

MODELO OCULTO DE MARKOV PARA PREDIÇÃO DE TROPISMO EM HIV-1

GIULIA LEONEL, JÚLIA FERNANDES, LARA RAMPIM, LUCAS MÜLLER, NICOLLI ROSA

I INTRODUÇÃO

O VÍRUS HIV

- Vírus da Imunodeficiência
 Humana
- É um lentivírus que afeta o sistema imunológico
- Síndrome da
 Imunodeficiência Adquirida
 (Aids)
- HIV-1 e HIV-2
- Transmissão

I INTRODUÇÃO

O VÍRUS HIV-1

- Tratamento
- 700 mil mortes por AIDS em 2020
- Diferentes cepas do HIV podem exibir diferentes padrões de tropismo
- Análise do tropismo viral
- Tratamento personalizado
- Perfil de Modelos de Markov Oculto (pHMM)

OBJETIVO

Testar a utilização do método HMM na predição de tropismo

www.nature.com/scientificreports

SCIENTIFIC REPORTS

OPEN HIV-1 tropism prediction by the **XGboost and HMM methods**

Xiang Chen¹, Zhi-Xin Wang¹ & Xian-Ming Pan²

O VÍRUS HIV-1

- Vírus envelopado, membrana derivada do hospedeiro, Env
- Glicoproteína gp160 sintetizada na célula hospedeira
- Proteases da família furina
- gp120 na região externa
- gp41 transmembrana

RECEPTORES E CO-RECEPTORES

- CD4 + gp120
- Exposição do sítio de ligação, envolvendo o loop V3
- CCR5: infecção inicial de macrófagos
- CXCR4: estágio tardio em células T
- Peptídeos de fusão

TROPISMO VIRAL

Suscetibilidade de determinados hospedeiros e tipos de células à infecção por um vírus específico

- Determinado pela interação com receptores e co-receptores
- Principal mecanismo de infecção viral
- Homozigose CCR4-Δ32 = resistência
- Receptores e co-receptores como alvos primários de inibidores (MVC)
- Métodos Fenotípicos e Genotípicos

O PROBLEMA

Análise do tropismo do vírus HIV-1, que se altera de forma muito rápida por conta das recombinações de sequência do vírus

- Determinar a eficácia de tratamentos
- Antecipar a evolução da doença
- Identificar variações que podem desenvolver resistência a determinados medicamentos

PRINCIPAL OBJETIVO

Melhorar a precisão na predição do co-receptor que o HIV-1 utilizará para infectar as células

III DESCRIÇÃO DA ABORDAGEM COMPUTACIONAL

Modelo Oculto de Markov (HMM)

Representa sistemas que possuem estados ocultos, ou seja, estados que não são diretamente observáveis, mas que influenciam estados visíveis

Funções

- Descrever famílias de proteínas
- Alinhamento de sequências
- Reconhecimento de homologia

III DESCRIÇÃO DA ABORDAGEM COMPUTACIONAL

Modelo Oculto de Markov (HMM)

Componentes

- Alfabeto de símbolos
- Número de estados no modelo
- Probabilidades de emissão (probabilidade do símbolo ser emitido)
- Probabilidades de transição (probabilidade de mover de um estado para outro)

Probabilidade de emissão + probabilidade de transição = 1

IV Ferramentas

Extração

Banco de Dados de Los Alamos

- Repositório abrangente de sequências de HIV
- Utilizado para extrair sequências de tropismo R5 e X4, que serão usadas para criar seus respectivos modelos HMM

Sequências de entrada CXCR4 e R5X4

 Utilizadas para demonstrar e validar a efetividade do método HMM em detecção de tropismo

IV Ferramentas

Tratamento

Awk

 Concatenar todas as sequências R5 e X4 em arquivos únicos

ClustalO

- Ferramenta de alinhamento múltiplo de sequências
- Usado para alinhar as sequências de forma que todas as sequências tenham o mesmo comprimento (requisito para montar o perfil HMM)

IV Ferramentas

HMMER

- Pacote utilizado para construir e pesquisar modelos de perfil HMM
- hmmbuild é utilizado para construir modelos de perfil HMM a partir das sequências geradas pelo ClustalO
- hmmsearch é utilizado para procurar sequências que correspondem aos perfis HMM criados

V Resultados

CAMPOS DE INTERESSE

- E-Value indica significância de uma correspondência, quanto mais próximo de zero, mais significativo
- Score representa a qualidade do alinhamento, quanto mais alto melhor alinhamento

```
. .
             aligned_x4 [M=35]
Query:
Scores for complete sequences (score includes all domains):
                          --- best 1 domain ---
   --- full sequence ---
                                                    -#dom-
    E-value score bias
                           E-value score bias
                                                    exp N
                           8.2e-07
    5.3e-07
              23.9
                   3.9
                                     23.3
      8e-07
              23.3
                             9e-07
                                      23.1
                                                    1.2
    1.2e-06
              22.7
                    1.8
                           1.4e-06
                                     22.5
                                                   1.3 1
```

CXCR4 tem maior alinhamento com X4

```
. .
. . .
            aligned_r5 [M=35]
Query:
Scores for complete sequences (score includes all domains):
   --- full sequence --- best 1 domain ---
                                                  -#dom-
    E-value score bias
                           E-value score bias
                                                  exp
             21.0
                           4.3e-06
                                     20.9
                    1.5
   1.4e-05
             19.2
                    0.8
                           1.5e-05
                                     19.2
                                                  1.1 1
                                     18.8
    1.8e-05
             18.9
                    0.7
                           1.9e-05
                                                  1.1 1
```

CXCR4 tem **menor** alinhamento com R5

V Resultados

RESULTADOS DE TROPISMO R5X4

Resultados comparáveis na correspondência com os perfis HMM X4 e R5, indicando tropismo duplo

V Resultados

RESULTADOS DE TROPISMO CXCR4

Maior correspondência com o perfil HMM para X4, indicando tropismo X4

V CONCLUSÃO E IMPACTO

- Identificação bem-sucedida do tropismo das sequências virais por meio do HMMER
- Compreensão da interação viral com receptores celulares CCR5
 e CXCR4 para previsibilidade da prevalência de cepas do HIV-1

- Aprimoramento das técnicas de diagnóstico
- Monitoramento do HIV-1 e da progressão em pacientes
- Adaptação das estratégias de tratamento antirretroviral
- Planejamento de saúde pública

AGRADECEMOS A ATENÇÃO!