Specification

Please amend the specification as follows:

- [0015] FIG. 4 <u>1a</u> shows a diagram of a high-level system and network diagram in accordance with one aspect of the invention.
- [0016] FIG. 4a 1b shows a high-level block diagram of various components which may comprise a head end or client.
- [0024] FIG. 4 1a depicts an overview of a network practicing one aspect of this invention. In particular, System 110 depicts a traditional PC-based Internet connection. Specifically, PC 112 is a PC, such as an a Macintosh or Windowsbased PC, connected to Internet 100 via Network Connection 102. Network Connection 102 is usually a dial-up connection through an ISP or online service provider or a direct connection to the Internet via, for example, two-way wireless, or a high-speed T1 or T3 line. Such connections are bidirectional, have relatively high data bandwidths, and allows the PC to easily communicate with the Web Server 104. A browser, such as Netscape Navigator runs on PC 112 and processes the incoming Internet content and outgoing requests from and to Web server 104 over Network Connection 102. The incoming Internet content may be in the form of an HTML page with graphics and such, although the present invention is not limited to such Internet content: For instance, Internet content and HTML pages which may include Adobe PDF files, Shockwave sites, and other Internet media types. PC 112 (via the browser) renders the graphical image from the HTML page to be displayed on Monitor 114. A user sends a request to PC 112 through Peripheral 116, such as a keyboard, mouse, trackpad, pointing stick, light pen, or touch screen. PC 112 processes this request and forwards the request to Web Server 104.
- [0028] Referring now to FIG. <u>1b</u> 1a, there is depicted as System 130 a general component that is a part of Head End 122, or an internal part of Client 124. In particular, Head End 122 includes Processor 131, which may in turn be a single or multiple processor or even a single or multiple processor computer system.

For Client 122, Processor 131 is typically a single CPU, although multiple processes and processors are also contemplated. Processor 131 runs the programs in accordance with various aspects of the present invention. Processor 131 interfaces with network connections via Network Interface 132. Data and programs may be stored and accessed by Processor 131 from Disk 137, which may be, but is not limited to, a single disk, multiple disks, RAID disk subsystems, solid-state disks, tapes, DVDs, even network servers, clusters and data carousels. Other interactions with Processor 131 may be via Peripherals 133, which include, but is not limited to devices such as video multiplexers, communication devices, store-and-forward devices. Interaction with a human operator may also be via Peripherals 133 (such as a printer), Monitor 136, Keyboard 135 and Mouse 134 (which may include joysticks, trackpads, lighpens light pens, etc.). In the context Client 122, Monitor 136 may correspond to Monitor 126 and Mouse 134 or Peripherals 133 may include Remote Control 128.

[0029] Referring back FIG. 1a 4, Network Connection 108 can be comprised of many different types of network architectures which are used for video broadcasts (although most commonly associated with digital video broadcasts). These include Hybrid Fiber to Curb ("HFC"), Fiber To The Curb ("FTTC"), Asymmetric Digital Subscriber Line (ADSL), Multichannel Multipoint Distribution System ("MMDS"), and Digital Broadcast System ("DBS"). HFC, FTTC, and ADSL are sometimes referred to as wired networks and have the ability, although not implemented in all systems, to create a return channel or session between client 124 and Head End 122. MMDS and DBS, are unidirectional wireless networks and thus have no return channel capability. In order to implement a return channel under these two architectures, a limited return channel may be implemented using an alternate network, such as a public switched telephone network using a dial-up connection.