§6.3 Orthogonal Projections

Let W be a subspace of \mathbb{R}^n . Then each \mathbf{y} in \mathbb{R}^n has a unique representation of the form $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} (the set of all vectors orthogonal to the subspace W). If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$ and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto W and is written as $\operatorname{proj}_W \mathbf{y}$.

Let W be a subspace of \mathbb{R}^n , let \mathbf{y} be any vector in \mathbb{R}^n , and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} . The vector $\hat{\mathbf{y}}$ is called the best approximation to \mathbf{y} by elements of W.