Final Assessment Test - November 2016

Course: MAT1011 - Calculus for Engineers

Class NBR(s):3827 Slot: C1+TC1

Time: **Three Hours** Max. Marks: **100**

Answer any <u>FIVE</u> Questions (5 X 20 = 100 Marks)

- 1. (a) Determine the regions of increasing and decreasing for $f(x) = x^4 4x^3 + 10$ and also, find its minima, maxima and point of inflection. [10]
 - (b) Find the area of the region R bounded by the parabola $y = x^2$ and the line y = x in the first quadrant of the XY plane. If R is revolved about the Y-axis to generate a solid, find the volume of the solid.
- 2. (a) Find the Laplace transform of $\frac{\cos t \cos 2t}{t}$ and hence, evaluate $L\left(\frac{e^{-2t}(\cos t \cos 2t)}{t}\right)$. [10]
 - (b) Using Convolution Theorem, evaluate $L^{-1}\left(\frac{s^2}{(s^2+1)(s^2+4)}\right)$. [10]
- 3. (a) Expand $f(x, y) = e^x \log(1+y)$ in powers of x and y upto the terms of third degree. [10]
 - (b) Find the volume of the greatest rectangular box that can be inscribed in the sphere $x^2 + y^2 + z^2 = a^2$. [10]
- 4. (a) Change the order of the integral $\int_{0}^{1} \int_{x^2}^{2-x} xy \, dxdy$ and hence, evaluate it. [10]
 - (b) Using spherical co-ordinates, evaluate the following triple integral [10]

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$$

- 5. (a) If $r = \sqrt{x^2 + y^2 + z^2}$, show that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$ and hence, find $\nabla^2 \log(r)$. [10]
 - (b) Show that $\vec{F} = 2xyz^2\vec{i} + (x^2z^2 + z\cos(yz))\vec{j} + (2x^2yz + y\cos(yz))\vec{k}$ is irrotaional and, find its scalar potential. [10]
- 6. (a) Compute the work done in moving a particle in the force field $\vec{F} = (2y+3)\vec{i} + xz\vec{j} + (yz-x)\vec{k}$ [10] along $x = 2t^2$, y = t, $z = t^3$ from the point (0,0,0) to the point (2,1,1).
 - (b) Verify Gauss divergence theorem for the function $\vec{F} = y\vec{i} + x\vec{j} + z^2\vec{k}$ over the cylindrical region [10] bounded by $x^2 + y^2 = 9$, z = 0 and z = 2.
- 7. (a) Using Gamma and Beta functions, evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} \sqrt{xy} \ dxdy$. [10]
 - (b) Show that $u = \frac{x^2 y^2}{x^2 + y^2}$ and $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation between u = u and v.