

2020

	WYPEŁNIA ZDAJĄCY	
KOD	PESEL	miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

TERMIN: dodatkowy 2020 r. CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

WYPEŁNIA ZESPÓŁ NADZORUJĄCY			
Uprawnienia zdającego do:			
	dostosowania kryteriów oceniania		
	nieprzenoszenia zaznaczeń na kartę		
	dostosowania w zw. z dyskalkulią		

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24 strony (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamietaj, że pominiecie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki, a także z kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-P1 **1**P-203

W każdym z zadań od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0–1)

Równość $2 + a = \frac{9a}{2a+1}$ jest prawdziwa, gdy

- **A.** a = -2
- **B.** a = -1
- **C.** a = 1
- **D.** a = 2

Zadanie 2. (0–1)

Liczba $1-(2^7-1)^2$ jest równa

- **A.** -2^{14}
- **B**. $2^8 2^{14}$
- C. $2-2^{14}$
- **D.** $-2^{14} 2 \cdot 2^7 + 2$

Zadanie 3. (0–1)

Liczba $\log_{\sqrt{2}} 4^8$ jest równa

A. 2

- **B.** 4
- **C.** 32
- **D.** 16

Zadanie 4. (0–1)

Masę Słońca równą 1,989·10³⁰ kg przybliżono do 2·10³⁰ kg. Błąd bezwzględny tego przybliżenia jest równy

- **A.** $0.0011 \cdot 10^{30} \text{ kg}$ **B.** $1.1 \cdot 10^{30} \text{ kg}$ **C.** $0.11 \cdot 10^{30} \text{ kg}$ **D.** $0.011 \cdot 10^{30} \text{ kg}$

Zadanie 5. (0–1)

Największą liczbą całkowitą spełniającą nierówność $\frac{1}{6} - x \ge \frac{2}{3}x + 4$ jest

- **A.** −3
- **B.** −2
- **C.** 2
- **D.** 3

Zadanie 6. (0–1)

Równanie $\frac{1-x}{x} = 2x$ w zbiorze liczb całkowitych

- A. nie ma żadnego rozwiązania.
- **B.** ma dokładnie jedno rozwiązanie.
- C. ma dokładnie dwa rozwiązania.
- **D.** ma więcej niż dwa rozwiązania.

Zadanie 7. (0–1)

Boki trójkąta ABC są zawarte w prostych o równaniach $y = \frac{2}{3}x + 2$ i y = -x + 2 oraz osi Ox układu współrzędnych (zobacz rysunek).

Pole trójkata ABC jest równe

A. 10

B. $\frac{5}{2}$

C. 5

Zadanie 8. (0–1)

Punkt P = (-3,7) leży na wykresie funkcji liniowej f określonej wzorem f(x) = (2m-1)x + 5. Zatem

A. $m = \frac{1}{6}$

B. $m = -\frac{1}{6}$ **C.** $m = \frac{5}{6}$ **D.** $m = -\frac{5}{6}$

Zadanie 9. (0–1)

Wykresem funkcji kwadratowej f określonej wzorem $f(x) = -x^2 + 6x + 4$ jest parabola o wierzchołku w punkcie (3, q). Liczba q jest równa

A. 4

B. 7

C. 9

D. 13

Zadanie 10. (0-1)

Funkcja f każdej liczbie naturalnej $n \ge 1$ przyporządkowuje resztę z dzielenia tej liczby przez 4. Zbiorem wartości funkcji f jest

A. $\{0,1,2,3\}$ **B.** $\{1,2,3,4\}$ **C.** $\{0,1,2,3,4\}$ **D.** $\{0,2\}$

Zadanie 11. (0-1)

Na rysunku poniżej przedstawiono fragment wykresu funkcji kwadratowej f określonej wzorem $f(x) = ax^2 + bx + c$.

Stąd wynika, że

$$\mathbf{A.} \quad \begin{cases} a < 0 \\ b < 0 \end{cases}$$

$$\mathbf{B.} \begin{cases} a < 0 \\ b > 0 \end{cases}$$

$$\mathbf{C.} \begin{cases} a > 0 \\ b < 0 \end{cases}$$

$$\mathbf{B.} \begin{cases} a < 0 \\ b > 0 \end{cases} \qquad \mathbf{C.} \begin{cases} a > 0 \\ b < 0 \end{cases} \qquad \mathbf{D.} \quad \begin{cases} a > 0 \\ b > 0 \end{cases}$$

Zadanie 12. (0-1)

Proste o równaniach y = (m-2)x oraz $y = \frac{3}{4}x + 7$ są prostopadłe. Wtedy

A.
$$m = -\frac{5}{4}$$

B.
$$m = \frac{2}{3}$$

C.
$$m = \frac{11}{4}$$

Zadanie 13. (0-1)

Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej $n \ge 1$. Czwarty wyraz tego ciągu jest równy $a_4 = 2020$. Suma $a_2 + a_6$ jest równa

A. 505

B. 1010

C. 2020

D. 4040

Zadanie 14. (0-1)

Ciąg geometryczny $\left(a_{_{n}}\right)$ jest określony dla każdej liczby naturalnej $\,n\geq 1\,$ oraz $\,a_{_{2}}=6\,$ i $\,a_{_{5}}=-48\,$. Wynika stąd, że

A. $a_7 > 0$ **B.** $a_7 < 0$ **C.** $a_7 > a_6$ **D.** $a_7 > a_8$

Zadanie 15. (0-1)

Punkty A = (80, -1) i B = (-6, -19) są wierzchołkami trójkąta prostokątnego ABC. W tym trójkacie kat przy wierzchołku C jest prosty. Środkiem okręgu opisanego na tym trójkacie jest punkt o współrzędnych

A. (43,-10)

B. (37,10)

C. (43,10)

D. (37, -10)

Zadanie 16. (0–1)

W trapezie prostokatnym ABCD są dane długości boków: |AB| = 8, |BC| = 5, |DC| = 5, |AD| = 4(zobacz rysunek).

Tangens kata ostrego ABC w tym trapezie jest równy

Zadanie 17. (0-1)

Punkty A = (1, -2) i C = (0, 5) są końcami przekątnej kwadratu ABCD. Obwód tego kwadratu jest równy

A. 12

B. 20

C. 28

D. 48

Zadanie 18. (0–1)

Pole trójkata równoramiennego jest równe $25\sqrt{2}$. Miara kata między ramionami tego trójkata jest równa 45°. Każde z ramion tego trójkata ma długość

A. $10\sqrt{2}$

B. $5\sqrt{2}$

C. 5

D. 10

Zadanie 19. (0-1)

Dany jest trójkat prostokatny ABC, w którym przyprostokatna BC ma długość 250 cm, a przyprostokatna AC ma długość 91 cm. Miara β kata ABC spełnia warunek

A. $19^{\circ} < \beta < 21^{\circ}$

B. $21^{\circ} < \beta < 23^{\circ}$ **C.** $67^{\circ} < \beta < 69^{\circ}$ **D.** $69^{\circ} < \beta < 71^{\circ}$

Zadanie 20. (0-1)

Tworząca stożka jest o 2 dłuższa od promienia jego podstawy, a pole powierzchni bocznej jest o 2π większe od pola podstawy. Promień podstawy tego stożka jest równy

A. 3

B. 2π

C. 1

 \mathbf{D} . π

Zadanie 21. (0-1)

Objętość ostrosłupa prawidłowego czworokątnego, w którym wysokość jest dwa razy dłuższa od krawędzi podstawy, jest równa 144. Długość krawędzi podstawy tego ostrosłupa jest równa

A. 18

B. 36

C. 3

D. 6

Zadanie 22. (0-1)

Podstawą graniastosłupa prawidłowego jest kwadrat o boku 2. Przekątna graniastosłupa tworzy z jego podstawą kat o mierze 60° (zobacz rysunek).

Wysokość tego graniastosłupa jest równa

A. $\frac{\sqrt{2}}{2}$

B. $4\sqrt{2}$

C. $\frac{\sqrt{6}}{4}$

D. $2\sqrt{6}$

Zadanie 23. (0-1)

Wszystkich czterocyfrowych liczb naturalnych, w których cyfra tysięcy i cyfra setek są większe od 4, a każda z pozostałych cyfr jest mniejsza od 6, jest

A. $4 \cdot 4 \cdot 5 \cdot 5$

B. $5 \cdot 4 \cdot 6 \cdot 5$ **C.** $5 \cdot 5 \cdot 6 \cdot 6$ **D.** $4 \cdot 3 \cdot 5 \cdot 4$

Zadanie 24. (0–1)

Wariancją zestawu czterech ocen z matematyki: 1, 3, 5, 3, jest liczba

A. 1

B. 2

C. 3

D. 5

Zadanie 25. (0-1)

W urnie jest 9 kul, w tym cztery kule czerwone, trzy zielone i dwie kule białe. Losujemy jedną kulę. Prawdopodobieństwo, że nie wylosowano ani kuli zielonej, ani białej, jest równe

C. $\frac{5}{9}$

Zadanie 26. (0–2)

Rozwiąż nierówność $(2x+5)(3x-1) \ge 0$.

Zadanie 27. (0–2)

Dane są liczby $a = 3\log_2 12 - \log_2 27$ i $b = (\sqrt{6} - \sqrt{7})(3\sqrt{6} + 3\sqrt{7})$. Wartością a - b jest liczba całkowita. Oblicz tę liczbę.

Zadanie 28. (0–2) Wykaż, że jeśli liczby rzeczywiste a i b spełniają warunek a<4 i b<4, to ab+16>4a+4b.

Zadanie 29. (0-2)

Bok AB jest średnicą, a punkt S jest średkiem okręgu opisanego na trójkącie ABC. Punkt D leży na tym okręgu, a odcinek SD zawarty jest w symetralnej boku BC trójkąta (zobacz rysunek).

Wykaż, że odcinek AD jest zawarty w dwusiecznej kąta CAB.

Zadanie 30. (0–2)

Dany jest trzywyrazowy ciąg (x+2, 4x+2, x+11). Oblicz te wszystkie wartości x, dla których ten ciąg jest geometryczny.

Zadanie 31. (0–2)

Prosta k jest nachylona do osi Ox pod kątem ostrym α , takim, że $\cos \alpha = \frac{\sqrt{3}}{3}$. Wyznacz współczynnik kierunkowy prostej k.

Odpowiedź:

Zadanie 32. (0–4)

Punkty A = (1,-1), B = (6,1), C = (7,5) i D = (2,4) są wierzchołkami czworokąta ABCD. Oblicz współrzędne punktu przecięcia przekątnych tego czworokąta.

Zadanie 33. (0–4)

Rzucamy cztery razy symetryczną monetą. Oblicz prawdopodobieństwo zdarzenia A, polegającego na tym, że liczba otrzymanych orłów będzie różna od liczby otrzymanych reszek.

Odpowiedź:

Zadanie 34. (0–5)

W ostrosłupie prawidłowym sześciokątnym ABCDEFS, którego krawędź podstawy a ma długość 8 (zobacz rysunek), ściana boczna jest nachylona do płaszczyzny podstawy pod kątem $\alpha=60^\circ$. Oblicz cosinus kąta między krawędzią boczną a płaszczyzną podstawy tego ostrosłupa.

