

PROFESSOR DANILO

FOLHA 05

DEFINIÇÃO DE UMA LENTE ESFÉRICA DELGADA

DIÓPTRO ESFÉRICO

 A figura abaixo apresenta uma ideia do que seria um dioptro esférico: imagine duas esferas de vidro. Agora imagine que fazemos uma interseccionar a outra; por fim, selecionamos apenas a interseção.

Figura 1: Interseção de duas esferas

 Com esta interseção podemos formar o que chamamos de dioptro esférico e então podemos definir o que seria raio de curvatura.

Figura 2: A interseção forma uma lente esférica

Figura 3: Raios de curvatura

 Vamos estudar lentes esféricas delgadas. Isso significa que a espessura e da lente deve ser bem pequena comparada com os raios de curvatura das partes que formam as lentes.

Figura 4: Lentes delgadas: e << R

LENTES ESFÉRICAS - PRIMEIRO ANO - 24/05/2024

NOMENCLATURA

 Para nomear, começamos com a face de raio maior primeiro

Q. 01 - NOME DA LENTE REPRESENTADA ACIMA

Lente Esférica Biconvexa

Q. 02 - NOME DA LENTE REPRESENTADA ACIMA

Lente Esférica Bicôncava

Q. 03 – NOME DA LENTE REPRESENTADA ACIMA

Lente Esférica Plano Convexa

Q. 04 – NOME DA LENTE REPRESENTADA ACIMA

Lente Esférica Plano Côncava

PROFESSOR DANILO

Q. 05 - NOME DA LENTE REPRESENTADA ACIMA

Lente Esférica Concava Convexa

Q. 06 - NOME DA LENTE REPRESENTADA ACIMA

Lente Esférica Convexa Côncava

LENTES ESFÉRICAS – PRIMEIRO ANO – 24/05/2024

COMPORTAMENTO ÓPTICO

Q. 08 – BORDOS ESPESSOS

- Vamos estudar o comportamento ótico das lentes esféricas delgadas considerando que elas sejam feitas de material cujo índice de refração seja maior que o índice de refração do meio em que estejam inseridas
- Representaremos as lentes esféricas delgadas de forma mais simples. Vejamos a representação de uma lente de bordos finos (que diremos ser convergente, uma vez que em geral a lente terá índice de refração maior que do meio em que se encontra).

Q. 09 – LENTES CONVERGENTES (BORDOS FINOS)

A F F A

PROFESSOR DANILO

• Lentes de bordos grossos terá representação similar:

Q. 10 – LENTES DIVERGENTE (BORDOS GROSSOS)

A F F A

RAIOS NOTÁVEIS

LENTES CONVERGENTES

Q. 11 – RAIO INCIDE PARALELAMENTE AO EIXO PRINCIPAL SAI PASSANDO PELO FOCO IMAGEM

Q. 12 – RAIO INCIDE PASSANDO PELO FOCO OBJETO, SAI PARALELO AO EIXO PRINCIPAL

Q. 13 – RAIO INCIDE PASSANDO PELO ANTI-PRINCIPAL OBJETO, SAI PASSANDO PELO ANTI-PRINCIPAL IMAGEM

LENTES ESFÉRICAS – PRIMEIRO ANO – 24/05/2024

Q. 14 – RAIO QUE PASSA PELO CENTRO ÓPTICO DA LENTE NÃO SOFRE DESVIO

LENTES DIVERGENTES

Q. 15 – RAIO INCIDE PARALELAMENTE AO EIXO PRINCIPAL SAI NA DIREÇÃO DO FOCO IMAGEM

Q. 16 – RAIO INCIDE NA DIREÇÃO DO FOCO OBJETO, SAI PARALELO AO EIXO PRINCIPAL

Q. 17 – RAIO INCIDE NA DIREÇÃO DO ANTI-PRINCIPAL OBJETO, SAI NA DIREÇÃO DO ANTI-PRINCIPAL IMAGEM

Q. 18 – RAIO QUE PASSA PELO CENTRO ÓPTIVO DA LENTE NÃO SOFRE DESVIO

Colegic

PROFESSOR DANILO

FORMAÇÃO DE IMAGEM: MÉTODO GEOMÉTRICO LENTE ESFÉRICA CONVERGENTE

Q. 19 – OBJETO LOCALIZADO ENTRE O FOCO E O VÉRTICE DA LENTE

Classificação:

Q. 20 - OBJETO LOCALIZADO SOBRE O FOCO

Classificação:

Q. 21 – OBJETO LOCALIZADO ENTRE O FOCO E ANTIPRINCIPAL

Classificação:

Q. 22 – OBJETO LOCALIZADO EXATAMENTE SOBRE O ANTIPRINCIPAL

LENTES ESFÉRICAS – PRIMEIRO ANO – 24/05/2024

LENTE ESFÉRICA DIVERGENTE

Q. 25 – NO CASO DE LENTES ESFÉRICAS CONVERGENTES, A IMAGEM SEMPRE ESTARÁ ENTRE O FOCO IMAGEM E A LENTE, SEMPRE SERÁ VIRDUAL, DIREITA E MENOR (PARA OBJETOS REAIS)

Como exercício, encontre a imagem de um objeto localizado diante de uma lente divergente em diversas posições e tente se convencer de que em todos os casos a imagem será sempre do mesmo tipo (virtual,

LENTES ESFÉRICAS – PRIMEIRO ANO – 24/05/2024

REFERENCIAL DE GAUSS

Q. 26 – REFERENCIAL DE GAUSS PARA UMA LENTE CONVERGENTE

Q. 27 – REFERENCIAL DE GAUSS PARA UMA LENTE DIVERGENTE

- p: abscissa do objeto
- p': abscissa da imagem
- y = o: ordenada do objeto
- y' = i: ordenada da imagem
- f. abscissa do foco
- 2f: abscissa do anti-principal
- p > 0: Objeto Real
- p' > 0: Imagem Real
- p < 0: Objeto Virtual
- p' < 0: Imagem Virtual

PROFESSOR DANILO

- ta, já
- Se *i* e o tiverem o mesmo sinal, então a imagem é direita, já se tiverem sinais opostos ela é invertida. Segue então que:
 - o $i \cdot o > 0$: Imagem Direita
 - o $i \cdot o < 0$: Imagem Invertida
- Com relação ao tipo de lente:
 - o f > 0: Lente Convergente
 - o f < 0: Lente Divergente

EQUAÇÃO DE GAUSS

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'}$$

Uma diferença: dioptrias...

\cap	28	

EQUAÇÃO DO AUMENTO LINEAR TRANSVERSAL

$$A = \frac{i}{o} = \frac{-p'}{p} = \frac{f}{f - p}$$

FORMULÁRIO

Q. 29 – FORMULÁRIO	QUE VOCÊ DEVE SE	I FMBRAR
Q. 20 I OI WOLF WILL	QUE VOUE DE VE UE	