

决策树学习笔记

李向阳 d1142845997@gmail.com

目录

1	引入	3
2	三个经典例子	3
	2.1 信贷的例子	3
	2.2 打网球的例子	8
	2.3 打高尔夫的例子	12
3	C4.5 算法和 C5.0 算法	16
4	过拟合与正则化	17
5	CART 算法	17
6	关于决策树的补充	19
	6.1 决策树用于回归	19
	6.2 决策树中的其它重要参数	20
7	总结	20
	7.1 参考资料	20
	7.2 决策树模型的应用场景	20
	7.3 决策树模型的优缺占	20

1 引入

3

1 引入

决策树主要有两种,一种是分类树,一种是回归树,这里主要讨论分类树,并顺带会提及回归树.

我们用 $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T$ 表示样本的 n 个特征 (features), 注意特征的取值可以是连续的, 也可以是离散的, 用 y 表示样本的类别, 假设有 K 类, 用 y = k 表示样本属于第 k 类, $k = 1, 2, \cdots, K$, 即 $y \in \{1, 2, \cdots, K\}$. 假设现在我们有 m 个训练样本, 即 $\{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\}, i = 1, 2, \cdots, m$, 很多文献中把样本实例也称作"特征向量"(feature vertor), 其中

$$\boldsymbol{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, \cdots, x_n^{(i)})^T, i = 1, 2, \cdots, m$$

我们的的目标是根据给定的训练数据集构建一个决策树模型, 使它能够对实例进行正确的分类.

2 三个经典例子

2.1 信贷的例子

例 1. 我们希望能够学习出一个贷款申请的决策树,当新的客户提出申请贷款时,根据申请人的特征利用决策树决定是否批准申请贷款.

虽然这也是一个二分类问题, 但是用 Logistic 回归之类的方法就不太能行得通了. 我们来构建决策树模型.

在这个例子中, 样本集合 D 总共有 4 个特征, 分别是年龄, 工作, 房子和信贷情况, 它们取值如下:

如果我们根据这些条件逐步去构建决策树的话,如何选择每个节点呢? 比如我们的根节点是选年龄好还是选工作好?不同的算法选择的标准不一样.下面介绍 ID3(Iterative Dichotomiser) 算法.

ID3 算法根据信息增益 (Information Gain) 来选取特征作为决策树分裂的节点. 特征 A 对训练数据集 D 的信息增益定义为集合 D 的经验熵 (所谓经验熵, 指的是熵是由某个数据集合估计得到的)H(D) 与特征 A 给定条件下 D 的经验条件熵 H(D|A) 之差, 记为 g(D,A).

$$g(D, A) = H(D) - H(D|A)$$

这实际上就是特征 A 和 D 的互信息. 我们分别以 A_1, A_2, A_3, A_4 来表示年龄, 工作, 房子和信贷情况这 4 个特征. 下面就来计算每个特征的信息增益.

± 1	١.	信贷数据
- 7.	٠.	1= 1-20 11:

ID	年龄	有工作	有自己的房子	的房子 信贷情况	
1	青年	否	否	一般	否
2	青年	否	否	好	否
3	青年	是	否	好	是
4	青年	是	是	一般	是
5	青年	否	否	一般	否
6	中年	否	否	一般	否
7	中年	否	否	好	否
8	中年	是	是	好	是
9	中年	否	是	非常好	是
10	中年	否	是	非常好	是
11	老年	否	是	非常好	是
12	老年	否	是	好	是
13	老年	是	否	好	是
14	老年	是	否	非常好	是
15	老年	否	否	一般	否

表 2: 信贷特征取值

	111 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
特征	取值
年龄	青年,中年,老年
工作	是, 否
房子	是, 否
信贷情况	一般, 好, 非常好

为了方便叙述, 我们将类别为是的类标记为正类, 类别为否的类标记为 负类, 那么 15 个样本中有 9 个是正类, 6 个是负类, 因此数据集 D 的经验熵 为

$$H(D) = -\frac{9}{15}\log\frac{9}{15} - \frac{6}{15}\log\frac{6}{15} = 0.971$$

注意这里的对数以 2 为底.

接下来我们先计算 $g(D, A_1) = H(D) - H(D|A_1)$, 而

$$H(D|A_1) = \frac{5}{15}H(D|A_1 = \text{青}\mp) + \frac{5}{15}H(D|A_1 = \text{中}\mp) + \frac{5}{15}H(D|A_1 = \text{老}\mp)$$
(1)

当 $A_1 =$ 青年 时,即观察青年人中,共有 5 个人,其中 2 个是正类,3 个

5

是负类, 因此

当 A_1 = 中年 时, 即观察中年人中, 共有 5 个人, 其中 3 个是正类, 2 个是负类, 因此

$$H(D|A_1 = + = -\frac{3}{5}\log\frac{3}{5} - \frac{2}{5}\log\frac{2}{5} = 0.971$$

当 A_1 = 老年 时, 即观察老年人中, 共有 5 个人, 其中 4 个是正类, 1 个是负类, 因此

$$H(D|A_1 =$$
 $= - $\frac{4}{5}\log\frac{4}{5} - \frac{1}{5}\log\frac{1}{5} = 0.722$$

把结果代入到(1)中,可得

$$H(D|A_1) = \frac{5}{15} \times 0.971 + \frac{5}{15} \times 0.971 + \frac{5}{15} \times 0.722 = 0.888$$

于是可得

$$g(D, A_1) = H(D) - H(D|A_1) = 0.971 - 0.888 = 0.083$$

把上述过程写的紧凑一点, 也即

$$g(D, A_1) = H(D) - \left[\frac{5}{15} H(D_1) + \frac{5}{15} H(D_2) + \frac{5}{15} H(D_3) \right]$$

$$= 0.971 - \left[\frac{5}{15} \left(-\frac{2}{5} \log \frac{2}{5} - \frac{3}{5} \log \frac{3}{5} \right) + \frac{5}{15} \left(-\frac{3}{5} \log \frac{3}{5} - \frac{2}{5} \log \frac{2}{5} \right) + \frac{5}{15} \left(-\frac{4}{5} \log \frac{4}{5} - \frac{1}{5} \log \frac{1}{5} \right) \right]$$

$$= 0.971 - 0.888 = 0.083$$

其中 D_1, D_2, D_3 分别是 D 中 A_1 (年龄) 取值为青年、中年和老年的样本子集.

同理可得

$$g(D, A_2) = H(D) - \left[\frac{5}{15}H(D_1) + \frac{10}{15}H(D_2)\right]$$

$$= 0.971 - \left[\frac{5}{15} \times 0 + \frac{10}{15}\left(-\frac{4}{10}\log\frac{4}{10} - \frac{6}{10}\log\frac{6}{10}\right)\right] = 0.324$$

$$g(D, A_3) = H(D) - \left[\frac{6}{15}H(D_1) + \frac{9}{15}H(D_2)\right]$$

$$= 0.971 - \left[\frac{6}{15} \times 0 + \frac{9}{15}\left(-\frac{3}{9}\log\frac{3}{9} - \frac{6}{9}\log\frac{6}{9}\right)\right] = 0.420$$

$$g(D, A_4) = H(D) - \left[\frac{5}{15}H(D_1) + \frac{6}{15}H(D_2 + \frac{4}{15}H(D_3)\right]$$

$$= 0.971 - \left[\frac{5}{15}\left(-\frac{1}{5}\log\frac{1}{5} - \frac{4}{5}\log\frac{4}{5}\right) + \frac{6}{15}\left(-\frac{4}{6}\log\frac{4}{6} - \frac{2}{6}\log\frac{2}{6}\right) + \frac{4}{15} \times 0\right]$$

$$= 0.971 - 0.608 = 0.363$$

由于 A_3 的信息增益最大, 所以选择特征 A_3 (有自己的房子) 为最优特征, 即选为根节点. 它将数据集 D 划分为两个子集 $D_1(A_3$ 取值为"是") 和 $D_2(A_3$ 取值为"否"), 由于 D_1 只有同一类的样本点, 所以它成为一个叶节点, 节点的标记为"是", 如下图所示:

是否

有自己的房子

对于 D_2 , 则需从特征 A_1 (年龄), A_2 (有工作) 和 A_4 (信贷情况) 中选择新的特征.

无房子的共有 9 人, 即集合 D_2 中有 9 人, 为了方便, 我们可以将表1中这 9 个人再单独拿出来, 如下表:

其中有3个正类,6个负类,因此D2的经验熵为

是

$$H(D_2) = -\frac{3}{9}\log\frac{3}{9} - \frac{6}{9}\log\frac{6}{9} = 0.918$$

ID	年龄	有工作	有自己的房子	信贷情况	类别
1	青年	否	否	一般	否
2	青年	否	否	好	否
3	青年	是	否	好	是
5	青年	否	否	一般	否
6	中年	否	否	一般	否
7	中年	否	否	好	否
13	老年	是	否	好	是
14	老年	是	否	非常好	是
15	老年	否	否	一般	 否

表 3: 无房子数据

进一步可得各个特征的信息增益为

$$\begin{split} g(D_2,A_1) &= H(D_2) - H(D_2|A_1) \\ &= 0.918 - \left[\frac{4}{9}\left(-\frac{1}{4}\log\frac{1}{4} - \frac{3}{4}\log\frac{3}{4}\right) + \frac{2}{9}\times 0 + \frac{3}{9}\left(-\frac{2}{3}\log\frac{2}{3} - \frac{1}{3}\log\frac{1}{3}\right)\right] \\ &= 0.918 - 0.667 = 0.251 \\ g(D_2,A_2) &= H(D_2) - H(D_2|A_2) \\ &= 0.918 - \left[\frac{3}{9}\times 0 + \frac{6}{9}\times 0\right] \\ &= 0.918 - 0 = 0.918 \\ g(D_2,A_4) &= H(D_2) - H(D_2|A_4) \\ &= 0.918 - \left[\frac{4}{9}\times 0 + \frac{4}{9}\left(-\frac{2}{4}\log\frac{2}{4} - \frac{2}{4}\log\frac{2}{4}\right) + \frac{1}{9}\times 0\right] \\ &= 0.918 - 0.444 = 0.474 \end{split}$$

这里 A_2 (有工作)的信息增益最大,故选择 A_2 作为节点的特征,它又将数据集 D_2 划分为两个部分,即从这个节点又引出两个子节点,一个对应"是"(有工作)的子结点,包含 3 个样本,它们属于同一类,所以这是一个叶结点,类标记为"是";另一个是对应"否"(无工作)的子结点,包含 6 个样本,它们也属于同一类,所以这也是一个叶结点,类标记为"否".

这样生成一个如下图2.1所示的决策树. 该决策树只用到了两个特征 (有两个内部结点).

图 1: 决策树的生成

2.2 打网球的例子

数据集如下表:

表 4. 网球数据

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

数据集 D 中有 9 个正类, 5 个负类, 因此数据集 D 的经验熵为

$$H(D) = -\frac{9}{14}\log\frac{9}{14} - \frac{5}{14}\log\frac{5}{14} = 0.940$$

采用与上例类似的符号, 我们用 A_i , i=1,2,3,4 来表示样本的 4 个特征, 依次为 Outlook, Temperature, Humidity 和 Wind. 同样计算可得

$$g(D, A_1) = H(D) - \left[\frac{5}{14} H(D_1) + \frac{4}{14} H(D_2) + \frac{5}{14} H(D_3) \right]$$

$$= 0.940 - \left[\frac{5}{14} \left(-\frac{2}{5} \log \frac{2}{5} - \frac{3}{5} \log \frac{3}{5} \right) + \frac{4}{14} \times 0 + \frac{5}{14} \left(-\frac{3}{5} \log \frac{3}{5} - \frac{2}{5} \log \frac{2}{5} \right) \right]$$

$$= 0.246$$

$$g(D, A_2) = H(D) - \left[\frac{4}{14} H(D_1) + \frac{6}{14} H(D_2) + \frac{4}{14} H(D_3) \right]$$

$$= 0.940 - \left[\frac{4}{14} \left(-\frac{2}{4} \log \frac{2}{4} - \frac{2}{4} \log \frac{2}{4} \right) + \frac{6}{14} \left(-\frac{4}{6} \log \frac{4}{6} - \frac{2}{6} \log \frac{2}{6} \right) + \frac{4}{14} \left(-\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} \right) \right]$$

$$= 0.029$$

$$g(D, A_3) = H(D) - \left[\frac{7}{14} H(D_1) + \frac{7}{14} H(D_2) \right]$$

$$= 0.940 - \left[\frac{7}{14} \left(-\frac{3}{7} \log \frac{3}{7} - \frac{4}{7} \log \frac{4}{7} \right) + \frac{7}{14} \left(-\frac{6}{7} \log \frac{6}{7} - \frac{1}{7} \log \frac{1}{7} \right) \right]$$

$$= 0.151$$

$$g(D, A_4) = H(D) - \left[\frac{8}{14} H(D_1) + \frac{6}{14} H(D_2) \right]$$

$$= 0.940 - \left[\frac{8}{14} \left(-\frac{6}{8} \log \frac{6}{8} - \frac{2}{8} \log \frac{2}{8} \right) + \frac{6}{14} \left(-\frac{3}{6} \log \frac{3}{6} - \frac{3}{6} \log \frac{3}{6} \right) \right]$$

$$= 0.048$$

有的文献中用 S 表示集合, 用 $Gain(S, A_i)$ 表示特征 A_i 的增益, 上述 计算过程可用下图表示 (略去计算过程, 用图形展示更为直观).

由于 Outlook 的信息增益最大, 所以应该选它作为根节点, 它将数据集 D 划分为 3 个分支, 分别是 Sunny, Overcast 和 rain, 其中 Overcast 的分支 只有同一类的样本点, 所以它成为一个叶节点, 节点的标记为"是".

接下来我们要按照同样的办法对 Sunny 和 Rain 继续进行分支.

图 2: 根节点选择

表 5: 网球数据

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

比如对 Sunny 进行分支, 为了方便观察, 我们将原始数据集中 Outlook = Sunny 的所有资料列出, 如下表:

计算信息增益可得下图

图 3: Sunny 分支

可以看到,此时 Humidity 的信息增益最大,故选取它为新节点,它将Sunny 分支划分为 2 个小分支,分别是 Humidity = High 和 Humidity = Normal,这两个小分支都是同一类的样本点,所以它们成为 2 个叶节点,节点的标记分为"是"和"否". 于是 Sunny 分支结束.

同理可对 Rain 分支进行讨论, 先把所有资料列出得下表

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
10	Rain	Mild	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

表 6. 网球数据

同理计算可得 (其实可直接看出来,这里也就不再画图展示了),此时 Wind 的信息增益最大,它将 Rain 分支划分为 2 个小分支,分别是 Wind = Weak 和 Wind = Strong,这两个小分支都是同一类的样本点,所以它们成为 2 个叶节点,节点的标记分为"是"和"否".于是 Rain 分支结束.

综上可得决策树如下

图 4: 网球决策树

规则集如下

```
If Outlook = Sunny and Humidity = High Then Play Tennis = No
If Outlook = Sunny and Humidity = Normal Then Play Tennis = Yes
If Outlook = Overcast Then Play Tennis = Yes
If Outlook = Rain and Wind = Strong Then Play Tennis = No
If Outlook = Rain and Wind = Weak Then Play Tennis = Yes
```

图 5: 网球规则集

2.3 打高尔夫的例子

此例子来自维基百科.

小王是一家著名高尔夫俱乐部的经理,但是他被雇员数量问题搞得心情十分不好.某些天好像所有人都来玩高尔夫,以至于所有员工都忙的团团转还是应付不过来,而有些天不知道什么原因却一个人也不来,俱乐部为雇员数量浪费了不少资金.

小王的目的是通过下周天气预报寻找什么时候人们会打高尔夫, 以适时 调整雇员数量. 因此首先他必须了解人们决定是否打球的原因.

在 2 周时间内我们得到以下记录:

Day	Outlook	Temperature	Humidity	Windy	Play Or Not
1	sunny	85	85	false	Don't Play
2	sunny	80	90	true	Don't Play
3	overcast	83	78	false	Play
4	rain	70	96	false	Play
5	rain	68	80	false	Play
6	rain	65	70	true	Don't Play
7	overcast	64	65	true	Play
8	sunny	72	95	false	Don't Play
9	sunny	69	70	false	Play
10	rain	75	80	false	Play
11	sunny	75	70	true	Play
12	overcast	72	90	true	Play
13	overcast	81	75	false	Play
14	rain	71	80	true	Don't Play

表 7: 高尔夫数据

其中 Outlook 表示天气类型, 天气状况有晴 (sunny)、云 (overcast、阴天)、和雨 (rain); Temperature 表示温度, 气温用华氏温度表示; Humidity 表示湿度, 相对湿度用百分比; Windy 表示有没有风. 当然还有顾客是不是在这些日子光顾俱乐部. 最终得到了 14 行 6 列的数据表格. 为了方便讨论, 我们将玩 (Play) 标记为正类, 将不玩 (Don't Play) 标记为负类.

显然数据集中有9个正类,5个负类,因此该集合的信息熵为

$$H(D) = -\frac{9}{14}\log\frac{9}{14} - \frac{5}{14}\log\frac{5}{14} = 0.940$$

我们仍用 A_i , i = 1, 2, 3, 4 表示样本的 4 个特征, 那么 Outlook 的信息

增益为

$$g(D, A_1) = H(D) - \left[\frac{5}{14} H(D_1) + \frac{4}{14} H(D_2) + \frac{5}{14} H(D_3) \right]$$

$$= 0.940 - \left[\frac{5}{14} \left(-\frac{2}{5} \log \frac{2}{5} - \frac{3}{5} \log \frac{3}{5} \right) + \frac{4}{14} \times 0 + \frac{5}{14} \left(-\frac{3}{5} \log \frac{3}{5} - \frac{2}{5} \log \frac{2}{5} \right) \right]$$

$$= 0.246$$

此例子与上面的两个例子的不同之处在于某些特征是连续取值, 比如这 里的气温和湿度, 而上面两个例子特征的取值都是离散的, 那我们该怎么做 呢?

一个容易想到的方法是手动离散,比如对于气温,把它分为高温和低温两类,高于72.5 算高温,低于72.5 算低温,当然也可以分为几个合适的区间,这样就可以使用 ID3 算法了,可是这里有个问题,如何确定一个合理的界限呢?

以二分法为例, 我们来对气温排序, 如下

表 8: 气温排序													
64	65	68	69	70	71	72	72	75	75	80	81	83	85
У	n	У	у	у	n	n	У	У	У	n	у	У	\mathbf{n}

其中 y 表示 Play, n 表示 Don't Play, 如果我们选用 71.5 为分隔点, 即小于 71.5 为低温, 那么低温中有 4 个正类, 2 个负类, 大于 71.5 为高温, 那么高温中有 5 个正类, 3 个负类, 那么此时特征 Temprature 的信息增益为

$$g(D, A_2) = 0.940 - \left[\frac{6}{14} \left(-\frac{4}{6} \log \frac{4}{6} - \frac{2}{6} \log \frac{2}{6} \right) + \frac{8}{14} \left(-\frac{5}{8} \log \frac{5}{8} - \frac{3}{8} \log \frac{3}{8} \right) \right]$$
$$= 0.940 - 0.939 = 0.001$$

当然,我们也可以选其它的数作为分割点把特征 Temprature 分为两类 计算它的信息增益,我们可以遍历中间的所有值找到最优的分割点 (具体可 参考其它书籍),然后计算 Temprature 的信息增益,不过,在高尔夫这个例 子中,仍然没有 Outlook 的信息增益大.

同理可计算 Himudity 和 Windy 的信息增益, 比较发现还是 Outlook 的信息增益大, 所以选 Outlook 为根节点, 然后分出 3 个枝节点, 其中 Overcast 为叶节点, 我们还需要对 Sunny 和 Rain 继续分支.

比如对 Sunny 进行分支, 先把表中 Sunny 的样本全都列出来 接下来就不用计算了, 直接用肉眼去看即可, 显然用 Windy 属性没有办 法把正负类完全区分开来, 那么 Temperature 和 Humdity 呢?

表 9: 高尔夫数据

14

Day	Outlook	Temperature	Humidity	Windy	Play Or Not	
1	sunny	85	85	false	Don't Play	
2	sunny	80	90	true	Don't Play	
8	sunny	72	95	false	Don't Play	
9	sunny	69	70	false	Play	
11	sunny	75	70	true	Play	

表 10: Sunny 下的气温排序 69 72 75 80 85 y n y n n

把 Temperature 排序, 如下表10 显然, 不管选哪个数作为分割点都无法将两类区分开.

再看 Humidity, 排序如下表11

表 11: Sunny 下的气温排序 70 70 85 90 95 y y n n n

显然, 我们随便选一个 70 到 85 之间的数作为分割点都能把两类完全 区分开, 比如就选 70, 那么大于 70 的都是负类, 反之则是正类.

因此, Sunny 分支肯定选用 Humidity 为节点, 它的信息增益肯定也是最大的 (选取 70 为分割点).

同理可以考察 Rain 分支, 把样本全部列出来, 见下表12

表 12: 高尔夫数据

Day	ay Outlook Temperat		Humidity	Windy	Play Or Not
4	rain	70	96	false	Play
5	rain	68	80 false		Play
6	rain	65	70	true	Don't Play
10	rain	75	80	false	Play
14	rain	71	80	true	Don't Play

同理可直接看出 Windy 属性可直接将两类完全区分开来, 故选它作为 分支节点即可, 事实上, 对这里的 Temperature 和 Humidity 数据排序, 会发

现确实也找不到合适的分割点将两类完全区分开来. 最终生成的决策树如下图6

图 6: 高尔夫决策树

图6是网上的, 我用 R 语言的 C50 包并没有生成这样的图 (报错尚未解决), 倒是用 SPSS 的 Modeler 画出了类似的图, 如下图7.

图 7: 高尔夫决策树

3 C4.5 算法和 C5.0 算法

ID3 算法有很多不足,上面已经提到特征连续取值的情形,还有比如特征取值情况很多怎么办,比如特征是日期,这样如果使用 ID3 算法,信息增益大的肯定倾向于选择取值多的特征作为分隔点,为了避免类似的不足,引入了 C4.5 算法,它不是采用信息增益为分裂标准,而是采用信息增益率(Information Gain Ratio) 为分裂标准.

特征 A 对训练数据集 D 的信息增益比 $g_R(D,A)$ 定义为其信息增益 g(D,A) 与训练数据集 D 的经验熵 H(D) 之比:

$$g_R(D, A) = \frac{g(D, A)}{H(D)}$$

这是李航《统计学习方法》上的定义,但我看大多数资料与之不同,差别在分母上,对于一个训练数据集S来说,特征A的信息增益比定义为

$$GainRatio(S, A) = \frac{Gain(S, A)}{SplitInformation(S, A)}$$

其中 SplitInformation(S, A) 称为分割信息值

SplitInformation
$$(S, A) = \sum_{i=1} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

以前面第二个例子,也就是打网球那个例子为例,比如要计算特征"Wind" 的信息增益率,由前面我们已经算出

$$Gain(S, Wind) = 0.048$$

而"Windy"中有 8 个"false", 6 个"true", 因此其分割信息值为

SplitInfo(S, Wind) =
$$-\frac{8}{14} \times \log_2 \frac{8}{14} - \frac{6}{14} \times \log_2 \frac{6}{14} = 0.985$$

因此"Wind"的信息增益率为

$$GainRation(S, Wind) = \frac{0.048}{0.985} = 0.049$$

同理可得其它三个的信息增益率

- Outlook: Gain(S, Outlook) = 0.246, SplitInfo = 1.577, GainRation = 0.156
- Temp: Gain(S,Temp) = 0.029, SplitInfo = 1.362, GainRation = 0.021
- Humidity: Gain(S, Humidity) = 0.151, SplitInfo = 1, GainRation = 0.151

可以看出,对于本例子,如果采用信息增益率为分裂标准,使用 Outlook 仍然是最好的,但是现在 Humidity 成了有力的竞争者.

后续的过程可以同理计算,这里就不再多述了.

C5.0 是 C4.5 的商业改进版, 可应用于海量资料集合上之分类, 主要在执行准确度和内存占用方面做了改进, 因其采用 Boosting 方式来提高准确率, 且占用系统资源少, 所以计算速度较快. C5.0 算法依照最大信息增益的概念来切割样本, 并重复进行切割直到样本子集不能再被分割为止.

R 语言有 C5.0 包可以进行 C5.0 决策树的建模分析, 其介绍可见http://www.rulequest.com/see5-unix.html.

4 过拟合与正则化

同其他分类算法一样, 决策树模型也会产生过拟合, 这是一个很重要的问题. 决策树里面通过剪枝操作来避免过拟合.

5 CART 算法

分类与回归树 (Clasification And Regression Tree, CART) 模型也是一个应用广泛的决策树学习方法. 这里我们先讨论分类.

CART 与 ID3、C4.5、C5.0 算法的最大不同之处是其在每一个节点上 采用的是二分法,也就是一次只能够有两个子节点, ID3、C4.5、C5.0 则在 每一个节点上可以产生多个不同的分支. 除此之外, CART 选用基尼 (Gini) 系数来作为选择属性的标准.

分类问题中,假设有 K 个类,样本点属于第 k 类的概率为 p_k ,则概率分布的基尼指数定义为

$$Gini(p) = \sum_{i=1}^{K} p_k (1 - p_k) = 1 - \sum_{k=1}^{K} p_k^2$$

特别的, 对于二分类问题, 若样本点属于第 1 个类 (正类) 的概率是 p, 则概率分布的基尼指数为

$$Gini(D) = 2p(1-p)$$

对于给定的样本集合 D, 其基尼指数为

$$\operatorname{Gini}(D) = 1 - \sum_{k=1}^{K} \left(\frac{|C_k|}{|D|}\right)^2$$

其中 C_k 是 D 中属于第 k 类的样本子集, K 是类的个数.

5 CART 算法 18

如果样本集合 D 根据特征 A 是否取某一可能值 a 被分割成 D_1 和 D_2 两部分,则在特征 A 的条件下,集合 D 的基尼指数定义为

$$\operatorname{Gini}(D, A) = \frac{|D_1|}{|D|}\operatorname{Gini}(D_1) + \frac{|D_2|}{|D|}\operatorname{Gini}(D_2)$$

基尼指数 Gini(D) 表示集合 D 的不确定性, 基尼指数 Gini(D,A) 表示经 A=a 分割后集合 D 的不确定性. 基尼指数值越大, 样本集合的不确定性也就越大, 这一点与熵相似.

下面我们以第一个例子也就是信贷那个例子为例, 来说明 CART 的算法.

首先计算各特征的基尼指数,选择最优特征以及最优切分点.仍然采用前面的记号,分别以 A_1 , A_2 , A_3 , A_4 表示年龄、有工作、有自己的房子和信贷情况 4 个特征,然后用具体的数值区分特征的不同取值,比如这里用 1,2,3 表示年龄的值青年、中年和老年,以 1,2 表示有工作和有自己的房子的值为是和否,以 1,2,3 表示信贷情况的值为非常好、好和一般.

先来求特征 A_1 的基尼指数, A_1 有 3 个可能取值, 我们说过 CART 采用的是二分法, 所以我们要将其组合起来分为两类, 比如分为青年和非青年, 或者分为中年和非中年, 或者分为老年和非老年, 这三种情况我们都要讨论, 比如分为青年和非青年, 青年有 5 人 (2 个正类, 3 个负类), 非青年有 10 人 (7 个正类, 3 个负类), 因此

$$Gini(D, A_1 = 1) = \frac{5}{15} \left(2 \times \frac{2}{5} \times \left(1 - \frac{2}{5} \right) \right) + \frac{10}{15} \left(2 \times \frac{7}{10} \times \left(1 - \frac{7}{10} \right) \right) = 0.44$$

同理可得

$$Gini(D, A_1 = 2) = 0.48, Gini(D, A_1 = 3) = 0.44$$

由于 $Gini(D, A_1 = 1)$ 和 $Gini(D, A_1 = 3)$ 相等, 都是最小, 所以 $A_1 = 1$ 和 $A_1 = 3$ 都可以选作 A_1 的最优切分点.

再来求特征 A_2 和 A_3 的基尼指数,由于它们都只有两个取值,就不用再自己组合了,直接简记为 $Gini(D, A_2)$ 和 $Gini(D, A_3)$,计算可得

$$Gini(D, A_2) = 0.32, Gini(D, A_3) = 0.27$$

由于 A₂ 和 A₃ 都只有一个切分点, 所以它们就是最优切分点.

再求特征 A_4 的基尼指数, 跟 A_1 一样, 它也有 3 中取值, 所以也有 3 种组合, 计算可得

$$Gini(D, A_4 = 1) = 0.36, Gini(D, A_4 = 2) = 0.47, Gini(D, A_4 = 3) = 0.32$$
 其中 $Gini(D, A_4 = 3)$ 最小,所以 $A_4 = 3$ 为 A_4 的最优切分点.

在 A_1, A_2, A_3, A_4 这几个特征中, $Gini(D, A_3) = 0.27$ 最小,所以选择特征 A_3 为最优特征, $A_3 = 1$ 为最优切分点.于是根节点生成两个子节点,一个是叶节点.对另一个节点继续使用以上方法在 A_1, A_2, A_4 中选择最优特征 及其最优切分点,结果是 $A_2 = 1$,依次计算得知,所得节点都是叶节点.

对于信贷这个例子, 按照 CART 算法所生成的决策树和 ID3 算法一样, 可见2.1.

我们也可以看第二个例子, 也就是打网球那个例子, 集合 S 中有 9 个正 类, 5 个负类, 因此该集合的基尼系数 Gini(S) 为

$$Gini(S) = 2 \times \frac{9}{14} \times \left(1 - \frac{9}{14}\right) \left(= 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2\right) = 0.459$$

然后开始看属性 Outlook, 这里也有 3 中组合, 为了举例, 我们只算一种组合, 即分为 Overcast (有 4 个) 和非 Overcast (有 10 个, 把 Sunny 和 Rain归为一类), 可得

$$Gini(D, Outlook) = \frac{10}{14} \left(2 \times \frac{5}{10} \times \left(1 - \frac{5}{10} \right) \right) + \frac{4}{14} \left(2 \times \frac{4}{4} \times \left(1 - \frac{4}{4} \right) \right) = 0.3571$$

同理, 对于 Temprature, 不妨分为 Mild (6 个) 和非 Mild(8 个, 把 Hot 和 Cool 合到一块), 计算可得

Gini(D, Temp) =
$$\frac{8}{14} \left(2 \times \frac{5}{8} \times \frac{3}{8} \right) + \frac{6}{14} \left(2 \times \frac{4}{6} \times \frac{2}{6} \right) = 0.458$$

对于 Humidity, 只有 High(7 个) 和 Normal(7 个), 因此可得

$$\operatorname{Gini}(D,\operatorname{Humidity}) = \frac{7}{14} \left(2 \times \frac{3}{7} \times \frac{4}{7} \right) + \frac{7}{14} \left(2 \times \frac{6}{7} \times \frac{1}{7} \right) = 0.37$$

对于 Wind, 只有 Weak (8 个) 和 Strong (6 个), 因此可得

Gini(D, Wind) =
$$\frac{8}{14} \left(2 \times \frac{6}{8} \times \frac{2}{8} \right) + \frac{6}{14} \left(2 \times \frac{3}{6} \times \frac{3}{6} \right) = 0.43$$

由此可知, Outlook 具有最小的基尼系数 (为 0.3571), 故选它作为根节点, 后面的分支可同样计算, 这里不再多述.

6 关于决策树的补充

6.1 决策树用于回归

决策树也可用于回归,比如拟合正弦函数,如下图8,代码来自 http://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html#example-tree-plot-tree-regression-py,可见附录.

7 总结 20

图 8: 回归决策树

6.2 决策树中的其它重要参数

7 总结

7.1 参考资料

- (1) 李航的《统计学习方法》, 不再多说.
- (2) 台湾陈士杰的决策树学习课件, 讲的比较清楚
- (3) 博客, 可见 http://leijun00.github.io/datamining/, 里面基本算是 李航《统计学习方法》的 copy 版本.

7.2 决策树模型的应用场景

7.3 决策树模型的优缺点

7 总结 21

附录

回归树代码:

```
import numpy as np
from sklearn.tree import DecisionTreeRegressor
   import matplotlib.pyplot as plt
   # Create a random dataset
  rng = np.random.RandomState(1)
  X = np.sort(5 * rng.rand(80, 1), axis=0)
  y = np.sin(X).ravel()
   y[::5] += 3 * (0.5 - rng.rand(16))
10
   # Fit regression model
11
regr 1 = DecisionTreeRegressor(max depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_1.fit(X, y)
  regr_2.fit(X, y)
   # Predict
17
18 X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
19 y_1 = regr_1.predict(X_test)
  y_2 = regr_2.predict(X_test)
22 # Plot the results
plt.figure()
plt.scatter(X, y, c="k", label="data")
  plt.plot(X_test, y_1, c="g", label="max_depth=2", linewidth=2)
plt.plot(X_test, y_2, c="r", label="max_depth=5", linewidth=2)
  plt.xlabel("data")
  plt.ylabel("target")
plt.title("Decision_Tree_Regression")
plt.legend()
  plt.show()
```