

SYNC or Swim

A Particle Model of the Interaction within Fish Schools

David Ebert and Mikaela Jordan

Tarleton State University

May 4th, 2017

Motivation

Our model represents each fish adhering to the following three rules:

Our model represents each fish adhering to the following three rules:

Alignment

Our model represents each fish adhering to the following three rules:

- Alignment
- Cohesion

Our model represents each fish adhering to the following three rules:

- Alignment
- Cohesion

Separation

• Lagrangian Algorithm

$$F_{i_N} = \sum_{j=1}^{N} \left(\tag{1} \right)$$

$$F_{i_N} = \sum_{j=1}^N \left(W_a \left(C_a \frac{p_j - p_i}{d^2} \right) \right)$$
 (1)

$$F_{i_N} = \sum_{j=1}^{N} \left(W_a \left(C_a \frac{p_j - p_i}{d^2} - C_r \frac{p_j - p_i}{d^4} \right) \right)$$
 (1)

$$F_{i_N} = \sum_{j=1}^{N} \left(W_a \left(C_a \frac{p_j - p_i}{d^2} - C_r \frac{p_j - p_i}{d^4} \right) + W_d \left(\frac{v_j}{||p_i - p_j||} \right) \right)$$
 (1)

Simulations

