1.	Assume that your objective is to minimize the transformation of X as similar to Y as possible, what would you optimize to get R? $(XRpprox Y)$	1/1 point
	Minimize the distance between XR and Y	
	Maximize the distance between XR and Y	
	Minimize the dot product between XR and Y	
	Maximize the dot product between XR and Y	
	 ✓ Correct This is correct. 	
2.	When solving for R , which of the following is true?	1/1 point
	O Create a forloop, inside the forloop: (initialize R, compute the gradient, update the loss	
	O Create a forloop, inside the forloop: (initialize R, update the loss, compute the gradient.	
	Initialize R, create a forloop, inside the forloop: (compute the gradient, update the loss)	
	O Initialize R, compute the gradient, create a forloop, inside the forloop: (update the loss)	
	 ✓ Correct This is correct. 	
3.	The Frobenius norm of A = $\begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$ is (Answer should be in 2 decimal places)	1/1 point
	7.14	
4.	Assume $X \in R^{m imes n}, R \in R^{n imes n}, Y \in R^{m imes n}$ which of the following is the gradient of $\ XR - Y\ _F^2$?	1/1 point
	$igotimes rac{2}{m}X^T(XR-Y)$	
	$\bigcirc \frac{2}{m}X(XR-Y)$	
	$\bigcirc \frac{2}{m}(XR-Y)X$	

	 ✓ Correct This is correct. 	
5.	Imagine that you are visiting a city in the US. If you search for friends that are living in the US, would you be able to determine the 2 closest of ALL your friends around the world? Yes, because I am already in the country and that implies that my closest friends are also going to be in the same country.	1/1 poin
	No Correct This is correct.	
6.	What is the purpose of using a function to hash vectors into values? To speed up the time it takes when comparing similar vectors. Correct This is correct.	1/1 poin
	 ✓ Correct This is correct. 	
	 □ To make the search for other similar vectors more accurate. □ It helps us create vectors. 	
7.	Given the following vectors, determine the true statements. $P\colon egin{bmatrix} 1 \\ 1 \end{bmatrix}$ $V_1\colon egin{bmatrix} 1 \\ 1 \end{bmatrix}$	1/1 poir
	$V_1: \begin{bmatrix} 1 \end{bmatrix}$ $V_2: \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $V_3: \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	

8.	Correct $ \label{lem:correct} We define \ \ H \ to \ be \ the \ number \ of \ planes \ and \ h_i \ to \ be \ 1 \ or \ 0 \ depending \ on \ the \ sign \ of \ the \ dot \ product \ with \ plane \ i. $ Which of the following is the equation used to calculate the hash for several planes.	1/1 point
	$igotimes \sum_i^H 2^i h_i \ igotimes \sum_i^H 2^i h_i^i \ igotimes \sum_i^H 2i h_i \ igotimes \sum_i^H 2^{h_i} i$	
	○ Correct Correct.	
9.	How can you speed up the look up for similar documents. PCA Approximate Nearest Neighbors Correct This is correct.	1/1 point
	 K-Means ✓ Locality sensitive hashing ✓ Correct This is correct. 	
10	. Hash tables are useful because	1/1 point

allow us to divide vector space to regions.

	$igcirc \sum_i^H 2ih_i \ igcirc \sum_i^H 2^{h_i}i$	
9.	How can you speed up the look up for similar documents.	1/1 point
	□ PCA	
	Approximate Nearest Neighbors	
	✓ Correct This is correct.	
	☐ K-Means	
	✓ Locality sensitive hashing	
	 ✓ Correct This is correct. 	
10.	. Hash tables are useful because	1/1 point
	allow us to divide vector space to regions.	
	 ✓ Correct This is correct. 	
	speed up look up	
	 ✓ Correct This is correct. 	
	classify with higher accuracy	
	can always be reproduced	
	 ✓ Correct You will always hash the same vector to the same bucket with the same hash function. 	