

				Sub	ject	Coc	le: F	CE	079
Roll No:									

Printed Page: 1 of 2

B.TECH. (SEM VII) THEORY EXAMINATION 2021-22 DESIGN OF STEEL STRUCTURES

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

2. IS 800 : 2007 & Steel Table allowed

SECTION A

1. Attempt all questions in brief.

Q no.	Question	Marks	СО
a.	Write the advantages of steel structure.	2	1
b.	What are the seismic forces?	2	1
c.	How you classified the connections provided in steel structures?	2	2
d.	Draw the neat sketch of slot and plug welds.	2	2
e.	What do you understand by block shear failure?	2	3
f.	Define shear leg.	2	3
g.	What are the compression members?	2	4
h.	Define Squashing.	2	4
i.	What are the Spandrel beam?	2	5
j.	What are the two important assumptions have to be made to achieve the ideal beam behavior?	2	5

SECTION B

2. Attempt any *three* of the following:

Q no.	Question	Marks	CO
a.	A tension bar 100mm X 100 mm is to carry a load of 150 kN. A specimen of the same quality steel of cross section are 800 mm ² was tested in workshop. The maximum load carried by the specimen was 400 kN. Find the ultimate tensile strength, factor of safety in the design and gauge length.	10	1
b.	With neat sketch explain how force transfer of HSFG bolts.	10	2
c.	Design a suitable angle section to carry a factored tensile force of 210 kN assuming a single row of M20 bolts. The yield strength and ultimate strength of the material is 250 MPa and 410 MPa, respectively. The length of the member is 3 m.	10	3
d.	Determine the design axial load on the column section ISMB @ 710.3 N/m, height of column is 4 m and is pin-ended . Assume That $f_y = 250$ N/mm ² , E=2 x10 ⁵ N/mm ² .	10	4
e.	Write the design procedure of I- section Purlins.	10	5

SECTION C

3. Attempt any *one* part of the following:

.	recempt any one part of the fond wing.		
Q no.	Question	Marks	CO
a.	Explain Cold formed light gauge sections and what are the problem associated with light gauge sections?	10	1
b.	A steel chimney 2.5 m diameter is situated in a region where the intensity of wind pressure is 1000 N/m2. Assuming the wind pressure to be uniform, calculate the shear force due to wind load at a level 10 m below the top of chimney.	10	1

				Sub	ject	Coc	le: F	CE	2079)
Roll No:										

Printed Page: 2 of 2

4. Attempt any *one* part of the following:

	g-		
Q no.	Question	Marks	CO
a.	A tie member consist of 2 ISMC 250. The channels are connected on	10	2
	either side of a 12 mm thick gusset plate. Design the welded joint to develop the full strength of the tie. However, the overlap is to be limited		
	400 mm.		
b.	How you will be Design of bearing bolts subjected to eccentric loading	10	2
	in the plane perpendicular to the groups of bolts.		

5. Attempt any *one* part of the following:

	recempt any one part of the following.		
Q no.	Question	Marks	CO
a.	Define lateral-torsional buckling with neat sketch and also write the assumptions.	10	3
b.	A double angle section back – to –back 2 ISA 90x90x10 is riveted with 24 mm rivets to a 20 mm gusset plate on one side. Determine the section capacity in tension and also the number of rivets required for develop the 85% tension capacity.	10	3

6. Attempt any *one* part of the following:

0.	recempt any one part of the following.		
Q no.	Question	Marks	CO
a.	Design a built-up column consisting of two channels placed toe-to-toe. The column carries an axial factored load of 1500 kn. The effective height of the column is 10 m. Design the lacing also. Assume Fe 415 grade steel.	10	4
b.	With neat sketches describe failure modes of an axially loaded columns.	10	4

7. Attempt any *one* part of the following:

, •	recempt any one part of the fond wing.		
Q no.	Question	Marks	CO
a.	Design a simply supported beam of span 3.5 m subjected to a factored	10	5
	bending moment of 300 kNm and factored shear of 140 kN. The beam		
	is laterally unsupported. Steel grade of Fe410.		
b.	A simply supported beam of span 4.5 m consist of rolled steel section	10	5
	ISLB 450 @ 640 N/m. The compressive flange is laterally unsupported.		
	Determine the design bending strength of the beam.		