Lecture 05: Probability Distributions

Applied Statistics - PKN STAN - 537 - 538

Lecturer: Erika Siregar, SST, MS

27 & 31 October 2020

Review

- 1. Apa itu probability
- 2. Apa saja 4 cara menentukan sampel space?
- 3. Apa itu kombinasi → C
- 4. Apa itu permutasi
- Apa itu peluang bersyarat → P(XIY)
- 6. Apa ciri dari kejadian independent → P(A and B) = P(A)*P(B)
- 7. Apa ciri dari kejadian mutually exclusive. →

Data Distribution???

Probability Distribution???

- Diketahui peluang per kejadian.
- How about the whole events?

The Background Story (2)

Figure 5-2

The Background Story (2)

Collect sample 2 10 $\bar{x} = 3.6$ data, then 3 9 $\bar{x} = 3.6$ get statistics 4 12 $\bar{s} = 1.7$ and graphs. 5 11 6 10

Find the probability for each outcome.

P(2) = 1/6 : : P(6) = 1/6

P(1) = 1/6

Tabel frekuensi. Bgmn visualisasinya?

Chapter 5

Create a theoretical model describing how the experiment is expected to behave, then get its parameters.

x	P(x)	
1	1/6	
2	1/6	$\mu = 3.5$
3	1/6	•
4	1/6	$\sigma = 1.7$
5	1/6	
6	1/6	

Probability Histogram

similar to a relative frequency histogram, but the **vertical scale** (sumbu y) shows probabilities.

Random Variable

- Event yang akan kita teliti probability-nya. → represents all possibilities in the entire sample space
- Misal: jumlah bayi perempuan yang lahir, jumlah mata dadu yang keluar, dll
- Harus numerik
- Further distinguished into: discrete & continuous.
- Probability distribution → random variable

Probability Distributions

- sebaran probability across all possibilities in an event (random variable).
- describe what will probably happen at any particular number of events instead of what actually did happen.
- often given in the format of a graph, table, or formula.
- untuk kasus tertentu bisa di-generalize ke dalam formula.

Probability Distributions Requirements

- There is a <u>numerical</u> random variable x and its values are <u>associated with</u> <u>corresponding probabilities</u>.
- 2. $\Sigma P(x_i) = 1 \rightarrow (0.999 \text{ or } 1.001 \text{ are acceptable because they result from rounding errors.})$
- 3. $0 \le P(x_i) \le 1$

Table 5-3 When to Discuss Salary

Number of Interviews	
X	P(x)
1	0.30
2	0.26
3	0.10

X	P(x)	
1	0.001	
2	0.020	
3	0.105	
4	0.233	
5	0.242	

Table 5-2 Should Marijuana Use Be Legal?

Response	P(x)
Yes	0.41
No	0.52
Don't know	0.07

Table 5-1 Probability
Distribution for the Number
of Girls in Two Births

Number of Girls x	P(x)
0	0.25
1	0.50
2	0.25

Example

Example 1

Genetics

Although the Chapter Problem involves 945 births, let's consider a simpler example that involves only two births with the following random variable:

x = number of girls in two births

The above x is a random variable because its numerical values depend on chance.

Table 5-1 Probability
Distribution for the Number
of Girls in Two Births

Number of Girls x	P(x)
0	0.25
1	0.50
2	0.25

It satisfies the 3 requirements for a probability distribution

- **1.** The variable *x* is a numerical random variable and its values are associated with probabilities, as in Table 5-1.
- **2.** $\Sigma P(x) = 0.25 + 0.50 + 0.25 = 1$
- **3.** Each value of P(x) is between 0 and 1. (Specifically, 0.25 and 0.50 and 0.25 are each between 0 and 1 inclusive.)

Parameters of Prob Distributions

- 1. Mean (μ) or Expected Value (E)
 - a. Nilai harapan = kejadian yang paling mungkin muncul secara rata-rata.
 - b.

$$\mu = \frac{\Sigma(f \cdot x)}{N} = \sum \left[\frac{f \cdot x}{N} \right] = \sum \left[x \cdot \frac{f}{N} \right] = \sum \left[x \cdot P(x) \right]$$

$$\mu = \Sigma \left[x \cdot P(x) \right]$$

Variance

$$\sigma = \Sigma \left[(x - \mu)^2 \cdot P(x) \right] \qquad \sigma = \Sigma \left[x^2 \cdot P(x) \right] - \mu^2 \qquad \qquad E(x^2) - \mu^2$$

3. Standard Deviation → square root of variance.

$$\sigma = \sum [x \cdot P(x)] - \mu^2$$

Example of Usage

$$\sigma = \Sigma \left[(x - \mu)^2 \cdot P(x) \right]$$

Table 5-4 Calculating μ and σ for a Probability Distribution

	5.77	77	
x	P(x)	x · P(x)	$(x - \mu)^2 \cdot P(x)$
0	0.25	$0 \cdot 0.25 = 0.00$	$(0-1)^2 \cdot 0.25 = 0.25$
1	0.50	$1 \cdot 0.50 = 0.50$	$(1-1)^2 \cdot 0.50 = 0.00$
2	0.25	2 · 0.25 = 0.50	$(2-1)^2 \cdot 0.25 = 0.25$
Total		1.00	0.50
		↑	1
		$\mu = \Sigma[x \cdot P(x)]$	$\sigma^2 = \Sigma[(x - \mu)^2 \cdot P(x)]$

Apa interpretasinya?

Identifying Unusual

I. Using μ and σ

Range Rule of Thumb

maximum usual value =
$$\mu + 2\sigma$$

minimum usual value = $\mu - 2\sigma$

II. using probability

- Unusually high: x successes among n trials is an unusually high number of successes if P(x or more) ≤ 0.05. → P(>= X)
- Unusually low: x successes among n trials is an unusually low number of successes if $P(x \text{ or fewer}) \le 0.05$. $P(\le x)$

Contoh:

Banyaknya mobil yang masuk ke tempat cuci mobil setiap hari antara jam 1 pm - 2 pm memiliki distribusi peluang sebagai berikut. Berapakah expected value dan variance dari disribusi peluang ini?

х	P(x)	x.P(x)	(x-µ)^2*P(x)
0	0.2	0	0.8
1	0.1	0.1	0.1
2	0.3	0.6	0
3	0.3	0.9	0.3
4	0.1	0.4	0.4
		2	1.6

$$\mu = \Sigma \left[x \cdot P(x) \right]$$

$$\sigma = \Sigma \left[(x - \mu)^2 \cdot P(x) \right]$$

Contoh 2

Genetics. In Exercises 15–18, refer to the accompanying table, which describes results from groups of 10 births from 10 different sets of parents. The random variable x represents the number of girls among 10 children.

15. Mean and Standard Deviation Find the mean and standard deviation for the numbers of girls in 10 births.

16. Range Rule of Thumb for Unusual Events Use the range rule of thumb to identify a range of values containing the usual numbers of girls in 10 births. Based on the result, is 1 girl in 10 births an unusually low number of girls? Explain.

an unusually low number of girls? Explain.
17. Using Probabilities for Unusual Events

a. Find the	probability of	fgetting	exactly 8	girls in	10 births.
-------------	----------------	----------	-----------	----------	------------

b. Find the probability of getting 8 or more girls in 10 births.

c. Which probability is relevant for determining whether 8 is an unusually high number of girls in 10 births: the result from part (a) or part (b)?

d. Is 8 an unusually high number of girls in 10 births? Why or why not?

18. Using Probabilities for Unusual Events

a. Find the probability of getting exactly 1 girl in 10 births.

b. Find the probability of getting 1 or fewer girls in 10 births.

c. Which probability is relevant for determining whether 1 is an unusually low number of girls in 10 births: the result from part (a) or part (b)?

d. Is 1 an unusually low number of girls in 10 births? Why or why not?

Number of Girls x	P(x)
0	0.001
1	0.010
2	0.044
3	0.117
4	0.205
5	0.246
6	0.205
7	0.117
8	0.044
9	0.010
10	0.001

Contoh 2 (solution)

х	P(x)	x.P(x)	(x-µ)^2*P(x)	x^2	x^2 * P(x)
0	0.001	0	0.025	0	0
1	0.01	0.01	0.16	1	0.01
2	0.044	0.088	0.396	4	0.176
3	0.117	0.351	0.468	9	1.053
4	0.205	0.82	0.205	16	3.28
5	0.246	1.23	0	25	6.15
6	0.205	1.23	0.205	36	7.38
7	0.117	0.819	0.468	49	5.733
8	0.044	0.352	0.396	64	2.816
9	0.01	0.09	0.16	81	0.81
10	0.001	0.01	0.025	100	0.1
sum	1	5	2.508	385	27.508

- Is 1 girl in 10 births unusual?
 - o (5-2.508) <= x <= (5+2.508)
 - o 2.492 <= x <= 7.508
- 17a = 0.044
- 17b = 0.044 + 0.01 + 0.001 = 0.055
- Unusually high jika P(x or more) ≤ 0.05
 → P(x >= 8) = 0.055??
- 18a = 0.01
- \bullet 18b = 0.001 + 0.01 = 0.011
- Unusually low jika P(x or fewer) ≤ 0.05.
 - \rightarrow P(x <= 1) = 0.011 ??

Special Probability Distributions

- Some probability distributions can be generalized into formulas
- List of prob dists: https://en.wikipedia.org/wiki/List_of_probability_distributions
- For now:
 - Binomial
 - Multinomial
 - Poisson

Binomial Probability Distribution

- Karakteristik kasus: binary → 0/1, yes/no, sukses/gagal, dll.
- describes the number of successes in a series of independent Yes/No experiments all with the same probability of success.
- Requirement:
 - The procedure has a fixed number of trials
 - The trials must be independent
 - outcomes classified into two categories for outcomes → yes/no, success/failure, 0/1
 - The probability of a success remains the same in all trials

Example 1

Twitter

When an adult is randomly selected (with replacement), there is a 0.85 probability that this person knows what Twitter is (based on results from a Pew Research Center survey). Suppose that we want to find the probability that exactly three of five random adults know what Twitter is.

- **a.** Does this procedure result in a binomial distribution?
- **b.** If this procedure does result in a binomial distribution, identify the values of *n*, *x*, *p*, and *q*.

Solution

- a. This procedure does satisfy the requirements for a binomial distribution, as shown below.
 - 1. The number of trials (5) is fixed.
 - **2.** The 5 trials are independent, because the probability of any adult knowing Twitter is not affected by results from other selected adults.
 - **3.** Each of the 5 trials has two categories of outcomes: The selected person knows what Twitter is or that person does not know what Twitter is.
 - **4.** For each randomly selected adult, there is a 0.85 probability that this person knows what Twitter is, and that probability remains the same for each of the five selected people.
- **b.** Having concluded that the given procedure does result in a binomial distribution, we now proceed to identify the values of n, x, p, and q.
 - **1.** With five randomly selected adults, we have n = 5.
 - **2.** We want the probability of exactly three who know what Twitter is, so x = 3.
 - **3.** The probability of success (getting a person who knows what Twitter is) for one selection is 0.85, so p = 0.85.
 - **4.** The probability of failure (not getting someone who knows what Twitter is) is 0.15, so q = 0.15.

mial Distribution Formula

The number of outcomes with exactly x successes among n trials

The probability of x successes among n trials for any one particular order

Formula 5-5 Binomial Probability Formula

$$P(x) = \frac{n!}{(n-x)!x!} \cdot p^x \cdot q^{n-x} \qquad \text{for } x = 0, 1, 2, \dots, n$$

where

$$n = \text{number of trials}$$

$$x =$$
 number of successes among n trials 4

$$p = \text{probability of success in any one trial}$$

$$p = \text{probability of success in any one trial}$$

 $q = \text{probability of failure in any one trial } (q = 1 - p)$ 0.2

Appendix A of Triola's book provides the value for some binomial probabilities.

Binomial Distribution

Mean
$$\mu = n \cdot p$$

Variance $\sigma^2 = n \cdot p \cdot q$

Std. Dev.
$$\sigma \sqrt{= n \cdot p \cdot q}$$

$${}^{n}C_{x}*p^{x}*q^{n-x}$$

Example 4 Devil of a Problem

Based on a recent Harris poll, 60% of adults believe in the devil. Assuming that we randomly select five adults, use Table A-1 to find the following:

- a. The probability that exactly three of the five adults believe in the devil
- b. The probability that the number of adults who believe in the devil is at least two

Solution

a. The following excerpt from the table shows that when n = 5 and p = 0.6, the probability for x = 3 is given by P(3) = 0.346.

TABLE A-1		
n	X	.01
5	0	.951
	1	.048
	2	.001
	3	0+
	4	0+
	5	0+

Binomial Probabilities				
.50	.60	.70	x	P(x)
.031	.010	.002	0	0.010
.156	.077	.028	1	0.077
.312	.230	.132	2	0.230
.312	.346	.309	3	0.346
.156	.259	.360	4	0.259
.031	.078	.168	5	0.078

b. The phrase "at least two" successes means that the number of successes is 2 or 3 or 4 or 5.

$$P(\text{at least 2 believe in the devil}) = P(2 \text{ or 3 or 4 or 5})$$

= $P(2) + P(3) + P(4) + P(5)$
= $0.230 + 0.346 + 0.259 + 0.078$
= 0.913

Multinomial Distribution

- Mirip binomial, tapi setiap event dapat menghasilkan > 2 kemungkinan.
- Formula:

Contoh Multinomial

n! P, x, P, x, ... P, x, .

Bila dua dadu dilantunkan 6 kali, berapakah peluang mendapat jumlah 7 atau 11 muncul dua kali, sepasang bilangan yang sama satu kali, dan kombinasi lainnya 3 kali?

Answer:

 $X1 = \text{jumlah 7 atau 11 yang muncul} \Rightarrow p = 48/216 = 2/9$

X2 = pasangan bilangan yang sama muncul → 36/216 → (1,1), ...(6,6)

X3 = kombinasi lainnya → 132/**216** = 11/18

 $(1,6), (2,5), (3,4), (4,3), (6,1), (5,2), (5,6), (6,5) \rightarrow 8*6$

Try it with R

Poisson Distribution

- Characteristics: banyaknya sukses yang terjadi dalam <u>selang waktu</u> tertentu.
 - Interval waktu, waiting time
- applies to occurrences of some event over a specified interval
- random variable x is the number of occurrences of the event in an interval.
 - o interval can be time, distance, area, volume, or some similar unit.

$$P(x) = \frac{e^{-\mu} \cdot \mu^{x}}{x!}$$
 where $e \approx 2.71828$

Contoh Kasus $P(x) = \frac{e^{-\mu} \cdot \mu^x}{x!}$ where $e \approx 2.71828$

- Jumlah pemakaian sebuah telepon per jam mengikuti distribusi Poisson dengan rata-rata = 9. Berapakah probabilita akan dijumpai pemakaian telepon per jam sebanyak:
 - o **2** kali?
 - Max. 3 kali?

Try it with R

Binomial vs Poisson

- The Poisson distribution differs from the binomial distribution in these fundamental ways:
 - \circ The binomial distribution is affected by the sample size n and the probability p, whereas the Poisson distribution is affected only by the mean μ .
 - o In a binomial distribution the possible values of the random variable x are $0, 1, \ldots, n$, but a Poisson distribution has possible x values of $0, 1, 2, \ldots$, with no upper limit.
- For binomial: when n is large and p is small, we can use Poisson as a proxy of binomial.
 - Konvensi: n besar → 30, p kecil → < 0.1
 - $\mu = n*p$

Contoh

Probabilita kerusakan sebuah paku khusus pada permukaan sayap pesawat terbang baru adalah **0,001**. Ada **4,000** paku pada sayap pesawat terbang tersebut. Berapakah probabilita bahwa akan terdapat **tidak lebih dari 2 paku yang rusak**?

Answer:

Ini sebenarnya merupakan kasus **binomial** (**rusak/tidak rusak**). Tapi karena n besar dan p kecil, kita bisa gunakan pendekatan poisson, dimana $\mu = np = 4$.

Try it with R

P(x<2)=	P(x=0)	+ P(x=1).	+P(x=2)
	e-4.40	e-4.41	+ e-4.42
+	0!	1!	21
_	0,238	1033	

1. Jika probabilita memperoleh bayi laki-laki dari suatu kelahiran adalah 0.5. Berapa besar probabilita 2 anak laki-laki dari 3 kelahiran?

Answer: ${}^{n}C_{x}*p^{x}*q^{n-x}$ $P(x=2) = {}^{3}C_{2}*(0,5)^{2}(0,5)$ $= 3 \times 0,125 = 0,375$

2. Rata-rata banyaknya partikel radioaktif yg melewati suatu penghitung **selama 1 milidetik** dalam suatu percobaan di laboratorium adalah **4**. Berapakah peluang 6 partikel melewati penghitung itu dalam 1 milidetik tertentu?

Answer:

$$P(x) = \frac{e^{-\mu} \cdot \mu^{x}}{x!}$$
 where $e \approx 2.71828$

- 3. Dari random variables berikut, mana yang diskret dan mana yang kontinu?
 - a. Banyaknya kecelakaan mobil per tahun di Jakarta → diskret
 - b. Lamanya waktu pertandingan sepak bola → kontinu
 - c. Banyaknya produksi susu seekor sapi betina selama setahun. → kontinu
 - d. Banyaknya telur yang dihasilkan setiap bulan oleh seekor ayam bentina → diskret
 - e. Banyaknya SIM yang dikeluarkan tiap bulan di suatu kota tertentu → diskret
 - f. Berat padi yang dihasilkan per hektar. → kontinu

P(x)	x.P(x)			
0.0833333333				
3	0.5833333333			
0.0833333333				
3	0.75			
0.25	2.75			
0.25	3.25			
0.1666666667	2.5			
0.1666666667	2.833333333			
1	12.66666667			
	0.0833333333 0.08333333333 3 0.25 0.25 0.16666666667			

5. Peluang seseorang meninggal karena infeksi pernafasan adalah 0.002. Carilah peluang dari 2000 orang yang terinfeksi, kurang dari 5 orang diantaranya, meninggal.

p=0.002, q=0.998

n=2000 x=5, → didekati dg poisson → $\mu = n*p = 2000*0.002 = 4$

6. In a certain town, 40% of the eligible voters prefer candidate A, 10% prefer candidate B, and the remaining 50% have no preference. You randomly sample 10 eligible voters. What is the probability that 4 will prefer candidate A, 1 will prefer candidate B, and the remaining 5 will have no preference?

Thank You