Math 115B Homework #5

Nathan Solomon

February 28, 2025

Problem 0.1.
Problem 0.2.
(a)
(b)
Problem 0.3.
Problem 0.4.
(a)
(b)
(c)
(d)
Problem 0.5.
Problem 0.6.
(a)
(b)
(c)
Problem 0.7.

(a)	
-----	--

(b)

(c)

(d)

Problem 0.8.

Due: Thursday, February 13th at 11:59pm PT

• All answers should be accompanied with a full proof as justification unless otherwise stated.

- Homeworks should be submitted through Gradescope, which can be found on the course Canvas (Bruin Learn) page.
- As always, you are welcome and encouraged to collaborate on this assignment with other students in this course! However, answers must be submitted in your own words.
- Unless otherwise stated k denotes an arbitrary field and all vector spaces are over k. All inner product spaces are defined over a field F which is either \mathbb{R} or \mathbb{C} .
- You are welcome to use results of previous problems on later problems, even if you do not solve the previous parts.
- 1. $(\frac{-}{5})$ Give an example of an inner product space V and a linear operator (endomorphism) $T:V\to V$ such that the kernel of T and the kernel of T^* are not equal.
- 2. $(\frac{-}{10+10})$ Let V be a finite dimensional inner product space, and let W be a subspace.
 - (a) Prove $V = W \oplus W^{\perp}$.
 - (b) Show that if T is a projection on W along W^{\perp} , then $T = T^*$.
- 3. $(\frac{-}{5})$ Let T be a linear operator on an inner product space V. Prove that $||T(\vec{v})|| = ||\vec{v}||$ for all $\vec{v} \in V$ if and only if $\langle \vec{v}, \vec{w} \rangle = \langle T(\vec{v}), T(\vec{w}) \rangle$ for all $\vec{v}, \vec{w} \in V$.
- 4. $(\frac{-}{4*5})$ For each linear operator T on an inner product space V, determine whether T is normal, self-adjoint, or neither.
 - (a) $V=\mathbb{R}^2$ with the standard inner product, $T(\begin{pmatrix} x \\ y \end{pmatrix})=(\begin{pmatrix} 2x-2y \\ -2x+5y \end{pmatrix})$
 - (b) $V=\mathbb{C}^2$ with the standard inner product, $T(\begin{pmatrix} x \\ y \end{pmatrix})=(\begin{pmatrix} 2x+iy \\ x+2y \end{pmatrix})$
 - (c) $V = \mathbb{R}[x]_{\leq 2}, T(f) = f'$, where $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$.
 - (d) $V = \mathbb{R}^{2 \times 2}$ and $T(M) = M^t$, where $\langle A, B \rangle = \operatorname{trace}(B^*A)$.
- 5. $(\frac{-}{10})$ Let T and U be self-adjoint operators on an inner product space V. Prove that TU is self-adjoint if and only if TU = UT.
- 6. $(\frac{-}{3*5})$ Let V be a complex inner product space, and let T be a linear operator on V. Define

$$T_1 = \frac{1}{2}(T + T^*)$$
 and $T_2 = \frac{1}{2i}(T - T^*)$.

- (a) Prove that T_1 and T_2 are self-adjoint and that $T = T_1 + iT_2$.
- (b) Suppose also that $T=U_1+iU_2$, where U_1 and U_2 are self-adjoint. Prove that $U_1=T_1$ and $U_2=T_2$.
- (c) Prove that T is normal if and only if $T_1T_2 = T_2T_1$.
- 7. $(\frac{-}{5*4})$ Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of V. Prove the following results.
 - (a) If T is self-adjoint, then $T|_W$ is self-adjoint.
 - (b) W^{\perp} is T^* -invariant.
 - (c) If W is both T- and T^* -invariant, then $(T|_W)^*=(T^*)|_W.$
 - (d) If W is both T- and T^* -invariant and T is normal then $T|_W$ is normal.
- 8. $(\frac{-}{5})$ Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of V. Prove that if W is T-invariant, then W is also T^* -invariant. (This problem is a bit harder so the low point total is designed to allow you to skip it without hurting your grade too much.)