18.3 铁磁质

铁磁质: 铁、镍、钴等金属及其合金与氧化物等磁性很强的物质。

▶铁磁质性质

- 口在外磁场的作用下能产生很强的 附加磁场($B>>B_0$)
- □外磁场停止作用后,仍能保持其 磁化状态
- □相对磁导率µ_r>>1,且不是常数
- 口具有临界温度 T_c 。在 T_c 以上,铁磁性完全消失而成为顺磁质, T_c 称为居里温度或居里点

铁磁质的磁化规律

磁化曲线: 描述磁介质磁化过程的曲线,H-B关系曲线或 μ -H关系曲线。

- □ 根据磁介质中的安培环路定理 $\oint_L \vec{H} \cdot d\vec{l} = \sum_I \vec{H}$ 強 定磁场强度 \vec{H}
- □ 根据电磁感应定律可以测量磁感应强度B

▶铁磁质的磁化曲线

磁滞现象&磁滞回线

实验表明,各种铁磁质的起始磁化曲线都是"不 可逆"的:当H减小到零时,铁磁质内B还保持有

一定的值——剩磁 B_r ,称为"磁滞现象"。

Oa: 起始磁化曲线

 B_s : 饱和磁感应强度

 B_r : 剩余磁感应强度

H。: 矫顽力

□磁滯效应消耗的能量(磁滯损耗)与磁滯回线 所包围的面积成正比。

铁磁性材料的分类

按铁磁质矫顽力的大小可将铁磁质分为软磁材料、硬磁材料和矩磁材料等几类。

> 软磁材料

如 纯铁,坡莫合金(含Fe,Ni), 硅钢, 铁氧体等。

- □矫顽力(*H*_c)小,磁滞回线的面积窄而长,磁滞损耗小。□易磁化、易退磁。
- □适用于变压器、继电器、电机、以及各种高频 电磁元件的磁芯、磁棒。

铁磁性材料的分类

> 硬磁材料

钨钢,碳钢,铝镍钴合金

- 口矫顽力(H_c)大,剩磁 B_r 大 磁滞回线的面积大,损耗大。
- □适用于做永磁铁。耳机中的 永久磁铁,永磁扬声器。

▶矩磁材料

锰镁铁氧体,锂锰铁氧体

- $\square B_r = B_S$, H_c 很大,磁滞回线接近矩形。
- □用于计算机中的记忆元件。

铁磁质磁化的机制

□铁磁性主要来源于电子的自旋磁矩。

□磁畴:铁磁质内部相邻原子的磁 矩会在一个微小的区域内形成方 向一致、排列非常整齐的 "自 发磁化区",称为磁畴。

磁畴体积: 10-12~10-8 m³

每个磁畴所含原子数: 1017~1021

在外磁场中:

- ✓畴壁的移动
- ✓ 磁畴内磁矩的转向

磁畴理论

畴壁移动

磁畴转向

自发磁化方向逐渐 转向外磁场方向(磁畴 转向),直到所有磁畴 都沿外磁场方向整齐 排列时,铁磁质就达 到磁饱和状态。

每个磁畴元磁矩完全排列,磁化强度非常大,导致磁性很强。

定结

- \square 当全部磁畴都沿外磁场方向时,铁磁质的磁化就 达到饱和状态。饱和磁化强度 M_S 等于每个磁畴中 原来的磁化强度,该值很大。
 - ----这就是铁磁质磁性 μ_r 大的原因
 - □ 磁滞现象是由于材料有杂质和内应力等的作用, 当撤掉外磁场时,磁畴的畴壁很难恢复到原来的 形状而表现出来。
 - \square 当温度升高时,热运动会瓦解磁畴内磁矩的规则排列。在临界温度(相变温度 T_c)时,铁磁质完全变成了顺磁质。居里点 T_c ($Curie\ Point$)

如: 铁为 1040 K, 钴为 1390 K, 镍为 630 K

本章作业

课本P152习题: 1,5,6(共3题)

注意

- □本章作业与第17章一起交(10月28日周五)
- □作业用A4纸,不抄题,有题号
- □选择&填空题要有解题过程

