

Vorlesung Computergrafik

Licht und Farbe

Eigenschaften des Lichts

- Licht ist elektromagnetische Strahlung mit Wellenlängen von 380 nm (blau) 780 nm (rot)
- Lichtemission und -absorption sind Quanteneffekte, sie sind nicht mit Hilfe der klassischen Physik (Elektrodynamik) erklärbar.
- Lichtausbreitung kann in den meisten Fällen durch klassische Physik erklärt werden, d.h., sie wird durch Wellenmodelle hinreichend beschrieben.
- Tatsächlich haben Licht-Partikel (Photonen) einen dualen Charakter: Sowohl Welle, als auch Teilchen

P.A.Henning © 2018 media::lab

Lichtausbreitung I

Für dieInformatik sind folgende Annahmen über die Ausbreitung des Lichtes hinreichend

- •Materie kann als kontinuierliches Medium angesehen werden, charakterisiert durch Absorptionskoeffizienten (Transparenz) und Brechungsindex (optische Dichte, Geschwindigkeit der Lichtausbreitung).
- Oberflächen sind durch Reflexionskoeffizienten (abhängig von der Wellenlänge, d.h., der Farbe), Emissionskoeffizienten (selbstleuchtende Materialien) und Rauhigkeit gekennzeichnet.
- Lichtstrahlen besitzen keine "Farbe", sondern eine spektrale Verteilung.

Lichtausbreitung II

- •In optisch homogenen Medien breitet sich Licht geradlinig aus, wir können von Lichtstrahlen sprechen.
- Lichtstrahlen kreuzen einander ohne gegenseitige Beeinflussung.
- Der Weg eines Lichtstrahls (Lichtpfad) kann auch umgekehrt durchlaufen werden, er ist invertierbar.
- Bei der Reflexion von Lichtstrahlen ist Finfallswinkel = Ausfallswinkel
- Beim Eintritt in optisch dichtere Medien (höherer Brechungsindex= geringere Lichtgeschwindigkeit) erfolgt eine Brechung des Lichtstrahls in Richtung auf die Senkrechte: Brechungswinkel < Einfallswinkel (Snelliusches Brechungsgesetz, nach Willebrord Snel van Royen, 1591-1626)

$$\alpha' = \alpha$$
$$\sin \alpha = n * \sin \beta$$

Lichtwahrnehmung I

- •Die Linse des menschlichen Auges fokussiert einfallende Lichtstrahlen auf die Retina (Netzhaut).
- •Die Linse absorbiert mehr Licht im blauen als im roten Wellenlängenbereich. Dies nimmt im Alter zu.
- •Die Brennweite der Linse ist abhängig von der Wellenlänge: Blau hat kürzere Brennweiten als rot (Dispersion).

Folge:

Bei Bildern mit blauen und roten Bereichen muß die Linse permanent ihre Form ändern; das Auge ermüdet. Effekt der Chromostereopsie: rot auf blauem Hintergrund erscheint näher.

rot vor blau? Chromostereopsie

Machband-Effekt

- Der 1865 von Mach entdeckte Machband-Effekt sorgt dafür, daß Helligkeitsunterschiede zwischen zwei Flächen in der Nähe ihrer Grenze stärker wahrgenommen werden.
- Ursache: Gegenseitige Dämpfung benachbarter Lichtrezeptoren auf der Netzhaut
- Die Flachschattierung polygonaler Modelle wird dadurch besonders deutlich

Farbenblindheit

- Wir erkennen Objekte vor allen mit Hilfe von Kantendetektion: Abrupte Helligkeitswechsel werden schärfer wahrgenommen als Wechsel im Farbton.
- Farbverläufe in reinem Blau erzeugen keine scharfen Kanten.
- Farbenblindheit:
 - betrifft 8% der männlichen, 1% der weiblichen Bevölkerung
 - meist Rot-Grün-Defizit durch Mangel an roten oder grünen Photopigmenten auf der Retina
 - Probleme bei der Unterscheidung von Farben, die vom rot:grün-Anteil abhängen

Lichtwahrnehmung II

- Die menschliche Netzhaut (Retina) enthält **Photorezeptoren** unterschiedlicher Sensitvität:
 - Stäbchen für die Helligkeitsempfindung ("Nachtsehen"), konzentriert in der Peripherie der Netzhaut
 - Zäpfchen für die Farbempfindung, konzentriert im Zentrum
 - 4% blau-sensitive, 430 nm (höhere Dichte in Peripherie)
 - 32% grün-sensitive, 530 nm (höhere Dichte im Zentrum)
 - 64% rot-sensitive, 560 nm (fast gelb)
- 3 Photorezeptoren für Farbe -> es genügen **3 Zahlenwerte** für die quantitative Beschreibung von Farben.

Lichtwahrnehmung III

Über den **Sehnerv** gelangt die Farb- und Helligkeitsinformation in den lateralen genikutalen Körper, eine

Farbverarbeitungseinheit, die die RGB-Signale in drei neue Signale wandelt:

> R-G: Rot/Grün-

> > Wahrnehmung

Y = R+G: Helligkeits- und

Gelbwahrnehmung.

Evolution des

Menschen!

Y-B:Gelb/Blau-

Wahrnehmung

Der Blauanteil spielt keine Rolle bei der Helligkeitsempfindung.

Farben wie "rötlich-grün" oder "bläulichgelb"" sind physiologisch unmöglich.

Sehzentrum

Das eigentliche Sehzentrum liegt im Hinterkopf, in maximaler Entfernung von den zugehörigen Sensoren.

Es handelt sich "nur" um ein sekundäres Sehzentrum, der laterale genikutale Körper ist das primäre Sehzentrum

Helligkeit und Luminanz

Helligkeit ist ein subjektiver Begriff(ein physiologischer Begriff)

- ist die Eigenschaft einer subjektiven visuellen Empfindung:
 "Eine Fläche strahlt mehr oder weniger Licht ab."
- Helligkeitsempfindung ist ein komplexer psycho-physiologsicher Vorgang und mathematisch schwer faßbar.
- Lightness: Helligkeit eines reflektierenden Objekts
- Brightness: Helligkeit eines selbstleuchtenden Objekts (Lampe, Sonne, CRT)

Luminanz / Intensität: (ein physikalischer Begriff)

- Intensität ist ein Maß für die Energie, die von einer Fläche abgestrahlt wird oder auf eine Fläche auftrifft.
 - (Einheit = Energie/Fläche = Energiedichte)
- Luminanz ist das einzige Merkmal achromatischen Lichts.

Farbtemperatur I

- Ein schwarzer Strahler (black body radiator) strahlt Licht aus, dessen Farbe eine Funktion seiner Temperatur ist (Max Planck).
- Analog dazu kann die Farbe selbstleuchtender Objekte mit (subjektiv!) gleichem Farbton in Kelvin angegeben werden:

 60 Watt-Glühbirne: 2800 K

 Weiße Leuchtstoffröhre: 4400 K

– Sonnenlicht im Sommer: 5500 K (= Oberflächentemperatur der Sonne)

 Blaue Leuchtschicht CRT: 9300 K Spektrale Energiestromdichte eines Schwarzen Strahlers

$$S(\lambda) = \frac{c_1}{\lambda^5} * \frac{1}{e^{\frac{c_2}{\lambda T}} - 1}$$

$$c_1 = 11.72 * 10^{-13} Wm^{-2}$$

$$c_2 = \frac{hc}{k} = 1.43 * 10^7 nm K$$

ACHTUNG, Satzfehler im TB MM

Farbtemperatur II

Der Sehapparat ist tolerant gegen Fehler der Farbtemperatur. In einem abgedunkelten Raum (Kino) können hellgelb oder hellblau auf einem Dia als weiß empfunden werden.

Farbmerkmale

subjektiv

Farbton (Hue):

unterscheidet zwischen reinen Farben (rot, gelb, grün, blau, etc.)

Sättigung (Saturation):

Entfernung der Farbe von einem Grau gleicher Helligkeit (Beispiel: Pink ist weniger gesättigt als rot)

Helligkeit (Lightness/Brightness)

objektiv: Colorimetrie dominante Wellenlänge Reinheit

- Verhältnis zwischen dominanter Wellenlänge und Weißanteil.
- zu 100% gesättigte Farben enthalten kein Weiß
- Weiß und die Graustufen sind zu 0% gesättigt.

Luminanz/Intensität

Strahlungsenergie

Farbmodelle

- Ein Farbmodell ist die Spezifikation eines 3D-Koordinatensystems und einer Untermenge darin, in der alle sichtbaren Farben eines bestimmten Farbbereichs (Color Gamut) liegen.
- Zweck: Bequeme Spezifikation von Farben für die Computergrafik
- Ein Farbmodell enthält nicht unbedingt alle wahrnehmbaren Farben!

- Hardware-orientierte Farbmodelle:
 - RGB
 - CMY, CMYK
 - YIQ, YUV

- Benutzer-orientierte Farbmodelle:
 - HSV, HSB
 - HLS
 - HVC

Farbmischung

Additive Farbmischung:

- Spektralkomponenten werden addiert.
- Summe aller Farben = weiß
- Verwendung in Displays 🖂

Subtraktive Farbmischung:

- Absorptionskomponenten werden addiert.
- Summe aller Farben = schwarz
- Verwendung in Druckern

RGB-Farbmodell I

- Rot, Grün, Blau als Einheitsvektoren
- additives Farbmodell
- verwendet zur Ausgabe auf Farbbildschirmen
- Farbraum: RGB-Farbwürfel
 (Einheitswürfel), kartesisches
 Koordinatensystem
- Grauwerte auf Hauptdiagonale
- Beispiele:

_	rot	(1.0 , 0.0 , 0.0)
_	blau	(0.0,0.0,1.0)
_	gelb	(<mark>1.0</mark> , 1.0 , 0.0)
_	hellgrau	(0.9.0.9.0.9)

\bigcirc

RGB-Farbmodell II

CIE-Diagramm I

CIE - Commission Internationale de l'Eclairage

Diagramm zur Farbstandardisierung (1931)

Aus dem **Spektrum** $E(\lambda)$ und **3 Gewichtsfunktionen** $\xi(\lambda), \eta(\lambda), \zeta(\lambda)$

ergeben sich 3 Zahlen zur Farbspezifikation

$$X = \int_{780 \text{ nm}}^{780 \text{ nm}} E(\lambda) \cdot \xi(\lambda) d\lambda$$

$$Y = \int_{780 \text{ nm}}^{780 \text{ nm}} E(\lambda) \cdot \eta(\lambda) d\lambda$$

$$Z = \int_{780 \text{ nm}}^{780 \text{ nm}} E(\lambda) \cdot \zeta(\lambda) d\lambda$$

$$380 \text{ nm}$$

$$Z = \int_{380 \,\text{nm}}^{780 \,\text{mm}} E(\lambda) \cdot \zeta(\lambda) d\lambda \qquad \left(\underbrace{\frac{X}{X+Y+Z}}_{X} \underbrace{\frac{Y}{X+Y+Z}}_{Y} \underbrace{\frac{Z}{X+Y+Z}}_{Z}\right)$$

Nur zwei unabhängige Koordinaten, denn x + y + z = 1, z = 1-x-y

CIE-Diagramm II

Das CIE-Diagramm

- dient zur Eichung von Colorimetern, Spektroradiometern, Farbbereichen, etc.)
- enthält keine Luminanzinformation (z.B. ist braun als dunkles orange nicht enthalten)
- ist also keine vollständige Farbpalette.

CMY - Farbmodell I

- Cyan, Magenta, Yellow
- subtraktives Farbmodell
- verwendet zur Ausgabe auf Druckern
- **Dreifarbendruck:** Farbbeschichtung auf Papier absorbiert bestimmte Wellenlängenbereiche aus auffallendem weißen Licht
- Da die Mischung C+M+Y meist nicht reines Schwarz ergibt und das Papier aufweicht, wird oft schwarzes Pigment zugesetzt. (Vierfarbendruck) **CMYK** => K für KEY, zu merken auch als blacK

CMY - Farbmodell II

Farbkonvertierung I

$$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

Umrechnung RGB - CMY

Umrechnung CMY - CMYK

$$K = min(C,M,Y)$$

$$\begin{pmatrix} C' \\ M' \\ Y' \end{pmatrix} = \begin{pmatrix} C \\ M \\ Y \end{pmatrix} - \begin{pmatrix} K \\ K \\ K \end{pmatrix}$$

True Colour

True Colour:

P.A.Henning © 2018

Bereitstellung von drei separaten Komponenten für additive RGB-Farbreproduktion

- meist 1 Byte pro Komponente daher auch "24-Bit Farbtiefe"
- oft existiert zusätzlich eine Lookup-Tabelle, um Nichtlinearitäten zwischen den Farbkomponenten im Framebuffer und Display-Kanälen auszugleichen.
- Bemerkung: In X11 "TrueColour" ≠ "DirectColour"

Pseudo Colour

- auch "Indexed Colour"
- eine relativ geringe Anzahl von RGB-Farbwerten wird in einer Farbtabelle (oder
- CLUT) bereitgestellt z.B. 256 verschiedene Werte
- Der Framebuffer speichert pro Pixel nur einen Index in diese Farbtabelle.
- Dateiformate wie GIF oder TIFF enthalten (oft gamma-korrigierte) Farbtabellen.

Gamma-Korrektur

- Helligkeit und Intensität sind verschieden bei jeder Farbe anders...
- Displays reagieren nichtlinear auf eine Steigerung der Intensitätswerte (z.B.Spannungen). Bei Kathodenstrahlröhren ist z.B. die Anzahl der Photonen proportional zu einer Potenz der angelegten Spannung, mit einem Exponenten γ 2,3- 2,55
- Displays sind individuell verschieden. Ein Bild kann auf einem Monitor grünlich, auf einem anderen eher bräunlich erscheinen.
- Eine Korrektur dieser Effekte ist über die CLUT (Color Look-Up Table) möglich, dies ist die Gamma-Korrektur.

YIQ / YUV-Farbmodelle

- Verwendet in der Fernseh-/Videotechnik zur Steigerung der Übertragungseffizienz und zur Abwärtskompatibilität mit dem Schwarzweiß-Fernsehen
- Das Signal ist zusammengesetzt aus
 - einem Luminanzsignal Y (Helligkeitsinformation, nicht Yellow!)
 - zwei Chrominanzsignalen I und Q (bzw. **U** und **V**)
- Das Luminanzsignal ist für den Detail-Eindruck wichtiger als die Farbsignale und erhält deshalb mehr Bandbreite => Color Subsampling 🔀

Farbkonvertierung II

USA

Europa

Alternativ:
$$Cb = (B-Y) = U/0.577$$
 Chrominanz Blau $Cr = (R-Y) = V/0.713$ Chrominanz Rot

Farb-Subsampling

4:4:4

4:2:2

YO	Y 1
Y 2	Y 3

4:1:1

YO	Y1	Y 2	Y 3
Y 4	Y 5	Y6	Y 7

4:2:0

G0 G1 G2 G3

Achtung: der wichtigste Aspekt ist die **MITTELUNG** über nebeneinanderliegende Pixel in den Farbkanälen.

Es wird nicht einfach etwas "weggelassen"

B0 B1 B2 B3

3*4 = 12 Byte für 4 Pixel

4+2*2 = 8 Byte für 4 Pixel

8+2*2 = 12 Byte für 8 Pixel

4+2 = 6 Byte für 4 Pixel

100 %

66%

50%

50%

Datenmenge

HSV-Farbmodell I

- **Hue, Saturation, Value/Brightness** (Farbton, Sättigung, Helligkeitswert)
- Eine Änderung der Sättigung entspricht Hinzufügen oder Entfernen von Weiß
- Eine Änderung des **Helligkeitswerts** entspricht dem Hinzufügen oder Entfernen von Schwarz.
- Farbraum: "Hexcone" (bzw. 6-seitige Pyramide), Zylinderkoordinaten entspricht Blick auf den RGB-Würfel entlang der Grauwert-Diagonalen
- Beispiele:

reines blau: H=240°, S=V=1

dunkelblau: $H=240^{\circ}$, S=1, V=0.3

HSV-Farbmodell II

HLS-Farbmodell

- Hue, Lightness, Saturation (Farbton, Helligkeit, Sättigung)
- eingeführt von Tektronix
- Doppel-Pyramide, 6-seitig
- Die Strategie von Malern: Wähle ein reines Pigment (Hue), mische weißes Pigment dazu (Saturation), mische schwarzes Pigment dazu (1-Lightness)
 - Für die Graustufen gilt: S=0
 - Für vollgesättigte Farben gilt: L=0.5 S=1

Historisch: TekHVC-Farbmodell

- Die Farbmodelle RGB, CMY, YIQ, HSV, HLS sind sind nicht wahrnehmungsuniform:
 - Helligkeit wird trotz gleicher Luminanz bei unterschiedlichen Farbtönen unterschiedlich empfunden.
 - Bei gesättigten Farben ist das Auge weniger sensitiv für Farbtonunterschiede.
 - Die Anzahl der unterscheidbaren Sättigungsstufen liegt je nach Wellenlänge zwischen 16 und 23.
- Tektronix hat eine Variante des CIE-Farbmodells vorgeschlagen, in dem gemessene und empfundene Farbabstände fast gleich sind: Das TekHVC-Modell mit den Koordinaten Hue, Value, Chroma

Farbkonvertierung III

RGB ⇒ HLS, HSV

Berechne zunächst Hilfsgrößen.

Dann:

$$H = \arctan\left(\frac{s}{c}\right) + \begin{cases} 180, wenn \ c < 0 \\ 360, wenn \ s < 0 \ und \ c > 0 \end{cases}$$

$$S = m_1 - m_2$$

$$V = m_1$$

$$L = m_1 \left(1 - \frac{m_1 - m_2}{2} \right)$$

$$c = \sqrt{\frac{2}{3}}R - \sqrt{\frac{1}{6}}(G+B)$$

$$s = \sqrt{\frac{1}{2}}(G-B)$$

$$m_1 = \max(R, G, B)$$

$$m_2 = \min(R, G, B)$$

Farbkonvertierung pragmatisch

- Konvertierungen zwischen den Farbmodellen werden in Malprogrammen oder Paintsystemen durchgeführt, um von den intuitiven Modellen HLS. HSV in das hardware-orientierte RGB-Modell zu gelangen.
- Videoein- und Videoausgabemodule, TV-Tuner auf Multimediakarten müssen Farbraumkonvertierungen zwischen YUV/YIQ und RGB vornehmen.
- Druckertreiber müssen in das CMY-Modell konvertieren.
- Aus dem RGB-Modell ist eine einfache Konvertierung in das CIE-Modell möglich.

Farbkonvertierung pragmatisch II

Farbmusterbücher / Farbstandardisierung

Dienen der Vergleichbarkeit von Farben für die Druckindustrie

- **PANTONE®**
- Munsell
- DIC
- DuPont®,
- FOCOLTONE®,
- TOYO
- TRUMATCH®

Aber auch: Farbtrends, Farbe des Jahres etc.

40

Farbeinsatz

- Farben können eingesetzt werden
 - zur Erhöhung des visuellen Realismus
 - aus ästhetischen Gründen
 - zur Erzeugung vom Stimmungen
 - zur Hervorhebung / Verdeutlichung von Zusammenhängen
 - zur Codierung
- Menschen können wahrnehmen
 - 128 verschiedene Farbtöne (Hues)
 - 130 verschiedene Farbsättigungen (Saturlation Levels)
 - Zwischen 16 (im blauen Bereich) und 26 (im gelben Bereich) verschiedene Helligkeitswerte (Luminance Levels)
 - Insgesamt also etwa 380.000 verschiedene Farben.
- Insbesondere bei der Codierung sind dabei einige farbpsychologische Grundsätze zu beachten:
 - Farbkombinationen, Farbabstände, Farbsättigungen
 - unbeabsichtigte Bedeutung bestimmter Farben (z.B. "rote Zahlen")

Farbspezifikation

- durch Auswahl aus einem Menü (Palette) von Standardfarben
 - nur sinnvoll, wenn die Farbanzahl gering ist
 - Farbe auf kleinen Flächen sind schwer zu identifizieren
- durch namentliche Nennung
 - "grün-gelb, grünlich-gelb, gelblich-grün"
 - mehrdeutig und subjektiv
 - Abhilfe: CNS(Color Naming Scheme)

- durch Koordinatenangabe in einem Farbraum
 - textuell
 - mit Slidern
- durch Interaktion mit einer graphischen Darstellung des Farbmodells
 - HSV intuitiv
 - RGB hardware-orientiert

Grenzwerte

- Erfahrungswert: Für zu 95% sichere Codeerkennung sollten nicht mehr als
 - 10 Farben
 - 15 geometrische Formen
 - 6 Flächengrößen
 - 6 unterschiedliche Längen
 - 4 Helligkeiten
 - 24 Winkel

verwendet werden

- Codierungen sollten redundant sein.
- Farbe immer in Kombination mit anderem Code verwenden! (8% der männlichen Bevölkerung sind farbenblind)
- Beispiel: Verkehrsampel

Software-Ergonomie am Beispiel Farbe

elektromyographische Messungen ergaben:

Farbschemata wie dieses führen zu

- Rückenmuskelaktivität
- Entkopplung von Herz- und Muskelaktivität
- erhöhte Lidschlagfrequenz
- steigendem Cortisol- und IgAspiegel

Dithering

Dithering:

Die Abbildung eines Bildes mit *m Farben* oder Intensitätsstufen auf ein Bild mit *n* < *m* Farben oder Intensitätsstufen

- ist nötig, wenn ein Gerät zu wenig Farben zur Verfügung hat, z.B.:
 - Ein Grautonbild auf Schwarz-Weiß-Drucker
 - Zeitungsdruck, 4-Farben-Druck
 - Framebuffer mit nur 1, 2 oder 8 Bit Farbtiefe
- Halbtonverfahren/Screening:

Reduktion von Grauwerten auf Schwarz-Weiß (Bilevel)

Dithering-Verfahren:

Reduktion auf n >= 2 Werte

Monochromes Dithering I

- Prinzip zur Vortäuschung zusätzlicher Intensitätsstufen: die räumliche Integration von Feinheiten durch das Auge
- **Zeitungsfotos:** Um 45 % geneigtes Raster von schwarzen Kreisen, deren Fläche proportional ist zu 1 Intensität
- Bei **Druckern** und **Monochrom-Bildschirmen** werden diese Kreise z.B. durch **3x3-Punktmuster** approximiert, die als **Dithermatrizen** spezifiziert werden. Damit lassen sich 10 Grauwertstufen realisieren.
- Damit keine Artefakte auftreten, müssen diese Muster nach bestimmten Regeln gebildet werden:

Monochromes Dithering II

- mit konstanter Schwelle
- mit Zufallszahlen
- mit Grautonmuster
- mit Dithermatrix, Ordered Dithering
- mit Fehlerübertrag (1D, 2D, Floyd-Steinberg)

Farbdithering

- Ohne Verlust räumlicher Auflösung sollen n Farben auf einem Display mit Darstellmöglichkeit für m < n Farben dargestellt werden:
 - Welche m Farben sollen benutzt werden ?
 - Wie werden die n Farben auf diese m Farben abgebildet ?
- ☼ Bestimmung der zu benutzenden Farbtabelle:
 - Popularity-Algorithmus
 - Median-Cut-Algorithmus
- Finden der bestmöglichen Farbe in dieser Tabelle:
 - über Hash-Tabelle
 - über Octree

Farbdithering

Literatur

- **Computer Graphics, Principles and Practice,** Foley, vanDam, Feiner, Hughes; Kap. 13
- Physiologie des Menschen, Schmitt, Thews; Springer Verlag
- Color Science: Concepts and Methos, Quantitative Data and Formulae, G. Wyszecki, W. Stiles; Wiley; New York; 1982
- **Principles of Color Technology,** F. Billmeyer, M. Saltzman; Wiley; New York; 1981
- An Optimum Algorithm for Halftone Generation for Displays and Hard **Copies,** T.M. Holloday; Proceedings of the Society of Information Display, 21(2), 1980, 185-192
- The Reproduction of Color, R. W. Hunt, Fountain Press, 1987
- The International Color Consortium, www.color.org
- **FAQ about Colour**, www.inforamp.net/~poynton/Poynton-color.html

Das wars zu Licht und Farbe!

