ทฤษฎีจำนวน

คุณสมบัติบางประการของจำนวนเต็ม

การหารลงตัว (exact division)

บทนิยาม 1 การหารลงตัว

ให้ a และ b เป็นจำนวนเต็ม โดยที่ $a \neq 0$ จะกล่าวว่า a หาร b ลงตัว $\frac{n}{6}$ ก็ต่อเมื่อ มีจำนวนเต็ม c ที่ทำให้ b = ac ใช้สัญลักษณ์ $a \mid b$ แทน a หาร b ลงตัว

ถ้า $a \mid b$ เราเรียก a ว่าตัวหาร (divisor) หรือตัวประกอบ (factor) ของ b และเรียก b ว่า พหุคูณ (multiple) ของ a และ ถ้า a หาร b ไม่ลงตัวเขียนแทนด้วย $a \nmid b$

ตัวอย่างที่ 1 จงพิจารณาว่า 6 | 1098, 15 | (-255), 4 | 522 หรือไม่ วิธีทำ เนื่องจาก 1098 = 6() ดังนั้น 6 |1098

ข้อสังเกต สำหรับจำนวนเต็ม a ใด ๆ จะได้ว่า

- 1. ถ้า $a \neq 0$ แล้ว $a \mid 0$ และ $a \mid a$
- 2. $a \mid 1$ ก็ต่อเมื่อ a = 1 หรือ a = -1

ตัวอย่างที่ 2 จงหาตัวหารทั้งหมดของ 100 ตัวหารทั้งหมดของ 100 คือ

ทฤษฎีบท 1 ให้ a,b และ c เป็นจำนวนเต็ม โดยที่ $a \neq 0$ และ $b \neq 0$ จะได้ว่า

- 1. ถ้า $a \mid b$ และ $b \mid c$ แล้ว $a \mid c$
- 2. ถ้า $a \mid b$ และ $b \mid a$ แล้ว $a = \pm b$
- $a \mid b$ แล้ว $a \mid bc$ สำหรับทุก ๆ จำนวนเต็ม c
- 4. ถ้า $a \mid b$ และ $c \mid d$ แล้ว $ac \mid bd$
- 5. ถ้า $a \mid b$ และ $a \mid c$ แล้ว $a \mid (bx + cy)$ เมื่อ x และ y เป็นจำนวนเต็มใด ๆ
- 6. ถ้า $a \mid (b+c)$ และ $a \mid b$ แล้ว $a \mid c$

ตัวอย่างที่ 3 พิจารณาสมบัติของการหารลงตัว

- 1) เนื่องจาก -3 | 42 และ 42 | 378 ดังนั้นจะได้
- 2) เนื่องจาก 11 | (33+143) และ 11 | 33 ดังนั้นจะได้

เช่น
$$\lceil 51.2 \rceil = 51$$
, $\lceil -1.2 \rceil = -2$, $\lceil \frac{100}{8} \rceil = 12$

ตัวอย่างที่ 4

- 1) มีจำนวนเต็มตั้งแต่ 1 ถึง 200 กี่จำนวนที่ 4 หารลงตัว
- 2) มีจำนวนเต็มตั้งแต่ 100 ถึง 500 กี่จำนวนที่ 9 หารลงตัว

จำนวนเฉพาะ (prime number)

บทนิยาม 3 จำนวนเต็มบวก p ที่มากกว่า 1 เป็น**จำนวนเฉพาะ** (prime) ก็ต่อเมื่อตัวประกอบที่เป็นบวก ของ p คือ 1 และ p เท่านั้น และเรียกจำนวนเต็มบวกที่มากกว่า 1 ที่ไม่เป็นจำนวนเฉพาะว่า **จำนวน ประกอบ** (composite)

เช่น 11 เป็นจำนวนเฉพาะ เพราะมีตัวประกอบที่เป็นบวก คือ 1 และ 11 เท่านั้น

15 เป็นจำนวนประกอบ เพราะมีตัวประกอบที่เป็นบวก คือ 3 และ 5

ทฤษฎีบท 2 ทฤษฎีบทหลักมูลของเลขคณิต (The fundamental theorem of arithmetic)

ทุก ๆ จำนวนเต็มบวก *n* ที่มากกว่า 1 จะได้ว่า *n* เป็นจำนวนเฉพาะหรือ *n* สามารถเขียนในรูปผลคูณ ของจำนวนเฉพาะได้เพียงแบบเดียวเท่านั้น โดยไม่รวมการสลับที่ตัวคูณหรือการคูณด้วย 1

ข้อสังเกต ทุกจำนวนเต็มบวก n ที่มากกว่า 1 จะได้ว่า n เป็นจำนวนเฉพาะ หรือ n สามารถแยกตัวประกอบที่ เป็นจำนวนเฉพาะได้เพียงรูปเดียวเท่านั้น คือ

 $n = p_1^{c_1} p_2^{c_2} p_3^{c_3} \dots p_k^{c_k}$ โดยที่ $p_1 < p_2 < p_3 < \dots < p_k$ เป็นจำนวนเฉพาะ C_i เป็นจำนวนเต็ม บวก ทุก i=1 , 2 ,3 ,... ,k และ เรียก n ที่เขียนในรูปแบบข้างต้นว่า รูปแบบบัญญัติ

ตัวอย่างที่ 5 จงเขียนรูปแบบบัญญัติของ 300, 101, 693 และ 2048

$$300 = 2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 = 2^{2} \cdot 3 \cdot 5$$

101 =

693 =

2048 =

ทฤษฎีบท 3 ถ้า n เป็นจำนวนประกอบที่มากกว่า 1 แล้ว n จะมีตัวหารที่เป็นจำนวนเฉพาะ p โดยที่ p จะน้อยกว่า หรือเท่ากับ \sqrt{n}

จาก **ทฤษฎีบท** 3 จะได้ว่า

"ถ้า n ไม่มีตัวหารที่เป็นจำนวนเฉพาะ p ซึ่ง $p \leq \sqrt{n}$ แล้วจะได้ว่า n เป็นจำนวนเฉพาะ "

ตัวอย่างที่ 6 จงแสดงว่า 101 เป็นจำนวนเฉพาะหรือไม่
 วิธีทำ จำนวนเฉพาะที่น้อยกว่าหรือเท่ากับ √101 คือ 2, 3, 5 และ 7
 เนื่องจาก 2, 3, 5 และ 7 หาร 101 ไม่ลงตัวดังนั้น 101 เป็นจำนวนเฉพาะ

ตัวอย่างที่ 7 จงแสดงว่า 2873 เป็นจำนวนเฉพาะหรือไม่

ตัวอย่างที่ 8 จงหาจำนวนเฉพาะที่มีค่ามากที่สุดที่เป็นตัวประกอบของ 1365

ตัวอย่างที่ 9 จงหาจำนวนตัวหารทั้งหมดของ 4725

ทฤษฎีบท 4 จำนวนเฉพาะมีอยู่เป็นจำนวนอนันต์

ขั้นตอนการหาตัวประกอบที่เป็นจำนวนเฉพาะของ *ก*

- 1. หา \sqrt{n}
- 2. หาจำนวนเฉพาะ p ซึ่ง $p \leq \sqrt{n}$
- พิจารณาว่าจำนวนเฉพาะ p ในขั้นที่ 2. จำนวนใดที่เป็นตัวประกอบของ n บ้าง โดยเริ่มจากจำนวนเฉพาะที่มี ค่าน้อยที่สุดก่อน
 - 3.1. ถ้าไม่มีจำนวนเฉพาะ p ซึ่ง $p \leq \sqrt{n}$ จำนวนใดเลยที่หาร n ลงตัว จะได้ว่า n เป็นจำนวนเฉพาะ และ จบขั้นตอนการหาตัวประกอบที่เป็นจำนวนเฉพาะของ n
 - 3.2. ถ้ามีจำนวนเฉพาะ p ซึ่ง $p \leq \sqrt{n}$ และหาร n ลงตัว แล้วจะได้ว่า n จะเป็นจำนวนประกอบ ซึ่งใน ขั้นตอนนี้ จะได้ตัวประกอบที่เป็นจำนวนเฉพาะตัวหนึ่งของ n เท่านั้น สมมติให้เป็น $p_{_{I}}$ ดังนั้นได้ $\frac{n}{P_{_{I}}}$ เป็นจำนวนเต็มทำขั้นตอนที่ 4. ต่อ
- 4. ทำซ้ำขั้นที่ 1. , 2. และ 3. กับจำนวน $\frac{n}{P_1}$ ซึ่งจะสังเกตเห็นว่า ถ้า $\frac{n}{P_1}$ มีตัวประกอบที่เป็นจำนวนเฉพาะให้เป็น p_2 แล้วจะได้ว่า $p_1 \le p_2$ และ $\frac{n}{P_1 P_2}$ เป็นจำนวนเต็ม
- 5. ทำซ้ำขั้นที่ 1. , 2. และ 3. กับจำนวน $\frac{n}{P_1P_2}$ เช่นนี้เรื่อย ๆ ขั้นตอนการหาตัวประกอบที่เป็นจำนวนเฉพาะของ n นี้จะจบเมื่อ $\frac{n}{P_1P_2\cdots P_k}$ เป็นจำนวนเฉพาะ

ตัวอย่างที่ 10 จงหาตัวประกอบที่เป็นจำนวนเฉพาะทั้งหมดของ 77077

แบบฝึกหัด

- 1. จงพิจารณาว่า 163, 10001 เป็นจำนวนเฉพาะหรือเป็นจำนวนประกอบ
- 2. จงแยกตัวประกอบของ 707
- 3. จงหาตัวประกอบที่เป็นจำนวนเฉพาะของจำนวนต่อไปนี้
 - 3.1. 987
 - 3.2. 2222
 - 3.3. 729
 - 3.4. 505050
- 4. จงเขียนโปรแกรมเพื่อหาตัวประกอบทุกตัวของจำนวนเต็มบวกที่ผู้ใช้ป้อนเข้า
- 5. จงเขียนโปรแกรมหาว่าจำนวนเต็มที่ผู้ใช้ป้อนเข้าเป็นจำนวนเฉพาะหรือจำนวนประกอบ
- 6. จงเขียนโปรแกรมเพื่อหาจำนวนเฉพาะตั้งแต่ 1 ถึง 100
- 7. ข้อความคาดเดาของคริสเตียนโกลบัค (Gold bach) กล่าว*ว่า*

"สำหรับทุก ๆ จำนวนเต็มคู่ที่มากกว่า 4 จะเป็นผลบวกของจำนวนเฉพาะคี่สองจำนวน"

จงเขียนโปรแกรมเพื่อหาผลบวกที่เป็นจำนวนเฉพาะคี่สองจำนวนของจำนวนเต็มคู่ตั้งแต่ 2 ถึง 40

8. จงเขียนโปรแกรมเพื่อหาตัวประกอบเฉพาะทั้งหมดของจำนวนเต็มที่ผู้ใช้ป้อนเข้า

ทฤษฎีบท 5 ขั้นตอนวิธีการหาร (The division algorithm)

ให้ a และ b เป็นจำนวนเต็ม และ $b \neq 0$ แล้วจะมีจำนวนเต็ม q และ r เพียงชุดเดียวที่ทำให้ a = bq + r เมื่อ $0 \le r < |b|$

เรียก a ว่า ตัวตั้ง (dividend)

b ว่า ตัวหาร (divisor)

q ว่า ผลหาร (quotient) และ

r ว่า เศษเหลือ (remainder)

ตัวอย่างที่ 11 จงหาผลหารและเศษจากการหาร

1) 400 ด้วย 120

2) 5 ด้วย 7

3) 140 ด้วย -72

4) -175 ด้วย 50

5) -245 ด้วย -70

ตัวหารร่วมมากและตัวคูณร่วมน้อย

นิยาม 4 จำนวนเต็ม a จะเป็นจำนวนคู่ ก็ต่อเมื่อ สามารถเขียน a = 2m เมื่อ m เป็นจำนวนเต็ม จำนวนเต็ม a จะเป็นจำนวนคี่ ก็ต่อเมื่อ สามารถเขียน a = 2n+1 เมื่อ n เป็นจำนวนเต็ม จำนวนเต็มที่หาร a และ b ลงตัว เราจะเรียกว่าตัวหารร่วมของ a และ b

ตัวอย่างที่ 12 จงหาเซตตัวหารร่วมทั้งหมดของ 36 และ 42

วิธีทำ ให้ A และ B แทนเซตของตัวหารทั้งหมดของ 36 และ 42 ตามลำดับ จะได้

$$A = \{-36, -18, -9, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 9, 18, 36\}$$

$$B = \{ -42, -21, -7, -6, -3, -2, -1, 1, 2, 3, 6, 7, 21, 42 \}$$

เพราะฉะนั้น เซตของตัวหารร่วมทั้งหมดของ 36 และ 42 คือ

นิยาม 5 ตัวหารร่วมมาก (Greatest Common Divisor : GCD)

ให้ a และ b เป็นจำนวนเต็มที่ไม่เท่ากับศูนย์ จำนวนเต็มบวกที่มากที่สุด d ซึ่ง $d \mid a$ และ $d \mid b$ เรียก d ว่า ตัวหารร่วมมาก (ห.ร.ม.) ของ a และ b แทนด้วย (a, b)

ตัวอย่างที่ 13 จงหา (36, 48) และ (17, 22)

ข้อสังเกต

- 1) (a, b) = (a, -b) = (-a, b) = (-a, -b) = (b, a)
- 2) (a, 0) = (0, a) = |a| เมื่อ $a \neq 0$
- 3) ถ้า a | b แล้ว (a, b) = |a|
- 4) ถ้า $c \mid a$ และ $c \mid b$ แล้ว $c \mid (a, b)$

ตัวอย่างที่ 14 จากข้อสังเกตข้างต้นจะได้ว่า

- 1) (12, 20) =
- 2) (6, 15) =
- (-7, 0) =
- 4) เนื่องจาก -8 | 16 ดังนั้น
- 5) เนื่องจาก 7 | 42 และ 7 | 56 ดังนั้น

นิยาม 6 ตัวคูณร่วมน้อย (Least Common Multiple: LCM)

ตัวคูณร่วมน้อย (ค.ร.น.) ของจำนวนเต็มบวก a และ b เป็นจำนวนเต็มบวกที่น้อยที่สุดที่ a และ b หารลงตัว แทนด้วย [a, b]

ตัวอย่างที่ 15 จงหา [15, 20] และ [24, 36]

ทฤษฎีบท 6 ให้ a และ b เป็นจำนวนเต็มบวกแล้ว $ab = (a,b) \cdot [a,b]$

พิจารณา [24, 36] =

(24, 36) =

ขั้นตอนวิธีแบบยูคลิด (Euclidean algorithm)

ขั้นตอนวิธีหนึ่งที่สำคัญและเป็นขั้นตอนวิธีเก่าแก่ที่สุดในทางคณิตศาสตร์ คือ ขั้นตอนวิธีของยูคลิด เป็น ขั้นตอนที่เราสามารถนำมาใช้หาตัวหารร่วมมากของจำนวนเต็มบวกสองจำนวน หรือใช้ในการแก้ปัญหาที่ใช้ทฤษฎี บทเศษเหลือของจีน

พิจารณาขั้นตอนต่อไปนี้ (เขียนในฟอร์ม
$$a=bq+r$$
)
$$287 = 91(3) + 14 \qquad (a=287, b=91 \text{ wu } q=3 \text{ และ } r=14)$$

$$91 = 14(6) + 7 \qquad (ต่อมา a <-b \text{ และ } b <-r$$
คำนวณหา q และ r รอบใหม่)
$$14 = 7(2)$$
 จะได้ว่า $(14,7) = 7, \qquad (91,7) = 7$ และ $(287,7) = 7$

ทฤษฎีบท 7 ให้ a = bq + r เมื่อ a, b, q และ r เป็นจำนวนเต็ม แล้ว (a, b) = (b, r)

ขั้นตอนวิธีแบบยูคลิด

สำหรับจำนวนเต็มบวก a, b เมื่อ $a \ge b$ และ $q_1, q_2, ..., q_{n+1}$, $r_1, r_2, ..., r_n$ เป็นจำนวนเต็ม โดยที่

$$a = bq_{1} + r_{1}, 0 < r_{1} < b$$

$$b = r_{1}q_{2} + r_{2}, 0 < r_{2} < r_{1}$$

$$r_{1} = r_{2}q_{3} + r_{3}, 0 < r_{3} < r_{2}$$

$$\vdots \vdots \vdots 0 < r_{n-1} = r_{n-1}q_{n} + r_{n}, 0 < r_{n} < r_{n-1}$$

แล้วจะได้ว่า (a, b) = r_n

ตัวอย่างที่ 16 จงหา (527, 3553) โดยใช้ขั้นตอนวิธีแบบยูคลิด

The Euclidean Algorithm

```
Input : a and b (non negative not both zero)

Output : Greatest common divisor of a and b

Procedure \gcd(a,b): positive integers)

// make a largest

if a < b then

swap (a,b)

while b \neq 0 do

begin

divide a by b to obtain <math>a = bq + r , 0 \leq r < b
a = b
b = r
end

return (a)
end // \gcd(a,b) is a
```

ทฤษฎีบท 8 ให้ b เป็นจำนวนเต็มบวกที่มากกว่า 1 จะได้ว่าทุกจำนวนเต็มบวก a เขียนให้อยู่ในรูป

$$a = a_n b^n + a_{n-1} b^{n-1} + \dots + a_2 b^2 + a_1 b + a_0$$

ได้เพียงแบบเดียวเท่านั้น โดยที่ n เป็นจำนวนเต็มบวก และ a_i เป็นจำนวนเต็มซึ่ง $0 \le a_i < b$ ทุกค่า i = 0, 1, 2, ..., n และเรียกสมการดังกล่าวว่า **การเขียนจำนวนเต็ม** a ในเลขฐาน b

หมายเหตุ กรณีที่ b=10 จะได้ว่า

กรณีที่ b = 2 จะได้ว่า

ตัวอย่างที่ 17 1) จงเปลี่ยน 101011011₂ เป็นเลขฐานสิบ

2) จงเปลี่ยน 123 เป็นเลขฐานสอง

นิยาม 7 จำนวนเต็ม a และ b ที่ไม่เป็นเป็นศูนย์พร้อมกัน เป็นจำนวนเฉพาะสัมพัทธ์ (relative prime number) ถ้า (a, b) = 1

ตัวอย่างที่ 18 1) เนื่องจาก (14, 45) = 1 ดังนั้น 14 และ 45 เป็นจำนวนเฉพาะสัมพัทธ์

2) เนื่องจาก (14, 41) = 1 ดังนั้น 14 และ 41 เป็นจำนวนเฉพาะสัมพัทธ์

นิยาม 8 ถ้า $(a_1, a_2, ..., a_n) = 1$ เราจะเรียก $a_1, a_2, ..., a_n$ ว่าเป็นจำนวนเฉพาะสัมพัทธ์ และถ้าทุก i, j ที่ $i \neq j$ และ $(a_i, a_j) = 1$ เราจะเรียก $a_1, a_2, ..., a_n$ ว่าเป็นจำนวนเฉพาะสัมพัทธ์ทุก p_j (pair wise relatively prime numbers)

ตัวอย่างที่ 19 จงพิจารณาว่า 15, 17 และ 28 เป็นจำนวนเฉพาะสัมพัทธ์ทุกคู่หรือไม่

ทฤษฎีบท 9 สำหรับจำนวนเต็ม a , b ใด ๆ ถ้า d = (a , b $) แล้ว จะได้ว่า <math>\left(\frac{a}{d}, \frac{c}{d}\right) = 1$

ทฤษฎีบท 10 ถ้า (a, b) = (a, c) = 1 จะได้ว่า (a, bc) = 1

ทฤษฎีบท 11 ถ้า a และ b เป็นจำนวนเต็มบวกจะมีจำนวนเต็ม x และ y ซึ่ง (a, b) = ax + by เรียก ax + b ว่าผลรวมเชิงเส้น (Linear Combination)

ตัวอย่างที่ 18 จงเขียน (252, 198) = 18 ในรูปผลรวมเชิงเส้นของ 252 และ 198

บทแทรก ถ้า a,b และ c เป็นจำนวนเต็มบวก ซึ่ง (a,b)=1 และ $a\mid bc$ แล้ว $a\mid c$

สมการไดโอแฟนไทน์เชิงเส้น (Linear Diophantine Equation)

สมการไดโอแฟนไทน์เชิงเส้น คือ สมการเชิงเส้นที่มีตัวแปรมากกว่าหรือเท่ากับหนึ่งตัวแปร โดยที่ผลเฉลย ของสมการเป็นจำนวนเต็ม

สมการไดโอแฟนไทน์เชิงเส้นแบบง่ายที่สุด คือ สมการไดโอแฟนไทน์เชิงเส้นสองตัวแปร ซึ่งมีรูปทั่วไปดังนี้

$$ax + by = c$$
 เมื่อ $a, b, c \in I$ และ $a, b \neq 0$

การหาผลเฉลยของสมการไดโอแฟนไทน์เชิงเส้น 2 ตัวแปร ก็คือการหาค่าของตัวแปร x, y ที่เป็นจำนวน เต็มที่ทำให้สมการเป็นจริง

เช่น กำหนดสมการไดโอแฟนไทน์เชิงเส้น 49x + 21y = 903
ผลเฉลยของสมการที่เป็นไปได้ คือ (9, 11), (10, 14)
บางสมการอาจจะไม่มีผลเฉลย เช่น สมการ 2x + 6y = 33

ทฤษฎีบท 12 ให้ a ,b และ c เป็นจำนวนเต็ม $a \neq 0$ และ $b \neq 0$ โดยที่ d = (a , b) จะได้ว่า

- 1. สมการ ax + by = c ไม่มีผลเฉลย ถ้า d ∤ c
- 2. สมการ ax + by = c ถ้า $d \mid c$ แล้ว สมการจะมีผลเฉลยหลายผลเฉลยนับไม่ถ้วน และ ถ้าให้ x_0 และ y_0 เป็นผลเฉลยเฉพาะชุดแรกของสมการแล้ว ผลเฉลยทั้งหมดของสมการจะอยู่ในรูปทั่วไป คือ

$$x=x_0+\left(rac{b}{d}
ight)$$
ท และ $y=y_0-\left(rac{a}{d}
ight)$ ท เมื่อ n \in I

ตัวอย่างที่ 21 จงพิจารณาว่าสมการต่อไปนี้ข้อใดบ้างที่มีผลเฉลยเป็นจำนวนเต็ม และถ้าข้อใดมี จงหาผลเฉลยที่ เป็นจำนวนเต็มทั้งหมดด้วย

1)
$$4x + 2y = 11$$

2)
$$2x + 6y = 8$$

ตัวอย่างที่ 22 ชายคนหนึ่งต้องการซื้อตั๋วเดินทางเป็นจำนวน 510 บาท โดยเขาจะซื้อตั๋วเดินทางชนิดละ 20 บาท และชนิดละ 50 บาท จงหาว่า เขาสามารถซื้อตั๋วเดินทางแต่ละชนิดได้อย่างละเท่าไร

แบบฝึกหัด

- 1. จำนวนสมบูรณ์ (perfect number) คือจำนวนเต็มบวก ที่มีค่าเท่ากับผลบวกของตัวหารแท้ของมันเอง จงเขียนโปรแกรมเพื่อทำงานต่อไปนี้
 - a. ตรวจสอบว่าจำนวนเต็มที่ผู้ใช้ป้อนเข้าเป็นจำนวนสมบูรณ์หรือไม่
 - b. หาจำนวนสมบูรณ์ที่น้อยกว่า 10000 และ นับว่าตั้งแต่ 1 ถึง 10000 มีจำนวนสมบูรณ์อยู่ทั้งหมดกี่ จำนวน
- 2. จงเขียนโปรแกรมเพื่อหาตัวหารร่วมมากของจำนวนสองจำนวนที่ผู้ใช้ป้อนเข้า
- 3. จงเขียนโปรแกรมเพื่อหาตัวคูณร่วมน้อยของจำนวนสองจำนวนที่ผู้ใช้ป้อนเข้า
- 4. จงเขียนโปรแกรมเพื่อหาตัวหารร่วมมากของจำนวนสามจำนวนที่ผู้ใช้ป้อนเข้า
- 5. จงเขียนโปรแกรมเพื่อหาเศษส่วนอย่างต่ำของจำนวนที่ผู้ใช้ป้อนเข้า
- 6. จงเขียนโปรแกรมเพื่อตรวจสอบว่าจำนวนเต็มที่ผู้ใช้ป้อนเข้า 3 จำนวนเป็นจำนวนเฉพาะสัมพัทธ์ ทุกคู่หรือไม่
- 7. จงเขียนโปรแกรมเพื่อแปลงเลขฐาน 10 เป็นฐาน 2 และจากเลขฐาน 2 เป็นฐาน 10

สมภาค (Congruence)

คาร์ล ฟรีดริค เกาส์ (Carl Friedrich Gauss) นักคณิตศาสตร์ชาวเยอรมันได้พัฒนาเกี่ยวกับแนวความคิด เรื่องสมภาคเมื่อปลายศตวรรษที่ 18 ได้สร้างทฤษฎีบทที่สำคัญ ๆ ทางทฤษฎีจำนวนขึ้นหลายทฤษฎี ซึ่งเป็น ประโยชน์อย่างมากในการนำไปประยุกต์ใช้

นิยาม 9 กำหนดให้ a เป็นจำนวนเต็มและ m เป็นจำนวนเต็มบวก เศษเหลือจากการหาร a ด้วย m สามารถ เขียนแทนด้วย a mod m

จากขั้นตอนวิธีการหาร a ด้วย m จะได้ a=mq+r เมื่อ $0 \le r < |d|$ นั่นคือ $a \mod m = r$

ตัวอย่างที่ 23 19 mod 5 =

 $136 \mod 9 =$

2013 mod 101 =

นิยาม 10 ถ้า a และ b เป็นจำนวนเต็ม และ m เป็นจำนวนเต็มบวกแล้ว a คอนกรูเอนซ์กับ b โมดูโล m (a congruent to b modulo m) ก็ต่อเมื่อ m | (a - b) เขียนแทนด้วย $a \equiv b \pmod{m}$

ข้อสังเกต $a \equiv b \pmod{m} \longleftrightarrow a \mod m = b \mod m$

ตัวอย่างที่ **24** 17 \equiv 5 (mod 6) ?

 $27 \equiv 14 \pmod{6}$?

ทฤษฎีบท 13 ให้ m เป็นจำวนเต็มบวก และ a,b,c และ d เป็นจำนวนเต็มใด ๆ จะได้ว่า

- 1. ถ้า $a \equiv b \pmod{m}$ แล้ว $b \equiv a \pmod{m}$
- 2. ถ้า $a \equiv b \pmod{m}$ และ m_1 เป็นจำนวนเต็มบวกที่ $m_1 \mid m$ แล้ว $a \equiv b \pmod{m_1}$
- 3. ถ้า $a \equiv b \pmod{m}$ แล้ว $ca \equiv cb \pmod{|c|m}$ เมื่อ $c \neq 0$
- 4. ถ้า $a \equiv b \pmod{m}$ และ $c \equiv d \pmod{m}$ แล้ว $a + c \equiv b + d \pmod{m}$
- 5. ถ้า $a \equiv b \pmod{m}$ และ $c \equiv d \pmod{m}$ แล้ว $ac \equiv bd \pmod{m}$
- 6. ถ้า $a \equiv b \pmod{m}$ แล้ว $a^n \equiv b^n \pmod{m}$ เมื่อ n เป็นจำนวนเต็มบวกใด ๆ

ตัวอย่างที่ 25 จงหาเศษที่ได้จากการหาร 7¹⁰ ด้วย 51

ทฤษฎีบท 14 ให้ *m* เป็นจำนวนเต็มบวก และ *a* เป็นจำนวนเต็มใด ๆ จะได้ว่า

- 1. $a \equiv r \pmod{m}$ และ $0 \le r < m$ ก็ต่อเมื่อ r เป็นเศษเหลือจากการหาร a ด้วย m
- 2. ให้ $0 \le r, s < m$ จะได้ว่า $r \equiv s \pmod{m}$ ก็ต่อเมื่อ r = s
- 3. $a \equiv b \pmod{m}$ ก็ต่อเมื่อเศษเหลือจากการหาร a และ b ด้วย m เท่ากัน

ทฤษฎีบท 15 ให้ m เป็นจำนวนเต็มบวกและให้ a,b และ c เป็นจำนวนเต็ม ถ้า $ac \equiv bd \pmod m$ และ $\gcd(c,m)=1$ แล้ว $a \equiv b \pmod m$

แบบฝึกหัด

- 1. จงหาหลักหน่วยของ 6^{50} , 11^{99}
- 2. จงหาเลขสองหลักสุดท้ายของ 11^{99} , 11^{300}
- 3. จงหาเศษเหลือจากการหาร $23^3 \times 49$ ด้วย 25
- 4. จงหาเศษเหลือจากการหาร 3 100 imes 5 ด้วย 13

การประยุกต์ของสมภาค

เลขมาตรฐานสากลประจำหนังสือ (International Standard Book Numbers :ISBN)

ISBN เป็นรหัสที่ใช้จำแนกหนังสือ ประกอบด้วยรหัส 10 อักขระ เช่น 974-472-362-9 แบ่งเป็น 4 ส่วน คือ

ส่วนที่ 1 มีอักขระ 3 ตัว เป็นรหัสประเทศ

ส่วนที่ 2 มีอักขระ 3 ตัว เป็นรหัส โรงพิมพ์

ส่วนที่ 3 มีอักขระ 3 ตัว เป็นรหัส จำแนกหนังสือในโรงพิมพ์

ส่วนที่ 4 มีอักขระ 1 ตัว เป็นรหัสตรวจสอบความถูกต้อง

จากตัวอย่าง

974 แทน ประเทศไทย

472 แทนโรงพิมพ์นานมี

362 แทนการจำแนกหนังสือในโรงพิมพ์

และ s mod 11 เป็นตัวตรวจสอบ

โดยที่ ร เป็น ผลบวกของผลคูณของตัวเลขโดดในรหัสกับตำแหน่ง

การเข้ารหัสและถอดรหัสแบบซีซาร์

การเข้ารหัสแบบซีซาร์เป็นวิธีการเข้ารหัสข้อความโดยเลื่อนตัวอักษรแต่ละตัวถัดไปอีก 3 ตำแหน่ง เช่น A เมื่อเข้ารหัสแล้วก็จะถูกเลื่อนไปเป็นอักษร D และตัวอักษร 3 ตัวสุดท้าย คือ X, Y และ Z จะเลื่อนไปเป็นตัวอักษร A, B และ C ตามลำดับ

วิธีการเข้ารหัสแบบซีซาร์จะกำหนด ตัวเลขแทนตัวอักษร โดยให้ A=0, B=1, ..., Z=25 เราจะเข้ารหัสโดย ใช้ฟังก์ชัน $f(p)=(p+3) \bmod 26$

ตัวอย่าง 26 จงเข้ารหัสข้อความ "YESTERDAY" แบบซีซาร์

ตัวอย่าง 27 จงถอดรหัสข้อความ "WHQ" ที่ถูกส่งมาโดยใช้รหัวแบบซีซาร์

การเข้ารหัสและถอดรหัสแบบเชิงเส้น

$$f(p) = (ap + b) \mod 26$$

โดย a,b เป็นจำนวนเต็ม และ f เป็นฟังก์ชันสมนัยหนึ่งต่อหนึ่ง

ตัวอย่าง **28** จงเข้ารหัสข้อความ "YESTERDAY" โดยใช้ฟังก์ชัน $f(p) = (7p+3) \bmod 26$

ตัวอย่าง 29 จงถอดรหัสข้อความที่มีการเข้ารหัสโดยใช้ฟังก์ชัน $f(p) = (7p+3) \bmod 26$