練習問題 2-A

1. (1) 与式 =
$$\sin(180^\circ + 56^\circ)$$
 = $-\sin 56^\circ = -0.8290$ (三角関数表より)

(2)
$$= \sin\{-150^{\circ} + 360^{\circ} \times (-1)\}\$$

$$= \cos(-150^{\circ})$$

$$= \cos 150^{\circ} = -\frac{\sqrt{3}}{2}$$

(3) 与式 =
$$\tan(-40^\circ + 360^\circ \times 2)$$
 = $\tan(-40^\circ)$ = $-\tan 40^\circ = -\mathbf{0.8391}$ (三角関数表より)

(4) 与式 =
$$\sin\left\{-\frac{2}{3}\pi + 2\pi \times (-2)\right\}$$

= $\sin\left(-\frac{2}{3}\pi\right)$
= $-\sin\frac{2}{3}\pi = -\frac{\sqrt{3}}{2}$

(5) 与式 =
$$\cos\left(\frac{9}{6}\pi + 2\pi\right)$$

= $\cos\frac{3}{2}\pi = \mathbf{0}$

(6) 与式 =
$$\tan\left(\frac{1}{5}\pi + 2\pi\right)$$

= $\tan\frac{1}{5}\pi$
= $\tan 36^\circ = \textbf{0.7265}$ (三角関数表より)

2.
$$\sin^2 \theta + \cos^2 \theta = 1 \text{ J}$$

 $\sin^2 \theta = 1 - \cos^2 \theta$
 $= 1 - \left(-\frac{12}{13}\right)^2$
 $= 1 - \frac{144}{160} = \frac{25}{160}$

 θ は第 3 象限の角なので , $\sin \theta < 0$

$$\sin\theta = -\sqrt{\frac{25}{169}} = -\frac{\mathbf{5}}{\mathbf{13}}$$

また

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$= \frac{-\frac{5}{13}}{-\frac{12}{13}} = \frac{5}{12}$$

3.
$$1 + \tan^2 \theta = \frac{1}{\cos^2 \theta} \text{ LU}$$
$$\frac{1}{\cos^2 \theta} = 1 + \tan^2 \theta$$
$$= 1 + (\sqrt{5})^2 = 6$$

よって,
$$\cos^2\theta=\frac{1}{6}$$
 であるから $\cos\theta=\pm\frac{1}{\sqrt{6}}$

また

$$\sin\theta = \tan\theta\cos\theta$$

$$=\sqrt{5}\cdot\left(\pmrac{1}{\sqrt{6}}
ight)=\pm\sqrt{rac{5}{6}}$$
 ($\cos heta$ の値と複号同順)

5. (1) この関数のグラフは , $y=\sin x$ のグラフを y 軸方向に -2 倍に拡大したものだから , 周期は 2π であり , グラフは次のようになる .

(2) この関数のグラフは, $y=\cos x$ のグラフを x 軸方向に 2 倍に拡大し,y 軸方向に 2 倍に拡大したものだから,周期は $2\pi\cdot 2=4\pi$ であり,グラフは次のようになる.

(3) この関数のグラフは , $y=\tan x$ のグラフを y 軸方向に $-\frac{1}{3}$ 倍したものだから , 周期は π であり , グラフは次のようになる .

(4) $y=\sin\left\{-\left(x-rac{\pi}{2}
ight)
ight\}$ であるから,この関数のグラフは, $y = \sin(-x)$ のグラフを x 軸方向に $\frac{\pi}{2}$ 平行移動したもので ある.周期は 2π であり,グラフは次のようになる.

 $\sin\left(\frac{\pi}{2}-x\right)=\cos x$ であるから, $y=\cos x$ のグラフ と同じになる.

6. (1)

$$x = \frac{\pi}{6}, \ \frac{5}{6}\pi$$

(2)

(3)
$$\tan x = -\frac{1}{\sqrt{3}}$$

$$x = \frac{5}{6}\pi, \ \frac{11}{6}\pi$$

7. (1)
$$\sin x > \frac{\sqrt{3}}{2}$$

 $0 \le x < 2\pi$ において , 角 x の動経が影をつけた部分にあ

$$\frac{\pi}{3} < x < \frac{2}{3}\pi$$

 $(2) \cos x < \frac{1}{2}$

 $0 \le x < 2\pi$ において,角x の動経が影をつけた部分にあ

$$\frac{\pi}{3} < x < \frac{5}{3}\pi$$

練習問題 2-B

1. 点 A と点 B を結ぶ.

線分 AB の左側の弓形部分の面積は
$$\frac{1}{2}\cdot 2^2\left(\frac{\pi}{2}-\sin\frac{\pi}{2}\right)=2\left(\frac{\pi}{2}-1\right) \qquad (p.142 問 8 より)$$

$$=\pi-2$$

線分 AB の右側の弓形部分の面積は
$$\frac{1}{2}\cdot(2\sqrt{2})^2\left(\frac{\pi}{3}-\sin\frac{\pi}{3}\right)=4\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right)$$

$$=\frac{4}{3}\pi-2\sqrt{3}$$

よって,求める面積は
$$(\pi-2)+\left(\frac{4}{3}\pi-2\sqrt{3}\right)=\frac{7}{3}\pi-2-2\sqrt{3}$$

2. (1)
$$\sin \theta + \cos \theta = \frac{2}{3}$$
 の両辺を 2 乗すると

$$(\sin \theta + \cos \theta)^2 = \frac{4}{9}$$
$$\sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta = \frac{4}{9}$$
$$1 + 2\sin \theta \cos \theta = \frac{4}{9}$$
$$2\sin \theta \cos \theta = \frac{4}{9} - 1 = -\frac{5}{9}$$

$$2\sin\theta\cos\theta=\frac{4}{9}-1=-rac{5}{9}$$
 よって , $\sin\theta\cos\theta=-rac{5}{18}$

(2)
$$(\sin \theta - \cos \theta)^2 = \sin^2 \theta - 2\sin \theta \cos \theta + \cos^2 \theta$$

$$= 1 - 2 \cdot \left(-\frac{5}{18}\right)$$
$$= 1 + \frac{5}{9} = \frac{14}{9}$$

よって ,
$$\sin \theta - \cos \theta = \pm \frac{\sqrt{14}}{3}$$

$$(4) \qquad \forall \vec{x} = (\sin \theta - \cos \theta)(\sin^2 \theta + \sin \theta \cos \theta + \cos^2 \theta)$$
$$= (\sin \theta - \cos \theta)(1 + \sin \theta \cos \theta)$$
$$= \pm \frac{\sqrt{14}}{3} \left\{ 1 + \left(-\frac{5}{18} \right) \right\}$$
$$= \pm \frac{\sqrt{14}}{3} \cdot \frac{13}{18} = \pm \frac{13\sqrt{14}}{54}$$

3. (1) $y=\cos2\left(x+\frac{\pi}{6}\right)$ であるから,この関数のグラフは, $y=\cos2x$ のグラフを x 軸方向に $-\frac{\pi}{6}$ 平行移動したものである.周期は $2\pi\times\frac{1}{2}=\pi$ また,x=0 のとき, $y=\cos\frac{\pi}{3}=\frac{1}{2}$ であり,グラフは次のようになる.

(2) $y=\sin\left\{-2\left(x-\frac{\pi}{2}\right)\right\}+1$ であるから,この関数のグラフは, $y=\sin(-2x)$ のグラフを x 軸方向に $\frac{\pi}{2}$,y 軸方向に 1 平行移動したものである.周期は $2\pi\times\frac{1}{2}=\pi$ また,x=0 のとき, $y=\sin\pi+1=1$ であり,グラフは次のようになる.

- 4. (1) $y = 2(1 \cos^2 x) 2\cos x + 1$ $= -2\cos^2 x 2\cos x + 3$ $= -2t^2 2t + 3$
 - (2) t の変域を求めると $0 \le x \le \frac{5}{6}\pi$ より $-\frac{\sqrt{3}}{2} \le \cos x \le 1$ よって $, -\frac{\sqrt{3}}{2} \le t \le 1$

$$y = -2(t^2 + t) + 3$$

$$= -2\left\{\left(t + \frac{1}{2}\right)^2 - \frac{1}{4}\right\} + 3$$

$$= -2\left(t + \frac{1}{2}\right)^2 + \frac{1}{2} + 3$$

$$= -2\left(t + \frac{1}{2}\right)^2 + \frac{7}{2}$$

$$t = -\frac{\sqrt{3}}{2}$$
 のとき

$$\begin{split} y &= -2 \cdot \left(-\frac{\sqrt{3}}{2} \right)^2 - 2 \cdot \left(-\frac{\sqrt{3}}{2} \right) + 3 \\ &= -2 \cdot \frac{3}{4} + \sqrt{3} + 3 \\ &= -\frac{3}{2} + \sqrt{3} + 3 = \sqrt{3} + \frac{3}{2} \\ t &= 1 \text{ のとき} , \ y = -2 - 2 + 3 = -1 \end{split}$$

よって, $t=-\frac{1}{2}$,すなわち $x=\frac{2}{3}\pi$ のとき,最大値 $\frac{7}{2}$ をとり,t=1,すなわち x=0 のとき,最小値 -1 をとる.以上より

最大值
$$\frac{7}{2}$$
 $\left(x = \frac{2}{3}\pi\right)$ 最小值 -1 $\left(x = 0\right)$

- 5. (1) $2x = t \cdots ①$ とおくと, $\cos t = -\frac{1}{2}$ $0 \le x < 2\pi$ より, $0 \le 2x < 4\pi$ であるから, $0 \le t < 4\pi$ よって, $t = \frac{2}{3}\pi$, $\frac{4}{3}\pi$, $\frac{8}{3}\pi$, $\frac{10}{3}\pi$ ①より, $x = \frac{t}{2}$ なので $x = \frac{1}{3}\pi$, $\frac{2}{3}\pi$, $\frac{4}{3}\pi$, $\frac{5}{3}\pi$
- 6. (1) $2x=t\cdots$ ① とおくと, $\sin t<-\frac{1}{2}$ $0\leq x<2\pi$ より, $0\leq 2x<4\pi$ であるから, $0\leq t<4\pi$

 $0 \le t < 4\pi$ において,角 t の動経が影をつけた部分にあ

るのは
$$\frac{7}{6}\pi < t < \frac{11}{6}\pi, \quad \frac{19}{6}\pi < t < \frac{23}{6}\pi$$
 ①より , $t = 2x$ なので
$$\frac{7}{6}\pi < 2x < \frac{11}{6}\pi, \quad \frac{19}{6}\pi < 2x < \frac{23}{6}\pi$$
 すなわち , $\frac{7}{12}\pi < x < \frac{11}{12}\pi, \quad \frac{19}{12}\pi < x < \frac{23}{12}\pi$

(2)
$$\pi+x=t\cdots$$
① とおくと
$$2\cos t-\sqrt{2}>0 \text{ , } \texttt{ すなわち , } \cos t>\frac{\sqrt{2}}{2}$$

$$-\pi \leq x<\pi \texttt{ より}$$

$$\pi-\pi \leq \pi+x<\pi+\pi$$
 $0\leq \pi+x<2\pi$

すなわち , $0 \le t < 2\pi$

 $0 \leq t < 2\pi$ において , 角 t の動経が影をつけた部分にあるのは

$$0 \le t < \frac{\pi}{4}, \ \frac{7}{4}\pi < t < 2\pi$$
 $0 \le t < \frac{\pi}{4}, \ \frac{7}{4}\pi < t < 2\pi$
 $0 \le \tau + x$ なので
 $0 \le \pi + x < \frac{\pi}{4}, \ \frac{7}{4}\pi < \pi + x < 2\pi$
 $-\pi \le x < \frac{\pi}{4} - \pi, \ \frac{7}{4}\pi - \pi < x < 2\pi - \pi$
すなわち, $-\pi \le x < -\frac{3}{4}\pi, \ \frac{3}{4}\pi < x < \pi$

(3)

 $0 \leq x < 2\pi$ において , 角 x の動経が影をつけた部分にあ

ಕರ) ಸಿ
$$rac{\pi}{4} < x < rac{\pi}{2}, \quad rac{5}{4}\pi < x < rac{3}{2}\pi$$