Tolerância a Faltas
Distribuída
Introduction

Introduction

About the course

- Prerequisites:
 - Notions on computing systems, networks, operating systems and distributed systems
 - Notions of discrete mathematics
 - Programming skills (e.g., network programming)
- Lectures:
 - Mondays, 16:30 to 20:00, room 8.2.6
 - We will have a 15 min. break between T and TP (~18:45hs)

© 2018 Alysson Bessani, FCUL

TFD

2

Teaching staff • Instructor Alysson Bessani (anbessani@ciencias.ulisboa.pt) Office 6.3.23 Office hours: Thursdays, 14h00-16h00hs

Introduction

Objectives

- Learn advanced topics in distributed systems, paying special attention to:
 - Dependability and fault tolerance
 - High availability
 - How to manage critical state
 - Scalability and ability to deal with large volumes of data
 - Distributed algorithms
 - Security (with emphasis on availability)
- This is an exciting and trendy topic
 - Big data, Cloud computing, Internet of things relies on distributed systems, blockchains, all of them need fault tolerance

© 2018 Alysson Bessani, FCUL

TFD

5

Date	T	TP
•	Introduction	Distributed Systems & Fault Tolerance
•	Distrisbuted Systems Models	Calculating Availiability & Reliability
	Fault-tolerant Broadcasts and Rel. Problems I	l .
	Fault-tolerant Broadcasts and Rel. Problems II	
	Consensus and Failure Detectors	In-depth study of a consensus protoco
	SBSeg	
29-Oct	Replication and Consistency	Optimistic Replication
05-Nov	Paxos and related protocols	Practical Paxos
12-Nov	Checkpointing and Rollback Recovery	Durability in State Machine Replicatio
19-Nov	DiSIEM meeting	
26-Nov	Fault-Tolerant Storage I	RAID
03-Dec	Fault-Tolerant Storage II	Cloud-of-clouds storage
10-Dec	Shared Memory Abstractions	Coordination Services
17-Dec	Wrap Up & Project Presentation	Project Presentation
		TEN

Introduction

Bibliography

- · References will be provided for each lecture
- Textbooks
 - C. Cachin, R. Guerraoui, L, Rodrigues, Reliable Distributed Programming, 2nd Edition. Springer, 2010. Selected parts
 - Sape Mullender (Editor). Distributed Systems, 2nd Ed., Addison-Wesley, 1993. Selected parts
 - B, Beyer, C. Jones, J. Petoff and N. R. Murphy. Site Reliability Engineering: How Google Runs Production Systems. O'Reilly. 2016. Selected parts
- Others (but very important!)

Research papers to be indicated (accessible through IEEE Explore, ACM Digital Library or B-On)

© 2018 Alysson Bessani, FCUL

TFD

7

Introduction

Grading

- Paper assignments (15%)
 - Five paper reviews (3% each)
- Project with three phases (35%)
 - First phase: 10%
 - Second phase: 15%
 - Third phase: 10%
- Final exam (50%)
- Each component has minimum grade req. of 9 out-of 20

© 2018 Alysson Bessani, FCUL

<u>TFD</u>

8

Project

Objective:

Introduction

- Implement a distributed fault tolerant service
- Develop the underlying support for state machine replication
- Optimize the implementation
- One project with three phases
 - Phase 1: Basic mechanisms for replica consensus
 - Phase 2: Fault tolerance and leader change
 - Phase 3: Optimizations, recovery and reconfiguration
- · Groups of 3 students

© 2018 Alysson Bessani, FCUL

TFD

1

Introduction Important delivery dates Paper assignment I 24/09 • Paper assignment II 08/10 Project phase 1 22/10 Paper assignment III 05/11 Project phase 2 19/11 Paper assignment IV 03/11 Project phase 3 10/12 Paper assignment V 21/12 **TFD** © 2018 Alvsson Bessani, FCUL

Initial to-read list: Paper assignment 1 (Deadline: 24/09): What good are models and what models are good? F. Schneider The Network is Reliable. P. Balis and K. Kingsbury Paper assignement 2 (Deadline: 08/10) In Search of an Understandable Consensus Algorithm, D. Ongaro and J. Ousterhout