Code No: 117AB

-3;--.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, March - 2017 ADVANCED FOUNDATION ENGINEERING (Civil Engineering)

(Civil Engineering)

Time: 3 H	Hours			Max. Marks: 75		
448		4.64	 Links of the last	18.60		

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Part- A (25 Marks)

*** ***		0.00 E E E E E E E E E E E E E E E E E E	E-44 TH THY	
1.a)	Define net ultimate bearing capacity of soil.	[2]		
b)	Give the various types of shallow foundations	[3]		
c)	What is negative skin friction in piles?	[2]		
d)	Explain about under reamed piles.	[3]		
e)	Define the coefficient of earth pressure at rest.	[2]	2002 200	
e) f):	What is Rankine's active state of soil.	[3]:		
g)	Differentiate between shallow cut and deep cut.	[2]		
h)	What is a cantilever sheet pile?	[3]		
i)	What are expansive soils?	[2]		
j)	Explain the mechanism of swelling.	[3]		
119	arcy_ac arcy_ac arcy_ac	array per	4700000	

Part-B (50 Marks)

- 2.a) A concrete footing of $1m \times 2m$ size is resting at a depth of 1m in a soil $E=10^4$ kN/m², $\mu=0.3$. Estimate the immediate settlement if the footing is subjected to a pressure of 200kN/m^2 . Assume footing to be rigid.
 - A square footing 2.5m size is founded at a depth of 1.5m in a sandy deposit which has the corrected N value of 30. The water table is at a depth of 2m from the ground surface. Find the net allowable soil pressure if i) the desired factor of safety is 3.0 and ii) the permissible settlement is 40mm. Use Teng's equation.

 [5+5]

A strip footing is 2m wide and at a depth of 2m in a soil of 19 kN/m³ and a cohesion of 10 kN/m^2 . Determine the increase in bearing capacity when ϕ is increased from 20^0 to

25°. Use Terzaghi's theory. Assume local shear failure.

[10]

4. Design a friction pile group to carry a load of 3500 kN including the weight of pile cap, at a site where the soil is uniform clay to a depth of 10 m underlain by rock. The average compressive strength of clay is 50 kN/m². The clay may be assumed to be of normal sensitivity and normally loaded with a liquid limit of 70%. Adopt a factor of safety 2.5 against shear failure. [10]

OR

5.a) b)	Describe various typ Discuss different me carrying capacity of	ethods for the	installation of pile	es. How would y	ou estimate the	
6.	A retaining wall is its surface horizontal when the backfill is the surface. Take γ_t =	 Using Rank dry, b) satu 	ine's theory, deter rated and c) subme	mine active earth erged, with water	pressure at the	base
7.	Consider a 5m high The inclination of $\gamma=18$ kN/ $\dot{m}_{}^3$; $c'=5$ k wall after the occurr	the backfill N/m², o'=25°.	with the horizon Determine Rankin	tal, $\alpha=10^{0}$. For	the backfill, g	f the
8.	An excavation 8m sides of the excava Determine the minimof 1.5m:below the s	tion are supp num depth of	orted by anchored	l sheet piles with	n fixed end sup	port.
9.a) b)	What is meant by b A cut 3m wide, 60	raced excavat	ions? Explain abou	it deep cuts in sai	nd. ′=36 ⁰) Assuming	g the
***************************************	first row of struts to struts as 1.5m. Calc as 3m, $\dot{\gamma}$ =20kN/m ³	o be located a ulate the maxi	it 0.5m below grou	und surface and	spacing between ntal spacing of s	n the
10.	Describe the variou	s stabilization	methods of expans	sive soils with su	itable examples. [10	
11.a) b)	Discuss the problem Explain about under	ns in expansive r reaiïied pile f	OR e soils with suitabl foundations for exp	e examples. pansive söils.	[5-	ST PR
	Z.K.		ooQoo	0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		Verry Lynn Lon Sons Sons Feet		ZE		26
					äs	

. 1