

Библиотека для создания программного обеспечения, использующего медицинские изображения

Мусатян Сабрина Андраниковна, 471 группа Научный руководитель: к. т. н., доц. Литвинов Ю. В. Рецензент: ведущий программист ООО "ПитерСофтвареХаус" Полозов В.С.

Санкт-Петербургский Государственный Университет Кафедра системного программирования

25 мая 2019

Введение

Постановка задачи

Цель: создание библиотеки для разработки программного обеспечения, использующего медицинские изображения, разработка типовых функций для работы с медицинскими изображениями и демонстрация успешных применений данной библиотеки для решения актуальных медицинских проблем.

Задачи:

- Изучить существующие программные решения для работы с медицинскими изображениями
- Разработать и реализовать легко расширяемую архитектуру для предлагаемой библиотеки
- Реализовать программные модули в рамках предлагаемой библиотеки для работы с наиболее распространенными форматами медицинских изображении
- Разработать примеры использования библиотеки

Обзор существующих технологий

Инструменты для решения типичных задач

Инструменты для диагностики изображений определенных органов или заболеваний

Медицинские приложения общего назначения

Ginkgo CADx

Библиотеки для разработки медицинских приложений

- C++
- Требует внедрения в свою инфраструктуру
- Много плагинов для работы с медицинскими изображениями

- Kotlin
- Может быть внедрен в сторонние приложения
- Кросс-платформенность и возможность внедрения на мобильные платформы

Особенности реализации

Архитектура MIRF

MedImage

- Архитектурно заложена поддержка любых форматов
- Позволяет абстрагироваться от внутреннего устройства различных медицинских форматов изображений
- Поддерживаемые форматы:
 - DICOM
 - ► NIfTI

Интеграция с Tensorflow

- Используется Java API для Tensorflow
- Блоки-обертки для работы с моделями в режиме тестирования

Интеграция с Android

• Пример использования: нахождение рака кожи по картинке на телефоне

Доброкачественная родинка

Злокачественная родинка

• Отдельная сборка библиотеки под Android

Пример использования: анализ опухолей головного мозга

Различные типы опухолевых тканей: некротическое ядро (красный), накапливающийся очаг опухоли (желтый), отек (зеленый)

Пример использования: анализ опухолей головного мозга

Результаты

- Изучены существующие программные решения для работы с медицинскими изображениями
- Разработана и реализована расширяемая архитектура библиотеки MIRF
- Реализованы следующие программные модули: поддержка форматов DICOM и NIfTI, интеграция алгоритмов машинного обучения на основе библиотеки Tensorflow
- На основе библиотеки MIRF реализовано два тестовых приложения: приложение для анализа опухолей головного мозга и мобильное приложение для определения рака кожи
- Основные результаты работы были представлены на конференциях:
 - ► SEIM 2019
 - ► CПИСОК 2019
- Статья по результатам данной работы была принята к публикации на CEUR-ws.org