Pauli – X gate		Pauli Y gate		Pauli Z gate		Hadamard Gate		
NOT gate		Phase-flip and Bit flip gate		Phase-flip gate		Coin flip		
Bit-flip						50%-50 % distribution		
						Qubit is in Superposition state in computational basis		
X 0>= 1>		Y 0>=i 1>		Z 0>= 0>		$H 0>=1/\sqrt{2(0>+ 1>)}$		
X 1> = 0>		Y 1>=-i 0>		Z 1>= - 1>		$H 1>=1/\sqrt{2(0>- 1>)}$		
X= 1><0 + 0><1		Y=i 1><0>-i 0> 1>		Z= 0><0 - 1><1		(0) + (1) (0) - (1)		
						$H = \frac{ 0\rangle + 1\rangle}{\sqrt{2}} \langle 0 + \frac{ 0\rangle - 1\rangle}{\sqrt{2}} \langle 1 $		
$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$		$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$		
Rotates by π about the X-axis of the bloch		Rotates by π about the Y-axis of the bloch		Rotates by π about the Z-axis of the bloch sphere		Rotation around the axis located at halfway between x and z		
sphere π about the X-axis of the bloch		sphere		Rotates by h about the Z-axis of the bloch sphere		axis or Half rotation of the Bloch Sphere		
Sprice		spiicic		Computational Basis on the Bloch Sphere		Computational Basis on the Bloch Sphere		
					0> 1>		Computational Dasis on the Bloch Sphere	
Standard Basis on the Bloch Sphere		Standard Basis on the Bloch Sphere		Standard Basis on the Bloch Sphere		+>, -> are called Polar basis		
+X>	-X>	+Y>	-Y>	+ Z >	-Z>	+>	->	
(D)	(0)	(O)	(o)	(O)	(O))O))(0) x	
X 0> = 1>	X 1> = 0>	Y 0>= i 1>	Y 1>= -i 0>	Z 0>= 0>	Z 1>= - 1>	$H 0>=1/\sqrt{2(0>+ 1>)}$	$H 1>=1/\sqrt{2(0>- 1>)}$	
States of the qubit on Bloch sphere		States of the qubit on Bloch sphere		States of the qubit on Bloch sphere		States of the qubit on Bloch sphere		
o y	(O) y	y y	(a) Side (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	o) y	(0)	10)	(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	
Qphere: No	phase change	Phase: pi/2	Phase: -pi/2	No phase change	Phase change	Equiprobability	Equiprobability	
a d		Q	O	Ö	Q	Ó	Ŏ.	
XXX= X XYX= Y XZX= Z		YXY=-X YYY= Y YZY=-Z		ZXZ=-X ZYZ=-Y ZZZ= Z		HXH = Z HYH = -Y HZH = X		

S gate gate	Sdg/ S dagger/ S [†]	T gate	Tdg gate/ T dagger/ T [†]	P gate
 Induces π /2 phase Square root of Z gate 2VZ-gate Also called as π /4 S-gate is not its own inverse 	 Induces - π 2 phase S dagger is the conjugate transpose(or Hermitian transpose) of the S gate Inverse of the S gate 	 Induces π /4 phase forth root of the Z gate 4vZ-gate Also called as π /8 	 Induces - π /4 phase T dagger is the conjugate transpose(or Hermitian transpose) of the T gate Inverse of the T gate 	 Phase gate Parametrised gate Requires a parameters (φ)
SS=Z	S^{\dagger} S^{\dagger} = Z	TTTT=Z	$T\dagger T\dagger T\dagger T$	Ρ(φ)
P-gate with $\phi = \pi/2$	P-gate with $\phi = -\pi/2$	P-gate with $\phi = \pi/4$	P-gate with $\phi = -\pi/4$	φ is a real number
quarter -turn around the Bloch sphere rotates the qubit by $\pi/2$ radians along the z-axis		rotates the qubit by $\pi/4$ radians along the z-axis		Rotates the qubit with the parameters φ around the Z-axis direction.
S 0>= 0> S 1>=i 1>	$S^{\dagger} 0 >= 0 >$ $S^{\dagger} 1 >= -i 1 >$	T 0>= 0> T 1>=i 1>	$T^{\dagger} 0> = 0>$ $T^{\dagger} 1> = -i 1>$	Φ =0, we get identity
$\begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{2}} \end{bmatrix} \text{or} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{-\frac{i\pi}{2}} \end{bmatrix} \text{or} \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{bmatrix} \text{or} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{\sqrt{2}}(1+i) \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{-\frac{i\pi}{4}} \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{\sqrt{2}}(1-i) \end{bmatrix}$	$egin{bmatrix} 1 & 0 \ 0 & e^{i\phi} \end{bmatrix}$
S 0>= 0>	$S^{\dagger} 0>= 0>$ $S^{\dagger} 1>=-i 1>$	T 0>= 0> $T 1>=i 1>$	$T^{\dagger} 0>= 0>$ $T^{\dagger} 1>=-i 1>$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
ė ė				$\phi = \pi, Z$ $\phi = \pi/2, S$ $\phi = \pi/4, T$

Identity gate	Rotation Gates: Non-Clifford gates	Phase Gates	U
No operation, basis remain	Rotation through angle θ (radians) around the x-axis	Z	$\left[\begin{array}{cc} \cos(rac{ heta}{2}) & -e^{i\lambda}\sin(rac{ heta}{2}) \end{array}\right]$
unchanged	$R_x\left(heta ight) = egin{pmatrix} \cos\left(rac{ heta}{2} ight) & -i\sin\left(rac{ heta}{2} ight) \ -i\sin\left(rac{ heta}{2} ight) & \cos\left(rac{ heta}{2} ight) \end{pmatrix}$	S	$\left[e^{i\phi}\sin(rac{ heta}{2}) e^{i(\phi+\lambda)}\cos(rac{ heta}{2}) ight]$
I 0>= 0>	Rotation through angle θ (radians) around the y-axis		General form of a single unitary
I 1>= 1>		Sdg	• Single qubit rotation with $U(\theta, \phi, \lambda)$
Matrix representation:	$R_y\left(heta ight) = egin{pmatrix} \cos\left(rac{ heta}{2} ight) & -\sin\left(rac{ heta}{2} ight) \ \sin\left(rac{ heta}{2} ight) & \cos\left(rac{ heta}{2} ight) \end{pmatrix}$	_	parametrised gate
F1 07	(2)	T	most general of all single-qubit quantum gates
	Rotation through angle θ (radians) around the z-axis	T. 1	• Superposition : u(pi/2,0,pi)
[0 1]		Tdg	• P gate using $u(0,0,\lambda)$
	$R_{z}\left(heta ight)=egin{pmatrix} e^{-irac{ heta}{2}} & 0 \ 0 & e^{irac{ heta}{2}} \end{pmatrix}$	P	