Sampling vs. Analysis Transitions

Focus on rates leaving A

Flux and crossing probability are identical. Difference: conditional transition probability From\To

$$k_{A\to B} = \Phi_{A_0} P(\lambda_{A_m} | \lambda_{A_0}) P(B | \lambda_{A_m})$$

$$k_{A\to C} = \Phi_{A_0} P(\lambda_{A_m} | \lambda_{A_0}) P(C | \lambda_{A_m})$$

In MSTIS, we sample the transition $A \rightarrow$ anything These are the "sampling transitions."

Sampling vs. Analysis Transitions

Focus on rates leaving *A*

From\To	Α	В	С
Α		K _{A→B}	$K_{A \to C}$

$$k_{A\to B} = \Phi_{A_0} P(\lambda_{A_m} | \lambda_{A_0}) P(B | \lambda_{A_m})$$
$$k_{A\to C} = \Phi_{A_0} P(\lambda_{A_m} | \lambda_{A_0}) P(C | \lambda_{A_m})$$

Flux and crossing probability are identical. Difference: conditional transition probability

In MSTIS, we sample the transition $A\rightarrow$ anything These are the "sampling transitions."

Sampling vs. Analysis Transitions

- "sampling transitions": actually used in the sampling, to minimize the amount of work we need to do.
- "analysis transitions," or just "transitions": contain all the individual reactions of interest, up to N(N-1) for N states.
- TransitionNetwork builds both