

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Instructor Details</u>

☆ Course / Assessments / Assignment 2

✓ Previous
✓ Previous

Assignment 2

 $\hfill \square$ Bookmark this page

Q1

1.0/1.0 point (graded)

Linear regression is an Algorithm to predict a

Discrete response variable based on a set of continuous regressors

Continuous response variable based on a set of continuous regressors

Continuous response variable based on a set of discrete regressors

Oiscrete response variable based on a set of discrete regressors

Submit

Q2

1.0/1.0 point (graded)

Consider the ML example below for prediction of sales based on advertising

Year	(Million Euro)	Advertising (Million Euro)
1	651	23
2	762	26
3	856	30
4	1,063	34
5	1,190	43
6	1,298	48
7	1,421	52
8	1,440	57
9	1,518	58

In this example, Sales is the

_	
	_
()	Regressor

_	
	Response

Regression coefficient

○ Model error

Submit

Q3

1.0/1.0 point (graded)

Consider the ML example below for prediction of sales based on advertising

V	Sales (Million	Advertising
Year	Euro)	(Million Euro)
1	651	23
2	762	26
3	856	30
4	1,063	34
5	1,190	43
6	1,298	48
7	1,421	52
0	1 440	F7

9 1,518 58
In this example, Advertising is the
Response
Regression coefficient
Model error
Regressor
✓
Submit
Q4
1.0/1.0 point (graded)
Consider the linear regression model below
$y(k) = h_0 + h_1 x_1(k) + \dots + h_n x_n(k) + \epsilon(k)$ The quantities h_0 are
The quantities h_i are \bigcirc Regressor
Regressor
Response
Regression coefficient
Model error
✓
Submit
Q5
1.0/1.0 point (graded)
The regression coefficient vector from the training data is determined as
$\bigcirc \bar{\mathbf{h}} = \mathbf{X}^T (\mathbf{X}^T \mathbf{X})^{-1} \bar{\mathbf{y}}$
$\bigcirc \ \bar{\mathbf{h}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X} \bar{\mathbf{y}}$
$\bigcirc \bar{\mathbf{h}} = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}^T\bar{\mathbf{y}}$
✓
Submit
Q6
1.0/1.0 point (graded) The linear regression module can be imported in PYTHON as

from sklearn.linear_model import Regression
from sklearn.linear_model import LinearRegression
from sklearn import LinearRegression
from sklearn import Regression
•
Submit
Q7
1.0/1.0 point (graded) Metric used to characterize performance of linear regression is
Only mean_squared_error but not r2_score
Only r2_score but not mean_squared_error
Both r2_score and mean_squared_error
Neither r2_score nor mean_squared_error
✓
Submit
Q8
1.0/1.0 point (graded) The train_test_split subroutine is imported as
from sklearn import train_test_split
from sklearn.model import train_test_split
from sklearn.model_selection import train_test_split
from numpy import train_test_split
✓
Submit
Q9
1.0/1.0 point (graded) The Boston dataset comprises of
Information concerning shopping in the area of Boston Mass
information concerning housing in the area of Boston Mass
information concerning weather in the area of Boston Mass

information concerning diabetes	in the area of Boston	Viass	
•			
Submit			
Q10			
.0/1.0 point (graded)	lind or		
The linear regression model can be app reg = Regression()	illed as		
reg.fit(X_train, y_train)			
reg = LinearRegression()			
reg.fit(y_train, X_train)			
reg = Regression()			
reg.fit(y_train, X_train)			
<pre>reg = LinearRegression() reg.fit(X_train, y_train)</pre>			
✓			
Submit			

