Stat 134: Section 24

Ani Adhikari

April 26, 2017

Problem 1

Let X have uniform distribuiton on $\{-1,0,1\}$ and let $Y=X^2$. Are X and Y uncorrelated? Are X and Y independent? Explain carefully. *Ex 6.4.5 in Pitman's Probability*

Does uncorrelatedness imply independence in general? Does independence imply uncorrelatedness?

Problem 2

Let X_2 and X_3 be indicators of independent events with probabilities 1/2 and 1/3, respectively.

- a. Display the joint distribution table of $X_2 + X_3$ and $X_2 X_3$.
- b. Calculate $E(X_2 X_3)^3$.
- c. Are X_2 and X_3 uncorrelated? Prove your answer.

Ex 6.4.7 in Pitman's Probability

Problem 3

Let T_1 and T_3 be the times of the first and third arrivals in a Poisson process with rate λ . Find $Corr(T_1, T_3)$. Ex 6.4.11 in Pitman's Probability

Recall that Corr(X, Y) = $\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$. Can you deduce whether $Corr(T_1, T_3)$ is positive or negative without any calculation?

Problem 4

A box contains 5 red halls and 8 blue ones. A random sample of size 3 is drawn without replacement. Let *X* be the number of red balls and let Y be the number of blue balls selected. Compute: a) E(X); b) E(Y); c) Var(X); d) Cov(X.Y). Ex 6.4.21 in Pitman's Probability

Intuition check: Without any calculation, can you deduce whether $\operatorname{Cov}(X.Y)$ is positive or negative?