INTRODUÇÃO À PROGRAMAÇÃO PARA GPUS USANDO CUDA

Pedro Bruel phrb@ime.usp.br 29 de Setembro de 2015

Instituto de Matemática e Estatística Universidade de São Paulo

ROTEIRO

- 1. Introdução
 - · Template para programas CUDA
 - · Profilers e Debuggers

ROTEIRO

- 1. Introdução
 - · Template para programas CUDA
 - · Profilers e Debuggers
- 2. Ferramentas
 - · nvcc
 - \cdot cuda-gdb
 - · cuda-memcheck

RECURSOS

Os pdfs com as aulas e todo o código fonte usado nos exemplos estão no GitHub:

 ${}^{\bullet}$ github.com/phrb/aulas-gpu

RECURSOS

Os *pdf*'s com as aulas e todo o código fonte usado nos exemplos estão no GitHub:

• github.com/phrb/aulas-gpu

Outros recursos:

- · CUDA Toolkit Documentation: docs.nvidia.com/cuda
- GPU Teaching Kit: syllabus.gputeachingkit.com
- iPython: ipython.org/notebook.html
- · CUDA Toolkit: developer.nvidia.com/cuda-toolkit
- · Anaconda: continuum.io/downloads

RECURSOS

Os próximos *slides* foram adaptados do material disponível no GPU Teaching Kit:

· syllabus.gputeachingkit.com

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>

GPU Teaching Kit

Accelerated Computing

Lecture 2.4 – Introduction to CUDA C

Introduction to the CUDA Toolkit

Objective

- To become familiar with some valuable tools and resources from the CUDA Toolkit
 - Compiler flags
 - Debuggers
 - Profilers

GPU Programming Languages

CUDA - C

Applications

Libraries

Compiler <u>Direc</u>tives Programming Languages

Easy to use Most Performance Easy to use Portable code

Most Performance Most Flexibility

NVCC Compiler

- NVIDIA provides a CUDA-C compiler
 - nvcc
- NVCC compiles device code then forwards code on to the host compiler (e.g. g++)
- Can be used to compile & link host only applications

Compiler Flags

- Remember there are two compilers being used
 - NVCC: Device code
 - Host Compiler: C/C++ code
- NVCC supports some host compiler flags
 - If flag is unsupported, use –Xcompiler to forward to host
 - e.g. –Xcompiler –fopenmp
- Debugging Flags
 - g: Include host debugging symbols
 - G: Include device debugging symbols
 - lineinfo: Include line information with symbols

Developer Tools - Debuggers

https://developer.nvidia.com/debugging-solutions

CUDA-MEMCHECK

- Memory debugging tool
 - No recompilation necessary%> cuda-memcheck ./exe
- Can detect the following errors
 - Memory leaks
 - Memory errors (OOB, misaligned access, illegal instruction, etc)
 - Race conditions
 - Illegal Barriers
 - Uninitialized Memory
- For line numbers use the following compiler flags:
 - Xcompiler -rdynamic -lineinfo

http://docs.nvidia.com/cuda/cuda-memcheck

CUDA-GDB

- cuda-gdb is an extension of GDB
 - Provides seamless debugging of CUDA and CPU code
- Works on Linux and Macintosh
 - For a Windows debugger use NSIGHT Visual Studio Edition

http://docs.nvidia.com/cuda/cuda-gdb

Developer Tools - Profilers

https://developer.nvidia.com/performance-analysis-tools

NVPROF

Command Line Profiler

- Compute time in each kernel
- Compute memory transfer time
- Collect metrics and events
- Support complex process hierarchy's
- Collect profiles for NVIDIA Visual Profiler
- No need to recompile

NVIDIA's Visual Profiler (NVVP)

Timeline

Guided System

Analysis

Profiler Summary

- Many profile tools are available
- NVIDIA Provided
 - NVPROF: Command Line
 - NVVP: Visual profiler
 - NSIGHT: IDE (Visual Studio and Eclipse)
- 3rd Party
 - TAU
 - VAMPIR

Optimization

Assess

- Profile the code, find the hotspot(s)
- Focus your attention where it will give the most benefit

Parallelize

Applications

Libraries

Compiler Directives

Programming Languages

Optimize

Timeline

Guided System

A Perform Latency Analysis

Rerun Analysis

If you modify the kernel you need to rerun your application to update this analysis.

if you modify the larnel you need to rerun your application to update this analysis.

Analysis

INTRODUÇÃO À PROGRAMAÇÃO PARA GPUS USANDO CUDA

Pedro Bruel phrb@ime.usp.br 29 de Setembro de 2015

Instituto de Matemática e Estatística Universidade de São Paulo