Note: Preview of slides from (imageandkernel.tex) by Qirui Li (https://orcid.org/0000-0002-6042-1291). For educational and non-commercial use only. Any unlawful use will be prosecuted.

© 2025 Qirui Li Licensed under CC BY-NC-SA 4.0. You may modify, share, or adapt with proper attribution, for non-commercial educational use only, and must include the license link: https://github.com/honeymath/Linear-Algebra-Slides/blob/main/LICENSE

Full license: https://creativecommons.org/licenses/by-nc-sa/4.0/

Image of a linear transformation describes how far away a linear transformation is from being ${\bf surjective}$.

There are three type of elements in codomain W for a linear transformation $T:V\longrightarrow W$

- \bullet *lonely* element: there is **no** element in V corresponds to it.
- faithful, loyal element: there is only one element in V corresponds to it.
- unfaithful, unloyal element: there is two or more element in V corresponds to it.

The $\operatorname{Im} T$ is the subset of all element of the second and third type.

Any element outside of $\mathrm{Im} T$ are $\mathit{lonely},$ do not have elements in V to corresponds to it.

surjective means no *lonely* element, so we use image to describe how close it is from being a **surjective** .

Definition 1

 L_S We define the Image of a map $T:V\longrightarrow W$ as

$$\operatorname{Im} T = \{ \vec{w} \in W : T(\vec{v}) = \vec{w} \text{ for some } \vec{v} \in V \}$$

if there is no *lonely* element, which is $\operatorname{Im} \mathcal{T} = \mathcal{W}$, the map become a surjective .

Proposition 1

 $S \mid L_S \mid A$ linear map $T: V \longrightarrow W$ is surjective if and only if

 $\operatorname{Im} T = W$.

Proposition 2

For any map $S: V \longrightarrow W$ and $T: W \longrightarrow U$, we have

$$\operatorname{Im}(T \circ S) = T(\operatorname{Im} S).$$

Proof.

Firstly we prove $\operatorname{Im}(T \circ S) \subset T(\operatorname{Im} S)$. For any $\vec{u} \in \operatorname{Im}(T \circ S)$, there exists $\vec{v} \in V$ with $\vec{u} = T \circ S(\vec{v})$. So $\vec{u} = T(\vec{w})$ with $\vec{w} = S(\vec{v}) \in \operatorname{Im} S$, therefore $\vec{u} \in T(\operatorname{Im} S)$.

Then we prove $\operatorname{Im}(T \circ S) \supset T(\operatorname{Im} S)$. For any $\vec{u} \in T(\operatorname{Im} S)$, one can write $\vec{u} = T(\vec{w})$ for some $\vec{w} \in \operatorname{Im} S$, so one can write $\vec{w} = S(\vec{v})$ for some $\vec{v} \in V$. As total, $\vec{u} = T(S(\vec{v}))$ for some \vec{v} , then $\vec{u} \in \operatorname{Im}(T \circ S)$.

Proposition 3

For any map $S: V \longrightarrow W$ and $T: W \longrightarrow U$, we have

$$\operatorname{Im}(T \circ S) \subset \operatorname{Im} T$$
.

Proof.

If $\vec{u} \in \text{Im}(T \circ S)$, this implies $\vec{u} = T \circ S(\vec{v})$ for some $\vec{v} \in V$, let $\vec{w} = S(\vec{v})$ then $\vec{u} = T(\vec{w})$. Therefore $\vec{u} \in \text{Im}(T)$ we proved

$$\operatorname{Im}(T \circ S) \subset \operatorname{Im}(T)$$
.

Proposition 4

If $S:V\longrightarrow W$ is an **surjective** , for any map $T:W\longrightarrow U$, we have

$$\operatorname{Im}(T \circ S) = \operatorname{Im} T$$

Proof.

It is clear from previous proposition $\operatorname{Im}(T \circ S) \subset \operatorname{Im} T$.

To show inclusion in the other way, if $\vec{u} \in \operatorname{Im}(T)$, then $\vec{u} = T(\vec{w})$ for some $\vec{w} \in W$, since S is a **surjective** $, \vec{w} = S(\vec{v})$ for some $\vec{v} \in V$. so $\vec{u} = T \circ S(\vec{v})$ so $\vec{u} \in \operatorname{Im}(T \circ S)$. So

$$\operatorname{Im}(T \circ S) \supset \operatorname{Im}(T)$$
.

Subspace by constructive language

Previous arguments are all for maps. When they a linear transformation ,

Proposition 5

If $T:V\longrightarrow W$ is a linear transformation . Then ${\rm Im}\,T$ is a subspace.

Proof.

For any $\vec{w_1}, \vec{w_2} \in \operatorname{Im} T$ and any scalar $\lambda \in F$. Since $\vec{w_1}, \vec{w_2}$ are in image, we can find $\vec{v_1}, \vec{v_2} \in V$ such that

$$\vec{w}_1 = T(\vec{v}_1)$$
 $\vec{w}_2 = T(\vec{v}_2)$

Then because T is linear

$$\lambda \vec{w}_1 + \vec{w}_2 = \lambda T(\vec{v}_1) + T(\vec{v}_2) = T(\lambda \vec{v}_1 + \vec{v}_2) \in \operatorname{Im} T.$$

Therefore $\operatorname{Im} T$ is a subspace.

Subspace by constructive language

The way we describe Image is **constructive**. That is, we listed elements of the set one by one with a parametrization, where parameters are in domain.

$$\operatorname{Im} T = \{ \vec{w} \in W : T(\vec{v}) = \vec{w} \text{ for some } \vec{v} \in V \}$$

In fact, any subspace described by **constructive language** should essentially related to image of a linear transformation.

Subspace by constructive language

Excercise.Let V be the following vector spaces over F, verify the following subsets $W \subset V$ is a **subspace** of V.

•
$$V = P_{2,x} = \{ax^2 + bx + c, \text{ where } a, b, c \in F\},\$$

 $W = P_{1,x} = \{ax + b, \text{ where } a, b \in F\} \subset V$

(See some footnote¹)

¹In fact, W can be described as a image of a linear transformation $T: F^2 \longrightarrow V$ with $\begin{pmatrix} a \\ b \end{pmatrix} \mapsto ax + b$. If you can check this map is linear, you automatically know it is a subspace without further proof.

Kernel

Now let us turn to subspaces by **descriptive language**. With the rise of kernel, you will undestand such a subspaces always can be described by a kernel of a linear transformation.

Three type of vectors in codomain – Once again

There are three type of elements in codomain W for a linear transformation $T:V\longrightarrow W$

- *lonely* element : there is **no** element in *V* corresponds to it.
- faithful, loyal element: there is only one element in V corresponds to it.
- unfaithful, unloyal element: there is two or more element in V corresponds to it.

To measure unfaithful elements. Review the definition of preimage

Definition 2 Reminder from previous slides

 L_I For any map $f: X \longrightarrow Y$ and any subset $S \subset Y$, the **preimage** of S is defined by

$$f^{-1}(S) := \{x \in X : f(x) \in S\}$$

Three type of vectors in codomain – Once again

Now we can use preimage to describe those three type of elements: Let $f: X \longrightarrow Y$ be a map

- $y \in Y$ is *lonely* element : $f^{-1}(\{y\}) = \emptyset$.
- $y \in Y$ is faithful, loyal element: $f^{-1}(\{y\}) = \{x\}$ for some $x \in X$.
- $y \in Y$ is unfaithful, unloyal element: $f^{-1}(\{y\})$ has more than 1 element.

injective map means there is no *unfaithful* element. If a map is **injective**, it means preimage of any singleton is a singleton or empty set.

For a linear transformation, the preimage of two different singletons have a relation described by **Superposition Principal**. It concluds that for any linear transformation, faithful and unfaithful element can not appear simutaneously in the codomain of the same map.

Lemma 1

Let $T:V\longrightarrow W$ be a linear transformation . Suppose $\vec{v_1}\in V$ and $\vec{v_2}\in V$ with $\vec{v_1}\in T^{-1}(\{\vec{w_1}\})$ and $\vec{v_2}=T^{-1}(\{\vec{w_2}\})$, then for any $\lambda,\mu\in F$,

$$\lambda \vec{v}_1 + \mu \vec{v}_2 \in T^{-1}(\{\lambda \vec{w}_1 + \mu \vec{w}_2\})$$

Proof.

 $\vec{v}_1 \in T^{-1}(\{\vec{w}_1\})$ and $\vec{v}_2 = T^{-1}(\{\vec{w}_2\})$ implies $\vec{w}_1 = T(\vec{v}_1)$ and $\vec{w}_2 = T(\vec{v}_2)$.

Since T is a linear transformation , So

$$\lambda \vec{w}_1 + \mu \vec{w}_2 = \lambda T(\vec{v}_1) + \mu T(\vec{v}_2) = T(\lambda \vec{v}_1 + \mu \vec{v}_2)$$

This implies
$$\lambda \vec{v}_1 + \mu \vec{v}_2 \in T^{-1}(\{\lambda \vec{w}_1 + \mu \vec{w}_2\})$$

Proposition 6 Superposition Principal-Addition

Let $T:V\longrightarrow W$ be a linear transformation . For any $\vec{w}_1,\vec{w}_2\in {\rm Im}\,\mathcal{T}$, let $\vec{v}_1,\vec{v}_2\in V$ be such that $\vec{v}_1\in\mathcal{T}^{-1}(\{\vec{w}_1\})$ and $\vec{v}_2=\mathcal{T}^{-1}(\{\vec{w}_2\})$, we have an isomorphism between their preimages

$$+_{\vec{v}_2-\vec{v}_1}: T^{-1}(\{\vec{w}_1\}) \longrightarrow T^{-1}(\{\vec{w}_2\}), \vec{x} \mapsto \vec{x} + (\vec{v}_2 - \vec{v}_1)$$

Proof.

This is indded a map, if $\vec{x} \in T^{-1}(\{\vec{w}_1\})$, since $\vec{v}_2 - \vec{v}_1 \in T^{-1}(\vec{w}_2 - \vec{w}_1)$, this implies $\vec{x} + (\vec{v}_2 - \vec{v}_1) \in T^{-1}(\{\vec{w}_1 + \vec{w}_2 - \vec{w}_1\}) = T^{-1}(\{\vec{w}_1\})$.

The inverse is given by $\vec{x} \mapsto \vec{x} - (\vec{v}_2 - \vec{v}_1)$. So is an isomorphism.

In plain words, it means the preimage of $\{\vec{w}_1\}$ is obtained from preimage of $\{\vec{w}_2\}$ by translation of $\vec{v}_2 - \vec{v}_1$. Use the following visualize example of projection to understand superposition principal.

Please note the preimages in this picture are **not** subspaces as it does not contain the origin.

Excercise. Try to state the superposition principal for saclar multiplication. In other words, when comparing the preimage of $T^{-1}(\{\vec{w}\})$ and $T^{-1}(\{\lambda\vec{w}\})$ for a scalar $\lambda \in F$, how to construct a natural isomorphism between those two sets?

Uniqueness problem and the kernel

All preimages of a singleton in a linear transformation is either empty or can be translated to each other.

We pick up the most representative preimage, $T^{-1}(\{\vec{0}\})$, to measure how large is the preimage for every singleton, which describe how for a linear transformation is from being an **injective** .

Definition 3 kernel

 L_I We define the **Kernel** of a linear map $T: V \longrightarrow W$ as

$$\operatorname{Ker} T = \{ \vec{v} \in V : T(\vec{v}) = \vec{0} \}$$

Uniqueness problem and the kernel

Picture of kernel in the previous example of projection.

Superposition Principal and kernel

Proposition 7

Suppose $T:V\longrightarrow W$ is a linear transformation . Let $\vec{v}\in V$ and $T(\vec{v})=\vec{w}$. Then the preimage of $\{\vec{w}\}$ is given by

$$T^{-1}(\{\vec{w}\}) = \{\vec{v}\} + \operatorname{Ker} T := \{\vec{v} + \vec{x} : \vec{x} \in \operatorname{Ker} T\}.$$

Proof.

Since $\operatorname{Ker} \mathcal{T} = \mathcal{T}^{-1}(\{\vec{0}\})$, this is clear from previous arguments

Superposition Principal and kernel

No uniqueness problem for every element make it to be an injective .

Proposition 8

 $I \cap L_I$ A linear map $T: V \longrightarrow W$ is **injective** if and only if

$$\operatorname{Ker} T = \{\vec{0}\}.$$

Proof.

 $(T \text{ injective } \Longrightarrow \operatorname{Ker} T = \{\vec{0}\})\operatorname{Since } T(\vec{0}) = \vec{0} \text{ so } \vec{0} \in \operatorname{Ker}(T), \text{ so } \operatorname{Ker}(T) \neq \emptyset. \text{ If } \vec{v} \in \operatorname{Ker} T, \text{ then } T(\vec{v}) = \vec{0} = T(\vec{0}), \text{ since } T \text{ is an } \text{injective }, \text{ so } \vec{v} = \vec{0}.$

(Ker $T = \{\vec{0}\} \implies T$ injective)Suppose $T(\vec{v}_1) = T(\vec{v}_2)$, then $T(\vec{v}_1 - \vec{v}_2) = \vec{0}$ (footnote²), so $\vec{v}_1 - \vec{v}_2 \in \operatorname{Ker} T$ then $\vec{v}_1 = \vec{v}_2$.

²This step essentially use the idea of superposition principal.

Properties of kernel

Proposition 9

For any linear transformation $T:V\longrightarrow W$ and linear transformation $S:U\longrightarrow V$, we have

$$\operatorname{Ker}(T\circ S)=S^{-1}(\operatorname{Ker} T)$$

Proof.

$$\vec{v} \in \operatorname{Ker}(T \circ S) \iff T(S(\vec{v})) = \vec{0} \iff S(\vec{v}) \in \operatorname{Ker} T \iff \vec{v} \in S^{-1}(\operatorname{Ker} T)$$

Properties of kernel

Proposition 10

For any linear transformation $T:V\longrightarrow W$ and linear transformation $S:U\longrightarrow V$, we have

$$\operatorname{Ker}(T \circ S) \supset \operatorname{Ker} S$$

Proof.

Since
$${\rm Ker}(T\circ S)=S^{-1}({\rm Ker}\,T)$$
 and ${\rm Ker}\,T\supset\{\vec{0}\},$ so
$$S^{-1}({\rm Ker}\,T)\supset S^{-1}(\{\vec{0}\})={\rm Ker}\,S.$$

Properties of kernel

Proposition 11

If $T:V\longrightarrow W$ is an **injective** , for any linear transformation $S:U\longrightarrow V$, we have

$$\operatorname{Ker}(T \circ S) = \operatorname{Ker} S$$

Proof.

Since $Ker(T \circ S) = S^{-1}(Ker T)$, if T is **injective** then $Ker T = \{\vec{0}\}$, so in this case

$$\operatorname{Ker}(T\circ S)=S^{-1}(\operatorname{Ker} T)=S^{-1}(\{\vec{0}\})=\operatorname{Ker} S.$$

We choose the preimage of $\vec{0}$ because it is the only subset who become a subspace.

Corollary 1

For any linear transformation , $T:V\longrightarrow W$, $\operatorname{Ker} T$ is a subspace.

Standard Proof.

For any $\vec{v}_1, \vec{v}_2 \in \operatorname{Ker} T$ and any scalar $\lambda \in F$, we have

$$T(\lambda \vec{v}_1 + \vec{v}_2) = \lambda T(\vec{v}_1) + T(\vec{v}_2) = \lambda 0 + 0 = 0$$

So $\lambda \vec{v_1} + \vec{v_2} \in \operatorname{Ker} T$, which means it is a subspace.

We can also understand it is a subspace from the superposition principal.

We have learned adding a vector in $T^{-1}(\{\vec{w}_1\})$ with a vector in $T^{-1}(\{\vec{w}_2\})$ will result a vector in $T^{-1}(\{\vec{w}_1+\vec{w}_2\})$. Therefore, if $\vec{w}_1=\vec{w}_2=\vec{0}$, then it means $T^{-1}(\{\vec{0}\})$ is closed under addition (and also in the same way closed under scalar multiplication).

Therefore $\operatorname{Ker} T = T^{-1}(\{\vec{0}\})$ is a subspace.

The way we describe Kernel is **descriptive**. That is, we describe it to be set of all element that have the property of mapping to 0.

$$\operatorname{Ker} T = \{ \vec{v} \in V : T(\vec{v}) = \vec{0} \}$$

In fact, any subspace described by **descriptive language** should essentially related to kernel of a linear transformation.

Excercise.Let V be the following vector spaces over F, verify the following subsets $W \subset V$ is a subspace of V.

•
$$V = P_{2,x} = \{ax^2 + bx + c, \text{ where } a, b, c \in F\},\$$

 $W = \{f \in V : f(1) = 0\}$

(See some footnote³)

³In fact, W can be described as the kernel of a linear transformation of evaluation map $T:V\longrightarrow F^2$ with $f\mapsto f(1)$. If you can check this map is linear, you automatically know it is a subspace without further proof.