

Why

We discuss a decomposition using eigenvalues and eigenvectors.¹

Defining result

An eigenvalue decomposition of a matrix $A \in \mathbb{R}^{n \times n}$ is an ordered pair (X, Λ) in which X is invertible, Λ is diagonal, and $A = X\Lambda X^{-1}$.

In this case, $AX = X\Lambda$, in other words,

$$\left[\begin{array}{ccc} A \end{array}\right] \left[\begin{array}{cccc} x_1 & \cdots & x_m\end{array}\right] = \left[\begin{array}{cccc} x_1 & \cdots & x_m\end{array}\right] \left[\begin{array}{cccc} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n\end{array}\right].$$

in which x_i is the ith column of X and λ_i is the ith diagonal element of Λ . We have $Ax_i=\lambda_i x_i$ for $i=1,\ldots,n$. In other words, the ith column of X is an eigenvector of A and the jth entry of Λ is the corresponding eigenvalue. If X is orthonormal, so that $X^{-1}=X^{\top}$, then we can interpret such a decomposition as a change of basis to eigenvector coordinates. If Ax=b, and $A=X\Lambda X^{-1}$ then $(X^{-1}b)=\Lambda(X^{-1}x)$. Here, $X^{-1}x$ expands x is the basis of columns of X. So to compute Ax, we first expand into the basis of columns of X, scale by Λ , and then interpret the result as the coefficients of a linear combination of the columns of X.

In this case that $A = X\Lambda X^{\top}$ for an eigenvalue decomposition (X,Λ) of A, we can also write

$$A = X\Lambda X^{\top} = \sum_{i=1}^{n} \Lambda_{ii} x_i x_i^{\top}.$$

Proposition 1. Every real symmetric matrix has an eigenvalue decomposition (X, Λ) in which X is orthonormal.²

¹Future editions will expand.

 $^{^2}$ In future editions, this may be the motivating result for the definition of eigenvalues.

