

Sistemas Digitais (SD)

Memórias

Aula Anterior

Na aula anterior:

- ► Exemplo (Moore)
- ▶ Projecto de circuitos sequenciais baseados em contadores

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

J

Sumário

Tema da aula de hoje:

- ▶ Memórias:
 - Circuitos e tecnologias de memória:
 - o RAM:
 - Estática
 - Dinâmica
 - o ROM
 - Planos de memória
 - Mapa de memória
 - Hierarquia de memória

Bibliografia:

- M. Mano, C. Kime: Secções 8.1 a 8.5
- G. Arroz, J. Monteiro, A. Oliveira: Secções 6.8 e 13.1

CIRCUITOS E TECNOLOGIAS DE MEMÓRIA

Memórias

Memórias

► Frequentemente, é necessário armazenar um conjunto muito grande de palavras em simultâneo

Soluções:

- Banco de Registos → limitado a poucas dezenas de palavras...
- Circuitos de memória:
 - o RAM
 - o ROM
- Outros tipos de memória:
 - Discos magnéticos, CD, DVD, Blu-Ray, etc..
 - Normalmente ligados a outros dispositivos (ex: PCs)

Tipos de memórias

▶ RAM (Random Access Memory) – é possível <u>ler</u> e <u>escrever</u> dados, na sequência normal de funcionamento de um dado sistema digital.

Tipos de memórias

- ▶ O nome RAM vem de "Random Access Memory": o tempo de acesso à informação na RAM é sempre igual, independentemente da posição (endereço) "aleatória" que se pretende.
- Antes do aparecimento deste tipo de dispositivos, existiam apenas memórias com acesso série (ex: fitas magnéticas ou outras semelhantes a registos de deslocamento), em que o tempo de acesso à informação dependia da distância a que ela estava do início da fita ou da saída série do circuito de deslocamento.

Tipos de memórias

► ROM (Read-Only Memory) – podem ser programadas uma ou relativamente poucas vezes e, no funcionamento normal do sistema,

são **apenas lidas**.

Exemplos:

- ROM
- PROM
- EPROM
- EEPROM

- Circuito capaz de armazenar um conjunto p de palavras, cada uma com m bits, acedidas através do barramento de dados;
- A palavra pretendida é indicada por um endereço, colocado no barramento de endereços;
- ► Habitualmente, *p* e *m* são potências inteiras de 2.

- ▶ A indicação das operações de leitura ou escrita é dada:
 - Por duas linhas independentes (ex: READ e WRITE)
 ou
 - Por uma única linha (ex: READ/WRITE ou R/W)

- ► A activação ou desactivação do dispositivo de memória é feita através do sinal CS (Chip Select), CE (Chip Enable), ou de um sinal Mem Enable.
- Quando inactivo, este sinal coloca o barramento de dados em alta impedância.

- ► Em geral, nas memórias RAM o barramento de dados é bidireccional, i.e., é utilizado para escrever (input) e ler (output) informação;
- Nas memórias ROM o barramento de dados é unidireccional, i.e., é utilizado apenas para ler (output) informação.

Ciclo de Leitura

Acesso à memória: Leitura

- 1. A indicação da posição que se pretende ler é colocada no barramento de endereços;
- 2. O dispositivo de memória é activado, através da entrada Mem_Enable (ou CS ou CE);
- 3. O sinal **R/W** é colocado a 1, para indicar uma operação de leitura;
- Algum tempo depois, a memória apresenta os dados pretendidos, no barramento de dados.

Ciclo de Escrita

Acesso à memória: Escrita

- 1. Coloca-se a posição que se pretende escrever no barramento de endereços;
- 2. Coloca-se no barramento de dados o valor que se pretende escrever nessa posição;
- 3. O dispositivo de memória é activado, através da entrada Mem Enable (ou CS ou CE);
- 4. O sinal R/W é colocado a 0, para indicar uma operação de escrita;
- 5. Estes sinais devem manter-se estáveis, durante o tempo necessário à operação.

Tipos de memórias

► RAM (Random Access Memory) – é possível <u>ler</u> e <u>escrever</u> dados, na sequência normal de funcionamento de um dado sistema digital.

Exemplos:

- Estáticas (SRAM)
- Dinâmicas (DRAM)

Memórias RAM Estáticas

➤ Os bits são armazenados em dispositivos do tipo latch (ainda que estruturalmente muito simplificados), que podem manter indefinidamente o seu conteúdo (enquanto estiverem alimentadas electricamente).

Memórias RAM Estáticas

Memórias RAM Dinâmicas

▶ Os bits são representados pela carga de um pequeno condensador

Memórias RAM Dinâmicas

- ▶ Como todos os condensadores, estes têm <u>fugas</u>, pelo que apenas mantêm a carga durante um tempo muito limitado.
- ▶ Para evitar perder a informação, é necessário manter um processo permanentemente de refrescamento (através de re-escrita) de todas as células da memória, para que os condensadores nunca percam totalmente a sua carga.

Memórias RAM: Dinâmicas vs. Estáticas

- ▶ Requisitos de hardware muito diferentes:
 - Estática: 20 transístores/bit
 - Dinâmica: 5 transístores/bit
- ▶ É possível fabricar memórias dinâmicas de maior capacidade e com um custo mais reduzido do que memórias estáticas
- ▶ Problemas:
 - Os condensadores têm perdas: carga armazenada vai-se perdendo!

 A memória tem de ser refrescada periodicamente: percorre todas as posições de memória e re-escreve o valor lá guardado, com periodicidade ≈ 100ms

Memórias RAM: Dinâmicas vs. Estáticas

- ▶ Requisitos de hardware muito diferentes:
 - Estática: 20 transístores/bit
 - Dinâmica: 5 transístores/bit
- ▶ É possível fabricar memórias dinâmicas de maior capacidade e com um custo mais reduzido do que memórias estáticas
- ▶ Problemas:
 - A operação de leitura é destrutiva: parte da carga eléctrica do condensador é perdida pela porta de passagem

 Após cada operação de leitura, é automaticamente desencadeada uma operação de escrita, de modo a repor o valor lógico nessa posição de memória

Memórias RAM: Dinâmicas vs. Estáticas

- ▶ Requisitos de hardware muito diferentes:
 - Estática: 20 transístores/bit
 - Dinâmica: 5 transístores/bit
- ▶ É possível fabricar memórias dinâmicas de maior capacidade e com um custo mais reduzido do que memórias estáticas
- ▶ Problemas:
 - Menor desempenho: cerca de 10 vezes mais lentas do que as memórias estáticas

Mas...

Muito mais baratas do que as memórias estáticas

Usadas como memória primária na maioria dos computadores

PLANOS DE MEMÓRIA

Planos de Memória

Considerando a existência de um dado circuito de memória, constituído por 2ⁿ palavras, em que cada palavra tem m bits...

- ▶ Como construir uma memória caracterizada por:
 - Mais bits por palavra?
 - Mais palavras do que as endereçáveis no circuito original?
 - Ambos os casos?

Planos de Memória com o Dobro da Largura

► Considerando a existência de um dado circuito de memória, constituído por 2ⁿ palavras, em que cada palavra tem m bits...

► Exemplo 1:

 Como construir uma memória com o dobro da largura de palavra guardada, isto é, uma memória com 2ⁿ x 2m bits ?

- Planos de Memória com o Dobro da Largura
 - ► Exemplo 1: memória com 2ⁿ x 2m bits

Planos de Memória com o Dobro dos Endereços

Considerando a existência de um dado circuito de memória, constituído por 2ⁿ palavras, em que cada palavra tem m bits...

► Exemplo 2:

 Como construir uma memória com o dobro do espaço de endereçamento, isto é, uma memória com 2ⁿ⁺¹ x m bits ?

- Planos de Memória com o Dobro dos Endereços
 - ► Exemplo 2: memória com 2ⁿ⁺¹ x m bits

Planos de Memória Genéricos

- ► Exemplo 3: projectar um plano de memória de 64k palavras de 16 bits cada, utilizando circuitos de memória de 16k octetos.
- ▶ Circuito base:

▶ Pretende-se 64k x 16 bits

■ Planos de Memória Genéricos

▶ Pretende-se 64k x 16 bits

En	der	eços	Memórias Activas		
00	00	0000	0000	0000	
		(.)	AeB	
00	11	1111	1111	1111	
01	00	0000	0000	0000	
		(.)	C e D	
01	11	1111	1111	1111	
10	00	0000	0000	0000	
		(.)	EeF	
10	11	1111	1111	1111	
11	00	0000	0000	0000	
		(.)		GeH
11	11	1111	1111	1111	

MAPAS DE MEMÓRIA

Mapas de Memória

Mapas de Memória

Muitas vezes, nem todo o espaço de endereçamento está preenchido.

Exemplo:

- Intel Core i7-2620M CPU @ 2.70GHz
- Barramento de endereços: 36 bits
- Espaço de endereçamento: $2^{36} = 64$ Giga Palavras

Todo ocupado?

▶ Mapa de Memória:

 Correspondência entre endereços de memória e os respectivos módulos instalados.

Mapas de Memória

Mapas de Memória

► Exemplo 1: processador com 20 bits de endereço (espaço de endereçamento de 2²⁰=1M) e apenas um circuito de memória de 64k instalado na gama de endereços mais elevados.

Mapas de Memória

Mapas de Memória

► Exemplo 2: espaço de memória fragmentado e/ou composto por diferentes tipos de memórias.

HIERARQUIA DE MEMÓRIA

Hierarquia de Memória

Hierarquia de Memória num Processador

Nível	1	2	3	4
Nome	Nome Registos		Memória	Disco
Capacidade	<1kB	<16MB	<32GB	>500GB
Tecnologia	CMOS	CMOS SRAM	CMOS DRAM	Disco Magnético
Acesso [ns]	0,25 a 0,5	0,5 a 25	80 a 250	5.000.000

► CURIOSIDADE: O sistema de memória está estruturado por forma a que os dados e instruções mais comummente utilizados estejam em memórias mais rápidas e próximas do processador.

Próxima Aula

Tema da Próxima Aula:

- ► Projecto de circuitos sequenciais micro-programados
- Exemplos

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás