Relatório 1: Distribuição de potencial e campo elétrico

Ana Lívia Viscondi Silva - RA 173183 Pedro Sader Azevedo - RA 243245 Yasmim Freitas Santos- RA 248535 Yuan Shi Ki - RA 195766

1. TEXTO PRINCIPAL

Neste experimento vamos explorar a distribuição de potencial e de campo elétrico entre placas condutoras, bem como o efeito de pontas e de aros colocados entre essas placas.

Para esse fim, utilizamos uma cuba de vidro preenchida com solução de sulfato de cobre com placas de cobre posicionadas em faces opostas e ligadas a uma fonte de tensão elétrica. Utilizando um multímetro conectado a um eletrodo de tensão "nula" e a uma ponta de prova, tiramos medidas de tensão na região entre os eletrodos apoiando a ponteira sobre uma tabela de coordenadas com dimensões 20 cm por 24 cm e origem no canto inferior esquerdo (vide Fig. 1(b)), de 2 cm em 2 cm. Esse procedimento foi repetido em três configurações de eletrodos: placas paralelas, placas paralelas com uma ponta, e placas paralelas com um aro. Assim, está claro que a variável independente de cada experimento foi a posição da ponteira e variável dependente foi a tentão elétrica. Por fim, os dados coletados foram usados para gerar gráficos de campo e de potencial elétrico, os quais foram visualmente analisados para avaliar as particularidades de configuração eletródica.

Ao elaborar esse procedimento, nos questionamos se a angulação da ponteira no líquido teria alguma influência sobre as medidas, visto que a solução de sulfato de cobre é homogênea e isotrópica. Como essa poderia se tornar uma importante fonte de incerteza para nossas medidas, decidimos investigá-la empiricamente antes de nossa análise principal. Para isso, tiramos medidas de tensão com a ponteira posicionada no mesmo ponto da tabela de coordenadas (x = 12,5; y = 12,5) e registramos a leitura do multímetro conforme variamos a sua inclinação. A partir disso, descobrimos que a angulação da ponteira tem efeito significativo nas medidas de tensão, principalmente quando ela é inclinada em direção às placas de cobre (na direção y do nosso sistema de coordenadas). Por esse motivo, decidimos considerá-la como incerteza sistemática e avaliamos numericamente suas componentes vertical e horizontal (vide Tab. 1.1). Como testamos apenas um ponto de nosso sistema de coordenadas, não sabemos se as flutuações de tensão seriam as mesmas em toda a região entre as placas condutoras. No entanto, suspeitamos que esse efeito seja devido a variação de área de contato entre a ponteira e o líquido, então é provável que ele seja consistente em diferentes pontos.

Agora sabendo do efeito da angulação da ponteira, prosseguimos para nosso experimento principal buscando mantê-la ortogonal à superfície da cuba. Feito isso, elaboramos os gráficos que constam na Fig. 2. Observe que, no gráfico do experimento com placas paralelas (Fig. 2(a)), é perceptível o efeito de bordas na região próxima às extremidades das placas de cobre. Isso significa que as linhas equipotenciais naquela região assumem um formato mais parecido com o contorno das placas e, assim, o campo elétrico torna-se menos uniforme. No gráfico do experimento com ponta observamos uma densidade muito maior de linhas equipotenciais nas proximidades do vértice, o que pode ser explicado pelo [apropriadamente nomeado] "Efeito de Ponta". Esse comportamento ocorre, pois objetos pontudos têm seu potencial de carga concentrado nas suas extremidades devido a forte interação repulsiva entre as cargas aglomeradas nessa parte. Finalmente, no gráfico do experimento com aro é possível notar uma drástica diminuição no potencial elétrico na região interna ao aro. Isso acontece por causa do "Efeito de Gaiola de Faraday", que denota a maneira como cargas naturalmente presentes em condutores fechados se rearranjam em resposta a um campo elétrico externo para anular o campo elétrico resultante em seus interiores.

Um aspecto comum aos três gráficos foi um eixo de simetria na mediatriz das placas, ou seja, perpendicular a elas e passando por seus centros (esse eixo pode ser observado claramente à altura de 12,5 cm). Para investigar isso mais a fundo, repetimos o procedimento anteriormente descrito mas apenas no eixo de simetria e usando uma resolução de 0,5 cm ao invés de 2,0 cm a fim de analisar o comportamento dos potenciais elétricos. Com isso, elaboramos o gráfico que consta na Fig. 3, onde pode-se perceber que o experimento das placas paralelas apresenta um gráfico praticamente linear e monotonamente decrescente, o da placa com ponta também é monotonamente decrescente mas inicialmente decresce em ritmo mais acelerado, e o das placas com aro mostrou um gráfico separado em 3 partes, sendo a primeira e última, lineares decrescentes e a segunda (de 5 a 15 cm, em justaposição às coordenadas do aro) linear com tensão constante. Um parâmetro interessante para comparar os efeitos da ponta e

do aro no potencial elétrico são medições de tensão tiradas no mesmo ponto, mas em duas situações distintas: próximo a ponta condutora e no interior no aro. L 2.1 ponto que atende a ambas condições é (x = 12,5 cm; y = 6,0 cm) que estava sob tensão de 3,338 \pm 0,02. V na primeira situação e de 1,853 \pm 0,02. V na segunda. O experimento das placas paralelas sem mais nenhum condutor pode servir de "controle" nesse caso, visto que seu valor de tensão no mesmo ponto, de 2,668 \pm 0,02. V, foi menor que a tensão com ponta e maior que a tensão com aro, como esperado.

Após toda esta análise, concluímos que a quantidade de pontos que escolhemos para o estudo foi suficiente para obtenção de resultados conclusivos, que atenderam aos objetivos do experimento. Da mesma maneira, o aparato e o procedimento experimentais, juntos à análise de incertezas sobre a ponteira, foram adequados para a compreensão e a validez dos dados coletados.

2. FIGURAS E TABELAS (até 02 páginas)

Fig. 1 (a, b, c): Fotos do aparato experimental, tabela de coordenadas utilizada, e da espessura da ponteira.

Fig. 2 (a, b, c): Gráficos de curvas equipotenciais para diferentes configurações de eletrodos.

Fig. 3 (a, b, c): Gráficos de regiões de potencial elétrico para diferentes configurações de eletrodos.

Fig. 3: Gráfico de potencial elétrico em função da posição da ponteira, para as três configurações.

3. INCERTEZAS

Tab.	1.1:	Incertezas	associadas	às	medidas	de	tensão elétric	а

Fonte de incerteza	f.d.p.	Tipo de avaliação	Referência	Faixa de valores plausíveis (V)	Incerteza-padrão (V)		
Angulação vertical da ponteira	Triangular	В	Vídeo 5	a = 2,105 - 2,006 = 0,099	$\frac{0,099}{2\sqrt{6}} = 0,020$		
Angulação horizontal da ponteira	Triangular	В	Vídeo 5	a = 2,058 - 2,016 = 0,042	$\frac{0.042}{2\sqrt{6}} = 0,009$		
Medidas repetidas	Gaussiana	A	<u>Vídeo 5</u>	N/A, vide Tab. 1.2	0, 003		
Leitura do multímetro	Retangular	В	Manual do multímetro	a = 0.001	Algarismo insignificante		
Calibração do multímetro	Retangular	В	Manual do multímetro	$a = (0,003 \times \bar{U}) + (2 \times 0,001)$	$\frac{0,014}{\sqrt{3}} = 0,008*$		
Incerteza-padrão combinada: $u_U = 0,02$ 4.1							

^{*} Utilizamos U = 4,000 V para ilustrar o "pior caso" da incerteza de calibração do multímetro, visto que parte dela é proporcional à medida de tensão e que o maior valor assumido por essa grandeza foi em torno de 4,000 V em todos os nossos experimentos. Para as demais análises, adicionamos uma coluna de incertezas (em função da tensão coletada na mesma linha) às tabelas de medidas.

Tab. 1.2: Desenvolvimento de contas para a incerteza de medidas repetidas de tensão

Explicação	Número de medidas de tensão	Tensão média (V)	Desvio padrão da tensão (V)	Incerteza padrão (V)
Símbolo	n	U média	$\sigma_{_{U}}$	$\frac{\sigma_{_U}}{\sqrt{n}}$
Valor	6	2, 049	0, 008	0,003

Tab. 1.3: Incertezas associadas ao posicionamento da ponteira.

Fonte de incerteza	f.d.p.	Tipo de avaliação	Referência	Faixa de valores plausíveis (m)	Incerteza-padrão (m)		
Espessura da ponteira	Retangular	В	Fig. 1(c)	a = 0,004	$\frac{0,04}{2\sqrt{6}} = 0,001$		
Leitura da régua	Triangular	В	Fig. 1(c)	a = 0,001	Algarismo insignificante		
Incerteza-padrão combinada: $u_p = 0,001 m$							

Índice de comentários

- 2.1 As incertezas devem ter um único algarismo significativo diferente de zero.
- 2.2 Faltou o cálculo do módulo do campo elétrico nas várias configurações.
- 3.1 Faltaram as três tabelas de dados.
- 4.1 Só um algarismo significativo diferente de zero!