Calculus I Derivatives of square root expressions

Todor Miley

2019

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = ?$
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = ?$
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= (?)$ (?)

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= \left(\frac{1}{2\sqrt{u}}\right)$ (?)

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= \left(\frac{1}{2\sqrt{u}}\right)$ (?)

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$
 $= \left(\frac{1}{2\sqrt{u}}\right)(2x)$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Differentiate
$$f(x) = \sqrt{x^2 + 1}$$
.
Let $u = x^2 + 1$.
Let $g(u) = \sqrt{u}$.
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$

$$= \left(\frac{1}{2\sqrt{u}}\right)(2x)$$

$$= \frac{x}{\sqrt{x^2 + 1}}$$
.