TAREFA 6

Murilo Stellfeld de Oliveira Poloi - GRR20185705

UFPR - CMI101 - Modelos Matemáticos em Finanças

murlo.poloi@gmail.com

Observação: A parte computacional pode ser vista em https://github.com/murlopoloi/CMI101/blob/main/lista6.m

1. Dados mensais de retorno são apresentados para cada uma das três ações mais o índice S&P (corrigido para incluir a distribuição dos dividendos), para um período de 12 meses. Calcule as seguintes quantidades:

	Título				
Mês	A	В	C	S&P	
1	12,05	25,20	31,67	12,28	
2	15,27	2,86	15,82	5,99	
3	-4,12	5,45	10,58	2,41	
4	1,57	4,56	-14,43	4,48	
5	3,16	3,72	31,98	4,41	
6	-2,79	10,79	-0,72	4,43	
7	-8,97	5,38	-19,64	-6,77	
8	-1,18	-2,97	-10,00	-2,11	
9	1,07	1,52	-11,51	3,46	
10	12,75	10,75	5,63	6,16	
11	7,48	3,79	-4,67	2,47	
12	-0,94	1,32	7,94	-1,15	

(a) Alfa para cada ação.

Resposta: Para obter α_i precisamos primeramente calcular os retornos médios de cada ação e seus respectivos β_i , que por sua vez calculamos usando a matriz de covariância tal que

$$\beta_{i} = \frac{\sigma_{i,S\&P}}{\sigma_{S\&P}^{2}}, i = \{A, B, C\},\$$

que nos fornece, utilizando a relação $\alpha_i = R_i - R_m \beta_i$:

	A	В	C	S&P
Retornos Médios	2.9458	6.0308	3.5542	3.005
Betas	1.1834	1.0205	2.3215	1
Alfas	-0.6103	2.9641	-3.4219	0

(b) Beta para cada ação.

Resposta: vide item (a).

(c) O desvio padrão dos resíduos para cada regressão.

Resposta: Utilizando a relação $\sigma_{ei}=\sqrt{\sigma_i^2-\beta_i^2\sigma_m^2}$ obtemos:

	A	В	С	S&P
σ_{ei}	4.8848	5.2045	12.890	0

(d) O coeficiente de correlação entre cada ação e o mercado.

Resposta: Utilizando a relação $\rho_{ij} = \frac{\beta_i \beta_j \sigma_m^2}{\sigma_i \sigma_j}$ obtemos:

	A e B	A e C	B e C
ρ_{ij}	0.5172	0.4934	0.4457

(e) O retorno médio do mercado.

Resposta: Foi obtido no item (a).

(f) A variância do mercado.

Resposta: Utilizando o comando *var* no *Octave* para a quarta coluna da tabela presente no enunciado obtemos a variância do mercado como sendo: $\sigma_{\rm m}^2=22.809$.

- 2. (a) Calcule o retorno médio e a variância do retorno de cada ação do Problema 1 usando:
 - i. O modelo de índice único.

Resposta: Utilizando as relações $R_i=\alpha_i+\beta_iR_m$ e $\sigma_i^2=\beta_i^2\sigma_m^2+\sigma_{ei}^2$ obtemos:

	A	В	С	S&P
Retorno Médio	2.9458	6.0308	3.5542	3.005
Variância	55.804	50.843	289.076	22.809

ii. Os dados historicos.

Resposta: Os retornos médios do modelo de índice único condizem com os obtidos via dados históricos (vide exercício 1(a)). Quanto a variância, basta olhar para a diagonal da matriz de covariância e é fácil verificar que também são iguais.

- (b) Calcule a covariância entre cada par possível de ações usando:
 - i. O modelo de índice único.

Resposta: Utilizando a relação $\sigma_{ij} = \beta_i \beta_j \sigma_m^2$ obtemos:

	Α	В	С
Índice Único	27.546	62.662	54.038
Dados Históricos	20.14	67.22	59.002

ii. Os dados históricos.

Resposta: Utilizando a própia matriz de covariância, obtemos a covariância entre as ações. Ver tabela do item anterior.

- (c) Calcule o retorno e o desvio padrão de uma carteira construída colocando um terço dos fundos disponíveis para aplicação em cada ação, usando:
 - i. O modelo de índice único.

Resposta:

Retorno Índice Único	Retorno Dados Históricos
5.1786	4.1769
Desvio Padrão Índice Único	Desvio Padrão Dados Históricos
7.0692	8.7461

ii. Os dados históricos.

Resposta: Vide item anterior.

(d) Explique por que as respostas às partes A.1 e A.2 foram iguais e por que as respostas às partes B.1, B.2 e C.1, C.2 foram diferentes.

Resposta: Pela natureza do modelo do índice único sabemos que a covariância é calculada entre as ações e o mercado, enquanto que através de dados históricos calculamos a covariância das ações entre si, o que justifica a diferença entre os valores obtidos através dos dois métodos.

3. Considerando esses dados e o fato de que $R_m = 8$ e $\sigma_m = 5$, calcule o seguinte:

Ação					
	A	В	C	D	
α	2	3	1	4	
β	1,5	1,3	0,8	0,9	
σ_{ii}	3	1	2	4	

(a) O retorno médio de cada ação.

Resposta: Utilizando as fórmulas do modelo de índice único obtemos:

	A	В	C	D
Retorno Médio	14	13.4	7.4	11.2
Variância	65.25	43.25	20	36.25

(b) A variância do retorno de cada ação.

Resposta: Vide item (a).

(c) A covariância dos retornos entre cada ação.

Resposta:

	A	В	C	D
Retorno Médio	14	13.4	7.4	11.2
Variância	65.25	43.25	20	36.25

4. Usando os dados do Problema 5 e supondo uma carteira de ponderações iguais, calcule o seguinte:

(a) β_P

Resposta: A soma dos β_i é 4.5, ou seja, $\beta_P = 4.5X_P$.

(b) α_P

Resposta: A soma dos α_i é 10, ou seja, $\alpha_P = 10X_P$.

(c) σ_P^2

Resposta: $X_P^2(20.25 * 25 + 7.43 * 25 + 100) \implies 792X_P^2$.

(d) $\bar{R_P}$

Resposta: 32.5X_P