

Bangladesh University of Business & Technology

Group ID	14
ID & Name	21225103506 - Abdullah Al Mahmud Joy, 21225103466 - Md Faizer Islam, 21225103212 - Md Sunzid Islam
Title of the project	Pothole Detection Using CNN, Transfer learning

Author	Dataset	Metho ds	Proposed Architecture	Maximum Accuracy	Minimum Accuracy	Remarks / Gaps
Chemikala Saisree, Dr Kumaran U	a mix of images of muddy roads (sourced from the internet) and highway roads (from Kaggle)	ResNet 50, Incepti onRes NetV2, VGG19	Pothole Detection Using Deep Learning Classification Method.	98%	97%	Future work includes expanding the training data and utilizing advanced CNNs, such as Xception and MobileNet, to enhance accuracy. It also highlights challenges like overfitting and the lack of muddy road datasets.
MohanPrakash B1*, Sriharipriya K.C1	Roboflow Pothole Dataset	YOLO X, GLCM ,SVM	Enhanced pothole detection system using YOLOX algorithm	85.6%		The study highlights the lack of evaluation on detection and inference time in models like YOLOv3, YOLOv4, YOLOv5, and YOLOX-nano—crucia I factors for real-time pothole detection applications.
Chandra S1*, K Dubey K2, Agarwal G3, Chakraborty N4	India-road -specific drivable-ar ea segmentat	YOLOV 5, Local Binary Pattern	Pothole Detection in Drivable Area using Deep Learning	84.5%		There's a clear research gap in Indian highway-specific road sign identification and in building robust

	ion dataset	(LBP) + SVM				models that perform well under diverse environmental conditions. Future work should also explore advanced augmentation techniques and better sensor data integration for autonomous systems.
Rodrigo Moraes, Lucas Gauer, Diego R. Lucio, Guilherme Z. Bueno, Paulo R. S. Mendonça, Ana Carolina L. Oliveira, Thiago R. R. Marques, Adriano M. C. Vieira	Own dataset of 9,000 images (collected with low-cost cameras on vehicles)	YOLOV 3, YOLOV 4, Faster R-CNN , SSD Mobile Net	Pothole detection system using YOLOv4-Tin y for real-time deployment on embedded systems	92.5% (YOLOv4)	74.8% (SSD MobileNet)	Evaluated only on Brazilian road conditions generalization to other regions not tested. Real-time performance on extremely low-power devices still limited
Md. Akhlas Uddin, Mohammed Forhad Uddin, Abdullah Al Mahmud, Md. Golam Rabiul Alam, et al	Kaggle pothole dataset + self-collect ed images (various road conditions	CNN, ResNet 50, VGG16 , Mobile NetV2, YOLOv 5	Deep learning framework combining YOLOv5 for detection and transfer learning models for classification	96.8% (YOLOv5-b ased detection)	85% (basic CNN)	Focused mainly on image-based detection; does not integrate with IoT/real-time road monitoring systems.
Muhammad Haroon Asad , Saran Khaliq , Muhammad Haroon Yousaf , Muhammad Obaid Ullah , and Afaq Ahmad	Pothole image dataset consisting of 665 images with shadows, vehicles, and illuminatio n variations.	YOLOV 1, YOLOV 2, YOLOV 3, YOLOV 4, Tiny-Y OLOV4 , YOLOV 5, SSD-m obilene tv2.	Real-time pothole detection using deep learning models deployed on OAK-D camera with Raspberry Pi for Al-on-the-ed ge.	95%	85%	Dataset is relatively small (665 images) and may lack sufficient diversity for broader real-world generalizability across different road types or regions.

Jiahe Guang1,3,*, Xingrui He1,4, Zeng Li [2, 5], Shiyu He [2, 6]	U.S. database of 501 road images	local attentio n ResNet 18-CN N-LST M	Road Pothole Detection Model Based on Local Attention ResNet18-C NN-LSTM	99.2188%	93.443%	Not addressed in the paper.
Rufus Rubin,¹ Chinnu Jacob,¹ Sumod Sundar,¹ Gabriel Stoian,² Daniela Danciulescu,2, and Jude Hemanth³	A merged collection comprisin g the MakeML pothole dataset, a custom dataset, and a Kaggle dataset	YOLO- Xceptio n with Attentio n Mecha nisms	Pothole Detection and Assessment on Highways Using an Enhanced YOLO Algorithm With Attention Mechanism	99%	26%	Not addressed in the paper.
Oche Alexander Egaji a a , 1 , * , Gareth Evans a , Mark Graham Griffiths a , Gregory Islas b	O. A. Egaji et al. (2021)	Naïve Bayes, SVM, Logistic Regres sion, KNN, RF	Real-time machine learning-bas ed approach for pothole detection	88.89%	83.33%	Simulation-based models lack real-world validation, which limits their generalizability. Small datasets and train-test overlap raise concerns about model reliability and accuracy.
Nachuan Ma 1, Jiahe Fan 1, Wenshuo Wang 2, Jin Wu 3, Yu Jiang 4, Lihua Xie 5 and Rui Fan 1, *	Multiple open-acce ss datasets including Pothole-6 00 (multi-mod al with 55 groups of color images and transform ed disparity images), CCSAD (500 GB	Classic al 2-D image proces sing (e.g., thresho lding, morpho logical operati ons), 3-D point cloud modelli ng and segme	Taxonomy of road imaging systems (cameras, laser scanners, Microsoft Kinect) and pothole detection algorithms categorized into classical 2-D, 3-D point cloud, machine/dee p learning, and hybrid.	98.95%	80%	Classical 2-D and 3-D approaches are outdated and sensitive to environmental factors like illumination; future focus on hybrid methods combining 3-D reconstruction with semantic segmentation

	of high-resol ution stereo images with IMU and GPS data), Maeda's dataset (9,053 color road images with 15,435 damages), and others for classificati on and segmentat ion tasks.	ntation (e.g., surface fitting, RANS AC), machin e/deep learnin g (e.g., SVM, CNNs for classifi cation, object detecti on like YOLO/ SSD/F aster R-CNN , semant ic				
Anas Al-Shaghouri, Rami Alkhatib, Samir Berjaoui	1087 images (Lebanese roads + internet sources) with more than 2000	ic segme ntation like U-Net/ DeepL abv3+), and hybrid approa ches. SSD-T ensorFl ow, YOLOv 3-Dark net53, YOLOv 4-CSP	Real-time pothole detection using deep learning (YOLO-base d)	85.39% mAP (YOLOv4)	32.5% mAP (SSD-Ten sorFlow)	Dataset size relatively small; needs larger and more diverse images for robustness. Limited testing under varied
Tian Guana , Jianyuan Caia , Yu Wanga , Wei Yanga,* , Xiaobo Changb , Yi Hana	potholes 6,848 road surface pothole condition recognitio n datasets constructe	Darkne t53 Improv ed Shuffle Netv2 with group attention	Pavement pothole detection system integrating GASB-Shuffl eNetv2 for pothole state	98.61%	80.26%	weather/lighting conditions. Ranging accuracy decreases significantly with increasing distance (e.g., error up to 13.73% at 20 m), limiting effectiveness for long-range

d using a vehicle-m ounted binocular camera, suppleme nted with open datasets for pavement pothole detection.	block (GASB), copyrami d Formula in Center Net	recognition (non-distress ed, severe, completely broken), PF-CenterNe t for pothole area detection, and a binocular vision-based model for distance estimation.		perception in high-speed scenarios.
	block matchi ng and weight ed least square			
	s filter for disparit y and distanc e estimat ion.			