Установка рабочей среды - <u>Jupyter Notebook и Anaconda | Программирование на Питоне</u> (dmitrymakarov.ru)

Также можно работать онлайн в JupyterLite

1. Предсказание цен на квартиры с помощью метода линейной регрессии

Задача: Определить стоимость квартиры в зависимости от площади

Исходной код ниже в задание Excel файлы в моем репозитории в GitHub https://github.com/Arailym-ray/Advanced-Programming-Python-1/tree/main/week%209

Регрессия – задача предсказать величину конкретного признака объекта в числовом выражении используя имеющиеся данные по другим признакам объекта.

Знаем		
Площадь (кв.м.)	Цена (млн. руб.)	
28	2,4	
42	3,7	
45	3,9	
56	4,5	
68	5,7	
75	6,4	
90	7,8	
Находим формулу		
f (x)	Y = aX + b	
Предсказываем		
34	?	
49	?	

Знаем		
Рост (см)	Вес (кг)	
158	49	
160	53	
160	58	
173	67	
175	77	
182	80	
184	91	
Находим формулу		
f (x)	Y = aX + b	
Предсказываем		
176	?	
186	?	
.30	•	

Знаем		
Площадь торг.зала (квм)	Продажи (млн)	
250	35	
160	18	
320	38	
203	22	
545	67	
482	60	
195	21	
Находим формулу		
f (x)	Y = aX + b	
Предсказываем		
230	?	
420	?	

J. Udam

Задача регрессии: Определить стоимость квартиры в зависимости от площади

Знаем		
Площадь (кв.м.)	Цена (млн. руб.)	
28	3,1	
42	3,8	
45	3,9	
52	4,4	
56	4,5	
68	5,9	
70	5,6	
75	6,4	
90	7,3	
Находим формулу зависимости <i>f</i> (x)		
Предсказываем		
34	?	
49	?	

J. Udany

Задача регрессии Определить стоимость квартиры в зависимости от плошали

В линейной зависимости используется формула прямой:

Наша задача – найти коэффициенты a, b

M. Odano

Задача регрессии: Определить стоимость квартиры в зависимости от плошали

В линейной зависимости используется формула прямой:

Наша задача – найти коэффициенты а, b

A Udany


```
#!/usr/bin/env python
# coding: utf-8

# In[1]:

# импортируем библиотеки и модули

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn import linear_model

# In[2]:

# загружаем и визуализируем данные

# In[3]:

df = pd.read_excel('pricel.xlsx')

# In[4]:

df

# In[12]:

get_ipython().run_line_magic('matplotlib', 'inline')
```

```
plt.scatter(df.area, df.price, color='red', marker='^')
plt.xlabel('площадь (кв.м.)')
plt.ylabel('стоимость (млн.руб)')
reg = linear model.LinearRegression() #создали модель
reg.fit(df[['area']],df.price) #обучаем модель на наших данных
reg.predict([[120]])
reg.predict(df[['area']])
```

```
get ipython().run line magic('matplotlib', 'inline')
plt.scatter(df.area, df.price, color='red', marker='^')
plt.xlabel('площадь (кв.м.)')
plt.ylabel('стоимость (млн.руб)')
plt.plot(df.area, reg.predict(df[['area']]))
pred = pd.read excel('prediction price.xlsx')
pred
pred.head(3)
p = reg.predict(pred) # предсказываем цены для новых квартир из нового файла
pred['predicted prices'] = p
```

```
pred

# In[40]:

pred.to_excel('new.xlsx', index=False) # сохраняем файл в Excel без первой колонки

# In[]:
```

Самостоятельное задание:

- 1) Найти зависимость ВВП России от цен на нефть на основе исторических данных
- 2) Загрузить файл gdprussia.xlsx в ваш ноутбук на Jupyter
- 3) Отобразить данные в виде графика
- 4) Обучить модель с помощью алгоритма линейной регрессии
- 5) Предсказать ВВП в зависимости от разных цен на нефть

2. Предсказание ВВП от цен на нефть с помощью Линейной Регрессии

Используем данные с файла gdprussia.xlsx (в репозитории можно скачать)

```
#!/usr/bin/env python
# coding: utf-8
# In[1]:

# Импортируем модули и библиотеки

# In[3]:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model

# In[5]:

df = pd.read_excel('gdprussia.xlsx')

# In[24]:

df

# In[11]:

get_ipython().run_line_magic('matplotlib', 'inline')
```

```
plt.scatter(df.oilprice, df.gdp)
plt.xlabel('oil price (US$)')
plt.ylabel('GDP, Russia (bln US$)')
reg = linear model.LinearRegression()
reg.fit(df[['oilprice']], df.gdp)
reg.predict(df[['oilprice']])
get_ipython().run_line_magic('matplotlib', 'inline')
plt.scatter(df.oilprice, df.gdp)
plt.xlabel('oil price (US$)')
plt.ylabel('GDP, Russia (bln US$)')
plt.plot(df.oilprice, reg.predict(df[['oilprice']]))
reg = linear model.LinearRegression()
reg.fit(df[['year','oilprice']], df.gdp)
```

```
reg.predict(df[['year','oilprice']])
# In[23]:
reg.predict([[2025,100]])
# In[]:
```