CDQZ OI Test for DP

2013 OI Team

March 27, 2012

题目名称	文件名	时间限制	内存限制
子串与子序列	$substr.*\{in,out,cpp,pas,c\}$	2s	256MB
人品保卫战	defence.*{in,out,cpp,pas,c}	1s	256MB
怪盗与柯南的乱步	museum.*{in,out,cpp,pas,c}	10s	256MB

Contents

1	子串	与子序列																				2
	1.1	题目描述															 					-
	1.2	输入格式															 					
	1.3	输出格式															 					-
	1.4	样例输入															 					-
	1.5	样例输出															 					
	1.6	Hint															 					
2	人品	保卫战																				
	2.1	题目描述															 					;
	2.2	输入格式															 					;
	2.3	输出格式															 					;
	2.4	样例输入															 					
	2.5	样例输出															 					;
	2.6	Hint															 					;
3	怪盗	5.与柯南的刮	b步	,																		4
	3.1	题目描述															 					4
	3.2	输入格式															 					4
	3.3	输出格式															 					4
	3.4	样例输入															 					4
	3.5	样例输出															 					4
	2.0	TT:4																				

1 子串与子序列

1.1 题目描述

给你两个字符串 s 与 t,你需要统计不同二元组 (x,y) 的个数,满足 x 是 s 的子串, y 是 t 的 子序列。两个二元组 (x_1,y_1) , (x_2,y_2) 不同, 当且仅当 $x_1 \neq x_2$ 或 $y_1 \neq y_2$ 。

- 关于子串与子序列的解释: $s \text{ 的一个子串 } x \text{ 是一个非空的字符串,满足 } x = s[a..b] = s_a s_{a+1} \dots s_b, \ 1 \leq a \leq b \leq |s|.$ $s \text{ 的一个子序列 } x \text{ 是一个非空的字符串,满足 } x = s[p_1 p_2 \dots p_{|y|}] = s_{p_1} s_{p_2} \dots s_{p_y}, \ 1 \leq p_1 < s_1 \leq s_2 \leq s_2 \leq s_3 \leq s_2 \leq s_3 \leq s$ $p_2 < \ldots < p_y \le |s|$.

1.2 输入格式

两行,分别表示 s 与 t。均只包含小写英文字母。

1.3 输出格式

输出不同二元组的组数模 $100000007(10^9 + 7)$ 。

1.4 样例输入

aa

aa

1.5 样例输出

5

1.6 Hint

50% 的数据满足 N < 250; 100% 的数据满足 N < 5000。 最好用 long long。

2 人品保卫战

2.1 题目描述

设想你去参加 noip2012,你的座位是在第一行的末端(即第 N+1 个)。第一行 N 个座位,你必须从第一个座位走到第 N+1 个座位。初始时,经过每个座位的时间为 T 秒。不幸的是,前 N 个位置上都坐满了杀气冲天的神牛。这里假设神牛只有三种:

- 1. TedYin 经过 Ted 所在位置时每秒钟 rp 会减少 R 点。
- 2. Theodore You 当你走过 Theo 所在位置,之后的每一秒都会因为 Theo 强大的气场被吸走 G 点 rp。
- 3. Before Rain 当你走过 Before Rain 所在位置,你会因见到珍惜的 OImei 而放缓前进的步伐。即经过之后每个人的时间会增加 B 秒。

其中, Theo 和 Before Rain 的效果可以叠加。也就是说, 在经过 m 个 Theo 后, 每秒会被吸走 mG 点 rp。在经过 m 个 Before Rain 后, 经过每个座位的时间会变为 T+mB。

现在,离 noip2012 还有一段时间。假设你已经知道你的位置,你必须预测到最坏情况下会被吸走多少 rp。写个程序输出这个最大值。

2.2 输入格式

一行,五个空格隔开的整数 $N \setminus R \setminus G \setminus B \setminus T$ 。

2.3 输出格式

只需输出一行一个整数,即最坏情况下会被吸走多少 rp。

2.4 样例输入

5 4 3 2 1

2.5 样例输出

82

2.6 Hint

20% 的数据满足 $N \le 12$;

50% 的数据满足 $N \leq 100$;

100% 的数据满足 $N \le 1024$, $0 \le R$, G, $B \le 65536$, $0 \le T \le 3$.

3 怪盗与柯南的乱步

3.1 题目描述

怪盗基德又一次发出预告涵啦

这一次的目标是位于 QZ 科技楼的人体标本。怪盗命运中的宿敌——工藤新一自然不会让基德得手。为了简化问题,可以将错综复杂科技楼视为一个含有 n 个点,m 条双向边的无向图。一开始,基德在 a 点,新一在 b 点。由于两人实力相当,都无法预测对手的行动,故都以以下规则移动。

在第 i 个顶点,以 p_i 的概率停留在 i 点, $1-p_i$ 的概率离开 i 点,以等概率进入相邻的顶点 (即有边与 i 相连)。

若两人在同一顶点相遇,则会进行决斗。我们都非常想知道决斗的地点,以方便围观。希望你能写个程序来计算在每个顶点决斗的概率。

3.2 输入格式

第一行包含四个整数: n, m, a, b。以下 m 行每行两个整数 u, v 表示顶点 u 与 v 有一条边相 连。最后 n 行每行一个实数 $p_i(0.01 \le p_i \le 0.99)$ 。

3.3 输出格式

输出 n 行,对应每个顶点决斗的概率。只用保留一位小数。

3.4 样例输入

- 2 1 1 2
- 1 2
- 0.5
- 0.5

3.5 样例输出

- 0.5
- 0.5

3.6 Hint

50% 的数据满足 $n \leq 5$;

100% 的数据满足 $n \le 20, n-1 \le m \le \frac{n(n-1)}{2}$ 。保证没有重边,自环。