Inductance and Capacitance

Michael Brodskiy

Professor: N. Sun

February 15, 2023

- What is an inductor?
 - An electrical component that opposes change in electric current
 - * Unlike a resistor, which opposes the flow of current
 - Made by putting a coil of wire around a magnetic or non-magnetic core
 - Source of inductance is change in magnetic field
 - Current causes magnetic field and change in current causes change in magnetic field, which induces voltage in conductors (inductance)
 - Mathematical Relation

$$v = L \frac{di}{dt}$$

- -L is the inductance and its SI unit is Henry (H)
- Notice the direction of current and voltage drop
- Mathematical Relation¹

$$i(t) = \frac{1}{L} \int_{t_0}^{t} v dt + i(t_0)$$

- Energy is given by $E = \frac{1}{2}Li^2$
- What is a capacitor?
 - Separation of charge produces voltage which causes electric field
 - The amount of current produced by time varying electric field depends on the physical properties of dielectric materials

¹If voltage is given

- This is called capacitance
- Mathematical Relation for Capacitors

$$i = C \frac{dv}{dt}$$

- Current is induced due to change in voltage with time
- -C is the conductance and its SI unit is Farad(F)
- Notice the direction of current and voltage drop
- If current flows in opposite direction then there will be a minus sign in the equation
- The energy stored is $E = \frac{1}{2}cv^2$
- Inductors in Series and Parallel
 - For a serially connected inductor, the equivalent inductance is:

$$L_{eq} = L_1 + L_2 + \dots + L_n$$

- For inductors in parallel, the equivalent inductance is:

$$\boxed{\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}}$$

- Capacitors in Series and Parallel
 - For a serially connected capacitor, the equivalent capacitance is:

$$\boxed{\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}}$$

- For capacitors in parallel, the equivalent capacitance is:

$$C_{eq} = C_1 + C_2 + \dots + C_n$$

2

• Summary Table

Property	R	L	C
i-v relation	$i = \frac{v}{R}$	$i = \frac{1}{L} \int_{t_0}^t v dt + i(t_0)$	$i = C\frac{dv}{dt}$
v-i relation	v = iR	$v = L \frac{di}{dt}$	$v = \frac{1}{C} \int_{t_0}^t i dt + v(t_0)$
p (power transfer in)	$p = i^2 R$	$p = Li\frac{di}{dt}$	$p = Cv\frac{dv}{dt}$
w (stored energy)	0	$w = \frac{1}{2}Li^2$	$w = \frac{1}{2}Cv^2$
Series Combination	$R_{eq} = R_1 + R_2$	$L_{eq} = L_1 + L_2$	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$
Parallel Combination	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$	$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}$	$C_{eq} = C_1 + C_2$
DC Behavior	No change	Short circuit	Open circuit
Instantaneous v change?	Yes	Yes	No
Instantaneous i change?	Yes	No	Yes