

1.º Teste de Introdução à Arquitetura de Computadores

1.° Semestre 2019/2020

Duração: 60 minutos

IST – LEIC-Taguspark 21 outubro 2019

NOME NÚMERO

1. (2 valores) A figura seguinte representa o diagrama de blocos básico do PEPE-8, processador de 8 bits, bem como as memórias a que está ligado.



Na tabela seguinte estão referidos os sinais usados para comandar quer a Unidade de Dados, quer a Unidade de Controlo. Preencha esta tabela, especificando para cada sinal qual a indicação concreta que fornece no caso de o PEPE-8 estar a executar a instrução SUB [5EH] (A  $\leftarrow$  A - M[5EH]). Para cada sinal, use a indicação que for mais conveniente, como por exemplo:

- Ativo / Não ativo;
- Um valor numérico;
- Uma indicação simples que especifique a opção a selecionar (ex: esquerda / direita);
- Um simples traço horizontal, ou uma cruz (se não interessar para esta instrução).

| Constante | WR        | SEL_A    | SEL_B   | ESCR_A | SEL_ALU | SEL_PC |
|-----------|-----------|----------|---------|--------|---------|--------|
| 5EH       | Não ativo | Esquerda | Direita | Ativo  | SUB     | 0      |

SUB [5EH] (A  $\leftarrow$  A - M[5EH])

2. (1 valor) Indique quantos bits precisa, no mínimo, para contar desde zero até 200 Mi.

28 bits

| 3. | (1 + 2 + 1 + 3  valores) Num processador com 32 bits de dados, um programa somou as constantes |
|----|------------------------------------------------------------------------------------------------|
|    | FFFF8AC7H e 00000F3BH (em notação de complemento para 2).                                      |

| a) | Escreva um programa em assembly do PEPE-16 que obtenha o mesmo valor matemático como |
|----|--------------------------------------------------------------------------------------|
|    | resultado no R3, colocando o primeiro valor no registo R2 e o segundo no registo R3. |

| MOV | R2, 8AC7H | ; primeiro valor, em hexadecimal |
|-----|-----------|----------------------------------|
| MOV | R3, 0F3BH | ; segundo valor, em hexadecimal  |
| ADD | R3, R2    | ; efetua a operação              |

b) Indique os dois valores e o resultado em binário, tal como o PEPE-16 os processa.

| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | primeiro valor |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----------------|
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | segundo valor  |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | resultado      |

c) Indique qual o valor, em hexadecimal, que o processador de 32 bits obteve, após a soma.

|  | FFFF9A02 | Н | resultado, em hexadecimal |  |
|--|----------|---|---------------------------|--|
|--|----------|---|---------------------------|--|

d) Obtenha <u>o simétrico do segundo valor</u>, em decimal e em hexadecimal (16 bits, em notação de complemento para 2).

| -3899 |   | simétrico, em decimal     |
|-------|---|---------------------------|
| F0C5  | Н | simétrico, em hexadecimal |

4. (3 valores) Considere o seguinte programa em linguagem *assembly* do PEPE-16 (SHL = desloca N bits à esquerda). Responda às seguintes questões:

|        | MOV | R1, 0DCCDH | Quantas vezes o programa passa por "ciclo"? | 4             |
|--------|-----|------------|---------------------------------------------|---------------|
|        | MOV | R2, 7233H  |                                             |               |
|        | MOV | R3, 0      | Qual o valor final de R2?                   | <b>9198</b> H |
| ciclo: | AND | R1, R2     |                                             |               |
|        | JZ  | fim        | Qual o valor final de R3?                   | <b>3</b> H    |
|        | ADD | R3, 1      |                                             |               |
|        | SHL | R2, 1      |                                             |               |
|        | JMP | ciclo      |                                             |               |
| fim:   | JMP | fim        |                                             |               |

5. (1 + 2 + 4 valores) Considere o seguinte programa em linguagem assembly do PEPE-16.

Endereços  $SP \leftarrow SP-2$ **PLACE** 1000H AA EQU 7EH CALL Etiqueta  $M[SP] \leftarrow PC$ EQU PC ← Etiqueta BB3BFH RET PC ← M[SP] CC **EQU** 0EC4DH  $SP \leftarrow SP+2$ 1000H pilha: TABLE 100H **1200H** fim\_pilha: **1200H** Z: WORD CC **PLACE** 0H0000H **MOV** SP, fim\_pilha 0002H MOV R0, AA 0004H MOV R1, BB 0006H **MOV** R2, Z  $\overline{0008H}$ **CALL** X 000AH MOV R1, [R2] **000CH** fim: JMP fim **000EH** X: **PUSH** R0**PUSH** 0010H **R**1 0012H MOV R0, CC 0014H R1, 5 MOV 0016H **CALL** Y 0018H MOV [R2], R0 001AH POP **R1** 001CH POP R0**001EH RET 0020H** Y: **PUSH R**1 **0022H** ciclo: SHL R0, 1 ; deslocamento à esquerda R1, 1 0024H **SUB** 0026H JNZ ciclo 0028H **POP R**1

a) Preencha os <u>endereços que faltam</u> (lado esquerdo, preencha apenas as linhas em que tal faça sentido). Considera-se que cada MOV com uma constante <u>ocupa apenas uma palavra</u>.

002AH

**RET** 

- b) Preencha as <u>instruções que faltam</u> (ou partes delas), tendo em atenção os comentários e funcionamento do programa.
- c) Acabe de preencher a tabela da página seguinte com informação sobre os <u>acessos à memória</u> feitos pelo programa, de leitura (L) ou escrita (E). Use apenas as linhas que necessitar.

| Endereço em que está a instrução que faz o acesso | Endereço<br>acedido | L ou E | Valor lido<br>ou escrito |
|---------------------------------------------------|---------------------|--------|--------------------------|
| 0008H                                             | 11FEH               | E      | 000AH                    |
| 000EH                                             | 11FCH               | E      | 007EH                    |
| 0010H                                             | 11FAH               | E      | 03BFH                    |
| 0016Н                                             | 11F8H               | E      | 0018H                    |
| 0020Н                                             | 11F6H               | E      | 5                        |
| 0028H                                             | 11F6H               | L      | 5                        |
| 002AH                                             | 11F8H               | L      | 0018H                    |
| 0018H                                             | 1200H               | E      | 89A0H                    |
| 001AH                                             | 11FAH               | L      | 03BFH                    |
| 001CH                                             | 11FCH               | L      | 007EH                    |
| 001EH                                             | 11FEH               | L      | 000AH                    |
| 000AH                                             | 1200H               | L      | 89A0H                    |
|                                                   |                     |        |                          |
|                                                   |                     |        |                          |
|                                                   |                     |        |                          |
|                                                   |                     |        |                          |
|                                                   |                     |        |                          |
|                                                   |                     |        |                          |
|                                                   |                     |        |                          |