Machine Learning for Causal Inference from Observational Data

- ► Introduction
- ► Motivation
- ► Causality
- ► Methods
- ► Conclusion

Welcome!

INTRODUCTION •000

- ► Agenda
 - ► Slides: Introduction to Causal Inference
 - ► Tutorial: Guided Example with Code
 - ► Exercise: Do It Yourself

With some breaks in the middle as necessary.

RESOURCES

- ► Textbooks
 - ▶ J. Pearl, M. Glymour, and N. P. Jewell, Causal Inference in Statistics: A Primer. John Wiley & Sons. 2016.¹
 - ▶ J. Peters, D. Janzing, and B. Scholkopf, Elements of Causal Inference: Foundations and Learning Algorithms. The MIT Press. 2017.²
- ▶ Online
 - ► Introduction to Causal Inference³

http://bayes.cs.ucla.edu/PRIMER/

²https://mitpress.mit.edu/books/elements-causal-inference

https://www.bradyneal.com/causal-inference-course

Tools

INTRODUCTION 0000

We are going to use the following:

- ► Python 3
- ► numpy
- ▶ pandas
- ► matplotlib
- ► scikit-learn
- ightharpoonup EconML⁴
- ► Google Colab

⁴https://github.com/microsoft/EconML

MACHINE LEARNING

Introduction ooo●

We will need the following:

- ightharpoonup Supervised learning predict y given (X, y) samples
 - ► Regression (continuous outcome)
 - ► Classification (binary outcome)
- ► Basic data exploration
- ► Data pre-processing
- ► Cross-validation
- ► Model selection

PROBLEM SETTING

- \blacktriangleright We want to estimate the *causal effect* of treatment T on outcome Y
 - \blacktriangleright What benefits accrue if we intervene to change T?
 - ► Treatment must be modifiable
 - ► We observe only one outcome per each individual
- ► Example:
 - ► My headache went away after I had taken the aspirin
 - ▶ Would the headache have gone away without taking the aspirin?
 - ▶ We cannot go back in time and test the alternative!
 - ► Treatment effect
 - ► Test more people and measure the average outcome?

RANDOMISED CONTROLLED TRIALS

- ► Data from controlled experiments
- ightharpoonup Randomised T people assigned T=0 (control) or T=1 (treated)
- ► This mimicks observing alternative reality
- ightharpoonup Record background characteristics as X
- ► Can be expensive or even unfeasible (smoking)
- ► Figure

Observational Data

- ► Passively collected data (non-experimental)
- ► Abundant nowadays
- ► Quasi-experimental study
- ightharpoonup Keep only X recorded before Y
- ► Figure

ML PERSPECTIVE

- ► Correlation (association) vs causation
- ► Confounders
- ► Domain shift/adaptation perspective
- ► OOD generalisation
- ► Learn from given individuals, but predict unseen examples
- ► Cannot learn from counterfactuals
- ▶ On the surface it looks the same as supervised ML predict Y given (X, Y) samples

FUNDAMENTALS

Table of people and factual outcomes.

$$Effect = outcome_T - outcome_C$$

But we observe only one outcome!

This is known as the fundamental problem of causal inference. Can't know the difference. Goal: approximate ITE/ATE.

TREATMENT EFFECT

INTRODUCTION

Let us define the **true** outcome $\mathcal{Y}_t^{(i)}$ of individual (i) that received treatment t. The Individual Treatment Effect (ITE) is then defined as follows:

$$ITE^{(i)} = \mathcal{Y}_1^{(i)} - \mathcal{Y}_0^{(i)}$$

The Average Treatment Effect (ATE) builds on ITE:

$$ATE = \mathbb{E}[ITE]$$

METRICS

INTRODUCTION

- ▶ In practice, we want to measure how accurate our inference model is
- ▶ This is often done by measuring the amount of error (ϵ) or risk (\mathcal{R}) introduced by a model
- ► Examples:
 - $ightharpoonup \epsilon_{ITE}$
 - $ightharpoonup \epsilon_{ATE}$
 - ightharpoonup ϵ_{PEHE}
 - ightharpoonup ϵ_{ATT}
 - ightharpoons \mathcal{R}_{pol}

 ϵ_{ATE} and ϵ_{PEHE} are the most common ones and we will focus on them.

Metrics - Predictions

INTRODUCTION

Let us denote $\hat{y}_{t}^{(i)}$ as **predicted** outcome for individual (i) that received treatment t. Then, our predicted ITE and ATE can be written as:

CAUSALITY

0000000

$$\widehat{ITE}^{(i)} = \hat{y}_1^{(i)} - \hat{y}_0^{(i)}$$

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} \widehat{ITE}^{(i)}$$

Metrics - Measuring Errors

This allows us to define the following measurement errors:

$$\epsilon_{PEHE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\widehat{ITE}^{(i)} - ITE^{(i)})^2}$$

CAUSALITY 0000000

$$\epsilon_{ATE} = \left| \widehat{ATE} - ATE \right|$$

Where PEHE stands for Precision in Estimation of Heterogeneous Effect, and which essentially is a Root Mean Squared Error (RMSE) between predicted and true ITEs.

BENCHMARK DATASETS

Semi-simulated data or combinations of experimental and observaional datasets. We use metrics depending on what outcomes we have access to. Counterfactuals - ATE and PEHE. Otherwise ATT.

Well-established causal inference datasets:

► IHDP

Introduction

- ► Jobs
- ► News
- ► Twins
- ► ACIC challenges

ASSUMPTIONS

- ► No hidden confounders (we observe everything)
- \blacktriangleright All background covariates X happened before the outcome Y
- ightharpoonup Modifiable treatment T
- ► Stable Unit Treatment Value Assumption (SUTVA):
 - ► No interference between units
 - ► Consistent treatment (different versions disallowed)
- ► Ignorability
 - ► Y conditionally independent from X and T

Modern Approaches

Mosty regression and classification (classic ML), but combined in a smart way.

- ▶ Recent surveys on modern causal inference methods ⁵ ⁶
- ► Most popular:
 - ► Inverse Propensity Weighting (IPW)
 - ► Doubly-Robust
 - ► Double/Debiased Machine Learning
 - ► Causal Forests
 - ► Meta-Learners
 - ► Multiple based on neural networks (very advanced)

We will start with a simple regression, enhance it with IPW, and conclude with Meta-Learners.

⁵https://dl.acm.org/doi/10.1145/3397269

⁶https://arxiv.org/abs/2002.02770

S-Learner

Naive regression. Use all data to predict Y.

BIASED ESTIMATORS

Show a biased example.

Conclusion

00

IPW ESTIMATOR

A combination of regression and classification. Sample importance. Show a biased example and how sample importance can help. PS can be misspecified, so can be the estimator. Doubly-Robust attempts to address that.

T-Learner

T and C distributions are often different. Fit two separate regressors.

X-Learner

A hybrid of the previous approaches.

Summary

Brief summary of the content.

WHAT'S NEXT?

- ► Onto the practical parts
 - ► Tutorial
 - ightharpoonup Predict ATE and measure ϵ_{ATE}
 - ► S-Learner, IPW and X-Learner
 - ► Random Forest as base regressors and classifiers
 - ► Exercise IHDP
 - ► Predict ITE and ATE
 - ▶ Measure ϵ_{PEHE} and ϵ_{ATE}
 - ► Exercise JOBS (optional)
 - ► Predict ATT and Policy
 - \blacktriangleright Measure ϵ_{ATT} and \mathcal{R}_{nol}
- ► Short break?