4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Bảng phân phối tỷ số truyền

	Trục động cơ	Try	ic I	Trục II
Tỷ số truyền I	i _{BRT} = 3			i _X = 3,83
Tốc độ n (vòng/phút)	$n_{dc} = 1460$	$n_{\rm I} = n_{\rm dc}/i_{\rm BR}$ =1460/3 $n_{\rm I} = 486,7$	r	$\begin{array}{c} \mathbf{n_{II}} = \mathbf{n_{I}} / \mathbf{i_{X}} \\ = 486, 7/3, 83 \\ \mathbf{n_{II}} = \mathbf{127, 1} \end{array}$
Công suất N (KW)	N _{lv} = 8,9	$N_{I} = N_{lv} \cdot \eta$ =8,9.0,98 $N_{I} = 8,5$	_{BRT} . η _{OL} 3.0,98	$N_{II} = N_{lv} \cdot \eta_X \cdot \eta^2_{OL}$ =8,3.0,97.0,98 ² $N_{II} = 7,9$

Thiết kế bộ truyền bánh trụ răng nghiêng trong hộp giảm tốc truyền động với công suất $N_1 = 8.9 KW$, $N_2 = 8.5 KW$, số vòng quay trong I phút của trục dẫn $n_1 = 1460 v/p$, trục bị dẫn $n_2 = 486,7 v/p$, tỉ số truyền i=3. Thời gian làm việc 5 năm, mỗi năm làm việc 300 ngày, mỗi ngày 2 ca, mỗi ca 8 giờ, tải trọng ổn định, có va đập nhẹ, yêu cầu kích thước nhỏ gọn.

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_I = 8.9 KW$, $N_2 = 8.5 KW$, $n_I = 1460 v/p$, $n_2 = 486.7 v/p$, i = 3. Thời gian làm việc 5 năm, 300 ngày, 2 ca, 8 giờ, tải trọng ổn định, có va đập nhẹ.

4.1. Chọn vật liệu

Bộ truyền làm việc có va đập nhẹ, yêu cầu kích thước nhỏ gọn nên chọn Thép cacbon chất lượng tốt để chế tạo.

Bång 3-29/Trang 5

	Loại thép								
	Bánh nhỏ	Bánh lớn	Bánh nhỏ	Bánh lớn	Bánh nhỏ	Bánh lớn			
				40		35X(Cr)			
7		35	50Γ(Mn)	45	30ХГС	40X(Cr)			
	45	35Л		50Л	(CrMnSb)	40Γ(Mn)			
		40Л		55Л		40ГЛ			
	50	35	35X(Cr)	50		35X(Cr)			
	50	45Л	hoặc	55	40XH(CrN	40X(Cr)			
	55	45		55Л	i)	55Л			
		55Л	40X(Cr)	40ГЛ(Mn)		40ГЛ			

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_I = 8.9KW$, $N_2 = 8.5KW$, $n_I = 1460v/p$, $n_2 = 486.7v/p$, i=3. Thời gian làm việc 5 năm, 300 ngày, 2 ca, 8 giờ, tải trọng ổn định, có va đập nhẹ.

4.1. Chọn vật liệu

Bánh răng lớn

 $\sigma_k = 480 \text{N/mm}^2$ $\sigma_{ch} = 240 \text{N/mm}^2$ HB = 170

Bång 3-30/Trang 57-59

Bánh răng nhỏ

 $\sigma_k = 580 \text{N/mm}^2$ $\sigma_{ch} = 290 \text{N/mm}^2$ HB = 200

	Nhãn hiệu thép	Đường kính phôi mm	Giới hạn bền kéo σ _k N/mm²	Giới hạn chảy σ _{ch} N/mm²	Độ rắn HB
I		Dưới 100	520	270	
	35	100 – 300	500	260	140 - 190
	33	300 – 500	480	240	140 - 190
	Thường hóa	500 – 750	460	230	
		Dưới 100	560	280	
	40	100 – 300	540	270	150 - 210
	40	300 – 500	520	260	130 - 210
	Thường hóa	500 – 750	500	250	
)		Dưới 100	600	300	
		100 – 300	580	290	170 – 220
	45	300 – 500	560	280	
	Thường hóa	500 – 750	540	270	
	4.5	60 – 90	750 – 850	450	210 – 240
	45	90 – 120	700 – 800	400	190 – 220
	Tôi cải thiện	180 – 250	650 - 750	350	180 – 210

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_1 = 8.9KW$, $N_2 = 8.5KW$, $n_1 = 1460v/p$, $n_2 = 486.7v/p$, i = 3. Thời gian làm việc 5 năm, 300 ngày, 2 ca, 8 giờ, tải trọng ổn định, có va đập nhẹ.

4.2. Úng suất cho phép

 $T\mathring{o}ng\ thời\ gian\ làm\ việc:\ T=5\ .\ 300\ .\ 2\ .\ 8=24000\ giờ$

Số chu kỳ làm việc:

- Bánh răng nhỏ: $N_{td1} = 60.u.n_1.T = 60.1.1460.24000 = 210,2.10^7$ (Chu kỳ)
- Bánh răng lớn: $N_{td2} = 60.u.n_2.T = 60.1.486,7.24000 = 70.10^7 (Chu kỳ)$

u: số lần ăn khớp của một răng khi bánh răng đó quay 1 vòng.

=> Trường hợp một cặp bánh răng ăn khớp nhau thì u= 1

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_1 = 8.9KW$, $N_2 = 8.5KW$, $n_1 = 1460v/p$, $n_2 = 496.7v/p$, i=3. Thời gian làm việc 5 năm, 300 ngày, 2 ca, 8 giờ, tải trọng ổn định, có va đập nhẹ.

4.2. Úng suất cho phép

a. Úng suất tiếp xúc cho phép: $[\sigma]_{tx} = [\sigma]_{Notx}$. k'_{N}

Trong đó: k'_N: Hệ số chu kỳ ứng suất tiếp xúc

$$k_N = 6 \sqrt{\frac{N_0}{N_{td}}}$$

 N_0 : Số chu kỳ cơ sở, *nếu* $N_{td} \ge N_0$, ta có thể lấy $k'_N = 1$

Bánh răng nhỏ	Bánh răng lớn
$\sigma_k = 580 N/mm^2$	$\sigma_k = 480 N/mm^2$
$\sigma_{ch} = 290N/mm^2$	$\sigma_{ch} = 240 N/mm^2$
cn HB = 200	HB = 170

Bång 3-31/Trang 60

Vật liệu và nhiệt luyện	$[\sigma]_{Notx}$ N/mm ²	Số chu kỳ cơ sở N _o
Thép cacbon trung bình và thép hợp kim		
có hàm lượng cacbon trung bình, thường		
hóa hoặc tôi cải thiện:		
(200 ÷ 250)HB	2,6HB	$\boxed{10^7}$
(260 ÷ 300)HB	2,5HB	$1,5.10^7$
(320 ÷ 350)HB	2,3НВ	$2,5.10^7$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_I = 8.9KW$, $N_2 = 8.5KW$, $n_I = 1460v/p$, $n_2 = 496.7v/p$, i=3. Thời gian làm việc 5 năm, 300 ngày, 2 ca, 8 giờ, tải trọng ổn định, có va đập nhẹ.

4.2. Úng suất cho phép

a. Úng suất tiếp xúc cho phép:

Bánh răng nhỏ:
$$[\sigma]_{tx1} = [\sigma]_{Notx1}$$
. $k'_N = 2.6HB$. $l = 2.6$. $200 = 520 \text{ N/mm}^2$

Bánh răng lớn:
$$[\sigma]_{tx2} = [\sigma]_{Notx2}$$
. $k'_N = 2.6HB$. $l = 2.6$. $l = 442 \text{ N/mm}^2$

 N_0 : Số chu kỳ cơ sở, *nếu* $N_{td} \ge N_0$, ta có thể lấy $k'_N = 1$

Bánh răng nhỏBánh răng lớn $\sigma_k = 580 \text{N/mm}^2$ $\sigma_k = 480 \text{N/mm}^2$ $\sigma_{ch} = 290 \text{N/mm}^2$ $\sigma_{ch} = 240 \text{N/mm}^2$ HB = 200HB = 170

Vật liệu và nhiệt luyện	$[\sigma]_{Notx}$ N/mm ²	Số chu kỳ cơ sở N _o
Thép cacbon trung bình và thép họp kim		
có hàm lượng cacbon trung bình, thường		
hóa hoặc tôi cải thiện:		
(200 ÷ 250)HB	2,6HB	$\boxed{10^7}$
(260 ÷ 300)HB	2,5HB	$1,5.10^7$
(320 ÷ 350)HB	2,3HB	$2,5.10^7$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_I = 8.9KW$, $N_2 = 8.5KW$, $n_I = 1460v/p$, $n_2 = 496.7v/p$, i = 3. Thời gian làm việc 5 năm, 300 ngày, 2 ca, 8 giờ, tải trọng ổn định, có va đập nhẹ.

4.2. Úng suất cho phép

b. Ứng suất uốn cho phép:

Răng làm việc 1 mặt:
$$\left[\sigma\right]_{u} = \frac{\sigma_{0}.k_{N}^{"}}{n.K_{\sigma}} = \frac{\left(1,4\div1,6\right).\sigma_{-1}.k_{N}^{"}}{n.K_{\sigma}}$$

Trong đó:

 σ_{-1} : ứng suất giới hạn mỏi uốn trong chu kỳ đối xứng.

Đối với vật liệu là Thép: $\sigma_{-1} = (0.4 \div 0.45).\sigma_k = 0.45.\sigma_k$

Đối với vật liệu là Gang: $\sigma_{-1} = 0.25.\sigma_k$

$$k_N$$
: Hệ số chu kỳ ứng suất uốn. $k_N = \sqrt[6]{\frac{N_0}{N_{td}}}$

 N_0 : Số chu kỳ cơ sở của đường cong mỏi uốn, có thể lấy $N_0 = 5.10^6$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

4.2. Úng suất cho phép

$$\left[\sigma\right]_{u} = \frac{\sigma_{0}.k_{N}^{"}}{n.K_{\sigma}} = \frac{\left(1,4 \div 1,6\right).\sigma_{-1}.k_{N}^{"}}{n.K_{\sigma}}$$

Trong đó:

n: Hệ số an toàn.

Bång tra/Trang 61

Vật liệu làm bánh răng	Phương pháp nhiệt luyện	Hệ số an toàn
This was This as	Thường hóa hoặc tôi cải thiện	n=1,5
Thép rèn - Thép cán	Tôi	$n=1,8 \div 2$
mil 4. at 4.	Thường hóa hoặc tôi cải thiện	n=1,8
Thép đúc - gang	Tôi	n=2

 K_{σ} : Hệ số tập trung ứng suất ở chân răng

Bång tra /Trang 61

Vật liệu làm bánh răng	Phương pháp nhiệt luyện	Hệ số tập trung ứng suất ở chân răng
	Thường hóa hoặc tôi cải thiện	$(K_{\sigma}=1.8)$
Thép	Tôi thể tích	$K_{\sigma}=2$
	Tôi bề mặt	$K_{\sigma}=1,2$
Gang – chất dẻo		$K_{\sigma}=1$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

4.2. Úng suất cho phép

b. Ứng suất uốn cho phép:

$$\left[\sigma\right]_{u1} = \frac{\left(1, 4 \div 1, 6\right).\sigma_{-1}.k_{N_{1}}}{n.K_{\sigma}} = \frac{1, 5.0, 45.\sigma_{k1}.\sqrt[6]{\frac{N_{0}}{N_{td1}}}}{n.K_{\sigma}}$$

$$\left[\sigma\right]_{u1} = \frac{1,5.0,45.580.\sqrt[6]{\frac{5.10^6}{210,2.10^7}}}{1,5.1,8} = 53(N/mm^2)$$

Bánh răng lớn:

$$\left[\sigma\right]_{u2} = \frac{\left(1, 4 \div 1, 6\right).\sigma_{-1}.k_{N_{2}}^{"}}{n.K_{\sigma}} = \frac{1, 5.0, 45.\sigma_{k2}.\sqrt[6]{\frac{N_{0}}{N_{td2}}}}{n.K_{\sigma}}$$

$$\left[\sigma\right]_{u2} = \frac{1,5.0,45.480.\sqrt[6]{\frac{5.10^6}{70.10^7}}}{1,5.1,8} = 63,6(N/mm^2)$$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_1 = 8.9KW$, $N_2 = 8.5KW$, $n_1 = 1460v/p$, $n_2 = 486.7v/p$, i=3. Thời gian làm việc 5 năm, 300 ngày, 2 ca, 8 giờ, tải trọng ổn định, có va đập nhẹ.

4.3. Chọn sơ bộ hệ số tải trọng

$$K_{sb} = (1,3 \div 1,5) = K_{sb} = 1,4$$

4.4. Chọn sơ bộ hệ số chiều rộng bánh răng ψ_A

$$\psi_A = (0.15 \div 0.3)$$
: Tải trọng nhẹ

$$\psi_A = (0.3 \div 0.45)$$
: Tải trọng trung bình $\Rightarrow \psi_A = 0.4$

$$\psi_A = (0.45 \div 0.6)$$
: Tải trọng nặng

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_1 = 8.9KW$, $N_2 = 8.5KW$, $n_1 = 1460v/p$, $n_2 = 486.7v/p$, i=3. Thời gian làm việc 5 năm, 300 ngày, 2 ca, 8 giờ, tải trọng ổn định, có va đập nhẹ.

4.5. Xác định khoảng cách trục A

$$A \ge (i+1)\sqrt[3]{\left(\frac{1,05.10^6}{\left[\sigma\right]_{tx2}.i}\right)^2 \cdot \frac{K_{sb}.N_2}{\psi_A.\theta.n_2}} = (3+1)\sqrt[3]{\left(\frac{1,05.10^6}{442.3}\right)^2 \cdot \frac{1,4.8,5}{0,4.1,25.486,7}}$$

$$\Leftrightarrow A \ge 125,2mm$$

Trong đó:

$$\theta = (1,15 \div 1,35)$$
: Hệ số bánh răng nghiêng $\Rightarrow \theta = 1,25$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_1 = 8.9KW$, $N_2 = 8.5KW$, $n_1 = 1460v/p$, $n_2 = 486.7v/p$, i = 3, A = 125.2mm, V = 4.79 m/s, CCX = 9

4.6. Tính vận tốc vòng V và chọn cấp chính xác chế tạo bánh răng

a. Vận tốc vòng

$$v = \frac{2.\pi . A. n_1}{60.1000.(i\pm 1)} = \frac{2.\pi . 125, 2.1460}{60.1000.(3+1)} = 4,79(m/s)$$

b. Chọn cấp chính xác của bánh răng

Bång 3-32/Trang 65

	Cấp chính xác							
Loại bánh răng	6	7	8	9				
		Vận tốc vòng m/s ♠						
Trụ:								
Răng thẳng	≤16	≤ 10	≤ 6	≤ 3				
Răng nghiêng và răng chữ V	< 30	< 20	< 9	≤5				
Nón:								
Răng thẳng	≤ 9	≤ 6	≤ 3	≤2				
Răng nghiêng và răng cong	≤ 18	≤ 12	≤ 7	≤ 4				

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_I = 8.9KW$, $N_2 = 8.5KW$, $n_I = 1460v/p$, $n_2 = 486.7v/p$, i = 3, A = 125.2mm, V = 4.79 m/s, CCX = 9

4.7. Xác định chính xác hệ số tải trọng K và khoảng cách trục A:

Hệ số tải trọng K được xác định theo công thức: $K = K_{tt}$. K_d

Trong đó:

K_{tt}: Hệ số tập trung tải trọng

Đối với bộ truyền không chạy mòn HB > 350 thì K_{tt} được tra theo **bảng 3-33/Trang 66.**

Đối với bộ truyền không chạy mòn HB \leq 350 + Tải trọng không đổi hoặc ít thay đổi thì lấy $K_{tt} = 1$ => $K_{tt} = 1$

+ Tải trọng thay đổi thì K_{tt} được tính gần đúng theo công thức: $K_{tt} = \frac{K_{ttbang} + 1}{2}$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_1 = 8.9KW$, $N_2 = 8.5KW$, $n_1 = 1460v/p$, $n_2 = 486.7v/p$, i = 3, A = 125.2mm, V = 4.79 m/s, CCX = 9

4.7. Xác định chính xác hệ số tải trọng K và khoảng cách trục A:

 $H\hat{e}$ số tải trọng K được xác định theo công thức: $K = K_{tt}$. K_d

Trong đó:

 K_d : hệ số tải trọng động

Bång 3-34 /Trang 67

<u>a</u> ·		$\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial x}$					
Cấp	Độ rắn	Vận tốc vòng v, m/s					
chính xác	mặt răng HB	< 3	3÷8	8 ÷ 12	12 ÷ 18	18 ÷ 25	
	≤ 350	1	1	1,2	1,3	1,5	
7	> 350	1	1	1,1	1,2	1,3	
	≤ 350	1,1	1,3	1,4	-	-	
8	> 350	1,1	1,2	1,3			
9	≤ 350	1,2	1,4	-	-	-	
	> 350	1,2	1,3				

$$=> K_d = 1,4$$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_1 = 8.9KW$, $N_2 = 8.5KW$, $n_1 = 1460v/p$, $n_2 = 486.7v/p$, i = 3, A = 125.2mm, V = 4.79 m/s, CCX = 9

4.7. Xác định chính xác hệ số tải trọng K và khoảng cách trục A:

Hệ số tải trọng K được xác định theo công thức: $K = K_{tt}$. $K_d = 1$. 1,4 = 1,4

Độ sai lệch

$$\Delta K = \frac{\left| K_{sb} - K \right|}{K_{sb}} \le \pm (3 \div 5) \%$$

$$\Delta K = \frac{\left| K_{sb} - K \right|}{K_{sb}} = \frac{\left| 1, 4 - 1, 4 \right|}{1, 4} = 0\% \le 5\%$$

=> Thỏa điều kiện

=> Không cần tính lại A, lấy $A=A_{sb}=125,2mm$

Chú ý: Nếu $\Delta K > 5\%$, ta phải tính lại A theo công thức: $A = A_{sb}.\sqrt[3]{\frac{K}{K_{sb}}}$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_1 = 8.9KW$, $N_2 = 8.5KW$, $n_1 = 1460v/p$, $n_2 = 486.7v/p$, i = 3, A = 125.2mm, V = 4.79 m/s, CCX = 9

4.8. Xác định môđun, số răng, chiều rộng bánh răng và góc nghiêng của răng

4.8.1. Môđun của bộ truyền

$$m_n = (0,01 \div 0,02).A = (1,25 \div 2,5)$$

Bång 3-36/Trang 69

Dav. 1	1	1.25	1.5	2	2.5	3	4	5	6
Dãy 1	8	10	12	16	20	25	32	40	50
D~ 2	1,125	1,375	1,75	2,25	2,75	3,5	4,5	5,5	7
Dãy 2	9	11	14	18	22	28	36	45	

 $=> Chọn Mô dun m_n = 2 (mm)$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_1 = 8.9KW$, $N_2 = 8.5KW$, $n_1 = 1460v/p$, $n_2 = 486.7v/p$, i = 3, A = 125.2mm, V = 4.79 m/s, CCX = 9, $m_n = 2$ (mm), $Z_1 = 31$, $Z_2 = 93$, $\beta = 8.1^\circ$

4.8. Xác định môđun, số răng, chiều rộng bánh răng và góc nghiêng của răng 4.8.2. Số răng của bánh dẫn

$$Z_1 = \frac{2A \cdot \cos \beta}{m_n \cdot (i \pm 1)} = \frac{2.125, 2 \cdot \cos 12^0}{2 \cdot (3 + 1)} = 30, 6$$

 β : Góc nghiêng răng, $\beta = (8 \div 20)^0$, sơ bộ chọn $\beta = 12^0$

4.8.3. Số răng của bánh răng bị dẫn: $Z_2 = Z_1$.i = 31. 3 = 93 (răng)

Xác định chính xác góc nghiêng răng

$$\cos \beta = \frac{(Z_1 + Z_2).m_n}{2A} = \frac{(31+93).2}{2.125,2} = 0.99 \Rightarrow \beta = 8.1^0$$
 => Thỏa điều kiện: $\beta = (8 \div 20)^0$

4.8.4. Xác định chiều rộng bánh răng: $b = \psi_A$. A = 0,4. 125,2 = 50,1 (mm)

Chú ý: đối với bộ truyền bánh răng trụ, nên lấy chiều rộng b của bánh răng nhỏ lớn hơn của bánh răng lớn khoảng $5 \div 10$ mm. =>Ta lấy $b_2 = 50$ mm, $b_1 = 58$ mm

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_1 = 8.9KW$, $N_2 = 8.5KW$, $n_1 = 1460v/p$, $n_2 = 486.7v/p$, i = 3, A = 125.2mm, V = 4.79 m/s, CCX = 9, $m_n = 2$ (mm), $Z_1 = 31$, $Z_2 = 93$, $\beta = 8.1$ °

- 4.9. Kiểm nghiệm sức bền uốn của răng
 - 4.9.1. Tính số răng tương đương Z_{td} và xác định hệ số dạng răng y của bánh dẫn và bị dẫn

Số răng tương đương của bánh dẫn
$$Z_{td1} = \frac{Z_1}{\cos^3 \beta} = \frac{31}{\cos^3 8.1^0} = 31.9$$

Số răng tương đương của bánh bị dẫn
$$Z_{td2} = \frac{Z_2}{\cos^3 \beta} = \frac{93}{\cos^3 8,1^0} = 95,8$$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

4.9. Kiểm nghiệm sức bền uốn của răng

Số răng tương đương của bánh dẫn
$$Z_{td1} = \frac{Z_1}{\cos^3 \beta} = \frac{31}{\cos^3 8} = 31,9$$

$$Z_{td1} = \frac{Z_1}{\cos^3 \beta} = \frac{31}{\cos^3 8.1^0} = 31.9$$

Số răng tương đương của bánh bị dẫn
$$Z_{td2} = \frac{Z_2}{\cos^3 \beta} = \frac{93}{\cos^3 8.1^0} = 95.8$$

Xác định hệ số dạng răng

Bång 3-37 /Trang 70

$$y_1 = 0,451$$

$$y_1 = 0,451$$
 $y_2 = 0,517$

Số răng Z
 Hệ số dịch chính dao
$$\xi$$

 (Ztđ)
 -0.2
 0
 0.2
 0.5

 Hệ số dạng răng y
 16
 -
 0.338
 0.436
 0.526

 17
 -
 0.357
 0.444
 0.528

 20
 -
 0.392
 0.461
 0.532

 25
 0.353
 0.429
 0.478
 0.536

 30
 0.392
 0.451
 0.492
 0.539

 40
 0.435
 0.476
 0.51
 0.546

 50
 0.458
 0.49
 0.519
 0.549

 60
 0.471
 0.499
 0.525
 0.553

 80
 0.487
 0.511
 -
 -

 \geq 100
 0.495
 0.517
 -
 -

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_I = 8.9KW$, $N_2 = 8.5KW$, $n_I = 1460v/p$, $n_2 = 486.7v/p$, i = 3, A = 125.2mm, V = 4.79 m/s, CCX = 9, $m_n = 2$ (mm), $Z_1 = 31$, $Z_2 = 93$, $\beta = 8.1$ °, $b_1 = 58$ mm

- 4.9. Kiểm nghiệm sức bền uốn của răng
 - 4.9.2. Kiểm tra bền theo ứng suất uốn

Ứng suất uốn của bánh răng nhỏ:

$$\sigma_{u1} = \frac{19,1.10^6.K.N_1}{m_n^2.Z_1.b_1.y_1.n_1.\theta'} = \frac{19,1.10^6.1,4.8,9}{2^2.31.58.0,451.1460.1,5} = 33,5(N/mm^2)$$

θ': Hệ số phản ánh sự tăng khả năng tải của bánh răng nghiêng so với bánh răng thẳng

$$\theta' = (1,4 \div 1,6) => \theta' = 1,5$$

Vậy $σ_{u1} = 33,5 \le [σ]_{u1} = 53 (N/mm^2) => Thỏa điều kiện bền uốn$

Úng suất uốn của bánh răng lớn:
$$\sigma_{u2} = \sigma_{u1} \cdot \frac{y_1}{y_2} = 33.5 \cdot \frac{0.451}{0.517} = 29.2(N/mm^2)$$

Vậy
$$\sigma_{u2} = 29,2 \le [\sigma]_{u2} = 63,6 \text{ (N/mm}^2) => \text{Thỏa điều kiện bền uốn}$$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_I = 8.9KW$, $N_2 = 8.5KW$, $n_I = 1460v/p$, $n_2 = 486.7v/p$, i = 3, A = 125.2mm, V = 4.79 m/s, CCX = 9, $m_n = 2$ (mm), $Z_1 = 31$, $Z_2 = 93$, $\beta = 8.1$ °, $b_1 = 58$ mm

4.10. Định các thông số chủ yếu của bộ truyền

Đường kính vòng chia:

$$d_1 = \frac{m_n.Z_1}{\cos \beta} = \frac{2.31}{\cos 8.1^0} = 62,6(mm)$$

$$d_2 = \frac{m_n \cdot Z_2}{\cos \beta} = \frac{3.93}{\cos 8.1^0} = 187,9(mm)$$

Đường kính vòng đỉnh răng:

$$d_{a1} = d_1 + 2m_n = 62.6 + 2.2 = 66.6 \text{ (mm)}$$

$$d_{a2} = d_2 + 2m_n = 187.9 + 2.2 = 191.9 \text{ (mm)}$$

Đường kính vòng chân răng:

$$d_{f1} = d_1 - 2.5.m_n = 62.6 - 2.5.2 = 57.6 \text{ (mm)}$$

$$d_{f1} = d_2 - 2.5.m_n = 187.9 - 2.5.2 = 182.9 \text{ (mm)}$$

Chiều cao răng:

$$h_1 = h_2 = h_a + h_f = m_n + 1,25.m_n = 2,25.m_n = 2,25.2 = 4,5(mm)$$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thiết kế bộ truyền bánh trụ răng nghiêng $N_I = 8.9KW$, $N_2 = 8.5KW$, $n_I = 1460v/p$, $n_2 = 486.7v/p$, i = 3, A = 125.2mm, V = 4.79 m/s, CCX = 9, $m_n = 2$ (mm), $Z_1 = 31$, $Z_2 = 93$, $\beta = 8.1$ °, $b_1 = 58$ mm

4.11. Lực tác dụng lên bộ truyền

Lực vòng:

$$P_1 = P_2 = \frac{2.9,55.10^6 \cdot K \cdot N_1}{d_1 \cdot n_1} = \frac{2.9,55.10^6 \cdot 1,4.8,9}{62,6.1460} = 2603,9(N)$$

Lực hướng tâm:

$$P_{r1} = P_{r2} = \frac{P_1 \cdot \tan \alpha}{\cos \beta} = \frac{2603, 9 \cdot \tan 20^{\circ}}{\cos 8, 1^{\circ}} = 957, 3(N)$$

Lực dọc trục:

$$P_{a1} = P_{a2} = P_1 \cdot \tan \beta = 2603, 9 \cdot \tan 8, 1^\circ = 370, 6(N)$$

4. THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

BẢNG TỔNG HỢP THÔNG SỐ BỘ TRUYỀN BÁNH RĂNG TRỤ RĂNG NGHIÊNG

Thông số	G	iá trị			
	Bánh răng nhỏ Bánh răng lớn				
Số răng	$Z_1 = 31$	$Z_2 = 93$			
Đường kính vòng chia	$d_1 = 62,6 \text{ mm}$	$d_2 = 187,9 \text{ mm}$			
Đường kính vòng đỉnh răng	$d_{a1} = 66.6 \text{ mm}$	$d_{a2} = 191,9 \text{ mm}$			
Bề rộng răng	$b_1 = 58 \text{ mm}$	$b_2 = 50 \text{ mm}$			
Chiều cao răng	$h_1 = h_2 = 4,5 \text{ mm}$				
Mô đun	$m_n = 2 \text{ mm}$				
Góc nghiêng răng	β =	= 8,1°			
Khoảng cách trục	A=12	25,2 mm			
Lực vòng	$P_1 = P_2 = 2603,9 \text{ N}$				
Lực hướng tâm	$P_{r1} = P_{r2} = 957,3 \text{ N}$				
Lực dọc trục	$P_{a1} = P_{a2}$	₂ =370,6 N			