EEE 54 Design Problem 2 Pulse Width Modulator

Pulse Width Modulation (PWM) is a technique that encodes messages into pulses by modulating the duration or width of the pulse. It is also known as Pulse Duration Modulation (PDM). Although it is a technique for encoding and transmission, it is widely used for motor control and many other industrial applications. Below is a sample PWM signal compared to the message and ramp plotted in MATLAB and Simulated in SIMetrix.

You are to design a PWM modulator with varying sampling frequency. Notice how the samples are defined by the time when the ramp resets to zero. Below is the complete block diagram of a Pulse Width Modulator Circuit. It consists of a ramp generator, clamper, and comparator.

The clamper levels the input signal to a DC level that the most negative component of the signal is at zero. It also acts as a high-pass filter. The output of the ramp generator is a ramp waveform, which in turn, is the input of the Schmitt Trigger. The ramp generator output is also the output of the free-running ramp. The comparator is simply an operational amplifier that should have a fast switching time.

The source DC voltage is from -12 V to 12 V. The output of the comparator should be from 0 V to approximately 10 V to 12 V. The specifications of your circuit depend on your student number. If your student number is 20XX-ABCDE, digits CDE determine the specifications of your ramp generator.

Third digit, C (Peak to peak voltage):

C	$V_{ m MIN}$	V_{MAX}
0	-10	-5
1	-10	-2
2	-10	0
3	-5 -5	0
4	-5	5
5	0	4
6	0	8
7	0	10
8	1	5
9	5	10

Fourth and Fifth digits:

D	f _{MIN} (kHz)	E	f _{MAX} (kHz)
0	1.00	0	6.00
1	1.00	1	6.25
2	1.50	2	6.50
3	1.50	3	6.75
4	2.00	4	7.00
5	2.00	5	7.25
6	2.50	6	7.50
7	2.50	7	7.75
8	3.00	8	8.00
9	3.00	9	8.25

For example, if the student number is xx-07580, the sawtooth waveform should be from 0 to 4 V (C = 5), and the frequency should be from 3 kHz (D = 8) to 6 kHz (E = 0)

Requirements:

- 1. Implement a pulse width modulator. Refer to the specs above.
- 2. You can implement the operational amplifiers with ICs or any transistors.
- 3. Soldered boards are recommended but not required. You can use pin headers to easily change resistors and transistors.

Checking:

Each component of the block diagram will be checked with a total of 100 points and a corresponding weight is given to them for the final score. Refer to the table below:

Component	Specifications	Guidelines	Points Given
Clamper (10%)	Input: $V_{in}(t) = V_{pp} \sin(2\pi f t) f_{min} \le f \le f_{max}$	Within 5% of spec	100
	$V_{pp} = V_{max} - V_{min}$	Greater than 5% but less than 10% of spec	-70 points
	The DC level of the output must correspond to: $V_{DC} = \frac{V_{max} + V_{min}}{2} \pm 5\%$	Greater than 10% of spec	-100 points
Bootstrap Ramp	Using a step input: The time difference between V_{max} and V_{min} is	Within 5% of spec	100
Generator (35%)	measured and it should correspond to:	For every 1% excess	-10 points
	$\Delta t = \frac{V_{max} - V_{min}}{f} \pm 5\% f_{min} \le f \le f_{max}$	For significant jitters and spikes (around 3%)	-1 point
		Minimum score	10
Schmitt Trigger	Input: $V_{in}(t) = (V_{pp} - 1)\sin(2\pi f t) + \frac{V_{max} + V_{min}}{2}$	Within 5% of spec	100
(25%)	$f_{min} \le f \le f_{max}$	Greater than 5% but less than 10%	-70 points
	Output: 50% duty cycle square wave.	Greater than 10% of spec	-90 points
Comparator (10%)	Positive Input: $\sin(2\pi ft) + V_{DC}$, $f_{min} \le f \le f_{max}$ Negative Input: $V_{DC} = \frac{V_{max} + V_{min}}{2}$ Expected output: Square wave from $0 \pm 0.1 V$ to approx. 10 to 12 V	ALL OR NOTHING	100
Final Working	$V_{pp} = V_{max} - V_{min}$. Test inputs and expected outputs:	For DC inputs, Duty cycle is not within	100
Circuit (10%)	$In1: V_{in}(t) = V_{max} - 0.1V_{pp}$	89% to 91% Duty cycle is not within	-25 points
(1070)	Out1: rectangular wave with duty cycle equal to 90% (40 points)	9% to 11%	-25 points
	In2: $V_{in}(t) = V_{min} + 0.1V_{pp}$ Out2: rectangular wave with duty cycle equal to 10% (40 points) In3: $V_{in}(t) = V_{pp} \sin(200\pi t)$ Out3: $V_{out}(t) = PWM \ signal$ (20 points)	For sine input, Significant jitters and spikes Minimum	-5 point 0
Docu		Maximum	100
(10%)		Minimum	50
Cook ootooou	whose stated of 100 maints	Early Submission	+10%

Each category has a total of 100 points.

TOTAL		100
	Maximum	110
	Minimum	14