E 26/148 17/05/2011 16/05/2010	HBJ MINERALS PTY LTD 11.2	4
--------------------------------	---------------------------	---

1:1MMapSheet	Block	Sub-Block	
Kalgoorlie	2901	fmq v	
Kalgoorlie	2973	bc	
Table 1:E15/1197Sur	deredSub-Blocks	nan	

E 15/119707/02/2011	106/02/2021	AVOCARESOURCESPTYLTD	50000	28	10	
---------------------	-------------	----------------------	-------	----	----	--

	nan	nan	nan
	nan	nan	nan
	McCuaig (1999)	Shedden (1998)	Synthesised for Avoca
	nan	nan	nan
	nan	nan	nan
	nan	nan	nan
	NNW-SSE extension	NNW-SSE extension	nan
	nan	nan	nan
al	nan	nan	nan
	regional shortening- North -south regional shortening -> S	nan	nan
	shortening-> S over N low	nan	nan
	> south over north	lover N thrusts	nan
	nan	nan	nan
	nan	nan	nan
^	ENE regional shortening ->	[E-W shortening->	nan
	NNW trending open uprightlupright NNW	E-W compression -> steep N to NNW	nan
	nan	nan	nan
	folds reverse thrusts along	trending, gently SE	Itrending reverse faults and folds
	fold limbs	plunging folds.	nan
n	ESE-WNW shortening->	ESE-WNW and NE-SW compressive	nan
	nan	nan	nan
	sinistral shear zones along	events-> reactivation of reverse faults	nan
	wrench faulting	nan	nan
	NNW structures low angle	other thrust and faults variably dextral	nan

s	nan	nan	nan	
t	thrusts	and sinistral movements.	nan	
	nan	nan	nan	
	Late brittle faulting and reactivation	nan	nan	
	nan	nan	nan	
è	Kambalda	Higginsville	Nor	

Cognac West	Numberofholes	
Highlight	JSR1228, 4m @ 683 ppb Au from 40m	JSA025, 1m @
Remy	Number of holes	
Highlight	JSR1142, 4m @ 4.69 g/t Au from 40m	JSA032, 1m @
Cognac Central	Number ofholes	
Highlight	JSR1247, 3m @ 154 ppb Au from EOH	JSA015, 1m @
Le Mans North	Number of holes	
Highlight	JSR1073, 4m @ 169 ppb Au from 8m	JSA002, 1m @
Martell	Number ofholes	
ac Central are located 1km south of E15/1427 but are included here for context.	nan	

JSR1139, 1142,	nan	nan	nan	nan	nan
And	1204, 1206, 1212,	1204, 1206,	6	Ag, Ni, Cu	nan
1216	1212, 1216	nan	nan	nan	nan
4	nan	nan	nan	nan	nan
JSA001-010,	nan	nan	nan	nan	nan
Acac 9 R	4	nan	nan	nan	nan
JSA001-040	19	Au	nan	nan	nan
ia	9c 8	JSA032-040	nan	nan	nan
4	3	nan	nan	nan	nan
5	nan	nan	nan	nan	nan
Inclu	nan	nan	nan	nan	nan
JSA032-037	JSA032-037	6	Cu, Cr, Ni, Pb, Zn	nan	nan
ding	nan	nan	nan	nan	nan
la	nan	nan	nan	nan	nan
1	4	nan	nan	nan	nan
IR	JSR1256-1299,	nan	nan	nan	nan

Acac9	nan	nan	nan	nan	nan
А	JSR1256-1341	53	Au	nan	nan
ia	9	6	JSR1330-1338	nan	nan
В	nan	nan	nan	nan	nan
5	nan	nan	nan	nan	nan
	nan	nan	nan	nan	nan
JSR1259, 1264,	nan	nan	nan	nan	nan
JSR1259, 1264,	nan	nan	nan	nan	nan
Inclu	1268, 1270,	nan	nan	nan	nan
1268, 1270, 1275,	8	Cu, Ni	nan	nan	nan
ding	1275, 1280,	nan	nan	nan	nan
1280, 1290, 1291	nan	nan	nan	nan	nan
1290, 1291	nan	nan	nan	nan	nan
а	nan	nan	nan	nan	nan
4	nan	nan	nan	nan	nan
1	nan	nan	nan	nan	nan
Acac 9 R 6	nan	nan	nan	nan	nan
JSA041-055	JSA048-055	8	Au	nan	nan
ia	9c 6	nan	nan	nan	nan
5	3	nan	nan	nan	nan
6	nan	nan	nan	nan	nan
a4	nan	nan	nan	nan	nan
1	nan	nan	nan	nan	nan
Wm 9R 6	nan	nan	nan	nan	nan
DHD696, TD2848	DHD696	Au	nan	nan	nan
9c 8	nan	nan	nan	nan	nan
5	3	nan	nan	nan	nan
6	nan	nan	nan	nan	nan
	nan	nan	nan	nan	nan
DHD732-734,	nan	nan	nan	nan	nan
1	DHD729-734, 738-	DHD740,	nan	nan	nan
WM 9A 0	nan	nan	nan	nan	nan
DHD772-779,	nan	nan	nan	nan	nan
740, 772-779, 782-	20	Au	nan	nan	nan
С	9c 0	nan	nan	nan	nan

800	DHD782-788,	nan	nan	nan	nan
6	>	DHD800	nan	nan	nan
6	nan	nan	nan	nan	nan
a■	nan	nan	nan	nan	nan
1	nan	nan	nan	nan	nan
Siou 9]R 0	nan	nan	nan	nan	nan
JSRC001-026	JSRC011-26	16	Au	nan	nan
ville	9c [7	nan	nan	nan	nan
6	7	nan	nan	nan	nan
2	nan	nan	nan	nan	nan
	nan	nan	nan	nan	nan
R	nan	nan	nan	nan	nan
Siou	19	lo	nan	nan	nan
JSR1342-1599	JSR1392-1599	208	Au, Cu, Pb, Zn, Ni, Co, As, Ag	nan	nan
ville	19	Α	В	nan	nan
6	7	nan	nan	nan	nan
2	nan	nan	nan	nan	nan
а	nan	nan	nan	nan	nan
5	nan	nan	nan	nan	nan
R	nan	nan	nan	nan	nan
Acac9	3	JSR1600-1603,	nan	nan	nan
JSR1600-1667	38	Au	nan	nan	nan
ia	9	А	В	9	JSR1634-1667
0	nan	nan	nan	nan	nan
3	nan	nan	nan	nan	nan
а	nan	nan	nan	nan	nan
1R5	nan	nan	nan	nan	nan
Acac9C/9	nan	nan	nan	nan	nan
JSD001	JSD001	Au, As, Cu, Ni, Pb, Zn	nan	nan	nan
ia	9 Di4	nan	nan	nan	nan
8a 8	nan	nan	nan	nan	nan
8	nan	nan	nan	nan	nan
la	nan	nan	nan	nan	nan

nan nan nan

	Au, As	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	0	Au, As, Sb	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	LTRC017-018	Al, As, Co, Cr, Cu, Fe, Mg, Mn, Ni, S, Ti, Zr	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
Eu	nan	nan	nan	
	nan	nan	nan	
	A	а	DHD2000-2081	DHD2
	Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Sc, Se, Sm, Sn, Sr, Ta,	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	

Elementsassayed	nan	nan	nan	nan
Samples	IDS	No.	nan	nan
E15/1427	11	ER001-011	u267361	B, Be, Cs, Li, Nb, Rb, Sb, Sn,
E15/1427	12	ER012-023	u267362	Au, Pt, Pd, Co, Cu, Mn, Ni, S, Zn, Ag, As,
Co, Cr, Cu, Ni, S, Zn, As, Be, Cs, Li, Nb, Pb, Rb, Sn,	nan	nan	nan	nan

E15/1427	5	ER024-028u269898	nan	nan		
Та	nan	nan	nan	nan		
TOTAL	28	nan	nan	nan		
leporting				nan		
er:				nan		
lumbers:				E 15/01427		
perator(s):				Coleman Resources Pty Ltd		
Гуре:				Annual		
Title:		Junction S	outh Projec	ct E15/1427 Annual Report for the Period 2 N		
7		nan				
eriod:		2 March 2016 to 1 March 2017				
or:		Bruce MCQUITTY				
d By:		Bruce MCQUITTY				
Date:		1 May 2017				
eets:				1:250,000 Map Sheet		
EMOOLTHA)				3234(COWAN)		
nmodity:			СОВ	ALT, COPPER, GOLD, LITHIUM, NICKEL, I		
Drilled:				nan		
mber:				nan		
rvey Reg No:				nan		
rs:		Ag, Au, As	s, B, Ba, Be	, Cd, Co, Cu, Cr, Cs, Li, Mn, Nb, Ni, Pb, Pd,		
<u>(n</u>				nan		
act				nan		
on:		The Juntion South Proj	ect, compris	sing exploration licence E15/1427, is located		
eral Field (Coolgardie District 15), Western Australia.				nan		
from Widgiemooltha or the private St Ives Spur Road	t			nan		
akeLefroy causeway.				nan		
gy:		Junction South is locat	ted within th	ne Archaean Kambalda Domain of the Kalgo		
n extension of the Kambalda Anticline that is bounded	l to			nan		
y the Bluebush ultramafic sequence. The Archaean				nan		
lated to that of the Kambalda nickel mining area				nan		
ike orientation and has been interpreted as a major D	1			nan		
est compression to create the NW-axially orientated				nan		

nan

E15/1427 contains a sequence of mafic and ultramafic

ve the Republican Thrust. North of the Republican Thrust	nan
mentary rocks assigned to the Black Flag Beds.	nan
one:	Past exploration reports were reviewed and information for 756 historical dril
historical geological maps, soil geochemistry plans and	nan
al exploration targets for nickel, gold, copper and cobalt.	nan
dum, detailing the exploration potential of the Project.	nan
the tenement and a total of 28 surface samples were	nan
analysed.	nan
ts:	The review of historical work has highlighted several compelling, rela
t, the Croser-Moet nickel-cobalt prospect and the Remy	nan
s or conceptual targets requiring another phase of target	nan
work.	nan
tite float were disappointing, with a maximum value of	nan
temy prospect area confirmed elevated levels of Au, As,	nan
w sedimentary rocks, consistent with historical drilling	nan
his region.	nan
sion:	The Junction South project area contains several gold, nickel, cobalt, and coppe
vork.	nan
of 4m @ 4.69g/t Au and 4m @ 4.57g/t Au, is the highest	nan
d target.	Analysis of historical drilling reveals the potential for mineralised stru

E15/1427	Cole	eman Resources Pty Ltd	I Junction South	20	2/03/2016	1/03/2021	\$20,000
E 15/	1427	02/03/201601/03/2021	COLEMAN RESOUR	CES	PTYLTD 2	0000 39.2	14

province. WA Department of Geology, UWA, unpublished PhD Thesis.	nan
94, Evaluation of the Gold Potential of the Widgiemooltha District. WMC Internal Report K/3623. Unpublished company	nan
report.	nan
and Loftus-Hill, G.D., 1981, The geology of the Kambalda nickel field, Western Australia: Economic Geology, v. 76, p.	nan
1373 - 1416.	nan
Griffin, T.J., 1989, Widgiemooltha 1:250,000 Geological Series Explanatory Notes.	nan
1988, Geology of the Widgiemooltha Area and Exploration Progress to February, 1988. WMC Internal Report K/3099.	nan
Unpublished company report.	nan
4, Nickel mineralisation in Western Australia: Western Australia Geological Survey, Mineral Resources Bulletin 14, 271p.	nan

nan
nan
Page 14 of 16

E 15/1365	29/07/2013	\$10,000.00	\$6,169.00	28/07/2016
E 15/1366	30/07/2013	\$10,000.00	\$6,292.00	29/07/2016
E 15/1418	17/12/2015	\$20,000.00	\$6,773.00	16/12/2016
E 15/1456	9/07/2015	\$10,000.00	\$2,719.00	8/07/2016
M 15/130	4/02/1985	\$10,000.00	\$3,827.00	3/02/2017
M 15/49	15/02/1984	\$26,000.00	\$26,658.00	14/02/2017
M 15/63	4/01/1984	\$10,600.00	\$14,222.00	3/01/2017
ML 15/131	1/01/1967	\$12,000.00	\$14,356.00	31/12/2016
ML 15/140	1/01/1967	\$12,100.00	\$12,418.00	31/12/2016
ML 15/494	1/01/1976	\$12,000.00	\$8,650.00	31/12/2016
ML 15/495	1/01/1976	\$12,100.00	\$7,711.00	31/12/2016
ML 15/498	1/01/1976	\$12,100.00	\$12,563.00	31/12/2016
ML 15/499	1/01/1976	\$12,100.00	\$13,590.00	31/12/2016
ML 15/500	1/01/1976	\$12,100.00	\$14,459.00	31/12/2016
ML 15/501	1/01/1976	\$12,100.00	\$13,496.00	31/12/2016
ML 15/502	1/01/1976	\$12,100.00	\$16,476.00	31/12/2016
ML 15/504	1/01/1976	\$12,000.00	\$18,571.00	31/12/2016
ML 15/506	1/01/1976	\$10,000.00	\$17,790.00	31/12/2016
ML 15/507	1/01/1976	\$12,100.00	\$12,769.00	31/12/2016
ML 15/508	1/01/1976	\$12,000.00	\$12,930.00	31/12/2016
ML 15/509	1/01/1976	\$12,000.00	\$12,262.00	31/12/2016
ML 15/510	1/01/1976	\$12,100.00	\$12,605.00	31/12/2016
ML 15/511	1/01/1976	\$12,000.00	\$12,262.00	31/12/2016
ML 15/512	1/01/1976	\$12,000.00	\$12,263.00	31/12/2016
ML 15/513	1/01/1976	\$12,100.00	\$13,745.00	31/12/2016

ML 15/514	1/01/1976	\$12,000.00	\$12,479.00	31/12/2016
ML 15/515	1/01/1976	\$12,000.00	\$12,273.00	31/12/2016
ML 15/516	1/01/1976	\$12,000.00	\$12,638.00	31/12/2016
ML 15/517	1/01/1976	\$12,000.00	\$7,268.00	31/12/2016
ML 15/518	1/01/1976	\$12,000.00	\$8,266.00	31/12/2016
ML 15/519	1/01/1976	\$12,000.00	\$7,262.00	31/12/2016
ML 15/520	1/01/1976	\$12,000.00	\$8,051.00	31/12/2016
ML 15/521	1/01/1976	\$12,000.00	\$12,241.00	31/12/2016
ML 15/522	1/01/1977	\$12,000.00	\$12,263.00	31/12/2016
ML 15/523	1/01/1976	\$11,100.00	\$6,596.00	31/12/2016
ML 15/524	1/01/1976	\$12,000.00	\$12,264.00	31/12/2016
ML 15/525	1/01/1976	\$12,000.00	\$12,263.00	31/12/2016
ML 15/526	1/01/1976	\$11,900.00	\$9,180.00	31/12/2016
ML 15/527	1/01/1976	\$12,100.00	\$9,328.00	31/12/2016
ML 15/528	1/01/1976	\$12,000.00	\$8,266.00	31/12/2016
ML 15/529	1/01/1976	\$11,700.00	\$7,036.00	31/12/2016
ML 15/530	1/01/1976	\$11,700.00	\$9,027.00	31/12/2016
ML 15/531	1/01/1976	\$12,000.00	\$8,264.00	31/12/2016
ML 15/532	1/01/1976	\$11,800.00	\$7,099.00	31/12/2016
ML15/533	1/01/1976	\$11,700.00	\$7,019.00	31/12/2016
ML 15/534	1/01/1976	\$11,900.00	\$7,167.00	31/12/2016
ML 15/535	1/01/1976	\$11,700.00	\$7,055.00	31/12/2016
P 15/5767	18/07/2013	\$5,080.00	\$5,490.00	17/07/2016
TOTALS	\$578,280	\$514,371	nan	nan

ment	Holder	nan	nan	
ate	Date	(\$)	(KM2)	
1365	29/07/201328/07/2018MINCOR RESOURCES NL	10000	2.8	
1366	30/07/2013	29/07/2018	MINCORRESOURCESNL	
5/49	05/02/1984	14/02/2026	MINCOR RESOURCESNL	
5/63	13/12/198303/01/2026	MINCOR RESOURCESNL	10600	
5/130	06/01/198503/02/2027	MINCOR RESOURCES NL	10000	
MANAGEMENT PTY	nan	nan	nan	
5/131	12/01/1967	31/12/2029	12000	
TD D	nan	nan	nan	

MANAGEMENTPTY	nan	nan	nan
5/140	12/01/1967	31/12/2029	12100
D	nan	nan	nan
5/494	01/01/1976 31/12/2017	MINCOR RESOURCES NL	12000
5/495	01/01/1976 31/12/2017	MINCOR RESOURCESNL	12100
5/498	01/01/1976 31/12/2017	MINCOR RESOURCES NL	12100
5/499	01/01/1976	131/12/2017	MINCORRESOURCESNL
5/500	01/01/1976	31/12/2017	MINCORRESOURCESNL
5/501	01/01/1976	[31/12/2017	MINCORRESOURCESNL
5/502	01/01/197631/12/2017	MINCOR RESOURCES NL	12100
5/504	01/01/1976 31/12/2017	MINCOR RESOURCESNL	12000
5/506	01/01/1976 31/12/2017	MINCOR RESOURCES NL	10000
5/507	01/01/197631/12/2017	MINCOR RESOURCES NL	12100
5/508	01/01/197631/12/2017	MINCOR RESOURCES NL	12000
5/509	01/01/1976	31/12/2017	MINCORRESOURCESNL
5/510	01/01/1976	[31/12/2017	MINCOR RESOURCES NL
5/511	01/01/197631/12/2017	MINCOR RESOURCES NL	12000
5/512	01/01/1976	31/12/2017	MINCOR RESOURCES NL
5/513	01/01/1976	31/12/2017	MINCOR RESOURCES NL
5/514	01/01/197631/12/2017	MINCOR RESOURCES NL	12000
5/515	01/01/1976 31/12/2017	MINCOR RESOURCES NL	12000
5/516	01/01/1976	131/12/2017	MINCOR RESOURCESNL
5/517	01/01/1976	131/12/2017	MINCOR RESOURCESNL
5/518	01/01/1976	31/12/2017	MINCOR RESOURCES NL
5/519	[01/01/197631/12/2017	MINCOR RESOURCES NL	12000
5/520	[01/01/197631/12/2017	MINCOR RESOURCES NL	12000
5/521	01/01/1976 31/12/2017	MINCOR RESOURCES NL	12000
5/522	01/01/1977	31/12/2018	MINCOR RESOURCESNL
5/523	[01/01/1976	31/12/2017	MINCOR RESOURCES NL
5/524	01/01/1976	131/12/2017	MINCOR RESOURCESNL
5/525	01/01/1976	131/12/2017	MINCOR RESOURCES NL
5/526	[01/01/197631/12/2017	MINCOR RESOURCES NL	11900
5/527	01/01/1976	31/12/2017	MINCOR RESOURCES NL
5/528	01/01/1976	31/12/2017	MINCOR RESOURCES NL
5/529	01/01/1976 31/12/2017	MINCOR RESOURCES NL	11700
		•	

5/530	01/01/1976 31/12/2017	MINCOR RESOURCESNL	11700
5/531	01/01/1976	31/12/2017	MINCORRESOURCESNL
5/532	01/01/1976	31/12/2017	MINCORRESOURCESNL
5/533	01/01/197631/12/2017	MINCOR RESOURCES NL	11700
5/534	01/01/197631/12/2017	MINCOR RESOURCES NL	11900
5/535	01/01/1976 31/12/2017	MINCOR RESOURCES NL	11700
5767	18/07/2013 17/07/2017	MINCOR RESOURCES NL	5080
1456	09/07/201508/07/2020	MINCOR RESOURCES NL	10000
1418	317/12/201516/12/2020MINCOR RESOURCES NL	20000	47.6

Lithology	Stratigraphy	nan	nan	nan
(m)	(m)	(m)	nan	nan
0	36.5	36.5	Transported Regolit h	Tertiary Cover
36.5	44.7	8.2	Resi dual Regolith	Black Hlag Beds
44.7	454.7	410	Sediments	Black Hlag Beds
454.7	536.3	81.6	Basalt	Condensor Dolerite
536.3	542.9	6.6	Felsic Porphyry	Porphyry
542.9	558	15.1	Dolerite	Condensor Dolerite
558	618.4	60.4	Granit e	At hena Granit e
618.4	1090.3	471.9	Dolerite	Condensor Dolerite
1090.3	1092.9	2.6	Intermediate Porphyry	Porphyry
1092.9	1149.4	56.5	Dolerite	Condensor Dolerite
1149.4	1156. 9	7.5	Felsic Porphyry	Porphyry
1156. 9	1158.6	1.7	Dolerite	Condensor Dolerite
1158.6	1163.2	4.6	Felsic Porphyry	Porphyry
1163.2	1213	49.8	Dolerite	Condensor Dolerite
1213	1235.1	22.1	Felsic Porphyry	Porphyry
1235.1	1315.7	80.6	Dolerite	Condensor Dolerite
1315.7	1445.3	129.6	Basalt	Condensor Dolerite
1445.3	1452.9	7.6	Sediment s	Oroya Beds
1452.9	1518.5	65.6	Basalt	Paringa Basalt

Limit	Limit	Limit	Limit	nan	nan	nan	nan
Ag	0.01	Cu	0.20	Na	0.01%	Sr	0.20

	0.040/	_	0.040/	N. 11	0.40	_	0.05
Al	0.01%	Fe	0.01%	Nb	0.10	Та	0.05
As	0.20	Ga	0.05	Ni	0.20	Te	0.05
Ва	10.0	Ge	0.05	Р	10.0	Th	0.01
Ве	0.05	Hf	0.10	Pb	0.50	Ti	0.005%
Bi	0.01	In	0.005	Rb	0.10	TI	0.02
Ca	0.01%	K	0.01%	Re	0.002	C	0.10
Cd	0.02	La	0.50	S	0.01%	V	1.00
Ce	0.01	Li	0.20	Sb	0.05	W	0.10
Co	0.10	Mg	0.01%	Sc	0.10	Υ	0.10
Cr	1.00	Mn	5.00	Se	1.00	Zn	2.00
Cs	0.05	Мо	0.05	Sn	0.20	Zr	0.50
Dy	0.05	Gd	0.05	Nd	0.10	Tb	0.01
Er	0.03	Но	0.01	Pr	0.03	Tm	0.01
Eu	0.03	Lu	0.01	Sm	0.03	Yb	0.03

m	m	m	Au ppm	gxm	nan	nan
TD12952	73	73.4	0.4	0.43	0.17	Anomalous
87.7	88.5	0.8	0.10	0.08	Anomalous	nan
387.7	388.1	0.4	0.10	0.04	Anomalous	nan
477	478	1	0.10	0.10	Anomalous	nan
555	556	1	0.12	0.12	Anomalous	nan
559	560	1	0.10	0.10	Anomalous	nan
1238	1239	1	0.10	0.10	Anomalous	nan
1249.7	1251	1.3	0.37	0.48	Anomalous	nan
1451	1452	1	0.22	0.22	Anomalous	nan
>0.10ppm Au is Anomalous	>1.00ppm Au is Significant	>5.00ppm Au is Mineralised	nan	nan	nan	nan

2000.0	2000.0	1.0	1.0	1.032
2000.5	2000.0	7.0	1.0	1.04
2001.0	2001.0	1.0	1.0	1.048
2001.5	2001.0	7.0	1.0	1.056
2002.0	2002.0	1.0	1.0	1.065
2002.5	2002.0	7.0	1.0	1.073
2003.0	2003.0	1.0	1.0	1.081

2003.5	2003.0	7.0	1.0	1.089
2004.0	2004.0	1.0	1.0	1.097
2004.5	2004.0	7.0	1.0	1.105
2005.0	2005.0	1.0	1.0	1.16
2005.5	2005.0	7.0	1.0	1.158
2006.0	2006.0	1.0	1.0	1.155
2006.5	2006.0	7.0	1.0	1.152
2007.0	2007.0	1.0	1.0	1.15
2007.5	2007.0	7.0	1.0	1.147
2008.0	2008.0	1.0	1.0	1.145
2008.5	2008.0	7.0	1.0	1.142
2009.0	2009.0	1.0	1.0	1.14
2009.5	2009.0	7.0	1.0	1.137
2010.0	2010.0	1.0	1.0	1.033
2010.5	2010.0	7.0	1.0	1.029
2011.0	2011.0	1.0	1.0	1.025
2011.5	2011.0	7.0	1.0	1.021
2012.0	2012.0	1.0	1.0	1.017
2012.5	2012.0	7.0	1.0	1.014
2013.0	2013.0	1.0	1.0	1.01
2013.5	2013.0	7.0	1.0	1.006
2014.0	2014.0	1.0	1.0	1.002
2014.5	2014.0	7.0	1.0	0.999
2015.0	2015.0	1.0	1.0	0.995
2015.5	2015.0	7.0	1.0	0.991

Project Name:	St. Ives Gold Mine
Reporting Group:	C52/2002
Tenement:	M15/475
Tenement Operator:	St. Ives Gold Mining Co. Pty Ltd
Tenement Holder:	St. Ives Gold Mining Co. Pty Ltd
Report Type:	Final
Report Title:	Goldfields, Final Report, Exploration Incentive Scheme, 2015 Co-
Athena intrusion, DAG2015/00511069	nan
Report Period:	1 January 2015 - 31 December 2015

Author:	David Nixon
Date of Report:	1th June, 2017
1:250 000 Mapsheet: Widgiemooltha SH 51-14	nan
1:100 000 Mapsheet: Lake Lefroy 3235	nan
Target Commodity:	Au
Keywords:	Geology, Exploration, Drilling, EIS, Athena
Prospects Drilled:	Athena Intrusion Strain Shadow
Elements Assayed:	Au, Ag, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf,
, Na, Nb, Ni, P, Al, Pb, Re, Rb, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl,	nan
U, V, W, Y, Zn, Zr	nan

Exploration Work TypeFile Name	Format	nan
OFFICE STUDIES	nan	nan
Literature search	nan	nan
Database compilation	nan	nan
Computer modelling	nan	nan
Reprocessing of data	nan	nan
General Research	nan	nan
Report Preparation	2015_Athena_SIGM_Final_DAG2015_00511069.pdf	PDF
AIRBORNE EXPLORATION SURVEYS	nan	nan
Aeromagnetics	nan	nan
Radiometrics	nan	nan
Electromagnetics	nan	nan
Gravity	nan	nan
Digital terrain modelling	nan	nan
REMOTE SENSING	nan	nan
Aerial photography	nan	nan
LANDSAT	nan	nan
SPOT	nan	nan
MSS	nan	nan
Radar	nan	nan
GROUND EXPLORATION SURVEYS	nan	nan
Geological Mapping	nan	nan
Regional	nan	nan
Reconnaissance	nan	nan

Prospect	nan	nan
Underground	nan	nan
Costean	nan	nan
GROUND GEOPHYSICS	nan	nan
Radiometrics	nan	nan
Magnetics	nan	nan
Gravity	nan	nan
Digital terrain modelling	nan	nan
Electromagnetics	nan	nan
SP/AP/EP	nan	nan
IP	nan	nan
AMT	nan	nan
Resistivity	nan	
Complex resistivity	nan	nan
Seismic reflection		
Seismic refraction	nan	nan
	nan	nan
Well logging	nan	nan
Geophysical interpretation GEOCHEMICAL SURVEYING	nan	nan
	nan	nan
Drill sample Stream sediment	nan	nan
	nan	nan
Soil	nan	nan
Rock chip	nan	nan
Laterite	nan	nan
Water	nan	nan
Biogeochemistry	nan	nan
Isotope	nan	nan
Whole Rock	nan	nan
Mineral analysis	nan	nan
DRILLING	nan	nan
Diamond	TD12952_WASL4_COLL2015.cSV	nan
TD12952_WADL4_GEO2015.CSV	nan	nan
TD12952_WADL4_ALT2015.CSV	nan	nan
TD12952_WADS4_SURV_2015.cSV	nan	nan
TXT	nan	nan

TD12952_WADG4_ASS2015.cSV	nan	nan
TD12952_WADG4_AU2015.cSV	nan	nan
TD12952_structure_Final.csv	nan	nan
TD12952_magsus_Final.csv	nan	nan
Reverse Circulation	nan	nan
Rotary air blast	nan	nan
Air-core	nan	nan
Auger	nan	nan
Groundwater Drilling	nan	nan
All Drilling	nan	nan

	ĺ	E 15/1223	08/09/2011	07/09/2021	AVOCARESOURCESPTYLTD	50000	44.8	16
--	---	-----------	------------	------------	----------------------	-------	------	----

nati	nan	nan	
n (1998)	nan	nan	
on	McCuaig (1999)	Shedden (1998)	Synth
alda area	nan	nan	
ven	nan	nan	
t	nan	nan	
De	NNW-SSE extension	NNW-SSE extension	
h-south	nan	nan	
uth regional	nan	nan	
ly directed	regional shortening-North -south regional shortening -> S	nan	
D1	shortening-> S over N low	nan	
usting	> south over north	over N thrusts	
thrusts	nan	nan	
rusts	nan	nan	
pression ->	ENE regional shortening ->	[E-W shortening->	
I to NNW	NNW trending open uprightupright NNW	E-W compression -> steep N to NNW	
D2	nan	nan	
g reverse	folds reverse thrusts along	trending, gently SE	Itrending re
and folds	fold limbs	plunging folds.	
ompression	ESE-WNW shortening->	ESE-WNW and NE-SW compressive	
e-sinistral	nan	nan	

extral	sinistral shear zones along	events-> reactivation of reverse faults	
D3	wrench faulting	nan	
ation of D2	NNw structures low angle	other thrust and faults variably dextral	
hear zones	nan	nan	
thers thrust	thrusts	and sinistral movements.	
I -reverse	nan	nan	
D4	Late brittle faulting and reactivation	nan	
tivation	nan	nan	
Kambalda - Higginsville -	Norseman Deformation	nan	

Area	nan	nan	nan	nan	nan	nan
Tenement	Lease Name	GrantDate	Expiry Date	(Blocks	Holder	nan
(km2)	nan	nan	nan	nan	nan	nan
Р	Hall Creek	6/09/201	5/09/202	NewmontExplorationPtyLtd	nan	nan
0	1.17	nan	nan	nan	nan	nan
15/6009	Dam	6	0	(100%)	nan	nan
P 26/4158	Hall Creek Dam	4/10/2016	3/10/2020	0	1.96	Newmont Exploration Pty Ltd (100%)
P 26/4159	Hall Creek Dam	4/10/2016	3/10/2020	0	1.93	Newmont Exploration Pty Ltd (100%)
P 26/4160	Hall Creek Dam	4/10/2016	3/10/2020	0	1.92	NewmontExplorationPtyLtd■1o0%)
P 26/4161	Hall Creek Dam	4/10/2016	3/10/2020	0	1.93	Newmont Exploration Pty Ltd (100%)
P 26/4162	Hall Creek Dam	4/10/2016	3/10/2020	0	1.96	Newmont Exploration Pty Ltd (100%)
P 26/4163	Hall Creek Dam	4/10/2016	3/10/2020	0	1.94	Newmont Exploration Pty Ltd (100%)
P 26/4164	Hall Creek Dam	4/10/2016	3/10/2020	0	1.52	Newmont Exploration Pty Ltd (100%)
P26/4165	Hall CreekDam	4/10/2016	3/10/2020	0	1.65	Newmont Exploration Pty Ltd (100%)
E 15/1508	Hall CreekDam	19/12/2016	18/12/2021	4	5.88	Newmont Exploration Pty Ltd (100%)

Syn-volcanic extensional faults	nan	nan	
nan	nan	nan	
Extension	NNW-trending linear	including the nickel shoots at	
nan	nan	nan	
Kambalda.	nan	nan	
nan	nan	nan	
nan	nan	nan	
Contraction	folding and ENE	Terminates greenstone volcanism.	·

		T	T	
	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	Formation of granite-cored domes.	nan	nan	
	Extension	nan	nan	
	Prepares the EYC for gold endowment	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	faulting	Onset of the most endowed period of	nan	
	Contraction	nan	nan	
	Reactivation of D3	gold mineralisation	nan	
	nan	nan	nan	
ing D4a	nan	nan	nan	
	nan	nan	nan	
	involve block movements up and down	nan	nan	
	Contraction	folding and ENE	nan	
	to NE or SW within a NNW- to NW-	nan	nan	
	nan	nan	nan	
nework.	nan	nan	nan	
nal stress	nan	nan	nan	
	NNW sinistral strike-	field: obliquity with pre-existing	nan	
	Contraction	ESE	slip shearing and	archite
	heterogeneity. Most gold deposited	nan	nan	
rvasive.	nan	nan	nan	
onally	nan	nan	nan	
	nan	nan	nan	
shortening	nan	nan	nan	
	nan	nan	nan	
	Contraction	NE-SW	vector.	
	nan	nan	nan	
g brittle	nan	nan	nan	
	nan	nan	nan	
Fault.	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
-	-			*

	shortening and	nan	nan	
	nan	nan	nan	
n	nan	nan	nan	

G50-22-001E	541761	376210	-339	-15	214	308.9
G50-22-002E	541761	376210	-339	6■	214	342.05
G50-22-003E	541761	376210	-346	20	216	263.7
G50-22-004E	541761	376210	-346	13	216	306.0
G50-22-005E	541761	376210	-339	25.5	216	218.9

G50-22-005E	135.33	138.99	3.66	13.92
G50-22-003E	162.33	162.62	0.29	10.1
G50-22-004E	193.6	193.87	0.27	1.21

G50-22-002E	249.97	250.97	1.0	4.04
G50-22-002E	312.5	316.3	3.8	3.63
G50-22-002E	319.75	323.27	3.52	4.76
G50-22-003E	140.97	142.0	1.03	7.59
G50-22-003E	226.55	229.0	2.45	2.69
G50-22-003E	262.7	263.7	1.0	3.48
G50-22-004E	92.3	94.2	1.9	2.52
G50-22-004E	99.0	100.0	1.0	8.52
G50-22-004E	250.85	261.47	10.62	2.96
G50-22-004E	288.0	291.8	3.8	2.32
G50-22-005E	3.0	6.0	3.0	2.56
G50-22-005E	41.0	42.0	1.0	4.14
G50-22-005E	76.0	77.0	1.0	4.48
G50-22-005E	194.5	196.0	1.5	10.73
G50-22-005E	216.04	218.9	2.86	2.58

Combined Reporting Number?	nan
Tenement Numbers:	ML 15/327 and M15/1628
Tenement Operator	Karora Resources Pty Ltd
Tenement Holder:	St Ives Gold Mining Company (Gold Fields)

Report Type:	Co-Funded Drilling Final Report
Report Title:	Co-Funded Drilling - Final Report Beta Hunt Southern
Offset Extension, June 2021	nan
Report Period:	nan
Author:	JohnStockfeld
Date of report:	25 June 2021
1:250 000 map sheet:	SH51-14WIDGIEMOOLTHA
1:100 000 map sheet:	3235LAKELEFROY
Geodetic Datum:	KNO- mine grid (GDA94 Regional)
Project Zone:	51
Target Commodity:	Nickel (Ni)
Keywords:	Beta Hunt, nickel
Prospects drilled:	Beta Hunt southern offset, the Gamma zone.
List of Assays:	Au, Ni, FeO, MgO, As, Cu, S, Co

Office Studies	nan	nan
Literature search	nan	nan
Database compilation	nan	nan
Computer modelling	nan	nan
Reprocessing of data	nan	nan
General research	nan	nan
Reportpreparation	Co-Funded Drilling Final Report, Beta Hunt	pdf
southern offset extension, June 2021.pdf	nan	nan
Data review	nan	nan
Resource Modelling	nan	nan
Airborne Exploration Surveys	nan	nan
Aeromagnetics	nan	nan
Radiometrics	nan	nan
Electromagnetics	nan	nan
Gravity	nan	nan
Digital terrain modelling	nan	nan
Other (specify)	nan	nan
Remote Sensing	nan	nan
Aerial photography	nan	nan
LANDSAT	nan	nan

SPOT	nan	nan
MSS	nan	nan
Radar	nan	nan
Other (specify)	nan	nan
Ground Exploration Surveys	nan	nan
Geological mapping	nan	nan
Regional	nan	nan
Reconnaissance	nan	nan
Prospect	nan	nan
Underground	nan	nan
Costean	nan	nan
Ground geophysics	nan	nan
Radiometrics	nan	nan
Magnetics	nan	nan
Gravity	nan	nan
Digital terrain modelling	nan	nan
Electromagnetics	nan	nan
SP/AP/EP	nan	nan
IP	nan	nan
AMT	nan	nan

Complex resistivity	nan	nan
Seismic reflection	nan	nan
Well logging	nan	nan
Geophysical interpretation	nan	nan
Other (specify)	nan	nan
Geochemical Surveying	nan	nan
Drill sample	nan	nan
Stream sediment	nan	nan
Soil	nan	nan
Rock chip (in pit)	nan	nan
Laterite	nan	nan
Water	nan	nan
Biochemistry	nan	nan
Isotope	nan	nan

Whole rock	nan	nan
Mineral analysis	nan	nan
Other (specify)	nan	nan
Drilling	nan	nan
Diamond	BH_WADL4_GEO2020.txt	txt
BH_WASL4_COLL2020.txt	txt	nan
BH_WADS4_SURV2020.txt	txt	nan
BH_WADL4_ORI2020.txt	txt	nan
BH_WADG4_ASS2020.txt	txt	nan
Reversecirculation	nan	nan
Rotary air blast	nan	nan
Air core	nan	nan
Auger	nan	nan
Groundwater drilling	nan	nan
All drilling	nan	nan
Geological Drill LogCodes	BH_logging codes.xlsx	xlsx

A Number	Year	Company	Description of activities
?	?	Hogans Resources	618 Auger samples
49989,49990,52840,53250	1995-1997	Cyprus Gold Australia	76 air core holes
63922	2000-2001	DeltaGoldLtd	28 air core holes
97604, 98301, 104141	2012-2014	Octagonal Resources (WA) Pty Ltd	122RABholes

AC	33	1705
TOTAL	33	1705

AIIE15/1471	AC	E15/1471	116.0	7107.0
TOTAL	116	7107	nan	nan
Graticulesrelinquished	AC	E15/1471	33.0	1705.0

Au-AuAA26 (Ore Grade Gold):	nan	nan
Pulverise 250g soil to	Au (0.01-100)	nan
Fire Assay, 50g sample, AA finish	nan	nan
85% <75	nan	nan

Hg-MS42:	nan	nan
Hg (0.005-100)	nan	nan
Aqua Regia Digest, ICP-MS finish.	nan	nan
INTERP-11:	nan	nan
Mineral assemblages and	nan	nan
aiSIRIS Mineral assemblages and	nan	nan
spectral parameters	nan	nan
spectral parameters	nan	nan
Ag (0.002-100) Cu (0.02-	nan	nan
10,000)	nan	nan
Na (0.001%-10%) Sr	nan	nan
(0.02-10,000)	nan	nan
AI (0.01%-25% Fe	nan	nan
(0.002%-50% Nb	nan	nan
(0.005-500) Ta (0.01-500)	nan	nan
As (0.05-	nan	nan
10,000) Ga (0.05-10,000)	nan	nan
Ni (0.08-	nan	nan
10,000) Te (0.04-500) Ba	nan	nan
1-10,000)	nan	nan
Ge (0.05-500) P (0.001%-	nan	nan
1%) Th	nan	nan
(0.004-10,000) Be (0.02-	nan	nan
1,000) Hf	nan	nan
(0.004-500) Pb (0.01-	nan	nan
10,000) Ti	nan	nan
(0.001%-10%) Bi (0.005-	nan	nan
10,000)	nan	nan
In (0.005-500) Rb (0.02-	nan	nan
10,000) TI	nan	nan
ME-MS61L:	nan	nan
(0.004-10,000) Ca (0.01%	nan	nan
4 Acid attack (including hydrofluoric, nitric, perchloric and	nan	nan
25%) K	nan	nan
hydrochloric acids). ICP-MS finish	nan	nan

(0.01%-10%) Re (0.002-	nan	nan
50) U	nan	nan
(0.01-2,500) Cd (0.005-	nan	nan
1,000) La	nan	nan
(0.005-10,000) S (0.01%-	nan	nan
10% V	nan	nan
(0.1-10,000) Ce (0.01-500)	nan	nan
Li (0.2-	nan	nan
10,000) Sb (0.02-10,000)	nan	nan
W (0.008-	nan	nan
10,000) C0 (0.005-10,000)	nan	nan
Mg	nan	nan
(0.01%-25% Sc (0.01-	nan	nan
10,000) Y	nan	nan
(0.01-500) Cr (0.3-10,000)	nan	nan
Mn (0.2-	nan	nan
50,000) Se (0.2-1000) Zn	nan	nan
(0.2-	nan	nan
10,000) Cs (0.01-500) Mo	nan	nan
(0.02-	nan	nan
10,000) Sn (0.02-500) Zr	nan	nan
(0.1-500)	nan	nan
Ce (0.1-10,000) Rb (0.2-	nan	nan
10,000) Ta	nan	nan
(0.1-2,500) W (1-10,000)	nan	nan
La (0.1-	nan	nan
10,000) Sn (1-10,000) Th	nan	nan
ME-MS85:	nan	nan
(0.05-	nan	nan
Lithium Borate Fusion, ICP-MS finish	nan	nan
1,000) Y (0.1-10,000) Nb	nan	nan
(0.2-	nan	nan
2,500) Sr (0.1-10,000) U	nan	nan
(0.05-	nan	nan
8. Current Exploration Summary	Page 16 of 23	Printed: 29/3/2022

Project	Hole ID	From (m)	Length (m)	Au (ppm)	GM
Stlves	KD81720	84	92	0.23	1.84
Stlves	KD81721	84	88	0.44	1.76
St Ives	KD81734	82	88	0.38	2.28
St Ives	KD81739	40	48	0.22	1.76
Stlves	KD81740	78	84	0.24	1.44
St Ives	KD81741	82	91	0.91	8.19
St Ives	KD81748	86	90	0.34	1.36
St Ives	KD81750	84	92	1.91	15.28

Area	Area	nan	nan	nan	nan	nan
Tenement	Grant Date	Expiry Date	Holder*	Commitment (\$)	nan	nan
(Km2)	(Blk)	nan	nan	nan	nan	nan
E 15/1471	13/01/2016	12/01/2026	SIGM	SIGM 258,167		16.0
TOTALS	67	16	nan	nan	nan	nan

Holder	nan	nan	nan	nan
Tenement	nan	nan	nan	nan
Date	Date	(\$)	(KM2)	(BLK)
STIVESGOLDMININGCOMPANYPTY	nan	nan	nan	nan
E 15/1471	13/01/2016	12/01/2026	44.8	16
LIMITED	nan	nan	nan	nan

Syn-volcanic extensional faults	nan	nan	
nan	nan	nan	
Extension	NNW-trending linear	including the nickel shoots at	
nan	nan	nan	
Kambalda.	nan	nan	
nan	nan	nan	
nan	nan	nan	
Contraction	folding and ENE	Terminates greenstone volcanism.	
nan	nan	nan	
nan	nan	nan	

	nan	nan	nan	
	Formation of granite-cored domes.	nan	nan	
	Extension	nan	nan	
	Prepares the EYC for gold endowment.	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	faulting	Onset of the most endowed period of	nan	
	Contraction	nan	nan	
	Reactivation of D3	gold mineralisation	nan	
	nan	nan	nan	
ing D4a	nan	nan	nan	
	nan	nan	nan	
	involve block movements up and down	nan	nan	
	Contraction	folding and ENE	nan	
	to NE or SW within a NNW- to NW-	nan	nan	
	nan	nan	nan	
nework	nan	nan	nan	
al stress	nan	nan	nan	
	NNW sinistral strike-	field: obliquity with pre-existing	nan	
	Contraction	ESE	slip shearing and	archite
	heterogeneity. Most gold deposited	nan	nan	
rvasive.	nan	nan	nan	
nally	nan	nan	nan	
	nan	nan	nan	
hortening	nan	nan	nan	
	nan	nan	nan	
	Contraction	NE-SW	vector.	
	nan	nan	nan	
g brittle	nan	nan	nan	
	nan	nan	nan	
Fault.	nan	nan	nan	
	nan	nan	nan	
	nan	nan	nan	
	shortening and	nan	nan	
	nan	nan	nan	

HE001	375031	6544718	293	-72	135	288.0
HE002	374914	6544801	293	-78	235	244.0
HE003	374831	6544742	293	-74	224	244.0

HE002-NE	181.0	185.7	4.7	0.18
HE003-NE	130.0	135.8	5.8	0.19
HE003-NE	143.3	145.3	2.0	0.15

HE001-NE	143.0	144.0	1.0	0.82
HE001-NE	96.0	96.9	0.9	0.51

Combined Reporting Number	nan	
Tenement Numbers:	ML 15/327, M15/1516 and M15/1531	
Tenement Operator	Karora Resources Pty Ltd	
Tenement Holder:	St Ives Gold Mining Company (Gold Fields)	
Report Type:	Co-Funded Drilling Final Report	
Report Title:	Co-Funded Drilling - Final Report Testing the Hunt East	
Concept, March 2022	nan	
Report Period	nan	
Author:	John Stockfeld	
Date of report:	31 March 2022	
1:250 000 map sheet	SH51-14WIDGIEMOOLTHA	
1:100 000 map sheet	3235LAKELEFROY	
Geodetic Datum:	KNO-mine grid (GDA94 Regional)	
Project Zone:	51	
Target Commodity:	Nickel (Ni)	
Keywords:	Beta Hunt, nickel	
Prospects drilled:	Hunt East	
List of Assays	Au, Ni, Fe, Mg, As, Cu, S, Cc	

|--|

Literature search	nan	nan
Database compilation	nan	nan
Computer modelling	nan	nan
Reprocessing of data	nan	nan
General research	nan	nan
Reportpreparation	Co-Funded Drilling Final Report, Testing the Hunt	pdf
East concept, March 2022.pdf	nan	nan
Data review	nan	nan
Resource Modelling	nan	nan
Airborne Exploration Surveys	nan	nan
Aeromagnetics	nan	nan
Radiometrics	nan	nan
Electromagnetics	nan	nan
Gravity	nan	nan
Digital terrain modelling	nan	nan
Other (specify)	nan	nan
Remote Sensing	nan	nan
Aerial photography	nan	nan
LANDSAT	nan	nan
SPOT	nan	nan
MSS	nan	nan
Radar	nan	nan
Other (specify)	nan	nan
Ground Exploration Surveys	nan	nan
Geological mapping	nan	nan
Regional	nan	nan
Reconnaissance	nan	nan
Prospect	nan	nan
Underground	nan	nan
Costean	nan	nan
Ground geophysics	nan	nan
Radiometrics	nan	nan
Magnetics	nan	nan
Gravity	nan	nan
Digital terrain modelling	nan	nan

Electromagnetics	nan	nan
SP/AP/EP	nan	nan
IP	nan	nan
AMT	nan	nan

Complex resistivity	nan	nan
Seismic reflection	nan	nan
Well logging	nan	nan
Geophysical interpretation	nan	nan
Other (specify)	nan	nan
Geochemical Surveying	nan	nan
Drill sample	nan	nan
Stream sediment	nan	nan
Soil	nan	nan
Rock chip (in pit)	nan	nan
Laterite	nan	nan
Water	nan	nan
Biochemistry	nan	nan
Isotope	nan	nan
Whole rock	nan	nan
Mineral analysis	nan	nan
Other (specify)	nan	nan
Drilling	nan	nan
Diamond	BH_WADL4_GEO2021.txt	txt
BH_WASL4_COLL2021.txt	txt	nan
BH WADS4 SURV2021.txt	txt	nan
BH_WADL4_ORI2021.txt	txt	nan
BH_WADG4_ASS2021.txt	txt	nan
Reverse circulation	nan	nan
Rotary air blast	nan	nan
Air core	nan	nan
Auger	nan	nan
Groundwater drilling	nan	nan
All drilling	nan	nan
Geological Drill LogCodes	BH_logging codes.xlsx	xlsx

A Number	Year	Company	Description of activities
89RAB	nan	nan	nan
027201	1987-1988	Aztec Mining Company	nan
10 RC holes	nan	nan	nan
029855	1989	Aztec Mining Company	79 RAB holes
32 RABholes	nan	nan	nan
033021	1990	Aztec Mining Company	nan
5 RC holes	nan	nan	nan
035280	1991	Aztec Mining Company	34 RAB holes
43335	1994	Sovereign Resources	64 RAB holes
46800	1995	Sovereign Resources	149 RAB holes
51953	1996-1997	Australian Gold Resources	43 RAB holes
54172	1997	WMC Resources	3 diamond holes
65747	1994-2002	GoldfieldsAustralasia	51 air core holes
97166	2012	St Ives Gold Mining Co Pty Ltd	88 air core holes
?	?	53 RAB holes	nan
?	?	?	67 air core holes

Drill Type	No. of Holes	TotalMeters
AC	365	20862
RC	16	2870
DD	9	3510.3
TOTAL	390	27242.3

AIIE15/1447	AC	E15/1447	398.0	22522.0
RC	28	5290	nan	nan
DD	9	3510.3	nan	nan
TOTAL	435	31322.3	nan	nan
Graticules relinquished	AC	E15/1447	365.0	20862.0
RC	16	2870	nan	nan
DD	9	3510.3	nan	nan

Pulverise 250g soil to	Au (0.01-100)	nan
-		nan
Fire Assay, 50g sample, AA finish 85% <75	nan	
	nan	nan
Hg-MS42:	nan	nan
Hg (0.005-100)	nan	nan
Aqua Regia Digest, ICP-MS finish.	nan	nan
INTERP-11:	nan	nan
Mineral assemblages and	nan	nan
aiSIRIS Mineral assemblages and	nan	nan
spectral parameters	nan	nan
spectral parameters	nan	nan
Ag (0.002-100) Cu (0.02-	nan	nan
10,000)	nan	nan
Na (0.001%-10%) Sr	nan	nan
(0.02-10,000)	nan	nan
Al (0.01%-25% Fe	nan	nan
(0.002%-50% Nb	nan	nan
(0.005-500) Ta (0.01-500)	nan	nan
As (0.05-	nan	nan
10,000) Ga (0.05-10,000)	nan	nan
Ni (0.08-	nan	nan
10,000) Te (0.04-500) Ba	nan	nan
1-10,000)	nan	nan
Ge (0.05-500) P (0.001%-	nan	nan
1%) Th	nan	nan
(0.004-10,000) Be (0.02-	nan	nan
1,000) Hf	nan	nan
(0.004-500) Pb (0.01-	nan	nan
10,000) Ti	nan	nan
(0.001%-10%) Bi (0.005-	nan	nan
10,000)	nan	nan
In (0.005-500) Rb (0.02-	nan	nan
10,000) TI	nan	nan
ME-MS61L:	nan	nan
(0.004-10,000) Ca (0.01%	nan	nan
, , , ,		

4 Acid attack (including hydrofluoric, nitric, perchloric and	nan	nan
25%) K	nan	nan
hydrochloric acids). ICP-MS finish	nan	nan
(0.01%-10%) Re (0.002-	nan	nan
50) U	nan	nan
(0.01-2,500) Cd (0.005-	nan	nan
1,000) La	nan	nan
(0.005-10,000) S (0.01%-	nan	nan
10% V	nan	nan
(0.1-10,000) Ce (0.01-500)	nan	nan
Li (0.2-	nan	nan
10,000) Sb (0.02-10,000)	nan	nan
W (0.008-	nan	nan
10,000) C0 (0.005-10,000)	nan	nan
Mg	nan	nan
(0.01%-25% Sc (0.01-	nan	nan
10,000) Y	nan	nan
(0.01-500) Cr (0.3-10,000)	nan	nan
Mn (0.2-	nan	nan
50,000) Se (0.2-1000) Zn	nan	nan
(0.2-	nan	nan
10,000) Cs (0.01-500) Mo	nan	nan
(0.02-	nan	nan
10,000) Sn (0.02-500) Zr	nan	nan
(0.1-500)	nan	nan
Ce (0.1-10,000) Rb (0.2-	nan	nan
10,000) Ta	nan	nan
(0.1-2,500) W (1-10,000)	nan	nan
La (0.1-	nan	nan
10,000) Sn (1-10,000) Th	nan	nan
ME-MS85:	nan	nan
(0.05-	nan	nan
Lithium Borate Fusion, ICP-MS finish	nan	nan
1,000) Y (0.1-10,000) Nb	nan	nan
(0.2-	nan	nan

2,500) Sr (0.1-10,000) U	nan	nan
(0.05-	nan	nan
8. Current Exploration Summary	Page 20 of 26	Printed: 23/11/2022

Project	Hole ID	From (m)	Length (m)	Au (ppm)	GM
Lefroy West	KD81294	32	34	0.44	14.96
Lefroy West	KD81318	80	6	0.92	5.54
LefroyWest	KD81533	84	4	2.70	10.78
LefroyWest	KD81533	94	8	1.95	15.60
Lefroy West	SAL1519	78	6	2.05	12.30
Lefroy West	SAL1764	95	10	3.24	32.40
LefroyWest	SAL1777	78	7	1.45	10.15
Lefroy West	SAL1791	129.7	5.3	1.40	7.42

Project	Hole ID	From (m)	[Length (m)	Au (ppm)	GM
Lefroy West	KD81318	80	6	0.92	5.54
LefroyWest	KD81533	84	4	2.70	10.78
Lefroy West	KD81533	94	8	1.95	15.60
LefroyWest	KD81534	80	18	0.17	3.13
LefroyWest	KD81785	16	8	0.41	3.26
Lefroy West	KD81790	82	9	0.33	2.97
LefroyWest	SAL1319	0	2	1.98	3.96
LefroyWest	SAL1486	90	4	0.57	2.26
Lefroy West	SAL1519	78	6	2.05	12.32
Lefroy West	SAL1763	78	12	0.23	2.81
LefroyWest	SAL1764	95	10	3.24	32.40
Lefroy West	SAL1777	78	7	1.45	10.15
Lefroy West	SAL1777	106	1	2.25	2.25
LefroyWest	SAL1789	197	1	2.28	2.28
Lefroy West	SAL1791	129.7	5.3	1.4	7.42

Area	Area	nan	nan	nan	nan	nan
Tenement	Grant Date	Expiry Date	Holder*	Commitment (\$)	nan	nan
(Km2)	(Blk)	nan	nan	nan	nan	nan

E 15/1447	30/05/2016	01/08/2026	Hogans Resources	60,000	139.0	49.0
TOTALS	139	49	nan	nan	nan	nan

E 15/1447	102/08/2016	01/08/2026	HOGANSRESOURCESPTYLTD	58000	81.2	29

JAN21DD_001	386339.89	6528864.254	333.128	575.1	-60.0	270.0	M15/1556
JAN21DD_002	386204.892	6529258.631	333.263	606.8	-60.0	270.0	M15/1577
JAN21DD_003	386076.011	6529629.579	332.309	451.0	-60.0	260.0	M15/1577
Table 6l1 Kenilworth sighter holes drilled	nan	nan	nan	nan	nan	nan	nan

JAN22DD004	1529.1	298.3	-70.7	331.0	MGA9451	386540.0	6528810.0	10/03/2022	16/05/2022
Table7I1JAN22DD_004drillholedetails	nan	nan	nan	nan	nan	nan	nan	nan	nan

Geological logging	0	1,529.1 (end of hole)
Structurallogging	~132	1,529.1
Corephotography	0	1,529.1
MagneticSusceptibility	31	1,529
ChemStrat & XRD	52.75	1,529
Geochemistry (nickel)	1141	1,529
Geochemistry (gold)	97	1,133
pXRF	47	1,150
DHEM	285	565
Table7I2JAN22DD_004summaryofactivities	nan	nan

Description	nan	nan	
	nan	nan	
	314.8	314.8	Mediur
8	350	35.2	Fine
	453.5	103.5	Medium grained. Bl
5	472.3	18.8	Medium grained dolerite with con
3	516.9	44.6	

9	577.8	60.9	Fine-mediun
8	622.7	44.9	Se
7	686	63.3	Fine to mediu
	696.8	10.8	Mediu
8	759	62.2	Fine-medium
	828.3	69.3	Bladed med
3	870.8	42.5	Medium g
8	886.2	15.4	Fine-medium grained
2	889.15	2.95	Fine
5	927.4	38.25	Fine-medium grained
4	984.2	51	Medium grained n
2	1024.9	46.5	
.9	1030.3	5.4	Se
.3	1063.8	33.5	fine-medium
.8	1069.5	5.7	
?). Fine green amphibole needles with qtz-	nan	nan	
.5	1089	19.5	
nterstices.	nan	nan	
Ð	1094.9	5.9	Inter
.9	1108.5	13.6	
.5	1114.41	5.91	Sheared
41	1132.3	17.89	Basalt with
.3	1141.759.45	Intermediate intrusive (foliated to sheared)	
75	1219.8	78.05	Chlorite-amphi
.8	1222.5	2.7	Interflow se
.5	1529.1	297.5	Talc-m
		· · · · · · · · · · · · · · · · · · ·	

0	97.0	Low	615.4	615.5	High	982.4	98:
97	107.0	Weak	615.5	622.0	Mod-High	982.5	98
107	137.0	Low	622.0	646.0	Weak-Mod	984.2	101
137	142.0	Weak	646.0	650.0	Moderate	1016.9	103
142	218.0	Low	650.0	652.4	Mod-High	1030.3	103
218	224.0	Weak	652.4	653.25	High	1030.6	103
224	238.5	Low	653.25	663.0	Mod-High	1032.1	103
238.5	247.0	Weak-Mod	663.0	717.5	Weak-Mod	1032.3	103

247	317.0	Weak	717.5	717.65	High	1036.7	103
317	320.0	Weak-Mod	717.65	719.0	High	1038.7	103
320	401.0	Weak	719.0	719.4	VeryHigh	1039.1	104
401	419.0	Weak-Mod	719.4	720.6	High	1043.9	108
419	445.0	Weak	720.6	729.0	Weak	1089.0	109
445	456.0	Moderate	729.0	747.0	Weak-Mod	1093.0	114
456	470.0	Weak	747.0	766.0	Weak	1141.75	114
470	481.0	Weak-Mod	766.0	768.1	Moderate	1142.4	116
481	523.0	Weak	768.1	768.35	Mod-High	1163.1	116
523	524.0	Weak-Mod	768.35	770.7	Moderate	1168.2	116
524	531.0	Weak	770.7	823.0	Weak	1168.7	116
531	540.0	Weak-Mod	823.0	928.0	Low	1169.6	122
540	555.4	Weak	928.0	930.0	Weak-Mod	1228.45	122
555.4	557.5	Weak-Mod	930.0	957.9	Weak	1228.8	127
557.5	558.1	Moderate	957.9	966.0	Mod-High	1278.85	129
558.1	565.65	Weak-Mod	966.0	974.1	Moderate	1294.0	137
565.65	580.0	Weak	974.1	978.4	High	1370.0	138
580	591.0	Mod-High	978.4	978.85	Weak	1381.0	146
591	604.0	Weak-Mod	978.85	982.4	High	1466.0	152
604	615.4	Mod-High	nan	nan	nan	nan	na
deformation zones in the EIS hole ranked from low to very high.	nan	nan	nan	nan	nan	nan	na

2.Weak	infrequent narrowveining and/or foliation
Weak-	nan
partitioned zones of foliation to weak shearing ± veining	nan
Mod	nan
4.Moderatel-z	zones of weak shearing with associated v
Mod-	nan
shear zones with associated veining and minor hydraulic breccia development	nan
5	nan
High	nan
penetrative shearing, often altered with biotite ± albite, with associated veining and hydraulic	nan
6.High	nan
breccia development	nan
Very	nan

narrow fault / mylonite zones of maximum displacement	nan
High	nan

Structure	Shear	Interpreted	nan	nan
Depth	Depth	Comment	nan	nan
Identifier	Fabric	Structure	nan	nan
(m)	(m)	nan	nan	nan
Jan East	nan	nan	nan	nan
А	604.0	622.0	Unknown	Strain taken up by the low strength Kap
Thrust	nan	nan	nan	nan
Jan East	nan	nan	nan	nan
В	650.0	663.0	781, 0591	Intra-DCBshear
Thrust	nan	nan	nan	nan
С	717.5	720.6	Unknown Unknown	Intra-DCBshear
Jan Main	nan	nan	nan	nan
D	974.1	984.2	601, 0631	Significant offset of Victory Dolerite against L
Fault	nan	nan	nan	nan
Jan Main	nan	nan	nan	nan
Е	1016.9	1043.9	671, 0601	Structural repetition of Lunnon Basalt against L
Fault	nan	nan	nan	nan
c shear possibly related to the intermediate	nan	nan	nan	nan
F	1163.1	1169.6	Unknown Unknown	nan
lacedcontactwithLunnonBasalt at 1132.3m	nan	nan	nan	nan
TableZl4Hiahstrain	defo	nan	nan	nan

Host	nan							
(m)	(m)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
502.0	508.8	1.6	164	0.19	631	3.6	149	
604.25	618.2	3.0	254	0.27	1436	3.7	159	Kapa
Interflow sediment in Lunnon Basalt Jan Main	nan							
1027.45*1032.3 1.1	149	0.02	332	6.3	44	nan	nan	
Fault	nan							
saved for all elements. Missing assays given half detection limit value	nan							

Ag	0.05-500ppm	Hf	0.05-2000ppm	Sb	0.05ppm-1%
Al	50ppm-15%	In	0.01-2000ppm	Sc	0.1-5000ppm
As	0.5ppm-1%	K	20ppm-10%	Se	0.5ppm-1%
Ва	0.1-5000ppm	La	0.01-5000ppm	Sn	0.1-2000ppm
Ве	0.05-2000ppm	Li	0.1-5000ppm	Sr	0.05ppm-1%
Bi	0.01ppm-1%	Mg	20ppm-40%	Та	0.01-2000ppm
Ca	50ppm-40%	Mn	1ppm-5%	Te	0.2-2000ppm
Cd	0.02-2000ppm	Мо	0.1ppm-1%	Th	0.01-5000ppm
Се	0.01ppm-1%	Na	20ppm-10%	Ti	5ppm-2%
Со	0.1ppm-2%	Nb	0.05-2000ppm	TI	0.02-2000ppm
Cr	1ppm-2%	Ni	0.5ppm-2%	J	0.01ppm-1%
Cs	0.05-2000ppm	Р	50ppm-5%	V	1ppm-2%
Cu	0.5ppm-2%	Pb	0.5ppm-1%	W	0.1-2000ppm
Fe	100ppm-50%	Rb	0.05-2000ppm	Υ	0.05-2000ppm
Ga	0.05-2000ppm	Re	0.002-2000ppm	Zn	1ppm-2%
Ge	0.1-2000ppm	S	500ppm-10%	Zr	0.1-2000ppm
Table 7l6Four acid 48element ChemStratpackage with detectionrange.	nan	nan	nan	nan	nan

Count Numeric	114.0	114.0	114.0	114.0	114.0
Count Text	0.0	0.0	0.0	0.0	0.0
Count Null	0.0	0.0	0.0	0.0	0.0
Count Negative	0.0	0.0	0.0	0.0	0.0
Count Zero	0.0	0.0	0.0	0.0	0.0
Unique Values	114.0	80.0	94.0	99.0	83.0
Minimum	85.0	0.005	4.3	0.2	19.0
Maximum	5609.0	11.16	41.4	191.0	280.0
Mean	2809.061	1.738947	26.56667	46.95	161.0
Median	2719.0	0.61	29.45	45.75	166.0
Range	5524.0	11.155	37.1	190.8	261.0
Interquartile Range	1872.25	1.895	15.375	37.4	72.75
StandardDeviation	1519.236	2.652829	10.30819	39.3527	66.58191 6
1 percentile	86.35	0.005	4.345	0.215	19.15
5 percentile	197.75	0.01	6.675	0.575	30.25
	$\overline{}$				

844.5

0.05

10 percentile

10.25

2.85

56.5

25percentile	1647.75	0.1875	18.925	19.775	125.5	
75percentile	3520.0	2.0825	34.3	57.175	198.25	
90percentile	5252.0	6.555	39.3	92.4	258.0	
95 percentile	5457.25	9.375	40.15	150.4	268.0	
99 percentile	5608.55	11.04	41.37	189.935	279.1	1
statistics for some selected immobile elements Ti, Th, Sc, Zr, V, Cr and Mg.	nan	nan	nan	nan	nan	

0 - 472.3	Paringa Basalt	Lower Paringa Basalt
Interflow sediment toward the base of the	nan	nan
472.3 - 516.9	Kapai Slate	nan
ParingaBasalt	nan	nan
516.9 - 577.8	Paringa Basalt	UpperParingaBasalt/DefianceDo
Kapai Slate and associated significant shear	nan	nan
577.8 - 622.7	Kapai Slate	nan
zone	nan	nan
Significant shear zone from approximately 604.0	nan	nan
to 622.0m	nan	nan
DevonConsolsBasalt±AthenaBasaltand	nan	nan
622.7 -759	DevonConsolsBasalt	nan
Defiance Dolerite	nan	nan
Devon Consols Basalt	tPlotsasAthenaBasaltbut likelyahighTi end	nan
759-828.3	nan	nan
(doleritic member)	member of the Devon Consols Basalt trend.	nan
828.3 - 870.8	Devon Consols Basalt	[DevonConsolsBasalt±AthenaBa
870.8 - 984.2	Victory Dolerite	Ultramafic (non-magnetic)
Significant shear zone from approximately 974.1	nan	nan
to 984.2m	nan	nan
984.2 -1141.75	LunnonBasalt	LunnonBasalt±IntrusivesandUltrar
Foliatedtoshearedintrusivewithsheared	nan	nan
contactwithultramaficfrom1132.3to1142.4m	nan	nan
1141.75 - 1529.1	KambaldaKomatite	ultramafics (magnetic)
7l8StratigraphicunitsasdeterminedbyChemStratanalysis	nan	nan

Reporting nan

2021	nan
ber:	nan
Numbers:	M15/01557
perator(s):	LUNGAN A
Type:	Co-Funded Drilling
Title:	Co-Funded Drilling Report, Kenilworth Magnetic Anor
Period:	16March2022to16May2022
or:	Catherine NEWMAN, Callum SCOTT, Aaron WE
ed By:	CatherineNEWMAN
Date:	28September2022
neets:	1:250,000 MapSheet
IEMOOLTHA)	3235(LAKELEFROY)
mmodity:	GOLD,NICKEL
Drilled:	Kennilworth
ımber:	nan
ırvey Reg No:	nan
ys:	Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, G
Sc,Se,Sn,Sr,Ta,Te,Ih,Ii,I,U,V,W,Y■	nan
1	nan
ract	nan
ion:	TheKambaldaNickelProjectislocated19kmsouth-southeastofthetownship
uth side of Lake Lefroy, Kambalda, Western Australia.	nan
pgy:	The Kambalda Nickel Project is located within the Kambalda Domain, a subset
dominated by the Kalgoorlie Group volcanic rocks.	nan
Done:	One diamond drillhole was completed as part of the EIS agreement to inve
ent M15/1557 to a total depth of 1529.1m. Geochemical	nan
nalytical techniques for gold targets and 33 multi-element	nan
r Ni, Cu, Cr, Zn, Pb, Ag and 27 other elements. Semi-	nan
were taken from 47m to 1150m. Selected samples were	nan
digest with ICP-MS finish for stratigraphic fingerprinting.	nan
werecollectedat1mintervalsdownthelengthofthedrill	nan
tic (DHTEM) survey was also conducted.	nan
ılts:	No shallow level magnetic differentiated dolerite was intercepted during drilling
n 2o0 m of surface. The nickeliferous ultramafic-basalt	nan
1,150 m below surface, was not reached during drilling	nan

ccurring at depths of more than 1,500 m. Multi-element	nan
c unit show that the potential nickel prospectivity of the	nan
ere found from any sediments, intrusives and areas of	nan
edwithgoldpathfinderelementsseveralzoneswarrant	nan
pm gold. The lithologies encountered broadly follow the	nan
st include Paringa Basalt, Kapai Slate, Devon Consols	nan
sent. Geochemical identification of Lunnon Basalt higher	nan
os one of the most important results.	nan
ision:	The Kenilworth magnetic anomaly is most likely the result of a shallow leve
drillhole. The nickel fertility data and ultramafic facies	nan
exist at depths greater than that drilled. In addition, no	nan
an-East Cooee Corridor which remains undetected and	nan
plored.	nan

SMT428	0.0	252.0	МВРОО	PillowBasalt
SMT428	252.0	260.0	FPQFO	Quartz dominant, felsic porphyry
SMT428	260.0	263.0	МВАНО	Basalt-Amphiboledominant
SMT428	263.0	267.5	FPQFO	Quartz dominant, felsic porphyry
SMT428	267.5	398.5	МВАНО	Basalt-Amphiboledominant
SMT428	398.5	428.2	NAVI	Navi run - No core recovery
SMT428	428.2	494.8	МВАНО	Basalt-Amphiboledominant

Combined Reporting	nan	nan
C185/2010	nan	nan
Number:	nan	nan
Tenement Numbers:	ML15/00487	nan
Tenement Operator(s):	CHERISHMETALSPTYLTD	nan
Report Type:	Co-Funded Drilling	nan
Report Title:	CO-FUNDED GOVERNMENT INDUSTRY DRILLING PROGRAM 2021-22 (R23)	nan
Report Period:	1 January 2022 to 19 October 2022	nan
Author:	Allan STEPHENS	nan
Submitted By:	Allan STEPHENS	nan
Report Date:	24 October 2022	nan
Map Sheets:	1:250,000MapSheet	1:100,000MapShee

SH51-14(WIDGIEMOOLTHA)	3234 (COWAN)	nan
SH51-14 (WIDGIEMOOLTHA)	3235(LAKELEFROY)	nan
Target Commodity:	COBALT, COPPER, NICKEL	nan
Prospects Drilled:	1	nan
PoWNumber:	nan	nan
eophysical Survey Reg No: N/A	nan	nan
Assays:	N/A - No Assays completed	nan

Diamond Drill Holes 1 495

ML 15/48731/12/2999 31/12/2038	CHERISHMETALSPTYLTD	12100	1.2	0
--------------------------------	---------------------	-------	-----	---

enement Rc holes drilled RC metres drilled Surface sampling Open-file geophysical data compilation	nan	nan	na
P26/4019	174.0	3grabsamples	Υe

Prospect	Sample type	Number of assays	Comments	
Yoda	Grab	1	Peak 61 ppbAu	
Tenement Recon	Grab	2	No significant results	

Prospect	Drill hole	SignificantIntercepts
Yoda	YORC18006	Nosignificant results(peak assay grade =0.05 g/t Au)
Yoda	YORC18007	Nosignificantresults ≣ <0.o1g/tAu)

	P26/4019	28/05/2015	5127/05/2023	NORTHERNSTAR(HBJ)PTYLTD	1.32	0
--	----------	------------	--------------	-------------------------	------	---

The Neptune-Revenge area has had a long history of gold exploration and production.	nan
· 1984: Discovery of Revenge - Magnetic anomaly within favourable stratigraphy	nan
· 1994: Resource definition of supergene ore bodies Mars, Agamemnon, and Minotaur	nan
· 1999: Discovery of Belleisle	nan
covery of the Neptune palaeochannel deposit, including A5 and Redback. Mining has been undertaken into fresh rock	nan
lodes.	nan
6. Previous Exploration	Page 11 of 17

Combined Reporting	nan	nan
Number:	nan	nan
Tenement Numbers:	M 15/1658	nan
Tenement Operator(s):	ST IVES GOLD MINE	nan
Report Type:	Co-Funded Drilling	nan
Report Title:	Round252022-2023C0-fundedDrillingProgram	nan
Report Period:	1 June 2022 to 31 May 2023	nan
Author:	Jonathon FRANKLIN	nan
Submitted By:	Jonathon FRANKLIN	nan
Report Date:	29 May 2023	nan
Map Sheets:	1:250,000 MapSheet	1:100,000MapSh
SH51-14(WIDGIEMOOLTHA)	3235 (LAKE LEFROY)	nan
Target Commodity:	GOLD	nan
Prospects Drilled:	Neptune-Revenge Stratigraphy	nan
PoW Number:	ID93883	nan
Geophysical Survey Reg No:	nan	nan
Assays:	AuAlCaCrFeK MgMnNaSSi Ti PBaCeClBrCsDy Er EuGaGeGdHf HoLaLu Nb	nan
Pr RbSmSnTaTb ThTm U VW Y Yb Zr	nan	nan

Tenement	Holder	nan	nan	nan	nan
Date	Date	(\$)	(KM2)	(BLK)	nan
STIVESGOLDMININGCOMPANYPTY	nan	nan	nan	nan	nan
M 15/1658	14/12/2004	23/12/2025	11100	1.1	0.0
LIMITED	nan	nan	nan	nan	nan