June 5, 2014

Leah Dickstein

Q1)
$$x(n) = ax(n-1)$$
$$y(n) = cx(n) + v(n)$$
$$x(0) \sim N(0, 1)$$

$$x(0) \sim N(0, 1)$$
$$v(n) \sim N(0, \sigma_v^2)$$

 $\mbox{\bf Distribution}: \quad \frac{N(cx[n],\sigma_v^2)N(0,a^{2n})}{N(0,c^2a^{2n}+\sigma_v^2)}$

Q2)
$$x(n) = ax(n-1) + w(n-1)$$

 $y(n) = cx(n) + v(n)$

$$w(n-1) \sim N(0, \sigma_w^2)$$

Distribution:
$$\frac{N(cx[n], \sigma_v^2)N(0, a^{2n} + \sigma_w^2 \sum_{i=0}^{n-1} a^{2i})}{N(0, c^2 a^{2n} + c^2 \sigma_w^2 \sum_{i=0}^{n-1} a^{2i} + \sigma_v^2)}$$

In the previous Gaussian problem and in both these cases

$$\hat{x}[n] = \frac{y\sigma_x^2}{\sigma_y^2}$$

Gaussian: $\hat{x}[n] = \frac{y\sigma^2}{\sigma^2+1}$

No Noise: $\hat{x}[n] = \frac{1}{c}y[n]$

Noisy State, Noiseless Observation: $\hat{x}[n] = \frac{1}{c}y[n]$

Noiseless State, Noisy Observation: $\hat{x}[n] = \frac{yca^{2n}}{c^2a^{2n} + \sigma_v^2} = \frac{yc\sigma_x^2}{\sigma_y^2}$

Noisy State, Noisy Observation: $\hat{x}[n] = \frac{yc(a^{2n} + \sigma_w^2 \sum_{i=0}^{n-1} a^{2i})}{c^2(a^{2n} + \sigma_w^2 \sum_{i=0}^{n-1} a^{2i}) + \sigma_v^2}$