ECAL RESOLUTION STUDIES AND UPDATE

Jason Barkeloo J. Brau, A. Steinhebel, E. Meyer, J. Carlson University of Oregon

ALCW 2018 June 1, 2018

OUTLINE

- KPiX
- Reminder of What Has Been Done
 - Where I started on the project
 - Test Beam Simulation and Comparison to KPiX data
 - How we start applying these to the full detector model
- Current Geometry Studies
 - Effects on Resolution
- Beginning to Look at Simulated Events

- SiD has been designed to use Particle Flow Calorimetry to measure all final states with precision
- We expect excellent jet energy resolution
 - Measure charged momenta with tracker, neutral energies with calorimeters
 - Requires very fine segmentation
- An "Imaging ECAL" is a crucial part of the design
 - Silicon-Tungsten based calorimeter is being developed for a high granularity ECAL
 - KPiX ASIC for readout of silicon pixels

KPIX

- 6 inch wafers
- 1024 13mm² pixels
- Readout and cable are bump-bonded directly to the sensor
- Test beam studies have happened with an initial version of this KPiX sensor design
- Will come back to the geometry and its effect on resolution measurements

TEST BEAM STUDIES

- Small 9 layer stack was placed into SLAC test beam
- Sensor issues have been found and change the design going forward
 - Cross Talk, Dead Pixels, ...
- Many electron events were seen that we can analyze and compare with simulation to improve understanding of the system
 - Resolution, Identification (how well we can tell how many electrons are in an event)

- = Geant4 Simulation created of 40x40cm plane of alternating Si (320 μ m) and W (2.5mm,5/7 χ_0)
 - 40 (thin W) layer detector simulated simulated, only include 9 to match test beam stack for comparisons sake
 - Electrons fired at origin of various energies (in particular 12.1 GeV, test beam energy)
 - Want to try to match test beam running conditions

1000events, 10GeV. Energy in MeV deposited (all events summed) on the z-axis.

COMPARISONS (CONT.)

- Attempted to model distribution of electron multiplicity and errors in test beam
 - 10% pixels randomly removed from each layer
 - Poisson distribution of simultaneous electrons per event used <n>=0.8725
 - Shifted from central area (more densely pixelated, also test beam was shifted away)
 - Match hit to KPiX pixel location

COMPARISONS (CONT.)

Excellent agreement to test beam data.

 Couldn't remove all of the low E shoulder during test beam cleaning (lots of ~0fC hits)

Total Measured Charge per Cleaned or Simulated Electron Events (6X_o)

COUNTING ELECTRONS

Total Measured Charge per Simulated Electron Event

 Algorithm used to count the number of electrons in the even based on energy distributions throughout the detector.

Electron Events - Simulation Truth

Total measured Charge After Cleaning

Electron Events - Test Beam Counted

COUNTING ELECTRONS (CONT.)

Counting of 2-Electron Simulated Events

Counting of Simulated 2-Electron Events by Separation

Simulated 2-Electron Event Counting Efficiency

No field, just simple detector simulation

ECAL GEOMETRY AND ITS EFFECTS

20 layers 2.5mm W

10 layers 5mm W

30 gaps 1.25mm w/pixel sensors

29 χο

GEOMETRY EFFECTS

Leakage into HCAL in overlap region increases due to less material, phi dependent

RESOLUTION EFFECTS FROM GEOMETRY

Previous resolution study (Da An, et al. 2014) using 100 GeV photons in sidloi3.

•
$$\phi = 0 \rightarrow \text{Resolution} \sim 21\%/\sqrt{E}$$

•
$$\phi = All \rightarrow \text{Resolution} \sim 29\%/\sqrt{E}$$

Resolution study using 10, 50, 75, 100, 250, and 500 GeV electrons using Simple Geant4 Stack Simulation

• For lower energy e- (<100 GeV), Resolution much closer to design expectation (17%/ \sqrt{E})

13

E. Meyer

DISTRUBUTIONS

Sum of Raw Detector Hits, SiD Electrons and Photons (2000 Events, Random Phi)

- Use cone width $\phi \pm 0.2$ rad constraint on hit locations (avoid backscatter)
 - φ determined from incident MC particle, not actual hits in detector
 - Ignore 5 GeV electrons in resolution plots, B-field effects \rightarrow shower gets missed with φ constraint

Discrepancies

- SiD resolution degrades much faster than the simple stack resolution
- 100 GeV SiD photons for $\phi=0$ have Res ~ 28%/ \sqrt{E} compared to ~ 21%/ \sqrt{E} from previous sidloi3 study
- $\phi = All$ 100 GeV SiD photons have slightly better resolution than previous sidloi3 study; $\sim 26\%/\sqrt{E}$ compared to $\sim 29\%/\sqrt{E}$

CONFIRM SIMPLE STACK BEHAVES AS EXPECTED

Vary the number of thin and thick layers for simple stack electrons

- #Thick Layers = (40 #Thin) / 2
- Expected resolution of 40 thin $\sim 17\%/\sqrt{E}$
 - measured $16.6\%/\sqrt{E}$
- Expected resolution of 0 thin layers to degrade by $\sqrt{2}$ (~24%/ \sqrt{E})
 - measured $25\%/\sqrt{E}$
- Conclusion: simple stack behaves as expected

*Note: Simple stack absorbers are pure W

SIDLOI3 RESULTS

← Previous study

(Da An, et al.)

Small/negligible difference between $\phi=0$ and $\phi=All$

Large difference between $\phi=0$ and $\phi=All$

SIDLOI3 RESULTS (CONT.)

Consistency

• Resolution at $\phi = 0$ for old and current sidloi3 studies match

Discrepancy

• For $\phi = All$, old and current studies do not match ($\sim 29\%/\sqrt{E}$) compared to $\sim 22\%/\sqrt{E}$)

HOW DOES INCIDENT HIT LOCATION IN MODULE AFFECT RESOLUTION?

RESOLUTION DEPENDENCE ON PHI

Closest overlap region to normal incidence: $\sim -4^{\circ}$

 $\phi=10^{\circ}$ ensures entire shower goes through center of module

100 GeV e- at $\phi=10^\circ$ is comparable to simple stack

SUMMARY OF CURRENT RESOLUTION RESULTS

[GeV]

40

20

Current SiD compares better to previous studies when incident particles are fired at $\phi=10^\circ$ instead of normal incidence

Shower mostly contained in nonoverlapping region

 $\phi = 0$

100

INVESTIGATION OF PHOTON-PHOTON OPENING ANGLE

TRUTH ENERGY RESOLUTION AROUND TRUE RHO

Choosing a certain percent of the rho energy and looking at the percent of events that contain that amount of the rho energy vs. the cone angle.

0.05rad $\rightarrow \sim 6$ cm $\sim < 20$ pixel widths

Choosing a certain cone angle and looking at the cumulative distribution for how many events get to a certain percent of the rho energy shown on the x-axis.

SUMMARY

- Better understanding current results more every day
 - Resolution differences from initial design resolution to current design geometry
 - Comparison between versions of geometry can be tricky
- Initial $\pi^0 \rightarrow \gamma \gamma$ resolution studies underway

BACKUP

W-FIRST VS SI-FIRST SIMULATION

 Distribution of energies in simulation depending on which way the test beam was facing into the detector, small differences

Total Measured Charge (All layers of Si-First, first 8 layers of W-First Simulation)

Cross-Talk on Test Beam Sensor

SLAC Test Beam

Probe-Tested Sensor

- Additional signal detected in pixels along trace of activated pixel (cross talk)
- Should be reduced with new shielded KPiX model

Work done at the University of Oregon:
C. Gallagher

"monster events" with many negative amplitude and out of time hits

Measured Energy of Hits (5000 10 GeV photons, phi=0, theta=90, bins = 1 MIP)

Angle Between Beam and Shower Hits (500 photon showers, phi=0, theta=90)

