Topic 3

π -Excessive Heterocycles

3.1 Imidazoles, Pyrazoles, and Indoles

2/20: • Announcements.

- PSet 2 will not be posted yet because most of the material won't be covered until next Tuesday.
 - We'll still have it a week before the exam, and the exam will not be so indole focused.
- The practice exams are also still to come.
- Lots of material and esoteric reactions in these slides; Steve will not discuss it all, nor expect that
 we remember it all.

• Imidazole and benzimidazole.

- Important constituents in pharmaceuticals and biologically important substructures (e.g., histidine; nucleophile in salt bridges; constituent in DNA).
- Proteins are often purified on nickel columns that act on histidines (see "HisTags").
- Structure and reactivity.
 - Often put into structures to increase water solubility (can completely hydrogen-bond; both donor and acceptor)!
 - Combination of pyridine and pyrrole: One lone pair orthogonal to the π -system, and one pyrrole-like pair that does not typically react with electrophiles.
 - Imidazole is less nucleophilic than pyrrole at carbon.
 - Rapid tautomerization complicates reactivity; if you want to target a particular site, you might
 get a surprise. But there are ways to overcome this that we'll discuss.
 - Imidazole is amphoteric: One H is moderately acidic (not super, but not like C-H either), and then can protonate. Much less acidic than oxazole or thiazole because of resonance.
 - Alkylation at nitrogen occurs, followed by deprotonation, followed by more reactivivity.

• Reactions of imidazole.

- Deprotonation (with a strong base, e.g., NaH, LDA, NaHMDS) creates a strong base that monoalkylates.
- Selective alkylation at nitrogen?
 - Target N² with protection (acylation), **ethyl Meerwein's reagent**, and deacylation.
 - Target N¹ with Buchwald amination (Steve: "I hate the amination, should've gotten rid of the amination").
- EAS.

- Better than benzene, worse than pyrrole.
- Nitration breaks the symmetry of the molecule. Easier to put nitrogen group next to non-positively charged nitrogen.
- Polybromination is also possible.
- Selective bromination occurs analogously to with pyridine (see Figure ??); attack at nitrogen, then carbon, then rearomatization.
- More "trivial" reactions.
- S_NAr.
 - Moves the lone pair onto the nitrogen, as we've seen.
- Directed metallation.
 - SEM (popularized by Bruce Lipschutz at UC-Santa Barbara) is the best protecting group. Can be removed by fluoride, which induces a loss of ethylene and formaldehyde.
 - Selective deprotonation between the two nitrogens (fairly standard, steric factors considered).
 - Can then do again.
- Lithium-halogen exchange.
 - LiX exchange occurs faster than deprotonation, then deprotonation occurs.
 - To ensure that everything occurs in the right order, people will often add a strong base (e.g., LiHMDS) first; then add butyl lithium to do the LiX exchange.
- Radical chemistry, e.g., the Minisci reaction.
 - Photochemistry as well, but that would be a whole other course; Steve won't discuss, take 5.44 with Alison if you want to hear more.
 - Minisci (radical decarboxylation) predates photoredox catalysis for generation of carboncentered radicals.
 - Second example: Nucleophilic radical can add to electron-deficient (because of the aldehyde) carbon center.
- Quaternary imidazolium salts.
 - Subsequent base yields ylide, i.e., the NHC (NHCs ubiquitous in catalysis).
- Selected imidazole disconnections.
 - Some should look familiar, and some may not.
 - The first one to talk about individually is the **Debus-Radziszewski** (imidazole synthesis).
 - From a long, long time ago. First reported synthesis of imidazole.
 - Combines a 1,2-diketone, aldehyde, and ammonia.
 - Proposed mechanism has zero evidence, but some variation is probably correct.
 - ➤ Aldehyde is probably converted to imine *before* formation of the diimine on the 1,2-diketone.
 - ➤ Then condensation.
 - ➤ Then tautomerization.
 - Synthesis 1: Analogous to the Pinner reaction; very common.
 - Van Leusen: Analogous to the pyrrole synthesis of the same name.
 - Synthesis 4.
 - Aminoacetal an acetal for stability reasons.
 - Attack to imine and then cyclization.
 - Synthesis 6: Paal-Knorr type.
- Example synthesis: Conivaptan.

- Pinner-type synthesis.
- Example synthesis: Estrogen receptor.
 - N⁻ adds to nitrile.
 - Workup to amidine.
 - Condense with α -bromoacetaldehyde to form the imidazole.
- Example synthesis: Obesity.
 - $-\alpha$ -bromopyruvate.
- Van Leusen.
 - TosMIC: Stabilized isocyanide.
 - Easily deprotonated, add to the imine, attack at carbene, proton transfer, losing the sulfonate.
- COX-2 inhibitors.
 - Historically important chemistry.
 - Merck billion-dollar molecule.
 - Has to do with pain.
 - Aspirin (but disrupts stomach) \rightarrow NSAIDs (ibuprofen, endoproxin) \rightarrow tylenol (but dissolves liver) \rightarrow opioids (but addictive).
 - Most things inhibit both pathways (COX-1 and COX-2), but this drug was selective for COX-2, specifically. But this (Vioxx) causes heart-valve problems (and Merck had to pull it from the market at great loss).
 - Celebrex as well, but the company died and had to be sold to Pfizer.
- Example synthesis: Like Lipitor, another statin compound.
 - Glycine benzyl ester is a fairly standard protected amino acid.
 - Treat it to form something, which after cleavage can be acylated.
 - Ester to benzylamine.
 - Cyclize with a primary amine to stitch in the nitrogen.
 - Cyclize (fairly typical with statins).
- Example synthesis: Debus-Radziszewski chemistry.
 - Microwave chemistry was huge, but the bubble has burst at this point. You still see it here and there, but not much.
 - Get to the asymmetric α -diketone with a SeO₂ oxidation.
 - What method you'll use commonly depends on what you have and what you have successfully been able to do previously.
 - Ester, cross-Claisen, hydrolysis/decarboxyliation could also allow you to make a series of different imidazoles.
- Example synthesis: pan-JAK inhibitor.
 - Lab synthesis.
 - Buy the phenol and protect it as the SEM.
 - Miyaura borylation, Suzuki-Miyaura coupling, Pinner salt formation, convert to the imidium system.
 - Cleave with acid to liberate the carbonyl and do the intramolecular cyclization.

- Scale synthesis.
 - Removed Miyaura borylation with Grignard, etc.
 - Gets a byproduct, but it's inactive.
 - Many telescoped steps.
 - You need to worry about the form of the crystal that recrystallizes (there is a whole field of **crystal engineering**); is it too big, too small, etc.?
- Example synthesis: P13K β -Sparing.
 - No lateral deprotonation, despite intuition!
 - Weinreb amide (for adding carbanions to carbonyl derivatives).
 - Alkylate on nitrogen, do S_NAr (could also be benzyne).
 - Palladium catalyst for final Suzuki-Miyaura cross-coupling.
 - \blacksquare Can do it in the presence of a lot of basic functional groups.
 - More evidence why this chemistry won the Nobel prize.
- 1,2-azoles.
 - We'll talk mostly about pyrazole, but there's also isothiazole and isoxazole.
 - Dimeric structure in solution.
 - Also has tautomerization.
- A few reactions (similar again).
 - N lone pair in and out of the aromatic system.
 - Acylation \rightarrow deprotonation again.
 - Selective halogenation can be rationalized based on arrow-pushing and charges.
 - Can acylate on carbon by sterically blocking the site that will typically react first; thus, more engineered and less useful.
 - Under neutral conditions, alkylation occurs at the lone pair.
 - Under basic conditions, we form the thermodynamic product.
 - Lots of companies have wanted to N-arylate at the thermodynamically unfavored nitrogen recently, and have needed catalysts to do that.
 - Lithiation.
- Pyrazole syntheses.
 - More condensation chemistry.
 - Always look for bisnucleophiles and biselectrophiles!
 - This is a very common disconnection.
 - Dipolar cycloadditions can also be employed (not as common, but occur on occasion).
 - Knorr gets his own synthesis.
 - This is good for symmetric pyrazoles.
 - Propynyl ketones act as the synthetic equivalent of a β -dicarbonyl.
 - Cyclopropane thing synthesis.
 - Take the diketone, halogenate in between, nucleophilic displacement. α -aryloxy ketone could feed into a cross-Claisen condensation.
 - Aside: Whenever you see a structure, think about whether you can get to it using chemistry that
 you learned in first-year organic; that's what people want to use.

- Diazomethane can be generated in flow now, so it can be used on scale.
 - Explosive and toxic; precursors are also nasty (mutagenic), so bad on lab scale, too.
- What if the condensation has 2:1 selectivity in the wrong direction?
 - Try a dipolar cycloaddition.
 - Treat a thing with base to do a 1,3-elimination. Then do this with an aryl acetylene (looks good, but hard to handle and explosive, so use an equivalent).
 - As an equivalent, use the enamine, which is an elimination away from the acetylene.
 - They did this chemistry on a huge scale, which is wild to Steve.
- In process chemistry, they will do almost anything (as long as its legal), even using brutal conditions, if necessary.

• DGAT-2.

- Cyclopropanated benzimidazole derivative.
- Reduce to the 1,2-diamino derivative. Then other piece for condensation.
- Other piece: α -alkylation twice. Can't do S_N2 with cyclopropanes because the transition state wants to be 120°, but the cyclopropane is 60°.
- GMP (General Manufacturing Procedure) synthesis (control access to the reactors, everyone is in clean suits, etc.). Very expensive, but makes sense if the compound is going into a person.
- Got starting material from γ -bromocarboxylic acid via Hell-Volhard-Zelinsky reaction, in Steve's guess.
- Cleave the ester under acidic conditions; in basic, you would have competitive S_NAr ?? (easier to control the quality of acetyl chloride and methanol than gaseous chloride, so as to generate HCl in situ).
- Do this in the presence of Boc-anhydride to form the Boc-amide.
- Use T3P (a reagent to make amides).
- Then cleave the Boc.

• Indoles.

- Jeremy Knowles (Steve's doctoral advisor) used to make fun of people who made indoles, yet
 Steve ended up making them regardless.
- Most widely occurring ones: (S)-tryptophan and seratonin (responsible for sleep, depression, anxiety, etc.).
- SSRIs: Selective seratonin uptake inhibitors.
 - Triptans are antimigrane drugs, very structurally related to seratonin.
 - Migraines are financially huge to pharmaceutical companies. No generally successful solutions yet.
- LSD.
- Reactions of indoles.
 - 5-membered ring is always the most reactive part.
 - 6 M sulfuric acid reveals that protonation at C3 is most favorable.
 - \blacksquare pK_a = -3.5, so does not protonate easily.
 - React with electrophiles at C3.
 - Example: Halogenation occurs at C3.
 - Acylation.
 - Acidic conditions: C3.

- Basic conditions: At the nitrogen.
- C3-blocking leads to C2 reactivity next.
- Excess of methyl iodide and heat leads to tetramethylated isoindole structure. Write how this forms!!
 - Skatole (one of the worst smelling compounds in the world) is the product; look it up!
- BF₃-etherate.
 - Proceeds through spirocyclic intermediate (very common chemistry for indoles), as proven by isotopic labeling.
 - Aside: On mechanisms.
 - > You used to have cumulative exams and 2 foreign languages as PhD requirements.
 - > Frank Westheimer (famous guy who invented chemical biology) was one of Steve's "cumes." One question he gave was "cite the original experimental evidence for these 20 famous findings;" Steve had no idea.
- Mannich-type reactions.
 - \blacksquare pH = 6 is the Goldilocks range.
 - Pictet-Spengler type transformation, historically used in alkaloid synthesis.
- With base.
 - NaH is fine, but not great on scale (usually shipped as mineral oil dispersion).
 - EtMgI is shipped around in tank cars and it forms a base just fine.
- Directed metallation.
 - BOC is DMG, then deprotonate at C2, then electrophile.
 - Cooler way: Throw dry ice in (CO₂ source). Treat with more to form dianion, then deprotect.
- Reactions of gramine.
 - Tryptophan.
 - Put something on that isn't a great leaving group.
 - Put on an electron conduit that allows you to push out bad leaving groups.
 - This is a way to make racemic tryptophan.
 - N-methylation.
 - TIPS (big) allows for C4 lithiation.
 - This is important because the **Fischer indole syntehsis** (typical) is not good at making 4-substituted indoles.
- We'll start with indole synthesis next time.
- Next Tuesday, after class: PSet 2 and previous years' exams.

3.2 Indoles, Indazoles, Thiophenes, and Furans

- 2/25: Announcements.
 - Exam 1: Next Tuesday, in class, same format as the two previous exams.
 - Purpose: Steve is required to give one.
 - Confirm what you know; have you paid attention, stayed awake, etc.? Some regurgitation.
 - What can you do with the material you know? Arrow pushing, etc. More like mechanistic problems.
 - A few synthesis problems.

- Some aspects of metal-catalyzed cross-coupling. You don't need to know this ligand vs. that, but you should know the basic features of C−C cross-coupling, basic steps of the reaction, what metal works, know some ligand, etc.
- \blacksquare The exam will be *distinct* from the previous exams.
- Current difficulty (before the TA edits it): Moderate.
- Today's lecture material is the end of what will be covered on the exam.
- PSet 2 is much more indole-focused than the exam.
- Synthesis of indoles.
- Bartoli (indole synthesis): Vinyl grignard plus nitroarene.
 - You have to believe it was discovered by accident, because it makes so little sense.
 - You need a relatively large R group (bromine counts as relatively large).
 - You can write a mechanism (this is plausible, but it may or may not have any basis in reality).
 - Plausible mechanism: Nucleophilic attack at oxygen, collapse to a nitroso intermediate, nucleophilic attack, sigmatropic rearrangement, intramolecular attack, deprotonation and rearomatization, and then workup.
 - Example: Propenyl grignard gives 3-methyl substituted.
 - Indole's 7-position is not trivial to functionalize, so having a starting material with that position activated that you can then Heck couple to later (or do something else to) is super useful.
- Now some more historically important indole syntheses.
- Leimgruber-Batcho (indole synthesis): Mix *ortho*-alkylated nitroarene with Brederech's reagent, and then heat it in DMF.
 - Mechanism: Spontaneously generates a bit of methoxide to do lateral deprotonation. Then addition to the compound formed by expulsion of the methoxide. This gives enamine. Now magic chemistry: Reduce nitro group to an amine, then addition-elimination to indole.
 - It's not been carefully elucidated what does the reduction, but the guess is that using "tickle 3" (TiCl₃) does inner sphere addition to nitroso, reduction of the nitroso, etc. Not yet published what actually happens.
- Bischler (indole synthesis): Mix an aniline with an α -bromoacetaldehyde acetal.
 - A base deprotonates the aniline, which then engages in S_N^2 bromide displacement.
 - Then, adding trifluoroacetic anhydride (TFAA) forms the N-trifluoromethylacetal.
 - Trifluoroacetyl groups are very labile. Acetamides are often the bane of synthetic chemists (very hard to cleave), but trifluoroacetamides are much easier to cleave (sometimes too easy).
 - Stabilized oxocarbenium then does Friedel-Crafts type chemistry.
- Protecting groups in general tend to fall off of indoles (e.g., Bocs, etc.). This is why you often have to resort to using a SEM, but those can be difficult to remove.
- Fischer (indole synthesis): Mix an aryl hydrazine with a ketone.
 - Most important.
 - Also had to be discovered by accident. Here are Steve's thoughts on its origin.
 - Before NMR and IR, you had EA and melting point only. You determined molecular structure by making derivatives of certain functional groups and then taking melting points.
 - For example, Tollens' reagent (silver-based) was used to figure out if there was an aldehyde.

¹It appears that this is not actually "Brederech's reagent," but DMF-dimethylacetal.

- As another example, diphenylhydrazine was used to make a hydrazone. Hydrazones are super crystalline, so it's easy to get their melting point.
- They were probably making a derivative, then realized that they made an indole!
- Mechanism: Condensation to the aryl hydrazone, tautomerization to **ene-hydrazine**, [3,3]-sigmatropic rearrangement, rearomatization. Then ene or iminium formation.
 - They did not know what sigmatropics were back then, so that definitely just happened.
 - To make an aryl hydrazine, you make the aryl diazonium salt and then reduce it (typically with SnCl₂).
- Limitations.
 - If R and R' are distinct, then the first intermediate can enolize two different ways, which leads to regioisomer formation.
 - Substituents at 4- or 6-positions on the aromatic ring lead to ambiguity in where the sigmatropic rearrangement can occur.
 - Forcing conditions (strong acid and heating) can lead to issues with sensitive functional groups (esp. aldehydes).
- You can manipulate the system, though.
 - Stronger vs. weaker acids modulate the direction of enolization. Kinetic vs. thermodynamic character; thermodynamic with the stronger acids.
- Limitations are important to know because you want to know the plusses and minuses of each method.
- Reissert (indole synthesis): ortho-alkylated nitroarene, again, plus an oxalate.
 - Strong base leads to lateral deprotonation, addition to α -ketoester, then reduce to form the 2-ethylcarboxylate of indole.
 - Can then do addition at 3-position to form differentially substituted 2,3-disubstituted indole.
- Madelung (indole synthesis): N-ortho-alkylarylamide collapses in strong base.
 - Deprotonation, probably via the dianion, which closes to form the indole and then can be further modified.
- Hemetsberger (indole synthesis): Collapse of an α -azidoester on a styrene-type thing.
 - Fancier and less safe.
 - The starting material can be made from benzaldehyde and R-azidoacetate via Knoevenagel.
 - Mechanism: Photolyse to nitrene, which rearranges to azirine, which rearranges to the indole derivative.
- Example synthesis: Applying the Leimgruber-Batcho indole synthesis.
 - Introduce two sulfonyl protecting groups so that you can put the nitro group at the desired position.
 - Superheated steam is a classic way to do desulfonization.
 - Benzyl-protect the phenol group.
 - Do Leimgruber-Batcho.
 - A pyrrolidine enamine is fairly common in this reaction.
 - Then convert to **semicarbazide**, to crystallize/isolate the intermediate before proceeding.
 - Now some 21st century chemistry: Reduce the nitro group and other functional group with iron under acidic conditions.
 - Then you add the aniline to the imine to form the aminal-type molecule, and collapse.

- Example synthesis: Applying the Hemetsberger synthesis.
 - Not often used because of "azidophobia."
 - Reduce and oxidize to make the aldehyde.
 - Knoevenagel condensation to Hemetsberger starting material.
 - Reflux to complete the synthesis.
 - Hydrolyze the ester to the acid, make the primary amide, and then dehydrate to the nitrile.
 - Catalytic DMF with oxalyl chloride forms the Vilsmeier reagent, which can then chlorinate carboxylic acids before amidation.
 - Whereas POCl₃ forms the Vilsmeier reagent via the enthalpic driving force of strong P=O bond formation, (COCl)₂ forms the Vilsmeier reagent via the entropic driving force of CO₂ + CO gas release.
 - Deprotonate with KH first because if you don't, you might get reduction of the lithium/halogenexchanged species.
 - Essentially, pre-deprotonation allows us to reliably and quantitatively form the dianion, whereas if we go straight through 2 eq. ⁿBuLi, we'll do LiX exchange first (kinetically faster) and then the anion will deprotonate the N-H. The result is that we'll have significant dehalogenated side product.
 - Then we add the anion into DMF, and warm/acidify to collapse.
- In industry, they do tons of safety evaluations (both for safety and because blowing up a reactor is expensive).
 - You want your calorimetry to give you 80 °C between your reaction temperature and the exotherm.
 - That way, no part of the mixture is likely to get hot enough to induce a runaway reaction.
 - This is another example of the use of flow chemistry (it can control thermal runaways).
- Indazoles.
 - There exist 1- and 2-indazoles.
 - 1-indazoles are more common.
- Reactivity of indazoles.
 - N-substitution/protection.
 - Under basic conditions, bonding at either nitrogen is equally likely.
 - Under acidic conditions, N2-THP substitution occurs more quickly but N1-THP substitution is more thermodynaically favorable. [2]
 - Thus, strong acid gives exclusively N1-THP substitution while weak acid is more likely to give N2-THP substitution (or a mixture at long reaction times).
 - Palladium catalyzed C-C or C-N coupling.
 - It's often necessary to protect a nitrogen first.
- Syntheses of indazoles.
 - Route 1: Start with an ortho-alkylated aniline, acidify, form diazonium, do lateral deprotonation and collapse.
 - Route 2: Start with an **isatin**, and then use diazonium conditions again.
 - Isatins show up not infrequently in the literature.

 $^{^{2}{\}rm Mechanism}.$

- Isatins can be made from anilines and chloral, [3] then hydroxylamine, then strong acid can also be good.
- Route 3: Start with bromofluorobenzaldehyde.
 - In S_NAr, it's the electron-withdrawing nature of the substituent that's important for selectivity (so F⁻ is a better leaving group!).
 - \blacksquare Hydrazone formation first, and then intramolecular S_NAr .
 - With nitrile or ester SM, you get different 3-substituted indazoles.
- Example synthesis: EGFR kinase inhibitor.
 - Protect with THP, use Xantphos (a great ligand for ??) to do C-N coupling.
 - Acrylamide inhibitor makes this another covalent inhibitor.
- Moving on back to something.
- Comparing π -excessive heterocycles: Structure.
 - Furan is least aromatic, then pyrrole, then thiophene is most aromatic.
 - All have one lone pair in aromatic system.
 - Furan is more reactive; lower cost to dearomatize.
 - Aromaticity trends are in accord with electronegativity of heteroatom (more electronegativity means less willing to delocalize).
- Comparing π -excessive heterocycles: Relative rates of acylation with TFAA.
 - Enormous reactivity difference: Pyrrole much more reactive than furan, more reactive than thiophene, and benzene doesn't react.
 - Selectivity.
 - \blacksquare β -addition is preferred because you get a more stable carbocation at the 2-position.
- Thiophenes.
 - Thiophene, benzothiophene = benzo[b]thiophene, and benzo[c]thiophene.
 - Derived from two Greek words: Sulfur and shining.
 - Discovered as a contaminant in benzene.
 - Benzene used to be sold as "thiophene-free." If you were doing electrophilic reactions, thiophene was more reactive so you would get contaminants derived from it.
- Reactivity of takehiophene.
 - Tetrabromothiophene can be made; tetraiodothiophene can't be made (iodines are too big).
 - Selective reduction can be done with palladium and NaBH₄: Oxidative addition is better at the α -position, and one α is much less hindered than the other.
- Syntheses: The usual suspects (Paal-Knorr), and then some other reactions (Hinsberg, Gewald [pretty useful], Fiesslemann).
- Commercial synthesis of thiophene.
 - Butane and elemental sulfur, with a catalyst at 600 °C.
 - Another commercial route: Butanol and carbon disulfide.

³Mechanism.

- Paal-Knorr (thiophene synthesis): Heteroatom nucleophile and 1,4-diketone.
 - Example heteroatom nucleophiles: H₂S + HCl, P₄S₁₀, Lawesson's reagent.
 - Lawesson's reagent does sulfur Wittigs on a carbonyl: C=O to C=S. Driving force is strong P=O bond formation.
- Fiesselmann (thiophene synthesis).
 - $-\beta$ -chloroenal comes from Vilsmeier reaction; we should remember this chloroformylation!!
 - Deprotonate, add, and dehydrate.
- Hinsberg (thiophene synthesis).
 - Related to Debus-Radziszewski in some ways.
 - 1,2-dicarbonyl and 1,3-bisnucleophile. Deprotonate, add, eliminate twice sequentially. Then dehydrate.
 - Heating in base leads to decarboxylation.
- **Gewald** (thiophene synthesis).
 - Carbonyl (usually ketone) and α -EWG (usually cyano) cyanide.
 - This is bucket chemistry (large scale, inexpensive reagents).
 - Malononitrile forms dicyanoolefin, then reacts with amine to form compound shown there.
 - Knovenagel condensation, deprotonate to form a sulfur species (you can go between S_1 to S_n , but S_1 will be reactive).
 - Then form an intermediate, followed by tautomerization.
 - Great if you don't have regiochemical ambiguity, but can give regioisomers.
 - To get around this, you cheat! Regiochemically pure alkyl bromide (raises cost), and then react.
- Example synthesis: Applying the Gewald reaction.
 - Target: A weak fungicide with a silicon atom in it.
 - Silicon atoms are becoming more and more common in pharmaceuticals and agrochemicals.
 - Discovery synthesis.
 - Sandmeyer-type.
 - \blacksquare ⁿBuLi for LiX exchange, then TMSCl.
 - Acid chloride leads into amide.
 - This is a terrible scale synthesis, but it was "fit for purpose" (for discovery).
 - Yield is bad, Sandmeyer uses a hazardous reagent, silylation at -70 °C, preparation of acid chloride causes 20% protodesilylation.
 - Need to make rapid 20 kg and up to 200 kg batches.
 - Solution: Wash out the unused material (30-40% loss isn't environmentally good, but it can be good cost-wise).
 - To make even better, they went the cheating route: α -chloro material.
- Example synthesis: Ticlopedine (anti-platelet aggreation compound to lower blood pressure).
 - 1st synthesis: Selectively benzylate and reduce.
 - Problem: The thiophene-pyridine is not easy to access on scale.
 - Second synthesis: Start with thiophene-phenethyl amine, reductive amination on paraformalde-hyde to cyclize, and reduce to the final product.

- Skipping one.
- Example synthesis: Tetrasubstituted thiophenes via directed metallation.
 - Cross-coupling can be good.
 - Turbogrignard forms anion (stable at 0 °C because it's thiophene; normal aromatic would eliminate to benzyne).
 - Then selective deprotonation via DMG and treatment with ethyl cyanoformate to form diester bromide.
 - Same base and S₈ form S⁻ that is then alkylated.
 - Then Miyaura borylation with $Pd(^{t}Bu_{3}P)_{2}$ (not $Pd(^{t}Bu_{2}P)_{2}$).
 - Then Suzuki-Miyaura cross-coupling.

• Furan.

- Comes from Latin furfur (for bran), because furans come from agrochemical products; Quaker oats used to be the largest supplier of furan derivatives, esp. furfural.
- Least aromatic of all 5-membered heterocycles.
- In a variety of natural products and pharmaceuticals.
- Before proton pump inhibitors, we had Zantac.

• Structure of furan.

- One lone pair in aromatic system.
- Quite acidic: $pK_a < 36$ at the α -position means we can deprotonate with ⁿBuLi.
- Most electron density at oxygen; a lot, as well, at the α and β -carbons.
- Industrial source: Pentose-rich matter (known as bran), then acidic hydrolysis, then dehydrate to furfural, then catalytic decarbonylation.

• Reactivity of furan.

- Electrophilic reactions.
 - 10^{11} times more reactive than benzene. About $8 \, \text{kcal/mol}$ (??) difference.
- Bromination: Steve did this as a student in a poor hood and then began "bleeding profusely from [his] nose."
- Cycloadditions.
 - \blacksquare Reduction and then thermolyzing (with Δ) is a cute way of making the diester.
 - Many cross-couplings.
- Mannich substitution.
 - Dimethylamine and formaldehyde to form iminium ion, then reacts electrophilically at the 5-position.
- Achmatowicz derivative.
 - Mechanism: Epoxidation of less-substituted double bond, ring-opening, then close.
- Piancatelli: Don't worry about.
- Lithiation: Kinetic vs. thermodynamic control for 2- vs. 3-substitution.

• Synthesis of furans.

- Paal-Knorr has same starting material (1,4-diketone), but is more of a rearrangement.
- **Feist-Benary**: Only works on aldehydes; α -chloroketones have nucleophilic attack not at the aldehyde but at the carbon bearing chlorine.

- Benzofuran = benzo[b]furan.
 - First prep from Coumarin: Brominate and then treat with base to hydrolyze the lactone and decarboxylate with loss of bromine. Must have also been accidental.
- $\bullet\,$ More on the exam.
 - You have to know stuff, but Steve also has to see that we can apply this stuff.