

Lecture 15 Placement

Introduction

Introduction

2D Placement

Placement and Routing with Standard Cells

Introduction

Global Placement

Detailed Placement

Optimization Objectives

Total Wirelength Number of Cut Nets

Wire Congestion

Signal Delay

Wirelength estimation for a given placement

Half-perimeter wirelength (HPWL)

Complete graph (clique)

Monotone chain

Star model

HPWL = 9

Clique Length = $(2/p)\Sigma_{e \in clique} d_{M}(e) = 14.5$

Chain Length = 12

Star Length = 15

Wirelength estimation for a given placement (cont'd.)

Rectilinear minimum spanning tree (RMST) Rectilinear Steiner minimum tree (RSMT) Rectilinear Steiner arborescence model (RSA) Single-trunk Steiner tree (RSMT)

RMST Length = 11

RSMT Length = 10

RSA Length = 10

STST Length = 10

Wirelength estimation for a given placement (cont'd.)

Preferred method: Half-perimeter wirelength (HPWL)

- Fast (order of magnitude faster than RSMT)
- Equal to length of RSMT for 2- and 3-pin nets
- Margin of error for real circuits approx. 8% [Chu, ICCAD 04]

 $L_{\text{HPWL}} = w + h$

RSMT Length = 10

$$HPWL = 9$$

Total wirelength with net weights (weighted wirelength)

For a placement P, an estimate of total weighted wirelength is

$$L(P) = \sum_{net \in P} w(net) \cdot L(net)$$

where w(net) is the weight of net, and L(net) is the estimated wirelength of net.

Example:

Nets Weights
$$N_1 = (a_1, b_1, d_2)$$
 $w(N_1) = 2$ $N_2 = (c_1, d_1, f_1)$ $w(N_2) = 4$ $N_3 = (e_1, f_2)$ $w(N_3) = 1$

$$L(P) = \sum_{net \in P} w(net) \cdot L(net) = 2 \cdot 7 + 4 \cdot 4 + 1 \cdot 3 = 33$$

Optimization Objectives – Number of Cut Nets

Cut sizes of a placement

To improve total wirelength of a placement *P*, separately calculate the number of crossings of global vertical and horizontal cutlines, and minimize

$$L(P) = \sum_{v \in V_P} \psi_P(v) + \sum_{h \in H_P} \psi_P(h)$$

where $\Psi_P(cut)$ be the set of nets cut by a cutline *cut*

Optimization Objectives – Number of Cut Nets

Cut sizes of a placement

Example:

Nets

$$N_1 = (a_1, b_1, d_2)$$

 $N_2 = (c_1, d_1, f_1)$
 $N_3 = (e_1, f_2)$

Cut values for each global cutline

$$\psi_{P}(v_{1}) = 1 \qquad \psi_{P}(v_{2}) = 2$$
 $\psi_{P}(h_{1}) = 3 \qquad \psi_{P}(h_{2}) = 2$

Total number of crossings in P $\Psi_P(V_1) + \Psi_P(V_2) + \Psi_P(h_1) + \Psi_P(h_2) = 1 + 2 + 3 + 2 = 8$

$$X(P) = \max(\psi_P(v_1), \psi_P(v_2)) = \max(1,2) = 2$$

 $Y(P) = \max(\psi_P(h_1), \psi_P(h_2)) = \max(3,2) = 3$

Optimization Objectives – Wire Congestion

Routing congestion of a placement

- Ratio of demand for routing tracks to the supply of available routing tracks
- Estimated by the number of nets that pass through the boundaries of individual routing regions

Optimization Objectives – Wire Congestion

Routing congestion of a placement

Formally, the local wire density $\varphi_P(e)$ of an edge e between two neighboring grid cells is

$$\varphi_P(e) = \frac{\eta_P(e)}{\sigma_P(e)}$$

where $\eta_{P}(e)$ is the estimated number of nets that cross e and $\sigma_P(e)$ is the maximum number of nets that can cross e

- If $\varphi_P(e) > 1$, then too many nets are estimated to cross e, making P more likely to be unroutable.
- The wire density of P is $\Phi(P) = \max_{e \in E} (\varphi_P(e))$

where E is the set of all edges

If $\Phi(P) \leq 1$, then the design is estimated to be fully routable, otherwise routing will need to detour some nets through less-congested edges

Global Placement

Partitioning-based algorithms:

- The netlist and the layout are divided into smaller sub-netlists and sub-regions, respectively
- Process is repeated until each sub-netlist and sub-region is small enough to be handled optimally
- Detailed placement often performed by optimal solvers, facilitating a natural transition from global placement to detailed placement
- Example: min-cut placement

Analytic techniques:

- Model the placement problem using an objective (cost) function, which can be optimized via numerical analysis
- Examples: quadratic placement and force-directed placement

Stochastic algorithms:

- Randomized moves that allow hill-climbing are used to optimize the cost function
- Example: simulated annealing

Global Placement

Partitioning-based

Min-cut placement Analytic

Quadratic placement

Force-directed placement

Stochastic

Simulated annealing

- Uses partitioning algorithms to divide (1) the netlist and (2) the layout region into smaller sub-netlists and sub-regions
- Conceptually, each sub-region is assigned a portion of the original netlist
- Each cut heuristically minimizes the number of cut nets using, for example,
 - Kernighan-Lin (KL) algorithm
 - Fiduccia-Mattheyses (FM) algorithm

Alternating cutline directions

2a 4a⁻ 4*c* 3*a* 3*b* 4*b* 4*d* 4e 4*g* 3*c* 3*d* 4*f* -\4*h* 2*b*

Repeating cutline directions

2 <i>a</i>	4a{	3a{	4e{
1	4 <i>b</i> {	3 <i>b</i> {	4 <i>f</i> {
2 <i>b</i>	4 <i>c</i> {	3 <i>c</i> {	4 <i>g</i> {
20	4 <i>d</i> {	3 <i>d</i> {	4 <i>h</i> {

Input: netlist *Netlist*, layout area *LA*, minimum number of cells per region *cells min*

Output: placement P

```
P = \emptyset
regions = ASSIGN(Netlist,LA)
                                                   // assign netlist to layout area
while (regions !=\emptyset)
                                                    // while regions still not placed
  region = FIRST_ELEMENT(regions)
                                                   // first element in regions
  REMOVE(regions, region)
                                                   // remove first element of regions
  if (region contains more than cell_min cells)
     (sr1, sr2) = BISECT(region)
                                                    // divide region into two subregions
                                                    // sr1 and sr2, obtaining the sub-
                                                    // netlists and sub-areas
     ADD TO END(regions, sr1)
                                                   // add sr1 to the end of regions
     ADD TO END(regions, sr2)
                                                   // add sr2 to the end of regions
  else
    PLACE(region)
                                                    // place region
    ADD(P,region)
                                                    // add region to P
```

Min-Cut Placement – Example

Given:

Task: 4 x 2 placement with minimum wirelength using alternative cutline directions and the KL algorithm

Vertical cut cut_1 : $L=\{1,2,3\}$, $R=\{4,5,6\}$

Horizontal cut cut_{2L} : $T=\{1,4\}$, $B=\{2,0\}$

Horizontal cut cut_{2R} : $T=\{3,5\}$, $B=\{6,0\}$

Min-Cut Placement – Terminal Propagation

- **Terminal Propagation**
 - External connections are represented by artificial connection points on the cutline
 - Dummy nodes in hypergraphs

Advantages:

- Reasonable fast
- Objective function and be adjusted, e.g., to perform timing-driven placement
- Hierarchical strategy applicable to large circuits

Disadvantages:

- Randomized, chaotic algorithms small changes in input lead to large changes in output
- Optimizing one cutline at a time may result in routing congestion elsewhere

Objective function is quadratic; sum of (weighted) squared Euclidean distance represents placement objective function

$$L(P) = \frac{1}{2} \sum_{i,j=1}^{n} c_{ij} \left(\left(x_i - x_j \right)^2 + \left(y_i - y_j \right)^2 \right)$$

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

- Only two-point-connections
- Minimize objective function by equating its derivative to zero which reduces to solving a system of linear equations

$$L(P) = \frac{1}{2} \sum_{i,j=1}^{n} c_{ij} \left(\left(x_i - x_j \right)^2 + \left(y_i - y_j \right)^2 \right)$$

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

Each dimension can be considered independently:

$$L_x(P) = \sum_{i=1, j=1}^{n} c(i, j)(x_i - x_j)^2 \qquad L_y(P) = \sum_{i=1, j=1}^{n} c(i, j)(y_i - y_j)^2$$

- Convex quadratic optimization problem: any local minimum solution is also a global minimum
- Optimal x- and y-coordinates can be found by setting the partial derivatives of $L_x(P)$ and $L_v(P)$ to zero

$$L(P) = \frac{1}{2} \sum_{i,j=1}^{n} c_{ij} \left(\left(x_i - x_j \right)^2 + \left(y_i - y_j \right)^2 \right)$$

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

Each dimension can be considered independently:

$$L_{x}(P) = \sum_{i=1, j=1}^{n} c(i, j)(x_{i} - x_{j})^{2}$$

$$L_{y}(P) = \sum_{i=1, j=1}^{n} c(i, j)(y_{i} - y_{j})^{2}$$

$$\frac{\partial L_{x}(P)}{\partial X} = AX - b_{x} = 0$$

$$\frac{\partial L_{y}(P)}{\partial Y} = AY - b_{y} = 0$$

where A is a matrix with A[i][j] = -c(i,j) when $i \neq j$, and A[i][i] = the sum of incident connection weights of cell i.

X is a vector of all the x-coordinates of the non-fixed cells, and b_x is a vector with $b_x[i]$ = the sum of x-coordinates of all fixed cells attached to i.

Y is a vector of all the y-coordinates of the non-fixed cells, and b_y is a vector with $b_{\nu}[i]$ = the sum of y-coordinates of all fixed cells attached to i.

$$L(P) = \frac{1}{2} \sum_{i,j=1}^{n} c_{ij} \left(\left(x_i - x_j \right)^2 + \left(y_i - y_j \right)^2 \right)$$

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

Each dimension can be considered independently:

$$L_{x}(P) = \sum_{i=1, j=1}^{n} c(i, j)(x_{i} - x_{j})^{2}$$

$$L_{y}(P) = \sum_{i=1, j=1}^{n} c(i, j)(y_{i} - y_{j})^{2}$$

$$\frac{\partial L_{x}(P)}{\partial X} = AX - b_{x} = 0$$

$$\frac{\partial L_{y}(P)}{\partial Y} = AY - b_{y} = 0$$

System of linear equations for which iterative numerical methods can be used to find a solution

Mechanical analogy: mass-spring system

- Squared Euclidean distance is proportional to the energy of a spring between these points
- Quadratic objective function represents total energy of the spring system; for each movable object, the x(y) partial derivative represents the total force acting on that object
- Setting the forces of the nets to zero, an equilibrium state is mathematically modeled that is characterized by zero forces acting on each movable object
- At the end, all springs are in a force equilibrium with a minimal total spring energy; this equilibrium represents the minimal sum of squared wirelength
- → Result: many cell overlaps

- Second stage of quadratic placers: cells are spread out to remove overlaps
- Methods:
 - Adding fake nets that pull cells away from dense regions toward anchors
 - Geometric sorting and scaling
 - Repulsion forces, etc.

Advantages:

- Captures the placement problem concisely in mathematical terms
- Leverages efficient algorithms from numerical analysis and available software
- Can be applied to large circuits without netlist clustering (flat)
- Stability: small changes in the input do not lead to large changes in the output

Disadvantages:

Connections to fixed objects are necessary: I/O pads, pins of fixed macros, etc.

Legalization and Detailed Placement

- Global placement must be legalized
 - Cell locations typically do not align with power rails
 - Small cell overlaps due to incremental changes, such as cell resizing or buffer insertion
- Legalization seeks to find legal, non-overlapping placements for all placeable modules
- Legalization can be improved by detailed placement techniques, such as
 - Swapping neighboring cells to reduce wirelength
 - Sliding cells to unused space
- Software implementations of legalization and detailed placement are often bundled

Legalization and Detailed Placement

Legal positions of standard cells between VDD and GND rails

