Linear Algebra A short recap on lines and planes in \mathbb{R}^2 and \mathbb{R}^3

1 Lines in \mathbb{R}^2

Any line in \mathbb{R}^2 is given by an equation of the form

$$ax_1 + bx_2 = c,$$

with |a| + |b| > 0. If b = 0, then this is a vertical line $x_1 = c/a$; otherwise, the equation can be written in a more usual form (with $x = x_1$ and $y = x_2$)

$$y = kx + m$$

with slope k := -a/b and intercept m := c/b.

The normal vector $\mathbf{n} := (a, b)$ is orthogonal to the direction vector $\mathbf{d} = (b, -a)$. The equation of ℓ can alternatively be written in a parametrized form

$$\mathbf{x} = \mathbf{x}_0 + t\mathbf{d}, \qquad t \in \mathbb{R},$$

with $\mathbf{x}_0 = (p_1, p_2)$ being any fixed point on ℓ . Written coordinate-wise, we get

$$x_1 = p_1 + tb;$$

$$x_2 = p_2 - ta.$$

Comparing the two equations (parametric and non-parametric), we can easily transform from one to another (look at normal and direction vectors!).

2 Lines in \mathbb{R}^3

Parametric equation for a line in \mathbb{R}^3 ,

$$\mathbf{x} = \mathbf{x}_0 + t\mathbf{d}, \quad t \in \mathbb{R},$$

describes the line ℓ in \mathbb{R}^3 containing a fixed point $\mathbf{x}_0 = (p_1, p_2, p_3)$ as the set of all points \mathbf{x} such that the vector $\overrightarrow{\mathbf{x}_0} \mathbf{x} = \mathbf{x} - \mathbf{x}_0$ is collinear to the *direction* vector $\mathbf{d} := (d_1, d_2, d_3)$. Writing this system of three equations component-wise and eliminating t, we arrive at the standard non-parametric equation of ℓ ,

$$\frac{x_1 - p_1}{d_1} = \frac{x_2 - p_2}{d_2} = \frac{x_3 - p_3}{d_3}.$$

Likewise, denoting the common value of the above three fractions by $t \in \mathbb{R}$, one gets three parametric equations for x_1, x_2 , and x_3 .

In both \mathbb{R}^2 and \mathbb{R}^3 , if we know two points P_1 and P_2 of the line, we immediately get a direction vector $\mathbf{d} = \overrightarrow{P_1P_2}$ and thus the parametric equation of that line.

3 Planes in \mathbb{R}^3

Any plane π in \mathbb{R}^3 can be described by a normal equation

$$ax_1 + bx_2 + cx_3 = d, (1)$$

with $\mathbf{n} := (a, b, c)$ being a non-zero *normal* vector. Every vector in π (ie., a vector joining any two points on π) is orthogonal to \mathbf{n} . If we have any point $P_0 = (p_1, p_2, p_3) = \mathbf{x}_0$ on π and two *non-collinear* vectors $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ belonging to π (in other words, two direction vectors of π), then any point on π can be written as

$$\mathbf{x} = \mathbf{x}_0 + s\mathbf{u} + t\mathbf{v}$$

for a suitable $s, t \in \mathbb{R}$. This expresses the fact that the vector joining \mathbf{x}_0 and \mathbf{x} can be written as a linear combination of \mathbf{u} and \mathbf{v} . The above is a *parametric* equation of the plane π , and in coordinate form it reads

$$x_1 = p_1 + su_1 + tv_1;$$

 $x_2 = p_2 + su_2 + tv_2;$
 $x_3 = p_3 + su_3 + tv_3.$ (2)

If (1) is given, then to find the parametric equation, we should

- 1. find any point P_0 on the plane
- 2. find any two non-collinear direction vectors \mathbf{u} and \mathbf{v} (they must be orthogonal to the normal vector \mathbf{n}).

Conversely, equations (2) identify the direction vectors \mathbf{u} and \mathbf{v} , and then a normal vector \mathbf{n} (note it is determined only up to a scalar). The constant d is then determined from the knowledge of the point P_0