1. Proof of theorem on counting

We do induction on the number of columns of the nilpotent orbits \mathcal{O} . In this section, we let $\star \in \{B, D, C^*\}$. Now $\star' = \widetilde{C}, C, D^*$ respectively.

We assume all the claim had been proven when \mathcal{O} has at most two columns, that is

- When $\star = D$, $\mathbf{r}_3(\check{\mathcal{O}}) = 0$;
- When $\star = B$, $\mathbf{r}_2(\check{\mathcal{O}}) = 0$;
- When $\star = C^*$, $\mathbf{r}_2(\check{\mathcal{O}}) = 0$.

Proposition 1.1. We have:

- i) For each $\tau' \in PBP_{\star'}^{ext}(\check{\mathcal{O}}'), \mathcal{L}_{\tau'} \neq 0.$
- ii) For each $\tau \in PBP^{ext}_{\star}(\check{\mathcal{O}}), \ \mathcal{L}_{\tau} \neq 0.$
- iii) Let τ'_1, τ'_2 be two distinct elements in $PBP^{ext}_{\star'}(\check{\mathcal{O}}')$. Then either
 - $\mathcal{L}_{\tau_1'} \neq \mathcal{L}_{\tau_2'}$; or
 - $(\tau_1'', \varepsilon_1') \neq (\tau_2'', \varepsilon_2')$ and $\operatorname{Sign}(\tau_1'') = \operatorname{Sign}(\tau_2'')$ where $(\tau_i'', \varepsilon_i') := \nabla(\tau_i')$ for i = 1, 2.
- iv) Let τ_1, τ_2 be two distinct elements in PBP $^{\rm ext}_{\star}(\check{\mathcal{O}})$. Then either
 - $\mathcal{L}_{\tau_1} \neq \mathcal{L}_{\tau_2}$; or
 - $\tau'_1 \neq \tau'_2$ and $\varepsilon_1 = \varepsilon_2$ where $(\tau'_i, \varepsilon_i) := \nabla(\tau_i)$ for i = 1, 2.
- v) When $\star \in \{B, D\}$ The local system \mathcal{L}_{τ} is disjoint with their determinant twist:

$$\{\mathcal{L}_{\tau} \mid \tau \in \mathrm{PBP}^{\mathrm{ext}}_{\star}(\check{\mathcal{O}})\} \cap \{\mathcal{L}_{\tau} \otimes \det \mid \tau \in \mathrm{PBP}^{\mathrm{ext}}_{\star}(\check{\mathcal{O}})\} = \varnothing.$$

- vi) We have
 - (i) If $x_{\tau} = s$, then $\mathcal{L}_{\tau}^{+} = \mathcal{L}_{\tau}^{-} = 0$.
 - (ii) If $x_{\tau} \in \{r, c\}$, then $\mathcal{L}_{\tau}^{+} \neq 0$ and $\mathcal{L}_{\tau}^{-} = 0$.
 - (iii) If $x_{\tau} = d$, then $\mathcal{L}_{\tau}^{+} \neq 0$ and $\mathcal{L}_{\tau}^{-} \neq 0$.
- vii) When O' is noticed, the map $\mathcal{L}: DRC(O') \longrightarrow {}^{\ell}LS(O')$ is a bijection.
- viii) When \mathcal{O} is noticed, the map $\mathcal{L} \colon \mathrm{DRC}(\mathcal{O}) \longrightarrow {}^{\ell} \mathrm{LS}(\mathcal{O})$ is a bijection.
- ix) When \mathcal{O} is +noticed, the maps

$$\Upsilon_{\mathcal{O}}^{+} \colon \left\{ \mathcal{L}_{\tau} \mid \mathcal{L}_{\tau}^{+} \neq 0 \right\} \longrightarrow \left\{ \mathcal{L}_{\tau}^{+} \right\}$$

$$\mathcal{L}_{\tau} \longmapsto \mathcal{L}_{\tau}^{+} \qquad and$$

$$\Upsilon_{\mathcal{O}}^{-} \colon \left\{ \mathcal{L}_{\tau} \mid \mathcal{L}_{\tau}^{-} \neq 0 \right\} \longrightarrow \left\{ \mathcal{L}_{\tau}^{-} \right\}$$

$$\mathcal{L}_{\tau} \longmapsto \mathcal{L}_{\tau}^{-}$$

are injective.

x) When \mathcal{O} is noticed, the map

(1.2)
$$\Upsilon_{\mathcal{O}} \colon \left\{ \mathcal{L}_{\tau} \mid \mathcal{L}_{\tau}^{+} \neq 0 \right\} \longrightarrow \left\{ \left(\mathcal{L}_{\tau}^{+}, \mathcal{L}_{\tau}^{-} \right) \mid \mathcal{L}_{\tau}^{+} \neq 0 \right\} \\ \mathcal{L}_{\tau} \longmapsto \left(\mathcal{L}_{\tau}^{+}, \mathcal{L}_{\tau}^{-} \right)$$

is injective.¹

1.1. The initial case: When k = 0, $\mathcal{O} = (C_1 = 2c_1, C_0 = 2c_0)$ has at most two columns. Now $\pi_{\tau'}$ is the trivial representation of $\operatorname{Sp}(2c_0, \mathbb{R})$. The lift $\pi_{\tau'} \mapsto \bar{\Theta}(\pi_{\tau'})$ is in fact a stable range theta lift. For $\tau \in \operatorname{DRC}(\mathcal{O})$, let $(p_1, q_1) = \operatorname{Sign}(\mathbf{x}_{\tau})$ and x_{τ} be the foot of τ . It is easy to see that (using associated character formula)

$$\mathcal{L}_{\pi_{\tau}} = \mathcal{T}_{\tau} \cdot \mathcal{P}_{\tau}, \text{ where } \mathcal{T}_{\tau} := \dagger \dagger_{c_0, c_0}, \text{ and } \mathcal{P}_{\tau} := \begin{cases} \ddagger_{p_1, q_1} & x_{\tau} \neq d, \\ \dagger_{p_1, q_1} & x_{\tau} = d. \end{cases}$$

¹In fact, we only need to know whether \mathcal{L}_{τ}^{-} is non-zero or not.

Note that $\mathcal{L}_{\pi_{\tau}}$ is irreducible.

Let $\mathcal{O}_1 = (2(c_1 - c_0)) \in \text{Nil}^{\text{dpe}}(D)$. Using the above formula, one can check that the following maps are bijections

To see that $DRC(\mathcal{O}) \ni \tau \mapsto \mathcal{L}_{\tau}$ is an injection, one check the following lemma holds:

Lemma 1.2. The map $DRC(\mathcal{O}_1) \longrightarrow \mathbb{N}^2 \times \mathbb{Z}/2\mathbb{Z}$ given by $\tau \mapsto (\operatorname{Sign}(\tau), \epsilon_{\tau})$ is injective (see ?? for the definition of ϵ_{τ}). Moreover, $\epsilon_{\tau} = 0$ only if $\operatorname{Sign}(\tau) \geq (0, 1)$.

Moreover, $\mathcal{L}_{\tau} \otimes \det \notin {}^{\ell}LS(\mathcal{O})$ for any $\tau \in DRC(\mathcal{O})$. In fact, if $Sign(\mathbf{x}_{\tau}) \geq (1,0)$, \mathcal{L}_{τ} on the 1-rows with +-signs is trivial and $\mathcal{L}_{\tau} \otimes \det$ has non-trivial restriction. When $Sign(\mathbf{x}_{\tau}) \geq (1,0)$, $\mathbf{x}_{\tau} = s \cdots s$, all 1-rows of \mathcal{L}_{τ} are marked by "=" and all 1-rows of $\mathcal{L}_{\tau} \otimes \det$ are marked by "-".

Therefore our main \ref{main} and main proposition \ref{main} holds for \mathcal{O} .

Let $C_i = \mathbf{c}_i(\mathcal{O})$ for $i = 1, 2, \cdots$.

- 1.2. The descent case. Now we assume $(2,3) \in PP_{\star}(\check{\mathcal{O}})$.
- 1.2.1. We first calculate the local system attached to $\check{\mathcal{O}}'$.

Let $\tau' \in PBP_{\star'}^{ext}(\check{\mathcal{O}}')$.

For
$$\mathcal{L}'' \in AOD(\mathcal{O}'')$$
, let $(p_1, q_1) = {}^{l}Sign(\mathcal{L}'')$ and $(p_2, q_2) = (C_2 - q_1, C_2 - p_1)$. Then $\vartheta(\mathcal{L}'') = (\mathbf{X}^{g} \dagger \mathcal{L}'') \cdot \dagger_{(n_0, n_0)}$

where y is an integer determined by $\operatorname{Sign}(\tau'')$ and $n_0 = (C_2 - C_3)/2$.

Therefore, $LS(\mathcal{O}'') \longrightarrow LS(\mathcal{O}')$ given by $\mathcal{L} \mapsto \vartheta(\mathcal{L})$ is an injection between abelian groups.

By (1.1), we have a injection

(1.3)
$${}^{\ell}LS(\mathcal{O}'') \times \mathbb{Z}/2\mathbb{Z} \longrightarrow {}^{\ell}LS(\mathcal{O}')$$

$$(\mathcal{L}'', \epsilon') \longmapsto \vartheta(\mathcal{L}'' \otimes \det^{\epsilon'}).$$

In particular, we have $\mathcal{L}_{\tau'} \neq 0$ for every $\tau' \in DRC(\mathcal{O}')$.

Now suppose $\tau'_1 \neq \tau'_2$. Suppose $\mathcal{L}_{\tau'_1} = \mathcal{L}_{\tau'_2}$. By (1.3),

$$\varepsilon_{\tau_1'} = \varepsilon_{\tau_2'}$$

and $\mathcal{L}_{\tau_1''} = \mathcal{L}_{\tau_2''}$. In particular, we have $\operatorname{Sign}(\tau_1'') = \operatorname{Sign}(\mathcal{L}_{\tau_1''}) = \operatorname{Sign}(\mathcal{L}_{\tau_2''}) = \operatorname{Sign}(\tau_1'')$. We now claim that $\tau_1'' \neq \tau_2''$. It suffice to consider the case where $\wp_{\tau_1''} = \wp_{\tau_2''}$. Then $\wp_{\tau_1'} = \wp_{\tau_2'}$ by (1.4) and so $\tau_1' \neq \tau_2'$. By ??, $\tau_1'' \neq \tau_2''$ and this proves the claim.

Now suppose $\tau_1' \neq \tau_2' \in DRC(\mathcal{O}')$ and $\mathcal{L}_{\tau_1'} = \mathcal{L}_{\tau_2'}$. By (1.3), $\varepsilon_1' = \varepsilon_2'$ and $\mathcal{L}_{\tau_1''} = \mathcal{L}_{\tau_2''}$. In particular, τ_1'' and τ_2'' have the same signature. By ?? and the induction hypothesis, $\tau_1'' \neq \tau_2''$ and so $\pi_{\tau_1''} \otimes \det^{\varepsilon_1'} \neq \pi_{\tau_2''} \otimes \det^{\varepsilon_2'}$. Now the injectivity of theta lifting yields

$$\pi_{\tau_2'} = \bar{\Theta}(\pi_{\tau_1''} \otimes \det^{\varepsilon_1'}) \neq \bar{\Theta}(\pi_{\tau_2''} \otimes \det^{\varepsilon_2'}) = \pi_{\tau_2'}$$

Suppose \mathcal{O}' is noticed. Then $\mathcal{O}'' = \overline{\nabla}(\mathcal{O}')$ is noticed by definition and $(\tau'', \varepsilon') \mapsto \operatorname{Ch}(\pi_{\tau''} \otimes \det^{\varepsilon'})$ is an injection into $\operatorname{LS}(\mathcal{O}'')$. Now (1.3) implies $\tau' \mapsto \mathcal{L}_{\tau'}$ is also an injection.

Suppose \mathcal{O}' is quasi-distingushed. Then $\mathcal{O}'' = \overline{\nabla}(\mathcal{O}')$ is quasi-distingushed by definition and $(\tau'', \epsilon') \mapsto \operatorname{Ch}(\pi_{\tau''} \otimes \operatorname{det}^{\epsilon'})$ is a bijection with $\operatorname{LS}^{\operatorname{aod}}(\mathcal{O}'')$. Since the component group of each K-nilpotent orbit in \mathcal{O}' is naturally isomorphic to the component group of its descent. So we deduce that $\tau' \mapsto \mathcal{L}_{\tau'}$ is a bijection onto $\operatorname{LS}^{\operatorname{aod}}(\mathcal{O}')$.

This proves the main proposition for \mathcal{O}' .

1.2.2. Now we consider the local system attached to \mathcal{O} . Let $\tau \in PBP^{ext}_{\star}(\mathcal{O})$. By the signature formula (??)

(1.5)
$$\operatorname{AC}(\tau) = \left(\left(\mathbf{K}^{y'} (\operatorname{AC}(\tau'') \otimes (\det)^{\varepsilon_{\tau'}}) \cdot 1_{(n_0, n_0)} \right) \cdot 1_{\operatorname{Sign}(\tau_{\mathbf{t}})} \right) \otimes (1^{+, -})^{\varepsilon_{\tau}} \\ = \left(\mathbf{K}^{y''} \mathcal{L}_{\tau'} \otimes (1^{+, -})^{\varepsilon_{\tau'}} \right) \cdot \mathcal{L}_{(\tau_{\mathbf{t}}, \emptyset)}$$

where $y' = (p_{\tau} - q_{\tau} - p_{\tau''} + q_{\tau''})/2$ and y'' is determined by Sign (τ) .

Now suppose $\tau_1 \neq \tau_2 \in \mathrm{PBP}^{\mathrm{ext}}_{\star}(\check{\mathcal{O}})$ and $\mathcal{L}_{\tau_1} = \mathcal{L}_{\tau_2}$. By (1.5), By (1.5), we have $\mathcal{L}_{\tau_1\mathbf{t}} = \mathcal{L}_{\tau_2\mathbf{t}}$ and . Therefore $\tau_{1\mathbf{t}} = \tau_{2\mathbf{t}}$, $\varepsilon_{\tau_1} = \varepsilon_{\tau_2}$ and $\mathcal{L}_{\tau_1'} = \mathcal{L}_{\tau_2'}$. Thanks to ??, $\tau'_1 \neq \tau'_2$.

The claims in ?? vi) follows from (1.5) and the initial case for τ_t .

- 1.2.3. Note that \mathcal{L}_{τ} is obtained from $\mathcal{L}_{\tau'}$ by attaching the peduncle determined by \mathbf{x}_{τ} . The claims about noticed and quasi-distinguished orbit are easy to verify. We leave them to the reader.
- 1.3. The general descent case. We assume $\mathbf{r}_2(\check{\mathcal{O}}) = \mathbf{r}_3(\check{\mathcal{O}}) > 0$. Note that in this case, $\star \in \{B, D\}.$
- 1.3.1. We now describe the local systems $\mathcal{L}_{\tau'}$.

(1.6)
$$\mathcal{L}_{\tau'} = \vartheta(\mathcal{L}_{\tau''}) = \maltese^{\frac{|\operatorname{Sign}(\tau'')|}{2}} (\dagger \mathcal{L}_{\tau''}^+ + \dagger \mathcal{L}_{\tau''}^-) \neq 0$$
 where ${}^{l}\operatorname{Sign}(\dagger \mathcal{L}_{\tau''}^+) = (q_1'', p_1'' - 1)$ and ${}^{l}\operatorname{Sign}(\dagger \mathcal{L}_{\tau''}^-) = (q_1'' - 1, p_1'')$ (if $\dagger \mathcal{L}_{\tau''}^- \neq 0$).

1.3.2. Local systems. We now describe the local systems $\mathcal{L}_{\tau'}$ and \mathcal{L}_{τ} more precisely using our formula of the associated character and the induction hypothesis. Note that these local systems are always non-zero which implies that $\pi_{\tau'}$ and π_{τ} are unipotent representations attached to \mathcal{O}' and \mathcal{O} respectively.

First note that in τ' and τ'' , $x_{\tau''} \neq s$ by the definition of dot-r-c diagram. ² By the induction hypothesis, $\mathcal{L}_{\tau''}^+ \neq 0$.

Let
$$(p_1'', q_1'') := {}^l \operatorname{Sign}(\mathcal{L}_{\tau''})$$
. Then

(1.7)
$${}^{l}\operatorname{Sign}(\mathcal{L}_{\tau''}^{+}) = (p_0 - 1, q_0), \text{ and } {}^{l}\operatorname{Sign}(\mathcal{L}_{\tau''}^{-}) = (p_0, q_0 - 1) \text{ if } \mathcal{L}_{\tau''}^{-} \neq \varnothing.$$

(1.8)
$$\mathcal{L}_{\tau'} = \vartheta(\mathcal{L}_{\tau''}) = \maltese^{\frac{|\operatorname{Sign}(\tau'')|}{2}} (\dagger \mathcal{L}_{\tau''}^+ + \dagger \mathcal{L}_{\tau''}^-) \neq 0$$

where ${}^{l}\operatorname{Sign}(\dagger \mathcal{L}_{\tau''}^{+}) = (q_{1}'', p_{1}'' - 1)$ and ${}^{l}\operatorname{Sign}(\dagger \mathcal{L}_{\tau''}^{-}) = (q_{1}'' - 1, p_{1}'')$ (if $\dagger \mathcal{L}_{\tau''}^{-} \neq 0$). Let $(p_{1}, q_{1}) := {}^{l}\operatorname{Sign}(\mathcal{L}_{\tau})$ and $(e, f) := (p_{1} - p_{1}'' + 1, q_{1} - q_{1}'' + 1)$. Using ?? one can show that

$$(e, f) = \operatorname{Sign}(\mathbf{u}_{\tau}).$$

It suffice to consider the most left three columns of the peduncle part: this part has signature ${}^{l}\operatorname{Sign}(\mathcal{P}_{\tau}) + (1,1) = \operatorname{Sign}(\mathbf{u}_{\tau}x_{\tau''}) = \operatorname{Sign}(\mathbf{u}_{\tau}) + {}^{l}\operatorname{Sign}(\mathcal{D}_{\tau''})$. Therfore,

$$\operatorname{Sign}(\mathbf{u}_{\tau}) = {}^{l}\operatorname{Sign}(\mathcal{P}_{\tau}) - {}^{l}\operatorname{Sign}(\mathcal{D}_{\tau''}) + (1,1) = {}^{l}\operatorname{Sign}(\mathcal{L}_{\tau}) - {}^{l}\operatorname{Sign}(\mathcal{L}_{\tau''}) + (1,1).$$

Now

$$(1.9) \qquad \mathcal{L}_{\tau} = \begin{cases} (\mathbf{1}^{+,-} \otimes \dagger \mathbf{X}^{t} \dagger \mathcal{L}_{\tau''}^{+}) \cdot \mathcal{P}_{\tau}^{+} + (\mathbf{1}^{+,-} \otimes \dagger \mathbf{X}^{t} \dagger \mathcal{L}_{\tau''}^{-}) \cdot \mathcal{P}_{\tau}^{-} & \text{if } x_{\tau} \neq d \\ (\dagger \mathbf{X}^{t} \dagger \mathcal{L}_{\tau''}^{+}) \cdot \mathcal{P}_{\tau}^{+} + (\dagger \mathbf{X}^{t} \dagger \mathcal{L}_{\tau''}^{-}) \cdot \mathcal{P}_{\tau}^{-} & \text{if } x_{\tau} = d \end{cases}$$

²Suppose $\tau'' \in DRC(\mathcal{O}'')$ has the shape in (??) and $x_{\tau''} = s$. By the induction hypothesis, $\mathcal{L}_{\tau''}^+ = s$ $\mathcal{L}_{\tau''}^- = 0$ and so the theta lift of $\pi_{\tau''}$ vanishes.

where

$$t = \frac{|\operatorname{Sign}(\tau) - \operatorname{Sign}(\tau'')|}{2} = \frac{|\operatorname{Sign}(\mathbf{u}_{\tau})|}{2}$$

$$\mathcal{P}_{\tau}^{+} = \begin{cases} \ddagger_{e,f-1} & \text{when } f \geqslant 1 \text{ and } x_{\tau} \neq d \\ \dagger_{e,f-1} & \text{when } f \geqslant 1 \text{ and } x_{\tau} = d \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{P}_{\tau}^{-} = \begin{cases} \ddagger_{e-1,f} & \text{when } e \geqslant 1 \text{ and } x_{\tau} \neq d \\ \dagger_{e-1,f} & \text{when } e \geqslant 1 \text{ and } x_{\tau} = d \text{ .} \\ 0 & \text{otherwise} \end{cases}$$

Lemma 1.3. The local system $\mathcal{L}_{\tau} \neq 0$.

Proof. Since $x_{\tau''} \neq s$, $\mathcal{L}_{\tau''}^+ \neq 0$. When $\operatorname{Sign}(\mathbf{u}_{\tau}) \geq (0,1)$, the first term in (1.9) dose not vanish. Now suppose $\operatorname{Sign}(\mathbf{u}_{\tau}) \neq (0,1)$. We have $x_{\tau''} = d$ by ?? and $\operatorname{Sign}(\mathbf{u}_{\tau}) > (1,0)$. Therefore, $\mathcal{L}_{\tau''}^- \neq 0$ by the induction hypothesis and the second term in (1.9) dose not vanish. Hence $\mathcal{L}_{\tau} \neq 0$ in all cases.

Lemma 1.4. The local system \mathcal{L}_{τ} satisfies the following properties:

- (i) When $x_{\tau} = s$, then $\mathcal{L}_{\tau}^{+} = \mathcal{L}_{\tau}^{-} = 0$.
- (ii) When $x_{\tau} = r/c$, then $\mathcal{L}_{\tau}^{+} \neq 0$ and $\mathcal{L}_{\tau}^{-} = 0$.
- (iii) When $x_{\tau} = d$, then $\mathcal{L}_{\tau}^{+} \neq 0$ and $\mathcal{L}_{\tau}^{-} \neq 0$.

Proof. If $x_{\tau} = s/r/c$, "—" mark dose not appear as a 1-row in \mathcal{L}_{τ} by (1.9). So $\mathcal{L}_{\tau}^{-} = 0$ in these cases.

- (i) Suppose $x_{\tau} = s$. We have $\mathbf{u}_{\tau} = s \cdots s$. Therefore, only the first term in (1.9) is non-zero and \mathcal{P}_{τ}^+ consists of = marks. Hence $\mathcal{L}_{\tau}^+ = 0$.
- (ii) Suppose $x_{\tau} = r$. If $\operatorname{Sign}(\mathbf{u}_{\tau}) > (1,1)$, the first term in (1.9) is non-zero and $\mathcal{L}_{\tau}^{+} > \dagger_{(1,0)}$. So $\mathcal{L}_{\tau}^{+} \neq 0$. Now suppose $\operatorname{Sign}(\mathbf{u}_{\tau}) \neq (1,1)$. Then $\mathbf{u}_{\tau} = r \cdots r$ and $x_{\tau''} = d$ by ??. Now the second term of (1.9) is non-zero and $\mathcal{L}_{\tau}^{-} > \dagger_{(1,0)}$. So $\mathcal{L}_{\tau}^{+} \neq 0$.
- (iii) Suppose $x_{\tau} = d$. Suppose $\operatorname{Sign}(\mathbf{u}_{\tau}) > (1,2)$. Then the first term in (1.9) is non-zero and $\mathcal{P}_{\tau}^{+} > \dagger_{(1,1)}$. So $\mathcal{L}_{\tau}^{+} \neq 0$ and $\mathcal{L}_{\tau}^{-} \neq 0$. Now suppose $\operatorname{Sign}(\mathbf{u}_{\tau}) \not > (1,2)$. Then $\mathbf{u}_{\tau} = r \cdots rd^{3}$ and $x_{\tau''} = d$ by ??. So the both terms in (1.9) are non-zero. Since $\mathcal{P}_{\tau}^{+} > \dagger_{(1,0)}$ and $\mathcal{P}_{\tau}^{-} > \dagger_{(0,1)}$, we get the conclusion.

1.3.3. Unipotent representations attached to \mathcal{O}' . In this section, we let $\tau' \in \mathrm{DRC}(\mathcal{O}')$ and $\tau'' = \overline{\nabla}_1(\tau') \in \mathrm{DRC}(\mathcal{O}'')$. First note that $x_{\tau''} \neq s$ and so $\mathcal{L}_{\tau''}^+$ always non-zero. Recall (1.8). We claim that we can recover $\mathcal{L}_{\tau''}^+$ and $\mathcal{L}_{\tau''}^-$ from $\mathcal{L}_{\tau'}$:

Lemma 1.5. The map $\Omega_{\mathcal{O}'} \colon \mathcal{L}_{\tau'} \mapsto (\mathcal{L}_{\tau''}^+, \mathcal{L}_{\tau''}^-)$ is a well defined map.

Proof. When ${}^{l}\operatorname{Sign}(\mathcal{L}_{\tau'})$ has two elements, $x_{\tau''} = d$ and ${}^{l}\operatorname{Sign}(\mathcal{L}_{\tau'}) = \{ (q_{1}'', p_{1}'' - 1), (q_{1}'' - 1, p_{1}'') \}$. In (1.8), $\dagger \mathcal{L}_{\tau''}^{+}$ (resp. $\dagger \mathcal{L}_{\tau''}^{-}$) consists of components whose first column has signature $(q_{1}'', p_{1}'' - 1)$ (resp. $(q_{1}'' - 1, p_{1}'')$). When ${}^{l}\operatorname{Sign}(\mathcal{L}_{\tau'})$ has only one elements, $x_{\tau} = r/c$, ${}^{l}\operatorname{Sign}(\mathcal{L}_{\tau'}) = \{ (q_{1}'', p_{1}'' - 1) \}$, $\mathcal{L}_{\tau'} = \dagger \mathcal{L}_{\tau''}^{+}$ and $\mathcal{L}_{\tau''}^{-} = 0$ In any case, we get

(1.10)
$$\operatorname{Sign}(\tau'') = (n_0, n_0) + (p_1'', q_1'') \quad \text{where } 2n_0 = |\nabla(\mathcal{O}'')|.$$

Using the signature $\mathrm{Sign}(\tau'')$, we could recover the twisting characters in the theta lifting of local system. Therefore $\mathcal{L}_{\tau''}^+$ and $\mathcal{L}_{\tau''}^-$ can be recovered from $\mathcal{L}_{\tau'}$.

 $^{{}^{3}\}mathbf{u}_{\tau} = d$ if it has length 1.

Lemma 1.6. Suppose $\tau'_1 \neq \tau'_2 \in DRC(\mathcal{O}')$. Then $\pi_{\tau'_1} \neq \pi_{\tau'_2}$.

Proof. It suffice to consider the case when $\mathcal{L}_{\tau'_1} = \mathcal{L}_{\tau'_2}$. By (1.10) in the proof of Lemma 1.5, $\operatorname{Sign}(\tau''_1) = \operatorname{Sign}(\tau''_2)$. On the other hand, $\epsilon_1 = \epsilon_2 = 0$ and $\tau''_1 \neq \tau''_2$ by ??. So

$$\pi_{ au_1'} = ar{\Theta}(\pi_{ au_1''})
eq ar{\Theta}(\pi_{ au_2''}) = \pi_{ au_2'}$$

by the injectivity of theta lift.

1.3.4. Unipotent representations attached to \mathcal{O} .

Lemma 1.7. Suppose $\tau_1 \neq \tau_2 \in DRC(\mathcal{O})$. Then $\pi_{\tau_1} \neq \pi_{\tau_2}$.

Proof. It suffice to consider the case that $\mathcal{L}_{\tau_1} = \mathcal{L}_{\tau_2}$. Clearly, $\operatorname{Sign}(\tau_1) = \operatorname{Sign}(\tau_2)$. On the other hand, the twisting $\epsilon_{\tau_1} = \epsilon_{\tau_2}$ since it is determined by the local system: $\epsilon_{\tau_i} = 0$ if and only if $\mathcal{L}_{\tau_i} \supset \boxed{}$.

We conclude that $\tau_1'' \neq \tau_2''$ and $\tau_1' \neq \tau_2'$ by ?? and ??. By Lemma 1.6 and the injectivity of theta lift,

$$\pi_{\tau_1} = \bar{\Theta}(\pi_{\tau_1'}) \otimes (\mathbf{1}^{+,-})^{\varepsilon_{\tau_1}} \neq \bar{\Theta}(\pi_{\tau_2'}) \otimes (\mathbf{1}^{+,-})^{\varepsilon_{\tau_2}} = \pi_{\tau_2}$$

1.3.5. *Noticed orbits*. In this section, we prove the claims about noticed and +noticed orbits.

Lemma 1.8. Suppose \mathcal{O}' is noticed. Then

- (i) The map $\{\mathcal{L}_{\tau''} \mid x_{\tau''} \neq s\} \longrightarrow \{\mathcal{L}_{\tau'}\} = {}^{\ell}\mathrm{LS}(\mathcal{O}')$ given by $\mathcal{L}_{\tau''} \mapsto \mathcal{L}_{\tau'} = \vartheta(\mathcal{L}_{\tau''})$ is a bijection.
 - (ii) The map $DRC(\mathcal{O}') \to {}^{\ell}LS(\mathcal{O}')$ given by $\tau' \mapsto \mathcal{L}_{\tau'}$ is a bijection.

Proof. (i) Note that \mathcal{O}'' is noticed by definition. Hence $\Upsilon_{\mathcal{O}''}$ is invertible. Recall Lemma 1.5, we see that

$$(\Upsilon_{\mathcal{O}''})^{-1} \circ \Omega_{\mathcal{O}'} \colon \mathcal{L}_{\tau'} \mapsto (\mathcal{L}_{\tau''}^+, \mathcal{L}_{\tau''}^-) \mapsto \mathcal{L}_{\tau''}$$

gives the inverse of the map in the claim.

(ii) Suppose $\tau'_1 \neq \tau'_2 \in DRC(\mathcal{O}')$. By ??, $\tau''_1 \neq \tau''_2$. Hence $\mathcal{L}_{\tau''_1} \neq \mathcal{L}_{\tau''_2}$ by the induction hypothesis. Therefore, $\mathcal{L}_{\tau'_1} \neq \mathcal{L}_{\tau'_2}$ by (i) of the claim.

Lemma 1.9. Suppose \mathcal{O} is noticed, \mathcal{L} : DRC(\mathcal{O}) \mapsto ℓ LS(\mathcal{O}) given by $\tau \mapsto \mathcal{L}_{\tau}$ is bijective. Proof. We prove the claim by contradiction. We assume $\tau_1 \neq \tau_2$ such that $\mathcal{L}_{\tau_1} = \mathcal{L}_{\tau_2}$. Recall (1.9): there is an pair of non-negative integers $(e_i, f_i) = \text{Sign}(\mathbf{u}_{\tau_i})$ such that

$$\mathcal{L}_{\tau_i} = \dagger \dagger \mathcal{L}_{\tau_i''}^+ \cdot \mathcal{P}_{\tau_i}^+ + \dagger \dagger \mathcal{L}_{\tau''}^- \cdot \mathcal{P}_{\tau_i}^-.$$

- (i) Suppose that \mathcal{L}_{τ_i} contains a 1-row marked by or =. Then we have $\varepsilon_{\tau_1} = \varepsilon_{\tau_2}$, which can be read from the mark -/=. Moreover, the term $\dagger \dagger \mathcal{L}_{\tau_i''}^+ \cdot \mathcal{P}_{\tau_i}^+ \neq 0$ and we can recover it from \mathcal{L}_{τ_i} . So $\mathcal{L}_{\tau_1''}^+ = \mathcal{L}_{\tau_2''}^+$. Since \mathcal{O}'' is +noticed, $\tau_1'' = \tau_2''$ by (1.11) and the induction hypothesis. Note that $\operatorname{Sign}(\tau_1) = \operatorname{Sign}(\tau_2)$, we get $\tau_1 = \tau_2$ by ?? which is contradict to our assumption.
- (ii) Now we assume that \mathcal{L}_{τ_i} does not contains a 1-row marked by -/=. By (1.9), we conclude that $x_{\tau''} \neq d$ and $\mathbf{u}_{\tau} = r \cdots r$ or $r \cdots rc$. Therefore \mathbf{p}_{τ_i} must be one of the following form by ??:

$$\mathbf{p}_1 = \begin{bmatrix} r & c \\ \vdots \\ r \\ r \end{bmatrix}, \quad \mathbf{p}_2 = \begin{bmatrix} r & c \\ \vdots \\ r \\ c \end{bmatrix}, \quad \text{and} \quad \mathbf{p}_3 = \begin{bmatrix} r & d \\ \vdots \\ r \\ r \end{bmatrix}$$

We consider case by case according to the set $\{\mathbf{p}_{\tau_1}, \mathbf{p}_{\tau_2}\}$:

- (a) Suppose $\{\mathbf{p}_{\tau_1}, \mathbf{p}_{\tau_2}\} = \{\mathbf{p}_1\}$ or $\{\mathbf{p}_2\}$. In these cases, $\epsilon_{\tau_1} = \epsilon_{\tau_2}$ and $\tau_1'' \neq \tau_2''$ by ??. On the other hand, $\mathcal{L}_{\tau_1''}^+ = \mathcal{L}_{\tau_2''}^+$ by (1.9). Since \mathcal{O}'' is +noticed, we get $\tau_1'' = \tau_2''$ a contradiction.
- (b) Suppose $\{\mathbf{p}_{\tau_1}, \mathbf{p}_{\tau_2}\} = \{\mathbf{p}_3\}$. We still have $\boldsymbol{\varepsilon}_{\tau_1} = \boldsymbol{\varepsilon}_{\tau_2}$ and $\boldsymbol{\tau}_1'' \neq \boldsymbol{\tau}_2''$ by ??. On the other hand, $\mathcal{L}_{\tau_1''}^- = \mathcal{L}_{\tau_2''}^-$ by (1.9). This again contradict to the injectivity of $\mathcal{L}_{\tau''} \mapsto \mathcal{L}_{-''}^-$.
- (c) Suppose $\{\mathbf{p}_{\tau_1}, \mathbf{p}_{\tau_2}\} = \{\mathbf{p}_1, \mathbf{p}_2\}$. By the argument above, we have $\mathcal{L}_{\tau_1''}^+ = \mathcal{L}_{\tau_2''}^+$ Now $\tau_1'' \neq \tau_2''$ since $\{x_{\tau_1''}, x_{\tau_2''}\} = \{r, c\}$. This contradict to that \mathcal{O}'' is +noticed again.
- (d) Suppose $\mathbf{p}_{\tau_1} = \mathbf{p}_1$ or $\mathbf{p}_2, \mathbf{p}_{\tau_2} = \mathbf{p}_3$. Then

$$\mathcal{L}_{\tau_1} = \dagger \boldsymbol{\Psi}^{\frac{|u_{\tau_1}|}{2}} \dagger \mathcal{L}_{\tau_1''}^+ \cdot \mathcal{P}_{\tau_1''}^+ \quad \text{and} \quad \mathcal{L}_{\tau_2} = \dagger \boldsymbol{\Psi}^{\frac{|u_{\tau_2}|}{2}} \dagger \mathcal{L}_{\tau_2''}^- \cdot \mathcal{P}_{\tau_2''}^-.$$

This implies $|\operatorname{Sign}(\tau_1'')| \equiv |\operatorname{Sign}(\tau_2'')| + 2 \pmod{4}$ and $\maltese\dagger \mathcal{L}_{\tau_1''}^+ = \dagger \mathcal{L}_{\tau_2''}^-$.

Claim 1.10. We have $\mathcal{L}_{\tau_2''}^- \supset [+]$.

Proof. If \mathcal{O}'' is obtained by the usual descent, we have $\mathcal{L}_{\tau} \geq \frac{\square}{+}$ and we are done. Now assume \mathcal{O}'' is obtained by generalized descent and \mathcal{O}'' is +noticed, i.e. $\mathbf{u}_{\tau''}$ has at least length 2. Suppose Sign($\mathbf{u}_{\tau''}$) > (1,2). Applying (1.9) to τ'' , we see that the first term is non-zero and $\mathcal{L}_{\tau''} \supseteq \dagger_{(1,1)}$.

Otherwise, $\operatorname{Sign}(\mathbf{u}_{\tau''}) = (2n_0 - 1, 1) \geq (3, 1)$ where n_0 is the length of $\mathbf{u}_{\tau''}$. By (1.9), the second term is non-zero and $\mathcal{L}_{\tau''} > \dagger_{(2n_0 - 1, 1)} > +$. \square The claim leads to a contradiction: Thanks to the character twist in the theta lifting formula of the local system, we see that the the associated character restricted on the 2-row $\square +$ of $\maltese \dagger \mathcal{L}_{\tau''_1}^+$ and $\dagger \mathcal{L}_{\tau''_2}^-$ must be are different, a contradiction.

We finished the proof of the lemma.

1.3.6. The maps $\Upsilon_{\mathcal{O}}^+$, $\Upsilon_{\mathcal{O}}^-$ and $\Upsilon_{\mathcal{O}}$.

Lemma 1.11. Suppose \mathcal{O} is +noticed. The map $\Upsilon_{\mathcal{O}}^+\colon \{\mathcal{L}_{\tau}\mid \mathcal{L}_{\tau}^+\neq 0\} \to \{\mathcal{L}_{\tau}^+\neq 0\}$ is injective.

Proof. We have two cases:

- (i) \mathcal{L}_{τ} contain an irreducible component $> \frac{+}{+}$. This is equivalent to \mathcal{L}_{τ}^{+} has an irreducible component > +. Now all irreducible components of $\mathcal{L}_{\tau} > +$ and $\mathcal{L}_{\tau} \mapsto \mathcal{L}_{\tau}^{+}$ will not kill any irreducible components. Hence we could recover \mathcal{L}_{τ} from \mathcal{L}_{τ}^{+} .
 - (ii) Suppose that $\mathcal{L}_{\tau_1} \neq \mathcal{L}_{\tau_2}$ do not contain a component $> \frac{|+|}{|+|}$.

By Lemma 1.9 $\tau_1 \neq \tau_2$.⁴ We now show that $\mathcal{L}_{\tau_1}^+ = \mathcal{L}_{\tau_2}^+ \neq 0$ leads to a contradiction. Clearly, Sign (τ_1) = Sign (τ_2) . By (1.9) and checking the properties in ??, we have

$$\mathbf{p}_{\tau_i} = \frac{\begin{vmatrix} s & x_{\tau''} \\ \vdots \\ s \\ x_{\tau_i} \end{vmatrix}}{\text{where } x_{\tau''_i} = c/d, x_{\tau_i} = c/d.$$

On the other hand, when \mathbf{p}_{τ_i} have the above form, the first term of (1.9) is non-zero. So we conclude that $\mathcal{L}_{\tau_1}^+ = \mathcal{L}_{\tau_2}^+$ implies

(1.11)
$$\mathcal{L}_{\tau_1''}^+ = \mathcal{L}_{\tau_2''}^+.$$

 $^{{}^4\}mathcal{L}_{\tau_1} \neq \mathcal{L}_{\tau_2}$ clearly implies $\tau_1 \neq \tau_2$.

Moreover, we see that every components of \mathcal{L}_{τ_i} has a 1-row of mark "-/=" and we can determine ϵ_{τ_i} by the mark -/= of the 1-row appeared in $\mathcal{L}_{\tau_i}^+$. In particular, we have $\epsilon_1 = \epsilon_2$. Now ?? implies $\tau_1'' \neq \tau_2''$. This is contradict to (1.11) and our induction hypothesis since \mathcal{O}'' is also +noticed.

Lemma 1.12. Suppose \mathcal{O} is noticed. Then the map $\Upsilon_{\mathcal{O}} \colon \mathcal{L}_{\tau} \mapsto (\mathcal{L}_{\tau}^+, \mathcal{L}_{\tau}^-)$ is injective.

Proof. It suffice to consider the case where \mathcal{O} is noticed but not +noticed, i.e. $C_{2k+1} = C_{2k} + 1$. In this case, n = 1. The peduncle \mathbf{p}_{τ} have four possible cases:

$$[r \mid c], \quad [c \mid c], \quad [c \mid d], \quad \text{Or} \quad [d \mid d].$$

By (1.9), $\mathcal{L}_{\tau}^{+} = \dagger \dagger \mathcal{L}_{\tau''}^{+}$.

Now suppose $\tau_1 \neq \tau_2$ such that $\mathcal{L}_{\tau_1}^+ = \mathcal{L}_{\tau_2}^+$. Since \mathcal{O}'' is +noticed, we have $\tau_1'' = \tau_2''$ by the induction hypothesis (see Lemma 1.11). By ??, this only happens when $\{\mathbf{p}_{\tau_1}, \mathbf{p}_{\tau_2}\} = \{ \boxed{c \ d}, \boxed{d \ d} \}$. Since one of $\mathcal{L}_{\tau_i}^-$ is zero and the other is non-zero, we conclude that $\Upsilon_{\mathcal{O}}(\mathcal{L}_{\tau_1}) \neq \Upsilon_{\mathcal{O}}(\mathcal{L}_{\tau_2})$.

Lemma 1.13. Suppose \mathcal{O} is +noticed. The map $\Upsilon_{\mathcal{O}}^-\colon \{\mathcal{L}_{\tau} \mid \mathcal{L}_{\tau}^- \neq 0\} \to \{\mathcal{L}_{\tau}^- \neq 0\}$ is injective.

Proof. The proof is similar to that of Lemma 1.11. We have two cases:

- (i) \mathcal{L}_{τ} contain an irreducible component $> \boxed{-}$. This is equivalent to \mathcal{L}_{τ}^- has an irreducible component $> \boxed{-}$ and $\mathcal{L}_{\tau} \mapsto \mathcal{L}_{\tau}^-$ will not kill any irreducible components. Hence we could recover \mathcal{L}_{τ} from \mathcal{L}_{τ}^- .
- (ii) Now we make a weaker assumption that $\tau_1 \neq \tau_2 \in \mathrm{DRC}(\mathcal{O})$ such that \mathcal{L}_{τ_1} and \mathcal{L}_{τ_2} do not contain a component $> \begin{bmatrix} -\\ \end{bmatrix}$.

By (1.9) and the properties in ??, we see that \mathbf{p}_{τ_i} must be one of the following

$$\mathbf{p}_1 = \begin{bmatrix} r & c \\ \vdots \\ r \\ d \end{bmatrix}$$
 or $\mathbf{p}_2 = \begin{bmatrix} r & d \\ \vdots \\ r \\ d \end{bmatrix}$.

Without of loss of generality, we have the following possibilities:

- (a) $\mathbf{p}_{\tau_1} = \mathbf{p}_{\tau_2} = \mathbf{p}_1$. We have $\mathcal{L}_{\tau_1''}^+ = \mathcal{L}_{\tau_2''}^+$ and obtain the contradiction.
- (b) $\mathbf{p}_{\tau_1} = \mathbf{p}_{\tau_2} = \mathbf{p}_2$. We have $\mathcal{L}_{\tau_1''}^{-1} = \mathcal{L}_{\tau_2''}^{-2}$ and obtain the contradiction.
- (c) $\mathbf{p}_{\tau_1} = \mathbf{p}_1$ and $\mathbf{p}_{\tau_2} = \mathbf{p}_2$. Now we apply the same argument in the case (d) of the proof of Lemma 1.9. We get $\mathbf{H}^{\dagger}\mathcal{L}_{\tau_1''}^+ = \dagger \mathcal{L}_{\tau_2''}^-$, $\mathcal{L}_{\tau_2''}^- \supset +$ and a contradiction by looking at the associated character on the 2-row $\boxed{-}$ |+ $\boxed{-}$.

This finished the proof.

The Department of Mathematics, 310 Malott Hall, Cornell University, Ithaca, New York 14853

Email address: dmb14@cornell.edu

School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

 $Email\ address: {\tt hoxide@sjtu.edu.cn}$

Institute for Advanced Study in Mathematics, Zhejiang University, Hangzhou, 310058, China

 $Email\ address: {\tt sunbinyong@zju.edu.cn}$

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076

 $Email\ address: {\tt matzhucb@nus.edu.sg}$