Inteligência Artificial

Redes Neurais Artificiais

Sumário

- Introdução
 - Neurônios Biológicos
- Neurônios Artificiais
 - Modelo MCP
 - Funções de Ativação
- Aprendizado
 - Supervisionado
 - Não Supervisionado
 - Por Reforço
- Redes Perceptron
 - Algoritmo de aprendizado do Perceptron
- Redes MLP
 - Algoritmo Backpropagation

Redes Neurais Artificiais Neurônios

Introdução

Cérebro

- "Inventado" há vários milhões de anos
- Cerca de 10¹¹ Neurônios
 - Cada um com cerca de 10³ conexões sinápticas
 - Responsável por grande parte do comportamento racional

Computador

- Inventado há menos de 100 anos.
- Cerca de 10⁸ transistores
 - Cada um com apenas 1 entrada!

Neurônio Biológico

- Dendritos recebem impulsos nervosos
- Corpo celular processa
- Axônio transmite para os próximos neurônios
- Unidade básica
 - Processamento paralelo e assíncrono

Aplicações de RNAs

Classificação de Padrões

- Reconhecimento de caracteres
- Identificação de Erros em Linhas de Produção
- Diagnóstico de Doenças
- etc.

Modelagem de Sistemas

- Modelagem de Sistemas complexos
- Previsão do tempo
- Previsão de Séries Temporais
- etc.

Redes Neurais Artificiais Neurônios

Neurônios Artificiais

Neurônio Biológico Funcionamento

 Um neurônio biológico "dispara" quando a soma dos impulsos que ele recebe ultrapassa o seu limiar

Modelo MCP do Neurônio

• Y estará ativa quando $\sum x_i w_i \ge \theta$

$$\sum_{i=1}^{n} x_i w_i \ge \theta$$

Exemplo: Porta AND

 $\theta = 1.0$

Exemplo: Porta OR

 $\theta = 0.5$

Funções de Ativação Exemplos

Alair Dias Júnior

13

Redes Neurais Artificiais Neurônios

Aprendizado

O que significa "Aprender"?

- Aprendizado Conexionista
 - Não utiliza abordagem Simbólica como na IA clássica
 - Tenta-se determinar a intensidade das conexões entre neurônios
 - A *intensidade* é dada pelo peso das sinapses
- Para a rede neural *aprender*, atualiza-se seus pesos (*W*) até obter-se o resultado desejado

Aprendizado Supervisionado

Aprendizado Não Supervisionado

- Muitos sistemas biológicos funcionam como aprendizado não-supervisionado
 - Primeiros estágios da Visão e Audição
 - Identificação de retas, ângulos, etc...
- O ajuste do peso não é feito com base no erro
 - Não existe professor para dizer quão perto está a solução
 - O ajuste é feito com base na utilização da sinapse
 - Quanto mais ativada uma entrada, mais ela é importante e maior o seu peso

Aprendizado Supervisionado

Perceptron

Usa o modelo MCP

Perceptron

Usa o modelo MCP

Perceptron

Usa o modelo MCP

Atualização de Pesos

Regra para atualizar pesos no Perceptron

$$W(t+1) = W(t) + \eta eX(t)$$

- Onde η , a taxa de aprendizagem, é uma constante;
- e é o erro (valor desejado saída da rede);
- X é o vetor de entrada e W é o vetor de pesos.

Algoritmo de Treinamento do Perceptron

- Inicializar a taxa de aprendizado e o vetor de pesos
- Repetir
 - Para cada par do conjunto de treinamento
 - Atualizar o peso para cada um dos nós da rede, utilizando a regra

$$W(t+1) = W(t) + \eta eX(t)$$

• Até e = 0 para todos os elementos do conjunto de treinamento e todos os nós da rede

Exemplos

- Executar o algoritmo do perceptron para treinar uma RNA de apenas um nó para desempenhar a função AND;
- Executar o algoritmo do perceptron para treinar uma RNA de apenas um nó para desempenhar a função OR;
- Executar o algoritmo do perceptron para treinar uma RNA de apenas um nó para desempenhar a função XOR;

Exemplos

- Executar o algoritmo do perceptron para treinar uma RNA de apenas um nó para desempenhar a função AND;
- Executar o algoritmo do perceptron para treinar uma RNA de apenas um nó para desempenhar a função OR;
- Executar o algoritmo do perceptron para treinar uma RNA de apenas um nó para desempenhar a função XOR;
 - Não é possível! Não é linearmente separável...

Redes Neurais Artificiais

MLP Multilayer Perceptron

Classes não linearmente separáveis

- Redes de apenas uma camada não são capazes de resolver problemas não linearmente separáveis
 - Para tal é preciso de redes de mais camadas
 - MLPs
 - MLPs de uma camada oculta podem implementar qualquer função contínua
 - Com duas ou mais camadas ocultas, pode-se implementar qualquer função
 - ATENÇÃO: Poder implementar qualquer função não significa que o algoritmo encontrará os parâmetros para implementá-la na prática!

27

Arquitetura de uma MLP

Funcionalidade

- Primeira Camada Oculta
 - Cada nó traça retas no espaço de padrões de treinamento
- Segunda Camada Oculta
 - Cada nó combina as retas traçadas pelos Neurônios da camada anterior, formando regiões convexas
- Camada de Saída
 - Cada nó forma regiões abstratas que são combinações das regiões convexas das camadas anteriores

Regiões Segunda Camada Oculta

Regiões Camada de Saída

Número de Nós nas Camadas Intermediárias

- O número de nós nas camadas intermediárias depende:
 - Número de Exemplos de Treinamento
 - Quantidade de ruído presente nos exemplos
 - Complexidade da Função a ser aprendida
 - Distribuição Estatística dos dados de treinamento
- Geralmente o número de nós é determinado empiricamente
 - Costuma-se utilizar o número de conexões dez vezes menor que o número de exemplos
 - Muitos nós → overfitting
 - Pucos nós → underfitting

Funções de Ativação

- Se cada nó de uma MLP utilizar uma função de ativação do tipo degrau (limiar), os nós não sabem quão distantes estão do valor desejado
 - As camadas intermediárias também não conseguem determinar seus erros
- Uma alternativa é utilizar uma função linear (rampa) como função de ativação
 - No entanto, é possível provar por meio de álgebra linear simples que uma rede com mais de uma camada com nós com funções de ativação lineares comporta-se como uma rede de apenas uma camada

Função Tangente Hipérbólica

Algoritmo Backpropagation

Fase Forward

Algoritmo Backpropagation

Fase Backward

Algoritmo Backpropagation

Fase Backward

Atualização dos Pesos

Camada de Saída

- $\Delta w_{ji} = \eta \delta_j x_i$
- $\bullet \quad \delta_j = (d_j y_j)f'(net_j)$

Demais Camadas

$$\Delta w_{ji} = \eta \delta_j x_i$$

$$\delta_j = f'(net_j) \sum_{l=0}^{M} \delta_l w_{lj}$$

$$net_j = \sum_{i=0}^n x_i w_{ji}$$

Atualização dos Pesos

Camada de Saída

$$\Delta w_{ji} = \eta \delta_j x_i$$

$$\Delta w_{ji} = \eta \delta_j x_i$$

$$\delta_j = (d_j - y_j) f'(net_j)$$

Demais Camadas

 $\Delta w_{ji} = \eta \delta_j x_i$

$$\delta_j = f'(net_j) \sum_{l=0}^{M} \delta_l w_{lj}$$

Derivada da função de ativação

$$net_j = \sum_{i=0}^n x_i w_{ji}$$

Atualização dos Pesos

Camada de Saída

- $\Delta w_{ji} = \eta \delta_j x_i$
- $\delta_j = (d_j y_j)f'(net_j)$
- Demais Camadas
 - $\Delta w_{ji} = \eta \delta_j x_i$
 - $\delta_j = f'(net_j) \left(\sum_{l=0}^{M} \delta_l w_{lj} \right)$

Somatório dos δ dos nós da camada seguinte ponderados pelo peso da conexão

$$net_j = \sum_{i=0}^n x_i w_{ji}$$

Alair Dias Júnior

 $\delta_i = (d_i - y_i)f'(net_j)$

48

 $\eta = 0, 2$

49

 $\delta_i = (d_i - y_i)f'(net_j)$

Treinamento

- Amostras de Entrada
 - Entradas normalizadas ajudam o treinamento
 - Conjunto de Treinamento
 - Escolher aleatoriamente
 - Conjunto de Validação
 - Somatório dos Erros Quadráticos
 - Conjunto de Teste

$$E = \frac{1}{2} \sum_{j=1}^{k} (d_j - y_j)^2$$

Pesos Iniciais

- Pesos Aleatórios
 - Para evitar mínimos locais quando for necessário reiniciar o treinamento

Aprendizado Ensemble (Combinado)

- Tanto o Perceptron quanto as redes MLP trabalham com uma única hipótese na classificação dos dados
 - No perceptron, as classes são separadas por um hiperplano
 - Nas MLPs, as classes são divididas em regiões abstratas
- É possível melhorar o desempenho das duas abordagens sem complicar muito o código
 - E o mesmo modelo pode ser empregado para outros métodos de classificação

Alair Dias Júnior

54

56

Modelo Ensemble

Modelo Ensemble

- Combinando vários classificadores, mesmo que simples, o resultado é melhorado
 - Quanto mais classificadores, menor a probabilidade de erro
- Pode-se utilizar classificadores de tipos diferentes
 - Combinar Perceptron, com MLP, com distância euclidiana, etc...

Como treinar um Modelo Ensemble

- Treinar um modelo ensemble com classificadores do mesmo tipo, requer cuidados
 - Se o mesmo conjunto de dados for apresentado, da mesma forma, para vários perceptrons, por exemplo, todos eles apresentarão a mesma classificação
- O treinamento de cada um dos classificadores do modelo deve ser diferente
 - Geralmente emprega-se uma técnica chamada de boosting

Alair Dias Júnior

69

Boosting

- Os exemplos do conjunto de treinamento são apresentados para os classificadors aleatoriamente, de acordo com uma probabilidade
 - Para o primeiro classificador, esta probabilidade é igual para todos os exemplos do conjunto de treinamento

Boosting

Depois que o primeiro classificador estiver treinado, os exemplos para os quais ele errou a classificação têm sua probabilidade aumentada (boosting)

Boosting

- O próximo classificador utiliza as novas probabilidades para definir quais exemplos serão treinados
 - Ao fim do treinamento, os elementos acertados por este classificador têm a probabilidade reduzida
 - Os que foram classificados erroneamente, têm a probabilidade aumentada novamente
- Este processo se repete até que todos os classificadores foram treinados

Aproximação de Funções

- Para o caso de aproximação de funções, pode ser interessante que a rede seja capaz de atingir valores mais altos na saída (menores que -1 e maiores que 1).
 - Com a função tanh isto não é possível
 - Solução: Um neurônio com função de ativação linear na saída
 - Utilizar este tipo de função somente na camada de saída não prejudica a capacidade de aproximação da rede

