Álgebra y conjuntos Booleanos¹ en sistemas de control

Lógica binaria

Funciones lógicas

Algebra de Boole

Mapas de Karnaugh

La lógica binaria consiste en variables binarias y operaciones lógicas.

La lógica binaria consiste en variables binarias y operaciones lógicas.

Las variables A, B, C, x, y, z, etc.

La lógica binaria consiste en variables binarias y operaciones lógicas.

Las variables A, B, C, x, y, z, etc.

Hay tres operaciones lógicas básicas:

Producto lógico AND(.)

Suma lógica OR(+)

Negación NOT(').

La lógica binaria consiste en variables binarias y operaciones lógicas.

Las variables A, B, C, x, y, z, etc.

Hay tres operaciones lógicas básicas:

Producto lógico AND(.)

Suma lógica OR(+)

Negación NOT(').

La aritmética binaria: 1 + 1= 10

Lógica binaria: 1 + 1 = 1

Funciones lógicas

$$y = f(x_{n-1}, x_{n-2}, \dots, x_1, x_0) \rightarrow \{0,1\} \quad donde \quad y, x_i \in \{0,1\}$$

Funciones lógicas

$$y = f(x_{n-1}, x_{n-2}, \dots, x_1, x_0) \rightarrow \{0,1\} \quad donde \quad y, x_i \in \{0,1\}$$

Funciones lógicas

$$y = f(x_{n-1}, x_{n-2}, \dots, x_1, x_0) \rightarrow \{0,1\} \quad donde \quad y, x_i \in \{0,1\}$$

Funciones lógicas de una variable

Existen cuatro funciones lógicas de una variable

x ₀	$f_0(x_0)$	$f_1(x_0)$	$f_2(x_0)$	$f_3(x_0)$
0	0	0	1	1
1	0	1	0	1

Funciones lógicas de una variable

Existen cuatro funciones lógicas de una variable

x ₀	$f_0(x_0)$	$f_1(x_0)$	$f_2(x_0)$	$f_3(x_0)$
0	0	0	1	1
1	0	1	0	1

Funciones lógicas de dos variables

		x_1	x_0		
Function	00	01	10	11	
f_0	0	0	0	0	
f_1	0	0	0	1	AND
f_2	0	0	1	0	
f_3	0	0	1	1	
f_4	0	1	0	0	
f_5	0	1	0	1	
f_6	0	1	1	0	EXCLUSIVE-OR (XOR)
f_7	0	1	1	1	OR
f_8	1	0	0	0	NOR
f_9	1	0	0	1	EQUIVALENCE (EQU)
f_{10}	1	0	1	0	
f_{11}	1	0	1	1	
f_{12}	1	1	0	0	
f_{13}	1	1	0	1	
f_{14}	1	1	1	0	NAND
f_{15}	1	1	1	1	

$$f_{AND}(x_1, x_0) = x_1 x_0$$

$$x_1 \longrightarrow x_1 x_0$$

$$x_1 \longrightarrow x_1 + x_0$$

$$f_{NOR}(x_1, x_0) = x_1 + x_0$$

$$f_{NOR}(x_1, x_0) = x_1 + x_0$$

$$f_{XNOR}(x_1, x_0) = \overline{x_1 \oplus x_0}$$

$$x_1 \longrightarrow \overline{x_1 \oplus x_0}$$

Representación de una función lógica:

F	entrada	Salida	
A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

a) Tabla de verdad

- b) Mapa de Karnaugh.
- c) Expresiones algebraicas.
- d) Logigramas.

Ejemplo

Algebra de Boole

Las leyes básicas del álgebra de Boole:

Propiedad Conmutativa: $A \cdot B = B \cdot A \text{ dual } A + B = B + A.$

Propiedad Asociativa: $A \cdot (B \cdot C) = (A \cdot B) \cdot C$ dual A + (B + C) = (A + B) + C.

Propiedad Distributiva: $A \cdot (B+C) = A \cdot B + A \cdot C \text{ dual } A + B \cdot C = (A+B) \cdot (A+C)$.

Reglas del algebra Booleana

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

$$3. A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + A = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot A = 0$$

9.
$$\overline{A} = A$$

10.
$$A + AB = A$$

11.
$$A + AB = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

TEOREMAS DE DeMORGAN

$$\overline{XY} = \overline{X} + \overline{Y}$$

$$\overline{X+Y} = \overline{X}\overline{Y}$$

TEOREMAS DE DeMORGAN

$$\overline{XY} = \overline{X} + \overline{Y}$$

$$\overline{X+Y} = \overline{X}\overline{Y}$$

EJEMPLO

Aplicar los teoremas de DeMorgan a las expresiones \overline{XYZ} y $\overline{X+Y+Z}$.

TEOREMAS DE DeMORGAN

$$\overline{XY} = \overline{X} + \overline{Y}$$

$$\overline{X+Y} = \overline{X}\overline{Y}$$

EJEMPLO

Aplicar los teoremas de DeMorgan a las expresiones \overline{XYZ} y $\overline{X+Y+Z}$.

$$\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$$

$$\overline{X + Y + Z} = \overline{X} \overline{Y} \overline{Z}$$

Simplificar la siguiente expresión utilizando técnicas del algebra de Boole:

$$AB + A(B + C) + B(B + C)$$

Simplificar la siguiente expresión utilizando técnicas del algebra de Boole:

$$AB + A(B + C) + B(B + C)$$

distributiva
$$AB + AB + AC + BB + BC$$

regla 7
$$AB + AB + AC + B + BC$$

regla 5
$$AB + AC + B + BC$$

regla 10
$$AB + AC + B$$

regla 10
$$B + AC$$

Aplicación de los teoremas de DeMorgan y del algebra de Boole a la expresión:

$$\overline{\overline{A+BC}+D(\overline{E+\overline{F}})}$$

Aplicación de los teoremas de DeMorgan y del algebra de Boole a la expresión:

$$\overline{\overline{A+B}\overline{C}}+D(\overline{E}+\overline{\overline{F}})$$

Teorema de DeMorgan

$$\overline{(\overline{A+B}\overline{C})} + (\overline{D(E+\overline{F})}) = (\overline{\overline{A+B}\overline{C}})(\overline{D(E+\overline{F})})$$

regla 9

$$(\overline{\overline{A} + B\overline{C}})(\overline{D(\overline{E} + \overline{F})}) = (A + B\overline{C})(\overline{D(\overline{E} + \overline{F})})$$

Teorema de DeMorgan

$$(A+B\bar{C})(\overline{D(\overline{E+\overline{F}})}) = (A+B\bar{C})(\bar{D}+(\overline{E+\overline{F}}))$$

$$(A+B\overline{C})(\overline{D}+(\overline{E+\overline{F}})) = (A+B\overline{C})(\overline{D}+E+\overline{F})$$

F	Entrada	Salida	
\boldsymbol{A}	В	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

I	Entrada	Salida	
\boldsymbol{A}	В	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

 $011 \rightarrow \overline{A}BC$ $100 \rightarrow A\overline{B}\overline{C}$ $110 \rightarrow AB\overline{C}$ $111 \rightarrow ABC$

SoP

Entradas			Salida
\boldsymbol{A}	В	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$011 \rightarrow \overline{A}BC$$

$$100 \rightarrow A\overline{B}\overline{C}$$

$$110 \rightarrow AB\overline{C}$$

$$111 \rightarrow ABC$$

SoP
$$X = \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

F	Entrada	Salida	
A	В	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$011 \rightarrow \overline{A}BC$$

$$100 \rightarrow A\overline{B}\overline{C}$$

$$110 \rightarrow AB\overline{C}$$

$$111 \rightarrow ABC$$

SoP
$$X = \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

$$000 \to A + B + C$$

$$001 \to A + B + \overline{C}$$

$$010 \to A + \overline{B} + C$$

$$101 \to A + B + \overline{C}$$

F	Entrada	Salida	
A	В	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

$$011 \rightarrow \overline{A}BC$$

$$100 \rightarrow A\overline{B}\overline{C}$$

$$110 \rightarrow AB\overline{C}$$

$$111 \rightarrow ABC$$
SoP
$$X = \overline{A}BC + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

$$000 \rightarrow A + B + C$$

$$001 \rightarrow A + B + \overline{C}$$

$$010 \rightarrow A + \overline{B} + C$$

$$101 \rightarrow A + B + \overline{C}$$

PoS $X = (A+B+C)(A+B+\bar{C})(A+\bar{B}+C)(A+B+\bar{C})$

Mapas de Karnaugh

Es un método sistemático para simplificar es simplificar una expresión booleana

Mapa de Karnaugh de una SoP

$$\overline{ABC} + \overline{ABC} + AB\overline{C} + ABC$$

$$\overline{ABC} + \overline{ABC} + AB\overline{C} + ABC$$

001 010 110 111

Paso 1. Agrupar (las celdas deben ser potencias de 2 (e.g, 1, 2, 4, 8, o 16)

Paso 1. Agrupar (adyacentes)

Paso 1. Agrupar

Paso 1. Agrupar

Paso 2. Determinar los productos para cada uno de los mapas de Karnaugh

Paso 2. Determinar los productos para cada uno de los mapas de Karnaugh

Paso 2. Determinar los productos para cada uno de los mapas de Karnaugh

Paso 2. Determinar los productos para cada uno de los mapas de Karnaugh

Paso 3. Obtener la expresión suma de productos mínima

Paso 3. Obtener la expresión suma de productos mínima

(a)
$$AB + BC + \overline{A}\overline{B}\overline{C}$$

Paso 3. Obtener la expresión suma de productos mínima

(a) $AB + BC + \overline{A}\overline{B}\overline{C}$

Paso 3. Obtener la expresión suma de productos mínima

(a) $AB + BC + \overline{A}\overline{B}\overline{C}$

(b)
$$\overline{B} + \overline{A}\overline{C} + AC$$

Mapa de Karnaugh a partir de la tabla de verdad

 $X = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$

Inputs A B C	Output	AB C O 1
	A	_ 00 1
0 0 0	1	
0 0 1	0	01
0 1 0	0	
0 1 1	0	$11 \left[\begin{pmatrix} 1 \end{pmatrix} \right] \left[\begin{pmatrix} 1 \end{pmatrix} \right]$
1 0 0	1 -	
1 0 1	0	10 1
1 1 0	1	
1 1 1	1	

Ejercicio

1. Simplificar la siguiente expresión usando las leyes y reglas del algebra de Boole

$$[A\overline{B}(C+BD)+\overline{A}\overline{B}]C$$

 $\overline{B}C$

2. Utilizar un mapa de Karnaugh para simplificar

$$A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C}$$

$$\bar{B} + \bar{A}C$$

$$[A\overline{B}(C+BD)+\overline{A}\overline{B}]C$$

$$(A\overline{B}C + A\overline{B}BD + \overline{A}\overline{B})C$$

$$(A\overline{B}C + A \cdot 0 \cdot D + \overline{A}\overline{B})C$$

$$(A\overline{B}C + \overline{A}\overline{B})C$$

$$(A\overline{B}C + \overline{A}\overline{B})C$$

$$A\overline{B}CC + \overline{A}\overline{B}C$$

$$A\overline{B}C + \overline{A}\overline{B}C$$

$$\overline{B}C(A + \overline{A})$$

$$\overline{B}C$$

$$A\overline{B}C + \overline{A}BC + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C}$$
$$101 + 011 + 011 + 000 + 100$$

EJEMPLO

$$\underline{\overline{B}}\,\overline{C}\,\overline{D} + \overline{A}B\,\overline{C}\,\overline{D} + AB\,\overline{C}\,\overline{D} + \overline{A}\,\overline{B}CD + A\overline{B}CD + \overline{A}\,\overline{B}C\overline{D} + \overline{A}BC\overline{D} + ABC\overline{D} + ABC\overline{D} + ABC\overline{D}$$

AB CI	00	01	11	10
00	ĀĒCD	ĀĒŪ	$\bar{A}\bar{B}CD$	$ar{ABCD}$
01	ĀBĒD	ĀBĒD	ĀBCD	ĀBCŌ
11	ABCD	ABCD	ABCD	$ABC\overline{D}$
10	ABCD	ABCD	ABCD	$A\overline{B}C\overline{D}$

$$\overline{D} + \overline{B}C$$

Condiciones indiferentes/superfluas

Inputs			8	Output
A	B	\boldsymbol{C}	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Sin condiciones indiferentes Y = ABC + ABCDCon condiciones indiferentes Y = A + BCD

Otras configuraciones

Tarea

Utilizar un mapa de Karnaugh para simplificar

$$\overline{W}\overline{X}\overline{Y}\overline{Z} + W\overline{X}YZ + W\overline{X}\overline{Y}Z + \overline{W}YZ + W\overline{X}\overline{Y}\overline{Z}$$

