

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа №4

Дисциплина Моделирование

Тема Моделирование системы.

Студент Степанов Александр

Группа ИУ7-73Б

Оценка (баллы)

Преподаватель Рудаков И.В.

1 Условие

2 Теория

Необходимо промоделировать систему, состоящую из генератора, памяти и обслуживающего аппарата.

Генератор выдает сообщение распределенные по равномерному закону, они приходят в память и обрабатываются по нормальному закону, параметры задаются.

Необходимо определить оптимальную длину очереди, при которой не будет потерянных сообщений. Используя принципы Δt и событий.

Как только определили выходной поток сообщений, задаваемую часть сообщений A снова подаем в очередь.

2.1 Событийный принцип

Характерное свойство моделируемых систем – состояние отдельных устройств изменяется в дискретные моменты времени, которые совпадают с моментами поступления сообщений в систему, моментами окончания решения задач, моментами возникающих аварийных сигналов и т.д. Поэтому, моделирование и продвижение текущего времени в системе удобно проводить использую событийный принцип, при котором состояние всех блоков системы анализируется лишь в момент наступления какого-либо события. Момент наступления следующего события определяется минимальным значением из списка будущих событий, представляющих собой совокупность моментов ближайшего изменения состояний каждого из блоков системы.

2.2 Δt принцип

Принцип Δt заключается в последовательном анализе состояний всех блоков в момент $t+\Delta t$ по заданному состоянию блоков в момент t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действующих случайных факторов, задаваемых распределениями вероятности. В результате такого анализа принимается решение о том, какие общесистемные со-

бытия должны имитироваться программной моделью на данный момент времени.

Основной недостаток этого принципа: значительные затраты машинного времени на реализацию моделирования системы. А при недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, что исключает возможность получения адекватных результатов при моделировании.

Достоинство: равномерная протяжка времени.

3 Результаты

Ниже приведены результаты работы программы для обоих алгоритмов при разных значениях вероятности повторной заявки (p).

a	1
b	10
λ	1
Количество заявок	1000
Вероятность повторной обработки заявки	0
Метод моделирования	Событийный 🗸
Δt	1
Отправить	
Количество обработанных заявок	1000
Количество повторно обработанных заяво	к 0
Максимальная длина очереди	3
Время работы	5734.245

Рис. 1: Событийный метод, p = 0

a	1
b	10
λ	1
Количество заявок	1000
Вероятность повторной обработки заявки	0
Метод моделирования	Δ t ∨
Δt	1
Отправить	
Количество обработанных заявок	1000
Количество повторно обработанных заяво	к 0
Максимальная длина очереди	3
Время работы	5395.0

Рис. 2: Δt метод, p = 0

Рис. 5: Событийный метод, p = 0.5

Рис. 8: Δt метод, p = 0.8

a	1	
b	10	
λ	1	
Количество заявок	1000	
Вероятность повторной обработки заявки	0.99	
Метод моделирования	Событийный 🗸	
Δt	1	
Отправить		
Количество обработанных заявок	101437	
Количество повторно обработанных заявок 100437		
Максимальная длина очереди	17525	
Время работы	101567.648	

Рис. 9: Событийный метод, p = 0.99

	•
a	1
b	10
λ	1
Количество заявок	1000
Вероятность повторной обработки заявки	0.99
Метод моделирования	Δt ✓
Δt	1
Отправить	
Количество обработанных заявок	98841
Количество повторно обработанных заявок 97841	
Максимальная длина очереди	16929
Время работы	98950.0

Рис. 10: Δt метод, p = 0.99

4 Вывод

Была смоделирована система, состоящая из генератора, памяти и обслуживающего аппарата.

На выходе была получена оптимальная длина очереди, число обработанных и повторно обработанных заявок, время обработки.