Finite automata and formal languages

Notes based on lectures for DIT323 (Finite automata and formal languages) at Gothenburg University, Spring 2024

Sebastian Pålsson

Last updated: January 25, 2024

Contents

I Introduction	2
1.1 Regular Expressions	2
1.2 Finite automata	
1.3 Context-free grammars	3
1.4 Turing machines	
1.5 Repetition of some classical logic	
1.6 Repetition of some set theory	
Proofs, induction & recursive functions	
2.1 Basic proof methods	9
2.2 Induction	
2.3 Proof by counterexample	

Contents DIT084

1 Introduction

A **finite automaton** is a computational model with a set of states, input symbols, transition rules, an initial state, and accepting states. It recognizes patterns and processes strings in a language by transitioning between states based on input.

Formal languages are abstract systems defined by rules to represent and analyze languages. They provide a precise framework for specifying syntax, semantics, and rules for generating valid strings within a language.

1.1 Regular Expressions

Regular expressions are concise patterns for searching and matching strings, widely used in text processing and pattern matching.

- Used in text editors
- Used to describe the lexical syntax of programming languages.
- Can only describe a limited class of "languages".

Example

- A regular expression for strings of ones of even length: (11)*
- A regular expression for some keywords: while | for | if | else
- A regular expression for positive natural number literals (of a certain form): [1-9][0-9]*

1.2 Finite automata

• Used to implement regular expression matching.

• Finite number of states ⇒ finite memory.

- Used to specify or model systems.
 - One kind of finite automaton is used in the specification of TCP.
- Equivalent to regular expressions.

Example Lock Unlocked Unlock Figure 1: Model of a lock • The states are a kind of memory.

1.3 Context-free grammars

Used to describe the syntax of programming languages.

- More general than regular expressions.
- Used by parser generators. (Often restricted.)

1.4 Turing machines

A Turing machine is an abstract model of computation with a tape, read/write head, and rules. It serves as a foundational concept in the study of algorithms and computability.

- Unbounded memory: an infinite tape of cells.
- A read/write head that can move along the tape.
- A kind of finite state machine with rules for what the head should do.

It is equivalent to a number of other models of computation.

1.5 Repetition of some classical logic

1.5.1 Propositions

A **proposition** is a statement that is either true or false.

```
The sky is blue.
The sky is green.
1 + 1 = 2.
1 + 1 = 3.
```

It may not always be known what the truth value (\top or \bot) of a proposition is.

1.5.2 Connectives

Logical connectives are operators that combine propositions to form new propositions.

$\mathbf{p} \wedge \mathbf{q}$	conjuction
$\mathbf{p} \lor \mathbf{q}$	disjunction
$ eg \mathbf{p}$	negation
$p \Rightarrow q$	implication
$p \Leftrightarrow q$	equivalence

Truth tables for these connectives:

p	q	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \vee \mathbf{q}$	¬p	$p \Rightarrow q$	$p \Longleftrightarrow q$
Т	Т	Т	Т	Т	Т	Т
Т	1	Т	Т	Т	Т	Т
	Т	Т	Т	Т	Т	Т
上	1	Т	Т	Т	Т	Т

Note that $p \Rightarrow q$ is true if p is false.

1.5.3 Validity

A proposition is valid, or a tautology, if it is satisfied for all assignments of truth values to its variables.

Example

- $p \Rightarrow p$ is valid.
- $p \lor \neg p$ is valid

1.5.4 Equivalence

Two propositions are *equivalent* if they have the same truth value for all assignments of truth values to their variables. (they have the same truth table)

Example

- $p\Rightarrow q$ and $\neg p\lor q$ are equivalent.
- $p \wedge q$ and $q \wedge p$ are equivalent.

1.5.5 Predicates

A predicate is, roughly speaking, a function to propositions.

Example

- P(n) = "n is a prime number"
- $Q(a,b) = "(a+b)^2 = a^2 + 2ab + b^2"$

1.5.6 Quantifiers

Universal quantification and existential quantification are used to express statements about all or some elements in a set.

Example

- $\forall n \in \mathbb{N} : P(n)$ means that P(n) is true for all natural numbers n.
- $\exists n \in N : P(n)$ means that P(n) is true for some natural number n.

1.6 Repetition of some set theory

A set is roughly speaking a collection of elements.

1.6.1 Defining sets

- $A = \{1, 2, 3\}$ means that A is the set containing the elements 1, 2, and 3.
- $B = \{x \in N \mid x > 0\}$ means that B is the set of all natural numbers x such that x > 0.
- $C = \{x \in N \mid \exists y \in N : x = 2y\}$ means that C is the set of all natural numbers x such that there exists a natural number y such that x = 2y. (the set of all even natural numbers)

1.6.2 Members, subsets, and equality

- $x \in A$ means that x is an element of A.
- $A \subseteq B$ means that A is a subset of B.
- A = B means that A and B are equal.

1.6.3 The empty set

- ∅ is the empty set.
- $\forall x : \neg x \in \emptyset$.

1.6.4 Set operations

Union, intersection and set difference

- $A \cup B$ is the union of A and B. (the set of all elements that are in A or B)
- $A \cap B$ is the intersection of A and B. (the set of all elements that are in A and B)
- $A \setminus B = A B$ is the set difference of A and B. (the set of all elements that are in A but not in B)

Complement

• \overline{A} is the complement of A. (the set of all elements that are not in A)

Cartesian product

• $A \times B$ is the Cartesian product of A and B. (the set of all pairs (a, b) where $a \in A$ and $b \in B$)

Example

- $N \times N$ is the set of all pairs of natural numbers.
- $N \times N \times N$ is the set of all triples of natural numbers.

Power set

• $\wp(A) = \{A \mid A \subseteq S\}$ is the power set of A. (the set of all subsets of A)

Example

• $\wp(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

Set of all finite subsets

• $Fin(A) = \{A \mid A \subseteq S, A \text{ is finite}\}\$ is the set of all finite subsets of A.

Example

- $Fin(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $\operatorname{Fin}(N) = \wp(N)$

1.6.5 Relations

Relations define connections between elements of sets. A binary relation is a subset of the Cartesian product of two sets, often denoted as $R \subseteq A \times B$. Common types include reflexive, symmetric, and transitive relations, capturing different aspects of element connections.

- A binary relation R on A is a subset of $A^2 = A \times A : R \subseteq A^2$
- Notation: xRy same as $(x,y) \in R$
- Can be generalised from $A \times A$ to $A \times B \times C \times \cdots$

Some binary relational properties

For $R \subseteq A \times B$:

- Total (left-total): $\forall x \in A : \exists y \in B : xRy$
- Functional/deterministic: $\forall x \in A : \forall y, z \in B : xRy \land xRz \Rightarrow y = z$

For $R \subseteq A^2$:

- Reflexive: $\forall x \in A : xRx$
- Symmetric: $\forall x, y \in A : xRy \Rightarrow yRx$
- Transitive: $\forall x, y, z \in A : xRy \land yRz \Rightarrow xRz$
- Antisymmetric: $\forall x, y \in A : xRy \land yRx \Rightarrow x = y$

Partial orders

A partial order is a relation that is reflexive, antisymmetric, and transitive.

Equivalence relations

An equivalence relation is a relation that is reflexive, symmetric, and transitive.

1.6.6 Functions

Relation between two sets, denoted as $f:A\to B$, where A is the *domain* (set of inputs) and B is the *codomain* (set of possible outputs). Every element in the *domain* is associated with a unique element in the *codomain*. If (x,y) is in the function, it means that the input x is associated with the output y.

- Sometimes defined as the set of total and functional relations $f \subseteq A \times B$
- Notation f(x) = y same as $(x, y) \in f$
- If the requirement of totality is dropped, we get the set of partial functions, $A \rightharpoonup B$
- The *image* is the set of all outputs of the function, $\{y \in B \mid x \in A, f(x) = y\}$

Identity, composition

- The identity function $\mathrm{id}_A:A\to A$ is defined as $\mathrm{id}_{A(x)}=x$
- For functions $f\in B\to C$ and $g\in A\to B$ the composition of $f\circ g\in A\to C$ is defined by $(f\circ g)(x)=f(g(x))$

Injectivity

An injection is a function $f:A \to B$ such that $\forall x,y \in A: f(x)=f(y) \Rightarrow x=y$

- Every input is mapped to an unique output.
- A is at most as large as B.
- Holds if f has a left inverse $g \in B \to A: g \circ f = \mathit{id}$

Figure 2: Injective function

Surjectivity

A surjection is a function $f:A \to B$ such that $\forall y \in B: \exists x \in A: f(x)=y$

- The function "targets" every element in the codomain
- A is at least as large as B.
- Holds if f has a right inverse $g \in B \to A$: $f \circ g = id$

Figure 3: Surjective function

Bijectivity

A bijection is a function $f:A\to B$ such that $\forall y\in B:\exists !x\in A:f(x)=y$. In simple terms, it is both injective and surjective.

- A and B are of the same size.
- Holds iff f has left and right inverse $g \in B \to A$

Figure 4: Bijective function

1.6.7 Partitions

A partition $P \subseteq \wp(A)$ of a set A is a set of non-empty subsets of A such that every element in A is in exactly one of the subsets.

- Every element is non-empty: $\forall X \in P : X \neq \emptyset$
- The elements cover $A:\bigcup_{B\in P}B=A$
- The elements are mutually disjoint: $\forall B,C\in P:B\neq C\Rightarrow B\cap C=\emptyset$

Example

- $P = \{\{1, 2\}, \{3, 4\}\}\$ is a partition of $A = \{1, 2, 3, 4\}$
- $P = \{\{1,2\}, \{3,4\}, \{5\}\}$ is not a partition of $A = \{1,2,3,4\}$

1.6.8 Equivalence classes

Given a set A and an equivalence relation $R \subseteq A \times A$, the *equivalence class* of an element $a \in A$ is the set of all elements in A that are equivalent to a.

Definition 1.6.8.

The equivalence classes of an equivalence relation R on A:

$$\left[x\right]_{R} = \left\{y \in A \mid xRy\right\} \tag{1}$$

1.6.9 Quotients

Given a set A and an equivalence relation $R \subseteq A \times A$, the quotient of A by R is the set of all equivalence classes of R.

Definition 1.6.9.1

The quotient of A by R is the set of all equivalence classes of R:

$$\frac{A}{R} = \left\{ \left[x \right]_R \mid x \in A \right\} \tag{2}$$

Example

Can one define $\mathbb{Z} = \mathbb{N}^2$ with the intention that (m, n) stands for m - n?

No, (0,1) and (1,2) would both represent -1.

Instead we can use the quotient set:

$$\mathbb{Z} = \mathbb{N}^2 \setminus \mathbb{Z}$$
 [3]

where

$$(m_1,n_2)\underset{\mathbb{Z}}{\sim}(m_2,n_2) \Leftrightarrow m_1+n_1=m_2+n_2 \tag{4}$$

2 Proofs, induction & recursive functions

2.1 Basic proof methods

To prove	To prove Method				
$p \Rightarrow q$	Assume p and prove q				
$p \Rightarrow q$	Assume \neg q and prove $\neg p$				
$\forall x \in A.P(x)$	Assume that we have an $x \in A$ and prove $P(x)$				
$p \Leftrightarrow q$	Prove both $p \Rightarrow q$ and $q = p$				
$\neg p$	Assume p and derive a contradiction				
p	Prove $\neg \neg p$				

2.2 Induction

For a natural number predicate P we can prove $\forall n \in \mathbb{N} : P(n)$ in the following way:

- Prove P(0)
- Prove $\forall n \in \mathbb{N} : P(n) \Rightarrow P(n+1)$

with the formula:

$$P(0) \land (\forall n \in \mathbb{N} : P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N} : P(n)$$
 [5]

2.3 Proof by counterexample

To prove that a statement is false, we can find a counterexample. In general, to prove:

$$\neg (\forall \text{ natural number predicates } P: P(0) \land \\ (\forall n \in \mathbb{N} : n \geq 1 \land P(n) \Rightarrow P(n+1)) \Rightarrow$$
 [6]
$$\forall n \in \mathbb{N} : n \geq 1 \Rightarrow P(n))$$

we assume:

$$\forall$$
 natural number predicates $P: P(0) \land$
 $(\forall n \in \mathbb{N} : n \ge 1 \land P(n) \Rightarrow P(n+1)) \Rightarrow$ [7]
 $\forall n \in \mathbb{N} : n \ge 1 \Rightarrow P(n)$

and derive a contradiction.

Example

The following statement does not hold for $P(n) := n \neq 1$ and n = 1

$$P(0) \land (\forall n \in \mathbb{N} : n \ge 1 \land P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N} : n \ge 1 \Rightarrow P(n)$$
 [8]

The hypotheses hold, but not the conclusion.