Josip Babin Tonči Bavčević Viktor Moretti Prethodno priopćenje

KANONIČKE RELACIJE LATENTNE MORFOLOŠKE STRUKTURE I VARIJABLI SNAGE UČENICA U DOBI OD ŠEST DO SEDAM GODINA

1. UVOD

Integrativni razvoj cjelovitog antropološkog statusa učenika jedan je od temeljnih imperativa u nastavi tjelesne i zdravstvene kulture.

Ostvarivanje navedenog cilja moguće je jedino uz opsežno poznavanje internih odnosa i stupnja uvjetovanosti niza specifičnih dimenzija čovjekova bio-psiho-socijalnog statusa. Samo na temelju tako generiranih i znanstveno dokazanih spoznaja moguće je planirati i programirati sadržaje rada koji će u kvalitativnom smislu omogućiti ispunjavanje autentičnih potreba svakog pojedinca, kao prioritetnog cilja pedagoškog djelovanja (Findak, 1999.).

Ovo istraživanje ima za cilj definiranje odnosa morfoloških dimenzija i parametara motoričke snage učenica u dobi od šest do sedam godina.

Poznavanje interne strukture te smjera i veličine povezanosti navedenih dimenzija, nužno je za razumijevanje dinamike filogeneze motorike i morfologije, kao i za strukturiranje nastavnih sadržaja usmjerenih optimalizaciji rezultata rada te cjelovitom i usklađenom razvoju niza antropoloških dimenzija.

2. METODE RADA

Uzorak od 294 ispitanika sastavljen je od učenica prvih razreda osnovnih škola u Splitu, a istraživanje je provedeno u školskoj godini 2004./05., u sklopu metodičke prakse studenata Filozofskog fakulteta Sveučilišta u Splitu, smjer učitelj.

Baterijom od četrnaest morfoloških (Katić i Viskić-Štalec, 1996.) i tri motoričke varijable (Findak i sur., 1996.) izmjerene su sljedeće dimenzije:

- Longitudinalna dimenzionalnost skeleta: visina tijela (AVIS), dužina noge (ADN), dužina ruke (ADR)
- Transverzalna dimenzionalnost skeleta: raspon ramena (ARR), raspon zdjelice (ARZ), dijametar ručnog zgloba (ADRZ), dijametar koljena (ADKL)
- Volumen i masa tijela: težina tijela (ATT), opseg podlaktice (AOPL), opseg potkoljenice (AOPK), opseg grudnog koša (AOGK)

- Potkožno masno tkivo: kožni nabor nadlaktice (AKNN), kožni nabor leđa (AKNL), kožni nabor trbuha (AKNT)
- Dimenzije snage: skok udalj s mjesta (MSDM) eksplozivna snaga nogu, podizanje trupa do sjeda (MDTS) repetitivna snaga trupa, izdržaj u visu zgibom (MVIS) statička snaga ruku i ramenog pojasa.

Nad dobivenim podacima izračunati su parametri deskriptivne statistike, dok je za definiciju latentne strukture morfološkog prostora korištena faktorska analiza. Kanonička korelacijska analiza uporabljena je za definiciju relacija morfološkog i motoričkog prostora. Za obradu podataka korišten je programski paket Statistica 7.1.

3. REZULTATI I DISKUSIJA

Upotrebom faktorske analize iz prostora morfoloških varijabli ekstrapolirane su dvije glavne komponente (tablica 1.). Varimax normaliziranom rotacijom faktorska opterećenja generirala su strukturu latentnih komponenti definiranih kao voluminoznost i masno tkivo te longitudinalna dimenzionalnost skeleta. Tako definirani faktori objašnjavaju 54,31% odnosno 15,22% varijance manifestnog morfološkog prostora.

Tablica 1. Parametri deskriptivne statistike i faktorska struktura morfološkog prostora

Variiabla	Deskriptivni parametri		
Varijable	AS	SD	
AVIS	1269,23	53,97	
ADN	711,14	39,72	
ADR	521,06	29,19	
ARR	269,37	14,99	
ARZ	199,24	14,43	
ADRZ	40,36	2,47	
ADKL	74,17	4,62	
ATT	260,62	46,02	
AOPL	175,43	15,81	
AOPK	261,91	22,81	
AOGK	592,00	46,88	
AKNN	128,90	39,59	
AKNL	81,45	37,21	
AKNT	84,51	53,98	
MSDM	103,91	17,23	
MDTS	20,21	6,87	
MVIS	98,73	81,73	

	Faktori		
	f1	f2	
	0,13	0,92	
	0,14	0,86	
	0,13	0,81	
	0,17	0,67	
	0,38	0,56	
	0,31	0,64	
	0,54	0,57	
	0,71	0,61	
	0,78	0,32	
	0,75	0,40	
	0,79	0,39	
	0,83	0,11	
	0,88	0,09	
	0,89	0,09	
·	·		
ë	7,60	2,13	
% var	54,31	15,22	

Legenda: AS – aritmetička sredina, SD – standardna devijacija, f1, f2 – faktori, ë – svojstvene vrijednosti, % varijance – postotak varijance objašnjen latentnom dimenzijom

S ciljem definiranja tipa i veličine povezanosti morfoloških karakteristika i motoričkih sposobnosti tipa snage, provedena je kanonička korelacijska analiza (tablica 2.).

Prvi kanonički skup sastavljen je od ekstrapoliranih latentnih dimenzija morfološkog prostora definiranih kao voluminoznost i masno tkivo te longitudinalna dimenzionalnost skeleta, dok je drugi skup predstavljen trima motoričkim varijablama snage i to slijedom: skok udalj s mjesta (MSDM) – eksplozivna snaga nogu, podizanje trupa do sjeda (MDTS) – repetitivna snaga trupa, te izdržaj u visu zgibom (MVIS) – statička snaga ruku i ramenog pojasa.

Tablica 2. Kanoničke relacije između latentnih morfoloških dimenzija i varijabli snage

		CAN 1
	Latentne morfološke dimenzije	
ovi	f1 – Voluminoznost i masno tkivo	-0,998
Kanonički skupovi	f2 – Longitudinalna dimenzionalnost skeleta	0,055
čki s	Varijable snage	
onië	MSDM – eksplozivna snaga	0,695
Kan	MDTS – podizanje trupa do sjeda	0,026
	MVIS – statička snaga	0,861
	R	0,41

Legenda: CAN 1 – kanonički korijen, R – kanonička korelacija

Provedena kanonička analiza izolirala je jedan značajan par kanoničkih dimenzija, s faktorom kanoničke korelacije 0,41 što ukazuje na visok stupanj povezanosti latentnih morfoloških dimenzija i varijabli snage.

U osnovi ekstrapoliranog kanoničkog korijena nalazi se statistički značajna i negativno usmjerena povezanost između latentne morfološke dimenzije definirane kao voluminoznost i masno tkivo te varijabli eksplozivne i statičke snage.

Dakle, generalni model povezanosti morfoloških karakteristika i dimenzija snage u ovom životnom razdoblju, ukazuje na snažnu međusobnu uvjetovanost volumena i mase tijela te količine potkožnog masnog tkiva s dimenzijama eksplozivne i statičke snage. Očito je struktura tijela, definirana odnosom mišićnog i masnog tkiva, presudan faktor manifestacije dimenzija snage (Katić, 1999.).

Apliciraju li se ovakvi zaključci na testirani uzorak ispitanika, uočava se antropološki nepovoljna struktura tijela s prevelikim udjelom balastnog tkiva i

nedovoljnim udjelom mišićnog tkiva, koja kod učenica ove dobi posljedično dovodi do insuficijentne motoričke manifestacije u području snage.

Dobiveni nalazi upućuju na nužnost planiranja i programiranja nastavnih sadržaja s ciljem optimalizacije odnosa količine potkožnog masnog tkiva i mišićne mase, čime se ostvaruje mogućnost maksimizacije motoričkog funkcioniranja u širokom spektru sposobnosti, a poglavito u dimenzijama snage (Katić, 2003.).

Dakle, kvalitetna nastava tjelesne i zdravstvene kulture u ovom životnom razdoblju trebala bi, kao jedan od osnovnih prioriteta, imati redukciju masnog tkiva i povećanje mišićne mase, prije svega velikih mišićnih skupina. Nastava saturirana sadržajima koji ostvaruju navedene ciljeve u stanju je odgovoriti na niz značajnih razvojnih imperativa, kao što su optimalizacija filogeneze somatotipa, pravilno usmjeravanje motoričkog razvoja, a posljedično i preventivno djelovanje na zdravstveni status učenika.

Navedena potreba integrativnog antropološkog razvoja, naslanja se na dobro poznate i znanstveno provjerene postavke o cjelovitom i međusobno uvjetovanom razvoju svih ljudskih dimenzija. Upravo stoga poznavanje interne strukture i povezanosti niza antropoloških dimenzija, predstavlja preduvjet kvalitetnom i svrsishodnom radu u nastavi tjelesne i zdravstvene kulture, budući da se uravnotežen i skladan razvoj kognitivne, konativne i motoričke sfere pojedinca ističe kao jedan od dominantnih ciljeva.

4. ZAKLJUČAK

Rezultati provedenog istraživanja ukazali su na visoki stupanj povezanosti latentne strukture morfološkog prostora i dimenzija snage. Posebice je apostrofiran negativan utjecaj povećane količine potkožnog masnog tkiva, u odnosu na mišićno tkivo, što za posljedicu ima smanjenje manifestacije motoričkih sposobnosti, tj. u konkretnom slučaju dimenzija eksplozivne, repetitivne i statičke snage.

Navedeni nalazi upućuju na nužnost strukturiranja nastavnih sadržaja usmjerenih na ostvarivanje redukcije potkožnog masnog tkiva i povećanje mišićne mase, a s ciljem generiranja optimalnih odnosa za integralan i uravnotežen razvoj svih antropoloških dimenzija.

5. LITERATURA

1. Findak, V., Metikoš, D., Mraković, M., Neljak, B. (1996.). Primijenjena kineziologija u školstvu – NORME. Hrvatsko pedagoško-književni zbor, Zagreb.

- 2. Findak, V. (1999.). Metodika tjelesne i zdravstvene kulture. Priručnik za nastavnike tjelesne i zdravstvene kulture. Školska knjiga, Zagreb.
- 3. Katić, R., Viskić-Štalec, N. (1996.). Taksonomska analiza morfoloških karakteristika i motoričkih sposobnosti sedmogodišnjih dječaka. Hrvatski športskomedicinski vjesnik, 11 (1), 16-24.
- 4. Katić, R. (1999.). Utjecaj rasta i razvoja na povezanost morfoloških karakteristika i motoričkih sposobnosti djevojčica. Školski vjesnik, 48 (1), 23-32.
- 5. Katić, R. (2003.). Identifikacija biomotoričkih sklopova kao preduvjet programiranja kineziološke edukacije djece od 7. do 9. godina života. Collegium Antropolpgicum, 27 (1), 351-360.