

Informe de la Práctica 3: Introducción al iRobot Framework Lectura y calibración de los sensores del iRobot

<u>Grupo</u>: 01

Nombre y apellidos: Daniel Ruskov Vangelov Nombre y apellidos: Sergio Hurtado Solorzano

Fecha: 17/11/2020

1. Código bien estructurado y comentado de todos los programas

- Proyecto NetBeans exportado en .zip de P3.1 Verificación de sensores on/off: https://drive.google.com/file/d/13kCteegoEqL1UOFCNbhl-GP0elkDyR9v/view?usp=sharing
- Proyecto NetBeans exportado en .zip de P3.2 Calibración de sensores de barranco (Cliff Signal):
 - https://drive.google.com/file/d/1GMV-a3LZ48hnNpD0t5GXxuUKblk2TQAy/view?usp=sharing
- Proyecto NetBeans exportado en .zip de P3.3 Calibración de sensores de distancia: https://drive.google.com/file/d/1AqDniTC4T5osmOzJ0tDEvAnB1RermKEz/view?usp=sharing
- Proyecto NetBeans exportado en .zip de P3.4 Calibración de sensores de giro: https://drive.google.com/file/d/1y6gyy0kKUFodt0CrBT1Pl0xfN0SkQ1PS/view?usp=sharing
- Proyecto NetBeans exportado en .zip de P3.5 Calibración del sensor de distancia a la pared (Wall Signal):
 - https://drive.google.com/file/d/1_iDKDRcRAG2mwV0QCgODD79cVlolU_ku/view?usp=sharing

2. Verificación de sensores on/off

Para cada sensor decir si funciona bien o no, si tiene fallos esporádicos, si falla en determinadas condiciones, etc., de: Bumps (izquierdo y derecho), Wheel drops (izquierdo, derecho y caster), Cliff (derecho, frontal derecho, frontal izquierdo e izquierdo), Botones Play y Advance.

- Bump dcho funciona (bit 0 = 1)
- Bump izdo funciona (bit 1 = 1)
- Wheel drop dcho funciona (bit 2 = 1)
- Wheel drop izdo funciona (bit 3 = 1)
- Wheel drop caster funciona (bit 4 = 1)
- Cliff izdo funciona
- Cliff frontal izdo funciona
- Cliff frontal dcho funciona
- Cliff dcho funciona
- Botón play funciona (bit 0 = 1)
- Botón advance funciona (bit 2 = 1)

3. Calibración de sensores de barranco (Cliff Signal)

 Tabla con los valores recogidos de cada sensor de barranco sobre la cinta aislante negra y sobre el suelo del laboratorio. Valores medios de lectura de cinta y suelo para cada sensor.

	C_L		C_FL		C_FR		C_R	
	Cinta	Suelo	Cinta	Suelo	Cinta	Suelo	Cinta	Suelo
Test 1	344	1195	784	1693	228	724	202	920
Test 2	344	1196	784	1694	228	724	203	920

Test 3	344	1194	784	1693	228	724	201	920
Test 4	344	1193	784	1696	228	724	204	920
Test 5	344	1195	784	1695	228	724	202	920
Media	344	1194	784	1694	228	724	202	920

- Cálculo del umbral de suelo y del umbral de cinta para diferenciar con seguridad el suelo y la cinta aislante.
 - \circ C_L
 - Umbral suelo = 1194 * 0.75 = 895
 - Umbral cinta = 344 * 1.25 = 430
 - o C_FL
 - Umbral suelo = 1696 * 0.75 = 1275
 - Umbral cinta = 784 * 1.25 = 980
 - o C_FR
 - Umbral suelo = 724 * 0.75 = 545
 - Umbral cinta = 228 * 1.25 = 285
 - C_R
 - Umbral suelo = 920 * 0.75 = 690
 - Umbral cinta = 202 * 1.25 = 255

4. Calibración de sensores de distancia

 Tabla con los valores medidos usando Drive Direct y Drive, las medias, los errores absolutos y relativos. Distancia = (2+g/10)m = (2+1/10)m = 2.1m = 2100 mm.

	Drive Direct	Drive	
Test 1	2095	2090	
Test 2	2095	2090	
Test 3	2095	2090	
Test 4	2095	2090	
Media	2095	2090	
Valor real	2100	2100	
Error absoluto = Vreal-Vmedido(medio)	2100-2095=5	2100-2090=10	
Error relativo= Vreal-Vmedido /Vreal = Eabsoluto /Vreal	5/2100=0,0023	10/2100=0,0046	

- Comparación de los resultados.
 - ¿Qué ventajas e inconvenientes presenta cada uno de ellos?
 Ventaja de que sea un error constante y se pueda corregir según la distancia a recorrer. Inconveniente de tener que hacer los cálculos y tener en cuenta el error al manejar el robot o interpretar los valores que devuelve.
 - ¿Cuál es más conveniente? ¿Por qué?
 Es más conveniente usar drive direct, ya que tiene menor error.

5. Calibración de sensores de giro

 Tabla con los valores medidos usando Drive Direct y Drive con giro de 180º a la derecha y a la izquierda, las medias y los errores absolutos y relativos.

	Drive Direct D	Drive D	Drive Direct I	Drive I
Test 1	-185°5'	-185°3'	185°4'	185°3'
Test 2	-186°6'	-185°8'	185°0'	185°3'
Test 3	-184°9'	-185°1'	185°4'	184°7'
Test 4	-185°1'	-185°1'	185°6'	185°2'
Media	-185°5'	-185°3'	185°3'	184°6'
Valor real	-180°	-180°	180°	180°
Error absoluto	5°5'	5°3'	5°3'	4°6'
Error relativo	1'42"	1'41"	1'41"	1'22"

- Comparación de los resultados.
 - ¿Qué ventajas e inconvenientes presenta cada uno de ellos?
 Ventaja de que sea un error constante y se pueda corregir según los grados a girar. Inconveniente de tener que hacer los cálculos y tener en cuenta el error al manejar el robot o interpretar los valores que devuelve.
 - ¿Cuál es más conveniente?¿Por qué?
 Es igual usar uno u otro (drive o drive direct) ya que los errores son iguales en ambos.

6. Calibración del sensor de distancia a la pared (Wall Signal)

• Tabla con los valores de Wall Signal medidos a distintas distancias de la pared.

	Distancia	Valor
Test 1	0 cm	292
Test 2	1 cm	264
Test 3	2 cm	192

		u, comes o j / totalala co = c = c
Test 4	3 cm	108
Test 5	4 cm	56
Test 6	5 cm	16
Test 7	6 cm	4
Test 8	7 cm	3
Test 9	8 cm	0
Test 10	9 cm	2

• Ecuación y gráfica de la recta de regresión por el método de mínimos cuadrados.

