Exercices. Statistiques à deux variables

Objectif. Représenter une série statistique.

Exercice 1. Chaque année une association organise une tombola. Elle achète un certain nombre de lots puis vend des billets de tombola par carnets de 10. Le nombre de lots achetés x_i et le nombre de carnets vendus y_i lors des 9 dernières tombolas est donné dans le tableau ci-dessous.

	38							
y_i	69	64	60	59	55	67	68	70

- 1. Représenter cette série sous la forme d'un nuage de points dans un repère orthonormé.
- 2. Calculer les coordonnées du point moyen de ce nuage et le placer dans le repère.
- 3. Quelle forme présente le nuage de points ?
- 4. Tracer « au jugé » la courbe associée.

Objectif. Calculer la droite de régression et le coefficient de corrélation linéaire.

Exercice 2. On considère le nuage de points associé à la série statistique suivante.

x_i	38	26	20	13	8	34	32	41
v_i	69	64	60	59	55	67	68	70

A l'aide de la calculatrice, déterminer l'équation de la droite d'ajustement du nuage par la méthode des moindres carrés et le coefficient de corrélation linéaire. Les valeurs seront arrondies à 10^{-3} .

Exercice 3. Dans un pays, on a relevé tous les dix ans le PIB par habitant, et la consommation d'électricité par habitant en MWh.

PIB / hab. (k€)	5	10	16	24	31
Consommation	1	2,3	4	7	8,9
(MWh)					

1. À l'aide de la calculatrice, déterminer l'équation de la droite d'ajustement du nuage par la méthode des moindres carrés et le coefficient de corrélation linéaire. Les valeurs seront arrondies à 10^{-3} .

Exercice 4. Pour l'achat d'une grosse quantité x_i de ballons de football, un fabriquant propose un tarif dégressif selon la quantité d'articles commandés. Le tableau cicontre présente un relevé des prix y_i proposés.

x_i	100	500	1000	2000
y_i	19,9	19	17,9	15,50

- 1. Déterminer l'équation de la droite de régression de y en x et le coefficient de corrélation r.
- 2. D'après le coefficient r, l'ajustement affine de cette série statistique semble-t-il un bon choix ?
- 3. Déterminer le prix unitaire que devrait proposer le fabricant pour un achat de 1500 ballons.
- 4. Quelle quantité de ballons faudrait-il acheter pour obtenir un prix unitaire de 12 € ?

Exercice 5. On a relevé, pendant un an, sur différents parcours de même longueur, la vitesse moyenne x_i des véhicules et le nombre d'accidents mortels y_i au total sur l'année, pour i entier variant de 1 à 5.

x_i (km/h)	30	50	80	90	100
y_i	1	6	41	66	102

- 1. Représenter ces données dans un repère orthogonal d'unités bien choisies
- 2. On pose $y_i' = \log(x_i)$ pour tout entier i de 1 à 5. Calculer les valeurs de y_i' arrondies au
- dixième.
- 3. Représenter le nuage de points $(x_i; y_i')$ dans un autre repère et vérifier que sa forme peut être ajustée par une droite.
- 4. Déterminer l'équation de la droite de régression de y' en x. (Les coefficients seront arrondis à 10^{-3} près).
- 5. En déduire une expression de y en fonction de x.

Exercice 6. On mesure l'évolution au cours de temps x, en heures, du taux de saturation y de monoxyde de carbone d'un patient intoxiqué qui reçoit un traitement à base d'oxygène.

x_i (h)	0	0,5	1	1,5	2	2,5	3
<i>y</i> _i (%)	50	38	27	16	8	5	3

- 1. Représenter le nuage de points $(x_i; y_i)$ dans un repère orthogonal d'unités bien choisies.
- 2. On pose $z_i = \log(y_i)$ pour tout entier i de 1 à 6. Calculer les valeurs z_i .
- 3. Déterminer l'équation de la droite de régression de z en x. (Les coefficients seront arrondis à 10^{-3} près).
- 4. En déduire une expression de y en fonction de x.