Most Cost-Efficient and Accurate Way to Predict Rain in Australia

Nabeel Bacchus & Sammy Tawakkol

Introduction

- ML hypothesis: Can we predict if rain will occur the next day in Australia?
 - o Dataset used: Rain in Australia
- We are splitting this dataset into three different sizes: 1000, 10000, and 100000.
 - Show scalability of each instance
- AWS EC2 Instances: t2.medium, t2.large, t2.xlarge
- Google Compute: e2.medium, e2.standard-2, e2-standard-4
- Measuring Performance:
 - Accuracy of Classification Model
 - Time to train Classification Model
 - Cost for time/Cost-efficiency

Changes Made

- Original project name: "AWS & Google Cloud Instance Performance for ML Processes"
 - Changed to "Most Cost-Efficient and Accurate Way to Predict Rain in Australia"
- Original instances were t2.small, t2.medium, and t2.large for Amazon, then
 e2.small, e2.medium, and e2.standard-2 for Google, but changed to equivalents of
 medium/large/xlarge due to lack of availability on Amazon's end.

Results (Amazon, Time)

10^4

0.0093694

0.0043948

0.0248510

t2.medium

Regression

K-Near Neigh

Decision Tree

			Decision	
	t2.large	10^	4	
	Regression	0.0	099416	
	K-Near Neigh	0.0	0.0047305	
	Decision Tree	0.0	234650	
Ī				

t2.xlarge

Regression			0.0099416		
		K-Near Neigh		0.0047305	
		Decision Tree		0.0234650	
	10^5		10^6		
	C	0.09433571	1.6	68100277	
	0.01457980		0.17124041		
	(0.24671627	3.8	86633959	

			0.0094267 0.0043462		0.09503991 0.01427754	
			26	0.25350527		
)^ /	4	10^5		10^6		
.0099416		0.09445295		1.61380679		
.0047305		0.01442324		0.16761214		
.0234650		0.23333830		3.67861899		

10^4

10^5

10^6

1.69566238

0.16888775

3.53805208

Results (Google, Time)

10^4

0.0201533

0.0052483

0.0269514

e2.medium

Regression

K-Near Neigh

Decision Tree

			IN-INGAL ING	ıgıı
			Decision T	ree
	e2.standard-2 10^4 Regression 0.0116520		4	10^5
			116520	0.106
	K-Near Neigh	0.0039408		0.016

10^6

2.5758995

0.2944071

3.1139359

Decision Tree

10^5

0.1325864

0.0171631

0.2308174

	Decision	Tree	ee 0.018895		0.2025898	8
10^4		10^5	10^5		10^6	
0.0116520		0.1069	0.1069996		0.7016204	
0.0039408		0.0168335		0.0646989		
0.0181566		0.2092	0.2092190		8188	

10^4

0.0240739

0.0047155

e2.standard-4

Regression

K-Noor Noigh

10^5

0.1242056

0.0142881

10^6

0.4485327

0.0439606

0.7858159

Results (Amazon, Accuracy)

10^4

0.8105066

0.7817785

0.7460177

t2.medium

Regression

K-Near Neigh

Decision Tree

			Decision
	t2.large	10^	4
	Regression	0.82	293188
	K-Near Neigh	0.7813214	
	Nacisian Tree	0.76	2/5/26

t2.xlarge

Regression

Regression			0.8293188	
K-Near Neigh		1	0.7813214	
Decision Tree		e	0.7645486	
10^5		10^6		
0.8282288		0.8492563		
0.7936987		0.8105066		
0.7830795		0.7925053		

	K-Near N	eigh	0.7800555		0.7923977	
	Decision Tree		0.7812862		0.7747594	
0^4		10^5	10^5			
.8293188		0.8486	0.8486936		00650	
.7813214		0.7933	0.7933120		5066	
.7645486		0.7832	0.7832202		5032	
)F.O						

10^4

0.8263300

10^5

0.8466542

10^6

0.8500650

0.8105066

0.7925032

Analysis

- On average, Amazon is able to handle the smaller datasets and train them at a faster rate than Google. However, when we approach 10^6 size train/test, Google gets significantly faster.
- In terms of accuracy, Amazon, on average, is more accurate.
- In terms of cost, Amazon is a lot cheaper. Google adds up a lot per month in terms of prices.
- Google availability is difficult, whereas Amazon is easy to access across all instance locations

References

• Dataset: Rain in Australia: https://www.kaggle.com/jsphyg/weather-dataset-rattle-package

Thank You!