Day 4 Advanced sets

Lecturer: Msc. Minh Tan Le

Warm up

• Check if the below proposition is true:

$$\forall x, (P(x) \lor Q(x)) \land (\neg P(x) \lor R(x)) \lor (\neg Q(x) \land \neg R(x)) \equiv 1$$

Outline

- I. Special elements in Hasse diagram
- II. Infimum, Supremum, and Lattice
- III. Equivalence class
- IV. Mappings
- V. Laws

Revision

Set/Tuple/PoseT Reflexive Antisymmetric Partial ordering

Relation
Symmetric
Transitive
Equivalent

Hasse diagram

More to remember

- If *R* is partial ordering on *A*:
 - A is a partial ordering set (POSET)
 - (A, \prec)
 - < is the relation expression

More to remember

- If *R* is partial ordering on *A*:
 - A is a partial ordering set (POSET)
 - $(a,b) \in R \Leftrightarrow a < b \text{ or } a \leq b$
 - (A, \prec) or (A, \preccurlyeq) : A is POSET
 - $\forall B \subset A, (B, \prec) \text{ or } (B, \leqslant)$

- a is maximal element if $\nexists b \in A$, a < b
 - Opposite of minimal element
- a is greatest element if $\forall b \in A, b \prec a$
 - Opposite of least element
- A is the minimal element.
- D is the maximal element.
- There is no greatest element.
- There is no least element.

- There is at most one greatest/least element.
- There can be many maximal/minimal elements.
- The greatest element is also and the only maximal element.
- 4. The least element is also and the only minimal element.

Let $B \subset A$,

- 1. $\forall b \in B$, if $\exists a, b \leq a$, then a is the upper bound of B.
- 2. $\forall b \in B$, if $\exists a, a \leq b$, then a is the lower bound of B.
- 3. The smallest upper bound is the least upper bound ($\sup B$).
- 4. The largest lower bound is the greatest lower bound (inf B).

$$A = \{1, 3, 5, 7, 9\}$$

 $B = \{5, 7\}$

Definition

A POSET that every pair of its elements has both sup and inf is called a lattice.

Tips to find sup (inf is similar):

- 1. Find all pair P of equal elements.
- 2. For $(a, b) \in P$, list all $c \in C$ so that $c \ge a, c \ge b$
- 3. If ∄sup = min(C) = join (max/meet for inf)=> Not lattice.

Moreover,...

- $\sup \{a, b\}$ can be written as $a \lor b$
- inf $\{a, b\}$ can be written as $a \land b$
- Lattice is written as (A, V, Λ)
- Laws: Commutative, associative, idempotent, absorption
 - Note: If distributive is valid, then lattice is distributive.

III. Equivalence class

- If R is equivalent on A and $a \in A$, $B = \{b \in A \mid (a,b) \in R\}$ is the equivalence class containing a, or \overline{a} , [a].
- Note: If $(a,b) \in R$ and R is equivalent on A, then we can write $a\mathcal{R}b$.

$$A = \{0, 1, 2, 3, 4\}$$

 $R = \{(a, b) \mid a \mod 3 = b \mod 3\}$

$$A = \{0, 1, 2, 3, 4\}$$

$$R = \{(0,0), (0,3), (3,0),$$

$$(1,1), (1,4), (4,1),$$

$$(2,2), (3,3), (4,4)\}$$

$$A = \{0, 1, 2, 3, 4\}$$

$$R = \{(0,0), (0,3), (3,0), (1,1), (1,4), (4,1), (2,2), (3,3), (4,4)\}$$

$$\overline{0} = \{0,3\}
\overline{1} = \{1,4\}
\overline{2} = \{2\}$$
 $\overline{3} = \{0,3\}
\overline{4} = \{1,4\}
\overline{4} = \{1,4\}
\overline{2} = \{2\}$

$$A = \{0, 1, 2, 3, 4\}$$

$$R = \{(0,0), (0,3), (3,0), (1,1), (1,4), (4,1), (2,2), (3,3), (4,4)\}$$

$$\overline{0} = \overline{3} = \{0,3\}$$
 $\overline{1} = \overline{4} = \{1,4\}$
 $\overline{2} = \{2\}$

$$A = \{0, 1, 2, 3, 4\}$$

$$R = \{(0,0), (0,3), (3,0), (1,1), (1,4), (4,1), (2,2), (3,3), (4,4)\}$$

$$\overline{0} = \overline{3} = \{0,3\}$$
 $\overline{1} = \overline{4} = \{1,4\}$
 $\overline{2} = \{2\}$

 $P = {\overline{0}, \overline{1}, \overline{2}}$ is the partition of A

$$A = \{0, 1, 2, 3, 4\}$$

$$R = \{(0,0), (0,3), (3,0), (1,1), (1,4), (4,1), (2,2), (3,3), (4,4)\}$$

$$\overline{0} = \{0,3\}
\overline{1} = \{1,4\}
\overline{2} = \{2\}$$
 $\overline{3} = \{0,3\}
\overline{4} = \{1,4\}
\overline{4} = \{1,4\}
\overline{2} = \{2\}$

 $P = {\overline{0}, \overline{1}, \overline{2}}$ is the partition of AIf $a \in \overline{x}$, then $a \notin \overline{y}, \overline{y} \neq \overline{x}$

No.	Name	Expression
1	Commutative (Giao hoán)	$\overline{x} + \overline{y} = \overline{y} + \overline{x}$
2	Associative (Kết hợp)	$(\overline{x} + \overline{y}) + \overline{z} = \overline{x} + (\overline{y} + \overline{z})$ $(\overline{xy})\overline{z} = \overline{x}(\overline{yz})$
3	Distributive (Phân bố)	$\overline{x}(\overline{y} + \overline{z}) = \overline{xy} + \overline{xz}$
4	Identity (Trung hòa)	$\overline{x} + \overline{0} = \overline{x}$ $\overline{x}\overline{1} = \overline{x}$

III. Mapping (function)

A mapping f from A to B assigns a ∈ A as input to one and only
 b ∈ B as output.

$$f:A\to B$$

Function is a special kind of relation.

$$A = \{2, 4, 6, 8\}$$
 $R1 = \{(a, b), a \le b\}$
 $R2 = \{(a, b), b = a + 2\}$

Types of mapping

- Injective: $\forall a_1, a_2 \in A, a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2)$
- Surjective: $\forall b \in B \rightarrow \exists a \in A, f(a) = b$
- Bijective: Injective + Surjective

Beware of the sign!

$$f: A \to B$$

$$g: B \to C$$

$$\Rightarrow h: A \to C$$

$$\Rightarrow x \mapsto h(x) = g(f(x))$$

IV. Laws

No.	Name	Expression
1	Union	$A \cup B$
2	Intersection	$A \cap B$
3	Minus, difference	$A - B$, $A \setminus B$
4	Complement (of B in A)	$\overline{B} = C_A B = (A - B \text{ or } A \backslash B)$
5	Size	A
6	Power set	$\mathcal{P}(S)$

No.	Name	Expression
1	Commutative (Giao hoán)	$A \cup B = B \cup A$ $A \cap B = B \cap A$
2	Associative (Kết hợp)	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
3	De Morgan	$\frac{\overline{A \cup B}}{\overline{A \cap B}} = \overline{\overline{A}} \cap \overline{\overline{B}}$
4	Distributive (Phân bố)	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
5	Identity (Trung hòa)	$A \cup \emptyset = A$ $A \cap \mathcal{U} = A$
6	Complement (Phần bù)	$A \cup \overline{A} = \mathcal{U}$ $A \cap \overline{A} = \emptyset$
7	Domination (Thống trị)	$A \cup \mathcal{U} = \mathcal{U}$ $A \cap \emptyset = \emptyset$

Summary

- Hasse diagram elements
 - Maximals, minimals, greatest, least
 - Upper bounds, lower bounds
 - least upper bound (sup), greatest lower bound (inf)
 - Lattices
 - Laws: Commutative, associative, idempotent, absorption, (distributive)
- Equivalence class
 - Partition
 - Laws
- Mapping: Injective, surjective, bijective, symbols
- Set laws

Exercises (ind.)

Let $A = \{1, 2, 3, 4, 5\}, B = \{3, 4, 5, 6, 7\}, C = \{2, 3, 5\}$ Find:

- a) $A \cap B$
- b) $A \cup B$
- c) $A \setminus B$
- d) $A \cap \overline{B \cup C}$

Homework (group)

1. Let $A = \{1, 2, 3, 4, 5, 6\}, B = \{2, 4, 6\}, C = \{1, 2, 3\}, D = \{7, 8, 9\},$

 $U = \{1, 2, ..., 10\}$, find:

- a) $A \cup B$
- b) $B \cap C$
- c) $\overline{B \cup C}$
- $d) |\mathcal{P}(\mathcal{C})|$

- e) $A \cap B$
- f) $\emptyset \cup C$
- $g) \emptyset \cap C$
- $h) (D \cap \overline{C}) \cup \overline{A \cap B}$

2.

Find:

- a. The maximal elements
- b. The minimal elements
- c. The greatest element
- d. The Least element
- e. The upper bounds of $\{a, b, c\}$.
- f. The least upper bound of $\{a, b, c\}$
- g. The lower bounds of $\{f, g, h\}$
- h. The greatest lower bound of $\{f, g, h\}$

3. Which of these Hasse diagrams are lattices? If not, explain. *Example:* (a) is not lattice as {a, b} doesn't have sup/inf.

4. Which of the below are equivalence relations on $\{0, 1, 2, 3\}$?

- a. $\{(0,0),(1,1),(2,2),(3,3)\}$
- b. $\{(0,0),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)\}$
- c. $\{(0,0),(1,1),(1,2),(2,1),(2,2),(3,3)\}$

5. Find the equivalence classes of the equivalence relations in exercise 4.