

Neural Nets 2

Training & Tuning

Overview:

- Loss Functions
- Backpropagation
- Cross Validation
- Over- and Underfitting
- Tipps & Tricks (e.g. Learning Rate Schedule)
- CNN

Compute forward propagation (Prediction)

Compute error/loss $E(y, \hat{y})$

$$y_n^{(2)}$$

1D Output:

$$E = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

*n*D Output:

$$E = \frac{1}{2m} \sum_{i=1}^{m} \frac{1}{n} \sum_{j=1}^{n} (\hat{y}_{ij} - y_{ij})^{2}$$

$$E = \frac{1}{2mn} \sum_{i=1}^{n} \sum_{j=1}^{n} (\hat{y}_{ij} - y_{ij})^2$$

Compute error/loss $E(y, \hat{y})$

1D Output (m: Batch Size):

$$E = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2$$

*n*D Output:

$$E = \frac{1}{2m} \sum_{i=1}^{m} \frac{1}{n} \sum_{j=1}^{n} (\hat{y}_{ij} - y_{ij})^2$$

$$E = \frac{1}{2mn} \sum_{i=1}^{n} \sum_{j=1}^{n} (\hat{y}_{ij} - y_{ij})^2$$

$$E = \frac{1}{2mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (\hat{y}_{ij} - y_{ij})^2$$

$$E = \frac{1}{2mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (\hat{y}_{ij} - y_{ij})^{2}$$

$$m = 1, n = 3$$

$$\begin{array}{ccc}
\hat{y} & y \\
\hline
0 & 1 \\
\hline
0 & 0
\end{array}$$

$$E = \frac{1}{2mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (\hat{y}_{ij} - y_{ij})^2$$

$$m = 1, n = 3$$

$$E = \frac{1}{2 * 1 * 3} \sum_{i=1}^{1} \sum_{j=1}^{3} (\hat{y}_{ij} - y_{ij})^{2}$$

$$\begin{array}{ccc}
\hat{y} & y \\
\hline
0 & 1 \\
\hline
1 & 0 \\
\hline
0 & 0
\end{array}$$

$$E = \frac{1}{2mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (\hat{y}_{ij} - y_{ij})^{2}$$

$$m = 1, n = 3$$

$$\frac{1}{2 * 1 * 3} \sum_{i=1}^{3} \sum_{j=1}^{3} (\hat{y}_{ij} - y_{ij})^{2}$$

$$1 \sum_{j=1}^{3} \sum_{j=1}^{3} (\hat{y}_{ij} - y_{ij})^{2}$$

$$E = \frac{1}{6} \sum_{j=1}^{3} (\hat{y}_j - y_j)^2$$

$$\hat{y}$$
 y 0 1

$$(1)$$
 (0)

$$E = \frac{1}{2mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (\hat{y}_{ij} - y_{ij})^2$$

$$m = 1, n = 3$$

$$E = \frac{1}{2 * 1 * 3} \sum_{i=1}^{3} \sum_{j=1}^{3} (\hat{y}_{ij} - y_{ij})^{2}$$

$$E = \frac{1}{6} \sum_{j=1}^{3} (\hat{y}_{j} - y_{j})^{2}$$

$$E = \frac{1}{6} ((0-1)^2 + (1-0)^2 + (0-0)^2) = \frac{1}{3}$$

Logarithmic Loss (Cross Entropy)

- Captures the intuition of classification
- Can be used for output probabilities (e.g. Softmax)
- p: Predicted probability of a class (confidence)
- Binary: $E = -(y * \log(p) + (1 y) * \log(1 p))$
- Multiclass: $E = -\sum_{j=1}^{n} y_j * \log(p_j)$

$$E = -(y * \log(p) + (1 - y) * \log(1 - p))$$

Assume
$$y = 1$$
:

$$E(y = 1, p) = -(1 * \log(p) + (1 - 1) * \log(1 - p))$$

$$E(y = 1, p) = -(1 * \log(p))$$

$$E(y = 1, p) = -\log(p)$$

$$E = -(y * \log(p) + (1 - y) * \log(1 - p))$$

Assume y = 1: $E(y = 1, p) = -\log(p)$

$$E = -\sum_{j=1}^{n} y_j * \log(p_j)$$

$$E = -(1 * \log(0.1) + 0 * \log(0.8) + 0 * \log(0.1))$$

$$E = -\log(0.1)$$

$$E = -\sum_{j=1}^{n} y_j * \log(p_j)$$

$$E = -(1 * \log(0.8) + 0 * \log(0.1) + 0 * \log(0.1))$$

$$E = -\log(0.8)$$

Two Processes:

- Forward Propagation (Prediction)
- Backward Propagation (Weight Tuning)

- Compare to more complex Gradient Descent
- Training of Neural Net

Algorithm (Given input x)

- Compute forward propagation
 - Get a prediction \hat{y}
- Compute error/loss $E(y, \hat{y})$
- Propagate the error back through the network
 - Tune weights

Paramterupdate:

$$\theta_{ij}^{(l)} \coloneqq \theta_{ij}^{(l)} - \alpha \frac{\partial E}{\partial \theta_{ij}^{(l)}}$$

(Remember Gradient Descent)

Number of weights in MLP

L: Number of layer

$$s_l$$
: Number of neuron in layer l

$$\#weights = \sum_{l=1}^{L-1} s_{l+1} * (s_l + 1)$$

Bias-Unit $(x_0,a_0^{(l)})$

Given a MLP with following architecture: [3,4,4,3] Calculate the #weights of the MLP?

$$\#weights = \sum_{l=1}^{L-1} s_{l+1} * (s_l + 1)$$

$$\#weights = (4 * (3 + 1)) + (4 * (4 + 1)) + (3 * (4 + 1))$$

$$\#weights = 16 + 20 + 15 = 51$$

Learning Curves

- x-Axis: Training Step
- y-Axis: Error/Loss

Rate performance of neural net

- High bias / underfitting
- High variance / overfitting

Cross Validation

- Tune your network with test-set performance (e.g. accuracy)
- Attention: Overfitting of test-set is possible
- Try 80% of data as train-set

Cross Validation

- Real Pro's use an additional validation-set
- Prevent overfitting
- Validation-set is a third seperate dataset.
- Try 60% Train, 20% Test, 20% Validation

High Bias / Underfitting

- High Training Error & High Test Error
- Complexity of neural net is too low (Too less weights)
- Add layer or units (neurons in layer)
- If possible: add more features of data

High Bias / Underfitting

- Create polynomial features
 - Add column with x_1^2 , x_2^2 , x_1x_2 , ...
- More trainings-examples will have no significant effect
- Reduce regularization

High Variance / Overfitting

- Neural net has learned the noise of the data
- Lower complexity
- More training examples can help
- Use regularization

Regularization:

- Try to keep the values of the weights small
- λ: Regularization parameter
- L1-Regularization: $E = f(\hat{y}, y) + \frac{\lambda}{m} \sum |\theta|$
- L2-Regularization: $E = f(\hat{y}, y) + \frac{\lambda}{m} \sum \theta^2$

Please scale your data!

Learning Rate Decay (Learning Rate Schedule)

$$\alpha_n = \frac{\alpha}{1 + decay * epoch}$$

Prevent this with learning rate schedule

Drop Based Learning Rate Schedule

e.g. Half the learning rate every 10th epoch

Convolutional Neural Nets (CNN)

Disadvantage of using MLP in image recognition

You can fool them by translating the object

Convolutional Neural Nets (CNN's)

- 2D CNN's assume images as input
- They can learn transformational invariance
- Different architecture than MLP
- Trained with Backpropagation

Architectural elements of a CNN

- Convolutional Layer
- Max-Pooling Layer
- Fully Connected Layer

Convolutional Layer

- Apply image filters
- Feature detectors in combination with activation
- Special parameters:
 - Stride
 - Padding

Activation after convolution

- We will apply an activation function after convolution
- Modern CNN's use ReLu

Max-Pooling Layer

- Dimensionalty reduction
- Pass the greatest value of a field to the next layer

Fully Connected Layer

- Flatten the 2D (in case of image) to 1D layer
- Use fully connected layer up to the output

Sometimes useful: Normalization Layer

Star Recognition

Todays exercise:

- Complete the code to train a CNN
- Real world image classification problem
- Given a face of a person: classify star

Sources:

- cnn.py
- cnn_train.py
- cnn_eval.py
- cnn_predict_cv.py
- download_image_data.py
- write_tfrecord.py
- read_tfrecord.py
- utils.py

How to get image data?

- Execute the steps in the README.md of this project
- Execute download_data.py
- Faces will be extracted through haarcascade detection (OpenCV)
- Already done, if you download the data from the Nextcloud

utils.py (First Step):

- Mainly image processing
- Face Extraction
- Grayscale
- Scaling to quadratic size
- Normalization

Write .tfrecord file (will be extended soon, Second step)

- Execute the write_tfrecord.py script
- Special binary-dataset will be written to disk
- We will directly apply image preprocessing
 - Execute read_tfrecord.py to validate the contents of the .tfrecord file (Third Step)
- Execute read_tfrecord.py to validate the contents of the .tfrecord file

cnn.py – Convolutional Neural Network

- Definition of the architecture
- Loss function
- Definition of training and optimizer
- Script not executable

cnn_train.py - training of the CNN (Fourth Step)

- Executable script
- Tuning of hyperparameters (e.g. learning rate, etc.) possible
- Read .tfrecord file
- Manages the training process

cnn_eval.py (Sixth Step)

- Executeable
- Possibility to validate the model with a test-set cnn_predict.py (Seventh Step)
- Executeable
- Prediction of star with one image

Tasks:

- Image Processing in utils.py
- Write .tfrecord file with write_tfrecord.py
- Validate .tfrecord with read_tfrecord.py
 - Tipp: If you leave out preprocessing (without float conversion and normalization) of image you should see a colored image of the face of a star
- Prepare training of CNN in cnn_train.py
- Evaluate the result with cnn_eval.py
- Classify one image with cnn_predict_cv.py
- Add train, test, validation split functionality

- Data (if not yet downloaded): <u>https://nextcloud.mirevi.medien.hs-</u> <u>duesseldorf.de/index.php/s/kPXwJiac7vTQVeu</u>
- Pretrained Weights: <u>https://nextcloud.mirevi.medien.hs-</u> duesseldorf.de/index.php/s/L6Y6tnD3PpANKmr
- Repository: https://github.com/mati3230/modalg181
- Read: https://www.tensorflow.org/tutorials/deep_cnn