TRABALHO 2 - Ficha de estudo dirigido

Tema: Diagramas de fase.

1. Introdução

Neste trabalho pretende-se fazer um estudo aprofundado de diagramas de fase de substâncias puras e de diagramas de equilíbrio líquido-vapor de misturas de dois líquidos. Os diagramas de fase são uma ferramenta importante a nível industrial (em particular, em processos de separação) e um conhecimento mais aprofundado destes facilitará também a sua utilização em disciplinas posteriores da Licenciatura em Química Aplicada e do Mestrado Integrado em Engenharia Química e Bioquímica.

O estudo vai ser realizado durante um período de 5 horas lectivas.

As ferramentas principais de estudo são a bibliografia recomendada no programa de trabalhos bem como bibliografia anexa.

2. Objectivos

- 1. Interpretar diagramas de fase de substâncias puras.
- 2. Estudar o equilíbrio líquido-vapor do sistema acetonitrilo + nitrometano.
- Construir o respectivo diagrama de fases p-x,y a partir das curvas de pressão de vapor dos componentes puros admitindo como válida a utilização da lei de Raoult.
- 4. Obtenção do diagrama de pontos de ebulição T-x,y a partir dos dados de pressão de vapor da mistura.
- 5. Distinguir e quantificar desvios positivos e negativos à lei de Raoult e sua interpretação em termos de forças intermoleculares.

3. Plano de trabalho

Trabalho preliminar

- **1.** (aula teórica) Exposição teórica por parte do professor introduzindo e explicando o tema desenvolvido no trabalho.
- **2.** Resolução individual de problemas de aplicação dos conceitos adquiridos na aula teórica (2 horas) **Anexo 1**.

Aula Prática

- **3.** (20 minutos) Esclarecimento no quadro de dúvidas ou questões relacionadas com a resolução dos exercícios.
- **4.** (15 minutos) Introdução teórica do professor ao trabalho a desenvolver. Curta apresentação dos conceitos fundamentais realçando a utilização dos diagramas de fase como instrumento de resolução de problemas reais.
- **5.** (90 minutos) Resolução em grupo dos problemas 2.1 e 2.2 **Anexo 2**.
 - 5.1 Esboço do algoritmo de cálculo (10 minutos).
 - 5.2 Construção da folha de cálculo em EXCEL(45 minutos).

Intervalo (10 minutos)

- 5.3 Construção gráfica e utilização dos diagramas para resolução do problema 2.3. (35 minutos).
- **6.** (10 minutos) Exposição teórica do professor dos conceitos necessários à resolução dos problemas incluidos no anexo 3. Curta apresentação dos conceitos fundamentais realçando a utilização dos diagramas de fase como instrumento de resolução de problemas reais.
- **7.** (20 minutos) Interpretação dos diagramas de fase incluidos no anexo 3. Resolução dos problemas 3.1 e 3.2 **Anexo 3**.

Referências

"Chemical Principles. The Quest for Insight", P.Atkins and L. Jones, Freeman 4rd ed.(2008).

Anexo 1 - Diagramas de fase de substâncias puras

1.1 Utilize o diagrama de fases da água representado na figura abaixo para prever qual o estado físico de uma amostra de água nas seguintes condições: (a) 1 atm, 105°C; (b) 100 atm, 90°C; (c) 3 Torr, 25°C; (d) 220,8 bar, 375°C. Dados: Ponto crítico da água P_c= 220,8 bar e T_c = 374°C.

1.2 Utilize o diagrama de fases do dióxido de carbono para prever o que acontece a uma amostra de dióxido de carbono gasoso a -50°C e 1 atm se a pressão aumentar de repente para 73 atm. Qual será o estado físico final do dióxido de carbono?

Nota: Os diagramas não estão feitos à escala.

1.3. O diagrama de fases do hélio está representado na figura abaixo:

Responda às seguintes questões:

- (a) Qual a temperatura máxima a que pode existir o líquido hélio-II?
- (b) Qual a pressão mínima à qual hélio-II solidifica?
- (c) Qual o ponto de ebulição normal do hélio-I?
- (d) O hélio sólido pode sublimar?
- (e) Descreva as fases em equilíbrio em cada um dos pontos triplos do hélio.
- 1.4. Esboce um diagrama P-x,y a temperatura constante para uma solução de dois componentes A e B que obedecem à lei de Raoult, com indicação dos domínios do líquido, do vapor e do equilíbrio líquido-vapor, e das linhas das composições do líquido e do vapor.
- 1.5. Uma mistura gasosa constituida por 11.2 g de azoto (N₂) e 16.8 g de monóxido de carbono (CO) é arrefecida e começa a liquefazer à temperatura de 100 K. Calcule a pressão de vapor quando se dá a liquefacção e a composição da primeira gota de líquido condensado. Dados:

 $p^*(N_2,100 \text{ K}) = 7.7 \text{ bar}$; $p^*(CO,100 \text{ K}) = 5.2 \text{ bar}$; $N = 14 \text{ gmol}^{-1}$; $C = 12 \text{ gmol}^{-1}$; $O = 16 \text{ gmol}^{-1}$.

Referências

"Chemistry. Molecules, Matter and Change", P.Atkins and L. Jones, Freeman (1997).

Anexo 2 – Diagramas de equilíbrio líquido-vapor de misturas de dois líquidos. Soluções com comportamento ideal.

2.1. O sistema binário acetonitrilo(1)/nitrometano(2) obedece razoavelmente à lei de Raoult. As pressões de vapor das substâncias puras são dadas pelas seguintes equações (geralmente designadas por equação de Antoine):

In
$$p_1^{\text{sat}}/\text{kPa} = 14.2724 - 2945.47/(t/^{\circ}\text{C} + 224.00)$$

In $p_2^{\text{sat}}/\text{kPa} = 14.2043 - 2972.64/(t/^{\circ}\text{C} + 209.00)$

- a. Construa um gráfico representando a pressão de vapor (p) da mistura em função da composição no líquido em acetonitrilo (x₁) para a temperatura de 75 °C.
- b. Construa um gráfico representando a pressão de vapor (p) da mistura em função da composição em acetonitrilo no líquido (x₁) e no vapor (y₁) para a temperatura de 75 °C.
- **2.2.** Com base nos dados de pressão de vapor fornecidos no problema anterior construa um gráfico das temperaturas de ebulição (T) à pressão de 70 kPa em função da composição em acetonitrilo no líquido(x_1) e no vapor (y_1).

Referências

"Introduction to Chemical Engineering Thermodynamics", J. M. Smith and H. C. Van Ness, 4^a ed., McGraw-Hill (1987).

Anexo 3- Diagramas de equilíbrio líquido-vapor de misturas de dois líquidos. Soluções com comportamento não ideal.

- **3.1.** Os dados de equilíbrio líquido-vapor para o sistema binário metiletilacetona(1)/tolueno(2) a 50°C estão indicados na tabela seguinte.
 - **a.** Represente graficamente os dados da tabela num diagrama *p-x e p-y*.

<i>p /</i> kPa	<i>X</i> ₁	<i>y</i> ₁
12.3	0.0000	0.0000
12.51	0.0895	0.2716
18.61	0.1981	0.4565
21.63	0.3193	0.5934
24.01	0.4232	0.6815
25.92	0.5119	0.7440
29.96	0.6096	0.8050
30.12	0.7135	0.8639
31.75	0.7934	0.9048
34.15	0.9102	0.9590
36.09	1.0000	1.0000

- **b.** Classifique o tipo de desvios à lei de Raoult e relacione o tipo de comportamento observado com as forças intermoleculares.
- **3.2.** Os dados de equilíbrio líquido-vapor para o sistema binário acetona(1)/clorofórmio(2) a 50°C estão representados na figura seguinte:
 - a. Identifique as curvas de equilíbrio, a zona de líquido, de vapor e de coexistência das duas fases.
 - b. Classifique o tipo de desvios à lei de Raoult e relacione o tipo de comportamento observado com as forças intermoleculares.

Referências

"Chemical Principles. The Quest for Insight", P.Atkins and L. Jones, Freeman 5^{th} ed.(2010).

"Introduction to Chemical Engineering Thermodynamics", J. M. Smith and H. C. Van Ness, 4^a ed., McGraw-Hill (1987).

"Molecular Thermodynamics of Fluid-Phase Equilibria", J. M. Prausnitz, R.N. Lichtenthaler, E. Gomes de Azevedo, 2^a ed., Prentice Hall (1986).