Problem Set 1

Due Date: 9/5 at 11:35 AM

Throughout, assume that $(\Omega, \mathcal{A}, \mathbb{P})$ is a probability space.

(P.1) Let Ω be a finite set. Show that the set of all subsets of Ω , the power set $\mathcal{P}(\Omega)$, is also finite and that it is a σ -algebra.

Proof. By definition of a subset, we have $\Omega \subseteq \Omega$. Then $\Omega \in \mathbb{P}(\Omega)$. By the same definition, we also have $\emptyset \subseteq \Omega$. Then $\emptyset \in \mathbb{P}(\Omega)$.

Let $A \in \mathbb{P}(\Omega)$. Since $A \subseteq \Omega$, then $\Omega \setminus A = A^c \subseteq \Omega$. Therefore $A^c \in \mathcal{P}(\Omega)$, because $A^c \subseteq \Omega$.

Let A_1, A_2, A_3, \ldots be a countable sequence of events in $\mathcal{P}(\Omega)$. Then $A_n \subseteq \Omega$ for each n, and we show

$$A_1 \cup A_2 \cup A_3 \cdots = \bigcup_{n=1}^{\infty} A_n \subseteq \Omega.$$

Thus

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{P}(\Omega).$$

Therefore $\mathcal{P}(\Omega)$ is a σ -algebra.

Let $n = |\Omega|$ for finite set Ω . Then $\mathbb{P}(\Omega)$ is all k-combinations of elements in Ω for $k \in \{0, 1, ..., n\}$. Then

$$|\mathbb{P}(\Omega)| = \sum_{n=0}^{n} \binom{n}{k} < \infty$$
$$= 2^{n}.$$

Therefore $\mathbb{P}(\Omega)$ is finite.

(P.2) Let $\{\mathcal{G}_s\}_{s\in S}$ be an arbitrary family of σ -algebras defined on an abstract space Ω . Show

$$\mathcal{H} = \bigcap_{s \in S} \mathcal{G}_s$$

is also a σ -algebra.

Proof. By definition of σ -algebra, $\emptyset \in \mathcal{G}_s$ for all $s \in S$. Then

$$\emptyset \in \bigcap_{s \in S} \mathcal{G}_s = \mathcal{H}.$$

Similarly, $\Omega \in \mathcal{G}_s$ for all $s \in S$, so

$$\Omega \in \bigcap_{s \in S} \mathcal{G}_s = \mathcal{H}.$$

Let $A \in \mathcal{H}$. Then $A \in \mathcal{G}_s$ for all $s \in S$ by definition of \mathcal{H} . Since each $\{\mathcal{G}_s\}_{s \in S}$ is a σ -algebra and therefore closed under complements, then $A^c \in \mathcal{G}_s$ for each $s \in S$. Therefore

$$A^c \in \bigcap_{s \in S} \mathcal{G}_s = \mathcal{H}.$$

Let $(A_n)_{n\geq 1}$ be a countable sequence of events in \mathcal{H} . Then for each $n, A_n \in \mathcal{H}$ implies $A_n \in \mathcal{G}_s$, for all $s \in S$. By definition of σ -algebra, each $\{\mathcal{G}_s\}_{s\in S}$ is closed under countable unions. Therefore

$$\bigcup_{n=1}^{\infty} A_n \in \bigcap_{s \in S} \mathcal{G}_s = \mathcal{H}.$$

Thus \mathcal{H} is a σ -algebra.

(P.3) Let \mathcal{A} be a σ -algebra and $(A_n)_{n\geq 1}$ a sequence of events in \mathcal{A} and define

$$\liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m \quad and \quad \limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m.$$

Show the following:

- (a) $\liminf_{n\to\infty} A_n \in \mathcal{A}$.
- (b) $\limsup_{n\to\infty} A_n \in \mathcal{A}$.
- (c) $\liminf_{n\to\infty} A_n \subseteq \limsup_{n\to\infty} A_n$, and show it is possible for $\liminf_{n\to\infty} A_n \subset \limsup_{n\to\infty} A_n$.

(a)

Proof. Since $A_m \in \mathcal{A}$ for all $m \geq n, n \in \{1, 2, ...\}$, then

$$\bigcap_{m=n}^{\infty} A_m \in \mathcal{A}$$

for all n by proposition of intersection of countable sets for σ -algebra. Then

$$\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m \in \mathcal{A}$$

by definition of σ -algebra, because \mathcal{A} is closed under countable unions. Therefore $\liminf_{n\to\infty} A_n \in \mathcal{A}$.

(b)

Proof. Since $A_m \in \mathcal{A}$ for all $m \geq n, n \in \{1, 2, ...\}$, then

$$\bigcup_{m=n}^{\infty} A_m \in \mathcal{A}$$

for all n by definition of σ -algebra, because \mathcal{A} is closed under countable unions. Then

$$\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m \in \mathcal{A}$$

by proposition of σ -algebra. Therefore $\limsup_{n\to\infty} A_n \in \mathcal{A}$. (c)

Proof. Let $\omega \in \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$. Then $\omega \in \bigcap_{m=n_0}^{\infty} A_m$ for some n_0 . Thus $\omega \in A_m$ for all $n \geq n_0$ and it follows that $\omega \in \bigcup_{m=n}^{\infty} A_m$ for all $n \geq 1$. This implies $\omega \in \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_n$. Therefore $\liminf_{n \to \infty} A_n \subseteq \limsup_{n \to \infty} A_n$.

Furthermore, consider set $A = \{0, 1\}$ with sequence of events

$$(A_n) = (\{0\}, \{1\}, \{0\}, \{1\}, \{0\}, \{1\}, \dots).$$

Let $x \in \bigcup_{m=n}^{\infty} A_m$. Since $\bigcup_{m=n}^{\infty} A_m = \{0,1\}$ for all $m \ge n$, then

$$x \in \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_n = \{0, 1\}.$$

We also have $\bigcap_{m=n}^{\infty} A_n = \emptyset$ for all $m \geq n$.

Therefore

$$\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_n = \emptyset.$$

Then there exists an $x \in \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_n$ such that $x \notin \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_n$. Therefore it is possible $\liminf_{n \to \infty} A_n \subset \limsup_{n \to \infty} A_n$.

(P.4) Let A be a σ -algebra of subsets of Ω and let $B \in A$. Show that

$$\mathcal{F} = \{A \cap B : A \in \mathcal{A}\}$$

is a σ -algebra of subsets of B.

Proof. By definition of σ -algebra, $\Omega \in \mathcal{A}$. Then $\Omega \cap B = B \in \mathcal{F}$. Similarly, $\emptyset \in \mathcal{A}$ by definition of σ -algebra. Thus $\emptyset \cap B = \emptyset \in \mathcal{F}$.

Let $C \in \mathcal{F}$, such that $C = A \cap B$ for some $A \in \mathcal{A}$. We write

$$C^{c} = B \setminus C = B \cap C^{c}$$
$$= B \cap (A \cap B)^{c}$$
$$= B \cap (A^{c} \cup B^{c})$$

using DeMorgan's Law. Since $B \in \mathcal{A}$ and \mathcal{A} is closed under complements by definition of σ -algebra, then $B^c \in \mathcal{A}$. By the same definition, $A^c \in \mathcal{A}$ because $A \in \mathcal{A}$. By definition of σ -algebra, \mathcal{A} is closed under countable unions, therefore $A^c \cup B^c \in \mathcal{A}$.

Let $(C_i)_{i\geq 1}$ be a countable sequence of events in \mathcal{F} such that $C_i=A_i\cap B$ for some $A_i\in\mathcal{A}$. Since \mathcal{A} is a σ -algebra,

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}.$$

By the distributive property of sets, we show

$$\bigcup_{i=1}^{\infty} C_i = \bigcup_{i=1}^{\infty} (A_i \cap B)$$
$$= B \cap \bigcup_{i=1}^{\infty} A_i$$

Therefore $\bigcup_{i=1}^{\infty} C_i \in \mathcal{F}$ for all i. Thus \mathcal{F} is a σ -algebra.

(P.5) Let f be a function mapping Ω to another space E with a σ -algebra \mathcal{E} . Let

$$\mathcal{A} = \{A \subset \Omega : exists \ B \in \mathcal{E} \text{ such that } A = f^{-1}(B)\}.$$

Show that A is a σ -algebra on Ω .

Proof. By definition of σ -algebra, $\emptyset \in \mathcal{E}$. Then $f \{\emptyset\} = \emptyset$, so that $A = f^{-1}(\emptyset) = \emptyset$. Since $\emptyset \subset \Omega$ then $\emptyset \in \mathcal{A}$. Because \mathcal{E} is a σ -algebra on space E, then $E \in \mathcal{E}$. Then $f \{\Omega\} = E$. Thus $A = f^{-1}(E) = \Omega$. Therefore $\Omega \in \mathcal{A}$.

Let $A \in \mathcal{A}$. Then by construction there exists $B^c \in \mathcal{E}$ such that $A = f^{-1}(B)$. Then

$$A^{c} = (f^{-1}(B))^{c} = f^{-1}(B^{c}).$$

Since \mathcal{E} is a σ -algebra, then there exists $B^c \in \mathcal{E}$ such that $A^c = f^{-1}(B^c)$. Thus $A^c \in \mathcal{A}$. Let $(A_n)_{n\geq 1}$ be a sequence of countable events in \mathcal{A} . For each n, there exists a $B_n \in \mathcal{E}$ such that $A_n = f^{-1}(B_n)$. Given that \mathcal{E} is a σ -algebra, we know \mathcal{E} is closed under countable unions. Thus there exists $\bigcup_{n=1}^{\infty} B_n \in \mathcal{E}$ such that

$$\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} f^{-1}(B_n) = f^{-1}(\bigcup_{n=1}^{\infty} B_n).$$

Therefore $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$. Thus \mathcal{A} is a σ -algebra on Ω . **(P.6)** Show the following for $A, B \in A$:

(a)
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$
.

(b)
$$\mathbb{P}(A) = 1 - \mathbb{P}(A^c)$$
.

(c)
$$\mathbb{P}(A \cap B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$$
.

(a)

Proof. Suppose $A \cap B \neq \emptyset$. We show

$$\mathbb{P}(B) = \mathbb{P}((B \backslash A) \cup (A \cap B))$$

= $\mathbb{P}(B \backslash A) + \mathbb{P}(A \cap B)$. (1)

We can rewrite (1) as

$$\mathbb{P}(B \backslash A) = \mathbb{P}(B) - \mathbb{P}(A \cap B). \tag{2}$$

Then

$$\begin{split} \mathbb{P}(A \cup B) &= \mathbb{P}(A \cup (B \backslash A)) \\ &= \mathbb{P}(A) + \mathbb{P}(B \backslash A) \\ &= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B). \end{split}$$

(b)

Proof. Since $A \in \mathcal{A}$, then $A \subseteq \Omega$. By definition of complement,

$$A^c = \Omega \backslash A \subseteq \Omega. \tag{3}$$

Then

$$A \cup A^c = A \cup (\Omega \backslash A) = \Omega \subseteq \Omega. \tag{4}$$

Since \mathcal{A} is a σ -algebra, then $\Omega \in \mathcal{A}$ and it follows that

$$\mathbb{P}(A) + \mathbb{P}(A^c) = \mathbb{P}(A \cup A^c)$$

$$= \mathbb{P}(A \cup (\Omega \setminus A))$$

$$= \mathbb{P}(\Omega)$$

$$= 1.$$
(5)

Therefore $\mathbb{P}(A) = 1 - \mathbb{P}(A^c)$.

(c)

Proof. By definition of set difference, $A \setminus B = A \cap B^c$. Thus we show

$$\mathbb{P}(A) = \mathbb{P}((A \backslash B) \cup (A \cap B))
= \mathbb{P}((A \cap B^c) \cup (A \cap B))
= \mathbb{P}(A \cap B^c) + \mathbb{P}(A \cap B).$$
(6)

Therefore $\mathbb{P}(A \cap B^c) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$.