What is a set?

A set is a collection of well-defined objects, so that it is possible to decide whether any given object is, or is not, in the set.

An object in a set is called an **element** or a **member** of the set.

Notation and Representation

Use capital letters A, B, C, D, \ldots to represent sets and lower case letters a, b, c, d, \ldots to represent elements of a set..

 $a \in A'$ denotes a is a member or an element of set A'

 $`a \notin A'$ denotes `a is not a member or an element of set A'.

157

Description of sets

- Using a diagram. A set can be described by drawing the objects in the set in a diagram.
- (ii) By Word Description. A set can be described in words. For example a set containing the numbers 1, 2, 3, 4, 5 can be described as 'a set of natural numbers from 1 to 5.
- (iii) By Listing the Elements. A set can be described by listing the elements inside a pair of braces or curly brackets $\{\cdots\}$. For example, a set consisting of numbers 1,2,3,4,5 is described as

$$\{1, 2, 3, 4, 5\}$$

(iv) Sample Elements Description. A set can be described by using a sample element to describe the set. For example, the set consisting of all odd positive integers can be described as

 $\{x : x \text{ is an odd positive integer}\}$

or

 $\{x|x \text{ is an odd positive integer}\}$

where: or | is read as 'such that'.

Example 1

If $\mathcal{U} = \{2, 4, 6, 8, \dots, 20\}$ is the universal set, write down by listing the elements, the set {multiples of 3}.

Solution

$$\{\text{multiples of 3}\} = \{6, 12, 18\}.$$

Different Types of Sets

 Null or Empty Set. The set containing no element is called the null set or the empty set. It is denoted by φ or { }.

158

- Singleton set. A set containing only one member is called a singleton set.
- Finite and Infinite sets. If the number of elements in a set is finite, the set is called a finite set. The number of elements in a finite set A is denoted by n(A).

A set containing an infinite number of elements is called an infinite set. For example, the following sets are infinite sets:

- (a) $\{x : x \text{ is a natural number}\} = \{1, 2, 3, 4, 5, \ldots\}$
- (b) $\{x|x \text{ is an integer}\} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- 4. Subsets. A set B, consisting of some or all the elements of a set A, is called a subset of A. 'B ⊆ A' denotes 'B is a subset of A'. Every set is a subset of itself, i.e. A ⊆ A for any set A. The empty set is considered a subset of every set, i.e. φ ⊆ A, for any set A. If A is a finite set containing n elements, then there are 2ⁿ subsets that can be formed from set A.
- 5. **Equal sets.** Two sets A and B are equal (denoted A = B), if they contain identically the same elements (not necessarily in the same order). Thus A = B means

$$A \subseteq B$$
 and $B \subseteq A$.

- 6. Universal Sets. The set containing all elements under discussion in a particular problem, is called the universal set for that problem. The universal set is denoted by \mathcal{U} or ϵ . Then all other sets in the problem are subsets of this universal set. Thus the universal set changes from problem to problem.
- Complement. If A is any set in a universal set U, then the complement of A, denoted by A^c or A', is the set consisting of all the elements in U which are not in A.
- Venn Diagrams. A Venn diagram consists of a rectangle, which represents the universal set in a particular problem, and circles inside the rectangle, representing subsets of the universal set.

Example 2

Obtain all the subsets of the set $\{a, b, c, d\}$.

Solution

There are $2^4 = 16$ subsets.

Subset with 0 element (1): ϕ

Subsets with 1 element (4): $\{a\}, \{b\}, \{c\}, \{d\}$

Subsets with 2 elements (6): $\{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}$

Subsets with 3 elements (4):

 $\{a,b,c\},\{a,b,d\},\{a,c,d\},\{b,c,d\}$

Subsets with 4 elements (1): $\{a, b, c, d\}$

Total = 1 + 4 + 6 + 4 + 1 = 16.

Operations on Sets

Union of Sets. If A and B are sets, define the union of A and B, denoted by $A \cup B$, as the set

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

If $A \subseteq B$, then $A \cup B = B$.

Intersection of Sets. If A and B are sets, define the intersection of A and B, denoted by $A \cap B$, as the set

$$A \cap B = \{x | : x \in A \text{ and } x \in B\}$$

Thus $A\cap B$ consists of common elements in A and B. If $A\subseteq B$, then $A\cap B=A$.

Example 3

Let A be a set in a universal set \mathcal{U} . such that A^c is the complement of A. Draw the operation table for

$$(\{\phi, A, A^c, \mathcal{U}\}, \cap)$$

160

163

Solution

Operation Table

Solution

Operation Table

n	φ	A	A^c	\mathcal{U}
ϕ	φ	φ	φ	φ
A	φ	A	φ	A
A^c	φ	φ	A^c	A^c
U	φ	A	A^c	И

Properties of Binary Operations

- 1. Closure. Let S be a set. An operation * on S is a binary operation if for every pair of elements a, b in S, a*b is in S. Then say that set S is closed with respect to the binary operation *, or say that * satisfies the closure property on set S.
- 2. Commutative Property: Let (S, *) be a set S together with a binary operation * on S is said to satisfy the commutative law or property, if for every pair a, b in S,

$$a * b = b * a$$

3. Associative Property: Let (S, *) be a set S together with a binary operation * on S. The binary operation * on S is said to satisfy the associative law or property, if for every triple a, b, c in S,

$$(a*b)*c = a*(b*c)$$

4. **Identity Element:** Let (S,*) be a set S together with a binary operation * on S. If there is an element denoted generally by e, in S such that

$$e * a = a * e$$
 for all $a \in S$

then e is called an identity element for *.

5. **Inverses:** Let (S, *) be a set S together with a binary operation * on S, having an identity e. If a and b are elements in S such that

$$a * b = b * a = e$$

then a is called the inverse of b, and b is called the inverse of a in (S,*). Denote the inverse of a by a^{-1} . Thus

$$a * b = b * a = e \Rightarrow b = a^{-1}$$
 and $a = b^{-1}$

6. **Distributive Laws:** Let $(S, *, \circ)$ be a set together with two binary operation * and \circ on S. If for every a, b, c in S

$$a*(b\circ c)=(a*b)\circ(a*c)$$

and

$$(b \circ c) * a = (b * a) \circ (c * a)$$

then we say that * is distributive over \circ .

Notation for Sets of Numbers

 $I\!\!N$ = the set of all counting or natural numbers

 $I\!\!I$ or $I\!\!Z$ = the set of all integers

Q = the set of all rational numbers

R =the set of all real numbers

C =the set of all complex numbers.

Example 4

- (a) If $I\!\!N$ is the set of all natural numbers, is $(I\!\!N,\div)$ closed? Give reason/counter example.
- (b) If \mathbb{R} is the set of all real numbers, is $(\mathbb{R}, -)$ (i) associative?, (ii) commutative?. [Give reason/counter-example].

Solution

- (a) Counter-example: $a=3,\ b=4,\ a\div b=\frac{3}{4}\notin \mathbb{N}$. Therefore (\mathbb{N},\div) is not closed.
- (b)(i) a=2, b=3, c=4 (a-b)-c=(2-3)-4=-1-4=-5 a-(b-c)=2-(3-4)=2+1=3Hence $(2-3)-4\neq 2-(3-4)$ Therefore $(\mathbb{R},-)$ is **NOT** associative.

(ii)
$$a = 5, b = 7$$

 $a - b = 5 - 7 = -2$
 $b - a = 7 - 5 = 2$
Hence $5 - 7 \neq 7 - 5$
Therefore $(\mathbb{R}, -)$ is **NOT** commutative.

Remark: For a property not to hold, it is sufficient to give a counter-example.

Example 5

Consider the set $S = \{4, 8, 12, 16\}$ and a binary operation \otimes on S defined by $a \otimes b$ is the remainder when ab is divided by 20 (i.e. multiplication modulo 20)

- (a) Draw the Operation Table for (S, \otimes) .
- (b) From the Operation Table, determine if it exists
 - (i) an identity
 - (ii) an inverse of each element in S.

Solution

(a) Operation Table

8	4	8	12	16
4	16	12	8	4
8	12	4	16	8
12	8	16	4	12
16	4	8	12	16

- (b)(i) From the last row and last column of the Operation Table, 16 is an identity.
 - (ii) From the Operation Table

$$4 \otimes 4 = 16 \Rightarrow 4^{-1} = 4$$

 $8 \otimes 12 = 16 \Rightarrow 8^{-1} = 12, 12^{-1} = 8$
 $16 \otimes 16 = 16 \Rightarrow 16^{-1} = 16.$

163

Example 6

If $\mathcal{P}(X)$ is the set of all subsets of a set X, then in $(\mathcal{P}(X), \cup, \cap)$,

- (a) \cup is distributive over \cap i.e. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- (b) \cap is distributive over \cup i.e. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. a(b+c) = ab+ac, for all a,b,c in \mathbb{R} .

Example 7

Multiplication is distributive over addition.

Practice Exercise 15

- 1. Write the set $\{x | -3 < x \le 5, x \text{ is an integer}\}$ by listing the elements.
- 2. Write down all the subsets of the set $\{a, b, c\}$.
- 3. Given the universal set $\mathcal{U} = \{1, 2, 3, 4, 5\}$, $M = \{1, 2, 5\}$ and $N = \{1, 3, 5\}$, find (a) $(M \cup N)^c$, (b) M^c , (c) N^c , (d) $M^c \cap N^c$, (e) $M^c \cup N^c$.
- 4. In (**R**, *), where

$$x * y = x + y - xy$$
 for all x, y in \mathbb{R}

- (a) Is the operation * associative?
- (b) Does (R,*) contain an identity?
- (c) What members of R have inverses?
- 5. If $S = \{1, 3, 5, 7\}$ and * is multiplication modulo 8,
 - (a) Draw the Operation Table for (S, *);
 - (b) From the Operation Table, determine if it exists,
 - (i) an identity
 - (ii) an inverse for each element in S.