Feature extraction techniques for localization of region of interest of abnormalities in biomedical image data

Presenters: Dorodi Krishty, Osazee Ero, Ludwig Wilhelm Wall

Date: 4/14/2021

Motivation

An automated and efficient decision-support solution that can assist medical experts in decision making would be desirable as this would alleviate stress, decrease the chance of fatigue prone decision making and reduce patients' results wait time.

VISUALIZING CNNs PAGE 2

Dataset

Description of Dataset

- 5800 + chest x-ray image
- Healthy vs. Pneumonia affected patients
- Infected by virus and bacteria (SARS, Streptococcus, ARDS, Corona).

Techniques

- 1. Oriented FAST and Rotated BRIEF (ORB) with SVM
- 2. Weakly supervised feature localization with CNN 3. Autoencoder CNN

ORB/SVM

Technique 1

ORB/SVM PAGE 5

Training Stage

ORB (ORIENTED FAST & ROTATED BRIEF)

Image input

Feature Detection (keypoints detector, descriptors)

What is ORB?

- ORB performs feature detection like SIFT/SURF
- Order of 2x faster than SIFT/SURF
- Fast keypoint detector
- Bried descriptor
- Non-patented

Training Stage

Testing Stage

ORB + SVM CLASSIFIER

SVM
Patches

ORB
(Normal/
Abnormal)
(Feature
Descriptors)

Testing Stage

Image Input (Unlabeled)

Patches drawn around regions of interest

WEAKLY SUPERVISED FEATURE LOCALIZATION WITH CNN

Technique 2

ORB/SVM PAGE 10

Weak supervision

Pixel labels

Bounding box generation

Using only
Bounding box we
can generate
pixel labels

Heat map Showing how CNN takes decisions

Image labels

Using only Class labels of an image We can generate bounding box of class labels

Abnormal

Normal PAGE 11

Related works:

Learning Deep Features for Discriminative Localization

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 2921-2929).

Related works:

GP-UNET: Lesion detection from weak labels with a 3D regression network

Dubost, F., Bortsova, G., Adams, H., Ikram, A., Niessen, W. J., Vernooij, M., & De Bruijne, M. (2017, September). Gpunet: Lesion detection from weak labels with a 3d regression network. In *International Conference on Medical Image Computing and Computer-Assisted Intervention* (pp. 214-221). Springer, Cham.

Autoencoder architecture

Step 1:

Train an autoencoder network

This was done in order to learn a latent space that captures relevant features on the image.

Autoencoder architecture

Freeze weights

Step 2: Attach Global average pooling and dense classification head and retrain network

Conv, 256, 3x3, 2

Compute feature activations maps

Step 3: We sum the product of the last CNN layer with the weights of the network, apply bilinear resizing

VISUALIZING CNNs PAGE 16

Results of feature activations maps

VISUALIZING CNNs PAGE 17

AUTOENCODER CNN

Technique 3

Autoencoder CNN PAGE 18

Autoencoder for anomaly detection

Autoencoder for anomaly detection

Input image Convolutional layers Encoded core features

Autoencoder for anomaly detection

Input image Target Convolutional layers Encoded core features

PAGE 21

Version 1: Sequential

Lyudchik, O., Vlimant, J., & Pierini, M. (2016). Outlier detection using autoencoders.

Version 1: Sequential

Results

"The u-net architecture achieves very good performance on very different biomedical segmentation applications."

Ronneberger, Olaf & Fischer, Philipp & Brox, Thomas. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. LNCS. 9351. 234-241. 10.1007/978-3-319-24574-4_28.

- Adds high resolution features
 - Localize details

Autoencoder CNN PAGE 26

