Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2022
EE3EW03 / EX3EW03 Electrical Distribution Systems
Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of O.1 (MCOs) should be written in full instead of only a, b, c or d.

Q.1 (N	MCQs)	should be written	in full inst	tead of on	ıly a,	b, c o	r d.		
Q.1	i.	The common	voltage	adopted	for	low	voltage	electrical	1
		distribution is-							
		(a) 400 V, 3-ph, 3-wire (b) 220V, DC							
		(c) 230V, 1-ph,	AC	(d) 40	0V, 3	8-ph, 4	l-wire		
	ii.	ii. Load forecasting is done using-							1
		(a) Power law							
		(b) Regression a	nalysis						
		(c) Time series a	analysis						
		(d) Power law a	nd Regress	sion analy	sis				
	iii.	Example of a	nearly equ	uivalent u	unifor	mly	distribute	d load on	1
		feeders is-							
		(a) Street light le	oading on a	a 1-ph lin	e				
		(b) Domestic load on a 3-ph line							
		(c) Electric traction or tram car load							
		(d) Motor load connected in a workshop or factory							
	iv.	The main power quality issues affected by distributed generation					generation	1	
		is/are-							
		(a) Voltage regu	lation	(b) Vo	oltage	sag			
		(c) Harmonics		(d) Al	l of tl	hese			
	v.	Factors which affect the substation site is/are-						1	
		(a) Load forecas	ting	(b) La	ınd av	ailabi	ility		
		(c) Land use reg	ulation	(d) Al	l of tl	nese			
	vi.	When the load i	s connecte	d at the e	nd of	the m	nain as lui	mped sum,	1

(b) 0.5 l unit length

(d) None of these

the effective feeder length is-

(a) 1 unit length

(c) 0.67 l unit length

P.T.O.

	V11.	Lighting loads such as fluorescent lamps have a power factor of-	1				
		(a) 0.2 (b) 1.0					
		(c) 0.5 to 0.6 (d) 0.8 to 0.9					
	viii.	A 37.5 KW induction motor has a power factor of 0.707 and is to	1				
		be improved to 0.90. The kVAR of capacitor bank needed is-					
		(a) 33.75 (b) 19.3 (c) 7.50 (d) 26.5					
	ix.	The present electronic meters read-	1				
		(a) Power, p.f, KVA					
		(b) Power, KVA, & historical record					
		(c) KWh, KVAh, RKVAh, MD & past data for about 12 month					
		(d) None of these					
	х.	DATA acquisition from substation requires-					
		(a) Host equipment					
		(b) Communication network & infrastructure					
		(c) Field devices					
		(d) All of these					
Q.2	i.	Find the annual load factor and average demand, given that peak	2				
		load is 3.5 MW and energy supplied is 10 ⁷ kWh. Peak demand					
		was recorded during April – June.					
	ii.	Mentioned the standard voltages and systems adopted in India for	3				
		distribution systems. Why is the 3-ph, 4-wire system preferred?	_				
	iii.	What is load curve and load duration curve? Explain their importance in distribution networks.	5				
OR	iv.	Explain how load growth in distribution system can be determined	5				
OK	1 V .	and estimated.	3				
		and estimated.					
Q.3	i.	Draw the single line diagram of a typical sub-transmission and	2				
		distributors.					
	ii.	Compare the % voltage drop of the feeders with square-type	8				
		service area and hexagonal-type service area.					
OR	iii.	What is distributed generation? What are the various technology	8				
		used in the distributed generation? Explain any one of them with					
		suitable diagram.					
Q.4	i.	Enlist points to select an ideal location for a substation.	3				
_	ii.	Explain load catering capability of primary feeders.	7				
		-					

OR	111.	Write short note on economics of sub transmission and distribution system.	7
Q.5	i.	Explain how reduction in line current and hence power losses are obtained with power factor improvement?	4
	ii.	What are the different locations for power factor improvement capacitors? Discuss their relative advantages and disadvantages.	6
OR	iii.	Compare and explain role of shunt and series capacitors in power factor correction.	6
Q.6		Attempt any two:	
	i.	Write short note on testing of LT & HT meters.	5
	ii.	What is SCADA? Explain basics of SCADA.	5
	iii.	Explain advanced meter infrastructure system (AMI).	5

Marking Scheme

EE-EX3EW03 Electrical Distribution Systems

		EE-EASE WUS Electrical Distribution Systems	
Q.1	i)	(d) 400V, 3-ph, 4-wire	1
	ii)	(d) Power law & Regression analysis	1
	iii)	(a) Street light loading on a 1-ph line	1
	iv)	(d) All	1
	v)	(d) All	1
	vi)	(a) 1 unit length	1
	vii)	(c) 0.5 to 0.6	1
	viii)	(b) 19.3	1
	ix)	(c) KWh, KVAh, RKVAh, MD & past data for about 12 monts	1
	x)	(d) all the three in a, b, & c	1
Q.2	i.	1 mark each. Avg demand = 1141 kW and Annual load factor = 0.326.	2
	ii.	2 marks for first part of the question and 1 mark for the second part of the question.	3
	iii.	1 mark each in first part of the question and 3 mark for the second part of the question.	5
OR	iv.	2.5 marks for each.	5
Q.3	i.	2 marks for correct diagram.	2
	ii.	4 marks for each method	8
OR	iii.	1 + 2 + 5	8
Q.4	i.	Full 3 marks for at least for six points	3
	ii.	2 + 5	7
OR	iii.	3.5 + 3.5	7
Q.5	i.	2 + 2	4
	ii.	2 + 2 + 2	6
OR	iii.	3 + 3	6
Q.6			
	i.	2.5 + 2.5	5
	ii.	1 + 4	5
	iii.	For block diagram 2 marks and for explanation 3 marks.	5
