P	ro	to	CO	ΙP	ros
	•	··	\mathbf{v}		

Autonomous Intersection Management System Project Plan

Version 2.0

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

Document Preparation

Name	Role	Approval (Signature)	Approval Date
Prakash Acharya	Technical Manager, Tester	Prakash Acharya	11/06/2022
Brendan Edgarley	Designer, Developer	Brendan Edgarley	11/06/2022
Amado Lazo	Project Manager, Researcher	Amado Lazo	11/06/2022
Ashutosh Mishra	Project Manager, Developer	Ashutosh Mishra	11/06/2022
Sarah Ryan	Technical Manager, Tester	Sarah Ryan	11/06/2022
David Schelanko	Researcher, Developer	David Schelanko	11/06/2022
Julian Villarreal	Researcher, Designer	Julian Villarreal	11/06/2022

Document Approvals

Name	Role	Approval (Signature)	Approval Date
Prakash Acharya	Technical Manager, Tester	Prakash Acharya	11/06/2022
Brendan Edgarley	Designer, Developer	Brendan Edgarley	11/06/2022
Amado Lazo	Project Manager, Researcher	Amado Lazo	11/06/2022
Ashutosh Mishra	Project Manager, Developer	Ashutosh Mishra	11/06/2022
Sarah Ryan	Technical Manager, Tester	Sarah Ryan	11/06/2022
David Schelanko	Researcher, Developer	David Schelanko	11/06/2022
Julian Villarreal	Researcher, Designer	Julian Villarreal	11/06/2022

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

Revision History

Date	Version	Description	Author
11/04/2022	2.0	Updated the Project Plan Template to new version	Julian Villarreal

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

Table of Contents

1.	Introduction 5			
	1.1	Purpose of the Document	5	
	1.2	Scope of the Document	5 5	
	1.3	References Definitions Agronyms and Abbraviations	5 6	
	1.4	Definitions, Acronyms, and Abbreviations	0	
2.	Proje	ct Goals	7	
	2.1	Business Goals	7	
	2.2	Product Goals	7	
	2.3	Quality Goals	7	
3.	Proje	ct Stakeholders and Stakes	9	
	3.1	Stakeholder Summary	9	
	3.2	User Summary	10	
	3.3	Summary of Key Stakeholder or User Needs	11	
4.	Proje	ct Budget	13	
5.	Proje	ct Milestones and Schedule	14	
6.	Project Communications			
7.	Project Members and Roles			
8.	Project Work Breakdown Structure (WBS)			
9.	Project Deliverables			
10.	Project Risks			
11.	Appendix A – Definitions, Acronyms, and Abbreviations			

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

Project Plan

1. Introduction

1.1 Purpose of the Document

The purpose of this document is to describe the plan for Protocol Pros to implement the software development effort. This project plan provides the acquirer insight and a tool for monitoring the processes to be followed for software development. It also briefly describes methods to be used and the approach to be followed for the specified tasks.

This plan will communicate to all team members of Protocol Pros and stakeholders the approach to be taken when developing protocols and the AIM(s) system and how the Project Manager will utilize available resources.

1.2 Scope of the Document

This Project Vision document applies to the development of an efficient protocol for Autonomous Intersection Management System (AIMS), which will be implemented by 'Protocol Pros' using Omnet++, and derived from other standard protocols like MAC, HMAC, SHA2, TCP/IP, UDP, etc. The AIMS protocol will depict the entire flow of data transmission between the traffic intersection entities. However, few things like early setup of the system, pre-allocation of secretkeys for MAC authentication, deciding the number of rounds in SHA-2, maintaining consistent bandwidth and throughput for communication is beyond the scope of this document.

1.3 References

- Sequential Online Chore Division for Autonomous Vehicle Convoy Formation. Harel Yedidsion, Shani Alkoby, and Peter Stone <u>pdf</u>
- Scalable Multiagent Driving Policies For Reducing Traffic Congestion Jiaxun Cui, William Macke, Harel Yedidsion, Aastha Goyal, Daniel Urieli, and Peter Stone In Proceedings of the International Conference on Autonomous Agents and Multi Agent Systems (AAMAS), 2021
 pdf

Autonomous Intersection Management System	Version: 2.0	
Vision (Small Project)	Date: 11/06/2022	
Project Plan (PP)		

- A Protocol for Mixed Autonomous and Human-Operated Vehicles at Intersections. Guni Sharon and Peter Stone In Autonomous Agents and Multiagent Systems - AAMAS 2017 Workshops, Best Papers, 2017 pdf
- Traffic Optimization For a Mixture of Self-interested and Compliant Agents. Guni Sharon, Michael Albert, Tarun Rambha, Stephen Boyles and Peter Stone In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18), 2017 pdf
- Multiagent Traffic Management: A Reservation-Based Intersection Control Mechanism.
 Mechanism. In *The Third International Joint Conference On Autonomous Agents and Multiagent Systems* (AAMAS 04), July 2004. pdf
- 6. Human-Usable and Emergency Vehicle–Aware Control Policies for Autonomous Intersection Management. Kurt Dresner and Peter Stone. In *The Fourth Workshop on Agents in Traffic and Transportation* (ATT 06), May 2006. pdf
- 7. Marginal Cost Pricing with a Fixed Error Factor in Traffic Networks. Guni Sharon, Stephen D. Boyles, Shani Alkoby, and Peter Stone In *The Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems* (AAMAS 2019), 2019 pdf

1.4 Definitions, Acronyms, and Abbreviations

See Appendix A.

Autonomous Intersection Management System	Version: 2.0	
Vision (Small Project)	Date: 11/06/2022	
Project Plan (PP)		

2. Project Goals

2.1 Business Goals

With the lack of any sort of traffic intersection breakthrough in recent years, traffic time as well as accidents seemingly increase with time. With our development of an Autonomous Intersection Management System, we'll provide a safer and more time effective future for our world.

2.2 Product Goals

Goal Number	Product Goal
1	Instantiate application for a particular intersection
2	Integrate the instance to a 'City' (Smart City System)
3	Setup perceptive nodes for that instance
4	Setup status stream from AIMS to 'City'
5	Pause Application
6	Exit Application
7	Change vehicle priority
8	SHA-2 based hashed information exchange
9	Provide instructions to agents through TCP using HMAC authentication
10	Embedded ambient Intelligence through image processing
11	OCR (Optical Character Recognition) for identifying every individual vehicle/agent
12	Image Recognition (Agents without IoT capabilities)
13	Place emergency vehicle condition
14	Change vehicle priority in system, based on intersection instance
15	Send emergency condition alert to higher authorities (Smart City System)

2.3 Quality Goals

The product of the implementation of this system will lead to many benefits. These benefits will make the intersection much safer and much more efficient that today's interpretation. The quality goals to be reached are as follows:

Autonomous Intersection Management System	Version: 2.0	
Vision (Small Project)	Date: 11/06/2022	
Project Plan (PP)		

Benefits	Supporting Features	
Safe communication between agents and	There is minimal vulnerability in the	
application	communication between the application and agents	
	involved, thereby ensuring data-safety and road-	
	safety simultaneously	
Priority based allowance to agents	Emergency vehicles are always given the highest	
	priority in the intersection. The priority of vehicles	
	is preset in the application, and it responds to	
	requests accordingly.	
Saves traffic time	Due to the proper implementation of autonomous	
	intersection management application, a lot of	
	traffic time is saved, as compared to conventional	
	traffic-signal based systems.	
Efficient intersection status reports provided to AIMS enables the provision of a timely rep		
Smart City Systems the higher levels of the metropolitan such		
	City Management Systems, subsequently helping	
	the cities to get the status of roads.	

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

3. Project Stakeholders and Stakes

3.1 Stakeholder Summary

Name	Description	Responsibilities
Project Manager	This stakeholder works	Specifies domain, requirements – both functional and
	with the customers and	non-functional, requirement refining as per need.
	translates the needs into	Keeping a check into the whole project and maintain
	requirements.	the progress
Technical	This stakeholder analyzes	Checks if the requirements can be well implemented
Manager	the requirements and does	without any modifications. Design ways to implement
	a feasibility check of the	requirements.
	same.	
Researcher	Makes a check of available	Crawls through available systems which revolve
	and conventional methods	around the specified requirements and cite
	of implementing the	improvements in the execution methodologies.
	requirement and figures	
	out better ways of	
	designing them.	
Designer	Based on the papers	Figure out the optimal way of implementing the
	produced by the	suggested methodology of the researcher and produce
	researchers, this	the design of the same.
	stakeholder designs a	
	systematic and technical	
	methodology of	
	implementing the	
	requirement	
Developer	Substantiates the proposed	Decide the best way to implement and execute the
	design by implementing	design, in order to support scalability and
	the same in the decided	encompassing all possible cases.
	technology stack.	
Tester	Identify all possible test	Figure out the possible test cases in every
	cases of every module in	segment/module of the system and perform

Autonomous Intersection Management System	Version: 2.0	
Vision (Small Project)	Date: 11/06/2022	
Project Plan (PP)		

the system and cite out the	manual/automation testing of the developed system
test cases, thereby testing	against the drawn-out test cases.
the system against each of	
them.	

3.2 User Summary

Name	Description	Responsibilities	Stakeholder
Intersection	Primary end	Exploit an instance of the AIMS	This stakeholder will be the
	user of the	system and maintain the traffic	medium in which all agents will
	system	based on business logic of the	travel through.
		system. Provide a timely report to	
		the upper level in the hierarchy	
Smart City	Beneficiary of	Receive the periodic reports from	This stakeholder will ensure the
Systems	the system	every instance of the system and	safety and network for the
ļ		analyze if everything is going	proposed system.
		well. Ensure safety across all the	
ļ		instances and notify instances in	
		case of absurdity.	
Interacting	Primary End-	Stay within the vicinity of their	This stakeholder encompasses all
agents with	user of the	closest interaction instance and	agents within the intersection
IoT	system	communicate their intentions in	radius that has IoT capabilities.
capabilities		the intersection. Receive and	
ļ		follow the instructions provided	
		by the system.	
Interacting	Allied agent of	They cannot directly interact with	This stakeholder encompasses all
agents	the system	the system. However, our system,	agents within the intersection
without IoT		inculcated with ambient	radius that does not have IoT
capabilities		intelligence, can identify these	capabilities.

Autonomous Intersection Management System	Version: 2.0	
Vision (Small Project)	Date: 11/06/2022	
Project Plan (PP)		

	agents, and have an estimate of	
	their intentions in the intersection.	

3.3 Summary of Key Stakeholder or User Needs

Currently, traffic intersections do not have any autonomous, and time-efficient control system, and the entire intersection operation is almost dependent on traffic signals. Traffic signals are apparently safe, but are inefficient in terms of time, and do not dynamically respond to road conditions and requirements. They operate in a uniform pattern, unless intervened by human beings.

Need	Priority	Concerns	Proposed Solution
Accurate Instruction	High	An absolutely accurate	Implementation of
		set of instruction for	instruction provision
		agents for their further	based on a TCP-like
		move in the	connectionbased
		intersection, because it	communication
		may stake high values if	protocol between the
		provided inaccurately.	system and the agent so
			that instructions are
			received, and the system
			is notified about the
			reception.
Unaltered Instructions	High	Even though the	Use a Hash-based
		instructions sent by the	Message Authentication
		system may be accurate,	Code (HMAC, based on
		there is a vulnerability	Fully Homomorphic
		that a third party can	Encryption) protocol for
		alter the instructions by	interaction between
		taking over the network.	agents and our system,
			to ensure that the
			instructions are
			unaltered, and integrity

Autonomous Intersection Management System	Version: 2.0	
Vision (Small Project)	Date: 11/06/2022	
Project Plan (PP)		

			is maintained.
Secured Transmission	Moderate	The Smart City system	Usage of Secure Hash
of Intersection Status		and AIMS should have	Algorithm (SHA-2) to
		secured communication	transmit instructions
		so that illstatus is not	between AIMS and
		leaked that may turn out	Smart City systems
		to be pugnacious.	would ensure safety in
			this communication.
Efficient Conveyance	Low	Every intersection, at	Exploitation of User
of instant status of		every quantum of time,	Datagram Protocol
Intersection to System		is expected to convey its	(UDP) based
		status to the AIMS in	connection-less
		order to get instructions	protocol for maintaining
		and transmit to every	communication from
		agent there.	the agent to the AIMS,
			to maintain efficiency.

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

4. Project Budget

Assume 1 day = 2 hours of team effort

Project Task	Time (days)	Time (hours)
Feasibility Study	4	8
Requirement Analysis and Specifications	2	4
Design	5	10
Coding and Unit testing/Development	8	16
Integration and System Testing	4	8
Maintenance	2	4

Total: 25 days 50 hours

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

5. Project Milestones and Schedule

Project Start Date: August 24, 2022 (08/24/2022)

Project End Date: December 07, 2022 (12/07/2022)

Project Milestone	Date	Deliverable
Problem Analysis, Vision	09/21/2022	Product Vision Document
Creation, Project Planning		Project Plan
Requirements Analysis	09/28/2022	Software Requirements Specification
		(SRS)
Product Design	10/12/2022	Software Design Document (SDD)
Product Implementation	10/26/2022	Software Code
Product Test	11/02/2022	Software Test Document (STD)
Final Product Deliverable	11/23/2022	All Documentation and Code
Product Launch	11/30/2022	Project Presentation

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

6. Project Communications

Communication through our team will be handled in two different ways. These two forms of communication will be in person and on Discord. Discord will be used to keep track of documents and deliverables. This includes previous and upcoming versions of said documents. Also, Discord will include a text-channel for discussion among team members and another for project resources. Through-out the week our class meets two times a week and following the class our team will touch base for 5-10 minutes. This small meeting will cover any current problems that is going on with on going tasks as well as assigning new tasks for new deliverables. For longer meetings, our team will meet in the library as it is on campus and easily accessible by all members.

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

7. Project Members and Roles

Project Role	Name	Responsibilities
Project Manager	Ashutosh Mishra Amado Lazo	Specifies domain, requirements – both functional and non-functional, requirement refining as per need. Keeping a check into the whole project and maintain the progress
Project Technical Manager	Prakash Acharya Sarah Ryan	Checks if the requirements can be well implemented without any modifications. Design ways to implement requirements.
Project Design Manager	Brendan Edgerley Julian Villarreal	Figure out the optimal way of implementing the suggested methodology of the researcher and produce the design of the same.
Project Test Manager	Sarah Ryan Prakash Acharya	Figure out the possible test cases in every segment/module of the system and perform manual/automation testing of the developed system against the drawn-out test cases.
Project Engineer	Ashutosh Mishra Brendan Edgerley David Schelanko	Decide the best way to implement and execute the design, in order to support scalability and encompassing all possible cases

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

8. Project Work Breakdown Structure (WBS)

Work	Work Package Name	Responsible	Definition
Package		Team Member	
Number			
WP-1	Research	Julian Villarreal,	Makes a check of available and
		David Schelanko,	conventional methods of implementing
		Amazo Lazo	the requirement and figures out better
			ways of designing them.
WP-2	Design Proposed	Julian Villarreal,	Based on previous protocols and
	Protocols	Brendan Edgerley	research, these package members
			design a technical and systematic
			outline for the proposed protocols.
WP-3	Design Simulation	Julian Villarreal,	Based on the papers produced by the
		Brendan Edgerley	researchers, these package members
			design a systematic and technical
			methodology of implementing the
			requirement.
WP-4	Running Simulation Code	Ashutosh Mishra,	Decide the best way to implement and
		Brendan	execute the design, in order to support
		Edgerley, David	scalability and encompassing all
		Schelanko	possible cases. This will be the first
			draft following the design from WP-2
			and WP-3.
WP-5	Test Cases	Sarah Ryan,	Build different test cases to cover most
		Prakash Acharya	if not all bases that will occur within the
			intersection
WP-6	Final Simulation Code	Ashutosh Mishra,	Based on previous simulation code and
		Brendan	results of test cases, these package
		Edgerley, David	members will alter and build the
		Schelanko	technical simulation code.

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

9. Project Deliverables

Deliverable Number	Deliverable Name
D-1	Project Vision Document
D-2	Project Plan
D-3	Software Requirements Document
D-4	Software Design Document
D-5	Running Simulation Code
D-6	Software Test Document
D-7	RFC Draft

Autonomous Intersection Management System	Version: 2.0
Vision (Small Project)	Date: 11/06/2022
Project Plan (PP)	

10. Project Risks

Risk Number	Risk	Risk Reduction Approach
R-1	Code Issues	Research and practice with Omnet++, Test
		code frequently, using best coding practices,
		resolving bugs and logical errors when
		they're found
R-2	Aggressive Deadlines	Create a thorough project plan
R-3	Error in Scope Definition	Collaborate effectively and receive frequent
		feedback from stakeholder

Risk Priority	Severity	Probability	Risk Level
R-1	High (3)	High (3)	9
R-3	Medium (2)	Medium (2)	4
R-2	High (3)	Low (1)	3

Autonomous Intersection Management System	Version: 2.0	
Vision (Small Project)	Date: 11/06/2022	
Project Plan (PP)		

11. Appendix A – Definitions, Acronyms, and Abbreviations

Term	Abbreviation / Acronym	Definition
Autonomous	AIM(S)	A system designed for the time when all (or most)
Intersection		vehicles are fully autonomous and connected.
Management System		
Smart Intersection	SIM(S)	An adaptive traffic control solution for an isolated
Management System		intersection.
Message	MAC	A security code that is type in by a user to access
Authentication Code		accounts.
Hash-based Message	HMAC	Type of MAC that is acquired by executing a
Authentication Code		cryptographic hash function on the data.
Transmission Control	TCP	A transport layer protocol which is used by
Protocol		applications that required guaranteed delivery of
		data.
Internet Protocol	IP	A set of rules governing the format of data sent over
		the internet or other network.
User Datagram	UDP	A communication protocol that is used to establish a
Protocol		low latency connection between applications.
Secure Hash Algorithm	SHA	An algorithm that takes an input of any length and
		creates a hashed value.
Internet Of Things	IOT	The interconnection via the internet of computing
		devices embedded in everyday objects, enabling
		them to send and receive data
Unified Modeling	UML	A general purpose, developmental modeling
Language		language to provide a standard way to visualize the
		design of the system

Autonomous Intersection Management System	Version: 2.0	
Vision (Small Project)	Date: 11/06/2022	
Project Plan (PP)		

Intersection	I	A point where two lines or streets cross. Typically, there can be three types of intersections: Three-leg or T-intersection (with variations in the angle of approach), Four-leg intersection and multi-leg intersection.
Agent	A	As far as this document is concerned, an agent is any entity that is involved in the intersection, like vehicles, pedestrians, street-animals, pets, traffic management system, intersection management system, Smart City management system.
Internet of Things capacity/capability/abil ity	IOTC	The ability of an agent to directly interact, convey or respond to any other agent by means of digital medium.
Vehicle to Vehicle interaction	V2V	A connection between two vehicles within the designated intersection.
Vehicle to Agent interaction	V2X	A connection between a vehicle and an agent within the designated intersection.
Agent to Agent interaction	X2X	A connection between two agents within the designated intersection.