

MCTA028-15: Programação Estruturada

Aula 5: Matrizes (Primeira Parte)

Wagner Tanaka Botelho wagner.tanaka@ufabc.edu.br / wagtanaka@gmail.com Universidade Federal do ABC (UFABC) Centro de Matemática, Computação e Cognição (CMCC)

Introdução

Introdução

- Na aula passada estudamos um *array* com apenas UMA dimensão (vetor);
- Alguns casos, uma estrutura com mais de uma dimensão é mais útil:
 - Por exemplo, quando os dados são organizados em uma estrutura de LINHAS e COLUNAS, como uma TABELA:
 - → Utiliza-se um array com DUAS dimensões, ou seja, uma MATRIZ.

Problema

Problema

- Escreva um programa para armazenar as notas de 20 alunos em 5 disciplinas:
 - Vetores;
 - Matrizes.

Problema: Vetores

- Escreva um programa para armazenar as notas de 20 alunos em 5 disciplinas:
 - 5 vetores de 20 posições.

Problema: Vetores

- Escreva um programa para armazenar as notas de 20 alunos em 5 disciplinas:
 - 20 vetores de 5 posições.

Problema: Matrizes

- Escreva um programa para armazenar as notas de 20 alunos em 5 disciplinas:
 - **7** 1 matriz de 20x5.

ALUNOS	DISC01	DISC02	DISC03	DISC04	DISC05
1	5,5	8,3	6,5	10,0	9,5
2	8,0	7,5	8,5	6,5	10,0
3	•••	•••	•••	•••	•••
4	•••	•••	•••	•••	•••
5	•••	•••	•••	•••	•••
6	•••	•••	•••	•••	•••
7	7,5	8,0	9,0	8,0	8,5
•••	6,5	3,5	6,5	4,5	9,0
18	•••	•••	•••	•••	•••
19	•••	•••	•••	•••	•••
20	8,0	9,0	8,0	10,0	9,0

Matrizes

- Matrizes são estruturas MULTIDIMENSIONAIS (mais de uma dimensão) capazes de armazenar dados;
- A figura a seguir representa uma matriz BIDIMENSIONAL de números inteiros:
 colunas

COMO
MANIPULAR
ESSES DADOS???

Declarando uma Matriz

Declarando uma Matriz

A forma para declarar uma matriz é:

```
tipo_dado nome_array[nro_linhas][nro_colunas];
```

Por exemplo, para criar um *array* de **INTEIROS** com 10 linhas e 5 colunas, isto é, uma matriz de inteiros de tamanho 10 × 5:

```
int mat[10][5];
```

Inicializando uma Matriz

```
void main(){
   int matriz1[2][4] = {1,2,3,4,5,6,7,8};
   int matriz2[2][4] = {{1,2,3,4}, {5,6,7,8}};
}
```

	0	1	2	3
0	1	2	3	4
1	5	6	7	8

Acessando um Elemento

- Para ACESSAR uma determinada posição da matriz:
 - Deve-se usar dois índices:
 - Primeiro especifica a LINHA;
 - **☞** Segundo especifica a COLUNA.

int mat[10][5]; mat[0][1] = 9; mat[3][3]=7;

	0	1	2	3	4
0	3	9	0	1	2
1	9	8	22	12	3
2	87	23	7	11	22
3	83	7	9	7	11
4	97	73	86	7	7
5	29	83	7	0	1
6	20	39	8	7	0
7	9	73	2	92	0
8	8	18	23	4	22
9	98	87	3	6	2

Cada dimensão da MATRIZ começa no índice **ZERO** e termina sempre em **N-1**, em que **N** é o número de elementos da matriz.

Entrada de Dados

Matrizes: Entrada de Dados

- Escreva um programa para:
 - **↗ INSERIR** números inteiros em uma matriz 3 x 3;

```
*Ex_01.c X
                                                                          mat[i][j]
             #include<stdio.h>
                                                                    mat[0][0]=(4)
       2
             void main() {
                                                                    mat[0][1]=(6)
       3
                   int mat[3][3];
                                                                    2 mat[0][2]=(1)
       4
       5
                  for(int i=0; i<3; i++) {
                                                                        mat[1][0]=(8)
       6
                        for(int j=0; j<3; j++
                             scanf("%i", &mat[i][j]);
                                                                        mat[1][1]=(3)
       8
                                                                        mat[1][2]=(2)
       9
     10
                                                                        mat[2][0]=(7)
                                      0
                                                                        mat[2][1]=(5)
                                                                        mat[2][2]=(1)
                                  0
                                      4
                                          6
                        mat
                                                                3
                                      8
                                          3
                                              2
                                      7
                                          5
                                  2
                                              1
```

Saída de Dados

Matrizes: Saída de Dados

- Escreva um programa para:
 - **➢ INSERIR** números inteiros em uma matriz 3 x 3;
 - **▼ IMPRIMIR** os números inseridos.

		21/20
i	j	mat[i][j]
0	8	mat[0][0]={4 }
	1	mat[0][1]={6 }
	2	mat[0][2]={1 }
	13	
X	0	mat[1][0]={8 }
	1	mat[1][1]={3}
	2	mat[1][2]={2}
	3	
2	8	mat[2][0]={7}
	1	mat[2][1]={5 }
	1	mat[2][2]={1 }
	3	
3		

Array Com Mais de Duas Dimensões

Arrαy Com Mais de Duas Dimensões

- Vimos como criar arrays com UMA dimensão (vetor) ou DUAS dimensões (matriz);
- A Linguagem C permite criar um array com MAIS de DUAS dimensões:
 - Cada dimensão do array é definida por um par de colchetes na sua declaração.

```
#include <stdio.h>
void main(){
   //declara array de int com 1 dimensão
   int vet[5];
   //declara array de float com 2 dimensões
   float mat[5][5];
   //declara array de double com 3 dimensões
   double cub[5][5][5];
   //declara array de int com 4 dimensões
   int X[5][5][5];
```

Arrαy Com Mais de Duas Dimensões

```
#include <stdio.h>
void main(){
   int cub[5][5][5];
   int i,j,k;
   //preenche o array de 3 dimensões com zeros
   for (i=0; i < 5; i++)
      for (j=0; j < 5; j++)
         for (k=0; k < 5; k++)
            cub[i][j][k] = 0;
```

Reforçar os Conceitos

Matriz

Declarar

int a[8];

int a[8][8];

Armazenar Valores

```
a[0]=10;
a[1]=3;
a[2]=4;
```

a[0][0]=1; a[0][1]=2; a[1][0]=5;

. . .

Armazenar Valores pelo Teclado

```
scanf("%i", &a[0]);
scanf("%i", &a[1]);
scanf("%i", &a[2]);
```

scanf("%i", &a[0][0]); scanf("%i", &a[0][1]); scanf("%i", &a[1][0]);

Referências

- SALES, André Barros de; AMVAME-NZE, Georges. Linguagem C: roteiro de experimentos para aulas práticas. 2016;
- BACKES, André. Linguagem C Completa e Descomplicada. Editora Campus. 2013;
- SCHILDT, Herbert. C Completo e Total. Makron Books. 1996;
- DAMAS, Luís. Linguagem C. LTC Editora. 1999;
- DEITEL, Paul e DEITEL, Harvey. C Como Programar. Pearson. 2011.