Soal dan Solusi UAS Himpunan dan Logika 2022

Wildan Bagus Wicaksono

MATEMATIKA 2022

Question 1

- (a). Misalkan $\mathbb{N} = \{1, 2, 3, \dots\}$ dan untuk setiap $n \in \mathbb{N}$, didefinisikan $A_n = [-n, 2n]$. Tentukan $A_1 \cap A_2, A_1 A_2, A_1 \bigoplus A_2$.
- (b). Buktikan dengan menggunakan hukum-hukum dalam himpunan bahwa

$$(A \cup B)^C \cap (B \cup C)^C \cap (A \cup C)^C = A^C \cap B^C \cap C^C.$$

Penyelesaian.

- (a). Perhatikan bahwa $A_1 = [-1,2]$ dan $A_2 = [-2,4]$. Karena $A_1 \subseteq A_2$, maka $A_1 \cap A_2 = A_1 = [-1,2]$ dan $A_1 A_2 = \emptyset$. Di sisi lain, $A_1 \cup A_2 = [-2,4]$ dan diperoleh $A_1 \bigoplus A_2 = (A_1 \cup A_2) (A_1 \cap A_2) = [-2,-1) \cup (2,4]$.
- (b). Perhatikan bahwa

$\overline{(A \cup B)} \cap \overline{(B \cup C)} \cap \overline{(A \cup C)}$	
$= \left(\overline{A} \cap \overline{B}\right) \cap \left(\overline{B} \cap \overline{C}\right) \cap \left(\overline{A} \cap \overline{C}\right)$	(De Morgan)
$= \left[\left(\overline{A} \cap \overline{B} \right) \cap \overline{B} \right] \cap \overline{C} \cap \left(\overline{A} \cap \overline{C} \right)$	(Asosiatif)
$= \left[\overline{A} \cap \left(\overline{B} \cap \overline{B} \right) \right] \cap \left[\overline{C} \cap \left(\overline{A} \cap \overline{C} \right) \right]$	(Asosiatif)
$= \left[\overline{A} \cap \overline{B} \right] \cap \left[\overline{C} \cap \left(\overline{A} \cap \overline{C} \right) \right]$	(Idempoten)
$= \left(\overline{A} \cap \overline{B}\right) \cap \left[\overline{C} \cap \left(\overline{C} \cap \overline{A}\right)\right]$	(Komutatif)
$= \overline{A} \cap \overline{B} \cap \left[\left(\overline{C} \cap \overline{C} \right) \cap \overline{A} \right]$	(Asosiatif)
$= \overline{A} \cap \overline{B} \cap \left[\overline{C} \cap \overline{A} \right]$	(Idempoten)
$=\overline{A}\cap\overline{B}\cap\left(\overline{A}\cap\overline{C}\right)$	(Komutatif)
$= \overline{A} \cap \left(\overline{B} \cap \overline{A} \right) \cap \overline{C}$	(Asosiatif)
$= \overline{A} \cap \left(\overline{A} \cap \overline{B} \right) \cap \overline{C}$	(Komutatif)
$= \left(\overline{A} \cap \overline{A}\right) \cap \overline{B} \cap \overline{C}$	(Asosiatif)
$= \overline{A} \cap \overline{B} \cap \overline{C}$	(Idempoten)

seperti yang ingin dibuktikan.

Question 2

Didefinisikan relasi \sim pada himpunan bilangan rasional $\mathbb Q$ sebagai berikut.

Untuk setiap
$$a, b \in \mathbb{Q}, a \sim b \iff a - b \in \mathbb{Z}.$$

- (a). Buktikan bahwa \sim merupakan relasi ekivalen.
- (b). Tentukan kelas ekivalensinya secara umum. Kemudian tentukan kelas ekivalensi dari $\left[\frac{2}{3}\right]$.

Penyelesaian.

(a). Akan dibuktikan relasi \sim bersifat refleksif. Ambil sebarang $a \in \mathbb{Q}$, perhatikan bahwa $a - a = 0 \in \mathbb{Z}$ yang artinya $a - a \in \mathbb{Z} \iff a \sim a$. Terbukti.

Akan dibuktikan relasi \sim bersifat simetrik. Ambil sebarang $a,b\in\mathbb{Q}$ sedemikian sehingga $a\sim b\iff a-b\in\mathbb{Z}$. Perhatikan bahwa $b-a=-(a-b)\in\mathbb{Z}$ yang artinya $b-a\in\mathbb{Z}\iff b\sim a$. Terbukti.

Akan dibuktikan relasi \sim bersifat transitif. Ambil sebarang $a,b,c\in\mathbb{Q}$ sedemikian sehingga $a\sim b$ dan $b\sim c$, maka $a-b\in\mathbb{Z}$ dan $b-c\in\mathbb{Z}$. Perhatikan bahwa $a-c=a+0-c=a+(-b+b)-c=(a-b)+(b-c)\in\mathbb{Z}$. Artinya, $a-c\in\mathbb{Z}\iff a\sim c$. Terbukti.

Jadi, \sim merupakan relasi ekivalen.

(b). Ambil sebarang $x \in \mathbb{Q}$. Perhatikan bahwa $x \in [x]$ karena $x \sim x$, jadi [x] tak kosong. Ambil sebarang $n \in [x]$, maka $n \sim x \iff n - x \in \mathbb{Z}$. Artinya, terdapat suatu $k \in \mathbb{Z}$ sedemikian sheingga $n - x = k \iff n = x + k$. Jadi, kelas ekivalen dari \sim adalah $[x] = \{x + k \mid k \in \mathbb{Z}\}$ untuk sebarang $x \in \mathbb{Q}$. Jadi, kelas ekivalen dari $\left[\frac{2}{3}\right]$ adalah

$$\left\lceil \frac{2}{3} \right\rceil = \left\{ \left. \frac{2}{3} + k \right| k \in \mathbb{Z} \right\} = \left\{ \cdots, -\frac{4}{3}, -\frac{1}{3}, \frac{2}{3}, \frac{5}{3}, \cdots \right\}.$$

▼

Question 3

Misalkan fadalah fungsi dari himpunan Ake Bdan $S\subseteq B.$ Didefinisikan

$$f^{-1}(S) = \{ a \in A \mid f(a) \in S \}.$$

- (a). Buktikan bahwa $f^{-1}\left(S^{C}\right)=\left(f^{-1}(S)\right)^{C}.$
- (b). Jika $f : \mathbb{R} \to \mathbb{R}$ dengan aturan $f(x) = x^2$, tentukan $f^{-1}(\{x \mid 0 < x < 1\})$.

Penyelesaian.

- (a). Akan dibuktikan $f^{-1}\left(\overline{S}\right)\subseteq\overline{f^{-1}(S)}$. Ambil sebarang $x\in f^{-1}\left(\overline{S}\right)$, maka $f(x)\in\overline{S}$ yang artinya $f(x)\not\in S$. Artinya, $x\not\in f^{-1}(S)$. Terbukti bahwa $f^{-1}\left(\overline{S}\right)\subseteq\overline{f^{-1}(S)}$. Akan dibuktikan $\overline{f^{-1}(S)}\subseteq f^{-1}\left(\overline{S}\right)$. Ambil sebarang $x\in\overline{f^{-1}(S)}$, maka $x\not\in f^{-1}(S)$ yang artinya $f(x)\not\in S$. Artinya, $f(x)\in\overline{S}$ sehingga $x\in f^{-1}\left(\overline{S}\right)$. Terbukti bahwa $\overline{f^{-1}(S)}\subseteq f^{-1}\left(\overline{S}\right)$. Karena $f^{-1}\left(\overline{S}\right)\subseteq\overline{f^{-1}(S)}$ dan $\overline{f^{-1}(S)}\subseteq f^{-1}\left(\overline{S}\right)$ sehingga kita punya $f^{-1}\left(\overline{S}\right)=\overline{f^{-1}(S)}$ seperti yang ingin dibuktikan.
- (b). Perhatikan bahwa jika $0 < f(x) < 1 \iff 0 < x^2 < 1$. Jelas bahwa $x^2 > 0$ untuk setiap $x \in \mathbb{R} \{0\}$. Untuk $x^2 < 1 \iff (x+1)(x-1) < 0$ diperoleh -1 < x < 1. Jadi,

$$f^{-1}(\{x \mid 0 < x < 1\}) = \{x \in \mathbb{R} \mid -1 < x < 0 \lor 0 < x < 1\}.$$

•

Question 4

Buktikan bahwa fungsi $f: \mathbb{R} \to \mathbb{R}$ dengan aturan fungsi f(x) = 2x - 3 merupakan fungsi bijektif.

Penyelesaian.

Akan dibuktikan f injektif. Ambil sebarang $x_1, x_2 \in \mathbb{R}$ sedemikian sehingga $f(x_1) = f(x_2) \iff 2x_1 - 3 = 2x_2 - 3 \iff x_1 = x_2$, terbukti.

Akan dibuktikan f surjektif. Ambil sebarang $y \in \mathbb{R}$ dan perhatikan bahwa $\frac{y+3}{2} \in \mathbb{R}$. Misalkan $x = \frac{y+3}{2} \iff 2x = y+3 \iff 2x-3 = y \iff f(x) = y$. Hal ini menunjukkan bahwa untuk sebarang $y \in \mathbb{R}$, maka terdapat $x \in \mathbb{R}$ sedemikian sehingga f(x) = y. Terbukti.

Jadi, terbukti bahwa f bijektif.