

Key Equations:

$$Y = X + Z$$

 $X \sim Laplacian(0,\sigma_X), \quad \sigma_X = 1$

 $Z \sim Gaussian(0, \sigma_Z), \quad \sigma_Z^2 = 0.1$

X : Original SignalZ : Random NoiseY : Noisy Signal

$$P_{x}(x) = \frac{1}{2\sigma_{x}}e^{-\frac{|x|^{\alpha}}{\sigma_{x}}}$$

 $0.5 < \alpha < 1$

$$P_z(z) = \frac{1}{\sigma_z \sqrt{2\pi}} e^{-\frac{z^2}{2\sigma_z^2}}$$

MMSE Estimate:
$$\hat{X}(y) = \arg\min_{\hat{x}(y)} \mathbb{E}[(x - \hat{x}(y))^2]$$

Estimation of X

$$\hat{X}(y) = \mathbb{E}[X|Y] = \int x \cdot P_{x|y}(x|y) \, dx$$

$$= \int \frac{x \cdot P_x(x) \cdot P_{y|x}(y|x) \, dx}{P_y}$$

$$= \frac{\int x \cdot P_x(x) \cdot P_{y|x}(y|x) \, dx}{\int P_x(x) \cdot P_{y|x}(y|x) \, dx}$$

$$= \frac{\int x \cdot P_x(x) \cdot P_z(y-x) \, dx}{\int P_x(x) \cdot P_z(y-x) \, dx}$$
Final Integral Solved by numerical integration

Plots of X vs estimation (varying alpha)

Key Equations

$$Y = X + Z$$

X : Original Image X : Original Image Z : Random Noise μ_x : Loss pass Component

Y: Noisy Image X_1 : High Pass Component

$$\mu_Y = \mu_X + \mu_Z$$

where, $\mu_{v} = Y(i, j) \circledast W(k, l)$

W is a 2d gaussian kernel

$$\mu_z \approx 0$$
 and $\mu_X \approx \mu_Y$
 $\therefore X \approx \mu_Y$

At low frequencies noise is negligible compares to signal

Thus, the de-noised estimate of X is the low pass component of Noisy image

 $X = \mu_{x} + X_{1}$

The low pass component is found by convolution of Noisy image with gaussian kernel

$$\hat{X}(y) = \mu_y$$

(Low pass de-noised estimate of X)

Input Image

X: Original Clean Image

Y: Noisy Image (Gaussian Noise added)

Note: In practical de-noising we don't have access to X and only work with Y

MSE for different filter parameters

$$MSE = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (\hat{X}(i,j) - X(i,j))^{2}$$

Variance/Filter Size	[3X3]	[7X7]	[11X11]
0.1	60.48	60.48	60.48
1	36.82	37.30	37.30
2	38.44	42.27	43.44
4	38.79	44.54	47.72
8	38.97	45.33	49.14

MSE plot for different filter parameters

RESULT

BEST estimate of X

Low pass gaussian:

Estimates are computed by convolution of nosy image with a symmetric gaussian kernel

Best Estimate:

Filter Size: [3X3]

Variance: 1 MSE: 36.82

Key Equations

$$Y = X + Z$$

X: Original Image

Z: Random Noise

Y: Noisy Image

$$Y \sim Gaussian(0,\sigma_Y)$$

$$X \sim Gaussian(0,\sigma_X)$$

$$Z \sim Gaussian(0, \sigma_Z), \quad \sigma_Z = 10$$

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

$$X = \mu_x + X_1$$

X : Original Image

 μ_x : Loss pass Component

*X*₁: High Pass Component

$$\mu_Y = \mu_X + \mu_Z$$
$$Y_1 = X_1 + Z_1$$

where,
$$\mu_{v} = Y(i, j) \circledast W(k, l)$$

(W is a 2d gaussian kernel)

$$W(k, l) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{k^2 + l^2}{2\sigma^2}\right)$$

MMSE Estimate

$$X = \mu_x + X_1$$

$$\hat{X} = \hat{\mu}_x + \hat{X}_1(y)$$

$$\hat{\mu}_x \approx \mu_y$$

$$\hat{X}_1(Y_1) \approx \frac{\sigma_x^2}{\sigma_x^2 + \sigma_z^2} \cdot Y_1$$

$$\hat{X} = \mu_y + \frac{\sigma_x^2}{\sigma_x^2 + \sigma_z^2} \cdot Y_1$$

MMSE Estimate: Linear Estimate for high pass component

where:

$$\sigma_Y = \frac{1}{MN} \sum_{i=1}^M \sum_{j=1}^N \left(Y(i,j) - \bar{Y} \right)^2$$

$$\bar{Y} = \frac{1}{MN} \sum_{i=1}^M \sum_{j=1}^N Y(i,j)$$

$$\sigma_{Z} = \left\{ [1 - W(0,0)]^{2} + \sum_{i=1, i \neq 0}^{M} \sum_{j=1, j \neq 0}^{N} (Y(i,j) - \bar{Y})^{2} \right\} \sigma_{Z}^{2}$$

$$\sigma_{X}^{2} = \sigma_{Y}^{2} - \sigma_{Z}^{2}$$

(Noise and Image variance)

2 Methods

- Ordinary: De-noise the entire image at once
- Adaptive: De-noise image in patches of [32X32] with an overlap of 16

MSE for different filter parameters(Ordinary)

$$MSE = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (\hat{X}(i,j) - X(i,j))^{2}$$

Variance/Filter Size	[3X3]	[7X7]	[11X11]
0.1	100.12	100.12	100.12
1	67.76	67.99	67.98
2	63.94	71.65	72.61
4	63.26	74.32	77.75
8	63.22	75.18	79.28

MSE plot for different filter parameters(ordinary)

RESULT (ordinary)

Ordinary MMSE:

Estimates is computed at once for entire image

Best Estimate:

Filter Size: [3X3] Standard dev: 8

MSE: 63.22

MSE for different filter parameters(Adaptive)

$$MSE = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (\hat{X}(i,j) - X(i,j))^{2}$$

Variance/Filter Size	[3X3]	[7X7]	[11X11]
0.1	100.12	100.12	100.12
1	56.39	51.94	51.93
2	49.62	45.99	46.08
4	48.34	46.604	47.90
8	48.18	46.96	48.66

MSE plot for different filter parameters(Adaptive)

RESULTS (Adaptive)

Adaptive MMSE:

Estimates are computed separately for patches of size [32X32] with an overlap of 16

Best Estimate:

Filter Size: [7X7] Standard dev: 2 MSE: 45.99

2.2. Image de-noising by adaptive Shrinkage estimate

Key Equations

$$Y = X + Z$$

X : Original Image

Z: Random Noise

Y: Noisy Image

$$Y \sim Gaussian(0,\sigma_Y)$$

$$X \sim Gaussian(0,\sigma_X)$$

$$Z \sim Gaussian(0, \sigma_Z), \quad \sigma_Z = 10$$

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

$$X = \mu_x + X_1$$

X : Original Image

: Loss pass Component

: High Pass Component

$$\mu_Y = \mu_X + \mu_Z$$

$$Y_1 = X_1 + Z_1$$

where, $\mu_{v} = Y(i, j) \circledast W(k, l)$

(W is a 2d gaussian kernel)

$$W(k, l) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{k^2 + l^2}{2\sigma^2}\right)$$

Shrinkage Estimate

$$X = \mu_x + X_1$$
$$\hat{X} = \hat{\mu}_x + \hat{X}_1(y)$$

$$\hat{\mu}_{\chi} = \mu_{y}$$

$$\hat{X}_{1}(Y_{1}) = \operatorname{sgn}(Y_{1}) \cdot \{ \mid Y_{1} \mid -t \}_{+}$$
 Shrinkage Estimate: Linear Estimate for high pass component
$$\hat{X} = \mu_{y} + \operatorname{sgn}(Y_{1}) \cdot \{ \mid Y_{1} \mid -t \}_{+} \cdot Y_{1}$$

SUREshrink

$$SURE(t, y_{1}(i,j)): MN\sigma_{z_{1}}^{2} + \sum_{i=1}^{M} \sum_{j=1}^{N} g[y_{1}(i,j)]^{2} + 2\sigma_{z_{1}}^{2} \sum_{i=1}^{M} \sum_{j=1}^{N} g'[y_{1}(i,j)]$$

$$\sum_{i=1}^{M} \sum_{j=1}^{N} g[y_{1}(i,j)] = \sum_{i=1}^{M} \sum_{j=1}^{N} \min(y_{1}(i,j), t)^{2} \qquad \sum_{i=1}^{M} \sum_{j=1}^{N} g'(y_{1}(i,j)) = -\left| \{(i,j): |Y_{1}(i,j)| < t\} \right|$$

Overview of process

Haar wavelet transform of image

SURE-shrink threshold

SURE is an unbiased estimate and is often used to find optimal threshold t when only information about the noise variance is available.

SURE function value is repeatedly called for different values of t to find the optimal threshold.

RESULTS

Adaptive shrinkage:

Estimates are computed separately for patches of size [32X32] with an overlap of 16

Best Estimate:

Optimal t : 10 MSE: 50.75