Методы оптимизации. Семинар 1. Введение.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

4 сентября 2018 г.

Вопросы к студентам

- Имя
- Кафедра
- Знание ТЕХ/РТЕХ
- Ожидания от курса

О чём этот курс?

Первый семестр (теоретический):

- Основы выпуклого анализа
- Условия оптимальности
- Теория двойственности

О чём этот курс?

Первый семестр (теоретический):

- Основы выпуклого анализа
- Условия оптимальности
- Теория двойственности

Второй семестр (практический):

- Методы безусловной минимизации первого и второго порядка
- Методы условной оптимизации
- Линейное программирование: симплекс-метод и пр.
- Оптимальные методы
- ..

• Семинар и лекция раз в неделю

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара
- Домашнее задание после каждого семинара

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара
- Домашнее задание после каждого семинара
- Итоговая контрольная в конце семестра (и промежуточная в середине семестра)

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара
- Домашнее задание после каждого семинара
- Итоговая контрольная в конце семестра (и промежуточная в середине семестра)
- Экзамен в конце семестра. Среднее арифметическое:

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара
- Домашнее задание после каждого семинара
- Итоговая контрольная в конце семестра (и промежуточная в середине семестра)
- Экзамен в конце семестра. Среднее арифметическое:
 - оценки за работу в семестре

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара
- Домашнее задание после каждого семинара
- Итоговая контрольная в конце семестра (и промежуточная в середине семестра)
- Экзамен в конце семестра. Среднее арифметическое:
 - оценки за работу в семестре
 - ответа на экзамене

- Семинар и лекция раз в неделю
- Миниконтрольные в начале каждого семинара
- Домашнее задание после каждого семинара
- Итоговая контрольная в конце семестра (и промежуточная в середине семестра)
- Экзамен в конце семестра. Среднее арифметическое:
 - оценки за работу в семестре
 - ответа на экзамене
- Piazza для Q&A

• Формализация задачи выбора элемента из множества

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов
 - оценка параметров в статистике

- Формализация задачи выбора элемента из множества
- Обоснование правильности принятия решения
- Разнообразные приложения:
 - машинное обучение: классификация, кластеризация, регрессия
 - молекулярное моделирование
 - анализ рисков
 - выбор активов (portfolio optimization)
 - оптимальное управление
 - обработка сигналов
 - оценка параметров в статистике
 - и другие

Предварительные навыки

- Линейная алгебра
- Математический анализ
- Программирование: Python (NumPy, SciPy, CVXPY)
 или MATLAB
- Элементы вычислительной математики

Основные этапы использования методов оптимизации при решении реальных задач:

1. Определение целевой функции

- 1. Определение целевой функции
- 2. Определение допустимого множества решений

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи
- 4. Выбор наилучшего алгоритма для решения поставленной задачи

- 1. Определение целевой функции
- 2. Определение допустимого множества решений
- 3. Постановка и анализ оптимизационной задачи
- 4. Выбор наилучшего алгоритма для решения поставленной задачи
- 5. Реализация алгоритма и проверка его корректности

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$
$$f_j(\mathbf{x}) \le 0, \ j = p+1, \dots, m,$$

ullet $\mathbf{x} \in \mathbb{R}^n$ — искомый вектор

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

- ullet $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- ullet $f_0(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ целевая функция

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

- ullet $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- ullet $f_0(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ целевая функция
- ullet $f_k(\mathbf{x}): \mathbb{R}^n o \mathbb{R}$ функции ограничений

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) = 0, \ i = 1, \dots, p$

$$f_j(\mathbf{x}) \le 0, \ j = p + 1, \dots, m,$$

- ullet $\mathbf{x} \in \mathbb{R}^n$ искомый вектор
- \bullet $f_0(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ целевая функция
- ullet $f_k(\mathbf{x}): \mathbb{R}^n o \mathbb{R} \mathbf{\phi}$ ункции ограничений

Пример: выбор объектов для вложения денег и определение в какой объект сколько вкладывать

- х размер инвестиций в каждый актив
- f_0 суммарный риск или вариация прибыли
- f_k бюджетные ограничения, min/max вложения в актив, минимально допустимая прибыль

Как решать?

В общем случае:

- NP-полные
- рандомизированные алгоритмы: время vs. стабильность

НО определённые классы задач могут быть решены быстро!

- Линейное программирование
- Метод наименьших квадратов
- ullet Малоранговое приближение порядка k
- Выпуклая оптимизация

История развития

- 1940-ые линейное программирование
- 1950-ые квадратичное программирование
- 1960-ые геометрическое программирование
- 1990-ые полиномиальные методы внутренней точки для произвольной задачи выпуклой оптимизации

ullet Решение задач огромной размерности $(\sim 10^8-10^{12})$

- ullet Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация

- ullet Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация
- Быстрые методы первого порядка

- ullet Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация
- Быстрые методы первого порядка
- Стохастические алгоритмы: масштабируемость vs. точности

- Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация
- Быстрые методы первого порядка
- Стохастические алгоритмы: масштабируемость vs. точности
- Невыпуклые задачи определённой структуры

- ullet Решение задач огромной размерности ($\sim 10^8-10^{12}$)
- Распределённая оптимизация
- Быстрые методы первого порядка
- Стохастические алгоритмы: масштабируемость vs. точности
- Невыпуклые задачи определённой структуры
- Приложения выпуклой оптимизации

Линейное программирование

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^\mathsf{T} \mathbf{x} \\ \text{s.t. } \mathbf{a}_i^\mathsf{T} \mathbf{x} \leq b_i, \ i = 1, \dots, m \end{aligned}$$

- нет аналитического решения
- существуют эффективные алгоритмы
- разработанная технология
- симплекс-метод входит в Тор-10 алгоритмов XX века 1

Александр Катруца Семинар 1 12 / 17

¹https://archive.siam.org/pdf/news/637.pdf

Задача наименьших квадратов

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2,$$

где $\mathbf{A} \in \mathbb{R}^{m \times n}$ и $\mathbf{b} \in \mathbb{R}^m$.

- ullet имеет аналитическое решение: $\mathbf{x}^* = (\mathbf{A}^\mathsf{T} \mathbf{A})^{-1} \mathbf{A}^\mathsf{T} \mathbf{b}$
- существуют эффективные алгоритмы
- разработанная технология
- имеет статистическую интерпретацию

Малоранговое приближение ранга k

$$\min_{\mathbf{X} \in \mathbb{R}^{m imes n}} \|\mathbf{A} - \mathbf{X}\|_F$$
 s.t. $\mathrm{rank}(\mathbf{X}) \leq k$

Theorem (Eckart-Young, 1993)

Пусть $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} - \mathsf{сингулярное}$ разложение матрицы \mathbf{A} , где $\mathbf{U} = [\mathbf{U}_k, \mathbf{U}_{r-k}] \in \mathbb{R}^{m \times r}$, $\mathbf{\Sigma} = \mathrm{diag}(\sigma_1, \ldots, \sigma_k, \ldots, \sigma_r)$, $\mathbf{V} = [\mathbf{V}_k, \mathbf{V}_{r-k}] \in \mathbb{R}^{n \times r}$ и $r = \mathsf{rank}(\mathbf{A})$. Тогда решение задачи можно записать в виде:

$$\mathbf{X} = \hat{\mathbf{U}}\hat{\mathbf{\Sigma}}\hat{\mathbf{V}}^{\mathsf{T}},$$

где $\hat{\mathbf{U}} \in \mathbb{R}^{m \times k}$, $\hat{\mathbf{\Sigma}} = \mathrm{diag}(\sigma_1, \ldots, \sigma_k)$, $\hat{\mathbf{V}} \in \mathbb{R}^{n \times k}$.

Алгоритм вычисления сингулярного разложения и быстрый, и устойчивый.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) \leq b_i, \ i=1,\ldots,m$

$$f(\alpha {\bf x}_1+\beta {\bf x}_2) \leq \alpha f({\bf x}_1)+\beta f({\bf x}_2),$$
 где $\alpha,\beta \geq 0$ и $\alpha+\beta=1.$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) \leq b_i, \ i=1,\ldots,m$

• f_0, f_i — выпуклые функции:

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

• нет аналитического решения

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) \leq b_i, \ i=1,\ldots,m$

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) \leq b_i, \ i=1,\ldots,m$

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы
- часто сложно «увидеть» задачу выпуклой оптимизации

$$\min_{\mathbf{x} \in \mathbb{R}^n} f_0(\mathbf{x})$$
 s.t. $f_i(\mathbf{x}) \leq b_i, \ i=1,\ldots,m$

$$f(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + \beta f(\mathbf{x}_2),$$

где
$$\alpha, \beta \geq 0$$
 и $\alpha + \beta = 1$.

- нет аналитического решения
- существуют эффективные алгоритмы
- часто сложно «увидеть» задачу выпуклой оптимизации
- существуют приёмы для преобразования задачи к стандартному виду

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

• Локальный оптимум является глобальным

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

• Любую ли задачу выпуклой оптимизации можно эффективно решить?

R. Tyrrell Rockafellar (1935 —)

The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity.

- Локальный оптимум является глобальным
- Необходимое условие оптимальности является достаточным

Вопросы:

- Любую ли задачу выпуклой оптимизации можно эффективно решить?
- Можно ли эффективно решить невыпуклые задачи оптимизации?

Резюме

- Организация работы
- Предмет курса по оптимизации
- Общая формулировка оптимизационной задачи
- Классические оптимизационные задачи