Table of Contents

	. 1
Create a 3D rotation matrix	
Create a 3D rotation matrix using trplot or tranimate	. 1
Transform a vector using the rotation matrix	
Invert the rotation and multiply by the original	
Reverse the multiplication and what is the result?	
Determinant of rotation and its inverse	3

```
% Chapter 2 Exercise 5
clc;
clear all
close all
```

Create a 3D rotation matrix

```
phi = pi/6;
theta = -pi/4;
psi = pi/2;
R_1_0 = rotz(psi)*roty(theta)*rotx(phi)
R_1_0 =
    0.0000    -0.8660     0.5000
    0.7071    -0.3536     -0.6124
    0.7071     0.3536     0.6124
```

Create a 3D rotation matrix using trplot or tranimate

```
trplot(R_1_0)
% tranimate(R_1_0)
```


Transform a vector using the rotation matrix

Invert the rotation and multiply by the original

```
R_inv = inv(R_1_0);
result = R_inv*R_1_0
```

Reverse the multiplication and what is the result?

Determinant of rotation and its inverse

Published with MATLAB® R2017a