Mixed Integer Linear Programming Model for Vehicle Routing Problem for Hazardous Materials Transportation

Lucas Henrique Samuel Queiroz

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DECOMPUTAÇÃO INTRODUÇÃO À OTIMIZAÇÃO – BCC 342

Prof.: Gustavo Peixoto Silva

Introdução

Descrição do Problema

- Ataca o Problema de Roteamento de Veículos Heterogêneos
- O "agravante" é carga transportada: materiais perigosos/tóxicos.
- Deve-se levar em conta o risco de acidente em cada rota.
- A frota de veículos considerada é ilimitada.
- Podem existir tipos diferentes de veículos.
- Considera que existe um centro de distribuição único e caminhos entre todos clientes.
- O objetivo é escolher a rota que tenha o menor risco de transporte e que atenda todos os clientes.
- O custo de cada rota pode mudar dependendo do sentido que está sendo viajado (grafo direcionado).

Introdução

Descrição do Problema

- O risco de transporte depende de uma série de fatores:
 - Quantidade de carga transportada
 - Tipo de acidente que pode acontecer
 - Taxa média de acidente com cada tipo de caminhão
 - Quantidade de pessoas expostas ao possível acidente na rota considerada.
- Não leva em conta se a rota é a mais curta (ou mais barata financeiramente), além de não considerar o custo monetário de cada tipo de caminhão (custo fixo). Se baseia somente nos riscos de acidente da rota.
- O artigo apresenta uma função objetivo não linear no termo que calcula a probabilidade de acidente no transporte entre dois clientes.
- Usamos a probabilidade de acidente como entrada e combinamos com os outros parâmetros para gerar a função objetivo.

Parâmetros de Entrada

- G(N, E): grafo direcionado completo onde $N = \{0, 1, ..., n\}$ formado por $C = \{1, ..., n\}$ clientes e o centro de distribuição (nó 0).
- Cada arco $(i, j) \in E$ é caracterizado pelos parâmetros:
 - *alij*: Seu comprimento (cada unidade corresponde a 100m).
 - c_{ij} : Custo por unidade transportada.
 - *PD*_{ij}: Quantidade de pessoas que podem ser expostas a materiais perigosos como consequência de um acidente nessa rota.
 - P_{ij} Probabilidade de ocorrer um acidente no trecho. $(i,j)^a$

^aParâmetro adicionado pelo grupo

Parâmetros de entrada

- d_i : demanda de cada cliente $i \in C$ (em centenas de galões de material).
- Para atender as demandas, existem K diferentes tipos de caminhão, cada tipo k ∈ K com os seguintes parâmetros:
 - **Q**_k: Capacidade de transporte (em centenas de galões de material).
 - \bullet f_k : Um custo fixo.
 - TTAR_k Uma taxa de acidentes (acidentes/numero de viagens já realizadas)

Constantes:

- P_{release}: Chance de vazamento de material devido a um acidente qualquer.
- lacktriangle α e β : Normalização de grandezas para a função objetivo.

Variáveis de Decisão

- y_{ij}^k : Quantidade de produtos transportados entre os nós (i,j) por um caminhão do tipo k
- **x** $_{ij}^k$: 1 se um caminhão do tipo k passa pelo arco (i,j), 0 caso contrário.

Função Objetivo

- minimize $z = \sum_{k \in K} \sum_{(i,j) \in A} al_{ij} \times TTAR_k \times P_{ij} \times y_{ij}^k + PD_{ij}$
 - Função que avalia o risco de transporte em cada rota. Para cada unidade transportada entre os clientes i e j com um caminhão do tipo k, é avaliado o risco de acidente de acordo com a distância que será viajada (al_{ij}) , a taxa de acidentes do tipo de caminhão usado $(TTAR_k)$, a probabilidade de acidentes (P_{ij}) , a quantidade de material que é transportada (y_{ij}^k) e quantas pessoas podem ser afetadas no caso de um acidente nessa rota (PD_{ij}) .

Restrições

- $\sum_{k \in K} \sum_{i \in N} x_{ij}^k = 1, \forall j \in N \setminus \{0\}$
 - Garante que cada cliente seja visitado exatamente uma vez.
- $\sum_{i \in \mathcal{N}} x_{ij}^{k} \sum_{i \in \mathcal{N}} x_{ji}^{k} = 0, \forall k \in K, \forall j \in C$
 - Conservação de fluxo em cada nó da rede.
- $\sum_{k \in K} \sum_{i \in N} y_{ij}^k \sum_{k \in K} \sum_{i \in N} y_{ji}^k = d_j, \forall j \in C$
 - Satisfação da demanda de cada cliente.
- $d_j \sum_{k \in K} x_{ij}^k \le \sum_{k \in K} y_{ij}^k, \forall i, j \in N, i \ne j$
 - Não deve ser transportado nenhum material na rota (i,j) se não existe nenhum tipo de caminhão operando nesse arco.
- $y_{ij}^k \le x_{ij}^k (Q_k d_i), \forall i, j \in \mathbb{N}, i \ne j, \forall k \in \mathbb{K}$
 - Garante que o limite de carga de cada tipo de caminhão seja respeitado.

Restrições

- $y_{ii}^k \ge 0, \forall k \in K, \forall (i,j) \in E$
 - Devem ser transportados valores positivos de carga entre os clientes.
- $\mathbf{7} \ \mathbf{x}_{ij}^k \in \{0,1\}, \forall k \in K, \forall (i,j) \in E$

- \dot{x} deve ser binário.

Exemplo

Table: Dados dos tipos de Caminhão

Tipo(k)	Capacidade (Q_k)	Taxa de acidentes ($TTAR_k$)	Custo fixo (f_k)
1	45	0.2	1
2	35	0.3	1

Figure: Grafo que representa os clientes e deposito