GEOMETRÍA BÁSICA Septiembre 2019

Todas las respuestas deben estar justificadas razonadamente.

Duración 2 horas. No se permite ningún tipo de material escrito. Se permite calculadora no programable

Ejercicio 1. (3 puntos)

Recuérdese que un rombo es un paralelogramo con los cuatro lados congruentes.

- a) Probar que un paralelogramo es un rombo si y solo si sus diagonales se cortan formando un ángulo recto.
- b) ¿Es cierta la siguiente afirmación?: Si un cuadrilátero tiene las diagonales perpendiculares entonces es un rombo.

Ejercicio 2. (3 puntos)

Sea \mathcal{C} una circunferencia y P un punto del exterior de \mathcal{C} . Sean a y b dos rectas que se cortan en P y que son secantes a la circunferencia \mathcal{C} . Sean A_1 , A_2 los puntos de corte de a con \mathcal{C} y B_1 , B_2 los puntos de corte de b con \mathcal{C} . Probar que se verifica:

$$PA_1 \cdot PA_2 = PB_1 \cdot PB_2$$
.

Ejercicio 3. (4 puntos)

- a) Dado un octaedro regular \mathcal{O} , sea ρ una simetría de \mathcal{O} que es rotación de ángulo 120° y σ_{π} una simetría de \mathcal{O} que es reflexión con base un plano π que contiene al eje de ρ . Determine la mayor información posible sobre el tipo de isometría que es la composición $\rho \circ \sigma_{\pi}$.
- b) Describa una rotación ρ' del espacio y una reflexión σ' con base un plano, de modo que su composición sea una simetría de \mathcal{O} , pero que ni ρ' , ni σ' sean simetrías de \mathcal{O} .

Soluciones

Ejercicio 1.

Ejercicio 5.8. Página 101 del Texto Base.

Ejercicio 2. (3 puntos)

Teorema 8.16. Página 149 del Texto Base.

Ejercicio 3.

a) La rotación ρ se puede expresar como:

$$\rho = \sigma_{\pi'} \circ \sigma_{\pi}$$

donde π' es un plano de simetría de \mathcal{O} que, como π , contiene al eje de ρ . Entonces:

$$\rho \circ \sigma_{\pi} = (\sigma_{\pi'} \circ \sigma_{\pi}) \circ \sigma_{\pi} = \sigma_{\pi'}$$

Luego $\rho \circ \sigma_{\pi}$ es una **reflexión** que es simetría de \mathcal{O} y cuyo plano base π' contiene al eje de ρ . El plano π' es perpendicular a la misma cara C de \mathcal{O} que está contenida en un plano que es perpendicular el eje de ρ y π' es un plano de simetría distinto de π , de los tres perpendiculares a C. Si los vértices de C son V_1, V_2 y V_3 , y π pasa por V_1 , entonces π pasa por V_2 o V_3 .

b) Una posibilidad es considerar una reflexión-rotación simetría de \mathcal{O} que es composición de una rotación de ángulo $\pi/3$, cuyo eje es perpendicular a una cara y pasa por el centro de dicha cara, con una reflexión sobre un plano perpendicular (ni la rotación, ni la reflexión son simetrías de \mathcal{O}).

Hay otras muchas soluciones, por ejemplo, tomamos un plano α de simetría de \mathcal{O} que pasa por cuatro vértices. Sea β un plano perpendicular a α que corta a β en una recta r que contiene una arista de \mathcal{O} . Sea σ_{β} la reflexión sobre β y ρ_r la media vuelta de eje r. La composición $\rho_r \circ \sigma_{\beta}$ es una simetría de \mathcal{O} (es la reflexión en el plano α), mientras que σ_{β} y ρ_r no lo son.