Fractions rationnelles

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Gér	néralités	2
	1.1	Rappels	2
	1.2	Représentants irréductibles	2
	1.3	Propriétés	3
	1.4	Dérivation	4
	1.5	Composition	4
	1.6	Valuation P-adique	5
		1.6.1 Valuation d'un polynôme irréductible	5
		1.6.2 Valuation dans les fractions rationnelles	5
2	Ver	s la décomposition en éléments simples	6
	2.1	Éléments simples	6
	2.2	Existence et unicité de la décomposition en éléments simples	7
		2.2.1 Petit histoire de l'existence	7
		2.2.2 Unicité de la décomposition en éléments simples	8
		2.2.3 Récapitulatif	9
	2.3	Pôles et zéros d'une fraction rationnelle	9
		2.3.1 Faits de base	9
		2.3.2 Cas du corps des complexes	10
3	Pra	tique de la décomposition en éléments simples	.0
	3.1	Partie entière	0
	3.2	Calcul de parties polaires	1
		3.2.1 Cas d'un pôle simple	1
		3.2.2 Parties polaires relatives à des pôles multiples	13
	3.3	Obtention de la décomposition en éléments simples dans $\mathbb{R}(X)$	4
		3.3.1 Première méthode : repasser dans $\mathbb{C}(X)$	15
		3.3.2 Deuxième méthode : procéder directement dans $\mathbb{R}\left(X\right)$	15
		3.3.3 Exercice corrigé	17

1 Généralités

Soit \mathbb{K} un corps, $\mathbb{K}[X]$ est un anneau intègre. On note $\mathbb{K}(X)$ le corps des fractions de cet anneau appelé corps des fractions rationnelles à coefficients dans \mathbb{K} .

Rappels 1.1

Tout $F \in \mathbb{K}(X)$ s'écrit $F = \frac{A}{B}$ où $A \in \mathbb{K}[X]$ et $B \in \mathbb{K}[X] \setminus \{0\}$ avec la règle d'égalité $\frac{A}{B} = \frac{C}{D} \Leftrightarrow AD = BC$.

$$-\frac{A}{B} + \frac{C}{D} = \frac{AD + BC}{BD};$$
$$-\frac{A}{B}\frac{C}{D} = \frac{AC}{BD};$$

$$-\frac{A}{B}\frac{C}{D} = \frac{AC}{BD};$$

- pour
$$\lambda \in \mathbb{K} \subset \mathbb{K}[X] \subset \mathbb{K}(X)$$
, $\lambda \frac{A}{B} = \frac{\lambda A}{B}$.

 $\left(\mathbb{K}\left(X\right),+,\times,\cdot\right) \text{ est une } \mathbb{K}\text{-algèbre} : 0_{\mathbb{K}\left(X\right)} = \frac{0}{1} + \frac{0}{B} \text{ avec } B \in \mathbb{K}\left[X\right] \setminus \{0\} \text{ et } 1_{\mathbb{K}\left(X\right)} = \frac{1}{1} = \frac{B}{B} \text{ pour tout } B \in \mathbb{K}\left[X\right] \setminus \{0\}$ $\mathbb{K}[X] \setminus \{0\}.$

Représentants irréductibles

Pour $F \in \mathbb{K}(X)$, un représentant ^a irréductible de F est un représentant $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0\}$ de F tel que $P \wedge Q = 1$.

a. Un représentant de F est un couple $(A, B) \in \mathbb{R}[X]^2$ tel que $F = \frac{A}{B}$. Voir section 18.6 du cours complet page 313.

Il y a toujours des représentants irréductibles : soit $F = \frac{A}{B}$, $(A, B) \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0\}$, $D = A \land B \neq 0$ car $B \neq 0$ donc A = DP et B = DQ avec $P \wedge Q = 1$ donc $F = \frac{A}{B} = \frac{P}{Q}$ d'où le résultat.

Caractérisation de l'ensemble des représentants irréductibles Si (P,Q) est un représentant irréductible de F, alors les autres représentants de F sont les couples (SP, SQ) avec $S \in \mathbb{K}[X] \setminus \{0\}$. En effet :

- $\forall S \in \mathbb{K}[X] \setminus \{0\}, \frac{SP}{SQ} = \frac{P}{Q} = F;$
- soit (A, B) un représentant de F, $F = \frac{A}{B} = \frac{P}{Q}$ ⇔ AQ = PB. $P \mid AQ$ et $P \land Q = 1$ donc $P \mid A$. De plus, $Q \mid B$ d'où B = QS avec $S \in \mathbb{K}[X] \setminus \{0\}$ car $B \neq 0$ donc AQ = PSQ car $Q \neq 0$. $\mathbb{K}[X]$ est intègre donc A = SP d'où le résultat.

Si (P_1,Q_1) et (P_2,Q_2) sont deux représentants irréductibles de F, $\exists S \in \mathbb{K}[X]$ tel que $P_1=P_2S$ et $Q_1=Q_2S$ et $\exists T \in \mathbb{K}[X]$ tel que $P_2=P_1T$ et $Q_2=Q_1T$ donc $Q_1=STQ_1$ et $Q_1\neq 0$ donc ST=1 donc $S,T\in \mathbb{K}^*$. Ainsi, $\exists \alpha \in \mathbb{K}^* \text{ tel que } P_2 = \alpha P_1 \text{ et } Q_2 = \alpha Q_1.$

En particulier, il existe un unique représentant de F irréductible (P,Q) avec Q unitaire.

Racines Soit $F \in \mathbb{K}(X)$, $F = \frac{P}{Q}$ avec $P \wedge Q = 1$, on note Ω_F l'ensemble \mathbb{K} privé des racines de Q dans \mathbb{K} .

Pour $t \in \Omega_F$, on pose alors $\widetilde{F}(t) = \frac{\widetilde{P}(t)}{\widetilde{Q}(t)}$. \widetilde{F} est la fonction rationnelle associée à F. Si $\Delta \subset \mathbb{K}$, alors on dit que $f:\Delta\longrightarrow\mathbb{K}$ est rationnelle s'il existe $F\in\mathbb{K}\left(X\right)$ telle que $\Delta\subset\Omega_{F}$ et $\forall t\in\Delta,\ f\left(t\right)=\widetilde{F}\left(t\right)$.

Degré Soient (A, B), $(C, D) \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0\}$ tels que AD = BC, alors $\deg A - \deg C = \deg B - \deg D$. En effet:

- si A = 0, alors C = 0 et $\deg A \deg C = -\infty$, on a bien $-\infty \deg B = -\infty = -\infty \deg D$;
- si $A \neq 0$, alors $AD \neq 0$ d'où $BC \neq 0$ donc $C \neq 0$ donc tous les degrés sont bien des entiers naturels :

$$deg(AD) = deg(BC) \Leftrightarrow deg A + deg D = deg B + deg C$$

d'où le résultat.

Pour $F \in \mathbb{K}(X)$, on pose $\deg F = \deg A - \deg B \in \mathbb{Z} \cup \{-\infty\}$ où (A, B) est n'importe quel représentant de F.

On remarque que si $A \in \mathbb{K}[X]$, deg $A = \deg\left(\frac{A}{1}\right)$ donc la définition du degré pour les fractions rationnelles prolonge celle valable pour les polynômes.

1.3 Propriétés

- (1) $\deg F = -\infty \Leftrightarrow F = 0$.
- (2) $\forall F, G \in \mathbb{K}(X)$:
 - (a) $\deg(FG) = \deg F + \deg G$;
 - (b) $\deg(F+G) \leq \max(\deg F, \deg G)$ avec égalité si $\deg F \neq \deg G$.

Démonstration

- (1) Évident!
- (2) (a) Si F = 0 ou G = 0, le résultat est trivial. Supposons F et G non nuls, et posons $F = \frac{A}{B}$ et $G = \frac{C}{D}$ avec $A, B, C, D \in \mathbb{K}[X] \setminus \{0\}$. Alors $FG = \frac{AC}{BD}$ donc

$$deg(FG) = deg(AC) - deg(BD)$$

$$= deg A - deg B + deg C - deg D$$

$$= deg\left(\frac{A}{B}\right) + deg\left(\frac{C}{D}\right)$$

$$= deg F + deg G$$

(b) Si F = 0 ou G = 0, le résultat est trivial. Supposons F et G non nuls, et posons $F = \frac{A}{B}$ et $G = \frac{C}{D}$ avec $A, B, C, D \in \mathbb{K}[X] \setminus \{0\}$. Alors $F + G = \frac{AD + BC}{BD}$ donc

$$\begin{split} \deg\left(F+G\right) &= \deg\left(AD+BC\right) - \deg\left(BD\right) \\ &\leqslant \max\left(\deg AD, \deg BC\right) - \deg BD \\ &\leqslant \max\left(\deg AD - \deg BD, \deg BC - \deg BD\right) \\ &\leqslant \max\left(\deg A - \deg B, \deg C - \deg D\right) \end{split}$$

Si $\deg F < \deg G$, $\deg A - \deg B < \deg C - \deg D$ d'où $\deg (AD) < \deg (BC)$ donc $\deg (AD + BC) = \deg (BC)$ et

$$deg(F + G) = deg BC - deg BD$$
$$= deg C - deg D$$
$$= deg G$$

1.4 Dérivation

Soient
$$(A, B)$$
, $(C, D) \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0\}$ tels que $\frac{A}{B} = \frac{C}{D}$. Montrons que $\frac{A'B - AB'}{B^2} = \frac{C'D - CD'}{D^2}$:
$$AD = BC \iff A'D + AD' = B'C + BC'$$

$$\Leftrightarrow A'BD^2 + ABDD' = B'CBD + C'B^2D$$

$$\Leftrightarrow A'BD^2 - B'CBD = C'B^2D - ABDD'$$

$$\Leftrightarrow A'BD^2 - B'ADD^2 = C'B^2D - D'B^2C$$

$$\Leftrightarrow D^2(A'B - AB') = B^2(C'D - CD')$$

Soit $F \in \mathbb{K}[X]$, on pose alors pour n'importe quel représentant (A, \overline{B}) de F:

$$F' = \frac{A'B - AB'}{B^2}$$

Propriétés

- (1) $\forall F, G \in \mathbb{K}(X), \forall \alpha \in \mathbb{K}, (\alpha F + G)' = \alpha F' + G'.$
- (2) $\forall F, G \in \mathbb{K}(X), (FG)' = F'G + FG'$

Démonstrations

- (1) Je laisse le soin aux potentiels PSI de refaire ce calcul long et fastidieux qui ne présente aucun intérêt.
- (2) Peut-être ai-je moi-même une âme de PSI:

$$(FG)' = \left(\frac{AC}{BD}\right)'$$

$$= \frac{(A'C + AC')BD - (B'D + BD')AC}{(BD)^{2}}$$

$$= \frac{A'CBD + AC'BD - ACB'D - ACBD'}{(BD)^{2}}$$

$$F'G + FG' = \frac{C}{D}\frac{(A'B - AB')}{B^{2}} + \frac{A}{B}\frac{(C'D - CD')}{D^{2}}$$

$$= \frac{CD(A'B - AB') + AB(C'D - CD')}{(BD)^{2}}$$

$$= \frac{A'CDB - AB'CD + ABC'D - ABD'C}{(BD)^{2}}$$

Piège! On a pas forcément $\deg F' = \deg F - 1$: $F = \frac{X+1}{X} = 1 + \frac{1}{X}$, $\deg F = 0$ mais $F' = -\frac{1}{X^2}$ donc $\deg F' = -2.$

1.5 Composition

Soient $P \in \mathbb{K}[X]$ un polynôme non-constant et $(A, B), (C, D) \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0\}$ tels que $\frac{A}{B} = \frac{C}{D}$. Montrons que $B \circ P \neq 0$, $D \circ P \neq 0$ et $\frac{A \circ P}{B \circ P} = \frac{C \circ P}{D \circ P}$. En effet, on sait que $B \circ P \neq 0$ car deg $(B \circ P) = \deg B \deg P \in \mathbb{N}$ et de même, $D \circ P \neq 0$. De plus,

$$AD = BC \Leftrightarrow (AD) \circ P = (BC) \circ P$$

 $\Leftrightarrow (A \circ P) (D \circ P) = (B \circ P) (C \circ P)$

Soit $F \in \mathbb{K}(X)$, on pose pour n'importe quel représentant (A, B) de F:

$$F\circ P=\frac{A\circ P}{B\circ P}$$

Propriétés $\forall F, G \in \mathbb{K}(X), \forall P \in K[X] \text{ non-constant}, \forall \alpha \in \mathbb{K}:$

- (1) $(\alpha F + G) \circ P = \alpha F \circ P + G \circ P$;
- (2) $(FG) \circ P = (F \circ P) (G \circ P)$.

Composition d'un polynôme par une fraction Formult aussi définir, pour $P \in \mathbb{K}[X]$ et $F \in \mathbb{K}(X)$ la fraction $P \circ F$. Si $P = \sum_{k=0}^d a_k X^k$, alors $P \circ F = \sum_{k=0}^d a_k F^k$. On aura les propriétés suivantes pour $P, Q \in \mathbb{K}[X]$ et $F \in \mathbb{K}(X)$:

- $(P+Q) \circ F = P \circ F + Q \circ F;$
- $-(PQ)\circ F = (P\circ F)(Q\circ F);$
- $(P \circ F)' = F' (P' \circ F)$

1.6 Valuation P-adique

1.6.1 Valuation d'un polynôme irréductible

Soit $P \in \mathbb{K}[X]$ irréductible, pour $A \in \mathbb{K}[X]$, $\mathcal{V}_P(A)$ ou valuation de P dans A est l'exposant (éventuellement nul) de P dans l'écriture de A sous la forme

$$A = C \prod_{i=1}^{r} Q_i^{\alpha_i}$$

avec $r \in \mathbb{N}^*$, $Q_1, Q_2, \dots, Q_r \in \mathbb{K}[X]$ irréductibles unitaires distincts, $\alpha_1, \alpha_2, \dots, \alpha_r \in \mathbb{N}^*$.

 $\mathcal{V}_P(A) = 0$ si $P \notin \{Q_1, Q_2, \dots, Q_r\}$. On conviendra que $\mathcal{V}_P(0) = +\infty^a$. On a alors les propriétés suivantes :

- (1) $\forall A, B \in \mathbb{K}[X], \mathcal{V}_P(AB) = \mathcal{V}_P(A) + \mathcal{V}_P(B);$
- (2) $\forall A, B \in \mathbb{K}[X], \mathcal{V}_P(A + B) \geqslant \min(\mathcal{V}_P(A), \mathcal{V}_P(B))$ et si $\mathcal{V}_P(A) \neq \mathcal{V}_P(B)$, il y a égalité.

Démontrons la dernière propriété. En effet, c'est vrai si A ou B est nul. Supposons $A, B \in \mathbb{K}[X] \setminus \{0\}$, soit $\alpha = \mathcal{V}_P(A) = \max\{k \in \mathbb{N}|P^k \mid A\}$ et $\beta = \mathcal{V}_P(B)$. Alors $A = P^{\alpha}Q$ avec $\mathcal{V}_P(Q) = 0$ et $B = P^{\beta}R$ avec $\mathcal{V}_P(R) = 0$.

- Supposons $\alpha \geqslant \beta$, alors

$$A + B = P^{\alpha}Q + P^{\beta}R$$
$$= P^{\beta} \left(P^{\alpha-\beta}Q + R\right)$$

donc $P^{\beta} \mid A + B \text{ donc } \mathcal{V}_P(A + B) \geqslant \beta$.

- Si $\alpha > \beta$, alors $P \nmid P^{\alpha-\beta}Q + R$ car dans le cas contraire $P \mid R$, ce qui est impossible. D'où $\mathcal{V}_P(A + B) = \beta$.

1.6.2 Valuation dans les fractions rationnelles

Soit $P \in \mathbb{K}[X]$ irréductible, $F \in \mathbb{K}(X) \setminus \{0\}$ et (A, B), (C, D) deux représentants de F. Alors:

$$AD = BC \implies \mathcal{V}_{P}(AD) = \mathcal{V}_{P}(A) + \mathcal{V}_{P}(D) = \mathcal{V}_{P}(B) + \mathcal{V}_{P}(C)$$

$$\Rightarrow \mathcal{V}_{P}(A) - \mathcal{V}_{P}(B) = \mathcal{V}_{P}(C) - \mathcal{V}_{P}(D)$$

Cette relation est également vraie si A ou C est nul avec les conventions prises sur la valuation du polynôme nul.

a. Avec les conventions suivantes : $+\infty + \infty = +\infty$, $\forall n \in \mathbb{Z}, +\infty + n = +\infty$ et $+\infty > n$.

Il est donc cohérent de poser pour $P \in \mathbb{K}[X]$ irréductible, $F \in \mathbb{K}(X)$ et n'importe quel représentant (A, B) de F,

$$\mathcal{V}_{P}(F) = \mathcal{V}_{P}(A) - \mathcal{V}_{P}(B)$$

Si (A, B) est un représentant irréductible de F, A et B n'ont aucun diviseur commun dans $\mathbb{K}[X]$ donc :

- si $P \mid A$, alors $P \nmid B$ et $\mathcal{V}_P(F) = \mathcal{V}_P(A) \in \mathbb{N}^* \cup \{+\infty\}$;
- si $P \mid B$, alors $P \nmid A$ et $\mathcal{V}_P(F) = -\mathcal{V}_P(B) \in \mathbb{Z}_-^*$;
- $-\operatorname{si} P \nmid A \text{ et } P \nmid B, \operatorname{alors} \mathcal{V}_P(F) = 0.$

Propriétés

- (1) $\forall F, G \in \mathbb{K}(X), \mathcal{V}_P(FG) = \mathcal{V}_P(F) + \mathcal{V}_P(G)$;
- (2) $\forall F, G \in \mathbb{K}(X), \mathcal{V}_{P}(F+G) \geqslant \min(\mathcal{V}_{P}(F), \mathcal{V}_{P}(G)), \text{ avec \'egalit\'e si } \mathcal{V}_{P}(F) \neq \mathcal{V}_{P}(G)$.
- (3) plus généralement, si $F_1, F_2, \ldots, F_m \in \mathbb{K}(X)$,

$$\mathcal{V}_{P}\left(\sum_{i=1}^{m} F_{i}\right) \geqslant \min \left\{\mathcal{V}_{P}\left(F_{i}\right) | i \in [1, m]\right\}$$

et si
$$\forall i \in [2, m], \mathcal{V}_P(F_1) < \mathcal{V}_P(F_2), \text{ alors } \mathcal{V}_P\left(\sum_{i=1}^m F_i\right) = \mathcal{V}_P(F_1).$$

2 Vers la décomposition en éléments simples

2.1 Éléments simples

Les éléments simples de $\mathbb{K}(X)$ sont :

- (1) les polynômes;
- (2) les fractions rationnelles du type $\frac{A}{P^{\alpha}}$ avec P irréductible unitaire, $\alpha \in \mathbb{N}^*$ et $A \in \mathbb{K}[X]$ tel que deg $A < \deg P$.

Exemples

- Les éléments simples de $\mathbb{C}(X)$ sont les polynômes et les fractions rationnelles du type $\frac{\lambda}{(X-a)^{\alpha}}$ avec $\lambda, a \in \mathbb{C}, \alpha \in \mathbb{N}^*$.
- Les éléments simples de $\mathbb{R}(X)$ sont les polynômes, les fractions rationnelles du type $\frac{\lambda}{(X-a)^{\alpha}}$ avec $\lambda, a \in \mathbb{R}, \alpha \in \mathbb{N}^*$ et les fractions du type $\frac{\lambda X + \mu}{(X^2 + aX + b)^{\alpha}}$ avec $\lambda, \mu, a, b \in \mathbb{R}, \alpha \in \mathbb{N}^*$ et $a^2 4b < 0$.

Montrons que tout $F \in \mathbb{K}(X)$ peut s'écrire comme une somme finie d'éléments simples de façon unique à l'ordre près des termes de la somme.

Par exemple, soit $P = C \prod_{i=1}^{r} (X - x_i)^{\alpha_i}$ avec $r \in \mathbb{N}^*$, $x_1, x_2, \dots, x_r \in \mathbb{K}$ distincts, $C \in \mathbb{K}^*$ et $\alpha_1, \alpha_2, \dots, \alpha_r \in \mathbb{K}$

 \mathbb{N}^* . Considérons maintenant $F = \frac{P'}{P}$, on sait que

$$P' = C \sum_{k=1}^{r} \alpha_k (X - x_k)^{\alpha_k - 1} \prod_{\substack{i=1\\i \neq k}}^{r} (X - x_i)^{\alpha_i}$$
$$= \sum_{k=1}^{r} \alpha_k \frac{P}{X - x_k}$$

 \hat{D} 'où, en divisant par P,

$$\frac{P'}{P} = \sum_{i=1}^{r} \frac{\alpha_i}{X - x_i}$$

Dans le cas où $\alpha_1 = \alpha_2 = \dots = \alpha_r = 1$, alors $\frac{P'}{P} = \sum_{i=1}^r \frac{1}{X - x_i}$.

2.2 Existence et unicité de la décomposition en éléments simples

2.2.1 Petit histoire de l'existence

Soit $F \in \mathbb{K}(X)$. Si $F \in \mathbb{K}[X]$, alors F déjà un élément simple. Supposons maintenant que $F \in \mathbb{K}(X) \setminus \mathbb{K}[X]$, et soit (A, B) un représentant irréductible de F avec B unitaire. Alors deg $B \ge 1$ sinon $F \in \mathbb{K}[X]$, donc B s'écrit $B = \prod_{i=1}^r S_i^{\alpha_i}$ avec $r \in \mathbb{N}^*$, $S_1, S_2, \ldots, S_r \in \mathbb{K}[X]$ irréductibles unitaires distincts et $\alpha_1, \alpha_2, \ldots, \alpha_r \in \mathbb{N}^*$. Les S_i sont irréductibles distincts donc ils sont premiers entre eux deux à deux donc $\forall i, j \in [1, r], i \ne j, S_i^{\alpha_i} \land S_j^{\alpha_j} = 1$.

Lemme 1 Soient $U \in \mathbb{K}[X], V_1, V_2, \dots, V_r \in \mathbb{K}[X] \setminus \{0\}$ avec $i \neq j \Rightarrow V_i \land V_j = 1$. Alors $\exists W_1, W_2, \dots, W_r \in \mathbb{K}[X]$ tels que

$$\frac{U}{\prod_{i=1}^{r} V_i} = \sum_{k=1}^{r} \frac{W_k}{V_k}$$

En effet, pour r=2, soient $U, V_1, V_2 \in \mathbb{K}[X] \setminus \{0\}$ avec $V_1 \wedge V_2 = 1$, alors, d'après le théorème de BÉZOUT $\exists C_1, C_2 \in \mathbb{K}[X]$ tels que $V_1C_1 + V_2C_2 = 1$ d'où

$$\frac{U}{V_1 V_2} = \frac{U V_1 C_1 + U V_2 C_2}{V_1 V_2}$$
$$= \frac{U C_1}{V_2} + \frac{U C_2}{V_2}$$

Supposons maintenant le résultat vrai pour $r \ge 2$, soient $U, V_1, V_2, \dots, V_{r+1} \in \mathbb{K}[X] \setminus \{0\}$ avec les V_i premiers entre eux deux à deux, on a alors $\left(\prod_{i=1}^r V_i\right) \wedge V_{r+1} = 1$ d'après une variante du théorème de Gauss. Ainsi, d'après le cas r = 2,

$$\frac{U}{\prod_{i=1}^{r+1} V_i} = \frac{U_1}{\prod_{i=1}^{r} V_i} + \frac{A_{r+1}}{V_{r+1}}$$

$$= \frac{A_1}{V_1} + \frac{A_2}{V_2} + \dots + \frac{A_r}{V_r} + \frac{A_{r+1}}{V_{r+1}}$$

Formula \$a\$t donc écrire

$$F = \frac{A}{\prod_{i=1}^{r} S_i^{\alpha_i}}$$
$$= \sum_{k=1}^{r} \frac{A_k}{S_k^{\alpha_k}}$$

avec $A_1, A_2, \ldots, A_r \in \mathbb{K}[X]$.

Lemme 2 Soit $U \in \mathbb{K}[X]$, P un polynôme non-constant et $\alpha \in \mathbb{N}^*$. Alors on peut écrire $U = R_0 + R_1P + \cdots + R_{\alpha-1}P^{\alpha-1} + CP^{\alpha}$ avec $R_0, R_1, \ldots, R_{\alpha-1} \in \mathbb{K}[X]$ et $\forall k \in [1, \alpha - 1]$, $\deg R_k < \deg P$. Pour le montrer, on procède par récurrence sur α .

- Pour $\alpha = 1$, on effectue la division euclidienne de U par P. On a alors U = PQ + R avec $\deg R < \deg P$.
- Supposons le résultat vrai pour $\alpha \in \mathbb{N}^*$, U s'écrit donc $U = R_0 + R_1P + \cdots + R_{\alpha-1}P^{\alpha-1} + CP^{\alpha}$ avec $\forall k \in [1, \alpha 1]$, $\deg R_k < \deg P$. On effectue alors la division euclidienne de C par P. $C = PQ + R_{\alpha}$ avec $\deg R_{\alpha} < P$ d'où le résultat.

Ici, soit $j \in [1, r]$, A_j s'écrit $A_j = R_{0,j} + R_{1,j}S_j + \cdots + R_{\alpha_j - 1,j}S_j^{\alpha_j - 1} + C_jS_j^{\alpha_j}$ et $\forall i \in [1, \alpha_j - 1]$, $\deg R_{i,j} < \deg S_j$. Ainsi,

$$\frac{A_j}{S_j^{\alpha_j}} = \frac{R_{0,j}}{S_j^{\alpha_j}} + \frac{R_{1,j}}{S^{\alpha_{j-1}}} + \dots + \frac{R_{\alpha_{j-1},j}}{S_j} + C_j$$

On a donc obtenu la décomposition en éléments simples de F:

$$F = \underbrace{\sum_{k=1}^{r} C_k}_{E \in \mathbb{K}[X]} + \underbrace{\sum_{j=1}^{r} \sum_{i=0}^{\alpha_j - 1} \frac{T_{i,j}}{S_j^i}}_{i} \quad \text{où } \forall i, j, \deg T_{i,j} < \deg S_j$$

2.2.2 Prenons un peu de hauteur : unicité de la décomposition en éléments simples

Notons \mathcal{I} l'ensemble des polynômes irréductibles unitaires de $\mathbb{K}[X]$.

- Si $F \in \mathbb{K}(X)$, alors il existe une une famille $(T_{l,P})_{(l,p)\in\mathbb{N}^*\times\mathcal{I}}$ de polynômes de $\mathbb{K}[X]$ telle que :
- (1) $\forall (l, P) \in \mathbb{N}^* \times \mathcal{I}, \deg T_{l,P} < \deg P;$
- (2) l'ensemble $\{(l, P) \in \mathbb{N}^* \times \mathcal{I} | T_{l, P} \neq 0\}$ est fini (éventuellement vide).

Et on a alors :

$$F = E + \sum_{P \in \mathcal{I} l \in \mathbb{N}^*} \frac{T_{l,p}}{P^l}$$

Pour faire le lien avec les notation précédentes, il suffit de prendre $T_{l,P}=0$ si $P \notin \{S_1,S_2,\ldots,S_r\}$ et si $P=S_j$, alors pour $l \in [1,\alpha_j]$, $T_{l,P}=T_{i,j}$ et $T_{l,P}=0$ si $l>\alpha_j$.

Montrons qu'une telle écriture est unique Tout revient en fait à prouver que si $\exists E \in \mathbb{K}[X]$ et une famille $(T_{l,P})_{(l,P)\in\mathbb{N}^*\times\mathcal{I}}$ de polynômes qui vérifie (1) et (2), alors ^a

$$E + \sum_{P \in \mathcal{I} l \in \mathbb{N}^*} \frac{T_{l,P}}{P^l} = 0 \Rightarrow \begin{cases} E = 0 \\ \forall (l,P) \in \mathbb{N}^* \times \mathcal{I}, T_{l,P} = 0 \end{cases}$$

Supposons donc $H = E + \sum_{P \in \mathcal{I}} \sum_{l \in \mathbb{N}^*} \frac{T_{l,P}}{P^l} = 0 \in \mathbb{K}[X].$

- Si $E \neq 0$, alors $\deg E \in \mathbb{N}$ mais $\forall (l, P) \in \mathbb{N}^* \times \mathcal{I}$, $\deg T_{l, P} < 0 \leq \deg E$ donc $\deg H = \deg E \in \mathbb{N}$, ce qui est impossible. On a donc E = 0.
- Supposons maintenant que $\exists Q \in \mathcal{I}$ et $\exists m \in \mathbb{N}^*$ tels que $T_{m,Q} \neq 0$. On a alors

$$\sum_{l \in \mathbb{N}^*} \frac{T_{l,Q}}{Q^l} = -\sum_{\substack{P \in \mathcal{I} \\ P \neq Q}} \sum_{l \in \mathbb{N}^*} \frac{T_{l,P}}{P^l} = G$$

a. En effet, si on prenait deux polynômes E et deux familles qui vérifient (1) et (2), alors les deux familles sont égales à F si et seulement si leur différence est égale à 0. Or une telle est différence donnerait toujours la somme d'un polynôme du type E et d'une double somme du même type que celles ci-dessus, d'où le raccourci que M. Sellès a pris en ne montrant que cette implication.

Soit $\alpha = \max\{m \in \mathbb{N}^* | T_{m,Q} \neq 0\}$, on a $\sum_{l \in \mathbb{N}^*} \frac{T_{l,Q}}{Q^l} = \frac{T_{1,Q}}{Q} + \dots + \frac{T_{\alpha,Q}}{Q^{\alpha}}$ avec $T_{\alpha,Q} \neq 0$. Or $\mathcal{V}_Q(T_{\alpha,Q}) = 0$ car $\deg T_{\alpha,Q} < \deg Q$ donc $Q \nmid T_{\alpha,Q}$ d'où $\mathcal{V}_Q\left(\frac{T_{\alpha,Q}}{Q^{\alpha}}\right) = -\alpha < 0$. D'autre part, pour $l < \alpha$,

$$\mathcal{V}_{Q}\left(\frac{T_{l,Q}}{Q^{l}}\right) = \underbrace{\mathcal{V}_{Q}\left(T_{l,Q}\right)}_{\left\{=+\infty \text{ si } T_{l,Q}=0\right\}} - l$$

$$= 0 \text{ sinon}$$

$$\geqslant -l$$

$$\geq -\alpha$$

Donc
$$\mathcal{V}_Q\left(\sum_{l\in\mathbb{N}^*} \frac{T_{l,Q}}{Q^l}\right) = -\alpha < 0.$$

Maintenant, pour $P \in \mathcal{I} \setminus \{Q\}$ et $l \in \mathbb{N}^*$,

$$\mathcal{V}_{Q}\left(\frac{T_{l,P}}{P^{l}}\right) = \underbrace{\mathcal{V}_{Q}\left(T_{l,P}\right)}_{\in\mathbb{N}\cup\{+\infty\}} - \underbrace{\mathcal{V}_{Q}\left(P^{l}\right)}_{0}$$

D'où $\mathcal{V}_Q\left(\sum_{P\in\mathcal{I}\setminus\{Q\}}\sum_{l\in\mathbb{N}^*}\frac{T_{l,P}}{P^l}\right)\geqslant 0$, ce qui nous fournit une contradiction acceptable.

2.2.3 Récapitulatif

Soit $F \in \mathbb{K}(X)$.

- (1) Il existe un et un seul polynôme $E \in \mathbb{K}[X]$ appelé partie entière de F, et une seule famille $(T_{l,P})_{(l,P)\in\mathbb{N}^*\times\mathcal{I}}$ d'éléments de $\mathbb{K}[X]$ vérifiant :
 - (a) $\forall (l, P) \in \mathbb{N}^* \times \mathcal{I}, \deg T_{l,P} < \deg P;$
 - (b) l'ensemble $\{(l,P)\in\mathbb{N}^*\times\mathcal{I}|T_{l,P}\neq 0\}$ est fini.

La décomposition de F en éléments simples est alors :

$$F = E + \sum_{P \in \mathcal{I}l \in \mathbb{N}^*} \frac{T_{l,P}}{P^l}$$

- (2) Pour $P \in \mathcal{I}$, $\sum_{l \in \mathbb{N}^*} \frac{T_{l,P}}{P^l}$ s'appelle la partie P-fractionnaire de la décomposition de F en éléments simples.
- (3) Si (A, B) est un représentant irréductible de F, alors pour $P \in \mathcal{I}$, P ne divise pas B implique que $\forall l \in \mathbb{N}^*$, $T_{l,P} = 0$.

Si P est un diviseur irréductible de B, c'est-à-dire su $\mathcal{V}_P(F) < 0$, la partie P-fractionnaire de la décomposition de F en éléments simples est de la forme $\sum_{l=1}^{\alpha} \frac{T_{l,P}}{P^l}$ où $\alpha = \mathcal{V}_P(B) = -\mathcal{V}_P(F)$ et $T_{\alpha,P} \neq 0$.

2.3 Pôles et zéros d'une fraction rationnelle

2.3.1 Faits de base

Soit $F \in \mathbb{K}(X) \setminus \{0\}, a \in \mathbb{K}$.

- (1) On dit que a est pôle de F si $\mathcal{V}_{X-a}(F) < 0$. Dans ce cas, $-\mathcal{V}_{X-a}(F) \in \mathbb{N}^*$ est l'ordre du pôle a.
- (2) On dit que a est un zéro de F si $\mathcal{V}_{X-a}(F) > 0$.

Explication Écrivons $F = \frac{A}{B}$ sous forme irréductible, A et B ne peuvent donc pas avoir de racines communes dans \mathbb{K} .

Si $a \in \mathbb{K}$ est racine de B d'ordre $\alpha \in \mathbb{N}^*$, a n'est pas racine de A donc $\mathcal{V}_{X-a}(F) = \mathcal{V}_{X-a}(A) - \mathcal{V}_{X-a}(B) = -\alpha < 0$.

Si a n'est pas racine de B, alors $\mathcal{V}_{X-a}(B) = 0$ et $\mathcal{V}_{X-a}(A) \ge 0$ d'où $\mathcal{V}_{X-a}(F) \ge 0$.

Les pôles de F sont les racines de B dans \mathbb{K} , et si $a \in \mathbb{K}$ est un pôle de F d'ordre α , alors a est racine de B d'ordre de multiplicité α .

Remarque Soit $F \in \mathbb{K}(X) \setminus \{0\}$, $a \in \mathbb{K}$ un pôle de F d'ordre $\alpha \in \mathbb{N}^*$ et (A, B) un représentant irréductible de F $(A \wedge B = 1)$.

Alors X-a est un diviseur irréductible unitaire de B et $\mathcal{V}_{X-a}(B) = \alpha$ donc il existe un partie (X-a) –fractionnaire dans la décomposition de F en éléments simples.

Cette partie (X-a) –fractionnaire s'appelle en fait la partie polaire de la décomposition de F en éléments simples relative à a, et s'écrit sous la forme $\sum_{l=1}^{\alpha} \frac{T_{l,X-a}}{(X-a)^l}$ avec $\forall l \in [\![1,\alpha]\!]$, $\deg T_{l,X-a} < \deg (X-a) = 1$ d'où $\exists \lambda_1, \lambda_2, \ldots, \lambda_\alpha \in \mathbb{K}$ avec $\lambda_\alpha \neq 0$ tels que la partie (X-a) –fractionnaire soit

$$\sum_{l=1}^{\alpha} \frac{\lambda_l}{(X-a)^l}$$

2.3.2 Cas du corps des complexes

Soit $F \in \mathbb{C}(X)$, écrivons $F = \frac{A}{B}$ avec $A, B \in \mathbb{C}[X]$, $A \wedge B = 1$ et B unitaire.

Si B n'est pas constant, B s'écrit $B = \prod_{i=1}^r (X - a_i)^{\alpha_i}$ avec $r \in \mathbb{N}^*, a_1, a_2, \dots, a_r \in \mathbb{C}$ distincts et $\alpha_1, \alpha_2, \dots, \alpha_r \in \mathbb{C}$

 \mathbb{N}^* . Il est clair que $\forall i \in [1, r]$, a_i est racine de B d'ordre α_i , c'est-à-dire que a_i est pôle de F d'ordre α_i .

La décomposition de F en éléments simples va alors s'écrire, puisque les diviseurs irréductibles de B sont $X-a_1,X-a_2,\ldots,X-a_r$:

$$F = \text{partie entière de } F + \sum_{a \text{ pôle de } F} (\text{partie polaire relative à } a)$$

Et chaque partie polaire s'écrit $\sum_{l=1}^{\alpha} \frac{\lambda_l}{(X-a)^l}$ où α est l'ordre du pôle a.

Donc, pour faire la décomposition de F en éléments simples dans $\mathbb{C}[X]$, il faut :

- savoir trouver la partie entière;
- savoir trouver chaque pôle de F et la partie polaire relative à ce pôle.

3 Pratique de la décomposition en éléments simples

3.1 Partie entière

Soit $F \in \mathbb{K}(X)$, $F = \frac{A}{B}$ avec $A \wedge B = 1$. Il faut d'abord s'assurer que F est bien sous forme irréductible.

On effectue la division euclidienne de A par B:A=BQ+R avec $\deg R<\deg B$, alors $F=Q+\frac{R}{B}$ et d'autre part, on sait que F s'écrit

$$F = \underbrace{E}_{\in \mathbb{K}[X]} + \underbrace{\sum_{P \in \mathcal{I}l \in \mathbb{N}^*} \frac{T_{l,P}}{P^l}}_{H}$$

avec $\forall (l, P) \in \mathbb{N}^* \times \mathcal{I}$, $\deg T_{l, P} < \deg P \Rightarrow \deg \frac{T_{l, P}}{P^l} < 0$ donc $\deg H < 0$. On a alors $E - Q = \frac{R}{R} - H$ donc $\deg (E - Q) < 0 \Rightarrow E - Q = 0$ car $E - Q \in \mathbb{K}[X]$.

La partie entière de la décomposition de F en éléments simples est le quotient de la division euclidienne de A par B ou (A,B) est un représentant irréductible de F.

En particulier, si $\deg F < 0 \Leftrightarrow \deg A < \deg B$, alors le quotient de la division euclidienne de A par B est nul donc E = 0.

Remarque Supposons $m = \deg A > \deg B = n$, alors A s'écrit

$$A = \underbrace{a_0 + a_1 X + \dots + a_{n-1} X^{n-1}}_{A_0} + \underbrace{a_n X^n + \dots + a_m X^m}_{A_1}$$

La division euclidienne de A_1 par B donne $A_1 = BQ_1 + R_1$ avec deg $R_1 < \deg B$ d'où $A = BQ_1 + R_1 + A_0$ avec deg $(A_0 + R_1) < \deg B$.

Le quotient de la division euclidienne de A par B est égal au quotient de la division euclidienne de A_1 par B.

3.2 Calcul de parties polaires

Soit $F = \frac{A}{B} \in \mathbb{K}(X)$ sous forme irréductible.

3.2.1 Cas d'un pôle simple

Supposons que $a \in \mathbb{K}$ est un pôle simple de F, c'est-à-dire que a est racine simple de B. B s'écrit donc B = (X - a) S avec $\widetilde{S}(a) \neq 0$.

D'autre part, la partie polaire relative à a va s'écrire $\frac{\lambda}{X-a}$ avec λ à déterminer et la décomposition en éléments simples de F est :

$$F = \frac{\lambda}{X - a} + \underbrace{E + \sum_{P \in \mathcal{I} \setminus \{X - a\}} \text{Parties } P\text{-fractionnaires}}_{H}$$

et a n'est pas un pôle de H.

On a alors $(X - a) F = \frac{A}{S} = \lambda + (X - a) H$. a n'est pas racine de S donc on peut considérer (A) (a). On a alors

$$\frac{\widetilde{A}(a)}{\widetilde{S}(a)} = \lambda = (\widetilde{X - a}) F(a)$$

Or $B'=S+\left(X-a\right)S',$ si bien que l'on a aussi en dérivant $\widetilde{B'}\left(a\right)=\widetilde{S}\left(a\right)$ d'où

$$\lambda = \frac{\widetilde{A}(a)}{\widetilde{B'}(a)}$$

Exemples

(1) Soit $f: t \in]1, +\infty[$ $\longrightarrow \frac{1}{t^3-1}$, il s'agit de trouver une primitive de f sur $]1, +\infty[$. On remarque que $f = \widetilde{F}_{[]1,+\infty[}$ où $F = \frac{1}{X^3-1} \in \mathbb{R}(X) \subset \mathbb{C}(X)$. F est bien sous forme irréductible et $X^3-1 = (X-1)(X-j)(X-\overline{j})$. deg F < 0 donc E = 0. Les pôles de F sont 1, j et \overline{j} , tous simples dans la décomposition en éléments simples de F qui s'écrit

$$F = \frac{a}{X-1} + \frac{b}{X-j} + \frac{c}{X-\overline{j}}$$
 Or $a = \frac{\widetilde{1}(1)}{(\widetilde{X^3-1})'(1)} = \frac{1}{3}, \ b = \frac{1}{3j^2} = \frac{j}{3} \text{ et } c = \frac{\overline{j}}{3}.$ D'où $F = \frac{1}{3} \left(\frac{1}{X-1} + \frac{j}{X-j} + \frac{\overline{j}}{X-\overline{j}} \right)$. Ainsi, pour $t > 1$,

$$f(t) = \frac{1}{3} \left(\frac{1}{t-1} + \frac{j}{t-j} + \frac{j}{t-j} \right)$$

$$= \frac{1}{3} \left(\frac{1}{t-1} + \frac{-t-2}{t^2+t+1} \right)$$

$$\Rightarrow \int^x f(t) dt = \frac{1}{3} \left(\int^x \frac{1}{t-1} dt - \int^x \frac{t+2}{t^2+t+1} dt \right)$$

$$= \frac{1}{3} \left(\ln(x-1) - \int^x \frac{t+2}{t^2+t+1} dt \right)$$
or
$$\int^x \frac{t+2}{t^2+t+1} dt = \frac{1}{2} \int^x \frac{2t+4}{t^2+t+1} dt$$

$$= \frac{1}{2} \left(\int^x \frac{2t+1}{t^2+t+1} dt + 3 \int^x \frac{1}{t^2+t+1} dt \right)$$

$$= \frac{1}{2} \left(\ln(1+x+x^2) + 3 \int^x \frac{1}{t^2+t+1} dt \right)$$
et de plus,
$$t^2 + t + 1 = \left(t + \frac{1}{2} \right)^2 + \frac{3}{4}$$

$$= \frac{3}{4} \left(1 + \frac{4}{3} \left(t + \frac{1}{2} \right)^2 \right)$$

$$\Rightarrow \int^x \frac{1}{t^2+t+1} dt = \frac{4}{3} \int^x \frac{1}{1+\left(\frac{2}{\sqrt{3}}\left(t+\frac{1}{2}\right)\right)^2} dt$$

$$= \frac{\sqrt{3}}{2} \frac{4}{3} \int^x \frac{\frac{2}{\sqrt{3}}}{1+\left(\frac{2}{\sqrt{3}}\left(t+\frac{1}{2}\right)\right)^2} dt$$

$$= \frac{2}{\sqrt{3}} \arctan\left(\frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right)\right)$$

Une primitive de f sur $]1, +\infty[$ est donc

$$x \in]1, +\infty[\longrightarrow \frac{1}{3} \left(\ln(x-1) - \frac{1}{2} \left(1 + x + x^2 \right) - \sqrt{3} \arctan\left(\frac{2}{\sqrt{3}} \left(x + \frac{1}{2} \right) \right) \right)$$

(2) Soit $n \in \mathbb{N}^*$, il s'agit de faire la décomposition en éléments simples de $F = \frac{1}{X^n - 1} \in \mathbb{C}(X)$. $X^n - 1 = \prod_{u \in \mathbb{U}_n} (X - u)$ et chaque racine est simple, deg F < 0 donc la décomposition de F en éléments simples

s'écrit
$$F = \sum_{u \in \mathbb{U}_n} \frac{\lambda_u}{X - u}$$
. On a alors, pour $u \in \mathbb{U}_n$, $\lambda_u = \frac{\widetilde{A}(u)}{\widetilde{B}'(u)} = \frac{1}{nu^{n-1}} = \frac{u}{n}$ car $u^n = 1$. D'où

$$\frac{1}{X^n - 1} = \frac{1}{n} \sum_{u \in \mathbb{U}_n} \frac{u}{X - u}$$

(3) Soient $x_0, x_1, \dots, x_n \in \mathbb{C}$ distincts avec $n \in \mathbb{N}^*$, $P = \lambda \prod_{i=1}^n x_i$ avec $\lambda \in \mathbb{C}^*$. Posons $F = \frac{1}{P}$, $\deg F < 0$ donc la décomposition de F en éléments simples va s'écrire :

$$F = \sum_{i=1}^{n} \frac{\lambda_i}{X - x_i} \Rightarrow \frac{1}{P} = \sum_{i=1}^{n} \frac{1}{\widetilde{P}'(x_i)(X - x_i)}$$

car $\forall i \in [1, n]$, $\lambda_i = \frac{1}{\widetilde{P}'(x_i)}$ et $\widetilde{P}'(x_i) \neq 0$. Supposons maintenant $n \geq 2$, pour $t \in \mathbb{R}$ assez grand $(t > \max_{i \in [1, n]} (x_i))$, $\frac{1}{\widetilde{P}(t)}$ est défini et

$$\frac{1}{\widetilde{P}(t)} = \sum_{i=1}^{n} \frac{1}{\widetilde{P}'(x_i)(t - x_i)} \Rightarrow \frac{t}{\widetilde{P}(t)} = \sum_{i=1}^{n} \frac{t}{\widetilde{P}'(x_i)(t - x_i)}$$

Si $t \to +\infty$, $\frac{t}{\widetilde{P}(t)} \xrightarrow{t \to +\infty} 0$ car deg $P \geqslant 2$ et $\forall i \in [1, n]$, $\frac{t}{t - x_i} \xrightarrow{t \to +\infty} 1$ d'où, par unicité de la limite,

$$\sum_{i=1}^{n} \frac{1}{\widetilde{P}'(x_i)} = 0$$

(4) Décomposons en éléments simples la fractions rationnelle $F = \frac{X^4 + X + 1}{X(X-1)(X+1)}$. F est sous sa forme irréductible car A et B n'ont aucune racine commune. La division euclidienne de X^4 par $X^3 - X$ donne X pour quotient donc E = X. On cherche donc la décomposition en éléments simples de F sous la forme

$$F = X + \frac{\lambda}{X} + \frac{\mu}{X - 1} + \frac{\nu}{X + 1}$$

$$\lambda = \widetilde{XF}(0) = \frac{1}{-1 \cdot 1} = -1, \ \mu = (\widetilde{X - 1})F(1) = \frac{3}{2}, \ \nu = \frac{1}{2} \text{ d'où}$$

$$F = X - \frac{1}{X} + \frac{3}{2(X - 1)} + \frac{1}{2(X + 1)}$$

3.2.2 Parties polaires relatives à des pôles multiples

Cas d'un pôle d'ordre 2 Soit $F = \frac{A}{B} \in \mathbb{C}(X)$, $A \wedge B = 1$ et $a \in \mathbb{C}$ un pôle de P d'ordre 2. B s'écrit donc $B = (X - a)^2 S$ avec $\widetilde{S}(a) \neq 0$, et la décomposition en éléments simples de F s'écrit

$$F = \frac{\lambda}{X - a} + \frac{\mu}{(X - a)^2}$$
 + autres termes de la décomposition en éléments simples

et a n'est pas pôles des autres termes. Ainsi, $\frac{A}{S} = (X - a)^2 F = \lambda (X - a) + \mu + (X - a)^2$ (autres termes) = G. On peut considérer la valeur de G en a d'où $\mu = \frac{\widetilde{A}(a)}{\widetilde{S}(a)} = (X - a)^2 F(a)$. D'autre part, $G' = \lambda + 2(X - a)$ (autres termes) $+ (X - a)^2$ (autres termes) d'où $\widetilde{G}'(a) = \lambda$.

Cas général (méthode officielle) Soit $a \in \mathbb{C}$ un pôle de F d'ordre $m \ge 2$ avec $F = \frac{A}{B}$, $A \land B = 1$ et $B = (X - a)^m S$ où $\widetilde{S}(a) \ne 0$. Alors la décomposition de F en éléments simples s'écrit

$$F = \frac{A}{(X-a)^m S} = \underbrace{\frac{\lambda_1}{X-a} + \dots + \frac{\lambda_m}{(X-a)^m}}_{\text{partie polaire relative à } a} + \underbrace{\text{autres termes}}_{H \in \mathbb{C}(X)}$$

où a n'est pas pôle de H. On a donc

$$\frac{A}{S} = (X - a)^m F = \lambda_m + \lambda_{m-1} (X - a) + \dots + \lambda_1 (X - a)^{m-1} + (X - a)^m H$$

L'application $\varphi: t \longrightarrow \frac{\widetilde{A}(a+t)}{\widetilde{S}(a+t)}$ est définie sur un voisinage de 0 dans \mathbb{R} car $t \longmapsto \widetilde{S}(a+t)$ ne s'annule pas en a donc, pour t voisin de 0,

$$\varphi(t) = \lambda_m + \lambda_{m-1}t + \dots + \lambda_1t^{m-1} + \underbrace{t^m\widetilde{H}(a+t)}_{o(t^{m-1})}$$

 φ admet donc un $\mathrm{DL}_{m-1}(0)$ dont la partie régulière est $\lambda_m + \lambda_{m-1}t + \cdots + \lambda_1t^{m-1}$.

Il suffit donc d'effectuer un $\mathrm{DL}_{m-1}(0)$ de φ pour déterminer les coefficients $\lambda_1, \lambda_2, \ldots, \lambda_m$ par identification et unicité de la partie régulière.

Exemple

(1) Effectuons la décomposition en éléments simples de $F = \frac{X^3 + X + 1}{X^3 (X - 1)^2}$ dans $\mathbb{C}(X)$. deg F = -2 < 0 donc E = 0. Les pôles de F sont 0 (triple) et 1 (double). La décomposition en éléments simples de F s'écrit donc

$$F = \frac{\lambda_1}{X} + \frac{\lambda_2}{X^2} + \frac{\lambda_3}{X^3} + \frac{\mu_1}{X - 1} + \frac{\mu_2}{(X - 1)^2}$$

- Déterminons la partie polaire relative à $0: X^3F = \frac{X^3 + X + 1}{(X 1)^2}$, on effectue un $\mathrm{DL}_2(0)$ de $\varphi: t \longrightarrow \frac{1 + t + t^3}{(t 1)^2}$. Pour les calculs, se reporter au chapitre 16.1 du cours complet page 242. On trouve donc qu'au voisinage de $0, \varphi(t) = 1 + 3t + 5t^2 + \mathrm{o}(t^2)$ donc $\lambda_3 = 1, \lambda_2 = 3$ et $\lambda_1 = 5$.
- Déterminons la partie polaire relative à $1:(X-1)^2F=\frac{X^3+X+1}{X^3}$, on effectue un $\mathrm{DL}_2(0)$ de $\varphi:t\longrightarrow \frac{1+(1+t)+(1+t)^3}{(1+t)^3}$ et on trouve qu'au voisinage de $0,\,\varphi(t)=3-5t+\mathrm{o}\,(t)$ d'où $\mu_2=3$ et $\mu_1=-5$.

On a donc

$$F = \frac{5}{X} + \frac{3}{X^2} + \frac{1}{X^3} - \frac{5}{X - 1} + \frac{3}{(X - 1)^2}$$

3.3 Obtention de la décomposition en éléments simples dans $\mathbb{R}(X)$

Soit $F \in \mathbb{R}(X)$. On étudiera les différentes méthode sur des exemples.

3.3.1 Première méthode : repasser dans $\mathbb{C}(X)$

Soit $F = \frac{1}{X^4 + 1} \in \mathbb{R}(X)$, les racines de $X^4 + 1$ sont $e^{i\frac{\pi}{4}}$, $-e^{i\frac{\pi}{4}}$, $e^{-i\frac{\pi}{4}}$ et $-e^{-i\frac{\pi}{4}}$ d'où, en posant $\omega = e^{i\frac{\pi}{4}}$, puisque deg $(X^4 + 1) = 4$ et $X^4 + 1$ est unitaire, $F = \frac{1}{(X - \omega)(X - \overline{\omega})(X + \omega)(X + \overline{\omega})}$. La décomposition en éléments simples de F s'écrit donc :

$$F = \frac{\lambda}{X - \omega} + \frac{\mu}{X - \overline{\omega}} + \frac{\alpha}{X + \omega} + \frac{\beta}{X + \overline{\omega}}$$

F est réelle donc $\mu = \overline{\lambda}$ et $\beta = \overline{\alpha}$. De plus, F est paire donc

$$F\left(X\right) = F\left(-X\right) = \frac{-\lambda}{X+\omega} + \frac{-\mu}{X+\overline{\omega}} + \frac{-\alpha}{X-\omega} + \frac{-\beta}{X-\overline{\omega}} \Rightarrow \begin{cases} \lambda = -\alpha \\ \beta = -\mu \end{cases}$$

par unicité de la décomposition en éléments simples. Or, puisque ω est pôle simples de F,

$$\lambda = \frac{1}{\left(\widetilde{X}^4 + 1\right)'(\omega)}$$

$$= \frac{1}{4\omega^3}$$

$$= -\frac{\omega}{4} \operatorname{car} \omega^4 = -1$$

On a donc enfin:

$$F = \frac{1}{4} \left(\frac{-\omega}{X - \omega} + \frac{-\overline{\omega}}{X - \overline{\omega}} + \frac{\omega}{X + \omega} + \frac{\overline{\omega}}{X + \overline{\omega}} \right)$$

$$= \frac{1}{4} \left(\frac{-\omega (X - \overline{\omega}) - \overline{\omega} (X - \omega)}{(X - \omega) (X - \overline{\omega})} + \frac{\omega (X + \overline{\omega}) + \overline{\omega} (X + \omega)}{(X + \omega) (X + \overline{\omega})} \right)$$

$$= \frac{1}{4} \left(\frac{-2\Re e (\omega) X + 2}{X^2 - \Re e (\omega) + 1} + \frac{2\Re e (\omega) X + 2}{X^2 + 2\Re e (\omega) + 1} \right)$$

$$= \frac{1}{4} \left(\frac{-\sqrt{2}X + 2}{X^2 - \sqrt{2}X + 1} + \frac{\sqrt{2}X + 2}{X^2 + \sqrt{2}X + 1} \right)$$

3.3.2 Deuxième méthode : procéder directement dans $\mathbb{R}(X)$

Dans $\mathbb{R}(X)$,

$$X^{4} + 1 = X^{4} + 2X^{2} + 1 - 2X^{2}$$

$$= (X^{2} + 1)^{2} - (\sqrt{2}X)^{2}$$

$$= (X^{2} + \sqrt{2}X + 1)(X^{2} - \sqrt{2}X + 1)$$

Chacun des facteurs est irréductible dans $\mathbb{R}(X)$ donc $F = \frac{1}{\left(X^2 + \sqrt{2}X + 1\right)\left(X^2 - \sqrt{2}X + 1\right)}$. La décomposition de F en éléments simples va donc s'écrire

$$F = \frac{\alpha X + \beta}{X^2 + \sqrt{2}X + 1} + \frac{\gamma X + \delta}{X^2 - \sqrt{2}X + 1}$$

1^{re} idée On cherche la relation de Bézout des deux polynômes :

$$X^{2} + \sqrt{2}X + 1 = 1 \cdot \left(X^{2} - \sqrt{2}X + 1\right) + \left(2\sqrt{2}X\right) \quad \text{et} \quad X^{2} - \sqrt{2}X + 1 = \left(\frac{1}{2\sqrt{2}}X - \frac{1}{2}\right)\left(2\sqrt{2}X\right) + 1$$

On remonte alors l'algorithme d'Euclide :

$$1 = \left(X^{2} - \sqrt{2}X + 1\right) - 2\sqrt{2}\left(\frac{1}{2\sqrt{2}}X - \frac{1}{2}\right)$$

$$= \left(X^{2} - \sqrt{2}X + 1\right) - \left(\left(X^{2} + \sqrt{2}X + 1\right) - \left(X^{2} - \sqrt{2}X + 1\right)\right)\left(\frac{1}{2\sqrt{2}}X - \frac{1}{2}\right)$$

$$= \left(X^{2} - \sqrt{2}X + 1\right)\left(\frac{1}{2\sqrt{2}}X + \frac{1}{2}\right) + \left(X^{2} + \sqrt{2}X + 1\right)\left(-\frac{1}{2\sqrt{2}} + \frac{1}{2}\right)$$

On a donc pour F, en remplaçant le 1 du numérateur par l'expression ci-dessus :

$$F = \frac{\left(X^2 - \sqrt{2}X + 1\right)\left(\frac{1}{2\sqrt{2}}X + \frac{1}{2}\right) + \left(X^2 + \sqrt{2}X + 1\right)\left(-\frac{1}{2\sqrt{2}} + \frac{1}{2}\right)}{\left(X^2 + \sqrt{2}X + 1\right)\left(X^2 - \sqrt{2}X + 1\right)}$$
$$= \frac{\frac{1}{2\sqrt{2}}X + \frac{1}{2}}{X^2 + \sqrt{2}X + 1} + \frac{-\frac{1}{2\sqrt{2}}X + \frac{1}{2}}{X^2 - \sqrt{2}X + 1}$$

 2^{e} idée On utilise la parité ou l'imparité de F. Ici, F est paire donc

$$F = F(-X) = \frac{-\alpha X + \beta}{X^2 - \sqrt{2}X + 1} + \frac{-\gamma X + \delta}{X^2 + \sqrt{2}X + 1}$$

Par unicité de la décomposition de F en éléments simples,

$$-\alpha X + \beta = \gamma X + \delta \Rightarrow \begin{cases} \gamma = -\alpha \\ \delta = \beta \end{cases}$$

 $\text{On a donc } \frac{1}{X^4+1} = \frac{\alpha X+\beta}{X^2+\sqrt{2}X+1} + \frac{-\alpha X+\beta}{X^2-\sqrt{2}X+1} \text{ d'où, pour } t \in \mathbb{R}, \\ \frac{1}{t^4+1} = \frac{\alpha t+\beta}{t^2+\sqrt{2}t+1} + \frac{-\alpha t+\beta}{t^2-\sqrt{2}t+1}.$

- La valeur en 0 donne : $1 = \beta + \beta \Leftrightarrow \beta = \frac{1}{2}$.
- La valeur en $\sqrt{2}$ donne :

$$\frac{1}{5} = \frac{\alpha\sqrt{2} + \beta}{5} + \frac{-\alpha\sqrt{2} + \beta}{1} \iff 1 - 6\beta = -4\sqrt{2}\alpha$$

$$\Leftrightarrow 2 = 4\sqrt{2}\alpha$$

$$\Leftrightarrow \alpha = \frac{1}{2\sqrt{2}}$$

3e idée : une méthode élégante On a $\left(X^2+\sqrt{2}X+1\right)F=\frac{1}{X^2-\sqrt{2}X+1}=\alpha X+\beta+\frac{-\alpha X+\beta}{X^2+\sqrt{2}X+1}\left(X^2-\sqrt{2}X+1\right)$ Soit $z\in\mathbb{C}\backslash\mathbb{R}$ une racine de $X^2+\sqrt{2}X+1$, alors z n'est pas racine de $X^2-\sqrt{2}X+1$. On prend alors la valeur de $\left(X^2+\sqrt{2}X+1\right)F$ en $z:\frac{1}{z^2-\sqrt{2}z+1}=\alpha z+b$ or on a

$$z^{2} + \sqrt{2}z + 1 = 0 \Leftrightarrow z^{2} = -1 - \sqrt{2}z$$
$$\Leftrightarrow z^{2} + 1 - \sqrt{2}z = -2\sqrt{2}z$$

Par conséquent :

$$-\frac{1}{2\sqrt{2}z} = \alpha z + \beta \iff -1 = 2\sqrt{2}z^2\alpha + 2\sqrt{2}z$$

$$\Leftrightarrow -1 = 2\sqrt{2}\alpha \left(-1 - 2\sqrt{2}z\right) + 2\sqrt{2}z$$

$$\Leftrightarrow -1 = -2\sqrt{2}\alpha + 2\sqrt{2}\left(\beta - \sqrt{2}\alpha\right)z$$

Or, pour $a, b \in \mathbb{R}$, z = s + it, $a + bz = 0 \Leftrightarrow a = b = 0^a$. Ici, $0 = 1 - 2\sqrt{2}$ et $0 = 2\sqrt{2}\left(\beta - \sqrt{2}\alpha\right)$ d'où $\alpha = \frac{1}{2\sqrt{2}} \quad \text{et} \quad \beta = \frac{1}{2}$

3.3.3 Exercice corrigé

Il s'agit de trouver une primitive sur \mathbb{R}_+^* de

$$f: t > 0 \longrightarrow \frac{1-t^2}{(t^2+1)^2 t^3} \Rightarrow F = \frac{1-X^2}{(X^2+1)^2 X^3} = \frac{1-X^2}{(X-i)^2 (X+i)^2 X^3}$$

 $\deg F < 0$ donc E = 0, la décomposition de F en éléments simples s'écrit donc

$$F = \frac{\alpha}{X - i} + \frac{\beta}{(X - i)^2} + \frac{\gamma}{X + i} + \frac{\delta}{(X + i)^2} + \frac{a_1}{X} + \frac{a_2}{X^2} + \frac{a_3}{X^3}$$

F est réelle donc $\gamma = \overline{\alpha}$ et $\delta = \overline{\beta}$. Calculons la partie polaire relative à i. On effectue un $\mathrm{DL}_1(0)$ se $t \longmapsto (X-i)^2 F(i+t) = \frac{1-(i+t)^2}{(2i+t)^2(i+t)^3}$. Au voisinage de 0, $1-(i+t)^2=2-2it+\mathrm{o}(t)$ et de plus,

$$(2i+t)^{2} (1+t)^{3} = (-4+4it+o(t)) (-i-3t+o(t))$$

$$= 4i+16t+o(t)$$

$$= 4i (1-4it+o(t))$$

$$\Rightarrow \frac{2-2it+o(t)}{4i (1-4it+o(t))} = \frac{2}{4i} (i-it+o(t)) (2-2it+o(t))$$

$$= -\frac{i}{2} (1+3it+o(t))$$

$$= -\frac{i}{2} + \frac{3}{2}t+o(t)$$

La partie relative à i est donc $\frac{-\frac{i}{2}}{(X-i)^2} + \frac{\frac{3}{2}}{X-i}$ et celle relative à -i est $\frac{\frac{i}{2}}{(X+i)^2} + \frac{\frac{3}{2}}{X+i}$.

Calculons maintenant la partie relative à 0. Après de courtes computations que vous m'excuserez de ne point rapporter ici, le résultat donne $\frac{1}{X^3} - \frac{3}{X}$. On a donc enfin :

$$F = \frac{-\frac{i}{2}}{(X-1)^2} + \frac{\frac{3}{2}}{X-i} + \frac{\frac{i}{2}}{(X+i)^2} + \frac{\frac{3}{2}}{X+i} + \frac{1}{X^3} - \frac{3}{X}$$

$$\Rightarrow \text{ pour } t > 0, f(t) = \frac{-\frac{i}{2}}{(t-i)^2} + \frac{\frac{i}{2}}{(t+i)^2} + \frac{3}{2} \underbrace{\left[\frac{1}{t-i} + \frac{1}{t+i}\right]}_{\frac{2t}{t^2+1}} + \frac{1}{t^3} - \frac{3}{t}$$

$$\Rightarrow \int^x f(t) \, dt = \frac{\frac{i}{2}}{x-i} - \frac{\frac{i}{2}}{x+i} + \frac{3}{2} \ln\left(1+x^2\right) - \frac{1}{2x^2} - 3\ln\left(x\right)$$

$$= -\frac{1}{x^2+1} + \frac{3}{2} \ln\left(1+x^2\right) - \frac{1}{2x^2} - 3\ln\left(x\right)$$

a. En effet, az + b = (as + b) + ita = 0. En prenant les parties réelles et imaginaires on obtient le résultat.