Projeto 1 – MMF 1, IMPA

Pedro Farias

Parâmetros:

$$S_0 = 9 \rightarrow \text{Preço da ação}$$

$$K = 10 \rightarrow Strike$$

 $N=3 \ anos \rightarrow Tempo para vencimento$

 $T = 15 \rightarrow \text{Número de passos}$

 $r = 6\% \ a. \ a. \rightarrow$ Risk free rate

 $\sigma = 30\% \ a. \ a. \rightarrow Volatilidade$

$$u = e^{\sigma\sqrt{\Delta t} + (r - 0.5\sigma^2)\Delta t} \to e^{0.3\sqrt{\frac{3}{15}} + (0.06 - 0.5*0.3^2)\frac{3}{15}}$$

$$= e^{0.1342 + 0.003} = e^{0.1372} = 1.147$$

$$d = e^{-\sigma\sqrt{\Delta t} + (r - 0.5\sigma^2)\Delta t} \to e^{0.3\sqrt{\frac{3}{15}} + (0.06 - 0.5*0.3^2)\frac{3}{15}}$$

$$= e^{-0.1342 + 0.003} = e^{-0.1312} = 0.877$$

$$\tilde{p} = \frac{e^{r*\Delta t} - d}{u - d} = \frac{e^{0.012} - 0.877}{1.147 - 0.877} = 0.5001007441$$

 $\tilde{q} = 1 - \tilde{p} = 0.4998992558$

Iniciamos uma lista com T=15 Heads e salvamos, substituímos o último H por T até que ajam apenas Ts, assim teremos um caminho que levará a cada preço final. Por exemplo, T=4:

['H', 'H', 'H', 'H']
['H', 'H', 'H', 'T']
['H', 'H', 'T', 'T']
['H', 'T', 'T', 'T']

Com esse método, conseguimos calcular todos os preços finais possíveis para o ativo subjacente. Usamos eles para calcular o valor das opções no exercício usando uma função payoff.

	('H', 'H', 'H', 'H')	('H', 'H', 'H', 'T')	('H', 'H', 'T', 'T')	('H', 'T', 'T', 'T')	('T', 'T', 'T', 'T')
0	9.0000	9.0000	9.0000	9.0000	9.0000
1	11.8022	11.8022	11.8022	11.8022	7.0193
2	15.4768	15.4768	15.4768	9.2048	5.4745
3	20.2955	20.2955	12.0707	7.1790	4.2697
4	26.6145	15.8289	9.4143	5.5991	3.3301

2 a 2 selecionamos os valores da opção e calculamos o seu valor no período anterior

$$V_n = e^{-r * \Delta t} (\tilde{p} * V_{n+1}(H) + \tilde{q} * V_{n+1}(T))$$

	('H', 'H', 'H', 'H') ('I	H', 'H', 'H', 'T')	('H', 'H', 'T', 'T')	('H', 'T', 'T', 'T')	('T', 'T', 'T', 'T')
4	16.6145	5.8289	0	0	0
3		10.7355	2.7903	0	0
2			6.4709	1.3357	0
1				3.7352	0.6394
0					2.0932

	400 steps	Black and Scholes	difference
call	2.1200648	2.1200938	-0.0000291
put	1.4727669	1.4727959	-0.0000291

A. Referências

Wilmott – Option Pricing (1994)

Hull – Options, Futures e other Derivatives (2017)

Griffiths, Hill and Judge - Learning and Practicing Econometrics (1993)

Stochastic Calculus for Finance I - Steven Shreve