Zagadnienie realizacji planu treningowego

Jan Izydorczyk, Filip Nikolow, Michał Żelasko, Tomasz Gargula

27 marca 2022

1 Wstęp

Problem, który rozwiązujemy to zagadnienie wyznaczenia najszybszej trasy (tras) między pobliskimi siłowniami pozwalającej na odbycie wszystkich zaplanowanych ćwiczeń (posiadających wszystkie potrzebne sprzęty).

2 Model matematyczny

2.1 Struktury danych

- \bullet N Liczba siłowni
- \bullet K Liczba maszyn które potrzebujemy do ćwiczeń
- \bullet V Zbiór wierzchołków reprezentujący położenia siłowni na mapie.
- $V_n \in V$ Wierzchołek, który reprezentuje położenie siłowni na mapie, $n \in \{1,2,...,N\}$
- V_0 Wierzchołek początkowy, reprezentujący początek i koniec trasy, $S_0=\emptyset,\ W_0=0$
- S Zbiór wszystkich wymaganych maszyn, |S| = K
- $S_n \in S$ Zbiór maszyn na n-tej siłowni, które zawierają się w S, $\bigcup_{n=1}^N S_n = S$
- \bullet E Zbiór czasów przejazdu między siłowniami.
- $E_{i,j} \in E$ Czas przejazdu pomiędzy siłownią i i j.
- \bullet W Zbiór czasów logistycznych, potrzebnych, żeby skorzystać z pojedynczych siłowni.
- \bullet $W_n \in W$ Czas logistyczny na ntej siłowni (czas potrzebny, żeby tam wejść, opłacić karnet, etc), $n \in \{1,2,...,N\}$

2.2 Postać rozwiazania

- $T\subseteq\{1,2,...,N\}$ indeksy wybranych siłowni
- \bullet π^T permutacja T, określająca kolejność odwiedzania wybranych siłowni.
- M = |T| liczba wybranych siłowni

2.3 Funkcja kosztu

$$f(\pi^T) = \sum_{n \in T} W_n + \sum_{i=1}^{M-1} E_{\pi^T(i), \pi^T(i+1)} + E_{0, \pi^T(1)} + E_{\pi^T(M), 0} \to \min$$

2.4 Warunki ograniczające

- $\bullet \ \bigcup_{i \in T} S_i = S$
- Trasa zaczyna i kończy się w punkcie $V_0:\pi^T(0)=V_0,\pi^T(M)=V_0$