Інтерполяційний поліном Ньютона для рівновідалених вузлів

Визначення. Вузли інтерполяції називаються рівновідаленими, якщо $x_i - x_{i-1} = h = const.$

$$x_i = x_0 + ih, i = \overline{0,n}$$

Нехай $f(x_i) = y_i$.

Визначення. Величина $\Delta y_i = y_{i+1} - y_i$ називається скінченою різницею першого порядку.

Величина $\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i$ називається скінченою різницею другого порядку.

Величина $\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$ називається скінченою різницею k-го порядку.

Має місце рівність

$$\Delta^k y_i = k! h^k f(x_i; \dots; x_k)$$

$$f(x_i; \dots; x_k) = \frac{\Delta^k y_i}{k! h^k}$$

Підставимо цю формулу в інтерполяційний поліном Ньютона:

$$L_n(x) = P_n(x) = y_0 + \frac{\Delta y_0}{1!h^1}(x - x_0) + \frac{\Delta^2 y_0}{2!h^2}(x - x_0)(x - x_1) + \cdots$$
$$\cdots + \frac{\Delta^n y_0}{n!h^n}(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

Покладемо
$$x=x_0+th,\; t=rac{x-x_0}{h}$$
 . Тоді

$$x - x_0 = x_0 + th - x_0 = th$$

$$x_1 = x_0 + h$$

$$x - x_1 = x_0 + th - x_0 - h = h(t - 1)$$
$$x_2 = x_0 + 2h$$
$$x - x_2 = x_0 + th - x_0 - 2h = h(t - 2)$$

.

$$x_n = x_0 + nh$$

$$x - x_n = x_0 + th - x_0 - nh = h(t - n)$$

Тоді інтерполяційний поліном Ньютона набуває вигляду:

$$L_n(x) = P_n(x) = y_0 + \frac{\Delta y_0}{1!h^1}(x - x_0) + \frac{\Delta^2 y_0}{2!h^2}(x - x_0)(x - x_1) + \cdots$$

$$\cdots + \frac{\Delta^n y_0}{n!h^n}(x - x_0)(x - x_1) \cdots (x - x_{n-1}) =$$

$$= y_0 + \frac{\Delta y_0}{1!h^1}th + \frac{\Delta^2 y_0}{2!h^2}th(t - 1)h + \cdots$$

$$\cdots + \frac{\Delta^n y_0}{n!h^n}th(t - 1)h \cdots (t - n + 1)h =$$

$$P_n(t) = y_0 + \frac{\Delta y_0}{1!}t + \frac{\Delta^2 y_0}{2!}t(t - 1) \cdots + \frac{\Delta^n y_0}{n!}t(t - 1) \cdots (t - n + 1).$$

Похибка інтерполяцій набуває вигляду, за умови що

$$f(x) \in C^{(n+1)}[a,b]$$

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1} =$$

$$= \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

$$R_n(t) = \frac{f^{(n+1)}(\xi)}{(n+1)!}t(t-1)(t-2)\cdots(t-n)$$

Для інтерполяційної формули Ньютона назад за допомогою аналогічних перетворень дістанемо:

$$P_n(t) = y_0 + \frac{\Delta y_{n-1}}{1!}t + \frac{\Delta^2 y_{n-2}}{2!}t(t+1)\cdots + \frac{\Delta^n y_0}{n!}t(t+1)\cdots(t+n-1).$$

$$R_n(t) = \frac{f^{(n+1)}(\xi)}{(n+1)!}t(t+1)(t+2)\cdots(t+n)$$

Для побудови інтерполяційноного полінома Ньютона для рівновіддалених вузлів спочатку знаходимо таблицю скінчених різниць:

$$y_0 \quad \Delta y_0 \quad \Delta^2 y_0 \quad \cdots \quad \cdots \quad \Delta^n y_0$$

$$y_1 \quad \Delta y_1 \quad \Delta^2 y_1 \quad \cdots \quad \cdots \quad \Delta^{n-1} y_1$$

$$y_2 \quad \Delta y_2 \quad \Delta^2 y_2 \quad \cdots \quad \Delta^{n-2} y_{n-2}$$

$$\cdots \quad \cdots \quad \Delta y_{n-1}$$

$$y_n$$

та використовуємо відповідну інтерполяційну формулу Ньютона.

Оптимальний вибір вузлів

Hexaŭ
$$f(x) \in C^{(n+1)}[a,b]$$
.
 $|f(x) - L_n(x)| \le \frac{M_{n+1}}{(n+1)!} |(x - x_0) \cdot (x - x_1) \cdot \dots \cdot (x - x_n)|$
 $M_{n+1} = \max_{x \in [a,b]} |f^{(n+1)}(x)|$

$$\max_{x \in [a,b]} |\omega(x)| \to \min$$

Серед усix поліномів степеня n+1 із старшим крефіцієнтом одиниця найменш відхиляється від нуля на проміжку $\left[a,b\right]$ поліном $\overline{T}_{n+1}^{[a;b]}(x)$. Має місце рівність:

$$||\overline{T}_{n+1}^{[a;b]}(x)|| = (b-a)^{n+1} \cdot 2^{1-2(n+1)}.$$

Отже, якщо за вузли інтерполяції обрати нулі багаточлена Чебишова $\overline{T}_{n+1}^{[a;b]}(x)$, а саме $x_k = \frac{a+b}{2} + \frac{b-a}{2}\cos\frac{(2k+1)\pi}{2(n+1)},$ $k=\overline{0,n}$, mo

$$|f(x) - L_n(x)| \le \frac{M_{n+1}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{2n+1}}$$

Для проміжку [-1,1] одержимо такий результат: $|f(x)-L_n(x)|\leqslant \frac{M_{n+1}}{(n+1)!}\frac{1}{2^{2n+1}}$

$$|f(x) - L_n(x)| \le \frac{M_{n+1}}{(n+1)!} \frac{1}{2^{2n+1}}$$

Приклад

Побудувати інтерполяційний поліном для функції f(x)[-1;1]. Використати три вузли, які ϵ нулям поліному Чебишова. Обчислити наближене значення функції в точці 0.5. Оцінити похибку обчислення функції в точці 0.5.

Розв'язок

3 вузли
$$\Rightarrow n=2$$

$$x_0 = \cos\frac{(2\cdot 0+1)\pi}{2\cdot (2+1)} = \frac{\sqrt{3}}{2} \approx 0.866$$

$$x_1 = \cos\frac{(2\cdot 1+1)\pi}{2\cdot (2+1)} = 0$$

$$x_2 = \cos\frac{(2\cdot 2+1)\pi}{2\cdot (2+1)} = -\frac{\sqrt{3}}{2} \approx -0.866$$

k	x_k	$f(x_k)$	p.p.I n.	p.p.II n.
0	0.866	2.489		
			1.719	
1	0	1		0.583
			0.709	
2	-0.866	0.386		

$$P_2^{\mathsf{u}}(x) = 2.489 + 1.719(x - 0.866) + 0.583(x - 0.866)x \approx$$

$$\approx 0.583x^2 + 1.214x + 1$$

$$P_2^{\text{\tiny u}}(0.5) \approx 0.583 \cdot 0.5^2 + 1.214 \cdot 0.5 + 1 \approx 1.753$$

$$|f(0.5) - P_2^{\mathsf{u}}(0.5)| \leqslant \frac{M_3}{3!} \frac{(1 - (-1))^3}{2^{2 \cdot 2 + 1}} \approx 0.166$$

$$|f(0.5) - P_2(0.5)| \approx 0.25$$
 $P_2^{*}(0.5) \approx 1.833$

$$|f(0.5) - P_2(0.5)| = |3^{0.5} - 1.833| \approx 0.101$$

$$|f(0.5) - P_2^{\mathrm{v}}(0.5)| = |3^{0.5} - 1.753| \approx 0.021$$

Πp иклад

Знайти суму скінченного ряду за допомогою інтерполяції:

$$S(n) = 1 + 3 + 5 + 7 + 9 + \dots + (2n - 1)$$

n	S(n)	p.p.I $n.$	p.p.II n.	p.p.III n.
1	1			
2	4	3	1	
	4	5		0
3	9		1	
		7		0
4	16		1	
		9		
5	25			

Розв'язок

$$P_2(n) = 1 + 3(n-1) + 1(n-1)(n-2) = n^2$$

Πp иклад

Визначити степінь інтерполяційного многочлена для функції, заданої таблично:

x_i	-1	1	2	3	4	5
$f(x_i)$	-4	-2	5	16	31	50

Розв'язок

x	f(x)	p.p.I n.	p.p.II n.	p.p.III n.
- 1	$\boxed{-4}$			
1	-2	1		
2	5	7	2	
3	16	11	2	0
4	31	15	2	0
5	50	19	2	0

Степінь інтерполяціїйного многочлена: n=2

Πp иклад

3 якою точністю ϵ можна обчислити $3^{0.5}$ за відомими значеннями 3^{-1} , 3^{0} , 3^{1} ?

Розв'язок

За умовою не треба будувати поліном, лише визначити похибку. В нас нічого не сказано про чебишовські вузли \Rightarrow

$$|f(x) - L_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega(x)|$$

Відомі значення: 3^{-1} , 3^{0} , $3^{1} \Rightarrow f(x) = 3^{x}$ і

$$x_0 = -1 \text{, } x_1 = 0 \text{, } x_2 = 1$$

$$3 \text{ sysna} \Rightarrow n = 2$$

$$|3^{0.5} - L_2(0.5)| \leqslant \frac{M_3}{3!} |(0.5 - x_0)(0.5 - x_1)(0.5 - x_2)| \equiv M_3 = \max_{x \in [-1;1]} |3^x \ln^3 3| = 3 \ln^3 3$$

$$\equiv \frac{3 \ln^3 3}{6} |(0.5 + 1)(0.5 - 0)(0.5 - 1)| \approx 0.2486$$

Приклад

Скільки чебишовських вузлів інтерполяції необхідно взяти, щоб похибка інтерполяції для функції $f(x)=\ln(1+x)$, $x\in[0;1]$ не перевищувала $\epsilon=10^{-4}$?

Розв'язок

За умовою не треба будувати поліном, лише визначити похибку. В нас чебишовські вузли

$$\Rightarrow |f(x) - L_n(x)| \leqslant \frac{M_{n+1}}{(n+1)!} \frac{(b-a)^{n+1}}{2^{2n+1}}$$

$$f(x) = \ln(1+x) \qquad f'(x) = \frac{1}{1+x}$$

$$f''(x) = -\frac{1}{(1+x)^2} \qquad f'''(x) = \frac{2}{(1+x)^3} \cdots$$

$$f^{(n+1)}(x) = (-1)^n \frac{n!}{(1+x)^{n+1}}$$

$$M_{n+1} = \max_{x \in [0;1]} |f^{(n+1)}(x)| = \frac{n!}{(1+0)^{n+1}}$$

$$|f(x) - L_n(x)| \leqslant \frac{n!}{(n+1)!} \frac{(1-0)^{n+1}}{2^{2n+1}} = \frac{1}{(n+1)2^{2n+1}}$$

$$n = 4 |f(x) - L_4(x)| \leqslant \frac{1}{5 \cdot 2^9} \approx 0.0004 > \varepsilon$$

$$n = 5 |f(x) - L_5(x)| \leqslant \frac{1}{6 \cdot 2^{11}} \approx 0.00008 \Rightarrow 6 \text{ eysn}$$

Інтерполяційний поліном Ерміта (інтерполяція з кратними візлами)

Нехай функція

$$f(x) \in C^{\alpha}[a,b]$$

задана своїми значеннями та значеннями своїх похідних до відповідного порядку в кожному вузлі

$$f^{(j)}(x_i), i = \overline{0, n}, j = \overline{0, k_i - 1}$$

Потрібно побудувати $H_m(x)$, що відповідає інтерполяційним умовам:

$$H_m(x_i) = f(x_i), \ H'_m(x_i) = f'(x_i), \ H''_m(x_i) = f''(x_i),$$

$$H_m^{(k_i-1)}(x_i) = f^{(k_i-1)}(x_i), \ i = \overline{0, n}$$

$$x_i \neq x_j, if i \neq j$$

Ці уомови називають інтерполяціними умовами Ерміта. Числа k_i називають кратністю вузла x_i та $m=\sum\limits_{i=0}^n k_i-1$ Інтерполяціний поліном $H_m(x)$ - єдиний.

Припустимо, що існує два таких багаточлена, що відповідають інтерполяційним умовам Ерміта. Тоді їх різниця $Q_m(x)$ задовольняє таким умовам

$$Q_m(x_i) = 0, \ Q'_m(x_i) = 0, \ Q''_m(x_i) = 0,$$

$$Q_m^{(k_i-1)}(x_i) = 0, \ i = \overline{0,n}$$

Отже дістали, що поліном m степеня має m + 1 нулів. Суперечність.

Існування інтерполянта Ерміта $H_m(x)$ доведемо його конструктивною побудовою.

На кожному проміжку $[x_i, x_{i+1}]$ доведемо допоміжні вузли:

$$x_{i_j}^{\varepsilon}, i = \overline{0, n}, j = \overline{0, k_i - 1}$$

$$x_i \leqslant x_{i_1}^{\varepsilon} < x_{i_2}^{\varepsilon} < \dots < x_{i_{k_i}}^{\varepsilon} < x_{i+1}$$

$$x_{i_j}^{\varepsilon} \longrightarrow x_i, \quad \varepsilon \to 0$$

Зокрема, можна взяти

$$x_{i_j}^{\varepsilon} = x_i + (j-1)\varepsilon.$$

Побудуємо інтерполяційний поліном $P_m(x)$, що збігається з f(x) у вузлах $x_{i_j}^{\varepsilon}.$ Таблиця розділкних ріниць має вигляд:

$x_{i_j}^{\varepsilon}$	$f(x_{i_j}^{\varepsilon})$	p.p.I $n.$	p.p.II n.	 p.p. n n.
$x_{1_1}^{\varepsilon}$	$f(x_{1_1}^{\varepsilon})$			
		$f(x_{1_1}^{\varepsilon}; x_{1_2}^{\varepsilon})$		
$x_{1_2}^{\varepsilon}$	$f(x_{1_2}^{\varepsilon})$		$f(x_{1_1}^{\varepsilon}; x_{1_2}^{\varepsilon}; x_{1_3}^{\varepsilon})$	
		$f(x_{1_2}^{\varepsilon}; x_{1_3}^{\varepsilon})$		
$x_{1_3}^{\varepsilon}$	$f(x_{1_3}^{\varepsilon})$		$f(x_{1_2}^{\varepsilon}; x_{1_3}^{\varepsilon}; x_{1_4}^{\varepsilon})$	
		$f(x_{1_3}^{\varepsilon}; x_{1_4}^{\varepsilon})$		
				$ f(x_{1_1}^{\varepsilon}; \dots; x_{1_{k_1}}^{\varepsilon}; \dots; x_{n_1}^{\varepsilon}; \dots; x_{$
$x_{1_{k_1}}^{\varepsilon}$	$f(x_{1_{k_1}}^{\varepsilon})$			
		$f(x_{1_{k_1}}^{\varepsilon}; x_{2_1}^{\varepsilon})$		
$x_{2_1}^{\varepsilon}$	$f(x_{2_1}^{\varepsilon})$			
		• • •	$f(x_{n_{k_n-2}}^{\varepsilon}; x_{n_{k_n-1}}^{\varepsilon}; x_{n_{k_n}}^{\varepsilon})$	
• • • •	• • •			
		$f(x_{n_{k_n-1}}^{\varepsilon}; x_{n_{k_n}}^{\varepsilon})$		
$x_{n_k}^{\varepsilon}$	$f(x_{n_k}^{\varepsilon})$			

 $\lfloor rac{x_{n_{k_n}} \mid J \mid x_{n_{k_n}} J \mid}{3}$ апишемо інтерполяцйний поліном Ньютона:

$$P_m(x) = f(x_{1_1}^{\varepsilon}) + f(x_{1_1}^{\varepsilon}; x_{1_2}^{\varepsilon})(x - x_{1_1}^{\varepsilon}) + f(x_{1_1}^{\varepsilon}; x_{1_2}^{\varepsilon}; x_{1_2}^{\varepsilon})(x - x_{1_1}^{\varepsilon})(x - x_{1_2}^{\varepsilon}) + \cdots$$

$$+\cdots+f(x_{n_1}^{\varepsilon};\cdots;x_{n_k}^{\varepsilon};\cdots;x_{n_1}^{\varepsilon};\cdots;x_{n_{k_n}}^{\varepsilon})(x-x_{n_1}^{\varepsilon})\cdots(x-x_{n_{k_n}}^{\varepsilon})\cdots(x-x_{n_k}^{\varepsilon})\cdots(x-x_{n_{k_{n-1}}}^{\varepsilon}).$$

Спрямуємо ε до нуля:

$$x_{i_i}^{\varepsilon} \rightarrow x_i$$

Одержимо таку таблицю розділених ріниць:

x_i	$f(x_i)$	p.p.I $n.$	p.p.II $n.$	 p.p. n n.
x_1	$f(x_1)$			
		$f(x_1; x_1)$		
x_1	$f(x_1)$		$f(x_1; x_1; x_1)$	
		$f(x_1; x_1)$		
x_1	$f(x_1)$		$f(x_1; x_1; x_1)$	
		$f(x_1; x_1)$		
	•••		•••	$ f(x_1; \ldots; x_1; \ldots; x_n; \ldots; x_n) $
		• • •		
x_1	$f(x_1)$			
		$f(x_1; x_2)$		
x_2	$f(x_2)$			
		• • •	$f(x_n; x_n; x_n)$	
		$f(x_n; x_n)$		
x_n	$f(x_n)$			

та інтерполяційний поліном Ньютона

$$P_m(x) = f(x_1) + f(x_1; x_1)(x - x_1) + f(x_1; x_1; x_1)(x - x_1)(x - x_1) + \cdots$$

$$+\cdots+f(x_1;\cdots;x_1;\cdots;x_n;\cdots;x_n)\underbrace{(x-x_1)\cdots(x-x_1)}_{k_1}\cdots\underbrace{(x-x_n)\cdots(x-x_n)}_{k_n-1}.$$

За означенням розділеної ріниці:

$$f(x_i; x_j) = \frac{f(x_i) - f(x_j)}{x_i - x_j}.$$

Дістанемо невизначеність!!!

Але ϵ рівність:

$$f(\underbrace{x_i, x_i, \dots, x_i}_{k+1}) = \frac{f^{(k)}(x_i)}{k!}.$$

Отже талиця розділених різниць набуває вигляду

		possitiona	w postowajo ne	wo g o u	,
x_i	$f(x_i)$	p.p.I $n.$	p.p.II n.		p.p. n n.
x_1	$f(x_1)$				
		$\frac{f'(x_1)}{1!}$			
<i>m</i> .	f(x)		$\frac{f''(x_1)}{2!}$		
x_1	$f(x_1)$	$f'(x_i)$	2!		
		$\frac{f'(x_1)}{1!}$			
x_1	$f(x_1)$	$\frac{f'(x_1)}{1!}$	$\frac{f''(x_1)}{2!}$		
1	J (**1)	$f'(x_1)$	2!		
		$\frac{\sqrt{1}}{1!}$		• • •	
• • •	•••		•••		$f(\underbrace{x_1;\ldots;x_1}_{k_1};\ldots;\underbrace{x_n;\ldots;x_n}_{k_n})$
					$ec{k}_1$ $ec{k}_n$
		• • •			
x_1	$f(x_1)$				
		$f(x_1; x_2)$			
x_2	$f(x_2)$				
			$\frac{f''(x_n)}{2!}$		
			2!		
		f'(x)			
		$\frac{f'(x_n)}{1!}$			
x_n	$\int f(x_n)$				
			·		_

а інтерполяційний поліном Ньютона такого вигляду

$$H_m(x) = f(x_1) + f(x_1; x_1)(x - x_1) + f(x_1; x_1; x_1)(x - x_1)^2 + \cdots$$
 $+ \cdots + f(\underbrace{x_1; \dots; x_1}_{k_1}; x_2)(x - x_1)^{k_1} + f(\underbrace{x_1; \dots; x_1}_{k_1}; x_2; x_2)(x - x_1)^{k_1}(x - x^2)$
 $+ \cdots + f(\underbrace{x_1; \dots; x_1}_{k_1}; \dots; \underbrace{x_n; \dots; x_n}_{k_n})(x - x_1)^{k_1} \cdots (x - x_{n-1})^{k_{n-1}}(x - x_n)^{k_n-1}.$
Якщо $k_i \equiv 1 \quad \forall i \quad \Rightarrow \quad H_m(x) = L_n(x)$
 $f(x_i, \dots, x_i) = \frac{f^k(x_i)}{k!} \Rightarrow$

$$|f(x) - H_m(x)| \le \frac{M_{m+1}}{(m+1)!} |(x-x_0)^{k_0} ... (x-x_n)^{k_n}|$$

Для того, щоб по̀казати, що побудований багаточлен відпоівдає інтерполяційним умовам Ерміта, побудований поліном надамо у вигляді:

$$H_m(x) = \sum_{i=1}^{k_1} \frac{f^{i-1}(x_1)}{(i-1)!} (x - x_1)^{i-1} + (x - x_1)^{k_1} F(x - x_2, x - x_3, \dots, x - x_n),$$

де $F(x-x_2,x-x_3,\ldots,x-x_n)$ - деякий багаточлен від t_1,t_2,\ldots,t_{n-1} . З даної рівності випливає, що багаточлен задовольняє інтерполяційним умовам в точці x_1 .

В останній рівності замінемо x_1 на $x_k, \forall k$. Одержимо, що інтеропляційні умови будуть виконуватись в точках $x_k, \forall k$.

Приклад

Побудувати многочлен, що інтерполює дані:

$$x_0 = -1$$
; $f_0 = 0$; $f'_0 = 2$
 $x_1 = 0$; $f_1 = 2$; $f'_1 = 4$; $f''_1 = -4$
 $x_2 = 1$; $f_2 = -1$; $f'_2 = -14$
 $m = 2 + 3 + 2 - 1 = 6$

Розв'язок

x	f(x)	I	II	III	IV	V	VI
-1	0						
-1	0	2					
0	2	2	0				
0	2	4	2	2			
0	2	4	-2	-4	-6		
1	-1	-3	-7	-5	-0.5	11/4	
1	-1	-14	-11	-4	1	3/4	-1

x	f(x)	I	ΙΙ	III	IV	V	VI			
-1	0									
-1	0	2								
0	2	2	0							
0	2	4	2	2						
0	2	4	-2	-4	-6					
1	- 1	-3	-7	-5	-0.5	11/4				
1	- 1	-14	-11	-4	1	3/4	$\begin{bmatrix} -1 \end{bmatrix}$			
$H_6(x) = 0 + 2(x+1) + 0(x+1)^2 + 2(x+1)^2x -$										
-6(a	$-6(x+1)^2x^2 + \frac{11}{4}(x+1)^2x^3 - (x+1)^2x^3(x-1) =$									

 $=2x^3 + 4x^2 + 4x + 2$