8: IIR Filter
 Transformations
Continuous Time
Filters
Bilinear Mapping
Continuous Time
Filters
Mapping Poles and
Zeros
Spectral
Transformations
Constantinides
Transformations
Impulse Invariance
Summary

MATLAB routines

8: IIR Filter Transformations

#### **Continuous Time Filters**

8: IIR Filter
Transformations
Continuous Time
Filters
Bilinear Mapping
Continuous Time
Filters
Mapping Poles and
Zeros
Spectral
Transformations
Constantinides
Transformations
Impulse Invariance
Summary

MATLAB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width There are explicit formulae for pole/zero positions.

Butterworth: 
$$\widetilde{G}^2(\Omega) = \left|\widetilde{H}(j\Omega)\right|^2 = \frac{1}{1+\Omega^{2N}}$$

- Monotonic  $\forall \Omega$
- $\widetilde{G}(\Omega) = 1 \tfrac{1}{2}\Omega^{2N} + \tfrac{3}{8}\Omega^{4N} + \cdots$  "Maximally flat": 2N-1 derivatives are zero

Chebyshev: 
$$\widetilde{G}^2(\Omega) = \frac{1}{1 + \epsilon^2 T_N^2(\Omega)}$$

where polynomial  $T_N(\cos x) = \cos Nx$ 

ullet passband equiripple + very flat at  $\infty$ 

Inverse Chebyshev: 
$$\widetilde{G}^2(\Omega) = \frac{1}{1 + \left(\epsilon^2 T_N^2(\Omega^{-1})\right)^{-1}}$$

• stopband equiripple + very flat at 0

Elliptic: [no nice formula]

Very steep + equiripple in pass and stop bands



Bilinear Mapping Continuous - discrete

Change variable:  $z = \frac{\alpha + s}{\alpha - s}$ a one-to-one invertible mapping

- Continuous Time **Filters Bilinear Mapping** Continuous Time
- Filters Mapping Poles and Zeros

8: IIR Filter

Transformations

Spectral Transformations

Constantinides Transformations

Impulse Invariance

Summary

MATLAB routines

 $\Re$  axis  $(s) \leftrightarrow \Re$  axis (z)

$$\Im \text{ axis } (s) \leftrightarrow \text{Unit circle } (z) \qquad \qquad \Im \cdot \tan \frac{\omega}{\nu} \supset \Omega$$
 
$$\text{Proof: } z = e^{j\omega} \Leftrightarrow s = \alpha \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \alpha \frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}}} = j\alpha \tan \frac{\omega}{2} = j\Omega$$

Left half plane(s)  $\leftrightarrow$  inside of unit circle (z)

Proof: 
$$s = x + jy \Leftrightarrow |z|^2 = \frac{|(\alpha + x) + jy|^2}{|(\alpha - x) - jy|^2}$$
$$= \frac{\alpha^2 + 2\alpha x + x^2 + y^2}{\alpha^2 - 2\alpha x + x^2 + y^2} = 1 + \frac{4\alpha x}{(\alpha - x)^2 + y^2}$$

$$x < 0 \Leftrightarrow |z| < 1$$

Unit circle  $(s) \leftrightarrow \Im$  axis (z)







#### **Continuous Time Filters**

8: IIR Filter Transformations Continuous Time **Filters** Bilinear Mapping Continuous Time Filters Mapping Poles and Zeros Spectral Transformations Constantinides Transformations Impulse Invariance Summary MATLAB routines

## S-7 Z: direct substitution (extra teros at 2:-1)

Take 
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose  $\alpha = 1$ 

Substitute: 
$$s = \alpha \frac{z-1}{z+1}$$
 [extra zeros at  $z = -1$ ]

$$H(z) = \frac{1}{\left(\frac{z-1}{z+1}\right)^2 + 0.2\frac{z-1}{z+1} + 4}$$

$$= \frac{(z+1)^2}{(z-1)^2 + 0.2(z-1)(z+1) + 4(z+1)^2}$$

$$= \frac{z^2 + 2z + 1}{5 \cdot 2z^2 + 6z + 4 \cdot 8} = 0.19 \frac{1 + 2z^{-1} + z^{-2}}{1 + 1 \cdot 15z^{-1} + 0.92z^{-2}}$$

Frequency response is identical (both magnitude and phase) but with a distorted frequency axis:

Frequency mapping: 
$$\omega = 2 \tan^{-1} \frac{\Omega}{\alpha}$$

Choosing 
$$\alpha$$
: Set  $\alpha=\frac{\Omega_0}{\tan\frac{1}{2}\omega_0}$  to map  $\Omega_0\to\omega_0$  Set  $\alpha=2f_s=\frac{2}{T}$  to map low frequencies to themselves





## Mapping Poles and Zeros

8: IIR Filter Transformations Continuous Time **Filters** Bilinear Mapping Continuous Time **Filters** Mapping Poles and Zeros Spectral Transformations Constantinides Transformations Impulse Invariance Summary MATLAB routines

S -> 2: roots mapping (need to odd extra poles or zeros Alternative method:  $\widetilde{H}(s)=\frac{1}{s^2+0.2s+4}$  of 2>-1)

Find the poles and zeros:  $p_s = -0.1 \pm 2j$ Map using  $z = \frac{\alpha + s}{\alpha - s} \Rightarrow p_z = -0.58 \pm 0.77j$ 

After the transformation we will always end up with the same number of poles as zeros:

Add extra poles or zeros at z=-

$$H(z) = g \times \frac{(1+z^{-1})^{2^{2}}}{(1+(0.58-0.77j)z^{-1})(1+(0.58+0.77j)z^{-1})}$$
$$= g \times \frac{1+2z^{-1}+z^{-2}}{1+1.15z^{-1}+0.92z^{-2}} \wedge$$

Choose overall scale factor, g, to give the same gain at any convenient pair of mapped frequencies:

At 
$$\Omega_0 = 0 \Rightarrow s_0 = 0 \Rightarrow \left| \widetilde{H}(s_0) \right| = 0.25$$
  

$$\Rightarrow \omega_0 = 2 \tan^{-1} \frac{\Omega_0}{\alpha} = 0 \Rightarrow z_0 = e^{j\omega_0} = 1$$

$$\Rightarrow |H(z_0)| = g \times \frac{4}{3.08} = 0.25 \Rightarrow g = 0.19$$

$$H(z) = 0.19 \frac{1 + 2z^{-1} + z^{-2}}{1 + 1.15z^{-1} + 0.92z^{-2}}$$









# Spectral Transformations Costo =

$$\frac{1+\tan^{10}\theta}{e^{j\omega}+\lambda} = \frac{(e^{j\omega}+\lambda)(1+\lambda e^{-j\omega})}{(1+\lambda e^{j\omega})(1+\lambda e^{-j\omega})} = \frac{j\omega}{1+\lambda^{2}+2\lambda\cos\omega}$$

8: IIR Filter Transformations Continuous Time Filters Bilinear Mapping Continuous Time Filters Mapping Poles and Zeros

Spectral ▶ Transformations Constantinides Transformations Impulse Invariance Summary

I num (= lden) We can transform the z-plane to change the cutoff

frequency by substituting 
$$z$$
 inside with circle  $z=\frac{\hat{z}-\lambda}{1+\lambda z}\Leftrightarrow \hat{z}=\frac{z+\lambda}{1+\lambda z}$  inside with circle =

Frequency Mapping

If 
$$z=e^{j\omega}$$
, then  $\hat{z}=z\frac{1+\lambda z^{-1}}{1+\lambda z}$  has modulus 1 since the numerator and denominator are complex conjugates.

Hence the unit circle is preserved.

$$\Rightarrow e^{j\hat{\omega}} = \frac{e^{j\omega} + \lambda}{1 + \lambda e^{j\omega}}$$

Some algebra gives: 
$$\tan \frac{\omega}{2} = \left(\frac{1+\lambda}{1-\lambda}\right) \tan \frac{\hat{\omega}}{2}$$

Equivalent to:

$$z \longrightarrow s = \frac{z-1}{z+1} \longrightarrow \hat{s} = \frac{1-\lambda}{1+\lambda}s \longrightarrow \hat{z} = \frac{1+\xi}{1-\hat{s}}$$

Lowpass Filter example: W=== 2=0 100 ===

nverse Chebyshev 
$$\omega_0 = \frac{\pi}{2} = 1.57 \xrightarrow{\lambda=0.6} \hat{\omega}_0 = 0.49$$

$$\hat{\varsigma} = \frac{1-\lambda}{2} = \frac{1-\lambda}{2} = \frac{1-\lambda}{2} = \frac{1-\lambda}{2} = \frac{1-\lambda}{2} = \frac{0.49}{2} = \frac{0$$

$$\begin{array}{l}
(e) = \lambda & (0 \leq \hat{w}) \\
(e) = \sum_{i=1}^{2} (0 \leq \hat{w}) + \lambda^{2} \cos(\hat{w}) + \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{w}) \\
(e) = \sum_{i=1}^{2} (1 + \lambda^{2}) + 2\lambda \cos(\hat{$$





#### **Constantinides Transformations**

Transform any lowpass filter with cutoff frequency  $\omega_0$  to:

| Target                                                            | Substitute                                                                                                                                        | Parameters                                                                                                                                                                                           |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lowpass $\hat{\omega} < \hat{\omega}_1$                           | $z^{-1} = \frac{\hat{z}^{-1} - \lambda}{1 - \lambda \hat{z}^{-1}}$                                                                                | $\lambda = \frac{\sin(\frac{\omega_0 - \hat{\omega}_1}{2})}{\sin(\frac{\omega_0 + \hat{\omega}_1}{2})}$                                                                                              |
| Highpass $\hat{\omega} > \hat{\omega}_1$                          | $z^{-1} = -\frac{\hat{z}^{-1} + \lambda}{1 + \lambda \hat{z}^{-1}}$                                                                               | $\lambda = \frac{\cos(\frac{\omega_0 + \hat{\omega}_1}{2})}{\cos(\frac{\omega_0 - \hat{\omega}_1}{2})}$                                                                                              |
| Bandpass $\hat{\omega}_1 < \hat{\omega} < \hat{\omega}_2$         | $z^{-1} = -\frac{(\rho - 1) - 2\lambda\rho\hat{z}^{-1} + (\rho + 1)\hat{z}^{-2}}{(\rho + 1) - 2\lambda\rho\hat{z}^{-1} + (\rho - 1)\hat{z}^{-2}}$ | $\lambda = \frac{\cos(\frac{\hat{\omega}_2 + \hat{\omega}_1}{2})}{\cos(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})}$ $\rho = \cot(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})\tan(\frac{\omega_0}{2})$ |
| Bandstop $\hat{\omega}_1 \not< \hat{\omega} \not< \hat{\omega}_2$ | $z^{-1} = \frac{(1-\rho)-2\lambda\hat{z}^{-1}+(\rho+1)\hat{z}^{-2}}{(\rho+1)-2\lambda\hat{z}^{-1}+(1-\rho)\hat{z}^{-2}}$                          | $\lambda = \frac{\cos(\frac{\hat{\omega}_2 + \hat{\omega}_1}{2})}{\cos(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})}$ $\rho = \tan(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})\tan(\frac{\omega_0}{2})$ |

Bandpass and bandstop transformations are quadratic and so will double the order:





## Impulse Invariance

8: IIR Filter Transformations Continuous Time **Filters** Bilinear Mapping Continuous Time Filters Mapping Poles and Zeros Spectral Transformations Constantinides Transformations Impulse Invariance Summary MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

Alternative method: 
$$\widetilde{H}(s) \xrightarrow{\mathscr{L}^{-1}} h(t) \xrightarrow{\text{sample}} h[n] = T \times h(nT) \xrightarrow{\mathscr{L}} H(z)$$

Express  $\widetilde{H}(s)$  as a sum of partial fractions  $\widetilde{H}(s) = \sum_{i=1}^{N} \frac{\overline{g_i}}{s - \widetilde{n_i}}$ 

Impulse response is 
$$\tilde{h}(t) = u(t) \times \sum_{i=1}^{N} g_i e^{\tilde{p}_i t}$$

Digital filter  $\frac{H(z)}{T} = \sum_{i=1}^{N} \frac{g_i}{1-e^{\tilde{p}_i T_z-1}}$  has identical impulse response

Poles of H(z) are  $p_i = e^{\tilde{p}_i T}$  (where  $T = \frac{1}{f_c}$  is sampling period) Zeros do not map in a simple way

#### Properties:

- Impulse response correct. 

  No distortion of frequency axis.
- Frequency response is aliased.

Example: Standard telephone filter - 300 to 3400 Hz bandpass







### **Summary**

8: IIR Filter Transformations Continuous Time **Filters** Bilinear Mapping Continuous Time **Filters** Mapping Poles and Zeros Spectral Transformations Constantinides Transformations Impulse Invariance **○** Summarv MATLAB routines

- Classical filters have optimal tradeoffs in continuous time domain
  - $\circ$  Order  $\leftrightarrow$  transition width $\leftrightarrow$  pass ripple $\leftrightarrow$  stop ripple
  - Monotonic passband and/or stopband
- Bilinear mapping
  - Exact preservation of frequency response (mag + phase)
  - non-linear frequency axis distortion
  - $\circ$  can choose  $\alpha$  to map  $\Omega_0 \to \omega_0$  for one specific frequency
- Spectral transformations
  - $\circ$  lowpass  $\rightarrow$  lowpass, highpass, bandpass or bandstop
  - bandpass and bandstop double the filter order
- Impulse Invariance
  - Aliassing distortion of frequency response
  - preserves frequency axis and impulse response

For further details see Mitra: 9.

#### **MATLAB** routines

8: IIR Filter Transformations Continuous Time Filters Bilinear Mapping Continuous Time Filters Mapping Poles and Zeros Spectral Transformations Constantinides Transformations Impulse Invariance Summary MATLAB routines

| bilinear  | Bilinear mapping         |  |
|-----------|--------------------------|--|
| impinvar  | Impulse invariance       |  |
| butter    | Analog or digital        |  |
| butterord | Butterworth filter       |  |
| cheby1    | Analog or digital        |  |
| cheby1ord | Chebyshev filter         |  |
| cheby2    | Analog or digital        |  |
| cheby2ord | Inverse Chebyshev filter |  |
| ellip     | Analog or digital        |  |
| ellipord  | Elliptic filter          |  |