Test EDP -varianta A

Disciplina: Ecuatii cu derivate partiale
Tipul examinarii: lucrare partiala
Nume student:
Grupele 311, 312
Timp de lucru: 90 minute

Nu uitati sa va scrieti numele si prenumele in rubrica Nume student.

Acest test contine 3 probleme (toate obligatorii).

Testul este individual. In cazul fraudarii (redactare identica cu a altui coleg) se anuleaza punctajul tuturor partilor implicate.

Pentru redactarea solutiilor incercati sa aplicati urmatoarele reguli:

- Daca folositi o teorema fundamentala, rezultat cunoscut, etc **trebuie sa indicati** acest lucru si sa explicati de ce rezultatul respectiv se poate aplica.
- Pe cat posibil, **organizati-va munca** astfel incat la sfarsitului timpului de lucru sa returnati rezolvarile in ordinea de pe subiecte.
- Va sugerez sa rezolvati mai intai ce stiti sa faceti la prima vedere pentru a nu intra in criza de timp la finalul timpului de lucru!
- Raspunsurile corecte dar argumentate incomplet (din punct de vedere al calculelor/explicatiilor) vor primi punctaj partial.

Punctaj: Problema 1 (2.5 p), Problema 2 (3.5 p), Problema 3 (3 p). Un punct este din oficiu, deci se **pleaca din nota 10**.

Problema 1. (2.5p)

(a). Calculati (pe domeniul maxim de definitie) $\frac{\partial f}{\partial u}$ pentru functia

$$f(x,y) = \arctan\left(3^{x\cos(y)}\right).$$

(b). Calculati

$$\int_{B_2(0)} |x|^{-\frac{5}{4}} dx,$$

unde $B_2(0) \subset \mathbb{R}^5$ este bila de raza 2 centrata in origine.

(c). Integrati problema Cauchy

(1)
$$\begin{cases} x^2 u_x(x,y) - 3u_y(x,y) = u^2, & u = u(x,y) \\ u(x,0) = e^x, & x \in \mathbb{R}. \end{cases}$$

Problema 2. (3.5p) Fie $\Omega := \{(x,y) \in \mathbb{R}^2; x^2 + y^2 < 4\}$ si $\partial \Omega$ frontiera lui Ω . Fie problema

(2)
$$\begin{cases} -\Delta u(x,y) = (2-x)^2, & (x,y) \in \Omega \\ u(x,y) = 0, & (x,y) \in \partial \Omega. \end{cases}$$

- (a). Aratati ca problema (2) are cel mult o solutie $u \in C^2(\Omega) \cap C(\overline{\Omega})$.
- (b). Aratati ca u este functie para in raport cu variabila y. Calculati $u_{y}(0,0)$.
- (c). Gasiti constanta C astfel incat functia $v(x,y) = C(x^2 + y^2)$ sa verifice $-\Delta v = 4$ in Ω .
- (d). Folosind (eventual) principiul de maxim pentru functii armonice sa se determine solutia problemei

(3)
$$\begin{cases} -\Delta u(x,y) = 4, & (x,y) \in \Omega, \\ u(x,y) = 0, & (x,y) \in \partial \Omega \end{cases}$$

(e). Folosind (eventual) principiul de maxim pentru functii sub/super armonice sa se arate ca solutia problemei (2) verifica

$$0 < u(x,y) \le 4, \quad \forall (x,y) \in \overline{\Omega}.$$

Problema 3. (3p)

- (a). Fie functia $g(x) := |x|^{\frac{3}{2}} x_1 x_2$, $x = (x_1, x_2, x_3) \in \mathbb{R}^3 \setminus \{0\}$. Calculati $\operatorname{div}(g(x)x)$ intr-un punct oarecare din domeniul de definitie si apoi in punctul (0,1,1).
- (b). Calculati $\Delta(x \cdot \nabla(|x|^4))$, $x \in \mathbb{R}^3 \setminus \{0\}$. Se considera problema la limita

(4)
$$\begin{cases} u_{xx}(x,y) - u_{yy}(x,y) = 0, & (x,y) \in (0,1) \times (0,1) \\ u(x,0) = u(x,1) = u(1,y) = 0, & x \in (0,1), y \in (0,1) \\ u_x(0,y) - u(0,y) = \sin(2\pi y), & y \in (0,1), \end{cases}$$

- (c). Aratati ca (4) are cel mult o solutie de clasa C^2 .
- (d). Gasiti solutia problemei (4) cautand-o sub forma u(x,y) = A(x)B(y).