Cvičenia

Cvičenie 7.1. Aká je hodnota Boolovej premennej, ktorá je určená podmienkou

(a)
$$x \cdot 1 = 0$$
, $x = 0$.

(b)
$$x + x = 0$$
, $x = 0$.

(c)
$$x \cdot 1 = x$$
, $x = 1 \lor x = 0$

(d)
$$x + \overline{x} = 1$$
, $x = 0 \lor x = 1$.

(e)
$$x \cdot \overline{x} = 0$$
, $x = 0 \lor x = 1$.

Cvičenie 7.2. Zostrojte tabuľku funkčných hodnôt Boolovej funkcie

(a)
$$f(x, y, z) = \overline{x}y$$

x	у	Z	\overline{x}	$\overline{x}y$
0	0	0	1	0
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

(b)
$$f(x, y, z) = x + yz$$
,

х	у	Z	yz	x + yz
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(c)
$$f(x, y, z) = x\overline{y} + \overline{xyz}$$
,

x	У	Z	$\overline{\mathcal{Y}}$	$x\overline{y}$	xyz	\overline{xyz}	$x\overline{y} + \overline{xyz}$
0	0	0	1	0	0	1	1
0	0	1	1	0	0	1	1
0	1	0	0	0	0	1	1
0	1	1	0	0	0	1	1
1	0	0	1	1	0	1	1
1	0	1	1	1	0	1	1
1	1	0	0	0	0	1	1
1	1	1	0	0	1	0	0

Cvičenie 7.3. Znázornite Boolove funkcie f(x, y, z) z cvičenia 7.2 na 3-rozmernej kocke tak, že hodnoty 1 (0) budú reprezentované na kocke čiernym (bielym) bodom.

Cvičenie 7.4. Pre ktoré hodnoty x a y platí xy = x + y? x = y = 1 alebo x = y = 0,

Cvičenie 7.5. Zostrojte tabuľku všetkých možných binárnych Boolových funkcií a identifikujte v nej známe Boolove binárne operácie súčinu a súčtu. Vyjadrite ostatné binárne operácie pomocou súčtu, súčinu a komplementu.

\boldsymbol{x}	у	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
			•					\oplus	+								

$f_1(x,y) = 0 = x\overline{x}$	$f_2(x,y) = xy$	$f_3(x,y) = x\overline{y}$	$f_4(x,y) = x\overline{y} + xy$
$f_5(x,y) = \overline{x}y$	$f_6(x,y) = \overline{x}y + xy$	$f_7(x,y) = x\overline{y} + \overline{x}y$	$f_8(x,y) = x + y$
$f_9(x,y) = \overline{x}\overline{y}$	$f_{10}\left(x,y\right) = \overline{x}\overline{y} + xy$	$f_{11}(x,y) = \overline{x}\overline{y} + x\overline{y}$	$f_{12}(x,y) = x + \overline{y}$
$f_{13}\left(x,y\right) = \overline{x}$	$f_{14}\left(x,y\right) = \overline{x} + y$	$f_{15}\left(x,y\right) = \overline{x} + \overline{y}$	$f_{16}\left(x,y\right) = 1 = x + \overline{x}$

Cvičenie 7.6. Niekedy je výhodné v Boolovej algebre definovať novú binárnu operáciu označenú symbolom ⊕, jej tabuľka funkčných hodnôt má tvar

\oplus	0	1
0	0	1
1	1	0

Poznamenajme, že vo výrokovej logike je podobná logická spojka označovaná "exkluzívna disjunkcia" (XOR). Zjednodušte tieto výrazy

(a)
$$x \oplus 0$$
, $x \oplus 0 = x$

(b)
$$x \oplus 1$$
, $x \oplus 1 = \overline{x}$,

(c)
$$x \oplus x$$
, $x \oplus x = 0$,

(d)
$$x \oplus \overline{x}$$
, $x \oplus \overline{x} = 1$.

Cvičenie 7.7. Dokážte, že platia rovnosti

(a)
$$x \oplus y = (x+y)(\overline{xy})$$
,

x	У	<i>x</i> + <i>y</i>	xy	\overline{xy}	$(x+y)\overline{xy}$	$x \oplus y$
0	0	0	0	1	0	0
0	1	1	0	1	1	1
1	0	1	0	1	1	1
1	1	1	1	0	0	0

(b)
$$x \oplus y = \overline{x}y + x\overline{y}$$
.

x	У	$\overline{x}y$	$x\overline{y}$	$\overline{x}y + x\overline{y}$	$x \oplus y$
0	0	0	0	0	0
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

Cvičenie 7.8. Zostrojte duálne výrazy k týmto Boolovym funkciam

(a)
$$x + y$$
, $f(x,y) = x + y \Rightarrow f_d(x,y) = xy$

(b)
$$\overline{x} \overline{y}$$
, $f(x,y) = \overline{x}\overline{y} \Rightarrow f_d(x,y) = \overline{x} + \overline{y}$

(c)
$$xyz + \overline{x} \overline{y} \overline{z}$$
, $f(x, y, z) = xyz + \overline{x} \overline{y} \overline{z} \Rightarrow f_d(x, y, z) = (x + y + z)(\overline{x} + \overline{y} + \overline{z})$

Cvičenie 7.9. Dokážte, že duálny tvar $f_d(x_1, x_2, ..., x_n)$ k Boolovej funkcii $f(x_1, x_2, ..., x_n)$ vyhovuje podmienke $f_d(x_1, x_2, ..., x_n) = \overline{f(\overline{x_1}, \overline{x_2}, ..., \overline{x_n})}$.

Dôkaz tohto vzťahu vykonáme indukciou vzhľadom k podformulám $f(x_1, x_2, ..., x_n)$.

(a) $f(x_1, x_2,...,x_n) = \Phi(x_1, x_2,...,x_n) + \Psi(x_1, x_2,...,x_n)$, duálny tvar tejto formuly je

$$f_{d}(x_{1}, x_{2}, ..., x_{n}) = \overline{\Phi(\overline{x}_{1}, \overline{x}_{2}, ..., \overline{x}_{n}) + \Psi(\overline{x}_{1}, \overline{x}_{2}, ..., \overline{x}_{n})}$$

$$= \overline{\Phi(\overline{x}_{1}, \overline{x}_{2}, ..., \overline{x}_{n})} \cdot \overline{\Psi(\overline{x}_{1}, \overline{x}_{2}, ..., \overline{x}_{n})}$$

$$= \Phi_{d}(x_{1}, x_{2}, ..., x_{n}) \cdot \Psi_{d}(x_{1}, x_{2}, ..., x_{n})$$

(b) $f(x_1, x_2,...,x_n) = \Phi(x_1, x_2,...,x_n) \cdot \Psi(x_1, x_2,...,x_n)$, duálny tvar tejto formuly je

$$f_{d}\left(x_{1}, x_{2}, ..., x_{n}\right) = \overline{\Phi\left(\overline{x}_{1}, \overline{x}_{2}, ..., \overline{x}_{n}\right) \cdot \Psi\left(\overline{x}_{1}, \overline{x}_{2}, ..., \overline{x}_{n}\right)}$$

$$= \overline{\Phi\left(\overline{x}_{1}, \overline{x}_{2}, ..., \overline{x}_{n}\right) + \overline{\Psi\left(\overline{x}_{1}, \overline{x}_{2}, ..., \overline{x}_{n}\right)}}$$

$$= \Phi_{d}\left(x_{1}, x_{2}, ..., x_{n}\right) + \Psi_{d}\left(x_{1}, x_{2}, ..., x_{n}\right)$$

Tento postup opakujeme tak dlho, až dosiahneme elementárne výrazy, ktoré obsahujú podformuly rovné premenným, kde konštrukciu duálnych formúl vykonáme jednoducho pomocou De Morganových vzťahov a negáciou konštánt

$$\overline{\overline{x_i} + \overline{x}}_i = x_i \cdot x_j$$
, $\overline{\overline{x_i} \cdot \overline{x}}_i = x_i + x_j$, $\overline{\mathbf{0}} = \mathbf{1}$ a $\overline{\mathbf{1}} = \mathbf{0}$.

Týmto indukčným postupom sme dokázali formulu $f_d(x_1, x_2, ..., x_n) = \overline{f(\overline{x}_1, \overline{x}_2, ..., \overline{x}_n)}$

Cvičenie 7.10. Zostrojte Boolovu funkciu f(x, y, z) vo forme sumy produktov klauzúl k premenným x, y a z, ktorá má hodnotu 1 vtedy a len vtedy, ak

(a)
$$x = y = \mathbf{0}, z = \mathbf{1}, f(x, y, z) = \overline{x} \overline{y} z$$
.

(b)
$$x = \mathbf{0}, y = \mathbf{1}, z = \mathbf{0}, f(x, y, z) = \overline{x} y \overline{z}$$
.

(c)
$$y = z = 1$$
, $f(x, y, z) = x y z + \overline{x} y z = \left(\underbrace{x + \overline{x}}_{1}\right) yz = yz$.

Cvičenie 7.11. Zostrojte Boolovu funkciu f(x,y,z) vo forme sumy produktov klauzúl k premenným x, y a z, ktorá je ekvivalentná s funkciou F(x,y,z).

(a)
$$F(x,y,z) = x + y + \overline{z}$$
,

Tabuľka hodnôt tejto Boolovej funkcie má tvar

$$F(x,y,z) = x + y + \overline{z} = x(y + \overline{y})(z + \overline{z}) + (x + \overline{x})y(z + \overline{z}) + (x + \overline{x})(y + \overline{y})\overline{z}$$

$$= xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z}$$

$$+ xyz + xy\overline{z} + \overline{x}yz + \overline{x}y\overline{z}$$

$$+ xy\overline{z} + x\overline{y}\overline{z} + \overline{x}y\overline{z} + \overline{x}y\overline{z}$$

$$= xyz + xy\overline{z} + x\overline{y}\overline{z} + x\overline{y}z + x\overline{y}z + \overline{x}y\overline{z} + \overline{x}yz$$
(b)
$$F(x,y,z) = x\overline{z}.$$

(b)
$$F(x, y, z) = x\overline{z}$$
.

$$F(x,y,z) = x(y+\overline{y})\overline{z} = xy\overline{z} + x\overline{y}\overline{z}$$

Cvičenie 7.12. Zostrojte spínacie funkcie pre spínacie obvody

Cvičenie 7.13. Ústredné kúrenie v rodinnom dobe je riadené troma termostatmi, ktoré sú umiestnené v každej izbe domu. termostaty sú nastavené na 18°C, pričom z dôvodu šetrenia energiou sa požaduje, aby systém ústredného kúrenia bol zapnutý len ak teplota aspoň v dvoch izbách je menšia ako 18°C, v opačnom prípade systém je vypnutý. Navrhnite spínačový systém, ktorý prijíma signály z termostatov a ktorý riadi ústredné kúrenie. Pokúste sa minimalizovať navrhnutý systém, aby bol čo najjednoduchší.

x_1	x_2	<i>x</i> ₃	$F\left(x_1, x_2, x_3\right)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$$\begin{split} F\left(x_{1},x_{2},x_{3}\right) &= \overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}x_{3} + \overline{x}_{1}x_{2}\overline{x}_{3} + x_{1}\overline{x}_{2}\overline{x}_{3} = \\ &= \underbrace{\overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}\overline{x}_{3}}_{\overline{x}_{1}\overline{x}_{2}\overline{x}_{3}} + \overline{x}_{1}\overline{x}_{2}x_{3} + \overline{x}_{1}x_{2}\overline{x}_{3} + x_{1}\overline{x}_{2}\overline{x}_{3} = \\ &= \overline{x}_{1}\overline{x}_{2}\left(\underline{x}_{3} + x_{3}\right) + \overline{x}_{1}\left(\underline{x}_{2} + \overline{x}_{2}\right)\overline{x}_{3} + \left(\underline{x}_{1} + x_{1}\right)\overline{x}_{2}\overline{x}_{3} \\ &= \overline{x}_{1}\overline{x}_{2} + \overline{x}_{1}\overline{x}_{3} + \overline{x}_{2}\overline{x}_{3} \end{split}$$

Cvičenie 7.14. Zostrojte tabuľku výstupov logických obvodov

x	У	\overline{y}	<i>x</i> + <i>y</i>	$(x+y)\overline{y}$
0	0	1	0	0
0	1	0	1	0
1	0	1	1	1
1	1	0	1	0

x	у	\overline{x}	$\overline{\mathcal{Y}}$	$\overline{x}\overline{y}$	$\overline{\overline{x}}\overline{\overline{y}}$
0	0	1	1	1	0
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	0	0	1

x	У	Z	xy	${xy}$	\overline{Z}	$x + \overline{z}$	$\overline{xy} + (x + \overline{z})$
0	0	0	0	1	1	1	1
0	0	1	0	1	0	0	1
0	1	0	0	1	1	1	1
0	1	1	0	1	0	0	1
1	0	0	0	1	1	1	1
1	0	1	0	1	0	1	1
1	1	0	1	0	1	1	1
1	1	1	1	0	0	1	1

Cvičenie 7.15. Zostrojte logické obvody, ktoré simulujú Boolove funkcie

(b)
$$(x+y)x$$
,
 $x \to x+y$
 $x \to x+y$
 $x \to x+y$
 $x \to x+y$

(c)
$$xyz + \overline{x} \overline{y} \overline{x}$$
, $xyz + \overline{x} \overline{y} \overline{z}$

Cvičenie 7.16. Zjednodušte logické obvody

$$f(x,y,z) = xy\overline{z} + x\overline{y} \ \overline{z} + \overline{x}y\overline{z} + \overline{x} \ \overline{y} \ \overline{z} = xy\overline{z} + x\overline{y} \ \overline{z} + \overline{x} \ (y+\overline{y}) \ \overline{z} = xy\overline{z} + x\overline{y} \ \overline{z} + \overline{x} \ \overline{z} = x(y+\overline{y}) \ \overline{z} + \overline{x} \ \overline{z} = x\overline{z} + \overline{x} \ \overline{z} = \overline{z}$$

Cvičenie 7.17. Pomocou Quinovej a McCluskeyho metódy nájdite optimálne výrazy k Boolovým funkciám

(a)
$$wxyz + wx\overline{y}z + wx\overline{y} \overline{z} + w\overline{x}y\overline{z} + w\overline{x} \overline{y}z$$
,

0. etapa			1. etapa				
1	(1111)		1	(1,2)	(11#1)		
2	(1101)		2	(2,3)	(110#)		
3	(1100)		3	(2,5)	(1#01)		
4	(1010)						
5	(1001)						

$$U_f^{(0)}$$
 (1111) (1101) (1100) (1010) (1001) $U_f^{(1)}$ (11#1) (110#) (1#01)

Klauzule z 1. etapy sú minimálne a pokrývajú až na 4. klauzulu všetky klauzuly z 0. etapy, preto vyberieme klauzuly ktoré pokrývajú pôvodnú množinu klauzúl takto

$$\tilde{V} = \{(11#1), (110#), (1#01), (1010)\}$$

Optimálna Boolova funkcia priradená tejto množine má tvar

$$f(w, x, y, z) = wxz + wx\overline{y} + w\overline{y}z + w\overline{x}y\overline{z}$$

(b)
$$wxy\overline{z} + wx\overline{y}z + w\overline{x}yz + \overline{w}x\overline{y}z + \overline{w}\overline{x}y\overline{z} + \overline{w}\overline{x}\overline{y}z$$
,

0. etapa			1. etapa				
1	(1110)		1	(2,4)	(#101)		
2	(1101)		2	(4,6)	(0#01)		
3	(1011)						
4	(0101)						
5	(0010)						
6	(0001)						

$$\tilde{V} = \{(\#101), (0\#01), (1110), (1011), (0010)\}$$

$$f(w,x,y,z) = x\overline{y}z + \overline{w}\,\overline{y}z + wxy\overline{z} + w\overline{x}yz + \overline{w}\,\overline{x}y\overline{z}$$

(c) $wxyz + wxy\overline{z} + wx\overline{y}z + w\overline{x}y\overline{z} + w\overline{x}y\overline{z} + \overline{w}x\overline{y}z + \overline{w}x\overline{y}z + \overline{w}x\overline{y}z$.

0. etapa			1. etapa			2. etapa			
1	(1111)	1		(1,2)	(111#)		1	(3,7)	(##01)
2	(1110)	2		(1,3)	(11#1)		2	(4,6)	(##01)
3	(1101)	3		(3,4)	(1#01)				
4	(1001)	4		(3,6)	(#101)				
5	(1000)	5		(4,5)	(100#)				
6	(0101)	6		(4,8)	(#001)				
7	(0010)	7		(6,8)	(0#01)				
8	(0001)								

$$\tilde{V} = \{(111\#), (\#\#01), (100\#), (0010)\}$$

$$f\left(w,x,y,z\right) = wxy + \overline{y}z + w\overline{x}\ \overline{y} + \overline{w}\,\overline{x}y\overline{z}$$