Introduction

The course is split into two parts:

- Logic: syntax and semantics.
- Set theory: what does the universe of sets look like?

Course structure

- (I) Propositional logic (logic)
- (II) Well-orderings & ordinals (set theory)
- (III) Posets & Zorn's lemma (set theory)
- (IV) Predicate logic (logic)
- (V) Set theory (set theory)
- (VI) Cardinals (set theory)

Books:

- 1. Johnstone, Notes on Logic & Set Theory
- 2. Van Dalen, Logic & Structure (Chapter 4 and what 'goes next')
- 3. Hajnal & Hamburger, Set Theory (Chapters 2 and 6)
- 4. Forster, Logic, Induction & Sets

1 Propositional Logic

Let P be a set of *primitive propositions*. Unless otherwise stated, $P = \{p_1, p_2, \ldots\}$. The *language* L or L(P) is defined inductively by

- 1. If $p \in P$, then $p \in L$
- 2. $\perp \in L$ (\perp is read 'false')
- 3. If $p, q \in L$ then $(p \Rightarrow q) \in L$.

e.g
$$((p_1 \Rightarrow p_2) \Rightarrow (p_1 \Rightarrow p_3)), (p_4 \Rightarrow \bot), (\bot \Rightarrow \bot).$$

Notes.

- 1. Each proposition (member of L) is a finite string of symbols from language: $\vdash, \Rightarrow, \perp, p_1, p_2, \ldots$ (for clarity often omit outer brackets, use other types of bracket, etc).
- 2. 'L is defined inductively' means, more precisely, the following

- Put $L_1 = P \cup (\bot)$;
- Having defined L_n , put $L_{n+1} = L_n \cup \{(p \Rightarrow q) : p, q \in L_n\};$
- Set $L = \bigcup_{n>1} L_n$.
- 3. Every $p \in L$ is uniquely built up from steps 1,2 using 3. For example, $((p_1 \Rightarrow p_2) \Rightarrow (p_1 \Rightarrow p_3))$ can from $(p_1 \Rightarrow p_2)$ and $(p_1 \Rightarrow p_3)$.

We can now introduce $\neg p$ ('not p') as an abreviation for $(p \Rightarrow \bot)$; $p \lor q$ ('p or q') as an abreviation for $(\neg p) \Rightarrow q$; $p \land q$ ('p and q') as an abreviation for $\neg (p \Rightarrow (\neg q))$.

1.1 Semantic Implication

Definition. A valuation is a function $v: L \to \{0,1\}$ (thinking of 0 as 'False' and 1 as 'True') such that

- (i) $v(\bot) = 0$
- (ii) $v(p \Rightarrow q) = \begin{cases} 0 & \text{if } v(p) = 1, \ v(q) = 0 \\ 1 & \text{otherwise} \end{cases}$.

Remark. On $\{0,1\}$, could define a constant $\perp = 0$ and an operation \Rightarrow by

$$(a\Rightarrow b)=\begin{cases} 0 & \text{if } a=1,b=0\\ 1 & \text{otherwise} \end{cases}.$$

Then a valuation is precisely a mapping $L \to \{0,1\}$ that preserves $(\perp \text{ and } \Rightarrow)$.

Proposition 1.1.

- (i) If v, v' are valuations with v(p) = v(p') for all $p \in P$, then v = v'.
- (ii) For any function $w: P \to \{0,1\}$, there exists a valuation v with v(p) = w(p) for all $p \in P$.

Proof.

- (i) Have v(p) = v'(p) for all $p \in L_1$. But if v(p) = v'(p) and v(q) = v'(q), then $v(p \Rightarrow q) = v'(p \Rightarrow q)$, so v(p) = v'(p) for all $p \in L_2$. Continuing inductively we obtain v(p) = v'(p) for all $p \in L_n$ for each n.
- (ii) Set v(p) = w(p) for all $p \in P$ and $v(\perp) = 0$ to obtain v on L_1 . Now put

$$v(p \Rightarrow q) = \begin{cases} 0 & v(p) = 1, v(q) = 0\\ 1 & \text{otherwise} \end{cases}$$

to obtain v on L_2 , then induction.

Example. Let v be the valuation with $v(p_1) = v(p_3) = 1$, $v(p_n) = 0$ for all $n \neq 1, 3$. Then $v((p_1 \Rightarrow p_2) \Rightarrow p_3) = 0$.

Definition. A tautology is an element $t \in L$ such that v(t) = 1 for any valuation v. We write $\models t$.

Examples.

1.
$$p \Rightarrow (q \Rightarrow p)$$

v(p)	v(q)	$v(p \Rightarrow q)$	$v(p \Rightarrow (q \Rightarrow p))$
0	0	1	1
0	1	0	1
1	0	1	1
1	1	1	1

So this is a tautology.

2. $(\neg \neg p) \Rightarrow p$, i.e $((p \Rightarrow \bot) \Rightarrow \bot) \Rightarrow p$ ('law of excluded middle')

v(p)	$v(p \Rightarrow \bot)$	$v((p \Rightarrow \bot) \Rightarrow \bot)$	$v(((p \Rightarrow \bot) \Rightarrow \bot) \Rightarrow p)$
0	1	0	1
1	0	1	1

3. $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ ("how implicating chains"). Suppose this is not a tautology. Then we have a v with $v(p \Rightarrow (q \Rightarrow r)) = 1$ and $v((p \Rightarrow q) \Rightarrow (q \Rightarrow r)) = 0$. Then $v(p \Rightarrow q) = 1$ and $v(p \Rightarrow r) = 0$. Hence v(p) = 1 and v(r) = 0, so v(q) = 1. Hence $v(p \Rightarrow (q \Rightarrow r)) = 0$, contradiction.

Definition. For $S \subseteq L$, $t \in L$, we say S entails or semantically implies t, written $S \models t$ if every valuation with v(s) = 1 for all $s \in S$ has v(t) = 1.

Example. $\{p \Rightarrow q, q \Rightarrow r\}$ entails $p \Rightarrow r$. Indeed, suppose we have v with $v(p \Rightarrow q), \ v(q \Rightarrow r) = 1 \text{ but } v(p \Rightarrow r).$ Then $v(p) = 1, \ v(r) = 0.$ Hence v(q) = 1, contradicting $v(q \Rightarrow r) = 1$.

Definition. We say v is a model of $S \subseteq L$ or S is true in v, if v(s) = 1 for all $s \in S$. Thus S entails t means: every model of S is also a model of $\{t\}$.

Remark. $\vDash t \text{ says } \emptyset \vDash t$.

1.2 Syntatic implication

For a notion of proof, we'll need axioms and deduction rules. As axioms, we'll take:

- 1. $p \Rightarrow (q \Rightarrow p)$ for all $p, q \in L$;
- 2. $[p \Rightarrow (q \Rightarrow r)] \Rightarrow [(p \Rightarrow q) \Rightarrow (p \Rightarrow r)]$ for all $p, q \in L$;
- 3. $(\neg \neg p) \Rightarrow p$ for all $p \in L$.

Notes.

- 1. Sometimes we call these 'axiom schemes' since each is actually a set of axioms.
- 2. Each of these are tautologies.

For deduction rules, we'll have only modus ponens: from each p and $p \Rightarrow q$ we can deduce q.

Definition. For $S \subseteq L$, and $t \in S$, say S proves or syntactically implies t, written $S \vdash t$ if there exists a sequence t_1, \ldots, t_n in L with $t_n = t$ such that every t_i is either

- (i) An axiom; or
- (ii) A member of S; or
- (iii) Such that there exist j, k < i with $t_k \Rightarrow (t_j \Rightarrow t_n)$ (modus ponens).

Say S consists of the *hypotheses* or *premises*, and t the *conclusion*.

Example. $\{p \Rightarrow q, q \Rightarrow r\} \vdash p \Rightarrow r$:

- 1. $q \Rightarrow r$ (hypothesis)
- 2. $(q \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$ (axiom 1)
- 3. $p \Rightarrow (q \Rightarrow r)$ (modus ponens' on 2,3)
- 4. $[p \Rightarrow (q \Rightarrow r)] \Rightarrow [(p \Rightarrow q) \Rightarrow (p \Rightarrow r)]$ (axiom 2)
- 5. $(p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ (modus ponens' on 3,4)
- 6. $p \Rightarrow q$ (hypothesis)
- 7. $p \Rightarrow r \pmod{5,6}$

Definition. If $\emptyset \vdash t$, say t is a theorem, written $\vdash t$.

Example. $\vdash (p \Rightarrow p)$. We want to try to get to $(p \Rightarrow (p \Rightarrow)) \Rightarrow (p \Rightarrow p)$ using axiom 2.

- 1. $[p \Rightarrow ((p \Rightarrow p) \Rightarrow p)] \Rightarrow [(p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p)]$ (axiom 2)
- 2. $p \Rightarrow ((p \Rightarrow p) \Rightarrow p)$ (axiom 1)
- 3. $(p \Rightarrow (p \Rightarrow p)) \Rightarrow (p \Rightarrow p)$ (modus ponens on 1,2)
- 4. $p \Rightarrow (p \Rightarrow p)$ (axiom 1)
- 5. $p \Rightarrow p \pmod{3,4}$

Often, showing $S \vdash p$ is made easier by:

Proposition 1.2 (Deduction Theorem). Let $S \subseteq L$ and $p, q \in L$. Then $S \vdash (p \Rightarrow q)$ if and only if $S \cup \{p\} \vdash q$. Informally: "provability corresponds to the connective ' \Rightarrow ' in L".

Proof. First we show (\Rightarrow) : given a proof of $p \Rightarrow q$ from S, write down:

- 1. p (hypothesis)
- $2. q \pmod{\text{ponens}}$

Which is a proof of q from $S \cup \{p\}$.

Now we show (\Leftarrow) : we have a proof t_1, \ldots, t_n of q from $S \cup \{p\}$. We'll show that $S \vdash (p \Rightarrow t_i)$ for all i.

If t_i is an axiom, write down

- 1. t_i (axiom)
- 2. $t_i \Rightarrow (p \Rightarrow t_i)$ (axiom 1)
- 3. $p \Rightarrow t_i \text{ (modus ponens)}$

So $S \vdash (p \Rightarrow t_i)$.

If $t_i \in S$, do the same thing except step 1 will be " t_i (hypothesis)" instead of " t_i (axiom)".

If $t_i := p$, we have $S \vdash (p \Rightarrow p)$, since $\vdash (p \Rightarrow p)$.

If t_i is obtained by modus ponens, we have t_j and $t_k = (t_j \Rightarrow t_i)$ for some j, k < n. By induction, we can assume $S \vdash (p \Rightarrow t_j)$ and $S \vdash (p \Rightarrow (t_j \Rightarrow t_i))$. So write down

- 1. $[p \Rightarrow (t_i \Rightarrow t_i)] \Rightarrow [(p \Rightarrow t_i) \Rightarrow (p \Rightarrow t_i)]$ (axiom 2)
- 2. $(p \Rightarrow t_j) \Rightarrow (p \Rightarrow t_i)$ (modus ponens)

3. $p \Rightarrow t_i \text{ (modus ponens)}$

So
$$S \vdash p \Rightarrow t$$
.

Example. To show $\{p \Rightarrow q, q \Rightarrow r\} \vdash (p \Rightarrow r)$, it is sufficient to show $\{p \Rightarrow q, q \Rightarrow r, p\} \vdash r$, which is just modus ponens twice.

Question: how are \vDash and \vdash related?

Aim: $S \models t \iff S \vdash t$ (Completeness Theorem).

This is made up of:

- $S \vdash t \Rightarrow S \vDash t$ (soundness) i.e "our axioms and deduction rule are not silly";
- $S \vDash t \Rightarrow S \vDash t$ (adequacy) "our axioms are strong enough to deduce from S, every semantic consequence of S".

Proposition 1.3 (Soundness). Let $S \subseteq L$, $t \in L$. Then $S \vdash t \Rightarrow S \vDash t$.

Proof. We have a proof t_1, \ldots, t_n of t from S. So we must show that every model of S is a model of t, i.e if v is a valuation with v(s) = 1 for all $s \in S$, then v(t) = 1. But v(p) = 1 for each axiom p (each axiom is a tautology), and for each $p \in S$ whenever $v(p) = v(p \Rightarrow q) = 1$, we have v(q). So $v(t_i) = 1$ for all i (induction).

One case of adequacy is: if $S \vDash \bot$, then $S \vdash \bot$. We say S is constitutent if $S \not\vdash \bot$. So our statement is: S has no model $\Rightarrow S$ inconsistent, i.e S consistent $\Rightarrow S$ has a model.

In fact, this implies adequacy in general. Indeed, if $S \models t$ then $S \cup \{\neg t\}$ has no model. Hence (by the special case) $S \cup \{\neg t\} \vdash \bot$. So $S \vdash (\neg t \Rightarrow \bot)$, i.e $S \vdash (\neg \neg t)$. But $S \vdash (\neg \neg t) \Rightarrow t$ (axiom 3), so $S \vdash t$.

So our task is: given S consistent, find a model of S. Could try: define

$$v(t) = \begin{cases} 1 & t \in S \\ 0 & t \notin S \end{cases}.$$

But this fails, since S might not be deductively closed, meaning $S \vdash p \Rightarrow p \in S$. So we could first replace S with its deductive closure $\{t \in L : S \vdash t\}$ (which is consistent, because S is). However, this still fails: if S does not 'mention' p_3 , then $S \not\vdash p_3$ and $S \not\vdash \neg p_3$, so $v(p_3) = v(\neg p_3) = 0$ which is impossible.

Theorem 1.4 (Model Existence Theorem). Let $S \subseteq L$ be consistent. Then S has a model.

Idea: extend S to 'swallow up', for each p, one of p and $\neg p$.

Proof. Claim: for any consistent $S \subseteq L$ and $p \in L$, $S \cup \{p\}$ or $S \cup \{\neg p\}$ is consistent.

Proof of claim: if not, then $S \cup \{p\} \vdash \bot$ and $S \cup \{\neg p\} \vdash \bot$. So $S \vdash (p \Rightarrow \bot)$ (deduction theorem), i.e $S \vdash (\neg p)$. Hence from $S \cup \{\neg p\} \vdash \bot$ we obtain $S \vdash \bot$.

Now, L is countable (as each L_n is countable) so we can list L as t_1, t_2, \ldots Let $S_0 = S$. Let $S_1 = S_0 \cup \{t_1\}$ or $S_1 \cup \{\neg t_1\}$ with S_1 consistent. In general, given S_{n-1} let $S_n = S_{n-1} \cup \{t_n\}$ or $S_n = S_{n-1} \cup \{\neg t_n\}$ so that S_n is consistent. Now set $\overline{S} = S_0 \cup S_1 \cup S_2 \cup \ldots$ Thus for all $t \in L$, either $t \in \overline{S}$ or $(\neg t) \in \overline{S}$.

Now \overline{S} is consistent: if $\overline{S} \vdash \bot$ then, since proofs are finite, we'd have $S_n \vdash \bot$ for some n, a contradiction.

Also, \overline{S} is deductively closed: if $\overline{S} \vdash p$, must have $p \in \overline{S}$, since otherwise $(\neg p) \in \overline{S}$, so $\overline{S} \vdash (p \Rightarrow \bot)$ and $\overline{S} \vdash \bot$.

Now define $v: L \to \{0, 1\}$ by

$$t \mapsto \begin{cases} 1 & t \in \overline{S} \\ 0 & \text{otherwise} \end{cases}.$$

We'll show v is a valuation (then we're done as v = 1 on S).

 $v(\bot)$: have $\bot \not\in \overline{S}$ (since \overline{S} is consistent), so $v(\bot) = 0$.

Remarks.

- 1. We used $P = (p_1, p_2, ...)$, in saying L is countable. In fact, it also holds if P is uncountable (see later in course).
- 2. Sometimes this theorem is called 'The Completeness Theorem'

By the remarks stated before this theorem, we have

Corollary 1.5 (Adequacy). Let $S \subseteq L$, $t \in L$, with $S \vDash t$. Then $S \vdash t$.

Hence we have

Theorem 1.6 (Completeness Theorem). Let $S \subseteq L$, $t \in L$. Then $S \vdash t \iff S \models t$.

Corollary 1.7 (Compactness Theorem). Let $S \subseteq L$, $t \in L$ with $S \models t$. Then some finite $S' \subseteq S$ has $S' \models t$.

Proof. This is trivial if we replace \vDash by \vdash (as all proofs are finite).

For $t = \bot$, the theorem says: if $S \models T$ then some finite $S' \subseteq S$ has $S' \vdash \bot$, i.e if every finite $S' \subseteq S$ has a model then S has a model. In fact, this is equivalent to compactness in general: $S \models t$ says $S \cup \{\neg t\}$ has no model, and $S' \models t$ says $S' \cup \{\neg t\}$ has no model.

Corollary 1.8 (Compactness Theorem equivalent form). Let $S \subseteq L$. Then if every finite subset of S has a model, so does S.

Another application:

Corollary 1.9 (Decidability Theorem). Let $S \subseteq L$ be finite and $t \in L$. Then there is an algorithm to decide, in finite time, whether of not $S \vdash t$.

Remark. This is a very surprising result.

Proof. Trivial if we replace \vdash with \models : to check if $S \models t$ we just draw the truth table.

2 Well-ordering & Ordinals

Definition. A total order or linear order is a pair (X, <) where X is a set and < is a relation on X that is

- (i) irreflexive: for all $x \in X$, not x < x;
- (ii) transitive: for all $x, y, z \in X$, if x < y, y < z then x < z;
- (iii) trichotomous: for all $x, y \in X$, either x = y or x < y or y < x.

We sometimes write x > y if y < x, and $x \le y$ if x < y or x = y.

We can instead define a total order in terms of \leq as follows:

- (i) reflextive: for all $x \in X$, $x \le x$;
- (ii) transitive: for all $x, y, z \in X$, if $x \le y, y \le z$ then $x \le z$;
- (iii) antisymmetric: for all $x, y \in X$, if $x \le y, y \le x$ then x = y;
- (iv) trichotomous: for all $x, y \in X$ either $x \leq y$ or $y \leq x$.

Examples.

- 1. $\mathbb{N}, <$;
- $2. \mathbb{Q}, \leq;$
- $3. \mathbb{R}, \leq;$
- 4. $\mathbb{N}^+ = \mathbb{N} \setminus \{0\}$ under 'divides' is <u>not</u> a total order, e.g 2 and 3 are not related;
- 5. $\mathcal{P}(S)$, \subseteq is <u>not</u> a total order fails trichotomy.

Definition. A total order (X, <) is a well-ordering if every (non-empty) subset has a least element, i.e for all $S \subseteq X$ if $S \neq \emptyset$ then there exists $x \in S$ such that $x \leq y$ for all $y \in S$.

Examples.

- 1. $\mathbb{N}, <$;
- 2. \mathbb{Z} , < is not a well ordering;
- 3. \mathbb{Q} , < is not a well ordering;
- 4. \mathbb{R} , < is not a well ordering;
- 5. $[0,1] \subseteq \mathbb{R}$, < is not a well ordering, e.g (0,1] has no least element;
- 6. $\{1/2, 2/3, 3/4, \ldots\} \subseteq \mathbb{R}$ is well ordered;
- 7. $\{1/2, 2/4, 3/4, \ldots\} \cup \{1\}$ is well ordered;

- 8. $\{1/2, 2/4, 3/4, \ldots\} \cup \{2\}$ is well ordered;
- 9. $\{1/2, 2/3, 3/4, \ldots\} \cup \{1 + 1/2, 1 + 2/3, 1 + 3/4, \ldots\}$ is well ordered.

Remark. (X, <) is a well ordering if and only if there is no infinite strictly decreasing sequence.

We say total orders X, Y are isomorphic if there exists a bijection $f: X \to Y$ such that x < y if and only if f(x) < f(y). For example, Examples 1&6, 7&8 above are isomorphic. However examples 1&7 are not isomorphic, since in 7 there exists a greatest element, but not in 1.

Proposition 2.1 (Proof by induction). Let X be well ordered and let $S \subseteq X$ be such that whenever $y \in S$ for all y < x, then $x \in S$. Then S = X. Equivalently, if p(x) is a property such that p(y) for all y < x implies p(x), then p(x) for all $x \in X$.

Proof. Suppose $S \neq X$ and let x be least in $X \setminus S$. Then $y \in S$ for all y < x but $x \notin S$, a contradiction.

Proposition 2.2. Let X, Y be isomorphic well-orderings. Then there exists a unique isomorphism.

Note. Note this is false for general total orders, for example $\mathbb{Z} \to \mathbb{Z}$ could have $x \mapsto x - t$ for any t, or $\mathbb{R} \to \mathbb{R}$ could have $x \mapsto x^3$.

Proof. Let $f, g: X \to Y$ be isomorphisms. We'll show f(x) = g(x) for all x by induction on X. Given f(y) = g(y) for all y < x, we want to show f(x) = g(x). We must have f(x) = a where a is the least element of $Y \setminus \{f(y) : y < x\}$ (nonempty since it contains f(x)). Indeed, if not then f(x') = a for some x' > x, contradicting the fact f is order preserving. Similarly have g(x) = a.

Definition. A subset I of a total order X is an *initial segment* if $x \in I$, y < x implies $y \in I$ (i.e I is closed under <). For example $I_x = \{y \in X : y < x\}$ is an initial segment for any $x \in X$, however not every inital segment is of this form, e.g in $\mathbb{Q} \{x \in \mathbb{Q} : x \leq 0 \text{ or } x^2 < 2\}$.

Note. In a well-ordering, every proper initial segment I is of the form I_x , for some $x \in X$. Indeed let x be the least element of $X \setminus I$ (non-empty since I is proper). Then $I = I_x$, since if y < x then $y \in I$ (by choice of x), and conversely if $y \in I$, must have y < x or else $y \ge x$ implying $x \in I$ (as I is an initial segment).

Our aim is to show that every subset of a well-ordering X is isomorphic to an initial segment of X.

Note. This is false in general for total orders, e.g $\{1,2,3\}$ in \mathbb{Z} , or \mathbb{Q} in \mathbb{R} .

Theorem 2.3 (Definition by recursion). Let X be a well-ordering and let Y be any set. Take $G: \mathcal{P}(X \times Y) \to Y$ (i.e a 'rule'). Then there exists a function $f: X \to Y$ such that $f(x) = G(f|_{I_x})$ for all $x \in X$. Moreover, f is unique.

Note. In defining f(x), we make use of f on $I_x = \{y : y < x\}$.

Proof. Say h is 'an attempt' if $h: I \to Y$ for some initial segment I of X, and for all $x \in I$ we have $h(x) = G(h|_{I_x})$. [This is the main idea].

Note that if h, h' are attempts both defined at x, then h(x) = h'(x), by induction on x (if h(y) = h'(y) for all y < x then h(x) = h'(y)).

Also, for every x, there exists an attempt defined at x, also by induction. Indeed, suppose that for all y < x there exists an attempt defined at y. So for all y < x there exists a unique (by above) attempt h_y with domain $\{z : z \le y\}$. Now let $h = \bigcup_{y \le x} h_y$, this is an attempt with domain I_x (single valued by uniqueness). Thus $h \cup \{(x, G(h))\}$ is an attempt defined at x. Now define $f : X \to Y$ by setting f(x) = y if there exists an attempt h defined at x such that h(x) = y.

Uniqueness of f: if f, f' are both such functions, then f(x) = f'(x) for all x by induction (f(y) = f'(y)) for all y < x implies f(x) = f'(x).

Proposition 2.4 (Subset collapse). Let X be a well-ordering and $Y \subseteq X$. Then Y is isomorphic to an initial segment of X. Moreover, I is unique.

Proof. To have $f: Y \to X$ an isomorphism with an initial segment of X, we need precisely that for every $x \in Y$ we have that f(x) is the minimum element of $X \setminus \{f(y): y < x\}$. So we're done by the previous theorem.

Note. We have $X \setminus \{f(y) : y < x\} \neq \emptyset$, since $f(y) \leq y$ for all y (induction), so $x \notin \{f(y) : y < x\}$.

In particular, X itself cannot be isomorphic to a proper intial segment (uniqueness).

How do different well-orderings relate to each other?

Definition. For well-orderings X, Y we write $X \leq Y$ if X is isomorphic to an initial segment of Y.

Example. If $X = \mathbb{N}, Y = (\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, ...)$, then $X \leq Y$.

Proposition 2.5. Let X, Y be well-orderings. Then $X \leq Y$ or $Y \leq X$.

Proof. Suppose $Y \not\leq X$, we'll show $X \leq Y$. To obtain $f: X \to Y$ an isomorphism with an initial segment of Y, we need precisely that for every $x \in X$, f(x) is the least element in $Y \setminus \{f(y): y < x\}$ [note this can only be empty if Y is isomorphic to I_x]. So we're done by recursion.

Proposition 2.6. Let X, Y be well-orderings with $X \leq Y$ and $Y \leq X$. Then X and Y are isomorphic.

Note. This proposition and the previous one are "the most we could ever hope for".

Proof. We have isomorphisms f from X to some initial segment of Y, and g from Y to some initial segment of X. Then $g \circ f : X \to X$ is an isomorphism from X to an initial segment of X (as initial segment of an initial segment of X is itself an initial segment). So by uniqueness $g \circ f = \mathrm{id}_X$. Similarly $f \circ g = \mathrm{id}_Y$. Hence f and g are inverses, thus bijections.

New well-ordering from old

For well-orderings X, Y, we say X < Y if $X \le Y$ and X is not isomorphic to Y. Equivalently, X < Y if and only if X is isomorphic to a proper initial segement of Y.

We can 'make a bigger one': given a well-ordering X, pick some $x \notin X$ and well-order $X \cup \{x\}$ by setting y < x for all $y \in X$. This is a well-ordering and is > X. Call this the *successor* of X, written X^+ .

We can 'put some together': given $\{X_i\}_{i\in I}$ well-orderings, seek X with $X \geq X_i$ for all i. For well-orderings $(X, <_X), (Y, <_Y)$ we say Y extends X if $X \subseteq Y$, $<_Y|_X = <_X$, and X is an intitial segment of $(Y, <_Y)$. Say well-orderings $\{X_i\}_{i\in I}$ ar nested if for all i, j, X_i extends X_j or X_j extends X_i .

Proposition 2.7. Let $\{X_i\}_{i\in I}$ be a nested set of well-orderings. Then there exists a well-ordering X such that $X \geq X_i$ for all i.

Proof. Let $X = \bigcup_{i \in I} X_i$, with ordering $<_X = \bigcup_{i \in I} <_i$, i.e x < y in X if there exists i such that $x, y \in X_i$ and $x <_i y$. Given $S \subseteq X$ non-empty, we have $S \cap X_i$ non-empty for some $i \in I$. Let x be the least element of $S \cap X_i$ (under $<_i$). Then x is the least element of S in X since X_i is an initial segment of X, by nestedness. So X is a well-ordering, and $X \ge X_i$ for all i.

Remark. The above proposition also holds if we don't know the X_i are nested.

3 Ordinals

"Does the collection of all well-orderings itself form a well-ordering?"

Definition. An *ordinal* is a well-ordered set, with two well-ordered sets regarded as the same if they are isomorphic. ¹

Definition. For a well-ordering X, corresponding to an ordinal α , say X has order-type α .

For any $k \in \mathbb{N}$, write k for the order-type of the (unique up to isomorphiam) well-ordering on a set of size k. Write ω for the order-type of \mathbb{N} .

Example. In \mathbb{R} :

- $\{-2, 3, \pi, 5\}$ has order-type 4;
- $\{1/2, 2/3, 3/4, ...\}$ has order-type ω .

 $^{^1}$ Just as a rational is an expression m/n with two regarded as the same if mn'=m'n. However, cannot formalise this using equivalence classes in the case of ordinals, see later chapter.

Write $\alpha \leq \beta$ if $X \leq Y$, where X has order-type α and Y has order-type β (note this is well defined since it doesn't depend on the choice of X, Y). Similarly define $\alpha < \beta$, α^+ etc.

Hence for all ordinals $\alpha, \beta, \alpha \leq \beta$ or $\beta \leq \alpha$. Also, if $\alpha \leq \beta$ and $\beta \leq \alpha, \alpha = \beta$.

Proposition 3.1. For any ordinal α , the ordinals $< \alpha$ form a well-ordered set of order-type α .

Proof. Let X have order-type α . Then the well-ordered sets < X are precisely (up to isomorphism) the proper initial segments of X, i.e they are I_x for $x \in X$. These order biject with X itself, via $I_x \leftrightarrow x$.

So for any α , have $I_{\alpha} = \{\beta : \beta < \alpha\}$ a well-ordered set of order-type α .

Proposition 3.2. Every non-empty set S of ordinals has a least element.

Proof. Choose $\alpha \in S$. If α is minimal in S, we're done. Otherwise, $S \cap I_{\alpha}$ is non-empty, so has a least element in I_{α} since I_{α} is well-ordered, and this element is least in all of S.

However:

Theorem 3.3 (Burali-Forti Paradox). The ordinals do not fom a set.

Proof. Suppose X was the set of all ordinals. Then X is a well-ordered set, so has an order type, say α . Thus X is order-isomorphic to I_{α} , so X is order-isomorphic to a proper initial segment of itself, contradiction.