Problem Set 2

Michael

October 2, 2025

Question 1

Let T be the collection of all topological spaces. We define a relation \sim on T by $X \sim Y$ if and only if X is homeomorphic to Y. Show that \sim is an equivalence relation.

Proof. To show that \sim is an equivalence relation, we must prove that it is reflexive, symmetric, and transitive.

Reflexivity: $(X \sim X)$

We must show that any topological space X is homeomorphic to itself. The identity map, $id_X: X \to X$, is a homeomorphism because it is a bijection, continuous, and its inverse (itself) is continuous. Thus, $X \sim X$.

Symmetry: (If $X \sim Y$, then $Y \sim X$)

We assume there exists a homeomorphism $f: X \to Y$. Its inverse, $f^{-1}: Y \to X$, is also a homeomorphism because it is a bijection, continuous (by definition of f), and its inverse, $(f^{-1})^{-1} = f$, is continuous. Thus, if $X \sim Y$, then $Y \sim X$.

Transitivity: (If $X \sim Y$ and $Y \sim Z$, then $X \sim Z$)

We assume there exist homeomorphisms $f: X \to Y$ and $g: Y \to Z$. The composite map $h = g \circ f: X \to Z$ is a homeomorphism. It is a bijection and continuous because compositions of bijections/continuous functions are bijections/continuous. Its inverse, $h^{-1} = f^{-1} \circ g^{-1}$, is also continuous as it is the composition of two continuous functions. Thus, the relation is transitive.

Since the relation \sim is reflexive, symmetric, and transitive, it is an equivalence relation.

Question 2

(a) Extend the basis of W to V

To extend the basis of W to V, we first take the basis of W and augment it with the basis vectors of V. We then iterate through this augmented list, removing any vector that is a linear combination of the preceding ones, until we have a set of n linearly independent vectors. This new basis for V is then transformed into an orthonormal basis, $\{u_1, \ldots, u_n\}$, using the Gram-Schmidt process. We ensure the first k vectors, $\{u_1, \ldots, u_k\}$, form an orthonormal basis for W.

(b) Compute the coset and find the basis for V/W

A general element $v \in V$ can be written as $v = v_W + v_{W^{\perp}}$, where $v_W = \sum_{i=1}^k c_i u_i$ is in W and $v_{W^{\perp}} = \sum_{i=k+1}^n c_i u_i$ is orthogonal to W. The coset v + W is computed as:

$$v + W = (v_W + v_{W^{\perp}}) + W = v_{W^{\perp}} + (v_W + W) = v_{W^{\perp}} + W$$

The basis for the quotient space V/W is the set of cosets of the basis vectors that are orthogonal to W:

Basis
$$(V/W) = \{u_{k+1} + W, u_{k+2} + W, \dots, u_n + W\}$$

(c) Determine the formula for the dimension of V/W

The dimension of V/W is the number of vectors in its basis, which is n-k. Since $n = \dim(V)$ and $k = \dim(W)$, we have the formula:

$$\dim(V/W) = \dim(V) - \dim(W)$$

Question 3

(a) Find the matrix presentation M_k of ∂_k

The dimensions of the chain groups are $\dim(C_0) = 7$, $\dim(C_1) = 12$, and $\dim(C_2) = 3$. The two non-trivial boundary matrices are M_2 ($\partial_2 : C_2 \to C_1$) and M_1 ($\partial_1 : C_1 \to C_0$).

The Matrix M_2 for $\partial_2: C_2 \to C_1$: This is a 12×3 matrix.

$$M_2 = egin{pmatrix} 1 & 0 & 0 \ 1 & 0 & 0 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

The Matrix M_1 for $\partial_1:C_1\to C_0$: This is a 7×12 matrix.

The matrices M_3 and M_0 are zero maps.

(b) Put M_k in reduced row echelon form

RREF of M_2 : Has **3 pivot columns** and **0 non-pivot columns**. **RREF of** M_1 : Has **6 pivot columns** and **6 non-pivot columns**.

(c) Compute the Betti numbers

Using the formula $\beta_k = \dim(\operatorname{Ker}(\partial_k)) - \dim(\operatorname{Im}(\partial_{k+1}))$:

- $\beta_2 = \dim(\operatorname{Ker}(\partial_2)) \dim(\operatorname{Im}(\partial_3)) = 0 0 = \mathbf{0}.$
- $\beta_1 = \dim(\operatorname{Ker}(\partial_1)) \dim(\operatorname{Im}(\partial_2)) = 6 3 = 3.$
- $\beta_0 = \dim(\operatorname{Ker}(\partial_0)) \dim(\operatorname{Im}(\partial_1)) = 7 6 = 1.$

(d) Compute the Euler Characteristic $\chi(K)$

We compute $\chi(K)$ in two ways:

1. By counting simplices:

$$\chi(K) = 7 - 12 + 3 = -2$$

2. Via Betti numbers (Euler-Poincaré):

$$\chi(K) = \beta_0 - \beta_1 + \beta_2 = 1 - 3 + 0 = -2$$

The results match, confirming our calculations.