

Chapter 8 Sampling dist population reference random sample (subset of popu) parameter (constant), $\mu, \sigma^2, \rho, \beta, \lambda$ Statistic (random) (X,S^2, M, R, Max) Sestimation

Sestimation

Supported to the sesting sampling dist of X?

In 1.2+ of X. · The Samply dist of X. Ex: X1, X2, X3 ~ N (70, 10²) ① P(X > 66.67) $=P(\frac{X_1+X_2+X_3}{3}>66.67)$ $= P(X_1 + X_2 + X_3 > 200)$ N(210, 300)

 $=P(Z>\frac{200-210}{\sqrt{300}})=P(Z>-\frac{1}{\sqrt{3}})$

 $E(X) = \frac{1}{n} M + \frac{1}{n} M + \dots + \frac{1}{n} M = M.$ $Van(X) = \frac{0^{2}}{n^{2}} + \frac{0^{2}}{n^{2}} + \dots + \frac{0^{2}}{n^{2}} = \frac{0^{2}}{n}$

Q: What if we take away the normal assumption in the underlying dist?

We still
$$E(\bar{X}) = M$$
, $Van(\bar{X}) = \frac{6^2}{n}$, But not the Normal part.

Ex: $X_1, X_2, -X_n \sim N(80, 8^2)$.

 $P(|X_1 - 80| \ge 5) = P(|X_1 - 80| \le \frac{5}{8})$
 $= P(|Z| \ge 0.628) = |-2 \pm 0.2643$
 $= 0.4714$

(2) if $n = 4$, what is $P(|\bar{X} - 80| \le 5) = 1$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 < 1.25$
 $= 1.21 <$

The Central Limit Theorem. Let X1, X2, -- Xn be a random sample from any dist with mean 11 and variance of cus Then the limit dist of X-M is Zas In appilication, when n is large, we say the List of X-1 is approx Z. X: ~ Mor N(n, not) is enough. M > 30 n can be smaller!