Name: Ananya Godse **SAP ID:** 60009220161 **Batch:** D1 – 2

Solar Power Generation Forecasting

Data Description:

This data has been gathered at two solar power plants in India over a 34 day period. It has two pairs of files - each pair has one power generation dataset and one sensor readings dataset. The power generation datasets are gathered at the inverter level - each inverter has multiple lines of solar panels attached to it. The sensor data is gathered at a plant level - single array of sensors optimally placed at the plant.

Plant_1_Generation_Data.csv (4.84 MB)

Plant_1_Weather_Sensor_Data.csv (287.85 kB)

平 1.5

Detail Compact Column

6 of 6 colun

About this file

Add Sugge:

Weather sensor data gathered for one solar plant every 15 minutes over a 34 days period.

Date and time for each observation. Observations recorded at 15 minute intervals.

♥ PLANT_ID
Flant ID - this will be common for the entire file.

A SOURCE_KEY
Stands for the sensor panel id. This will be common for the entire file because there's only one sensor panel for the plant.

AMBIENT_TEMPE... = This is the ambient temperature at the plant.

1 unique value

Plant_2_Generation_Data.csv (5.81 MB) Detail Compact Column 7 of 7 colur Add Sugge: About this file Solar power generation data for one plant gathered at 15 minutes intervals over a 34 days period. A SOURCE_KEY # DC_POWER = ☐ DATE_TIME ⇔ PLANT_ID Amount of DC power Plant ID - this will be Source key in this file Date and time for each observation. Observations common for the entire file. stands for the inverter id. generated by the inverter recorded at 15 minute (source_key) in this 15 intervals. minute interval. Units kW. 81aHJ1q11NBPMrL 5% 9kRcWv60rDACzjR 5% Other (61180) 90% 2020-05-15 2020-06-18 4.14m 4.14m 1.42k = # TOTAL_YIELD = # AC_POWER # DAILY_YIELD Amount of AC power Daily yield is a cumulative This is the total yield for generated by the inverter sum of power generated the inverter till that point (source_key) in this 15 on that day, till that point in time. minute interval. Units in time. kW.

9.87k

1.39k

2.25b

Plant_2_Weather_Sensor_Data.csv (301.44 kB)

Detail Compact Column 6 of 6 colur

About this file

Add Sugge

Weather sensor data gathered for one solar plant every 15 minutes over a 34 days period.

☐ DATE_TIME Date and time for each observation. Observations recorded at 15 minute

intervals.

 PLANT_ID Plant ID - this will be common for the entire file.

△ SOURCE_KEY Stands for the sensor panel id. This will be common for the entire file because there's only one sensor panel for the plant.

AMBIENT_TEMPE... = This is the ambient temperature at the plant.

2020-05-15 2020-06-18

1 unique value

MODULE_TEMPE... =

There's a module (solar panel) attached to the sensor panel. This is the temperature reading for that module.

IRRADIATION

Amount of irradiation for the 15 minute interval.

Name: Ananya Godse SAP ID: 60009220161

Importing the necessary libraries

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from datetime import datetime
```

Importing the power generation data and weather sensor data for both plants

```
In [2]: plant1_generation = pd.read_csv(r"Solar Power Generation Data\Plant_1_Generation_Data.csv")
    print("PLANT 1 GENERATION DATA")
    display(plant1_generation)

plant1_sensor = pd.read_csv(r"Solar Power Generation Data\Plant_1_Weather_Sensor_Data.csv")
    print("PLANT 1 WEATHER SENSOR DATA")
    display(plant1_sensor)

plant2_generation = pd.read_csv(r"Solar Power Generation Data\Plant_2_Generation_Data.csv")
    print("PLANT 2 GENERATION DATA")
    display(plant2_generation)

plant2_sensor = pd.read_csv(r"Solar Power Generation Data\Plant_2_Weather_Sensor_Data.csv")
    print("PLANT 2 WEATHER SENSOR DATA")
    display(plant1_sensor)
```

PLANT 1 GENERATION DATA

	DATE_TIME	PLANT_ID	SOURCE_KEY	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YIELD
0	15-05-2020 00:00	4135001	1BY6WEcLGh8j5v7	0.0	0.0	0.000	6259559.0
1	15-05-2020 00:00	4135001	1IF53ai7Xc0U56Y	0.0	0.0	0.000	6183645.0
2	15-05-2020 00:00	4135001	3PZuoBAID5Wc2HD	0.0	0.0	0.000	6987759.0
3	15-05-2020 00:00	4135001	7JYdWkrLSPkdwr4	0.0	0.0	0.000	7602960.0
4	15-05-2020 00:00	4135001	McdE0feGgRqW7Ca	0.0	0.0	0.000	7158964.0
							
68773	17-06-2020 23:45	4135001	uHbuxQJl8lW7ozc	0.0	0.0	5967.000	7287002.0
68774	17-06-2020 23:45	4135001	wCURE6d3bPkepu2	0.0	0.0	5147.625	7028601.0
68775	17-06-2020 23:45	4135001	z9Y9gH1T5YWrNuG	0.0	0.0	5819.000	7251204.0
68776	17-06-2020 23:45	4135001	zBIq5rxdHJRwDNY	0.0	0.0	5817.000	6583369.0
68777	17-06-2020 23:45	4135001	zVJPv84UY57bAof	0.0	0.0	5910.000	7363272.0

68778 rows × 7 columns

PLANT 1 WEATHER SENSOR DATA

		DATE_TIME	PLANT_ID	SOURCE_KEY	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE	IRRADIATION
	0	2020-05-15 00:00:00	4135001	HmiyD2TTLFNqkNe	25.184316	22.857507	0.0
	1	2020-05-15 00:15:00	4135001	HmiyD2TTLFNqkNe	25.084589	22.761668	0.0
	2	2020-05-15 00:30:00	4135001	HmiyD2TTLFNqkNe	24.935753	22.592306	0.0
	3	2020-05-15 00:45:00	4135001 HmjyD2111FNakNe	24.846130	22.360852	0.0	
	4	2020-05-15 01:00:00	4135001	HmiyD2TTLFNqkNe	24.621525	22.165423	0.0
3	3177	2020-06-17 22:45:00	4135001	HmiyD2TTLFNqkNe	22.150570	21.480377	0.0
3	3178	2020-06-17 23:00:00	4135001	HmiyD2TTLFNqkNe	22.129816	21.389024	0.0
3	3179	2020-06-17 23:15:00	4135001	HmiyD2TTLFNqkNe	22.008275	20.709211	0.0
3	3180	2020-06-17 23:30:00	4135001	HmiyD2TTLFNqkNe	21.969495	20.734963	0.0
3	3181	2020-06-17 23:45:00	4135001	HmiyD2TTLFNqkNe	21.909288	20.427972	0.0

3182 rows × 6 columns

PLANT 2 GENERATION DATA

	DATE_TIME	PLANT_ID	SOURCE_KEY	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YIELD
0	2020-05-15 00:00:00	4136001	4UPUqMRk7TRMgml	0.0	0.0	9425.000000	2.429011e+06
1	2020-05-15 00:00:00	4136001	81aHJ1q11NBPMrL	0.0	0.0	0.000000	1.215279e+09
2	2020-05-15 00:00:00	4136001	9kRcWv60rDACzjR	0.0	0.0	3075.333333	2.247720e+09
3	2020-05-15 00:00:00	4136001	Et9kgGMDl729KT4	0.0	0.0	269.933333	1.704250e+06
4	2020-05-15 00:00:00	4136001	IQ2d7wF4YD8zU1Q	0.0	0.0	3177.000000	1.994153e+07
67693	2020-06-17 23:45:00	4136001	q49J1lKaHRwDQnt	0.0	0.0	4157.000000	5.207580e+05
67694	2020-06-17 23:45:00	4136001	rrq4fwE8jgrTyWY	0.0	0.0	3931.000000	1.211314e+08
67695	2020-06-17 23:45:00	4136001	vOuJvMaM2sgwLmb	0.0	0.0	4322.000000	2.427691e+06
67696	2020-06-17 23:45:00	4136001	xMblugepa2P7lBB	0.0	0.0	4218.000000	1.068964e+08
67697	2020-06-17 23:45:00	4136001	xoJJ8DcxJEcupym	0.0	0.0	4316.000000	2.093357e+08

67698 rows × 7 columns

PLANT 2 WEATHER SENSOR DATA

	DATE_TIME	PLANT_ID	SOURCE_KEY	AMBIENT_TE	MPERATURE	MODULE_TEN	IPERATURE	IRRADIATION
	o 2020-05-15 00:00:00	4135001	HmiyD2TTLFNqkNe		25.184316		22.857507	0.0
	2020-05-15 00:15:00	4135001	HmiyD2TTLFNqkNe		25.084589		22.761668	0.0
	2020-05-15 00:30:00	4135001	HmiyD2TTLFNqkNe		24.935753		22.592306	0.0
	3 2020-05-15 00:45:00	4135001	HmiyD2TTLFNqkNe		24.846130		22.360852	0.0
	4 2020-05-15 01:00:00	4135001	HmiyD2TTLFNqkNe	24.621525			22.165423	0.0
3177 2020-06-17 22:45:00 4135001 HmiyD2TTLFNqkNe			22.150570		21.480377	0.0		
317	8 2020-06-17 23:00:00	4135001	HmiyD2TTLFNqkNe	22.129816		21.389024		0.0
317	9 2020-06-17 23:15:00	4135001	HmiyD2TTLFNqkNe	22.008275 20.7092		20.709211	0.0	
318	o 2020-06-17 23:30:00	4135001	HmiyD2TTLFNqkNe	21.969495			20.734963	0.0
318	2020-06-17 23:45:00	4135001	HmiyD2TTLFNqkNe		21.909288	20.427972		0.0
3182	2 rows × 6 colur	nns						
pla	nt1_generatio	n.head()						
	DATE_TIME	PLANT_ID	SOURCE_KEY	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YIEL	.D
0	15-05-2020 00:00	4135001	1BY6WEcLGh8j5v7	0.0	0.0	0.0	6259559	0.0
1	15-05-2020 00:00	4135001	1IF53ai7Xc0U56Y	0.0	0.0	0.0	6183645	5.0
2	15-05-2020 00:00	4135001	3PZuoBAID5Wc2HD	0.0	0.0	0.0	6987759	0.0
3	15-05-2020 00:00	4135001	7JYdWkrLSPkdwr4	0.0	0.0	0.0	7602960	0.0
4	15-05-2020 00:00	4135001	McdE0feGgRqW7Ca	0.0	0.0	0.0	7158964	1.0
pla	nt1_sensor.he	ad()						
	DATE_TIME	PLANT_ID	SOURCE_KEY	AMBIENT_TE	MPERATURE	MODULE_TEN	IPERATURE	IRRADIATION
0	2020-05-15 00:00:00	4135001	HmiyD2TTLFNqkNe		25.184316		22.857507	0.0

Ιn	[4]:	plant1_sensor.head())
----	------	----------------------	---

In [3]:

Out[3]:

Out[4]:		DATE_TIME	PLANT_ID	SOURCE_KEY	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE	IRRADIATION
	0	2020-05-15 00:00:00	4135001	HmiyD2TTLFNqkNe	25.184316	22.857507	0.0
	1	2020-05-15 00:15:00	4135001	HmiyD2TTLFNqkNe	25.084589	22.761668	0.0
	2	2020-05-15 00:30:00	4135001	HmiyD2TTLFNqkNe	24.935753	22.592306	0.0
	3	2020-05-15 00:45:00	4135001	HmiyD2TTLFNqkNe	24.846130	22.360852	0.0
	4	2020-05-15 01:00:00	4135001	HmiyD2TTLFNqkNe	24.621525	22.165423	0.0

In [5]: plant2_generation.head()

```
Out[5]:
                DATE_TIME PLANT_ID
                                              SOURCE_KEY DC_POWER AC_POWER DAILY_YIELD TOTAL_YIELD
         0 2020-05-15 00:00:00
                               4136001 4UPUqMRk7TRMgml
                                                                                 9425.000000 2.429011e+06
         1 2020-05-15 00:00:00
                               4136001
                                          81aHJ1q11NBPMrL
                                                                  0.0
                                                                             0.0
                                                                                    0.000000 1.215279e+09
         2 2020-05-15 00:00:00
                                          9kRcWv60rDACzjR
                                                                                 3075.333333 2.247720e+09
                               4136001
                                                                  0.0
                                                                             0.0
         3 2020-05-15 00:00:00
                               4136001
                                          Et9kgGMDI729KT4
                                                                  0.0
                                                                                  269.933333 1.704250e+06
         4 2020-05-15 00:00:00
                               4136001
                                         IQ2d7wF4YD8zU1Q
                                                                  0.0
                                                                             0.0 3177.000000 1.994153e+07
```

In [6]: plant2_sensor.head()

Out[6]:		DATE_TIME	PLANT_ID	SOURCE_KEY	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE	IRRADIATION
	0	2020-05-15 00:00:00	4136001	iq8k7ZNt4Mwm3w0	27.004764	25.060789	0.0
	1	2020-05-15 00:15:00	4136001	iq8k7ZNt4Mwm3w0	26.880811	24.421869	0.0
	2	2020-05-15 00:30:00	4136001	iq8k7ZNt4Mwm3w0	26.682055	24.427290	0.0
	3	2020-05-15 00:45:00	4136001	iq8k7ZNt4Mwm3w0	26.500589	24.420678	0.0
	4	2020-05-15 01:00:00	4136001	iq8k7ZNt4Mwm3w0	26.596148	25.088210	0.0

In [7]: plant1_generation.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 68778 entries, 0 to 68777
Data columns (total 7 columns):

Column Non-Null Count Dtype

O DATE_TIME 68778 non-null object

PLANT_ID 68778 non-null int64

SOURCE_KEY 68778 non-null object

DC_POWER 68778 non-null float64

AC_POWER 68778 non-null float64

DAILY_YIELD 68778 non-null float64

TOTAL_YIELD 68778 non-null float64

dtypes: float64(4), int64(1), object(2)

memory usage: 3.7+ MB

In [8]: plant1_sensor.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3182 entries, 0 to 3181
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	DATE_TIME	3182 non-null	object
1	PLANT_ID	3182 non-null	int64
2	SOURCE_KEY	3182 non-null	object
3	AMBIENT_TEMPERATURE	3182 non-null	float64
4	MODULE_TEMPERATURE	3182 non-null	float64
5	IRRADIATION	3182 non-null	float64

dtypes: float64(3), int64(1), object(2)

memory usage: 149.3+ KB

In [9]: plant2_generation.info()

```
<class 'pandas.core.frame.DataFrame'>
          RangeIndex: 67698 entries, 0 to 67697
          Data columns (total 7 columns):
           # Column Non-Null Count Dtype
          --- -----
                             -----
          O DATE_TIME 67698 non-null object
1 PLANT_ID 67698 non-null int64
2 SOURCE_KEY 67698 non-null object
3 DC_POWER 67698 non-null float64
           4 AC_POWER 67698 non-null float64
           5 DAILY_YIELD 67698 non-null float64
           6 TOTAL_YIELD 67698 non-null float64
          dtypes: float64(4), int64(1), object(2)
          memory usage: 3.6+ MB
In [10]: plant2_sensor.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 3259 entries, 0 to 3258
          Data columns (total 6 columns):
                           Non-Null Count Dtype
           # Column
           0 DATE_TIME 3259 non-null object
1 PLANT_ID 3259 non-null int64
2 SOURCE_KEY 3259 non-null object
           3 AMBIENT_TEMPERATURE 3259 non-null float64
           4 MODULE_TEMPERATURE 3259 non-null float64
           5
              IRRADIATION
                                     3259 non-null float64
          dtypes: float64(3), int64(1), object(2)
          memory usage: 152.9+ KB
```

Observations:

- 1. DATE_TIME column data type needs to converted to Date time for all the datasets.
- 2. We know from the data description that the SOURCE_KEY column in the generation datasets is the Inverter ID and the Sensor Panel ID in the Weather Sensor Datasets. We'll rename the columns.

```
In [11]: plant1_generation["PLANT_ID"].value_counts()
Out[11]: PLANT_ID
     4135001    68778
     Name: count, dtype: int64
```

Observations:

As we know from data description and as proven above, all the records from the PLANT 1 GENERATION DATA belong to Plant 1. Since this doesn't provide any actionable insight, we'll drop the column.

```
In [12]: plant1_generation["SOURCE_KEY"].value_counts()
         SOURCE_KEY
Out[12]:
         bvBOhCH3iADSZrv
                         3155
         1BY6WEcLGh8j5v7
                         3154
         7JYdWkrLSPkdwr4
                           3133
         VHMLBKoKgIrUVDU
                           3133
         ZnxXDlPa8U1GXgE
                           3130
         ih0vzX44oOqAx2f
                           3130
         z9Y9gH1T5YWrNuG
                           3126
         wCURE6d3bPkepu2
                          3126
         uHbuxQJl8lW7ozc 3125
         pkci93gMrogZuBj
                           3125
         iCRJ16heRkivqQ3
                           3125
         rGa61gmuvPhdLxV
                           3124
         sjndEbLyjtCKgGv
                           3124
         McdE0feGgRqW7Ca
                           3124
         zVJPv84UY57bAof
                           3124
         ZoEaEvLYb1n2s0q
                           3123
         1TF53ai7Xc0U56Y
                           3119
         adLQv1D726eNBSB
                           3119
         zBIq5rxdHJRwDNY
                           3119
                           3118
         WRmjgnKYAwPKWDb
         3PZuoBAID5Wc2HD
                         3118
         YxYtjZvoooNbGkE 3104
         Name: count, dtype: int64
```

As we know from the data description, the SOURCE_KEY column in the PLANT 1 GENERATION DATA SET has the INVERTER ID

```
In [13]: print(f"No. of Inverters in Plant 1: {len(plant1_generation['SOURCE_KEY'].value_counts())}")
         No. of Inverters in Plant 1: 22
In [14]: plant1_sensor["PLANT_ID"].value_counts()
         PLANT_ID
Out[14]:
         4135001
                    3182
         Name: count, dtype: int64
         All records in PLANT 1 WEATHER SENSOR DATA belong to Plant 1. Since this doesn't provide any actionable
         insight, we'll be dropping this column.
In [15]: plant1_sensor["SOURCE_KEY"].value_counts()
         SOURCE_KEY
Out[15]:
         HmiyD2TTLFNqkNe
                             3182
         Name: count, dtype: int64
         As we know from the data description, the SOURCE_KEY column in the PLANT 1 WEATHER SENSOR DATA SET has
         the SENSOR PANEL ID and there is only one Sensor Panel in Plant 1. So since it doesn't provide any insight we
         can drop the column.
In [16]: plant2_generation["PLANT_ID"].value_counts()
         PLANT_ID
Out[16]:
         4136001
                    67698
         Name: count, dtype: int64
         Observations:
         As we know from data description and as proven above, all the records from the PLANT 2 GENERATION DATA
         belong to Plant 2. Since this doesn't provide any actionable insight, we'll be dropping the column.
In [17]: plant2_generation["SOURCE_KEY"].value_counts()
         SOURCE_KEY
Out[17]:
         xoJJ8DcxJEcupym
                             3259
         WcxssY2VbP4hApt
                             3259
                           3259
         9kRcWv60rDACzjR
         vOuJvMaM2sgwLmb
                           3259
         rrq4fwE8jgrTyWY
                            3259
         LYwnQax7tkwH5Cb
                             3259
         L1T2YUhhzqhg5Sw
                             3259
         q49J1IKaHRwDQnt
                             3259
         oZZkBaNadn6DNKz
                             3259
         PeE6FRyGXUgsRhN
                             3259
         81aHJ1q11NBPMrL
                            3259
         V94E5Ben1TlhnDV
                            3259
         oZ35aAeoifZaOzV
                             3195
         4UPUqMRk7TRMgml
                             3195
         Qf4GUc1pJu5T6c6
                             3195
         Mx2yZCDsyf6DPfv
                            3195
         Et9kgGMD1729KT4
                            3195
         Quc1TzYxW2pYoWX
                            3195
         mqwcsP2rE7J0TFp
                             2355
         NgDl19wMapZy17u
                             2355
         IQ2d7wF4YD8zU1Q
                             2355
         xMbIugepa2P7lBB
                             2355
         Name: count, dtype: int64
         As we know from the data description, the SOURCE_KEY column in the PLANT 2 GENERATION DATA SET has the
         INVERTER ID
In [18]: | print(f"No. of Inverters in Plant 2: {len(plant2_generation['SOURCE_KEY'].value_counts())}")
         No. of Inverters in Plant 2: 22
```

In [19]: plant2_sensor["PLANT_ID"].value_counts()

PLANT_ID Out[19]: 4136001 3259

Name: count, dtype: int64

All records in PLANT 2 WEATHER SENSOR DATA belong to Plant 2. Since this doesn't provide any actionable insight, we'll be dropping this column.

In [20]: plant2_sensor["SOURCE_KEY"].value_counts()

SOURCE KEY Out[20]:

iq8k7ZNt4Mwm3w0 3259 Name: count, dtype: int64

As we know from the data description, the SOURCE_KEY column in the PLANT 2 WEATHER SENSOR DATA SET has the SENSOR PANEL ID and there is only one Sensor Panel in Plant 2. Since it doesn't provide any insight we can drop the column.

Renaming & Dropping Columns:

In [21]: plant1_generation.rename(columns={"SOURCE_KEY":"INVERTER_ID"}, inplace=True) plant1_generation

Out[21]:		DATE_TIME	PLANT_ID	INVERTER_ID	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YIELD
	0	15-05-2020 00:00	4135001	1BY6WEcLGh8j5v7	0.0	0.0	0.000	6259559.0
	1	15-05-2020 00:00	4135001	1IF53ai7Xc0U56Y	0.0	0.0	0.000	6183645.0
	2	15-05-2020 00:00	4135001	3PZuoBAID5Wc2HD	0.0	0.0	0.000	6987759.0
	3	15-05-2020 00:00	4135001	7JYdWkrLSPkdwr4	0.0	0.0	0.000	7602960.0
	4	15-05-2020 00:00	4135001	McdE0feGgRqW7Ca	0.0	0.0	0.000	7158964.0
	68773	17-06-2020 23:45	4135001	uHbuxQJl8lW7ozc	0.0	0.0	5967.000	7287002.0
	68774	17-06-2020 23:45	4135001	wCURE6d3bPkepu2	0.0	0.0	5147.625	7028601.0
	68775	17-06-2020 23:45	4135001	z9Y9gH1T5YWrNuG	0.0	0.0	5819.000	7251204.0
	68776	17-06-2020 23:45	4135001	zBIq5rxdHJRwDNY	0.0	0.0	5817.000	6583369.0
	68777	17-06-2020 23:45	4135001	zVJPv84UY57bAof	0.0	0.0	5910.000	7363272.0

68778 rows × 7 columns

In [22]: plant1_generation.drop("PLANT_ID", axis=1, inplace=True) plant1_generation

DATE_TIME INVERTER_ID DC_POWER AC_POWER DAILY_YIELD TOTAL_YIELD Out[22]: 0 15-05-2020 00:00 1BY6WEcLGh8j5v7 0.0 0.0 0.000 6259559.0 **1** 15-05-2020 00:00 1IF53ai7Xc0U56Y 0.0 0.0 0.000 6183645.0 **2** 15-05-2020 00:00 0.000 3PZuoBAID5Wc2HD 0.0 0.0 6987759.0 **3** 15-05-2020 00:00 7JYdWkrLSPkdwr4 0.0 0.0 0.000 7602960.0 4 15-05-2020 00:00 McdE0feGgRqW7Ca 0.0 0.0 0.000 7158964.0 **68773** 17-06-2020 23:45 uHbuxQJl8lW7ozc 0.0 0.0 5967.000 7287002.0 **68774** 17-06-2020 23:45 wCURE6d3bPkepu2 0.0 0.0 5147.625 7028601.0 **68775** 17-06-2020 23:45 z9Y9gH1T5YWrNuG 0.0 0.0 5819.000 7251204.0 **68776** 17-06-2020 23:45 zBIq5rxdHJRwDNY 0.0 0.0 5817.000 6583369.0 **68777** 17-06-2020 23:45 zVJPv84UY57bAof 0.0 0.0 5910.000 7363272.0

68778 rows × 6 columns

In [23]: plant1_sensor.drop(["SOURCE_KEY", "PLANT_ID"], axis=1, inplace=True)
plant1_sensor

Out[23]:		DATE_TIME	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE	IRRADIATION
	0	2020-05-15 00:00:00	25.184316	22.857507	0.0
	1	2020-05-15 00:15:00	25.084589	22.761668	0.0
	2	2020-05-15 00:30:00	24.935753	22.592306	0.0
	3	2020-05-15 00:45:00	24.846130	22.360852	0.0
	4	2020-05-15 01:00:00	24.621525	22.165423	0.0
	•••				
	3177	2020-06-17 22:45:00	22.150570	21.480377	0.0
	3178	2020-06-17 23:00:00	22.129816	21.389024	0.0
	3179	2020-06-17 23:15:00	22.008275	20.709211	0.0
	3180	2020-06-17 23:30:00	21.969495	20.734963	0.0
	3181	2020-06-17 23:45:00	21.909288	20.427972	0.0

3182 rows × 4 columns

In [24]: plant2_generation.rename(columns={"SOURCE_KEY":"INVERTER_ID"}, inplace=True)
 plant2_generation

Out[24]:		DATE_TIME	PLANT_ID	INVERTER_ID	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YIELD
	0	2020-05-15 00:00:00	4136001	4UPUqMRk7TRMgml	0.0	0.0	9425.000000	2.429011e+06
	1	2020-05-15 00:00:00	4136001	81aHJ1q11NBPMrL	0.0	0.0	0.000000	1.215279e+09
	2	2020-05-15 00:00:00	4136001	9kRcWv60rDACzjR	0.0	0.0	3075.333333	2.247720e+09
	3	2020-05-15 00:00:00	4136001	Et9kgGMDI729KT4	0.0	0.0	269.933333	1.704250e+06
	4	2020-05-15 00:00:00	4136001	IQ2d7wF4YD8zU1Q	0.0	0.0	3177.000000	1.994153e+07
	•••							
	67693	2020-06-17 23:45:00	4136001	q49J1IKaHRwDQnt	0.0	0.0	4157.000000	5.207580e+05
	67694	2020-06-17 23:45:00	4136001	rrq4fwE8jgrTyWY	0.0	0.0	3931.000000	1.211314e+08
	67695	2020-06-17 23:45:00	4136001	vOuJvMaM2sgwLmb	0.0	0.0	4322.000000	2.427691e+06
	67696	2020-06-17 23:45:00	4136001	xMblugepa2P7lBB	0.0	0.0	4218.000000	1.068964e+08
	67697	2020-06-17 23:45:00	4136001	xoJJ8DcxJEcupym	0.0	0.0	4316.000000	2.093357e+08

67698 rows × 7 columns

In [25]: plant2_generation.drop("PLANT_ID", axis=1, inplace=True)
plant2_generation

Out[25]:		DATE_TIME	INVERTER_ID	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YIELD
	0	2020-05-15 00:00:00	4UPUqMRk7TRMgml	0.0	0.0	9425.000000	2.429011e+06
	1	2020-05-15 00:00:00	81aHJ1q11NBPMrL	0.0	0.0	0.000000	1.215279e+09
	2	2020-05-15 00:00:00	9kRcWv60rDACzjR	0.0	0.0	3075.333333	2.247720e+09
	3	2020-05-15 00:00:00	Et9kgGMDl729KT4	0.0	0.0	269.933333	1.704250e+06
	4	2020-05-15 00:00:00	IQ2d7wF4YD8zU1Q	0.0	0.0	3177.000000	1.994153e+07
	67693	2020-06-17 23:45:00	q49J1IKaHRwDQnt	0.0	0.0	4157.000000	5.207580e+05
	67694	2020-06-17 23:45:00	rrq4fwE8jgrTyWY	0.0	0.0	3931.000000	1.211314e+08
	67695	2020-06-17 23:45:00	vOuJvMaM2sgwLmb	0.0	0.0	4322.000000	2.427691e+06
	67696	2020-06-17 23:45:00	xMblugepa2P7lBB	0.0	0.0	4218.000000	1.068964e+08
	67697	2020-06-17 23:45:00	xoJJ8DcxJEcupym	0.0	0.0	4316.000000	2.093357e+08

67698 rows × 6 columns

In [26]: plant2_sensor.drop(["SOURCE_KEY", "PLANT_ID"], axis=1, inplace=True)
plant2_sensor

Out[26]:		DATE_TIME	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE	IRRADIATION	
	0	2020-05-15 00:00:00	27.004764	25.060789	0.0	

0	2020-05-15 00:00:00	27.004764	25.060789	0.0
1	2020-05-15 00:15:00	26.880811	24.421869	0.0
2	2020-05-15 00:30:00	26.682055	24.427290	0.0
3	2020-05-15 00:45:00	26.500589	24.420678	0.0
4	2020-05-15 01:00:00	26.596148	25.088210	0.0
•••				
3254	2020-06-17 22:45:00	23.511703	22.856201	0.0
3255	2020-06-17 23:00:00	23.482282	22.744190	0.0
3256	2020-06-17 23:15:00	23.354743	22.492245	0.0
3257	2020-06-17 23:30:00	23.291048	22.373909	0.0
3258	2020-06-17 23:45:00	23.202871	22.535908	0.0

3259 rows × 4 columns

Handling Missing & Duplicate Values

```
In [27]: plant1_generation.isnull().sum()
         DATE_TIME
Out[27]:
         INVERTER_ID 0
DC_POWER 0
         DC_POWER
         AC_POWER
                       0
         DAILY_YIELD 0
         TOTAL_YIELD
         dtype: int64
In [28]: plant1_sensor.isnull().sum()
         DATE_TIME
                                0
Out[28]:
         AMBIENT_TEMPERATURE
                                0
         MODULE_TEMPERATURE
                                0
         IRRADIATION
                                0
         dtype: int64
In [29]: plant2_generation.isnull().sum()
```

```
DATE_TIME
                        0
Out[29]:
         INVERTER_ID
                        0
         DC POWER
                        0
         AC POWER
                        0
         DAILY_YIELD
                        0
         TOTAL_YIELD
                        0
         dtype: int64
In [30]: plant2_sensor.isnull().sum()
         DATE_TIME
Out[30]:
         AMBIENT_TEMPERATURE
                                 0
         MODULE_TEMPERATURE
                                 0
         IRRADIATION
                                 0
         dtype: int64
In [31]: plant1_generation.duplicated().sum()
Out[31]:
In [32]: plant1_sensor.duplicated().sum()
Out[32]:
In [33]: plant2_generation.duplicated().sum()
Out[33]:
In [34]: plant2_sensor.duplicated().sum()
Out[34]:
         There are no missing values or duplicated values in any of the datasets.
         Changing the data type of DATE_TIME to datetime
```

```
In [35]: plant1_generation["DATE_TIME"] = pd.to_datetime(plant1_generation["DATE_TIME"], format='%d-%m-%Y %H:
In [36]: plant1_generation.dtypes
                        datetime64[ns]
         DATE TIME
Out[36]:
         INVERTER_ID
                                object
         DC_POWER
                               float64
         AC POWER
                               float64
         DAILY_YIELD
                               float64
         TOTAL_YIELD
                               float64
         dtype: object
In [37]: | plant1_sensor["DATE_TIME"] = pd.to_datetime(plant1_generation["DATE_TIME"], format="%Y-%m-%d %H:%M:%
In [38]: plant1_sensor.dtypes
         DATE_TIME
                                 datetime64[ns]
Out[38]:
         AMBIENT_TEMPERATURE
                                       float64
                                       float64
         MODULE TEMPERATURE
         IRRADIATION
                                       float64
         dtype: object
In [39]: plant2_generation["DATE_TIME"] = pd.to_datetime(plant1_generation["DATE_TIME"], format="%Y-%m-%d %H:
In [40]: plant2_generation.dtypes
                        datetime64[ns]
         DATE TIME
Out[40]:
         INVERTER_ID
                                object
         DC_POWER
                               float64
         AC POWER
                               float64
         DAILY_YIELD
                               float64
                               float64
         TOTAL_YIELD
         dtype: object
In [41]: | plant2_sensor["DATE_TIME"] = pd.to_datetime(plant1_generation["DATE_TIME"], format="%Y-%m-%d %H:%M:%
```

In [42]: plant2_sensor.dtypes

Out[42]: DATE_TIME
AMBIENT_TE

AMBIENT_TEMPERATURE
MODULE_TEMPERATURE
IRRADIATION
dtype: object

datetime64[ns] float64 float64 float64

Summary Statistics

PLANT 1

In [43]: plant1_generation.describe()

Out[43]:

	DATE_TIME	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YIELD
count	68778	68778.000000	68778.000000	68778.000000	6.877800e+04
mean	2020-06-01 08:02:49.458256896	3147.426211	307.802752	3295.968737	6.978712e+06
min	2020-05-15 00:00:00	0.000000	0.000000	0.000000	6.183645e+06
25%	2020-05-24 00:45:00	0.000000	0.000000	0.000000	6.512003e+06
50%	2020-06-01 14:30:00	429.000000	41.493750	2658.714286	7.146685e+06
75%	2020-06-09 20:00:00	6366.964286	623.618750	6274.000000	7.268706e+06
max	2020-06-17 23:45:00	14471.125000	1410.950000	9163.000000	7.846821e+06
std	NaN	4036.457169	394.396439	3145.178309	4.162720e+05

Observations:

- 1. The data was collected from 15 May 2020 to 17 June 2020. According to the India Meteorological Department, monsoon covered the whole country by 26 June 2020 and hit Kerala on June 1. So if the plants are in south-west India then the values from 1st June onwards may be affected by rain.
- 2. The difference between the avg. DC power and the avg. AC power is a lot. Something seems wrong because only around 10% of the DC power is being converted into AC.
- 3. There's a pretty big jump in the Q2 to Q3 and from Q3 to Q4 values in DC_POWER & AC_POWER.

In [44]: plant1_sensor.describe()

Out[44]:

	DATE_TIME	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE	IRRADIATION
count	3182	3182.000000	3182.000000	3182.000000
mean	2020-05-15 19:36:36.543054592	25.531606	31.091015	0.228313
min	2020-05-15 00:00:00	20.398505	18.140415	0.000000
25%	2020-05-15 09:15:00	22.705182	21.090553	0.000000
50%	2020-05-15 18:15:00	24.613814	24.618060	0.024653
75%	2020-05-16 06:45:00	27.920532	41.307840	0.449588
max	2020-05-16 15:45:00	35.252486	65.545714	1.221652
std	NaN	3.354856	12.261222	0.300836

Observations:

There is a pretty big difference between the AMBIENT_TEMPERATURE & MODULE_TEMPERATURE values at Q3 & Q4.

PLANT 2

In [45]: plant2_generation.describe()

Out[45]:	DATE_TIME	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YIELD

count	67698	67698.000000	67698.000000	67698.000000	6.769800e+04
mean	2020-06-01 01:45:59.159798016	246.701961	241.277825	3294.890295	6.589448e+08
min	2020-05-15 00:00:00	0.000000	0.000000	0.000000	0.000000e+00
25%	2020-05-23 21:15:00	0.000000	0.000000	272.750000	1.996494e+07
50%	2020-06-01 08:15:00	0.000000	0.000000	2911.000000	2.826276e+08
75%	2020-06-09 10:45:00	446.591667	438.215000	5534.000000	1.348495e+09
max	2020-06-17 11:30:00	1420.933333	1385.420000	9873.000000	2.247916e+09
std	NaN	370.569597	362.112118	2919.448386	7.296678e+08

Observations:

- 1. The data collection dates of both plants are the same.
- 2. Unlike Plant 1, the DC_POWER & AC_POWER of Plant 2 is in line.
- 3. Consequently, there isn't much difference in the Q3 & Q4 values of DC_POWER & AC_POWER.

In [46]: plant2_sensor.describe()

	_	
\cap $+$	16	
Uut	40	

	DATE_TIME	AMBIENT_TEMPERATURE	MODULE_TEMPERATURE	IRRADIATION
count	3259	3259.000000	3259.000000	3259.000000
mean	2020-05-15 20:05:55.968088064	28.069400	32.772408	0.232737
min	2020-05-15 00:00:00	20.942385	20.265123	0.000000
25%	2020-05-15 09:15:00	24.602135	23.716881	0.000000
50%	2020-05-15 18:30:00	26.981263	27.534606	0.019040
75%	2020-05-16 07:30:00	31.056757	40.480653	0.438717
max	2020-05-16 16:45:00	39.181638	66.635953	1.098766
std	NaN	4.061556	11.344034	0.312693

Observation:

- 1. There isn't much difference in the avg, Q1, Q2 & Q3 values of AMBIENT_TEMPERATURE & MODULE TEMPERATURE.
- 2. The max value of MODULE_TEMPERATURE is much higher than the max value of AMBIENT_TEMPERATURE.

Comparison between Plant 1 & Plant 2:

- 1. The average DC Power produced by Plant 1 is 13x the average DC power produced by Plant 2.
- 2. But the average AC Power produced by both is almost the same. There is something definitely wrong with Plant 1's DC Power data.
- 3. The daily yield of both the plants is similar.
- 4. But the average TOTAL_YIELD OF Plant 2 is 7x of Plant 1.
- 5. Plant 1 & Plant 2 get the same amount of irradiation.
- 6. The average module & ambient temperatures of both plants is also similar.

Analyzing the Inverters in both plants

```
In [47]: plt.figure(figsize=(10, 6))
    sns.barplot(data=plant1_generation, x="INVERTER_ID", y="AC_POWER", errorbar=None).set(title="Average
    plt.xticks(rotation=90)
    plt.show()
```


Observation:

All inverters in plant 1 produce the same amount of AC POWER except for two that produce less.

```
In [48]: plt.figure(figsize=(10,6))
sns.barplot(data=plant2_generation, x="INVERTER_ID", y="AC_POWER", errorbar=None).set(title="Average
plt.xticks(rotation=90)
plt.show()
```


Observation:

The AC POWER production of inverters in plant 2 is all over the place, with 4 inverters performing very poorly.

INVERTER_ID

DC POWER Generation in the plants

In [49]: sns.lineplot(data=plant1_generation, x='DATE_TIME', y='DC_POWER').set(title="DC POWER GENERATION PLAN
plt.xticks(rotation=45)
plt.show()

DC POWER GENERATION PLANT 1

In [50]: sns.lineplot(data=plant2_generation, x='DATE_TIME', y='DC_POWER').set(title="DC POWER GENERATION PLAI
plt.xticks(rotation=45)
plt.show()


```
In [51]:
sns.lineplot(data=plant1_generation, x='DATE_TIME', y='DC_POWER')
sns.lineplot(data=plant2_generation, x='DATE_TIME', y='DC_POWER')
plt.title("Comparison of the DC Power Generation of both plants")
plt.xticks(rotation=90)
plt.show()
```


Observations:

The DC power produced by Plant 1 (blue) is way higher than plant 2 (orange)

Observation:

DC power is generated only between 6 am to 6 pm which makes sense since those are the daylight hours. Most power was produced between the hours of 10 am to 3 pm.

```
In [54]: df_single_day2 = plant2_generation[plant2_generation['DATE_TIME'].dt.date == pd.to_datetime(selected_
In [55]: sns.lineplot(data=df_single_day2, x='DATE_TIME', y='DC_POWER').set(title="DC POWER GENERATION PLANT plt.xticks(rotation=45) plt.show()
```


Observations:

Power was only produced during 6 am to 6 pm which makes sense since those are the daylight hours. Power production remained mostly constant throughout the day.

```
In [56]:
    sns.lineplot(data=df_single_day, x='DATE_TIME', y='DC_POWER')
    sns.lineplot(data=df_single_day2, x='DATE_TIME', y='DC_POWER')
    plt.title("Comparison of DC power generation of both plants over the course of a random day")
    plt.xticks(rotation=45)
    plt.show()
```

Comparison of DC power generation of both plants over the course of a random day

Observations:

Plant 1 produces more DC power than plant 2

AC Power generation in the plants

In [59]: sns.lineplot(data=plant1_generation, x='DATE_TIME', y='AC_POWER')
sns.lineplot(data=plant2_generation, x='DATE_TIME', y='AC_POWER')
plt.title("Comparison of the AC Power Generation of both plants")
plt.xticks(rotation=90)
plt.show()

Observations:

The AC power produced by Plant 1 (blue) is way higher than plant 2 (orange)

```
In [60]: df_single_day3 = plant1_generation[plant1_generation['DATE_TIME'].dt.date == pd.to_datetime(selected]
In [61]: sns.lineplot(data=df_single_day3, x='DATE_TIME', y='AC_POWER').set(title="AC POWER GENERATION PLANT plt.xticks(rotation=45) plt.show()
```


Observation:

DC power is generated only between 6 am to 6 pm which makes sense since those are the daylight hours. Most power was produced between the hours of 10 am to 3 pm.

Observations:

Power was only produced during 6 am to 6 pm which makes sense since those are the daylight hours. Power production remained mostly constant throughout the day.

```
In [64]:
sns.lineplot(data=df_single_day3, x='DATE_TIME', y='AC_POWER')
sns.lineplot(data=df_single_day4, x='DATE_TIME', y='AC_POWER')
plt.title("Comparison of AC power generation of both plants over the course of a random day")
plt.xticks(rotation=45)
plt.show()
```


AC Power produced by plant 1 throughout a day fluctatuates a lot but plant 2 remains fairly constant. But overall, there isn't a massive difference in scale the way there is with the DC power.

Comparison of Daily Yield of Both Plants:

```
In [65]: sns.lineplot(data=plant1_generation, x='DATE_TIME', y='DAILY_YIELD')
sns.lineplot(data=plant2_generation, x='DATE_TIME', y='DAILY_YIELD')
plt.title("Comparison of the Daily Yield of both plants")
plt.xticks(rotation=90)
plt.show()
```


Observations:

- 1. On average, the daily yield of plant 1 (blue) is much greater than plant 2 (orange).
- 2. The daily yield of plant 2 dropped after June 1. We can only assume because of monsoon.

Relationship between Ambient Temperature & Module Temperature:

```
In [66]: sns.scatterplot(data=plant1_sensor, x="AMBIENT_TEMPERATURE", y="MODULE_TEMPERATURE").set(title="Ambi
plt.show()
```

Ambient Temperature vs. Module Temperature Plant 1

In [67]: sns.scatterplot(data=plant2_sensor, x="AMBIENT_TEMPERATURE", y="MODULE_TEMPERATURE").set(title="Ambiplt.show()

Observation:

There is a Positive Correlation between Module Temperature and Ambient Temperature. The Module Temperature increases as the Ambient Temperature increases.

Relationship between Ambient Temperature & Irradiation:

In [68]: sns.scatterplot(data=plant1_sensor, x="AMBIENT_TEMPERATURE", y="IRRADIATION").set(title="Ambient Templt.show()

Ambient Temperature vs. Irradiation Plant 1

In [69]: sns.scatterplot(data=plant2_sensor, x="AMBIENT_TEMPERATURE", y="IRRADIATION").set(title="Ambient Templt.show()

Relationship between Module Temperature & Irradiation:

```
In [70]: sns.scatterplot(data=plant1_sensor, x="MODULE_TEMPERATURE", y="IRRADIATION").set(title="Module Tempe
plt.show()
```

Module Temperature vs. Irradiation Plant 1 1.2 1.0 0.8 IRRADIATION 0.6 0.4 0.2 0.0

sns.scatterplot(data=plant2_sensor, x="MODULE_TEMPERATURE", y="IRRADIATION").set(title="Module Tempe In [71]: plt.show()

40 MODULE_TEMPERATURE

50

60

Observations:

20

30

There is a Positive Correlation between Irradiation and Module Temperature. Irradiation increases as Module Temperature increases.

Merging the Power Generation + Weather Sensor Data

```
In [81]: plant1 = pd.merge(plant1_generation, plant1_sensor, on="DATE_TIME", how="left")
         plant1.reset_index(drop=True)
```

Out[81]:		DATE_TIME	INVERTER_ID	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YIELD	AMBIENT_TEMPERATURE
	0	2020-05-15 00:00:00	1BY6WEcLGh8j5v7	0.0	0.0	0.000	6259559.0	25.184316
	1	2020-05-15 00:00:00	1BY6WEcLGh8j5v7	0.0	0.0	0.000	6259559.0	25.084589
	2	2020-05-15 00:00:00	1BY6WEcLGh8j5v7	0.0	0.0	0.000	6259559.0	24.935753
	3	2020-05-15 00:00:00	1BY6WEcLGh8j5v7	0.0	0.0	0.000	6259559.0	24.846130
	4	2020-05-15 00:00:00	1BY6WEcLGh8j5v7	0.0	0.0	0.000	6259559.0	24.621525
	•••							
	134125	2020-06-17 23:45:00	uHbuxQJI8IW7ozc	0.0	0.0	5967.000	7287002.0	NaN
	134126	2020-06-17 23:45:00	wCURE6d3bPkepu2	0.0	0.0	5147.625	7028601.0	NaN
	134127	2020-06-17 23:45:00	z9Y9gH1T5YWrNuG	0.0	0.0	5819.000	7251204.0	NaN
	134128	2020-06-17 23:45:00	zBlq5rxdHJRwDNY	0.0	0.0	5817.000	6583369.0	NaN
	134129	2020-06-17 23:45:00	zVJPv84UY57bAof	0.0	0.0	5910.000	7363272.0	NaN
	134130 r	ows × 9 colu	umns					
1								•
In [82]:			(plant2_generatio x(drop= True)	on, plant2_	sensor, on=	"DATE_TIME",	how="left")	
Out[82]:		DATE_TIME	INVERTER_ID	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YIELD	AMBIENT_TEMPERATURE
	0	2020-05-15 00:00:00	4UPUqMRk7TRMgml	0.0	0.0	9425.0	2429011.0	27.004764

In [82]:	<pre>plant2 = pd.merge(plant2_generation, plant2_sensor, on="DATE_TIME", how="left") plant2.reset_index(drop=True)</pre>							
Out[82]:		DATE_TIME	INVERTER_ID	DC_POWER	AC_POWER	DAILY_YIELD	TOTAL_YIELD	AMBIENT_TEMPERATURE
	0	2020-05-15 00:00:00	4UPUqMRk7TRMgml	0.0	0.0	9425.0	2429011.0	27.004764
	1	2020-05-15 00:00:00	4UPUqMRk7TRMgml	0.0	0.0	9425.0	2429011.0	26.880811
	2	2020-05-15 00:00:00	4UPUqMRk7TRMgml	0.0	0.0	9425.0	2429011.0	26.682055
	3	2020-05-15 00:00:00	4UPUqMRk7TRMgml	0.0	0.0	9425.0	2429011.0	26.500589
	4	2020-05-15 00:00:00	4UPUqMRk7TRMgml	0.0	0.0	9425.0	2429011.0	26.596148
	134651	2020-06-17 11:30:00	q49J1IKaHRwDQnt	0.0	0.0	4157.0	520758.0	NaN
	134652	2020-06-17 11:30:00	rrq4fwE8jgrTyWY	0.0	0.0	3931.0	121131356.0	NaN
	134653	2020-06-17 11:30:00	vOuJvMaM2sgwLmb	0.0	0.0	4322.0	2427691.0	NaN
	134654	2020-06-17 11:30:00	xMblugepa2P7lBB	0.0	0.0	4218.0	106896394.0	NaN
	134655	2020-06-17 11:30:00	xoJJ8DcxJEcupym	0.0	0.0	4316.0	209335741.0	NaN
	134656 r	ows × 9 colu	umns					

4

In [84]: sns.lineplot(data=plant2, x="IRRADIATION", y="AC_POWER").set(title="Irradiation vs. AC Power Plant 2 plt.show()

Exploring the Relationship between Daily Yield and Irradiation

In [85]: sns.lineplot(data=plant1, x="IRRADIATION", y="DAILY_YIELD").set(title="Irradiation vs. DAILY YIELD P plt.show()

In [86]: sns.lineplot(data=plant2, x="IRRADIATION", y="DAILY_YIELD").set(title="Irradiation vs. DAILY YIELD P
plt.show()

Exploring Correlation between features:

```
In [87]: sns.heatmap(plant1.corr(numeric_only=True), annot=True, fmt='.2g')
   plt.show()
```


In [88]: sns.heatmap(plant2.corr(numeric_only=True), annot=True, fmt='.2g')
 plt.show()

Observations:

- 1. Highest Positive Correlation is between Irradiation & Module Temperature.
- 2. A very high positive correlation between Module Temperature & Ambient Temperature
- 3. A high positive correlation between Irradiation & Ambient Temperature
- 4. Positive Correlations between all features except the ones that involve Total Yield.

Exporting Merged Dataframes as csv

```
In [89]: plant1.to_csv('plant1_merged.csv')
plant2.to_csv('plant2_merged.csv')
```