

Универсально и экзистенциально аксиоматизируемые классы

Определение 22.1.

Пусть $\mathfrak{B} \in K_{\sigma}$, $A \subseteq |\mathfrak{B}|$. Будем говорить, что множество A замкнуто **этносительно операций** модели \mathfrak{B} , если:

- 1) $\forall f^n \in \sigma, \ \forall a_1, \dots, a_n \in A: f^{\mathfrak{B}}(a_1, \dots, a_n) \in A;$
- 2) $\forall c \in \sigma, \ c^{\mathfrak{B}} \in A$.

Определение 22.2.

Пусть $\mathfrak{A}, \mathfrak{B} \in K_{\sigma}$. \mathfrak{A} — подмодель \mathfrak{B} (обозначается $\mathfrak{A} \subseteq \mathfrak{B}$), если:

- 1) $|\mathfrak{A}| \subseteq |\mathfrak{B}|$;
- 2) $\forall P^n \in \sigma, \ \forall a_1, \dots, a_n \in |\mathfrak{A}|$ выполняется:

$$\mathfrak{A} \vDash P^{\mathfrak{A}}(a_1,\ldots,a_n) \Leftrightarrow \mathfrak{B} \vDash P^{\mathfrak{B}}(a_1,\ldots,a_n);$$

- 3) $\forall f^n \in \sigma, \ f^{\mathfrak{A}}(a_1, \dots, a_n) = f^{\mathfrak{B}}(a_1, \dots, a_n);$
- 4) $\forall c \in \sigma, \ c^{\mathfrak{A}} = c^{\mathfrak{B}}.$

Определение 22.3.

Пусть $\mathfrak{A}, \mathfrak{B} \in K_{\sigma}$. \mathfrak{A} - элементарная подмодель \mathfrak{B} (обозначается $\mathfrak{A} \preccurlyeq \mathfrak{B}$), если:

- 1) $|\mathfrak{A}| \subseteq |\mathfrak{B}|$;
- 2) $\forall \varphi(x_1,\ldots,x_n) \in F(\sigma), \forall a_1,\ldots,a_n \in |\mathfrak{A}|$ выполняется:

$$\mathfrak{A} \vDash \varphi(a_1, \dots, a_n) \Leftrightarrow \mathfrak{B} \vDash \varphi(a_1, \dots, a_n).$$

Пример:

Рассмотрим модели

$$\mathfrak{N} = \langle \mathbb{N}; +, \cdot, \leqslant \rangle$$
 и $\mathfrak{M} = \langle \mathbb{Z}; +, \cdot, \leqslant \rangle$.

Является ли $\mathfrak N$ подмоделью $\mathfrak M$? Да, т.к. абсолютно все сохраняется(т.к. $\mathbb N\subseteq\mathbb Z$).

Является ли \mathfrak{N} элементарной подмоделью \mathfrak{M} ?

Рассмотрим формулу $\varphi(x,y) = \exists x \forall y \colon x \leqslant y$. В $\mathfrak N$ такой x существует, но в $\mathfrak M$ такого x нет $\Rightarrow \mathfrak N$ не является элементарной подмоделью $\mathfrak M$.

Элементарная подмодель сохраняет все свойства оригинальной модели. Получается "некоторая малая копия модели" с теми же свойствами.

Предложение 22.5. Пусть $\mathfrak{A},\mathfrak{B}\in K_{\sigma}$ и $\mathfrak{A}\subseteq\mathfrak{B}$. Тогда для любого терма $t\in T(\sigma)$, где $FV(t)=\{x_1,\ldots,x_n\}$, и для любых элементов $a_1,\ldots,a_n\in |\mathfrak{A}|$ имеет место $t^{\mathfrak{A}}(a_1,\ldots,a_n)=t^{\mathfrak{B}}(a_1,\ldots,a_n)$.

Доказательство. Будем доказывать индукцией по построению терма.

- 1. Пусть $t = x_1$. Тогда $t^{\mathfrak{A}}(a_1) = a_1 = t^{\mathfrak{B}}(a_1)$.
- 2. Пусть $t=c\in\sigma$. Тогда, по определению подмодели получим $t^{\mathfrak{A}}=c^{\mathfrak{A}}=c^{\mathfrak{B}}=t^{\mathfrak{B}}.$
 - 3. Пусть $t = f(t_1, ..., t_n)$, где $f \in \sigma, t_1, ..., t_n \in T(\sigma)$ и

 $FV(t_1,...,t_n)=\{x_1,...,x_n\}$. Тогда, по Определению значения терма на модели, получим $t^{\mathfrak{A}}(a_1,...,a_n)=f^{\mathfrak{A}}(t_1^{\mathfrak{A}}(a_1,...,a_n),...,t_n^{\mathfrak{A}}(a_1,...,a_n))$. Далее, по

По индукционному предположению $t_i^{\mathfrak{A}}(a_1,\ldots,a_n)=t_i^{\mathfrak{B}}(a_1,\ldots,a_n).$ + по опр. подмодели (для функций)

$$f^{\mathfrak{A}}\left(t_{1}^{\mathfrak{A}}(a_{1},\ldots,a_{n}),\ldots,t_{n}^{\mathfrak{A}}(a_{1},\ldots,a_{n})\right)=f^{\mathfrak{B}}(t_{1}^{\mathfrak{B}}(a_{1},\ldots,a_{n}),\ldots,t_{n}^{\mathfrak{B}}(a_{1},\ldots,a_{n})).$$

Таким образом, получаем $t^{\mathfrak{A}}(a_1, ..., a_n) = t^{\mathfrak{B}}(a_1, ..., a_n)$.

Предложение 22.5 доказано.

Определение 3.10 (Значение терма на модели). Пусть дана сигнатура σ , модель $\mathfrak{A} \in K(\sigma)$ и множество переменных X. Отображение $\gamma: X \to |\mathfrak{A}|$ называется означиванием переменных из множества X на модели \mathfrak{A} . Рассмотрим терм $t \in T(\sigma)$, пусть его переменные принадлежат множеству $X: FV(t) \subseteq X$. Определим значение терма t на модели \mathfrak{A} , которое обозначается $t^{\mathfrak{A}}[\gamma]$.

- 1. Пусть $\mathbf{t} = \mathbf{x}$. Тогда $\mathbf{t}^{\mathfrak{A}}[\mathbf{\gamma}] = \mathbf{\gamma}(\mathbf{x})$.
- 2. Пусть $\mathbf{t} = \mathbf{c}$. Тогда $\mathbf{t}^{\mathfrak{A}}[\boldsymbol{\gamma}] = \mathbf{c}^{\mathfrak{A}}$.
- 3. Hycmb $\mathbf{t} = f(t_1, ..., t_n)$. Torda $\mathbf{t}^{\mathfrak{A}}[\gamma] = f^{\mathfrak{A}}(t_1^{\mathfrak{A}}[\gamma], ..., t_n^{\mathfrak{A}}[\gamma])$.

miro

Предложение 22.5.

Пусть $\mathfrak{A},\mathfrak{B}\in K_{\sigma},\ \mathfrak{A}\subseteq\mathfrak{B}.$ Тогда для $\forall \varphi(\overline{x})\in F(\sigma)$ - бескванторной, $\forall a_1,\ldots,a_n\in |\mathfrak{A}|:$

$$\mathfrak{A} \vDash \varphi(a_1,\ldots,a_n) \Leftrightarrow \mathfrak{B} \vDash \varphi(a_1,\ldots,a_n).$$

Если у нас простая подмодель дана, то для всех бескванторных формул это выполняется, но мы не можем проверить это для кванторных. В элементарных подмоделях и кванторные и бескванторные формулы выполняются.

ДОКАЗАТЕЛЬСТВО: По индукции формулы:

1)
$$\varphi = (t_1(\overline{x}) = t_2(\overline{x}))$$

Тогда
$$\mathfrak{A} \vDash \varphi(\overline{a}) \Leftrightarrow t_1^{\mathfrak{A}}(\overline{a}) = t_2^{\mathfrak{A}}(\overline{a}) \Leftrightarrow t_1^{\mathfrak{B}}(\overline{a}) = t_2^{\mathfrak{B}}(\overline{a}) \Leftrightarrow \mathfrak{B} \vDash \varphi(\overline{a});$$

$$2) \varphi = P(\overline{x})$$

Тогда
$$\mathfrak{A} \vDash \varphi(\overline{a}) \Leftrightarrow \mathfrak{A} \vDash P(\overline{a}) \Leftrightarrow \mathfrak{B} \vDash P(\overline{a}) \Rightarrow \mathfrak{B} \vDash \varphi(\overline{a});$$

3)
$$\varphi = \varphi_1 \& \varphi_2$$

Тогда $\mathfrak{A} \vDash \varphi(\overline{a}) \Leftrightarrow \mathfrak{A} \vDash \varphi_1(\overline{a})$ и $\mathfrak{A} \vDash \varphi_2(\overline{a}) \Leftrightarrow$ (по индук-му предположению)

это условие необходимо и достаточно!

а теперь задаём вопрос, если модель является подмоделью, то при каком условии она будет элементарной подмоделью?

Теорема 22.7. (Критерий элементарного вложения) Пусть $\mathfrak{A}, \mathfrak{B} \in K_{\sigma}$ и

 $\mathfrak{A}\subseteq\mathfrak{B}$. Тогда $\mathfrak{A}\preccurlyeq\mathfrak{B}$ тогда и только тогда, когда для любой формулы $\varphi(x_1,...,x_n)\in F(\sigma)$, имеющей вид $\exists x\,\psi(x,x_1,...,x_n)$ и для любых элементов $a_1,...,a_n\in |\mathfrak{A}|$ выполняется условие $a_1,...,a_n\in |\mathfrak{A}|$ выполняется условие

$$\mathfrak{B} \vDash \varphi(a_1, ..., a_n) \Leftrightarrow \exists c \in |\mathfrak{A}| \colon \mathfrak{B} \vDash \psi(c, a_1, ..., a_n).$$

Доказательство.

(⇒) Пусть $\mathfrak{A} \leq \mathfrak{B}$, $\varphi(x_1,...,x_n) = \exists x \, \psi(x,x_1,...,x_n)$ и $a_1,...,a_n \in |\mathfrak{A}|$. Тогда, так как $\mathfrak{A} \leq \mathfrak{B}$, то по определению элементарной подмодели, выполнено:

$$\mathfrak{B} \vDash \varphi(a_1, ..., a_n) \Leftrightarrow \mathfrak{A} \vDash \varphi(a_1, ..., a_n).$$

Далее, по определению истинности формулы на модели получаем

$$\mathfrak{A} \vDash \varphi(a_1, ..., a_n) \Leftrightarrow \mathfrak{A} \vDash \exists x \, \psi(x, a_1, ..., a_n) \Leftrightarrow \exists c \in |\mathfrak{A}| \colon \mathfrak{A} \vDash \psi(c, a_1, ..., a_n).$$

И еще раз используя определение элементарной подмодели, получаем

$$\mathfrak{A} \models \varphi(a_1, ..., a_n) \Leftrightarrow \exists c \in |\mathfrak{A}| \colon \mathfrak{B} \models \psi(c, a_1, ..., a_n)$$
, поэтому \leftarrow

 $\mathfrak{B} \models \varphi(a_1, ..., a_n) \Leftrightarrow \exists c \in |\mathfrak{A}| \colon \mathfrak{B} \models \psi(c, a_1, ..., a_n).$

(\Leftarrow) Пусть $\varphi(x_1,...,x_n)=\exists x\,\psi(x,x_1,...,x_n)$ и для любых элементов $a_1,...,a_n\in |\mathfrak{A}|$ выполняется условие

$$\mathfrak{B} \models \varphi(a_1, ..., a_n) \Leftrightarrow \exists c \in |\mathfrak{A}| \colon \mathfrak{B} \models \psi(c, a_1, ..., a_n).$$

Покажем, что для любой формулы $\varphi(x_1,...,x_n)$ и для любых элементов $a_1,...,a_n\in |\mathfrak{A}|$ выполняется условие

$$\mathfrak{A} \vDash \varphi(a_1, ..., a_n) \Leftrightarrow \mathfrak{B} \vDash \varphi(a_1, ..., a_n).$$

Представим формулу φ в предваренной нормальной форме. Т.е., пусть

$$\varphi(x_1, ..., x_n) = Q_1 y_1 ... Q_m y_m \psi(x_1, ..., x_n, y_1, ..., y_m),$$

где $Q_i \in \{\forall,\exists\}, \ i \in \{1,\dots,m\}$ и формула $\psi(x_1,\dots,x_n,y_1,\dots,y_m)$ – бескванторная.

Будем доказывать индукцией по количеству кванторов m.

- 1. Пусть m=0. Тогда формула φ бескванторная. Следовательно верность утверждения следует из Предложения 22.6.
- 2. Допустим, что для любой формулы, содержащей m кванторов утверждение верно. Докажем, что утверждение будет верно и для формулы, содержащей m+1 квантор.
- ϕ Пусть $\phi(x_1,...,x_n) = \exists y \phi'(y,x_1,...,x_n)$, где формула ϕ' содержит ровно m кванторов. Тогда, по определению истинности формулы на модели, имеем

$$\mathfrak{A} \models \exists y \varphi'(y, a_1, \dots, a_n) \Leftrightarrow \exists c \in |\mathfrak{A}| \colon \mathfrak{A} \models \varphi'(c, a_1, \dots, a_n).$$

Тогда, по индукционному предположению, и в силу того, что $|\mathfrak{A}| \subseteq |\mathfrak{B}|$ получим тут как бы два следовния, сущ на $A \Rightarrow$ сущ. на B и истинность(она в две стороны по инд. предп)

$$\exists c \in |\mathfrak{A}| \colon \mathfrak{A} \vDash \varphi'(c,a_1,\ldots,a_n) \Rightarrow \exists c \in |\mathfrak{B}| \colon \mathfrak{B} \vDash \varphi'(c,a_1,\ldots,a_n).$$

И, следовательно,

$$\mathfrak{A} \vDash \exists y \varphi'(y, a_1, \dots, a_n) \Rightarrow \mathfrak{B} \vDash \exists y \varphi'(y, a_1, \dots, a_n).$$

С другой стороны, из условия Теоремы вытекает

$$\mathfrak{B} \models \exists y \varphi'(y, a_1, ..., a_n) \Leftrightarrow \exists c \in |\mathfrak{A}| : \mathfrak{B} \models \varphi'(c, a_1, ..., a_n).$$

По индукционному предположению получаем

$$\exists c \in |\mathfrak{A}| : \mathfrak{B} \models \varphi'(c, a_1, ..., a_n) \Rightarrow \exists c \in |\mathfrak{A}| : \mathfrak{A} \models \varphi'(c, a_1, ..., a_n).$$
 И, следовательно,

$$\mathfrak{B} \vDash \exists y \varphi'(y, a_1, \dots, a_n) \Rightarrow \mathfrak{A} \vDash \exists y \varphi'(y, a_1, \dots, a_n).$$

жил горов. Гот да
$$moж$$
 дество ЛП (теорема полноты и корректности) $\mathfrak{A} \models \forall y \varphi'(y, x_1, ..., x_n) \Leftrightarrow \mathfrak{A} \models \neg \exists y \neg \varphi'(y, x_1, ..., x_n) \Leftrightarrow \mathfrak{A} \not\models \exists y \neg \varphi'(y, x_1, ..., x_n) \Leftrightarrow \mathfrak{A} \not\models \exists y \neg \varphi'(y, x_1, ..., x_n) \Leftrightarrow \mathfrak{B} \not\models \exists y \neg \varphi'(y, x_1, ..., x_n) \Leftrightarrow \mathfrak{B} \not\models \forall y \varphi'(y, x_1, ..., x_n).$

Теорема 22.7 доказана.

Рассмотрим некоторую модель $\mathfrak{A} = \langle A; \sigma \rangle$ и возьмём за $C_A = \{c_a \mid a \in A\}$ - множество констант такое, что $C_A \cap \sigma = \emptyset$ и для $\forall a, b \in A$ выполняется условие $a \neq b \Rightarrow c_a \neq c_b$. Рассмотрим расширенную сигнатуру $\sigma_A = \sigma \cup C_A$. Рассмотрим модель $\mathfrak{A}_A = \mathfrak{A} \mid \sigma_A$ (расширили на σ_A , т.е. $\mathfrak{A}_A = \langle A; \sigma_A \rangle$), где $c_a^{\mathfrak{A}_A} = a$.

Определение 22.7.

Пусть $\mathfrak{A} \in K_{\sigma}$. Элементарной диаграммой модели \mathfrak{A} называют множество предложений $D(\mathfrak{A}) = \{ \varphi \in S(\sigma_A) \mid \mathfrak{A}_A \vDash \varphi, \ \varphi \text{ - бескванторная} \}.$

Полной диаграммой модели $\mathfrak A$ называют множество предложений $FD(\mathfrak A) = \{ \varphi \in S(\sigma_A) \mid \mathfrak A_A \vDash \varphi \}.$

Пример:

Приведём пример диаграммы. Возьмем, например, модель натуральных чисел $\mathfrak{M} = \langle \mathbb{N}; +, \cdot, \leqslant, 0, 1 \rangle$.

У нас могут быть предложения:

$$\varphi_1 = \forall x \ (x \cdot 0 = 0)$$
 - истинное, $\varphi_2 = \forall x (x + 1 = x)$ - ложное.

Эти два предложения: φ_1 и $\neg \varphi_2$, попадают в теорию \mathfrak{M} . Но у нас может быть такая формула $x+y\leqslant 5$. И что с этим сделать? Нам надо определить, при каких означиваниях формулу можно будет добавить в диаграмму. Возьмём модель $\mathfrak{N}_{\mathbb{N}}$, расширенную на натуральный ряд, и если означивать переменные новыми получившимися константами, то мы получим вместо изначальной формулы множество предложений

$$\varphi_3' = c_1 + c_2 \leqslant 1$$
. И подставляем константы далее, т.е. может быть $\varphi_3'' = c_{10} + c_{50} \leqslant 1$ и $\varphi_3''' = c_{34} + c_{23} \leqslant 1$ и т.д.

Потом же все истинные образовавшиеся предложения мы добавляем в диаграмму. У нас в диаграмме прописывается все, что истинно, т.е. любые означивания формул. С моделью натуральных чисел все очевидно, но если возьмем иную модель, то уже не все так просто будет.

И чтобы задать модель, надо знать полную диаграмму. Полная диаграмма — это при всех означиваниях, что туда попадет, т.е. полная диаграмма полностью описывает модель. Если у нас известна полная диаграмма, то нам известна и вся описываемая модель. Если же известна элементарная диаграмма, то выяснить описываемую модель будет гораздо сложнее.

OCEP(a,); CIFP(a2); GFP(a3)

(х) истина на каком-то наборе

YXPCX) DOWN

р (x) & ¬р(У) истина на каком-то наборе

T= { P' Ca Ca Ca Ca Ca Ca = ai

CA = Sca,) Ca, Ca, Ca, CLA = (A, GU CA)

P(Ca,) P(Caz) P(Cas) & S(T)

 $D(CC) = \{P(C_{\alpha_1}), \neg P(C_{\alpha_2}), P(C_3)\} \leftarrow$

обогощаем синатуру константами и вмесето формул со свободными переменными вводим предложения, а потом выписываем атомарные предложения с этими новыми константами и получаем информацию о модели для элементарной добавим сюда ещё с разными комбинациями констант

p(x) & > p(4)

атомарная диаграма - истинность атомарных предложени

элементарная диаграма - все бескванторные предложени

если всё ещё не понятно:

а в полной диаграмме уже добавляем все возможные

Q (X) — играть на пианино

Q (Cama) - N

Q(tama)-1

но чтобы записать это формально мы говорим чт

Саша = Q; а в сигнатуру вводим Са

mire

Замечание 22.8.

- 1) $Th(\mathfrak{A}) \subseteq FD(\mathfrak{A});$ тут множество расширилось потому что расширилась сигнатура, остались все предложения которые были раньше и добавились с константами $\mathbb{E}[D(\mathfrak{A})] = \mathbb{E}[D(\mathfrak{A})]$ FD(00)= & WES(40) OLAFO)
- $(2)\;D(\mathfrak{A})\subseteq FD(\mathfrak{A})$ очевидно, в элементврную входят только бескв., в полную все
- $\mathfrak{A} > \mathfrak{A} \leq \mathfrak{B} \Rightarrow \mathfrak{A} \subseteq \mathfrak{B}$ и $\mathfrak{A} \equiv \mathfrak{B}$; <mark>если элементарная подмодель то нужно чтобы теории совпадали</mark>
- 4) $Th(\mathfrak{A}) \cup D(\mathfrak{A}) \subseteq FD(\mathfrak{A})$, c.nedyem us 1) u 2) ??

в диаграмме бескванторные предложения, они все будут истины и на подмодели

Пусть $\mathfrak{A} \subseteq \mathfrak{B}$, тогда $A = |\mathfrak{A}| \subseteq |\mathfrak{B}| = B$. Обозначим $\mathfrak{B}_A = \mathfrak{B}_B \upharpoonright \sigma_A$.

Предложение 22.10. Пусть \mathfrak{A} , $\mathfrak{B} \in K_{\sigma}$. Тогда

 $\mathfrak{A} \subseteq \mathfrak{B} \iff \mathfrak{B}_{A} \vDash D(\mathfrak{A}).$

эл-ты А, нам не надо брать эл-ты из В

Доказательство.

(⇒) Пусть $\mathfrak{A} \subseteq \mathfrak{B}$. Возьмём предложение $\varphi \in D(\mathfrak{A})$. Тогда существует такая бескванторная формула $\psi(x_1,...,x_n) \in F(\sigma)$ и такие элементы $a_1,...,a_n \in$ A, что $\varphi = \psi(c_{a_1}, ..., c_{a_n})$. Следовательно, получим

$$\begin{split} \varphi \in D(\mathfrak{A}) \Rightarrow \mathfrak{A}_A &\models \varphi \Rightarrow \mathfrak{A}_A \models \psi \left(c_{a_1}, \dots, c_{a_n} \right) \Rightarrow \mathfrak{A} \models \psi (a_1, \dots, a_n) \Rightarrow \\ \Rightarrow \mathfrak{B} &\models \psi (a_1, \dots, a_n) \Rightarrow \mathfrak{B}_A \models \psi \left(c_{a_1}, \dots, c_{a_n} \right) \Rightarrow \mathfrak{B}_A \models \varphi. \end{split}$$

 (\Leftarrow) Пусть $\mathfrak{B}_A \vDash D(\mathfrak{A})$.

Возьмём бескванторную формулу $\psi(x_1,...,x_n) \in F(\sigma)$. Тогда для любых

элементов $a_1, ..., a_n \in A$ имеем:

 $\mathfrak{A} \vDash \psi(a_1, ..., a_n) \Leftrightarrow \mathfrak{A}_A \vDash \psi(c_{a_1}, ..., c_{a_n}) \Leftrightarrow \psi(c_{a_1}, ..., c_{a_n}) \in D(\mathfrak{A}) \Leftrightarrow P(t_1, ..., t_s) - \phi opnyma.$ $\Leftrightarrow \mathfrak{B}_{\scriptscriptstyle{A}} \vDash \psi \left(\mathsf{c}_{a_1}, \ldots, \mathsf{c}_{a_n} \right) \Leftrightarrow \mathfrak{B} \vDash \psi (a_1, \ldots, a_n).$

- 1. Если t_1 и t_2 термы, то $t_1 = t_2$ формула.
- 3. Если φ и ψ формулы, то $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $\neg \varphi$, $\exists x \varphi(x) \ u \ \forall x \varphi(x) - \phi o p м y л ы.$
- 4. Других формул нет.

Следовательно, по определению, получаем, что $\mathfrak{A} \subseteq \mathfrak{B}$. $\frac{m.\kappa}{n}$ предикаты это формулы!!

выполняется для формул - выполняется для предикатов

Предложение 22.11. Пусть \mathfrak{A} , \mathfrak{B} ∈ K_{σ} и $A \subseteq B$. Тогда

$$\mathfrak{A} \leq \mathfrak{B} \iff \mathfrak{B}_A \models FD(\mathfrak{A}).$$

(⇒) Пусть $\mathfrak{A} \leq \mathfrak{B}$. Возьмём предложение $\varphi \in FD(\mathfrak{A})$. Существует такая формула $\psi(x_1,...,x_n) \in F(\sigma)$ и такие элементы $a_1,...,a_n \in A$, что $\varphi =$ $\psi(c_{a_1},...,c_{a_n})$. Следовательно, получим по опр полной диагр.

$$\varphi \in FD(\mathfrak{A}) \Rightarrow \mathfrak{A}_A \vDash \varphi \Rightarrow \mathfrak{A}_A \vDash \psi(c_{a_1}, ..., c_{a_n}) \Rightarrow \mathfrak{A} \vDash \psi(a_1, ..., a_n) \Rightarrow \mathfrak{B} \vDash \psi(a_1, ..., a_n) \Rightarrow \mathfrak{B}_A \vDash \varphi.$$

(⇐) Пусть $\mathfrak{B}_A \models FD(\mathfrak{A})$. Возьмём формулу $\psi(x_1,...,x_n) \in F(\sigma)$. Тогда для любых элементов $a_1, ..., a_n \in A$ имеем

$$\begin{split} \mathfrak{A} &\models \psi(a_1, \dots, a_n) \Leftrightarrow \mathfrak{A}_{\scriptscriptstyle{A}} \vDash \psi \left(c_{a_1}, \dots, c_{a_n} \right) \Leftrightarrow \psi \left(c_{a_1}, \dots, c_{a_n} \right) \in FD(\mathfrak{A}) \Leftrightarrow \\ &\Leftrightarrow \mathfrak{B}_{\scriptscriptstyle{A}} \vDash \psi \left(c_{a_1}, \dots, c_{a_n} \right) \Leftrightarrow \mathfrak{B} \vDash \psi(a_1, \dots, a_n). \end{split}$$

Следовательно, по Определению 22.4, получим, что № \$ В.

Предложение 22.11 доказано.

Определение 22.3. Пусть $\mathfrak{A},\mathfrak{B}\in K_{\sigma}$. \mathfrak{A} - элементарная подмодель $\mathfrak{B}($ обозначается

2) $\forall \varphi(x_1,\ldots,x_n) \in F(\sigma), \forall a_1,\ldots,a_n \in |\mathfrak{A}|$ выполняется $\mathfrak{A} \models \varphi(a_1, \dots, a_n) \Leftrightarrow \mathfrak{B} \models \varphi(a_1, \dots, a_n).$

miro

7

Определение 22.14. Пусть $\psi(x_1, ..., x_n, y_1, ..., y_m)$ — бескванторная формула сигнатуры σ . Тогда формула вида $\exists x_1 ... \exists x_n \psi(x_1, ..., x_n, y_1, ..., y_m)$ называется экзистенциальной формулой (или \exists -формулой), а формула вида $\forall x_1 ... \forall x_n \psi(x_1, ..., x_n, y_1, ..., y_m)$ называется универсальной формулой (или \forall -формулой).

Определение 22.15. Говорят, что класс K замкнут относительно подсистем, если вместе с каждой своей системой он содержит все ее подсистемы, т.е. если для любых $\mathfrak{A},\mathfrak{B}\in K_{\sigma}$ выполняется условие

$$(\mathfrak{A} \in K \bowtie \mathfrak{B} \subseteq \mathfrak{A}) \Rightarrow \mathfrak{B} \in K.$$

Определение 22.16. Говорят, что класс K замкнут относительно надсистем, если вместе с каждой своей системой он содержит все ее надсистемы, т.е. если для любых $\mathfrak{A}, \mathfrak{B} \in K_{\sigma}$ выполняется условие

$$(\mathfrak{A} \in K$$
 и $\mathfrak{A} \subseteq \mathfrak{B}) \Rightarrow \mathfrak{B} \in K$.

Определение 22.17. Пусть $K \subseteq K_{\sigma}$. Тогда **З-теорией** класса K называется множество предложений

$$Th_{\exists}(K) = \{ \varphi \in Th(K) | \varphi - \exists - \phi \text{ормула} \}.$$

Определение 22.18. Пусть $K \subseteq K_{\sigma}$. Тогда \forall -теорией класса K называется множество предложений

$$Th_{\forall}(K) = \{ \varphi \in Th(K) | \varphi - \forall - \text{формула} \}.$$

Предложение 22.19. Пусть $K \subseteq K_{\sigma}$. Тогда

а. $K \subseteq K(Th_{\exists}(K)); \quad K \subseteq K(Th_{(k)}), \quad Th_{\exists}(K) \subseteq Th_{(k)} \subseteq K(Th_{(k)})$

b. $K \subseteq K(Th_{\forall}(K))$.

Доказательство. а) Пусть $\mathfrak{A} \in K$. Выберем предложение $\varphi \in Th_{\exists}(K)$. Очевидно, что из $\varphi \in Th_{\exists}(K)$ следует, что $\varphi \in Th(K)$. А это означает, что $K \models \varphi$, в частности $\mathfrak{A} \models \varphi$. Таким образом, получаем, что $\mathfrak{A} \in K(Th_{\exists}(K))$.

b) Пусть $\mathfrak{A} \in K$. Выберем предложение $\varphi \in Th_{\forall}(K)$. Очевидно, что из $\varphi \in Th_{\forall}(K)$ следует, что $\varphi \in Th(K)$. А это означает, что $K \models \varphi$, в частности $\mathfrak{A} \models \varphi$. Таким образом, получаем, что $\mathfrak{A} \in K(Th_{\forall}(K))$.

Предложение 22.19 доказано.

Определение 22.20. Пусть $K \subseteq K_{\sigma}$. Класс K называется

 \exists -аксиоматизируемым, если существует такое множество \exists -предложений $\Gamma \subseteq S(\sigma)$, что $K = K(\Gamma)$.

Определение 22.21. Пусть $K \subseteq K_{\sigma}$. Класс K называется

 \forall -аксиоматизируемым, если существует такое множество \forall -предложений $\Gamma \subseteq S(\sigma)$, что $K = K(\Gamma)$.

Теорема 22.20. Пусть $K \subseteq K_{\sigma}$. Тогда

- a) Класс $K-\exists$ -аксиоматизируем тогда и только тогда, когда $K=K(Th_{\exists}(K)).$
- b) Класс K ∀-аксиоматизируем тогда и только тогда, когда K = $K(Th_{\forall}(K))$.

Доказательство.

а) (\Rightarrow) Пусть класс K- \exists -аксиоматизируем, значит существует такое множество \exists -предложений $\Gamma\subseteq S(\sigma)$, что $K=K(\Gamma)$. Очевидно, что тогда $\bigvee\{\xi=\xi\}$ $\bigvee\{$

Пусть $\mathfrak{A} \in K(Th_{\exists}(K))$. Тогда $\mathfrak{A} \models Th_{\exists}(K)$ и, следовательно, $\mathfrak{A} \models \Gamma$. Поэтому $\mathfrak{A} \in K(\Gamma) = K$. Мы показали, что $K(Th_{\exists}(K)) \subseteq K$, значит,

 $K = K(Th_{\exists}(K)).$

(⇐) Пусть $K = K(Th_{\exists}(K))$. Так как множество \exists -предложений $Th_{\exists}(K) \subseteq S(\sigma)$, то класс K \exists -аксиоматизируем.

b) (\Rightarrow) Пусть класс $K - \forall$ -аксиоматизируем, значит существует такое м.к.Г- множество A предложений и любая формула из гамма истина на K значит лежит в теории K а т.к. это A формула то принадлежит A теории множество \forall -предложений $\Gamma \subseteq S(\sigma)$, что $K = K(\Gamma)$. Очевидно, что тогда $\Gamma \subseteq Th_{\forall}(K)$. По Предложению 22.19 выполнено $K \subseteq K(Th_{\forall}(K))$. Покажем, что $K(Th_{\forall}(K)) \subseteq K$.

Пусть $\mathfrak{A} \in K(Th_{\forall}(K))$. Тогда $\mathfrak{A} \models Th_{\forall}(K)$ и, следовательно, $\mathfrak{A} \models \Gamma$. Поэтому $\mathfrak{A} \in K(\Gamma) = K$. Мы показали, что $K(Th_{\forall}(K)) \subseteq K$, значит,

 $K = K(Th_{\forall}(K)).$

(\Leftarrow) Пусть $K = K(Th_{\forall}(K))$. Так как множество ∀-предложений $Th_{\forall}(K) \subseteq S(\sigma)$, то класс K ∀-аксиоматизируем.

Теорема 22.21. Пусть класс $K \subseteq K_{\sigma}$ — аксиоматизируем. Тогда

- а) Класс $K \forall$ -аксиоматизируем тогда и только тогда, когда он замкнут относительно подсистем.
- b) Класс $K \exists$ -аксиоматизируем тогда и только тогда, когда он замкнут относительно надсистем.

Доказательство. Так как класс K — аксиоматизируем, то найдется такое множество предложений $\Gamma \in S(\sigma)$, что $K = K(\Gamma)$.

a) \Rightarrow) Пусть класс K- \forall -аксиоматизируем. Тогда $\Gamma=Th_{\forall}(K)$. Выберем системы $\mathfrak{A},\mathfrak{B}\in K_{\sigma}$ такие, что $\mathfrak{B}\in K$ и $\mathfrak{A}\subseteq\mathfrak{B}$. Пусть $\varphi\in\Gamma$. Тогда предложение φ имеет вид $\forall x_1\dots\forall x_n\psi(x_1,\dots,x_n)$, где формула $\psi(x_1,\dots,x_n)$ – бескванторная. Тогда получим, что $\mathfrak{B} \models \varphi$, т.е. $\mathfrak{B} \models \forall x_1 \dots \forall x_n \psi(x_1, \dots, x_n)$. Следовательно, по определению истинности формулы на модели, получим, что для любых $b_1,...,b_n\in |\mathfrak{B}|$ имеем $\mathfrak{B}\models \psi(b_1,...,b_n)$. А так как $\mathfrak{A}\subseteq \mathfrak{B}$, то и для любых $a_1, ..., a_n \in |\mathfrak{A}|$ имеем $\mathfrak{B} \models \psi(a_1, ..., a_n)$. Далее, по Предложению 22.6

получаем, что для любых $a_1, ..., a_n \in |\mathfrak{A}|$ выполнено $\mathfrak{A} \models \psi(a_1, ..., a_n)$.

выполнено $\mathfrak{A} \models \psi(a_1, ..., a_n)$.

бескванторной формуль $\varphi(x_1, ..., x_n) \in F(\sigma)$ и для любых элементов $a_1, ..., a_n \in |\mathfrak{A}|$ имеет место $\mathfrak{A} \models \varphi(a_1, ..., a_n)$. Следовательно, $\mathfrak{A} \models \varphi$. Таким образом, мы получили, что $\mathfrak{A} \models \Gamma$. Значит, $\mathfrak{A} \in K$, т.е. класс K замкнут относительно подсистем.

miro

т.к К - аксиоматизируем (\Leftarrow) Пусть класс K замкнут относительно подсистем, K = K(Th(K)). по пред. теореме Рассмотрим $\Gamma \leftrightharpoons Th_{\forall}(K)$ и покажем, что $K(\Gamma) = K$. По Предложению 22.19 выполнено $K \subseteq K(Th_{\forall}(K))$, то есть $K \subseteq K(\Gamma)$. Поэтому осталось показать, что $K(\Gamma) \subseteq K$. Рассмотрим произвольную модель $\mathfrak{A} \in K(\Gamma) = K(Th_{\forall}(K))$.

<u>Случай 1.</u> Пусть множество предложений $\Gamma \cup D(\mathfrak{A})$ – противоречиво. Тогда существуют такие предложения $\varphi_1, ..., \varphi_n \in \Gamma$ и $\psi_1, ..., \psi_k \in D(\mathfrak{A})$, что

секвенция $\varphi_1, ..., \varphi_n, \psi_1, ..., \psi_k \vdash$ доказуема.

Пусть $\psi = \psi_1 \& ... \& \psi_k$ Очевидно, что $\psi \in D(\mathfrak{A})$. Тогда существуют исходной сигнатуры сигма формула $\xi(x_1, ..., x_m)$ и элементы $a_1, ..., a_m \in |\mathfrak{A}|$ такие, что $\psi = \xi(c_{a_1}, ..., c_{a_m})$. Тогда имеем:

$$\frac{\varphi_1,...,\varphi_n,\xi(c_{a_1},...,c_{a_m}) \vdash}{\varphi_1,...,\varphi_n \vdash \neg\xi(c_{a_1},...,c_{a_m})}_{\text{можем навесить квантор поскольку константы это термы (доказывали в ТОСМ)}}{\varphi_1,...,\varphi_n \vdash \forall x_1 ... \forall x_m \neg\xi(x_1,...,x_m)}$$

Так как секвенция $\varphi_1, \dots, \varphi_n \vdash \forall x_1 \dots \forall x_m \neg \xi(x_1, \dots, x_m)$ доказуема, то она тождественно истинна. Поскольку $K \models \Gamma$, то $K \models \{\varphi_1, ..., \varphi_n\}$. Следовательно, по опр. т.и. секвенции если истинно то что было до швабры то будет истинно и то что после $K \models \forall x_1 ... \forall x_m \neg \xi(x_1, ..., x_m)$. А это означает, что

Предложение 22.19. Пусть $K \subseteq K_{\sigma}$. Тогда

a. $K \subseteq K(Th_{\exists}(K))$; b. $K \subseteq K(Th_{\forall}(K))$.

$$\forall x_1 \dots \forall x_m \neg \xi(x_1, \dots, x_m) \in Th_{\forall}(K) = \Gamma.$$

Следовательно,

P P ассмотрим произвольную модель $\mathfrak{A} \in K(\Gamma) = K(Th_{\Psi}(K))$.

$$\mathfrak{A} \vDash \forall x_1 \dots \forall x_m \neg \xi(x_1, \dots, x_m), \text{ т.е. } \mathfrak{A} \vDash \neg \xi(a_1, \dots, a_m).$$

Тогда получим, что

$$\mathfrak{A}_A \vDash \neg \xi(c_{a_1}, \dots, c_{a_m}), \text{ r.e. } \neg \psi = \neg \xi(c_{a_1}, \dots, c_{a_m}) \in D(\mathfrak{A}).$$

Таким образом, мы пришли к противоречию с $\psi \in D(\mathfrak{A})$. Значит Г и диаграмма А непротивореч

<u>Случай 2.</u> Пусть множество предложений $\Gamma \cup D(\mathfrak{A})$ непротиворечиво. Тогда, по теореме о существовании модели, найдется такая модель $\mathfrak{B}_A^{\text{модель исходной сигнатуры обогащённая константами из модели А}$ $\mathfrak{B}_A \models \Gamma \cup D(\mathfrak{A}). \ \text{Пусть } \mathfrak{B} = \mathfrak{B}_A \upharpoonright \sigma \ . \ \text{Очевидно, что тогда } \mathfrak{B} \models \Gamma. \ \text{Следовательно,}$ $\mathfrak{B} \in K. \ \text{М.К. K.} = K(\Gamma)$

С другой стороны, так как $\mathfrak{B}_A \models D(\mathfrak{A})$, то $\mathfrak{A} \subseteq \mathfrak{B}$. Следовательно, $\mathfrak{A} \in K$.

Стало быть, $K(Th_{\forall}(K)) \subseteq K$.

Предложение 22.10. Пусть $\mathfrak{A}, \mathfrak{B} \in K_{\sigma}$. Тогда $\mathfrak{A} \subseteq \mathfrak{B} \Leftrightarrow \mathfrak{B}_A \models D(\mathfrak{A})$.

Таким образом, мы показали, что $K = K(Th_{\forall}(K))$, т.е. класс K является \forall - аксиоматизируемым.

b) (\Rightarrow) Пусть класс K является \exists -аксиоматизируемым. Тогда $K = K(\Gamma)$, где любая формула $\varphi \in \Gamma$ является \exists -формулой.

Рассмотрим модели $\mathfrak{A} \in K$ и $\mathfrak{B} \supseteq \mathfrak{A}$. Покажем, что $\mathfrak{B} \models \Gamma$. что любая формкла из гамма истинна на В Пусть $\varphi \in \Gamma$ имеет вид $\varphi = \exists x_1 \dots \exists x_n \psi(x_1, \dots, x_n)$. Тогда из того, что $\mathfrak{A} \models \exists x_1 \dots \exists x_n \psi(x_1, \dots, x_n)$ следует, что найдутся элементы $a_1, \dots, a_n \in |\mathfrak{A}|$ такие, что $\mathfrak{A} \models \psi(a_1, \dots, a_n)$. А, так как $\mathfrak{A} \subseteq \mathfrak{B}$, то $a_1, \dots, a_n \in |\mathfrak{B}|$ и $\mathfrak{B} \models \psi(a_1, \dots, a_n)$. Следовательно, $\mathfrak{B} \models \exists x_1 \dots \exists x_n \psi(x_1, \dots, x_n)$, т.е. $\mathfrak{B} \models \varphi$. Таким образом, получили, что $\mathfrak{B} \models \Gamma$.

(⇐) Без доказательства.

Предложение 22.6. Пусть $\mathfrak{A},\mathfrak{B}\in K_{\sigma}$ и $\mathfrak{A}\subseteq \mathfrak{B}$. Тогда для любой бескванторной формулы $\varphi(x_1,...,x_n)\in F(\sigma)$ и для любых элементов $a_1,...,a_n\in |\mathfrak{A}|$ имеет место $\mathfrak{A}\models \varphi(a_1,...,a_n)\Leftrightarrow \mathfrak{B}\models \varphi(a_1,...,a_n).$