[A:2E, J:60, 500] [W-4.4] [HEIL, 3.8.39] TYPES OF CONVERGENCE Suppose fn: X > IR where X = IRN. . We will discuss 5 different returns of convergence of fund f. and how They are related T) POINTWISE CONVERGENCE DEFI for & POINTWINE (PW) on X if HOCK $f_n(\omega) \rightarrow f(\omega)$ as $n \rightarrow \infty$. ie trex, t= >0 JN=NE, si): tn=N 1 facis - Frist & E ID UNIFORM CONVERGENCE PEFZ for > f UNIFORMY on X of HEDO FN-NEI : HOEN, HOEN 1201-faile NOTE from PUNIF => PN,

AZT PE	F7
6) LET	g:X_R. Define
	11911 = sup 19 sul
<u>B</u>	fn > f UNIFORMY () 11fn-P11->0
	$as n \rightarrow \infty$
PETSup	pose 11fn-f11-> 0 as n-> 0.
So	tscex
	for for = 11 for - f 11 0 8
So	for of UNIFORMLY
4	If for Punisormy The
4 5	>0 FN=NCEI & VXEX YNZN
	Ifor foul < E
50	E 10 U.B. Por 3 Haw - fam/ wex3

UNIFORMY and for is CTS to Since front JN=NCE): HYEX and | fn (51) - from | < \(\xi\) | 3 Arso for so CTS So F 6>0 : [su-y] C & implies 1 fr (s) - fr(y) 1 < = 13 | fran-fran | + | fran - fran | + | fran - fran | - Ray | - Ra So fis ct a. NOTICE In CEXY we almost howe $f_n \to f$ uniformly

The only problem is to x = 0.

In fact if we let E = 0 and E = E = IIThen UPIN $f_n \to f$ uniformly on E.

and $\lambda (f_0, iJ_n E) = \lambda (f_0, E) = E$ is small. If fn >f PW with for Mible and pacinco This always held

CLAM:	
6	Bkm > Bt (n) DECNEASING
(b)	$\left(\right) \mathcal{B}_{k}(n) = \emptyset$
	k =7
+	
PT (Q)	
(B)	Swame x ∈ A B , al
	Suppose $x \in [1, b, a]$ $k = 1$
	Then a Byan Yok. So Ymzk
	$S_0 \forall m \geq k$
	$ f_{lm}(x) - f(x) \ge \frac{1}{n}.$
	S- f 61 + PG1
	m m m m m m m m m m m m m m m m m m m
CLAM	
	$\lim_{n \to \infty} \lambda(\mathbf{F}_{\mathbf{k}} \mathbf{a}) = 0$
	$k \rightarrow \infty$
PF From	(The Since & (B, a)) \le \(\lambda(X) < \income \income \). From by Clain IT That
ve.	
	$\lim_{k\to\infty} \lambda(B_{k}(n)) = \lambda(M) = \lambda(M) = 0.$
	$k \rightarrow \infty$ $k \rightarrow \infty$

(III)	OINTWISE ALMOST EVERYWHERE (PWale)
	DNVERGENCIE
PEFF	Let f: X_>[-oo, oo] be
mea	ourable. We say for > f PW are
1	JM6 ZCX:
	$\bigcirc \lambda(2) = 0$
	B) +xexx2 fra asn-xo,
NOTATION	$f_n \rightarrow f$ λ a.e.
EX8 L	ET $f_n(x) = \frac{1}{20-17} = \frac{1}{20}$
	O Alerwise
	fn p
Then	f > 0 a.e.
but	$f_n \neq 0$ as $f_n(0) = 1, \forall n$.

X laberque n'ble.

X (X) < 20, fn: X > R Laberque measurable, fr & fra.e. whee fis finte. The 4200 3 closed Fex: 3) X(X~F) < E Fr & UNIFORMY on F LOS _CONVERGENCE (UNIFORM a.e.) DEF 10 Let X = IR", f: X = [-s, s] measurable

Define

If II = ess sup [from]

XEX - inf? M: |fai) < M)-a.e.}

