

MECH366: Modeling of Mechatronic Systems

L11: Modeling of fluid systems

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

- Up to now, we have studied for mechanical and electrical systems:
 - How to draw linear graphs & derive state-space models
- Today, we will study modeling of fluid systems.
- Various models and their relations

__ : State variable

Constitutive relation for

	Energy storage element		Energy dissipating element	
System type	A-Type	T-Type	D-Type	(
Mechanical	Mass	Spring	Viscous Damper	
(translational)				powe
v: velocity across var	$m\underline{\dot{v}} = f$	$\underline{\dot{f}} = kv$	f = bv	$\mathcal{P} =$
f: force through var.	m: mass	k: stiffness	b: damping const.	·
Electrical	Capacitor	Inductor	Resistor	
v: voltage across var	$\underline{C\dot{v}} = i$	$\underline{Li} = v$	v = Ri	$\mathcal{P} = 0$
i: current through	C: capacitance	L: inductance	R: resistance	,
Thermal T	hermal capacitor	None	Thermal resistor	
T: temperature	$C_t \dot{T} = Q$		$T = R_t Q$	
Q : heat transfer rate C_t : t	thermal capacitance		R_t : thermal resistance	
Fluid across var.	Fluid capacitor	Fluid inertor	Fluid resistor	
P : pressure difference $[N/m^2]$	$C_f\underline{\dot{P}} = Q$	$I_f \underline{\dot{Q}} = P$	$P = R_f Q$	$\mathcal{P} =$
Q : volume flow rate $[m^3/s]$ C_f : through var.	fluid capacitance	I_f : fluid inertance	R_f : fluid resistance	, –

a place of mind

Energy expressions based on across and through variables

	A-type element	T-type element
$\begin{aligned} & w &: \text{Across variable} \\ & f &: \text{Through variable} \end{aligned}$	Kinetic energy $\frac{1}{2}mv^2$	Potential energy $\left(\frac{1}{2}kx^2 = \right)\frac{1}{2}\frac{f^2}{k}$
Electrical $v: Across \ variable$ $i: Through \ variable$	Electrostatic energy $\frac{1}{2}Cv^2$	Electromagnetic energy $\frac{1}{2}Li^2$
Thermal T : Across variable Q : Through variable	Thermal energy $\int Q = C_t T$	N/A
Fluid $P : {\it Across variable} \\ Q : {\it Through variable}$	Potential energy $\frac{1}{2}C_fP^2$	Kinetic energy $\frac{1}{2}I_fQ^2$

MECH 366

Linear graph representation

- Single-port elements
 - Energy storage elements
 - Fluid capacitor (3 examples)
 - Fluid inerter (1 example)
 - Energy dissipation elements
 - Energy sources
- Two-port elements (Energy transfer elements)
 - Transformer

Energy storage element Fluid capacitor

6

Constitutive equation

$$C_f \frac{dP}{dt} = Q$$
 $C_f [m^5/N]$: fluid capacitance

Potential energy stored

$$\mathcal{E} = \frac{1}{2}C_f P^2$$

Behave like a "fluid spring".

Linear graph

Energy storage element Fluid capacitor: Example

 Incompressible fluid in
 Derivation of Cf an open tank

$$C_f = \frac{A}{\rho g}$$

- - Pressure at tank bottom

$$P = P_2 - P_1 = \rho g h$$

$$\rightarrow h = \frac{P}{\rho g}$$

• Flow rate

$$Q = \frac{d(Ah)}{dt} = A\frac{dh}{dt}$$

$$ightharpoonup Q = rac{A}{\rho q} rac{dP}{dt}$$

Energy storage element Fluid capacitor: Example

Compressible fluid in a rigid container

Conservation of mass

$$\rho Q = \frac{d}{dt}(\rho V) = \rho \underbrace{\frac{dV}{dt}}_{=0} + V \frac{d\rho}{dt}$$

• Fluid bulk modulus

$$\frac{d\rho}{\rho} = \frac{dP}{\beta}$$

$$Q = \frac{V}{\rho} \frac{d\rho}{dt} = \frac{V}{\beta} \frac{dP}{dt}$$

$$C_f = \frac{V}{\beta}$$

 $P = P_2 - P_1$

 β : fluid bulk modulus

"degree of compressibility"

How much pressure is necessary to change the density?

MECH 366

$$\beta \approx 2.1 \times 10^9 \ [Pa]$$

for oil and water

Energy storage element Fluid capacitor: Example

 Incompressible fluid in
 Derivation of C_f a flexible container

- - Conservation of flow

$$Q = \frac{d(A(x_0 + x))}{dt} = A\frac{dx}{dt}$$

Spring equilibrium

$$AP = kx$$

$$ightharpoonup Q = A \frac{dx}{dt} = \frac{A^2}{k} \frac{dP}{dt}$$

Energy storage element Fluid inerter

Constitutive equation

$$I_f \frac{dQ}{dt} = P$$

$$I_f [Ns^2/m^5] : \text{fluid inertance}$$

Kinetic energy stored

$$\mathcal{E} = \frac{1}{2} I_f Q^2$$

• Behave like a "fluid inertia".

Linear graph

Energy storage element Fluid inerter: Example

 Incompressible fluid in a pipe with uniform velocity distribution

$$P := P_2 - P_1$$

$$P_2 \qquad \Delta x \qquad P_1$$

$$Q \qquad Q + \Delta Q$$

- Derivation of If
 - Mass $\rho A \Delta x$
 - Net force AP
 - Flow velocity Q/A
 - Newton's 2nd law

$$AP = (\rho A \Delta x)(\dot{Q}/A)$$

$$I_f = \frac{\rho \Delta x}{A}$$

 ρ : density

 Δx : pipe length

A: uniform section area

Linear graph representation

- Single-port elements
 - Energy storage elements
 - Energy dissipation elements
 - Fluid resistor (1 example)
 - Energy sources
- Two-port elements (Energy transfer elements)
 - Transformer

Energy dissipation element

a place of mind

Fluid resistor

Constitutive equation

$$R_f Q = P$$

 $R_f [Ns/m^5]$: fluid resistance

Power dissipated

$$\mathcal{P} = QP = R_f Q^2 = \frac{1}{R_f} P^2$$

Behave like a "fluid friction".

Linear graph

 $P := P_2 - P_1$

Energy dissipation element Fluid resistor: Example

- Fluid resistance is associated with flow through pipes, orifices and valve openings.
- For a long, uniform area circular pipe with laminar flow, (due to Hagen-Poiseuille flow law)

$$R_f = 128 \frac{\mu \ell}{\pi d^4}$$

 ℓ : pipe length

 μ : fluid viscocity

d: pipe diameter

$$R_f Q = P$$

$$P := P_2 - P_1$$

$$P_2 = P_1$$

Linear graph representation

- Single-port elements
 - Energy storage elements
 - Energy dissipation elements
 - Energy sources
- Two-port elements (Energy transfer elements)
 - Transformer

Linear graph representation Fluid energy sources

- Flow source
 - Regulated pump

- Pressure source
 - Regulated pump
 - Large reservoir
 - Accumulator

Linear graph

Linear graph representation

- Single-port elements
 - Energy storage elements
 - Energy dissipation elements
 - Energy sources
- Two-port elements (Energy transfer elements)
 - Transformer

Linear graph representation Two-port element: Fluid transformer

Section area ratio

$$r := \frac{A_i}{A_o}$$

- Pressure ratio $P_o = rP_i$
- Conservation of power

Linear graph

Example (taken from de Silva's book) Pumping water from well to tank

Equivalent fluid resistance of the overall pipe

$$R_{eq} = 128 \frac{\mu}{\pi} \left(\frac{L_v}{d_v^4} + \frac{L_h}{d_h^4} \right)$$

• Equivalent fluid inertance within the overall pipe (assuming uniform velocity) $I_{eq} = \frac{\rho L_v}{\pi d^2 / 4} + \frac{\rho L_h}{\pi d^2 / 4}$

20

Example Linear graph drawing

State variables

$$x := \left[\begin{array}{c} P_C \\ Q \end{array} \right]$$

• Constitutive eq.

$$P_R = R_{eq}Q$$
$$I_{eq}\dot{Q} = P_I$$
$$C_{grv}\dot{P}_C = Q$$

Loop equation

$$P_s = P_R + P_I + P_C$$

Example

State-space model derivation

$$\dot{P}_C = \frac{1}{C_{grv}}Q$$

$$\dot{Q} = \frac{1}{I_{eq}}P_I = \frac{1}{I_{eq}}(P_s - P_R - P_C) = \frac{1}{I_{eq}}(P_s - R_{eq}Q - P_C)$$

$$P_C = \rho gh$$

Summary

- Linear graph for fluid systems
 - Single-port elements
 - Energy storage elements
 - Energy dissipation elements
 - Energy sources
 - Two-port elements (Energy transfer elements)
 - Transformer
- Next, thermal systems