Kaggle Competition Overview

Ruslan Khalitov

ruslan.khalitov.edu@gmail.com

January 2020

Ruslan Khalitov Kaggle Competitions January 2020 1 / 14

Overview

Maggle Platform Overview

2 My Kaggle account

Google Landmark Recognition Challenge

Ruslan Khalitov Kaggle Competitions January 2020 2 / 14

Kaggle Platform Overview

Kaggle is an online community of data scientists and machine learning practitioners with over than 130 000 participants worldwide.

Competition Formats:

- Simple Competitions
- 2 Two-stage Competitions
- Code Competitions

3/14

My Kaggle account

Ruslan Khalitov

Data Scientist at DataDuck

Limassol, Cyprus

Joined 3 years ago · last seen in the past day

Following 2

Competitions Expert

Competitions (20) Home

Datasets

0

Kernels

Discussion (1)

Followers 2

Competitions Summary

Current Rank 788 of 130,319

Highest Rank 711

Competitions: 20 Solo: 19 (95%)

Team: 1 (5%)

My Kaggle account

Santander Customer Transaction Prediction

Can you identify who will make a transaction?

Featured • 10 months ago • \$\infty\$ banking, tabular data, binary classification

221/8802 Top 3%

Google Landmark Recognition 2019

Label famous (and not-so-famous) landmarks in images

Research · 8 months ago

Top 22%

Generative Dog Images

Experiment with creating puppy pics

Research · Code Competition · 5 months ago

Top 8%

IEEE-CIS Fraud Detection

Can you detect fraud from customer transactions?

Research · 4 months ago · ● tabular data, binary classification

612/6381 Top 10%

Google Landmark Recognition Challenge overview

The source code repository: https://github.com/RuslanKhalitov/google_landmark_challenge_2019

Parameter	Specification
Competitition type	Code Competition
Objective	Landmark Recognition
Problem type	Multiclass Classification
Number of images	Train \sim 4M, Test \sim 400K
Images size	224×224
Total size	$\sim 500GB$
Number of classes	200 000
Timeline	3 months
Hardware	Personal instance with $1 \times \text{Nvidia Tesla V}100$

Solution Pipeline

- Metric analysis
- Dataset downloading
- Data cleaning
- Image resizing
- Data augmentation
- Learning a pre-trained model
- Inference
- Stacking
- Submission

7 / 14

Evaluation Metric

Submissions were evaluated using Global Average Precision (GAP):

$$GAP = \frac{1}{M} \sum_{i=1}^{N} P(i) \cdot rel(i)$$

where:

N — total number of predictions returned by the system, across all queries M — total number of queries with at least one landmark from the training set visible in it

P(i) — precision at rank i

rel(i) — relevance of prediction i: it's 1 if the i-th prediction is correct, and 0 otherwise

Ruslan Khalitov Kaggle Competitions January 2020 8 / 14

Data Cleaning

Data Cleaning

Three stages of the dataset cleaning:

- Remove any places that are not in target set, but recognized by pre-trained VGG16 Places365
- Remove portraits and selfies using pre-trained Faster R-CNN from the TorchVision library
- Remove random images (cats, helicopters, plants, etc.) using the pre-trained ImageNet classifier with ResNet-50

Ruslan Khalitov Kaggle Competitions January 2020 10 / 14

Data Augmentation

Augmentations applied to images was the most important step before the learning process.

Image transformation set:

- Color Normalization
- Random Resized Crop
- Random Affine Transformation
- 4 Horizontal Flip
- slight Grid Distortion

11 / 14

Training process description

Parameter	Specification
Main Model	SE-ResNet50
Images Size	[64×64, 128×128, 224×224]
Batch Size	[512, 128, 64]
Optimizer	Adam
Additional LR Scheduler	Implemented SGDR from the original paper ¹
Activation Function	SoftMax
Loss	Cross entropy loss
Average experiment length	5 days
Postprocessing model	kNN
Meta-algorithm	Weighted Average

Ruslan Khalitov Kaggle Competitions January 2020 12 / 14

¹I.Loshchilov and F.Hutter. "SGDR: Stochastic Gradient Descent With Warm Restarts". ICLR 2017. arXiv preprint arXiv:1608.03983.

Inference process description

Thank you!