Wintersemester 2017

Lineare Algebra 1

Blatt 10

Abgabe: 11. Januar 2018 Lineare Abbildungen

Aufgabe 40 (Präsenzaufgabe).

Gibt es eine lineare Abbildung $F: \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$F(2,0) = (0,1), \quad F(1,1) = (5,2), \quad F(1,2) = (2,3)$$
?

Aufgabe 41 (5 Punkte).

Seien $P_1 = (1,1)^{\top}$, $P_2 = (1,-1)^{\top}$, $P_3 = (2,1)^{\top}$, $Q_1 = (-1,4)^{\top}$, $Q_2 = (3,2)^{\top}$ und $Q_3 = (0,7)^{\top}$ Vektoren in \mathbb{R}^2 .

- (i) Gibt es eine lineare Abbildung die P_i auf Q_i abbildet, für i=1,2,3?
- (ii) Gibt es eine lineare Abbildung die P_1 auf Q_1 , P_2 auf Q_3 und P_3 auf Q_2 abbildet?

Aufgabe 42 (5 Punkte).

Sei $\mathcal{B} = \{b_i\}_{i=1,\dots,5} := \{\sin,\cos,\sin\cdot\cos,\sin^2,\cos^2\}$ und $V = \operatorname{span}(\mathcal{B}) \subset \operatorname{Abb}(\mathbb{R},\mathbb{R})$ (die b_i sind als Funktionen auf \mathbb{R} zu verstehen). Betrachten Sie den Endomorphismus $F: V \to V, f \mapsto f'$, wobei f' die erste Ableitung von f bezeichnet.

- (i) Zeigen Sie, dass \mathcal{B} eine Basis von V ist.
- (ii) Bestimmen Sie $\alpha_{ij} \in \mathbb{R}, i, j = 1, ..., 5$, so dass $F(b_j) = \sum_{i=1}^{5} \alpha_{ij} b_i$.
- (iii) Bestimmen Sie Basen von Ker F und Im F.

Aufgabe 43 (5 Punkte).

Sei V ein endlichdimensionaler Vektorraum und $F:V\to V$ ein Endomorphismus. Es sei definiert: $W_0:=V$ und $W_{i+1}:=F(W_i)$ für $i\in\mathbb{N}$. Dann gilt: Es gibt ein $m\in\mathbb{N}$ mit $W_{m+i}=W_m$ für alle $i\in\mathbb{N}$.

Abgabe der Übungsblätter in den (mit den Nummern der Übungsgruppen gekennzeichneten) Fächern im UG der Eckerstraße 1. Die Übungsblätter müssen bis **15:00** Uhr am jeweils angegebenen Abgabedatum eingeworfen werden.