0423_conference

규민

```
numpy), (pandas), (sklearn.cluster) packgaes

Data preprocessing

K-Means Clustering

Spectral Clustering
```

Data preprocessing

- 기술 통계자료와 실태조사 자료 의 중복 데이터 추출
 - ㅇ 서비스업: 195
 - ㅇ 일반업: 183
 - o 제조업종: 834 이 합쳐진 train 데이터 생성
- 필요 Cloumn 추출

```
o index_list = ['A1S1', 'A1N1', 'C2S2', 'H1_1', 'H4_1', 'I4Q1', 'I4Q2', 'I4Q3', 'I4Q4', 'I4Q5', 'I4Q6', 'I4Q7']
```

- 결측치(NA)처리
 - o 해당 Index 의 최빈값(freq) 대체
- 더비변수화
 - 응답데이터가 1, 2, 3, 4, 5 형식의 범주형데이터 이므로 더미변수 생성
 - ㅇ 각 변수별 더비변수 생성
 - Column: 13 -->> 40 개로 증가
- 완성된 DataSet

	اماماما	A1S1_1.0	A1S1_2.0	A1S1_3.0	A1N1_12.0	A1N1_2.0	A1N1_4.0) #	
	global_id 111016.0 111037.0 111039.0 111041.0 111055.0	1 1 0 0	0 0 0 0	0 0 1 1	0 0 0 0	0 0 0 0	1 1 1 1		
	alabal id	A1N1_5.0	A1N1_8.0	C2S2_1.0	C2S2_2.0	1404_	_5.0 14Q5	2.0	Ħ
	global_id 111016.0 111037.0 111039.0 111041.0 111055.0	0 0 0 0	0 0 0 0	0 0 0 0	1 1 0 1 1		0 0 0 0	0 0 0 1 1	
0		14Q5_3.0	14Q5_5.0	14Q6_2.0	14Q6_3.0	1406_5.0	1407_2.0	₩	
	global_id 111016.0 111037.0 111039.0 111041.0 111055.0	1 1 1 0 0	0 0 0 0	0 0 0 1 1	1 1 1 0 0	0 0 0 0	0 0 0 1 1		
		1407_3.0	1407_5.0						
	global_id 111016.0 111037.0 111039.0 111041.0 111055.0	1 1 1 0 0	0 0 0 0						

K-means

더미변수를 사용한 k-means 클러스터링 결과

[5 rows x 41 columns]
k_means
0 253
1 598
2 361
dtype: int64

Spectral Clustering

더미변수를 사용한 spectral 클러스터링 결과

Spectral 0 849 1 2 2 361 dtype: int64

- 전체 결과를 반영한 clusrer_result.csv 파일 생성
 - Statistical_Data_Idea_Contest\0423\kyumin

Idea

```
# 응답을 int로 하는것과 string으로 한것 같은 결과 나옴 - 즉, 형태는 상관없다 (더미변수
처리하면 더욱)
# PCA와 더미변수 유무를 고려한 4가지군집(모델별) 실행필요
# K-Means > Spectral 의 성능을 보였다.
```

인영

DBSCAN Clustering

Mean-shift Clustering

DBSCAN

- 적절한 파라미터 값 찾기
 - o k = 200 으로 지정 하면 적절한 eps 값 450 추정 가능

• DBSCAN 결과

- o 군집 2개 형성(noise 95개)
- parameter에 따른 위의 군집화과정 여러번 진행
 - o 최적의 군집화 결과 및 noise 감소를 찾기 위함

Mean-Shift

• 진행중

Idea

```
# DBSCAN(eps=550,minPts=250) 일 때가 우리가 원하는 방향으로 나오는 결과인 것 같다
# 하지만, 군집이 3개 형성되는 이상적인 결과는 나오지 않음
# 아래와 같은 선택지가 있을 것으로 생각됨
(1) 군집을 2개로 잡는다
(2) 3개로 형성되는 다른 군집 방법을 선택
(3) dbscan을 활용하여 군집 3개가 나올 때까지 계속 돌 려보기
```

동석

- GMM
- Hierarchical Aggolomerative Clustering (합체군집화)

Data preprocessing

- 기술통계19 global_id 와 실태조사_업종 (서비스, 일반, 제조)의 global_id 의 교집합 만을 추출
- 필요 변수 추출

```
o features =
  ['A1S1','A1N1','C2S2','H1_1','H4_1','I4Q1','I4Q2','I4Q3','I4Q4','I4Q5',
  'I4Q6','I4Q7']
```

- 결측치 최빈값 대체
- 변수 라벨링

GMM

PCA

• PCA의 제일 적합한 차원수 선택

```
singular value : [60.72594898 38.6243482 35.56512626]
singular vector :
 [[-0.01100503 0.13188056 0.41624776]
 [ 0.01402137  0.02891458  0.87639241]
 [-0.05227526 0.00597111 0.06120023]
 [ 0.04662371  0.08468804 -0.08926732]
 [ 0.39676671  0.05556465  0.08230673]
 [ 0.37100251  0.0756136
                         0.09303843
 [ 0.35755923  0.0209017
                         0.04916433
 [ 0.4109623 -0.06713898 -0.08890749]
 [ 0.37219085 -0.11028963 -0.09797433]
 [ 0.36339206 -0.07844095 -0.01285579]
 [ 0.35807789 -0.07134395 -0.0014434 ]]
explained variance ratio : [0.35642749 0.14419324 0.12225631]
```

o 시각화를 위한 n_compoments=2 선택(2차원)

결과

Dummy + PCA

AGG + PCA

Dummy + PCA + AGG

★팀아이디어★

- PCA와 Dummny 고려한 다양한 군집화 진행 후 최적 군집화 찾자
- 결국 시각적으로 보려면 2차원 밖에 안되니 다양한 모델링 후 실루엣 계수 / Dunn index / 동질성 / completeness 확인해야함

해야할것

- 규민
 - 각 모델별 PCA (o,x) + Dummy (o,x) 4가지 모형 만들기 -> 총 8개
 - K-means, K-means+PCA, K-means+ Dummny, K-means + PCA + DUMMY 4가지 군집
 - Spectral, Spectral+PCA, Spectral+ Dummny, Spectral + PCA + DUMMY 4가지 군집
 - o K-MEANS, SPECTRAL 모델 평가하기 (직관 + 계수)
- 동석
 - o 각모델별 PCA (o,x) + Dummy (o,x) 4가지 모형 만들기 -> 총 8개
 - GMM, GMM+PCA, GMM +Dummny, GMM + PCA + DUMMY 4가지 군집
 - AGG, AGG+PCA, AGG+Dummny, AGG + PCA + DUMMY 4가지 군집
 - o GMM, AGG 모델 평가하기 (직관 + 계수)
- 인영

- ㅇ 최빈값 처리한 데이터 생성
- 각모델별 PCA (o,x) + Dummy (o,x) 4가지 모형 만들기 -> 총 8개
 - DBSCAN, DBSCAN+PCA, DBSCAN+ Dummny, DBSCAN + PCA + DUMMY 4가지 군집
 - Mean-shift, Meanshift+PCA, Meanshift+ Dummny, Meanshift + PCA + DUMMY 4 가지 군집
- o DBSCAN, Meanshift 모델 평가하기 (직관 + 계수)
- o 주석 포함한 markdown 파일 팀원공유해주기

참고사이트 및 문서

- 군집분석 개념
 - https://brunch.co.kr/@gimmesilver/40
- 군집 모델평가
 - https://woolulu.tistory.com/50
 - http://blog.naver.com/PostView.nhn?blogId=ssdyka&logNo=221283224907&redirect=Dlog&widgetTypeCall=true&directAccess=false
 - ㅇ 성능비교(코드잇어서 보면좋음)
 - https://blog.naver.com/a aaaaaa/221154717813
 - 실루엣계수 / Dunn index 개념
 - [https://ratsgo.github.io/machine%20learning/2017/04/16/clustering/
 - ㅇ 동질성
 - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.homogeneity_sc ore.html
 - o completeness
 - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.v measure scor
 e.html#sklearn.metrics.v measure score