Online Convolutional Dictionary Learning

Jialin Liu^a Cristina Garcia-Cardona^b
Brendt Wohlberg^b Wotao Yin^a

^aDepartment of Mathematics, UCLA ^bLos Alamos National Laboratory

ICIP 2017, Beijing

- Signal $\mathbf{s} \in \mathbb{R}^N$.
- Dictionary **d** and its kernels $\mathbf{d} = (\mathbf{d}_1, \mathbf{d}_2, \cdots, \mathbf{d}_M)^T, \mathbf{d}_m \in \mathbb{R}^D$.
- Sparse coefficient maps $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_M)^T, \mathbf{x}_m \in \mathbb{R}^N$.
- The model is

$$\mathbf{s} pprox \sum_{m=1}^{M} \mathbf{d}_m * \mathbf{x}_m.$$

(Zeiler et al. 2010) Given s and d, convolutional basis pursuit denoising (CBPDN):

$$\min_{\mathbf{x}} \ell(\mathbf{d}, \mathbf{x}; \mathbf{s}) = \min_{\{\mathbf{x}_m\}} \frac{1}{2} \left\| \sum_{m=1}^{M} \mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \right\|_2^2 + \lambda \sum_{m=1}^{M} \left\| \mathbf{x}_m \right\|_1.$$

An example of Convolutional Sparse Coding

Applications of CSC

- Image super-resolution (Gu et al. 2015)
- Trajectory Reconstruction (Zhu and Lucey 2015)
- Denoising (Wohlberg 2016)
- Image Decomposition (Zhang and Patel 2016)
- ..

• Given training signals $\{\mathbf{s}_k\}$, convolutional dictionary learning (CDL):

$$\min_{\mathbf{d} \in \mathsf{C}, \{\mathsf{x}_k\}} \sum_{k=1}^K \ell(\mathsf{d}, \mathsf{x}_k; \mathsf{s}_k) .$$

- Conventional methods: batch learning. Alternative update **d** and $\{\mathbf{x}_k\}$.
- Single step complexity and memory usage¹: $\mathcal{O}(KMN)$. Typical value: $K = 40, M = 64, N = 256 \times 256$. Total time: 15 hours; memory: 7.5 GB.

¹[Šorel and Šroubek 2016] and [Garcia-Cardona and Wohlberg 2017]

Surrogate Function Approach

A statistic estimator:

$$\mathbf{d}^{(t)} = \mathop{\arg\min}_{\mathbf{d} \in \mathsf{C}} \left\{ \mathop{\min}_{\mathbf{x}} \ell(\mathbf{d}, \mathbf{x}, \mathbf{s}^{(1)}) + \dots + \mathop{\min}_{\mathbf{x}} \ell(\mathbf{d}, \mathbf{x}, \mathbf{s}^{(t)}) \right\}.$$

An online estimator (Mairal et al. 2009):

$$\mathbf{x}^{(t)} = \underset{\mathbf{x}}{\text{arg min }} \ell(\mathbf{d}^{(t-1)}, \mathbf{x}; \mathbf{s}^{(t)}).$$

$$\mathbf{d}^{(t)} = \underset{\mathbf{d} \in \mathsf{C}}{\text{arg min }} \left\{ \underbrace{\ell(\mathbf{d}, \mathbf{x}^{(1)}, \mathbf{s}^{(1)}) + \dots + \ell(\mathbf{d}, \mathbf{x}^{(t)}, \mathbf{s}^{(t)})}_{\text{surrogate function } \mathcal{F}^{(t)}(\mathbf{d})} \right\}.$$

\mathcal{F}^{(t)} is quadratic on d.
 Keeping Hessian matrix and a vector in memory.
 Constant computational cost.

Solving subproblem

To compute $\mathcal{F}^{(t)}(\mathbf{d})$,

Frequency domain:

- Spacial domain: Flops: $\mathcal{O}(M^2D^2N)$; memory usage: $\mathcal{O}(M^2D^2)$.
- Flops: $\mathcal{O}(M^2N)$; memory usage: $\mathcal{O}(M^2N)$.

To solve $\mathbf{d}^{(t)} \leftarrow \operatorname{arg\,min}_{\mathbf{d} \in \mathsf{C}} \mathcal{F}^{(t)}(\mathbf{d})$,

- Degraux et al. 2017 uses block-coordinate gradient descent. Flops: $\mathcal{O}(1/\epsilon)$.
- Wang et al. 2017 uses Augmented Lagrangian method + iterated Sherman-Morrison. Flops: $\mathcal{O}(1/\epsilon)$..
- Our work uses FISTA. Flops: $\mathcal{O}(1/\sqrt{\epsilon})$.

Frequency-domain FISTA

Frequency domain FISTA:

- Start with $\mathbf{g}^0 = \mathbf{g}_{\text{aux}}^0 = \mathbf{d}^{(t-1)}$.
- Do

$$\begin{split} \hat{\mathbf{g}}_{\mathsf{aux}}^j =& \mathsf{FFT}(\mathbf{g}_{\mathsf{aux}}^j) \\ \mathbf{g}^{j+1} =& \mathsf{proj}_{\mathcal{C}} \bigg(\mathsf{IFFT} \Big(\hat{\mathbf{g}}_{\mathsf{aux}}^j - \eta \nabla \hat{\mathcal{F}}^{(t)} \big(\hat{\mathbf{g}}_{\mathsf{aux}}^j \big) \Big) \bigg) \; . \\ \gamma^{j+1} =& \bigg(1 + \sqrt{1 + 4(\gamma^j)^2} \bigg) / 2 \; , \\ \mathbf{g}_{\mathsf{aux}}^{j+1} =& \mathbf{g}^{j+1} + \frac{\gamma^j - 1}{\gamma^{j+1}} \big(\mathbf{g}^{j+1} - \mathbf{g}^j \big) \; . \end{split}$$

d $^{(t)} \leftarrow$ the last \mathbf{g}^{j} .

Technique I - forgetting factor

Weighted loss function:

$$\mathbf{d}^{(t)} = \arg\min_{\mathbf{d} \in \mathsf{C}} \bigg\{ \sum_{\tau=1}^t w^{\tau} \ell(\mathbf{d}, \mathbf{x}^{(\tau)}, \mathbf{s}^{(\tau)}) \bigg\},$$

where the weight is:

$$w^{\tau}=(\tau/t)^{p}, \quad p\geq 0.$$

Proposition (Weighted central limit theorem)

Suppose $Z_{\tau} \stackrel{i.i.d}{\sim} P_{Z}(z)$, with a compact support, expectation μ , and variance σ^{2} . Define the approximation of Z:

$$\hat{Z}^t \triangleq \frac{1}{\sum_{\tau=1}^t w^{\tau}} \sum_{\tau=1}^t w^{\tau} Z_{\tau}$$
. Then, we have

$$\sqrt{t}(\hat{Z}^t-\mu)\overset{d}{
ightarrow} extstyle extstyle N\Big(0,rac{p+1}{\sqrt{2p+1}}\sigma\Big), \quad extstyle as \ t
ightarrow \infty.$$

Technique II - stopping of FISTA

$$\left\|\mathbf{d} - \operatorname{Proj}_{\mathcal{C}}(\mathbf{d} - \eta \nabla \mathcal{F}^{(t)}(\mathbf{d}))\right\| \leq \tau_0/(1 + \alpha t)$$
.

Proposition (Convergence of FPR implies convergence of iterates)

Let $(\mathbf{d}^*)^{(t)}$ be the exact minimizer of the t^{th} subproblem:

$$(\mathbf{d}^*)^{(t)} = \operatorname*{arg\,min}_{\mathbf{d} \in \mathcal{C}} \mathcal{F}^{(t)}(\mathbf{d}) \ .$$

Let $\mathbf{d}^{(t)}$ be the solution obtained with the above stopping condition. Then, we have

$$\left\|\mathbf{d}^{(t)} - (\mathbf{d}^*)^{(t)}\right\| \leq \mathcal{O}\left(t^{-1}\right)$$
.

With the two propositions, we prove the convergence of the whole algorithm.

Technique III - image splitting

■ Memory cost $\mathcal{O}(M^2N)$ is still large. To reduce N:

Figure: An example: $N = 256 \times 256 \rightarrow \tilde{N} = 128 \times 128$

- Boundary issue: \tilde{N} should be at least twice D in each dimension. For 2D images, $\tilde{N} \geq 2^2D$.
- In our experiment, we take $D = 12 \times 12$, $\tilde{N} = 64 \times 64$.

Online Algorithm II - Frequency-domain SGD

Recall the CDL problem:

$$\min_{\mathbf{d} \in C} \mathbb{E}_{s} \Big\{ \underbrace{\min_{\mathbf{x}} \ell(\mathbf{d}, \mathbf{x}; \mathbf{s})}_{f(\mathbf{d}, \mathbf{x}; \mathbf{s})} \Big\}.$$

Projected Stochastic Gradient Descent (SGD):

$$\mathbf{d}^{(t)} = \mathsf{Proj}_{\mathsf{C}} \Big(\mathbf{d}^{(t-1)} - \eta^{(t)} \nabla f(\mathbf{d}^{(t-1)}; \mathbf{s}^{(t)}) \Big) \;.$$

Frequency domain SGD:

$$\hat{\mathbf{d}}^{(t)} = \mathrm{Proj}_{\mathsf{C}} \bigg(\mathrm{IFFT} \Big(\hat{\mathbf{d}}^{(t-1)} - \eta^{(t)} \nabla \hat{f}(\hat{\mathbf{d}}^{(t-1)}; \hat{\mathbf{s}}^{(t)}) \Big) \bigg).$$

Learning from incomplete images

Masked CDI:

$$\min_{\mathbf{d}\in\mathsf{C}}\mathbb{E}_{\mathsf{s}}[f_{\mathsf{mask}}(\mathbf{d};\mathbf{s})]\;,$$

where f_{mask} is

$$f_{\mathsf{mask}}(\mathbf{d}; \mathbf{s}) \triangleq \min_{\{\mathbf{x}_m\}} \frac{1}{2} \left\| \mathbf{W} \odot \left(\sum_{m=1}^{M} \mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \right) \right\|_2^2 + \lambda \sum_{m=1}^{M} \left\| \mathbf{x}_m \right\|_1.$$

- W is a masking matrix, usually $\{0,1\}$ -valued. Masking unknown or unreliable pixels.
- Online algorithm for masked CDL:

$$\mathbf{d}^{(t)} = \operatorname{Proj}_{C_{\mathsf{PN}}} \bigg(\operatorname{IFFT} \Big(\hat{\mathbf{d}}^{(t-1)} - \eta^{(t)} \nabla \hat{f}_{\mathsf{mask}} (\hat{\mathbf{d}}^{(t-1)}; \hat{\mathbf{s}}^{(t)}) \Big) \bigg).$$

Numerical Results

- Platform: MATLAB R2016a; 2 Intel Xeon(R) X5650 CPUs @ 2.67GHz.
- Dictionary size: 12 × 12 × 64
- Signal size: 256 × 256.
- Dataset: MIRFlickr25k. (Huiskes et al. 2010)
 40 training images and 20 testing images.

Comparison: Convergence Speed

Figure: Convergence speed comparison on the clean data set.

Comparison: Memory Usage

Scheme	Memory (MB)
Batch $(K = 10)$	1959.58
Batch $(K = 20)$	3887.08
Batch $(K = 40)$	7742.08
Surrogate-Split	158.11
Modified SGD	154.84

Table: Memory Usage Comparison in Megabytes.

Learning from noisy images

(a) One of the training images. (10% positions noised)

(d) One of the training images. (30% positions noised)

(b) Results by SGD: some valid features.

(e) Results by SGD: almost no valid features.

(c) Results by masked SGD: clean features learned

(f) Results by masked SGD: clean features learned.

Comparison with batch methods

Figure: Comparison on masked CDL problem.

Conclusions

- We have proposed two efficient online convolutional dictionary learning methods. Both of them have theoretical convergence guarantee and show good performance on both time and memory usage.
- Frequency SGD shows better performance in time and memory usage, and requires fewer parameters to tune.
- Frequency SGD can be extended to masked CDL, which learns dictionaries from imcomplete images.
- See arXiv:1709.00106 for details.
- Implementations of all of these algorithms will be made available as part of the SPORCO software library http://purl.org/brendt/software/sporco

Online Algorithm I Online Algorithm II Numerical Results

References I

Degraux, Kevin, Ulugbek S Kamilov, Petros T Boufounos, and Dehong Liu (2017). "Online Convolutional Dictionary Learning for Multimodal Imaging". In: arXiv preprint arXiv:1706.04256.

Garcia-Cardona, Cristina and Brendt Wohlberg (2017). "Subproblem coupling in convolutional dictionary learning". In: Proceedings of IEEE International Conference on Image Processing (ICIP).

Gu, Shuhang et al. (2015). "Convolutional sparse coding for image super-resolution". In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1823–1831.

Huiskes, Mark J, Bart Thomee, and Michael S Lew (2010). "New trends and ideas in visual concept detection: the MIR flickr retrieval evaluation initiative". In: Proceedings of the international conference on Multimedia information retrieval. ACM, pp. 527-536.

Mairal, Julien, Francis Bach, Jean Ponce, and Guillermo Sapiro (2009). "Online dictionary learning for sparse coding". In: Proceedings of the 26th annual international conference on machine learning. ACM, pp. 689-696.

References II

Šorel, Michal and Filip Šroubek (2016). "Fast convolutional sparse coding using matrix inversion lemma". In: Digital Signal Processing 55, pp. 44–51.

Wang, Yaqing, Quanming Yao, James T Kwok, and Lionel M Ni (2017). "Online convolutional sparse coding". In: arXiv preprint arXiv:1706.06972.

Wohlberg, Brendt (2016). "Convolutional sparse representations as an image model for impulse noise restoration". In: *Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), 2016 IEEE 12th.* IEEE, pp. 1–5.

Zeiler, Matthew D, Dilip Krishnan, Graham W Taylor, and Rob Fergus (2010). "Deconvolutional networks". In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, pp. 2528–2535.

Zhang, He and Vishal M Patel (2016). "Convolutional Sparse Coding-based Image Decomposition." In: *BMVC*.

Zhu, Yingying and Simon Lucey (2015). "Convolutional sparse coding for trajectory reconstruction". In: *IEEE transactions on pattern analysis and machine intelligence* 37.3, pp. 529–540.

Thanks for listening!