Algoritmos y Estructuras de Datos II

TALLER - 5 de mayo 2022

Laboratorio 4: Tipos Abstractos de Datos (TADs)

Objetivos

- 1. Profundizar uso de punteros y memoria dinámica
- 2. Llevar a lenguaje C los conceptos de TAD estudiados en el Teórico-Práctico
- 3. Comprender conceptos de encapsulamiento vs acoplamiento
- 4. Comprender concepto de implementación opaca
- 5. Administración de memoria dinámica (malloc(), calloc(), free())

Ejercicio 0: Punteros++, Arreglos y Cadenas

Operaciones sobre punteros

Se vio que un puntero es un tipo de variable especial que guarda una dirección de memoria. También se mostraron dos operaciones básicas relacionadas con punteros:

- Desreferenciación (*): obtiene el valor de lo apuntado por el puntero. Si se tiene una variable de tipo int * llamada p, entonces la expresión *p retornará el valor entero que se aloja en dirección de memoria p. Se puede usar *p en el lado izquierdo de una asignación para cambiar el valor que está apuntado por p (la dirección de memoria guardada en p se mantiene idéntica)
- Referenciación (&): obtiene la <u>dirección de memoria</u> de una variable. Si se tiene una variable entera x declarada como <u>int x;</u> entonces la expresión <u>&x</u> es de tipo <u>puntero a int</u> (es decir que es de tipo <u>int *)</u> y apunta a la dirección de memoria de la variable x.

En C además para las variables de tipo puntero se puede usar las operaciones de indexación y el operador flecha (->):

- Indexación (p[n]): Permite obtener el valor que hay en la memoria moviéndose n lugares hacia adelante desde la dirección de memoria guardada en p. Entonces por ejemplo p[0] es equivalente a *p. Cuando se indexa un puntero se debe tener total seguridad de que se va a acceder a memoria asignada a nuestro programa, de lo contrario ocurrirá un segmentation fault (viloación de segmento).
- Acceso indirecto (->): Si p es un puntero a una estructura p->member es un atajo a
 (*p).member (asumiendo que la estructura tiene un campo llamado member).

Los valores de las variables del tipo puntero (las direcciones de memoria) se pueden visualizar. Por lo general esto no se hace, salvo a veces para hacer debug. La manera es usando printf() con %p:

```
int *p=NULL;
int a=55;
p = &a;
printf("La dirección de memoria apuntada por p es: %p", p);
```

El resultado va a ser un número en hexadecimal (con prefijo 0x...), por ejemplo:

```
La dirección de memoria apuntada por p es: 0x7ffcd9183bdd
```

Cuando se declara una variable de tipo arreglo,

```
int arr[10];
```

hay dos formas de obtener la dirección de memoria al primer elemento:

- Usando el operador de referenciación: &arr[0]
- Usando el nombre del arreglo: arr

```
int arr[10];
int *p=NULL;
p = &arr[0]; // Usando operador &
p = arr; // Usando directamente el nombre de variable del arreglo
```

Alocación de memoria

En e) lenguaje del teórico práctico se usa el procedimiento alloc() para reservar memoria para un puntero, V free() para liberar dicha memoria:

```
var p: pointer to int

alloc(p)
*p := 5
free(p)
```

En C esto se hace usando las funciones malloc() v free():

```
int *p=NULL;
p = malloc(sizeof(int));
*p = 5;
free(p);
```

La función malloc() toma un parámetro de tipo size_t (muy parecido a unsigned long int) que es la cantidad de memoria en bytes que se solicita reservar. A diferencia del alloc() del teórico, que automáticamente reserva la cantidad necesaria según el tipo de puntero, en C hay que indicar explícitamente la cantidad de bytes a reservar. El operador sizeof() devuelve la cantidad de bytes ocupados por una expresión o tipo, por lo que resulta indispensable para el uso de malloc().

\$ man malloc

El ejercicio consiste en:

- <u>a) Modificar</u> el programa en <u>array.c</u> para que <u>mediante el puntero p</u> <u>se inicialice en cero el arreglo arr</u> <u>sin utilizar los operadores & y *</u>.
- b) Programar la función

```
void set_name(name_t new_name, data_t *d);
```

que debe cambiar el campo name de la estructura apuntada por d con el contenido de new_name y utilizarla para modificar la variable messi de tal manera que en su campo name contenga la cadena "Lionel Messi".

- c) Completar el archivo sizes.c para que muestre el tamaño en *bytes* de cada miembro de la estructura data_t por separado y el tamaño total que ocupa la estructura en memoria. ¿La suma de los miembros coincide con el total? ¿El tamaño del campo name depende del nombre que contiene?
- d) En el directorio static se encuentra el programa del Laboratorio 1 que carga en un arreglo en memoria estática desde un archivo. Completar en la carpeta dynamic la función array_from_file() de array_helpers.c:

```
int *array_from_file(const char *filepath, size_t *length);
```

que carga los datos del archivo **filepath** devolviendo un puntero a memoria dinámica con los elementos arreglo y dejando en ***length** la cantidad de elementos leídos. Completar además en **main.c** el código necesario para liberar la memoria utilizada por el arreglo. Probar el programa con todos los archivos de la carpeta **input** para asegurar el correcto funcionamiento.

Preliminares - TADS

Encapsulamiento

Lo primero que debemos observar es la forma en la que logramos mantener separadas la especificación del TAD de su implementación. Cuando definimos un TAD es deseable garantizar <u>encapsulamiento</u>, es decir, que solamente se pueda acceder y/o modificar su estado a <u>través de las operaciones provistas</u>. Esto no siempre es trivial ya que los tipos abstractos están implementados en base a los tipos concretos del lenguaje. Entonces es importante que además de separar la especificación e implementación se

garantice que quién utilice el TAD no pueda acceder a la representación interna y operar con los tipos concretos de manera descontrolada.

No todos los lenguajes brindan las mismas herramientas para lograr una implementación *opaca* y se debe usar el mecanismo apropiado según sea el caso. Particularmente el lenguaje del teórico-práctico separa la especificación de un TAD de su implementación utilizando las signaturas spec ... where e implement ... where respectivamente. En este laboratorio se debe buscar la manera de lograr encapsulamiento usando el lenguaje **C**.

Métodos de TADs

En el diseño de los tipos abstractos de datos (tal como se vio en el teórico-práctico) aparecen los **constructores**, las **operaciones** y los **destructores**, que se declaran como funciones o procedimientos. Recordar (se vio en el laboratorio anterior) que los procedimiento en C no existen como tales sino que se usan funciones con tipo de retorno void, es decir, funciones que no devuelven ningún valor al llamarlas. A veces se buscará evitar procedimientos con una variable de salida usando directamente una función para simplificar y evitar así usar punteros extra (en el ejercicio 4 del laboratorio 3 se vio que es necesario usar punteros para simular variables de salida).

A diferencia del práctico, a las *precondiciones* y *postcondiciones* de los métodos **sí vamos a verificarlas** (en la medida de lo posible). Recuerden que nuestros programas deben ser **robustos**, por lo tanto cuando corresponda usaremos <code>assert()</code> para garantizar el cumplimiento de las pre y post condiciones de los métodos. Esta práctica es propia de la etapa de desarrollo de un programa, y una vez que el mismo está finalizado, verificado y listo para desplegarlo en producción, se pueden eliminar las aserciones mediante un flag de compilación.

Ejercicio 1: TAD Par

Considerar la siguiente especificación del TAD Par

```
constructors
  fun new(in x : int, in y : int) ret p : Pair
  {- crea un par con componentes (x, y) -}

destroy
  proc destroy(in/out p : Pair)
  {- libera memoria en caso que sea necesario -}

operations
  fun first(in p : Pair) ret x : int
  {- devuelve el primer componente del par-}

fun second(in p : Pair) ret y : int
  {- devuelve el segundo componente del par-}

fun swapped(in p : Pair) ret s : Pair
  {- devuelve un nuevo par con los componentes de p intercambiados -}
```

- a) Abrir la carpeta pair_a y revisar la especificación del TAD en pair.h. Luego completar la implementación de las funciones y compilar usando el módulo main.c como programa de prueba. ¿La implementación logra encapsulamiento? ¿Por qué sí? ¿Por qué no?
- b) Abrir la carpeta <code>pair_b</code> y revisar la especificación del TAD en <code>pair.h</code>. Luego completar la implementación de las funciones y compilar usando el módulo <code>main.c</code> como programa de prueba. ¿La implementación logra encapsulamiento? ¿Por qué sí? ¿Por qué no?

IMPORTANTE: Para definir constructores, destructores y operaciones de copia será necesario hacer manejo de memoria dinámica (pedir y liberar memoria en tiempo de ejecución). En este caso se necesita espacio suficiente para almacenar un valor de tipo struct pair t.

- c) Abrir la carpeta <code>pair_c</code> y revisar <code>pair.h</code>. Copiar el archivo <code>pair.c</code> del apartado (b) y agregar las definiciones necesarias para que funcione con la nueva versión de <code>pair.h</code>. ¿La implementación logra encapsulamiento? Copiar el archivo <code>main.c</code> del apartado anterior y compilar. Hacer las modificaciones necesarias en <code>main.c</code> para que compile sin errores.
- d) Considerar la nueva especificación polimórfica para el TAD Pair:

```
constructors
  fun new(in x : T, in y : T) ret p : Pair of T
    {- crea un par con componentes (x, y) -}

destroy
  proc destroy(in/out p : Pair of T)
  {- libera memoria en caso que sea necesario -}

operations
  fun first(in p : Pair of T) ret x : T
  {- devuelve el primer componente del par-}

fun second(in p : Pair of T) ret y : T
  {- devuelve el segundo componente del par-}

fun swapped(in p : Pair of T) ret s : Pair of T
  {- devuelve un nuevo par con los componentes de p intercambiados -}
```

¿Qué diferencia hay entre la especificación anterior y la que se encuentra en el **pair.h** de la carpeta **pair_d**? Copiar **pair.c** del apartado anterior y modificarlo para utilizar la nueva interfaz especificada en **pair.h**. Pueden utilizar el **main.c** del apartado anterior para compilar.

Ejercicio 2: TAD Contador

Dentro de la carpeta ej2 se encuentran los siguientes archivos:

Archivo	Descripción
counter.h	Contiene la especificación del TAD Contador.
counter.c	Contiene la implementación del TAD Contador.
main.c	Contiene al programa principal que lee uno a uno los caracteres de un archivo chequeando si los paréntesis están balanceados.

- a) Implementar el TAD Contador. Para ello deben abrir counter.c y programar cada uno de los constructores y operaciones cumpliendo la especificación dada en counter.h. Recordar que deben verificar en counter.c todas las precondiciones especificadas en counter.h usando llamadas a la función assert().
- b) Usar el TAD Contador para chequear paréntesis balanceados. Para ello deben abrir el archivo main.c y entender qué es lo que hace la función <code>matching_parentheses()</code> y completar con llamadas al constructor y destructor del contador donde consideren necesario. ¡Es muy importante llamar al destructor del TAD una vez este no sea necesario para poder liberar el espacio de memoria que tiene asignado!

Una vez implementados los incisos (a), (b) compilar ejecutando:

```
$ gcc -Wall -Werror -Wextra -pedantic -std=c99 -c counter.c main.c
$ gcc -Wall -Werror -Wextra -pedantic -std=c99 counter.o main.o -o counter
```

Ahora se puede ejecutar el programa corriendo:

```
$ ./counter input/<file>.in
```

siendo **<file>** alguno de los nombres de archivo dentro de la carpeta **input**. Asegurarse que para aquellos archivos con paréntesis balanceados, al ejecutar el programa se imprima en pantalla

```
Parentheses match.
```

y para aquellos con paréntesis no balanceados imprima

```
Parentheses mismatch.
```

Ejercicio 3: TAD Lista

Dentro de la carpeta ej3 se encuentran los siguientes archivos:

Archivo	Descripción
main.c	Contiene al programa principal que lee los números de un archivo para ser cargados en nuestra lista y obtener el promedio.
array_helpers.h	Contiene descripciones de funciones auxiliares para manipular arreglos.
array_helpers.c	Contiene implementaciones de dichas funciones.

a) Crear un archivo list.h, especificando allí todos los constructores y operaciones vistos sobre el TAD Lista en el teórico. Recomendamos definir el nombre del TAD como list ya que en el archivo main.c se encuentra mencionado de esa manera.

Existe un par de diferencias entre nuestro TAD Lista en C respecto al visto en el teórico. Para simplificar la implementación, nuestras listas serán solamente de tipo int, es decir, no hay *polimorfismo*. Si bien el tipo será fijo (int), una buena idea es definir un tipo en list.h usando typedef. Un ejemplo de esto sería definir

```
typedef int list_elem;
```

y utilizar list_elem en vez de int en todos los constructores/operaciones (al estilo de lo realizado en el ejercicio 1d)).

Otra diferencia con el teórico es que aquellos procedimientos que modifiquen la lista deben escribirse como funciones que devuelvan la lista resultante. Como ya fue mencionado, esto es para evitar tener que simular parámetros de salida.

No olvidar de:

- Garantizar encapsulamiento en tu TAD.
- Especificar una función de destrucción y copia.
- Especificar las precondiciones.
- b) Crear un archivo list.c, e implementar cada uno de los constructores y operaciones declaradas en el archivo list.h. La implementación debe ser como se presenta en el teórico, es decir, utilizando punteros (listas enlazadas).
- c) Abrir el archivo main.c e implementar las funciones <code>array_to_list()</code> y <code>average()</code>. Para la implementación de <code>average()</code> te sugerimos que revises la definición del teórico.

Una vez implementados los incisos a), b) y c), compilar ejecutando:

```
$ gcc -Wall -Werror -Wextra -pedantic -std=c99 -c list.c array_helpers.c main.c
$ gcc -Wall -Werror -Wextra -pedantic -std=c99 list.o array_helpers.o main.o -o average
```

Ahora se puede ejecutar el programa corriendo:

\$./average input/<file>.in

siendo <file> alguno de los nombres de archivo dentro de la carpeta input. Asegurar que el valor de los promedios que se imprimen en pantalla sean correctos y animense a definir sus propios casos de input.