Customer_Segmentation_Using_K-Means_Clustering

```
In [70]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Import and Understand the data

```
In [71]: df = pd.read_csv('Mall_Customers.csv')
```

In [72]: df.head()

Out[72]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

In [73]: | df.tail()

Out[73]:

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

In [74]: df.shape

Out[74]: (200, 5)

```
In [75]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 5 columns):
              Column
                                       Non-Null Count
                                                       Dtype
              -----
          - - -
                                       -----
                                                       ----
          0
              CustomerID
                                       200 non-null
                                                       int64
              Genre
                                       200 non-null
          1
                                                       object
          2
              Age
                                       200 non-null
                                                       int64
              Annual Income (k$)
                                       200 non-null
                                                       int64
          3
              Spending Score (1-100) 200 non-null
                                                       int64
         dtypes: int64(4), object(1)
         memory usage: 7.9+ KB
In [76]: X = df.iloc[:,[3,4]].values
In [77]: X
                       58],
                [ 57,
                [ 57,
                       55],
                [ 58,
                       60],
                [ 58,
                       46],
                [ 59,
                       55],
                [ 59, 41],
                       49],
                [ 60,
                [ 60,
                       40],
                [ 60,
                       42],
                [ 60,
                       52],
                [ 60,
                       47],
                [ 60,
                       50],
                [ 61, 42],
                [ 61,
                      49],
                       41],
                [ 62,
                [ 62,
                       48],
                       59],
                [ 62,
                [ 62,
                       55],
                        56],
                [ 62,
```

Perform Elbow Method to find Optimal No. of Clusters

```
In [78]: from sklearn.cluster import KMeans
    wcss = []

In [79]: for i in range(1, 11):
        kmeans = KMeans(n_clusters=i, init='k-means++', random_state=0)
        kmeans.fit(X)
        wcss.append(kmeans.inertia_)
```


Training a model using Unsupervised Learning Algorithm

```
In [81]: kmeansmodel = KMeans(n_clusters=5, init='k-means++', random_state=0)
In [82]: y_kmeans = kmeansmodel.fit_predict(X)
```

```
In [83]:
    plt.scatter(X[y_kmeans == 0,0], X[y_kmeans == 0,1], s=80, c='red', label='Cuplt.scatter(X[y_kmeans == 1,0], X[y_kmeans == 1,1], s=80, c='blue', label='Cuplt.scatter(X[y_kmeans == 2,0], X[y_kmeans == 2,1], s=80, c='yellow', label=plt.scatter(X[y_kmeans == 3,0], X[y_kmeans == 3,1], s=80, c='cyan', label='Cuplt.scatter(X[y_kmeans == 4,0], X[y_kmeans == 3,1], s=80, c='yellow', label='Cuplt.scatter(X[y_kmeans == 2,0], X[y_kmeans == 2,1], s=80, c='yellow', label='Cuplt.scatter(X[y_kmeans == 2,0], X[y_kmeans == 3,1], s=80, c='yellow', label='Cuplt.scatter(X[y_kmeans == 2,0], X[y_kmeans == 2,1], s=80, c='yellow', label='Cuplt.scatter(X[y_kmeans == 2,0], X[y_kmeans == 3,1], s=80, c='yellow', label='Cuplt.scatter(X[y_kmeans == 2,0], X[y_kmeans == 2,0], x[y_kme
```


THANK YOU!!!

GitHub: https://github.com/anujtiwari21?tab=repositories)