考试科目名称	操作系统	t (A 卷	(会)		
考试方式: 闭卷 考试日期	J <u>2013</u> 年 <u>7</u> 月 <u>7</u>	日 教师 <u></u>	武、葛季栋		
系(专业)	年级	班纟	班级		
学号	姓名	成约	责		
题号 一 二 三	四五六	七八	九		
分数					
得分 一、 选择题(本题满	分 50 分,每小题 2	分)			
A. 用户编写的一个子程序 C. 操作系统中的一条命令					
<u>A</u> 2. 页面替换算法有	可能会产生 Belady :	异常现象。			
A <mark>.FIFO</mark> B.LRU	C.OPT	D.Clock			
<u>C</u> 3. 假设表格中所描述的两个 是不可能出现并发扬		以行,其中,a、b、	c、d、e 是原语,		
process P() {	process Q	() {			
a; b; c; }	d	; e; }			
A. a,b,c,d,e B. a,b,d,e	c,c C. a,d,e,c,l	D. a,b,d,c,e			
<u>C</u> 4. 操作系统允许在一台	主机上同时联接多台	6终端,多个用户可	以通过各自的终		
端同时交互使用计算机。 A. 网络 B. 分布5	式 C. 分时	D. 实时			
<u>D</u> 5. 现有三个同时到达的作业			、T2 和 T3,且		
T1 <t2<t3。系统采用短 A. T1+T2+T3 B. (T1+T2+T3</t2<t3。系统采用短 			°. T2+T3)/3		
<u>B</u> 6. Unix 系统中,文件的索引	引结构存放在	中。			
A. 超级块 B.inode 节点	C.目录项	D.空闲块			
<u>D</u> 7. 采用不会产生内					
A.分页式存储管理 B.段页5	式 C.固定分区:	式存储管理 D.分	设式存储管理		
<u>D</u> 8. 采用分段存储管理的系统	充,若地址用 24 位表	長示,其中8位表示	段号,则允许每		
段的最大长度是 A.2 ²⁴ B.2 ³² C.2 ²	8 D. 2 ¹⁶				

В	9. 在 UNIX 系统中运行以下程序	序,最多可 <mark>再</mark> 产生出个边	挂程?
	main(){ fork(); /*←pc(程序计数	牧器),进程 Α	
	fork(); fork();		
	A. 9 B.7 C.5	D.3	
	A. 9 D. / C.3	D.3	
<u>C</u>	10. Linux 系统中的 slab 分配器, A. 固定分区 B.分页式		过
В		如季西日米次派 4 个 计记	支系统不合坐开死绌的
<u> </u>		即而女四矢页似4千,以四	次尔纽小云及主处顿的
	A. 9 B. 10	C. 11 D. 12	
В	12 81: 的名处和的克顶之子	L	
<u> </u>	12. Solaris 的多线程的实现方式 <i>)</i> A.纯内核级线程 B.混合式		线程结构进程
<u>C</u>	13. 如果 I/O 设备与存储设备进行	行数据交换不经过 CPU 来完	成,这种数据交换方式
	是。 A.轮询方式 B.中断方式	C.DMA 方式 D.无	条件存储方式
<u>C</u>	14. 引入多道程序设计技术的前掠 A. 多个 CPU B.多个终端		
_			
<u>B</u>	15. 通道程序是。 A. 由一系列机器指令组成	B.由一系列通道指令组	成
	C.可以由高级语言编写	D.就是通道控制器	
<u>A</u>	16. 对一个文件的访问,常由 A. <mark>用户访问权限和文件属性</mark>	_	· 白优先级
	C. 优先级和文件属性	D. 文件属性的口令	, , , , , , , , , , , , , , , , , , , ,
	 设备	驱动程序	
<u>D</u>	17. 在 I/O 软件的分层结构中,	负责将把用户提交的逻	辑 I/O 请求转化为物理
	I/O 操作的启动和执行。	D XL 土 T JI A AL NO +L	/rl.
	A.用户空间的 I/O 软件 C.I/O 中断处理程序	B.独立于设备的 I/O 软 D. <mark>设备驱动程序</mark>	14
	C.1/O 上的区址注/1	D. <mark>以 田 初290/1王/丁</mark>	
<u>B</u>	18. 对于两个并发进程,设互斥信	言号量为 mutex,若 mutex=0	则。
	A. 表示没有进程进入临界区 B.	表示有一个进程进入临界区	
	C. 表示有一个进程进入临界区,另一	一个进程等待进入	
	D. 表示有两个进程进入临界区		

│ 19. 页面存储系统的逻辑地址是由页号和页内地址两部分组成。假定页面的大小为 4KB, 地址变换过程如图所示, 图中逻辑地址用十进制表示。图中有效地址(8644, 十 进制数表示)经过变换后,十进制物理地址 a 应为 8644 8644 >> 12 页表地址 页面长度 12 = 2 8 = 0b1000页号 物理块号 8644 % 4096 = 452 0 物理地址 3 1 4096 << 3 + 8 452 = A 33220 B.8644 C.4548 D.2500 20. 在操作系统中,临界区指 A. 一个缓冲区 B.一个数据区 C.同步机构 D.一段程序 В 21. 实模式下 16 位 CPU 使用段偏移方式的寻址能力为。 A. 64kb B. 1M C. 16M D. 4G 段内 16位 22. 下面哪条指令不是从实模式进入保护模式需要的指令 A. lgdt [GdtPtr] B. out 92h, al C. jmp \$ D. mov cr0, eax 23. FAT12 文件系统里, FAT 表的数量和每张 FAT 表占用的扇区数量为。 A. 2, 9 B. 2, 10 C. 3, 9 D. 3, 10 24. 操作系统里没有下面哪种描述符表 A. GDT B. LDT C. IDT D. KDT 25. C语言里面调用汇编的函数方法为 A. C代码中使用 extern 声明, 汇编中使用 global 导出 B. C代码中使用 global 声明, 汇编中使用 extern 导出 C 代码中使用 extern 声明, 汇编中使用 extern 导出 C. D. C代码中使用 global 声明, 汇编中使用 global 导出 二、简答题(本题满分12分) 得分 1. 试写出进程映像包括哪些组成部分(不必详述每个组成部分的具体内容)。(2分) 答:程序块、数据块、核心栈、进程控制块(PCB)

2. 假定磁盘有 200 个柱面,编号 0~199,当前存取臂的位置在 100 号柱面上,并刚刚完成了 80 号柱面的服务请求,如果请求队列的先后顺序是:55、58、39、18,90,160、150、

循环扫描是单向扫描

38、184; 试问:如果采用**循环扫描**算法完成上述请求,其存取臂移动的总量是多少? 并写出磁头臂移动的序列。(2分)

答:

根据题意,, 先向地址大的方向,循环扫描为以 100 为其地址,依次为150-160-184-199-0-18-38-39-55-58-90,移动总步长为99+199+90=388。

不算索引节点的盘块

3. 在 UNIX 系统中,每个 i 节点中分别含有 12 个直接地址的索引和一、二、三级间接索引。假设每个盘块有 1024Byte, 若每个盘块放 256 个盘块地址, 25MB 的文件分别占用 多少直接、一、二、三级间接盘块?。(3 分)

答:

直接块容量=12×1KB/1024=12KB

- 一次间接容量=256×1KB /1024=256KB
- 二次间接容量=256×256×1KB /1024=65536KB=64MB

25×1024KB-256KB-12KB= 25332KB, 因此, 25MB 的文件分别占用 25332 个二级间接盘块、256 个一级间接盘块、12 个直接盘块。

4. 请画出经典的五状态进程模型及其状态转换图。(3分)

- 5. 一台机器有 48 位虚地址和 32 位物理地址, 若页长为 8KB, 问页表共有多少个页表项?如果设计一个反置页表,则有多少个页表项? (2 分)
- 答:因为页长 8KB 占用 13 位,所以,页表项有 2^{35} 个。反置页表项有 2^{19} 个。

得分

三、(本题满分 4分)

考虑下面的进程集合:

进程	到达时间	处理时间
A	0	1
В	1	9
С	2	1
D	3	9

如果使用先来先服务 FCFS 调度算法,得到的每个单位时间内的进程执行序列表示为

参照该 FCFS 调度算法给出的执行序列的写法,写出如果采用时间片轮转 RR(时间片单位 q=4)、多级反馈队列 Feedback (反馈 Fback, q=1)等 3 个调度算法,得到进程执行序列,即在 如下表格中填入每个单位时间内执行的进程代号。

答:

算法	C) 1		2 3	3 4	. :	5 6	5	7	8 9) 1	0	11 1	2	13	14 1	5 1	6 17	7 18	19	20
RR,q=4		A	В	В	В	В	С	D	D	D	D	В	В	В	В	D	D	D	D	В	D
Fback,q=	=1	A	В	С	D	В	D	В	D	В	D	В	D	В	D	В	D	В	D	В	D

得分

四、(本题满分 6分)

一个进程在磁盘上包含 8 个虚拟页(0 号~7 号),在主存中固定分配给 3 个页框(frame),发生如下顺序的页访问:

- (a) 如果使用 LRU 算法, <u>给出相继驻留在这 3 个页框上的页,并计算缺页次数</u>。假设这些页框最初是空的。(**注**: 在计算缺页次数的时候,请将最初页框为空时也统计在内)
- (b) 如果使用 Clock 算法, 重复问题(a)(注:不考虑修改位, 只考虑引用位)。 **%**.

LRU 算法

	4	3	2	1	4	3	5	4	3	2	1	5
页框 0	4	4	4	1	1	1	5	5	5	2	2	2
页框 1		3	3	3	4	4	4	4	4	4	1	1
页框 2			2	2	2	3	3	3	3	3	3	5
缺页标记	F	F	F	F	F	F	F			F	F	F

缺页次数为 10 次

Clock 算法

	4	3	2	1	4	3	5	4	3	2	1	5
页框 0	4*	4*	→ 4*	1*	1*	→ 1*	5*	5*	5*	5*	→5*	→ 5*
页框 1	\rightarrow	3*	3*	→ 3	4*	4*	→ 4	→ 4	→ 4	2*	2*	2*
页框 2		\rightarrow	2*	2	→ 2	3*	3	3	3	→ 3	1*	1*
缺页标记	F	F	F	F	F	F	F			F	F	

缺页次数为 9次

得分

五、(本题满分 6分)

设系统中有 4 种类型的资源(A、B、C、D)和 5 个进程(P0、P1、P2、P3、P4),A 资源的总量为 3,B 资源的总量为 12,C 资源的总量为 14,D 资源的总量为 14。在 T0 时刻系统中个资源使用情况的状态如下表所示,系统采用银行家算法实施死锁避免策略。

进程	已经分	分配资源	(Alloc	ation)	最大需求矩阵 (Claim)				
	A	В	C	D	A	В	C	D	
P0	0	0	3	2	0	0	4	4	
P1	1	0	0	0	2	7	5	0	
P2	1	3	5	4	3	6	10	10	
Р3	0	3	3	2	0	9	8	4	
P4	0	0	1	4	0	6	6	10	

剩余资源 (Available)								
Α	В	С	D					
1	6	2	2					

试问: T0 时刻的各资源剩余数量为多少? T0 时刻的是否为安全状态? 若是,请给出其中可能的一种安全序列,并依照该序列,写出各资源的回收步骤。答:

进程	已经	分配资源	(Alloca	ation)	$Need(C_{ki}-A_{ki})$				
	A	В	C	D	A	В	C	D	
P0	0	0	3	2	0	0	1	2	
P1	1	0	0	0	1	7	5	0	
P2	1	3	5	4	2	3	5	6	
Р3	0	3	3	2	0	6	5	2	
P4	0	0	1	4	0	6	5	6	

(1) 利用安全性算法对该时刻的资源分配情况进行分析,得到下表:

	CurrentAvail	C _{ki} -A _{ki}	Allocation	CurrentAvail+allocation	Possible
P0	1 6 2 2	0 0 1 2	0 0 3 2	1 6 5 4	True
Р3	1 6 5 4	0 6 5 2	0 3 3 2	1 9 8 6	True
P4	1 9 8 6	0 6 5 6	0 0 1 4	1 9 9 10	True
P1	1 9 9 10	1 7 5 0	1 0 0 0	2 9 9 10	True
P2	2 9 9 10	2 3 5 6	1 3 5 4	3 12 14 14	True

可知该时刻存在着一个安全序列{P0, P3, P4, P1, P2}, 故该状态是安全的。

分析: 安全序列不止{P0, P3, P4, P1, P2}一个, 另外 {P0, P3, P1, P4, P2}、{P0, P3, P1, P2, P4}也是安全序列。在答题时只要说出一个就可以了。

六、(本题满分 7分)

吸烟者问题(Patil, 1971),三个吸烟者在一个房间内,还有一个香烟供应者。为了制造并抽掉香烟,每个吸烟者需要三样东西:烟草(编号为0)、纸(编号为1)和火柴(编号为2),供应者有丰富货物提供。三位吸烟者中,第一位(编号为1)有自己的烟草,第二位(编号为2)有自己的纸和第三位(编号为3)有自己的火柴。供应者随机地将两样东西放在桌子上,允许一个吸烟者进行对健康不利的吸烟。当吸烟者完成吸烟后唤醒供应者,供应者再把两样东西放在桌子上,唤醒另一个吸烟者。请信号量和P、V操作写出该问题的程序描述。 注意这里生产者也要阻塞,前面一个P

答:

得分

```
semaphor:s0,s1,s2,s3;
S0=1;S1=0;S2=0;S3=0;
Process businessman {
                                              Process consumer (k) {
/*供应者进程*/
                                              /*吸烟者进程, k=1,2,3*/
L1: i:=RAND() mod 3;
                                              L1:
        j:=RAND() \mod 3;
                                                  P(S[k]);
                                                take_one_item_from_table;
   If (i=j) then goto L1;
  P(S0);
                                                take one item from table;
   Put items [i] on table;
                                                 V(S0);
   Put items [j] on table;
                                               make cigarette and smokeing
   if (i=0 and j=1) or (i=1 and j=0) V(S[3]);
                                               goto L1;
   if (i=1 and j=2) or (i=2and j=1) V(S[1]);
   if (i=0 and j=2) or (i=2 and j=0) V(S[2]);
goto L1;
```

产生两个物品编号也可以互换

七、管程(本题满分 7分)

用 Hoare 管程方法写出五个哲学就餐问题的程序描述。

```
答:
type dining_philosophers=monitor
  enum {thinking,hungry,eating} state[5];
  cond self[5]=0;
  int self count[5]=0;
  InterfaceModule IM;
                          /*初始化, i为进程号*/
  for (int i=0; i<5; i++)
        state[i]=thinking;
  define pickup, putdown;
  use enter, leave, wait, signal;
void pickup(int i) {
                         /*i=0,1,...,4*/
    enter(IM);
     state[i]=hungry;
                                      注意自身状态的修改
     test(i);
     if(state[i]!=eating)
        wait(self[i],self count[i],IM);
    leave(IM);
void putdown(int i) {
                          /*i=0,1,2,...,4*/
   enter(IM);
                        先改变自身状态、再test两边
    state[i]=thinking;
    test((i-1)\%5);
                        注意取mod操作
    test((i+1)\%5);
   leave(IM);
  void test(int k) {
                          /*k=0,1,...,4*/
    if((state[(k-1)\%5]!=eating)\&\&(state[k]==hungry)
        &&(state[(k+1)\%5]!=eating)) {
        state[k]=eating;
        signal(self[k],self count[k],IM);
                                注意状态改变
  }
任一个哲学家想吃通心面时调用过程 pickup, 吃完通心面之后调用过程 putdown。
    cobegin
    process philosopher_i() { /*i=0,...,4*/
       while(true) {
        thinking();
        dining philosophers.pickup(i);
         eating();
        dining_philosophers.putdown(i);
     }
   coend
```

注意这里是平分时间

得分

八、(本题满分 8分)

有一多道程序设计系统,1)进程调度采用时间片调度算法,不考虑进程的输入输出和操作系统的调度开销;2)存储管理采用可变分区方式,用户空间为100K,采用最先适应算法分配主存且不允许移动;3)系统配有4台磁带机,对磁带机采用静态分配策略。今有如下作业序列:

作业名	进输入井时间	需执行时间	主存量要求	申请磁带机数
J_1	10:00	25 分钟	15K	2
J_2	10:20	30 分钟	60K	1
J_3	10:30	10 分钟	50K	3
J_4	10:40	15 分钟	30K	2

当作业调度采用"响应比最高优先算法"时,假定操作系统从11:00 开始调度,问:

J₁装入主存时间: 11:10 , 结束时间: 12:00 ;

J₂装入主存时间: 12:00 , 结束时间: 12:20 ;

J₃装入主存时间: 11:00 , 结束时间: 11:10 , 先排序

J₄装入主存时间: 11:10 ,结束时间: 然后选择前面的,看是否能够分配 答: 如果不能分配,看看后面的能不能分配

11:00时刻,

J1响应比=1+60/25=1+2.4, J2响应比=1+40/30=1+4/3, J3响应比=1+30/10=1+3, J4响应比=1+20/15=1+4/3, 响应比次序J3, J1, J2||J4

刪应比於丹J3, J1, J2||J4 **选择J3**, 其他内存不满足或 者外设不满足

11:10时刻, J3结束 J1响应比=1+70/25=1+2.8, J2响应比=1+50/30=1+5/3, J4响应比=1+30/15=1+2, 响应比次序 J1, J4, J2 选择J1, J4

11:40时刻, J4结束 12:00时刻, J1结束 只有J2没有装入

J1装入主存时间为 11:10 结束时间为 12:00 J3装入主存时间为 11:00 结束时间为 11:10 J2装入主存时间为 12:00 结束时间为 12:20 J4装入主存时间为 11:10 结束时间为 11:40