Einführung in die lineare und kombinatorische Optimierung Serie 4

Maurice Althoff (FU 4745454) Michael R. Jung (HU 502133) Felix Völker (TU 331834)

13. November 2014

1 Aufgabe 16

Eingabe: ein Graph $G=(V,E), c\in E$ mit Kantengewichten $c(W)\forall e\in E$ Ausgabe: Wald $W\subseteq E$ mit max Gewicht c(W)

- 1. (Sortieren): Ist k die Anzahl der Kanten von G mit positivem Gewicht, so numeriere diese k Kanten, so dass gilt $c(e_1) \ge c(e_2) \ge \ldots \ge c(e_k) > 0$.
- 2. Setze $W := \emptyset$.
- 3. FOR i=1 TO k DO: Falls $W\cup\{e_i\}$ keinen Kreis enthält, setze $W:=W\cup\{e_i\}$
- 4. Gib W aus.

Induktionsannahme:

 W_{i-1} ist ein maximaler Wald, der die ersten i-1 vom Greedy-Max Algorithmus bestimmte Kanten $e_1, ..., e_{i-1}$ enthält.

Induktionsschritt: $i - 1 \rightarrow i$:

Zu seigen, es gibt einen maximalen Wald W_i , der die vom Algorithmus ausgewählten Kanten $e_i \forall j \geq i$ enthält.

Der Algorithmus wählt die im i-ten Schritt die Kante e_i aus, für diese Kante muss gelten: $c(e_1) \ge c(e_K) \forall \notin W_{i-1}$, so dass $W_{i-1} \cup \{e_K\}$ keinen Kreis enthält.

Da W_{i-1} einen Wald ist, insbesondere $\forall e_K \in W_{i-1} \setminus \{e_1, ..., e_{i-1}\}$, d.h. für alle Kanten in W_{i-1} , die der Greedy Algorithmus noch nicht gewählt hat.

Füge nun diese Kante e_i zu W_{i-1} hinzu. Dann entsteht in W_{i-1} ein Kreis, da W_{i-1} bereits ein maximaler Wald war und durch hinzufügen einer Kante genau ein Kreis entsteht.

Entfernte aus diesem Kreis die Kante K, wobei $k \neq e_j \forall j \geq i$ ist. Diese Kante existiert in W_{i-1} , da der Greedy Max-Algorithmus sonst einen Kreis fabriziert hätte.

D.h. $W_i := (W_{i-1} \setminus \{k\}) \cup \{e_i\}$ ist ein Wald, der $e_j \forall j \geq i$ enthält und ausserdem maximal ist, da $c(e_i) \geq c(k)$.