# 03 규칙기반 인공지능 Rule-based Artificial Intelligence

#### **CONTENTS**

- 6.1 인공지능에 쓰이는 논리와 추론
- 6.2 인공지능에서의 탐색 기법
- 6.3 인공지능과 알고리즘
- 6.4 규칙기반 전문가 시스템
- 6.5 인공지능과 관련된 흥미로운 문제들
- 가까운 곳에서 인공지능 경험하기
- 생각하고 토론하기
- 인공지능 실습하기
- 연습문제



# [학습 목표]

규칙기반 인공지능의 추론 및 전문가 시스템과 인공지능 문제들을 탐구한다.



# [학습 목차]



- 규칙기반 인공지능에 활용되는 논리와 추론의 방법에 대해 살펴본다.
- 인공지능에서의 여러 가지 탐색 기법과 휴리스틱에 관해 알아본다.
- 인공지능에서 문제 해결의 중요성과 A\* 알고리즘을 알아본다.
- 규칙기반 전문가 시스템의 개념과 응용 분야를 요약해본다.
- 인공지능 문제 해결을 위한 중요 단계와 '8-puzzle 게임'을 경험해본다.
- 인공지능과 관련된 흥미로운 문제들의 풀이를 시도해본다.



#### (1) 규칙기반 인공지능에서의 논리와 추론

- 규칙기반 인공지능은 논리 바탕의 규칙을 통해 추론
- 논리는 다양한 논리 연산으로 폭넓게 활용됨
- 탐색 방법, 문제 해결 알고리즘, 지식처리 등에 필요
- 전문가 시스템 등의 응용에 필수적인 기반 지식
- 논리와 다양한 논리 연산 등의 기초지식이 필요함

Logic and Rules-Based AI



#### (2) 논리란 무엇인가?

- 인간의 사고가 논리적인지를 판단하는 기준
- 토론이나 논쟁에서 중요한 것은 주장의 논리성
- 상대방을 논리적으로 설득하는 것이 매우 중요
- 객관적이고 명확한 사고 법칙의 준수로 결정됨
- 논리를 통한 입증에 필요한 법칙 제공



[그림 6.1] 논리적 판단의 필요성



#### 논리의 활용

- 컴퓨터 관련 학문이나 공학 등의 분야에 폭넓게 응용됨
- 규칙기반(rule-based) 인공지능에 이론적 기반 제공
- AI 학자들이 논리를 규칙기반 인공지능의 실현에 적용
- AI에서 지식 표현이나 추론(inference)의 도구로 쓰임





#### (3) 논리 연산

- 명제(propositional) 논리와 술어(predicate) 논리
- 명제 논리는 전체의 참/거짓을 판별하는 법칙 다룸
- 술어 논리는 주어와 술어로 구분하여 참/거짓 법칙 다룸
- 명제(proposition)는 논리에서 가장 기초적인 개념
- 명확하게 참(T)/거짓(F)을 구분할 수 있는 문장이나 식
- "2 × 7의 값은 홀수다."는 거짓인 문장
- "사과는 맛있다."는 참/거짓 구분 안 되니 명제 아님
- 합성 명제는 둘 이상의 명제가 결합된 명제



[그림 6.2] 명제의 T 또는 F



#### 논리 연산

#### ① 논리 부정(negation)

- 명제 p에 대한 부정은 명제 p의 반대되는 진리값
- 기호로는 ~p, 'not p 또는 p가 아니다'라 읽음
- 만약 p의 진리값이 T이면 ~p의 진리값은 F
- p의 진리값이 F이면 ~p의 진리값은 T

⟨표 6.1⟩ 논리 부정에 대한 진리표

| þ | ~ <i>p</i> |
|---|------------|
| Т | F          |
| F | Т          |



## ② 논리합(disjunction)

- 명제 p, q가 '또는(OR)'일 때 p, q의 논리합
- pvq로 표시, 'p or q나 p 또는 q'라 읽음
- p v q는 두 명제가 모두 F인 경우에만 F의 진리값 그렇지 않으면 모두 T의 진리값
- "사과는 채소이거나, 시금치는 채소이다."는 T

〈표 6.2〉 논리합에 대한 진리표

| Þ | q | $ p \lor q $ |
|---|---|--------------|
| Т | Т | Т            |
| Т | F | Т            |
| F | Т | Т            |
| F | F | F            |



## ③ 논리곱(conjunction)

- 명제 p, q가 '그리고(AND)'일 때 p, q의 논리곱
- p^q로 표시, 'p and q 또는 p 그리고 q'라고 읽음
- p^q는 두 명제가 모두 T인 경우에만 T, 그 외엔 F
- "사과는 과일이고, 시금치는 채소이다."는 T
- "서울은 대한민국의 수도이고, 3 × 2 = 5이다."는 F

〈표 6.3〉 논리곱에 대한 진리표

| þ | q | $p \wedge q$ |
|---|---|--------------|
| Т | Т | Т            |
| Т | F | F            |
| F | Т | F            |
| F | F | F            |



## ④ 조건(implication) 또는 함축

- p, q의 조건 연산자는 p → q, 'p이면 q이다'라 읽음
- p → q는 p가 T이고 q가 F일 때만 F, 그 외 모두 T
- →는 인공지능에서 (if p, then q)로 많이 쓰임
- "유채꽃이 노랗다면, 바다가 육지이다."는 F
- "3 × 2 = 5라면, 런던은 미국의 수도이다."는 T
- 즉 조건 명제에서는 가정이 F이면 결론은 항상 T

⟨표 6.4⟩ 조건에 대한 진리표

| þ | q | $\sim p \rightarrow q$ |
|---|---|------------------------|
| Т | Т | Т                      |
| Т | F | F                      |
| F | Т | Т                      |
| F | F | Т                      |



## (4) 술어 논리(predicate logic)

- 변수의 값에 따라 T 또는 F가 결정됨
- 'x<sup>2</sup> + 5x + 6 = 0'는 x값이 2나 3일 경우에만 T
- 술어 논리는 지식을 논리적 식으로 표현
- 술어 논리에서는 대상들 간의 관계도 나타낼 수 있음
- "영철이는 남자다."는 남자(영철)와 같이 나타낼 수 있음
- "영철의 아버지는 김춘추 씨다."라는 문장 '아버지(김춘추, 영철)'과 같이 표현 가능



#### (5) 추론의 의미와 인공지능

- 추론이란 '알려진 사실이나 명제를 근거로 삼아 미지의 사실에 대한 판단이나 결론을 이끌어내는 사고 과정'
- 글의 앞뒤 사실로 미루어 추론하는 것과 같은 원리
- Prolog(프롤로그)는 추론에 주로 쓰이는 프로그래밍 언어





## (6) 추론의 종류

#### ① 귀납 추론(induction)

- 개별적인 사실들로부터 일반적인 결론을 이끌어내는 방법
- 연역 추론과 같은 논리적 필연성이 적음
- 새로운 지식이나 이론의 발견과 확장에 쓰이는 추론 방법
- 귀납 추론의 예

```
까마귀 1은 까맣다.
까마귀 2도 까맣다.
까마귀 3도 까맣다.
까마귀 4도 까맣다.
까마귀 n도 까맣다.
따라서 "모든 까마귀는 까맣다."라고 추론
```



#### 여기서 잠깐! 귀납 추론과 연역 추론

귀납 추론은 여러 사실들로부터 일반적인 결론을 도출하고, 연역 추론 은 소전제와 대전체가 결합하여 다른 새로운 결론을 도출해낸다.





## ② 연역 추론(deduction)

- 연역 추론은 가장 널리 쓰이는 추론 방법
- 전제로부터 다른 결론을 도출해내는 추론 방식
- 최초의 대전제가 결론을 이끌어내는 가장 중요한 근거
- 확장성은 부족하나 논리의 일관성이 장점
- 연역 추론 중 삼단논법이 잘 알려짐

대전제 - 소크라테스는 사람이다.

소전제 - 사람은 모두 죽는다.

결론 - 따라서 소크라테스는 죽는다.



## ③ 유비 추론(analogy)

- 유비 추론은 간단히 '유추'라고도 함
- 두 개의 대상에서 어떤 현상이 유사하거나 일치하기 때문에 다른 현상도 유사하거나 일치할 것이라고 추론하는 방법
- 유비 추론은 기존에 모르던 새로운 영역 이해에 도움





#### (1) 추론을 통한 탐색

- 순방향 추론과 역방향 추론이 있음
- 순방향 추론은 출발 상태에서 목표 상태로 진행
- 역방향 추론은 목표 상태에서 출발 상태로 진행
- 순방향 추론과 역방향 추론을 접합한 양방향 추론도 있음



[그림 6.3] 순방향 추론과 역방향 추론



#### (2) 깊이 우선 탐색(Depth First Search, DFS)

- 첫 정점(node) 방문, 왼쪽으로 이동하여 계속 탐색
- 탐색할 정점이 없으면, 되돌아와서 순환적으로 탐색
- 그림에서 1, 2, 3, 4, 5, 6의 순서로 방문



[그림 6.4] 깊이 우선 탐색의 순서



#### (3) 너비 우선 탐색(Breadth-First Search, BFS)

- 시작 정점 방문 후 시작 정점과 연결된 모든 정점들을
   왼쪽부터 차례대로 방문
- 그 후 level의 순서에 따라 차례로 탐색
- 즉 level 0, level 1, level 2, ... 의 순서로 탐색
- 그림에서 1, 2, 3, 4, 5, 6의 순서로 방문



[그림 6.5] 너비 우선 탐색의 순서



#### (4) 휴리스틱 탐색(heuristic search)

- 무정보 탐색(uninformed search)은 사전 정보를 사용하지 않고 일정한 순서대로만 탐색
- 깊이 우선 탐색과 너비 우선 탐색은 무정보 탐색임
- 휴리스틱 탐색은 탐색 과정에서 경험적 지식을 활용
- 휴리스틱 개념은 7.3절의 (3)에서 설명

#### Heuristic Search Techniques



- General-purpose heuristics.
- Best-first search.
- Branch and bound search (uniform cost search).
- A\* algorithm
- Hill climbing.
- Beam search.



#### (5) 최소최대 탐색(minimax search)

- 주로 상대가 있는 2인용 게임에서의 탐색
- 미국 어린이들이 즐기는 틱텍토(Tic-Tac-Toe) 게임
- 가로, 세로, 대각선으로 3개가 연속될 경우 이기는 게임
- 나의 가능성 최대, 상대방의 가능성 최소 전략 탐색
- 탐색이 필요 없는 경로를 잘라내는 작업을 전지 작업(pruning)



[그림 6.6] 틱텍토(Tic-Tac-Toe) 게임



## 6.3 인공지능과 알고리즘

#### (1) 알고리즘(algorithm)이란 무엇인가?

- 인공지능에서 알고리즘이란 용어가 자주 나옴
- 신경망에서의 역전파 알고리즘 등
- 문제 해결을 위한 단계들을 체계적으로 명시한 것
- 문제를 해결하는 방법의 상세한 특징을 기술하는 것
- 표현 방법으로는 순서도, 유사 코드, 언어적 표현 등
- 알고리즘은 단 하나만 있는 것이 아님





[그림 6.7] 알고리즘의 개념



## 🖼 6.3 인공지능과 알고리즘

#### (2) 생활 속의 알고리즘

- ① 기초적인 수학 연산
  - 덧셈과 곱셈 방법, 최대공약수를 구하는 방법 등
- ② 라면 조리법
  - 라면을 맛있게 끓이기 위한 조리 방법
  - 물의 양, 불의 세기, 끓이는 시간 등이 주요 요소



[그림 6.8] 맛있는 라면 끓이는 알고리즘



## 🖾 6.3 인공지능과 알고리즘

#### (2) 생활 속의 알고리즘(계속)

- ③ 하루의 일정 계획
  - 아침에 학교에 가려고 할 때의 일정 계획
  - 기상 시간, 식사 시간, 버스나 지하철 이용 등
- ④ 가전제품의 사용 매뉴얼
  - 세탁기나 전자레인지 등의 단계별 사용 설명서



# ⑥ 6.3 인공지능과 알고리즘

#### (2) 생활 속의 알고리즘(계속)

- ⑤ 지하철 환승 방법
  - 어느 지하철역에서의 환승이 효율적인지 판단
- ⑥ 알파고와 같은 인공지능 방법론
  - 바둑이나 게임 등에서 복잡한 것 해결 방법
  - 그 외 생활 속의 알고리즘이 매우 많음



## 🔞 6.3 인공지능과 알고리즘

#### (3) 휴리스틱(heuristic)을 이용한 알고리즘

- 휴리스틱은 비슷한 문제에 대한 과거의 경험들을 바탕으로 직관적으로 판단하여 선택하는 의사결정 방식
- 인공지능에서 휴리스틱 알고리즘이 상당히 많이 쓰임
- 논리적이거나 최적의 방법을 보장하는 것은 아님
- 만족할만한 해결책의 비교적 빠른 실용적인 방법
- 현실적으로 만족할 수 있는 답을 찾는 접근법
- 인공지능, 심리학, 경제학 분야에서 많이 사용



## 6.3 인공지능과 알고리즘

#### 휴리스틱의 예

#### 폴리아의 『How to solve it』에서의 휴리스틱 예

- 어떤 문제를 이해하기 어려우면 그림으로 그려보기
- 해답을 얻었다고 가정하고 반대 방향으로 유도해보기
- 그 문제가 추상적이면 구체적인 예를 시도해보기



[그림 6.9] 『How to solve it』



# ⑥ 6.3 인공지능과 알고리즘

#### (4) 인공지능 A\* 알고리즘

- A\* 알고리즘은 최상우선 탐색 중 가장 잘 알려짐
- 문제 해결에 매우 효과적인 탐색 알고리즘
- 출발점에서 목표지점까지의 최적 경로 탐색의 한 방법
- 가장 비용이 적거나 짧은 경로 찾기
- 평가 함수 f를 사용하여 다음에 이동할 경로를 결정함



[그림 6.10] A\* 알고리즘



## 🖼 6.3 인공지능과 알고리즘

#### (5) 인공지능 알고리즘의 예: 8-Queens 문제

- 8-Queens 문제는 체스에서 유래
- 서로를 공격하지 않는 위치에 8개의 퀸(Q) 배치
- 퀸은 수평, 수직, 대각선 방향으로 몇 칸이든 이동 가능
- 어떤 퀸도 서로 공격 당하지 않는 위치에 놓여야 함



[그림 6.11] 퀸이 공격하는 패턴



## 🔞 6.3 인공지능과 알고리즘

#### 8-Queens 문제 해결

- 64개의 칸을 가진 8-Queens 문제의 경우의 수?
- 약 44억 가지의 엄청난 경우의 수
- 통상 인공지능 방법으로 프로그램하여 해답을 구함
- 몇 가지의 해답이 나옴





[그림 6.12] 8-Queens 문제의 가능한 해답들



## 🔟 6.3 인공지능과 알고리즘

#### 4-Queens 문제

- 체스 판을 4 x 4로 축소한 소위 4-Queens 문제
- 2가지 경우의 해답을 얻을 수 있음
- 수평, 수직, 대각선 방향으로 점검
- 어떤 퀸도 서로 공격 당하지 않는 위치임을 확인

|   | Q |   |   |
|---|---|---|---|
|   |   |   | Q |
| Q |   |   |   |
|   |   | Q |   |

|   |   | Q |   |
|---|---|---|---|
| Q |   |   |   |
|   |   |   | Q |
|   | Q |   |   |

[그림 6.13] 4-queens 문제



## 🔞 6.4 규칙기반 전문가 시스템

## (1) 지식처리 기술과 지식 획득

- 규칙(rule)은 "If ooo then xxx"란 형식으로 표현
- 지식처리 기술은 규칙이나 프레임에 의한 표현
- 의미 네트워크는 개념 간의 관계를 링크(link)로 연결
- 개와 세퍼드, 개와 진돗개를 링크로 연결
- 의미 네트워크는 지식을 체계화시켜 표현하기에 적합



[그림 6.14] 의미 네트워크의 예



## 🔟 6.4 규칙기반 전문가 시스템

## (2) 규칙기반 시스템의 작동 예

- 규칙기반 시스템은 사실(fact)을 나타내는 지식베이스와 If ooo then xxx와 같은 추론규칙으로 이루어짐
- 질의에 대해 지식베이스와 추론규칙을 이용하여 추론한 후 그 결과를 알려줌
- '소크라테스의 죽음'의 간단한 예

| Rule of<br>Inference                 | Name        | Rule of<br>Inference                                               | Name                   |
|--------------------------------------|-------------|--------------------------------------------------------------------|------------------------|
| $\frac{P}{\therefore P}_{\forall Q}$ | Addition    | $\frac{P\vee Q}{\neg P}$                                           | Disjuncti<br>Syllogis  |
| $P$ $Q$ $\therefore P$ $\land Q$     | Conjunction | $P \rightarrow Q$ $Q \rightarrow R$ $\therefore P$ $\rightarrow R$ | Hypotheti<br>Syllogisi |



## 6.4 규칙기반 전문가 시스템

#### 규칙기반 시스템의 간단한 예

지식베이스: Socrates is a human [소크라테스는 사람이다]

Daesukim is a human [김대수는 사람이다]

Wurry is an animal [워리(강아지 이름)는 동물이다]

추론규칙: If X is a human, then X dies [모든 사람은 죽는다]

If X is an animal then X dies [모든 동물은 죽는다]

질의: Is Socrates die? [소크라테스는 죽는가?]

답변: Yes

질의: Tell me what dies? [모든 죽는 것들은 무엇인가?]

답변: Socrates, Daesukim, wurry [소크라테스, 김대수, 워리]

[그림 6.15] 규칙기반 시스템의 간단한 예



## 🖾 6.4 규칙기반 전문가 시스템

#### 규칙기반 시스템의 결과 분석

- 'Is Socrates die?'란 질의에 대한 답변
- 'Socrates is a human'이란 지식베이스의 사실과 'If X is a human, then X dies'란 추론규칙이 결합하여 '소크라테스는 죽는다'는 답변을 이끌어냄
- 또 'Tell me what dies?'에 대해서도 'Socrates, Daesukim, wurry'가 죽는다는 결론 도출
- 규칙기반 시스템은 Prolog로 편리하게 프로그래밍 가능



## 6.4 규칙기반 전문가 시스템

#### (3) 인간 전문가를 대신하는 전문가 시스템

- 전문가 시스템(Expert System)은 컴퓨터 자문 시스템의 일종
- 특정 분야에서의 인간 전문가의 전문 지식을 활용
- 인공지능의 추론 능력을 이용한 문제 해결 시스템
- 전문가의 지식을 정리하여 지식베이스부터 구축함
- 사용자가 질문하면 추론기구가 지식베이스를 이용하여 추론
- 사용자에게 그 결과를 전해주게 됨



[그림 6.16] 전문가 시스템의 구조



## 6.4 규칙기반 전문가 시스템

#### 전문가 시스템으로 향한 이유

- 규칙기반 인공지능이 전문가 시스템으로 응용
- A\* 알고리즘 이후 새로운 알고리즘 발견의 어려움





## 🔞 6.4 규칙기반 전문가 시스템

#### (4) 전문가 시스템의 적용 분야

- 전문가 시스템은 규칙기반 인공지능 기법 이용
- 전문가의 지식을 손쉽게 이용할 수 있는 장점
- 자동차 전문가 시스템 등 다양한 분야에 적용



[그림 6.17] 자동차 전문가 시스템



## 6.4 규칙기반 전문가 시스템

#### 전문가 시스템의 응용

• 전문가 시스템은 다방면에 걸쳐 응용됨

#### 〈표 6.5〉 전문가 시스템의 응용

| 이름         | 기능            | 개발 기관                 |
|------------|---------------|-----------------------|
| MYCIN      | 백혈병 진단        | 스탠퍼드 대학               |
| DENDRAL    | 질량 분석의 해설     | 스탠퍼드 대학               |
| PROSPECTOR | 광맥 탐사         | SRI International     |
| AIRPLAN    | 항공기 이착륙 관리    | U. S. Army            |
| LOGOS      | 자동 번역         | Logos Computer System |
| ASK        | 자연어 DB 관리 시스템 | Caltech               |



## 🔟 6.4 규칙기반 전문가 시스템

#### 전문가 시스템의 예

- DENDRAL은 스탠퍼드 대학에서 개발한 화학 전문가 시스템
- 분자의 구조를 예측할 수 있도록 개발된 전문가 시스템
- DENDRAL은 휴리스틱을 사용한 후 전문가와 대등한 수준



[그림 6.18] DENDRAL 전문가 시스템



#### (1) 인공지능 문제 해결을 위한 중요 단계

- 문제를 명확하게 정의
- 문제에 대한 철저한 분석
- 정해진 제약 조건이나 규칙이 있는 경우 규칙의 적용에 대한 검증
- 최적의 기법 선택
- 결과가 나오면 과정에 문제점이 없는지 분석 검토



#### (2) 초기의 인공지능 적용 문제 '상자 쌓기'

• 일정한 규칙과 목표 상태가 주어진 경우 인공지능을 이용하여 해결하는 방법의 예

#### [문제 7.1] 상자 쌓기 문제

- 왼쪽에서 상자를 하나씩 옮겨 목표 상태로 만들기
- 작은 번호의 상자가 큰 번호 상자 밑으로 가도록 함
- 상자는 다른 상자 위나 바닥 C에 놓을 수 있음
- 상자의 이동 횟수와 그 방법?



[그림 6.19] 상자 쌓기 문제



#### [문제 7.1] 상자 쌓기 문제의 풀이

- 단 3회의 이동으로 가능
- 먼저 3번 상자를 비어 있는 공간 C에 옮김
- A의 1번 상자 위에 2번, 3번 상자를 차례로 쌓기
- 초기 인공지능이 프로그램을 통해 풀었던 문제



[그림 6.20] 상자 쌓기 문제의 풀이



#### [문제 7.1]의 인공지능적인 풀이

- 규칙기반 시스템의 지식베이스와 추론규칙을 만들어 적용
- A 위에는 1, 3이 차례로 있고, B 위에는 2가 있음 C 위에는 아무 것도 없는 사실을 지식베이스에 저장
- 여기서의 추론규칙은 "상자를 하나씩 옮긴다."와 작은 번호의 상자가 큰 번호의 상자 밑으로 가도록 하려고 한다."
- 목표 상태는 "A 위에 1, 2, 3이 차례대로 놓인다."
- 규칙기반 인공지능 프로그래밍 언어를 사용하여 해결



#### (3) 대표적인 인공지능 게임 '8-puzzle 게임'

- 인공지능에서 휴리스틱을 사용하는 초기의 예
- 3 × 3 크기의 박스에서 목표 상태로 가는 게임
- 게임 판의 숫자는 빈칸을 향해 상하좌우로 움직임
- 미국 유치원과 초등학생들의 두뇌 향상 게임
- 생각보다 오래 걸리는 경우가 있음



[그림 6.21] 8-puzzle 게임



#### [문제 7.2] '8-puzzle 게임'의 휴리스틱

- 이 문제를 푸는 휴리스틱은 무엇일까?
- 위치가 맞지 않은 숫자의 개수를 줄여나가는 방향으로 이동 (즉, 위치가 맞는 개수를 늘려나가는 방향)
- 최종적으로 8개의 위치를 모두 일치시키기



[그림 6.22] 8-puzzle의 시작 상태와 목표 상태



#### [문제 7.2] '8-puzzle 게임'의 풀이

- 단 3번의 움직임만으로 목표 상태에 도달
- 숫자와 빈 공간인 점(.)의 위치를 맞바꾸면서 진행
- 목표와 일치하는 숫자가 많아지는 방향으로 이동
- 휴리스틱이 잘 적용되지 않는 경우도 있음, 휴리스틱의 한계성
- 프로그램으로 작성하면 그리 어렵지 않음



[그림 6.23] 목표 상태로의 이동



#### (4) 인공지능 기법으로 풀어보는 '물통 문제'

[문제 7.3] 물통(water jug 또는 물주전자) 문제

- 주어진 사실과 규칙들을 적용하여 문제를 해결
- 4리터짜리와 3리터짜리 물통이 각각 하나씩 있음
- 물통들에는 용량을 나타내는 어떠한 표시도 없음
- 4리터짜리 물통에다 꼭 2리터의 물을 채우는 방법?

사용할 수 있는 몇 가지 규칙이나 동작

- 물통에 물을 가득 채우기
- 물통의 물을 전부 다 비우기
- 물통에 남은 물을 다른 물통에다 붓기
- 물통의 물을 다른 물통이 가득 찰 때까지 붓기



#### [문제 7.3] 물통 문제의 풀이

- 3리터짜리 (물통)에 물을 가득 채우기
- 그것을 4리터짜리에 모두 붓기
- 비어 있는 3리터짜리에다 다시 물을 가득 채우기
- 3리터짜리의 물을 4리터짜리가 가득 찰 때까지 붓기
- 4리터짜리의 물을 모두 비우기
- 3리터짜리의 물을 4리터짜리에 모두 붓기. 완료!



물통 문제의 Python 소스 코드 참조 https://cs15.github.io/ai/lab-7/



#### (5) 문자 암호 풀이

- 1824년 퍼즐왕 헨리 듀드니의 유명한 문자 문제
- 뉴웰(Newell)에 의해 채택된 초기의 인공지능 문제
- 정교한 인공지능 프로그램을 통해 해결한 예

[문제 7.4] 각 문자는 0에서 9까지의 각각 다른 숫자 가짐 각 문자에 해당하는 숫자 구하기





[그림 6.25] 뉴엘과 문자 암호 풀이



#### 문자 암호의 풀이

- 같은 영문자는 위치가 달라도 같은 값을 가짐
- 수준이 높아 일반적 방법으로는 매우 풀기 어려움
- 가능성 있는 단서들로부터 미지수를 하나씩 풀어나감

• 
$$S = 9$$
,  $E = 5$ ,  $N = 6$ ,  $D = 7$ ,  $M = 1$ ,  $O = 0$ ,  $R = 8$ ,  $Y = 2$ 

[그림 6.26] 문자 암호 풀이의 답



#### 문자 암호의 유사한 문제 풀이

- 인공지능을 이용한 유사한 문제 풀이
- DONALD + GERALD 등

[그림 6.27] 문자 암호 풀이의 답



#### (6) 규칙의 적용을 이용한 문제 해결

[문제 7.5] 늑대, 염소, 양배추 문제

- 사람이 늑대, 염소, 양배추와 강의 오른쪽에 있음
- 사람은 이 중 하나만 선택, 강의 왼쪽/오른쪽으로 이동
- 사람 혼자서 건널 수도 있음
- 늑대와 염소만 남겨 두면 늑대가 염소를 잡아먹음
- 염소와 양배추만 남겨 두면 염소가 양배추를 먹음
- 염소나 양배추가 먹히지 않고 모두 강을 건너는 방법?



[그림 6.28] 늑대. 염소. 양배추 문제



#### 늑대, 염소, 양배추 문제의 풀이 예

- 먼저 양을 태우고 왼쪽으로 이동
- 양을 내려놓고 오른쪽으로 이동
- 늑대를 태우고 왼쪽으로 이동
- 늑대를 내려놓고, 양을 태우고 오른쪽으로 이동
- 양을 내려놓고, 양배추를 태우고 왼쪽으로 이동
- 양배추를 내려놓고 혼자서 오른쪽으로 이동
- 양을 태우고 왼쪽으로 이동 완료!!!
- Lisp이나 Python 언어를 이용해서도 해결 가능함



[가까운 곳에서 인공지능 경험하기]에서 풀이 과정 경험 권장!



#### 규칙기반 인공지능의 문제 해결 요약

- 규칙기반 인공지능 기법을 이용한 주요 문제들
- '늑대, 염소, 양배추 문제' 문제
- 인공지능 언어인 Lisp을 이용하여 편리하게 해결 가능
- 그 외에도 인공지능 규칙을 이용한 문제들이 많음
- 예를 들어 '원숭이와 바나나', '하노이의 탑', '선교사와 식인종' 등

## 가까운 곳에서 인공지능 경험하기

#### 늑대. 염소. 양배추 문제의 소프트웨어적 해결법

늑대, 염소, 양배추 문제를 다음의 URL에 연결하여 진행 과정을 경험해보자. 이 문제는 다음의 인공지능 사이트에 연결하여 풀이 과정을 화면으로 볼 수 있다.

https://www.youtube.com/watch?v=0qceTGx2bkg



## 생각하고 토론하기

- 1. '도로보쿤'과 같은 여러 개의 인공지능 로봇을 검색하여 그것의 인공지능 능력을 알아보고, 아직 미숙한 점들과 개선점을 생각하고 이야기해보자.
  - ✔ 아이디어 포인트 규칙기반 인공지능에서 지식의 추론 수준, 언어의 인식 수준 등

- 2. 미국의 인공지능 전문가이자 『AI Super Powers』라는 책의 저자인 카이푸 리(Kai-Fu Lee) 박사는 '앞으로 15년 이내에 현재 직업의 약 40%가 인공지능으로 대체될 것'이라 예측했다. 기존의 어떤 직업들이 대체될 가능성이 큰지를 생각하고 논의해보자.
  - ✔ 아이디어 포인트 단순 반복적인 업무는 로봇에 의해 대체, 상업적 자율주행차로 인한 운전기사 감소 등

실습 6 주어진 텍스트에 해당하는 이미지를 생성하는 인공지능을 실습해본다.
https://huggingface.co/spaces/stabilityai/stable-diffusion

| 실행방법 | 먼저 Example의 4번째 예인 아래 문장을 누른 후 "Generate Image"를 체크한다.

An insect robot preparing a delicious meal.



|실행결과 1| 그 결과 다음과 같은 "맛있는 음식을 준비하는 로봇" 이미지가 나타난다.



| 실행결과 2 | 그리고 다음과 같은 문장을 Copy하여 상단의 "Enter your prompt"에 넣거나 타이프하고 난 후 "Generate Image"를 체크한다.

A girl is skating on the ice field.

그 결과 다음과 같은 이미지를 얻을 수 있다.



참으로 신기하다. 다음의 3가지 경우도 넣어서 그 결과를 살펴보자.

A dog and cat is playing in the ground.

Peoples are dancing on the floor.

Girls are skating on the ice link.

1. 뉴런의 작용을 모델링한 신경망은 인공신경 망으로도 불린다. O

2. 맥컬럭은 인간 두뇌를 수많은 뉴런들로 이루어진 잘 정의된 컴퓨터라고 여겼다. O

3. 신경망은 문자인식, 음성인식, 영상인식, 자연어 처리 등의 분야에 이용되고 있다. O

4. XOR 함수는 선형 분리가 가능한 논리함수에 속한다. X

5. 신경망에서 가장 간단한 노드는 n개의 입력을 받아 n개의 연결강도 벡터들과 각각 곱해진 결과가 합해져서 특정한 활성 함수를 거쳐출력을 낸다. O

6. 노드는 내부적인 임계값이나 오프셋 θ, 그리고 비선형 함수의 형태에 따라 그 값이 정해지게 된다. ○

7. 단층 퍼셉트론의 한계점이 노출되면서 2000년대 중반에 다층 퍼셉트론 모델이 제안 되었다. X

8. 신경망은 병렬처리나 학습과 관련된 지능적 인 역할을 훌륭하게 수행해낸다. O

9. 단층 퍼셉트론은 딥러닝의 심층신경망을 거쳐 다층 퍼셉트론으로 발전하였다. X

10. 신경망에서 계산의 복잡성으로 학습 시간이 너무 오래 걸리는 등의 문제점이 있다. O

본 수업에 사용된 일부 자료 및 영상물은 강의 내용을 보충하기 위해 교육 목적으로 활용하였습니다. 자료 및 영상물의 불법적 이용, 무단 전재·배포는 법적으로 금지되어 있으니, 학생 여러분께서는 학습 외 용 도의 사용을 삼가 바랍니다.