含有运算放大器的电路

百年少年以下帝即电

第17章

主讲人: 邹建龙

时间: 年月日

17 含有运算放大器的电路——主要内容

- □引言
- □ 17.1 运算放大器
- □ 17.2 理想运算放大器
- □ 17.3 含理想运算放大器电路的求解方法
- □ 17.4 运算放大器的应用
- □ 小结

17 含有运算放大器的电路——引言

运算放大器的定义:

运算放大器,简称运放,是将晶体管、电阻、电容等电路元件集成到一起的集成电路。运算放大器的图形符号如图所示。

以上是国家标准规定的运算放大器电路图形符号,在实际中,还有另外一种运放的图形符号。本课程采用国家标准的符号。

运算放大器的特性

运算放大器是有源电路元件,其自身需要电源供电。由于电源提供功率,运算放大器可以实现信号放大。

运放的供电电源使得运放看起来比较复杂,因此通常将电源省略。

运算放大器的特性——电路模型

 R_i 为输入电阻,一般在1 $M\Omega$

A为放大倍数,一般在100000以上

 R_0 为输出电阻,近似可以认为是零

$$u_{o} = A(u_{+} - u_{-})$$

运算放大器的特性——输入输出特性

$$u_o = A(u_+ - u_-)$$

不是永远成立

运放输出电压

无法超过

供电电源电压

17.2 理想运算放大器

理想运算放大器的定义

当图示运算放大器的

等效电路模型满足

以下三个条件时,

称为理想运算放大器:

- □输入电阻Ri无穷大
- □ 放大倍数A无穷大
- □输出电阻R₀为零

理想运算放大器的图形符号

17.2 理想运算放大器

理想运算放大器的

"虚断"和"虚断"特性

线性区: $u_0 = A(u_+ - u_-)$

由输入电阻 R_i 无穷大,可以推出 $i_+ = -i_- \approx 0$ (虚断)

当运放工作在线性区时,由放大倍数A无穷大,输出电阻 R_0

17.2 理想运算放大器

含理想运算放大器电路的求解方法(三步)

第一步:根据"虚断"和"虚短"示意图,在电路中所有运放的输入端完整地标记出"虚断"和"虚短"。

第二步:对电路中运放的输入端列写KCL方程。

(千万注意运放输出端电流可能不等于零,不能用虚断!)

第三步: 求解KCL方程, 得到输出电压。

$$u_{+} = u_{-}$$
 u_{+}
 u_{-}
 u_{-}

例题1 (基础) 求*u*_o

$$\frac{3-0}{1} = \frac{0-u_{o}}{2}$$

$$u_{o} = -6 \text{ V}$$

同步练习题1(基础) $求u_o$

同步练习题1(基础)

求 $u_{\rm o}$

答案: u_o=9 V

例题2

$$\frac{3-0}{1} = \frac{0-u_o}{4} + \frac{0-u_x}{2} \qquad \frac{0-u_x}{1} = \frac{u_x-u_o}{2} \qquad u_o = -7.2 \text{ V}$$

$$\frac{0-u_x}{1} = \frac{u_x - u_o}{2}$$

$$u_{o} = -7.2 \text{ V}$$

答案: $u_0 = -7 \text{ V}$

应用运放的"虚断"和"虚短"特性,结合负反馈等技术,可以构成各种广泛应用于实际的运算电路,例如比例电路、加减法电路、微积分电路等。

基于运放构成反相比例电路

$$u_{+} = u_{-} = 0$$

$$\frac{u_{\rm in} - 0}{R_1} = \frac{0 - u_{\rm o}}{R_2}$$

$$u_{\rm o} = -\frac{R_2}{R_1} u_{\rm in}$$

基于运放构成同相比例电路

$$u_{\rm o} = \frac{R_2}{R_1} \times \frac{R_4}{R_3} u_{\rm in}$$

$$u_{\rm o} = \frac{R_1 + R_2}{R_1} u_{\rm in}$$

基于运放构成反相加法电路和减法电路

$$u_{\rm o} = u_{\rm in1} - u_{\rm in2}$$

反相微分电路

反相微分电路

$$C\frac{\mathrm{d}(u_{\mathrm{in}} - 0)}{\mathrm{d}t} = \frac{0 - u_{\mathrm{o}}}{R}$$

$$u_{o} = -RC \frac{\mathrm{d}u_{in}}{\mathrm{d}t}$$

反相积分电路

$$u_{o} = -\frac{1}{RC} \int u_{in} dt$$

运放除了可以用于构成运算电路,还有很多其他应用。

这些应用也不仅限于依据"虚断"和"虚短",

也不仅限于采用负反馈技术。

以下介绍4种运放的应用:

- □ 电压跟随器和限幅器
- □ 有源滤波器
- □ 负电阻
- □比较器

电压跟随器

电压跟随 $u_{\rm o} = u_{\rm in}$

无论负载电阻如何变化, 负载电阻电压始终为5 V

电压限幅器

如果输入电压 u_{in} 在供电电压范围,可以实现电压跟随 $u_{o}=u_{in}$ 如果输入电压 u_{in} 超出供电电压范围,

输出电压将无法继续跟随输入电压,

输出电压将饱和,并且不会超出供电电压范围,

从而起到电压限幅器的作用,对后面所接电路起到保护作用。

有源滤波器

有源滤波器只需要电容,不需要电感有源滤波器可以实现功率放大。

负电阻

$$u_{x} = u_{\text{in}}$$

$$u_{x} = \frac{R_{3}}{R_{2} + R_{3}} u_{\text{o}}$$

$$i_{\text{in}} = \frac{u_{\text{in}} - u_{\text{o}}}{R_{1}}$$

$$R_{\text{in}} = \frac{u_{\text{in}}}{i_{\text{o}}} = -\frac{R_{1}R_{3}}{R_{2}}$$

该电路既有负反馈,又有正反馈。

负反馈使电路工作在线性区。正反馈使电路工作在饱和区。此处只分析运放工作在线性区的情况。

比较器

$$u_{\rm in} > u_{\rm ref}, u_{\rm o} = +u_{\rm cc}, 输出高电平$$

$$u_{\text{in}} < u_{\text{ref}}, u_{\text{o}} = -u_{\text{cc}}, 输出低电平$$

该电路没有反馈,处于开环工作状态。

比较器输出为高电平或低电平,广泛用于数字逻辑电路和电力电子控制电路等领域。

17 含有运算放大器的电路——小结

- □ 运算放大器是有源电路元件,需要电源供电才能工作
- □ 运算放大器可以实现信号放大
- □ 运放输出电压有上下限,不能超出供电电压范围
- □ 满足输入电阻无穷大、放大倍数无穷大、输出电阻为零的 运算放大器称为理想运算放大器
- □ 理想运算如果工作在线性区,则具有"虚断"和"虚短"特性
- □ "虚断"指运放两个输入端的电流近似为零,永远成立
- □ "虚短"指运放两个输入端近似等电位,可近似认为短路
- □ 运放的输出端不具有"虚断"和"虚短"特性
- □ 含理想运放电路求解的三个步骤:虚短虚断、KCL、求解
- □ 结合负反馈基础,基于运放可以构成各种运算电路
- □ 运放具备的各种神奇特性,使得运放在实际中应用极为广泛

17 含有运算放大器的电路

感谢大家聆听

らら、区、フトカノナトラー

主讲人: 邹建龙

时间: 年月日

