Ferienkurs Experimentalphysik 1

Übungsblatt 1

Tutoren: Julien Kollmann und Luca Italiano

Ortskurve 1

Ein Massepunkt bewege sich mit der Ortsfunktion

$$x(t) = \frac{kb^3}{b^2 + t^2} \tag{1}$$

 $mit b = 500s und k = 100 \frac{m}{s}.$

- a) Berechnen Sie die Geschwindigkeit und Beschleunigung als Funktion der Zeit.
- b) Zu welchen Zeiten und an welchen Orten ist die Geschwindigkeit Null?
- c) Zu welchen Zeiten und an welchen Orten ist die Beschleunigung Null?
- d) Skizzieren Sie die Orts- und Geschwindigkeitsfunktion in Abhängigkeit der Zeit.

LÖSUNG

a)

$$v(t) = \frac{-kb^3 \cdot 2t}{(b^2 + t^2)^2} \tag{2}$$

$$v(t) = \frac{-kb^3 \cdot 2t}{(b^2 + t^2)^2}$$

$$a(t) = \frac{-2kb^3(b^2 + t^2)^2 + kb^3 \cdot 2t \cdot 2(b^2 + t^2) \cdot 2t}{(b^2 + t^2)^4}$$
(3)

b)

$$v(t) = 0 \Longleftrightarrow t = 0 \tag{4}$$

$$x(0) = kb = 50000 \text{m} \tag{5}$$

c)

$$a(t) = 0 \Longleftrightarrow t = \pm \sqrt{\frac{b^2}{3}} \tag{6}$$

$$x(\pm\sqrt{\frac{b^2}{3}}) = \frac{3}{4}kb = 37500$$
m (7)

x https://www.wolframalpha.com/input?i=plot+100*500%5E3%2F%28500%5E2% d) 2Bx%5E2%29

- v https://www.wolframalpha.com/input?i=plot+-100*500%5E3*2x%2F%28500%5E2%2Bx%5E2%29%5E2
- a https://www.wolframalpha.com/input?i=plot+%28-2*100*500%5E3*%28500%5E2%2Bx%5E2%29%5E2%2B100*500%5E3*2*x*2*%28500%5E2%2Bx%5E2%29*2x%29%2F%28500%5E2%2Bx%5E2%29%5E4

2 Wurf

Ein Wurfgeschoss wird am Fuße eines gleichmäßig ansteigenden Hügels unter dem Winkel α (gegenüber der Horizontalen) abgefeuert. Der Anstiegswinkel des Hügels heiße β .

- a) Berechnen Sie den Auftreffpunkt (x_p, y_p) des Geschosses.
- b) Finden Sie den Winkel α unter dem das Geschoss in Richtung des Berges abgefeuert werden muss, um für gegebene Auftreffgeschwindigkeit die größtmögliche Reichweite entlang der Horizontalen zu erzielen.

LÖSUNG

a) Gesucht wird der Schnittpunnkt der Wurfparabel mit der Oberfläche des Hügels, welche durch eine Geradengleichung gegeben ist. Es wird $y_0 = 0$ gewählt:

$$v_x = v_0 \cos \alpha \quad \text{und} \quad v_y = v_0 \sin \alpha$$
 (8)

$$y(t) = v_y t - \frac{1}{2}gt^2 = x(t)\tan\beta \tag{9}$$

$$x(t) = v_0 t \cos \alpha \Rightarrow t = \frac{x}{v_0 \cos \alpha} \tag{10}$$

$$\Rightarrow v_0 \sin \alpha \frac{x}{v_0 \cos \alpha} - \frac{1}{2} g \left(\frac{x}{v_0 \cos \alpha} \right)^2 = x \tan \beta \tag{11}$$

$$\Rightarrow x = 0 \quad \text{trivial} \Rightarrow x = \frac{2v_0^2}{g} \cos^2 \alpha \left(\tan \alpha - \tan \beta \right) = \frac{2v_0^2}{g} \left(\frac{1}{2} \sin 2\alpha - \cos^2 \alpha \tan \beta \right). \tag{12}$$

b) Um den Abschusswinkel mit der größten Reichweite herauszufinden, leiten wir x nach α ab und setzen das Ergebnis mit 0 gleich (Stichwort Extremwertaufgabe):

$$\frac{dx}{d\alpha}(\alpha_m) = \frac{2v_0^2}{a}(\cos 2\alpha_m + 2\sin \alpha_m \cos \alpha_m \tan \beta) = 0$$
 (13)

$$\iff \frac{1}{\tan 2\alpha} = -\tan \beta \tag{14}$$

$$\Rightarrow \alpha_m = \frac{1}{2} (\pi - \arctan \frac{1}{\tan \beta}). \tag{15}$$

3 Kreisbahn

Die Bahnkurve eines Massepunkts in kartesischen Koordinaten sei

$$\vec{r}(t) = (r_0 \cos \omega t, r_0 \sin \omega t, v_z t) . \tag{16}$$

Hierbei ist r_0 der Abstand zur z-Achse, ω die Winkelgeschwindigkeit und v_z die Geschwindigkeit in z-Richtung.

- a) Welche geometrische Form beschreibt die Bahnkurve für den Spezialfall $v_z = 0$?
- b) Berechnen Sie für diesen Fall die Geschwindigkeit $\vec{v}(t)$ und die Beschleunigung $\vec{a}(t)$.
- c) Wie sind $\vec{v}(t)$ und $\vec{a}(t)$ zu jedem Zeitpunkt bezüglich der Bahnkurve gerichtet?
- d) Nun betrachten wir den allgemeineren Fall $v_z > 0$. Welche geometrische Form beschreibt die Bahnkurve jetzt?
- e) Drücken Sie die Bahnkurve mit den Einheitsvektoren in Zylinderkoordinaten aus.

LÖSUNG

a) Kreisbahn um den Ursprung.

b)

$$\vec{v}(t) = (-r_0 \omega \sin \omega t, r_0 \omega \cos \omega t, 0) \tag{17}$$

$$\vec{a}(t) = \left(-r_0\omega^2\cos\omega t, -r_0\omega^2\sin\omega t, 0\right) \tag{18}$$

c) Wir stellen fest:

$$\vec{r} \cdot \vec{v} = r_0^2 \omega (-\cos \omega t \sin \omega t + \cos \omega t \sin \omega t) = 0$$
 (19)

$$\vec{r} \times \vec{a} = (0, 0, r_0^2 \omega^2 (-\cos \omega t \sin \omega t + \cos \omega t \sin \omega t)) = \vec{0}.$$
 (20)

Also sind $\vec{r}(t)$ und $\vec{v}(t)$ normal zueinander, während $\vec{r}(t)$ und $\vec{a}(t)$ (anti-)parallel zueinander sind.

- d) Schraubenform.
- e) Durch Ablesen an den EInheitsvektoren:

$$\vec{r}(t) = r_0 \cdot \vec{e_r} + 0 \cdot \vec{e_\phi} + v_z t \cdot \vec{e_z}. \tag{21}$$

4 Drehimpuls

Eine Masse m=0.5kg wird an einem masselosen Faden der Länge l=1m aus der Ruhe innerhalb von 3s auf einer Kreisbahn gleichmäßig beschleunigt und rotiere dann mit 5 Umdrehungen pro Sekunde.

- a) Wie groß ist der Drehimpuls nach der Beschleunigungsdauer?
- b) Wie groß ist das mittlere Drehmoment während der Beschleunigungsphase?
- c) Wie schnell dreht sich das Massenstück, wenn der Faden durch Ziehen in radialer Richtung auf 0.4m verkürzt wird?
- d) Zeigen Sie, dass auch nachdem der Faden reißt und das Massenstück sich geradlinig fortbewegt der Drehimpuls konstant bleibt.

LÖSUNG

a) Aufgrund rechter Winkel werde hier mit Skalaren gerechnet.

$$L = rmv = 5\pi \frac{\text{m}^2\text{kg}}{\text{s}} \tag{22}$$

b)

$$M = rma = \frac{5\pi}{3} \text{Nm} \tag{23}$$

c) Drehimpulserhaltung:

$$L = 0.4 \text{m} \cdot 0.5 \text{kg} \cdot v_{neu} \,. \tag{24}$$

Also $v_{neu} = 25\pi \frac{\mathrm{m}}{\mathrm{s}}$.

d)

$$L = m\omega(t)r(t)^2 \tag{25}$$

$$r(t) = \sqrt{l^2 + (vt)^2} \tag{26}$$

$$\Theta = \arctan \frac{vt}{l} \tag{27}$$

$$\omega(t) = \frac{\frac{v}{l}}{\frac{(vt)^2}{l^2} + 1} = \omega_0 \frac{l^2}{r(t)^2}$$
 (28)

Daraus folgt:

$$L = m\omega_0 l^2 \frac{r(t)^2}{r(t)^2} = mvl = \text{const.}.$$
 (29)

5 Energie I

Eine Stahlkugel sei am Ende eines Drahtes befestigt und bewege sich auf einer vertikalen Kreisbahn.

- a) Berechnen Sie die kinetische Energie unter Annahme einer konstanten Winkelgeschwindigkeit von $120s^{-1}$ (m = 1kg, l = 1m).
- b) Wie stark ändern sich die kinetische Energie und die Winkelgeschwindigkeit vom höchsten zum tiefsten Punkt der Kreisbahn?

LÖSUNG

a)

$$E_{kin} = \frac{1}{2}m\omega^2 r^2 = 7200J \tag{30}$$

b)

$$E_{pot} = mg \cdot 2r = 19.62J \tag{31}$$

$$E_{pot} = \Delta E_{kin} = \frac{1}{2} mr^2 (\omega_2^2 - \omega_1^2)$$
 (32)

$$\Delta\omega = \sqrt{\frac{2\Delta E_{kin}}{r^2} + \omega_1^2 - \omega_1} = 0.163s^{-1}$$
 (33)

6 Energie II

Ein ambitionierter Bastler konstruiert die unterschiedlichsten Bahnen für Spielzeugautos. Eine seiner Lieblingsbahnen enthält einen Looping mit Radius $R=40\mathrm{cm}$, der, symmetrisch zu seinem höchsten Punkt, unterbrochen ist. Ein sehr kleines Auto startet aus einer Höhe h=3R, rollt den Abhang hinunter und kommt dann an die Unterbrechung des Loopings. Der Wagen springt, fliegt, . . . landet sanft am Anfang des anderen Loopingteils und setzt seine Fahrt fort. Berechnen Sie die Länge des fehlenden Teilstückes des Loopings.

LÖSUNG Mit der Absprunggeschwindigkeit v beträgt die Flugzeit (für 2 Parabelhälften)

$$t = \frac{2v\sin\alpha}{g} \,. \tag{34}$$

In dieser Zeit legt der Wagen die horizontale Strecke

$$x = tv\cos\alpha\tag{35}$$

zurück. Um wieder auf dem Kreissegment zu landen, muss diese Strecke $2R\sin\alpha$ entsprechen. Damit muss gelten:

$$v^2 \cos \alpha = Rg. (36)$$

Die Absprunggeschwindigkeit v lässt sich mit Hilfe des Energiesatzes ermitteln. Da Reibungsverluste nicht berücksichtigt werden sollen, bleibt die Summe aus kinetischer und potentieller Energie erhalten und es gilt

$$mgh = \frac{1}{2}mv^2 2 + mgR(1 + \cos\alpha).$$
 (37)

Somit ergibt sich eine Gleichung für $\cos \alpha$:

$$\cos^2 \alpha + (1 - \frac{h}{R})\cos \alpha + \frac{1}{2} = 0.$$
 (38)

Mit h = 3R folgt (als einzige reelle Lösung)

$$\cos \alpha = 1 - \frac{1}{\sqrt{2}}.\tag{39}$$

Somit fehlt im Looping das Stück

$$L = 2\alpha R \approx 1 \,\text{m} \,. \tag{40}$$

7 Gravitation

Die Umlaufzeit des Planeten Mars um die Sonne beträgt T=687d, der Abstand zur Sonne beträgt $r_{ms}=2.3\cdot 10^{11}$ m. ie Masse des Planeten Mars beträgt $m=6.4\cdot 10^{23}$ kg, der Radius ist r=3400km.

- a) Berechnen Sie die Fluchtgeschwindigkeit des Planeten Mars.
- b) Wie schwer ist die Sonne?

LÖSUNG

a) Für die Grenze zum Entkommen aus dem Potential muss $E_{ges}=0$ gelten:

$$\frac{1}{2}mv^2 - \frac{mMG}{R} = 0 (41)$$

$$v = \sqrt{\frac{2MG}{R}} \approx 5 \frac{\text{km}}{\text{s}} \,.$$
 (42)

b)

$$T = 2\pi \sqrt{\frac{R^3}{MG}} \tag{43}$$

$$T = 2\pi \sqrt{\frac{R^3}{MG}}$$

$$M = \frac{R^3 \cdot (2\pi)^2}{GT^2} \approx 2 \cdot 10^{30} \text{kg}$$

$$(43)$$