Capstone 2: Population Drug Demand

Introduction/Background

Introduction/Background

- Aging population causing a strain on the healthcare industry [1]
- Challenges:
 - Chronic disease
 - Disabilities/ dependencies
 - Caregiving gaps
 - System deficiencies

Introduction/ Background

- Chronic illness
- Increased drug demand, exacerbating drug shortage [2]
- Urgent public health crisis

Proposed Solution Using Data Science

Proposed Solution

- Predict drug demand from population trends
 - Forecast demand
 - Mitigate supply chain bottlenecks

Scope of Solution Space

- Location
- Provide an initial guiding direction towards mitigation
 - Other factors:
 - Physical capacity of manufacturing plants
 - Economic viability.
- Date ranges of publicly available data

Data Sources

Population Data +
Prescription Usage (%)
per Age Group

Population per Age Group Using Prescriptions

Train model on:
Population per Age Group
Using Prescriptions +
Prescriptions Dispensed per
Year

Data Processing & Insights

Age

Prescriptions Dispensed	Prescription Usage	U.S. Population
2009-2015*	1988-2003	
	2011-2018	
		2016-2018
2016-2022		
		2023

Model Building & Evaluation

OLS Linear Regression

- Linear relationship
- Bootstrap resampling (small data set)
- Results indicate overfitting

Ridge Regression

- Reduced overfitting
- Hyperparameter tuning
- Overfitted (small dataset)

Bayesian Ridge Regression

- Probabilistic estimates to aid limited data
- Best results

Model Comparison

Model Name	MSE Relative Error
OLS	139.39%
Ridge	131.01%
Bayesian Ridge	3.18%

Application & Recommendations for Future Work

Application & Recommendations for Future Work

- Predicted Prescriptions to Be
 Dispensed in 2023: 5940
- Additional data collection

References

- 1. https://onlinelibrary.wiley.com/doi/full/10.1002/puh2.213
- 2. https://www.ama-assn.org/delivering-care/public-health/drug-shortages#
- 3. https://www.cdc.gov/chronic-disease/data-research/facts-stats/index.html
- 4. https://westhealth.org/news/a-proven-model-to-combat-u-s-drug-shortages/