Seminario 2

Temas:

- I. Composición Isotópicas, Z, A y número de electrones.
- II. Moles y número de Avogadro
- III. Composición porcentual
- IV. Determinación de Fórmulas empíricas y moleculares
 - I. Composición Isotópicas, Z, A y número de electrones.
- 1. Complete el recuadro para las siguientes especies químicas:

Nº	С	Al ³⁺	0	Li
Z		13		
Α	14	16		7
protones	6			
neutrones			10	
electrones			8	3

- 2. El elemento renio (Re) tiene dos isótopos naturales, ¹⁸⁵Re y ¹⁸⁷Re, con masa atómica promedio de 186.207 uma. El Renio contiene 62.6000 % de ¹⁸⁷Re y la masa atómica de ¹⁸⁷Re es de 186.956 uma. Calcule la masa atómica de ¹⁸⁵Re.
- 3. El litio tiene dos isótopos estables con las masas de 6.01512 uma y 7.01600 uma. La masa atómica promedio del Li es 6.941 uma. ¿Cuál es el porcentaje de abundancia de cada isótopo?

II. Moles y número de Avogadro

- 1. A partir de 25.00 g de anfetamina ($C_9H_{13}N$) responda: Datos: M.M. (g/mol): H=1.008; C=12.01; N=14.00
 - a) ¿Cuántos moles de Carbono hay?
 - b) ¿Cuántos átomos de Hidrógeno hay?
 - c) ¿Cuántos gramos de Nitrógeno hay?
 - d) ¿Cuántas moléculas de anfetamina hav?
 - e) ¿Cuál es la masa de una molécula de anfetamina?

III. Composición porcentual

Un yacimiento de plata que contiene un 60.0% de argentita (Ag_2S) del material extraído. Si por día se tratan 10.0 toneladas del material, ¿cuánta cantidad de plata, en toneladas, se obtiene en un día?, consideré que la planta tiene un 100% de eficiencia.

Dato: M (g/mol): Ag=107.9; S: 32.07

IV. Determinación de Fórmulas empíricas y moleculares.

 La alanina es un aminoácido esencial se compone de C, H, N y O, en 10.00 g de este aminoácido contiene un 40.40% de carbono, 0.7920 g de hidrógeno, 0.1120 moles de nitrógeno y 1.350x10²³ átomos de oxígeno determine:

Dato: M (g/mol): H= 1.008; C=12.01; N= 14.01; O=16.00

- a) La fórmula empírica de la alanina
- b) La fórmula molecular si su masa molar es 89.09 g/mol
- 2. Un compuesto orgánico contiene C, H y O en su fórmula molecular. En un experimento la combustión completa de 5.0000 g del compuesto arrojo como resultado 10.3432 g de CO_2 y 2.6446 g de H_2O . Además, se sabe que en los 5.0000 g del compuesto hay 1.772×10^{22} moléculas.

Dato: M (g/mol): H= 1.008; C=12.01; O=16.00

- a) Determine la fórmula empírica del compuesto.
- b) Determine la fórmula molecular del compuesto
- 3. El mentol se compone de C, H y O. Una muestra de 0.1005 g de mentol, se quema produciendo 0.2829 g de CO₂ y 0.1159 g de H₂O. Determine la fórmula empírica y molecular sabiendo que el compuesto tiene una masa molar de 156 g/mol.

Dato: M (g/mol): H= 1.008; C=12.01; N= 14.01; O=16.00