Quantization Noise

Digital Output Value (D) = Analog Input Value (A) + Quantization Error (Q) or
$$D = A + Q$$

Let R_A denote the range of the analog signal and σ_A its variance (square of std. dev.). Similarly, let R_Q denote the range of the quantization error and σ_Q its variance. As an example, assume that:

Analog Input is in the range [0,10] volts, $R_A = 10$ volts

ADC has 8 bits; B=8

Digital output levels are $2^B = 2^8 = 256$ levels.

Each bit spans $\Delta = R_A/2^B = 10V/256 = 39 \text{ mV}$

Assume that the levels are uniformly divided as follows:

Since each bit spans $\Delta = 39$ mV, the conversion table looks like:

Analog Input				Digital Output
[0,	39)	mV	0
[39,	78)	mV	1
[78,	117)	mV	2
[9	922,	9961)	mV	254
[9961,10000] mV				255

So the quantization error (Q) in this scenario is as little as 0 volts and as much as Δ volts. If we assume that probability of error is uniformly distributed over the [0, Δ] range, then the quantization error probability density function $\rho(Q)$ will look like the following:

Notice that the area under the curve is 1. The average Q is calculated as:

$$\bar{Q} = \int_{-\infty}^{+\infty} Q\rho(Q)dQ = \frac{1}{\Delta} \int_0^{\Delta} QdQ = \frac{1}{\Delta} \left[\frac{Q^2}{2} \right]_{Q=0}^{Q=\Delta} = \frac{1}{\Delta} \left[\frac{\Delta^2}{2} - 0 \right] = \frac{\Delta}{2}$$

The variance of Q is calculated as:

$$\sigma_Q^2 = \int_{-\infty}^{+\infty} (Q - \bar{Q})^2 \rho(Q) dQ = \frac{1}{\Delta} \int_0^{\Delta} (Q - \bar{Q})^2 dQ = \frac{1}{\Delta} \left[\frac{(Q - \bar{Q})^3}{3} \right]_{Q=0}^{Q=\Delta}$$

$$\sigma_Q^2 = \frac{1}{3\Delta} [(Q - \Delta/2)^3]_{Q=0}^{Q=\Delta} = \frac{1}{3\Delta} [(\Delta - \Delta/2)^3 - (-\Delta/2)^3]$$

$$\sigma_Q^2 = \frac{1}{3\Delta} [(\Delta/2)^3 + (\Delta/2)^3] = \frac{1}{3\Delta} [2(\Delta^3/8)] = \frac{\Delta^2}{12}$$

Since $\Delta = R_A/2^B$ this can be written as:

$$\sigma_Q^2 = \frac{\Delta^2}{12} = \frac{1}{12} \frac{R_A^2}{2^B} = \frac{1}{3} \frac{R_A^2}{2^{2B}}$$

Signal power can be represented by $\sigma_A{}^2$. Quantization noise power can be represented by $\sigma_Q{}^2$. The signal to quantization noise ratio can then be written as:

$$SQNR = \frac{\sigma_A^2}{\sigma_O^2} = 3 * 2^{2B} \frac{\sigma_A^2}{R_A^2}$$

In decibels, the SQNR is:

$$SQNR_{dB} = 10 \log_{10} SQNR = 10 \log_{10} \left(3 * 2^{2B} \frac{\sigma_{A}^{2}}{R_{A}^{2}}\right)$$

$$SQNR_{dB} = 10 \log_{10} 3 + 10 \log_{10} (2^{2B}) + 10 \log_{10} \left(\frac{\sigma_{A}^{2}}{R_{A}^{2}}\right)$$

$$SQNR_{dB} = 4.77 + 20B \log_{10} (2) + 10 \log_{10} \left(\frac{\sigma_{A}^{2}}{R_{A}^{2}}\right)$$

$$SQNR_{dB} = 4.77 + 6.02B + 10 \log_{10} \left(\frac{\sigma_{A}^{2}}{R_{A}^{2}}\right)$$

Assume the input signal is sinusoidal, thus $\frac{\sigma_A^2}{R_A^2} = 0.5$:

$$SQNR_{dB} = 4.77 + 6.02B + 10 \log_{10}(0.5)$$

 $SQNR_{dB} = 4.77 + 6.02B + 10 (-0.301) = 6.02B + 1.76 \approx 6B$

If B=8, then SQNR is 48 dB, but if B=16 then SQNR is 96 dB.