Multi-Layer Perceptron (MLP)- Parte I

Profa. Dra. Roseli Aparecida Francelin Romero SCC - ICMC - USP

2022

Sumário

- Introdução
 - Modelo de rede MLP
- 2 Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo

Perceptron multicamadas

- Redes de apenas uma camada representam somente funções linearmente separáveis.
- Redes de múltiplas camadas solucionam essa restrição.
- O desenvolvimento do algoritmo backpropagation foi um dos motivos para o ressurgimento da área de redes neurais [Rumelhart et. al, 1986].

Sumário

- Introdução
 - Modelo de rede MI P
- 2 Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo

Modelo de rede neural com múltiplas camadas.

Figura 1: Rede neural feed-forward com múltiplas camadas.

Sumário

- Introdução
 - Modelo de rede MIP
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo

Sumário

- Introdução
 - Modelo de rede MIP
- Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo

 O esquema de aprendizado da rede pode ser descrito do seguinte modo:

Vetor entrada
$$\rightarrow$$
 vetor saída $\xrightarrow{}$ $\stackrel{?}{=}$ $\xrightarrow{}$ aprendizado ocorreu

 Caso contrário, os pesos são modificados para minimizar o erro:

$$E(w) = \sum_{p=1}^{N} E_p(w)$$

onde N é o no. total de padrões e E_p é o erro quadrático referente a cada par p apresentado à rede, sendo dado por:

$$E_p = \frac{1}{2} \sum_{j} (t_{pj} - y_{pj})^2$$

onde:

- t_{pi}: j-ésima componente do vetor saída desejada.
- y_{pi} : j-ésima componente do vetor obtido pela rede.

Pesos (Gradient Descent Method)

$$w_{ji}(k+1) = w_{ji}(k) - \eta \frac{\partial E_{p}(w)}{\partial w_{ji}}\Big|_{w(k)}$$

Onde η é uma constante positiva (velocidade de aprendizado).

• Calculando a derivada parcial do E_p , tem-se:

$$\frac{\partial E_p}{\partial w_{ji}} = \frac{\partial E_p}{\partial y_{pj}} \cdot \frac{\partial y_{pj}}{\partial v_{pj}} \cdot \frac{\partial v_{pj}}{\partial w_{ji}}$$

• Para se calcular $\frac{\partial E_p}{\partial v_{oi}}$, dois casos devem ser considerados:

Neurônio j está na camada de saída.

$$\frac{\partial E_p}{\partial y_{pj}} = -(t_{pj} - y_{pj})$$

$$\therefore \frac{\partial E_p}{\partial w_{ji}} = \underbrace{-(t_{pj} - y_{pj}) \cdot \underbrace{y_{pj}(1 - y_{pj})}_{\delta_{pj}} \cdot y_{pi}}_{\delta_{pj}}$$

$$\left| rac{\partial \mathcal{E}_p}{\partial w_{ji}} = -\delta_{pj} \cdot y_{pi}
ight|
ightarrow ext{erro na camada de saída}$$

onde
$$-\delta_{pj}=rac{\partial E_p}{\partial v_{pj}}$$

- Neurônio j está na camada oculta (escondida).
 - Nesse caso, não se conhece a expressão do erro.
 - Para obtermos $\frac{\partial E_p}{\partial y_{pl}}$, usamos mais uma vez a **regra da cadeia**.

$$\frac{\partial E_{p}}{\partial y_{pj}} = \sum_{k} \frac{\partial E_{p}}{\partial v_{pk}} \cdot \frac{\partial v_{pk}}{\partial y_{pj}} = \sum_{k} \frac{\partial E_{p}}{\partial v_{pk}} \cdot \frac{\partial \left(\sum_{j} w_{kj} y_{pj}\right)}{\partial y_{pj}}$$
$$= \sum_{k} \frac{\partial E_{p}}{\partial v_{pk}} \cdot w_{kj} = \sum_{k} \left(-\delta_{pk} \cdot w_{kj}\right)$$
$$\therefore \frac{\partial E_{p}}{\partial w_{ji}} = \left(\sum_{k} \left(-\delta_{pk} w_{kj}\right)\right) \cdot y_{pj} (1 - y_{pj}) \cdot y_{pi}$$

erro na camada oculta

Observação: os erros são computados no sentido backward.
 O erro foi chamado de back-propagado → algoritmo de aprendizado backpropagation (BP).

Algoritmo Backpropagation

- Inicialização: pesos iniciados com valores aleatórios e pequenos ([-1, +1]).
- Treinamento Repita:
 - Considere um novo padrão de entrada x_i e seu respectivo vetor de saída t_i desejado do conjunto de treinamento.
 - Repita:
 - Apresentar o par (x_i, t_i) . (modo padrão)
 - Calcular as saídas dos processadores, começando da primeira camada escondida até a camada de saída.
 - Calcular o erro na camada de saída.
 - Atualizar os pesos de cada processador, começando pela camada de saída, até a camada de entrada.
 - Até que o erro quadrático médio para esse padrão seja <= to/1.
- Até que o erro quadrático médio seja <= to/2 para todos os padrões do conjunto de treinamento.

Sumário

- Introdução
 - Modelo de rede MIP
- 2 Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo

Fluxo de Dados

Figura 2: Feed-forward (fase 1), primeira camada escondida.

Fluxo de Dados

Figura 3: Feed-forward (fase 1), segunda camada escondida.

Fluxo de Dados

Figura 4: Feed-forward (fase 1), camada de saída.

Figura 5: Feed-backward (fase 2), cálculo do erro da camada de saída.

Figura 6: Feed-backward (fase 2), atualização dos pesos da camada de saída.

Figura 7: Feed-backward (fase 2), cálculo do erro da segunda camada escondida.

Figura 8: Feed-backward (fase 2), atualização dos pesos da segunda camada escondida.

Figura 9: Feed-backward (fase 2), cálculo do erro da primeira camada escondida.

Figura 10: Feed-backward (fase 2), atualização dos pesos da primeira camada escondida.

 Este procedimento de aprendizado é repetido diversas vezes, até que, para todos processadores de camada de saída e para todos padrões de treinamento, o erro seja menor do que o especificado.

Observações

- Notem que para a atualização do gradiente local das camadas escondidas leva-se em consideração o gradiente local da camada posterior, e não diretamente o erro da rede.
- Este é um ponto crucial do algoritmo backpropagation.
- Utilizar o erro final durante o ajuste das camadas escondidas seria o equivalente a n\u00e3o estar realizando a retro-propaga\u00e7\u00e3o do erro.

Sumário

- Introdução
 - Modelo de rede MIP
- 2 Treinamento de redes MLP
 - O algoritmo Backpropagation
 - Processo de aprendizado
 - Exemplo

Exemplo - XOR

Figura 11: Rede neural inicial. Atualizar os pesos.

Exemplo - XOR

Taxa aprendizado	0,5					
	t	0	1	2	3	4
Entrada	<i>x</i> ₁	1	0	0	1	
Entrada	<i>x</i> ₂	1	0 Saída desejada	у	0	0
1	1					
	$w_{\theta 1}^{h1}$ w_{11}^{h1}	-0,6				
	w_{11}^{h1}	0,4				
	w_{21}^{h1}	0,5				
Pesos	$w_{\theta 2}^{h1}$	-0,2				
	W ₁₂ ^{h1}	0,8				
	W ₂₂ ^{h1}	0,8				
	$w_{\theta 1}^{out}$	-0,3				
	W ₁₁	-0,4				
	w ₂₁ ^{out}	0,9				
	$v_1^{h1}(x)$					
Camada h_1	$v_2^{h1}(x)$					
	$f[v_1^{h1}(x)]$					
	$f[v_2^{h1}(x)]$					1
C ((l .)	v ₁ ^{out}					
Camada <i>out</i> (saída)	$y' = f[v_1^{out}]$					ĺ

Camada oculta h1 - forward

$$\begin{aligned} v_1^{h1}(\mathbf{x}_{t=0}) &= 1 \cdot w_{\theta 1}^{h1}(0) + x_1(0) \cdot w_{11}^{h1}(0) + x_2(0) \cdot w_{21}^{h1}(0) \\ &= 1 \cdot -0.6 + 1 \cdot 0.4 + 1 \cdot 0.5 = \mathbf{0.3} \\ v_2^{h1}(\mathbf{x}_{t=0}) &= 1 \cdot w_{\theta}^{h1}(0) + x_1(0) \cdot w_{12}^{h1}(0) + x_2(0) \cdot w_{22}^{h1}(0) \\ &= 1 \cdot -0.2 + 1 \cdot 0.8 + 1 \cdot 0.8 = \mathbf{1.4} \\ f[v_1^{h1}(\mathbf{x}_{t=0})] &= \frac{1}{1 + e^{-v_2^{h1}(\mathbf{x}_{t=0})}} = \frac{1}{1 + e^{0.3}} = \mathbf{0.5744} \\ f[v_2^{h1}(\mathbf{x}_{t=0})] &= \frac{1}{1 + e^{-v_2^{h1}(\mathbf{x}_{t=0})}} = \frac{1}{1 + e^{1.4}} = \mathbf{0.8022} \end{aligned}$$

Camada de saída - forward

$$v_1^{out}(\mathbf{x}_{t=0}) = 1 \cdot w_{\theta 1}^{out}(0) + f[v_1^{h1}(\mathbf{x}_{t=0})] \cdot w_{11}^{out}(0) + f[v_2^{h1}(\mathbf{x}_{t=0})] \cdot w_{21}^{out}(0)$$

$$= 1 \cdot -0.3 + 0.5744 \cdot (-0.4) + 0.8022 \cdot 0.9 = \mathbf{0.1922}$$

$$y' = f[v_1^{out}(h1)](\mathbf{x}_{t=0}) = \frac{1}{1 + e^{-v_1^{out}(\mathbf{x}_{t=0})}} = \frac{1}{1 + e^{0.1922}} = \mathbf{0.5479}$$

Exemplo - XOR

Taxa aprendizado	0,5					
	t	0	1	2	3	4
Entrada	<i>x</i> ₁	1	0	0	1	
Liitiada	<i>x</i> ₂	1	0	1	0	
Saída desejada	у	0	0	1	1	
	$w_{\theta 1}^{h1}$	-0,6				
	w ₁₁ ^{h1}	0,4				
	w_{21}^{h1}	0,5				$\overline{}$
	$w_{\theta 2}^{h1}$	-0,2				
Pesos	w_{12}^{h1}	0,8				
	w_{22}^{h1}	0,8				
	$W_{\theta 1}^{out}$	-0,3				
	w ₁₁ out	-0,4				
	w ₂₁ ^{out}	0,9				
	$v_1^{h1}(x)$	0,3				
Camada h ₁	$v_2^{h1}(x)$	1,4				
Camada II ₁	$f[v_1^{h1}(x)]$	0,5744				
	$f[v_2^{h1}(x)]$	0,8022				
Carrada aut (acida)	v ₁ ^{out}	0,1922				
Camada <i>out</i> (saída)	$y' = f[v_1^{out}]$	0,5479				

Backpropagation

Camada de saída

$$w_{ji}(t) = w_{ji}(t-1) - \eta \cdot (t_{pj} - y_{pj}) \cdot y_{pj}(1 - y_{pj}) \cdot y_{pi}$$

$$\begin{split} &w_{\theta 1}^{out}(t=1) = -0.3 + \overbrace{0.5}^{\eta} \cdot \overbrace{(0-0.5479) \cdot 0.5479(1-0.5479)}^{-\delta_{\rho j} = -0.1357} \cdot 1 = -\textbf{0.3679} \\ &w_{\theta 1}^{out}(t=1) = -0.4 + 0.5 \cdot (-0.1357) \cdot \overbrace{0.5744}^{y_{\rho i} = f[v_{1}^{h1}(x)]} = -\textbf{0.4390} \\ &w_{11}^{out}(t=1) = 0.9 + 0.5 \cdot (-0.1357) \cdot \overbrace{0.8022}^{y_{\rho i} = f[v_{2}^{h1}(x)]} = \textbf{0.8456} \end{split}$$

Exemplo - XOR

Taxa aprendizado	0,5					
	t	0	1	2	3	4
Entrada	<i>x</i> ₁	1	0	0	1	
Littiaua	<i>x</i> ₂	1	0	1	0	
Saída desejada	у	0	0	1	1	
	$w_{\theta 1}^{h1}$	-0,6				
	w_{11}^{h1}	0,4				
	w_{21}^{h1}	0,5				
	$w_{\theta 2}^{h1}$	-0,2				
Pesos	w_{12}^{h1}	0,8				
	w_{22}^{h1}	0,8				
	$w_{\theta 1}^{out}$	-0,3	-0.3679			
	w ₁₁	-0,4	-0.4390			
	w ₂₁	0,9	0,8456			
	$v_1^{h1}(x)$	0,3				
Camada h ₁	$v_2^{h1}(x)$	1,4				
Calliaua II ₁	$f[v_1^{h1}(x)]$	0,5744				
	$f[v_2^{h1}(x)]$	0,8022				
Camada out (saída)	v ₁ out	0,1922				
Camada <i>out</i> (saída)	$y' = f[v_1^{out}]$	0,5479				

Backpropagation

Camada oculta

$$w_{ji}(t) = w_{ji}(t-1) - \eta \cdot \left(\sum_{k} (-\delta_{pk} w_{kj})\right) \cdot y_{pj}(1-y_{pj}) \cdot y_{pi}$$

$$w_{\theta 1}^{h1} = -0.6 + 0.5 \cdot \underbrace{(-0.1357)}_{} \cdot \underbrace{(-0.4)}_{} \cdot \underbrace{(0.5744)}_{} \cdot \underbrace{(1-0.5744)}_{} \cdot \underbrace{(1-0.57$$

Backpropagation

$$w_{\theta 2}^{h1} = -0.2 + 0.5 \cdot (-0.1357) \cdot \underbrace{0.9}^{w_{12}^{out}(t=0)} \cdot \underbrace{0.8022}^{y_{pj} = f[v_2^{h1}(x)]} \cdot (1 - 0.8022) \cdot 1 = -0,2097$$

$$w_{12}^{h1} = 0.8 + 0.5 \cdot (-0.1357) \cdot 0.9 \cdot 0.8022 \cdot (1 - 0.8022) \cdot 1 = 0,7903$$

$$w_{22}^{h1} = 0.8 + 0.5 \cdot (-0.1357) \cdot 0.9 \cdot 0.8022 \cdot (1 - 0.8022) \cdot 1 = 0,7903$$

Exemplo - XOR

Taxa aprendizado	0,5					
	t	0	1	2	3	4
Entrada	<i>x</i> ₁	1	0	0	1	
CIILIAUA	<i>x</i> ₂	1	0	1	0	
Saída desejada	У	0	0	1	1	
	$w_{\theta 1}^{h1}$	-0,6	-0,5934			
	w_{11}^{h1}	0,4	0,4066			
	w_{21}^{h1}	0,5	0,5066			
	$w_{\theta 2}^{h1}$	-0,2	-0,2097			
Pesos	w_{12}^{h1}	0,8	0,7903			
	w_{22}^{h1}	0,8	0,7903			
	$w_{\theta 1}^{out}$	-0,3	-0.3679			
	w ₁₁ ^{out}	-0,4	-0.4390			
	w ₂₁ ^{out}	0,9	0,8456			
	$v_1^{h1}(x)$	0,3				
Camada h ₁	$v_2^{h1}(x)$	1,4				
Camada II ₁	$f[v_1^{h1}(x)]$	0,5744				
	$f[v_2^{h1}(x)]$	0,8022				
Camada aut (as(da)	v ₁ out	0,1922				
Camada <i>out</i> (saída)	$y' = f[v_1^{out}]$	0,5479				

Backpropagation

- Completa-se uma época ao se atualizarem todos os exemplos de treinamento uma vez.
 - $(0,0) \to 0$
 - $(0,1) \to 1$
 - $(1,0) \to 1$
 - $(1,1) \to 0$

Exemplo - XOR

Taxa aprendizado	0,5					
	t	0	1	2	3	4
Entrada	<i>x</i> ₁	1	0	0	1	
Liitiaua	<i>x</i> ₂	1	0	1	0	
Saída desejada	у	0	0	1	1	
	$w_{\theta 1}^{h1}$	-0,6	-0,5934	-0,5876	-0,5951	-0,6018
	W ₁₁	0,4	0,4066	0,4066	0,4066	0,4000
	w_{21}^{h1}	0,5	0,5066	0,5066	0,4991	0,4991
Pesos	$W_{\theta 2}^{h1}$	-0,2	-0,2097	-0,2217	-0,2092	-0,1968
	W ₁₂ ^{h1}	0,8	0,7903	0,7903	0,7903	0,8027
	W ₂₂ ^{h1}	0,8	0,7903	0,7903	0,8028	0,8028
	$w_{\theta 1}^{out}$	-0,3	-0,3679	-0,4255	-0,3594	-0,2969
	W ₁₁	-0,4	-0,4390	-0,4595	-0,4278	-0,3995
	w ₂₁ ^{out}	0,9	0,8456	0,8197	0,8619	0,9020
	$v_1^{h1}(x)$	0,3	-0,5934	-0,0809	-0,1885	
Camada h ₁	$v_2^{h1}(x)$	1,4	-0,2097	0,5686	0,5811	
	$f[v_1^{h1}(x)]$	0,5744	0,3559	0,4798	0,4530	
	$f[v_2^{h1}(x)]$	0,8022	0,4478	0,6384	0,6413	
Camada out (saída)	v ₁ ^{out}	0,1922	-0,1455	-0,1226	-0,0005	
Camada <i>out</i> (saída)	$y' = f[v_1^{out}]$	0,5479	0,4637	0,4694	0,4999	