CIRCUITOS DE EULER

Caminho de Euler: caminho que visita cada aresta exatamente uma vez

Circuito de Euler: caminho de Euler que começa e acaba no mesmo vértice

Condições necessárias e suficientes:

Um grafo <u>não dirigido</u> contém um **circuito de Euler** sse

- 1. é conexo e
- 2. cada vértice tem grav (número de arestas incidentes) par.

Um grafo <u>não dirigido</u> contém um **caminho de Euler** sse

- 1. é conexo e
- 2. todos menos dois vértices têm grau par (estes dois vértices serão os vértices de início e fim do caminho).

△ Nota:

Circuito = Caminho + Identificação da origem e do destino

Circuito mais restrito que Caminho

Um grafo dirigido contém um circuito de Euler sse

- 1. é (fortemente) conexo e
- cada vértice tem o mesmo grav de entrada e de saída.

Um grafo dirigido contém um caminho de Euler sse

- 1. é (fortemente) conexo e
- 2. todos menos dois vértices têm o mesmo grav de entrada e de saída, e os dois vértices têm gravs de entrada e de saída que diferem de 1.

Circuito de Euler

Caminho de Eulei

Sem caminho ou circuito de Euler

Com circuito de Euler

Com caminho de Euler

Sem circuito ou

>>> Pesquisa Em Profundidade

Se o grafo satisfizer as condições necessárias e suficientes, esta pesquisa termina necessariamente no vértice de partida, formando um circuito, embora não necessariamente de Euler

- 1. Escolher um vértice qualquer e efetuar uma pesquisa em profundidade a partir desse vértice
- 2. Enquanto existirem arestas por visitar
 - Procurar o primeiro vértice no caminho (circuito) obtido até ao momento que possua uma aresta não percorrida
 - 2. Lançar uma sub-pesquisa em profundidade a partir desse vértice (sem voltar a percorrer arestas já percorridas)
 - 3. Inserir o resultado (circuito) no caminho principal

	Arestas por visitar	Caminho desta iteração	Caminho acumulado					
1ª iter.		1-3*-2-1-6-7-1 Com arestas por visitar	1-3*-2-1-6-7-1					
2ª iter.	① ① ① ① ① ② ② ② ② ③ ② ③ ③ ② ③ ③ ③ ③ ③ ③	3-4-5-3	1-3-4-5-3-2-1-6-7-1 (Circuito de Euler)					
	∆ Nota:							
Tempo de execução: O(E + V)								
Cada vértice e aresta é percorrido								
uma única vez - Usam-se listas								
	ligadas para efetuar inserções em							

tempo constante

> Problema do carteiro chinês

Dado um grafo pesado conexo G=(V,E), encontrar um caminho fechado (i.e., com início e fim no mesmo vértice) de peso mínimo que atravesse cada aresta de G pelo menos uma vez é o **percurso ótimo do carteiro Chinês**. A um caminho fechado (não necessariamente de peso mínimo) que atravesse cada aresta pelo menos uma vez chama-se **percurso do carteiro**.

△ Nota:

Se o grafo G não for Euleriano, pode-se construir um grafo Euleriano G^* duplicando algumas arestas de G, selecionadas por forma a conseguir um grafo Euleriano com peso total mínimo.

>>> Grafos Não Dirigidos

- Achar todos os vértices de grav ímpar em G. Seja k o número (par!) destes vértices. Se k=0, fazer G*=G e saltar para o passo 6.
- 2. Achar os caminhos mais curtos e distâncias mínimas entre todos os pares de vértices de grav ímpar em G.

G:	v ₁ 4 v ₃ 3	1 4	2 8 8	5 ,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				Vértices de grau impar sombreados
		$d(v_i,v_j)$	v1	v2	v3	v4	ν5	ν6	
		v1		2	4	7	12	10	
		v2			6	5	13	11	
		v3				9	12	10	
		V4					13	6	
		v5						7	
		V6							

- 3. Construir um grafo completo G' com os vértices de grav ímpar de G ligados entre si por arestas de peso igual à distância mínima calculada no passo 2.
- 4. Encontrar um emparelhamento perfeito (envolvendo todos os vértices) de peso mínimo em G'. Isto corresponde a emparelhar os vértices de grav ímpar de G, minimizando a soma das distâncias entre vértices emparelhados.

- 5. Para cada par (v, v) no emparelhamento perfeito obtido, adicionar pseudo-arestas (arestas paralelas duplicadas) a G ao longo de um caminho mais curto entre v e v. Seja G^* o grafo resultante.
- 6. Achar um circuito de Euler em G^* . Este circuito é um percurso ótimo do carteiro Chinês.

>>> Grafos Dirigidos

- 1. No grafo G dado, identificar os vértices com nos diferentes de arestas a entrar e a sair
- 2. Determinar os caminhos mais curtos de vértices que têm défice de saídas para vértices que têm défice de entradas e representar as distâncias respetivas num grafo bipartido G'.

△ Nota:

Os Vértices são anotados com multiplicidade (número de parelhas em que deve participar) igual ao défice absoluto

3. Formular problema de emparelhamento óptimo como problema de fluxo máximo de custo mínimo e resolver.

4. Obter grafo Euleriano G^* , duplicando em G os caminhos mais curtos entre os vértices emparelhados no passo 3, e obter um circuito Euleriano.

