MGM_IT Semesterprüfung HS2014

Zeit: 60 Minuten

Zugelassene Hilfsmittel:

- Selbstgeschriebene Notizen im Umfang von 10 Blättern (bzw. 20 Seiten) im Format A4
- Nicht-grafik- und nicht-algebrafähiger Taschenrechner (nur für Grundoperationen und Auswertungen elementarer Funktionen)

Aufgabe 1

Sei $A = \{1, 3, 4, 5, 7, 8, 9\}$ und die Relation $R = \{(x, 7), (1, 8), (4, 4), (9, 8), (7, 3), (5, 5), (9,1), (8, 9), (8, 1), (1, 9), (3, 3), (8, 8), (7, 7), (1, 1), (y, y)\}$ auf der Menge A.

- a) Welche Bedingungen müssen für eine Äquivalenzrelation gelten?
- b) Wie hat man $x, y \in A$ zu wählen, damit R eine Äquivalenzrelation auf A ist? Begründen Sie kurz.
- c) Geben Sie alle Äquivalenzklassen von R an.

Aufgabe 2

Auf den Mengen $A = \{1,2,3,4\}$ und $B = \{a,b,c,d\}$ sind die nachfolgenden Relationen gegeben. Welche Eigenschaften gelten? (Bitte ankreuzen)

$R_i \subseteq A \times B$	Rechtseindeutig	Linkstotal	Rechtstotal	Linkseindeutig
$R_1 = \{(1,c),(4,b),(3,d),(2,a)\}$				
$R_2 = \{(1,a),(1,b),(4,c),(3,d)\}$				
$R_3 = \{(1,d),(2,a),(3,a),(4,c)\}$				

Bei welcher/n Relation(en) handelt es sich um Funktionen?

Aufgabe 3

Eine Funktion f ist, wie folgt rekursiv definiert:

$$f(1) = 1 \text{ und } f(n+1) = f(n) + 8n, n \ge 1.$$

- a) Berechnen Sie f(5).
- b) Wie lautet die explizite Form dieser Rekursion? Zeigen Sie mittels vollständiger Induktion, dass Ihre Lösung für alle $n \in \mathbb{N} \setminus \{0\}$ stimmt.

Aufgabe 4

Sind die Mengen A = [0,2] und B = [0,4] gleich mächtig? Begründen Sie ausführlich warum nicht oder warum.

Aufgabe 5

Zeigen Sie mit Hilfe der vollständigen Induktion, dass die nachfolgende Aussage stimmt

$$\forall n \in \mathbb{N}_{>0} \ \frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots + \frac{1}{(3n-2) \cdot (3n+1)} = \frac{n}{3n+1}$$

Aufgabe 6

Gesucht ist $a \in \mathbb{N}$, so dass a die Zahlen 238 und 255 teilt.

Aufgabe 7

Berechnen Sie den ggT(4711, 1024) mit dem euklidischen Algorithmus:

Aufgabe 8

Berechnen Sie (mindestens 2 Vereinfachungsschritte):

- a) $(-7 + 5 + 40) \mod 8$
- b) (27·456 + 33) mod13 c) 2757²⁷ mod9 d) 2764²⁷ mod9

Aufgabe 9

Lösen Sie folgende Gleichungen nach *x* auf:

- a) $6x + 2 \equiv 4 \mod 9$
- b) $34x 95 \equiv 25 \mod{101}$
- c) $4x \equiv 8 \mod 10$

Hinweis: Aufgabe a) ist nicht lösbar. Warum?

Aufgabe 10

Gesucht ist die kleinste Zahlen $x \in \mathbb{N}$, für die gilt:

 $x \equiv 12 \mod 15$

 $x \equiv 7 \mod 16$