Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Polarization Effects on the Interfacial Conductivity in the LaAlO₃/SrTiO₃ Heterostructure: First-Principles Study

Maziar Behtash, Safdar Nazir, Yaqin Wang, and Kesong Yang*

Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA

*E-mail: <u>kesong@ucsd.edu</u>, Tel: +1-858-534-2514

Figure S1: Structural model of the LaAlO₃/SrTiO₃ (LAO/STO) heterostructure (HS)-based slab system.

Figure S2: Calculated total DOS of the unstrained $(LAO)_n/STO$ (n=1-6) HS-based slab systems. The vertical black dashed line indicates the Fermi level at 0 eV. The dashed blue line is plotted as a guide of eye.

Figure S3: Calculated layer-resolved DOS of the Ti 3d orbitals from interfacial (IF-I) TiO₂ layers in the STO substrate and O 2p orbitals from AlO₂ surface layers for -1%, 0%, and +1% uniaxially strained (LAO)₅/STO HS-based slab systems.

Figure S4: Calculated charge density projected on the bands forming the 2DEG in the $(LAO)_5/STO$ HS-based slab systems with -1% (a), 0% (b), and +1% (c) uniaxial strains.