Opérateur Produit cartésien

Soient les relations $R(A_1, ..., A_n)$ et $S(B_1, ..., B_p)$ avec $\{A_1, ..., A_n\} \cap \{B_1, ..., B_p\}$ éventuellement vide

Le *produit cartésien* de S et de R noté $\mathbf{R} \times \mathbf{S}$ est défini par la relation $Q(A_1, ..., A_n, B_1, ..., B_p)$ telle que : $(a_1, ..., a_n, b_1, ..., b_p) \in Q$ <u>ssi</u> $(a_1, ..., a_n) \in R$ et $(b_1, ..., b_p) \in S$

R1	A	В	С
2373	a1	b1	c1
	a2	b2	c2
	a3	b3	с3

R2	X	Y
132	x1	y1
	x2	у2

PRODUIT CARTESIEN

R1XR2

commutatif: $[R1 \times R2] = [R2 \times R1]$

associatif: [(R1 x R2) x R3] = [R2 x (R1 x R3)]

Α	В	С	X	Υ
a1	b1	c1	x1	y1_
a2	b2	c2	x1	у1
a3	b3	c3	x1	у1
a1	b1	c1	x2	y2
a2	b2	c2	x2	y2
a3	b3	c3	x2	y2

Propriétés de la structure

Même schéma

```
degré(R1 \cup R2) = degré(R1) = degré(R2)
```

$$degré(R1 \cap R2) = degré(R1) = degré(R2)$$

$$degré(R1 - R2) = degré(R1) = degré(R2)$$

Schéma quelconque

```
degré(R1 \times R2) = degré(R1) + degré(R2)
```

Jointure thêta (θ -join) : $R \bowtie_P S$

La thêta-jointure définit une relation qui contient les tuples qui satisfont le prédicat P du produit cartésien de R et S. Le prédicat P est de la forme $R.a_i\theta S.b_j$ où θ est l'un des opérateurs de comparaison $(<, \leq, >, \geq, =, \neq)$.

Si le prédicat P est l'égalité (=), on parle d'équijointure

Jointure naturelle : R * S

La jointure naturelle est une équijointure des relations R et S sur tous les attributs communs en retirant les occurrences multiples d'attributs.

Opérateur JOINTURE / Theta-JOINTURE

Client Vente

numéro = no_client

Critère de sélection:

= | \neq | \le | < | > | \ge |

Client		8.		Vente			
numéro	nom	adresse	téléphone	numéro	ref_produit	no_client	date
101	Durand	NICE	0493942613	00102	AF153	101	12/10/04
106	Fabre	PARIS	NULL	00809	BG589	106	18/10/04
106	Fabre	PARIS	NULL	11005	VF158	106	05/10/04
125	Antonin	MARSEILLE	0491258472	12005	BG589	125	25/10/04

La relation résultante :

Carr I

- autant d'attributs que le produit cartésien (degré(R1) + degré(R2))
- moins de tuples

Exercice

- 1. Afficher le nom des clients avec les dates de leurs achats
- Afficher, pour le client numéro 125, le numéro de vente et la marque des produits achetés

```
Q1: π
                            (Client
                                                            Vente)
      Client.nom, Vente.date Client.numéro = Vente.no client
Q2: V1= o
                                (Vente)
          Vente.no client = 125
                                                Produit
    R1 = V1
             Vente.ref_produit = Produit.référence
                                         (R1)
    Res = \pi
            Vente.numéro, Produit.marque
```

Exercice (suite)

 Afficher la référence des produits dont le prix est supérieur au produit qui a pour référence 153.

Q3 P1 =
$$\rho$$
 (Produit) opérateur de renommage

P2 = σ (P1)
P1.référence = 153

Res = π (Produit P2)
Produit.référence Produit.prix > P1.prix

Opérateur Equijointure / Jointure naturelle

- Théta-jointure avec opérateur =
- Equijointure la condition fait appel à l'opérateur =
- Jointure naturelle noté * :
 équijointure dont la condition porte sur des attributs
 identiques (de même domaine et même nom)
 un seul des deux attributs est conservé dans le résultat

Equivalent

no_client Client			Vente			1	
numéro	nom	adresse	téléphone	numéro	ref_produit	no_client	date
101	Durand	NICE	0493942613	00102	AF153	101	12/10/04
106	Fabre	PARIS		00809	BG589	10	18/10/04
106	Fabre	PARIS		11005	VF158	1/06	05/10/04
125	Antonin	MARSEILLE	0491258472	12005	BG589	125	25/10/04
	::						

Exemple de jointure naturelle

Afficher le nom des clients avec les dates de leurs achats

π (Client Vente)
Client.nom, Vente.date Client.numéro = Vente.no_client

ou

Renommage Client.numéro en Client.no_client

π (Client * Vente)
Client.nom, Vente.date

no_client	nom	adresse	téléphone	numéro	ref_produit	date
101	Durand	NICE	0493942613	00102	AF153	12/10/04
106	Fabre	PARIS		00809	BG589	18/10/04
106	Fabre	PARIS		11005	VF158	05/10/04
125	Carré	MARSEILLE	0491258472	12005	BG589	25/10/04

Opération de division

Supposons que la relation R soit définie sur l'ensemble d'attributs A et que la relation S soit définie sur l'ensemble d'attributs B, de telle sorte que $B \subseteq A$. Soit C = A - B.

Division $R \div S$

La division définit une relation sur les attributs C, constituée de l'ensemble des tuples de R qui correspondent à la combinaison de **tous les** tuples de S.

- $T_1 = \pi_C(R)$
- $T_2 = \pi_C((S \times T_1) R)$
- $T = T_1 T_2$

Opérateur DIVISION

La division : opérateur DIVIDE, noté ÷, utilisé pour répondre à des requête du type : "quels sont les reférences des produits achetés par <u>tous</u> les clients?"

R1 =
$$\pi$$
 (Vente.ref_produit, Vente.no-client

R2 = π (Client)

Client.numéro

RES = R1 ÷ R2

Autres opérateurs

Opérateur renommer noté α

Changer le nom d'un (ou plusieurs) attribut d'une relation R:
α [nom_attr1: nouveau_nom_pour_attr1, ...] R

Utile avant les jointures (homonymie, synonymie), ou avant les opérations ensemblistes (même nom requis).

Opérateurs dérivés

- Jointure externe
- ☐ Semi-jointure gauche, droite

Autres jointures

Jointure externe (gauche) entre R et S

La jointure externe gauche est une jointure dans laquelle les tuples de la relation R qui n'ont pas nécessairement de valeur correspondente dans S parmi les attributs communs de R et S, sont également inclus dans la relation résultante. Les valeurs manquantes dans la seconde relation sont mises à nul.

- Jointure externe droite : le résultat conserve tous les tuples de la relation de droite
- Jointure externe complete: le résultat reprend tous les tuples de deux relations et remplit de nuls les attributs absents pour tous les cas de non-correspondence

Semi-jointure entre R et S

La semi-jointure définit une relation qui contient les tuples de R qui participent à la jointure de R avec S.

Operateur JOINTURE EXTERNE

La jointure externe entre les relations S et R notée S R :

- ✓ la jointure S 🔀 R
- √ les tuples de S et R ne participant pas à la jointure

CLIENT	VENTE
Value of the second sec	

no_client	nom	adresse	téléphone	numéro	ref_produit	date
101	Durand	NICE	0493942613	00102	AF153	12/10/04
106	Fabre	PARIS	NULL	00809	BG589	18/10/04
106	Fabre	PARIS	NULL	11005	VF158	05/10/04
110	Prosper	PARIS	0491258472	12005	BG589	25/10/04
125	Antonin	MARSEILLE	NULL (NULL	NULL	NULL

A droite et à gauche

Pas d'informations

Opérateurs déduits

Intersection:

 $R \cap S = R - (R - S) = S - (S - R)$ ou $R \cap S = (R \cup S) - ((R - S) \cup (S - R))$

Jointure naturelle:

Soient R (X,Y) et S (Y,Z)

 $R * S = \pi [X,Y,Z] \sigma [Y = Y'] (R \times \alpha [Y : Y']S)$

Thêta jointure:

Soient R (X,Y) et S (U,V)

 $R*[p]S = \sigma[p](R \times S)$

Division:

Soient R (X,Y) et S (Y)

 $R/S = \pi [X] R - \pi [X] (((\pi [X]R) \times S) - R)$

Complexité des opérateurs

Sélection : σ [condition] R

- Au plus: balayer la relation + tester la condition sur chaque tuple.
- Complexité = card (R).
- Taille du résultat : [0 : card (R)].

Projection: π [Ai, Ak...] R

- Balayer la relation + élimination doublons
- Complexité = card (R). 0 si inclut dans une sélection
- Taille du résultat : [1 : card (R)].

Jointure (naturelle ou thêta) entre R et S

- Balayer R et pour chaque tuple de R faire :
 Balayer S et comparer chaque tuple de S avec celui de R.
- Complexité = card (R) x card (S).
- Taille du résultat : [0 : card (R) x card (S)].

