Homework4

Yuki Joyama

```
# import data
df = haven::read_dta("./data/umaru.dta")
```

1. Parametric/Accelerated Failure Time Models

a.

```
Variables: age, nonwhite, treat, site, ivdrug
Models: Exponential, Weibull, Log-logistic, Log-normal, Generalized Gamma
```

```
# define the survival object
surv_object <- Surv(time = df$time, event = df$censor)</pre>
# fit AFT models with different distributions
aft_exponential <-
 flexsurvreg(surv_object ~ age + nonwhite + treat + site + ivdrug, data = df, dist = "exponential")
aft_weibull <-
 flexsurvreg(surv_object ~ age + nonwhite + treat + site + ivdrug, data = df, dist = "weibull")
aft llogis <-
  flexsurvreg(surv_object ~ age + nonwhite + treat + site + ivdrug, data = df, dist = "llogis")
aft_lognormal <-
  flexsurvreg(surv_object ~ age + nonwhite + treat + site + ivdrug, data = df, dist = "lognormal")
aft_gen_gamma <-
  flexsurvreg(surv_object ~ age + nonwhite + treat + site + ivdrug, data = df, dist = "gengamma")
# check the results
# aft_exponential
# aft_weibull
# aft_llogis
# aft_lognormal
# aft_gen_gamma
```

i. Values of the -2 log L, the total number of parameters (including shape and scale for ϵ) and the AIC for each of these models

```
# extract the log-likelihood, total parameters, and AIC
results <- data.frame(
   Model = c("Exponential", "Weibull", "Log-logistic", "Log-normal", "Generalized Gamma"),
   "-2LogL" = c(
        -2 * aft_exponential$loglik,</pre>
```

```
-2 * aft_weibull$loglik,
    -2 * aft_llogis$loglik,
    -2 * aft_lognormal$loglik,
    -2 * aft_gen_gamma$loglik
  ),
  "Total Parameters" = c(
    aft_exponential$npars,
    aft weibull$npars,
    aft_llogis$npars,
    aft_lognormal$npars,
    aft_gen_gamma$npars
  ),
  AIC = c(
    aft_exponential$AIC,
    aft_weibull$AIC,
    aft_llogis$AIC,
    aft_lognormal$AIC,
    aft_gen_gamma$AIC
  )
)
colnames(results) <- c("Model", "-2 Log L", "Total Parameters", "AIC")</pre>
results |>
 kable()
```

s AIC
6 6192.608
7 6193.805
7 6141.191
7 6151.951
8 6153.219

The Log-logistic model has the lowest AIC (6141.191), making it the best-fitting model based on AIC.

ii.

Given the AIC, Weibull model does not provide an improved fit compared to the exponential model. I will confirm this using likelihood ratio test.

```
# extract log-likelihoods
logL_exp <- aft_exponential$loglik
logL_weib <- aft_weibull$loglik

# compute LRT statistic
lrt_stat <- -2 * (logL_exp - logL_weib)

# df
degf <- aft_weibull$npars - aft_exponential$npars
# p-value</pre>
```

```
p_value <- pchisq(lrt_stat, df = degf, lower.tail = FALSE)

# output results
cat("LRT Statistic:", lrt_stat)
## LRT Statistic: 0.8022232
cat("Degrees of Freedom:", degf)
## Degrees of Freedom: 1
cat("p-value:", p_value)
## p-value: 0.3704295</pre>
```

Given p-value > 0.05, we fail to reject the null hypothesis and conclude that Weibull model does not improve fit compared to the exponential model.

iii.

b.

c.

d.

2. Hazard Rates and Survival from Parametric Models

a.

b.

c.

d.