

Mục tiêu

- ✓ Học phần nhằm cung cấp cho người học:
- ✓ Những kiến thức về lý thuyết đồ thị,
- Mô hình hóa các bài toán thực tế, vận dụng các thuật toán của lý thuyết đồ thị và tối ưu hóa lời giải,
- ✓ Đánh giá được tính đúng đắn của thuật toán,
- ✓ Áp dụng được kiến thức cơ bản về đồ thị làm nền tảng cho kiến thức chuyên ngành công nghệ thông tin,
- ✓ Vận dụng lý thuyết đồ thị để thiết kế mạng máy tính, mạng ảo trong các hệ thống tính toán.

Nội dung môn học

- √ Đồ thị
- ✓ Các bài toán về chu trình
- ✓ Đồ thị phẳng
- ✓ Cây Cây bao trùm
- ✓ Cây bao trùm nhỏ nhất
- ✓ Đường đi ngắn nhất
- ✓ Một số bài toán ứng dụng

Tài liệu tham khảo

Tài liệu/giáo trình chính, bắt buộc:

■ [1] Kenneth H. Rosen. 2012, DISCRETE MATHEMATICS AND ITS APPLICATIONS, SEVENTH EDITION, The McGraw-Hill Companies, Inc.,

Tài liệu tham khảo khác:

■ [2] Jean Gallier, 2019, DISCRETE MATHEMATICS, SECOND EDITION IN PROGRESS, Spinger

Đồ thị

Môn học: Lý thuyết đồ thị

GV: Lê Mậu Long

Nội dung

- ✓ Định nghĩa đồ thị.
- ✓ Biểu đồ.
- ✓ Bậc của đỉnh
- ✓ Ma trận kề.
- ✓ Đường và chu trình
- ✓ Sự liên thông
- √ Đồ thị có hướng

Định nghĩa

- Đồ thị G (Graph) là một bộ gồm 2 tập hợp V và E, trong đó:
 - V là tập hợp các đỉnh (Vertices),
 - $E \subseteq V \times V$ là tập hợp các *cạnh* (Edges) nối 2 đỉnh.

Khi đó ta ký hiệu G = (V, E) và được gọi là đồ thị vô hướng.

Ví dụ: Mạng máy tính, mạng xã hội, website, mạng lưới giao thông.

Định nghĩa

- Cạnh e nối 2 đỉnh v và w
 - o v và w là 2 đỉnh kể nhau
 - \circ *e* là *cạnh tới* v và w, ký hiệu là $e = \overline{vw}$ hay v = w
- Cạnh $e = \overline{vv}$ tương ứng 2 đỉnh trùng nhau được gọi là cạnh vòng tại v.
- Hai cạnh phân biệt nối cùng 1 cặp đỉnh được gọi là song song.

Định nghĩa

- Đồ thị không có cạnh vòng và cạnh song song được gọi là đơn đồ thị (simple graph), ngược lại gọi là đa đồ thị (multigraph).
- Đơn đồ thị mà mọi cặp đỉnh đều kề nhau được gọi là đồ thị đầy đủ (complete graph), ký hiệu là K_n .
- Đồ thị G' = (V', E') được gọi là đồ thị con (subgraph) của đồ thị G = (V, E) nếu $V' \subset V$ và $E' \subset E$.

Biểu đô

Một đồ thị thường được biểu diễn bằng một biểu đồ như sau:

- Một đỉnh được biểu diễn bằng một điểm,
- Một cạnh được biểu diễn bằng một đoạn nối hai đỉnh tương ứng.

Xét đỉnh v của đồ thị G, bậc của đỉnh v là số cạnh tới v, trong đó cạnh vòng được tính là 2, ký hiệu là d(v).

- Đỉnh có bậc bằng 0 gọi là đỉnh cô lập,
- Đỉnh có bậc bằng 1 gọi là đỉnh treo, cạnh tương ứng gọi là cạnh treo.
- Đồ thị mà mọi đỉnh đều là đỉnh cô lập được gọi là đồ thị rỗng (Null graph).

■Ví dụ

$$d(A) = 5$$

 $d(B) = 5$
 $d(C) = 4$
 $d(D) = 3$
 $d(X) = 1$
 $d(Y) = 0$

Định lý

Cho đồ thị G = (V, E), tổng bậc của tất cả các đỉnh bằng 2 lần số cạnh

$$\sum_{v \in V} d(v) = 2|E|$$

CM:

Mỗi cạnh tham gia đồ thị làm tăng tổng bậc là 2

Hệ quả

Cho đồ thị G = (V, E), ta có:

- a) Tổng bậc của tất cả các đỉnh bậc lẻ của G là một số chẵn,
- b) Số đỉnh bậc lẻ của G là một số chẵn,
- c) Nếu G là đơn đồ thị đầy đủ có n đỉnh thì có n(n-1)/2 cạnh CM:
- a) Phân hoạch $V = V_{ch\tilde{a}n} \cup V_{l\hat{e}}$, ta có:

$$2|E| = \sum_{v \in V} d(v) = \sum_{v \in V_{ch^{\tilde{n}}}} d(v) + \sum_{v \in V_{l^{\tilde{n}}}} d(v)$$

- b) Suy ra từ a)
- c) Ta có $2|E| = \sum_{v \in V} d(v) = \sum_{v \in V} (n-1) = n(n-1)$

Ví dụ

Cho đồ thi G = (V, E) có 24 cạnh, mọi đỉnh đều có bậc là 4, tìm số đỉnh?

Ta có

$$2|E| = \sum_{v \in V} d(v) = 4|V|$$

$$\Rightarrow |V| = \frac{|E|}{2} = \frac{24}{2} = 12$$

Ma trận kề

• Cho đồ thị G=(V,E) có n đỉnh v_1,v_2,\ldots,v_n . Ma trận kề (adjacency matrix) của G ứng với thứ tự các đỉnh là ma trận

$$M = [m_{ij}]; \quad v \acute{o}i \ i, j = 1, 2, ..., n$$

Trong đó $m_{ij}=$ số cạnh nối đỉnh v_i với v_j , cạnh vòng được tính là 2

Ví dụ

Ma trận kề

Định lý

Đồ thị G=(V,E) với $V=\{v_1,v_2,\dots,v_n\}$ có ma trận kề M. Tổng các phần tử trên dòng (hay cột) thứ i của ma trận liên kết M bằng bậc của đỉnh v_i

$$\sum_{j=1}^{n} m_{ij} = \sum_{j=1}^{n} m_{ji} = d(v_i); \quad i = 1, 2, ..., n$$

CM: theo định nghĩa ma trận liên kết

Đường và chu trình

Đường (path)

Cho đồ thị G, một đường P trong G là 1 dãy các cạnh e_1, e_2, \dots, e_k đôi một khác nhau, trong đó

$$e_i=\overline{v_{i-1}v_i}; \qquad i=1,\dots,k$$
 Ký hiệu
$$P=v_0\frac{e_1}{-v_1}v_1\frac{e_2}{-v_2}v_2\dots \frac{e_k}{-v_k}v_k$$
 hay
$$P=v_0v_1\dots v_k$$

Khi đó k được gọi là độ dài của đường P, ký hiệu l(P) = k. Một đỉnh được xem là một đường có độ dài bằng 0.

Đường và chu trình

Chu trình (cycle, circuit)

Cho đồ thị G, một chu trình trong G là một đường trong G có dạng

$$C = v_0 v_1 \dots v_k v_0$$

Đối với 1 chu trình, có thể xuất phát từ một đỉnh bất kỳ:

$$C = v_0 v_1 \dots v_k v_0 = v_1 v_2 \dots v_k v_0 v_1 = v_i v_{i+1} \dots v_k v_0 \dots v_{i-1} v_i$$

Một chu trình (đường) được gọi là đơn giản (simple) nếu nó đi qua một đỉnh không quá một lần.

Sự liên thông

- Một đồ thị G = (V, E) được gọi là *liên thông* (connected) nếu giữa hai đỉnh bất kỳ trong G luôn tồn tại một đường nối chúng.
- Trên tập V ta xét một quan hệ ~

$$\forall v, w \in V, \qquad v \sim w \ ? \exists P = v \dots w \subset G$$

Có thể kiểm chứng được ~ là một quan hệ tương đương.

- Mỗi lớp tương đương là một đồ thị con liên thông của G được gọi là thành phần liên thông (connected component) của G.
- G liên thông $\Leftrightarrow G$ chỉ có đúng một thành phần liên thông.

- ■Đồ thị G = (V, E), nếu mỗi cạnh $e \in E$ là một cặp thứ tự (v, w) với $v, w \in V$ thì ta nói e là cạnh có hướng, ký hiệu $e = \overrightarrow{vw}$ và G được gọi là đồ thị có hướng.
- Xét cạnh $e = \overrightarrow{vw}$,
 - Đỉnh v được gọi đỉnh đầu của e và cạnh e tới ngoài v,
 - Đỉnh w được gọi đỉnh cuối của e và cạnh e tới trong w.
- Xét $v \in V$
 - Bậc ngoài của v : $d_{out}(v) = Số$ cạnh tới ngoài v
 - Bậc trong của v : $d_{in}(v) = Số$ cạnh tới trong v

Đỉnh v được gọi là *cân bằng* nếu $d_{in}(v) = d_{out}(v)$

Định lý

Cho G là đồ thị có hướng, tổng bậc trong và tổng bậc ngoài của tất cả các đỉnh thì bằng nhau và bằng số cạnh.

$$\sum_{v \in V} d_{in}(v) = \sum_{v \in V} d_{out}(v) = |E|$$

CM: Mỗi cạnh tới trong một đỉnh và tới ngoài một đỉnh.

 Đồ thị có hướng G được gọi là cân bằng nếu và chỉ nếu mọi đỉnh đều cân bằng.

■ Cho đồ thị có hướng G = (V, E) có n đỉnh $v_1, v_2, ... v_n$. Ma trận kê (adjacency matrix) của G ứng với thứ tự các đỉnh là ma trận

$$M = [m_{ij}]; \quad v \circ i \ i, j = 1, 2, ..., n.$$

Trong đó $m_{ij} = \text{số cạnh có đỉnh đầu là } v_i$ và đỉnh cuối là v_i

Ví dụ: A

$$d_{out}(A) = 2,$$
 $d_{in}(A) = 1$
 $d_{out}(B) = 1,$ $d_{in}(B) = 2$
 $d_{out}(C) = 2,$ $d_{in}(C) = 1$
 $d_{out}(D) = 1,$ $d_{in}(D) = 2$

$$d_{out}(A) = 2, \quad d_{in}(A) = 1$$

$$d_{out}(B) = 1, \quad d_{in}(B) = 2$$

$$d_{out}(C) = 2, \quad d_{in}(C) = 1$$

$$d_{out}(D) = 1, \quad d_{in}(D) = 2$$

$$M = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ C & 1 & 1 & 0 & 0 \\ D & 0 & 1 & 0 \end{bmatrix} 1$$

$$1 = 2 + 1 = 2$$

$$1 = 2 + 1 = 2$$

Định lý

Cho đồ thị có hướng G với ma trận kề $M=\left[m_{ij}\right]$; với i,j=1,2,...,n. Tổng các phần tử trên dòng (cột) thứ i bằng bậc ngoài (trong) của đỉnh v_i với i=1,2,...,n.

$$\sum_{j=1}^{n} m_{ij} = d_{out}(v_i)$$

$$\sum_{i=1}^{n} m_{ji} = d_{in}(v_i)$$

CM: từ định nghĩa

- Xét đồ thị có hướng G
 - \circ Một đường có hướng trong G là một dãy các đỉnh $v_0v_1\dots v_k$ sao cho các cạnh có hướng đôi một khác nhau.
 - Một chu trình trong G là một đường có hướng có dạng

$$C = v_0 v_1 \dots v_k v_0$$

Một đồ thị có hướng được gọi là liên thông mạnh (strongly connected) nếu giữa 2 đỉnh bất kỳ luôn tồn tại đường nối chúng.

- Xét đồ thị có hướng G
 - Một đồ thị có hướng được gọi là liên thông nếu đồ thị vô hướng tương ứng liên thông.
 - Một đồ thị có hướng được gọi là đầy đủ nếu đồ thị vô hướng tương ứng đầy đủ.

WIT TO THE REAL PROPERTY OF THE PARTY OF THE

Tóm tắt

- ✓ Định nghĩa đồ thị.
- ✓ Biểu đồ.
- ✓ Bậc của đỉnh
- ✓ Ma trận kề.
- ✓ Đường và chu trình
- ✓ Sự liên thông
- √ Đồ thị có hướng