(2)

2 A student determined the speed of sound in air using a standing wave.

The student used a tuning fork to create a sound wave in the column of air inside a plastic tube. He placed the plastic tube into a measuring cylinder of water so he could adjust the length *l* of the column of air.

The student adjusted *l* until the loudest sound was heard, indicating that a standing wave had formed. He marked the water level on the plastic tube and measured *l*.

He repeated this process several times and recorded the results.

l/cm 18.4 1	8.0 19.2	19.4	19.2
-------------	----------	------	------

(a) Suggest two reasons for the variation in the lengths the student measured.

(b) (i) Calculate the mean value of <i>l</i> .	(2)
Mean value of $l =$ (ii) Calculate the percentage uncertainty in l .	(2)
Percentage uncertainty =	(2)
Speed of sound =	
the speed of sound in air.	(2)

(Total for Question 2 = 10 marks)