Lexical Analysis and Lexical Analyzer Generators

Chapter 3

The Reason Why Lexical Analysis is a Separate Phase

- Simplifies the design of the compiler
 - LL(1) or LR(1) parsing with 1 token lookahead would not be possible (multiple characters/tokens to match)
- Provides efficient implementation
 - Systematic techniques to implement lexical analyzers by hand or automatically from specifications
 - Stream buffering methods to scan input
- Improves portability
 - Non-standard symbols and alternate character encodings can be normalized (e.g. trigraphs)

Interaction of the Lexical Analyzer with the Parser

Attributes of Tokens

Tokens, Patterns, and Lexemes

- A token is a classification of lexical units
 - For example: id and num
- Lexemes are the specific character strings that make up a token
 - For example: **abc** and **123**
- *Patterns* are rules describing the set of lexemes belonging to a token
 - For example: "letter followed by letters and digits" and "non-empty sequence of digits"

Specification of Patterns for Tokens: *Definitions*

- An alphabet Σ is a finite set of symbols (characters)
- A *string s* is a finite sequence of symbols from Σ
 - |s| denotes the length of string s ϵ denotes the empty string, thus $\epsilon = 0$
- A *language* is a specific set of strings over some fixed alphabet Σ

Specification of Patterns for Tokens: *String Operations*

- The *concatenation* of two strings *x* and *y* is denoted by *xy*
- The *exponentation* of a string s is defined by

$$s^0 = \varepsilon$$

 $s^i = s^{i-1}s$ for $i > 0$

note that $s\varepsilon = \varepsilon s = s$

Specification of Patterns for Tokens: *Language Operations*

- Union $L \cup M = \{ s \mid s \in L \text{ or } s \in M \}$
- Concatenation $LM = \{xy \mid x \in L \text{ and } y \in M\}$
- Exponentiation $L^0 = \{ \epsilon \}; L^i = L^{i-1}L$
- Kleene closure $L^* = \bigcup_{i=0,....\infty} L^i$
- Positive closure $L^{+} = \bigcup_{i=1,\dots,\infty} L^{i}$

Specification of Patterns for Tokens: *Regular Expressions*

- Basis symbols:
 - ε is a regular expression denoting language $\{\varepsilon\}$
 - $-a \in \Sigma$ is a regular expression denoting $\{a\}$
- If r and s are regular expressions denoting languages L(r) and M(s) respectively, then
 - $-r \mid s$ is a regular expression denoting $L(r) \cup M(s)$
 - rs is a regular expression denoting L(r)M(s)
 - r^* is a regular expression denoting $L(r)^*$
 - (r) is a regular expression denoting L(r)
- A language defined by a regular expression is called a regular set

Specification of Patterns for Tokens: Regular Definitions

Regular definitions introduce a naming convention:

$$d_1
ightharpoonup r_1$$
 $d_2
ightharpoonup r_2$
...
 $d_n
ightharpoonup r_n$
where each r_i is a regular expression over

where each r_i is a regular expression over $\Sigma \cup \{d_1, d_2, ..., d_{i-1}\}$

• Any d_j in r_i can be textually substituted in r_i to obtain an equivalent set of definitions

Specification of Patterns for Tokens: Regular Definitions

• Example:

letter
$$\rightarrow$$
 A | B | ... | Z | a | b | ... | z | digit \rightarrow 0 | 1 | ... | 9 | id \rightarrow letter (letter | digit)*

• Regular definitions are not recursive:

Specification of Patterns for Tokens: *Notational Shorthand*

• The following shorthands are often used:

$$r^+ = rr^*$$
 $r? = r8$
 $[\mathbf{a} - \mathbf{z}] = \mathbf{a} | \mathbf{b} | \mathbf{c} | \dots | \mathbf{z}$

• Examples:

```
\begin{aligned} & \text{digit} \rightarrow [\text{0-9}] \\ & \text{num} \rightarrow \text{digit+} \text{ (. digit+)? ( E (+ | \text{-})? digit+ )?} \end{aligned}
```

Regular Definitions and Grammars

```
Grammar
stmt \rightarrow if \ expr \ then \ stmt
          if expr then stmt else stmt
expr \rightarrow term \ \mathbf{relop} \ term
                                               Regular definitions
term \rightarrow id
                                               	ext{if} 
ightarrow 	ext{if}
                                          then \rightarrow then
                                           else \rightarrow else
                                        \mathbf{relop} \rightarrow < \mid <= \mid <> \mid >\mid = \mid =
                                              id \rightarrow letter (letter | digit)^*
                                         num \rightarrow digit<sup>+</sup> (. digit<sup>+</sup>)? ( E (+ | -)? digit<sup>+</sup> )?
```

Coding Regular Definitions in Transition Diagrams

Coding Regular Definitions in Transition Diagrams: Code

```
token nexttoken()
{ <u>while</u> (1) {
   switch (state) {
   case 0: c = nextchar();
                                                            Decides the
       if (c==blank || c==tab || c==newline) {
         state = 0;
                                                          next start state
         lexeme beginning++;
                                                              to check
       else if (c==`<') state = 1;
       else if (c=='=') state = 5;
       else if (c=='>') state = 6;
       else state = fail();
                                                   int fail()
       break;
                                                    { forward = token beginning;
     case 1:
                                                     swith (start) {
                                                     case 0: start = 9; break;
     case 9: c = nextchar();
                                                     case 9: start = 12; break;
       if (isletter(c)) state = 10;
                                                     case 12: start = 20; break;
       else state = fail();
                                                      case 20: start = 25; break;
       break;
                                                     case 25: recover(); break;
     case 10: c = nextchar();
                                                     default: /* error */
       if (isletter(c)) state = 10;
       else if (isdigit(c)) state = 10;
                                                     return start;
       else state = 11;
       break;
```

The Lex and Flex Scanner Generators

- Lex and its newer cousin flex are scanner generators
- Systematically translate regular definitions into C source code for efficient scanning
- Generated code is easy to integrate in C applications

Creating a Lexical Analyzer with Lex and Flex

Lex Specification

```
• A lex specification consists of three parts:
      regular definitions, C declarations in % {
      응응
      translation rules
      응응
      user-defined auxiliary procedures
• The translation rules are of the form:
             \{ action_1 \}
      p_1
         \{ action_2 \}
```

 p_2

 $p_n \quad \{ action_n \}$

Regular Expressions in Lex

```
match the character x
X
         match the character.
"string" match contents of string of characters
         match any character except newline
         match beginning of a line
         match the end of a line
[xyz] match one character x, y, or z (use \ to escape -)
[^xyz] match any character except x, y, and z
        match one of a to z
         closure (match zero or more occurrences)
r*
         positive closure (match one or more occurrences)
r+
        optional (match zero or one occurrence)
r?
        match r_1 then r_2 (concatenation)
r_1r_2
r_1 \mid r_2 match r_1 or r_2 (union)
(r) grouping
r_1 \backslash r_2
      match r_1 when followed by r_2
         match the regular expression defined by d
{d}
```

```
Contains
                                                          the matching
                응 {
Translation
                #include <stdio.h>
                                                             lexeme
                용}
   rules
                [0-9]+
                         { printf("%s\n", yytext); }
                . | \n
                                                            Invokes
                응응
                                                           the lexical
               main()
                { yylex(); <-
                                                            analyzer
```

```
lex spec.l
gcc lex.yy.c -ll
./a.out < spec.l</pre>
```

```
응 {
                                                        Regular
               #include <stdio.h>
               int ch = 0, wd = 0, nl = 0;
                                                       definition
Translation
               용 }
               delim
                          [\t]+
  rules
               응응
               \n
                          { ch++; wd++; nl++; }
               ^{delim} { ch+=yyleng; }
                          { ch+=yyleng; wd++; }
               {delim}
                          { ch++; }
               응응
               main()
               { yylex();
                 printf("%8d%8d%8d\n", n1, wd, ch);
```

```
용 {
                                                         Regular
                #include <stdio.h>
                용 }
                                                        definitions
Translation
               digit
                           [0-9]
                letter
                           [A-Za-z]
   rules
                          {letter}({letter}|{digit})*
                id
                응응
                {digit}+
                          { printf("number: %s\n", yytext); }
                           { printf("ident: %s\n", yytext); }
                {id}
                           { printf("other: %s\n", yytext); }
                응응
               main()
                { yylex();
```

```
%{ /* definitions of manifest constants */
#define LT (256)
용 }
delim
          [ \t\n]
          {delim}+
ws
                                                             Return
letter
          [A-Za-z]
digit
          [0-9]
                                                             token to
id
          {letter}({letter}|{digit})*
number
          \{digit\}+(\.\{digit\}+)?(E[+\-]?\{digit\}+)?
                                                              parser
응응
{ws}
          { }
                                                   Token
          {return IF;}
if
          {return THEN;}
                                                  attribute
then
else
          {return ELSE:
{id}
          {yylval = install id(); return ID;}
          {yylval = install num()\( \) return NUMBER;}
{number}
"\>"
          {yylval = LT; return RELOR;}
"<="
          {yylval = LE; return RELOP;}
"="
          {yylval = EQ; return RELOP;}
"<>"
          {yylval = NE; return RELOP;}
">"
          {yylval = GT; return RELOP;}
">="
          {yylval = GE; return RELOP;}
                                               Install yytext as
응응
                                           identifier in symbol table
int install id()
```

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

Nondeterministic Finite Automata

• An NFA is a 5-tuple $(S, \Sigma, \delta, s_0, F)$ where

S is a finite set of *states* Σ is a finite set of symbols, the *alphabet* δ is a *mapping* from $S \times \Sigma$ to a set of states $s_0 \in S$ is the *start state* $F \subseteq S$ is the set of *accepting* (or *final*) *states*

Transition Graph

• An NFA can be diagrammatically represented by a labeled directed graph called a *transition graph*

Transition Table

• The mapping δ of an NFA can be represented in a *transition table*

$\delta(0,\mathbf{a}) = \{0,1\}$	
$\delta(0,\mathbf{b}) = \{0\}$	 >
$\delta(1,\mathbf{b}) = \{2\}$	
$\delta(2, \mathbf{b}) = \{3\}$	

State	Input a	Input b
0	{0, 1}	{0}
1		{2}
2		{3}

The Language Defined by an NFA

- An NFA *accepts* an input string *x* if and only if there is some path with edges labeled with symbols from *x* in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a *move*
- The *language defined by* an NFA is the set of input strings it accepts, such as (**a** | **b**)***abb** for the example NFA

Design of a Lexical Analyzer Generator: RE to NFA to DFA

Lex specification with regular expressions

NFA

DFA

From Regular Expression to NFA (Thompson's Construction)

3 a $r_1 \mid r_2$ r_1r_2 3

Combining the NFAs of a Set of Regular Expressions

Simulating the Combined NFA Example 1

When last state is accepting: execute action

Simulating the Combined NFA Example 2

When two or more accepting states are reached, the first action given in the Lex specification is executed

Deterministic Finite Automata

- A deterministic finite automaton is a special case of an NFA
 - No state has an ε-transition
 - For each state s and input symbol a there is at most one edge labeled a leaving s
- Each entry in the transition table is a single state
 - At most one path exists to accept a string
 - Simulation algorithm is simple

Example DFA

A DFA that accepts (a | b)*abb

Conversion of an NFA into a DFA

• The *subset construction algorithm* converts an NFA into a DFA using:

$$\varepsilon\text{-}closure(s) = \{s\} \cup \{t \mid s \to_{\varepsilon} \dots \to_{\varepsilon} t\}$$

$$\varepsilon\text{-}closure(T) = \bigcup_{s \in T} \varepsilon\text{-}closure(s)$$

$$move(T,a) = \{t \mid s \to_{a} t \text{ and } s \in T\}$$

• The algorithm produces:

Dstates is the set of states of the new DFA consisting of sets of states of the NFA *Dtran* is the transition table of the new DFA *Dtran*.

ε-closure and move Examples

 ϵ -closure($\{0\}$) = $\{0,1,3,7\}$ $move(\{0,1,3,7\},\mathbf{a}) = \{2,4,7\}$ ϵ -closure($\{2,4,7\}$) = $\{2,4,7\}$ $move(\{2,4,7\},\mathbf{a}) = \{7\}$ ϵ -closure($\{7\}$) = $\{7\}$ $move(\{7\},\mathbf{b}) = \{8\}$ ϵ -closure($\{8\}$) = $\{8\}$ $move(\{8\},\mathbf{a}) = \emptyset$

Simulating an NFA using ε-closure and move

```
S := \varepsilon - closure(\{s_0\})
S_{prev} := \emptyset
a := nextchar()
while S \neq \emptyset do
          S_{prev} := S
          S := \varepsilon-closure(move(S,a))
          a := nextchar()
end do
if S_{prev} \cap F \neq \emptyset then
          execute action in S_{prev}
          return "yes"
         return "no"
else
```

The Subset Construction Algorithm

```
Initially, \varepsilon-closure(s_0) is the only state in Dstates and it is unmarked
while there is an unmarked state T in Dstates do
        mark T
        for each input symbol a \in \Sigma do
                U := \varepsilon-closure(move(T,a))
                if U is not in Dstates then
                        add U as an unmarked state to Dstates
                end if
                Dtran[T,a] := U
        end do
end do
```

Subset Construction Example 1

Dstates

$$A = \{0,1,2,4,7\}$$

$$B = \{1,2,3,4,6,7,8\}$$

$$C = \{1,2,4,5,6,7\}$$

$$D = \{1,2,4,5,6,7,9\}$$

$$E = \{1,2,4,5,6,7,10\}$$

Subset Construction Example 2

 $a_2 a_3$

Minimizing the Number of States of a DFA

From Regular Expression to DFA Directly

- The "important states" of an NFA are those without an ε -transition, that is if $move(\{s\},a) \neq \emptyset$ for some a then s is an important state
- The subset construction algorithm uses only the important states when it determines ε -closure(move(T,a))

From Regular Expression to DFA Directly (Algorithm)

- Augment the regular expression r with a special end symbol # to make accepting states important: the new expression is r#
- Construct a syntax tree for *r*#
- Traverse the tree to construct functions *nullable*, *firstpos*, *lastpos*, and *followpos*

From Regular Expression to DFA Directly: Syntax Tree of (alb)*abb#

From Regular Expression to DFA Directly: Annotating the Tree

- *nullable*(*n*): the subtree at node *n* generates languages including the empty string
- *firstpos*(*n*): set of positions that can match the first symbol of a string generated by the subtree at node *n*
- *lastpos*(*n*): the set of positions that can match the last symbol of a string generated be the subtree at node *n*
- *followpos(i)*: the set of positions that can follow position *i* in the tree

From Regular Expression to DFA Directly: Annotating the Tree

Node n	nullable(n)	firstpos(n)	lastpos(n)
Leaf ε	true	Ø	Ø
Leaf i	false	{ <i>i</i> }	{ <i>i</i> }
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$nullable(c_1)$ or $nullable(c_2)$	$\begin{array}{c} \mathit{firstpos}(c_1) \\ \cup \\ \mathit{firstpos}(c_2) \end{array}$	$lastpos(c_1)\\ \cup\\ lastpos(c_2)$
c_1 c_2	$nullable(c_1)$ and $nullable(c_2)$	if $nullable(c_1)$ then $firstpos(c_1) \cup firstpos(c_2)$ else $firstpos(c_1)$	$\begin{array}{c} \textbf{if } nullable(c_2) \textbf{ then} \\ lastpos(c_1) \cup \\ lastpos(c_2) \\ \textbf{else } lastpos(c_2) \end{array}$
* c ₁	true	$firstpos(c_1)$	$lastpos(c_1)$

From Regular Expression to DFA Directly: Syntax Tree of (alb)*abb#

From Regular Expression to DFA Directly: *followpos*

```
for each node n in the tree do
        if n is a cat-node with left child c_1 and right child c_2 then
                for each i in lastpos(c_1) do
                        followpos(i) := followpos(i) \cup firstpos(c_2)
                end do
        else if n is a star-node
                for each i in lastpos(n) do
                        followpos(i) := followpos(i) \cup firstpos(n)
                end do
        end if
end do
```

```
s_0 := firstpos(root) where root is the root of the syntax tree
Dstates := \{s_0\} and is unmarked
while there is an unmarked state T in Dstates do
       mark T
       for each input symbol a \in \Sigma do
               let U be the set of positions that are in followpos(p)
                       for some position p in T,
                       such that the symbol at position p is a
               if U is not empty and not in Dstates then
                       add U as an unmarked state to Dstates
               end if
               Dtran[T,a] := U
       end do
```

end do

From Regular Expression to DFA Directly: Example

Node	followpos				
1	{1, 2, 3}				
2	{1, 2, 3}				
3	{4}				
4	{5}	7			
5	{6}				
6	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Time-Space Tradeoffs

Automaton	Space (worst case)	Time (worst case)
NFA	O(r)	$O(r \nmid x)$
DFA	$O(2^{ r })$	O(x)