

Relatório de ASIST

Sprint 3

Turma 3DA _ Grupo 2

1190624 - Gonçalo Monteiro 1190797 - Lara Domingos 1190818 - Luís Pinto 1190825 - Luís Costa

Data: 08/01/2023

Índice

ι	Jser Stories	3
	US 1: Luís Costa (1190825)	3
	US 3: Lara Domingos (1190797)	4
	US 4: Lara Domingos (1190797)	6
	US 7: Gonçalo Monteiro (1190624)	7
	US 10: Luís Pinto (1190818)	8

User Stories

US 1: Luís Costa (1190825)

Como administrador da organização quero um plano de recuperação de desastre que satisfaça o MBCO definido na US B5

Podemos começar por descrever em que consiste um plano de recuperação de desastres. Este consiste num documento formal que descreve um conjunto de procedimentos e medidas tomadas com o objetivo de garantir a continuidade de atividades ou negócios em caso de falhas técnicas, ataques informáticos ou desastres naturais, diminuindo o impacto que estas causam no conjunto e procedimento normal de atividades, mesmo em condições adversas.

Assim sendo podemos começar por listar diversas possibilidades que obrigam a existência de um plano de recuperação de dados (PRD):

- Desastres naturais (Terramotos, inundações, incêndios florestais, deslizamentos de terras, tsunamis etc.);
- Falhas de hardware ou software;
- Ataques informáticos (DDoS, Malware, etc.);
- Danificação de hardware por 3os;

Os pontos chaves para a construção e cumprimento de um PRD consistem na avaliação de risco, analise do impacto empresarial, estratégias de recuperação, testes e formação e manutenção.

Avaliar o risco da organização consiste em listar as possíveis causas de adversidade, como listado acima. Analisar o impacto empresarial implica avaliar o nível de impacto que um desastre venha a causar na perda de dados, lucros ou investidores.

Quanto as estratégias de recuperação, são necessárias as implementações de planos de backup regular, possivelmente por diversos meios (backup do backup), e capacidade de alteração de espaço de trabalho. Deve, portanto, ser regular a realização de testes as estruturas e meios de recuperação de dados e formar os membros da organização com os procedimentos adequados aquando de um acontecimento de caracter catastrófico. A prática de simulações de catástrofe é também ideal na maioria dos casos, permitindo uma melhor sensibilização numa situação dita real. Uma manutenção adequada dos meios e do PRD em si permite minimizar o impacto causado e ajuda a organização a sofrer o mínimo de repercussões possível.

US 3: Lara Domingos (1190797)

Como administrador de sistemas quero que seja realizada uma cópia de segurança da(s) DB(s) para um ambiente de Cloud através de um script que a renomeie para o formato <nome_da_db>_yyyymmdd sendo <nome_da_db> o nome da base de dados, yyyy o ano de realização da cópia, mm o mês de realização da cópia e dd o dia da realização da cópia.

Para ser possível realizar uma copia de segurança da DB para um ambiente de Cloud, no meu caso usei a google drive pessoal, foi criado um script que faz conexão com a base de dados do projeto da Logística, designado por mongodb, e também foram instaladas as dependências necessárias para a execução do mesmo, como por exemplo, wget https://fastdl.mongodb.org/tools/db/mongodb-database-tools-debian11-x86_64-100.6.1.tgz.

Figura 1- Conexão do mongodb e guardado num zip

Na imagem em baixo está apresentado a conexão com a google drive na VM do DEI.

Figura 2- Conexão com o Google Drive

Para que os ficheiros fossem guardados na google drive foram acrescentados os seguintes comandos no script.

```
#Guardar na cloud(google drive)

SYNC_DIR=$(gdrive list --query "name = 'gdrive'" --no-header | awk '{print $1}')

gdrive delete -r $SYNC_DIR

gdrive mkdir gdrive
gdrive sync upload gdrive/ $SYNC_DIR
```

Figura 3- Conexão ao Google drive

Por fim, foi testado a conexão com a base de dados, se era possível aceder e posteriormente guardar na cloud em questão, e verificou-se o mesmo.

Figura 4- Execução do script para retirar da base de dados e guardar na pasta dos backup diários.

```
lara@Carry:~/sprintC$ ls
gdrive main_backup.sh
lara@Carry:~/sprintC$ cd gdrive/diario
lara@Carry:~/sprintC/gdrive/diario$ ls
'<Logistica>_20230108.zip'
lara@Carry:~/sprintC/gdrive/diario$
```

Figura 5- Localização dos Backups

Figura 6- Pasta do backup no google drive.

US 4: Lara Domingos (1190797)

Como administrador de sistemas quero que utilizando o Backup elaborado na US C3, seja criado um script quer faça a gestão dos ficheiros resultantes desse backup, no seguinte calendário. 1 Backup por mês no último ano, 1 backup por semana no último mês, 1 backup por dia na última semana.

Depois de ser realizado o script para conectar a base de dados a uma cloud, foi necessário desenvolver um script para a realização de backup, diário, semanais e mensais como é pedido, e por isso foi aproveitado o script anterior para acrescentar o necessário.

Os backups foram divididos em pastas diferentes de acordo com o seu propósito. A primeira pasta criada foi a dos backups diários, onde eram guardados os que são feitos diariamente, como mostra na US anterior.

De seguida foi desenvolvido um conjunto de comando para os backups por semana, onde é retirado da pasta dos diários o último a ser realizado e este é movido para a pasta semanal, como mostra o print em baixo.

```
#Backup por semana
#verifica se é domingo
if [ $(date +%u) == 7 ]
then
echo -e "--------Backup no ultimo dia para a pasta relacionada com pasta do backup por semana------"
#ls -t -> ordena a lista ascendente
#head -1 -> vai buscar o primeiro elemento da lista
cd $DIA
mv $(ls -t $DIA | head -1) $SEM
fi
```

Figura 7-Script para realizar o backup por semana.

Por fim, através da pasta semanal, foi retirado os backups mais recente para ser movido para a pasta do backup por mês.

```
#Backup por mês
#verifica se é o primeiro dia do mês
if[ $(date +%d) == 01 ]
then
echo -e "\n Backup da ultima semana para a pasta relacionada com o backup por mes \n"
cd $SEM
mv $(ls -t $SEM | head -1) $MES
fi
```

Figura 8- Script para realizar o backup por mês.

Para verificar se estava a guardar corretamente foram alteradas as permissões do ficheiro para que este fosse executável (chmod +x {PASTA}) e por fim foi executado. Não foi possível obter resultados, devido a certos erros apresentados no terminal do Linux.

US 7: Gonçalo Monteiro (1190624)

Como administrador da organização quero que me seja apresentado um BIA (Business Impact Analysis) da solução final, adaptando se e onde aplicável o(s) risco(s) da US B4

Um BIA existe com o propósito de apresentar um prazo de recuperação, desta forma compreendendo o impacto que cada desastre tenha na organização. Utilizando os dados da US B4 podemos realizar uma análise representada na seguinte tabela

	Ataque DDoS /	Inundações /	Disrupções de	Falhas de	Covid /
	Malware	Sismos /	conectividade	Hardware /	Outros
		Incêndios	ou energéticas	Software	problemas
					de saúde
Atividade	Serviços	Sistemas	Sistemas	Sistemas	Membros
Afetada	informáticos	estruturais e	informáticos	hardware/	de trabalho
		possível		software	
		hardware			
Potencial	Sistema de	Impossibilidade	Impossibilidade	Impossibilidade	Mão de
Perdas	coordenação	de atividade	de trabalho	de trabalho	obra ou
Operacionais	de entregas	normal			possível
	não funcional				perda
					estrutural
Potenciais	Graves perdas	Perdas baixas a	Baixas a Altas	Baixas a Altas	Mínimas
Perdas		altas	dependendo do	dependendo do	devido a
Financeiras		dependendo do	downtime	tipo de falha	trabalho a
		grau de dano			distância
Tempo	30min – 50h	24h-1semana	1h-24h	30min-1semana	24h-48h
Mínimo de		(dependendo			para
Recuperação		dos danos)			realocação
					remota

Como administrador de sistemas quero que o administrador tenha um acesso SSH à máquina virtual, apenas por certificado, sem recurso a password

Sendo o objetivo um acesso apenas por certificado, começamos pela criação do mesmo. Para tal utilizamos o comando ssh-keygen, criando uma chave par publica que permite uma autentificação automática com a máquina virtual, não sendo necessário autenticar manualmente. Este certificado ficará guardado no ficheiro ~/.ssh/authorized_keys permitindo assim ser realizada a autentificação automática pretendida.

Figura 9 – geração do certicado no pc

PS C:\Users\User> cat ~/.ssh/id_rsa.pub | ssh root@vs262.dei.isep.ipp.pt "cat >> ~/.ssh/authorized_keys" root@vs262.dei.isep.ipp.pt's password:

Figura 10 – comando para quardar o certificado no servidor

root@vs262:~/.ssh# cat authorized_keys ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQDIjeGF91Zx4UE4qNVMtx5wmChjk/8axH2FMf37/dk4y6o0SSeosudtiRkWFEJyctLWXM0rVec45TebBHw, nJA2SNsCZPJQL4FxyPhy5231w7KM0efhJ6y31DmS27jlo6tBIpHK3TFYGihw6nc0zB9CQ4YNhm6r140Givjy2QUL0/CcArCz9JAeNvthhsVSRCkpwcDfDWml Z9T31mumdDTPZtD81Jw61G25wxs9wKUCm2Y3pfqzbQhafR/VJqzIrplh1yIH19jT6V4SBgjEnQ4NW790D6ZhrQfBWeHfgLY8FqvzCaQJLNhJ9/eMDeH9pXr: vn155mMV3IhzTRjPt/b0VhAnn+RAIERuhe657vLJImW3A37zMK4GXurxzU3tWztwnoH6m2HYa63QS+bz9K3AaFTGinP7omn0E0VDo06skL8hRK4/R8bzPvel Hx58KIQXm/kB4WZa5W1Yd/pUjkUWhCPgEoMbfTUMfhYoShPQsTfPxYlckbgz1jWSrWE7buE= lara domingos@Carry

Figura 11 – key que foi guardada no ficheiro

```
C:\Users\User>ssh root@vs262.dei.isep.ipp.pt
Linux vs262 5.4.0-132-generic #148-Ubuntu SMP Mon Oct 17 16:02:06 UTC 2022 x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Sat Jan 7 18:18:21 2023 from 10.8.61.143

Figura 12 - testada entrada sem introduzir
dados
```