(4)

STAGE 2 PHYSICS TEST 1: MEASUREMENT (Open Book)

NAM	ſΕ: _	JOLUT	TIONS			_ MA	$\frac{1}{26}$			
1.	How	many significant fi	gures are invol	ved in the	follow	ing?		1	V	
	(a)	2130 kg	3_	(b)	0.004	410 mm	_3_	(1)	mark each)	
	(c)	120,000,000 km	2	(d)	5.0 d	ays	_2_		(4)	
2.	Con	vert the following to	standard units	s and expre	ess you	ır answers i	n <i>scientific</i> i	notation.		
	(a)	5.53 x 10 ⁻³ μm			(b)	3.32 x 10 ²				
		5.53×10 9 m				3.32×1	0-4 m ²			
	(c)	0.0000235 MJ 2-35×10 J			(d)	4.35 x 10 ³		(1)	mark each)	
									(4)	
3.	For t	the following measu	rements, deterr	mine the <i>al</i>	solute	and perce	ntage uncer	<i>tainty</i> associa	ated with	
	(a)	12.3 g	Absolute:	+ 0.0	059					
			Percentage:	+ 0:	406	20				
	(b)	3.004 m	Absolute:	+ 5	X10	4 m		(I mark	each). edit for work	,
			Percentage:	+ 1.	66 x	10 %		(Give co	edit for work	lig.

- Perform the following calcualtions, expressing the answer to the correct number of significant figures. 4.
 - (a) 31.4 + 0.049 - 8.91

(b)
$$\frac{(3.23 \times 10^{-2})(4.1 \times 10^{5})}{(9.689 \times 10^{-3})}$$

(3)

A student performing an experiment measured the dimensions of a rectangular piece of plastic as 5. follows.

length:
$$23.1 \pm 0.05 \text{ mm}$$

width:
$$14.5 \pm 0.05$$
mm

thickness:
$$1.05 \pm 0.005$$
 mm

length: 23.1 ± 0.05 mm width: 14.5 ± 0.05 mm thickness: 1.05 ± 0.005 m $\pm 0.216\%$ Calculate the volume of the plastic, expressing your answer in standard units with the associated absolute uncertainty.

$$V = \ell_{XWX}t$$
= $(23.1 \times 10^{-3})(14.5 \times 10^{-3})(1.05 \times 10^{-3})$ (1)

$$= 3.52 \times 10^{-7} \pm 3.65 \times 10^{-9} \,\mathrm{m}^3 \qquad (1)$$

(4)

6. The force on a current-carrying wire is given by the relationship:

$$F = kI$$

where

F =the force experienced (N)

I = the current flowing (A)

k = a constant.

A group of students obtained the following data whilst investigating this relationship.

Current (A)	Force (x 10 ⁻³ N)
0.30	7.2
0.70	17.1
1.00	23.9
1.20	29.2
1.60	37.8
2.00	48.0

(b) Use the gradient of the line of best fit to determine the value of k. Remember to include the appropriate units.

gradient =
$$\frac{48.0 \times 10^{-3} - 0}{2.00 - 0}$$
 (1)
= $2.40 \times 10^{-2} NA^{-1}$ (1)

gradient =
$$\frac{F}{I} = k$$

$$k = 2.40 \times 10^{2} \text{ NA}^{-1} \quad (1)$$
(3)

[Wrong sig fig - I mark off] [Units - 2 mark off.]