ПРОПИСАННЫЕ БИЛЕТЫ ПО МАТАН-2

Лактюхин Никита, 113 группа

May 10, 2024

ЕСЛИ НАЙДЕТЕ ОШИБКИ, ТО ПИШИТЕ МНЕ, БУДУ ИСПРАВЛЯТЬ.

Содержание

1 Тема 1. Множества точек пространств R^{m}

1.1 Определения

1.1.1 Окрестность точки А пространства \mathbb{R}^m

∀ открытое связное множество, содержащее точку А.

1.1.2 Шаровая окрестность точки пространства \mathbb{R}^m

1.1.3 Прямоугольная окрестность точки А пространства \mathbb{R}^m

Пусть $A(a_1,\ldots,a_m)\in R^m$ и d_1,\ldots,d_m - некоторые положительные числа. Множество $\{M(x_1,\ldots,x_m):|x_1-a_1|\leq d_1,\ldots,|x_m-a_m|\leq d_m\}$ — прямоугольная окрестность точки А пространства R^m .

1.1.4 Внутренняя точка множества D точек пространства \mathbb{R}^m

Точка A называется внутренней точкой множества $\{D\}$, если $\exists \ \varepsilon$ - окрестность точки A, целиком принадлежащая множеству $\{D\}$.

1.1.5 Изолированная точка множества D точек пространства R^m

Точка A называется изолированной точкой множества $\{D\}$, если она принадлежит $\{D\}$ и $\exists \varepsilon$ -окрестность точки A, в которой нет других точек из $\{D\}$, кроме A.

1.1.6 Граничная точка множества D точек пространства \mathbb{R}^m

Точка A называется граничной точкой множества $\{D\}$, если в любой ε -окрестности точки A содержатся как точки множества $\{D\}$, так и точки, которые этому множеству не принадлежат.

1.1.7 Граница множества D точек пространства R^m

Множество всех граничных точек называется границей множества $\{D\}$

1.1.8 Открытое множество точек пространства R^{m}

Множество $\{D\}$ называется открытым, если все его точки — внутренние.

1.1.9 Замкнутое множество точек пространства R^{m}

Множество $\{D\}$ называется замкнутым, если оно содержит все свои граничные точки.

1.1.10 Предельная точка множества D точек пространства \mathbb{R}^m

Точка A называется предельной точкой множества $\{D\}$, если в любой ε -окрестности точки A содержатся точки из множества $\{D\}$, отличные от A (при этом предельная точка может как принадлежать, так и не принадлежать множеству $\{D\}$).

1.1.11 Непрерывая кривая в пространстве R^m

Множество точек $L = \{M(x_1, \ldots, x_m) : x_1 = \varphi_1(t), \ldots, x_m = \varphi_m(t), \alpha \leq \beta\}$, где $\varphi_1(t), \ldots, \varphi_m(t)$ – непрерывные на сегменте $[\alpha, \beta]$ функции.

1.1.12 Связное множество точек пространства ${\mathbb R}^m$

Множество $\{D\}$ называется связным, если любые две его точки можно соединить непрерывной кривой, все точки которой принадлежат $\{D\}$.

2 Тема 2. Последовательности точек пространства \mathbb{R}^m

2.1 Определения

2.1.1 Ограниченная последовательность точек пространства \mathbb{R}^m

Последовательность $\{M_n\}$ называется ограниченной, если все ее члены лежат в некотором шаре.

Эквивалентное определение: $\exists \ \mathrm{R}{>}0: \ \forall \ \mathrm{n}: \ \rho(M_n,O) \leq \mathrm{R}.$ Точка O - начало координат.

2.1.2 Неограниченная последовательность точек пространства \mathbb{R}^m

 $\forall R > 0 \exists n: \rho(M_n, O) > R.$

2.1.3 Предел последовательности точек пространства R^m

Точка $A \in R_m$ называется пределом последовательности $\{R_m\}$, если $\lim_{n \to +\infty} \rho(M_n, O) = 0$.

Обозначение:

$$\lim_{n \to +\infty} M_n = A$$

2.1.4 Сходящаяся последовательность точек пространства \mathbb{R}^m

Последовательность точек, имеющая предел.

2.1.5 Предельная точка последовательности точек пространства \mathbb{R}^m

Точка A - предельная точка, если в $\forall \varepsilon$ -окрестности точки A содержится бесконечно много членов последовательности точек M_n .

2.1.6 Фундаментальная последовательность точек пространства \mathbb{R}^m

Последовательность точек $\{M_n\}$ называется фундаментальной, если $\forall \varepsilon > 0 \; \exists \; N$, такое что, $\forall \; n > N \; \text{и} \; \forall \; m > N$: $\rho(M_n, M_m) < \varepsilon$.

2.2 Теоремы (без доказательства)

2.2.1 Теорема о критерии Коши сходимости последовательности точек пространства ${\mathbb R}^m$

Для того, чтобы последовательность $\{M_n\}$ сходилась, необходимо и достаточно, чтобы она была фундаментальной.

2.2.2 Теорема Больцано-Вейерштрасса для последовательности точек пространства $\mathbb{R}^m.$

Из всякой ограниченной последовательности $\{M_n\}$ можно выделить сходящуюся подпоследовательность.

2.3 Теоремы(с доказательством)

2.3.1 Докажите, что любая ограниченная последовательность точек на плоскости имеет по крайней мере одну предельную точку.

Пусть $\{M_n(x_n,y_n)\}$ - ограничена. Отсюда следует, что числовые последовательности $\{x_n\}$ и $\{y_n\}$ также ограничены.

Тогда по теореме Больцано-Вейерштрасса для числовой последовательности из $\{x_n\}$ можно выделить подпоследовательность $\{x_{k_n}\}$, сходящуюся к некоторому числу a_1 . Из подпоследовательности $\{y_{k_n}\}$ также можно выделить сходящуюся подпоследовательность: $\{y_{m_n}\} \to a_2$. При этом $\{x_{m_n}\} \to a_1$.

Тогда подпоследовательность точек $\{M_{m_n}\}$ сходится к числу $A(a_1,a_2)$, что и требовалось доказать.

2.3.2 Докажите, что если последовательность точек $\{M_n(x_n,y_n)\}$ на плоскости является сходящейся, то числовые последовательности $\{x_n\}$ и $\{y_n\}$ являются сходящимися.

Т.к. последовательность точек $\{M_n(x_n,y_n)\}$ является сходящейся(пусть сходится к точке $A(a_1,a_2)$), то

$$\lim_{n\to+\infty} \rho(M_n, A) = 0, \text{ r.e. } \exists R>0 : \forall n: \sqrt{(x_n-a_1)^2+(y_n-a_2)^2} \leq R.$$

Отсюда следует, что $\exists \ \mathrm{R}{>}0: \ \forall \ \mathrm{n}: \ |(x_n-a_1)| \le \mathrm{R}$ и $|(y_n-a_2)| \le \mathrm{R}$, т.е $\{x_n\} \to a_1$ и $\{y_n\} \to a_2$, что и требовалось доказать.

Докажите, что если числовые последовательности $\{x_n\}$ и $\{y_n\}$ 2.3.3являются сходящимися, то последовательность точек $\{M_n(x_n,y_n)\}$ на плоскости является сходящейся

Пусть $\{x_n\} \to a_1$ и $\{y_n\} \to a_2$. Тогда последовательности $\{x_n-a_1\}$ и $\{y_n-a_2\}$ бесконечно малые последовательности. Отсюда следует, что

$$\rho(M_n,A) = \sqrt{(x_n - a_1)^2 + (y_n - a_2)^2}$$
 – тоже бесконечно малая последовательность.

А это по определению обозначает, что $\{M_n\} \to A$. Что и требовалось доказать.

Сформулируйте и докажите теорему о критерии Коши сходимости 2.3.4последовательности точек пространства \mathbb{R}^m

Формулировка: Для того, чтобы последовательность $\{M_n\}$ сходилась, необходимо и достаточно, чтобы она была фундаментальной.

Доказательство:

1. Необходимость: Пусть $\{M_n(x_1^{(n)},\ldots,x_m^{(n)})\}$ – сходится.

- 1. Т.к. $\{M_n\}$ сходится, то $\{x_n^1\}, \dots, \{x_n^m\}$ сходятся.
- 2. По критерию Коши в R^m $\{x_n^1\}, \dots, \{x_n^m\}$ фундаметальные последовательности.

$$\forall i \in [1,\ldots,m] \; \forall arepsilon > 0 \; \exists \mathrm{N} : \forall \; \mathrm{k,l} > \mathrm{N} : |x_k^i - x_l^i| < rac{arepsilon}{\sqrt{m}}$$

3. Пусть M_k и M_l – точки последовательности $\{M_n\}$.

$$\forall \varepsilon > 0 \; \exists \; \mathrm{N} : \forall \; \mathrm{k,l} > \mathrm{N} : \rho(M_k, M_l) = \sqrt{(x_k^1 - x_l^1)^2 + \ldots + (x_l^m - x_l^m)^2} < \sqrt{\frac{\varepsilon^2}{m} \cdot m} < \varepsilon.$$
 Следовательно, $\{M_n\}$ - фундаментальная.

2. Достаточность:

Пусть последовательность $\{M_n(x_1^{(n)},\ldots,x_m^{(n)})\}$ – фундаментальная.

$$\begin{aligned} &1. \ \forall \varepsilon {>} 0 \ \exists \mathbf{N}: \forall \ \mathbf{k}, \mathbf{l} > \mathbf{N}: \rho(M_k, M_l) < \varepsilon. \\ &\rho(M_k, M_l) = \sqrt{(x_k^1 - x_l^1)^2 + \ldots + (x_l^m - x_l^m)^2} < \varepsilon. \end{aligned}$$

2. $\forall i \in [1, \dots, m] \quad |x_k^i - x_l^i| < \varepsilon$.

 $orall arepsilon > 0 \; \exists \mathrm{N} : \forall \; \mathrm{k,l} > \mathrm{N} : |x_k^i - x_l^i| < arepsilon, \; \mathrm{r.e} \; \forall i \in [1,\ldots,m] \; \; \; x_n^i \; - \; \mathrm{фундаментальная}.$

3. Т.к. x_n^i - фундаментальная, то по критерию Коши в $R^1 \ x_n^i$ – сходится $(\forall i \in [1, ..., m]) \Rightarrow \{M_n\}$ - сходится.

3 Тема 3. Функции, предел, непрерывность.

3.1 Определения

3.1.1 Ограниченная сверху (снизу) функция ${\bf u}({\bf M}),$ заданная на множестве D точек пространства R^m

 $\exists R : \forall M \in \{D\} : u(M) \leq R \quad (u(M) \geq R).$

3.1.2 Неограниченная сверху (снизу) функция $\mathbf{u}(\mathbf{M})$, заданная на множестве D точек пространства R^m

 $\forall R : \exists M \in \{D\} : u(M) > R \quad (u(M) < R).$

3.1.3 Точная верхняя (нижняя) грань функции $\mathbf{u}(\mathbf{M}),$ заданной на множестве D точек пространства R^m

 $A = \sup_{\{D\}} u(M)$, если:

- 1. $\forall D \in \{D\} : \mathbf{u}(\mathbf{D}) \leq \mathbf{A} \quad (\mathbf{u}(\mathbf{D}) \geq \mathbf{A})$
- $2. \ \forall \widetilde{A} < \widetilde{\mathrm{A}} \ \ (\forall \widetilde{A} > \widetilde{\mathrm{A}}) \ \exists \ \widetilde{D} \in \{D\} : \mathrm{u}(\widetilde{D}) > \widetilde{A}. \quad (\mathrm{u}(\widetilde{D}) < \widetilde{A})$
- 3.1.4 Предел функции ${\bf u}({\bf M})$ в точке $M_0 \in R^m$ "по Коши"

Число b называется пределом функции $\mathbf{u} = \mathbf{f}(\mathbf{M})$ в точке A (при $\mathbf{M} \rightarrow \mathbf{A}$), если $\forall \varepsilon > 0$ $\exists \delta > 0 : \forall M \in \{M\}, \ 0 < \rho(M,A) < \delta : |f(M) - b| < \varepsilon$.

 $\mathbf{3.1.5}$ Предел функции $\mathbf{u}(\mathbf{M})$ в точке $M_0 \in R^m$ "по Гейне"

Число в называется пределом функции u = f(M) в точке A (при $M \to A$) если $\forall \{M_n\} \to A(M_n \in \{M\}, M_n \neq A)$ соответствующая последовательность $\{f(M_n)\} \to b$.

3.1.6 Предел функции $\mathbf{u}(\mathbf{M})$ в бесконечно удаленной точке пространства R^m "по Гейне"

Число b называется пределом функции u = f(M) в точке A (при $M \to \infty$) если $\forall \{M_n\} \to \infty \ (M_n \in \{M\})$ соответствующая последовательность $\{f(M_n)\} \to b$.

3.1.7 Предел функции $\mathbf{u}(\mathbf{M})$ в бесконечно удаленной точке пространства R^m "по Коши"

Число b называется пределом функции $\mathbf{u}=\mathbf{f}(\mathbf{M})$ в точке A (при $\mathbf{M} \rightarrow \mathbf{A}$), если $\forall \varepsilon>0$ $\exists R>0: \forall M\in\{M\}, \, \rho(M,O)>R: |f(M)-b|<\varepsilon.$

3.1.8 Функция $\mathbf{u}(\mathbf{x},\mathbf{y})$, непрерывная по переменной \mathbf{x} в точке $M_0(x_0,y_0)$

$$\lim_{\Delta x \to 0} \Delta_x u = 0$$
, где $\Delta_x u = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$.

3.1.9 Функция $\mathbf{u}(\mathbf{x},\mathbf{y}),$ непрерывная по совокупности переменных в точке $M_0(x_0,y_0)$

$$\lim_{M\to M_0} \mathrm{f}(\mathrm{M}) = \mathrm{f}(M_0). \ \lim_{M\to M_0} \triangle u = \lim_{M\to M_0} (\mathrm{f}(\mathrm{M}) - \mathrm{f}(M_0)) = 0.$$

3.1.10 Повторный предел функции $\mathbf{u}(\mathbf{x}, \mathbf{y})$ в точке $M_0(x_0, y_0)$

3.2 Теоремы (без доказательства)

3.2.1 Теорема о критерии Коши существования предела функции в точке $M_0 \in R^m$

Для того, чтобы функция f(M) имела предел в точке A, необходимо и достаточно, чтобы она удовлетворяла в этой точке условию Коши.

$$\lim_{\substack{M\to A\\0<\rho(M_2,A)<\delta}}\mathrm{f}(\mathrm{M})=\mathrm{b}\Leftrightarrow \forall \varepsilon>0\;\exists \delta>0:\;\forall M_1\;\mathrm{и}\;M_2\in\{M\}\;0<\rho(M_1,A)<\delta\;\mathrm{и}$$

3.2.2 Теорема о непрерывности суммы двух функций нескольких переменных

Если функции f(M) и g(M) определены на множестве $\{M\}$ и непрерывны в точке A, то функция f(M)+g(M) непрерывна в точке A.

3.2.3 Теорема о непрерывности произведения двух функций нескольких переменных

Если функции f(M) и g(M) определены на множестве $\{M\}$ и непрерывны в точке A, то функция $f(M) \cdot g(M)$ непрерывна в точке A.

3.2.4 Теорема о непрерывности частного от деления двух функций нескольких переменных

Если функции f(M) и g(M) определены на множестве $\{M\}$ и непрерывны в точке A, то функция $\frac{f(M)}{g(M)}$ (при условии $g(A) \neq 0$) непрерывна в точке A.

3.2.5 Теорема об устойчивости знака непрерывной функции нескольких переменных

Если функция u=f(M) непрерывна в точке A и f(A)>0 (< 0), то \exists δ -окрестность точки A, в которой f(M)>0 (< 0).

3.2.6 Теорема о прохождении непрерывной функции нескольких переменных через любое промежуточное значение

Пусть функция $\mathbf{u} = \mathbf{f}(\mathbf{M}) = \mathbf{f}(x_1, \dots, x_m)$ непрерывна на связном множестве $\{M\}$, пусть M_1 и M_2 — две любые точки из $\{M\}$, $\mathbf{f}(M_1) = u_1$, $\mathbf{f}(M_2) = u_2$, и пусть u_0 — любое число из сегмента $[u_1, u_2]$. Тогда на любой непрерывной кривой \mathbf{L} , соединяющей точки M_1 и M_2 и целиком принадлежащей множеству $\{M\}$, найдется такая точка M_0 , такая, что $\mathbf{f}(M_0) = u_0$.

3.2.7 Первая теорема Вейерштрасса для функции нескольких переменных

Если функция u = f(M) непрерывна на замкнутом ограниченном множестве $\{M\}$, то она ограничена на этом множестве.

3.2.8 Вторая теорема Вейерштрасса для функции нескольких переменных

Непрерывная на замкнутом ограниченном множестве функция достигает на этом множестве своих точных нижней и верхней граней.

3.2.9 Теорема о непрерывности сложной функции нескольких переменных

Пусть функции $x_1 = \varphi_1(t_1, \dots, t_k), \dots, x_m = \varphi_m(t_1, \dots, t_k)$ непрерывны в точке $A(a_1, \dots, a_k)$, а функция $u = f(x_1, \dots, x_m)$ непрерывна в точке $B(b_1, \dots, b_m)$, где $b_1 = \varphi_1(a_1, \dots, a_k), \dots, b_m = \varphi_m(a_1, \dots, a_k)$. Тогда сложная функцция $u = f(\varphi_1(t_1, \dots, t_k), \dots, \varphi_m(t_1, \dots, t_k))$ непрерывна в точке A.

3.2.10 Теорема Кантора для функции нескольких переменных

Непрерывная на замкнутом ограниченном множестве функция равномерно непрерывна на этом множестве.

3.3 Теоремы(с доказательством)

3.3.1 Докажите теорему о пределе суммы двух функций нескольких переменных в данной точке.

Формулировка:

3.3.2 Докажите теорему о пределе произведения двух функций нескольких переменных в данной точке.

fgfdg

3.3.3 Докажите теорему о непрерывности суммы двух функций нескольких переменных.

Формулировка: Если функции f(M) и g(M) определены на множестве $\{M\}$ и непрерывны в точке A, то функция f(M)+g(M) непрерывна в точке A.

Доказательство:

$$1. \lim_{M \to A} \mathrm{f}(\mathrm{M}) + \mathrm{g}(\mathrm{M}) = \lim_{M \to A} \mathrm{f}(\mathrm{M}) + \lim_{M \to A} \mathrm{g}(\mathrm{M}) = \mathrm{f}(\mathrm{A}) + \mathrm{g}(\mathrm{A}).$$

3.3.4 Докажите теорему о непрерывности произведения двух функций нескольких переменных.

Формулировка: Если функции f(M) и g(M) определены на множестве $\{M\}$ и непрерывны в точке A, то функция $f(M) \cdot g(M)$ непрерывна в точке A.

Доказательство:

1.
$$\lim_{M \to A} f(M) \cdot g(M) = \lim_{M \to A} f(M) \cdot \lim_{M \to A} g(M) = f(A) \cdot g(A)$$
.

3.3.5 Докажите теорему о непрерывности частного от деления двух функций нескольких переменных.

Формулировка: Если функции f(M) и g(M) определены на множестве $\{M\}$ и непрерывны в точке A, то функция $\frac{f(M)}{g(M)}$ (при условии $g(A) \neq 0$) непрерывна в точке A.

Доказательство:

1.
$$\frac{\lim\limits_{M \to A} f(M)}{\lim\limits_{M \to A} g(M)} = \frac{f(A)}{g(A)}$$

3.3.6 Докажите теорему о непрерывности сложной функции нескольких переменных.

3.3.7 Докажите теорему об устойчивости знака непрерывной функции двух переменных.

Формулировка: Если функция u=f(M) непрерывна в точке A и f(A)>0 (< 0), то \exists δ -окрестность точки A, в которой f(M)>0 (< 0).

Доказательство:

Докажем для f(A) > 0 (Для f(A) < 0 аналогично):

По определению непрерывности функции в т. А: $\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall M \in \{M\}, 0 < \rho(M,A) < \delta : |f(M)-f(A)| < \varepsilon.$

Возьмем $\varepsilon = f(A)$. Тогда $\exists \delta > 0 : \forall M \in \{M\}, \ 0 < \rho(M,A) < \delta : 0 < f(M) < 2f(A)$, то есть $\exists \delta$ -окрестность т.А, в которой f(M) > 0, что и требовалось доказать.

3.3.8 Докажите теорему о прохождении непрерывной функции двух переменных через любое промежуточное значение.

Формулировка: Пусть функция $\mathbf{u} = \mathbf{f}(M) = \mathbf{f}(x_1, \dots, x_m)$ непрерывна на связном множестве $\{M\}$, пусть M_1 и M_2 — две любые точки из $\{M\}$, $\mathbf{f}(M_1) = u_1$, $\mathbf{f}(M_2) = u_2$, и пусть u_0 — любое число из сегмента $[u_1, u_2]$. Тогда на любой непрерывной кривой L, соединяющей точки M_1 и M_2 и целиком принадлежащей множеству $\{M\}$, найдется такая точка M_0 , такая, что $\mathbf{f}(M_0) = u_0$.

Доказательство:

Пусть L = $\{M(x_1, \ldots, x_m): x_1 = \varphi_1(t), \ldots, x_m = \varphi_m(t), \alpha \leq t \leq \beta\}$ – непрерывная кривая, соединяющая точки M_1 и M_2 и целиком принадлежащая множеству $\{M\}$.

Точки M_1 и M_2 имеют координаты: $M_1(\varphi_1(\alpha),\ldots,\varphi_m(\alpha)),\ M_2(\varphi_1(\beta),\ldots,\varphi_m(\beta)).$

На кривой L заданная функция является сложной функцией переменной t: $u = f(\varphi_1(t), \dots, \varphi_m(t)) =: F(t)$ (По теореме о непрерывности сложной функции F(t) непрерывна на сегменте $[\alpha, \beta]$).

$$\mathrm{F}(lpha)=\mathrm{f}(arphi_1(lpha),\ldots,arphi_m(lpha))=\mathrm{f}(M_1)=u_1$$
 и $\mathrm{F}(eta)=\mathrm{f}(M_2)=u_2.$

В силу известной теоремы для функции одной переменной $\forall u_0 \in [u_1, u_2]$

 $\exists t_0 \in [\alpha, \beta]$, такое, что $F(t_0) = u_0$. Но $F(t_0) = f(\varphi_1(t_0), \dots, \varphi_m(t_0)) = f(M_0)$, причем точка $M_0(\varphi_1(t_0), \dots, \varphi_m(t_0)) \in L$.

Итак, \exists точка $M_0 \in L$: $f(M_0) = u_0$, что и требовалось доказать.

3.3.9 Докажите первую теорему Вейерштрасса для функции двух переменных.

Формулировка: Если функция u=f(M) непрерывна на замкнутом ограниченном множестве $\{M\}$, то она ограничена на этом множестве.

Доказательство:

- 1. Допустим, u = f(M) не ограничена на заданном множестве $\{M\}$.
- 2. Тогда \forall $n \in \mathbb{N} \exists M_n \in \{M\}$: $|f(M_n)| > n$. Тем самым последовательность $\{M_n\}$ бесконечно большая.
- 3. $\{M_n\}$ ограниченная последовательность \Rightarrow из нее можно выделить сходящуюся подпоследовательность $M_{k_n} \to A$.
- 4. Покажем, что $A \in \{M\}$. $M_{k_n} \to A$, т.е. в любой ε -окрестности т. А содержатся члены подпоследовательности M_{k_n} . Поэтому т. А либо внутренняя, либо граничная. Если A внутренняя, то $A \in \{M\}$.

Если A - граничная, то A тоже $\in \{M\}$, т.к. $\{M\}$ - замкнутое множество.

5. Т.к. т. $A \in \{M\}$, то f(M) непрерывна в т. $A \Rightarrow \lim_{M \to A} f(M) = f(A)$, т.е. $\{f(M_{k_n})\} \to f(A)$, что противоречит тому, что $\{f(M_{k_n})\}$ неограничена в т. $A \Rightarrow u = f(M)$ ограничена на заданном множестве $\{M\}$, что и требовалось доказать.

3.3.10Докажите вторую теорему Вейерштрасса для функции двух переменных.

Формулировка: Непрерывная на замкнутом ограниченном множестве функция достигает на этом множестве своих точных нижней и верхней граней. Доказательство:

Докажем методом от противного. Пусть $\forall M \in \{M\} \ \mathrm{f}(M) < \mathrm{U}$, где U – точная верхняя грань.

Введем функцию $\mathrm{F}(\mathrm{M})=rac{1}{U-f(M)}>0$, непрерыва на $\{M\}\Rightarrow$ ограничена на $\{M\}$ (по 1 теореме Вейерштрасса), т.е. $\exists A : \forall M \in \{M\} \ 0 < F(M) < A \Rightarrow f(M) \leq U - \frac{1}{A} < U$, т.е. f(M) имеет верхнюю грань, меньшую $U \Rightarrow$ противоречие. Значит, $f(M) \le U$, что и требовалось доказать.

Тема 4. Дифференцируемые функции. 4

4.1 Определения

Функция $\mathbf{f}(x_1,\ldots,x_m)$, дифференцируемой в точке $\mathbf{M}(x_1,x_2,\ldots,x_m)$ 4.1.1

Функция $f(x_1, \ldots, x_m)$ называется дифференцируемой в точке $M(x_1, x_2, \ldots, x_m)$, если ее полное приращение в этой точке можно представить в виде

 $\Delta \mathbf{u} = A_1 x_1 + \ldots + A_m x_m + \alpha_1 \Delta x_1 + \ldots + \alpha_m \Delta x_m$, где A_1, \ldots, A_m – некоторые числа(не зависят от $\Delta x_1,\ldots,\Delta x_m$), $\alpha_i=\alpha_i(\Delta x_1,\ldots,\Delta x_m)$, $\mathrm{i}=1,\,2,\,\ldots,\,\mathrm{m}$ – бесконечно малые функции при $\{\triangle x_1 \to 0, \dots, \triangle x_m \to 0\}$, равные нулю при $\triangle x_1 = \dots = x_m = 0$.

Частная производная функции $\mathbf{f}(x_1,\ldots,x_m)$ по переменной x_k в точке 4.1.2 $\mathbf{M}(x_1,x_2,\ldots,x_m)$

Пусть $M(x_1, \ldots, x_m)$ – внутренняя точка области определения функции u = f(M) = $f(x_1,\ldots,x_m)$. Рассмотрим $\triangle_{x_k} \mathbf{u} = \mathbf{f}(x_1,\ldots,x_{k-1},x_k+\triangle x_k,x_{k+1},\ldots,x_m)$ -

 $f(x_1,\ldots,x_k,\ldots,x_m)$. Если $\exists\lim_{\triangle x_k\to 0}\frac{\triangle_{x_k}u}{x_k}$, то он называется частной производной функции $\mathbf{u}=\mathbf{f}(x_1,\ldots,x_m)$ в точке M по переменной x_k

4.1.3 Первый дифференциал функции нескольких переменных

Первым дифференциалом функции u = f(M) называется линейная относительно $\triangle x_1, \ldots, \triangle x_m$ часть приращения функции в точке M:

$$u = ux_1(M)\Delta x_1 + \ldots + ux_m(M)\Delta x_m$$

Если $x_i (\mathrm{i}=1,\ldots,m)$ – независимые переменные, то $x_i = \triangle x_i$. Тогда:

$$u = ux_1(M)x_1 + \ldots + ux_m(M)x_m = \sum_{j=1}^m ux_jx_j.$$

Касательная плоскость к графику функции z = f(x, y) в точке $M_0(x_0, y_0, f(x_0, y_0))$

Плоскость P, проходящая через точку N_0 поверхности S, называется касательной плоскостью к поверхности S в этой точке, если при $N \to N_0$ ($N \in S$) расстояние $\rho(N, N_1)$ является бесконечно малой величиной более высокого порядка, чем $\rho(N, N_0)$, T.e. $\lim_{\substack{N \to N_0 \\ N \in S}} \frac{\rho(N, N_1)}{\rho(N, N_0)} = 0.$ $S = {N(x, y, f(x, y)), (x, y) \in D}$

 $N_0 \in S$

N – произвольная точка на S

 $NN_1 \perp P, N_1 \in P$.

4.1.5 Функция нескольких переменных, п раз дифференцируемая в данной точке

Функция $\mathbf{u}=\mathbf{f}(x_1,\dots,x_m)$ n раз дифференцируема в точке M_0 , если она $(\mathbf{n}$ - 1) раз дифференцируема в некоторой окрестности точки M_0 и все ее частные производные (n-1) - го порядка дифференцируемы в самой точке M_0 .

Второй дифференциал функции $\mathbf{f}(x_1,\ldots,x_m)$ в данной точке 4.1.6

Дифференциалом второго порядка (или вторым дифференциалом) функции u = f(x, y)у) в точке M_0 называется дифференциал от первого дифференциала и при следующих условиях:

- 1. и рассматривается как функция только x_1, \ldots, x_m
- 2. При вычислении дифференциалов от $ux_1(x_1,\ldots,x_m),\ldots,ux_m(x_1,\ldots,x_m)$ приращения $\triangle x_1, \ldots, \triangle x_m$ независимых переменных x_1, \ldots, x_m берутся равными x_1,\ldots,x_m . $^{2}u = (u)$

\mathbf{n} – ый дифференциал функции $\mathbf{f}(x_1,\ldots,x_m)$ в данной точке

Дифференциалом n-го порядка функции u = f(x, y) в точке M_0 называется дифференциал от (n - 1) дифференциала и при следующих условиях:

- 1. и рассматривается как функция только x_1, \ldots, x_m
- 2. При вычислении дифференциалов от частных производных (n 1) порядка приращения $\triangle x_1, \ldots, \triangle x_m$ независимых переменных x_1, \ldots, x_m берутся равными x_1,\ldots,x_m .

$$^{n}u = (^{(n-1)}u)$$

4.1.8 Градиент функции f(x, y, z) в точке $M_0(x_0, y_0, z_0)$

Вектор grad $ec{u}(M) = ux(M_0)ec{i} + uy(M_0)ec{j} + uz(M_0)ec{k}$

4.1.9 производная по направлению $\vec{l}=(\cos\alpha,\cos\beta,\cos\gamma)$ функции $\mathbf{f}(\mathbf{x},\,\mathbf{y},\,\mathbf{z})$ в точке $M_0(x_0,y_0,z_0)$

Если существует $\lim_{\substack{M\Rightarrow M_0\\M\in L}} \frac{f(M)-f(M_0)}{M_0M}$, то он называется производной функции

 $\mathbf{u}=\mathbf{f}(\mathbf{M})$ в точке M_0 по направлению \vec{l} и обозначается $ul(M_0)$.

$$M_0 M = \begin{cases} |\overrightarrow{M_0 M}|, & \overrightarrow{M_0 M} \uparrow \uparrow \overrightarrow{l} \\ -|\overrightarrow{M_0 M}| & \overrightarrow{M_0 M} \uparrow \downarrow \overrightarrow{l} \end{cases}$$

 \vec{l} – направляющий вектор L.

4.2 Теоремы (без доказательства)

4.2.1 Сформулируйте теорему о необходимых условиях дифференцируемости функции $f(x_1,\ldots,x_m)$ в точке M_0 пространства R^m

Если функция $u = f(x_1, \dots, x_m)$ дифференцируема в точке $M(x_1, \dots, x_m)$, то она имеет в точке M частные производные по всем переменным.

4.2.2 Сформулируйте теорему о достаточных условиях дифференцируемости функции $f(x_1, \ldots, x_m)$ в точке M_0 пространства R^m

Если функция $u = f(x_1, ..., x_m)$ имеет частные производные по всем переменным в некоторой ε -окрестности точки $M(x_1, ..., x_m)$, причем в самой точке M эти частные производные непрерывны, то функция дифференцируема в точке M.

4.2.3 Сформулируйте теорему о достаточных условиях равенства $f_{xy} = f_{yx}$ в точке $M_0(x_0, y_0)$

Если в некоторой окрестности точки $M_0(x_0, y_0)$ функция $\mathbf{u} = \mathbf{f}(\mathbf{x}, \mathbf{y})$ имеет смешанные частные производные f_{xy} и f_{yx} , и если эти смешанные производные непрерывны в точке M_0 , то они равны в этой точке: $f_{xy} = f_{yx}$.

4.2.4 Сформулируйте теорему о касательной плоскости к графику функции двух переменных

Если функция z = f(x, y) дифференцируема в точке $M_0(x_0, y_0)$, то в точке $N_0(x_0, y_0, f(x_0, y_0))$, существует касательная плоскость к графику этой функции.

4.2.5 Сформулируйте теорему о дифференцируемости сложной функции нескольких переменных

Пусть:

- 1. функции $\mathbf{x}=\varphi(u,v),y=\psi(u,v)$ дифференцируемы в точке (u_0,v_0)
- 2. функция $\mathbf{z}=\mathbf{f}(\mathbf{x},\,\mathbf{y})$ дифференцируема в точке (x_0,y_0) , где $x_0=\varphi(u_0,v_0)$, $y_0=\psi(u_0,v_0)$

Тогда сложная функция $z = f(\varphi(u, v), \psi(u, v))$ дифференцируема в точке (u_0, v_0) .

4.2.6 Запишите формулу для частных производных сложной функции

$$\mathbf{u} = \mathbf{f}(x_1, \dots, x_m)$$
, где $x_1 = \varphi_1(t_1, \dots, t_k)$, \dots , $x_m = \varphi_m(t_1, \dots, t_k)$. Тогда: $ut_i = ux_1 \cdot x_1t_i + \dots + ux_m \cdot x_mt_i = \sum_{j=1}^m ux_j \cdot x_jt_i \ (\mathbf{i} = 1, \dots, \mathbf{k})$.

4.2.7 Запишите выражение производной функции f(x, y, z) по заданному направлению в данной точке через частные производные функции в этой точке

$$\mathbf{u} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{f}(x_0 + t\cos\alpha, y_0 + t\cos\beta, z_0 + t\cos\gamma) = \varphi(\mathbf{t}).$$
 $ul(M_0) = \lim_{M \to M_0} \frac{f(M) - f(M_0)}{M_0 M} = \lim_{t \to 0} \frac{\varphi(t) - \varphi(0)}{t} = \varphi t \ (0).$
 $\varphi t(0) = ux(M_0) \ xt(0) + uy(M_0) \ yt(0) + uz(M_0) \ zt(0)$
 $ul(M_0) = ux(M_0)\cos\alpha + uy(M_0)\cos\beta + uz(M_0)\cos\gamma$

4.2.8 Запишите выражение производной функции f(x, y, z) по заданному направлению в данной точке через градиент функции в этой точке

$$ul(M_0) = (\operatorname{grad} u(M_0) \cdot \vec{l}) = |\operatorname{grad} u| \cdot |\vec{l}| \cdot \cos \varphi = |\operatorname{grad} u| \cdot \cos \varphi = Pr_{\vec{l}} \operatorname{grad} u(M_0)$$

4.2.9 Запишите формулу Лагранжа конечных приращений для функции нескольких переменных. При каких условиях эта формула верна?

 $\mathbf{u}=\mathbf{f}(x_1,\ldots,x_m)$ дифференцируема в ε -окрестности точки $M_0(x_1^0,\ldots,x_m^0)$. Тогда \forall точки $M_0(x_1^0+\triangle x_1,\ldots,x_m^0+\triangle x_m)$ из этой ε -окрестности: $\triangle u=\mathbf{f}(x_1^0+\triangle x_1,\ldots,x_m^0+\triangle x_m)$ - $\mathbf{f}(x_1^0,\ldots,x_m^0)=u|_N=ux_1(N)\triangle x_1+\ldots+ux_m(N)\triangle x_m$ ($\mathbf{N}\in MM_0$)

4.2.10 Запишите выражение для второго дифференциала функции нескольких независимых переменных

$$[2]u = (u) = (uxx + uyy) = (x(ux)x + y(ux)y)x +$$
 $+ (x(uy)x + y(uy)y)y = [2]ux (x)^2 + 2uxyxy + [2]uy (y)^2$
 $[2]u = (xx + yy)^2$ u

4.2.11 Запишите выражение для дифференциала n -го порядка функции двух независимых переменных

$$[n] = ([n-1]u) = (xx + xy)^n u$$

4.2.12 Запишите выражение для второго дифференциала функции $f(u,\,v),\,$ если $u=u(x,\,y),\,$ $v=v(x,\,y),\,$ причем $(x,\,y)-$ независимые переменные

$$egin{aligned} & [2]u = (fuu+fvv) = igl[(fu)igr]x + fu[2]x + igl[(fv)igr]v + fv[2]y = \ & = igl[(uu+vv)^2figr] + igl\{fu[2]u + fv[2]vigr\}. \end{aligned}$$

- 4.2.13 Запишите выражение для второго дифференциала функции $f(u, v), \, ecлu \; u = u(t), \, v = v(t), \, причем \; t$ независимая переменная
- 4.2.14 Запишите выражение для второго дифференциала функции f(u, v, w), если u = u(x, y), v = v(x, y), w = w(x, y) причем (x, y) независимые переменные
- 4.2.15 Запишите выражение для второго дифференциала функции f(u, v, w), если u = u(x, y, z), v = v(x, y, z), w = w(x, y, z), причем (x, y, z) независимые переменные
- 4.2.16 Сформулируйте теорему о формуле Тейлора с остаточным членом в форме Лагранжа для функции f(x, y)
- 4.2.17 Сформулируйте теорему о формуле Тейлора с остаточным членом в форме Пеано для функции f(x, y)
- 4.2.18 Сформулируйте теорему о формуле Тейлора с остаточным членом в форме Лагранжа для функции $f(x_1,\ldots,x_m)$
- 4.2.19 Сформулируйте теорему о формуле Тейлора с остаточным членом в форме Пеано для функции $f(x_1,\ldots,x_m)$

sdfgsdfg

- 4.3 Теоремы(с доказательством)
- 4.3.1 Докажите теорему о непрерывности дифференцируемой функции нескольких переменных в точке
- 4.3.2 Докажите теорему о дифференциале суммы двух дифференцируемых функций нескольких переменных в данной точке
- 4.3.3 Докажите теорему о дифференциале произведения двух дифференцируемых функций нескольких переменных в данной точке
- 4.3.4 Докажите теорему о необходимых условиях дифференцируемости функции $f(x_1,\ldots,x_m)$ в точке $f(x_1,\ldots,x_m)$ пространства R^m
- 4.3.5 Докажите теорему о достаточных условиях дифференцируемости функции $f(x_1,\dots,x_m)$ в точке $f(x_1,\dots,x_m)$ пространства R^m
- 4.3.6 Докажите теорему о достаточных условиях равенства $f_{xy}=f_{yx}$ в точке $M_0(x_0,y_0)$
- 4.3.7 Докажите теорему о касательной плоскости к графику функции двух переменных.
- 4.3.8 Докажите теорему о дифференцируемости сложной функции $f(u,\,v),\,,$ если $u=u(x,\,y),\,,$ $v=v(x,\,y),\,,$ причем $(x,\,y)-$ независимые переменные
- 4.3.9 Докажите, что производная дифференцируемой в точке $M(x_0,y_0,z_0)$ функции $\mathbf{f}(\mathbf{x},\ \mathbf{y},\ \mathbf{z})$ по направлению $\vec{l}=(\cos\alpha,\cos\beta,\cos\gamma)$ равна скалярному произведению вектора \vec{l} и градиента функции \mathbf{f} в точке \mathbf{M}
- 4.3.10 Докажите теорему о формуле Тейлора с остаточным членом в форме Лагранжа для функции $f(x_1,\ldots,x_m)$
- 4.3.11 Докажите теорему о формуле Тейлора с остаточным членом в форме Пеано для функции f(x, y)

asfsdgr