

1.4 机器学习算法的组成部分

CSDN学院

▶机器学习任务的一般步骤

- 确定特征
 - 可能是最重要的步骤! (收集训练数据)
- 确定模型
 - 目标函数/决策边界形状
- 模型训练:根据训练数据估计模型参数
 - 优化计算
- 模型评估:在校验集上评估模型预测性能
- 模型应用/预测

▶模型

- 监督学习任务:给定带标签的训练样本 $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$,学习到一个 $\mathbf{x} \rightarrow y$ 的映射 f,从而对新输入的 \mathbf{x} 进行预测
- 模型:对给定的输入x,如何预测其标签ŷ
 - 不同模型对数据的假设不同
 - 最简单的模型:线性模型 $f(\mathbf{x}) = \sum_j w_j x_j = \mathbf{w}^T \mathbf{x}$
- 确定模型类别后,模型训练转化为求解模型参数
 - 如对线性模型参数为 $\theta = \{w_i | j = 1, ..., D\}$, 其中D为特征维数
- 求解模型参数:目标函数最小化

▶非线性模型

- 线性模型非线性化
 - 基函数: x^2 、log、exp、样条函数、决策树...
 - -核化:将原问题转化为对偶问题,将对偶问题中的向量点积 $<\mathbf{x}_i,\mathbf{x}_j>$ 换成核函数 $k(\mathbf{x}_i,\mathbf{x}_j)$

▶目标函数

• 目标函数通常包含两项:损失函数和正则项

$$J(\mathbf{\theta}) = \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i; \mathbf{\theta}), y_i) + R(\mathbf{\theta})$$

参数θ对应的损失函数 度量参数对应的模型与 训练数据的拟合程度

参数θ对应的正则项 对模型的复杂度施加惩罚

▶损失函数—回归

- 损失函数:度量模型预测值与真值之间的差异
- 对回归问题:令残差 $r = f(\mathbf{x}) y$
 - L2损失: $L_2(r) = \frac{1}{2}r^2$
 - L1损失: $L_1(r) = |r|$

$$- \text{ Huber损失}: L_{\delta}(r) = \begin{cases} \frac{1}{2}r^2 & \text{if } |r| \leq \delta \\ \delta|r| - \frac{1}{2}\delta^2 & \text{if } |r| > \delta \end{cases}$$

▶损失函数——分类

- 损失函数:度量模型预测值与真值之间的差异
- 对分类问题

ー 0-1 损失:
$$l_{0/1}(y, f(x)) = \begin{cases} 1 & yf(x) < 0 \\ 0 & otherwise \end{cases}$$

- Logistic损失: 亦称负log似然损失/logloss

$$-$$
 合页损失: $l_{hinge}(y, f(x)) = \max(0, 1 - yf(x))$

▶正则项

- 不能只选择损失最小的模型,因为复杂的模型可能和训练数据拟合得非常好,在训练集上可以损失几乎为0
- 但我们真正关心的是测试数据上的性能
 - 测试数据和训练数据通常假设是来自同分布的独立样本,但只是分布相同,随机变量取值会变化
 - 训练数据中可能会有噪声,模型不应该将噪声包含在内
- 复杂模型(预测)不稳定:方差大
- 所以需要控制模型复杂度
 - 正则项:对复杂模型施加惩罚

▶正则项的必要性

• 例:sin曲线多项式拟合

▶例:sin曲线拟合

$$Y = sin(2\pi X) + \varepsilon$$
$$X \sim Uniform[0,1], \ \varepsilon \sim N(0, 0.3^2)$$

样本数N=10用M阶多项式拟合:

$$\hat{y} = \sum_{j=0}^{M} w_j x^j$$

▶例: sin曲线拟合(2)

▶例: sin曲线拟合(3)

▶ 例: sin曲线拟合(4)

▶ 例: sin曲线拟合(5)

▶ 例: sin曲线拟合(6)

过拟合:

当模型复杂度增加时,训练误差继续下降,甚至趋近于0,而测试 误差反而增大

$$E_{RMS} = \sqrt{\frac{1}{N} \sum_{i=0}^{N} (\hat{y}_i - y_i)^2}$$

▶ 训练集上的误差 ≠ 测试集上的误差

- 推广性(generalization): 学习器在新的测试数据上表现
- 复杂的曲线不能泛化/推广到新数据上:根据特定输入调制得 太好,而不是真正建模x与y之间的关系
 - 被称为数据过拟合(overfitting)

▶ 例: sin曲线拟合(7)

• 回归系数:

~ ,- _		M = 0	M = 1	M = 3	M = 9
_	w_0^{\star}	0.19	0.82	0.31	0.35
	w_1^{\star}		-1.27	7.99	232.37
	w_2^{\star}			-25.43	-5321.83
	w_3^{\star}			17.37	48568.31
	w_4^{\star}				-231639.30
	w_5^{\star}				640042.26
	w_6^{\star}				-1061800.52
	w_7^{\star}				1042400.18
	w_8^{\star}				-557682.99
	w_9^{\star}				125201.43

▶ 例: sin曲线拟合(8)

• 增加L2正则

岭回归: 最小化
$$RSS_{ridge}(\lambda) = \sum_{i=0}^{N} \left(\sum_{j=0}^{M} w_j x_i^j - y_i \right)^2 + \lambda \sum_{i=0}^{M} w_j^2$$

▶ 例: sin曲线拟合(9)

• 欠拟合:模型太简单/对复杂性惩罚太多

▶例: sin曲线拟合(10)

• 不同正则参数下的训练误差vs.测试误差

▶例: sin曲线拟合(11)

• 岭回归系数

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^\star	-231639.30	-3.89	-0.03
w_5^\star	640042.26	55.28	-0.02
w_6^\star	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^\star	125201.43	72.68	0.01

例: sin曲线拟合(12)

样本数目增多时,可以考虑更复杂的 模型

9阶多项式拟合(不带正则),训练样本数N=100

▶常用正则函数

- L2IEU : $R(\boldsymbol{\theta}) = \lambda \|\boldsymbol{\theta}\|_2^2 = \lambda \sum_{j=1}^D \theta_j^2$
- L1正则: $R(\mathbf{\theta}) = \lambda |\mathbf{\theta}| = \lambda \sum_{j=1}^{D} |\theta_j|$
- L0正则: $R(\mathbf{\theta}) = \lambda \|\mathbf{\theta}\|_0$
 - 非0参数的数目
 - 不好优化,通常用L1正则近似

▶常见线性模型的损失和正则项组合

	L2损失	L1损失	Huber损失	Logistic损失	合叶损失	ε-insentive损失
L2正则	岭回归			L2正则 Logistic回归	SVM	SVR
L1正则	LASSO			L1正则 Logistic回归		
L2+L1正则	Elastic net					

▶机器学习任务的一般步骤

- 确定特征
 - 可能是最重要的步骤! (收集训练数据)
- 确定模型
 - 目标函数/决策边界形状
- 模型训练:根据训练数据估计模型参数
 - 优化计算
- 模型评估:在校验集上评估模型预测性能
- 模型应用/预测

▶模型训练

- 在训练数据上求目标函数极小值:优化
- 简单目标函数直接求解
 - 如小数据集上的线性回归
- 更复杂问题: 凸优化
 - (随机)梯度下降
 - 牛顿法/拟牛顿法
 - **–** ...

▶ 梯度下降 (Gradient Descent) 算法

- 梯度下降/最速下降算法:快速寻找函数局部极小值
 - 将函数比作一座山,我们站在某个山坡上,往四周看,从哪个方向向下走一小步,能够下降的最快。这个方向就是梯度的方向
- · 梯度下降算法: 求函数/(0)的最小值
 - -给定初始值 θ 0
 - 更新 θ , 使得 $J(\theta)$ 越来越小
 - $\mathbf{\theta}^t = \mathbf{\theta}^{t-1} \eta \nabla_{\mathbf{\theta}} J(\mathbf{\theta})$ (η : 学习率)
 - 直到收敛到 / 达到预先设定的最大迭代次数

▶梯度下降算法 (cont.)

- 下降的步伐大小(学习率)非常重要:如果太小,收敛速度慢;如果太大,可能会出现overshoot the minimum的现象
 - 如果学习率取值后发现函数值增长了,则需要减小学习率的值
- 梯度下降求得的只是局部最小值
 - 二阶导数>0,则目标函数为凸函数,局部极小值即为全局最小值
 - 随机选择多个初始值,得到函数的多个局部极小值点。多个局部极小值点的最小值为函数的全局最小值。

▶随机梯度下降

- 梯度下降算法每次学习都使用整个训练集,这样对大的训练数据集合,每次学习时间过长,对大的训练集需要消耗大量的内存。此时可采用随机梯度下降(Stochastic gradient descent, SGD),每次从训练集中随机选择一部分样本进行学习。
- 更多(随机)梯度下降算法的改进版
 - 动量(Momentum)
 - Nesterov accelerated gradient(NAG)
 - Adagrad
 - RMSprop

Adaptive Moment Estimation(Adam)...

▶模型选择与模型评估

- 同一个问题有不同的解决方案
 - 如线性回归 vs. 决策树
- 哪个更好?模型评估与模型选择
 - 在新数据点的预测误差最小
- 模型评估:已经选定最终的模型,估计它在新数据上的预测误差
- 模型选择:估计不同模型的性能,选出最好的模型

▶模型评估

sklearn.model selection.train_test_split

- 当样本足够多时,可以将训练数据分成一部分数据做校验
 - 训练集:估计模型的参数
 - 校验集:估计模型的预测误差(模型评估)

- 通常没有足够多样本,而且也很难说明多少数量的样本是 足够的
 - 可通过重采样技术来模拟校验集:交叉验证和bootstrap是重采样技术的两个代表

► K-折交叉验证

sklearn.model_selection.KFold sklearn.model_selection.GridSearchCV

• 交叉验证 (Cross Validation, CV):将训练数据分成容量大 致相等的K份 (通常K=5/10)

对每个 k = 1, 2, ..., K , 留出第k份数据 , 其余K-1份数据用于训练 , 在留的出的第k份数据上计算的预测误差 $E_k(M)$

• 交叉验证估计的误差为: $CV(M) = \frac{1}{K} \sum_{k=1}^{K} E_k(M)$

▶例:交叉验证

• sklearn.model_selection.KFold(n_splits=3, shuffle=False, random_state=None)

例:在6个样例的数据集上使用3-fold交叉验证

from sklearn.model_selection import Kfold

```
X = \text{np.array}([[1, 2], [3, 4], [1, 2], [3, 4], [5, 6], [7,8]])

y = \text{np.array}([1, 2, 3, 4, 5, 6])
```

$$kf = KFold(n_splits=3)$$

for train_index, test_index in kf.split(X):
 print("TRAIN:", train_index, "TEST:", test_index)
 X_train, X_test = X[train_index], X[test_index]
 y_train, y_test = y[train_index], y[test_index]

可以通过使用 numpy 的索引创建训练/测试集合

输出:每个折叠由两个数组组成:

第一个为 training set 另一个作为 test set

('TRAIN:', array([2, 3, 4, 5]), 'TEST:', array([0, 1]))

('TRAIN:', array([0, 1, 4, 5]), 'TEST:', array([2, 3]))

('TRAIN:', array([0, 1, 2, 3]), 'TEST:', array([4, 5]))

模型选择

- 模型选择:对多个不同的模型,计算其对应的误差 CV(M), 最佳模型为 CV(M)最小的模型。
- 模型复杂度和泛化误差的关系通常是U形曲线:

▶ 例:波士顿房价预测

• 评价指标: R2 Score (越大越好)

模型:决策树

- 树的最大深度 (max depth): 1~10

训练集性能:深度越大,性能越好

测试集性能:

最佳参数: max_depth=6

最佳结果: mean: 0.74767, std: 0.16583

▶ 小结:机器学习任务的一般步骤

- 确定特征
 - 可能是最重要的步骤! (收集训练数据)
- 确定模型
 - 目标函数/决策边界形状
- 模型训练:根据训练数据估计模型参数
 - 优化计算
- 模型评估:在校验集上评估模型预测性能

