Computational Methods for Astrophysical Applications

lleyk El Mellah & Jon Sundqvist

Centre for mathematical Plasma Astrophysics Instituut voor Sterrenkunde KU Leuven **Epilog**

Advanced meshes

Multi-dimensional meshes : dimensionally split methods Non-cartesian meshes Adaptive Mesh Refinement Adaptive Time Stepping

- Finite elements
- Parabolic & elliptic PDE
- Implicit methods
- Spectral methods
- Div B cleaning
- Workflow

Developing numerical codes Working on a cluster: job submission, etc Parallelization & vectorization Debugging & optimization

Integral form

- useless? Method is consistent since LTE vanish in limit $\Delta x \to 0$ and $\Delta t \to 0$
 - \Rightarrow accuracy: 2nd order space, 1st order time \rightarrow overall 1st
 - ⇒ failure is related to numerical stability
- round-off errors should not grow during time progression
 - ⇒ evaluate by von Neumann method
 - \Rightarrow numerical solution = exact + round-off error $\epsilon(x, t)$
 - \Rightarrow represent $\epsilon(x, t)$ in Fourier series, analyse Fourier term

$$\epsilon_k(x, t) = \hat{\epsilon}_k e^{\lambda t} e^{ikx}$$

numerically stable scheme: for all spatial wavenumbers k

$$\left| \frac{\epsilon_k^{n+1}}{\epsilon_k^n} \right| = \left| e^{\lambda \Delta t} \right| \le 1$$

Differential and conservative forms

FTCS scheme and von Neumann analysis yields

$$e^{\lambda \Delta t} = 1 - \frac{v \Delta t}{\Delta x} \frac{e^{ik\Delta x} - e^{-ik\Delta x}}{2} = 1 - i \frac{v \Delta t}{\Delta x} \sin(k\Delta x)$$

 \Rightarrow scheme is **unconditionally unstable** since for all k

$$\left|\frac{\epsilon_k^{n+1}}{\epsilon_k^n}\right| > 1$$

- three cures to save stability
 - ⇒ add 'numerical diffusion' to damp nonphysical instability
 - ⇒ impose same space-time symmetry as original PDE
 - ⇒ use implicit scheme

Conservative variables, fluxes, sources

adding diffusion: advection-diffusion equation has form

$$\frac{\partial u}{\partial t} = -v \frac{\partial u}{\partial x} + \mathcal{D} \frac{\partial^2 u}{\partial x^2}$$

- \Rightarrow diffusion coefficient \mathcal{D}
- replace u_i^n by spatial average between x_{i-1} and x_{i+1} , arrive at

$$u_i^{n+1} = \frac{u_{i+1}^n + u_{i-1}^n}{2} - v \frac{\Delta t}{\Delta x} \frac{u_{i+1}^n - u_{i-1}^n}{2}$$

- ⇒ Lax–Friedrichs scheme (or Lax scheme)
- ⇒ rearrange to form

$$\frac{u_i^{n+1}-u_i^n}{\Delta t}=-v\,\frac{u_{i+1}^n-u_{i-1}^n}{2\Delta x}+\frac{(\Delta x)^2}{2\Delta t}\,\frac{u_{i+1}^n-2u_i^n+u_{i-1}^n}{(\Delta x)^2}$$

 \Rightarrow numerical dissipation with $\mathcal{D} \equiv \frac{(\Delta x)^2}{2\Delta t}$

Closure relation

FTCS scheme and von Neumann analysis yields

$$e^{\lambda \Delta t} = 1 - \frac{v\Delta t}{\Delta x} \frac{e^{ik\Delta x} - e^{-ik\Delta x}}{2} = 1 - i \frac{v\Delta t}{\Delta x} \sin(k\Delta x)$$

 \Rightarrow scheme is **unconditionally unstable** since for all k

$$\left|\frac{\epsilon_k^{n+1}}{\epsilon_k^n}\right| > 1$$

- three cures to save stability
 - ⇒ add 'numerical diffusion' to damp nonphysical instability
 - ⇒ impose same space-time symmetry as original PDE
 - ⇒ use implicit scheme

Linear advection equation

perform von Neumann stability analysis for Lax–Friedrichs

$$e^{\lambda \Delta t} = \cos(k\Delta x) - i \frac{v\Delta t}{\Delta x} \sin(k\Delta x)$$

⇒ conditional stability requiring Courant number C

$$C \equiv \frac{|v|\Delta t}{\Delta x} \leq 1$$

- \Rightarrow limitation of the time step Δt for a given resolution Δx
- ⇒ Courant-Friedrichs-Lewy condition (1928)
- ⇒ necessary (not sufficient) condition for stability!

Euler equations

in (x, t) space, we identify **stencil** of a method ⇒ stencils visualizes discrete dependence of method

- ⇒ stencil for FTCS (a) versus Lax-Friedrichs (b)
- hyperbolic PDE and physical characteristics
 - ⇒ the advection equation is hyperbolic as

$$\frac{\partial u}{\partial t} + \frac{\partial \left(\underbrace{vu}_{F}\right)}{\partial x} = 0$$

El Mellah & Sundavist (KU Leuven)

Ideal Magneto-Hydrodynamics equations

for second order wave equation

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} = 0$$

⇒ factorizes to

$$\left(\frac{\partial}{\partial t} - v \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial x}\right) u = 0$$

⇒ general solution has left and right going wave with

$$u = f(x - vt) + g(x + vt)$$

- \Rightarrow initial shapes f(x), g(x) combine
- \Rightarrow 2 characteristics $\frac{dx}{dt} = \pm v$

illustrate CFL for second order wave equation:
the domain of dependence of the differential equation should
be contained in the DOD of the discretised equations

- \Rightarrow stability means physical DOD contained in stencil bounds (numerical DOD), hence Δt small enough (right case)
- note: linear advection + wave equation: DOD only involves 1 or 2 points from $t=0 \leftrightarrow \text{HD}$: DOD bounds set by $v\pm c_s$ with c_s sound speed, delimits t=0 interval

- Second cure: maintain space-time symmetry of the PDE
 - \Rightarrow use central discretisation for both x and t
 - ⇒ obtain leapfrog scheme

$$u_i^{n+1} = u_i^{n-1} - \frac{\Delta t}{\Delta x} (F_{i+1}^n - F_{i-1}^n)$$

- \Rightarrow numerical flux function for advection is $F_i^n \equiv vu_i^n$
- ⇒ conditionally stable and second-order accurate
- \Rightarrow multiple time levels involved: n-1, n, n+1
- ⇒ potential problem: even/oneven time levels may 'decouple'

Flux Jacobian

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Eigenvalues & eigenvectors

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Hyperbolic, parabolic and elliptic PDE

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Linear, non-linear & quasi-linear

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Explicit

• spatial differences as average of n-th and (n + 1)-th time step

$$u_i^{n+1} = u_i^n - \frac{1}{4}v \frac{\Delta t}{\Delta x} (u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

Implicit

• spatial differences as average of n-th and (n + 1)-th time step

$$u_i^{n+1} = u_i^n - \frac{1}{4}v\frac{\Delta t}{\Delta x}(u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

Properties

- many practical implementations use 'method of lines'
 - ⇒ vector **u** of unknowns after first spatial discretization
 - \Rightarrow obtain ODE system

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(\mathbf{u})$$

- ⇒ RHS vector function **f** could even be nonlinear in **u**
- discretize ODE in time using parameter α in

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \left[\alpha \mathbf{f}(\mathbf{u}^{n+1}) + (1 - \alpha) \mathbf{f}(\mathbf{u}^n) \right]$$

 \Rightarrow note case $\alpha = 0$: explicit (unstable) forward Euler method

Characteristics

- many practical implementations use 'method of lines'
 - ⇒ vector u of unknowns after first spatial discretization
 - ⇒ obtain ODE system

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(\mathbf{u})$$

- ⇒ RHS vector function **f** could even be nonlinear in **u**
- discretize ODE in time using parameter α in

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \left[\alpha \mathbf{f}(\mathbf{u}^{n+1}) + (1 - \alpha) \mathbf{f}(\mathbf{u}^n) \right]$$

 \Rightarrow note case $\alpha =$ 0: explicit (unstable) forward Euler method

Stencils, domain of dependence, range of influence

- many practical implementations use 'method of lines'
 - ⇒ vector u of unknowns after first spatial discretization
 - ⇒ obtain ODE system

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(\mathbf{u})$$

- ⇒ RHS vector function **f** could even be nonlinear in **u**
- discretize ODE in time using parameter α in

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \left[\alpha \mathbf{f}(\mathbf{u}^{n+1}) + (1 - \alpha) \mathbf{f}(\mathbf{u}^n) \right]$$

 \Rightarrow note case $\alpha = 0$: explicit (unstable) forward Euler method

The Riemann problem

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \left[\alpha \mathbf{f}(\mathbf{u}^{n+1}) + (1 - \alpha) \mathbf{f}(\mathbf{u}^n) \right]$$

- $\alpha = 1$ is implicit backward Euler
- $\alpha = 1/2$ gives second-order accuracy, trapezoidal method
 - ⇒ Crank-Nicolson for central discretization of flux in f
- when f nonlinear: linearize using

$$f(\mathbf{u}^{n+1}) \approx f(\mathbf{u}^n) + \frac{\partial f^n}{\partial \mathbf{u}} (\mathbf{u}^{n+1} - \mathbf{u}^n)$$

 \Rightarrow introduces matrix $\frac{\partial \mathbf{f}^n}{\partial \mathbf{u}}$ called "Jacobian matrix" of \mathbf{f}