Билет 2.1:

Конечное поле как множество классов вычетов по модулю неприводимого многочлена

Неприводимый многочлен

Пусть F[x] – множество всех многочленов f(x) всевозможных неотрицательных степеней с коэффициентами из поля GF(p):

$$F[x] = \{ f(x) : f(x) = f_0 + f_1 \cdot x + f_2 \cdot x^2 + \dots + f_n \cdot x^n + \dots, f_i \in GF(p) \}$$

• <u>Определение</u>: Многочлен $p(x) = a_0 + a_1 \cdot x + ... + a_m \cdot x^m$ называется неприводимым над полем GF(p), если он не распадается на множители над этим полем.

Классы вычетов по модулю неприводимого многочлена

Разобьем множество F[x] на p^m классов вычетов по модулю неприводимого многочлена p(x). Для этого рассмотрим все остатки от деления многочленов из F[x] на p(x). Они имеют вид

$$b(x) = b_0 + b_1 \cdot x + \dots + b_{m-1} \cdot x^{m-1}, b_i GF(p)$$

Два многочлена из множества F[x] называются сравнимыми по модулю многочлена p(x), если при делении на p(x) они дают одинаковый остаток.

Таким образом, множество F[x] распадается на не пересекающиеся классы многочленов, сравнимых по модулю p(x). Обозначим множество этих классов символом $\frac{F[x]}{p(x)}$

$$\frac{\textit{Teopema (Cmpyкmypa } \frac{F[x]}{p(x)})}{}$$

$$\frac{F[x]}{p(x)}$$
 - поле, то есть множество ненулевых остатков $\frac{F'[x]}{p(x)}$ образуют мультипликативную группу.

Несколько выводов по примеру

- 1. Элементы поля $\frac{F[x]}{p(x)}$ и мультипликативной группы $\frac{F'[x]}{p(x)}$ не зависят от p(x), а зависят только от его степени m и поля GF(p). Поэтому поле вычетов по модулю p(x) будет обозначать $GF(p^m)$
- 2. Сложение / вычитание $GF(p^m)$ зависит только от p.
- 3. Умножение / разбиение на обратные элементы в $GF(p^m)$ зависит от p(x).
- 4. Сложение в $GF(p^m)$ задаётся обычным поразрядным сложением векторов / многочленов.
- 5. Умножение в $GF(p^m)$ сводится к умножению соответствующих многочленов по правилам поля GF(p) и поиску остатка по модулю p(x).

Билет 2.2:

Задание поля посредством корня неприводимого многочлена

Рассмотрим уравнение, заданное в поле действительных чисел $\mathbb{R}: x^2+1=0$

Известно, что оно не имеет корней в \mathbb{R} , но назначив его корнем число $i=\sqrt{-1}:i^1+1=0$, мы получим его решение с некотором другое поле \mathbb{C} - поле комплексных чисел. По сути, мы построили $\mathbb{C}=\{x+i\cdot y:x,y\in\mathbb{R},i^2=-1\}$ благодаря присоединению числа $i\notin\mathbb{R}$ к исходному полю \mathbb{R} . Аналогично, неприводимый многочлен p(x) не имеет корней в GF(p), но допустим, что он имеет корень $\alpha\in GF(p^m)$. Тогда $p(\alpha)=0$. И есть $GF(p^m)$ есть расширение GF(p) при помощи α .

Билет 2.3:

Строение конечных полей. Основные теоремы о многочленах над конечными полями.

Tеорема о корнях многочленов GF(q)

Если f(x) многочлен над $Gf(q), \beta \in GF(q^m)$ и $f(\beta) = 0$, то $f(\beta^q) = 0$

Доказательство

Пусть $f(x) = a_0 + a_1 \cdot x + \cdots + a_n \cdot x^n$, согласно теореме о биноме Ньютона над конечным полем:

$$(f(x))^q = a_0^q + a_1^q \cdot x^q + \dots + a_n^q \cdot x^{n \cdot q} = a_0 + a_1 \cdot x^q + \dots + a_n \cdot x^{n \cdot q} = f(x^q)$$

так как $f_i \in GF(q)$, а потому $a_i^{q-1} = 1$, $a_i^q = a_i$

$Teopema o делителях x^{q^m} - x$

Неприводимые над GF(q) многочлены p(x), степени n которых делят m, и только они, являются делителями многочлена $x^{q^m} - x$. То есть многочлен x^{q^m} распадается на произведение минимальных функций всех элементов поля $GF(q^m)$.

• <u>Onpedenetue</u>: Элементы поля, являющиеся корнями одного и того же неприводимого многочлена, называются сопряженными элементами поля.

Теорема

Все корни одного и того же неприводимого многочлена имеют одинаковый порядок.

Билет 2.4:

Определение минимальной функции. Свойства минимальных функций (единственность, существование, неприводимость).

• <u>Определение:</u> Минимальной функцией (минимальным многочленом) для элемента $\beta \in GF(q^m)$ называется такой нормированный многочлен m(x) над GF(q) минимальной степени, что $m(\beta) = 0$

Важные особенности минимальных функций

- 1. Это многочлены над GF(q)
- 2. Но их корни лежат в расширении $GF(q^m)$
- 3. Минимальные функции важнейший класс многочленов над конечными полями
- 4. Все основные алгебраические коды основаны на минимальных функциях

Важнейшие свойства минимальный функций (Теорема)

- 1. Минимальная функция для β неприводимый многочлен над $GF(\beta)$
- 2. Если многочлен f(x) таков, что $f(\beta) = 0$, то m(x)|f(x), где m(x) минимальная функция для β .
- 3. Минимальная функция для $oldsymbol{eta}$ единственна (обратное вообще говоря не верно)
- 4. Для каждого элемента $\beta \in GF(q^m)$ существует минимальная функция
- 5. Степени минимальной функции элемента $\beta \in GF(q^m)$ делиель m

Как строить минимальные функции?(Требуемые результаты)

Теорема

Все корни $\beta, \beta^q, \dots, \beta^{q^{m_1}} \in GF(q^m)$ неприводимого над GF(q) многочлена p(x) степени m различны.

Теорема

Если f(x) многочлен над GF(q), $\beta \in GF(q^m)$ и $f(\beta) = 0$, то $f(\beta^q) = 0$

Теорема

Степень минимальной функции элемента $\beta \in GF(q^m)$ – делитель m

Алгоритм построения минимальной функции

- 1. Фиксируем $\beta \in GF(q^m)$ для которого строится минимальная функция.
- 2. Вычисляем последовательность: $\beta, \beta^q, \dots, \beta^{q^i}, \dots$ до тех пор, пока не найдём такой j, что $\beta^{q^i} = \beta$.
- 3. Всегда получим п различных $oldsymbol{eta},\dots,oldsymbol{eta}^{q^n},$ где n некоторый делитель m
- 4. Тогда $m_{\beta}(x) = (x \beta) \cdot (x \beta^q) \cdot \cdots \cdot (x \beta^{q^n})$