Práctica 4 FFT

Javier Gómez Luzón B2

1. Mida el valor de la resistencia utilizada.

R=2.2KΩ

2. En la representación de la relación I | V , realice el ajuste exponencial propuesto a partir de los datos tomados en el laboratorio. Usando dicho ajuste calcule:

Curva exponencial de ajuste	Is	q/nkT	n(T=19C)
0.99			

3. En la característica de transferencia pueden apreciarse dos tramos correspondientes a dos comportamiento del diodo. Usando esta representación gráfica, realice el ajuste lineal de cada uno de los tramos de la gráfica de la tensión aplicada frente a la tensión del diodo. A partir de dicho ajuste calcule:

Pendiente del primer tramo:

Coeficiente de correlación del primer tramo:

Pendiente del segundo tramo:

Coeficiente de correlación del segundo tramo:

Tensión de cambio de tramo:

4. Coinciden los valores experimentales con los teóricos? Justifique su respuesta.

No puedo realizar ninguna conclusión sobre la práctica. Ya que los datos no se ajustan a lo que deberían dar. Ya que según usted me dijo debería dar una curva exponencial. Y pese a haber tomado los datos en 2 ocasiones y montando el circuito dos veces también como usted me dijo no he podido hallar bien los datos y no he podido calcular el resto de datos que le faltan a la práctica.

De todas formas aquí están los datos tomados y la gráfica resultante.

Vi (V)	Vi_exp (V)	Vd_exp (V)	Vr_exp (V)	ld_calculada (A) (Vi_exp-Vd_exp)/R
0.2	0.27	0.28	0	-0.0045
0.4	0.423	0.405	0.018	0.0081

0.6	0.628	0.479	0.148	0.06772
0.8	0.834	0.510	0.323	0.1472
1	1.038	0.528	0.510	0.2318
1.2	1.255	0.543	0.712	0.3236
1.4	1.475	0.554	0.920	0.41863
1.6	1.650	0.562	1.089	0.4945
1.8	1.886	0.570	1.257	0.5981
2	2.020	0.574	1.444	0.6572
2.2	2.262	0.582	1.680	0.763
2.4	2.424	0.584	1.839	0.8363
2.6	2.63	0.587	2.041	0.92863
2.8	2.830	0.594	2.235	1.0163
3	3.04	0.598	2.443	1.11
3.2	3.241	0.602	2.639	1.1994
3.4	3.487	0.606	2.888	1.3095
3.6	3.591	0.608	2.984	1.3559
3.8	3.829	0.611	3.229	1.4627
4	4.03	0.61	3.41	1.5545

