Mathematical Modeling of Control Systems

Dr. Ing. Rodrigo Gonzalez

rodralez@frm.utn.edu.ar

Control y Sistemas

Universidad Nacional de Cuyo, Facultad de Ingeniería

Symmary

- Introduction
- 2 Automatic Control Systems
- Modeling in state space
- State-Space Representation of Scalar Differential Equation Systems

Introduction

- Mathematical Models.
- Simplicity Versus Accuracy (inherent physical properties, nonlinearities).
- Linear Systems. A system is called linear if the principle of superposition applies.
- Linear Time-Invariant Systems and Linear Time-Varying Systems.

- «Essentially, all models are wrong, but some are useful.»
- George E. P. Box and Norman R. Draper, *Empirical Model-Building and Response Surfaces*, p. 424, 1987.

Block Diagrams

Open-Loop Transfer Function and Feedforward Transfer Function

Open-loop transfer function
$$=\frac{B(s)}{E(s)} = G(s)H(s)$$

The ratio of the output C(s) to the actuating error signal E(s) is called the *feed-forward transfer function*, so that

Feedforward transfer function
$$=\frac{C(s)}{E(s)}=G(s)$$

If the feedback transfer function H(s) is unity, then the open-loop transfer function and the feedforward transfer function are the same.

Close-Loop Transfer Function

$$C(s) = G(s)E(s)$$

$$E(s) = R(s) - B(s)$$

$$= R(s) - H(s)C(s)$$

eliminating E(s) from these equations gives

$$C(s) = G(s)[R(s) - H(s)C(s)]$$

or

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$
(2-3)

Exercice 1

Suppose that there are two components $G_1(s)$ and $G_2(s)$ connected differently as shown in Figure 2–5 (a), (b), and (c), where

$$G_1(s) = \frac{\text{num1}}{\text{den1}}, \qquad G_2(s) = \frac{\text{num2}}{\text{den2}}$$

To obtain the transfer functions of the cascaded system, parallel system, or feedback (closed-loop) system, the following commands may be used:

As an example, consider the case where

$$G_1(s) = \frac{10}{s^2 + 2s + 10} = \frac{\text{num1}}{\text{den }1}, \qquad G_2(s) = \frac{5}{s + 5} = \frac{\text{num }2}{\text{den }2}$$

MATLAB Program 2–1 gives C(s)/R(s) = num/den for each arrangement of $G_1(s)$ and $G_2(s)$. Note that the command

displays the num/den [that is, the transfer function C(s)/R(s)] of the system considered.

Exercice 1, cont'd

Automatic Controllers

Classifications of Industrial Controllers

Classifications of Industrial Controllers. Most industrial controllers may be classified according to their control actions as:

- 1. Two-position or on-off controllers
- 2. Proportional controllers
- 3. Integral controllers
- **4.** Proportional-plus-integral controllers
- 5. Proportional-plus-derivative controllers
- 6. Proportional-plus-integral-plus-derivative controllers

Two-Position or On-Off Control Action

Two-Position or On-Off Control Action, example

Proportional Control Action (P)

Proportional Control Action. For a controller with proportional control action, the relationship between the output of the controller u(t) and the actuating error signal e(t) is

$$u(t) = K_p e(t)$$

or, in Laplace-transformed quantities,

$$\frac{U(s)}{E(s)} = K_p$$

where K_p is termed the proportional gain.

Whatever the actual mechanism may be and whatever the form of the operating power, the proportional controller is essentially an amplifier with an adjustable gain.

Integral Control Action (I)

Integral Control Action. In a controller with integral control action, the value of the controller output u(t) is changed at a rate proportional to the actuating error signal e(t). That is,

$$\frac{du(t)}{dt} = K_i e(t)$$

or

$$u(t) = K_i \int_0^t e(t) dt$$

where K_i is an adjustable constant. The transfer function of the integral controller is

$$\frac{U(s)}{E(s)} = \frac{K_i}{s}$$

Proportional-Plus-Integral Control Action (PI)

Proportional-Plus-Integral Control Action. The control action of a proportional-plus-integral controller is defined by

$$u(t) = K_p e(t) + \frac{K_p}{T_i} \int_0^t e(t) dt$$

or the transfer function of the controller is

$$\frac{U(s)}{E(s)} = K_p \left(1 + \frac{1}{T_i s} \right)$$

where T_i is called the *integral time*.

Proportional-Plus-Derivative Control Action (PD)

Proportional-Plus-Derivative Control Action. The control action of a proportional-plus-derivative controller is defined by

$$u(t) = K_p e(t) + K_p T_d \frac{de(t)}{dt}$$

and the transfer function is

$$\frac{U(s)}{E(s)} = K_p(1 + T_d s)$$

where T_d is called the *derivative time*.

Proportional-Plus-Integral-Plus-Derivative Control Action (PID)

Proportional-Plus-Integral-Plus-Derivative Control Action. The combination of proportional control action, integral control action, and derivative control action is termed proportional-plus-integral-plus-derivative control action. It has the advantages of each of the three individual control actions. The equation of a controller with this combined action is given by

$$u(t) = K_p e(t) + \frac{K_p}{T_i} \int_0^t e(t) dt + K_p T_d \frac{de(t)}{dt}$$

or the transfer function is

$$\frac{U(s)}{E(s)} = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

where K_p is the proportional gain, T_i is the integral time, and T_d is the derivative time. The block diagram of a proportional-plus-integral-plus-derivative controller is shown in Figure 2–10.

Closed-Loop System Subjected to a Disturbance

Consider the system shown in Figure 2–11. In examining the effect of the disturbance D(s), we may assume that the reference input is zero; we may then calculate the response $C_D(s)$ to the disturbance only. This response can be found from

$$\frac{C_D(s)}{D(s)} = \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)}$$

On the other hand, in considering the response to the reference input R(s), we may assume that the disturbance is zero. Then the response $C_R(s)$ to the reference input R(s) can be obtained from

$$\frac{C_R(s)}{R(s)} = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)}$$

Closed-Loop System Subjected to a Disturbance, cont'd

The response to the simultaneous application of the reference input and disturbance can be obtained by adding the two individual responses. In other words, the response C(s) due to the simultaneous application of the reference input R(s) and disturbance D(s) is given by

$$C(s) = C_R(s) + C_D(s)$$

$$= \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)} [G_1(s)R(s) + D(s)]$$

Consider now the case where $|G_1(s)H(s)| \ge 1$ and $|G_1(s)G_2(s)H(s)| \ge 1$. In this case, the closed-loop transfer function $C_D(s)/D(s)$ becomes almost zero, and the effect of the disturbance is suppressed. This is an advantage of the closed-loop system.

Block Diagram Reduction

Modern Control Theory

- Modern control theory is multiple-input, multiple-output systems; linear or nonlinear; time invariant or time varying.
- Conventional control theory is applicable only to linear time-invariant single-input, single-output systems.
- Modern control theory is essentially time-domain approach and frequency domain approach.
- Conventional control theory is complex frequency-domain approach.

Definitions

State. The state of a dynamic system is the smallest set of variables (called *state variables*) such that knowledge of these variables at $t = t_0$, together with knowledge of the input for $t \ge t_0$, completely determines the behavior of the system for any time $t \ge t_0$.

Note that the concept of state is by no means limited to physical systems. It is applicable to biological systems, economic systems, social systems, and others.

State Variables. The state variables of a dynamic system are the variables making up the smallest set of variables that determine the state of the dynamic system. If at least n variables x_1, x_2, \ldots, x_n are needed to completely describe the behavior of a dynamic system (so that once the input is given for $t \ge t_0$ and the initial state at $t = t_0$ is specified, the future state of the system is completely determined), then such n variables are a set of state variables.

Definitions, cont'd

State Vector. If n state variables are needed to completely describe the behavior of a given system, then these n state variables can be considered the n components of a vector \mathbf{x} . Such a vector is called a *state vector*. A state vector is thus a vector that determines uniquely the system state $\mathbf{x}(t)$ for any time $t \ge t_0$, once the state at $t = t_0$ is given and the input u(t) for $t \ge t_0$ is specified.

State Space. The *n*-dimensional space whose coordinate axes consist of the x_1 axis, x_2 axis, ..., x_n axis, where $x_1, x_2, ..., x_n$ are state variables, is called a *state space*. Any state can be represented by a point in the state space.

State-Space Equations

Assume that a multiple-input, multiple-output system involves n integrators. Assume also that there are r inputs $u_1(t), u_2(t), \ldots, u_r(t)$ and m outputs $y_1(t), y_2(t), \ldots, y_m(t)$. Define n outputs of the integrators as state variables: $x_1(t), x_2(t), \ldots, x_n(t)$ Then the system may be described by

$$\dot{x}_{1}(t) = f_{1}(x_{1}, x_{2}, \dots, x_{n}; u_{1}, u_{2}, \dots, u_{r}; t)
\dot{x}_{2}(t) = f_{2}(x_{1}, x_{2}, \dots, x_{n}; u_{1}, u_{2}, \dots, u_{r}; t)
\vdots
\vdots
\vdots
(2-8)$$

$$\dot{x}_n(t) = f_n(x_1, x_2, \dots, x_n; u_1, u_2, \dots, u_r; t)$$

The outputs $y_1(t), y_2(t), \dots, y_m(t)$ of the system may be given by

$$y_1(t) = g_1(x_1, x_2, ..., x_n; u_1, u_2, ..., u_r; t)$$

$$y_2(t) = g_2(x_1, x_2, ..., x_n; u_1, u_2, ..., u_r; t)$$

(2-9)

State-Space Equations, cont'd I

$$\mathbf{x}(t) = \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix}, \quad \mathbf{f}(\mathbf{x}, \mathbf{u}, t) = \begin{bmatrix} f_{1}(x_{1}, x_{2}, \dots, x_{n}; u_{1}, u_{2}, \dots, u_{r}; t) \\ f_{2}(x_{1}, x_{2}, \dots, x_{n}; u_{1}, u_{2}, \dots, u_{r}; t) \\ \vdots \\ \vdots \\ y_{n}(t) \end{bmatrix}, \quad \mathbf{g}(\mathbf{x}, \mathbf{u}, t) = \begin{bmatrix} g_{1}(x_{1}, x_{2}, \dots, x_{n}; u_{1}, u_{2}, \dots, u_{r}; t) \\ \vdots \\ g_{2}(x_{1}, x_{2}, \dots, x_{n}; u_{1}, u_{2}, \dots, u_{r}; t) \\ \vdots \\ \vdots \\ g_{m}(x_{1}, x_{2}, \dots, x_{n}; u_{1}, u_{2}, \dots, u_{r}; t) \end{bmatrix}, \quad \mathbf{u}(t) = \begin{bmatrix} u_{1}(t) \\ u_{2}(t) \\ \vdots \\ u_{r}(t) \end{bmatrix}$$

then Equations (2-8) and (2-9) become

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}, \mathbf{u}, t) \tag{2-10}$$

$$\mathbf{y}(t) = \mathbf{g}(\mathbf{x}, \mathbf{u}, t) \tag{2-11}$$

State-Space Equations, cont'd II

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t) \tag{2-12}$$

$$\mathbf{y}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{u}(t)$$
 (2-13)

where $\mathbf{A}(t)$ is called the state matrix, $\mathbf{B}(t)$ the input matrix, $\mathbf{C}(t)$ the output matrix, and $\mathbf{D}(t)$ the direct transmission matrix. (Details of linearization of nonlinear systems about

If vector functions \mathbf{f} and \mathbf{g} do not involve time t explicitly then the system is called a time-invariant system. In this case, Equations (2–12) and (2–13) can be simplified to

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \tag{2-14}$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \tag{2-15}$$

Exercice 2

EXAMPLE 2-2

Consider the mechanical system shown in Figure 2–15. We assume that the system is linear. The external force u(t) is the input to the system, and the displacement y(t) of the mass is the output. The displacement y(t) is measured from the equilibrium position in the absence of the external force. This system is a single-input, single-output system.

From the diagram, the system equation is

$$m\ddot{y} + b\dot{y} + ky = u \tag{2-16}$$

This system is of second order. This means that the system involves two integrators. Let us define state variables $x_1(t)$ and $x_2(t)$ as

$$x_1(t) = y(t)$$

$$x_2(t) = \dot{y}(t)$$

Then we obtain

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \frac{1}{m} \left(-ky - b\dot{y} \right) + \frac{1}{m} u$$

or

$$\dot{x}_1 = x_2 \tag{2-17}$$

$$\dot{x}_2 = -\frac{k}{m}x_1 - \frac{b}{m}x_2 + \frac{1}{m}u$$

The output equation is

$$y = x_1 \tag{2-19}$$

Figure 2–15
Mechanical system.

(2-18)

Exercice 2, cont'd

In a vector-matrix form, Equations (2-17) and (2-18) can be written as

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u \tag{2-20}$$

The output equation, Equation (2-19), can be written as

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \tag{2-21}$$

Equation (2–20) is a state equation and Equation (2–21) is an output equation for the system. They are in the standard form:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$
$$y = \mathbf{C}\mathbf{x} + Du$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = 0$$

State-Space Representation of nth-Order Systems of Linear Differential Equations

$$y + a_1 y + \cdots + a_{n-1} \dot{y} + a_n y = u$$
 (2-30)

Let us define

$$x_1 = y$$

$$x_2 = \dot{y}$$

$$\vdots$$

$$x_n = y$$

Then Equation (2-30) can be written as

$$\begin{aligned}
 \dot{x}_1 &= x_2 \\
 \dot{x}_2 &= x_3 \\
 &\vdots \\
 \dot{x}_{n-1} &= x_n \\
 \dot{x}_n &= -a_n x_1 - \dots - a_1 x_n + u
 \end{aligned}$$

or

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u \tag{2-31}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

State-Space Representation of nth-Order Systems of Linear Differential Equations, cont'd

The output can be given by

$$y = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

or

$$y = \mathbf{C}\mathbf{x} \tag{2-32}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$$

State-Space Representation of nth-Order Systems of Linear Differential Equations, Forcing Function Involves Derivative Terms

$$y + a_1 y + \cdots + a_{n-1} \dot{y} + a_n y = b_0 u + b_1 u + \cdots + b_{n-1} \dot{u} + b_n u$$
 (2-33)

One way to obtain a state equation and output equation for this case is to define the following n variables as a set of n state variables:

$$x_{1} = y - \beta_{0}u$$

$$x_{2} = \dot{y} - \beta_{0}\dot{u} - \beta_{1}u = \dot{x}_{1} - \beta_{1}u$$

$$x_{3} = \ddot{y} - \beta_{0}\ddot{u} - \beta_{1}\dot{u} - \beta_{2}u = \dot{x}_{2} - \beta_{2}u$$

$$\vdots$$

$$\vdots$$

$$x_{n} = \overset{(n-1)}{y} - \overset{(n-1)}{\beta_{0}u} - \overset{(n-2)}{\beta_{1}u} - \dots - \beta_{n-2}\dot{u} - \beta_{n-1}u = \dot{x}_{n-1} - \beta_{n-1}u$$

$$(2-34)$$

where $\beta_0, \beta_1, \beta_2, \dots, \beta_{n-1}$ are determined from

$$\beta_{0} = b_{0}
\beta_{1} = b_{1} - a_{1}\beta_{0}
\beta_{2} = b_{2} - a_{1}\beta_{1} - a_{2}\beta_{0}
\beta_{3} = b_{3} - a_{1}\beta_{2} - a_{2}\beta_{1} - a_{3}\beta_{0}
\vdots
\vdots
\beta_{n-1} = b_{n-1} - a_{1}\beta_{n-2} - \dots - a_{n-2}\beta_{1} - a_{n-1}\beta_{0}$$
(2-35)

State-Space Representation of nth-Order Systems of Linear Differential Equations, Forcing Function Involves Derivative Terms, cont'd I

$$\dot{x}_{1} = x_{2} + \beta_{1}u
\dot{x}_{2} = x_{3} + \beta_{2}u
\cdot
\cdot
\dot{x}_{n-1} = x_{n} + \beta_{n-1}u
\dot{x}_{n} = -a_{n}x_{1} - a_{n-1}x_{2} - \dots - a_{1}x_{n} + \beta_{n}u$$
(2-36)

where β_n is given by

$$\beta_n = b_n - a_1 \beta_{n-1} - \dots - a_{n-1} \beta_1 - a_{n-1} \beta_0$$

Equation (2-36) and the output equation can be written as

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_{n-1} \\ x_{n-1} \end{bmatrix} + \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{n-1} \\ \beta_{n-1} \\ \beta_{n-1} \\ \beta_{n-1} \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} + \beta_0 u$$

State-Space Representation of nth-Order Systems of Linear Differential Equations, Forcing Function Involves Derivative Terms, cont'd II

or

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u \tag{2-37}$$

$$y = \mathbf{C}\mathbf{x} + Du \tag{2-38}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{n-1} \\ \beta_n \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}, \quad D = \beta_0 = b_0$$

Transformation from State Space Representation to Transfer Function

Transformation from State Space Representation to Transfer Function. To obtain the transfer function from state-space equations, use the following command:

$$[num,den] = ss2tf(A,B,C,D,iu)$$

iu must be specified for systems with more than one input. For example, if the system has three inputs (u1, u2, u3), then iu must be either 1, 2, or 3, where 1 implies u1, 2 implies u2, and 3 implies u3.

If the system has only one input, then either

$$[num,den] = ss2tf(A,B,C,D)$$

Exercice 3

MATLAB Program 2-2

```
num = [1 0];
den = [1 14 56 160];
[A,B,C,D] = tf2ss(num,den)
A =
  -14 -56 -160
              0
B =
C =
    0
D =
    0
```

EXAMPLE 2-4 Obtain the transfer function of the system defined by the following state-space equations:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & -25 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 25 \\ -120 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

MATLAB Program 2-3 will produce the transfer function for the given system. The transfer function obtained is given by

$$\frac{Y(s)}{U(s)} = \frac{25s + 5}{s^3 + 5s^2 + 25s + 5}$$

MATLAB Program 2-3

 $A = [0 \quad 1 \quad 0; \quad 0 \quad 0 \quad 1; \quad -5 \quad -25 \quad -5];$

B = [0; 25; -120]; $C = [1 \ 0 \ 0];$

D = [0]:

[num,den] = ss2tf(A,B,C,D)

num =

0 0.0000 25.0000 5.0000

den

1.0000 5.0000 25.0000 5.0000

% ***** The same result can be obtained by entering the following command: *****

[num,den] = ss2tf(A,B,C,D,1)

num =

0 0.0000 25.0000 5.0000

den =

1.0000 5.0000 25.0000 5.0000

Exercice 5

A-2-7. Obtain a state-space equation and output equation for the system defined by

$$\frac{Y(s)}{U(s)} = \frac{2s^3 + s^2 + s + 2}{s^3 + 4s^2 + 5s + 2}$$

Solution. From the given transfer function, the differential equation for the system is

$$\ddot{v} + 4\ddot{v} + 5\dot{v} + 2v = 2\ddot{u} + \dot{u} + \dot{u} + 2u$$

Comparing this equation with the standard equation given by Equation (2–33), rewritten

$$\ddot{y} + a_1 \ddot{y} + a_2 \dot{y} + a_3 y = b_0 \ddot{u} + b_1 \ddot{u} + b_2 \dot{u} + b_3 u$$

Exercice 6

A-2-8. Obtain a state-space model of the system shown in Figure 2–26.

Solution. The system involves one integrator and two delayed integrators. The output of each integrator or delayed integrator can be a state variable. Let us define the output of the plant as x_1 , the output of the controller as x_2 , and the output of the sensor as x_3 . Then we obtain

$$\frac{X_1(s)}{X_2(s)} = \frac{10}{s+5}$$

$$\frac{X_2(s)}{U(s) - X_3(s)} = \frac{1}{s}$$

$$\frac{X_3(s)}{X_1(s)} = \frac{1}{s+1}$$

$$Y(s) = X_1(s)$$

$$U(s)$$

$$\frac{1}{s}$$

$$Controller$$
Plant
$$\frac{1}{s+1}$$
Sensor

Exercice 7, 8, and 9

B–2–8. Obtain a state-space representation of the system shown in Figure 2–35.

Figure 2–35 Control system.

B-2-9. Consider the system described by

$$\ddot{y} + 3\ddot{y} + 2\dot{y} = u$$

Derive a state-space representation of the system.

B-2-10. Consider the system described by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -4 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Obtain the transfer function of the system.

Bibliography

 Ogata, Katsuhiko. Modern Control Engineering. Fifth Edition. Prentice Hall. 2009. Chapter 2.