STÆRÐFRÆÐIGREINING I (STÆ104) Vikublað 10 með skiladæmum 9

Dags.	Efni	Nótur	Adams Calculus
26.10.15.	7. Rúmmál, massi og massamiðjur	7.2-7.3	7.4, 7.5
28.10.15.	8. Diffurjöfnur	8.1-8.2	7.9, 18.1, 18.2
02.11.15.	8. Diffurjöfnur	8.3-8.5	3.7, 18.4, 18.5
04.11.15.	Hagnýtingar		ítarefni

Dæmi:

30.

Við ætlum að skoða einfalt líkan fyrir stofnstærð dýrastofna. Látum P(t) tákna stofnstærðina á tímanum t og hugsum okkur að upphafstíminn sé t=0. Þannig að fastinn $P_0=P(0)$ táknar upphafsstofnstærðina.

Gerum ráð fyrir að fastinn β sé fæðingartíðnin og fastinn δ sé dánartíðnin. Þá er fjöldi fæðinga á tímanum t gefinn með $\beta P(t)$ og fjöldi dauðsfalla $\delta P(t)$.

Það þýðir að breytingin á stofninum er gefin með

$$P'(t) = \beta P(t) - \delta P(t).$$

- 1.a. Gerum ráð fyrir að β og δ séu jákvæðir fastar og finnið P(t).
- 1.b. Gefið P_0 ákveðið fast gildi. Prófið svo að gefa β og δ mismunandi gildi þannig að $\beta > \delta$, $\beta < \delta$ og $\beta = \delta$ og teiknið upp tilsvarandi lausnir P(t).
- 1.c. Hvaða afdrifaríku áhrif hefur það á stofninn hvort $\beta > \delta$, $\beta < \delta$ eða $\beta = \delta$?
- 2.a. Gerum nú ráð fyrir að dánartíðnin sé áfram föst δ , en breytum β þannig að fæðingartíðnin minnki eftir því sem stofninn er stærri, þetta svarar til þess að það sé erfiðara að koma ungum á legg ef stofninn er stór því þá er meiri samkeppni um mat/svæði. Gerum því ráð fyrir að $\beta = \beta_0 \beta_1 P(t)$, þar sem β_0 og β_1 eru jákvæðar tölur. Skilgreinum $M = \frac{\beta_0 \delta}{\beta_1}$. Sýnið að

$$P(t) = \frac{MP_0}{(M - P_0)e^{-M\beta_1 t} + P_0}$$

lýsi stofnstærðinni. (Ábending: Hér er best að umrita umrita diffurjöfnuna þannig að hægt sé að skipta $\frac{\beta_0-\delta}{\beta_1}$ út fyrir M og leysa diffurjöfnuna svo með stofnbrotaliðun).

- 2.b. Hvað gerist þegar tíminn líður, hvernig hagar stofnstærðin sér?
- 2.c. Festið δ , β_0 og β_1 sem jákvæða fasta. Teiknið upp lausnina P(t) fyrir nokkur (jákvæð) gildi á P_0 . Ég mæli með því að þið veljið P_0 bæði stærra og minna en $(\beta_0 \delta)/\beta_1$. Einnig er skynsamlegt að hafa $\beta_0 > \delta$ svo að það fæðist að minnsta kosti jafnmargir og deyja.

Ábending: Ég mæli með því að þið notið Octave, Matlab, GeoGebra, Sage, Python eða WolframAlpha til þess að teikna myndirnar fyrir ykkur.

Dæmi fyrir dæmatíma vikuna 02.11 - 06.11:

- Kafli 7.4: 4, 5, 10.
- Kafli 7.5: 11, 12, 16.
- Kafli 7.9: 1, 7, 9, 11, 17, 28, 31.
- Kafli 3.7: 1, 5, 13, 24.
- Kafli 17.5: 1, 12.
- Kafli 17.6: 1, 5, 17.

Skiladæmi:

Skilið dæmi ${\bf 30}$ í hólf dæmatímakennarans ykkar fyrir klukkan 16:00, föstudaginn 6. nóvember.

Benedikt Steinar Magnússon, 30. október 2015