# Agenda

SCB PROTECT
POWERED BY SCB

- Data Preparation
- Conversion trend
- Model Prediction to enhance conversion rate
- Customer Segmentation by clustering

# **Data Preparation**

## Initial Data Cleaning and Feature Readiness Process



## **Profiling**

| shap |                       |         |       |      |         |                                                |
|------|-----------------------|---------|-------|------|---------|------------------------------------------------|
|      | Column                |         | %Null |      | #Unique | MinMeanMax_or_Unique                           |
| 0    | campaign_month        | object  | 0.0   | 0    | 12      | [Mar, Jul, Jan, Nov, Oct, Sep, Apr, Jun, Dec,  |
| 1    | marital_sta           | object  | 2.1   | 4635 | 8       | [โสด, สมรส, สมรสจด ทะเบียน, หย่าร้าง, ม่าย, อี |
| 2    | main_occupation       | object  | 0.7   | 1500 | 10      | [Salary man, Self-employed, Freelance, Housewi |
| 3    | customer_segment      | object  | 0.7   | 1500 | 3       | [Lower Mass, Mass, Upper Mass, nan]            |
| 4    | gender                | object  | 0.7   | 1500 | 2       | [Female, Male, nan]                            |
| 5    | have_acc_planet       | object  | 1.1   | 2401 | 2       | [N, Y, nan]                                    |
| 6    | have_cc               | object  | 0.7   | 1500 | 2       | [N, Y, nan]                                    |
| 7    | scb_payroll           | object  | 0.7   | 1500 | 2       | [Y, N, nan]                                    |
| 8    | num_children          | float64 | 0.7   | 1500 | 9       | [0.0, 0.04038826441888547, 21.0]               |
| 9    | age                   | float64 | 0.7   | 1500 | 39      | [23.0, 37.78451511238129, 61.0]                |
| 10   | income                | float64 | 1.1   | 2401 | 129477  | [0.0, 16867.35048068841, 199625.67]            |
| 11   | maxosdc_last_30d      | float64 | 1.1   | 2401 | 76455   | [0.0, 11354.821829843762, 4374289.15]          |
| 12   | dcspend_last_30d      | float64 | 1.1   | 2401 | 4335    | [-87030.88, 165.36634630510457, 1852987.91]    |
| 13   | easypymt_last_30d     | float64 | 1.1   | 2401 | 10545   | [0.0, 1196.3680287651223, 2000000.0]           |
| 14   | savacc_bal            | float64 | 1.1   | 2401 | 130874  | [0.0, 20856.298326998018, 4793828.33]          |
| 15   | currentacc_bal        | float64 | 1.1   | 2401 | 2       | [0.0, 0.0012172740552080603, 1.0]              |
| 16   | avg_savaccbal_30d     | float64 | 1.1   | 2401 | 150382  | [0.0, 15175.681839535351, 2471112.58]          |
| 17   | avg_currentaccbal_30d | float64 | 1.1   | 2401 | 174     | [0.0, 30.42249236862803, 1232520.06]           |
| 18   | mob                   | float64 | 1.1   | 2401 | 436     | [0.0, 54.56240870444586, 887.0]                |
| 19   | inflow30d             | float64 | 1.1   | 2401 | 74018   | [0.0, 25289.75274734142, 21471692.25]          |
| 20   | outflow30d            | float64 | 1.1   | 2401 | 80606   | [0.0, 25545.924888338872, 21471691.0]          |
| 21   | inflow1_15            | float64 | 1.1   | 2401 | 74018   | [0.0, 25289.75274734142, 21471692.25]          |
| 22   | outflow1_15           | float64 | 1.1   | 2401 | 80606   | [0.0, 25545.924888338872, 21471691.0]          |
| 23   | net_flow_30d          | float64 | 1.1   | 2401 | 72928   | [-1813780.11, -256.1721409977902, 2295697.16]  |
| 24   | net_flow_15d          | float64 | 1.1   | 2401 | 72928   | [-1813780.11, -256.1721409977902, 2295697.16]  |
| 25   | label                 | int64   | 0.0   | 0    | 3       | [0, 0.01671350460431588, 2]                    |
|      |                       |         |       |      |         |                                                |

## **Check Null**



## **Impute Unknown**

df\_prep['marital\_sta'] = df\_prep['marital\_sta'].fillna("unknown")

## **Conversion trend**

Monthly and Product-level insights on campaign performance







### **Trend by Product**



- Conversion rate สูงในช่วง Jun-Sep แม้มีการโทรที ต่ำ ที่ 1.88 %
- Product ที่ขายดีกว่าจะเป็น PA Insurance ที่ 1.3 %
- Trend การซื้อของ Product Life Insurance ลดลง ตั้งแต่ต้นปี 0.55% เป็น 0.33%

# **Predictive Model**



Objective: Used to identify customers with high potential to become leads

Campaign Response 0 = Reject Offer 1 = Accept Offer

### Feature Engineering

- Number of Products Held: The total number of products a customer has with us, including travel cards, credit cards, and SCB Payroll.
- Spend-to-Income Ratio: The ratio of a customer's spending in the last 30 days (dcspend\_last\_30d) to their income.

Imbalance Data: We used XGBoost and adjusted scale\_pos\_weight to handle class imbalance.

```
df_model['label'].value_counts(normalize=True)*100
# XGBoost recommends: scale_pos_weight = (num_neg / num_pos)
num_pos = sum(y_train == 1)
num_neg = sum(y_train == 0)
scale_pos_weight = num_neg / num_pos

df_model['label'].value_counts()

0 210976
1 2616
Name: label, dtype: int64

scale_pos_weight:", scale_pos_weight)

scale_pos_weight: 80.64022933588151
```

GridSearch Logging: Tracks all experiments with parameters and scores for reproducibility.

```
param_grid = {
    'max_depth': [5,6,7],
    'learning_rate': [0.1,0.3,0.5],
    'n_estimators': [100,300,500],
    'subsample': [0.7,0.8,1.0],
    'colsample_bytree': [0.7,0.8,1.0],
    'scale_pos_weight': [80,90,95]
}
```

# **Predictive Model**



Model Selection: Pick the model with the highest PR AUC of test set. (PR AUC = 0.0296)

Model Interpretation with SHAP Values: Explain model behavior and feature impact.



The variable avg\_savaccbal\_30d, which has the greatest impact on the model's prediction, shows that lower avg\_savaccbal\_30d values (in blue) contribute positively to the prediction, whereas higher avg\_savaccbal\_30d values (in red) have the opposite effect (negative impact).

Output: Probability of accepting the offer

# Clustering



Objective: Customer clustering to better understand customers and offer products that match their needs.

Elbow method to identify Group of customer







#### Median of customer groups

| Cluster           | 0        | 1       | 2          |
|-------------------|----------|---------|------------|
| age               | 46.00    | 29.00   | 41.50      |
| mob               | 50.00    | 41.00   | 33.00      |
| avg_savaccbal_30d | 1449.03  | 1057.49 | 13762.95   |
| easypymt_last_30d | 561.00   | 414.00  | 1666.50    |
| inflow30d         | 12418.80 | 8246.02 | 4577131.42 |

#### Cluster 0



#### **Stable Savers**

Mature, mid-value customers with consistent but modest activity. They maintain small balances and modest inflows.

#### Cluster 1



### **Young Starters**

Young, low-value, possibly new or less-engaged customers.
Low balance and limited transactions indicate entry-level accounts.

#### Cluster 2



### **High Rollers**

Mid-aged but very high balances and massive inflows. High-value, premium clients with high financial activity.