TD: Crédit Scoring Elaboré par : CHAFIKI Fatima elzahra

import pandas as pd from numpy import

ÉNONCÉ DU PROBLÈME Un prêt sur valeur domiciliaire ou Home Equity Loan est un prêt à terme garanti qui permet d'emprunter sur la valeur acquise de la maison . donc notre problématique est rectifier et prédire que le demandeur qui demande les prêts sur valeur domiciliaire paiera le prêt ou sera un délinquant sans payer le

L'analyse du dataset

Notre data set contient des observations pour 5 960 demandeurs d'hypothèque. La variable nommée BAD est la variable dépendante qui indique si un demandeurs de prêt a payé le prêt ou s'il est en défaut càd ne l'a pas payé . In [118... ds = pd.read csv("./td7/CreditScoring.csv")

YOJ DEROG DELINQ

0.0

DEBTINC

NaN

CLAGE NINQ CLNO

1.0

9.0

94.366667

BAD LOAN MORTDUE Out[118.. VALUE REASON 1100 25860.0 39025.0 Homelmp

1300 70053.0 68400.0 Homelmp Other 7.0 0.0 121.833333 0.0 14.0 NaN 0.0 149.466667 2 0.0 10.0 1500 13500.0 16700.0 HomeImp Other NaN

10.5

JOB

Other

3	1	1500	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	0	1700	97800.0	112000.0	HomeImp	Office	3.0	0.0	0.0	93.333333	0.0	14.0	NaN
•••													
	_												

5955 90185.0 16.0 0.0 0.0

0 88900 57264.0 DebtCon Other 0.0 221.808718 36.112347

35.859971 0 89000 92937.0 0.0 0.0 208.692070 0.0 5956 54576.0 DebtCon Other 16.0

5957 0 89200 54045.0 92924.0 DebtCon 15.0 0.0 0.0 212.279697 0.0 35.556590 Other

5958 0 89800 50370.0 91861.0 0.0 0.0 213.892709 16.0 34.340882 DebtCon Other

DebtCon Other 0.0 219.601002 5959 0 89900 48811.0 88934.0 0.0 0.0 16.0 34.571519

5960 rows × 13 columns

On a 13 variables dans le dataset : BAD : 0 si le client a rembourse sa dette et 1 sinon CLAG : l'age de credit le plus ancien par mois CLNO : le nombre de

credits DEBTINC: taux de credit à revenu DELINQ: nombre de credits non rembourses DEROG: nombre detats derogatoires principaux JOB: categorie professionnelle du client LOAN: montant du credit YOJ: Anciennete du travail le plus recent VALUE: la valeur de la propreite MORTDUE: montant du sur Ihypothe`que existante NINQ: nombre denquetes recentes de degre de solvabilite REASON: Debtcon 1 HomeImp 2 1. credit de consolidation2. credit immobilier

le problème de ce dataset est que les lignes contiennent plusieurs données manquantes. Les données manquantes constituent un problème majeur, puisque l'information à disposition est incomplète et donc moins fiable In [119... df = ds[ds['VALUE'].isnull()]

Out[119...

s **+=** pi******2

S = S.to numpy()

def Mesure desorde(S, numero colon attribut):

Bonne mesure desordre = mesure Bonne valeur de repartition = v

def meilleur attribut meilleure valeur(S):

return meilleur attribut, meilleure val

def Gain_d_information(ds, numero colon attribut):

Si = [[]for i in range(len(valeurs_attribut))]

Si[numero_sous_ensemble].append(e)

valeurs_attribut = list(set(S[:, numero_colon_attribut]))

val_attribut_pour_e = e[numero_colon_attribut]

meilleur attribut = 0 meilleure val = 0

 $S = ds.to_numpy()$

e = list(e)

for sous_ensemble in Si:

(0.6599670262166042, 'MORTDUE'), (0.6490620261099311, 'VALUE'), (0.0010200707812508814, 'REASON'), (0.014172286113719235, 'JOB'), (0.09890515375629483, 'YOJ'), (0.11308343379194186, 'DEROG'), (0.12913853183220558, 'DELINQ'), (0.6689316114488737, 'CLAGE'), (0.07307049238021024, 'NINQ'), (0.05943267670920016, 'CLNO'), (0.7205815177959121, 'DEBTINC')]

for e in S:

Si = array(Si)

som = 0

Si = array(Si)Out[123... [(0.13247031605795323, 'LOAN'),

classes = list(set(S[:, 0]))

meilleure mesure = + inf

return (Bonne mesure desordre, Bonne valeur de repartition)

Bonne mesure desorde = + inf

return 1-s

df = df.reset index() df = df['index']

df = df[df['JOB'].isnull()] df = df[df['REASON'].isnull()] df = df[df['DEROG'].isnull()] df = df[df['DELINQ'].isnull()]

Traitement du data set

2 17 3 1405

```
5
   1897
6
   1959
7
    1960
```

8 2303 9 2449 Name: index, dtype: int64

ds = ds.drop(df)ds = ds.reset index() ds = ds.drop(['index'], axis = 1)

def Entropie(S):

S = array(S)classes distinctes = set(S[:,0])

print(classes distinctes) classes = list(S[:,0])print(classes) s= 0

for c in classes distinctes : p = classes.count(c)/len(classes) s+= p*log2(p)**return** -1.0*s

def GINI(S): S = np.array(S)clonne des classes = list(S[:, 0]) classes = list(set(S[:, 0])) k = len(classes) s = 0pi = clonne des classes.count(classes[i]/len(S[:, 0]))

Bonne valeur de repartition = 0classes = list(set(S[:, 0])) valeurs attribut = list(set(S[:, numero colon attribut])) valeurs attribut.sort() Gauche = []Droite = [] for i in range(len(valeurs attribut)-1): v = valeurs attribut[i] Gauche.clear() Droite.clear() for e in S: val attribut pour e = e[numero colon attribut] if val attribut pour e <= v:</pre> Gauche.append(e) else: Droite.append(e) pGau = len(Gauche)/len(S) pDr = len(Droite)/len(S) mesure = (pGau) *GINI (Gauche) + (pDr) *GINI (Droite) if mesure < Bonne mesure desordre:</pre>

S = S.to numpy()for num attribut in range(len(S[0])-1): mesure, valeur = Mesure desordre(S, num attribut) if mesure < meilleure mesure:</pre> meilleure val = valeur meilleure mesure = mesure meilleur attribut = num attribut

numero_sous_ensemble = valeurs_attribut.index(val_attribut_pour_e)

som += (len(sous_ensemble)/len(S))*Entropie(sous_ensemble)

return(Entropie(S)-som , ds.columns[numero_colon_attribut])

Gain Information= [Gain d information(ds,i) for i in range(1,13)]

Gain_Information <ipython-input-122-da8ebe828683>:12: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequence s (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If

you meant to do this, you must specify 'dtype=object' when creating the ndarray.

Calcul des gain d'information pour chaque attribut

In [124	<pre>from sklearn.model_selection import train_test_split</pre>
	<pre>from sklearn.tree import DecisionTreeClassifier</pre>
	<pre>from sklearn.preprocessing import LabelEncoder</pre>

Avant de passer le dataset à le modèle DecisionTreeClassifier, On doit convertir les colonnes de type string en format numérique comme REASON, JOB et

D'aprés les résultat précedente, On constate que 4 variable ont un gain d'information élevé proche de 70% lesquels : MORTDUE, VALUE, CLAGE, DEBTINC et

les autres variables ont un gain d'information bas Donc la variable dépendente BAD est affecté par MORTDUE, VALUE , CLAGE , DEBTINC .

T = LabelEncoder() T.fit_transform(ds["REASON"])

ds["REASON"] = replaced_reason

replaced_reason = T.transform(ds["REASON"])

remplacer les valeurs manquantes par la moyenne.

X = ds.iloc[:, 1:13]Y = ds.iloc[:, 0]

0

0

1

0

1

1

0

4038 4246

1966

4763

1374

1907 3692

5924

368

1937

clf_model.fit(x_train,y_train)

clf_model.predict(x_test) , y_test

(array([0, 0, 0, ..., 1, 0, 0], dtype=int64),

Name: BAD, Length: 1964, dtype: int64)

Traitement des données

T.fit_transform(ds["JOB"]) replaced_job = T.transform(ds["JOB"])

ds["JOB"] = replaced_job
for i in ds.columns :
ds[i] = ds[i].fillna(ds[i].mean())
ds

BAD LOAN MORTDUE VALUE REASON JOB YOJ DEROG DELINQ CLAGE NINQ CLNO DEBTINC 0 1100 39025.0 2 10.5 0.0 94.366667 9.0 33.796792 25860.0 0.0 1.0 68400.0 0.0 2.0 121.833333 14.0 33.796792 1300 70053.0 7.0 0.0

2 1 1500 13500.0 16700.0 1 2 4.0 0.0 0.0 149.466667 1.0 10.0 33.796792

0.0 93.333333 0 1700 97800.0 112000.0 1 3.0 0.0 0.0 14.0 33.796792

1700 30548.0 40320.0 1 2 9.0 0.0 0.0 101.466002 1.0 8.0 37.113614 4 1

0 88900 90185.0 0.0 221.808718 5945 57264.0 0 2 16.0 0.0 0.0 16.0 36.112347

5946 0 89000 54576.0 92937.0 2 16.0 0.0 0.0 208.692070 0.0 15.0 35.859971

15.0 35.556590 5947 0 89200 54045.0 92924.0 0 0.0 212.279697 0.0 2 15.0 0.0

5948 91861.0 2 14.0 0.0

0 89800 0.0 0.0 213.892709 50370.0 16.0 34.340882

48811.0 88934.0 16.0 34.571519 5949 0 89900 0 0.0 219.601002 0.0 2 15.0 0.0

5950 rows × 13 columns

x train,x test,y train,y test = train test split(X, Y, test size=0.33, random state=42)

clf_model = DecisionTreeClassifier(criterion="gini", random_state=42)