科学计算中的量子算法: 线性方程组的量子算法 1

安冬

北京大学北京国际数学研究中心(BICMR)

andong@bicmr.pku.edu.cn

24-25 学年第 2 学期

大纲

- ► HHL 算法
- ▶ 推广 HHL 算法

量子线性方程组问题

经典: \Diamond A 是一个 N 乘 N 的厄米矩阵, b 是一个 N 维向量, 求

$$x = A^{-1}b$$

▶ 非厄米情况: 考虑 $\begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ x \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$

量子:制备一个量子态,以不超过 ϵ 的误差逼近

$$|x\rangle = \frac{A^{-1}|b\rangle}{\|A^{-1}|b\rangle\|}$$

▶ 假设 ||A|| = 1, 并且我们已知 A 的 (1, a, 0)-block-encoding 和 b 的态制备 oracle

参数: 维数 N, 误差 ϵ , 条件数 $\kappa = ||A|| ||A^{-1}||$

Harrow-Hassidim-Lloyd (HHL)¹

HHL: 首个量子线性方程组算法

核心思路: 记 A 的特征值和特征向量为 $(\lambda_j,|v_j\rangle)$, 右端项 $|b\rangle=\sum_{j=0}^{N-1}\beta_j|v_j\rangle$

$$A^{-1} \ket{b} = \left(\sum_{j=0}^{N-1} \lambda_j^{-1} \ket{v_j} \bra{v_j} \right) \left(\sum_{j=0}^{N-1} \beta_j \ket{v_j} \right) = \sum_{j=0}^{N-1} \frac{\beta_j}{\lambda_j} \ket{v_j}$$

核心步骤:

- ▶ "并行" 计算 λ_j 的信息
- ightharpoonup "并行"在 $|v_j\rangle$ 前乘以 λ_j^{-1}

¹Harrow-Hassidim-Lloyd [arXiv:0811.3171]

HHL

核心步骤:

- ▶ "并行" 计算 λ_i 的信息
- ▶ "并行"在 $|v_j\rangle$ 前乘以 λ_i^{-1}

子程序:

- ▶ 哈密顿量模拟: U = e^{iA}
- ▶ 量子相位估计 (QPE):

$$U_{\mathsf{QPE}}\ket{0}\ket{v_j} = \ket{\lambda_j}\ket{v_j}$$

(暂时假设 A 的特征值有 d 位二进制表示)

▶ 控制旋转:

$$U_{\mathsf{CR}} \ket{0} \ket{\theta} = \left(\frac{\mathsf{C}}{\theta} \ket{0} + \sqrt{1 - |\mathsf{C}/\theta|^2} \ket{1} \right) \ket{\theta}$$

HHL 算法

▶ 测量前输出:

$$C|0\rangle |0^d\rangle A^{-1}|b\rangle + |\perp\rangle$$

ightharpoonup $C \sim 1/\kappa$

HHL 误差分析

误差来源:哈密顿量模拟,QPE

$$egin{aligned} U_{\mathsf{QPE}} \ket{0}\ket{v_j} &= \ket{\widetilde{\lambda}_j}\ket{v_j}, & \ket{\widetilde{\lambda}_j} - \lambda_j \ket{\leq \epsilon'} \ket{\lambda_j} \ U_{\mathsf{HHL}} \ket{0}\ket{b} &= \ket{0}\sum rac{Ceta_j}{\widetilde{\lambda}_i}\ket{v_j} + \ket{\perp} \end{aligned}$$

记
$$\widetilde{\mathbf{x}}\coloneqq\sumrac{Ceta_j}{\widetilde{\lambda}_i}\ket{v_j},\mathbf{x}\coloneqq\sumrac{Ceta_j}{\lambda_i}\ket{v_j}=\mathit{CA}^{-1}\ket{b}$$
,并记误差 $\widetilde{\lambda}_j=\lambda_j(1+e_j)$,

$$\|\widetilde{x} - x\| = C \left\| \sum \beta_j \left(\frac{1}{\widetilde{\lambda}_j} - \frac{1}{\lambda_j} \right) |v_j\rangle \right\| = C \left\| \sum \frac{\beta_j}{\lambda_j} \frac{-e_j}{1 + e_j} |v_j\rangle \right\| \le 2\epsilon' \|x\|$$

$$\| |\widetilde{x}\rangle - |x\rangle \| \le \frac{2\|\widetilde{x} - x\|}{\|x\|} \le 4\epsilon'$$

可以取 $\epsilon' \epsilon/4$,但注意 ϵ' 是 QPE 中的相对误差,因此绝对误差可以取为 $\mathcal{O}(\epsilon/\kappa)$

HHL 复杂度分析

单次 HHL 运算: 需要 QPE 达到 $\mathcal{O}(\epsilon/\kappa)$ 的精度

▶ QPE 中关于 $U = e^{iA}$ 的访问复杂度: $\mathcal{O}(\kappa/\epsilon)$

▶ 总的关于 A 的访问复杂度: $\mathcal{O}((\kappa/\epsilon)\log(\kappa/\epsilon)) = \widetilde{\mathcal{O}}(\kappa/\epsilon)$

重复次数: 注意到 $U_{HHL} |0\rangle |b\rangle = |0\rangle ||\widetilde{x}|| |\widetilde{x}\rangle + |\bot\rangle$,

$$p_0 = \|\widetilde{\mathbf{x}}\|^2 \ge (\|\mathbf{x}\| - \|\widetilde{\mathbf{x}} - \mathbf{x}\|)^2 \ge \|\mathbf{x}\|^2 (1 - 2\epsilon')^2 \ge \frac{1}{4} C^2 \|\mathbf{A}^{-1} \|\mathbf{b}\|^2 \sim \frac{\|\mathbf{A}^{-1} \|\mathbf{b}\|^2}{\kappa^2} \ge \frac{1}{\kappa^2}$$

总复杂度:

	A 的访问复杂度	b⟩ 的访问复杂度	线路深度
无振幅放大	$\widetilde{\mathcal{O}}(\kappa^3/\epsilon)$	$\mathcal{O}(\kappa^2)$	$\widetilde{\mathcal{O}}(\kappa/\epsilon)$
有振幅放大	$\widetilde{\mathcal{O}}(\kappa^2/\epsilon)$	$\mathcal{O}(\kappa)$	$\widetilde{\mathcal{O}}(\kappa^2/\epsilon)$

HHL 小结

总访问复杂度: $\widetilde{\mathcal{O}}(\kappa^2/\epsilon)$

- ightharpoonup 实际复杂度与具体问题有关: $\widetilde{\mathcal{O}}(\kappa^2/(\epsilon\|\mathbf{A}^{-1}\|\mathbf{b}\|))$
- ▶ 与经典算法的比较:多项式级别更差的 κ 依赖,指数级别更差的 ϵ 依赖,或许指数级别更好的 N 的依赖(取决于输入模型的构造)
- ▶ 输出仍为量子态
- ▶ 下界: 关于 A 为 $\Omega(\kappa \log(1/\epsilon))$, 关于 $|b\rangle$ 为 $\Omega(\kappa)$
- ▶ 通过修改控制旋转,可以求广义逆的问题

厄米矩阵的矩阵值函数

令 $f(x):[-1,1]\mapsto[-1,1]$, A 为一个厄米矩阵且具有谱分解 $A=V\Lambda V^{\dagger}$,其中 V 是特征向量基, $\Lambda=\mathrm{diag}\{\lambda_0,\cdots,\lambda_{N-1}\}$ 包含特征值

矩阵函数: 通过特征值变换来定义

$$f(A) := Vf(\Lambda) V^{\dagger}$$

- ▶ 与矩阵多项式的线性代数定义相一致
- ▶ 线性方程组: f(x) = C/x, $|x| \in [1/\kappa, 1]$

目标: 制备一个量子态,以不超过 ϵ 的误差逼近 $f(A)|b\rangle/||f(A)|b\rangle||$

推广 HHL 算法

控制旋转修改为:

$$U_{\mathsf{CR}} \ket{0} \ket{\theta} = \left(f(\theta) \ket{0} + \sqrt{1 - |f(\theta)|^2} \ket{1} \right) \ket{\theta}$$

线路输出(测量前):

$$|0\rangle |0^{d}\rangle f(A) |b\rangle + |\bot\rangle$$

复杂度: 取决于具体的 f, 但关于 ϵ 仍为 $\mathcal{O}(1/\epsilon)$ (原因: QPE)

阅读

阅读:

LL: Chapter 4.3