21-484 Notes JD Nir jnir@andrew.cmu.edu February 29, 2012

<u>Def:</u> (p. 125): Let G be a graph, u, v are vertices in G.

- \rightarrow a set $S \subseteq V(G)$ is called a <u>u-v</u> separating set if G-S is disconnected and u and v are in different connected components of G-S.
- \rightarrow also: "S separates u and v"
- \rightarrow A minimal (by size) u-v separating set is called a minimal u-v separating set.
- \rightarrow Notice: the size of a u-v separating set is at least $\kappa(G)$.

<u>Def:</u> \rightarrow Let P be a u-v path in G. A vertex of p that is not u or v is called an <u>internal vertex</u> of P.

- \rightarrow A set of u-v paths, P_1, \ldots, P_k is called <u>internally disjoint</u> if there is no communication internal vertex between any two paths of the set.
- \rightarrow Theorem (Thm 5.16, Menger's Theorem)

Let G be a graph, and let u and v be two nonadjacent vertices. Then the size of a minimum separating set equals the number of maximal internally disjoint u-v paths.

<u>Proof:</u> Let G be a graph and let u and v be two nonadjacent vertices.

- \rightarrow Let S be a u-v separating set. Clearly every u-v path must contain a vertex from S.
- \rightarrow therefore, the number of internally disjoint u-v paths is at most |S|.
- \rightarrow Let k be the size of a minimal u-v separating set.

- \rightarrow By induction on the number of edges in G.
 - \rightarrow If G is an empty graph, everything is zero. \checkmark
 - \rightarrow Assume the theorem for all graphs with < m edges.

case 1: If there is a separating set S containing a vertex x adjacent to beoth u and v, let $G' = G - \{x\}.$

- \rightarrow Notice that $S-\{x\}$ is a minimal u-v separating set in G' (Since $G'-(S-\{x\})=G-S$.)
- \rightarrow By the induction hypothesis we have k-1 interally disjoint u-v paths in $G-\{x\}$. Adding the path uxv, we get a set of k internally disjoint u-v paths in G.

case 2: Assume there is a separating set W such that one vertex of W is not a neighbor of u and at least one vertex of W is not a neighbor of v.

- \to Let V_u be the vertex set containing the component containing u in G-W. Let G_u be the graph spanned over $V_u \cup W$, $G_u = G[V_u \cup W]$. (G_u is a connected graph). \to Define G'_u by adding another vertex v' and all the edges of the form $v'w_1, v'w_2, \ldots, v'w_k$.
- $\rightarrow G'_u$ has fewer edges than G because in G u is not adjacent to at least to at least one member of w.
- \rightarrow By the induction hypothesis, there are k internally disjoint u-v' paths P_1, \ldots, P_k , where $w_i \in P_i$.
- \longrightarrow Repeat the process with V_v , G_v , G'_v and u' to get k internally disjoint v-u' paths Q_1, \ldots, Q_k when $w_i \in Q_i$.
- \rightarrow The paths P_i without u' and Q' without v' are k internally disjoint u–v paths.
- \rightarrow Assume that in every minimal u-v separating set all the vertices are adjacent to u or all of them are adjacent to v.

- \rightarrow Let $P = u, x, y, \dots, v$ be a geodesic u-v path.
- \rightarrow Let $G' = G \{e = xy\}.$
- \rightarrow Let Z be a minimal u-v separating set in G'. Assume |Z| < k.
- $\to Z \cup \{x\}$ is a minimal u-v separating set in G, because $G (Z \cup \{x\}) = G' Z$.
- \rightarrow by our assumption, all the members of Z are adjacent to u.
- $\rightarrow Z \{y\}$ is also a minimal separating set in G.
- $\rightarrow y$ is also adjacent to u, but then there is a u-v path shorter than P. 4
- \rightarrow Therefore, |Z| = k, and there are k internally disjoint u-v paths in G'.