



## Traddle ports





15 d(°)+ (1-2)(°)∈ € for all d∈[0,1]? 1 (1/4) (5.3/4) /4



concare:

St.  $A(x_1, x_2) = (a_1)^T (x_1) + \delta$   $A(x_1, x_2) = (a_2)^T (x_2) + \delta$   $A(x_1, x_2) = (a_2)^T (x_2) + \delta$ 

XZ



 $f(x) = 2x - y \quad \text{alhi-e}$   $f(x) = x^2$   $(2x - y)^2$ 



An ophingation problem is (convex) the · le djectre mulmises a convex fet. or maximises a concave fet,

· le featible région is convex

linear regression, ousteroids,

white

st sudject to

Ny-XBN2 BERK

B, ≥0, B2 =0, B3 = 2,84

-B1 = 0 B2 40

2/84-/83 = D

## **Examples of Convex Functions**

| Show that the following functions are convex:                                                               | nei sum 2 7 co   |
|-------------------------------------------------------------------------------------------------------------|------------------|
| 1. $f(x,y) = \max\{x^2 + y^2,  x , 2x - y\}$<br>• $f(x) = x^2$ or well as $f(y) = y^2$ a                    | *                |
|                                                                                                             |                  |
| 2 2 c affine and hence Soth                                                                                 | Co - vex and con |
| · max of 3 convex fet's is conve                                                                            | <u>-</u> ×       |
| $2. f(x) = \max\{x, \max\{-x, 2\}\}\$                                                                       | ^                |
| · 2 75 aftre                                                                                                |                  |
| · 2 73 affre<br>· wax (-x,2) is co-vex<br>· x 75 affre                                                      |                  |
| · x rsalline                                                                                                | , t(x)=-x        |
| . $\max\{-\times,2\}$ is co-vex  . $x \neq x \neq x \neq y \neq $ |                  |
| / sathe                                                                                                     |                  |
|                                                                                                             |                  |
|                                                                                                             |                  |
| 11.112 is a norm and here                                                                                   | e courek         |
|                                                                                                             |                  |
| LD UXU2= V X1+ x2+                                                                                          | · · ·            |
| f(x,y)=x-y is after                                                                                         |                  |
| K(x,y) = x - y                                                                                              |                  |
| 1x- Mz is convex                                                                                            |                  |
|                                                                                                             |                  |