

Carrier Phase Cycle-Slip Detection

Master : Dr, Farzane

St: AmirAbbas Saberi

University of Tehran November 11, 2022

Carrier Phase Cycle-Slip Detection

Cycle-Slips are seen as jumps of integer numbers of wavelengths λ .

Several methods are used for detecting cycle-slip , utilizeing single and multi-differenced observations.

In this project two kind of detectors-based methods will be done . these are given as follows :

1 Detector based on carrier phase measurements only: Geometry-free combination

Geometry free combinations provide some benefits like removing geometry effect, and in non-disturbed conditions can provide non-dispersive effects in the signal the jump that happend in this combination is smaller than the original signals, consequently it will provide more reliable detection.

Description of Algorithm:

Input data: Geometry-free combination of carrier phase measurements

$$\Phi_I(s;k) = \Phi_1(s;k) - \Phi_2(s;k)$$

For specific arcline interp gap data.

For each epoch (k)

For each tracked satellite (s)

Divide all time data to $tol_{\Delta t}$

Fit a sec-order polynomial P(s;x) to the next values $W = [\Phi_I(s;k), ..., \Phi_I(s;k+1)]$

 $N_I)]$

if $|\Phi_I(s; k + N_I + 1) - P(s; k + N_I + 1)| > 4 * std(W)$

Reset algorithm after cycle-slip.

Geometry-free combination resualt :

Figure 1: MIZU 2016.

Figure 2: MIZU 2016 Sec-order Polynomial.

2 Detector based on carrier phase measurements only: Blewitt

By differing narrow-lane code from wide-lane phase combination the MW combination is resulted which has a double benefit. First the combination has a larger wavelength which leads to an enlargement of the ambiguity spacing. Second the narrow-lane combination reduce the noise and make acceptable bais around mean of data.

Description of Algorithm : Input data: The MW combination $B_W = \Phi_W - R_N = \lambda_W N_W + b_W + \epsilon$ For specific arcline — For each epoch (k) — For each tracked satellite (s) — Evaluate $m_{BW} = mean[B_W(s;k),...,B_W(s;k+N_I)]$, $s_{BW} = std[B_W(s;k),...,B_W(s;k+N_I)]$ if $|B_W(s;k+N_I+1) - m_{BW}| > 4*s_{BW}$ Reset algorithm after cycle-slip.

Blewitt resualt:

Figure 3: MIZU 2016 Blewitt.