Semester 2, 2013 MAST20009 Vector Calculus Exam Answers

- 1. (a) Approach the origin along paths of the form y = kx to show the limit does not exist.
 - (b) Use the Sandwich theorem to prove that the limit is 0. Then, H is continuous at (0,0).
- 2. Find minimum of $f(x,y) = \sqrt{x^2 + y^2}$ subject to constraint $g(x,y) = x^2y 16 = 0$. There is a minimum distance of $\sqrt{12}$ at the points $(\pm 2\sqrt{2}, 2)$.
- 3. (a) Sketch required.
 - (b) $\mathbf{c}(t)$ is not a flowline of \mathbf{G} .
 - (c) Differentiate $\mathbf{N} = \mathbf{B} \times \mathbf{T}$ with respect to arclength s. Use $\frac{d\mathbf{B}}{ds} = -\tau \mathbf{N}$ and $\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$ to simplify expression.
- 4. (a) Calculate directly using definitions of divergence and curl.
 - (b) (i) Show $\nabla \cdot \mathbf{G} = 0$.
 - (ii) If **G** is the velocity field of a fluid, then the rate at which fluid flows into a point is the same as the rate at which fluid flows out of the point.
 - (iii) Solve coupled pdes $\frac{\partial F_2}{\partial z} = -3yz^2$, $\frac{\partial F_1}{\partial z} = -2xz$, $\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y} = 4xy^3$. One vector field is $\mathbf{F}(x, y, z) = (-xz^2, 2x^2y^3 yz^3, 0)$.
- 5. (a) Sketch required.
 - (b) Change the order of integration to get $\int_0^9 \int_0^{\sqrt{x}} y \cos(x^2) dy dx = \frac{1}{4} \sin(81)$.
- 6. (a) Sketch required.
 - (b) Use cylindrical coordinates. Volume is $\int_0^2 \int_0^{2\pi} \int_{2\rho^2-2}^{10-\rho^2} \rho \, dz \, d\phi \, d\rho = 24\pi \text{ units}^3$
- 7. (a) Let $x = 5\sin\theta\cos\phi$, $y = 5\sin\theta\sin\phi$, $z = 5\cos\theta$, $0 \le \theta \le \pi$, $0 \le \phi \le \pi$.
 - (b) Outward normal is $(25\sin^2\theta\cos\phi, 25\sin^2\theta\sin\phi, 25\sin\theta\cos\theta)$.
 - (c) Tangent plane at $(\theta, \phi) = (\frac{\pi}{4}, 0)$ is $x + z = \frac{10}{\sqrt{2}}$.
- 8. Using vertical strips, mass of plate is $\iint_P x \, dS = \int_0^2 \int_0^{3-\frac{3x}{2}} \sqrt{14} x \, dy \, dx = 2\sqrt{14}$ grams.
- 9. (a) Sketch required.
 - (b) Use divergence theorem in the plane and polar coordinates to get

$$\int_{\partial D} \mathbf{F} \cdot \hat{\mathbf{n}} \ ds = \int_0^1 \int_{\frac{\pi}{2}}^{\pi} 3r^3 \ d\theta \ dr = \frac{3\pi}{8}.$$

- 10. (a) State Stokes' theorem and all conditions.
 - (b) (i) Boundary curve is $x^2 + y^2 = 16$, z = 5, oriented clockwise.

$$\int_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \int_0^{2\pi} 24 - 24\cos 2t - 20\sin t + 8\sin 2t \ dt = 48\pi.$$

(ii) Simplest surface is $D: x^2 + y^2 \le 16$, z = 5 with $\hat{\mathbf{n}} = -\mathbf{k}$.

$$\iint_{S} \mathbf{\nabla} \times \mathbf{F} \cdot d\mathbf{S} = 3 \times \text{area } D = 48\pi.$$

11. (a) Use Gauss' theorem with $\mathbf{F} = f \nabla g$ and vector identity 7.

(b) Let
$$f(r) = r$$
 and $g(r) = r^2$ in part (a). Then $\nabla f = \frac{\mathbf{r}}{r}$, $\nabla g = 2\mathbf{r}$, $\nabla f \cdot \nabla g = 2r$, $\nabla^2 g = 6$.

- 12. (a) $h_u = h_v = \sqrt{a^2 \sinh^2 u \cos^2 v + a^2 \cosh^2 u \sin^2 v}, h_z = 1.$
 - (b) $|\text{Jacobian}| = h_u h_v h_z$.
 - (c) Use the formulae sheet for curvilinear coordinates.

$$\frac{2u\hat{\mathbf{u}}}{\sqrt{a^2\sinh^2 u\cos^2 v + a^2\cosh^2 u\sin^2 v}} + \frac{3v^2z\hat{\mathbf{v}}}{\sqrt{a^2\sinh^2 u\cos^2 v + a^2\cosh^2 u\sin^2 v}} + v^3\hat{\mathbf{z}}.$$