ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

Рабочая тетрадь

Препод	аватель	
	Факультет	
	Студент	
Группа	Вариант	_
	Зачёт	
		2021 -

УДК 621.3.01 (075.8)

ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА: Рабочая тетрадь/

А.В. Кравцов, Л.В. Навроцкая иА.В. — М.: ФГОУ ВПО МГАУ и НПО, 2021.

Рекомендуемая литература

- **1.** 1. Горбунов А.Н. и др. Электротехника. М.: МГАУ, 2005.
- 2. Волынский Б.Л. и др. Электротехника. М.: Энергоатомиздат, 1987.

ЧАСТЬ 1 ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ Семинар 1

Расчёт электрической цепи постоянного тока

1 Для заданной электрической цепи при: E_1 = E_2 =12 B и R_1 = R_2 =1 Oм; R_3 =2 Oм

- рассчитать по законам Кирхгофа все токи в цепи;
- проверить выполнение первого закона Кирхгофа;
- составить баланс мощностей.

Расчёт цепи

(самостоятельно)

2 Для заданной электрической цепи при: E_1 = E_2 =12 B и R_1 = R_2 =1 Oм; R_3 =2 Oм

- рассчитать по законам Кирхгофа все токи в цепи;
- проверить выполнение первого закона Кирхгофа;
- составить баланс мощностей.

Расчёт цепи

САМОСТОЯТЕЛЬНАЯ РАБОТА

Каждый студент выполняет четыре задачи, приводя в работе подробное решение с пояснениями, строит диаграммы и графики.

Номер задания, рисунка и исходные данные выбираются следующим образом. *Номер рисунка соответствует порядковому номеру в алфавите первой буквы фамилии*. Если порядковый номер буквы – более 10, номер рисунка принимается соответствующим последней цифре «А»номера фамилии. «Б» и «В» – соответствуют порядковым номерам в алфавите соответственно первых букв имени и отчества (если порядковые номера первых букв – более десяти, номера принимаются также по последней цифре).

 $Hanpumep, \Phi.И.О.-$ Сергеев Владимир Петрович. С - 19; В - 3; $\Pi -$ 17; следовательно, принимаем A=9; Б = 3; В = 7.

Тогда исходные данные к первой задаче будут:

- номер рисунка с электрической схемой: 1–А, т.е. 1.9;
- значение ЭДСЕ₁: 10 +Б =10+3 =13 В;
- значение ЭДС E_2 : 20 +B = 20 +7 =27 B;
- значение ЭДС E_3 : 40 +A = 40 + 9 = 49 B;
- сопротивление R_1 : 1+Б=1+3= 4 Ом;
- − сопротивление R₂: 2+B=2+7= 9 Ом;
- − сопротивление R₃: 3+A=3 +9=12 Ом;
- сопротивление R_4 : 4 +Б+A = 4+3+9=16 Ом;
- сопротивление R_5 : 5 + Б+В = 5+3+7=15 Ом:
- сопротивление R_6 : 6 +A+B = 6+9+7 = 22 Ом.

При выполнении РГРнеобходимо:

- 1.Соблюдать очередность задач, изложенных в задании.
- 2. Приводить размерность всех величин в системе единиц СИ.
- 3.Записывать конечные результаты вычислений не более чем с двумя знаками после запятой.
- 4.Обеспечить при оформлении графического материала соответствие требованиямЕСКД.
- 5.Привести в конце работы перечень используемой литературы и дату выполнения работы.

Расчетно-графические работы, не подписанные исполнителем, к рецензии-рованию не принимаются.

ЗАДАЧА 1

Выполнить указанные ниже задания для электрической схемы, изображенной на рис.

- 1.1–1.10, по данным таблицы 1.1:
- 1. Начертить электрическую схему и записать исходные данные в соответствии с вариантом.
- 2. Записать систему уравнений по первому и второму законам Кирхгофа, необходимую для определения токов в ветвях системы.

- 3. Определить напряжения в узлах методом узловых напряжений, предварительно упростив схему (если это необходимо преобразовать схему к трем узлам).
- 4. Проверить правильность решения, применив первый закон Кирхгофа.
- 5. Составить уравнение баланса мощности и проверить его.
- 6. Построить в масштабе потенциальную диаграмму для внешнего контура.

Таблица 1.1

№-рис.	<i>E</i> ₁ , B	E_2 , B	E ₃ , B	R 1, О м	R 2, О м	R 3, О м	R 4, О м	R 5, О м	R ₆ ,Ом
1-A	10+Б	20+B	40+A	1 + Б	2 + B	3 + A	4+Б+А	5+Б+В	6+B+A

ЗАДАЧА 2

Выполнить указанные ниже задания для электрической схемы (рис.2.1–2.10) по данным таблицы 2.1.

- 1. Начертить схему и записать исходные данные в соответствии с вариантом.
- 2.Определить действующие значения токов в ветвях цепи и напряжений на отдельных участках.
 - 3. Определить численные значения и знаки углов сдвига фаз токов и напряжений.
 - 4.Записать мгновенные значения токов в ветвях цепи.
- 5.Составить уравнения баланса активной, реактивной и полной мощности и проверить их.

C. MK Φ

L, м Γ н

 $R.O_{M}$

f. Гп

6.Построить векторную диаграмму токов.

E. B

7.Определить показания приборов.

Таблица 2.1.

№рисунка

	торисунка	E, D	/, тц	C, MKY	L, MI H	R,UM
	2 - A	100 +10×Б	50	300 + B	20 +A	4 +A+B
2.1 E	PA R_1		2.2 R ₃ L E	PW .	R_1 R_2 C	R_3 PV L
2.3	C	PW .	2.4 _P	W	R_1	
E	PA		R_2 E		R_2 C	R_3 PV
2.5	R_1			I.		
E	PV	PW R_2 C		2.6 \sqrt{L}	R_1 C PW	

Выполнить указанные ниже задания для трехфазной электрической цепи (рис. 3.1–3.10) по данным таблицы 3.1.

- 1.Определить действующие значения фазных и линейных токов, тока в нейтральном проводе (для четырехпроводной схемы), а также численные значения изнакиих углов, записать мгновенные значения этих токов.
- 2.Определить действующие значения фазных и линейных напряжений, а также численные значения и знаки их углов, значение угла сдвига фаз между напряжением и током каждой фазы, мгновенные значения этих напряжений.
- 4.Определить активную, реактивную и полную мощность всей цепи и каждой фазы отдельно.
 - 7. Построить совмещенную векторную диаграмму напряжений и токов.

Таблица 3.1.

№ рисунка	<i>U</i> л, В	<i>f</i> , Гц	R, Ом	<i>X</i> , Ом
3-A	380	50	20+Б+В	50+A+B

Решение типовых задач

Раздел 1. Линейные электрические цепи постоянного тока.

Задано:
$$E_1$$
=20 B, E_2 =30 B , E_3 =50B, R_1 =5 Ом , R_2 =4 Ом, R_3 =2 Ом, R_4 =6 Ом, R_5 = R_6 =10 Ом.

При составлении уравнений Кирхгофанеобходимо выполнить следующие действия: пронумеровать узлы, выбрать положительные направления токов и напряжений, выбрать систему независимых контуров и положительные направления их обхода.

дляузлов:
$$I_1 - I_4 - I_5 = 0$$
, $I_2 + I_5 - I_6 = 0$

д Руко 1 нт у реку: $\mathbf{p}_{\mathbf{u}}$ ческая $\mathbf{u}_{\mathbf{u}}$ епь \mathbf{u}_{2} – \mathbf{u}_{4} + \mathbf{u}_{5} = – \mathbf{E}_{2} \mathbf{u}_{3} + \mathbf{u}_{2} + \mathbf{u}_{6} = \mathbf{E}_{2} – \mathbf{E}_{3} .

По методу узловых напряжений, обозначая через ϕ_1 и ϕ_2 потенциалы первого и второго узла, получаем следующую систему уравнений:

$$(1/R_1+1/R_4+1/R_5)\varphi_1-(1/R_5)\varphi_2=E_1/R_1$$

$$-(1/R_5)\varphi_1+(1/R_2+1/R_5+1/(R_3+R_6))\varphi_2=E_2/R_2+E_3/(R_3+R_6).$$

Подставляя, числа получаем:

$$0.466 \varphi_1 - 0.1 \varphi_2 = 4$$
, $-0.1 \varphi_1 + 0.433 \varphi_2 = 11.66$ (B).

Решая эту систему, определяем узловые потенциалы:

$$\varphi_1$$
= 15.11(B), φ_2 = 30.43 (B).

Найдем токи по закону Ома:

$$I_1=(E_1-\varphi_1)/R_1=0.978$$
, $I_2=(E_2-\varphi_2)/R_2=-0.1075$ (A),

$$I_3 = I_6 = (\varphi_2 - E_3)/(R_3 + R_6) = -1.63, I_4 = \varphi_1/R_4 = 2.51, I_5 = (\varphi_1 - \varphi_2)/R_5 = -1.532$$
 (A).

Раздел 2. Линейные электрические цепи синусоидального тока.

Задача 2 (рис.2)

Задано: E=100 B, $f=50 \Gamma$ ц, L=30 мГн, R_1 =5 Ом, C=200 мкф, R_2 =2 Ом.

ЈЕ С —— Таходим ком. - сксные фопротивления индуктивности

и ёмкости:
$$\mathbf{Z}_{\mathbb{C}} = \mathbf{1}/\mathbf{j}\boldsymbol{\omega}\mathbf{C} = -j15.9$$
 (Ом); $\mathbf{Z}_{\mathbb{L}} = \mathbf{j}\boldsymbol{\omega}\mathbf{L} = j9.42$ (Ом),

погда эквивал, итное комплексное сопротивление цепи:

Рис. 2. Электрическая цепь синусоидального тока к в цепи равен:
$$\underline{I} = \underline{E}/\underline{Z}_{3KB} = 2.479 - j3.059$$
 (Ом),

о тока пень ок в цепи равен:
$$\underline{I} = \underline{E}/\underline{Z}_{_{3KB}} = 2.479 - j3.059$$
 (A)

$$\underline{U}_{R1} = R_1 \underline{I} = 12.39 - j \ 15.29 \ (B),$$

$$\underline{U}_{C} = E - R_{1}\underline{I} = 87.61 + j \ 15.29 \ (B),$$

$$\underline{I_{\rm C}} = U_{\rm C}/Z_{\rm C} = -0.961 + j.5.51$$
 (A),

$$\underline{I_L} = I_{R2} = I - I_C = 3.436 - \cdot 8.569$$
 (A),

$$\underline{U}_{R2}$$
= R_2I_{R2} = 6.872 – j 17.138 (B),

$$\underline{U_{\rm L}} = U_{\rm C} - U_{\rm R2} = 80.73 + j \cdot 32.42$$
 (B),

Балансмощностей: $E I^* = U_{R1}I_{R1}^* + U_{R2}I_{R2}^* + U_LI_L^* + U_CI_C^*$ (BA),

Подставляя значения, получаем 247.9 + j305.9 = 247.9 + j305.5.

Раздел 3. Трёхфазные цепи.

Задача 3 (рис. 3)

$$R = 20 \text{ Om}, X_{L} = 50 \text{ Om}.$$

По условию задачи дано только линейное напряжение равное 380 В. Но в L этой схеме треугольника линейное напряжение равно фазному и поэтому ${f U}_{f J}$ = **Uф = 380 В.** Фазные напряжения отличаются друг от друга фазами или углами в 120°. Запишем фазные напряжения для каждой фазы в показательном виде:

Дар. 10° (11°) = 380·e^{-j120}° (В); <u>Uac</u>=380·e^{+j120}° (В).

симметричная система Сопротивление одинаково в каждой фазе, определяется оно следующим образом:

$$\mathbf{Z} = \mathbf{R} + \mathbf{j} \mathbf{X}_{\mathbf{L}} = 20 + \mathbf{j} \mathbf{50} = \sqrt{20^2 + 50^2} \cdot e^{j \operatorname{arctg}(XL/R)} = \mathbf{53.85} \cdot e^{j 68.19^{\circ}} \mathrm{OM}$$

Действующее значение тока в каждой фазе определяем по закону Ома:

ток в фазе **ав** определяем:
$$\underline{\textbf{Las}} = \frac{U \, as}{Z} = \frac{380 \cdot e^{j0^{\circ}}}{53.85 \cdot e^{j68.19^{\circ}}} = 7,057 \cdot e^{-j68.19^{\circ}} \, \text{A};$$

ток в фазевс определяем:
$$\underline{\mathbf{I}}$$
вс $=$ $\frac{U\,\text{вс}}{Z} = \frac{380\cdot e^{-j\,120^\circ}}{53,85\cdot e^{j\,68,19^\circ}} = 7,057\cdot e^{-j\,188,19^\circ}\,\text{A};$

ток в фазе*ас*определяем:
$$\underline{\underline{Iac}} = \frac{Uac}{Z} = \frac{380 e^{j120^{\circ}}}{53,85 \cdot e^{j68,19^{\circ}}} = 7,057 \cdot e^{j51,81^{\circ}} A.$$

Линейные токи в треугольнике больше фазных в корень из трёх и отстают от них на угол**30**°т.е.:

$$\underline{\mathbf{I}}_{\boldsymbol{\Pi}} = \sqrt{3} \cdot \underline{\mathbf{I}}_{\boldsymbol{\Phi}} \cdot e^{-j30^{\circ}}$$

$$\underline{I}_{\underline{\Pi}\underline{A}} = \sqrt{3} \cdot \underline{I}_{\underline{a}\underline{e}} \cdot e^{-j30^{\circ}} = \sqrt{3} \cdot 7,057 \cdot e^{-j68,19^{\circ}} \cdot e^{-j30^{\circ}} = 12,209 \cdot e^{-j98,19^{\circ}} \mathbf{A};$$

$$\underline{I}_{\underline{\Pi}\underline{B}} = \sqrt{3} \cdot \underline{I}_{\underline{B}\underline{C}} \cdot e^{-j30^{\circ}} = \sqrt{3} \cdot 7,057 \cdot e^{-j188,19^{\circ}} \cdot e^{-j30^{\circ}} = 12,209 \cdot e^{-j218,19^{\circ}} \mathbf{A};$$

$$\underline{I}_{\underline{\Pi}\underline{C}} = \sqrt{3} \cdot \underline{I}_{\underline{a}\underline{C}} \cdot e^{-j30^{\circ}} = \sqrt{3} \cdot 7,057 \cdot e^{j51,81^{\circ}} \cdot e^{-j30^{\circ}} = 12,209 \cdot e^{-j21,81^{\circ}} \mathbf{A};$$

Действующее значение линейных токов в корень из трех раз больше фазных. Тогда векторная диаграмма будет иметь следующий вид (рис. 4).

Рис. 4. Векторная диаграмма линейных напряжений и фазных токов. Мгновенные значения фазных токов следующие:

$$i_{AB}(t) = \sqrt{2} \cdot 7,057 \sin(\omega t - 68,19^{\circ});$$

 $i_{BC}(t) = \sqrt{2} \cdot 7,057 \sin(\omega t - 188,19^{\circ});$
 $i_{CA}(t) = \sqrt{2} \cdot 7,057 \sin(\omega t + 51,81^{\circ}).$

ЗАДАЧА № 4.

Uф,В	F, Гц	R, Ом	Х, Ом
380	50	29	58

На схеме дано соединение «треугольник»

Uф $\Delta = U$ лY,

Найдем полное сопротивление каждой ветви:

$$\mathbf{Z} = \mathbf{R} + \mathbf{j} \mathbf{X}_{\mathbf{L}} = \mathbf{29} + \mathbf{j} \mathbf{58} = \sqrt{29^2 + 58^2} e^{j \operatorname{arctg}(XL/R)}$$

В комплексном виде фазные напряжения звезды:

$$\underline{\mathbf{U}}_{\Phi YA} = 380 \, e^{j \, 0^{\circ}} \, \mathbf{B}, \quad \underline{\mathbf{U}}_{\Phi YB} = 380 \, e^{-j \, 120^{\circ}} \mathbf{B}, \quad \underline{\mathbf{U}}_{\Phi YC} = 380 \, e^{j \, 120^{\circ}} \mathbf{B}$$

Линейное напряжение звезды в $\sqrt{3}$ больше фазного и опережает его на угол 30° , т.е.

Uлуав=
$$\sqrt{3}$$
 • Uфуае^{j30°}=1,73•380• е^{j30°}= 660• е^{j30°}В;

Uлувс=
$$\sqrt{3} \bullet \underline{U} \underline{\varphi} \underline{Y} \underline{B} e^{j30^{\circ}} = 1,73 \bullet 380 \ e^{-j120^{\circ}} \bullet e^{j30^{\circ}} = 660 \bullet e^{-j90^{\circ}} \underline{B};$$

$$U_{JYAC} = \sqrt{3} \cdot U_{dYC} e^{j30^{\circ}} = 1.73 \cdot 380 \cdot e^{j120^{\circ}} e^{j30^{\circ}} = 660 \cdot e^{j150^{\circ}}$$

Находим фазные токи. Углы между токами при симметричном режиме равны 120°

$$I_{\Phi} Y_A = U_{\Phi} \underline{Y}_A \ / \ Z_A = 660 \cdot e^{j30^{\circ}} \ / 64,8 e^{j63,435^{\circ}} = 10.2 \ e^{-j33.435^{\circ}} A$$

$$I_{\Phi} Y_{\rm B} = U_{\Phi} \underline{Y}_{\rm B} \ / \ Z_{\rm B} = 660 \cdot e^{-\rm j90^{\circ}} / 64,8 \ e^{\rm j63,435^{\circ}} = 10.2 \ e^{\rm -j153,435^{\circ}} A$$

$$I_{\Phi} Y_{C} = U_{\Phi} \Phi \underline{Y}_{C} / Z_{C} = 660 \cdot e^{j150^{\circ}} / 64,8 e^{j63,435^{\circ}} = 10.2 e^{j85.565^{\circ}} A$$

При <u>симметричном</u> режиме<u>линейные</u> токи «треугольника» в $\sqrt{3}$ <u>больше фазных</u> и отстают от них на угол 30° , т.е. I_{Φ} Y= \underline{I}_{Π} Y= $\sqrt{3} \cdot \underline{I}_{\Phi \Delta} \cdot e^{-j30^{\circ}}$

$$I_{II}Y_{A} = \sqrt{3} \cdot I_{dA} \cdot ABe^{-j30^{\circ}} = 1,73 \cdot 10.2 \ e^{-j33.435^{\circ}} \cdot e^{-j30^{\circ}} = 17.646 \cdot e^{-j63.435^{\circ}}$$

$$I_{II}Y_{B} = \sqrt{3} \cdot I_{\phi \Delta} B c e^{-j30^{\circ}} = 1,73 \cdot 10.2 e^{-j153.435^{\circ}} \cdot e^{-j30^{\circ}} = 17.646 \cdot e^{-j183.435^{\circ}}$$

$$I_{\pi}Y_{C} = \sqrt{3} \cdot I_{\phi \Lambda} ace^{-j30^{\circ}} = 1.73 \cdot 10.2 e^{j85.565^{\circ}} \cdot e^{-j30^{\circ}} = 17.646 \cdot e^{j55.565^{\circ}}$$

Определим мгновенные значения токов и напряжений, зная численные значения углов

сдвига:

$$i_A(t) = I_A \cdot \sin(wt - 33,435^0)$$
;

$$i_B$$
 (t)= $I_B \cdot \sin(wt-153,435^0)$;

$$i_C(t) = I_C \cdot \sin(wt + 85,565^0)$$
;

$$u_{\phi A}(t) = U_{\Phi A} \cdot \sin(wt + 0^0);$$

$$u_{\Phi B}(t) = U_{\Phi B} \cdot \sin(wt - 120^{\circ});$$

$$u_{\Phi C}(t) = U_{\Phi C} \cdot \sin(wt + 120^{\circ}).$$

Задача 1

Выполнить указанные ниже задания для электрической схемы, изображенной на рисунке 1, по данным таблицы 1:

Начертить электрическую схему и записать исходные данные в соответствии с вариантом.

Записать систему уравнений по первому и второму законам **Кирхгофа**, необходимую для определения токов в ветвях системы.

Определить токи в ветвях методом контурных токов, предварительно упростив (если это необходимо) схему.

Проверить правильность решения, используя первый закон Кирхгофа.

Составить уравнение баланса мощности и проверить его.

Построить в масштабе потенциальную диаграмму для внешнего контура.

Таблица 1 — Исходные данные Π РИМЕР: A = 1, B = 2, B = 3.

E_1 , B	E_2 , B	<i>E</i> ₃ , B	<i>R</i> ₁ , Ом	<i>R</i> ₂ , Ом	<i>R</i> ₃ , Ом	<i>R</i> ₆ , Ом
10+Б=12	20+B=23	40+A=41	1+Б=3	2+B=5	3+A=4	6+B+A=10

- 1.Произвольно выбираем направление токов в ветвях. Ветвь-часть цепи от узла до узла и по ветви всегда протекает один и тот же ток. (Токи красим красим цветом).
 - 2.Произвольно выбираем обходы контуров.
- 3.Если направление тока и обхода контура в ветви совпадают, то падение напряжения $(U_R=I\cdot R,\,B)$ на сопротивлениях ветви берём со знаком +.
- 4.Если направление Э.Д.С.(Е-источник напряжения, В) и направление тока в ветви совпадают, то Э.Д.С. в уравнении 2 закона Кирхгофа берётся со знаком +.

Рисунок 2 — Схема электрической цепи

- 5.По первому закону Кирхгофа составляем количество уравнений **равное числу узлов минус единица**.
- 6.По второму закону Кирхгофа составляем количество уравнений равное числу независимых контуров.

Решение:

уравнений, необходимую **1.**Составим систему определения токов в цепи по законам Кирхгофа.Схема электрической цепи, изображенная на рис. 1, содержит 2 узла и 3 ветви. Для определения токов в ветвяхисходной цепи по законам Kирхгофанеобходимо составить:n-1=1 уравнение по первомузакону, где n – количество узлов в цепи; m=2где уравнения по второму закону, Выбираем на независимых контуров. положительные направления токов в ветвях (см. рис. 2). Составим уравнения по первому закону Кирхгофа для узла a; по второму закону Кирхгофа – для контуров *I,II*. Направление

обхода контуров показано на рисунке 2.
$$\begin{cases} I_1 + I_2 + I_3 = 0 \\ I_1 | R_1 + R_6 | -I_2 R_3 = E_1 - E_2 \\ -I_2 R_3 + I_3 R_2 = -E_2 + E_3 \end{cases}$$

Решаем эту систему уравнений методом подстановки или составляем матрицу и используем калькулятор. Если используем метод подстановки, то выражаем из первого уравнения ток I_1 через ток I_2 и ток I_3 через ток I_2 из третьего уравнения и оба выраженных тока подставить в уравнение 1, решив его относительно одного неизвестного тока I_2 . Затем вычислить и выраженные через I_2 токи I_1 и I_3 .

Или составить матрицу, т.е. записать в каждом уравнении токи по возрастающей: на первое место поставить первый токI_1 , на второе токI_2 и на третье место поставить третий токI_3 , затем знак равенства и всё остальное после него. Если в уравнении нет какого либа тока, то на его место ставим 0 (нуль):

$$I_1 + I_2 + I_3 = 0$$

 $I_1 (R_1 + R_6) - I_2 R_3 0 = E_1 - E_2$
 $0 - I_2 \cdot R_3 + I_3 \cdot R_2 = -E_2 + E_3$.

Теперь записываем матрицу множителей при токах, оставляем неизменнымиЭ.Д.С. после знака равенства:

$$\begin{array}{rcl}
1 & 1 & 1 & = 0 \\
(R_1 + R_6) & -R_3 & 0 & = E_1 - E_2 \\
0 - R_3 & R_2 & = -E_2 + E_3.
\end{array}$$

Подставляем значения сопротивлений и Э.Д.С. в матрицу, получим:

$$1\ 1\ 1=0$$
 $(R_1+R_6)-R_30=E_1-E_2$ Выбираем калькулятор: $0-R_3R_2=-E_2+E_3$.

Щелкаем по нему дважды, и он открываеся: мышкой щелкаем по надписи: система уравнений и появляются ячейки. Поскольку у нас с вами три уравнения, то нажимаем на цифру 3 выше ячеек. Появляются три ряда ячеек, в которые нужно забить ваши три ряда цифр матрицы:

Выберите режим работы калыкулятора Помощь 2 Помощь 2

 $\begin{array}{cccc}
1 & 1 & 1 = 0 \\
13 & -4 & 0 = -11 \\
0 & -45 = 18
\end{array}$

Нажать кнопку расчитать и в верхней

строчке результатов получаем токи: цифры до знака +**j**0.

Получаем токи: $I_1 = -1,248 \text{ AI}_2, = -1,307 \text{A}$ $I_3 = 2,555 \text{ A}$.

Если в процессе решения задачи ток получился со знаком минус, то это значит, что направление его было выбрано не верно и его нужно изменить на противоположное перечеркнув прежнее направление одной чертой и поставить новое противоположное направление тока, а значение тока взять со знаком плюс (+).

2. Определим токи в ветвях, пользуясь методомконтурных токов.

Выбираем направление контурных токов в соответствии с ранее выбранным направлением обхода контуров (см. рис. 2).

Для рассматриваемой двухконтурной цепи система уравнений относительно контурных токов, примет вид:

$$\begin{cases} I_{11}R_{11} + I_{22}R_{12} = E_{11}, \\ I_{11}R_{21} + I_{22}R_{22} = E_{22}, \end{cases}$$

Рассчитаем значения коэффициентов системы:

– собственные сопротивления контуров:

$$R_{11} = R_1 + R_3 + R_6 = 17 \text{ Om}; R_{22} = R_2 + R_3 + = 90 \text{M}$$

-сопротивления на общей ветви:

$$R_{12} = R_{21} = R_3 = 4_{OM}$$

– контурные ЭДС:

$$E_{11} = E_1 - E_2 = -11 \text{ B}; E_{22} = -E_2 + E_3 = 18 \text{ B}.$$

После подстановки численных значений коэффициентов и необходимых преобразований система уравнений примет вид:

$$\begin{cases} 17 \cdot I_{11} + 4 \cdot I_{22} = -11 \\ 4 \cdot I_{11} + 9 \cdot I_{22} = 18 \end{cases}$$

 $\begin{cases} 17 \cdot I_{11} + 4 \cdot I_{22} = -11 \\ 4 \cdot I_{11} + 9 \cdot I_{22} = 18 \end{cases}$ В результате расчёта системы уравнений с использованием калькулятора получим:

$$I_{11}$$
=-1,248 A; I_{22} =2,555 A.

Поскольку в одной ветви протекает только один ток, то контурный ток I_{11} = равен току ветви I_1 =-1,248 A;а контурный ток I_{22} равен току ветви $I_3 = 2,555$ А.

Ток в смежной ветви равен сумме токов, если они по этой ветви текут в одну сторону и разности этих токов, если они по этой ветви текут в разные стороны, причём из большего тока всегда вычитают меньший. В данном случае если не изменять направление тока со знаком минус, токи будут течь в одну

сторону по общей смежной ветви и поэтому ток в этой ветви будет равен сумме контурных токов: $I_2 = I_{11} + I_{22} = 2,555 - 1,248 = 1,307$ A.

В результате расчётов токи в обоих случаях получились одинаковыми.

3. Проверим правильность решения, использовав первый закон Кирхгофа.

Подставим полученные значения токов в уравнение, составленное по первому закону Кирхгофа: $^{I_1+I_2+I_3=0}$, токи, входящие в узел всегда берём со знаком +, а токи, выходящие из узла со знаком —и получим равенство: -1,248 - 1,307 + 2,555 = 0.

Равенство соблюдаются, следовательно, токи определены, верно.

4. Составим баланс мощностей для исходной электрической цепи.

$$\sum_{i} E_{i} I_{i} = \sum_{i} I_{i^{2}} R_{i}$$

Мощность источника напряжения, т.е. Э.Д.С. (Рист.= E·I) берём со знаком плюс (+), если направление Э.Д.С. (E) и направление тока (I) в ветви совпадают, и минус, если не совпадают.

$$-\mathbf{E}_{1} \cdot \mathbf{I}_{1} - \mathbf{E}_{2} \cdot \mathbf{I}_{2} + \mathbf{E}_{3} \cdot \mathbf{I}_{3} = I_{1}^{2} \cdot (\mathbf{R}_{1} + \mathbf{R}_{6}) + I_{2}^{2} \cdot \mathbf{R}_{3} + I_{3}^{2} \cdot \mathbf{R}_{2}$$

$$-12\cdot1,248 - 23\cdot1,307 + 41\cdot2,555 = 1,248^2\cdot13 + 2,555^2\cdot5 + 1,307^2\cdot4$$

 $-14,976 - 30,061 + 104,755 = 20,248 + 32,64 + 6,833 59,718 \text{ Bt} \approx 59,721 \text{Bt},$

баланс мощностей соблюдается, следовательно, задача решена правильно.

5. Построим в масштабе потенциальную диаграмму для внешнего контура.

Изобразим схему внешнего контура цепи и обозначим на ней дополнительные точки (см.

рис. 3).

Рисунок 3 – Схема внешнего контура электрической цепи

Принимаем. ϕ_a =**0**/

При расчёте потенциалов контура применяется исключение из правила:

Еслитокиобходконтурасовпадают,

топадениенапряжниянасопротивлении(U_R = $I\cdot R$) берётсясознакомминус (–).

Определим потенциалы точек внешнего контура цепи:

$$\varphi_d = \varphi_a + I_3 \cdot R_2 = 0 + 2,555 \cdot 5 = 12,775 \text{ B},$$
 $\varphi_b = \varphi_d - E_3 = 12,775 - 41 = -28,225 \text{ B},$
 $\varphi_f = \varphi_b + I_1 \cdot R_6 = -28,225 + 1,248 \cdot 10 = -15,745 \text{ B},$
 $\varphi_c = \varphi_f + E_1 = -15,745 + 12 = -3,745 \text{ B},$
 $\varphi_a = \varphi_c - I_1 \cdot R_1 = -3,745 + 1,248 \cdot 3 = 3,744 \approx 0.$

Потенциальная диаграмма по внешнему контуру цепи изображена на рис.4.

Рисунок 4 – Потенциальная диаграмма внешнего контура цепи

Задача 2

Выполнить указанные ниже задания для электрической схемы (рис. 5) по данным таблицы 2.

Начертить схему и записать исходные данные в соответствии с вариантом.

Определить действующие значения токов в ветвях цепи и напряжений на отдельных участках.

Определить численные значения и знаки углов сдвига фаз токов и напряжений.

Записать мгновенные значения токов в ветвях цепи.

Составить уравнения баланса активной, реактивной и полной мощности и проверить их.

Построить векторную диаграмму токов.

Определить показания приборов.

Таблица 2 – Исходные данные

E,B	100 +10×Б 50		L , м Γ н	<i>R</i> , Ом
100 +10×Б	100 +10×Б 50		20 +A	4 +A+B
100	50	303	21	8

$$A = 1, B = 0, B = 3.$$

Рисунок 5 – Схема электрической цепи

Решение:

1.Составим схему замещения исходной цепи, обозначим токи в ветвях (см. рис. 6).

Определим сопротивления реактивных элементов:

$$X_L = 2\pi f L = 2.3, 14.50.21 \times 10^{-3} = 6,597_{\text{OM}}$$

$$X_C = \frac{1}{2\pi fC} = \frac{1}{2 \cdot 3,14 \cdot 50 \cdot 303 \times 10^{-6}} = 10,505_{\text{Om.}}$$

Рисунок 6 – Схема замещения

Определим сопротивления ветвей цепи:

электрической цепи

$$\underline{Z}_1 = R_1 - jX_C = 8 - j10,505 = 13,205 e^{-j52,7^{\circ}}$$
 Om

$$\underline{Z}_2 = R_2 = 8_{OM}$$

$$\underline{Z}_3 = R_3 + jX_L = 8 + j6,597 = 10,369 e^{j39,5^{\circ}}$$
 Om.

2. Определим действующие значения токов в ветвях цепи.

Так как цепь имеет один источник, расчет токов целесообразно проводить методом преобразований.

Определим общее сопротивление параллельно соединенных ${\color{red}Z_2}$ и ${\color{red}Z_3}$:

$$\underline{Z}_{23} = \frac{\underline{Z}_2 \underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3} = \frac{8 \cdot 10,369 e^{j39,5^{\circ}}}{8 + 8 + j6,597} = 4,793 e^{j17,1^{\circ}} = 4,581 + j1,41$$
Om.

Общее сопротивление цепи относительно зажимов источника определим как общее сопротивление последовательно соединенных \mathbf{Z}_1 и \mathbf{Z}_{23} :

$$\underline{Z}_{3KB} = \underline{Z}_1 + \underline{Z}_{23} = 8 - j10,505 + 4,581 + j1,41 = 12,581 - j9,096 = 15,525 e^{-j35,9}$$

Определим по закону Ома ток $\overset{\circ}{I}_1$:

$$I_{1} = \frac{E}{Z_{3KB}} = \frac{100}{15,525 e^{-j35,9^{\circ}}} = 6,441 e^{j35,9^{\circ}} = 5,22 + j3,774$$

Определим напряжение между узлами a и b:

$$U_{ab} = I_1 \underline{Z}_{23} = 6,441 e^{j35,9} \cdot 4,793 e^{j17,1} = 30,875 e^{j53} = 18,595 + j24,647_B.$$

Определим по закону Ома токи $\overset{\circ}{I}_2$ и $\overset{\circ}{I}_3$:

$$I_2 = \frac{U_{ab}}{Z_2} = \frac{30,875 e^{j53^{\circ}}}{8} = 3,859 e^{j53^{\circ}} = 2,324 + j3,081$$
A.

$$\tilde{I}_{3} = \frac{\tilde{U}_{ab}}{Z_{3}} = \frac{30,875 \, e^{j53}^{\circ}}{10,369 \, e^{j39,5}^{\circ}} = 2,977 \, e^{j13,5}^{\circ} = 2,896 + j0,693$$

3. Определим действующие значения падений напряжений на каждом элементе электрической цепи.

$$\begin{array}{l} \overset{\iota}{U}_{R1} = \overset{\iota}{I}_{1} \cdot R_{1} = 6,441 \, e^{j35,9^{\circ}} \cdot 8 = 51,531 \, e^{j35,9^{\circ}} = 41,76 + j30,191_{\mathrm{B}}, \\ \overset{\iota}{U}_{C} = \overset{\iota}{I}_{1} \cdot \left(-jX_{C}\right) = 6,441 \, e^{j35,9^{\circ}} \cdot 10,505 \, e^{-j90^{\circ}} = 67,668 \, e^{-j54,1^{\circ}} = 39,645 - j54,838_{\mathrm{B}}, \\ \overset{\iota}{U}_{R2} = \overset{\iota}{U}_{ab} = 30,875 \, e^{j53^{\circ}} = 18,595 + j24,647_{\mathrm{B}}. \\ \overset{\iota}{U}_{R3} = \overset{\iota}{I}_{3} \cdot R_{3} = 2,977 \, e^{j13,5^{\circ}} \cdot 8 = 23,82 \, e^{j13,5^{\circ}} = 23,166 + j5,543_{\mathrm{B}}, \\ \overset{\iota}{U}_{L} = \overset{\iota}{I}_{3} \cdot jX_{L} = 2,977 \, e^{j13,5^{\circ}} \cdot 6,597 \, e^{j90^{\circ}} = 19,643 \, e^{j103,5^{\circ}} = -4,571 + j19,104_{\mathrm{B}}, \end{array}$$

4. Определим численные значения и знаки углов сдвига фаз токов и напряжений:

$$\begin{split} \phi &= \arcsin \frac{X_{3KB}}{Z_{3KB}} = \arcsin \frac{-9,096}{15,525} = -35,9^{\circ}, \\ \phi_{1} &= \arcsin \frac{-X_{C}}{Z_{1}} = \arcsin \frac{-10,505}{13,205} = -52,7^{\circ}, \\ \phi_{2} &= \arcsin \frac{0}{Z_{2}} = \arcsin \frac{0}{8} = 0^{\circ}, \\ \phi_{3} &= \arcsin \frac{X_{L}}{Z_{3}} = \arcsin \frac{6,597}{10,369} = 39,5^{\circ}. \end{split}$$

5.Запишем мгновенные значения токов в ветвях цепи:

$$i_1(t)=6,441\sqrt{2}\sin(314t+35,7°)_{
m A},\ i_2(t)=3,859\sqrt{2}\sin(314t+53°)_{
m A},\ i_3(t)=2,977\sqrt{2}\sin(314t+13,5°)_{
m A},\ _{
m ГДе}\ \omega=2\pi f=2\pi\cdot 50=314$$
 рад/с.

6.Составим балансы активной, реактивной и полной мощностей.

Определим полную мощность цепи, отдаваемую источником в комплексном виде:

$$\tilde{S}_{\scriptscriptstyle H}=\overset{\iota}{\overset{\iota}{E}}\overset{\iota}{I}_{\scriptscriptstyle 1}=100\cdot 6\,,441\,e^{-j35,9}^{\circ}=644\,,1\,e^{-j35,9}^{\circ}=522\,,005-j\,377\,,383_{
m BA},$$
где $\overset{\iota}{I}_{\scriptscriptstyle 1}$ - комплексно-сопряженный ток.

Определим активную, реактивную и полную мощности, потребляемые цепью:

- суммарная активная мощность приемников:

- суммарная реактивная мощность приемников:

$$Q_{np\sum_{i=I_{1}2}(-X_{C})+I_{3}2}X_{L}=6,441^{2}\cdot(-10,505)+2,977^{2}\cdot6,597=-377,383}$$
 Bap.

- полная мощность приемников:
$$S_{np} \sum \iota = \sqrt{P_{np} \sum \iota^{2} + Q_{np} \sum$$

Из проведенных вычислений следует, что баланс мощностей соблюдается: $P_{UCT} = P_{\Pi P}, Q_{UCT} = Q_{\Pi P}, S_{UCT} = S_{\Pi P}.$

7.Построим в масштабе векторные диаграммы токов и напряжений (см. рис. 7).

Рисунок 7 – Векторная диаграмма токов и напряжений

8.Определим показание амперметра.

Амперметр покажет действующее значение тока в первой ветви: $I_{A}\!=\!I_{1}\!=\!6$, 441 $_{\rm A}$.

9.Определим показание ваттметра.

Ваттметр измеряет активную мощность, потребляемую сопротивлением R_2 . $P_W = I_2 U_{ab} \cos \phi = 3,859 \cdot 30,875 \cdot 1 = 119,156_{\rm Bt.}$

где ϕ = 0 — угол сдвига фаз между напряжением $\overset{\iota}{U}_{ab}$ и током $\overset{\iota}{I}_2$.

Задача З

Выполнить указанные ниже задания для трехфазной электрической цепи (рис. 8) по данным таблицы 3.

- 1.Определить действующие значения фазных и линейных токов, тока в нейтральном проводе (для четырехпроводной схемы), а также численные значения и знаки углов сдвига фаз, записать мгновенные значения этих токов.
- 2.Определить активную мощность всей цепи и каждой фазы отдельно.

$$A = 1$$
, $B = 0$, $B = 3$

Рисунок 8.Схема электрической цепи

Построить совмещенную векторную диаграмму напряжений и токов (только для симметричного режима).

Решение: 1.Определим фазные напряжения

<i>R</i> , Ом	<i>X</i> , Ом
20 + B + B	50 + A + B
23	54

2.источника в комплексном виде:

$$\overset{\iota}{U}_{A} = \frac{\overset{\iota}{U}_{II}}{\sqrt{3}} = \frac{380}{\sqrt{3}} = 219,393$$
 B

$$\overset{\iota}{U}_{B} = \overset{\iota}{U}_{A} e^{-j120} = 219,393 e^{-j120} = -109,697 - j190$$

$$\overset{\iota}{U}_{C} = \overset{\iota}{U}_{A} e^{j120} = 219,393 e^{j120} = -109,697 + j190$$
B.

2.Определим в комплексном виде полные сопротивления каждой фазы с учетом характера элементов:

$$\underline{Z}_a = \underline{Z}_b = \underline{Z}_c = R + jX_L = 23 + j54 = 58,694 e^{j66,9}$$
 Om.

- 3. Так как нагрузка симметрична, напряжение смещения нейтрали равно нулю.
- 4. Определим фазные и линейные токи в трехфазной цепи по закону Ома:

$$\begin{split} &\overset{\iota}{I}_{A} = \frac{\overset{\iota}{U}_{A}}{\overset{\iota}{Z}_{a}} = \frac{219,393}{58,694} e^{j66,9} = 3,738 e^{-j66,9} = 1,465 - j3,439 \\ &\overset{\iota}{I}_{B} = \frac{\overset{\iota}{U}_{B}}{\overset{\iota}{Z}_{b}} = \frac{219,393 e^{-j120^{\circ}}}{58,694 e^{j66,9}} = 3,738 e^{j173,1^{\circ}} = -3,711 + j0,451 \\ &\overset{\iota}{I}_{C} = \frac{\overset{\iota}{U}_{C}}{\overset{\iota}{Z}_{c}} = \frac{219,393 e^{j120^{\circ}}}{58,694 e^{j66,9}} = 3,738 e^{j53,1^{\circ}} = 2,246 + j2,988 \\ &\overset{\iota}{A}. \end{split}$$

5.Углы сдвига фаз между напряжениями и фазными токами:

$$\phi_a = \phi_b = \phi_c = \arcsin \frac{R}{Z} = \arcsin \frac{23}{58.694} = 66.9^{\circ}$$

6.Запишем мгновенные значения токов в ветвях цепи:

$$i_A(t)$$
=3,738 $\sqrt{2}\sin[314t-66,9°]_{
m A}$, $i_B(t)$ =3,738 $\sqrt{2}\sin(314t+173,1°)_{
m A}$, $i_C(t)$ =3,738 $\sqrt{2}\sin(314t+53,1°)_{
m A}$, где ω =2 πf =2 $\pi\cdot$ 50=314 $_{
m pag}/c$.

7.Определим активную мощность во всей цепи и каждой фазе отдельно. С учетом симметрии нагрузки:

$$P_A = P_B = P_C = I_{A^2} R = 3,738^2 \cdot 23 = 321,355$$
 $P_{np \sum i = 3P_A = 3 \cdot 321,355 = 964,064} i$
Bt.

8.Построим векторную диаграмму токов и топографическую диаграмму напряжений (см. рис. 9).

Рисунок 9 – Векторная диаграмма токов и напряжений

Список используемой литературы

- 1. Бессонов, Л. А. Теоретические основы электротехники [Текст] / Л. А. Бессонов. М.: Высш. шк., 1984. 527 с.
- 2. Зевеке, Г. В. Основы теории цепей [Текст] / Г. В. Зевеке, П. А. Ионкин, А. В. Нетушил, С. В. Страхов. М. : Энергоатомиздат, 1989. 529 с.
- 3. Поливанов, К. М. Теоретические основы электротехники [Текст] / К. М. Поливанов. М.: Энергия, 1975. 239 с.
- 4. Атабеков, Г. И. Теоретические основы электротехники [Текст] / Г. И. Атабеков. М. : Энергия, 1978. 245 с.

Лабораторно-практическое занятие № 1 ЛИНЕЙНАЯ ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ ПОСТОЯННОГО ТОКА

Цель работы: исследование цепи постоянного тока.

- 1.1. Рассчитать цепь при заданных параметрах.
- 1.2. Исследовать цепь при изменении сопротивления нагрузки
- 1.3. Сравнить результаты расчета и исследования цепи.
- 1.4. Записать выводы по результатам.

Подготовка к работе

2.1. Изучить пп.1.4 учебника [1] или 1.6 и 1.7 учебника [2].

Цепь представляет собой модель линии электропередачи постоянного тока сопротивлением $R_{\rm I}$ и с изменяющимся сопротивлением нагрузки $R_{\rm H}(0,100,300,500,700$ Ом)(рис. 1).При выполнении работы сопротивление линии $R_{\rm I}$ принять равным 100 Ом, а напряжение на входе цепи U = 200 В.

Рис. 1. Схема цепи

- 2.2. Paccчитать следующие параметры цепи для различных значений сопротивлений нагрузки $R_{\rm H}$:
 - мощность, отдаваемую **источником**, $P_{\text{ист.}}$, $\mathbf{B}_{\mathbf{T}}$;
 - ток *I*, A;
 - мощность, потребляемую приемником (нагрузкой), $P_{\rm H} = I^2 R$, Вт;
 - КПД η =Рнагр·100 %) /Рист.

Расчет приложить к отчету, а результаты записать в таблицу.

- 3.1. Подготовленный конспект отчета представить преподавателю.
- 3.2. «Собрать» цепь. Выбрать параметры цепи в соответствии со своим вар-том.
- 3.3. Изменяя сопротивление нагрузкищелкнув дважды по резистору в соответствии с заданием поставить значение сопротивления из таблицы 1, записать в эту таблицу показания амперметра и ваттметра (показания вольтметра, подключенного к ваттметру, считать в ваттах).

4.По результатам работы

- 4.1.**Рассчитать** по результатам измерений мощности и КПД цепи. Результаты *записать* в таблицу 1.
 - 4.2.Построить зависимости от $R_{\rm H}$:
 - тока в цепи $I(R_{\rm H})$;
 - мощности источника и нагрузки $P_{\text{ист.}}(R_{\text{H}})$, $P_{\text{H}}(R_{\text{H}})$;
 - $K\Pi Д\eta (R_H), (\eta = Pharp \cdot 100 \%) / Pист.$

Отметить на кривых рассчитанные значения.

4.3. Записать выводы о характере изменения тока, мощностей и $\mathbf{K}\Pi \mathbf{\mathcal{I}}$ цепи от $\mathbf{\mathcal{R}}_{\mathbf{H}}$.

5.Содержание отчета

- 5.1. Заполненная таблица.
- 5.2. Расчет цепи.

N₂	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R, Om	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250
No	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
R, Ом	20	30	40	50	60	70	80	90	100	260	270	280	290	300	310

5.3. **Графики***I* ($R_{\rm H}$); $P_{\rm ист.}$ ($R_{\rm H}$); P ($R_{\rm H}$) и η ($R_{\rm H}$). Таблица.1

Таблица.2

Параметры цепи	R _H =0	$R_{H}=R_{\pi}=$ 100 OM	R _н =R + 100 Ом	R _н =R + 300 Ом	R _н =R + 500 Ом	R _н =R + 700 Ом
ТокІ, А	2	1	0.49	0.33	0.25	0.2
Мощность источника, РИСТ=E·I, Вт	400	200	98	66	50	40
Мощностьнагрузки, РН=I2∙R, Вт	0	100	74.431	55.539	44.375	36.4
К.П.Д. цепи, η=(Рнагр/ Рист)·100%	0	0.5	0.7595	0.8415	0.8875	0.91

5.4. Выводы.

І,А; Ри,Рн,Вт; η,%

Лабораторная работа №2 РЕАКТИВНЫЕ ЭЛЕМЕНТЫ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

1 Задание

- 1.1 Рассчитать и построить зависимости реактивного сопротивления катушки и конденсатора от частоты источника питания.
- 1.2 Снять экспериментально и построить зависимости реактивного сопротивления катушки от частоты источника питания.
 - 1.3 Сравнить рассчитанные и полученные результаты.
 - 1.4 Записать вывод по результатам.

2 Выполнение задания

2.1 Подготовка к работе на компьютере

- 2.1.1 Цепь представляет собой аналог индуктивной катушки и конденсатора.
- 2.1.2 Напряжение источника синусоидального $E = 10 \cdot N$, B и R = N, O_M , а также параметры катушки и конденсатора согласно варианту (где N Bаш номер в журнале группы).

Схема цепи

Таблица 1

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С, мкФ	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250
I v.Fv.	92,	84,	77,	72,	67,	63,	59,	56,	53,	50,	48,	46,	44,	42,	40,
L, мГн	10	60	94	37	55	50	55	20	25	80	15	05	05	22	53

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
260	270	280	290	300	310	320	330	340	350	360	370	380	390	400
38,	37,	36,	34,	33,	32,	31,	30,	29,	28,	28,	27,	26,	25,	25,
97	53	19	94	77	68	66	70	80	95	14	38	66	98	33

Таблица 2

										шоттт-да		
		гементы				ча	C T	0 T	a, Ti	Į		
]	и пара	метры цепи	30	40	50	60	70	80	90	100	110	120
ЕЯ	РАС,	$X_{L}=2\pi f L \bullet 10^{-3}=$										
катушка	ЭКС	$U_{ t L}$, B										
ату	пери	$I_{ m L}$, A										
X	менто	$X_{\mathrm{L}} = U_{\mathrm{L}} / I_{\mathrm{L}}$										
rop	. РАС счет	$X_{\rm C} = \frac{1}{2\pi f C \cdot 10^{-6}} =$										
конденсатор	ЭКС	$U_{ extsf{C}}$, B										
ЭНД6	пери мент	I_{C} , A										
¾		$X_{\rm C}=U_{\rm C}/I_{\rm C}$										

- $Z_1.3$ *Рассчитать* сопротивления катушки X_L и конденсатора X_C при изменении частоты источника питания (задана в таблице 2). Расчёт приложить к отчёту, а результаты записать в таблицу 2.
- 2.1.4 *Построить* (плавными линиями) на одном графике расчётные кривые изменения сопротивлений катушки $X_{\rm L}(f)$ и конденсатора $X_{\rm C}(f)$ от **частоты**.

Графики к работе №2

2 Отметить на построенных графиках расчётную частоту, при которой в цепи **возможен резонанс напряжений**.

2.2 Работа на компьютере

- 2.2.1 Подготовленный отчёт, расчёт и (расчётные графики) показать преподавателю.
- 2.2.2 **«Собрать»** цепь.
- 2.2.3**Выбрать** параметры цепи и источника в соответствии со своим вариантом. Двойным нажатием на мышку выбираем сопротивления вольтметра (типа «AC») и амперметра (типа «AC»).
- 2.2.4 Поочерёдно подключить катушку, а затем конденсатор, изменяя частоту ЭДС источника в соответствии с заданием в таблице 2, записать в эту таблицу показания приборов (действующие значения).
- 2.2.5 Paccчитать сопротивления катушки X_L и конденсатора X_C при изменении частоты источника питания. Расчёт приложить к отчёту, а результаты 3anucamb в таблицу 2
- 2.2.6. Построить (плавными линиями) на одном графике (см. п.2.1.4. экспериментальные кривые изменения сопротивлений катушки $X_{\rm L}$ и конденсатора $X_{\rm C}$ от частоты. Расчёт сопротивлений

Лабораторно-практическое занятие№3 РЕЗОНАНСЫ В ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА 1. 1.РЕЗОНАНС НАПРЯЖЕНИЙ

1.Собрать схемы с последовательным (рис.1) и параллельным (рис.2) соединением резистора, катушки и конденсатора. При последовательном соединении сопротивлений R, X_{L} , X_{C} равенстве X_{L} = X_{C} цепи возникаетрезонанс напряжений при котором U_{L} = U_{C} .

Рис.1. При выполнении работы принять: $\mathbf{E} = \mathbf{220B}$; значения $\mathbf{R_1}$, $\mathbf{L_1}$, $\mathbf{C_1}$; $\mathbf{R_2}$, $\mathbf{L_2}$, $\mathbf{C_2}$ заданы в

таблицах 2.1 (N - Baш номер в журнале группы).

1. <u>Параметры цепи при последовательном соединении элементов R,L,C.</u> Таблица № 1.

Bap. N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R, Om	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
С,мкФ	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250
L , м Γ н	90	82	75	70	65	68	58	54	53	50	46	47	43	41	39

1.3. Дважды щелкнув по измерительным приборам нужно все амперметры и вольтметры перевести из **DC**в**AC**, т.е. с измерения постоянных величин в измерение переменных величин, кроме **BATTMETPA** он остаётся в **DC**.

1.4.Включить питание схемы. Изменяя значение ёмкости от центрального резонансного её значения **Ср** (ставим в таблицу 2 из данных вашего варианта в таблице 1) добавляя ей значения через 10 мкФ и уменьшая её значения через **10** мкФ. Для каждого

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
10	10	10	10	10	10	9	9	9	8	8	8	8	8	7
260	270	280	290	300	310	320	330	340	350	360	370	380	390	400
37	36	35	34	33	32	31	30	29	28	27	26	25	24	23

значения ёмкости **(8–10 точек**) *измерить* **ток** *I*, напряжения *U*, U_R , U_L , U_C и мощность цепи результаты *записать* в таблицу 2, выделив в ней значения параметров при резонансе напряжений.

Формулы для расчёта параметров таблицы 2.

$$R = \frac{U_R}{I}$$
, $X_C = \frac{U_C}{I}$, $X_K = \frac{U_K}{I}$, $Z = \frac{U}{I}$, $X = X_L - X_C$, $\varphi = \operatorname{arctg} \frac{X_L - X_C}{R}$, $S = U \cdot I$, $Q = I^2 \cdot X$, $\cos \varphi = \frac{P}{S}$

Таблица № 2.

No	C			Изм	еритн	•					Pace	счита	ТЬ			
ПП	<i>С</i> , мкФ	P, Bm	I, A	U, B	$egin{array}{c} oldsymbol{U}_{R,} \ oldsymbol{B} \end{array}$	U _K , B	U _C , B	R , Ом	<i>Х</i> _C , Ом	φ , o	Z, Ом	X _L , Ом	<i>X</i> , Ом	<i>S</i> , <i>B</i> ⋅ <i>A</i>	Q , вар	cos φ
1.	Cp-40															
2	Cp-30															
3.	Cp-20															
4.	Cp-10			220												
<u>5.</u>	Ср			2												
6.	Cp+10															
7.	Cp+20															
8.	Cp+30															
9.	Cp+40															

2. PE3OHAHC TOKOB

Резонанс токов возникае <u>при параллельном</u>соединении **R**, **L**, **C**и при $B_C = B_L$ -равенство проводимостей

1.4Собрать цепь в соответствии со схемой (рис.2).

Параметры цепи при параллельном соединении R, L и C

1.5. Выбрать параметры цепи и источника в соответствии со своим вариантом

- 1.6. *Изменяя* также ёмкость (С) конденсатора, *записать* показания приборов (действующие значения), выделив в таблице 2.3 резонанс токов.
- 1.7. Рассчитать по результатам измерений в цепи с параллельным соединением резистора, катушки и конденсатора её параметры.
- 1.8. Построить по результатам измерений и вычислений на одном поле графикиI(C), $U_{\rm R}(C)$, $U_{\rm L}(C)$, $U_{\rm C}(C)$ на другом графики $X_{\rm C}(C)$, $X_{\rm L}(C)$, $X_{\rm L}(C)$, $X_{\rm C}(C)$, $X_{\rm C}(C)$.
 - 1.9. Построить в масштабе векторную диаграмму для режима резонанса напряжений.
- 1.10. Построить по результатам измерений и вычислений графики I(C), $I_{\rm C}(C)$, Y(C), соѕф. Y-полная проводимость цепи; G-активная проводимость; B-реактивная проводимость ц.

$$\mathbf{Y} = \frac{I}{U}$$
, $\mathbf{G} = \frac{I_R}{U}$, $\mathbf{B}_L = \frac{I_L}{U}$ $\mathbf{B}_C = \frac{I_C}{U}$, $\mathbf{B} = \mathbf{B}_C - \mathbf{B}_L$, $\mathbf{cos} \varphi = \frac{P}{S}$

Таблица № 3.

No	C	,			Изм	ерить				Рассчі	итать	
п/п	MK	Φ	P,Bm	U,B	I, A	I_R , A	I _L , A	I _C , A	Ү,С м	G ,См	В,См	cosq
1.	C-40											
2.	C-30											
3.	C-20											
4.	C-10											
5.	Ср			0.								
6.	C+10			220								
7.	C+20											
8.	C+30											
9.	C+40											
10.	C+50											

11. Построить в масштабе векторную диаграмму для режима резонанса токов.

Содержание отчета

- 1. Расчеты параметров цепей.
- 2. Заполненные таблицы 2.2; 2.3.
- 3. Векторная диаграмма в момент резонансов напряжений и графики.

Графики

Рис.2.3. Цепь с последовательным соединением элементов R-L-C

Векторные диаграммы Графики

(равенство векторов токов, протекающих по катушке и конденсатору в момент резонанса)

Выводы:

Лабораторно-практическое занятие№4 ТРЕХФАЗНЫЕ ЦЕПИ

- 1.1. Изучить схемы соединения трехфазных цепей.
- 1.2. Экспериментально определить соотношения между фазными и линейными напряжениями и токами.
- 1.3. Построить векторные диаграммы напряжений и токов для симметричных режимов.

2.Выполнение работы

Трехфазной цепью называют электрическую цепь, содержащую трехфазный источник ЭДС, трехфазный приемник электрической энергии и соединяющие их провода. Трехфазными является большинство электротехнических систем и устройств (линии электропередачи, электркие машины и др.).

- 2.1. Выбрать 3-и ЭДС источника по 220 В и установить начальные фазы Е: у $\underline{E}_A, \underline{\Psi}_A = 0^0, \underline{y}\underline{E}_B, \underline{\Psi}_B = 240^0, \underline{y}\underline{E}_C, \underline{\Psi}_C = 120^0$.
- 2.2. **Собрать трёхфазную цепь, соединённую звездой**<u>только с нейтральным</u> **проводом.**Провести измерения параметров схемы.

Измерить действующие значения фазных и линейных напряжений и токов трехфазной цепи всимметричном режиме($R_A=R_B=R_c=N\cdot 10$)сопротивления по фазам одинаковоеи равно $R_{\Phi}=100$ Ом). Результаты расчета записать в таблицу № 3.1.

Рис.3.1.

«Соединение «звездой» Таблица № 3.1

						Из	мери	ТЬ						Pacc	читат	Ь
	ким Эпи	UA , нагр. В	UВ, нагр. В	UС, нагр. В	Unn ¹	$U_{ m AB}$	$U_{ m BC}$	U _{AC}	I _A ;	I_{B} , A	<i>I</i> _C , A	<i>I</i> _N , A	Р _А ,	Р в,	Р с, Вт	Р _Ц , Вт
_	симм.	220	220	220	-	381	381	381	2	2	2	0	440	440	440	1320
нейтр. провод.	несим.	220	220	220	-	381	381	381	7.33	2.75	2	5	218	4298	440	4957
без	симм.	220	220	220	0	381	381	381	2	2	2	-	440	440	440	1320
нейтр. провод	несим.	130	268	284	91	381	381	381	4.3	3.4	2.6	_	554	924	743	2223

2.4. От тодключить только вольтметр, повторить измерения.

Установить в цепи несимметричный режим $R_A \neq R_B \neq R_C$, изменив значения двух фазных сопротивленийна 50 Ом и 150 Ом. Повторить измерения параметров цепи, как с нейтральным проводом, так и без него, т.е. с вольтметром, измеряющим Unn(напряжением смещения нейтрали). Результаты записать в ту же таблицу № 3.1.

2.6. Собрать цепь в соответствии со схемой «треугольника» (рис.3.2).

Рис.3.2.

- 2.7. Симметричный режим(Rab=Rbc=Rac=N·10).Измерить напряжения на фазах симметричной (одинаковой) нагрузки и токи в цепи, результаты записать в первую строчку таблицы № 3.2.
- 2.8. <u>Несимметричный режим($Rab \neq Rbc \neq Rac$)</u>. В фазе авоборвать провод между сопротивлением и амперметром, произвести замер параметров. Исправив повреждение фазы, оборвать линейный провод сразу после ЭДС A, произвести замеры параметров и записать их во 2и 3строки таблицы № 3.2.

Соединение «треугольником» Таблица № 3.2 Рассчитать

					Изм	ерить	•					Pa	ассчит	ать	
	жимы цепи	$U_{ m aв}$, ${f B}$	U _{bc} , B	U _{ca} , B	I _{ав} , А	I _{bc} ,	I _{ca} ,	I _A ,A	I _B ,	I _C ,	<i>Р</i> _{ав,} Вт	Р _{bc,} Вт	<i>Р</i> _{са,} Вт	<i>Р</i> _{3ф} , Вт	$egin{array}{c} ext{Cootho} \ ext{шениe} \ \hline ext{$U_{\scriptscriptstyle \Pi}$} \ \hline ext{$U_{\scriptscriptstyle \Phi}$} \end{array}$
p	иммет ичный	381	381	381	3.46	3.46	3.46	6	6	6					
٦,	фазы фазы	381	381	381	-	3.46	3.46	3.46	3.46	3.46					
He-	обрыв фазы Обрыв линии	190	381	190	1.73	3.46	1.73	0	5.19 6	5.19 6					

3.По результатам работы

- 3.1. Рассчитать мощности цепей. Результаты записать в таблицы.
- 3.2.Построить в масштабе векторные диаграммы симметричных режимов («звезды» и «треугольника»).

Векторные диаграммы

Схема «звезда»

Схема «треугольник»

Лабораторная работа №5 ОДНОФАЗНЫЙ ТРАНСФОРМАТОР

<u>**Цель работы.**</u>Изучить устройство, принцип действия, режимы работы и снять характеристики однофазного трансформатора.

Для определения основных параметров трансформатора: коэффициента трансформации, потерь мощности, КПД и других проводят опыты холостого хода и короткого замыкания трансформатора, а для получения его характеристик испытывают трансформатор в рабочем режиме. Для этого к нему подключают резистор.

При опыте холостого хода установить на первичной обмотке трансформатора U_{1H} = 220B.

Режим холостого хода

Таблица 4.1

	Изм	иерить			Ві	ычислить		
$egin{array}{c} oldsymbol{U}_{1\mathrm{H}} \ oldsymbol{B} \end{array}$	$egin{array}{c} oldsymbol{U}_{2 ext{H}} \ oldsymbol{B} \end{array}$	$egin{array}{c} I_{1\mathrm{X}} \ \mathbf{A} \end{array}$	$oldsymbol{P_{\mathrm{X}}}{\mathbf{B_{\mathrm{T}}}}$	n	ω_1 витк.	ω ₂ витк.	∆P _M Bt	cosφ _x

Режим короткого замыкания

Таблиц 4.2

	Изм	ерить			Выч	ислить		
$egin{array}{c} oldsymbol{U_{1K}} \ oldsymbol{B} \end{array}$	<i>I</i> _{1K} A	$egin{aligned} I_{ m 2K} \ {f A} \end{aligned}$	<i>Р</i> _К Вт	Z _К Ом	<i>R</i> _К Ом	<i>X</i> _К Ом	ДР о Вт	cosφ _K

Рабочий режим

Таблица 4.3

Таблица № 4.4

R,			Измерит	ъ		F	Вычислить	•
R, Ом	U_1, \mathbf{B}	<i>I</i> ₁ , A	<i>P</i> ₁ , B _T	U_{2} , B	I_2 , A	<i>P</i> ₂ , B _T	cosφ	η,%

1.5.Используя данные опытов холостого хода, короткого замыкания и зависимость $P_1(I_2)$ определить, как изменяются потребляемая трансформатором из сети мощность P_1 , отдаваемая (полезная) мощность P_2 , потери в магниитопроводе $^{\Delta}P_{\rm M}$, потери в обмотках $^{\Delta}P_{\rm O}$, а также коэффициент полезного действия η . По результатам табл. 4.3 построить в одной системе координат внешнюю характеристику трансформатора $U_2(I_2)$, зависимости $P_1(I_2)$, коэффициента мощности \cos (φ) и К.П.Д. η = P_2 ·100 % / P_1 трансформатора от тока нагрузки (I_2). Потери в магнитопроводе трансформатора $\Delta P_{\rm M}$ = P_1 xx, P_2 : P_1 xx, P_2 : P_1 xx, P_2 : P_2 xx, P_3 : P_4 xx, P_3 : P_4 xx, P_5 : P_4 xx, P_5 : P_6 xx, P_7 xx, P

- 2.1.Схемы включения трансформатора и приборов для опытов холостого хода, короткого замыкания и рабочего режима.
- 2.2. Таблицы параметров трансформатора, опытов холостого хода, короткого замыкания и рабочего режима.
 - 2.3.Графики (три в одной системе координат).
 - 2.4.Выводы по работе.

Таблица № 4.1.Х.Х.

$$I_{1H} = S/U_{1H}, I_{2H} = S/U_{2H}, \quad \cos \varphi = \frac{P}{S}, \quad P = I^2 \cdot R, \quad R = \frac{U_1}{I_1}, \quad \eta = \frac{P_2}{P_1} \cdot 100\%.$$

$$\mathbf{n} = \frac{U_{\text{наминальное высшее}}(\textit{большее})}{U_{\text{наминальное нисшее}(\textit{меньшее})}}$$
, $\mathbf{\omega_1}\mathbf{\omega_2}$ -число витков трансформатора берётся из паспортных

данных трансформатора, дважды щёлкнув по картинке трансформатора, а затем мышкой на **Edit**, там и выбираем номинальные значения трансформатора.

 ΔP_{M} = потери мощности в корпусе трансформатора,

$$\cos \varphi_x = P_{\text{ваттметра}} / (U_{1H} \cdot I_{1X}), \cos \varphi = P_x / S = P_x / U_{1H} I_{1H},$$

Таблица №4.2.К.3.

$$Z_{\mathrm{K}} = U_{1\mathrm{K}}/I_{1\mathrm{K},} R_{\mathrm{K}} = Z_{\mathrm{K}} \cdot \cos\phi, \ X_{\mathrm{K}} = Z_{\mathrm{K}} \cdot \sin\phi, \ \Delta Po = P_{\mathrm{K}}, \cos\phi_{\mathrm{K}} = \frac{P_{\mathrm{K}}}{S_{\mathrm{K}}} = \frac{P_{\mathrm{K}}}{U_{1\mathrm{K}}I_{1\mathrm{K}}}$$

ТАБЛИЦА № 4.4. РАБОЧИЙ РЕЖИМ

$$P_2 = I^2 \cdot RBT$$
, $\cos \varphi = \frac{P}{S}$, $\eta = \frac{P_2}{P_1} \cdot 100\%$.

- 6.1 Как устроен и действует однофазный трансформатор.
- 6.2 Как определить коэффициент трансформации?
- 6.3 Каковы особенности устройства магнитопровода трансформатора?.
- 6.4 Какие потери мощности в трансформаторе имеют место?
- 6.5 Почему трансф-ры используют только в электроустановках переменного тока?

Вывод:

Лабораторная работа№ 6 ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

1 Задание

- 1.1 Изучить устройство, принцип действия, схемы возбуждения и режимы работы двигателя постоянного тока.
- 1.2 Выбрать параметры двигателя постоянного тока параллельного возбуждения и снять его характеристики.
 - 1.3 Записать выводы по результатам.

2 Выполнение задания 2.1 Подготовка к работе на компьютере

2.1.1 Двигатель постоянного тока — электрическая машина, предназначенная для преобразования электрической энергии в механическую энергию. Устройство, принцип действия, схемы возбуждения и режимы работы двигателя постоянного тока приведены в учебниках, которые следует *изучить* при подготовке к лабораторной работе. В работе используется двигатель постоянного тока параллельного возбуждения.

2.2 Работа на компьютере

2.2.1**Выбор двигателя.** Для этого нажатием клавиши «мыши» на изображении машиныоткрыть об и поместить изображение двигателя на рабочий стой. Дважды нажав на нем левую клавишу «мыши», открыть окно. В окне *Model* нажать иоткрыть окно параметров двигателя (рисунок 1). Выбрать сопротивление цепи возбуждения(Fildresistance) $\mathbf{RF} = \mathbf{50} + \mathbf{2} \cdot \mathbf{N}$, *O*м, а цепи якоря $\mathbf{R}\mathbf{n}$ оставить по умолчанию. Установить номинальное напряжение двигателя (Ratedarmaturevoltage) $\mathbf{VAN} = \mathbf{70} + \mathbf{2} \cdot \mathbf{N}$, \mathbf{B} (где \mathbf{N} — Ваш номер в журнале группы).

2.2.2 **«Собрать»** схему (рисунок 2). Установить напряжение источника питания электродвигателя: **U=70+2·N,B**. Сопротивления амперметра (типа «DC») и вольтметра (типа «DC») не изменять.

Для выбора осциллографа (прибор для

измерения И визуального наблюдения изменения измеряемой величины во времени) открыть на панели инструментов окно, а затемна раб.столе осциллограф.(см. расположение контактов). Чтобы увеличить лицевую панель осциллографа следует два раза нажать левую клавишу «МЫШИ» его изображении. В открывшемся окне осциллографа – нажать «Expand».

2.2.3. В работе нужно снять *семействопусковых и регулировочных характеристик* двигателя.

Для этого изменяя сопротивление $R_{\rm s}$ от 0 (0.0000001) через 2 *Омд*о 10 *Оми*получаем на экране осциллографа изображение зависимости числа оборотов якоря $n_{\rm s}$ от времени его работы t(вольтметр на рисунке 3 показывает число оборотов якоря в минуту). Если нужно выключить схему нажимаем на клавиатуре пробел и ключ разрывает цепь.Последовательность проведения экспериментов следующая:

Рисунок 3

-включаем цепь клавишей правом верхнем углу экрана; -через 2...3 интервала времени горизонтальные клетки, нажать клавишупробел - «Выкл». Затем после остановки двигателя опять его запускаем через пробел, т.е. через схеме. При ключ кривой достижении максимального (установившегося) нажать на «паузу» значения (вправом верхнем углу экрана); –п**о Фетан**овившемуся изоб ражению кривой, перемещая «мышью» визирную вертикальную линейку(красную или синюю, показанную пунктиромна рисунке 3), **измеряем через 0,5** *с* (каждая

клетка по горизонтали) 7 значений

оборотов двигателя (не считая 0). При этом нулевой отсчет может быть в интервале от 0 до 0,5 c.

Записать в таблицу 1 показания всех приборов Таблица 1

ť	t,c	и _" ,06/м	I.A	М. н.м	R_{a} . O_{M}	t,c	<i>м</i> /90,чи	I.A	M. H . M	$R_{\circ}.O_{M}$	t,c	<i>п</i> _в ,06/м	I.A	М. н.м	$R_{a}O_{M}$	t,c	и _" ,06/м	$I_{\mathfrak{R}}A$	М, н·м	$R_{\scriptscriptstyle \rm B}$, O_M	t,c	и ₃ ,06/м	$I_{\mathfrak{R}}A$	М, н·м	$R_{\scriptscriptstyle \rm B}$, O_M	t,c	и _" ,06/м	$I_{a,A}$	M, H - M
	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0
															•														
					2					4					•														
ľ					2					4					•														

3 По результатам работы

- 3.1. Построитьсемейство пусковых характеристикдвигателя $n_{\rm s}(t)$, $n_{\rm s}({\rm Rs})$.
- 3.2. *Рассчитать* момент на валу двигателя по формуле $M \le k \cdot I^2$ я(где k 1 конструктивный коэффициент, *равный* 1). Результаты *записать* в таблицу 1.
 - 3.3 Построить семейство регулировочных характеристик двигателя $n_{\mathfrak{s}}(M)$.
 - 3.4. *Записать* выводы по результатам.

Графики к лабораторной работе №6

4.Содержание отчета:

- 4.1. Заполненная таблица параметров двигателя.
- 4.2. Семейство характеристик двигателя (семь в каждой системе координат).
- 4.3. Выводы по работе.

5 Контрольные вопросы:

- 5.1. Расскажите устройство и назначение основных элементов конструкции машины постоянного тока.
 - 5.2. Поясните физическую сущность явления реакции якоря.
- 5.3. Изобразите схемы двигателей параллельного, последовательного и смешанного возбуждения.
- 5.4. На примере двигателя параллельного возбуждения поясните процессы и особенности пуска двигателя.

Лабораторно-практическое занятие №7 НЕУПРАВЛЯЕМЫЕ ДВУХПОЛУПЕРИОДНЫЕ ВЫПРЯМИТЕЛИ

1 Задание

- 1.1 Изучить принцип действия диода.
- 1.2Изучить схемы двухполупериодных выпрямителей и принцип действия сглаживающих фильтров.
- 1.3 Исследовать работу сглаживающего фильтра при двухполупериодном выпрямлении.
- 1.4 Записать выводы по результатам.

2 Выполнение задания

- 2.1 Подготовка к работе на компьютере
- 2.1.1.Выпрямителемназываютустройство,

служащеедляпреобразованияпеременныхнапряженияитокавпостоянные, которыенеобходимыдляпитаниярядаэлектронныхустройств. Преобразованиеперем енноготокавпостоянныйосуществляется спомощью нелинейных элементов, односторонней проводимостью.

Этосвойствохарактернодляполупроводниковыхприборов.

Вданнойработебудутисследоватьсявыпрямителинаполупроводниковыхприбор ах, которыевнастоящеевремянаходятнаибольшееприменение. Простейшиевентили (диоды) являютсянеуправляемыми, авентили (тиристоры, транзисторы, электронныелампы), имеющиетретий (управляющий) электрод, составляютширокийклассуправляемыхвентилей.

Основные параметрывы прямителя:

- $\cdot \pmb{U}_{cp}(\pmb{I}_{cp})$ среднее значение выпрямленного напряжения (тока) нагрузки;
- $\cdot \pmb{U}_{m.or}$ амплитуда основной гармоники выпрямленного напряжения;
- $\cdot q_n = U_{m,or}/U_{cp}$ -коэффициент пульсации выпрямленного напряжения.

Основными схемами однофазных выпрямителей являются: однополупериодная и двухполупериодная (мостовая или со средней точкой).

Для преобразования (выпрямления) переменного тока в постоянный ток используют выпрямители. Схемы выпрямления бывают одно- или двухполупериодные. выпрямления После нагрузке протекает пульсирующий пульсацийприменяют Для сглаживания TOK. фильтры. Сглаживающие фильтры предназначены для уменьшения пульс ацийвыпрямленногонапряжениянанагрузкедозначений, прикоторыхнесказываетсяихотрицательноевлияниенаработуэлектронн ойаппаратуры.

Онидолжныпропускатьпостояннуюсоставляющуювыпрямленногонапря женияизаметноослаблятьегогармоническиесоставляющие.

Действие фильтра по уменьшению пульсации напряжения (тока) на нагрузке характеризуется коэффициентом сглаживания k_c , представляющим собой отношение коэффициента

пульсации на выходе выпрямителя q_n (до фильтра) к коэффициенту пульсации на нагрузке q_{n1} (после фильтра), т. е.

$$\mathbf{Kc} = \frac{q_n}{q_{n1}}$$

Различают пассивные и активные сглаживающие фильтры. Принцип работы *пассивных* **LC-**фильтров основан на способности индуктивных катушек (дросселей) и конденсаторов изменять свои сопротивления при изменении частоты протекающего через них тока.

На рисунке 1 приведены схемы простейших однофазных сглаживающих **LC**-фильтров широкого применения.

Рисунок 1-Схемы простейших однофазных сглаживающих **LC**-фильтров Широкого применения

Ёмкостный фильтр**С** (рисунок 1, a) включается параллельно высокоомной нагрузке R_{H} , что исключает прохождение через нагрузку высокочастотных гармонических составляющих тока.

Сглаживание пульсаций напряжения и тока нагрузки происходит за счёт периодической зарядки конденсатора C фильтра (когда напряжение $u_{\scriptscriptstyle B} > u_{\scriptscriptstyle C}$) и последующей его разрядки на сопротивление нагрузки при $u_{\scriptscriptstyle B} < u_{\scriptscriptstyle C}$.

Временные диаграммы выпрямленного напряжения $u_{\scriptscriptstyle B}$ двухполупериодного выпрямителя и напряжения на нагрузке $u_{\scriptscriptstyle H}$, поясняющие принцип действия ${\it C}$ -фильтра, изображены на рисунке 2, ${\it a}$.

2.1.2. В схемах двухполупериодных выпрямителей (рисунки и 2) диоды VD1-VD10 преобразуют синусоидальное напряжение источника в пульсирующее. Нагрузкой служит резистор $R = 1 \ \kappa Om$. Параллельно ему подключён конденсатор с ёмкостью С-простейший сглаживающий фильтр. Вольтметр PV показывает среднее значение выпрямленного напряжения $U_{cp.}$ на нагрузке. Для измерения максимальных значений выпрямленного напряжения в работе используется осциллограф.

2.2 Работа на компьютере

2.2.1 Поочерёдно «собрать» схемы выпрямителей (рисунки 5.1;5.2 и 5.3).

Для выбора диода **двойным нажатием клавиши «мыши» на его изображении** открыть окно параметров (см. рисунок 5.1 «Инструкции пользователю программой...»). В окне **DiodeProperties** выбрать **Models**, затем в окне **Library**— **Philips**, а в окне **Model** — выбрать сверху по порядку номер диода, который соответствует Вашему номеру в журнале группы.

Выбрать следующие параметры источника синусоидального напряжения: E=10B; частота f=50 Γu ; начальная фаза ψ_e ЭДС однофазного источника равна $\underline{0}^\circ$, в трёхфазном – отличаются в фазах на $\underline{120}^\circ$, а в пятифазном – на $\underline{72}^\circ$, начиная \underline{c} $\underline{0}^\circ$. Сопротивление вольтметра (типа «DC») не изменять.

Для выбора осциллографа открыть . На рабочем столе появится осциллораф.

2.2.2 «Включить» схему и, изменяя ёмкость конденсатора в соответствии с заданием в таблице (C= 0,0000001, 10, 50, 100, 200 и 300 мк Φ), записать в таблицу показания вольтметра PV (средние значения напряжения $U_{\rm cp}$).

Дляизмерения максимального значения напряжения *U*_шиспользовать осциллограф. Двойным нажатием левой клавиши «мыши» на изображении осциллографа открыть его лицевую панель и, нажав *Expand*, увеличить окно. Установить усиление каналов Cannel «A»-20V/Div, а разверткуTimebaze-5 ms/div для наблюдения на экране двух-трёх периодов напряжения.

Максимальное напряжение измерять с помощью визирной вертикальной линии (красного или синего цвета). Перемещая линию по горизонтали, каждый раз её следует устанавливать на максимальном значении кривой выпрямленного напряжения. Отсчитывать напряжение можно в окне осциллографа (рис.5.4).

			$e_1^-e_5$	VD1-VL	 			
Схема Выпря мителя	Парам	иетры	Без фильтра (C=0)	→ 10 +	Ёмкость	конденсат + 100	ораС, <i>мк</i> Ф — <mark>2</mark> 00	300
	_	$U_{\mathrm{cp}}B$	7,4	10	12.16 R _H	12. 14 сцил	лограф.28	12.2
Одно фазный	изм.	$U_{\mathrm{m}}B$	12,3	13,13	13.09	12.5/3	12.5	12.36
физивии	рассч	q		→	H	A	PV	
	_	$U_{\mathrm{cp}}B$	19.85	11.87	13.01	13.1	<u>13</u> .13	13.17
Трёх фазный	изм.	$U_{\mathrm{m}}B$	13.11	13.88	Рис. 3.94	13.63	13.54	13.44
физлын	рассч	q						
	****	$U_{\mathrm{cp}}B$	11.36	12.19	13.03	13.13	13.15	13.16
Пяти фазный	изм.	$U_{\rm m}B$	13.27	14.1	14.12	13.27	13.56	13.42
физиви	рассч	q						

Таблица 5.1

3. По результатам работы

3.1.**Рассчитать коэффициенты пульсаций** выпрямленного напряжения по Формуле: $q=U_{\rm m}/U_{cp}$ приC= 0, 10, 50, 100, 200 и 300 мк Φ . Результаты записать в таблицу.

3.2. *Построить* в одной системе координат графики q(C).

3.33*anucamь выводы* о влиянии схем выпрямления и ёмкости конденсатора на коэффициент пульсаций выпрямленного напряжения.

4 Содержание отчёта

- 4.1 Заполненная таблица и осциллограммы напряжений.
- 4.2 Графики зависимостей q(C).
- 4.3 Выводы.

5 Контрольные вопросы

- 5.1 Какое свойство диода используют для преобразования переменного тока в постоянный?
- 5.2 Для каких целей применяют выпрямители?
- 5.3 Каковы отличительные особенности двухполупериодной схемы выпрямления (по сравнению с однополупериодной)?
- 5.4 Как влияет конденсатор на пульсацию выпрямленного напряжения?

Графики к работе №6

Вывод:

Лабораторно-практическое занятие №8 УСИЛИТЕЛЬ ПОСТОЯННОГО ТОКА

- 1.1 Изучить схемы и характеристики усилителей постоянного тока.
- 1.2 Экспериментально снять амплитудные и частотные характеристики усилителя при изменении глубины обратной связи.
 - 1.3 Записать выводы по результатам.

Усилители постоянного тока — электронные устройства, предназначенные для усиления медленно изменяющихся во времени сигналов. В настоящее время наиболее важной разновидностью УПТ является *операционный усилитель* (OY).

Операционный усилитель ОУ) — это усилитель постоянного тока (УПТ) в интегральном исполнении с двумя входами (инвертирующим и неинвертирующим), или как говорят, с <u>дифференциальным входом</u>, с большим коэффициентом усиления для дифференциального сигнала, с большим входным и малым выходным сопротивлениями.

Первоначально операционными (решающими) усилителями назывались УПТ для выполнения математических операций в аналоговых вычислительных машинах (суммирование, вычитание, интегрирование и т.д.). С появлением ОУ в интегральном исполнении их область применения существенно расширилась, и они превратились в универсальные электронные компоненты для построения разнообразных электронных устройств.

Операционный усилитель(ОУ, *OpAmp*) — усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение, как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с

характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Существует несколько вариантов подачи сигнала на входы. Основными являются **дифференциальный** и **синфазный**сигналы.Все операционные усилители работают в режиме с очень глубокой обратной связью. А коэффициент усиления по напряжению может достигать даже значений в несколько миллионов.

Дифференциальным(симметричным) называется такой входной сигнал $\mathbf{U}_{\text{вх.д}}$, при котором его половина $u_{\text{вх.д}}/2$ подаётся относительно общей точки схемы на один вход, а другая половина подаётся в противофазе на второй вход, т.е.

$$u_{\text{B}\times 1} = \frac{u_{\text{B}\times .A}}{2}, u_{\text{B}\times 2} = -\frac{u_{\text{B}\times .A}}{2} = -u_{\text{B}\times 1}.$$

ОУ имеет два входа:

- 1) **инвертирующий**, напряжение на котором сдвинуто по фазе на 180° относительно выходного;
- 2) неинвертирующий, на котором напряжение совпадает по фазе с выходным.

Основные параметры ОУ

Коэффициент усиления по напряжению**Ки**, измеренный на низких частотах, без**О.О.С.**

Существует две схемы соединения сопротивлений Отрицательной Обратной Связи (О.О.С.):

Первая схема с последовательной О.О.С. по напряжению, вторая - с параллельной О.О.С по напряжению.

Если в **цепи О.С**.применяются**резисторы**, то получаются схемы **масштабных усилителей.Достоинством этой схемы является высокое входное сопротивление О.О.С.** (последовательного типа). Если бы Rвх.сф→∞, то:

$$R \, \mathbf{6} x.o.c = (1 + \chi Ku) \cdot R \, \mathbf{6} x.\partial \, \phi = \frac{Ku}{Ku.o.c} \cdot R \, \mathbf{6} x.\partial \, \phi$$

На самом деле **Rbx.o.c**для дифференциального сигнала не может превысить **Rbx.cф**для синфазного сигнала.

- 2.1.2 По формуле, приведённой в таблицах 6.1 и 6.2, *рассчитать* глубину обратной связи усилителя β для трёх значений сопротивления R_2 (с учётом варианта N— вашего номера в журнале группы). Результаты *записать* в таблицы 6.1 и 6.2.
 - 2.2 Работа на компьютере
 - 2.2.1 Показать преподавателю подготовленный отчёт.
- 2.2.2 «Собрать» схему (рисунок). В качестве усилителя постоянного тока выбрать операционный усилитель модели 741. Для этого в окне элементов (см. рисунок 6.1 «Инструкции пользователю программой») нажать клавишу с изобратель, изоткрывшегося окна «мышью» переместить в рабочее окно операционный у изображением которого появится надпись «741».

Источником входного напряжения U_{6x} выбрать источник синусоидальной ЭДС (~220, 50 Γ μ и начальной фазой равной 0°).

Сопротивления резисторов в схеме: R_1 =1 κOm , R_3 =1 κOm , R_2 — задано в таблицах 6.1 и 6.2. Сопротивления вольтметров (типа «АС») оставить без изменений 1 MOm, а напряжения источников питания(постоянного тока) U_1 и U_2 — по 15В.

2.2.3 Поочерёдно устанавливая глубину обратной связи β для заданных входных напряжений (см. таблицу 1) и резистора R_2 , снять семейство амплитудных характеристик усилителя $U_{\text{вых.}}(U_{\text{вх.}})$. Результаты записать эту таблицу.

2.2.4 Поочерёдно устанавливая глубину обратной связи β при входном напряжении, равном 1 MB (см. таблицу 2), **снять семейство частотных характеристик** $U_{\text{вых}}(f)$. Результаты записать в эту таблицу.

3. По результатам занятия

3.1 По показаниям вольтметров рассчитать коэффициенты усиления Кии коэффициенты обратной связиКо.с.(формулы приведены в

таблицах 1 и 2). Результаты записать в эти таблицы.

- 3.2 **Построить** (по данным таблицы 2) экспериментальные и расчётные зависимости**Ки**и **Ко.с.** от частоты при $R_2 = 30 \cdot N$, **к**Ом.
- 3.3**Записать выводы** о характере полученных зависимостей.

Свх,мВ	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	
$U_{\scriptscriptstyle 6bix}$, $_{\rm B}$	R_2 =10· N , κO_M	0.0002	0.0004	0.0006	0.0007	0.0009	0.0012	0.0014	0.00159
приглубине обратной	$R_2=30\cdot N$, κO_M	0.0002	0.000 4 2	0.0007	0.00009	0.0011	0.0014	0.0016	0.0018
СВЯЗИ	R ₂ = 50·N , кОм	0.0002	0.0004	0.0006	0.0008	0.001	0.0012	0.0014	0.0016

рассчи- тать	$K_U=U_{\scriptscriptstyle 6blx}/U_{\scriptscriptstyle 6x.}$ (при $R_2=30\cdot N, \kappa O_M)$				
	$K_{0.c.} = Ku/(1 + \beta \cdot Ku)$				

- 4.2 **Графики зависимостей Ku(f) и Ko.c.(f).** 4.3 Выводы.

Таблица 6.2

	f,кГц (при <i>Uвх</i> = 1 <i>мВ</i>)				5	10	15	20	25	30
U _{вых} при глу обрат	убине	$\beta = R_1/$	$R_2=10\cdot N$,кОм	0.0009 3	0.0009 35	0.0009	0.000 9 5	0.00096	0.00096	0.00097
СВЯ			R_2 =30·N,кОм	0.00016	0.016	0.014	0.0127	0.011	0.0010	0.0086
			$R_2=50\cdot N, \kappa O_M$	0.02 8	0.02 4	0.019	0.01 5	0.01	0.01	0.0086
рассчи-	$K_u =$	$U_{ m \scriptscriptstyle BMX}/U_{ m \scriptscriptstyle BX.}$ (при	ı R ₂ =30·N,кОм)							
тать	$K_{\text{o.c.}} = K_u/(1 + \beta K_u)$									

Графики

Выводы:

СОДЕРЖАНИЕ

	CTL
Тематические планы дисциплины	3
Инструкция по охране труда	3
Общие требования к оформлению отчёта и порядок защиты лабораторных работ	4
Инструкция пользователю программой ElektronicsWorkbench	4
Рекомендуемая литература	5
Самостоятельная работа	7
Часть І. ЭЛЕКТРИЧЕСКИЕ ЦЕПИ	S
Семинар «Расчёт электрической цепи постоянного тока»	C
Л.р. № 1. Неразветвленная цепь постоянного тока	<mark>14</mark>
Л.р. № 2. Реактивные элементы цепи синусоидального тока	16
Л.р. № 3. Резонансы в цепях синусоидального тока	<mark>23</mark>
Л.р. № 4. Трёхфазные цепи	
Часть II. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ И АППАРАТЫ	<mark>25</mark>
Л.р. № 5. Однофазный трансформатор	<mark>25</mark>
Л.р. № 6 Машины постоянного тока	<mark>28</mark>
Часть III. ЭЛЕКТРОННЫЕ ПРИБОРЫ И УСТРОЙСТВА	
Л.р. № 7. Неуправляемые двухполупериодные выпрямители	<mark>31</mark>
Л.р. № 8. Усилитель постоянного тока	34

ЭЛЕТРОТЕХНИКА И ЭЛЕКТРОНИКА. Рабочая тетрадь Кравцов Анатолий Васильевич, Навроцкая Людмила Васильевна.

ElektronicsWorkbench