Recall the Topological Sorting Problem in DAG

Recall:

- A DAG: a directed acyclic graph, i.e. a directed graph with no (directed) cycles
- Topological Sorting: Determine a linear ordering of the vertices of a DAG so that for every edge, its starting vertex is listed before its ending vertex.

• In this graph, the first vertex in a topological sort must be G. Why?

Computer Science Department

1

Source Removal Algorithm for Topological Sorting

- G must come first since it is the only vertex with no incoming edges
- What must be true of any vertex that is the first vertex in a topological sort?
- How can we determine what vertex comes next?

Computer Science Department

Source Removal Algorithm - 1

- What must be true of any vertex that is the first vertex in a topological sort?
 - It must have no incoming edges --- its in-degree = 0
- How can we determine what vertex comes next?
 - It must have no incoming edges after the first vertex and its outgoing edges are removed from the graph!

Computer Science Department

3

Source Removal Algorithm - 2

- This gives us a pretty good idea of an iterative algorithm that can be used to produce a topological sort. Assuming we can compute and keep track of the in-degree of each vertex efficiently as we remove vertices and their associated edges from the graph.
- How can we efficiently compute the in-degree of a directed graph?

Computer Science Department

Source Removal Algorithm - 3

- How can we efficiently compute the in-degree of each vertex of a directed graph?
 - For each vertex have a field that will keep the count of incoming edges.
 - Traverse the adjacency list (or matrix) and increment the <u>target</u> <u>vertex's</u> in-degree field for each edge.

Computer Science Department

5

Source Removal Algorithm - 4

How can we efficiently update in-degree of the remaining directed graph after a vertex has been removed?

Computer Science Department

Source Removal Algorithm - 5

- How can we efficiently update in-degree of the remaining directed graph after a vertex has been removed?
 - Traverse the adjacency list of the vertex being removed and decrement the target vertex in-degree field for each edge.

Computer Science Department

7

Source Removal Algorithm - 6

		remove G	remove A	remove B	remove C	remove F	remove E	remove D
A	1	$\rightarrow 0$	order					
В	1	1	$\rightarrow 0$	order				
C	2	2	→1	$\rightarrow 0$	order			
D	2	2	2	→1	1	1	$\rightarrow 0$	order
E	2	2	2	2	→1	→0	order	
F	2	→1	1	1	→0	order		
G	0	order						

Computer Science Department

Source Removal Algorithm

Compute in-degree of all vertices Repeat

- identify a source vertex (in-degree = 0)
 (a vertex with no incoming edges)
- remove the source and all the edges from it, update in-degrees of target vertices

Until either

- no vertex is left-all vertices marked done (problem is solved) or
- no source among remaining vertices (not a dag)
- Efficiency: same as efficiency of the DFS-based algorithm

Computer Science Department

Source Removal Algorithm Example

- Every DAG has at least one source and a sink.
- · Above graph has:
 - · One Source, two Sinks
 - · 4 different possible topological sorts. What are they?

Computer Science Department

Source Removal Algorithm Example

4 linearizations (topological sorts) are

- B, A, D, C, E, F
- B, A, D, C, F, E
- B, D, A, C, E, F
- B, D, A, C, F, E

Computer Science Department