Survey on Emotion Recognition through Posture Detection and the possibility of its application in Virtual Reality

Leina Elansary leina.saad@cis.asu.edu.eg

Master's student, Faculty of Computer and Information Sciences, Ain Shams University, Egypt.

Zaki Taha zaki.taha@cis.asu.edu.eg

Professor of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Egypt.

Walaa Gad walaagad@cis.asu.edu.eg

Professor of InformationSystems, Faculty of Computer and Information Sciences, Ain Shams University, Egypt

Abstract

A survey is presented focused on using pose estimation techniques in Emotional recognition using various technologies normal cameras, and depth cameras for real-time, and the potential use of VR and inputs including images, videos, and 3-dimensional poses described in vector space. We discussed 19 research papers collected from selected journals and databases highlighting their methodology, classification algorithm, and the used datasets that relate to emotion recognition and pose estimation. A benchmark has been made according to their accuracy as it was the most common performance measurement metric used. We concluded that the multimodal Approaches overall made the best accuracy and then we mentioned futuristic concerns that can improve the development of this research topic.

Introduction

Emotion recognition is one of the main vital tasks essential for having an intelligent system or application. Dealing with humans requires understanding their own emotions so that the human feels comfortable and the communication becomes more spontaneous which reflects on the efficiency of the service provided by the system/application. Emotions can be measured from multiple modalities like reading facial expressions, gesture detection, static posture, movement behavior, vocal tones, and text. When interacting with another human, you might know his current emotions from only seeing his face and sometimes the eyes can do the trick, or from his vocal tone, his posture - the way he is standing- or from the pattern of his movements, the gestures he is making or the context of his words whether those words are said or written - you can read an article and still visualize the emotions the writer has been through- or you can combine two or more modalities together which increases the efficiency of the human's predictions. Computer models are being trained to recognize the above models far above is the physical measurement which may include using sensors and actuators to measure physiological patterns that are hard for the computer to measure like measuring the heart rate, body temperature, and skin sensitivity(Picard, R.W. and Vyzas, E. and Healey, J., n.d.). Those extra modalities shall prepare the computer to be able to measure emotions accurately even more than humans, which is not currently reached. We will discuss the challenges being faced in this field and how some papers overcome those challenges. Some modalities can provide reliable measurements on their own or they may be used only to enhance the recognition of another

modality and may not produce accurate results once used by themselves. In this paper, Our main focus will be on using the Pose estimation modality or posture recognition to measure the emotions of the human interacting with affective systems. The body posture or the pose can be detected from static images taken by a camera, image sequences (captured from videos) whether they are previously captured or provided in real-time, using a depth camera like Kinect which is usually used in providing real-time data, or finally using the Virtual reality technology which is usually real-time also. The images provide 2D coordinate system data unless a 2D to 3D conversion algorithm is implemented and that provides us with 3D coordinate system data or by using simply the depth camera or a VR device and sometimes it shall be equipped with external sensors to provide a full body detection including the lower body.

Research Question: What techniques and methodologies are used in literature to detect emotions through posture recognition?

Objectives:

- Observe how frequently each technology is Used.
- List the measurement metric of each methodology.
- explore the possibility of using Virtual Reality in the task of emotion recognition through posture detection.

Those keywords were chosen while doing the systematic review to be used in the academic databases and journals: Emotion Recognition/Detection AND Posture/Pose. The Virtual Reality keyword shall be used later in the paper classification step. The review shall be held from year 2019 to 2023. After the systematic review, we noticed the absence of Virtual reality usage and one of the main objectives of this survey paper was to explore the possibility of using Virtual reality technology in Pose detection so we added the Virtual Reality journal to the above, when those queries were used "Pose in Virtual Reality", "Pose estimation in Virtual Reality", "Pose detection in Virtual Reality" no results were found till 5/2024 but by combining the Pose and Virtual reality keywords we reached 184 research article which was refined for relevance according to their title and abstract.

References

Ajili, I., Mallem, M., & Didier, J.-Y. (2019). Human motions and emotions recognition inspired by LMA qualities. *The Visual Computer*, *35*(10), 1411–1426. https://doi.org/10.1007/s00371-018-01619-w

Amara, K., Kerdjidj, O., & Ramzan, N. (2023). Emotion Recognition for Affective Human Digital Twin by Means of Virtual Reality Enabling Technologies. *IEEE Access*, *11*, 74216–74227. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3285398

Annotations in the EMOTIC dataset. (n.d.). https://s3.sunai.uoc.edu/emotic/annotations.html

Aslanyan, M. (2024). On Mobile Pose Estimation and Action Recognition Design and Implementation. *Pattern Recognition and Image Analysis*, *34*(1), 126–136. https://doi.org/10.1134/S1054661824010036

Brain4Cars dataset. (n.d.). [Dataset]. http://brain4cars.com/

BRED Dataset. (n.d.). [Dataset]. https://zenodo.org/records/3233060

Celeghin A, Diano M, Bagnis A, Viola M and Tamietto M. (2017). Basic Emotions in Human Neuroscience: Neuroimaging and Beyond. *Rontiers in Psychology*. https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2017.01432/full

Crenn, A., Meyer, A., Konik, H., Khan, R. A., & Bouakaz, S. (2020). Generic Body Expression Recognition Based on Synthesis of Realistic Neutral Motion. *IEEE Access*, 8, 207758–207767. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3038473

CUI, M., FANG, J., & ZHAO, Y. (2020). Emotion recognition of human body's posture in open environment. *2020 Chinese Control And Decision Conference (CCDC)*, 3294–3299. https://doi.org/10.1109/CCDC49329.2020.9164551

Dr Wanqing Li (UOW)—MSR Action3D. (n.d.). Retrieved May 26, 2024, from https://sites.google.com/view/wanqingli/data-sets/msr-action3d

Ekaterina Volkova ,Stephan de la Rosa,Heinrich H. Bülthoff ,Betty Mohler. (2014). *The MPI body expressions database* [Dataset]. https://figshare.com/articles/dataset/MPI EMBM Database Mocap Files/1220428

Ekman Paul. (1992). An argument for basic emotions. *Cognitive and Emotion*. https://www.tandfonline.com/doi/abs/10.1080/02699939208411068

EWalk dataset. (n.d.). [Dataset]. https://drive.google.com/drive/folders/1wWL0Yc7Oa7AMm2QqQ4lbtTIRYvMW0L2h

Expressive Hands and Faces (EHF)—V7 Open Datasets. (n.d.). Retrieved May 26, 2024, from https://www.v7labs.com/open-datasets/expressive-hands-and-faces-ehf

Face Tracking for Movement SDK for Unity: Unity | Oculus Developers. (n.d.). Retrieved May 26, 2024, from https://developer.oculus.com/documentation/unity/move-face-tracking/

Filntisis, P. P., Efthymiou, N., Koutras, P., Potamianos, G., & Maragos, P. (2019). Fusing Body Posture With Facial Expressions for Joint Recognition of Affect in Child–Robot Interaction. *IEEE Robotics and Automation Letters*, *4*(4), 4011–4018. IEEE Robotics and Automation Letters. https://doi.org/10.1109/LRA.2019.2930434

Gemep. (n.d.). [Dataset]. https://www.unige.ch/cisa/gemep/

GroupWalk dataset. (n.d.). [Dataset]. https://drive.google.com/drive/folders/1tVoqBaQWa8bsoXr2brxNObaZ3g-FQ5QM

Gunes, H., & M. Piccardi. (2006). FABO [Dataset]. https://www.cl.cam.ac.uk/~hg410/fabo.html

IEMOCAP. (n.d.). [Dataset]. https://sail.usc.edu/iemocap/

Kalampokas, T., Krinidis, S., Chatzis, V., & Papakostas, G. A. (2023). Performance benchmark of

deep learning human pose estimation for UAVs. *Machine Vision and Applications*, *34*(6), 97. https://doi.org/10.1007/s00138-023-01448-5

Keshari, T., & Palaniswamy, S. (2019). Emotion Recognition Using Feature-level Fusion of Facial Expressions and Body Gestures. *2019 International Conference on Communication and Electronics Systems (ICCES)*, 1184–1189. https://doi.org/10.1109/ICCES45898.2019.9002175

Kosti, Ronak and Alvarez, Jose M and Recasens, Adria and Lapedriza, Agata. (2019). *EMOTIC* [Dataset]. https://opendatalab.com/OpenDataLab/EMOTIC

Kumar, L., & Singh, D. K. (2023). Pose image generation for video content creation using controlled human pose image generation GAN. *Multimedia Tools and Applications*. https://doi.org/10.1007/s11042-023-17856-8

Li, H., Yao, H., & Hou, Y. (2024). Hierarchical pose net: Spatial hierarchical body tree driven multi-person pose estimation. *Multimedia Tools and Applications*, 83(2), 6373–6392. https://doi.org/10.1007/s11042-023-15320-1

Liakopoulos, L., Stagakis, N., Zacharaki, E. I., & Moustakas, K. (2021). CNN-based stress and emotion recognition in ambulatory settings. *2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA)*, 1–8. https://doi.org/10.1109/IISA52424.2021.9555508

Malek–Podjaski, M., & Deligianni, F. (2021). Towards Explainable, Privacy-Preserved Human-Motion Affect Recognition. *2021 IEEE Symposium Series on Computational Intelligence (SSCI)*, 01–09. https://doi.org/10.1109/SSCI50451.2021.9660129

Mittal, T., Bera, A., & Manocha, D. (2021). Multimodal and Context-Aware Emotion Perception Model With Multiplicative Fusion. *IEEE MultiMedia*, 28(2), 67–75. IEEE MultiMedia. https://doi.org/10.1109/MMUL.2021.3068387

MoCap. (n.d.). [Dataset]. https://paperswithcode.com/dataset/mocap

Nesrine Fourati, Catherine Pelachaud. (2014). *Emilya: Emotional body expression in daily actions database* [Dataset]. European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2014/pdf/334_Paper.pdf

Papers with Code—AVA Dataset. (n.d.). Retrieved May 26, 2024, from https://paperswithcode.com/dataset/ava

Papers with Code—MSRC-12 Dataset. (n.d.). Retrieved May 26, 2024, from https://paperswithcode.com/dataset/msrc-12

Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A. A., Tzionas, D., & Black, M. J. (2019). Expressive Body Capture: 3D Hands, Face, and Body From a Single Image. *2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 10967–10977. https://doi.org/10.1109/CVPR.2019.01123

Picard, R. (n.d.). *Affective Computing*. MIT Press. https://mitpress.mit.edu/9780262661157/affective-computing/

Picard, R.W. and Vyzas, E. and Healey, J. (n.d.). Toward machine emotional intelligence: Analysis of affective physiological state. *IEEE*. https://ieeexplore.ieee.org/abstract/document/954607

Plutchik. (2017). *Psychoevolutionary Theory of Emotion*. https://link.springer.com/referenceworkentry/10.1007/978-3-319-28099-8 547-1

Prakash, V. G., Kohli, M., Kohli, S., Prathosh, A. P., Wadhera, T., Das, D., Panigrahi, D., & Kommu, J. V. S. (2023). Computer Vision-Based Assessment of Autistic Children: Analyzing Interactions, Emotions, Human Pose, and Life Skills. *IEEE Access*, *11*, 47907–47929. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3269027

Randhavane, T., Bhattacharya, U., Kapsaskis, K., Gray, K., Bera, A., & Manocha, D. (2019). Learning Perceived Emotion Using Affective and Deep Features for Mental Health Applications. *2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)*, 395–399. https://doi.org/10.1109/ISMAR-Adjunct.2019.000-2

Razzaq, M. A., Bang, J., Kang, S. S., & Lee, S. (2020). UnSkEm: Unobtrusive Skeletal-based Emotion Recognition for User Experience. *2020 International Conference on Information Networking (ICOIN)*, 92–96. https://doi.org/10.1109/ICOIN48656.2020.9016601

Russell, J. (1980). *A Complex Model of Affect*. https://www.researchgate.net/publication/235361517 A Circumplex Model of Affect

Santhoshkumar, R., & Geetha, M. K. (2019). Deep Learning Approach for Emotion Recognition from Human Body Movements with Feedforward Deep Convolution Neural Networks. *Procedia Computer Science*, 152, 158–165. https://doi.org/10.1016/j.procs.2019.05.038

Spencer, M. (2022). *EMOTIONS VS. FEELINGS VS. MOODS*. https://dakotafamilyservices.org/resources/blog/archive/moods-feelings-emotions/#:~:text=While %20emotions%20start%20as%20sensations,both%20physical%20and%20emotional%20states.

SWELL-KW. (n.d.). [Dataset]. http://cs.ru.nl/~skoldijk/SWELL-KW/Dataset.html

The Difference Between Feelings and Emotions. (n.d.). *Wake Forest University*. Retrieved January 2, 2023, from https://counseling.online.wfu.edu/blog/difference-feelings-emotions/

The difference between Joy and happiness. (n.d.). Retrieved May 16, 2024, from https://www.embarkbh.com/blog/mental-health/joy-vs-happiness/#:~:text=Happiness%20is%20ty pically%20a%20more,and%20satisfaction%20with%20life%20overall.

The motion capture library. (n.d.). [Dataset]. https://themotioncapturelibrary.co.uk/

The Ten Postulates of Plutchik's (1980) psychoevolutionary theory of basic emotions. (n.d.). https://is.muni.cz/el/1421/jaro2011/PSA_033/um/plutchik.pdf

UCLIC Affective Body Posture and Motion Database. (n.d.). [Dataset]. http://web4.cs.ucl.ac.uk/uclic/people/n.berthouze/AffectivePostures/

UTKinect-Action3D Dataset. (n.d.). Retrieved May 26, 2024, from https://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html

WESAD. (n.d.). [Dataset].

http://archive.ics.uci.edu/dataset/465/wesad+wearable+stress+and+affect+detection

Wu, J., Zhang, Y., & Ning, L. (2019). The Fusion Knowledge of Face, Body and Context for Emotion Recognition. 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), 108–113. https://doi.org/10.1109/ICMEW.2019.0-102

Xing, Y., Hu, Z., Huang, Z., Lv, C., Cao, D., & Velenis, E. (2020). Multi-Scale Driver Behaviors Reasoning System for Intelligent Vehicles Based on a Joint Deep Learning Framework. *2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)*, 4410–4415. https://doi.org/10.1109/SMC42975.2020.9283004

YINGLIANG MA, HELENA M. PATERSON, and FRANK E. POLLICK. (2006). *A motion capture library for the study of identity, gender, and emotion perception from biological motion* [Dataset]. https://link.springer.com/article/10.3758/BF03192758

Zacharatos, H., Gatzoulis, C., Charalambous, P., & Chrysanthou, Y. (2021). Emotion Recognition from 3D Motion Capture Data using Deep CNNs. *2021 IEEE Conference on Games (CoG)*, 1–5. https://doi.org/10.1109/CoG52621.2021.9619065

Zaghbani, S., & Bouhlel, M. S. (2022). Multi-task CNN for multi-cue affects recognition using upper-body gestures and facial expressions. *International Journal of Information Technology*, *14*(1), 531–538. https://doi.org/10.1007/s41870-021-00820-w

Zhang, X., Qi, G., Fu, X., & Zhang, N. (2023). Robust Emotion Recognition Across Diverse Scenes: A Deep Neural Network Approach Integrating Contextual Cues. *IEEE Access*, *11*, 73959–73970. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3296316