קורס: 20416 "תורת ההסתברות"

(87 / 6א מועד - 2018 (סמסטר 16.7.2018 - מועד א

חומר העזר המותר: מחשבון מדעי וספר הקורס בלבד.

מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם **חשבו את התוצאה הסופית** (כמובן, במידת האפשר).

לבחינה מצורפת: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית

שאלה 1 (25 נקודות)

במעגל שלהלן, כל אחד מששת המתגים סגור בהסתברות 0.8, ואז יכול לעבור בו זרם.

כאשר מתג פתוח, לא יכול לעבור בו זרם.

כמו כן, המצב של כל מתג בלתי-תלוי במצבים של מתגים אחרים במעגל.

- (9 נקי) א. מהי ההסתברות שיעבור זרם מ-A ל- B!
- (8 נקי) ב. אם עובר זרם מ-A ל-B, מהי ההסתברות שבדיוק שניים מהמתגים פתוחים!
- (8 נקי) ג. אם **לפחות** אחד ממתגים 1 ו- 2 פתוח, מהי ההסתברות שעובר זרם מ-A ל-B:

הערה: לפחות אחד משניים = אחד מהם או שניהם.

שאלה 2 (25 נקודות)

נתונים 50 זוגות שונים של נעליים, ביניהם זוג אחד אדום וזוג אחד צהוב.

(בסך הכל 100 נעליים בודדות: 50 שמאליות ו-50 ימניות, שיש ביניהן התאמה ל-50 זוגות שונים).

בוחרים 20 נעליים בודדות (מתוך ה-100) ושמים אותן בצד, כך שנוצרות שתי ערימות.

זוג נעליים ייקרא "שלם", אם שתי הנעליים שמרכיבות אותו נמצאות באותה הערימה (של ה-20 או של ה-80).

- (9 נקי) א. מהי ההסתברות שזוג הנעליים הצהוב וגם זוג הנעליים האדום יהיו שלמים!
- (8 נקי) ב. מה התוחלת של מספר זוגות הנעליים השלמים (לאחר ההפרדה לשתי הערימות)!
 - (8 נקי) ג. מה השונות של מספר זוגות הנעליים השלמים!

שאלה 3 (25 נקודות)

 $(\lambda > 0)$ אחד מהם התפלגות מעריכית עם הפרמטר לויים, שלכל אחד מהם בלתי-תלויים, שלכל אחד מהם אחד מהם Y ו-Y

 $R = \frac{X}{X + Y}$ א. נגדיר את המשתנה המקרי (15)

?R מהי ההתפלגות של המשתנה המקרי

זהה את ההתפלגות שקיבלת.

 $\lambda = 2$ נניח כי ב. (10 נקי) ב.

E[X|X<0.5] חשב את

שאלה 4 (25 נקודות)

השחקנים A ו- B משחקים את המשחק שלהלן:

 $;rac{1}{2}$ שחקן A מגריל מספר X, שהתפלגותו גיאומטרית עם הפרמטר

;3 שחקן מגריל מספר Y, שהתפלגותו פואסונית עם הפרמטר B שחקן

X אין תלות בין

, אם אופן נוסף באותו המשחק וכל אחד מהשחקנים מגריל מספר נוסף באותו האופן , X=Y

אם $X \neq Y$, המשחק מסתיים והשחקן שקיבל מספר גדול יותר מנצח במשחק.

$$P\{X+Y=4\}$$
 א. מהי א. (8 נקי)

- . $\frac{2e^3}{2e^3-e^2+1}$ איא ב. הוכח כי תוחלת מספר הסיבובים במשחק עד לקביעת השחקן המנצח במשחק היא (8 נקי $\frac{2e^3}{2e^3-e^2+1}$
 - . $\frac{2e^2}{2e^3-e^2+1}$ אינצח במשחק היא א ינצח ששחקן A ינצח ההסתברות (9 נקי)

שאלה 5 (25 נקודות)

חברת מוניות עירונית גובה מלקוחותיה תשלום עבור נסיעה, לפי לוח התעריפים הבא:

; ₪ 10 קיים עולה אורכה עד 3 קיים עולה

;ם 20 קיים עולה פיים ל-10 קיים עולה עולה נסיעה שאורכה בין 3

נסיעה שאורכה בין 10 קיימ ל-20 קיימ עולה 30 ₪;

 $. \, \square \, 50$ נסיעה שאורכה מעל ל-20 קיימ עולה

(בקיימ) של לקוח מקרי בחברה, את אורך הנסיעה (בקיימ) את X- נסמן

.6 ווסטיית-תקן וונניח של-X יש התפלגות נורמלית עם תוחלת 13

 $P\{0 \le X \le 3\}$ ולא $P\{X \le 3\}$ ולא על 3 קיים היא אינו עולה על 3 אינו שאורך הנסיעה שאורך הנסיעה אינו עולה על 3 אינו פון ולא

- א. ביום מסוים חברת המוניות ביצעה נסיעות עבור 60 לקוחות מקריים.
 - 15. מהן תוחלת ושונות ההכנסות של החברה מ-60 נסיעות אלו?
- . בסוף היום התברר, שהאורך של 20 נסיעות (מתוך ה-60) היה קטן מ-10 קיימ. מהי ההסתברות ש-10 מתוך 20 הנסיעות האלו היו ב-30 הנסיעות האונות באותו יום: מהי ההסתברות ש-10 מתוך 20 הנסיעות האלו היו ב-30 הנסיעות הראשונות באותו יום: 20
 - (בדקות) את אמן הנסיעה שלו (בקיימ) של לקוח מקרי וב-Y את אמן הנסיעה שלו (בדקות) את אורך הנסיעה אורך הנסיעה (בקיימ) של לקוח משותפת דו-נורמלית עם הפרמטרים ביל X ול-X יש התפלגות משותפת דו-נורמלית אם הפרמטרים

$$. Cov(X,Y) = 38 , Var(Y) = 9^2 , E[Y] = 20 , Var(X) = 6^2 , E[X] = 13$$

 $.P\{Y > 25 \mid X = 15\}$ חשב את

בהצלחה!

$\Phi(z)$, ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

$$\Phi(z) pprox \Phi(z_1) + rac{z-z_1}{z_2-z_1} [\Phi(z_2) - \Phi(z_1)]$$
 : נוסחת האינטרפולציה

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.000	0.0091	0.0020	0.000.	0.0700	0.0750	0.07,72	0.0000	0.00.	0.0075
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
Z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326