METRIC SPACE Def: Let X be a non-empty set. A function $d: X \times X \to \mathbb{R}^{\geq 0}$ is called a metric (or distance function) if (i) $\lambda(n,y) = 0 \iff x = y$ (ii) $d(x,y) = d(y,x) \forall x,y \in \mathbb{R}$ (iii) $d(x,y) \leq d(x,z) + d(z,y) \quad \forall x,y,z \in X.$ we say (X, d) is a metric space. (For short-hand, we often write: x is a metric whenever the metric is understood from the contest). Example (1) $X=\mathbb{R}^{n}$. (a) $d_{2}((x_{1},...,x_{n}), (y_{1},...,y_{n})) = \sqrt{\sum (x_{i}-y_{i})^{2}}$ $(b) d_{\infty} \left(\overrightarrow{x}, \overrightarrow{y} \right) = \max_{\substack{1 \leq i \leq n}} |x_i - y_i|$

(1)
$$X=\mathbb{R}^{n}$$
. (a) $d_{2}((x_{1},...,x_{n}), (y_{1},...,y_{n})) = \sqrt{\sum (x_{i}-y_{i})^{2}}$
(b) $d_{\infty}(\overrightarrow{x}, \overrightarrow{y}) = \max_{\substack{1 \leq i \leq n \\ 1 \leq i \leq n}} |x_{i}-y_{i}|$
(c) $d_{1}(\overrightarrow{x}, \overrightarrow{y}) = \sum_{\substack{i=1 \\ i \leq i}} |x_{i}-y_{i}|^{p}$
(d) $d_{p}(\overrightarrow{x}, \overrightarrow{y}) = \left[\sum_{\substack{i=1 \\ i \leq i}} |x_{i}-y_{i}|^{p}\right]^{\gamma_{p}}$

 $\lim_{n\to\infty} \left(5^n + 7^n\right)^{y_n} = 7$ n fixed. a1,..., an ≥0 fixed. $\mathcal{L}_{p} = \int \sum a_{i}^{p} Y_{p}$ $= \left(\max_{1 \leq i \leq n} a_i\right) \left(\ldots\right)^{1/p}$ $\lim_{p\to\infty} \alpha_p = (\max_i \alpha_i)$ = $\max_i \alpha_i$

(2) let S be any Set. Define $d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$. Discrete metric

Triangh ineq: d(x,y) d(x,z)+d(y,z)2x=y: LHS = 0, trivially true. $x \neq y$: LHS = 1. Either $z \neq x$, or $z \neq y$ so RHS ≥ 1 .

Topology (Fix a metric space X,d).

Open baus: $B_r(a) = \{ x \in X : d(x,a) \leq r \}$

Open set: (1) S is an open set if S can be written as Equivalent (2) S is an open set if $\forall x \in S \exists x > 0 s.t.$ $B_{r}(x) \subseteq S$.

Example: (1) $B_r(a)$ is an open set $\forall a \in S, r > 0$. Pf: Take $\mathcal{U} = \left\{ B_r(a) \right\}$. Then $B_r(a) = \bigcup_{V \in \mathcal{U}} V$.

- (i) union of cets inside U is Br(a).
- (ii) 1 contains only open ball(s).
- (2) S any nonempty set, d is the discrete metric on S. (Want to show that T is open for any $T \subseteq S$). Since union of open sets is open, it is enough to show that $\{x\}$ is open $\forall x \in S$.

 Let $x \in S$. Then $\{n\} = B_1(x)$ is an open set in S

Examples of metric spaces:

(1) Let $X = C[0,1] = \{ f: [0,1] \rightarrow \mathbb{R}: f \text{ continuous } \}.$

Define d: x x X -> R > 0 given by

 $d(f,g) := \sup \{|f(x) - g(x)| : x \in [0,1]\}$.

Exercise: Show that for any $f \in X$, $f([0,1]) = \{f(x): x \in [0,1]\}$ is bounded.

:. The RHS of the definition is a real number.

Show that d is a metric on X.

(i) $d(f,g) = 0 \iff \sup \{ |f(x) - g(x)| : x \in [0,1] \} = 0$ $\iff |f(x) - g(x)| = 0 \quad \forall \quad x \in [0,1] \iff f(x) = g(x) \quad \forall x$ $\iff f = g$.

(ii)
$$a(f,g) = d(g,f) \quad \forall f,g \in X$$
.
(iii) $f,g,h \in X$.
 $|f(x) - g(x)| + |g(x) - h(x)| \geqslant |f(x) - h(x)|$
 $\Rightarrow d(f,g) + d(g,h)$
 $= \sup \{|f(x) - g(x)|, x \in [0,i]\} + \sup \{|g(x) - h(x)| : x \in [0,i]\} \}$
 $\Rightarrow \sup \{|f(x) - g(x)| + |g(x) - h(x)| : x \in [0,i]\} \}$
 $\Rightarrow \sup \{|f(x) - h(x)| : x \in [0,i]\} \}$
 $= d(f,h)$
What are the open balls?
(2) Let $X = [0,i]^N = \{f: N \rightarrow [0,i]\} \}$
 $= \{sequences on [0,i]\} \}$
Let $(x_n), (y_n) \in X$, define
 $d((x_n), (y_n)) := \sum_{i=1}^{n} \frac{1}{2^i} |x_i - y_i|$ is a metric on X .
Question: Let $P: N \rightarrow [0,i]$ be a function $s.t.$
 $\sum_{i=1}^{n} P(i) = 1$
Define $d_p((x_n), (y_n)) := \sum_{i=1}^{n} P(i) \cdot |x_i - y_i|$

 $d_p((x_n), (y_n)) := \sum_{i=1}^{n} P(i) \cdot |x_i - y_i|$ When d_p a metric on X.

-> Monotone clear

$$\Rightarrow |x_i - y_i| \le 1 \quad \forall i$$

$$\Rightarrow 0 \le \sum_{i=1}^{n} \frac{1}{2^i} |x_i - y_i| \le \sum_{i=1}^{n} \frac{1}{2^i} < 1$$

$$\begin{bmatrix}
a_n & \in \mathbb{R} : \lim_{n \to \infty} \begin{pmatrix} n \\ \sum_{i=1}^{n} a_i \end{pmatrix} \\
& \in \mathbb{R}$$

"Weird" metric Spaces: There ove certain metric spaces (X,d) where for any 3 distinct pts $x,y,z\in X$ we have

$$d(x,y)$$
 $d(y,z)$
 $d(x,n)$
 2 of these are same

Example of an ultrametric.

X = Q. Fix a prime $p \in N$.

Fin % & Q s.t. gcd (a,6) =1.

For any $n \in \mathbb{Z}$ define $v_p(n)$ to be the highest power of prime that divides n.

 $v_2(2) = 1$, $v_2(3) = 0$, $v_3(27) = 3$, $v_2(32) = 5$, $v_2(12) = 2$, $v_3(24) = 1$, $v_2(24) = 3$.

For $m, n \in \mathbb{Z}$, $v_p(m \cdot n) = v_p(m) + v_p(n)$.

 $m = p - - - \cdot$ $m = p \cdot \cdot \cdot \cdot \cdot$ $m = p \cdot \cdot \cdot \cdot \cdot \cdot$

Define $v_p(a/b)$ to be $v_p(a) - v_p(b)$ Using this extended definition of $v_p(a)$ one can check that $v_p(rs) = v_p(r) + v_p(s) + v_p(s) + v_p(s)$

Now define $(x \in Q)$ $|x|_p = \begin{cases} \frac{1}{p^{\nu_p(x)}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

Define $d: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{R}^{\geq 0}$ by $d(x,y) = |x-y|_{p}$. Verify:
(a) $d(x,y) = 0 \iff x=y$ (b) $d(x,y) = d(y,x) + x,y \in \mathbb{Q}$.