Temario

- Introducción y fundamentos
- Introducción a SQL
- ◆ Modelo Entidad / Relación
- Modelo relacional
- Diseño relacional: formas normales
- Consultas
 - Cálculo relacional
 - Álgebra relacional
- Implementación de bases de datos
 - Estructura física: campos y registros
 - Indexación
 - Índices simples
 - Árboles B
 - Hashing

Modelo relacional vs. SQL

- El modelo relacional formaliza los conceptos implementados en SQL (o más bien SQL es una implementación del modelo relacional)
 - Esquemas (estructura de tabla): atributos, dominios
 - Estado de esquema (contenido de una tabla): tuplas
 - Base de datos, estado de una base de datos
 - Claves, superclaves, clave primaria, claves externas
- Notación: esquema, tupla...
- Además sobre el modelo relacional se formalizan
 - Formas normales: propiedades del diseño de los esquemas
 - Consultas: cálculo y álgebra

Resumen del modelo relacional ¿Qué tenemos que saber?

- Conceptos
 - Esquema, atributo, estado, tupla, base de datos
 - Énfasis: el estado de un esquema es un conjunto de tuplas
- Entender y manejar la notación
- Condiciones que deben cumplir los atributos
 - Nombre único, valores en dominio, atómicos, univaluados, admiten NULL
- Diferencia entre claves, superclaves, clave primaria
 - Además, las claves primarias no pueden ser NULL
- Qué significa la integridad referencial con las claves externas
 - El valor referenciado tiene que existir, o ser NULL
- Conversión de diagrama E/R a esquema relacional

Modelo E/R vs. relacional

- Propuesto por E. Codd en 1970
- ◆ ER ∩ MR
 - Entidad / relación → relación
 Tipo de entidad / relación → esquema relacional
 Extensión de entidad / relación → estado de una relación
 - Atributos, dominios
 - Superclaves, claves, clave primaria

Edgard F. Codd

- ◆ ER MR
 - Atributos multivaluados, compuestos
 - Relación como elemento diferente de entidad
 - Entidad débil (puesto que no existe diferencia entre relación y entidad)
- MR − ER
 - Claves externas
 - Concepto de base de datos
 - Más adelante, normalización, cálculo, álgebra
 - Expresable directamente en SQL
- Algunas diferencias de notación, terminología, matiz
 - P.e. noción de restricciones
 - Matiz de lógica de predicados más que conjuntista

Esquema relacional

- Un nombre de relación, y una lista de atributos
 - Describe una relación
 - Semejante a entidad E/R pero con matiz de predicado más que conjuntista (producto cartesiano en E/R)
 - Aridad de la relación: nº de atributos
- Notación
 - R $(A_1, A_2, ..., A_n)$ donde R es el nombre de la relación y A_k son los atributos
 - R (A₁: dom (A₁), A₂: dom (A₂), ..., A_n: dom (A_n))
 donde dom (A_k) es el dominio del atributo A_k
- Ejemplo: Usuario (nick, email, nombre)
 Usuario (nick:string, email:string, nombre:string)

Atributos de relación

- Tienen un nombre y un dominio asociado
 - Dominios: string, numérico, código postal, etc.
 - Los atributos deben tomar valores en su dominio
 - No se puede repetir un nombre de atributo en un mismo esquema
 - Se entiende que ocupan un lugar fijo en la relación
- Admiten el valor NULL
 - Valor no existe, no disponible, o desconocido
 - En general interesa minimizar NULLs
- Equivalente a atributos E/R pero...
 - Atómicos
 - Univaluados

Claves

Superclave

- Conjunto de atributos cuya combinación es única para un tipo de entidad
- Por ejemplo, el conjunto total de atributos de un tipo de entidad es una superclave (trivial)
- Ejemplos: nick + nombre es superclave de Usuario dni es superclave de Persona?

Clave

- Una superclave mínima, también llamada clave candidata
- Equivaldría –con matices– a UNIQUE en SQL
- Ejemplos: nick + nombre no es clave para Usuario nick es clave
 email es clave

Clave primaria

- Una clave que se designa como primaria para un tipo de entidad
- Se utiliza para indexar (lo veremos más adelante...)
- Equivale a PRIMARY KEY en SQL
- La elección entre claves candidatas es arbitraria
- Notación gráfica: subrayado

Estado de una relación

- $r(R) \subset dom(A_1) \times dom(A_2) \times \cdots \times dom(A_n)$
- Conjunto de tuplas $r(R) = \{t_1, t_2, ..., t_n\}$

$$t_k = (x_{k,1}, x_{k,2}, ..., x_{k,n})$$

 $x_{k,j} \in dom(A_k)$

Notación

$$R(x_1, ..., x_n)$$
 es lo mismo que $(x_1, ..., x_n) \in r$ (R).
 $t[A_k] = t[k] = t . A_k = x_k$
 Subtuplas: $t[A_{k_1}, ..., A_{k_j}] = t[k_1, ..., k_j] = t(A_{k_1}, ..., A_{k_j}) = (x_{k_1}, ..., x_{k_j})$
 donde $k_i \in [1, n]$

También notación tablas (filas, columnas y títulos)

Estado de una relación

Base de datos

- Esquema de BD relacional
 - Conjunto de esquemas relacionales $S = \{R_1, ..., R_m\}$
 - Conjunto C de restricciones de integridad sobre ellos
- Estado de una BD relacional
 - Conjunto de estados de cada relación de la BD $\{r_1, ..., r_m\}$,
 donde cada r_k es un estado de R_k
 - Y además los r_k cumplen todas las restricciones de C
 - Un estado que no cumple todas las restricciones es inválido
- A menudo nos referiremos a una DB como el esquema más su estado

Restricciones

- Aplican a la intensión de las relaciones
 - No basta con que se cumplan en un estado circunstancial
- Inherentes al modelo (a.k.a. implícitas)
 - P.e. no puede haber tuplas duplicadas
- Propias del esquema (a.k.a. explícitas)
- Dependencias de datos (a.k.a. funcionales)
 - Son la base de los procesos de normalización (lo veremos más adelante)
- Propias de la aplicación (a.k.a. semánticas o reglas de negocio)
 - Se implementan en el software de la aplicación, externamente a la BD

Restricciones de esquemas

- De dominio
 - Los atributos son univaluados
 - Sus valores deben pertenecer al dominio del atributo
- Sobre atributos
 - De claves
 - Dos tuplas no pueden tener el mismo valor en los atributos que forman una clave
 - Las claves deben ser mínimas: si se elimina algún atributo no se cumple la unicidad
 - Valores NULL: puede establecerse que un atributo no puede ser NULL
- De integridad
 - De entidades: ninguna clave primaria puede ser NULL
 - Referencial...

Restricciones de integridad referencial

- Se basan en la noción de clave externa
- Aparecen típicamente de las relaciones entre entidades en el modelo E/R
- Un conjunto de atributos FK de un esquema R₁ puede ser una clave externa que referencia a R₂ si los atributos de FK tienen los mismos dominios que los de la clave primaria de R₂
 - Se dice que FK en R₁ hace referencia a la relación R₂
- Una clave externa establece además una restricción de integridad referencial: FK clave externa de R_1 a $R_2 \Rightarrow$ los valores de FK en las tuplas de R_1 o bien aparecen en alguna tupla de R_2 , o bien son NULL
- Preservacion de la integridad referencial en la actualización de las BD
 - Inserción, modificación, eliminación
 - Rechazar, reaccionar (NULL, o valor por defecto, o propagar)

Conversión modelo E/R a relacional

Mod	elo	E/R
-----	-----	-----

Tipo de entidad E

Atributos de E

Atómico

Compuesto

Multivaluado

Entidad débil E dependiente de entidades E_k

Modelo relacional

Esquema relacional E

Atributo o atributos en E, o esquema aparte

Atributo en el esquema relacional E

Un atributo en E por cada elemento atómico

Nuevo esquema relacional con dos atributos: clave primaria de la entidad + valor del atributo

Esquema donde se añaden las claves primarias de E_k

Conversión modelo E/R a relacional (cont)

Modelo E/R

Relación R entre E₁ y E₂

Atributos de la relación R

Claves

externas

R es n-n

R es *n*-1

R es 1-1

Modelo relacional

Esquema relacional R

Atributos en el esquema relacional R

Claves primarias de E_1 y $E_2 \rightarrow$ atributos en R

Dos opciones:

- a) Igual que para n-n (especialmente si la participación de E_1 es parcial, para evitar NULLs)
- b) Añadir en el esquema relacional de E₁

 la clave primaria de E₂ y los atributos de R

 (especialmente indicado p.e. si la relación es fija)

Dos opciones:

- a) Igual que para n-1 (especialmente si la participación de E_1 o E_2 es parcial)
- b) Un solo esquema relacional uniendo E₁ y E₂

Conversión modelo E/R a relacional (cont)

Modelo E/R

Modelo relacional

Claves primarias

Entidad

Entidad débil

Liitiaau uebii

Relación n-n entre E_1 y E_2

Relación n-1 entre E_1 y E_2

Relación 1-1 entre E₁ y E₂

Misma clave primaria

Clave parcial (si la hay) más las claves primarias de las entidades identificadoras

Atributos de las claves primarias de E₁ y E₂ (y algún atributo de R si lo hay y fuese preciso)

La clave primaria de E₁ (opción b)

La clave primaria de E_1 ó E_2 (opción b)