

Kartézský součin dvou automatů KIV/TI – Semestrální práce

Student: Kateřina Kalabzová, Ladislav Čákora

Osobní číslo: A23B0152B, A23B0149P

Email: kalabzok@students.zcu.cz, cakoral@students.zcu.cz

Obsah

1	Zad	ání		2									
2	Ana	alýza úl	· · · · · · · · · · · · · · · · · · ·	3									
	2.1	Návrh	automatů	3									
	2.2	Návrh	programové implementace	3									
34	Automatový model												
	3.1	Autom	at A_1	3									
		3.1.1	Popis vstupních a výstupních signálů	3									
		3.1.2	Přechodový graf	3									
	3.2	Autom	at A_2	4									
		3.2.1	Popis vstupních a výstupních signálů	4									
		3.2.2	Přechodový graf	4									
	3.3		at A	4									
			Popis vstupních a výstupních signálů	4									
			Přechodový graf	5									
4	Imp	$_{ m lement}$	ace	5									
	4.1		у	5									
		- ,	load_images(directory)	5									
			redraw(label, active state, images)	5									
			main()										
	4.2		Automat (soubor automat.py)										
			Matice přechodové funkce										
			Atributy										
		4.2.3	init(matrix, start)	4 4 4 5 5 5 5 6 6 6 6 6 6 6 6									
		_	move(input)										
			reset()	6									
5	IJži	Uživatelská příručka											
	5.1		ní programu	6									
	5.2	-		7									
6	Záv	ŏr		7									

1 Zadání

Navrhněte dva rozpoznávací KA A_1 a A_2 , které budou rozpoznávat tyto jazyky:

```
L_1 = \{w|w \text{ obsahuje podřetězec} - bbab - \}

L_2 = \{w|w \text{ neobsahuje podřetězec} - bbb - \}
```

Následně vytvořte jejich kartézský součin A, který bude rozpoznávat průnik jazyků $L_1 \cap L_2$.

V jazyku Python vytvořte program, který "standardním způsobem"zobrazí přechodové grafy obou parciálních automatů i jejich kartézského součinu s vybarvenými počátečními stavy. Program umožní postupně zadávat vstupní řetězec z klávesnice. Po zadání jednoho znaku všechny automaty provedou přechod, tj. zobrazí se přechodové grafy se žlutě vybarvenými sktuálními stavy.

Kromě písmen vstupní abecedy program umožní také zpracovat 2 speciální znaky, které umožní ukončení zpracovávání řetězce a zahájení zpracování nového řetězce (RESET), respektive ukončenáí programu (STOP).

Pozn: Oproti zadání byla vyměněna žlutá barva za modrou z důvodu lepší viditelnosti.

2 Analýza úlohy

2.1 Návrh automatů

Před implementací programu je potřeba navrhnout oba konečné automaty A_1 a A_2 a následně vytvořit kartézský součin A těchto automatů.

2.2 Návrh programové implementace

Nejprve je nunté stanovit přechodovou funkci a zapsat ji ve vhodné podobě pro využití v programu, což je například tabulka dané přechodové funkce.

V dalším kroku se musí vytvořit grafická reprezentace automatů A_1 , A_2 a A. To je možné buď programově, nebo zobrazováním obrázků podle stavů a jednotlivých přechodů.

Po těchto krocích už bude možné implementovat samotný program.

3 Automatový model

3.1 Automat A_1

Tento automat má akceptovat řetězce obsahující podřetězec -bbab-. Tento automat bude mít pět stavů, jeden pro každý možný prefix hledaného podřetězce. Stavy jsou číslovány zleva.

3.1.1 Popis vstupních a výstupních signálů

Znak	0	1	2	3	4
a	0	0	3	0	4
b	1	2	2	4	4

3.1.2 Přechodový graf

3.2 Automat A_2

Tento automat má zamítnout řetězce obsahující podřetězec -bbb-. Tento automat bude mít čtyři stavy, jeden pro každý možný prefix hledaného podřetězce. Stavy jsou číslovány zleva.

3.2.1 Popis vstupních a výstupních signálů

Znak	0	1	2	3
a	0	0	0	3
b	1	2	3	3

3.2.2 Přechodový graf

3.3 Automat A

Tento automat má akceptovat řetězce obsahující podřetězec -bbab- a zároveň zamítnout všechny řetězce obsahující -bbb-. Tento automat byl sestaven kartézským součinem automatů A_1 a A_2 . Stavy jsou číslovány po řádcích zleva (počáteční stav je 0, stav po řetězci bba je 1). Dále je možné zredukovat pět stavů ve spodní řádce do jednoho. Žádný z nich není koncovým stavem automatu a zároveň není možné z žádného z nich přejít do stavu, který by nepatřil do této množiny.

3.3.1 Popis vstupních a výstupních signálů

Znak	0	1	2	3	4	5	6	7	8	9	10	11
a	0	0	2	0	2	1	2	7	7	10	7	11
b	3	4	4	5	6	9	11	8	9	9	11	11

3.3.2 Přechodový graf

4 Implementace

4.1 main.py

Soubor poskytující funkce pro načtení obrázků zobrazujících jednotlivé stavy, které vykreslí pomocí knihovny pro tvorbu grafických rozhraní tkinter. Zároveň je zde zajištěna tvorba okna, přepínání obrázků a obsluha stisknutí jednotlivých kláves.

Díky povaze úlohy stačí zajistit obsluhu modelu automatu vzniklého kartézským součinem, jelikož ke každému stavu z výsledného automatu A lze přiřadit právě jeden stav z automatu A_1 a právě jeden stav z automatu A_2 .

4.1.1 load images(directory)

Funkce pro načtení obrázků z adresáře directory, počítá s existencí obrázků **0.png** až **11.png**. Pokud se některý z obrázků nepodaří načíst, vrátí se pole úspěšně načtených. Pokud se podaří načíst vše, vrátí se všech 12.

4.1.2 redraw(label, active state, images)

Funkce vyvolá překreslení obrázku. Z pole obrázků images vybere obrázek odpovídající stavu active_state.

4.1.3 main()

Funkce obstarává hlavní běh programu. Vytvoří instanci modelu automatu A a vytvoří okno pro zobrazování obrázků s přechodovými grafy. Zároveň zajistí reakce na stsiknutí kláves odpovídajících znakům vstupní abecedy (a, b), resetu (r) a ukončení programu (Escape).

4.2 Třída Automat (soubor automat.py)

4.2.1 Matice přechodové funkce

Matice přechodové funkce automatu je v tomto případě matice M o rozměrech $V \times S$, kde počet řádků V odpovídá velikosti vstupní abecedy a počet sloupců S je počet stavů automatu. Prvek M[v,s] je potom index stavu, do kterého automat přejde při vstupu znaku v, pokud je zrovna ve stavu s. Tato matice je v aplikaci naimplementována polem, které obsahuje odpovídající pole indexů pro daný vstupní symbol.

4.2.2 Atributy

- matrix Matice odpovídající přechodové funkci automatu. Každý vstupní znak odpovídá jednomu řádku, každý sloupec jednomu stavu.
- current Index současného stavu.
- start Index počátečního stavu.
- inputs Namapování vstupních symbolů na indexy řádků v matici.

4.2.3 init (matrix, start)

Kontruktor třídy. Parametr matrix odpovídá matici přechodové funkce, parametr start odpovídá indexu počátečního stavu automatu.

4.2.4 move(input)

Posune stav automatu na základě současného stavu self.current, matice přechodové funkce self.matrix a vstupního znaku input. Změní self.current na index nového stavu zároveň nový index vrátí.

4.2.5 reset()

Funkce provede návrat do počátečního stavu self.start. Nastaví self.current na hodnotu počátečního stavu a tuto hodnotu vrátí.

5 Uživatelská příručka

5.1 Spuštění programu

Pro spuštění je třeba mít nainstalované běhové prostředí jazyka Python. Poté v něm stačí spustit soubor **main.py**.

5.2 Ovládání

Aplikace reaguje na stisk kláves "a", "b", "r" a "Escape". Klávesy "a" a "b" reprezentují symboly vstupní abecedy automatu. Klávesa "r" vrací automat do počátečního stavu a vyresetuje vizualizaci. "Escape" aplikaci ukončí.

6 Závěr

V této semestrální práci jsme si vyzkoušeli jiný způsob grafického zpracování, než na který jsme zvyklí, a to přepínání jednotlivých předem vytvořených obrázků podle vstupu od uživatele. Byli bychom rádi za možnost řešení semestrální práce i v jiných jazycích než Python nebo Java, vzhledem k tomu že momentálně pracujeme nejvíce v jazyce C#.

Zajímavé rozšíření by bylo například zautomatizování vykreslování automatů a jednotlivých přechodů, aby změna automatů zároveň vytvořila nový odpovídající graf.