Numerical Solution of 1-D-energy balance

Differential equation

$$C \frac{\partial T}{\partial t} = \frac{S}{Y} (1-\alpha) - (A+BT) + \frac{\partial}{\partial x} (D(1-x^2) \frac{\partial T}{\partial x})$$
= Funktion(x,t)

 $X = \sin \theta$

$$S = S(x,t) = \frac{Q_0}{4} (1 - 0.241 \cdot (3x^2 - 1))$$
, $Q_0 = Solar Const.$
 $T = T(x,t)$

$$T = T(x,t)$$
 $f(x)$

$$\alpha = \alpha(x,t)$$

$$\mathcal{D} = \mathcal{D}(x)$$

$$X = -1$$
, $Xi = -1 + (i-1) \cdot AX$, $i = 1$, $Xi = -1 + (i-1) \cdot AX$

The equation is solved by assuming an initial T I= (Ti, Time) and calcutate I(t) at each timestep.

Boundary Couditions:

Set up the difference equation: Set up the equation to calculate Till $\frac{\partial T(x_i, t_i)}{\partial t} = \frac{T_i^{j+1} - T_i^{j}}{1 + t_i}$ $\left[\frac{\partial}{\partial x}\left(\mathcal{D}\left(1-x^{2}\right)\frac{\partial T}{\partial x}\right)\right]_{i,j}=\frac{\mathcal{D}_{i+1}^{j}\left(1-x_{i+1}^{2}\right)\left(\frac{\partial T}{\partial x}\right)_{i+1,j}-\mathcal{D}_{i}^{j}\left(1-x_{i}^{2}\right)\left(\frac{\partial T}{\partial x}\right)_{i+2,j}}{\Delta x}$ $= \mathcal{D}_{i+1}^{j} \left(1 - x_{i+1}^{2}\right) \frac{T_{i+1} - T_{i}}{\Delta x} - \mathcal{D}_{i}^{j} \left(1 - x_{i}^{2}\right) \frac{T_{i} - T_{i-1}}{\Delta x}$ = T_{i+1} · $\frac{D_{i+1}(1-x_{i+1}^2)}{(Ax)^2}$ + $T_i \frac{1}{(Ax)^2}(-D_{i+1}(1-x_{i+1}^2)-D_i(1-x_i^2))$ + $T_{i-1} \frac{D_{i-1}(1-x_{i-1}^2)}{(Ax)^2}$ = $T_{i+1} lam_{i+1}^{i}$ + $T_i(-lam_{i+1}^i-lam_i^i)$ + $T_{i-1} lam_{i-1}^i$ We solve the equations by the explicit method: Cat(xi,ti) = Funktion (xi,tj) C Ti+1-Ti = 4 Qofi (1-xi) - (A + BTi) + Tillamiti Ti+1 at c (400-fi(1-xi)-A) + At. Titi (Lami) + AtTi-1 to lami)

"Ni, 1+1

+ At Ti to (-B-lami) + Ti

"Ni, 1-1

"

Let us now solve the equations by the implicit method:

I.e. Funktion is now calculated as an average between the values at current time to and the next timestep time.

de

$$-\left(\frac{1}{2}N - \Delta t^{2}\right)T^{j+1} = \frac{1}{2}Src^{j+1} + \frac{1}{2}Src^{j} + \frac{1}{2}N \cdot T^{j} + \Delta t T^{j}$$

$$= \frac{1}{2}(Src^{j+1} + Q^{j}) + \Delta t T^{j}$$

For the program	
D is a constant in time, this implies.	that
Ni+1 = N the matrix is constant in tin	
$MJ^{+1} = M$	
Program Flow Chart:	
4	
Define parameters ce, det NMAX, delx,	Toffset
Calculate initial parameters To allo srco,	N
Calculate initial parameters T, allo, src, , , the N. T. + Ser, Tg	lob
-timestepping loop. j=1, NMAX.	7
Calculate for j: alloi, scri	- lel
Calculate for j: alloi, scri $T^{j} = -inv(\underline{M}) \cdot (\frac{1}{2}(h^{j-1} + scr))$	j)+ 13
↓	
hi= N.T+ scri	
$Tglob^j = mean(T^j).$	
I.	
Check Tglob - Tglob < 1,10-12	
No 1	
yes	
V.	
inv (M) = inv (ZN - II) } Are calculated in se	tra lastM.
The concentration of St	- of of astrona

 $\overline{\mathbb{N}}$