Unit 3. Waves

Y12

Table of contents

1	Wave Basics	1
	1.1 Analysis of a Wave	1
	1.2 Think	2
2	Wave types	2

1 Wave Basics

What is a wave? How many types of waves are there? Why are they useful?

- \rightarrow Wave: transfer of energy without matter (by transmission of oscillations):
 - Mechanical: oscillations of the medium.
 - Electromagnetic: oscillations of fields (electrical or magnetic).

1.1 Analysis of a Wave

- Displacement x(m): distance to the equilibrium (average) position.
- Amplitude A(m): maximum displacement of a wave.
- Frequency f (Hertz Hz): number of cycles through a point per second.
- Wavelength λ (m): distance between 2 equal waypoints (eg 2 peaks). Figure 1
- Period T (s): time for 1 full oscillation or wavelength. Figure 2
- Phase θ (rad): stage of wave at a point (~ angle around a circle, we will see it...).
- Wave speed v (m/s): $v = \frac{d}{t}$ and also $v = f\lambda$ (Wave equation)
- Pulse-echo measurements (like bat and dolphin echolocation): emit a pulse of ultrasound (50-100kHz) and calculate d=vt/2 (rebound).

Checkpoint questions. (Extra: Read the experiment p.91, draw the wave diagram).

Figure 1: wave components 1

Figure 2: wave components 2

1.2 Think

- 1. Graph from top to bottom: 0.2m, 80m, 5.5m.
- 2. $1240m (d = v \cdot t)$
- 3. $8.5 \cdot 10^{14} Hz$ $(f = c/\lambda, \text{ wave equation})$
- 4. As frequency is defined as waves per second, multipliying frequency by wavelenght is equivalent as dividing distance by time (velocity)
- 5. Student's own answers using $v=f\cdot\lambda$. Eg. estimated wavelenght is 5m, estimated frequency is 1 wave every 3 seconds, so f=0.33Hz. $v=f\cdot\lambda=0.33\times 5=1.7m~s^{-1}$

2 Wave types