# Newton's Method for Convex Optimization

Conner DiPaolo, Jeffrey Rutledge, Colin Adams

Harvey Mudd College

February, 2016

Given a differentiable function  $f : \mathbf{R} \mapsto \mathbf{R}$  we want to find the instances when f(x) = 0 (not generally solvable in closed form).

#### Newton's Method:

- 1. Take a starting position  $x_0$
- 2. Find where the tangent line  $y = f(x_n) + (x_{n+1} x_n)f'(x_n)$  is 0 and iterate:

$$y = f(x_n) + (x_{n+1} - x_n)f'(x_n) = 0$$
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Initial 
$$x_0 = 0.4$$
,  $f(x) = (x - 1)(x - 3)^2 + e^{\frac{1}{3}/x} - \cos(\frac{x}{2}) - 1.5$ 



$$x_0 = 0.4 \quad \Delta = 0.9805$$

Initial 
$$x_0 = 0.4$$
,  $f(x) = (x - 1)(x - 3)^2 + e^{\frac{1}{3}/x} - \cos(\frac{x}{2}) - 1.5$ 



$$x_1 = 0.6866 \quad \Delta = 0.6938$$

Initial 
$$x_0 = 0.4$$
,  $f(x) = (x - 1)(x - 3)^2 + e^{\frac{1}{3}/x} - \cos(\frac{x}{2}) - 1.5$ 



$$x_2 = 0.9938$$
  $\Delta = 0.3866$ 

Initial 
$$x_0 = 0.4$$
,  $f(x) = (x - 1)(x - 3)^2 + e^{\frac{1}{3}/x} - \cos(\frac{x}{2}) - 1.5$ 



$$x_3 = 1.2050 \quad \Delta = 0.1754$$

# Optimizing Function Using Newton's Method

Instead of finding wheren f(x) = 0, how can we find where f'(x) = 0? Same method:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$