§2.4 逆矩阵

数学系 梁卓滨

2017 - 2018 学年 I

• 一元线性方程: ax = b $\stackrel{a\neq 0}{\Longrightarrow}$

• 一元线性方程: ax = b $\stackrel{a\neq 0}{\Longrightarrow}$ x = b/a

• 一元线性方程:
$$ax = b$$
 $\stackrel{a\neq 0}{\Longrightarrow}$ $x = b/a$

• 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\mathbb{S}_{R}} Ax = b$$

• 一元线性方程:
$$ax = b$$
 $\stackrel{a\neq 0}{\Longrightarrow}$ $x = b/a$

• 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\mathbb{S}\vec{R}} Ax = b \xrightarrow{A\neq 0} x = b/A?$$

• 一元线性方程:
$$ax = b$$
 $\stackrel{a\neq 0}{\Longrightarrow}$ $x = b/a$

♦ 可避免除法, $ax = b \implies$

• 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\text{Spd}} Ax = b \xrightarrow{A \neq 0} x = b/A?$$

- 一元线性方程: ax = b $\stackrel{a \neq 0}{\Longrightarrow}$ x = b/a
- ♦ 可避免除法, $a^{-1}ax = a^{-1}b$ \Longrightarrow
- 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\text{Spd}} Ax = b \xrightarrow{A \neq 0} x = b/A?$$

- 一元线性方程: ax = b $\stackrel{a \neq 0}{\Longrightarrow}$ x = b/a
- ♦ 可避免除法, $a^{-1}ax = a^{-1}b$ $\implies x = a^{-1}b$
- 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\text{Sd}} Ax = b \xrightarrow{A \neq 0} x = b/A?$$

- 一元线性方程: ax = b $\stackrel{a \neq 0}{\Longrightarrow}$ x = b/a
- ♦ 可避免除法, $a^{-1}ax = a^{-1}b$ \Longrightarrow $x = a^{-1}b$
- 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\text{Sd}} Ax = b \xrightarrow{A \neq 0} x = b/A?$$

◇ 可避免除法, 寻找一个 2 阶方阵 B 使得: $BA = I_2$ 。

- 一元线性方程: ax = b $\stackrel{a \neq 0}{\Longrightarrow}$ x = b/a
- ♦ 可避免除法, $a^{-1}ax = a^{-1}b$ $\implies x = a^{-1}b$
- 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\mathbb{S}\vec{K}} Ax = b \overset{A \neq 0}{\Longrightarrow} x = b/A?$$

◇ 可避免除法,寻找一个 2 阶方阵 B 使得: $BA = I_2$ 。这样

$$Ax = b$$

- 一元线性方程: ax = b $\stackrel{a \neq 0}{\Longrightarrow}$ x = b/a
- ♦ 可避免除法, $a^{-1}ax = a^{-1}b$ \Longrightarrow $x = a^{-1}b$
- 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\mathbb{S}\vec{K}} Ax = b \overset{A \neq 0}{\Longrightarrow} x = b/A?$$

◇ 可避免除法,寻找一个 2 阶方阵 B 使得: $BA = I_2$ 。这样

$$BAx = Bb$$

- 一元线性方程: ax = b $\stackrel{a \neq 0}{\Longrightarrow}$ x = b/a
- ♦ 可避免除法, $a^{-1}ax = a^{-1}b$ \Longrightarrow $x = a^{-1}b$
- 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\mathbb{S}\vec{k}} Ax = b \overset{A\neq 0}{\Longrightarrow} x = b/A?$$

◇ 可避免除法,寻找一个 2 阶方阵 B 使得: $BA = I_2$ 。这样

$$BAx = Bb \implies I_2x = Bb$$

- 一元线性方程: ax = b $\stackrel{a \neq 0}{\Longrightarrow}$ x = b/a
- ♦ 可避免除法, $a^{-1}ax = a^{-1}b$ \Longrightarrow $x = a^{-1}b$
- 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\mathbb{S}\vec{K}} Ax = b \overset{A \neq 0}{\Longrightarrow} x = b/A?$$

◇ 可避免除法, 寻找一个 2 阶方阵 B 使得: $BA = I_2$ 。这样

$$BAx = Bb \implies I_2x = Bb \implies x = Bb$$

- 一元线性方程: ax = b $\stackrel{a \neq 0}{\Longrightarrow}$ x = b/a
- ♦ 可避免除法, $a^{-1}ax = a^{-1}b$ $\implies x = a^{-1}b$
- 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\mathbb{S}\vec{K}} Ax = b \xrightarrow{A \neq 0} x = b/A?$$

◇ 可避免除法,寻找一个 2 阶方阵 B 使得: $BA = I_2$ 。这样

$$BAx = Bb \implies I_2x = Bb \implies x = Bb$$

问题 这样的 B 是否存在;

- 一元线性方程: ax = b $\stackrel{a \neq 0}{\Longrightarrow}$ x = b/a
- ♦ 可避免除法, $a^{-1}ax = a^{-1}b$ $\implies x = a^{-1}b$
- 二元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} \xrightarrow{\mathbb{S}\vec{k}} Ax = b \overset{A \neq 0}{\Longrightarrow} x = b/A?$$

◇ 可避免除法, 寻找一个 2 阶方阵 B 使得: $BA = I_2$ 。这样

$$BAx = Bb \implies I_2x = Bb \implies x = Bb$$

问题 这样的 B 是否存在;存在的话如何找出来?

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1 \\ x_1 + 3x_2 = 3 \end{cases}$$

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1\\ x_1 + 3x_2 = 3 \end{cases}$$

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1 \\ x_1 + 3x_2 = 3 \end{cases}$$

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1 \\ x_1 + 3x_2 = 3 \end{cases}$$

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1 \\ x_1 + 3x_2 = 3 \end{cases}$$

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1 \\ x_1 + 3x_2 = 3 \end{cases}$$

x = Bb

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1 \\ x_1 + 3x_2 = 3 \end{cases}$$

$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

 $\downarrow BA=I_2$

$$I_2x = Bb$$

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1 \\ x_1 + 3x_2 = 3 \end{cases}$$

求解思路:
$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 3 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$$

$$\int (1 3)(x_2)$$

$$\begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} -1\\ 3 \end{pmatrix}$$

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1 \\ x_1 + 3x_2 = 3 \end{cases}$$
 求解思路:

$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \qquad \end{pmatrix}$$

BAx = Bb

 $\downarrow BA=I_2$

Ax = b

1

x = Bb

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1 \\ x_1 + 3x_2 = 3 \end{cases}$$
 求解思路:

$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

1 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -18 \end{pmatrix}$ $I_2x = Bb$

Ax = b

BAx = Bb

 $\downarrow BA=I_2$

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1 \\ x_1 + 3x_2 = 3 \end{cases}$$
 求解思路:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -18 \\ 7 \end{pmatrix}$$

$$\begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$$

 $\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$\Downarrow^{\mathit{BA}=I_2}$$

Ax = b

$$BAx = Bb$$

$$I_2x = Bb$$

1

例 求解方程组
$$\begin{cases} 2x_1 + 5x_2 = -1 \\ x_1 + 3x_2 = 3 \end{cases}$$
 求解思路:

$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -18 \\ 7 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -18 \\ 7 \end{pmatrix}$$

BAx = Bb

Ax = b

 $\prod BA=I_2$

1

x = Bb

n 元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

n 元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

改写成矩阵形式:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

n 元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

改写成矩阵形式:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \implies Ax = b$$

n 元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

改写成矩阵形式:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \quad \Rightarrow \quad Ax = b$$

问题 寻找 n 阶方阵 B 使得: $BA = I_n$ 。

n 元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

改写成矩阵形式:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \implies Ax = b$$

问题 寻找 n 阶方阵 B 使得: $BA = I_n$ 。这样

$$Ax = b$$

n 元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

改写成矩阵形式:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \implies Ax = b$$

问题 寻找 n 阶方阵 B 使得: $BA = I_n$ 。这样

$$BAx = Bb$$

n 元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

改写成矩阵形式:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \implies Ax = b$$

问题 寻找 n 阶方阵 B 使得: $BA = I_n$ 。这样

$$BAx = Bb \implies I_n x = Bb$$

n 元线性方程组:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{1n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

改写成矩阵形式:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \implies Ax = b$$

问题 寻找 n 阶方阵 B 使得: $BA = I_n$ 。这样

$$BAx = Bb \implies I_n x = Bb \implies x = Bb$$

逆矩阵

定义 对于 n 阶矩阵 A, 如果存在 n 阶矩阵 B, 使得 $BA = I_n$ 并且 $AB = I_n$,

定义 对于 n 阶矩阵 A, 如果存在 n 阶矩阵 B, 使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,

定义 对于 n 阶矩阵 A, 如果存在 n 阶矩阵 B, 使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆, 那么逆矩阵是唯一的。

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆, 那么逆矩阵是唯一的。

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆, 那么逆矩阵是唯一的。

证明 设 B_1 和 B_2 都是 A 的逆矩阵,要证明 $B_1 = B_2$ 。

 B_1AB_2

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆, 那么逆矩阵是唯一的。

$$=B_1AB_2=$$

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

$$=B_1AB_2=(B_1A)B_2$$

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

$$= B_1 A B_2 = (B_1 A) B_2 = I_n B_2$$

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

$$= B_1 A B_2 = (B_1 A) B_2 = I_n B_2 = B_2$$

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

$$B_1(AB_2) = B_1AB_2 = (B_1A)B_2 = I_nB_2 = B_2$$

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

$$B_1I_n = B_1(AB_2) = B_1AB_2 = (B_1A)B_2 = I_nB_2 = B_2$$

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

$$B_1 = B_1 I_n = B_1 (AB_2) = B_1 AB_2 = (B_1 A)B_2 = I_n B_2 = B_2$$

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

证明 设 B_1 和 B_2 都是 A 的逆矩阵,要证明 $B_1 = B_2$ 。

$$B_1 = B_1 I_n = B_1 (AB_2) = B_1 AB_2 = (B_1 A)B_2 = I_n B_2 = B_2$$

注 由于 A 的逆矩阵是唯一的,我们就把它记为 A^{-1} 。

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

证明 设 B_1 和 B_2 都是 A 的逆矩阵,要证明 $B_1 = B_2$ 。

$$B_1 = B_1 I_n = B_1 (AB_2) = B_1 AB_2 = (B_1 A)B_2 = I_n B_2 = B_2$$

注 由于 A 的逆矩阵是唯一的,我们就把它记为 A^{-1} 。

性质 如果 A 可逆,则 $|A| \neq 0$ 。

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

证明 设 B_1 和 B_2 都是 A 的逆矩阵,要证明 $B_1 = B_2$ 。

$$B_1 = B_1 I_n = B_1 (AB_2) = B_1 AB_2 = (B_1 A)B_2 = I_n B_2 = B_2$$

注 由于 A 的逆矩阵是唯一的,我们就把它记为 A^{-1} 。

性质 如果 A 可逆,则 $|A| \neq 0$ 。

证明
$$AA^{-1} = I_n$$

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

证明 设 B_1 和 B_2 都是 A 的逆矩阵,要证明 $B_1 = B_2$ 。

$$B_1 = B_1 I_n = B_1 (AB_2) = B_1 AB_2 = (B_1 A)B_2 = I_n B_2 = B_2$$

注 由于 A 的逆矩阵是唯一的,我们就把它记为 A^{-1} 。

性质 如果 A 可逆,则 $|A| \neq 0$ 。

证明
$$AA^{-1} = I_n \Rightarrow |AA^{-1}| = |I_n|$$

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

证明 设 B_1 和 B_2 都是 A 的逆矩阵,要证明 $B_1 = B_2$ 。

$$B_1 = B_1 I_n = B_1 (AB_2) = B_1 AB_2 = (B_1 A)B_2 = I_n B_2 = B_2$$

注 由于 A 的逆矩阵是唯一的,我们就把它记为 A^{-1} 。

性质 如果 A 可逆,则 $|A| \neq 0$ 。

证明
$$AA^{-1} = I_n \Rightarrow |AA^{-1}| = |I_n| = 1$$

定义 对于 n 阶矩阵 A,如果存在 n 阶矩阵 B,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

证明 设 B_1 和 B_2 都是 A 的逆矩阵,要证明 $B_1 = B_2$ 。

$$B_1 = B_1 I_n = B_1 (AB_2) = B_1 AB_2 = (B_1 A)B_2 = I_n B_2 = B_2$$

性质 如果 A 可逆,则 $|A| \neq 0$ 。

证明
$$AA^{-1} = I_n \Rightarrow |AA^{-1}| = |I_n| = 1 \Rightarrow |A| \cdot |A^{-1}| = 1$$

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

证明 设 B_1 和 B_2 都是 A 的逆矩阵,要证明 $B_1 = B_2$ 。

$$B_1 = B_1 I_n = B_1 (AB_2) = B_1 AB_2 = (B_1 A)B_2 = I_n B_2 = B_2$$

注 由于 A 的逆矩阵是唯一的,我们就把它记为 A^{-1} 。

性质 如果 A 可逆,则 $|A| \neq 0$ 。

证明
$$AA^{-1} = I_n \Rightarrow |AA^{-1}| = |I_n| = 1 \Rightarrow |A| \cdot |A^{-1}| = 1 \therefore |A| \neq 0$$

.4 逆矩阵 5/20 < ▶ A ▼

定义 对于 n 阶矩阵 A ,如果存在 n 阶矩阵 B ,使得 $BA = I_n$ 并且 $AB = I_n$,则称矩阵 A 为可逆矩阵,同时称 B 为 A 的逆矩阵。

性质 如果 A 可逆,那么逆矩阵是唯一的。

证明 设 B_1 和 B_2 都是 A 的逆矩阵,要证明 $B_1 = B_2$ 。

$$B_1 = B_1 I_n = B_1 (AB_2) = B_1 AB_2 = (B_1 A)B_2 = I_n B_2 = B_2$$

注 由于 A 的逆矩阵是唯一的,我们就把它记为 A^{-1} 。

性质 如果 A 可逆,则 $|A| \neq 0$ 。并且 $|A^{-1}| = \frac{1}{|A|}$ 。

证明
$$AA^{-1} = I_n \Rightarrow |AA^{-1}| = |I_n| = 1 \Rightarrow |A| \cdot |A^{-1}| = 1 \therefore |A| \neq 0$$

A : 流体性 5/20.4 ト A 7

定义 一般地,对任意 n 阶方阵 A,

2. 如果 $|A| \neq 0$,则称 A 为非奇异矩阵;

定义 一般地,对任意 n 阶方阵 A,

- 1. 如果 |A| = 0,则称 A 为奇异矩阵;
- 2. 如果 $|A| \neq 0$,则称 A 为非奇异矩阵;

$$A = \begin{pmatrix} a_1 & & \\ & a_2 & \\ & & \ddots & \\ & & & a_n \end{pmatrix}$$

$$A = \begin{pmatrix} \alpha_1 & & \\ & \alpha_2 & \\ & & \ddots & \\ & & & \alpha_n \end{pmatrix} \quad \xrightarrow{\text{@id}_{\alpha_i \neq 0}} \quad A^{-1} =$$

$$A = \begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & a_n \end{pmatrix} \quad \xrightarrow{\text{\tiny \{i=1, 2, ..., n\}}} \quad A^{-1} = \begin{pmatrix} a_1^{-1} & & & \\ & a_2^{-1} & & \\ & & \ddots & \\ & & & a_n^{-1} \end{pmatrix}$$

$$A = \begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & a_n \end{pmatrix} \quad \xrightarrow{\text{\tiny \{i=1,2,\ldots,n\}}} \quad A^{-1} = \begin{pmatrix} a_1^{-1} & & & \\ & a_2^{-1} & & \\ & & \ddots & \\ & & & a_n^{-1} \end{pmatrix}$$

这是
$$\begin{pmatrix}
a_1 & & \\ & \ddots & \\ & & a_n
\end{pmatrix} \cdot \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} \cdot \begin{pmatrix}
a_1 & & \\ & \ddots & \\ & & a_n
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & & a_n^{-1}
\end{pmatrix} = \begin{pmatrix}
a_1^{-1} & & \\ & \ddots & \\ & & & & & a_n^{-1}
\end{pmatrix}$$

例

$$A = \begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & a_n \end{pmatrix} \quad \xrightarrow{\text{{\tt fligh}} a_i \neq 0} \quad A^{-1} = \begin{pmatrix} a_1^{-1} & & & \\ & a_2^{-1} & & \\ & & \ddots & \\ & & & a_n^{-1} \end{pmatrix}$$

这是

$$\begin{pmatrix} a_1 \\ \ddots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} a_1^{-1} \\ \ddots \\ a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1^{-1} \\ \ddots \\ a_n a_n^{-1} \end{pmatrix}$$

$$\begin{pmatrix} a_1^{-1} \\ \ddots \\ a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \ddots \\ a_n \end{pmatrix} =$$

例

$$A = \begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & a_n \end{pmatrix} \xrightarrow{\text{\tiny [i=1,2,...,n)}} A^{-1} = \begin{pmatrix} a_1^{-1} & & & \\ & a_2^{-1} & & \\ & & \ddots & \\ & & & a_n^{-1} \end{pmatrix}$$

这是

$$\begin{pmatrix} a_1 \\ \ddots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} a_1^{-1} \\ \ddots \\ a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1^{-1} \\ \ddots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} 1 \\ \ddots \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} a_1^{-1} \\ \ddots \\ a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \ddots \\ a_n \end{pmatrix} = \begin{pmatrix} a_1 a_1^{-1} \\ \ddots \\ a_n \end{pmatrix} = \begin{pmatrix} a_1 a_1^{-1} \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1^{-1} \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1^{-1} \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1^{-1} \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1^{-1} \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1^{-1} \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 a_1 \\ \vdots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1$$

$$\begin{pmatrix} a_1 \\ \ddots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} a_1^{-1} \\ \ddots \\ a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1^{-1} \\ \ddots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} 1 \\ \ddots \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} a_1^{-1} \\ \ddots \\ a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \ddots \\ a_n \end{pmatrix} = \begin{pmatrix} a_1^{-1} a_1 \\ \ddots \\ a_n^{-1} a_n \end{pmatrix}$$

例

$$A = \begin{pmatrix} a_1 & & \\ & a_2 & \\ & & \ddots & \\ & & a_n \end{pmatrix} \quad \xrightarrow{\text{假设}a_i \neq 0} \quad A^{-1} = \begin{pmatrix} a_1^{-1} & & \\ & a_2^{-1} & \\ & & \ddots & \\ & & a_n^{-1} \end{pmatrix}$$

这是
$$\begin{pmatrix} a_n \end{pmatrix} \qquad \begin{pmatrix} a_n^{-1} \end{pmatrix}$$

$$\begin{pmatrix} a_1 \\ \ddots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} a_1^{-1} \\ \ddots \\ a_n^{-1} \end{pmatrix} = \begin{pmatrix} a_1 a_1^{-1} \\ \ddots \\ a_n a_n^{-1} \end{pmatrix} = \begin{pmatrix} 1 \\ \ddots \\ 1 \end{pmatrix}$$

 $\begin{pmatrix} a_1^{-1} & & \\ & \ddots & \\ & & a_n^{-1} \end{pmatrix} \cdot \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix} = \begin{pmatrix} a_1^{-1}a_1 & & \\ & \ddots & \\ & & a_n^{-1}a_n \end{pmatrix} = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}$

定理 设 A 为 n 阶方阵,则:

定理 设 A 为 n 阶方阵,则:

1. A 可逆 ⇒ $|A| \neq 0$;

定理 设 A 为 n 阶方阵,则:

1. A 可逆 \Leftrightarrow $|A| \neq 0$;

定理 设 A 为 n 阶方阵,则:

- 1. A 可逆 \Leftrightarrow |A| ≠ 0;
- 2. 若 A 可逆,则 $A^{-1} = \frac{1}{|A|}A^*$,

定理 设 A 为 n 阶方阵,则:

- 1. A 可逆 \Leftrightarrow $|A| \neq 0$;
- 2. 若 A 可逆,则 $A^{-1} = \frac{1}{|A|}A^*$,其中

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

定理 设 A 为 n 阶方阵,则:

- 1. A 可逆 \Leftrightarrow |A| ≠ 0;
- 2. 若 A 可逆,则 $A^{-1} = \frac{1}{|A|}A^*$,其中

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

 A_{ij} 是行列式 |A| 中 a_{ij} 的代数余子式。

定理 设 A 为 n 阶方阵,则:

- 1. A 可逆 \iff |A| ≠ 0;
- 2. 若 A 可逆,则 $A^{-1} = \frac{1}{|A|}A^*$,其中

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

 A_{ij} 是行列式 |A| 中 a_{ij} 的代数余子式。

注 1 A^* 的 (i, i) 位置的元素是

§2.4 逆矩阵

定理 设 A 为 n 阶方阵,则:

- 1. A 可逆 \iff |A| ≠ 0;
- 2. 若 A 可逆,则 $A^{-1} = \frac{1}{|A|}A^*$,其中

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

 A_{ij} 是行列式 |A| 中 a_{ij} 的代数余子式。

注1 A^* 的 (i, j) 位置的元素是 A_{ii}

定理 设 A 为 n 阶方阵,则:

- 1. A 可逆 \iff |A| ≠ 0;
- 2. 若 A 可逆,则 $A^{-1} = \frac{1}{|A|}A^*$,其中

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

 A_{ii} 是行列式 |A| 中 a_{ii} 的代数余子式。

- 注1 A^* 的 (i, j) 位置的元素是 A_{ii}
- 注 2 一般地,对任意方阵 A,称上述定义之 A* 为 A 的伴随矩阵

 $A \cdot A^* =$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{nn} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ \\ |A| \\ |A|$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| & * \\ & * \\ & \vdots & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & \vdots & & \ddots & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & \vdots & & \ddots & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & & \ddots & \vdots \\ & & \vdots & &$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ \\ |A| \end{pmatrix}$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| & * \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ \\ |A| \\ |A|$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ * \end{pmatrix}$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ \\ |A| \end{pmatrix}$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ * \\ \end{pmatrix}$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ |A| \\ \end{pmatrix}$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| & & & \\ & |A| & & * \end{pmatrix}$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ |A| \end{pmatrix}$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ |A| \end{pmatrix}$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ |A| \\ \vdots \\ |A| \end{pmatrix}$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ |A| \\ & \ddots \\ |A| \end{pmatrix}$$

$$=|A|\begin{pmatrix}1\\&\ddots\\&&1\end{pmatrix}$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ |A| \\ & \ddots \\ |A| \end{pmatrix}$$

$$=|A|\begin{pmatrix}1\\&\ddots\\&&1\end{pmatrix}=|A|I_n$$

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| & & & \\ |A| & & & \\ & & \ddots & & \\ & & & |A| \end{pmatrix}$$

$$=|A|\begin{pmatrix}1\\&\ddots\\&1\end{pmatrix}=|A|I_n$$

• 当
$$|A| \neq 0$$
 时, $A \cdot \left(\frac{1}{|A|}A^*\right) = I_n$ 。

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ |A| \\ & \ddots \\ |A| \end{pmatrix}$$

$$=|A|\begin{pmatrix}1\\&\ddots\\&1\end{pmatrix}=|A|I_n$$

• 当 $|A| \neq 0$ 时, $A \cdot \left(\frac{1}{|A|}A^*\right) = I_n$ 。同理, $\left(\frac{1}{|A|}A^*\right) \cdot A = I_n$ 。

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ |A| \\ & \ddots \\ |A| \end{pmatrix}$$

$$=|A|\begin{pmatrix}1\\&\ddots\\&1\end{pmatrix}=|A|I_n$$

• 当 $|A| \neq 0$ 时, $A \cdot \left(\frac{1}{|A|}A^*\right) = I_n$ 。同理, $\left(\frac{1}{|A|}A^*\right) \cdot A = I_n$ 。 所以此时 A 可逆

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ |A| \\ \vdots \\ |A| \end{pmatrix}$$

$$=|A|\begin{pmatrix}1\\&\ddots\\&1\end{pmatrix}=|A|I_n$$

• 当 $|A| \neq 0$ 时, $A \cdot \left(\frac{1}{|A|}A^*\right) = I_n$ 。同理, $\left(\frac{1}{|A|}A^*\right) \cdot A = I_n$ 。 所以此时 A 可逆,且 $A^{-1} = \frac{1}{|A|}A^*$ 。

$$A \cdot A^* = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} |A| \\ |A| \\ & \ddots \\ |A| \end{pmatrix}$$

$$=|A|\begin{pmatrix}1\\&\ddots\\&1\end{pmatrix}=|A|I_n$$

• 当 $|A| \neq 0$ 时, $A \cdot \left(\frac{1}{|A|}A^*\right) = I_n$ 。同理, $\left(\frac{1}{|A|}A^*\right) \cdot A = I_n$ 。 所以此时 A 可逆,且 $A^{-1} = \frac{1}{|A|}A^*$ 。

<u>注</u> 对任意 *n* 阶方阵 *A*,都成立:

$$AA^* = A^*A = |A|I_n$$

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。 解 1. 先求出 $|A|$:

3. 所以

 $A^{-1} = \frac{1}{|\Delta|}A^*$

例判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。 解 1. 先求出 $|A|$:

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix}$$

3. 所以

 $A^{-1} = \frac{1}{|A|}A^*$

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \stackrel{c_3 + c_1}{=}$$

解 1. 先求出 |A|:

3. 所以

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

解 1. 先求出 |A|:

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix}$$

3. 所以

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix}$$

3. 所以

$$A^{-1} = \frac{1}{|A|}A^*$$

解 1. 先求出 |A|:

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

 $|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$

解 1. 先求出 |A|:

2. 求出伴随矩阵 A*:

 $A^{-1} = \frac{1}{|A|}A^*$

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \stackrel{c_3+c_1}{=} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

解 1. 先求出 |A|:

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \stackrel{c_3+c_1}{=} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

解 1. 先求出 |A|:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$

3. 所以

 $A^{-1} = \frac{1}{|\Delta|}A^*$

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{23} & A_{33} \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以A可逆。

2. 求出伴随矩阵 *A**:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} * \\ & & \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 \\ & & \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以A可逆。

2. 求出伴随矩阵 *A* *:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 \\ * \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以A可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 \\ 10 \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 *A* *:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 \\ 10 \\ * \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 \\ 10 \\ 7 \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & * \\ 10 & \\ 7 & \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以A可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 \\ 10 \\ 7 \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以A可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 \\ 10 & * \\ 7 \end{pmatrix}$$

3. 所以

 $A^{-1} = \frac{1}{|A|}A^*$

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以A可逆。

2. 求出伴随矩阵 *A* *:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 \\ 10 & -2 \\ 7 \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 \\ 10 & -2 \\ 7 & * \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以A可逆。

2. 求出伴随矩阵 *A* *:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 \\ 10 & -2 \\ 7 & -2 \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$, 所以A可逆。

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 & * \\ 10 & -2 & \\ 7 & -2 & \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$, 所以A可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 & 1 \\ 10 & -2 \\ 7 & -2 \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 & 1 \\ 10 & -2 & * \\ 7 & -2 \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 *A* *:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 & 1 \\ 10 & -2 & 2 \\ 7 & -2 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以A可逆。

2. 求出伴随矩阵 A*;

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 & 1 \\ 10 & -2 & 2 \\ 7 & -2 & * \end{pmatrix}$$

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以A可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 & 1 \\ 10 & -2 & 2 \\ 7 & -2 & 1 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

2. 求出伴随矩阵 A*:

3. 所以 $A^{-1} = \frac{1}{|A|}A^* = \frac{1}{2} \begin{pmatrix} 9 & -2 & 1 \\ 10 & -2 & 2 \\ 7 & -2 & 1 \end{pmatrix}$

可见 $|A| \neq 0$,所以 A 可逆。

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 & 1 \\ 10 & -2 & 2 \\ 7 & -2 & 1 \end{pmatrix}$$

$$A_{11} \ A_{21} \ A_{31}$$

例 判断 $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$ 是否可逆,若可逆,求出 A^{-1} 。

 $|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$

2. 求出伴随矩阵 A*:

解 1. 先求出 |A|:

可见 $|A| \neq 0$, 所以A可逆。

例 判断 $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{pmatrix}$ 是否可逆,若可逆,求出 A^{-1} 。

 $|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ -3 & 2 & 1 \end{vmatrix} \xrightarrow{c_3 + c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -3 & 2 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} = 2$

 $A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 9 & -2 & 1 \\ 10 & -2 & 2 \\ 7 & -2 & 1 \end{pmatrix}$

 $A^{-1} = \frac{1}{|A|}A^* = \frac{1}{2} \begin{pmatrix} 9 & -2 & 1 \\ 10 & -2 & 2 \\ 7 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 9/2 & -1 & 1/2 \\ 5 & -1 & 1 \\ 7/2 & -1 & 1/2 \end{pmatrix}$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

例判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。 解 1. 先求出 $|A|$:

3. 所以

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

2. 求出伴随矩阵 A*:

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix}$$

解 1. 先求出 |A|:

 $A^{-1} = \frac{1}{|A|}A^*$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} \frac{r_2 - r_1}{r_3 - r_1}$$

3. 所以

解 1. 先求出 |A|:

 $A^{-1} = \frac{1}{|A|}A^*$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix}$$

2. 求出伴随矩阵 A*:

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} \frac{r_2 - r_1}{r_3 - r_1} & \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix}$$

2. 求出伴随矩阵 A*:

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

3. 所以

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

- 3. 所以
- $A^{-1} = \frac{1}{|A|}A^*$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

$$A^* - \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{22} \end{pmatrix}$$

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$

3. 所以

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{23} & A_{33} \\ A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{23} & A_{33} \\ A_{23} & A_{33} \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & 2 & 4 \\ \frac{1}{1} & 3 & 9 \end{vmatrix} = \begin{vmatrix} \frac{r_2 - r_1}{r_3 - r_1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ 0 & \frac{1}{1} & \frac{3}{1} \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} * \\ & & \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ r_3 - r_1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 \\ \\ \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ r_3 - r_1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 \\ * \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ r_3 - r_1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 \\ -5 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ r_3 - r_1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 \\ -5 \\ * \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ 1 & 2 & \frac{1}{4} \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 \\ -5 \\ 1 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ r_3 - r_1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$
可见 $|A| \neq 0$,所以 A 可逆。

可见 $|A| \neq 0$,所以 A 可逆

2. 求出伴随矩阵 *A* * :

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & * \\ -5 & \\ 1 & \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

$$1 \neq 0 \quad \text{fiv} \ A \ \text{Tiff}.$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 \\ -5 \\ 1 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} \frac{r_2 - r_1}{r_3 - r_1} & \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 \\ -5 & * \\ 1 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ r_3 - r_1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 *A* *:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 \\ -5 & 8 \\ 1 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ r_3 - r_1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 \\ -5 & 8 \\ 1 & * \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} \frac{r_2 - r_1}{r_3 - r_1} & \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 \\ -5 & 8 \\ 1 & -2 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

$$|A| \neq 0 \quad \text{fig.} |A| = |A| \Rightarrow 0$$

 $A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 & * \\ -5 & 8 \\ 1 & -2 \end{pmatrix}$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ r_3 - r_1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 & 2 \\ -5 & 8 \\ 1 & -2 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 & 2 \\ -5 & 8 & * \\ 1 & -2 \end{pmatrix}$$

$$A^* = \begin{pmatrix} A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} -5 & 8 & * \\ 1 & -2 & * \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ r_3 - r_1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & * \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

例 判断
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} r_2 - r_1 \\ r_3 - r_1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$$

$$|A| \neq 0, \quad \text{MUA TW}.$$

例 判断 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$ 是否可逆,若可逆,求出 A^{-1} 。

可见 $|A| \neq 0$,所以 A 可逆。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1 \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^* = \frac{1}{2} \begin{pmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1 \end{pmatrix}$$

可见 $|A| \neq 0$,所以 A 可逆。

例 判断 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$ 是否可逆,若可逆,求出 A^{-1} 。

 $|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = \frac{r_2 - r_1}{r_3 - r_1} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 \\ 2 & 8 \end{vmatrix} = 2$

 $A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1 \end{pmatrix}$

 $A^{-1} = \frac{1}{|A|}A^* = \frac{1}{2} \begin{pmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -3 & 1 \\ -5/2 & 4 & -3/2 \\ 1/2 & -1 & 1/2 \end{pmatrix}$

练习 假设 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 的行列式不为零,求 A^{-1} 。

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

2. 求出伴随矩阵 A*:

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

2. 求出伴随矩阵 A*:

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 $|A| \neq 0$ 。

2. 求出伴随矩阵 A*:

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 |*A*| ≠ 0。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 |*A*| ≠ 0。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 |*A*| ≠ 0。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} * \\ & \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 |*A*| ≠ 0。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & \\ & \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 |*A*| ≠ 0。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d \\ * \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 |*A*| ≠ 0。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d \\ -c \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 |*A*| ≠ 0。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & * \\ -c & \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 $|A| \neq 0$ 。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 |*A*| ≠ 0。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & * \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 |*A*| ≠ 0。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^*$$

练习 假设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 |*A*| ≠ 0。

2. 求出伴随矩阵 A*:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$A^{-1} = \frac{1}{|A|}A^* = \frac{1}{ad - bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 $|A| \neq 0$ 。

练习 假设 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 的行列式不为零,求 A^{-1} 。

2. 求出伴随矩阵 **A***:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

3

3. 所以
$$A^{-1} = \frac{1}{|A|}A^* = \frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 $|A| \neq 0$ 。
2. 求出伴随矩阵 A^* :

 $A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

练习 假设 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 的行列式不为零,求 A^{-1} 。

解 1. 先求出 |A|:

3. 所以
$$A^{-1} = \frac{1}{|A|}A^* = \frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
 由假设 $|A| \neq 0$ 。

2. 求出伴随矩阵 A^* :

 $A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

解 1. 先求出 |A|:

例如 $\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8}$

$$A^{-1} = \frac{1}{|A|}A^* = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

练习 假设 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 的行列式不为零,求 A^{-1} 。

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 $|A| \neq 0$ 。

 $A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ 3. 所以

练习 假设 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 的行列式不为零,求 A^{-1} 。

解 1. 先求出 |A|:

2. 求出伴随矩阵 A*:

$$A^{-1} = \frac{1}{|A|}A^* = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
 由假设 $|A| \neq 0$ 。

 $A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ 3. 所以 $A^{-1} = \frac{1}{|A|}A^* = \frac{1}{ad - bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

练习 假设 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 的行列式不为零,求 A^{-1} 。

例如
$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} 4 & -8 \\ -2 & 6 \end{pmatrix}$$

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

由假设 $|A| \neq 0$ 。

2. 求出伴随矩阵 A*:

解 1. 先求出 |A|:

$$A^* = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

3. 所以
$$A^{-1} = \frac{1}{|A|}A^* = \frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

练习 假设 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 的行列式不为零,求 A^{-1} 。

例如
$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} 4 & -8 \\ -2 & 6 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -1 \\ -\frac{1}{4} & \frac{3}{4} \end{pmatrix}$$

练习判断
$$A = \begin{pmatrix} 2 & 4 & 1 & 0 \\ 1 & 0 & 3 & 2 \\ -1 & 5 & -3 & 1 \\ 0 & 1 & 0 & 2 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

练习判断
$$A = \begin{pmatrix} 2 & 4 & 1 & 0 \\ 1 & 0 & 3 & 2 \\ -1 & 5 & -3 & 1 \\ 0 & 1 & 0 & 2 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 2 & 4 & 1 & 0 \\ 1 & 0 & 3 & 2 \\ -1 & 5 & -3 & 1 \\ 0 & 1 & 0 & 2 \end{vmatrix}, \quad A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} & A_{41} \\ A_{12} & A_{22} & A_{32} & A_{42} \\ A_{13} & A_{23} & A_{33} & A_{43} \\ A_{14} & A_{24} & A_{34} & A_{44} \end{pmatrix}$$

练习判断
$$A = \begin{pmatrix} 2 & 4 & 1 & 0 \\ 1 & 0 & 3 & 2 \\ -1 & 5 & -3 & 1 \\ 0 & 1 & 0 & 2 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

$$|A| = \begin{vmatrix} 2 & 4 & 1 & 0 \\ 1 & 0 & 3 & 2 \\ -1 & 5 & -3 & 1 \\ 0 & 1 & 0 & 2 \end{vmatrix}, \quad A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} & A_{41} \\ A_{12} & A_{22} & A_{32} & A_{42} \\ A_{13} & A_{23} & A_{33} & A_{43} \\ A_{14} & A_{24} & A_{34} & A_{44} \end{pmatrix}$$

练习判断
$$A = \begin{pmatrix} 2 & 4 & 1 & 0 \\ 1 & 0 & 3 & 2 \\ -1 & 5 & -3 & 1 \\ 0 & 1 & 0 & 2 \end{pmatrix}$$
 是否可逆,若可逆,求出 A^{-1} 。

解

$$|A| = \begin{vmatrix} 2 & 4 & 1 & 0 \\ 1 & 0 & 3 & 2 \\ -1 & 5 & -3 & 1 \\ 0 & 1 & 0 & 2 \end{vmatrix}, \quad A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} & A_{41} \\ A_{12} & A_{22} & A_{32} & A_{42} \\ A_{13} & A_{23} & A_{33} & A_{43} \\ A_{14} & A_{24} & A_{34} & A_{44} \end{pmatrix}$$

计算量很大...

后面还会介绍其他计算方法...

性质 对于 n 阶矩阵 A, 如果 $AB = I_n$, 则 B 为 A 的逆矩阵

性质 对于 n 阶矩阵 A ,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

性质 对于 n 阶矩阵 A ,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 $|A| \neq 0$:

性质 对于 n 阶矩阵 A ,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

$$|AB| = |I_n|$$

性质 对于 n 阶矩阵 A ,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

$$|AB|=|I_n|=1$$

性质 对于 n 阶矩阵 A ,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

$$|AB| = |I_n| = 1 \implies |A| \cdot |B| = 1$$

性质 对于 n 阶矩阵 A,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

性质 对于 n 阶矩阵 A,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 $|A| \neq 0$:

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

性质 对于 n 阶矩阵 A,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 |A| ≠ 0:

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

$$A^{-1}AB$$

性质 对于 n 阶矩阵 A,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 |A| ≠ 0:

$$|AB| = |I_n| = 1 \quad \Rightarrow \quad |A| \cdot |B| = 1 \quad \Rightarrow \quad |A| \neq 0$$

$$= A^{-1}AB =$$

性质 对于 n 阶矩阵 A,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 $|A| \neq 0$:

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

$$=A^{-1}AB=I_nB=$$

性质 对于 n 阶矩阵 A,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 $|A| \neq 0$:

$$|AB| = |I_n| = 1 \quad \Rightarrow \quad |A| \cdot |B| = 1 \quad \Rightarrow \quad |A| \neq 0$$

$$= A^{-1}AB = I_nB = B$$

性质 对于 n 阶矩阵 A,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 $|A| \neq 0$:

$$|AB| = |I_n| = 1 \quad \Rightarrow \quad |A| \cdot |B| = 1 \quad \Rightarrow \quad |A| \neq 0$$

$$= A^{-1}I_n = A^{-1}AB = I_nB = B$$

性质 对于 n 阶矩阵 A ,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 |A| ≠ 0:

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

$$A^{-1} = A^{-1}I_n = A^{-1}AB = I_nB = B$$

性质 对于 n 阶矩阵 A,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 $|A| \neq 0$:

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

2. 由于 $|A| \neq 0$,故 A 可逆,存在 A^{-1} 。所以

$$A^{-1} = A^{-1}I_n = A^{-1}AB = I_nB = B$$

例 假设方阵 A 满足 $2A^2 - 3A + 4I = O$,证明 A 可逆,并求出 A^{-1}

性质 对于 n 阶矩阵 A ,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 |A| ≠ 0:

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

2. 由于 $|A| \neq 0$,故 A 可逆,存在 A^{-1} 。所以

$$A^{-1} = A^{-1}I_n = A^{-1}AB = I_nB = B$$

例 假设方阵 A 满足 $2A^2 - 3A + 4I = O$,证明 A 可逆,并求出 A^{-1} 解

性质 对于 n 阶矩阵 A ,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 |A| ≠ 0:

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

2. 由于 $|A| \neq 0$,故 A 可逆,存在 A^{-1} 。所以

$$A^{-1} = A^{-1}I_0 = A^{-1}AB = I_0B = B$$

例 假设方阵 A 满足 $2A^2 - 3A + 4I = O$,证明 A 可逆,并求出 A^{-1}

$$\mathbb{H} 2A^2 - 3A = -4I$$

性质 对于 n 阶矩阵 A,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 |A| ≠ 0:

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

2. 由于 $|A| \neq 0$,故 A 可逆,存在 A^{-1} 。所以

$$A^{-1} = A^{-1}I_n = A^{-1}AB = I_nB = B$$

例 假设方阵 A 满足 $2A^2 - 3A + 4I = O$, 证明 A 可逆, 并求出 A^{-1}

$$\mathbb{H} 2A^2 - 3A = -4I \Rightarrow A(2A - 3I) = -4I$$

性质 对于 n 阶矩阵 A ,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 |A| ≠ 0:

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

2. 由于 $|A| \neq 0$,故 A 可逆,存在 A^{-1} 。所以

$$A^{-1} = A^{-1}I_n = A^{-1}AB = I_nB = B$$

例 假设方阵 A 满足 $2A^2 - 3A + 4I = O$, 证明 A 可逆, 并求出 A^{-1}

$$\mathbb{H} 2A^2 - 3A = -4I \Rightarrow A(2A - 3I) = -4I \Rightarrow A(-\frac{1}{2}A + \frac{3}{4}I) = I$$

性质 对于 n 阶矩阵 A ,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 $|A| \neq 0$:

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

2. 由于 $|A| \neq 0$,故 A 可逆,存在 A^{-1} 。所以

$$A^{-1} = A^{-1}I_n = A^{-1}AB = I_nB = B$$

例 假设方阵 A 满足 $2A^2 - 3A + 4I = O$,证明 A 可逆,并求出 A^{-1}

$$\mathbb{H} 2A^2 - 3A = -4I \Rightarrow A(2A - 3I) = -4I \Rightarrow A(-\frac{1}{2}A + \frac{3}{4}I) = I$$

所以 A 可逆

性质 对于 n 阶矩阵 A ,如果 $AB = I_n$,则 B 为 A 的逆矩阵(也就是此时自动成立 $BA = I_n$)。

证明 1. 先说明 $|A| \neq 0$:

$$|AB| = |I_n| = 1 \Rightarrow |A| \cdot |B| = 1 \Rightarrow |A| \neq 0$$

2. 由于 $|A| \neq 0$,故 A 可逆,存在 A^{-1} 。所以

$$A^{-1} = A^{-1}I_n = A^{-1}AB = I_nB = B$$

.. ,. -,, -,,- -,,- -

例 假设方阵
$$A$$
 满足 $2A^2 - 3A + 4I = O$,证明 A 可逆,并求出 A^{-1} 解 $2A^2 - 3A = -4I \Rightarrow A(2A - 3I) = -4I \Rightarrow A\left(-\frac{1}{2}A + \frac{3}{4}I\right) = I$

所以 A 可逆,并且 $A^{-1} = -\frac{1}{2}A + \frac{3}{4}I$

例 假设方阵 A 满足 $2A^2 + 5A - I = O$, 证明 A 可逆, 并求出 A^{-1}

例 假设方阵 A 满足 $2A^2 + 5A - I = O$,证明 A 可逆,并求出 A^{-1}

$$2A^2 + 5A = I$$

例 假设方阵
$$A$$
 满足 $2A^2 + 5A - I = O$,证明 A 可逆,并求出 A^{-1}

$$2A^2 + 5A = I \Rightarrow A(2A + 5I) = I$$

例 假设方阵 A 满足 $2A^2 + 5A - I = O$,证明 A 可逆,并求出 A^{-1}

$$2A^2 + 5A = I \Rightarrow A(2A + 5I) = I$$

所以 A 可逆

例 假设方阵 A 满足 $2A^2 + 5A - I = O$, 证明 A 可逆,并求出 A^{-1} 解

$$2A^2 + 5A = I \Rightarrow A(2A + 5I) = I$$

所以 A 可逆,并且 $A^{-1} = 2A + 5I$

1. 若A可逆,则 A^{-1} 也可逆

1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;

1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;

证明

1. 这是: $AA^{-1} = I_n$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆

证明

1. 这是: $AA^{-1} = I_n$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{\nu}A^{-1}$;

证明

1. 这是: $AA^{-1} = I_n$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{k}A^{-1}$;

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1})=$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{\nu}A^{-1}$;

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) =$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{\nu}A^{-1}$;

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{\nu}A^{-1}$;
- 3. 若 A, B 为同阶可逆矩阵,则 AB 也可逆

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{k}A^{-1}$;
- 3. 若 A, B 为同阶可逆矩阵,则 AB 也可逆,而且 $(AB)^{-1} = B^{-1}A^{-1}$;

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{k}A^{-1}$;
- 3. 若 A, B 为同阶可逆矩阵,则 AB 也可逆,而且 $(AB)^{-1} = B^{-1}A^{-1}$;

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$
- 3. 这是: $(AB)(B^{-1}A^{-1}) =$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{k}A^{-1}$;
- 3. 若 A, B 为同阶可逆矩阵,则 AB 也可逆,而且 $(AB)^{-1} = B^{-1}A^{-1}$;

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$
- 3. 这是: $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} =$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{k}A^{-1}$;
- 3. 若 A, B 为同阶可逆矩阵,则 AB 也可逆,而且 $(AB)^{-1} = B^{-1}A^{-1}$;

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$
- 3. 这是: $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} = AI_nA^{-1} =$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{k}A^{-1}$;
- 3. 若 A, B 为同阶可逆矩阵,则 AB 也可逆,而且 $(AB)^{-1} = B^{-1}A^{-1}$;

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$
- 3. 这是: $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} = AI_nA^{-1} = AA^{-1} =$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{k}A^{-1}$;
- 3. 若 A, B 为同阶可逆矩阵,则 AB 也可逆,而且 $(AB)^{-1} = B^{-1}A^{-1}$;

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$
- 3. 这是: $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{k}A^{-1}$;
- 3. 若 A, B 为同阶可逆矩阵,则 AB 也可逆,而且 $(AB)^{-1} = B^{-1}A^{-1}$; 4. 若 A 可逆,则 $|A^{-1}| = \frac{1}{|A|}$

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$
- 3. 这是: $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{k}A^{-1}$;
- 3. 若 A, B 为同阶可逆矩阵,则 AB 也可逆,而且 $(AB)^{-1} = B^{-1}A^{-1}$; 4. 若 A 可逆,则 $|A^{-1}| = \frac{1}{|A|}$

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$
- 3. 这是: $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$
- 4. 这是: $|AA^{-1}| = |I_n|$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{k}A^{-1}$;
- 3. 若 A, B 为同阶可逆矩阵,则 AB 也可逆,而且 $(AB)^{-1} = B^{-1}A^{-1}$; 4. 若 A 可逆,则 $|A^{-1}| = \frac{1}{|A|}$

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$
- 3. 这是: $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$
- 4. 这是: $|AA^{-1}| = |I_n| = 1$

- 1. 若 A 可逆,则 A^{-1} 也可逆,而且 $(A^{-1})^{-1} = A$;
- 2. 若 A 可逆且 $k \neq 0$,则 kA 也可逆,而且 $(kA)^{-1} = \frac{1}{k}A^{-1}$;
- 3. 若 A, B 为同阶可逆矩阵,则 AB 也可逆,而且 $(AB)^{-1} = B^{-1}A^{-1}$; 4. 若 A 可逆,则 $|A^{-1}| = \frac{1}{|A|}$

- 1. 这是: $AA^{-1} = I_n$
- 2. 这是: $(kA)(\frac{1}{k}A^{-1}) = (k\frac{1}{k})(AA^{-1}) = I_n$
- 3. 这是: $(AB)(B^{-1}A^{-1}) = ABB^{-1}A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$
- 4. 这是: $|A| \cdot |A^{-1}| = |AA^{-1}| = |I_n| = 1$

1.
$$AX = C$$
 \longrightarrow $X = ?$

1.
$$AX = C$$
 $\xrightarrow{AX = C}$ $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

2.
$$XA = C \implies X = ?$$

1.
$$AX = C \xrightarrow{A^{-1}AX = A^{-1}C} X = A^{-1}C$$

$$2. XA = C \xrightarrow{AA - C} X = ?$$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

$$2. XA = C \xrightarrow{XAA} = CA \xrightarrow{} X = ?$$

1.
$$AX = C \xrightarrow{A^{-1}AX = A^{-1}C} X = A^{-1}C$$

2.
$$XA = C$$
 $\xrightarrow{XAA^{-1}=CA^{-1}}$ $X = CA^{-1}$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

2.
$$XA = C$$
 $\xrightarrow{XAA^{-1}=CA^{-1}}$ $X = CA^{-1}$

3.
$$AXB = C$$
 \longrightarrow $X = ?$

4.
$$XAB = C$$
 \longrightarrow $X = ?$

5.
$$ABX = C$$
 \longrightarrow $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

2.
$$XA = C$$
 $\xrightarrow{XAA^{-1} = CA^{-1}}$ $X = CA^{-1}$

3.
$$AXB = C$$
 $\xrightarrow{AXB} = C$ $X = ?$

4.
$$XAB = C$$
 \longrightarrow $X = ?$

5.
$$ABX = C \longrightarrow X = ?$$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

2.
$$XA = C$$
 $\xrightarrow{XAA^{-1}=CA^{-1}}$ $X = CA^{-1}$

3.
$$AXB = C$$
 $\xrightarrow{A^{-1}AXB} = A^{-1}C$ $X = ?$

4.
$$XAB = C$$
 \longrightarrow $X = ?$

5.
$$ABX = C$$
 \longrightarrow $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

2.
$$XA = C$$
 $\xrightarrow{XAA^{-1}=CA^{-1}}$ $X = CA^{-1}$

3.
$$AXB = C$$
 $\xrightarrow{A^{-1}AXBB^{-1}=A^{-1}CB^{-1}}$ $X = ?$

4.
$$XAB = C$$
 \longrightarrow $X = ?$

5.
$$ABX = C$$
 \longrightarrow $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

2.
$$XA = C$$
 $\xrightarrow{XAA^{-1}=CA^{-1}}$ $X = CA^{-1}$

3.
$$AXB = C$$
 $\xrightarrow{A^{-1}AXBB^{-1}=A^{-1}CB^{-1}}$ $X = A^{-1}CB^{-1}$

4.
$$XAB = C$$
 \longrightarrow $X = ?$

5.
$$ABX = C$$
 \longrightarrow $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

2.
$$XA = C$$
 $\xrightarrow{XAA^{-1} = CA^{-1}}$ $X = CA^{-1}$

3.
$$AXB = C$$
 $\xrightarrow{A^{-1}AXBB^{-1}=A^{-1}CB^{-1}}$ $X = A^{-1}CB^{-1}$

4.
$$XAB = C$$
 \xrightarrow{XAB} $= C$ $X = ?$

5.
$$ABX = C$$
 \longrightarrow $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

2.
$$XA = C$$
 $\xrightarrow{XAA^{-1} = CA^{-1}}$ $X = CA^{-1}$

3.
$$AXB = C$$
 $\xrightarrow{A^{-1}AXBB^{-1}=A^{-1}CB^{-1}}$ $X = A^{-1}CB^{-1}$

4.
$$XAB = C$$
 $\xrightarrow{XABB^{-1}}$ $=CB^{-1}$ $X = ?$

5.
$$ABX = C$$
 \longrightarrow $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

2.
$$XA = C$$
 $\xrightarrow{XAA^{-1} = CA^{-1}}$ $X = CA^{-1}$

3.
$$AXB = C$$
 $\xrightarrow{A^{-1}AXBB^{-1}=A^{-1}CB^{-1}}$ $X = A^{-1}CB^{-1}$

4.
$$XAB = C$$
 $\xrightarrow{XABB^{-1}A^{-1} = CB^{-1}A^{-1}}$ $X = ?$

5.
$$ABX = C$$
 \longrightarrow $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$
2. $XA = C$ $\xrightarrow{XAA^{-1} = CA^{-1}}$ $X = CA^{-1}$

2.
$$XA = C$$
 $\xrightarrow{XAA^{-1} = CA^{-1}}$ $X = CA^{-1}$

3.
$$AXB = C$$
 $\xrightarrow{A^{-1}AXBB^{-1} = A^{-1}CB^{-1}}$ $X = A^{-1}CB^{-1}$

4.
$$XAB = C$$
 $\xrightarrow{XABB^{-1}A^{-1} = CB^{-1}A^{-1}}$ $X = CB^{-1}A^{-1}$

5.
$$ABX = C$$
 \longrightarrow $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$

$$2. XA = C \xrightarrow{XAA} = CA^{-1} X = CA^{-1}$$

3.
$$AXB = C$$
 $\xrightarrow{A^{-1}AXBB^{-1}=A^{-1}CB^{-1}}$ $X = A^{-1}CB^{-1}$

4.
$$XAB = C$$
 $\xrightarrow{XABB^{-1}A^{-1} = CB^{-1}A^{-1}}$ $X = CB^{-1}A^{-1}$

5.
$$ABX = C$$
 $\xrightarrow{ABX =}$ C $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$
2. $XA = C$ $\xrightarrow{XAA^{-1} = CA^{-1}}$ $X = CA^{-1}$
3. $AXB = C$ $\xrightarrow{A^{-1}AXBB^{-1} = A^{-1}CB^{-1}}$ $X = A^{-1}CB^{-1}$
4. $XAB = C$ $\xrightarrow{XABB^{-1}A^{-1} = CB^{-1}A^{-1}}$ $X = CB^{-1}A^{-1}$

$$A^{-1}ABX = A^{-1}C$$

5.
$$ABX = C$$
 $\xrightarrow{A^{-1}ABX = A^{-1}C}$ $X = ?$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$
2. $XA = C$ $\xrightarrow{XAA^{-1} = CA^{-1}}$ $X = CA^{-1}$
3. $AXB = C$ $\xrightarrow{A^{-1}AXBB^{-1} = A^{-1}CB^{-1}}$ $X = A^{-1}CB^{-1}$
4. $XAB = C$ $\xrightarrow{XABB^{-1}A^{-1} = CB^{-1}A^{-1}}$ $X = CB^{-1}A^{-1}$

5.
$$ABX = C$$
 $\xrightarrow{B^{-1}A^{-1}ABX = B^{-1}A^{-1}C}$ $X = ?$

 $X = B^{-1}A^{-1}C$

1.
$$AX = C$$
 $\xrightarrow{A^{-1}AX = A^{-1}C}$ $X = A^{-1}C$
2. $XA = C$ $\xrightarrow{XAA^{-1} = CA^{-1}}$ $X = CA^{-1}$
3. $AXB = C$ $\xrightarrow{A^{-1}AXBB^{-1} = A^{-1}CB^{-1}}$ $X = A^{-1}CB^{-1}$
4. $XAB = C$ $\xrightarrow{XABB^{-1}A^{-1} = CB^{-1}A^{-1}}$ $X = CB^{-1}A^{-1}$

5. ABX = C $B^{-1}A^{-1}ABX = B^{-1}A^{-1}C$

例 假设 2 阶方阵 X 满足: $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} X = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$, 求 X.

解

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$

解

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} =$$

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$

$$\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} =$$

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$

$$\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3$$
,所以 $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ 可逆,且
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} =$$

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$

$$\left| \begin{array}{ccc} \mathbf{H} & \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3, & \mathbf{K} & \mathbf{K} & \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} & \mathbf{D} & \mathbf{E} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\$$

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$

所以

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$

=

所以

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 3 & 0 \\ -3 & 6 \end{pmatrix} =$$

$$\left| egin{array}{c|c} \mathbf{R} & \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3, & \mathbf{K} \mathbf{K} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} 可逆, & \mathbf{E} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & &$$

所以

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 3 & 0 \\ -3 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$$

● 整角大勺

所以

$$X = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 3 & 0 \\ -3 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$$

解

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1}$$

解

$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} =$$

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1}$$

$$\begin{array}{c|c} \mathbf{R} & 6 & 8 \\ 2 & 4 \end{array} = 8$$

$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} =$$

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1}$$

$$\begin{vmatrix} 6 & 8 \\ 2 & 4 \end{vmatrix} = 8$$
,所以 $\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}$ 可逆,且

$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} =$$

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1}$$

$$\begin{vmatrix} 6 & 8 \\ 2 & 4 \end{vmatrix} = 8$$
,所以 $\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}$ 可逆,且

$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{-} \begin{pmatrix} & & \\ & & \end{pmatrix}$$

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1}$$

$$\begin{vmatrix} 6 & 8 \\ 2 & 4 \end{vmatrix} = 8$$
,所以 $\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}$ 可逆,且

$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} & & & \\ & & & \end{pmatrix}$$

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} 4 & 6 \end{pmatrix}$$

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} 4 & -8 \\ -2 & 6 \end{pmatrix}$$

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} 4 & -8 \\ -2 & 6 \end{pmatrix}$$

所以

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 4 & -8 \\ -2 & 6 \end{pmatrix}$$

=

$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} 4 & -8 \\ -2 & 6 \end{pmatrix}$$

所以

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 4 & -8 \\ -2 & 6 \end{pmatrix}$$
$$= \frac{1}{8} \begin{pmatrix} 4 & -8 \\ 0 & 4 \end{pmatrix} =$$

$$\begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} 4 & -8 \\ -2 & 6 \end{pmatrix}$$

所以

$$X = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 2 & 4 \end{pmatrix}^{-1} = \frac{1}{8} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 4 & -8 \\ -2 & 6 \end{pmatrix}$$
$$= \frac{1}{8} \begin{pmatrix} 4 & -8 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 1/2 & -1 \\ 0 & 1/2 \end{pmatrix}$$

$$AA^* = A^*A = |A|I_n$$

$$AA^* = A^*A = |A|I_n$$

例 设 A 为 n 阶可逆方阵,求证 $|A^*| = |A|^{n-1}$ 。

$$AA^* = A^*A = |A|I_n$$

例设
$$A$$
 为 n 阶可逆方阵,求证 $|A^*| = |A|^{n-1}$ 。

$$|AA^*| = ||A|I_n|$$

$$AA^* = A^*A = |A|I_n$$

例设 A 为 n 阶可逆方阵,求证 $|A^*| = |A|^{n-1}$ 。

$$|AA^*| = ||A|I_n| = |A|^n |I_n| =$$

$$AA^* = A^*A = |A|I_0$$

例设 A 为 n 阶可逆方阵,求证 $|A^*| = |A|^{n-1}$ 。

$$|AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

$$AA^* = A^*A = |A|I_n$$

例 设 A 为 n 阶可逆方阵,求证 $|A^*| = |A|^{n-1}$ 。

$$|A| \cdot |A|^* = |AA|^* = |A|I_n| = |A|^n |I_n| = |A|^n$$

$$AA^* = A^*A = |A|I_n$$

例 设 A 为 n 阶可逆方阵,求证 $|A^*| = |A|^{n-1}$ 。

$$|A| \cdot |A^*| = |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

又因为 $|A| \neq 0$,

$$AA^* = A^*A = |A|I_n$$

例 设 A 为 n 阶可逆方阵,求证 $|A^*| = |A|^{n-1}$ 。

$$|A| \cdot |A^*| = |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

$$AA^* = A^*A = |A|I_n$$

例 设 A 为 n 阶可逆方阵,求证 $|A^*| = |A|^{n-1}$ 。

$$|A| \cdot |A|^* = |AA|^* = |A|I_n| = |A|^n |I_n| = |A|^n$$

例设A为3阶方阵,且
$$|A|=\frac{1}{2}$$
,求 $|(3A)^{-1}-2A*|$

$$AA^* = A^*A = |A|I_n$$

例 设 A 为 n 阶可逆方阵,求证 $|A^*| = |A|^{n-1}$ 。

$$|A| \cdot |A^*| = |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

例设A为3阶方阵,且
$$|A| = \frac{1}{2}$$
,求 $|(3A)^{-1} - 2A*|$

$$AA^* = A^*A = |A|I_n$$

例 设 A 为 n 阶可逆方阵, 求证 $|A^*| = |A|^{n-1}$ 。

$$|A| \cdot |A^*| \neq |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

例设A为3阶方阵,且
$$|A|=\frac{1}{2}$$
,求 $|(3A)^{-1}-2A*|$

$$AA^* = A^*A = |A|I_n$$

例 设 A 为 n 阶可逆方阵, 求证 $|A^*| = |A|^{n-1}$ 。

$$|A| \cdot |A^*| \neq |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

又因为
$$|A| \neq 0$$
,所以 $|A^*| = |A|^{n-1}$ 。

例设A为3阶方阵,且
$$|A|=\frac{1}{2}$$
,求 $|(3A)^{-1}-2A*|$

$$A^* = A A A^{-1} =$$

$$AA^* = A^*A = |A|I_n$$

例 设
$$A$$
 为 n 阶可逆方阵, \sqrt{x} 证 $|A^*| = |A|^{n-1}$ 。

$$|A| \cdot |A^*| \neq |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

又因为
$$|A| \neq 0$$
,所以 $|A^*| = |A|^{n-1}$ 。

例设A为3阶方阵,且
$$|A|=\frac{1}{2}$$
,求 $|(3A)^{-1}-2A*|$

$$A^* = |A|A^{-1} = \frac{1}{2}A^{-1}$$

$$AA^* = A^*A = |A|I_n$$

例 设
$$A$$
 为 n 阶可逆方阵, \sqrt{x} 证 $|A^*| = |A|^{n-1}$ 。

$$|A| \cdot |A^*| \neq |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

又因为
$$|A| \neq 0$$
,所以 $|A^*| = |A|^{n-1}$ 。

例设A为3阶方阵,且
$$|A|=\frac{1}{2}$$
,求 $|(3A)^{-1}-2A*|$

$$A^* = |A|A^{-1} = \frac{1}{2}A^{-1}$$

$$\therefore \left| (3A)^{-1} - 2A^* \right| = \left|$$

$$AA^* = A^*A = |A|I_n$$

例 设 A 为 n 阶可逆方阵, 求证 $|A^*| = |A|^{n-1}$ 。

$$|A| \cdot |A^*| \neq |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

例设A为3阶方阵,且
$$|A|=\frac{1}{2}$$
,求 $|(3A)^{-1}-2A*|$

$$A^* = |A|A^{-1} = \frac{1}{2}A^{-1}$$

$$|(3A)^{-1} - 2A^*| = \left|\frac{1}{3}A^{-1} - \frac{1}{3}A^{-1}\right|$$

$$AA^* = A^*A = |A|I_n$$

例 设
$$A$$
 为 n 阶可逆方阵, \sqrt{x} 证 $|A^*| = |A|^{n-1}$ 。

$$|A| \cdot |A^*| \neq |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

又因为
$$|A| \neq 0$$
,所以 $|A^*| = |A|^{n-1}$ 。

例设A为3阶方阵,且
$$|A|=\frac{1}{2}$$
,求 $|(3A)^{-1}-2A*|$

$$A^* = A A^{-1} = \frac{1}{2}A^{-1}$$

$$\therefore \left| (3A)^{-1} - 2A^* \right| = \left| \frac{1}{3} A^{-1} - 2 \cdot \frac{1}{2} A^{-1} \right|$$

$$AA^* = A^*A = |A|I_n$$

例 设
$$A$$
 为 n 阶可逆方阵, \sqrt{x} 证 $|A^*| = |A|^{n-1}$ 。

解
$$|A| \cdot |A^*| \neq |AA^*| = |A|^n |I_n| = |A|^n$$

又因为 $|A| \neq 0$,所以 $|A^*| = |A|^{n-1}$ 。

例设A为3阶方阵,且
$$|A|=\frac{1}{2}$$
,求 $|(3A)^{-1}-2A*|$

$$A^* = A A^{-1} = \frac{1}{2}A^{-1}$$

$$\therefore \left| (3A)^{-1} - 2A^* \right| = \left| \frac{1}{3} A^{-1} - 2 \cdot \frac{1}{2} A^{-1} \right| = \left| -\frac{2}{3} A^{-1} \right|$$

$$AA^* = A^*A = |A|I_n$$

例 设
$$A$$
 为 n 阶可逆方阵, 求证 $|A^*| = |A|^{n-1}$ 。

解
$$|A| \cdot |A^*| \neq |AA^*| = |A|I_n| = |A|^n |I_n| = |A|^n$$

又因为 $|A| \neq 0$,所以 $|A^*| = |A|^{n-1}$ 。

又因为
$$|A| \neq 0$$
,所以 $|A^*| = |A|^{n-1}$

例设A为3阶方阵,且
$$|A| = \frac{1}{2}$$
,求 $|(3A)^{-1} - 2A^*|$

$$R$$
 :: $A^* = |A|A^{-1} = \frac{1}{2}A^{-1}$

$$=\left(-\frac{2}{3}\right)^3|A^{-1}|=$$

$$AA^* = A^*A = |A|I_n$$

例 设
$$A$$
 为 n 阶可逆方阵, 求证 $|A^*| = |A|^{n-1}$ 。

解
$$|A| \cdot |A^*| \neq |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

又因为 $|A| \neq 0$,所以 $|A^*| = |A|^{n-1}$ 。

又因为
$$|A| \neq 0$$
,所以 $|A^*| = |A|^{n-1}$

例设A为3阶方阵,且
$$|A| = \frac{1}{2}$$
,求 $|(3A)^{-1} - 2A^*|$

$$R$$
 : $A^* = |A|A^{-1} = \frac{1}{2}A^{-1}$

$$AA^* = A^*A = |A|I_n$$

例 设
$$A$$
 为 n 阶可逆方阵, 求证 $|A^*| = |A|^{n-1}$ 。

解
$$|A| \cdot |A^*| \neq |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

又因为 $|A| \neq 0$,所以 $|A^*| = |A|^{n-1}$ 。

又因为
$$|A| \neq 0$$
,所以 $|A^*| = |A|^{n-1}$

例设A为3阶方阵,且
$$|A| = \frac{1}{2}$$
,求 $|(3A)^{-1} - 2A^*|$

$$R$$
 : $A^* = |A|A^{-1} = \frac{1}{2}A^{-1}$

$$AA^* = A^*A = |A|I_n$$

例 设
$$A$$
 为 n 阶可逆方阵, 求证 $|A^*| = |A|^{n-1}$ 。

解
$$|A| \cdot |A^*| \neq |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

又因为 $|A| \neq 0$,所以 $|A^*| = |A|^{n-1}$ 。

又因为
$$|A| \neq 0$$
,所以 $|A^*| = |A|^{n-1}$

例设A为3阶方阵,且
$$|A| = \frac{1}{2}$$
,求 $|(3A)^{-1} - 2A*|$

$$R$$
 : $A^* = |A|A^{-1} = \frac{1}{2}A^{-1}$

$$AA^* = A^*A = |A|I_n$$

例 设
$$A$$
 为 n 阶可逆方阵, \sqrt{x} 证 $|A^*| = |A|^{n-1}$ 。

解
$$|A| \cdot |A^*| \neq |AA^*| = ||A|I_n| = |A|^n |I_n| = |A|^n$$

又因为 $|A| \neq 0$,所以 $|A^*| = |A|^{n-1}$ 。

又因为
$$|A| \neq 0$$
,所以 $|A^*| = |A|^{n-1}$

例设
$$A$$
为 3 阶方阵,且 $|A| = \frac{1}{2}$,求 $|(3A)^{-1} - 2A^*|$

$$R$$
 :: $A^* = |A|A^{-1} = \frac{1}{2}A^{-1}$