Package 'timeFA'

January 30, 2020

Type Package

Title Fac	ctor Models and Autoregressive Models for Time Series
Version	0.1.0
	PR person(``Zebang", ``Li", email = ``zebang.li@rutgers.edu", e = c(``aut", ``cre"))
_	ion More about what it does (maybe more than one line) e four spaces when indenting paragraphs within the Description.
License	GPL (>= 2)
Encoding	g UTF-8
LazyDat	a true
M/ abi	tensor, ensor, ASS, nd, aph
Roxygen	Note 7.0.2
Vignette	Builder knitr
R topi	cs documented:
	dynamic_A 2 grouping.loading 2 MAR.SE 3 MAR1.LS 3 MAR1.otimes 4 MAR1.projection 5 matrix_factor 5 mfmda 6 mfmda.estqk 7 mfmda.na.iter 7
	mfmda.na.vec 8 mfmda.nona.iter 8 mfmda.nona.noniter 9 mfmda.nona.vec 9 PlotNetwork_AB 10
	projection

2 grouping.loading

	var1 vector_factor																			12
Index																				1.

dynamic_A dynamic_A

Description

Get the adjacency matrix for plotting

Usage

```
dynamic_A(x, factor_count, simple.flag, threshold)
```

Arguments

x input the original estimated loading matrix

factor_count The number of factors to use

simple.flag if True, only eliminate the entries below threshold and make all row sums to be

1; if False, the approach further eliminates the entries of the rows that are very

close to threshold value and only leaves the maximum entry of each row

threshold A parameter to eliminate very small entries of the loading matrix

Value

The new loading matrix with all rows sum to be 1

grouping.loading grouping.loading

Description

Get the group of loadings

Usage

```
grouping.loading(loading, ncluster, rowname, plot = T)
```

Arguments

loading The estimated loading matrix

ncluster The number of clusters to use, usually the dimension of the factor matrix

rowname The name of the rows

plot plot the clustering graph, defacult True

Value

Loading matrix after grouping

MAR.SE 3

MAR.SE Asymptotic Covariance Matrix of MAR1.otimes

Description

Asymptotic covariance Matrix of MAR1.otimes for given A, B and matrix-valued time series xx, see Theory 3 in paper.

Usage

```
MAR.SE(xx, B, A, Sigma)
```

Arguments

 $\begin{array}{lll} xx & & T*p*q \ matrix-valued \ time \ series \\ B & & q \ by \ q \ matrix \ in \ MAR(1) \ model \\ A & & p \ by \ p \ matrix \ in \ MAR(1) \ model \\ Sig & & covariance \ matrix \ cov(vec(E_t)) \ in \ MAR(1) \ model \\ \end{array}$

Value

asmptotic covariance matrix

Examples

```
# given T * p * q time series xx
out2=MAR1.LS(xx)
FnormLL=sqrt(sum(out2$LL))
xdim=p;ydim=q
out2Xi=MAR.SE(xx.nm,out2$RR*FnormLL,out2$LL/FnormLL,out2$Sig)
out2SE=sqrt(diag(out2Xi))
SE.A=matrix(out2SE[1:xdim^2],nrow=xdim)
SE.B=t(matrix(out2SE[-(1:xdim^2)],nrow=ydim))
```

MAR1.LS

Least Squares Iterative Estimation

Description

Iterated least squares estimation in the model $X_t = LL * X_{t-1} * RR + E_t$.

Usage

```
MAR1.LS(xx, niter = 50, tol = 1e-06, print.true = FALSE)
```

Arguments

T * p * q matrix-valued time series

niter maximum number of iterations if error stays above tol

tol relative Frobenius norm error tolerance

print.true printe LL and RR

4 MAR1.otimes

Value

```
a list containing the following: 
 LL estimator of LL, a p by p matrix 
 RR estimator of RR, a q by q matrix 
 res residual of the MAR(1) 
 Sig covariance matrix cov(vec(E_t)) 
 dis Frobenius norm difference of last update 
 niter number of iterations
```

MAR1.otimes

MLE under a structured covariance tensor

Description

```
MAR(1) iterative estimation with Kronecker covariance structure: X_t = LL * X_{t-1} * RR + E_t such that \Sigma = cov(vec(E_t)) = \Sigma_r \otimes \Sigma_l.
```

Usage

```
MAR1.otimes(
    xx,
    LL.init = NULL,
    Sigl.init = NULL,
    Sigr.init = NULL,
    niter = 50,
    tol = 1e-06,
    print.true = FALSE
)
```

Arguments

Value

```
a list containing the following:

LL estimator of LL, a p by p matrix

RR estimator of RR, a q by q matrix

res residual of the MAR(1)
```

MAR1.projection 5

```
Sig1 one part of structured covariance matrix \Sigma = \Sigma_r \otimes \Sigma_l
Sigr one part of structured covariance matrix \Sigma = \Sigma_r \otimes \Sigma_l
dis Frobenius norm difference of the final update step
niter number of iterations
```

MAR1.projection

Projection Method

Description

MAR(1) one step projection estimation in the model $X_t = LL * X_{t-1} * RR + E_t$.

Usage

```
MAR1.projection(xx)
```

Arguments

XX

T * p * q matrix-valued time series

Value

```
a list containing the following:
```

LL estimator of LL, a p by p matrix

RR estimator of RR, a q by q matrix

res residual of the MAR(1)

Sig covariance matrix cov(vec(E_t))

matrix_factor

matrix_factor

Description

The main estimation function

Usage

```
matrix_factor(Yt, inputk1, inputk2, iscentering = 1, hzero = 1)
```

Arguments

Yt Time Series data for a matrix

inputk1 The pre-determined row dimension of the factor matrix inputk2 The pre-determined column dimension of the factor matrix

iscentering The data is subtracted by its mean value

hzero Pre-determined parameter

6 mfmda

Value

```
a list containing the following:
eigval1 estimated row dimension of the factor matrix
eigval2 estimated column dimension of the factor matrix
loading1 estimated left loading matrix
loading2 estimated right loading matrix
Ft Estimated factor matrix with pre-determined number of dimensions
Ft.all Sum of Ft
Et The estimated residual, by subtracting estimated signal term from the data
```

Examples

```
A <- 1:180
dim(A) <- c(3,3,20)
out = matrix_factor(A,3,3)
eig1 = out$eigval1
loading1 = out$loading1
Ft = out$Ft.all</pre>
```

mfmda

mfmda

Description

This is a wrapper for all approaches

Usage

```
mfmda(Yt, approach = "3", hzero = 1, iscentering = 1)
```

Arguments

approach Select estimation approaches, 1 for noniterative approach with no NaNs, 2 for

iterative approach with NaNs, 3 for iterative approach allowing NaNs.

hzero Pre-determined parameter

iscentering The data is subtracted by its mean value

Yc Time Series data for a matrix

Value

The sample version of M matrix

Examples

```
A <- 1:180
dim(A) <- c(3,3,20)
M <- mfmda(A,"3",1,0)
```

mfmda.estqk 7

mfmda.estqk mfmda.estqk

Description

Compute the estimated number of factors and the corresponding eigen-space

Usage

```
mfmda.estqk(Mhat, inputk = 1)
```

Arguments

Mhat The estimated value for matrix M

inputk The pre-determined number of dimension of factor matrix

Value

The estimated number of factors to use, the corresponding estimated Q matrix, the eigenvalue, the estimated Q matrix with requested number of factors

Examples

```
A <- 1:180

dim(A) <- c(3,3,20)

M <- mfmda(A,"3",1,0)

inputk <- 3

eig.ans <- mfmda.estqk(M,inputk)

khat <- eig.ans$estk

Qhat <- eig.ans$Qhatestk

eigval <- eig.ans$eigval

Qhatinputk <- eig.ans$Qhatinputk
```

mfmda.na.iter

mfmda.na.iter

Description

The input data could have NaNs. The estimation approach is iterative.

Usage

```
mfmda.na.iter(Yc, hzero)
```

Arguments

Yc Time Series data for a matrix allowing NaNs

hzero Pre-determined parameter

Value

The sample version of M matrix

8 mfmda.nona.iter

mfmda.na.vec

mfmda.na.vec

Description

This approach is for the vector-valued estimation with NaNs.

Usage

```
mfmda.na.vec(Yc, hzero)
```

Arguments

Yc Time Series data for a matrix(dimensions n*p*q), allowing NA input

hzero Pre-scribed parameter h

Value

The sample version of M matrix

mfmda.nona.iter

mfmda.nona.iter

Description

The input data do not have zeros. The estimation approach is iterative.

Usage

```
mfmda.nona.iter(Yc, hzero)
```

Arguments

Yc Time Series data for a matrix(dimensions n*p*q), no NA input allowed

hzero Pre-scribed parameter

Value

The sample version of M matrix

mfmda.nona.noniter 9

mfmda.nona.noniter

mfmda.nona.noiter

Description

The input data do not have zeros. The estimation approach is noniterative.

Usage

```
mfmda.nona.noniter(Yc, hzero)
```

Arguments

Yc Time Series data for a matrix(dimensions n*p*q), no NA input allowed

hzero Pre-scribed parameter

Value

The sample version of M matrix

mfmda.nona.vec

mfmda.nona.vec

Description

This approach is for the vector-valued estimation WITHOUT NaNs.

Usage

```
mfmda.nona.vec(Yc, hzero)
```

Arguments

Yc Time Series data for a matrix(dimensions n*p*q), no NA input allowed

hzero Pre-scribed parameter

Value

The sample version of M matrix

Examples

```
A <- 1:180
dim(A) <- c(3,3,20)
M <- mfmda.nona.vec(A,2)
```

10 projection

PlotNetwork_AB	PlotNetwork_AB
----------------	----------------

Description

Plot the network graph

Usage

```
PlotNetwork_AB(Ft, iterated_A, iterated_B = iterated_A, labels = use2)
```

Arguments

Ft The estimated factor matrix iterated_A The left loading matrix iterated_B The right loading matrix

labels The row labels

Value

Plot the network graph

projection	Kronecker Product Approximation

Description

Kronecker product approximation used in Projection Method of matrix-value time series.

Usage

```
projection(A, m1, m2, n1, n2)
```

Arguments

A	m by n matrix such that $m = m1 * n1$ and $n = m2 * n2$
m1	ncol of A
m2	ncol of B
n1	nrow of A
n2	nrow of B

Value

a list contaning two estimator (matrix)

See Also

```
MAR1.projection
```

rearrange 11

Examples

```
A <- matrix(runif(6),ncol=2),
projection(A,3,3,2,2)
```

rearrange

Rearrangement Operator

Description

Rearrangement Operator used for projection method.

Usage

```
rearrange(A, m1, m2, n1, n2)
```

Arguments

```
A m by n matrix such that m=m1*n1 and n=m2*n2 m1 ncol of A ncol of B nrow of A nrow of B
```

Value

rearengement matrix #'@seealso MAR1.projection

Examples

```
A <- matrix(runif(6),ncol=2),
B <- matrix(runif(6),ncol=2),
M <- kronecker(B,A)
rearrange(M,3,3,2,2) == t(as.vector(A)) %*% as.vector(B)
'TRUE'</pre>
```

var1

Stacked vector AR(1) Model

Description

```
vector AR(1) Model.
```

Usage

```
var1(xx)
```

Arguments

XX

T * p * q matrix-valued time series

vector_factor

Value

```
a list containing the following:  \\  \mbox{coef coeficient of the fitted VAR}(1) \mbox{ model} \\ \mbox{res residual of the VAR}(1) \mbox{ model} \\ \label{eq:coeficient}
```

Examples

```
out.var1=var1(xx)
sum(out.var1$res**2)
```

vector_factor

vector_factor

Description

The main estimation function, vector version

Usage

```
vector_factor(Yt, inputk.vec, iscentering = 1, hzero = 1)
```

Arguments

Yt Time Series data for a matrix

inputk.vec The pre-determined dimensions of the factor matrix in vector

iscentering The data is subtracted by its mean value

hzero Pre-determined parameter

Value

a list containing the following:

eigval1 estimated dimensions of the factor matrix

loading estimated loading matrices

Ft Estimated factor matrix with pre-determined number of dimensions

 ${\tt Ft.all} \ \ Sum \ of \ Ft$

Et The estimated random term, by subtracting estimated signal term from the data

Examples

```
A <- 1:180

dim(A) <- c(3,3,20)

M <- mfmda(A,"3",1,0)

eig.ans <- vector_factor(M,3,0,1)

khat <- eig.ans$estk

Qhat <- eig.ans$Qhatestk

eigval <- eig.ans$eigval

Q1hatinputk <- eig.ans$Qhatinputk
```

Index

```
dynamic_A, 2
grouping.loading, 2
MAR.SE, 3
MAR1.LS, 3
MAR1.otimes, 4
MAR1.projection, 5, 10, 11
matrix_factor, 5
mfmda, 6
mfmda.estqk, 7
\mathsf{mfmda.na.vec}, 8
mfmda.nona.iter, 8
\verb|mfmda.nona.noniter|, 9
mfmda.nona.vec, 9
{\tt PlotNetwork\_AB}, {\color{red} 10}
projection, 10
rearrange, 11
var1, 11
vector_factor, 12
```