CHỦ ĐỀ: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

I. Tóm tắt lý thuyết

Phương trình lượng giác

a. Phương trình lượng giác cơ bản

*
$$\sin u = \sin v \Leftrightarrow \begin{bmatrix} u = v + k2\pi \\ u = \pi - v + k2\pi \end{bmatrix}, k \in \mathbb{Z}$$

*
$$\cos u = \cos v \Leftrightarrow \begin{bmatrix} u = v + k2\pi \\ u = -v + k2\pi \end{bmatrix}, k \in \mathbb{Z}$$

- * $\tan u = \tan v \Leftrightarrow u = v + k\pi, k \in \mathbb{Z}$
- * $\cot u = \cot v \Leftrightarrow u = v + k\pi$, $k \in \mathbb{Z}$

b. Dạng thường gặp:

* Phương trình bậc hai đối với một HSLG:

1.
$$a \sin^2 x + b \sin x + c = 0$$

2. $a\cos^2 x + b\cos x + c = 0$

3.
$$a tan^2 x + b t anx + c = 0$$

4. $a \cot^2 x + b \cot x + c = 0$

Cách giải:

đặt $t = \sin x / \cos x$ $(-1 \le t \le 1)$ hoặc $t = \tan x / \cot x$ $(t \in \mathbb{R})$ ta được phương trình bậc hai theo t.

* Phương trình bậc nhất đối với sinx và cosx: $a \sin x + b \cos x = c \left(a^2 + b^2 > 0\right)$

Cách giải:

Chia hai vế của phương trình cho $\sqrt{a^2 + b^2}$, ta được:

$$\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x = \frac{c}{\sqrt{a^2 + b^2}}$$
 (1)

Đặt
$$\frac{a}{\sqrt{a^2+h^2}} = \cos\alpha$$
; $\frac{b}{\sqrt{a^2+h^2}} = \sin\alpha$. Khi đó

Pt(1) thành:
$$\sin x \cos \alpha + \cos x \sin \alpha = \frac{c}{\sqrt{a^2 + b^2}} \Leftrightarrow \sin(x + \alpha) = \frac{c}{\sqrt{a^2 + b^2}}$$

Phương trình $a \sin x + b \cos x = c$ có nghiệm khi và chỉ khi $a^2 + b^2 \ge c^2$

* Phương trình dẳng cấp bậc hai: $a\sin^2 x + b\sin x \cos x + c\cos^2 x = 0$ ($a^2 + b^2 + c^2 \neq 0$) Cách giải:

Xét xem $x = \frac{\pi}{2} + k\pi$ có là nghiệm của phương trình không.

Với $x \neq \frac{\pi}{2} + k\pi$ ($\cos x \neq 0$), chia hai vế của phương trình cho $\cos^2 x$ (hoặc $\sin^2 x$) ta được phương trình bậc 2 theo $\tan x$ (hoặc $\cot x$).

* Phương trình đối xứng: $a(\sin x + \cos x) + b \sin x \cos x + c = 0 \quad (a^2 + b^2 > 0)$

Cách giải:

Đặt
$$t = \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$$
, $\left(\left|t\right| \le \sqrt{2}\right) \Rightarrow \sin x \cos x = \frac{t^2 - 1}{2}$: ta được phương trình bậc hai

theo t.

II. Bài tập trắc nghiệm

Nhận biết

Câu 1. Chọn phát biểu sai

A. Hàm số $y = \sin x$, $y = \cos x$, $y = \tan x$, $y = \cot x$ là hàm số lẻ.

B. Hàm số $y = \sin x$, $y = \cos x$ tuần hoàn với chu kì 2π .

C. Hàm số y = t anx , y = cotx tuần hoàn với chu kì π .

D. Hàm số $y = \sin x$, $y = \cos x$ có tập giá trị là $\begin{bmatrix} -1;1 \end{bmatrix}$.

Câu 2. Đồ thị hàm số $y = \cos x$, $y = \sin x$ là đường

A. Đường thẳng.

B. Cong kín.

C. Parabol.

D. Hình sin.

Câu 3. $x = \frac{\pi}{2} + k2\pi, k \in \mathbb{Z}$ là nghiệm của phương trình

B. $\cos x = -1$ **C.** $\sin x = -1$

D. $\sin x = 1$

Câu 4. Tập xác định của hàm số $y = \sin 3x$ là

A.
$$\mathbb{R} \setminus \left\{ \frac{k\pi}{3}, k \in \mathbb{Z} \right\}$$
 B. \mathbb{R}

C.
$$\mathbb{R} \setminus \left\{ \frac{\pi}{6} + k\pi, k \in \mathbb{Z} \right\}$$
 D. $\mathbb{R} \setminus \{0\}$

Câu 5. Tìm khẳng định đúng?

A. Hàm số $y = \sin x$ là hàm số chẵn.

B. Hàm số $y = \sin x$ là hàm số tuần hoàn chu kì π .

C. Hàm số $y = \sin x$ có giá trị trong khoảng (-1;1).

D. Hàm số $y = \sin x$ đồng biến trong các khoảng $\left(-\frac{\pi}{2} + k 2\pi; \frac{\pi}{2} + k 2\pi\right) k \in \mathbb{Z}$.

Câu 6. Tập xác định của hàm số $y = \frac{1}{\sin x-1}$ là

A.
$$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k \, 2\pi, k \in \mathbb{Z} \right\}$$
 B. $\mathbb{R} \setminus \left\{ 1 \right\}$ **C.** $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k \, \pi, k \in \mathbb{Z} \right\}$ **D.** $\mathbb{R} \setminus \left\{ \frac{\pi}{2} \right\}$

C.
$$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k \pi, k \in \mathbb{Z} \right\}$$
 D. \mathbb{R}

Câu 7. Tập xác định của hàm số $y = \cos \sqrt{x-1} + 2x$ là

A.
$$\lceil 1; +\infty \rangle$$
.

B.
$$(1; +\infty)$$
.

C.
$$(-\infty;1)$$
.

D. R.

Câu 8. Tìm khẳng định sai?

A. Hàm số $y = \cos x$ là hàm số chẵn.

B. Hàm số $y = \cos x$ là hàm số tuần hoàn chu kì 2π .

C. Hàm số $y = \cos x$ có đồ thị là đường hình sin.

D. Hàm số $y = \cos x$ đồng biến trên tập xác định.

Câu 9. Khẳng định đúng là

A.
$$\cos x \neq 1 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi$$

B.
$$\cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi$$

C.
$$\cos x \neq -1 \Leftrightarrow x \neq -\frac{\pi}{2} + k2\pi$$

D.
$$\cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k2\pi$$

Câu 10. Khẳng định nào sau đây là sai?

A.
$$\sin x = -1 \Leftrightarrow x = -\frac{\pi}{2} + k2\pi$$

B.
$$\sin x = 0 \Leftrightarrow x = k\pi$$

C.
$$\sin x = 0 \Leftrightarrow x = k2\pi$$

D.
$$\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + k2\pi$$

Câu 11. Hàm số $y = \cos x$ đồng biến trong đoạn nào dưới đây?

A.
$$0; \frac{\pi}{2}$$

B.
$$\left[\pi; 2\pi\right]$$

C.
$$\left[-\pi;\pi\right]$$

D.
$$\lceil 0; \pi \rceil$$

Câu 12. Khẳng định nào sau đây là đúng?

A. Hàm số $y = \tan x$ có tập xác định là \mathbb{R}

B. Hàm số $y = \tan x$ là hàm số tuần hoàn chu kì 2π .

C. Giá trị của hàm số $y = \tan x$ tại $\frac{3\pi}{4}$ là 1.

D. Hàm số $y = \tan x$ đồng biến trên tập xác định.

Câu 13. Tập xác định của hàm số $y = \frac{1}{\cos x + 2}$ là

 $\mathbf{A}. \mathbb{R}$

C. $\mathbb{R} \setminus \{-2\}$

 $D. \varnothing$

Câu 14. Cho $k \in \mathbb{Z}$. Các điểm mà hàm số $y = \frac{1}{1 + \cos x}$ không xác định là

A. $x = k2\pi$

B. $x = \frac{\pi}{2} + k2\pi$ **C.** $x = -\frac{\pi}{2} + k2\pi$ **D.** $x = \pi + k2\pi$

Câu 15. Trong các khẳng định sau khẳng định nào sai?

A. Hàm số $y = \cot x$ là hàm số lẻ.

B. Hàm số $y = \cot x$ là hàm số tuần hoàn chu kì π .

C. Hàm số $y = \cot x$ có tập giá trị là R.

D. Hàm số $y = \cot x$ đồng biến trên tập xác định.

Thông hiểu

Câu 16. Giá trị của tham số m để phương trình $2 \sin x - m = 0$ có nghiệm là

A. $m \le -2$ hoặc $m \ge 2$ **B.** $-2 \le m \le 2$

Câu 17. Các nghiệm của phương trình $\sin 2x = \frac{1}{2}$ trong khoảng $\left(\pi; \frac{3\pi}{2}\right)$ là

A. $\frac{13\pi}{12}$ và $\frac{7\pi}{6}$ **B.** $\frac{17\pi}{12}$ và $\frac{7\pi}{4}$ **C.** $\frac{17\pi}{12}$ và $\frac{13\pi}{12}$

D. $\frac{7\pi}{4}$ và $\frac{7\pi}{6}$

Câu 18. Trong các phương trình sau đây phương trình nào vô nghiệm

A. $\sin x + \cos x = 2$

B. $\sin^2 x - 5\sin x + 4 = 0$

C. $\sin x = 2\cos x$

D. $\sin x - 2\cos x = 1$

Câu 19. Tìm tất cả các giá trị của tham số thực *m* sao cho phương trình $(\sqrt{3}\cos x + 2)(3\sin x - m + 1) = 0 \text{ có nghiệm?}$

A. $m \le -2$ hoặc $m \ge 4$.

B. $-2 \le m \le 4$.

C. $-4 \le m \le 2$.

D. $\forall m \in R$.

Câu 20. Số nghiệm thực của phương trình $\cos\left(2x + \frac{\pi}{6}\right) = -\cos x \text{ với } x \in (0; 2\pi)$ là

A. 3.

B. 6.

C. 5.

Câu 21. Gọi x_1 ; x_2 lần lượt là nghiệm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình $2\sin 2x + \sqrt{3} = 0$. Tính giá trị của biểu thức $P = x_1 + 2x_2$.

A. $P = \frac{7\pi}{6}$. **B.** $P = \frac{\pi}{3}$. **C.** $P = \frac{5\pi}{6}$. **D.** $P = \frac{2\pi}{3}$.

Câu 22. Gọi M; m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = -2\sin x + 3$. Tính S = M + m.

A. S = 5

B. S = 6

C. S = 4

D. S = 8

Câu 23. Cho ba hàm số $f(x) = \sin x$; $g(x) = \cos x$; $h(x) = \tan x$. Tìm các hàm số đồng biến trong

khoảng
$$\left(-\frac{\pi}{4}; \frac{\pi}{4}\right)$$
.

A. Hàm số f(x) và g(x).

B. Hàm số f(x) và h(x).

C. Hàm số g(x) và h(x).

D. Cả ba hàm số f(x); g(x) và h(x).

Câu 24. Số nghiệm thực của phương trình $2\cos\left(x+\frac{\pi}{6}\right)=1$ với $x\in(0;2\pi)$ là

A. 1

B. 2

C. 3

Câu 25. Hàm số nào sau đây là hàm số chẵn?

A. $y = 4 \sin x \cdot \tan 2x$ **B.** $y = \tan x - \sin x$

C. $y = 2 \sin 2x + 3$

D. $y = 3\sin x + \cos x$

Câu 26. Phương trình $\tan^2 x = 3$ có nghiệm là

A. $x = -\frac{\pi}{2} + k\pi$

B. $x = \pm \frac{\pi}{2} + k\pi$

C. vô nghiệm

D. $x = \frac{\pi}{2} + k\pi$

Câu 27. Nghiệm của phương trình $\sin x \cdot (2\cos x - \sqrt{3}) = 0$ là

A.
$$\begin{bmatrix} x = \pm \frac{\pi}{6} + k\pi \\ x = k\pi \end{bmatrix} (k \in \mathbb{Z}).$$

B.
$$x = \pm \frac{\pi}{6} + k\pi$$
 $(k \in \mathbb{Z}).$
$$x = \frac{\pi}{2} + k\pi$$

C.
$$x = \pm \frac{\pi}{3} + k\pi$$

$$x = \frac{\pi}{2} + k\pi$$
 $(k \in \mathbb{Z}).$

$$\mathbf{D.} \begin{bmatrix} x = \pm \frac{\pi}{3} + k\pi \\ x = k\pi \end{bmatrix} (k \in \mathbb{Z}).$$

Câu 28. Phương trình $\sqrt{3}$. tan x + 3 = 0 có nghiệm là

A.
$$x = \frac{\pi}{2} + k\pi$$

A.
$$x = \frac{\pi}{3} + k\pi$$
 B. $x = -\frac{\pi}{3} + k2\pi$ **C.** $x = \frac{\pi}{6} + k\pi$

$$\mathbf{C.} \ \mathbf{x} = \frac{\pi}{6} + k\pi$$

D.
$$x = -\frac{\pi}{3} + k\pi$$

Câu 29. Phương trình $2 \sin x - m = 0$ vô nghiệm khi m

A. m > 1

B. m <-2 hoặc m >2

C. m < -1

D. $-2 \le m \le 2$

Câu 30. Tập xác định của hàm số $y = \tan(2x + \frac{\pi}{6})$ là

A.
$$\mathbb{R} \setminus \{\frac{\pi}{12} + k\pi, k \in \mathbb{Z}\}$$
 B. $\mathbb{R} \setminus \left\{\frac{\pi}{6} + \frac{k\pi}{2}, k \in \mathbb{Z}\right\}$ **C.** $\mathbb{R} \setminus \{k2\pi\}\}$

D.
$$\mathbb{R} \setminus \{\frac{\pi}{12} + \frac{k\pi}{2}, k \in \mathbb{Z} \}$$

Câu 31. Phương trình nào sau đây vô nghiệm?

A.
$$\sqrt{3} \sin 2x - \cos 2x = 2$$

B.
$$3\sin x - 4\cos x = 5$$

$$\mathbf{C.} \, \sin x = \cos \frac{\pi}{4}$$

$$\mathbf{D.} \ \sqrt{3} \sin x - \cos x = -3$$

Câu 32. Phương trình $\cos x - \sqrt{3} \sin x = 0$ có nghiệm là

A.
$$x = \frac{\pi}{6} + k\pi$$
 B. Vô nghiệm

C.
$$x = -\frac{\pi}{6} + k2\pi$$
 D. $x = \frac{\pi}{2} + k\pi$

D.
$$x = \frac{\pi}{2} + k\pi$$

Câu 33. Điều kiện để phương trình $m.\sin x - 3\cos x = 5$ có nghiệm là

A.
$$m \ge 4$$

B.
$$-4 \le m \le 4$$
 C. $m \ge \sqrt{34}$

C.
$$m \ge \sqrt{34}$$

Câu 34. Chu kì của hàm số $y = \sin 2x$ là

Α. π

B. 2π

Câu 35: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = 2\sin(x + \frac{\pi}{4}) + 3$

A. $y_{\text{max}} = 5$; $y_{\text{min}} = 1$ **B.** $y_{\text{max}} = 5$; $y_{\text{min}} = -1$ **C.** $y_{\text{max}} = 3$; $y_{\text{min}} = 1$

D. $y_{\text{max}} = 3; y_{\text{min}} = -1$

Vận dụng

Câu 36: Giá trị lớn nhất của hàm số $y = 1 - 2\cos x - \cos^2 x$ là

D. 3

Câu 37: Giá trị nhỏ nhất và giá trị lớn nhất của hàm số $y = 4\sqrt{\sin x + 3} - 1$ lần lượt là

A. $\sqrt{2}$ *v*à 2

B. 2 và 4

C. $4\sqrt{2}$ *v*à 8

D. $4\sqrt{2} - 1 v a 7$

Câu 38: Giá trị nhỏ nhất của hàm số $y = \sin^2 x - 4 \sin x - 5$ là

A. -20

B. −9

C. 0

 $D_{1} - 8$

Câu 39: Nghiệm của phương trình lượng giác $2\sin^2 x - 3\sin x + 1 = 0$ thốa điều kiện $0 \le x < \frac{\pi}{2}$ là

A. $x = \frac{\pi}{2}$

B. $x = \frac{\pi}{2}$

C. $x = \frac{\pi}{6}$

D. $x = \frac{5\pi}{6}$

Câu 40. Điều kiện xác định của hàm số $y = \frac{\cot x}{\cos x}$ là

A. $x = \frac{\pi}{2} + k\pi$

B. $x = k2\pi$

C. $x = k\pi$

D. $x \neq k \frac{\pi}{2}$

Câu 41. Hàm số nào sau đây có đồ thị nhận Oy làm trục đối xứng?

A. $y = (x^2 + 1) \sin x$

B. $y = (x^3 + x)$. tanx

C. $y = |x| \cdot \cot 2x$

D. $y = (2x + 1)\cos x$

Câu 42. Hàm số $y = 1 + \sin^2 x$ có chu kì là:

A. T = $\frac{\pi}{2}$

B. T = 4π

C. T = 2π

D. T = π

Câu 43. Tìm m để phương trình $5\cos x - m\sin x = m + 1$ có nghiệm.

A. $m \le -13$

B. $m \le 12$

C. $m \le 24$

D. $m \ge 24$

Câu 44. Hàm số $y = \frac{\cos x}{2 + m \cdot \cos x}$ xác định với mọi $x \in R$ khi nào ?

A. $|m| \ge 2$

B. |m| > 2

C. |m| < 2

D. $|m| \le 2$

Câu 45. Phương trình $tan^2x - 2m$. tanx + 1 = 0 có nghiệm khi và chỉ khi

A. m $\neq \pm 1$

B. $\begin{bmatrix} m \le -1 \\ m \ge 1 \end{bmatrix}$

C. $-1 \le m \le 1$

D. m $\neq \pm 4$

Vân dung cao

Câu 46. Với giá trị nào của m thì phương trình cos2x – (2m + 1)cosx + m + 1 = 0 có nghiệm $x \in \left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$?

A. 0 < m < 1

B. $-1 \le m < 0$ **C.** $\frac{1}{2} < m \le 1$

D. $-1 \le m \le \frac{1}{2}$

Câu 47. Phương trình $\cos^2 x + \cos^2 2x + \cos^2 3x + \cos^2 4x = 2$ tương đương với phương trình

A. $\cos 2x \cdot \cos 4x = 0$

B. $\cos 2x \cdot \cos 5x = 0$

C. $\sin 2x \cdot \sin 4x = 0$

D. $\sin 2x$. $\sin 5x = 0$

Câu 48. Xác định m để phương trình m. $\cos^2 x - m \cdot \sin^2 x + 2 = 0$ có nghiệm.

$$\mathbf{A.} \begin{bmatrix} m \le -1 \\ m \ge 2 \end{bmatrix}$$

$$\mathbf{B.} \begin{bmatrix} m \le -2 \\ m \ge 0 \end{bmatrix}$$

C.
$$-3 \le m \le 1$$

D.
$$-\frac{1}{2} \le m \le \frac{3}{2}$$

Câu 49. Chu kì của hàm số $y = \cos x$. $\cos 5x + \sin 2x$. $\sin 4x$ là

A. T =
$$2 \pi$$

B. T =
$$\pi$$

C. T =
$$\frac{\pi}{2}$$

D. T =
$$4\pi$$

Câu 50. Chu kì của hàm số $y = \cos^4 x + \sin^4 x$ là

A. T =
$$4\pi$$

B. T =
$$2 \pi$$

$$\mathbf{C.} \, \mathbf{T} = \frac{\pi}{4}$$

D. T =
$$\frac{\pi}{2}$$