Gradientenverfahren

Gradientenverfahren

Wie kann man Minima einer differenzierbaren Abbildung $f: \mathbb{R}^n \to \mathbb{R}$ finden?

Gradientenverfahren

- An jedem Punkt $x_k \in \mathbb{R}^n$ zeigt der negative Gradient $d_k := -\nabla f(x_k)$ in die steilste Abstiegsrichtung.
- Für hinreichend kleines α_k folgt mit Satz über die lokale Linearisierung:

$$f(x_{k+1}) = f(x_k + \alpha_k d_k) = f(x_k) + \alpha_k df(x_k) d_k + R(\alpha_k dk)$$

- Setze $x_{k+1} = x_k + \alpha_k d_k$
- Es gilt $f(x_{k+1}) \le f(x_k)$, falls $\nabla f(x_k) \ne 0$
- Falls die folge $f(x_k)$ beschränkt ist, so ist dieser Fixpunkt x^* ein Minimum, da $\nabla f(x^*) = 0$ gelten muss.

Gradientenverfahren

Figure: Quelle: Wikipedia

Gradientenverfahren

Höhenlinien

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine differenzierbare Funktion. Eine Kurve $\gamma: I \to \mathbb{R}^n$, auf der f konstant ist, also $f(\gamma(t)) = c$ für ein festes $c \in \mathbb{R}$ gilt, heißt Höhenlinie.

Figure: Quelle:

https://getoutside.ordnancesurvey.co.uk/guides/understanding-map-contour-lines-for-beginners/

Gradientenverfahren

Höhenlinien

Der Gradient steht senkrecht auf Höhenlinien. Dies bedeutet, dass

$$\langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$$

gilt.

Beweis

Aus $f(\gamma(t)) = c$ folgt $\frac{d}{dt}f(\gamma(t)) = 0$. Mit der Kettenregel folgt $\frac{d}{dt}f(\gamma(t)) = df(\gamma(t)) \cdot \gamma'(t) = 0$ und damit $\langle \nabla f(\gamma(t)), \gamma'(t) \rangle = 0$.

Das Gradientenverfahren angewendet auf eine Lossfunktion eines neuronalen Netzes wird als Backpropagation bezeichnet. Gegeben ist ein neuronales Netz $f: \Omega \times \mathbb{R}^n \to \mathbb{R}^m$, und ein Datensatz $D:=\{(x_i,y_i)\}$ mit $x_i\in \mathbb{R}^n,y_i\in \mathbb{R}^m$. Finde Gewichte Omega, so dass Lossfunktion

$$L_D:\Omega\subset\mathbb{R}^n\to\mathbb{R}$$

minimal wird. Zum Beispiel

$$L_D(\omega) := \sum_{(x_i, y_i) \in D} (f(\omega, x_i) - y_i)^2$$

Figure

Figure

Backpropagation

Backpropagation

• Initialisiere k := 0 und zufällige Gewichte w_0 .

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$
- While $||\nabla L_D(\omega)|| > \epsilon$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon>0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- $k \leftarrow k + 1$

Backpropagation

Mini Batch

• Datensatz D sehr groß (Big Data)

Backpropagation

Mini Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.

Backpropagation

<u>Mi</u>ni Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.
- Wende Backpropagation auf Teilräume $D' \subset D$ an (Minibatch).

Backpropagation

Mini Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.
- Wende Backpropagation auf Teilräume $D' \subset D$ an (Minibatch).
- #D' = 1 stochastischer Gradientenabstieg.

Figure: Quelle: https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a

Backpropagation

Backpropagation

• Initialisiere k := 0 und zufällige Gewichte w_0 .

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_k}(\omega)|| > \epsilon$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_{k}}(\omega)|| > \epsilon$
- Bestimme α_k mit

$$L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_{\iota}}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_k}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- Wähle neue Teilmenge $D'_{k+1} \subset D$.

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_k}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- Wähle neue Teilmenge $D'_{k+1} \subset D$.
- $k \leftarrow k + 1$

Automatisches Ableiten

Figure: Quelle: Wikipedia

Automatisches Ableiten in Pytorch Automatisches Ableiten in JAX

Backpropagation

Konditionszahl

Ist $f:U\to\mathbb{R}^m$ differnzierbar, so lässt dich mit dem Mittelwertsatz die Konditionszahlen berechnen durch

$$\kappa = ||f'(x)||$$

$$\kappa_{rel} = \frac{||x||}{||f(x)||} ||f'(x)||$$

mit der Operatornorm $||h|| := \sup_{||x||=1} ||h(x)||$

Konditionszahl Addition/Subtraction

Für $f:(x,y):=x\pm y$ ist $f'(x,y)=(1,\pm 1)$ und dem Betrag als Norm auf $\mathbb R$ und der Norm ||(x,y)||:=|x|+|y| ist

$$\kappa = 1$$

$$\kappa_{rel} = \frac{|a| + |b|}{|a \pm b|}$$

Für die Addition ist $\kappa_{rel}=1$ und damit gut konditioniert. Für die Subtraktion zweier fast gleich großer Zahlen ist |a-b|<<|a|+|b| und damit ist in diesem Fall $\kappa_{rel}>>1$ und damit schlecht konditioniert.