CS-E4340 Cryptography: Exercise Sheet 6

—Public-key Encryption & Signature Schemes—

Submission deadline: October 31, 2022, 11:30, via MyCourses

Each exercise can give up to two participation points, 2 for a mostly correct solution and 1 point for a good attempt. Overall, the exercise sheet gives at most 4 participation points. We encourage to **choose** exercises which seem **interesting** and/or adequately challenging to you.

Exercise Sheet 6 is intended to help...

- (a) ...understand the definition of IND-CPA security of public-key encryption (Ex. 1 & Ex.2).
- (b) ...understand the *definition* of UNF-CMA security for digital signature schemes (Ex. 3 & Ex. 4).
- (c) ...familiarize yourself with textbook RSA and its limitations (Ex. 2 & Ex.3).
- (d) ...reflect on the relation between signature schemes and public-key encryption (Ex. 3).
- (e) ...reflect on the relation between signature schemes and one-way functions (Ex. 4).

Exercise 1 (Deterministic PKE is insecure). On Ex. Sheet 5, we showed that symmetric-key encryption is not IND-CPA-secure and described an attack using two ENC queries. Let pke_{weak} be a correct PKE where pke_{weak} . enc is deterministic.

Task: Describe a PPT adversary \mathcal{A} in pseudocode which breaks the IND-CPA security of pke_{weak} and only makes a GETPK and a a single ENC query. Analyze the success probability of your adversary and show that it is non-negligible.

Remark: pke_{RSA} and s_{RSA} operate on inputs from $\{1,..,N-1\}$, i.e., the message x, the ciphertext c and signature σ are all in $\{1,..,N-1\}$.

$pke_{\mathrm{RSA}}.kgen()$	$pke_{\mathrm{RSA}}.enc(pk,m)$	$pke_{\mathrm{RSA}}.dec(sk,c)$
sample two big random primes p,q	$(e,N) \leftarrow pk$	$(d,N) \leftarrow sk$
$N \leftarrow pq$	$c \leftarrow m^e \mod N$	$m \leftarrow c^d \mod N$
$\lambda \leftarrow \operatorname{lcm}(p-1, q-1)$	$\mathbf{return}\ c$	$\mathbf{return}\ m$
choose $e > 1$ that is coprime with λ		
$d \leftarrow e^{-1} \mod \lambda$		
$sk \leftarrow (d, N); pk \leftarrow (e, N)$		
$\mathbf{return}\ pk$	$s_{\text{RSA}}.sig(sk, m)$	$s_{\mathrm{RSA}}.ver(pk,m,\sigma)$
	$(d,N) \leftarrow sk$	$(e,N) \leftarrow pk$
$s_{\mathrm{RSA}}.kgen()$	$\sigma \leftarrow m^d \mod N$	$m' \leftarrow \sigma^e \mod N$
[same as $pke_{RSA}.kgen$]	return σ	$\mathbf{return}\ m=m'$

Fig. 1: Textbook RSA (insecure)

Exercise 2 (RSA: Public-Key encryption). Fig. 1 describes the RSA encryption scheme pke_{RSA} and RSA signature scheme s_{RSA} as some textbooks, discrete mathematics courses and the RSA Wikipedia article¹ (see Section 3) do. pke_{RSA} and s_{RSA} are thus called $textbook\ RSA$. This

¹ https://en.wikipedia.org/wiki/RSA_(cryptosystem)

exercise explores why textbook RSA should not be used as is in practice and other confusions/misconceptions emerging from textbook RSA in popular literature.

Task 1: Compute $pke_{RSA}.dec(\mathsf{sk},c)$ for ciphertext c=61 and secret-key $\mathsf{sk}=(37,119)$. (The public-key here is $\mathsf{pk}=(13,119)$, but it is used for encryption only, not decryption.)

Task 2: Prove that pke_{RSA} is not IND-CPA-secure by giving a PPT adversary \mathcal{A} against the IND-CPA security of pke_{RSA} in pseudo-code. (You can omit the probability analysis.)

Exercise 3 (RSA: Signing vs. Public-Key encryption). As in the previous exercise, see Fig. 1 for the textbook RSA encryption scheme pke_{RSA} and textbook RSA signature scheme s_{RSA} .

Task 1: Prove that sig_{RSA} is not UNF-CMA-secure by giving a PPT adversary \mathcal{A} against the UNF-CMA security of sig_{RSA} in pseudo-code. (You can omit the probability analysis.)

Task 2: Some sources describe signature schemes as the "opposite" or "inverse" of encryption. The underlying idea is that textbook RSA encryption $pke_{\rm RSA}$. enc encrypts using the public-key, and the textbook RSA signature schemes $s_{\rm RSA}.sig$ signs using the secret-key.

Reflect whether this intuition generalizes. Can every signature scheme be transformed into a public-key encryption scheme? Justify your belief.

Exercise 4 (OWFs \Rightarrow SIG). Show that if f is an injective one-way function, then Lamport's signature scheme s_f is one-time UNF-CMA-secure (1-UNF-CMA) for messages of length λ . See Fig. 2 for s_f and see below for the definition of 1-UNF-CMA.

$s_{\mathrm{f}}.kgen(1^{\lambda})$	$s_f.sig(sk,m)$	$s_f.ver(pk,m,\sigma)$
for $i = 1\lambda$	parse sk as	parse pk as
$x_0^i \leftarrow \$ \{0, 1\}^{\lambda}$ $x_1^i \leftarrow \$ \{0, 1\}^{\lambda}$	$\begin{pmatrix} x_0^1,,x_0^\lambda \\ x_1^1,,x_1^\lambda \end{pmatrix}$	$\begin{pmatrix} y_0^1,,y_0^\lambda \\ y_1^1,,y_1^\lambda \end{pmatrix}$
$y_0^i \leftarrow f(x_0^i)$	for $i = 1\lambda$	$(z^1,,z^{\lambda}) \leftarrow \sigma$
$y_0^i \leftarrow f(x_1^i)$	$z^i \leftarrow x^i_{m[i]}$	for $i = 1\lambda$
$\left(r_0^1 r_0^{\lambda}\right)$	$\mspace{-0.05cm}-0.0$	if $f(z^i) \neq y^i_{m[i]}$:
$sk \leftarrow \begin{pmatrix} x_0^1,, x_0^\lambda \\ x_1^1,, x_1^\lambda \end{pmatrix}$	$\sigma \leftarrow (z^1,,z^{\lambda})$	return 0
$pk \leftarrow \begin{pmatrix} y_0^1,, y_0^\lambda \\ y_1^1,, y_1^\lambda \end{pmatrix}$	return σ	return 1
return (sk,pk)		

Fig. 2: Lamport's one-time signature scheme for messages of length λ .

Public-key encryption scheme $pke:(pk,sk)\leftarrow spke.kgen(1^{\lambda})$ $c\leftarrow spke.enc(pk,x)$ $x\leftarrow spke.dec(sk,c)$

IND-CPA Security: \forall PPT A

$$|\Pr[1 = \mathcal{A} \to \mathtt{Gind-cpa}_{pke}^0]$$

- $\Pr[1 = \mathcal{A} \to \mathtt{Gind-cpa}_{pke}^1]$ is negligible in λ .

 $\begin{aligned} \textbf{Signature scheme s:} & & (\mathsf{pk}, \mathsf{sk}) \leftarrow & ss. kgen(1^\lambda) \\ & & \sigma \leftarrow & ss. sig(\mathsf{sk}, x) \\ & & & 0/1 \leftarrow & ss. ver(\mathsf{pk}, x, \sigma) \end{aligned}$

Correctness: $\forall (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{s} \ s.kgen(1^{\lambda}), \ \forall x \in \{0,1\}^*: \forall \sigma \leftarrow \mathsf{s} \ s.sig(\mathsf{sk}, x), \ s.ver(\mathsf{pk}, x, \sigma) = 1.$

UNF-CMA Security: \forall PPT \mathcal{A}

$$\begin{split} &|\Pr[1=\mathcal{A} \to \mathtt{Gunf-cma_s^0}] \\ &-\Pr[1=\mathcal{A} \to \mathtt{Gunf-cma_s^1}] \text{ is negligible in } \lambda. \end{split}$$

1-UNF-CMA Security for Lamport: \forall PPT \mathcal{A}

 $|\Pr[1 = A \rightarrow 1\text{-Gunf-cma}_s^0] - \Pr[1 = A \rightarrow 1\text{-Gunf-cma}_s^1]|$ is negligible in λ .

Gunf-cma ⁰	Gunf-cma ¹	1-Gunf-cma ⁰	1-Gunf-cma ¹
GETPK() if pk = ⊥:	GE PK() if pk =	GETYK() if pk = ⊥:	GETPK() if pk = ⊥:
$(pk,sk) \gets \!\!\! \$ s. kgen(1^\lambda)$	$(pk,sk) \leftarrow \!\!\!\!\! \$ s. kgen(1^\lambda)$	$(pk,sk) \leftarrow \!\!\!\!\! \$ s. kgen(1^\lambda)$	$(pk,sk) \leftarrow \!\!\!\! \$ s. k gen(1^{\lambda})$
return pk	return pk	return pk	return pk
SIG(x)	SIG(x)	SIG(x)	SIG(x)
		$\mathbf{assert}\sigma = \bot$	$\mathbf{assert}\sigma = \bot$
		$\mathbf{assert} \; x = \lambda$	$\mathbf{assert} x = \lambda$
$\mathbf{if}\;pk=\bot:$	$\mathbf{if} pk = \bot :$	$\mathbf{if} \ pk = \bot :$	if $pk = \bot$:
$(pk,sk) \leftarrow \!$	$(pk,sk) \leftarrow \!\!\!\!\! \$ \; s. kgen(1^\lambda)$	$(pk,sk) \leftarrow \!\!\!\!\! \$ s.kgen(1^\lambda)$	$(pk,sk) \leftarrow \!\!\!\! \$ s. kgen(1^{\lambda})$
$\sigma \leftarrow \!\!\!\! \ast \operatorname{s.sig}(\operatorname{sk},x)$	$\sigma \leftarrow ssig(sk, x)$	$\sigma \leftarrow \!$	$\sigma \leftarrow \!$
	$\mathcal{L} \leftarrow \mathcal{L} \cup \{(x, \sigma)\}$		$\mathcal{L} \leftarrow \mathcal{L} \cup \{(x,\sigma)\}$
$\mathbf{return} \; \sigma$	$\mathbf{return} \; \sigma$	return σ	$\mathbf{return}\ \sigma$
$VERIFY(x,\sigma)$	$VERIFY(x,\sigma)$	$VERIFY(x,\sigma)$	$VERIFY(x,\sigma)$
$\mathbf{if} \; pk = \bot :$	if $(x, \sigma) \in \mathcal{L}$:	if $pk = \bot$:	if $(x, \sigma) \in \mathcal{L}$:
$(pk,sk) \leftarrow \!\!\!\!\!\! \$ s. kgen(1^\lambda)$	return 1	$(pk,sk) \leftarrow \!\!\!\!\! \$ s. kgen(1^\lambda)$	return 1
$d \leftarrow s.ver(pk,x,\sigma)$		$d \leftarrow s.ver(pk,x,\sigma)$	
return d	return 0	return d	return 0

 $\texttt{Gind-cpa}_{pke}^0$

 $\texttt{Gind-cpa}_{pke}^1$

return pk

if $\mathsf{pk} = \bot$:

GETPK()

return pk

if $\mathsf{pk} = \bot$:

GETPK()

if $\mathsf{pk} = \bot$:

 $\mathsf{ENC}(x)$

if $\mathsf{pk} = \bot$:

 $\mathsf{ENC}(x)$

 $c \leftarrow * pke.enc(pk, x')$

return c

return c

 $x' \leftarrow 0^{|x|}$