Optimization Model for Scrum-Based Software Development

Decision Variables

 x_1 : Sprint length in days (DV1),

 x_2 : Team size (DV2),

 x_3 : Budget allocation for project (DV3),

 x_4 : Maximum story points per sprint (DV4),

 x_5 : Features per release (DV5),

 x_6 : Concurrent sprints (DV6),

 x_7 : Tasks per sprint backlog (DV7),

 x_8 : Number of QA engineers (DV8),

 x_9 : Buffer time percentage (DV9),

 x_{10} : Backlog items per sprint (DV10).

Objective Function (Multi-Objective)

 $\max (f_1(x) = \text{Increase Team Velocity}),$

 $\max (f_2(x) = -\text{Minimize Defects}),$

 $\max (f_3(x) = \text{Maximize Customer Satisfaction}),$

 $\max (f_4(x) = -\text{Minimize Time to Market}),$

. . .

Constraints

C1:
$$x_1 \ge 7$$
, $x_1 \le 30$,

C2:
$$x_2 \ge 3$$
, $x_2 \le 10$,

C3: $0 \le x_3 \le 100000000$,

C4: $20 \le x_4 \le 60$,

C5: $1 \le x_5 \le 10$,

C6: $1 \le x_6 \le 3$,

C7: $10 \le x_7 \le 100$,

C8: $1 \le x_8 \le 3$,

C9: $0 \le x_9 \le 20$,

C10: $5 \le x_{10} \le 30$.