Problem 1: Homography estimation

1. Screenshots:

- Sample k correspondences (k = 4, 8, 20 or even more)
 - o **1-0 vs 1-1**

o **1-0 vs 1-2**

2. Compare the errors:

• I manually removed outliers which k<=20, so if you sample more than 20 correspondences by my command, the error will grow up explosively.

• 1 vs 1-1.png

	1.py (DLT)	1-2.py (Normalized DLT)
Rate = 0.09 / samples = 4	7.596717625272696	7.5967176224015445 better
Rate = 0.1 / samples = 8	0.9872960692534865	0.9716819371453361 better
Rate = 0.1275 / samples = 20	0.45807307899389643	0.44363343301583236 better

• 1 vs 1-2.png

	1.py (DLT)	1-2.py (Normalized DLT)
Rate = 0.09 / samples = 4	16.53022048005333 better	16.530220481168996
Rate = 0.1 / samples = 8	119.35659869293345	7.8415230227354575 better
Rate = 0.1275 / samples = 20	1.4056141163471134 better	2.451722890351554

3. (Bonus)

- My method
- Screenshot: correspondences of other local features
- Experimental comparisons

4. Discussion

- The Normalized Method generally have better result, and the more feature points we choose the situation is more obvious.
- I found that the second comparation for 1-0 vs 1-2.png, the sift method can't find the accurate and same amount points as 1-0 vs 1-1.png, so when we choose too much point (larger than 20) the error will become bigger.
- However I was really confuse on the result of normal DLT / sample 8 points, I couldn't understand why it had such explosive error.

Problem 2: Document rectification

1. The input document image and Rectified results

2-0.jpg

2-1.jpg

2. Briefly explanation of method

- 1. I selected the corner by TA's mouse click function, select points order by Left-Up, Right-Up, Left-Down, Right-Down. (If you don't choose by this order the output rectified result image would have problem).
- 2. Then calculated the Homograph matrix and its inverse matrix which be used when doing the back warping by origin image.
- 3. And I use a map to memorize the coordinates from news to origins.
- 4. Finally, I did the warping with bilinear interpolation, which time efficiency is O(cols*rows) because it need to calculate for every pixel on new image and save it as 2-1.jpg.

Misc.

- Python Environment: 3.6.13
- Package: OpenCV, Numpy, skimage, shapely, math
- Q1 (DLT):
 - o python 1.py [image path1] [image path2] [correspondence file path] [sample point number (4/8/20)]
- Q1-2 (Normalize DLT):
 - python 1-2.py [image path1] [image path2] [correspondence file path] [sample point number (4/8/20)]
 - e.g. python 1-2.py images/1-0.png images/1-2.png groundtruth_correspondences/correspondence_02.npy 4
- Q2:
 - o python 2.py images/2-0.jpg