Interferência e Difração de Ondas Eletromagnéticas

Grupo 52 - 21/11/2013Pedro Pereira, n°78889; Miguel Ribeiro, n°79013; Inês Roça, n°78164

Introdução

Quando uma onda eletromagnética encontra um obstáculo ou um orifício cujas dimensões são da mesma ordem de grandeza do seu comprimento de onda, a sua trajetória sofre um desvio, isto é, a onda é difratada. Formam-se assim ondas secundárias que se se encontrarem na mesma fase podem interferir e formar uma onda de características distintas. A presente atividade tem como objetivo estudar o fenómeno de interferência e difração de ondas eletromagnéticas num meio dielétrico, homogéneo e isotrópico.

Para tal, utilizar-se-á uma montagem composta por uma fonte luminosa que emitirá um feixe de luz monocromática que ao incidir em redes de fendas gera padrões de difrações. Note-se que a fonte de luz e o alvo de projeção devem encontrar-se a uma distância máxima tal que o seu quociente com a largura da fenda seja muito superior ao quociente entre a largura e o comprimento de onda. Isto é o equivalente a considerar que o feixe emitido, quando atinge a fenda, é aproximadamente uma onda plana e o modelo matemático utilizado será a aproximação de Fraunhofer.

Difração por uma fenda Numa fase inicial, feixe incidirá numa fenda com uma determinada dimensão. Para esta disposição da montagem obter-se-á uma figura de difração a partir da qual se medirá os diferentes mínimos, e calcular-se-á a largura da fenda, através da seguinte relação:

$$s = \frac{m\lambda}{\sin(\arctan(\frac{Xm}{D}))} \tag{1}$$

$$Xm = \frac{X_{min} + X_{max}}{4} \tag{2}$$

Com λ o comprimento de onda do feixe, Xm a distância do máximo central ao mínimo de ordem m, e D a distância da fenda ao alvo. O procedimento será então repetido, no entanto o feixe de luz incidirá num cabelo preso num suporte. Obter-se-á uma nova figura de difração que será confrontada com a anterior.

Difração por uma rede de N linhas Nesta parte, incidir-se-á um feixe numa rede de difração de diversas linhas. Com a figura de difração obtida medir-se-á os máximos principais e a partir destes calcular-se-á a distância entre as fendas através da seguinte relação:

$$a = \frac{m\lambda}{\sin(\arctan(\frac{Xm}{D}))}$$
 (3)

Para a rede de difração calcular-se-á ainda o poder de resolução da mesma através da seguinte relação:

$$R = mN (4)$$

$$N = \frac{1}{a_{experimental}} \times \text{largura do feixe}$$
 (5)

Note-se que para N máximos principais, haverá (N-1) mínimos secundários e (N-2) máximos secundários.

Difração por uma fenda dupla Nesta última parte da atividade, far-se-á incidir o feixe de luz numa fenda dupla e, usando um detetor CCD linear, registar-se-á o perfil das intensidades. Através do valor da largura da fenda, da distância entre as fendas e da distância entre o slide e o alvo simular-se-á o perfil obtido para a intensidade. Com este ficheiro é possível simular o perfil da figura de difração, ajustando-se interactivamente os parâmetros s e a.

Fórmulas dos Erros e Fórmulas Auxiliares

D: distância entre a fenda e o alvo (erro do instrumento)

$$e_{Xm} = \left| \frac{X_{min} - X_{max}}{4} \right| \tag{6}$$

$$e_s = \left| -\frac{m\lambda D}{Xm^2\sqrt{\frac{Xm^2}{D^2} + 1}} \right| e_{Xm} + \left| -\frac{m\lambda}{Xm\sqrt{\frac{Xm^2}{D^2} + 1}} \right| e_D$$
 (7)

Para a rede de N linhas as fórmulas são análogas, temos que eXm=Largura do ponto luminoso

Tabelas

	Fenda C				
	eD (cm)	D1 (m)	D2 (m)	s (mm)	
	0,1	1,734	1,925	0,160	
Ensaio	m	Xm (cm)	eXm(mm)	s (mm)	es (μm)
	1	0,750	0,50	0,146	0,984
1	2	1,48	0,75	0,149	0,765
	3	2,23	0,75	0,148	0,507
	4	2,90	0,50	0,149	0,270
2	1	0,863	0,63	0,150	1,031
	2	1,63	0,75	0,151	0,700
	3	2,48	0,75	0,152	0,455
	4	3,25	0,10	0,153	0,469

λ (m)
6,33E-07

Média s (mm)
0,148
Incerteza
1,97%
Desvio à exatidão
7,56%

	Cabelo				
D(m)	m	Xm (cm)	eXm(mm)	s (mm)	es(μm)
1,942	1	2,15	1,500	0,0572	0,589
	2	4,31	1,625	0,0570	0,587
	3	6,59	2,125	0,0560	0,576

Média s (mm)
0,0567
Incerteza
0,91%

Rede com 300 linhas/mm				
eD (cm)	D1 (m)	D2(m)	a (μm)	eXm(mm)
0,1	0,242	0,149	3,33	4

Resolução da rede
888,8

Ensaio	m	Xm(cm)	sin(Xm/D)	a (µm)	ea (µm)
1	1	4,70	0,191	3,32	0,537
	2	9,85	0,377	3,336	0,355
	-1	4,60	0,187	3,39	0,555
	-2	9,80	0,375	3,37	0,358
2	1	2,85	0,188	3,37	0,892
	2	6,00	0,374	3,39	0,586
	3	10,10	0,561	3,38	0,403
	-1	2,80	0,185	3,43	0,917
	-2	6,00	0,374	3,39	0,586
	-3	10,10	0,561	3,38	0,403

Média a (μm)	
3,375	
Incerteza	
0,85%	
Desvio à exatidão	
1,26%	

Figure 1: Imagem obtida no software Caliens

Conclusão

Inicialmente teve-se como objetivo medir a largura de uma fenda através da figura de difração produzida pela mesma quando nela se faz passar um laser. Para tal emitiu-se um feixe de radiação monocromática com um comprimento de onda 632,8nm, fazendo-o passar pela fenda C, com uma largura de 0,16mm. Tivemos o cuidado de nos assegurar que o alvo e a fenda estavam alinhados com o laser, de modo a eliminar erros associados a inclinações. Para uma dada distância da fenda ao alvo, colocou-se uma folha branca junto ao alvo, na qual se assinalaram os mínimos. Como os máximos de ordens distintas são separados por um mínimo correspondente, mediu-se a distância máxima e mínima entre cada mínimo de ordem igual, a partir da qual se obteve o valor da equação (1) e (2). Decidimos medir os mínimos ao invés dos máximos, pois era significativamente mais fácil visualizar a posição dos mesmos no alvo.

Para a mesma fenda, foram traçadas as figuras de difração obtidas para duas distâncias distintas (1,734m e 1,925m), pelo que o comprimento da largura considerado corresponde à média das larguras obtidas em cada um dos cálculos. Obteve-se assim um valor para a largura da fenda de $(1,60 \times 10^{-4} \pm 1,17 \times 10^{-4})$ 10^{-5})m, que corresponde a um desvio à exatidão de 7,56%. È de notar que o quociente entre o valor da distância utilizado e a largura da fenda é muito superior ao quociente entre a largura e o comprimento de onda. Como esta condição se verifica considera-se que a onda é aproximadamente plana, pelo que é possível utilizar o método de aproximação de Frauhnofer. O procedimento foi repetido utilizando um cabelo como obstáculo ao percurso do laser, tendo-se obtido, pelo método anterior, também a figura de difração deste. Confrontando as figuras de difração formadas pela fenda e pelo cabelo conclui-se que são geometricamente semelhantes, facto que pode ser explicado pelo Princípio de Babinet - o padrão de difração para uma fenda é igual para um objeto opaco da mesma forma e da mesma dimensão (cabelo), iluminado da mesma maneira. Nesta experiência, apesar das nossas tentativas, foi-nos impossível garantir que o alvo e as fendas estavam, em todos os momentos, perfeitamente na perpendicular do laser. Para além disso, é de notar a enorme instabilidade do alvo, que não ficou bem preso à mesa. Quando tentámos copiar a figura de difração do alvo para o papel, é possível que o alvo tenha oscilado um pouco. Tivemos, no entanto, o cuidado de segurar no mesmo. Em experiências futuras, aconselhamos a utilização de um alvo mais estável. Note-se também que é um pouco difícil diferenciar a posição exata dos mínimos e máximos, tendo-se feito uma estimativa, o que não corresponde ao valor exato. Em experiências futuras deverá considerarse um método mais prático de anotação das posições dos máximos/mínimos. Na segunda parte da atividade repetiu-se o procedimento anterior utilizandose, contudo, uma rede com 300 linhas em vez de apenas uma fenda. Através da distância entre os máximos obtidos no alvo e da distância alvo-fendas, foi possível calcular a distância entre as fendas, para o qual obtivemos um valor de $3,375x10^{-6}$ m, com um erro de $5,55\times10^{-7}$ m. Estimando-se o número de fendas iluminadas, obtivemos um valor de 889, sendo o número de máximos secundários 887 e 888 o número de mínimos secundários, entre os 889 máximos principais. Assim, a resolução obtida para a fenda utilizada na ordem m=1 é de 889. Por fim, apontámos o laser à câmara linear CCD, fazendo o laser passar, por uma dupla fenda. Ligando o sensor a um computador e utilizando o software Caliens, foi-nos possível obter a figura das intensidades das ondas após a dupla fenda. Através da simulação do software, ajustámos ao gráfico obtido diretamente uma figura simulada com parâmetros por nós inseridos. Assim, obtivemos o valor para a largura de cada fenda e a distância de separação das mesmas, tendo obtido um valor de $40\lambda m$ e $250\lambda m$, respetivamente. É de notar que houve um certo erro associado ao software, causado pelo ajuste ad hoc. Assim, obtivemos a figura que nos pareceu mais próxima da real.