DEVSHOUSE

Idea Title

Team Name: VoltAir

Domain: IOT & Smart Devices

GDG on Campus

Problem Statement

Optimized Wireless EV Charging System to overcome the limitations of wired charging, improving efficiency and convenience

EV charging faces **long wait times**, **safety risks**, **and high costs**, while wireless solutions struggle with **misalignment and energy losses**. This project enhances **efficiency**, **safety**, **and reliability** with **Al-driven optimization and loT monitoring**.

Product Idea

- How does your Product solve the problem?
 - 1. ENSURING SAFETY
 - 2. OVER HEATING OF COILS
 - 3. MISALLIGNMENT

FEASIBILITY:-

EV Adoption Rates: With increasing EV adoption globally, the demand for convenient and fast charging solutions is rising. This trend supports the long-term feasibility of wireless EV charging.

Consumer Demand: Convenience is a major selling point for wireless charging. **Dynamic charging**, where vehicles charge while moving, offers unparalleled convenience, reducing the need for charging stops, especially for long-haul drivers.

Additional Info

TECHNICAL APPROACH

Matlab Simulink for the simulation of our prototype

How Unique is it?

- Existing Work vs Coined Novelty

Traditional wired EV charging stations requiring manual plug-in. Stationary wireless charging with fixed transmitter and receiver coils. Low power transfer efficiency and misalignment issues in early wireless models.

Lack of real-time monitoring and optimization in many existing wireless chargers.

Dynamic wireless charging capability (charging while the vehicle is moving).

Optimized coil alignment and power control using AI/ML for better efficiency.

IoT integration for real-time data monitoring and remote management. **Enhanced power transfer techniques** to minimize losses and improve reliability

Tech Stack

Framework

- MATLAB Simulink (for simulation and analysis)
- Embedded C/C++ (for microcontroller programming)

Machine learning

- Predictive analysis of charging efficiency
- Anomaly detection in power transfer

APIs

- MATLAB Simulink API (for integrating models with external tools)
- Microcontroller APIs

IoT Integration (monitor charging remotely)
Al-based Optimization (improve efficiency
dynamically)
Scalability to full EV charging stations

Member 1:Tushar kumar

Email:tusharkumarjuly14@gmail.com

Phone:7061840177

Member 2 (Optional): Harshit Sharma Email: harshitsharma.ski@gmail.com

Phone:8005776979

Member 3 (Optional):Archit Mishra Email:mishra0710archit@gmail.com

Phone:8756194960

Reach out to Us!

Joel Gibi

GDG On Campus Management Lead at VIT Chennai

Shaan Mukearjee

GDG On Campus Management Lead at VIT Chennai

Google Developer Groups

On Campus • Vellore Institute of Technology, Chennai