Přednáška 12, 22. května 2015

Topologické prostory. Podle sylabu se zmíníme o další abstraktní struktuře. Dvojice $T = (X, \mathcal{T})$, kde X je množina a \mathcal{T} systém jejích podmnožin, je topologický prostor, má-li \mathcal{T} tyto vlastnosti: (i) $\emptyset, X \in \mathcal{T}$, (ii) pro každý podsystém $\mathcal{U} \subset \mathcal{T}$ je i $\bigcup \mathcal{U} \in \mathcal{T}$ a (iii) pro každý konečný podsystém $\mathcal{U} \subset \mathcal{T}$ je i $\bigcap \mathcal{U} \in \mathcal{T}$. Množinám v systému \mathcal{T} se říká otevřené množiny topologického prostoru T (jejich doplňky do X pak jsou uzavřené množiny prostoru T). Příkladem topologického prostoru jsou otevřené množiny každého metrického prostoru. Ovšem je spousta topologických prostorů, které nejsou metrizovatelné (tj. nepocházejí z metrického prostoru). Cvičení: vymyslete příklady takových topologických prostorů. Návod: metrizovatelná topologie má vždy tu vlastnost, že pro každé dva různé body a, b máme takové dvě otevřené množiny A, B, že $a \in A, b \in B$ a $A \cap B = \emptyset$.

Spojitá zobrazení. Jsou-li (M,d) a (N,e) dva metrické prostory, je zobrazení

$$f: M \to N$$

spojité, pokud

$$\forall a \in M, \varepsilon > 0 \ \exists \delta > 0 : b \in M, d(a,b) < \delta \Rightarrow e(f(a), f(b)) < \varepsilon$$
.

Ekvivalentně můžeme spojitost definovat v Heineho stylu: f je spojité, právě když pro každou konvergentní posloupnost $(a_n) \subset M$ s limitou $a \in M$ je i $(f(a_n)) \subset N$ konvergentní a má limitu $f(a) \in N$. Jiná ekvivalentní definice spojitosti je následující.

Tvrzení (topologická definice spojitosti). Zobrazení $f: M \to N$ mezi metrickými prostory je spojité, právě když pro každou otevřenou množinu $B \subset N$ je i její vzor $f^{-1}(B) = \{x \in M \mid f(x) \in B\}$ otevřená množina v M.

Kompaktní podmnožinu A v metrickém prostoru jsme si definovali požadavkem, aby každá posloupnost bodů v A měla podposloupnost konvergentní v A (tj. konvergentní podposloupnost s limitou ležící v A). Jiná ekvivalentní definice kompaktnosti je následující.

Tvrzení (topologická definice kompaktnosti). $Množina \ A \subset M \ v \ metrickém prostoru je kompaktní, právě když v každém systému <math>\mathcal{T}$ otevřených

množin v M splňujícím $\bigcup \mathcal{T} \supset A$ existuje konečný podsystém $\mathcal{U} \subset \mathcal{T}$, který stále pokrývá $A: \bigcup \mathcal{U} \supset A$.

Předchozí definice kompaktnosti se vyslovuje takto: každé otevřené pokrytí má konečné podpokrytí.

Tvrzení (spojité zobrazení zachovává kompaktnost). Je-li zobrazení $f: M \to N$ mezi metrickými prostory spojité a M je kompaktní, je obraz $f(M) = \{f(x) \mid x \in M\}$ kompaktní podmnožina N.

 $D\mathring{u}kaz$. Je jednoduchý. Je-li $(b_n) \subset f(M)$ libovolná posloupnost, máme posloupnost $(a_n) \subset M$, že $f(a_n) = b_n$. Protože M je kompaktní, (a_n) má konvergentní podposloupnost (a_{k_n}) s limitou $a \in M$. Protože f je spojité zobrazení,

$$\lim_{n \to \infty} b_{k_n} = \lim_{n \to \infty} f(a_{k_n}) = f\left(\lim_{n \to \infty} a_{k_n}\right) = f(a) .$$

Takže (b_{k_n}) je konvergentní podposloupnost posloupnosti (b_n) s limitou $f(a) \in f(M)$. Tedy f(M) je kompaktní.

Tvrzení (kompaktnost \Rightarrow uzavřenost a omezenost). Každá kompaktní množina v metrickém prostoru je uzavřená a omezená.

 $D\mathring{u}kaz$. Nechť $A \subset M$ je podmnožina v metrickém prostoru (M,d). Když A není uzavřená, existuje konvergentní posloupnost $(a_n) \subset A$, jejíž limita a leží mimo A. Každá podposloupnost (a_n) je zřejmě též konvergentní a má tutéž limitu a. To ale znamená, že žádná podposloupnost (a_n) není konvergentní v rámci A (limita je určena jednoznačně) a A není kompaktní. Když A není omezená, není obsažena v žádné kouli B(a,r) a snadno sestrojíme posloupnost $(a_n) \subset A$ s vlastností, že $d(a_m,a_n) \geq 1$ pro každé dva indexy $1 \leq m < n$. Tato vlastnost popírá konvergenci posloupnosti (proč?) a má ji i každá podposloupnost (a_n) , takže (a_n) nemá žádnou konvergentní podposloupnost. A opět není kompaktní.

Posloupnost $(a_n) \subset A$ s uvedenou vlastností setrojíme indukcí. První bod $a_1 \in A$ vezmeme libovolně. Nechť už máme body a_1, a_2, \ldots, a_r z A, z nichž každé dva mají vzdálenost alespoň 1. Pak vezmeme libovolnou kouli B(a,r), která obsahuje všechny tyto body (každá konečná množina je omezená) a uvážíme kouli B(a,r+1). Protože A není omezená, existuje bod $a_{r+1} \in A$, který není v B(a,r+1). Podle trojúhelníkové nerovnosti je $d(a_{r+1},x) \geq 1$ pro každý bod $x \in B(a,r)$ (proč?). Tedy a_{r+1} má od každého bodu a_1,a_2,\ldots,a_r vzdálenost alespoň 1 a a_1,a_2,\ldots,a_r můžeme prodloužit na $a_1,a_2,\ldots,a_r,a_{r+1}$.

Takto definovaná posloupnost $a_r, r = 1, 2, ...,$ má tedy požadovanou vlastnost.

Asi nejjednodušší příklad ukazující, ze opačná implikace obecně neplatí je tento. Nechť (M,d) je triviální metrický prostor, kde d(x,y)=1 pro $x \neq y$ a d(x,x)=0 (ověřte, že jde o metrický prostor), a množina M je nekonečná. Pak každá posloupnost $(a_n) \subset M$, kde a_n jsou vzájemně různé body (pro existenci takové posloupnosti potřebujeme nekonečnost M), splňuje, že $d(a_m,a_n) \geq 1$ pro každé dva indexy $1 \leq m < n$. Jak víme, taková posloupnost nemá žádnou konvergentní podposloupnost a proto M není kompaktní množina. Ovšem M je uzavřená množina (je to celý prostor) a je i omezená, protože patrně $M \subset B(a,2)$ pro každý bod $a \in M$.

Jak už jsme se na dřívější přednášce zmínili, <mark>opačná implikace platí proeukleidovské prostory.</mark>

Věta (uzavřenost a omezenost \Rightarrow kompaktnost v \mathbb{R}^k). Každá uzavřená a omezená množina v eukleidovském prostoru \mathbb{R}^k je kompaktní.

 $D\mathring{u}kaz$. Nechť $A \subset \mathbb{R}^k$ je uzavřená a omezená podmnožina eukleidovského prostoru. Díky omezenosti A pro dostatečně velké a>0 máme $A\subset [-a,a]^k$ (A je obsažena v dostatečně velké k-rozměrné krychli se středem v počátku). Souřadnice bodů $x\in\mathbb{R}^k$ označíme jako $x=(x(1),x(2),\ldots,x(k))$. Nechť $(a_n)\subset A$ je libovolná posloupnost. Podle věty ze $\overline{\mathbf{ZS}}$ má (a_n) podposloupnost (b_n) , která konverguje v prvních souřadnicích (tyto souřadnice leží v kompaktním intervalu [-a,a]). Z posloupnosti (b_n) vybereme podposloupnost (c_n) , která konverguje v druhých souřadnicích, a tak dál. Po k takových výběrech dostaneme posloupnost řekněme (d_n) , jež je podposloupností posloupnosti (a_n) a konverguje v každé z k souřadnic:

$$\lim_{n \to \infty} d_n(j) = e(j) \in \mathbb{R}, \ j = 1, 2, \dots, k.$$

Lehce se vidí, že pak i $\lim_{n\to\infty} d_n = e = (e(1), e(2), \dots, e(k)) \in \mathbb{R}^k$. (To plyne třeba z nerovnosti $\|e - d_n\| \leq \sum_{j=1}^k |e(j) - d_n(j)|$.) Protože A je uzavřená množina, $e \in A$ a (d_n) je podposloupnost (b_n) , která konverguje v A. Takže A je kompaktní.

Věta (spojitá funkce nabývá na kompaktu extrém). Nechť $f: M \to \mathbb{R}$ je spojitá funkce z metrického prostoru (M,d) do eukleidovského prostoru \mathbb{R}^1 a M je kompaktní. Pak f nabývá na M minimum i maximum.

 $D\mathring{u}kaz$. Podle jednoho z předchozích tvrzení je obraz f(M) kompaktní podmnožina v \mathbb{R} . Tedy (podle dalšího z předchozích tvrzení) je $f(M) \subset \mathbb{R}$ uzavřená a omezená množina. Protože f(M) je neprázdná a shora omezená, existuje supremum $h = \sup(f(M)) \in \mathbb{R}$. Podle aproximační vlastnosti suprema je h limitou bodů z množiny f(M). Díky uzavřenosti f(M) je $h \in f(M)$ a vlastně $h = \max(f(M))$. Takže f nabývá na M maximum. Pro mimimum argumentujeme stejně pomocí infima.

Přednášku zakončíme aplikací tohoto výsledku v důkazu tzv. Základní věty algebry, že každý nekonstantní komplexní polynom má kořen. Důkaz sám jsem z časových důvodů na přednášce neuvedl. Pro jeho zajímavost a kvůli důležitost celého výsledku ho uvádím zde. Komplexní rovina $\mathbb C$ se v něm bere jako eukleidovský metrický prostor $\mathbb R^2$ s obvyklou vzdáleností.

Věta (Základní věta algebry). Pro každý komplexní polynom $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ stupně alespoň 1 (takže $a_j \in \mathbb{C}$, $a_n \neq 0$ a $n \geq 1$) existuje komplexní číslo $\alpha \in \mathbb{C}$, že $p(\alpha) = 0$.

 $D\mathring{u}kaz$. Nechť $a\in\mathbb{C}$ s $a\neq 0$ a $k\in\mathbb{N}$. Připomeneme si chování komplexní funkce $z\mapsto az^k$.

• Když z probíhá v komplexní rovině \mathbb{C} kružnici $K = \{z \mid |z| = r > 0\}$, pak az^k probíhá kružnici $L = \{z \mid |z| = |a|r^k > 0\}$, přičemž jednomu proběhnutí K odpovídá k proběhnutí L; speciálně má každý bod v L v této funkci přesně k vzorů v K.

To plyne z goniometrického tvaru nenulového komplexního čísla: $K\ni z=r\exp(\varphi i)=r(\cos\varphi+i\sin\varphi)$, kde r=|z|>0 je modul čísla z a úhel $\varphi\in[0,2\pi)$ je jeho argument. Odtud máme následující fakt, klíčový pro důkaz:

• Když $\alpha \in \mathbb{C}$ a $|p(\alpha)| > 0$, pak existuje číslo $\beta \in \mathbb{C}$, že $|p(\beta)| < |p(\alpha)|$.

Dokažme to. Nechť $|p(\alpha)| > 0$. Můžeme předpokládat, že $\alpha = 0$. (Jinak substitucí $w = z - \alpha$ přejdeme k polynomu $q(w) = p(z) = p(w + \alpha)$, který má stejný stupeň jako p(z) a splňuje $q(0) = p(\alpha)$.) Napíšeme p(z) od nejnižších mocnin a rozdělíme ho na tři sčítance:

$$p(z) = a_0 + p_1(z) + p_2(z) := a_0 + az^k + \sum_{j=k+1}^n a_j z^j$$
,

kde obě čísla $a_0, a = a_k \in \mathbb{C}$ jsou nenulová, $k \in \mathbb{N}$ a $a_j \in \mathbb{C}$ jsou zbylé koeficienty p(z). Lehce se vidí, že

$$|z| = r \to 0^+ \Rightarrow \frac{|p_1(z)|}{|a_0|} \to 0 \text{ i } \frac{|p_2(z)|}{|p_1(z)|} \to 0$$

Pro dostatečně malé r > 0 tedy každé číslo $z \in \mathbb{C}$ se |z| = r splňuje, že $0 < |p_1(z)| < |a_0|$ a $|p_2(z)| < \frac{1}{2}|p_1(z)|$. Podle hořejšího připomenutí lze navíc mezi takovými z zvolit $z = \beta$ tak, že argumenty čísel $p_1(\beta) = a\beta^k$ a a_0 se liší přesně o π (tj. $p_1(\beta)$ jako vektor směřuje na opačnou stranu než vektor a_0). Pak ale $|a_0 + p_1(\beta)| = |a_0| - |p_1(\beta)|$. Takže

$$|p(\beta)| = |a_0 + p_1(\beta) + p_2(\beta)|$$

$$\leq |a_0 + p_1(\beta)| + |p_2(\beta)|$$

$$= |a_0| - |p_1(\beta)| + |p_2(\beta)|$$

$$< |a_0| - |p_1(\beta)|/2 < |a_0|$$

$$= |p(0)| = |p(\alpha)|$$

a $|p(\beta)| < |p(\alpha)|$.

Teď už jen stačí dokázat, že funkce

$$f: \mathbb{C} \to \mathbb{R}, \ f(z) = |p(z)|$$

nabývá v nějakém bodě $\alpha \in \mathbb{C}$ na \mathbb{C} minimum. Pak $|p(\alpha)| > 0$ nemůže nastat kvůli právě dokázanému faktu, tedy $|p(\alpha)| = 0$, $p(\alpha) = 0$ a jsme hotovi. Funkce f(z) je na \mathbb{C} spojitá, ale \mathbb{C} není kompaktní množina a musíme jít oklikou. Každý uzavřený kruh $K_R = \{z \in \mathbb{C} \mid |z| \leq R\}$ kompaktní je. Napíšeme p(z) od nejvyšších mocnin a rozdělíme ho na dva sčítance:

$$p(z) = z^n(a_n + q(z)) := z^n(a_n + \sum_{j=0}^{n-1} a_j z^{j-n}),$$

kde, jak víme, číslo $a_n \in \mathbb{C}$ je nenulové. Lehce se vidí, že

$$|z| = R \to +\infty \Rightarrow |q(z)| \to 0$$
.

Existuje tedy R > 0, že pro každé $z \in \mathbb{C}$ se |z| > R je

$$f(z) = |p(z)| = |z|^n |a_0 + q(z)| > R^n(|a_0| - |q(z)|) > R^n(|a_0|/2) > |p(0)|$$
.

Na kompaktní množině K_R nabývá f(z) v nějakém bodě $\alpha \in K_R$ minimum s hodnotou $f(\alpha) = |p(\alpha)| \le |p(0)|$, neboť $0 \in K_R$. Protože $f(z) = |p(z)| > |p(0)| \ge |p(\alpha)| = f(\alpha)$ pro každý bod z mimo K_R , nabývá f(z) v α minimum na celém \mathbb{C} . Tím je důkaz dokončen.