

实变函数

作者: 邹文杰

组织:无

时间:2024/10/25

版本:ElegantBook-4.5

自定义:信息

宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒.

目录

第1章	:集合与点集	1
1.1	集合之间的运算	1
1.2	映射与基数	4
1.3	\mathbb{R}^n 中点与点之间的距离·点集的极限点	9
	1.3.1 点集的直径、点的 (球) 邻域、矩体	9
	1.3.2 点集的极限点	11
1.4	\mathbb{R}^n 中的基本点集: 闭集 · 开集 · Borel 集 · Cantor 集	12
	1.4.1 闭集	12
	1.4.2 开集	13
	1.4.3 Borel 集	16
第2章	第2章 Lebesgue 测度 17	
	Lebesgue 外测度	17
22	Lebesque 可测集的 σ 代数	19

第1章 集合与点集

1.1 集合之间的运算

定理 1.1

设有集合 A, B 与 C, 则

(i) 交换律:

 $A \cup B = B \cup A$, $A \cap B = B \cap A$;

(ii) 结合律:

 $A \cup (B \cup C) = (A \cup B) \cup C,$ $A \cap (B \cap C) = (A \cap B) \cap C;$

(iii) 分配律:

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

定义 1.1 (集族的并和交)

设有集合族 $\{A_{\alpha}\}_{\alpha\in I}$, 我们定义其并集与交集如下:

 $\bigcup_{\alpha \in I} A_{\alpha} = \{x : 存在\alpha \in I, x \in A_{\alpha}\} = \{x : \exists \alpha \in I \text{ s.t. } x \in A_{\alpha}\},$ $\bigcap_{\alpha \in I} A_{\alpha} = \{x : 対一切\alpha \in I, x \in A_{\alpha}\} = \{x : \forall \alpha \in I, x \in A_{\alpha}\}.$

定理 1.2

- 1. 交换律和结合律: 当一个集合族被分解 (以任何方式) 为许多子集合族时, 那么先作子集合族中各集合的并集, 然后再作各并集的并集, 仍然得到原集合族的并, 而且作并集时与原有的顺序无关. 当然, 对于交的运算也是如此.
- 2. 分配律:

(i)
$$A \cap \left(\bigcup_{\alpha \in I} B_{\alpha}\right) = \bigcup_{\alpha \in I} (A \cap B_{\alpha});$$

(ii) $A \cup \left(\bigcap_{\alpha \in I} B_{\alpha}\right) = \bigcap_{\alpha \in I} (A \cup B_{\alpha}).$

定义 1.2

设 A, B 是两个集合, 称 $\{x: x \in A, x \notin B\}$ 为 $A \subseteq B$ 的**差集**, 记作 A - B 或 $A \setminus B$.

在上述定义中, 当 $B \subset A$ 时, 称 A - B 为集合 B 相对于集合 A 的**补集**或**余集**.

通常,在我们讨论问题的范围内,所涉及的集合总是某个给定的"大"集合 X 的子集,我们称 X 为全集.此时,集合 B 相对于全集 X 的补集就简称为 B 的补集或余集,并记为 B^c 或 CB,即

$$B^c = X - B$$
.

今后, 凡没有明显标出全集 X 时, 都表示取补集运算的全集 X 预先已知, 而所讨论的一切集合皆为其子集. 于是 B^c 也记为

$$B^c = \{x \in X : x \notin B\}.$$

命题 1.1 (集合的差与补的基本性质)

- 1. $A \cup A^c = X.A \cap A^c = \varnothing.(A^c)^c = A.X^c = \varnothing.\varnothing^c = X.$
- 2. $A B = A \cap B^c$.

定理 1.3 (De Morgan 法则)

(i)
$$\left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} A_{\alpha}^{c};$$

(i)
$$\left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} A_{\alpha}^{c};$$
 (ii) $\left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} A_{\alpha}^{c}.$

证明 以 (i) 为例. 若 $x \in \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}$,则 $x \notin \bigcup_{\alpha \in I} A_{\alpha}$,即对一切 $\alpha \in I$,有 $x \notin A_{\alpha}$. 这就是说,对一切 $\alpha \in I$,有 $x \in A_{\alpha}^{c}$. 故得 $x \in \bigcap A_{\alpha}^{c}$.

反之, 若 $x \in \bigcap_{\alpha \in I} A^c_{\alpha}$, 则对一切 $\alpha \in I$, 有 $x \in A^c_{\alpha}$, 即对一切 $\alpha \in I$, 有 $x \notin A_{\alpha}$. 这就是说,

$$x\notin\bigcup_{\alpha\in I}A_\alpha,\quad x\in\left(\bigcup_{\alpha\in I}A_\alpha\right)^c.$$

定义 1.3 (集合的对称差)

设 A, B 为两个集合, 称集合 $(A \setminus B) \cup (B \setminus A)$ 为 $A \in B$ 的**对称差集**, 记为 $A \triangle B$.

命题 1.2 (集合的对称差的基本性质)

- (i) $A \triangle \emptyset = A, A \triangle A = \emptyset, A \triangle A^c = X, A \triangle X = A^c$.
- (ii) 交换律: $A \triangle B = B \triangle A$.
- (iii) 结合律: $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.
- (iv) 交与对称差满足分配律:

$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C).$$

- (v) $A^c \triangle B^c = A \triangle B$; $A = A \triangle B$ 当且仅当 $B = \emptyset$.
- (vi) 对任意的集合 A 与 B, 存在唯一的集合 E, 使得 $E \triangle A = B$ (实际上 $E = B \triangle A$).

定义 1.4 (递增、递减集合列)

设 $\{A_k\}$ 是一个集合列. 若

$$A_1 \supset A_2 \supset \cdots \supset A_k \supset \cdots$$

则称此集合列为**递减集合列**, 此时称其交集 $\bigcap_{k\to\infty} A_k$ 为集合列 $\{A_k\}$ 的极限集, 记为 $\lim_{k\to\infty} A_k$; 若 $\{A_k\}$ 满足

$$A_1 \subset A_2 \subset \cdots \subset A_k \subset \cdots$$

则称 $\{A_k\}$ 为**递增集合列**, 此时称其并集 $\bigcup_{k=1}^n A_k$ 为 $\{A_k\}$ 的极限集, 记为 $\lim_{k\to\infty} A_k$.

定义 1.5 (上、下极限集)

设 $\{A_k\}$ 是一集合列,令

$$B_j = \bigcup_{k=j}^{\infty} A_k \quad (j=1,2,\cdots),$$

显然有 $B_j \supset B_{j+1}(j=1,2,\cdots)$. 我们称

$$\lim_{k \to \infty} B_k = \bigcap_{j=1}^{\infty} B_j = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k$$

为集合列 $\{A_k\}$ 的上极限集, 简称为上限集, 记为

$$\overline{\lim}_{k\to\infty}A_k=\bigcap_{j=1}^\infty\bigcup_{k=j}^\infty A_k.$$

类似地, 称集合 $\bigcup_{j=1}^{\infty}\bigcap_{k=j}^{\infty}A_{k}$ 为集合列 $\{A_{k}\}$ 的**下极限集**, 简称为**下限集**, 记为

$$\underline{\lim}_{k\to\infty} A_k = \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} A_k.$$

若上、下限集相等,则说 $\{A_k\}$ 的极限集存在并等于上限集或下限集,记为 $\lim_{k\to\infty}A_k$.

命题 1.3 (上、下极限集的性质)

设 $\{A_k\}$ 是一集合列,E是一个集合则

$$(i)E\setminus \varlimsup_{k\to\infty}A_k=\varliminf_{k\to\infty}(E\setminus A_k);\quad (ii)E\setminus\varliminf_{k\to\infty}A_k=\varlimsup_{k\to\infty}(E\setminus A_k).$$

定理 1.4

若 $\{A_k\}$ 为一集合列,则

$$(i)\overline{\lim}_{k\to\infty}A_k=\bigcap_{j=1}^\infty\bigcup_{k=j}^\infty A_k=\{x: 对任一自然数j, 存在k(k\geqslant j), x\in A_k\}=\{x: \forall j\in\mathbb{N}, \exists k\geqslant j 且 k\in\mathbb{N}\ s.t.\ x\in A_k\}$$

(ii)
$$\varliminf_{k \to \infty} A_k = \bigcup_{j=1}^\infty \bigcap_{k=j}^\infty A_k = \{x : 存在自然数j_0, 当k \geqslant j_0 时, x \in A_k\} = \{x : \exists j_0 \in \mathbb{N}, \forall k \geqslant j_0 且k \in \mathbb{N}, x \in A_k\}$$

并且我们有

$$\overline{\lim}_{k\to\infty} A_k \supset \underline{\lim}_{k\to\infty} A_k.$$

证明 以 (ii) 为例. 若 $x \in \underline{\lim}_{k \to \infty} A_k$, 则存在自然数 j_0 , 使得

$$x \in \bigcap_{k=i_0}^{\infty} A_k$$

从而当 $k \ge j_0$ 时, 有 $x \in A_k$. 反之, 若存在自然数 j_0 , 当 $k \ge j_0$ 时, 有 $x \in A_k$, 则得到

$$x \in \bigcap_{k=j_0}^{\infty} A_k$$
.

由此可知 $x \in \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} A_k = \underline{\lim}_{k \to \infty} A_k$.

由 (i) (ii) 可知, $\{A_k\}$ 的上限集是由属于 $\{A_k\}$ 中无穷多个集合的元素所形成的; $\{A_k\}$ 的下限集是由只不属于 $\{A_k\}$ 中有限多个集合的元素所形成的. 从而立即可知

$$\overline{\lim}_{k\to\infty} A_k \supset \underline{\lim}_{k\to\infty} A_k.$$

定义 1.6 (直积集)

设 X,Y 是两个集合, 称一切有序"元素对"(x,y) (其中 $x \in X, y \in Y$) 形成的集合为 X 与 Y 的**直积集**, 记 为 $X \times Y$, 即

$$X \times Y = \{(x, y) : x \in X, y \in Y\},\$$

其中 (x, y) = (x', y') 是指 $x = x', y = y'.X \times X$ 也记为 X^2 .

1.2 映射与基数

定义 1.7 (单射)

定义 1.8 (映射的像集)

对于 $f: X \to Y$ 以及 $A \subset X$, 我们记

$$f(A) = \{ y \in Y : x \in A, y = f(x) \},$$

并称 f(A) 为集合 A 在映射 f 下的 (映) 像集 ($f(\emptyset) = \emptyset$).

命题 1.4 (映射的像集的基本性质)

对于 $f: X \to Y$. 我们有

(i)
$$f\left(\bigcup_{\alpha\in I}A_{\alpha}\right) = \bigcup_{\alpha\in I}f(A_{\alpha})\,(A_{\alpha}\in X,\alpha\in I);$$

(ii) $f\left(\bigcap_{\alpha\in I}A_{\alpha}\right)\subset\bigcap_{\alpha\in I}f(A_{\alpha})\,(A_{\alpha}\in X,\alpha\in I).$

(ii)
$$f\left(\bigcap_{\alpha\in I}A_{\alpha}\right)\subset\bigcap_{\alpha\in I}f(A_{\alpha})\,(A_{\alpha}\in X,\alpha\in I).$$

定义 1.9 (映射的原像集)

对于 $f: X \to Y$ 以及 $B \subset Y$, 我们记

$$f^{-1}(B) = \{x \in X : f(x) \in B\},\$$

并称 $f^{-1}(B)$ 为 B 关于 f 的**原像集**.

命题 1.5 (映射的原像集的基本性质)

对于 $f: X \to Y$, 我们有

(ii)
$$f^{-1}\left(\bigcup_{\alpha\in I}B_{\alpha}\right)=\bigcup_{\alpha\in I}f^{-1}(B_{\alpha})\ (B_{\alpha}\subset Y,\alpha\in I)\ ;$$

(iii)
$$f^{-1}\left(\bigcap_{\alpha\in I}B_{\alpha}\right)=\bigcap_{\alpha\in I}f^{-1}(B_{\alpha})\ (B_{\alpha}\subset Y,\alpha\in I)\ ;$$

(iv)
$$f^{-1}(B^c) = (f^{-1}(B))^c (B \subset Y)$$
.

定义 1.10 (示性函数)

一般地,对于X中的子集A,我们作

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \in X \setminus A, \end{cases}$$

且称 $\chi_A: X \to \mathbb{R}$ 是定义在 X 上的 A 的特征函数或示性函数.

命题 1.6 (示性函数的基本性质)

对于X中的子集A,B, 我们有

- (i) $A \neq B$ 等价于 $\chi_A \neq \chi_B$.
- (ii) $A \subset B$ 等价于 $\chi_A(x) \leqslant \chi_B(x)$.
- (iii) $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) \chi_{A \cap B}(x)$.
- (iv) $\chi_{A \cap B}(x) = \chi_A(x) \cdot \chi_B(x)$.
- (v) $\chi_{A \setminus B}(x) = \chi_A(x)(1 \chi_B(x)).$
- (vi) $\chi_{A \triangle B}(x) = |\chi_A(x) \chi_B(x)|$.

定义 1.11 (幂集)

设 X 是一个非空集合, 由 X 的一切子集(包括 \emptyset , X 自身)为元素形成的集合称为 X 的幂集, 记为 $\mathcal{P}(X)$.

 $\stackrel{ extbf{S}}{ extbf{Y}}$ 笔记 例如,由n个元素形成的集合E之幂集 $\mathcal{P}(E)$ 共有 2^n 个元素.

例题 1.1 单调映射的不动点 设 X 是一个非空集合, 且有 $f: \mathcal{P}(X) \to \mathcal{P}(X)$. 若对 $\mathcal{P}(X)$ 中满足 $A \subset B$ 的任意 A, B, 必有 $f(A) \subset f(B)$, 则存在 $T \subset \mathcal{P}(X)$, 使得 f(T) = T.

证明 作集合 S,T:

$$S = \{A : A \in \mathcal{P}(X) \ \mathbb{H}A \subset f(A)\},\$$

$$T = \bigcup_{A \in S} A(\in \mathcal{P}(X)),\$$

则有 f(T) = T.

事实上, 因为由 $A \in S$ 可知 $A \subset f(A)$, 从而由 $A \subset T$ 可得 $f(A) \subset f(T)$. 根据 $A \in S$ 推出 $A \subset f(T)$, 这就导致

$$\bigcup_{A \in S} A \subset f(T), \quad T \subset f(T).$$

另一方面,又从 $T \subset f(T)$ 可知 $f(T) \subset f(f(T))$. 这说明 $f(T) \in S$, 我们又有 $f(T) \subset T$.

定义 1.12 (集合之间的对等关系)

设有集合 A 与 B. 若存在一个从 A 到 B上的一一映射,则称集合 A 与 B 对等,记为 $A \sim B$.

命题 1.7 (对等关系的基本性质)

设有集合A与B,则

- (i) $A \sim A$;
- (ii) 若 $A \sim B$, 则 $B \sim A$;
- (iii) 若 $A \sim B, B \sim C$, 则 $A \sim C$.

引理 1.1 (映射分解定理)

若有 $f: X \to Y, g: Y \to X$, 则存在分解

$$X=A\cup A^{\sim},\quad Y=B\cup B^{\sim},$$

其中 $f(A) = B, g(B^{\sim}) = A^{\sim}, A \cap A^{\sim} = \emptyset$ 以及 $B \cap B^{\sim} = \emptyset$.

证明 对于 X 中的子集 E (不妨假定 $Y \setminus f(E) \neq \emptyset$), 若满足

$$E\cap g(Y\setminus f(E))=\varnothing,$$

则称 E 为 X 中的分离集. 现将 X 中的分离集的全体记为 Γ . 且作其并集

$$A = \bigcup_{E \in \Gamma} E.$$

我们有 $A \in \Gamma$. 事实上, 对于任意的 $E \in \Gamma$, 由于 $A \supset E$, 故从

$$E \cap g(Y \setminus f(E)) = \emptyset$$

可知 $E \cap g(Y \setminus f(A)) = \emptyset$, 从而有 $A \cap g(Y \setminus f(A)) = \emptyset$. 这说明 $A \in X$ 中的分离集且是 Γ 中最大元.

现在令 $f(A) = B,Y \setminus B = B^{\sim}$ 以及 $g(B^{\sim}) = A^{\sim}$. 首先知道

$$Y = B \cup B^{\sim}$$
.

其次, 由于 $A \cap A^{\sim} = \emptyset$, 故又易得 $A \cup A^{\sim} = X$. 事实上, 若不然, 那么存在 $x_0 \in X$, 使得 $x_0 \notin A \cup A^{\sim}$. 现在作 $A_0 = A \cup \{x_0\}$, 我们有

$$B = f(A) \subset f(A_0), \quad B^{\sim} \supset Y \setminus f(A_0),$$

从而知 $A^{\sim} \supset g(Y \setminus f(A_0))$. 这就是说, $A = g(Y \setminus f(A_0))$ 不相交. 由此可得

$$A_0 \cap g(Y \setminus f(A_0)) = \emptyset$$
.

这与A是 Γ 的最大元相矛盾.

定理 1.5 (Cantor - Bernstein 定理)

若集合 X 与 Y 的某个真子集对等, Y 与 X 的某个真子集对等, 则 $X \sim Y$.

室记 特例: 设集合 A. B. C 满足下述关系:

 $C \subset A \subset B$.

若 $B \sim C$, 则 $B \sim A$.

证明 由题设知存在单射 $f: X \to Y$ 与单射 $g: Y \to X$, 根据映射分解定理知

$$X = A \cup A^{\sim}$$
, $Y = B \cup B^{\sim}$, $f(A) = B$, $g(B^{\sim}) = A^{\sim}$.

注意到这里的 $f: A \to B$ 以及 $g^{-1}: A^{\sim} \to B^{\sim}$ 是一一映射, 因而可作 X 到 Y 上的一一映射 F:

$$F(x) = \begin{cases} f(x), & x \in A, \\ g^{-1}(x), & x \in A^{\sim}. \end{cases}$$

这说明 $X \sim Y$.

定义 1.13 (集合的基数 (或势))

设 A, B 是两个集合, 如果 $A \sim B$, 那么我们就说 $A \subseteq B$ 的**基数** (cardinal number) 或**势**是相同的, 记为 $\overline{A} = \overline{B}$. 可见, 凡是互相对等的集合均具有相同的基数.

如果用 α 表示这一相同的基数, 那么 $\overline{A} = \alpha$ 就表示 A 属于这一对等集合族. 对于两个集合 A 与 B, 记 $\overline{A} = \alpha$, $\overline{B} = \beta$. 若 A 与 B 的一个子集对等, 则称 α 不大于 β , 记为

$$\alpha \leqslant \beta$$
.

$$\alpha < \beta \quad (\vec{\mathfrak{A}}\beta > \alpha).$$

显然, 若 $\alpha \leq \beta$ 且 $\beta \leq \alpha$, 则由Cantor - Bernstein 定理可知 $\alpha = \beta$.

定义 1.14 (有限集与无限集)

设A是一个集合. 如果存在自然数n, 使得 $A \sim \{1,2,\cdots,n\}$, 则称A为**有限集**, 且用同一符号n记A的基数. 由此可见, 对于有限集来说, 其基数可以看作集合中元素的数目. 若一个集合不是有限集, 则称为**无限集**. 下面我们着重介绍无限集中若干重要且常见的基数.

定义 1.15 (自然数集 № 的基数・可列集)

记自然数集 \mathbb{N} 的基数为 \aleph_0 (读作阿列夫(Aleph, 希伯来文)零). 若集合 A 的基数为 \aleph_0 , 则 A 叫作**可列 集**. 这是由于 $\mathbb{N} = \{1, 2, \cdots, n, \cdots\}$, 而 $A \sim \mathbb{N}$, 故可将 A 中元素按一一对应关系以自然数次序排列起来, 附以下标, 就有

$$A = \{a_1, a_2, \cdots, a_n, \cdots\}.$$

定理 1.6

任一无限集 E 必包含一个可列子集.

0

拿 笔记 这个定理说明,在众多的无限集中,最小的基数是 №.

证明 任取 E 中一元, 记为 a_1 ; 再从 $E\setminus\{a_1\}$ 中取一元, 记为 a_2,\cdots . 设已选出 a_1,a_2,\cdots,a_n . 因为 E 是无限集, 所以

$$E \setminus \{a_1, a_2, \cdots, a_n\} \neq \emptyset.$$

于是又从 $E \setminus \{a_1, a_2, \cdots, a_n\}$ 中可再选一元,记为 a_{n+1} .这样,我们就得到一个集合

$$\{a_1, a_2, \cdots, a_n, a_{n+1}, \cdots\}.$$

这是一个可列集且是E的子集.

定理 1.7

设 A 是无限集且其基数为 α . 若 B 是至多可列集, 则 $A \cup B$ 的基数仍为 α .

 \Diamond

证明 不妨设 $B = \{b_1, b_2, \dots\}, A \cap B = \emptyset, 且$

$$A = A_1 \cup A_2$$
, $A_1 = \{a_1, a_2, \dots\}$.

我们作映射 f 如下:

$$f(a_i) = a_{2i}, \quad a_i \in A_1;$$

 $f(b_i) = a_{2i-1}, \quad b_i \in B;$
 $f(x) = x, \quad x \in A_2.$

显然, $f \in A \cup B$ 到 $A \perp$ 的一一映射.

定理 1.8

集合 A 为无限集的充要条件是 A 与其某真子集对等.

 \sim

证明 因为有限集是不与其真子集对等的,所以充分性是成立的.现在取 A 中一个非空有限子集 B,则由定理 1.7立即可知

$$\overline{\overline{A}} = \overline{\overline{((A \setminus B) \cup B)}} = \overline{\overline{(A \setminus B)}}.$$

故 $A \sim (A \setminus B)$.

定理 1.9

 $[0,1] = \{x: 0 \le x \le 1\}$ 不是可数集.

 \Diamond

证明 只需讨论 (0,1]. 为此, 采用二进位制小数表示法:

$$x = \sum_{n=1}^{\infty} \frac{a_n}{2^n},$$

其中 a_n 等于 0 或 1, 且在表示式中有无穷多个 a_n 等于 1. 显然,(0,1] 与全体二进位制小数一一对应.

若在上述表示式中把 $a_n=0$ 的项舍去,则得到 $x=\sum_{i=1}^{\infty}2^{-n_i}$,这里的 $\{n_i\}$ 是严格上升的自然数数列. 再令

$$k_1 = n_1$$
, $k_i = n_i - n_{i-1}$, $i = 2, 3, \cdots$,

则 $\{k_i\}$ 是自然数子列. 把由自然数构成的数列的全体记为 \mathcal{H} , 则 $\{0,1\}$ 与 \mathcal{H} 一一对应.

现在假定(0,1]是可数的,则 光是可数的,不妨将其全体排列如下:

但这是不可能的, 因为 $(k_1^{(1)}+1,k_2^{(2)}+1,\cdots,k_i^{(i)}+1,\cdots)$ 属于 \mathcal{H} , 而它并没有被排列出来. 这说明 \mathcal{H} 是不可数的, 也就是说 (0,1] 是不可数集.

定义 **1.16** (R 的基数·不可数集)

我们称 (0,1] 的基数为**连续基数**, 记为 $c(\mathfrak{A} \times_1)$.

定理 1.10

设有集合列 $\{A_k\}$. 若每个 A_k 的基数都是连续基数,则其并集 $\bigcup_{k=1}^{\infty} A_k$ 的基数是连续基数.

证明 不妨假定 $A_i \cap A_j = \emptyset (i \neq j)$, 且 $A_k \sim [k, k+1)$, 我们有

$$\bigcup_{k=1}^{\infty} A_k \sim [1, +\infty) \sim \mathbb{R}.$$

定理 1.11 (无最大基数定理)

若 A 是非空集合,则 A 与其幂集 $\mathcal{P}(A)$ (由 A 的一切子集所构成的集合族) 不对等.

Ŷ 笔记 易知集合 A 的基数小于其幂集 P(A) 的基数.

证明 假定 A 与其幂集 $\mathcal{P}(A)$ 对等, 即存在一一映射 $f:A\to\mathcal{P}(A)$. 我们作集合

$$B = \{x \in A : x \notin f(x)\},\$$

于是有 $y \in A$, 使得 $f(y) = B \in \mathcal{P}(A)$. 现在分析一下 $y \in B$ 的关系:

- (i) 若 $y \in B$, 则由 B 的定义可知 $y \notin f(y) = B$;
- (ii) 若 $v \notin B$, 则由 B 的定义可知 $v \in f(v) = B$.

这些矛盾说明 $A 与 \mathcal{P}(A)$ 之间并不存在一一映射, 即 $A 与 \mathcal{P}(A)$ 并不是对等的.

1.3 \mathbb{R}^n 中点与点之间的距离 · 点集的极限点

1.3.1 点集的直径、点的(球)邻域、矩体

定义 **1.17** (\mathbb{R}^n 与 \mathbb{R}^n 中的运算)

记一切有序数组 $x = (\xi_1, \xi_2, \dots, \xi_n)$ 的全体为 \mathbb{R}^n , 其中 $\xi_i \in \mathbb{R}$ $(i = 1, 2, \dots, n)$ 是实数, 称 ξ_i 为 x 的第 i 个 坐标, 并定义运算如下:

(i) 加法: 对于 $x = (\xi_1, \dots, \xi_n)$ 以及 $y = (\eta_1, \dots, \eta_n)$, 令

$$x + y = (\xi_1 + \eta_1, \cdots, \xi_n + \eta_n);$$

(ii) 数乘: 对于 $\lambda \in \mathbb{R}$, $\diamondsuit \lambda x = (\lambda \xi_1, \dots, \lambda \xi_n) \in \mathbb{R}^n$.

在上述两种运算下构成一个向量空间. 对于 $1 \le i \le n$, 记

$$e_i = (0, \cdots, 0, 1, 0, \cdots, 0),$$

其中除第 i 个坐标为 1, 外其余皆为 $0.e_1, e_2, \cdots, e_i, \cdots, e_n$ 组成 \mathbb{R}^n 的基底, 从而 \mathbb{R}^n 是实数域上的 n 维向量空间, 并称 $x = (\xi_1, \cdots, \xi_n)$ 为 \mathbb{R}^n 中的**向量**或点. 当每个 ξ_i 均为有理数时, $x = (\xi_1, \cdots, \xi_n)$ 称为**有理点**.

定义 1.18

设 $x = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, 令

$$|x| = (\xi_1^2 + \dots + \xi_n^2)^{\frac{1}{2}},$$

 $\pi |x|$ 为向量x 的模或长度.

命题 1.8 (向量的模的性质)

读 $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$, 则

- (i) $|x| \ge 0, |x| = 0$ 当且仅当 $x = (0, \dots, 0)$;
- (ii) 对任意的 $a \in \mathbb{R}$, 有 |ax| = |a||x|;
- (iii) $|x + y| \le |x| + |y|$;
- (iv) 设 $x = (\xi_1, \dots, \xi_n), y = (\eta_1, \dots, \eta_n), 则有$

$$(\xi_1\eta_1 + \dots + \xi_n\eta_n)^2 \leq (\xi_1^2 + \dots + \xi_n^2)(\eta_1^2 + \dots + \eta_n^2).$$

证明 (i),(ii) 的结论是明显的;(iii) 是 (iv) 的推论. 因此我们只证明 (iv).

只需注意到函数

$$f(\lambda) = (\xi_1 + \lambda \eta_1)^2 + \dots + (\xi_n + \lambda \eta_n)^2$$

是非负的(对一切 λ), 由 λ 的二次方程 $f(\lambda)$ 的判别式小于或等于零即得.(iv) 就是著名的 Cauchy - Schwarz 不等式.

定义 1.19 (距离空间)

一般地说,设X是一个集合. 若对X中任意两个元素x与y,有一个确定的实数与之对应,记为d(x,y),它满足下述三条性质:

- (i) $d(x, y) \ge 0, d(x, y) = 0$ 当且仅当 x = y;
- (ii) d(x, y) = d(y, x);
- (iii) $d(x, y) \leq d(x, z) + d(z, y)$,

则认为在X中定义了距离d,并称(X,d)为**距离空间**.

 $\stackrel{ extbf{?}}{ extbf{?}}$ 笔记 因而 (\mathbb{R}^n,d) 是一个距离空间, 其中 d(x,y)=|x-y|. 我们称 \mathbb{R}^n 为n 维欧氏空间.

定义 1.20 (点集的直径与有界集)

设E是 \mathbb{R}^n 中一些点形成的集合,令

$$diam(E) = \sup\{|x - y| : x, y \in E\},\$$

称为点集 E 的**直径**. 若 diam(E) < + ∞ , 则称 E 为**有界集**.

命题 1.9 (有界集的充要条件)

E 是有界集的充要条件是, 存在 M > 0, 使得 $\forall x \in E$ 都满足 $|x| \leq M$.

证明 由有界集的定义易得.

定义 1.21 (点的 (球) 邻域)

设 $x_0 \in \mathbb{R}^n, \delta > 0$, 称点集

$$\{x \in \mathbb{R}^n : |x - x_0| < \delta\}$$

为 \mathbb{R}^n 中以 x_0 为中心, 以 δ 为半径的**开球**, 也称为 x_0 的 (球) 邻域, 记为 $B(x_0, \delta)$, 从而称

$$\{x \in \mathbb{R}^n : |x - x_0| \le \delta\}$$

为**闭球**, 记为 $C(x_0, \delta)$. \mathbb{R}^n 中以 x_0 为中心, 以 δ 为半径的球面是

$$\{x \in \mathbb{R}^n : |x - x_0| = \delta\}.$$

定义 1.22 (矩体)

设 $a_i, b_i (i = 1, 2, \dots, n)$ 皆为实数, 且 $a_i < b_i (i = 1, 2, \dots, n)$, 称点集

$$\{x = (\xi_1, \xi_2, \dots, \xi_n) : a_i < \xi_i < b_i \ (i = 1, 2, \dots, n)\}$$

为 \mathbb{R}^n 中的**开矩体** (n=2 时为矩形,n=1 时为区间),即直积集

$$(a_1,b_1)\times\cdots\times(a_n,b_n).$$

类似地, \mathbb{R}^n 中的闭矩体以及半开闭矩体就是直积集

$$[a_1, b_1] \times \cdots \times [a_n, b_n], \quad (a_1, b_1] \times \cdots \times (a_n, b_n],$$

称 $b_i - a_i (i = 1, 2, \dots, n)$ 为**矩体的边长**. 若各边长都相等, 则称矩体为**方体**.

矩体也常用符号 I,J 等表示, 其**体积**用 |I|,|J| 等表示.

命题 1.10 (矩体的直径与体积)

若 $I = (a_1, b_1) \times \cdots \times (a_n, b_n)$, 则

diam
$$(I) = [(b_1 - a_1)^2 + \dots + (b_n - a_n)^2]^{\frac{1}{2}}, \quad |I| = \prod_{i=1}^n (b_i - a_i).$$

定义 1.23

设 $x_k \in \mathbb{R}^n (k = 1, 2, \cdots)$. 若存在 $x \in \mathbb{R}^n$, 使得

$$\lim_{k\to\infty} |x_k - x| = 0,$$

则称 $x_k(k=1,2,\cdots)$ 为 \mathbb{R}^n 中的收敛 (于 x 的) 点列, 称 x 为它的极限, 并简记为

$$\lim_{k \to \infty} x_k = x.$$

定义 1.24 (Cauchy 列)

定理 1.12

 $x_k(k=1,2,\cdots)$ 是收敛列的充分必要条件是 $\{x_k\}$ 为 Cauchy 列, 即

$$\lim_{l,m\to\infty} |x_l - x_m| = 0.$$

证明 若令 $x_k = \{\xi_1^{(k)}, \xi_2^{(k)}, \cdots, \xi_n^{(k)}\}, x = \{\xi_1, \xi_2, \cdots, \xi_n\}, 则由于不等式$

$$|\xi_i^{(k)} - \xi_i| \le |x_k - x| \le |\xi_1^{(k)} - \xi_1| + \dots + |\xi_n^{(k)} - \xi_n|$$

对一切 k = i 都成立. 故可知 $x_k(k = 1, 2, \cdots)$ 收敛于 x 的充分必要条件是, 对每个 i, 实数列 $\{\xi_i^{(k)}\}$ 都收敛于 ξ_i . 由此根据实数列收敛的 Cauchy 收敛准则可知结论成立.

1.3.2 点集的极限点

定义 1.25 (极限点与导集)

设 $E \subset \mathbb{R}^n, x \in \mathbb{R}^n$. 若存在E中的互异点列 $\{x_k\}$, 使得

$$\lim_{k\to\infty} |x_k - x| = 0,$$

则称x为E的极限点或聚点E的极限点全体记为E'. 称为E的导集.

筆记 显然,有限集是不存在极限点的.

定理 1.13 (一个点是极限点的充要条件)

若 $E \subset \mathbb{R}^n$,则 $x \in E'$ 当且仅当对任意的 $\delta > 0$,有

$$(B(x, \delta) \setminus \{x\}) \cap E \neq \emptyset$$
.

证明 若 $x \in E'$,则存在E中的互异点列 $\{x_k\}$,使得

$$|x_k - x| \to 0 \quad (k \to \infty),$$

从而对任意的 $\delta > 0$, 存在 k_0 , 当 $k \ge k_0$ 时, 有 $|x_k - x| < \delta$, 即

$$x_k \in B(x, \delta) \quad (k \ge k_0).$$

反之, 若对任意的 $\delta > 0$, 有 $(B(x,\delta) \setminus \{x\}) \cap E \neq \emptyset$, 则令 $\delta_1 = 1$, 可取 $x_1 \in E, x_1 \neq x$ 且 $|x - x_1| < 1$. 令

$$\delta_2 = \min\left(|x - x_1|, \frac{1}{2}\right),\,$$

可取 $x_2 \in E, x_2 \neq x$ 且 $|x - x_2| < \delta_2$. 继续这一过程, 就可得到 E 中互异点列 $\{x_k\}$, 使得 $|x - x_k| < \delta_k$, 即

$$\lim_{k \to \infty} |x - x_k| = 0.$$

这说明 $x \in E'$.

定义 1.26 (孤立点)

设 $E \subset \mathbb{R}^n$. 若E 中的点x 不是E 的极限点,即存在 $\delta > 0$,使得

$$(B(x, \delta) \setminus \{x\}) \cap E = \emptyset$$
,

则称 x 为 E 的**孤立点**, 即 $x \in E \setminus E'$.

定理 1.14 (导集的性质)

设 $E_1, E_2 \subset \mathbb{R}^n$, 则 $(E_1 \cup E_2)' = E_1' \cup E_2'$.

证明 因为 $E_1 \subset E_1 \cup E_2, E_2 \subset E_1 \cup E_2$, 所以

$$E_1' \subset (E_1 \cup E_2)', \quad E_2' \subset (E_1 \cup E_2)',$$

从而有 $E_1' \cup E_2' \subset (E_1 \cup E_2)'$. 反之, 若 $x \in (E_1 \cup E_2)'$, 则存在 $E_1 \cup E_2$ 中的互异点列 $\{x_k\}$, 使得

$$\lim_{k \to \infty} x_k = x$$

显然, 在 $\{x_k\}$ 中必有互异点列 $\{x_{k_i}\}$ 属于 E_1 或属于 E_2 , 而且

$$\lim x_{k_i} = x.$$

在 $\{x_{k_i}\}\subset E_1$ 时, 有 $x\in E_1'$, 否则 $x\in E_2'$. 这说明

$$(E_1 \cup E_2)' \subset E_1' \cup E_2'.$$

定理 1.15 (Bolzano - Weierstrass 定理)

 \mathbb{R}^n 中任一有界无限点集 E 至少有一个极限点.

证明 首先从 E 中取出互异点列 $\{x_k\}$. 显然, $\{x_k\}$ 仍是有界的,而且 $\{x_k\}$ 的第 $i(i=1,2,\cdots,n)$ 个坐标所形成的实数列 $\{\xi_i^{(k)}\}$ 是有界数列. 其次,根据 \mathbb{R}^1 的 Bolzano - Weierstrass 定理可知,从 $\{x_k\}$ 中可选出子列 $\{x_k^{(1)}\}$,使得 $\{x_k^{(1)}\}$ 的第一个坐标形成的数列是收敛列;再考查 $\{x_k^{(1)}\}$ 的第二个坐标形成的数列,同理可从中选出 $\{x_k^{(2)}\}$,使其第二个坐标形成的数列成为收敛列,此时其第一坐标数列仍为收敛列(注意,收敛数列的任一子列必收敛于同一极限),……至第 n 步,可得到 $\{x_k\}$ 的子列 $\{x_k^{(n)}\}$,其一切坐标数列皆收敛,从而知 $\{x_k^{(n)}\}$ 是收敛点列,设其极限为 x. 由于 $\{x_k^{(n)}\}$ 是互异点列,故 x 为 E 的极限点.

1.4 \mathbb{R}^n 中的基本点集: 闭集 · 开集 · Borel 集 · Cantor 集

1.4.1 闭集

定义 1.27 (闭集与闭包)

设 $E \subset \mathbb{R}^n$. 若 $E \supset E'$ (即E包含E的一切极限点),则称E为闭集(这里规定空集为闭集). 记 $\overline{E} = E \cup E'$,并称 \overline{E} 为E 的闭包(E 为闭集就是 $E = \overline{E}$).

定义 1.28 (稠密子集)

 $\exists A \subset B \perp A = B$, 则称 $A \in B$ 中稠密, 或称 $A \not\in B$ 的稠密子集.

定理 1.16 (闭集的运算性质)

- (i) 若 F_1, F_2 是 \mathbb{R}^n 中的闭集,则其并集 $F_1 \cup F_2$ 也是闭集,从而有限多个闭集的并集是闭集;
- (ii) 若 $\{F_{\alpha}: \alpha \in I\}$ 是 \mathbb{R}^n 中的一个闭集族,则其交集 $F = \bigcap_{\alpha} F_{\alpha}$ 是闭集.
- (iii) 设 $E_{\alpha} \subset \mathbb{R}^{n} (\alpha \in I)$, 则

$$\bigcup_{\alpha\in I}\overline{E_\alpha}\subset\overline{\bigcup_{\alpha\in I}E_\alpha},\quad \overline{\bigcap_{\alpha\in I}E_\alpha}\subset\bigcap_{\alpha\in I}\overline{E_\alpha}.$$

 \Diamond

注 无穷多个闭集的并集不一定是闭集. 例如, 令

$$F_k = \left\lceil \frac{1}{k+1}, \frac{1}{k} \right\rceil \subset \mathbb{R} \quad (k = 1, 2, \cdots),$$

则有 $\bigcup_{k=1}^{\infty} F_k = (0,1]$. 此例还说明

$$[0,1] = \overline{\bigcup_{k=1}^{\infty} F_k} \neq \bigcup_{k=1}^{\infty} \overline{F_k} = (0,1].$$

证明 (i) 从等式

$$\overline{F_1 \cup F_2} = (F_1 \cup F_2) \cup (F_1 \cup F_2)'$$

$$= (F_1 \cup F_2) \cup (F'_1 \cup F'_2)$$

$$= (F_1 \cup F'_1) \cup (F_2 \cup F'_2)$$

$$= \overline{F_1} \cup \overline{F_2}$$

可知, 若 F_1 , F_2 为闭集, 则 $\overline{F_1 \cup F_2} = F_1 \cup F_2$. 即 $F_1 \cup F_2$ 是闭集.

(ii) 因为对一切 $\alpha \in I$, 有 $F \subset F_{\alpha}$, 所以对一切 $\alpha \in I$, 有 $\overline{F} \subset \overline{F_{\alpha}} = F_{\alpha}$, 从而有

$$\overline{F} \subset \bigcap_{\alpha \in I} F_{\alpha} = F.$$

但 $F \subset \overline{F}$, 故 $F = \overline{F}$. 这说明 F 是闭集.

定理 1.17 (Cantor 闭集套定理)

若 $\{F_k\}$ 是 \mathbb{R}^n 中的非空有界闭集列, 且满足 $F_1 \supset F_2 \supset \cdots \supset F_k \supset \cdots$, 则 $\bigcap_{k=1}^{\infty} F_k \neq \emptyset$.

证明 若在 $\{F_k\}$ 中有无穷多个相同的集合, 则存在自然数 k_0 , 当 $k \ge k_0$ 时, 有 $F_k = F_{k_0}$. 此时, $\bigcap_{k=1}^{\infty} F_k = F_{k_0} \neq \emptyset$. 现在不妨假定对一切 k, F_{k+1} 是 F_k 的真子集, 即

$$F_k \setminus F_{k+1} \neq \emptyset$$
 ($- \forall j k$),

我们选取 $x_k \in F_k \setminus F_{k+1}(k=1,2,\cdots)$, 则 $\{x_k\}$ 是 \mathbb{R}^n 中的有界互异点列. 根据 Bolzano - Weierstrass 定理可知, 存在 $\{x_{k_i}\}$ 以及 $x \in \mathbb{R}^n$, 使得 $\lim_{k \to \infty} |x_{k_i} - x| = 0$. 由于每个 F_k 都是闭集, 故知 $x \in F_k(k=1,2,\cdots)$, 即

$$x \in \bigcap_{k=1}^{\infty} F_k$$
.

1.4.2 开集

定义 1.29 (开集)

设 $G \subset \mathbb{R}^n$. 若 $G^c = \mathbb{R}^n \setminus G$ 是闭集,则称G为开集.

拿 筆记 由此定义立即可知.ℝ″本身与空集 Ø 是开集:ℝ″中的开矩体是开集: 闭集的补集是开集.

定理 1.18 (开集的运算性质)

(i) 若 $\{G_{\alpha}: \alpha \in I\}$ 是 \mathbb{R}^n 中的一个开集族,则其并集 $G = \bigcup_{\alpha \in I} G_{\alpha}$ 是开集;

- (ii) 若 $G_k(k=1,2,\cdots,m)$ 是 \mathbb{R}^n 中的开集,则其交集 $G=\bigcap_{k=1}^m G_k$ 是开集(有限个开集的交集是开集); (iii) 若 G 是 \mathbb{R}^n 中的非空点集,则 G 是开集的充分必要条件是,对于 G 中任一点 x,存在 $\delta>0$,使得 $B(x,\delta)\subset G$.
- 证明 (i) 由定义知 $G^c_{\alpha}(\alpha \in I)$ 是闭集, 且有 $G^c = \bigcap_{\alpha \in I} G^c_{\alpha}$. 根据闭集的性质可知 G^c 是闭集, 即 G 是开集.
 - (ii) 由定义知 $G_k^c(k=1,2,\cdots,m)$ 是闭集,且有 $G^c=\bigcup_{k=1}^m G_k^c$.根据闭集的性质可知 G^c 是闭集,即 G 是开集.
 - (iii) 若 G 是开集且 $x \in G$, 则由于 G^c 是闭集以及 $x \notin G^c$, 可知存在 $\delta > 0$, 使得 $B(x, \delta) \subset G$. 反之, 若对 G 中的任一点 x, 存在 $\delta > 0$, 使得 $B(x, \delta) \subset G$, 则

$$B(x,\delta) \cap G^c = \emptyset$$
,

从而 x 不是 G^c 的极限点,即 G^c 的极限点含于 G^c . 这说明 G^c 是闭集,即 G 是开集.

定义 1.30 (内点与边界点)

设 $E \subset \mathbb{R}^n$. 对 $x \in E$, 若存在 $\delta > 0$, 使得 $B(x, \delta) \subset E$, 则称 $x \to E$ 的内点. E 的内点全体记为 E, 称为 E 的**内 核**. 若 $x \in E$ 但 $x \notin E$. 则称 $x \to E$ 的**边界点**. 边界点全体记为 ∂E .

Ŷ 笔记 显然, 内核一定为开集.开集的运算性质 (iii)说明开集就是集合中每个点都是内点的集合.

定理 1.19 (\mathbb{R}^n 中的非空开集的性质)

- (i) ℝ中的非空开集是可数个互不相交的开区间(这里也包括 $(-\infty,a),(b,+\infty)$ 以及 $(-\infty,+\infty)$)的并集;
- (ii) \mathbb{R}^n 中的非空开集 G 是可列个互不相交的半开闭方体的并集.

证明 (i) 设 G 是 \mathbb{R} 中的开集. 对于 G 中的任一点 a, 由于 a 是 G 的内点, 故存在 $\delta > 0$, 使得 $(a - \delta, a + \delta) \subset G$. 现在令

$$a' = \inf\{x : (x, a) \subset G\}, \quad a'' = \sup\{x : (a, x) \subset G\}$$

(这里 a' 可以是 $-\infty$,a'' 可以是 $+\infty$),显然 a' < a < a'' 且 $(a',a'') \subset G$. 这是因为对区间 (a',a'') 中的任一点 z,不妨设 $a' < z \leq a$,必存在 x,使得 a' < x < z 且 $(x,a) \subset G$,即 $z \in G$. 我们称这样的开区间 (a',a'') 为 G (关于点 a)的构成区间 I_a .

如果 $I_a = (a', a''), I_b = (b', b'')$ 是 G 的构成区间,那么可以证明它们或是重合的或是互不相交的.为此,不妨设 a < b.若

$$I_a \cap I_b \neq \emptyset$$
,

则有 b' < a''. 于是令 $\min\{a',b'\} = c,\max\{a'',b''\} = d$, 则有 $(c,d) = (a',a'') \cup (b',b'')$. 取 $x \in I_a \cap I_b$, 则 $I_x = (c,d)$ 是构成区间, 且

$$(c,d) = (a',a'') = (b',b'').$$

最后, 我们知道 ℝ中互不相交的区间族是可数的.

(ii) 首先将 \mathbb{R}^n 用格点(坐标皆为整数)分为可列个边长为 1 的半开闭方体,其全体记为 Γ_0 . 再将 Γ_0 中每个方体的每一边二等分,则每个方体就可分为 2^n 个边长为 $\frac{1}{2}$ 的半开闭方体,记 Γ_0 中如此做成的子方体的全体为 Γ_1 . 继续按此方法二分下去,可得其所含方体越来越小的方体族组成的序列 $\{\Gamma_k\}$,这里 Γ_k 中每个方体的边长是 2^{-k} ,且此方体是 Γ_{k+1} 中相应的 2^n 个互不相交的方体的并集. 我们称如此分成的方体为二进方体.

现在把 Γ_0 中凡含于G 内的方体取出来, 记其全体为 H_0 . 再把 Γ_1 中含于

$$G\setminus \bigcup_{J\in H_0}J$$

(J表示半开闭二进方体)内的方体取出来,记其全体为 H_1 .依此类推, H_k 为 Γ_k 中含于

$$G\setminus\bigcup_{i=0}^{k-1}\bigcup_{J\in H_i}J$$

内的方体的全体. 显然, 一切由 $H_k(k=0,1,2,\cdots)$ 中的方体构成的集合为可列的. 因为 G 是开集, 所以对任意的 $x \in G$, 存在 $\delta > 0$, 使得 $B(x,\delta) \subset G$. 而 Γ_k 中的方体的直径当 $k \to \infty$ 时是趋于零的, 从而可知 x 最终必落入某个 Γ_k 中的方体. 这说明

$$G = \bigcup_{k=0}^{\infty} \bigcup_{J \in H_k} J, \quad J.$$

 \mathbb{R}^n 中的开集还有一个重要事实,即 \mathbb{R}^n 中存在由可列个开集构成的开集族 Γ , 使得 \mathbb{R}^n 中任一开集均是 Γ 中某些开集的并集. 事实上, Γ 可取为

$$\left\{B\left(x,\frac{1}{k}\right):x\mathbb{R}^n,k\right\}.$$

首先, Γ 是可列集. 其次, 对于 \mathbb{R}^n 中开集 G 的任一点 x, 必存在 $\delta > 0$, 使得 $B(x,\delta) \subset G$. 现在取有理点 x', 使得 d(x,x') < 1/k, 其中 $k > 2/\delta$, 从而有

$$x \in B(x', 1/k) \subset B(x, \delta) \subset G$$
,

显然, 一切如此做成的 B(x', 1/k) 的并集就是 G.

定义 1.31 (开覆盖)

设 $E \subset \mathbb{R}^n$, $\Gamma \not= \mathbb{R}^n$ 中的一个开集族. 若对任意的 $x \in E$, 存在 $G \in \Gamma$, 使得 $x \in G$, 则称 Γ 为 E 的一个**开覆盖**. 设 $\Gamma \not= E$ 的一个开覆盖. 若 $\Gamma' \subset \Gamma$ 仍是 E 的一个开覆盖, 则称 Γ' 为 Γ (关于 E) 的一个**子覆盖**.

引理 1.2

 \mathbb{R}^n 中点集 E 的任一开覆盖 Γ 都含有一个可数子覆盖.

定理 1.20 (Heine - Borel 有限子覆盖定理)

 \mathbb{R}^n 中有界闭集的任一开覆盖均含有一个有限子覆盖.

注 在上述定理中,有界的条件是不能缺的. 例如,在 \mathbb{R}^1 中对自然数集作开覆盖 $\{(n-\frac{1}{2},n+\frac{1}{2})\}$ 就不存在有限子覆盖. 同样,闭集的条件也是不能缺的. 例如,在 \mathbb{R} 中对点集 $\{1,\frac{1}{2},\cdots,\frac{1}{n},\cdots\}$ 作开覆盖

$$\left\{ \left(\frac{1}{n} - \frac{1}{2n}, \frac{1}{n} + \frac{1}{2n} \right) \right\} \quad (n = 1, 2, \dots),$$

就不存在有限子覆盖.

证明 设 F 是 ℝⁿ 中的有界闭集,Γ 是 F 的一个开覆盖. 由引理 1.2, 可以假定 Γ 由可列个开集组成:

$$\Gamma = \{G_1, G_2, \cdots, G_i, \cdots\}.$$

\$

$$H_k = \bigcup_{i=1}^k G_i, \quad L_k = F \cap H_k^c \quad (k = 1, 2, \cdots).$$

显然, H_k 是开集, L_k 是闭集且有 $L_k \supset L_{k+1}(k=1,2,\cdots)$. 分两种情况:

- (i) 存在 k_0 , 使得 L_{k_0} 是空集, 即 H_{k_0} 中不含 F 的点, 从而知 $F \subset H_{k_0}$, 定理得证;
- (ii) 一切 L_k 皆非空集,则由Cantor 闭集套定理可知,存在点 $x_0 \in L_k(k = 1, 2, \cdots)$,即 $x_0 \in F$ 且 $x_0 \in H_k^c(k = 1, 2, \cdots)$. 这就是说 F 中存在点 x_0 不属于一切 H_k ,与原设矛盾,故第 (ii) 种情况不存在.

定理 1.21

设 $E \subset \mathbb{R}^n$. 若 E 的任一开覆盖都包含有限子覆盖,则 E 是有界闭集.

证明 设 $y \in E^c$,则对于每一个 $x \in E$,存在 $\delta_x > 0$,使得

$$B(x, \delta_x) \cap B(y, \delta_x) = \emptyset$$
.

显然, $\{B(x,\delta_x):x\in E\}$ 是 E 的一个开覆盖, 由题设知存在有限子覆盖, 设为

$$B(x_1, \delta_{x_1}), \cdots, B(x_m, \delta_{x_m}).$$

由此立即可知 E 是有界集. 现在再令

$$\delta_0 = \min\{\delta_{x_1}, \cdots, \delta_{x_m}\},\,$$

则 $B(y, \delta_0) \cap E = \emptyset$, 即 $y \notin E'$. 这说明 $E' \subset E$, 即 E 是闭集. 有界性显然.

定义 1.32 (紧集)

如果 E 的任一开覆盖均包含有限子覆盖, 我们就称 E 为紧集.

定义 1.33 (实值函数的连续)

设 f(x) 是定义在 $E \subset \mathbb{R}^n$ 上的实值函数, $x_0 \in E$. 如果对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $x \in E \cap B(x_0, \delta)$ 时, 有

$$|f(x) - f(x_0)| < \varepsilon,$$

则称 f(x) 在 $x = x_0$ 处连续, 称 x_0 为 f(x) 的一个连续点(在 $x_0 \notin E'$ 的情形, 即 x_0 是 E 的孤立点时, f(x) 自然在 $x = x_0$ 处连续). 若 E 中的任一点皆为 f(x) 的连续点, 则称 f(x) 在 E 上连续. 记 E 上的连续函数之全体为 C(E).

命题 1.11 (在 \mathbb{R}^n 的紧集上连续的函数的性质)

设 F 是 \mathbb{R}^n 中的有界闭集, $f \in C(F)$, 则

- (i) f(x) 是 F 上的有界函数, 即 f(F) 是 \mathbb{R} 中的有界集.
- (ii) 存在 x_0 ∈ F, y_0 ∈ F, 使得

$$f(x_0) = \sup\{f(x) : x \in F\}, \quad f(y_0) = \inf\{f(x) : x \in F\}.$$

(iii) f(x) 在 F 上是一致连续的,即对任给的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $x', x'' \in F$ 且 $|x' - x''| < \delta$ 时, 有

$$|f(x') - f(x'')| < \varepsilon$$
.

此外, 若 $E \subset \mathbb{R}^n$ 上的连续函数列 $\{f_k(x)\}$ 一致收敛于 f(x), 则 f(x) 是 E 上的连续函数.

1.4.3 Borel 集

定义 1.34

第2章 Lebesgue 测度

2.1 Lebesgue 外测度

定义 2.1 (区间的长度)

设I为实数的非空区间,若I是无界的,则定义它的长度 $\ell(I)$ 为 ∞ ,否则定义它的长度为端点的差.

笔记 设 / 为实数的非空区间, 显然 / 的长度满足

- (1) $\ell(I) \ge 0$.
- (2) $\ell(I)$ 满足平移不变性, 即 $\ell(I) = \ell(I+y), \forall y \in \mathbb{R}$.

定义 2.2 (Lebesgue 外测度)

设覆盖 A 的非空开有界区间的可数集族 $\{I_k\}_{k=1}^{\infty}$, 即使得 $A\subseteq\bigcup_{k=1}^{\infty}I_k$. 定义 A 的 Lebesgue 外测度 $m^*(A)$ 为 这些区间长度之和的下确界,即

$$m^*(A) = \inf \left\{ \sum_{k=1}^{\infty} \ell(I_k) \middle| A \subseteq \bigcup_{k=1}^{\infty} I_k \right\}.$$

命题 2.1 (常见集合的 Lebesgue 外测度)

- (1) 外测度是非负的.
- (2) 空集的外测度为 0.
- (3) 由可数个点构成的集合的外测度等于 0.
- (4) 区间的外测度等于区间的长度.

证明

- (1) 由区间长度的非负性立得. (2) 注意到 $(0, \frac{1}{n}) \supset \emptyset$, 则

$$0 \le m^*(\varnothing) \le \inf_{n \in \mathbb{N}} \frac{1}{n} = 0$$

因此 $m^*(\emptyset) = 0$.

(3) 设 $a_1, \dots, a_m, \dots \in \mathbb{R}, A = \{a_m : m \in \mathbb{N}\}.$ 任取 $n \in \mathbb{N}, \mathbb{M}$

$$\bigcup_{1 \le m \le n} \left(a_i - \frac{1}{2n2^m}, a_i + \frac{1}{2n2^m} \right) \supset A$$

于是

$$m^*(A) \le \sum_{m=1}^{\infty} \frac{1}{n2^m} = \frac{1}{n}$$

$$0 \le m^*(A) \le 0.$$

因此 $m^*(A) = 0$.

(4) 我们从闭有界区间 [a,b] 的情形开始. 令 $\varepsilon > 0$. 由于开区间 $(a-\varepsilon,b+\varepsilon)$ 包含 [a,b], 我们有 $m^*([a,b]) \leqslant$ $\ell((a-\varepsilon,b+\varepsilon))=b-a+2\varepsilon$. 这对任何 $\varepsilon>0$ 成立. 因此 $m^*([a,b])\leqslant b-a$. 接下来要证明 $m^*([a,b])\geqslant b-a$. 而这等价于证明: 若 $\{I_k\}_{k=1}^{\infty}$ 是任何覆盖 [a,b] 的可数开有界区间族,则

$$\sum_{k=1}^{\infty} \ell(I_k) \geqslant b - a \tag{2.1}$$

根据 Heine - Borel 定理, 任何覆盖 [a,b] 的开区间族有一个覆盖 [a,b] 的有限子族. 选取自然数 n 使得 $\{I_k\}_{k=1}^n$ 覆盖 [a,b]. 我们将证明

$$\sum_{k=1}^{n} \ell(I_k) \geqslant b - a \tag{2.2}$$

从而(2.1)成立. 由于 a 属于 $\bigcup_{k=1}^{n} I_k$,这些 I_k 中必有一个包含 a. 选取这样的一个区间且记为 (a_1,b_1) . 我们有 $a_1 < a < b_1$. 若 $b_1 \geqslant b$,不等式(2.2)得证,这是因为

$$\sum_{k=1}^{n} \ell(I_k) \geqslant b_1 - a_1 > b - a$$

否则, $b_1 \in [a,b]$, 且由于 $b_1 \notin (a_1,b_1)$, 族 $\{I_k\}_{k=1}^n$ 中存在一个区间, 记为 (a_2,b_2) 以区分于 (a_1,b_1) , 使得 $b_1 \in (a_2,b_2)$, 即 $a_2 < b_1 < b_2$. 若 $b_2 \ge b$, 不等式(2.2)得证, 这是因为

$$\sum_{k=1}^{n} \ell(I_k) \geqslant (b_1 - a_1) + (b_2 - a_2) = b_2 - (a_2 - b_1) - a_1 > b_2 - a_1 > b - a_1$$

我们继续这一选取程序直至它终止, 而它必须终止, 因为族 $\{I_k\}_{k=1}^n$ 中仅有 n 个区间. 因此我们得到 $\{I_k\}_{k=1}^n$ 的一个子族 $\{(a_k,b_k)\}_{k=1}^N$ 使得

$$a_1 < a$$

而对 $1 \leq k \leq N-1$,

$$a_{k+1} < b_k$$

且由于选取过程终止,

$$b_N > b$$

因此

$$\sum_{k=1}^{n} \ell(I_k) \geqslant (b_N - a_N) + (b_{N-1} - a_{N-1}) + \dots + (b_1 - a_1)$$

$$= b_N - (a_N - b_{N-1}) - \dots - (a_2 - b_1) - a_1$$

$$> b_N - a_1 > b - a$$

因而不等式(2.2)成立.

若 I 是任意有界区间,则给定 $\varepsilon > 0$,存在两个闭有界区间 J_1 和 J_2 使得

$$J_1 \subseteq I \subseteq J_2$$

而

$$\ell(I) - \varepsilon < \ell(J_1) \ \mathbb{H} \ell(J_2) < \ell(I) + \varepsilon$$

根据对闭有界区间的外测度与长度的相等性,以及外测度的单调性,有

$$\ell(I) - \varepsilon < \ell(J_1) = m^*(J_1) \leqslant m^*(I) \leqslant m^*(J_2) = \ell(J_2) < \ell(I) + \varepsilon$$

这对每个 $\varepsilon > 0$ 成立. 因此 $\ell(I) = m^*(I)$.

若 I 是无界区间,则对每个自然数 n,存在区间 $J \subseteq I$ 满足 $\ell(J) = n$. 因此 $m^*(I) \ge m^*(J) = \ell(J) = n$. 这对每个自然数 n 成立,因此 $m^*(I) = \infty$.

命题 2.2 (Lebesgue 外测度的平移不变性)

外测度是平移不变的,即对任意集合 A 与数 v,

$$m^*(A+y) = m^*(A)$$

证明 观察到若 $\{I_k\}_{k=1}^{\infty}$ 是任意可数集族,则 $\{I_k\}_{k=1}^{\infty}$ 覆盖 A 当且仅当 $\{I_k+y\}_{k=1}^{\infty}$ 覆盖 A+y. 此外,若每个 I_k 是一个开区间,则每个 I_k+y 是一个相同长度的开区间,因而

$$\sum_{k=1}^{\infty} \ell(I_k) = \sum_{k=1}^{\infty} \ell(I_k + y)$$

结论从这两个观察可以得到.

命题 2.3 (Lebesgue 外测度的可数次可加性)

外测度是可数次可加的,即若 $\{E_k\}_{k=1}^\infty$ 是任意可数集族,互不相交或相交,则

$$m^* \left(\bigcup_{k=1}^{\infty} E_k \right) \leqslant \sum_{k=1}^{\infty} m^*(E_k)$$

注 外测度不是可数可加的, 它甚至不是有限可加的.

证明 若这些 E_k 中的一个有无穷的外测度,则不等式平凡地成立. 我们因此假定每个 E_k 有有限的外测度. 令 $\varepsilon > 0$. 对每个自然数 k, 存在开有界区间的可数族 $\{I_{k,i}\}_{i=1}^{\infty}$ 使得

$$E_k \subseteq \bigcup_{i=1}^{\infty} I_{k,i} \ \mathbb{E} \sum_{i=1}^{\infty} l(I_{k,i}) < m^*(E_k) + \varepsilon/2^k$$

现在 $\{I_{k,i}\}_{1\leqslant k,i\leqslant \infty}$ 是一个覆盖 $\bigcup_{k=1}^{\infty}E_k$ 的开有界区间的可数族: 由于该族是可数族组成的可数族, 它是可数的. 因此, 根据外测度的定义,

$$\begin{split} m^* \left(\bigcup_{k=1}^{\infty} E_k \right) &\leqslant \sum_{1 \leqslant k, i < \infty} \ell(I_{k,i}) = \sum_{k=1}^{\infty} \left[\sum_{i=1}^{\infty} \ell(I_{k,i}) \right] \\ &< \sum_{k=1}^{\infty} \left[m^*(E_k) + \varepsilon/2^k \right] = \left[\sum_{k=1}^{\infty} m^*(E_k) \right] + \varepsilon \end{split}$$

由于这对每个 $\varepsilon > 0$ 成立,它对 $\varepsilon = 0$ 也成立.证明完毕.

若 $\{E_k\}_{k=1}^n$ 是任何有限集族, 互不相交或相交, 则

$$m^* \left(\bigcup_{k=1}^{\infty} E_k \right) \leqslant \sum_{k=1}^n m^*(E_k)$$

通过对 k > n 设 $E_k = \emptyset$,有限次可加性从可数次可加性得到.

2.2 Lebesgue 可测集的 σ 代数

定义 2.3 (可测)

集合 E 称为在 \mathbb{R} 中是**可测的**或是 \mathbb{R} 中的一个**可测集**, 或称 E 满足卡拉西奥多里 (Carathéodory) 条件, 若对任意集合 A,

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^C) = m^*(A \cap E) + m^*(A - E).$$

命题 2.4 (可测的充要条件)

设 $E \subset \mathbb{R}$,则E是可测集当且仅当对任意 $A \subset \mathbb{R}$ 有

$$m^*(A) \ge m^*(A \cap E) + m^*(A - E).$$

证明 由可测的定义可知, 我们只须证明小于等于号的关系恒成立. 注意到 $A = (A \cap E) \cup (A - E)$, 由于Lebesgue 外测度的可数次可加性, 我们有

$$m^*(A) = m^*((A \cap E) \cup (A - E)) \le m^*(A \cap E) + m^*(A - E)$$

此即得证.

命题 2.5 (可测集的性质)

- (1) 空集与 ℝ是可测的.
- (2) 可测集的补是可测的.
- (3) 任何外测度为零的集合是可测的. 特别地, 任何可数集是可测的.
- (4) 可数个可测集的并是可测的.

证明

- (1) 由可测的定义易得.
- (2) 由可测的定义易得.
- (3) 令集合 E 的外测度为零. 令 A 为任意集合. 由于

$$A \cap E \subseteq E \perp A \cap E^C \subseteq A$$

根据外测度的单调性,

$$m^*(A\cap E) \leqslant m^*(E) = 0 \ \mathbb{H} m^*(A\cap E^C) \leqslant m^*(A)$$

因此

$$m^*(A) \ge m^*(A \cap E^C) = 0 + m^*(A \cap E^C)$$

= $m^*(A \cap E) + m^*(A \cap E^C)$

从而由可测的充要条件可知,E 是可测的.

(4)