μPD71613

CMOS Bus Controller

PRELIMINARY INFORMATION

Description

The μ PD71613 is a high performance CMOS bus controller for the μ PD70616 (V60) microprocessor. The μ PD71613 decodes the μ PD70616 status outputs and generates the memory, I/O and coprocessor read/write strobes. A separate interrupt acknowledge output is also provided for interfacing to interrupt controllers.

Features

- High output drive (IOL = 16 mA)
- Decodes μPD70616 bus status for
 - memory read/write
 - I/O read/write
 - coprocessor read/write
 - interrupt acknowledge
- 3-state command outputs
- CMOS technology
- ◆ 20-pin plastic DIP

Pin Configuration

Ordering Information

Part Number	Package	Maximum Frequency
μPD71613C	20-pin plastic DIP	16 MHz

Block Diagram

μPD71613

Pin Identification

Symbol		. 1/0	Function
ST2-ST0	Bus Status .	In	μPD70616 bus status inputs
CLK	Clock	I n	μPD70616 clock input
MRQ*	Memory Request	I n	μPD70616 memory request strobe
R/W*	Read/Write	In	μPD70616 bus cycle direction input
BCY.	Bus Cycle	In	μPD70616 bus cycle active input
AEN	Address Enable	In	Command output buffer control pin
CEN	Command Enable	In	Command output control pin
MRD*	Memory Read	3-state output	Memory read strobe output
MWR*	Memory Write	3-state output	Memory write strobe output
IORD*	I/O Read	3-state output	VO read strobe output
IOWR'	I/O Write	3-state output	I/O write strobe output
CPRD.	Coprocessor Read	3-state output	Coprocessor read strobe output
CPWR*	Coprocessor Write	3-state output	Coprocessor write strobe output
INTA*	Interrupt Acknowledge	Out	Interrupt acknowledge output
DBEN*	Data Bus Enable	Out	External data bus buffer enable output
DBR*W	Data Buffer Read/Write	Out	Data bus buffer direction output

Pin Functions

This section describes the operation of the μ PD71613 terminals. Inputs and outputs are considered at a logic "0" level when a low level signal is present. Likewise, a logic "1" is represented by a high level signal. Bus states are defined and measured from the rising edge of the clock to the rising edge of the next clock.

ST2-ST0 [Bus Status]..... inputs

The ST2-ST0 inputs are connected to the encoded CPU bus status outputs. The bus status inputs are decoded into the command and control outputs for timing control.

CLK [Clock]..... input

CLK is the μ PD70616 system clock from the μ PD71611 clock generator.

BCY* [Bus Cycle]..... input

The μ PD70616 indicates the start of a new bus cycle by asserting the BCY* output. The μ PD71613 uses BCY* to generate the timing for all command and control outputs.

MRQ* [Memory Request].....input

MRQ $^{\bullet}$ is a μ PD70616 output which indicates whether or not the bus cycle is in the memory address space or in some other address space.

R/W* [Read/Write].....input

R/W* is the bus cycle direction status from the μ PD70616.

AEN [Address Enable]..... input

The AEN input is the three-state control for the command output buffers. When AEN is high, all output buffers are enabled and the decoded command is determined by the input status. When AEN is low, all command output buffers are in the high impedance state.

CEN [Command Enable].....input

CEN controls the DBEN* and all command outputs. When CEN is high, all outputs are enabled and controlled by the status inputs. When CEN is low, DBEN* and the command outputs are forced to the inactive state.

MRD* [Memory Read]..... output

MRD* is an active low three-state output strobe used to read data from memory.

MWR* [Memory Write]..... output

MWR* is an active low three-state output strobe used to write data to memory.

IORD* [I/O Read]..... output

IORD* is an active low three-state output strobe used to read data from a peripheral device.

IOWR* [I/O Write]..... output

IOWR* is an active low three-state output strobe used to write data to a peripheral device.

CPRD* [Coprocessor Read]..... output

CPRD* is an active low three-state output strobe used to read data from a coprocessor device.

CPWR* [Coprocessor Write]..... output

CPWR* is an active low three-state output strobe used to write data to a coprocessor.

INTA* [Interrupt Acknowledge]..... output

The INTA* output is used to indicate to interrupt controllers that an interrupt acknowledge bus cycle is taking place. The selected interrupt controller is responsible for supplying the interrupt vector.

DBEN* [Data Buffer Enable]..... output

DBEN* is used to enable the three-state output buffers of the data bus transceivers. This output is only asserted during valid µPD70616 bus cycles.

DBR*/W [Data Buffer Read/Write]...... output

This output controls the direction of the external data bus transceivers. When DBR*/W is high, data will be transferred from the µPD70616 local bus to an I/O or memory location. When DBR*/W is low, data will be transferred from memory or I/O peripherals to the µPD70616 local bus.

VDD [Power Supply]

The VDD pin supplies +5 Volt power to the μ PD71613.

GND [Ground]

The GND pin is the power supply return.

Operational Description

The μPD71613 serves as the system bus controller for the μPD70616 (V60) microprocessor. The μPD71613 monitors the µPD70616 status (ST2-ST0), memory request (MRQ*) and read/write (R/W*) outputs and during valid bus cycles (determined by the µPD70616 BCY* output), drives the command and control outputs. Command outputs consist of the memory, I/O, coprocessor and interrupt acknowledge strobe signals. Control outputs are the data buffer enable and data buffer direction signals.

Figure 1 depicts a typical µPD70616 system design using both the µPD71613 and the µPD71611 clock generator. Table 1 contains a state table of the command and control outputs.

Figure 1. Basic System Configuration

98D 15927

Table 1. Command and Control Output State Table

MRQ	R/W		Status		Bus Cycle	Command	Control	Control Outputs	
MING	LVVV	ST2	STO	ST1	Outputs		DBEN	DBRW	
		0	0	0	Coprocessor Memory Write	MWR, CPRD	0	1	
		0	0	1	String Mode Memory Write	MWR	0	1	
		0	1	0:	Memory Write with Short Pass	MWR	0	1	
	0	0	1	1	Single Mode Memory Write	MWR	0	1	
	ľ	1	0	0	Single Mode Memory Write	MWR	0	1	
	1	1	0	1	Translation Table Memory Write	MWR	0	1	
	1	1	1	0	Translation Table Memory Write	MWR	0	1	
0	· .	1	1	1	Translation Table Memory Write	MWR	0	1	
		0	0	0	Coprocessor Memory Read	MRD, CPWR	0	0	
		0	0	1	String Mode Memory Read	MRD	0	0	
		0	1	0	String Mode Memory Read	MRD	0	0	
	1	0	1	1	Single Mode Memory Read	MRD	0	0	
į	'	1	0	0	System Base Table Access	MRD	0	0	
		1	0	1	Translation Table Access	MRD	0	0	
		1	1	0	Demand Mode Instruction Fetch	MRD	0	0	
1		1	1 .	1	Instruction Prefetch	MRD	0	0	
		0	0	0	Coprocessor Write	CPWR	0	1	
	ł	0	0	1	String Mode I/O Write	IOWR	0	. 1	
Į		0	1	0	Reserved	-	0	1	
	0	0	1	1	Single Mode I/O Write	IOWR	0	1	
1		1	0	0	Halt Acknowledge	-	1	1	
		1	0	1	Halt Acknowledge	_	1	1	
ł		1	1	0	None	-	0	1	
1		1	1	1	Reserved	-	0	1	
'		0	0	0	Coprocessor Read	CPRD	0	0	
	ĺ	0	0	1	String Mode I/O Read	IORD	0	0	
		0	1	0	Reserved	-	0	0	
	1	0	1	1	Single Mode I/O Read	IORD	0	0	
1	'	1	0	0	Halt Acknowledge	-	1	0	
		1	0	1	Halt Acknowledge	-	1	0	
		1	1	0	Interrupt Acknowledge	ĪNTĀ	0	0	
ł	1	1	1	1	Reserved	-	0	0	

"0" is a logic low level, "1" is a logic high level

Absolute Maximum Ratings

TA =	+25	.C

Power Supply Voltage, VDD	-0,5 V to +7.0 V
Input Voltage, V _I	1.0 V to V _{DQ} + 1.0 V
Output Voltage, Vo	-0.5 V to V _{DD} + 0.5 V
Operating Temperature, TOPT	-40°C to +85°C
Storage Temperature, TSTG	-65°C to +150°C
Power Dissipation, PD	500 mW

Comment: Exposing the device to stresses above those listed in the Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

TA = +25°C, VDD = 0 V

		<u> </u>			
Parameter	Symbol	Min	Max	Unit	Conditions
Input Capacitance	CI		12	ρŧ	f = 16 MHz

DC Characteristics T_A = -40°C to +85°C, V_{DD} = +5 V±10%

		Limite			
Parameter	Symbol	Min	Max	Unit	Conditions
Input Voltage High	ViH	2.2		٧	
Input Voltage Low	V _{IL}		0.8	V	
Output Voltage High	Voн	V _{DO} = 0.8		٧	Command outputs, IOH = -4m/
		V _{DD} - 0.8		V	Control outputs, IOH = -4mA
Output Voltage Low	VOL		0.45	V	Command outputs, IOL = 16mA
			0.45	V	Control outputs, IOL = 8mA
Input Current	lj	-1.0	1.0	μΑ	V _i = V _{DD} , V _{SS}
3-state Output Leakage Current	loff	-10	10	μΑ	
Static Supply Current	מפו		80	μА	VI = VDD, VSS
Dynamic Supply Current	l DDdyn	'T ' L' 	30	mA	f _{in} = 16 MHz

Timing Waveforms

AC Input/Output Test

T-52-33-03

AC Characteristics
TA = -40°C to +85°C, VDO = +5 V ±10%

		Lin	nits			
Parameter	Symbol	Min	Max	Unit	Conditions	
CLK Cycle Time	tcyck	60		ns .		
CLK Pulse Width High	tpwckH	25		ns.		
CLK Pulse Width Low	†PWCKL	25		ns.		
ST2-ST0, MRQ*, R/W* Setup to CLKT	†SSTCK	15		ns ns		
ST2-ST0, MRQ*, R/W* Hold from CLKT	thckst	5		ns .		
BCY* Setup to CLKT	t SBYCK	15	·	ne		
BCY* Hold from CLKT	Ч-СКВ Ү	5		ns		
Command Active Delay from CLKT	[‡] DCKCML	3	15	ns		
Command Inactive Delay from CLK↓	POCKCMH	3	15	ns		
Command Inactive Delay from BCY*↑	*DBYCMH	3	15	ns		
Command Output On Delay from AENT	[†] DAECM	3	15	ne		
Command Active Delay from AENT	[†] DAECML	80	160	ns		
Command Output Float Delay from AEN	t FAECM		40	ns		
Command Active Delay from CENT	†DCECML	3	15	ns		
Command Inactive Delay from CEN	^t DCECMH	3	15.	ns		
DBEN* Inactive Delay from CLKT	†DCKDE	3	15	ns		
DBEN* Active Delay from AEN1	†DAEDE	3	15	ns		
DBEN* Active Delay from CENT	IDCEDEL	3	15	ne		
DBEN* Inactive Delay from CEN	†DCEDEH	3	15	ns		
DBR*W1 Delay from CLK1	†DCKDM	3	15	ns		
DBR*W↓ Delay from R/W*	[†] DRWDM	3	15	ns		
nput Rise Time	t _{RI}		12	ns	0.8 V → 2.2 V	
nput Fall Time	tFI		8	ns	2.2 V → 0.8 V	
Output Rise Time	tRO		10	ns	0.8 V → 2.2 V	
Output Fall Time	tFO		6	ns	2.2 V → 0.8 V	

Timing Waveforms (cont)

Loading Circuits

Timing Waveforms (cont)

Command/Control Output Timing

Command Output Timing

Note 1. This measurement point is 0.1V above the float voltage.

Note 2. This measurement point is 0.1V below the high level output voltage. For a low level output, the measurement point is 0.1V above the low level output voltage.

T-52-33-03

Packaging Information

20-Pin Plastic DIP Package (300 mil)

