

planetmath.org

Math for the people, by the people.

proof of countable unions and intersections of analytic sets are analytic

 ${\bf Canonical\ name} \quad {\bf ProofOfCountable Unions And Intersections Of Analytic Sets Are Analytic}$

Date of creation 2013-03-22 18:46:19 Last modified on 2013-03-22 18:46:19

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282) Entry type Proof

Classification msc 28A05

Let (X, \mathcal{F}) be a paved space and $(A_n)_{n \in \mathbb{N}}$ be a sequence of \mathcal{F} -http://planetmath.org/Analytic sets. We show that their union and intersection is also analytic.

From the definition of \mathcal{F} -analytic sets, there exist compact paved spaces (K_n, \mathcal{K}_n) and $S_n \in (\mathcal{F} \times \mathcal{K}_n)_{\sigma\delta}$ such that

$$A_n = \{x \in X : (x, y) \in S_n \text{ for some } y \in K_n\}.$$

We start by showing that $\bigcap_n A_n$ is analytic. Let $K = \prod_n K_n$ and $K = \prod_n K_n$ be the product paving, and $\pi_n \colon K \to K_n$ be the projection map. Then $x \in \bigcap_n A_n$ if and only if for each n there is a $y_n \in K_n$ with $(x, y_n) \in S_n$. Equivalently, setting $y = (y_1, y_2, \cdots)$, then $(x, y) \in \bigcap_n \pi_n^{-1}(S_n)$. However, this is in $(\mathcal{F} \times K_n)_{\sigma\delta}$ and we can write,

$$\bigcap_{n} A_n = \pi_X \left(\bigcap_{n} \pi_n^{-1}(S_n) \right),\,$$

where $\pi_X \colon X \times K \to X$ is the projection map. As products of compact pavings are compact, (K, \mathcal{K}) is compact and it follows from the definition that $\bigcap_n A_n$ is \mathcal{F} -analytic.

We now show that $\bigcup_n A_n$ is analytic. Let $K = \sum_n K_n$ and $K = \sum_n K_n$ be the direct sum paving, http://planetmath.org/SumsOfCompactPavingsAreCompactwhich is compact. Also, write $S_n = \bigcap_{m=1}^{\infty} T_{m,n}$ for $T_{m,n} \in (\mathcal{F} \times K_n)_{\sigma}$. We identify K_n with a subset of K, so that K is the union of the disjoint sets K_n . Then $x \in \bigcup_n A_n$ if and only if $(x,y) \in S_n$ for some n and some $y \in K$,

$$\bigcup_{n} A_n = \pi_X \left(\bigcup_{n} S_n \right).$$

However, the fact that K_{n_1}, K_{n_2} are disjoint for $n_1 \neq n_2$ says that T_{m,n_1}, T_{m,n_2} are disjoint and, therefore,

$$\bigcup_{n} S_{n} = \bigcup_{n} \bigcap_{m} T_{m,n} = \bigcap_{m} \bigcup_{n} T_{m,n} \in (\mathcal{F} \times \mathcal{K})_{\sigma\delta}.$$

So $\bigcup_n A_n$ is \mathcal{F} -analytic.