import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline sns.set(style="ticks") from sklearn.impute import SimpleImputer from sklearn.impute import MissingIndicator import scipy.stats as stats from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import RobustScaler from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC from google.colab import drive

data = pd.read_csv("/content/house_sales.csv")

data.head()

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	
0	1	60	RL	65.0	8450	Pave	NaN	Reg	LvI	
1	2	20	RL	80.0	9600	Pave	NaN	Reg	LvI	
2	3	60	RL	68.0	11250	Pave	NaN	IR1	LvI	
3	4	70	RL	60.0	9550	Pave	NaN	IR1	LvI	
4	5	60	RL	84.0	14260	Pave	NaN	IR1	LvI	
5 rows × 81 columns										
4									>	

data = data.drop('Id', 1)
data.head()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: In a fut an IPython kernel.

Сохранено

удаление колонок с высоким процентом пропусков (более 25%) data.dropna(axis=1, thresh=1095)

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utilit
0	60	RL	65.0	8450	Pave	Reg	Lvl	All
1	20	RL	80.0	9600	Pave	Reg	Lvl	All
2	60	RL	68.0	11250	Pave	IR1	Lvl	All
3	70	RL	60.0	9550	Pave	IR1	Lvl	All
4	60	RL	84.0	14260	Pave	IR1	Lvl	All
• • •	•••	•••	•••				•••	
1455	60	RL	62.0	7917	Pave	Reg	Lvl	All
1456	20	RL	85.0	13175	Pave	Reg	Lvl	All
1457	70	RL	66.0	9042	Pave	Reg	Lvl	All
1458	20	RL	68.0	9717	Pave	Reg	Lvl	All
1459	20	RL	75.0	9937	Pave	Reg	LvI	All

1460 rows × 75 columns

Заполним пропуски средними значениями
def impute_na(df, variable, value):
 df[variable].fillna(value, inplace=True)
impute_na(data, 'LotFrontage', data['LotFrontage'].mean())

data.describe()

```
LotArea OverallQual OverallCond
                                                                                  YearBuilt
 Сохранено
                                         1460.000000 1460.000000
                                                                  1460.000000 1460.000000
               56.897260
                            70.049958
                                        10516.828082
                                                         6.099315
                                                                      5.575342 1971.267808
      mean
       std
              42.300571
                            22.024023
                                         9981.264932
                                                         1.382997
                                                                      1.112799
                                                                                  30.202904
              20.000000
                            21.000000
                                         1300.000000
                                                         1.000000
                                                                      1.000000 1872.000000
      min
               20.000000
      25%
                                         7553.500000
                            60.000000
                                                         5.000000
                                                                      5.000000 1954.000000
def obj_col(column):
    return column[1] == 'object'
col names = []
for col in list(filter(obj_col, list(zip(list(data.columns), list(data.dtypes))))):
  col_names.append(col[0])
col_names.append('SalePrice')
X_ALL = data.drop(col_names, axis=1)
# Функция для восстановления датафрейма
# на основе масштабированных данных
def arr_to_df(arr_scaled):
    res = pd.DataFrame(arr scaled, columns=X ALL.columns)
    return res
# Разделим выборку на обучающую и тестовую
X_train, X_test, y_train, y_test = train_test_split(X_ALL, data['SalePrice'],
                                                     test_size=0.2,
                                                     random_state=1)
# Преобразуем массивы в DataFrame
X_train_df = arr_to_df(X_train)
X_test_df = arr_to_df(X_test)
X_train_df.shape, X_test_df.shape
     ((1168, 36), (292, 36))
```

→ StandardScaler

```
# Обучаем StandardScaler на всей выборке и масштабируем cs11 = StandardScaler()
data_cs11_scaled_temp = cs11.fit_transform(X_ALL)
# формируем DataFrame на основе массива
data_cs11_scaled = arr_to_df(data_cs11_scaled_temp)
data_cs11_scaled
```

	MCChClass	Latenantasa	LotArea	OverallQual	OverallCond	YearBuilt	YearRemod
Сохранено		×	-0.207142	0.651479	-0.517200	1.050994	0.878
1	-0.872563	0.451936	-0.091886	-0.071836	2.179628	0.156734	-0.429
2	0.073375	-0.093110	0.073480	0.651479	-0.517200	0.984752	0.830
3	0.309859	-0.456474	-0.096897	0.651479	-0.517200	-1.863632	-0.720
4	0.073375	0.633618	0.375148	1.374795	-0.517200	0.951632	0.733
•••							
1455	0.073375	-0.365633	-0.260560	-0.071836	-0.517200	0.918511	0.733
1456	-0.872563	0.679039	0.266407	-0.071836	0.381743	0.222975	0.151
1457	0.309859	-0.183951	-0.147810	0.651479	3.078570	-1.002492	1.024
1458	-0.872563	-0.093110	-0.080160	-0.795151	0.381743	-0.704406	0.539
1459	-0.872563	0.224833	-0.058112	-0.795151	0.381743	-0.207594	-0.962

1460 rows × 36 columns


```
# Построение плотности распределения

def draw_kde(col_list, df1, df2, label1, label2):
    fig, (ax1, ax2) = plt.subplots(
        ncols=2, figsize=(12, 5))
    # первый график
    ax1.set_title(label1)
    sns.kdeplot(data=df1[col_list], ax=ax1)
    # второй график
    ax2.set_title(label2)
    sns.kdeplot(data=df2[col_list], ax=ax2)
    plt.show()
```

draw_kde(['LotFrontage', 'LotArea', 'OverallCond'], data, data_cs11_scaled, 'До масштабирован

Масштабирование "Mean Normalisation"

```
1 1
                                                              HA.
# Разделим выборку на обучающую и тестовую
X_train, X_test, y_train, y_test = train_test_split(X_ALL, data['SalePrice'],
                                                     test size=0.2,
                                                     random_state=1)
# Преобразуем массивы в DataFrame
X_train_df = arr_to_df(X_train)
X_test_df = arr_to_df(X_test)
X_train_df.shape, X_test_df.shape
     ((1168, 36), (292, 36))
class MeanNormalisation:
    def fit(self, param_df):
        self.means = X train.mean(axis=0)
        maxs = X_train.max(axis=0)
        mins = X train.min(axis=0)
        self.ranges = maxs - mins
    def transform(self, param df):
        param_df_scaled = (param_df - self.means) / self.ranges
        return param df scaled
    def fit_transform(self, param_df):
        self.fit(param_df)
        return self.transform(param_df)
sc21 = MeanNormalisation()
data_cs21_scaled = sc21.fit_transform(X_ALL)
data_cs21_scaled.describe()
```

	MCChClass	1 at [e	LotArea	OverallQual	OverallCond	YearBuilt	Yea
Сохранено		\times 0	1460.000000	1460.000000	1460.000000	1460.000000	14
mean	0.000962	-0.000452	-0.000119	-0.003900	-0.003058	-0.003544	
std	0.248827	0.075425	0.046653	0.153666	0.158971	0.218862	
min	-0.216081	-0.168431	-0.043200	-0.570491	-0.656678	-0.722876	
25%	-0.216081	-0.034869	-0.013970	-0.126046	-0.085250	-0.128673	
50%	-0.039610	-0.000452	-0.004973	-0.014935	-0.085250	0.009008	
75%	0.078037	0.030199	0.004951	0.096176	0.057608	0.204661	
max	0.783919	0.831569	0.956800	0.429509	0.486179	0.277124	

cs22 = MeanNormalisation()

cs22.fit(X_train)

data_cs22_scaled_train = cs22.transform(X_train)

data_cs22_scaled_test = cs22.transform(X_test)

data_cs22_scaled_train.describe()

	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt
count	1.168000e+03	1.168000e+03	1.168000e+03	1.168000e+03	1.168000e+03	1.168000e+03
mean	-2.932396e-17	6.185596e-17	-2.008002e-18	2.690010e-17	2.934772e-17	7.174151e-16
std	2.475340e-01	7.707084e-02	4.616115e-02	1.522067e-01	1.587482e-01	2.195064e-01
min	-2.160808e-01	-1.684311e-01	-4.319969e-02	-5.704909e-01	-5.138209e-01	-7.228757e-01
25%	-2.160808e-01	-3.486947e-02	-1.422028e-02	-1.260464e-01	-8.524951e-02	-1.286728e-01
50%	-3.961019e-02	-4.518024e-04	-4.865072e-03	-1.493531e-02	-8.524951e-02	1.625472e-02
75 %	7.803687e-02	3.019903e-02	5.045185e-03	9.617580e-02	5.760763e-02	2.119069e-01
max	7.839192e-01	8.315689e-01	9.568003e-01	4.295091e-01	4.861791e-01	2.771243e-01

8 rows × 36 columns

draw_kde(['LotFrontage', 'LotArea', 'OverallCond'], data, data_cs21_scaled, 'До масштабирован

draw_kde(['LotFrontage', 'LotArea', 'OverallCond'], data_cs22_scaled_train, data_cs22_scaled_

▼ МіпМах-масштабирование

```
# Обучаем StandardScaler на всей выборке и масштабируем cs31 = MinMaxScaler()
data_cs31_scaled_temp = cs31.fit_transform(X_ALL)
# формируем DataFrame на основе массива
data_cs31_scaled = arr_to_df(data_cs31_scaled_temp)
data_cs31_scaled.describe()
```

	MCChClass	-te	LotArea	OverallQual	OverallCond	YearBuilt	Yea
Сохранено		\times p	1460.000000	1460.000000	1460.000000	1460.000000	14
mean	0.217043	0.167979	0.043080	0.566591	0.571918	0.719332	
std	0.248827	0.075425	0.046653	0.153666	0.139100	0.218862	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.133562	0.029229	0.44444	0.500000	0.594203	
50%	0.176471	0.167979	0.038227	0.555556	0.500000	0.731884	
75%	0.294118	0.198630	0.048150	0.666667	0.625000	0.927536	

```
cs32 = MinMaxScaler()
cs32.fit(X_train)
data_cs32_scaled_train_temp = cs32.transform(X_train)
data_cs32_scaled_test_temp = cs32.transform(X_test)
# формируем DataFrame на основе массива
data_cs32_scaled_train = arr_to_df(data_cs32_scaled_train_temp)
data_cs32_scaled_test = arr_to_df(data_cs32_scaled_test_temp)
```

draw_kde(['LotFrontage', 'LotArea', 'OverallCond'], data, data_cs31_scaled, 'До масштабирован

draw_kde(['LotFrontage', 'LotArea', 'OverallCond'], data_cs32_scaled_train, data_cs32_scaled_

Обработка выбросов для числовых признаков

data2 = pd.read_csv("/content/Car_sales.csv")

data2.head()

	Manufacturer	Model	Sales_in_thousands	year_resale_value	Vehicle_type	Price_i
0	Acura	Integra	16.919	16.360	Passenger	_
1	Acura	TL	39.384	19.875	Passenger	
2	Acura	CL	14.114	18.225	Passenger	
3	Acura	RL	8.588	29.725	Passenger	
4	Audi	A4	20.397	22.255	Passenger	
7	+					
4						•

-u.∠ u.u

L.U

I.Z

data2.describe()

```
Сохранено
```

```
.c. urugnostre_prots(ur, varrabre, title):
   fig, ax = plt.subplots(figsize=(10,7))
   # гистограмма
   plt.subplot(2, 2, 1)
   df[variable].hist(bins=30)
   ## Q-Q plot
   plt.subplot(2, 2, 2)
   stats.probplot(df[variable], dist="norm", plot=plt)
   # ящик с усами
   plt.subplot(2, 2, 3)
   sns.violinplot(x=df[variable])
   # ящик с усами
   plt.subplot(2, 2, 4)
   sns.boxplot(x=df[variable])
   fig.suptitle(title)
   plt.show()
```

diagnostic_plots(data2, 'Sales_in_thousands', 'Sales_in_thousands - original')

Sales_in_thousands - original

diagnostic_plots(data2, 'Fuel_capacity', 'Fuel_capacity - original')


```
from enum import Enum

class OutlierBoundaryType(Enum):

SIGMA = 1

QUANTILE = 2

IRQ = 3

# Функция вычисления верхней и нижней границы выбросов def get_outlier_boundaries(df, col):

lower_boundary = df[col].quantile(0.05)

upper_boundary = df[col].quantile(0.95)

return lower_boundary, upper_boundary
```

Тип вычисления верхней и нижней границы выбросов

Удаление выбросов (number_of_reviews)

Поле-Sales in thousands, метод-QUANTILE, строк-141

Замена выбросов

√ Обработка нестандартного признака

data2.dtypes

Manufacturer	object
Model	object
Sales_in_thousands	float64
year_resale_value	float64
Vehicle_type	object
Price_in_thousands	float64
Engine_size	float64
Horsepower	float64
Wheelbase	float64
Width	float64
Length	float64
Curb_weight	float64
Fuel_capacity	float64
Fuel_efficiency	float64
Latest_Launch	object
Power_perf_factor	float64
dtype: object	

Сконвертируем дату и время в нужный формат data2["Latest_Launch_Date"] = data2.apply(lambda x: pd.to_datetime(x["Latest_Launch"], format

data2.head(5)

Man	Castinan	Madal Calaa	_in_thousands	year_resale_value	Vehicle_type	Price_i
Сохранено		×	16.919	16.360	Passenger	
1	Acura	TL	39.384	19.875	Passenger	
2	Acura	CL	14.114	18.225	Passenger	
3	Acura	RL	8.588	29.725	Passenger	
4	Audi	A4	20.397	22.255	Passenger	

data2.dtypes

```
Manufacturer
                               object
Model
                              object
Sales_in_thousands
                              float64
                              float64
__year_resale_value
Vehicle_type
                              object
Price_in_thousands
                              float64
Engine_size
                              float64
                              float64
Horsepower
Wheelbase
                              float64
Width
                              float64
                              float64
Length
                              float64
Curb_weight
                              float64
Fuel_capacity
Fuel_efficiency
                              float64
Latest_Launch
                              object
Power_perf_factor
                              float64
Latest_Launch_Date datetime64[ns]
dtype: object
```

```
# День
data2['Latest_Launch_Day'] = data2['Latest_Launch_Date'].dt.day
# Месяц
data2['Latest_Launch_Month'] = data2['Latest_Launch_Date'].dt.month
# Год
data2['Latest_Launch_Year'] = data2['Latest_Launch_Date'].dt.year
```

Отбор признаков

✓ Метод фильтрации (Корреляция признаков)

```
sns.heatmap(data.corr(), annot=True, fmt='.3f')
```

```
<matplotlib.axes. subplots.AxesSubplot at 0x7fe22a113d90>
 Сохранено
                                                               0.8
       rearkemodAdd
         BsmtFinSF1
                                                              - 0.6
          BsmtUnfSF
            1stFIrSF
       LowQualFinSF
                                                              - 0.4
        BsmtFullBath
            FullBath
                                                              - 0.2
      BedroomAbvGr
       TotRmsAbvGrd
         GarageYrBlt
                                                              - 0.0
         GarageArea
        OpenPorchSF
                                                              - −0.2
          3SsnPorch
           PoolArea
             MoSold
                                                PorchSF
                                    FullBath
                                1stFIrSF
                                      FullBath
                              ntUnfSF
# Формирование DataFrame с сильными корреляциями
def make_corr_df(df):
    cr = data.corr()
    cr = cr.abs().unstack()
    cr = cr.sort_values(ascending=False)
    cr = cr[cr >= 0.3]
    cr = cr[cr < 1]
    cr = pd.DataFrame(cr).reset index()
    cr.columns = ['f1', 'f2', 'corr']
    return cr
# Обнаружение групп коррелирующих признаков
def corr_groups(cr):
    grouped_feature_list = []
    correlated groups = []
    for feature in cr['f1'].unique():
         if feature not in grouped_feature_list:
             # находим коррелирующие признаки
             correlated block = cr[cr['f1'] == feature]
             cur_dups = list(correlated_block['f2'].unique()) + [feature]
             grouped feature list = grouped feature list + cur dups
             correlated_groups.append(cur_dups)
    return correlated groups
# Группы коррелирующих признаков
corr groups(make corr df(data))
     [['GarageArea',
        'SalePrice',
        'OverallQual',
        'GarageYrBlt',
        'YearBuilt',
```

```
'FullBath',
Сохранено
       'YearRemodAdd',
       'MasVnrArea',
       'TotRmsAbvGrd',
       'Fireplaces',
       'GarageCars'],
      ['GrLivArea',
       'TotRmsAbvGrd',
       'HalfBath',
       'BedroomAbvGr',
       'FullBath',
       'SalePrice',
       'MSSubClass',
       '2ndFlrSF'],
      ['BsmtFullBath',
        'TotalBsmtSF',
       'BsmtUnfSF',
       '1stFlrSF',
       'SalePrice',
       'BsmtFinSF1'],
      ['1stFlrSF',
       'GrLivArea',
       'TotalBsmtSF',
       'MSSubClass',
       'SalePrice',
       'GarageArea',
       'TotRmsAbvGrd',
       'LotArea',
       'LotFrontage'],
      ['YearBuilt', 'EnclosedPorch'],
['YearBuilt', 'GarageYrBlt', 'OverallCond'],
['GrLivArea', 'SalePrice', 'OverallQual', 'OpenPorchSF'],
      ['SalePrice', 'WoodDeckSF']]
```

✓ Метод из группы методов вложений

```
Сохранено
```

```
array([[ 8.12685010e-01,
                              1.13666762e+01, 7.82623669e+00,
                              2.20854445e+00, -8.14499398e-02,
              2.73003859e-01,
             -6.07359291e-02, -9.71364320e+00, 1.05928330e+01,
             -3.02935401e+00, -3.49793957e+00, 4.48070237e-03],
            [-1.70947991e-02, 3.42135554e+00, -1.21007833e-01,
              8.32452278e-02, 3.20689559e+00, 1.03669460e-02,
             -1.25693925e-02, -5.18479271e+00, 2.46658035e+00,
              9.88462824e-01, -2.04766665e-01, -4.73535890e-04],
            [-1.50633685e-01, 1.93721323e+00, 1.12321685e+00,
              1.01141678e-02, 1.55206374e+00, -1.74615115e-02,
              1.48826890e-02,
                              5.10001726e+00, -2.81228295e-02,
             -2.62509731e+00, -9.26899115e-01, 5.26799951e-05],
            [ 1.90322225e-01, -1.79843954e+00, -2.04300613e+00,
             -4.72955643e-02, 2.58455381e+00, 1.21352411e-02,
             -7.83754176e-03, -2.99949432e+00, 9.79232831e-01,
              8.78802257e-01, 2.38635326e-01, 1.63131072e-04],
            [-2.89452663e-02, -3.07001091e+00, 1.47490514e+00,
              7.64831115e-02, -1.76133253e+01, 2.58137752e-02,
             -2.04458316e-02, -3.51585085e+00, -1.28269840e+00,
              2.73049298e+00, 8.81957513e-01, -5.47347256e-04],
            [-5.95096357e-01, 3.04283371e+00, 3.41733495e+00,
             -1.83182731e-01, -3.51167880e+01, -2.83696795e-02,
             -2.51328328e-02, 7.93053290e+00, -9.85694602e+00,
              3.86988223e+00, 1.26366792e+00, 6.15531404e-04]])
# Все признаки являются "хорошими"
from sklearn.feature selection import SelectFromModel
sel e lr1 = SelectFromModel(e lr1)
sel e lr1.fit(X3 train, y3 train)
sel e lr1.get support()
     array([ True, True, True, True, True, True, True, True,
                                                                   True,
            True, True, True])
e_lr2 = LinearSVC(C=0.01, penalty="l1", max_iter=2000, dual=False)
e lr2.fit(X3 train, y3 train)
# Коэффициенты регрессии
e 1r2.coef
     array([[ 0.00000000e+00, 0.00000000e+00,
                                               0.00000000e+00,
              0.00000000e+00,
                              0.00000000e+00,
                                               0.00000000e+00,
             -4.11591571e-03,
                              0.00000000e+00,
                                               0.00000000e+00,
              0.00000000e+00, -8.74404725e-02,
                                               2.16193629e-05],
            [-3.25616265e-02,
                              0.00000000e+00,
                                               0.00000000e+00,
              0.00000000e+00, 0.0000000e+00,
                                               0.00000000e+00,
             -1.53901281e-03, 0.00000000e+00,
                                               0.00000000e+00,
              0.00000000e+00, -5.09619360e-02, -7.57493371e-05],
            [ 5.37467586e-03, 0.00000000e+00, 0.00000000e+00,
              0.00000000e+00, 0.00000000e+00, -1.01440612e-02,
```

```
9.75223363e-03,
                              0.00000000e+00, 2.67873814e-01,
                                  325110e-01, 6.66630972e-05],
                               > 300000e+00, 0.00000000e+00,
 Сохранено
                                  300000e+00,
                                               8.03363371e-03,
            -6.31234283e-03,
                              0.00000000e+00,
                                               0.00000000e+00,
             0.00000000e+00,
                              0.00000000e+00,
                                              1.50657492e-05],
            [-3.14859556e-03,
                              0.00000000e+00,
                                              0.00000000e+00,
             0.00000000e+00,
                              0.00000000e+00,
                                              3.10821666e-03,
                              0.00000000e+00, -2.53546831e-01,
            -4.09581683e-03,
                              3.23765903e-02, -8.18789111e-05],
             0.00000000e+00,
            [-3.59123136e-02,
                              0.00000000e+00, 0.0000000e+00,
             0.00000000e+00,
                              0.00000000e+00, 0.0000000e+00,
            -3.69285024e-03, 0.00000000e+00, 0.00000000e+00,
             0.00000000e+00, -4.93611919e-02, -5.75423620e-05]])
# Признаки с флагом False д.б. исключены
sel_e_lr2 = SelectFromModel(e_lr2)
sel e lr2.fit(X3 train, y3 train)
sel_e_lr2.get_support()
     array([ True, False, False, True, False, True, False, True,
           False, True, True])
```