(A Quick Intro to) A Technique for Proving Subtyping Completeness, with an Application to Iso-recursive Types

Jay Ligatti

Joint work with:

Jeremy Blackburn Ivory Hernandez Michael Nachtigal

Suppose you're defining a subtyping relation for a type-safe PL

What should your basic goals be?

Subtyping Relation Goals

Soundness

 $\tau_1 \le \tau_2 \Rightarrow \begin{cases} \tau_1 \text{-type terms can always safely} \\ \text{stand in for } \tau_2 \text{-type terms} \end{cases}$

Completeness

$$τ_1$$
-type terms can always safely stand in for $τ_2$ -type terms $⇒ τ_1 ≤ τ_2$

Subtyping Relation Goals

$$\begin{array}{c} & \text{trivially complete} \\ & \forall \tau_1, \tau_2 : \tau_1 \leq \tau_2 \\ \\ & \text{precise} = \text{sound and complete} \\ \\ & \text{trivially sound} \\ & \tau_1 \leq \tau_2 \text{ iff } \tau_1 = \tau_2 \end{array}$$

Preciseness is a standard goal when defining ≤
 Idea: ≤ is as complete as possible without sacrificing soundness

Proving Preciseness

- Soundness of ≤ can be proved with standard type-safety proofs
 - An unsound definition of ≤ would break type safety

Proving Preciseness

- Soundness of ≤ can be proved with standard type-safety proofs
 - An unsound definition of ≤ would break type safety

Completeness of ≤ can be proved with

To Fill in the Blank,

- Need to state completeness property formally
- Then hopefully we can figure out how to prove it

To Fill in the Blank,

- Need to state completeness property formally
- Then hopefully we can figure out how to prove it

 Actually, let's try to state the preciseness property formally...

Preciseness

• Intuition:

 $\tau_1 \le \tau_2$ iff any term of type τ_2 could be replaced by any term of type τ_1 without breaking type safety

Preciseness

• Intuition:

 $\tau_1 \le \tau_2$ iff any term of type τ_2 could be replaced by any term of type τ_1 without breaking type safety

In other words:

 $\tau_1 \le \tau_2$ iff τ_2 -type expressions can—in any context—be replaced by τ_1 -type expressions without causing well-typed programs to "get stuck"

Preciseness

 $\tau_1 \le \tau_2$ iff τ_2 -type expressions can—in any context—be replaced by τ_1 -type expressions without causing well-typed programs to "get stuck"

Definition: A subtyping relation \leq is precise wrt type safety when for all τ_1, τ_2 :

$$\tau_1 \le \tau_2 \Leftrightarrow \begin{bmatrix} \neg \exists \ e, E, \tau, e' : \\ E[\tau_2] : \tau \land e : \tau_1 \land E[e] \rightarrow *e' \land stuck(e') \end{bmatrix}$$

Filling evaluation context E's hole with a τ_2 -type expression produces a well-typed program

Soundness

 $\tau_1 \le \tau_2$ iff τ_2 -type expressions can—in any context—be replaced by τ_1 -type expressions without causing well-typed programs to "get stuck"

Definition: A subtyping relation \leq is sound wrt type safety when for all τ_1, τ_2 :

$$\tau_1 \le \tau_2 \Rightarrow \begin{array}{c} \neg \exists \ e, E, \tau, e': \\ E[\tau_2]:\tau \land e:\tau_1 \land E[e] \rightarrow *e' \land stuck(e') \end{array}$$

Filling evaluation context E's hole with a τ_2 -type expression produces a well-typed program

Completeness

 $\tau_1 \le \tau_2$ iff τ_2 -type expressions can—in any context—be replaced by τ_1 -type expressions without causing well-typed programs to "get stuck"

Definition: A subtyping relation \leq is complete wrt type safety when for all τ_1, τ_2 :

$$\tau_1 \leq \tau_2 \Leftarrow \begin{array}{c} \neg \exists \ e, \ E, \ \tau, \ e' : \\ E[\tau_2] : \tau \land e : \tau_1 \land E[e] \rightarrow *e' \land stuck(e') \end{array}$$

Filling evaluation context E's hole with a τ_2 -type expression produces a well-typed program

Soundness of ≤ is a Corollary of Type Safety

$$\tau_1 \le \tau_2 \Rightarrow \begin{cases} \neg \exists \ e, \ E, \ \tau, e' : \\ E[\tau_2] : \tau \land e : \tau_1 \land E[e] \rightarrow *e' \land stuck(e') \end{cases}$$

Proof idea:

Assume $\tau_1 \le \tau_2$, $E[\tau_2]:\tau$, $e:\tau_1$, $E[e] \to *e'$, and stuck(e')

By subsumption and the definition of welltyped contexts, E[e]:τ But E[e]:τ, E[e]→*e', and stuck(e') combine to contradict type safety

```
¬∃ e, E, τ, e':

E[\tau_2]:τ Λ e:τ<sub>1</sub> Λ E[e]→*e' Λ stuck(e')
```

```
¬∃ e, E, τ, e':

E[\tau_2]:τ Λ e:τ₁ Λ E[e]→*e' Λ stuck(e')
```

hmm...

(contrapositive)

$$\tau_1 \not= \tau_2 \Rightarrow \begin{cases} \exists e, E, \tau, e': \\ E[\tau_2]:\tau \land e:\tau_1 \land E[e] \rightarrow *e' \land stuck(e') \end{cases}$$

- Approach: Define the subtyping relation in an algorithmic deductive system
 - i.e., the inference rules are deterministic, and all "attempted" derivations of $\tau_1 \le \tau_2$ succeed/fail at a finite height

(contrapositive)

$$\tau_1 \not= \tau_2 \Rightarrow \begin{cases} \exists e, E, \tau, e': \\ E[\tau_2]:\tau \land e:\tau_1 \land E[e] \rightarrow *e' \land stuck(e') \end{cases}$$

- Approach: Define the subtyping relation in an algorithmic deductive system
 - i.e., the inference rules are deterministic, and all "attempted" derivations of $\tau_1 \le \tau_2$ succeed/fail at a finite height
- Hence, because $\tau_1 \not\leq \tau_2$, there exists a unique, finite "failing derivation" of $\tau_1 \leq \tau_2$

Example Failing Derivation

```
    real ≤ real
    int ≤ real
    real ≤ int
    real ≤ real

    real → int ≤ real
    int → real ≤ real → real

    (real → real) → (int → real)
    ≤ (real → int) → (real → real)
```

Types
$$\tau:=\inf \mid \operatorname{real} \mid \tau_1 \rightarrow \tau_2$$

$$\boxed{\tau_1 \leq \tau_2} \quad \overline{\inf \leq \inf} \quad \overline{\operatorname{real} \leq \operatorname{real}}$$

$$\boxed{\inf \leq \operatorname{real}} \quad \frac{\tau_3 \leq \tau_1 \quad \tau_2 \leq \tau_4}{\tau_1 \rightarrow \tau_2} \leq \tau_3 \rightarrow \tau_4$$

$$\tau_1 \not= \tau_2 \Rightarrow \begin{cases} \exists e, E, \tau, e': \\ E[\tau_2]: \tau \land e: \tau_1 \land E[e] \rightarrow^* e' \land stuck(e') \end{cases}$$

By induction on the unique, finite, failing derivation of $\tau_1 \le \tau_2$

$$\tau_1 \not= \tau_2 \Rightarrow \exists e, E, \tau, e': \\ E[\tau_2]:\tau \land e:\tau_1 \land E[e] \rightarrow *e' \land stuck(e')$$

We'll trace the failure from a leaf to the root of the failing derivation tree, showing that completeness holds on each failing judgment along the way

real ≤ real	int ≤ real	real ≤ int	real ≤ real
real→int ≤ real→real		int→real ≤ real→real	
(real→real)-	>(int→real) ≤	(real→int)→	→(real→real)

$$\tau_1 \not= \tau_2 \Rightarrow \exists e, E, \tau, e': \\ E[\tau_2]:\tau \land e:\tau_1 \land E[e] \rightarrow *e' \land stuck(e')$$

We'll trace the failure from a leaf to the root of the failing derivation tree, showing that completeness holds on each failing judgment along the way

real ≤ real	int ≤ real	real ≤ int	real ≤ real	
real→int ≤ real→real		int→real ≤	int→real ≤ real→real	
$(real \rightarrow real) \rightarrow (int \rightarrow real) \leq (real \rightarrow int) \rightarrow (real \rightarrow real)$				

$$\tau_1 \not= \tau_2 \Rightarrow \exists e, E, \tau, e': \\ E[\tau_2]:\tau \land e:\tau_1 \land E[e] \rightarrow *e' \land stuck(e')$$

We'll trace the failure from a leaf to the root of the failing derivation tree, showing that completeness holds on each failing judgment along the way

real ≤ real	int ≤ real	real ≤ int	real ≤ real	
real→int ≤ real→real		int→real ≤	real ≤ int real ≤ real int real ≤ real	
$(real \rightarrow real) \rightarrow (int \rightarrow real) \leq (real \rightarrow int) \rightarrow (real \rightarrow real)$				

Base Cases of Completeness Proof

- 5 possible failing leaf judgments here:
 - 1. real≤int
 - 2. real $\leq \tau_3 \rightarrow \tau_4$
 - 3. int $\leq \tau_3 \rightarrow \tau_4$
 - 4. $\tau_3 \rightarrow \tau_4 \leq \text{real}$
 - 5. $\tau_3 \rightarrow \tau_4 \leq int$

Base Cases of Completeness Proof

- 5 possible failing leaf judgments here:
 - 1. real≤int
 - 2. real $\leq \tau_3 \rightarrow \tau_4$
 - 3. int $\leq \tau_3 \rightarrow \tau_4$
 - 4. $\tau_3 \rightarrow \tau_4 \leq \text{real}$
 - 5. $\tau_3 \rightarrow \tau_4 \leq int$
- In every case, an e, E, τ , e' can be constructed such that $E[\tau_2]:\tau$, e: τ_1 , $E[e] \rightarrow *e'$, and stuck(e')

Inductive Step of Completeness Proof

• One case here: $\frac{\tau_3 \le \tau_1}{\tau_1 \to \tau_2} \le \frac{\tau_2 \le \tau_4}{\tau_3 \to \tau_4}$

 Assuming the completeness property holds on some failing premise, prove that it also holds on the failing conclusion

Inductive Step of Completeness Proof

• One case here:
$$\frac{\tau_3 \le \tau_1}{\tau_1 \to \tau_2} \le \frac{\tau_2 \le \tau_4}{\tau_3 \to \tau_4}$$

- Assuming the completeness property holds on some failing premise, prove that it also holds on the failing conclusion
- Again, it can be done; please see tech report for details

Another Interesting Problem

 Let's apply these techniques (for proving subtyping preciseness) to the problem of subtyping iso-recursive types

Quick Refresher on Recursive Types

 Are fundamental for typing aggregate data structures

- Heavily used in functional and object-oriented PLs
 - datatype list = Empty of unit | Node of int * list
 - class Integer {... public void add(Integer i) ...}

Quick Refresher on Recursive Types

- There are 2 primary varieties of recursive types:
 - Iso-recursive systems require programmers to manually roll & unroll the recursion
 - ML and Haskell support iso-recursive types
 - Equi-recursive systems rely on type checkers to roll and unroll as needed, so programmers don't have to
 - Modula-3 supports equi-recursive types

Amber Rules [Cardelli, 1986]

$$\frac{S \cup \{t_1 \le t_2\} \vdash \tau_1 \le \tau_2}{S \vdash \mu t_1.\tau_1 \le \mu t_2.\tau_2} = \frac{S \cup \{t_1 \le t_2\} \vdash t_1 \le t_2}{S \cup \{t_1 \le t_2\} \vdash t_1 \le t_2}$$

- Standard, textbook rules for subtyping iso-recursive types
- These rules are elegant and sound

• Define:

```
\tau_1 \equiv \mu L.\{add:(\mu i.\{add:i\rightarrow unit\})\rightarrow unit, min:unit\rightarrow int\}

\tau_2 \equiv \mu i'.\{add:i'\rightarrow unit\}
```

• Define:

```
\tau_1 \equiv \mu L.\{add:(\mu i.\{add:i\rightarrow unit\})\rightarrow unit, min:unit\rightarrow int\}

\tau_2 \equiv \mu i'.\{add:i'\rightarrow unit\}
```

• τ_1 and τ_2 are natural encodings of class types

```
class GreatInteger extends Integer {
    ...
    public void add(Integer i) {...}
    public int min() {...}
    ...
}
```

```
class Integer {
    ...
    public void add(Integer i) {...}
    ...
}
```

• Define:

```
\tau_1 \equiv \mu L.\{add:(\mu i.\{add:i\rightarrow unit\})\rightarrow unit, min:unit\rightarrow int\}

\tau_2 \equiv \mu i'.\{add:i'\rightarrow unit\}
```

• τ_1 and τ_2 are natural encodings of class types

```
class GreatInteger extends Integer {
    ...
    public void add(Integer i) {...}
    public int min() {...}
    ...
}
```

```
class Integer {
    ...
    public void add(Integer i) {...}
    ...
}
```

• GreatInteger (τ_1) is a subclass of Integer (τ_2) \Rightarrow we should be able to derive $\tau_1 \le \tau_2$

 $\emptyset \vdash \mu L.\{add:(\mu i.\{add:i\rightarrow unit\})\rightarrow unit, min:unit\rightarrow int\} \leq \mu i'.\{add:i'\rightarrow unit\}$

$$\{L \le i'\} \vdash i' \le \mu i.\{add:i \rightarrow unit\}$$

 $\{L \le i'\} \vdash (\mu i.\{add:i \rightarrow unit\}) \rightarrow unit \le i' \rightarrow unit$

 $\{L \le i'\} \vdash \{add:(\mu i.\{add:i \rightarrow unit\}) \rightarrow unit, min:unit \rightarrow int\} \le \{add:i' \rightarrow unit\}$

 $\emptyset \vdash \mu L.\{add:(\mu i.\{add:i\rightarrow unit\})\rightarrow unit, min:unit\rightarrow int\} \leq \mu i'.\{add:i'\rightarrow unit\}$

Problem: Amber rules don't unroll recursive types in their premises, so their conclusions aren't based on how iso-recursive types actually get used (i.e., eliminated)

New Iso-recursive Subtyping Rules

$$\mu t_{1}.\tau_{1} \leq \mu t_{1}.\tau_{1} \notin S$$

$$S \cup \{\mu t_{1}.\tau_{1} \leq \mu t_{2}.\tau_{2}\} \vdash [\mu t_{1}.\tau_{1}/t_{1}]\tau_{1} \leq [\mu t_{2}.\tau_{2}/t_{2}]\tau_{2}$$

$$S \vdash \mu t_{1}.\tau_{1} \leq \mu t_{2}.\tau_{2}$$

$$SU \{\mu t_1.\tau_1 \leq \mu t_2.\tau_2\} \vdash \mu t_1.\tau_1 \leq \mu t_2.\tau_2$$

New Rules Enable Desired Derivation

```
\{L \le I', I' \le I, I \le I'\} \vdash I' \le I \{L \le I', I' \le I, I \le I'\} \vdash unit \le unit
               \{L \le I', I' \le I, I \le I'\} \vdash I \rightarrow unit \le I' \rightarrow unit
\{L \leq I', I' \leq I, I \leq I'\} \vdash \{add: I \rightarrow unit\} \leq \{add: I' \rightarrow unit\}
                                                                                              \{L \leq I', I' \leq I\} \vdash unit \leq unit
  \{L \leq I', I' \leq I\} \vdash I \leq I'
                \{L \le I', I' \le I\} \vdash I' \rightarrow unit \le I \rightarrow unit
  \{L \leq I', I' \leq I\} \vdash \{add: I' \rightarrow unit\} \leq \{add: I \rightarrow unit\}
                                \{L \leq I'\} \vdash I' \leq I
                                                                                                        \{L \le I'\} \vdash unit \le unit
                                          \{L \leq I'\} \vdash I \rightarrow unit \leq I' \rightarrow unit
                \{L \leq I'\} \vdash \{add: I \rightarrow unit, min: unit \rightarrow int\} \leq \{add: I' \rightarrow unit\}
   \emptyset \vdash \mu L.\{add:(\mu i.\{add:i\rightarrow unit\})\rightarrow unit, min:unit\rightarrow int\} \leq \mu i'.\{add:i'\rightarrow unit\}
                                                                                                                                          38
```

New Rules are Precise

Proof uses the techniques described earlier

 Proof also shows that the standard subtyping rules for function and (binary) sum and product types are precise as well

More Information

Technical report:
 "Completely Subtyping Iso-recursive Types"

Project webpage:

http://www.cse.usf.edu/~ligatti/projects/completeness/