EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Light Emitting Diodes

Charge carrier recombination occurs at forward-biased *pn*-junction Energy levels \rightarrow electrons > holes e-h recombination \rightarrow electron energy – hole energy = heat or light

Semiconductor materials for LED →

GaAs = IR

GaAsP = red or yellow

GaP = red or green

Substrate \rightarrow *n*-type epilayer \rightarrow diffused *p*-region Anode \rightarrow allow most of light to be emitted Gold film \rightarrow reflect as much light as possible toward surface

Light Emission

Metal film

Connection

Metal film

Connection

Light Emitting Diodes

pn-junction is mounted on cup-shaped reflectorWires for anode and cathode connectionsDevice is encapsulated in colorless or colored epoxy lens

LED characteristics = semiconductor diodes

Forward voltage drop = 1.2 to 4.0 V Reverse breakdown voltage = 3 V Forward current = 10 to 20 mA

Typical LED Characteristics			
Semiconductor Material	Wavelength	Colour	V _F @ 20mA
GaAs	850-940nm	Infra-Red	1.2v
GaAsP	630-660nm	Red	1.8v
GaAsP	605-620nm	Amber	2.0v
GaAsP:N	585-595nm	Yellow	2.2v
AlGaP	550-570nm	Green	3.5v
SiC	430-505nm	Blue	3.6v
GalnN	450nm	White	4.0v

Wire bond

Epoxy lens/case

Reflective cavity

Flat spot

Semiconductor die

Leadframe

Half-Wave Rectification

Half-wave rectification → process of removing one-half input signal to establish dc level

<u>Ideal diode model:</u>

Conduction region (o \rightarrow T/2) \rightarrow

Nonconduction region $(T/2 \rightarrow T) \rightarrow$

Half-wave rectified signal:

Half-Wave Rectification

Effect of V_T on half-wave rectified signal:

For ideal diode model \rightarrow Average value, $V_{dc} = 0.318 V_m$

With $V_T \rightarrow V_{dc} \approx 0.318(V_m - V_T)$

Half-Wave Rectification

Problem-5:

- (a) Sketch the output v_0 and determine the dc level of the output for the network of Fig. 5.
- (b) Repeat part (a) if the ideal diode is replaced by a silicon diode.
- (a) Diode will conduct during negative part of input, and v_0 will appear as shown in figure. For full period, dc level is

$$V_{dc}$$
 = -0.318 V_m = 0.318(20 V) = -6.36 V

(b) Using a silicon diode, output has appearance as shown in figure.

$$V_{dc} \approx -0.318(V_m - 0.7 \text{ V})$$

= -0.318(19.3 V) = -6.14 V

Full-Wave Bridge Rectifier:

For period $o \rightarrow T/2$ of v_i :

For negative region of v_i :

<u>Input and output waveforms:</u>

<u>dc level of full-wave rectifier:</u>

$$V_{dc} = 2(0.318 \, V_m) = 0.636 \, V_m$$

Full-wave rectifier with silicon diode:

From Kirchhoff's voltage law

$$v_i - V_T - v_o - V_T = 0$$
$$v_o = v_i - 2V_T$$

Peak value of output voltage v_o is therefore

$$V_{omax} = V_m - 2V_T$$

Average value is therefore

$$V_{dc} \approx 0.636(V_m - 2V_T)$$

Center-tapped transformer:

Full-wave rectifier with only two diodes but requiring center-tapped (CT) transformer.

For negative region of *v_i*:

Problem-6

10 V

Determine the output waveform for the network of Fig. 6 and calculate the output dc level.

For positive region of input voltage

$$V_o = \frac{1}{2}V_i$$

 $V_{omax} = \frac{1}{2}V_{imax} = \frac{1}{2}(10 \text{ V}) = 5 \text{ V}$

For negative part of v_i roles of diodes will be interchanged and v_o will appear as

Available dc level will be therefore

$$V_{dc} = 0.636(5 \text{ V}) = 3.18 \text{ V}$$

