Árvore B

Prof. Flavio B. Gonzaga flavio.gonzaga@unifal-mg.edu.br Universidade Federal de Alfenas UNIFAL-MG

Sumário

- Árvore B;
 - Introdução;
 - Propriedades;
 - Inserindo nós...;

Introdução

- A Árvore B é uma árvore de busca balanceada;
- Possui duas diferenças básicas, em relação às estudadas até aqui:
 - Um nó pode ter mais de 2 filhos;
 - Pensada para recuperar grandes blocos de informações de memória secundária;
- Inventada por Rudolf Bayer e Edward Meyers McCreight em 1971, enquanto trabalhavam no Boeing Scientific Research Labs;

Wikipedia, 2018.

Propriedades

- Todas as folhas estão no mesmo nível:
- Uma árvore B é definida por um grau mínimo 't' (na prática, que depende do tamanho de um bloco no disco);

Harrio de difi bioco no disco),					
🥯 🗎 🔞 root@ubuntu-note: /home/flavio					
root@ubuntu-note:/home/flavio# df -h					
Sist. Arq.	Tam.	Usado	Disp.	Uso%	Montado em
udev	3,9G	0	3,9G	0%	/dev
tmpfs	787M	9,6M	778M	2%	/run
/dev/sda7	54G	17G	35G	32%	/
tmpfs	3,9G	172M	3,7G	5%	/dev/shm
tmpfs	5,0M	4,0K	5,0M	1%	/run/lock
tmpfs	3,9G	0	3,9G	0%	/sys/fs/cgroup
/dev/sda2	988M	183M	750M	20%	/boot
/dev/sda3	9,1G	22M	8,6G	1%	/tmp
/dev/sda1					/boot/efi
/dev/sda4	138G	75G	56G	58%	/var
/dev/sda6	250G	102G	136G	43%	/home
cgmfs	100K				/run/cgmanager/fs
tmpfs	787M	56K	787M	1%	/run/user/1000
root@ubuntu-note:/home/flavio# blockdevgetbsz /dev/sda6					
4096					
root@ubuntu-note:/home/flavio#					

- O grau de um nó é dado pela quantidade de filhos que o mesmo pode ter, sendo portanto o número de chaves + 1;
- O grau de todo nó, com exceção da raiz, deve ser maior ou igual a t (contendo portanto, t-1 chaves);
- O grau da raiz deve ser maior ou igual a 2 (contendo portanto pelo menos 1 chave);
- O grau de todos os nós (incluindo a raiz) deve ser no máximo igual a 2t (contendo portanto, 2t-1 chaves);
- Todas as chaves de um nó são ordenadas de maneira crescente. O filho entre duas chaves, k1 e k2, possui todas as suas chaves contidas no intervalo entre k1 e k2;
- Árvore B cresce e reduz na raiz, ao contrário das árvores Binárias de Busca, que crescem e reduzem nas folhas;
- A complexidade das operações de Inserção, Remoção e Busca é de O(log n), onde n é o número de elementos da árvore;

- t (grau mínimo) = 3 (2 chaves);
- 2t grau máximo = 6 (5 chaves);
 - Insere(5);

005

- t (grau mínimo) = 3 (2 chaves);
- 2t grau máximo = 6 (5 chaves);
 - Insere(6);

005 006

- t (grau mínimo) = 3 (2 chaves);
- 2t grau máximo = 6 (5 chaves);
 - Insere(7);
 - Insere(9);
 - Insere(12);

005 006 007 009 012

- t (grau mínimo) = 3 (2 chaves);
- 2t grau máximo = 6 (5 chaves);
 - Insere(2);

005 006 007 009 012

- t (grau mínimo) = 3 (2 chaves);
- 2t grau máximo = 6 (5 chaves);

```
- Insere(1);
007
001 002 005 006
009 012
```

- t (grau mínimo) = 3 (2 chaves);
- 2t grau máximo = 6 (5 chaves);

```
- Insere(16);

- Insere(18);

001 002 005 006 009 012 016 018
```

- t (grau mínimo) = 3 (2 chaves);
- 2t grau máximo = 6 (5 chaves);

- t (grau mínimo) = 3 (2 chaves);
- 2t grau máximo = 6 (5 chaves);

- t (grau mínimo) = 3 (2 chaves); 2t grau máximo = 6 (5 chaves);
 - Insere(0)

Referências Bibliográficas

- Estruturas de Dados e Seus Algoritmos. Szwarcfiter J. L.; Markenzon L.. 3a Edição. Editora LTC. 2010.
- Estruturas De Dados Usando C. Tenenbaum A. M.; Langsam Y.; Augenstein M. J.. 1a Edição. Editora Pearson. 1995.
- Introdução a Estruturas de Dados: Com Técnicas de Programação em C.
 Celes W.; Cerqueira R.; Rangel J.. 2a Edição. Editora Elsevier. 2017.
- https://www.geeksforgeeks.org/b-tree-set-1-introduction-2/, acesso em 14/12/2018.
- https://www.youtube.com/watch?v=C_q5ccN84C8, acesso em 14/12/2018.