Homework 10

100. (1) First, notice that the inclusion $\iota: N \to M$ is an isometry with respect to the trace-norm: If $a, b \in N$, then

$$\langle a, b \rangle_N = \operatorname{tr}(b^*a)$$

= $\operatorname{tr}(\iota(b)^*\iota(a))$
= $\langle a, b \rangle_M$

Therefore, ι extends to an isometry $N \to L^2(M, \operatorname{tr})$. Since ι is an isometry, ι extends continuously to the trace-norm closure of N, which is $L^2(N, \operatorname{tr})$. Being an isometry, $\iota : L^2(N, \operatorname{tr}) \to L^2(M, \operatorname{tr})$ must still be an inclusion.

(2) Being an orthogonal projection, e_N is norm-decreasing, and therefore continuous, with a continuous adjoint e_N^* . As for any projection onto a closed Hilbert subspace, we have $e_N^* = \iota$, and so $e_N^* e_N$ is the orthogonal projection onto $\iota(L^2(N, \operatorname{tr}))$, while $e_N e_N^* = 1_{L^2(N, \operatorname{tr})}$.

Suppose $a, b \in N$, and let Ω_N be the image of 1_N in $L^2(N, \operatorname{tr})$. Then we have

$$JaJe_N^*b\Omega_N = JaJb\Omega_N$$
$$= ba^*\Omega_N$$
$$= e_N^*ba^*\Omega_N$$
$$= e_N^*JaJb\Omega_N$$

Since multiplication by a member of n is continuous in one component (by Cauchy-Schwarz for the trace) and e_N^* is norm-continuous, we can replace $b\Omega_N$ with any member of $L^2(N, \operatorname{tr})$, so e_N^* commutes with the right-action of N. Taking adjoints, e_N also commutes with the right action: for $a \in N$, $\eta \in L^2(M, \operatorname{tr})$, and $\xi \in L^2(N, \operatorname{tr})$,

$$\langle JaJe_N\eta, \xi \rangle = \langle \eta, e_N^* Ja^* J\xi \rangle$$
$$= \langle \eta, Ja^* Je_N^* \xi \rangle$$
$$= \langle e_N JaJ\eta, \xi \rangle$$

Clearly, the left action of a member of M and the right action of a member of N on $L^2(M, \operatorname{tr})$ commute. Combining these three facts, for every $x \in M$, $e_N x e_N^*$ commutes with the right action of N on $L^2(N, \operatorname{tr})$. By problem 91 part 8, we have $e_N x e_N^* \in (JNJ)' = N$, where commutant is relative to $B(L^2(N, \operatorname{tr}))$.

(3) Pick $x \in M$. Then, for any $y \in N$, we have

$$\operatorname{tr}(E(x)y)_{N} = \langle e_{N}x^{*}e_{N}^{*}\Omega_{N}, y\Omega_{N}\rangle_{N}$$
$$= \langle x^{*}e_{N}^{*}\Omega_{N}, e_{N}^{*}y\Omega_{N}\rangle_{M}$$
$$= \langle x^{*}\Omega_{M}, y\Omega_{M}\rangle_{M}$$
$$= \operatorname{tr}(xy)_{M}$$

A Hilbert space is in weak duality with itself, so for any Hilbert space H, an element $\eta \in H$ is uniquely determined by a choice of $(\langle \eta, \xi \rangle)_{\xi \in H}$, provided such an η exists. In particular, this holds for $\eta = E(x)$.

101. (1) First, notice that E preserves positivity: Suppose $x \in M$ is positive. Then for any $\eta \in L^2(N, \mathrm{tr})$, we have

$$\langle E(x)\eta, \eta \rangle = \langle xe_N^*\eta, e_N^*\eta \rangle \ge 0$$

Expanding on the last argument, the sesquilinear form induced by E(x) is a restriction of the sesquilinear form induced by x: for $\eta, \xi \in L^2(N, \operatorname{tr})$, we have

$$\langle E(x)\eta, \xi \rangle_N = \langle xe_N^*\eta, e_N^*\xi \rangle_M$$

= $\langle x\eta, \xi \rangle_M$

Therefore, if $x_{\lambda} \nearrow x$, then $E(x_{\lambda})$ is still an increasing sequence of positive operators bounded by E(x), and $E(x_{\lambda}) \nearrow E(x)$ weakly, and hence σ -WOT. By definition, E is normal.

(2) By the previous remark about sesquilinear forms, $E(1_M) = 1_N$. Let $y, z, w \in N$ and $x \in M$ be given; then by part (3) of 100,

$$tr((yE(x)z)w)_N = tr(E(x)zwy)_N$$

$$= tr(xzwy)_M$$

$$= tr(yxzw)_M$$

$$= tr(E(yxz)w)_N$$

and by uniqueness, E(yxz) = tr(yE(x)z).

- (3) This follows from the remark about sesquilinear forms.
- (4) Let a matrix $a = ((a_{i,j})_{i=1}^n)_{j=1}^n \in M_n(M)$ be given. As an unjustified notation, let $E(a) = (E(a_{i,j})_{i=1}^n)_{j=1}^n$. Choose a vector $\eta = (\eta_k)_{k=1}^n$ in $L^2(N, \operatorname{tr})^n$. Then we have

$$\langle a\eta, \eta \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_{i,j}\eta_{j}, \eta_{i} \rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \langle E(a_{i,j})\eta_{j}, \eta_{i} \rangle$$
$$= \langle E(a)\eta, \eta \rangle$$

Therefore, if a is positive, then E(a) is also positive, as desired.

(5) Let $x \in M$. Then for every $\eta \in L^2(N)$, we have

$$\langle E(x)^* E(x)\eta, \eta \rangle_N = \langle E(x)\eta, E(x)\eta \rangle_N$$
$$= \langle e_N^* e_N(xe_N^*\eta), xe_N^*\eta \rangle$$

As explained in solving the previous problem, $e_N^*e_N$ is an orthogonal projection, so we have

$$\langle E(x)^* E(x) \eta, \eta \rangle_N \le \langle x e_N^* \eta, x e_N^* \eta \rangle$$

= $\langle E(x^* x) \eta, \eta \rangle$

Since η was chosen arbitrarily, $E(x)^*E(x) \leq E(x^*x)$.

- (6) The key here is that the inclusion $N \subseteq M$ is unital. If $E(x^*x) = 0$, then in particular $\langle E(x^*x)\Omega_N, \Omega_N \rangle = \langle x^*x\Omega_M, \Omega_M \rangle = ||x||^2 = 0$, so x = 0.
- 102. Notation: Let H be a Hilbert space on which M acts as a von Neumann algebra. It seems to us that we can prove a little more: rather than just considering M with the GNS-representation, we can consider any representation of M which induces an equivalent operator norm on H. We proceed in this generality. The case $H = L^2(M, \operatorname{tr})$ is often easier.
 - (1) Assume first that (x_{λ}) is a bounded net in M with $x_{\lambda} \to x$ SOT. Then, for all $\xi \in H$, we have $x_{\lambda}\xi \to x\xi$. Also note that since

$$||(x_{\lambda} - x)^*(x_{\lambda} - x)\xi|| \le ||(x_{\lambda} - x)^*|| ||(x_{\lambda} - x)\xi||$$

with $x_{\lambda} - x$ uniformly bounded in operator norm, this implies that $(x_{\lambda} - x)^*(x_{\lambda} - x) \to 0$ SOT. Since tr is normal, this implies that $\operatorname{tr}((x_{\lambda} - x)^*(x_{\lambda} - x)) \to 0$. This is exactly the inner product on $L^2(M)$, and so we have

$$||x_{\lambda}\Omega - x\Omega||^2 = \langle (x_{\lambda} - x)\Omega, (x_{\lambda} - x)\Omega \rangle = \operatorname{tr}((x_{\lambda} - x)^*(x_{\lambda} - x)) \to 0.$$

Thus, we have shown that $x_{\lambda} \to x$ SOT in M with x_{λ} bounded implies that $||x_{\lambda}\Omega - x\Omega|| \to 0$.

Conversely, assume that $||x_{\lambda}\Omega - x\Omega|| \to 0$ (with (x_{λ}) still a bounded net in M). By definition, we have $\operatorname{tr}((x_{\lambda} - x)^*(x_{\lambda} - x)) \to 0$ with $(x_{\lambda} - x)^*(x_{\lambda} - x) \geq 0$ for all λ . Since the

 x_{λ} are uniformly bounded, we have that $(x_{\lambda} - x)^*(x_{\lambda} - x)$ is a bounded net of positive operators in M. Because the unit ball of M is σ -WOT compact, we know that there exists a subnet of the $(x_{\lambda} - x)^*(x_{\lambda} - x)$ which converges σ -WOT, say to y. Since tr is normal and $\operatorname{tr}((x_{\lambda} - x)^*(x_{\lambda} - x)) \to 0$, this implies that $\operatorname{tr}(y) = 0$. Since we are working on a bounded set, y is the WOT limit of positive operators, and therefore positive. Since $\operatorname{tr}(y) = 0$, $y \geq 0$, and tr is faithful, we must have y = 0. We may apply the same argument to any subnet of the x_{λ} , so we have shown that $(x_{\lambda} - x)^*(x_{\lambda} - x)$ is a bounded, positive net in M, such that every subnet has a further subnet which converges to 0 σ -WOT; by general topology, this implies that $(x_{\lambda} - x)^*(x_{\lambda} - x) \to 0$ σ -WOT, and by boundedness, WOT. Thus, for all $\xi \in H$, we have

$$\langle (x_{\lambda} - x)\xi, (x_{\lambda} - x)\xi \rangle = \langle (x_{\lambda} - x)^*(x_{\lambda} - x)\xi, \xi \rangle \to 0$$

and so $x_{\lambda} - x \to 0$ SOT, as desired.

Putting these together, we have shown that for bounded nets x_{λ} in M, $x_{\lambda} \to x$ SOT if and only if $||x_{\lambda}\Omega - x\Omega|| \to 0$.

(2) Fix $x \in M$. Fix $\epsilon > 0$. By assumption, we have $(\bigcup M_n)'' = M$, and note that an increasing union of unital *-subalgebras is still a unital *-subalgebra. By the bicommutant theorem, we know that $(\bigcup M_n)''$ is the SOT closure of $\bigcup M_n$. Therefore, $\bigcup M_n$ is a *-subalgebra which is SOT dense in the von Neumann algebra M. By the Kaplansky density theorem, there exists a bounded net (x_λ) in $\bigcup M_n$ such that $x_\lambda \to x$ SOT. By part (1), this implies that $\|x_\lambda\Omega - x\Omega\| \to 0$, so there exists some λ such that $\|x_\lambda\Omega - x\Omega\| < \epsilon$. We know that $x_\lambda \in M_n$ for some n, and so $x_\lambda\Omega \in L^2(M_n) \subseteq L^2(M)$ (in the sense of problems 100 and 101). By problems 100 and 101, we know that $E_n(x)\Omega = e_n(x\Omega)$, where e_n is the projection in $B(L^2(M))$ onto the closed subspace $L^2(M_n) \subseteq L^2(M)$. By definition of projections, we know that

$$||E_n(x)\Omega - x\Omega|| = \inf_{y \in L^2(M_n)} ||y - x\Omega|| \le ||x_\lambda \Omega - x\Omega|| < \epsilon.$$

So, we have that $||E_n(x)\Omega - x\Omega|| < \epsilon$. Observe that for all $m \ge n$, $E_m(x)\Omega = e_m(x\Omega)$ is the projection onto the subspace $L^2(M_m)$ with $L^2(M_n) \subseteq L^2(M_m) \subseteq L^2(M)$. So, for all $m \ge n$, we have $e_m \ge e_n$ as projections, and thus $||E_m(x)\Omega - x\Omega|| \le ||E_n(x)\Omega - x\Omega||$ whenever $m \ge n$. Therefore, we have shown that $||E_m(x)\Omega - x\Omega|| < \epsilon$ for all $m \ge n$. Since $\epsilon > 0$ was arbitrary, we conclude that $||E_n(x)\Omega - x\Omega|| \to 0$ as $n \to \infty$.

(3) By part (2), $||E_n(x)\Omega - x\Omega|| \to 0$. Also, observe that $E_n(x)$ is a bounded sequence in M, since each E_n is $||\cdot||_2$ -decreasing. Therefore, by part (1), this implies that $E_n(x) \to x$ SOT as $n \to \infty$.