# Depth from Accidental Motion using Geometry Prior

★ Top 10% paper



Sunghoon Im, Gyeongmin Choe, Hae-Gon Jeon, In So Kweon Korea Advanced Institute of Science and Technology



#### Motivation

## Cameras for depth estimation

- Light-field camera Low spatial resolution
- Short depth range





Stereo camera

## Depth from accidental motion

- Mobile phone camera (or) DSLR
- Off-the-shelf Camera
- Handshaking (Inevitable motion)
- Narrow-baseline
- 3sec (100 frames)





#### Contribution

- High quality depth map is estimated from popularized mobile phone
- Feature extraction remove features on moving objects and extract very accurate features
- Sparse 3D reconstruction set reliable initial camera poses
- Dense 3D reconstruction geometry prior assists to remove an artifact on frontal parallel scene

#### Feature extraction

- Feature extraction
- Harris corner & KLT tracker

## Remove features on moving objects

- Compute homography
- Initial R, T compute by homography decomposition
- Feature Inlier voting

$$H = K(R^T + \frac{Tn^T}{d})K^{-1}$$









## **Sparse 3D reconstruction**

#### Geometric model for small motion

- Rotation matrix Small angle approximation
- Key to estimate pose and depth without any prior depth information

## Bundle adjustment

- LM optimization
- Without depth information Random depth initialization

$$F = \sum_{i=1}^{N_I} \sum_{j=1}^{N_F} ||p_{ij} - \pi(K(R_i P_j + T_i))||^2$$

#### Dense 3D reconstruction

Objective function

$$E(D) = E_c(D) + \lambda E_g(D)$$

- Color consistency
  - Color term Neighboring pixel with similar color have similar depth [2,3]

$$E_c(D) = \sum_{p \in I_{ref}} \left( D_p - \sum_{q \in N_8(p)} w_{pq}^c D_q \right)^2$$
 solution 
$$w_{pq}^c = \frac{1}{N_c} \exp\left( \frac{-|I_p^{lab} - I_q^{lab}|}{\gamma_c} \right)$$

- Normal estimation
- Using local plane fitting Color-based propagation





Input

**Sparse points** 

Normal map

## Geometry consistency

- Low spatial resolution
- Normal should be pre-calculated

$$E_g(D) = \sum_{p \in I_{ref}} \sum_{q \in G_w(p)} w_{pq}^g |\mathbf{n}_p \cdot (D_p X_p - D_q X_q))|$$



## **Experiments**

Comparison with state-of-the-art (Captured by Google Galaxy Nexus)













Yu and Gallup [1]

Comparison with/without Geometry consistency (Captured by Google Galaxy Nexus)











Yu and Gallup [1]

**Conventional Propagation [3]** 

**Proposed Propagation** 

Result of our datasets (Captured by Canon EOS60D)











## Reference

[1] Yu, Fisher, and David Gallup. "3D Reconstruction from Accidental Motion."Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014.

[2] Wang, Liang, and Ruigang Yang. "Global stereo matching leveraged by sparse ground control points." Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011. [3] Park, Jaesik, et al. "High quality depth map upsampling for 3D-TOF cameras." IEEE International Conference on Computer Vision (ICCV), 2011.

## Acknowledge

This research is supported by the Study on Imaging Systems for the next generation cameras funded by the Samsung Electronics Co., Ltd (DMC R&D center) (IO130806-00717-02).

Homepage



https://sites.google. com/site/shimrcv/