МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение

Федеральное государственное автономное образовательное учреждение высшего образования

«Южно-Уральский государственный университет (национальный исследовательский университет)»

Высшая школа электроники и компьютерных наук Кафедра системного программирования

ДС	ШУС	ГИТЬ К ЗАЩИТЕ		
Заведующий кафедрой, д.фм.н., профессор				
		Л.Б. Соколинский		
«	>>>	2023 г.		

Разработка веб-приложения для отслеживания курса криптовалют

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА ЮУрГУ – 02.03.02.2023.308-268.ВКР

Научный руководитель,
доцент кафедры СП, к.фм.н.,
доцент
Г.И. Радченко
Автор работы,
студент группы КЭ-401
В.А. Немцев
Ученый секретарь
(нормоконтролер)
И.Д. Володченко
«» 2023 г.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Южно-Уральский государственный университет (национальный исследовательский университет)» Высшая школа электроники и компьютерных наук Кафедра системного программирования

УТВЕРЖДАЮ				
Зав. кафедрой СП				
Л.Б	. Соколинский			
06.02.2023 г.				

ЗАДАНИЕ

на выполнение выпускной квалификационной работы бакалавра

студенту группы КЭ-401 Немцеву Вячеславу Александровичу, обучающемуся по направлению

02.03.02 «Фундаментальная информатика и информационные технологии»

- **1. Тема работы** (утверждена приказом ректора от 25.04.2023 г. № 753-13/12) Разработка веб-приложения для отслеживания курса криптовалют.
- 2. Срок сдачи студентом законченной работы: 05.06.2023 г.
- 3. Исходные данные к работе
- 3.1. Веб-сервис криптовалют, используемый для разработки веб-приложения. [Электронный ресурс] URL:

https://rapidapi.com/Coinranking/api/coinranking1 (дата обращения: $30.01.2023\ \Gamma$.).

- 3.2. Веб-приложение ForkLog. [Электронный ресурс] URL: https://forklog.com/rates(дата обращения: 30.01.2023 г.).
- 3.3. Документация библиотеки состояний Redux. [Электронный ресурс] URL: https://redux-toolkit.js.org/ (дата обращения: 30.01.2023 г.).
- 3.4. Lewis Antony, The Basics of Bitcoins and Blockchains: An Introduction to Cryptocurrencies and the Technology that Powers Them. // Лондон, Издательство Mango Media, 2018.-408 c.
- 3.5. Документация библиотеки языка JavaScript React. [Электронный ресурс] URL: https://reactjs.org/ (дата обращения: 30.01.2023 г.).
- 3.6. Документация библиотеки redux-saga. [Электронный ресурс] URL: redux-saga.js.org/docs/api/ (дата обращения: 30.01.2023 г.).

3.7. Документация CSS-in-JS библиотеки styled-components. [Электронный ресурс] URL: styled-components.com (дата обращения: 30.01.2023 г.).

4. Перечень подлежащих разработке вопросов

- 4.1. Выполнить анализ предметной области.
- 4.2. Спроектировать веб-приложение.
- 4.3. Реализовать веб-приложение.
- 4.4. Произвести тестирование разработанной системы.

5. Дата выдачи задания: 06.02.2023 г.

Научный руководитель,

доцент кафедры СП, к.ф.-м.н., доцент

Г.И. Радченко

Задание принял к исполнению

В.А. Немцев

ГЛОССАРИЙ

- 1. *Майнинг* добыча блоков в сети блокчейн для обеспечения криптовалютных платформ [1].
- 2. *Реактивность* способ автоматически обновлять систему в зависимости от изменения потока данных [2].
- 3. *Рендеринг* процесс получения изображения по модели с помощью компиляции программы [3].
- 4. *DOM-дерево* это интерфейс, обрабатывающий HTML-документ как древовидную структуру в которой каждый узел представляет собой объект, содержащий часть документа [3].
 - 5. Монтирование вставка элементов в DOM-дерево [3].

ОГЛАВЛЕНИЕ

ГЛОССАРИЙ	4
ВВЕДЕНИЕ	6
1. АНАЛИЗ ЛИТЕРАТУРЫ И СМЕЖНЫХ ПРОЕКТОВ	8
1.1. Понятие блокчейн	8
1.2. Понятие криптовалюты и их виды	9
1.3. Биржи криптовалют	10
1.4. Приложения для отслеживания курсов криптовалют	11
1.5. Платформы для разработки веб-приложений	15
2. АНАЛИЗ ТРЕБОВАНИЙ К СИСТЕМЕ	18
2.1. Описание системы «Cryptocurrency»	18
2.2. Требования к системе	18
2.3. Варианты использования системы	19
3. ПРОЕКТИРОВАНИЕ АРХИТЕКТУРЫ СИСТЕМЫ	22
3.1. Диаграмма компонентов веб-приложения Cryptocurrency	·22
3.2. Архитектура веб-приложения	23
3.3. Диаграмма деятельности	25
4. РЕАЛИЗАЦИЯ СИСТЕМЫ	27
4.1. Программные средства	27
4.2. Сборка и конфигурация приложения	28
4.3. Реализация страницы списка криптовалют	31
4.4. Реализация модуля отрисовки графиков	35
4.5. Реализация модуля добавления в избранное	36
4.6. Реализация модуля загрузки графиков	37
5. ТЕСТИРОВАНИЕ	40
ЗАКЛЮЧЕНИЕ	43
ЛИТЕРАТУРА	44
ПРИЛОЖЕНИЕ. Результаты тестирования веб-приложения	
Cryptocurrency	48

ВВЕДЕНИЕ

Актуальность

В современном мире существует множество видов хранения денежных активов – финитные валюты, недвижимость, фондовый рынок, драгоценные металлы и пр. Одним из таких видов хранения является криптовалюта. Это достаточно популярный способ хранения денежных средств в современном мире, все благодаря его надежности. Однако, курсы отдельных криптовалют постоянно меняются, что вводит неопытного пользователя в ступор [1].

Популярность криптовалют как вида хранения денежных активов побудила собой создание множества различных криптовалют. В связи с этим обычному пользователю, недостаточно погруженному в блокчейн технологии, однако желающему прикоснуться к миру блокчейн, становится очень сложно отслеживать котировки криптовалют, разбираться в их видах, а также начать зарабатывать на криптобиржах.

Постановка задачи

Целью выпускной квалификационной работы является разработка веб-приложения для отслеживания курсов криптовалют. Для достижения поставленной цели необходимо решить следующие задачи:

- 1) выполнить анализ предметной области;
- 2) спроектировать веб-приложение;
- 3) реализовать веб-приложение;
- 4) произвести тестирование разработанной системы.

Структура и содержание работы

Работа состоит из глоссария, введения, пяти глав, заключения, списка литературы и приложения. Объем работы составляет 49 страниц, объем списка литературы – 43 источника.

В первой главе производится анализ предметной области, обзор аналогичных проектов и инструментов для реализации программного продукта.

Вторая глава содержит в себе анализ требований к системе и ее описание.

В третьей главе описывается проектирование приложение, а также приводятся диаграммы и их описание.

В четвертой главе описываются средства разработки, вместе с этим описываются детали реализации некоторых компонентов, модулей, а также конфигурации сборки приложения. Дополнительно к описанию приложены рисунки реализованного веб-приложения.

В пятой главе описывается тестирование веб-приложения, а также описание публикации приложения в сети Интернет.

В заключении представлены основные результаты работы, а также описан план дальнейшего развития экосистемы веб-приложения.

В приложении содержится протокол с результатами тестирования из пятой главы.

1. АНАЛИЗ ЛИТЕРАТУРЫ И СМЕЖНЫХ ПРОЕКТОВ

1.1. Понятие блокчейн

Блокчейн — это неизменяемая, децентрализованная база данных, доступ к которой имеют все узлы компьютерной сети [1]. Он хранит в себе данные в цифровом формате, при этом каждый последующий узел в сети имеет хэш предыдущего. Блокчейн гарантирует безопасность и точность в записи и хранении данных, без третьих лиц. Ключевое отличие блокчейна от стандартных баз данных заключается в определенном подходе в их структурировании [4].

Блокчейн собирает информацию в группы, так называемые «блоки», хранящие множества данных. «Блоки» имеют определенные возможности для их хранения, когда они переполняются, они закрываются и ссылаются на предыдущий заполненный узел (блок), вся последующая информация записывается по аналогичному принципу [4].

Блокчейн работает по принципу добычи цифровой информации для записи и распространения, но не для изменения. Все записи в блокчейне нельзя изменить, удалить или иным образом уничтожить. В следствие этого блокчейн принято называть DLT (с англ. «технология распределенного реестра»).

В следствие высокой степени безопасности баз данных блокчейна, у множества пользователей возникла потребность хранить свои денежные сбережения в блокчейне. Вследствие этого блокчейн имеет ключевую роль в развитии криптовалютных систем, например, таких как Bitcoin, Ethereum и других [5].

Таким образом, блокчейн – это неизменяемая и надежная база данных, благодаря которой, пользователи могут хранить свои сбережения и средства.

1.2. Понятие криптовалюты и их виды

Криптовалюта — особенный вид денежных средств в цифровой форме, использующий шифрование для защиты транзакций. Выпуск криптовалюты происходит децентрализовано. Все участники сети равноправны и могут в любой момент переводить или получать криптовалюту [7].

Принято выделять следующие ключевые категории криптовалют:

- Bitcoin (выделяется отдельно так как это одна из первых криптовалют в мире с открытым исходным кодом [8]);
 - альткоины;
 - токены;
 - стейблкоины;
 - NFT;
 - DeFi.

Альткоины (или альтернативные коины) — это любые криптовалюты со своим блокчейном (за исключением Bitcoin). В связи с тем, что у Bitcoin открытый исходный код, разработчики альткойнов могут ускорять транзакции, оптимизировать процесс майнинга, создавать различные автоматизированные контракты, формировать базу для работы с крипто-приложениями.

Токены — цифровые активы, не имеющие своего собственного блокчейна. Вместо майнинга токены выпускаются в полной эмиссии. Зачастую такие активы выпускают различные компании с целью привлечения средств на развитие своих продуктов. Инвесторы, в свою очередь получают гарантии того, что компания выполнит перед ними свои обязательства.

Стейблкоины – цифровые деньги, цена которых привязана к материальным активам (обычная валюта, золото и пр.). Курс Bitcoin и альткоинов достаточно нестабилен и меняется каждый день, в то время как стейблкоины предельно стабильны, и несмотря на то, что их котировки могут меняться, происходит это гораздо реже и без резких скачков [9].

NFT — невзаимозаменяемые токены. Зачастую их используют для переноса блокчейн-прав на владение уникальными активами. Например, произведения искусства, внутриигровые предметы в онлайн-играх и даже нотариально заверенные документы.

DeFi – децентрализованные финансовые сервисы. Стоит отметить, что это не отдельные криптовалюты, а платформы для объединения различных видов цифровых активов и их функций.

Самыми популярными криптовалютами являются:

- Bitcoin (BTC) [10];
- Ethereum (ETH) [11];
- Binance Coin (BNB) [12].

Таким образом, криптовалюта – это один из способов хранить денежные активы, а также иметь возможность заработать на скачках и падениях их цен.

1.3. Биржи криптовалют

Криптовалютная биржа — это площадка для осуществления торговли и обмена одной цифровой валюты на другую либо на валюты определенной страны (доллары, рубли и пр.). Биржа, наряду с майнингом, один из способов получения криптовалюты [13].

Благодаря высокой волатильности, криптовалюты используют как спекулятивный инструмент, это позволяет извлечь из нее максимальную прибыль.

Биржи делятся на два типа.

- 1. Площадки, на которых предусмотрена возможность обменивать криптовалюту на фиатные валюты.
- 2. Площадки, на которых можно обменивать только криптовалюту на криптовалюту.

На текущий момент существует множество бирж со своими достоинствами и недостатками. Ниже приведены самые популярные представители криптовалютных бирж:

- Poloniex [14];
- Exmo [15].

Poloniex – американская криптовалютная биржа, включающая в свой функционал помимо обменника криптовалют детальную статистику.

Ехто – универсальный сервис, занимающийся торговлей самых популярных коинов. Ниже приведены самые популярные криптовалюты, представленные на площадке Exmo:

- BitCoin [8, 10];
- ETH [11];
- DogeCoin [16].

Основным преимуществом этой биржи является возможность обменивать валюту на рубли, доллары, евро и др.

Таким образом, криптовалютная биржа, это место, где пользователь может обменять или купить крипто-активы за финитную или криптовалюту.

1.4. Приложения для отслеживания курсов криптовалют

Для того, чтобы сделать правильный выбор криптовалюты при инвестировании, а также узнать тенденции в мире блокчейна, пользователи используют веб-приложения с трекерами криптовалют. Большинство таких приложений имеют подробную статистику с графиками, статистикой, возможностью поиска и сортировки по определенным параметрам (например, по типу криптовалюты). Однако, зачастую они не имеют функционала аутентификации на платформе.

ForkLog

Онлайн трекер криптовалют ForkLog [17] содержит в себе полный набор информации о криптовалютах, биржах и блокчейне в целом. На главной странице приложения расположен список статей о блокчейне. Интерфейс главной страницы представлен на рисунке 1.

Рисунок 1 – Главная страница приложения ForkLog

Помимо этого, ForkLog имеет страницы с котировками коинов, подробной информации о них, страницу со прогнозами тенденций в мире блокчейна. Внутри страницы нет возможности отсортировать коины по наибольшему изменению, а также узнать важные детали коина такие как история появления, или к какому типу он относится. Также, у ForkLog нет особенных возможностей, которые могли бы его выделить на фоне конкурентов — например, сравнение двух коинов на графиках. Помимо этого, в приложении ForkLog отсутствует возможность добавления криптовалюты в избранное, что не позволит пользователям в должной мере собирать по ней статистику простым и удобным способом. Однако, ForkLog предлагает пользователю детальную информацию на гибких и кастомизируемых графиках, дает возможность найти желаемый коин при помощи поля ввода.

Онако, приложение имеет и недостатки. Один из самых главных недостатков — это отсутствие добавление криптовалюты в избранное, так как это упрощает работу пользователя по отслеживанию котировок криптовалют внутри приложения. Вместе с этим, отличающих от аналогов возможностей в веб-приложении нет, в нем нет ни возможности загрузить графики в каком-либо формате пользователю на устройство, ни возможности сравнить две похожие криптовалюты. Интерфейс страницы котировок криптовалют представлен на рисунке 2.

Рисунок 2 – Интерфейс страницы «цены криптовалют» на ForkLog

BitInfoCharts

Веб-приложение BitInfoCharts [18] содержит в себе детальную статистику по криптовалютам, включающую в себя:

- капитализацию на бирже;
- цену на текущий момент в американском долларе;
- количество блоков, полученных майнингом;
- награду за блок, добытый майнингом;
- интересную информацию о коине (дата первого добытого блока, количество звезд на GitHub, последний коммит в GitHub репозиторий).

Также, как и Forklog, BitInfoCharts в интерфейсе имеет поиск и сортировку коинов по различным полям. В приложении есть отдельная страница

со списком всех криптовалют, на которой отображена базовая информация о них, дополнительно при нажатии на любой из коинов, приложение перенаправит пользователя на отдельную ссылку с более подробной информацией о криптовалюте. Интерфейс страницы о BitCoin представлен на рисунке 3.

Рисунок 3 – Интерфейс страницы о BitCoin в веб-приложении «BitInfoCharts»

На странице с детальной информацией о конкретной криптовалюте отображается график изменения цены валюты за последний месяц, цена указана в долларах США. Помимо этого, отображается количество криптовалюты в целом, капитализация криптовалюты. Также, отображается информация о средней цене транзакций, количестве блоков в блокчейне, объем блокчейна и гистограмма комиссии криптовалюты за 24 часа. Гистограмма ВitCoin показана на рисунке 4.

Рисунок 4 – Гистограмма комиссии для BitCoin

Основное преимущество «BitInfoCharts» – это детальная статистика и подробная информация по криптовалютам. В то время как основной недостаток – устаревший дизайн.

Таким образом, основная цель приложений для отслеживания курсов криптовалют — отображение статистики с наглядными графиками и тенденциями роста или спада конкретного коина.

1.5. Платформы для разработки веб-приложений

В современном мире веб-разработки существует 3 различных вида подхода к разработке приложений – SPA, MPA, PWA.

SPA (single page application) — одностраничное приложение, загружающееся на одну HTML-страницу, переход между страницами в таких приложениях реализован средствами языка JavaScript. Такой подход позволяет упростить разработку, а также увеличить скорость работы приложения. Однако, главным минусом у такого подхода является полное отсутствие SEO оптимизации, так как рендеринг страницы происходит на клиенте, в силу этого, поисковые роботы Google (и другие) видят страницу приложения пустой. Однако, в случаях, где контент статичен и важен для SEO, этот недостаток SPA, может закрыть серверный рендеринг, позволяющий писать собственный АРI для рендеринга на сервере [2].

MPA (multi page application) — многостраничное приложение, один из первых подходов в разработке приложений, при нем страница полностью обновляется при малейшем изменении состояний на клиенте. Главный плюс такого подхода, в отличие от SPA — отличная SEO оптимизация, т.к. рендер приложения происходит на сервере. Минусов у такого подхода много. Первый из них — сложность разработки. Для разработки MPA требуется использовать фреймворки, заточенные на фронтенд и бекенд одновременно, например, Angular, Flask или Ruby on rails, что усложняет разработку и делает ее менее поддерживаемой и вариативной. Второй большой минус

MPA – плохая скорость работы, в силу того, что перерисовка страницы происходит каждый раз при изменении состояний в приложении [2].

PWA (progressive web applications) – прогрессивное веб приложение, позволяющее запускать себя как в браузере, так и в качестве десктопного или мобильного приложения. Главная особенность и преимущество PWA – кроссплатформенность, приложение, написанное под персональный компьютер, может быть использовано в качестве мобильного или веб-приложения. Однако, минусом такого подхода является поддержка некоторых возможностей таких приложениях в некоторых браузерах (Safari, Edge).

На данный момент веб-приложения пишутся на различных фреймворках и библиотеках языка JavaScript, в силу их удобства и скорости разработки. Они не требуют работы с DOM-деревом [19], вместо этого в них есть специальные методы и функции для работы с событиями, референсами и куки.

Самые популярные JavaScript-фрейморки на данный момент.

- React [19];
- Vue [20];
- Svelte [21].

Также важнейшим трендом веб-разработки является типизация. Для типизации в веб-приложениях используют разработанный компанией Microsoft язык TypeScript. TypeScript компилируется в JavaScript и формально является полезной надстройкой над языком, делая его более строгим и стабильным [22]. Типизация очень полезна для командной разработки, а также в случаях, где нужно работать с большим количеством запросов и валидацией.

Помимо этого, в современных веб-приложениях используют библиотеки состояний для хранения данных и устранения проблемы сильной связанности (prop-drilling) между множеством компонентов. Самые популярные библиотеки для работы с состояниями:

- Redux (Redux Toolkit) [23];
- Vuex [20];
- MobX [24];
- Zustand [25].

Самая часто используемая из них — Redux, из-за хорошего отладчика в виде Redux DevTools. Однако в сообществе разработчиков многие скептически относятся к Redux из-за сильной нагроможденности отдельных частей кода [23]. Проблема была решена с выпуском Redux Toolkit, однако в некоторых проектах до сих пор используется старая версия Redux.

В силу того, что библиотека React позволяет разработчику не думать о работе с DOM-деревом и сконцентрировать усилия на работе с данными было принято использовать именно ее. Помимо этого, для работы с API и внешними сервисами [26] требуется строгая типизация, во избежание непредвиденных ситуаций с приведением типов данных. Также будет использован Redux-toolkit и Redux-saga [23] для работы с состояниями и асинхронными запросами к базе данных криптовалют. Для работы со стилизацией HTML элементов и компонентов будет использована CSS-in-JS библиотека styled-components [27].

Вывод по первой главе

Подводя итоги по первой главе, нужно отметить, что мониторинг криптовалют — очень важная и востребованная задача на данный момент, потому в рамках дипломной работы будет реализовано веб-приложение для отслеживания криптовалют.

2. АНАЛИЗ ТРЕБОВАНИЙ К СИСТЕМЕ

2.1. Описание системы «Cryptocurrency»

Целью данной работы является разработка веб-приложения для трекинга криптовалют – Cryptocurrency.

Главное назначение для данного приложения – помощь в поиске и систематизации актуальных данных 0 криптовалюте. Приложение «Cryptocurrency» позволит добавлять интересующие пользователя криптовалюты и биржи в избранное для упрощенного мониторинга данных. Пользователь будет иметь возможность отсортировать криптовалюты по росту, падению, популярности и прочим важным для него параметрам, также приложение предусматривает возможность поиска криптовалют при помощи ввода названия или идентификатора криптовалюты в специальную панель поиска. Вместе с этим пользователь будет иметь возможность найти криптовалюту из большого списка всех возможных криптовалют. На отдельной странице каждой криптовалюты для удобства пользователя изменения котировок будут представлены на графиках. Также у пользователя будет отдельная страница избранного, на которой он сможет детальнее изучить котировки интересующей его криптовалюты или биржи.

Ключевыми особенностями Cryptocurrency будут:

- возможность сравнивать две криптовалюты на одном графике;
- добавление криптовалюты или биржи в избранное;
- возможность сохранить картинку с графиком и информацией о криптовалюте в формате png.

2.2. Требования к системе

Определение функциональных требований

Веб-приложение Cryptocurrency должно соответствовать функциональным требованиям, приведенным ниже.

- 1. Приложение должно отображать список криптовалют и крипто-бирж на отдельных страницах.
- 2. Приложение должно иметь функционал поиска и сортировки криптовалют.
- 3. В приложении должен быть функционал перехода на отдельную страницу с криптовалютой для детального анализа.
- 4. В приложении должен быть функционал отображения статистики криптовалют на графиках.
- 5. Приложение должно содержать в себе функционал загружать графики с выбранной криптовалютой.
- 6. Приложение должно содержать в себе функционал для добавления криптовалют и бирж в «избранное».

Определение нефункциональных требований

В рамках анализа требований к веб-приложению Cryptocurrency были выдвинуты нефункциональные требования, приведенные ниже.

- 1. Веб-приложение Cryptocurrency должно подключаться к внешнему веб-сервису криптовалют и криптобирж [14].
- 2. Приложение должно быть адаптивным (поддерживать разрешения экрана всех современных устройств).
- 3. Приложение должно поддерживаться в последних версиях (последние 2) всех популярных браузеров (Google Chrome, Safari, Yandex).

2.3. Варианты использования системы

Для проектирования приложения был использован язык графического описания для объектного моделирования UML. По выдвинутым к системе требованиям, была составлена диаграмма вариантов использования. Диаграмма приведена на рисунке 5.

Рисунок 5 — Диаграмма вариантов использования для веб-приложения для отслеживания курсов криптовалют

С системой взаимодействует один актер – непосредственный пользователь системы. Пользователь может выполнять действия, представленные ниже.

- 1. «Открыть страницу криптовалют». Пользователь может открыть отдельную страницу со списком криптовалют.
- 2. «Узнать детали криптовалюты». Пользователь, зайдя на страницу криптовалют, может узнать детали конкретного представителя из списка.

- 3. «Открыть страницу криптобирж». Пользователь может открыть отдельную страницу со списком криптобирж.
- 4. «Отсортировать криптовалюты». Пользователь может отсортировать криптовалюты на соответствующей странице.
- 5. «Сравнить криптовалюты». Пользователь может на отдельной странице с выбранной криптовалютой произвести сравнение криптовалюты с любым другим представителем криптовалют и увидеть разницу в их цене и изменении на графиках, а также в их деталях.
- 6. «Скачать картинку с графиками криптовалюты». Пользователь может скачать картинку с графиком криптовалюты, а также с графиком сравнения криптовалют.
- 7. «Добавить криптовалюту в избранное». Пользователь может добавить криптовалюту в избранное, для отслеживания детальной информации о ней.

Выводы по второй главе

В данной главе были рассмотрены основные требования к системе, была описана цель разработки программного продукта и реализована диаграмма вариантов использования веб-приложения Cryptocurrency.

3. ПРОЕКТИРОВАНИЕ АРХИТЕКТУРЫ СИСТЕМЫ

В рамках выпускной квалификационной работы было проведено проектирование архитектуры веб-приложения для трекинга криптовалют Cryptocurrency.

3.1. Диаграмма компонентов веб-приложения Cryptocurrency

На рисунке 7 представлена диаграмма компонентов веб-приложения Cryptocurrency.

Рисунок 6 – Диаграмма компонентов веб-приложения

В процессе проектирования было принято решение создать диаграмму компонентов для разрабатываемого веб-приложения. Приложение состоит из семи компонентов, описанных ниже.

- 1. Application компонент, который является телом приложения, в нем находятся все провайдеры и потомки. Кроме этого, Application является точкой входа в приложение.
- 2. Redux Provider компонент, при помощи которого в приложение добавляется возможность работы с хранилищем, описанным в пункте 3.1.
 - 3. Store компонент глобального хранилища приложения.
- 4. Router компонент, при помощи которого в SPA-приложение добавляется мультистраничность посредством роутинга.
 - 5. Routes компонент хранящий в себе страницы SPA.
- 6. Page компонент, в котором реализуется бизнес-логика приложения.
- 7. UI компонент, не содержащий в себе бизнес-логики, отвечающий только за отрисовку данных переданных в него из родителя.

Выбор такого набора компонентов обусловлен современными подходами в архитектуре веб-приложений, описанными в следующем пункте данной главы.

3.2. Архитектура веб-приложения

Веб-приложение Cryptocurrency будет использовать популярный на данный момент подход к разработке программного обеспечения – Flux. Это подход, при котором решается проблема жесткой связанности компонентов, средствами реактивного программирования [28]. В такой архитектуре используются Flux хранилища, представляющие из себя глобальный объект, доступный на всех этапах жизненного цикла приложения. На эти хранилища подписываются отдельные модули или UI-компоненты, которые посредством диспетчеров и селекторов передают, изменяют или получают данные хранилища. Реактивность помогает отдельным компонентам избежать лишний рендер связанных компонентов, посредством получения обновлений данных напрямую из хранилища.

Веб-приложение будет иметь статический сервер и будет обращаться к стороннему веб сервису для получения необходимых данных. Логика работы будет реализована непосредственно на клиенте благодаря описанной выше Flux архитектуры.

В связи с этим, для прецедента номер 2 из пункта 2.4 второй главы работы – «Узнать детали криптовалюты», была разработана диаграмма потоков данных [29]. Диаграмма представлена на рисунке 7.

Рисунок 7 – Диаграмма потоков данных для прецедента «Узнать детали криптовалюты»

Интерфейс пользователя инициирует отправку запроса к внешнему веб сервису при монтировании страницы, затем отправляет запрос к внешнему веб-сервису криптовалют [26]. После обработки запроса, внешний вебсервис возвращает веб-приложению данные по криптовалюте, затем вебприложение собирает данные и убирает их в глобальное хранилище, а затем передает его в интерфейс пользователя.

3.3. Диаграмма деятельности

В силу того, что в рассмотренных, в четвертом пункте первой главы выпускной квалификационной работы, приложениях не было функционала для пометки интересных пользователю криптовалют, было решено добавить такую отличительную возможность в разрабатываемое веб-приложение Стуртоситепсу. В следствие этого была разработана диаграмма деятельности для прецедента «Добавить в избранное», упомянутого в четвертом пункте второй главы работы. На рисунке 8 представлена диаграмма деятельности для прецедента «Добавить в избранное».

Рисунок 8 — Диаграмма деятельности для прецедента «Добавить в избранное»

После того, как пользователь нажмет на кнопку добавить в избранное, идентификатор криптовалюты (uuid) будет передан в локальное хранилище

браузера – localStorage. Затем состояние кнопки, на котором находится слушатель события добавления криптовалюты в избранное переключится на состояние удаления криптовалюты из избранного пользователя. Стоит отметить, что удаление криптовалюты из избранного происходит аналогичным образом.

Этот способ реализации добавления в избранное является одним из самых простых, так как он не требует обращаться к серверу для получения данных по избранной криптовалюте, все действия, связанные с добавлением в избранное, происходит внутри браузера пользователя. Вместе с этим данные о избранной криптовалюте не будут утеряны при перезагрузке клиента.

Выводы по третьей главе

В данной главе была описана архитектура разрабатываемого веб-приложения для трекинга криптовалют Cryptocurrency. Вместе с этим, были приведены диаграмма потоков данных для прецедента «узнать детали криптовалюты», диаграмма компонентов и диаграмма деятельности для прецедента «добавить криптовалюту в избранное».

4. РЕАЛИЗАЦИЯ СИСТЕМЫ

4.1. Программные средства

Реализация веб-приложения для отслеживания курсов криптовалют производилась с помощью следующего набора инструментов.

- 1. React версии 18.2. библиотека языка JavaScript, позволяющая с простотой разрабатывать SPA, декомпозировать UI компоненты, обращаться к узлам DOM дерева и работать с большими объемами данных [19].
- 2. ТуреScript версии 4.8.4 язык программирования, позволяющий добавлять типизацию и ООП в JavaScript. ТуреScript при компиляции собирается в нативный JavaScript код, который в свою очередь успешно запускается во всех современных браузерах [22].
- 3. Redux toolkit версии 1.8.4 библиотека состояний JavaScript, позволяющая хранить состояния в глобальном хранилище и отделять логику работы с данными от UI компонентов [23].
- 4. Redux-saga версии 1.2.1 библиотека JavaScript для связи серверной части приложения (API) непосредственно с клиентской частью приложения [30].
- 5. Styled-components версии 5.3.6 библиотека, позволяющая писать CSS стили и анимации внутри JavaScript [27].
- 6. ChartJS версии 3.9.1 библиотека JavaScript, позволяющая строить графики на основе структурированных данных [31].
- 7. ESLint версии 7.25 линтер для JavaScript, для отслеживания и устранения синтаксических ошибок и предупреждений [32].
- 8. Vite версии 3.1 сборщик JavaScript-приложений [33], улучшающий скорость сборки приложения в dev режиме.

4.2. Сборка и конфигурация приложения

Настройка сборщика веб-приложения

Современные браузеры способны собирать и анализировать информацию только из HTML, CSS и JavaScript в чистом виде, в силу этого для работы TypeScript, jsx (шаблонизатор HTML, используемый в React), а также CSS-in-JS используются сборщики, преобразующие их в понятный для браузера формат.

Самыми популярными сборщиками JavaScript-приложений являются:

- Webpack [35];
- ESBuild [36];
- Vite [33].

По данным прт, количество загрузок Webpack порядка 27 млн. загрузок в неделю, в то время как у ESBuild и Vite количество загрузок сильно меньше — у ESBuild 10 млн. загрузок, а у Vite 3 млн [35]. Высокое количество загрузок ESBuild обусловлено тем, что в качестве dev зависимости при сборке приложения при помощи Vite используется ESBuild.

Конфигурация Vite достаточно легковесная и простая, в отличие от конфигураций Webpack, в которых встречается очень много сложных и запутанных зависимостей [35]. Потому, для упрощения разработки системы был выбран сборщик Vite. Конфигурация сборки представлена в листинге 1.

Листинг 1 – Конфигурация сборки веб-приложения

```
import { defineConfig } from 'vite';
import react from '@vitejs/plugin-react';
import eslintPlugin from 'vite-plugin-eslint';
import path from 'path';
import { fileURLToPath } from 'url';

const __filename = fileURLToPath(import.meta.url);
const __dirname = path.dirname(__filename);

export default defineConfig({
   plugins: [
      eslintPlugin({
      exclude: ["/@react-refresh", "**/*.css"]
      }),
      react(),
   ],
   resolve: {
```

```
alias: {
    '0': path.resolve(__dirname, './src'),
    },
    server: {
    port: 3002,
    },
})
```

Vite поддерживает работу с готовыми популярными плагинами, так в приложении используются плагины для работы с React и ESLint. Помимо этого, в конфигурацию сборку были добавлены порт для запуска приложения локально и alias, необходимый для более простого обращения к абсолютным путям в коде.

Настройка TypeScript

Для разработки приложения используется язык TypeScript, который в свою очередь является оберткой над языком JavaScript. Для TypeScript используются специальные конфигурации для компилирования языка в JavaScript. Конфигурация TypeScript в приложении представлена в листинге 2.

Листинг 2 – Конфигурация TypeScript в приложении

```
"compilerOptions": {
  "target": "ESNext",
  "useDefineForClassFields": true,
  "lib": ["DOM", "DOM.Iterable", "ESNext"],
  "allowJs": false,
  "skipLibCheck": true,
  "esModuleInterop": false,
  "allowSyntheticDefaultImports": true,
  "strict": true,
  "forceConsistentCasingInFileNames": true,
  "module": "ESNext",
  "moduleResolution": "Node",
  "resolveJsonModule": true,
  "isolatedModules": true,
  "noEmit": true,
  "jsx": "react-jsx"
"include": ["src"],
"references": [{ "path": "./tsconfig.node.json" }]
```

Конфигурация в себе содержит в себе набор правил компиляции кода в JavaScript, точку входа в приложение — src, включаемые библиотеки и

специальные параметры, исключающие возможность нестрогой типизации из JavaScript.

Настройка кроссбраузерности веб-приложения

Каждый современный браузер содержит в себе свои особенные CSSстили, потому, для поддержки кроссбраузерности верстки используются два подхода:

- нормализация CSS;
- сброс стилей.

Нормализация CSS — подход, при котором задаются стили поверх браузерных, этот подход позволяет использовать нужные стили во всем приложении, без написания дополнительных.

Сброс стилей – подход, при котором все реализованные внутри браузера стили сбрасываются до стилей из спецификации HTML, такой подход позволяет делать верстку более гибкой и предсказуемой.

Внутри приложения используется сброс стилей, так как этот подход является более предсказуемым и масштабируемым.

Настройка линтера веб-приложения

Для отслеживания ошибок и предупреждений при разработке в языке JavaScript и TypeScript используются линтеры и форматировщики кода. Самым популярным является ESLint [36]. По данным прт он имеет 31 млн. загрузок за неделю [34]. ESLint позволяет отслеживать ошибки и предупреждения по заданным правилам в конфигурации, а также устранять некоторые из них. Конфигурация линтера представлена в листинге 3.

Листинг 3 – Конфигурация линтера в приложении

```
module.exports = {
  env: {
    node: true,
    es2020: true
},
  globals: { React: true },
  root: true,
  plugins: ["@typescript-eslint"],
  extends: [
    "eslint:recommended",
    "plugin:@typescript-eslint/recommended",
```

```
"plugin:react/recommended",
    "plugin:react-hooks/recommended"
],
settings: {
    react: {
        version: "detect"
    }
},
```

Таким образом, в данном пункте были описаны конфигурации языка ТуреScript, а также были выбраны инструменты и подходы для сборки, сброса стилей и форматирования кода приложения.

4.3. Реализация страницы списка криптовалют

Для удобства разработки, задача по реализации страницы списка криптовалют была декомпозирована на следующие пункты:

- верстка UI компонентов на странице;
- реализация логики хранения данных на клиенте;
- реализация логики отображения данных на клиенте;
- реализация логики взаимодействия с внешним веб-сервисом.

В рамках первого пункта была реализована анимация загрузки данных на клиенте, реализовано поле ввода текста, переключатель опции, компонент криптовалюты и пагинация. Детально в рамках выпускной квалификационной работы будут рассмотрены компоненты пагинации и загрузки данных. Верстка и CSS компонента анимации загрузки данных на клиенте приведена в листинге 4.

Листинг 4 – Верстка компонента анимации

```
export const Animation = keyframes`
   0%, 100% {
     margin-top: 0;
}

50% {
     margin-top: 2rem;
}
`;

export const Dot = styled.div`
   background-color: ${COLORS.duckEggBlue};
```

```
border-radius: 50%;
 animation: ${Animation} 1s infinite;
 animation-delay: ${(props: DotProps) => props.delay};
const DOTS = [
  '0s',
  '0.05s',
  '0.1s',
  '0.15s',
 '0.2s',
  '0.25s',
 '0.3s',
const Loader = () => (
  <LoadingWrapper>
    {DOTS.map((delay, delayIndex) => (
      <Dot key={delayIndex} delay={delay} />
  </LoadingWrapper>
```

Для реализации функции анимации был использован CSS контроллер keyframes, позволяющий задавать правила анимирования компонентов [3]. Для масштабируемости компонента Loader, отрисовка компонента Dot, помещена в итератор массива DOTS.

Компонент пагинации не содержит в себе логики, а используется лишь как UI компонент и вся логика происходит без его участия, компонент лишь отвечает за рендер и монтирование содержимого на странице. Компонент пагинации представлен в листинге 5.

Листинг 5 – Компонент пагинации

Компонент пагинации принимает в себя слушатель события нажатия на кнопку (номер страницы), количество данных и текущую выбранную страницу. При помощи флага isActive определяется отрисовка выбранной и невыбранной страницы. Если флаг isActive истинный, событие onClick, отвечающее за выбор страницы не сработает.

Для получения данных из внешнего веб-сервиса используется библиотека redux-saga [30]. Эта библиотека позволяет накладывать побочные эффекты на actions, подключенных к redux редьюсерам [23], посредством такой конструкции, как генераторы в JavaScript [38]. В листинге 6 приведена логика получения данных с внешнего веб-сервиса.

Листинг 6 – Логика получения данных с внешнего веб-сервиса

```
export function* getCoinsFromApi({ payload }: any): any {
  try {
   const {
     limit,
     offset,
    } = payload;
   const search = yield select(makeSelectSearchParams);
    const orderBy = yield select(makeSelectOrderBy);
    const direction = yield select(makeSelectOrderDirection);
   const response = yield call(request, getCoinsApi(limit, offset, search,
orderBy, direction), COINS REQUEST OPTIONS);
    if (response) {
     yield put(getCoinsResponse(response));
     yield put(updateTotalCount(response?.data?.stats.total));
 } catch(e) {
   console.warn('coins request error:', e);
```

```
export default function* coinsSaga() {
  yield takeLatest(getCoins, getCoinsFromApi);
}
```

При доставке события getCoins в хранилище redux, срабатывает по-бочный эффект — getCoinsFromApi, создающий GET запрос к серверу. При помощи встроенного эффекта select из библиотеки redux-saga собираются query параметры [3] из хранилища redux. При помощи встроенного эффекта call создается запрос к внешнему веб-сервису с заданными параметрами, после того, как клиент получает асинхронный ответ с сервера, данные записываются в хранилище при помощи эффекта put и redux actions.

В результате данной реализации была получена страница списка криптовалют, находящаяся на странице /coins. Интерфейс страницы списка криптовалют представлен на рисунке 9.

Рисунок 9 – Интерфейс страницы списка криптовалют

4.4. Реализация модуля отрисовки графиков

Модуль отрисовки графиков реализован посредством библиотеки ChartJS [31]. Среди UI компонентов этой библиотеки был выбран компонент Line, осуществляющий рендер графика с заданными опциями и данными. Верстка этого компонента представлена в листинге 7.

Листинг 7 — Верстка компонента Line

```
<coinStyles.ChartWrapper>
     <Line
        options={OPTIONS}
        data={data}
      />
</coinStyles.ChartWrapper>
```

Свойство data в компоненте Line наполняется из redux хранилища. В хранилище данные, необходимые для построения графика, попадают после отправки запроса при монтировании страницы. При получении ответа с сервера данные собираются в нужный для ChartJS формат. Реализация мапинга данных для отрисовки графиков представлена в листинге 8.

Листинг 8 – Реализация мапинга данных для отрисовки графиков

```
const response = yield call(request, formatCoinRequest(uuid), options);
if (response) {
  yield put(getCoinResponse(response));
  const coin = yield select(makeSelectCoinData);

  const labels = coin?.sparkline
    .map((spark: string, sparkIndex: number) => `${sparkIndex}h`);

  yield put(updateData({
    labels,
    datasets: [{
        label: coin?.symbol,
        data: coin?.sparkline.map((spark: string) => Number(spark)),
        borderColor: COLORS.bioticGrasp,
        backgroundColor: COLORS.bioticGrasp,
    }],
    }));
}
```

Для реализации сравнения двух графиков был реализован дополнительное событие, которое при его вызове добавляет в параметр datasets

данные другой криптовалюты, тем самым образуется наложение двух графиков. Пример такой ситуации изображен на рисунке 10.

Рисунок 10 – График сравнения криптовалют BTC и Wrapped BTC

4.5. Реализация модуля добавления в избранное

Для добавления в избранное был использован объект localStorage [38]. Это веб-хранилище, позволяющее сохранять данные внутри браузера. При помощи методов getItem и setItem осуществляется запись и чтение данных объекта. Реализация функций добавления в избранное и удаления биржи из избранного приведены в листинге 9.

Листинг 9 — Функции добавления биржи в избранное и удаления биржи из избранного

```
const [isFavorite, setIsFavorite] = useState(localStorage.getItem('favor-
iteExchange') === uuid);

const handleAddInFavorites = () => {
  localStorage.setItem('favoriteExchange', uuid);
  setIsFavorite(true);
}

const handleRemoveFromFavorites = () => {
  localStorage.removeItem('favoriteExchange');
  setIsFavorite(false);
}
```

При рендере элемента списка бирж задается значение состояния useState избранной биржи из объекта localStorage, при срабатывании события handleAddInFavorites добавляется uuid выбранной биржи, а также состояние отображения кнопки отображается переключается на true. При срабатывании handleRemoveFromFavorites из объекта localStorage уничтожается поле favoriteExchange, а состояние кнопки переключается на false.

Избранное отображается на домашней странице приложения. Интерфейс домашней страницы с добавленными в избранное биржей и криптовалютой представлены на рисунке 11.

Рисунок 11 – Интерфейс домашней страницы

4.6. Реализация модуля загрузки графиков

Для реализации загрузки графиков используется npm пакет html-to-image [39]. Он позволяет при помощи конструкции Promise [38] асинхронно создавать скриншот DOM-узла. Реализация события загрузки графика в формате png приведена в листинге 10.

Листинг 10 – Реализация события загрузке графика

```
const handleDownloadGraphs = () => {
  if (!graphRef) return;
  setIsDisabledButton(true);
  toPng(graphRef.current, { cacheBust: true })
    .then((url) => {
      const link = document.createElement('a');
      const date = new Date();
      const currentTime = date.getHours() + ':'
            + date.getMinutes()
            + date.getSeconds();
      link.download = compareCoin
        ? `${currentTime}-${coin.name}-compared-${compareCoin.name}.png`
        : `${currentTime}-${coin.name}.png`;
      link.href = url;
      link.click();
      setIsDisabledButton(false);
    .catch((e) => {
     setIsDisabledButton(false);
      alert('error', e);
    });
};
```

Promise toPng переводит текущий узел DOM дерева в Canvas, благодаря чему появляется возможность загрузить его на устройство пользователя.

Для реализации подключения к узлу DOM дерева, был использован нативный для React хук useref, позволяющий получить представление элемента верстки [19].

При отлавливании события handleDownloadGraphs создается ссылка, затем асинхронно вызывается загрузка скриншота узла, после этого пользователю загружается файл, в названии которого указано наименование криптовалюты и дата загрузки.

В случае, если пользователь произвел сравнение двух криптовалют, на картинке будет отображен совместный график криптовалют и их детальная информация. Пример загруженного файла представлен на рисунке 12.

Рисунок 12 – Загруженный файл в формате png

Выводы по четвертой главе

В данной главе были описаны средства и подходы к реализации вебприложения Cryptocurrency. Вместе с этим были описаны детали реализации некоторых ключевых модулей системы, а также приведены промежуточные результаты реализации приложения.

5. ТЕСТИРОВАНИЕ

В соответствии с требованиями, выдвинутыми во втором пункте второй главы было решено провести функциональное мануальное тестирование. Для реализации поставленной задачи было принято решение разместить приложение с помощью GitHub Pages [40]. Для этого в конфигурацию сборки vite было добавлено поле base: '/graduate work' с названием репозитория кодовой базы веб-приложения [41]. Вместе с этим в конфигурацию проекта были добавлены скрипты для сборки и размещения приложения. Скрипты представлены в листинге 11.

Листинг 11 – Скрипты для размещения приложения на GitHub Pages

```
"predeploy": "npm run build", "deploy": "gh-pages -d dist",
```

Скрипт deploy отвечает за публикацию сборки приложения на сервере GitHub Pages. Перед публикацией срабатывает скрипт predeploy, отвечающий за сборку приложения. После сборки приложения в папку dist, ее содержимое публикуется на сервер GitHub Pages.

Исходя из требований к системе был составлен набор тестов. В таблице 1 представлен набор тестов для проверки корректной работы веб-приложения.

Таблица 1 – Набор необходимых тестов для проверки работы веб-приложения

No	Название теста	Шаги	Ожидаемый результат
1	Тестирование па-	С домашней страницы	Содержимое страницы пере-
	гинации на стра-	нажать на ссылку «Coins».	ключится с 1 на 2 страницу.
	нице криптова-	В открывшейся странице	
	лют	нужно нажать на цифру 2	
		среди страниц.	
2	Тестирование по-	На странице /coins в поле	В списке криптовалют по-
	иска на странице	ввода «Search coin» ввести	явятся только криптовалюты
	криптовалют	название криптовалюты.	с таким названием (либо
			включающие это слово в
			свое название)

No	Название теста	Шаги	Ожидаемый результат
3	Тестирование	На странице /coins сделать	Список криптовалют сорти-
	сортировки крип-	выбор одной из опций сор-	руется по заданным прави-
	товалют	тировки и упорядоченности.	лам.
4	Тестирование от-	На странице /coins, либо на	Произойдет перенаправление
	крытия страницы	домашней странице нажать	на страницу /coin/:uuid, где
	конкретной крип-	на криптовалюту.	uuid – идентификатор крип-
	товалюты		товалюты.
5	Тестирование до-	На странице выбранной	Отображение криптовалюты
	бавления крипто-	криптовалюты нажать	в избранном.
	валюты в избран-	кнопку «Add in favorites».	
	ное	Перейти на домашнюю	
		страницу.	
6	Тестирование за-	На странице выбранной	После нажатия на кнопку,
	грузки данных по	криптовалюты нажать	она блокируется, и спустя ка-
	графикам кон-	кнопку «Download Graphs».	кое-то время (в зависимости
	кретной крипто-		от мощности клиента) загру-
	валюты		жается картинка графиков в
			формате png.
7	Тестирование	На странице выбранной	После нажатия на кнопку, на
	сравнения двух	криптовалюты переключить	клиенте загрузится выбран-
	криптовалют на	опцию «Compare coin with».	ная криптовалюта, после чего
	графиках		график обновится и будет по-
			казано сравнение двух графи-
			ков. Вместе с этим добавля-
			ется дополнительная инфор-
			мация по дополнительной
			выбранной для сравнения
	T	77 0	криптовалюте.
8	Тестирование	На домашней странице	После наведения мышью
	отображения дан-	навести на избранную	(удерживания кнопки крип-
	ных по избран-	крпито-валюту.	товалюты на мобильном
	ной криптова-		устройстве) открывается по-
	люты на домаш-		дробная информация и гра-
	ней странице		фики за разные временные
			периоды по криптовалюте.

Вместе с этим, был выбран набор сред для тестирования приложения. Он представлен в таблице 2.

Таблица 2 – Набор сред тестирования веб-приложения

Устройство и операционная система	Браузер	Версия браузера
Acer aspire 5, Windows 10	Chrome	111.0.2
Acer aspire 5, Mac OS Ventura	Safari	16.3
(Виртуальная машина)		
OPPO A83, Android 7.1.1	Chrome	111.0.2

Опираясь на данные MDN, Chrome имеет схожий браузерный API с большинством браузеров, кроме Safari [3]. Потому для тестирования на Windows и Android будет использован Chrome, а на Mac OS будет использован Safari.

Основываясь на данных из 1 и 2 таблицы работы, было проведено мануальное функциональное тестирование веб-приложения Стуртоситепсу. Результаты тестирования приведены в приложении к работе.

В процессе тестирования приложения не было выявлено замечаний, все тесты в рамках представленных сред тестирования были пройдены.

Выводы по пятой главе

В данной главе было проведено мануальное функциональное тестирование, а также были описаны средства тестирования и его результаты.

ЗАКЛЮЧЕНИЕ

В результате разработки веб-приложения для отслеживания курсов криптовалют был проведен следующий набор работ:

- 1) был выполнен анализ предметной области;
- 2) было произведено проектирование веб-приложения;
- 3) было реализовано веб-приложение для отслеживания криптовалют Cryptocurrency;
 - 4) было проведено тестирование полученного веб-приложения. Веб-приложение было опубликовано на GitHub Pages [42].

Помимо этого, планируется разработать аналог данного приложения для мобильных устройств с использованием React Native, так как он имеет хорошую совместимость с React [43].

ЛИТЕРАТУРА

- 1. Lewis A. The Basics of Bitcoins and Blockchains: An Introduction to Cryptocurrencies and the Technology that Powers Them. // Mango Media, $2018.-408\ c.$
- 2. Статья «SPA vs. MPA: Pros, Cons & How To Make Final Choice». [Электронный ресурс] URL: https://www.simicart.com/blog/spa-vs-mpa/ (дата обращения: 10.02.2023 г.).
- 3. Документация браузерного API MDN. [Электронный ресурс] URL: https://developer.mozilla.org/en-US/ (дата обращения: 10.02.2023 г.).
- 4. Прасти Н. Блокчейн. Разработка приложений//С.-Петерб. изд. ВНV, 2018. – 252 с.
- 5. Статья «Что такое биткоин и блокчейн». [Электронный ресурс] URL: https://www.kaspersky.ru/blog/bitcoin-easy-explanation/12668/ (дата обращения: 05.02.2023 г.).
- 6. Статья «What is hashing in Blockchain». [Электронный ресурс] URL: https://learn.bybit.com/blockchain/what-is-hashing-in-blockchain/ (дата обращения: 06.02.2023 г.).
- 7. Статья «Что такое криптовалюта и как она применяется?». [Электронный ресурс] URL: https://www.kaspersky.ru/resource-center/definitions/what-is-cryptocurrency (дата обращения: 06.02.2023 г.).
- 8. Antonopoulos A. Mastering Bitcoin. // O'Really Media, 2014. 298 c.
- 9. Статья «Stablecoins: definition, how they work, and types». [Электронный ресурс] URL: https://www.investopedia.com/terms/s/stablecoin.asp (дата обращения: 06.02.2023 г.).
- 10. Веб-сайт криптовалюты BitCoin. [Электронный ресурс] URL: https://bitcoin.org/en/ (дата обращения: 15.03.2023 г.).
- 11. Веб-сайт криптовалюты Ethereum. [Электронный ресурс] URL: https://ethereum.org/en/ (дата обращения: 15.03.2023 г.).

- 12. Веб-сайт криптовалюты Binance. [Электронный ресурс] URL: https://www.binance.com/en (дата обращения 15.03.2023 г.).
- 13. Статья «Crypto airdrop season: Why people are making thousands for 'free'». [Электронный ресурс] URL: https://www.cnet.com/personal-finance/crypto/crypto-airdrop-season-why-people-are-making-thousands-for-free/ (дата обращения: 10.02.2023 г.).
- 14. Криптовалютная биржа Poloniex. [Электронный ресурс] URL: https://poloniex.com (дата обращения: 15.03.2023 г.).
- 15. Криптовалютная биржа Exmo. [Электронный ресурс] URL: https://exmo.com (дата обращения: 15.03.2023 г.).
- 16. Веб-сайт криптовалюты DogeCoin. [Электронный ресурс] URL: https://dogecoin.com (дата обращения: 15.03.2023 г.).
- 17. Веб-приложение ForkLog. [Электронный ресурс] URL: https://forklog.com/ (дата обращения: 15.03.2023 г.).
- 18. Веб-приложение BitInfoCharts. [Электронный ресурс] URL: https://bitinfocharts.com (дата обращения: 15.03.2023 г.).
- 19. Документация JavaScript библиотеки React. [Электронный ресурс] URL: https://reactjs.org/ (дата обращения: 10.02.2023 г.).
- 20. Документация JavaScript фреймворка Vue. [Электронный ресурс] URL: https://vuejs.org/ (дата обращения: 15.03.2023 г.).
- 21. Документация JavaScript фреймворка Svelte. [Электронный ресурс]: https://svelte.dev/ (дата обращения: 15.03.2023 г.).
- 22. Документация языка TypeScript. [Электронный ресурс] URL: https://www.typescriptlang.org/docs/ (дата обращения: 10.02.2023 г.).
- 23. Документация библиотеки Redux. [Электронный ресурс] URL: https://redux-toolkit.js.org/ (дата обращения: 10.02.2023 г.).
- 24. Документация библиотеки MobX. [Электронный ресурс] URL: https://mobx.js.org/ (дата обращения: 15.03.2023 г.).

- 25. Документация библиотеки Zustand. [Электронный ресурс] URL: https://docs.pmnd.rs/zustand/getting-started/introduction (дата обращения: 15.03.2023 г.).
- 26. Документация энд-поинтов внешнего веб-сервиса Coinranking. [Электронный ресурс] URL: https://rapidapi.com/Coinranking/api/coinranking1 (дата обращения: 12.02.2023 г.).
- 27. Документация CSS-in-JS библиотеки styled-components. [Электронный ресурс] URL: URL: styled-components.com (дата обращения: 30.01.2023 г.).
- 28. Статья об архитектуре веб-приложений Flux. [Электронный ресурс] URL: https://medium.com/@marina.kovalyova/flux-the-react-js-application-architecture-773f515d068d (дата обращения: 18.02.2023 г.).
- 29. Статья «DFD диаграммы зачем они нужны и какие бывают». [Электронный ресурс] URL: https://habr.com/ru/post/668684/ (дата обращения: 18.02.2023 г.).
- 30. Документация бибилиотеки Redux-saga. [Электронный ресурс] URL: https://redux-saga.js.org/ (дата обращения: 15.03.2023 г.).
- 31. Документация библиотеки ChartJS. [Электронный ресурс] URL: https://www.chartjs.org/ (дата обращения: 15.03.2023 г.).
- 32. Документация линтера ESLint. [Электронный ресурс] URL: https://eslint.org/ (дата обращения: 26.02.2023 г.).
- 33. Документация сборщика Vite. [Электронный ресурс] URL: https://vitejs.dev/ (дата обращения: 26.02.2023 г.).
- 34. Пакетный менеджер npm.js. [Электронный ресурс] URL: https://www.npmjs.com/ (дата обращения: 26.02.2023 г.).
- 35. Документация сборщика Webpack. [Электронный ресурс] URL: https://webpack.js.org/ (дата обращения: 26.02.2023 г.).
 - 36. Документация сборщика ESBuild. [Электронный ресурс] URL:

- https://esbuild.github.io/ (дата обращения: 26.02.2023 г.).
- 37. Документация Rollup. [Электронный ресурс] URL: https://rollupjs.org/ (дата обращения: 26.02.2023 г.).
- 38. Flanagan D. JavaScript: The Definitive Guide, 7th Edition. // O'Really Media Inc $2020.-1032\ c.$
- 39. Пакет html-to-image. [Электронный ресурс] URL: https://www.npmjs.com/package/html-to-image (дата обращения: 26.02.2023 г.).
- 40. Сервис для размещения веб-страниц GitHub Pages. [Электронный ресурс] URL: https://pages.github.com/ (дата обращения: 02.04.2023 г.).
- 41. Репозиторий веб-приложения на GitHub. [Электронный ресурс] URL: https://github.com/ViaChessLove/graduate-work (дата обращения: 09.04.2023 г.).
- 42. Веб-приложение Cryptocurrency. [Электронный ресурс] URL: https://viachesslove.github.io/graduate-work/#/ (дата обращения: 09.04.2023 г.).
- 43. Документация фреймворка React Native. [Электронный ресурс] URL: https://reactnative.dev/ (дата обращения: 09.04.2023 г.).

ПРИЛОЖЕНИЕ. Результаты тестирования веб-приложения Cryptocurrency

Таблица 1 — Результаты тестирования веб-приложения Cryptocurrency

№	Название теста	Устройство	Браузер	Тест прой- ден?
1	1 Тестирование пагина- ции на странице крипто- валют	Acer aspire 5, Windows 10	Chrome	Да
		Acer aspire 5, Mac OS Ventura (Виртуальная машина)	Safari	Да
		OPPO A83, Android 7.1.1	Chrome	Да
2	Тестирование поиска на странице криптовалют	Acer aspire 5, Windows 10	Chrome	Да
		Acer aspire 5, Mac OS Ventura (Виртуальная машина)	Safari	Да
		OPPO A83, Android 7.1.1	Chrome	Да
3	3 Тестирование сортировки криптовалют	Acer aspire 5, Windows 10	Chrome	Да
		Acer aspire 5, Mac OS Ventura (Виртуальная машина)	Safari	Да
		OPPO A83, Android 7.1.1	Chrome	Да
4	Тестирование открытия страницы конкретной криптовалюты	Acer aspire 5, Windows 10	Chrome	Да
		Acer aspire 5, Mac OS Ventura (Виртуальная машина)	Safari	Да
		OPPO A83, Android 7.1.1	Chrome	Да
5	Тестирование добавления криптовалюты в избранное	Acer aspire 5, Windows 10	Chrome	Да
		Acer aspire 5, Mac OS Ventura (Виртуальная машина)	Safari	Да
		OPPO A83, Android 7.1.1	Chrome	Да
6	Тестирование загрузки данных по графикам	Acer aspire 5, Windows 10	Chrome	Да
	конкретной криптова-	Acer aspire 5, Mac OS Ventura (Виртуальная машина)	Safari	Да
		OPPO A83, Android 7.1.1	Chrome	Да

Окончание таблицы 1 приложения

№	Название теста	Устройство	Браузер	Тест пройден?
7	Тестирование сравнения	Acer aspire 5, Win-	Chrome	Да
	двух криптовалют на	dows 10		
	графиках	Acer aspire 5, Mac	Safari	Да
		OS Ventura		
		(Виртуальная ма-		
		шина)		
		OPPO A83, Android	Chrome	Да
		7.1.1		
8	Тестирование отображе-	Acer aspire 5, Win-	Chrome	Да
	ния данных по избран-	dows 10		
	ной криптовалюты на	Acer aspire 5, Mac	Safari	Да
	домашней странице	OS Ventura		
		(Виртуальная ма-		
		шина)		
		OPPO A83, Android	Chrome	Да
		7.1.1		