1 What is the minimum sum of edge costs of a spanning tree of the following graph? $\{(a,b,1),(a,c,4),(a,d,3),(b,d,2),(a,c,4),(c,d,5)\}$
1. 6
2. 7
3. 8
4. 9
(2) is the correct answer. To see this we can apply one of the MST algorithm described in the text. Or since the graph is small, enumerate all spanning trees.
2 Which of the following running times best describes a straightforward implementations of Prim's minimum spanning tree algorithm for graphs in adjaceny-list representation? As usual, n and m denote the number of vertices and edges, respectively, of the input graph.
1. $O(m+n)$
2. $O(m \cdot log n)$
3. $O(n^2)$
4. $O(m \cdot n)$
(4) is the correct answer using a brute force algorithm. As the book describes the algorithm goes through $n-1$ iterations and then checks up to m edges to

- find the cheapest edge for every iteration. This is order of $m \cdot n$ and hence $O(m \cdot n)$.

 3 In figure 15.5, suppose the vertex x is extracted and moved to the
- 3 In figure 15.5, suppose the vertex x is extracted and moved to the set X. What should be the new values of y and z's keys, respectively?
 - 1. 1 and 2
 - 2. 2 and 1
 - 3. 5 and $+\infty$
 - 4. $+\infty$ and $+\infty$

4 Which of the following running times best describes a straight-
forward implementation of Kruskal's MST algorithm for graphs in
adjacency-list representation? As usual, n and m denote the number
of vertices and edges, respectively, of the input graph.

- 1. $O(m \cdot log n)$
- 2. $O(n^2)$
- 3. $O(m \cdot n)$
- 4. $O(m^2)$

(3) is the correct answer. We go through m edges to obtains all n vertices in the spanning tree. The total runtime is order of $m \cdot n$ hence $O(m \cdot n)$.

 ${f 5}$ What's running time of the FIND operation, as a function of the number n of objects?

- 1. O(1)
- 2. O(logn)
- O(n)
- 4. Not enough information to answer

(3) is the correct answer. In the worst case the depth could be n-1 and hence O(n).

6 Suppose we arbitrarily chose which root to promote. What's the running time of the FIND operation as a function of the number n of objects?

- 1. O(1)
- 2. O(logn)
- 3. O(n)
- 4. Not enough information to answer
- (3) is the correct answer.

7 With the implementation of UNION above, what's the running time of the FIND operation; as a function of the number n of objects?

- 1. O(1)
- 2. O(logn)
- 3. O(n)
- 4. Not enough information to answer
- (2) is the correct answer.
- 8 Consider an undirected graph G = (V, E) in which every edge $e \in E$ has a distinct and nonnegative cost. Let T be an MST and P a shortest path from some vertex s to some other vertex t. Now suppose the cost of every edge e of G is increased by 1 and becomes $c_e + 1$. Call this new graph G'. Which of the following is true about G'.
 - 1. T must be an MST and P must be a shortest s-t path.
 - 2. T must be an MST and P may not be a shortest s-t path.
 - 3. T may not be an MST but P must be a shortest s-t path.
 - 4. T may not be an MST and P may not be a shortest s-t path.
- **9** Consider the following algorithm that attempts to compute an MST of a connected undirected graph G = (V, E) with distinct edge costs by running Kruskal's algorithm "in reverse". Which of the following statements is true?
 - 1. The output of the algorithm will never have a cycle, but it may not be connected.
 - 2. The output of the algorithm will always be connected,, but it might have cycles.
 - 3. The algorithm always outputs a spanning tree, but it might not be a MST.
 - 4. The algorithm always outputs an MST.
- 10 Which of the following problems reduce, in a straightforward way, to the minimimum spanning tree problem?
 - 1. The maximum-cost spanning tree problem. That is, among all spanning trees T of a connected graph with edge costs, compute the one with the maximum-possible sum $\sum_{e \in T} c_e$ of edge costs.

- 2. The minimum-product spanning tree problem. That is among all spanning trees T of a connected graph with strictly positive edge costs, compute one with the minimum-possible product $\Pi_{e \in T} c_e$ of edge costs.
- 3. The single-shortest path problem. In this problem, the input comprises a connected undirected graph G=(V,E), a nonnegative length l_e for each $e\in E$, and a designated starting vertex $s\in V$. The required output is, for every possible destination $v\in V$, the minimum total length of a path from s to v.
- 4. Given a connected undirected graph G = (V, E) with positive edge costs, compute a minimum-cost set $F \subseteq E$ of edges such that the graph (V, E F) is acyclic.
- 11 Prove the converse of Theorem 15.6: If T is an MST of a graph with real-valued edge costs, every edge of T satisfies the minimum bottleneck property.
- 12 Prove the correctness of Prim's and Kruskal's algorithm in full generality, for graphs in which edge's cost need not be distinct
- 13 Prove that in a connected undirected graph with distinct edge costs, there is a unique MST.
- 14 An alternative approach to proving the correctness of Prim's and Kruskal's algorithms is to use what's call the Cut Property of MSTS. Assume throughout this problem that edges' costs are distinct. A cut of an undirected graph G = (V, E) is a partition of its vertex set V into two non-empty sets, A and B. An edge of G that crossed the cut (A, B) if it has one endpoint in each of A and B. In other words, one way to justify an algorithm's inclusion of an edge e in its solution is to produce a cut of G for which e is the cheapest crossing edge.
 - 1. Prove the Cut Property.
 - 2. Use the Cut Property to prove that Prim's algorithm is correct.
 - 3. Repeat for Kruskal's algorithm