

Applied Artificial Intelligence 05 - Al Lifecycle: Concept Drift

Univ.-Prof. Dr-Ing. habil. Niklas Kühl www.niklas.xyz

University of Bayreuth

Karlsruhe Institute of Technology

TUM School of Management

www.uni-bayreuth.de | www.kit.edu | www.tum.de | www.fim-rc.de | www.wirtschaftsinformatik.fraunhofer.de

Repetition

Training vs. deployment

You learned that model training and testing come before operational deployment, involving iterative fine-tuning.

Al autonomy levels

You discovered that AI applications can range from making predictions to offering recommendations and even taking direct actions.

Challenges of ML deployment

You gained insights into dealing with multilingual support, harnessing the power of parallel GPUs, and managing unpredictable costs.

Deployment decisions

You learned to choose between Monolithic and Microservices, and various deployment options, including On-Premise, IaaS, PaaS, FaaS, and SaaS.

Platforms for ML deployment

You explored tools like Amazon SageMaker, Kubernetes, Cloud Foundry, and holistic MLaaS solutions.

Concept of MLOps

You understood that MLOps is a comprehensive paradigm that involves a collaborative team, all working together to streamline the AI deployment process.

Organizational The story of the lecture

Process

Positioning of the "concept drift" within an intelligent agent's architecture

Kühl et al. (2022), Artificial intelligence and machine learning [1]

Objectives

What are the learning goals of this lecture?

Learn about the term concept drift

UNDERSTAND

Understand the importance of continuous monitoring of deployed Al solutions

INTENSIFY

Familiarize with concept drift detection

APPLY

Be able to adapt prediction models

- Theoretical foundations of concept drift & adaption mechanism
- 3 Two examples for concept drift detection algorithms
- 4 Real-world examples for concept drift handling

How to keep machine learning (microservices) correct?

Image source DALL-E

Data streams may change in various application domains

Machine learning Changing context/concept of data Result Sentiment prediction: Different communication pattern on Twitter (e.g. doubling of characters) Prediction of prices: Policy changes in electricity markets Prediction of downtimes: Change of machine parameters in industrial context

Image source https://unsplash.com, free licence

Ongoing validity of machine learning models can be ensured with model adaptations

Constant monitoring

... of data stream with dedicated change detection module (e.g. based on statistical properties)

Change detection

system decides whether model adaptation or retraining is necessary

Adaptation: Machine learning model is slightly adapted based on the new data

Retraining: Machine learning model is completely retrained from scratch

Ongoing validity of machine learning models can be ensured with model adaptations

Constant monitoring

... of data stream with dedicated change detection module (e.g. based on statistical properties)

Change detection

system decides whether model adaptation or retraining is necessary

Adaptation: Machine learning model is slightly adapted based on the new data

Retraining: Machine learning model is completely retrained from scratch

- 1 Introduction
- Theoretical foundations of concept drift & adaption mechanism
- 3 Two examples for concept drift detection algorithms
- 4 Real-world examples for concept drift handling

Theoretical foundations of concept drift & adaption mechanism Concept drift describes the phenomenon of changing data in computer science

Definition of concept:

$$Concept = P(X, y)$$

Problem: In the real world, concepts are not stable but change with time

Definition of **concept drift** between two time points:

$$P_{t0}(X,y) \neq P_{t1}(X,y)$$

Closely related to **streaming data** with time stamps (e.g., social media data) Learning algorithm has access to data with time stamps prior to t, but needs to be applied to data elements with subsequent time stamps

Source: Webb et al. (2016), Characterizing Concept Drift

Theoretical foundations of concept drift & adaption mechanism Different types of concept drift exists

Original data

Real concept drift

changes in P(y|X), P(X) might stay constant or not

Virtual drift

P(X) changes without affecting P(y|X)

Source: Gama et al. (2014), A survey on concept drift adaptation

Theoretical foundations of concept drift & adaption mechanism

Example: News classification

Theoretical foundations of concept drift & adaption mechanism Data changes over time in various ways

Sudden changes

Exchange of a

sensor in IOT

setting

Sensor that is slowly degrading, becomes less accurate

Slow changes

Gradual change

User behavior, user interested in finance, later in sports, but keeps looking back at finance

Reoccurring concepts

Seasonal pattern for sales forecasting

Outliers

Difficulties to not misclassify outliers as concept drift; Otherwise, danger of false adaptation

Source: Zliobaite (2010), Learning under Concept Drift

Theoretical foundations of concept drift & adaption mechanism Challenges for deployed machine learning services in concept drift environments

Source: Gama et al. (2014), A survey on concept drift adaptation Tsymbal (2004), The problem of concept drift: definitions and related work

Theoretical foundations of concept drift & adaption mechanism

Recap: Supervised learning

Source: Bifet et al. (2010), Handling Concept Drift

Theoretical foundations of concept drift & adaption mechanism

Recap: Supervised learning

Source: Bifet et al. (2010), Handling Concept Drift

Theoretical foundations of concept drift & adaption mechanism We have to consider the machine learning model in a data stream / online setting

Theoretical foundations of concept drift & adaption mechanism Different adaptive learning strategies are available

Source: Zliobaite (2010), Learning under Concept Drift

Theoretical foundations of concept drift & adaption mechanism Different adaptive learning strategies are available

Theoretical foundations of concept drift & adaption mechanism A fixed training window ensures forgetting

Theoretical foundations of concept drift & adaption mechanism

A fixed training window ensures forgetting

Theoretical foundations of concept drift & adaption mechanism Different adaptive learning strategies are available

Theoretical foundations of concept drift & adaption mechanism Detection of change leads to deletion of old data

Theoretical foundations of concept drift & adaption mechanism Different adaptive learning strategies are available

Theoretical foundations of concept drift & adaption mechanism Dynamic ensembles consider several ML models in parallel

Theoretical foundations of concept drift & adaption mechanism Dynamic ensembles consider several ML models in parallel

Punishment: Weight decrease

True label: + Classifier 1 Reward: Weight increase Prediction: + Classifier 2 Reward: Weight increase Meta-model or voting Classifier 3 Punishment: Weight decrease

Classifier 4

Theoretical foundations of concept drift & adaption mechanism Different adaptive learning strategies are available

Theoretical foundations of concept drift & adaption mechanism Contextual approaches start by identifying the group affiliation of a new data instance

Train

Partition the training data into several groups and build separate models for each group

Predict

New instance is assigned to one group and corresponding model is applied

Use case

Especially suited for reoccurring concepts (e.g. seasonal pattern in sales forecasts)

Theoretical foundations of concept drift & adaption mechanism Different adaptive learning strategies are available

Source: Zliobaite (2010), Learning under Concept Drift

- 1 Introduction
- Theoretical foundations of concept drift & adaption mechanism
- 3 Two examples for concept drift detection algorithms
- 4 Real-world examples for concept drift handling

Two examples for concept drift detection algorithms Wide variety of change detection / adaptation approaches available

Informed methods (Detector-based methods)

Explicit change detection

Change detection usually works on prediction error:

- Sequential Analysis: *Page-Hinkley*
- Monitoring two distributions: ADWIN

Blind methods

(Forgetting-based methods)

Model which adapt incrementally or are frequently retrained

- Incremental weight decrease for older observations
- CVFDT (Concept-adapting very fast decision trees)

Two examples for concept drift detection algorithms Informed methods can be distribution- or error rate-based methods

Data distribution-based drift detection Error rate-based drift detection Quantify dissimilarity between Detect changes by considering the error Goal distribution of old data and new data with rate of the underlying machine learning distance function model Concept Time Next! ADWIN, Page-Hinkley-Test Example Possible distances: Kullback-Leibler divergence or Kolmogorow-Smirnow Algorithms In practice Consistency checks for input data (mean, Next! Often manual supervision of prediction quality and impact on KPIs variance) Disadvantage Computationally intensive Requires true labels for drift detection

Two examples for concept drift detection algorithms Cost functions evaluate jumps in distribution characteristics

Data distribution-based drift detection

Concept

Cost functions - a simple example

- Change point detection uses a sliding window with a cost function to identify changes in the signal
- Standard deviation can detect changes in mean, rising when the signal jumps.
- Change points are detected via (a) comparison to a fixed threshold or (b) comparing a second sliding windows

(a) Change points are marked if costs exceed a threshold in std.

(b) change point can be detected by comparing the costs of these two windows

Source: Gama et al. (2014), A Survey on Concept Drift Adaptation [1] https://www.iese.fraunhofer.de/blog/change-point-detection/

Two examples for concept drift detection algorithms Adaptive Sliding Window (ADWIN) compares sliding windows

Adaptive Sliding Window (ADWIN) Algorithm

- Uses a detection window *W* which iteratively adapts
- Whenever two large (sub)windows of W exhibit distinct enough means, algorithm drops older elements
- Threshold ε_{cut} defined by Hoeffding bound

Error rate-based drift detection

Bifet, Albert, and Ricard Gavalda. "Learning from time-changing data with adaptive windowing." SIAM 2007.

Two examples for concept drift detection algorithms Adaptive Sliding Window (ADWIN) compares sliding windows

Two examples for concept drift detection algorithms Adaptive Sliding Window (ADWIN) compares sliding windows

How does ADWIN behave in the case of slow change?

- 1 Introduction
- Theoretical foundations of concept drift & adaption mechanism
- 3 Two examples for concept drift detection algorithms
- 4 Real-world examples for concept drift handling

Real-world examples for concept drift handling Various threats exists for validity of machine learning microservices

Trigger

Explanation

Development vs Deployment

- During development, models are often trained with well-defined and curated data sets
- In deployment, data input shows great variance
- Example: Outliers in input data during deployment

Environment of the service

- Change in the environment of the service with corresponding data changes
- Influence on prediction quality
- Example: Sensor of a production machine wears out

Application of the service

- Application of service affects prediction quality
- Examples:
 - Continuous predictive policing service
 - Changing user behavior due to machine learning services (different click stream)

Real-world examples for concept drift handling Studies on concept drift have been performed in various domains

Monitoring & control Real time monitoring Time-stamped data Typically fast concept drift Sudden or gradual concept drift Monitoring for Management: Monitoring output quality in chemical production Marketing: Automated control: Soccer playing robots

• Anomaly detection: Network

intrusion detection

Analytics & diagnostics Information management

- Time-stamped data
- Slower concept drift (e.g. population drift)
- Personal assistance: News categorization, spam filtering
- customer segmentation for cars, recommender systems
- Management: Archiving of documents

- Forecasting: Macroeconomic forecasts
- Medicine: Antibiotic resistance
- Security: Biometric authentication

Source: Zliobaite et al. (2016), An Overview of Concept Drift Applications

Real-world examples for concept drift handling Exemplary drifts in NYC taxi demand

Time series examples with sudden drift:

Demand for groceries

Source: Baier, Hofmann, Kühl, Mohr, Satzger (2020), Handling Concept Drifts in Regression Problems - the Error Intersection Approach

Real-world examples for concept drift handling Exemplary drifts in NYC taxi demand

Real-world examples for concept drift handling Switch between models to handling concept drift

Error Intersection Approach: Switch to simple model in case of sudden drift and use complex model for ordinary days

Data stream (past taxi demand)

Simple model (M_{simple})

Complex model (M_{complex})

Switch between models

Simple model (M_{simple})

Simple model needs to quickly adapt to changing circumstances

Random walk model:

$$\hat{y}_{s,t,r} = y_{t-1,r}$$

s: simple, r: region

Complex model (M_{complex})

Switching mechanism

$$Err_{M,t,r} = |\hat{y}_{M,t,r} - y_{t,r}|$$

$$EWMA_{M,t,r} = \begin{cases} & Err_{M,1,r}, & t = 1 \\ \alpha * Err_{M,t,r} + (1 - \alpha) * EWMA_{M,t-1,r}, & t > 1 \end{cases}$$

$$\alpha = \frac{2}{N+1}, \quad N = 6$$

$$E_{M,t} = \frac{1}{R} \sum_{r=1}^{R} EWMA_{M,t,r}$$

$$M \in \{s(imple), c(complex)\}$$

$$choose \ \operatorname{argmin}(E_{s,t-1}, E_{c,t-1})$$

$$s,c$$

Source: Baier, Hofmann, Kühl, Mohr, Satzger (2020), Handling Concept Drifts in Regression Problems - the Error Intersection Approach

r: region, N: parameter

Real-world examples for concept drift handling EIA performs well with unusual demand patterns

Date	Abs. RMSE improvement	Rel. RMSE improvement	# Predictions by M _{simple}	Probable Drift Cause
2012-07-04	5.07	3.96%	14/24	4 th of July
2012-10-29	24.41	31.02%	22/24	Hurricane Sandy
2012-12-25	9.22	12.61%	17/24	Christmas Day
2013-08-01	9.35	8.61%	10/24	? (unknown)
2016-01-23	66.61	61.14%	16/24	Blizzard
2017-06-25	5.48	10.12%	10/24	? (unknown)
2018-03-21	15.21	17.43%	14/24	Cyclone (Nor'easter)

Table: Excerpt of days with frequent use of M_{simple}

- We also find evidence for days where we cannot explain the drift cause
- Influencing factors are easy to identify from hindsight and might not be obvious in real time

Summary

Constant Monitoring

A constant monitoring of deployed machine learning solutions is crucial for ensuring their proper functionality / validity over time

Application domain

Concept drift is a phenomenon which can be observed in nearly all application domains

Implementation

The change detection and adaptation options are manifold and different choices must be made during the implementation

Use-case specific

Real-world solutions for machine learning services usually need to be tailored to the specific use case