1. Оценки и доверительные интервалы.

- **1** (2 балла) Пусть X_1, \ldots, X_n выборка из распределения $U(-\theta, \theta), \theta > 0$. Построить оценку параметра θ методом максимального правдоподобия. Проверить её на состоятельность (руками).
- **2** (2 балла) (Метод выбора с отклонением) Пусть X имеет плотность f(x), а мы умеем строить величину с плотностью g(x), причем $f(x)/g(x) \le c$. Сгенерируем величину Y с плотностью g(x) и с вероятностью f(Y)/(cg(Y)) возьмем её в качестве X иняче повторим процедуру. Доказать, что данный метод даёт случайную величину с плотностью f(x). Какое c можно взять в данном методе?
- ${f 3}$ (2 балла) На примере бесконечной выборки $X=(X_1,X_2,\ldots)$ из произвольного распределения с конечным вторым моментом изучить поведение статистики

$$T_n = \frac{\sum_{i=1}^n X_i - nEX_1}{\sqrt{nDX_1}}.$$

Сходится ли T_n на какой-нибудь реализации выборки X? Как вы это объясните? Также проверьте, что центральная предельная теорема всё же выполняется.

- 4 (2 балла) Пусть выборка X_1, \ldots, X_{100} сделана из распределения Парето с параметром $\alpha > 0$, имеющего плотность $p(x) = \frac{\alpha}{x^{\alpha+1}} I\{x > 1\}$. Для всех $\alpha \in (0,5)$ (по мелкой решетке) построить по выборке доверительные интервалы уровня доверия γ для параметра α , вывести их на графике в зависимости от α и сделать выводы.
- 5 (2 балла) Пусть $F(x) = 1 \exp(-(\beta x)^{\alpha}), \ x > 0, \alpha, \beta > 0$ функция распределения Вейбулла. Смоделировать выборку из этого распределения размера 100. Реализовать метод спейсингов и найти этим методом оценки параметров α и β .
- **6** (2 балла) Пусть X_1, \ldots, X_n выборка. Определим оценку Пикандса индекса экстремального значения как

$$\gamma_p = \frac{1}{\ln 2} \ln \frac{X_{(n-k)} - X_{(n-2k)}}{X_{(n-2k)} - X_{(n-4k)}}.$$

Известно, что для распределения Парето с параметром α данная оценка, как и оценка Хилла, является состоятельной для параметра $\gamma = \frac{1}{\alpha}$ при $k \to \infty, k/n \to 0, n \to \infty$. Определить, какая оценка лучше при малых значениях n (скажем, n < 1000), и обосновать свой выбор. Предложить метод определения оптимального значения k при малых значениях n. Определить значение индекса экстремального значения по датасету Aids2 из пакета MASS языка R.

Замечание 1. В качестве распределения в задаче 3 можно взять распределение $Beta(\alpha,\beta)$, где $\beta=50-\alpha$ и α — ваш номер в таблице курса. Те же значения параметров α и β можно выбрать в задаче 5.

Замечание 2. В качестве целевой переменной в задаче 6 брать время между постановкой диагноза и смертью пациента (или концом наблюдения).