Ансамблирование линейных моделей с помощью выпуклых комбинаций через максимизацию корреляции с откликом

Борисов Иван Максимович

МГУ

Научный руководитель: Сенько Олег Валентинович

2024

Цель исследования

Разработка нового метода линейной регрессии, основанного на ансамблировании выпуклых комбинаций "элементарных"регрессий, с акцентом на максимизацию корреляции предсказаний с целевой переменной. Ожидается, что предложенная модель будет демонстрировать качество, сопоставимое с Эластичной сетью на данных малого объема.

Литература

- А. А. Докукин, О. В. Сенько, "Регрессионная модель, основанная на выпуклых комбинациях, максимально коррелирующих с откликом", Ж. вычисл. матем. и матем. физ., 55:3 (2015), 530–544; Comput. Math. Math. Phys., 55:3 (2015), 526–539
- Senko O., Dokukin A. Optimal forecasting based on convex correcting procedures // New Trends in Classifica* tion and Data Mining. ITHEA, Sofia, 2010. P. 62–72.
- Ensembles of Regularized Linear Models//Anthony Christidis, Laks V.S. Lakshmanan, Ezequiel Smucler, Ruben Zamar (2001)

Постановка задачи

Решается задача

$$X = \{x^1, x^2, \dots, x^n\}, x^i \in \mathbb{R}^d$$
 - объекты, $Y = \{y^1, \dots, y^n\}, y^i \in \mathbb{R}$ - отклики. Решаем задачу линейной регрессии $a: X \to Y$, то есть $a(x) = \langle w, x \rangle + b$, где $w \in \mathbb{R}^d, b \in \mathbb{R}$ — обучаемые параметры линейной модели.

Проблема

Мультиколлинеарность — высокая корреляция между переменными. Особенно данная проблема существенна в случае d>>n.

Борьба с мультиколлинеарностью.

Начальная задача

$$L(\theta) \rightarrow min_{\theta}$$

где $\theta = (w, b) \in \mathbb{R}^{d+1}$ — вектор обучаемых параметров.

Новая задача

$$L(\theta) + C(\theta) \rightarrow min_{\theta}$$

где $C:\Theta o\mathbb{R}.$

Борьба с мультиколлинеарностью.

Положим

Пусть
$$L(\theta) = MSE(\theta)$$
 и $C_i = w_i \rho(y, x_i)$, где $\rho(y, x_i)$ — коэффициент корреляции Пирсона.

Тогда:

$$\begin{cases} \sum_{i=1}^{n} (y^{i} - b - \langle w, x^{i} \rangle)^{2} \rightarrow min_{\theta} \\ C_{1} = w_{1}\rho(y, x_{1}) \geq 0 \\ \dots \\ C_{k} = w_{k}\rho(y, x_{k}) \geq 0 \end{cases}$$
(1)

Переход от задачи оптимизации к поиску наилучшей выпуклой комбинации.

Решение (1) эквивалентно следующему алгоритму:

1. Методом наименьших квадратов строятся d "элементарных" регрессоров:

$$R_i = b_i + w_i x_i, \quad \overline{R} = (R_1, \dots, R_d).$$

2. Находится выпуклая комбинация с максимальной корреляцией с откликом:

$$\sum_{i=1}^d c_i = 1, c_i \geq 0 \Rightarrow \rho(P(\overline{c}^*, \overline{R}), y) \geq \rho(P(\overline{c}, \overline{R}), y)$$

$$\forall \overline{c} = (c_1, \ldots, c_d)$$

где $P(\overline{c}, \overline{R}) = \sum_{i=1}^d c_i^* R^i$ и \overline{c}^* — оптимальная комбинация.

3. Строится линейная регрессия для прогнозирования y:

$$a(x) = \beta + \alpha P(\overline{c}^*, \overline{R}).$$

Оптимизационная задача

Корреляция Пирсона для выпуклой комбинации

$$\rho(Y, P(\overline{c}, \overline{R})) = \frac{cov(\overline{P}, Y)}{\sqrt{\mathbb{D}\overline{P}}\sqrt{\mathbb{D}Y}} = \frac{\mathbb{E}[(\overline{P} - \mathbb{E}\overline{P})(Y - \mathbb{E}Y)]}{\sqrt{\mathbb{D}\overline{P}}\sqrt{\mathbb{D}Y}}$$

$$= \frac{\sum_{i=1}^{d} c_{i} \mathbb{D}R_{i}}{\sqrt{\mathbb{D}Y}\sqrt{\sum_{i=1}^{l} c_{i} \mathbb{D}R_{i} - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} c_{i} c_{j} \varrho(R_{i}, R_{j})}} = \frac{\theta}{\sqrt{\mathbb{D}Y}\sqrt{\theta - \frac{1}{2} \sum_{i=1}^{l} \sum_{i=1}^{l} c_{i} c_{i} \varrho(R_{i}, R_{j})}} \to \max_{\theta}$$

Решение для двух элементарных предикторов

$$\rho(Y, P(r, \theta)) = \frac{\theta}{\sqrt{\mathbb{D}Y}\sqrt{\theta + \varrho(r_1, r_2)\frac{(\theta - \mathbb{D}r_1)(\theta - \mathbb{D}r_2)}{(\mathbb{D}r_1 - \mathbb{D}r_2)^2}}} \to max_{\theta}$$

Взяв производную по θ и приравняв ее к 0, получим:

$$\theta^* = \frac{-2\varrho(r_1, r_2)\mathbb{D}r_1\mathbb{D}r_2}{(\mathbb{D}r_1 - \mathbb{D}r_2)^2 - \varrho(r_1, r_2)(\mathbb{D}r_1 + \mathbb{D}r_2)}$$

Утверждение 1:

Ансамбль $\bar{r}=(r_1,r_2)$ является несократимым \Longleftrightarrow

$$\begin{cases} \theta^* = \frac{-2\varrho(r_1, r_2)\mathbb{D}r_1\mathbb{D}r_2}{(\mathbb{D}r_1 - \mathbb{D}r_2)^2 - \varrho(r_1, r_2)(\mathbb{D}r_1 + \mathbb{D}r_2)} \\ \theta^* \in (\mathbb{D}r_1, \mathbb{D}r_2) \\ \exists i \in \{1, 2\} : \rho(Y, P(r, \theta^*)) \ge \rho(Y, r_i) \end{cases}$$
(2)

Многомерный случай

$$P = ||\rho(r_{i}, r_{j})||_{d \times d}, V = ||\mathbb{D}r_{i}||_{1 \times d}, I = ||1||_{1 \times d}, O = ||0||_{1 \times d}$$

$$A_{k} = \sum_{i=1}^{l} P_{ki}^{-1} \mathbb{D}r_{i}, B_{k} = \sum_{i=1}^{l} P_{ki}^{-1}$$

$$C_{k} = \frac{\alpha B_{k} - \beta A_{k}}{\alpha \gamma - \beta^{2}}, D_{k} = \frac{\gamma A_{k} - \beta B_{k}}{\alpha \gamma - \beta^{2}}$$

$$Q_{0} = \sum_{i=1}^{d} \sum_{j=1}^{d} C_{i} C_{j} \varrho_{ij}, Q_{1} = \sum_{i=1}^{d} \sum_{j=1}^{d} (C_{i} D_{j} + C_{j} D_{i}) \varrho_{ij}$$

$$Q_{2} = \sum_{i=1}^{d} \sum_{j=1}^{d} D_{i} D_{j} \varrho_{ij}$$

Тогда:

$$c_k^* = C_k + D_k \theta$$

(3)

Многомерный случай

Утверждение 2: Если ансамбль \overline{r} является несократимым относительно коэффициента корреляции, и $\exists \mathsf{P}^{-1}$, $(\theta_{min}, \theta_{max})$ — интервал значений, на котором $\forall k=1,\ldots,d\Rightarrow c_k^*>0$, тогда выполнены неравенства:

$$egin{cases} heta_{ extit{min}} < heta^* < heta_{ extit{max}} \ \kappa(heta^*) > \kappa(heta_{ extit{min}}) \ \kappa(heta^*) > \kappa(heta_{ extit{max}}), \end{cases}$$
 где $c_k^* = C_k + D_k heta, heta^* = rac{Q_0}{(1-0.5\,Q_1)}$

Также максимум корреляции $\rho(Y, P(\bar{r}, c)) = \frac{\kappa(\theta)}{\mathbb{D}Y}$ на \overline{D}_d достигается при θ^* в точке c^* . Верно и обратное утверждение.

Основной алгоритм.

Двумерный случай

- Обучаем на і-ом признаке d МНК-регрессий.
- ▶ На валидационной выборке оцениваем:

$$\mathbb{D}R_{i} = \frac{1}{n} \sum_{k=1}^{n} (R_{i}(x_{i}^{k}) - \mathbb{E}R_{i})^{2}, \mathbb{E}R_{i} = \frac{1}{n} \sum_{k=1}^{n} R_{i}(x_{i}^{k})$$

$$\varrho(R_i, R_j) = \frac{1}{n} \sum_{k=1}^{n} (R_i(x_i^k) - R_j(x_j^k))$$

- Вычисляем θ^* для всех пар «элементарных» предикторов по формуле (2).
- ▶ Проверяем $\theta_{i,j}^* \in (\mathbb{D}R_i, \mathbb{D}R_j)$.
- lacktriangle Оставляем только те $heta_{ij}^*$, для которых $orall k \in \{i,j\}:
 ho(Y,P(\overline{R}, heta_{ij}^*)) \geq au
 ho(Y,R_k), au \geq 1$

Основной алгоритм.

Многомерный случай

- ▶ Создаем словарь, где ключами являются индексы "элементарных"регрессоров в ансамбле, а значениями их веса c_k .
- ightharpoonup Для каждого ненулевого $heta_{ij}^*$ из двумерного случая находим коэффициенты по формуле (3) и записываем их в словарь.
- Проходим по переменным, не входящим в текущий ансамбль, и добавляем соответствующий элементарный предиктор.

Основной алгоритм.

Многомерный случай (продолжение)

- Проверяем выполнение условий утверждения 2 для нового ансамбля.
- Если условия выполнены, обновляем словарь, удаляя старый ансамбль и добавляя новый, и продолжаем перебор переменных.
- Если условия нарушены, завершаем перебор для текущего ансамбля и возвращаемся к предыдущему.

Альтернативный алгоритм

- Бутстрапируем выборку.
- Запускаем алгорит построения Оптимальных Выпуклых Комбинаций.
- Вместо полного перебора на каждой итерации фиксируем максимально коррелирующую с целевой переменной комбинацию.
- Для добавления вариативности в комбинации используем метод случайных подпространств.
- ightharpoonup Повторяем заданное число $n_bootstrap$ раз.

Получение итогового предсказания

Обозначим

I - число выпуклых комбинаций; $\mathsf{B\Pi K}_i(x)$ - предсказание і-ой комбинации на $\mathsf{x};\ \mathsf{Y}$ - целевые переменные тренировочной выборки; $\overline{\mathsf{B\Pi K}}(X)$ - матрица, столбцы которой - предсказания каждой выпуклой комбинации на тренировочной выборке; ρ_i - коэффициент корреляции Пирсона і-ой комбинации с целевой переменной.

Тогда

- ▶ $\mathsf{B}\mathsf{\Pi}\mathsf{K}_{\mathsf{cp}}(x) = \alpha_1(\frac{1}{I}\sum_{i=1}^I\mathsf{B}\mathsf{\Pi}\mathsf{K}_i(x)) + \beta_1$
- ▶ BΠK_{κοp}(x) = $\alpha_2(\sum_{i=1}^{I} \frac{1}{1-\rho_i^2}$ BΠK_i(x)) + β_2
- ightharpoonup BΠK_{лин} $(x) = Ridge[\overline{BΠK}(X), Y](x)$

где α_i, β_i — коэффициенты, подобранные по MSE на тренировочной выборке.

Данные

2 датасета размеров 176×94 и 92×100 . Разиты в отношении 8:2 на обучение и тест с random seed = 42.

Домен: химические элементы. К примеру, CaAuBi, CdAgSb, CdAuSb, CdCuSb, CePdBi, ..., ZrNiSn, ZrPdSn, ZrPtSn, ZrRhSb, ZrRuSb.

Предлагается по набору признаков химических элементов предсказать некоторый параметр данного химического элемента

Модели для сравнения

Если $L = \sum_{i=1}^n (y_i - a(x_i))^2 + R(w)$, то в зависимости от функции R(w) определим:

- Ridge: $R(w) = ||w||_2^2$
- ▶ Lasso: $R(w) = ||w||_1$
- ► ElasticNet: $R(w) = 0.5 \cdot ||w||_1 + 0.25 \cdot ||w||_2^2$

Также для сравнения обучим ARD-регрессию (RVR) и Байесовскую Ridge регрессию.

Гиперпараметры

- 1. au=1.25 сила, с которой растет корреляция при добавлении нового предиктора.
- 2. p = 0.5 вероятность вхождения i-ого признака в методе случайных подпространств.
- 3. $n_{\text{bootstrap}} = 10$ число бутстрапирований выборки (максимальное число предикторов в ансамбле.)

Результаты

Модель	r ²	Корреляция Пирсона
ВПКср	0.566/0.89	0.794/0.946
ВПКкор	0.598/0.894	0.81/0.949
ВПКлин	0.953/0.918	0.977/0.962
Ridge	0.9603	0.9809
Lasso	0.843	0.922
ElasticNet	0.885	0.943
ARD	0.911	0.958
Байесовская	0.944	0.973

Таблица: Данные 1

Результаты

Модель	r ²	Корреляция Пирсона
ВПК _{ср}	0.9/0.924	0.949/0.962
ВПКкор	0.882/0.921	0.939/0.961
ВПКлин	0.961/0.935	0.981/0.97
Ridge	0.961	0.981
Lasso	0.949	0.975
ElasticNet	0.953	0.9767
ARD	0.963	0.982
Байесовская	0.962	0.982

Таблица: Данные 2

Результаты

По результатам третий метод усреднения классического алгоритма демонстрирует наилучшее качество, в то время как первый и второй методы значительно уступают. Сравнение ВПК с другими моделями будет основываться на лучших результатах. Новый алгоритм превосходит Лассо и Эластичную сеть, а также показывает сопоставимые результаты с Ridge, ARD и Баейсовской регрессиями. В целом, новый метод имеет право на существование и может показывать результаты не хуже устоявшихся решений.

Итоги

В результате работы были обоснованы теоретические основы модели, основанной на ансамблировании линейных моделей с выпуклыми комбинациями для максимизации корреляции с целевой переменной. Алгоритм был реализован и протестирован на реальных данных, показав лучшие результаты по сравнению с некоторыми существующими решениями. Исследованы более эффективные методы агрегации ансамбля, включая метод случайных подпространств и жадного отбора, который снижает вычислительные сложности перебора d! комбинаций. В дальнейшем алгоритм можно развить с помощью идеи дивергентного леса.