BOSTON UNIVERSITY COLLEGE OF ENGINEERING

Dissertation

OPTICAL MIMO COMMUNICATION SYSTEMS UNDER ILLUMINATION CONSTRAINTS

by

PANKIL M. BUTALA

B.E., University of Mumbai, 2006 M.S., University of California, Los Angeles, 2007

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

2015

Approved by

First Reader

Thomas D.C. Little, Ph.D.

Professor of Electrical and Computer Engineering

Professor of Systems Engineering

Second Reader

Jeffrey Carruthers, Ph.D.

Associate Professor of Electrical and Computer Engineering

Third Reader

Bobak Nazer, Ph.D.

Assistant Professor of Electrical and Computer Engineering Assistant Professor of Systems Engineering

Fourth Reader

Valencia Joyner Koomson, Ph.D.

Associate Professor of Electrical and Computer Engineering Tufts University " Δv - v for velocity, Δ for change. In space, this is the measure of change in velocity required to get from one place to another, thus a measure of the energy required to do it. Everything is moving already but to get something from the moving surface of the Earth into orbit around it requires a minimum Δv of 10 km/s. To leave Earth's orbit and fly to Mars requires a minimum Δv of 3.6 km/s and to orbit Mars and land on it requires a Δv of about 1 km/s. The hardest part is leaving Earth behind, for that is by far the deepest gravity well involved."

Kim Stanley Robinson Red Mars (2.2.99) check reference

${\bf Acknowledgments}$

I would like to thank		
Sincerely,		

Pankil

OPTICAL MIMO COMMUNICATION SYSTEMS UNDER

ILLUMINATION CONSTRAINTS

PANKIL M. BUTALA

Boston University, College of Engineering, 2015

Major Professor: Thomas D.C. Little, Ph.D.

Professor of Electrical and Computer Engineering

Professor of Systems Engineering

ABSTRACT

In recent years, there has been a large-scale adoption of portable computing devices

like smartphones and tablets. These along with internet-of-things need ubiquitous

connectivity to the internet to provide value added services, maximize their func-

tionality and create a 'smart'-er world to live in. Cisco's visual networking index

predicts wireless data consumption to increase by a cumulative rate of 61% every

year. This will put additional stress on the already stressed wireless access network

infrastructure creating a phenomenon called 'spectrum crunch'.

On the other hand, solid state devices industry has made remarkable advances in

energy efficient light-emitting-diodes (LED). The lighting industry is rapidly adopt-

ing LEDs to provide illumination in indoor spaces. Lighting fixtures are positioned

to support human activities and thus are well located to act as wireless access points.

The visible spectrum (380 nm – 780 nm) is yet unregulated and untapped for wireless

access. This provides unique opportunity to upgrade existing lighting infrastruc-

ture and create a dense grid of small cells by using this additional 'optical' wireless

bandwidth. Under the above model, lighting fixtures will service dual missions of

vi

illumination and wireless access points.

This dissertation investigates multiple-input multiple-output (MIMO) optical wireless broadcast system under unique constraints imposed by the optical channel and user illumination requirements. Sample indexed spatial orthogonal frequency division multiplexing and metameric modulation are proposed to achieve higher spectral efficiency by exploiting dimensions of space and color respectively in addition to time and frequency dimensions. A framework is developed to analyze performance of imaging MIMO systems. Performance improvements for optical systems have been achieved by decorrelating spatially separate links by incorporating an imaging receiver. The dissertation also studies the impact of visual perception on performance color shift keying as specified in IEEE 802.15.7 standard. The dissertation then introduces the singular value decomposition based OWC system architecture to incorporate illumination constraints independent of communication constraints in a MIMO system. It then studies design paradigm for a multi-colored wavelength division multiplexed indoor OWC system.

Contents

List of Tables

List of Figures

List of Abbreviations

PWM

ACO	 Asymmetrically Clipped Optical
APD	 Avalanche Photo Diode
AWGN	 Additive White Gaussian Noise
CIE	 Commission Internationale de l'Eclairage
CMOS	 Complementary Metal Oxide Semiconductor
CP	 Carrier Prefix
CSI	 Channel State Information
CSK	 Color Shift Keying
DCO	 DC biased Optical
DMT	 Discrete Multi-Tone
FOV	 Field Of View
GCS	 Global Coordinate System
ICI	 Inter Channel Interference
IID	 Independent and Identically Distributed
IM/DD	 Intensity Modulation / Direct Detection
$ISI^{'}$	 Inter Symbol Interference
LED	 Light Emitting Diode
LOS	 Line Of Sight
LSNR	 Luminous Signal to Noise Ratio
MAC	 Medium Access Control
MIMO	 Multiple Input Multiple Output
MM	 Metameric Modulation
MSM	 Multiple Subcarrier Modulation
NLOS	 Non Line Of Sight
NRZ	 Non-Return to Zero
OFDM	 Orthogonal Frequency Division Multiplexing
OOK	 On-Off Keying
PAM	 Pulse Amplitude Modulation
PCS	 Primary Color Space
PD	 Photo Diode
PHY	 Physical layer
PIN	 P-I-N Junction
PPM	 Pulse Position Modulation

Pulse Width Modulation

QAM	 Quadrature Amplitude Modulation
RCS	 Receiver Coordinate System
RF	 Radio Frequency
RZ	 Return to Zero
RGB	 Red, Green and Blue
SD	 Standard Deviation
SISO	 Single Input Single Output
SIS	 Sample Indexed Spatial
SM	 Spatial Modulation
SMP	 Spatial Multiplexing
SNR	 Signal to Noise Ratio
SPD	 Spectral Power Distribution
SSK	 Spatial Shift Keying
SVD	 Singular Value Decomposition
TIA	 Trans-Impedance Amplifier
UCS	 Universal Color Space
VCS	 Visual Color Space
VLC	 Visible Light Communication
VNI	 Visual Networking Index
VPPM	 Variable Pulse Position Modulation
WDM	 Wavelength Division Multiplexing