

北京爱泰联合科技有限公司

CANFD 函数库使用手册

[iTekCANFD.dll 开发接口说明]

V1.0.1

2021-1-25

目 录

1.	ž	资料包介绍				
2.	2. 开发流程图					
3.	娄	B结构定义				
	3.1.	. iTek_CANFD_DEVICE_INFO	3			
	3.2.	. iTek_CANFD_CHANNEL_INIT_CONFIG	3			
	3.3.	. Filter Data Extend	4			
	3.4.	. Filter Data Standard	5			
	3.5.	. FilterData	5			
	3.6.	. iTek_CANFD_Receive_Data	6			
	3.7.	. iTek_CANFD_Transmit_Data	6			
	3.8.	. canfd_frame	6			
4.	括	妾口函数说明	8			
	4.1.	. iTek_OpenDevice	8			
	4.2.	. iTek_InitCan	8			
	4.3.	. iTek_StartCAN	8			
	4.4.	. iTek_Receive	9			
	4.5.	. iTek_Transmit	9			
	4.6.	. iTek_ClearBuffer	9			
	4.7.	. iTek_GetReceiveNum	9			
	4.8.	. iTek_Authenticate	10			
	4.9.	. iTek_CloseDevice	10			
	4.10	0. iTek_isConnected	10			
	4.11	1. iTek_GetDeviceInfo	11			
	4.12	2. iTek ResetCAN	11			

1. 资料包介绍

接口库以基于 window 系统的动态链接库(DLL)的方式提供,可以实现打开设备,配置 CAN(FD)参数, 收发报文等功能。该函数库支持我司 CANFD 系列产品, 如 USBCANFD、PCIeCANFD、NetCANFD、MiniPCIeCANFD等产品。接口库采用 visual studio 2017 开发,依赖运行库 2017 版本。如计算机没有包含该运行库,可到微软官方网站下载安装。应用程序根据窗口选择的设备类型加载不同产品的dll,iTekCANFD.h为接口描述头文件,iTekCANFD.dll和设备相关的XXXCANFD.dll需要放在可执行程序生成目录下。

Linux平台的函数接口和二次开发流程与Windows开发库相同,只是使用的开发库文件不同而已。

2. 开发流程图

3. 数据结构定义

3.1. iTek CANFD DEVICE INFO

设备信息结构体,包含硬件版本号、产品序列号、设备描述符等信息。

<iTek_CANFD_DEVICE_INFO 结构体>

```
typedef struct tagiTek CAN DEVICE INFO {
    uint8_t hw_Version[3];
    uint8 t fw Version[3];
    uint8 t product Version[3];
    uint8 t can Num;
    uint8_t str_Serial_Num[20];
    uint8_t str_hw_Type[40];
    uint16 t reserved[6];
}iTek CANFD DEVICE INFO;
成员:
    hw_Version
                    硬件版本,如 hw_Version={0x01,0x00,0x02},代表 V1.0.2;
    fw Version
                    固件版本,如 fw Version={0x01, 0x00, 0x03},代表 V1.0.3;
    product Version
                    (暂不开放);
    can Num
                    通道数量,如 can_Num=2,代表设备集成 2路 CANFD 接口;
                    出厂序列号,以 '\0' 结束,如 "6120101001";
    str_Serial_Num
                    设备名称描述字符,以 '\0' 结束,如 "USBCANFD-X200";
    str_hw_Type
    reserved
                    保留
```

3.2. iTek CANFD CHANNEL INIT CONFIG

定义 CAN 控制器初始化参数,在调用 iTek_initCan 之前要先初始化该结构体。

<iTek_CANFD_CHANNEL_INIT_CONFIG 结构体>

can_type CAN 协议类型: 0=CAN 协议; 1=CANFD 协议;

CANFDStandard CANFD 标准: 0=ISO 标准; 1=非 ISO 标准; CANFDSpeedup CANFD 是否加速: 0=不加速; 1=加速;

workMode 工作模式, 0=正常工作模式; 1=只听工作模式;

res 保留位

 Extend
 扩展帧过滤器组 (见 3.3 节);

 Standard
 标准帧过滤器组 (见 3.4 节);

表 3-1 仲裁域波特率

波特率 abit_timing 5K 0x01F31302 10K 0x00F91302 20K 0x007C1302 40K 0x00630a02 50K 0x00311302 80K 0x001D1204 100K 0x00181302 125K 0x00131302 200K 0x00130A02 250K 0x00091302 400K 0x00090A02 500K 0x00070A02 800K 0x00021006 1000K 0x00040702

表 3-2 数据域波特率

波特率	dbit_timing
100K	0x001D0E30
125K	0x001F0A20
200K	0x00130A20
250K	0x000F0A20
400K	0x00090A20
500K	0x00070A20
800K	0x00040A20
1M	0x00040720
2M	0x00010A20
3M	0x00000D40
4M	0x00000A20
5M	0x00000720

3.3. FilterDataExtend

扩展帧过滤器组结构体,过滤器组数量根据实际使用情况自定义。

<FilterDataExtend 结构体>

typedef struct tagFilterDataExtend{

int num;

FilterDatafilterDataExtend[64];

}FilterDataExtend;

成员:

num 实际使用扩展帧过滤器组数量,取值范围 0-64,比如: num=2,代表前 2 组有效;

FilterData 扩展帧过滤器组寄存器结构体;

3.4. FilterDataStandard

标准帧过滤器组结构体,过滤器组数量根据实际使用情况自定义。

<FilterDataStandard 结构体>

```
typedef struct tagFilterDataStandard{
```

int num;

FilterDatafilterDataStandard[128];

}FilterDataStandard;

成员:

num 实际使用标准帧过滤器组数量,取值范围 0-128,比如: num=5,代表前 5 组有效;

FilterData 标准帧过滤器组寄存器结构体;

→ 注意: CAN 控制器可分别对标准帧和扩展帧 ID 进行过滤,标准帧或扩展帧过滤器组应至少有一组有效,
否则 CAN 控制器拒绝接收所有 id 的报文。

3.5. FilterData

过滤器组结构体,由帧类型、过滤方式和 ID 寄存器组成。

<FilterData 结构体>

```
typedef struct tagFilterData
{
    uint8_t frameType;
    uint8_t filterType;
    uint32_t ID1;
    uint32_t ID2;
}FilterData;
```

成员:

frameType 帧类型,用于说明该组过滤器组是针对标准帧还是扩展帧 id 有效; 0=标准帧有效;

1=扩展帧有效;

filterType 过滤器类型,用于说明本组过滤器组的过滤方式; 0=范围 id; 1=明确 id; 2=掩码

id;不同方式的过滤结果见表 3-3;

ID1 ID 寄存器 1;

ID2 ID 寄存器 2;

表 3-3 过滤器组说明

	过滤器模式	过滤结果			
1	范围ID	>= ID1 且 <= ID2的ID都可以通过。			
2	明确ID	=ID1或 =ID2的ID可以通过。			
3	掩码ID	当ID2的某一位为1时,使能该位过滤,只有这一位等于ID1的这一位才可以通过。 当ID2的某一位为0时,不启用该位过滤,该位为0或1都可以通过。 (标准帧,低11位有效;扩展帧,低29位有效)			

3.6. iTek CANFD Receive Data

接收 CAN(FD)报文信息结构体,包含 CAN 控制器硬件时间戳、CAN(FD)数据帧等。

<iTek_CANFD_Data 结构体>

```
typedef struct tagiTek CANFD Data{
```

canfd_frame frame; uint64 t timestamp;

}iTek_CANFD_Receive_Data;

成员:

frame CAN(FD)报文信息(见 canfd frame 结构体定义);

timestamp CAN 时间戳,从 CAN 控制器上电开始计时,长度 64 位,单位 us(接收帧有效);

3.7. iTek_CANFD_Transmit_Data

发送 CAN(FD)报文信息结构体,包含发送类型和 CAN(FD)帧结构。

<iTek_CANFD_Transmit_Data 结构体>

```
typedef struct tagiTek_CANFD_Transmit_Data{
```

canfd_frame frame;

uint16 t send type;

}iTek CANFD Transmit Data;

成员:

frame CAN(FD)报文信息(见 canfd_frame 结构体定义);

send_type 发送方式: 0 = 正常发送; 1 = 自发自收;

3.8. canfd frame

CAN(FD)帧信息结构体,包含帧 id、帧格式、帧类型、帧数据等。

<canfd_frame 结构体>

typedef struct tag_canfd_frame {

canid t can id;

uint8 t len;

uint8 t flags;

uint8 t res;

uint8 t cantype;

uint8_t data[CANFD_MAX_DLEN];

}canfd frame;

成员:

can_id 帧 ID, 高 3 位属于标志位, 低 29 位 ID 有效位,标志位含义见表 3-4;

len 数据长度, 当前 CAN(FD)帧实际数据长度;

flags 错误帧标志位, 0=正常数据帧; 1=错误帧; 当 flags=1 时, 错误信息通过

CAN 帧数据位 data0-data7 表达, 具体定义见表 3-5;

res 保留位;

cantype CAN 类型, 0 = CAN; 2 = CANFD; 3= CANFD 加速;

data 数据, CAN 帧 data<=8, CANFD 帧<=64;

表 3-4 ID 位定义表

位	定义	说明		
31	保留			
30	帧类型	0=标准帧; 1=扩展帧; 宏 IS_EFF 可获取该标志;		
29	帧格式	0=数据帧; 1=远程帧, 宏 IS_RTR 可获取该标志;		
28:0	帧ID	帧 ID, 29 位有效,宏 GET_ID 获取 ID;宏 MAKE_CAN_ID 构造 ID		

表 3-5 错误帧信息定义

数据	位	定义	说明
Data0	31:15	保留	
-	14:8	REC	接收错误计数器,取值 0-127;
Data3	7:0	TEC	发送错误计数器,取值 0-128;
	31:8	保留	
	7	ВО	CAN(FD)离线标志, 0=在线; 1=离线;
Data4	6	EW	错误预警标志,0=无预警; 1=预警;
-	5	EP	错误消极标志,0=错误活动;1=错误消极;
Data7	4:3	保留	
	2:0	LEC	错误代码,0=没有错误;1=位填充错误;2=格式错误;3=应答错
			误; 4=Bit1 错误; 5=Bit0 错误; 6=CRC 错误; 7=无错误;

错误说明:

位填充错误:接收消息时,一部分序列中有超过5个连续相等的位;

格式错误:接收帧固定格式部分错误;

应答错误: 未收到 CAN 节点接收确认信号;

Bit1 错误: 消息传输期间,发送隐性位被总线显性位主导; Bit0 错误:消息传输期间,发送显性位被总线隐性位主导;

CRC 错误:接收到的消息 CRC 校验错误。

4. 接口函数说明

4.1. iTek_OpenDevice

该函数用于打开指定设备类型的设备,获取该设备句柄。

DEVICE_HANDLE iTek_OpenDevice(uint32_t Device_Type, uint16_t device_index, uint32_t reserved);

参数:

Device_Type 设备类型号, 定义见表 4-1

device index 设备索引号,用于区分一台计算机上使用的多套同类型设备。如只插 1 台

USBCANFD 设备, device index=0;

reserved 仅作保留;

返回值:

为 INVALID_HANDLE_VALUE 表示操作失败, 否则表示操作成功, 返回设备句柄值。请保存该句柄值, 后续初始化 CAN、认证设备、关闭设备等都是针对此句柄操作。

表 4-1 设备类型号定义

设备名称	设备类型号
USBCANFD-X100	1
USBCANFD-X200	2

4.2. iTek InitCan

该函数用于初始化 CAN(FD)通道,将工作模式、波特率、过滤屏蔽码等参数写入 CAN(FD)控制器。

USBChannel_HandleiTek_InitCan(DEVICE_HANDLE

usbhandle,uint8 t

channel, iTek CANFD CHANNEL INIT CONFIG* config);

参数:

usbhandle 设备句柄值,由 iTek_OpenDevice 函数返回;

Channel 通道号 0=CAN0 通道; 1=CAN1 通道;

Config CAN(FD) 通道初始化设置信息 (详情参考 3.2 节);

返回值:

CAN(FD)通道句柄,后续启动通道、发送数据、复位通道等都是针对此句柄操作。

4.3. iTek StartCAN

启动 CAN(FD)通道,通道初始化后应调用该函数启动,之后才能进行数据收发。

bool iTek_StartCAN(CHANNEL_HANDLE channel_handle);

参数:

channel handle CAN(FD)通道句柄值;

返回值:

TRUE=成功; FALSE=失败。

4.4. iTek Receive

该函数用于读取缓存中 CAN(FD)数据。

uint32_t iTek_Receive(CHANNEL_HANDLE channel_handle, iTek_CANFD_Data* pReceive, uint32_t len, int wait_time)

参数:

Channel_handle 通道句柄值;

pReceive 用于接收数据结构体的首地址指针;

len 本次准备读取的报文数目;

wait_time 函数阻塞等待时间,单位毫秒。当读到的数据数目<len时,等待wait_time

毫秒后返回。为-1则表示无超时,一直等待,直到读到数目=len时才返回。

返回值:

实际读取的报文数目。

4.5. iTek Transmit

该函数用于发送数据

uint32_tiTek_Transmit (CHANNEL_HANDLEchannel_handle, iTek_CANFD_Transmit_Data* data, uint32_t len);

参数:

channel handle 通道句柄值;

data 待发送数据结构体的首地址指针;

len 待发送的报文数目,如 len=5,表示一次传递5个CAN(FD)报文。

返回值:

返回实际发送成功的报文数目。

4.6. iTek ClearBuffer

该函数用于清除库缓存区

void __stdcalliTek_ClearBuffer(CHANNEL_HANDLE channel_handle)

参数:

channel_handle 通道句柄值;

返回值:

无。

4.7. iTek GetReceiveNum

获取该通道缓存等待读取的报文数量。

uint32 tiTek GetReceiveNum (CHANNEL HANDLEchannel handle);

参数:

channel_handle 通道句柄值;

返回值:

该通道等待读取的报文数量。

4.8. iTek Authenticate

设备认证函数,为保护用户二次开发软件版权,建议使用该函数对设备进行认证。

void *iTek_Authenticate(DEVICE_HANDLE usbhandle, uint16_t key_type,uint8_t *pStr, int len, unsigned char *dStr);

参数:

usbhandle 设备句柄值;

key type 密钥类型 (注意:该值必须为 0,否则会认证失败);

pStr 应用层生成的 16 位随机数首地址指针;

len 随机数长度, 固定为 16;

dStr 对 16 位随机数加密运算后返回的密文首地址指针。

返回值:

无

4.9. iTek CloseDevice

关闭设备函数,在软件退出前应调用该函数以释放设备句柄,否则下次会打开设备失败。

void iTek CloseDevice(DEVICE HANDLE usbhandle)

参数:

usbhandle 需要关闭的设备句柄;

返回值:

无。

4.10. iTek isConnected

设备连接状态检查函数,应用层可以定期调用该函数判断设备连接状态,该函数必须在 iTek OpenDevice 函数之后执行。

bool iTek_isConnected(DEVICE_HANDLE usbhandle)

参数:

usbhandle 设备句柄值;

返回值:

TRUE=连接状态; FALSE=当前连接已断开。

4.11. iTek_GetDeviceInfo

获取该设备信息。

bool iTek GetDeviceInfo(DEVICE HANDEL usbhandle,iTek CANFD DEVICE INFO* pinfo)

参数:

Usbhandle 设备句柄;

pInfo 返回的设备信息保存地址指针;

返回值:

TRUE=成功; FALSE =失败。

4.12. iTek_ResetCAN

复位 CAN(FD)通道。

bool iTek_RestCAN(CHANNEL_HANDLE channe_handle);

参数:

channel_handle 通道句柄值;

返回值:

TRUE=成功; FALSE=失败。