Aula 10: Permutações com Repetição

Conteúdo:

- 🔷 Introdução
- Permutação com repetição
- Número de permutações com repetição

cederj

Introdução:

Exemplo 1:

Comprei 5 lapiseiras, 2 brancas, 1 azul, 1 preta e 1 verde, para dar de presente a meus amigos João, Rita, Luiza, Gabriel e Felipe. De quantas maneiras diferentes eu posso distribuí-las?

Ilustração:

uma possibilidade João Rita Luiza Gabriel Felipe

- Observações:
 - A troca de lapiseiras entre João e Luiza modifica a distribuição.
 - A troca de lapiseiras entre João e Rita <u>não</u> modifica a distribuição.

cederj

Exemplo 1 (continuação):

Resolução:

Raciocínio (baseado em permutações simples)

Etapa 1: Calculamos o número de distribuições considerando que marcamos cada lapiseira branca para diferenciá-las.

Ilustração:

Número de distribuições marcadas: $P_5 = 5!$

Exemplo 1 (continuação):

Atenção, estamos considerando distribuições iguais como sendo diferentes!

Ilustração:

João Rita Luiza Gabriel Felipe

Etapa 2: Reduzimos as distribuições repetidas

$$P_2 = 2$$
 $\xrightarrow{\text{correspondem}}$ 1 distribuição

(etapa 1) P_5

$$\frac{P_5}{P_2} = \frac{5!}{2} \text{ total de distribuições}$$

Resposta: Posso distribuir as lapiseiras para meus amigos de $\frac{5!}{2}$ = 60 modos diferentes.

Exemplo 2:

Quantos números distintos de 6 algarismos podem ser formados usando-se o dígito 1 três vezes, o dígito 3 duas vezes e o dígito 9 uma vez?

Ilustração:

133191 é uma possibilidade

Resolução:

Raciocínio 1 (baseado em permutações simples)

Raciocínio 2 (baseado em combinações simples)

Exemplo 2 (continuação):

Raciocínio 1 (baseado em permutações simples)

Etapa 1: Consideramos como sendo diferentes os números repetidos (os marcamos).

Calculamos o número total de ordenamentos

Ilustração:

Número de ordenamentos diferentes de algarismos marcados: $P_6 = 6!$

Atenção,

estamos considerando números iguais como sendo diferentes!

Exemplo 2 (continuação raciocínio 1):

Etapa 2: Reduzimos os casos <u>iguais</u> considerados como diferentes na etapa 1.

total de números distintos cederj

Exemplo 2 (continuação):

Raciocínio 2 (baseado em combinações simples)

 Observação: dois números são <u>diferentes</u> quando <u>as posições</u> dos algarismos <u>diferentes</u> estão trocados (131139 é diferente de 311139).

Reformulação do problema:

De quantas maneiras diferentes podemos colocar três 1, dois 3 e um 9 em 6 posições?

Exemplo 2 (continuação raciocínio 2):

Etapa 1: Consideramos somente as possíveis posições dos três 1. Calculamos todos os modos de colocar os três 1 em 6 posições.

Ilustração:

N₁: número de modos de colocar três 1 em 6 posições

$$N_1 = C(6, 3)$$

Exemplo 2 (continuação raciocínio 2):

Etapa 2: Fixada uma posição para os três 1, consideramos as possíveis posições dos dois 3 nos lugares restantes.

Ilustração:

<u>1</u> <u>3</u> <u>1</u> <u>1</u> <u>3</u> <u>9</u>

<u>1</u> <u>3</u> <u>1</u> <u>1</u> <u>9</u> <u>3</u>

 N_2 : número de modos de colocar os dois 3 em 3 lugares

 $N_2 = C(3, 2)$

Etapa 3: Fixada uma posição para os três 1 e os dois 3 consideramos as possíveis posições para o 9.

 N_3 : número de modos de colocar o 9 em 1 lugar = C(1, 1)

Permutações com repetição: Introdução

10.11

Exemplo 2 (continuação raciocínio 2):

Resumindo

Etapa 1

Etapa2

Etapa3

 p_1 p_2 p_3 p_4 p_5 p_6

 $N_1 = C(6,3)$ P.M. $N_2 = C(3,2)$ P.M. $N_3 = C(1,1)$

Resposta: O número total de possibilidades são

$$\mathbf{N}_1 \times \mathbf{N}_2 \times \mathbf{N}_3 = \frac{6!}{3! \ 3!} \cdot \frac{3!}{2! \ 1!} \cdot \frac{1!}{1! \ 0!} = \frac{6!}{3! \ 2! \ 1!} = \frac{\mathbf{P}_6}{\mathbf{P}_3 \mathbf{P}_2 \mathbf{P}_1}$$

Observação:

$$3 + 2 + 1 = 6$$

ceder

Características:

- Os <u>elementos</u> considerados <u>não</u> são necessariamente <u>diferentes</u>.
- Os elementos <u>iguais</u> são <u>indistinguíveis</u>
- <u>Cada troca de posição</u> (de ordem) dos elementos distinguíveis corresponde a <u>uma possibilidade</u>
 (não são consideradas as permutações dos elementos iguais).
- Na obtenção do número de possibilidades aplica-se os princípios aditivo e multiplicativo.

Permutação com repetição:

Definição

Entre <u>n</u> objetos dados tem-se n_1 elementos <u>iguais</u> a a_1 , n_2 elementos <u>iguais</u> a a_2 , ..., n_r elementos <u>iguais</u> a a_r , sendo a_1 , a_2 , ..., a_r <u>diferentes</u> e $n_1 = n_1 + n_2 + ... + n_r$.

Uma permutação com repetição destes <u>n</u> objetos é uma ordenação desses elementos onde não são consideradas as permutações entre os elementos iguais.

Ilustração

Exemplo 2: $\mathbf{a}_1 = 1$, $\mathbf{n}_1 = 3$, $\mathbf{a}_2 = 3$, $\mathbf{n}_2 = 2$, $\mathbf{a}_3 = 9$, $\mathbf{n}_3 = 1$ (r = 3) $\mathbf{n}_1 = \mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 = 3 + 2 + 1 = 6$,

permutações com repetição diferentes: 131139 e 311139

cederj

Número de permutações com repetição:

Problema

 $\begin{array}{l} \underline{Dados} \ \underline{n} \ objetos \ tais \ que \ \underline{n_1} \ elementos \ s\~{a}o \ iguais \ a \ \underline{a_1}, \\ \underline{n_2} \ elementos \ s\~{a}o \ iguais \ a \ \underline{a_2} \ , \ldots \ , \ \underline{n_r} \ elementos \ s\~{a}o \\ \underline{iguais} \ a \ \underline{a_r} \ e \ \underline{n} = n_1 + n_2 + \ldots + n_r, \\ \underline{encontrar} \ o \ n\'{u}mero \ de \ permuta\~{c}\~{o}es \ com \ repeti\~{c}\~{a}o. \end{array}$

Propriedade

O número de permutações com repetição de <u>n</u> elementos sendo n_1 iguais a a_1 , n_2 iguais a a_2 , ..., n_r iguais a a_r e $\underline{n} = n_1 + n_2 + ... + n_r$, é dado por: $\underline{P}_n^{n_1, n_2, ..., n_r} = \frac{n!}{n_1! \ n_2! \ ... \ n_r!}$

Número de permutações com repetição:

exemplo 2:
$$P_6^{3, 2, 1} = \frac{6!}{3! \ 2! \ 1!}$$

Outra notação:

$$PR(n; n_1, ..., n_r)$$

Observação: se n=r e $n_1=n_2=\cdots=n_r=1$ então $P_n^{n_1,\,\ldots,\,n_r}=P_n^{1,\,\ldots,\,1}=P_n$

Exemplo 3:

Um time de futebol jogou 15 partidas em um campeonato. Venceu 7 jogos, perdeu 5 e empatou 3. De quantos modos isto pode ter acontecido?

Resolução:
$$n=15$$
, $a_1 = jogo vencido$, $n_1 = 7$ $a_2 = jogo perdido$, $n_2 = 5$ $a_3 = jogo empatado$, $n_3 = 3$

N: total das possíveis sequências de jogos vencidos, perdidos e empatados.

$$N = P_{15}^{7, 5, 3} = \frac{15!}{7! \, 5! \, 3!} = 360360$$

Resposta: O número de modos em que o time venceu, perdeu e empatou é N = 360360 cederi

Exemplo 4:

Ana e Rosa moram em vértices opostos de um retângulo. Ana precisa atravessar 3 avenidas e 4 ruas para chegar à casa de Rosa. Quantos caminhos diferentes unem as casas de Ana e de Rosa?

I	$R_1 I$	$R_2 I$	R_3 I	R_4	
				Rosa	
					A_1
					Δ
					A_2
A					\mathbf{A}_3
Ana					

cederj

Exemplo 4 (continuação):

Observação:

Cada caminho, a partir da casa de Ana até a de Rosa, pode ser representado por uma sequência de 0 e de 1 com o seguinte significado:

0: atravessa 1 rua $(R_1, R_2, R_3 \text{ ou } R_4)$

1: atravessa 1 avenida $(A_1, A_2 \text{ ou } A_3)$

Ilustração:

Exemplo 4 (continuação):

Reformulação do problema:

Quantas sequências diferentes podem ser formados com quatro 0 e três 1?

Resolução:

Cada sequência corresponde a uma permutação com repetição.

$$n_1 = 4 (a_1 = 0), n_2 = 3 (a_2 = 1), n = 7$$

Resposta (problema reformulado):

O número de sequências diferentes é $P_7^{4,3} = \frac{7!}{4! \ 3!} = 35$.

Resposta do problema:

As casas de Ana e Rosa estão unidas por 35 caminhos diferentes.

Exemplo 5:

Quantos são os anagramas da palavra MAMBEMBE que começam com vogal?

Resolução:

N: número de anagramas que começam com vogal

N₁: número de anagramas que começam com A

 N_2 : número de anagramas que começam com E

$$N = N_1 + N_2$$

Exemplo 5 (continuação):

Etapa 1: (MAMBEMBE)

7 letras: 3 M, 2 B, 2 E

Etapa 2:

$$\mathbf{E} \qquad \qquad \mathbf{N}_2 = \mathbf{P}_7^{3, \, 2, \, 1, \, 1} = \frac{7!}{3! \, 2! \, 1! \, 1!}$$

7 letras: 3 M, 2 B, 1 E, 1 A

Resposta: O número de anagramas de MAMBEMBE que começam com vogal são $N = \frac{7!}{3! \ 2!} \left(\frac{1}{2} + 1\right) = 630.$

Exemplo 6:

Quantos são os anagramas da palavra MAMBEMBE que não possuem duas ou três letras M juntas?

Ilustração:

MAMBEMBE, AMBMEMBE são possíveis anagramas

AMMBEMBE, AMMMBEBE não são anagramas possíveis para o problema

Exemplo 6 (continuação):

Resolução:

N: número de anagramas que não possuem duas ou três letras M juntas.

Etapa 1: Consideramos as letras de MAMBEMBE diferentes de M e calculamos o número de ordenamentos.

Observação: cada <u>ordem</u> das letras A (1 vez), B (2 vezes)
 e E (2 vezes) é 1 <u>permutação</u> com repetição:

$$n_1 = 1$$
 $(a_1 = A)$, $n_2 = 2$ $(a_2 = B)$, $n_3 = 2$ $(a_3 = E)$, $n = 5$

- Conclusão 1: O número de ordens diferente de

A, B, E, B e E é
$$P_5^{2, 2, 1}$$
.

Exemplo 6 (continuação):

Etapa 2: Fixada uma permutação de A (1 vez), B (2 vezes) e E (2 vezes), calculamos as possibilidades de intercalar nessa permutação cada M(3).

Ilustração:

- Observações:
 - Para cada permutação com repetição temos 6 lugares possíveis para colocar a letra M
 - Devemos escolher 3 lugares entre 6 para colocar as 3 letras M
- Conclusão 2: Fixada uma permutação de A(1), B(2) e
 E(2), temos C(6, 3) maneiras de colocar as letras M(3).

Exemplo 6 (continuação):

— Conclusão do problema:

1 permutação com repetição de A, B e E (etapa 2) C(6, 3) anagramas

total de permutações com repetição
$$P_5^{2,2,1}$$
 geram $P_5^{2,2,1} \times C(6,3) = N$ (etapa 1)

$$\left(\frac{5!}{2!\ 2!\ 1!} \times \frac{6!}{3!\ 3!}\right)$$

Resposta:

O número de anagramas da palavra MAMBEMBE que não possuem duas ou três letras M juntas são 600.

Desafio:

Tente resolver o exemplo 6 usando o seguinte raciocínio:

Etapa 1: Calcule o número de todos os anagramas de MAMBEMBE (incluindo aqueles em que aparecem 2 ou 3 letras M juntas), N₁.

Etapa 2: Calcule o número de anagramas onde aparecem exatamente duas M juntas, N_2 .

(MMMABEBE não é um anagrama desta etapa)

Etapa 3: Calcule o número de anagramas onde aparecem exatamente três M juntas, N_3 .

Conclusão:

$$N = N_1 - N_2 - N_3$$
 (pelo princípio aditivo)

Resumo:

Sejam <u>n</u> objetos tais que n_1 entre eles são <u>iguais</u> a a_1 , n_2 são <u>iguais</u> a a_2 , ..., n_r são <u>iguais</u> a a_r , sendo a_1 ... a_r <u>diferentes</u> e $n_1 = n_1 + n_2 + ... + n_r$.

Conceito:

Permutação com repetição

Característica: importa a posição dos objetos diferentes.

$$\underbrace{(a_{1},a_{1},...,a_{1},a_{2}...a_{2},...a_{2}}_{n_{1}},\underbrace{a_{2}...a_{2}}_{n_{2}}...\underbrace{a_{r},...a_{r}}_{n_{r}} \neq \underbrace{a_{1}...a_{1}}_{n_{1}},a_{2}.a_{1}\underbrace{a_{2}...a_{2}}_{n_{2}}...\underbrace{a_{r}...a_{r}}_{n_{r}})$$

Propriedade:

Número de permutações com repetição

$$P_n^{n_1, ..., n_r} = \frac{n!}{n_1! ... n_r!}$$

cederj