

วิดยา พาติว ฟังก์ชันตรีโกณมิติ

Trigonometric Functions

สูตรที่ควรและจำเป็นต้องรู้

เอกลักษณ์ผลต่างและผลบวก

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

DoubleAngle Formulas

$$\sin 2A = 2\sin A \cos A = \frac{2\tan A}{1 + \tan^2 A}$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Multiple Angle Formulas

$$\sin(3A) = 3\sin A - 4\sin^3 A$$

 $\cos(3A) = 4\cos^3 A - 3\cos A$
 $\sin(4A) = 4\sin A\cos A - 8\sin^3 A\cos A$
 $\cos(4A) = 8\cos^4 A - 8\cos^2 A + 1$

Half-Angle Formulas

$$\sin\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{2}}$$

$$\cos\frac{A}{2} = \pm\sqrt{\frac{1+\cos A}{2}}$$

$$\tan\frac{A}{2} = \frac{1-\cos A}{\sin A} = \frac{\sin A}{1+\cos A}$$

Product-to-Sum Formulas

$$2 \sin A \cos B = [\sin(A+B) + \sin(A-B)]$$

$$2 \cos A \sin B = [\sin(A+B) - \sin(A-B)]$$

$$2 \cos A \cos B = [\cos(A+B) + \cos(A-B)]$$

$$-2 \sin A \sin B = [\cos(A+B) - \cos(A-B)]$$

Sum-to-Product Formulas

$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

1. พับกระดาษรูปสี่เหลี่ยมผืนผ้าที่มีความกว้าง 2 หน่วย ให้มุมหนึ่งไปจรดกับขอบด้านหนึ่ง ดังรูป จงหาความยาวด้าน AB

2. จงหาค่า $8\cos^2\left(\frac{7\pi}{24}\right)$

3. กำหนดจุด A,B,C บนวงกลมหนึ่งหน่วย ดังรูป

ถ้าส้วนโค้ง AB ยาว $\frac{\pi}{24}$ และส่วนโค้ง BC ยาว $\frac{\pi}{6}$ แล้ว ad มีค่าเท่าไร

4. กำหนดให้ $x \in [0,2\pi]$ จงหาคำตอบของ $1+\sin x + \cos x + \sin 2x + \cos 2x = 0$

5. ถ้า $\sin 2x = \frac{1}{5}$ แล้ว $\tan x + \cot x$ มีค่าเท่าใด

6. ถ้า $\tan x = \frac{4}{3}$ และ $\cos y = \frac{12}{13}$ โดยที่ $0 < x < \pi$ และ $\pi < y < 2\pi$ แล้วจงหาค่า ของ $\sin(x+y)$

7. ถ้า $\cos 2x=\frac{1}{8}$ และ $\cot y=\frac{-3}{4}$ โดยที่ $\frac{\pi}{2}< x<\pi$ และ $\frac{3\pi}{2}< y< 2\pi$ แล้ว $\cos x+\cos y$ มีค่าเท่าไร

8. จำนวนคำตอบของสมการ $\cos 2x = \sin x$ ที่อยู่ในช่วง $(0,5\pi)$ เป็นจำนวนเท่าไร

9. มีจำนวนจริง x กี่จำนวนในช่วง $(0,2\pi)$ ซึ่งสอดคล้องกับสมการ $\cos 2x = \sin 3x$

10. จงหาค่า $\frac{\sin 25^{\circ} \sin 85^{\circ} \sin 35^{\circ}}{\sin 75^{\circ}}$

11. จงหา $2\sin^2 60^\circ (\tan 5^\circ + \tan 85^\circ) - 12\sin 70^\circ$

12. จงหาค่าของ $\sec 40^{\circ} \sec 80^{\circ} \sec 160^{\circ}$

13. จงหาค่า
$$\frac{\tan 20^\circ + 4\sin 20^\circ}{\sin 20^\circ \sin 40^\circ \sin 80^\circ}$$

- 14. ค่าของ $\sin \frac{3\pi}{8}$ เป็นรากของพหุนามในข้อใด
 - (a) $x^4 x^2 + \frac{1}{2}$
 - (b) $x^4 x^2 + \frac{1}{4}$
 - (c) $x^4 x^2 + \frac{1}{8}$
 - (d) $x^4 x^2 + \frac{1}{16}$
 - (e) $x^4 x^2 + \frac{1}{32}$
- 15. จงหาค่าของ $(3-4\sin^29^\circ)(3-4\sin^227^\circ)(3-4\sin^281^\circ)(3-4\sin^2243^\circ)$

16. ถ้า x และ y เป็นจำนวนจริงที่สอดคล้องกับ $3\sin(x-y)=2\sin(x+y)$ จงหา $(\tan^3 x)(\cot^3 y)$

17. กำหนดให้ $x \in [0, 2\pi]$ จงหาผลเฉลยของ $2^{1+3\sin x} - 5 \cdot 2^{2\sin x} + 2^{2+\sin x} = 1$

18. กำหนดให้
$$\sin t - \sin 2t + \sin 3t = 0$$
 โดยที่ $0 < t < \frac{\pi}{2}$ ถ้า $a = \frac{\tan t - \tan 2t}{\cos t - \cos 2t}$ และ
$$b = \frac{\sin 3t + \sin 4t + \sin 5t}{\cos 3t + \cos 4t + \cos 5t}$$
 จงหา $a^4 + b^4$

19. กำหนดให้ $x \in \mathbb{R}$ โดยที่ $\sin x + \cos x = \frac{4}{3}$ จงหา $(1 + \tan^2 x) \cot x$

20. กำหนดให้
$$a,b\in\mathbb{R}^+$$
 และ $\tan t=\frac{a}{b}$ ถ้า $(\frac{\cos t}{a})^4+(\frac{\sin t}{b})^4=\frac{\sin 2t}{ab(a^2+b^2)}$ จงหา $(\frac{3a}{b})+(\frac{b}{2a})^2$

21. ให้
$$ABC$$
 เป็นรูปสามเหลี่ยม โดยที่ $\sin A = \frac{3}{5}$ และ $\cos B = \frac{5}{13}$ จงหา $\cos C$

22. ถ้า
$$\sin x + \sin y = \frac{1}{6}$$
 และ $\cos x + \cos y = \frac{1}{3}$ แล้วจงหาค่า $\tan(x+y)$

23. ถ้า $3\sin 2x + 4\sin x = 12\cos x + 8$ แล้ว $\cos 2x$ มีค่าเท่าไร

24. จงหาจำนวนจริง $x \in [0,2\pi]$ ซึ่งสอดคล้องกับสมการ

$$2\sin^2 x + 1 = -\sin x + 2\sqrt{2\sin^2 x + \sin x}$$

25. กำหนดให้ $\cos 20^\circ=a$ ถ้า $\sin 15^\circ+\sin 55^\circ=x$ และ $\cos 15^\circ+\cos 55^\circ=y$ จงหา ค่าของ $(x+y)^2-2xy$

26. ถ้า $\sin^2 7t - \sin^2 5t = \sin 2t \sin 6t$ เมื่อ $0^\circ < t < 30^\circ$ จงหา t

27. จงหาค่าของ $(1-\tan^2 40^\circ)(1-\tan^2 80^\circ)(1-\tan^2 160^\circ)$

28. ถ้า $\frac{\sin^4 x}{5} + \frac{\cos^4 x}{7} = \frac{1}{12}$ สำหรับบาง x > 0 จงหาค่า $\frac{\sin^2 2x}{5} + \frac{\cos^2 2x}{7}$

Inverse Trigonometric Functions

29. กำหนดกราฟของ $y=\arcsin(x)$ และ $y=\arctan(2x)$ เมื่อ $x\in[0,1]$ ดังรูป

พื้นที่ของบริเวณสี่เหลี่ยมผืนผ้า A เท่ากับเท่าไร

30. จงหาค่า $\sin(\tan^{-1}\frac{15}{8}+\cos^{-1}\frac{4}{5})$

31. จงหาค่าของ $\cos^{-1}(\cos 40^\circ + \cos 50^\circ + \cos 70^\circ + \cos 160^\circ + \cos 170^\circ)$

32. ถ้า x เป็นจำนวนจริงที่มากที่สุดโดยที่ 0 < x < 1 สอดคล้องกับ

$$\tan^{-1}(1-x) + \cot^{-1}(\frac{1}{2x}) = 2\sec^{-1}\sqrt{1+2x(1-x)}$$

จงหาค่า $\cos \pi x$

33. ถ้า $\sec^{-1} x = \arcsin \frac{1}{\sqrt{17}} - 2\arccos \frac{2}{\sqrt{5}}$ จงหา $\cot (\frac{\pi}{2} + \sec^{-1} x)$

34. จงหา $\sec^2(2\arctan\frac{1}{3} + \arctan\frac{1}{7})$

35. ให้ x เป็นจำนวนจริงที่มากกว่าศูนย์ จงหาค่าของ

$$\sin(\arctan x + \arctan \frac{1}{x} - 2\arctan \sqrt{x})$$

36. จงหาค่าของ $5\sin(6\arcsin 0.6 + 5\arccos 0.6)$

37. จงหาคำตอบของสมการ $\cos(2\arccos(1-x))=x^2$

38. ล้า $\arctan(\sin x) + \arctan(\cos x) + \arctan(\sec x) = \frac{\pi}{3}$ แล้ว $\cos^2 x$

39. จงหาค่าของ $\arctan\left(\frac{2\cos 10^\circ - \cos 50^\circ}{\sin 70^\circ - \cos 80^\circ}\right)$

40. ให้ P(a,b) และ Q(c,d) เป็นจุดบนวงกลมที่มีรัศมี 1 หน่วย และให้ θ_1 และ θ_2 เป็นมุม ที่จุดศูนย์กลางของวงกลม ซึ่งรองรับด้วยส่วนโค้ง AP และ AQ ตามลำดับโดยที่ θ_1 อยู่ ในจตุภาคที่ 1 และ θ_2 อยู่ในจตุภาคที่ 2 จงหาค่าของ $\arctan(\frac{ad+bc}{ac-bd})$