Analysis Qualifying Exam, March 24, 2016, 9:00 a.m. — 1:00 p.m.

Students should solve four real analysis problems (numbered 1–6) and four complex analysis problems (numbered 7–12).

Problem 1. Let

$$K_t(x) = (4\pi t)^{-3/2} e^{-|x|^2/4t}, \quad x \in \mathbf{R}^3, \ t > 0,$$

where |x| is the Euclidean norm of $x \in \mathbf{R}^3$.

• Show that the linear map

$$L^3(\mathbf{R}^3) \ni f \mapsto t^{1/2} K_t * f \in L^\infty(\mathbf{R}^3)$$

is bounded, uniformly in t > 0. Here

$$K_t * f(x) = \int_{\mathbf{R}^3} K_t(x - y) f(y) \, dy$$

is the convolution.

• Prove that $t^{1/2}||K_t * f||_{L^{\infty}} \to 0$ as $t \to 0$, for $f \in L^3(\mathbf{R}^3)$.

Problem 2. Let $f \in L^1(\mathbf{R})$. Show that the series

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} f(x - \sqrt{n})$$

converges absolutely for almost all $x \in \mathbf{R}$.

Problem 3. Let $f \in L^1_{loc}(\mathbf{R})$ be real valued and assume that for each integer n > 0, we have

$$f\left(x+\frac{1}{n}\right) \ge f(x),$$

for almost all $x \in \mathbf{R}$. Show that for each real number $a \geq 0$ we have

$$f(x+a) \ge f(x),$$

for almost all $x \in \mathbf{R}$.

Problem 4. Let V_1 be a finite-dimensional subspace of the Banach space V. Show that there exists a continuous projection $P: V \to V_1$, i.e., a continuous linear map $P: V \to V$ such that $P^2 = P$ and the range of P is equal to V_1 .

Problem 5. For $f \in C_0^{\infty}(\mathbf{R}^2)$ define u(x,t) by

$$u(x,t) = \int_{\mathbf{R}^2} e^{ix\cdot\xi} \frac{\sin(t|\xi|)}{|\xi|} f(\xi) d\xi, \quad x \in \mathbf{R}^2, \quad t > 0.$$

Show that $\lim_{t\to\infty} ||u(\cdot,t)||_{L^2} = \infty$ for a set of f that is dense in $L^2(\mathbf{R}^2)$.

Problem 6. Suppose that $\{\phi_n\}$ is an orthonormal system of continuous functions in $L^2([0,1])$ and let S be the closure of the span of $\{\phi_n\}$. If $\sup_{f \in S \setminus \{0\}} \frac{||f||_{\infty}}{||f||_{2}}$ is finite, prove that S is finite dimensional.

Problem 7. Determine

$$\int_0^\infty \frac{x^{a-1}}{x+z} \, dx,$$

for 0 < a < 1 and Re z > 0. Justify all manipulations.

Problem 8. Let $\mathbf{C}_+ = \{z \in \mathbf{C}; \operatorname{Im} z > 0\}$ and let $f_n : \mathbf{C}_+ \to \mathbf{C}_+$ be a sequence of holomorphic functions. Show that unless $|f_n| \to \infty$ uniformly on compact subsets of \mathbf{C}_+ , there exists a subsequence converging uniformly on compact subsets of \mathbf{C}_+ .

Problem 9. Let $f: \mathbf{C} \to \mathbf{C}$ be entire and assume that |f(z)| = 1 when |z| = 1. Show that $f(z) = Cz^m$, for some integer $m \ge 0$ and $C \in \mathbf{C}$ with |C| = 1.

Problem 10. Does there exist a function f(z) holomorphic in the disk |z| < 1 such that $\lim_{|z| \to 1} |f(z)| = \infty$? Either find one or prove that none exist.

Problem 11. Assume that f(z) is holomorphic on |z| < 2. Show that

$$\max_{|z|=1} \left| f(z) - \frac{1}{z} \right| \ge 1.$$

Problem 12. ¹

- (a) Find a real-valued harmonic function v defined on the disk |z| < 1 such that v(z) > 0 and $\lim_{z \to 1} v(z) = \infty$.
- (b) Let u be a real-valued harmonic function in the disk |z| < 1 such that $u(z) \le M < \infty$ and $\limsup_{r \to 1} u(re^{i\theta}) \le 0$ for all $\theta \in (0, 2\pi)$. Show that $u(z) \le 0$. The function in part (a) is useful here.

The following version of the problem is better than the original: Let u be a real-valued harmonic function in the disk |z| < 1 such that $u(z) \le M < \infty$ and $\lim_{r \to 1} u(re^{i\theta}) \le 0$ for almost all θ . Show that $u(z) \le 0$.