

Universidade do Minho

Escola de Ciências

Departamento de Matemática e Aplicações

Folha 4

Exercício 4.1 Determine a matriz jacobiana das seguintes funções:

- a) $\mathbf{f}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que $\mathbf{f}(x,y) = (x,y)$;
- b) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $f(x,y) = (xe^y + \cos y, x, x + e^y)$;
- c) $\mathbf{f}: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $\mathbf{f}(x,y) = (xye^{xy}, x \operatorname{sen} y, 5xy^2);$
- d) $\mathbf{f}: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que $\mathbf{f}(x, y, z) = (x y, y + z)$;
- e) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que $f(x, y, z) = (x + y + e^z, x^2 y)$.

Exercício 4.2 Considere as funções

- a) Calcule Df((-1,0,-1);(2,3,-1)) e Dg((-1,0,-1);(2,3,-1)).
- b) Calcule Df(-1,0,1) e Dg(-1,0,1).

Considere a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto (3x,x+2y)$ Exercício 4.3

- a) Calcule a matriz jacobiana de f.
- b) Justifique que a função f é derivável.
- c) Calcule a derivada da função f no ponto (1,2); compare a função Df(1,2) com a função f.
- d) Dado $(x_0, y_0) \in \mathbb{R}^2$, calcule $D\mathbf{f}(x_0, y_0)$.

Considere a função $\boldsymbol{f}: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ $(x,y) \longmapsto (2x^2,3y,2xy)$ Exercício 4.4

- a) Calcule a matriz jacobiana de f.
- b) Justifique que a função f é derivável e calcule a derivada da função f no ponto (1,1).
- c) Determine Df(1,1)(2,3).

Calcule as derivadas parciais de 2ª ordem das seguintes funções e averigue em que casos Exercício 4.5 as derivadas mistas são iguais.

a)
$$f(x,y) = \frac{2xy}{(x^2 + y^2)^2}$$
;
b) $f(x,y) = \cos(xy^2)$;
c) $f(x,y) = e^{-xy^2} + y^3x^4$;
d) $f(x,y) = \frac{1}{\cos^2 x + e^{-y}}$.

Mostre que a função $g(x,t)=2+e^{-t}\sin x$, satisfaz a equação do calor $\frac{\partial g}{\partial t}=\frac{\partial^2 g}{\partial x^2}$. Exercício 4.6

Verifique que $f_{xzw} = f_{zwx}$ para $f(x, y, z, w) = e^{xyz} \operatorname{sen}(xw)$. Exercício 4.7

Exercício 4.8 Usando o teorema de Schwarz, mostre que não pode existir uma função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ cujas derivadas parciais de primeira ordem sejam:

a)
$$f_x(x,y) = 2x^3$$
, $f_y(x,y) = yx^2 + x$;
b) $f_x(x,y) = x \operatorname{sen} y$, $f_y(x,y) = y \operatorname{sen} x$.

b)
$$f_x(x,y) = x \operatorname{sen} y$$
, $f_y(x,y) = y \operatorname{sen} x$.

Considere a função $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ definida por Exercício 4.9

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

- a) Determine f_x e f_y .
- b) Calcule $f_{xy}(0,0)$ e $f_{yx}(0,0)$.
- c) Explique porque não há contradição com o teorema de Schwarz.

Exercício 4.10 Considere as funções

Determine $\nabla h(x, y)$.

Considere a função $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ e $a \in \mathbb{R}$. $(x,y,z) \longmapsto x^2y - xz$ Exercício 4.11

- a) Calcule Df(1,0,0)(1,2,2).
- b) Determine a de modo que a função $g: \mathbb{R} \longrightarrow \mathbb{R}$ tenha derivada nula. $t \longmapsto f(at^2, at, t^3)$

Exercício 4.12 Seja $f:\mathbb{R}\longrightarrow\mathbb{R}$ uma função derivável. Considere a função $F:\mathbb{R}^2\longrightarrow\mathbb{R}$ tal que F(x,y)=f(xy). Mostre que $x\frac{\partial F}{\partial x}=y\frac{\partial F}{\partial y}$.

Exercício 4.13 Calcule:

a)
$$\frac{du}{dt}$$
, onde $u = \ln\left(\sin\frac{x}{y}\right)$ e $x = 3t^2$, $y = \sqrt{1 + t^2}$;

b)
$$\frac{\partial w}{\partial p} = \frac{\partial w}{\partial q}$$
, onde $w = r^2 + s^2 = r = pq^2$, $s = p^2 \sin q$;

c)
$$\frac{\partial z}{\partial s}$$
 e $\frac{\partial z}{\partial t}$, onde $z = x^2 \sin y$ e $x = s^2 + t^2$, $y = 2st$.

Exercício 4.14 Sejam $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ funções duas vezes deriváveis e seja

$$\begin{array}{cccc} h: & \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ & (x,y) & \longmapsto & f(x+y) + g(x-y) \end{array}$$

Verifique que $\frac{\partial^2 h}{\partial x^2} - \frac{\partial^2 h}{\partial y^2} = 0$.