Name:	

MATH 308 Fall 2023

HW 7: Due 10/05

"Since, as is well known, God helps those who help themselves, presumably the Devil helps all those, and only those, who don't help themselves. Does the Devil help himself?"

-Douglas Hofstadter

Problem 1. (10pt) For each of the following, if a Venn diagram is given, then express the shaded region as a set or set operation, and if a set operation is given, express the given set with a Venn diagram:

(a)

(c)

(b) $(A \cap B) \cup (A \cup B)^c$

(d) $(A \setminus C) \cap B$

Problem 2. (10pt) We shall create a new mathematical term: let A, B be sets. We say A is a *pseudo-subset* of B, written $A \sqsubseteq B$, if there is an element of A that is also an element of B and also an element of A that is not an element of B.

- (a) We know if S is a set, then $\varnothing \subseteq S$. Is the same true for *pseudo-subsets*? That is, do we have $\varnothing \sqsubseteq S$ for all sets S? Explain.
- (b) If A is a pseudo-subset of B, are A and B disjoint? Explain.
- (c) Express the definition of being a *pseudo-subset* as a quantified logical statement.
- (d) If what it means for $A \not \subset B$ by negating your expression in (c). Write this quantified statement as a complete English sentence.

a correct, logically sound proof with 'no gaps.' **Proposition.** If A, B, C are sets, then $A \cap (B - C) = (A \cap B) - (A \cap C)$. *Proof.* To prove that $A \cap (B - C) = (A \cap B) - (A \cap C)$, we need to show and If $A \cap (B - C) = \emptyset$ or $(A \cap B) - (A \cap C) = \emptyset$, then $\emptyset = A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$ and $\emptyset = (A \cap B) - (A \cap C) \subseteq A \cap (B - C)$, respectively. Assume neither $A \cap (B - C)$ nor $(A \cap B) - (A \cap C)$ are empty. $A \cap (B-C) \subseteq (A \cap B) - (A \cap C)$: Let $x \in \underline{\hspace{1cm}}$ and _____. Because $x \in B - C$, we know that _____ and ____. But then $x \in A$ and $x \in B$ so that . Now $x \in A$ but $x \notin A$ so that $x \notin$ _____. This shows that $x \in (A \cap B) - (A \cap C)$. Therefore, _____. $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$: Let $x \in (A \cap B) - (A \cap C)$. Then $x \in \underline{\hspace{1cm}}$ and $x \notin A \cap C$. Because $x \in A \cap B$, we know that $x \in \underline{\hspace{1cm}}$ and $x \in \underline{\hspace{1cm}}$. Because $x \notin A \cap C$, we know that $x \notin \underline{\hspace{1cm}}$ or $x \notin \underline{\hspace{1cm}}$. But because $x \in A$, it must be that $x \notin C$, we know that $x \in \underline{\hspace{1cm}}$ and $x \in \underline{\hspace{1cm}}$, so that $x \in A \cap (B - C)$. Therefore, _____. Because _____ and _____, we know that $A \cap (B-C) = (A \cap B) - (A \cap C)$. \square

Problem 3. (10pt) Below is a partial proof of the fact that if A, B, C are sets, then $A \cap (B - C) = (A \cap B) - (A \cap C)$. By filling in the missing portions, complete the partial proof below so that it is

Problem 4. (10pt) Let A, B be sets, not necessarily nonempty. Complete the following parts:

- (a) Is possible for A B = B A? Explain.
- (b) If $A \not\subseteq B$, does this imply that A is a proper subset of B? Explain.
- (c) If A, B are not disjoint, does this imply there is an element $x \in A$ and $x \in B$? Explain.
- (d) Is it possible for $A \subseteq A^c$? Explain.