Economics 101A (Lecture 2)

Stefano DellaVigna

January 19, 2017

Outline

- 1. Optimization with 1 variable
- 2. Multivariate optimization
- 3. Comparative Statics
- 4. Implicit function theorem

1 Optimization with 1 variable

- Nicholson, Ch.2, pp. 20-23
- Example. Function $y = -x^2$ Graph it
- What is the maximum?

- Maximum is at 0
- General method?

- Sure! Use derivatives
- Derivative is slope of the function at a point:

$$\frac{\partial f(x)}{\partial x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Necessary condition for maximum x^* is

$$\frac{\partial f(x^*)}{\partial x} = 0 \tag{1}$$

• Try with $y = -x^2$.

•
$$\frac{\partial f(x)}{\partial x} = 0 \Longrightarrow x^* =$$

- Does this guarantee a maximum? No!
- Consider the function $y = x^3$

•
$$\frac{\partial f(x)}{\partial x} = 0 \Longrightarrow x^* =$$

• Plot $y = x^3$.

• Sufficient condition for a (local) maximum:

$$\frac{\partial f(x^*)}{\partial x} = 0 \text{ and } \left. \frac{\partial^2 f(x)}{\partial^2 x} \right|_{x^*} < 0$$
 (2)

- Proof: At a maximum, $f(x^* + h) f(x^*) < 0$ for all h.
- Taylor Rule: $f(x^*+h)-f(x^*)=\frac{\partial f(x^*)}{\partial x}h+\frac{1}{2}\frac{\partial^2 f(x^*)}{\partial x}h^2+$ higher order terms.
- Notice: $\frac{\partial f(x^*)}{\partial x} = 0$.
- $f(x^* + h) f(x^*) < 0$ for all $h \Longrightarrow \frac{\partial^2 f(x^*)}{\partial^2 x} h^2 < 0 \Longrightarrow \frac{\partial^2 f(x^*)}{\partial^2 x} < 0$

• Careful: Maximum may not exist: $y = \exp(x)$

- Tricky examples:
 - Minimum. $y = x^2$

- No maximum. $y = \exp(x)$ for $x \in (-\infty, +\infty)$

- Corner solution. y = x for $x \in [0, 1]$

2 Multivariate optimization

- Nicholson, Ch.2, pp. 26-31 and 33-35
- Function from R^n to R: $y = f(x_1, x_2, ..., x_n)$
- Partial derivative with respect to x_i :

$$= \lim_{h \to 0} \frac{\frac{\partial f(x_1, \dots, x_n)}{\partial x_i}}{h}$$

- Slope along dimension i
- Total differential:

$$df = \frac{\partial f(x)}{\partial x_1} dx_1 + \frac{\partial f(x)}{\partial x_2} dx_2 + \dots + \frac{\partial f(x)}{\partial x_n} dx_n$$

One important economic example

- \bullet Example 1: Partial derivatives of $y=f(L,K)=L^{.5}K^{.5}$
- $f'_L =$ (marginal productivity of labor)
- $f'_K =$ (marginal productivity of capital)
- $f_{L,K}'' =$

Maximization over an open set (like R)

• Necessary condition for maximum x^* is

$$\frac{\partial f(x^*)}{\partial x_i} = 0 \ \forall i \tag{3}$$

or in vectorial form

$$\nabla f(x) = 0$$

• These are commonly referred to as first order conditions (f.o.c.)

• Sufficient conditions? Define Hessian matrix H:

$$H = \begin{pmatrix} f''_{x_1,x_1} & f''_{x_1,x_2} & \dots & f''_{x_1,x_n} \\ \dots & \dots & \dots \\ f''_{x_n,x_1} & f''_{x_n,x_2} & \dots & f''_{x_n,x_n} \end{pmatrix}$$

• Subdeterminant $|H|_i$ of Matrix H is defined as the determinant of submatrix formed by first i rows and first i columns of matrix H.

Examples.

- $|H|_1$ is determinant of f''_{x_1,x_1} , that is, f''_{x_1,x_1}
- $|H|_2$ is determinant of

$$H = \begin{pmatrix} f''_{x_1, x_1} & f''_{x_1, x_2} \\ f''_{x_2, x_1} & f''_{x_2, x_2} \end{pmatrix}$$

- Sufficient condition for maximum x^* .
 - 1. x^* must satisy first order conditions;
 - 2. Subdeterminants of matrix H must have alternating signs, with subdeterminant of H_1 negative.

- Case with n=2
- Condition 2 reduces to $f_{x_1,x_1}''<0$ and $f_{x_1,x_1}''f_{x_2,x_2}''-(f_{x_1,x_2}'')^2>0$.

- Example 2: $h(x_1, x_2) = p_1 * x_1^2 + p_2 * x_2^2 2x_1 5x_2$
- First order condition w/ respect to x_1 ?
- First order condition w/ respect to x_2 ?
- $x_1^*, x_2^* =$
- For which p_1, p_2 is it a maximum?
- For which p_1, p_2 is it a minimum?

3 Comparative statics

- Economics is all about 'comparative statics'
- What happens to optimal economic choices if we change one parameter?
- Example: Car production. Consumer:
 - 1. Car purchase and increase in oil price
 - 2. Car purchase and increase in income
- Producer:
 - 1. Car production and minimum wage increase
 - 2. Car production and decrease in tariff on Japanese cars
- Next two sections

4 Implicit function theorem

- Implicit function: Ch. 2, pp. 31-32
- Consider function $x_2 = g(x_1, p)$
- Can rewrite as $x_2 g(x_1, p) = 0$
- Implicit function has form: $h(x_2, x_1, p) = 0$
- Often we need to go from implicit to explicit function

- Example 3: $1 x_1 * x_2 e^{x_2} = 0$.
- Write x_1 as function of x_2 :
- Write x_2 as function of x_1 :

- Univariate implicit function theorem (Dini): Consider an equation f(p,x) = 0, and a point (p_0,x_0) solution of the equation. Assume:
 - 1. f continuously differentiable in a neighbourhood of (p_0, x_0) ;
 - 2. $f'_x(p_0, x_0) \neq 0$.
- Then:
 - 1. There is one and only function x = g(p) defined in a neighbourhood of p_0 that satisfies f(p, g(p)) = 0 and $g(p_0) = x_0$;
 - 2. The derivative of g(p) is

$$g'(p) = -\frac{f'_p(p, g(p))}{f'_x(p, g(p))}$$

- Example 3 (continued): $1 x_1 * x_2 e^{x_2} = 0$
- Find derivative of $x_2 = g(x_1)$ implicitely defined for $(x_1, x_2) = (1, 0)$
- Assumptions:
 - 1. Satisfied?
 - 2. Satisfied?
- Compute derivative

5 Next Class

- Next class:
 - Implicit Function Theorem II
 - Envelope Theorem
 - Convexity and Concavity
 - Constrained Maximization
 - Envelope Theorem II

- Going toward:
 - Preferences
 - Utility Maximization (where we get to apply maximization techniques the first time)