מתמטיקה דיסקרטית - תרגיל בית 6 עם פתרון

הגשה ליום חמישי, 29/8 בשעה 23:57, לפי ההנחיות במודל סמסטר קיץ תשפ"ד

שאלה 1. תהיינה X,Y,Z,W קבוצות, $A,B\subseteq X$ קבוצות, עדיקבוצות תהיינה

$$f: X \to Y$$
, $g: X \to Y$, $h: W \to X$, $k: Y \to Z$

פונקציות. הוכיחו או הפריכו כל אחת מהטענות הבאות.

$$f(A) \cap f(B) \subseteq f(A \cap B)$$
 .*

$$f(A \cap B) \subseteq f(A) \cap f(B)$$
 .

$$f=g$$
 אז $f\circ h=g\circ h$ ו. ג. אם h היא על ו

$$f = q$$
 אז $f \circ h = q \circ h$ ו.

$$f=q$$
 אז $k\circ f=k\circ q$ ה. אם k היא על ו-

$$f=g$$
 אז $k\circ f=k\circ g$ ו. אם k היא היא היא

פתרון
$$f\left(1\right)=1, f\left(2\right)=1$$
 , $X=\left\{1,2\right\}, Y=\left\{1\right\}$ נבחר גבור הפרכה: עבור $A=\left\{1\right\}, B=\left\{2\right\}$

$$f(A) = f(B) = \{1\} \implies f(A) \cap f(B) = \{1\}$$
$$f(A \cap B) = f(\emptyset) = \emptyset,$$

והטענה אינה נכונה.

ב. הוכחה: יהיו $y=f\left(x\right)$ ש כך $x\in A\cap B$ אזי קיים $y\in f\left(A\cap B\right)$ היי עבור עבור $y\in f\left(B\right)$ מתקיים $y\in f\left(A\right)$ ולכן עבור $y\in f\left(A\right)$ התקיים עבור אולכן עבור $y\in f\left(A\right)$ העבור עבור עבור אולכן וועה באופן וועה ב

- $.h\left(w
 ight)=x$ כך ש- $w\in W$ היא על, קיים $h:W\to X$ מכיוון ש- $x\in X$ כך הוכחה: ג. הוכחה: היה א מכיוון ש- $f\circ h=g\circ h$ מתקיים
 - $f \circ h(w) = g \circ h(w) \implies f(h(w)) = g(h(w)) \implies f(x) = g(x),$ ילכן f = g(x)
- $f\left(1\right)=$, $h\left(w\right)=1$, $X=\left\{ 1,2\right\} ,Y=\left\{ a,b\right\} ,W=\left\{ w\right\}$. The form $f\circ h\left(w\right)=a=:f\circ h=g\circ h$. The form $f\left(2\right)=a,g\left(2\right)=b$. The form $g\left(1\right)=a$. The form f , and f . The form f .
- $f\left(1\right)=$, $k\left(a\right)=k\left(b\right)=z$, $X=\left\{1\right\}$, $Y=\left\{a,b\right\}$, $Z=\left\{z\right\}$ ה. הפרכה: נבחר הפרכה: $k\circ f=k\circ g$ ולכן $k\circ f\left(1\right)=z=k\circ g\left(1\right)$ על וגם לב כי k על וגם לב כי k על וגם ה $f\neq g$
- $k\left(f\left(x
 ight)
 ight)=k\circ f\left(x
 ight)=k\circ g\left(x
 ight)$. נשים לב שי- $x\in X$, כלומר גיהי הוכחה: הוכחה: f=g מכיוון ש- $k\left(g\left(x
 ight)
 ight)$ הח"ע נקבל ש- $k\left(g\left(x
 ight)
 ight)$
- שאלה 2. תהיינה X,Y,Z קבוצות ו-X,Y,Z קבוצות ו-X,Y,Z פונקציות. הכיחו את הפריכו את הטענות הבאות:
 - .א. אם f ו-g היא על $g \circ f$ אז $g \circ f$ היא על
 - $g \circ f^{-1} = f^{-1} \circ g^{-1}$ ב. אם $g \circ f$ הפיכות אז ומתקיים $g \circ f$ ב. אם ב
- ג. $g_2:Y o Z$ ו ו- $g_1:Y o Z$ וועות שונות קיים מתקיים מתקיים ג. $g_1\circ f \neq g_2\circ f$
- פתרון g. מכיוון ש-g על, קיים $y\in Y$ כך מכיוון ש- $z\in Z$ יהי יהי ... א. הוכחה: א. פתרון g. מכיוון ש-g על, קיים g. בסך הכל נקבל ש-g על, קיים g. בסך הכל נקבל ש-g

$$g \circ f(x) = g(f(x)) = g(y) = z,$$

. ולכן $g\circ f$ היא על

ב. הוכחה: נניח ש-f ו-g הפיכות. יהיו $x\in X$ ו-היו $y=f(x)\in Y$ נסמן ב. הוכחה: ב. הוכחה

$$g \circ f(x) = z \iff g^{-1} \circ (g \circ f(x)) = z$$

$$\iff (g^{-1} \circ g) \circ f(x) = g^{-1}(z)$$

$$\iff I_Y \circ f(x) = g^{-1}(z)$$

$$\iff f(x) = g^{-1}(z)$$

$$\iff f^{-1} \circ f(x) = f^{-1} \circ g^{-1}(z)$$

$$\iff I_X(x) = f^{-1} \circ g^{-1}(z)$$

$$\iff x = f^{-1} \circ g^{-1}(z).$$

 $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$ מרכה ומתקיים $g\circ f$ לכן

ג. נוכיח את שני כיווני הטענה.

- נניח שונות. אזי קיים (בניח שf- היא על, ותהיינה $g_1,g_2:Y\to Z$ פונקציות שונות. אזי קיים (ביח היא על, ותהיינה $g_1(y)=y$ כך ש $g_2(y)$ כך על, קיים על, קיים $g_1(y)\neq g_2(y)$ אזי על, $g_1\circ f\neq g_2\neq f$ ולכן $g_1\circ f(x)=g_1(y)\neq g_2(y)=g_2\circ f(x)$
- מתקיים $x\in X$ נניח שלכל $y_0\in Y$ פיים קלכן קיים y_0 מתקיים (\Longrightarrow) (ii) z- אין אינה אם ב- אין אותר אחד, כל שתי פונקציות מ- $f(x)\neq y_0$ שוות והטענה מתקיימת באופן ריק. אחרת, יהיו $z_1\neq z_2\in Z$ נגדיר פונקציות $z_1, y_2:Y\to Z$

$$\forall y \in Y : g_1(y) = z_1, \quad g_2(y) = \begin{cases} z_1 & y \neq y_0 \\ z_2 & y = y_0 \end{cases}.$$

יהי $g_1\circ f(x)=g_2\circ f(x)=z_1$ ולכן $f(x)\neq y_0$ אזי $x\in X$ יהי $g_1\neq g_2$ בעוד ש $g_1\circ f=g_2\circ f$

שאלה 3.

א. נגדיר פונקציה $q: \mathbb{N} \times \mathbb{N} \to \mathbb{N}^+$ באופן הבא:

$$\forall (a,b) \in \mathbb{N} \times \mathbb{N} : g(a,b) = 2^{a} \cdot (2b+1).$$

 $3,5,6,16,17,24,30\in\mathbb{N}^+$ של המקורות את בדקו בדקו רמז: בדקו הפיכה. הפיכה g הוכיחו כי g בדיוק מקור יחיד?) הסיקו מכך דרך כללית לבחור את המקור.

- $\{1/n\mid n\geq 2\}$ ל- ל- $\{1/n\mid n\geq 1\}$ ה הפיכה הפיכה מצאו מצאו ב.
- ג. מצאו פונקציה הפיכה מ-[0,1] ל-[0,1]. רמז: קיימת קבוצה S כך ש-

$$[0,1] = \{1/n \mid n \ge 1\} \cup S.$$

פתרון 3. א. נוכיח כי g היא חח"ע ועל.

- על: יהי \mathbb{N}^+ לגורמים את מספר המופעים של 2 בפירוק לגורמים ראשוניים g עבור $n\in\mathbb{N}^+$ יהי p של p אזי קיים מספר אי-זוגי p לוכך של p בp עבור p עבור p ונקבל שp בp ונקבל p של p ולכן p ולכן p ולכן p ונקבל שp ולכן p ולכן
- A= נסמן הלאה. וכן הלאה. 1/2 o 1/3 , 1 o 1/2 הפפות נרצה למפות, ב. אינטואיטיבית, נרצה למפות $B=\{1/n\mid n\geq 2\}$ ור ורא ב. $B=\{1/n\mid n\geq 2\}$ ור ורא ב.

$$\forall x \in A : f(x) = \frac{1}{\frac{1}{x} + 1},$$

ונוכיח כי f היא חח"ע ועל.

, אזי, $f\left(x\right)=f\left(x'\right)$ ער כך ש
 $x,x'\in A$ יהיי יהיי f

$$\frac{1}{1/x+1} = \frac{1}{1/x'+1} \iff \frac{1}{x}+1 = \frac{1}{x'}+1 \iff \frac{1}{x} = \frac{1}{x'} \iff x = x'.$$

עבור .b=1/nעל: סך בו אזי איי איי א אזי איי איי א על: יהי איא $b\in B$ יהי איא איי $f\bullet a=\frac{1}{n-1}\in A$

$$f(a) = \frac{1}{\frac{1}{\frac{1}{n-1}} + 1} = \frac{1}{(n-1) + 1} = b.$$

ג. נסמן f:[0,1] o [0,1] נגדיר פונקציה $S=[0,1] \setminus \{1/n \mid n \geq 1\}$ ג. נסמן

$$\forall x \in [0,1] : f(x) = \begin{cases} x & x \in S \\ (1+1/x)^{-1} & x \notin S \end{cases}.$$

 $f\left(x
ight)
otin S$ מתקיים מ $x\notin S$ מתקיים לכל הוא מתקיים א מתקיים מסעיף מסעיף קודם). נוכיח כי $f\left(x
ight)$ היא חח"ע ועל.

- נפריד למקרים: $.f\left(x\right)=f\left(x'\right)$ ע כך $x,x'\in A$ יהיי יהיו היא f
- $.x=f\left(x
 ight) =f\left(x^{\prime}
 ight) =x^{\prime}$ זה במקרה $x,x^{\prime}\in S$ אזי היי $f\left(x
 ight) \in S$ -
- $(1+1/x)^{-1}=(1+1/x')^{-1}$ זה במקרה היא $f(x) \notin S$ ולכו x=x' במקרה היא f(x)
 - נפרים: על: יהי נפריד נפריד נפרים: $y \in [0,1)$ יהי על: $f \bullet$
 - $.f\left(y\right)=y$ מתקיים $y\in\left[0,1\right]$ שעבור ,
ע $y\in S$ אם -

 $y \neq 1$ -ש בנוסף, מכיוון - y = 1/n כך כך היים $y \neq S$ אם א קיים אזי קיים $y \notin S$ מתקיים מתקיים $x = 1/(n-1) \in [0,1)$ עבור $x \neq 1$

$$f(x) = \left(1 + \frac{1}{\frac{1}{n-1}}\right)^{-1} = \frac{1}{n} = y.$$

שאלה 4.

א. תהיינה |B|=|D| וגם |A|=|C| כי אם חוכיחו הוכיחו A,B,C,D א. $|A\times B|=|C\times D|\,.$

ב. עבור קבוצות $|A| \neq |B|$ וגם $|A| \leq |B|$ אמ"מ |A| < |B| נסמן ש-A,B, נסמן עבור קבוצות הוכיחו שלכל שלוש קבוצות |A| < |B| אם |A| < |B| וגם |A| < |C| .

פתרון ש- , $f:A\to C$ א. מכיוון פתרון א. א. מכיוון ש- |A|=|C| קיימת פונקציה א. פתרון א. א. מכיוון ש- $h:A\times B\to C\times D$ קיימת פונקציה הפיכה א. בדיר פונקציה ואים פונקציה א. מכיוון ש- ואכים פתרון ש- פתרון ש

$$\forall \left(a,b\right) \in A \times B : h\left(a,b\right) = \left(f\left(a\right),g\left(b\right)\right).$$

 $k\left(c,d\right)=$ בנוסף, נגדיר $(c,d)\in C imes D$ כך שלכל k:C imes D o A imes B בנוסף, נגדיר בנוסף, נגדיר $(a,b)\in A imes B$ יהיו יהיו $k:(f^{-1}\left(c\right),g^{-1}\left(d\right))$ ו- $(c,d)\in C imes D$

$$h(a,b) = (c,d) \iff (f(a),g(b)) = (c,d)$$

$$\iff f(a) = c \land g(b) = d$$

$$\iff a = f^{-1}(c) \land b = g^{-1}(d)$$

$$\iff (a,b) = (f^{-1}(c),g^{-1}(d))$$

$$\iff (a,b) = k(c,d).$$

A imes Bים הפיכה פונקציה הפיכה. מכאן הייא הפיכה הופכית הופכית לכן קיימת הופכית ה

- $|B| \leq |C|$ וגם וגם |A| < |B| קבוצות כך A,B,C ב. תהיינה
- $|A| \leq |C|$ וגם וויון עוצמות אי-שוויון ומטרנזיטיביות, $|B| \leq |C|$ וגם ווגם $|A| \leq |B|$
 - f:A o C נניח בשלילה שקיימת פונקציה על •

שרירותי, $b_0 \in B$ יהי $g: B \to C$ שח"ע פונקציה קיימת קיימת, א יהי קון שרירותי, א מכיוון שרירותי הונקציה א יהי לו $b_0 \in B$ היימת פונקציה א יהי לוגדיר פונקציה א יהי לוגדיר פונקציה א יהי

$$\forall c \in C : h\left(c\right) = egin{cases} c & \exists b \in B : g\left(b\right) = c \\ b_0 & \text{אחרת} \end{cases}.$$

- $.h\left(g\left(b
 ight)
 ight)=b$ מתקיים h מהגדרת הל לכל לכל לכל h-על: נשים לב
- היא על, ולכן היא על פונקציות של פונקציות היא היא איל, ולכן קיימת הפונקציה על ה $h\circ f:A\to B$ היא פונקציה על מ-Aלכן בסתירה לכך ש-|B|