

DUAL D-TYPE POSITIVE EDGE-TRIGGERED FLIP-FLOP

The SN54/74LS74A dual edge-triggered flip-flop utilizes Schottky TTL circuitry to produce high speed D-type flip-flops. Each flip-flop has individual clear and set inputs, and also complementary Q and \overline{Q} outputs.

Information at input D is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the HIGH or the LOW level, the D input signal has no effect.

LOGIC DIAGRAM (Each Flip-Flop)

MODE SELECT — TRUTH TABLE

OPERATING MODE		INPUTS	OUTPUTS		
OPERATING MODE	SD	SD	D	ď	Q
Set	L	Н	Х	Н	L
Reset (Clear)	Н	L	Χ	L	Н
*Undetermined	L	L	Х	Н	Н
Load "1" (Set)	Н	Н	h	Н	L
Load "0" (Reset)	Н	Н	I	L	Н

^{*} $B_{\underline{O}th}$ outp<u>uts</u> will be HIGH while both $S_{\underline{D}}$ and $C_{\underline{D}}$ are LOW, but the output states are unpredictable if $S_{\underline{D}}$ and $C_{\underline{D}}$ go HIGH simultaneously. If the levels at the set and clear are near V_{IL} maximum then we cannot guarantee to meet the minimum level for $V_{\underline{O}H}$.

H, h = HIGH Voltage Level

L, I = LOW Voltage Level

X = Don't Care

i, h (q) = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.

SN54/74LS74A

DUAL D-TYPE POSITIVE EDGE-TRIGGERED FLIP-FLOP

LOW POWER SCHOTTKY

SN54/74LS74A

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
VIL	Input LOW Voltage	Japant LOW Voltage			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
VIL.	input LOW Voltage	74			0.8	V		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA	
Vari	Output HIGH Voltage	54	2.5	3.5		V	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH}	
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth Ta	able
.,	Output LOW Voltage	54, 74		0.25	0.4	V		$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$
VOL		74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table
IIH	Input High Current Data, Clock Set, Clear				20 40	μА	V _{CC} = MAX, V _{IN} = 2.7 V	
	Data, Clock Set, Clear				0.1 0.2	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _{IL}	Input LOW Current Data, Clock Set, Clear				-0.4 -0.8	mA	$V_{CC} = MAX$, $V_{IN} = 0.4 V$	
los	Output Short Circuit Current (No	te 1)	-20		-100	mA	V _{CC} = MAX	
Icc	Power Supply Current				8.0	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
fMAX	Maximum Clock Frequency	25	33		MHz	Figure 1	
tPLH tPHL Clock, Clear, Set to Output		13	25	ns	Figure 1	$V_{CC} = 5.0 V$ $C_{I} = 15 pF$	
		25	40	ns	Figure 1	J_ 10 p.	

AC SETUP REQUIREMENTS $(T_A = 25^{\circ}C)$

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
tW(H)	Clock	25			ns	Figure 1	
tW(L)	Clear, Set	25			ns	Figure 2	
	Data Setup Time — HIGH	20			ns	Figure 1	V _{CC} = 5.0 V
t _S	LOW	20			ns		
t _h	Hold Time	5.0			ns	Figure 1	

SN54/74LS74A

AC WAVEFORMS

^{*}The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 1. Clock to Output Delays, Data Set-Up and Hold Times, Clock Pulse Width

Figure 2. Set and Clear to Output Delays, Set and Clear Pulse Widths