AMENDMENTS TO THE CLAIMS:

Please change the heading at page 72, line 1, from "Patent-claims" to --WHAT IS CLAIMED IS:--

The following listing of claims will replace all prior versions of claims in the application.

Claims 1-18 (canceled)

-- Claim 19 (new): An isopentylcarboxanilide of formula (I)

in which

L represents

$$R^2$$
, R^2 ,

where the bond labelled with * is attached to the amide nitrogen atom, and the bond labelled with # is attached to the alkyl side chain,

R¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)-carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents

 $(C_1-C_6$ -haloalkyl)carbonyl, $(C_1-C_6$ -haloalkoxy)carbonyl, (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or $(C_3-C_8$ -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents - $C(=O)C(=O)R^4$, - $CONR^5R^6$, or - $CH_2NR^7R^8$,

- R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl,
- R³ represents hydrogen, halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl,
- R⁴ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R⁵ and R⁶ independently of one another each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or R⁵ and R⁶ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR⁹,
- R⁷ and R⁸ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or R⁷ and R⁸ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring members that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR⁹,
- R⁹ represents hydrogen or C₁-C₆-alkyl, and A represents
 - (1) a radical of formula (A1)

$$R^{10}$$
 N
 R^{11}
 R^{12}
(A1),

in which

R¹⁰ represents hydrogen, hydroxyl, formyl, cyano, halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₃-C₆-cycloalkyl; or represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,

represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms, and

R¹² represents hydrogen, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, or C₁-C₄-alkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-alkyl having in each case 1 to 5 halogen atoms; or represents phenyl,

with the proviso that R¹⁰ does not represent iodine if R¹¹ represents hydrogen, and

with the proviso that R¹⁰ does not represent trifluoromethyl or difluoromethyl if R³ and R¹¹ represent hydrogen and R¹² represents methyl,

or

(2) a radical of formula (A2)

$$R^{14}$$
 R^{15} (A2),

in which

R¹³ and R¹⁴ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R¹⁵ represents halogen, cyano, or C₁-C₄-alkyl; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms,

or

(3) a radical of formula (A3)

$$R^{17}$$
 (A3),

in which

R¹⁶ and R¹⁷ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R¹⁸ represents hydrogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(4) a radical of formula (A4)

in which

R¹⁹ represents hydrogen, halogen, hydroxyl, cyano, or C₁-C₆-alkyl; or represent C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms,

or

(5) a radical of formula (A5)

$$\mathbb{R}^{21}$$
 \mathbb{R}^{20} (A5),

in which

R²⁰ represents halogen, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms, and

R²¹ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms; or represents C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl,

or

(6) a radical of formula (A6)

or

(7) a radical of formula (A7)

in which R^{22} represents C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(8) a radical of formula (A8)

$$(A8),$$

in which R^{23} represents C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(9) a radical of formula (A9)

$$R^{25}$$
 (A9),

in which

R²⁴ and R²⁵ independently of one another represent hydrogen, halogen, amino, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R²⁶ represents hydrogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

with the proviso that R^{24} and R^{26} do not simultaneously represent methyl if R^{25} represents hydrogen,

or

(10) a radical of formula (A10)

$$R^{28}$$
 R^{29} (A10),

in which

R²⁷ and R²⁸ independently of one another represent hydrogen, halogen, amino, nitro, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R²⁹ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(11) a radical of formula (A11)

$$R^{30}$$
 (A11),

in which

 R^{30} represents hydrogen, halogen, amino, C_1 - C_4 -alkylamino, di(C_1 - C_4 -alkyl)amino, cyano, C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms, and

R³¹ represents halogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₃-C₆-cycloalkyl; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms, with the proviso that R³¹ does not represent trifluoromethyl, difluoromethyl or methyl if R³ represents hydrogen and R³⁰ represents

-8-

methyl,

or

(12) a radical of formula (A12)

$$R^{32}$$
 R^{33} (A12),

R³² represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R³³ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(13) a radical of formula (A13)

$$R^{34}$$
 (A13),

in which

R³⁴ represents hydrogen or C₁-C₄-alkyl, and

R³⁵ represents halogen or C₁-C₄-alkyl,

or

(14) a radical of formula (A14)

$$(A14)$$

in which R^{36} represents hydrogen, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(15) a radical of formula (A15)

in which R^{37} represents halogen, hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio; or represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylthio, or C_1 - C_4 -haloalkoxy having in each case 1 to 5 halogen atoms,

or

(16) a radical of formula (A16)

$$R^{39}$$
 N R^{41} (A16),

R³⁸ represents hydrogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl having 1 to 5 halogen atoms, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₁-C₄-alkylsulphonyl, di(C₁-C₄-alkyl)aminosulphonyl, C₁-C₆-alkylcarbonyl, or optionally substituted phenylsulphonyl or benzoyl,

R³⁹ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

R⁴⁰ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R⁴¹ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

with the proviso that R⁴⁰ does not represent trifluoromethyl,

or

(17) a radical of formula (A17)

$$\begin{array}{c}
R^{42} \\
N \\
N
\end{array}$$
(A17)

in which R⁴² represents C₁-C₄-alkyl.

Claim 20 (new): An isopentylcarboxanilide of formula (I) according to Claim 19 in which

L represents

$$\mathbb{R}^2$$
, \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^3 , or \mathbb{R}^3 , \mathbb

where the bond labelled with * is attached to the amide nitrogen atom, and the bond labelled with # is attached to the alkyl side chain,

R¹ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-

- 10 -

- alkyl, $(C_1-C_3-alkyl)$ carbonyl- $C_1-C_3-alkyl$, or $(C_1-C_3-alkoxy)$ carbonyl- $C_1-C_3-alkyl$; represents halo- $(C_1-C_3-alkyl)$ carbonyl- $C_1-C_3-alkyl$, or halo- $(C_1-C_3-alkoxy)$ -carbonyl- $C_1-C_3-alkyl$ having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents $(C_1-C_6-alkyl)$ carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $(C_1-C_3-alkoxy-C_1-C_3-alkyl)$ carbonyl, or $(C_3-C_6-cycloalkyl)$ carbonyl; represents $(C_1-C_4-haloalkyl)$ carbonyl, $(C_1-C_4-haloalkoxy)$ carbonyl, $(halo-C_1-C_3-alkoxy-C_1-C_3-alkyl)$ carbonyl, or $(C_3-C_6-halocycloalkyl)$ carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents $-C(=O)C(=O)R^4$, $-CONR^5R^6$, or $-CH_2NR^7R^8$,
- R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl,
- R³ represents hydrogen, fluorine, chlorine, bromine, iodine, C₁-C₆-alkyl, or C₁-C₆-haloalkyl having 1 to 13 fluorine, chlorine, and/or bromine atoms,
- represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R^5 and R^6 independently of one another each represent hydrogen, C_1 - C_6 -alkyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; represent C_1 - C_4 -haloalkyl, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^5 and R^6 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR^9 ,
- R⁷ and R⁸ independently of one another represent hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl; or represent C₁-C₄-haloalkyl or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁷ and R⁸ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2

CS8772 - 11 -

further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and R⁹,

R⁹ represents hydrogen or C₁-C₄-alkyl, and

A represents

(1) a radical of formula (A1)

$$R^{10}$$
 N
 R^{11}
 R^{11}
(A1),

in which

R¹⁰ represents hydrogen, hydroxyl, formyl, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, or cyclopropyl; represents C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms; represents trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl, or aminocarbonylethyl,

R¹¹ represents hydrogen, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio, ethylthio, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine. and/or bromine atoms, and

R¹² represents hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, or phenyl,

with the proviso that R^{10} does not represent iodine if R^{11} represents hydrogen and

with the proviso that R¹⁰ does not represent trifluoromethyl or difluoromethyl if R³ and R¹¹ represent hydrogen and R¹² represents methyl,

or

(2) a radical of formula (A2)

R¹³ and R¹⁴ independently of one another represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R¹⁵ represents fluorine, chlorine, bromine, iodine, cyano, methyl, or ethyl; or represents C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

(3) a radical of formula (A3)

$$R^{17}$$
 (A3),

in which

R¹⁶ and R¹⁷ independently of one another represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R¹⁸ represents hydrogen, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

(4) a radical of formula (A4)

in which R^{19} represents hydrogen, fluorine, chlorine, bromine, iodine, hydroxyl, cyano, or C_1 - C_4 -alkyl; or represents C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy, or C_1 - C_2 -haloalkylthio having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

(5) a radical of formula (A5)

$$R^{21}$$
 N R^{20} (A5),

in which

R²⁰ represents fluorine, chlorine, bromine, iodine, hydroxyl, cyano, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoro-

methylthio, or trifluoromethylthio; or represents C_1 - C_2 -haloalkyl or C_1 - C_2 -haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R²¹ represents hydrogen, fluorine, chlorine, bromine, iodine, cyano, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, C₁-C₂-halo-alkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms, C₁-C₂-alkylsulphinyl, or C₁-C₂-alkylsulphonyl,

or

(6) a radical of formula (A6)

or

(7) a radical of formula (A7)

in which R^{22} represents methyl, ethyl, or C_1 - C_2 -haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

(8) a radical of formula (A8)

$$(A8)$$

in which R^{23} represents methyl, ethyl, or C_1 - C_2 -haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

(9) a radical of formula (A9)

$$R^{25}$$
 (A9),

R²⁴ and R²⁵ independently of one another represent hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and represents hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

with the proviso that R²⁴ and R²⁶ do not simultaneously represent methyl if R²⁵ represents hydrogen,

or

(10) a radical of formula (A10)

$$R^{28}$$
 R^{29} (A10),

in which

R²⁷ and R²⁸ independently of one another represent hydrogen, fluorine, chlorine, bromine, amino, nitro, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and represents fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

(11) a radical of formula (A11)

$$R^{30}$$
 (A11),

in which

R³⁰ represents hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R³¹ represents fluorine, chlorine, bromine, hydroxyl, methyl, ethyl, methoxy, ethoxy, or cyclopropyl; or represents C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having 1 to 5 fluorine, chlorine, and/or bromine atoms.

with the proviso that R³¹ does not represent trifluoromethyl, difluoromethyl, or methyl if R³ represents hydrogen and R³⁰ represents methyl,

or

(12) a radical of formula (A12)

$$R^{32}$$
 (A12),

in which

R³² represents hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R³³ represents fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

(13) a radical of formula (A13)

in which

R³⁴ represents hydrogen, methyl, or ethyl, and

R³⁵ represents fluorine, chlorine, bromine, methyl, or ethyl,

or

(14) a radical of formula (A14)

$$(A14),$$

in which R^{36} represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C_1 - C_2 -haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

(15) a radical of formula (A15)

$$(A15),$$

in which R^{37} represents fluorine, chlorine, bromine, iodine, hydroxyl, C_1 - C_4 -alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, or trifluoromethylthio; or represents C_1 - C_2 -haloalkyl or C_1 - C_2 -haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms,

or

(16) a radical of formula (A16)

$$R^{40}$$
 R^{39}
 R^{39}
 R^{41}
 R^{38}
(A16),

in which

R³⁸ represents hydrogen, methyl, ethyl, C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, C₁-C₂-alkoxy-C₁-C₂-alkyl, hydroxymethyl, hydroxyethyl, methylsulphonyl, or dimethylaminosulphonyl,

R³⁹ represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

R⁴⁰ represents hydrogen, fluorine, chlorine, bromine, cyano, methyl, ethyl, isopropyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, and

R⁴¹ represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms,

with the proviso that R⁴⁰ does not represent trifluoromethyl,

or

(17) a radical of formula (A17)

in which R⁴² represents methyl, ethyl, n-propyl or isopropyl.

Claim 21 (new): An isopentylcarboxanilide of formula (I) according to Claim 19 in which L represents L-1.

Claim 22 (new): An isopentylcarboxanilide of formula (I) according to Claim 19 in which L represents L-2.

Claim 23 (new): An isopentylcarboxanilide of formula (I) according to Claim 19 in which R¹ represents hydrogen, formyl, or -C(=O)C(=O)R⁴, where R⁴ is as defined in Claim 19.

Claim 24 (new): An isopentylcarboxanilide of formula (I) according to Claim 19 in which A represents A1.

Claim 25 (new): An isopentylcarboxanilide of formula (I) according to Claim 19 in which R³ represents hydrogen.

Claim 26 (new): An isopentylcarboxanilide of formula (!) according to Claim 19 in which R³ represents halogen, C₁-C₀-alkyl, or C₁-C₀-haloalkyl.

Claim 27 (new): A process for preparing a compound of formula (I) according to Claim 19 comprising

(a) reacting a carboxylic acid derivative of the formula (II)

$$A = X^1 \qquad (II),$$

in which

A is as defined for formula (I) in Claim 19, and

X¹ represents halogen or hydroxyl,

with an aniline derivative of formula (III)

$$\begin{array}{c|c}
HN \longrightarrow L \\
R^1 \\
H_3C \longrightarrow R^3 \\
CH_3
\end{array}$$
(III)

in which L, R¹, and R³ are as defined for formula (I) in Claim 19, optionally in the presence of a catalyst, optionally in the presence of a condensing agent, optionally in the presence of an acid binder, and optionally in the presence of a diluent,

or

(b) reacting an isopentylcarboxanilide of formula (I-a)

$$A \xrightarrow{N-L} R^3$$

$$H_3C \xrightarrow{CH_3} (I-a)$$

in which

L, A, and R³ are as defined for formula (I) in Claim 19, with a halide of formula (IV)

$$R^{1-A} X^2$$
 (IV)

in which

R^{1-A}

X² represents chlorine, bromine, or iodine, and

represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or (C_1 - C_3 alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, $(C_1-C_4-alkoxy-C_1-C_4-alkyl)$ carbonyl, or $(C_3-C_8-cycloalkyl)$ carbonyl; represents (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents $-C(=O)C(=O)R^4$, $CONR^5R^6$, or $-CH_2NR^7R^8$, where R⁴, R⁵, R⁶, R⁷, and R⁸ are as defined for formula (I) in Claim 19,

in the presence of a base and in the presence of a diluent,

or

(c) reacting an isopentone derivative of formula (V)

in which

R¹, R², R³, and A are as defined for formula (I) in Claim 19, with hydrazine or hydrazine hydrate in the presence of a base and, optionally, in the presence of a diluent,

or

(d) hydrogenating an isopentene derivative of the formula (VI)

$$\begin{array}{c|c}
A & R^2 \\
R^1 & R^3 \\
H_3C & CH_3
\end{array}$$
(VI)

in which R^1 , R^2 , R^3 , and A are as defined for formula (I) in Claim 19, optionally in the presence of a diluent and optionally in the presence of a catalyst,

or

(e) hydrogenating an isopentyne derivative of formula (VII)

$$\begin{array}{c|c} A & \\ N & \\ R^1 & \\ R_3 & \\ CH_3 & \end{array}$$
 (VII)

in which R^1 , R^2 , R^3 , and A are as defined for formula (I) in Claim 19, optionally in the presence of a diluent and optionally in the presence of a catalyst.

Claim 28 (new): A composition for controlling unwanted microorganisms comprising one or more isopentylcarboxanilides of formula (I) according to Claim 19 and one or more extenders and/or surfactants.

Claim 29 (new): A method for controlling unwanted microorganisms comprising applying an effective amount of an isopentylcarboxanilide of formula (I) according to Claim 19 to the microorganisms and/or their habitat.

Claim 30 (new): A process for preparing compositions for controlling unwanted microorganisms comprising mixing one or more isopentylcarboxanilides of formula (I) according to Claim 19 with one or more extenders and/or surfactants.

Claim 31 (new) An aniline derivative of formula (III-b)

$$R^{1-B}$$
 (III-b)

in which

represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphinyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)-carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-halocycloalkyl)carbonyl having in

CS8772 - 21 -

each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁴, CONR⁵R⁶, or -CH₂NR⁷R⁸, and R^{3-B} represents hydrogen, halogen, C₁-C₈-alkyl, C₁-C₈-haloalkyl,

or

R^{1-B} represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkyl-(b) sulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms: or represents -C(=O)C(=O)R⁴, CONR⁵R⁶, or -CH₂NR⁷R⁸, and R^{3-B} represents halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl,

and

- R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl,
- represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; or represents C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R⁵ and R⁶ independently of one another each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or R⁵ and R⁶ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and

- 22 -

 C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR⁹,

R⁷ and R⁸ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or R⁷ and R⁸ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring members that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR⁹, and

 R^9 represents hydrogen or C_1 - C_6 -alkyl.

Claim 32 (new): An isopentone derivative of formula (V)

in which

R¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)-carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₈-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkyl)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-halocycloalkyl)carbonyl having in each case 1

to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁴, -CONR⁵R⁶, or -CH₂NR⁷R⁸,

R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl,

R³ represents hydrogen, halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl, and

A represents

(1) a radical of formula (A1)

$$R^{10}$$
 N
 R^{11}
 R^{11}
(A1),

in which

R¹⁰ represents hydrogen, hydroxyl, formyl, cyano, halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₃-C₆-cycloalkyl; or represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,

R¹¹ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms, and

represents hydrogen, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, or C₁-C₄-alkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-alkyl, C₁-C₄-haloalkoxy-C₁-C₄-alkyl having in each case 1 to 5 halogen atoms; or represents phenyl,

with the proviso that R^{10} does not represent iodine if R^{11} represents hydrogen, and

with the proviso that R¹⁰ does not represent trifluoromethyl or difluoromethyl if R³ and R¹¹ represent hydrogen and R¹² represents methyl,

or

(2) a radical of formula (A2)

$$R^{14}$$
 R^{15} (A2),

in which

R¹³ and R¹⁴ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R¹⁵ represents halogen, cyano, or C₁-C₄-alkyl; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms,

or

(3) a radical of formula (A3)

$$R^{17}$$
 (A3),

in which

R¹⁶ and R¹⁷ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R¹⁸ represents hydrogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(4) a radical of formula (A4)

in which

R¹⁹ represents hydrogen, halogen, hydroxyl, cyano, or C₁-C₆-alkyl; or represent C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms,

or

(5) a radical of formula (A5)

$$R^{21}$$
 R^{20} (A5),

R²⁰ represents halogen, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms, and

R²¹ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms; or represents C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl,

or

(6) a radical of formula (A6)

or

(7) a radical of formula (A7)

in which R^{22} represents C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(8) a radical of formula (A8)

in which R^{23} represents C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(9) a radical of formula (A9)

$$R^{25}$$
 (A9),

 R^{24} and R^{25} independently of one another represent hydrogen, halogen, amino, C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms, and

R²⁶ represents hydrogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

with the proviso that R^{24} and R^{26} do not simultaneously represent methyl if R^{25} represents hydrogen,

or

(10) a radical of formula (A10)

$$R^{28}$$
 R^{29} (A10),

in which

R²⁷ and R²⁸ independently of one another represent hydrogen, halogen, amino, nitro, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R²⁹ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(11) a radical of formula (A11)

$$R^{30}$$
 (A11),

in which

R³⁰ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R³¹ represents halogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₃-C₆-cycloalkyl; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms, with the proviso that R³¹ does not represent trifluoromethyl, difluoromethyl or methyl if R³ represents hydrogen and R³⁰ represents methyl,

or

(12) a radical of formula (A12)

in which

represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R³³ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(13) a radical of formula (A13)

$$R^{34}$$
 (A13),

in which

R³⁴ represents hydrogen or C₁-C₄-alkyl, and

R³⁵ represents halogen or C₁-C₄-alkyl,

or

(14) a radical of formula (A14)

$$(A14)$$

in which R^{36} represents hydrogen, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(15) a radical of formula (A15)

$$(A15),$$

in which R^{37} represents halogen, hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio; or represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy having in each case 1 to 5 halogen atoms,

or

(16) a radical of formula (A16)

$$R^{39}$$
 N R^{41} (A16),

in which

R³⁸ represents hydrogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl having 1 to 5 halogen atoms, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₁-C₄-alkylsulphonyl, di(C₁-C₄-alkyl)aminosulphonyl, C₁-C₆-alkylcarbonyl, or optionally substituted phenylsulphonyl or benzoyl,

R³⁹ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

R⁴⁰ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R⁴¹ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

with the proviso that R⁴⁰ does not represent trifluoromethyl,

or

(17) a radical of formula (A17)

$$\begin{array}{c}
R^{42} \\
N \\
N
\end{array}$$
(A17)

in which R^{42} represents C_1 - C_4 -alkyl.

Claim 33 (new): An isopentene derivative of formula (VI)

$$\begin{array}{c|c} A & & \\ & & \\ R^1 & & \\ & & \\ & & \\ H_3C & & \\ & &$$

in which

 $R^{1} \qquad \text{represents hydrogen, C_{1}-C_{8}-alkyl, C_{1}-C_{6}-alkylsulphinyl, C_{1}-C_{6}-alkylsulphonyl, C_{1}-C_{4}-alkoxy-C_{1}-C_{4}-alkyl, or C_{3}-C_{8}-cycloalkyl; represents C_{1}-C_{6}-haloalkyl,}$

- 29 -

 C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, or (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; represents halo-(C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl or halo-(C_1 - C_3 -alkoxy)-carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C_1 - C_8 -alkyl)carbonyl, (C_1 - C_8 -alkoxy)carbonyl, (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or (C_3 - C_8 -cycloalkyl)carbonyl; represents (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, or (C_3 - C_8 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O) R^4 , - $CONR^5R^6$, or - $CH_2NR^7R^8$,

R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl, represents hydrogen, halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl, and represents

(1) a radical of formula (A1)

$$R^{10}$$
 N
 R^{11}
 R^{11}
(A1),

in which

R¹⁰ represents hydrogen, hydroxyl, formyl, cyano, halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₃-C₆-cycloalkyl; or represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,
 R¹¹ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-haloalkyl or C₁-C₄-

represents hydrogen, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, or C₁-C₄-alkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkoxy-C₁-C₄-alkyl having in each case 1 to 5 halogen atoms; or represents phenyl,

haloalkylthio having in each case 1 to 5 halogen atoms, and

CS8772 - 30 -

with the proviso that R¹⁰ does not represent iodine if R¹¹ represents hydrogen, and

with the proviso that R¹⁰ does not represent trifluoromethyl or difluoromethyl if R³ and R¹¹ represent hydrogen and R¹² represents methyl,

or

(2) a radical of formula (A2)

$$R^{14}$$
 R^{15} (A2),

in which

R¹³ and R¹⁴ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R¹⁵ represents halogen, cyano, or C₁-C₄-alkyl; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms,

or

(3) a radical of formula (A3)

$$R^{17}$$
 (A3),

in which

R¹⁶ and R¹⁷ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R¹⁸ represents hydrogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(4) a radical of formula (A4)

R¹⁹ represents hydrogen, halogen, hydroxyl, cyano, or C₁-C₆-alkyl; or represent C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms,

or

(5) a radical of formula (A5)

$$R^{21}$$
 R^{20} (A5),

in which

R²⁰ represents halogen, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, c₁-C₄-haloalkylthio or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms, and

R²¹ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms; or represents C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl,

or

(6) a radical of formula (A6)

or

(7) a radical of formula (A7)

in which R^{22} represents C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(8) a radical of formula (A8)

in which R^{23} represents C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(9) a radical of formula (A9)

$$R^{25}$$
 (A9),

in which

R²⁴ and R²⁵ independently of one another represent hydrogen, halogen, amino, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R²⁶ represents hydrogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

with the proviso that R^{24} and R^{26} do not simultaneously represent methyl if R^{25} represents hydrogen,

or

(10) a radical of formula (A10)

in which

R²⁷ and R²⁸ independently of one another represent hydrogen, halogen, amino, nitro, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R²⁹ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(11) a radical of formula (A11)

$$R^{30}$$
 (A11),

R³⁰ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R³¹ represents halogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₃-C₆-cycloalkyl; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms, with the proviso that R³¹ does not represent trifluoromethyl, difluoromethyl or methyl if R³ represents hydrogen and R³⁰ represents methyl,

or

(12) a radical of formula (A12)

$$R^{32}$$
 (A12),

in which

R³² represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R³³ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(13) a radical of formula (A13)

in which

R³⁴ represents hydrogen or C₁-C₄-alkyl, and

R³⁵ represents halogen or C₁-C₄-alkyl,

or

(14) a radical of formula (A14)

$$\left(\begin{array}{c}
N \\
R^{36}
\end{array}\right)$$
(A14),

in which R^{36} represents hydrogen, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(15) a radical of formula (A15)

$$(A15),$$

in which R^{37} represents halogen, hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio; or represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy having in each case 1 to 5 halogen atoms,

or

(16) a radical of formula (A16)

$$R^{40}$$
 R^{39}
 N
 R^{39}
 R^{41}
(A16),

in which

R³⁸ represents hydrogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl having 1 to 5 halogen atoms, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₁-C₄-alkylsulphonyl, di(C₁-C₄-alkyl)aminosulphonyl, C₁-C₆-alkylcarbonyl, or optionally substituted phenylsulphonyl or benzoyl,

R³⁹ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

R⁴⁰ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

with the proviso that R⁴⁰ does not represent trifluoromethyl,

or

(17) a radical of formula (A17)

$$\begin{array}{c}
\mathbb{R}^{42} \\
\mathbb{N}_{\mathbb{N}} \\
\mathbb{S}
\end{array} (A17),$$

in which R^{42} represents C_1 - C_4 -alkyl.

Claim 34 (new): An isopentyne derivative of formula (VII)

$$\begin{array}{c|c}
A & R^2 \\
R^1 & R^3 \\
H_3C & CH_3
\end{array}$$
(VII)

in which

R¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haioalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)-carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₈-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁴, -CONR⁵R⁶, or -CH₂NR⁷R⁸,

R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl,

R³ represents hydrogen, halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl, and

A represents

(1) a radical of formula (A2)

$$R^{14}$$
 R^{15} (A2),

in which

R¹³ and R¹⁴ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R¹⁵ represents halogen, cyano, or C₁-C₄-alkyl; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms,

or

(2) a radical of formula (A3)

$$R^{16}$$
 (A3),

in which

R¹⁶ and R¹⁷ independently of one another represent hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R¹⁸ represents hydrogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(3) a radical of formula (A4)

in which

R¹⁹ represents hydrogen, halogen, hydroxyl, cyano, or C₁-C₆-alkyl; or represent C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms,

or

(4) a radical of formula (A5)

$$R^{21}$$
 N R^{20} (A5),

in which

R²⁰ represents halogen, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; or represents C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms, and

R²¹ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-alkylthio; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms; or represents C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl,

or

(5) a radical of formula (A6)

$$\bigcirc$$
 CH₃ (A6),

or

(6) a radical of formula (A7)

in which R^{22} represents C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(7) a radical of formula (A8)

in which R^{23} represents C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(8) a radical of formula (A9)

$$R^{25}$$
 (A9),

in which

R²⁴ and R²⁵ independently of one another represent hydrogen,

halogen, amino, C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms, and

R²⁶ represents hydrogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

with the proviso that R²⁴ and R²⁶ do not simultaneously represent methyl if R²⁵ represents hydrogen,

or

(9) a radical of formula (A10)

$$R^{28}$$
 R^{29} (A10),

in which

R²⁷ and R²⁸ independently of one another represent hydrogen, halogen, amino, nitro, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R²⁹ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(10) a radical of formula (A11)

$$R^{30}$$
 (A11),

in which

R³⁰ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R³¹ represents halogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₃-C₆-cycloalkyl; or represents C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms, with the proviso that R³¹ does not represent trifluoromethyl, difluoromethyl or methyl if R³ represents hydrogen and R³⁰ represents methyl,

or

(11) a radical of formula (A12)

$$R^{32}$$
 (A12),

in which

R³² represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R³³ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

(12) a radical of formula (A13)

$$R^{34}$$
 (A13),

in which

R³⁴ represents hydrogen or C₁-C₄-alkyl, and

R³⁵ represents halogen or C₁-C₄-alkyl,

or -

(13) a radical of formula (A14)

$$\left(\begin{array}{c}
N \\
N \\
R^{36}
\end{array}\right)$$
(A14),

in which R^{36} represents hydrogen, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

(14) a radical of formula (A15)

$$(A15),$$

in which R^{37} represents halogen, hydroxyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -alkylthio; or represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylthio, or C_1 - C_4 -haloalkoxy having in each case 1 to 5 halogen atoms,

or

(15) a radical of formula (A16)

$$R^{40}$$
 R^{39}
 N
 R^{41}
 R^{38}
(A16),

in which

R³⁸ represents hydrogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl having 1 to 5 halogen atoms, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₁-C₄-alkylsulphonyl, di(C₁-C₄-alkyl)aminosulphonyl, C₁-C₆-alkylcarbonyl, or optionally substituted phenylsulphonyl or benzoyl,

R³⁹ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

R⁴⁰ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

R⁴¹ represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

with the proviso that R⁴⁰ does not represent trifluoromethyl,

or

(16) a radical of formula (A17)

in which R^{42} represents C_1 - C_4 -alkyl.

Claim 35 (new): An alkanoneaniline of formula (X)

$$R^{2}$$
 R^{3}
 CH_{3}
 (X)

in which

R¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₈-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkyl)carbonyl, having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁴, -CONR⁵R⁶, or -CH₂NR⁷R⁸,

R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl, and represents hydrogen, halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl. --