An Introduction to Radio Interferometry

2-4 Observations with single-dish telescopes

How do we find the first minimum?

The trick we knew when working on single-slit.

Path length difference: $\Delta x = x_1 - x_2 \sim \frac{1}{2} D\theta$

First zero:
$$k\Delta x = \frac{1}{2}kD\theta = \pi$$

 $\Rightarrow \frac{1}{2}\frac{2\pi}{\lambda}D\theta = \pi \Rightarrow \theta = \frac{\lambda}{D}$

Two-dimensional dish: FWHM = $1.22\frac{\lambda}{D}$

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇),
Department of Physics

Response of a (one-dimensional) single dish telescope

Flux density distribution of a point-source

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇),
Department of Physics

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇),
Department of Physics

When there are multiple point sources

$$h(\theta') = \sum_{i} A_{i} g(\theta''_{i} - \theta')$$

$$= \int_{i} \sum_{j} A_{i} \delta(\theta - \theta''_{i}) \tilde{g}(\theta - \theta') d\theta$$

$$= \int_{i} f(\theta) g(\theta' - \theta) d\theta$$

$$\equiv f * g$$

$$f(\theta) \equiv \sum_{j} A_{i} \delta(\theta - \theta''_{i})$$

General expression (source intensity can be continuous)

$$h(\theta') = \int f(\theta)g(\theta' - \theta)d\theta$$
$$\equiv f * g$$

Convolution theorem

$$h(\theta') = \int f(\theta)g(\theta' - \theta)d\theta$$
$$\equiv f * g$$

$$F.T.(f * g) = F.T.(f) \cdot F.T.(g)$$
 $F.T.(f \cdot g) = F.T.(f) * F.T.(g)$

$$F.T.(f \cdot g) = F.T.(f) * F.T.(g)$$

Fourier transform

$$h(\theta') = \int f(\theta)g(\theta' - \theta)d\theta$$
$$\equiv f * g$$

$$F.T.(f) \equiv \tilde{f}(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ikx} dx$$

Convolution theorem

$$F.T.(f * g) = F.T.(f) \cdot F.T.(g) \quad \leftrightarrow \quad F.T.(f \cdot g) = F.T.(f) * F.T.(g)$$

$$F.T.(f * g) = \iint f(\theta)g(\theta' - \theta)d\theta e^{-2\pi i u \theta'}d\theta'$$

$$= \iint f(\theta)g(\theta' - \theta)d\theta e^{-2\pi i u (\theta' - \theta + \theta)}d\theta'$$

$$= \iint f(\theta) e^{-2\pi i u \theta}d\theta g(\theta' - \theta)e^{-2\pi i u (\theta' - \theta)}d\theta'$$

$$= \iint f(\theta) e^{-2\pi i u \theta}d\theta g(\theta' - \theta)e^{-2\pi i u (\theta' - \theta)}d(\theta' - \theta)$$

$$F.T.(g)$$

$$F.T.(g)$$

- 1. What we observe is a convolution of the source intensity distribution with the response function of the telescope.
- 2. Convolution theorem:

$$F.T.(f * g) = F.T.(f) \cdot F.T.(g)$$

$$F.T.(f \cdot g) = F.T.(f) * F.T.(g)$$