Is Sharing Caring?

Effects of the Presence of CRISPR-Cas Systems on Rates of Horizontal Gene Transfer Using Network Analysis

Siddharth Reed MolBiol 4C12 Thesis

Golding Lab, Biology Department, McMaster University

March 28, 2019

Table of Contents

- 1. CRISPR-Cas systems
- 2. Horizontal Gene Transfer
- 3. Phylogenomic Networks
- 4. Do CRRISPR Systems Affect Horizontal Gene Transfer?
- 5. My Project

CRISPR-Cas systems

 Adaptive Bacterial Immune System

- Adaptive Bacterial Immune System
- Protects against foreign DNA

- Adaptive Bacterial Immune System
- Protects against foreign DNA
- Requires Cas proteins and CRISPR loci

• 45% of bacteria have CRISPR loci $(n = 6782)^2$

- 45% of bacteria have CRISPR loci $(n = 6782)^2$
- 3 Main Types, multiple subtypes³

- 45% of bacteria have CRISPR loci (n = 6782)²
- 3 Main Types, multiple subtypes³
- CRISPR arrays represent unique life history of an organism

- 45% of bacteria have CRISPR loci $(n = 6782)^2$
- 3 Main Types, multiple subtypes³
- CRISPR arrays represent unique life history of an organism
- 11% 28% are false or orphaned CRISPR loci⁴

Biotech Application

Biotech Application

Horizontal Gene Transfer

4 of 20

4 of 20

 Conjugation: Transfer of DNA through cell-cell connections⁶

- Conjugation: Transfer of DNA through cell-cell connections⁶
- Transformation: Incorportaion of free-floating DNA into the genome⁶

4 of 20

- Conjugation: Transfer of DNA through cell-cell connections⁶
- Transformation: Incorportaion of free-floating DNA into the genome⁶
- Transduction: Transfer of DNA through phage⁶

4 of 20

- Conjugation: Transfer of DNA through cell-cell connections⁶
- Transformation: Incorportaion of free-floating DNA into the genome⁶
- Transduction: Transfer of DNA through phage⁶
- CRISPR-Cas directly affects Transduction and Transformation⁶

Pan-Genomes

Pan-Genomes

Pan-Genomes

Amount of exogenous DNA/cell density/phage density

- Amount of exogenous DNA/cell density/phage density
- Selective pressures

- Amount of exogenous DNA/cell density/phage density
- Selective pressures
- Metabolic costs

- Amount of exogenous DNA/cell density/phage density
- Selective pressures
- Metabolic costs
- Sequence compatibility

Applications

Applications

Phylogenomic Networks

 Useful mathematical abstraction of real world system

- Useful mathematical abstraction of real world system
- Nodes can have attributes

- Useful mathematical abstraction of real world system
- Nodes can have attributes
- Directed or Undirected Edges

- Useful mathematical abstraction of real world system
- Nodes can have attributes
- Directed or Undirected Edges
- Weighted or Unweighted Edges

Prokaryotic "Net of Life"

Prokaryotic "Net of Life"

Construction

Do CRRISPR Systems Affect Horizontal Gene Transfer?

Yes

• Cost tradeoff factors:

- Cost tradeoff factors:
 - Metabolic maintenace¹

- Cost tradeoff factors:
 - Metabolic maintenace¹
 - Environmental pressures¹³

- Cost tradeoff factors:
 - Metabolic maintenace¹
 - Environmental pressures¹³
 - Off-target effects (autoimmune)¹⁴

- Cost tradeoff factors:
 - Metabolic maintenace¹
 - Environmental pressures¹³
 - o Off-target effects (autoimmune)14
 - Anti-CRISPR systems³

- Cost tradeoff factors:
 - Metabolic maintenace¹
 - Environmental pressures¹³
 - Off-target effects (autoimmune)¹⁴
 - Anti-CRISPR systems³
 - Phage virulence/density³

- Cost tradeoff factors:
 - Metabolic maintenace¹
 - Environmental pressures¹³
 - Off-target effects (autoimmune)¹⁴
 - Anti-CRISPR systems³
 - Phage virulence/density³
 - Prophage abundance¹⁵

ullet CRISPRs themselves can be transfered \Longrightarrow population level immunity 16

- ullet CRISPRs themselves can be transfered \Longrightarrow population level immunity 16
- Selective CRISPR inactivation¹

- ullet CRISPRs themselves can be transfered \Longrightarrow population level immunity 16
- Selective CRISPR inactivation¹
- CRISPR can enhance transduction-mediated HGT¹⁵

 Gophna et al. (2015) found that CRISPR has no effect on HGT over short evolutionary timescales¹⁷

- Gophna et al. (2015) found that CRISPR has no effect on HGT over short evolutionary timescales¹⁷
 - Assume all singletons arrose from HGT

- Gophna et al. (2015) found that CRISPR has no effect on HGT over short evolutionary timescales¹⁷
 - Assume all singletons arrose from HGT
 - Used GC% to identify HGT

- Gophna et al. (2015) found that CRISPR has no effect on HGT over short evolutionary timescales¹⁷
 - Assume all singletons arrose from HGT
 - Used GC% to identify HGT
- Contradicted by a former thesis student

- Gophna et al. (2015) found that CRISPR has no effect on HGT over short evolutionary timescales¹⁷
 - Assume all singletons arrose from HGT
 - Used GC% to identify HGT
- Contradicted by a former thesis student
 - Can see inhibitory effects of CRIPSR on HGT over short evolutionary time scales

- Gophna et al. (2015) found that CRISPR has no effect on HGT over short evolutionary timescales¹⁷
 - Assume all singletons arrose from HGT
 - Used GC% to identify HGT
- Contradicted by a former thesis student
 - Can see inhibitory effects of CRIPSR on HGT over short evolutionary time scales
 - Higher gene indel rates for CRISPR containing genera than non-CRISPR containing outgroups

My Project

Hypothesis

Null Hypothesis

Bacterial strains or genera with known CRISPR systems will show no significant differences in network statistics compared to those strains or genera without known CRISPR systems.

Hypothesis

Null Hypothesis

Bacterial strains or genera with known CRISPR systems will show no significant differences in network statistics compared to those strains or genera without known CRISPR systems

Alternative Hypothesis

Bacterial strains or genera with known CRISPR systems will show a significant difference in at least 1 network statistic compared to those strains or genera without known CRISPR systems.

Within Network Comparisons

For genera with CRISPR conatining strains, compare the node statistics of CRIPSR-containing strain to non-CRISPR-containing strains.

Within Network Comparisons

For genera with CRISPR conatining strains, compare the node statistics of CRIPSR-containing strain to non-CRISPR-containing strains.

Between Network Comparisons

For genera with no CRISPR conatining strains, compare the network statistics of mixed to non-CRISPR-containing networks.

Within Network Comparisons

For genera with CRISPR conatining strains, compare the node statistics of CRIPSR-containing strain to non-CRISPR-containing strains.

Between Network Comparisons

For genera with no CRISPR conatining strains, compare the network statistics of mixed to non-CRISPR-containing networks.

Gene Indel Rates vs. Network Statistics

Compare gene InDel rates to node/network statistics for CRISPR-containing and non-CRISPR-containing strains/genera.

14 of 20

• Average Node Degree: $\sum_i w_i, \frac{\sum_i w_i}{N}$

• Average Node Degree: $\sum_i w_i, \frac{\sum_i w_i}{N}$

• Network Density: $\frac{2E}{N(N-1)}$

• Average Node Degree: $\sum_i w_i, \frac{\sum_i w_i}{N}$

• Network Diameter: Shortest path between the 2 furthest nodes.

• Network Density: $\frac{2E}{N(N-1)}$

• Average Node Degree: $\sum_i w_i, \frac{\sum_i w_i}{N}$

- Network Diameter: Shortest path between the 2 furthest nodes.
- Node Closeness Centrality: $\frac{N-1}{\sum_{v} d(u,v)}$ where d(x,y) is the length of the shortest path $v \to u$.
- Network Density: $\frac{2E}{N(N-1)}$

- Average Node Degree: $\sum_{i} w_{i}, \frac{\sum_{i} w_{i}}{N}$
- Node Clustering Coefficient: $\frac{2e}{k(k-1)}$ where k is the neighbors and e is the edges between all neighbors.

- Network Diameter: Shortest path between the 2 furthest nodes.
- Node Closeness Centrality: $\frac{N-1}{\sum_{v} d(u,v)}$ where d(x,y) is the length of the shortest path $v \to u$.
- Network Density: $\frac{2E}{N(N-1)}$

- Average Node Degree: $\sum_{i} w_{i}, \frac{\sum_{i} w_{i}}{N}$
- Node Clustering Coefficient: $\frac{2e}{k(k-1)}$ where k is the neighbors and e is the edges between all neighbors.
- Edge Weight KL Divergence: $D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) log(\frac{p(x)}{q(x)}) dx$

- Network Diameter: Shortest path between the 2 furthest nodes.
- Node Closeness Centrality: $\frac{N-1}{\sum_{v} d(u,v)}$ where d(x,y) is the length of the shortest path $v \to u$.
- Network Density: $\frac{2E}{N(N-1)}$

- Average Node Degree: $\sum_{i} w_{i}, \frac{\sum_{i} w_{i}}{N}$
- Node Clustering Coefficient: $\frac{2e}{k(k-1)}$ where k is the neighbors and e is the edges between all neighbors.
- Edge Weight KL Divergence: $D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) log(\frac{p(x)}{q(x)}) dx$
- Node Associativity: $\frac{j(j+1)(k-\mu_q)}{2E\sigma_q^2}$ where j is the excess degree of the node and \overline{k} is the average excess degree of the node's neighbors and μ_q and σ_q are the mean and standard variation of the excess degree distribution.
- Network Diameter: Shortest path between the 2 furthest nodes.
- Node Closeness Centrality: $\frac{N-1}{\sum_{v} d(u,v)}$ where d(x,y) is the length of the shortest path $v \to u$.
- Network Density: $\frac{2E}{N(N-1)}$

Thanks

Thank you to

- Dr. G. Brian Golding
- The Golding lab
 - Caitlin Simopoulos
 - o Daniella Lato
 - Zachery Dickson
 - Sam Long
 - Lucy Zhang
 - Brianne Laverty
 - Nicole Zhang
- · Everyone here for listening

References (1)

- Devashish Rath et al. "The CRISPR-Cas immune system: Biology, mechanisms and applications". In: Biochimie 117 (2015). Special Issue: Regulatory RNAs, pp. 119—128. ISSN: 0300-9084. DOI: https://doi.org/10.1016/j.biochi.2015.03.025. URL: http://www.sciencedirect.com/science/article/pii/S0300908415001042.
- GRissa, I. and Drevet, C. and Couvin, D. *CRISPRdb*. http://crispr.i2bc.paris-saclay.fr/. Online; accessed 22 October 2018. 2017.

References (2)

- J. Bondy-Denomy and A. R. Davidson. "To Acquire Or Resist:The Complex Biological Effects Of CRISPR-Cas systems". In: *Trends Microbio.* 22.4 (2014), pp. 218–25. DOI: 10.1016/j.tim.2014.01.007.
- Quan Zhang and Yuzhen Ye. "Not all predicted CRISPR-Cas systems are equal: isolated cas genes and classes of CRISPR like elements". In: *BMC Bioinformatics* 18.1 (Feb. 2017), p. 92. ISSN: 1471-2105. DOI: 10.1186/s12859-017-1512-4. URL: https://doi.org/10.1186/s12859-017-1512-4.
- K. S. Makarova et al. "Evolution and classification of the CRISPR-Cas systems". In: *Nat. Rev. Microbiol.* 9.6 (2011), pp. 467–477.

References (3)

Ovidiu Popa and Tal Dagan. "Trends and barriers to lateral gene transfer in prokaryotes". In: Current Opinion in Microbiology 14.5 (2011). Antimicrobials/Genomics, pp. 615-623. ISSN: 1369-5274. DOI: https://doi.org/10.1016/j.mib.2011.07.027. URL: http://www.sciencedirect.com/science/article/pii/S1369527411001111.

L. C. Guimaraes et al. "Inside the Pan-genome - Methods and Software Overview". In: *Curr. Genomics* 16.4 (2015), pp. 245–252.

References (4)

- David A. Rasko et al. "The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates". In: Journal of Bacteriology 190.20 (2008), pp. 6881–6893. ISSN: 0021-9193. DOI: 10.1128/JB.00619-08. eprint: https://jb.asm.org/content/190/20/6881.full.pdf. URL: https://jb.asm.org/content/190/20/6881.
- Björn Berglund. "Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics". In: Infection Ecology & Epidemiology 5.1 (2015), p. 28564. DOI: 10.3402/iee.v5.28564. eprint: https://doi.org/10.3402/iee.v5.28564. URL: https://doi.org/10.3402/iee.v5.28564.

References (5)

- J. A. Bondy and U. S. R. Murty. *Graph theory with applications*. Wiley, 2002.
- V. Kunin et al. "The net of life: reconstructing the microbial phylogenetic network". In: *Genome Res.* 15.7 (2005), pp. 954–959.
- Matt Ravenhall et al. "Inferring Horizontal Gene Transfer". In: PLOS Computational Biology 11.5 (May 2015), pp. 1-16. DOI: 10.1371/journal.pcbi.1004095. URL: https://doi.org/10.1371/journal.pcbi.1004095.
- Senka Dzidic and Vladimir Bedeković. "Horizontal gene transfer-emerging multidrug resistance in hospital bacteria". In: Acta pharmacologica Sinica 24.6 (2003), pp. 519–526. URL: http://www.chinaphar.com/1671-4083/24/519.htm.

References (6)

- Adi Stern et al. "Self-targeting by CRISPR: gene regulation or autoimmunity?" In: Trends in Genetics 26.8 (2010), pp. 335-340. ISSN: 0168-9525. DOI: https://doi.org/10.1016/j.tig.2010.05.008. URL: http://www.sciencedirect.com/science/article/pii/S0168952510001083.
- Bridget N. J. Watson, Raymond H. J. Staals, and Peter C. Fineran. "CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction". In: mBio 9.1 (2018). Ed. by Joseph Bondy-Denomy and Michael S. Gilmore. DOI: 10.1128/mBio.02406-17. eprint: https://mbio.asm.org/content/9/1/e02406-17.full.pdf. URL: https://mbio.asm.org/content/9/1/e02406-17.

References (7)

James S. Godde and Amanda Bickerton. "The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer Among Prokaryotes". In: Journal of Molecular Evolution 62.6 (June 2006), pp. 718–729. ISSN: 1432-1432. DOI: 10.1007/s00239-005-0223-z. URL: https://doi.org/10.1007/s00239-005-0223-z.

U. Gophna et al. "No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales". In: *ISME J* 9.9 (2015), pp. 2021–2027.