В файле csv информация по активности пользователей сайтов, колонка second это время в секундах, в которое замечена активность. USD - сколько пользователь потратил денег. остальные параметры без названий, мы их немного трансформировали, но пропорции все сохранены. Данные размечены (среди пользователей были боты). Колонка Класс - это собственно бот-не_бот.

- Задача 1. Найти аномалии в данных (считай, что они не размечены).
- Задача 2. Построить классификатор. В качестве ответа нужен файлик с как можно более подробным описанием всех действий, кодом, графиками (все, что посчитаешь нужным)

In [1]:

```
import pandas as pd
import numpy as np
import os

pd.set_option("display.max_rows", 100)
pd.set_option('display.max_columns', 200)

import warnings
warnings.filterwarnings('ignore')
%config InlineBackend.figure_format = 'svg'

from tqdm import tqdm

import matplotlib.pylab as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = [12.0, 4.0]
plt.rcParams['figure.dpi'] = 80
```

In [2]:

```
import platform
print(platform.processor())
print('cpu\t\t: {}'.format(os.cpu_count()))
!cat /proc/meminfo | grep MemTotal
```

x86_64 cpu : 8

MemTotal: 8056056 kB

In [3]:

```
data = pd.read_csv('dataset.csv')
data.head()
```

Out[3]:

	second	var1	var2	var3	var4	var5	var6	var7
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078800
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941

In [4]:

data.describe()

Out[4]:

	second	var1	var2	var3	var4
count	284807.000000	2.848070e+05	2.848070e+05	2.848070e+05	2.848070e+05
mean	94813.859575	3.933482e-15	5.624307e-16	-8.769071e-15	2.754994e-15
std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00
min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00
25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01
50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02
75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01
max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01

Данные без пропусков, исключительно числовые, есть куча обезличенных переменных типо var_n - нормированные на среднее признаки в числе 28 штук, по всей видимости какие-то ежедневные лаги, вполне вероятно, что это нормированное на среднее число денег, потраченное пользователем в предыдущие дни.

По числу секунд можно определить, что перед нами срез за 2 дня

In [5]:

```
print('Число дней: {}'.format((data.second.max() + 1) / 60 / 60 / 24))
```

Число дней: 1.9999189814814813

```
In [6]:
```

```
data.Class.value_counts()
```

Out[6]:

0 284315 1 492

Name: Class, dtype: int64

Выборка несбалансированная - ботовых транзакций намного меньше, чем пользовательских

Обнаружил интересную штуку в том, что наборы признаков val_n могут встречаться целиком совпадающими группами. Сначала я это связал с тем, что мы нашли транзакции одного и того же клиента, однако так же это вполне может оказаться мусором и багом учетной системы.

Тем не менее, заведем еще одну колонку client_id, в которой и будут проиндексированы все эти группы.

- Если в рамках одной группы все транзакции совершены в одно время и на одинаковую сумму, то я склонен считать все продублированные элементы мусором.
- Если же у них USD отлично перед нами определенно разные транзакции одного клиента.
- Если же USD одинаково, но транзакции совершены в разное время, то нужно смотреть глубже.

Чтобы ускорить вычисления введу что-то вроде хэш-функции от вар-колонок - просто их сумму и буду группировать значения по ней.

In [7]:

```
help data = data.reset index()
var_cols = [col for col in data.columns if 'var' in col]
help_data['VAR'] = data[var_cols].sum(axis=1)
help data.drop(var cols, 1, inplace=True)
help_data['source_index'] = help_data['index'].astype(int).astype(str)
help data = help data[['source index', 'VAR']]
help_data.source_index = help_data.source_index + ','
need vars = help data.VAR.value counts()[help data.VAR.value counts() > 1].index
var_indexes = help_data[help_data.VAR.isin(need_vars)].groupby('VAR')[['source_i
ndex']].apply(sum)
var indexes.source index = var indexes.source index.apply(lambda x: x[:-1])
uniq indexes =
pd.DataFrame(index=help data[help data.VAR.isin(need vars)==False].VAR)
uniq indexes['source index'] = np.where(help data.VAR.isin(need vars)==False)
[0].astype(str)
var indexes = var indexes.append(uniq indexes)
var_indexes['client_id'] = np.arange(var indexes.shape[0])
var indexes.head(10)
```

Out[7]:

	source_index	client_id
VAR		
-174.807818	151006,151007,151008,151009	0
-114.242088	150679,150680	1
-113.341410	150677,150678	2
-105.043222	150666,150667	3
-103.261741	150668,150669	4
-92.100639	150660,150661	5
-91.617307	150662,150663	6
-72.701858	102441,102442,102443,102444,102445,102446	7
-61.657676	143333,143334	8
-61.102193	143335,143336	9

In [9]:

```
data['client_id'] = help_data.VAR.map(var_indexes.client_id)
del(help_data)
data.head()
```

Out[9]:

	second	var1	var2	var3	var4	var5	var6	var7
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078800
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941

Проверим, есть ли такие "клиенты", у которых были и ботовые транзакции, так и неботовые

In [10]:

```
hypo = data.groupby(['client_id', 'Class'])['USD'].count().reset_index()
hypo.columns = ['client_id', 'class', 'count']
print('Число клиентов с транзакциями обоих типов: {}'.format(
    hypo.client_id.value_counts()[hypo.client_id.value_counts()>1].shape[0]))
hypo.head()
```

Число клиентов с транзакциями обоих типов: 0

Out[10]:

	client_id	class	count
0	0	1	4
1	1	1	2
2	2	1	2
3	3	1	2
4	4	1	2

Отлично, таких нет. Тогда для начала не будем париться и удалим все дубликаты, для которых USD оказалось одинаковым.

In [11]:

```
var_cols = [col for col in data.columns if 'var' in col]
clean_data = data.iloc[data[var_cols + ['USD']].drop_duplicates().index]
print(clean_data.shape[0], data.shape[0])
```

275663 284807

Порядка 9000 мусорных транзакций. Да, среди них были боты, однако всех уникальных мы оставили

Посмотрим на возможность решения в лоб: используя частоты

Для этого порисуем всякие графички

In [12]:

```
def draw_plot_by_seconds(data, agg_func, agg_col, title):
    ts = pd.DataFrame(np.arange(data.second.max() + 1), columns=['second'])
    ts = pd.merge(ts, data.groupby('second').agg(agg_func)
[agg_col].reset_index(), on='second', how='left').fillna(0)
    ts.columns = ['second', 'trans']
    ts.trans.plot(title=title)
```

In [13]:

```
draw_plot_by_seconds(clean_data, 'count', 'USD', 'All transactions count')
```


In [14]:

```
draw_plot_by_seconds(clean_data[clean_data.Class == 1], 'count', 'USD', 'Bot tra
nsactions count')
```


In [15]:

draw_plot_by_seconds(clean_data, 'sum', 'USD', 'All transactions sum')

In [16]:

draw_plot_by_seconds(clean_data[clean_data.Class == 1], 'sum', 'USD', 'Bot trans
actions sum')

In [17]:

draw_plot_by_seconds(clean_data, 'mean', 'USD', 'All transactions mean')

In [18]:

draw_plot_by_seconds(clean_data[clean_data.Class == 1], 'mean', 'USD', 'Bot tran sactions mean')

Такие дела. Кажется мы имеем дело с ботами крохоборами. Придется смотреть на var_n признаки. Для начала считерим и воспользуемся нашими метками, дабы проверить, разделимы ли наши классы вообще. Например, линейно.

Первое поколение классификации

Как оговаривалось выше, классы у нас несбалансированные, так что в качестве метрики качества буду использовать f1-score. Хотя конечно, тут не все так однозначно ввиду несимметричной бизнесовой функции потерь - ошибки первого и второго рода могут иметь разный вес, и как будто бы полнота первого класса чуть важнее. Но пока забудем об этом. Проверять буду на кросс-валидации по 5 фолдам. Ну и для простоты повыкидываю все кроме usd и var_n . При этом USD сначала нормирую. Остальное нормирую на среднеквадратичное отклонение.

In [19]:

```
from sklearn.preprocessing import StandardScaler
X = clean_data[var_cols]
y = clean_data.Class
X['USD'] = StandardScaler().fit_transform(clean_data.USD.reshape(-1, 1))
X = X / X.std()
del(data)
del(clean_data)
X.head()
```

Out[19]:

	var1	var2	var3	var4	var5	var6	var7	var8
0	-0.696436	-0.043653	1.682442	0.967586	-0.245495	0.352104	0.193170	0.0828
1	0.610419	0.159634	0.110432	0.314644	0.043550	-0.062717	-0.063533	0.0714
2	-0.695692	-0.803812	1.176228	0.266639	-0.365135	1.371065	0.638096	0.2078
3	-0.494884	-0.111096	1.189352	-0.606106	-0.007480	0.949734	0.191566	0.3167
4	-0.593198	0.526455	1.027316	0.282965	-0.295471	0.073043	0.478044	-0.2270

In [20]:

```
from sklearn.linear_model import Lasso, RidgeClassifier, LogisticRegression
from sklearn.model_selection import cross_val_score, cross_val_predict
from sklearn.metrics import fl_score, recall_score, precision_score, classificat
ion_report

clf = RidgeClassifier(alpha=1)
y_predicted = cross_val_predict(cv=5, estimator=clf, X=X, y=y)
print('fl_score: {}'.format(fl_score(y, y_predicted)))
print('recall: {}'.format(recall_score(y, y_predicted)))
print('precision: {}'.format(precision_score(y, y_predicted)))
print(classification_report(y_predicted, y))
```

f1_score: 0.5279770444763271 recall: 0.3890063424947146 precision: 0.8214285714285714

		.03/17	. 0217203/172	precision. o.e
support	f1-score	recall	precision	t
275439	1.00	1.00	1.00	0
224	0.53	0.82	0.39	1
275663	1.00	1.00	1.00	avg / total

In [21]:

```
clf = LogisticRegression(C=1)
y_predicted = cross_val_predict(cv=5, estimator=clf, X=X, y=y, n_jobs=-2)
print('fl_score: {}'.format(fl_score(y, y_predicted)))
print('recall: {}'.format(recall_score(y, y_predicted)))
print('precision: {}'.format(precision_score(y, y_predicted)))
print(classification_report(y_predicted, y))
```

f1_score: 0.6981366459627328 recall: 0.5940803382663847 precision: 0.8463855421686747

support	f1-score	recall	precision	ı
275331	1.00	1.00	1.00	0
332	0.70	0.85	0.59	1
275663	1.00	1.00	1.00	avg / total

Видно, что худо-бедно разделимы. Попробуем для интереса еще нелинейный классификатор без особой настройки параметров

In [15]:

f1_score: 0.8106312292358805 recall: 0.773784355179704 precision: 0.8511627906976744

Отлично, это что-то вроде базового ориентира, перед тем как попровать искать аномалии вслепую.

Попробуем чего-нибудь порисовать на тех же данных.

Тепловая карта корреляции признаков

In [22]:

import seaborn plt.figure(figsize=(12,10)) seaborn.heatmap(X.corr(), square=True)

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fc04885fac8>

Особой попарной корреляции мы не наблюдаем.

При этом приходит мысль о некоторой избыточности всех данных, хотелось бы получить более низкоранговое приближение наших данных, концетрированно нашпигованной полезной информацией)

В общем попробую метод главных компонент, а также несколько нелинейных методов понижения размерности. Уменьшать буду до 2-3 компонент, дабы появилась возможность какой-то визуализации, а также, чтобы окончательно развеять сомнения в возможности отделения наших классификаторов-крохоборов от остальных пользователей.

Также отмечу, что мне придется создавать некоторые сэмплы из исходных данных, так как с визуализацией совсем всех данных моя машинка не справляется. Более того, применение нелинейных алгоритмов на всём датасете также не представлвяется возможным ввиду высокой их сложности по памяти.

Быть может получится как-нибудь обхитрить такое ограничение, однако оставлю это на будущее.

В плане семплирования я создал несколько функций - в рамках одной можно выбрать число ботов в выборке, в рамках другой точки берутся просто случайным выбором. Таким образом будем проверять наши алгоритмы в двух вариантах: с повышенной концентрацией ботов и боевой.

Также написал функцию для визуализации наших компонент(которая нам еще пригодится для визуализации работы наших алгоритмов кластеризации)

Понижение размерности

In [24]:

```
def get_train_sample(X, y, n, bot_rate=0.1):
    X \text{ bot} = X[y==1].values
    X \text{ user} = X[y==0].values
    if bot rate<1:</pre>
        n bot = int(bot rate * n)
    else:
        n bot = int(bot rate)
    assert n bot < n</pre>
    bot indexes = np.random.choice(np.arange(X bot.shape[0]), size=n bot, replac
e=False)
    X train bot = X bot[bot indexes]
    user indexes = np.random.choice(np.arange(X user.shape[0]), size=n - n bot,
replace=False)
    X train user = X user[user indexes]
    return np.vstack((X_train_bot, X_train_user)), np.hstack((np.ones(n_bot),
np.zeros(n - n_bot))).reshape(-1, 1)
def get random sample(X, y, n):
    choosen_indexes = np.random.choice(X.index, size=n, replace=False)
    X random = X.loc[choosen indexes]
    y_random = y.loc[choosen_indexes].values
    return X random, y random
```



```
def plot_2d_distr_scatter(X_sample, y_sample, labels=None):
    label 1 = np.where(y sample==1)[0]
    label 0 = np.where(y sample==0)[0]
    plot_number = 2 if labels!=None else 1
    plt.figure(figsize=(12,5))
    gs = gridspec.GridSpec(1, plot_number)
    ax1 = plt.subplot(gs[0, 0])
    ax1.set title('Реальное распределение ботов')
    plt.scatter(X sample[label 1, 0], X sample[label 1, 1], 10, c='r', label='bo
t')
    plt.scatter(X sample[label 0, 0], X sample[label 0, 1], 2, c='g', label='use
r')
    ax1.legend()
    if labels!=None:
        ax2 = plt.subplot(gs[0, 1])
        label 1 = np.where(labels==1)[0]
        label 0 = np.where(labels==0)[0]
        ax2.set title('Распределение меток')
        ax2.scatter(X pca[label 1, 0], X pca[label 1, 1], 10, c='r', label='labe
l 1')
        ax2.scatter(X pca[label 0, 0], X pca[label 0, 1], 2, c='g', label='label
0')
        ax2.legend()
    plt.show()
from mpl toolkits.mplot3d.axes3d import Axes3D
def plot 3d distr scatter(X sample, y sample, labels=None):
    label_1 = np.where(y_sample==1)[0]
    label 0 = np.where(y sample==0)[0]
    plot_number = 2 if labels!=None else 1
    fig = plt.figure(figsize=[12,5])
    ax1 = fig.add subplot(1, plot number, 1, projection='3d')
    xs = X_sample[label_1, 0]
    ys = X sample[label 1, 1]
    zs = X_sample[label_1, 2]
    ax1.scatter(xs, ys, zs, c='r', zdir='x', s=5, label='bot')
    ax1.set title('Реальное распределение ботов')
    xs = X sample[label 0, 0]
    ys = X_sample[label_0, 1]
    zs = X sample[label 0, 2]
    ax1.scatter(xs, ys, zs, c='g', zdir='x', s=2, label='user')
    ax1.legend()
    if labels != None:
        label_1 = np.where(labels==1)[0]
        label 0 = np.where(labels==0)[0]
        ax2 = fig.add subplot(1,2,2, projection='3d')
        ax2.set_title('Распределение меток')
        xs = X_sample[label_1, 0]
        ys = X_sample[label_1, 1]
        zs = X sample[label 1, 2]
        ax2.scatter(xs, ys, zs, c='r', zdir='x', s=5, label='label_1')
        xs = X sample[label 0, 0]
        ys = X_sample[label_0, 1]
```

```
zs = X_sample[label_0, 2]
ax2.scatter(xs, ys, zs, c='g', zdir='x', s=2, label='label_0')
ax2.legend()
plt.show()
```

Метод главных компонент

Будем рассматривать двуранговые и триранговые приближения исходных данных

In [26]:

```
from sklearn.decomposition import PCA
X_train, y_train = get_train_sample(X, y, 5000, 450)
X_pca = PCA(n_components=2, random_state=42).fit_transform(X_train)
print('Число ботов в выборке: ', y_train.sum())
plot_2d_distr_scatter(X_pca, y_train)
```

Число ботов в выборке: 450.0

In [27]:

```
X_pca = PCA(n_components=3, random_state=42).fit_transform(X_train)
print('Число ботов в выборке: ', y_train.sum())
plot_3d_distr_scatter(X_pca, y_train)
```

Число ботов в выборке: 450.0

Как видим в случае концетрированного содержания ботов в сэмпле выборки очень хорошо разделимы. Посмотрим как обстоят дела на реальном сэмпле

In [28]:

```
X_train, y_train = get_random_sample(X, y, 10000)

X_pca = PCA(n_components=2, random_state=42).fit_transform(X_train)

print('Число ботов в выборке: ', y_train.sum())

plot_2d_distr_scatter(X_pca, y_train)

del(X_pca)
```

Число ботов в выборке: 16

In [29]:

```
X_pca = PCA(n_components=3, random_state=42).fit_transform(X_train)
print('Число ботов в выборке: ', y_train.sum())
plot_3d_distr_scatter(X_pca, y_train)
```

Число ботов в выборке: 16

В этом случае разделимость весьма нестабильная и зависит от выборки к выборке

В целом есть надежда на то, что при большем количестве точек разделимость будет лучше. Однако больше точек мой ноут отказывает визуализировать, однако будем иметь в виду. Тем более РСА достаточно легковесная операция(сводится к умножению пары матриц и нахождению собственных значений). Посмотрим, сколько информации мы теряем на каждой компоненте

In [30]:

```
explained = []
for k in tqdm(range(2, 25)):
    pca = PCA(n_components=k, random_state=42).fit(X)
    explained.append(np.sum(pca.explained_variance_ratio_))
plt.plot(range(2, 25), explained, '-p')
plt.title('Explained variance curve')
plt.xlabel('n_components')
plt.ylabel('explained variance')
plt.show()
```


Линейная функция... В общем злоупотреблять РСА нельзя. Попробуем какой-нибудь нелинейный метод понижения размерности

Многомерное шкалирование (MDS)

In [32]:

```
from sklearn import manifold
mds = manifold.MDS(n_components = 2, n_init = 1, max_iter = 10)
X_train, y_train = get_train_sample(X, y, 5000, 450)

X_mds = mds.fit_transform(X_train)
print('Число ботов в выборке: ', y_train.sum())
plot_2d_distr_scatter(X_mds, y_train)
```

Число ботов в выборке: 450.0

In [33]:

```
mds = manifold.MDS(n_components = 3, n_init = 1, max_iter = 10)

X_mds = mds.fit_transform(X_train)
print('Число ботов в выборке: ', y_train.sum())
plot_3d_distr_scatter(X_mds, y_train)
```

Число ботов в выборке: 450.0

На концетрированной выборке разделение стало еще прозрачнее! Посмотрим как дела на случайном семпле.

In [35]:

```
mds = manifold.MDS(n_components = 2, n_init = 1, max_iter = 10)

X_train, y_train = get_random_sample(X, y, 5000)
print('Число ботов в выборке: ', y_train.sum())
%time X_mds = mds.fit_transform(X_train)
plot_2d_distr_scatter(X_mds, y_train)
```

Число ботов в выборке: 13

CPU times: user 7.56 s, sys: 6.47 s, total: 14 s

Wall time: 5.95 s

Уже довольно таки неплохо, хотя не бог весть как стабильно.

In [36]:

```
mds = manifold.MDS(n_components = 3, n_init = 1, max_iter = 10)

print('Число ботов в выборке: ', y_train.sum())

%time X_mds = mds.fit_transform(X_train)
plot_3d_distr_scatter(X_mds, y_train)
```

Число ботов в выборке: 13

CPU times: user 7.45 s, sys: 6.31 s, total: 13.8 s

Wall time: 5.77 s

T-Sne

In [38]:

```
tsne = manifold.t_sne.TSNE(n_components = 2, init = 'pca', random_state=42)

X_train, y_train = get_train_sample(X, y, 5000, 450)
print('Число ботов в выборке: ', y_train.sum())
%time X_tsne = tsne.fit_transform(X_train)
plot_2d_distr_scatter(X_tsne, y_train)
```

Число ботов в выборке: 450.0

CPU times: user 1min 2s, sys: 4.16 s, total: 1min 7s

Wall time: 1min 5s

In [39]:

```
tsne = manifold.t_sne.TSNE(n_components = 2, init = 'pca', random_state=42)

X_train, y_train = get_random_sample(X, y, 5000)
print('Число ботов в выборке: ', y_train.sum())
%time X_tsne = tsne.fit_transform(X_train)
plot_2d_distr_scatter(X_tsne, y_train)
```

Число ботов в выборке: 6

CPU times: user 56.9 s, sys: 3.79 s, total: 1min

Wall time: 59.4 s

