11.4.3 Интеграл Лебега и предельный переход

Одним из основных преимуществ интеграла Лебега перед интегралом Римана является бо́льшая свобода при выполнении предельных переходом под знаком интеграла. Для осуществления этой процедуры в интеграле Римана нам фактически требуется равномерная сходимость последовательности подынтегральных функций. Для интеграла Лебега это требование можно значительно ослабить. Как и ранее, мы предположим, что $\mu(X) < \infty$.

Теорема 11.4.21 (Лебега). Пусть последовательность $\{f_k\}$ измеримых функций сходится почти всюду на множестве X к функции f и $|f_k(x)| \leq \varphi(x)$ при всех $k \in \mathbb{N}$ и почти всех $x \in X$. Если $\varphi \in \mathcal{L}(X)$, то $f \in \mathcal{L}(X)$ и

$$\lim_{k \to \infty} \int_X f_k \, d\mu = \int_X f \, d\mu.$$

Доказательство. Очевидно, что $|f(x)| \leq \varphi(x)$ для почти всех $x \in X$, поэтому, как следует из теоремы 11.4.16, $f \in \mathcal{L}(X)$. Зафиксируем произвольное $\varepsilon > 0$. В силу абсолютной непрерывности интеграла Лебега найдётся такое $\delta > 0$, что

$$\int_{E} \varphi \, d\mu < \frac{\varepsilon}{4}$$

для произвольного измеримого множества $E \subset X$, мера Лебега которого меньше δ . В то же время, согласно теореме Егорова множество E можно выбрать так, чтобы последовательность $\{f_k\}$ сходилась равномерно на $X \setminus E$. Поэтому существует такое $k_* \in \mathbb{N}$, что

$$|f_k(x) - f(x)| < \frac{\varepsilon}{2\mu(X \setminus E)}$$

при $k > k_*$ и $x \in X \setminus E$.

Таким образом,

$$\left| \int_{X} f_{k} d\mu - \int_{X} f d\mu \right| = \left| \int_{X \setminus E} (f_{k} - f) d\mu + \int_{E} f_{k} d\mu - \int_{E} f d\mu \right| \leqslant$$

$$\leqslant \left| \int_{X \setminus E} (f_{k} - f) d\mu \right| + 2 \int_{E} \varphi d\mu < \frac{\varepsilon}{2} + \frac{2\varepsilon}{4} = \varepsilon$$

при $k > k_*$. Из этого неравенства следует утверждение теоремы.

Пример 11.4.22. Условие существования интегрируемой мажоранты φ для последовательности $\{f_k\}$ важно в теореме Лебега. Пусть X=[0,1] и

$$f_k(x) = \begin{cases} k, & x \in [0, 1/k), \\ 0, & x \in [1/k, 1]. \end{cases}$$

Тогда $f_k(x) \to 0$ для любого x > 0. То есть $f_k \to f \equiv 0$ при $k \to \infty$ для почти всех $x \in X$. В то же время,

$$\int_X f_k \, d\mu \text{ re} \cdot \frac{1}{k} = 1 \not\to \int_X f \, d\mu = 0.$$

Для последовательности $\{f_k\}$ нет интегрируемой мажоранты.

На практике интегрируемую мажоранту φ для последовательности $\{f_k\}$ бывает довольно сложно отыскать. Чаще всего такой мажорантой служит какая-нибудь постоянная. Если же последовательность $\{f_k\}$ не является ограниченной, возникают определённые проблемы при использовании теоремы Лебега. Следующие теоремы позволяют осуществить предельный переход без использования мажоранты, однако и на последовательность $\{f_k\}$ налагаются более ограничительные условия.

$$\lim_{k \to \infty} \int_X f_k \, d\mu = \int_X f \, d\mu.$$

Доказательство. Обозначим через E такое множество в X, что $f_1(x) \leqslant f_2(x) \leqslant \ldots \leqslant f_k(x) \leqslant \ldots$ для всех $x \in E$. Согласно условию теоремы, $\mu(X \setminus E) = 0$. Без ограничения общности можно считать, что $f_k \geqslant 0$ в E для всех k, иначе вместо функций f_k мы рассмотрим функции $f_k - f_1$. Проведём доказательство теоремы в два шага.

Шаг 1. Покажем, что для почти всех $x \in E$ существует конечный предел $\lim_{k\to\infty} f_k(x) = f(x)$. Обозначим через E^{∞} множество точек $x \in E$, таких что $f_k(x) \to +\infty$ при $k \to \infty$. Нам необходимо показать, что $\mu(E^{\infty}) = 0$.

Определим множества

$$E_k^m = \{ x \in E \mid f_k(x) \geqslant m \}.$$

Если $x \in E_k^m$, то $f_{k+1}(x) \geqslant f_k(x) \geqslant m$ и поэтому $x \in E_{k+1}^m$. Следовательно $E_k^m \subset E_{k+1}^m$ для всех $k \in \mathbb{N}$. Обозначим через E^m множество $\bigcup_{k \in \mathbb{N}} E_k^m$. Из непрерывности меры Лебега следует, что

$$\mu(E^m) = \lim_{k \to \infty} \mu(E_k^m).$$

В то же время, в силу неравенства Чебышёва

$$\mu(E_k^m) \leqslant \frac{1}{m} \int_{\square} f_k \, d\mu \leqslant \frac{M}{m}.$$

Поэтому $\mu(E^m) \leqslant M/m$ и $\lim_{m\to\infty} \mu(E^m) = 0$.

ти $x_* \in E^\infty$, то для каждого $m \in \mathbb{N}$ существует такое число k, что $f_k(x_*) \geqslant m$, то есть $x_* \in E_k^m$. Поскольку $x_* \in E_k^m$ хотя бы для одного k, мы делаем вывод, что $x_* \in E^m$, а поскольку это включение справедливо для всех m, мы заключаем, что $x_* \in \cap_{m \in \mathbb{N}} E^m$. Таким образом, $E^\infty \subset \cap_{m \in \mathbb{N}} E^m$. Заметим, что $E^{m+1} \subset E^m$ для всех $m \in \mathbb{N}$, так как $E_k^{m+1} \subset E_k^m$ для каждого $k \in \mathbb{N}$. Опять используя непрерывность меры Лебега, мы получаем:

$$\mu(E^{\infty}) \leqslant \mu(\cap_{m \in \mathbb{N}} E^m) = \lim_{m \to \infty} \mu(E^m) = 0.$$

Следовательно $\mu(E^{\infty}) = 0$.

Шаг 2. Функция f определена на множестве $E \setminus E^{\infty}$. Доопределим её как-нибудь на всём множестве X и новую функцию снова обозначим через f. Согласно теореме 11.3.13 функция f будет измеримой на X.

Обозначим через $A_j, j \in \mathbb{N}$, множество тех точек $x \in X$, для которых $j-1 \leqslant f(x) < j$, и положим $\varphi(x)=j$ при $x\in A_j$. Заметим, что $f_k\leqslant f<\varphi\leqslant f+1$ почти всюду в X. Кроме того, множества не пересекаются и $X = \bigcup_{j \in \mathbb{N}} A_j$. Положим $B_\ell = \bigcup_{j=1}^\ell A_j$. Почти всюду на этом множестве функции f_k и f ограничены

числом ℓ , поэтому, используя теорему Лебега о предельном переходе, мы получим:

$$\sum_{j=1}^{\ell} j \, \mu(A_j) = \int_{B_{\ell}} \varphi \, d\mu \leqslant \int_{B_{\ell}} (f+1) \, d\mu = \int_{\underline{B_{\ell}}} f \, d\mu + \underline{\mu(X)}$$

$$= \lim_{k \to \infty} \int_{B_{\ell}} f_k \, d\mu + \mu(X) \leqslant M + \mu(X).$$

То есть частичные суммы ряда $\sum_{j=1}^{\infty} j \, \mu(A_j)$ равномерно ограничены. Следовательно, этот ряд сходится (так как его члены неотрицательны). Но сумма этого ряда есть не что иное, как $\int_X \varphi \, d\mu$. Поэтому $\varphi \in \mathcal{L}(X)$. Таким образом, φ является интегрируемой мажорантой последовательности $\{f_k\}$. Применив ещё раз теорему Лебега, мы получим утверждение теоремы.

Теорема 11.4.24 (Фату). Если последовательность неотрицательных интегрируемых функций $\{f_k\}$ сходится почти всюду на X к функции f и $\int_X f_k \, d\mu \leqslant M$ для некоторой постоянной $M \in \mathbb{R}$ и всех $k \in \mathbb{N}$, то $f \in \mathcal{L}(X)$ и $\int_X f \, d\mu \leqslant M$.

Доказательство. Для всех $x\in X$ положим $g_m(x)=\inf_{k\geqslant m}f_k(x)$. При каждом $m\in\mathbb{N}$ функция g_m измерима и $0 \leqslant g_m \leqslant f_m$ в X. Поэтому $g_m \in \mathcal{L}(X)$ и

$$\int_{Y} g_m \, d\mu \leqslant \int_{Y} f_m \, d\mu \leqslant M.$$

Поскольку $\{g_m\}$ — неубывающая последовательность и

$$\lim_{m \to \infty} g_m = \underline{\lim}_{k \to \infty} f_k = \lim_{k \to \infty} f_k = f$$
 почти всюду в X ,

доказываемое утверждение следует из теоремы Леви.

Замечание 11.4.25. Часто используется следующий вариант теоремы Фату: если последовательность неотрицательных интегрируемых функций $\{f_k\}$ сходится почти всюду на X к функции f и $\int_X f_k d\mu \leqslant M$ для некоторой постоянной $M \in \mathbb{R}$ и всех $k \in \mathbb{N}$, то $f \in \mathcal{L}(X)$ $u \int_X f d\mu \leqslant \lim_{k \to \infty} \int_X f_k d\mu$.

По сравнению с предыдущей формулировкой теоремы Фату новым является только последнее интегральное неравенство. Чтобы его доказать, посмотрим внимательнее на доказательство теоремы. Вообще говоря, предел $\lim_{k \to \infty} \int_X f_k \, d\mu$ может и не существовать. Однако $0 \leqslant \int_X f_k d\mu \leqslant M$, а нижний предел у ограниченной последовательности существует всегда. Поэтому, согласно теореме Леви,

$$\int_X f \, d\mu = \lim_{k \to \infty} \int_X g_k \, d\mu = \underline{\lim}_{k \to \infty} \int_X g_k \, d\mu \leqslant \underline{\lim}_{k \to \infty} \int_X f_k \, d\mu.$$

Заметим, что из сформулированного утверждения следует утверждение теоремы 11.4.24.
