Implementazione di una Rete Convoluzionale in CUDA

Michele Valsesia Nicholas Aspes

Anno accademico 2018/2019

Introduzione

Obiettivi

► Descrivere l'architettura ed il funzionamento di una *Rete Neurale Semplice* e di una *Convoluzionale*

Introduzione

Obiettivi

► Descrivere l'architettura ed il funzionamento di una *Rete Neurale* Semplice e di una *Convoluzionale*

► Motivare le differenti scelte implementative adottate durante lo svolgimento del progetto

Introduzione

Obiettivi

► Descrivere l'architettura ed il funzionamento di una *Rete Neurale* Semplice e di una *Convoluzionale*

 Motivare le differenti scelte implementative adottate durante lo svolgimento del progetto

 Valutare l'accuratezza e lo speedup della rete rispetto ad una implementazione di tipo sequenziale

Scopo

► Le *Reti Neurali* vengono principalmente usate per la classificazione di immagini

Scopo

- ► Le *Reti Neurali* vengono principalmente usate per la classificazione di immagini
- ► Il processo di classificazione consiste nell'assegnare ad un immagine un'etichetta che identifichi nel miglior modo possibile il suo contenuto semantico

Scopo

- ► Le *Reti Neurali* vengono principalmente usate per la classificazione di immagini
- ► Il processo di classificazione consiste nell'assegnare ad un immagine un'etichetta che identifichi nel miglior modo possibile il suo contenuto semantico
- ▶ Un'etichetta è meglio conosciuta con il nome di *classe*

Scopo

- ► Le *Reti Neurali* vengono principalmente usate per la classificazione di immagini
- ► Il processo di classificazione consiste nell'assegnare ad un immagine un'etichetta che identifichi nel miglior modo possibile il suo contenuto semantico
- ▶ Un'etichetta è meglio conosciuta con il nome di *classe*
- ► Le reti neurali ricevono in input un'immagine e restituiscono in output la relativa classe

Funzionamento

► Una rete neurale deve *apprendere* come assegnare correttamente alle immagini le varie classi

- ► Una rete neurale deve *apprendere* come assegnare correttamente alle immagini le varie classi
- ▶ Un *esempio* è una coppia (immagine, etichetta)

- ► Una rete neurale deve *apprendere* come assegnare correttamente alle immagini le varie classi
- ▶ Un *esempio* è una coppia (immagine, etichetta)
- ► Un esempio viene creato da un team di persone che valuta il contenuto semantico di un immagine e le associa l'etichetta più adatta

- ► Una rete neurale deve *apprendere* come assegnare correttamente alle immagini le varie classi
- ▶ Un *esempio* è una coppia (immagine, etichetta)
- ► Un esempio viene creato da un team di persone che valuta il contenuto semantico di un immagine e le associa l'etichetta più adatta
- ▶ Il training set ed il test set sono insiemi di esempi

- ► Una rete neurale deve *apprendere* come assegnare correttamente alle immagini le varie classi
- ▶ Un *esempio* è una coppia (immagine, etichetta)
- ► Un esempio viene creato da un team di persone che valuta il contenuto semantico di un immagine e le associa l'etichetta più adatta
- ▶ Il training set ed il test set sono insiemi di esempi
- ► Il training set viene usato per l'addestramento (training) della rete

- ► Una rete neurale deve *apprendere* come assegnare correttamente alle immagini le varie classi
- ► Un esempio è una coppia (immagine, etichetta)
- ► Un esempio viene creato da un team di persone che valuta il contenuto semantico di un immagine e le associa l'etichetta più adatta
- ▶ Il training set ed il test set sono insiemi di esempi
- ► Il training set viene usato per l'addestramento (training) della rete
- ► Il test set serve a controllare che la rete abbia imparato a discriminare correttamente le immagini

Training

► Per ognuno degli esempi del training set

Training

► Per ognuno degli esempi del training set

■ La rete assegna all'immagine corrente la classe che meglio rappresenta il suo contenuto semantico

Training

► Per ognuno degli esempi del training set

■ La rete assegna all'immagine corrente la classe che meglio rappresenta il suo contenuto semantico

 Se la classe di output è diversa dall'etichetta dell'esempio, la rete corregge i suoi parametri interni e passa all'immagine successiva

Testing

► L'accuratezza della rete è data dal rapporto tra il numero di esempi classificati correttamente e la cardinalità del test set

Testing

► L'accuratezza della rete è data dal rapporto tra il numero di esempi classificati correttamente e la cardinalità del test set

► Per ognuno degli esempi del test set

Testing

- ► L'accuratezza della rete è data dal rapporto tra il numero di esempi classificati correttamente e la cardinalità del test set
- ► Per ognuno degli esempi del test set
 - La rete assegna all'immagine corrente la classe che meglio rappresenta il suo contenuto semantico

Testing

- ► L'accuratezza della rete è data dal rapporto tra il numero di esempi classificati correttamente e la cardinalità del test set
- ► Per ognuno degli esempi del test set
 - La rete assegna all'immagine corrente la classe che meglio rappresenta il suo contenuto semantico
 - Per sapere il numero di immagini classificate correttamente dalla rete è necessario definire un contatore

Testing

- ► L'accuratezza della rete è data dal rapporto tra il numero di esempi classificati correttamente e la cardinalità del test set
- ► Per ognuno degli esempi del test set
 - La rete assegna all'immagine corrente la classe che meglio rappresenta il suo contenuto semantico
 - Per sapere il numero di immagini classificate correttamente dalla rete è necessario definire un contatore
 - Il contatore viene incrementato quando l'output prodotto è uguale all'etichetta dell'esempio considerato

Significato Biologico

► Le *Reti Neurali* nascono con lo scopo di modellare una rete neurale biologica

Significato Biologico

► Le *Reti Neurali* nascono con lo scopo di modellare una rete neurale biologica

► Una rete neurale biologica si compone di unità cellulari di base: i neuroni

Significato Biologico

► Le *Reti Neurali* nascono con lo scopo di modellare una rete neurale biologica

► Una rete neurale biologica si compone di unità cellulari di base: i neuroni

▶ I neuroni sono collegati tra loro per mezzo di specifiche giunture chiamate *sinapsi*

Neurone

Modello matematico di un neurone

Funzionamento Neurone

► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone sia influenzato dagli altri

Funzionamento Neurone

- ► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone sia influenzato dagli altri
- ► I segnali in ingresso al neurone vengono pesati dalle differenti sinapsi, trasportati dai dendriti all'interno del corpo cellulare e sommati tra loro

Funzionamento Neurone

- ► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone sia influenzato dagli altri
- ► I segnali in ingresso al neurone vengono pesati dalle differenti sinapsi, trasportati dai dendriti all'interno del corpo cellulare e sommati tra loro
- Quando la somma supera una certa soglia, il neurone spara un segnale lungo l'assone

Funzionamento Neurone

- ► Attraverso un meccanismo di eccitazione ed inibizione i pesi sinaptici controllano quanto un neurone sia influenzato dagli altri
- ► I segnali in ingresso al neurone vengono pesati dalle differenti sinapsi, trasportati dai dendriti all'interno del corpo cellulare e sommati tra loro
- Quando la somma supera una certa soglia, il neurone spara un segnale lungo l'assone
- ► La *frequenza di sparo* del neurone viene modellata con una funzione di attivazione *f*

Funzioni di Attivazione

Definizione

Funzioni di Attivazione

Definizione

Una funzione di attivazione è una funzione matematica non lineare usata per modellare l'output di un neurone. L'input è dato dalla somma pesata dei segnali in ingresso al neurone

► Rectifier Linear Unit

Funzioni di Attivazione

Definizione

- ► Rectifier Linear Unit
- ► Sigmoide

Funzioni di Attivazione

Definizione

- ► Rectifier Linear Unit
- ► Sigmoide
- ► Tangente Iperbolica

Funzioni di Attivazione

Definizione

- ► Rectifier Linear Unit
- ► Sigmoide
- ► Tangente Iperbolica
- ► Softplus

Rectifier Linear Unit

Definizione

La Rectifier Linear Unit (ReLU) $r : \mathbb{R} \to [0, +\infty)$ è definita come $r(x) = \max(0, x)$

Rectifier Linear Unit

Definizione

La Rectifier Linear Unit (ReLU) $r : \mathbb{R} \to [0, +\infty)$ è definita come $r(x) = \max(0, x)$

▶ Si differenzia da una funzione di tipo lineare per metà del suo dominio in quanto $\forall x < 0, \max(0, x) = 0$

Rectifier Linear Unit

Definizione

La Rectifier Linear Unit (ReLU) $r: \mathbb{R} \to [0, +\infty)$ è definita come $r(x) = \max(0, x)$

- ▶ Si differenzia da una funzione di tipo lineare per metà del suo dominio in quanto $\forall x < 0, \max(0, x) = 0$
- ightharpoonup Presenta un punto di discontinuità in x=0

Rectifier Linear Unit

Definizione

La Rectifier Linear Unit (ReLU) $r: \mathbb{R} \to [0, +\infty)$ è definita come $r(x) = \max(0, x)$

- ► Si differenzia da una funzione di tipo lineare per metà del suo dominio in quanto $\forall x < 0, \max(0, x) = 0$
- ightharpoonup Presenta un punto di discontinuità in x=0
- ▶ La sua derivata è pari a $r'(x) = 1(x \ge 0)$

Rectifier Linear Unit

Rappresentazione grafica ReLU

Sigmoide

Definizione

La Sigmoide $\sigma: \mathbb{R} \to [0,1]$ è definita come $\sigma(x) = \frac{1}{(1+e^{-x})}$

Sigmoide

Definizione

La Sigmoide $\sigma:\mathbb{R} \to [0,1]$ è definita come $\sigma(x)=\frac{1}{(1+e^{-x})}$

► Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto

Sigmoide

Definizione

La $\mathit{Sigmoide}\ \sigma: \mathbb{R} \to [0,1]$ è definita come $\sigma(x) = \frac{1}{(1+e^{-x})}$

- ▶ Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto
- ▶ Per elevati valori positivi la sigmoide restituisce 1: il neurone satura e spara con frequenza di sparo pari a 1

Sigmoide

Definizione

La $\mathit{Sigmoide}\ \sigma: \mathbb{R} \to [0,1]$ è definita come $\sigma(x) = \frac{1}{(1+e^{-x})}$

- ▶ Per elevati valori negativi di input la sigmoide restituisce 0: il neurone non spara affatto
- ▶ Per elevati valori positivi la sigmoide restituisce 1: il neurone satura e spara con frequenza di sparo pari a 1
- ▶ La sua derivata è uguale a $\sigma'(x) = \sigma(x)(1 \sigma(x))$

Sigmoide

Rappresentazione grafica Sigmoide

Tangente Iperbolica

Definizione

La Tangente Iperbolica $\tanh:\mathbb{R} \to [-1,1]$ è definita come $\tanh(x) = 2\sigma(2x) - 1$

Tangente Iperbolica

Definizione

La Tangente Iperbolica $anh: \mathbb{R} \to [-1,1]$ è definita come $anh(x) = 2\sigma(2x) - 1$

► La tangente iperbolica è una sigmoide scalata

Tangente Iperbolica

Definizione

La Tangente Iperbolica $tanh: \mathbb{R} \to [-1,1]$ è definita come $tanh(x) = 2\sigma(2x) - 1$

- ► La tangente iperbolica è una sigmoide scalata
- ightharpoonup A differenza della sigmoide passa dall'origine per x=0

Tangente Iperbolica

Definizione

La Tangente Iperbolica $tanh: \mathbb{R} \to [-1,1]$ è definita come $tanh(x) = 2\sigma(2x) - 1$

- ► La tangente iperbolica è una sigmoide scalata
- ightharpoonup A differenza della sigmoide passa dall'origine per x=0
- ► La sua derivata è uguale a $tanh'(x) = 1 tanh^2(x)$

Tangente Iperbolica

Rappresentazione grafica Tangente Iperbolica

Softplus

Definizione

La *Softplus s* : $\mathbb{R} \to (0, +\infty)$ è definita come $s(x) = \log(1 + e^x)$

Softplus

Definizione

La Softplus
$$s: \mathbb{R} \to (0, +\infty)$$
 è definita come $s(x) = \log(1 + e^x)$

► La softplus è una buona approssimazione della ReLU

Softplus

Definizione

La Softplus
$$s: \mathbb{R} \to (0, +\infty)$$
 è definita come $s(x) = \log(1 + e^x)$

- ► La softplus è una buona approssimazione della ReLU
- Viene solitamente usata per sostituire la ReLU perché non presenta punti di discontinuità

Softplus

Definizione

La Softplus
$$s: \mathbb{R} \to (0, +\infty)$$
 è definita come $s(x) = \log(1 + e^x)$

- ► La softplus è una buona approssimazione della ReLU
- Viene solitamente usata per sostituire la ReLU perché non presenta punti di discontinuità
- ▶ La sua derivata è uguale a $s'(x) = \frac{1}{(1+e^{-x})} = \sigma(x)$

Softplus

Confronto grafico tra ReLU e Softplus

Rete Neurale

Definizione

Una Rete Neurale è composta da un certo numero di neuroni organizzati in insiemi distinti chiamati livelli o layer

Rete Neurale

Definizione

Una Rete Neurale è composta da un certo numero di neuroni organizzati in insiemi distinti chiamati livelli o layer

► I livelli sono connessi tra loro e sono posizionati uno di seguito all'altro in modo da formare una sequenza

Rete Neurale

Definizione

Una Rete Neurale è composta da un certo numero di neuroni organizzati in insiemi distinti chiamati livelli o layer

- ► I livelli sono connessi tra loro e sono posizionati uno di seguito all'altro in modo da formare una sequenza
- ▶ I livelli intermedi prendono il nome di *hidden*

Rete Neurale

Definizione

Una Rete Neurale è composta da un certo numero di neuroni organizzati in insiemi distinti chiamati livelli o layer

- ► I livelli sono connessi tra loro e sono posizionati uno di seguito all'altro in modo da formare una sequenza
- ▶ I livelli intermedi prendono il nome di hidden
- ► L'output dei neuroni di un livello diventano l'input dei neuroni del livello successivo

Rete Neurale

 Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input

Rete Neurale

► Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input

▶ Una rete a singolo livello non presenta livelli hidden

Rete Neurale

 Quando si effettua il conteggio dei livelli di una rete non si considera il livello di input

▶ Una rete a singolo livello non presenta livelli hidden

► Per determinare la grandezza di una rete ci si concentra sul numero di neuroni e sui relativi pesi ad essi associati

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni che lo compongono sono completamente connessi ai neuroni del livello successivo e non sono collegati tra loro internamente

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni che lo compongono sono completamente connessi ai neuroni del livello successivo e non sono collegati tra loro internamente

▶ I pesi dei neuroni di ciascun livello sono salvati all'interno di matrici

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni che lo compongono sono completamente connessi ai neuroni del livello successivo e non sono collegati tra loro internamente

- I pesi dei neuroni di ciascun livello sono salvati all'interno di matrici
- ► Le righe di una matrice identificano i neuroni del livello mentre le colonne contengono i pesi di ciascun neurone

Livello Fully-Connected

Definizione

Un livello è di tipo *Fully-Connected* quando i neuroni che lo compongono sono completamente connessi ai neuroni del livello successivo e non sono collegati tra loro internamente

- ▶ I pesi dei neuroni di ciascun livello sono salvati all'interno di matrici
- ► Le righe di una matrice identificano i neuroni del livello mentre le colonne contengono i pesi di ciascun neurone
- ► La struttura a livelli di una rete neurale permette di sfruttare le potenzialità del calcolo matriciale

Livello Fully-Connected

Una rete neurale a 3 livelli

Funzionamento

Il processo di apprendimento di una rete neurale è suddiviso in quattro fasi distinte

Funzionamento

Il processo di apprendimento di una rete neurale è suddiviso in quattro fasi distinte

► Inizializzazione dei pesi

Funzionamento

Il processo di apprendimento di una rete neurale è suddiviso in quattro fasi distinte

- ► Inizializzazione dei pesi
- ► Forward Propagation

Funzionamento

Il processo di apprendimento di una rete neurale è suddiviso in quattro fasi distinte

- ► Inizializzazione dei pesi
- ► Forward Propagation
- ► Calcolo della Funzione di Perdita

Funzionamento

Il processo di apprendimento di una rete neurale è suddiviso in quattro fasi distinte

- ► Inizializzazione dei pesi
- ► Forward Propagation
- ► Calcolo della Funzione di Perdita
- ► Back Propagation

Inizializzazione dei pesi

► Al momento della nascita gli esseri umani non sono in grado di discriminare nessun tipo di oggetto a causa del mancato addestramento della loro rete neurale biologica

Inizializzazione dei pesi

► Al momento della nascita gli esseri umani non sono in grado di discriminare nessun tipo di oggetto a causa del mancato addestramento della loro rete neurale biologica

Per riprodurre questo comportamento, all'inizio della fase di training, i pesi sinaptici w_i di ciascun livello vengono inizializzati in maniera casuale

Forward Propagation

Definizione

Forward Propagation

Definizione

La Forward Propagation è il meccanismo utilizzato da una rete neurale per associare ad un'immagine una determinata classe

lackbox L'output dei neuroni del livello i viene moltiplicato per la matrice dei pesi del livello i+1 ottenendo il vettore v

Forward Propagation

Definizione

- lackbox L'output dei neuroni del livello i viene moltiplicato per la matrice dei pesi del livello i+1 ottenendo il vettore v
- lacktriangle Al vettore v viene aggiunto il vettore dei bias del livello i+1

Forward Propagation

Definizione

- lackbox L'output dei neuroni del livello i viene moltiplicato per la matrice dei pesi del livello i+1 ottenendo il vettore v
- lacktriangle Al vettore v viene aggiunto il vettore dei bias del livello i+1
- ightharpoonup L'output del livello i+1 si ottiene applicando la funzione di attivazione f ad ogni entry del vettore v

Forward Propagation

Definizione

- lackbox L'output dei neuroni del livello i viene moltiplicato per la matrice dei pesi del livello i+1 ottenendo il vettore v
- lacktriangle Al vettore v viene aggiunto il vettore dei bias del livello i+1
- ▶ L'output del livello i + 1 si ottiene applicando la funzione di attivazione f ad ogni entry del vettore v
- ► Le operazioni precedenti sono svolte per tutti i livelli ad eccezione dell'ultimo

Calcolo della funzione di perdita

Definizione

Calcolo della funzione di perdita

Definizione

Una *funzione di perdita L* viene utilizzata per determinare l'errore di classificazione di una rete neurale

▶ La funzione di perdita più usata è la *Mean Squared Error (MSE)* $L = \frac{1}{2} \sum (y - o)^2$

Calcolo della funzione di perdita

Definizione

- ▶ La funzione di perdita più usata è la *Mean Squared Error (MSE)* $L = \frac{1}{2} \sum (y o)^2$
- ➤ y identifica l'etichetta dell'esempio considerato mentre o l'output della rete

Calcolo della funzione di perdita

Definizione

- ▶ La funzione di perdita più usata è la *Mean Squared Error (MSE)* $L = \frac{1}{2} \sum (y o)^2$
- ▶ y identifica l'etichetta dell'esempio considerato mentre o l'output della rete
- ► Minimizzando la funzione di perdita *L* si riduce l'errore di una rete neurale

Calcolo della funzione di perdita

Definizione

- ▶ La funzione di perdita più usata è la *Mean Squared Error (MSE)* $L = \frac{1}{2} \sum (y o)^2$
- ▶ y identifica l'etichetta dell'esempio considerato mentre o l'output della rete
- ► Minimizzando la funzione di perdita *L* si riduce l'errore di una rete neurale
- ightharpoonup Calcolando la derivata di L in funzione dei pesi w_i si cerca di individuare il minimo globale della funzione di perdita

Funzione di perdita

Mean Squared Error (MSE). I pesi w_1 e w_2 sono le variabili indipendenti. La funzione di perdita L è la variabile dipendente

Back Propagation

Definizione

La $Back\ Propagation\ è$ il meccanismo utilizzato da una rete neurale per correggere gli errori di classificazione. Vengono individuati i pesi w_i che hanno influenzato maggiormente l'errore commesso e viene aggiornato il loro valore in modo da ridurre la funzione di perdita

Back Propagation

Definizione

La $Back\ Propagation$ è il meccanismo utilizzato da una rete neurale per correggere gli errori di classificazione. Vengono individuati i pesi w_i che hanno influenzato maggiormente l'errore commesso e viene aggiornato il loro valore in modo da ridurre la funzione di perdita

▶ Per calcolare la derivata della funzione L in funzione dei pesi w_i viene usata la regola della catena (chain rule)

Back Propagation

Definizione

La Back Propagation è il meccanismo utilizzato da una rete neurale per correggere gli errori di classificazione. Vengono individuati i pesi w_i che hanno influenzato maggiormente l'errore commesso e viene aggiornato il loro valore in modo da ridurre la funzione di perdita

- Per calcolare la derivata della funzione L in funzione dei pesi w_i viene usata la regola della catena (chain rule)
- Questa regola è usata per trovare la derivata di una funzione composta

Aggiornamento dei Pesi e Learning Rate

▶ Il nuovo valore del peso w_i è dato dalla regola di aggiornamento $w_i = w_i - \eta \frac{\partial L}{\partial w_i} = w_i + \Delta w_i$ con $\eta > 0$

Aggiornamento dei Pesi e Learning Rate

- ▶ Il nuovo valore del peso w_i è dato dalla regola di aggiornamento $w_i = w_i \eta \frac{\partial L}{\partial w_i} = w_i + \Delta w_i$ con $\eta > 0$
- ▶ Il learning rate η è un parametro usato per controllare la velocità di aggiornamento dei pesi

Aggiornamento dei Pesi e Learning Rate

- ▶ Il nuovo valore del peso w_i è dato dalla regola di aggiornamento $w_i = w_i \eta \frac{\partial L}{\partial w_i} = w_i + \Delta w_i$ con $\eta > 0$
- ▶ Il learning rate η è un parametro usato per controllare la velocità di aggiornamento dei pesi
- ▶ Un learning rate alto comporta aggiornamenti rapidi, un tempo di esecuzione più basso, ma una maggiore probabilità di finire in un minimo locale

Aggiornamento dei Pesi e Learning Rate

- ▶ Il nuovo valore del peso w_i è dato dalla regola di aggiornamento $w_i = w_i \eta \frac{\partial L}{\partial w_i} = w_i + \Delta w_i$ con $\eta > 0$
- ▶ Il learning rate η è un parametro usato per controllare la velocità di aggiornamento dei pesi
- ► Un learning rate alto comporta aggiornamenti rapidi, un tempo di esecuzione più basso, ma una maggiore probabilità di finire in un minimo locale
- Un learning rate basso diminuisce la probabilità di finire in un minimo locale, ma allunga notevolmente i tempi di esecuzione

$$oldsymbol{x} \in \mathbb{R}^{n,1} \quad oldsymbol{w^h} \in \mathbb{R}^{n,m}$$

$$oldsymbol{h} \in \mathbb{R}^{m,1} \quad oldsymbol{w^o} \in \mathbb{R}^{1,m}$$

$$z_j^h = \sum_{i=0}^n w_{ij}^h x_i$$

$$h_j = f(z_j^h)$$

$$z^{\circ} = \sum_{j=0}^{m} w_{j}^{\circ} h_{j}$$

$$o = f(z^o)$$

Esempio Back Propagation

$$\frac{\partial L}{\partial w_j^o} = \frac{\partial L}{\partial o} \cdot \frac{\partial o}{\partial z^o} \cdot \frac{\partial z^o}{\partial w_j}$$

Esempio Back Propagation

$$\frac{\partial L}{\partial w_j^o} = \frac{\partial L}{\partial o} \cdot \frac{\partial o}{\partial z^o} \cdot \frac{\partial z^o}{\partial w_j}$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

Esempio Back Propagation

$$\frac{\partial L}{\partial w_j^o} = \frac{\partial L}{\partial o} \cdot \frac{\partial o}{\partial z^o} \cdot \frac{\partial z^o}{\partial w_j}$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

Esempio Back Propagation

$$\frac{\partial L}{\partial w_j^o} = \frac{\partial L}{\partial o} \cdot \frac{\partial o}{\partial z^o} \cdot \frac{\partial z^o}{\partial w_j}$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

$$\blacksquare \frac{\partial z^o}{\partial w_j^o} = h_j$$

Esempio Back Propagation

ightharpoonup Risultato della derivata di L in funzione del peso w_j^o

$$\frac{\partial L}{\partial w_j^o} = -(y - o) \cdot f'(z^o) \cdot h_j = -\delta_j^o h_j$$

Esempio Back Propagation

lacktriangle Risultato della derivata di L in funzione del peso w_j^o

$$\frac{\partial L}{\partial w_j^o} = -(y - o) \cdot f'(z^o) \cdot h_j = -\delta_j^o h_j$$

▶ Aggiornamento del peso w_j^o

$$\Delta w_j^o = \eta \delta_j^o h_j$$

$$\frac{\partial L}{\partial w_{ij}^h} = \frac{\partial L}{\partial o} \cdot \frac{\partial o}{\partial z^o} \cdot \frac{\partial z^o}{\partial h_j} \cdot \frac{\partial h_j}{\partial z_j^h} \cdot \frac{\partial z_j^h}{\partial w_{ij}^h}$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$
$$\frac{\partial o}{\partial z^o} = f'(z^o)$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

$$\frac{\partial o}{\partial z^o} = f'(z^o)$$

$$\frac{\partial z^o}{\partial h_j} = w_j^o$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

$$\frac{\partial o}{\partial z^o} = f'(z^o)$$

$$\frac{\partial z^o}{\partial h_j} = w_j^o$$

$$\frac{\partial h_j}{\partial z_j^h} = f'(z_j^h)$$

$$\frac{\partial L}{\partial o} = \frac{\partial}{\partial o} \left[\frac{1}{2} (y - o)^2 \right] = -(y - o)$$

$$\frac{\partial o}{\partial z^o} = f'(z^o)$$

$$\frac{\partial z^o}{\partial h_j} = w_j^o$$

$$\frac{\partial h_j}{\partial z_j^h} = f'(z_j^h)$$

$$\frac{\partial z_j^h}{\partial w_{ij}^h} = x_i$$

Esempio Back Propagation

► Risultato della derivata di *L* in funzione del peso *w*^h_{ij}

$$\frac{\partial L}{\partial w_{ij}^h} = -(y - o) \cdot f'(z^o) \cdot w_j^o \cdot f'(z_j^h) \cdot x_i = -\delta_j^h x_i$$

Esempio Back Propagation

▶ Risultato della derivata di L in funzione del peso w^h_{ij}

$$\frac{\partial L}{\partial w_{ij}^h} = -(y - o) \cdot f'(z^o) \cdot w_j^o \cdot f'(z_j^h) \cdot x_i = -\delta_j^h x_i$$

ightharpoonup Aggiornamento del peso w_{ij}^h

$$\Delta w_{ij}^h = \eta \delta_j^h x_i$$

Rete Neurale Convoluzionale

Definizione

Una Rete Neurale Convoluzionale è una variante di una rete neurale classica. Permette la condivisione dei pesi sinaptici tra i neuroni di un livello e consente di discriminare le varie feature che compongono un'immagine

Rete Neurale Convoluzionale

Definizione

Una Rete Neurale Convoluzionale è una variante di una rete neurale classica. Permette la condivisione dei pesi sinaptici tra i neuroni di un livello e consente di discriminare le varie feature che compongono un'immagine

▶ Viene definito un nuovo tipo di livello: il Livello Convoluzionale

Rete Neurale Convoluzionale

Definizione

Una Rete Neurale Convoluzionale è una variante di una rete neurale classica. Permette la condivisione dei pesi sinaptici tra i neuroni di un livello e consente di discriminare le varie feature che compongono un'immagine

- ▶ Viene definito un nuovo tipo di livello: il Livello Convoluzionale
- ▶ Un livello convoluzionale è formato da diversi filtri

Rete Neurale Convoluzionale

Definizione

Una Rete Neurale Convoluzionale è una variante di una rete neurale classica. Permette la condivisione dei pesi sinaptici tra i neuroni di un livello e consente di discriminare le varie feature che compongono un'immagine

- ▶ Viene definito un nuovo tipo di livello: il Livello Convoluzionale
- ▶ Un livello convoluzionale è formato da diversi filtri
- ► La *profondità (depth)* di un livello convoluzionale è data dal numero di filtri che lo compongono

Filtri e Livelli Convoluzionali

► I filtri sono le matrici contenenti i pesi sinaptici del livello convoluzionale

- ► I filtri sono le matrici contenenti i pesi sinaptici del livello convoluzionale
- ► Ogni filtro ricerca all'interno delle immagini della rete una o più *feature*: linee, curve, pattern

- ► I filtri sono le matrici contenenti i pesi sinaptici del livello convoluzionale
- ▶ Ogni filtro ricerca all'interno delle immagini della rete una o più feature: linee, curve, pattern
- ► Per apprendere nel miglior modo possibile il contenuto semantico di un'immagine, la rete deve saper ricercare feature sempre più complesse

- ► I filtri sono le matrici contenenti i pesi sinaptici del livello convoluzionale
- ▶ Ogni filtro ricerca all'interno delle immagini della rete una o più feature: linee, curve, pattern
- ► Per apprendere nel miglior modo possibile il contenuto semantico di un'immagine, la rete deve saper ricercare feature sempre più complesse
- ► Mettendo in sequenza più livelli convoluzionali si possono ottenere feature complesse

- ► I filtri sono le matrici contenenti i pesi sinaptici del livello convoluzionale
- ▶ Ogni filtro ricerca all'interno delle immagini della rete una o più feature: linee, curve, pattern
- ► Per apprendere nel miglior modo possibile il contenuto semantico di un'immagine, la rete deve saper ricercare feature sempre più complesse
- ► Mettendo in sequenza più livelli convoluzionali si possono ottenere feature complesse
- ▶ L'output di un generico livello convoluzionale i diventa l'input del successivo livello i+1. Le feature prodotte da i sono meno complesse di quelle ottenute da i+1

Funzionamento

▶ I pesi dei filtri di un livello convoluzionale sono inizializzati in maniera casuale

Funzionamento

▶ I pesi dei filtri di un livello convoluzionale sono inizializzati in maniera casuale

► Vengono utilizzate le stesse funzioni di attivazione e le stesse funzioni di perdita dei livelli fully-connected

Funzionamento

▶ I pesi dei filtri di un livello convoluzionale sono inizializzati in maniera casuale

 Vengono utilizzate le stesse funzioni di attivazione e le stesse funzioni di perdita dei livelli fully-connected

► La forward e la back propagation sono le uniche fasi definite diversamente

Forward Propagation

► Le matrici di input e di output di un livello convoluzionale prendono il nome di *feature map*

- ► Le matrici di input e di output di un livello convoluzionale prendono il nome di *feature map*
- ▶ I filtri sono meglio conosciuti con il nome di kernel

Forward Propagation

► All'inizio della forward propagation, il kernel viene sovrapposto alla parte superiore sinistra della feature map di input

- ► All'inizio della forward propagation, il kernel viene sovrapposto alla parte superiore sinistra della feature map di input
- ► Viene eseguita la *convoluzione* tra le due sottomatrici ed il risultato ottenuto viene salvato nella feature map di output

- ► All'inizio della forward propagation, il kernel viene sovrapposto alla parte superiore sinistra della feature map di input
- ► Viene eseguita la *convoluzione* tra le due sottomatrici ed il risultato ottenuto viene salvato nella feature map di output
- ► Il kernel viene spostato di una posizione verso destra e viene rieseguita nuovamente la convoluzione

- ► All'inizio della forward propagation, il kernel viene sovrapposto alla parte superiore sinistra della feature map di input
- ► Viene eseguita la *convoluzione* tra le due sottomatrici ed il risultato ottenuto viene salvato nella feature map di output
- ► Il kernel viene spostato di una posizione verso destra e viene rieseguita nuovamente la convoluzione
- ► Terminata la riga, il kernel viene posizionato nuovamente nella parte sinistra della feature map di input, ma una riga più in basso

- ► All'inizio della forward propagation, il kernel viene sovrapposto alla parte superiore sinistra della feature map di input
- ► Viene eseguita la *convoluzione* tra le due sottomatrici ed il risultato ottenuto viene salvato nella feature map di output
- ► Il kernel viene spostato di una posizione verso destra e viene rieseguita nuovamente la convoluzione
- ► Terminata la riga, il kernel viene posizionato nuovamente nella parte sinistra della feature map di input, ma una riga più in basso
- ► Gli ultimi due passaggi vengono ripetuti fino a quando non è stata riempita completamente tutta la feature map di output

Forward Propagation

Il kernel viene ruotato di 180° per poter eseguire la convoluzione

Forward Propagation

Forward Propagation di un livello convoluzionale

Considerazioni Forward Propagation

► Al termine della forward propagation, la funzione di attivazione *f* viene applicata ad ogni elemento della feature map di output

Considerazioni Forward Propagation

► Al termine della forward propagation, la funzione di attivazione *f* viene applicata ad ogni elemento della feature map di output

▶ Un kernel è una matrice quadrata di dimensione $K \times K$

Considerazioni Forward Propagation

► Al termine della forward propagation, la funzione di attivazione *f* viene applicata ad ogni elemento della feature map di output

▶ Un kernel è una matrice quadrata di dimensione $K \times K$

▶ La feature map di input ha dimensione $W \times H$ con W = H

Considerazioni Forward Propagation

► Al termine della forward propagation, la funzione di attivazione *f* viene applicata ad ogni elemento della feature map di output

lacktriangle Un kernel è una matrice quadrata di dimensione $K \times K$

▶ La feature map di input ha dimensione $W \times H$ con W = H

▶ La feature map di output è una matrice quadrata di dimensione $O \times O$ con O = (W - K) + 1

Back Propagation

Definizione

La Back Propagation di una rete neurale convoluzionale ha come obiettivo l'aggiornamento dei pesi contenuti nei kernel di un livello. Per ciascuno dei pesi di un kernel viene calcolata la derivata parziale $\frac{\partial L}{\partial w^l_{m',n'}}$ che rappresenta l'influenza del peso $w^l_{m',n'}$ sulla funzione di perdita L

Back Propagation

Definizione

La Back Propagation di una rete neurale convoluzionale ha come obiettivo l'aggiornamento dei pesi contenuti nei kernel di un livello. Per ciascuno dei pesi di un kernel viene calcolata la derivata parziale $\frac{\partial L}{\partial w^l_{m',n'}}$ che rappresenta l'influenza del peso $w^l_{m',n'}$ sulla funzione di perdita L

► La Back Propagation viene suddivisa in due fasi distinte

Back Propagation

Definizione

La Back Propagation di una rete neurale convoluzionale ha come obiettivo l'aggiornamento dei pesi contenuti nei kernel di un livello. Per ciascuno dei pesi di un kernel viene calcolata la derivata parziale $\frac{\partial L}{\partial w^l_{m',n'}}$ che

rappresenta l'influenza del peso $w_{m',n'}^{I}$ sulla funzione di perdita L

- ► La Back Propagation viene suddivisa in due fasi distinte
 - lacktriangle II calcolo della matrice degli errori δ

Back Propagation

Definizione

La Back Propagation di una rete neurale convoluzionale ha come obiettivo l'aggiornamento dei pesi contenuti nei kernel di un livello. Per ciascuno dei pesi di un kernel viene calcolata la derivata parziale $\frac{\partial L}{\partial w^l_{m',n'}}$ che rappresenta l'influenza del peso $w^l_{m',n'}$ sulla funzione di perdita L

- ► La Back Propagation viene suddivisa in due fasi distinte
 - lacksquare II calcolo della matrice degli errori δ
 - L'aggiornamento dei pesi del kernel

Calcolo matrice dei δ

Le linee tratteggiate presenti nella feature map di output individuano la regione dei pixel influenzati dal pixel $x_{i',j'}$. k_1 e k_2 definiscono la grandezza della regione considerata

Calcolo matrice dei δ

ightharpoonup L'influenza del pixel $x_{i',j'}$ sulla funzione di perdita L è data da

$$\delta_{i',j'}^I = \frac{\partial L}{\partial x_{i',j'}^I}$$

Calcolo matrice dei δ

L'influenza del pixel $x_{i',j'}$ sulla funzione di perdita L è data da

$$\delta_{i',j'}^I = \frac{\partial L}{\partial x_{i',j'}^I}$$

► Applicando la regola della catena si ottiene

$$\frac{\partial L}{\partial x_{i',j'}^{l}} = \sum_{m=0}^{k_1-1} \sum_{n=0}^{k_2-1} \frac{\partial L}{\partial x_{i'-m,j'-n}^{l+1}} \frac{\partial x_{i'-m,j'-n}^{l+1}}{\partial x_{i',j'}^{l}}$$
$$= \sum_{m=0}^{k_1-1} \sum_{n=0}^{k_2-1} \delta_{i'-m,j'-n}^{l+1} \frac{\partial x_{i'-m,j'-n}^{l+1}}{\partial x_{i',j'}^{l}}$$

Calcolo matrice dei δ

$$\frac{\partial L}{\partial x_{i',j'}^{l}} = \sum_{m=0}^{k_{1}-1} \sum_{n=0}^{k_{2}-1} \delta_{i'-m,j'-n}^{l+1} w_{m,n}^{l+1} f'\left(x_{i',j'}^{l}\right)$$

$$= \operatorname{rot}_{180^{\circ}} \left\{ \sum_{m=0}^{k_{1}-1} \sum_{n=0}^{k_{2}-1} \delta_{i'+m,j'+n}^{l+1} w_{m,n}^{l+1} \right\} f'\left(x_{i',j'}^{l}\right)$$

$$= \delta_{i',j'}^{l+1} * \operatorname{rot}_{180^{\circ}} \left\{ w_{m,n}^{l+1} \right\} f'\left(x_{i',j'}^{l}\right)$$

Aggiornamento dei pesi

Durante la fase di forward propagation, il peso $w_{m',n'}$ ha contribuito a calcolare tutti i valori che costituiscono la feature map di output

Aggiornamento dei pesi

lackbox Il calcolo di $rac{\partial L}{\partial w^I_{m',n'}}$ usando la regola della catena è dato da

$$\frac{\partial L}{\partial w_{m',n'}^{l}} = \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \frac{\partial L}{\partial x_{i,j}^{l}} \frac{\partial x_{i,j}^{l}}{\partial w_{m',n'}^{l}}$$

$$= \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \delta_{i,j}^{l} \cdot o_{i+m',j+n'}^{l-1}$$

$$= rot_{180^{\circ}} \{\delta_{i,j}^{l}\} * o_{m',n'}^{l-1}$$

Aggiornamento dei pesi

lacktriangle Il calcolo di $rac{\partial L}{\partial w^I_{m',n'}}$ usando la regola della catena è dato da

$$\begin{split} \frac{\partial L}{\partial w_{m',n'}^{l}} &= \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \frac{\partial L}{\partial x_{i,j}^{l}} \frac{\partial x_{i,j}^{l}}{\partial w_{m',n'}^{l}} \\ &= \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \delta_{i,j}^{l} \cdot o_{i+m',j+n'}^{l-1} \\ &= rot_{180^{\circ}} \{\delta_{i,j}^{l}\} * o_{m',n'}^{l-1} \end{split}$$

$$ightharpoonup x'_{i,j} = \sum_{m} \sum_{n} w'_{m,n} o_{i+m,j+n}^{l-1} + b'$$

Aggiornamento dei pesi

lackbox Il calcolo di $rac{\partial L}{\partial w^l_{m',n'}}$ usando la regola della catena è dato da

$$\begin{split} \frac{\partial L}{\partial w_{m',n'}^{l}} &= \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \frac{\partial L}{\partial x_{i,j}^{l}} \frac{\partial x_{i,j}^{l}}{\partial w_{m',n'}^{l}} \\ &= \sum_{i=0}^{W-K} \sum_{j=0}^{W-K} \delta_{i,j}^{l} \cdot o_{i+m',j+n'}^{l-1} \\ &= rot_{180^{\circ}} \{\delta_{i,j}^{l}\} * o_{m',n'}^{l-1} \end{split}$$

$$> x_{i,j}^{l} = \sum_{m} \sum_{n} w_{m,n}^{l} o_{i+m,j+n}^{l-1} + b^{l}$$

$$ightharpoonup o_{m',n'}^{l-1} = f(x_{i',j'}^{l-1})$$

Aggiornamento dei pesi

▶ Il risultato della convoluzione tra $\delta_{i,j}^I$ e $o_{m',n'}^{I-1}$ individua il nuovo valore del peso $w_{m',n'}^I$

Aggiornamento dei pesi

▶ Il risultato della convoluzione tra $\delta_{i,j}^I$ e $o_{m',n'}^{I-1}$ individua il nuovo valore del peso $w_{m',n'}^I$

► La convoluzione è svolta per ciascuno dei pesi che costituiscono un kernel

Back Propagation

La matrice degli errori δ deve essere ruotata di 180° per poter eseguire la convoluzione

Esempio Back Propagation

Esempio Back Propagation

Il kernel aggiornato viene ricavato dalla convoluzione tra la matrice degli errori δ e la feature map di input

Obiettivo

► Sfruttando l'architettura per il calcolo parallelo *CUDA*, si vuole costruire una rete neurale convoluzionale che permetta di riconoscere cifre numeriche scritte a mano

Obiettivo

- ► Sfruttando l'architettura per il calcolo parallelo *CUDA*, si vuole costruire una rete neurale convoluzionale che permetta di riconoscere cifre numeriche scritte a mano
- ► Le cifre da riconoscere sono salvate come immagini in scala di grigio a 8 bit. Un pixel può assumere solo valori compresi nell'intervallo [0, 255]

Obiettivo

- ► Sfruttando l'architettura per il calcolo parallelo *CUDA*, si vuole costruire una rete neurale convoluzionale che permetta di riconoscere cifre numeriche scritte a mano
- ► Le cifre da riconoscere sono salvate come immagini in scala di grigio a 8 bit. Un pixel può assumere solo valori compresi nell'intervallo [0, 255]
- ► L'output della rete è dato dalle 10 cifre numeriche che si vogliono riconoscere

Obiettivo

- ► Sfruttando l'architettura per il calcolo parallelo *CUDA*, si vuole costruire una rete neurale convoluzionale che permetta di riconoscere cifre numeriche scritte a mano
- ► Le cifre da riconoscere sono salvate come immagini in scala di grigio a 8 bit. Un pixel può assumere solo valori compresi nell'intervallo [0, 255]
- ► L'output della rete è dato dalle 10 cifre numeriche che si vogliono riconoscere
- ► La rete riceve in input un'immagine e le associa la cifra numerica corrispondente

► La dimensione delle immagini che costituiscono gli esempi del training e del test set hanno una dimensione di 28 × 28

► La dimensione delle immagini che costituiscono gli esempi del training e del test set hanno una dimensione di 28 × 28

► Le etichette sono rappresentate da numeri interi positivi

► La dimensione delle immagini che costituiscono gli esempi del training e del test set hanno una dimensione di 28 × 28

► Le etichette sono rappresentate da numeri interi positivi

▶ Il training ed il test set provengono dal database *MNIST* e contengono rispettativamente 60000 esempi di train e 10000 di test

► Per potere sfruttare le potenzialità del paradigma ad oggetti, il codice host della rete CUDA è scritto in C++

- ▶ Per potere sfruttare le potenzialità del paradigma ad oggetti, il codice host della rete CUDA è scritto in C++
- ► I livelli implementati devono rispettare un'interfaccia comune e vengono modellati come classi

- ► Per potere sfruttare le potenzialità del paradigma ad oggetti, il codice host della rete CUDA è scritto in C++
- ► I livelli implementati devono rispettare un'interfaccia comune e vengono modellati come classi
- ► Le funzioni abibite alla fase di train, di test e al calcolo dell'accuratezza sono contenute in unica classe chiamata *Network*

► Quando viene definito un livello, l'utente non deve inserire anche la dimensione di output del livello precedente, ma solo quella del livello che sta definendo

- Quando viene definito un livello, l'utente non deve inserire anche la dimensione di output del livello precedente, ma solo quella del livello che sta definendo
- ▶ I pesi iniziali della rete possono essere generati in maniera casuale

- ▶ Quando viene definito un livello, l'utente non deve inserire anche la dimensione di output del livello precedente, ma solo quella del livello che sta definendo
- ▶ I pesi iniziali della rete possono essere generati in maniera casuale
- ► Per migliorare l'accuratezza della rete, viene utilizzato il meccanismo delle *epoche* che consiste nel ripetere più volte la forward e la back propagation sulla stessa immagine

- ▶ Quando viene definito un livello, l'utente non deve inserire anche la dimensione di output del livello precedente, ma solo quella del livello che sta definendo
- ▶ I pesi iniziali della rete possono essere generati in maniera casuale
- ► Per migliorare l'accuratezza della rete, viene utilizzato il meccanismo delle *epoche* che consiste nel ripetere più volte la forward e la back propagation sulla stessa immagine
- ► Le funzioni di attivazione implementate dalla rete sono la Sigmoide, la Tangente Iperbolica e la SoftPlus

Caratteristiche tecniche

Per implementare i livelli della rete sono stati usati gli unique pointer perché permettono all'utente di non deve specificare il numero di livelli che vuole usare e non deve preoccuparsi di deallocarli al termine dell'esecuzione

Caratteristiche tecniche

- Per implementare i livelli della rete sono stati usati gli unique pointer perché permettono all'utente di non deve specificare il numero di livelli che vuole usare e non deve preoccuparsi di deallocarli al termine dell'esecuzione
- ► All'inizio della fase di train, l'intero training set viene caricato nella GRAM utilizzando il meccanismo della *pinned memory*

Caratteristiche tecniche

- ▶ Per implementare i livelli della rete sono stati usati gli unique pointer perché permettono all'utente di non deve specificare il numero di livelli che vuole usare e non deve preoccuparsi di deallocarli al termine dell'esecuzione
- ► All'inizio della fase di train, l'intero training set viene caricato nella GRAM utilizzando il meccanismo della *pinned memory*
- Prima della fase di test, il training set viene deallocato e al suo posto viene caricato il test set sempre con il meccanismo pinned memory

Caratteristiche tecniche

- ▶ Per implementare i livelli della rete sono stati usati gli unique pointer perché permettono all'utente di non deve specificare il numero di livelli che vuole usare e non deve preoccuparsi di deallocarli al termine dell'esecuzione
- ► All'inizio della fase di train, l'intero training set viene caricato nella GRAM utilizzando il meccanismo della *pinned memory*
- ▶ Prima della fase di test, il training set viene deallocato e al suo posto viene caricato il test set sempre con il meccanismo pinned memory
- ► Le strutture dati usate dai singoli livelli vengono deallocate automaticamente al termine dell'esecuzione del processo

Librerie

▶ Per eseguire le varie operazioni algebriche è stata utilizzata la libreria CUDA chiamata cuBLAS

Librerie

- ▶ Per eseguire le varie operazioni algebriche è stata utilizzata la libreria CUDA chiamata cuBLAS
- ▶ Durante la costruzione della rete, più di preciso quando si eseguivano i test intermedi, si è osservato che la funzione adibita al calcolo del prodotto tra matrici cublasGemm risulta più lenta di cublasGemv che effettua il prodotto tra matrici e vettori

Librerie

- ▶ Per eseguire le varie operazioni algebriche è stata utilizzata la libreria CUDA chiamata cuBLAS
- ▶ Durante la costruzione della rete, più di preciso quando si eseguivano i test intermedi, si è osservato che la funzione adibita al calcolo del prodotto tra matrici cublasGemm risulta più lenta di cublasGemv che effettua il prodotto tra matrici e vettori
- ► A fronte di questi risultati, si è scelto di usare la funzione cublasGemv per eseguire i prodotti matrice-vettore

Librerie

- ▶ Per eseguire le varie operazioni algebriche è stata utilizzata la libreria CUDA chiamata cuBLAS
- ▶ Durante la costruzione della rete, più di preciso quando si eseguivano i test intermedi, si è osservato che la funzione adibita al calcolo del prodotto tra matrici cublasGemm risulta più lenta di cublasGemv che effettua il prodotto tra matrici e vettori
- ► A fronte di questi risultati, si è scelto di usare la funzione cublasGemv per eseguire i prodotti matrice-vettore
- ▶ I pesi iniziali della rete vengono generati in maniera casuale utilizzando l'algoritmo xorWow contenuto nella libreria di CUDA cuRand

Stream

➤ Se la funzione *cublasGemm* viene utilizzata insieme agli *streams*, il tempo di calcolo per eseguire i prodotti tra matrici dovrebbe ridursi notevolmente

Stream

► Se la funzione *cublasGemm* viene utilizzata insieme agli *streams*, il tempo di calcolo per eseguire i prodotti tra matrici dovrebbe ridursi notevolmente

Nel caso della rete CUDA, eseguire una cublasGemm per stream su matrici relativamente piccole, sia per livelli convoluzionali che fully-connected, non ha portato a nessun miglioramento del tempo di calcolo

Stream

➤ Se la funzione *cublasGemm* viene utilizzata insieme agli *streams*, il tempo di calcolo per eseguire i prodotti tra matrici dovrebbe ridursi notevolmente

Nel caso della rete CUDA, eseguire una cublasGemm per stream su matrici relativamente piccole, sia per livelli convoluzionali che fully-connected, non ha portato a nessun miglioramento del tempo di calcolo

► Il tempo impiegato con e senza stream è lo stesso, questo è dovuto al fatto che l'overhead della cublasGemm su diversi stream è maggiore dell'effettivo tempo di calcolo del prodotto matriciale

Rete Sequenziale

► Le accuratezze e i tempi di esecuzione della rete CUDA sono stati confrontati con quelli di una rete sequenziale chiamata *EduCNN*

Rete Sequenziale

- ► Le accuratezze e i tempi di esecuzione della rete CUDA sono stati confrontati con quelli di una rete sequenziale chiamata *EduCNN*
- ► La scelta della rete sequenziale è ricaduta sulla EduCNN perché consente di trovare buone accuratezze in un tempo adeguato

Rete Sequenziale

- ► Le accuratezze e i tempi di esecuzione della rete CUDA sono stati confrontati con quelli di una rete sequenziale chiamata *EduCNN*
- ► La scelta della rete sequenziale è ricaduta sulla EduCNN perché consente di trovare buone accuratezze in un tempo adeguato
- ► Ammette sia livelli di tipo fully-connected che convoluzionali

Rete Sequenziale

- ► Le accuratezze e i tempi di esecuzione della rete CUDA sono stati confrontati con quelli di una rete sequenziale chiamata *EduCNN*
- ► La scelta della rete sequenziale è ricaduta sulla EduCNN perché consente di trovare buone accuratezze in un tempo adeguato
- ► Ammette sia livelli di tipo fully-connected che convoluzionali
- L'unica funzione di attivazione implementata è la sigmoide

Rete Sequenziale

- ► Le accuratezze e i tempi di esecuzione della rete CUDA sono stati confrontati con quelli di una rete sequenziale chiamata *EduCNN*
- ► La scelta della rete sequenziale è ricaduta sulla EduCNN perché consente di trovare buone accuratezze in un tempo adeguato
- ► Ammette sia livelli di tipo fully-connected che convoluzionali
- ▶ L'unica funzione di attivazione implementata è la sigmoide
- ightharpoonup La EduCNN è scritta con il linguaggio di programmazione C++

Differenze tra le due Reti

▶ Per ricavare i valori dei pesi iniziali, la EduCNN utilizza come generatore di numeri casuali l'algoritmo xorshift128

Differenze tra le due Reti

- ► Per ricavare i valori dei pesi iniziali, la EduCNN utilizza come generatore di numeri casuali l'algoritmo xorshift128
- Quando si definisce un livello, la EduCNN richiede all'utente di specificare il numero di livelli che vuole usare e la dimensione di output del livello precedente

Differenze tra le due Reti

- ► Per ricavare i valori dei pesi iniziali, la EduCNN utilizza come generatore di numeri casuali l'algoritmo xorshift128
- Quando si definisce un livello, la EduCNN richiede all'utente di specificare il numero di livelli che vuole usare e la dimensione di output del livello precedente
- ► La memoria allocata per ciascun livello deve essere eliminata dall'utente al termine dell'esecuzione del processo

Considerazioni

► I calcoli interni alla rete vengono svolti usando il formato di dato double per non perdere precisione numerica tra un passaggio e un altro

Considerazioni

- ► I calcoli interni alla rete vengono svolti usando il formato di dato double per non perdere precisione numerica tra un passaggio e un altro
- ▶ All'inizio della fase di training i pixel delle immagini vengono riscalati nell'intervallo [0,1] per poter essere compatibili con il formato di dato usato dalla rete

Configurazioni

► Il testing della rete viene effettuato combinando tra loro differenti tipi di livelli

- ► Il testing della rete viene effettuato combinando tra loro differenti tipi di livelli
- ► Le diverse combinazioni vengono chiamate Configurazioni

- ► Il testing della rete viene effettuato combinando tra loro differenti tipi di livelli
- ► Le diverse combinazioni vengono chiamate Configurazioni
- ► Vengono definite quattro configurazioni in modo da poter analizzare il comportamento della rete in determinate situazioni

Configurazioni

lacktriangle II learning rate η ed i pesi iniziali di ciascuna configurazione sono gli stessi per entrambe le reti

- ightharpoonup Il learning rate η ed i pesi iniziali di ciascuna configurazione sono gli stessi per entrambe le reti
- ► All'inizio della computazione, i pesi vengono posti ad un valore fisso di 0.001

- ightharpoonup Il learning rate η ed i pesi iniziali di ciascuna configurazione sono gli stessi per entrambe le reti
- ► All'inizio della computazione, i pesi vengono posti ad un valore fisso di 0.001
- ▶ Per alcune configurazioni, si è scelto di generare i pesi iniziali in maniera casuale in modo da poter valutare le differenti accuratezze ottenute dalle due reti

- ▶ Il learning rate η ed i pesi iniziali di ciascuna configurazione sono gli stessi per entrambe le reti
- ► All'inizio della computazione, i pesi vengono posti ad un valore fisso di 0.001
- ▶ Per alcune configurazioni, si è scelto di generare i pesi iniziali in maniera casuale in modo da poter valutare le differenti accuratezze ottenute dalle due reti
- ► Il numero di nodi e di livelli per ciascuna configurazione viene scelto tenendo conto della componentistica hardware che si ha a disposizione per eseguire i test

Configurazioni

Livello	Output	
Fully Connected	300 × 1	
Fully Connected	10 × 1	

Table: Configurazione 1

Livello	Output	Dimensione Filtro
Convoluzionale	24 × 24	$5 \times 5 \times 3$
Convoluzionale	20 × 20	$5 \times 5 \times 3$
Convoluzionale	16 × 16	$5 \times 5 \times 3$
Fully Connected	10 × 1	Х

Table: Configurazione 2

Configurazioni

Livello	Output	Dimensione Filtro
Convoluzionale	24 × 24	$5 \times 5 \times 3$
Fully Connected	400 × 1	Х
Convoluzionale	16 × 16	$5 \times 5 \times 3$
Fully Connected	10 × 1	Х

Table: Configurazione 3

Configurazioni

Livello	Output	Dimensione Filtro	
Convoluzionale	24 × 24	$5 \times 5 \times 3$	
Fully Connected	400 × 1	X	
Convoluzionale	16 × 16	$5 \times 5 \times 3$	
Fully Connected	100 × 1	Х	
Convoluzionale	6 × 6	$5 \times 5 \times 3$	
Fully Connected	10 × 1	Х	

Table: Configurazione 4

Configurazioni

► La Configurazione 1 ha lo scopo di testare il comportamento della rete CUDA quando vengono utilizzati solo livelli di tipo fully-connected

- ► La Configurazione 1 ha lo scopo di testare il comportamento della rete CUDA quando vengono utilizzati solo livelli di tipo fully-connected
- ► Allo stesso modo, la *Configurazione 2* verifica come la rete si comporta quando viene utilizzata una serie di livelli convoluzionali

- ► La Configurazione 1 ha lo scopo di testare il comportamento della rete CUDA quando vengono utilizzati solo livelli di tipo fully-connected
- ► Allo stesso modo, la *Configurazione 2* verifica come la rete si comporta quando viene utilizzata una serie di livelli convoluzionali
- ▶ Le restanti configurazioni sono costruite alternado tra loro livelli convoluzionali di profondità tre e livelli fully-connected. Questo tipo di approccio serve a valutare se i valori di accuratezza ed i tempi di esecuzione ottenuti dalla rete CUDA sono validi anche per reti che ammettono una certa *profondità*

Hardware

► Le varie configurazioni sono state eseguite su due differenti tipi di macchine

Hardware

- ► Le varie configurazioni sono state eseguite su due differenti tipi di macchine
- ► La prima presenta le seguenti caratteristiche tecniche

Hardware

- ► Le varie configurazioni sono state eseguite su due differenti tipi di macchine
- ► La prima presenta le seguenti caratteristiche tecniche
 - Processore Intel Core i7-4510 da 2.00GHz

Hardware

- ► Le varie configurazioni sono state eseguite su due differenti tipi di macchine
- ► La prima presenta le seguenti caratteristiche tecniche
 - Processore Intel Core i7-4510 da 2.00GHz

■ RAM da 6GB

Hardware

- ► Le varie configurazioni sono state eseguite su due differenti tipi di macchine
- ► La prima presenta le seguenti caratteristiche tecniche
 - Processore Intel Core i7-4510 da 2.00GHz

RAM da 6GB

 Scheda grafica Nvidia GeForce 820M da 1GB con Architettura Fermi

Hardware

- ► Le varie configurazioni sono state eseguite su due differenti tipi di macchine
- ► La prima presenta le seguenti caratteristiche tecniche
 - Processore Intel Core i7-4510 da 2.00GHz
 - RAM da 6GB

- Scheda grafica Nvidia GeForce 820M da 1GB con Architettura Fermi
- Sistema operativo Ubuntu 17.10

Hardware

► Le caratteristiche tecniche della seconda macchina sono

Hardware

- ► Le caratteristiche tecniche della seconda macchina sono
 - Processore Intel Core i7-6500u da 2.50GHz (3.10GHz in Turbo Boost)

Hardware

- ► Le caratteristiche tecniche della seconda macchina sono
 - Processore Intel Core i7-6500u da 2.50GHz (3.10GHz in Turbo Boost)
 - RAM da 12GB

Hardware

- ► Le caratteristiche tecniche della seconda macchina sono
 - Processore Intel Core i7-6500u da 2.50GHz (3.10GHz in Turbo Boost)
 - RAM da 12GB

 Scheda grafica Nvidia GeForce 940M da 4GB con Architettura Maxwell

Hardware

- ► Le caratteristiche tecniche della seconda macchina sono
 - Processore Intel Core i7-6500u da 2.50GHz (3.10GHz in Turbo Boost)
 - RAM da 12GB

 Scheda grafica Nvidia GeForce 940M da 4GB con Architettura Maxwell

■ Sistema operativo Windows 10 Pro

Parametri

▶ I diversi valori del learning rate η utilizzati per testare la rete sono stati ottenuti campionando l'intervallo [0.001, 1.50] a step variabili

Parametri

▶ I diversi valori del learning rate η utilizzati per testare la rete sono stati ottenuti campionando l'intervallo [0.001, 1.50] a step variabili

 Per ciascuna configurazione vengono ricavati i tempi di computazione della rete sequenziale, della rete CUDA ed il relativo speedup

Parametri

▶ I diversi valori del learning rate η utilizzati per testare la rete sono stati ottenuti campionando l'intervallo [0.001, 1.50] a step variabili

- Per ciascuna configurazione vengono ricavati i tempi di computazione della rete sequenziale, della rete CUDA ed il relativo speedup
- ightharpoonup Le configurazioni mostrate nei risultati sono quelle che hanno ottenuto il massimo valore di accuratezza in entrambe le reti tra tutti i learning rate η testati

Risultati

Configurazione	η	Rete	Accuratezza	Tempo [h:m:s]	Speedup
1	0.09	EduCNN	30.50%	00:03:17	3.12
		CUDA	30.50%	00:01:03	
2	0.24	EduCNN	88.35%	00:03:04	2.60
	0.24	CUDA	88.35%	00:01:11	
3	0.62	EduCNN	93.80%	00:09:59	3.10
		CUDA	93.78%	00:03:13	3.10
4 1.11	1 11 EduCNN	88.63%	00:11:20	3.16	
	1.11	CUDA	92.17%	00:03:35	5.10

Table: Risultati ottenuti eseguendo le configurazioni in ambiente Linux

Risultati

Configurazione	η	Rete	Accuratezza	Tempo [h:m:s]	Speedup
1	0.09	EduCNN	30.50%	00:04:58	4.51
	0.09	CUDA	30.49%	00:01:06	
2	0.24	EduCNN	88.35%	00:05:05	3.91
		CUDA	88.35%	00:01:18	
3	0.62	EduCNN	93.80%	00:15:31	5.03
	0.02	CUDA	93.79%	00:03:05	
4	1.11	EduCNN	88.63%	00:16:31	4.67
	1.11	CUDA	92.17%	00:03:32	4.07

Table: Risultati ottenuti eseguendo le configurazioni in ambiente Windows

Risultati

Configurazione	η	Rete	Accuratezza	Tempo [h:m:s]	Speedup
1	0.09	EduCNN	92.18%	00:03:17	3.12
		CUDA	92.51%	00:01:03	
2	0.24	EduCNN	86.07%	00:03:04	2.60
		CUDA	80.57%	00:01:11	
3 0.62	0.62	EduCNN	94.32%	00:09:59	3.10
	CUDA	93.11%	00:03:13	3.10	
4	1.11	EduCNN	9.58%	00:11:20	3.16
	1.11	CUDA	9.58%	00:03:35	5.10

Table: Risultati ottenuti eseguendo le configurazioni a partire da pesi iniziali generati casualmente in ambiente Linux

Risultati

Configurazione	η	Rete	Accuratezza	Tempo [h:m:s]	Speedup
1	0.09	EduCNN	92.36%	00:04:58	4.51
		CUDA	92.51%	00:01:06	
2	0.24	EduCNN	87.35%	00:05:05	3.91
		CUDA	80.57%	00:01:18	
3 0.	0.62	EduCNN	93.78%	00:15:31	5.03
	0.02	CUDA	93.11%	00:03:05	
4	1.11	EduCNN	9.58%	00:16:31	4.67
	1.11	CUDA	9.58%	00:03:32	4.07

Table: Risultati ottenuti eseguendo le configurazioni a partire da pesi iniziali generati casualmente in ambiente Windows

Risultati

Configurazione	η	Rete	Accuratezza	Tempo [h:m:s]	Speedup
1	0.09	EduCNN	31.96%	00:30:12	2.91
		CUDA	24.34%	00:10:22	
2	0.24	EduCNN	90.11%	00:28:20	2.42
		CUDA	86.25%	00:11:42	
3	0.62	EduCNN	97.49%	01:37:00	2.94
		CUDA	95.38%	00:33:00	
4	1.11	EduCNN	13.68%	01:51:00	3.16
	1.11	CUDA	47.93%	00:35:05	5.10

Table: Risultati ottenuti eseguendo le configurazioni con un numero di epoche pari a 10 in ambiente Linux

Risultati

Configurazione	η	Rete	Accuratezza	Tempo [h:m:s]	Speedup
1	0.09	EduCNN	31.96%	00:45:46	4.38
		CUDA	31.96%	00:10:27	
2	0.24	EduCNN	90.11%	00:47:13	3.67
		CUDA	90.11%	00:12:51	
3	0.62	EduCNN	97.49%	02:32:02	4.90
		CUDA	97.71%	00:31:00	
4	1.11 Ed	EduCNN	13.68%	02:43:01	4.69
	1.11	CUDA	18.88%	00:34:44	4.09

Table: Risultati ottenuti eseguendo le configurazioni con un numero di epoche pari a 10 in ambiente Windows

Risultati

Configurazione	η	Rete	Accuratezza	Tempo [h:m:s]	Speedup
1	0.09	EduCNN	97.55%	00:30:12	2.91
		CUDA	94.76%	00:10:22	
2	0.24	EduCNN	89.19%	00:28:20	2.42
2		CUDA	13.03%	00:11:42	
3	0.62	EduCNN	98.15%	01:37:00	2.94
	0.02	CUDA	94.44%	00:33:00	
4	1.11	EduCNN	9.58%	01:51:00	3.16
	1.11	CUDA	69.31%	00:35:05	5.10

Table: Risultati ottenuti eseguendo le configurazioni a partire da pesi iniziali generati casualmente e numero di epoche pari a 10 in ambiente Linux

Risultati

Configurazione	η	Rete	Accuratezza	Tempo [h:m:s]	Speedup
1	0.09	EduCNN	97.73%	00:45:46	4.38
	0.09	CUDA	97.72%	00:10:27	4.30
2	0.24	EduCNN	90.47%	00:47:13	3.67
		CUDA	9.80%	00:12:51	
3	0.62	EduCNN	97.61%	02:32:02	4.90
	0.02	CUDA	97.78%	00:31:00	
4	1.11	EduCNN	9.58%	02:43:01	4.69
	1.11	CUDA	9.58%	00:34:44	4.09

Table: Risultati ottenuti eseguendo le configurazioni a partire da pesi iniziali generati casualmente e numero di epoche pari a 10 in ambiente Windows

Analisi configurazioni con i pesi fissati

▶ Le prime tre configurazioni ottengono la stessa accuratezza in entrambe le reti e per ciascuno dei sistemi operativi, mentre la *Configurazione 4* mostra una differenza del 6%.

Analisi configurazioni con i pesi fissati

- ► Le prime tre configurazioni ottengono la stessa accuratezza in entrambe le reti e per ciascuno dei sistemi operativi, mentre la *Configurazione 4* mostra una differenza del 6%.
- ► La Configurazione 4 è formata da tanti livelli con un elevato numero di nodi determinando così una maggiore perdita di precisione nel calcolo dei pesi rispetto a quello delle altre configurazioni. L'accuratezza ottenuta dalla rete CUDA è migliore di quella della EduCNN grazie ad un parametro di compilazione chiamato fmad impostato a false che privilegia la precisione alla velocità

Analisi configurazioni con i pesi fissati

- ► Le prime tre configurazioni ottengono la stessa accuratezza in entrambe le reti e per ciascuno dei sistemi operativi, mentre la *Configurazione 4* mostra una differenza del 6%.
- ▶ La Configurazione 4 è formata da tanti livelli con un elevato numero di nodi determinando così una maggiore perdita di precisione nel calcolo dei pesi rispetto a quello delle altre configurazioni. L'accuratezza ottenuta dalla rete CUDA è migliore di quella della EduCNN grazie ad un parametro di compilazione chiamato fmad impostato a false che privilegia la precisione alla velocità
- ► Gli speedup sono più alti su Windows perché l'esecuzione sequenziale necessita di più risorse da parte del sistema operativo rispetto a Linux

Analisi configurazioni con i pesi iniziali casuali

▶ L'uso dei numeri casuali migliora le accuratezze delle configurazioni 1 e 3 sia su Linux che su Windows. La rete CUDA ottiene un'accuratezza inferiore a quella della EduCNN nella Configurazione 2 ed entrambe le reti producono risultati pessimi nella Configurazione 4 a causa dell'overfitting

Analisi configurazioni con i pesi iniziali casuali

- ▶ L'uso dei numeri casuali migliora le accuratezze delle configurazioni 1 e 3 sia su Linux che su Windows. La rete CUDA ottiene un'accuratezza inferiore a quella della EduCNN nella Configurazione 2 ed entrambe le reti producono risultati pessimi nella Configurazione 4 a causa dell'overfitting
- ▶ Lo speedup ottenuto è lo stesso delle configurazioni a pesi fissi

Analisi configurazioni con i pesi iniziali casuali

► Da fare

Analisi configurazioni con i pesi iniziali casuali

- ► Da fare
- ▶ Da fare

Conclusioni

Conclusioni

Conclusioni

► Da fare

Conclusioni

Conclusioni

▶ Da fare

Non dipende da librerie di terze parti e può essere eseguita anche sui sistemi operativi Windows e macOS