

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen XI

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2016-17.

Grupo A.

Profesor Rafael Ortega Ríos.

Descripción Parcial B.

Fecha 27 de abril de 2017.

Ejercicio 1. Encuentra la solución del problema siguiente, indicando el intervalo en el que está definida:

$$y - 4x^3 + (2y + x)y' = 0, \quad y(0) = -1.$$

Sea el dominio de la ecuación $\Omega = \mathbb{R}^2$. Definimos las funciones:

$$P: \quad \Omega \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto y - 4x^{3}$$

$$Q: \quad \Omega \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto 2y + x$$

Tenemos que $P,Q \in C^1(\Omega)$. Además, tenemos que:

$$\frac{\partial P}{\partial y}(x,y) = 1 = \frac{\partial Q}{\partial x}(x,y) \qquad \forall (x,y) \in \Omega.$$

Por tanto, la ecuación es exacta. Buscamos una función potencial $U:\Omega\to\mathbb{R}$ tal que $\nabla U=(P,Q)$. Integrando la primera componente de ∇U respecto de x obtenemos:

$$U(x,y) = \int P(x,y) \, dx = \int (y - 4x^3) \, dx = xy - x^4 + \varphi(y),$$

donde $\varphi : \mathbb{R} \to \mathbb{R}$ es una función derivable respecto de y que representa la constante de integración. Derivando respecto de y obtenemos:

$$\frac{\partial U}{\partial y}(x,y) = x + \varphi'(y)$$
$$= Q(x,y) = 2y + x.$$

Por tanto, $\varphi'(y) = 2y$, de lo que obtenemos $\varphi(y) = y^2$ (por ejemplo. Notemos que el potencial es úncio salvo una constante aditiva). Por tanto, el potencial es:

$$U(x,y) = xy - x^4 + y^2.$$

De esta forma, la ecuación diferencial se puede expresar como:

$$\frac{d}{dx}(U(x,y(x))) = 0.$$

Por tanto, como $U \in C^2(\mathbb{R}^2)$, tenemos que:

$$U(x,y) = C \quad \forall (x,y) \in \Omega,$$

Para cierto C. Como se pide la condición inicial y(0) = -1, tenemos que:

$$U(0, -1) = 1 = C.$$

Por tanto, la solución del problema de valores iniciales viene dado de forma implícita por la ecuación:

$$xy - x^4 + y^2 = 1.$$

Obtengamos los valores de y(x) (donde nos quedamos con la raíz negativa ya que y(0) = -1):

$$y(x) = \frac{-x - \sqrt{x^2 + 4 \cdot (1 + x^4)}}{2} \qquad \forall x \in \mathbb{R}.$$

Ejercicio 2. Encuentra un factor integrante del tipo $\mu(t,x)=m(t)$ para la ecuación

$$2t + t^2x + x' = 0.$$

Definimos:

$$P: \quad \mathbb{R}^2 \longrightarrow \quad \mathbb{R}$$

$$(t,x) \longmapsto \quad 2t + t^2x$$

$$Q: \quad \mathbb{R}^2 \longrightarrow \quad \mathbb{R}$$

$$(t,x) \longmapsto \quad 1$$

Tenemos que $P,Q\in C^1(\mathbb{R}^2).$ Para que exista un factor integrante $\mu,$ es necesario que:

$$\frac{\partial(\mu P)}{\partial x} = \frac{\partial(\mu Q)}{\partial t}.$$

Calculamos dichas derivadas:

$$\frac{\partial(\mu P)}{\partial x} = \frac{\partial \mu}{\partial x} P + \mu \frac{\partial P}{\partial x}$$
$$\frac{\partial(\mu Q)}{\partial t} = \frac{\partial \mu}{\partial t} Q + \mu \frac{\partial Q}{\partial t}$$

De esta forma, tenems que:

$$\frac{\partial \mu}{\partial x}P - \frac{\partial \mu}{\partial t}Q = \mu \left(\frac{\partial Q}{\partial t} - \frac{\partial P}{\partial x}\right).$$

Calculamos las derivadas parciales:

$$\frac{\partial \mu}{\partial x}(t,x) = 0, \quad \frac{\partial \mu}{\partial t}(t,x) = m'(t).$$

$$\frac{\partial P}{\partial x}(t,x) = t^2, \quad \frac{\partial Q}{\partial t}(t,x) = 0.$$

Por tanto, la ecuación diferencial que debe cumplir el factor integrante es:

$$-m'(t) = -m(t)t^2 \quad \forall (t, x) \in \mathbb{R}^2.$$

Por tanto, la ecuación diferencial de la cual será solución el factor integrante es:

$$m' = mt^2$$
 con dominio $\mathbb{R} \times \mathbb{R}^+$

donde hemos supuesto que m(t) > 0 para todo $t \in \mathbb{R}$ (en caso contrario, el factor integrante sería igualmente válido). La solución de esta ecuación diferencial es:

$$m(t) = e^{\frac{t^3}{3}} \qquad \forall t \in \mathbb{R},$$

donde hemos tomado la constante de integración nula por simplicidad (en caso contrario, el factor integrante sería igualmente válido).

Ejercicio 3. Demuestra que las funciones $f_1, f_2, f_3 : \mathbb{R} \to \mathbb{R}$ dadas por:

$$f_1(t) = e^t$$
, $f_2(t) = e^{2t}$, $f_3(t) = e^{3t}$,

son linealmente independientes.

Como $f_1, f_2, f_3 \in C^{\infty}(\mathbb{R})$, en particular son derivables dos veces. Por tanto, consideramos su Wronskiano:

$$W(f_1, f_2, f_3)(t) = \begin{vmatrix} e^t & e^{2t} & e^{3t} \\ e^t & 2e^{2t} & 3e^{3t} \\ e^t & 4e^{2t} & 9e^{3t} \end{vmatrix} = e^{t+2t+3t} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6t} \left[18 + 3 + 4 - 2 - 12 - 9 \right] = 2e^{6t}.$$

Por tanto, para cualquier $t \in \mathbb{R}$, $W(f_1, f_2, f_3)(t) \neq 0$. Por tanto, como $\exists t \in \mathbb{R}$ tal que $W(f_1, f_2, f_3)(t) \neq 0$, tenemos que f_1, f_2, f_3 son linealmente independientes.

Ejercicio 4. Demuestra que la función $F: \mathbb{R} \to \mathbb{R}$ definida por la integral

$$F(x) = \int_0^1 e^{\theta x^2} \cos^2(\theta) d\theta$$

es derivable y cumple F'(0) = 0.

Definimos la siguiente función auxiliar:

$$G: \mathbb{R} \times [0,1] \longrightarrow \mathbb{R}$$

 $(x,\theta) \longmapsto e^{\theta x^2} \cos^2(\theta).$

Comprobemos en primer lugar que $G \in C^1(\mathbb{R} \times [0,1])$. Esto es directo, por ser producto y composición de funciones de clase C^1 . Entonces, por el Teorema de la Derivación de Funciones dependientes de un Parámetro, la función F es derivable en \mathbb{R} con:

$$F'(x) = \int_0^1 \frac{\partial G}{\partial x}(x, \theta) d\theta.$$

Calculemos su derivada parcial de primer orden respecto de x:

$$\frac{\partial G}{\partial x}(x,\theta) = 2x\theta e^{\theta x^2} \cos^2(\theta)$$

Por tanto, la derivada de F es:

$$F'(x) = \int_0^1 2x\theta e^{\theta x^2} \cos^2(\theta) d\theta$$
$$= 2x \int_0^1 \theta e^{\theta x^2} \cos^2(\theta) d\theta.$$

Evaluando en x = 0 obtenemos:

$$F'(0) = 2 \cdot 0 \int_0^1 \theta e^{\theta \cdot 0^2} \cos^2(\theta) d\theta = 0$$

Ejercicio 5. Dada una función $\ell \in C^1(\mathbb{R})$ que cumple $\ell(t) > 0$ para cada $t \in \mathbb{R}$ se define la transformación del plano

$$\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(t,x) \longmapsto (t,\ell(t)x).$

Demuestra que el conjunto de estas transformaciones es un grupo de difeomorfismos. Encuentra el subgrupo que deja invariante la ecuación $x' = 2t^2x$.