Jonas Kunze

Universität Mainz Prof. Dr. H. J. Elmers

28. Juni 2010

Spintronik

Die Spintronik nutzt zur Informationsspeicherung und -übertragung neben der Ladung auch das magnetische Moment eines Elektrons

Röntgenabsorptionsspektroskopie

- Motivation
 - Geschichte der nichtflüchtigen Datenspeicher
- 2 Ferromagnetismus
- 3 Röntgenabsorptionsspektroskopie
 - XAS
 - XMCD
 - Röntgenoptik
 - MTXM
 - STXM
- Fazit

- Motivation
 - Geschichte der nichtflüchtigen Datenspeicher

Röntgenabsorptionsspektroskopie

- Perromagnetismus
- - XAS
 - XMCD
 - Röntgenoptik
 - MTXM
 - STXM

Magnetbänder 1930 bis heute

Festplatten 1956 bis heute

Abb.: Erste Festplatte: IBM 350 [http://ed-thelen.org/RAMAC/]

Abb.: Moderne 750GB Platte [http://de.wikipedia.org/wiki/Festplattenlaufwerk]

Festplatten 1956 bis heute

 Erste Platte ca. 5MB groß, 500kg schwer, 24" Durchmesser, 10kW Leistung, 8,8kB/s, 600ms Zugriffszeit

Röntgenabsorptionsspektroskopie

Heute 2TB, 3.5" Durchmesser, unter 6ms Zugriffszeit

- Schnelle Zugriffszeiten erfordern hohe Drehzahlen
- Hohe Kapazitäten erfordern kleine Speicherbezirke (Induktion)

Festplatten 1956 bis heute

 Erste Platte ca. 5MB groß, 500kg schwer, 24" Durchmesser, 10kW Leistung, 8,8kB/s, 600ms Zugriffszeit

Röntgenabsorptionsspektroskopie

Heute 2TB, 3,5" Durchmesser, unter 6ms Zugriffszeit

Flaschenhals heutiger Computer

- Schnelle Zugriffszeiten erfordern hohe Drehzahlen
- Hohe Kapazitäten erfordern kleine Speicherbezirke (Induktion) nur bis 1994)

Geschichte der nichtflüchtigen Datenspeicher

Röntgenabsorptionsspektroskopie

- 2 Ferromagnetismus
- - XAS
 - XMCD
 - Röntgenoptik
 - MTXM
 - STXM

Ferromagnetismus Kollektives Phänomen

Mehrheitlich parallele Ausrichtung der Elektronenspins

Parallelstellung zunächst ungünstig, da nach Pauli höhere Energieniveaus besetzt werden müssen

Austauschwechselwirkung verringert potentielle Energie Bei wenigen Festkörpern ist parallele Ausrichtung energetisch günstiger

Ferromagnetismus Kollektives Phänomen

Collectives I Hallottlei

Mehrheitlich parallele Ausrichtung der Elektronenspins

Parallelstellung zunächst ungünstig, da nach Pauli höhere Energieniveaus besetzt werden müssen

Austauschwechselwirkung verringert potentielle Energie

Bei wenigen Festkörpern ist parallele Ausrichtung energetisch günstiger

Zustandsdichte von Ferromagneten

Röntgenabsorptionsspektroskopie

- Geschichte der nichtflüchtigen Datenspeicher
- 2 Ferromagnetismus
- 3 Röntgenabsorptionsspektroskopie
 - XAS
 - XMCD
 - Röntgenoptik
 - MTXM
 - STXM
- 4 Fazi

Röntgenabsorptionsspektroskopie XAS

Weiche Röntgenstrahlung zwischen 50eV and 2000eV

Abb.: Absorptionsspektrum einer Cu-Fe-Ni Probe [Stan]

Röntgenabsorptionsspektroskopie

Abb.: Termschema und Absorptionsspektrum von Eisen

Röntgenabsorptionsspektroskopie

X-ray Magnetic Circular Dichroism

Dichroismus

Abhängigkeit der Lichtabsorption von der Polarisation der einstrahlenden elmag. Welle (hier links- oder rechtszirkular)

Zirkular polarisiertes Licht hat einen Bahndrehimpuls! Bahndrehimpuls wird an Elektron übertragen (Dipolübergang):

$$\Delta l = \pm 1$$
 $\Delta j = 0, \pm 1$ $\Delta m_l = m_{\gamma}$ $\Delta m_s = 0$

Dichroismus

Abhängigkeit der Lichtabsorption von der Polarisation der einstrahlenden elmag. Welle (hier links- oder rechtszirkular)

Zirkular polarisiertes Licht hat einen Bahndrehimpuls!

Bahndrehimpuls wird an Elektron übertragen (Dipolübergang):

$$\Delta I = \pm 1$$
 $\Delta j = 0, \pm 1$ $\Delta m_I = m_{\gamma}$ $\Delta m_s = 0$

$$3d_{_{3/2}} \qquad \qquad 3d_{_{5/2}} \\ 3d \ Band \ ^m_{_j} \ ^{-3/2} \ ^{-1/2} \ ^{1/2} \ ^{1/2} \ ^{3/2} \qquad ^{-5/2} \ ^{-3/2} \ ^{-1/2} \ ^{1/2} \ ^{1/2} \ ^{3/2} \ ^{5/2} \ ^{m_{_j}}$$

$$3d_{_{3/2}} \qquad \qquad 3d_{_{5/2}} \\ 3d \ Band \ ^m_{_j} \ ^{-3/2} \ ^{-1/2} \ ^{1/2} \ ^{1/2} \ ^{3/2} \qquad ^{-5/2} \ ^{-3/2} \ ^{-1/2} \ ^{1/2} \ ^{1/2} \ ^{3/2} \ ^{5/2} \ ^{m_{_j}}$$

Röntgenabsorptionsspektroskopie

Motivation

Röntgenabsorptionsspektroskopie

Elementselektive Mikroskopie

- Durchstimmbare Photonenenergie (Bereich ca. 50eV bis 2000eV)
- Extrem hohe Intensität nötig

Hoher Anspruch an die Röntgenstrahlung

Elementselektive Mikroskopie

- Durchstimmbare Photonenenergie (Bereich ca. 50eV bis 2000eV)
- Extrem hohe Intensität nötig

Synchrotronstrahlung!

Es gibt z.Zt. 44 Synchrotronlaboratorien Weltweit, 5 in Deutschland

Abb.: Globale Synchrotrondichte [Schu]

Motivation

Zirkular Polarisierte Röntgenstrahlung

Helikale Undulatoren im Synchrotron

Erreichte Intensität ca. 10⁸ mal größer als Röntgenröhren

Röntgen-Linsen

Fresnel-Zonenplättchen

Konzentrische, nach außen bis auf 20 nm dünner werdende Zylinder

Abb.: Querschnitt eines Zonenplättchens Foto: [Eim]

$$\Delta_1 = \sqrt{g^2 + r_n^2} - g$$

$$\Delta_2 = \sqrt{b^2 + r_n^2} - b$$

Konstruktive Interferenz

$$\Delta_{total} = \Delta_1 + \Delta_2 = \frac{n\lambda}{2}$$

$$\Delta_1 = \sqrt{g^2 + r_n^2} - g$$

$$\Delta_2 = \sqrt{b^2 + r_n^2} - b$$

$$\Delta_{total} = \Delta_1 + \Delta_2 = \frac{n^2}{2}$$

$$\Delta_1 = \sqrt{g^2 + r_n^2} - g$$

$$\Delta_2 = \sqrt{b^2 + r_n^2} - b$$

Konstruktive Interferenz

$$\Delta_{total} = \Delta_1 + \Delta_2 = \frac{n\lambda}{2}$$

$$\begin{split} & \Delta_{total} = \Delta_1 + \Delta_2 = \frac{n\lambda}{2} \\ & \Rightarrow \sqrt{g^2 + r_n^2} - g + \sqrt{b^2 + r_n^2} - b = \frac{n\lambda}{2} \\ & \Rightarrow r_n^2 = \frac{\frac{n^4\lambda^4}{16} + \frac{n^3\lambda^3(g+b)}{2} + n^2\lambda^2(gb + (g+b)^2) + 4n\lambda gb(g+b)}{4(g+b)(n\lambda + (g+b)) + n^2\lambda^2} \end{split}$$

$$r_n^2 \approx n\lambda \frac{gb}{g+b} = n\lambda f$$
 mit $\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$

Röntgenabsorptionsspektroskopie

$$dr_n = \frac{\partial r_n}{\partial n} = \frac{r_n}{n}$$

$$\begin{split} & \Delta_{total} = \Delta_1 + \Delta_2 = \frac{n\lambda}{2} \\ & \Rightarrow \sqrt{g^2 + r_n^2} - g + \sqrt{b^2 + r_n^2} - b = \frac{n\lambda}{2} \\ & \Rightarrow r_n^2 = \frac{\frac{n^4\lambda^4}{16} + \frac{n^3\lambda^3(g+b)}{2} + n^2\lambda^2(gb + (g+b)^2) + 4n\lambda gb(g+b)}{4(g+b)(n\lambda + (g+b)) + n^2\lambda^2} \end{split}$$

$\lambda \ll g, b$

$$r_n^2pprox n\lambdarac{gb}{g+b}=n\lambda f$$
 mit $rac{1}{f}=rac{1}{g}+rac{1}{b}$

Röntgenabsorptionsspektroskopie

$$dr_n = \frac{\partial r_n}{\partial n} = \frac{r_n}{n}$$

$$\begin{split} & \Delta_{total} = \Delta_1 + \Delta_2 = \frac{n\lambda}{2} \\ & \Rightarrow \sqrt{g^2 + r_n^2} - g + \sqrt{b^2 + r_n^2} - b = \frac{n\lambda}{2} \\ & \Rightarrow r_n^2 = \frac{\frac{n^4\lambda^4}{16} + \frac{n^3\lambda^3(g+b)}{2} + n^2\lambda^2(gb + (g+b)^2) + 4n\lambda gb(g+b)}{4(g+b)(n\lambda + (g+b)) + n^2\lambda^2} \end{split}$$

$\lambda \ll g, b$

$$r_n^2pprox n\lambdarac{gb}{g+b}=n\lambda f$$
 mit $rac{1}{f}=rac{1}{g}+rac{1}{b}$

Ringbreite

Röntgenabsorptionsspektroskopie

$$dr_n = \frac{\partial r_n}{\partial r_n} = \frac{r_n}{r_n}$$

Röntgenabsorptionsspektroskopie

Fresnel-Zonenplättchen Ortsauflösung

Fresnel-Zonenplättchen Ortsauflösung

Abb.: Ni Zonenplättchen Uni Göttingen 2000 ($dr_N = 22nm$) [Eim]

Magnetische Röntgentransmissionsmikroskopie MTXM

Erste Bilder am Bessy I 1996:

Abb.: Erste MTXM Aufnahmen von Fe₇₂ Gd₂₈ (links und rechts-polarisierte Einstrahlung) [Fis]

Ferromagnetismus

Abb.: Magnetic Amplifying Magneto-Optical System [Schu]

Rasterndes Verfahren

Röntgenabsorptionsspektroskopie

Abb.: Mikrospule um eine $16\mu m^2$ ferromagn. Schicht auf 100nm Si₃N₄ Membran [Stoll]

Advanced Light Source in Berkeley

2 Elektronen-bunches: 70ps breit, 328ns Abstand

Röntgenabsorptionsspektroskopie

Abb.: Mikrospule um eine $16\mu m^2$ ferromagn. Schicht auf 100nm Si₃N₄ Membran [Stoll]

Advanced Light Source in Berkeley

2 Elektronen-bunches: 70ps breit, 328ns Abstand

MPI Stuttgart 2004

400ps Strompuls in 20ps-Schritten vor Röntgenpuls

Röntgenabsorptionsspektroskopie

Abb.: Mikrospule um eine $16\mu m^2$ ferromagn. Schicht auf 100nm Si₃N₄ Membran [Stoll]

Röntgenabsorptionsspektroskopie

0000000000000000000000

STXM Vortice

Abb.: Simulierte (erste Reihe) und gemessene Magnetisierung [Stoll]

Vidoes (H. Stoll): http://www.nature.com/nature/journal/v444/n7118/suppinfo/nature05240.htm

Abb.: Simulierte (erste Reihe) und gemessene Magnetisierung [Stoll]

Röntgenabsorptionsspektroskopie

0000000000000000000000

Abb.: Vortice als neues Speichermedium?

Vidoes (H. Stoll): http://www.nature.com/nature/journal/v444/n7118/suppinfo/nature05240.html

Abb.: Simulierte (erste Reihe) und gemessene Magnetisierung [Stoll]

Abb.: Vortice als neues Speichermedium?

Vidoes (H. Stoll): http://www.nature.com/nature/journal/v444/n7118/suppinfo/nature05240.html

Magnetische Transmissionsröntgenmikroskopie

- + Hohe laterale Auflösung: 20nm bereits erreicht
- + Elementselektivität
- + Hohe zeitliche Auflösung (reversible Prozesse)
- Hoher Anspruch an die Probe
- Synchrotronstrahlung benötigt
- Nicht für senkrecht zum Strahl magnetisierte Proben geeignet

- Motivation
 - Geschichte der nichtflüchtigen Datenspeicher
- 2 Ferromagnetismus
- 3 Röntgenabsorptionsspektroskopie
 - XAS
 - XMCD
 - Röntgenoptik
 - MTXM
 - STXM
- Fazit

Ferromagnetismus

Nach 3000 Jahren noch immer ein spannendes Thema

Steigender Speicherbedarf motiviert Forschung

Nachfolger der Festplatte noch immer unklar

- Hohe Intensitäten mit Synchrotronstrahlung erreichbar

- Erfolgreiche Experimente relativieren den Aufwand

Ferromagnetismus

Nach 3000 Jahren noch immer ein spannendes Thema

Steigender Speicherbedarf motiviert Forschung

Nachfolger der Festplatte noch immer unklar

Optik mit (polarisierten) Röntgenstrahlen

- Hohe Intensitäten mit Synchrotronstrahlung erreichbar
- Hohe optische Auflösung (20nm) mit Fresnel-Zonenplättchen

Messungen des Zirkulardichroismus

- Magnetische Bezirke mit 20nm Auflösung messbar
- Erfolgreiche Experimente relativieren den Aufwand

Nach 3000 Jahren noch immer ein spannendes Thema

Steigender Speicherbedarf motiviert Forschung

• Nachfolger der Festplatte noch immer unklar

Optik mit (polarisierten) Röntgenstrahlen

- Hohe Intensitäten mit Synchrotronstrahlung erreichbar
- Hohe optische Auflösung (20nm) mit Fresnel-Zonenplättchen

Messungen des Zirkulardichroismus

- Magnetische Bezirke mit 20nm Auflösung messbar
- Erfolgreiche Experimente relativieren den Aufwand

Fragen?

Vielen Dank für die Aufmerksamkeit!

[Eim] Thomas Eimüller

Magnetic imaging of nanostructured systems with Transmission X-ray Microscopy (Dissertation)

Röntgenabsorptionsspektroskopie

[Fis] P. Fischer, T. Eimüller, G. Schütz, P. Guttmann, G. Schmahl, K. Pruegl, G. Bayreuther Imaging of magnetic domains by transmission X-ray microscopy 1998

[Kerr] http://www.wmtech.de/html/ausstattung/pdf/KerrMikroskop.PDF

[Mcm] http://unicorn.mcmaster.ca/highlights/capers/capers.html

[Sci] http://www.spmlab.science.ru.nl/eng/uitleg/varianten/mfm/

[Schu] G. Schütz

Magnetische Röntgentransmissionsmikroskopie (Tätigkeitsbericht des MPI-MF)

[Stan] http://ssrl.slac.stanford.edu/stohr/xmcd.htm

[Stoll] H. Stoll, A. Puzic, B. van Waeyenberge, P. Fischer

High-resolution imaging of fast magnetization dynamics in magnetic nanostructures 2004