Методичні вказівки до виконання контрольно-модульної роботи за дисципліною «Методи оптимізації»

Задача о назначениях

Постановка задачи.

Пусть имеется n различных работ и n механизмов для их выполнения, причем каждый механизм может использоваться на любой работе. Производительность каждого механизма работах различна. на различных через c_{ij} производительность i -го механизма на j -той работе. Обозначим Требуется так распределить механизмы ПО работам, чтобы суммарная производительность была максимальной.

Математическая постановка задачи имеет вид:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to max, \tag{1}$$

$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, m, \tag{2}$$

$$\sum_{i=1}^{m} x_{ij} = 1, \quad j = 1, n,$$
(3)

$$x_{ij} = \begin{cases} 0, \\ 1. \end{cases} \tag{4}$$

Алгоритм венгерского метода

Шаг 1. Проводим предварительное преобразование матрицы C.

1.1. В каждом столбце матрицы C находим максимальный элемент и все элементы соответствующего столбца последовательно отнимаем от максимального (для задачи максимизации) или в каждом столбце найдем минимальный элемент и вычтем его из каждого элемента соответствующего столбца (для задачи минимизации). Получим матрицу C'.

 $C_{ij}' = \max C_{ij} - C_{ij}$ (для задачи максимизации),

 $C'_{ij} = C_{ij} - \min_i C_{ij}$ (для задачи минимизации).

1.2. В каждой строке матрицы C' найдем минимальный элемент и вычтем его из каждого элемента соответствующей строки. Получим матрицу C''.

$$C_{ij}'' = C_{ij}' - \min_{i} C_{ij}'.$$

Шаг 2. Рассматривая столбцы матрицы сверху вниз поочередно, помечаем звездочками нули таким образом, чтобы они не лежали в одной строке или одном столбце (в каждом столбце и в каждой строке может быть только один ноль со звездочкой). Если количество поставленных звездочек равно n, то оптимальное решение найдено.

Шаг 3.

- 3.1. Столбцы, в которых есть нули со звездочками, помечаем сверху знаком «+», и далее эти столбцы считают занятыми.
- 3.2. Просматривая строки матрицы слева направо, ищем незанятые нули. Незанятый ноль помечается знаком «'» (штрих).

Если в строке нуля со штрихом есть ноль со звездочкой, то снимаем знак занятости «+» со столбца, где находится ноль со звездочкой, и помечаем знаком «+» справа строку, в которой находится ноль со штрихом. Далее эту строку считаем занятой.

Если в строке нуля со штрихом нет нуля со звездочкой, то переходим к шагу 5.

Если в процессе поиска незанятых нулей оказалось, что незанятых нулей больше нет, то переходим к шагу 4.

- **Шаг 4.** Выбирается минимальный незанятый элемент (h). Число h вычитается из всех незанятых строк и прибавляется ко всем занятым столбцам. Получаем эквивалентную матрицу. В новой матрице все пометки сохраняются. После этого повторяем выполнение шага 3.2.
- **Шаг 5.** Производим построение цепочки из нулей Начиная от последнего отмеченного 0', двигаемся по столбцу к 0*, далее по стоке к 0', и так далее, пока это возможно. Внутри цепочки знаки «*» снимаются, а штрихи заменяются звездочками. После этого все пометки, кроме «*», снимаются и переходим к шагу 3.

Пример 1. Пусть задана матрица эффективностей

$$C = \begin{bmatrix} 1 & 4 & 2 & 8 & 3 & 7 & 3 \\ 2 & 3 & 13 & 9 & 1 & 6 & 7 \\ 12 & 4 & 12 & 5 & 3 & 1 & 4 \\ 5 & 6 & 1 & 7 & 11 & 8 & 6 \\ 11 & 4 & 10 & 10 & 5 & 13 & 7 \\ 9 & 6 & 11 & 12 & 7 & 1 & 2 \\ 2 & 4 & 8 & 5 & 9 & 3 & 10 \end{bmatrix}, n = 7.$$

Шаг 1.1. В каждом столбце находим максимальный элемент и все элементы этого столбца последовательно отнимаем от максимального (для задачи максимизации).

$$\begin{bmatrix} 1 & 4 & 2 & 8 & 3 & 7 & 3 \\ 2 & 3 & 13 & 9 & 1 & 6 & 7 \\ 12 & 4 & 12 & 5 & 3 & 1 & 4 \\ 5 & 6 & 1 & 7 & 11 & 8 & 6 \\ 11 & 4 & 10 & 10 & 5 & 13 & 7 \\ 9 & 6 & 11 & 12 & 7 & 1 & 2 \\ 2 & 4 & 8 & 5 & 9 & 3 & 10 \end{bmatrix}.$$

Максимальные элементы столбцов:

Получили матрицу C'.

Шаг 1.2. В каждой строке найдем минимальный элемент и вычтем его из каждого элемента соответствующей строки. Минимальные элементы для каждой строки показаны справа.

$$C' = \begin{bmatrix} 11 & 2 & 11 & 4 & 8 & 6 & 7 \\ 10 & 3 & 0 & 3 & 10 & 7 & 3 \\ 0 & 2 & 1 & 7 & 8 & 12 & 6 \\ 7 & 0 & 12 & 5 & 0 & 5 & 4 \\ 1 & 2 & 3 & 2 & 6 & 0 & 3 \\ 3 & 0 & 2 & 0 & 4 & 12 & 8 \\ 10 & 2 & 5 & 7 & 2 & 10 & 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Матрица C'' имеет вид:

$$C'' = \begin{bmatrix} 9 & 0 & 9 & 2 & 6 & 4 & 5 \\ 10 & 3 & 0 & 3 & 10 & 7 & 3 \\ 0 & 2 & 1 & 7 & 8 & 12 & 6 \\ 7 & 0 & 12 & 5 & 0 & 5 & 4 \\ 1 & 2 & 3 & 2 & 6 & 0 & 3 \\ 3 & 0 & 2 & 0 & 4 & 12 & 8 \\ 10 & 2 & 5 & 7 & 2 & 10 & 0 \end{bmatrix}.$$

Получилась матрица, эквивалентная исходной матрице C, в каждой строке и столбце которой есть хотя бы один ноль.

Шаг 2. Рассматривая столбцы матрицы сверху вниз поочередно, помечаем звездочками нули таким образом, чтобы они не лежали в одной строке или одном столбце.

$$\begin{bmatrix} 9 & 0* & 9 & 2 & 6 & 4 & 5 \\ 10 & 3 & 0* & 3 & 10 & 7 & 3 \\ 0* & 2 & 1 & 7 & 8 & 12 & 6 \\ 7 & 0 & 12 & 5 & 0* & 5 & 4 \\ 1 & 2 & 3 & 2 & 6 & 0* & 3 \\ 3 & 0 & 2 & 0* & 4 & 12 & 8 \\ 10 & 2 & 5 & 7 & 2 & 10 & 0* \end{bmatrix}.$$

Так как удалось поставить n=7 звездочек, то **оптимальное решение** X* найдено:

Оптимальное значение целевой функции

$$f(X^*) = 4+13+12+11+13+12+10=75.$$

Пример 2. Пусть задана матрица эффективностей

$$C = \begin{bmatrix} 5 & 2 & 9 & 6 & 9 & 5 & 6 & 7 \\ 7 & 2 & 8 & 4 & 4 & 8 & 7 & 9 \\ 6 & 3 & 5 & 5 & 10 & 1 & 5 & 8 \\ 1 & 4 & 4 & 2 & 11 & 2 & 7 & 6 \\ 7 & 2 & 3 & 6 & 12 & 3 & 1 & 10 \\ 12 & 11 & 1 & 7 & 10 & 4 & 11 & 12 \\ 13 & 14 & 15 & 8 & 13 & 13 & 17 & 14 \\ 16 & 17 & 19 & 18 & 14 & 1 & 3 & 7 \end{bmatrix}, n = 8.$$

Шаг 1.1. В каждом столбце находим максимальный элемент и все элементы этого столбца последовательно отнимаем от максимального (для задачи максимизации).

$$C = \begin{bmatrix} 5 & 2 & 9 & 6 & 9 & 5 & 6 & 7 \\ 7 & 2 & 8 & 4 & 4 & 8 & 7 & 9 \\ 6 & 3 & 5 & 5 & 10 & 1 & 5 & 8 \\ 1 & 4 & 4 & 2 & 11 & 2 & 7 & 6 \\ 7 & 2 & 3 & 6 & 12 & 3 & 1 & 10 \\ 12 & 11 & 1 & 7 & 10 & 4 & 11 & 12 \\ 13 & 14 & 15 & 8 & 13 & 13 & 17 & 14 \\ 16 & 17 & 19 & 18 & 14 & 1 & 3 & 7 \end{bmatrix}.$$

Максимальные элементы столбцов:

Получим эквивалентную матрицу C'

$$C' = \begin{bmatrix} 11 & 15 & 10 & 12 & 5 & 8 & 11 & 7 \\ 9 & 15 & 11 & 14 & 10 & 5 & 10 & 5 \\ 10 & 14 & 14 & 13 & 4 & 12 & 12 & 6 \\ 15 & 13 & 15 & 16 & 3 & 11 & 10 & 8 \\ 9 & 15 & 16 & 12 & 2 & 10 & 16 & 4 \\ 4 & 6 & 18 & 11 & 4 & 9 & 6 & 2 \\ 3 & 3 & 3 & 10 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 12 & 14 & 7 \end{bmatrix}, \begin{bmatrix} 5 \\ 5 \\ 4 \\ 2 \\ 2 \\ 0 \\ 0 \end{bmatrix}$$

Шаг 1.2. В каждой строке найдем минимальный элемент и вычтем его из каждого элемента соответствующей строки. Минимальные элементы для каждой строки показаны справа от матрицы C'. Получим эквивалентную матрицу C''.

$$C'' = \begin{bmatrix} 6 & 10 & 5 & 7 & 0 & 3 & 6 & 2 \\ 4 & 10 & 6 & 9 & 5 & 0 & 5 & 0 \\ 6 & 10 & 10 & 9 & 0 & 8 & 8 & 2 \\ 12 & 10 & 12 & 13 & 0 & 8 & 7 & 5 \\ 7 & 13 & 14 & 10 & 0 & 8 & 14 & 2 \\ 2 & 4 & 16 & 9 & 2 & 7 & 4 & 0 \\ 3 & 3 & 3 & 10 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 12 & 14 & 7 \end{bmatrix}.$$

Матрица C'' в каждой строке и каждом столбце содержит хотя бы один ноль.

Шаг 2. Рассматривая столбцы матрицы сверху вниз поочередно, помечаем звездочками нули таким образом, чтобы они не лежали в одной строке или одном столбце.

6	10	5	7	0*	3	6	2]	
4	10	6	9	5	0*	5	0	
6	10	10	9	0	8	8	2	
12	10	12	13	0	8	7	5	
7	13	14	10	0	8	14	2	•
2	4	16	9	2	7	4	0*	
3	3	3	10	1	0	0*	0	
0*	0	0	0	0	12	14	7	

Шаг 3.1. Столбцы, в которых есть нули со звездочками, помечаем сверху знаком «+», и далее эти столбцы считают занятыми.

+				+	+	+	+	
6	10	5	7	0*	3	6	2]	
4	10	6	9	5	0*	5	0	
6	10	10	9	0	8	8	2	
12	10	12	13	0	8	7	5	
7	13	14	10	0	8	14	2	
2	4	16	9	2	7	4	0*	
3	3	3	10	1	0	0*	0	
0*	0	0	0	0	12	14	7	

Шаг 3.2. Просматривая строки матрицы слева направо, ищем незанятые нули. Незанятый ноль помечается знаком «'» (штрих).

+				+	+	+	+	
6	10	5	7	0*	3	6	2]	
4	10	6	9	5	0*	5	0	
6	10	10	9	0	8	8	2	
12	10	12	13	0	8	7	5	
7	13	14	10	0	8	14	2	
2	4	16	9	2	7	4	0*	
3	3	3	10	1	0	0*	0	
0*	0'	0	0	0	12	14	7]	

Для наглядности ноль со штрихом отмечен синим цветом.

Если в строке нуля со штрихом есть ноль со звездочкой, то снимаем знак занятости «+» со столбца, где находится ноль со звездочкой, и помечаем знаком «+» справа строку, в которой находится ноль со штрихом.

				+	+	+	+	
6	10	5	7	0*	3	6	2]	
4	10	6	9	5	0*	5	0	
6	8	8	9	0	8	8	2	
12	10	12	13	0	8	7	5	•
7	13	14	10	0	8	14	2	
2	4	16	9	2	7	4	0*	
3	3	3	10	1	0	0*	0	
0*	0'	0	0	0	12	14	7]	+

Просматривая строки матрицы слева направо, ищем незанятые нули. Незанятых нулей больше нет, поэтому переходим к шагу 4.

Шаг 4. Выбираем минимальный незанятый элемент (h=2). Число h вычитается из всех незанятых строк и прибавляется ко всем занятым столбцам.

$$\begin{bmatrix} 6 & 10 & 5 & 7 \\ 4 & 10 & 6 & 9 \\ 6 & 8 & 8 & 9 \\ 12 & 10 & 12 & 13 \\ 7 & 13 & 14 & 10 \\ 2 & 4 & 16 & 9 \\ 3 & 3 & 3 & 10 \\ 0* & 0' & 0 & 0 \end{bmatrix} \begin{pmatrix} + & + & + & + \\ 0* & 3 & 6 & 2 \\ 5 & 0* & 5 & 0 \\ 0 & 8 & 8 & 2 \\ 0 & 8 & 7 & 5 \\ 0 & 8 & 14 & 2 \\ 2 & 7 & 4 & 0* \\ 1 & 0 & 0* & 0 \\ 0 & 12 & 14 & 7 \end{bmatrix} +$$

Зеленым цветом отмечены элементы матрицы величина которых уменьшается, а красным цветом отмечены элементы матрицы величина которых увеличивается, остальные элементы матрицы не изменяются.

Получаем эквивалентную матрицу.

$$\begin{bmatrix} 4 & 8 & 3 & 5 & 0* & 3 & 6 & 2 \\ 2 & 8 & 4 & 7 & 5 & 0* & 5 & 0 \\ 4 & 6 & 8 & 7 & 0 & 8 & 8 & 2 \\ 10 & 8 & 10 & 11 & 0 & 8 & 7 & 5 \\ 5 & 11 & 12 & 8 & 0 & 8 & 14 & 2 \\ 0 & 2 & 14 & 7 & 2 & 7 & 4 & 0* \\ 1 & 1 & 1 & 8 & 1 & 0 & 0* & 0 \\ 0* & 0' & 0 & 0 & 2 & 14 & 16 & 9 \end{bmatrix} +$$

В новой матрице все пометки сохраняются. После этого повторяем выполнение шага 3.2.

Шаг 3.2. Просматривая строки матрицы слева направо, ищем незанятые нули.

$$\begin{bmatrix} 4 & 8 & 3 & 5 & 0* & 3 & 6 & 2 \\ 2 & 8 & 4 & 7 & 5 & 0* & 5 & 0 \\ 4 & 6 & 8 & 7 & 0 & 8 & 8 & 2 \\ 10 & 8 & 10 & 11 & 0 & 8 & 7 & 5 \\ 5 & 11 & 12 & 8 & 0 & 8 & 14 & 2 \\ \hline 0' & 2 & 14 & 7 & 2 & 7 & 4 & 0* \\ 1 & 1 & 1 & 8 & 1 & 0 & 0* & 0 \\ 0* & 0' & 0 & 0 & 2 & 14 & 16 & 9 \end{bmatrix} +$$

$$\begin{bmatrix} 4 & 8 & 3 & 5 & 0* & 3 & 6 & 2 \\ 2 & 8 & 4 & 7 & 5 & 0* & 5 & 0 \\ 4 & 6 & 8 & 7 & 0 & 8 & 8 & 2 \\ 10 & 8 & 10 & 11 & 0 & 8 & 7 & 5 \\ 5 & 11 & 12 & 8 & 0 & 8 & 14 & 2 \\ 0' & 2 & 14 & 7 & 2 & 7 & 4 & 0* \\ 1 & 1 & 1 & 8 & 1 & 0 & 0* & 0 \\ 0* & 0' & 0 & 0 & 2 & 14 & 16 & 9 \end{bmatrix} +$$

Продолжаем искать незанятые нули.

$$\begin{bmatrix} 4 & 8 & 3 & 5 & 0* & 3 & 6 & 2 \\ 2 & 8 & 4 & 7 & 5 & 0* & 5 & 0' \\ 4 & 6 & 8 & 7 & 0 & 8 & 8 & 2 \\ 10 & 8 & 10 & 11 & 0 & 8 & 7 & 5 \\ 5 & 11 & 12 & 8 & 0 & 8 & 14 & 2 \\ 0' & 2 & 14 & 7 & 2 & 7 & 4 & 0* \\ 1 & 1 & 1 & 8 & 1 & 0 & 0* & 0 \\ 0* & 0' & 0 & 0 & 2 & 14 & 16 & 9 \end{bmatrix} +$$

Если в строке нуля со штрихом есть ноль со звездочкой, то снимаем знак занятости «+» со столбца, где находится ноль со звездочкой, и помечаем знаком «+» справа строку, в которой находится ноль со штрихом.

$$\begin{bmatrix} 4 & 8 & 3 & 5 & 0* & 3 & 6 & 2 \\ 2 & 8 & 4 & 7 & 5 & 0* & 5 & 0' \\ 4 & 6 & 8 & 7 & 0 & 8 & 8 & 2 \\ 10 & 8 & 10 & 11 & 0 & 8 & 7 & 5 \\ 5 & 11 & 12 & 8 & 0 & 8 & 14 & 2 \\ 0' & 2 & 14 & 7 & 2 & 7 & 4 & 0* \\ 1 & 1 & 1 & 8 & 1 & 0 & 0* & 0 \\ 0* & 0' & 0 & 0 & 2 & 14 & 16 & 9 \end{bmatrix} +$$

Ищем незанятые нули.

$$\begin{bmatrix} 4 & 8 & 3 & 5 & 0* & 3 & 6 & 2 \\ 2 & 8 & 4 & 7 & 5 & 0* & 5 & 0' \\ 4 & 6 & 8 & 7 & 0 & 8 & 8 & 2 \\ 10 & 8 & 10 & 11 & 0 & 8 & 7 & 5 \\ 5 & 11 & 12 & 8 & 0 & 8 & 14 & 2 \\ 0' & 2 & 14 & 7 & 2 & 7 & 4 & 0* \\ 1 & 1 & 1 & 8 & 1 & 0' & 0* & 0 \\ 0* & 0' & 0 & 0 & 2 & 14 & 16 & 9 \end{bmatrix} +$$

 $\begin{bmatrix} 4 & 8 & 3 & 5 & 0* & 3 & 6 & 2 \\ 2 & 8 & 4 & 7 & 5 & 0* & 5 & 0' \\ 4 & 6 & 8 & 7 & 0 & 8 & 8 & 2 \\ 10 & 8 & 10 & 11 & 0 & 8 & 7 & 5 \\ 5 & 11 & 12 & 8 & 0 & 8 & 14 & 2 \\ 0' & 2 & 14 & 7 & 2 & 7 & 4 & 0* \\ 1 & 1 & 1 & 8 & 1 & 0' & 0* & 0 \\ 0* & 0' & 0 & 0 & 2 & 14 & 16 & 9 \end{bmatrix} +$

Незанятых нулей больше нет, поэтому переходим к шагу 4.

Шаг 4. Выбираем минимальный незанятый элемент (h=2). Число h вычитается из всех незанятых строк и прибавляется ко всем занятым столбцам.

				+				
4	8	3	5	0*	3	6	2	
2	8	4	7	5	0*	5	0'	+
4	6	8	7	0	8	8	2	
10	8	10	11 8	0	8	7	5 2	
5	8 11	12	8	0	8	14	2	
0'	2	14	7	2	7	4	0*	+
1	1	1	8	1	0'	0*	0	+
0*	0'	0	0	2	7 0' 14	16	9	+

Получаем эквивалентную матрицу.

+0* 0* 7 5 10 12 0 7 4 0* 0' 0 4 14 16

В новой матрице все пометки сохраняются. После этого повторяем выполнение шага 3.2.

Шаг 3.2. Просматривая строки матрицы слева направо, ищем незанятые нули.

 $\begin{bmatrix} 2 & 6 & 1 & 3 & 0* & 1 & 4 & 0' \\ 2 & 8 & 4 & 7 & 7 & 0* & 5 & 0' \\ 2 & 4 & 6 & 5 & 0 & 6 & 6 & 0 \\ 8 & 6 & 8 & 9 & 0 & 6 & 5 & 3 \\ 3 & 9 & 10 & 6 & 0 & 6 & 12 & 0 \\ 0' & 2 & 14 & 7 & 4 & 7 & 4 & 0* \\ 1 & 1 & 1 & 8 & 3 & 0' & 0* & 0 \\ 0* & 0' & 0 & 0 & 4 & 14 & 16 & 9 \end{bmatrix} +$

Если в строке нуля со штрихом есть ноль со звездочкой, то снимаем знак занятости «+» со столбца, где находится ноль со звездочкой, и помечаем знаком «+» справа строку, в которой находится ноль со штрихом.

$$\begin{bmatrix} 2 & 6 & 1 & 3 & 0* & 1 & 4 & 0' \\ 2 & 8 & 4 & 7 & 7 & 0* & 5 & 0' \\ 2 & 4 & 6 & 5 & 0 & 6 & 6 & 0 \\ 8 & 6 & 8 & 9 & 0 & 6 & 5 & 3 \\ 3 & 9 & 10 & 6 & 0 & 6 & 12 & 0 \\ 0' & 2 & 14 & 7 & 4 & 7 & 4 & 0* \\ 1 & 1 & 1 & 8 & 3 & 0' & 0* & 0 \\ 0* & 0' & 0 & 0 & 4 & 14 & 16 & 9 \end{bmatrix} +$$

Продолжаем искать незанятые нули.

Если в строке нуля со штрихом нет нуля со «*», то переходим к шагу 5.

Шаг 5. Производим построение цепочки из нулей Начиная от последнего отмеченного 0', двигаемся по столбцу к 0*, далее по стоке к 0', и так далее, пока это возможно.

$$\begin{bmatrix} 2 & 6 & 1 & 3 & 0* & 1 & 4 & 0' \\ 2 & 8 & 4 & 7 & 7 & 0* & 5 & 0' \\ 2 & 4 & 6 & 5 & 0' & 6 & 6 & 0 \\ 8 & 6 & 8 & 9 & 0 & 6 & 5 & 3 \\ 3 & 9 & 10 & 6 & 0 & 6 & 12 & 0 \\ 0' & 2 & 14 & 7 & 4 & 7 & 4 & 0* \\ 1 & 1 & 1 & 8 & 3 & 0' & 0* & 0 \\ 0* & 0' & 0 & 0 & 4 & 14 & 16 & 9 \end{bmatrix} +$$

Внутри цепочки знаки «*» снимаются, а штрихи заменяются звездочками.

$$\begin{bmatrix} 2 & 6 & 1 & 3 & 0 & 1 & 4 & 0* \\ 2 & 8 & 4 & 7 & 7 & 0* & 5 & 0' \\ 2 & 4 & 6 & 5 & 0* & 6 & 6 & 0 \\ 8 & 6 & 8 & 9 & 0 & 6 & 5 & 3 \\ 3 & 9 & 10 & 6 & 0 & 6 & 12 & 0 \\ 0* & 2 & 14 & 7 & 4 & 7 & 4 & 0 \\ 1 & 1 & 1 & 8 & 3 & 0' & 0* & 0 \\ 0* & 0* & 0 & 0 & 4 & 14 & 16 & 9 \end{bmatrix} +$$

После этого все пометки, кроме «*», снимаются и переходим к шагу 3.

Шаг 3.1. Столбцы, в которых есть нули со звездочками, помечаем сверху знаком «+», и далее эти столбцы считают занятыми.

+	+			+	+	+	+	
2	6	1	3	0	1	4	0*	
2	8	4	7	7	0*	5	0	
2	4	6	5	0*	6	6	0	
8	6	8	9	0	6	5	3	
3	9	10	6	0	6	12	0	
0*	2	14	7	4	7	4	0	
1	1	1	8	3	0	0*	0	
0	0*	0	0	4	14	16	9]	

Шаг 3.2. Просматривая строки матрицы слева направо, ищем незанятые нули.

+	+			+	+	+	+	
[2	6	1	3	0	1	4	0*	
2	8	4	7	7	0*	5	0	
2	4	6	5	0*	6	6	0	
8	6	8	9	0	6	5	3	
3	9	10	6	0	6	12	0	
0*	2	14	7	4	7	4	0	
1	1	1	8	3	0	0*	0	
0	0*	0'	0	4	14	16	9	

Незанятых нулей больше нет, поэтому переходим к шагу 4.

Шаг 4. Выбираем минимальный незанятый элемент (h=1). Число h вычитается из всех незанятых строк и прибавляется ко всем занятым столбцам.

$$\begin{bmatrix} 2 & 6 & 1 & 3 \\ 2 & 8 & 4 & 7 \\ 2 & 4 & 6 & 5 \\ 8 & 6 & 8 & 9 \\ 3 & 9 & 10 & 6 \\ 0* & 2 & 14 & 7 \\ 1 & 1 & 8 \\ 0 & 0* & 0' & 0 \end{bmatrix} \begin{pmatrix} + & + & + & + \\ + & + & + & + \\ 0 & 1 & 4 & 0* \\ 0 & 0* & 5 & 0 \\ 0 & 0* & 6 & 6 & 0 \\ 0 & 6 & 5 & 3 \\ 0 & 6 & 12 & 0 \\ 4 & 7 & 4 & 0 \\ 3 & 0 & 0* & 0 \\ 0 & 0* & 0' & 0 \end{bmatrix} +$$

Получаем эквивалентную матрицу.

В новой матрице все пометки сохраняются. После этого повторяем выполнение шага 3.2.

Шаг 3.2. Просматривая строки матрицы слева направо, ищем незанятые нули.

$$\begin{bmatrix} 2 & 5 & \boxed{0'} & 2 & 0 & 1 & 4 & 0* \\ 2 & 7 & 3 & 6 & 7 & 0* & 5 & 0 \\ 2 & 3 & 5 & 4 & 0* & 6 & 6 & 0 \\ 8 & 5 & 7 & 8 & 0 & 6 & 5 & 3 \\ 3 & 8 & 9 & 5 & 0 & 6 & 12 & 0 \\ 0* & 1 & 13 & 6 & 4 & 7 & 4 & 0 \\ 1 & 0 & 0 & 7 & 3 & 0 & 0* & 0 \\ 1 & 0* & 0' & 0 & 5 & 15 & 17 & 10 \end{bmatrix} +$$

$$\begin{bmatrix} 2 & 5 & 0' & 2 & 0 & 1 & 4 & 0* \\ 2 & 7 & 3 & 6 & 7 & 0* & 5 & 0 \\ 2 & 3 & 5 & 4 & 0* & 6 & 6 & 0 \\ 8 & 5 & 7 & 8 & 0 & 6 & 5 & 3 \\ 3 & 8 & 9 & 5 & 0 & 6 & 12 & 0 \\ 0* & 1 & 13 & 6 & 4 & 7 & 4 & 0 \\ 1 & 0 & 0 & 7 & 3 & 0 & 0* & 0 \\ 1 & 0* & 0' & 0 & 5 & 15 & 17 & 10 \end{bmatrix} +$$

Продолжаем искать незанятые нули.

Отмечаем следующий незанятый ноль.

$$\begin{bmatrix} 2 & 5 & 0' & 2 & 0 & 1 & 4 & 0* \\ 2 & 7 & 3 & 6 & 7 & 0* & 5 & 0' \\ 2 & 3 & 5 & 4 & 0* & 6 & 6 & 0' \\ 8 & 5 & 7 & 8 & 0 & 6 & 5 & 3 \\ 3 & 8 & 9 & 5 & 0 & 6 & 12 & 0 \\ 0* & 1 & 13 & 6 & 4 & 7 & 4 & 0 \\ 1 & 0 & 0 & 7 & 3 & 0 & 0* & 0 \\ 1 & 0* & 0' & 0 & 5 & 15 & 17 & 10 \end{bmatrix} +$$

Если в строке нуля со штрихом есть ноль со звездочкой, то снимаем знак занятости «+» со столбца, где находится ноль со звездочкой, и помечаем знаком «+» справа строку, в которой находится ноль со штрихом.

+						+		
[2	5	0'	2	0	1	4	0*] +
2	7	3	6	7	0*	5	0'	+
2	3	5	4	0*	6	6	0'	+
8	5	7	8	0	6	5	3	
3	8	9	5	0	6	12	0	
0*	1	13	6	4	7	4	0	
1	0	0	7	3	0	0*	0	
_ 1	0*	0'	0	5	15	17	10	_ +

Отмечаем следующий незанятый ноль.

Если в строке нуля со штрихом нет нуля со «*», то переходим к шагу 5.

Шаг 5. Производим построение цепочки из нулей Начиная от последнего отмеченного 0', двигаемся по столбцу к 0*, далее по стоке к 0', и так далее, пока это возможно.

$$\begin{bmatrix} 2 & 5 & 0' & 2 & 0 & 1 & 4 & 0* \\ 2 & 7 & 3 & 6 & 7 & 0* & 5 & 0' \\ 2 & 3 & 5 & 4 & 0* & 6 & 6 & 0' \\ 8 & 5 & 7 & 8 & 0' & 6 & 5 & 3 \\ 3 & 8 & 9 & 5 & 0 & 6 & 12 & 0 \\ 0* & 1 & 13 & 6 & 4 & 7 & 4 & 0 \\ 1 & 0 & 0 & 7 & 3 & 0 & 0* & 0 \\ 1 & 0* & 0' & 0 & 5 & 15 & 17 & 10 \end{bmatrix} +$$

Внутри цепочки знаки «*» снимаются, а штрихи заменяются звездочками.

$$\begin{bmatrix} 2 & 5 & 0* & 2 & 0 & 1 & 4 & 0 \\ 2 & 7 & 3 & 6 & 7 & 0* & 5 & 0' \\ 2 & 3 & 5 & 4 & 0 & 6 & 6 & 0* \\ 8 & 5 & 7 & 8 & 0* & 6 & 5 & 3 \\ 3 & 8 & 9 & 5 & 0 & 6 & 12 & 0 \\ 0* & 1 & 13 & 6 & 4 & 7 & 4 & 0 \\ 1 & 0 & 0 & 7 & 3 & 0 & 0* & 0 \\ 1 & 0* & 0' & 0 & 5 & 15 & 17 & 10 \end{bmatrix} +$$

После этого все пометки, кроме «*», снимаются и переходим к шагу 3.

Шаг 3.1. Столбцы, в которых есть нули со звездочками, помечаем сверху знаком «+», и далее эти столбцы считают занятыми.

+	+	+		+	+	+	+
2	5	0*	2	0	1	4	0]
2	7	3	6	7	0*	5	0
2	3	5	4	0	6	6	0*
8	5	7	8	0*	6	5	3
3	8	9	5	0	6	12	0
0*	1	13	6	4	7	4	0
1	0	0	7	3	0	0*	0
_ 1	0*	0	0	5	15	17	10

Шаг 3.2. Просматривая строки матрицы слева направо, ищем незанятые нули.

+	+	+		+	+	+	+	
2	5	0*	2	0	1	4	0]	
2	7	3	6	7	0*	5	0	
2	5	5	4	0	6	6	0*	
8	5	7	8	0*	6	5	3	•
3	8	9	5	0	6	12	0	
0*	1	13	6	4	7	4	0	
1	0	0	7	3	0	0*	0	
_ 1	0*	0	0'	5	15	17	10	

$$\begin{bmatrix} 2 & 5 & 0* & 2 & 0 & 1 & 4 & 0 \\ 2 & 7 & 3 & 6 & 7 & 0* & 5 & 0 \\ 2 & 3 & 5 & 4 & 0 & 6 & 6 & 0* \\ 8 & 5 & 7 & 8 & 0* & 6 & 5 & 3 \\ 3 & 8 & 9 & 5 & 0 & 6 & 12 & 0 \\ 0* & 1 & 13 & 6 & 4 & 7 & 4 & 0 \\ 1 & 0 & 0 & 7 & 3 & 0 & 0* & 0 \\ 1 & 0* & 0 & 0' & 5 & 15 & 17 & 10 \end{bmatrix} +$$

Продолжаем искать незанятые нули.

Если в строке нуля со штрихом есть ноль со звездочкой, то снимаем знак занятости «+» со столбца, где находится ноль со звездочкой, и помечаем знаком «+» справа строку, в которой находится ноль со штрихом.

+		+		+	+		+	
[2	5	0*	2	0	1	4	0]
2	7	3	6	7	0*	5	0	
2	3	5	4	0	6	6	0*	
8	5	7	8	0*	6	5	3	
3	8	9	5	0	6	12	0	
0*	1	13	6	4	7	4	0	
1	0'	0	7	3	0	0*	0	+
	0*	0	0'	5	15	17	10	+

Незанятых нулей больше нет, поэтому переходим к шагу 4.

Шаг 4. Выбираем минимальный незанятый элемент (h=1). Число h вычитается из всех незанятых строк и прибавляется ко всем занятым столбцам.

$$\begin{bmatrix} 2 & 5 & 0* & 2 & 0 & 1 & 4 & 0 \\ 2 & 7 & 3 & 6 & 7 & 0* & 5 & 0 \\ 2 & 2 & 5 & 4 & 0 & 6 & 6 & 0* \\ 8 & 5 & 7 & 8 & 0* & 6 & 5 & 3 \\ 3 & 8 & 9 & 5 & 0 & 6 & 12 & 0 \\ 0* & 1 & 13 & 6 & 4 & 7 & 4 & 0 \\ 1 & 0* & 0 & 0' & 5 & 15 & 17 & 10 \end{bmatrix} +$$

Получаем эквивалентную матрицу.

$$\begin{bmatrix} 2 & 4 & 0* & 1 & 0 & 1 & 3 & 0 \\ 2 & 6 & 3 & 5 & 7 & 0* & 4 & 0 \\ 2 & 2 & 5 & 3 & 0 & 6 & 5 & 0* \\ 8 & 4 & 7 & 7 & 0* & 6 & 4 & 3 \\ 3 & 7 & 9 & 4 & 0 & 6 & 11 & 0 \\ 0* & 0 & 13 & 5 & 4 & 7 & 3 & 0 \\ 2 & 0' & 1 & 7 & 4 & 1 & 0* & 1 \\ 2 & 0* & 1 & 0' & 6 & 16 & 17 & 11 \end{bmatrix} +$$

В новой матрице все пометки сохраняются. После этого повторяем выполнение шага 3.2.

Шаг 3.2. Просматривая строки матрицы слева направо, ищем незанятые нули.

$$\begin{bmatrix} 2 & 4 & 0* & 1 & 0 & 1 & 3 & 0 \\ 2 & 6 & 3 & 5 & 7 & 0* & 4 & 0 \\ 2 & 2 & 5 & 3 & 0 & 6 & 5 & 0* \\ 8 & 4 & 7 & 7 & 0* & 6 & 4 & 3 \\ 3 & 7 & 9 & 4 & 0 & 6 & 11 & 0 \\ 0* & \boxed{0'} & 13 & 5 & 4 & 7 & 3 & 0 \\ 2 & 0' & 1 & 7 & 4 & 1 & 0* & 1 \\ 2 & 0* & 1 & 0' & 6 & 16 & 17 & 11 \end{bmatrix} +$$

Если в процессе поиска незанятых нулей оказалось, что незанятых нулей больше нет, то переходим к шагу 4.

Шаг 4. Выбираем минимальный незанятый элемент (h=1). Число h вычитается из всех незанятых строк и прибавляется ко всем занятым столбцам.

$$\begin{bmatrix} 2 & 4 & 0* & 1 & 0 & 1 & 3 & 0 \\ 2 & 6 & 3 & 5 & 7 & 0* & 4 & 0 \\ 2 & 2 & 5 & 3 & 0 & 6 & 5 & 0* \\ 8 & 4 & 7 & 7 & 0* & 6 & 4 & 3 \\ 3 & 7 & 9 & 4 & 0 & 6 & 11 & 0 \\ 0* & 0' & 13 & 5 & 4 & 7 & 3 & 0 \\ 2 & 0' & 1 & 7 & 4 & 1 & 0* & 1 \\ 2 & 0* & 1 & 0' & 6 & 16 & 17 & 11 \end{bmatrix} +$$

Получаем эквивалентную матрицу.

$$\begin{bmatrix} 1 & 3 & 0* & 0 & 0 & 1 & 2 & 0 \\ 1 & 5 & 3 & 4 & 7 & 0* & 3 & 0 \\ 1 & 1 & 5 & 2 & 0 & 6 & 4 & 0* \\ 7 & 3 & 7 & 6 & 0* & 6 & 3 & 3 \\ 2 & 6 & 9 & 3 & 0 & 6 & 10 & 0 \\ 0* & 0' & 15 & 5 & 5 & 8 & 3 & 1 \\ 2 & 0' & 2 & 7 & 5 & 2 & 0* & 2 \\ 2 & 0* & 2 & 0' & 7 & 17 & 17 & 12 \end{bmatrix} +$$

В новой матрице все пометки сохраняются. После этого повторяем выполнение шага 3.2.

Шаг 3.2. Просматривая строки матрицы слева направо, ищем незанятые нули.

$$\begin{bmatrix} 1 & 3 & 0* & 0' & 0 & 1 & 2 & 0 \\ 1 & 5 & 3 & 4 & 7 & 0* & 3 & 0 \\ 1 & 1 & 5 & 2 & 0 & 6 & 4 & 0* \\ 7 & 3 & 7 & 6 & 0* & 6 & 3 & 3 \\ 2 & 6 & 9 & 3 & 0 & 6 & 10 & 0 \\ 0* & 0' & 15 & 5 & 5 & 8 & 3 & 1 \\ 2 & 0' & 2 & 7 & 5 & 2 & 0* & 2 \\ 2 & 0* & 2 & 0' & 7 & 17 & 17 & 12 \end{bmatrix} +$$

Незанятых нулей больше нет, то переходим к шагу 4.

Шаг 4. Выбираем минимальный незанятый элемент (h=1). Число h вычитается из всех незанятых строк и прибавляется ко всем занятым столбцам.

				+	+		+	
[[] 1	3	3 ()* 0'	0	1	2	0	+
1	5	5 3	3 4	7	0*	3	0	
1	1	1 5	5 2	0	6	4	0*	
7	3	3 7	7 6	k 0	6	3	3	
2	. 6	5 9	3	$\int 0$	6	10	0	
0	* ()' 15	5 5	5	8) 3	1	+
2	. ()' 2	2 7	5	2	0 *	2	+
_ 2	()* 2	2 0'	7	17	17	12	+

Получаем эквивалентную матрицу.

В новой матрице все пометки сохраняются. После этого повторяем выполнение шага 3.2.

Шаг 3.2. Просматривая строки матрицы слева направо, ищем незанятые нули.

				+	+		+	
\[\] 1	3	0*	0'	1	2	2	1 -	+
0'	4	2	3	7	0*	2	0	
0	0	4	1	0	6	3	0*	
6	2	6	5	0*	6	2	3	
1	5	8	2	0			0	
0*	0'	14	5	6	9	3	2	+
2	0'	2	7			0*		ı
_ 2	0*	2	0'	8	18	17	13	+

Если в строке нуля со штрихом есть ноль со звездочкой, то снимаем знак занятости «+» со столбца, где находится ноль со звездочкой, и помечаем знаком «+» справа строку, в которой находится ноль со штрихом.

$$\begin{bmatrix} 1 & 3 & 0* & 0' & 1 & 2 & 2 & 1 \\ 0' & 4 & 2 & 3 & 7 & 0* & 2 & 0 \\ 0 & 0 & 4 & 1 & 0 & 6 & 3 & 0* \\ 6 & 2 & 6 & 5 & 0* & 6 & 2 & 3 \\ 1 & 5 & 8 & 2 & 0 & 6 & 9 & 0 \\ 0* & 0' & 14 & 5 & 6 & 9 & 3 & 2 \\ 2 & 0' & 2 & 7 & 6 & 3 & 0* & 3 \\ 2 & 0* & 2 & 0' & 8 & 18 & 17 & 13 \end{bmatrix} +$$

Ищем незанятые нули.

$$\begin{bmatrix} 1 & 3 & 0* & 0' & 1 & 2 & 2 & 1 \\ 0' & 4 & 2 & 3 & 7 & 0* & 2 & 0 \\ 0' & 0 & 4 & 1 & 0 & 6 & 3 & 0* \\ 6 & 2 & 6 & 5 & 0* & 6 & 2 & 3 \\ 1 & 5 & 8 & 2 & 0 & 6 & 9 & 0 \\ 0* & 0' & 14 & 5 & 6 & 9 & 3 & 2 \\ 2 & 0* & 2 & 0' & 8 & 18 & 17 & 13 \\ \end{bmatrix} + +$$

Ищем незанятые нули.

$$\begin{bmatrix} 1 & 3 & 0* & 0' & 1 & 2 & 2 & 1 \\ 0' & 4 & 2 & 3 & 7 & 0* & 2 & 0 \\ 0' & 0 & 4 & 1 & 0 & 6 & 3 & 0* \\ 6 & 2 & 6 & 5 & 0* & 6 & 2 & 3 \\ 1 & 5 & 8 & 2 & 0 & 6 & 9 & 0' \\ 0* & 0' & 14 & 5 & 6 & 9 & 3 & 2 \\ 2 & 0* & 2 & 0' & 8 & 18 & 17 & 13 \end{bmatrix} +$$

Если в строке нуля со штрихом нет нуля со «*», то переходим к шагу 5.

Шаг 5. Производим построение цепочки из нулей Начиная от последнего отмеченного 0', двигаемся по столбцу к 0*, далее по стоке к 0', и так далее, пока это возможно.

 $\begin{bmatrix} 1 & 3 & 0* & 0' & 1 & 2 & 2 & 1 \\ 0' & 4 & 2 & 3 & 7 & 0* & 2 & 0 \\ 0' & 0 & 4 & 1 & 0 & 6 & 3 & 0* \\ 6 & 2 & 6 & 5 & 0* & 6 & 2 & 3 \\ 1 & 5 & 8 & 2 & 0 & 6 & 9 & 0' \\ 0* & 0' & 14 & 5 & 6 & 9 & 3 & 2 \\ 2 & 0' & 2 & 7 & 6 & 3 & 0* & 3 \\ 2 & 0* & 2 & 0' & 8 & 18 & 17 & 13 \end{bmatrix} +$

Внутри цепочки знаки «*» снимаются, а штрихи заменяются звездочками.

+

 $\begin{bmatrix} 1 & 3 & 0* & 0' & 1 & 2 & 2 & 1 \\ 0' & 4 & 2 & 3 & 7 & 0* & 2 & 0 \\ 0* & 0 & 4 & 1 & 0 & 6 & 3 & 0 \\ 6 & 2 & 6 & 5 & 0* & 6 & 2 & 3 \\ 1 & 5 & 8 & 2 & 0 & 6 & 9 & 0* \\ 0 & 0* & 14 & 5 & 6 & 9 & 3 & 2 \\ 2 & 0' & 2 & 7 & 6 & 3 & 0* & 3 \\ 2 & 0 & 2 & 0* & 8 & 18 & 17 & 13 \end{bmatrix} +$

После этого все пометки, кроме «*», снимаются и переходим к шагу 3.

		, I	,				. ' ·	
1	3	0*	0	1	2	2	1	
0	4	2	3	7	0*	2	0	
0*	0	4	1	0	6	3	0	
6	2	6	5	0*	6	2	3	
1	5	8	2	0	6	9	0*	'
0	0*	14	5	6	9	3	2	
2	0	2	7	6	3	0*	3	
2	0	2	0*	8	18	17	13	

Шаг 3.1. Столбцы, в которых есть нули со звездочками, помечаем сверху знаком «+», и далее эти столбцы считают занятыми.

Так как удалось поставить n=8 звездочек, оптимальное решение найдено. Оно имеет вид: