beecrowd | 3036

Cor da Camisa

Por Diego Pereira, UFV 🔯 Brazil

Timelimit: 1

Alguns estudantes da Universidade Federal de Viçosa (UFV) andam pelo campus usando uma camisa vermelha na qual está escrito: "This shirt is blue if you run fast enough", o que siginifica "Esta blusa é azul se você correr rápido o bastante". Tereu, uma das pessoas mais rápidas da universidade, ficou intrigado com a afirmação contida na vestimenta e perguntou a seu professor de física como a camisa poderia mudar de cor. O professor explicou que um objeto pode refletir a luz em diferentes comprimentos de onda e que cada comprimento de onda está associado a uma cor na luz visível, seja λ esse comprimento, a cor será definida da seguinte forma:

• $\lambda < 400nm$: invisivel

• $400nm \leq \lambda < 425nm$: violeta

• $425nm \leq \lambda < 445nm$: anil

• $445nm < \lambda < 500nm$: azul

• $500nm \leq \lambda < 575nm$: verde

• $575nm \leq \lambda < 585nm$: amarelo

• $585nm < \lambda < 620nm$: laranja

• $620nm \leq \lambda < 750nm$: vermelho

• $\lambda \geq 750nm$: invisivel

A mudança na cor ocorre pois quando um observador se move, ele percebe um comprimento de onda λ' diferente do λ real do objeto. Esse fenômeno é chamado de "Efeito Doppler" e é descrito matematicamente através da fórmula (ela funciona quando consideramos positiva a velocidade quando o observador se aproxima da fonte):

$$\frac{\lambda' - \lambda}{\lambda} = \sqrt{\frac{c - v}{c + v}} - 1$$

Em que v é a velocidade do observador e c é a velocidade da luz no vácuo.

A camisa é vermelha e reflete a luz no comprimento de onda $\lambda=700nm$, a velocidade da luz no vácuo é $c=3 imes10^8m/s$.

Tereu veria a camisa num comprimento de onda $\lambda'=495nm$, ou seja, azul, se alcançansse velocidade aproximadamente igual a $10^8m/s$. Tereu sabe que é incapaz de atingir uma velocidade tão alta, por isso, solicitou que você crie um programa que retorne a cor que ele veria a camisa se estivesse a uma velocidade ${\bf V}$.

Entrada

A entrada é composta de apenas um inteiro ${\bf V}$ ($-3 \times 10^8 < {\bf V} < 3 \times 10^8$), representando a velocidade com que Tereu se aproxima da camisa em m/s.

Saída

A saída deve conter a cor da camisa observada por Tereu quando ele corre na velocidade da entrada. A cor deve ser escrita seguindo rigorosamente a grafia indicada na tabela de comprimentos de onda da luz visível.

1 of 2

Exemplos de Entrada	Exemplos de Saída
10000000	azul
)	vermelho

2 of 2