

Automated Blood Cell Identification and Counting

Sridevi Sowmya Grandhi - 50309828 May 2nd 2024

Outline

- 1. Introduction
- 2. Methodology
- 3. Sample Image
- 4. Training and Validations Data set
- 5. Fine Tuning
- 6. Result

Introduction

Why this research is important	 This research addresses the challenges in analysing blood cell in traditional methods, while offering a potential breakthrough in accuracy, efficiency, and reliability of disease diagnosis. The automation using advanced image processing and machine learning could revolutionize medical diagnostics, leading to improved patient outcomes.
What we know and what we don't know	 The limitations of manual blood cell analysis, emphasizing the need for automation. Leverages existing methodologies and acknowledges advancements in models like YOLOv5 and YOLOX. The specific limitations of current approaches are unaware and how the proposed solution will overcome them in areas that the project aims to explore.

Introduction (Cont'd)

Our Experiment	 This experiment develops an automated system for blood cell analysis using image processing and machine learning. The process includes image preprocessing, feature extraction, and the implementation of machine learning models for the classification and counting of blood cells.
Our Hypothesis	 By combining solutions in image processing and machine learning, the developed system will significantly improve the accuracy and reliability of blood cell identification and counting. It is expected to streamline the analysis process, reduce time and labor requirements, and enhance the diagnostic capabilities of healthcare professionals

Methodology

- You Only Look Once (YOLO) Real-Time Object Detection
- YOLO Versions V1-V8
- YOLO-NAS is a next-generation object detection model that has been developed using the Neural Architecture Search (NAS) technology.
- NAS is an automated process that searches for the optimal neural network architecture for a particular task.
- It does this by exploring a vast search space of possible architectures and selecting the most efficient and high-performing one.
- The new YOLO-NAS delivers state-of-the-art (SOTA) performance with the unparalleled accuracy-speed performance

Methodology - Yolo-NAS

COCO – Common Object in Context

- Object segmentation
- •330K images (>200K labelled)
- •1.5 million object instances
- •80 object categories

Sample Image

- Collection of sample images to train.
- Mark the rectangles as X, Y or width and Height from Annotations Data set.
- Identify RBC, WBC and Platelets.
- Color them in RGB Channels.

Training and Validations Data set

- Datasets are evenly distributed as Train,
 Validation and Test Sets
- Train Model to be trained
- Validation Trained model is validated
- Test Trained models are been tested.

Training and Validations Data set

- No. of Training images 363
- No. of Training labels 363
- No. of valid images 269
- No. of valid labels 269
- No. of test images 213
- No. of test labels 213

Fine Tuning

- Super Gradient is a Library used to identifying and training models with high accuracy and performance
- Easy to train the model in RGB Channels.
- The blue is trained as cars, Red as persons, Green as trees etc.

Fine Tuning

- Trained the model by passing 16 images at a time
- Machine with 8GB GPU
- The models are able to identify RBC, WBC and Platelets

Fine Tuning

- Transformed images
- Flipped Images
- Different filters of colors

Result

- The trained model has been downloaded.
- The model is tested using 3 Configurations YOLO_NAS_S – Small YOLO_NAS_M – Medium YOLO_NAS_L – Large
- The sizes of model determines its accuracy andefficiency
- Our model gave us high accuracy using YOLO_NAS_M

model	epochs	batch_ size(-3 2)	learning rate	image resolution(+-32)	optimizer	map 50	precision	recall
yolo_nas_s	50	16	"warmup_initial_lr": 1e-7, "lr_warmup_epochs": 3, "initial_lr": 5e-5	width = 640 height = 480	ADAM	Map@0.50 = 0.1111 Map@0.50:0.95 = 0.0701	Precision@0.50 = 0.0345 Precision@0.50:0.95 = 0.0244	Recall@0.50 = 0.9906 Recall@0.50:0.95 = 0.68
	50	32	"warmup_initial_lr": 1e-7, "lr_warmup_epochs": 3, "initial_lr": 5e-5	width = 640 height = 480	ADAM			├── Recall@0.50 = 0.9897 ├── Epoch N-1 = 0.9906 (> -0.0009) ├── Best until now = 0.9906 (> -0.0009) ├── Recall@0.50:0.95 = 0.6871 ├── Epoch N-1 = 0.686 (> 0.001) ├── Best until now = 0.6998 (> -0.0128)
	50	32	"warmup_initial_lr": 1e-7, "lr_warmup_epochs": 3, "initial_lr": 5e-5	width = 672 height = 512	ADAM		├── Precision@0.50 = 0.0233 ├── Epoch N-1 = 0.0231 (^ 0.0003) ├── Best until now = 0.056 (^ 0.00327) ├── Precision@0.50·0.95 = 0.0134 ├── Epoch N-1 = 0.0132 (^ 0.0002) ├── Best until now = 0.0289 (^ 0.0155)	
	100	32	"warmup_initial_Ir": 1e-7, "Ir_warmup_epochs": 3, "initial_Ir": 5e-5	width = 640 height = 480	ADAM		ООМ	
yolo_nas_m	50	8	"warmup_initial_lr": 1e-7, "lr_warmup_epochs": 3, "initial_lr": 5e-5	width = 640 height = 480	ADAM		├── Precision@0.50 = 0.0469 ├── Epoch N-1 = 0.0459 (^ 0.0009) ├── Best until now = 0.0519 (^ 0.005) ├── Precision@0.50:0.95 = 0.0333 ├── Epoch N-1 = 0.0321 (^ 0.0012) ├── Best until now = 0.0388 (^ 0.0056)	
	50	16	"warmup_initial_lr": 1e-7, "lr_warmup_epochs": 3, "initial_lr": 5e-5	width = 640 height = 480	ADAM		├── Precision@0.50 = 0.048 ├── Epoch N-1 = 0.049 (\(\bullet \) - 0.001) ├── Best until now = 0.0523 (\(\bullet \) - 0.0043 ├── Precision@0.500.95 = 0.0351 ├── Epoch N-1 = 0.0363 (\(\bullet \) - 0.0013) ├── Best until now = 0.0392 (\(\bullet \) - 0.0041)	├── Recall@0.50 = 0.9906 ├── Epoch N-1 = 0.9915 (\> -0.0009) ├── Best until now = 0.9965 (\> -0.0059) ├── Recall@0.50:0.95 = 0.6938 ├── Epoch N-1 = 0.701 (\> -0.0071) ├── Best until now = 0.7107 (\> -0.0168)
	50	32	"warmup_initial_lr": 1e-7, "lr_warmup_epochs": 3, "initial_lr": 5e-5	width = 640 height = 480	ADAM		ООМ	
yolo_nas_l	50	8	"warmup_initial_lr": 1e-7, "lr_warmup_epochs": 3, "initial_lr": 5e-5	width = 640 height = 480	ADAM		├── Precision@0.50 = 0.0542 ├── Epoch N-1 = 0.0521 (^ 0.0021) ├── Best until now = 0.0631 (> -0.0089) ├── Precision@0.50:0.95 = 0.0416 ├── Epoch N-1 = 0.0384 (^ 0.0032) └── Best until now = 0.0462 (> -0.0046)	
	50	16	"warmup_initial_lr": 1e-7, "lr_warmup_epochs": 3, "initial_lr": 5e-5	width = 640 height = 480	ADAM			
	100	32	"warmup_initial_lr": 1e-7, "Ir_warmup_epochs": 3, "initial_lr": 5e-5	width = 640 height = 480	ADAM		ООМ	

Thank You

Sridevi Sowmya Grandhi - 50309828 May 2nd 2024