Perturbations of Operator Algebras

Oral Exam Presentation

Shannon Hall

Mathematics Department University of Tennessee, Knoxville

March 27, 2024

Table of Contents

- Setup
- 2 Theorems
- Proof of Theorems II and II'
- 4 The Basic Construction
- Proof of Theorem I
- 6 Post Christensen

Erik Christensen

• Erik Christensen published articles in Inventiones (77), IUM (77), and Math Annalen (79).

Erik Christensen

- Erik Christensen published articles in Inventiones (77), IUM (77), and Math Annalen (79).
- We focus on the article in Math Annalen titled "Subalgebras of a Finite Algebra."

• For a Hilbert space \mathcal{H} , a von Neumann algebra L is a unital *-subalgebra of $\mathcal{B}(\mathcal{H})$ that is closed in the strong operator topology.

- For a Hilbert space \mathcal{H} , a von Neumann algebra L is a unital *-subalgebra of $\mathcal{B}(\mathcal{H})$ that is closed in the strong operator topology.
 - *-algebra means we have addition, multiplication, scalar multiplication, and an involution (*) satisfying certain properties.

- For a Hilbert space \mathcal{H} , a von Neumann algebra L is a unital *-subalgebra of $\mathcal{B}(\mathcal{H})$ that is closed in the strong operator topology.
 - *-algebra means we have addition, multiplication, scalar multiplication, and an involution (*) satisfying certain properties.
 - ullet The closure condition is equivalent to $L=L^{\prime\prime}$, where

$$L' = \{ x \in \mathcal{B}(\mathcal{H}) : xy = yx \ \forall y \in L \}$$

is the commutant of L in $\mathcal{B}(\mathcal{H})$ (this is von Neumann's Bicommutant Theorem).

- For a Hilbert space \mathcal{H} , a von Neumann algebra L is a unital *-subalgebra of $\mathcal{B}(\mathcal{H})$ that is closed in the strong operator topology.
 - *-algebra means we have addition, multiplication, scalar multiplication, and an involution (*) satisfying certain properties.
 - ullet The closure condition is equivalent to $L=L^{\prime\prime}$, where

$$L' = \{ x \in \mathcal{B}(\mathcal{H}) : xy = yx \ \forall y \in L \}$$

is the commutant of L in $\mathcal{B}(\mathcal{H})$ (this is von Neumann's Bicommutant Theorem).

• On $\mathcal{B}(\mathcal{H})$, we have the usual norm $||T|| = \sup_{||x|| < 1} ||Tx||$.

General Setting (trace)

- We require that L has a trace $\tau:L\to\mathbb{C}$ (so τ is linear and $\tau(xy)=\tau(yx)\ \forall x,y\in L$) that is:
 - positive: $\tau(x^*x) \ge 0 \ \forall x \in L$
 - faithful: $\tau(x^*x) = 0 \Rightarrow x = 0$
 - normal: weakly continuous, $\tau(1) = 1$

General Setting (trace)

- We require that L has a trace $\tau:L\to\mathbb{C}$ (so τ is linear and $\tau(xy)=\tau(yx)\ \forall x,y\in L$) that is:
 - positive: $\tau(x^*x) \ge 0 \ \forall x \in L$
 - faithful: $\tau(x^*x) = 0 \Rightarrow x = 0$
 - normal: weakly continuous, $\tau(1) = 1$
- A von Neumann algebra with a trace satisfying these properties is called <u>finite</u> (not to be confused with finite dimensional).

General Setting (in finite dimensions)

These results are very meaningful and useful, even just for ${\cal L}$ finite dimensional.

General Setting (in finite dimensions)

These results are very meaningful and useful, even just for L finite dimensional.

So, a helpful example to think of is

$$L = M_{k_1}(\mathbb{C}) \oplus M_{k_2}(\mathbb{C}) \oplus \cdots \oplus M_{k_n}(\mathbb{C})$$

with trace

$$\tau = c_1 \tau_{M_{k_1}} + \dots + c_n \tau_{M_{k_n}},$$

where $au_{M_k}=rac{1}{k}\operatorname{Tr}_{M_k}$ and $c_1+\cdots+c_n=1.$

General Setting (in finite dimensions)

These results are very meaningful and useful, even just for L finite dimensional.

So, a helpful example to think of is

$$L = M_{k_1}(\mathbb{C}) \oplus M_{k_2}(\mathbb{C}) \oplus \cdots \oplus M_{k_n}(\mathbb{C})$$

with trace

$$\tau = c_1 \tau_{M_{k_1}} + \dots + c_n \tau_{M_{k_n}},$$

where $\tau_{M_k} = \frac{1}{k} \operatorname{Tr}_{M_k}$ and $c_1 + \cdots + c_n = 1$.

• These can be thought of as tuples of matrices $(A_{k_1}, \ldots, A_{k_n})$ or block matrices

$$\begin{pmatrix} A_{k_1} & 0 \\ & \ddots & \\ 0 & A_{k_n} \end{pmatrix}$$

General Setting (factors)

Sometimes we will also need L to be a <u>factor</u>, meaning that $Z(L) = \mathbb{C} \cdot I$ ($Z(L) = L' \cap L$).

General Setting (factors)

Sometimes we will also need L to be a <u>factor</u>, meaning that $Z(L)=\mathbb{C}\cdot I$ ($Z(L)=L'\cap L$).

• If L is finite dimensional (in which case $L \cong M_k(\mathbb{C})$), we say L is a factor of type I_k .

General Setting (factors)

Sometimes we will also need L to be a <u>factor</u>, meaning that $Z(L) = \mathbb{C} \cdot I$ ($Z(L) = L' \cap L$).

- If L is finite dimensional (in which case $L \cong M_k(\mathbb{C})$), we say L is a factor of type I_k .
- If L is infinite dimensional, we say L is a factor of type II_1 .

General Setting (what it means to be "close")

In these papers, Christensen studies subalgebras (or rather, pairs of subalgebras) $M,N\subset L$ that are "close" in the sense that

$$\forall x \in M_1, \exists y \in N \text{ such that } ||x - y||_2 < \delta$$
 (*)

for some $\delta>0$ small enough to yield interesting results.

General Setting (what it means to be "close")

In these papers, Christensen studies subalgebras (or rather, pairs of subalgebras) $M,N\subset L$ that are "close" in the sense that

$$\forall x \in M_1, \exists y \in N \text{ such that } ||x - y||_2 < \delta$$
 (*)

for some $\delta>0$ small enough to yield interesting results.

- M_1 denotes the unit ball of M.
- $|| \ ||_2$ denotes the norm induced by the trace: $||x||_2 = \tau(x^*x)^{1/2}$.
- $\overline{M}^{||\ ||_2}$ is the GNS construction and is denoted by $L^2(M,\tau).$

General Setting (what it means to be "close")

In these papers, Christensen studies subalgebras (or rather, pairs of subalgebras) $M,N\subset L$ that are "close" in the sense that

$$\forall x \in M_1, \exists y \in N \text{ such that } ||x - y||_2 < \delta$$
 (*)

for some $\delta>0$ small enough to yield interesting results.

- M_1 denotes the unit ball of M.
- $||\ ||_2$ denotes the norm induced by the trace: $||x||_2 = \tau(x^*x)^{1/2}$.
- $\overline{M}^{||\ ||_2}$ is the GNS construction and is denoted by $L^2(M,\tau).$

We write $M \overset{\delta}{\subset} N$ when (*) occurs.

Important Remark

For some of these proofs, Christensen introduces what will later be known as Jones' basic construction, from Jones' fields medal paper (83).

Table of Contents

- Setup
- 2 Theorems
- Proof of Theorems II and II'
- 4 The Basic Construction
- Proof of Theorem I
- 6 Post Christensen

Theorem I

We prove two results, then combine them. Recall that (L,τ) is a finite von Neumann algebra.

Theorem I

We prove two results, then combine them. Recall that (L,τ) is a finite von Neumann algebra.

Theorem (I)

If $M,N\subset L$ with M finite dimensional, N a II_1 factor, and $M\overset{\delta}\subset N$ for some $\delta<1/\sqrt{2}$, then there exist $\Phi:M\to N$, Φ an isomorphism from M to a von Neumann subalgebra $\Phi(M)$ of N, and a fixed constant c such that for all $x\in M_1$

$$||\Phi(x) - x||_2 \le c\delta^{1/2}$$

(c = 1050 should work).

Theorem I

We prove two results, then combine them. Recall that (L,τ) is a finite von Neumann algebra.

Theorem (I)

If $M,N\subset L$ with M finite dimensional, N a II_1 factor, and $M\overset{\delta}\subset N$ for some $\delta<1/\sqrt{2}$, then there exist $\Phi:M\to N$, Φ an isomorphism from M to a von Neumann subalgebra $\Phi(M)$ of N, and a fixed constant c such that for all $x\in M_1$

$$||\Phi(x) - x||_2 \le c\delta^{1/2}$$

(c = 1050 should work).

Theorem II

Theorem (II)

If $M \subset L$ is a von Neumann subalgebra of L and $\Phi: M \to L$ is a *-homomorphism such that $||\Phi(x) - x||_2 \le t$ for all $x \in M_1$, for some 0 < t < 1, then for all $x \in M$

$$\Phi(x)q = v^*xv,$$

where $v \in L$ is a partial isometry with

- $q := v^*v \in \Phi(M)'$
- $v := vv^* \in M'$
- $||1-v||_2 \le 2t$, $||1-r||_2 \le t$, $||1-q||_2 \le t$.

Theorem II

Theorem (II)

If $M \subset L$ is a von Neumann subalgebra of L and $\Phi: M \to L$ is a *-homomorphism such that $||\Phi(x) - x||_2 \le t$ for all $x \in M_1$, for some 0 < t < 1, then for all $x \in M$

$$\Phi(x)q = v^*xv,$$

where $v \in L$ is a partial isometry with

- $q := v^*v \in \Phi(M)'$
- \bullet $r := vv^* \in M'$
- $||1-v||_2 \le 2t$, $||1-r||_2 \le t$, $||1-q||_2 \le t$.

v being a partial isometry means that $v^\ast v, vv^\ast$ are projections.

Theorem_II'

We also prove a stronger version of II when M is a I_k factor (so $M \cong M_k(\mathbb{C})$).

Theorem II'

We also prove a stronger version of II when M is a I_k factor (so $M \cong M_k(\mathbb{C})$).

Theorem (II')

Under the hypotheses of II, if M is a \mathbf{I}_k factor, then there is a unitary u in L such that $\Phi(x)=u^*xu$ for all $x\in M$ and $||1-u||_2\leq 3t$.

Theorem II'

We also prove a stronger version of II when M is a I_k factor (so $M \cong M_k(\mathbb{C})$).

Theorem (II')

Under the hypotheses of II, if M is a I_k factor, then there is a unitary u in L such that $\Phi(x)=u^*xu$ for all $x\in M$ and $||1-u||_2\leq 3t$.

u being unitary means that $u^*u=uu^*=1$. We write $\mathcal{U}(L)$ for the set of unitaries in L. Any element of L can be written as a linear combination of unitaries.

Theorem III

Combining I and II' yields the final result.

Theorem III

Combining I and II' yields the final result.

Theorem (III)

If $M \overset{\delta}{\subset} N$ with M I_k , N II_1 , and $\delta < 10^{-6}$, then there is a unitary u in L such that $u^*Mu \subset N$ and $||1-u||_2 \leq 450\delta^{1/2}$.

Theorem III

Combining I and II' yields the final result.

Theorem (III)

If $M \overset{\delta}{\subset} N$ with M I_k , N II_1 , and $\delta < 10^{-6}$, then there is a unitary u in L such that $u^*Mu \subset N$ and $||1-u||_2 \leq 450\delta^{1/2}$.

Proof idea: I gives us the map Φ and II' tells us that $\Phi(x) = u^*xu$.

Table of Contents

- Setup
- 2 Theorems
- Proof of Theorems II and II'
- 4 The Basic Construction
- Proof of Theorem I
- 6 Post Christensen

Theorem II

Theorem (II)

If $M \subset L$ is a von Neumann subalgebra of L and $\Phi: M \to L$ is a *-homomorphism such that $||\Phi(x) - x||_2 \le t$ for all $x \in M_1$, for some 0 < t < 1, then for all $x \in M$

$$\Phi(x)q = v^*xv,$$

where $v \in L$ is a partial isometry with

- $q := v^*v \in \Phi(M)'$
- $r := vv^* \in M'$
- $||1 v||_2 \le 2t$, $||1 r||_2 \le t$, $||1 q||_2 \le t$.

Proof of II (step 1)

We know that $||\Phi(x) - x||_2 \le t$, and we want to show that $\Phi(x)q = v^*xv$.

Proof of II (step 1)

We know that $||\Phi(x) - x||_2 \le t$, and we want to show that $\Phi(x)q = v^*xv$.

• Step 1: Come up with an intertwiner: $k \in L$ with $k\Phi(u) = uk$.

We know that $||\Phi(x) - x||_2 \le t$, and we want to show that $\Phi(x)q = v^*xv$.

• Step 1: Come up with an intertwiner: $k \in L$ with $k\Phi(u) = uk$.

$$||\Phi(x) - x||_2 \le t \ \forall x \in M_1$$

 $\Rightarrow ||\Phi(u) - u||_2 \le t \ \forall u \in \mathcal{U}(M)$
 $\Rightarrow ||u^*\Phi(u) - 1||_2 \le t \ \forall u \in \mathcal{U}(M) \ (||uz||_2 = ||zu||_2 = ||z||_2)$

Consider

$$K = \overline{\left\{ \sum_{i=1}^{n} c_i u_i^* \Phi(u_i) : n \ge 1, u_i \in \mathcal{U}(M), c_i > 0, \sum_{i=1}^{n} c_i = 1 \right\}} || \cdot ||_2.$$

K is a convex closed set in the Hilbert space $L^2(L,\tau)$, so it has a unique element k of minimal norm $||\ ||_2$.

A priori, $K \subset L^2(L,\tau)$. It turns out that $K \subset L$.

A priori, $K \subset L^2(L,\tau)$. It turns out that $K \subset L$.

Proposition

If $C\subset L$ is a bounded set (in regular norm $||\ ||)$, then $\overline{C}^{\text{ s.o.}}$ (which is part of L, as $L=\overline{L}^{\text{ s.o.}}$) is the same as $\overline{C}^{||\ ||_2}$ (in $L^2(L,\tau)$).

A priori, $K \subset L^2(L,\tau)$. It turns out that $K \subset L$.

Proposition

If $C\subset L$ is a bounded set (in regular norm $||\ ||)$, then $\overline{C}^{\text{ s.o.}}$ (which is part of L, as $L=\overline{L}^{\text{ s.o.}}$) is the same as $\overline{C}^{||\ ||_2}$ (in $L^2(L,\tau)$).

Since

$$||c_1u_1^*\Phi(u_1) + \dots + c_nu_n^*\Phi(u_n)|| \le c_1 + \dots + c_n = 1,$$

it follows that $K \subset L$. In particular, $k \in L$.

Note that for all $u \in \mathcal{U}(M)$, we have $u^*K\Phi(u) \subset K$. Indeed, for all $u_0 \in \mathcal{U}(M)$:

$$u^*(u_0^*\Phi(u_0))\Phi(u) = (u_0u)^*\Phi(u_0u) \in K.$$

Note that for all $u \in \mathcal{U}(M)$, we have $u^*K\Phi(u) \subset K$. Indeed, for all $u_0 \in \mathcal{U}(M)$:

$$u^*(u_0^*\Phi(u_0))\Phi(u) = (u_0u)^*\Phi(u_0u) \in K.$$

In particular, $u^*k\Phi(u) \in K$. Also, $||u^*k\Phi(u)||_2 = ||k||_2$.

Note that for all $u \in \mathcal{U}(M)$, we have $u^*K\Phi(u) \subset K$. Indeed, for all $u_0 \in \mathcal{U}(M)$:

$$u^*(u_0^*\Phi(u_0))\Phi(u) = (u_0u)^*\Phi(u_0u) \in K.$$

In particular, $u^*k\Phi(u) \in K$. Also, $||u^*k\Phi(u)||_2 = ||k||_2$.

By uniqueness, it follows that $u^*k\Phi(u)=k$, or $k\Phi(u)=uk$.

$$k\Phi(u)=uk$$
 doesn't say anything if $k=0$. However,
$$||u^*\Phi(u)-1||_2\leq t<1\Rightarrow ||k_0-1||_2\leq t<1$$
 for all $k_0\in K$, so $||k-1||_2\leq t<1$. Hence, $k\neq 0$.

• Step 2: From k, we collect its "unitary" part.

• Step 2: From k, we collect its "unitary" part.

Consider the polar decomposition k=va. Here

$$a = |k| = (k^*k)^{1/2}$$

and v is a partial isometry, with

$$\ker k = \ker v = \ker a$$
.

Since v is a partial isometry, $q:=v^*v$ and $r:=vv^*$ are projections.

We have k = va. It is known that v, a are still in L, since $k \in L$ and L is a von Neumann algebra.

We have k=va. It is known that v,a are still in L, since $k \in L$ and L is a von Neumann algebra. Also,

$$q = v^*v = s_r(k) = s(k^*k)$$

and

$$r = vv^* = s_\ell(k) = s(kk^*).$$

 s_ℓ, s_r are the projections onto $\overline{\operatorname{Im} k}$, $(\ker k)^\perp$ respectively and are called the left and right support. $s=s_\ell=s_r$ for self-adjoint operators and is just called the support. s,s_ℓ,s_r are also in L.

From $||k-1||_2 \le t$, it can be shown that

$$||1 - v||_2 \le 2t$$
, $||1 - q||_2 \le t$, $||1 - r||_2 \le t$

(this follows from a technical lemma in the paper, which we skip).

From Step 1, we know $k\Phi(u)=uk$ for all $u\in\mathcal{U}(M)$. Taking adjoints gives $\Phi(u^*)k^*=k^*u^*$. Replacing u^* with u gives $\Phi(u)k^*=k^*u$. So, for all $u\in\mathcal{U}(M)$

$$\begin{cases} k\Phi(u) = uk \\ \Phi(u)k^* = k^*u \end{cases}$$

$$\begin{cases} k\Phi(u) = uk \\ \Phi(u)k^* = k^*u \end{cases}$$

$$\Rightarrow k^*(k\Phi(u)) = k^*(uk) = (k^*u)k = (\Phi(u)k^*)k$$

$$\begin{cases} k\Phi(u) = uk \\ \Phi(u)k^* = k^*u \end{cases}$$

$$\Rightarrow k^*(k\Phi(u)) = k^*(uk) = (k^*u)k = (\Phi(u)k^*)k$$

This shows that k^*k commutes with $\Phi(u)$ for all $u \in \mathcal{U}(M)$, and thus $k^*k \in \Phi(M)'$. So, $a=(k^*k)^{1/2}$ and $q=s(k^*k)$ are in $\Phi(M)'$ also.

$$\begin{cases} k\Phi(u) = uk \\ \Phi(u)k^* = k^*u \end{cases}$$
$$\Rightarrow (uk)k^* = (k\Phi(u))k^* = k(\Phi(u)k^*) = k(k^*u)$$

$$\begin{cases} k\Phi(u) = uk \\ \Phi(u)k^* = k^*u \end{cases}$$

$$\Rightarrow (uk)k^* = (k\Phi(u))k^* = k(\Phi(u)k^*) = k(k^*u)$$

This shows that kk^* commutes with u for all $u \in \mathcal{U}(M)$, and thus $kk^* \in M'$. So, $r = s(kk^*)$ is in M' also.

Finally, $k\Phi(u) = uk$ becomes $va\Phi(u) = uva$.

Finally,
$$k\Phi(u)=uk$$
 becomes $va\Phi(u)=uva$.

$$\Rightarrow v^*va\Phi(u)=v^*uva$$

$$\Rightarrow qa\Phi(u)=v^*uva$$

$$\Rightarrow \Phi(u)qa=v^*uva \quad (q,a\in\Phi(M)')$$

$$\Rightarrow \Phi(u)q=v^*uv \quad (\mathcal{H}=\overline{a(\mathcal{H})}\oplus\overline{a(\mathcal{H})}^\perp)$$

Finally,
$$k\Phi(u)=uk$$
 becomes $va\Phi(u)=uva$.

$$\Rightarrow v^*va\Phi(u)=v^*uva$$

$$\Rightarrow qa\Phi(u)=v^*uva$$

$$\Rightarrow \Phi(u)qa=v^*uva \quad (q,a\in\Phi(M)')$$

$$\Rightarrow \Phi(u)q=v^*uv \quad (\mathcal{H}=\overline{a(\mathcal{H})}\oplus\overline{a(\mathcal{H})}^\perp)$$

It follows that $\Phi(x)q = v^*xv$ for all $x \in M$. QED.

Corollary

Let (M, τ) be a finite factor. Let $\Phi: M \to M$ be a *-homomorphism such that $||\Phi(x) - x||_2 \le t < 1$ for all $x \in M_1$ (for 0 < t < 1). Then there is a unitary $u \in M$ with $||1 - u||_2 \le 2t$ and $\Phi(x) = u^*xu$ for all $x \in M$.

• From II, $\Phi(x)q = v^*xv$ with $q = v^*v$ and $r = vv^*$.

Corollary

- From II, $\Phi(x)q = v^*xv$ with $q = v^*v$ and $r = vv^*$.
- $r \in M \cap M' = Z(M) = \mathbb{C} \cdot 1$.

Corollary

- From II, $\Phi(x)q = v^*xv$ with $q = v^*v$ and $r = vv^*$.
- $r \in M \cap M' = Z(M) = \mathbb{C} \cdot 1$.
- r is a nonzero projection, so r=1 (r is nonzero since $||1-r||_2<1$).

Corollary

- From II, $\Phi(x)q = v^*xv$ with $q = v^*v$ and $r = vv^*$.
- $r \in M \cap M' = Z(M) = \mathbb{C} \cdot 1$.
- r is a nonzero projection, so r=1 (r is nonzero since $||1-r||_2 < 1$).
- $r = vv^* = 1 \Rightarrow 1 = \tau(1) = \tau(vv^*) = \tau(v^*v) = \tau(q)$.

Corollary

- From II, $\Phi(x)q = v^*xv$ with $q = v^*v$ and $r = vv^*$.
- $r \in M \cap M' = Z(M) = \mathbb{C} \cdot 1$.
- r is a nonzero projection, so r=1 (r is nonzero since $||1-r||_2<1$).
- $r = vv^* = 1 \Rightarrow 1 = \tau(1) = \tau(vv^*) = \tau(v^*v) = \tau(q)$.
- Since q is a projection and τ is faithful, we get q=1.

Corollary

- From II, $\Phi(x)q = v^*xv$ with $q = v^*v$ and $r = vv^*$.
- $r \in M \cap M' = Z(M) = \mathbb{C} \cdot 1$.
- r is a nonzero projection, so r=1 (r is nonzero since $||1-r||_2<1$).
- $r = vv^* = 1 \Rightarrow 1 = \tau(1) = \tau(vv^*) = \tau(v^*v) = \tau(q)$.
- Since q is a projection and τ is faithful, we get q=1.
- $v^*v = vv^* = 1$ implies v is a unitary, and $\Phi(x) = v^*xv$.

Corollary

- From II, $\Phi(x)q = v^*xv$ with $q = v^*v$ and $r = vv^*$.
- $r \in M \cap M' = Z(M) = \mathbb{C} \cdot 1$.
- r is a nonzero projection, so r=1 (r is nonzero since $||1-r||_2<1$).
- $r = vv^* = 1 \Rightarrow 1 = \tau(1) = \tau(vv^*) = \tau(v^*v) = \tau(q)$.
- Since q is a projection and τ is faithful, we get q=1.
- $v^*v = vv^* = 1$ implies v is a unitary, and $\Phi(x) = v^*xv$.
- We know $||1-v||_2 \le 2t$ from II.

Theorem II'

Theorem (II')

Under the hypotheses of II, if M is a I_k factor, then there is a unitary u in L such that $\Phi(x)=u^*xu$ for all $x\in M$ and $||1-u||_2\leq 3t$.

Proof of II' (idea)

Idea

From II, there exists $v \in L$ such that $q = v^*v \in \Phi(M)'$, $r = vv^* \in M'$, and $\Phi(x)q = v^*xv$ for all $x \in M$.

Proof of II' (idea)

Idea

From II, there exists $v \in L$ such that $q = v^*v \in \Phi(M)'$, $r = vv^* \in M'$, and $\Phi(x)q = v^*xv$ for all $x \in M$.

The map $z\mapsto v^*zv$ sends Mr to $\Phi(M)q$:

$$xr \mapsto v^*xrv = v^*xvv^*v = \Phi(x)q^2 = \Phi(x)q.$$

Proof of II' (idea)

Idea

From II, there exists $v \in L$ such that $q = v^*v \in \Phi(M)'$, $r = vv^* \in M'$, and $\Phi(x)q = v^*xv$ for all $x \in M$.

The map $z \mapsto v^*zv$ sends Mr to $\Phi(M)q$:

$$xr \mapsto v^*xrv = v^*xvv^*v = \Phi(x)q^2 = \Phi(x)q.$$

We extend this to a map $z\mapsto u^*zu$ $(u\in\mathcal{U}(M))$ that takes M to $\Phi(M)$. First, we get another partial isometry v_1 so that $z\mapsto v_1^*zv_1$ sends M(1-r) to $\Phi(M)(1-q)$, then we let $u=v+v_1$.

Proof of II' (picture)

Proof of II' (comparing projections)

Let p and q be projections in a von Neumann algebra M.

Proof of II' (comparing projections)

Let p and q be projections in a von Neumann algebra M.

Comparison

We say that $p \prec q$ if there is a partial isometry $v \in M$ such that $v^*v = p$ and $vv^* \leq q$.

Proof of II' (comparing projections)

Let p and q be projections in a von Neumann algebra M.

Comparison

We say that $p \prec q$ if there is a partial isometry $v \in M$ such that $v^*v = p$ and $vv^* \leq q$.

Equivalence

We say that $p \sim q$ if there is a partial isometry $v \in M$ such that $v^*v = p$ and $vv^* = q$.

Proof of II' (comparing projections)

Let p and q be projections in a von Neumann algebra M.

Comparison

We say that $p \prec q$ if there is a partial isometry $v \in M$ such that $v^*v = p$ and $vv^* \leq q$.

Equivalence

We say that $p \sim q$ if there is a partial isometry $v \in M$ such that $v^*v = p$ and $vv^* = q$.

The Comparison Theorem

There are projections $x, y \in Z(M)$ such that $px \prec qx$ and $qy \prec py$. In particular, in a factor, either $p \prec q$ or $q \prec p$.

We know that M is a I_k factor, so $M \cong M_k(\mathbb{C})$. Let e_{ij} be the matrix units of M (corresponding to the matrix with a 1 in the ij entry and 0's elsewhere).

We know that M is a I_k factor, so $M \cong M_k(\mathbb{C})$. Let e_{ij} be the matrix units of M (corresponding to the matrix with a 1 in the ij entry and 0's elsewhere).

Claim

 $e_{11}(1-r)\sim \Phi(e_{11})(1-q)$, i.e. there exists a partial isometry $w\in L$ such that $w^*w=\Phi(e_{11})(1-q)$ and $ww^*=e_{11}(1-r)$.

Claim

 $e_{11}(1-r) \sim \Phi(e_{11})(1-q)$, i.e. there exists a partial isometry $w \in L$ such that $w^*w = \Phi(e_{11})(1-q)$ and $ww^* = e_{11}(1-r)$.

Claim

 $e_{11}(1-r) \sim \Phi(e_{11})(1-q)$, i.e. there exists a partial isometry $w \in L$ such that $w^*w = \Phi(e_{11})(1-q)$ and $ww^* = e_{11}(1-r)$.

If not, there exists a projection $z\in Z(L)$ such that $e_{11}(1-r)z\prec \Phi(e_{11})(1-q)z$ by the Comparison Theorem.

Claim

 $e_{11}(1-r) \sim \Phi(e_{11})(1-q)$, i.e. there exists a partial isometry $w \in L$ such that $w^*w = \Phi(e_{11})(1-q)$ and $ww^* = e_{11}(1-r)$.

If not, there exists a projection $z\in Z(L)$ such that $e_{11}(1-r)z\prec \Phi(e_{11})(1-q)z$ by the Comparison Theorem.

Using the same argument we'll see next, it follows that $e_{ii}(1-r)z \prec \Phi(e_{ii})(1-q)z$ for all $1 \leq i \leq k$, which implies that $(1-r)z \prec (1-q)z$.

Claim

 $e_{11}(1-r) \sim \Phi(e_{11})(1-q)$, i.e. there exists a partial isometry $w \in L$ such that $w^*w = \Phi(e_{11})(1-q)$ and $ww^* = e_{11}(1-r)$.

If not, there exists a projection $z\in Z(L)$ such that $e_{11}(1-r)z\prec \Phi(e_{11})(1-q)z$ by the Comparison Theorem.

Using the same argument we'll see next, it follows that $e_{ii}(1-r)z \prec \Phi(e_{ii})(1-q)z$ for all $1 \leq i \leq k$, which implies that $(1-r)z \prec (1-q)z$.

However,

$$r \sim q \Rightarrow 1 - r \sim 1 - q \Rightarrow (1 - r)z \sim (1 - q)z \; \forall z \in Z(L)$$
 projection. $\Rightarrow \leftarrow$

We also know that $e_{11} \sim e_{ii}$ for all $1 \leq i \leq k$, as

$$e_{11} = e_{1i}e_{i1} = (e_{i1})^*e_{i1}.$$

We also know that $e_{11} \sim e_{ii}$ for all $1 \leq i \leq k$, as

$$e_{11} = e_{1i}e_{i1} = (e_{i1})^*e_{i1}.$$

So, we get the diagram

Let
$$x_i = e_{i1}(1-r)w\Phi(e_{1i})(1-q)$$
.

Let
$$x_i = e_{i1}(1-r)w\Phi(e_{1i})(1-q)$$
. Let $v_1 = \sum_{i=1}^k x_i$.

Let $x_i = e_{i1}(1-r)w\Phi(e_{1i})(1-q)$. Let $v_1 = \sum_{i=1}^k x_i$. v_1 is a partial isometry with $v_1^*v_1 = 1 - q$ and $v_1v_1^* = 1 - r$.

Proof of II' $(v_1^*v_1 = 1 - q)$

$$v_1^* v_1 = \sum_{j=1}^k x_j^* \sum_{i=1}^k x_i$$

$$= \sum_{j=1}^k \Phi(e_{j1})(1-q)w^* e_{1j}(1-r) \sum_{i=1}^k e_{i1}(1-r)w\Phi(e_{1i})(1-q)$$

$$= \sum_{i,j=1}^k \Phi(e_{j1})(1-q)w^* e_{1j}(1-r)e_{i1}(1-r)w\Phi(e_{1i})(1-q)$$

$$= \sum_{i,j=1}^k \Phi(e_{j1})(1-q)w^* (\delta_{ji}e_{11}(1-r))w\Phi(e_{1i})(1-q)$$

$$= \sum_{i,j=1}^k \Phi(e_{j1})(1-q)w^* (\delta_{ji}ww^*)w\Phi(e_{1i})(1-q)$$

Proof of II' $(v_1^*v_1 = 1 - q)$

$$= \sum_{i=1}^{k} \Phi(e_{i1})(1-q)w^*w\Phi(e_{1i})(1-q)$$

$$= \sum_{i=1}^{k} \Phi(e_{i1})(1-q)\Phi(e_{11})(1-q)\Phi(e_{1i})(1-q)$$

$$= \sum_{i=1}^{k} \Phi(e_{ii})(1-q)$$

$$= (1-q)\Phi\left(\sum_{i=1}^{k} e_{ii}\right)$$

$$= (1-q)\Phi(1)$$

$$= 1-q.$$

Proof of II' $(v_1^*v_1 = 1 - q)$

$$= \sum_{i=1}^{k} \Phi(e_{i1})(1-q)w^*w\Phi(e_{1i})(1-q)$$

$$= \sum_{i=1}^{k} \Phi(e_{i1})(1-q)\Phi(e_{11})(1-q)\Phi(e_{1i})(1-q)$$

$$= \sum_{i=1}^{k} \Phi(e_{ii})(1-q)$$

$$= (1-q)\Phi\left(\sum_{i=1}^{k} e_{ii}\right)$$

$$= (1-q)\Phi(1)$$

$$= 1-q.$$

 $v_1v_1^*=1-r$ is similar.

Let $u = v + v_1$. Then u is a unitary. Indeed:

$$uu^* = (v + v_1)(v + v_1)^*$$

= $vv^* + v_1v_1^* + vv_1^* + v_1v^*$
= $r + 1 - r + 0 + 0$
= 1.

$$\left(vv_1^*=0\text{, as }\overline{\operatorname{Im}v_1^*}=\operatorname{Im}(1-q)\text{ and }v=0\text{ here}\right)$$

 u^*u is similar.

Proof of II' $(\Phi(x) = u^*xu)$

Finally,

$$u^* e_{nm} u = v^* e_{nm} v + v_1^* e_{nm} v_1$$

= $\Phi(e_{nm}) q + \Phi(e_{nm}) (1 - q)$
= $\Phi(e_{nm})$.

(the calculation for $v_1^*e_{nm}v_1$ is similar to $v_1^*v_1$) It follows that $\Phi(x)=u^*xu$ for all $x\in M$.

Proof of II' $(\Phi(x) = u^*xu)$

Finally,

$$u^* e_{nm} u = v^* e_{nm} v + v_1^* e_{nm} v_1$$

= $\Phi(e_{nm}) q + \Phi(e_{nm}) (1 - q)$
= $\Phi(e_{nm})$.

(the calculation for $v_1^*e_{nm}v_1$ is similar to $v_1^*v_1$) It follows that $\Phi(x)=u^*xu$ for all $x\in M$. Also,

$$||1 - u||_2 \le ||1 - v||_2 + ||v_1||_2 \le 2t + ||1 - q||_2 \le 3t.$$

QED.

Table of Contents

- Setup
- 2 Theorems
- Proof of Theorems II and II'
- The Basic Construction
- Proof of Theorem I
- 6 Post Christensen

The Basic Construction

The following idea of Christensen's will later become known as Jones' basic construction, as it was used ingeniously in Vaughan Jones' papers that led to a fields medal.

Setting

L is a type II_1 von Neumann algebra and N is a von Neumann subalgebra of L. We have $N \subset L \subset \mathcal{B}(\mathcal{H})$ with $\mathcal{H} = L^2(L, \tau)$.

Since τ is faithful, we also have the embedding $L \subset L^2(L,\tau)$.

Note that L acts on $\mathcal H$ via left multiplication, as this is the GNS construction. If we denote by ξ or $\hat{1}$ the vector in $\mathcal H$ corresponding to 1 in L, then $x\cdot \hat{1}=\hat{x}$ for all $x\in L$ (where \hat{x} denotes the vector corresponding to x via the embedding $L\subset L^2(L,\tau)$).

e and E

We will denote by e the projection from $L^2(L,\tau)$ onto $L^2(N,\tau)$ and by $E:L\to N$ the conditional expectation from L to N, which is just the restriction of e to L. That is to say:

$$e(\hat{x}) = \widehat{E(x)}.$$

Properties of e and E

• E is well-defined (i.e. it takes values in N) and bimodular: E(axb) = aE(x)b for all $a, b \in N$ and $x \in L$.

Properties of e and E

- E is well-defined (i.e. it takes values in N) and bimodular: E(axb) = aE(x)b for all $a, b \in N$ and $x \in L$.
- x-E(x) is, by definition, perpendicular to N for all $x\in L$, i.e. $\tau((x-E(x))^*y)=0$ for all $x\in L$ and $y\in N$.

Properties of e and E

- E is well-defined (i.e. it takes values in N) and bimodular: E(axb) = aE(x)b for all $a, b \in N$ and $x \in L$.
- x-E(x) is, by definition, perpendicular to N for all $x\in L$, i.e. $\tau((x-E(x))^*y)=0$ for all $x\in L$ and $y\in N$.
- e commutes with N: ey = ye for all $y \in N$. Indeed, for $x \in L$

$$ey\hat{x}=e\widehat{yx}=\widehat{E(yx)}=\widehat{yE(x)}=y\widehat{E(x)}=ye\hat{x}.$$

Properties of e and E (continued)

• For all $x \in L$, exe = E(x)e. Indeed, for $z \in L$

$$\begin{split} exe\hat{z} &= ex\widehat{E(z)} = \widehat{exE(z)} = \widehat{E(xE(z))} \\ &= \widehat{E(x)E(z)} = E(x)\widehat{E(z)} \\ &= E(x)e\hat{z}. \end{split}$$

Similarly, eLe = Ne.

The Basic Construction

We define the basic construction to be

$$L_1 = \langle L, e \rangle = (L \cup \{e\})'' \subset \mathcal{B}(\mathcal{H}),$$

the smallest von Neumann algebra of $\mathcal{B}(\mathcal{H})$ (for $\mathcal{H}=L^2(L,\tau)$) containing L and e.

Some properties of the basic construction

$$\bullet$$
 $eL_1e = Ne$.

Some properties of the basic construction

- \bullet $eL_1e = Ne$.
- If N is a factor, then so is L_1 .

Some properties of the basic construction

- \bullet $eL_1e = Ne$.
- If N is a factor, then so is L_1 .
- The trace τ of L gives a (faithful, normal, semifinite) trace φ on L_1 with $\varphi(e)=1$, related to τ by $\varphi(xe)=\tau(x)$ for all $x\in L$.

To be more precise

• The *-algebra generated by L, e turns out to be $L + \operatorname{span} LeL$ (using eLe = Ne).

To be more precise

- The *-algebra generated by L, e turns out to be $L + \operatorname{span} LeL$ (using eLe = Ne).
- We close in the s.o. topology of $\mathcal{B}(\mathcal{H})$: $\overline{L+\operatorname{span} LeL}^{\text{s.o.}}=L_1.$

To be more precise

- The *-algebra generated by L, e turns out to be $L + \operatorname{span} LeL$ (using eLe = Ne).
- We close in the s.o. topology of $\mathcal{B}(\mathcal{H})$: $\overline{L + \operatorname{span} LeL}^{\text{s.o.}} = L_1.$
- The trace is defined by $\varphi(xey) = \tau(xy)$ for all $x,y \in L$ then extended to the closure $\overline{L} + \operatorname{span} LeL$ s.o. by s.o. continuity.

A note on φ

Note that φ may not take just finite values; $\varphi(1) = \infty$ is possible. That is to say, L_1 is in general a semifinite algebra, so it may not be finite.

If N is a factor, then L_1 is also a factor, and thus it has a unique trace (up to rescaling). So, φ is the trace of L_1 .

We've worked with abstract factors so far, so it may be easier to visualize what happens with a concrete (finite dimensional) example.

We've worked with abstract factors so far, so it may be easier to visualize what happens with a concrete (finite dimensional) example.

Let $L=M_2(\mathbb{C})$ and $D=D_2\subset M_2(\mathbb{C})$ be the diagonal matrices.

We've worked with abstract factors so far, so it may be easier to visualize what happens with a concrete (finite dimensional) example.

Let $L=M_2(\mathbb{C})$ and $D=D_2\subset M_2(\mathbb{C})$ be the diagonal matrices.

The conditional expectation E is given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix},$$

and it corresponds to a projection $e \in \mathcal{B}(L) = \mathcal{B}(M_2(\mathbb{C}))$.

We've worked with abstract factors so far, so it may be easier to visualize what happens with a concrete (finite dimensional) example.

Let $L=M_2(\mathbb{C})$ and $D=D_2\subset M_2(\mathbb{C})$ be the diagonal matrices.

The conditional expectation E is given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix},$$

and it corresponds to a projection $e \in \mathcal{B}(L) = \mathcal{B}(M_2(\mathbb{C}))$.

We can identify $\mathcal{B}(M_2(\mathbb{C}))$ with $M_4(\mathbb{C})$, with $L=M_2(\mathbb{C})$ embedded in it via left multiplication.

Example (continued)

It can help to think of $M_4(\mathbb{C})$ as $M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$ and $L = M_2(\mathbb{C}) \otimes I \subset M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$.

Example (continued)

It can help to think of $M_4(\mathbb{C})$ as $M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$ and $L = M_2(\mathbb{C}) \otimes I \subset M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$.

In this case, $e \in M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$ is $e_{11} \otimes e_{11} + e_{22} \otimes e_{22} =$

and $\langle L, e \rangle = M_2(\mathbb{C}) \otimes D_2$.

Example (continued)

It can help to think of $M_4(\mathbb{C})$ as $M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$ and $L = M_2(\mathbb{C}) \otimes I \subset M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$.

In this case, $e \in M_2(\mathbb{C}) \otimes M_2(\mathbb{C})$ is $e_{11} \otimes e_{11} + e_{22} \otimes e_{22} =$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

and $\langle L, e \rangle = M_2(\mathbb{C}) \otimes D_2$.

Lastly, $\varphi=\frac{1}{2}\operatorname{Tr}_{M_4(\mathbb{C})}$ (so $\varphi(e)=1$).

Table of Contents

- Setup
- 2 Theorems
- Proof of Theorems II and II'
- 4 The Basic Construction
- Proof of Theorem I
- 6 Post Christensen

Theorem I

Theorem (I)

If $M,N\subset L$ with M finite dimensional, N a II_1 factor, and $M\overset{\delta}\subset N$ for some $\delta<1/\sqrt{2}$, then there exist $\Phi:M\to N$, Φ an isomorphism from M to a von Neumann subalgebra $\Phi(M)$ of N, and a fixed constant c such that for all $x\in M_1$

$$||\Phi(x) - x||_2 \le c\delta^{1/2}$$

(c = 1050 should work).

Proof of I (setup)

We have $M,N\subset L$, M finite dimensional, N II $_1$ factor, $M\overset{\delta}\subset N$ with $\delta>0$ small.

We want to construct $\Phi:M\to N$ morphism (isomorphism onto $\Phi(M)$) with $||\Phi(x)-x||_2\le c\delta^{1/2}$ for all $x\in M_1$, for some constant c (specifically c=1050).

• Construct $L_1=\langle L,e\rangle$ with e projection from $L^2(L,\tau)$ to $L^2(N,\tau)$. Since N is a factor, L_1 is also. We know e commutes with N, and since $M \overset{\delta}{\subset} N$, we can show that e "almost" commutes with M. In other words, $||e-u^*eu||_{2,\varphi}$ is small for $u\in \mathcal{U}(M)$.

- Construct $L_1=\langle L,e\rangle$ with e projection from $L^2(L,\tau)$ to $L^2(N,\tau)$. Since N is a factor, L_1 is also. We know e commutes with N, and since $M \overset{\delta}{\subset} N$, we can show that e "almost" commutes with M. In other words, $||e-u^*eu||_{2,\varphi}$ is small for $u\in \mathcal{U}(M)$.
- We can find k of minimal norm $||\ ||_{2,\varphi}$ in $\overline{\operatorname{co}}_M^{||\ ||_{2,\varphi}}(e)$, with $||e-k||_{2,\varphi}$ small and $k\in M'$.

- Construct $L_1=\langle L,e\rangle$ with e projection from $L^2(L,\tau)$ to $L^2(N,\tau)$. Since N is a factor, L_1 is also. We know e commutes with N, and since $M \overset{\delta}{\subset} N$, we can show that e "almost" commutes with M. In other words, $||e-u^*eu||_{2,\varphi}$ is small for $u\in \mathcal{U}(M)$.
- $\hbox{ We can find k of minimal norm $||\ ||_{2,\varphi}$ in $\overline{\operatorname{co}}_M^{||\ ||_{2,\varphi}}(e)$, with $||e-k||_{2,\varphi}$ small and $k\in M'$.}$
- From k, we construct one of its spectral projections q, with $||e-q||_{2,\varphi}$ small and $q\in M'$.

- Construct $L_1=\langle L,e\rangle$ with e projection from $L^2(L,\tau)$ to $L^2(N,\tau)$. Since N is a factor, L_1 is also. We know e commutes with N, and since $M \overset{\delta}{\subset} N$, we can show that e "almost" commutes with M. In other words, $||e-u^*eu||_{2,\varphi}$ is small for $u\in \mathcal{U}(M)$.
- $\hbox{ We can find k of minimal norm $||\ ||_{2,\varphi}$ in $\overline{\operatorname{co}}_M^{||\ ||_{2,\varphi}}(e)$, with $||e-k||_{2,\varphi}$ small and $k\in M'$.}$
- From k, we construct one of its spectral projections q, with $||e-q||_{2,\varphi}$ small and $q\in M'$.
- Since L_1 is a factor with $e, q \in L$, the Comparison Theorem tells us that $q \prec e$ or $q \succ e$.
 - If $q \stackrel{v}{\prec} e$, we construct $\Phi(x)$ from v^*xv .
 - If $q \succ e$, then $q \ge r \sim e$, and we use r as above $(r \sim e$, so $r \prec e$).

Proof of I (the basic construction)

Consider the basic construction $L_1 = \langle L, e \rangle$, where e is the projection from $L^2(L, \tau)$ to $L^2(N, \tau)$.

- N is a factor, so L_1 is a factor.
- L_1 comes with a semifinite trace φ satisfying $\varphi(e) = 1$.

Proof of I (e almost commutes with M)

We know that e commutes with N, so ue = eu for all $u \in \mathcal{U}(N)$. Hence $u^*eu = e$ for all $u \in \mathcal{U}(N)$.

Proof of I (e almost commutes with M)

We know that e commutes with N, so ue = eu for all $u \in \mathcal{U}(N)$. Hence $u^*eu = e$ for all $u \in \mathcal{U}(N)$.

Since $M \overset{\delta}{\subset} N$, we expect that for $u \in \mathcal{U}(M)$, u^*eu is "close" to e. Indeed:

$$\begin{split} ||e-u^*eu||^2_{2,\varphi} &= \varphi((e-u^*eu)^*(e-u^*eu)) \\ &= \varphi(e-eu^*eu-u^*eue+u^*eu) \\ &= 2\varphi(e-eu^*eue) \; (\varphi \; \mathrm{trace}) \\ &= 2\varphi(e-E(u^*)E(u)e) \; (exe=E(x)e) \\ &= 2\varphi((1-E(u^*)E(u))e) \\ &= 2\tau(1-E(u^*)E(u)) \; (\varphi(xe)=\tau(x)) \\ &< 2\delta^2. \end{split}$$

Proof of I (e almost commutes with M)

Thus, $||e - u^*eu||_{2,\varphi} \le \sqrt{2}\delta$. For the last step,

$$2\tau(1 - E(u^*)E(u)) \le 2\delta^2,$$

we used

- $\tau (1 E(u^*)E(u))^{1/2} = ||E(u) u||_{2,\tau}$
- $||E(u)-u||_{2,\tau} \leq \delta$, which follows from $M \overset{\delta}{\subset} N$ and the fact that E(u) minimizes the $||\ ||_{2,\tau}$ distance between u and N

Consider now the closed convex hull $\overline{\operatorname{co}}_M^{|| \cdot ||_{2,\varphi}}(e) =$

$$\overline{\left\{\sum_{i=1}^{n} c_{i} u_{i}^{*} e u_{i} : n \geq 1, u_{i} \in \mathcal{U}(M), c_{i} > 0, \sum_{i=1}^{n} c_{i} = 1\right\}} \| _{2,\varphi}^{\| _{2,\varphi}},$$

and let k be the unique element of minimal norm $|| \cdot ||_{2,\varphi}$ in it.

Consider now the closed convex hull $\overline{\operatorname{co}}_M^{|| \cdot ||_{2,\varphi}}(e) =$

$$\overline{\left\{\sum_{i=1}^{n} c_{i} u_{i}^{*} e u_{i} : n \geq 1, u_{i} \in \mathcal{U}(M), c_{i} > 0, \sum_{i=1}^{n} c_{i} = 1\right\}} \| \|_{2,\varphi},$$

and let k be the unique element of minimal norm $|| \cdot ||_{2,\varphi}$ in it.

Since $||e-u^*eu||_2 \le \sqrt{2}\delta$ for all $u \in \mathcal{U}(M)$, it follows that $||e-k||_{2,\varphi} \le \sqrt{2}\delta$.

Consider now the closed convex hull $\overline{\operatorname{co}}_M^{|| \ ||_{2,\varphi}}(e) =$

$$\overline{\left\{\sum_{i=1}^{n} c_{i} u_{i}^{*} e u_{i} : n \geq 1, u_{i} \in \mathcal{U}(M), c_{i} > 0, \sum_{i=1}^{n} c_{i} = 1\right\}} \| _{2,\varphi}^{\|},$$

and let k be the unique element of minimal norm $|| \cdot ||_{2,\varphi}$ in it.

Since $||e-u^*eu||_2 \le \sqrt{2}\delta$ for all $u \in \mathcal{U}(M)$, it follows that $||e-k||_{2,\varphi} \le \sqrt{2}\delta$.

Since $||u^*ku||_{2,\varphi}=||k||_{2,\varphi}$ and k is the unique element of minimal norm, it follows that $u^*ku=k$. Thus, $k\in M'$.

Consider now the closed convex hull $\overline{\operatorname{co}}_M^{|| \cdot ||_{2,\varphi}}(e) =$

$$\overline{\left\{\sum_{i=1}^{n} c_{i} u_{i}^{*} e u_{i} : n \geq 1, u_{i} \in \mathcal{U}(M), c_{i} > 0, \sum_{i=1}^{n} c_{i} = 1\right\}} \| _{2,\varphi}^{\|},$$

and let k be the unique element of minimal norm $|| \cdot ||_{2,\varphi}$ in it.

Since $||e-u^*eu||_2 \le \sqrt{2}\delta$ for all $u \in \mathcal{U}(M)$, it follows that $||e-k||_{2,\varphi} \le \sqrt{2}\delta$.

Since $||u^*ku||_{2,\varphi}=||k||_{2,\varphi}$ and k is the unique element of minimal norm, it follows that $u^*ku=k$. Thus, $k\in M'$.

Also,
$$k \in \langle M, e \rangle$$
 (with $\langle M, e \rangle = (M \cup \{e\})''$).

Proof of I (spectral projection)

Now, we find q a spectral projection of k (so $q = \chi_A(k)$ using functional calculus).

Proof of I (spectral projection)

Now, we find q a spectral projection of k (so $q=\chi_A(k)$ using functional calculus).

Using another technical lemma from Christensen, since $||e-k||_{2,\varphi} \leq \sqrt{2}\delta$, it is possible to find q with $||e-q||_{2,\varphi} \leq \gamma$, where γ depends on δ :

$$\gamma = 2^{1/4} \delta^{1/2} (1 - 2^{1/4} \delta^{1/2})^{-1}.$$

Proof of I (spectral projection)

Now, we find q a spectral projection of k (so $q=\chi_A(k)$ using functional calculus).

Using another technical lemma from Christensen, since $||e-k||_{2,\varphi} \leq \sqrt{2}\delta$, it is possible to find q with $||e-q||_{2,\varphi} \leq \gamma$, where γ depends on δ :

$$\gamma = 2^{1/4} \delta^{1/2} (1 - 2^{1/4} \delta^{1/2})^{-1}.$$

Since $\varphi(e) = 1$, we can show that $|1 - \varphi(q)| \le \gamma^2$.

Proof of I (The Comparison Theorem)

Since $k \in M' \cap \langle M, e \rangle$, so is q:

$$q \in M' \cap \langle M, e \rangle \subset M' \cap L_1.$$

Since L_1 is a factor and q, e are projections in L_1 , the Comparison Theorem tells us that $q \prec e$ or $e \prec q$.

Proof of I (case 1: $q \prec e$)

If $q \prec e$, then (by definition) $q \sim q' \leq e$ for some projection q'.

Proof of I (case 1: $q \prec e$)

If $q \prec e$, then (by definition) $q \sim q' \leq e$ for some projection q'. We have

$$||q - q'||_{2,\varphi} \le ||q - e||_{2,\varphi} + ||e - q'||_{2,\varphi}$$

$$\le \gamma + \varphi (e - q')^{1/2}$$

$$= \gamma + (1 - \varphi(q))^{1/2}$$

$$\le 2\gamma.$$

Proof of I (case 1: $q \prec e$)

If $q \prec e$, then (by definition) $q \sim q' \leq e$ for some projection q'. We have

$$||q - q'||_{2,\varphi} \le ||q - e||_{2,\varphi} + ||e - q'||_{2,\varphi}$$

$$\le \gamma + \varphi (e - q')^{1/2}$$

$$= \gamma + (1 - \varphi(q))^{1/2}$$

$$\le 2\gamma.$$

Since $q \sim q'$, there is a partial isometry $v \in L_1$ such that $v^*v = q'$ and $vv^* = q$. Using one of Christensen's lemmas, since $||q - q'||_{2,\varphi} \leq 2\gamma$, we can choose v with $||v - q'||_{2,\varphi} \leq 12\gamma$.

Proof of I (defining Φ)

Define $\Phi: M \to N$ by $\Phi(x) = v^*xv$ for all $x \in M$. This can be verified to be a homomorphism.

Proof of I (defining Φ)

Define $\Phi:M\to N$ by $\Phi(x)=v^*xv$ for all $x\in M.$ This can be verified to be a homomorphism.

Really, this takes values in Ne, rather than N:

$$v = ve \Rightarrow v^*Mv = ev^*Mve \subset eL_1e = Ne.$$

Proof of I (defining Φ)

Define $\Phi: M \to N$ by $\Phi(x) = v^*xv$ for all $x \in M$. This can be verified to be a homomorphism.

Really, this takes values in Ne, rather than N:

$$v = ve \Rightarrow v^*Mv = ev^*Mve \subset eL_1e = Ne.$$

Thankfully, Ne is isomorphic to N via $n \stackrel{\alpha}{\mapsto} ne$ (since e commutes with N). So, $\Phi = \alpha \circ \operatorname{Ad} v^*$

$$M \overset{\operatorname{Ad} v^*}{\to} Ne \overset{\alpha}{\to} N$$

Proof of I (inequality)

Using the inequalities that we have so far, we can show that $||\Phi(x)-x||_2 \leq \beta \gamma$ for all $x \in M_1$, for some fixed β ($\beta=105$ should work) (for δ sufficiently small, $\gamma<10\delta^{1/2}$).

Proof of I (case 2: $e \prec q$)

If
$$e \prec q$$
, then $e \sim r \leq q$ with $r \in M' \cap L_1$ and $\varphi(r) = \varphi(e) = 1$. As above,
$$||e-r||_{2,\varphi} \leq ||e-q||_{2,\varphi} + ||q-r||_{2,\varphi}$$

$$||e - r||_{2,\varphi} \le ||e - q||_{2,\varphi} + ||q - r||_{2,\varphi}$$

 $\le \gamma + (1 - \varphi(q))^{1/2}$
 $\le 2\gamma.$

So, we can use r as in the previous case, instead of q, to construct $\Phi:M\to N$ ($r\sim e$, so in particular $r\prec e$). QED.

Table of Contents

- Setup
- 2 Theorems
- Proof of Theorems II and II'
- 4 The Basic Construction
- Proof of Theorem I
- 6 Post Christensen

The Jones Tower

In 1983, Jones introduced the basic construction, along with a notion of index [M:N] (for $N\subset M$).

Under certain conditions, the basic construction can be repeated to obtain a <u>Jones tower</u>:

$$N \subset M \stackrel{e_0}{\subset} M_1 \stackrel{e_1}{\subset} M_2 \stackrel{e_2}{\subset} \cdots$$

The Standard Invariant

By intersecting the Jones tower with commutants, we obtain the Standard Invariant:

$$\mathbb{C} = N' \cap N \subset N' \cap M \subset N' \cap M_1 \subset \cdots$$

$$\cup \qquad \qquad \cup \qquad \qquad \cup \qquad \qquad \cup$$

$$\mathbb{C} = M' \cap M \subset M' \cap M_1 \subset \cdots$$

Commuting Squares

A square of inclusions

$$\begin{array}{cccc}
A & \subset & B \\
\cup & & \cup \\
C & \subset & D
\end{array}$$

such that $A \ominus C \perp D \ominus C$ is called a commuting square (equivalently, $E_A E_D = E_D E_A = E_C$).

Thank you!

Thank you!