Implementing Various Delta Hedging Strategies

Presentation Outline

- Introduction
- Concepts:
 - Delta Hedge
 - Monte Carlo Methods
- Methodology:
 - Hedging Strategies
- Performance Comparison
- Conclusion

Introduction

• The primary objective of our study is to empirically assess the effectiveness of different delta hedging strategies in managing risk and optimizing returns.

 Through the utilization of Monte Carlo simulations, we aim to simulate a diverse range of market scenarios and evaluate the performance of dynamic, static, and no hedging strategies.

• Ultimately, our goal is to provide investors and traders with actionable insights that can inform their decision-making processes and enhance their risk management capabilities in options trading.

Project Structure

Concept: Delta Hedge

 Delta hedging is an options trading strategy aimed at reducing and/or eliminating the risk associated with changes in the price of the underlying asset.

• It involves adjusting the portfolio of options and the underlying asset in such a way that changes in the price of the underlying asset have minimal impact on the overall value of the portfolio.

Concept: Delta Hedge

Delta Hedge Equation:

$$\Delta(t,s)$$
 = Delta of the Option

$$\Delta(t,s) \doteq \frac{\partial}{\partial s}C(t,s)$$

 $\delta C(t,s) = Change in Option Price$

δs = Change in Underlying Assets Price

Concept: Monte Carlo Simulation

 Monte Carlo Simulations are computational algorithms used to model the probability of different outcomes in a process that cannot easily be predicted due to the intervention of random variables.

Methodology: Strategies

Delta Hedging Strategy	Description	Adjustment	Goal
Dynamic Hedge	Adjusts hedge ratio continuously based on delta changes.	Weekly adjustments	Maintain delta-neutral position
Static Hedge	Establishes a fixed hedge ratio at outset.		Fixed hedge based on initial delta
No Hedge	Holds option without hedging against price changes.	None	Expose to full price risk

Dynamic Hedging Strategy (Example)

- Short 1 Contract of At-the-Money Call (Fixed)
- SPY Price = 520

Week	Price	Delta	Total Delta Position	Adjustment Shares	Total Adjustment	
0	520	-54	0	NaN	NaN	
1	518.01	-51	3	Sell 3	Short 3	
•			•			
10	528.57	-84	-38	Buy 38	Long 30	
11	523.52	NaN	NaN	Sell 30	NaN	

Dynamic Hedging Strategy (Example)

Dynamic hedging results				
Original Option P&L	\$ 189.50			
Original Stock P&L	\$ 37.26			
Adjustment P&L	\$ -94.53			
Carry (Interest) on Option	\$ 1.07			
Carry (Interest) on Stock	\$ -22.93			
Interest on Adjustments	\$ 0.37			
TOTAL CASH FLOW	\$ 110.74			

Dynamic Hedging Strategy

Static Hedging Strategy

No - Hedge Strategy

• Short Call (Realized volatility = 0.11)

	P5	Mean	P95	P95 - P5 (90% Confidence Interval)
Dynamic Hedge	-284.21	481.77	1108.26	1392.47
Static Hedge	-836.89	503.27	1384.95	2221.84
No Hedge	-2659.97	504.18	1589.68	4249.65

Realized Volatility	Dynamic Hedging		Static Hedging		No Hedging	
	P5	P95	P5	P95	P5	P95
0.02	1141.9	1365.04	1058.83	1412.38	631.58	1589.68
0.05	673.37	1285.63	328.69	1419.02	-650.42	1589.68
80.0	239.81	1212.7	-382.48	1381.45	-1706.57	1589.68
0.11	-284.21	1108.26	-836.89	1384.95	-2659.97	1589.68
0.14	-713.82	984.46	-1689.24	1362.36	-4281.42	1589.68
0.17	-1223.92	846.86	-2448.86	1340.83	-5388.37	1589.68
0.20	-1595.73	726.83	-2990.73	1316.93	-6528.77	1589.68

Short Put (Realized Volatility = 0.11)

	P5	Mean	P95	P95 - P5 (90%Confidence Interval)
Dynamic Hedge	-657.04	95.12	696.24	1353.28
Static Hedge	-1318.77	70.64	1021.32	2340.09
No Hedge	-3034.52	-9.43	994.18	4028.70

Realized Volatility	Dynamic Hedging		Static Hedging		No Hedging	
	P5	P95	P5	P95	P5	P95
0.02	780.19	1002.79	647.67	1047.98	438.73	994.18
0.05	333.27	992.66	40.79	1053.95	-645.32	994.18
0.08	-131.76	822.93	-674.57	1051.16	-1649.67	994.18
0.11	-657.04	696.24	-1318.77	1021.32	-3034.52	994.18
0.14	-1073.36	636.37	-1957.01	985.07	-4077.17	994.18
0.17	-1592.99	476.04	-2868.27	978.24	-5253.62	994.18
0.20	-2074.05	338.83	-3502.7	955.75	-6148.17	994.18

Conclusion

Hedging Strategy	P95 - P5 (90% Range)	P5 P95		Risk Management
Dynamic Hedge	Lowest	Highest	Lowest	Effective risk management
Static Hedge	Higher than dynamic Lower than dynamic hedge hedge Higher than dynamic hedge		Less effective than dynamic	
No Hedge	Highest	Lowest	Highest	Speculative, high risk

FUTURE WORK

- Dynamic Hedging Optimization:
 - Exploring different re-calibrating frequency
 - Adding market friction (example: transaction costs)
- Volatility Simulation:
 - Explore the feasibility of the hedging strategies in changing volatility conditions
- Backtest Strategy:
 - Test the effectiveness of the three different strategies using historical data

Thank You!