Patch-collaborative Spectral Point-cloud Denoising

Guy Rosman, Anastasia Dubrovina, Ron Kimmel CS, Technion, 2012

Patch-Collaborative Spectral Point-Cloud Denoising

- Spectral analysis is an important tools in surface and point cloud processing.
- In image processing, collaborative transforms reach state-of-the-art denoising results.

Dabov et al., '07

Patch-Collaborative Spectral Point-Cloud Denoising

- Some of these use the spectral domain for the collaborative transform (notably BM3D)
- Need to fill in a gap for 3D point clouds.

Our main setting

- Assumption I: the surface is given by a point cloud.
- Assumption II: strong noise levels

Our main setting

 Assumption III: we assume a reasonable ratio between surface feature size, sampling density, and noise intensity.
 (Levin '98, Fleishman et al. '05, many other point-cloud denoising algorithms)

Surface denoising methods – several flavors

- Spectral / diffusion-based
 - Taubin'95, Desbruin'99, Clarenz'00, Schneider'01,
 Tasdizen'02, Lange'05, Zhao'06, etc.
- MLS
 - Levin'03, Fleishman'05, Lipman'07, etc.
- Signal processing-based
 - Taubin'95 (Spectral methods), Peng'01 (GSM), Yagou'02 (Mean and median normal filtering), Fleishman'03 (Bilateral filtering), Yoshizawa'05 (Non-local means), Lee'05 (Normal bilateral filtering), Mahmoudi'09 (Sparse representations), etc.

Collaborative-patch surface denoising

- Idea: use groups of similar surface patches to perform robust denoising.
- Motivation: a robust technique for image denoising
 - Block Matching and 3D Filtering (BM3D,).
- Intuitively:
 - Define patch similarity and construct groups of similar patches – then construct collaborative patches.
 - Define denoising operator and apply it to patch groups.
 - Return denoised patches to their original positions.

Algorithm outline

- The algorithm consists of 2 phases.
- Each phase consists of
 - 1. Collaborative patch construction and support estimation.
 - 2. Collaborative patch spectral denoising.
 - 3. Denoised estimates averaging.
- The 2 phases differ by the spectral denoising method
 - Phase I spectral shrinkage.
 - Phase II Wiener filtering.

Collaborative surface denoising overview

Phase I

Collaborative patch construction

- Similarity measure: $d_{ICP}(\mathcal{P}_i, \mathcal{P}_j) = \min_{R,t} d(R\mathcal{P}_j + t, \mathcal{P}_i)$
 - Find $R \in SO(3)$, $t \in \mathbb{R}$ using Iterative Closest Point (ICP)
 - $-d(RP_j+t,P_i)$ can be nearest neighbor L2 norm, point-to-plane distances, etc., over all the points in the patch.

Collaborative patch construction

• Similarity measure: $d_{ICP}(\mathcal{P}_i, \mathcal{P}_j) = \min_{R,t} d(R\mathcal{P}_j + t, \mathcal{P})$ $R \in SO(3), t \in \mathbb{R}$

Collaborative patch construction

- Collaborative group: $G_i = \{ \mathcal{P}_j \quad \text{s.t.} \quad d_{ICP} (\mathcal{P}_i, \mathcal{P}_j) < \tau_1 \}$
- Collaborative patch: constructed by aggregating all the patches in G_i after alignment

Spectral point cloud processing

- Calculate the Laplace-Beltrami operator (LBO) for the collaborative patch:
 - Use either graph Laplacian using k-NN,
 - or Belkin'09 discretization.
- Calculate its eigenvalues and eigenfunctions $(\lambda_{_{i}},\phi_{_{i}}).$
- Calculate the LBO over a support estimated as suggested in Fleishman'05.

Spectral coefficients

- Average normalized coefficient strength for the collaborative patch Laplacian eigenfunctions, over 400 patches.
 - Red, green and blue represent the absolute magnitude of the normal (red) and two tangent coordinates in the local frame as estimated by our algorithm.

Spectral patch denoising - Phase I

• Spectral coefficients of collaborative patch f

$$f_{k} = \langle f, \phi_{i} \rangle$$

• Shrinkage operator: $S_{\mathcal{P}_i,\tau} = \sum_k \hat{f}_k \phi_k$, where $\hat{f}_k = \begin{cases} f_k, & |f_k| \ge \tau_2 \\ 0, & \text{o.w.} \end{cases}$.

Spectral patch denoising – Phase II

• Empirical spectral Wiener filter:

$$f_{k}^{wien} = \left(\frac{\left(f_{k}^{den}\right)^{2}}{\left(f_{k}^{den}\right)^{2} + \left(f_{k}^{orig} - f_{k}^{den}\right)^{2}}\right) f_{k}^{orig}$$

$$= \sigma_{noise}^{2}$$

where

- f_k^{orig} are the original noisy surface spectral coefficients
- f_k^{den} is the denoised estimate from Phase I

Averaging denoised estimates

- Each point \mathbf{x}_i belongs to several patches.
- Each patch belongs to several collaborative groups.
- Each collaborative group gives us a denoised estimate for the point \mathbf{x}_j .
- We need to combine these estimates.

Averaging denoised estimates

- Input:
 - Set of denoised collaborative patches $\hat{\mathcal{P}}_{k}$ around \mathbf{x}_{i} .
- Given \mathbf{x}_j belonging to several patches $\forall k : \mathbf{x}_j \in \mathcal{P}_k$
 - Average its estimates from the denoised patches $\{\hat{\mathcal{P}}_{\!\scriptscriptstyle k}\}$ with weights

$$w_{ji} = \exp\left\{-\left\|\mathbf{x}_{j} - \mathbf{x}_{i}\right\|^{2} / \sigma_{D}^{2}\right\} \cdot w_{Q,ji}$$

- σ_D^2 order of the patch size \mathbf{X}_j
- $w_{Q,ji}$ depends on the position of \mathbf{x}_j in $\hat{\mathcal{P}}_k$ (inner part/boundary) and the point density at \mathbf{x}_j

Collaborative surface denoising overview

Phase I

Implementation details

Algorithm parameters

- The patch size: patches contain a few hundreds of points
- Number of patches: we used 400 candidate patches.
- Number of the LBO eigenfunctions: 100 eigenfunctions computed.
- Other parameters Similarity threshold, Local support estimation stopping threshold same values for all examples.

Fandisk examples

- MLS: Point Cloud Library (PCL), Rusu'11.
- Triangulation: Surface Reconstruction Toolbox 2.0, Giaccari'11.

Fandisk – method noise

- MLS: Point Cloud Library (PCL), Rusu'11.
- Triangulation: Surface Reconstruction Toolbox 2.0, Giaccari'11.

Bust example

Quantitative results

Model	Fandisk				Bust	
Noise Level	$\sigma = 0.05$		$\sigma = 0.1$		$\sigma = 0.01$	
	MSE	LMedSq	MSE	LMedSq	MSE	LMedSq
Noisy surface	2.31×10^{-3}	9.14×10^{-3}	9.69×10^{-3}	4.54×10^{-3}	1×10^{-4}	4.63×10^{-5}
NL Means	6.29×10^{-4}	2.45×10^{-4}	2.37×10^{-3}	9.63×10^{-4}	1.55×10^{-5}	5.02×10^{-6}
MLS	4.83×10^{-4}	1.52×10^{-4}	2.02×10^{-3}	1.2×10^{-3}	1.46×10^{-5}	4.81×10^{-6}
Proposed approach (phase I)	4.73×10^{-4}	1.58×10^{-4}	1.80×10^{-3}	7.46×10^{-4}	1.43×10^{-5}	4.21×10^{-6}
Proposed approach (phase II)	3.83×10^{-4}	1.24×10^{-4}	1.38×10^{-3}	6.81×10^{-4}	1.54×10^{-5}	4.30×10^{-6}

- Mean squared error (MSE) and
- Least-median of squares (LMedSq)

of the point cloud after denoising for the Fandisk and the Bust models, for the noise levels shown in the figures.

Surface obtained using coded-light scanner

Implementation

Conclusions

- We presented a method for spectral denoising of point clouds.
- It employs spectral filtering of similar patches (the collaborative group)
 - Inspired by image processing algorithms (in particular, BM3D).
 - Runs in two steps a shrinkage operator and Wiener filter, both in a similar domain.
- Experimental results: preserves sharp features and smoothes flat regions.

Thank you!