Facultatea de Inginerie Industriala si Robotica – U.N.S.T.P.B. Specializarea IAII

PROIECT

Prelucrări prin așchiere

Nume și prenume: Filimon Gabriela-Denisa

Grupa: 631AD

Îndrumător: Lazăr Marius

CUPRINS

1.	Capitolul 1: Date initiale pentru proiectarea procesului si sistemului tehnologic
2.	Capitolul 2: Analiza constructiv functionala si tehnologica6
3.	Capitolul 3: Semifabricare si prelucrari16
4.	Capitolul 6: Structura detaliata a procesului tehnologic20

Capitolul 1. Date initiale pentru proiectarea procesului si sistemului tehnologic

1.1. Produsul si desenul de executie

Produsul pentru care se realizeaza tehnologia fabricarii este "racord cu flansa".

Un racord cu flanșă joacă un rol esențial în conectarea și etanșarea componentelor, transmiterea forțelor, precum și în protecția împotriva scurgerilor și vibrațiilor, în diverse sisteme industriale și mecanice.

Desenul original primit în cadrul proiectului se regăsește în figura 1.1, iar desenul de execuție al reperului este reprezentat in figura 1.2.

Fig. 1.1

Fig. 1.2

1.2. Desenul de ansamblu

Produsul pentru care se dezvoltă tehnologia face parte din ansamblul "Racord cu flanșă pentru conducte industriale", utilizat în sisteme de transport de fluide și gaze.

1.3. Volumul de producție

Conform specificațiilor proiectului, volumul de producție este stabilit la 12.000 de bucăți pe an, pentru a răspunde cerințelor pieței.

1.4. Condiții de livrare, fondul de timp

Fondul de timp anual disponibil este de 2008 ore, corespunzător anului 2024, care include 251 de zile lucrătoare. Livrarea racordurilor se va face semestrial, în funcție de solicitările beneficiarului.

1.5. Date referitoare la unitatea de producție

1.5.1. Denumirea unității de producție

Unitatea de producție responsabilă pentru fabricarea racordurilor cu flanșă este S.C. TechFlange S.A., situată în Timișoara.

1.5.2. Dotare tehnică

Această fabrică este echipată cu utilaje moderne, inclusiv centre de prelucrare CNC, strunguri cu control numeric de mare precizie, prese hidraulice și linii automatizate de asamblare.

1.5.3. Gradul de calificare al operatorilor

Unitatea dispune de personal tehnic cu experiență, având operatori seniori specializați în operarea mașinilor CNC și ingineri care supraveghează procesele de producție. De asemenea, sunt angajați și operatori juniori, care urmează programe de formare continuă.

1.5.4. Regimul de utilizare al resurselor umane

Personalul lucrează în două schimburi de câte 8 ore pe zi, de luni până vineri, pentru a asigura continuitatea producției și respectarea termenelor de livrare.

1.6. Cerinte tehnico-economice

Procesul de fabricație trebuie să fie eficientizat pentru a minimiza costurile de producție și pentru a menține o calitate constantă, conform normelor industriale și cerințelor beneficiarului.

1.7. Objective principale

Introducerea unor metode inovative de producție pentru racordurile cu flanșă, cu accent pe reducerea timpilor de procesare, creșterea productivității și asigurarea unei durabilități ridicate a produselor.

Capitolul 2. Analiza constructiv funcțională și tehnologică

2.1. Analiza desenului de execuție al reperului

Desenul primit a fost analizat, iar în urma evaluării s-au efectuat actualizări în ceea ce privește toleranțele generale, inclusiv adăugarea și ajustarea toleranțelor și abaterilor. Standardul STAS inițial a fost înlocuit cu unul actualizat, iar indicatorul a fost substituit cu unul standardizat. De asemenea, rugozitățile au fost ajustate pentru a corespunde funcției specifice a suprafețelor.

2.2. Analiza caracteristicilor constructive prescrise piesei

Materialul selectat pentru piesa proiectată este fonta cu grafit nodular EN-GJS-400-15U, conform standardului SR EN 1563:2012.

Fonta cu grafit nodular EN-GJS-400-15U este o alegere excelentă pentru piese turnate datorită:

- Rezistenței ridicate la stres mecanic.
- Ductilității și tenacității superioare.
- Capacității de a rezista la coroziune și la uzură.

2.2.1. Caracteristici prescrise materialului piesei

a) Simbolul

Materialul ales este simbolizat conform standardului cu EN-GJS-400-15U, indicând un aliaj de fontă cu grafit nodular, utilizat frecvent în aplicații structurale datorită rezistenței sale mecanice și ductilității.

b) Compoziția chimică

Tabelul 2.1.b prezintă compoziția chimică a fontei cu grafit nodular EN-GJS-400-15U:

Element	Conţinut(%)
С	3.1-3.8
Si	2.2-3.0
Mn	≤ 0.5
P	≤ 0.08
S	≤ 0.02
Mg	0.03 - 0.05
Fe	Restul

c) Proprietati fizico-mecanice

In tabelul 2.1.c sunt prezentate principalele proprietati fizico-mecanice ale materialului.

Proprietate	Valoare
Rezistența la tracțiune (Rm)	400 - 560
$[N/mm^2]$	
Limita de curgere Rp0.2 [N/mm²]	≥ 250
Elongația (A%)	≥ 15
Duritatea Brinell (HBW)	130 - 180
Rezistența la impact la 20°C [J]	≥ 10

Tabel 2.1.c. Proprietăți

d) Tratamente termice posibile

Fonta cu grafit nodular EN-GJS-400-15U poate beneficia de diverse tratamente termice pentru îmbunătățirea proprietăților mecanice. Cel mai comun tratament este recoacerea, care se efectuează în cuptoare, inclusiv cuptoare cu vatră alunecătoare, la temperaturi cuprinse între 870 și 920 °C. Timpul necesar pentru încălzire și omogenizare depinde de grosimea pieselor turnate și de greutatea lotului, de obicei variind între 2 și 4 ore.

După atingerea temperaturii dorite, răcirea pieselor se realizează inițial în cuptor până la aproximativ 200-250 °C, urmată de o răcire cu aer cald.

Acest proces de recoacere permite descompunerea cementitei (Fe₃C) din structura materialului, conform reacției:

$$Fe_3C \rightarrow 3Fe + C(grafit).$$

Prin această descompunere, fonta albă devine fontă gri, ceea ce duce la creșterea ductilității și la reducerea durității, făcând materialul mai adecvat pentru aplicații structurale și industriale.

e) Modul de livrare

Fonta cu grafit nodular EN-GJS-400-15U se livrează de obicei în stare brută, turnată, și poate fi tratată termic, în funcție de cerințele specifice ale piesei. Aceasta o face ideală pentru utilizarea în componente structurale și aplicații industriale variate.

2.2.2. Caracteristici prescrise suprafetelor

In figura 2.2.2 sunt prezentate principalele suprafețe ce urmează a fi prelucrate prin așchiere.

Fig 2.2.2
Caracteristicile prescrise suprafețelor se prezintă în tabelul 2.2.2.

S_k	Forma nominală a suprafețelor	Precizia dimensională	Precizia de formă	Rugozitatea Ra [µm]	Precizia de poziție relativă
S1	Plană	0.8	□ 0.6	<i>Ra</i> 25	A-bază de
		m	K	N11	referință
S2	Cilindrică	0460 ± 0.8	○ 0.2	Ra25	$\perp 0.012 A$
	exterioară	\overline{m}	\overline{K}	N11	K
S3	Cilindrică	$0190^{+0.046}_{0.000}$	○ 0.023	Ra25	⊥ 0.03 <i>A</i>
	interioară	H7	K	N11	VII
S4	Cilindrică	M8	○ 0.023	Ra1.6	⊥ 0.6 <i>A</i>
	interioară	<u>6H</u>	K		\overline{K}

S5	Cilindrică exterioară	Ø270 ^{+0.052} H7	$\frac{\bigcirc 0.026 }{K}$	Ra25 N11	$\frac{\perp 0.6 A}{K}$
S6	Cilindrică interioară(12 alezaje)	$\frac{\emptyset 35_{-0.042}^{-0.017}}{P7}$	<u>○ 0.125</u> <i>K</i>	Ra1.6 N7	$\frac{\perp 0.012 A}{VII}$

Tabel 2.2.2. Caracteristicile suprafetelor

2.2.3. Masa piesei

Masa corpului este 60.85 Kg si este determinata cu ajutorul programului de proiectare SolidWorks 2022, conform figurii 2.2.3.a

```
Mass properties of p11
   Configuration: Default
   Coordinate system: -- default --
Density = 7100.00 kilograms per cubic meter
Mass = 60.85 kilograms
Volume = 0.01 cubic meters
Surface area = 754098.72 square millimeters
Center of mass: ( millimeters )
    X = 0.00
     Y = -6.54
    Z = -1259.44
Principal axes of inertia and principal moments of inertia: (kilograms * square millimeters)
     en at the center of 11033

|x = (0.00, -0.07, 1.00) | Px = 1341777.75

|y = (0.00, -1.00, -0.07) | Py = 1476179.42

|x = (1.00, 0.00, 0.00) | Pz = 1616525.25
Taken at the center of mass.
Moments of inertia: (kilograms * square millimeters)
Taken at the center of mass and aligned with the output coordinate system. (Using positive tensor notation.)
                                     Lyy = 1475468.42 Lyz = 0.03
    Lyz = -9749.55
     Lyx = 0.19
                                     Lzy = -9749.55
                                                                       Lzz = 1342488.75
    Lzx = 0.03
Moments of inertia: (kilograms * square millimeters )

Taken at the output coordinate system. (Using positive tensor notation.)

| Ixx = 98141372.58 | Ixy = 0.17 | Ixz = -2.20
                                     | lxy = 0.17 | lxz = -2.20 | lyy = 97997714.13 | lyz = 49136 | lzy = 491363.58 | lzz = 13450
                                                                       lyz = 491363.58
     lyx = 0.17
     lzx = -2.20
                                                                       Izz = 1345090.37
```

Fig. 2.2.3.a

Densitatea materialului: 7100 kg/m3

Property	Value	Units
Elastic Modulus	1.2e+11	N/m^2
Poisson's Ratio	0.31	N/A
Shear Modulus	7.7e+10	N/m^2
Mass Density	7100	kg/m^3
Tensile Strength	861695000	N/m^2
Compressive Strength		N/m^2
Yield Strength	551485000	N/m^2
Thermal Expansion Coefficient	1.1e-05	/K
Thermal Conductivity	75	W/(m·K)
Specific Heat	450	J/(kg·K)
Material Damping Ratio		N/A

Fig. 2.2.3.b

2.2.4. Clasa piesei

Conform desenului de execuție și a caracteristicilor piesei, aceasta face parte din categoria racordurilor cu flanșă. Racordul cu flanșă este un element de îmbinare folosit în sisteme de conducte sau instalații, având rolul de a conecta două componente într-un mod fix și etanș. Acest racord este confecționat din fontă cu grafit nodular, cunoscută pentru rezistența sa ridicată la tensiuni mecanice și coroziune. Principalul rol al racordului cu flanșă este de a asigura o conexiune fiabilă între diverse secțiuni de conducte sau echipamente, facilitând montarea și demontarea pentru întreținere, fără a deteriora elementele conexe.

2.3. Analiza caracteristicilor funcționale ale piesei 2.3.1. Rolul funcțional al piesei

Racordul cu flanșă are ca rol principal conectarea și sigilarea etanșă între două componente de conducte sau echipamente. Această piesă facilitează montarea și demontarea rapidă a conductelor pentru întreținere sau reparații, fără a fi necesară demontarea întregului sistem. În ansamblul din care face parte, racordul cu flanșă asigură alinierea și poziționarea corectă a componentelor, prevenind mișcările necontrolate și oferind stabilitate mecanică. Flanșa permite o fixare robustă prin șuruburi sau alte elemente de prindere, menținând racordul ferm conectat, în timp ce fonta din care este realizat oferă rezistență la presiuni și temperaturi ridicate, precum și la uzură.

2.3.2. Rolul funcțional al suprafețelor piesei și ajustaje prescrise

In general, rolul functional al piesei este dat de rolul functional al tuturor suprafetelor acesteia(fig.2.3.2), asadar acestea se prezinta in tabelul 2.3.2.

Fig. 2.3.2

Nr. suprafeței	Forma suprafeței	Rolul funcțional
S 1	Plană exterioară	Suprafațe de contact esențiale pentru etanșarea între piesa
		racord și cele două componente conectate. Asigură o
		fixare stabilă și etanșare corectă pentru a preveni
		scurgerile.
S2,S5	Cilindrică exterioară	Aceste suprafețe asigură o îmbinare stabilă cu pereții
		alezajului componentelor racordate, contribuind la fixarea
		radială a piesei. De asemenea, ajută la etanșare, prevenind
		pierderi între componente.
S3,S4,S6	Cilindrică interioară	Rol funcțional de ghidare și etanșare. Aceste suprafețe
		asigură îmbinarea precisă și etanșarea cu arborele sau alte
		componente cilindrice din ansamblu, fiind responsabile
		pentru transferul eficient și stabil.

b) Ajustaje prescrise

Reperul nu are ajustaje prescrise.

2.3.3. Concordanța dintre caracteristicile prescrise și cele impuse de rolul funcțional

Nr. suprafeței	Precizia prescrisă	Propunere	Justificare
	inițial în desen	modificare	
S 6	Nu avea precizie in	$035^{-0.017}_{-0.042}$	Suprafața cilindrica interioara are un rol
	desenul initial		de fixare a piesei în ansamblu. O
			toleranță mai strânsă asigură o
		Ra 1.6 µm	poziționare stabilă și previne mișcările
			nedorite.
S 3	$0190^{+0.050}_{0.000}$	$0190^{+0.046}_{0.000}$	Suprafața cilindrica interioara are un rol
	<u> </u>	<u> </u>	de fixare a piesei în ansamblu. O
	11,	11,	toleranță mai strânsă asigură o
		Ra 1.6 µm	poziționare stabilă și previne mișcările
		•	nedorite.

Tabel 2.3.3 Justificare precizie

2.4. Analiza caracteristicilor tehnologice ale piesei 2.4.1. Prelucrabilitatea materialului

Fonta cu grafit nodular are o rezistență mecanică mare și o ductilitate crescută în comparație cu fonta obișnuită, ceea ce contribuie la o mai bună prelucrare prin turnare și așchiere. Aceasta reduce costurile și timpul necesar procesului de prelucrare, deoarece nu necesită operații de prelucrare complexe, iar sculele se uzează mai lent datorită proprietăților favorabile ale materialului.

2.4.2. Forma constructivă a piesei

Forma piesei este compusă predominant din geometrii simple: suprafețe cilindrice(S2,S3,S4,S5,S6) și plane(S1), ceea ce facilitează prelucrarea acesteia. Suprafețele esențiale funcțional sunt ușor de prelucrat, piesa neavând forme complexe care să necesite tehnici speciale de prelucrare.

2.4.3. Posibilitatea folosirii unor suprafeșe ale piesei ca bază de referință sau orientare și fixare

În prima operație, bazarea piesei va fi realizată pe suprafețele rezultate din turnare, acestea oferind un suport suficient de stabil pentru prelucrările inițiale. După aceste operații, se vor folosi suprafețele prelucrate pentru a obține o precizie ridicată în etapele ulterioare(\$1,\$2,\$5).

2.4.4. Analiza prescrierii rationale ale toleranțelor

Toleranțele specificate în desenul tehnic sunt bine ajustate conform rolului funcțional al piesei. Ele sunt prescrise rațional și corect în raport cu cerințele funcționale ale suprafețelor care trebuie să asigure etanșarea, ghidarea și fixarea piesei în ansamblu:

- -Toleranțele aplicate suprafețelor cilindrice interioare (cum ar fi Ø270 H7) sunt potrivite pentru a asigura ghidarea precisă a piesei în timpul asamblării, fără a permite jocuri excesive.
- -Rugozitățile prescrise (Ra 1.6) sunt adecvate pentru a menține o suprafață suficient de netedă pentru a asigura etanșarea și pentru a preveni uzura excesivă la interfața cu alte piese.

2.4.5. Gradul de unificare al caracteristicilor constructive

Gradul de unificare este un indicator important al tehnologicității piesei, referindu-se la cât de mult elementele constructive ale piesei pot fi standardizate sau unificate. Cu cât acest grad este mai mare, cu atât piesa este mai ușor de fabricat, având un număr mai mic de elemente diferite.

$$\lambda = \frac{l_t - l_d}{l_t} \times 100 \, [\%]$$

unde: lt –numarul total de elemente constructive de tipul respectiv;

ld –numarul de elemente diferite

Găuri:

$$\lambda_{g \breve{a}uri} = \frac{16-2}{16} * 100 = 87.5\% > 50\%$$

Deoarece fiecare alezaj are un rol diferit în funcționarea corectă a piesei în cadrul ansamblului considerăm că acestea nu pot fi modificate pentru a obține un grad de unificare mai bun.

Filete:

$$\lambda_{filete} = \frac{1-1}{1} * 100 = 0\%$$

Filetul nu poate fi eliminat deoarece are rol funcțional, respectiv de asamblare.

Gradul de unificare mediu:

$$\lambda_m = \frac{\lambda_{g uri} + \lambda_{filete}}{2} = \frac{87.5 + 0}{2} = 43.75\%$$

În urma analizei gradului de unificare mediu se poate spune faptul că acesta este unul mediu, având valoarea $\lambda m = 43.75\%$.

2.4.6. Concordanța dintre caracteristicile prescrise și condițiile de tehnologicitate

Semifabricatul piesei racord flanșat este obținut prin turnare. Din acest motiv, trebuie să fie respectate anumite condiții pentru a asigura o execuție corectă și pentru a evita apariția defectelor în piesă. Mai jos se prezintă un tabel(tabel 2.4.6) care detaliază principalele condiții de turnare și prelucrare prin așchiere, împreună cu o evaluare a gradului de satisfacție al acestor condiții pentru piesa racord flanșat.

Tabel 2.4.6. Conditii de turnare

Nr. crt	Condiție	Grad de satisfacție, justificări			
1	Forma piesei turnate să	DA - Piesa are o axă de simetrie clară, utilă			
	prezinte axe sau plane de	pentru delimitarea planului de separație și			
	simetrie care vor	execuția corectă a formei. Forma flanșei,			
	determina plane de	împreună cu corpul cilindric, favorizează o			
	separație utile pentru o	turnare simplă.			
	execuție ușoară a formelor.				

2	Axele găurilor să fie perpendiculare pe suprafețele frontale;	DA - Axele găurilor de pe flanșă sunt perpendiculare pe suprafața acesteia, asigurând o asamblare corectă cu alte componente și
	suprafețele să fie plane.	îndeplinind cerințele funcționale.
3	Limitarea prelucrărilor prin așchiere la minimum necesar.	DA - Prelucrările prin așchiere sunt reduse la minim, majoritatea suprafețelor fiind obținute direct prin turnare. Prelucrările mecanice sunt concentrate pe suprafețele care necesită toleranțe stricte.
4	Forma sau poziția unor suprafețe să fie astfel încât să prezinte "înclinări" în raport cu planul de separație a semimatrițelor.	NU - Piesa nu prezintă înclinări semnificative în raport cu planul de separație, însă forma piesei este suficient de simplă pentru a permite o execuție corectă fără riscuri majore.
5	Forma și poziția suprafețelor să fie astfel încât să permită prinderi simple și sigure în cadrul operațiilor.	DA - Piesa prezintă o formă relativ simplă, care permite prinderea sigură în timpul operațiilor de prelucrare, mai ales în zona cilindrică și a flanșei.
6	Să se prevadă trecerea lină, cu raze de racordare între pereții cu secțiuni diferite pentru a se evita apariția retasurilor și fisurărilor.	DA - Racordurile dintre suprafețele cilindrice și cele plane sunt realizate cu raze de racordare care previn acumularea tensiunilor, minimizând riscul de fisuri sau retasuri.
7	Forma piesei trebuie să permită accesul sculei așchietoare în zona de prelucrare, având degajările necesare pentru ca scula să prelucreze întreaga suprafață fără inconveniente și să poată ieși din piesă.	DA - Forma piesei permite un acces facil al sculelor de prelucrare prin așchiere. Zonele importante sunt deschise și permit accesul ușor pentru operații de finisare și așchiere.

Capitolul 3. Semifabricare și prelucrări

3.1. Projectarea semifabricatului

a) Date inițiale

-Materialul piesei: Fontă cu grafit nodular EN-GJS-400-15U conform standardului SR EN 1563:2012.

-Seria de fabricație: 12.000 de bucăți pe an

-Caracteristicile piesei sunt conform tabelului 2.2.2

b) Metoda de semifabricare: Turnare

Având în vedere materialul specific, fonta cu grafit nodular, metoda de semifabricare prin turnare este cea mai potrivită. Turnarea este procedeul prin care piesa semifabricată este obținută prin solidificarea unei cantități de metal lichid turnată într-o cavitate cu forma corespunzătoare piesei finale.

c) Procedeul

Procedeele de turnare se clasifică în funcție de numărul de piese produse și de natura semifabricatului. În cazul de față, având în vedere volumul anual de piese (zeci de mii de bucăți), metoda de turnare în forme permanente este cea mai potrivită. Această metodă asigură repetabilitate, eficiență în producție și costuri minime pe termen lung.

Pe această bază a fost luată în cauză o variantă tehnic acceptabilă care se prezintă in tabelul 3.1.a.

Varianta	Tip semifabricat	Metoda de semifabricare	Procedeu de semifabricare
1	-Cu adaos mare	Turnare	Turnare în forme
			permanente

Tabel 3.1.a

Valorile corespund clasei de adaos de prelucrare F, fapt întărit de tabelul 3.1.1.

Metoda	Clase de adaosuri de prelucrare precizate Metale și aliaje turnate								
	Oțel	Fontă cenușie	Fontă cu grafit nodular	Fontă maleabil ă	Aliaje de cupru	Aliaje de zinc	Aliaje dde metale uşoare	Aliaje pe bază de nichel	Aliaje pe bază de cobalt
Formare în amestec clasic și manuală	GK	FH	FH	FH	FH	FH	FH	GK	GK
Formare în amestec clasic, mecanizată și forme coji	FH	EG	EG	EG	V	EG	EG	FH	FH
Forme metalice permanente (turnare gravitațional ă și la joasă presiune)	-	DF	DF	DF	DF	DF	DF	-	-
Turnare sub presiune	-	-	-	-	BD	BD	BD	-	-
Formare de precizie	Е	Е	Е	-	Е	-	Е	Е	Е

Tabel 3.1.1 Clase tipice de adaosuri de prelucrare

Suprafața	Dimensiunea prescrisă piesei [mm]	Adaosul de prelucrare total [mm]	Dimensiunea prescrisa semifabricatului [mm]
S1	30±0.2	0.5	30.5 ± 0.65
S2	0460 ± 0.8	3x2	Ø466 ± 1.8
S3	$0190^{+0.046}_{0.000}$	2x2	Ø194 ± 1
S4	M8	-	-
S5	Ø270 ^{+0.052}	2.5x2	Ø275 ± 1.1
S6	Ø35 ^{-0.017} _{-0.042}	-	-

Tabel 3.1.b Caracteristicile semifabricatului cu adaos mare

In figura 3.1 este reprezentat desenul piesei brut turnate.

Fig. 3.1

Precizia turnarii este: CT8 ISO 8062

3.2 Prelucrari

a) Date initiale:

- Tipul si caracteristicile suprafetelor din tabelul 2.2.2
- Precizia prescrisa fiecarei suprafete: desen de executie, tabelul 2.2.2
- Materialul: Fontă cu grafit nodular EN-GJS-400-15U conform standardului SR EN 1563:2012.

- Programa de productie: 12000 buc/an

- Semifabricat: Conform cap. 3.1

- Recomandari

In tabelul 3.2.b sunt prezentate prelucrarile necesare pentru indeplinirea caracteristicilor suprafetelor piesei ce urmeaza a fi prelucrata.

Nr. Supr.	Forma	Var.	Pr	elucrari/Ra [μ	m]
			Prel. 1	Prel. 2	Prel. 3
S1	Plană	I	Strunjire	-	-
			exterioara		
			de		
			degroșare		
			IT14;		
			Ra=25 μm		
S2	Cilindrică	I	Strunjire	-	-
	exterioară		exterioara		
			de		
			degroșare		
			IT14;		
G2	C'1: 1 : ×	т.	Ra=25µm	G	G: ::
S3	Cilindrică	I	Strunjire	Strunjire	Strunjire
	interioară		interioara	interioara de	interioara
			de	semifinisare	de finisare
			degrosare IT14;	IT12; Ra=6.3	IT10; Ra=1.6
			Ra=25μm	Ka-0.3	Ka-1.0
S4	Cilindrică	I	Centruire	Gaurire	
34	interioară	1	Centrume	Gaurife	-
	Interioara	II	Filetare M8		_
		11	Tiletare Wio		-
S5	Cilindrică	I	Strunjire de	_	_
	exterioară	_	degroșare		
			IT14;		
			Ra=25µm		
S6x12	Cilindrică	I	Gaurire	-	-
	interioară				
		II	Alezare de	Alezare de	
			degrosare	finisare	
				IT10;	
				Ra=1.6	

Tabel 3.2.b Stabilirea prelucrarilor principale

Procesul tehnologic este definit ca fiind "totalitatea operatiilor care comporta prelucrari mecanice sau chimice, tratamente termice, impregnari, montaje etc. si prin care materiile prime sau semifabricatele sunt transformate in produse finite.

In subcapitolul 2.2.4 "Clasa piesei", s-a stabilit familia piesei din care face parte reperul studiat si anume clasa racordurilor cu flansa.

Capitolul 6. Structura detaliata a procesului tehnologic

Tabel 6.1

Nr de ordine si denumirea operatiei	Schita preliminara a operatiei	Utilaj, scule,dispozitive, SDV-uri
preliminare		
0.Turnare		U: Instalatie de turnare D/S: Forma de turnare V: Subler

6.2 Utilaje si SDV-uri, metodele si procedeele de reglare la dimensiune

6.2.1. **Utilaje**

Avand in vedere capitolele anterioare si procesele tehnnologice detaliate din tabelele 6.1.a/b, din cadrul primului proces si al doilea, in tabelul 6.2.1a/b se detaliaza utilajele folosite in functie de fiecare operatie in parte.

Tabel 6.2.1. Utilaje

Nr. și denumirea operației	Tip utilaj	Marca utilaj	Caracteristi ci tehnice
0.Turnare	Rame de turnare/forme	-	-
	permanente		

 Strunjire exterioara Strunjire interioara Strunjire exterioara 	Strung de precizie Optimum TM 3310D	Avans longitudinal: 0,02 - 0,4 mm/rot (24 trepte) Avans transversal0: 0,01 - 0,2 mm/rot (32 trepte) Cursa sanie superioara: 90 mm Cursa sanie transversala: 168 mm Inaltime scaun portcutit: 16 mm Adaptor fixare ax: Camlock DIN ISO 702-2 No. 4 Inaltimea centrelor: 165 mm Alezaj ax: 38 mm Latime batiu: 190 mm Diametru de strunjire peste sania transversala: 216 mm Turatii ax: 65 - 2000 rpm Distanta dintre varfuri: 1000 mm
		Diametru de strunjire

			peste batiu:
			330 mm
4.	Masina de		Dimensiuni
Centruire, gaurire, filetare	gaurit cu stand		masa: 660 x
6.Centruire,gaurire,aleza	si coloana		555 mm
_	Cormak		Turatii ax: 40
re	WK80		
	WKOU	1 1 1 1	- 570 rpm
			Numar trepte de turatie: 9
		a Ga	_
			trepte (40
			rpm, 55 rpm,
			82 rpm, 105
			rpm, 150
			rpm, 210
			rpm, 280
			rpm, 400
			rpm, 570
			rpm) Cursa
			pinolei: 250
			mm Filetare
			maxim: M 56
			Reglarea in
			inaltime a
			capului de
			actionare:
			250 mm
			Cursa
			verticala a
			suportului:
			300 mm
			Moment de
			rotatie: 800
			Nm Forta de
			avans: 30000
			N

7.Inspectie finala	Banc de lucru modular 990MA6, 1155x1500x75 0 mm, Unior4	2 CYSSER	Material: tablă premium PLUS; Sistem de închidere centralizată cu încuietoare și cheie rabatabilă; 5 sertare: (3x L 560 x L 570 x H 70mm, 2x L 560 x L 605 x H150mm); capacitate sertar: 45 kg Blat de lucru: din lemn cu 30 de cârlige -Capacitate de încărcare statică: 2300 kg
--------------------	---	----------	---

6.2.2. Dispozitive port-piesa (DPP)

Conform reperului, in tabelul 6.2.2 se stabilesc dispozitivele de prindere ale piesei, tinand cont de masina unealta aleasa, de fiecare operatie in parte cu schemele caracteristice.

Tabel 6.2.2. Dispozitive

Nr. Op.	Dispozitiv port-piesa		
4,6	Mandrina cu bucsa elastica		
1,2,3,5	Portscula Weldon		

6.2.3 Scule si dispozitive port-scula (SDPS)

Pentru fiecare operatie in parte s-au determinat, in functie de prelucrare, de fazele acesteia, de masina unealta, sculele necesare detaliate in tabelul 6.2.3, corespunzator fiecarui proces tehnologic in parte.

Tabel 6.2.3. Scule

Nr suprafat a	Scula	Tip	Nume
1	EMPS -	Cutit pentru strunjire exterioara	CTGPR 1010E 09
2		Cutit pentru strunjire exterioara	CCLNL 164D-4
3		Cutit pentru strunjire interioara de degrosare	L441.31-2030- 1911
		Cutit pentru strunjire interioara de semifinisar e	A25T-SCLCL 09HP-R

		Cutit pentru strunjire interioara de finisare	A25T-SDQCL 11HP-R
4		Burghiu centruire	862.1-2000- 100A0-GM X1DU
		Burghiu gaurire	460.1-0680- 051A1-XM GC34
	T. T	Tarod filetare	T200- XM101DA-M8 C150

5	Cutit pentru strunjire exterioara	CCLNL 164D-4
6	Burghiu gaurire	880-D3400L40- 02
	Alezor de degrosare	830B- E06D1800H7S1 2
	Alezor de finisare	830B- E06D1600H7S1 2

6.2.4. Verificatoare

In tabelul 6.2.4 sunt stabilite verificatoarele necesare pentru controlul corespunzator a tuturor operatiilor din cadrul procesului tehnologic, avand in vedere tipul suprafetelor, al semifabricatului si a preciziei finale a reperului.

Tabel 6.2.4. Verificatoare

Operatia	Verificator			
	Tip	Dimensiu	Valoa	Domeniul
		ni care se	rea divizi	de măsurare
		pot masura	unii	masurare
0. Turnare	A -	Exterior	0.01	0500mm
		Interior		
		Adâncimi		
	Subler digital ABS, Mitutoyo, 0- 500mm, capete in varfuri, 551-204- 10			
1.	A.	Exterior	0.01	0500mm
Strunjire		Interior		
exterioara		Adâncimi		
2.	Subler digital ABS, Mitutoyo, 0- 500mm, capete in varfuri, 551-204-			
Strunjire exterioara	10			
3.				
Strunjire				
interioara				
5.	5th 76 92 63 725 23 735 25 26 766 250 766	Ducamitati		0.8100μ
Strunjire exterioara	CLUSS NO NO N7 NO NO NO NIT HIZ OF	Rugozitati	-	m
exterioara				
	Set 8 etaloane de rugozitate rabotate 0,8 - 100 Ra			
4.	A -	Exterior	0.01	0500mm
Centruire		Interior		
Gaurire Filetare	▼	Adâncimi		
Tiletare	Subler digital ABS, Mitutoyo, 0- 500mm, capete in varfuri, 551-204-			
	10			
	CLA 10 32 93 125 250 500 100 2000 115			
	CLUST NO	Rugozitati	_	0,8100
	Set 8 etaloane de rugozitate rabotate 0,8 - 100 Ra	5		μm

	Calibru tampon dublu filet metric pas normal M8 x 1 TIP 191 Toleranta 6H DIN 13 - NF E03-153	Interior	-	M8
6. Alezare	Calibru tampon "trece/nu trece", DIN2245, 35mm, toleranta H7, Fortis	Interior	-	35mm
	Set 8 etaloane de rugozitate rabotate 0,8 - 100 Ra	Rugozitati	-	0,8100 μm