Backpropagation

$$\frac{1}{N} \sum_{i}^{N} (y_i - g_i)^2 \implies \frac{1}{N} \sum_{i}^{N} (y_i - (w_2 \cdot (w_1 \cdot x_i + b_1) + b_2)^2$$
actual
predicted

this is what the gradient tells us!

How change w_1 to reduce our loss? How change w_2 to reduce our loss?

How change b_1 to reduce our loss?

How change b_2 to reduce our loss?

Backpropagation

$$\frac{1}{N} \sum_{i}^{N} (y_i - g_i)^2 \implies \frac{1}{N} \sum_{i}^{N} (y_i - (w_2 \cdot (w_1 \cdot x_i + b_1) + b_2)^2$$
actual
predicted

$$\frac{\partial Loss}{\partial w_1} = \frac{Loss}{\partial g} \cdot \frac{\partial g}{\partial h} \cdot \frac{\partial h}{\partial w_1}$$

changing w_1 changes h, and changing h will change g, and changing g will change overall loss \implies we need the chain rule!