Support vector machines II: Soft-margin SVM

Sanjoy Dasgupta

University of California, San Diego

Topics we'll cover

- 1 Data that isn't linearly separable
- 2 Adding slack variables for each point
- 3 Revised convex optimization problem
- 4 Setting the slack parameter

Recall: maximum-margin linear classifier

Given: $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}.$

Find: the linear separator w that perfectly classifies the data and has maximum margin.

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$
 s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \geq 1$ for all $i = 1, 2, \dots, n$

Solution $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

What if data is not separable?

The non-separable case

Idea: allow each data point $x^{(i)}$ some **slack** ξ_i .

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, \dots, n$
 $\xi \ge 0$

Wine data set

Here C = 1.0

The tradeoff between margin and slack

$$\min_{\substack{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n \\ \text{s.t.: } y^{(i)}(w \cdot x^{(i)} + b) \geq 1 - \xi_i \\ \xi \geq 0}} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

Back to Iris

C = 1

Sentiment data

Sentences from reviews on Amazon, Yelp, IMDB, each labeled as positive or negative.

- Needless to say, I wasted my money.
- He was very impressed when going from the original battery to the extended battery.
- I have to jiggle the plug to get it to line up right to get decent volume.
- Will order from them again!

Data details:

- Bag-of-words representation using a vocabulary of size 4500
- 2500 training sentences, 500 test sentences

What C to use?

С	training error (%)	test error (%)	# support vectors
0.01	23.72	28.4	2294
0.1	7.88	18.4	1766
1	1.12	16.8	1306
10	0.16	19.4	1105
100	0.08	19.4	1035
1000	0.08	19.4	950

Cross-validation

Results of 5-fold cross-validation:

Chose C = 0.32. Test error: 15.6%