Juni - 2015

Exercise (Opgave 1).

Vi betragter to koncentriske metalkugleskaller i vakuum, som vist på figuren. Den indre skal ($a_1 < r < a_2$) bærer en ladning Q_1 og den ydre skal bærer en ladning Q_2 . Vi antager at den dielektriske konstant K er lig 1 overalt, hvor der ikke er metal.

Subexercise (a).

Bestem størrelse og retning af det elektriske felt i områderne $r < a_1$, $a_1 < r < a_2$, $a_2 < r < b_1$, $b_1 < r < b_2$ og $r > b_2$

Solution:

 $r < a_1$: Indenfor for skallerne er det elektriske felt altid 0.

 $a_1 < r < a_2$: Det elektriske felt er altid 0 inde i en konduktor.

 $a_2 < r < b_1$: Udenfor skallen, kan denne betragtes som en punktladning centreret i origo med ladning Q_1 . Det elektriske bliver således,

$$\vec{\mathbf{E}}(r) = \frac{1}{4\pi\epsilon_0} \frac{Q_1}{r^2} \hat{r}.$$

 $b_1 < r < b_2$: Det elektriske felt er altid 0 inde i en konduktor.

 $r > b_2$: Nu påvirker begge skaller det elektriske felt. Så det elektriske felt bliver,

$$\vec{\mathbf{E}}(r) = \frac{1}{4\pi\epsilon_0} \frac{Q_1 + Q_2}{r^2} \hat{r}.$$

Subexercise (b).

Bestem overfladeladningstæthederne på de fire overflader.

Solution: Hvis jeg ligger en gauss-sfære med overflade i midten af den inderste skal, skal den totale indeholdne ladning være 0. Dette medfører at,

$$\sigma_{a_1}=0$$
.

Den resterende ladning Q_1 må derfor sidde på den ydre side. Dermed,

$$\sigma_{a_2} = \frac{Q_1}{4\pi a_2^2}.$$

Hvis jeg nu lægger min gauss-sfære så dennes overflade ligger i midten af den ydre skal, må der igen gælde at den totale indeholdne ladning er 0. Der skal derfor ligge $-Q_1$ på den indre side.

$$\sigma_{b_1} = \frac{-Q_1}{4\pi b_1^2}.$$

Den resterende ladning $Q_2 - (-Q_1) = Q_2 + Q_1$ må derfor ligge på den ydre side.

$$\sigma_{b_2} = \frac{Q_2 + Q_1}{4\pi b_2^2}.$$

Exercise (Opgave 2).

Vi betragter to koaksiale cylinderer som vist ooå figuren. Der løber konstante positive strøne l_1 og l_2 i områderne 0 < r < a og b < r < c, henholdsvis. Der er vakuum i områderne a < r < b og r > c, og den relative magnetiske permittivitet K_m er lig 1 overalt. Strømtætheden er givet som,

$$J(r) = \begin{cases} -\alpha r & (0 < r < a) \\ 0 & (a < r < b) \\ \alpha r & (b < r < c) \\ 0 & (r > c) \end{cases}.$$

Hvor α er en positiv konstant.

Subexercise (a).

Bestem l_1 og l_2 udtrykt ved konstant α og dimensionerne a, b og c.

Solution: Jeg betragter infinitesimale cirkelstykke, da jeg ved at strømtætheden gennem disse er konstant. Jeg beregner gennem et vilkårligt element og integrerer. Strømmen gennem et cirkelstykke i en afstand r er lig,

$$dI(r) = J(r) 2\pi r \mathbf{d}r.$$

Nu beregner jeg I_1 ved at integrer over $0 \rightarrow a$.

$$I_1 = \int_0^a \mathbf{d}I = -\alpha 2\pi \int_0^a r^2 \, \mathbf{d}r = -\alpha 2\pi \frac{1}{3}a^3 = -\alpha \pi \frac{2}{3}a^3.$$

Jeg beregner I_2 ved at integrerer over $b \rightarrow c$.

$$I_2 = \alpha 2\pi \int_b^c r^2 \, \mathbf{d}r = \alpha \pi \frac{2}{3} \left(c^3 - b^3 \right).$$

Subexercise (b).

Bestem størrelse og retning af det magnetiske felt i områderne 0 < r < a, a < r < b, b < r < c og r > c. Hvordan skal dimensioner a, b og c vælges så det magnetiske felt er nul udenfor kablet?

Solution: Det magnetiske felt udenfor en leder er givet på følgende måde,

$$B = \frac{\mu_0 I}{2\pi r}.$$

Retningen er $\vec{\bf l} \times \hat{r} = \frac{\vec{\sf B}}{\|B\|}$. Jeg skal altså blot bestemme størrelsen på strømmen i de gældende områder.

0 < r < a I denne region er mængden af strøm,

$$I\left(-\alpha\pi\frac{2}{3}r^3\right).$$

Magnetfeltet bliver da,

$$B = \frac{-\mu_0 \alpha}{3} r^2.$$

a < r < b I denne region er strømmen uafhængig af r. Magnetfeltets størrelse bliver,

$$B = \frac{-\mu_0 \alpha}{3} \frac{a^3}{r}.$$

b < r < c I denne region skal jeg både tage højde for strømmen igennem den inderste cylinder og den igennem den yderste cylinder. Strømmen igennem den yderste er,

$$\alpha\pi^{\frac{2}{3}}\left(r^3-b^3\right).$$

Den totale er dermed,

$$I_{tot} = \alpha \pi \frac{2}{3} (r^3 - b^3) - \alpha \pi \frac{2}{3} a^3 = \alpha \pi \frac{2}{3} (r^3 - b^3 - a^3).$$

B-feltet er dermed,

$$B = \frac{\mu_0 \alpha}{3} \frac{\left(r^3 - b^3 - a^3\right)}{r}.$$

r > c Her er *B*-feltet,

$$B = \frac{\mu_0 \alpha}{3} \frac{\left(c^3 - b^3 - a^3\right)}{r}.$$

Hvis B-feltet skal være 0, må der gælde at,

$$c^3 - b^3 - a^3 = 0.$$

Exercise (Opgave 3).

To punktladninger i vakuum, hver med en negativ ladning -Q, er stationære på y-aksen ved $y=\pm a$. En tredje punktladning med positiv ladning q og masse m, som til tiden t=0 befinder sig i hvile på x-aksen ved x=-5a, er tiltrukket af de to faste ladninger. Der ses bort fra de andre kræfter.

Subexercise (a).

Hvad er den tredje partikels hastighed, når den passerer origo?

Solution: Jeg beregner den tredje partikels elektriske potentiale i dens nuværende position og ved origo. Energiforskellen vil blive omdannet til kinetisk energi. I startpositionen har partikel *q* potentialet.

$$U_0 = \frac{q}{4\pi\epsilon_0} \left(\frac{-2Q}{\sqrt{25a^2 + a^2}} \right) = \frac{q}{4\pi\epsilon_0} \left(\frac{-2Q}{\sqrt{26}a} \right).$$

I slutpositionen har den potentialet,

$$U_1 = \frac{q}{4\pi\epsilon_0} \left(\frac{-2Q}{a}\right).$$

Forskellen mellem disse størrelser, vil være tilvæksten i kinetisk energi.

$$\Delta U = -\Delta K.$$

Denne beregnes,

$$\Delta U = U_1 - U_0 = \frac{q}{4\pi\epsilon_0}(-2Q)\left(\frac{\sqrt{26}-1}{\sqrt{26}a}\right).$$

Da partiklen var i hvile inden må der også gælde at,

$$\Delta K = \frac{1}{2}mv^2.$$

Jeg sætter det lig hinanden og isolerer på v.

$$\frac{1}{2}mv^2 = \frac{qQ}{2\pi\epsilon_0 a} \left(1 - \frac{1}{\sqrt{26}}\right)$$
$$v = \sqrt{\frac{qQ}{\pi\epsilon_0 am} \left(1 - \frac{1}{\sqrt{26}}\right)}$$

Exercise (Opgave 4).

Vi betragter to uendelige, stationære ledninger, som vist pa Figur 4. Ledning 1 er parallel med x-aksen og krydser (yz)-planen i punktet (0, a, a). Ledning 2 er parallel med z-aksen og krydser (xy)-planen i punktet (a, a, 0)

En konstant strøm I løber i ledning 1 i den negative x-retning og i ledning 2 i den positive z-retning.

Subexercise (a).

Vis at det magnetiske felt i origo kan skrives som $\vec{\mathbf{B}}_O = \beta I \left(\hat{i} - \hat{k}\right)$, hvor \hat{i} og \hat{k} er x- og z-aksers enhedsvektorer og angiv konstanten β .

Solution: Magnetfeltet fra den der er parallel med z-aksen har en x-komponent og y-komponent. På vektorform ser den ud på følgende måde.

$$B_1 = \frac{mu_0I}{4\pi a} \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}.$$

Jeg har gjort brug af at størrelsen af magnetfeltet er $\mu_0 I/2\sqrt{2}\pi$, og at splittes op med $\sqrt{2}$. Magnetfeltet fra den anden er.

$$B_1 = \frac{mu_0I}{4\pi a} \begin{pmatrix} 0\\1\\-1 \end{pmatrix}.$$

. Summen af disse er det resulterende magnetfelt

$$\vec{\mathbf{B}}_{res} = \frac{mu_0 I}{4\pi a} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} = \frac{\mu_0 I}{4\pi a} \left(\hat{i} - \hat{k}\right).$$

Subexercise (b).

En lille cirkulær strømkreds med areal A ligger i origo i (xy)-planen. Vi antager, at det magnetiske felt $\vec{\mathbf{B}}_O = \beta I \left(\hat{i} - \hat{k}\right)$ er uniformt over hele strømkredsens udstrækning, da denne er meget lille. for t>0 reduceres strømmen i de to ledninger til $I(t)=I_0e^{-\alpha t}$, hvor I_0 og α er positive konstanter. Strømkredsens modstand er R.

Solution: Jeg behøver kun at betragte den del af magnetfeltet der er vinkelret på strømkredsen. Dette er netop,

$$B = \beta I(t)(-\hat{k}).$$

Fluxen gennem strømkredsen bliver så,

$$\Phi_B = -\beta I(t) A.$$

Nu skal jeg differentierer dette udtryk mht. t.

$$\frac{\mathbf{d}\Phi_B}{\mathbf{d}t} = \alpha\beta I_0 e^{-\alpha t} A.$$

Den inducerede strøm er dermed,

$$I'(t) = \frac{\alpha\beta I_0 e^{-\alpha t} A}{R}.$$

Denne strøm er med uret.

\\ ____

Subexercise (c).

Bestem det magnetiske kraftmoment udøvet af *B*-feltet på strømkredsen og beregn strømkredsens magnetiske potentielle energi.

Solution: Jeg starter med at beregne kraftmomentet, jeg bruger at det magnetiske dipolmoment er givet som,

$$\vec{\mu} = I'(t) A\hat{k}$$
.

$$\tau = \vec{\mu} \times \vec{\mathbf{B}}$$

$$= (I'(t) A\hat{k}) \times (\beta I(t) (\hat{i} - \hat{k}))$$

$$= I'(t) A\hat{k} \times \beta I(t) \hat{i}$$

$$= I'(t) I(t) A\beta \hat{j}$$

Til at bestemme den potentielle energi bruger jeg,

$$U = -\mu \cdot \vec{\mathbf{B}}$$
.

Exercise (Opgave 5).

Vi betragter kredsløbet vist på Figur 5, som består af en ideel emf kilde \mathcal{E} , to modstande, en ideel spole og tre kapacitorer.

Figure 1: Opgave5

Subexercise (a).

Reducer kredsløbet til et ækvivalent RLC-kredsløb. Tegn dette og angiv $R_e q$ og $C_e q$.

Solution: Jeg starter med at beregne de to størrelser,

$$R_e q = \left(\frac{1}{R} + \frac{1}{R}\right)^{-1} = \frac{R}{2}.$$

og kapacitansen er,

$$C_e q = \left(\frac{1}{2C} + 1C\right)^{-1} = \frac{2}{3}C.$$

<u>;;;</u>

Subexercise (b).

Kontakten sluttes ved tiden t=0. Strømmene i_1 og i_2 løber igennem kredsløbet som indikeret på figuren

Bestem i_1 og i_2 til tiden t=0, lige efter kontakten sluttes. Når $t\to\infty$ bliver strømmene i_1 og i_2 konstante. Bestem deres værdier.

Solution: Til tiden t=0 løber der ingen strøm igennem induktoren, da denne opfører sig som en resistor med uendelig resistans. Kapacitorerne opfører sig derimod som almindelig ledning. Strømmen i_2 er dermed blot lig den totale strøm i kredsløbet.

$$i_2 = \frac{\mathcal{E}}{R_{eq}}.$$

til tiden $t=\infty$ er situationen omvendt, induktoren er ledning og kapacitoren har uendelig resistans.

$$i_1 = \frac{\mathcal{E}}{R_{ea}}.$$

Exercise (Opgave 6).

En kapacitor bestar af to parallelle plader. Pladernes udstrækning er langt større end deres indbyrdes afstand. Pladerne befinder sig i vakuum og kan bevæge sig uden friktion langs x-aksen. De er forbundet til to ledende fjedre, se Figur 6. Punkterne a og b er stationære. Vi antager at Hookes lov gælder for fjedrene, og at de har samme fjederkonstant k. I udgangssituatio- nen er fjedrene i hvile, afstanden mellem pladerne er d og kapacitoren, med kapacitans C, er afladt. Pa et tidspunkt forbindes kapacitoren til en ideel emf kilde med elektromotorisk kraft $\mathcal E$ ved at slutte kontakten. Nar systemet senere er faldet til ro med kapacitoren opladt, er afstanden mellem pladerne halveret.

Subexercise (a).

Angiv kapacitorens kapacitans nar systemet er faldet til ro, udtrykt ved kapacitorens oprindelige kapacitans \mathcal{C} . Hvad er pladernes ladning i denne situation?

Solution: