Colorações próprias: um estudo aprofundado

Autores: Gabriel Souza, Jonathan Melo

Orientador: Prof. Celso A. Weffort-Santos

14 de abril de 2020

1 Introdução

Nesta seção serão mostrados os conceitos iniciais sobre grafos, os objetivos procurados durante a pesquisa sobre o tema, a justificativa para o tema escolhido, bem como a notação que será usada durante o documento para a descrição dos conceitos. Para os demais conceitos e notações não definidos neste documento, indicamos ao leitor o livro "Graph Theory" de J. Bondy e U. S. R. Murty [1]

A ideia inicial do que hoje se tornou um dos grandes estudos da área da matemática e tecnologia partiu de Leonhard Euler (1707 –1783) matemático e físico suíço que teve sua motivação para a criação do problema das Sete Pontes de Königsberg.

A cidade de Königsberg (após 1946 chamada de Kaliningrado) é uma cidade russa onde em uma parte do seu território existe um rio que separa a cidade em duas áreas. No decorrer desse rio existiam 7 pontes conectando as duas áreas da cidade formando algo parecido com a imagem que podemos ver na Figura 1.

A motivação de Euler veio a partir de uma discussão feita pelos moradores da cidade, os mesmos argumentavam se era ou não possível atravessar todas as pontes sem repetir nenhuma delas durante o trajeto.

Euler provou que era impossível este trajeto e deu início ao primeiro teorema da Teoria de Grafos, antes de introduzirmos os termos técnicos, se fossemos trazer este teorema para o problema das pontes, Euler provou que para que esse caminho fosse possível, cada uma das regiões do mapa precisaria

Figura 1: Mapa das pontes de Königsberg

ter um número par de pontes incidentes a ele. O teorema descrito, levou o nome de Ciclo Euleriano.

Após criado o conceito inicial sobre grafos, um outro matemático introduziu uma nova forma de desenharmos um grafo, William Thomas Tutte (1917-2002) definiu que um grafo poderia ser representado por vértices(pontos) e arestas(linhas), aonde os vértices são interligados por arestas conectados a eles, trazendo esta definição para o problema das sete pontes, definiríamos que ponte do mapa seria uma aresta e cada ilha seria um vértice, tendo sua definição visual parecida com a Figura 2.

1.1 Conceitos técnicos da Teoria de Grafos

Como vimos na seção anterior, após as descobertas de Euler, foram introduzidos novas maneiras de lidarmos com problemas parecidos. Um grafo G é composto por vértices v e arestas e sendo sua composição completa denotada como G(v,e). O número de vértices contidas em um grafo é definido como a Ordem do grafo n e o número de arestas é o seu Tamanho m. Esses conceitos iniciais sobre o tema, podem ser desdobrados em outros conceitos que complementam e inserem novas definições para o grafo.

Figura 2: Grafo das sete pontes de Königsberg

1.1.1 Vizinhança de vértices

Em um grafo G existem os vértices u e v ligados por uma aresta de G, baseado nessas afirmações podemos definir que os vértices u e v são adjacentes ou vizinhos, caso em nosso grafo existissem mais duas vértices ligadas a vértice v sendo elas z e w, poderíamos a partir disso definir que a vizinhança de V é: $n(V)\{u, z, w\}$, representado visualmente na Figura 3.

Figura 3: Representação visual da vizinhança de \boldsymbol{v}

1.1.2 Grau de vértices

Em um grafo G contendo os vértices $V = \{u, x, w\}$ e as seguintes vizinhanças de vértices $n(u) = \{x, w\}$, $N(x) = \{u\}$ e $N(w) = \{u\}$. Definimos que o grau de um vértice é o número de arestas incidentes nele e é denotado como d(v), baseado nessa condições e utilizando o exemplo criado, denotaríamos o grau de u como d(u) = 2, d(x) = 1 e d(w) = 1, visto que baseado em nossa vizinhança esse é o número de arestas incidentes em cada um de nossos vértices.

1.2 Coloração própria de vértices em grafos

Sendo esse o tema escolhido para as nossas pesquisas, a definição do problema diz que para termos uma coloração própria dentro de um grafo, vértices que são adjacentes não podem ter a mesma cor. Desta maneira podemos definir também um número cromático para o nosso grafo denotado de $\chi(G)$, número esse que é definido como o menor número de cores possíveis para pintar um grafo de forma que cumpramos todas as regras definidas para um grafo com coloração própria. Um grafo G é considerado k-Colorivel, se pudermos dentro dele usar um número k de cores para sua coloração sem que afetemos a regra da coloração própria.

1.2.1 História e o problema das quatro cores

Antes de introduzirmos a motivação para o problema da coloração própria, é preciso definir o conceito de um grafo planar, visto que este tipo de grafo foi a motivação inicial para a criação da primeira definição da coloração própria de grafo. Um grafo G é considerado planar se puder ser desenhado no plano sem que nenhuma de suas arestas se cruzem, exemplo de um grafo planar existente na Figura 4.

A primeira ideia de coloração própria se deu em 1852 aonde o matemático Francis Guthrie criou a teoria que para todo mapa o número mínimo de cores necessárias para pinta-lo para que nenhuma de suas regiões que partilhassem fronteiras fossem pintadas da mesma cor era sempre quatro [2].

Em 1879 Alfred Bray Kempe publicou a primeira suposta solução para a teoria das quatro cores em um trecho do livro intitulado de "On the geographical problem of the four colors" [3], solução essa que foi considerada incorreta por Percy Heawood em 1890, que também foi o criador do teorema

das Cinco cores, e provou a veracidade do mesmo em seu livro publicado em 1890 chamado de "Map colour theorem" [4].

Figura 4: Grafo planar

Apesar de ser considerado incorreta a teoria de Kempe, ela foi grande influenciadora para que em 1977 Kenneth Appel (1932-2013) e Wolfgang Haken(1928) com o auxílio do uso de um computador, provassem novamente que a teoria das quatro cores era correta. As informações desses resultados podem ser encontradas nos artigos "Every planar map is four colorable. Part I. Discharging, [5] " e "Every planar map is four colorable. Part II. Reducibility, [6] "

Os mapas estudados por esses matemáticos são considerados mapas que podem ser representados por um grafo, o nome que esse grafo leva é grafo dual.

Figura 5: Exemplo de grafo Dual

1.2.2 Complexidade da solução

Nos problemas envolvendo coloração própria de vértices, encontrar um número k de cores possíveis é mais simples do que encontrar $\chi(G)$, visto que se tivermos n vértices podemos ter que k=n e ter uma cor para cada vértice

do grafo. Baseado nessa afirmação podemos concluir que a maior dificuldade para este tema é encontrar o número cromático da instância ou o menor número de cores possível, transformando este tema em um problema computacional extremamente difícil aonde validar uma solução é simples porém achar uma solução se torna muito difícil. Validar uma solução como citado acima nos casos de coloração própria é simples pois baseado na instância que nos foi dada, podemos validar todos os vértices adjacentes a ele de forma rápida, validando se eles tem ou não a mesma cor. Já para criarmos uma solução isso se torna extremamente difícil, dado um grafo G aonde $V(G) = \{v_1, V_n\}$, para encontrar a solução com o melhor número cromático desta instância devemos validar todas as situações e adjacências de todos os vértices do grafo, para isso normalmente são utilizados algoritmos de busca que serão citados e explicados posteriormente.

1.2.3 Aplicação reais do tema

Neste tópico iremos descrever algumas aplicações no nosso dia aonde o auxílio do conceito de coloração própria de grafos seria útil para encontrarmos a melhor solução para o problema escolhido. Os Exemplos citados foram adaptados do autor Atílio Gomes Luiz em sua apresentação sobre coloração de grafos intitulada de "Coloração de grafos e suas aplicações [7]".

- Organização de provas de uma universidade. Um dos melhores de exemplo do uso da coloração própria em aplicações reais é na organização de provas de uma universidade aonde é necessário que duas disciplinas que contiverem alunos em comum não podem ter suas provas agendadas no mesmo horário, levando-nos a seguinte pergunta, qual seria o menor número de horários que a universidade teria de usar para aplicar todas as provas respeitando as regras da instância?
- Organizações de produtos químicos em uma indústria. Em uma indústria química existem n produtos, aonde muitos deles compartilham o mesmo tipo de composição, produtos esses que não podem ser colocados juntos devido a possibilidade de que uma reação química estragassem os mesmos. Baseado nessa instância, qual seria o menor número de compartimentos possíveis para guardar esses produtos de forma que produtos com a mesma composição não podem ser colocados juntos. Para organizar a possível coloração própria dessa situação

e definir o seu grafo, primeiro teríamos que abstrair as informações dadas e transforma-las para a estrutura de um grafo. Nesse caso iriamos definir que cada composto iria ser um vértice e compostos que colocados juntos poderiam executar uma reação química estariam ligados por uma aresta, baseado nisso poderíamos descobrir qual seria o menor numero de cores usadas para colorir o grafo e voltando para o nosso problema inicial poderíamos descobrir o menor numero de compartimentos possíveis para guarda esses produtos.

1.2.4 Algoritmos de coloração conhecidos

Nesta seção iremos mostrar conceitos de algoritmos conhecidos que auxiliam na obtenção da melhor solução para uma instância de coloração própria, visto que a complexidade deste problema é extremamente difícil, a maioria de seus algoritmos são baseados na premissa da busca incansável, aonde iremos executar todas as situações da instância a fim de no final separar a melhor delas.

- Força bruta. Dado um grafo G simples onde $V(G) = \{v_1, ... V_N, \}$ o algoritmo de força bruta com o objetivo de buscar um k-coloração iria verificar cada uma das Kn atribuições possíveis verificando se cada uma delas está correta. Em uma instância pequena do problema, o algoritmo de força bruta encontraria o resultado de forma relativamente rápida, porém se consideramos que quanto maior a instância do problema maior seria a quantidade de atribuições que deverão ser testadas, esse algoritmo se torna inutilizável e computacionalmente inviável.
- Algoritmo guloso. O algoritmo guloso é aquele que faz sempre a melhor escolha local minimizada, esperando que essa escolha se torne também a melhor escolha em um estado global da instância do problema. Este algoritmo sempre irá trazer a solução para o problema, porém esta solução não necessariamente é a melhor possível, e sim a melhor que o algoritmo encontrou dado as suas condições de busca.
- Algoritmo de Welsh-Powell. Como citado no livro "Algoritmos e heurísticas Desenvolvimento e avaliação de performance" escrito por Ruy Eduardo Campello e Nelson Maculan [8] o algoritmo de Welsh-Powell foi criado em 1976 e é um algoritmo guloso que visa a obtenção inicial do grau de cada vértice do grafo e ordenação dos mesmos em

ordem decrescente do seu grau. Com base nisso sabemos que dado essa ordenação será associado uma cor para o primeiro vértice da lista de vértices ordenados, e também aos próximos vértices da lista que não são adjacentes aos vértices já coloridos com a primeira cor selecionada. Será feito este mesmo processo para os próximos vértices que ainda não foram coloridos, porém agora usando a próxima cor.

1.3 Objetivos

O tema dessa pesquisa é muito amplo e completo, de forma que seus conhecimentos se desdobram em várias áreas da ciência da computação e matemática. O objetivo deste projeto é o estudo teórico de várias técnicas e conceitos presentes na literatura. Ademais, deseja-se o avanço científico do estudo do tema, propondo novos resultados em colorações de grafos, seja em algoritmos ou em propriedades estruturais. Alguns objetivos pontuais são descritos em seguida.

- 1. Desenvolver o conhecimento e a desenvoltura na área da matemática discreta, com aplicações em Teoria de Grafos e, especificamente, na área de colorações próprias de grafos.
- 2. Criar a capacidade de reconhecer o estado da arte, através da leitura de artigos científicos publicados em periódicos de renome, pesquisando a literatura vigente e identificando problemas em aberto no tópico.
- 3. Conhecer e estudar os principais resultados teóricos na área de colorações de grafos, como, por exemplo, o Teorema das Quatro Cores, a equivalência de bipartição, o Teorema de Brooks [9], entre outros.

2 Material e métodos

No desenvolvimento desse projeto, serão necessários um ambiente para estudo e para as reuniões com o orientador, e acesso às bibliotecas física e digital, para possíveis consultas.

Os estudos serão realizados em dupla, com o auxílio do orientador durante nossas reuniões semanais para alinhamentos do projeto e para sanar possíveis dúvidas. Toda semana, o orientador se compromete a levantar questionamentos sobre o andamento do projeto, os resultados alcançados durante

a semana e as metas de pesquisa para a próxima. Por fim, ressaltamos que o projeto será desenvolvido em conjunto com a disciplina teórica J702 - Teoria de Grafos, do qual o orientador é o professor. Portanto, o projeto de pesquisa permitirá que os alunos abordem com mais profundidade os conceitos expostos em sala de aula, além de ter contato com outras áreas da Teoria da Computação.

É importante informar que, em virtude do COVID-19 e de acordo com as normas impostas pelo Governo do Estado de São Paulo e pelo Ministério da Saúde, as reuniões semanais serão realizadas utilizando plataformas online como Zoom, Google Meet e/ou Discord.

Referências

- [1] J. Bondy and U. S. R. Murty. *Graph Theory*, volume 4 of *Graduate texts in mathematics*. Springer, New York, London, 2008. OHX.
- [2] Robin Thomas. The four color theorem. https://people.math.gatech.edu/~thomas/FC/fourcolor.html, Novembro 1995. Acessado em 14 de abril de 2020.
- [3] A. B. Kempe. On the geographical problem of the four colors, volume 2. The Johns Hopkins University Press, London, 1879.
- [4] P.J. Heawood. *Map colour theorem*, volume 24. Quart. J. Pure Appl. Math, 1890.
- [5] K. Appel and W. Haken. Every planar map is four colorable. part i. discharging. *Illinois J. Math. 21*, pages 429–490, 1977.
- [6] K. Appel and W. Haken. Every planar map is four colorable. part ii. reducibility. *Illinois J. Math.* 21, pages 491–567, 1977.
- [7] Atılio Gomes Luiz. Coloração de grafos e suas aplicações. https://www.ic.unicamp.br/~atilio/slidesWtisc.pdf, Maio 2015. Acessado em 14 de abril de 2020.
- [8] Ruy Eduardo Campello and Nelson Maculan. Algoritmos e heurísticas Desenvolvimento e avaliação de performance, volume 1. Eduff, 1994.

[9] R. L. Brooks. On colouring the nodes of a network. *Mathematical Proceedings of the Cambridge Philosophical Society*, 37:194–197, 1941.