Chapter 16

Nonparametric Statistics

16.1 Nonparametric Tests

Most of the hypothesis-testing procedures discussed in previous chapters are based on the assumption that the random samples are selected from normal populations. Fortunately, most of these tests are still reliable when we experience slight departures from normality, particularly when the sample size is large. Traditionally, these testing procedures have been referred to as **parametric methods**. In this chapter, we consider a number of alternative test procedures, called **nonparametric** or **distribution-free methods**, that often assume no knowledge whatsoever about the distributions of the underlying populations, except perhaps that they are continuous.

Nonparametric, or distribution-free procedures, are used with increasing frequency by data analysts. There are many applications in science and engineering where the data are reported as values not on a continuum but rather on an **ordinal** scale such that it is quite natural to assign ranks to the data. In fact, the reader may notice quite early in this chapter that the distribution-free methods described here involve an *analysis of ranks*. Most analysts find the computations involved in nonparametric methods to be very appealing and intuitive.

For an example where a nonparametric test is applicable, consider the situation in which two judges rank five brands of premium beer by assigning a rank of 1 to the brand believed to have the best overall quality, a rank of 2 to the second best, and so forth. A nonparametric test could then be used to determine whether there is any agreement between the two judges.

We should also point out that there are a number of disadvantages associated with nonparametric tests. Primarily, they do not utilize all the information provided by the sample, and thus a nonparametric test will be less efficient than the corresponding parametric procedure when both methods are applicable. Consequently, to achieve the same power, a nonparametric test will require a larger sample size than will the corresponding parametric test.

As we indicated earlier, slight departures from normality result in minor deviations from the ideal for the standard parametric tests. This is particularly true for the t-test and the F-test. In the case of the t-test and the F-test, the P-value

quoted may be slightly in error if there is a moderate violation of the normality assumption.

In summary, if a parametric and a nonparametric test are both applicable to the same set of data, we should carry out the more efficient parametric technique. However, we should recognize that the assumptions of normality often cannot be justified and that we do not always have quantitative measurements. It is fortunate that statisticians have provided us with a number of useful nonparametric procedures. Armed with nonparametric techniques, the data analyst has more ammunition to accommodate a wider variety of experimental situations. It should be pointed out that even under the standard normal theory assumptions, the efficiencies of the nonparametric techniques are remarkably close to those of the corresponding parametric procedure. On the other hand, serious departures from normality will render the nonparametric method much more efficient than the parametric procedure.

Sign Test

The reader should recall that the procedures discussed in Section 10.4 for testing the null hypothesis that $\mu = \mu_0$ are valid only if the population is approximately normal or if the sample is large. If n < 30 and the population is decidedly nonnormal, we must resort to a nonparametric test.

The sign test is used to test hypotheses on a population *median*. In the case of many of the nonparametric procedures, the mean is replaced by the median as the pertinent **location parameter** under test. Recall that the sample median was defined in Section 1.3. The population counterpart, denoted by $\tilde{\mu}$, has an analogous definition. Given a random variable X, $\tilde{\mu}$ is defined such that $P(X > \tilde{\mu}) \leq 0.5$ and $P(X < \tilde{\mu}) \leq 0.5$. In the continuous case,

$$P(X > \tilde{\mu}) = P(X < \tilde{\mu}) = 0.5.$$

Of course, if the distribution is symmetric, the population mean and median are equal. In testing the null hypothesis H_0 that $\tilde{\mu} = \tilde{\mu}_0$ against an appropriate alternative, on the basis of a random sample of size n, we replace each sample value exceeding $\tilde{\mu}_0$ with a plus sign and each sample value less than $\tilde{\mu}_0$ with a minus sign. If the null hypothesis is true and the population is symmetric, the sum of the plus signs should be approximately equal to the sum of the minus signs. When one sign appears more frequently than it should based on chance alone, we reject the hypothesis that the population median $\tilde{\mu}$ is equal to $\tilde{\mu}_0$.

In theory, the sign test is applicable only in situations where $\tilde{\mu}_0$ cannot equal the value of any of the observations. Although there is a zero probability of obtaining a sample observation exactly equal to $\tilde{\mu}_0$ when the population is continuous, nevertheless, in practice a sample value equal to $\tilde{\mu}_0$ will often occur from a lack of precision in recording the data. When sample values equal to $\tilde{\mu}_0$ are observed, they are excluded from the analysis and the sample size is correspondingly reduced.

The appropriate test statistic for the sign test is the binomial random variable X, representing the number of plus signs in our random sample. If the null hypothesis that $\tilde{\mu} = \tilde{\mu}_0$ is true, the probability that a sample value results in either a plus or a minus sign is equal to 1/2. Therefore, to test the null hypothesis that

 $\tilde{\mu} = \tilde{\mu}_0$, we actually test the null hypothesis that the number of plus signs is a value of a random variable having the binomial distribution with the parameter p = 1/2. P-values for both one-sided and two-sided alternatives can then be calculated using this binomial distribution. For example, in testing

$$H_0$$
: $\tilde{\mu} = \tilde{\mu}_0$,
 H_1 : $\tilde{\mu} < \tilde{\mu}_0$,

we shall reject H_0 in favor of H_1 only if the proportion of plus signs is sufficiently less than 1/2, that is, when the value x of our random variable is small. Hence, if the computed P-value

$$P = P(X \le x \text{ when } p = 1/2)$$

is less than or equal to some preselected significance level α , we reject H_0 in favor of H_1 . For example, when n = 15 and x = 3, we find from Table A.1 that

$$P = P(X \le 3 \text{ when } p = 1/2) = \sum_{x=0}^{3} b\left(x; 15, \frac{1}{2}\right) = 0.0176,$$

so the null hypothesis $\tilde{\mu} = \tilde{\mu}_0$ can certainly be rejected at the 0.05 level of significance but not at the 0.01 level.

To test the hypothesis

$$H_0$$
: $\tilde{\mu} = \tilde{\mu}_0$, H_1 : $\tilde{\mu} > \tilde{\mu}_0$,

we reject H_0 in favor of H_1 only if the proportion of plus signs is sufficiently greater than 1/2, that is, when x is large. Hence, if the computed P-value

$$P = P(X \ge x \text{ when } p = 1/2)$$

is less than α , we reject H_0 in favor of H_1 . Finally, to test the hypothesis

$$H_0$$
: $\tilde{\mu} = \tilde{\mu}_0$,
 H_1 : $\tilde{\mu} \neq \tilde{\mu}_0$,

we reject H_0 in favor of H_1 when the proportion of plus signs is significantly less than or greater than 1/2. This, of course, is equivalent to x being sufficiently small or sufficiently large. Therefore, if x < n/2 and the computed P-value

$$P = 2P(X \le x \text{ when } p = 1/2)$$

is less than or equal to α , or if x > n/2 and the computed P-value

$$P = 2P(X \ge x \text{ when } p = 1/2)$$

is less than or equal to α , we reject H_0 in favor of H_1 .

Whenever n > 10, binomial probabilities with p = 1/2 can be approximated from the normal curve, since np = nq > 5. Suppose, for example, that we wish to test the hypothesis

$$H_0$$
: $\tilde{\mu} = \tilde{\mu}_0$, H_1 : $\tilde{\mu} < \tilde{\mu}_0$,

at the $\alpha = 0.05$ level of significance, for a random sample of size n = 20 that yields x = 6 plus signs. Using the normal curve approximation with

$$\tilde{\mu} = np = (20)(0.5) = 10$$

and

$$\sigma = \sqrt{npq} = \sqrt{(20)(0.5)(0.5)} = 2.236,$$

we find that

$$z = \frac{6.5 - 10}{2.236} = -1.57.$$

Therefore,

$$P = P(X \le 6) \approx P(Z < -1.57) = 0.0582,$$

which leads to the nonrejection of the null hypothesis.

Example 16.1: The following data represent the number of hours that a rechargeable hedge trimmer operates before a recharge is required:

$$1.5, 2.2, 0.9, 1.3, 2.0, 1.6, 1.8, 1.5, 2.0, 1.2, 1.7.$$

Use the sign test to test the hypothesis, at the 0.05 level of significance, that this particular trimmer operates a median of 1.8 hours before requiring a recharge.

Solution:

- 1. H_0 : $\tilde{\mu} = 1.8$.
- 2. H_1 : $\tilde{\mu} \neq 1.8$.
- 3. $\alpha = 0.05$.
- 4. Test statistic: Binomial variable X with $p = \frac{1}{2}$.
- 5. Computations: Replacing each value by the symbol "+" if it exceeds 1.8 and by the symbol "-" if it is less than 1.8 and discarding the one measurement that equals 1.8, we obtain the sequence

for which $n=10,\ x=3,\ {\rm and}\ n/2=5.$ Therefore, from Table A.1 the computed P-value is

$$P = 2P\left(X \le 3 \text{ when } p = \frac{1}{2}\right) = 2\sum_{x=0}^{3} b\left(x; 10, \frac{1}{2}\right) = 0.3438 > 0.05.$$

6. Decision: Do not reject the null hypothesis and conclude that the median operating time is not significantly different from 1.8 hours.

We can also use the sign test to test the null hypothesis $\tilde{\mu}_1 - \tilde{\mu}_2 = d_0$ for paired observations. Here we replace each difference, d_i , with a plus or minus sign depending on whether the adjusted difference, $d_i - d_0$, is positive or negative. Throughout this section, we have assumed that the populations are symmetric. However, even if populations are skewed, we can carry out the same test procedure, but the hypotheses refer to the population medians rather than the means.

Example 16.2: A taxi company is trying to decide whether the use of radial tires instead of regular belted tires improves fuel economy. Sixteen cars are equipped with radial tires and driven over a prescribed test course. Without changing drivers, the same cars are then equipped with the regular belted tires and driven once again over the test course. The gasoline consumption, in kilometers per liter, is given in Table 16.1. Can we conclude at the 0.05 level of significance that cars equipped with radial tires obtain better fuel economy than those equipped with regular belted tires?

					Ι			
Car	1	2	3	4	5	6	7	8
Radial Tires	4.2	4.7	6.6	7.0	6.7	4.5	5.7	6.0
Belted Tires	4.1	4.9	6.2	6.9	6.8	4.4	5.7	5.8
Car	9	10	11	12	13	14	15	16
Radial Tires	7.4	4.9	6.1	5.2	5.7	6.9	6.8	4.9
Belted Tires	6.9	4.9	6.0	4.9	5.3	6.5	7.1	4.8

Table 16.1: Data for Example 16.2

Solution: Let $\tilde{\mu}_1$ and $\tilde{\mu}_2$ represent the median kilometers per liter for cars equipped with radial and belted tires, respectively.

- 1. H_0 : $\tilde{\mu}_1 \tilde{\mu}_2 = 0$.
- 2. H_1 : $\tilde{\mu}_1 \tilde{\mu}_2 > 0$.
- 3. $\alpha = 0.05$.
- 4. Test statistic: Binomial variable X with p = 1/2.
- 5. Computations: After replacing each positive difference by a "+" symbol and each negative difference by a "-" symbol and then discarding the two zero differences, we obtain the sequence

for which n = 14 and x = 11. Using the normal curve approximation, we find

$$z = \frac{10.5 - 7}{\sqrt{(14)(0.5)(0.5)}} = 1.87,$$

and then

$$P = P(X \ge 11) \approx P(Z > 1.87) = 0.0307.$$

6. Decision: Reject H_0 and conclude that, on the average, radial tires do improve fuel economy.

Not only is the sign test one of the simplest nonparametric procedures to apply; it has the additional advantage of being applicable to dichotomous data that cannot be recorded on a numerical scale but can be represented by positive and negative responses. For example, the sign test is applicable in experiments where a qualitative response such as "hit" or "miss" is recorded, and in sensory-type experiments where a plus or minus sign is recorded depending on whether the taste tester correctly or incorrectly identifies the desired ingredient.

We shall attempt to make comparisons between many of the nonparametric procedures and the corresponding parametric tests. In the case of the sign test the competition is, of course, the *t*-test. If we are sampling from a normal distribution, the use of the *t*-test will result in a larger power for the test. If the distribution is merely symmetric, though not normal, the *t*-test is preferred in terms of power unless the distribution has extremely "heavy tails" compared to the normal distribution.

16.2 Signed-Rank Test

The reader should note that the sign test utilizes only the plus and minus signs of the differences between the observations and $\tilde{\mu}_0$ in the one-sample case, or the plus and minus signs of the differences between the pairs of observations in the paired-sample case; it does not take into consideration the magnitudes of these differences. A test utilizing both direction and magnitude, proposed in 1945 by Frank Wilcoxon, is now commonly referred to as the **Wilcoxon signed-rank test**.

The analyst can extract more information from the data in a nonparametric fashion if it is reasonable to invoke an additional restriction on the distribution from which the data were taken. The Wilcoxon signed-rank test applies in the case of a symmetric continuous distribution. Under this condition, we can test the null hypothesis $\tilde{\mu} = \tilde{\mu}_0$. We first subtract $\tilde{\mu}_0$ from each sample value, discarding all differences equal to zero. The remaining differences are then ranked without regard to sign. A rank of 1 is assigned to the smallest absolute difference (i.e., without sign), a rank of 2 to the next smallest, and so on. When the absolute value of two or more differences is the same, assign to each the average of the ranks that would have been assigned if the differences were distinguishable. For example, if the fifth and sixth smallest differences are equal in absolute value, each is assigned a rank of 5.5. If the hypothesis $\tilde{\mu} = \tilde{\mu}_0$ is true, the total of the ranks corresponding to the positive differences should nearly equal the total of the ranks corresponding to the negative differences. Let us represent these totals by w_+ and w_- , respectively. We designate the smaller of w_+ and w_- by w_-

In selecting repeated samples, we would expect w_+ and w_- , and therefore w, to vary. Thus, we may think of w_+ , w_- , and w as values of the corresponding random variables W_+ , W_- , and W. The null hypothesis $\tilde{\mu} = \tilde{\mu}_0$ can be rejected in favor of the alternative $\tilde{\mu} < \tilde{\mu}_0$ only if w_+ is small and w_- is large. Likewise, the alternative $\tilde{\mu} > \tilde{\mu}_0$ can be accepted only if w_+ is large and w_- is small. For a two-sided alternative, we may reject H_0 in favor of H_1 if either w_+ or w_- , and hence w, is sufficiently small. Therefore, no matter what the alternative hypothesis

may be, we reject the null hypothesis when the value of the appropriate statistic $W_+, W_-, \text{ or } W \text{ is sufficiently small.}$

Two Samples with Paired Observations

To test the null hypothesis that we are sampling two continuous symmetric populations with $\tilde{\mu}_1 = \tilde{\mu}_2$ for the paired-sample case, we rank the differences of the paired observations without regard to sign and proceed as in the single-sample case. The various test procedures for both the single- and paired-sample cases are summarized in Table 16.2.

Table 10.2. Digited Haitk 1650					
H_0	H_1	Compute			
	$ \begin{cases} \tilde{\mu} < \tilde{\mu}_0 \\ \tilde{\mu} > \tilde{\mu}_0 \\ \tilde{\mu} \neq \tilde{\mu}_0 \end{cases} $	w_+			
$\tilde{\mu} = \tilde{\mu}_0$	$\{ \tilde{\mu} > \tilde{\mu}_0 $	w_{-}			
	$\tilde{\mu} \neq \tilde{\mu}_0$	w			
	$\tilde{\mu}_1 < \tilde{\mu}_2$	$\overline{w_+}$			
$\tilde{\mu}_1 = \tilde{\mu}_2$	$\begin{cases} \tilde{\mu}_1 < \tilde{\mu}_2 \\ \tilde{\mu}_1 > \tilde{\mu}_2 \end{cases}$	w_{-}			
	$\tilde{\mu}_1 \neq \tilde{\mu}_2$	w			

Table 16.2: Signed-Rank Test

It is not difficult to show that whenever n < 5 and the level of significance does not exceed 0.05 for a one-tailed test or 0.10 for a two-tailed test, all possible values of w_+, w_- , or w will lead to the acceptance of the null hypothesis. However, when $5 \le n \le 30$, Table A.16 shows approximate critical values of W_+ and W_- for levels of significance equal to 0.01, 0.025, and 0.05 for a one-tailed test and critical values of W for levels of significance equal to 0.02, 0.05, and 0.10 for a two-tailed test. The null hypothesis is rejected if the computed value w_+ , w_- , or w is less than or equal to the appropriate tabled value. For example, when n = 12, Table A.16 shows that a value of $w_{+} \leq 17$ is required for the one-sided alternative $\tilde{\mu} < \tilde{\mu}_{0}$ to be significant at the 0.05 level.

Example 16.3: Rework Example 16.1 by using the signed-rank test.

- **Solution:** 1. H_0 : $\tilde{\mu} = 1.8$.
 - 2. H_1 : $\tilde{\mu} \neq 1.8$.
 - 3. $\alpha = 0.05$.
 - 4. Critical region: Since n = 10 after discarding the one measurement that equals 1.8, Table A.16 shows the critical region to be $w \leq 8$.
 - 5. Computations: Subtracting 1.8 from each measurement and then ranking the differences without regard to sign, we have

Now $w_{+} = 13$ and $w_{-} = 42$, so w = 13, the smaller of w_{+} and w_{-} .

6. Decision: As before, do not reject H_0 and conclude that the median operating time is not significantly different from 1.8 hours.

The signed-rank test can also be used to test the null hypothesis that $\tilde{\mu}_1 - \tilde{\mu}_2 =$ d_0 . In this case, the populations need not be symmetric. As with the sign test, we subtract d_0 from each difference, rank the adjusted differences without regard to sign, and apply the same procedure as above.

Example 16.4: It is claimed that a college senior can increase his or her score in the major field area of the graduate record examination by at least 50 points if he or she is provided with sample problems in advance. To test this claim, 20 college seniors are divided into 10 pairs such that the students in each matched pair have almost the same overall grade-point averages for their first 3 years in college. Sample problems and answers are provided at random to one member of each pair 1 week prior to the examination. The examination scores are given in Table 16.3.

Table 16.3: Data for Example 16.4

	Pair									
	1	2	3	4	5	6	7	8	9	10
With Sample Problems	531	621	663	579	451	660	591	719	543	575
Without Sample Problems	509	540	688	502	424	683	568	748	530	524

Test the null hypothesis, at the 0.05 level of significance, that sample problems increase scores by 50 points against the alternative hypothesis that the increase is less than 50 points.

Solution: Let $\tilde{\mu}_1$ and $\tilde{\mu}_2$ represent the median scores of all students taking the test in question with and without sample problems, respectively.

- 1. H_0 : $\tilde{\mu}_1 \tilde{\mu}_2 = 50$.
- 2. H_1 : $\tilde{\mu}_1 \tilde{\mu}_2 < 50$.
- 3. $\alpha = 0.05$.
- 4. Critical region: Since n = 10, Table A.16 shows the critical region to be $w_{+} \leq 11.$
- 5. Computations:

		Pair								
	1	2	3	4	5	6	7	8	9	10
d_i	22	81	-25	77	27	-23	23	-29	13	51
$d_i - d_0$	-28	31	-75	27	-23	-73	-27	-79	-37	1
Ranks	5	6	9	3.5	2	8	3.5	10	7	1

Now we find that $w_{+} = 6 + 3.5 + 1 = 10.5$.

6. Decision: Reject H_0 and conclude that sample problems do not, on average, increase one's graduate record score by as much as 50 points.

Exercises 663

Normal Approximation for Large Samples

When $n \geq 15$, the sampling distribution of W_+ (or W_-) approaches the normal distribution with mean and variance given by

$$\mu_{W_+} = \frac{n(n+1)}{4}$$
 and $\sigma_{W_+}^2 = \frac{n(n+1)(2n+1)}{24}$.

Therefore, when n exceeds the largest value in Table A.16, the statistic

$$Z = \frac{W_+ - \mu_{W_+}}{\sigma_{W_+}}$$

can be used to determine the critical region for the test.

Exercises

16.1 The following data represent the time, in minutes, that a patient has to wait during 12 visits to a doctor's office before being seen by the doctor:

17	15	20	20	32	28
12	26	25	25	35	24

Use the sign test at the 0.05 level of significance to test the doctor's claim that the median waiting time for her patients is not more than 20 minutes.

16.2 The following data represent the number of hours of flight training received by 18 student pilots from a certain instructor prior to their first solo flight:

Using binomial probabilities from Table A.1, perform a sign test at the 0.02 level of significance to test the instructor's claim that the median time required before his students' solo is 12 hours of flight training.

16.3 A food inspector examined 16 jars of a certain brand of jam to determine the percent of foreign impurities. The following data were recorded:

Using the normal approximation to the binomial distribution, perform a sign test at the 0.05 level of significance to test the null hypothesis that the median percent of impurities in this brand of jam is 2.5% against the alternative that the median percent of impurities is not 2.5%.

16.4 A paint supplier claims that a new additive will reduce the drying time of its acrylic paint. To test this claim, 12 panels of wood were painted, one-half of each panel with paint containing the regular additive and the other half with paint containing the new additive. The drying times, in hours, were recorded as follows:

	Drying Time (hours)				
Panel	New Additive	Regular Additive			
1	6.4	6.6			
2	5.8	5.8			
3	7.4	7.8			
4	5.5	5.7			
5	6.3	6.0			
6	7.8	8.4			
7	8.6	8.8			
8	8.2	8.4			
9	7.0	7.3			
10	4.9	5.8			
11	5.9	5.8			
12	6.5	6.5			

Use the sign test at the 0.05 level to test the null hypothesis that the new additive is no better than the regular additive in reducing the drying time of this kind of paint.

16.5 It is claimed that a new diet will reduce a person's weight by 4.5 kilograms, on average, in a period of 2 weeks. The weights of 10 women were recorded before and after a 2-week period during which they followed this diet, yielding the following data:

Woman	Weight Before	Weight After
1	58.5	60.0
2	60.3	54.9
3	61.7	58.1
4	69.0	62.1
5	64.0	58.5
6	62.6	59.9
7	56.7	54.4
8	63.6	60.2
9	68.2	62.3
10	59.4	58.7

Use the sign test at the 0.05 level of significance to test the hypothesis that the diet reduces the median

weight by 4.5 kilograms against the alternative hypothesis that the median weight loss is less than 4.5 kilograms.

16.6 Two types of instruments for measuring the amount of sulfur monoxide in the atmosphere are being compared in an air-pollution experiment. The following readings were recorded daily for a period of 2 weeks:

/11	.5•	Sulfur Monoxide					
	Day	Instrument A	Instrument B				
	1	0.96	0.87				
	2	0.82	0.74				
	3	0.75	0.63				
	4	0.61	0.55				
	5	0.89	0.76				
	6	0.64	0.70				
	7	0.81	0.69				
	8	0.68	0.57				
	9	0.65	0.53				
	10	0.84	0.88				
	11	0.59	0.51				
	12	0.94	0.79				
	13	0.91	0.84				
	14	0.77	0.63				

Using the normal approximation to the binomial distribution, perform a sign test to determine whether the different instruments lead to different results. Use a 0.05 level of significance.

16.7 The following figures give the systolic blood pressure of 16 joggers before and after an 8-kilometer run:

\mathbf{Jogger}	Before	After
1	158	164
2	149	158
3	160	163
4	155	160
5	164	172
6	138	147
7	163	167
8	159	169
9	165	173
10	145	147
11	150	156
12	161	164
13	132	133
14	155	161
15	146	154
16	159	170

Use the sign test at the 0.05 level of significance to test the null hypothesis that jogging 8 kilometers increases the median systolic blood pressure by 8 points against the alternative that the increase in the median is less than 8 points.

- **16.8** Analyze the data of Exercise 16.1 by using the signed-rank test.
- **16.9** Analyze the data of Exercise 16.2 by using the signed-rank test.
- **16.10** The weights of 5 people before they stopped smoking and 5 weeks after they stopped smoking, in kilograms, are as follows:

	Individual					
	1	2	3	4	5	
Before	66	80	69	52	75	
\mathbf{After}	71	82	68	56	73	

Use the signed-rank test for paired observations to test the hypothesis, at the 0.05 level of significance, that giving up smoking has no effect on a person's weight against the alternative that one's weight increases if he or she quits smoking.

16.11 Rework Exercise 16.5 by using the signed-rank test.

16.12 The following are the numbers of prescriptions filled by two pharmacies over a 20-day period:

Day	Pharmacy A	Pharmacy B
1	19	17
2	21	15
3	15	12
4	17	12
5	24	16
6	12	15
7	19	11
8	14	13
9	20	14
10	18	21
11	23	19
12	21	15
13	17	11
14	12	10
15	16	20
16	15	12
17	20	13
18	18	17
19	14	16
20	22	18
se the sign	ed-rank test at the	0.01 level of signi

Use the signed-rank test at the 0.01 level of significance to determine whether the two pharmacies, on average, fill the same number of prescriptions against the alternative that pharmacy A fills more prescriptions than pharmacy B.

- 16.13 Rework Exercise 16.7 by using the signed-rank test.
- 16.14 Rework Exercise 16.6 by using the signed-rank test.

16.3 Wilcoxon Rank-Sum Test

As we indicated earlier, the nonparametric procedure is generally an appropriate alternative to the normal theory test when the normality assumption does not hold. When we are interested in testing equality of means of two continuous distributions that are obviously nonnormal, and samples are independent (i.e., there is no pairing of observations), the **Wilcoxon rank-sum test** or **Wilcoxon two-sample test** is an appropriate alternative to the two-sample *t*-test described in Chapter 10.

We shall test the null hypothesis H_0 that $\tilde{\mu}_1 = \tilde{\mu}_2$ against some suitable alternative. First we select a random sample from each of the populations. Let n_1 be the number of observations in the smaller sample, and n_2 the number of observations in the larger sample. When the samples are of equal size, n_1 and n_2 may be randomly assigned. Arrange the $n_1 + n_2$ observations of the combined samples in ascending order and substitute a rank of $1, 2, \ldots, n_1 + n_2$ for each observation. In the case of ties (identical observations), we replace the observations by the mean of the ranks that the observations would have if they were distinguishable. For example, if the seventh and eighth observations were identical, we would assign a rank of 7.5 to each of the two observations.

The sum of the ranks corresponding to the n_1 observations in the smaller sample is denoted by w_1 . Similarly, the value w_2 represents the sum of the n_2 ranks corresponding to the larger sample. The total $w_1 + w_2$ depends only on the number of observations in the two samples and is in no way affected by the results of the experiment. Hence, if $n_1 = 3$ and $n_2 = 4$, then $w_1 + w_2 = 1 + 2 + \cdots + 7 = 28$, regardless of the numerical values of the observations. In general,

$$w_1 + w_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2},$$

the arithmetic sum of the integers $1, 2, ..., n_1 + n_2$. Once we have determined w_1 , it may be easier to find w_2 by the formula

$$w_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2} - w_1.$$

In choosing repeated samples of sizes n_1 and n_2 , we would expect w_1 , and therefore w_2 , to vary. Thus, we may think of w_1 and w_2 as values of the random variables W_1 and W_2 , respectively. The null hypothesis $\tilde{\mu}_1 = \tilde{\mu}_2$ will be rejected in favor of the alternative $\tilde{\mu}_1 < \tilde{\mu}_2$ only if w_1 is small and w_2 is large. Likewise, the alternative $\tilde{\mu}_1 > \tilde{\mu}_2$ can be accepted only if w_1 is large and w_2 is small. For a two-tailed test, we may reject H_0 in favor of H_1 if w_1 is small and w_2 is large or if w_1 is large and w_2 is small. In other words, the alternative $\tilde{\mu}_1 < \tilde{\mu}_2$ is accepted if w_1 is sufficiently small; the alternative $\tilde{\mu}_1 > \tilde{\mu}_2$ is accepted if w_2 is sufficiently small. In actual practice, we usually base our decision on the value

$$u_1 = w_1 - \frac{n_1(n_1+1)}{2}$$
 or $u_2 = w_2 - \frac{n_2(n_2+1)}{2}$

of the related statistic U_1 or U_2 or on the value u of the statistic U, the minimum of U_1 and U_2 . These statistics simplify the construction of tables of critical values,

since both U_1 and U_2 have symmetric sampling distributions and assume values in the interval from 0 to n_1n_2 such that $u_1 + u_2 = n_1n_2$.

From the formulas for u_1 and u_2 we see that u_1 will be small when w_1 is small and u_2 will be small when w_2 is small. Consequently, the null hypothesis will be rejected whenever the appropriate statistic $U_1, U_2, \text{ or } U$ assumes a value less than or equal to the desired critical value given in Table A.17. The various test procedures are summarized in Table 16.4.

Table 16.4: Rank-Sum Test

H_0	H_1	Compute
$\tilde{\mu}_1 = \tilde{\mu}_2$	$\begin{cases} \tilde{\mu}_1 < \tilde{\mu}_2 \\ \tilde{\mu}_1 > \tilde{\mu}_2 \\ \tilde{\mu}_1 \neq \tilde{\mu}_2 \end{cases}$	$egin{array}{c} u_1 \ u_2 \end{array}$
F-1 F-2	$\tilde{\mu}_1 \neq \tilde{\mu}_2$	u

Table A.17 gives critical values of U_1 and U_2 for levels of significance equal to 0.001, 0.01, 0.025, and 0.05 for a one-tailed test, and critical values of U for levels of significance equal to 0.002, 0.02, 0.05, and 0.10 for a two-tailed test. If the observed value of u_1 , u_2 , or u is less than or equal to the tabled critical value, the null hypothesis is rejected at the level of significance indicated by the table. Suppose, for example, that we wish to test the null hypothesis that $\tilde{\mu}_1 = \tilde{\mu}_2$ against the one-sided alternative that $\tilde{\mu}_1 < \tilde{\mu}_2$ at the 0.05 level of significance for random samples of sizes $n_1 = 3$ and $n_2 = 5$ that yield the value $w_1 = 8$. It follows that

$$u_1 = 8 - \frac{(3)(4)}{2} = 2.$$

Our one-tailed test is based on the statistic U_1 . Using Table A.17, we reject the null hypothesis of equal means when $u_1 \leq 1$. Since $u_1 = 2$ does not fall in the rejection region, the null hypothesis cannot be rejected.

Example 16.5: The nicotine content of two brands of cigarettes, measured in milligrams, was found to be as follows:

Test the hypothesis, at the 0.05 level of significance, that the median nicotine contents of the two brands are equal against the alternative that they are unequal.

- **Solution:** 1. H_0 : $\tilde{\mu}_1 = \tilde{\mu}_2$.
 - 2. $H_1: \tilde{\mu}_1 \neq \tilde{\mu}_2.$
 - 3. $\alpha = 0.05$.
 - 4. Critical region: $u \leq 17$ (from Table A.17).
 - 5. Computations: The observations are arranged in ascending order and ranks from 1 to 18 assigned.

Original Data	Ranks	Original Data	Ranks
0.6	1	4.0	10.5*
1.6	2	4.0	10.5
1.9	3	4.1	12
2.1	4*	4.8	13*
2.2	5	5.4	14.5*
2.5	6	5.4	14.5
3.1	7	6.1	16*
3.3	8*	6.2	17
3.7	9*	6.3	18*

^{*}The ranks marked with an asterisk belong to sample A.

Now

$$w_1 = 4 + 8 + 9 + 10.5 + 13 + 14.5 + 16 + 18 = 93$$

and

$$w_2 = \frac{(18)(19)}{2} - 93 = 78.$$

Therefore,

$$u_1 = 93 - \frac{(8)(9)}{2} = 57, \qquad u_2 = 78 - \frac{(10)(11)}{2} = 23.$$

6. Decision: Do not reject the null hypothesis H_0 and conclude that there is no significant difference in the median nicotine contents of the two brands of cigarettes.

Normal Theory Approximation for Two Samples

When both n_1 and n_2 exceed 8, the sampling distribution of U_1 (or U_2) approaches the normal distribution with mean and variance given by

$$\mu_{U_1} = \frac{n_1 n_2}{2}$$
 and $\sigma_{U_1}^2 = \frac{n_1 n_2 (n_1 + n_2 + 1)}{12}$.

Consequently, when n_2 is greater than 20, the maximum value in Table A.17, and n_1 is at least 9, we can use the statistic

$$Z = \frac{U_1 - \mu_{U_1}}{\sigma_{U_1}}$$

for our test, with the critical region falling in either or both tails of the standard normal distribution, depending on the form of H_1 .

The use of the Wilcoxon rank-sum test is not restricted to nonnormal populations. It can be used in place of the two-sample *t*-test when the populations are normal, although the power will be smaller. The Wilcoxon rank-sum test is always superior to the *t*-test for decidedly nonnormal populations.

16.4Kruskal-Wallis Test

In Chapters 13, 14, and 15, the technique of analysis of variance was prominent as an analytical technique for testing equality of $k \geq 2$ population means. Again, however, the reader should recall that normality must be assumed in order for the F-test to be theoretically correct. In this section, we investigate a nonparametric alternative to analysis of variance.

The Kruskal-Wallis test, also called the Kruskal-Wallis H test, is a generalization of the rank-sum test to the case of k > 2 samples. It is used to test the null hypothesis H_0 that k independent samples are from identical populations. Introduced in 1952 by W. H. Kruskal and W. A. Wallis, the test is a nonparametric procedure for testing the equality of means in the one-factor analysis of variance when the experimenter wishes to avoid the assumption that the samples were selected from normal populations.

Let n_i (i = 1, 2, ..., k) be the number of observations in the *i*th sample. First, we combine all k samples and arrange the $n = n_1 + n_2 + \cdots + n_k$ observations in ascending order, substituting the appropriate rank from $1, 2, \ldots, n$ for each observation. In the case of ties (identical observations), we follow the usual procedure of replacing the observations by the mean of the ranks that the observations would have if they were distinguishable. The sum of the ranks corresponding to the n_i observations in the ith sample is denoted by the random variable R_i . Now let us consider the statistic

$$H = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(n+1),$$

which is approximated very well by a chi-squared distribution with k-1 degrees of freedom when H_0 is true, provided each sample consists of at least 5 observations. The fact that h, the assumed value of H, is large when the independent samples come from populations that are not identical allows us to establish the following decision criterion for testing H_0 :

Kruskal-Wallis Test

To test the null hypothesis H_0 that k independent samples are from identical populations, compute

$$h = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{r_i^2}{n_i} - 3(n+1),$$

where r_i is the assumed value of R_i , for $i=1,2,\ldots,k$. If h falls in the critical region $H>\chi^2_\alpha$ with v=k-1 degrees of freedom, reject H_0 at the α -level of significance; otherwise, fail to reject H_0 .

Example 16.6: In an experiment to determine which of three different missile systems is preferable, the propellant burning rate is measured. The data, after coding, are given in Table 16.5. Use the Kruskal-Wallis test and a significance level of $\alpha = 0.05$ to test the hypothesis that the propellant burning rates are the same for the three missile systems.

16.4 Kruskal-Wallis Test 669

Missile System								
	1			2			3	
24.0	16.7	22.8	23.2	19.8	18.1	18.4	19.1	17.3
19.8	18.9		17.6	20.2	17.8	17.3	19.7	18.9
						18.8	19.3	

Table 16.5: Propellant Burning Rates

Solution:

- 1. H_0 : $\mu_1 = \mu_2 = \mu_3$.
- 2. H_1 : The three means are not all equal.
- 3. $\alpha = 0.05$.
- 4. Critical region: $h > \chi^2_{0.05} = 5.991$, for v = 2 degrees of freedom.
- 5. Computations: In Table 16.6, we convert the 19 observations to ranks and sum the ranks for each missile system.

Table 16.6: Ranks for Propellant Burning Rates
--

Missile System				
1	1 2			
19	18	7		
1	14.5	11		
17	6	2.5		
14.5	4	2.5		
9.5	16	13		
$r_1 = 61.0$	5	9.5		
	$r_2 = 63.5$	8		
		12		
		$r_3 = 65.5$		

Now, substituting $n_1 = 5$, $n_2 = 6$, $n_3 = 8$ and $r_1 = 61.0$, $r_2 = 63.5$, $r_3 = 65.5$, our test statistic H assumes the value

$$h = \frac{12}{(19)(20)} \left(\frac{61.0^2}{5} + \frac{63.5^2}{6} + \frac{65.5^2}{8} \right) - (3)(20) = 1.66.$$

6. Decision: Since h = 1.66 does not fall in the critical region h > 5.991, we have insufficient evidence to reject the hypothesis that the propellant burning rates are the same for the three missile systems.

Exercises

16.15 A cigarette manufacturer claims that the tar content of brand B cigarettes is lower than that of brand A cigarettes. To test this claim, the following determinations of tar content, in milligrams, were recorded:

Use the rank-sum test with $\alpha = 0.05$ to test whether the claim is valid.

16.16 To find out whether a new serum will arrest leukemia, nine patients, who have all reached an advanced stage of the disease, are selected. Five patients receive the treatment and four do not. The survival times, in years, from the time the experiment commenced are

Treatment	2.1	5.3	1.4	4.6	0.9
No treatment	1.9	0.5	2.8	3.1	

Use the rank-sum test, at the 0.05 level of significance, to determine if the serum is effective.

16.17 The following data represent the number of hours that two different types of scientific pocket calculators operate before a recharge is required.

Use the rank-sum test with $\alpha=0.01$ to determine if calculator A operates longer than calculator B on a full battery charge.

16.18 A fishing line is being manufactured by two processes. To determine if there is a difference in the mean breaking strength of the lines, 10 pieces manufactured by each process are selected and then tested for breaking strength. The results are as follows:

Process 1	10.4	9.8	11.5	10.0	9.9
	9.6	10.9	11.8	9.3	10.7
Process 2	8.7	11.2	9.8	10.1	10.8
	9.5	11.0	9.8	10.5	9.9

Use the rank-sum test with $\alpha=0.1$ to determine if there is a difference between the mean breaking strengths of the lines manufactured by the two processes.

16.19 From a mathematics class of 12 equally capable students using programmed materials, 5 students are

selected at random and given additional instruction by the teacher. The results on the final examination are as follows:

	Grade						
Additional							
Instruction	87	69	78	91	80		
No Additional							
Instruction	75	88	64	82	93	79	67

Use the rank-sum test with $\alpha = 0.05$ to determine if the additional instruction affects the average grade.

16.20 The following data represent the weights, in kilograms, of personal luggage carried on various flights by a member of a baseball team and a member of a basketball team.

Luggage Weight (kilograms) Baseball Player Basketball Player 16.3 20.0 18.6 15.4 16.3 18.1 15.0 15.417.718.1 18.6 15.9 15.6 18.616.8 14.1 14.518.312.714.1 17.719.117.415.013.6 16.3 14.8 $15.9 \quad 16.3$ 13.6 13.2 17.216.5

Use the rank-sum test with $\alpha=0.05$ to test the null hypothesis that the two athletes carry the same amount of luggage on the average against the alternative hypothesis that the average weights of luggage for the two athletes are different.

16.21 The following data represent the operating times in hours for three types of scientific pocket calculators before a recharge is required:

${f Calculator}$					
$oldsymbol{A}$	B	C			
4.9 6.1 4.3	5.5 5.4 6.2	6.4 6.8 5.6			
4.6 5.2	5.8 5.5 5.2	6.5 6.3 6.6			
	4.8				

Use the Kruskal-Wallis test, at the 0.01 level of significance, to test the hypothesis that the operating times for all three calculators are equal.

16.22 In Exercise 13.6 on page 519, use the Kruskal-Wallis test at the 0.05 level of significance to determine if the organic chemical solvents differ significantly in sorption rate.

16.5 Runs Test 671

16.5 Runs Test

In applying the many statistical concepts discussed throughout this book, it was always assumed that the sample data had been collected by some randomization procedure. The **runs test**, based on the order in which the sample observations are obtained, is a useful technique for testing the null hypothesis H_0 that the observations have indeed been drawn at random.

To illustrate the runs test, let us suppose that 12 people are polled to find out if they use a certain product. We would seriously question the assumed randomness of the sample if all 12 people were of the same sex. We shall designate a male and a female by the symbols M and F, respectively, and record the outcomes according to their sex in the order in which they occur. A typical sequence for the experiment might be

MMFFFMFFMMMMM,

where we have grouped subsequences of identical symbols. Such groupings are called **runs**.

Definition 16.1:

A **run** is a subsequence of one or more identical symbols representing a common property of the data.

Regardless of whether the sample measurements represent qualitative or quantitative data, the runs test divides the data into two mutually exclusive categories: male or female; defective or nondefective; heads or tails; above or below the median; and so forth. Consequently, a sequence will always be limited to two distinct symbols. Let n_1 be the number of symbols associated with the category that occurs the least and n_2 be the number of symbols that belong to the other category. Then the sample size $n = n_1 + n_2$.

For the n=12 symbols in our poll, we have five runs, with the first containing two M's, the second containing three F's, and so on. If the number of runs is larger or smaller than what we would expect by chance, the hypothesis that the sample was drawn at random should be rejected. Certainly, a sample resulting in only two runs,

M M M M M M M F F F F

or the reverse, is most unlikely to occur from a random selection process. Such a result indicates that the first 7 people interviewed were all males, followed by 5 females. Likewise, if the sample resulted in the maximum number of 12 runs, as in the alternating sequence

M F M F M F M F M F M F,

we would again be suspicious of the order in which the individuals were selected for the poll.

The runs test for randomness is based on the random variable V, the total number of runs that occur in the complete sequence of the experiment. In Table A.18, values of $P(V \le v^* \text{ when } H_0 \text{ is true})$ are given for $v^* = 2, 3, ..., 20 \text{ runs and}$

values of n_1 and n_2 less than or equal to 10. The P-values for both one-tailed and two-tailed tests can be obtained using these tabled values.

For the poll taken previously, we exhibit a total of 5 F's and 7 M's. Hence, with $n_1 = 5$, $n_2 = 7$, and v = 5, we note from Table A.18 that the P-value for a two-tailed test is

$$P = 2P(V \le 5 \text{ when } H_0 \text{ is true}) = 0.394 > 0.05.$$

That is, the value v=5 is reasonable at the 0.05 level of significance when H_0 is true, and therefore we have insufficient evidence to reject the hypothesis of randomness in our sample.

When the number of runs is large (for example, if v = 11 while $n_1 = 5$ and $n_2 = 7$), the *P*-value for a two-tailed test is

$$P = 2P(V \ge 11 \text{ when } H_0 \text{ is true}) = 2[1 - P(V \le 10 \text{ when } H_0 \text{ is true})]$$

= $2(1 - 0.992) = 0.016 < 0.05$,

which leads us to reject the hypothesis that the sample values occurred at random.

The runs test can also be used to detect departures from randomness of a sequence of quantitative measurements over time, caused by trends or periodicities. Replacing each measurement, in the order in which it was collected, by a *plus* symbol if it falls above the median or by a *minus* symbol if it falls below the median and omitting all measurements that are exactly equal to the median, we generate a sequence of plus and minus symbols that is tested for randomness as illustrated in the following example.

Example 16.7: A machine dispenses acrylic paint thinner into containers. Would you say that the amount of paint thinner being dispensed by this machine varies randomly if the contents of the next 15 containers are measured and found to be 3.6, 3.9, 4.1, 3.6, 3.8, 3.7, 3.4, 4.0, 3.8, 4.1, 3.9, 4.0, 3.8, 4.2, and 4.1 liters? Use a 0.1 level of significance.

Solution:

- 1. H_0 : Sequence is random.
- 2. H_1 : Sequence is not random.
- 3. $\alpha = 0.1$.
- 4. Test statistic: V, the total number of runs.
- 5. Computations: For the given sample, we find $\tilde{x}=3.9$. Replacing each measurement by the symbol "+" if it falls above 3.9 or by the symbol "–" if it falls below 3.9 and omitting the two measurements that equal 3.9, we obtain the sequence

for which $n_1=6,\ n_2=7,\ {\rm and}\ v=8.$ Therefore, from Table A.18, the computed *P*-value is

$$P = 2P(V \ge 8 \text{ when } H_0 \text{ is true})$$

= $2[1 - P(V \le 8 \text{ when } H_0 \text{ is true})] = 2(0.5) = 1.$

6. Decision: Do not reject the hypothesis that the sequence of measurements varies randomly.

16.5 Runs Test 673

The runs test, although less powerful, can also be used as an alternative to the Wilcoxon two-sample test to test the claim that two random samples come from populations having the same distributions and therefore equal means. If the populations are symmetric, rejection of the claim of equal distributions is equivalent to accepting the alternative hypothesis that the means are not equal. In performing the test, we first combine the observations from both samples and arrange them in ascending order. Now assign the letter A to each observation taken from one of the populations and the letter B to each observation from the other population, thereby generating a sequence consisting of the symbols A and B. If observations from one population are tied with observations from the other population, the sequence of A and B symbols generated will not be unique and consequently the number of runs is unlikely to be unique. Procedures for breaking ties usually result in additional tedious computations, and for this reason we might prefer to apply the Wilcoxon rank-sum test whenever these situations occur.

To illustrate the use of runs in testing for equal means, consider the survival times of the leukemia patients of Exercise 16.16 on page 670, for which we have

resulting in v=6 runs. If the two symmetric populations have equal means, the observations from the two samples will be intermingled, resulting in many runs. However, if the population means are significantly different, we would expect most of the observations for one of the two samples to be smaller than those for the other sample. In the extreme case where the populations do not overlap, we would obtain a sequence of the form

$$A A A A A B B B B$$
 or $B B B B A A A A A$

and in either case there would be only two runs. Consequently, the hypothesis of equal population means will be rejected at the α -level of significance only when v is small enough so that

$$P = P(V \le v \text{ when } H_0 \text{ is true}) \le \alpha,$$

implying a one-tailed test.

Returning to the data of Exercise 16.16 on page 670, for which $n_1 = 4$, $n_2 = 5$, and v = 6, we find from Table A.18 that

$$P = P(V \le 6 \text{ when } H_0 \text{ is true}) = 0.786 > 0.05$$

and therefore fail to reject the null hypothesis of equal means. Hence, we conclude that the new serum does not prolong life by arresting leukemia.

When n_1 and n_2 increase in size, the sampling distribution of V approaches the normal distribution with mean and variance given by

$$\mu_V = \frac{2n_1n_2}{n_1 + n_2} + 1$$
 and $\sigma_V^2 = \frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}$.

Consequently, when n_1 and n_2 are both greater than 10, we can use the statistic

$$Z = \frac{V - \mu_V}{\sigma_V}$$

to establish the critical region for the runs test.

16.6 Tolerance Limits

Tolerance limits for a normal distribution of measurements were discussed in Chapter 9. In this section, we consider a method for constructing tolerance intervals that is independent of the shape of the underlying distribution. As we might suspect, for a reasonable degree of confidence they will be substantially longer than those constructed assuming normality, and the sample size required is generally very large. Nonparametric tolerance limits are stated in terms of the smallest and largest observations in our sample.

Two-Sided Tolerance Limits

For any distribution of measurements, two-sided tolerance limits are indicated by the smallest and largest observations in a sample of size n, where n is determined so that one can assert with $100(1-\gamma)\%$ confidence that **at least** the proportion $1-\alpha$ of the distribution is included between the sample extremes.

Table A.19 gives required sample sizes for selected values of γ and $1 - \alpha$. For example, when $\gamma = 0.01$ and $1 - \alpha = 0.95$, we must choose a random sample of size n = 130 in order to be 99% confident that at least 95% of the distribution of measurements is included between the sample extremes.

Instead of determining the sample size n such that a specified proportion of measurements is contained between the sample extremes, it is desirable in many industrial processes to determine the sample size such that a fixed proportion of the population falls below the largest (or above the smallest) observation in the sample. Such limits are called one-sided tolerance limits.

One-Sided Tolerance Limits

For any distribution of measurements, a one-sided tolerance limit is determined by the smallest (largest) observation in a sample of size n, where n is determined so that one can assert with $100(1-\gamma)\%$ confidence that **at least** the proportion $1-\alpha$ of the distribution will exceed the smallest (be less than the largest) observation in the sample.

Table A.20 shows required sample sizes corresponding to selected values of γ and $1-\alpha$. Hence, when $\gamma=0.05$ and $1-\alpha=0.70$, we must choose a sample of size n=9 in order to be 95% confident that 70% of our distribution of measurements will exceed the smallest observation in the sample.

16.7 Rank Correlation Coefficient

In Chapter 11, we used the sample correlation coefficient r to measure the population correlation coefficient ρ , the linear relationship between two continuous variables X and Y. If ranks $1,2,\ldots,n$ are assigned to the x observations in order of magnitude and similarly to the y observations, and if these ranks are then substituted for the actual numerical values in the formula for the correlation coefficient in Chapter 11, we obtain the nonparametric counterpart of the conventional correlation coefficient. A correlation coefficient calculated in this manner is known as the **Spearman rank correlation coefficient** and is denoted by r_s . When there are no ties among either set of measurements, the formula for r_s reduces to a much simpler expression involving the differences d_i between the ranks assigned to the n pairs of x's and y's, which we now state.

Rank Correlation
Coefficient

A nonparametric measure of association between two variables X and Y is given by the **rank correlation coefficient**

$$r_s = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} d_i^2,$$

where d_i is the difference between the ranks assigned to x_i and y_i and n is the number of pairs of data.

In practice, the preceding formula is also used when there are ties among either the x or y observations. The ranks for tied observations are assigned as in the signed-rank test by averaging the ranks that would have been assigned if the observations were distinguishable.

The value of r_s will usually be close to the value obtained by finding r based on numerical measurements and is interpreted in much the same way. As before, the value of r_s will range from -1 to +1. A value of +1 or -1 indicates perfect association between X and Y, the plus sign occurring for identical rankings and the minus sign occurring for reverse rankings. When r_s is close to zero, we conclude that the variables are uncorrelated.

Example 16.8: The figures listed in Table 16.7, released by the Federal Trade Commission, show the milligrams of tar and nicotine found in 10 brands of cigarettes. Calculate the rank correlation coefficient to measure the degree of relationship between tar and nicotine content in cigarettes.

10010 10:1	· rar and riceon	ne contentes
Cigarette Brand	Tar Content	Nicotine Content
Viceroy	14	0.9
Marlboro	17	1.1
Chesterfield	28	1.6
Kool	17	1.3
Kent	16	1.0
Raleigh	13	0.8
Old Gold	24	1.5

25

18

31

1.4

1.2

2.0

Table 16.7: Tar and Nicotine Contents

Solution: Let X and Y represent the tar and nicotine contents, respectively. First we assign ranks to each set of measurements, with the rank of 1 assigned to the lowest number in each set, the rank of 2 to the second lowest number in each set, and so forth, until the rank of 10 is assigned to the largest number. Table 16.8 shows the individual rankings of the measurements and the differences in ranks for the 10 pairs of observations.

Philip Morris

Oasis

Players

Cigarette Brand	$oldsymbol{x}_i$	$oldsymbol{y}_i$	$oldsymbol{d}_i$
Viceroy	2.0	2.0	0.0
Marlboro	4.5	4.0	0.5
Chesterfield	9.0	9.0	0.0
Kool	4.5	6.0	-1.5
Kent	3.0	3.0	0.0
Raleigh	1.0	1.0	0.0
Old Gold	7.0	8.0	-1.0
Philip Morris	8.0	7.0	1.0
Oasis	6.0	5.0	1.0
Players	10.0	10.0	0.0

Table 16.8: Rankings for Tar and Nicotine Content

Substituting into the formula for r_s , we find that

$$r_s = 1 - \frac{(6)(5.50)}{(10)(100 - 1)} = 0.967,$$

indicating a high positive correlation between the amounts of tar and nicotine found in cigarettes.

Some advantages to using r_s rather than r do exist. For instance, we no longer assume the underlying relationship between X and Y to be linear and therefore, when the data possess a distinct curvilinear relationship, the rank correlation coefficient will likely be more reliable than the conventional measure. A second advantage to using the rank correlation coefficient is the fact that no assumptions of normality are made concerning the distributions of X and Y. Perhaps the greatest advantage occurs when we are unable to make meaningful numerical measurements but nevertheless can establish rankings. Such is the case, for example, when different judges rank a group of individuals according to some attribute. The rank correlation coefficient can be used in this situation as a measure of the consistency of the two judges.

To test the hypothesis that $\rho=0$ by using a rank correlation coefficient, one needs to consider the sampling distribution of the r_s -values under the assumption of no correlation. Critical values for $\alpha=0.05,0.025,0.01$, and 0.005 have been calculated and appear in Table A.21. The setup of this table is similar to that of the table of critical values for the t-distribution except for the left column, which now gives the number of pairs of observations rather than the degrees of freedom. Since the distribution of the r_s -values is symmetric about zero when $\rho=0$, the r_s -value that leaves an area of α to the left is equal to the negative of the r_s -value that leaves an area of α to the right. For a two-sided alternative hypothesis, the critical region of size α falls equally in the two tails of the distribution. For a test in which the alternative hypothesis is negative, the critical region is entirely in the left tail of the distribution, and when the alternative is positive, the critical region is placed entirely in the right tail.

Exercises

Example 16.9: Refer to Example 16.8 and test the hypothesis that the correlation between the amounts of tar and nicotine found in cigarettes is zero against the alternative that it is greater than zero. Use a 0.01 level of significance.

Solution:

- 1. H_0 : $\rho = 0$.
- 2. H_1 : $\rho > 0$.
- 3. $\alpha = 0.01$.
- 4. Critical region: $r_s > 0.745$ from Table A.21.
- 5. Computations: From Example 16.8, $r_s = 0.967$.
- 6. Decision: Reject H_0 and conclude that there is a significant correlation between the amounts of tar and nicotine found in cigarettes.

Under the assumption of no correlation, it can be shown that the distribution of the r_s -values approaches a normal distribution with a mean of 0 and a standard deviation of $1/\sqrt{n-1}$ as n increases. Consequently, when n exceeds the values given in Table A.21, one can test for a significant correlation by computing

$$z = \frac{r_s - 0}{1/\sqrt{n - 1}} = r_s \sqrt{n - 1}$$

and comparing with critical values of the standard normal distribution shown in Table A.3.

Exercises

16.23 A random sample of 15 adults living in a small town were selected to estimate the proportion of voters favoring a certain candidate for mayor. Each individual was also asked if he or she was a college graduate. By letting Y and N designate the responses of "yes" and "no" to the education question, the following sequence was obtained:

$$N$$
 N N N Y Y N Y Y N Y N N N

Use the runs test at the 0.1 level of significance to determine if the sequence supports the contention that the sample was selected at random.

16.24 A silver-plating process is used to coat a certain type of serving tray. When the process is in control, the thickness of the silver on the trays will vary randomly following a normal distribution with a mean of 0.02 millimeter and a standard deviation of 0.005 millimeter. Suppose that the next 12 trays examined show the following thicknesses of silver: 0.019, 0.021, 0.020, 0.019, 0.020, 0.018, 0.023, 0.021, 0.024, 0.022, 0.023, 0.022. Use the runs test to determine if the fluctuations in thickness from one tray to another are random. Let $\alpha = 0.05$.

- 16.25 Use the runs test to test, at level 0.01, whether there is a difference in the average operating time for the two calculators of Exercise 16.17 on page 670.
- 16.26 In an industrial production line, items are inspected periodically for defectives. The following is a sequence of defective items, D, and nondefective items, N, produced by this production line:

Use the large-sample theory for the runs test, with a significance level of 0.05, to determine whether the defectives are occurring at random.

- 16.27 Assuming that the measurements of Exercise 1.14 on page 30 were recorded successively from left to right as they were collected, use the runs test, with $\alpha=0.05$, to test the hypothesis that the data represent a random sequence.
- **16.28** How large a sample is required to be 95% confident that at least 85% of the distribution of measurements is included between the sample extremes?

- **16.29** What is the probability that the range of a random sample of size 24 includes at least 90% of the population?
- **16.30** How large a sample is required to be 99% confident that at least 80% of the population will be less than the largest observation in the sample?
- **16.31** What is the probability that at least 95% of a population will exceed the smallest value in a random sample of size n = 135?
- **16.32** The following table gives the recorded grades for 10 students on a midterm test and the final examination in a calculus course:

Student	$\begin{array}{c} {\rm Midterm} \\ {\rm Test} \end{array}$	Final Examination
L.S.A.	84	73
W.P.B.	98	63
R.W.K.	91	87
J.R.L.	72	66
J.K.L.	86	78
D.L.P.	93	78
B.L.P.	80	91
D.W.M.	0	0
M.N.M.	92	88
R.H.S.	87	77

- (a) Calculate the rank correlation coefficient.
- (b) Test the null hypothesis that $\rho = 0$ against the alternative that $\rho > 0$. Use $\alpha = 0.025$.
- **16.33** With reference to the data of Exercise 11.1 on page 398,
- (a) calculate the rank correlation coefficient;
- (b) test the null hypothesis, at the 0.05 level of significance, that $\rho = 0$ against the alternative that $\rho \neq 0$. Compare your results with those obtained in Exercise 11.44 on page 435.
- **16.34** Calculate the rank correlation coefficient for the daily rainfall and amount of particulate removed in Exercise 11.13 on page 400.
- **16.35** With reference to the weights and chest sizes of infants in Exercise 11.47 on page 436,
- (a) calculate the rank correlation coefficient;

- (b) test the hypothesis, at the 0.025 level of significance, that $\rho = 0$ against the alternative that $\rho > 0$.
- 16.36 A consumer panel tests nine brands of microwave ovens for overall quality. The ranks assigned by the panel and the suggested retail prices are as follows:

Manufacturer	Panel Rating	$\begin{array}{c} \mathbf{Suggested} \\ \mathbf{Price} \end{array}$
\overline{A}	6	\$480
B	9	395
C	2	575
D	8	550
E	5	510
F	1	545
G	7	400
H	4	465
I	3	420

Is there a significant relationship between the quality and the price of a microwave oven? Use a 0.05 level of significance.

16.37 Two judges at a college homecoming parade rank eight floats in the following order:

	Float							
	1	2	3	4	5	6	7	8
	5	8	4	3	6	2	7	1
Judge B	7	5	4	2	8	1	6	3

- (a) Calculate the rank correlation coefficient.
- (b) Test the null hypothesis that $\rho=0$ against the alternative that $\rho>0$. Use $\alpha=0.05$.
- 16.38 In the article called "Risky Assumptions" by Paul Slovic, Baruch Fischoff, and Sarah Lichtenstein, published in *Psychology Today* (June 1980), the risk of dying in the United States from 30 activities and technologies is ranked by members of the League of Women Voters and also by experts who are professionally involved in assessing risks. The rankings are as shown in Table 16.9.
- (a) Calculate the rank correlation coefficient.
- (b) Test the null hypothesis of zero correlation between the rankings of the League of Women Voters and the experts against the alternative that the correlation is not zero. Use a 0.05 level of significance.

Review Exercises 679

Activity or			Activity or		
Technology Risk	Voters	Experts	Technology Risk	Voters	Experts
Nuclear power 1 20		Motor vehicles	2	1	
Handguns	3	4	Smoking	4	2
Motorcycles	5	6	Alcoholic beverages	6	3
Private aviation	7	12	Police work	8	17
Pesticides	9	8	Surgery	10	5
Fire fighting	11	18	Large construction	12	13
Hunting	13	23	Spray cans	14	26
Mountain climing	15	29	Bicycles	16	15
Commercial aviation	17	16	Electric power	18	9
Swimming	19	10	Contraceptives	20	11
Skiing	21	30	X-rays	22	7
Football	23	27	Railroads	24	19
Food preservatives	Food preservatives 25 14		Food coloring	26	21
Power mowers	27	28	Antibiotics 28		24
Home appliances	29	22	Vaccinations 30		

Table 16.9: The Ranking Data for Exercise 16.38

Review Exercises

16.39 A study by a chemical company compared the drainage properties of two different polymers. Ten different sludges were used, and both polymers were allowed to drain in each sludge. The free drainage was measured in $\rm mL/min$.

Polymer A	Polymer B
12.7	12.0
14.6	15.0
18.6	19.2
17.5	17.3
11.8	12.2
16.9	16.6
19.9	20.1
17.6	17.6
15.6	16.0
16.0	16.1
	12.7 14.6 18.6 17.5 11.8 16.9 19.9 17.6 15.6

- (a) Use the sign test at the 0.05 level to test the null hypothesis that polymer A has the same median drainage as polymer B.
- (b) Use the signed-rank test to test the hypotheses of part (a).
- **16.40** In Review Exercise 13.45 on page 555, use the Kruskal-Wallis test, at the 0.05 level of significance, to determine if the chemical analyses performed by the four laboratories give, on average, the same results.
- **16.41** Use the data from Exercise 13.14 on page 530 to see if the median amount of nitrogen lost in perspiration is different for the three levels of dietary protein.

17.6 Cusum Control Charts

The disadvantage of the Shewhart-type control charts, developed and illustrated in the preceding sections, lies in their inability to detect small changes in the mean. A quality control mechanism that has received considerable attention in the statistics literature and usage in industry is the **cumulative sum (cusum) chart**. The method for the cusum chart is simple and its appeal is intuitive. It should become obvious to the reader why it is more responsive to small changes in the mean. Consider a control chart for the mean with a reference level established at value W. Consider particular observations X_1, X_2, \ldots, X_r . The first r cusums are

$$S_{1} = X_{1} - W$$

$$S_{2} = S_{1} + (X_{2} - W)$$

$$S_{3} = S_{2} + (X_{3} - W)$$

$$\vdots$$

$$S_{r} = S_{r-1} + (X_{r} - W).$$

It becomes clear that the cusum is merely the accumulation of differences from the reference level. That is,

$$S_k = \sum_{i=1}^k (X_i - W), \qquad k = 1, 2, \dots$$

The cusum chart is, then, a plot of S_k against time.

Suppose that we consider the reference level W to be an acceptable value of the mean μ . Clearly, if there is no shift in μ , the cusum chart should be approximately horizontal, with some minor fluctuations balanced around zero. Now, if there is only a moderate change in the mean, a relatively large change in the *slope* of the cusum chart should result, since each new observation has a chance of contributing a shift and the measure being plotted is accumulating these shifts. Of course, the signal that the mean has shifted lies in the nature of the slope of the cusum chart. The purpose of the chart is to detect changes that are moving away from the reference level. A nonzero slope (in either direction) represents a change away from the reference level. A positive slope indicates an increase in the mean above the reference level, while a negative slope signals a decrease.

Cusum charts are often devised with a defined acceptable quality level (AQL) and rejectable quality level (RQL) preestablished by the user. Both represent values of the mean. These may be viewed as playing roles somewhat similar to those of the null and alternative mean of hypothesis testing. Consider a situation where the analyst hopes to detect an increase in the value of the process mean. We shall use the notation μ_0 for AQL and μ_1 for RQL and let $\mu_1 > \mu_0$. The reference level is now set at

$$W = \frac{\mu_0 + \mu_1}{2}.$$

The values of S_r (r = 1, 2,) will have a negative slope if the process mean is at μ_0 and a positive slope if the process mean is at μ_1 .

Decision Rule for Cusum Charts

As indicated earlier, the slope of the cusum chart provides the signal for action by the quality control analyst. The decision rule calls for action if, at the rth sampling period,

$$d_r > h$$
,

where h is a prespecified value called the **length of the decision interval** and

$$d_r = S_r - \min_{1 \le i \le r-1} S_i.$$

In other words, action is taken if the data reveal that the current cusum value exceeds by a specified amount the previous smallest cusum value.

A modification in the mechanics described above makes employing the method easier. We have described a procedure that plots the cusums and computes differences. A simple modification involves plotting the differences directly and allows for checking against the decision interval. The general expression for d_r is quite simple. For the cusum procedure where we are detecting increases in the mean,

$$d_r = \max[0, d_{r-1} + (X_r - W)].$$

The choice of the value of h is, of course, very important. We do not choose in this book to provide the many details in the literature dealing with this choice. The reader is referred to Ewan and Kemp, 1960, and Montgomery, 2000b (see the Bibliography) for a thorough discussion. One important consideration is the **expected run length**. Ideally, the expected run length is quite large under $\mu = \mu_0$ and quite small when $\mu = \mu_1$.

Review Exercises

17.1 Consider X_1, X_2, \ldots, X_n independent Poisson random variables with parameters $\mu_1, \mu_2, \ldots, \mu_n$. Use the properties of moment-generating functions to show that the random variable $\sum_{i=1}^{n} X_i$ is a Poisson random variable with mean $\sum_{i=1}^{n} \mu_i$ and variance $\sum_{i=1}^{n} \mu_i$.

17.2 Consider the following data taken on subgroups of size 5. The data contain 20 averages and ranges on

of size 5. The data contain 20 averages and ranges on the diameter (in millimeters) of an important component part of an engine. Display \bar{X} - and R-charts. Does the process appear to be in control?

Sample	X	R
1	2.3972	0.0052
2	2.4191	0.0117
3	2.4215	0.0062
4	2.3917	0.0089
5	2.4151	0.0095
6	2.4027	0.0101
7	2.3921	0.0091
8	2.4171	0.0059

Sample	$ar{X}$	${m R}$
9	2.3951	0.0068
10	2.4215	0.0048
11	2.3887	0.0082
12	2.4107	0.0032
13	2.4009	0.0077
14	2.3992	0.0107
15	2.3889	0.0025
16	2.4107	0.0138
17	2.4109	0.0037
18	2.3944	0.0052
19	2.3951	0.0038
20	2.4015	0.0017

- 17.3 Suppose for Review Exercise 17.2 that the buyer has set specifications for the part. The specifications require that the diameter fall in the range covered by $2.40000 \pm\ 0.0100$ mm. What proportion of units produced by this process will not conform to specifications?
- 17.4 For the situation of Review Exercise 17.2, give numerical estimates of the mean and standard devia-

tion of the diameter for the part being manufactured in the process.

17.5 Consider the data of Table 17.1. Suppose that additional samples of size 5 are taken and tensile strength recorded. The sampling produces the following results (in pounds per square inch).

Sample	$ar{X}$	\boldsymbol{R}
1	1511	22
2	1508	14
3	1522	11
4	1488	18
5	1519	6
6	1524	11
7	1519	8
8	1504	7
9	1500	8
10	1519	14

- (a) Plot the data, using the \bar{X} and R-charts for the preliminary data of Table 17.1.
- (b) Does the process appear to be in control? If not, explain why.
- 17.6 Consider an in-control process with mean $\mu=25$ and $\sigma=1.0$. Suppose that subgroups of size 5 are used with control limits $\mu\pm3\sigma/\sqrt{n}$, and centerline at μ . Suppose that a shift occurs in the mean, and the new mean is $\mu=26.5$.
- (a) What is the average number of samples required (following the shift) to detect the out-of-control situation?
- (b) What is the standard deviation of the number of runs required?

17.7 Consider the situation of Example 17.2. The following data are taken on additional samples of size 5. Plot the \bar{X} - and S-values on the \bar{X} - and S-charts that were produced with the data in the preliminary sample. Does the process appear to be in control? Explain why or why not.

Sample	$ar{X}$	$oldsymbol{S_i}$
1	62.280	0.062
2	62.319	0.049
3	62.297	0.077
4	62.318	0.042
5	62.315	0.038
6	62.389	0.052
7	62.401	0.059
8	62.315	0.042
9	62.298	0.036
10	62.337	0.068

17.8 Samples of size 50 are taken every hour from a

process producing a certain type of item that is considered either defective or not defective. Twenty samples are taken.

- (a) Construct a control chart for control of proportion defective.
- (b) Does the process appear to be in control? Explain.

Sample	Number of Defective Items	Sample	Number of Defective Items
1	4	11	2
2	3	12	4
3	5	13	1
4	3	14	2
5	2	15	3
6	2	16	1
7	2	17	1
8	1	18	2
9	4	19	3
10	3	20	1

17.9 For the situation of Review Exercise 17.8, suppose that additional data are collected as follows:

Sample	Number of Defective Items
1	3
2	4
3	2
4	2
5	3
6	1
7	3
8	5
9	7
10	7

Does the process appear to be in control? Explain.

17.10 A quality control effort is being undertaken for a process where large steel plates are manufactured and surface defects are of concern. The goal is to set up a quality control chart for the number of defects per plate. The data are given below. Set up the appropriate control chart, using this sample information. Does the process appear to be in control?

	Number of		Number of
Sample	Defects	Sample	Defects
1	4	11	1
2	2	12	2
3	1	13	2
4	3	14	3
5	0	15	1
6	4	16	4
7	5	17	3
8	3	18	2
9	2	19	1
10	2	20	3
		•	

Appendix A Statistical Tables and Proofs

Table A.1 Binomial Probability Sums $\sum_{x=0}^{r} b(x; n, p)$

						1	o				
\boldsymbol{n}	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
1	0	0.9000	0.8000	0.7500	0.7000	0.6000	0.5000	0.4000	0.3000	0.2000	0.1000
	1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0	0.8100	0.6400	0.5625	0.4900	0.3600	0.2500	0.1600	0.0900	0.0400	0.0100
	1	0.9900	0.9600	0.9375	0.9100	0.8400	0.7500	0.6400	0.5100	0.3600	0.1900
	2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	0	0.7290	0.5120	0.4219	0.3430	0.2160	0.1250	0.0640	0.0270	0.0080	0.0010
	1	0.9720	0.8960	0.8438	0.7840	0.6480	0.5000	0.3520	0.2160	0.1040	0.0280
	2	0.9990	0.9920	0.9844	0.9730	0.9360	0.8750	0.7840	0.6570	0.4880	0.2710
	3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	0	0.6561	0.4096	0.3164	0.2401	0.1296	0.0625	0.0256	0.0081	0.0016	0.0001
	1	0.9477	0.8192	0.7383	0.6517	0.4752	0.3125	0.1792	0.0837	0.0272	0.0037
	2	0.9963	0.9728	0.9492	0.9163	0.8208	0.6875	0.5248	0.3483	0.1808	0.0523
	3	0.9999	0.9984	0.9961	0.9919	0.9744	0.9375	0.8704	0.7599	0.5904	0.3439
	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	0	0.5905	0.3277	0.2373	0.1681	0.0778	0.0313	0.0102	0.0024	0.0003	0.0000
	1	0.9185	0.7373	0.6328	0.5282	0.3370	0.1875	0.0870	0.0308	0.0067	0.0005
	2	0.9914	0.9421	0.8965	0.8369	0.6826	0.5000	0.3174	0.1631	0.0579	0.0086
	3	0.9995	0.9933	0.9844	0.9692	0.9130	0.8125	0.6630	0.4718	0.2627	0.0815
	4	1.0000	0.9997	0.9990	0.9976	0.9898	0.9688	0.9222	0.8319	0.6723	0.4095
	5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	0	0.5314	0.2621	0.1780	0.1176	0.0467	0.0156	0.0041	0.0007	0.0001	0.0000
	1	0.8857	0.6554	0.5339	0.4202	0.2333	0.1094	0.0410	0.0109	0.0016	0.0001
	2	0.9842	0.9011	0.8306	0.7443	0.5443	0.3438	0.1792	0.0705	0.0170	0.0013
	3	0.9987	0.9830	0.9624	0.9295	0.8208	0.6563	0.4557	0.2557	0.0989	0.0159
	4	0.9999	0.9984	0.9954	0.9891	0.9590	0.8906	0.7667	0.5798	0.3446	0.1143
	5	1.0000	0.9999	0.9998	0.9993	0.9959	0.9844	0.9533	0.8824	0.7379	0.4686
	6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	0	0.4783	0.2097	0.1335	0.0824	0.0280	0.0078	0.0016	0.0002	0.0000	
	1	0.8503	0.5767	0.4449	0.3294	0.1586	0.0625	0.0188	0.0038	0.0004	0.0000
	2	0.9743	0.8520	0.7564	0.6471	0.4199	0.2266	0.0963	0.0288	0.0047	0.0002
	3	0.9973	0.9667	0.9294	0.8740	0.7102	0.5000	0.2898	0.1260	0.0333	0.0027
	4	0.9998	0.9953	0.9871	0.9712	0.9037	0.7734	0.5801	0.3529	0.1480	0.0257
	5	1.0000	0.9996	0.9987	0.9962	0.9812	0.9375	0.8414	0.6706	0.4233	0.1497
	6		1.0000	0.9999	0.9998	0.9984	0.9922	0.9720	0.9176	0.7903	0.5217
	7			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Table A.1 (continued) Binomial Probability Sums $\sum\limits_{x=0}^{r}b(x;n,p)$

							9				
n	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
8	0	0.4305	0.1678	0.1001	0.0576	0.0168	0.0039	0.0007	0.0001	0.0000	
	1	0.8131	0.5033	0.3671	0.2553	0.1064	0.0352	0.0085	0.0013	0.0001	
	2	0.9619	0.7969	0.6785	0.5518	0.3154	0.1445	0.0498	0.0113	0.0012	0.0000
	3	0.9950	0.9437	0.8862	0.8059	0.5941	0.3633	0.1737	0.0580	0.0104	0.0004
	4	0.9996	0.9896	0.9727	0.9420	0.8263	0.6367	0.4059	0.1941	0.0563	0.0050
	5	1.0000	0.9988	0.9958	0.9887	0.9502	0.8555	0.6846	0.4482	0.2031	0.0381
	6		0.9999	0.9996	0.9987	0.9915	0.9648	0.8936	0.7447	0.4967	0.1869
	7		1.0000	1.0000	0.9999	0.9993	0.9961	0.9832	0.9424	0.8322	0.5695
	8				1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	0	0.3874	0.1342	0.0751	0.0404	0.0101	0.0020	0.0003	0.0000		
	1	0.7748	0.4362	0.3003	0.1960	0.0705	0.0195	0.0038	0.0004	0.0000	
	2	0.9470	0.7382	0.6007	0.4628	0.2318	0.0898	0.0250	0.0043	0.0003	0.0000
	3	0.9917	0.9144	0.8343	0.7297	0.4826	0.2539	0.0994	0.0253	0.0031	0.0001
	4	0.9991	0.9804	0.9511	0.9012	0.7334	0.5000	0.2666	0.0988	0.0196	0.0009
	5	0.9999	0.9969	0.9900	0.9747	0.9006	0.7461	0.5174	0.2703	0.0856	0.0083
	6	1.0000	0.9997	0.9987	0.9957	0.9750	0.9102	0.7682	0.5372	0.2618	0.0530
	7		1.0000	0.9999	0.9996	0.9962	0.9805	0.9295	0.8040	0.5638	0.2252
	8			1.0000	1.0000	0.9997	0.9980	0.9899	0.9596	0.8658	0.6126
	9					1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	0	0.3487	0.1074	0.0563	0.0282	0.0060	0.0010	0.0001	0.0000		
	1	0.7361	0.3758	0.2440	0.1493	0.0464	0.0107	0.0017	0.0001	0.0000	
	2	0.9298	0.6778	0.5256	0.3828	0.1673	0.0547	0.0123	0.0016	0.0001	
	3	0.9872	0.8791	0.7759	0.6496	0.3823	0.1719	0.0548	0.0106	0.0009	0.0000
	4	0.9984	0.9672	0.9219	0.8497	0.6331	0.3770	0.1662	0.0473	0.0064	0.0001
	5	0.9999	0.9936	0.9803	0.9527	0.8338	0.6230	0.3669	0.1503	0.0328	0.0016
	6	1.0000	0.9991	0.9965	0.9894	0.9452	0.8281	0.6177	0.3504	0.1209	0.0128
	7		0.9999	0.9996	0.9984	0.9877	0.9453	0.8327	0.6172	0.3222	0.0702
	8		1.0000	1.0000	0.9999	0.9983	0.9893	0.9536	0.8507	0.6242	0.2639
	9				1.0000	0.9999	0.9990	0.9940	0.9718	0.8926	0.6513
	10					1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
11	0	0.3138	0.0859	0.0422	0.0198	0.0036	0.0005	0.0000			
	1	0.6974	0.3221	0.1971	0.1130	0.0302	0.0059	0.0007	0.0000		
	2	0.9104	0.6174	0.4552	0.3127	0.1189	0.0327	0.0059	0.0006	0.0000	
	3	0.9815	0.8389	0.7133	0.5696	0.2963	0.1133	0.0293	0.0043	0.0002	
	4	0.9972	0.9496	0.8854	0.7897	0.5328	0.2744	0.0994	0.0216	0.0020	0.0000
	5	0.9997	0.9883	0.9657	0.9218	0.7535	0.5000	0.2465	0.0782	0.0117	0.0003
	6	1.0000	0.9980	0.9924	0.9784	0.9006	0.7256	0.4672	0.2103	0.0504	0.0028
	7		0.9998	0.9988	0.9957	0.9707	0.8867	0.7037	0.4304	0.1611	0.0185
	8		1.0000	0.9999	0.9994	0.9941	0.9673	0.8811	0.6873	0.3826	0.0896
	9			1.0000	1.0000	0.9993	0.9941	0.9698	0.8870	0.6779	0.3026
	10					1.0000	0.9995	0.9964	0.9802	0.9141	0.6862
	11						1.0000	1.0000	1.0000	1.0000	1.0000

Table A.1 (continued) Binomial Probability Sums $\sum_{x=0}^{r} b(x; n, p)$

	<i>p</i>										
n	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
12	0	0.2824	0.0687	0.0317	0.0138	0.0022	0.0002	0.0000			
	1	0.6590	0.2749	0.1584	0.0850	0.0196	0.0032	0.0003	0.0000		
	2	0.8891	0.5583	0.3907	0.2528	0.0834	0.0193	0.0028	0.0002	0.0000	
	3	0.9744	0.7946	0.6488	0.4925	0.2253	0.0730	0.0153	0.0017	0.0001	
	4	0.9957	0.9274	0.8424	0.7237	0.4382	0.1938	0.0573	0.0095	0.0006	0.0000
	5	0.9995	0.9806	0.9456	0.8822	0.6652	0.3872	0.1582	0.0386	0.0039	0.0001
	6	0.9999	0.9961	0.9857	0.9614	0.8418	0.6128	0.3348	0.1178	0.0194	0.0005
	7	1.0000	0.9994	0.9972	0.9905	0.9427	0.8062	0.5618	0.2763	0.0726	0.0043
	8		0.9999	0.9996	0.9983	0.9847	0.9270	0.7747	0.5075	0.2054	0.0256
	9		1.0000	1.0000	0.9998	0.9972	0.9807	0.9166	0.7472	0.4417	0.1109
	10				1.0000	0.9997	0.9968	0.9804	0.9150	0.7251	0.3410
	11					1.0000	0.9998	0.9978	0.9862	0.9313	0.7176
	12						1.0000	1.0000	1.0000	1.0000	1.0000
13	0	0.2542	0.0550	0.0238	0.0097	0.0013	0.0001	0.0000			
	1	0.6213	0.2336	0.1267	0.0637	0.0126	0.0017	0.0001	0.0000		
	2	0.8661	0.5017	0.3326	0.2025	0.0579	0.0112	0.0013	0.0001		
	3	0.9658	0.7473	0.5843	0.4206	0.1686	0.0461	0.0078	0.0007	0.0000	
	4	0.9935	0.9009	0.7940	0.6543	0.3530	0.1334	0.0321	0.0040	0.0002	
	5	0.9991	0.9700	0.9198	0.8346	0.5744	0.2905	0.0977	0.0182	0.0012	0.0000
	6	0.9999	0.9930	0.9757	0.9376	0.7712	0.5000	0.2288	0.0624	0.0070	0.0001
	7	1.0000	0.9988	0.9944	0.9818	0.9023	0.7095	0.4256	0.1654	0.0300	0.0009
	8		0.9998	0.9990	0.9960	0.9679	0.8666	0.6470	0.3457	0.0991	0.0065
	9		1.0000	0.9999	0.9993	0.9922	0.9539	0.8314	0.5794	0.2527	0.0342
	10			1.0000	0.9999	0.9987	0.9888	0.9421	0.7975	0.4983	0.1339
	11				1.0000	0.9999	0.9983	0.9874	0.9363	0.7664	0.3787
	12					1.0000	0.9999	0.9987	0.9903	0.9450	0.7458
	13						1.0000	1.0000	1.0000	1.0000	1.0000
1 4	0	0.2288	0.0440	0.0178	0.0068	0.0008	0.0001	0.0000			
	1	0.5846	0.1979	0.1010	0.0475	0.0081	0.0009	0.0001			
	2	0.8416	0.4481	0.2811	0.1608	0.0398	0.0065	0.0006	0.0000		
	3	0.9559	0.6982	0.5213	0.3552	0.1243	0.0287	0.0039	0.0002		
	4	0.9908	0.8702	0.7415	0.5842	0.2793	0.0898	0.0175	0.0017	0.0000	
	5	0.9985	0.9561	0.8883	0.7805	0.4859	0.2120	0.0583	0.0083	0.0004	
	6	0.9998	0.9884	0.9617	0.9067	0.6925	0.3953	0.1501	0.0315	0.0024	0.0000
	7	1.0000	0.9976	0.9897	0.9685	0.8499	0.6047	0.3075	0.0933	0.0116	0.0002
	8		0.9996	0.9978	0.9917	0.9417	0.7880	0.5141	0.2195	0.0439	0.0015
	9		1.0000	0.9997	0.9983	0.9825	0.9102	0.7207	0.4158	0.1298	0.0092
	10			1.0000	0.9998	0.9961	0.9713	0.8757	0.6448	0.3018	0.0441
	11				1.0000	0.9994	0.9935	0.9602	0.8392	0.5519	0.1584
	12					0.9999	0.9991	0.9919	0.9525	0.8021	0.4154
	13					1.0000	0.9999	0.9992	0.9932	0.9560	0.7712
	14						1.0000	1.0000	1.0000	1.0000	1.0000

Table A.1 (continued) Binomial Probability Sums $\sum\limits_{x=0}^{r}b(x;n,p)$

						1	9				
\boldsymbol{n}	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
15	0	0.2059	0.0352	0.0134	0.0047	0.0005	0.0000				
	1	0.5490	0.1671	0.0802	0.0353	0.0052	0.0005	0.0000			
	2	0.8159	0.3980	0.2361	0.1268	0.0271	0.0037	0.0003	0.0000		
	3	0.9444	0.6482	0.4613	0.2969	0.0905	0.0176	0.0019	0.0001		
	4	0.9873	0.8358	0.6865	0.5155	0.2173	0.0592	0.0093	0.0007	0.0000	
	5	0.9978	0.9389	0.8516	0.7216	0.4032	0.1509	0.0338	0.0037	0.0001	
	6	0.9997	0.9819	0.9434	0.8689	0.6098	0.3036	0.0950	0.0152	0.0008	
	7	1.0000	0.9958	0.9827	0.9500	0.7869	0.5000	0.2131	0.0500	0.0042	0.0000
	8		0.9992	0.9958	0.9848	0.9050	0.6964	0.3902	0.1311	0.0181	0.0003
	9		0.9999	0.9992	0.9963	0.9662	0.8491	0.5968	0.2784	0.0611	0.0022
	10		1.0000	0.9999	0.9993	0.9907	0.9408	0.7827	0.4845	0.1642	0.0127
	11			1.0000	0.9999	0.9981	0.9824	0.9095	0.7031	0.3518	0.0556
	12				1.0000	0.9997	0.9963	0.9729	0.8732	0.6020	0.1841
	13					1.0000	0.9995	0.9948	0.9647	0.8329	0.4510
	14						1.0000	0.9995	0.9953	0.9648	0.7941
	15							1.0000	1.0000	1.0000	1.0000
16	0	0.1853	0.0281	0.0100	0.0033	0.0003	0.0000				
	1	0.5147	0.1407	0.0635	0.0261	0.0033	0.0003	0.0000			
	2	0.7892	0.3518	0.1971	0.0994	0.0183	0.0021	0.0001			
	3	0.9316	0.5981	0.4050	0.2459	0.0651	0.0106	0.0009	0.0000		
	4	0.9830	0.7982	0.6302	0.4499	0.1666	0.0384	0.0049	0.0003		
	5	0.9967	0.9183	0.8103	0.6598	0.3288	0.1051	0.0191	0.0016	0.0000	
	6	0.9995	0.9733	0.9204	0.8247	0.5272	0.2272	0.0583	0.0071	0.0002	
	7	0.9999	0.9930	0.9729	0.9256	0.7161	0.4018	0.1423	0.0257	0.0015	0.0000
	8	1.0000	0.9985	0.9925	0.9743	0.8577	0.5982	0.2839	0.0744	0.0070	0.0001
	9		0.9998	0.9984	0.9929	0.9417	0.7728	0.4728	0.1753	0.0267	0.0005
	10		1.0000	0.9997	0.9984	0.9809	0.8949	0.6712	0.3402	0.0817	0.0033
	11			1.0000	0.9997	0.9951	0.9616	0.8334	0.5501	0.2018	0.0170
	12				1.0000	0.9991	0.9894	0.9349	0.7541	0.4019	0.0684
	13					0.9999	0.9979	0.9817	0.9006	0.6482	0.2108
	14					1.0000	0.9997	0.9967	0.9739	0.8593	0.4853
	15						1.0000	0.9997	0.9967	0.9719	0.8147
	16							1.0000	1.0000	1.0000	1.0000

Table A.1 (continued) Binomial Probability Sums $\sum_{x=0}^{r} b(x; n, p)$

							p				
\boldsymbol{n}	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
17	0	0.1668	0.0225	0.0075	0.0023	0.0002	0.0000				
	1	0.4818	0.1182	0.0501	0.0193	0.0021	0.0001	0.0000			
	2	0.7618	0.3096	0.1637	0.0774	0.0123	0.0012	0.0001			
	3	0.9174	0.5489	0.3530	0.2019	0.0464	0.0064	0.0005	0.0000		
	4	0.9779	0.7582	0.5739	0.3887	0.1260	0.0245	0.0025	0.0001		
	5	0.9953	0.8943	0.7653	0.5968	0.2639	0.0717	0.0106	0.0007	0.0000	
	6	0.9992	0.9623	0.8929	0.7752	0.4478	0.1662	0.0348	0.0032	0.0001	
	7	0.9999	0.9891	0.9598	0.8954	0.6405	0.3145	0.0919	0.0127	0.0005	
	8	1.0000	0.9974	0.9876	0.9597	0.8011	0.5000	0.1989	0.0403	0.0026	0.0000
	9		0.9995	0.9969	0.9873	0.9081	0.6855	0.3595	0.1046	0.0109	0.0001
	10		0.9999	0.9994	0.9968	0.9652	0.8338	0.5522	0.2248	0.0377	0.0008
	11		1.0000	0.9999	0.9993	0.9894	0.9283	0.7361	0.4032	0.1057	0.0047
	12			1.0000	0.9999	0.9975	0.9755	0.8740	0.6113	0.2418	0.0221
	13				1.0000	0.9995	0.9936	0.9536	0.7981	0.4511	0.0826
	14					0.9999	0.9988	0.9877	0.9226	0.6904	0.2382
	15					1.0000	0.9999	0.9979	0.9807	0.8818	0.5182
	16						1.0000	0.9998	0.9977	0.9775	0.8332
	17							1.0000	1.0000	1.0000	1.0000
18	0	0.1501	0.0180	0.0056	0.0016	0.0001	0.0000				
	1	0.4503	0.0991	0.0395	0.0142	0.0013	0.0001				
	2	0.7338	0.2713	0.1353	0.0600	0.0082	0.0007	0.0000			
	3	0.9018	0.5010	0.3057	0.1646	0.0328	0.0038	0.0002			
	4	0.9718	0.7164	0.5187	0.3327	0.0942	0.0154	0.0013	0.0000		
	5	0.9936	0.8671	0.7175	0.5344	0.2088	0.0481	0.0058	0.0003		
	6	0.9988	0.9487	0.8610	0.7217	0.3743	0.1189	0.0203	0.0014	0.0000	
	7	0.9998	0.9837	0.9431	0.8593	0.5634	0.2403	0.0576	0.0061	0.0002	
	8	1.0000	0.9957	0.9807	0.9404	0.7368	0.4073	0.1347	0.0210	0.0009	
	9		0.9991	0.9946	0.9790	0.8653	0.5927	0.2632	0.0596	0.0043	0.0000
	10		0.9998	0.9988	0.9939	0.9424	0.7597	0.4366	0.1407	0.0163	0.0002
	11		1.0000	0.9998	0.9986	0.9797	0.8811	0.6257	0.2783	0.0513	0.0012
	12			1.0000	0.9997	0.9942	0.9519	0.7912	0.4656	0.1329	0.0064
	13				1.0000	0.9987	0.9846	0.9058	0.6673	0.2836	0.0282
	14					0.9998	0.9962	0.9672	0.8354	0.4990	0.0982
	15					1.0000	0.9993	0.9918	0.9400	0.7287	0.2662
	16						0.9999	0.9987	0.9858	0.9009	0.5497
	17						1.0000	0.9999	0.9984	0.9820	0.8499
	18							1.0000	1.0000	1.0000	1.0000

Table A.1 (continued) Binomial Probability Sums $\sum\limits_{x=0}^{r}b(x;n,p)$

						$\frac{x=}{}$	<u> </u>				
\boldsymbol{n}	r	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90
19	0	0.1351	0.0144	0.0042	0.0011	0.0001					
	1	0.4203	0.0829	0.0310	0.0104	0.0008	0.0000				
	2	0.7054	0.2369	0.1113	0.0462	0.0055	0.0004	0.0000			
	3	0.8850	0.4551	0.2631	0.1332	0.0230	0.0022	0.0001			
	4	0.9648	0.6733	0.4654	0.2822	0.0696	0.0096	0.0006	0.0000		
	5	0.9914	0.8369	0.6678	0.4739	0.1629	0.0318	0.0031	0.0001		
	6	0.9983	0.9324	0.8251	0.6655	0.3081	0.0835	0.0116	0.0006		
	7	0.9997	0.9767	0.9225	0.8180	0.4878	0.1796	0.0352	0.0028	0.0000	
	8	1.0000	0.9933	0.9713	0.9161	0.6675	0.3238	0.0885	0.0105	0.0003	
	9		0.9984	0.9911	0.9674	0.8139	0.5000	0.1861	0.0326	0.0016	
	10		0.9997	0.9977	0.9895	0.9115	0.6762	0.3325	0.0839	0.0067	0.0000
	11		1.0000	0.9995	0.9972	0.9648	0.8204	0.5122	0.1820	0.0233	0.0003
	12			0.9999	0.9994	0.9884	0.9165	0.6919	0.3345	0.0676	0.0017
	13			1.0000	0.9999	0.9969	0.9682	0.8371	0.5261	0.1631	0.0086
	14				1.0000	0.9994	0.9904	0.9304	0.7178	0.3267	0.0352
	15					0.9999	0.9978	0.9770	0.8668	0.5449	0.1150
	16					1.0000	0.9996	0.9945	0.9538	0.7631	0.2946
	17						1.0000	0.9992	0.9896	0.9171	0.5797
	18							0.9999	0.9989	0.9856	0.8649
	19							1.0000	1.0000	1.0000	1.0000
20	0	0.1216	0.0115	0.0032	0.0008	0.0000					
	1	0.3917	0.0692	0.0243	0.0076	0.0005	0.0000				
	2	0.6769	0.2061	0.0913	0.0355	0.0036	0.0002				
	3	0.8670	0.4114	0.2252	0.1071	0.0160	0.0013	0.0000			
	4	0.9568	0.6296	0.4148	0.2375	0.0510	0.0059	0.0003			
	5	0.9887	0.8042	0.6172	0.4164	0.1256	0.0207	0.0016	0.0000		
	6	0.9976	0.9133	0.7858	0.6080	0.2500	0.0577	0.0065	0.0003		
	7	0.9996	0.9679	0.8982	0.7723	0.4159	0.1316	0.0210	0.0013	0.0000	
	8	0.9999	0.9900	0.9591	0.8867	0.5956	0.2517	0.0565	0.0051	0.0001	
	9	1.0000	0.9974	0.9861	0.9520	0.7553	0.4119	0.1275	0.0171	0.0006	
	10	1.0000	0.9994	0.9961	0.9829	0.8725	0.5881	0.2447	0.0480	0.0026	0.0000
	11		0.9999	0.9991	0.9949	0.9435	0.7483	0.4044	0.1133	0.0100	0.0001
	12		1.0000	0.9998	0.9987	0.9790	0.8684	0.5841	0.2277	0.0321	0.0004
	13		1.0000	1.0000	0.9997	0.9935	0.9423	0.7500	0.3920	0.0867	0.0024
	14			1.0000	1.0000	0.9984	0.9793	0.8744	0.5836	0.1958	0.0021
	15				1.0000	0.9997	0.9941	0.9490	0.7625	0.3704	0.0432
	16					1.0000	0.9987	0.9840	0.8929	0.5886	0.0432 0.1330
	17					1.0000	0.9998	0.9964	0.9645	0.7939	0.1330 0.3231
	18						1.0000	0.9995	0.9924	0.1333	0.6083
	19						1.0000	1.0000	0.9924 0.9992	0.9885	0.8784
	20							1.0000	1.0000	1.0000	1.0000
	4 U								1.0000	1.0000	1.0000

Table A.2 Poisson Probability Sums $\sum\limits_{x=0}^{r}p(x;\mu)$

					μ				
r	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066
1	0.9953	0.9825	0.9631	0.9384	0.9098	0.8781	0.8442	0.8088	0.7725
2	0.9998	0.9989	0.9964	0.9921	0.9856	0.9769	0.9659	0.9526	0.9371
3	1.0000	0.9999	0.9997	0.9992	0.9982	0.9966	0.9942	0.9909	0.9865
4		1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9986	0.9977
5				1.0000	1.0000	1.0000	0.9999	0.9998	0.9997
6							1.0000	1.0000	1.0000

					μ				
r	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
0	0.3679	0.2231	0.1353	0.0821	0.0498	0.0302	0.0183	0.0111	0.0067
1	0.7358	0.5578	0.4060	0.2873	0.1991	0.1359	0.0916	0.0611	0.0404
2	0.9197	0.8088	0.6767	0.5438	0.4232	0.3208	0.2381	0.1736	0.1247
3	0.9810	0.9344	0.8571	0.7576	0.6472	0.5366	0.4335	0.3423	0.2650
4	0.9963	0.9814	0.9473	0.8912	0.8153	0.7254	0.6288	0.5321	0.4405
5	0.9994	0.9955	0.9834	0.9580	0.9161	0.8576	0.7851	0.7029	0.6160
6	0.9999	0.9991	0.9955	0.9858	0.9665	0.9347	0.8893	0.8311	0.7622
7	1.0000	0.9998	0.9989	0.9958	0.9881	0.9733	0.9489	0.9134	0.8666
8		1.0000	0.9998	0.9989	0.9962	0.9901	0.9786	0.9597	0.9319
9			1.0000	0.9997	0.9989	0.9967	0.9919	0.9829	0.9682
10				0.9999	0.9997	0.9990	0.9972	0.9933	0.9863
11				1.0000	0.9999	0.9997	0.9991	0.9976	0.9945
12					1.0000	0.9999	0.9997	0.9992	0.9980
13						1.0000	0.9999	0.9997	0.9993
14							1.0000	0.9999	0.9998
15								1.0000	0.9999
16									1.0000

Table A.2 (continued) Poisson Probability Sums $\sum_{x=0}^{r} p(x; \mu)$

					μ				
r	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5
0	0.0041	0.0025	0.0015	0.0009	0.0006	0.0003	0.0002	0.0001	0.0001
1	0.0266	0.0174	0.0113	0.0073	0.0047	0.0030	0.0019	0.0012	0.0008
2	0.0884	0.0620	0.0430	0.0296	0.0203	0.0138	0.0093	0.0062	0.0042
3	0.2017	0.1512	0.1118	0.0818	0.0591	0.0424	0.0301	0.0212	0.0149
4	0.3575	0.2851	0.2237	0.1730	0.1321	0.0996	0.0744	0.0550	0.0403
5	0.5289	0.4457	0.3690	0.3007	0.2414	0.1912	0.1496	0.1157	0.0885
6	0.6860	0.6063	0.5265	0.4497	0.3782	0.3134	0.2562	0.2068	0.1649
7	0.8095	0.7440	0.6728	0.5987	0.5246	0.4530	0.3856	0.3239	0.2687
8	0.8944	0.8472	0.7916	0.7291	0.6620	0.5925	0.5231	0.4557	0.3918
9	0.9462	0.9161	0.8774	0.8305	0.7764	0.7166	0.6530	0.5874	0.5218
10	0.9747	0.9574	0.9332	0.9015	0.8622	0.8159	0.7634	0.7060	0.6453
11	0.9890	0.9799	0.9661	0.9467	0.9208	0.8881	0.8487	0.8030	0.7520
12	0.9955	0.9912	0.9840	0.9730	0.9573	0.9362	0.9091	0.8758	0.8364
13	0.9983	0.9964	0.9929	0.9872	0.9784	0.9658	0.9486	0.9261	0.8981
14	0.9994	0.9986	0.9970	0.9943	0.9897	0.9827	0.9726	0.9585	0.9400
15	0.9998	0.9995	0.9988	0.9976	0.9954	0.9918	0.9862	0.9780	0.9665
16	0.9999	0.9998	0.9996	0.9990	0.9980	0.9963	0.9934	0.9889	0.9823
17	1.0000	0.9999	0.9998	0.9996	0.9992	0.9984	0.9970	0.9947	0.9911
18		1.0000	0.9999	0.9999	0.9997	0.9993	0.9987	0.9976	0.9957
19			1.0000	1.0000	0.9999	0.9997	0.9995	0.9989	0.9980
20						0.9999	0.9998	0.9996	0.9991
21						1.0000	0.9999	0.9998	0.9996
22							1.0000	0.9999	0.9999
23								1.0000	0.9999
24									1.0000

Table A.2 (continued) Poisson Probability Sums $\sum_{x=0}^{r} p(x; \mu)$

					$oldsymbol{\mu}$				
r	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0
0	0.0000	0.0000	0.0000						
1	0.0005	0.0002	0.0001	0.0000	0.0000				
2	0.0028	0.0012	0.0005	0.0002	0.0001	0.0000	0.0000		
3	0.0103	0.0049	0.0023	0.0011	0.0005	0.0002	0.0001	0.0000	0.0000
4	0.0293	0.0151	0.0076	0.0037	0.0018	0.0009	0.0004	0.0002	0.0001
5	0.0671	0.0375	0.0203	0.0107	0.0055	0.0028	0.0014	0.0007	0.0003
6	0.1301	0.0786	0.0458	0.0259	0.0142	0.0076	0.0040	0.0021	0.0010
7	0.2202	0.1432	0.0895	0.0540	0.0316	0.0180	0.0100	0.0054	0.0029
8	0.3328	0.2320	0.1550	0.0998	0.0621	0.0374	0.0220	0.0126	0.0071
9	0.4579	0.3405	0.2424	0.1658	0.1094	0.0699	0.0433	0.0261	0.0154
10	0.5830	0.4599	0.3472	0.2517	0.1757	0.1185	0.0774	0.0491	0.0304
11	0.6968	0.5793	0.4616	0.3532	0.2600	0.1848	0.1270	0.0847	0.0549
12	0.7916	0.6887	0.5760	0.4631	0.3585	0.2676	0.1931	0.1350	0.0917
13	0.8645	0.7813	0.6815	0.5730	0.4644	0.3632	0.2745	0.2009	0.1426
14	0.9165	0.8540	0.7720	0.6751	0.5704	0.4657	0.3675	0.2808	0.2081
15	0.9513	0.9074	0.8444	0.7636	0.6694	0.5681	0.4667	0.3715	0.2867
16	0.9730	0.9441	0.8987	0.8355	0.7559	0.6641	0.5660	0.4677	0.3751
17	0.9857	0.9678	0.9370	0.8905	0.8272	0.7489	0.6593	0.5640	0.4686
18	0.9928	0.9823	0.9626	0.9302	0.8826	0.8195	0.7423	0.6550	0.5622
19	0.9965	0.9907	0.9787	0.9573	0.9235	0.8752	0.8122	0.7363	0.6509
20	0.9984	0.9953	0.9884	0.9750	0.9521	0.9170	0.8682	0.8055	0.7307
21	0.9993	0.9977	0.9939	0.9859	0.9712	0.9469	0.9108	0.8615	0.7991
22	0.9997	0.9990	0.9970	0.9924	0.9833	0.9673	0.9418	0.9047	0.8551
23	0.9999	0.9995	0.9985	0.9960	0.9907	0.9805	0.9633	0.9367	0.8989
24	1.0000	0.9998	0.9993	0.9980	0.9950	0.9888	0.9777	0.9594	0.9317
25		0.9999	0.9997	0.9990	0.9974	0.9938	0.9869	0.9748	0.9554
26		1.0000	0.9999	0.9995	0.9987	0.9967	0.9925	0.9848	0.9718
27			0.9999	0.9998	0.9994	0.9983	0.9959	0.9912	0.9827
28			1.0000	0.9999	0.9997	0.9991	0.9978	0.9950	0.9897
29				1.0000	0.9999	0.9996	0.9989	0.9973	0.9941
30					0.9999	0.9998	0.9994	0.9986	0.9967
31					1.0000	0.9999	0.9997	0.9993	0.9982
32						1.0000	0.9999	0.9996	0.9990
33							0.9999	0.9998	0.9995
34							1.0000	0.9999	0.9998
35								1.0000	0.9999
36									0.9999
37									1.0000

Table A.3 Areas under the Normal Curve

\overline{z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Table A.3 (continued) Areas under the Normal Curve

\overline{z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Table A.4 Critical Values of the t-Distribution

				α			
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069
${\bf 24}$	0.256	0.531	0.857	1.059	1.318	1.711	2.064
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980
∞	0.253	0.524	0.842	1.036	1.282	1.645	1.960

Table A.4 (continued) Critical Values of the t-Distribution

				α			
$oldsymbol{v}$	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	15.894	21.205	31.821	42.433	63.656	127.321	636.578
2	4.849	5.643	6.965	8.073	9.925	14.089	31.600
3	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	2.328	2.491	2.718	2.879	3.106	3.497	4.437
12	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	2.264	2.415	2.624	2.771	2.977	3.326	4.140
15	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	2.224	2.368	2.567	2.706	2.898	3.222	3.965
18	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	2.205	2.346	2.539	2.674	2.861	3.174	3.883
20	2.197	2.336	2.528	2.661	2.845	3.153	3.850
21	2.189	2.328	2.518	2.649	2.831	3.135	3.819
${\bf 22}$	2.183	2.320	2.508	2.639	2.819	3.119	3.792
23	2.177	2.313	2.500	2.629	2.807	3.104	3.768
${\bf 24}$	2.172	2.307	2.492	2.620	2.797	3.091	3.745
25	2.167	2.301	2.485	2.612	2.787	3.078	3.725
26	2.162	2.296	2.479	2.605	2.779	3.067	3.707
27	2.158	2.291	2.473	2.598	2.771	3.057	3.689
28	2.154	2.286	2.467	2.592	2.763	3.047	3.674
29	2.150	2.282	2.462	2.586	2.756	3.038	3.660
30	2.147	2.278	2.457	2.581	2.750	3.030	3.646
40	2.123	2.250	2.423	2.542	2.704	2.971	3.551
60	2.099	2.223	2.390	2.504	2.660	2.915	3.460
${\bf 120}$	2.076	2.196	2.358	2.468	2.617	2.860	3.373
∞	2.054	2.170	2.326	2.432	2.576	2.807	3.290

Table A.5 Critical Values of the Chi-Squared Distribution

					α					
v	0.995	0.99	0.98	0.975	0.95	0.90	0.80	0.75	0.70	0.50
1	0.0^4393	0.0^3157	0.0^3628	0.0^3982	0.00393	0.0158	0.0642	0.102	0.148	0.455
2	0.0100	0.0201	0.0404	0.0506	0.103	0.211	0.446	0.575	0.713	1.386
3	0.0717	0.115	0.185	0.216	0.352	0.584	1.005	1.213	1.424	2.366
4	0.207	0.297	0.429	0.484	0.711	1.064	1.649	1.923	2.195	3.357
5	0.412	0.554	0.752	0.831	1.145	1.610	2.343	2.675	3.000	4.351
6	0.676	0.872	1.134	1.237	1.635	2.204	3.070	3.455	3.828	5.348
7	0.989	1.239	1.564	1.690	2.167	2.833	3.822	4.255	4.671	6.346
8	1.344	1.647	2.032	2.180	2.733	3.490	4.594	5.071	5.527	7.344
9	1.735	2.088	2.532	2.700	3.325	4.168	5.380	5.899	6.393	8.343
10	2.156	2.558	3.059	3.247	3.940	4.865	6.179	6.737	7.267	9.342
11	2.603	3.053	3.609	3.816	4.575	5.578	6.989	7.584	8.148	10.341
12	3.074	3.571	4.178	4.404	5.226	6.304	7.807	8.438	9.034	11.340
13	3.565	4.107	4.765	5.009	5.892	7.041	8.634	9.299	9.926	12.340
14	4.075	4.660	5.368	5.629	6.571	7.790	9.467	10.165	10.821	13.339
15	4.601	5.229	5.985	6.262	7.261	8.547	10.307	11.037	11.721	14.339
16	5.142	5.812	6.614	6.908	7.962	9.312	11.152	11.912	12.624	15.338
17	5.697	6.408	7.255	7.564	8.672	10.085	12.002	12.792	13.531	16.338
18	6.265	7.015	7.906	8.231	9.390	10.865	12.857	13.675	14.440	17.338
19	6.844	7.633	8.567	8.907	10.117	11.651	13.716	14.562	15.352	18.338
20	7.434	8.260	9.237	9.591	10.851	12.443	14.578	15.452	16.266	19.337
21	8.034	8.897	9.915	10.283	11.591	13.240	15.445	16.344	17.182	20.337
22	8.643	9.542	10.600	10.982	12.338	14.041	16.314	17.240	18.101	21.337
23	9.260	10.196	11.293	11.689	13.091	14.848	17.187	18.137	19.021	22.337
24	9.886	10.856	11.992	12.401	13.848	15.659	18.062	19.037	19.943	23.337
25	10.520	11.524	12.697	13.120	14.611	16.473	18.940	19.939	20.867	24.337
26	11.160	12.198	13.409	13.844	15.379	17.292	19.820	20.843	21.792	25.336
27	11.808	12.878	14.125	14.573	16.151	18.114	20.703	21.749	22.719	26.336
28	12.461	13.565	14.847	15.308	16.928	18.939	21.588	22.657	23.647	27.336
29	13.121	14.256	15.574	16.047	17.708	19.768	22.475	23.567	24.577	28.336
30	13.787	14.953	16.306	16.791	18.493	20.599	23.364	24.478	25.508	29.336
40	20.707	22.164	23.838	24.433	26.509	29.051	32.345	33.66	34.872	39.335
50	27.991	29.707	31.664	32.357	34.764	37.689	41.449	42.942	44.313	49.335
60	35.534	37.485	39.699	40.482	43.188	46.459	50.641	52.294	53.809	59.335

Table A.5 (continued) Critical Values of the Chi-Squared Distribution

						α				
v	0.30	0.25	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.074	1.323	1.642	2.706	3.841	5.024	5.412	6.635	7.879	10.827
2	2.408	2.773	3.219	4.605	5.991	7.378	7.824	9.210	10.597	13.815
3	3.665	4.108	4.642	6.251	7.815	9.348	9.837	11.345	12.838	16.266
4	4.878	5.385	5.989	7.779	9.488	11.143	11.668	13.277	14.860	18.466
5	6.064	6.626	7.289	9.236	11.070	12.832	13.388	15.086	16.750	20.515
6	7.231	7.841	8.558	10.645	12.592	14.449	15.033	16.812	18.548	22.457
7	8.383	9.037	9.803	12.017	14.067	16.013	16.622	18.475	20.278	24.321
8	9.524	10.219	11.030	13.362	15.507	17.535	18.168	20.090	21.955	26.124
9	10.656	11.389	12.242	14.684	16.919	19.023	19.679	21.666	23.589	27.877
10	11.781	12.549	13.442	15.987	18.307	20.483	21.161	23.209	25.188	29.588
11	12.899	13.701	14.631	17.275	19.675	21.920	22.618	24.725	26.757	31.264
12	14.011	14.845	15.812	18.549	21.026	23.337	24.054	26.217	28.300	32.909
13	15.119	15.984	16.985	19.812	22.362	24.736	25.471	27.688	29.819	34.527
14	16.222	17.117	18.151	21.064	23.685	26.119	26.873	29.141	31.319	36.124
15	17.322	18.245	19.311	22.307	24.996	27.488	28.259	30.578	32.801	37.698
16	18.418	19.369	20.465	23.542	26.296	28.845	29.633	32.000	34.267	39.252
17	19.511	20.489	21.615	24.769	27.587	30.191	30.995	33.409	35.718	40.791
18	20.601	21.605	22.760	25.989	28.869	31.526	32.346	34.805	37.156	42.312
19	21.689	22.718	23.900	27.204	30.144	32.852	33.687	36.191	38.582	43.819
20	22.775	23.828	25.038	28.412	31.410	34.170	35.020	37.566	39.997	45.314
21	23.858	24.935	26.171	29.615	32.671	35.479	36.343	38.932	41.401	46.796
22	24.939	26.039	27.301	30.813	33.924	36.781	37.659	40.289	42.796	48.268
23	26.018	27.141	28.429	32.007	35.172	38.076	38.968	41.638	44.181	49.728
24	27.096	28.241	29.553	33.196	36.415	39.364	40.270	42.980	45.558	51.179
25	28.172	29.339	30.675	34.382	37.652	40.646	41.566	44.314	46.928	52.619
26	29.246	30.435	31.795	35.563	38.885	41.923	42.856	45.642	48.290	54.051
27	30.319	31.528	32.912	36.741	40.113	43.195	44.140	46.963	49.645	55.475
28	31.391	32.620	34.027	37.916	41.337	44.461	45.419	48.278	50.994	56.892
29	32.461	33.711	35.139	39.087	42.557	45.722	46.693	49.588	52.335	58.301
30	33.530	34.800	36.250	40.256	43.773	46.979	47.962	50.892	53.672	59.702
40	44.165	45.616	47.269	51.805	55.758	59.342	60.436	63.691	66.766	73.403
50	54.723	56.334	58.164	63.167	67.505	71.420	72.613	76.154	79.490	86.660
60	65.226	66.981	68.972	74.397	79.082	83.298	84.58	88.379	91.952	99.608

Table A.6 Critical Values of the F-Distribution

				j	$f_{0.05}(v_1,v_2)$	<u>.</u>)			
					v_1				
v_{2}	1	2	3	4	5	6	7	8	9
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
${\bf 24}$	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

Reproduced from Table 18 of *Biometrika Tables for Statisticians*, Vol. I, by permission of E.S. Pearson and the Biometrika Trustees.

Table A.6 (continued) Critical Values of the F-Distribution

	$f_{0.05}(v_1,v_2)$										
					v	'1					
v_2	10	12	15	20	24	30	40	60	120	∞	
1	241.88	243.91	245.95	248.01	249.05	250.10	251.14	252.20	253.25	254.31	
2	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50	
3	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53	
4	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63	
5	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36	
6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67	
7	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23	
8	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93	
9	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71	
10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54	
11	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40	
12	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30	
13	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21	
14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13	
15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07	
16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01	
17	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96	
18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92	
19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88	
20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84	
21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81	
22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78	
23	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76	
24	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73	
25	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71	
26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69	
27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67	
28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65	
29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64	
30	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62	
40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51	
60	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39	
120	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25	
∞	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00	

Table A.6 (continued) Critical Values of the F-Distribution

				J	$v_{0.01}(v_1,v_2)$	2)			
					v_1				
$_v_2$	1	2	3	4	5	6	7	8	9
1	4052.18	4999.50	5403.35	5624.58	5763.65	5858.99	5928.36	5981.07	6022.47
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56
∞	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41

Table A.6 (continued) Critical Values of the F-Distribution

	$f_{0.01}(v_1,v_2)$									
					v	'1				
v_2	10	12	15	20	24	30	40	60	120	∞
1	6055.85	6106.32	6157.28	6208.73	6234.63	6260.65	6286.78	6313.03	6339.39	6365.86
2	99.40	99.42	99.43	99.45	99.46	99.47	99.47	99.48	99.49	99.50
3	27.23	27.05	26.87	26.69	26.60	26.50	26.41	26.32	26.22	26.13
4	14.55	14.37	14.20	14.02	13.93	13.84	13.75	13.65	13.56	13.46
5	10.05	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
6	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
12	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
13	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
14	3.94	3.80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00
15	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
17	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
20	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
22	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21
25	3.13	2.99	2.85	2.70	2.62	2.54	2.45	2.36	2.27	2.17
26	3.09	2.96	2.81	2.66	2.58	2.50	2.42	2.33	2.23	2.13
27	3.06	2.93	2.78	2.63	2.55	2.47	2.38	2.29	2.20	2.10
28	3.03	2.90	2.75	2.60	2.52	2.44	2.35	2.26	2.17	2.06
29	3.00	2.87	2.73	2.57	2.49	2.41	2.33	2.23	2.14	2.03
30	2.98	2.84	2.70	2.55	2.47	2.39	2.30	2.21	2.11	2.01
40	2.80	2.66	2.52	2.37	2.29	2.20	2.11	2.02	1.92	1.80
60	2.63	2.50	2.35	2.20	2.12	2.03	1.94	1.84	1.73	1.60
120	2.47	2.34	2.19	2.03	1.95	1.86	1.76	1.66	1.53	1.38
∞	2.32	2.18	2.04	1.88	1.79	1.70	1.59	1.47	1.32	1.00

Table A.7

			Two-Sid	Two-Sided Intervals	als				One-Sid	One-Sided Intervals	als	
		$\gamma = 0.05$	5		$\gamma = 0.01$	1		$\gamma = 0.05$	5		$\gamma = 0.01$	
		$1-\alpha$			$1-\alpha$			$1-\alpha$			$1-\alpha$	
u	0.90	0.95	0.99	06.0	0.95	0.99	06.0	0.95	0.99	0.90	0.95	0.99
2	32.019	37.674	48.430	160.193	188.491	242.300	20.581	26.260	37.094	103.029	131.426	185.617
က	8.380	9.916	12.861	18.930	22.401	29.055	6.156	7.656	10.553	13.995	17.170	23.896
4	5.369	6.370	8.299	9.398	11.150	14.527	4.162	5.144	7.042	7.380	9.083	12.387
က	4.275	5.079	6.634	6.612	7.855	10.260	3.407	4.203	5.741	5.362	6.578	8.939
9	3.712	4.414	5.775	5.337	6.345	8.301	3.006	3.708	5.062	4.411	5.406	7.335
~	3.369	4.007	5.248	4.613	5.488	7.187	2.756	3.400	4.642	3.859	4.728	6.412
œ	3.136	3.732	4.891	4.147	4.936	6.468	2.582	3.187	4.354	3.497	4.285	5.812
6	2.967	3.532	4.631	3.822	4.550	5.966	2.454	3.031	4.143	3.241	3.972	5.389
10	2.839	3.379	4.433	3.582	4.265	5.594	2.355	2.911	3.981	3.048	3.738	5.074
11	2.737	3.259	4.277	3.397	4.045	5.308	2.275	2.815	3.852	2.898	3.556	4.829
12	2.655	3.162	4.150	3.250	3.870	5.079	2.210	2.736	3.747	2.777	3.410	4.633
13	2.587	3.081	4.044	3.130	3.727	4.893	2.155	2.671	3.659	2.677	3.290	4.472
14	2.529	3.012	3.955	3.029	3.608	4.737	2.109	2.615	3.585	2.593	1.189	4.337
15	2.480	2.954	3.878	2.945	3.507	4.605	2.068	2.566	3.520	2.522	3.102	4.222
16	2.437	2.903	3.812	2.872	3.421	4.492	2.033	2.524	3.464	2.460	3.028	4.123
17	2.400	2.858	3.754	2.808	3.345	4.393	2.002	2.486	3.414	2.405	2.963	4.037
18	2.366	2.819	3.702	2.753	3.279	4.307	1.974	2.453	3.370	2.357	2.905	3.960
19	2.337	2.784	3.656	2.703	3.221	4.230	1.949	2.423	3.331	2.314	2.854	3.892
20	2.310	2.752	3.615	2.659	3.168	4.161	1.926	2.396	3.295	2.276	2.808	1.832
25	2.208	2.631	3.457	2.494	2.972	3.904	1.838	2.292	3.158	2.129	2.633	3.001
30	2.140	2.549	3.350	2.385	2.841	3.733	1.777	2.220	3.064	2.030	2.516	3.447
35	2.090	2.490	3.272	2.306	2.748	3.611	1.732	2.167	2.995	1.957	2.430	3.334
40	2.052	2.445	3.213	2.247	2.677	3.518	1.697	2.126	2.941	1.902	2.364	3.249
45	2.021	2.408	3.165	2.200	2.621	3.444	1.669	2.092	2.898	1.857	2.312	3.180
20	1.996	2.379	3.126	2.162	2.576	3.385	1.646	2.065	2.863	1.821	2.269	3.125
09	1.958	2.333	3.066	2.103	2.506	3.293	1.609	2.022	2.807	1.764	2.202	3.038
20	1.929	2.299	3.021	2.060	2.454	3.225	1.581	1.990	2.765	1.722	2.153	2.974
80	1.907	2.272	2.986	2.026	2.414	3.173	1.559	1.965	2.733	1.688	2.114	2.924
90	1.889	2.251	2.958	1.999	2.382	3.130	1.542	1.944	2.706	1.661	2.082	2.883
100	1.874	2.233	2.934	1.977	2.355	3.096	1.527	1.927	2.684	1.639	2.056	2.850
150	1.825	2.175	2.859	1.905	2.270	2.983	1.478	1.870	2.611	1.566	1.971	2.741
200	1.798	2.143	2.816	1.865	2.222	2.921	1.450	1.837	2.570	1.524	1.923	2.679
250	1.780	2.121	2.788	1.839	2.191	2.880	1.431	1.815	2.542	1.496	1.891	2.638
300	1.767	2.106	2.767	1.820	2.169	2.850	1.417	1.800	2.522	1.476	1.868	2.608
8	1.645	1.960	2.576	1.645	1.960	2.576	1.282	1.645	2.326	1.282	1.645	2.326
Adapt	Adapted from		enhart, M	C. Eisenhart, M. W. Hastay, and W. A. Wallis,	y, and W.	A. Wallis,	Techniqu.	$es \ of \ Sta$	tistical An	Techniques of Statistical Analysis, Chapter 2, McGraw-	apter 2, M	cGraw-

Hill Book Company, New York, 1947. Used with permission of McGraw-Hill Book Company.

Table A.8 Sample Size for the t-Test of the Mean

									L	eve	l of	<i>t</i> -T	est								
_	Sided Test		α =	= 0.0	005			α	= 0.	01			$\alpha =$	0.0	25			α =	= 0.	05	
Double	-Sided Test		α =	= 0.	01				= 0.					= 0.					= 0	.1	
β	= 0.1	.01	.05	.1	.2	.5	.01	.05	.1	.2	.5	.01	.05	.1	.2	.5	.01	.05	.1	.2	.5
	0.05																				
	0.10																				
	0.15										100					00					122
	0.20					110					139					99			120	101	70
	0.25					110					90				128				139		45
	0.30				134	78				115	63			119				122	97	71	32
	0.35			125		58			109		47		109	88		34	101	90	72	52	24
	$0.40 \\ 0.45$		115 92	97 77	77 62	45 37	110	101 81	85 68	66 53	30	$\begin{array}{c} 117 \\ 93 \end{array}$	67	68 54		20 21	101 80	70 55	55 44	40 33	19 15
	$0.45 \\ 0.50$	100	$\frac{92}{75}$	63	51	30		66	55	43	25	93 76	54	44		18	65	45	36	$\frac{33}{27}$	13
	0.55	83	63	53	42	26	75	55	46	36	21	63	45	37		15	54		30	22	11
	0.60	71	53	45	36	20	63	$\frac{35}{47}$	39	31	18	53	38	32		13	46	32	26	19	9
	0.65	61	46	39	31	20	55	41	34	27	16	46	33	27		12	39	28	22	17	8
	0.70	53	40	34	28	17	47	35	30	24	14	40	29	24		10			19	15	8
	0.75	47	36	30	25	16	42	31	27	21	13	35	26	21	16	9	30	21	17	13	7
	0.80	41	32	27	22	14	37	28	24	19	12	31	22	19	15	9	27	19	15	12	6
	0.85	37	29	24	20	13		25	21	17	11	28	21	17	13		24	17	14	11	6
	0.90	34	26	22	18	12	29	23	19	16	10	25	19	16	12	7	21	15	13	10	5
Value of	0.95	31	24	20	17	11	27	21	18	14	9	23	17	14	11	7	19	14	11	9	5
$\Delta = \delta /\sigma$	1.00	28	22	19	16	10	25	19	16	13	9	21	16	13	10	6	18	13	11	8	5
	1.1	24	19	16	14	9	21	16	14	12	8	18	13	11	9	6		15	11	9	7
	1.2	21	16	14	12	8	18	14	12	10	7	15	12	10	8			13	10	8	6
	1.3	18	15	13	11	8	16	13	11	9	6		14	10	9			11	8	7	6
	1.4	16	13	12	10	7	14	11	10	9	6	12	9	8	7		10	8	7	5	
	1.5	15	12	11	9	7	13	10	9	8	6	11	8	7	6			9	7	6	
	1.6	13	11	10	8	6	12	10	9	7	5		10	8	7				8	6	6
	1.7	12	10	9	8	6		11	9	8	7		9	7	6				8	6	5
	1.8	12	10	9	8	6		10	8	7	7			8	7					7 7	6
	$1.9 \\ 2.0$	11 10	9	8	7 7	6 5		10 9	8 7	7 7	6 6			8 7	6 6					1	5 6
		10	_					_						'							
	$egin{array}{c} 2.1 \ 2.2 \end{array}$		10 9	8	7 7	7 6		8	7 7	6 6	6 5				7 7						6 6
	2.2 2.3		9	7	7	6		0	8	6	6				6						5
	2.4		8	7	7	6			7	6	6				J	6					9
	2.5		8	7	6	6			7	6	6					6					
	3.0		7	6	6	5			6	5	5					5					
	3.5		•	6	5	5			Ü	9	5					9					
	4.0			v	~	6															

Reproduced with permission from O. L. Davies, ed., Design and Analysis of Industrial Experiments, Oliver & Boyd, Edinburgh, 1956.

Table A.9 Sample Size for the t-Test of the Difference between Two Means

	4.9 Sample S	7120 10	J1 01.	10 0	TCSU	01	UIIC	DIIIC		Leve					a115						_
Single-	Sided Test		α =	- 0.0	005			α	= 0.		51 U.	ι υ		= 0.0	025			α=	= 0.	05	
0	Sided Test			= 0.					- 0. = 0.					= 0.					= 0.		
	= 0.1	.01				.5	.01		.1		.5	.01	.05	.1		.5	.01			.2	.5
	0.05																				
	0.10																				
	0.15																				
	0.20															104					137
	0.25										400					124					88
	0.30					110					123					87				100	61
	$0.35 \\ 0.40$					110 85					90 70				100	64 50			108	102 78	$\frac{45}{35}$
	0.45				118	68				101	55			105		39		108	86	62	28
	0.50				96	55			106		45		106	86	64	32		88	70	51	23
	0.55			101	79	46			88	68	38		87	71	53		112	73	58	42	19
	0.60		101	85	67	39		90	74	58		104	74	60	45	23	89	61	49	36	16
	0.65		87	73	57	34	104	77	64	49	27	88	63	51	39	20	76	52	42	30	14
	0.70	100	75	63	50	29			55	43	24	76	55		34	17	66	45	36	26	12
	0.75	88	66	55	44	26	79	58	48	38	21	67	48	39	29	15	57	40	32	23	11
	0.80	77	58	49	39	23	70	51	43	33	19	59	42	34	26	14	50	35	28	21	10
	0.85	69	51	43	35	21	62	46	38	30	17	52	37	31	23	12	45	31	25	18	9
Value of	$0.90 \\ 0.95$	62 55	$\frac{46}{42}$	39 35	31 28	19 17	55 50	41 37	34 31	27 24	15 14	47 42	$\frac{34}{30}$	$\begin{array}{c} 27 \\ 25 \end{array}$	21 19	11 10	40 36	28 25	22 20	16 15	8 7
Value of $\Delta = \delta /\sigma$		50	38	32	26	15	$\frac{30}{45}$	33	28	22	13	38	$\frac{30}{27}$	$\frac{23}{23}$	17	9	33	$\frac{23}{23}$	18	14	7
$\Delta = 0 /0$	1.1	42	32	27	22	13	38	28	23	19	11	32	23	19	14	8	27	19	15	12	6
	1.1 1.2	36	$\frac{32}{27}$	23	18	11	$\frac{33}{32}$	24	20	16	9	$\frac{32}{27}$	$\frac{23}{20}$	16	12	7	23	16	13	10	5
	1.3	31	23	20	16	10	28	21	17	14	8	23	17	14	11	6	20	14	11	9	5
	1.4	27	20	17	14	9	24		15	12	8	20	15	12	10	6	17	12	10	8	4
	1.5	24	18	15	13	8	21	16	14	11	7	18	13	11	9	5	15	11	9	7	4
	1.6	21	16	14	11	7	19	14	12	10	6	16	12	10	8	5	14	10	8	6	4
	1.7	19	15	13	10	7	17	13	11	9	6	14	11	9	7	4	12	9	7	6	3
	1.8	17	13	71	10	6	15	12	10	8	5	13	10	8	6	4	11	8	7	5	
	1.9	16	12	11	9	6	14	11	9	8	5	12	9	7	6	4	10	7	6	5	
	2.0	14	11	10	8	6	13	10	9	7	5	11	8	7	6	4	9	7	6	4	
	2.1 2.2	13 12	10 10	9 8	8 7		12 11	9	8 7	7 6	5 4	10 9	8 7	6 6	5 5	3	8	6 6	5 5	4	
	2.2 2.3	11	9	8	7	5			7	6	4	9			5 5		7	5	5	4	
	2.4	11	9	8	6	5			7	6	48	6	5		9	7	5	4	4	7	
	2.5	10	8	7	6	4	9		6	5	4	8	6		4	•	6	5	4	3	
	3.0	8	6	6	5	4	7	6	5	4	3	6	5	4	4		5	4	3		
	3.5	6	5	5	4	3			4	$\overline{4}$	5					4	3		-		
	4.0	6	5	4	4		5	4	4	3	4	4	3			4					
D 1	1 11		c			т т			1	Dani		1	4	, .	c	Too J	-	. , ,	,		

Reproduced with permission from O. L. Davies, ed., *Design and Analysis of Industrial Experiments*, Oliver & Boyd, Edinburgh, 1956.

Table A.10 Critical Values for Bartlett's Test

					0.01; n)				
					of Popul				
n	2	3	4	5	6	7	8	9	10
3	0.1411	0.1672							
4	0.2843	0.3165	0.3475	0.3729	0.3937	0.4110			
5	0.3984	0.4304	0.4607	0.4850	0.5046	0.5207	0.5343	0.5458	0.5558
6	0.4850	0.5149	0.5430	0.5653	0.5832	O.5978	0.6100	0.6204	0.6293
7	0.5512	0.5787	0.6045	0.6248	0.6410	0.6542	0.6652	0.6744	0.6824
8	0.6031	0.6282	0.6518	0.6704	0.6851	0.6970	0.7069	0.7153	0.7225
9	0.6445	0.6676	0.6892	0.7062	0.7197	0.7305	0.7395	0.7471	0.7536
10	0.6783	0.6996	0.7195	0.7352	0.7475	0.7575	0.7657	0.7726	0.7786
11	0.7063	0.7260	0.7445	0.7590	0.7703	0.7795	0.7871	0.7935	0.7990
12	0.7299	0.7483	0.7654	0.7789	0.7894	0.7980	0.8050	0.8109	0.8160
13	0.7501	0.7672	0.7832	0.7958	0.8056	0.8135	0.8201	0.8256	0.8303
14	0.7674	0.7835	0.7985	0.8103	0.8195	0.8269	0.8330	0.8382	0.8426
15	0.7825	0.7977	0.8118	0.8229	0.8315	0.8385	0.8443	0.8491	0.8532
16	0.7958	0.8101	0.8235	0.8339	0.8421	0.8486	0.8541	0.8586	0.8625
17	0.8076	0.8211	0.8338	0.8436	0.8514	0.8576	0.8627	0.8670	0.8707
18	0.8181	0.8309	0.8429	0.8523	0.8596	0.8655	0.8704	0.8745	0.8780
19	0.8275	0.8397	0.8512	0.8601	0.8670	0.8727	0.8773	0.8811	0.8845
20	0.8360	0.8476	0.8586	0.8671	0.8737	0.8791	0.8835	0.8871	0.8903
21	0.8437	0.8548	0.8653	0.8734	0.8797	0.8848	0.8890	0.8926	0.8956
22	0.8507	0.8614	0.8714	0.8791	0.8852	0.8901	0.8941	0.8975	0.9004
23	0.8571	0.8673	0.8769	0.8844	0.8902	0.8949	0.8988	0.9020	0.9047
24	0.8630	0.8728	0.8820	0.8892	0.8948	0.8993	0.9030	0.9061	0.9087
25	0.8684	0.8779	0.8867	0.8936	0.8990	0.9034	0.9069	0.9099	0.9124
26	0.8734	0.8825	0.8911	0.8977	0.9029	0.9071	0.9105	0.9134	0.9158
27	0.8781	0.8869	0.8951	0.9015	0.9065	0.9105	0.9138	0.9166	0.9190
28	0.8824	0.8909	0.8988	0.9050	0.9099	0.9138	0.9169	0.9196	0.9219
29	0.8864	0.8946	0.9023	0.9083	0.9130	0.9167	0.9198	0.9224	0.9246
30	0.8902	0.8981	0.9056	0.9114	0.9159	0.9195	0.9225	0.9250	0.9271
40	0.9175	0.9235	0.9291	0.9335	0.9370	0.9397	0.9420	0.9439	0.9455
50	0.9339	0.9387	0.9433	0.9468	0.9496	0.9518	0.9536	0.9551	0.9564
60	0.9449	0.9489	0.9527	0.9557	0.9580	0.9599	0.9614	0.9626	0.9637
80	0.9586	0.9617	0.9646	0.9668	0.9685	0.9699	0.9711	0.9720	0.9728
100	0.9669	0.9693	0.9716	0.9734	0.9748	0.9759	0.9769	0.9776	0.9783

Reproduced from D. D. Dyer and J. P. Keating, "On the Determination of Critical Values for Bartlett's Test," *J. Am. Stat. Assoc.*, **75**, 1980, by permission of the Board of Directors.

 ${\bf Table~A.10}~({\bf continued})~{\bf Critical~Values~for~Bartlett's~Test}$

				$b_k(0$.05; n)				
				Number	of Popul	ations, k			
n	2	3	4	5	6	7	8	9	10
3	0.3123	0.3058	0.3173	0.3299					
4	0.4780	0.4699	0.4803	0.4921	0.5028	0.5122	0.5204	0.5277	0.5341
5	0.5845	0.5762	0.5850	0.5952	0.6045	0.6126	0.6197	0.6260	0.6315
6	0.6563	0.6483	0.6559	0.6646	0.6727	0.6798	0.6860	0.6914	0.6961
7	0.7075	0.7000	0.7065	0.7142	0.7213	0.7275	0.7329	0.7376	0.7418
8	0.7456	0.7387	0.7444	0.7512	0.7574	0.7629	0.7677	0.7719	0.7757
9	0.7751	0.7686	0.7737	0.7798	0.7854	0.7903	0.7946	0.7984	0.8017
10	0.7984	0.7924	0.7970	0.8025	0.8076	0.8121	0.8160	0.8194	0.8224
11	0.8175	0.8118	0.8160	0.8210	0.8257	0.8298	0.8333	0.8365	0.8392
12	0.8332	0.8280	0.8317	0.8364	0.8407	0.8444	0.8477	0.8506	0.8531
13	0.8465	0.8415	0.8450	0.8493	0.8533	0.8568	0.8598	0.8625	0.8648
14	0.8578	0.8532	0.8564	0.8604	0.8641	0.8673	0.8701	0.8726	0.8748
15	0.8676	0.8632	0.8662	0.8699	0.8734	0.8764	0.8790	0.8814	0.8834
16	0.8761	0.8719	0.8747	0.8782	0.8815	0.8843	0.8868	0.8890	0.8909
17	0.8836	0.8796	0.8823	0.8856	0.8886	0.8913	0.8936	0.8957	0.8975
18	0.8902	0.8865	0.8890	0.8921	0.8949	0.8975	0.8997	0.9016	0.9033
19	0.8961	0.8926	0.8949	0.8979	0.9006	0.9030	0.9051	0.9069	0.9086
20	0.9015	0.8980	0.9003	0.9031	0.9057	0.9080	0.9100	0.9117	0.9132
21	0.9063	0.9030	0.9051	0.9078	0.9103	0.9124	0.9143	0.9160	0.9175
22	0.9106	0.9075	0.9095	0.9120	0.9144	0.9165	0.9183	0.9199	0.9213
23	0.9146	0.9116	0.9135	0.9159	0.9182	0.9202	0.9219	0.9235	0.9248
${\bf 24}$	0.9182	0.9153	0.9172	0.9195	0.9217	0.9236	0.9253	0.9267	0.9280
25	0.9216	0.9187	0.9205	0.9228	0.9249	0.9267	0.9283	0.9297	0.9309
26	0.9246	0.9219	0.9236	0.9258	0.9278	0.9296	0.9311	0.9325	0.9336
27	0.9275	0.9249	0.9265	0.9286	0.9305	0.9322	0.9337	0.9350	0.9361
28	0.9301	0.9276	0.9292	0.9312	0.9330	0.9347	0.9361	0.9374	0.9385
29	0.9326	0.9301	0.9316	0.9336	0.9354	0.9370	0.9383	0.9396	0.9406
30	0.9348	0.9325	0.9340	0.9358	0.9376	0.9391	0.9404	0.9416	0.9426
40	0.9513	0.9495	0.9506	0.9520	0.9533	0.9545	0.9555	0.9564	0.9572
50	0.9612	0.9597	0.9606	0.9617	0.9628	0.9637	0.9645	0.9652	0.9658
60	0.9677	0.9665	0.9672	0.9681	0.9690	0.9698	0.9705	0.9710	0.9716
80	0.9758	0.9749	0.9754	0.9761	0.9768	0.9774	0.9779	0.9783	0.9787
100	0.9807	0.9799	0.9804	0.9809	0.9815	0.9819	0.9823	0.9827	0.9830

Table A.11 Critical Values for Cochran's Test

							$\alpha = 0.01$	0.01						
								u						
k	2	3	4	5	9	7	8	6	10	11	17	37	145	8
2	0.99999	0.9950	0.9794	0.9586	0.9373	0.9172	0.8988	0.8823	0.8674	0.8539	0.7949	0.7067	0.6062	0.5000
က	0.9933	0.9423	0.8831	0.8335	0.7933	0.7606	0.7335	0.7107	0.6912	0.6743	0.6059	0.5153	0.4230	0.3333
4	0.9676	0.8643	0.7814	0.7212	0.6761	0.6410	0.6129	0.5897	0.5702	0.5536	0.4884	0.4057	0.3251	0.2500
ည	0.9279	0.7885	0.6957	0.6329	0.5875	0.5531	0.5259	0.5037	0.4854	0.4697	0.4094	0.3351	0.2644	0.2000
9	0.8828		0.6258	0.5635	0.5195	0.4866	0.4608	0.4401	0.4229	0.4084	0.3529	0.2858	0.2229	0.1667
7	0.8376	0.6644	0.5685	0.5080	0.4659	0.4347	0.4105	0.3911	0.3751	0.3616	0.3105	0.2494	0.1929	0.1429
œ	0.7945	0.6152	0.5209	0.4627	0.4226	0.3932	0.3704	0.3522	0.3373	0.3248	0.2779	0.2214	0.1700	0.1250
6	0.7544	0.5727	0.4810	0.4251	0.3870	0.3592	0.3378	0.3207	0.3067	0.2950	0.2514	0.1992	0.1521	0.1111
10	0.7175	0.5358	0.4469	0.3934	0.3572	0.3308	0.3106	0.2945	0.2813	0.2704	0.2297	0.1811	0.1376	0.1000
12	0.6528	0.4751	0.3919	0.3428	0.3099	0.2861	0.2680	0.2535	0.2419	0.2320	0.1961	0.1535	0.1157	0.0833
15	0.5747	0.4069	0.3317	0.2882	0.2593	0.2386	0.2228	0.2104	0.2002	0.1918	0.1612	0.1251	0.0934	0.0667
20	0.4799	0.3297	0.2654	0.2288	0.2048	0.1877	0.1748	0.1646	0.1567	0.1501	0.1248	0.0960	0.0709	0.0500
24	0.4247	0.2871	0.2295	0.1970	0.1759	0.1608	0.1495	0.1406	0.1338	0.1283	0.1060	0.0810	0.0595	0.0417
30	0.3632		0.1913	0.1635	0.1454	0.1327	0.1232	0.1157	0.1100	0.1054	0.0867	0.0658	0.0480	0.0333
40	0.2940	0.1915	0.1508	0.1281	0.1135	0.1033	0.0957	0.0898	0.0853	0.0816	0.0668	0.0503	0.0363	0.0250
09	0.2151	0.1371	0.1069	0.0902	0.0796	0.0722	0.0668	0.0625	0.0594	0.0567	0.0461	0.0344	0.0245	0.0167
120	0.1225	0.0759	0.0585	0.0489	0.0429	0.0387	0.0357	0.0334	0.0316	0.0302	0.0242	0.0178	0.0125	0.0083
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rer	Reproduced from C	from C		rt M W	/ Hactar	W bue 7	Δ Wal	lis Tech	to same	Ctatistic	al Angla	Char	Eisenhart M W Hastay and W A Wallis Techniques of Statistical Analysis Charter 15 McGraw-	C.Crow-

Reproduced from C. Eisenhart, M. W. Hastay, and W. A. Wallis, Techniques of Statistical Analysis, Chapter 15, McGraw-Hill Book Company, New, York, 1947. Used with permission of McGraw-Hill Book Company.

Table A.11 (continued) Critical Values for Cochran's Test

4 0.9392 0.7977 0.6841 0.5321 0.4800 0.4377 0.4377 0.4027 0.3264 0.2758 0.2205 0.1907				9						
2 3 4 0.9985 0.9750 0.9392 0.9669 0.8709 0.7977 0.9065 0.7679 0.6841 0.8412 0.6838 0.5981 0.7808 0.6161 0.5321 0.7271 0.5612 0.4800 0.6798 0.5157 0.4377 0.6385 0.4775 0.4027 6.6020 0.4450 0.3733 0.5410 0.3924 0.3264 0.4709 0.3346 0.2758 0.3434 0.2354 0.1907			-	11						
0.9985 0.9750 0.9392 0.9669 0.8709 0.7977 0.9065 0.7679 0.6841 0.8412 0.6838 0.5981 0.7271 0.5612 0.4800 0.6798 0.5157 0.4377 0.6385 0.4775 0.4027 6.6020 0.4450 0.3733 0.5410 0.3924 0.3264 0.4709 0.3346 0.2758 0.3434 0.2354 0.1907	9 9	4	œ	6	10	11	17	37	145	8
0.9669 0.8709 0.7977 0.9065 0.7679 0.6841 0.8412 0.6838 0.5981 0.7808 0.6161 0.5321 0.7271 0.5612 0.4800 0.6798 0.5157 0.4377 0.6385 0.4775 0.4027 6.6020 0.4450 0.3733 0.5410 0.3924 0.3264 0.4709 0.3346 0.2758 0.3894 0.2705 0.2205	0.9057 0.8772	0.8534	0.8332	0.8159	0.8010	0.7880	0.7341	0.6602	0.5813	0.5000
0.9065 0.7679 0.6841 0.8412 0.6838 0.5981 0.7808 0.6161 0.5321 0.7271 0.5612 0.4800 0.6798 0.5157 0.4377 0.6385 0.4775 0.4027 6.6020 0.4450 0.3733 0.5410 0.3924 0.3264 0.4709 0.3346 0.2758 0.3894 0.2755 0.3434 0.2354 0.1907	0.7457 0.7071	0.6771	0.6530	0.6333	0.6167	0.6025	0.5466	0.4748	0.4031	0.3333
0.8412 0.6838 0.5981 0.7808 0.6161 0.5321 0.7271 0.5612 0.4800 0.6798 0.5157 0.4377 0.6385 0.4775 0.4027 6.6020 0.4450 0.3733 0.5410 0.3924 0.3264 0.4709 0.3346 0.2758 0.3894 0.2754 0.1907	0.6287 0.5895	0.5598	0.5365	0.5175	0.5017	0.4884	0.4366	0.3720	0.3093	0.2500
0.7808 0.6161 0.5321 0.7271 0.5612 0.4800 0.6798 0.5157 0.4377 0.6385 0.4775 0.4027 6.6020 0.4450 0.3733 0.5410 0.3924 0.3264 0.4709 0.3346 0.2758 0.3894 0.2705 0.2205 0.3434 0.2354 0.1907	0.5441 0.5065	0.4783	0.4564	0.4387	0.4241	0.4118	0.3645	0.3066	0.2513	0.2000
0.7271 0.5612 0.4800 0.6798 0.5157 0.4377 0.6385 0.4775 0.4027 6.6020 0.4450 0.3733 0.5410 0.3924 0.3264 0.4709 0.3346 0.2758 0.3894 0.2705 0.2205 0.3434 0.2354 0.1907	0.4803 0.4447	0.4184	0.3980	0.3817	0.3682	0.3568	0.3135	0.2612	0.2119	0.1667
0.6798 0.5157 0.4377 0.6385 0.4775 0.4027 6.6020 0.4450 0.3733 0.5410 0.3924 0.3264 0.4709 0.3346 0.2758 0.3894 0.2705 0.3434 0.2354 0.1907 0.3630 0.1500 0.1500	0.4307 0.3974	0.3726	0.3535	0.3384	0.3259	0.3154	0.2756	0.2278	0.1833	0.1429
0.6385 0.4775 0.4027 6.6020 0.4450 0.3733 0.5410 0.3924 0.3264 0.4709 0.3346 0.2758 0.3894 0.2705 0.3434 0.2354 0.1907 0.3939 0.350	0.3910 0.3595	0.3362	0.3185	0.3043	0.2926	0.2829	0.2462	0.2022	0.1616	0.1250
6.6020 0.4450 0.3733 0.5410 0.3924 0.3264 0.4709 0.3346 0.2758 0.3894 0.2705 0.2205 0.3434 0.2354 0.1907 0.3630 0.1503 0.1503	0.3584 0.3286	0.3067	0.2901	0.2768	0.2659	0.2568	0.2226	0.1820	0.1446	0.11111
0.5410 0.3924 0.3264 0.4709 0.3346 0.2758 0 0.3894 0.2705 0.2205 0 0.3434 0.2354 0.1907 0	0.3311 0.3029	0.2823	0.2666	0.2541	0.2439	0.2353	0.2032	0.1655	0.1308	0.1000
0.4709 0.3346 0.2758 0.3894 0.2705 0.2205 0.3434 0.2354 0.1907 0.3434 0.1807 0.1807 0.1808 0.	0.2880 0.2624	0.2439	0.2299	0.2187	0.2098	0.2020	0.1737	0.1403	0.1100	0.0833
0.3894 0.2705 0.2205 0.3434 0.2354 0.1907 0.000 0.1500 0.1500 0.1500	0.2419 0.2195	0.2034	0.1911	0.1815	0.1736	0.1671	0.1429	0.1144	0.0889	0.0667
0.3434 0.2354 0.1907	0.1921 0.1735	0.1602	0.1501	0.1422	0.1357	0.1303	0.1108	0.0879	0.0675	0.0500
0 1000 0 1509	0.1656 0.1493	0.1374	0.1286	0.1216	0.1160	0.1113	0.0942	0.0743	0.0567	0.0417
0.1300 0.1333	0.1377 0.1237	0.1137	0.1061	0.1002	0.0958	0.0921	0.0771	0.0604	0.0457	0.0333
40 0.2370 0.1576 0.1259 (0.1082 0.0968	0.0887	0.0827	0.0780	0.0745	0.0713	0.0595	0.0462	0.0347	0.0250
60 0.1737 0.1131 0.0895 (0.0765 0.0682	0.0623	0.0583	0.0552	0.0520	0.0497	0.0411	0.0316	0.0234	0.0167
120 0.0998 0.0632 0.0495 (0.0419 0.0371	0.0337	0.0312	0.0292	0.0279	0.0266	0.0218	0.0165	0.0120	0.0083
0 0 0 8	0	0	0	0	0	0	0	0	0	0

Table A.12 Upper Percentage Points of the Studentized Range Distribution: Values of q(0.05;k,v)

Degrees of				Numbe	r of Tre	atments	s <i>k</i>		
Freedom, v	2	3	4	5	6	7	8	9	10
1	18.0	27.0	32.8	37.2	40.5	43.1	15.1	47.1	49.1
2	6.09	5.33	9.80	10.89	11.73	12.43	13.03	13.54	13.99
3	4.50	5.91	6.83	7.51	8.04	8.47	8.85	9.18	9.46
4	3.93	5.04	5.76	6.29	6.71	7.06	7.35	7.60	7.83
5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99
6	3.46	4.34	4.90	5.31	5.63	5.89	6.12	6.32	6.49
7	3.34	4.16	4.68	5.06	5.35	5.59	5.80	5.99	6.15
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.92
9	3.20	3.95	4.42	4.76	5.02	5.24	5.43	5.60	5.74
10	3.15	3.88	4.33	4.66	4.91	5.12	5.30	5.46	5.60
11	3.11	3.82	4.26	4.58	4.82	5.03	5.20	5.35	5.49
12	3.08	3.77	4.20	4.51	4.75	4.95	5.12	5.27	5.40
13	3.06	3.73	4.15	4.46	4.69	4.88	5.05	5.19	5.32
14	3.03	3.70	4.11	4.41	4.65	4.83	4.99	5.13	5.25
15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.20
16	3.00	3.65	4.05	4.34	4.56	4.74	4.90	5.03	5.05
17	2.98	3.62	4.02	4.31	4.52	4.70	4.86	4.99	5.11
18	2.97	3.61	4.00	4.28	4.49	4.67	4.83	4.96	5.07
19	2.96	3.59	3.98	4.26	4.47	4.64	4.79	4.92	5.04
20	2.95	3.58	3.96	4.24	4.45	4.62	4.77	4.90	5.01
${\bf 24}$	2.92	3.53	3.90	4.17	4.37	4.54	4.68	4.81	4.92
30	2.89	3.48	3.84	4.11	4.30	4.46	4.60	4.72	4.83
40	2.86	3.44	3.79	4.04	4.23	4.39	4.52	4.63	4.74
60	2.83	3.40	3.74	3.98	4.16	4.31	4.44	4.55	4.65
$\boldsymbol{120}$	2.80	3.36	3.69	3.92	4.10	4.24	4.36	4.47	4.56
∞	2.77	3.32	3.63	3.86	4.03	4.17	4.29	4.39	4.47

Table A.13 Least Significant Studentized Ranges $r_p(0.05; p, v)$

				α	= 0.05				
					p				
$oldsymbol{v}$	2	3	4	5	6	7	8	9	10
1	17.97	17.97	17.97	17.97	17.97	17.97	17.97	17.97	17.97
2	6.085	6.085	6.085	6.085	6.085	6.085	6.085	6.085	6.085
3	4.501	4.516	4.516	4.516	4.516	4.516	4.516	4.516	4.516
4	3.927	4.013	4.033	4.033	4.033	4.033	4.033	4.033	4.033
5	3.635	3.749	3.797	3.814	3.814	3.814	3.814	3.814	3.814
6	3.461	3.587	3.649	3.68	3.694	3.697	3.697	3.697	3.697
7	3.344	3.477	3.548	3.588	3.611	3.622	3.626	3.626	3.626
8	3.261	3.399	3.475	3.521	3.549	3.566	3.575	3.579	3.579
9	3.199	3.339	3.420	3.470	3.502	3.523	3.536	3.544	3.547
10	3.151	3.293	3.376	3.430	3.465	3.489	3.505	3.516	3.522
11	3.113	3.256	3.342	3.397	3.435	3.462	3.48	3.493	3.501
12	3.082	3.225	3.313	3.370	3.410	3.439	3.459	3.474	3.484
13	3.055	3.200	3.289	3.348	3.389	3.419	3.442	3.458	3.470
14	3.033	3.178	3.268	3.329	3.372	3.403	3.426	3.444	3.457
15	3.014	3.160	3.25	3.312	3.356	3.389	3.413	3.432	3.446
16	2.998	3.144	3.235	3.298	3.343	3.376	3.402	3.422	3.437
17	2.984	3.130	3.222	3.285	3.331	3.366	3.392	3.412	3.429
18	2.971	3.118	3.210	3.274	3.321	3.356	3.383	3.405	3.421
19	2.960	3.107	3.199	3.264	3.311	3.347	3.375	3.397	3.415
20	2.950	3.097	3.190	3.255	3.303	3.339	3.368	3.391	3.409
24	2.919	3.066	3.160	3.226	3.276	3.315	3.345	3.370	3.390
30	2.888	3.035	3.131	3.199	3.250	3.290	3.322	3.349	3.371
40	2.858	3.006	3.102	3.171	3.224	3.266	3.300	3.328	3.352
60	2.829	2.976	3.073	3.143	3.198	3.241	3.277	3.307	3.333
120	2.800	2.947	3.045	3.116	3.172	3.217	3.254	3.287	3.314
∞	2.772	2.918	3.017	3.089	3.146	3.193	3.232	3.265	3.294

Abridged from H. L. Harter, "Critical Values for Duncan's New Multiple Range Test," *Biometrics*, **16**, No. 4, 1960, by permission of the author and the editor.

Table A.13 (continued) Least Significant Studentized Ranges $r_p(0.01;p,v)$

				α =	= 0.01				
					p				
$oldsymbol{v}$	2	3	4	5	6	7	8	9	10
1	90.03	90.03	90.03	90.03	90.03	90.03	90.03	90.03	90.03
2	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04	14.04
3	8.261	8.321	8.321	8.321	8.321	8.321	8.321	8.321	8.321
4	6.512	6.677	6.740	6.756	6.756	6.756	6.756	6.756	6.756
5	5.702	5.893	5.989	6.040	6.065	6.074	6.074	6.074	6.074
6	5.243	5.439	5.549	5.614	5.655	5.680	5.694	5.701	5.703
7	4.949	5.145	5.260	5.334	5.383	5.416	5.439	5.454	5.464
8	4.746	4.939	5.057	5.135	5.189	5.227	5.256	5.276	5.291
9	4.596	4.787	4.906	4.986	5.043	5.086	5.118	5.142	5.160
10	4.482	4.671	4.790	4.871	4.931	4.975	5.010	5.037	5.058
11	4.392	4.579	4.697	4.780	4.841	4.887	4.924	4.952	4.975
12	4.320	4.504	4.622	4.706	4.767	4.815	4.852	4.883	4.907
13	4.260	4.442	4.560	4.644	4.706	4.755	4.793	4.824	4.850
14	4.210	4.391	4.508	4.591	4.654	4.704	4.743	4.775	4.802
15	4.168	4.347	4.463	4.547	4.610	4.660	4.700	4.733	4.760
16	4.131	4.309	4.425	4.509	4.572	4.622	4.663	4.696	4.724
17	4.099	4.275	4.391	4.475	4.539	4.589	4.630	4.664	4.693
18	4.071	4.246	4.362	4.445	4.509	4.560	4.601	4.635	4.664
19	4.046	4.220	4.335	4.419	4.483	4.534	4.575	4.610	4.639
20	4.024	4.197	4.312	4.395	4.459	4.510	4.552	4.587	4.617
24	3.956	4.126	4.239	4.322	4.386	4.437	4.480	4.516	4.546
30	3.889	4.056	4.168	4.250	4.314	4.366	4.409	4.445	4.477
40	3.825	3.988	4.098	4.180	4.244	4.296	4.339	4.376	4.408
60	3.762	3.922	4.031	4.111	4.174	4.226	4.270	4.307	4.340
120	3.702	3.858	3.965	4.044	4.107	4.158	4.202	4.239	4.272
∞	3.643	3.796	3.900	3.978	4.040	4.091	4.135	4.172	4.205

Table A.14 Values of $d_{\alpha/2}(k,v)$ for Two-Sided Comparisons between k Treatments and a Control

				$\alpha =$	0.05				
		k =	Number	of Treat	ment Me	ans (excl	luding co	ntrol)	
$oldsymbol{v}$	1	2	3	4	5	6	7	8	9
5	2.57	3.03	3.29	3.48	3.62	3.73	3.82	3.90	3.97
6	2.45	2.86	3.10	3.26	3.39	3.49	3.57	3.64	3.71
7	2.36	2.75	2.97	3.12	3.24	3.33	3.41	3.47	3.53
8	2.31	2.67	2.88	3.02	3.13	3.22	3.29	3.35	3.41
9	2.26	2.61	2.81	2.95	3.05	3.14	3.20	3.26	3.32
10	2.23	2.57	2.76	2.89	2.99	3.07	3.14	3.19	3.24
11	2.20	2.53	2.72	2.84	2.94	3.02	3.08	3.14	3.19
12	2.18	2.50	2.68	2.81	2.90	2.98	3.04	3.09	3.14
13	2.16	2.48	2.65	2.78	2.87	2.94	3.00	3.06	3.10
14	2.14	2.46	2.63	2.75	2.84	2.91	2.97	3.02	3.07
15	2.13	2.44	2.61	2.73	2.82	2.89	2.95	3.00	3.04
16	2.12	2.42	2.59	2.71	2.80	2.87	2.92	2.97	3.02
17	2.11	2.41	2.58	2.69	2.78	2.85	2.90	2.95	3.00
18	2.10	2.40	2.56	2.68	2.76	2.83	2.89	2.94	2.98
19	2.09	2.39	2.55	2.66	2.75	2.81	2.87	2.92	2.96
20	2.09	2.38	2.54	2.65	2.73	2.80	2.86	2.90	2.95
24	2.06	2.35	2.51	2.61	2.70	2.76	2.81	2.86	2.90
30	2.04	2.32	2.47	2.58	2.66	2.72	2.77	2.82	2.86
40	2.02	2.29	2.44	2.54	2.62	2.68	2.73	2.77	2.81
60	2.00	2.27	2.41	2.51	2.58	2.64	2.69	2.73	2.77
120	1.98	2.24	2.38	2.47	2.55	2.60	2.65	2.69	2.73
∞	1.96	2.21	2.35	2.44	2.51	2.57	2.61	2.65	2.69

Reproduced from Charles W. Dunnett, "New Tables for Multiple Comparison with a Control," *Biometrics*, **20**, No. 3, 1964, by permission of the author and the editor.

Table A.14 (continued) Values of $d_{\alpha/2}(k,v)$ for Two-Sided Comparisons between k Treatments and a Control

				$\alpha =$	0.01				
		k = 1	Number	of Treat	ment Me	ans (excl	uding co	ntrol)	
$oldsymbol{v}$	1	2	3	4	5	6	7	8	9
5	4.03	4.63	4.98	5.22	5.41	5.56	5.69	5.80	5.89
6	3.71	4.21	4.51	4.71	4.87	5.00	5.10	5.20	5.28
7	3.50	3.95	4.21	4.39	4.53	4.64	4.74	4.82	4.89
8	3.36	3.77	4.00	4.17	4.29	4.40	4.48	4.56	4.62
9	3.25	3.63	3.85	4.01	4.12	4.22	4.30	4.37	4.43
10	3.17	3.53	3.74	3.88	3.99	4.08	4.16	4.22	4.28
11	3.11	3.45	3.65	3.79	3.89	3.98	4.05	4.11	4.16
12	3.05	3.39	3.58	3.71	3.81	3.89	3.96	4.02	4.07
13	3.01	3.33	3.52	3.65	3.74	3.82	3.89	3.94	3.99
14	2.98	3.29	3.47	3.59	3.69	3.76	3.83	3.88	3.93
15	2.95	3.25	3.43	3.55	3.64	3.71	3.78	3.83	3.88
16	2.92	3.22	3.39	3.51	3.60	3.67	3.73	3.78	3.83
17	2.90	3.19	3.36	3.47	3.56	3.63	3.69	3.74	3.79
18	2.88	3.17	3.33	3.44	3.53	3.60	3.66	3.71	3.75
19	2.86	3.15	3.31	3.42	3.50	3.57	3.63	3.68	3.72
20	2.85	3.13	3.29	3.40	3.48	3.55	3.60	3.65	3.69
24	2.80	3.07	3.22	3.32	3.40	3.47	3.52	3.57	3.61
30	2.75	3.01	3.15	3.25	3.33	3.39	3.44	3.49	3.52
40	2.70	2.95	3.09	3.19	3.26	3.32	3.37	3.41	3.44
60	2.66	2.90	3.03	3.12	3.19	3.25	3.29	3.33	3.37
120	2.62	2.85	2.97	3.06	3.12	3.18	3.22	3.26	3.29
∞	2.58	2.79	2.92	3.00	3.06	3.11	3.15	3.19	3.22

Table A.15 Values of $d_{\alpha}(k, v)$ for One-Sided Comparisons between k Treatments and a Control

				$\alpha =$	0.05				
		k =	Number	of Treat	ment Me	ans (excl	uding co	ntrol)	
$oldsymbol{v}$	1	2	3	4	5	6	7	8	9
5	2.02	2.44	2.68	2.85	2.98	3.08	3.16	3.24	3.30
6	1.94	2.34	2.56	2.71	2.83	2.92	3.00	3.07	3.12
7	1.89	2.27	2.48	2.62	2.73	2.82	2.89	2.95	3.01
8	1.86	2.22	2.42	2.55	2.66	2.74	2.81	2.87	2.92
9	1.83	2.18	2.37	2.50	2.60	2.68	2.75	2.81	2.86
10	1.81	2.15	2.34	2.47	2.56	2.64	2.70	2.76	2.81
11	1.80	2.13	2.31	2.44	2.53	2.60	2.67	2.72	2.77
12	1.78	2.11	2.29	2.41	2.50	2.58	2.64	2.69	2.74
13	1.77	2.09	2.27	2.39	2.48	2.55	2.61	2.66	2.71
14	1.76	2.08	2.25	2.37	2.46	2.53	2.59	2.64	2.69
15	1.75	2.07	2.24	2.36	2.44	2.51	2.57	2.62	2.67
16	1.75	2.06	2.23	2.34	2.43	2.50	2.56	2.61	2.65
17	1.74	2.05	2.22	2.33	2.42	2.49	2.54	2.59	2.64
18	1.73	2.04	2.21	2.32	2.41	2.48	2.53	2.58	2.62
19	1.73	2.03	2.20	2.31	2.40	2.47	2.52	2.57	2.61
20	1.72	2.03	2.19	2.30	2.39	2.46	2.51	2.56	2.60
24	1.71	2.01	2.17	2.28	2.36	2.43	2.48	2.53	2.57
30	1.70	1.99	2.15	2.25	2.33	2.40	2.45	2.50	2.54
40	1.68	1.97	2.13	2.23	2.31	2.37	2.42	2.47	2.51
60	1.67	1.95	2.10	2.21	2.28	2.35	2.39	2.44	2.48
120	1.66	1.93	2.08	2.18	2.26	2.32	2.37	2.41	2.45
∞	1.64	1.92	2.06	2.16	2.23	2.29	2.34	2.38	2.42

Reproduced from Charles W. Dunnett, "A Multiple Comparison Procedure for Comparing Several Treatments with a Control," *J. Am. Stat. Assoc.*, **50**, 1955, 1096–1121, by permission of the author and the editor.

Table A.15 (continued) Values of $d_{\alpha}(k,v)$ for One-Sided Comparisons between k Treatments and a Control

lpha = 0.01											
		k = 1	Number (of Treatr	nent Mea	ans (excl	uding coi	ntrol)			
$oldsymbol{v}$	1	2	3	4	5	6	7	8	9		
5	3.37	3.90	4.21	4.43	4.60	4.73	4.85	4.94	5.03		
6	3.14	3.61	3.88	4.07	4.21	4.33	4.43	4.51	4.59		
7	3.00	3.42	3.66	3.83	3.96	4.07	4.15	4.23	4.30		
8	2.90	3.29	3.51	3.67	3.79	3.88	3.96	4.03	4.09		
9	2.82	3.19	3.40	3.55	3.66	3.75	3.82	3.89	3.94		
10	2.76	3.11	3.31	3.45	3.56	3.64	3.71	3.78	3.83		
11	2.72	3.06	3.25	3.38	3.48	3.56	3.63	3.69	3.74		
12	2.68	3.01	3.19	3.32	3.42	3.50	3.56	3.62	3.67		
13	2.65	2.97	3.15	3.27	3.37	3.44	3.51	3.56	3.61		
14	2.62	2.94	3.11	3.23	3.32	3.40	3.46	3.51	3.56		
15	2.60	2.91	3.08	3.20	3.29	3.36	3.42	3.47	3.52		
16	2.58	2.88	3.05	3.17	3.26	3.33	3.39	3.44	3.48		
17	2.57	2.86	3.03	3.14	3.23	3.30	3.36	3.41	3.45		
18	2.55	2.84	3.01	3.12	3.21	3.27	3.33	3.38	3.42		
19	2.54	2.83	2.99	3.10	3.18	3.25	3.31	3.36	3.40		
20	2.53	2.81	2.97	3.08	3.17	3.23	3.29	3.34	3.38		
${\bf 24}$	2.49	2.77	2.92	3.03	3.11	3.17	3.22	3.27	3.31		
30	2.46	2.72	2.87	2.97	3.05	3.11	3.16	3.21	3.24		
40	2.42	2.68	2.82	2.92	2.99	3.05	3.10	3.14	3.18		
60	2.39	2.64	2.78	2.87	2.94	3.00	3.04	3.08	3.12		
120	2.36	2.60	2.73	2.82	2.89	2.94	2.99	3.03	3.06		
∞	2.33	2.56	2.68	2.77	2.84	2.89	2.93	2.97	3.00		

 ${\bf Table~A.16~Critical~Values~for~the~Signed-Rank~Test}$

	One-Sided $\alpha = 0.01$	One-Sided $\alpha = 0.025$	One-Sided $\alpha = 0.05$
\boldsymbol{n}	Two-Sided $\alpha = 0.02$	Two-Sided $\alpha = 0.05$	Two-Sided $\alpha = 0.1$
5			1
6		1	2
7	0	2	4
8	2	4	6
9	3	6	8
10	5	8	11
11	7	11	14
${\bf 12}$	10	14	17
13	13	17	21
14	16	21	26
15	20	25	30
16	24	30	36
17	28	35	41
18	33	40	47
19	38	46	54
20	43	52	60
21	49	59	68
22	56	66	75
23	62	73	83
24	69	81	92
25	77	90	101
26	85	98	110
27	93	107	120
28	102	117	130
29	111	127	141
30	120	137	152

Reproduced from F. Wilcoxon and R. A. Wilcox, *Some Rapid Approximate Statistical Procedures, American Cyanamid Company*, Pearl River, N.Y., 1964, by permission of the American Cyanamid Company.

Table A.17 Critical Values for the Wilcoxon Rank-Sum Test

		O	ne-T	ailed	Test a	at $\alpha =$	0.001	or T	wo-Ta	iled To	est at	$\alpha = 0$.002		
								n_{i}	2						
n_1	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1															
2															
3												0	0	0	0
4					0	0	0	1	1	1	2	2	3	3	3
5		0	0	1	1	2	2	3	3	4	5	5	6	7	7
6	0	1	2	2	3	4	4	5	6	7	8	9	10	11	12
7		2	3	3	5	6	7	8	9	10	11	13	14	15	16
8			5	5	6	8	9	11	12	14	15	17	18	20	21
9				7	8	10	12	14	15	17	19	21	23	25	26
10					10	12	14	17	19	21	23	25	27	29	32
11						15	17	20	22	24	27	29	32	34	37
12							20	23	25	28	31	34	37	40	42
13								26	29	32	35	38	42	45	48
14									32	36	39	43	46	50	54
15										40	43	47	51	55	59
16											48	52	56	60	65
17												57	61	66	70
18													66	71	76
19														77	82
2 0															88

									n_2							
n_1	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1																
2									0	0	0	0	0	0	1	1
3			0	0	1	1	1	2	2	2	3	3	4	4	4	5
4	0	1	1	2	3	3	4	5	5	6	7	7	8	9	9	10
5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6		3	4	6	7	8	9	11	12	13	15	16	18	19	20	22
7			6	8	9	11	12	14	16	17	19	21	23	24	26	28
8				10	11	13	15	17	20	22	24	26	28	30	32	34
9					14	16	18	21	23	26	28	31	33	36	38	40
10						19	22	24	27	30	33	36	38	41	44	47
11							25	28	31	34	37	41	44	47	50	53
12								31	35	38	42	46	49	53	56	60
13									39	43	47	51	55	59	63	67
14										47	51	56	60	65	69	73
15											56	61	66	70	75	80
16												66	71	76	82	87
17													77	82	88	93
18														88	94	100
19															101	107
20																114

Based in part on Tables 1, 3, 5, and 7 of D. Auble, "Extended Tables for the Mann-Whitney Statistic," Bulletin of the Institute of Educational Research at Indiana University, 1, No. 2, 1953, by permission of the director.

 ${\bf Table~A.17~(continued)~Critical~Values~for~the~Wilcoxon~Rank-Sum~Test}$

		O	ne-T	[aile	ed Te	est a	t α =	= 0.0	25 or	Two	-Tail	$\operatorname{led} \mathbf{I}$	est a	$t \alpha =$	= 0.0	5	
	n_2																
n_1	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1																	
2					0	0	0	0	1	1	1	1	1	2	2	2	2
3		0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
$oldsymbol{4}$	0	1	2	3	4	4	5	6	7	8	9	10	11	11	12	13	13
5		2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
6			5	6	8	10	11	13	14	16	17	19	21	22	24	25	27
7				8	10	12	14	16	18	20	22	24	26	28	30	32	34
8					13	15	17	19	22	24	26	29	31	34	36	38	41
9						17	20	23	26	28	31	34	37	39	42	45	48
10							23	26	29	33	36	39	42	45	48	52	55
11								30	33	37	40	44	47	51	55	58	62
12									37	41	45	49	53	57	61	65	69
13										45	50	54	59	63	67	72	76
14											55	59	64	67	74	78	83
15												64	70	75	80	85	90
16													75	81	86	92	98
17														87	93	99	105
18															99	106	112
19																113	119
20																	127

One-Tailed Test at $\alpha=0.05$ or Two-Tailed Test at $\alpha=0.1$

										n_2	}							
n_1	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1																	0	0
2			0	0	0	1	1	1	1	2	2	3	3	3	3	4	4	4
3	0	0	1	2	2	3	4	4	5	5	6	7	7	8	9	9	10	11
4		1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	17	18
5			4	5	6	8	9	11	12	13	15	16	18	19	20	22	23	25
6				7	8	10	12	14	16	17	19	21	23	25	26	28	30	32
7					11	13	15	17	19	21	24	26	28	30	33	35	37	39
8						15	18	20	23	26	28	31	33	36	39	41	44	47
9							21	24	27	30	33	36	39	42	45	48	51	54
10								27	31	34	37	41	44	48	51	55	58	62
11									34	38	42	46	50	54	57	61	65	69
12										42	47	51	55	60	64	68	72	77
13											51	56	61	65	70	75	80	84
14												61	66	71	77	82	87	92
15													72	77	83	88	94	100
16														83	89	95	101	107
17															96	102	109	115
18																109	116	123
19																	123	130
20																		138
20																		1;

Table A.18 $P(V \le v^* \text{ when } H_0 \text{ is true})$ in the Runs Test

		v^*											
(n_1,n_2)	$\overline{2}$	3	4	5	6	7	8	9	10				
(2, 3)	0.200	0.500	0.900	1.000									
(2,4)	0.133	0.400	0.800	1.000									
(2,5)	0.095	0.333	0.714	1.000									
(2,6)	0.071	0.286	0.643	1.000									
(2,7)	0.056	0.250	0.583	1.000									
(2,8)	0.044	0.222	0.533	1.000									
(2,9)	0.036	0.200	0.491	1.000									
(2, 10)	0.030	0.182	0.455	1.000									
(3, 3)	0.100	0.300	0.700	0.900	1.000								
(3, 4)	0.057	0.200	0.543	0.800	0.971	1.000							
(3,5)	0.036	0.143	0.429	0.714	0.929	1.000							
(3, 6)	0.024	0.107	0.345	0.643	0.881	1.000							
(3,7)	0.017	0.083	0.283	0.583	0.833	1.000							
(3,8)	0.012	0.067	0.236	0.533	0.788	1.000							
(3,9)	0.009	0.055	0.200	0.491	0.745	1.000							
(3, 10)	0.007	0.045	0.171	0.455	0.706	1.000	4 000						
(4, 4)	0.029	0.114	0.371	0.629	0.886	0.971	1.000	4 000					
(4,5)	0.016	0.071	0.262	0.500	0.786	0.929	0.992	1.000					
(4, 6)	0.010	0.048	0.190	0.405	0.690	0.881	0.976	1.000					
(4,7)	0.006	0.033	0.142	0.333	0.606	0.833	0.954	1.000					
(4,8)	0.004	0.024	0.109	0.279	0.533	0.788	0.929	1.000					
(4,9)	0.003	0.018	0.085	0.236	0.471	0.745	0.902	1.000					
(4, 10)	0.002	0.014	0.068	0.203	0.419	0.706	0.874	1.000					
(5,5)	0.008	0.040	0.167	0.357	0.643	0.833	0.960	0.992	1.000				
(5,6)	0.004	0.024	0.110	0.262	0.522	0.738	0.911	0.976	0.998				
(5,7)	0.003	0.015	0.076	0.197	0.424	0.652	0.854	0.955	0.992				
(5,8)	0.002	0.010	0.054	0.152	0.347	0.576	0.793	0.929	0.984				
(5,9)	0.001	0.007	0.039	0.119	0.287	0.510	0.734	0.902	0.972				
(5, 10)	0.001	0.005	0.029	0.095	0.239	0.455	0.678	0.874	0.958				
(6,6)	0.002	0.013	0.067	0.175	0.392	0.608	0.825	0.933	0.987				
(6,7)	0.001	0.008	0.043	0.121	0.296	0.500	0.733	0.879	0.966				
(6,8)	0.001	0.005	0.028	0.086	0.226	0.413	0.646	0.821	0.937				
(6,9)	0.000	0.003	0.019	0.063	0.175	0.343	0.566	0.762	0.902				
(6, 10)	0.000	0.002	0.013	0.047	0.137	0.288	0.497	0.706	0.864				
(7,7)	0.001	0.004	0.025	0.078	0.209	0.383	0.617	0.791	0.922				
(7,8)	0.000	0.002	0.015	0.051	0.149	0.296	0.514	0.704	0.867				
(7,9)	0.000	0.001	0.010	0.035	0.108	0.231	0.427	0.622	0.806				
(7,10)	0.000	0.001	0.006	0.024	0.080	0.182	0.355	0.549	0.743				
(8,8)	0.000	0.001	0.009	0.032	0.100	0.214	0.405	0.595	0.786				
(8,9)	0.000	0.001	0.005	0.020	0.069	0.157	0.319	0.500	0.702				
(8, 10)	0.000	0.000	0.003	0.013	0.048	0.117	0.251	0.419	0.621				
(9,9)	0.000	0.000	0.003	0.012	0.044	0.109	0.238	0.399	0.601				
(9, 10)	0.000	0.000	0.002	0.008	0.029	0.077	0.179	0.319	0.510				
(10, 10)	0.000	0.000	0.001	0.004	0.019	0.051	0.128	0.242	0.414				

Reproduced from C. Eisenhart and R. Swed, "Tables for Testing Randomness of Grouping in a Sequence of Alternatives," *Ann. Math. Stat.*, **14**, 1943, by permission of the editor.

Table A.18 (continued) $P(V \leq v^* \text{ when } H_0 \text{ is true})$ in the Runs Test

	v^*									
(n_1,n_2)	11	12	13	14	15	16	17	18	19	20
(2,3)										
$\begin{matrix} (2,4) \\ (2,5) \end{matrix}$										
(2, 6)										
(2,7)										
(2, 8)										
(2,9)										
(2, 10)										
(3,3)										
$\begin{matrix} (3,4) \\ (3,5) \end{matrix}$										
(3,6)										
(3, 7)										
(3,8)										
$\begin{matrix} (3,9) \\ (3,10) \end{matrix}$										
(3, 10) $(4, 4)$										
(4,4) $(4,5)$										
(4,6)										
(4, 7)										
(4,8)										
$\begin{matrix} (4,9) \\ (4,10) \end{matrix}$										
(5,5)										
(5,6)	1.000									
(5,7)	1.000									
(5,8)	1.000									
(5,9)	1.000									
(5, 10)	1.000	1 000								
$\begin{matrix} (6,6) \\ (6,7) \end{matrix}$	$0.998 \\ 0.992$	$1.000 \\ 0.999$	1.000							
(6, 8)	0.984	0.998	1.000							
(6,9)	0.972	0.994	1.000							
(6, 10)	0.958	0.990	1.000							
(7,7)	0.975	0.996	0.999	1.000						
(7,8)	0.949	0.988	0.998	1.000	1.000					
$(7,9) \\ (7,10)$	$0.916 \\ 0.879$	$0.975 \\ 0.957$	0.994 0.990	$0.999 \\ 0.998$	1.000 1.000					
(8,8)	0.900	0.968	0.991	0.999	1.000	1.000				
(8, 9)	0.900 0.843	0.939	0.980	0.996	0.999	1.000	1.000			
(8,10)	0.782	0.903	0.964	0.990	0.998	1.000	1.000			
(9,9)	0.762	0.891	0.956	0.988	0.997	1.000	1.000	1.000		
(9, 10)	0.681	0.834	0.923	0.974	0.992	0.999	1.000	1.000	1.000	<u> </u>
(10, 10)	0.586	0.758	0.872	0.949	0.981	0.996	0.999	1.000	1.000	1.0

			1										
		$1-\gamma$											
$1 - \alpha$	0.50	0.70	0.90	0.95	0.99	0.995							
0.995	336	488	777	947	1325	1483							
0.99	168	244	388	473	662	740							
0.95	34	49	77	93	130	146							
0.90	17	24	38	46	64	72							
0.85	11	16	25	30	42	47							
0.80	9	12	18	22	31	34							
0.75	7	10	15	18	24	27							
0.70	6	8	12	14	20	22							
0.60	4	6	9	10	14	16							
0.50	3	5	7	8	11	12							

Table A.19 Sample Size for Two-Sided Nonparametric Tolerance Limits

Reproduced from Table A–25d of Wilfrid J. Dixon and Frank J. Massey, Jr., *Introduction to Statistical Analysis*, 3rd ed. McGraw-Hill, New York, 1969. Used with permission of McGraw-Hill Book Company.

Table A.20 Sample Size for One-Sided Nonparametric Tolerance Limits

	$1-\gamma$								
1-lpha	0.50	0.70	0.95	0.99	0.995				
0.995	139	241	598	919	1379				
0.99	69	120	299	459	688				
0.95	14	24	59	90	135				
0.90	7	12	29	44	66				
0.85	5	8	19	29	43				
0.80	4	6	14	21	31				
0.75	3	5	11	7	25				
0.70	2	4	9	13	20				
0.60	2	3	6	10	14				
0.50	1	2	5	7	10				

Reproduced from Table A–25e of Wilfrid J. Dixon and Frank J. Massey, Jr., *Introduction to Statistical Analysis*, 3rd ed. McGraw-Hill, New York, 1969. Used with permission of McGraw-Hill Book Company.

 Table A.21 Critical Values for Spearman's Rank Correlation Coefficients

\overline{n}	lpha=0.05	lpha=0.025	$\alpha=0.01$	lpha=0.005
5	0.900			
6	0.829	0.886	0.943	
7	0.714	0.786	0.893	
8	0.643	0.738	0.833	0.881
9	0.600	0.683	0.783	0.833
10	0.564	0.648	0.745	0.794
11	0.523	0.623	0.736	0.818
12	0.497	0.591	0.703	0.780
13	0.475	0.566	0.673	0.745
14	0.457	0.545	0.646	0.716
15	0.441	0.525	0.623	0.689
16	0.425	0.507	0.601	0.666
17	0.412	0.490	0.582	0.645
18	0.399	0.476	0.564	0.625
19	0.388	0.462	0.549	0.608
20	0.377	0.450	0.534	0.591
21	0.368	0.438	0.521	0.576
22	0.359	0.428	0.508	0.562
23	0.351	0.418	0.496	0.549
${\bf 24}$	0.343	0.409	0.485	0.537
25	0.336	0.400	0.475	0.526
26	0.329	0.392	0.465	0.515
27	0.323	0.385	0.456	0.505
28	0.317	0.377	0.448	0.496
29	0.311	0.370	0.440	0.487
30	0.305	0.364	0.432	0.478

Reproduced from E. G. Olds, "Distribution of Sums of Squares of Rank Differences for Small Samples," *Ann. Math. Stat.*, **9**, 1938, by permission of the editor.

Table A.22 Factors for Constructing Control Charts

	Chaı •	rt for	ξ		5	-	•			5	ç		
	Ave	rages	. د ا	Or	Standard Deviations	ra Dev	/lations	70		Cnart	Cnart for Kanges	nges	
Obs. in \tilde{c}		ors for	$\widetilde{ ext{Facto}}$	Factors for	(Factors for	rs for		Facto	Factors for	Œĭ ≀	Factors for	or
\mathbf{Sample}	Contro	ol Limits	Cent	Centerline		Control Limit	Limits		Cent	Centerline	Cor	Control Limits	mits
u	A_2	A_3	c_4	$1/c_4$	B_3	B_4	B_5	B_6	d_2	$1/d_2$	d_3	D_3	D_4
7	1.880	2.659	0.7979	1.2533	0	3.267	0	2.606	1.128	0.8865	0.853	0	3.267
က	1.023	1.954	0.8862	1.1284	0	2.568	0	2.276	1.693	0.5907	0.888	0	2.574
4	0.729	1.628	0.9213	1.0854	0	2.266	0	2.088	2.059	0.4857	0.880	0	2.282
ಬ	0.577	1.427	0.9400	1.0638	0	2.089	0	1.964	2.326	0.4299	0.864	0	2.114
9	0.483	1.287	0.9515	1.0510	0.030	1.970	0.029	1.874	2.534	0.3946	0.848	0	2.004
7	0.419	1.182	0.9594	1.0423	0.118	1.882	0.113	1.806	2.704	0.3698	0.833	0.076	1.924
œ	0.373	1.099	0.9650	1.0363	0.185	1.815	0.179	1.751	2.847	0.3512	0.820	0.136	1.864
6	0.337	1.032	0.9693	1.0317	0.239	1.761	0.232	1.707	2.970	0.3367	0.808	0.184	1.816
10	0.308	0.975	0.9727	1.0281	0.284	1.716	0.276	1.669	3.078	0.3249	0.797	0.223	1.777
11	0.285	0.927	0.9754	1.0252	0.321	1.679	0.313	1.637	3.173	0.3152	0.787	0.256	1.744
12	0.266	0.886	0.9776	1.0229	0.354	1.646	0.346	1.610	3.258	0.3069	0.778	0.283	1.717
13	0.249	0.850	0.9794	1.0210	0.382	1.618	0.374	1.585	3.336	0.2998	0.770	0.307	1.693
14	0.235	0.817	0.9810	1.0194	0.406	1.594	0.399	1.563	3.407	0.2935	0.763	0.328	1.672
15	0.223	0.789	0.9823	1.0180	0.428	1.572	0.421	1.544	3.472	0.2880	0.756	0.347	1.653
16	0.212	0.763	0.9835	1.0168	0.448	1.552	0.440	1.526	3.532	0.2831	0.750	0.363	1.637
17	0.203	0.739	0.9845	1.0157	0.466	1.534	0.458	1.511	3.588	0.2787	0.744	0.378	1.622
18	0.194	0.718	0.9854	1.0148	0.482	1.518	0.475	1.496	3.640	0.2747	0.739	0.391	1.608
19	0.187	0.698	0.9862	1.0140	0.497	1.503	0.490	1.483	3.689	0.2711	0.734	0.403	1.597
20	0.180	0.680	0.9869	1.0133	0.510	1.490	0.504	1.470	3.735	0.2677	0.729	0.415	1.585
21	0.173	0.663	0.9876	1.0126	0.523	1.477	0.516	1.459	3.778	0.2647	0.724	0.425	1.575
22	0.167	0.647	0.9882	1.0119	0.534	1.466	0.528	1.448	3.819	0.2618	0.720	0.434	1.566
23	0.162	0.633	0.9887	1.0114	0.545	1.455	0.539	1.438	3.858	0.2592	0.716	0.443	1.557
24	0.157	0.619	0.9892	1.0109	0.555	1.445	0.549	1.429	3.895	0.2567	0.712	0.451	1.548
25	0.153	909.0	0.9896	1.0105	0.565	1.435	0.559	1.420	3.931	0.2544	0.708	0.459	4.541

					C	α				
\boldsymbol{x}	1	2	3	4	5	6	7	8	9	10
1	0.6320	0.2640	0.0800	0.0190	0.0040	0.0010	0.0000	0.0000	0.0000	0.0000
2	0.8650	0.5940	0.3230	0.1430	0.0530	0.0170	0.0050	0.0010	0.0000	0.0000
3	0.9500	0.8010	0.5770	0.3530	0.1850	0.0840	0.0340	0.0120	0.0040	0.0010
4	0.9820	0.9080	0.7620	0.5670	0.3710	0.2150	0.1110	0.0510	0.0210	0.0080
5	0.9930	0.9600	0.8750	0.7350	0.5600	0.3840	0.2380	0.1330	0.0680	0.0320
6	0.9980	0.9830	0.9380	0.8490	0.7150	0.5540	0.3940	0.2560	0.1530	0.0840
7	0.9990	0.9930	0.9700	0.9180	0.8270	0.6990	0.5500	0.4010	0.2710	0.1700
8	1.0000	0.9970	0.9860	0.9580	0.9000	0.8090	0.6870	0.5470	0.4070	0.2830
9		0.9990	0.9940	0.9790	0.9450	0.8840	0.7930	0.6760	0.5440	0.4130
10		1.0000	0.9970	0.9900	0.9710	0.9330	0.8700	0.7800	0.6670	0.5420
11			0.9990	0.9950	0.9850	0.9620	0.9210	0.8570	0.7680	0.6590
12			1.0000	0.9980	0.9920	0.9800	0.9540	0.9110	0.8450	0.7580
13				0.9990	0.9960	0.9890	0.9740	0.9460	0.9000	0.8340
14				1.0000	0.9980	0.9940	0.9860	0.9680	0.9380	0.8910
15					0.9990	0.9970	0.9920	0.9820	0.9630	0.9300

Table A.23 The Incomplete Gamma Function: $F(x;\alpha) = \int_0^x \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} dy$

A.24 Proof of Mean of the Hypergeometric Distribution

To find the mean of the hypergeometric distribution, we write

$$E(X) = \sum_{x=0}^{n} x \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}} = k \sum_{x=1}^{n} \frac{(k-1)!}{(x-1)!(k-x)!} \cdot \frac{\binom{N-k}{n-x}}{\binom{N}{n}}$$
$$= k \sum_{x=1}^{n} \frac{\binom{k-1}{x-1} \binom{N-k}{n-x}}{\binom{N}{n}}.$$

Since

$$\binom{N-k}{n-1-y} = \binom{(N-1)-(k-1)}{n-1-y} \quad \text{and} \quad \binom{N}{n} = \frac{N!}{n!(N-n)!} = \frac{N}{n} \binom{N-1}{n-1},$$

letting y = x - 1, we obtain

$$\begin{split} E(X) &= k \sum_{y=0}^{n-1} \frac{\binom{k-1}{y} \binom{N-k}{n-1-y}}{\binom{N}{n}} \\ &= \frac{nk}{N} \sum_{y=0}^{n-1} \frac{\binom{k-1}{y} \binom{(N-1)-(k-1)}{n-1-y}}{\binom{N-1}{n-1}} = \frac{nk}{N}, \end{split}$$

since the summation represents the total of all probabilities in a hypergeometric experiment when N-1 items are selected at random from N-1, of which k-1 are labeled success.

A.25 Proof of Mean and Variance of the Poisson Distribution

Let $\mu = \lambda t$.

$$E(X) = \sum_{x=0}^{\infty} x \cdot \frac{e^{-\mu} \mu^x}{x!} = \sum_{x=1}^{\infty} x \cdot \frac{e^{-\mu} \mu^x}{x!} = \mu \sum_{x=1}^{\infty} \frac{e^{-\mu} \mu^{x-1}}{(x-1)!}.$$

Since the summation in the last term above is the total probability of a Poisson random variable with mean μ , which can be easily seen by letting y = x - 1, it equals 1. Therefore, $E(X) = \mu$. To calculate the variance of X, note that

$$E[X(X-1)] = \sum_{x=0}^{\infty} x(x-1) \frac{e^{-\mu} \mu^x}{x!} = \mu^2 \sum_{x=2}^{\infty} \frac{e^{-\mu} \mu^{x-2}}{(x_2)!}.$$

Again, letting y = x - 2, the summation in the last term above is the total probability of a Poisson random variable with mean μ . Hence, we obtain

$$\sigma^2 = E(X^2) - [E(X)]^2 = E[X(X - 1)] + E(X) - [E(X)]^2 = \mu^2 + \mu - \mu^2 = \mu = \lambda t.$$

A.26 Proof of Mean and Variance of the Gamma Distribution

To find the mean and variance of the gamma distribution, we first calculate

$$E(X^k) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_0^{\infty} x^{\alpha+k-1} e^{-x/\beta} \ dx = \frac{\beta^{k+\alpha} \Gamma(\alpha+k)}{\beta^{\alpha} \Gamma(\alpha)} \int_0^{\infty} \frac{x^{\alpha+k-1} e^{-x/\beta}}{\beta^{k+\alpha} \Gamma(\alpha+k)} \ dx,$$

for $k=0,1,2,\ldots$ Since the integrand in the last term above is a gamma density function with parameters $\alpha+k$ and β , it equals 1. Therefore,

$$E(X^k) = \beta^k \frac{\Gamma(k+\alpha)}{\Gamma(\alpha)}.$$

Using the recursion formula of the gamma function from page 194, we obtain

$$\mu = \beta \frac{\Gamma(\alpha+1)}{\Gamma(\alpha)} = \alpha \beta$$
 and $\sigma^2 = E(X^2) - \mu^2 = \beta^2 \frac{\Gamma(\alpha+2)}{\Gamma(\alpha)} - \mu^2 = \beta^2 \alpha(\alpha+1) - (\alpha\beta)^2 = \alpha\beta^2$.