

# **NetGun**

| Versione            | 0.2                        |
|---------------------|----------------------------|
| Data                | 15/02/2023                 |
| <b>Destinatario</b> | Professore Carmine Gravino |
|                     | Carlo Colizzi,             |
| da                  | Giulio Incoronato,         |
|                     | Antonio Mazzarella         |

## **Revision History**

| Data       | Versione | Descrizione                                | Autori          |
|------------|----------|--------------------------------------------|-----------------|
| 10/02/2023 | 0.1      | Stesura del<br>Manuale di<br>installazione | Tutto il gruppo |
| 15/02/2023 | 0.2      | Revisione Totale                           | Tutto il gruppo |

## **Team Members**

| Nome               | Informazioni di contatto        |
|--------------------|---------------------------------|
| Carlo Colizzi      | c.colizzi@studenti.unisa.it     |
| Giulio Incoronato  | g.incoronato2@studenti.unisa.it |
| Antonio Mazzarella | a.mazzarella5@studenti.unisa.it |

## Sommario

| 1 Introduzione                     | 2 |
|------------------------------------|---|
| 1.1 Scopo del Sistema              | 2 |
| 1.2 Scopo del documento            | 3 |
| 1.3 Relazione con altri documenti  | 3 |
| 2 Prerequisiti per l'installazione | 3 |
| 2.1 Open Source Program            | 4 |
| 2.2 Database                       | 4 |
| 3 Installazione                    | 4 |

## 1 Introduzione

### 1.1 Scopo del Sistema

NetGun ha l'obiettivo di essere un tool per il Penetration Testing (Testing Black Box di infrastrutture in rete).

È possibile racchiudere il sistema in 3 componenti principali. La componente per lo scanning, la componente per l'enumerazione dei dati raccolti, e le utilities che assistono l'utente in tutte le fasi del pre e post scanning.

Inoltre ha l'obiettivo di facilitare una pratica complessa come i Penetration Test, così da permettere ai Penetration Tester di concentrarsi su aspetti più delicati, automatizzando e velocizzando le task alla base di questo tipo di Testing.

### 1.2 Scopo del documento

Lo scopo di questo documento è quello di mostrare i passaggi necessari alla corretta installazione del sistema.

#### 1.3 Relazione con altri documenti

Di seguito l'elenco di tutti i documenti in relazione con il manuale:

- Requirements Analysis Document (RAD)
- System Design Document (SDD)
- Object Design Document (ODD)
- <u>Test Plan (TP)</u>
- <u>Test Case Specification (TCS)</u>
- Codice Sorgente
- Matrice di tracciabilità

## 2 Prerequisiti per l'installazione

Per l'installazione del sistema è necessario avere un sistema Linux, in particolare un debian-based come:

- Ubuntu
- Kali linux
- Parrot OS
- Linux Mint

Si raccomanda tra tutti Kali Linux, sistema sul quale è stato maggiormente testato, poiché presenta di default il software **Nmap**.

Se si tratta di un sistema diverso da Kali si raccomanda l'installazione di **Nmap**.

Fondamentale per l'installazione è avere sulla macchina un interprete **Python3**.

### 2.1 Open Source Program

NetGun è un software applicativo per sistemi linux, che si pone come utility durante le analisi di rete ed infrastrutture informatiche. Utilizza come linguaggio **Python** per semplificare la comprensione e la modifica del codice, ricercando così il contributo della community open source.

#### 2.2 Persistenza

Il software utilizza file **XML** per lo storage e file di configurazione .ini per consentire agli utenti una facile personalizzazione del software. Inoltre utilizza una tecnica di passivazione ed attivazione dei dati in memoria di massa, pensata per migliorare i tempi di avvio del software.

## 3 Installazione

Per la seguente guida all'installazione verrà considerato esclusivamente il sistema operativo Kali Linux.

**1.** Prima di tutto è necessario **scaricare** il file .**deb** disponibile al seguente link Github: NetGun<release number>.deb

- 2. Entrare da terminale nella cartella **Downloads**
- 3. Procedere con il comando: sudo apt install ./NetGun<release\_number>.deb
- 4. Scrivere dal terminale NetGun, e si avvierà il programma.

Tutte le **dipendenze**, le **API** necessarie, le **variabili di ambiente**, i file di **persistenza** saranno gestiti automaticamente durante l'installazione.

## 4 Glossario

.deb: è il formato, nonché estensione, dei pacchetti utilizzati dalla distribuzione Debian e dalle sue derivate.

**XML:** (Extensible Markup Language) si intende il linguaggio di markup che fornisce regole per definire qualsiasi dato.

**Nmap:** è un software libero rilasciato sotto licenza GNU GPL ed è stato sviluppato proprio per avviare attività di port scanning, sia in locale che in remoto.

**API:** acronimo di Application Programming Interface (interfaccia di programmazione delle applicazioni), indica un insieme di definizioni e protocolli per la creazione e l'integrazione di applicazioni software.

**Python:** Python è un linguaggio di programmazione ampiamente utilizzato nelle applicazioni Web, nello sviluppo di software, nella data science e nel machine learning (ML). Gli sviluppatori utilizzano Python perché è efficiente e facile da imparare e può essere eseguito su diverse piattaforme.

**Testing Black Box:** Il black-box testing è una metodologia di test che presuppone un punto di vista esterno rispetto al codice testato. In altre parole non viene presa in considerazione alcuna informazione/conoscenza rispetto al funzionamento interno dell'applicazione.