TC	S-301(DS)	339	Printed Pages:
Paper Code & Roll No. to be filled in your Answer Book			
	Roll No.		
:	Odd	Semester Examina	ition-2016
	er-III)		
DISCRETE STRUCTURES			
[Tim	e:3 Hours]	r i	Maximum Marks : 100
Note: All questions are compulsory.			
1.	Attempt an	y four questions:	[5×4=20]
	(a) For a	my Set A & B, prove th	at
•2	P(A)	$\bigcap B) = P(A) \cap P(B)$	
13		roup of 52 persons, 16 o	lrink tea but not coffee
)	(i)	How many drink tea a	and coffee both?
	(ii)	How many drink coffe	ee but not tea?
((if f, g,	er a function $f:A \rightarrow B$ and gof are one to $=f^{-1} \circ g^{-1}$.	
TCS-301(DS)/1440	(1)	[P.T.O.]

- (d) Prove that $A (BUC) = (A B) \cap (A C)$.
- (e) Prove that intersection of two equivalence relations is also an equivalence relation.
- 2. Attempt any four questions: $[5\times4=20]$
 - (a) Show that the set of cube root of unity is an abelian group with respect to multiplication.
 - (b) Show that the set of N natural numbers is a semi group under the operation x*y = max(x, y).
- (c) Prove that the set $G = \{0, 1, 2, 3, 4, 5\}$ is a finite abelian group of order 6 with respect to addition modulo 6 as the composition in G?
 - (d) Prove that the order of each subgroup of finite group G is a divisor of the group G.
 - (e) If (G,*) is a group then prove that $(a*b)^{-1} = a^{-1}*b^{-1}$ where $a,b \in G$.
 - 3. Attempt any two questions: $[10 \times 2=20]$
 - (a) What is meant by Hasse Diagram? Draw the Hasse diagram of relation R on A where $A = \{1,2,3,4\}$ and

TCS-301(DS)/1440 (2)

- Sand

170

 $R = \{(1,1), (1,2), (2,2), (2,4), (1,3), (3,3), (3,4), (3$ (1,4), (4,4)}.

- (b) What is complemented lattice and bounded lattice? Explain by taking a suitable example. (c)
- Prove that the Dual of Lattice is also lattice?

Attempt any two questions:

- (a) Give the symbolic form of the following [10×2=20] statements: 15
 - (i) Some men are genius.
 - (ii) For every x, there is a greater positive integer.
 - (iii) Given any positive integer, there is a greater positive integer.
 - (iv) Everyone who likes fun will enjoy each of these plays.
 - (v) All healthy people eat an apple a day.
- Differentiate between tautology and contradiction. (b)

TCS-301(DS)/1440

(3)

- Given that the value of $p \rightarrow q$ is false, determine the value of $(-p \lor -q) \rightarrow q$? (c) [10×2=20]
- Attempt any two questions: 5.
 - Solve the recurrence relation $y_{n+2}^{-2}y_{n+1}^{+}+y_n^{-2}0$ by using generating function with the boundary (a) condition y0=2, y1=4.
- Show that Maximum number of edges in a simple graph with n vertices is n(n-1)/2? (b) 16
 - Prove that by mathematical induction that 6ⁿ⁺²+7²ⁿ⁺¹ is divisible by 43 for each positive integer. (c)

TCS-301(DS)/1440

(4)