Ray-Object Intersections

Mathematics

- The heart of any ray tracer, or ray casting for hidden surface removal, is the intersection routines.
- Each kind of primitive has different properties, so we have different intersection equations.

Parametric Ray Equation

- Let
 - the COP be $\mathbf{P}_0 = (x_0, y_0, z_0)^{\mathsf{T}}$ and
 - the viewing direction be $\mathbf{D} = (d_x, d_y, d_z)^T$
- Any point P lying on the eye ray is given by:

$$\mathbf{P} = \mathbf{P}_0 + \mathbf{D} t$$

• Or writing each coordinate separately:

$$x = x_0 + d_x t$$

$$y = y_0 + d_y t$$

$$z = z_0 + d_z t$$

Ray Parameterization

• The parametric ray equation is given by:

$$\mathbf{P} = \mathbf{P}_0 + \mathbf{D} \, \mathbf{t}$$

Points along the line of sight is parametrized by t:

t = 0, at COP (eye/viewpoint)

t < 0, behind COP

t > 0, in front of COP

Mathematics

Consider an implicit surface (i.e., spheres and other quadrics defined by an implicit equation)

$$F(x,y,z)=0$$

 In the following, all surface equations are assumed to be in the object space coordinate system. Therefore, we need to transform the ray before testing for intersection.

Intersecting Spheres

The (implicit) equation of a unit sphere is given by:

$$x^2 + y^2 + z^2 = 1$$

 Assuming a unit sphere (radius is equal to one). Substituting the parametric ray equation yields the following:

$$(d_x^2 + d_y^2 + d_z^2) t^2 + 2(d_x x_0 + d_y y_0 + d_z z_0) t + (x_0^2 + y_0^2 + z_0^2) - 1 = 0$$

which is a quadratic equation in t.

Intersecting Spheres

- Solving the quadratic equation in t gives the solution.
- Ray misses the sphere if the discriminant is negative.
- If the discriminant is non-negative, the smallest positive t is taken.
- Then, the intersection point is given by:

$$x = x_0 + d_x t_1$$

 $y = y_0 + d_y t_1$
 $z = z_0 + d_z t_1$

Possible cases

- 1. Ray intersects sphere twice with t>0
- 2. Ray tangent to sphere
- 3. Ray intersects sphere with t<0
- 4. Ray originates inside sphere
- 5. Ray does not intersect sphere

- Solving a ray-plane equation determines if the ray hits the polygon plane. It is followed by an extent check to see if the ray hits the polygon.
- Again, let's write the ray equation as:

$$\mathbf{P} = \mathbf{P}_0 + \mathbf{D} \, \mathbf{t}$$

which defines a ray as:

$$\mathbf{P}_0 = (x_0, y_0, z_0)^T$$

$$\mathbf{D} = (d_x, d_y, d_z)^T$$

Define the plane in terms of [A B C D] as:

$$A x + B y + C z + D = 0$$

Note: the unit vector normal of the plane is defined by:

$$\mathbf{P}_{\text{normal}} = \mathbf{P}_{\text{n}} = [A B C]^{\mathsf{T}}$$

• Substituting the ray equation into the plane equation yields:

$$A(x_0 + d_x t) + B(y_0 + d_y t) + C(z_0 + d_z t) + D = 0$$

• Solving for t $t = \frac{-(Ax_0 + By_0 + Cz_0 + D)}{Ad_x + Bd_y + Cd_z}$

In vector form, the equation becomes $t = \frac{-(P_n : P_0 + D)}{P \cdot D}$

• The vector equation will have no solution if the dot product of \mathbf{P}_n and \mathbf{D} is zero (ray direction exactly perpendicular to plane normal).

• Define

$$V_d = P_n \cdot D$$

 $V_0 = -(P_n \cdot P_0 + D)$

• Hence,

$$t = v_0 / v_d$$

- If t < 0, then the line defined by the ray intersects the plane behind the COP. Therefore, no intersection actually occurs.
- Else, the intersection point is given by:

$$\mathbf{P} = \mathbf{P}_0 + \mathbf{D} \left(\mathbf{v}_0 / \mathbf{v}_d \right)$$

Possible Cases

 Further extent check is required if the intersection point lies within the region bounded by the quadrilaterals

- If dot product of 4 directed edges with vector to intersection point have same sign, it lies inside
- Same method works for other convex polygons

Intersecting a disk

- Intersecting circles is similar to intersecting quadrilaterals
- The extent check, after computing the intersection point, becomes one of using the circle equation
- Consider a circle lying on the z=0 plane. If the ray intersects the z=0 plane, it also intersects the circle if:

$$x^2 + y^2 - 1 \le 0$$

Intersecting Cylinders

• Recall the parametric ray equation is:

$$x = x_0 + d_x t$$
$$y = y_0 + d_y t$$

- The equation for an infinite cylinder (along t Z-axis) is:
- Substituting the ray equation yields a quadratic equation in t: $x^2 + y^2 1 = 0$

• An extent check (is applied) for -a (finite of -a) in -a

$$t^{2}(d_{x}^{2} + d_{y}^{2}) + 2(x_{0}d_{x} + y_{0}d_{y})t + (x_{0}^{2} + y_{0}^{2}) - 1 = 0$$

Intersecting Cones

The implicit equation for a cone is

$$x^2 + y^2 - z^2 = 0$$

Substituting the ray equation into the above yields a quadratic equation in t :

$$(x_0 + d_x t)^2 + (y_0 + d_y t)^2 - (z_0 + d_z t)^2 = 0$$

$$t^2 (d_x^2 + d_y^2 - d_z^2) + 2(x_0 d_x + y_0 d_y - z_0 d_z)t + (x_0^2 + y_0^2 - z_0^2) = 0$$

 Compute the discriminant, and solve for t if the discriminant is nonnegative.