

Author index of Volume 118

Argyris, J. and L. Tenek, An efficient and locking-free flat anisotropic plate and shell triangular element	63–119
Auricchio, F. and R.L. Taylor, A shear deformable plate element with an exact thin limit	393–412
Bernadou, M., P. Mato Eiroa and P. Trouv�, On the convergence of a discrete Kirchhoff triangle method valid for shells of arbitrary shape	373–391
Canuto, C. and G. Puppo, Bubble stabilization of spectral Legendre methods for the advection-diffusion equation	239–263
Chen, Z., see Sulsky, D.	179–196
Chinchalkar, S., The application of automatic differentiation to problems in engineering analysis	197–207
Chung, J. and G.M. Hulbert, A family of single-step Houbolt time integration algorithms for structural dynamics	1– 11
Dawson, C., see Shaw, S.	211–237
Fortin, M., see Soula�mani, A.	319–350
French, D.A. and S.M.F. Garcia, Finite element approximation of an evolution problem modeling shear band formation	153–161
Frey, F., see Ibrahimbegovi�, A.	285–308
Garcia, S.M.F., see French, D.A.	153–161
Gunzburger, M.D. and H.C. Lee, Analysis, approximation, and computation of a coupled solid/fluid temperature control problem	133–152
Han, R.P.S., see Scott, D.G.	309–318
Hulbert, G.M., see Chung, J.	1– 11
Ibrahimbegovi�, A., Stress resultant geometrically nonlinear shell theory with drilling rotations—Part I. A consistent formulation	265–283
Ibrahimbegovi�, A. and F. Frey, Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II. Computational aspects	285–308
Lee, H.C., see Gunzburger, M.D.	133–152
Leonard, B.P., Note on the von Neumann stability of explicit one-dimensional advection schemes	29– 46
Leschziner, M.A., see Lien, F.S.	351–371
Lien, F.S. and M.A. Leschziner, Multigrid acceleration for recirculating laminar and turbulent flows computed with a non-orthogonal, collocated finite-volume scheme	351–371

Mato Eiroa, P., see Bernadou, M.	373–391
Minev, P.D., see Tchavdarov, B.M.	121–132
Ponthot, J.Ph., see Stainier, L.	163–177
Puppo, G., see Canuto, C.	239–263
Radev, S.P., see Tchavdarov, B.M.	121–132
Rencis, J.J., see Urekew, T.J.	13– 28
Schreyer, H.L., see Sulsky, D.	179–196
Scott, D.G. and R.P.S. Han, Basis of an improved hybrid node renumbering algorithm for matrix bandwidth reduction	309–318
Shaw, S., M.K. Warby, J.R. Whiteman, C. Dawson and M.F. Wheeler, Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids	211–237
Shizgal, B., see Yang, H.H.	47– 61
Soulaimani, A. and M. Fortin, Finite element solution of compressible viscous flows using conservative variables	319–350
Stainier, L. and J.Ph. Ponthot, An improved one-point integration method for large strain elastoplastic analysis	163–177
Sulsky, D., Z. Chen and H.L. Schreyer, A particle method for history-dependent materials	179–196
Taylor, R.L., see Auricchio, F.	393–412
Tchavdarov, B.M., P.D. Minev and S.P. Radev, Numerical analysis of compound jet disintegration	121–132
Tenek, L., see Argyris, J.	63–119
Trouvé, P., see Bernadou, M.	373–391
Urekew, T.J. and J.J. Rencis, An iterative solution strategy for boundary element equations from mixed boundary value problems	13– 28
Warby, M.K., see Shaw, S.	211–237
Wheeler, M.F., see Shaw, S.	211–237
Whiteman, J.R., see Shaw, S.	211–237
Yang, H.H. and B. Shizgal, Chebyshev pseudospectral multi-domain technique for viscous flow calculation	47– 61

Subject index of Volume 118

Boundary element methods

An iterative solution strategy for boundary element equations from mixed boundary value problems, T.J. Urekew and J.J. Rencis 13– 28

Collocation method

Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, C. Canuto and G. Puppo 239–263

Control theory

Analysis, approximation, and computation of a coupled solid/fluid temperature control problem, M.D. Gunzburger and H.C. Lee 133–152

Coupled problems

Analysis, approximation, and computation of a coupled solid/fluid temperature control problem, M.D. Gunzburger and H.C. Lee 133–152

Dynamics

A family of single-step Houbolt time integration algorithms for structural dynamics, J. Chung and G.M. Hulbert 1– 11

An improved one-point integration method for large strain elastoplastic analysis, L. Stainier and J.Ph. Ponthot 163–177

Elasticity

An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek 63–119

A particle method for history-dependent materials, D. Sulsky, Z. Chen and H.L. Schreyer 179–196

Finite element and matrix methods

An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek 63–119

Finite element approximation of an evolution problem modeling shear band formation, D.A. French and S.M.F. Garcia 153–161

An improved one-point integration method for large strain elastoplastic analysis, L. Stainier and J.Ph. Ponthot 163–177

Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids, S. Shaw, M.K. Warby, J.R. Whiteman, C. Dawson and M.F. Wheeler 211–237

Stress resultant geometrically nonlinear shell theory with drilling rotations—Part I. A consistent formulation, A. Ibrahimbegović 265–284

Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II. Computational aspects, A. Ibrahimbegović and F. Frey 285–308

Finite element solution of compressible viscous flows using conservative variables, A. Soulaïmani and M. Fortin	319–350
On the convergence of a discrete Kirchhoff triangle method valid for shells of arbitrary shape, M. Bernadou, P. Mato Eiroa and P. Trouv�	373–391
A shear deformable plate element with an exact thin limit, F. Auricchio and R.L. Taylor	393–412
 <i>Fluid mechanics</i>	
Chebyshev pseudospectral multi-domain technique for viscous flow calculation, H.H. Yang and B. Shizgal	47– 61
Analysis, approximation, and computation of a coupled solid/fluid temperature control problem, M.D. Gunzburger and H.C. Lee	133–152
 <i>Heat and diffusion</i>	
Analysis, approximation, and computation of a coupled solid/fluid temperature control problem, M.D. Gunzburger and H.C. Lee	133–152
 <i>Matrix calculus</i>	
An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek	63–119
 <i>Miscellaneous topics</i>	
The application of automatic differentiation to problems in engineering analysis, S. Chinchalkar	197–207
 <i>Nonlinear mechanics</i>	
An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek	63–119
An improved one-point integration method for large strain elastoplastic analysis, L. Stainier and J.Ph. Ponthot	163–177
A particle method for history-dependent materials, D. Sulusky, Z. Chen and H.L. Schreyer	179–196
 <i>Numerical solution procedures</i>	
A family of single-step Houbolt time integration algorithms for structural dynamics, J. Chung and G.M. Hulbert	1– 11
An iterative solution strategy for boundary element equations from mixed boundary value problems, T.J. Urekew and J.J. Rencis	13– 28
Chebyshev pseudospectral multi-domain technique for viscous flow calculation, H.H. Yang and B. Shizgal	47– 61
An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek	63–119
Numerical analysis of compound jet disintegration, B.M. Tchavdarov, P.D. Minev and S.P. Radev	121–132
An improved one-point integration method for large strain elastoplastic analysis, L. Stainier and J.Ph. Ponthot	163–177
A particle method for history-dependent materials, D. Sulusky, Z. Chen and H.L. Schreyer	179–196
Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids, S. Shaw, M.K. Warby, J.R. Whiteman, C. Dawson and M.F. Wheeler	211–237
Multigrid acceleration for recirculating laminar and turbulent flows computed with a non-orthogonal, collocated finite-volume scheme, F.S. Lien and M.A. Leschziner	351–371

Basis of an improved hybrid node renumbering algorithm for matrix bandwidth reduction, D.G. Scott and R.P.S. Han	309–318
A shear deformable plate element with an exact thin limit, F. Auricchio and R.L. Taylor	393–412
<i>Plasticity</i>	
Finite element approximation of an evolution problem modeling shear band formation, D.A. French and S.M.F. Garcia	153–161
An improved one-point integration method for large strain elastoplastic analysis, L. Stainier and J.Ph. Ponthot	163–177
A particle method for history-dependent materials, D. Sulsky, Z. Chen and H.L. Schreyer	179–196
<i>Shells and plates</i>	
An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek	63–119
Stress resultant geometrically nonlinear shell theory with drilling rotations—Part I. A consistent formulation, A. Ibrahimbegović	265–284
Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II. Computational aspects, A. Ibrahimbegović and F. Frey	285–308
On the convergence of a discrete Kirchhoff triangle method valid for shells of arbitrary shape, M. Bernadou, P. Mato Eiroa and P. Trouvē	373–391
A shear deformable plate element with an exact thin limit, F. Auricchio and R.L. Taylor	393–412
<i>Solutions of ordinary and partial differential equations</i>	
A family of single-step Houbolt time integration algorithms for structural dynamics, J. Chung and G.M. Hulbert	1– 11
Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, C. Canuto and G. Puppo	239–263
<i>Stability in fluid mechanics</i>	
Note on the von Neumann stability of explicit one-dimensional advection schemes, B.P. Leonard	29– 46
Numerical analysis of compound jet disintegration, B.M. Tchavdarov, P.D. Minev and S.P. Radev	121–132
<i>Stability in structural mechanics</i>	
A shear deformable plate element with an exact thin limit, F. Auricchio and R.L. Taylor	393–412
<i>Structural mechanics</i>	
A family of single-step Houbolt time integration algorithms for structural dynamics, J. Chung and G.M. Hulbert	1– 11
An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek	63–119
An improved one-point integration method for large strain elastoplastic analysis, L. Stainier and J.Ph. Ponthot	163–177
Stress resultant geometrically nonlinear shell theory with drilling rotations—Part I. A consistent formulation, A. Ibrahimbegović	265–284
Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II. Computational aspects, A. Ibrahimbegović and F. Frey	285–308
On the convergence of a discrete Kirchhoff triangle method valid for shells of arbitrary shape, M. Bernadou, P. Mato Eiroa and P. Trouvē	373–391

Supersonic flow

Finite element solution of compressible viscous flows using conservative variables, A. Soulaïmani and M. Fortin 319–350

Systems of linear and nonlinear simultaneous equations

An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek 63–119

Transonic flow

Finite element solution of compressible viscous flows using conservative variables, A. Soulaïmani and M. Fortin 319–350

Transport phenomena

Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, C. Canuto and G. Puppo 239–263

Turbulence

Multigrid acceleration for recirculating laminar and turbulent flows computed with a non-orthogonal, collocated finite-volume scheme, F.S. Lien and M.A. Leschziner 351–371

Viscoelastic and viscoplastic media

Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids, S. Shaw, M.K. Warby, J.R. Whiteman, C. Dawson and M.F. Wheeler 211–237

Viscous flow

Finite element solution of compressible viscous flows using conservative variables, A. Soulaïmani and M. Fortin 319–350

Multigrid acceleration for recirculating laminar and turbulent flows computed with a non-orthogonal, collocated finite-volume scheme, F.S. Lien and M.A. Leschziner 351–371

