MATRIZ DE CAMBIO DE BASE

POLINOMIO INTERPOLATOR
DE LAGRANSE

SEAN OLO,..., OMEK, DISTINTOS DOS ADOS. SEAN

 $P_{i} = TI_{j=0}^{m}(X-\alpha_{j}) \in K_{m}[X], 0 \leq i \leq m$ POL X GRADO $\leq m$

Así si $\lambda_{ij} = P_{i|}(a_{j})$, TENEMOS QUE $\lambda_{ij} = 0$ SII itj.

AFIRMO: B= 3Po,..., Pm (5) Base JE Km[x]

Dem: BYZ SON LI;

 $0 = \sum_{i=0}^{\infty} \alpha_i P_i = \sum_{i=0}^{\infty} \alpha_i \lambda_{ij} = \alpha_j \lambda_{jj}$ $= \sum_{i=0}^{\infty} \alpha_i P_i = 0$

EXEMPLO: K=Q, m=2, $Q_0=1$, $Q_1=2$, $Q_2=3$.

SEA P = b0+b1X+b2X2;

P = \(\frac{2}{1=0} \, d: P; \land \(\frac{1}{2} \) = \[P]_B

 $P(\lambda j) = \langle \lambda_j \lambda_j j \rangle$

VIMOS:
$$P_{B} = C(E_{1}3) \cdot (b_{1}b_{2})$$
,

SIENDO $E = \{1, X, X^{2}\}$
 $C(E,B) = C(B,E)^{-1}$

FÁCIL

TENEMOS $P_{1} = (X-2)(X-3) = X-5X+6$
 $P_{2} = (X-1)(X-3) = X^{2}-4X+3$
 $P_{3} = [X-1](X-2) = X^{2}-3X+2$
 $P_{3} = [X-1](X-2) = X^{2}-3X+2$
 $P_{3} = [X-1](X-2) = X^{2}-3X+2$
 $P_{3} = [X-1](X-2) = [X-3](E_{1}B) = [X-1](X-3) = [X-1](X-3)$

VOLVIENDO,

 $(A_{0}, A_{1}, A_{2})^{\frac{1}{2}} = [X_{2}(A_{1}B) + A_{2}B_{2}(A_{2}B) + A_{2}B_{2}(A_{2}B) + A_{2}B_{2}(A_{2}B) + A_{2}B_{2}(A_{2}B)$
 $A_{1} = [X_{2}(A_{2}B) + A_{2}B_{2}(A_{2}B) + A_{2}B_{2}(A_{2$