

Introdução

- Gasto de energia
- Como pensamos eficiência hoje;
- Eficiencia energética;
- Soluções em Hardware;
- Soluções em Software;
- Virtualização;
- Clouding computing;
- Green 500;

Consumo de energia

- Em 2010, computadores pessoais usaram mais de 1% de toda energia consumida no mundo
- Servidores usaram 1.5%
- Em 2014, data centers usaram 2% (70 bilhões kWh) de toda energia consumida nos EUA

Consumo de energia

Com o avanço da tecnologia, a curva de crescimento do consumo de energia pelos data centers foi muito reduzida

Estima-se que em 2014, se não fosse por esse avanço, 40 bilhões kWh a mais teriam sido consumidos pelos data centers, um aumento de mais de 55%

Lei de Koomey

"at a **fixed** computing load, the amount of battery you need will fall by a factor of two every year and a half."

Lei de Moore da eficiência energética

Limitada pelo princípio de Landauer: E ≥ kT ln 2

Como essa energia é gasta?

- Equipamentos de TI servidores, armazenamento de dados, equipamentos de redes
- Infraestrutura cooling, iluminação, umidificadores
- Power usage effectiveness:

$$PUE = \frac{P_t}{P_s}$$

- PUE médio de data centers: 1.7
- PUE dos data center da Google: 1.12

Dissipação de energia nos computadores

- "Vazamento" dos transistores
- Transformação de 1s em 0s
- Energia é perdida na forma de calor
- Conservar 1s significa conservar energia

Como pensamos eficiência hoje:

- Em geral, desenvolvedores focam em resolver problemas com:
 - Velocidade máxima
 - Memória mínima
- Crescente preocupação com eficiência energética dos computadores.

Soluções em hardware

Computação conservadora

- 1s e 0s são representados por pares, valendo apenas o primeiro
- Bits lixo são passados como batata quente, até que alguém queira usar
- Cortaria pela metade a dissipação de energia e calor produzido
- Mais fios e transistores seriam
 necessários = chips de maior área

Computadores reversíveis

- Chips e circuitos são capazes de reverter funções sem troca de calor
- Anos 1990: grupo do MIT construiu uma versão preliminar Pendulum
- Em 2012, AMD criou um clock adiabático, reduzindo o consumo total de energia em 24%
- Área ainda muito estudada

Computação magnética

- Bits são diferenciados pela direção em que o ímã está "apontando"
- Apontar para um lado requer a mesma quantidade de energia do que apontar para outro
- Experimento em Berkeley
 mostrou que "flipar" um bit
 magnético dispersa 3 zeptojoules
 (10^-21) à temperatura ambiente

Soluções em software

Algoritmos Reversíveis

Desenhados para rodar em computadores reversíveis

Tentam manter o número de 0s e de 1s constantes durante a execução

Primitive	Time	Space in Log	Energy	Thm.			
	(ops)	(bits)	(bits)				
Control Logic							
Paired Jump	$\Theta(1)$	1	0	3.1			
Variable Jump	$\Theta(1)$	1+w	0	3.1			
Protected If	$\Theta(1)$	0	0	3.2			
General If	$\Theta(1)$	1	0	3.2			
Simple For loop	$\Theta(l)$	0	0	3.3			
Protected For loop	$\Theta(l)$	0	0	3.4			
General For loop	$\Theta(l)$	$\lg l$	0	3.5			
Function call	$\Theta(1)$	0	0	3.6			
Memory Management							
Free lists	$\Theta(N)$	$\Theta(wN)$	0	3.7			
Reference Counting	$\Theta(N)$	$\Theta(wN)$	0	3.8			
Mark & Sweep	$\Theta(N)$	$\Theta(wN)$	0	3.9			

Exemplo: merge sort reversível

- Merge sort pode ser dividido em três partes:
 - a. Dividir o vetor em duas partes
 - b. Usar cada uma das partes na recursão
 - c. Merge das duas partes
- a) Reversível o inverso de separar os vetores x = L[0:k] e y = L[k + 1:n] é criar o vetor L[0:n]
- b) Reversível se a) e c) forem reversíveis
- c) Não reversível à primeira vista

Exemplo: merge sort reversível

Como fazer o merge reversível?

Antes de começar o algoritmo, criamos o vetor L'[0:2n]

Cada elemento do vetor L' é na verdade uma tupla, (v, i), onde v é o seu valor e i seu índice no vetor L.

Toda vez que se for dar merge, teremos dois vetores ordenados U[r, s] e V[s + 1, t]. Os elementos de U terão índices i <= s e os de V, i > s

Assim, será possível saber de que "metade" veio um determinado elemento e o merge pode ser revertido

Algoritmos Reversiveis

Nem todos os algoritmos reversiveis são energeticamente de graça

Algorithm	Time	Space (words)	Energy (bits)	Thm.
Graph Algorithms				
Breadth-first Search	$\Theta(V+E)$	$\Theta(V+E)$	$\Theta(wV+E)$	6.9
Reversible BFS [Fra99]	$\Theta(V+E)$	$\Theta(V+E)$	0	6.10
Bellman-Ford	$\Theta(VE)$	$\Theta(V)$	$\Theta(VEw)$	6.12
Reversible Bellman-Ford	$\Theta(VE)$	$\Theta(VE)$	0	6.13
Floyd-Warshall	$\Theta(V^3)$	$\Theta(V^2)$	$\Theta(wV^3)$	6.14
Reversible Floyd-Warshall [Fra99]	$\Theta(V^3)$	$\Theta(V^3)$	0	6.15
Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^3 \lg V)$	6.17
Reversible Matrix APSP [Fra99]	$\Theta(V^3 \lg V)$	$\Theta(V^2 \lg V)$	0	6.16
Semi-reversible Matrix APSP	$\Theta(V^3 \lg V)$	$\Theta(V^2)$	$\Theta(wV^2 \lg V)$	6.16
Data Structures				
Standard AVL Trees (build)	$O(n \lg n)$	O(n)	$O(w \cdot n \lg n)$	
(search)	$O(\lg n)$	O(1)	$O(\lg n)$	5.4
(insert)	$O(\lg n)$	O(1)	$O(w \lg n)$	5.5
(k deletes)	$O(k \lg n)$	O(1)	$O(w \lg n)$	5.6
Reversible AVL Trees (build)	$O(n \lg n)$	O(n)	0	
(search)	$O(\lg n)$	O(1)	0	5.7
(insert)	$O(\lg n)$	O(1)	0	5.8
(k deletes)	$O(k \lg n)$	O(k)	0	5.9
Standard Binary Heap (insert)	$O(\lg n)$	O(1)	$O(\lg n)$	5.10
(delete max)	$O(\lg n)$	$O(\lg n)$	$O(w \lg n)$	5.11
Reversible Binary Heap (insert)	$O(\lg n)$	O(1)	0	5.10
(delete max)	$O(\lg n)$	$O(\lg n)$	0	5.12
Dynamic Array (build)	O(n)	O(n)	0	
(query)	O(1)	O(1)	0	5.3
(add)	O(1)	O(1)	0	5.3
(delete)	O(1)	O(1)	0	5.3

Virtualização

- Reduz drasticamente o número de servidores físicos, já que uma mesma máquina pode acomodar várias máquinas virtuais diferentes.
- Diminui a quantidade de recursos não utilizados de uma máquina
- Cria a possibilidade de migração para servidores diferentes

Cloud computing

- Possibilidade de pequenas empresas usarem infraestrutura de grandes empresas
- Não é consenso que é sempre melhor energeticamente:
 - Transporte dos dados pode ser mais custoso do que armazenamento local de acordo com estudo feito pela Universidade de Melbourne

	Green500 Rank	TOP500 Rank	MFLOPS/W	Site	System	Total Power(kW)
	1	28	9462.1	NVIDIA Corporation	NVIDIA DGX-1, Xeon E5-2698v4 20C 2.2GHz, Infiniband EDR, NVIDIA Tesla P100	349.5
Muitos dos TOP500 também entram na Green500, mas sua	2	8	7453.5	Swiss National Supercomputing Centre (CSCS)	Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100	1312
	3	116	6673.8	Advanced Center for Computing and Communication, RIKEN	ZettaScaler-1.6, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SCnp	150.0
	4	1	6051.3	National Supercomputing Center in Wuxi	Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway	15371
posição pode mudar drasticamente	5	375	5806.3	Fujitsu Technology Solutions GmbH	PRIMERGY CX1640 M1, Intel Xeon Phi 7210 64C 1.3GHz, Intel Omni-Path	77
	6	6	4985.7	Joint Center for Advanced High Performance Computing	PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path	2718.7
	7	18	4688.0	DOE/SC/Argonne National Laboratory	Cray XC40, Intel Xeon Phi 7230 64C 1.3GHz, Aries interconnect	1087
	8	162	4112.1	Stanford Research Computing Center	Cray CS-Storm, Intel Xeon E5-2680v2 10C 2.8GHz, Infiniband FDR, Nvidia K80	190
	9	33	4086.8	Academic Center for Computing and Media Studies (ACCMS), Kyoto University	Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect	748.1
	10	397	3836.6	Thomas Jefferson National Accelerator Facility	KOI Cluster, Intel Xeon Phi 7230 64C 1.3GHz, Intel Omni-Path	111

Green500 - Junho 2013

Green500 Rank	MFLOPS/W	Site	System	Total Power(kW)
1	4503.2	GSIC Center, Tokyo Institute of Technology	LX 1U-4GPU/104Re-1G Cluster, Intel Xeon E5-2620v2 6C 2.100GHz, Infiniband FDR, NVIDIA K20x	27.8
2	3631.7	Cambridge University	Dell T620 Cluster, Intel Xeon E5-2630v2 6C 2.600GHz, Infiniband FDR, NVIDIA K20	52.6
3	3517.8	Center for Computational Sciences, University of Tsukuba	Cray 3623G4-SM Cluster, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband QDR, NVIDIA K20x	78.8
4	3185.9	Swiss National Supercomputing Centre (CSCS)	Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x	1753.7
5	3131.1	ROMEO HPC Center - Champagne-Ardenne	Bull R421-E3 Cluster, Intel Xeon E5-2650v2 8C 2.600GHz, Infiniband FDR, NVIDIA K20x	81.4

Green500 - Junho 2016

Green500 Rank	MFLOPS/W	Site	System	Total Power(kW)
1	9462.1	NVIDIA Corporation	NVIDIA DGX-1, Xeon E5-2698v4 20C 2.2GHz, Infiniband EDR, NVIDIA Tesla P100	349.5
2	7453.5	Swiss National Supercomputing Centre (CSCS)	Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100	1312
3	6673.8	Advanced Center for Computing and Communication, RIKEN	ZettaScaler-1.6, Xeon E5-2618Lv3 8C 2.3GHz, Infiniband FDR, PEZY-SCnp	150.0
4	6051.3	National Supercomputing Center in Wuxi	Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway	15371
5	5806.3	Fujitsu Technology Solutions GmbH	PRIMERGY CX1640 M1, Intel Xeon Phi 7210 64C 1.3GHz, Intel Omni-Path	77

Referências

- http://energy.mit.edu/news/energy-efficient-computing/
- https://www.technologyreview.com/s/425398/a-new-and-improved-moore s-law/
- http://www.datacenterknowledge.com/archives/2016/06/27/heres-how-much-energy-all-us-data-centers-consume/
- http://news.berkeley.edu/2016/03/11/magnetic-chips-low-power-computing/
- https://www.google.com/about/datacenters/efficiency/internal/
- https://arxiv.org/pdf/1605.08448.pdf