Análise de Desempenho OSPF FRR (Fast Re-Route)

Arthur Cadore M. Barcella

Objetivo:

- Analisar a diferença de desempenho do uso da técnica de FRR em sistemas de comutação de trânsito baseados em IGP (OSPF).

- Discutir sobre as vantagens do uso desse tipo de tecnica para melhorar o RTT (Round Trip Time) do circuito de MPLS (pelo uso de balanceamento de carga MPLS-TE) além de diminuir / evitar os efeitos de drop de pacotes causados pela comutação de circuitos.

O que é o OSPF?

O OSPF é um protocolo de roteamento dinâmico, amplamente utilizado nos dispositivos de trânsito em redes de computadores para estabelecer conectividade L3 de maneira dinâmica.

A tecnologia atua desde a sinalização entre os participantes de uma rede OSPF para anúncio de prefixo/links até no cálculo do melhor caminho para chegar na rede desejada.

O que é o OSPF?

Supondo o cenário apresentado a direita apenas três roteadores conectados entre si, utilizando o OSPF para anunciar todos os prefixos apresentados.

Após o cálculo do OSPF (em cada caixa), cada dispositivo terá uma tabela de roteamento análogo ao da imagem a direita, onde para cada rede, o device sabe para quem encaminhar (ou seja, seu "NextHop"). Note que em muitos casos é o IP de loopback.

[Router2]display ip routing-table Destinations : 20 Routes : 21 Destination/Mask NextHop Interface Proto Pre Cost 127.0.0.1 0.0.0.0/32 Direct 0 InLoop0 10.1.1.1/32 0 INTRA 10 1 Vlan10 10.10.0.0 10.1.1.2/32 Direct 0 127.0.0.1 InLoop0 10.1.1.3/32 O INTRA 10 1 10.20.0.1 Vlan20 10.10.0.0/31 Vlan10 Direct 0 10.10.0.1 10.10.0.1/32 Direct 0 127.0.0.1 InLoop0 10.20.0.0/31 Vlan20 Direct 0 10.20.0.0 10.20.0.0/32 Direct 0 127.0.0.1 InLoop0 10.30.0.0/31 O INTRA 10 2 10.10.0.0 Vlan10 10.20.0.1 Vlan20 127.0.0.0/8 Direct 0 127.0.0.1 InLoop0 127.0.0.0/32 Direct 0 127.0.0.1 InLoop0 127.0.0.1/32 Direct 0 127.0.0.1 InLoop0 127.255.255.255/32 Direct 0 InLoop0 127.0.0.1 169.254.0.0/16 169.254.206.112 Vlan1 Direct 0 169.254.0.0/32 169.254.206.112 Vlan1 Direct 0 169.254.206.112/32 Direct 0 127.0.0.1 InLoop0 169.254.255.255/32 Direct 0 169.254.206.112 Vlan1 224.0.0.0/4 0.0.0.0 Direct 0 NULL0 224.0.0.0/24 0.0.0.0 Direct 0 NULL0 255.255.255.255/32 Direct 0 127.0.0.1 InLoop0

Tecnica de OSPF-FRR:

A técnica de FRR é implementada como um *addon* do protocolo OSPF para permitir o calculo de um caminho de backup.

Essa técnica tem como objetivo permitir a cada caixa calcular não só o caminho default (melhor caminho), mas também o "segundo melhor caminho" desde que esse não comute pela mesma saída (mesmo NextHop) tendo o mesmo destino. Dessa forma criando um "Caminho Backup".

Cenário de testes implementado em Lab:

Para testar tando o OSPF quanto o FRR, o cenário implementado em laboratório está apresentado a direita, onde as três caixas que possuem OSPF configurado são simbolizados como switches L3.

Em seguida, para simular a queda do link, foi utilizado dois switches L2 conectados entre si, para que os devices L3 não percebam a queda do link a nivel de L1.

Queda do link atuando apenas com OSFP:

Abaixo está a queda de pacote no wireshark, note que diversos pacotes são perdidos:

No.	Time	Source	Destination	Protocol	VLAN	Length Info
	0.487393815	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=93/23808, ttl=255 (reply in 8)
	0.487394039	10.1.1.2	10.10.0.0	ICMP	10	102 Echo (ping) reply id=0x2240, seq=93/23808, ttl=255 (request in 7)
9	0.639671884	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=94/24064, ttl=255 (no response found!)
10	2.793871294	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=95/24320, ttl=255 (no response found!)
1:	4.967085253	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=96/24576, ttl=255 (no response found!)
13	7.119018246	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=97/24832, ttl=255 (no response found!)
13	9.280279754	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=98/25088, ttl=255 (no response found!)
14	9.946517849	10.10.0.0	224.0.0.5	OSPF	10	86 Hello Packet
1!	11.434078601	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=99/25344, ttl=255 (no response found!)
10	13.586142747	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=100/25600, ttl=255 (no response found!)
1	15.737754887	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=101/25856, ttl=255 (no response found!)
18	3 17.888877386	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=102/26112, ttl=255 (no response found!)
19	19.945841816	10.10.0.0	224.0.0.5	OSPF	10	86 Hello Packet
20	20.041287821	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=103/26368, ttl=255 (no response found!)
2:	22.192961129	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=104/26624, ttl=255 (no response found!)
22	2 24.352078773	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=105/26880, ttl=255 (no response found!)
2	3 26.517264866	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=106/27136, ttl=255 (no response found!)
24	1 28.668414458	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=107/27392, ttl=255 (no response found!)
2:	29.945952561	10.10.0.0	224.0.0.5	OSPF	10	86 Hello Packet
20	30.821599445	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=108/27648, ttl=255 (no response found!)
27	32.973758962	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=109/27904, ttl=255 (no response found!)
	35.125875563	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=110/28160, ttl=255 (no response found!)
29	37.278076991	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=111/28416, ttl=255 (no response found!)
30	39.432624442	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x2240, seq=112/28672, ttl=255 (no response found!)
3:	39.944887513	10.10.0.0	224.0.0.5	OSPF	10	86 Hello Packet
32	40.395202151	10.10.0.0	224.0.0.5	OSPF	10	158 LS Update

Queda do link atuando apenas com OSFP:

FRR Configurado:

Uma vez com o FFR configurado na interface, temos as seguintes rotas adicionadas a tabela de roteamento do device.

Note que para alcançar a rede 10.1.1.2/32 (IP de loopback da segunda caixa, o device possui tanto uma rota denominada "RealNextHop" quanto uma "BkNextHop", o mesmo vale para a interface de saída do pacote, que é diferente para garantir alta disponibilidade.

```
[Router1]display ip routing-table 10.1.1.2 verbose
Summary count: 1
Destination: 10.1.1.2/32
 Protocol: O_INTRA
 Process ID: 1
  SubProtID: 0x1
                                    Age: 00h00m24s
                             Preference: 10
       Cost: 1
                             QosLocalID: N/A
      IpPre: N/A
                                  State: Active Adv
        Tag: 0
  OrigTblID: 0x0
                                OrigVrf: default-vrf
    TableID: 0x2
                                 OrigAs: 0
      NibID: 0x13000006
                                 LastAs: 0
     AttrID: 0xffffffff
                               Neighbor: 0.0.0.0
      Flags: 0x10041
                            OrigNextHop: 10.10.0.1
      Label: NULL
                            RealNextHop: 10.10.0.1
    BkLabel: NULL
                              BkNextHop: 10.30.0.0
    SRLabel: NULL
                              BkSRLabel: NULL
   SIDIndex: NULL
                                InLabel: NULL
  Tunnel ID: Invalid
                              Interface: Vlan-interface10
BkTunnel ID: Invalid
                            BkInterface: Vlan-interface30
   FtnIndex: 0x0
                           TrafficIndex: N/A
  Connector: N/A
                                 PathID: 0x0
   LinkCost: 1
                             MicroSegID: 0
RealFIRType: Normal
                              RealThres: 0
```

FRR Configurado:

Abaixo está a queda de pacote no wireshark, note que um pacote de ping é perdido:

No.		Time	Source	Destination	Protocol	VLAN	Leng Info	
	12463	36.672575205	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x20b3, seq=20/5120, ttl=255 (reply in 12464)	
	12464	36.672575535	10.1.1.2	10.10.0.0	ICMP	10	102 Echo (ping) reply id=0x20b3, seq=20/5120, ttl=255 (request in 12463)	
	12515	36.823514707	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x20b3, seq=21/5376, ttl=255 (reply in 12516)	
	12516	36.823514971	10.1.1.2	10.10.0.0	ICMP	10	102 Echo (ping) reply id=0x20b3, seq=21/5376, ttl=255 (request in 12515)	
	12567	36.974957290	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x20b3, seq=22/5632, ttl=255 (reply in 12569)	
	12569	36.974957573	10.1.1.2	10.10.0.0	ICMP	10	102 Echo (ping) reply id=0x20b3, seq=22/5632, ttl=255 (request in 12567)	
	12620	37.126267464	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x20b3, seq=23/5888, ttl=255 (reply in 12621)	
	12621	37.126267728	10.1.1.2	10.10.0.0	ICMP	10	102 Echo (ping) reply id=0x20b3, seq=23/5888, ttl=255 (request in 12620)	
	12764	37.297134215	10.10.0.0	10.1.1.2	ICMP	10	102 Echo (ping) request id=0x20b3, seq=24/6144, ttl=255 (no response found!)	
	13077	39.449148227	10.30.0.1	10.1.1.2	ICMP	30	102 Echo (ping) request id=0x20b3, seq=25/6400, ttl=255 (reply in 13078)	
ļ	13078	39.449148569	10.1.1.2	10.30.0.1	ICMP	30	102 Echo (ping) reply id=0x20b3, seq=25/6400, ttl=254 (request in 13077)	
	13103	39.599821455	10.30.0.1	10.1.1.2	ICMP	30	102 Echo (ping) request id=0x20b3, seq=26/6656, ttl=255 (reply in 13107)	
	13107	39.616421013	10.1.1.2	10.30.0.1	ICMP	30	102 Echo (ping) reply id=0x20b3, seq=26/6656, ttl=254 (request in 13103)	
	13128	39.767208113	10.30.0.1	10.1.1.2	ICMP	30	102 Echo (ping) request id=0x20b3, seq=27/6912, ttl=255 (reply in 13129)	
1	13129	39.767208377	10.1.1.2	10.30.0.1	ICMP	30	102 Echo (ping) reply id=0x20b3, seq=27/6912, ttl=254 (request in 13128)	
	13152	39.917724314	10.30.0.1	10.1.1.2	ICMP	30	102 Echo (ping) request id=0x20b3, seq=28/7168, ttl=255 (reply in 13153)	
	13153	39.917724650	10.1.1.2	10.30.0.1	ICMP	30	102 Echo (ping) reply id=0x20b3, seq=28/7168, ttl=254 (request in 13152)	
	13174	40.068434210	10.30.0.1	10.1.1.2	ICMP	30	102 Echo (ping) request id=0x20b3, seq=29/7424, ttl=255 (reply in 13175)	
1	13175	40.068434541	10.1.1.2	10.30.0.1	ICMP	30	102 Echo (ping) reply id=0x20b3, seq=29/7424, ttl=254 (request in 13174)	
	13198	40.219201383	10.30.0.1	10.1.1.2	ICMP	30	102 Echo (ping) request id=0x20b3, seq=30/7680, ttl=255 (reply in 13199)	

FRR Configurado:

Abaixo está o gráfico gerado a partir deste teste de conectividade:

Metricas de teste com ICMP:

Para performar testes entre as caixas "10.1.1.1" (A) e "10.1.1.2" (B), o autor adicionou um computador no lado "B" e no lado "A" adicionou um computador para performar testes com ICMP (hping3) que simula testes de conectividade registrando o (round trip time) entre as partes.

Foram feitas 2000 tentativas com um intervalo de 100uS entre cada tentativa. E então performado a transição do link durante esse teste.

```
time hping3 -- icmp 10.3.3.7 -i u100 -c 2000 >> mpls-tez-son-2
--- 10.3.3.7 hping statistic ---
2000 packets tramitted, 2000 packets received, 0% packet loss
round-trip min/aug/max = 0.4/0.7/6.5 ms
        0m9.217s
rea l
        2000.0m0
        0m0.044s
     # time hping3 --icmp 10.3.3.7 -i u10 -c 2000 >> mpls-tez-son-3
  - 10.3.3.7 hping statistic ---
2000 packets tramitted, 1999 packets received, 1% packet loss
round-trip min/aug/max = 0.3/0.6/8.0 ms
        0m9.061s
rea l
        0m0.000s
        0m0.040s
```

Metricas de teste com ICMP:

Para avaliar a conectividade do sistema, as métricas a serem avaliadas são:

- Quantidade de perca de pacotes (packet loss)
- Tempo de ida e volta dos pacotes (Round Trip-Time)

Lembrando que para tal avaliação, tais parâmetros foram fixos, conforme dito anteriormente:

- 2000 teste de conectividade sequenciais
- 100uS entre cada teste de conectividade

```
time hping3 -- icmp 10.3.3.7 -i u100 -c 2000 >> mpls-tez-son-2
--- 10.3.3.7 hping statistic ---
2000 packets tramitted, 2000 packets received, 0% packet loss
round-trip min/avg/max = 0.4/0.7/6.5 ms
        0m9.217s
real
        0m0.000s
user
        0m0.044s
     # time hping3 --icmp 10.3.3.7 -i u10 -c 2000 >> mpls-tez-son-3
    10.3.3.7 hping statistic ---
2000 packets tramitted, 1999 packets received, 1% packet loss
round-trip min/aug/max = 0.3/0.6/8.0 ms
        0m9.061s
rea l
        0m0.000s
        0m0.040s
```

Fatores e Níveis:

Para avaliar o uso do FRR foi montado um cenário físico com 3 devices, onde foi verificado os seguintes pontos:

Fatores:

- Response time (Round Trip Time)
- Packet Loss

Niveis:

- Com FRR (Fast Re-Route) no OSPF
- OSPF nativo

Resultados obtidos:

OSPF-MPLS-TE-FRR	Test1	Test2	Test3	Test4	Test5	Test6	Test7	Test8	Test9	Test10
Number	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Received Packet Number	1999	2000	1999	1999	1999	1999	1999	1999	2000	1999
Loss Packet	1	0	1	1	1	1	1	1	0	1
Response Time (sn)	8,091	9,217	9,061	9,82	9,08	9,127	9,076	9,147	9,362	9,582
Transmitted Packet / 1 sn	247,10	216,90	220,70	203,60	220,20	219,10	220,30	218,60	213,60	208,70
Transit Time ~ (ms)	4,04	0	4,53	4,91	4,54	4,56	4,53	4,57	0	4,79
OSPF	Test1	Test2	Test3	Test4	Test5	Test6	Test7	Test8	Test9	Test10
Number	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Received Packet Number	1991	1998	1993	1993	1993	1998	1996	1990	1992	1991
Loss Packet	9	2	7	7	7	2	4	10	8	9
Response Time (sn)	225,57	234,35	226,71	223,37	228,53	234,5	229,22	223,07	226,07	223,12
Transmitted Packet / 1 sn	228,59	208,48	246,72	249,82	212,17	255,06	233,33	220,27	226,09	248,93
Transit Time ~ (ms)	112,785	117,175	113,355	111,685	114,265	117,25	114,61	111,535	113,035	111,56

Conclusão:

Com base nas metricas apresentadas e resultados obtidos, podemos concluir que:

- A técnica de FRR permite melhorar o tempo de comutação de circuitos pré-calculando um caminho de backup e permitindo que assim o tempo de sem conectividade entre as pontas de um circuito MPLS seja menor.
- A técnica aumenta o fator de alta disponibilidade do circuito evitando que os equipamentos percam

Análise de Desempenho OSPF FRR (Fast Re-Route)

Arthur Cadore M. Barcella