	<u>Utech</u>
Name :	À
Roll No.:	As Alaman Will consisting and Explained
Inviailator's Signature :	

2013 TRANSPORT PHENOMENA

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) The non-dimensional group that appears in viscous heating problem is
 - a) Brinkman Number
- b) Nusselt Number
- c) Biot Number
- d) None of these.
- ii) Dimensional analysis of Equation of Energy (Heat transfer) results in generating
 - a) Prandtl number and Reynolds number
 - b) Prandtl number and Biot number
 - c) Biot number and Courant number
 - d) Reynolds number and Biot number.

8013 [Turn over

 $\tau + p\delta$

d)

 $\tau + p\delta + \rho u \dot{u}$

viii)	Which of the following fluid forces are not considered in the Navier-Stokes equation?					
	a)	Gravity forces	b)	Viscous forces		
	c)	Pressure forces	d)	Turbulent forces.		
ix)	A_{kl}^{qst} is the component of a mixed tensor of					
	a)	rank 2	b)	rank 6		
	c)	rank 5	d)	rank 3.		
x)	Diagonal component of a unit tensor is					
	a)	unity	b)	0		
	c)	infinity	d)	- 1.		
xi)	Stokes law is valid when the particle's Re No. is					
	a)	greater than 1				
	b)	less than 1				
	c) lies between 1 and 100					
	d)	greater than 100.				
xii)	Flow behaviour index (n) of pseudoplastic fluid is					
	a)	0	b)	< 1		
	c)	> 1	d)	infinity.		
8013		3		[Turn over		

GROUP - B

(Short Answer Type Questions

Answer any three of the following.

 $3 \times 5 = 15$

- 2. A horizontal annulus of 8m length has an inner radius of 0.0125m and an outer radius of 0.0279m. A 60% aqueous solution of sucrose is to be pumped through the annulus at 20°C. At this temperature the solution density is 1286 kg/m³ and viscosity is of 7187.2kg/m-s. Calculate the volumetric flow rate when the pressure difference is 37.162 kPa.
- 3. Parabolic velocity profile for the flow through a vertical circular tube of radius R and length L is given by

$$v_{z} = \frac{\left(\wp_{0} - \wp_{L}\right)R^{2}}{4\mu L} \left[1 - \left(\frac{r}{R}\right)^{2}\right]$$

where, \wp is the combined effect of static pressure and gravity force, μ is the viscosity of the fluid then show that $v_{avg} = \frac{v_{max}}{2}$

- 4. Define boundary layer thickness.
 - Calculate the thickness of the boundary layer at a distance of 75mm from the leading edge of a flat surface over which water at 38° C ($\mu = 1$ cp) is flowing at a velocity 10.67 m/s.
- 5. A 10 cm long copper fin of diameter 6 mm is attached to a vertical wall at 500 K and projected in the room where air is at 300K. The heat transfer coefficient at the fin surface is 30W/m²K and conductivity of the fin material is 390W/mK. Calculate heat loss from fin and fin efficiency.

8013

6. For CO_2 adsorption in a packed tower, mass transfer coefficient is measured as $k = 3.0 \times 10^{-3}$ cm/s. If diffusivity of CO_2 in water is 1.85×10^{-5} cm²/s, calculate average contact time based on penetration theory and surface renewal theory.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Define the Kronecker delta symbol. Give the expression of a dyadic product of two vectors v and w.
 - b) If α is symmetrical and β is anti-symmetrical, show that $(\alpha : \beta) = 0$ 5
 - c) Using the continuity equation show that the flow defined by the velocity field

$$\overrightarrow{v} = (2t + 2x + 2y)\overrightarrow{i} + (t - y - z)\overrightarrow{j} + (t + x - z)\overrightarrow{k}$$
is possible.

8. a) Find out the expressions of temperature profile and the maximum temperature in a long nuclear fuel element of spherical form, consisting of a sphere of a fissionable material with radius R^f, surrounded by a spherical shell of Aluminium cladding, having outer radius R^C. Temperatures of centre, inside and outside surfaces of the cladding are T^f, T^c, and T⁰ respectively.

the Reynolds number.

b) An oil is flowing down a vertical wall having density $0.78 \times 10^3 \ \text{kg/m}^3$ and mass flow rate per unit width of the wall is $0.2 \ \text{kg}$ / (m) (sec). The film thickness is $2.35 \ \text{mm}$. Calculate the kinematic viscosity. Also check

6

- 9. An incompressible fluid (density 1.13 gm/cm³) is flowing upward in steady state in the annular regain between two coaxial circular cylinders of radii 25 mm and 60 mm.
 - i) Draw the momentum balance and deduce the equation for velocity distribution and calculate the maximum velocity.
 - ii) Also calculate the distance from the centre of the coaxial tube where the maximum velocity occurs.

Data: Viscosity of the fluid = 1.30 gm / (cm) (sec),

Pressure drop of fluid per metre

of tube =
$$7.0 \times 10^5 \frac{\text{dynes}}{\text{cm}^2}$$

- 10. In a gas absorption experiment a viscous fluid flows upward through a small circular tube and then downward in laminar flow on outside. Derive a relation for flow of a fluid film on outside of a circular tube.
 - a) Show that the velocity distribution in falling film (neglecting end effects) is

$$v_z = \frac{\rho g R^2}{4\mu} \left[1 - \left(\frac{r}{R} \right)^2 + 2a^2 \ln \frac{r}{R} \right]$$
 8

b) Obtain an expression for mass rate of flow in the film.

c) Obtain mass flow rate when film thickness is very small.

3

11. a) A fluid with density ρ and viscosity μ is placed between two vertical walls a distance 2b apart. The heated wall at y=-b is maintained at a temperature T_2 and cooled wall at y=+b is maintained at a temperature T_1 . If β is volume expansion coefficient and $\eta=y/b$ then prove that final expression of the velocity distribution is given by:

$$V_z = \rho.\beta.g.b^2. \Delta T. (\eta^3 - \eta) / (12.\mu)$$

b) Calculate the radius of a capillary tube using the following data when a viscous fluid is flowing through the tube. Given data:

Length of capillary = 50.02 cm, Kinematic viscosity of fluid = 4.03×10^{-5} m² / sec.

Density of fluid = $0.9552 \times 10^3 \text{ kg/m}^3$

Pressure drop across (horizontal) capillary tube

=
$$4.829 \times 10^5$$
 newton / m^2

Mass rate of flow through tube = 2.997×10^{-3} kg/sec. 5
