Review: No clear CV difference is observed after the same extrinsic noise is applied to both unimodal and bimodal delay Gillespie.

Steady-State:

① Birth Inhibition:

$$\lambda_B\left(X(t), au
ight) = \lambda_B \cdot rac{1}{1+\left(rac{X(t- au)}{C}
ight)^n}$$

② Growth Inhibition:

$$au \sim egin{cases} \Gamma(lpha+kX(t- au),\;eta) \ ext{or} \ \Gamma(lpha,\;eta)+kX(t- au) \end{cases}$$

Increasing the influence of negative feedback (Hill-type birth rate, linear scale parameter) causes unstable oscillations in output population.

① Birth Inhibition:

$$\lambda_B = {
m constant}$$

$$\lambda_B = ext{constant}$$
 $\lambda_B\left(X(t), au
ight) = \lambda_B \cdot rac{1}{1+\left(rac{X(t- au)}{C}
ight)^n}$

$$\lambda_{B}(X(t),\tau) = \frac{62.5}{1 + \left(\frac{X(t-\tau)}{500}\right)} \qquad \lambda_{B}(X(t),\tau) = \frac{62.5}{1 + \left(\frac{X(t-\tau)}{300}\right)} \qquad \lambda_{B}(X(t),\tau) = \frac{62.5}{1 + \left(\frac{X(t-\tau)}{50}\right)} \qquad \lambda_{B}(X(t),\tau) = \frac{62.5}{1 + \left(\frac{X(t-\tau)}{10}\right)} \qquad \lambda_{B}(X(t),\tau) = \frac{62.5}{1 + \left(\frac{X$$

$$\lambda_B\left(X(t), au
ight) = rac{62.5}{1+\left(rac{X(t- au)}{300}
ight)}$$

$$\lambda_B\left(X(t), au
ight) = rac{62.5}{1 + \left(rac{X(t- au)}{50}
ight)}$$

$$\lambda_B = 100$$

① Birth Inhibition:

Steady State

$$\lambda_{B}\left(X(t), au
ight)=62.5$$
 $\lambda_{B}\left(X(t), au
ight)=\frac{62.5}{1+\left(rac{X(t- au)}{168}
ight)}$ 50

(1) Birth Inhibition:

 $\lambda_{B}\left(X(t), au
ight)=62.5$ $\lambda_{B}\left(X(t), au
ight)=$ **50**

Steady State

(1) Birth Inhibition:

 $\lambda_{B}\left(X(t), au
ight)=62.5$ $\lambda_{B}\left(X(t), au
ight)=$ 50

(1) Birth Inhibition:

Steady State

$$\lambda_B\left(X(t), au
ight)=62.5$$
 $\lambda_B\left(X(t), au
ight)=\frac{62.5}{1+\left(rac{X(t- au)}{168}
ight)}$ **50**

Increasing the influence of negative feedback (Hill-type birth rate, linear scale parameter) causes unstable oscillations in output population.

② Growth Inhibition:

② Growth Inhibition:
$$\tau \sim \Gamma(\alpha,\beta) \longrightarrow \tau \sim \begin{cases} \Gamma(\alpha+kX(t-\tau),\beta) \\ \text{or} \\ \Gamma(\alpha,\beta)+kX(t-\tau) \end{cases}$$

Increasing the influence of negative feedback (Hill-type birth rate, linear scale parameter) causes unstable oscillations in output population.

② Growth Inhibition:

$$\Gamma(10 + 0.1 \cdot X(t), 0.46)$$

$$\Gamma(10 + 0.5 \cdot X(t), 0.46)$$

$$\Gamma(10+0.5\cdot X(t),0.46)$$
 $\Gamma(10+1.5\cdot X(t),0.46)$

Increasing the influence of negative feedback (Hill-type birth rate, linear scale parameter) causes unstable oscillations in output population.

Increasing the influence of negative feedback (Hill-type birth rate, linear scale parameter) causes unstable oscillations in output population.

Steady State: 48.53

Unimodal delay with feedback shows as unimodal (single-timescale pathway) in D-PINN

Unimodal delay with feedback shows as unimodal (single-timescale pathway) in D-PINN

Training time is a problem.

Raising the training epoch/time and reducing the physics/data loss leads to closer-to-true

distributions.

Raising the training epoch/time and reducing the physics/data loss leads to closer-to-true distributions.

Note S2. Minimizing the data and physics losses ensures the convergence of arapproximated transduction-time distribution, $\tilde{g}(t)$, to the true transduction-time distribution g(t).

and its limit converges to y'. In summary, if \tilde{y}_{ex} converges to y during the training step, $\int_0^t \tilde{g}(u) du$ converges to $\int_0^t g(u) du$. Consequently, $\tilde{g}(t)$ converges to g(t) by differentiating Equation 1 and repeating same procedure.

