Thursday, January 24, 2019 11:16 PM

OSPF P1

OSPF	○ Link-state r-protocol dev as replacement for RIP
	■ RIP: Acceptable in early days: Hop count as only metric: Not good
	■ Hop count: Doesn't scale well; especially w/multiple paths of varying speeds
	○ Faster convergence/scales
	 Classless: Uses concept of areas for scalability

Evolution of OSPF: OSPFv2: IPv4: OSPFv3: IPv6

OSPF	■ Began 1987: IETF OSPF Working Group: 1989: OSPFv1: RFC 1131
	2 implementations:
	1. 1 to run on routers
	2. 1 to run on UNIX workstations: Became UNIX process: GATED
	o 1991: OSPFv2: RFC 1247: John Moy
	■ Improvements: Classless by design: Supports VLSM/CIDR
	o 1998: OSPFv2 updated: RFC 2328: Remains current RFC for OSPF
	o 1999: OSPFv3 for IPv6: RFC 2740
	OSPF for IPv6: John Moy, Rob Coltun, Dennis Ferguson
	o 2008 : OSPFv3 updated: RFC 5340
IS-IS	At same time OSPF introduced:
	 ISO worked on link-state r-protocol: IS-IS
	IETF chose OSPF as recommended IGP

Other Features

Scalable	Works well in small/large network sizes: • Routers can be grouped in areas to support hierarchical sys
Secure	Supports Message Digest 5 (MD5) authentication • Enabled? Only accept encrypted updates from peers w/same pre-shared passwd
AD	Default AD of 110: Preferred over IS-IS/RIP

3 main components of OSPF:

· Data Structures: OSPF creates/maintains 3 db's

Contain list of neighboring routers to exchange r-info w/kept/maintained in RAM

Adjacency DB	Creates neighbor table
Link-state DB	LSDB: Creates topology table
Fwding DB	Creates r-table

2. R-Protocol Msgs: Exchanges msgs to convey r-info using 5 packet types Used to discover neighbor routers/maintain accurate info

1.Hello 2. DB description 3. Link-state request 4. Link-state update 5. Link-state Acknowledgement

- **3. Algorithm:** CPU processes neighbor/topology tables using Dijkstra's SPF alg: Based on cost to reach destination
- · Creates SPF tree by placing each router at root of tree/calc shortest path to each
- OSPF places best routes into fwding db: Used to make r-table

show ospf neighbor List neighbor routers show ospf database View LSDB show ip route

Link-State Operation: To maintain r-info: OSPF routers complete the following for convergence:

• Establish Neighbor Adjacencies:

- 1. Must recognize each other on network before they can share info
- 2. OSPF-enabled sends Hello packets out all OSPF-enabled ints to determine if neighbors present on links
- 3. If neighbor present: Router attempts to establish neighbor adjacency

Exchange Link-State Advertisements:

- 1. After adjacencies established: Exchange LSAs: Link-State Advertisements
- 2. LSAs contain state/cost of each directly connected link
- 3. Routers flood LSAs to adjacent neighbors
- 4. Adjacent neighbors receiving LSA flood it to other directly connected neighbors
- 5. Done until all routers in area have all LSAs

• Build Topology Table:

- 1. After LSAs received: OSPF-enabled routers build topology table: LSDB based on them
- 2. DB holds all info about topology

• Execute SPF Alg:

- 1. Execution of the SPF algorithm: SPF algorithm creates SPF tree
- 2. From SPF tree: Best paths inserted into table: Decisions made on table entries

Single-Area/Multiarea OSPF: To make more efficient/scalable: OSPF supports hierarchical routing using areas

OSPF area: A group of routers that share the same link-state info in LSDBs **OSPF Implemented 1 of 2 ways:**

- 1. Single-Area OSPF: All routers are in 1 area: Backbone area [area 0]
- 2. Multiarea OSPF: Multiple areas in hierarchal fashion. All areas must connect to backbone area [area 0]

ABR: Area Border Routers: All interconnecting areas

- OSPF: Can split an AS: Autonomous Sys into smaller areas: Support for hierarchical routing **Hierarchical routing**: Occurs between areas [interarea]
 - Processor intensive ops kept w/in area
 - Topology changes to other areas in distance vector: Only update tables: Don't need to rerun SPF

Multiarea OSPF advantages:

Smaller Tables	Less table entries b/c addresses can be summarized between areas • Default: Route summarization not enabled
Less LS update overhead	Min processing/mem reqs
Less SPF calcs	Impact of topology change w/in 1 area • Example: Min update impact b/c LSA flooding stops at area boundary

Encapsulating OSPF Messages: Msgs transmitted over eth0 link contain the following info:

Data Link Ethernet Frame Header	ID's destination multicast MAC
IP Packet Header	ID's IPv4 protocol field 89: Indicates OSPF packet • ID's 1 of 2 OSPF multicast addresses 224.0.0.5 224.0.0.6
OSPF Packet Header	ID's OSPF Packet Type/Router ID/Area ID
OSPF Packet Type Specific Data	Contains OSPF packet type info • Content differs depending on packet type

Types of OSPF Packets: OSPF uses link-state packets (LSPs) to establish/maintain neighbor adjacencies/exchange updates

Type 1: Hello	Establishes/maintains adjacency w/other OSPF routers
Type 2: DB Description	 DBD: Contains abbreviated list of sending router's LSDB Used by receiving routers to check against local LSDB LSDB must be identical on all link-state routers w/in area to make SPF tree
Type 3: L-S Request	LSR: Receiving routers: Request more info about any entry in DBD by sending LSR
Type 4: L-S Update	LSU: Used to reply to LSRs/announce new info • LSUs contain 7 diff types of LSAs
Type 5: L-S Acknowledgment	LSAck: When LSU received: Router sends LSAck to confirm receipt • Data field empty • Acknowledges other packet types

Hello Packet: OSPF Type 1

Used to:

1. Discover neighbors/establish adjacencies

2. Advertise on which 2 routers agree to become neighbors

3. Elect DR: Designated Router/BDR: Backup Designated Router on multiaccess networks (Eth0/Frame Relay)

1. Point-to-point links: No DR/BDR

Total to point links. No BR/BBR		
Туре	ID's packet type • 1 = Hello 2 = DBD 3 = LSR 4 = LSU 5 = LSAck	
Router ID	32bit value: Decimal: ID's originating router	
Area ID	Area packet originated	
Network Mask	Subnet mask associated w/sending int	
Hello Interval	Frequency router sends Hello packets [seconds] • Default multiaccess: 10 seconds • Timer must be same on neighbors: Or no adjacency	
Router Priority	Used in DR/BDR election • Default is 1: Can be manually altered 0-255 • Higher value = More chance router becomes DR on link	
Dead Interval	Time to hear neighbor before declaring out of service [seconds] • Default: Dead Interval = 4x Hello interval • Timer must be same on neighbors: Or no adjacency	
DR	Designated Router: Router ID of DR	
BDR	Backup Designated Router: Router ID of BDR	
List of Neighbors	Router IDs of all adjacent routers	

Hello Packet Intervals:

Transmitted to multicast 224.0.0.5 IPv4 | FF02::5 IPv6

- 10 seconds: Default: Multiaccess/Point-to-point
- 30 seconds: Default: Non-broadcast multiaccess: Frame Relay

Dead Interval: If expires before routers receive a Hello packet, OSPF removes neighbor from LSDB

• Router floods LSDB w/info about down neighbor out all OSPF-enabled ints

Cisco uses a default of 4x Hello interval:

- 40 seconds: Default: Multiaccess/Point-to-point
- 120 seconds: Default: NBMA networks: Frame Relay

Link-State Updates	 Type 2 DBD: Initial exchange: Abbreviated list of sending r-LSDB: Receivers check against local LSDB
	2. Type 3 LSR: Used by receivers to request more info about entry in DBD
	3. Type 4 LSU: Used to reply to LSR packet
	1. LSUs also fwd OSPF updates
	2. They can have 11 diff types of OSPFv2 LSAs: OSPFv3 renamed 7 +
	has 2 extras

Difference between LSU/LSA: LSU contains 1/more LSAs | LSA's contain route info for destination networks

OSPF Operational States

When OSPF router initially connects, it attempts to:

Create adjacencies | Exchange r-info | Calc best routes | Reach convergence

Progresses through 7 states while attempting to reach convergence:

1. Down 2. Init 3. Two-Way 4. ExStart 5. Exchange 6. Loading 7. Full state

Establish Neighbor Adjacencies

When OSPF enabled on int: Router must determine if another neighbor on link

- R-fwds Hello packet that contains r-ID out all OSPF-enabled ints
- R-ID used by OSPF process to ID each router in area

Router ID: An IP assigned to ID specific r-among OSPF peers

When neighbor receives Hello packet with r-ID not in its list: Receiving r-attempts to establish adjacency **2-Way state depends on type of inter-connection bet adjacent routers:**

- If 2 adjacent neighbors are interconnected over point-to-point link: They transition from 2-Way to db sync phase
- If interconnected over common Eth0: A DR/BDR must be elected

DR/BDR: Why is DR/BDR election necessary?

Multiaccess networks can create two challenges for OSPF regarding flooding of LSAs:

Creation of multiple	 Eth0 could potentially interconnect many OSPF r-over common
adjacencies	link

	Creating adjacencies w/every router is unnecessary/undesirableWould lead to lots of LSAs between routers on same network
Extensive flooding of LSAs	 Link-state r-flood LSAs any time OSPF initialized/change in topology Can become excessive

Formula: For any # of routers (n) on a multiaccess network, there are n (n - 1) / 2 adjacencies Synchronizing Db's

After 2-Way state: Routers transition to db synchronization states

• The 4 types of packets are used during process of exchanging/synchronizing LSDBs

ExStart	Master/slave relationship created between each router/adjacent DR/BDR • Router with higher r-ID acts as master
Exchange	Master/slave routers exchange 1/more DBD packets DBD packet includes: Info about LSA entry header: Appears in router's LSDB • Entries can be about a link/or network Each LSA entry header includes info about: • Link-state type Address of advertising router Cost Sequence # • Router uses sequence # to determine newness of received link-state info

As long as neighbors continue receiving Hello packets: Transmitted LSAs remain in topology db After topological db's synced: Updates (LSUs) sent to neighbors when:

Change is	perceived	Every 30 min	