Escola Politècnica Superior

Grau en Enginyeria d'Edificació

Assignatura: Aplicacions Estadístiques

Tipus d'activitat

	Exercici	Treball / Pràctica	Examen	Altres
Puntuable			X	
No Puntuable				

Competències específiques que es treballen

Capacitat per a utilitzar les tècniques i mètodes probabilístics i d'anàlisi estadística | X

Competències genèriques que es treballen

npeteneles generiques que es tresamen	
Resolució de problemes (CI-1)	X
Capacitat d'anàlisi i síntesi (CI-4)	X
Coneixement d'informàtica relatiu a l'àmbit d'estudis (CI-2)	
Aptitud per a la gestió de l'informació (CI-5)	
Compromís ètic (CP-1)	X
Raonament crític (CP-2)	X
Aptitud per al treball en equip (CP-3)	
Aprenentatge autònom (CP-9)	

Data: 15/03/2011

Considerau les següents dades corresponents al pes (Kg) i l'altura (cm) de 20 jugadors de la plantilla del RCD Mallorca 2011-2012 (font www.rcdmallorca.es):

Dorsal	1	13	26	2	4	12	15	16	21	22
Pes	88	87	82	74	84	82	79	81	76	82
Altura	191	188	192	179	189	187	179	185	181	180

Dorsal	29	3	5	7	11	19	27	8	9	18
Pes	75	82	78	69	76	76	74	77	81	80
Altura	176	182	185	177	177	180	179	181	185	180

Problema 1 .

- a) Representau els valors de la variable 'Pes' en un diagrama de capsa, indicant tots els valors numèrics rellevants i quins són, si n'hi ha, els valors atípics i extrems.
- b) Agrupau els valors de la variable 'Pes' en els intervals següents: menys de 70, [70, 75), [75, 80), [80, 85), igual o superior a 85 i calculau:
 - 1) Taula de freqüències (absolutes, relatives, acumulades i percentatges).
 - 2) Moda, mitjana i mediana.
 - 3) Dibuixau l'histograma de freqüències absolutes.

Problema 2 Considerant les variables brutes de 'Pes' i Altura' calculau, amb dues xifres decimals de precissió en els càlculs:

- a) Mitjana i desviació típica de la variable 'Pes'
- b) Mitjana i desviació típica de la variable 'Altura'.
- c) Diagrama de dispersió.
- d) Covariància i coeficient de correlació entre les variables, donant una interpretació del valor trobat.
- e) Si el coeficient de correlació és superior a 0,5 calculau i representau la recta de regressió.

Formulari Estadística Descriptiva

 \blacksquare Percentil p de dades agrupades en intervals:

$$P_p = L_p + (L_{p+1} - L_p) \frac{N \cdot p - N_{p-1}}{n_p}$$

- Coeficient de simetria: $g_1 = \frac{m_3}{s^3}$, s: desviació típica
 - Dades brutes

$$m_3 = \frac{(x_1 - \bar{x})^3 + (x_2 - \bar{x})^3 + \dots + (x_N - \bar{x})^3}{N}$$

• Dades en taula de freqüències

$$m_3 = \frac{(x_1 - \bar{x})^3 n_1 + (x_2 - \bar{x})^3 n_2 + \dots + (x_k - \bar{x})^3 n_k}{N}$$

- \bullet Coeficient d'apuntament: $g_2=\frac{m_4}{s^4}-3,\,s$: desviació típica
 - Dades brutes

$$m_4 = \frac{(x_1 - \bar{x})^4 + (x_2 - \bar{x})^4 + \dots + (x_N - \bar{x})^4}{N}$$

• Dades en taula de freqüències

$$m_4 = \frac{(x_1 - \bar{x})^4 n_1 + (x_2 - \bar{x})^4 n_2 + \dots + (x_k - \bar{x})^4 n_k}{N}$$

 \blacksquare Recta de regressió: $\hat{Y} = aX + b$

$$a = \frac{\text{Cov}(X, Y)}{\text{Var}(X)}$$
 $b = \bar{y} - a\bar{x}$

■ Coeficient de contingència:

$$0 \le C \le \sqrt{1 - \frac{1}{\min(k, l)}}, \quad C = \sqrt{\frac{\chi^2}{\chi^2 + N}}, \quad \chi^2 = \sum_i \sum_j \frac{(n_{ij} - e_{ij})^2}{e_{ij}}, \quad e_{ij} = \frac{n_{i*} n_{*j}}{N}$$