Homework 2	● Graded
Student	
Boyuan Deng	
Total Points 7 / 7 pts	
Question 1 1	1 / 1 pt
✓ - 0 pts Correct	
Question 2	
2	1 / 1 pt
✓ - 0 pts Correct	
Question 3	
3	1 / 1 pt
✓ - 0 pts Correct	
Question 4	
4	1 / 1 pt
✓ - 0 pts Correct	
Question 5	
5	1 / 1 pt
✓ - 0 pts Correct	
Question 6	
6	1 / 1 pt
✓ - 0 pts Correct	
Question 7	
7	1 / 1 pt
✓ - 0 pts Correct	

No questions assigned to the following page.		

PDE Homework 2 **Due Date: Feb 16**

Saman H. Esfahani

• 1- Find the function $u: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ a where Φ is the fundamental solution of the 001 solution of the heat equation of the form 002 $u(x,t) = \frac{1}{t\alpha}v(\frac{|x|^2}{t}),$ 003 004 for a constant α and a function $v: \mathbb{R} \to \mathbb{R}$. • 2- Prove the following Lemma. 005 **Lemma 1.** The constant in the definition of 006 the fundamental solution of the heat equation 007 • 6. Prove the following theorem. is chosen such that the total heat at any fixed time t > 0, heat equation. Then, $\int_{\mathbb{R}^{n}} \Phi(x,t) dx = 1,$ 010 where Φ is the fundamental solution to the 011 heat equation 012 for any r > 0. $\Phi(x,t) = \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{\frac{-|x|^2}{4t}}.$ 013 7. Prove the following. • 3. Prove the following theorem. 014 **Theorem 1.** The function defined by $u = \Phi *$ 015 g is smooth function on $\mathbb{R}^n \times \{t > 0\}$ and 016 then u is constant on U_T . satisfies the homogeneous equation: 017 Strong Max $\begin{cases} u_t - \Delta u = 0, & on \quad \mathbb{R}^n \times (0, \infty), \\ u = g, & on \quad \mathbb{R}^n \times \{t = 0\}. \end{cases}$ 018 019 • 4. Prove the following theorem.

Theorem 2. Suppose $f \in C^2(\mathbb{R}^n \times (0, \infty))$

and has compact support. Let u be the func-

 $u(x,t) = \int_0^t \int_{y \in \mathbb{R}^n} \Phi(x - y, t - s) f(y, s) dy dt,$

tion defined by

021

022

023

024

heat equation. Then, u is in C^2 and satisfies 026 $u_t - \Delta u = f$, on $\mathbb{R}^n \times (0, \infty)$, u = 0, on $\mathbb{R}^n \times \{t = 0\}$. 028 • 5. Draw an approximate sketch of the heat ball with radius r. Explain your drawing. 030 Similar to 17 (a) Theorem 3. Let u(x,t) be a solution of the $u(x,t) = \frac{1}{4r^n} \int_{E(x,t,r)}^{\text{MVP}} u(y,s) \frac{|x-y|^2}{(t-s)^2} dy ds,$ 034 **Theorem 4.** Suppose $u \in C^2(\overline{U}_T)$ is a solu-037 tion to the heat equation, and U is a connected subset of \mathbb{R}^n . Then, if u has an interior point $(x_0,t_0) \in U_T$ which u is maximized there, 040 041 Questions assigned to the following page: $\underline{2}$, $\underline{3}$, and $\underline{1}$

Dilation scaling $u(x,t) = \frac{1}{t^{\alpha}} v(\frac{x}{t})$ $u(x,t) \rightarrow \lambda^{\alpha} (\lambda x, \lambda t)$ for all $\lambda > 0$, $x \in \mathbb{R}^{n}$, t > 0Setting $\lambda = t^{-1} \quad v(y) := u(y,1)$ $\frac{x}{t}$ $u(t - \Delta u) = 0$ $u(t - \Delta u) = 0$ $u(t - \Delta u) = 0$ $u(t - \Delta u) = 0$ By guessing $u(t - \Delta u) = 0$ By guessing $u(t - \Delta u) = 0$ By guessing $u(t - \Delta u) = 0$ $u(t - \Delta u) = 0$ By guessing $u(t - \Delta u) = 0$ $u(t - \Delta u) = 0$ $u(t - \Delta$

$$\frac{2}{\sqrt{Rn}} \oint_{CX} (t) dx = \frac{1}{\sqrt{4\pi t}} \int_{R^n} e^{-\frac{|x|^2}{4t}} dx$$

$$Define: Z = \frac{\pi}{\sqrt{2t}}$$

$$= \frac{1}{\sqrt{4\pi t}} \frac{(\sqrt{n} t)^n}{\sqrt{R^n}} \int_{R^n} e^{-|z|^2} dz$$

$$= \frac{1}{\sqrt{\frac{n}{2}}} \int_{R^n} e^{-|z|^2} dz$$

3. The fundamental solution gives $\underline{\Phi}(x,t) = \begin{cases}
\frac{1}{(4\pi k)^{\frac{N}{2}}} & e^{-\frac{kN}{2}} & Cx \in \mathbb{R}^{n}, t > 0
\end{cases}$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,00)) (x \in \mathbb{R}^{n}, t > 0) \qquad (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,00)) (x \in \mathbb{R}^{n}, t > 0) \qquad (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,00)) (x \in \mathbb{R}^{n}, t > 0) \qquad (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,00)) (x \in \mathbb{R}^{n}, t > 0) \qquad (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x^{n} \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x \times (0,0)) (x \in \mathbb{R}^{n}, t > 0)$ $\int_{0}^{\frac{N}{2}} (x \times (0,0)) (x \times$

 $=\int_{\mathcal{B}_{S}(X^{0})} \Phi(x,y,t) |g(y)-g(x^{0})| dy$ $+\int_{\mathcal{B}_{R}\cap\mathcal{B}_{S}(X^{0})} \Phi(x-y,t) |g(y)-g(x^{0})| dy$ =:I+J $I \leq \underbrace{\mathcal{E}}_{\mathcal{B}^{n}} \Phi(x-y,t) dy = \mathcal{E}$ =I $+\int_{\mathcal{A}^{n}} |x-x^{0}| \leq \underbrace{\frac{\delta}{2}}_{\mathcal{A}^{n}} \mathcal{L} |y-x^{0}| z \delta$ $=Iy-x^{0}| \leq |y-x|+\frac{1}{2}|y-x^{0}|$ $J \leq 2||g|| L^{\infty} \int_{\mathcal{B}^{n}} \mathcal{B}_{S}(x_{0}) \Phi(x-y,t) dy$ $\leq \frac{C}{t^{\frac{n}{2}}} \int_{\mathcal{B}^{n}} \mathcal{B}_{S}(x_{0}) e^{-\frac{|x-x^{0}|^{2}}{16t^{2}}} dy$ $=C \int_{\mathcal{B}^{n}} \mathcal{B}_{S}(x_{0}) e^{-\frac{|x-x^{0}|^{2}}{16t^{2}}} dy$ $=C \int_{\mathcal{B}^{n}} \mathcal{B}_{S}(x_{0}) e^{-\frac{|x-x^{0}|^{2}}{16t^{2}}} dz \neq 0, \text{ as } t \neq 0^{+}$ Hence $f(x-x^{0}) \leq \mathcal{B}_{S}(x_{0}) \leq \mathcal{B}_{$

| M(x, t) - g(x) |= 1/1/2 \ E(x-g,t) [q(g)-g(x)] dy|

Questions assigned to the following page: $\underline{4}$ and $\underline{5}$

4. $M(x,t) = \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(x-y,t-s) f(y,s) dy ds$ Change of variables $M(x,t) = \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y,s) f(x-y,t-s) dy ds$ Since $f \in C^{2}(\mathbb{R}^{n} \times (0,\infty))$ has compact support and $\Phi = \Phi(y,s)$ is smooth near $s = t \neq 0$ $M(t,t) = \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y,s) f(x-y,t-s) dy ds$ $+ \int_{\mathbb{R}^{n}} \Phi(y,t) f(x-y,0) dy$ $\Delta U(x,t) = U(x,t) = \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y,s) f(x,y,t-y,t-s) dy ds$ $+ \int_{\mathbb{R}^{n}} \Phi(y,t) f(x-y,0) dy$ $= \int_{0}^{t} \int_{\mathbb{R}^{n}} \Phi(y,s) [(-\frac{\lambda}{2s} - \Delta y) f(x-y,s-t-s)] dy ds$ $+ \int_{\mathbb{R}^{n}} \Phi(y,s) [(-\frac{\lambda}{2s} - \Delta y) f(x-y,s-t-s)] dy ds$ $+ \int_{\mathbb{R}^{n}} \Phi(y,t) f(x-y,0) dy$ $= : L_{E} + J_{E} + k$

$$\begin{split} \left| \int_{\mathcal{E}} \right| & \leq C \left| \left| \int_{\mathcal{E}} \right|_{L^{\infty}} + \left| \left| D^{2} \right| \right|_{L^{\infty}} \right) \int_{0}^{\mathcal{E}} \int_{\mathbb{R}^{n}} \Phi(y, s) \, dy \, ds \leq \mathcal{E}C \\ & \text{Integrating by pants} \\ & \mathcal{L}_{\mathcal{E}} = \int_{\mathcal{E}}^{t} \int_{\mathbb{R}^{n}} \mathbb{E}(\frac{1}{63} - \Delta y) \Phi(y, s) \int_{\mathcal{E}} (y, s) \int_{\mathcal{E}} (y, s) \, dy \, ds \\ & + \int_{\mathbb{R}^{n}} \Phi(y, \mathcal{E}) \int_{\mathcal{E}} (x - y), \, t - \mathcal{E}) \, dy - \int_{\mathbb{R}^{n}} \Phi(y, t) \int_{\mathcal{E}} (x - y, o) \, dy \\ & = \int_{\mathbb{R}^{n}} \Phi(y, \mathcal{E}) \int_{\mathcal{E}} (x - y) \, dy - k \end{split}$$
 $\mathcal{L}_{\mathcal{E}}(x, \mathcal{E}) \int_{\mathcal{E}} (y, \mathcal{E$

似もは、t)-D ルは、t)=[imJRn更は,E)fは-y,t-E)dy もつ =fは、t) なもれ、t70)

|M (·,t)|| L∞ < t ||f|| L0 →0

5. heat ball with radius r

Notice that fixed x the Spheres $\partial B(x,r)$ are level sets of the fundamental solution $\overline{P}(x-y)$ for Laplace's equation for fixed point $(x,t) \Rightarrow \overline{P}(x-y,t-5) \Rightarrow MVP$

So define E(x,t;r) := { (y, s) E/RM+1 | Set, \$\phi(x-y, t-s) z \frac{1}{2m}}

6.

$$E(x,t;r)$$

$$M(x,t) = \frac{1}{4r} \iint_{E(x,t;r)} M(y,s) \frac{|x-2|^2}{(t-s)^2} dy ds , set d(x,t) should not depend upon future times.

Shift $x=0$ $k t=0$

$$\phi(r) := \frac{1}{r^n} \iint_{E(r)} M(y,s) \frac{|x|^2}{s^2} dy ds$$

$$E(0,0;r)$$

$$= \iint_{E(r)} M(ry, r^2s) \frac{|y|^2}{s^2} dy ds$$

$$= \lim_{r\to 1} \iint_{E(r)} \sum_{i=1}^{n} y_i My_i \frac{|y|^2}{s^2} + 2r Ms \frac{|y|^2}{s} dy ds$$

$$= : A + B$$

$$\forall := -\frac{1}{2} \lim_{r\to 1} \int_{E(r)} 4\pi ds + \frac{1}{2} \lim_{r\to 1} 4\pi ds +$$$$

$$\Phi'(r) = Af B$$

$$= \frac{1}{r^{n+1}} \iint_{E(r)} -4n \Delta u \psi - \frac{2n}{3} \prod_{i=1}^{n} u_{ii} \exists_{i} dy ds$$

$$= \prod_{i=1}^{n} \frac{1}{r^{n+1}} \iint_{E(r)} 4n u_{ij} \psi_{ij} - \frac{2n}{3} u_{ij} \exists_{i} dy ds$$

$$\phi \stackrel{\text{is constant}}{=} \phi(r) = \lim_{t \to 0} \phi(t) = \mathcal{N}(0,0) \left(\lim_{t \to 0} \frac{1}{t^n} \iint_{E(t)} \frac{|y|^2}{s^2} dy ds \right) = 4 \mathcal{N}(0,0)$$

$$= \iint_{E(t)} \frac{|y|^2}{s^2} dy ds$$

7. Suppose $(x_0, t_0) \in V_T$ with $(x_0, t_0) = M := \max_{\overline{V}_T} M$ $(x_0, t_0) \in V_T$ with $(x_0, t_0) = M := \max_{\overline{V}_T} M$ $E(x_0, t_0) \in V_T$ with $(x_0, t_0) = M := \max_{\overline{V}_T} M$ $M = M(x_0, t_0) = \frac{1}{4r^n} \iint_{E(x_0, t_0) r} \frac{|x_0 - y|^2}{(t_0 - s)^2} dy ds \leq M$ $M = \frac{1}{4r^n} \iint_{E(x_0, t_0) r} \frac{|x_0 - y|^2}{(t_0 - s)^2} dy ds$ M(y, s) = M for all $(y, s) \in E(x_0, t_0; r)$

