

Air University (End Semester Examination: Spring-2024)

Subject:

Linear Algebra

Course Code:

MA-201

Class: Semester: BS-CYS

Section:

II

A (Morning Session)

Total Marks:

100

-06-2024

Date: Time: Duration:

3 Hours

FM Name:

Mr. Umair Habib

HoD Signature:

FM Signature:_

IMPORTANT INSTRUCTIONS:

> Attempt all questions

> This examination carries 45% weight toward the final grade

> Scientific calculator is allowed

Q. No.	1 (CLO-3) (PLO-2)	20 Marks	
a	Diagonalize the following matrix (if possible). i.e. Solve to find an invertible matrix P and a diagonal matrix D . WHERE $\Rightarrow = 1, -2, -2$. $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$	20	
Q. No	2 (CLO-2) (PLO-1)	20 Marks	
a	Find the vectors that describe the basis for Col A. $A = \begin{bmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{bmatrix}$	10	
b	Find an explicit description of Nul A by listing vectors that span the null space. $A = \begin{bmatrix} 1 & 5 & -4 & -3 & 1 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$		
Q. No.	3 (CLO-4) (PLO-2)	20 Marks	
а	Decipher the following Hill 2-cipher by Implementing the knowledge of Gaussian elimination and modular arithmetic if the last four plaintext letters are known to be ATOM. LNGIHGYBVRENJYQO		
Q. No.	4 (CLO-5) (PLO-1)	20 Marks	
a	Illustrate the use of inner products to find an <i>orthonormal basis</i> of the subspace spanned by the given set of vectors. $ \left\{\begin{bmatrix} 3 \\ -4 \\ 5 \end{bmatrix}, \begin{bmatrix} -3 \\ 14 \\ -7 \end{bmatrix}\right\} $		
b	Show that the set $\{u_1, u_2, u_3\}$ is an orthogonal basis for R^3 . Then express "x" as a linear combination of the u 's. $u_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}, u_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}, x = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$		

2. No	o. 5 (CLO-1) (PLO-1)	20 Marks
	Identify the LDU factorization of the given matrix A.	
a	$A = \begin{bmatrix} 3 & -6 & 3 \\ 6 & -7 & 2 \\ -1 & 7 & 0 \end{bmatrix}$	10
b	Use the Invertible Matrix Theorem to Recognize whether matrix A is invertible or not. $A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 0 \end{bmatrix}$	5
c	Use a cofactor expansion across the second column to Find the determinant of A , where $A = \begin{bmatrix} 5 & -2 & 2 \\ 0 & 3 & -3 \\ 2 & -4 & 7 \end{bmatrix}$	5

***********Best	of Luck*********	
******	End ***********	