Preparation of Papers for AIAA Technical Journals

Liam Brown * and Jeremy Crowley[†] Stanford University, Stanford, CA, 94305

In this paper, we discuss a reinforcement learning strategy for the video game Super Smash Bros Melee.

Nomenclature

 β = basis function for global approximation

a = cylinder diameter

I. Introduction

Super Smash Bros Melee presents a state space with complex dynamics that is difficult to model without knowledge of the source code used to build the game.

II. Problem Statement

It is infeasible to discretize the state space for this game if we wish the develop a learning algorithm that can be executed in a reasonable amount of time with a standard personal computer. To account for this, we must apply a learning algorithm that can generalize from limited experience.

$$Q(s,a) = \Theta_a^T \beta(s) \tag{1}$$

III. Applications to Super Smash Bros Melee

We define a set of basis functions that span the state space based and a reward function based on what is important to the agent.

^{*}Graduate Student, Aeronautics and Astronautics.

[†]Graduate Student, Aeronautics and Astronautics.

A. Basis Functions

B. Reward Functions

IV. Results

V. Conclusion

Appendix

An Appendix, if needed, appears **before** research funding information and other acknowledgments.

Funding Sources

We would like to thank mom and dad.

Acknowledgments

We would like to acknowledge libmelee for providing an open source solution to obtaining information about the game while it is being played.