Byte-Sized

Computer Science for Data People

Part 2: Maintainability

Principles of Successful Tech. Products

Can the product handle growing data volumes?

Can other people work on the system productively?

Can the product tolerate hardware, software, and human faults?

Aspects of Maintainability

Modularity

Splitting your product and teams into modules that are loosely coupled, tightly aligned

Clean Code

Writing developer-friendly code that encourages others to build on top of and reuse your work

Version Control

Using version control tools like Git to manage the collaboration process so you don't have to

Deep-Dive: Modularity

Big Ideas

- Every module / function should do only one thing
- Modules should interact using tightly-defined 'interfaces'
- Teams should be similarly organized, collaborating at their intersections

Benefits

- Tightly-defined modules can build on one another and be reused
- Modules can be swapped-out when requirements change
- Errors can be caught at the source using automated testing

Trying to find a bug in one long script that does 15+ things

Writing fifteen smaller functions and unit tests so that you don't have to

Related CS Concepts

- Single-Responsibility Principle
- Design by Contract
- Law of Demeter ('shy code')

Real-World Example

What users see

One cohesive product

What users don't see

Dozens of loosely-coupled, tightly-aligned teams owning individual features that share data through a shared hidden state

Deep-Dive: Clean Code

Big Ideas

- Don't repeat yourself: write short*, simple functions
- Tell a story using descriptive names, not comments
- Pass objects, collections, and functions as parameters

Benefits

- Errors are easier to spot and only have to be fixed in one place
- Reusing patterns means less code to write and read
- New team members are easier to onboard and get up to speed

Hastily writing code that's easier for a future developer to abandon than to fix

Writing clean code once and having future users thank you forever

Related CS Concepts

- Evils of Duplication
- Software Entropy ('broken windows')
- Functional Programming

Real-World Examples

```
#Downcast in order to save memory
def downcast(df):
   cols = df.dtypes.index.tolist()
   types = df.dtypes.values.tolist()
   for i,t in enumerate(types):
       if 'int' in str(t):
           if df[cols[i]].min() > np.iinfo(np.int8).min and df[cols[i]].max() < np.iinfo(np.in
t8).max:
               df[cols[i]] = df[cols[i]].astype(np.int8)
           elif df[cols[i]].min() > np.iinfo(np.int16).min and df[cols[i]].max() < np.iinfo(n</pre>
p.int16).max:
               df[cols[i]] = df[cols[i]].astype(np.int16)
           elif df[cols[i]].min() > np.iinfo(np.int32).min and df[cols[i]].max() < np.iinfo(n</pre>
p.int32).max:
               df[cols[i]] = df[cols[i]].astype(np.int32)
            else:
               df[cols[i]] = df[cols[i]].astype(np.int64)
        elif 'float' in str(t):
           if df[cols[i]].min() > np.finfo(np.float16).min and df[cols[i]].max() < np.finfo(n
p.float16).max:
               df[cols[i]] = df[cols[i]].astype(np.float16)
           elif df[cols[i]].min() > np.finfo(np.float32).min and df[cols[i]].max() < np.finfo
(np.float32).max:
               df[cols[i]] = df[cols[i]].astype(np.float32)
            else:
               df[cols[i]] = df[cols[i]].astype(np.float64)
        elif t == np.object:
            if cols[i] == 'date':
               df[cols[i]] = pd.to_datetime(df[cols[i]], format='%Y-%m-%d')
            else:
               df[cols[i]] = df[cols[i]].astype('category')
    return df
```


Real-World Examples

Real-World Examples

```
def compress_dataframe(df):
    """

Downcast dataframe and convert objects to categories to save memory
    """

def handle_numeric_downcast(array, type_):
    return pd.to_numeric(array, downcast=type_)

for type_ in ['integer', 'float', 'object']:
    column_list = df.select_dtypes(include=type_)

if type_ == 'object':
    df[column_list] = df[column_list].astype('category')
    else:
    df[column_list] = handle_numeric_downcast(df[column_list], type_)
```


Deep-Dive: Version Control

Big Ideas

- Always use a version control system
- Don't keep multiple versions of the same code; use pull requests instead
- Keep your repo fresh with descriptive commits and good branch hygiene

Benefits

- Collaborate on the same codebase without fear of versioning issues
- Quickly and easily reverse bad commits
- Provides transparency to minimize duplicative work

Writing new code in a copied script, then dealing with versioning issues when you want to incorporate it into the master

Handling versioning issues automatically using Git

Related CS Concepts

- Reversibility
- Metadata

Suggested Workflow

Import and call functions in main

main.py (where the magic happens)

Write functions in .py scripts within /src

utilities.py

feature_engineering.py

modeling.py

Trigger automated tests with every push

Application (calls functions)

Module (defines functions)

Collaborating on GitHub

12 | Copyright © 2020 Nick Lind. All rights reserved.