ML Assignment 1

Question.1

1.1.A

1.1.BRMSE after getting the optimal parameters for training set:

Fold 1: 2.8001345177966335 Fold 2: 3.2810170944896013 Fold 3: 3.055790521800698 Fold 4: 3.2036032361116593 Fold 5: 3.17923904917155 RMSE after getting the optimal parameters for validation set:

Fold 1: 2.0585627949208027 Fold 2: 1.1460196002055758 Fold 3: 1.6554692341633384 Fold 4: 1.3473531103475564 Fold 5: 1.403877903028291

1.1.C

RMSE of the training set from Part A: 3.439031199776404 RMSE of the training set from Part B: 3.1039568838740283

RMSE of the validation set from Part A: 1.708249505765918 RMSE of the validation set from Part B: 1.5222565285331127

After getting the optimal parameters from normal equation we can see that the RMSE value for both validation and test set decreases as compared to linear regression without optimal parameters. Therefore using the normal equation for finding theta is a good method in this case.

1.2.A

Regularisation Parameter for Ridge Regression: 4
RMSE on Test set for Ridge Regression= 1.0572313559730855

1.2.B

Regularisation Parameter for Lasso Regression: 0.001 RMSE on Test set for Lasso Regression= 0.8091992466374807

1.3.BRegularisation Parameter for Ridge Regression: 4

1.3.CRegularisation Parameter for Lasso Regression: 0.001

On using regression without regularisation, minimum RMSE= 0.02955844 On using regression Ridge regularisation, minimum RMSE= 0.04765235 On using regression Lasso regularisation, minimum RMSE= 0.05349572

Ridge regularisation performed better than Lasso and overall without using any regularisation performed the best. Although, the visually three of them are almost alike.

Question. 2

2.1.1

Hyperparameter for Lasso Regularisation: 0.0004887332907777671

Accuracy with Lasso Regularisation on Tain set: 75.9749678809731

Accuracy with Lasso Regularisation on Validation set: 75.7791777188329

Accuracy with Lasso Regularisation on Test set: 76.39285477123315

2.1.2

Hyperparameter for Ridge Regularisation: 0.1

Accuracy with Ridge Regularisation on Tain set: 75.9749678809731
Accuracy with Ridge Regularisation on Validation set: 75.7791777188329
Accuracy with Lasso Regularisation on Test set: 76.39285477123315

Accuracy without Regularisation: 76.2402088772846

2.2.1

Accuracy of 0 in Training set for L1: 97.06229951038326 Accuracy of 0 in Testing set for L1: 98.26530612244898

Accuracy of 1 in Training set for L1: 97.30050430139424 Accuracy of 1 in Testing set for L1: 97.97356828193833

Accuracy of 2 in Training set for L1: 90.1477005706613
Accuracy of 2 in Testing set for L1: 88.95348837209302

Accuracy of 3 in Training set for L1: 90.57250040776383 Accuracy of 3 in Testing set for L1: 90.99009900990099

Accuracy of 4 in Training set for L1: 93.7521396781924 Accuracy of 4 in Testing set for L1: 93.48268839103869

Accuracy of 5 in Training set for L1: 86.69987087253274 Accuracy of 5 in Testing set for L1: 85.08968609865471

Accuracy of 6 in Training set for L1: 96.04596147347077 Accuracy of 6 in Testing set for L1: 95.09394572025052

Accuracy of 7 in Training set for L1: 93.3439744612929 Accuracy of 7 in Testing set for L1: 92.41245136186771

Accuracy of 8 in Training set for L1: 89.14715433259272 Accuracy of 8 in Testing set for L1: 89.42505133470226

Accuracy of 9 in Training set for L1: 90.48579593208943 Accuracy of 9 in Testing set for L1: 90.08919722497522

2.2.2

Accuracy of Train Set in case of L2 Regularisation: 92.89833333333334 Accuracy of Test Set in case of L2 Regularisation: 92.3000000000001

Accuracy of 0 in Training set for L2: 96.85969947661658 Accuracy of 0 in Testing set for L2: 97.55102040816327

Accuracy of 1 in Training set for L2: 97.44882824087807 Accuracy of 1 in Testing set for L2: 98.06167400881057

Accuracy of 2 in Training set for L2: 91.18831822759316 Accuracy of 2 in Testing set for L2: 89.92248062015504

Accuracy of 3 in Training set for L2: 92.02413961833307 Accuracy of 3 in Testing set for L2: 91.8811881188

Accuracy of 4 in Training set for L2: 93.08456008216365 Accuracy of 4 in Testing set for L2: 92.4643584521385

Accuracy of 5 in Training set for L2: 88.37852794687328 Accuracy of 5 in Testing set for L2: 87.66816143497758

Accuracy of 6 in Training set for L2: 96.28252788104089 Accuracy of 6 in Testing set for L2: 94.98956158663883

Accuracy of 7 in Training set for L2: 92.00319233838786 Accuracy of 7 in Testing set for L2: 90.46692607003891

Accuracy of 8 in Training set for L2: 88.85660570842592 Accuracy of 8 in Testing set for L2: 87.37166324435319

Accuracy of 9 in Training set for L2: 91.89779794923517 Accuracy of 9 in Testing set for L2: 91.57581764122894

2.2.3

After introducing L1, L2 regularisation parameters we do not see much change in the accuracy of each digit as it was in case of without regularisation. Therefore it is a good fit for the model. Neither underfit nor overfit.

2.3

Question 3

	Harshit Rai 2017152 M.L. Allignment-1. Classmate Date Page D D D D D D D D D D D D D
Ans-3)	(i) P (y = 1/ >r, w) = g (w + w, >r).
	and, $g(z) = \frac{1}{1+e^{-z}}$ (Signail Eugetion).
	$\frac{1+(e)^{-(\omega_0+\omega_1)c}}{1+(e)^{-(\omega_0+\omega_1)c}}$
	we know that the erange of Signoid Function, g(2) is Setween 0 to 1
=)	0.5
	0 >2
	Range of g (z) 1 = (0,1)
	We hen, $z \to 0$, $g(z) \to 1$ [lim $g(z) = 1$] and, $z \to -0$, $g(z) \to 0$ [lim $g(z) = 0$]
	When $Z = \omega_o + \omega_e$, the range of $g(\omega_o + \omega_e, \omega_e)$ well not change.
CS	Scanned with P.T. o.

Question 4

	(3) Classmate Date Page
,	Range of logit Eunitor in (0,1) = (-0,0) And
Aug. 4)	letranse flows the graph we can so that the logit function spans all real numbers from $(-\infty, \infty)$ in the range from $x = 0$ to $x = 1$. A M.S. $F = \frac{1}{1} \sum_{i=1}^{\infty} (s_{i}, -s_{i})^{2}$
	$M \cdot A \cdot E = \frac{1}{N} \sum_{i=1}^{N} \left[S(i - i) \hat{c}_{i} \right]$
	The mean Absolute Everon (M.A.E.) is harder to optimize than M.S.E. as the fierd order differentiation of M.A.E. takes 2 different values => -1, 1
	=) $\frac{1}{2} \frac{1}{2} \frac$
	Dr. other words, M. A. E. 18 not differentiated of y
CS	Scanned with CamScannes to A.A. A. A

	Classmate Date Page
0	Orantel regression is used for estimating a conditional "quantile" of a response variable.
	It's an extension to M.A.E., M.A.E = 1 \(\frac{1}{2} \) \(\frac
	N CE I
	$L_{g_{i}}\left(s_{i}, s_{i}\right) = \underbrace{\left(s_{i-1}\right) \cdot \left s_{i} - s_{i}\right + \underbrace{\left(s_{i}\right) \cdot \left s_{i} - s_{i}\right }_{i \geq n_{i} \cdot i \cdot s_{i}}$
	By using quantile loss, we can give different penalties leased on a chasen (r) quantile.
	If 9 = 0.25, more penalty will be given to regative everors.
	to estimate an interval instead of a point prediction.
	Tris method is useful when there is non-constant variance among data points. Scanned with
	CamScannor