Probabilidade e Estatística

Resumo

Rafael Rodrigues

LEIC Instituto Superior Técnico 2023/2024

Contents

2	Conceitos básicos de probabilidade			
	2.1	Experiência aleatória, espaço de resultados e acontecimentos	2	
	2.2	Noção de probabilidade. Probabilidade condicionada e lei da probabilidade total	4	
	2.3	Teorema de Bayes	4	
	2.4	Acontecimentos independentes	2	
3	Variáveis aleatórias discretas e contínuas			
	3.1	Definição de variável aleatória. Função de distribuição. Função de massa de probabili-		
		dade e função de densidade de probabilidade		
	3.2	Valor esperado, moda, variância e quantis		
	3.3	Distribuições de probabilidade mais utilizadas na modelação de dados		
4	Pares aleatórios			
	4.1	Distribuição conjunta, marginais e condicionais	٦	
	4.2	Independência		
	4.3	Covariância		
	4.4	Correlação		
5	Complementos das distribuições de probabilidade			
	5.1	Combinações lineares de variáveis aleatórias	(
	5.2	Teorema Limite Central	(
6	Est	Estimação pontual		
	6.1	Estatísticas e estimadores	(
	6.2	Método da máxima verosimilhança	(
7	Est	Estimação intervalar		
	7.1	Intervalos de confiança para parâmetros de populações normais	7	
	7.2	Intervalos de confiança para parâmetros de populações de Bernoulli	7	
8	Tes	Testes de hipóteses		
	8.1	Testes de hipóteses para parâmetros de populações normais	8	
	8.2	Testes de hipóteses para a média de uma população normal, com variância desconhecida	8	
	8.3	Testes de hipóteses para a variância de uma população normal	8	
	8.4	Testes de hipóteses para parâmetros de populações Bernoulli	8	
	8.5	Teste de ajustamento do qui-quadrado de Pearson	8	
9	Inti	rodução à regressão linear simples	8	
	9.1	Modelo de regressão linear simples	8	
	9.2	Intervalos de confiança e testes de hipóteses para os parâmetros β_0, β_1 e $\beta_0 + \beta_1 x_0$ do		
		modelo de regressão linear simples	8	
	9.3	Coeficiente de determinação	8	

2 Conceitos básicos de probabilidade

2.1 Experiência aleatória, espaço de resultados e acontecimentos

TODO Experiência aleatória, espaço de resultados e acontecimentos

2.2 Noção de probabilidade. Probabilidade condicionada e lei da probabilidade total

Axiomática de probabilidade

TODO Axiomática de probabilidade

Teoremas decorrentes

$$A \subset B \Rightarrow P(A) \leq P(B) \ e \ P(B - A) = P(B) - P(A);$$

$$P(B - A) = P(B) - P(A \cap B);$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Probabilidade condicional

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, se $P(B) > 0$
 $P(\overline{A}|B) = 1 - P(A|B)$

Teorema da probabilidade composta

$$P(A \cap B) = P(A)P(B|A) \vee P(B)P(A|B)$$

Teorema da probabilidade total

Caso os eventos $A_1,...,A_n$ formem partições do espaço de resultados e B um acontecimento nesse espaço de resultados:

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$

2.3 Teorema de Bayes

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i) P(B|A_i)}{\sum_{j=1}^{n} P(A_j) P(B|A_j)}$$

2.4 Acontecimentos independentes

$$P(A \cap B) = P(A) \times P(B)$$

3 Variáveis aleatórias discretas e contínuas

3.1 Definição de variável aleatória. Função de distribuição. Função de massa de probabilidade e função de densidade de probabilidade

TODO

3.2 Valor esperado, moda, variância e quantis

Valor esperado de uma variável aleatória

TODO Valor esperado de uma variável aleatória

Valor esperado de uma função de uma variável aleatória

TODO Valor esperado de uma função de uma variável aleatória

Momentos simples e centrais

TODO Momentos simples e centrais

Outros parâmetros: Moda e quantis

TODO Moda e quantis

3.3 Distribuições de probabilidade mais utilizadas na modelação de dados

Distribuição Uniforme Discreta

TODO Distribuição Uniforme Discreta

Distribuição Bernoulli

TODO Distribuição Bernoulli

Distribuição Binomial

TODO Distribuição Binomial

Distribuição Geométrica

$$P(X \ge x) = (1 - p)^{x-1}$$

Propriedade de falta de memória: $P(X>i+j|X>j)=P(X>i)\,,\;\forall\;i,j\in\mathbb{N}$

Distribuição Poisson

TODO Distribuição Poisson

Distribuição Uniforme Contínua

$$P(X > n) = \int_{n}^{+\infty} f_X(x) dx$$
$$E(X) = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx$$
$$E(X^2) = \int_{-\infty}^{+\infty} x^2 \cdot f_X(x) dx$$
$$V(X) = E(X^2) - E^2(X)$$

Distribuição Exponencial

$$P(X > x) = e^{-\lambda x} , x > 0$$

$$P(X \le x) = 1 - e^{-\lambda x} , x > 0$$

Propriedade de falta de memória: $P(X>s+t|X>t)=P(X>s)\,,\;\forall\;s,t\in\mathbb{N}$

Distribuição Normal (ou de Gauss)

$$X\backsim N(\mu,\sigma^2)$$

$$E(X)=\mu\ \, (\text{m\'edia}=\mu)$$

$$V(X)=\sigma^2\ \, (\text{desvio padr\~ao}=\sigma)$$

$$P(X\leq x)=P\left(Z\leq\frac{x-\mu}{\sigma}\right)=\Phi\left(\frac{x-\mu}{\sigma}\right)\;,\; Z\backsim N(0,1)\; (\text{Distribui\'e\~ao}\;\text{Normal Reduzida})$$

4 Pares aleatórios

4.1 Distribuição conjunta, marginais e condicionais

Função de distribuição conjunta

TODO Função de distribuição conjunta

Funções de distribuição marginais

TODO Funções de distribuição marginais

Distribuição conjunta

TODO Distribuição conjunta

Distribuições marginais

TODO Distribuições marginais

Distribuições condicionais

TODO Distribuições condicionais

4.2 Independência

X e Y são v.a. independentes $(X \perp\!\!\!\perp Y)$ sse:

$$P(X = x, Y = y) = P(X = x) \times P(Y = y) , \forall (x, y) \in \mathbb{R}^2$$

Caso exista um zero as variáveis não são independentes.

Vetores aleatórios discretos e contínuos

TODO

Valor esperado de uma função de um par aleatório discreto e contínuo

Para duas v.a. dependentes:

$$E(XY) = \sum_{x_i} \sum_{y_i} x_i y_j f_{X,Y}(x_i, y_j)$$

Para duas v.a. independentes:

$$E(XY) = E(X) E(Y)$$

4.3 Covariância

$$cov(X,Y) = E(XY) - E(X) \times E(Y)$$

Se duas v.a. são independentes então a sua covariância é nula.

4.4 Correlação

$$corr(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}}$$

Complementos das distribuições de probabilidade 5

5.1 Combinações lineares de variáveis aleatórias

Dada uma v.a. Y resultante da combinação linear de n v.a. $X_1,...,X_n$ e n constantes $c_1,...,c_n$, temos:

$$Y = \sum_{i=1}^{n} c_i X_i$$

$$C(Y) = \sum_{i=1}^{n} c_i E(X_i)$$

$$E(Y) = \sum_{i=1}^{n} c_i E(X_i)$$

Caso $X_1, ..., X_n$ sejam variáveis **independentes**:

$$V(Y) = \sum_{i=1}^{n} c_i^2 V(X_i)$$

Caso contrário:

$$V(X_1 \pm X_2) = V(X_1) + V(X_2) \pm 2 \ cov(X_1, X_2)$$

Teorema Limite Central 5.2

Para uma sucessão de v.a. independentes e identicamente distribuídas (não normais) tem-se:

$$S_n = \sum_{i=1}^n X_i$$

$$\bar{X} = \frac{S_n}{n} \text{ (média)}$$

$$E(S_n) = n E(X_1) = n \mu$$

$$V(S_n) = n V(X_1) = n \sigma^2$$

6 Estimação pontual

6.1Estatísticas e estimadores

Propriedades dos estimadores

Seja $T = T(X_1, ..., X_n)$ um estimador do parâmetro θ :

$$EQM_{\theta}(T) = E([T - \theta]^{2}) = V(T) + [E(T) - \theta]^{2}$$

Quando um estimador é **centrado**, ou seja, $E(T) = \theta$ temos:

$$EQM_{\theta}(T) = V(T)$$

Método da máxima verosimilhança

TODO Método da máxima verosimilhança

Distribuição qui-quadrado

TODO Distribuição qui-quadrado

Distribuição t-Student

TODO Distribuição t-Student

7 Estimação intervalar

Método pivotal

Dada uma v.a X e uma amostra de tamanho n, pretende-se determinar um intervalo de confiança aproximado a C% (grau de confiança $\alpha = 1 - \frac{C}{100}$):

- 1. Selecionar a $\mathbf{v.a.}$ fulcral (Z) para o parâmetro desconhecido de X
- 2. Obter os quantis de probabilidade
 - (a) $P(a \le Z \le b) = 1 \alpha$
 - (b) $P(Z < a) = P(Z > b) = \alpha/2$
 - (c) $a = F_Z^{-1}(\alpha/2)$, nas distribuições **normais e t-Student** temos a = -b.
- 3. Inverter a desigualdade $a \leq Z \leq b$, isolando o parâmetro desconhecido (ordem crescente)
- 4. Concretizar a estimação, substituindo as variáveis pelos valores correspondentes

7.1 Intervalos de confiança para parâmetros de populações normais

Se o parâmetro desconhecido é $E(X) = \mu$ então a estimativa pontual é:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Se o parâmetro desconhecida é $V(X) = \sigma^2$ então a estimativa pontual é:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \Leftrightarrow S^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right]$$

Intervalos de confiança para o valor esperado, variância conhecida

$$Z = \frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

Intervalos de confiança para o valor esperado, variância desconhecida

$$Z = \frac{\bar{X} - \mu}{\sqrt{S^2/n}} \sim t_{(n-1)}$$

Intervalos de confiança para a variância, valor esperado desconhecido

$$Z = \frac{(n-1)S^2}{\sigma^2} \sim \mathcal{X}_{(n-1)}^2$$

7.2 Intervalos de confiança para parâmetros de populações de Bernoulli

$$Z = \frac{\bar{X} - p}{\sqrt{\frac{\bar{X}(1 - \bar{X})}{n}}} \sim N(0, 1)$$

7

8 Testes de hipóteses

- 8.1 Testes de hipóteses para parâmetros de populações normais
- 8.2 Testes de hipóteses para a média de uma população normal, com variância desconhecida
- 8.3 Testes de hipóteses para a variância de uma população normal
- 8.4 Testes de hipóteses para parâmetros de populações Bernoulli
- 8.5 Teste de ajustamento do qui-quadrado de Pearson

9 Introdução à regressão linear simples

- 9.1 Modelo de regressão linear simples
- 9.2 Intervalos de confiança e testes de hipóteses para os parâmetros β_0 , β_1 e $\beta_0+\beta_1x_0$ do modelo de regressão linear simples
- 9.3 Coeficiente de determinação