

(이론) GCP-4차수

- I 멀티 클라우드 개념
- Ⅲ GCP 하이브리드 네트워킹
- Ⅲ GCP 코어 네트워킹

하이브리드 클라우드

- 하나 이상의 프라이빗 클라우드와 하나 이상의 퍼블릭 클라우드의 조합을 사용하여 애플리케이션을 실행하는 클라우드 컴퓨팅 환경
- 퍼블릭 클라우드(AWS, GCP 등)와 프라이빗 클라우드(온프레미스 데이터 센터 or '에지') 의 컴퓨팅, 스토리지, 네트워킹, 서비스의 조합을 사용

멀티 클라우드

• 2개 이상의 프라이빗 클라우드 또는 2개 이상의 퍼블릭 클라우드 또는 퍼블릭과 프라이빗 클라우드의 조합 등의 여러 클라우드의 조합을 활용하는 클라우드 컴퓨팅 모델

[그림 1] 하이브리드 클라우드와 멀티 클라우드

멀티 클라우드 장단점

장점	단점
유연성	복잡성
	0
근접성 및 네트워크 성능	네트워크 트래픽 비용
공급업체 종속성 완화	여러 클라우드의 이식성 보장
	X
	기술 격차

멀티 클라우드 관리 주요 기술

• 멀티클라우드 관리 기술을 사용자가 직접 구현하여 이용하는 것이 어렵기 때문에, 사용자는 제3의 사업자 지원을 통해 제공받는 경우가 일반적이며, 시장에서는 이를 위한 다양한 기술이 제공됨

[그림 2] 멀티클라우드 관리 주요 기술

VPC 네트워크 피어링

- GCP 내 두 VPC(동일·다른 프로젝트·조직 포함)를 내부 IP로 직접 연결
- 두 개의 단절된 Network 환경 간에 전송되는 Traffic을 Public으로 보내지 않고 곧바로 상대의 Network 환경으로 보내는 연결 방식
- Network 간에 통상적인 Transit 전송을 이용하지 않고 IXP(Internet exchange point)를 이용한 전송을 사용함으로써 Provider의 간섭 없이 Traffic 교환을 하는 방식

- Google 백본만 이용
- 암호화 없이도 VPC 내 통신과 동일한 지연·가용성
- 각 VPC가 자체 서브넷 경로만 교환. Transitive Peering 불가 (A↔B, B↔C여도 A↔C 불가)
- 피어링 VPC 간 서브넷 CIDR이 겹치면 안 됨

[그림 3] VPC 네트워크 피어링 예시

VPC 네트워크 피어링

- VPC ↔ 온프레미스, 다른 클라우드, 또는 GCP 내 다른 VPC(드물게) 와 연결할 때, 전송 중인 데이터를 IPsec으로 암호화하여 연결하는 방식
- VPN 연결은 암호화를 처리하는 VPN 게이트웨이 하나와 복호화를 처리하는 다른 VPN 게이트웨이로 네트워크 간에 이동하는 트래픽을 암호화

- 전송 단계에서 IPsec 적용 → 외부망 경유에도 기밀성 확보
- 라우팅은 퍼블릭 경로이므로 대역폭·지연이 회선 및 ISP 품질에 영향받음
- 장비 투자 없이 빠르게 연결을 시험할 때 유리

[그림 4] Google Cloud HA-VPN

교육 서비스

[그림 5] GCP와 온프레미스 VPN 연결 예시

Network Connectivity Center

- Hub라는 중앙 관리 리소스에 연결된 Spoke 리소스 간의 네트워크 연결을 간소화하는 오케스트레이션 프레임워크
- 개별 쌍별 VPC 네트워크 피어링 연결을 관리하는 데 따른 운영 복잡성을 줄임

특징

- Hub and Spoke 구조 (Hub는 VPC Spoke 또는 하이브리드 Spoke만 가질 수 있음)
- Hub는 transitive connectivity를 제공하지 않음

(A↔B, B↔C여도 A↔C 불가) ?

Network Connectivity Center

VPC Network Peering

[그림 6] VPC 네트워크 피어링과의 차이

[그림 7] Hub and Spoke 네트워크

허브

- Network Connectivity Center 허브는 스포크를 연결하는 전역 리소스
- 단일 허브에 여러 리전의 스포크가 포함될 수 있음

스포크

- 스포크는 허브에 연결된 하나 이상의 Google Cloud 네트워크 리소스
- 스포크를 만들 때는 지원되는 하나 이상의 리소스와 연결해야 함(지원 리소스)

유형	설명
VPC 스포크	허브에 VPC 네트워크를 연결 연결된 다른 스포크 VPC의 모든 서브넷 경로를 가져오는 방식
프로듀서 VPC 스포크	 허브에 GCP 에서 제공하는 서비스의 서비스 제작자 네트워크와 연결 예) Cloud SQL, Filestore, Looker, Vertex AI 등
하이브리드 스포크	라우터 어플라이언스 스포크 • 라우터 어플라이언스 VM 인스턴스와 연결된 스포크
	HA VPN 터널 스포크 • Cloud VPN 터널과 연결된 스포크
	Cloud Interconnect VLAN 연결 스포크 • Cloud Interconnect VLAN 연결과 연결된 스포크

[표 1] 스포크 유형

Cloud Interconnect

- Google Cloud Platform (GCP)와 다른 네트워크 (온프레미스 또는 다른 클라우드) 간의 고대역폭, 저지연 연결을 제공하는 서 비스
- 온프레미스 네트워크와 Google Cloud 간의 물리적 또는 파트너를 통한 전용 회선을 통해 고속 연결을 제공

- GCP 리소스에 내부 IP 주소를 사용하여 통신할 수 있음
- 고속연결·저지연·안정적 연결
- HA VPN을 활용하여 트래픽에 IPsec 암호화 적용 가능

종류	설명
Dedicated Interconnect	• Google 데이터센터와 고객 온프레미스 데이터센터 간의 물리적 연결을 제공
Partner Interconnect	• Google과 협력하는 서비스 제공업체를 통해 연결을 제공

[표 2] Cloud Interconnect 종류

위치	서비스 제공업체	유형
서울	콘솔 Connect by PCCW Global	Layer 2, Layer 3
	Dreamline	Layer 2
	Equinix	Layer 2, Layer 3
	KINX	Layer 2, Layer 3
	KT Cloud	Layer 2, Layer 3
	LG CNS	Layer 2, Layer 3
	LG Uplus	Layer 2, Layer 3
	Sejong Telecom	Layer 2
	SK텔레콤	Layer 2

[그림 8] Cloud Interconnect 지원 서비스 제공 업체

교육 서비스

Cloud Router

- 경계 게이트웨이 프로토콜(BGP : Border Gateway Protocol)를 사용하여 VPC 네트워크와 원격 네트워크 간의 최적 경로를 자동으로 선택하고 유지하는 서비스
- Cloud Router는 Cloud Interconnect, Cloud VPN, 라우터 언플라이언스에 BGP 서비스를 제공과 Cloud NAT의 제어 영역 역할을 함

주요 기능	설명
BGP 세션 관리	양방향 전달감지 (BFD : Bidirectional Forwarding Detection) • 대부분의 상용 라우터에서 지원하는 전달 경로 중단 감지 프로토콜 • BGP 기반 장애 감지는 60초가 걸리는 것과 달리 기본 설정으로 구성된 BFD에서는 5초 내에 장애를 감지 MD5 인증 • BGP 피어 간의 세션에서 메시지 무결성을 보장하기 위해 사용되는 보안 • 기본적으로 Cloud Router BGP 세션은 MD5 인증을 사용하지 않지만, HA VPN, Cloud Interconnect 제품과 함께 사용하면 MD5 인증을 사용할 수 있음
공지된 경로 (Advertised Routes)	온프레미스나 타 클라우드 라우터에게 연결된 VPC의 IP 주소 범위 공지 기본값은 VPC 전체 서브넷 공개지만, 필요한 서브넷만 선택하여 공지 가능
학습된 경로 (Learned Routes)	BGP 피어가 보내오는 목적지 프리픽스를 받아서 VPC 내부에 동적 경로로 등록 받은 경로가 여러 개거나 지정된 할당량을 초과하면 BGP 세[션을 재설정
BGP 경로 정책 (BGP Route Policy)	• 들어오거나 나가는 BGP 경로를 조건-행동 쌍으로 필터/수정하는 규칙 집합

[표 3] Cloud Router 주요 기능

Private Service Connect

- 소비자가 VPC 네트워크 내부에서 비공개로 관리형 서비스에 액세스할 수 있도록 허용하는 Google Cloud 네트워킹 기능
- 엔드포인트(전달 규칙 기준) 또는 백엔드(부하 분산기 기준)를 사용하여 Cloud Storage 또는 BigQuery와 같은 Google API에 액세스 가능

- 내부 IP 주소를 사용하여 서비스에 액세스
- 트래픽이 중간 홉 또는 프록시 없이 소비자에서 프로듀서 백엔드로 직접 이동
- Andromeda라는 Google Cloud의 SDN을 사용하여 구현됨

[그림 9] Private Service Connect 예시

Cloud NAT

- Cloud NAT는 Google Cloud 리소스의 아웃바운드 트래픽에 네트워크 주소 변환(NAT)을 제공
- 지원 리소스
 - Compute Engine VM 인스턴스
 - GKE 클러스터
 - Cloud Run, Cloud Run functions, App Engine 표준 환경
 - 리전별 인터넷 네트워크 엔드포인트 그룹(NEG)

Cloud NAT 사용의 이점

- 보안성 :개별 VM이 각각 외부 IP 주소를 가져야 할 필요성을 줄임
- 가용성: 프로젝트의 VM 또는 단일 물리적 게이트웨이 기기에 의존하지 {
- 확장성: 사용되는 NAT IP 주소 수를 자동으로 확장하도록 구성됨
- 성능: VM 별 네트워크 대역폭 저하 X

Typical NAT Proxies

Google Cloud NAT

교육 서비스

Public NAT

• Google Cloud 리소스(예: VM 인스턴스)가 Public NAT를 사용하여 아웃바운드 연결에 공유 외부 IPv4 주소 및 소스 포트 세트를 할당받고 인터넷과 통신

실행 흐름

1. NAT-GW-US-EAST 에 NAT IP 두 개(192.0.2.50, 192.0.2.60)와 VM 인스턴스 당 최소 64 포트 지정

예) 예시 VM에는 192.0.2.50:34000 ~ 34063 이 할당됨

1. 아웃바운드(Ingress) 통신 흐름

VM → NAT | 요청패킷 { 10.240.0.4:24000 → 203.0.113.1:80 }

SNAT 수행 | 요청패킷 { 192.0.2.50:34022 → 203.0.113.1:80 }

1. 인바운드 통신 흐름(응답)

인터넷 → NAT | 응답패킷 { 203.0.113.1:80 → 192.0.2.50:34022 }

DNAT 수행 | 응답패킷 { 203.0.113.1:80 → 10.240.0.4:24000 }

[그림 11] Public NAT 변환 예시

Hybrid NAT

• Hybrid NAT를 사용하면 VPC 네트워크가 네트워크의 서브넷 IP 주소 범위가 겹치더라도 온프레미스 네트워크 또는 다른 클라우드 제공업체 네트워크와 통신 가능

실행 흐름

1. 경로 교환(BGO)

Cloud Router → 외부 라우터에 10.1.2.0/29 공지 외부 라우터 → Cloud Router에 192.168.2.0/24 공지 VPC가 목적지 subnet-b 경로 학습

1. pvt-nat-gw 에 NAT IP(10.1.2.0/29, 192.0.2.60)와 VM 인스턴스 당 최소 64 포트 지정

예) 예시 VM에는 10.1.2.2:34000 ~ 34063 이 할당됨

1. 아웃바운드(Ingress) 통신 흐름

VM → NAT | 요청패킷 { 192.168.1.2:24000 → 192.168.2.2:80 } SNAT 수행 | 요청패킷 { 10.1.2.2:34022 → 192.168.2.2:80 }

1. 인바운드 통신 흐름(응답)

인터넷 → NAT | 응답패킷 { 192.168.2.2:80 → 10.1.2.2:34022 } DNAT 수행 | 응답패킷 { 192.168.2.2:80 → 192.168.1.2:24000 }

[그림 11] Hybrid NAT 변환 예시

추가 설명

vm-a 와 vm-b 를 연결하고 싶어도 vpc-a의 서브넷과 온프레미스의 서브넷의 IP 주소 범위가 겹침이 존재(둘 다 192.168.1.0/24)

이러한 네트워크 간의 연결을 위해 Private NAT의 일종인 Hybrid NAT을 구현하여 가짜 IP 주소로 네트워크 간의 통신 수행