Estatística descritiva (1ed) Apostilas de aula com exemplos em R

Djuri Vieira Luis Francisco Gómez López

2023-12-19

Índice

В	em-vindos	1
Pr	refácio	3
Ι	Estatística e dados	5
1	Visão geral	7
2	Dados	9
II	Visualização de dados	11
3	Tabelas	13
4	Gráficos 2D	15
II	I Medidas-resumo	17
5	Medidas de tendência central	19
6	Medidas de posição	21
7	Medidas de dispersão	23
8	Medidas de forma	25
IV	7 Probabilidad	27
9	Experimento aleatório e espaço de probabilidade	29
10	Interpretações da Probabilidade	31

iv	ÍNDICE
11 Consequências dos axiomas de probabilidade	33
12 Independência e probabilidade condicional	35
13 Regras de contagem	37
V Variáveis aleatórias	39
14 Distribuições de probabilidade discretas	41
15 Distribuições de probabilidade contínuas	43
Referências	45
Apêndices	47
A Introdução ao R	47
B Teoria ingênua dos conjuntos B.1 Conjuntos	49 49

Bem-vindos

2 Bem-vindos

Prefácio

4 Prefácio

Parte I Estatística e dados

Visão geral

Dados

Parte II Visualização de dados

Tabelas

Gráficos 2D

Parte III Medidas-resumo

Medidas de tendência central

Medidas de posição

Medidas de dispersão

Medidas de forma

Parte IV

Probabilidad

Experimento aleatório e espaço de probabilidade

 $30 CAPÍTULO 9. \ EXPERIMENTO ALEATÓRIO E ESPAÇO DE PROBABILIDADE$

Interpretações da Probabilidade

Consequências dos axiomas de probabilidade

34 CAPÍTULO~11.~~CONSEQUÊNCIAS~DOS~AXIOMAS~DE~PROBABILIDADE

Independência e probabilidade condicional 36CAPÍTULO 12. INDEPENDÊNCIA E PROBABILIDADE CONDICIONAL

Regras de contagem

Parte V Variáveis aleatórias

Distribuições de probabilidade discretas 42 CAPÍTULO 14. DISTRIBUIÇÕES DE PROBABILIDADE DISCRETAS

Distribuições de probabilidade contínuas 44 CAPÍTULO 15. DISTRIBUIÇÕES DE PROBABILIDADE CONTÍNUAS

Referências

Halmos, Paul R. 1974. *Naive Set Theory*. Editado por S. Axler, F. W. Gehring, e K. A. Ribet. Undergraduate Texts em Mathematics. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4757-1645-0.

46 Referências

Apêndice A

Introdução ao R

Apêndice B

Teoria ingênua dos conjuntos

A teoria dos conjuntos é um ramo da matemática que lida com coleções chamadas conjuntos. Compreender a teoria dos conjuntos é essencial, pois ela forma a base fundamental da teoria da probabilidade, que por sua vez é crucial para o estudo de estatísticas. No entanto, um entendimento básico da teoria dos conjuntos é suficiente para compreender os princípios essenciais da probabilidade e estatística, evitando a necessidade de usar um formalismo excessivo ¹.

B.1 Conjuntos

Definição B.1 (Conjunto). Um conjunto é uma coleção não ordenada de elementos únicos, ou pode ser uma coleção vazia, sem nenhum elemento.

Podemos denotar um conjunto usando uma letra arbitrária como A e descrevêlo listando seus elementos entre chaves. Por exemplo, $A = \{1,2\}$ é o conjunto cujos elementos são os números 1 e 2. Com base em Definição B.1 e na notação anterior, é importante fazer as seguintes observações:

- $A = \{1,2\}$ e $B = \{2,1\}$ são o mesmo conjunto porque conjuntos são coleções não ordenadas onde a ordem não é definida.
- $C = \{1, 1, 2, 2\}$ não está bem definido porque um conjunto contém elementos únicos, onde a especificação correta seria $C = \{1, 2\}$.
- Existe um conjunto, denotado por $\emptyset = \{\}$, chamado conjunto vazio, que não possui elementos.

¹Para uma apresentação detalhada e clara da teoria dos conjuntos usando um sistema de axiomas, você pode consultar (Halmos 1974)

• É possível que os elementos de um conjunto sejam eles próprios conjuntos. Por exemplo, $D=\{\{1,2\},3\}$ é um conjunto que contém o conjunto $\{1,2\}$ e o número 3

O pacote R sets pode ser usado para ilustrar as ideias mencionadas acima para entender o conceito de conjunto. Primeiramente, podemos criar dois conjuntos e verificar se os dois conjuntos são iguais:

```
library(sets)
A = set(1, 2)
B = set(2, 1)
A == B
#> [1] TRUE
```

Também podemos verificar a propriedade de elementos únicos em um conjunto:

```
C = set(1, 1, 2, 2)
C
#> {1, 2}
```

Além disso, podemos criar um conjunto vazio:

```
empty_set = set()
empty_set
#> {}
```

Por último, podemos definir um conjunto cujos elementos podem ser conjuntos:

```
D = set(A, 3)
D
#> {3, {1, 2}}
```

Definição B.2 (Relação de pertença). Se a é um elemento de A, escrevemos essa situação como $a \in A$. Caso contrário, escrevemos $a \notin A$

Por exemplo, se $A=\{1,2\}$ então $1\in A$ e $3\notin A$. Onde no R podemos verificar isso da seguinte maneira:

```
1 %e% A

#> [1] TRUE

3 %e% A

#> [1] FALSE
```