NSIT & IIITDWD @ HASOC 2020:

Deep learning model for hate-speech identification in Indo-European languages

HASOC FIRE 2020

20TH DEC 2020

<u>Presented By :</u>

Shivangi Srivastava - (B. Tech CSE, Netaji Subhas Institute of Technology, Patna, India)

Sunil Saumya - (Asst. Professor, Indian Institute of Information Technology Dharwad, India)

Roushan Raj - (B.Tech CSE, Netaji Subhas Institute of Technology, Patna, India)

Preview

- Objective
- Task Description
- Data Statistics
- Methodology
- Results
- Conclusion & Future Work

<u>Objective</u>

- The low cost, easy accessibility and high effectiveness of social media have changed the way we live.
- But the darker side to this comes with rapid increase in cyberbullying rates and with people spreading hatred & threatening contents.
- Cyberbullying stats 2020 show that 42% of online harassment happens on Instagram which has over a billion active users. Facebook and Snapchat follow closely, with 39% and 31% respectively.
- Its extremely necessary to regulate and monitor such offensive cotent on social media.
- We participated in both subtasks of all three languages (English, Hindi, German).

HASOC 2020 Task Description

Sub-Task A

HOF:- Hate and Offensive

NOT:- Non Hate-Offensive

HATE:- Hate

OFFN:- Offensive

PRFN:-Profane

Data Statistics

	Task-1		Task-2			
Language	HOF	NOT	HATE	OFFN	PRFN	NONE
English	1856	1852	158	321	1377	1852
German	673	1700	146	140	387	1700
Hindi	847	2116	234	465	148	2116

Table-1: Class division of both sub-tasks for Train Dataset

	Task-1		Task-2			
Language	HOF	NOT	HATE	OFFN	PRFN	NONE
English	423	391	25	82	233	414
German	134	392	24	36	88	378
Hindi	197	466	56	87	27	493

Table-2: Class division of both sub-tasks for Test Dataset

Data Statistics for sub-task A

Fig.: Class distribution of sub-task A for training and testing data

Data Statistics for sub-task B

Fig.: Class distribution of sub-task B for training and testing data

Pre-processing Steps

1. Cleaning and Filtering texts:

- convert texts to lowercase.
- removed the redundant texts such as punctuation symbols e.g. !"#\$%&´()*+,./:;<=>?@[/]^{[}.
- removed the retweet symbol (RT) of Twitter data.
- removed URLs.
- removed alphanumeric characters and apostrophes.
- 2. Removing stopwords
- 3. Stemming
- 4. Tokenization and Creating vocabulary
- 5. Encoding
- 6. Pre-Padding

Our Approach for English language

English Sub-Task A

English Sub-Task B

English sub-tasks results

	Sub-task	Model	Embedding	f1 macro-avg
	A	CNN 1 layer	GloVe	0.84
		CNN 2 layer	GloVe	0.86
		BiLSTM 1 layer	GloVe	0.84
		BiLSTM 2 layer	GloVe	0.83
		Hybrid Model	GloVe	0.84
			GloVe, Unbalanced dataset	0.49
	В	CNN 1 layer	GloVe, SMOTE	0.49
			GloVe, ADASYN	0.53
English		CNN 2 layer	GloVe, Unbalanced dataset	0.49
			GloVe, SMOTE	0.51
			GloVe, ADASYN	0.54
		BiLSTM 1 layer	GloVe, Unbalanced dataset	0.48
			GloVe, SMOTE	0.50
			GloVe, ADASYN	0.51
		BiLSTM 2 layer	GloVe, Unbalanced dataset	0.48
			GloVe, SMOTE	0.49
			GloVe, ADASYN	0.51
		Hybrid Model	GloVe, ADASYN	0.51

Our Approach for German language

German Sub-Task A

German Sub-Task B

German sub-tasks results

Sub-task		Model	Embedding	f1 macro-avg
	Α	CNN 1 layer	fastText	0.75
		CNN 2 layer	fastText	0.73
		BiLSTM 1 layer	fastText	0.74
		BiLSTM 2 layer	fastText	0.70
		Hybrid Model	fastText	0.72
	В		fastText, Unbalanced dataset	0.39
		CNN 1 layer	fastText, SMOTE	0.43
			fastText, ADASYN	0.45
German		CNN 2 layer	fastText, Unbalanced dataset	0.39
			fastText, SMOTE	0.40
			fastText, ADASYN	0.43
		BiLSTM 1 layer	fastText, Unbalanced dataset	0.38
			fastText, SMOTE	0.41
			fastText, ADASYN	0.42
		BiLSTM 2 layer	fastText, Unbalanced dataset	0.37
			fastText, SMOTE	0.33
			fastText, ADASYN	0.35
		Hybrid Model	fastText, ADASYN	0.41

Our Approach for Hindi language

Hindi Sub-Task A

Hindi Sub-Task B

Hindi sub-tasks results

	Sub-task	Model	Embedding	f1 macro-avg
	Α	CNN 1 layer	fastText	0.55
		CNN 2 layer	fastText	0.57
		BiLSTM 1 layer	fastText	0.67
		BiLSTM 2 layer	fastText	0.59
		Hybrid Model	fastText	0.53
	В		fastText, Unbalanced dataset	0.23
		CNN 1 layer	fastText, SMOTE	0.35
			fastText, ADASYN	0.36
Hindi		CNN 2 layer	fastText, Unbalanced dataset	0.22
			fastText, SMOTE	0.35
			fastText, ADASYN	0.34
		BiLSTM 1 layer	fastText, Unbalanced dataset	0.29
			fastText, SMOTE	0.33
			fastText, ADASYN	0.35
		BiLSTM 2 layer	fastText, Unbalanced dataset	0.28
			fastText, SMOTE	0.32
			fastText, ADASYN	0.32
		Hybrid Model	fastText, ADASYN	0.34

Hyper-parameters

➤ Epochs - 200

➤ Batch size - 32

Activation function – ReLU, Sigmoid

Optimizer – Adam

 \triangleright Dropout rate -0.2

➤ Pre-padding (max-length) - 100

> Reduce Ir (Patience - 2)

> Earlystopper (Patience - 8)

Result and Observations

Languages	f1 macro-avg in Sub-tasks A/B	Rank in sub-tasks A/B	
Hindi	0.5337 / 0.2667	1 st / 2 nd	
German	0.4919 / 0.2468	18 th / 14 th	
English	0.4879 / 0.2361	32 nd / 16 th	

- □ Ranks and f1 macro-avg score of our best six models are calculated by the organization with approximately 15% of the private test data.
- ☐ Sub-task B achieved a lower f1 macro-avg score than sub-task A irrespective of the language.

 Reasons could be:
 - ✓ The heavily unbalanced dataset.
 - ✓ Miniature differences in the three classes leading to predicting lot more false-positive classes.
 - ✓ Hindi dataset was a code-mixed data with a lot of English words, while the embedding used was only for the Hindi language, which could probably be a reason for the poor performance in sub-task B.

Conclusion & Future Work

- □ We proposed different CNN and BiLSTM architecture developed using word vectors of the relevant pre-trained corpus.
- ☐ Future scope could be improving dataset balancing as sub-task B gave a lower f1 macro-avg score even after applying SMOTE and ADASYN oversampling techniques.
- ☐ Further improvisation could be to tackle the identification of hate speech in multilingual tweets and posts on social media
- ☐ Open source implementation of our best models :

https://github.com/roushan-raj/HASOC-2020

References

- S. Mishra, S. Mishra, 3idiots at hasoc 2019: Fine-tuning transformer neural networks for hate speech identification in indo-european languages., in: FIRE (Working Notes), 2019, pp. 208–213.
- S. Kamble, A. Joshi, Hate speech detection from code-mixed hindi-english tweets using deep learning models, arXiv preprint arXiv:1811.05145 (2018).
- Z. Waseem, Are you a racist or am i seeing things? annotator influence on hate speech detection on twitter, in: Proceedings of the first workshop on NLP and computational social science, 2016, pp. 138–142.
- I. Alfina, R. Mulia, M. I. Fanany, Y. Ekanata, Hate speech detection in the indonesian language: A dataset and preliminary study, in: 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), IEEE, 2017, pp. 233–238.
- S. Kamble, A. Joshi, Hate speech detection from code-mixed hindi-english tweets using deep learning models, arXiv preprint arXiv:1811.05145 (2018).
- S. Hinduja, J. W. Patchin, Connecting adolescent suicide to the severity of bullying and cyberbullying, Journal of school violence 18 (2019) 333–346.

<u>Acknowledgment</u>

Thomas Mandl, University of Hildesheim, Germany

Sandip Modha, DA-IICT & LDRP-ITR, Gandhinagar, India

Gautam Kishore Shahi, University of Duisburg-Essen, Germany

> Amit Kumar Jaiswal, University of Bedfordshire, UK

Durgesh Nandini, University of Bamberg, Germany

Prasenjit majumder, DA-IICT, Gandhinagar, India

Daksh Patel, Dalhousie University, Halifax, Canada

Johannes Schäfer, University of Hildesheim, Germany

Thank You!