## 9.6 An Application of Norms: Solving Inconsistent Linear Systems

The problem of solving an inconsistent linear system Ax = b often arises in practice. This is a system where b does not belong to the column space of A, usually with more equations than variables. Thus, such a system has no solution. Yet we would still like to "solve" such a system, at least approximately.

Such systems often arise when trying to fit some data. For example, we may have a set of 3D data points

$$\{p_1,\ldots,p_n\},$$

and we have reason to believe that these points are nearly coplanar. We would like to find a plane that best fits our data points. Recall that the equation of a plane is

$$\alpha x + \beta y + \gamma z + \delta = 0,$$

with  $(\alpha, \beta, \gamma) \neq (0, 0, 0)$ . Thus, every plane is either not parallel to the x-axis  $(\alpha \neq 0)$  or not parallel to the y-axis  $(\beta \neq 0)$  or not parallel to the z-axis  $(\gamma \neq 0)$ .

Say we have reasons to believe that the plane we are looking for is not parallel to the z-axis. If we are wrong, in the least squares solution, one of the coefficients,  $\alpha, \beta$ , will be very large. If  $\gamma \neq 0$ , then we may assume that our plane is given by an equation of the form

$$z = ax + by + d,$$

and we would like this equation to be satisfied for all the  $p_i$ 's, which leads to a system of n equations in 3 unknowns a, b, d, with  $p_i = (x_i, y_i, z_i)$ ;

$$ax_1 + by_1 + d = z_1$$

$$\vdots \qquad \vdots$$

$$ax_n + by_n + d = z_n.$$

However, if n is larger than 3, such a system generally has no solution. Since the above system can't be solved exactly, we can try to find a solution (a, b, d) that minimizes the least-squares error

$$\sum_{i=1}^{n} (ax_i + by_i + d - z_i)^2.$$

This is what Legendre and Gauss figured out in the early 1800's!

In general, given a linear system

$$Ax = b$$
.

we solve the *least squares problem*: minimize  $||Ax - b||_2^2$ .