Audio frequency

An **audio frequency** (abbreviation: **AF**) or **audible frequency** is characterized as a periodic vibration whose <u>frequency</u> is audible to the average human. The <u>SI unit</u> of audio frequency is the <u>hertz</u> (Hz). It is the property of <u>sound</u> that most determines pitch.^[1]

The generally accepted standard <u>range of audible frequencies</u> for humans is 20 to 20,000 Hz,^{[2][3][4]} although the range of frequencies individuals hear is greatly influenced by environmental factors. Frequencies below 20 Hz are generally felt rather than heard, assuming the <u>amplitude</u> of the vibration is great enough. High frequencies are the first to be affected by <u>hearing loss</u> due to age or prolonged exposure to very loud noises.^[5]

Frequencies and descriptions

Frequency (Hz)	Octave	Description
16 to 32	1st	The lower human threshold of hearing, and the lowest pedal notes of a pipe organ.
32 to 512	2nd to 5th	Rhythm frequencies, where the lower and upper bass notes lie.
512 to 2048	6th to 7th	Defines human speech intelligibility, gives a horn-like or tinny quality to sound.
2048 to 8192	8th to 9th	Gives presence to speech, where abial and fricative sounds lie.
8192 to 16384	10th	Brilliance, the sounds of bells and the ringing of cymbals and sibilance in speech.
16384 to 32768	11th	Beyond brilliance, nebulous sounds approaching and just passing the upper human threshold of hearing

Sound measurements			
Characteristic	Symbols		
Sound pressure	p, SPL,L _{PA}		
Particle velocity	v, SVL		
Particle displacement	δ		
Sound intensity	I, SIL		
Sound power	<i>P</i> , SWL, L _{WA}		
Sound energy	W		
Sound energy density	W		
Sound exposure	E, SEL		
Acoustic impedance	Z		
Speed of sound	С		
Audio frequency	AF		
Transmission loss	TL		

MIDI note	Frequency (Hz)	Description	Sound file
0	8.17578125	Lowest organ note	n/a (fundamental frequencyinaudible)
12	16.3515625	Lowest note for tuba, large pipe organs, Bösendorfer Imperial grand piano	n/a (fundamental frequencyinaudible under average conditions)
24	32.703125	Lowest C on a standard 88-keypiano.	0:00
36	65.40625	Lowest note for cello	0:00
48	130.8125	Lowest note for <u>viola</u> , <u>mandola</u>	0:00
60	261.625	Middle C	0:00
72	523.25	C in middle of treble clef	0:00
84	1046.5	Approximately the highest note reproducible by the average female human voice.	0:00
96	2093	Highest note for a <u>flute</u> .	0:00
108	4186	Highest note on a standard 88-key piano.	0:00
120	8372		▶ 0:00
132	16744	Approximately the tone that a typicaCRT television emits while running.	▶ 0:00

See also

- Absolute threshold of hearing
- Hypersonic effect, controversial claim for human perception above 20,000 Hz
- Loudspeaker
- Musical acoustics
- Piano key frequencies
- Scientific pitch notation
- Whistle register

References

- Pilhofer, Michael (2007). <u>Music Theory for Dummies(https://books.google.com/books?id=CxcviUw4KX8C)</u>For Dummies. p. 97.
- 2. "Hyperphysics" (http://hyperphysics.phy-astrgsu.edu/hbase/sound/earsens.html) Retrieved 19 September 2014.
- 3. Heffner, Henry; Heffner, Rickye (January 2007). "Hearing Ranges of Laboratory Animals' (http://www.ingentaconnec t.com/content/aalas/jaalas/2007/00000046/00000001/art00003) American Association for Laboratory Animal Science. 46 (1): 20. Retrieved 19 September 2014.
- 4. Rosen, Stuart (2011). *Signals and Systems for Speech and Hearing* (2nd ed.). BRILL. p. 163."For auditory signals and human listeners, the accepted range is 20Hz to 20kHz, the limits of human hearing
- 5. Bitner-Glindzicz, M (2002). "Hereditary deafness and phenotyping in humans'*British Medical Bulletin* **63** (1): 73–94. doi:10.1093/bmb/63.1.73 (https://doi.org/10.1093/bmb/63.1.73) PMID 12324385 (https://www.ncbi.nlm.nih.gov/p ubmed/12324385)

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Audio_frequency&oldid=85540270'3

This page was last edited on 18 August 2018, at 01:28UTC).

Text is available under the <u>Creative Commons Attribution-ShareAlike Licenseadditional terms may apply By using this site, you agree to the <u>Terms of Use and Privacy Policy.</u> Wikipedia® is a registered trademark of the <u>Wikimedia Foundation</u>, Inc., a non-profit organization.</u>