Representaciones Irreducibles del Grupo Simétrico S_n Y Diagramas de Young.

Gonzalo Jiménez A.

2 de julio de 2018

En este documento se construirán algunas representaciones irreducibles del grupo simétrico S_n utilizando resultados de combinatoria. Específicamente, veremos que estas representaciones están determinadas por los Diagramas de Young correspondientes a las particiones del número n.

1. Particiones y Clases de Conjugación

Definición. Una partición de n es una tupla $\lambda = (\lambda_1, \dots, \lambda_l)$ de enteros positivos $\lambda_1 \ge \dots \ge \lambda_l \ge 1$ tales que $n = \lambda_1 + \dots + \lambda_l$. Para indicar que λ es una partición de n, escribimos $\lambda \vdash n$.

Ejemplo 1.1. Son particiones de 5 las tuplas (5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1).

Recordemos que cada permutación $\sigma \in S_n$ se puede descomponer únicamente como producto de ciclos disjuntos. Así, cada permutación determina de forma natural una partición de n.

Ejemplo 1.2. Sea n=5. Entonces

$$tipo((1\ 2\ 3\ 4\ 5)) = (5),\ tipo((1\ 2\ 3\ 4)) = (4,1)$$

$$tipo((1\ 3)(2\ 4\ 5)) = (3,2),\ tipo((1\ 2)(2\ 3)) = tipo((1\ 2\ 3)) = tipo((1\ 2\ 3)(4)(5)) = (3,1,1)$$

$$tipo((1\ 2)(3\ 4)) = (2,2,1),\ tipo((1\ 2)) = (2,1,1,1),\ tipo(Id_5) = (1,1,1,1,1).$$

Teorema 1.1. Sean $\sigma, \tau \in S_n$. Entonces σ es conjugada a τ si y solo si $tipo(\sigma) = tipo(\tau)$.

Corolario 1.2. El número de representaciones irreducibles de S_n es el número de particiones de n.

2. Diagramas de Young

Definición. Si $\lambda = (\lambda_1, \dots, \lambda_l)$ es una partición de n, entonces el *Diagrama de Young* (o simplemente diagrama) de λ consiste de n casillas distribuídas entre l filas, alineadas a la izquierda, donde la i-ésima fila tiene λ_i casillas.

Ejemplo 2.1. Estos son ejemplos de diagramas de Young para n=5 y $\lambda_1=(2,2,1), \lambda_2=(3,2)$ y $\lambda_3=(2,1,1,1).$

Definición. Si $\lambda \vdash n$, entonces llamamos un λ -tableaux (o Tableaux de Young de forma λ) a una numeración de las casillas que componen al λ -diagrama de Young usando los números $1, 2, \ldots, n$.

Ejemplo 2.2. Considerando $\lambda = (4,1)$, algunos λ -tableaux son los siguientes

3. Construcción de Representaciones Irreducibles.

Si $X \subseteq \{1, ..., n\}$, identificamos S_X con aquellas permutaciones de S_n que fijan a todos los elementos que no están en X. Por ejemplo, $S_{\{2,3\}}$ está compuesto por $\{Id, (2\ 3)\}$.

Definición. Sea t un tableaux. El *estabilizador columna* de t (C_t) es el subgrupo de S_n que preserva el contenido de las columnas de t. Esto es, $\sigma \in C_t$ si y solo si $\sigma(i)$ está en la misma columna que i para cada $i \in \{1, \ldots, n\}$.

Ejemplo 3.1. Suponga que

$$t = \begin{array}{c|cc} 2 & 1 & 3 \\ \hline 5 & 4 & \end{array}$$

Entonces $C_t = S_{\{2,5\}}S_{\{1,4\}}S_{\{3\}} \cong S_{\{2,5\}} \times S_{\{1,4\}} \times S_{\{3\}}$. Así, por ejemplo, $(2\ 5)$, $(2\ 5)(1\ 4) \in C_t$. Como $S_{\{3\}} = \{Id\}$, se sigue que $|C_t| = 2! \cdot 2! = 4$.

El grupo S_n actúa transitivamente sobre el conjunto de los λ -tableaux aplicando $\sigma \in S_n$ a las entradas de las casillas. El resultado de aplicar $\sigma \in S_n$ a t es denotado por σt .

Ejemplo 3.2. Si

$$t = \begin{array}{c|c|c} \hline 2 & 1 & 3 & 4 \\ \hline 5 & & & \end{array}$$

y $\sigma = (1\ 2)(3\ 4)$, entonces

$$\sigma t = \begin{array}{|c|c|c|c|}\hline 1 & 2 & 4 & 3 \\\hline 5 & & & \\\hline \end{array}$$

Definimos ahora la relación \sim en el conjunto de λ -tableaux. Diremos que $t_1 \sim t_2$ si tienen las mismas entradas en cada fila.

Ejemplo 3.3. Vemos que los siguientes tableaux tienen a los elementos $\{1,3,4\}$ en la primera fila y a $\{2,5\}$ en la segunda.

1	3	4		4	1	3
2	5		\sim	5	2	

Observación. No es difícil ver que la relación \sim es una relación de equivalencia.

Definición. Una \sim -clase de equivalencia de λ -tableaux es llamada un λ -tabloide o un tabloide de forma λ . El tabloide de un tableaux t es denotado por [t]. El conjunto de todos los tabloides de forma λ es denotado T^{λ} .

Proposición 3.1. Suponga que $t_1 \sim t_2$ y $\sigma \in S_n$. Entonces $\sigma t_1 \sim \sigma t_2$. Así, hay una acción bien definida de S_n en T^{λ} dada por $\sigma[t] = [\sigma t]$ para t un λ -tableau.

Para una partición λ , denotamos por M^{λ} a $\mathbb{C}T^{\lambda}$ y consideramos $\varphi^{\lambda}: S_n \to GL(M^{\lambda})$ la representación por permutaciones asociada.

Ejemplo 3.4. Suponga que $\lambda = (n-1,1)$. Entonces dos λ -tableaux son equivalentes si y solo si tienen la misma entrada en la segunda fila. De este modo, T^{λ} está en biyección con $\{1,\ldots,n\}$ y φ^{λ} es equivalente a la representación standard o por permutaciones. Por otra parte, si $\lambda = (n)$, entonces existe un único λ -tabloide. Luego, φ^{λ} es la representación trivial.

Definición. Sea $\lambda, \mu \vdash n$. Sea t un λ -tableaux. Definimos el operador lineal $A_t : M^{\mu} \to M^{\mu}$ como

$$A_t = \sum_{\pi \in C_t} sgn(\pi)\varphi_{\pi}^{\mu}.$$

En el caso $\lambda = \mu$, el elemento

$$e_t = A_t[t] = \sum_{\pi \in C_t} sgn(\pi)\pi[t]$$

de M^{λ} es llamado el *politabloide* asociado a t.

Nuestra siguiente proposición muestra que la acción de S_n sobre λ -tableaux es compatible con la definición de λ -tabloide.

Proposición 3.2. Si $\sigma \in S_n$ y t es un λ -tableaux, entonces $\varphi_{\sigma}^{\lambda} e_t = e_{\sigma t}$.

Demostración. Primero veamos que $C_{\sigma t} = \sigma C_t \sigma^{-1}$. En efecto, si X_i es el conjunto de entradas de la columna i de t, entonces $\sigma(X_i)$ es el conjunto de entradas de la columna i de σt . Como τ estabiliza X_i si y solo si $\sigma \tau \sigma^{-1}$ estabiliza $\sigma(X_i)$, la afirmación sigue. Ahora, calculamos

$$\varphi_{\sigma}^{\lambda} A_{t} = \sum_{\pi \in C_{t}} sgn(\pi) \varphi_{\sigma}^{\lambda} \varphi_{\pi}^{\lambda}$$

$$= \sum_{\tau \in C_{\sigma t}} sgn(\sigma^{-1} \tau \sigma) \varphi_{\sigma}^{\lambda} \varphi_{\sigma^{-1} \tau \sigma}^{\lambda}$$

$$= A_{\sigma t} \varphi_{\sigma}^{\lambda}$$

donde hemos hecho la substitución $\tau = \sigma \pi \sigma^{-1}$.

Por lo tanto $\varphi_{\sigma}^{\lambda}e_{t}=\varphi_{\sigma}^{\lambda}A_{t}[t]=A_{\sigma t}\varphi_{\sigma}^{\lambda}[t]=A_{\sigma t}[\sigma t]=e_{\sigma t}$. Esto completa la demostración.

Estamos ahora en condiciones de definir la subrepresentación buscada.

Definición. Sea λ una partición de n. Defina S^{λ} como el subespacio de M^{λ} generado por los politabloides e_t con t un λ -tableaux. La Proposición 3.2 implica que S^{λ} es S_n -invariante. Sea $\psi^{\lambda}: S_n \to GL(S^{\lambda})$ la correspondiente subrepresentación. Esta subrepresentación es llamada la Representación de Sprecht asociada a λ .

Las representaciones de Sprecht ψ^{λ} forman un conjunto completo de representaciones irreducibles de S_n .

Observación. Los e_t no son en general linealmente independientes. Esto se verá en el ejemplo que viene.

Ejemplo 3.5. Considere la partición $\lambda = (1, 1, ..., 1)$ de n. Como cada fila tiene solo un elemento, los λ -tableaux son lo mismo que los λ -tabloides. Así, φ^{λ} es equivalente a la representación regular de S_n . Sea t un λ -tableaux. Como t tiene solo una columna, trivialmente se tiene que $C_t = S_n$. Así

$$e_t = \sum_{\pi \in S_n} sgn(\pi)\pi[t].$$

Afirmamos que si $\sigma \in S_n$, entonces $\varphi_{\sigma}^{\lambda}e_t = sgn(\sigma)e_t$. Como sabemos que $\varphi_{\sigma}^{\lambda}e_t = e_{\sigma t}$ por la Proposición 3.2, se sigue que $S^{\lambda} = \mathbb{C}e_t$ y que ψ^{λ} es equivalente a la representación de grado uno $sgn : S_n \to \mathbb{C}^*$.

En efecto, calculamos

$$\varphi_{\sigma}^{\lambda} e_{t} = \sum_{\pi \in S_{n}} sgn(\pi) \varphi_{\sigma}^{\lambda} \varphi_{\pi}^{\lambda}[t]$$

$$= \sum_{\tau \in S_{n}} sgn(\sigma^{-1}\tau) \varphi_{\tau}^{\lambda}[t]$$

$$= sgn(\sigma) e_{t}$$

donde hemos usado la substitución $\tau = \sigma \pi$.

Para construir las representaciones usaremos el siguiente lema.

Lema 3.1. Sea $\lambda \vdash n$ y suponga que t^{λ} y s^{λ} son λ -tableaux tales que $A_{t^{\lambda}}[s^{\lambda}] \neq 0$. Entonces $A_{t^{\lambda}}[s^{\lambda}] = \pm e_{t^{\lambda}}$.

4. Aplicación: El grupo S_5 .

Aplicaremos la teoría desarrollada sobre el grupo simétrico S_5 y calcularemos algunas representaciones irreducibles junto con sus caracteres.

4.1. Representación Trivial

Consideremos la partición $\lambda = (5)$ de 5. Su diagrama de Young es

Notemos que existe un único (5)-tabloide. Así, para cualquier par de tableaux distintos t_1 y t_2 tendremos que

$$e_{t_1} = A_{t_1}[t_1] = \sum_{\pi \in C_{t_1}} sgn(\pi)\pi[t_1]$$

Pero $C_t = \{Id_5\}$ para todo tableaux t. Luego

$$\sum_{\pi \in C_{t_1}} sgn(\pi)\pi[t_1] = \sum_{\pi \in C_{t_2}} sgn(\pi)\pi[t_2] = A_{t_2}[t_2] = e_{t_2}$$

Es decir, $e_{t_1} = e_{t_2}$ para cualquier par de tableaux. Tenemos entonces que $S^{(5)} = \mathbb{C}$ y $\psi^{(5)}$ corresponde a la representación trivial $\psi^{(5)}: S_5 \to \mathbb{C}$ con $\psi^{(5)}(\sigma) = 1 \ \forall \sigma \in S_5$.

La tabla del caracter es

S_5	(\cdot)	$(\cdot \cdot)$	$(\cdot \cdot \cdot)$	$(\cdot \cdot)(\cdot \cdot)$	$(\cdot \cdot \cdot)(\cdot \cdot)$	$(\cdot \cdot \cdot \cdot)$	$(\cdot \cdot \cdot \cdot \cdot)$
$\chi_{\psi^{(1,1,1,1,1)}}$	1	1	1	1	1	1	1

4.2. Una Representación de Grado 4

Consideramos la partición $\lambda = (4, 1)$. Notemos que podemos indexar los tabloides de esta partición según la entrada en la segunda fila de los tableaux. Tenemos entonces que existirán 5 tabloides, a saber

con
$$i \in \{1, 2, 3, 4, 5\}.$$

Nuestra intención es generar el espacio $S^{(4,1)}$. Necesitamos entonces calcular los politabloides e_t y determinar una base para $S^{(4,1)}$. No sabemos la dimensión de este espacio (en principio, podría ser hasta 120, pues cada tableaux genera un politabloide y podrían todos formar un conjunto linealmente independiente), pero ciertamente será menor o igual que 5, pues esta es la cantidad de tabloides distintos que existen para esta partición.

Consideramos los 120 posibles tableaux y los indexamos por familias vía

$$t_{a,b} = \begin{bmatrix} b & & & \\ & a & & \\ & & & \end{bmatrix}$$

Con $a \neq b$, ambos pertenecientes al conjunto $\{1, 2, 3, 4, 5\}$. Notar que hay 20 familias.

Procedemos a calcular los $e_{t_{a,b}}$. Notemos que

$$e_{t_{a,b}} = A_{t_{a,b}}[t_{a,b}] = (Id_5)[t_{a,b}] - (a\ b)[t_{a,b}] = [t_{a,b}] - [t_{b,a}] = [t_a] - [t_b].$$

Luego, las 20 posibles combinaciones posibles entre a y b se reducen a 10, pues $e_{t_{a,b}} = -e_{t_{b,a}}$.

Los generadores de $S^{(4,1)}$ ahora se han reducido a los politabloides

$$\begin{array}{llll} [t_1] - [t_2] & [t_2] - [t_3] & [t_3] - [t_4] & [t_4] - [t_5] \\ [t_1] - [t_3] & [t_2] - [t_4] & [t_3] - [t_5] \\ [t_1] - [t_4] & [t_2] - [t_5] \\ [t_1] - [t_5] & \\ \end{array}$$

De donde es evidente que si tomamos el primer elemento de cada columna, tenemos un conjunto linealmente independiente que genera a los otros elementos.

Tenemos entonces nuestra base $\{[t_1] - [t_2], [t_2] - [t_3], [t_3] - [t_4], [t_4] - [t_5]\} = \{e_{t_{1,2}}, e_{t_{2,3}}, e_{t_{3,4}}, e_{t_{4,5}}\}.$

Calculamos entonces el caracter de la correspondiente representación de Sprecht.

Usando la Proposición 3.2 aplicamos un representante de una clase de conjugación del grupo S_5 a los elementos de la base.

Clase de la Identidad

Para la clase de conjugación de la identidad, como la dimensión de $S^{(4,1)}$ es 4, tenemos que el valor del caracter de $\psi_{(1\ 2)}^{(4,1)}$ en el elemento identidad es 4.

Clase de la permutación (1 2)

Para la clase de conjugación de $\sigma=(1\ 2)$, tenemos $\psi_{(1\ 2)}^{(4,1)}e_{t_{1,2}}=e_{t_{2,1}}=-e_{t_{1,2}}$. Por lo que la primera entrada de la diagonal de la matriz de $\psi_{(1\ 2)}^{(4,1)}$ es -1.

 $\psi_{(1\ 2)}^{(4,1)}e_{t_{2,3}} = e_{t_{1,3}} = [t_1] - [t_3] = e_{t_{1,2}} + e_{t_{2,3}}$. Por lo que la segunda entrada en la diagonal de la matriz es 1.

 $\psi^{(4,1)}_{(1\ 2)}e_{t_{3,4}}=e_{t_{3,4}}.$ Por lo que la tercera entrada en la diagonal de la matriz es 1.

 $\psi^{(4,1)}_{(1\ 2)}e_{t_{4,5}}=e_{t_{4,5}}.$ Por lo que la cuarta entrada en la diagonal de la matriz es 1.

Concluímos que el valor del caracter de $\psi^{(4,1)}$ en esta clase de conjugación es 2.

Clase de la permutación (1 2 3)

Para la clase de conjugación de $\sigma=(1\ 2\ 3)$, tenemos $\psi_{(1\ 2\ 3)}^{(4,1)}e_{t_{1,2}}=e_{t_{2,3}}$. Por lo que la primera entrada de la diagonal de la matriz de $\psi_{(1\ 2\ 3)}^{(4,1)}$ es 0.

 $\psi_{(1\ 2\ 3)}^{(4,1)}e_{t_{2,3}}=e_{t_{3,1}}=[t_3]-[t_1]=-e_{t_{1,2}}-e_{t_{2,3}}.$ Por lo que la segunda entrada en la diagonal de la matriz es -1.

 $\psi_{(1\ 2\ 3)}^{(4,1)}e_{t_{3,4}}=e_{t_{1,4}}=[t_1]-[t_4]=e_{t_{1,2}}+e_{t_{2,3}}+e_{t_{3,4}}.$ Por lo que la tercera entrada en la diagonal de la matriz es 1.

 $\psi^{(4,1)}_{(1\ 2\ 3)}e_{t_{4,5}}=e_{t_{4,5}}.$ Por lo que la cuarta entrada en la diagonal de la matriz es 1.

Concluímos que el valor del caracter de $\psi^{(4,1)}$ en esta clase de conjugación es 1.

Clase de la permutación (1 2)(3 4)

Para la clase de conjugación de $\sigma=(1\ 2)(3\ 4)$, tenemos $\psi^{(4,1)}_{(1\ 2)(3\ 4)}e_{t_{1,2}}=e_{t_{2,1}}=-e_{t_{1,2}}$. Por lo que la primera entrada de la diagonal de la matriz de $\psi^{(4,1)}_{(1\ 2)(3\ 4)}$ es -1.

 $\psi_{(1\ 2)(3\ 4)}^{(4,1)}e_{t_{2,3}}=e_{t_{1,4}}=[t_1]-[t_4]=e_{t_{1,2}}+e_{t_{2,3}}+e_{t_{3,4}}.$ Por lo que la segunda entrada en la diagonal de la matriz es 1.

 $\psi_{(1\ 2)(3\ 4)}^{(4,1)}e_{t_{3,4}}=e_{t_{4,3}}=[t_4]-[t_3]=-e_{t_{3,4}}. \text{ Por lo que la tercera entrada en la diagonal de la matriz es -1.}$

 $\psi_{(1\ 2)(3\ 4)}^{(4,1)}e_{t_{4,5}}=e_{t_{3,5}}=[t_3]-[t_5]=e_{t_{3,4}}+e_{t_{4,5}}. \text{ Por lo que la cuarta entrada en la diagonal de la matriz es } 1.$

Concluímos que el valor del caracter de $\psi^{(4,1)}$ en esta clase de conjugación es 0.

Clase de la permutación (1 2 3)(4 5)

Para la clase de conjugación de $\sigma=(1\ 2\ 3)(4\ 5)$, tenemos $\psi^{(4,1)}_{(1\ 2\ 3)(4\ 5)}e_{t_{1,2}}=e_{t_{2,3}}$. Por lo que la primera entrada de la diagonal de la matriz de $\psi^{(4,1)}_{(1\ 2\ 3)(4\ 5)}$ es 0.

 $\psi^{(4,1)}_{(1\ 2\ 3)(4\ 5)}e_{t_{2,3}}=e_{t_{3,1}}=[t_3]-[t_1]=-e_{t_{1,2}}-e_{t_{2,3}}.$ Por lo que la segunda entrada en la diagonal de la matriz es -1.

 $\psi_{(1\ 2\ 3)(4\ 5)}^{(4,1)}e_{t_{3,4}} = e_{t_{1,5}} = [t_1] - [t_5] = e_{t_{1,2}} + e_{t_{2,3}} + e_{t_{3,4}} + e_{t_{4,5}}$. Por lo que la tercera entrada en la diagonal de la matriz es 1

 $\psi_{(1\ 2\ 3)(4\ 5)}^{(4,1)}e_{t_{4,5}} = e_{t_{5,4}} = [t_5] - [t_4] = -e_{t_{4,5}}$. Por lo que la cuarta entrada en la diagonal de la matriz es -1.

Concluímos que el valor del caracter de $\psi^{(4,1)}$ en esta clase de conjugación es -1.

Clase de la permutación (1 2 3 4)

Para la clase de conjugación de $\sigma = (1\ 2\ 3\ 4)$, tenemos $\psi_{(1\ 2\ 3\ 4)}^{(4,1)}e_{t_{1,2}} = e_{t_{2,3}}$. Por lo que la primera entrada de la diagonal de la matriz de $\psi_{(1\ 2\ 3\ 4)}^{(4,1)}$ es 0.

 $\psi_{(1\ 2\ 3\ 4)}^{(4,1)}e_{t_{2,3}}=e_{t_{3,4}}$. Por lo que la segunda entrada en la diagonal de la matriz es 0.

 $\psi_{(1\ 2\ 3\ 4)}^{(4,1)}e_{t_{3,4}} = e_{t_{4,1}} = [t_4] - [t_1] = -e_{t_{1,2}} - e_{t_{2,3}} - e_{t_{3,4}}$. Por lo que la tercera entrada en la diagonal de la matriz es -1.

 $\psi_{(1\ 2\ 3\ 4)}^{(4,1)}e_{t_{4,5}} = e_{t_{1,5}} = [t_1] - [t_5] = e_{t_{1,2}} + e_{t_{2,3}} + e_{t_{3,4}} + e_{t_{4,5}}$. Por lo que la cuarta entrada en la diagonal de la matriz es 1

Concluímos que el valor del caracter de $\psi^{(4,1)}$ en esta clase de conjugación es 0.

Clase de la permutación (1 2 3 4 5)

Finalmente, para la clase de conjugación de $\sigma=(1\ 2\ 3\ 4\ 5)$, tenemos $\psi^{(4,1)}_{(1\ 2\ 3\ 4\ 5)}e_{t_{1,2}}=e_{t_{2,3}}$. Por lo que la primera entrada de la diagonal de la matriz de $\psi^{(4,1)}_{(1\ 2\ 3\ 4\ 5)}$ es 0.

 $\psi_{(1\ 2\ 3\ 4\ 5)}^{(4,1)}e_{t_{2,3}}=e_{t_{3,4}}$. Por lo que la segunda entrada en la diagonal de la matriz es 0.

 $\psi^{(4,1)}_{(1\ 2\ 3\ 4\ 5)}e_{t_{3,4}}=e_{t_{4,5}}.$ Por lo que la tercera entrada en la diagonal de la matriz es 0.

 $\psi_{(1\ 2\ 3\ 4\ 5)}^{(4,1)}e_{t_{4,5}}=e_{t_{5,1}}=[t_{5}]-[t_{1}]=-e_{t_{1,2}}-e_{t_{2,3}}-e_{t_{3,4}}-e_{t_{4,5}}.$ Por lo que la cuarta entrada en la diagonal de la matriz es -1.

Concluímos que el valor del caracter de $\psi^{(4,1)}$ en esta clase de conjugación es -1.

En resumen, la tabla del caracter de $\psi^{(4,1)}$ queda así

S_5	(\cdot)	$(\cdot \cdot)$	$(\cdot \cdot \cdot)$	$(\cdot \cdot)(\cdot \cdot)$	$(\cdot \cdot \cdot)(\cdot \cdot)$	$(\cdot \cdot \cdot \cdot)$	$(\cdot \cdot \cdot \cdot \cdot)$
$\chi_{\eta,(4,1)}$	4	2	1	0	-1	0	-1

Referencias

- [1] J. Gordon, M. W. Liebeck. Representations and characters of groups. Cambridge University Press (2001).
- [2] B. E. Sagan. The symmetric group Representations, combinatorial, algorithms, and symmetric functions Springer GTM 203 (2001).
- [3] B. Steinberg. Representation theory of finite groups An introductory approach. Springer Universitext. (2012), 117–129.