- 15. Given the following circuit with LEDs, signal the CORRECT answer between the following, taking into account the following parameters: For LEDs, V_{LED} =1.5V and I_{LED} = 10mA, and for NAND gate, V_{OL} =0.15V y V_{OH} =4.5V (V_{CC} = 5V).
- [A] The LEDs will shine properly with a resistor. higher than 150Ω. × Pehaps don't shine
- [B] The LEDs will shine properly with a resistor lesser or equal than 150Ω . \checkmark We can LEDS with State of the strong LEDS with State of the st
- [C] The LEDs will shine properly with a resistor of 150Ω. 🖊
- [D] The LEDs will not shine for any of the logic level outputs of the NAND gate.

the LEDs will shine properly with a resistor of seser or equal than
$$150\Omega$$
.

The LEDs will shine properly with a resistor of I and I are sistor of I and I are sistor of I and I are sistor of I are LEDs will not shine for any of the logic I and I are sistor of I and I are sistor of I and I are sistor of I are LEDs will not shine for any of the logic I are LEDs will not shine for any of the logic I are I and I are I and I are I and I are I and I are I are I and I are I and

16. We have a TTL circuit (for example, an AND gate) that performs a generic function F. We want to light a LED when F = "0". Design a circuit for this purpose..

10. Given the following clipping circuit, and for $V\gamma$ =0.7V for all diodes, calculate Vs when Ve = 6V.

10. Given the following clipping circuit, and for $V\gamma$ =0.7V for all diodes, calculate Vs when Ve = 6V.

Then sol is (B): Ve= 6V-7 Vs= Ve _ 3V

- 8. a) Implement, using logic gates composed only by diodes and resistors, the logic equation F = AB + CD.
 - b) Calculate the output voltage of the designed circuit, for the following input combinations (assume all resistors value as R and ideal diodes):

b1.
$$A = B = C = D = 0$$

b2.
$$A = B = 1$$
; $C = D = 0$

11. Given the circuit of the figure, determine which of the following curves (A,B,C,D) is its corresponding transference curve.

