CS 3368 Introduction to Artificial Intelligence Reinforcement Learning

Department of Computer Science Texas Tech University

- Instructor: Jingjing Yao
- Email: jingjing.yao@ttu.edu
 - Office: EC 306F
- Office hours: 10-11 am, Tuesday and Thursday

Reinforcement Learning

• Basic idea:

- > Receive feedback in the form of rewards
- > Agent's utility is defined by the reward function
- > Must (learn to) act so as to maximize expected rewards
- > All learning is based on observed samples of outcomes

Initial

A Learning Trial

After Learning [1K Trials]

Initial

Training

Finished

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - \triangleright A set of states $s \in S$
 - > A set of actions (per state) A
 - > A model T(s,a,s')
 - > A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - > We don't know which states are good or what the actions do
 - > Must actually try out actions and states to learn

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

Model-Based Learning

- Model-Based Idea:
 - > Learn an approximate model based on experiences
 - > Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - > Count outcomes s' for each s, a
 - > Normalize to give an estimate of $\widehat{T}(s, a, s')$
 - > Discover each $\widehat{R}(s,a,s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - > Value iteration or policy iteration

Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

 $\widehat{T}(s,a,s')$ T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

$\hat{R}(s, a, s')$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

Example: Expected Age

Goal: Compute expected age of students

Known P(A)

$$E[A] = \sum_{a} P(a) \cdot a = 0.35 \times 20 + \dots$$

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Unknown P(A): "Model Based"

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

Unknown P(A): "Model Free"

$$E[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - > Input: a fixed policy $\pi(s)$
 - > You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - > Goal: learn the state values
- In this case:
 - > Learner is "along for the ride"
 - > No choice about what actions to take
 - > Just execute the policy and learn from experience

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - \triangleright Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

	-10 A	
B +8	C +4	+10 D
	-2 E	

Problems with Direct Evaluation

- What's good about direct evaluation?
 - > It's easy to understand
 - > It doesn't require any knowledge of T, R
 - > It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - > It wastes information about state connections
 - > Each state must be learned separately
 - > So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - > Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- > This approach fully exploited the connections between the states
- > Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - > In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation

• We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s,\pi(s),s')[R(s,\pi(s),s') + \gamma V_k^\pi(s')]$$
 • Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{k}^{\pi}(s'_{1})$$

$$sample_{2} = R(s, \pi(s), s'_{2}) + \gamma V_{k}^{\pi}(s'_{2})$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s'_{n}) + \gamma V_{k}^{\pi}(s'_{n})$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Example

Current state is s11

$$\pi(s_{11}) = down, \pi(s_{21}) = right$$
$$\gamma = 0.9$$

- N(s,a) = 5, for all s,a
- N(s,a,s') = 3 for intended direction
- N(s,a,s') = 1 for the direction to the left or to the right
- Reward for each step: -0.04
- Experience <s11, down, s21, -0.04>

Temporal Difference Learning

- Big idea: learn from every experience
 - > Update V(s) each time we experience a transition (s, a, s', r)
 - > Likely outcomes s' will contribute updates more often

- > Policy still fixed, still doing evaluation
- Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Exponential Moving Average

- Exponential moving average
 - > The running interpolation update: $\bar{x}_n = (1-lpha)\cdot \bar{x}_{n-1} + lpha\cdot x_n$
 - > Makes recent samples more important
 - > Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

States

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- · However, if we want to turn values into a (new) policy

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - > You don't know the transitions T(s,a,s')
 - > You don't know the rewards R(s,a,s')
 - > You choose the actions now
 - > Goal: learn the optimal policy / values
- In this case:
 - > Learner makes choices
 - > Fundamental tradeoff: exploration vs. exploitation

Q-Value Iteration

- Value iteration: find successive values
 - > Start with $V_0(s) = 0$, which we know is right
 - > Given V_k , calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - > Start with $Q_0(s,a) = 0$, which we know is right
 - > Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - > Receive a sample (s,a,s',r)
 - > Consider your old estimate: Q(s, a)
 - > Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

> Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 even if you're acting suboptimal
- Caveats:
 - > You have to explore enough
 - > You have to eventually make the learning rate small enough
 - > ... but not decrease it too quickly

Q-Learning Summary

We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- > But can't compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s,a,r,s')
 - > This sample suggests

$$Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$$

- > But we want to average over results from (s,a)
- > So keep a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)\left[r + \gamma \max_{a'} Q(s',a')\right]$$

Exploration vs. Exploitation

Examples of Exploration-Exploitation in the Real World

- Restaurant Selection
 - > Exploitation: Go to your favorite restaurant
 - > Exploration: Try a new restaurant
- Online Banner Advertisements
 - > Exploitation: Show the most successful ad
 - > Exploration: Show a different ad
- Oil Drilling
 - > Exploitation: Drill at the best known location
 - > Exploration: Drill at a new location
- · Game Playing
 - > Exploitation: Play the move you believe is best
 - > Exploration: Play an experimental move

How to Explore?

- Several schemes for forcing exploration
 - > Simplest: random actions (ϵ -greedy)
 - > Every time step, flip a coin
 - \triangleright With (small) probability ϵ , act randomly
 - \rightarrow With (large) probability 1- ϵ , act on current policy
 - > Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - \triangleright One solution: lower ϵ over time
 - > Another solution: exploration functions

Exploration Functions

- When to explore?
 - > Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - > Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n) = u + k/n Regular Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$ Modified Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'),N(s',a'))$
 - > Note: this propagates the "bonus" back to states that lead to unknown states

State-action-reward-state-action (SARSA)

SARSA update rule: Given an experience $\langle s, a, s', r', a' \rangle$, update Q(s, a) as follows:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(R(s) + \gamma Q(s',a') - Q(s,a) \right)$$

where a' is the actual action taken in state s'.

Q-learning update rule: Given an experience $\langle s, a, s', r' \rangle$, update Q(s, a) as follows:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

where a^\prime is the optimal action in state s^\prime given current Q values.

Q-Learning vs SARSA

- Q-learning is off-policy. SARSA is on-policy. (Q-values are estimated) by using the agent's current policy or not)
- Q-learning removes the chance that the agent uses an exploration step from the second step in the update function
- SARSA can use an exploration step in the second step
- Q-learning will converge faster to an optimal policy than SARSA
- Q-learning is more appropriate for offline learning when the agent does not explore
- SARSA is more appropriate when the agent explores

Q-Learning vs SARSA

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
   Initialize S
Repeat (for each step of episode):
   Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
   Take action A, observe R, S'
   Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
   S \leftarrow S'
   until S is terminal
```

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \epsilon-greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```


Example: Q-Learning

States

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

B, east, C, -2

C, east, D, -2

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state
 - > Too many states to visit them all in training
 - > Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations

Feature-Based Representations

Solution: approximate Q using a parameterized function

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Compute Q with a neural net
- Update Q by backpropagation

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

$$\begin{aligned} & \text{transition} &= (s, a, r, s') \\ & \text{difference} &= \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \quad \begin{aligned} & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \end{aligned} \quad \text{Approximate Q's} \end{aligned}$$

- Intuitive interpretation:
 - > Adjust weights of active features
- Formal justification: online least squares

Q-Learning and Least Squares

Linear Approximation: Regression

Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Optimization: Least Squares

total error =
$$\sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i)\right)^2$$

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and

weights w:
$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_m} = -\left(y - \sum_k w_k f_k(x)\right) f_m(x)$$

$$w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
"target" "prediction"

Deep Q Network

DQN = Q-learning + function approximation + deep network

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$, add it to \mathcal{B}
- 2. sample mini-batch $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_i, r_j\}$ from \mathcal{B} uniformly
- 3. compute $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$ using target network $Q_{\phi'}$
- 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) y_{j})$
- 5. update ϕ' : copy ϕ every N steps

$$t \leftarrow r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \max_{\mathbf{a}} Q(\mathbf{s}_{t+1}, \mathbf{a})$$
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha(t - Q(\mathbf{s}, \mathbf{a})) \nabla_{\boldsymbol{\theta}} Q(\mathbf{s}_t, \mathbf{a}_t)$$

