Lecture 6: Effets des erreurs d'arrondissement

Thu 07 Apr

0.1 Erreurs d'arrondissement

En realite, lorsqu'on interpole en pratique, a chaque etape de calcul, on commet une erreur d'arrondissement.

On remarque donc par exemple que, lorsqu'on interpolle sur des noeuds equidistants une fonction telle que $\sin x$ des grandes erreurs aux bords, meme si l'on s'attendrait a obtenir une convergence uniforme.

Donc on pose $\hat{f}(x_i) = f(x_i)(1+\epsilon)$ avec ϵ une certaine erreur machine et on veut etudier l'erreur due au "round off".

En substituant cette valeur dans les valeurs de p_n on obtient

$$\hat{p}_n := \sum_i \hat{f}(x_i) l_i(x)$$

Ou les l_i sont les polynomes interpolant.

On peut donc calculer la difference entre p_n et \hat{p}_n

$$|p_n - \hat{p}_n| \le \sum_i |\epsilon f(x_i)l_i(x)| \le \epsilon ||f||_{\infty} \sum_i |l_i(x)|$$

Ceci motive la definition suivante

Definition 1 (Lebesgue constant)

$$\Lambda_n = \max_x \sum_i |l_i(x)|$$

et clairement Λ_n va dependre du choix des x_i .

Le calcul ci-dessus montre que

Theorème 1

Soit $n \in \mathbb{N}, f \in C^0([a,b])$ et p_n les polynomes d'interpolations de Lagrange, alors

$$||p_n - \hat{p} - n||_{\infty} \le \epsilon \Lambda_n ||f||_{\infty}$$

Donc pour controler l'erreur, il nous faut controler Λ_n , enfait

Theorème 2 (Behaviour of lebesgue constant)

— Si les noeuds sont equidistants, alors

$$\Lambda_n \approx \frac{2^{n+1}}{\epsilon n \log n} \text{ quand } n \to \infty$$

— Pour les points de chebychev, on a

$$\lambda_n \approx \frac{2}{\pi} \log n \ quand \ n \to \infty$$

Mais meme dans le cas des noeuds optimaux, on voit que l'erreur va tout de meme tendre vers l'infini.

On essaie donc d'approximer les fonctions par des fonctions lineaires.

0.2 Interpolation par polynomes par parties

Definition 2

Pour un $N \in \mathbb{N}$ fixe et $s \in \mathbb{N}$. On considere $f \in C^0$ et une partition a_i d'un intervalle [a,b]. Pour chaque i, on construit $p^{(i)}$ le polynome d'interpolation de lagrange locale pour s points choisis dans $[a_i,a_{i+1})$. On recolle alors les $p^{(i)}$ en une fonction \tilde{p}_s

Et on a un theoreme qui nous borne l'erreur :

Theorème 3

Soit $N \in \mathbb{N}, N \geq 1$ et $s \in \mathbb{N}, f \in C^{s+1}([a,b])$ et \tilde{p}_s le polynome d'interpolation par parties sur une partition generale, alors

$$||f - \tilde{p}_s||_{\infty} \le \frac{H^{s+1}}{4(s+1)!} ||f^{(s+1)}||_{\infty}$$

 $ou\ H := \max |a_{i+1} - a_i|$

Preuve

 $On \ a$

$$||f - \tilde{p}_s||_{\infty} = \max_{i} ||f - p_s^{(i)}||_{\infty, [a_i, a_{i+1})} \le \frac{1}{4(s+1)!} H^{s+1} ||f^{(s+1)}||_{\infty}$$

0.3 Approximation dans la norme L^2

Etant donne f, on veut trouver le meilleur polynome p^* qui minimisera la distance dans la norme L^2 , ie.

$$p^* = \operatorname{argmin}_{q_n \in \mathbb{P}_n} \|f - q_n\|_2^2$$

Theorème 4

 $La\ solution\ optimale\ est\ donnee\ par$

$$p^* = \sum_k \alpha_k p_k \text{ avec } \alpha_k = \frac{\int_a^b f p_k dt}{\int_a^b |p_k|^2 dt}$$