HW1

Zongshun Zhang

20200910

1 Problem 1

1.1 1. DNF

$$\phi = (x \land y) \lor (x \land z) \lor (y \land z)$$

1.2 2. CNF

$$\psi = (x \vee y) \wedge (x \vee z) \wedge (y \vee z)$$

1.3 3. Z3 script

```
(assert (not (= (phi x y z) (psi x y z))))
(check-sat)
```

1.4 4. **Z**3py script

```
from z3 import *

x,y,z = Bools('x y z')

# (x \land y) \lor (x \land z) \lor (y \land z)
phi = Or (And(x,y), And(x,z), And(y,z))

# (x \lor y) \land (x \lor z) \land (y \lor z)
psi = And (Or(x,y), Or(x,z), Or(y,z))

s = Solver()

# constraint: check sat for not equal, so "equal" is not falsifiable s.add(Not (phi == psi))
print (s.check())
```

2 Problem 2

2.1 (a)
$$((p \rightarrow q) \rightarrow q) \rightarrow ((q \rightarrow p) \rightarrow p)$$

1.	$(p \to q) \to q$	assumption
2.	$(\neg p)$	assumption
3.	p	assumption
4.		¬E 2, 3
5.	$ \; \; \; \; \; $	⊥E 4
6.	$p \to q$	→I 3-5
7.	$oxed{q}$	→E 1, 6
8.	$\neg p \to q$	→I 2-7
9.	$q \rightarrow p$	assumption
10.		¬E 8, 9
11.	p	⊥E 10
12.	$((q \to p) \to p)$	→I 9–11
13.	$((p \to q) \to q) \to ((q \to p) \to p)$	\rightarrow I 1–12

2.2 (c) $((p \rightarrow q) \land (q \rightarrow p)) \rightarrow ((p \lor q) \rightarrow (p \land q))$

1.	$(p \to q) \land (q \to p)$	assumption
2.	$(p \to q)$	$\wedge E_1$ 1
3.	$(q \to p)$	$\wedge E_2$ 1
4.	$(p \vee q)$	assumption
5.	p	assumption
6.		→E 2
7.	$p \wedge q$	∧I 5, 6
8.	q	assumption
9.	p	→E 3
10.	$p \wedge q$	∧I 8, 9
11.	$(p \wedge q)$	∧I 4, 5–7, 8–10
12.	$((p \lor q) \to (p \land q))$	→I 4-11
13.	$((p \to q) \land (q \to p)) \to ((p \lor q) \to (p \land q))$	\rightarrow I 1–12

2.3 (d) $(p \rightarrow q) \rightarrow ((\neg p \rightarrow q) \rightarrow q)$

1.	$(p \to q)$	assumption
2.	$\neg p \rightarrow q$	assumption
3.	$ \neg p \lor p$	LEM
4.	$\neg p$	assumption
5.		→E 2,4
6.		assumption
7.		→E 1,6
8.	$ \qquad q $	\rightarrow E 3,4-5,6-7
9.	$(\neg p \to q) \to q$	→I 2-8
10.	$(p \to q) \to ((\neg p \to q) \to q)$	→I 1-9

3 Problem 3

3.1 rule $\neg I$

1.
$$\phi \to \bot$$
 given
2. ϕ assumption
3. $\bot \to E 1 2$
4. $\phi \to \bot \to I 2-3$

3.2 rule $\neg E$

$$\begin{array}{cccc} 1. & \phi & \text{given} \\ 2. & \phi \to \bot & \text{given} \\ 3. & \bot & \to \to 1,2 \\ \end{array}$$

3.3 rule $\neg \neg E$

1.
$$(\phi \to \bot) \to \bot$$
 given

This won't work. We won't be able to conclude ϕ , as I cannot find a way to reach conclusion with only ϕ .

3.4 rule $\neg \neg I$

1.
$$\phi$$
 given
2. $\phi \to \bot$ assumption
3. $\bot \to E 1,2$
4. $(\phi \to \bot) \to \bot \to I 2,3$

4 Problem 4

4.1 Base Case

Given wff ϕ , assume its height is 1. By the definition of height, there is no path in its parse tree, so it is an atom. Then $rank(\phi) = rank(p) = 1$ is satisfied.

4.2 Inductive Step

Given ϕ is a wff and its height is greater than 1. Thus it has at least 1 connective in it. Assume $height(\phi_n) = rank(\phi_n)$.

4.2.1 Suppose ϕ_{n+1} is the form of $\neg \phi_n$

Here the \neg connective would add 1 to $height(\phi_n)$ as it introduce another path from \neg to ϕ_n . Thus $height(\neg \phi_n) = height(\phi_n) + 1 = rank(\phi_n) + 1 = rank(\neg \phi_n)$ Thus $height(\phi_{n+1}) = rank(\phi_{n+1})$

4.2.2 Suppose ϕ_{n+1} is the form of $\phi_{n_1} o \phi_{n_2}$

Here the o connective would add 1 to the higher one between ϕ_{n_1} and ϕ_{n_2} . Thus $height(\phi_{n+1}) = 1 + max(height(\phi_{n_1}), height(\phi_{n_2})) = 1 + max(rank(\phi_{n_1}), rank(\phi_{n_2}))$ = $rank(\phi_{n+1})$ Thus $height(\phi_{n+1}) = rank(\phi_{n+1})$

5 Problem 5

5.1 (a)

$\textbf{5.1.1} \quad \neg, \land$

$$A \vee B \equiv \neg (\neg A \wedge \neg B)$$

Prove by truth table

АВ	$(\neg (\neg A \land \neg B))$	$A \vee B$
ТТ		T
T F	T	${ m T}$
F T	T	${ m T}$
F F	F	\mathbf{F}

$$A \to B \equiv \neg (A \land \neg B)$$

Prove by truth table

АВ	¬ (A ∧ ¬ B)	$A \rightarrow B$
TT		T
T F	\mathbf{F}	\mathbf{F}
FT		${ m T}$
F F	T	${f T}$

 $\perp \equiv A \wedge \neg A$ By contradiction

 $\top \equiv A \vee \neg A$ By LEM

$\mathbf{5.1.2} \quad \neg, \rightarrow$

$$A \vee B \equiv \neg A \to B$$

Prove by truth table

\	,, ,	0.) 01 01011 000010	
A	В	$(\neg A \rightarrow B)$	$A \vee B$
Т	Τ	${ m T}$	T
Τ	F	${ m T}$	${ m T}$
F	Τ	${ m T}$	${ m T}$
F	\mathbf{F}	\mathbf{F}	\mathbf{F}

$$A \wedge B \equiv \neg (A \to \neg B)$$

Prove by truth table

1 10 to S, cracii casic			
A	В	$\bar{\neg} (A \rightarrow \neg B)$	$A \wedge B$
Т	Τ	T	T
Τ	F	F	\mathbf{F}
F	Τ	F	\mathbf{F}
\mathbf{F}	F	\mathbf{F}	\mathbf{F}

$$\bot \equiv \neg(A \to A)$$

Prove by truth table

$$\begin{array}{c|cccc}
A & \neg (A \rightarrow A) \\
\hline
T & F \\
F & F
\end{array}$$

$$\top \equiv A \to A$$

Prove by truth table

Α	$A \rightarrow A$
Т	T
\mathbf{F}	${f T}$

$$5.1.3 \rightarrow, \bot$$

 $\neg A \equiv (A \rightarrow \bot)$ (proved in problem 3.1)

$$A \vee B \equiv (A \to \bot) \to B$$
 (proved in problem 5.a.2: $A \vee B \equiv \neg A \to B$)

$$A \land B \equiv (A \to (B \to \bot)) \to \bot$$
 (proved in problem 5.a.2: $A \land B \equiv \neg(A \to \neg B)$)

$$\top \equiv \bot \rightarrow \bot$$

Prove by truth table

$$\begin{array}{c|cccc} \bot & \bot & \to & \bot \\ \hline F & T & \end{array}$$

5.2 (b)

Suppose C contains all but neither \neg nor \bot .

Assume there is a wff ϕ with connectives in C and assume all atoms in ϕ to be T. Then the conclusion of such wff will always be T, so C cannot simulate those wff's with F for conclusion.

5.3 (c)

6 Problem 6

Assume $\phi_1 \to \phi_2 \to \phi_3 \to \dots \to \phi_n \to \psi$ is a tautology.

By the definition of completeness, which is when $\phi_1, \phi_2, \phi_3, ..., \phi_n$ are T, then ψ is T, and here tautology makes sure any value for $\phi_1, \phi_2, \phi_3, ..., \phi_n$ will imply ψ to be T, which is tighter than the assumption of completeness, $\phi_1, \phi_2, \phi_3, ..., \phi_n \vdash \psi$ has a proof.

Assume $\phi_1, \phi_2, \phi_3, ..., \phi_n \vdash \psi$ has a proof. By the definition of soundness, if $\phi_1, \phi_2, \phi_3, ..., \phi_n \vdash \psi$ has a proof, $\phi_1, \phi_2, \phi_3, ..., \phi_n \models \psi$ meaning if all premise are T, the conclusion is also T. This make sure that in $\phi_1 \to \phi_2 \to \phi_3 \to ... \to \phi_n \to \psi$ if ϕ_n is T, ψ is T. And for $\phi_1 \to \phi_2 \to \phi_3 \to ... \to \phi_n \to \psi$ to be F, the only case is that when ϕ_n is T and ψ becomes F, which is eliminated by soundness. Thus $\phi_1 \to \phi_2 \to \phi_3 \to ... \to \phi_n \to \psi$ is a tautology.

Thus $\phi_1, \phi_2, \phi_3, ..., \phi_n \vdash \psi$ has a proof iff $\phi_1 \to \phi_2 \to \phi_3 \to ... \to \phi_n \to \psi$ is a tautology.