Name:

USC ID:

Notes:

- Write your name and ID number in the spaces above.
- No books, cell phones or other notes are permitted. Only one letter size cheat sheet (back and front) and a calculator are allowed.
- Problems are not sorted in terms of difficulty. Please avoid guess work and long and irrelevant answers.
- Show all your work and your final answer. Simplify your answer as much as you can.
- Open your exam only when you are instructed to do so.
- The exam has 5 questions, 9 pages, and 20 points extra credit. However, your grade cannot exceed 100/100.
- In online exams, legible copies SCANNED via phone applications must be submitted, not pictures of answer sheets.
- Make sure you submit ALL pages of your answers. Answers submitted after the exam is adjourned WILL NOT BE ACCEPTED.

Score	Earned
	Lainea
25	
30	
25	
20	
20	
120	
	30 25 20 20

- 1. A regression analysis task relating test scores (Y) to leisure hours (X) produced the following fitted model: $\hat{y} = 25 0.5x$.
 - (a) What is the fitted value of the response variable corresponding to x = 7?
 - (b) What is the residual corresponding to the data point with x = 3 and y = 30?
 - (c) If x increases 3 units, how does \hat{y} change?
 - (d) An additional test score is to be obtained for a new observation at x = 6. Would the test score for the new observation necessarily be 22? Explain.
 - (e) The residual sums of squares (RSS) for this model was found to be 7. If there were n = 16 observations, provide an estimate for $\sigma^2 = \text{Var}(\epsilon)$.
 - (f) If the standard error for $\hat{\beta}_1$ was calculated to be 0.1. Is the predictor statistically significant?
 - (g) Rewrite the regression equation in terms of z where z is training time measured in seconds plus one second. Is this new predictor statistically significant. You must argue using statistics, not subjectively.

2. The following dataset was collected to classify people who evade taxes:

Tax ID	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	122 K	No
2	No	Married	77 K	No
3	No	Married	106 K	No
4	No	Single	88 K	Yes
5	Yes	Divorced	210 K	No
6	No	Single	72 K	No
7	Yes	Married	117 K	No
8	No	Married	60 K	No
9	No	Divorced	90 K	Yes
10	No	Single	85 K	Yes

Considering relevant features in the table (only one feature is not relevant), assume that the features are *conditionally independent*. Determine to what class the Naïve Bayes' classifier assigns the test point (Yes, Married, 70K). Assume Gaussianity for continuous features and use Laplace correction for discrete features.

3. Consider the following dataset:

Index	X_1	X_2	Y
1	0	0	1
2	1	0	2
3	0	1	3
4	1	1	2

We wish to fit a multinomial regression model to this dataset.

- (a) Write down the likelihood function for this dataset. Use one parameter vector $(\beta_{0k}, \beta_{1k}, \dots, \beta_{pk}), k = 1, 2, 3$ for each class.
- (b) Does this problem have a unique set of β 's as its solution?

4. Consider the training set $\{2,3,8\}$. There are 10 distinct bootstrap samples with the same size that can be drawn from this training set. (For example, $\{2,3,3\}$ is not distinct from $\{3,3,2\}$). Using those bootstrap samples, build an 80% bootstrap confidence interval for the range, which is defined as the maximum of data minus their minimum.

- 5. Consider K-NN using Euclidean distance on the following data set (each point belongs to one of two classes: + and \circ).
 - (a) What is the leave one out cross validation error when using 1-NN?
 - (b) Which of the following values of k leads to the minimum leave-one-out cross validation error: 3, 5 or 9? What is the error for that k? (If there is a tie, please elaborate)

Midterm Exam DSCI 552, Instructor: Mohammad Reza Rajati June 24, 2022

Scratch paper

Name:

USC ID:

Midterm Exam DSCI 552, Instructor: Mohammad Reza Rajati June 24, 2022

Scratch paper

Name:

USC ID:

Upper Critical Values of Student's t Distribution with ν Degrees of Freedom

For selected probabilities, α , the table shows the values $t_{\nu,\alpha}$ such that $P(t_{\nu} > t_{\nu,\alpha}) = \alpha$, where t_{ν} is a Student's t random variable with ν degrees of freedom. For example, the probability is .10 that a Student's t random variable with 10 degrees of freedom exceeds 1.372.

Probability of Exceeding the Critical Value							
ν	0.10	0.05	0.025	0.01	0.005	0.001	
1	3.078	6.314	12.706	31.821	63.657	318.313	
2	1.886	2.920	4.303	6.965	9.925	22.327	
3	1.638	2.353	3.182	4.541	5.841	10.215	
4	1.533	2.132	2.776	3.747	4.604	7.173	
5	1.476	2.015	2.571	3.365	4.032	5.893	
6	1.440	1.943	2.447	3.143	3.707	5.208	
7	1.415	1.895	2.365	2.998	3.499	4.782	
8	1,397	1.860	2.306	2.896	3.355	4,499	
9	1.383	1.833	2.262	2.821	3.250	4.296	
10	1.372	1.812	2.228	2.764	3.169	4.143	
11	1.363	1.796	2.201	2.718	3.106	4.024	
12	1.356	1.782	2.179	2.681	3.055	3.929	
13	1.350	1.771	2.160	2.650	3.012	3.852	
14	1.345	1.761	2.145	2.624	2.977	3.787	
15	1.341	1.753	2.131	2.602	2.947	3.733	
16	1.337	1.746	2.120	2.583	2.921	3.686	
17	1.333	1.740	2.110	2.567	2.898	3.646	
18	1.330	1.734	2.101	2.552	2.878	3.610	
19	1.328	1.729	2.093	2.539	2.861	3.579	
20	1.325	1.725	2.086	2.528	2.845	3.552	
21	1.323	1.721	2.080	2.518	2.831	3.527	
22	1,321	1.717	2.074	2.508	2.819	3.505	
23	1.319	1.714	2.069	2.500	2.807	3.485	
24	1.318	1.711	2.064	2.492	2.797	3.467	
25	1.316	1.708	2.060	2.485	2.787	3.450	
26	1.315	1.706	2.056	2.479	2.779	3.435	
27	1.314	1.703	2.052	2.473	2.771	3.421	
28	1.313	1.701	2.048	2.467	2.763	3.408	
29	1.311	1.699	2.045	2.462	2.756	3.396	
30	1.310	1.697	2.042	2.457	2.750	3.385	
40	1.303	1.684	2.021	2.423	2.704	3.307	
60	1.296	1.671	2.000	2.390	2.660	3.232	
100	1.290	1.660	1.984	2.364	2.626	3.174	
09	1.282	1.645	1.960	2.326	2.576	3.090	
ν	0.10	0.05	0.025	0.01	0.005	0.001	