Um Modelo Conceitual para Cenários de Acidentes em Atividades de Manutenção

Jonathan M. Samara Orientador Prof. Dr. Cesar A. Tacla

Universidade Tecnológica Federal do Paraná

26 de outubro de 2019

Introdução

- Motivação: Averiguar e desenvolver modelos com base em sistemas multiagentes para aplicar em cenários de acidentes.
- Relevância: Apresentar um modelo conceitual que defina em termos de classes e relacionamentos uma estrutura lógico-descritiva de fatores ambientais e organizacionais.

Introdução - Objetivo Geral

- Sintetizar, construir e avaliar, por intermédio de observações, de análises de documentos técnicos, de análises de modelos computacionais e de entrevista com profissionais da área, um modelo conceitual.
- Definir os conceitos e as relações para representar os cenários de ambientes de atividades, bem como os respectivos acidentes que neles podem acontecer.
- Validar o processo por verificar se os raciocínios (para um dado estudo de caso do setor de energia elétrica) resultantes desse modelo são correspondentes com a realidade a fim de levantar um entendimento formal do problema para a comunidade acadêmica no que tange a que tipo de representação computacional é mais apropriada para determinado contexto.

Introdução - Objetivos Específicos

- Identificar os aspectos relevantes que devem fazer parte da estrutura do modelo em relação aos riscos e consequências (acidentes) para os atores e atividades, que sejam relevantes na prática da atividade de manutenção, em caso de falha na operação.
- Construir um modelo conceitual que seja implementável computacionalmente e que produza as inferências que tratem aspectos relevantes ao problema.
- Avaliar o modelo por aplicá-lo a um dado estudo de caso a fim de averiguar se os raciocínios produzidos nessa situação estão de acordo com a realidade.
- Analisar modelos computacionais em relação ao modelo conceitual desse estudo a fim de ter um levantamento formal do estado do problema.

Fundamentação Teórica - Agentes

- Um agente é um sistema computacional que está situado em um dado ambiente e que apresenta comportamento autônomo com a finalidade de atingir um dado objetivo que a ele é designado.
- Um agente pode ser estruturado em termos goal-governed e goal-oriented.
- Os agentes goal-governed têm capacidades cognitivas e podem representar os seus respectivos objetivos.
- Os agentes goal-oriented são programados para alcançar um dado objetivo.
- Artefatos não se enquadram nessas duas características. Essas entidades são exploradas pelo agente para que eles possam alcançar um dado objetivo.

Fundamentação Teórica - SMA

- Um sistema multiagente é constituído por agentes autônomos que interagem visando um propósito em comum tendo como consequência um comportamento global.
- Uma organização com essas características, portanto, apresenta em comum; cultura, memória, história, distribuição de atividades e capacidade de distinguir um agente em específico.
- Uma organização de sistema multiagente deve conter relações sociais no que tange a agentes, institutos específicos e grupos sociais.
- Por ser uma organização, uma SMA apresenta; Divisão de tipos de atividades, integração, composição, estabilidade/flexibilidade, coordenação, recursividade, representação multinível e causalidade, potenciais e diferenciais, regras e gramáticas.

Fundamentação Teórica - Normas

- Há diversas tratativas para o termo norma.
- Esse estudo trabalha o conceito de Sistemas Normativos sobre a ótica do modelo de Dastani.
- O aspecto normativo do sistema é tratado por considerar os eventos que resultam em uma violação e quais são as sanções decorrentes disso.

Fundamentação Teórica - Riscos

- BATU Boundary Activities Tolerated during Use (Atividades Limites Toleradas Durante o Uso). Muitas vezes a equipe adota atividades paliativas a fim de otimizar os processos de produção. Isso envolve assumir níveis de tolerância no que diz respeito ao desempenho e a segurança.
- BCTU Boundary Conditions Tolerated by Use (Condições Limites Toleradas Durante o Uso). O termo condição faz referência a uma situação, um estado, circunstâncias externas às quais pessoas ou até mesmo entidades são afetados no que diz respeito a uma certa decisão atrelada a circunstâncias ambientais, materiais, humanas, de produtos e entre outras.

Metodologia

Revisão Exploratória e Análise de Campo

- Estudo de Manuais Técnicos
- Conversas com profissionais da área
- Conversas com Engenheiro de Manutenção
- Criação de Textos Descrevendo Cenários
- Participação de Workshops
- Revisão Bibliográfica

Formalização de um Modelo Conceitual

- Identificar Padrões
- Formalizar em termos de Conceitos e Relações

Explorar os Arcabouços Possíveis

- Avaliar correspondência com outros Arcabouços
- Aplicação em Estudo de Caso
 - Modelar um dado estudo de caso no modelo obtido
 - Analisar os raciocínios decorrentes frente a realidade

Resultados - Revisão Exploratória e Análise de Campo

- Os trabalhadores que executam os procedimentos.
- Os diferentes papéis (ou funções) desses trabalhadores.
- As ferramentas usadas pelos profissionais.
- Os equipamentos que são submetidos a manutenção.
- As interações entre todo tipo de entidade tais como trabalhadores, ferramentas e equipamentos.
- As etapas das tarefas que devem ser finalizadas.
- As relações entre todas as entidades e interações com as tarefas.

- Averiguar a incerteza presente em certos processos e equipamentos que podem gerar acidentes.
- Análise das Medidas que são tomadas pelos profissionais para lidar com essas incertezas.
- Análise de Cenários onde Profissionais tomam medidas em desacordo com a segurança.
- 4 Análise dos riscos gerados a todos.
- Análise da possibilidade de algum acidente ocorrer.

Resultados - Revisão Exploratória e Análise de Campo

MOISE+

- HuBNER, J.; SICHMAN, J.; BOISSIER, O. Moise+: Towards a structural, functional, and deontic model for mas organization. In: . [S.l.: s.n.], 2002. p. 501–502.,
- HUBNER, J. F.; SICHMAN, J. S.; BOISSIER, O. A model for the structural, functional, and deontic specification of organizations in multiagent systems. In: BITTENCOURT, G.; RAMALHO, G. L. (Ed.). Advances in Artificial Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. p. 118–128. ISBN 978-3-540-36127-5.
- Modelo de Agentes Normativos de Dastani
 - DASTANI, M. et al. Normative multi-agent programs and their logics.
 In: MEYER, J.-J. C.; BROERSEN, J. (Ed.). Knowledge Representation for Agents and Multi-Agent Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p. 16–31. ISBN 978-3-642-05301-6.

Resultados - Revisão Exploratória e Análise de Campo

V3S

 BAROT, C. et al. V3S: A virtual environment for risk-management training based on human-activity models. Presence, v. 22, n. 1, p. 1–19, 2013.

NormMAS

 CHANG, S.; MENEGUZZI, F. Simulating normative behaviour in multi-agent environments using monitoring artefacts. In: DIGNUM, V. et al. (Ed.). Coordination, Organizations, Institutions, and Norms in Agent Systems XI. Cham: Springer International Publishing, 2016. p. 59–77. ISBN 978-3-319-42691-4.

Resultados - Estrutural Conceitual - Módulos

Figura: A estrutura geral das classes do modelo

Resultados - Estrutural Conceitual - Predicados

Figura: Diagrama de classes do Modelo

$$hasObligation(\rho_{m},g_{j}) \rightarrow hasPermission(\rho_{m},g_{j}),$$

$$\rho_{m} \in Role \land g_{j} \in Goal \qquad (1)$$

$$requiresCirc(g_{i},c_{k}) \land \neg isPresent(c_{k}) \land instanceOfCond(c_{k})$$

$$\land starts(ag_{m},g_{i}) \rightarrow conditionViol(ag_{m},g_{i},c_{k})$$

$$g_{i} \in Goal, c_{k} \in Condition, ag_{m} \in Agent \qquad (2)$$

$$requiresCirc(g_{i},r_{k}) \land \neg isPresent(r_{k}) \land instanceOfRel(r_{k})$$

$$\land starts(ag_{m},g_{i}) \rightarrow relationViol(ag_{m},g_{i},r_{k})$$

$$g_{i} \in Goal, r_{k} \in Relation, ag_{m} \in Agent \qquad (3)$$

$$requiresEntity(g_{i},eg_{n}) \land \neg isPresent(e_{k}) \land starts(ag_{m},g_{i}) \rightarrow entityViol(ag_{m},g_{i},e_{k})$$

$$g_{i} \in Goal, e_{k} \in Entity, ag_{m} \in Agent \qquad (4)$$

```
conditionViol(ag_m, g_i, c_k) \land hasRisk(c_k, risk_i, cs_m) \rightarrow
                                                  negConseqFor(g_i, ag_m, risk_i, cs_m)
ag_m \in Agent, g_i \in Goal, c_k \in Condition, risk_k \in Risk, cs_m \in Consequence (5)
                         relationViol(ag_m, g_i, r_k) \land hasRisk(r_k, risk_i, cs_m) \rightarrow
                                                negConseqFor(g_i, ag_m, risk_i, cs_m)
ag_m \in Agent, g_i \in Goal, r_k \in Relation, risk_k \in Risk, cs_m \in Consequence (6)
relationViol(ag_m, g_i, r_k) \land affectsRels(r_k, r_n) \rightarrow possOfNegConseqFor(r_n)
                                       ag_m \in Agent, g_i \in Goal, r_k, r_n \in Relation, (7)
                    entityViol(ag_m, g_i, e_k) \rightarrow stopped(g_i)
                                                                                          (8)
                      ag_m \in Agent, g_i \in Goal, e_k \in Entity
```

$$possOfNegConseqFor(r_k) \land happensNegConseqFor(r_k) \land \\ requiresCirc(g_i, r_k) \land instanceOfRel(r_k) \land \\ hasRisk(r_k, risk_j, cs_m) \land starts(ag_m, g_i) \\ \rightarrow negConseqFor(g_i, ag_m, risk_j, cs_m) \\ r_k \in Relation, g_i \in Goal, risk_k \in Risk, cs_m \in Consequence$$
 (9)

$$negConseqFor(g_k, ag_m, risk_j, cs_m) \rightarrow stopped(g_k)$$

 $g_k \in Goal, risk_j \in Risk, cs_m \in Consequence$ (10)

$$adoptsRole(ag_n, \rho_m) \land hasPermission(\rho_m, g_j) \land nextGoal(g_i, g_j)$$
$$\land reached(g_i) \rightarrow enabledToStart(ag_i, g_j)$$
$$ag_i, ag_n \in Agent, \rho_m \in Role, g_j \in Goal, g_i \in Goal \qquad (11)$$

adoptsRole
$$(ag_n, \rho_m) \land hasPermission(\rho_m, g_i) \land lastGoal(g_i, \rho_m)$$

 $\land reached(g_i) \rightarrow stopped(g_i)$
 $ag_n \in Agent, \rho_m \in Role, g_i \in Goal$ (12)

```
function ifNotStopped(agentArray,goal)
        forEach(agentArray is agent)
                if(stopped(goal,agent)
                         return false:
                endIf
        endforEach
        if(!allAgenteObliged(agentArray,goal))
                return false;
        endIf
        return true:
endFunction
if(ifNotStopped(agentArray,goal))
        return reached(goal);
```

Figura: Condição para definir se um dado objetivo foi atingido ou não

Resultados - Caso de Estudo

- O estudo de caso desta pesquisa consiste em sete profissionais de linha viva.
- Um supervisor e seis executores.
- Céu ensolarado e umidade relativa do ar menor que 70 porcento.
- EPI's necessários: capacete, óculos de sol, roupa isolante e antichamas, luvas isolantes e botas isolantes.
- bastão garra de diâmetro 64 x 3600 mm, sela de diâmetro 65, colar, corda de fibra sintética, carretilha, chave com catraca, bastão universal, soquete adequado, locador de pino e bastão com soquete multiangular
- O método selecionado para esse tipo de manutenção é a distância.

- adoptsRole(agente4, executor2)
- a hasObligation(executor2, g1)
- requiresCirc(g1, relPanoGlicerina)
- instanceOfRel(relPanoGlicerina)
- ¬isPresent(relPanoGlicerina)
- starts(agente4, g1)
- affectsRels(relPanoGlicerina, relBastaoGarraCondutor)
- affectsRels(relPanoGlicerina, relCordaEstropo)
- affectsRels(relPanoGlicerina, relChaveCatracaParafuso)
- affectsRels(relPanoGlicerina, relParafusoConector)
- affectsRels(relPanoGlicerina, relSoqueteParafuso)
- affectsRels(relPanoGlicerina, relAgente4Corda)
- affectsRels(relPanoGlicerina, relEstropoCorda)

```
requiresCirc(g1, relPanoGlicerina) \land
              \negisPresent(relPanoGlicerina) \land
          instanceOfRel(relPanoGlicerina) ∧
                       starts(agente4, g1) \rightarrow
  relationViol(agente4, g1, relPanoGlicerina)
                                                               (13)
     relationViol(agente4, g1, relPanoGlicerina)
∧affectsRels(relPanoGlicerina, relEstropoCorda)
     → possOfNegConseqFor(relEstropoCorda)
                                                               (14)
```

O mesmo ocorre para as demais relações.

- adoptsRole(agente2, executor1)
- adoptsRole(agente3, executor1)
- adoptsRole(agente4, executor2)
- hasObligation(executor1, g1)
- hasObligation(executor2, g1)
- starts(agente2, g1)
- starts(agente3, g1)
- starts(agente4, g1)
- o requiresEntity(g1, pano)
- □ ¬isPresent(pano)

$$\rightarrow entityViol(agente2,g1,pano) \qquad (15)$$

$$requiresEntity(g1,pano) \land \neg isPresent(pano) \land starts(agente3,g1) \\ \rightarrow entityViol(agente3,g1,pano) \qquad (16)$$

$$requiresEntity(g1,pano) \land \neg isPresent(pano) \land starts(agente4,g1) \\ \rightarrow entityViol(agente4,g1,pano) \qquad (17)$$

$$entityViol(agente4,g1,pano) \rightarrow stopped(g1) \qquad (18)$$

requiresEntity(g1, pano) $\land \neg isPresent(pano) \land starts(agente2, g1)$

- adoptsRole(agente5, executor3)
- hasObligation(executor3, g11)
- starts(agente5, g11)
- requiresCirc(g11, umidade70)
- islstanceOfCond(umidade70)
- ¬isPresent(umidade70)
- hasRisk(umidade70, eletrocutado, morte)

```
requiresCirc(g11, umidade70) \land \neg isPresent(umidade70)
\land instanceOfCond(umidade70) \land starts(agente5, g11) \rightarrow
                  conditionViol(agente5, g11, umidade70)
                                                                      (19)
             conditionViol(agente5, g11, umidade70) \land
               hasRisk(umidade70, eletrocutado, morte)
  \rightarrow negConseqFor(g11, agente5, eletrocutado, morte)
                                                                      (20)
```

 $negConsegFor(g11, agente5, eletrocutado, morte) \rightarrow stopped(g11)$

- adoptsRole(agente4, executor2)
- a hasObligation(executor4, g15)
- starts(agente4, g15)
- requiresCirc(g15, relChaveCatracaParafuso)
- isInstanceOfRel(relChaveCatracaParafuso)
- ¬isPresent(relChaveCatracaParafuso)
- hasRisk(relChaveCatracaParafuso, eletrocutado, morte)

 $negConseqFor(g15, agente4, eletrocutado, morte) \rightarrow stopped(g15)$

4 D > 4 P > 4 B > 4 B > B 900

- requiresCirc(g19, relParafusoConector)
- hasObligation(executor3, g19)
- hasObligation(executor4, g19)
- hasObligation(executor5, g19)
- starts(agente5, g19)
- starts(agente6, g19)
- starts(agente7, g19)
- adoptsRole(agente5, executor3)
- adoptsRole(agente6, executor4)
- adoptsRole(agente7, executor5)
- hasRisk(relParafusoConector, eletrocutado, morte)
- possOfNegConseqFor(relParafusoConector)
- happensNegConseqFor(g19, relParafusoConector)


```
possOfNegConseqFor(relParafusoConector) \\ \land happensNegConseqFor(relParafusoConector) \\ \land requiresCirc(g19, relParafusoConector) \\ \land instanceOfRel(relParafusoConector) \\ \land hasRisk(relParafusoConector, eletrocutado, morte) \\ \land starts(agente5, g19) \\ \rightarrow negConseqFor(g19, agente5, eletrocutado, morte)  (25)
```

$$negConseqFor(g19, agente5, eletrocutado, morte) \rightarrow stopped(g19)$$
 (26)

O mesmo para o agente6 e agente7.

- stopped(agente2) \rightarrow F
- \odot stopped(agente4) \rightarrow F
- \bullet stopped(agente5) \rightarrow F
- **5** stopped(agente7) \rightarrow *F*
- hasObligation(executor1, g23)
- hasObligation(executor2, g23)
- hasObligation(executor3, g23)
- adoptsRole(agente2, executor1)
- adoptsRole(agente3, executor1)
- adoptsRole(agente4, executor2)
- adoptsRole(agente5, executor3)
- adoptsRole(agente7, executor5)

- $ag_{array} = \{agente2, agente3, agente4, agente5, agente7\}$
- $stopped(goal, Agente) \rightarrow F$ para todos os agentes
- $allAgentObligate(ag_{array}, goal) \rightarrow T$
- $\bullet \ \textit{ifNotStopped(ag_{\textit{array}}, \textit{goal})} \rightarrow \textit{T}$
- $reached(goal) \rightarrow T$

Discussão - Critérios de Comparação

- Agente condiz numa representação dos estados internos que um agente pode ter
- O critério SMA condiz na presença de elementos que são necessários para especificar um Sistema Multiagente
- O critério Artefato condiz com elementos que correspondem ao tratado na Fundamentação Teórica.
- Norma corresponde a regras que devem ser acatadas pelos agentes
- Violação define o que corresponde o não cumprimento de uma dada regra
- Sanção implica penalidade sobre o agente.
- Risco implica o evento ruim que tem um dado potencial de ocorrer sobre o agente

Discussão - Critérios de Comparação

- P.O.A.E significa Possibilidade de Ocorrer algo Errado.
- Objetivos implica alvos que devem ser atingidos pelos agentes
- C.A consiste em condições ambientes que interagem com a atividade executada pelos agentes.
- I.AG.AR representa as interações entre agentes e artefatos
- D.C.A Descrição de Cenários de Acidentes, consiste na capacidade de desenvolver raciocínios a fim de representar cenários de acidentes.

Discussão - Expressividade

- nenhuma o engenheiro de modelagem terá de criar uma estrutura conceitual grande e complexa.
- **pouco** possui algumas estruturas pré-definidas que diminuem o esforço da especificação.
- expressivo o modelo permite especificar o objeto de interesse sem que o engenheiro tenha de criar muitos atributos para o domínio de interesse.
- muito expressivo o modelo apresenta diversos conceitos específicos para representar o objeto em interesse
- altamente expressivo o modelo especifica o objetivo de interesse muito bem fazendo com que o engenheiro de conhecimento n\u00e3o tenha que definir nenhum crit\u00e9rio conceitual a mais.

Discussão - Análise Comparativa

Critérios	MOISE+	DASTANI	V3S	NORMMAS
Agente	pouco	pouco	muito	pouco
SMA	altamente	pouco	expressivo	pouco
Artefato	nenhuma	pouco	expressivo	pouco
Norma	nenhuma	altamente	pouco	altamente
Violação	nenhuma	altamente	pouco	altamente
Sanção	nenhuma	altamente	pouco	altamente
Risco	nenhuma	pouco	altamente	pouco
P.O.A.E	nenhuma	pouco	pouco	pouco
Objetivos	muito	pouco	muito	pouco
C.A	nenhuma	pouco	pouco	pouco
I.AG.AR	nenhuma	pouco	pouco	pouco
D.C.A	nenhuma	pouco	altamente	pouco

Discussão - Consistência dos Resultados - Caso de Estudo

- O caso em análise cumpre com os interesses da pesquisa pois apresenta um cenário onde profissionais usam ferramentas para trabalhar de forma colaborativa a fim de atingir um determinado objetivo
- Os profissionais s\u00e3o expostos a um dado risco e podem sofrer acidentes que adv\u00e9m tanto de responsabilidade pr\u00f3pria bem como responsabilidade do outro.
- O caso de estudo em análise é um cenário que é totalmente possível de ser factual, contudo existe diversas outras possibilidades de organizar a mesma manutenção.

Discussão - Considerações sobre Critérios Metodológicos ao Estudo de Caso

- Organização dos Objetivos pode ser modificada pelos profissionais durante a execução das Atividades.
- Não se considera todos os ricos, mas os mais prováveis.
- $affectsRels(r_k, r_n)$ simplifica o processo de modelagem.
- $possEntityRel(r_I, e_i, e_k)$ granulidade do modelo.
- requires $Circ(circ_n, g_m)$, requires $Entity(goal_i, e_j)$, instance $OfRel(circ_n)$ e instance $OfCond(circ_n)$ granulidade do modelo.

Discussão - Considerações sobre Critérios Metodológicos ao Raciocínios

- Raciocínio 1 e 5 Cenário de violação de relação sem sanção.
- Raciocínio 2 Violação de Entidade
- Raciocínio 3 Violação de Condição
- Raciocínio 4 Violação de Relação com Sanção
- Raciocínio 6 Atingiu o objetivo

Conclusão - Reflexão sobre Objetivo

- Foi feito estudo de documentos técnicos, foi feito entrevista com Engenheiro de Manutenção, foi feito acompanhamento de documentos técnicos, houve acompanhamento de procedimentos de manutenção em linha viva.
- Foi concebido um modelo conceitual.
- O modelo conceitual foi aplicado em um estudo de caso. Isso possibilitou formular raciocínios e verificar quais cenários foram representados apropriadamente e quais cenários não foram representados adequadamente.
- Houve uma análise da comparativa entre modelos computacionais balizado pelo modelo conceitual definido nesse estudo.
- Logo, o Objetivo Geral e os Objetivos Específicos foram atingidos.

Conclusão

- MOISE+ é mais apropriado para representar os seguintes conceitos: Agente, SMA, objetivos;
- Dastani é mais apropriado para representar os seguintes conceitos Normas, Violações, Sanções;
- V3S é mais apropriado para representar SMA, Artefato, Riscos e contém estruturas otimizadas para descrever dinamicamente os cenários de acidentes
- NORMMAS é mais apropriado para representar os seguintes conceitos Normas, Violações, Sanções;
- No que tange ao contraste do modelo conceitual proposto nesse estudo em relação aos arcabouços verificados nesse texto, o autor conclui que aquele unifica em uma única estrutura concepções que são tratadas de formas isoladas aos demais modelos computacionais.

Conclusão

- Em vez de trabalhar conceitos de possibilidade, sintetizar um modelo estatístico probabilístico na estrutura conceitual proposta neste estudo.
- ② Investigar novas estruturas conceituais para tratar cenários onde os agentes buscam técnicas alternativas para resolver um determinado problema.
- Investigar novas estruturas conceituais onde uma violação pode ou não gerar uma sanção para as condições ambientes (ou seja, em vez de tratar a possibilidade sobre um relacionamento futuro, tratar a possibilidade sobre um relacionamento presente).
- Investigar novas estruturas conceituais que considerem a violação de relacionamento em termos de possibilidades e não de um efeito direto no que tange a uma dada causa.