

python - HW1

임베디드스쿨1기 Lv1과정 2020. 7. 28 김인겸

1. 부정적분

$$\int f(x)\mathrm{d}x = F(x) + C$$

부정적분은 미분되기 전의 함수를 구하는 것이다.

함수 F(x)는 f(x)의 수많은 부정적분 중 하나이다.

2. 정적분의 정의

1) 정적분이란? 정적분은 구간 [a,b]에서 함수 f(x)와 x축으로 둘러싸인 도형의 넓이를 구하는 것이다.

2. 정적분의 정의

2) 정적분 값을 계산하는 방법

구간 [a,b]에서 함수f(x)와 x축으로 둘러싸인 도형의 넓이는 수많은 직사각형의 합으로 생각할 수 있다.

x의 증가량과 그 증가량에 해당하는 y좌표의 곱이 하나의 직사각형을 의미한다 직사각형을 n개 만들고 극한을 취하면 둘러싸인 면적의 넓이를 구할 수 있다.

이때 f(x)≥0 이면 정적분의 값은 양수 이고 f(x)<0이면 정적분의 값은 음수이다

$$\int_a^{
alpha} f(x) dx = \lim_{n o \infty} \sum_{k=1}^n f(x_k) \Delta x$$

한분의 정의는 다음과 같다
$$\sum_{n o\infty}^n f(x_k)\Delta x \qquad \left(x_k=a+k\Delta x,\; \Delta x=rac{b-a}{n}
ight)$$

3. 미적분의 기본정리

1) 미적분의 기본정리1

미적분의 기본정리 1은 f(x)의 부정적분 중의 하나가 $\frac{d}{dx}\int\limits_a^x f(t)dt$ 임을 의미한다.

3. 미적분의 기본정리

2) 미적분의 기본정리2

f(x)의 또 다른 부정적분 F(x)가 있다고 할때, 미적분기본정리1에 의해 다음 식이 성립한다.

$$S_{\alpha}^{x}f(x)dx = F(x) + C - 0$$

$$xon acholored,$$

$$0 = F(\alpha) + C$$

$$C = -F(\alpha) - 0$$

$$S_{\alpha}^{z}f(x)dx = F(x) - F(\alpha)$$

$$Chiming U$$

$$S_{\alpha}^{x}f(x)dx = F(b) - F(\alpha)$$

3. 미적분의 기본정리

3) 미적분의 기본정리의 의미

정적분은 원래 수열의극한을 이용한 넓이 계산인데 n차 함수, 삼각함수등의 함수를 수열의극한을 이용해서 매번 계산하기엔 복잡하고 어렵다.

미적분 기본정리에 의해 정적분의 값을 다음과 같이 부정적분의 함숫값의 차이로 계산할 수 있게 되었다. (더 편하게 계산할 수 있게 되었다는 뜻)

$$\int_a^b f(t)dt = F(b) - F(a)$$

수식편집기 사용하는게 서툴러서 a4용지에 필기한 걸 올렸습니다. 다음에는 편집해서 올리겠습니다