DRIVESAFE

A SAFER WAY TO TRAVEL

THE **PROBLEM**

- Vehicle collisions
 - Potential result of injury or death
- Many high-risk intersections with flawed designs
 - Factor out of the traveler's control
 - Mistakes by pedestrian or driver has a higher chance of being fatal in these intersections

Areas where flawed design could occur:

Road width, speed limit, markings and signs, and intersection infrastructure such as dividers and shoulders

THE SOLUTION

- Navigation system which focuses on safety
- Mobile (Android) application
- Finds safest route rather than fastest
- Assigns safety weight for each route and intersection based on past collision data and factors
- Routes outputted based on travel conditions and method (e.g. vehicle, foot, bicycle)

THE DATASET

- 'Collisions' from Seattle GIS Open Data
- Dataset of collisions at each intersection in Seattle (2004-Present)
- Factors obtained from dataset
 - Number of Collisions
 - Weather, road, and daylight conditions
 - Type of collision (pedestrian/vehicle)
 - Collision details (left/right turn, etc.)
 - Severity of collision
 - Severity code from 0-2
 - Injury/death
- Data will be needed to assign safety weight to each intersection and route

ALGORITHMIC CHALLENGES

- -Searching and sorting algorithms for extracting data from dataset
- Searching and sorting algorithms for finding and calculating safest route
- Algorithm for calculating the weight of each intersection and route
 - Balance of safety and efficiency
- Graph to produce route
 - Intersections are vertex, and the roads are edges
 - The safest and shortest route will plotted as polyline and polygons graph

iClicker

Leon So

DRIVESAFE

This was an interesting project and if it was one of the projects in my team, I would have liked to implement it.

- A. Strongly disagree
- B. Disagree
- C. Neither agree nor disagree
- D. Agree
- E. Strongly Agree