

Robust Frame-Semantic Models with Lexical Unit Trees and Negative Samples

Jacob Devasier, Yogesh Gurjar, Chengkai Li

Frame-Semantic Parsing

- 3 primary tasks
 - Target Identification The identification of words which evoke FRAMES (targets)
 - Targets are instances of *lexical units*, a unique pairing of a word and meaning, e.g., *think.v*
 - Frame Identification The identification of the Frame evoked by a target
 - Structures which describe a particular situation, object, or event
 - There can be many frames in a sentence, e.g., OPINION and ACHIEVING_FIRST
 - Argument Identification Identification of a FRAME's frame elements (FEs)
 - Each frame has its own set of FEs, e.g., Cognizer and Message

Target Identification

Predicting whether each word evokes a frame using a statistical/learned model does not work (1200+ classes, limited data), instead...

- Candidate Generation Lexical Unit Tree
 - Frames are only evoked by certain words
 - We can limit search space for targets to words that <u>can</u> evoke frames (candidate targets)
- Candidate Target Filtering RoBERTa binary-classification model
 - Filter out candidate targets that do not evoke a frame (false positives)
 - Previous systems used manually filters based on linguistic features

Target Identification - Candidate Generation

- Frames can only be evoked by certain words
- Previous works enumerate all morphological variants of all lexical units in FrameNet
 - i.e., searching a given sentence for: "find", "found", "finds", "finding", "discover", ...

OPINION: opinion.n, view.n, take.n, feel.v, figure.v, think.v, ...

ACHIEVING_FIRST: discovery.n, inventor.n, pioneer.n, find.v, discover.v, originate.v, pioneer.v, invent.v, pioneering.a, ...

Target Identification - Candidate Generation

- Our method works *bottom-up* by identifying lexical units a given word can belong to
 - Example: "I held a stray cat"
 - Bottom-up: "held" -> hold -> hold.v
- Built a *Lexical Unit Tree* for efficient search and enablement of part-of-speech wildcard search for disjoint lexical units
 - Wildcards used for multi-word verb LUs
 - Supported wildcards:
 - Pronouns, proper nouns, nouns, conjunctions, determiners

Single-word LU:

hold.v

Multi-word LU:

a little bit.adv

Disjoint LU:

hold (one's) tongue.v

Frame Identification - Challenges

About half of the frames do not have annotated sentences

- Lexicon filtering Targets can only evoke certain frames
 - For example, "think" can only evoke 4 frames
 - Reduces possible frames by over 99%, from roughly 1,220 to 1.29 (population) or 2.12 (sample)
- "Trivial" targets only evoke a single frame, e.g., "abuse"
 - Multiple-choice models cannot learn from targets with 1 possible frame (1 class)
 - We refer to these as under-utilized samples
 - e.g., "They suffered constant **abuse**"

Frame Identification - Model Training

- Q1. What is the performance of our candidate target generation algorithm?
 - Sets an upper bound on system's coverage / recall
 - Our system achieved 0.994 recall and 0.145 precision before filtering
- Q2. Are contextualized embeddings beneficial for filtering candidate targets?
 - No previous study has evaluated the utility of contextualized embeddings on candidate filtering
 - Using contextualized embeddings improved our target identification model by +38.3% on FN1.7, improving the state-of-the-art by +1.2%

Model	FN1.5	FN1.7	
Das et al. (2014)	0.454	(77.)	
Swayamdipta et al. (2017)	0.732	0.733	
Bastianelli et al. (2020)	0.768	_	
Lin et al. (2021)	0.769	0.763	
Our model	0.773	0.775	
Our model (manually filtered)	0.388	0.392	

Table 1: F1 score of our target identification model compared against previous approaches.

Experiments - Frame Identification

- Q3. Do additional negative frames improve frame identification model performance on under-utilized samples?
 - FIDO is a system with very similar model architecture but lacks additional negative samples needed to learn from trivial targets
 - We see significant improvements on two of our benchmark datasets derived from FrameNet 1.7
- Q4. Does additional negative sampling improve frame identification performance on rare frames?
 - We found that our model is better on frames with very few samples at all compared thresholds

Model	Test-1CF	Test-UU
FIDO (Jiang and Riloff, 2021)	0.754	0.538
Our model	0.893	0.603

Table 3: Accuracy of our frame identification model on Test-1CF, a subset of the test dataset containing targets that only have one candidate frame, and Test-UU, an augmentation of Test-1CF with additional difficult negative samples for the evaluation of multiple-choice classification models.

K	# Frames	Our Model	FIDO	Δ
1	94	0.781	0.753	+0.028
3	235	0.810	0.778	+0.032
5	316	0.853	0.809	+0.044
10	426	0.850	0.826	+0.024

Table 4: Accuracy of our frame identification model compared with FIDO on frames which only appear K or fewer times in the FrameNet 1.7 training set.

- Q5. Can our frame identification model substitute the target filtering model?
 - Candidate target filtering and Frame Identification have very similar task description and model architecture
- How does our frame identification model compare with previous works?
 - Compared with FIDO, the other semantic-based method, our system performs better
 - Graph-based methods still perform better, but lack potential benefits of semantic methods, namely performance on frames with few samples

Model	Acc	F 1
Our model (candidate filter)	0.788	0.775
FIDO (Jiang and Riloff, 2021)	0.653	0.644
Our model	0.664	0.678

Model	FN1.5		FN1.7	
	All	Amb	All	Amb
Das et al. (2014)	0.836	0.692	_	-
Hermann et al. (2014)	0.887	0.737	-	-
Hartmann et al. (2017)	0.876	0.738	-	-
Yang and Mitchell (2017)	0.882	0.757	-	-
Swayamdipta et al. (2017)	0.864	-	0.866	-
Peng et al. (2018)	0.900	0.780	0.891	0.775
Bastianelli et al. (2020)	0.901	-	-	_
Lin et al. (2021)	0.906	-	0.906	-
Su et al. (2021)*	0.919	0.823	0.924	0.844
Tamburini (2022)*	0.922	0.831	0.922	0.843
Zheng et al. (2022a)	0.917	-	-	-
Jiang and Riloff (2021)	0.913	0.810	0.921	0.836
Jiang and Riloff (2021) (frame)	0.901	-	0.911	-
Our model (binary)	0.877	0.785	0.887	0.816
Our model	0.917	0.818	0.923	0.841

Future Work

Unify target identification and frame identification

• Full frame-semantic parsing in a single step

- Applications in structured NLP
 - Initial focus on explainability in automated fact-checking and information retrieval systems