply the number of non-zero entries in a codeword

2 The **minimum distance** of *C* is

$$d_{\min} = \min\{d(x, y) \mid x, y \in C \text{ and } x \neq y\}$$

If C is a linear code,

$$d_{\min} = \min\{wt(x)|x \in C \text{ and } x \neq (0,0,\ldots,0)\}.$$

Minimum Distance

The minimum distance of a code tells you how many errors a code can detect/correct. Linear codes can detect up to d-1 errors and correct up to $\lfloor \frac{d-1}{2} \rfloor$ errors.

Toric Codes

Hansen (1997): Consider codes given by toric varieties:

 $\{\text{toric variety of dim }m\}\leftrightarrow \{\text{an integral convex polytope }P\subset \mathbb{R}^m\}$

Given an integral convex polytope $P \subset \mathbb{R}^m$:

$$L_P = \mathsf{Span}_{\mathbb{F}_q} \{ \mathbf{x}^\beta \mid \beta \in P \cap \mathbb{Z}^m \}$$

and define the evaluation map

$$ev: L_P \rightarrow \mathbb{F}_q^{(q-1)^m}$$
 $f \mapsto (f(\gamma) \mid \gamma \in (\mathbb{F}_q^*)^m)$

The image of the evaluation map gives the **toric code** $C_P(\mathbb{F}_q)$. The matrix corresponding to this evaluation map gives the generator matrix for C_P .

(UM-Dearborn) Toric Surface Codes August 14, 2024 7/

Example: Consider the polytope $P \subset \mathbb{R}^2$ with the k=4 lattice points (0,0),(1,0),(0,1) and (-1,-1)

$$\begin{split} L_P &= \mathsf{Span}_{\mathbb{F}_q} \{ x^0 y^0, x^1 y^0, x^0 y^1, x^{-1} y^{-1} \} \\ &= \mathsf{Span}_{\mathbb{F}_q} \{ 1, x, y, x^{-1} y^{-1} \} \end{split}$$

Given $P \subset \mathbb{R}^m$, we know the length and dimension of P's corresponding code.

- ullet The length of $\mathcal{C}_P(\mathbb{F}_q)$ is $\mathit{n}=(\mathit{q}-1)^{\mathit{m}}$
- The dimension of $C_P(\mathbb{F}_q)$ is k= the number of lattice points in P
- The minimum distance of C_P , denoted $d(C_P)$, is exactly $(q-1)^m \max_{0 \neq f \in L_P} |Z(f)|$ where Z(f) is the set of all $(\mathbb{F}_q^{\times})^m$ -zeros of f.

8 / 23

Minkowski Sum

Let P and Q be convex polytopes in \mathbb{R}^m . Their **Minkowski sum** is

$$P + Q := \{ p + q \in \mathbb{R}^m | p \in P, q \in Q \}$$

Minkowski Length

The (full) **Minkowski length** L = L(P) of a lattice polytope P is the largest number of primitive segments (line segments with lattice points only on each end) whose Minkowski sum is in P.

Equivalently, L(P) is the largest number of non-trivial lattice polytopes whose Minkowski sum is in P. Such a polytope is called a **maximal decomposition** in P.

10 / 23

The Connection to Minimum Distance

In [1], Soprunov and Soprunova proved the following, relating the Minkowski length of polytopes to the minimum distance of the codes generated by them:

The Connection to Minimum Distance

In [1], Soprunov and Soprunova proved the following, relating the Minkowski length of polytopes to the minimum distance of the codes generated by them:

Proposition

 $|Z(f)| \leq L(q-1) + \lfloor 2\sqrt{q} \rfloor - 1$ where f is the polynomial with the largest number of irreducible factors.

Thus, if we can determine with certainty L(P), then we have a direct bound on $d(C_p)$ because $d(C_p) = (q-1)^2 - \max_{f \in L_P} |Z(f)|$.

11 / 23

(UM-Dearborn) Toric Surface Codes August 14, 2024

A Stronger Connection to Toric Surface Codes

A Stronger Connection to Toric Surface Codes

Proposition

Suppose that $P \subset \mathbb{R}^2$ does not contain an exceptional triangle in any maximal decomposition. Let $0 \neq g \in L_P$ be a polynomial with maximum number of zeros and $g = g_1 \dots g_r$ be its factorization into irreducible polynomials. Then, when q is sufficiently large, we have that r = L(P).

A Stronger Connection to Toric Surface Codes

Proposition

Suppose that $P \subset \mathbb{R}^2$ does not contain an exceptional triangle in any maximal decomposition. Let $0 \neq g \in L_P$ be a polynomial with maximum number of zeros and $g = g_1 \dots g_r$ be its factorization into irreducible polynomials. Then, when q is sufficiently large, we have that r = L(P).

Take-away: To compute the maximum number of zeros in L_P (equivalently $d(C_P)$), we only need to look at the polynomials corresponding to maximal decompositions in P.

The Mapping Lemma

 $f: \partial Z \cap \mathbb{Z}^2 \to \partial P \cap \mathbb{Z}^2 \Rightarrow \#\partial P \geqslant \#\partial Z$

13 / 23

(UM-Dearborn) Toric Surface Codes August 14, 2024

The Mapping Lemma

$$f: \partial Z \cap \mathbb{Z}^2 \to \partial P \cap \mathbb{Z}^2 \Rightarrow \#\partial P \geqslant \#\partial Z$$

The Mapping Lemma

$$f: \frac{\partial Z \cap \mathbb{Z}^2}{\partial Z} \to \partial P \cap \mathbb{Z}^2 \Rightarrow \#\partial P \geqslant \#\partial Z$$

Proposition

Let $P \subset \mathbb{R}^2$ be an integral convex polytope which is lattice equivalent to

$$Q = m[0, \vec{e}_1] + n[0, \vec{e}_2] + \ell[0, \vec{e}_1 + \vec{e}_2].$$

Then, $L(P) = m + n + \ell$.

13 / 23

(UM-Dearborn) Toric Surface Codes August 14, 2024

Periodicity of Polytopes

(UM-Dearborn)

Scaling a Polytope

One important transformation is the *t*-dilation of a polytope *P*

$$tP := \{tp : p \in P\}.$$

While this transformation is easily defined, the effect it has on the Minkowski length of P is not so easily described.

Scaling a Polytope

One important transformation is the t-dilation of a polytope P

$$tP := \{tp : p \in P\}.$$

While this transformation is easily defined, the effect it has on the Minkowski length of P is not so easily described. We can, however, always say that

$$L(tP) \ge tL(P)$$
.

But, when do we have equality (=) or strict inequality (>)?

Period-1 Polytopes

We know that

$$\textit{Q} = \textit{m}[0, \vec{e}_1] + \textit{n}[0, \vec{e}_2] + \ell[0, \vec{e}_1 + \vec{e}_2]$$

has Minkowski length $m+n+\ell$ so $L(tQ)=tm+tn+t\ell=tL(Q)$.

16 / 23

(UM-Dearborn)

Period-1 Polytopes

We know that

$$Q = m[0, \vec{e}_1] + n[0, \vec{e}_2] + \ell[0, \vec{e}_1 + \vec{e}_2]$$

has Minkowski length $m+n+\ell$ so $L(tQ)=tm+tn+t\ell=tL(Q)$. But this isn't the case for the exceptional triangle.

Period-1 Polytopes

We know that

$$Q = m[0, \vec{e}_1] + n[0, \vec{e}_2] + \ell[0, \vec{e}_1 + \vec{e}_2]$$

has Minkowski length $m+n+\ell$ so $L(tQ)=tm+tn+t\ell=tL(Q)$. But this isn't the case for the exceptional triangle.

Definition

Let $P \subset \mathbb{R}^m$ be a convex integral polytope. We say that P is a **period-1** polytope iff L(tP) = tL(P) for all $t \geq 0$. If there is some t such that L(tP) > tL(P) then we say that P has **period strictly greater than 1**. Equivalently defined in [2].

4 D > 4 B > 4 B > 4 B >

Period-1 Polytopes and The Exceptional Triangle

It is known that the exceptional triangle can appear as a summand in a maximal decomposition [1]. But, can this happen for a period-1 polytope?

Period-1 Polytopes and The Exceptional Triangle

It is known that the exceptional triangle can appear as a summand in a maximal decomposition [1]. But, can this happen for a period-1 polytope? If $T_0+Q_2+\cdots+Q_L=Q\subseteq P \text{ is a maximal decomposition then}$

$$L(tP) \ge L(tQ) \ge L(tT_0) + t(L-1) > tL = tL(P)$$

as $L(tT_0) > t$ when t > 1.

Period-1 Polytopes and The Exceptional Triangle

It is known that the exceptional triangle can appear as a summand in a maximal decomposition [1]. But, can this happen for a period-1 polytope? If $T_0+Q_2+\cdots+Q_L=Q\subseteq P$ is a maximal decomposition then

$$L(tP) \ge L(tQ) \ge L(tT_0) + t(L-1) > tL = tL(P)$$

as $L(tT_0) > t$ when t > 1.

Proposition

If P is a period-1 polytope then the exceptional triangle doesn't appear in any maximal decomposition.

Periodicity and Subpolytopes

Let $P, Q \subset \mathbb{R}^m$ be integral polytopes.

Proposition

If $P \subseteq Q$ with L(P) = L(Q) and Q has period 1, then P also has period 1.

Periodicity and Subpolytopes

Let $P, Q \subset \mathbb{R}^m$ be integral polytopes.

Proposition

If $P \subseteq Q$ with L(P) = L(Q) and Q has period 1, then P also has period 1.

Proposition

If $P \subseteq Q$ with L(P) = L(Q) and P has period strictly greater than 1, then Q also has period strictly greater than 1.

A Minimum Distance Formula

(UM-Dearborn)

It is known [1] that all smallest maximal decompositions are lattice equivalent to $Q=m[0,\vec{e}_1]+n[0,\vec{e}_2]+\ell[0,\vec{e}_1+\vec{e}_2].$

20 / 23

(UM-Dearborn) Toric Surface Codes August 14, 2024

It is known [1] that all smallest maximal decompositions are lattice equivalent to $Q=m[0,\vec{e}_1]+n[0,\vec{e}_2]+\ell[0,\vec{e}_1+\vec{e}_2].$

It is known [1] that all smallest maximal decompositions are lattice equivalent to $Q=m[0,\vec{e}_1]+n[0,\vec{e}_2]+\ell[0,\vec{e}_1+\vec{e}_2].$

Lemma

The only maximal decomposition in Q is Q itself.

It is known [1] that all smallest maximal decompositions are lattice equivalent to $Q = m[0, \vec{e}_1] + n[0, \vec{e}_2] + \ell[0, \vec{e}_1 + \vec{e}_2].$

Lemma

The only maximal decomposition in Q is Q itself.

Thus, the polynomial in L_Q which has the maximum number of zeros takes the form

$$\prod_{i=1}^{m} (x-a_i) \prod_{i=1}^{n} (y-b_i) \prod_{i=1}^{\ell} (xy-c_i).$$

(UM-Dearborn) Toric Surface Codes August 14, 2024 20 / 23

It is known [1] that all smallest maximal decompositions are lattice equivalent to $Q=m[0,\vec{e}_1]+n[0,\vec{e}_2]+\ell[0,\vec{e}_1+\vec{e}_2].$

Theorem

The minimum distance of the toric code associate to Q is

$$\label{eq:defCQ} \textit{d}(\textit{C}_{\textit{Q}}) = \begin{cases} (q-1)^2 - \textit{L}(\textit{Q})(q-1) + \textit{mn}, & \text{when } \ell = 0 \\ (q-1)^2 - \textit{L}(\textit{Q})(q-1) + \ell(\textit{m} + \textit{n}) & \text{when } \ell > 0 \end{cases}.$$

4日 > 4個 > 4 差 > 4 差 > 差 の Q (*)

(UM-Dearborn) Toric Surface Codes August 14, 2024 21/23

Acknowledgements

This research was completed at the REU Site: Mathematical Analysis and Applications at the University of Michigan-Dearborn. We would like to thank the National Science Foundation (DMS-1950102 and DMS-2243808), the National Security Agency (H98230-24), the College of Arts, Sciences, and Letters, and the Department of Mathematics and Statistics for their support.

References

- [1] Ivan Soprunov and Jenya Soprunova. Toric surface codes and Minkowski length of polygons. *SIAM J. Discrete Math.*, 23(1):384–400, 2008/09.
- [2] Ivan Soprunov and Jenya Soprunova. Eventual quasi-linearity of the Minkowski length. *European J. Combin.*, 58:107–117, 2016.

23 / 23