

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки	
КАФЕДРА	Прикладная математика	

ОТЧЕТ *К ЛАБОРАТОРНОЙ РАБОТЕ НА ТЕМУ*:

Методы решения нелинейных уравнений Вариант 1

Студент	ФН2-51Б		Н.О. Акиньшин	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Студент	ФН2-51Б		А.С. Джагарян	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	

ОГЛАВЛЕНИЕ 2

Оглавление

1.	Контрольные вопросы	3
2.	Результаты	6

1. Контрольные вопросы

1) Можно ли использовать методы бисекции и Ньютона для нахождения кратных корней уравнения f(x) = 0 (т. е. тех, в которых одна или несколько первых производных функций f(x) равны нулю)? Обоснуйте ответ.

Ответ. Рассмотрим метод бисекции. Если корень имеет четную кратность, то метод бисекции окажется неприменим, т.к. $f(x_1)f(x_2) > 0$. То есть на границах локализации значения функции имеют один знак. Однако если корень имеет нечётную кратность, то такое свойство не выполняется, поэтому можно использовать метод бисекции.

Рассмотрим метод Ньютона:

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}.$$

Пусть корень уравнения f(x) = 0 кратности m в точке x_0 , т.е.

$$f'(x_0) = f''(x_0) = \dots = f^{(m-1)}(x_0) = 0$$

Тогда при $x^k \to x_0$

$$x^{k+1} = x_0 - \lim_{x^k \to x_0} \frac{f(x^k)}{f'(x^k)}$$

Рассмотрим отдельно

$$\lim_{x^k \to x_0} \frac{f(x^k)}{f'(x^k)} = \lim_{x^k \to x_0} \frac{f'(x^k)}{f''(x^k)} = \dots = \lim_{x^k \to x_0} \frac{f^{(m-1)}(x^k)}{f^{(m)}(x^k)} = 0$$

Значит если $x^k \approx x_0$, то $x^{(k+1)} \to x_0$ при $k \to \infty$.

2) При каких условиях можно применять метод Ньютона для поиска корней уравнения $f(x) = 0, \ x \in [a,b]$? При каких ограничениях на функцию f(x) метод Ньютона обладает квадратичной скоростью сходимости? В каких случаях можно применять метод Ньютона для решения систем нелинейных уравне- ний?

Ответ. Теорема. Пусть функция F(x) липшиц-непрерывна с постоянной $q \in (0;1)$ на отрезке $[c-\delta;c+\delta]$ т.е. верно $\forall x',x'' \in [c-\delta;c+\delta]\,|F(x')-F(x'')| \leqslant q|x'-x''|$ и верно $|F(c)-c \leqslant (1-q)\delta|$ Тогда уравнение x=F(x) имеет единственное решение x_*

Следствие. Если вместо условия липшиц-непрерывности функции F(x) верно неравенство $|F'(x)| \leq q < 1$ на $[c - \delta; c + \delta]$, то уравнение x = F(x) имеет единственное решение x_* .

Метод Ньютона для решения уравнения можно применять, если метод сходиться. Рассмотрим условия, при которых метод сходиться. Метод Ньютона имеет вид $x^{k+1}=x^k-f(x^k)/f'(x^k)$. F(x)=x-f(x)/f'(x). Тогда $F'(x)=f*f''/(f')^2$. Пусть на отрезке [a,b] выполнено $|f'(x)|\geqslant m>0, |f''(x)|\leqslant M$. Тогда существует ε окрестность корня x_* , что если начально приближение лежит в этой окрестности, то итерационный процесс сходится к корню т.к верна оценка $|F'(x)|=|\frac{ff''}{(f')^2}|\leqslant \frac{|f|}{m^2}M$. Из непрерывности функции f(x) следует, что для любого q найдется окрестность корня, в которой справедливо $|f(x)|\leqslant qm^2/M$. Следовательно $|F'(x)|=q\leqslant 1$ т.е выполнены условия следствия поэтому метод Ньютона сходится при выборе начального приближения из соответствующей окрестности.

Оценим погрешность метода Ньютона. По формуле Тейлора.

$$f(x_*) = f(x^k) + f'(x^k)(x_* - x^k) + \frac{1}{2}f''(\xi)(x^k - x_*)^2 = 0$$

Тогда

$$x^{k+1} = x^k - f(x^k)/f'(x^k) = x^k - \frac{f(x^k) - f(x_*)}{f'(x^k)} = x_* + \frac{1}{2} \frac{f''(\xi)}{f'(x^k)(x^k - x_*)^2}$$

Следовательно верно $|x^{k+1}-x_*| \leq \frac{M}{2m}|x^k-x_*|^2$. Таким образом Метод Ньютона имеет квадратичную скорость сходимости, если $f'(x) \neq 0$. В противном случае скорость сходимости снижается до линейной.

Метод Ньютона для решения системы нелинейных уравнений имеет вид $F'(x^k)(x^{k+1}-x^k)+F(x^k)=0$. Таким образом аналогично одномерному случаю нужно чтобы существовала обратная матрица к $F'(x^k)$.

3) Каким образом можно найти начальное приближение?

Ответ. Начальное приближение корня можно найти используя метод вилки для локализации корней. Тогда для каждого корня x_k^* будут найдены границы $[x_k^{(1)},\,x_k^{(2)}]$. И начальное приближение $x_k^{(0)}$ можно выбирать как $x_k^{(0)}=\frac{x_k^{(2)}+x_k^{(1)}}{2}$. Этот способ требует некоторого количества итераций.

Если у уравнения f(x) = 0 имеется 1 корень нечетной кратности на отрезке [a, b], то начальное приближение можно найти за O(1), используя метод хорд:

$$x^{(0)} = \frac{f(a) \cdot b - f(b) \cdot a}{f(a) - f(b)}$$

Данная точка получена путём пересечения прямой, соединяющей точки (a, f(a)) и (b, f(b)).

4) Можно ли использовать метод Ньютона для решения СЛАУ?

Ответ. Метод Ньютона для решения системы нелинейных уравнений имеет вид $F'(x^k)(x^{k+1}-x^k)+F(x^k)=0$. Пусть СЛАУ имеет вид Ax=f. Тогда F(x)=Ax-f. Заметим, что F'(x)=A в силу линейности. Тогда метод Ньютона имеет вид $A(x^{k+1}-x^k)+Ax^k-f$ т.е $Ax^{k+1}=f$ т.е решение СЛАУ на прямую каким либо методом и с помощью метода Ньютона это одно и то же. Следовательно особого смысла использовать метод Ньютона при решении СЛАУ нет.

5) Предложите альтернативный критерий окончания итераций в методе бисекции, в котором учитывалась бы возможность попадания очередного приближения в очень малую окрестность корня уравнения.

Ответ. Новый критерий будет выглядеть следующим образом: $|x^{k+1}-x^k|<\varepsilon \ \text{OR} \ |f(x^{k+1})|<\varepsilon_0 \ \text{OR} \ iters< MAXITER$

 Предложите различные варианты модификаций метода Ньютона. Укажите их достоинства и недостатки.

Ответ. Рассмотрим различные модификации метода Ньютона в одномерном случаи. 1) Для вычисления производной функции в точке требуется 2 вычисления значения функции, если функция сложная, то имеет смысл в методе Ньютона выбрать точку и на каждой итерации производную считать в ней. Также данный способ хорош тем, что в процессе метода не получиться выйти за исследуемую область т.к. производная берется на каждой итерации одна и та же 2) Также можно рассмотреть следующую модификацию имеющую Зей порядок сходимости

$$x^{k+1} = x^k - f(x^k)/f'(x^k) - \frac{f(x^k - f(x^k)f'(x^k)^{-1})}{f'(x^k)}$$

Модификации метода Ньютона в многомерном случаи. Классический метод Ньютона имеет вид $F'(x^k)(x^{k+1}-x^k)+F(x^k)=0$ 1)Аналогично одномерному случаи можно зафиксировать точку в которой считается матрица Якоби.

- 2) Можно ввести параметр в метод Ньютона т.е рассмотреть алгорит
м $F'(x^k)\frac{(x^{k+1}-x^k)}{\tau_{k+1}}$ + $F(x^k) = 0$ 3) Кроме того в процессе метода Ньютона требуется решать СЛАУ, для решения можно применять различные алгоритмы: Гаусса, QR, методом простой итерации, Якоби, Зейделем, релаксацией.
- 7) Предложите алгоритм для исключения зацикливания метода Ньютона и выхода за пределы области поиска решения?

Ответ. Заметим, что зацикливание метода Ньютона происходит означает, что алгоритм выдаёт одну и ту же последовательность точек x^k с некоторым периодом. То есть

$$x^{k+T+1} = x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)},$$

где $T \in \mathbb{N}$ – период. Это может происходить только в некоторых точках (не более, чем счетном множестве точек) области определения функции f(x), в силу того, что $\{x^k\}_{k=1}^{\infty}$ – счётно. Для борьбы с зацикливанием в формуле следующего приближения x^{k+1} можно всегда добавлять некоторое малое число ε_0 . Тогда формула преобразуется

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)} + \varepsilon_0,$$

Из-за этого добавления алгоритм не перестанет сходиться (может увеличиться число итераций) для тех уравнений, в которых нет зацикливания.

Рассмотрим выход за границу поиска решений.

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)} \notin [a, b]$$

Тогда в таких случаях будет задавать x^{k+1} в некоторой малой окрестности границ поиска решений, то есть

1: **if** $x^{k+1} < a$ **then**

2:
$$x^{k+1} = a + \varepsilon_0$$

3: end if

4: **if** $x^{k+1} > b$ **then**

5:
$$x^{k+1} = b - \varepsilon_0$$

6: end if

Тогда итоговый алгоритм имеет вид

1: while $(|x^k - x^{k+1}| > \varepsilon)$ and (iterations < MAXITER) do

2: iterations + +;

4:
$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)} + \varepsilon_0$$
5: **if** $x^{k+1} < a$ **then**

6:
$$x^{k+1} = a + \varepsilon_0$$

end if 7:

8: **if**
$$x^{k+1} > b$$
 then

9:
$$x^{k+1} = b - \varepsilon_0$$

end if 10:

11: end while

2. Результаты

Таблица 1. Исследование скорости сходимости функции $y=\sin(\pi x),\ h=0.5,\ q=0.5$ для сплайн-

интерполяции

PHO	ОЛИЦИИ						
n	$ x^{k+1} - x^k $	$x_k - x*$	Скорость сходимо-				
			$\operatorname{сти} p$				
1	h	1.39461	_				
2	qh	0.764926	0.548487	0.86647			
3	q^2h	0.390168	0.510073	0.971225			
4	q^3h	0.196034	0.502435	0.992992			
5	q^4h	0.0981353	0.500603	0.99826			