

CHEMISTRY

Chapter 3

ENLACE IÓNICO

CHEMESTRY

indice

01. MotivatingStrategy 🕥

02. HelicoTheory

03. HelicoPractice

04. HelicoWorkshop

 \bigcirc

Enlace iónico

Blenda (ZnS)

Cloruro de Cesio (CsCl)

Dióxido de Titanio (TiO₂)

Los minerales ¿qué tipos de compuestos son?

MOTIVATING STRATEGY

Enlace iónico

https://youtu.be/WnVFcnGvJ-Y

HELICO

ENLACE IÓNICO

- > Llamado también enlace electrovalente o heteropolar.
- ➤ Se produce, generalmente, por la transferencia de electrones entre los átomos de un elemento metálico y otro no metálico.
- La diferencia de electronegatividades entre los átomos, generalmente, es mayor o igual que 1,7 \triangle EN \geq 1,7

Mg²⁺2 [•*Cl*:]

JB Ediciones

COMPUESTOS IÓNICOS

- > Son sólidos y se hallan formando redes cristalinas.
- > Tienen elevados puntos de fusión y ebullición.
- Son duros y quebradizos.
- > Al estado sólidos no conducen la corriente eléctrica.
- Sólo conducen la corriente eléctrica si están fundidos o disueltos en agua.
- ➤ Son solubles en solventes polares como el agua.

JB Ediciones

Resolución de Problemas

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

Con respecto a los compuestos iónicos, es correcto que:

- I. Contienen sólo no metales.
- II. En estado sólido son buenos conductores de la electricidad.
- III. Presentan alto punto de fusión.
- IV. Son insolubles en agua. 🗲
- A) Solo I B) Solo II C) Solo III D) I y II E) I, II y III

Respuesta

C

Presentan enlace lónico

I. HCI

II. NaCl

III. CaBr₂

C) Solo III

D) I y II

A) Solo I

B) Solo II

NM NM I. H CI II. Na CI

M NM

E. covalente

E. iónico

E. Iónico

Respuesta

B) KCI

C) KBr

D) Na₂S

E) LiCI

NM NM

HCI

E. No iónico

M NM

KBr

E. iónico

M NM

KCI

E. iónico

M NM

Na₂S

E. iónico

M NM

LiCI

E. iónico

Respuesta

A

En un enlace iónico, la diferencia de electronegatividad es mayor o igual que 1,7.
Teniendo en cuenta los siguientes valores de electronegatividad. ¿Cuál de los compuestos presenta enlace iónico?

Na	Н	CI	Br	В
0,9	2,1	3.0	2,8	2,0

A) NaBr

B) BH₃

C) NaCl

DAYC

E) AyB

NaBr \triangle E.N. = 2,8 - 0,9 = 1,9 ≥1,7 E. IÓNICO

BH₃ ΔE.N. = $2,1 - 2,0 = 0,1 \le 1,7$ NO ES E. IÓNICO

NaCl \triangle E.N. = 3,0 - 0,9 = 2,1 ≥ 1,7 E. IÓNICO

Respuesta

D

El Cloruro de Sodio (NaCl), pertenece al grupo de medicamentos denominados soluciones electrolíticas. Se ha utilizado para saborizar y conservar los alimentos; comúnmente conocido como "sal", se encuentra de forma natural en el agua de mar y en formaciones rocosas subterráneas.

Entonces lo que corresponde a la representación de Lewis del NaCl.

(Na=IA, CI = VIIA)

A)
$$Na^{1+}[\cdot Cl\cdot]^{1-}$$
 B) $Na^{1+}[\cdot Cl\cdot]^{1-}$ **C)** $Na^{1+}[\cdot Cl\cdot]^{1-}$

Na¹⁺[
$$\stackrel{:}{\text{Cl}}$$
]¹⁻ E) Na¹⁺[$\stackrel{:}{\text{Cl}}$]¹⁻

Respuesta

D

Problemas Propuestos

Problema 06

Problema 07

Problema 08

Problema 09

(>)

Problema 10

 \bigcirc

HELICO WORKSHOP

Mg=12)

SIMBOLO DE LEWIS

Determine la representación de Lewis para el bromuro de potasio KBr. Datos: Z (K= 19, Br =35)

A)
$$K \overset{x}{\underset{xx}{B}} \overset{xx}{\underset{xx}{r}} \overset{x}{\underset{x}{x}}$$

B)
$$K^+[\overset{x}{*}\overset{x}{B}\overset{x}{r}\overset{x}{*}]^-$$

C) $K\overset{x}{*}\overset{x}{B}\overset{x}{r}\overset{x}{*}K$

- D) $[K]^{-1}[B_{xx}^{Xx}]^{-1}$
- E) Todas son falsas.

Respuesta

- I. Se produce por transferencia de electrones...
- II. La diferencia de electronegatividad (△E.N) generalmente es mayor o igual que 1,7.
- III. Atracción generalmente entre átomos no metálicos.

Solo I B) Solo II C) Solo III D) I y II E) II y III

△ EN ≥ 1,7

Respuesta

A

Los compuestos iónicos poseen alto punto de fusión; en estado anhidrono conducen la corriente eléctrica, pero cuando se calientan al estado de fusión, sí la conducen. Los compuestos de enlaces iónicos forman sólidos cristalinos y se rompen con facilidad. ¿Cuántos son compuestos iónicos?

BaCl₂; CH₄; CO₂; BeCl₂; O₂

A) 0

B) 1

D) 3

E) 4

BaCl₂ E. IÓNICO

CH₄ NO ES E. IÓNICO

CO₂ NO ES E. IÓNICO

BeCl₂ E. IÓNICO

NO ES E. IÓNICO

Respuesta

A continuación se dan las electronegatividades para algunos elementos:

CI	Mg	0	C	Н	K
3,0	1,2	3.5	2,4	2,1	0,8

¿Cuál de los compuestos presentan enlace iónico?

A) Sólo I

B) Sólo II

C) Sólo III

D) I y II

 K_2 O Δ E.N. = 3,5 - 0,8 =2,7 ≥1,7 E. IÓNICO

 $CH_4 \Delta E.N. = 2,4 - 2,1 = 0,3 \le 1,7$ NO ES E. IÓNICO

MgCl₂ Δ E.N. = 3,0 - 1,2 =1,8≥ 1,7 E. IÓNICO

Respuesta

E