Analysis

Brianna Penkala, Kai Hoeger

2025-04-13

Data structuring

```
## Warning in full_join(drones_dataset[, c(1, 13, 14, 24)], antidrone_aid_df, : Detected an unexpected :
## i Row 1 of `x` matches multiple rows in `y`.
## i Row 1619 of `y` matches multiple rows in `x`.
## i If a many-to-many relationship is expected, set `relationship =
## "many-to-many"` to silence this warning.
```

Top/bottom analysis

Top/bottom 25 aid and events percent changes (only rows with data in both columns)

Relationship Between Aid and Events

Relationship Between Aid and Events

Summary stats

Summary Statistics

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Sun, Apr 13, 2025 - 14:57:38

Summary Statistics

Statistic	N	Mean	St. Dev.	Min	Max
Weekly aid total (euro)	141	834,605,790.00	2,474,692,804.00	0	18,926,299,908
Change in aid (%)	141	5,636.10	47,871.48	-100.00	546,163.60
Weekly event total	141	466.04	76.73	268	638
Russian missile use	141	12.63	10.92	1	58
Russian drone use	141	39.21	16.71	1	75
Change in total events (%)	141	0.44	11.95	-28.87	64.18
Change in Ukrainian events (%)	141	1.07	22.57	-51.19	90.83
Change in Russian events (%)	141	1.30	15.82	-32.14	67.57
Search score	141	7.38	11.33	2.71	98.86

Correlation matrix

Visualizations

Warning: Removed 2 rows containing missing values or values outside the scale range ## (`geom_bar()`).


```
# Map of missile attacks
ukraine <- st_read("/Users/briannapenkala/Downloads/Capstone/gadm41_UKR_shp")</pre>
## Multiple layers are present in data source /Users/briannapenkala/Downloads/Capstone/gadm41_UKR_shp,
## Use `st_layers' to list all layer names and their type in a data source.
## Set the `layer' argument in `st_read' to read a particular layer.
## Warning in CPL_read_ogr(dsn, layer, query, as.character(options), quiet, :
## automatically selected the first layer in a data source containing more than
## one.
## Reading layer `gadm41_UKR_0' from data source
     `/Users/briannapenkala/Downloads/Capstone/gadm41_UKR_shp' using driver `ESRI Shapefile'
## Simple feature collection with 1 feature and 2 fields
## Geometry type: MULTIPOLYGON
## Dimension:
                  XY
## Bounding box:
                  xmin: 22.14045 ymin: 44.38597 xmax: 40.21807 ymax: 52.37503
## Geodetic CRS:
                  WGS 84
missiles_sf <- st_as_sf(missile_events, coords = c("longitude", "latitude"), crs = 4326)
missile_before1 <- missiles_sf %>% filter(date < as.Date("2022-12-21"))
missile_after1 <- missiles_sf %>% filter(date >= as.Date("2022-12-21") & date < as.Date("2023-06-01"))
```

```
missile_map_before1 <- ggplot() +</pre>
  geom_sf(data = ukraine, fill = "white", color = "black") +
  geom_sf(data = missile_before1 , color = "blue", alpha = 0.2) +
  ggtitle("Before Patriot Deployment") +
  theme(plot.title = element_text(size = 9)) +
  theme_minimal(base_family = "Times New Roman") +
  theme(
    text = element text(family = "Times New Roman"),
    axis.title = element text(family = "Times New Roman"),
    axis.text = element_text(family = "Times New Roman"),
    plot.title = element_text(family = "Times New Roman"))
missile_map_after1 <- ggplot() +</pre>
  geom_sf(data = ukraine, fill = "white", color = "black") +
  geom_sf(data = missile_after1 , color = "blue", alpha = 0.2) +
  ggtitle("After Patriot Deployment") +
  theme_minimal(base_family = "Times New Roman") +
  theme(
    text = element_text(family = "Times New Roman"),
    axis.title = element_text(family = "Times New Roman"),
    axis.text = element_text(family = "Times New Roman"),
    plot.title = element_text(family = "Times New Roman"))
(missile_map_before1 + missile_map_after1) +
   plot_annotation(
    title = "Missile Attacks in Ukraine Before and After Patriot Deployment",
    caption = "Before = 02/22/2022 - 12/21/2022; After = 12/21/2022 - 06/21/2023",
    theme = theme(plot.title = element_text(family = "Times New Roman"),
                  plot.caption = element_text(family = "Times New Roman")))
```

Missile Attacks in Ukraine Before and After Patriot Deployment

 $Before = 02/22/2022 - 12/21/2022; \ After = 12/21/2022 - 06/21/2023$

-45.597 - 35.363

T-tests

T-statistic	statistic Degrees of Freedom		95% Confidence Interval	
-28.3	218	< 2.2e-16	-294.746 - (-221.623)	

Comparison of Mean Ukrainian and Russian-Instigated Events

T-statistic	Degrees of Freedom	P-value	95% Confidence Interval
-28.3	218	< 2.2e-16	-294.746 - (-221.623)
T-statistic	Degrees of Freedom	P-value	95% Confidence Interval

0.743

Regressions on Ukraine

-0.351

aaaaaa

Comparison of Mean Ukrainian Event Percent Changes in High and Low Aid Periods

T-statistic	Degrees of Freedom	P-value	95% Confidence Interval
-0.351	4	0.743	-45.597 - 35.363

First stage (using SearchScore as instrument):

$$AidGiven_W = \beta_0 + \beta_1 SearchScore_W + u_W$$

Second stage:

```
UVE_W = \beta_0 + \beta_1 Aid \hat{G}iven_{W-lag} + \beta_2 RVE_W + \beta_3 Average Precipitation_W + \beta_4 Average Wind Speed_W + u_W
```

Where UVE shows Ukrainian-instigated events; RVE shows Russian-instigated events

Regressions on Russia

```
# Russia regressions no lag
basic_reg_russia <- lm(percent_change_russia ~ percent_change_aid + percent_change_ukraine, data = bywe
# Regressions one week lag
basic_reg_lag1_russia <- lm(percent_change_russia ~ week_lag_percent_aid + percent_change_ukraine, data
# Regressions two week lag
basic_reg_lag2_russia <- lm(percent_change_russia ~ twoweek_lag_percent_aid + percent_change_ukraine, d
# Instrument
inst_basic_russia <- ivreg(formula = percent_change_russia ~ percent_change_aid + percent_change_ukrain</pre>
output_russia <- huxreg(basic_reg_russia,</pre>
                basic_reg_lag1_russia,
                basic_reg_lag2_russia,
                inst_basic_russia,
                 coefs = c("Aid" = "percent_change_aid",
                           "Ukrainian-instigated events change (%)" = "percent_change_ukraine",
                           "Aid lagged one week" = "week_lag_percent_aid",
                           "Aid lagged two weeks" = "twoweek_lag_percent_aid")) %>%
  set_caption("Percent Change Aid Russia") %>%
  set_markdown_contents(1, 2, "OLS") %>%
  set_markdown_contents(1, 3, "OLS") %>%
  set_markdown_contents(1, 4, "OLS") %>%
  set_markdown_contents(1, 5, "2SLS")
output_russia
```

```
# Russia dummy variable regressions
# Regressions dummy no lag
basic_dummy_russia <- lm(percent_change_russia ~ aidgiven + percent_change_ukraine, data = byweek_data)</pre>
```

Ukrainian-Instigated Events on an Aid Dummy Variable

	OLS	OLS	OLS	2SLS	2SLS	2SLS
Constant	6.870	4.308	2.952	23.974	123.610	-24.768
	(10.569)	(10.958)	(10.759)	(23.566)	(139.127)	(37.574)
Aid (dummy)	-1.456			-24.152		
	(4.573)			(28.477)		
Aid lagged one week (dummy)		1.752			-155.673	
		(4.506)			(183.547)	
Aid lagged two weeks (dummy)			3.606			40.228
			(4.430)			(47.431)
Russian-instigated events change (%)	-0.135	-0.140	-0.136	-0.144	-0.144	-0.144
	(0.123)	(0.123)	(0.123)	(0.123)	(0.123)	(0.123)
Average precipitation	-1.557	-1.671	-1.715	-1.650	-1.650	-1.650
	(1.258)	(1.249)	(1.245)	(1.240)	(1.240)	(1.240)
Average wind speed	-0.127	-0.111	-0.109	-0.103	-0.103	-0.103
	(0.573)	(0.575)	(0.572)	(0.572)	(0.572)	(0.572)
N	141	141	141	141	141	141
R2	0.021	0.021	0.025	0.025	0.025	0.025

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

	OLS	OLS	OLS	2SLS
Aid	0.000			0.001
	(0.000)			(0.006)
Ukrainian-instigated events change (%)	-0.047	-0.053	-0.051	0.188
	(0.059)	(0.059)	(0.059)	(1.107)
Aid lagged one week		0.000		
		(0.000)		
Aid lagged two weeks			0.000	
			(0.000)	
N	141	141	141	141
R2	0.015	0.006	0.018	-17.080
logLik	-587.836	-588.494	-587.655	
AIC	1183.673	1184.987	1183.310	

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

```
set_caption("Aid as a Dummy Variable Russia") %>%
set_markdown_contents(1, 2, "OLS") %>%
set_markdown_contents(1, 3, "OLS") %>%
set_markdown_contents(1, 4, "OLS") %>%
set_markdown_contents(1, 5, "2SLS")
output_dummy_russia
```

Regressions on missiles

	OLS	OLS	OLS	2SLS
Aid	-0.591			-19.304
	(3.164)			(22.677)
Ukrainian-instigated events change (%)	-0.053	-0.054	-0.052	-0.069
	(0.060)	(0.059)	(0.060)	(0.069)
Aid lagged one week		2.525		
		(3.122)		
Aid lagged two weeks			-0.195	
			(3.104)	
N	141	141	141	141
R2	0.006	0.010	0.006	-0.246
logLik	-588.506	-588.190	-588.522	
AIC	1185.012	1184.380	1185.044	

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

 $RMU_W = \beta_0 + \beta_1 \text{PatriotAid}_W + \beta_2 \text{RDU}_W + \beta_3 \text{AveragePrecipitation}_W + \beta_4 \text{AverageWindSpeed}_W + u_W$

Where RMU shows Russian missile use; RDU shows Russian drone use

```
# Patriot aid on drone use (expect to increase)
missile_reg_drone <- lm(russian_drones ~ patriot_aid , data = byweek_data)
summary(missile_reg_drone)

##
## Call:
## lm(formula = russian_drones ~ patriot_aid, data = byweek_data)
##
## Residuals:
## Min 1Q Median 3Q Max</pre>
```

Russian Missile Use on Patriot Aid

	OLS	OLS		
Constant	13.611 ***	14.620 *		
	(0.979)	(5.753)		
Patriot aid	-4.603 *	-4.663 *		
	(1.794)	(1.824)		
Russian drone use		0.002		
		(0.056)		
Average precipitation		-0.345		
		(0.585)		
Average wind speed		-0.032		
		(0.278)		
N	141	141		
R2	0.045	0.048		
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$.				

```
## -38.848 -10.848 2.152 12.139 35.152
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                           1.527 26.088 <2e-16 ***
## (Intercept) 39.848
## patriot_aid -2.987
                           2.799 -1.067
                                            0.288
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 16.7 on 139 degrees of freedom
## Multiple R-squared: 0.008128, Adjusted R-squared:
## F-statistic: 1.139 on 1 and 139 DF, p-value: 0.2877
ex <- lm(russian_missiles ~ russian_drones, data = byweek_data)
summary(ex)
```

```
##
## Call:
## lm(formula = russian_missiles ~ russian_drones, data = byweek_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.742 -7.685 -3.500 3.514 44.988
##
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
                 12.07448
                             2.36086 5.114 1.02e-06 ***
## (Intercept)
## russian drones 0.01420
                             0.05542 0.256
                                                0.798
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 10.96 on 139 degrees of freedom
## Multiple R-squared: 0.000472, Adjusted R-squared: -0.006719
## F-statistic: 0.06564 on 1 and 139 DF, p-value: 0.7982
# Drone regressions (russian drone activity on anti drone aid)
antidrone_reg <- lm(russian_drones ~ antidrone_aid, data = drones_dataset)
summary(antidrone_reg)
##
## Call:
## lm(formula = russian_drones ~ antidrone_aid, data = drones_dataset)
## Residuals:
                     1Q
                            Median
## -1.900e-15 -1.900e-15 -1.900e-15 -1.900e-15 3.007e-11
## Coefficients:
##
                  Estimate Std. Error
                                       t value Pr(>|t|)
## (Intercept)
                 1.000e+00 1.821e-15 5.49e+14
                                                  <2e-16 ***
## antidrone_aid -1.876e-15 7.565e-15 -2.48e-01
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.306e-13 on 17008 degrees of freedom
     (705 observations deleted due to missingness)
                        0.5, Adjusted R-squared:
## Multiple R-squared:
## F-statistic: 1.701e+04 on 1 and 17008 DF, p-value: < 2.2e-16
ggplot(aes(x = week), data = byweek_data) +
 geom_smooth(aes(y = rescale(russian_missiles), color = "Russian missile use")) +
 geom_smooth(aes(y = rescale(russian_drones), color = "Russian drone use")) +
 geom smooth(aes(y = rescale(patriot aid), color = "Patriot aid provided")) +
 scale_color_manual(values = c("Russian missile use" = "blue", "Russian drone use" = "orange", "Patrio")
 labs(title = "Russian Missile and Drone Use Compared with Patriot Aid",
      x = "Week",
      y = "Rescaled Amounts",
      color = "Legend") +
 theme_minimal(base_family = "Times New Roman") +
 theme(
   text = element_text(family = "Times New Roman"),
   axis.title = element_text(family = "Times New Roman"),
   axis.text = element_text(family = "Times New Roman"),
   plot.title = element_text(family = "Times New Roman"))
## geom_smooth() using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
```

