Lung Cancer Prediction Using 10 models

Lung cancer prediction using 10 machine learning classification models using Scikit-learn library in Python is a code implementation that aims to develop a predictive model for detecting lung cancer in patients. The code uses 10 different machine learning algorithms, including logistic regression, decision tree, k-nearest neighbor, Gaussian naive Bayes, multinomial naive Bayes, support vector classifier, random forest, XGBoost, multi-layer perceptron, and gradient boosting classifier, to predict the likelihood of lung cancer based on a range of variables. The dataset used in the code includes various columns such as gender, age, smoking, yellow fingers, anxiety, peer pressure, chronic disease, fatigue, allergy, wheezing, alcohol consuming, coughing, shortness of breath, swallowing difficulty, chest pain, and lung cancer. By analyzing these variables and using machine learning algorithms to identify patterns and correlations, the predictive models can provide accurate assessments of a patient's risk of developing lung cancer.

```
#Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

#For ignoring warning
import warnings
warnings.filterwarnings("ignore")

df=pd.read_csv('survey lung cancer.csv')
df
```

-		_
	➾	v
	•	
4		

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIG
0	М	69	1	2	2	1	1	
1	М	74	2	1	1	1	2	
2	F	59	1	1	1	2	1	
3	М	63	2	2	2	1	1	
4	F	63	1	2	1	1	1	
304	F	56	1	1	1	2	2	
305	М	70	2	1	1	1	1	
306	М	58	2	1	1	1	1	
307	М	67	2	1	2	1	1	
308	М	62	1	1	1	2	1	

309 rows × 16 columns

Note: In this dataset, YES=2 & NO=1

df.shape

→ (309, 16)

#Checking for Duplicates
df.duplicated().sum()

→ np.int64(33)

#Removing Duplicates
df=df.drop_duplicates()

#Checking for null values
df.isnull().sum()

\rightarrow	GENDER	0
	AGE	0
	SMOKING	0
	YELLOW_FINGERS	0
	ANXIETY	0
	PEER_PRESSURE	0
	CHRONIC DISEASE	0
	FATIGUE	0
	ALLERGY	0
	WHEEZING	0
	ALCOHOL CONSUMING	0
	COUGHING	0

SHORTNESS OF BREATH 0
SWALLOWING DIFFICULTY 0
CHEST PAIN 0
LUNG_CANCER 0
dtype: int64

df.info()

<<class 'pandas.core.frame.DataFrame'>
 Index: 276 entries, 0 to 283

Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	GENDER	276 non-null	object
1	AGE	276 non-null	int64
2	SMOKING	276 non-null	int64
3	YELLOW_FINGERS	276 non-null	int64
4	ANXIETY	276 non-null	int64
5	PEER_PRESSURE	276 non-null	int64
6	CHRONIC DISEASE	276 non-null	int64
7	FATIGUE	276 non-null	int64
8	ALLERGY	276 non-null	int64
9	WHEEZING	276 non-null	int64
10	ALCOHOL CONSUMING	276 non-null	int64
11	COUGHING	276 non-null	int64
12	SHORTNESS OF BREATH	276 non-null	int64
13	SWALLOWING DIFFICULTY	276 non-null	int64
14	CHEST PAIN	276 non-null	int64
15	LUNG_CANCER	276 non-null	object
dtyp	es: int64(14), object(2)	

df.describe()

memory usage: 36.7+ KB

	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE
count	276.000000	276.000000	276.000000	276.000000	276.000000	276.000000
mean	62.909420	1.543478	1.576087	1.496377	1.507246	1.521739
std	8.379355	0.499011	0.495075	0.500895	0.500856	0.500435
min	21.000000	1.000000	1.000000	1.000000	1.000000	1.000000
25%	57.750000	1.000000	1.000000	1.000000	1.000000	1.000000
50%	62.500000	2.000000	2.000000	1.000000	2.000000	2.000000
75%	69.000000	2.000000	2.000000	2.000000	2.000000	2.000000
max	87.000000	2.000000	2.000000	2.000000	2.000000	2.000000

In this dataset, GENDER & LUNG_CANCER attributes are in object data type. So, let's convert them to numerical values using LabelEncoder from sklearn. LabelEncoder is a utility class to help normalize labels such that they contain only values between 0 and n_classes-1. It can also

be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels. Also let's make every other attributes as YES=1 & NO=0.

```
from sklearn import preprocessing
le=preprocessing.LabelEncoder()
df['GENDER']=le.fit_transform(df['GENDER'])
df['LUNG_CANCER']=le.fit_transform(df['LUNG_CANCER'])
df['SMOKING']=le.fit_transform(df['SMOKING'])
df['YELLOW_FINGERS']=le.fit_transform(df['YELLOW_FINGERS'])
df['ANXIETY']=le.fit_transform(df['ANXIETY'])
df['PEER_PRESSURE']=le.fit_transform(df['PEER_PRESSURE'])
df['CHRONIC DISEASE']=le.fit_transform(df['CHRONIC DISEASE'])
df['FATIGUE ']=le.fit_transform(df['FATIGUE '])
df['ALLERGY ']=le.fit transform(df['ALLERGY '])
df['WHEEZING']=le.fit_transform(df['WHEEZING'])
df['ALCOHOL CONSUMING']=le.fit_transform(df['ALCOHOL CONSUMING'])
df['COUGHING']=le.fit transform(df['COUGHING'])
df['SHORTNESS OF BREATH']=le.fit_transform(df['SHORTNESS OF BREATH'])
df['SWALLOWING DIFFICULTY']=le.fit_transform(df['SWALLOWING DIFFICULTY'])
df['CHEST PAIN']=le.fit_transform(df['CHEST PAIN'])
df['LUNG_CANCER']=le.fit_transform(df['LUNG_CANCER'])
```

#Let's check what's happened now df

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIG
0	1	69	0	1	1	0	0	
1	1	74	1	0	0	0	1	
2	0	59	0	0	0	1	0	
3	1	63	1	1	1	0	0	
4	0	63	0	1	0	0	0	
279	0	59	0	1	1	1	0	
280	0	59	1	0	0	0	1	
281	1	55	1	0	0	0	0	
282	1	46	0	1	1	0	0	
283	1	60	0	1	1	0	0	
	1 2 3 4 279 280 281 282	0 1 1 1 2 0 3 1 4 0 279 0 280 0 281 1 282 1	0 1 69 1 1 74 2 0 59 3 1 63 4 0 63 279 0 59 280 0 59 281 1 55 282 1 46	0 1 69 0 1 1 74 1 2 0 59 0 3 1 63 1 4 0 63 0 279 0 59 0 280 0 59 1 281 1 55 1 282 1 46 0	0 1 69 0 1 1 1 74 1 0 2 0 59 0 0 3 1 63 1 1 4 0 63 0 1 279 0 59 0 1 280 0 59 1 0 281 1 55 1 0 282 1 46 0 1	0 1 69 0 1 1 1 1 74 1 0 0 2 0 59 0 0 0 3 1 63 1 1 1 4 0 63 0 1 0 279 0 59 0 1 1 280 0 59 1 0 0 281 1 55 1 0 0 282 1 46 0 1 1 1	1 1 74 1 0 0 0 0 2 0 59 0 0 0 1 3 1 63 1 1 1 1 0 4 0 63 0 1 0 0 0 279 0 59 0 1 1 1 1 280 0 59 1 0 0 0 281 1 55 1 0 0 0 282 1 46 0 1 1 1 0	O 1 69 0 1 1 0 0 1 1 74 1 0 0 1 2 0 59 0 0 0 1 0 3 1 63 1 1 1 0 0 4 0 63 0 1 0 0 0 279 0 59 0 1 1 1 1 0 280 0 59 1 0 0 0 0 1 281 1 55 1 0 0 0 0 0 282 1 46 0 1 1 1 0 0

276 rows × 16 columns

Note: Male=1 & Female=0. Also for other variables, YES=1 & NO=0

df.info()

<<class 'pandas.core.frame.DataFrame'>
 Index: 276 entries, 0 to 283
 Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	GENDER	276 non-null	int64
1	AGE	276 non-null	int64
2	SMOKING	276 non-null	int64
3	YELLOW_FINGERS	276 non-null	int64
4	ANXIETY	276 non-null	int64
5	PEER_PRESSURE	276 non-null	int64
6	CHRONIC DISEASE	276 non-null	int64
7	FATIGUE	276 non-null	int64
8	ALLERGY	276 non-null	int64
9	WHEEZING	276 non-null	int64
10	ALCOHOL CONSUMING	276 non-null	int64
11	COUGHING	276 non-null	int64
12	SHORTNESS OF BREATH	276 non-null	int64
13	SWALLOWING DIFFICULTY	276 non-null	int64
14	CHEST PAIN	276 non-null	int64
15	LUNG_CANCER	276 non-null	int64

dtypes: int64(16)
memory usage: 36.7 KB

#Let's check the distributaion of Target variable.
sns.countplot(x='LUNG_CANCER', data=df,)
plt.title('Target Distribution');

That is, Target Distribution is imbalanced.

We will handle this imbalance before applyig algorithm.

Double-click (or enter) to edit

Now let's do some Data Visualizations for the better understanding of how the independent features are related to the target variable..

```
import matplotlib.pyplot as plt
def plot(col, df=df):
   # Proportion data for plotting
   prop = df.groupby(col)['LUNG_CANCER'].value_counts(normalize=True).unstack()
   # Actual counts for labeling
   counts = df.groupby(col)['LUNG_CANCER'].value_counts().unstack()
   ax = prop.plot(kind='bar', figsize=(8, 5))
   # Add count labels
   for bars, count_row in zip(ax.containers, counts.T.values):
        for bar, count in zip(bars, count_row):
            ax.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 0.01,
                    str(int(count)), ha='center', va='bottom', fontsize=9)
   plt.title(f'LUNG_CANCER by {col}')
   plt.ylabel('Proportion')
   plt.xlabel(col)
   plt.legend(title='LUNG_CANCER')
   plt.tight_layout()
   plt.show()
plot('GENDER')
```


LUNG_CANCER by GENDER

plot('YELLOW_FINGERS')

plot('PEER_PRESSURE')

LUNG_CANCER by PEER_PRESSURE

plot('CHRONIC DISEASE')

plot('FATIGUE ')

plot('ALLERGY ')

plot('WHEEZING')

LUNG_CANCER by WHEEZING

plot('ALCOHOL CONSUMING')

plot('COUGHING')

LUNG_CANCER by COUGHING

plot('SHORTNESS OF BREATH')

plot('SWALLOWING DIFFICULTY')

From the visualizations, it is clear that in the given dataset, the features GENDER, AGE, SMOKING and SHORTNESS OF BREATH don't have that much relationship with LUNG CANCER.

So let's drop those features to make this dataset more clean.

df_new=df.drop(columns=['GENDER','AGE', 'SMOKING', 'SHORTNESS OF BREATH'])
df_new

→		YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	ALLERGY	WHEEZING
	0	1	1	0	0	1	0	1
	1	0	0	0	1	1	1	0
	2	0	0	1	0	1	0	1
	3	1	1	0	0	0	0	0
	4	1	0	0	0	0	0	1
	279	1	1	1	0	0	1	1
	280	0	0	0	1	1	1	0
	281	0	0	0	0	1	1	0
	282	1	1	0	0	0	0	0
	283	1	1	0	0	1	0	1

276 rows × 12 columns

CORRELATION

#Finding Correlation
cn=df_new.corr()
cn

	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	ALL
YELLOW_FINGERS	1.000000	0.558344	0.313067	0.015316	-0.099644	-0.14
ANXIETY	0.558344	1.000000	0.210278	-0.006938	-0.181474	-0.15
PEER_PRESSURE	0.313067	0.210278	1.000000	0.042893	0.094661	-0.0€
CHRONIC DISEASE	0.015316	-0.006938	0.042893	1.000000	-0.099411	0.18
FATIGUE	-0.099644	-0.181474	0.094661	-0.099411	1.000000	-0.00
ALLERGY	-0.147130	-0.159451	-0.066887	0.134309	-0.001841	1.00
WHEEZING	-0.058756	-0.174009	-0.037769	-0.040546	0.152151	0.16
ALCOHOL CONSUMING	-0.273643	-0.152228	-0.132603	0.010144	-0.181573	0.37
COUGHING	0.020803	-0.218843	-0.068224	-0.160813	0.148538	0.20
SWALLOWING DIFFICULTY	0.333349	0.478820	0.327764	0.068263	-0.115727	-0.03
CHEST PAIN	-0.099169	-0.123182	-0.074655	-0.048895	0.013757	0.24
LUNG_CANCER	0.189192	0.144322	0.195086	0.143692	0.160078	0.33

#Correlation
cmap=sns.diverging_palette(260,-10,s=50, l=75, n=6,
as_cmap=True)
plt.subplots(figsize=(18,18))
sns.heatmap(cn,cmap=cmap,annot=True, square=True)
plt.show()

YELLOW_FINGERS -	1	0.56	0.31	0.015	-0.1	-0.15	-0.059	-0.27	0.021	0.33	-0.099	0.19
ANXIETY -	0.56	1	0.21	-0.0069	-0.18	-0.16	-0.17	-0.15	-0.22	0.48	-0.12	0.14
PEER_PRESSURE -	0.31	0.21	1	0.043	0.095	-0.067	-0.038	-0.13	-0.068	0.33	-0.075	0.2
CHRONIC DISEASE -	0.015	-0.0069	0.043	1	-0.099	0.13	-0.041	0.01	-0.16	0.068	-0.049	0.14
FATIGUE -	-0.1	-0.18	0.095	-0.099	1	-0.0018	0.15	-0.18	0.15	-0.12	0.014	0.16
ALLERGY -	-0.15	-0.16	-0.067	0.13	-0.0018	1	0.17	0.38	0.21	-0.038	0.25	0.33
WHEEZING -	-0.059	-0.17	-0.038	-0.041	0.15	0.17	1	0.26	0.35	0.11	0.14	0.25
ALCOHOL CONSUMING -	-0.27	-0.15	-0.13	0.01	-0.18	0.38	0.26	1	0.2	-0.00063	0.31	0.29
COUGHING -	0.021	-0.22	-0.068	-0.16	0.15	0.21	0.35	0.2	1	-0.14	0.078	0.25
SWALLOWING DIFFICULTY -	0.33	0.48	0.33	0.068	-0.12	-0.038	0.11	-0.00063	-0.14	1	0.1	0.27
CHEST PAIN -	-0.099	-0.12	-0.075	-0.049	0.014	0.25	0.14	0.31	0.078	0.1	1	0.19
LUNG_CANCER -	0.19	0.14	0.2	0.14	0.16	0.33	0.25	0.29	0.25	0.27	0.19	1
	YELLOW_FINGERS -	ANXIETY -	PEER_PRESSURE -	CHRONIC DISEASE -	FATIGUE -	ALLERGY -	WHEEZING -	ALCOHOL CONSUMING -	- COUGHING	WALLOWING DIFFICULTY -	CHEST PAIN -	LUNG_CANCER -

kot = cn[cn>=.40]
plt.figure(figsize=(12,8))
sns.heatmap(kot, cmap="Blues")

- 0.2

Double-click (or enter) to edit

Feature Engineering

Feature Engineering is the process of creating new features using existing features.

The correlation matrix shows that ANXIETY and YELLOW_FINGERS are correlated more than 50%. So, lets create a new feature combining them.

df_new['ANXYELFIN']=df_new['ANXIETY']*df_new['YELLOW_FINGERS']
df_new

r		_
	۸	_
_	7	•
u	_	_

	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	ALLERGY	WHEEZING
0	1	1	0	0	1	0	1
1	0	0	0	1	1	1	0
2	0	0	1	0	1	0	1
3	1	1	0	0	0	0	0
4	1	0	0	0	0	0	1
279	1	1	1	0	0	1	1
280	0	0	0	1	1	1	0
281	0	0	0	0	1	1	0
282	1	1	0	0	0	0	0
283	1	1	0	0	1	0	1

276 rows × 13 columns

```
#Splitting independent and dependent variables
X = df_new.drop('LUNG_CANCER', axis = 1)
y = df_new['LUNG_CANCER']
```

Target Distribution Imbalance Handling

```
from imblearn.over_sampling import ADASYN
adasyn = ADASYN(random_state=42)
X, y = adasyn.fit_resample(X, y)
```

len(X)

→ 483

Logistic Regression

```
#Splitting data for training and testing
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test= train_test_split(X, y, test_size= 0.25, random_st
#Fitting training data to the model
from sklearn.linear_model import LogisticRegression
```

lr_model=LogisticRegression(random_state=0)
lr_model.fit(X_train, y_train)

```
\overline{\mathbf{T}}
```

```
▼ LogisticRegression ① ??
LogisticRegression(random_state=0)
```

#Predicting result using testing data
y_lr_pred= lr_model.predict(X_test)
y_lr_pred

#Model accuracy

from sklearn.metrics import classification_report, accuracy_score, f1_score
lr_cr=classification_report(y_test, y_lr_pred)
print(lr_cr)

→	precision	recall	f1-score	support
0 1	0.95 0.95	0.95 0.95	0.95 0.95	60 61
accuracy macro avg weighted avg	0.95 0.95	0.95 0.95	0.95 0.95 0.95	121 121 121

Decision Tree

#Fitting training data to the model
from sklearn.tree import DecisionTreeClassifier
dt_model= DecisionTreeClassifier(criterion='entropy', random_state=0)
dt model.fit(X train, y train)


```
DecisionTreeClassifier

DecisionTreeClassifier(criterion='entropy', random_state=0)
```

#Predicting result using testing data
y_dt_pred= dt_model.predict(X_test)
y_dt_pred

```
1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0])
```

#Model accuracy
dt_cr=classification_report(y_test, y_dt_pred)
print(dt cr)

→		precision	recall	f1-score	support
	0 1	0.92 0.98	0.98 0.92	0.95 0.95	60 61
	accuracy macro avg ghted avg	0.95 0.95	0.95 0.95	0.95 0.95 0.95	121 121 121

K Nearest Neighbor

#Fitting K-NN classifier to the training set
from sklearn.neighbors import KNeighborsClassifier
knn_model= KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2)
knn_model.fit(X_train, y_train)

```
▼ KNeighborsClassifier ① ? KNeighborsClassifier()
```

#Predicting result using testing data
y_knn_pred= knn_model.predict(X_test)
y_knn_pred

```
array([1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0])
```

#Model accuracy
knn_cr=classification_report(y_test, y_knn_pred)
print(knn_cr)

→	precision	recall	f1-score	support
0 1	0.90 1.00	1.00 0.89	0.94 0.94	60 61
accuracy macro avg weighted avg	0.95 0.95	0.94 0.94	0.94 0.94 0.94	121 121 121

Gaussian Naive Bayes

```
#Fitting Gaussian Naive Bayes classifier to the training set
from sklearn.naive_bayes import GaussianNB
gnb_model = GaussianNB()
gnb_model.fit(X_train, y_train)
```

```
▼ GaussianNB ① ?
GaussianNB()
```

```
#Predicting result using testing data
y_gnb_pred= gnb_model.predict(X_test)
y_gnb_pred
```

```
#Model accuracy
gnb_cr=classification_report(y_test, y_gnb_pred)
print(gnb_cr)
```

₹		precision	recall	f1-score	support
	0	0.95	0.87	0.90	60
	1	0.88	0.95	0.91	61
	accuracy			0.91	121
	macro avg	0.91	0.91	0.91	121
	weighted avg	0.91	0.91	0.91	121

Multinomial Naive Bayes

#Fitting Multinomial Naive Bayes classifier to the training set
from sklearn.naive_bayes import MultinomialNB
mnb_model = MultinomialNB()
mnb_model.fit(X_train, y_train)


```
#Predicting result using testing data
y_mnb_pred= mnb_model.predict(X_test)
```

y_mnb_pred

```
\rightarrow array([1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1,
           1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0,
           0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,
           0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0,
           1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
           1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0])
```

#Model accuracy mnb_cr=classification_report(y_test, y_mnb_pred) print(mnb cr)

→		precision	recall	f1-score	support
	0 1	0.78 0.84	0.85 0.77	0.82 0.80	60 61
	accuracy macro avg weighted avg	0.81 0.81	0.81 0.81	0.81 0.81 0.81	121 121 121

Support Vector Classifier

```
#Fitting SVC to the training set
from sklearn.svm import SVC
svc_model = SVC()
svc model.fit(X train, y train)
```


#Predicting result using testing data y_svc_pred= svc_model.predict(X_test) y_svc_pred

```
\rightarrow array([1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,
           1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0,
           0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1,
           0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0,
           1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1,
           1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0])
```

#Model accuracy svc_cr=classification_report(y_test, y_svc_pred) print(svc_cr)

→	ţ	recision	recall	f1-score	support
	0	0.97	0.98	0.98	60
	1	0.98	0.97	0.98	61

accuracy			0.98	121
macro avg	0.98	0.98	0.98	121
weighted avg	0.98	0.98	0.98	121

Random Forest

#Training
from sklearn.ensemble import RandomForestClassifier
rf_model = RandomForestClassifier()
rf_model.fit(X_train, y_train)

```
RandomForestClassifier ① ?
```

#Predicting result using testing data
y_rf_pred= rf_model.predict(X_test)
y_rf_pred

#Model accuracy
rf_cr=classification_report(y_test, y_rf_pred)
print(rf cr)

→		precision	recall	f1-score	support
	0	0.97	0.98	0.98	60
	1	0.98	0.97	0.98	61
accur	асу			0.98	121
macro	avg	0.98	0.98	0.98	121
weighted a	avg	0.98	0.98	0.98	121

XGBoost

pip install xgboost

Requirement already satisfied: xgboost in /opt/anaconda3/lib/python3.13/site-pa Requirement already satisfied: numpy in /opt/anaconda3/lib/python3.13/site-pack Requirement already satisfied: scipy in /opt/anaconda3/lib/python3.13/site-pack Note: you may need to restart the kernel to use updated packages.

from xgboost import XGBClassifier
xgb_model = XGBClassifier()
xgb model.fit(X train, y train)

XGBClassifier

XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, feature_weights=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, ...)

```
#Predicting result using testing data
y_xgb_pred= xgb_model.predict(X_test)
y_xgb_pred
```

```
#Model accuracy
xgb_cr=classification_report(y_test, y_xgb_pred)
print(xgb cr)
```

support	f1-score	recall	precision	→
60 61	0.97 0.97	0.97 0.97	0.97 0.97	0 1
121 121 121	0.97 0.97 0.97	0.97 0.97	0.97 0.97	accuracy macro avg weighted avg

Multi-layer Perceptron classifier

```
#Training a neural network model
from sklearn.neural_network import MLPClassifier
mlp_model = MLPClassifier()
mlp_model.fit(X_train, y_train)
```

```
▼ MLPClassifier ① ? 
MLPClassifier()
```

```
#Predicting result using testing data
y_mlp_pred= mlp_model.predict(X_test)
y_mlp_pred
```

```
#Model accuracy
mlp_cr=classification_report(y_test, y_mlp_pred)
print(mlp_cr)
```

→ *		precision	recall	f1-score	support
	0 1	0.95 0.98	0.98 0.95	0.97 0.97	60 61
	accuracy macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97 0.97	121 121 121

Gradient Boosting

```
#Training
from sklearn.ensemble import GradientBoostingClassifier
gb_model = GradientBoostingClassifier()
gb_model.fit(X_train, y_train)
```

```
▼ GradientBoostingClassifier ① ? GradientBoostingClassifier()
```

#Predicting result using testing data
y_gb_pred= gb_model.predict(X_test)
y_gb_pred

```
#Model accuracy
gb_cr=classification_report(y_test, y_gb_pred)
print(gb_cr)
```

→		precision	recall	f1-score	support
	0	0.97	0.98	0.98	60
	1	0.98	0.97	0.98	61
accur	асу			0.98	121
macro	avg	0.98	0.98	0.98	121
weighted	avg	0.98	0.98	0.98	121

From the above calculated accuracies, it is clear that the SVC, Random Forest, Multi-layer Perceptron and Gradient Boost models performed atmost level while the worst performed one is Multinomial Naive Bayes. However, I'm interested in a more efficient way of evaluating these models. Let's go for the Cross Validation methods using both K-Fold and Stratified K-Fold

Cross Validation

```
# Standardn K-Fold Cross Validation
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
k = 10
kf = KFold(n_splits=k, shuffle=True, random_state=42)
# Logistic regerssion model
lr_model_scores = cross_val_score(lr_model,X, y, cv=kf)
# Decision tree model
dt_model_scores = cross_val_score(dt_model,X, y, cv=kf)
# KNN model
knn_model_scores = cross_val_score(knn_model, X, y, cv=kf)
# Gaussian naive bayes model
gnb_model_scores = cross_val_score(gnb_model,X, y, cv=kf)
# Multinomial naive bayes model
mnb_model_scores = cross_val_score(mnb_model,X, y, cv=kf)
# Support Vector Classifier model
svc_model_scores = cross_val_score(svc_model,X, y, cv=kf)
# Random forest model
rf_model_scores = cross_val_score(rf_model,X, y, cv=kf)
# XGBoost model
```

```
xgb_model_scores = cross_val_score(xgb_model,X, y, cv=kf)
# Multi-layer perceptron model
mlp_model_scores = cross_val_score(mlp_model,X, y, cv=kf)
# Crodicat_boots_radal
```