Геометрия и топология

Курс Солынина А. А.

Осень 2021 г.

Оглавление

O	глав	ление	i					
Ι	Ан	алитическая геометрия	1					
1	Введение							
	1.1	Множества	3					
	1.2	Отображения	4					
	1.3	Отношения эквивалентности	4					
2	Вен	Векторные пространства						
	2.1	Понятие векторного пространства	7					
	2.2	Операции над векторами						
	2.3							
3	Баз	вис V	11					
	3.1	Координаты вектора в базисе	14					
4	Ска	алярное произведение	15					
	4.1	Построение ортонормированного базиса	18					
	4.2	Геометрический подход	19					

Часть I Аналитическая геометрия

глава 1

Введение

1.1. Множества

Определение 1. Множество — неопределяемое понятие.

```
A, B — множества A \cup B = \{x: x \in A \text{ или } x \in B\} \text{— объединение} A \cap B = \{x: x \in A \text{ и } x \in B\} \text{— пересечение} A \setminus B = \{x: x \in A \text{ or } x \notin B\} \text{— разность} A \triangle B = \{A \setminus B\} \cup (B \setminus A) \text{— симметрическая разность} A \times B = \{(x,y): x \in A; y \in B\} \text{— декартово произведение множеств}
```

Примеры декартового произведения множеств

- 1. Координатная плоскость $\mathbb{R} \times \mathbb{R}$
- 2. Множество полей шахматной доски $\{A,B,C,D,E,F,G,H\} \times \{1,2,3,4,5,6,7,8\}$
- 3. Колода карт $\{ \text{масти} \} \times \{ \text{достоинства} \}$
- 4. Нумерация мест в театре
- 5. Нумерация аудиторий на ММ

1.2. Отображения

Определение 2. Пусть A, B — множества. Говорим, что задано отображение $f:A\to B$, если задано правило, сопоставляющее каждому $x\in A$ ровно один $y\in B$.

Пишем: y = f(x).

Пример. $f(x) = \frac{1}{x}$ — не отображение, т.к. f(0) \nexists . Однако при $\mathbb{R} \setminus \{0\} \to \mathbb{R}$ такое отображение существует. Пример.

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(x,y) \mapsto x+y$

Любая операция является отображением

 Π ример. $A\subset B$ $i:A\to B$ i(a)=a $A\hookrightarrow B$ — отображение включения $\mathrm{id}:A\to A$ $\mathrm{id}(x)=A$ — тождественное отображение

1.3. Отношения эквивалентности

Определение 3. M – множество, $\mu \subset M \times M \Rightarrow \mu$ называется отношением над M.

 $\forall a, b \in M$ два случая

- 1. $(a,b) \in \mu$ пишем $a\mu b$
- 2. $(a,b) \notin \mu$ пишем $a\mu b$

 Π ример. =, <, \leq , >, \geqslant , \vdots

 \subset тоже отношение, но только на множестве некоторых множеств. Если M – множество людей, то слова «отец», «мать», «муж», «жена» и т.д.

Определение 4. Отношение μ называется рефлексивным, если $\forall a:aua$

Определение 5. Отношение μ называется симметричным, если $a\mu b \implies b\mu a$

Определение 6. Отношение μ называется транзитивным, если

$$\left. \begin{array}{c} a\mu b \\ b\mu c \end{array} \right\} \implies a\mu c$$

Определение 7. Отношение называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно. Обозначение: ~.

Определение 8. Если $a \in M, K_a = \{b : a \sim b\}$ – класс эквивалентности

Теорема 1.
$$K_a = K_b$$
 либо $K_a \cap K_b = \emptyset$

Доказательство. Допустим противоречие, тогда $\exists c \in K_a \cap K_b, \exists d \in K_a \setminus K_b$ (или $\in K_b \setminus K_a$)

Определение 9. Множество классов эквивалентности называется фактор-множество. Обозначается M/\sim

ГЛАВА

Векторные пространства

2.1. Понятие векторного пространства

Определение 10. Множество V с двумя операциями: $+: V \times V \to \, \Im$ лементы a,b,c $V; \quad (a,b) \mapsto a+b$ и $\cdot : \mathbb{R} \times V \to V$ называется векторным пространством — векторы (над \mathbb{R}), если при условии $\forall a, b, c \in V; \forall \alpha, \beta \in \mathbb{R}$, выполнены следующие (иногда \vec{a} или \overline{a}). свойства:

Элементы α, β – скаляры.

1.
$$a + (b + c) = (a + b) + c$$
 — ассоциативность

2.
$$a+b=b+a$$
 — коммутативность

3.
$$\exists \mathbf{0} : \forall a \quad \mathbf{0} + a = a + \mathbf{0} = a$$

4.
$$\forall a \exists (-a) : a + (-a) = \mathbf{0}$$

5.
$$\alpha(a+b) = \alpha a + \alpha b$$
 —дистрибутивность

Доказательство.

$$\alpha(a+b) = \alpha a + \alpha b$$

$$a = (x_1, y_1) \quad b = (x_2, y_2)$$

$$\begin{split} \alpha(a+b) &= \alpha((x_1,y_1) + (x_2,y_2)) = \alpha(x_1+x_2,y_1+y_2) = \\ &(\alpha(x_1+x_2),\alpha(y_1+y_2)) = (\alpha x_1 + \alpha x_2,\alpha y_1 + \alpha y_2) = \\ &(\alpha x_1,\alpha y_1) + (\alpha x_2,\alpha y_2) = \alpha(x_1,y_1) + \alpha(x_2,y_2) = \\ &\alpha a + \alpha b \end{split}$$

Если выполнены свойства 1–4, то Vназывается коммутативной (абелевой) группой.

6.
$$(\alpha + \beta)a = \alpha a + \beta a$$
 — дистрибутивность

7.
$$(\alpha \cdot \beta)a = \alpha(\beta a)$$
 — ассоциативность

8.
$$1 \cdot a = a, \forall a \in \mathbb{R}$$

Свойства векторного пространства

0 — векторный ноль

1. **0** — единственный

Доказательство.
$$\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_2$$

2. -a -единственный

Доказательство. Пусть b_1, b_2 – противоположные к a

$$b_1 + a = \mathbf{0}$$
 $b_2 + a = \mathbf{0}$

$$b_1 = b_1 + \mathbf{0} = b_1 + (a + b_2) = (b_1 + a) + b_2 = \mathbf{0} + b_2 = b_2$$

3. $0 \cdot a = 0$

4.
$$-1 \cdot a = -a$$

$$oxed{arDeta}$$
оказатель c тво. !!!

Примеры векторных пространств

- 1. Координатная плоскость $\{(x,y)|x,y\in\mathbb{R}\}$
- 2. Координатное трехмерное пространство $\{(x,y,z)|x,y,z\in\mathbb{R}\}$
- 3. Строки длины n из вещественных чисел $V = \{(x_1, x_2, ..., x_n) | x_i \in \mathbb{R} \}$ или матрицы (2d массивы)

2.2. Операции над векторами

$$a = (x_1, y_1)$$
 $b = (x_2, y_2)$

Сложение

$$a + b = (x_1 + x_2, y_1 + y_2)$$

Умножение вектора на число

 $\alpha a = (\alpha \cdot x_1, \alpha \cdot y_1)$

Свойства 1–8, очевидно выполняются

2.3. Линейные комбинация и (не)зависимость

Определение 11. V- векторное пространство и векторы $v_1, v_2, v_3, ..., v_n \in V$. Система $v_1, ..., v_n$ называется линейно независимой (ЛНЗ), если из $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = 0 \implies \alpha_1 = \alpha_2 = ... = \alpha_n = 0$.

Определение 12. Если $\alpha_1,...,\alpha_n\in\mathbb{R},\ v_1,...,v_n\in V.$ То $\alpha_1v_1+\alpha_2v_2+...+\alpha_nv_n$ – линейная комбинация (ЛК) векторов $v_1,...,v_n.$

Определение 13. Если $\exists \alpha_1,...,\alpha_n$, не все =0, но $\alpha_1v_1+\alpha_2v_2+...+\alpha_nv_n=0$, то система $v_1,...,v_n$ называется линейно зависимой (ЛЗ).

⇔ – тогда и толь-

Утверждение 1. $v_1,...,v_n$ – $\mathcal{J}3\Leftrightarrow \mathit{oduh}\ \mathit{us}\ \mathit{этих}\ \mathit{векторов}\ \mathit{можно}\ _{\mathrm{KO}\ \mathrm{TOГДa}}$ $\mathit{представить}\ \mathit{как}\ \mathcal{J}K\ \mathit{остальныx}.\ \exists i:v_i=\alpha_1v_1+\alpha_2v_2+...+\alpha_{i-1}v_{i-1}+$ $\alpha_{i+1}v_{i+1}+...+\alpha_nv_n$

Доказательство. \Rightarrow : $\exists \alpha_1, ..., \alpha_n (\exists i : \alpha_i \neq 0)$

$$\begin{split} \alpha_1v_1 + \alpha_2v_2 + \ldots + \alpha_nv_n &= 0\\ \alpha_iv_i &= -\alpha_1v_1 - \alpha_2v_2 - \ldots - \alpha_{i-1}v_{i-1} - \alpha_{i+1}v_{i+1} - \ldots - \alpha_nv_n\\ \alpha_i \neq 0 \quad v_i &= -\frac{\alpha_1}{\alpha_i}v_1 - \ldots - \frac{\alpha_n}{\alpha_i}v_n \end{split}$$

$$\Leftarrow: v_i = \alpha_1 v_1 + \ldots + \alpha_n v_n$$
 без i -ого слагаемого
$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + (-\mathbf{1}) v_i + \ldots + \alpha_n v_n = 0$$
 ЛК = 0 не все коэффициенты = 0

Свойство 1. $v_1,...,v_n$ – ЛНЗ, то любой его поднабор тоже ЛНЗ. $v_1,...,v_n$ – ЛЗ, то при добавлении векторов, набор останется ЛЗ.

Утверждение 2. $v_1,...,v_n$ – $\mathcal{I}H3\Leftrightarrow \mathit{ec}\mathit{nu}$

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 v_1 + \dots + \beta_n v_n$$

$$\Rightarrow \alpha_1 = \beta_1; \alpha_2 = \beta_2; \dots; \alpha_n = \beta_n$$

Доказательство.

$$(\alpha_1 - \beta_1)v_1 + (\alpha_2 - \beta_2)v_2 + \dots + (\alpha_n - \beta_n)v_n = \mathbf{0}$$

$$\alpha_i - \beta_i = 0 \Leftrightarrow v_1, \dots, v_n - \Pi H 3$$

глава 3

Базис векторного пространства

Определение 14. Набор $v_1, v_2, ..., v_n$ называется порождающим для V, если $\forall w \in V \exists \alpha_1, ..., \alpha_n : w = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$

Свойство 2. Если к порождающему набору прибавить вектор, то он останется порождающим. Если убрать векторы из непорождающего набора векторы, то набор останется непорождающим.

Определение 15. $v_1, v_2, ..., v_n$ называется базисом V, если этот набор ЛНЗ и порождающий.

Теорема 2 (О базисе). Следующие определения базиса равносильны:

- 1. ЛНЗ и порождающий набор
- 2. Минимальный порождающий набор (минимальный по включениям)
- 3. Максимальный ЛНЗ набор (максимальный по включениям)
- 4. Habop $\forall w \in V \exists ! \alpha_1, ..., \alpha_2 : w = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$

Доказательство. Цепочка доказательств: $1 \to 2 \to 4 \to 3 \to 1$ (цикл) $1 \to 2$. Дан $v_1,...,v_n$ – ЛНЗ и порождающий набор. Доказать, что он минимальный порождающий.

Допустим, что v_i выкинули, оставшийся набор остался порождающим $\Rightarrow v_i - \Pi \mathbf{K}$ остальных $\Rightarrow \Pi \mathbf{3}$ \perp .

 $2 \to 4$. Дан $v_1,...,v_n$ – минимальный порождающий набор. Доказать $v_1,...,v_n$ – порождающий с единственностью коэффициентов.

Допустим противное: $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = \beta_1 v_1 + ... + \beta_n v_n$

$$\alpha_1 \neq \beta_1$$

$$(\alpha_i - \beta_i)v_i = (\beta_1 - \alpha_1)v_1 + \dots \text{ (fes i-oro)} + (\beta_n - \alpha_n)v_n$$

$$v_i = \frac{\beta_1 - \alpha_1}{\alpha_i - \beta_i} + \dots \text{ (fes i-oro)} + \frac{\beta_n - \alpha_n}{\alpha_i - \beta_i}$$

 v_i – выкинем. В любой ЛК с v_i заменим v_i на выражение выше \implies набор порождающий

 $4 \to 3$. Дан $v_1,...,v_n$ — порождающий набор с единственностью коэффициентов. Доказать: $v_1,...,v_n$ — минимальный ЛНЗ (ЛНЗ уже доказана)

Допустим противное: $v_1, v_2, ..., v_n; u$ – ЛНЗ набор

 $3 \to 1$. Дан $v_1,...,v_n$ – минимальный ЛНЗ. Доказать $v_1,...,v_n$ – ЛНЗ и порождающий набор.

$$\forall w \in V \qquad \qquad v_1, v_2, ..., v_n, w - \text{ЛЗ набор} \\ \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n + \beta w = \mathbf{0} \\ \text{Если } \beta = 0 \implies \qquad \alpha_1 v_1 + ... + \alpha_n v_n = \mathbf{0} \\ \text{ не все коэффициенты } = 0 (\alpha_i \neq 0) \\ \implies v_1, ..., v_n - \text{ЛЗ} \\ \beta \neq 0 \implies \qquad w = -\frac{\alpha_1}{\beta} v_1 - \frac{\alpha_2}{\beta} v_2 - ... - \frac{\alpha_n}{\beta} v_n$$

Замечание. Любую конечную порождающую систему можно сузить до базиса.

Замечание. Если есть конечный порождающий набор, то любую ЛНЗ систему можно расширить до базиса.

Определение 16. Размерность пространства равна количеству элементов в базисе. (пока нет доказательств корректности)

Лемма 1. Система линейных уравнений: $(a_{ij} \in \mathbb{R}; x_i \in \mathbb{R}; 0 \in \mathbb{R})$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Имеет ненулевые решения, если n > k.

Доказательство. Индукция по k.

База k = 1:

$$a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=0$$
 Пусть $a_{11}\neq 0 \implies x_1=-\frac{a_{12}}{a_{11}}x_2-\frac{a_{13}}{a_{11}}x_3-\ldots-\frac{a_{1n}}{a_{11}}x_n$
$$\forall x_2,\ldots,x_n:x_1 \text{ выражается через них}$$
 $a_{11}=0 \implies x_1=1;x_2=x_3=\ldots=x_n=0$

Переход

$$a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=0$$
 $\exists i:a_{1i}\neq 0,$ иначе выкинем предыдущее уравнение $x_i=-rac{a_{11}}{a_{1i}}x_1-...$ (без $i ext{-oro})--rac{a_{1n}}{a_{1i}}x_n$

Подставим выраженное x_i во все остальные уравнения. Уравнений на 1 меньше, переменных на 1 меньше.

 Π ример.

$$\begin{cases} x + y + z = 0 \\ z + y - z = 0 \end{cases} \implies z = 0 \qquad x + y = 0$$

Теорема 3. Если $v_1,...,v_k$ и $w_1,...,w_n$ базисы $\in V$, то k=n.

$$w_1 = a_{11}v_1 + a_{21}v_2 + a_{31}v_3 + \dots + a_{k1}v_k$$

$$w_2 = a_{12}v_1 + a_{22}v_2 + a_{32}v_3 + \dots + a_{k2}v_k$$

$$\dots$$

$$w_n = a_{1n}v_1 + a_{2n}v_2 + a_{3n}v_3 + \dots + a_{kn}v_k$$

$$x_1w_1 + x_2w_2 + \dots + x_nw_n = \mathbf{0}, x_i \in \mathbb{R}$$
 (\star)

т.к. $w_1, ..., w_n - ЛНЗ \implies все x_i = 0$

$$\begin{split} x_1(a_{11}v_1 + a_{21}v_2 + \ldots + a_{k1}v_k) + x_2(a_{12}v_1 + a_{22}v_2 + \ldots + a_{k2}v_k) \\ &+ \ldots + x_n(a_{1n}v_1 + a_{2n}v_2 + \ldots + a_{kn}v_k) = \mathbf{0} \end{split}$$

$$v_1(a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n) + v_2(a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n) + \dots + v_k(a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n) = \mathbf{0}$$

 $v_1, v_2, ..., v_k$ – ЛНЗ \implies все коэффициенты равны 0.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Если $n > k \implies \exists$ ненулевые решения \implies противоречие с (\star) и ЛНЗ $w_i \implies n \leqslant k$. Аналогично $k \leqslant n \implies n = k$.

Если \exists хотя бы один конечный базис, то все базисы будут равномощными.

3.1. Координаты вектора в базисе

Пусть $v_1, v_2, ..., v_n$ – базис.

$$\forall w \in V \implies \exists! \alpha_1, \alpha_2, ..., \alpha_n : w = \alpha_1 v_1 + ... + \alpha_n v_n$$

 $w=(\alpha_1,\alpha_2,...,\alpha_n)$ – координаты w в базисе $\{v_i\}_{i=1}^n$

$$v_1 = (1, 0, ..., 0)$$

 $v_2 = (0, 1, ..., 0)$

$$v_n = (0, 0, ..., 1)$$

ГЛАВА

$_{\scriptscriptstyle A}$ 4

Скалярное произведение

Обозначение скалярного произведения векторов: $\mathbf{v} \cdot \mathbf{w}$ или (\mathbf{v}, \mathbf{w})

Определение 17. Если V - векторное пространство, в котором есть операция $\cdot: V \times V \to \mathbb{R}$, со свойствами:

1.
$$(\mathbf{v}, \mathbf{v}) \geqslant 0; (\mathbf{v}, \mathbf{v}) = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$$

2.
$$(\mathbf{u}, \mathbf{v} + \mathbf{w}) = (\mathbf{u}, \mathbf{v}) + (\mathbf{u}, \mathbf{w})$$

3.
$$(\alpha \mathbf{u}, \mathbf{w}) = \alpha(\mathbf{u}, \mathbf{w}) = (\mathbf{u}, \alpha \mathbf{w})$$

4.
$$(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, \mathbf{u})$$

то такая операция называется скалярным произведением, а V вместе со скалярным произведением называется евклидовым пространством

Пример. V – множество некоторых функций, $\phi(x)$ - одна функция, которая называется весом, важно, что $\phi>0$, тогда $(f,g)=\int_a^b f(x)g(x)\phi(x)dx$

Определение 18.
$$|\mathbf{v}| = \sqrt{(\mathbf{v}, \mathbf{v})}, |\mathbf{v}| \geqslant 0, |\mathbf{v}| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$$

Определение 19. $\mathbf{u},\mathbf{v}\in V$, тогда $\cos\angle(\mathbf{u},\mathbf{v})=\frac{(\mathbf{u},\mathbf{v})}{|\mathbf{u}||\mathbf{v}|}$

$$\angle(\mathbf{u}, \mathbf{v}) = \arccos \frac{(\mathbf{u}, \mathbf{v})}{|\mathbf{u}||\mathbf{v}|} \in [0; 2\pi]$$

Теорема 4 (Неравенство Коши-Буняковского-Шварца). $|(\mathbf{u},\mathbf{v})| \leqslant |\mathbf{u}|\cdot |\mathbf{v}|$

Доказательство.

$$\begin{split} (\mathbf{u} + t\mathbf{v}, \mathbf{u} + t\mathbf{v}) &\geqslant 0 \quad \forall t \\ (\mathbf{u}, \mathbf{u}) + (\mathbf{u}, t\mathbf{v}) + (t\mathbf{v}, \mathbf{u}) + (t\mathbf{v}, t\mathbf{v}) &\geqslant 0 \\ |\mathbf{u}|^2 + 2t(\mathbf{u}, \mathbf{v}) + t^2|\mathbf{v}|^2 &\geqslant 0 \quad \forall t \\ \frac{D}{4} &\leqslant 0 \quad (\mathbf{u}, \mathbf{v})^2 - |\mathbf{u}|^2|\mathbf{v}|^2 &\leqslant 0 \\ |(\mathbf{u}, \mathbf{v})| &\leqslant |\mathbf{u}||\mathbf{v}| \end{split}$$

3амечание. 2 и 3 аксиомы можно заменить одной: $(\mathbf{u}, \alpha \mathbf{v} + \beta \mathbf{w}) = \alpha(\mathbf{u}, \mathbf{v}) + \beta(\mathbf{u}, \mathbf{w})$

 Πp имеp.

$$V = \mathbb{R}^n = \{(a_1, a_2, ..., a_n) : a_i \in \mathbb{R}\}\$$

«стандартное» скалярное произведение:

$$\begin{aligned} \mathbf{u} &= (a_1, a_2, ..., a_n) & \mathbf{v} &= (b_1, b_2, ..., b_n) \\ (a_1, a_2, ..., a_n) (b_1, b_2, ..., b_n) &= a_1 b_1 + a_2 b_2 + ... + a_n b_n \end{aligned}$$

Аксиомы 1–4 выполняются

$$|(a_1,...,a_n)| = \sqrt{a_1^2 + a_2^2 + ... + a_n^2}$$

KEIII:
$$(a_1b_1 + a_2b_2 + \ldots + a_nb_n)^2 \leq (a_1^2 + a_2^2 + \ldots + a_n^2)(b_1^2 + b_2^2 + \ldots + b_n^2)$$

Теорема 5 (Неравенство треугольника). $|\mathbf{u} + \mathbf{v}| \leqslant |\mathbf{u}| + |\mathbf{v}|$

Доказательство.

$$(\mathbf{u} + \mathbf{v}; \mathbf{u} + \mathbf{v}) \stackrel{?}{\leqslant} (|\mathbf{u}| + |\mathbf{v}|)^2$$
 $(\mathbf{u}, \mathbf{u}) + 2(\mathbf{u}, \mathbf{v}) + (\mathbf{v}, \mathbf{v}) \stackrel{?}{\leqslant} (\mathbf{u}, \mathbf{u}) + (\mathbf{v}, \mathbf{v}) + 2|\mathbf{u}||\mathbf{v}|$
 $(\mathbf{u}, \mathbf{v}) \stackrel{?}{\leqslant} |\mathbf{u}||\mathbf{v}|$ – верно по неравенству КБШ

Определение 20. $\mathbf{u}, \mathbf{v} \in V; \mathbf{u} \perp \mathbf{v}$ (ортогональные векторы), если $(\mathbf{u}, \mathbf{v}) = \mathbf{0}$. Для $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n \in V, \{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ называется ортогональной системой, если $\forall i \neq j, \mathbf{u}_i \perp \mathbf{u}_j$.

Определение 21. $\{\mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_n\}$ называется ортонормированной системой, если $\mathbf{u}_i \perp \mathbf{u}_j (i \neq j)$ и $|\mathbf{u}_i| = 1$

Определение 22. Если $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ – ортонормированная система и базис, то это ортонормированный базис (ОНБ).

Утверждение 3. $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ – ортогональная система $u \ \mathbf{u}_i \neq \mathbf{0}$, то она ЛНЗ.

Доказательство.

$$\begin{split} \alpha_1 \mathbf{u}_1 + \alpha \mathbf{u}_2 + \ldots + \alpha_n \mathbf{u}_n &= \mathbf{0} \quad | \cdot \mathbf{u}_i \\ \alpha_1 (\mathbf{u}_1, \mathbf{u}_i) + \alpha_2 (\mathbf{u}_2, \mathbf{u}_i) + \ldots + \alpha_n (\mathbf{u}_n, \mathbf{u}_i) &= 0 \\ \alpha_i (\mathbf{u}_i, \mathbf{u}_i) &= 0 \Rightarrow \alpha_i = 0 \forall i \end{split}$$

Утверждение 4. $\{\mathbf{u}_1,...,\mathbf{u}_n\}$ – ортогональная система u $\mathbf{v}=\alpha_1\mathbf{u}_1+\alpha_2\mathbf{u}_2+...+\alpha_n\mathbf{u}_n \implies \alpha_i=\frac{(\mathbf{u}_i,\mathbf{v})}{|\mathbf{u}_i|^2}$

Доказательство.

$$\alpha_1 \mathbf{u}_1 + \alpha \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n = \mathbf{v} \mid \cdot \mathbf{u}_i$$

 $\alpha_i(\mathbf{u}_i, \mathbf{u}_i) = (\mathbf{v}, vu_i)$

 $\Pi pumep.\ V$ – множество 2π -периодических функций.

$$(f,g) = \int_0^{2\pi} f(x)g(x)dx$$

(можем ограничиться кусочно-непрерывными функциями)

$$\begin{pmatrix}
\cos 0x, \cos x, \cos 2x, \cos 3x, \dots \\
\sin x, \sin 2x, \sin 3x, \dots
\end{pmatrix}$$

– ортогональная система.

Для проверки достаточно взять

$$\int_0^{2\pi} \sin kx \cos nx dx = 0$$
 и
$$\int_0^{2\pi} \cos kx \cos nx dx = 0 \quad (k \neq n)$$

Аналогично с sin

Любая 2π -периодическая функция раскладывается по этой системе.

$$f(x) = a_0 + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \dots$$
$$a_i = \frac{\int_0^{2\pi} f(x) \cos ix dx}{\int_0^{2\pi} \cos^2 ix dx} \qquad b_i = \dots$$

4.1. Построение ортонормированного базиса

Ортогонализация Грама-Шмидта

Есть $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n - ЛНЗ$

$$\begin{aligned} \mathbf{u}_1 &= \frac{\mathbf{v}_1}{|\mathbf{v}_1|} & |\mathbf{u}_1| = 1 \\ \mathbf{w}_2 &= \mathbf{v}_2 - \alpha \mathbf{u}_1 & \mathbf{w}_2 \perp \mathbf{u}_1 & \mathbf{u}_2 = \frac{\mathbf{w}_2}{|\mathbf{w}_2|} \\ |\mathbf{u}_2| &= 1 & \mathbf{u}_2 \perp \mathbf{u}_1 \\ & (\mathbf{u}_1, \mathbf{w}_2) = 0 \\ & (\mathbf{u}_1, \mathbf{v}_2 - \alpha \mathbf{u}_1) = 0 \\ & (\mathbf{u}_1, \mathbf{v}_2) - \alpha (\mathbf{u}_1, \mathbf{u}_1) = 0 \\ & \alpha = (\mathbf{u}_1, \mathbf{v} - 2) \end{aligned}$$

Пусть $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_{k-1}$ построены (ОНС) Построим \mathbf{u}_k

$$\begin{split} \mathbf{w}_k &= \mathbf{v}_k - \alpha_1 \mathbf{u}_1 - \alpha_2 \mathbf{u}_2 - \ldots - \alpha_{k-1} \mathbf{u}_{k-1} \\ \mathbf{w}_k \perp \mathbf{u}_i & (i \leqslant k-1) \\ 0 &= (\mathbf{w}_k, \mathbf{u}_i) = (\mathbf{v}_k, \mathbf{u}_i) = \alpha(\mathbf{u}_i, \mathbf{u}_i) \\ \alpha_i &= (\mathbf{v}_k, \mathbf{u}_i) \\ \mathbf{u}_k &= \frac{\mathbf{w}_k}{|\mathbf{w}_k|} \end{split}$$

Строим $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$ с помощью данного алгоритма.

Замечание. $\mathbf{u}_i - \Pi \mathbf{K} \ \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_i$

Следствие 1. $Ecлu\ \mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n$ – $\mathit{basuc}\ \Longrightarrow\ \mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_n$ — $\mathit{OHB},$ $m.e.\ ecлu\ \dim V=n,\ mo\ \exists\ \mathit{OHB}$

19

Пусть V - евклидово пространство, $\dim V = n, \mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n$ – ОНБ, $\mathbf{w} = a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + ... + a_n\mathbf{u}_n$, то можем записать $\mathbf{w} = (a_1, ..., a_n)$, соответственно $\mathbf{v} = b_1\mathbf{u}_1 + b_2\mathbf{u}_2 + ... + b_n\mathbf{u}_n$, тогда

$$\begin{split} (\mathbf{w},\mathbf{v}) &= (a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \ldots + a_n\mathbf{u}_n, b_1\mathbf{u}_1 + b_2\mathbf{u}_2 + \ldots + b_n\mathbf{u}_n) = \\ &= a_1b_1(\mathbf{u}_1,\mathbf{u}_2) + a_1b_2(\mathbf{u}_1,\mathbf{u}_2) + \ldots + a_1b_n(\mathbf{u}_1,\mathbf{u}_n) + \\ &+ a_2b_1(\mathbf{u}_2,\mathbf{u}_2) + a_2b_2(\mathbf{u}_2,\mathbf{u}_2) + \ldots + a_2b_n(\mathbf{u}_2,\mathbf{u}_n) + \\ &+ a_nb_1(\mathbf{u}_n,\mathbf{u}_2) + a_nb_2(\mathbf{u}_n,\mathbf{u}_2) + \ldots + a_nb_n(\mathbf{u}_n,\mathbf{u}_n) = \\ &= a_1b_1 + a_2b_2 + \ldots + a_nb_n \end{split}$$

4.2. Геометрический подход

Есть \mathbb{R}^n (например \mathbb{R}^2 или \mathbb{R}^3), так же есть расстояния и углы.

Определение 23. Связанный вектор — направленный отрезок.

Определение 24. Свободный вектор — класс эквивалентности связанных векторов. $\overrightarrow{AB} \sim \overrightarrow{CD}$, если ABDC — параллелограмм (возможно вырожденный)