Continuous Distributions

Distribution	pdf	Mean	Variance	R function
$Beta(\alpha, \beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}; x \in [0,1]; \alpha > 0, \beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	rbeta
$\operatorname{Gamma}(\alpha,\beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}; x>0; \alpha>0; \beta>0$	$\frac{\alpha}{\beta}$	$\frac{lpha}{eta^2}$	rgamma
$\operatorname{Exponential}(\lambda)$	$\lambda e^{-\lambda x}; x \ge 0; \lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	rexp
$Normal(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}; x \in \mathbb{R}; \mu \in \mathbb{R}; \sigma^2 > 0$	μ	σ^2	rnorm
$\mathrm{Uniform}(a,b)$	$\tfrac{1}{b-a}; x \in [a,b]; -\infty < a < b < \infty$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	runif

Discrete Distributions

Distribution	pmf	Mean	Variance	R function
Bernoulli(p)	$p^x(1-p)^{1-x}; x \in \{0,1\}; p \in [0,1]$	p	p(1 - p)	rbinom(size = 1)
$\operatorname{Binomial}(n,p)$	$\binom{n}{x}p^x(1-p)^{n-x}; x \in \{0,1,\ldots,n\}; p \in [0,1]$	np	np(1-p)	rbinom
Discrete $\operatorname{Uniform}(N)$	$\frac{1}{N}; x \in \{1, \dots, N\}; N \in \mathbb{N}$	$\frac{N+1}{2}$	$\frac{N^2-1}{12}$	sample
Geometric(p)	$(1-p)^{x-1}p; x \in \{1, 2, 3, \dots\}; p \in [0, 1]$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	rgeom
$\mathrm{Poisson}(\lambda)$	$\frac{\lambda^x e^{-\lambda}}{x!}; x \in \{0, 1, 2, \dots\}; \lambda > 0$	λ	λ	rpois