ANN Lab 2 Radial Basis Function, Self Organizing Map

Ravi Bir|ravib@kth.se Bharat Sharma|bsharma@kth.se Qiao Ren|qiaor@kth.se February 19, 2020

Batch RBF Thresholds

Threshold	Absolute Residual Error Achieved	Number of units	Variance
0.1	0.0997	5	0.695
0.01	0.0099	13	0.080
0.001	0.00099	56	0.007

Tabell 1: Parameters needed to meet required thresholds for sin(2x)

Threshold	Absolute Residual Error Achieved	Number of units	Variance
0.1	0.0958	35	0.015
0.01	-	-	-
0.001	-	-	-

Tabell 2: Parameters needed to meet required thresholds for square(2x)

• To reduce the residual error to 0 for the square(2x) function, we could use a sign activation function

On-line Number of RBFs

Figur 1: sin(2x) Number of RBFs vs Er-Figur 2: square(2x) Number of RBFs vs ror

Batch RBFs and Variance

Figur 4: Variance vs Error

RBF initialisations

Figur 5: Investigating RBF Initialisations

competitive learning

	pure $\sin(2x)$	noisy $\sin(2x)$
evenly distributed RBF	0.0555	0.2925
evenly distributed $RBF + CL$	0.0547	0.2919

Tabell 3: a comparison between using and not using competitive learning on pure function $\sin(2x)$ and noisy function $\sin(2x)$. (CL means competitive learning. learning rate = 0.01 number of RBF = 13 var of RBF = 0.4)

avoiding dead units

	without CL	CL with one winner	CL with all winners
absolute residual error	0.0555	0.0547	0.0536

Tabell 4: error on pure function $\sin(2x)$, in 3 different cases. (CL means competitive learning. learning rate = 0.01. number of RBF=13 var of RBF =0.4)

convergence of learning rate

learning curve of pure and noisy sin(2x), when using competitive learning with only one winner

RBF learning on two-dimentional dataset

error of prediction: 0.0304

output: height

output: distance

SOMS

Animal Ordering -

```
[[3 "'crocodile'"]
                     [69 "'pelican'"]
[3 "'seaturtle'
                     [69 "'penguin'"]
[3 "'lion'"]
[12 "'bat'"]
                     [71 "'cat'"]
[12 "'kangaroo'
                     [71 "'skunk'"]
[12 "'elephant'
                     [74 "'hyena'"]
[12 "'dog'"]
[17 "'horse'"]
                     [83 "'giraffe'"]
[17 "'bear'"]
                     [83 "'rabbit'"]
[21 "'housefly'
                     [83 "'camel'"]
[21 "'dragonfly
[21 "'moskito'"
                     [84 "'ostrich'"]
[21 "'butterfly
                     [89 "'walrus'"]
[21 "'beetle'"]
[21 "'grasshopp
                     [90 "'frog'"]
[61 "'rat'"]
                     [90 "'duck'"]
[68 "'pig'"]
                     [99 "'spider'"]]
[68 "'antelop'"
[68 "'ape'"]
```

We can see that insects are grouped together. Sea turtle and crocodile are often together as well as frog and duck as they are water type. 4legged species are often together.

Cyclic Tour

We keep on decreasing the neighbourhood after each epoch. We are able to find a good tour as shown in the figure above but sometimes, the algorithm takes a detour between the two points in the bottom left edge. This might be due to very small neighbourhood or less training.

Clustering with SOMS

Sex and district doesn't decide the voting patterns. Party on the other side affects voting majorly.