Определение

• Множество комплексных чисел состоит из упорядоченных пар вещественных чисел:

$$\mathbb{C} = \{(a,b) : a,b \in \mathbb{R}\}.$$

- Сложение: (a, b) + (a', b') := (a + a', b + b').
- Умножение: $(a, b) \cdot (a', b') := (aa' bb', ab' + ba')$.

Определение

- Пусть $z=(a,b)\in\mathbb{C}$.
- ullet Вещественная часть z это $\operatorname{Re}(z) := a$.
- ullet Мнимая часть z это $\mathrm{Im}(z):=b$.
- Комплексное с опряжение: $\overline{z} := (a, -b)$.
- Норма z это $N(z) := a^2 + b^2$.
- \bullet Модуль z это $|z| := \sqrt{N(z)} = \sqrt{a^2 + b^2}$.
- \bullet Очевидно, $\overline{\overline{z}} = z$.

Теорема 1

 \mathbb{C} — поле.

Доказательство. • 1) и 2) Так как сложение в \mathbb{C} — покомпонентное, ассоциативность и коммутативность наследуются из \mathbb{R} .

- ullet 3) Ноль в ${\Bbb C}$ это 0:=(0,0).
- ullet 4) Обратный элемент по +. Для z=(a,b) положим -z:=(-a,-b).
- 7) Коммутативность умножения:

$$(a,b)\cdot(a',b') = (aa'-bb',ab'+ba') = (a'a-b'b,a'b+b'a) = (a',b')\cdot(a,b).$$

ullet 5) Достаточно проверить одну дистрибутивность (так как умножение коммутативно):

$$(a,b)\cdot((c_1,d_1)+(c_2,d_2))=(a,b)\cdot(c_1+c_2,d_1+d_2)=$$

$$(ac_1+ac_2-bd_1-bd_2,ad_1+ad_2+bc_1+bc_2)=$$

$$(ac_1-bd_1,ad_1+bc_1)+(ac_2-bd_2,ad_2+bc_2)=(a,b)\cdot(c_1,d_1)+(a,b)\cdot(c_2,d_2).$$

 $(ac_1-bd_1, ad_1+bc_1)+(ac_2-bd_2, ad_2+bc_2)=(a, b)\cdot(c_1, d_1)+(a, b)\cdot(c_2, d_2).$

• 6) ассоциативность умножения:

$$((a_1,b_1)\cdot(a_2,b_2))\cdot(a_3,b_3) = (a_1a_2-b_1b_2,a_1b_2+b_1a_2)\cdot(a_3,b_3) = (a_1a_2a_3-b_1b_2a_3-a_1b_2b_3-b_1a_2b_3,a_1b_2a_3+b_1a_2a_3+a_1a_2b_3-b_1b_2b_3).$$

Нетрудно проверить, что при другом порядке получится то же самое (в вещественную часть попадают сомножители с четным числом b, в мнимую — с нечетным, знак — получается там, где более одной b).

- ullet 8) Единица: это 1:=(1,0).
- 9) Обратный элемент по \cdot . Для z=(a,b) положим $z^{-1}:=(\frac{a}{N(z)},\frac{-b}{N(z)}).$ Проверяем:

$$zz^{-1} = (a,b)\cdot(\frac{a}{N(z)},\frac{-b}{N(z)}) = (\frac{a^2+b^2}{N(z)},\frac{-ab+ba}{N(z)}) = (1,0).$$

Алгебра. Глава 1. Комплексные числа.

Д.В.Карпов

Геометрическая интерпретация $\mathbb C$ и тригонометрическая запись

- Рассмотрим декартову систему координат в \mathbb{R}^2 , по оси абсцисс будем откладывать вещественную часть, а по оси ординат мнимую. Тогда комплексное сопряжение симметрия относительно оси абсцисс.
- ullet Для числа $z=(a,b)\in\mathbb{C}$ тогда $r=|z|=\sqrt{a^2+b^2}$ расстояние от начала координат до z.
- Аргумент z это направленный угол $\arg(z)=\varphi$ от оси абсцисс до луча Oz против часовой стрелки. Вычисляется с точностью до прибавления $2\pi k$, где $k\in\mathbb{Z}$.
- ullet Пара (r, arphi) однозначно задает точку z.
- $a = r\cos(\varphi)$, $b = r\sin(\varphi)$.
- Тригонометрическая форма записи комплексного числа: $z = (r\cos(\varphi), r\sin(\varphi))$.
- ullet Если $z=(r\cos(arphi),r\sin(arphi))$, то |z|=r, $\arg(z)=arphi$.

Теорема 2

Пусть $x, y \in \mathbb{C}$. Тогда |xy| = |x||y| и $\arg(xy) = \arg(x) + \arg(y)$. Доказательство. • Пусть $x = (r\cos(\varphi), r\sin(\varphi))$, а $y = (p\cos(\psi), p\sin(\psi))$. Тогда

$$xy = (rp(\cos(\varphi)\cos(\psi) - \sin(\varphi)\sin(\psi)), rp(\cos(\varphi)\sin(\psi) + \sin(\varphi)\cos(\psi))) = (rp\cos(\varphi + \psi), rp\sin(\varphi + \psi)).$$

ullet Следовательно, |xy|=rp и $rg(xy)=arphi+\psi$.

Теорема 3

 $m{\Phi}$ ормула Муавра. Пусть $z\in\mathbb{C}$, $n\in\mathbb{N}$. Тогда $|z^n|=|z|^n$ и $rg(z^n)=n\cdotrg(z)$.

Доказательство. Индукция по n. База n=1 очевидна. Переход $n \to n+1$.

- ullet Пусть |z|=r, $\arg(z)=arphi$ и утверждение доказано для n, то есть, $|z^n|=r^n$ и $\arg(z^n)=narphi$.
- ullet По Теореме 2 $|z^{n+1}|=|z||z^n|=r\cdot r^n=r^{n+1}$ и $\arg(z^{n+1})=\arg(z)+\arg(z^n)=arphi+narphi=(n+1)arphi,$

Лемма 1

Отображение $f: \mathbb{R} \to \mathbb{C}$, заданное формулой f(a) = (a,0) — мономорфизм.

Доказательство. \bullet Очевидно, f — инъекция.

- ullet Нужно проверить, что это гомоморфизм. Пусть $a,b\in\mathbb{R}.$
- f(a+b) = (a+b,0) = (a,0) + (b,0) = f(a) + f(b).
- $f(ab) = (ab, 0) = (a, 0) \cdot (b, 0) = f(a)f(b)$.
- ullet Очевидно, $\mathrm{Im}(f)\simeq \mathbb{R}.$ Таким образом, \mathbb{C} имеет подполе $\mathrm{Im}(f)$, изоморфное $\mathbb{R}.$ В дальнейшем мы будем отождествлять каждое вещественное число a с комплексным (a,0).
- ullet Теперь можно сказать, что для любого $z=(a,b)\in\mathbb{C}$ выполнено:

$$z \cdot \overline{z} = N(z) = N(\overline{z})$$
 (все это равно по $a^2 + b^2$) и $z + \overline{z} = 2\operatorname{Re}(z) = 2\operatorname{Re}(\overline{z})$ (все это равно по $2a$).

• Сопряженные компдлексные числа $z,\overline{z}\in\mathbb{C}\setminus\mathbb{R}$ — корни квадратного уравнения с вещественными коэффициентами $t^2-2\mathrm{Re}(z)\cdot t+\mathcal{N}(z)=0.$

Извлечение корня из комплексного числа

- ullet Пусть $a\in\mathbb{C}$ и $n\in\mathbb{N}$ фиксированы, a
 eq 0. Решим уравнение $z^n=a$.
- Будем использовать представление комплексных чисел через модуль и аргумент. Тогда $a=(r,\varphi)$ (параметры даны) и $z=(p,\psi)$ (эти параметры мы ищем).
- По формуле Муавра, $p = \sqrt[n]{r}$.
- С аргументом сложнее. По формуле Муавра, $n\psi = \varphi + 2\pi k$, где $k \in \mathbb{Z}$ (напомним, что аргумент вычисляется с точностью до $2\pi k$). Поделив на n, получаем

$$\psi = \frac{\varphi}{n} + \frac{2\pi k}{n}.\tag{1}$$

- ullet При $k \in \{0, 1, \dots, n-1\}$ в (1) получается n разных аргументов.
- ullet Каждое число $k\in\mathbb{Z}$ можно представить в виде k=qn+r, где $0\leq r< n$ (это теорема о делении с остатком). Тогда $rac{2\pi k}{n}=rac{2\pi r}{n}+2\pi q$, а это тот же аргумент, что и $rac{2\pi r}{n}$.
- ullet Таким образом, корень n степени извлекается из $a \neq 0$ извлекается ровно n способами.

Корни из 1

- Отдельно рассмотрим корни n степени из 1 решения уравнения $z^n=1$.
- ullet Из сказанного выше следует, что модуль всех корней из 1 равен 1. Так как rg(1)=0, все различные аргументы считаются по формуле

$$\psi_k = rac{2\pi k}{n},$$
 где $k \in \{0,\ldots,n-1\}.$ (1)

- \bullet Обозначим их $\varepsilon_0,\ldots,\varepsilon_{n-1}$ (корень ε_k имеет аргумент ψ_k).
- Корни из 1 степени n лежат на окружности радиуса 1 в вершинах правильного n-угольника, одна из которых в 1.
- ullet По формуле Муавра $arepsilon_k=arepsilon_1^k.$ Значит, все корни из 1 это степени $arepsilon_1.$

- На рисунке справа изображены корни степени 4 из 1. Один из них это i=(0,1) $(\arg(i)=\frac{\pi}{2})$.
- ullet Остальные корни из 1 степени 4 это $-1=i^2$, $-i=i^3$ и $1=i^4$.
- Комплексное число z = (a, b) может быть записано в виде z = a + bi, который многим из вас более привычен.
- Еще одно часто встречающееся обозначение комплексное число z с |z|=1 и $\arg(z)=\alpha$ часто записывают в виде $z=e^{\alpha i}$.
- Таким образом, $e^{\alpha i} = (\cos(\alpha), \sin(\alpha))$.