Estimating total magnetization direction using equivalent

layer technique

André L. A. Reis[†] *, Vanderlei C. Oliveira Jr. [†] and Valéria C. F. Barbosa [†]

† Observatório Nacional, Rio de Janeiro, Brazil

* Corresponding author: decoluisreis@qmail.com

(May 31, 2019)

GEO-2018XXXX

Running head: **Determining total magnetization direction**

ABSTRACT

We have developed a new method for estimating the total magnetization direction of mag-

netic sources based on equivalent layer technique using total field anomaly data. In this

approach, we do not have to impose a strong information about the shape and the depth

of the sources, and do not require a regularly spaced data. Usually, this technique is used

for processing potential data estimating a 2D magnetic moment distribution over a ficti-

cious layer composed by dipoles below the observation plane. In certain conditions, when

the magnetization direction of equivalent sources is almost the same of true body, the esti-

mated magnetic property over the layer is all positive. The methodology uses a positivity

constraint to estimate a set of magnetic moment over the layer and a magnetization direc-

tion of the layer through a iterative process. Mathematically, the algorithm solve a least

squares problem in two steps: the first one solve a linear problem for estimating a mag-

netic moment and the second solve a non-linear problem for magnetization direction of the

layer. We test the methodology applying to synthetic data for different geometries and

1

magnetization types of sources. Moreover, we applied this method to field data from Goias Alkaline Province (GAP), center of Brazil (FALAR DO RESULTADO DAS APLICAES NAS ANOMALIAS)

METHODOLOGY

Fundamentals of magnetic equivalent layer

Considering a Cartesian coordinate system with x-, y- and z-axis being oriented to north, east and downward, respectively. Let $\Delta T_i \equiv \Delta T(x_i, y_i, z_i)$ be the total field anomaly, at the ith position (x_i, y_i, z_i) , produced by a continuous layer located below the observation plane on the depth z_c , where $z_c > z_i$, and $p(x', y', z_c)$ is the distribution of magnetic dipoles per unit area over the layer surface. In this case, the total-field anomaly produced by a continuous layer is given by equation

$$\Delta T_i = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x', y', z_c) [\gamma_m \hat{\mathbf{F}}_0^T \mathbf{H}(x_i, y_i, z_i, x', y', z_c) \hat{\mathbf{h}}(\mathbf{q})] dx' dy', \tag{1}$$

where γ_m is a constant proportional to the vacuum permeability, $\hat{\mathbf{F}}_0$ is a unity vector with the same direction of the main geomagnetic field given by

$$\hat{\mathbf{F}}_0 = \begin{bmatrix} \cos I \cos D \\ \cos I \sin D \end{bmatrix}, \tag{2}$$

where I and D are the inclination and declination, respectively. The $\hat{\mathbf{h}}(\mathbf{q})$ is a unity vector with the magnetization direction of the layer given by

$$\hat{\mathbf{h}}(\mathbf{q}) = \begin{bmatrix} \cos \tilde{\imath} \cos \tilde{d} \\ \cos \tilde{\imath} \sin \tilde{d} \\ \sin \tilde{\imath} \end{bmatrix}$$
(3)

and \mathbf{q} is a 2 × 1 vector with components given by

$$\mathbf{q} = \begin{bmatrix} \tilde{\mathbf{i}} \\ \tilde{d} \end{bmatrix}, \tag{4}$$

where \tilde{i} and \tilde{d} is the inclination and declination of magnetization of the layer, respectively. The $\mathbf{H}(x_i, y_i, z_i, x', y', z_c)$ is a 3×3 matrix equal to

$$\mathbf{H}(x_{i}, y_{i}, z_{i}, x', y', z_{c}) = \begin{bmatrix} \partial_{xx}\phi & \partial_{xy}\phi & \partial_{xz}\phi \\ \partial_{yx}\phi & \partial_{yy}\phi & \partial_{yz}\phi \\ \partial_{zx}\phi & \partial_{zy}\phi & \partial_{zz}\phi \end{bmatrix},$$
 (5)

where $\partial_{\alpha\beta}\phi$, $\alpha=x,y,z$ and $\beta=x,y,z$, is the second derivative of the scalar function

$$\phi(x_i, y_i, z_i, x', y', z_c) = \frac{1}{[(x_i - x')^2 + (y_i - y')^2 + (z_i - z_c)^2]^{\frac{1}{2}}}.$$
 (6)

with respect to the Cartesian coordinates x_i , y_i and z_i of the observation points.

However, in practical situations, its not possible to determine a continuous magneticmoment distribution $p(x', y', z_c)$ over the layer as shown in equation 1. For this reason, the
continuous equivalent layer have to be approximated by a discrete set of M dipoles with unit
volume located at a constant depth $z = z_c$. Let \mathbf{p} be an M-dimensional parameter vector,
whose jth element p_j is the magnetic intensity of the jth dipole and \mathbf{q} be a vector containing
the inclination \tilde{i} and declination \tilde{d} of all dipole, analogously to equation 4. Mathematically,
by discretizing the integrand of equation 1, the total-field anomaly produced by equivalent
layer at the point (x_i, y_i, z_i) is given by

$$\Delta T_i(\mathbf{p}, \mathbf{q}) = \sum_{j=1}^{M} p_j g_{ij}(\mathbf{q})$$
 (7)

where

$$g_{ij}(\mathbf{q}) = \gamma_m \hat{\mathbf{F}}_0^T \mathbf{H}_{ij} \hat{\mathbf{h}}(\mathbf{q}) \tag{8}$$

is an harmonic function representing the total-field anomaly produced at the *i*th position (x_i, y_i, z_i) by a dipole located at (x_j, y_j, z_c) with unitary magnetic-moment intensity. The matrix \mathbf{H}_{ij} is formed by the second derivatives of a function ϕ_{ij} that depends on the inverse of the scalar function $r_{ij} = [(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_c)^2]^{1/2}$, analogously to equation 5 and 6. In matrix notation, the equation 7 can be represented as

$$\Delta T(p,q) = G(q)p \tag{9}$$

where $\mathbf{G}(\mathbf{q})$ is an $N \times M$ matrix whose ijth element is defined by the harmonic function $g_{ij}(\mathbf{q})$ (equation 8) and $\Delta \mathbf{T}(\mathbf{p}, \mathbf{q})$ is an $N \times 1$ vector whose the ith element is the predicted total-field anomaly $\Delta T_i(\mathbf{p}, \mathbf{q})$ (equation 7). As can be noticed from equation 7-9, the predicted total-field anomaly produced by equivalent layer has a linear relation with the magnetic moment \mathbf{p} and a nonlinear relation with the magnetization direction \mathbf{q} .

Iterative process for magnetization estimation

Let $\Delta \mathbf{T}^o$ be an N-dimensional vector whose ith element ΔT_i^o is the total field anomaly observation produced by a magnetic source at the point (x_i, y_i, z_i) , i = 1, ..., N. The estimation of the magnetic moments \mathbf{p} and the magnetization direction \mathbf{q} consists to formulate an inverse problem by imposing a positivity constraint on the magnetic-moment distribution. It can be performed by minimizing the difference between the observed data $\Delta \mathbf{T}^o$ and the predicted data $\Delta T(\mathbf{p}, \mathbf{q})$ (equation 9) by imposing a positivity constraint.

(Parei aqui)

In other words, a stable estimates \mathbf{p}^{\sharp} and \mathbf{q}^{\sharp} can be obtained by minimizing the objective function given by

$$\Psi(\mathbf{p}, \mathbf{q}) = \| \Delta \mathbf{T}^o - \Delta \mathbf{T}(\mathbf{p}, \mathbf{q}) \|_2^2, \tag{10}$$

where $\Psi(\mathbf{p}, \mathbf{q})$ is the data misfit, which is the Euclidean norm of the difference between the $\Delta \mathbf{T}^o$ and $\Delta \mathbf{T}(\mathbf{p}, \mathbf{q})$.

The procedure of finding a set of magnetic moment \mathbf{p}^{\sharp} and magnetization direction \mathbf{q}^{\sharp} which minimize the equation 10 consists to solve an inverse problem for estimating a set of parameters in two steps. Therefore, we split the inverse problem in a mixed solution of two systems of equations. The first one solves a linear system for estimating the part of the magnetic moment. Secondly, the problem is solved through a non-linear process to calculate successive approximations for the part of the magnetization direction at each iteration along the process.

However, at the kth iteration, we impose positivity constraint on the magnetic-moment distribution estimate \mathbf{p}^k by solving the following constrained problem of

minimizing
$$\|\Delta \mathbf{T}^o - \mathbf{G}(\mathbf{q}_{k-1})\mathbf{p}^k\|_2^2$$
 (11) subject to $\mathbf{p}^k \geqslant 0$

where $\mathbf{G}(\mathbf{q}_{k-1})$ is the $N \times M$ matrix defined in equation 9, $\|\cdot\|_2^2$ represents the squared Euclidean norm and $\mathbf{p}^k \geqslant 0$ means that the magnetic moments of all equivalent sources are positive. This problem is solved by using the nonnegative least squares (NNLS) proposed by (CITAR LAWSON HANSON 1974). In other words, we solve a linear system with positivity constraint at each kth iteration given by the equation

$$\mathbf{p}^{k} = \left(\mathbf{G}_{p}^{(k)T}\mathbf{G}_{p}^{(k)}\right)^{-1}\mathbf{G}_{p}^{(k)T}\Delta\mathbf{T}^{o} \tag{12}$$

where $\mathbf{G}_p^{(k)}$ is the magnetic-moment sensitivity matrix at the kth iteration. The elements of this matrix are composed by derivative of equation 7 in relation of jth element of the vector \mathbf{p}^k .

After estimating the magnetic-moment distribution \mathbf{p}^k at the kth iteration using the previous estimate \mathbf{q}_{k-1} for the magnetization direction, we estimate a new vector \mathbf{q}^k by solving an unconstrained nonlinear inverse problem of minimizing the squared Euclidean norm of the difference between the observed and predicted total-field anomalies. In this nonlinear inversion we use the Levenberg-Marquardt method (CITAR ASTER). That is, we calculate at each kth iteration the step $\Delta \mathbf{q}^k$ for the magnetization direction by using the equation

$$\Delta \mathbf{q}^k = (\mathbf{G}_q^{(k)T} \mathbf{G}_q^{(k)} + \lambda \mathbf{I})^{-1} \mathbf{G}_q^{(k)T} \mathbf{r}^k$$
(13)

where λ is the Marquardt parameter that is updated along the iterative process, \mathbf{I} is a indentity matrix, and the residual at the kth iteration $r^k = \Delta \mathbf{T}^o - \Delta \mathbf{T}(\mathbf{p}^k, \mathbf{q}^{k-1})$. \mathbf{G}_q^k is a sensitivity matrix of the magnetization direction part, whose elements are composed by derivative of equation 7 in relation of each component of the vector \mathbf{q}^k , that are the inclination and declination, respectively. The iterative process stops when the squared Euclidean norm of the difference between the observed data $\Delta \mathbf{T}^o$ and predicted data $\Delta \mathbf{T}(\mathbf{p}, \mathbf{q})$ (equation 9) is invariant along succesive iterations (Figure 1).

Positive magnetic-moment distribution over equivalent layer

Figure 1: Iterative scheme overview for NNLS and Levenberg-Marquardt method for estimating magnetization direction. The outer loop is the nonnegative solution for magnetic-moment distribution and the inner loop calculates the magnetization direction using Levenberg-Marquardt method.