- 1. Hallar todos los valores de k tales que el conjunto de vectores en \mathbb{R}^3 sea linealmente dependiente:
 - (a) $\{(1,2,0),(1,k,-1),(1,-2,1)\}$
 - (b) $\{(1,0,-2),(1,3,7),(1,2,k^2)\}$
 - (c) $\{(-1,0,-1),(2,1,2),(1,1,k)\}$
- 2. Hallar todos los valores de k tales que el conjunto de vectores en \mathbb{R}^3 sea linealmente independiente:
 - (a) $\{(2,-3,1),(-4,6,-2),(k,1,2)\}$
 - (b) $\{(k,1,0),(1,0,k),(1+k,1,k)\}$
 - (c) $\{(1,0,4),(1,3,7),(1,2,k)\}$
- 3. Sea \mathcal{P}_2 el espacio vectorial de los polinomios de grado menor o igual a 2. Para cada conjunto de polinomios de \mathcal{P}_2 determinar si es linealmente dependiente o independiente. Si el conjunto es linealmente dependiente escribir un elemento del conjunto como combinación lineal de los restantes.
 - (a) $\{x^2+1, x-2, x+3\}$
 - (b) $\{3x+1, 3x^2+1, 2x^2+x+1\}$
 - (c) $\{x^2-4, 5x^2-5x-6, 3x^2-5x+2\}$
- 4. Sea $M_{2\times 2}$ el espacio vectorial de las matrices de tamaño 2×2 . Para cada conjunto de matrices en $M_{2\times 2}$ determinar si es linealmente dependiente o independiente. Si el conjunto es linealmente dependiente escribir un elemento del conjunto como combinación lineal de los restantes.

a)
$$\left\{ \begin{bmatrix} 2 & 0 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} -3 & -2 \\ 7 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & -3 \end{bmatrix}, \begin{bmatrix} 11 & 2 \\ -5 & -5 \end{bmatrix} \right\}$$

b)
$$\left\{ \begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 4 \\ 5 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 6 \\ -1 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix} \right\}$$

- 5. Mostrar que cada uno de los siguientes conjuntos de vectores en \mathbb{R}^3 forman una base de \mathbb{R}^3 y determinar las coordenadas del vector (-1,1,2) en cada base:
 - (a) $\{(1,0,1),(0,1,1),(1,1,0)\}$
 - (b) $\{(-3,4,2),(7,-1,3),(1,1,8)\}$
- 6. Encuentre una base para los subespacios de \mathbb{R}^4 generados por cada conjunto de vectores dado.
 - (a) $\{(1,1,0,1),(0,1,1,1),(-2,1,3,1)\}$
 - (b) $\{(1,1,-1,0),(2,-1,-1,0),(3,0,-2,0)\}$
 - (c) $\{(1,-1,0,1),(1,1,1,1),(2,0,1,2),(0,-2,-1,0)\}$

- 7. Completar una base para \mathbb{R}^3 a partir de cada conjunto de vectores dado, y usando vectores distintos a los canónicos:
 - (a) $\{(1,2,1),(0,1,0)\}$
 - (b) $\{(1,2,-3)\}$
- 8. Hallar los escalares λ_1 y λ_2 para que los vectores $\vec{u}_1 = (-1, 5, 4)$ y $\vec{u}_2 = (\lambda_1, -2, -2)$ generen el mismo subespacio vectorial de \mathbb{R}^3 que generan los vectores $\vec{v}_1 = (5, 1, 0)$ y $\vec{v}_2 = (\lambda_2, 3, 2)$
- 9. Sea $T = gen \{\vec{u}, \vec{v}, \vec{w}\}$ el subespacio de \mathbb{R}^4 generado por los vectores $\vec{u} = (1, 1, 1, 0), \vec{v} = (0, 1, 1, 1)$ y $\vec{w} = (1, 1, 0, 0)$.
 - (a) Mostrar que $\vec{u}, \vec{v}, \vec{w}$ son linealmente independientes y por tanto forman una base para T.
 - (b) Determinar una condición para cualquier vector $\vec{h}=(a,b,c,d)$ de T.
 - (c) Mostrar que $\vec{h} = (1, 5, 3, 4) \in T$ y hallar los escalares λ , β , γ tales que $\vec{h} = \lambda \vec{u} + \beta \vec{v} + \gamma \vec{w}$.
 - (d) Muestre que $\vec{h} = (1, 2, 3, 4)$ no es elemento de T y que por tanto ninguna elección de los escalares λ , β , γ hace que $\vec{h} = \lambda \vec{u} + \beta \vec{v} + \gamma \vec{w}$.
- 10. Sea $W = \{(1, 2, 0, 3), (0, -1, 2, 1)\}$. Hallar el subespacio de \mathbb{R}^4 generado por W, T = genW. ¿Para qué valores de k se verifica que (2, k, -2, 5) es elemento de T?
- 11. Sea W el conjunto de matrices 2×2 antisimétricas, es decir

$$W = \left\{ A = \begin{bmatrix} 0 & -b \\ b & 0 \end{bmatrix} : b \in \mathbb{R} \right\}$$

Mostrar que W es un subespacio de $M_{2\times 2}$ y hallar una base para el espacio.

12. Sea S el conjunto de matrices 2×2 simétricas, es decir

$$S = \left\{ A = \left[\begin{array}{cc} a & b \\ b & c \end{array} \right] : a, b, c \in \mathbb{R} \right\}$$

Mostrar que S es un subespacio de $M_{2\times 2}$ y hallar una base para el espacio.

- 13. Sea V un espacio vectorial real y sean $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ tres vectores en V linealmente independientes. Determinar los valores de los escalares c_1 , c_2 y c_3 tales que el vector $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3$ en V, también se pueda escribir como: $\mathbf{v} = (2c_2 c_1)\mathbf{v}_1 + (c_3 c_2)\mathbf{v}_2 + (c_2 1)\mathbf{v}_3$
- 14. Sea V un espacio vectorial real, y sean $\mathbf{u}, \mathbf{v}, \mathbf{w}$ tres vectores en V linealmente independientes. Deteminar si los siguientes conjuntos de vectores son linealmente dependientes o linealmente independientes:
 - (a) $\{u, u + v, u + v + w\}$
 - (b) $\{2u + v, 2u + v + w, 2u + 2v + w\}$
 - (c) $\{\mathbf{u} \mathbf{v}, \mathbf{w} \mathbf{u}, \mathbf{w} \mathbf{v}\}$
 - (d) $\{2\mathbf{u} + 2\mathbf{w}, \mathbf{u} + \mathbf{v} + 2\mathbf{w}, 2\mathbf{v} + 2\mathbf{w}\}$
 - (e) $\{\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}, \mathbf{u} 2\mathbf{v} + \mathbf{w}\}$

- 15. Sea V un espacio vectorial real, y sea $\{\mathbf{u}, \mathbf{v}\}$ un conjunto linealmente independiente en V. Sean $\mathbf{u}_1 = a\mathbf{u} + b\mathbf{v}$, y $\mathbf{v}_1 = c\mathbf{u} + d\mathbf{v}$, con $a, b, c, d \in \mathbb{R}$, vectores en V. Demostrar que si $ad bc \neq 0$ entonces $\{\mathbf{u}_1, \mathbf{v}_1\}$ es linealmente independiente.
- 16. Determinar si la afirmación es verdadera o falsa. En cualquier caso explicar por qué. Si es falsa la explicación se puede argumentar por medio de un ejemplo.
 - (a) () Tres vectores en \mathbb{R}^3 forman una base de \mathbb{R}^3 .
 - (b) () Si A y B son subconjuntos linealmente independientes de un mismo espacio vectorial entonces $A \cup B$ es linealmente independiente.
 - (c) () Sean A una matriz 3×3 y x_1 un vector no nulo que es solución del sistema Ax = 0, entonces det A = 0.
 - (d) () Todo conjunto que contenga al vector nulo de un espacio vectorial es linealmente independiente.
 - (e) () Todo conjunto de cinco vectores en \mathbb{R}^4 es linealmente dependiente.
 - (f) () Para todo $k \in \mathbb{R}$, el conjunto $\{(k^2, 0, 1), (0, k, 2), (1, 0, 1)\}$ es una base de \mathbb{R}^3 .
 - (g) () Si V es un espacio de dimensión n y S es un conjunto con n+1 vectores de V que genera a V, entonces S es linealmente dependiente.
 - (h) () El espacio vectorial de todos los vectores (a,b,c) en \mathbb{R}^3 tales que b=a+c tiene dimensión n=1.
 - (i) () El espacio vectorial de todos los vectores (a,b,c) en \mathbb{R}^3 tales que b=a tiene dimensión n=2.
 - (j) () Sean A y B subconjuntos de un mismo espacio vectorial tales que $A \subset B$, entonces si B es linealmente dependiente A también es linealmente dependiente.
 - (k) () Sean A y B subconjuntos de un mismo espacio vectorial tales que $A \subset B$, entonces si B es linealmente independiente A también es linealmente independiente.
 - (l) () Sean A y B subconjuntos de un mismo espacio vectorial tales que $A \subset B$, entonces si A es linealmente dependiente B también es linealmente dependiente.

Referencias

- [1] García, O., Villegas, J.A. y Castaño, J.I. (2012) Álgebra lineal. Fondo Editorial Universidad EAFIT. Medellín.
- [2] Grossman, S. (1996). Álgebra Lineal con Aplicaciones. 5ta. Ed. McGraw-Hill. México.
- [3] Hill, R. (1996). Álgebra Lineal Elemental con Aplicaciones. Prentice Hall. México.
- [4] Kolman, B. (1999). Álgebra Lineal con Aplicaciones y Matlab. 6ta. Ed. Prentice Hall. México.
- [5] Lay, D. (1999). Álgebra Lineal y sus Aplicaciones. 2a. Ed. Prentice Hall, México.