Basis SMEFTsim_U35 (EFT SMEFT)

Basis used in the SMEFTsim_U35 UFO models, version 3.0.0 or later. Implements Warsaw basis with U(3) flavor symmetry for all fermions. For each operator, only the lowest-order flavor structure is kept. q,u,d are the left- and right-handed quark fields. ℓ,e are left- and right-handed lepton fields. Y_l,Y_u,Y_d are the 3x3 yukawa matrices for leptons, up- and down-quarks, defined by $L_{SM} \supset \bar{d}Y_dH^\dagger q$ and analogously for the others. Quark fields are in the up-aligned basis: Y_l,Y_u are assumed diagonal at the scale of evaluation, while $Y_d=Y_d^{diag}V_{CKM}^\dagger$. Flavor indices are indicated with p,r,s,t with Einstein conventions on repeated indices. They run over 1,2,3 for all fields. This basis definition corresponds to a fixed LambdaSMEFT=1e+3 in the UFO models. Notation and conventions can vary compared to the Warsaw basis paper, see arXiv:2012.11343 for all definitions.

Sectors

The effective Lagrangian is defined as

$$\mathcal{L}_{\text{eff}} = -\mathcal{H}_{\text{eff}} = \sum_{O_i = O_i^{\dagger}} C_i O_i + \sum_{O_i \neq O_i^{\dagger}} \left(C_i O_i + C_i^* O_i^{\dagger} \right).$$

dB=dL=0

WC name	Operator	Type
cG	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}/{\rm TeV}^2$	R
cGtil	$f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}/\mathrm{TeV}^2$	${ m R}$
cW	$\varepsilon^{IJK}W_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}/\text{TeV}^{2}$	${ m R}$
cWtil	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{'K\mu}/{ m TeV}^{2}$	R
сН	$(H^{\dagger}H)^3/{ m TeV}^2$	${ m R}$
cHbox	$(H^{\dagger}H)\Box(H^{\dagger}H)/\mathrm{TeV}^2$	${ m R}$
cHDD	$(D_{\mu}H^{\dagger}H)(H^{\dagger}D^{\mu}H)/\text{TeV}^2$	R
cHG	$G^{A}_{\mu u}G^{A\mu u}H^{\dagger}H/\mathrm{TeV}^{2}$	R
cHGtil	$\widetilde{G}_{\mu\nu}^A G^{A\mu\nu} H^\dagger H / \text{TeV}^2$	R
cHW	$W^{I}_{\mu\nu}W^{I\mu\nu}H^{\dagger}H/{ m TeV}^2$	R
cHWtil	$\widetilde{W}^{I}_{\mu\nu}W^{I\mu u}H^{\dagger}H/\mathrm{TeV}^{2}$	${ m R}$
сНВ	$B^{\mu u}_{\mu u}B^{\mu u}H^{\dagger}H/{ m TeV}^2$	${ m R}$
cHBtil	$\widetilde{B}_{\mu u}B^{\mu u}H^{\dagger}H/\mathrm{TeV}^2$	${ m R}$
cHWB	$B_{\mu\nu}W^{I\mu\nu}H^{\dagger}\sigma^{I}H/\text{TeV}^{2}$	R
cHWBtil	$B_{\mu u}\widetilde{W}^{I\mu u}H^{\dagger}\sigma^{I}H/\mathrm{TeV}^{2}$	${ m R}$
ceHRe	$(Y_l^{\dagger})_{pr}(\bar{\ell}_p H e_r)(H^{\dagger} H)/\text{TeV}^2 + \text{h.c.}$	${ m R}$
ceHIm	$i(Y_l^{\dagger})_{pr}(\bar{\ell}_p H e_r)(H^{\dagger} H)/\text{TeV}^2 + \text{h.c.}$	${ m R}$
cuHRe	$(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}u_r)(H^{\dagger}H)/\text{TeV}^2 + \text{h.c.}$	R
cuHIm	$i(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}u_r)(H^{\dagger}H)/\text{TeV}^2 + \text{h.c.}$	R
cdHRe	$(Y_d^{\dagger})_{pr}(\bar{q}_p H d_r)(H^{\dagger} H)/\text{TeV}^2 + \text{h.c.}$	${ m R}$

WC name	Operator	Type
cdHIm	$i(Y_d^{\dagger})_{pr}(\bar{q}_pHd_r)(H^{\dagger}H)/\text{TeV}^2 + \text{h.c.}$	R
ceWRe	$(Y_l^{\dagger})_{pr}(\bar{\ell}_p\sigma^I H \sigma^{\mu\nu} e_r) W_{\mu\nu}^I/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
ceWIm	$i(Y_l^{\dagger})_{pr}(\bar{\ell}_p\sigma^I H \sigma^{\mu\nu} e_r) W_{\mu\nu}^I / \text{TeV}^2 + \text{h.c.}$	\mathbf{R}
ceBRe	$(Y_l^{\dagger})_{pr}(\bar{\ell}_p H \sigma^{\mu\nu} e_r) B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
ceBIm	$i(Y_l^{\dagger})_{pr}(\bar{\ell}_p H \sigma^{\mu\nu} e_r) B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cuGRe	$(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}\sigma^{\mu\nu}T^Au_r)G^A_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cuGIm	$i(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}\sigma^{\mu\nu}T^Au_r)G_{\mu\nu}^A/\text{TeV}^2 + \text{h.c.}$ $(Y_u^{\dagger})_{pr}(\bar{q}_p\sigma^I\tilde{H}\sigma^{\mu\nu}u_r)W_{\mu\nu}^I/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cuWRe	$(Y_u^{\dagger})_{pr}(\bar{q}_p\sigma^I\tilde{H}\sigma^{\mu\nu}u_r)W_{\mu\nu}^{I}/\text{TeV}^2 + \text{h.c.}$	R
cuWIm	$i(Y_u^{\dagger})_{pr}(\bar{q}_p\sigma^I \tilde{H} \sigma^{\mu\nu} u_r) W_{\mu\nu}^I/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cuBRe	$(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}\sigma^{\mu\nu}u_r)B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cuBIm	$i(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}\sigma^{\mu\nu}u_r)B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	R
cdGRe	$(Y_d^{\dagger})_{pr}(\bar{q}_p H \sigma^{\mu\nu} T^A d_r) G_{\mu\nu}^A / \text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cdGIm	$i(Y_d^{\dagger})_{pr}(\bar{q}_p H \sigma^{\mu\nu} T^A d_r) G_{\mu\nu}^A / \text{TeV}^2 + \text{h.c.}$	R
cdWRe	$(Y_d^{\dagger})_{pr}(\bar{q}_p\sigma^I H \sigma^{\mu\nu} d_r) W_{\mu\nu}^{I'}/\text{TeV}^2 + \text{h.c.}$	R
cdWIm	$i(Y_d^{\dagger})_{pr}(\bar{q}_p\sigma^I H \sigma^{\mu\nu} d_r) W_{\mu\nu}^I/\text{TeV}^2 + \text{h.c.}$	R
cdBRe	$(Y_d^{\dagger})_{pr}(\bar{q}_p H \sigma^{\mu\nu} d_r) B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cdBIm	$i(Y_d^{\dagger})_{pr}(\bar{q}_p H \sigma^{\mu\nu} d_r) B_{\mu\nu}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cHl1	$(H^{\dagger}i\overrightarrow{D}_{\mu}H)(\bar{\ell}_{p}\gamma^{\mu}\ell_{p})/\text{TeV}^{2}$	R
cH13	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\overline{\ell}_{p}\gamma^{\mu}\sigma^{I}\ell_{p})/\mathrm{TeV}^{2}$	R
cHq1	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{q}_p \gamma^\mu q_p) / \mathrm{TeV}^2$	\mathbf{R}
cHq3	$(H^\dagger i \overleftrightarrow{D}_\mu^I H) (\overline{q}_p \gamma^\mu \sigma^I q_p) / \mathrm{TeV}^2$	R
сНе	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\overline{e}_p \gamma^\mu e_p) / \mathrm{TeV}^2$	${ m R}$
cHu	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{p})/\text{TeV}^{2}$	R
cHd	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{p})/\mathrm{TeV}^{2}$	R
cHudRe	$(Y_u Y_d^{\dagger})_{pr} (\tilde{H}^{\dagger} i D_u H) (\bar{u}_p \gamma^{\mu} d_r) / \text{TeV}^2 + \text{h.c.}$	R
cHudIm	$i(Y_u Y_d^{\dagger})_{pr} (\tilde{H}^{\dagger} i D_{\mu} H) (\bar{u}_p \gamma^{\mu} d_r) / \text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cll	$(\bar{\ell}_p \gamma_\mu \ell_p) (\bar{\ell}_r \gamma^\mu \ell_r) / \mathrm{TeV}^2$	R
cll1	$(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{\ell}_r \gamma^\mu \ell_p)/\mathrm{TeV}^2$	R
clq1	$(\bar{\ell}_p \gamma_\mu \ell_p) (\bar{q}_r \gamma^\mu q_r) / \text{TeV}^2$	\mathbf{R}
clq3	$(\bar{\ell}_{n}\gamma_{\mu}\sigma^{I}\ell_{n})(\bar{q}_{r}\gamma^{\mu}\sigma^{I}q_{r})/\text{TeV}^{2}$	R
cqq1	$(\bar{q}_p\gamma_\mu q_p)(\bar{q}_r\gamma^\mu q_r)/\text{TeV}^2$	R
cqq11	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_r \gamma^\mu q_p)/{\rm TeV}^2$	\mathbf{R}
cqq3	$(\bar{q}_p \gamma_\mu \sigma^I q_p)(\bar{q}_r \gamma^\mu \sigma^I q_r)/\text{TeV}^2$	\mathbf{R}
cqq31	$(\bar{q}_p \gamma_\mu \sigma^I q_r)(\bar{q}_r \gamma^\mu \sigma^I q_p)/\text{TeV}^2$	R
cee	$(\bar{e}_p \gamma_\mu e_p)(\bar{e}_r \gamma^\mu e_r)/\mathrm{TeV}^2$	R
cuu	$(\bar{u}_p \gamma_\mu u_p)(\bar{u}_r \gamma^\mu u_r)/\text{TeV}^2$	\mathbf{R}
cuu1	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_r \gamma^\mu u_p)/\text{TeV}^2$	R
cdd	$(ar{d_p}\gamma_\mu d_p)(ar{d_r}\gamma^\mu d_r)/{ m TeV}^2$	R
cdd1	$(ar{d}_p\gamma_\mu d_r)(ar{d}_r\gamma^\mu d_p)/{ m TeV}^2$	R
ceu	$(\bar{e}_p \gamma_\mu e_p)(\bar{u}_r \gamma^\mu u_r)/{ m TeV}^2$	R

WC name	Operator	Type
ced	$(\bar{e}_p \gamma_\mu e_p)(\bar{d}_r \gamma^\mu d_r)/\text{TeV}^2$	R
cud1	$(\bar{u}_p \gamma_\mu u_p)(\bar{d}_r \gamma^\mu d_r)/\text{TeV}^2$	\mathbf{R}
cud8	$(\bar{u}_p \gamma_\mu T^A u_p) (\bar{d}_r \gamma^\mu T^A d_r) / \text{TeV}^2$	\mathbf{R}
cle	$(\bar{\ell}_p \gamma_\mu \ell_p)(\bar{e}_r \gamma^\mu e_r)/{ m TeV}^2$	R
clu	$(\bar{\ell_p}\gamma_\mu\ell_p)(\bar{u}_r\gamma^\mu u_r)/{ m TeV}^2$	R
cld	$(\bar{\ell}_p \gamma_\mu \ell_p) (\bar{d}_r \gamma^\mu d_r) / \text{TeV}^2$	R
cqe	$(\bar{q}_p \gamma_\mu q_p)(\bar{e}_r \gamma^\mu e_r)/\text{TeV}^2$	R
cqu1	$(\bar{q}_p \gamma_\mu q_p)(\bar{u}_r \gamma^\mu u_r)/{ m TeV}^2$	R
cqu8	$(\bar{q}_p \gamma_\mu T^A q_p)(\bar{u}_r \gamma^\mu T^A u_r)/\text{TeV}^2$	R
cqd1	$(\bar{q}_p\gamma_\mu q_p)(d_r\gamma^\mu d_r)/{ m TeV}^2$	R
cqd8	$(\bar{q}_p \gamma_\mu T^A q_p) (\bar{d}_r \gamma^\mu T^A d_r) / \text{TeV}^2$	R
cledqRe	$(Y_l^{\dagger})_{pr}Y_{d,st}(\bar{\ell}_p^I e_r)(\bar{d}_s q_t^I)/\text{TeV}^2 + \text{h.c.}$	R
${\tt cledqIm}$	$i(Y_l^{\dagger})_{pr}Y_{d,st}(\bar{\ell}_p^I e_r)(\bar{d}_s q_t^I)/\text{TeV}^2 + \text{h.c.}$	R
cquqd1Re	$(Y_u^{\dagger})_{pr}(Y_d^{\dagger})_{st}(\bar{q}_p^I u_r)(\bar{q}_s^J d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
cquqd1Im	$i(Y_u^{\dagger})_{pr}(Y_d^{\dagger})_{st}(\bar{q}_p^I u_r)(\bar{q}_s^J d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cquqd11Re	$(Y_u^{\dagger})_{sr}(Y_d^{\dagger})_{pt}(\bar{q}_p^Iu_r)(\bar{q}_s^Jd_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
cquqd11Im	$i(Y_u^{\dagger})_{sr}(Y_d^{\dagger})_{pt}(\bar{q}_p^I u_r)(\bar{q}_s^J d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cquqd8Re	$(Y_u^{\dagger})_{pr}(Y_d^{\dagger})_{st}(\bar{q}_p^I T^A u_r)(\bar{q}_s^J T^A d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cquqd8Im	$i(Y_u^{\dagger})_{pr}(Y_d^{\dagger})_{st}(\bar{q}_p^I T^A u_r)(\bar{q}_s^J T^A d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cquqd81Re	$(Y_u^{\dagger})_{sr}(Y_d^{\dagger})_{pt}(\bar{q}_p^I T^A u_r)(\bar{q}_s^J T^A d_t) \varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
cquqd81Im	$i(Y_u^{\dagger})_{sr}(Y_d^{\dagger})_{pt}(\bar{q}_p^I T^A u_r)(\bar{q}_s^J T^A d_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
clequ1Re	$(Y_l^{\dagger})_{pr}(Y_u^{\dagger})_{st}(\bar{\ell}_p^I \hat{e}_r)(\bar{q}_s^J u_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	\mathbf{R}
clequ1Im	$i(Y_l^{\dagger})_{pr}(Y_u^{\dagger})_{st}(\bar{\ell}_p^I e_r)(\bar{q}_s^J u_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
clequ3Re	$(Y_l^{\dagger})_{pr}(Y_u^{\dagger})_{st}(\bar{\ell}_p^I\sigma_{\mu\nu}e_r)(\bar{q}_s^J\sigma^{\mu\nu}u_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R
clequ3Im	$i(Y_l^{\dagger})_{pr}(Y_u^{\dagger})_{st}(\bar{\ell}_p^I\sigma_{\mu\nu}e_r)(\bar{q}_s^J\sigma^{\mu\nu}u_t)\varepsilon_{IJ}/\text{TeV}^2 + \text{h.c.}$	R