```
In [1]: import os
    import pandas as pd
    import sklearn
    import numpy as np
    import eli5
    import matplotlib.pyplot as plt
    import matplotlib.gridspec as gridspec
    import lime.lime_tabular
    import itertools
    from sklearn import model_selection
```

Using TensorFlow backend.

```
In [2]: from sklearn import datasets
   wine_data = datasets.load_wine()
   df_wine = pd.DataFrame(wine_data.data,columns=wine_data.feature_names)
   df_wine['target'] = pd.Series(wine_data.target)
```

```
In [3]: from sklearn.model_selection import train_test_split
    X = df_wine.drop(['target'], axis=1)
    y = df_wine['target']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

In [4]: print(X)

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	\
0	14.23	1.71	2.43	15.6	127.0	2.80	
1	13.20	1.78	2.14	11.2	100.0	2.65	
2	13.16	2.36	2.67	18.6	101.0	2.80	
3	14.37	1.95	2.50	16.8	113.0	3.85	
4	13.24	2.59	2.87	21.0	118.0	2.80	
5	14.20	1.76	2.45	15.2	112.0	3.27	
6	14.39	1.87	2.45	14.6	96.0	2.50	
7	14.06	2.15	2.61	17.6	121.0	2.60	
8	14.83	1.64	2.17	14.0	97.0	2.80	
9	13.86	1.35	2.27	16.0	98.0	2.98	
10	14.10	2.16	2.30	18.0	105.0	2.95	
11	14.12	1.48	2.32	16.8	95.0	2.20	
12	13.75	1.73	2.41	16.0	89.0	2.60	
13	14.75	1.73	2.39	11.4	91.0	3.10	
14	14.38	1.87	2.38	12.0	102.0	3.30	
15	13.63	1.81	2.70	17.2	112.0	2.85	
16	14.30	1.92	2.72	20.0	120.0	2.80	
17	13.83	1.57	2.62	20.0	115.0	2.95	
18	14.19	1.59	2.48	16.5	108.0	3.30	
19	13.64	3.10	2.56	15.2	116.0	2.70	
20	14.06	1.63	2.28	16.0	126.0	3.00	
21	12.93	3.80	2.65	18.6	102.0	2.41	
22	13.71	1.86	2.36	16.6	101.0	2.61	
23	12.85	1.60	2.52	17.8	95.0	2.48	
24	13.50	1.81	2.61	20.0	96.0	2.53	
25	13.05	2.05	3.22	25.0	124.0	2.63	
26	13.39	1.77	2.62	16.1	93.0	2.85	
27	13.30	1.72	2.14	17.0	94.0	2.40	
28	13.87	1.90	2.80	19.4	107.0	2.95	
29	14.02	1.68	2.21	16.0	96.0	2.65	
						• • •	
148	13.32	3.24	2.38	21.5	92.0	1.93	
149	13.08	3.90	2.36	21.5	113.0	1.41	
150	13.50	3.12	2.62	24.0	123.0	1.40	
151	12.79	2.67	2.48	22.0	112.0	1.48	
152	13.11	1.90	2.75	25.5	116.0	2.20	
153	13.23	3.30	2.28	18.5	98.0	1.80	
154	12.58	1.29	2.10	20.0	103.0	1.48	
155	13.17	5.19	2.32	22.0	93.0	1.74	
156	13.84	4.12	2.38	19.5	89.0	1.80	
157	12.45	3.03	2.64	27.0	97.0	1.90	
158	14.34	1.68	2.70	25.0	98.0	2.80	
159	13.48	1.67	2.64	22.5	89.0	2.60	
160	12.36	3.83	2.38	21.0	88.0	2.30	
161	13.69	3.26	2.54	20.0	107.0	1.83	
162	12.85	3.27	2.58	22.0	106.0	1.65	
163	12.96	3.45	2.35	18.5	106.0	1.39	
164	13.78	2.76	2.30	22.0	90.0	1.35	
165	13.73	4.36	2.26	22.5	88.0	1.28	
166	13.45	3.70	2.60	23.0	111.0	1.70	
167	12.82	3.37	2.30	19.5	88.0	1.48	
-					· -		

168	13.58	2.58	2.69	24.5	105.0	1	55
169	13.40		2.86	25.0	112.0		.98
170	12.20		2.32	19.0	96.0		.25
171	12.77		2.28	19.5	86.0		.39
172	14.16		2.48	20.0	91.0		.68
173	13.71		2.45	20.5	95.0		.68
174	13.40		2.48	23.0	102.0		.80
175	13.27		2.26	20.0	120.0		.59
176	13.17		2.37	20.0	120.0		.65
177	14.13		2.74	24.5	96.0		.05
_,,	11113		2.,,	2113	30.0	_	
	flavanoids	nonflavan	noid_phenols	proanthocya	nins color	_intensity	hue \
0	3.06		0.28		2.29	5.640000	1.04
1	2.76		0.26	:	1.28	4.380000	1.05
2	3.24		0.30		2.81	5.680000	1.03
3	3.49		0.24		2.18	7.800000	0.86
4	2.69		0.39		1.82	4.320000	1.04
5	3.39		0.34		1.97	6.750000	1.05
6	2.52		0.30		1.98	5.250000	1.02
7	2.51		0.31		1.25	5.050000	1.06
8	2.98		0.29		1.98	5.200000	1.08
9	3.15		0.22		1.85	7.220000	1.01
10	3.32		0.22		2.38	5.750000	1.25
11	2.43		0.26		1.57	5.000000	1.17
12	2.76		0.29		1.81	5.600000	1.15
13	3.69		0.43		2.81	5.400000	1.25
14	3.64		0.29		2.96	7.500000	1.20
15	2.91		0.30		1.46	7.300000	1.28
16	3.14		0.33		1.40	6.200000	1.28
17	3.40		0.40		1.72	6.600000	1.13
18			0.32		1.86		
	3.93					8.700000	1.23
19	3.03		0.17		1.66	5.100000	0.96
20	3.17		0.24		2.10	5.650000	1.09
21	2.41		0.25		1.98	4.500000	1.03
22	2.88		0.27		1.69	3.800000	1.11
23	2.37		0.26		1.46	3.930000	1.09
24	2.61		0.28		1.66	3.520000	1.12
25	2.68		0.47		1.92	3.580000	1.13
26	2.94		0.34		1.45	4.800000	
27	2.19		0.27		1.35	3.950000	1.02
28	2.97		0.37		1.76	4.500000	1.25
29	2.33		0.26	:	1.98	4.700000	1.04
140	0.76		0.45		1 25		
148	0.76		0.45		1.25	8.420000	0.55
149	1.39		0.34		1.14	9.400000	0.57
150	1.57		0.22		1.25	8.600000	0.59
151	1.36		0.24		1.26	10.800000	0.48
152	1.28		0.26		1.56	7.100000	0.61
153	0.83		0.61		1.87	10.520000	0.56
154	0.58		0.53		1.40	7.600000	0.58
155	0.63		0.61		1.55	7.900000	0.60
156	0.83		0.48		1.56	9.010000	0.57
157	0.58		0.63	:	1.14	7.500000	0.67

158	1.31	0.53	2.70	13.000000	0.57
159	1.10	0.52	2.29	11.750000	0.57
160	0.92	0.50	1.04	7.650000	0.56
161	0.56	0.50	0.80	5.880000	0.96
162	0.60	0.60	0.96	5.580000	0.87
163	0.70	0.40	0.94	5.280000	0.68
164	0.68	0.41	1.03	9.580000	0.70
165	0.47	0.52	1.15	6.620000	0.78
166	0.92	0.43	1.46	10.680000	0.85
167	0.66	0.40	0.97	10.260000	0.72
168	0.84	0.39	1.54	8.660000	0.74
169	0.96	0.27	1.11	8.500000	0.67
170	0.49	0.40	0.73	5.500000	0.66
171	0.51	0.48	0.64	9.899999	0.57
172	0.70	0.44	1.24	9.700000	0.62
173	0.61	0.52	1.06	7.700000	0.64
174	0.75	0.43	1.41	7.300000	0.70
175	0.69	0.43	1.35	10.200000	0.59
176	0.68	0.53	1.46	9.300000	0.60
177	0.76	0.56	1.35	9.200000	0.61

	od280/od315 of diluted wines	nnolino
0	3.92	1065.0
1	3.40	1050.0
2 3	3.17 3.45	1185.0 1480.0
3 4		
5	2.93 2.85	735.0
		1450.0
6 7	3.58	1290.0
8	3.58	1295.0
	2.85	1045.0
9	3.55	1045.0
10	3.17	1510.0
11	2.82	1280.0
12	2.90	1320.0
13	2.73	1150.0
14	3.00	1547.0
15	2.88	1310.0
16	2.65	1280.0
17	2.57	1130.0
18	2.82	1680.0
19	3.36	845.0
20	3.71	780.0
21	3.52	770.0
22	4.00	1035.0
23	3.63	1015.0
24	3.82	845.0
25	3.20	830.0
26	3.22	1195.0
27	2.77	1285.0
28	3.40	915.0
29	3.59	1035.0
• •	•••	• • •

148	1.62	650.0
149	1.33	550.0
150	1.30	500.0
151	1.47	480.0
152	1.33	425.0
153	1.51	675.0
154	1.55	640.0
155	1.48	725.0
156	1.64	480.0
157	1.73	880.0
158	1.96	660.0
159	1.78	620.0
160	1.58	520.0
161	1.82	680.0
162	2.11	570.0
163	1.75	675.0
164	1.68	615.0
165	1.75	520.0
166	1.56	695.0
167	1.75	685.0
168	1.80	750.0
169	1.92	630.0
170	1.83	510.0
171	1.63	470.0
172	1.71	660.0
173	1.74	740.0
174	1.56	750.0
175	1.56	835.0
176	1.62	840.0
177	1.60	560.0

[178 rows x 13 columns]

In [5]: print(y)

In [6]: from yellowbrick.features import Rank2D
 visualizer = Rank2D(algorithm="pearson", size=(1080, 720))
 visualizer.fit_transform(X_train)
 visualizer.poof()

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x4ec21b8240>

In [7]: from yellowbrick.classifier import ClassificationReport
 from sklearn.ensemble import RandomForestClassifier
 model = RandomForestClassifier()
 visualizer = ClassificationReport(model, size=(720, 480))
 visualizer.fit(X_train, y_train)
 visualizer.score(X_test, y_test)
 visualizer.poof()

C:\Users\nilesh\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:245: FutureWarning: The default value of n_estimators wil change from 10 in version 0.20 to 100 in 0.22.

"10 in version 0.20 to 100 in 0.22.", FutureWarning)

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x4ec34bea58>

```
In [8]: import eli5
eli5.show_weights(model, feature_names = X.columns.tolist())
```

```
Out[8]:
                     Weight
                               Feature
            0.1843 ± 0.3464
                               proline
            0.1586 \pm 0.3622
                               alcohol
            0.1436 \pm 0.3373
                               flavanoids
            0.1007 ± 0.2941
                               color_intensity
            0.0843 \pm 0.1962
                               hue
            0.0747 \pm 0.2275
                               od280/od315_of_diluted_wines
            0.0659 \pm 0.1980
                               alcalinity_of_ash
            0.0460 \pm 0.1379
                               total_phenols
            0.0337 \pm 0.1598
                               nonflavanoid_phenols
            0.0334 \pm 0.1417
                               magnesium
            0.0305 \pm 0.1326
                               malic_acid
            0.0257 \pm 0.0745
                               proanthocyanins
            0.0187 \pm 0.0491
                               ash
```

Out[9]:

y=0 (probability 0.900) top features			y=1	y=1 (probability 0.000) top features			y=2 (probability 0.100) top features		
Contribution?	Feature	Value	Contribution?	Feature	Value	Contribution?	Feature	Val	
+0.335	<bias></bias>	1.000	+0.398	<bias></bias>	1.000	+0.267	<bias></bias>	1.0	
+0.220	proline	845.000	+0.031	alcalinity_of_ash	20.000	+0.052	alcalinity_of_ash	20.0	
+0.149	alcohol	13.500	+0.012	color_intensity	3.520	+0.025	alcohol	13.5	
+0.095	flavanoids	2.610	+0.012	od280/od315_of_diluted_wines	3.820	-0.000	magnesium	96.0	
+0.058	ash	2.610	+0.009	malic_acid	1.810	-0.021	malic_acid	1.8	
+0.030	hue	1.120	+0.007	total_phenols	2.530	-0.023	total_phenols	2.5	
+0.029	magnesium	96.000	+0.003	hue	1.120	-0.027	od280/od315_of_diluted_wines	3.8	
+0.019	color_intensity	3.520	-0.004	proanthocyanins	1.660	-0.032	color_intensity	3.5	
+0.016	total_phenols	2.530	-0.029	flavanoids	2.610	-0.033	hue	1.1	
+0.015	od280/od315_of_diluted_wines	3.820	-0.029	magnesium	96.000	-0.041	proline	845.0	
+0.012	malic_acid	1.810	-0.058	ash	2.610	-0.066	flavanoids	2.6	
+0.004	proanthocyanins	1.660	-0.173	alcohol	13.500				
-0.083	alcalinity_of_ash	20.000	-0.179	proline	845.000				

```
In [10]: import lime.lime_tabular
```

```
In [12]: predict_fn = lambda x: model.predict_proba(x).astype(float)
```



```
In [24]: clf1 = LogisticRegression(random state=1)
         clf2 = RandomForestClassifier(random state=1)
         clf3 = GaussianNB()
         eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[1,1,1])
         value=1.5
         width=1.5
         gs = gridspec.GridSpec(2,2)
         fig = plt.figure(figsize=(12,10))
         labels = ['LOGISTIC REGRESSION', 'RANDOM FOREST', 'NAIVE BAYES', 'ENSEMBLES']
         for clf, lab, grd in zip([clf1, clf2, clf3, eclf],
                                  labels,
                                  itertools.product([0, 1], repeat=2)):
             clf.fit(X_train, y_train)
             ax = plt.subplot(gs[grd[0], grd[1]])
             fig = plot_decision_regions(X=X_train, y=y_train, clf=clf)
             plt.title(lab)
```

C:\Users\nilesh\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

FutureWarning)

C:\Users\nilesh\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.

"this warning.", FutureWarning)

C:\Users\nilesh\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:245: FutureWarning: The default value of n_estimators wil change from 10 in version 0.20 to 100 in 0.22.

"10 in version 0.20 to 100 in 0.22.", FutureWarning)

C:\Users\nilesh\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

FutureWarning)

C:\Users\nilesh\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.

"this warning.", FutureWarning)

