Lec01.md 9/2/2025

* Fundamentals of Al

At its core, Artificial Intelligence (AI) is about building systems that can perceive, reason, learn, and act.

- **Perceive** → Take in information (like eyes and ears).
- **Reason** → Make sense of it (like the brain).
- **Learn** → Improve from experience (like we do when studying).
- Act → Do something in the world (like moving, speaking, recommending).

Analogy: Think of Al as a student

- Senses the lecture (perceives).
- Understands the notes (reasons).
- Studies past mistakes (learns).
- Writes the exam (acts).

Thinking Humanly

- **Definition**: Making machines think like humans.
- **Example**: A program that solves math problems the way you do (showing steps, even making small mistakes).
- Analogy: Teaching a robot to daydream like a person.
- Note: Psychology and cognitive science often come in here how do humans actually think?

Acting Humanly

- Definition: Machines behaving like humans, regardless of how they think inside.
- Example: The Turing Test → if you chat with a machine and can't tell it apart from a human, it's acting
 humanly.
- Analogy: An actor who plays a convincing doctor on stage they don't need real medical knowledge, just the performance.

Nationally Thinking Rationally

- **Definition**: Perfect logic machines reasoning using rules.
- Example: A system proving theorems in mathematics.
- Analogy: Think of Spock from Star Trek cold, logical, flawless reasoning.

4 Acting Rationally

- Definition: Doing the right thing at the right time choosing the best action given the situation.
- **Example**: A self-driving car deciding whether to brake or swerve.
- Analogy: A chess player doesn't think like a human but acts to maximize their chance of winning.

Lec01.md 9/2/2025

This is the most popular modern definition: **AI = rational agents**.

Weak AI vs Strong AI

Weak AI (Narrow AI)

- **Definition**: Focused on one specific task.
- **Example**: Google Translate → great at language conversion, useless at cooking.
- Analogy: Like a Swiss Army knife tool sharp at specific jobs, but not a "real craftsman."

Strong AI (General AI)

- **Definition**: Has the general intelligence of a human. Can learn any task.
- **Example**: Hypothetical future AI that could study for exams, write novels, or invent physics theories.
- Analogy: A student who can learn any subject with creativity and adaptability.

Summary to Remember

- Thinking/Acting Humanly → copy humans.
- Thinking/Acting Rationally → follow logic & best outcomes.
- Weak AI → specialist.
- **Strong AI** → generalist.

Al Perspectives & Types — Comparison Table

Concept	Definition	Analogy	Examples in Real Life	
Thinking Humanly	Machines try to mimic how humans think (like cognitive science models).	A robot "daydreaming" like a student solving math step by step.	Cognitive modeling software, ACT-R (psychology-based Al).	
Acting Humanly	Machines behave like humans, regardless of how they think inside.	An actor pretending to be a doctor — convincing, but not real.	Chatbots (e.g., ELIZA , Siri , ChatGPT in conversation mode), humanoid robots (Sophia).	
Thinking Rationally	Machines use formal logic to reach correct conclusions.	Spock from <i>Star Trek</i> — perfectly logical, no emotions.	Expert systems (MYCIN for medical diagnosis), theorem provers.	
Acting Rationally	Machines choose the best action to achieve goals (rational agents).	Self-driving car deciding whether to stop or go.	AlphaGo , Tesla Autopilot, Amazon's recommender system.	
Weak AI (Narrow AI)	Focused on a specific task. Excels only in its niche.	Swiss Army knife tool — sharp, but only for limited jobs.	Google Translate , Netflix recommender, spam filters, face recognition in phones.	

Lec01.md 9/2/2025

Concept	Definition	Analogy	Examples in Real Life
•	Hypothetical AI with human-level intelligence across all domains.	A student who can learn any subject with creativity.	Not yet achieved — often imagined in sci-fi (e.g., HAL 9000 , Jarvis from <i>Iron Man</i>).

Quick Memory Hack

- **Humanly** → copy people (appearance or thought).
- **Rationally** \rightarrow use logic and optimality.
- Weak AI → today's reality.
- **Strong AI** → tomorrow's dream.

What are Cognitive Science Models?

Cognitive science models are attempts to simulate the way humans think, learn, and solve problems.

Instead of just building a machine that gives the right answer, we ask:

"Can the machine go through the same mental steps a human does?"

It's about **understanding and imitating the mind**, not just the outcome.

Sexample: Solving a Math Problem

- Human: You don't immediately know the answer. You recall formulas, try one, maybe erase mistakes, then finally solve it.
- Al with Cognitive Model: Simulates these steps: recall → attempt → revise → answer.
- The **focus** is on the **process of thought**, not just the final result.

Analogy

Imagine two art students asked to paint like Van Gogh:

- Without Cognitive Model → One just prints a Van Gogh painting. It looks right, but no learning happened.
- With Cognitive Model → The other studies Van Gogh's brushstrokes, experiments with them, and paints in that style.
- The second approach shows how the artist thought, not just the finished product.

Ⅲ Comparison Table: Cognitive Models vs Other Al Approaches

Approach What it Focuses On Analogy Example Lec01.md 9/2/2025

Approach	What it Focuses On	Analogy	Example
Cognitive Science Models	Replicate how humans think.	Student solving step by step, with mistakes & retries.	ACT-R, Soar architecture
Thinking Rationally	Only the correct reasoning path (ideal logic).	Calculator always giving exact answers, never guessing.	Prolog systems , theorem provers
Acting Rationally	Just the best action, doesn't care how humans do it.	GPS choosing fastest route (may not be the way you'd drive).	AlphaGo , self-driving cars
Acting Humanly	Mimic behavior, even if internal process differs.	Actor pretending to be	

Cognitive Science Models in University Contexts

1. How Students Study for Exams

- Human: Reads lecture notes → recalls related examples → attempts practice questions → makes mistakes → corrects → improves.
- Cognitive Model AI: A system that simulates those same mental steps.
- **Example**: A tutoring Al that doesn't just give you the correct answer, but also "shows its work" like a struggling student might.

Contrast: A calculator (rational model) skips all steps and instantly spits out the right answer.

2. Language Learning in Class

- **Human**: When learning a new language, you try rules, sometimes confuse grammar, and refine over time
- Cognitive Model AI: An AI language tutor that imitates these mistakes and learns grammar step by step
- **Example**: **Duolingo** partially models human memory it predicts when you'll forget a word and reminds you.

Contrast: Google Translate (weak AI) doesn't "learn like you do," it just outputs the translation.

3. Problem-Solving in Group Projects

- **Human Teams**: Break problems into smaller parts, argue over solutions, backtrack when wrong.
- Cognitive Model AI: A simulation of a "team of agents" that works through the same stages.
- **Example**: **Soar architecture** has been used in simulations of group decision-making, similar to student project meetings.

Lec01.md 9/2/2025

Contrast: An **optimization algorithm** (acting rationally) would just jump straight to the mathematically optimal solution.

4. Tutoring Systems at University

- Some universities use **Intelligent Tutoring Systems (ITS)** powered by cognitive models.
- They simulate how a student learns and forgets, so they know when to quiz you or which concept you're struggling with.
- Example: Carnegie Mellon's Cognitive Tutor (based on ACT-R) used in algebra courses.
- Students notice it feels like a **patient TA** who "knows" their thought process.

5. Memory Recall in Exams

- Human: During an exam, you sometimes recall in stages: first a vague idea → then a detail → then the
 full formula.
- Cognitive Model AI: Models this "layered recall" process.
- **Example**: In cognitive psychology experiments, AI systems predict the **Ebbinghaus forgetting curve** (how memory fades over time).

Summary with Analogy

Cognitive science models are like the **professor's brain twin**— they don't just grade the final answer, they're trying to **understand how you solved it**.