ONFI Compliant NAND Flash Controller

Reference & Specs. Rev. 17

Alexey Lyashko 23.06.2016

Contents

NAND Flash	2
ONFI	2
Controller Interface	2
Avalon MM ports	
NAND interface ports	2
Instruction set	3
Addresses	3
Status byte	4

NAND Flash

"**NAND flash** memory is a type of non-volatile storage technology that does not require power to retain data. An important goal of **NAND flash** development has been to reduce the cost per bit and increase maximum chip capacity so that flash memory can compete with magnetic storage devices like hard disks." WhatIs.com

ONFI

"The Open NAND Flash Interface (ONFI) is an industry Workgroup made up of more than 100 companies that build, design-in, or enable NAND Flash memory. We're dedicated to simplifying NAND Flash integration into consumer electronic products, computing platforms, and any other application that requires solid state mass storage. We define standardized component-level interface specifications as well as connector and module form factor specifications for NAND Flash." Onfi.org

Controller Interface

Avalon MM ports

Port name	Bit width	Direction	Purpose
CLK	1	IN	System clock
RESET	1	IN	Reset input. Active low
READDATA	32	OUT	Data output port
WRITEDATA	32	IN	Data/command input port
ADDRESS	2	IN	Address index
PREAD	1	IN	Read strobe
PWRITE	1	IN	Write strobe

NAND interface ports

Port name	Bit	Direction	Purpose
	width		
NAND_CLE	1	IN	Command latch enable
NAND_ALE	1	IN	Address latch enable
NAND_WE	1	IN	Write enable. Active low
NAND_WP	1	IN	Write protect. Active low
NAND_CE	1	IN	Chip enable. Active low
NAND_RE	1	IN	Read enable
NAND_RB	1	OUT	Ready/busy. Is low when busy
NAND_DATA	16	INOUT	Data/command bus. Upper 8 bits are ignored for x8 NAND flash chips.

Instruction set

Instruction	Code	Operation
NAND_RESET	1	Instructs the controller to reset NAND flash.
NAND_READ_PARAMETER_PAGE	2	Reads ONFI parameter page
NAND_READ_ID	3	Reads NAND Flash ID code
NAND_BLOCK_ERASE	4	Instructs the controller to perform block erase operation on the chip
NAND_READ_STATUS	5	Read the content of the NAND Flash's status register
NAND_READ_PAGE	6	Instructs the controller to read one page from NAND Flash
NAND_PAGE_PROGRAM	7	Instructs the controller to program one page to NAND Flash
CTRL_GET_STATUS	8	Retrieves the status of the controller
CTRL_CHIP_ENABLE	9	Enables the underlying NAND Flash chip
CTRL_CHIP_DISABLE	10	Disables the underlying NAND Flash chip
CTRL_WRITE_PROTECT	11	Turns on write protection on the underlying NAND Flash chip
CTRL_WRITE_ENABLE	12	Turns off write protection on the underlying NAND Flash chip
CTRL_RESET_INDEX	13	Resets index register to 0
CTRL_GET_ID_BYTE	14	Retrieves the ID byte currently pointed by the index register ¹
CTRL_GET_PARAMETER_PAGE_BYTE	15	Retrieves the byte currently pointed by the index register from the parameter page buffer ¹
CTRL_GET_DATA_PAGE_BYTE	16	Retrieves the byte currently pointed by the index register from the data page buffer ¹
CTRL_SET_DATA_PAGE_BYTE	17	Sets the byte currently pointed by the index register in the data page buffer to the value on WRITEDATA port ¹
CTRL_GET_CURRENT_ADDRESS_BYTE	18	Retrieves the byte currently pointed by the index register from the address register ¹
CTRL_SET_CURRENT_ADDRESS_BYTE	19	Sets the byte currently pointed by the index register in the address register to the value on WRITEDATA port ¹
NAND_BYPASS_ADDRESS	20	Send single address byte directly to NAND chip ²
NAND_BYPASS_COMMAND	21	Send single command byte directly to NAND chip ²
NAND_BYPASS_DATA_WR	22	Send single byte of data directly to NAND chip ³
NAND_BYPASS_DATA_RD	23	Read single byte of data directly from NAND chip ³

- 1. Operation increments the index register or resets it to 0 if the register points out of the bounds of the related register/buffer.
- 2. This is useful when sending vendor specific commands (e.g. accessing OTP area on different chips) or commands that are not yet supported by this controller.
- 3. Data is written/read to/from the NAND chip without modifying the page_data buffer.

Addresses

+0000: 32 bit data port

+0004: 8 bit command port

+0008: 8 bit status port

Status byte

Bit position	Meaning
0	1-is ONFI compliant; 0-is not ONFI compliant
1	Bus width (0 – x8/ 1 – x16)
2	1 when chip is enabled
3	1 when chip is write protected
4	1 when array pointer (index register) points out of bouds
5-7	reserved