Clase 7

Santiago Cifuentes

May 29, 2025

- 1. Considerar el siguiente prolema:
 - LEX-SAT-BIT = $\{\langle \varphi, i \rangle : \varphi \text{ es una fórmula satisfacible y la menor asignación que la satisface (donde menor se define usando el orden lexicográfico) fija la variable <math>i$ en 1}

Probar Lex-sat-bit $\in \mathsf{P}^\mathsf{NP}.$ Argumentar por qué el problema no debería estar en $\mathsf{NP}.$

- 2. Probar que $\mathsf{P}^{\mathsf{NP}} = \mathsf{P}^{\mathsf{coNP}} \subseteq \Sigma_2^p \cap \Pi_2^p$.
- 3. Probar que $E^{E} \neq E$.
- 4. Probar que $NP^{NP \cap coNP} = NP$.
- 5. Dada una clase \mathcal{C} , se define $low(\mathcal{C}) = \{\Pi \subseteq \Sigma^* : \mathcal{C}^\Pi = \mathcal{C}\}$. Probar que $low(NP) = NP \cap coNP$.

Resolución

2) $\mathsf{P}^\mathsf{NP} = \mathsf{P}^\mathsf{coNP}$ es inmediato. Para la segunda parte, probemos que $\mathsf{P}^\mathsf{NP} \subseteq \Sigma_2^p$, la otra inclusión sale usando que P^NP está cerrado por complemento.

Si $\Pi \in \mathsf{P}^\mathsf{NP}$ hay una máquina M^SAT que resuelve Π en tiempo polinomial usando llamados SAT. Notemos que si M^SAT corre en p(|x|), entonces hace a lo sumo p(|x|) llamados, cada uno de tamaño a lo sumo p(|x|).

Podemos definir una máquina M' como $M'(x,a_1,\ldots,a_{p(|x|)})=M(x)^{a_1,\ldots,a_{p(|x|)}}$ donde M' simula M pero usando de respuestas a $a_1,\ldots,a_{p(|x|)}$. Está claro que si $M^{\text{SAT}}(x)=1$ entonces existen algunos $a_1,\ldots,a_{p(|x|)}$ tales que $M'(x,a_1,\ldots,a_{p(|x|)})=1$. La vuelta también vale siempre y cuando los $a_1,\ldots,a_{p(|x|)}$ se correspondan con las consultas que hace la simulación. Esto se puede escribir con la siguiente fórmula:

$$\begin{split} &x\in\Pi\iff M(x)=1\iff\\ &\exists a_1,\ldots,a_{p(|x|)},\varphi_1,\ldots\varphi_{p(|x|)},c_1^+,\ldots,c_{p(|x|)}^+\forall c_1^-\ldots c_{p(|x|)}^-\\ &M'(x,a_1,\ldots,a_{p(|x|)})=1\land\\ &\bigwedge_{i=1}^{p(|x|)}\varphi_i \text{ es la query } i \text{ que hace la simulación } M'(x,a_1,\ldots,a_{p(|x|)})\\ &\bigwedge_{i=1}^{p(|x|)}\left((a_i=1\implies M_{\text{SAT}}(\varphi_i,c_i^+)=1)\land (a_i=0\implies M_{\text{SAT}}(\varphi_i,c_i^-)=0)\right) \end{split}$$

donde $M_{\rm SAT}$ es el verificador de SAT. Los cuantificadores adivinan una cantidad polinomial de bits, y el predicado se puede evaluar en tiempo polinomial.

3) Probemos que $2\mathsf{E} \subseteq \mathsf{E}^\mathsf{E}$, lo cual implica que E está incluida estricamente en E^E . Para eso, tomemos $\Pi \in 2\mathsf{E}$. Vale que $\Pi \in \mathrm{TIME}[2^{2^{n^k}}]$ para algún k usando algún algoritmo M. Luego,

$$\Pi_{pad} = \{x01^{2^{|x|^k}} : x \in \Pi\}$$

está en E, pues se resuelve parseando en lineal y llamando a M, lo cual toma tiempo $O(2^{2^{|x|^k}}) = O(2^{|y|})$, que es exponencial en el tamaño de entrada. Ergo Π se puede resolver en $\mathsf{E^E}$ escribiendo, dado $x, |x|01^{2^{n^k}}$ y luego llamando a Π_{pad} como oráculo.

También se puede probar que $\mathsf{E^E} \subseteq 2\mathsf{E}$ simulando la máquina directamente: si la máquina oracular corre en 2^{n^k} y el oráculo es un problema que se resuelve en 2^{n^c} , entonces se hacen a lo sumo 2^{n^k} llamados donde cada uno toma a lo sumo $2^{2^{n^{k^c}}} = 2^{2^{cn^k}}$.