Ingeniería de los Computadores

Sesión 2. Superescalares: motivación y cauce

Motivación

- Dependencias estructurales provocan pérdidas de ciclos
 - Ejemplo de una unidad FP vs. Varias unidades FP

Motivación

- Varias unidades funcionales permiten la ejecución fuera de orden
 - Validar riesgos WAR y WAW

 Se obtienen mejores prestaciones si se pueden procesar varias instrucciones en la misma etapa → procesamiento superescalar

Motivación

Cauce

Etapas

- Captación de instrucciones (IF)
- Decodificación de instrucciones (ID)
- Emisión de instrucciones (ISS)
- Ejecución de instrucciones (EX) Instrucción finalizada o "finish"
- Escritura (WB) Instrucción completada o "complete"
- Características del procesamiento superescalar
 - Diferentes tipos de órdenes: orden de captación, orden de emisión, orden de finalización
 - Capacidad para identificar ILP existente y organizar el uso de las distintas etapas para optimizar recursos

Motivación Cauce

Motivación Cauce

Emisión ordenada

Motivación Cauce

Emisión desordenada

Motivación Cauce

Procesamiento segmentado

Motivación Cauce

Superescalar: emisión ordenada/finalización ordenada

Motivación Cauce

Superescalar: emisión ordenada/finalización desordenada

Motivación Cauce

Superescalar: emisión desordenada/finalización ordenada

Motivación Cauce

Superescalar: emisión desordenada/finalización desordenada

Decodificación Motivación Cauce I-Cache I-Cache IF IF Un procesador segmentado escalar sólo ID/OF decodifica una instrucción por ciclo ID **ISS**

En un procesador superescalar se han de decodificar varias instrucciones por ciclo (y comprobar las dependencias con las instrucciones que se están ejecutando)

Motivación Cauce **Decodificación**

Ingeniería de los Computadores Sesión 2. Superescalares Decodificación

Motivación Cauce

• Bits de predecodificación pueden indicar:

- > Si es una instrucción de salto o no (se puede empezar su procesamiento antes)
- El tipo de unidad funcional que va a utilizar (se puede emitir más rápidamente si hay cauces para enteros o coma flotante...)
- > Si hace referencia a memoria o no

Motivación Cauce Decodificación **Emisión**

Motivación Cauce Decodificación **Emisión**

Ventana de instrucciones:

- La ventana de instrucciones almacena las instrucciones pendientes (todas, si la ventana es centralizada o las de un tipo determinado, si es distribuida)
- Las instrucciones se cargan en la ventana una vez decodificadas y se utiliza un bit para indicar si un operando está disponible (se almacena el valor o se indica el registro desde donde se lee) o no (se almacena la unidad funcional desde donde llegará el operando)
- Una instrucción puede ser emitida cuando tiene todos sus operandos disponibles y la unidad funcional donde se procesará. Hay diversas posibilidades para el caso en el que varias instrucciones estén disponibles (características de los buses, etc.)

Motivación Cauce Decodificación **Emisión**

Ejemplo de Ventana de Instrucciones

Dato no válido (indica desde dónde se recibirá el dato)

#	opcode	address	rb_entry	operand1	ok1	typ1	operand2	ok2	typ2	pred
2	MULTD	loop + 0x4	2	1	0	FPD	0	0	FPD	_
1	LD	loop	1	0	0	INT	0	1	IMM	_

Lugar donde se / almacenará el resultado Dato válido (igual a 0)

Motivación Cauce Decodificación Emisión

- Orden: Emisión Ordenada o Desordenada
- Alineamiento: Emisión Alineada o No alineada

Ejemplos:

Alineada: SuperSparc (92), PowerPC (93, 95, 96), PA8000 (96), Alpha (92, 94, 95), R10000 (96)

No Alineada: MC88110 (93), PA7100LC (93), R8000 (94), UltraSparc (95)

Motivación Cauce Decodificación Emisión

Ventana de

Registros

add/sub: 2 mult: 1

[1] add r4,r1,r2 (2)

[2] mult r5,r1,r5 (5)

[3] sub r6,r5,r2 (2)

[4] sub r5,r4,r3 (2)

	_
١	
	▼ .

Se han emitido [1] y [2]

sub r5 r4 0 add [r3] 1 sub r6 r5 0 mult [r2] 1 -

Instrucc.	ISS	EXE
add	(1)	(2)-(3)
mult	(1)	(2)-(6)
sub	(7)	(8)-(9)
sub	(7)	(8)-(9)

Ha terminado [1]

Ha terminado [2]: pueden emitirse [3] y [4]

sub	r5	[r4]	1	-	[r3] 1 -
sub	r6	[r5]	1	-	[r2] 1 -

[4] puede emitirse pero debe esperar a la [3]

Motivación Cauce Decodificación Emisión

Ventana de

Registros

add/sub: 2 mult: 1

[1] add r4,r1,r2 (2)

[2] mult r5,r1,r5 (5)

[3] sub r6,r5,r2 (2)

[4] sub r5,r4,r3 (2)

	_
١	
	▼ .

Se han emitido [1] y [2]

sub r5 r4 0 add [r3] 1 sub r6 r5 0 mult [r2] 1 -

Instrucc.	ISS	EXE
add	(1)	(2)-(3)
mult	(1)	(2)-(6)
sub	(7)	(8)-(9)
sub	(7)	(8)-(9)

Ha terminado [1]

Ha terminado [2]: pueden emitirse [3] y [4]

sub	r5	[r4]	1	-	[r3] 1 -
sub	r6	[r5]	1	-	[r2] 1 -

[4] puede emitirse pero debe esperar a la [3]

Motivación Cauce Decodificación **Emisión**

Ventana de

Registros

sub r5	r4 0 add [r3] 1 -
sub r6	r5 0 mult [r2] 1 -
mult r5	[r1] 1 - [r5] 1-
add r4	[r1] 1 - [r2] 1-

add/sub: 2 mult: 1

[1] add r4,r1,r2 (2)

[2] mult r5,r1,r5 (5)

[3] sub r6,r5,r2 (2)

[4] sub r5,r4,r3 (2)

Se han emitido [1] y [2]

sub	r5	r4 0 add	[r3] 1 -
sub	r6	r5 0 mult	[r2] 1 -

Instrucc.	ISS	EXE
add	(1)	(2)-(3)
mult	(1)	(2)-(6)
sub	(7)	(8)-(9)
sub	(4)	(5)-(6)

Ha terminado [1]

Se ha emitido [4] y ha terminado [2]: puede emitirse [3]

sub	r6	[r5]	1 -	[r2] 1 -

Motivación Cauce Decodificación **Emisión**

Ventana de

add/sub: 1

[1] add r4,r1,r2 (2)

[2] mult r5,r1,r5 (5)

[3] sub r6,r5,r2 (2)

[4] sub r5,r4,r3 (2)

	J	L	
1	١	7	

Se han emitido [1] y [2]

Registros

sub	r5	r4 0 add	[r3] 1 -
sub	r6	r5 0 mult	[r2] 1 -

Instrucc.	ISS	EXE
add	(1)	(2)-(3)
mult	(1)	(2)-(6)
sub	(7)	(8)-(9)
sub	(10)	(11)-(12)

Ha terminado [1]

Ha terminado [2] y se ha emitido [3]. Cuando la unidad quede libre se emitirá [4]

sub r5 [r4] 1 - [r3] 1 -

Motivación Cauce Decodificación **Emisión**

Ventana de

Registros

sub r	5 r4	0 add	[r3] 1 -
sub r	6 r5	0 mult	[r2] 1 -
mult r	5 [r1]] 1 -	[r5] 1 -
add r	4 [r1]] 1 -	[r2] 1 -

add/sub: 1 mult: 1

[1] add r4,r1,r2 (2)

[2] mult r5,r1,r5 (5)

[3] sub r6,r5,r2 (2)

[4] sub r5,r4,r3 (2)

1

Se han emitido [1] y [2]

sub	r5	r4 0 add	[r3] 1 -
sub	r6	r5 0 mult	[r2] 1 -

Instrucc.	ISS	EXE
add	(1)	(2)-(3)
mult	(1)	(2)-(6)
sub	(7)	(8)-(9)
sub	(4)	(5)-(6)

Ha terminado [1]

Se ha emitido [4] y ha terminado [2]: puede emitirse [3]

sub	r6	[r5]	1	-	[r2] 1 -

Motivación Cauce Decodificación **Emisión**

Estaciones de reserva

Motivación Cauce Decodificación Emisión

Estaciones de reserva

Motivación Cauce Decodificación **Emisión**

Estaciones de reserva. Ejemplo de uso (1)

Ciclo i: mul r3, r1, r2
Ciclo i+1: add r5, r2, r3
add r6, r3, r4

Ciclo i:

- Se emite la instrucción de multiplicación, ya decodificada, a la estación de reserva
- Se anula el valor de r3 en el banco de registros
- Se copian los valores de r1 y r2 (disponibles) en la estación de reserva

Motivación Cauce Decodificación Emisión

Estaciones de reserva. Ejemplo de uso (2)

Ciclo i + 1:

- La operación de multiplicación tiene sus operadores preparados (V_{S1} = 1 y V_{S2} = 1)
- Así que puede enviarse a la unidad de ejecución

Motivación Cauce Decodificación Emisión

Estaciones de reserva. Ejemplo de uso (3)

Ciclo i + 1 (*cont.*):

- Se emiten las dos instrucciones de suma a la estación de reserva
- Se anulan los valores de r5 y r6 en el banco de registros
- Se copian los valores de los operandos disponibles y los identificadores de los operandos no preparados

Motivación Cauce Decodificación Emisión

Estaciones de reserva. Ejemplo de uso (4)

Ciclos i + 2 ... i + 5:

- La multiplicación sigue ejecutándose
- No se puede ejecutar ninguna suma hasta que esté disponible el resultado de la multiplicación (r3)

Motivación Cauce Decodificación Emisión

Estaciones de reserva. Ejemplo de uso (5)

Ciclo i + 6:

- Se escribe el resultado de la multiplicación en el banco de registros y en las entradas de la estación de reserva
- Se actualizan los bits de disponibilidad de r3 en el banco de registros y en la estación de reserva

Motivación Cauce Decodificación Emisión

Estaciones de reserva. Ejemplo de uso (6)

Ciclo i + 6 (*cont.*):

- Las sumas tienen sus operadores preparados (VS1 = 1 y VS2 = 1)
- Así que pueden enviarse a la unidad de ejecución

Motivación Cauce Decodificación Emisión

Estaciones de reserva. Ejemplo de uso (7)

Ciclo i: mul r3, r1, r2

Ciclo i+1: add r5, r2, r3

add r6, r3, r4

Ciclo i + 6 (cont.):

 Como sólo hay una unidad de ejecución, se envía la instrucción más antigua de la estación de reserva, la primera suma

