Contents

C	onten	ts	vii
Li	st of '	Tables	xv
Li	st of l	Figures	xvii
Li	st of	Algorithms	xix
Pı	eface		xxi
1	Intr	roduction	1
	1.1	Overview and Supporting Motivation	1
	1.2	Background Assumed	4
	1.3	Projects	5
	1.4	Endnote	6
	1.5	On Indices	6
2	The	basic computational object	
	The	idea of Number	7
	2.1	The importance of Number	7
	2.2	Types of number and their use	16
		Representations for $p \in \mathbb{Q}$	18
	2.3	Beyond Rationality: the class of Real numbers	21
	2.4	Polynomial forms and roots	24
	2.5	Operations involving Polynomials	29
		Polynomial Addition and Scalar Multiplication	30
		Polynomial Multiplication	30
		Polynomial Division	33
		Factorization and Roots	37
		Special cases: closed form solutions	43

viii CONTENTS

	2.6	A brief note on Multivariate Polynomials	45
	2.7	Summary	47
	2.8	Projects	48
	2.9	Endnotes	49
3	Cres	iting order	
		ors and Matrices	57
	3.1	Imposing structure on collections of objects	57
	3.2	<i>n</i> -vectors vs. <i>n</i> -tuples	59
	3.3	Operations involving vectors	62
	3.4	Vector spaces: Dimension & Independence	76
	3.5	A first look at Matrix Algebra	83
	3.6	Linear (and non-linear) Transformations	90
	5.0	Linear Transformations	92
		Affine Transformations	92 97
			99
	2.7	A Brief Note on Projection and Perspective	99 99
	3.7	Application to Computer Graphics and Animation	
	3.8	Summary	109
	3.9	Projects	110
	3.10	Endnotes	111
4	The	world in motion	
	A Ba	sic Introduction to Calculus	117
	4.1	The origins of Differential Calculus	117
	4.2	Functions, Lines and Derivatives	123
	4.3	Standard differentiation rules	136
	4.4	Turning Points and the Second Derivative Test	139
		Some Examples of Using the Second Derivative Test .	142
	4.5	Differential Calculus and Optimization	144
	4.6	Digging out roots using Derivatives	152
		Classifying root finding methods	154
		Halley's Method for Finding Roots	155
		Laguerre's Method for Polynomial Roots	156
		Example Comparison of the Two Methods – Polynomial Roots	157
		Summary of Root Finding Techniques	160
	4.7	Dealing with several variables	161
		3 or more variables	168
		2 variable optimization example – Management Avarice	169
	4 8	Summary of Differential Calculus in CS	173

CONTENTE	•
CONTENTS	1Y
CONTENTS	IA.

	4.9	Overview of Integral Calculus	174
	4.10	Standard integration rules	180
	4.11	Summary	184
	4.12	Projects	185
	4.13	Endnotes	186
5	An u	northodox view of number	
	Com	plex Numbers	191
	5.1	Introductory Comments	191
	5.2	Historical origins: "awkward polynomials"	194
	5.3	Basic properties and operations	198
		Complex Addition and Scalar Multiplication	199
		Complex Multiplication	199
		Complex Division	200
	5.4	A multiplicity of forms	202
		Matrix Form	202
		Argand diagrams	202
		Polar Coordinates	203
		Exponent (Euler) form	205
		Summary of different schemes	207
	5.5	Complex Numbers and powers	208
	5.6	Primitive roots of Unity	211
	5.7	Summary of Complex Power Operations	214
	5.8	A selection of computational uses	214
		Laguerre's Method Redux	214
		Quaternions	216
		Properties of typical structures	221
		The Discrete Fourier Transform and its use	224
		Important Computational Properties of the DFT	228
		Inverse Transform	228
		The Convolution Property	230
		DFT and Image Compression	231
		DFT and Large number Arithmetic	233
		The Cooley-Tukey Fast DFT Algorithm	241
		Music through chaos	246
		Fractals, Computer Art and \mathbb{C}	247
		From $\mathbb C$ to Fractal Sets $\dots \dots \dots \dots$	249
		Voss' $1/f$ -music Algorithm	252
	5.9	Summary	254

x CONTENTS

	5.10	Projects	257
		Endnotes	
_	~		
6		puting as experiment	262
		stics and Data Analysis	263
	6.1	Probability theory v. statistics: differences	263
	6.2	Classical scientific experimental method	268
	6.3	It's not about "machines": artefact & algorithm	271
	6.4	Basic statistical concepts	274
		Population and distribution	274
		Random variables	278
		Expectation, mode & median	281
		Expected Value of a random variable	281
		Independence & Conditional Probability	284
		Independent events	286
		Dependent Events	286
		Variance & standard deviation	287
		Probability distributions as "area under a curve"	287
	6.5	Adjustment to "Pure" Standard Deviation	294
	6.6	The Normal and some discrete distributions	298
		The Normal Distribution $\mathcal{N}(\mu, \sigma^2)$	298
		The Binomial Distribution	299
		The Geometric Distribution	300
		The Poisson Distribution	301
		Summary of Discrete Probability Distributions	302
	6.7	Moments and their application	303
	6.8	Confidence and hypothesis testing	306
		Comparing two samples – Welch's Test	312
	6.9	Statistical fallacies and misuse	314
	0.7	Bigger is not the same as better: large vs. small	314
		Post hoc ergo propter hoc and Causality fallacies	316
		Outlier effects	317
		Reading too much into results: overgeneralizing	318
		Proving the Null Hypothesis	319
	6.10	Selected example cases	319
	0.10	Constant Factors in Quicksort Implementations	320
		- •	
		Exam strategy and the Geometric Distribution	
		Web-page "Hits"	324 327
		Poisson with Small Data sets	3//

CONTENTS xi

		Exam standards Comparison	28
	6.11	Statistics & CS – Summary	0
		Finding a fit: Interpolation and Extrapolation	31
		Underlying aims of interpolation	31
		Overview	32
		Regression and Residuals	34
		Least Squares approaches	
		Derivation of Least Squares Approximation 33	
		Fitting a line: Linear Regression	
		Selected Non-linear models	
		Fitting a curve: Polynomial Interpolation	
		Quadratic Regression	
		How good a fit is it?	
		Pearson's Correlation Coefficient	
		Spearman's Rank Correlation	
	6.13	Example Regression & Correlation Cases	
	0.13	Binary Tree Depths	
		Zipf's Law in Text Analysis	
	6 14	Summary	
		Projects	
		Endnotes	
	0.10	Elidiotes	_
7	Mat	rices revisited	
	Intro	duction to Spectral Methods 37	13
	7.1	Operations on $n \times n$ -matrices	' 4
	7.2	Inverse Matrices and the Determinant	' 4
		Computing det A	6
		Example 3×3 determinant	8
		Matrix Inverse	19
		Triangular Matrices	30
		The determinant as a sum of permutations	31
	7.3	Matrix Rank and the relationship to singularity	32
		Elementary row operations	34
	7.4	Introduction to Spectral Analysis	37
		The concept of eigenvalue & eigenvector	8
		The determinant as polynomial	1
		Properties of eigenvalues)3
		The Perron-Frobenius Theorem	8
	7.5	Computing Eigenvalues and Eigenvectors)2

xii CONTENTS

Li	st of S	Symbols	495
Bi	bliog	raphy	475
	8.4	Conclusion – Some Personal Observations	471
	8.3	Lacunae	
	0.2	Matrices, Spectral Methods and CS	
		Statistical Methods: Computing is Empirical	
		Complex Analysis and its Importance in CS	
		Calculus & Computer Science	
		Vectors, Matrices and Graphics	
		Numbers & Polynomials	
	8.2	Significance and Prospects	
	8.1	Introductory Remarks	
8	Epil	ogue	457
	7.9	Endnotes	453
	7.8	Projects	
	7.7	Summary – Matrix and Spectral Methods in CS	
		Summary – Spectral methods and Argument	
		Conditions that guarantee "good behaviour"	
		Spectral methods to check instability	
		Computational Argument	
		Summary	441
		Image Compression through SVD	438
		Underlying form of Singular Value Decomposition	
		Matrices and their Singular Value Decomposition	
		Summary	
		Dead-ends & Dangling Pages	429
		The web as a large graph	
	7.0	The Google Page Rank Algorithm	
	7.6	Summary	
		Special Case: Symmetric Matrices	
		Deflation	
		Inverse Power Method	
		Finding other eigenvalues and eigenvectors	
		The Rayleigh Quotient	
		Overview of the Power Method	

CONTENTS	xiii
Main Index	497
Index of Names	503