Worksheet 8 Solution

March 17, 2020

Question 1

a. $P(n): \forall n \in \mathbb{N}, n \leq 2^n$. $\forall k \in \mathbb{N}, P(0) \land P(k) \Rightarrow P(k+1)$

Or, with P fully expanded, $\forall k \in \mathbb{N}, \ 0 \leq 2^0 \land k \leq 2^k \Rightarrow k+1 \leq 2^{k+1}$

b. Base Case:

Let n = 0.

Then,

$$(0) \le 2^0$$
 (1)
 $0 \le 1$ (2)

Since, $n \leq 2^n$ is true for n = 0, the base case holds.

Inductive Case:

Let $k \in \mathbb{N}$, and assume that P(k) is true.

Then,

$$2^{k+1} = 2^k + 2^k \tag{1}$$

$$\geq k + k$$
 (2)

(3)

Then,

$$2^{k+1} \ge k + k \tag{4}$$

$$\ge k + 1 \tag{5}$$

$$\geq k+1\tag{5}$$

by the fact that $k \in \mathbb{N}$ and $k \ge 1$.

Then, it follows from proof by induction that the statement $k \leq 2^k$ is true.

Question 2

Question 3

Question 4