5 Zentraler Grenzwertsatz von Lindeberg-Lévy

5.1 Charakteristische Funktionen

Definition

Es sei X Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) . Dann heißt

$$\phi_X(t) := Ee^{itX} = E\cos(tX) + iE\sin(tX)$$

die charakteristische Funktion zu X.

Bemerkung

Ist X diskret mit Werten x_1, x_2, \ldots , so gilt:

$$\phi_X(t) = \sum_{k=1}^{\infty} e^{itx_k} \cdot P(X = x_k)$$

Ist X absolutstetig mit Dichte f, so gilt:

$$\phi_X(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx$$
 (Fourier-Transformation)

Beispiel 5.1

a)
$$X \sim B(n, p)$$

$$\phi_X(t) = \sum_{k=0}^n e^{itk} \binom{n}{k} p^k (1-p)^{n-k}$$

$$= \sum_{k=0}^n \binom{n}{k} (pe^{it})^k (1-p)^{n-k} = (1-p+pe^{it})^n$$

b) $X \sim U(0, 1)$ $\phi_X(0) = 1$ und für $t \neq 0$:

$$\phi_X(t) = \int_0^1 e^{itx} \cdot 1 dx = \int_0^1 \cos(tx) dx + i \int_0^1 \sin(tx) dx$$
$$= \frac{1}{t} \sin(t) - \frac{i}{t} \cos(t) + \frac{i}{t} = \frac{1}{it} (e^{it} - 1)$$

c)
$$X \sim N(0,1)$$

$$\phi_X(t) = e^{-\frac{t^2}{2}} \quad \text{vgl. Stochastik 1}$$

Satz 5.1 Sind X, Y unabhängige Zufallsvariablen mit charakteristischen Funktionen ϕ_X und ϕ_Y , so gilt für die charakteristische Funktion ϕ_{X+Y} der Faltung:

$$\phi_{X+Y}(t) = \phi_X(t) \cdot \phi_Y(t) \quad \forall t \in \mathbb{R}$$

Beweis vgl. Stochastik 1, Satz 12.2.

Lemma 5.1 Für alle $m \in \mathbb{N}, t \in \mathbb{R}$ qilt:

$$\left| e^{it} - \sum_{k=0}^{m-1} \frac{(it)^k}{k!} \right| \le \min\left\{ \frac{|t|^m}{m!}, \frac{2|t|^{m-1}}{(m-1)!} \right\}$$

Beweis vgl. Stochastik 1, Satz 13.2.

5.2 Umkehrsätze

Wir werden sehen, dass eine Verteilung eindeutig durch ihre charakteristische Funktion festgelegt ist. Hat man z.B. gezeigt, dass X die charakteristische Funktion $(1 - p + pe^{it})^n$ hat, so ist $X \sim B(n, p)$.

Aus der Analysis ist die Integralsinusfunktion bekannt:

$$Si: \mathbb{R}_+ \to \mathbb{R}_+, \ Si(x) := \int_0^x \frac{\sin(y)}{y} dy \quad \forall x > 0$$

Es gilt: $\lim_{x\to\infty} (Si(x)) = \frac{\pi}{2}$

Satz 5.2

Es sei X Zufallsvariable mit charakteristischer Funktion ϕ_X . Dann gilt für alle $-\infty < a < b < \infty$:

$$\frac{1}{2}P(X = a) + P(a < X < b) + \frac{1}{2}P(X = b) = \lim_{T \to \infty} \left(\frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt\right)$$

Beweis

Sei $I(T) := \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt$. Definiere $\psi : \mathbb{R} \times [-T, T] \to \mathbb{C}$ durch

$$\psi(t,x) := \begin{cases} \frac{e^{-it(a-x)} - e^{-it(b-x)}}{it}, & t \neq 0\\ b-a, & t = 0 \end{cases}$$

Mit Lemma 5.1 folgt, dass ψ stetig ist und wegen

$$\left| \frac{e^{-ita} - e^{-itb}}{it} \right| = \left| \int_a^b e^{ity} dy \right| \le b - a$$

ist $|\psi| \leq b - a$, also ist ψ $P^X \otimes \lambda_{[-T,T]}$ -integrierbar. Mit Satz 3.1 (Fubini I) folgt:

$$I(T) = \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \left(\int e^{itx} P^{X}(dx) \right) dt$$
$$= \frac{1}{2\pi} \int \underbrace{\int_{-T}^{T} \frac{1}{it} \left(e^{-it(a-x)} - e^{-it(b-x)} \right) dt}_{=:\psi_{a,b,T}(x)} P^{X}(dx)$$

Inneres Integral:

 $\overline{\text{Da } t \mapsto \frac{\cos(t(x-a))}{it}}$ punktsymmetrisch ist, gilt:

$$\psi_{a,b,T}(x) = 2 \cdot \int_0^T \frac{1}{t} \sin((x-a)t) dt - 2 \cdot \int_0^T \frac{1}{t} \sin((x-b)t) dt$$

Es gilt weiterhin:

$$c \cdot \int_0^T \frac{1}{c \cdot t} \sin(ct) dt = \operatorname{sgn}(c) \cdot Si(T|c|) \quad \operatorname{mit} \operatorname{sgn}(c) = \begin{cases} 1, & c > 0 \\ 0, & c = 0 \\ -1, & c < 0 \end{cases}$$

$$\implies \psi_{a,b,T}(x) = 2 \cdot \operatorname{sgn}(x - a) Si(T|x - a|) - 2 \cdot \operatorname{sgn}(x - b) Si(T|x - b|)$$

$$\implies \psi_{a,b}(x) := \lim_{T \to \infty} (\psi_{a,b,T}(x)) = \begin{cases} 0, & x < a \text{ oder } x > b \\ \pi, & x = a \text{ oder } x = b \\ 2\pi, & a < x < b \end{cases}$$

 $\implies (\psi_{a,b,T})_{T\geq 0}$ besitzt eine (konstante) integrierbare Majorante. Mit dem Satz über die majorisierte Konvergenz gilt:

$$\lim_{T \to \infty} I(T) = \frac{1}{2\pi} \int \psi_{a,b}(x) P^X(dx)$$
$$= \frac{1}{2} P(X = a) + \frac{1}{2} P(X = b) + P(a < X < b)$$

Korollar 5.1

 $Sind\ X\ und\ Y\ Zufallsvariablen\ mit\ derselben\ charakteristischen\ Funktion,\ so\ haben\ X\ und\ Y\ dieselbe\ Verteilung.$

Beweis Sei $D=A(X)\cup A(Y)$ mit $A(X)=\{x\in\mathbb{R}|P(X=x)>0\}$, analog A(Y). A(X) ist abzählbar, da $A(X)=\bigcup_{n=1}^{\infty}\{x\in\mathbb{R}|P(X=x)\geq\frac{1}{n}\}$ und $|\{x\in\mathbb{R}|P(X=x)\geq\frac{1}{n}\}|\leq n\implies D$ abzählbar

$$\mathcal{D} := \{(a,b) | -\infty < a \le b < \infty, a, b \notin D\}$$

ist ein durchschnittstabiles Erzeugendensystem von $\mathfrak{B}(\mathbb{R})$. $\stackrel{\text{Sa5.2}}{\Longrightarrow}$ P^X und P^Y stimmen auf \mathcal{D} überein $\stackrel{\text{Eindeutigkeitssatz}}{\Longrightarrow}$ Behauptung.

Satz 5.3

Sei X eine Zufallsvariable mit charakteristischer Funktion ϕ . Gilt $\int |\phi(t)| dt < \infty$, so hat X eine stetige Dichte f, die gegeben ist durch

$$f(x) = \frac{1}{2\pi} \int e^{-itx} \phi(x) dt \quad \forall x \in \mathbb{R}$$

Beweis Wie in Beweis von Satz 5.2 gilt:

$$\left| \frac{e^{-ita} - e^{-itb}}{it} \right| \le |b - a| \quad (*)$$

Da ϕ λ -integrierbar ist, ist $|b-a||\phi|$ eine integrierbare Majorante für diesen Ausdruck in Satz 5.2. Es folgt:

$$\frac{1}{2}P(X=a) + P(a < X < b) + \frac{1}{2}P(X=b) = \frac{1}{2\pi} \int \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt$$

$$\implies P(a < X < b) \leq \frac{1}{2\pi} |b - a| \underbrace{\int |\phi(t)| dt}_{<\infty}$$

$$\implies P(X=x) = \lim_{n \to \infty} P(x - \frac{1}{n} < X < x + \frac{1}{n})$$

$$= 0$$

Ist F die Verteilungsfunktion von X, so gilt:

$$F(b) - F(a) = \frac{1}{2\pi} \int \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt \quad \forall a < b$$

Wegen (*) kann man den Satz von der majorisierten Konvergenz anwenden und bekommt:

$$\lim_{h \downarrow 0} \frac{F(x+h) - F(x)}{h} = \frac{1}{2\pi} \int e^{-itx} \lim_{h \downarrow 0} \frac{1 - e^{-ith}}{ith} \phi(t) dt$$
$$= \frac{1}{2\pi} \int e^{-itx} \phi(t) dt$$
$$=: f(x)$$

Außerdem folgt $x \mapsto f(x)$ ist stetig.

5.3 Verteilungskonvergenz

Definition

- a) Gegeben sei der messbare Raum (\mathbb{R},\mathfrak{B}) mit Wahrscheinlichkeitsmaßen P, P_1, P_2, \ldots und zugehörigen Verteilungsfunktionen F, F_1, F_2, \ldots P_n konvergiert schwach gegen P ($P_n \stackrel{w}{\to} P$), wenn $\lim_{n\to\infty} F_n(x) = F(x) \ \forall x \in \mathbb{R}$ an denen F stetig ist.
- b) Seien $X, X_1, X_2, ...$ Zufallsvariablen auf (unter Umständen verschiedenen) Wahrscheinlichkeitsräumen $(\Omega, \mathcal{A}, P), (\Omega_1, \mathcal{A}_1, P_1), ...$ X_n konvergiert in Verteilung gegen X $(X_n \xrightarrow{d} X)$, wenn $P^{X_n} \xrightarrow{w} P^X$.

Beispiel 5.2 Konvergenz in Verteilung bzw. schwache Konvergenz ist schwächer als f.s.-Kovergenz.

Sei z.B.
$$X \sim N(0,1)$$
 und $X_{2n} = X, X_{2n+1} = -X \ \forall n \in \mathbb{N}. \implies P^{X_n} \equiv P^X = N(0,1)$ und (X_n) konvergiert in Verteilung (gegen X) jedoch $X_n \overset{f_rs.}{\not\to} X$

Jedoch gilt folgender nützlicher Satz:

Satz 5.4 (Darstellungssatz von Skorohod)

Es seien X, X_1, X_2, \ldots Zufallsvariablen mit $X_n \stackrel{d}{\to} X$. Dann existiert ein Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) und hierauf Zufallsvariablen X', X'_1, X'_2, \ldots mit $X' \stackrel{d}{=} X, X'_n \stackrel{d}{=} X_n \ \forall n \in \mathbb{N}$ derart, dass $X'_n \stackrel{f.s.}{\to} X'$.

Beweis Es seien F, F_1, F_2, \ldots die Verteilungsfunktionen zu X, X_1, X_2, \ldots und $(\Omega, \mathcal{A}, P) = ((0,1), \mathfrak{B}_{(0,1)}, \lambda_{(0,1)})$. Weiter sei $F^{-1}: (0,1) \to \mathbb{R}, F^{-1}(y) := \inf\{x \in \mathbb{R} | F(x) \ge y\}$ die Quantilsfunktion zu F, analog (Quantilsfunktion) $F_n^{-1}, n \in \mathbb{N}$. Setze $X' := F^{-1}, X'_n := F_n^{-1}$.

Satz 5.7 (Stoch 1)
$$\Longrightarrow X' \stackrel{d}{=} X, X'_n \stackrel{d}{=} X_n, n \in \mathbb{N} \ (P(X' \le x) = P(F^{-1}(\omega) \le x) = \underbrace{P(\omega \le F(x))}_{=\lambda(0,1)} = F(x) \)$$

Es bleibt also zu zeigen , dass für P-fast alle $\omega \in \Omega : \lim_{n \to \infty} X'_n(\omega) = X'(\omega)$. Sei $\omega \in (0,1)$. Da X nur abzählbar viele Atome hat (vgl. Beweis von Korollar 5.1) existiert zu $\varepsilon > 0$ ein $x \in \mathbb{R}$ mit $X'(\omega) - \varepsilon < x < X'(\omega)$ und P(X = x) = 0. Es gilt (Lemma 5.6, Stoch 1): $\forall y \in (0,1), x \in \mathbb{R}$:

$$y \le F(x) \iff F^{-1}(y) \le x$$

Hier: $\omega \leq F(x) \iff F^{-1}(\omega) = X'(\omega) \leq x$. Wegen $X'(\omega) > x$ folgt $F(x) < \omega$. Da $F_n(x) \to F(x)$ für $n \to \infty$ nach Voraussetzung, $\exists n_0 \in \mathbb{N}$, so dass $\forall n \geq n_0 : F_n(x) < \omega$. Also $X'_n > x$. Mit $\varepsilon \downarrow 0$ folgt:

$$\liminf_{n \to \infty} X'_n(\omega) \ge X'(\omega) \quad \forall \omega \in \Omega.$$

Ist $\omega' > \omega$ und $\varepsilon > 0$, so \exists ein x mit $X'(\omega') < x < X'(\omega') + \varepsilon$ und P(X = x) = 0. Da F rechtsseitig stetig, folgt $F(F^{-1}(y)) \ge y \ \forall y \in (0,1)$, also mit der Monotonie von $F : \omega < \omega' \le F(X'(\omega')) \le F(x)$.

Wegen $F_n(x) \to F(x)$ $(n \to \infty)$, $\exists n_0 \in \mathbb{N}$ sodass $\omega \leq F_n(x)$ (d.h. $X'_n(\omega) \leq x$) $\forall n \geq n_0$ gilt mit $\varepsilon \downarrow 0$ ergibt das

$$\limsup_{n \to \infty} X'_n(\omega) \le X'(\omega') \quad \forall \omega' > \omega.$$

Satz 5.5 Es sei $C_b(\mathbb{R})$ die Menge aller stetigen und beschränkten Funktionen, $h : \mathbb{R} \to \mathbb{R}$. Dann gilt:

$$X_n \stackrel{d}{\to} X \iff Eh(X_n) \to Eh(X) \quad \forall h \in C_b(\mathbb{R})$$

Beweis

"⇒": Nach Satz 5.4 existieren ein Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) und Zufallsvariablen $X' \stackrel{d}{=} X$, $X'_n \stackrel{d}{=} X_n \quad \forall n \in \mathbb{N} \text{ mit } X'_n \stackrel{f.s.}{\to} X'$. Es folgt:

$$\lim_{n\to\infty} \left(Eh\left(X_{n}\right)\right) = \lim_{n\to\infty} \left(Eh\left(X_{n}'\right)\right) \overset{\text{h stetig},X_{n}'\overset{f.s.}{\to}X'}{=} Eh\left(X'\right) = Eh\left(X\right).$$

"\(\infty\)": Für $a, b \in \mathbb{R}, a < b$ sei $h_{a,b} : \mathbb{R} \to \mathbb{R}$ definiert durch

$$h_{a,b}(x) := \begin{cases} 1 & , x \le a \\ \frac{b-x}{b-a} & , a < x < b \\ 0 & , x \ge b \end{cases}$$

 $h_{a,b}$ ist stetig und beschränkt. Seien F, F_n die Verteilungsfunktionen zu $X, X_n \quad \forall n \in \mathbb{N}$. Dann gilt $\forall y > x$:

$$F_{n}(x) = E\left[\mathbf{1}_{(-\infty,x)}(X_{n})\right] \leq E\left[h_{x,y}(X_{n})\right] \overset{n \to \infty}{\to} E\left[h_{x,y}(X)\right],$$
$$E\left[h_{x,y}(X)\right] \leq E\left[\mathbf{1}_{(-\infty,y)}(X)\right] = F(y).$$

Also folgt da F rechtsseitig stetig ist mit $y \downarrow x$:

$$\lim \sup_{n \to \infty} (F_n(x)) \le F(x) \quad \forall x \in \mathbb{R}$$

Analog erhält man für y < x:

$$F_{n}\left(x\right) \geq E\left[h_{y,x}\left(X_{n}\right)\right] \stackrel{n \to \infty}{\to} E\left[h_{y,x}\left(X\right)\right] \geq F\left(y\right)$$

Mit $y \uparrow x$: $\liminf_{n \to \infty} (F_n(x)) \ge F(x-) \quad \forall x \in \mathbb{R}$. Ist F in x stetig, so gilt F(x-) = F(x) und somit $F_n(X) \stackrel{n \to \infty}{\to} F(x)$.

Satz 5.6 ("Continuous Mapping Theorem")

Es seien X, X_1, X_2, \ldots Zufallsvariablen mit $X_n \stackrel{d}{\to} X$. Weiter sei $f : \mathbb{R} \to \mathbb{R}$ eine Borel-messbare Funktion mit $P(X \in \{x \in \mathbb{R} \mid f \text{ nicht stetig in } x\}) = 0$. Dann gilt auch $f(X_n) \stackrel{d}{\to} f(X)$ für $n \to \infty$.

Beweis Übung.

Satz 5.7 (Satz von Helly¹)

Zu jeder Folge $(F_n)_{n\in\mathbb{N}}$ von Verteilungsfunktionen existieren eine Teilfolge $(F_{n_k})_{k\in\mathbb{N}}$ und eine schwach monoton wachsende, rechtsseitig stetige Funktion $G: \mathbb{R} \to [0,1]$, sodass $\lim_{k\to\infty} (F_{n_k}(x)) = G(x) \quad \forall x\in\mathbb{R}$, an denen G stetig ist.

Beweis (Skizze)

Für $x \in \mathbb{R}$ ist $(F_n(x))_{n \in \mathbb{N}} \subset [0,1]$ $\xrightarrow{\text{Bolzano-Weierstraß}} \exists$ Häufungspunkt. Sei $(r_k)_{k \in \mathbb{N}}$ eine Abzählung von \mathbb{Q} . Wähle Teilfolgen $(F_{n_{k,j}})_{j \in \mathbb{N}}$ mit $F_{n_{k,j}} \xrightarrow{j \to \infty} G_0(r_k)$, wobei $(n_{k+1,j})_{j \in \mathbb{N}}$ eine Teilfolge von $(n_{k,j})_{j \in \mathbb{N}}$ ist. (Definition der Funktion f_0 auf \mathbb{Q}) Für die Diagonalfolge $(n_{j,j})_{j \in \mathbb{N}}$ gil dann: $F_{n_{j,j}} \to G_0$ auf \mathbb{Q} . Sei G_0 auf ganz \mathbb{R} durch $G(x) := \inf\{G_0(r) \mid r \in \mathbb{Q}, r > x\}$ fortgesetzt. Rest: $\epsilon - \delta$ -Argumente.

Bemerkung G aus Satz 5.7 muß keine Verteilungsfunktion sein.

Beispiel: $F_n := \mathbf{1}_{[n,\infty]} \implies G \equiv 0$

Definition Eine Familie \mathcal{P} von Wahrscheinlichkeitsmaßen auf $(\mathbb{R}, \mathfrak{B})$ heißt **straff**, wenn $\forall \epsilon > 0 \exists$ kompaktes Intervall $[a, b] \subset \mathbb{R}$ mit:

$$P([a,b]) \ge 1 - \epsilon \quad \forall P \in \mathcal{P}$$

Bemerkung

- (i) Ist \mathcal{P} straff, so auch jedes $\mathcal{P}' \subset \mathcal{P}$.
- (ii) Sind alle \mathcal{P}_i mit $i \in \{1, \ldots, n\}$ straff, so auch $\bigcup_{i=1}^n \mathcal{P}_i$.
- (iii) Ist $|\mathcal{P}| = 1$, so ist \mathcal{P} straff.

Satz 5.8 Ist $\{P_n \mid n \in \mathbb{N}\}$ eine straffe Familie von Wahrscheinlichkeitsmaßen auf $(\mathbb{R}, \mathfrak{B})$, so existieren eine Teilfolge $(P_{n_k})_{k \in \mathbb{N}}$ von $(P_n)_{n \in \mathbb{N}}$ und ein Wahrscheinlichkeitsmaß P derart, dass $P_{n_k} \stackrel{w}{\to} P$ für $k \to \infty$.

Beweis Sei F_n die Verteilungsfunktion zu $P_n \ \forall n \in \mathbb{N}$.

 $\xrightarrow{\text{Satz 5.7}} \exists \text{ Folge } (n_k)_{k \in \mathbb{N}} \text{ mit } F_{n_k}(x) \to G(x) \text{ für } k \to \infty \ \forall x \in \mathbb{R} \text{ mit } G \text{ stetig in } x;$ G ist wachsend und rechtsseitig stetig.

Bleibt zu zeigen: G ist Verteilungsfunktion, also $\lim_{x\to-\infty}(G(x))=0$ und $\lim_{x\to\infty}(G(x))=1$. Ist dann P das Wahrscheinlichkeitsmaß zu G, so folgt $P_{n_k}\stackrel{w}{\to} P$.

Sei also $\epsilon > 0$. Da $\{P_n \mid n \in \mathbb{N}\}$ straff ist $\implies \exists a, b \in \mathbb{R}$ mit $P_n([a, b]) \ge 1 - \epsilon \ \forall n \in \mathbb{N}$. $\implies F_n(a) \le \epsilon \ \forall n \in \mathbb{N}$.

G hat höchstens abzählbar viele Unstetigkeitsstellen. $\Longrightarrow \exists c < a$, in dem G stetig. $\Longrightarrow G(c) = \lim_{k \to \infty} (F_{n_k}(c)) \le \epsilon \implies G(x) \le \epsilon \ \forall x \le c$.

Also: $\forall \epsilon > 0 \quad \exists c \in \mathbb{R} : \quad \forall x \le c \text{ gilt } 0 \le G(x) \le \epsilon \implies \lim_{x \to -\infty} (G(x)) = 0 \text{ und } \lim_{x \to \infty} (G(x)) = 1.$

Satz 5.9 (Stetigkeitssatz für charakteristische Funktionen)

Es seien X, X_1, X_2, \ldots Zufallsvariablen, $\phi, \phi_1, \phi_2, \ldots$ die zugehörigen charakteristischen Funktionen. Dann gilt:

$$X_n \stackrel{d}{\to} X \quad \iff \quad \phi_n(t) \to \phi(t) \quad \forall t \in \mathbb{R}$$

Beweis

"\Rightarrow": Sei $t \in \mathbb{R}$. $x \mapsto \cos(tx)$, $x \mapsto \sin(tx)$ sind stetig und beschränkt.

 $\xrightarrow{\text{Satz 5.5}} \phi_n(t) = E\cos(tX_n) + iE\sin(tX_n) \to E\cos(tX) + iE\sin(tX) = \phi(t).$

"\(\neq\)": Wir zeigen zun\(\text{achst:}\) $\{P^{X_n}, n \in \mathbb{N}\}$ ist straff. \(\mathbb{C}\)-wertige Version von Fubini II liefert $\forall \delta > 0$.

$$\frac{1}{\delta} \int_{-\delta}^{\delta} (1 - \varphi_n(t)) dt = \int \left(\frac{1}{\delta} \int_{-\delta}^{\delta} (1 - e^{itx}) dt \right) P^{X_n}(dx)$$

$$= 2 \int \underbrace{\left(1 - \frac{\sin(\delta x)}{\delta x} \right)}_{\geq 0} P^{X_n}(dx)$$

$$\geq 2 \int_{|x| \geq \frac{2}{\delta}} \underbrace{\left(1 - \frac{1}{|\delta x|} \right)}_{\geq \frac{1}{2}} P^{X_n}(dx)$$

$$\geq P^{X_n}([-\frac{2}{\delta}, \frac{2}{\delta}]^C)$$

Sei $\varepsilon > 0$. Da φ in 0 stetig und $\varphi(0) = 1$, $\exists \delta > 0$:

$$|1 - \varphi(t)| \le \frac{\varepsilon}{4} \quad \forall |t| \le \delta$$

 $\Rightarrow |\frac{1}{\delta} \int_{-\delta}^{\delta} (1 - \varphi(t)) dt| \leq \frac{1}{\delta} 2\delta \frac{\varepsilon}{4} = \frac{\varepsilon}{2}$. Da $|\varphi_n| \leq 1$ folgt mit majorisierter Konvergenz:

$$\int_{-\delta}^{\delta} (1 - \varphi_n(t)) dt \stackrel{n \to \infty}{\to} \int_{-\delta}^{\delta} (1 - \varphi(t)) dt$$

 $\Rightarrow \exists n_0 \in \mathbb{N}$, so dass $\frac{1}{\delta} \int_{-\delta}^{\delta} (1 - \varphi_n(t)) dt \leq \varepsilon \ \forall n \geq n_0. \Rightarrow P^{X_n}([-\frac{2}{\delta}, \frac{2}{\delta}]) \geq 1 - \varepsilon \ \forall n \geq n_0.$

Außerdem: $\forall n \in \{1, \dots, n_0 - 1\} \exists a_n > 0 \text{ mit } P^{X_n}([-a_n, a_n]) \ge 1 - \varepsilon \operatorname{da} P^{X_n}([-m, m]) \to 1 \text{ für } m \to \infty.$

Insgesammt: Sei $a := \max\{a_1, \dots, a_{n_0-1}, \frac{2}{\delta}\} \Rightarrow P^{X_n}([-a, a]) \geq 1 - \varepsilon \ \forall n \in \mathbb{N} \Rightarrow \{P^{X_n}, n \in N\} \text{ ist straff.}$

Annahme: $X_n \stackrel{d}{\to} X$ gilt nicht.

 $\Rightarrow \exists x \in \mathbb{R} \text{ mit } P(X = x) = 0 \text{ und } P(X_n \le x) \not\rightarrow P(X \le x), n \to \infty.$

d.h. $\exists \varepsilon > 0$ und eine Teilfolge $(X_{n_k})_{k \in \mathbb{N}}$ mit $|P(X_{n_k} \le x) - P(X \le x)| \ge \varepsilon \ \forall k \in \mathbb{N}$ (*).

 $\{P^{X_{n_k}}, k \in \mathbb{N}\}$ ist ebenfalls straff $\stackrel{S.5.8}{\Rightarrow} \exists$ Teilfolge $(X_{n_{k_j}})_{j \in \mathbb{N}}$ und ein W'maß P_0 mit $P^{X_{n_{k_j}}} \stackrel{w}{\to} P_0$.

Sei φ_0 charakteristische Funktion zu P_0 . Also folgt mit der Hinrichtung: $\varphi_{n_{k_j}}(t) \to \varphi_0(t) = \varphi(t) \stackrel{Kor,5.1}{\Rightarrow} P_0 = P^X$, also $X_{n_{k_j}} \stackrel{d}{\to} X$ und damit $P(X_{n_{k_j}} \leq x) \to P(X \leq x)$. Wid zu (*).

Wir benötigen noch folgendes technisches Hilfslemma:

Lemma 5.2

Für alle $z_1, \ldots, z_n, w_1, \ldots, w_n \in \{z \in \mathbb{C} | |z| \leq 1\}$ gilt:

$$\left| \prod_{k=1}^{n} z_k - \prod_{k=1}^{n} w_k \right| \le \sum_{k=1}^{n} |z_k - w_k|$$

Beweis

$$\begin{split} |\prod_{k=1}^{n} z_{k} - \prod_{k=1}^{n} w_{k}| & \leq |\prod_{k=1}^{n} z_{k} - w_{1} \prod_{k=2}^{n} z_{k}| + |w_{1} \prod_{k=2}^{n} z_{k} - w_{1} w_{2} \prod_{k=3}^{n} z_{k}| + \dots + |w_{1} \dots w_{n-1} z_{n} - \prod_{k=1}^{n} w_{k}| \\ & = |z_{1} - w_{1}| |\prod_{k=2}^{n} z_{k}| + |z_{2} - w_{2}| |w_{1} \prod_{k=3}^{n} z_{k}| + \dots + |z_{n} - w_{n}| |\prod_{k=1}^{n-1} w_{k}| \\ & \blacksquare \end{split}$$

Hauptsatz des Abschnitts:

Satz 5.10 (Zentraler Grenzwertsatz von Lindeberg-Lévy)

Für jedes $n \in \mathbb{N}$ seien $X_{nk}, k = 1, \ldots, r_n$ unabhängige Zufallsvariablen (nicht notwendig identisch verteilt) auf einem Wahrscheinlichkeitsraum $(\Omega_n, \mathcal{A}_n, P_n)$ mit $\operatorname{Var}(X_{nk}) = \sigma_{nk}^2 < \infty$ und $EX_{nk} = \mu_{nk} < \infty$. Es sei $s_n^2 := \sum_{k=1}^{r_n} \sigma_{nk}^2 > 0$. Ist dann für alle $\varepsilon > 0$ die **Lindeberg-Bedingung**

(L)
$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^{r_n} \int_{|X_{nk} - \mu_{nk}| > \varepsilon s_n} (X_{nk} - \mu_{nk})^2 dP_n = 0$$

erfüllt, so gilt mit $n \to \infty$:

$$\frac{1}{s_n} \sum_{k=1}^{r_n} (X_{nk} - \mu_{nk}) \xrightarrow{d} Z , Z \sim N(0, 1)$$

Bemerkung 5.1 1. Die Lindeberg-Bedingung schließt einen dominierenden Einfluss eines einzelnen Summanden X_{nk} auf die $X_{n1}+\cdots+X_{nr_n}$ aus. Insbesondere gilt:

$$\max\{\sigma_{nk}^2|1\leq k\leq r_n\}=o(s_n^2)$$
 für $n\to\infty$

2. Der ZGWS hat eine lange "Verbesserungsgeschichte"hinter sich. Gelegentlich ist die Lyapunov-Bedingung einfacher zu verwenden:

$$\lim_{n\to\infty}\frac{1}{s_n^{2+\delta}}\sum_{k=1}^{r_n}E(|X_{nk}-\mu_{nk}|^{2+\delta})=0 \text{ für ein }\delta>0$$

3. Der Satz liefert eine Begründung für die "Allgegenwart" der Normalverteilung.

Ein wichtiger Spezialfall ist

Satz 5.11 (ZGWS St. I)

Es seien Y_1, Y_2, \ldots u.i.v. ZV mit $EY_1 = \mu < \infty$ und $0 < Var(Y_1) = \sigma^2 < \infty$. Dann

$$\frac{Y_1 + \cdots Y_n - n\mu}{\sqrt{n}\sigma} \xrightarrow{d} Z \sim N(0,1)$$

Beweis Sei $X_{nk} := Y_k, r_n = n, (\Omega_n, A_n, P_n) = (\Omega, A, P)$. Es gilt: $s_n^2 = n\sigma^2$ und

$$\frac{1}{s_n^2} \sum_{k=1}^{r_n} \int_{|X_{nk} - \mu_{nk}| > \varepsilon s_n} (X_{nk} - \mu_{nk})^2 dP_n = \frac{1}{\sigma^2} \int_{|Y_1 - \mu_1| > \varepsilon \sqrt{n}\sigma} (Y_1 - \mu_1)^2 dP =: I_n$$

Da $z_n := \mathbf{1}_{(\varepsilon\sqrt{n}\sigma,\infty)}(|Y_1-\mu_1|)(Y_1-\mu_1)^2 \le (Y_1-\mu_1)^2$ und $\lim_{n\to\infty} z_n = 0$ folgt mit majorisierter Konvergenz, dass $\lim_{n\to\infty}I_n=0$. Also ist die Lindeberg-Bedingung erfüllt und die Behauptung folgt mit Satz 5.10.

Beweis Beweis von Satz 5.10

O.B.d.A: $\mu_{nk} = 0$ und $s_n = 1$. Anderfalls ersetze X_{nk} durch $\frac{X_{nk} - \mu_{nk}}{s_n}$. **Idee:** Verwende S.5.9: Sei φ_{nk} die charakteristische Funktion von X_{nk} und φ_{s_n} die von $\sum_{n=1}^{r_n} X_{nk} : \varphi_{s_n}(t) = \prod_{k=1}^{r_n} \varphi_{nk}(t) \to \varphi_z(t) = e^{-\frac{t^2}{2}}$ Zu zeigen:

$$\prod_{k=1}^{r_n} \phi_{n_k}(t) \to \phi_z(t) = e^{-\frac{t^2}{2}} \quad \forall t \in \mathbb{R}$$

Mit Lemma 5.1 (m = 3):

$$\left| e^{itx} - (1 + itx - \frac{1}{2}t^2x^2) \right| \le \min\{\frac{|tx|^3}{3!}, |tx|^2\} \quad \forall x \in \mathbb{R}$$

$$\le \min\{|tx|^3, |tx|^2\}$$

Integral über x liefert (beachte: EX = 0)

$$\left| \phi_{n_k}(t) - \left(1 - \frac{1}{2}t^2\sigma_{n_k}^2\right) \right| \le E \min\{|tX_{n_k}|^2, |tX_{n_k}|^3\} =: M_{n_k}$$

Sei $\varepsilon > 0$ beliebig. Es gilt

$$M_{n_k} \leq \int_{|X_{n_k}| \leq \varepsilon} |tX_{n_k}|^3 dP_n + \int_{|X_{n_k}| > \varepsilon} |tX_{n_k}|^2 dP_n$$

$$\leq |t|^3 \varepsilon \sigma_{n_k}^2 + t^2 \int_{|X_{n_k}| > \varepsilon} X_{n_k}^2 dP_n$$

$$\implies \sum_{k=1}^{r_n} M_{n_k} \leq |t|^3 \varepsilon + t^2 \sum_{k=1}^{r_n} \int_{|X_{n_k}| > \varepsilon} X_{n_k}^2 \mathrm{d} P_n \overset{n \to \infty}{\to} \varepsilon |t|^3 + 0 \quad \text{folgt mit } (L)$$

Mit $\varepsilon \downarrow 0$ folgt:

$$\lim_{n \to \infty} \sum_{k=1}^{r_n} \left| \phi_{n_k}(t) - \left(1 - \frac{1}{2} t^2 \sigma_{n_k}^2\right) \right| = 0 \quad \forall t \in \mathbb{R} \quad (1)$$

Behauptung: $\lim_{n\to\infty} \left| \prod_{k_n}^{r_n} \phi_{n_k}(t) - \prod_{k=1}^{r_n} (1 - \frac{1}{2}t^2 \sigma_{n_k}^2) \right| = 0 \quad \forall t \in \mathbb{R}$ (2) Beweis: $\forall \varepsilon > 0$ gilt:

$$\sigma_{n_k}^2 \le \int_{|X_{n_k}| > \varepsilon} X_{n_k}^2 \mathrm{d}P_n + \varepsilon^2$$

$$\implies \limsup_{n \to \infty} \max \{ \sigma_{n_k}^2 | 1 \le k \le r_n \}$$

$$\leq \lim_{n \to \infty} \left(\varepsilon^2 + \sum_{k=1}^{r_n} \int_{|X_{n_k}| > \varepsilon} X_{n_k}^2 dP_n \right)$$

$$\stackrel{(L)}{=}$$
 $\varepsilon^2 + 0$

Mit $\varepsilon \downarrow 0$:

$$\lim_{n \to \infty} \max \{ \sigma_{n_k}^2 | 1 \le k \le r_n \} = 0 \quad (3)$$

$$\implies \forall t \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \text{ so dass } \forall n \geq n_0 : |1 - \frac{1}{2}t^2\sigma_{n_k}^2| \leq 1 \quad \forall k \in \{1, \dots, r_n\}$$

 \implies Für $n \ge n_0$ läßt sich das \prod in (2) nach Lemma 5.2 durch die Summe in (1) abschätzen, d.h. (1) \implies (2)

Es bleibt zu zeigen:

Also $(3) \implies (4)$

$$\lim_{n \to \infty} |\underbrace{\prod_{k=1}^{r_n} \exp(-\frac{1}{2}t^2 \sigma_{n_k}^2)}_{=e^{-\frac{1}{2}t^2}} - \prod_{k=1}^{r_n} (1 - \frac{1}{2}t^2 \sigma_{n_k}^2)| = 0 \quad \forall t \in \mathbb{R}$$

Behauptung fogt mit Lemma 5.2 falls

$$\lim_{n \to \infty} \sum_{k=1}^{r_n} \left| \exp(-\frac{1}{2}t^2 \sigma_{n_k}^2) - 1 + \frac{1}{2}t^2 \sigma_{n_k}^2 \right| = 0 \quad (4)$$

Für $x \in \mathbb{R}$ mit $|x| \le \frac{1}{2}$ gilt $|e^x - 1 - x| \le \frac{1}{2} \sum_{j=2}^{\infty} |x|^j \le x^2$

$$\implies \sum_{k=1}^{r_n} |\exp(\underbrace{-\frac{1}{2}t^2\sigma_{n_k}^2}) - 1 + \frac{1}{2}t^2\sigma_{n_k}^2| \le \frac{1}{4}t^4\sum_{k=1}^{r_n}\sigma_{n_k}^4$$

Wegen
$$\sum_{k=1}^{r_n} \sigma_{n_k}^4 \le \max\{\sigma_{n_k}^2 | 1 \le k \le r_n\} \cdot \underbrace{\sum_{k=1}^{r_n} \sigma_{n_k}^2}_{-1} \overset{n \to \infty, (3)}{\to} 0$$

Beispiel 5.3 (Rekorde)

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und X_1, X_2, \dots eine Folge von unabhängigen identisch verteilten Zufallsvariablen darauf mit absolutstetiger Verteilungsfunktion F. Setze:

$$R_n := \begin{cases} 1, & \text{falls } X_n > X_i, i = 1, \dots, n-1 \\ 0, & \text{sonst} \end{cases}$$

 $R_n = 1 \iff n$ -ter Versuch ist ein Rekord. F stetig $\implies P(X_i = X_j) = 0 \ \forall i \neq j$

$$\Rightarrow A := \{\omega \in \Omega | \exists i \neq j, X_i(\omega) = X_j(\omega) \}$$

$$= \bigcup_{i,j \in \mathbb{N}, i \neq j} \{X_i = X_j \}$$

$$\Rightarrow P(A) = 0$$

Sei S_n die Menge der Permutationen der Zahlen $1, \ldots, n$. Sei $\Psi_n : \Omega \to S_n$ gegeben durch

$$\Psi_n = \pi \iff X_{\pi(1)} < X_{\pi(2)} < \dots < X_{\pi(n)}$$

 Ψ_n ist messbar, da $\Psi^{-1}(\{\pi\}) = \bigcap_{i=1}^n \{\underbrace{X_{\pi(i)} < X_{\pi(i+1)}}_{\in A} \}$. Beispiel 3.5 $\Longrightarrow (X_{\pi(1)}, \dots, X_{\pi(n)}) \stackrel{d}{=}$

$$(X_1,\ldots,X_n) \ \forall \pi \in S_n.$$

Ist $B := \{(x_1, ..., x_n) \in \mathbb{R}^n | x_1 < \dots < x_n \}$ so gilt:

$$P(\Psi_n = \pi) = P((X_{\pi(1)}, \dots, X_{\pi(n)}) \in B)$$
$$= P((X_1, \dots, X_n) \in B)$$
$$= P(\Psi_n = \mathbf{id}) \text{ unanhängig von } \pi$$

$$\Rightarrow P(\Psi_n = \pi) = \frac{1}{n!} \ \forall \pi \in S_n \text{ und}$$

$$P(R_n = 1) = P(\Psi_n \in \{\pi \in S_n | \pi(n) = n\}) = \frac{1}{n}$$

$$\Rightarrow R_n \sim B(1, \frac{1}{n}) \text{ sind also nicht identisch verteilt}$$

Wegen $\{R_{n+1} = 1\} \cap \{\Psi_n = \pi\} = \{\Psi_{n+1} = \tilde{\pi}\}$ mit

$$\tilde{\pi}(i) = \begin{cases} \pi(i) &, i \le n \\ n+1 &, i = n+1 \end{cases}$$

folgt:

$$P(\Psi_n = \pi, R_{n+1} = 1) = \frac{1}{(n+1)!} = \underbrace{P(\Psi_n = \pi)}_{=\frac{1}{n!}} \underbrace{P(R_{n+1} = 1)}_{\frac{1}{n+1}} \quad \forall \pi \in S_n$$

$$\implies \Psi_n$$
 und R_{n+1} sind unabhängig

$$\implies$$
 Da $(R_1, \ldots, R_n) = G(\Psi_n)$ sind R_{n+1} und (R_1, \ldots, R_n) unabhängig

$$P(R_{i_1} = j_1, \dots, R_{i_n} = j_n) = P(R_{i_1} = j_1, \dots, R_{i_{n-1}} = j_{n-1}) \cdot P(R_{i_n} = j_n) = \dots P(R_{i_1} = j_1) \cdot \dots \cdot P(R_{i_n} = j_n) \text{ für } i_1 < i_2 < \dots < i_n, j_1, \dots, j_n \in \{0, 1\}.$$

die Zufallsvariablen $(R_n)_{n\in\mathbb{N}}$ sind unabhängig

Wie viele Rekorde gibt es unter den ersten n Versuchen?

$$S_n := \sum_{i=1}^n R_i$$

Es gilt:

$$ES_n = \sum_{k=1}^n ER_k = \sum_{k=1}^n \frac{1}{k}$$
$$Var(S_n) = \sum_{k=1}^n Var(R_k) = \sum_{k=1}^n \frac{1}{k} (1 - \frac{1}{k}) = \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k^2}$$

Insbesondere:

$$\frac{ES_n}{\log n} \stackrel{n \to \infty}{\to} 1, \quad \frac{\operatorname{Var}(S_n)}{\log n} \stackrel{n \to \infty}{\to} 1$$

Mit dem zentralen Genzwertsatz (ZGWS) bekommen wir genauere Aussagen: Sei $X_{n_k} = R_k, r_n = n \implies s_n = (\operatorname{Var}(S_n))^{\frac{1}{2}}$ Überprüfen der Lyapunov-Bedingung ($\delta = 1$):

$$E|R_k - \underbrace{ER_k}_{=\frac{1}{k}}|^3 = \underbrace{P(R_k = 1)}_{=\frac{1}{k}} (1 - \frac{1}{k})^3 + \underbrace{P(R_k = 0)}_{=\frac{k-1}{k}} \left(\frac{1}{k}\right)^3 \le \frac{2}{k}$$

$$\implies 0 \le \frac{1}{s_n^3} \sum_{k=1}^n E|R_k - ER_k|^3 \le \frac{1}{s_n^3} \sum_{k=1}^n \frac{2}{k} \to 0 \text{ für } n \to \infty$$

Der Zentrale Grenzwertsatz (Satz 5.10) liefert

$$\frac{S_n - ES_n}{\sqrt{Var(S_n)}} \stackrel{d}{\to} Z \sim N(0, 1)$$

bzw.

$$\frac{S_n - \log(n)}{\sqrt{\log(n)}} \xrightarrow{d} Z \sim N(0, 1)$$

Also für große n: $P(\log(n) - 1, 96\sqrt{\log(n)} \le S_n \le \log(n) + 1, 96\sqrt{\log(n)}) \approx P(-1, 96 \le 1)$ $Z \le 1,96 = 0,9.$

Beispiel 5.4 (G. Polya, 1930: Eine Wahrscheinlichkeitsaufgabe zur Kundenwerbung, oder: "Coupon Collector's Problem")

Urne mit n verschiedenen Kugeln, Ziehen mit Zurücklegen

 $S_n = \text{Anzahl der Züge}$, bis $r_n = [\phi \cdot n]$, $0 < \phi < 1$ verschiedene Kugeln gezogen werden. Es sei X_{nk} = Anzahl der bis zum Erhalt einer neuen Kugel nötigen Züge, wenn bereits k-1 verschiedene Kugeln gezogen (und zurückgelegt) wurden. $X_{n1}:=1$. $X_{nk} \sim Geo(\frac{n-k+1}{n})$, d.h. $P(X_{nk}=j)=(\frac{k-1}{n})^{j-1}\cdot\frac{n-k+1}{n},\ j=1,2,\ldots$ Falls $Y\sim Geo(p),\ p\in(0,1]$ mit $Y\equiv 1$ bei p=1, gilt: $EY=\frac{1}{p},\ \mathrm{Var}(Y)=\frac{1-p}{p^2},\ EY^4\leq\frac{24}{p^4}$

$$X_{nk} \sim Geo(\frac{n-k+1}{n}), \text{ d.h. } P(X_{nk} = j) = (\frac{k-1}{n})^{j-1} \cdot \frac{n-k+1}{n}, \ j = 1, 2, \dots$$

$$EY = \frac{1}{p}, \ Var(Y) = \frac{1-p}{p^2}, \ EY^4 \le \frac{24}{p^4}$$

Für $S_n^p = X_{n1} + \cdots + X_{nr_n}$ erhalten wir $\mu_n := ES_n = \sum_{k=1}^{r_n} \frac{n}{n-k+1}$ und $s_n^2 =$

$$Var(S_n) = \sum_{k=1}^{r_n} \frac{\frac{k-1}{n}}{(\frac{n-k+1}{n})^2} = n \sum_{k=1}^{r_n} \frac{k-1}{(n-k+1)^2}.$$

Wir prüfen die Lyapunov-Bedingung mit $\delta = 2$: Für $Y \sim Geo(p)$ gilt:

$$E(Y - \frac{1}{p})^4 \le E(\max\{Y, \frac{1}{p}\})^4 \le EY^4 + \frac{1}{p^4} \le \frac{25}{p^4}$$

Insbesondere ist damit

$$\sum_{k=1}^{r_n} E|X_{nk} - \mu_{nk}|^4 \le 25 \cdot \sum_{k=1}^{r_n} \frac{1}{(1 - \frac{(k-1)}{n})^4} \le 25 \cdot [\phi \cdot n] \cdot \frac{1}{(1 - \phi)^4} = O(n).$$

Wegen $s_n^2 \ge n \cdot \frac{1}{n^2} \sum_{k=1}^{r_n} (k-1) = \frac{1}{n} \cdot \frac{1}{2} (r_n - 1) \cdot r_n \ge \frac{1}{2n} (\phi n - 1) \phi n = \Theta(n)$ folgt damit

$$\lim_{n \to \infty} \left(\frac{1}{s_n^{2+2}} \sum_{k=1}^{r_n} E|X_{nk} - \mu_{nk}|^{2+2} \right) = 0.$$

Also folgt mit dem Zentralen Grenzwertsatz:

$$\frac{S_n - ES_n}{\sqrt{\operatorname{Var}(S_n)}} \stackrel{d}{\to} Z \sim N(0, 1)$$

Weiter gilt:
$$\frac{1}{n}ES_n = \sum_{k=1}^{r_n} \frac{1}{n} \cdot \frac{1}{1 - \frac{k-1}{n}} = \int_0^{\frac{r_n}{n}} \frac{1}{1 - \frac{nx}{n}} dx + O(\frac{1}{n}) = \int_0^{\frac{r_n}{n}} \frac{1}{1 - x} dx + O(\frac{1}{n}) = \int_0^{\phi} \frac{1}{1 - x} dx + O(\frac{1}{n}) = -\log(1 - \phi) + O(\frac{1}{n}).$$

Analog:
$$\lim_{n \to \infty} (\frac{1}{n} \operatorname{Var}(S_n^2)) = \int_0^{\phi} \frac{x}{(1-x)^2} dx = \frac{\phi}{1-\phi} + \log(1-\phi).$$

Mit
$$a(\phi) = -\log(1 - \phi), \ b(\phi) := \sqrt{\frac{\phi}{1 - \phi} + \log(1 - \phi)}$$
 folgt:

$$\frac{S_n - a(\phi)n}{b(\phi)\sqrt{n}} \stackrel{d}{\to} Z \sim N(0,1)$$

Beispiel (Numerisches Beispiel)

Wie groß muss ihr Bekanntenkreis sein, damit mit einer Wahrscheinlichkeit von mindestens 0,95 an 180 Tagen im Jahr Geburtstag gefeiert werden kann?

Also:
$$n = 365$$
, $\phi = \frac{180}{365}$, $S_n \le k \iff \underbrace{\frac{S_n - a(\phi)n}{b(\phi)\sqrt{n}}}_{\approx Z} \le \frac{k - a(\phi)n}{(b(\phi)\sqrt{n})}$

$$\Phi(\underbrace{\frac{k - a(\phi)n}{b(\phi)\sqrt{n}}}) \ge 0.95 \iff k \ge a(\phi)n + 1.645 \cdot b(\phi)\sqrt{n} \implies k \ge 266.$$

Für
$$\phi = 1$$
 kann man den Zentralen Grenzwertsatz nicht mehr anwenden: $r_n = n$, $Var(S_n) = n \sum_{k=1}^n \frac{k-1}{(n-k+1)^2} = n \sum_{k=1}^n \frac{n-k}{k^2} = n^2 \sum_{k=1}^n \frac{1}{k^2} - n \sum_{k=1}^n \frac{1}{k} = n^2 \cdot \frac{\pi^2}{6} + o(n^2)$.

 $\operatorname{Var}(X_{n,n}) = \frac{1-\frac{1}{n}}{\frac{1}{2}} = n^2 + o(n^2) \implies \text{bei großem } n \text{ steckt etwa } \frac{6}{\pi^2} \approx 0,61 \text{ der Varia-}$ bilität der Summe im letzten Summanden. Wir können jetzt eine andere Skalierung finden, allerdings ist die Grenzverteilung dann keine Normalverteilung mehr! Sei $A_{m,i}$ das Ereignis, dass die Kugel i in den ersten m Ziehungen nicht auftaucht

$$\implies \{S_n > m\} = \bigcup_{i=1}^n A_{m,i}.$$

 $(S_n$ ist die Anzahl der Züge, bis alle n verschiedenen Kugeln mindestens einmal gezogen worden sind)

Mit der Siebformel:

$$P(S_n > m) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{\substack{1 \le i_1 \le i_2 < \dots < i_k \le n \\ 1 \le i_1 \le i_2 < \dots < i_k \le n}} P(\bigcap_{l=1}^{k} A_{m,i_l}) = \sum_{k=1}^{n-1} (-1)^{k+1} \binom{n}{k} (1 - \frac{k}{n})^m$$

Sei $c \in \mathbb{R}$ fest, $m_n = [n \log(n) + cn]$. Für x > -1 gilt $\log(1 + x) \le x$. Damit: $\log\left(\binom{n}{k}\left(1 - \frac{k}{n}\right)^{m_n}\right) \le k \log(n) - \log(k!) + \log\left(1 - \frac{k}{n}\right)(n \log(n) + cn - 1) \le k \log(n) - \log(k!) - \frac{k}{n}(n \log(n) + cn - 1) \le -ck + \frac{k}{n} - \log(k!)$

$$\implies \left| (-1)^{k+1} \binom{n}{k} \left(1 - \frac{k}{n} \right)^{m_n} \right| \le \frac{1}{k!} \exp(\frac{k}{n} - ck) \quad \forall c \in \mathbb{R}.$$

$$\ddot{\mathbf{A}}\mathbf{h}\mathbf{n}\mathbf{l}\mathbf{i}\mathbf{c}\mathbf{h}\mathbf{:}\lim_{n\to\infty}\left(-1\right)^{k+1}\binom{n}{k}\left(1-\frac{k}{n}\right)^{m_n}=\left(-1\right)^{k+1}\frac{1}{k!}e^{-ck} \quad \forall k\in\mathbb{N}.$$

Insgesamt:

$$\lim_{n \to \infty} \left(P\left(\frac{S_n - n\log(n)}{n} > c\right) \right) = \lim_{n \to \infty} \left(P\left(S_n > m_n\right) \right)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n-1} (-1)^{k+1} \binom{n}{k} \left(1 - \frac{k}{n}\right)^{m_n} \right)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{\infty} (-1)^{k+1} \binom{n}{k} \left(1 - \frac{k}{n}\right)^{m_n} \right)$$

$$= \sum_{k=1}^{\infty} \lim_{n \to \infty} \left((-1)^{k+1} \binom{n}{k} \left(1 - \frac{k}{n}\right)^{m_n} \right)$$

$$= \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!} \left(e^{-c} \right)^k$$

$$= 1 - e^{-e^{-c}}$$

Das Wahrscheinlichkeitsmaß auf $(\mathbb{R}, \mathfrak{B})$ mit der Verteilungsfunktion $F(x) = e^{-e^{-x}} \, \forall x \in \mathbb{R}$ heißt **Gumbel-Verteilung**.

Also gilt:

$$\frac{S_n - n \log(n)}{n} \stackrel{d}{\to} Z \sim Gumbel.$$

Beispiel (Variation des numerischen Beispiels von oben)

Der Bekanntenkreis soll jetzt so groß sein, dass mit einer Wahrscheinlichkeit von mindestens 0,95 täglich gefeiert werden kann.

$$\implies k \ge 365 \cdot \log(365) \cdot 365 \cdot 2,97 \approx 3237,51 \ (?)$$