Mandenol 与 piezo1 分子对接

2024-01-09

LiChuang Huang

@ 立效研究院

${\bf Contents}$

List of Tables

1	摘要	1
2	前吉	1
3	材料和方法 3.1 材料	1 1 1
4	分析结果	1
5	结论	1
6	附:分析流程 6.1 分子对接	1
Re	eference	2
\mathbf{L}^{i}	ist of Figures	
	Overall combining Affinity	

1 摘要

分子对接见 Fig. 1

- 2 前言
- 3 材料和方法
- 3.1 材料
- 3.2 方法

Mainly used method:

- AutoDock vina used for molecular docking¹.
 - Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.
- 4 分析结果
- 5 结论
- 6 附:分析流程
- 6.1 分子对接

Figure 1 (下方图) 为图 Overall combining Affinity 概览。

(对应文件为 Figure+Table/Overall-combining-Affinity.pdf)

Figure 1: Overall combining Affinity

Figure 2 (下方图) 为图 Mandenol combine PIEZO1 概览。

(对应文件为 Figure+Table/5282184_into_piezo1.png)

Figure 2: Mandenol combine PIEZO1

Reference

1. Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. *Journal of Chemical Information and Modeling* **61**, 3891–3898 (2021).