Course Information		
Course title	Signal Processing for Phased Array Radar	
Semester	110-2	
Designated for	COLLEGE OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE GRADUATE INSTITUTE OF COMMUNICATION ENGINEERING	
Instructor	YEN-MING HUANG	
Curriculum Number	CommE5066	
Curriculum Identity Number	942 U0800	
Credits	3.0	

Course Syllabus

Please respect the intellectual property rights of others and do not copy any of the course information without permission

Course Description

Signal Processing for Phased Array Radar is a graduate-level course designed for students interested in modern radar systems widely used in vehicle networks, military applications, satellites, etc. A phased array, namely an electronically scanned array of antennas, can effectively produce beam patterns in different directions for signal transmission and reception without mechanical rotation of array antennas. A radar, i.e., radio detection and ranging, can be used for detection, tracking, and imaging of an object or physical phenomenon, in terms of range, velocity, angle, and radar cross section. Combining a phased array with a radar has been considered one of the most promising technologies in recent years for various new applications. With huge amounts of data continually obtained, Artificial Intelligence (AI) enables more accurate target prediction, better resource scheduling on multi-target tracking, modeling surrounding environment, etc.

To own in-depth knowledge of digital signal processing algorithms realized in phased array radar, in this course, we will study the following themes.

- 1. Introduction to Radar Systems and Applications
- 2. Fundamentals of Digital Signal Processing
- 3. Radar Signal Model and Range Equation
- 4. Threshold Detection of Fluctuating Targets
- 5. Matched Filtering and Pulse Waveforms

	C Danular Dragoging and Clause Military
	6. Doppler Processing and Clutter Mitigation
	7. Constant False Alarm Rate Detectors
	8. Array Processing and Beamforming
	9. Space-Time Adaptive Processing
	10. Estimation of Target Parameters
	11. Target Tracking With Data Association
	12. Transceiver Front-end Non-ideal Effects
	13. Channel Propagation and Target Models
Course Objective	The goal of this course is to introduce essential digital signal and data
	processing techniques for phased array radar systems. By taking this
	course, the students can
	- understand the basic principles of radar,
	- comprehend the commonly used signal and data processing algorithms
	at radar receivers, and
	- explore advanced research topics in future radar transceivers.
	In addition, by studying some selected papers and executing a term
	project in one semester, the students can
	- be familiar with radar technology and its AI-based data usage,
	- share their own opinions through oral presentations in classes, and
	- actualize the interested algorithms by teamwork.
	Prerequisite:
	- Linear Algebra
	- Signal and System
	- Principle of Communications
	Preferable:
	- Digital Signal Processing
	- Digital Communications
Course Requirement	- Detection and Estimation
	- Adaptive Signal Processing
	Skill:
	- MATLAB (other programming languages are also okay)
	- LaTeX (using the beamer template for preparing slides)
	Study on Selected Papers or Book Chapters:
	- Figuring out the system model and revealing the key proposed concepts
	- Algorithm implementation and reconstruction of the simulation results
Office Hours	Appointment required. Note: Appointment by email.
References	Textbook:
	- M. A. Richards, Fundamentals of Radar Signal Processing, 2nd edition,
	McGraw-Hill Education, 2014.
	- M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of Modern Radar:

Basic Principles, SciTech Publishing, 2010.

- W. L. Melvin and J. A. Scheer, Principles of Modern Radar: Advanced Techniques, SciTech Publishing, 2013.
- T. W. Jeffrey, Phased-Array Radar Design: Application of Radar Fundamentals, SciTech Publishing, 2009.
- H. L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, John Wiley & Sons, Inc., 2002.

Progress

Week	Date	Topic
Week 1	20220219	Lecture 0: Course Information and Overview Lecture 1: Introduction to Radar Systems and Applications
Week 2	20220226	Lecture 2: Fundamentals of Digital Signal Processing
Week 3	20220305	Lecture 3: Radar Signal Model and Range Equation
Week 4	20220312	Lecture 4: Threshold Detection of Fluctuating Targets
Week 5	20220319	Lecture 5: Matched Filtering and Pulse Waveforms
Week 6	20220326	Lecture 6: Doppler Processing and Clutter Mitigation
Week 7	20220402	Self-Study (No class) Quiz 1 (at home)
Week 8	20220409	Lecture 7: Constant False Alarm Rate Detectors
Week 9	20220416	Lecture 8: Array Processing and Beamforming
Week 10	20220423	Lecture 9: Space-Time Adaptive Processing
Week 11	20220430	Lecture 10: Estimation of Target Parameters
Week 12	20220507	Lecture 11: Target Tracking With Data Association
Week 13	20220514	Lecture 12: Transceiver Front-end Non-ideal Effects
Week 14	20220521	Self-Study (No class) Quiz 2 (at home)
Week 15	20220528	Lecture 13: Channel Propagation and Target Models
Week 16	20220604	Self-Study (No class)
Week 17	20220611	Term Project Presentation

Week 18 20220618 Term Project Presentation