Managing mobility

Managed by infrastructure

Approaches

The internet providers can chose among the following:

- Let routing handle it:
 - routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - routing tables indicate where each mobile located
 - no changes to end-systems
- Let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

Direct routing

#card #exam

(Q5)

Steps

- The correspondent send a request to the home agent in order to get the care-of-address
- The home agent responds with the care-of-address that received during the registration event
- 3. The correspondent directly talks with the **visited network** by talking with the **foreign agent**
- 4. The foreign agent sends the packet to the mobile
- 5. The mobile directly responds to the correspondent

Observations

- The overhead during the communication of undirect routing is avoided
- Non-transparent to correspondent, that needs to get the care-of-address
 - **Problem of mobility**: is solved by having the device connecting to the new foreign agent that will connect to the **old one that acts as an hook** and redirects calls to the new one.

Indirect routing

#card #exam

(Q6)

- · Steps of the triangle routing
 - 1. The **correspondent** establishes the communication towards with the **home agent** by using the **permanent address** of the mobile device
 - 2. The home agent forwards the packets to the visited network where the device is by communicating with the **foreign agent**.
 - 3. The foreign agents forwards to the mobile device.
 - 4. The mobile device can talk directly with the correspondent
 - 5. The correspondent will never be able to bypass step 1 and step 2
- Observations
 - Ineffective when correspondent and mobile are in the same visited network
 - Problem of mobility: solved by the home agent just by updating the care-ofaddress to maintain the connection

Cellular networks

GSM Hand-off

#card #exam

(Q7)

Hand-off that is routing call between two base stations managed by the same MSC without interrupting the call

- 1. The old BSS constantly monitors the situations and decides to do an hand-off and sends the request to MSC
 - Stronger signal from the new BSS
 - Loadbalancing

- GSM does not provide the policy, just defines the mechanism
- 2. The MSC sends the request of allocating the channel to new BSS
- 3. New BSS allocates the radio channel
- 4. New BSS informs the old BSS that is ready for the hand-off
- 5. Old BSS tells mobile to hand-off to new BSS
- 6. Mobile connects to new BSS
 - For a small period mobile is connected to both of them
- 7. If successful the mobile confirms the hand-off to MSC
- 8. The mobile confirms the hand-off to old BSS that can free old resources

Managed ad-hoc

Routing

DSR

Route reply without bidirectional links

#card #exam

(Q8)

The target receives a RREQ and replies with RREP on a different path <s,r,q,n> that
has been discovered with a RREQ or it was already in the route cache

- Links are not bidirectional in this case!
- This takes time so the packets that the source wants to send, are kept in a sendbuffer