La suite arithmétique - la suite géométrique :

	D'une suite arithmétique	D'une suite géométrique
Définition	$u_{n+1} = u_n + r$ (r est la raison)	$u_{n+1} = q \times u_n$ (q est la raison)
Le terme général	$u_n = u_p + (n-p)r (p \le n)$	$u_n = u_P \times q^{n-p} (P \leq n)$
La somme de termes successifs	$u_p + u_{p+1} + \dots + u_n = \left(\frac{n-p+1}{2}\right) \times \left(u_p + u_n\right)$	$u_p + u_{p+1} + \dots + u_n$ $= u_p \times (\frac{1 - (q)^{n-p+1}}{1 - q})$
a et b et c trois termes successifs	2b = a + c	$b^2 = a \times c$

<u>La suite majorée – la suite minoré</u>

Soit $(u_n)_{n\in I}$ une suite numérique

- $\Leftrightarrow (u_n)_{n\in I}$ est majorée par M $(\forall n \in I); u_n \leq M$
- $(\forall n \in I); u_n \ge m \iff (u_n)_{u_n}$ est minorée par *m*

Soit $(u_n)_{n\in I}$ une suite numérique

- $(\forall n \in I); u_{n+1} \le u_n(u_{n+1} \prec u_n) \iff (u_n)_{n \in I}$ est décroissante (strictement décroissante)
- $\forall n \in I$; $u_{n+1} \ge u_n (u_{n+1} \succ u_n) \iff (u_n)_{n \in I}$ est croissante (strictement croissante)
- $(\forall n \in I); u_{n+1} = u_n \iff (u_n)_{n \in I}$ est constante

Remarque:

Soit $(u_n)_{n\in I}$ une suite numérique dont le premier terme est : u_p

- Si $(u_n)_{n\in I}$ est décroissante, alors : $(\forall n\in I); u_n\leq u_p$ Si $(u_n)_{n\in I}$ est croissante, alors : $(\forall n\in I); u_n\geq u_p$

Limite d'une suite:

Limite de la suite (n^{α}) :

$\alpha \succ 0$	$\alpha \prec 0$
$\lim_{n \to +\infty} n^{\alpha} = +\infty$	$\lim_{n\to+\infty}n^\alpha=0$

Limite de la suite géométrique (q^n) :

$q \succ 1$	q = 1	$-1 \prec q \prec 1$	$q \le -1$
$\lim_{n\to +\infty}q^n=+\infty$	$\lim_{n\to+\infty}q^n=1$	$\lim_{n\to+\infty}q^n=0$	Pas de limite

Critères de convergence:

- Toute suite croissante et majorée est une suite convergente
- Toute suite décroissante et minorée est une suite convergente

$$\begin{vmatrix} v_n \le u_n \le w_n \\ \lim_{x \to +\infty} v_n = l \\ \lim_{x \to +\infty} w_n = l \end{vmatrix} \Rightarrow \lim_{x \to +\infty} u_n = l$$

$$\lim_{x \to +\infty} v_n = 0$$
 $\Rightarrow \lim_{x \to +\infty} u_n = l$

$$\left. \lim_{\substack{n \le v_n \\ x \to +\infty}} v_n = -\infty \right\} \Rightarrow \lim_{\substack{n \to +\infty}} u_n = -\infty$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} v_n = +\infty$$
 $\Rightarrow \lim_{\substack{x \to +\infty \\ x \to +\infty}} u_n = +\infty$

Suite de type $u_{n+1} = f(u_n)$:

Considérons la suite (u_n) définie par :

$$\begin{cases} u_n = a \\ u_{n+1} = f(u_n) \end{cases}$$

Avec f une fonction continue sur un intervalle I tel que $f(I) \subset I$ et a un élément de I

Si (u_n) converge, alors sa limite l est la solution de l'équation : f(x) = x

Suite de type $v_n = f(u_n)$:

$$\lim_{n \to +\infty} u_{n=K}$$

$$\lim_{n \to +\infty} v_n = f(K)$$

La fonction f est continue en K