ConvE for Knowledge Base Completion

Tim Dettmers

Knowledge Base Completion (KBC)

Data

---- Train data

! · · · · Test data

? · · · · False candidates

?! · · · · True candidates

Goal: Rank links

2

3.

4. ••••

5. • • • •

6.

Evaluation

Fraction of •••• in Top 10 Ranks

Problems with Language

Robustness of KBC models

DistMult on FB15k:

2015 0.58 Hits@10

2015 0.79 Hits@10

2016 0.84 Hits@10 (not replicable)

2017 0.81 Hits@10

2017 0.82 Hits@10

Evaluation Time of KBC Models

- Training one epoch on 150k samples: 1 min
- Evaluating one epoch on 5k samples: 15 mins

Making KBC Fast and Robust

Fast: 1-N training

Robust: Computer vision methodology

ConvE

Inital Results

	WN18					FB15k				
_	MR	MRR	@10	Hits @3	@1	MR	MRR	@10	Hits @3	@1
DistMult [31] ComplEx [30] Gaifman [22] ANALOGY [17] R-GCN [23]	902 - 352 -	0.822 0.941 - 0.942 0.814	0.936 0.947 0.939 0.947 0.964	0.914 0.936 - 0.944 0.929	0.728 0.936 0.761 0.939 0.697	97 - 75 - -	0.654 0.692 - 0.725 0.696	0.824 0.840 0.842 0.854 0.842	0.733 0.759 - 0.785 0.760	0.546 0.599 0.692 0.646 0.601
ConvE Inverse Model	504 567	0.942 0.861	0.955 0.969	0.947 0.968	0.935 0.764	64 1897	0.745 0.706	0.873 0.737	0.801 0.718	0.670 0.689

The Inverse Relationship Problem

```
r1
    e1
                                       e2
(Special Bird, specialization of, Bird Class I)
(Bird Class I, specialization of, Bird Class II)
             inverse relationship
(Bird Class I, generalization of, Special Bird)
(Bird Class II, generalization of, Bird Class I)
                                       e1
```

Results on Better Datasets

			WN18RR			FB15k-237				
_			Hits					Hits		
	MR	MRR	@10	@3	@1	MR	MRR	@10	@3	@1
DistMult [31]	5110	0.425	0.491	0.439	0.389	254	0.241	0.419	0.263	0.155
ComplEx [30]	5261	0.444	0.507	0.458	0.411	248	0.240	0.419	0.263	0.152
R-GCN [23]	_	_	_	_	_	_	0.248	0.417	0.258	0.153
ConvE Inverse Model	5277 13219	0.464 0.359	0.479 0.359	0.429 0.359	0.385 0.359	246 7148	0.316 0.009	0.491	0.350	0.239 0.006
iliverse Model	13219	0.339	0.339	0.339	0.559	/140	0.009	0.012	0.010	0.006

		YA	AGO3-	10		Countries		
	Hits					AUC-PR		
	MR	MRR	@10	@3	@1	<u>S1</u>	S2	S3
DistMult [34] ComplEx [33]						1.000 ± 0.000 0.965±0.021		
ConvE ReverseModel		0.523 0.015				1.000±0.000 -	0.985±0.013 -	0.856 ±0.051 -

Ablation Study

Table 6: Ablation study on FB15k-237.

Ablation	Hits@10
Full ConvE	0.491
Hidden dropout 1-N scoring Input dropout	-0.055 -0.019 -0.017
Feature map dropout Label smoothing	-0.005 -0.001

Why Are Results on WN18RR Bad?

ConvE good for nodes with high PageRank!

Table 5: Mean PageRank $\times 10^{-3}$ of nodes in the test set vs reduction in error in terms of AUC-PR or Hits@10 of ConvE wrt. DistMult.

Dataset	PageRank	Error Reduction
WN18RR	0.104	0.91
WN18	0.125	1.28
FB15k	0.599	1.23
FB15RR	0.733	1.17
YAGO3-10	0.988	1.91
Countries S3	1.415	3.36
Countries S1	1.711	0
Countries S2	1.796	18.6

Robustness of KBC models

ConvE FB15k-237:

 Random sample for input [0.1, 0.5], feature map [0.0, 0.5], and hidden dropout [0.1, 0.5]:

0.45 - 0.49 Hits@10

Previous State-of-the-art: 0.42

(Leonardo DiCaprio, awarded to, Academy Award for Best Actor)

Word Level KBC: Results

FB15k-237 (only words)

- Normal ConvE: 0.08 Hits@10
- Word-level ConvE: 0.32 Hits@10

Conclusion

ConvE:

- Fast and robust training
- Good predictive performance
- Good for high PageRank nodes
- Word-level models might improve performance

Questions & Answers

Follow me on Twitter:

@Tim_Dettmers

Contact: tim.dettmers@gmail.com

Thanks to my collaborators!

Pasquale Minervini

@PMinervini

Pontus Stenetorp

Sebastian Riedel

@riedelcastro