Practice Problems – Set 1

(Topics: Path-finding, State Machine, Decision Tree Behaviour Tree)

1

a

b

Here, we use _u to represent up, _d for down, _1 for left and _r for right. For example: A_u means NPC is at A and faces up (north).

- 1. 2:A_u
- 2. 3:A_u->A_r
- 3. 3:A_r->B_r, 4:A_r->A_d
- 4. 4:B_r->B_d, 4:A_r->A_d
- 5. 4:B_d->C_d, 5:A_d->A_I

So the path is: A_u->A_r->B_r->B_d->C_d

A* algorithm needs 5 iterations.

C

- i) Yes, it is. For Manhattan distance does not consider the cost of turning. It makes Manhattan distance always smaller than real distance.
- ii) Yes. For combined distance+heuristic from the initial vertex never decreases along any path. $h(A) \le cost(A,B) + h(B)$ always holds for $h(A) = Md(A) \le Md(A,B) + Md(B) \le cost(a,b) + MD(b)$

2

a)

Using shortest path as Heuristic function.

-	C1	C2	СЗ	C4
C1	0	12	28	15
C2	12	0	16	27
C3	28	16	0	3
C4	15	27	3	0

b)

- 1. 28:S
- 2. 36:S->A, 37:S->B
- 3. 37:S->B, 39:A->D, 40:A->B
- 4. 39:A->D, 39:B->M, 40:B->C
- 5. 39:B->M, 40:B->C, 41:D->C
- 6. 40:B->C, 41:D->C, 41:M->O, 42:M->K, 51:M->N
- 7. 30:C->Q, 40:C->K, 41:M->O, 42:M->K, 51:M->N
- 8. 40:C->K, 42:M->K, 41:M->O, 51:M->N, 41:Q->E, 35:Q->F
- 9. 40:C->K, 42:M->K, 41:M->O, 51:M->N, 41:Q->E, 38:F->G
- 10. 40:C->K, 42:M->K, 41:M->O, 51:M->N, 41:Q->E, 40:G->E
- 11. 40:C->K, 42:M->K, 41:M->O, 51:M->N, 40:E->J
- 12. 49:K->L, 42:J->H, 41:M->O, 51:M->N
- 13. 49:K->L, 50:O->I, 61:O->N, 51:M->N, 42:J->H
- 14. 49:K->L, 50:O->I, 61:O->N, 51:M->N, 49:H->I
- 15. 49: I

3

a)

Target State: L:C

Action: M_exit + 2_action + L_entry + C_entry

b)

