# B38DB: Digital Design and Programming Introduction & Overview

#### Mustafa Suphi Erden

Heriot-Watt University
School of Engineering & Physical Sciences
Electrical, Electronic and Computer Engineering

Room: EM 2.01

Phone: 0131-4514159

E-mail: m.s.erden@hw.ac.uk



#### **Course Structure**

- Lecturer: Mustafa Suphi Erden
  - EM 2.01, m.s.erden@hw.ac.uk
  - Lecture:
    - Monday (Online): 10:00-11:00
  - Laboratory:
    - Friday (Online): 10:00-12:00
  - Tutorial:
    - Thursday (Online): 9:00-10:00
  - Tutors:
    - Nathan Western [NW] (nw29@hw.ac.uk)
    - Borja Marin [BM] (bm86@hw.ac.uk)



#### **Aim of Course**

- To develop knowledge and skills in digital design and programming targeted at implementation
- Theoretical learning
  - Digital circuits (as in computers) and building blocks
  - Combinational logic, sequential logic, datapath components such as adders, multipliers, arithmetic logic units (ALUs), and finally register transfer level (RTL) design
  - Simple data-path (core of a processor)
- Practical learning
  - Design and implementation of digital circuits using a logic simulator (LabSim)



#### **Course Assessment**

# Course-Work (100%):

- 1) Lab-1: 15% Week 3
- 2) Lab-2: 15% Week 5
- 3) Lab-3: 20% Week 8
- 4) Take-Home Test: 30% Week 10
- 6) Lab-4: 20% Week 11

Lab report and test submissions will be through Turnitin in Vision.

Lab reports are always due in two weeks after the lab.



#### Labs

- Laboratory Worksheets will be available in Vision in advance of the lab hours.
- There will be dedicated online lab sessions where tutors will be available to help you and answer your questions.
- Laboratory Worksheets will have parts to fill in and report. You need to fill these in and submit the file through Turnitin in Vision.
- Lab work are manageable for you to do on your own any time you wish. You do not need to wait for the lab sessions to do the lab work. Lab sessions are just to support you in case you have any problems.
- Submission Deadline: Two weeks after each lab session.



# **Planning**

#### [B38DB] Edinburgh Campus Planning – 2021 Virtual Classroom

| Week/<br>Date                   | Learning Units <u>Chapters</u> Videos: V1-V15  Lecture Slides: LS1-LS14 | Videos and<br>Lecture<br>Slides | Live Online Lecture Sessions (Videos should be watched prior to the lecture!) | Assessments<br>(Live Online Lab Sessions)                                |
|---------------------------------|-------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Week 1<br>13 <sup>th</sup> Sept | Introduction – Digital Signals Combinational Logic Design – Logic Gates | V1, V2<br>LS1, LS2              | <u>Lecture:</u><br>Monday, 10am-11am                                          |                                                                          |
| Week 2<br>20th Sept             | Decoders, Multiplexers<br>Combinational Logic Design –<br>Karnaugh Maps | V3, V4<br>LS3, LS4              | Lecture: Monday, 10am-11am Tutorial: Thursday, 9am-10am                       | <u>Lab 0</u> (0%) Self-Study: LogiSim Intro and Videos Friday: 10am-12pm |
| Week 3<br>27 <sup>th</sup> Sept | Sequential Logic Design – Flip Flops,<br>Finite State Machines          | V5, V6<br>LS5, LS6              | Lecture: Monday, 10am-11am Tutorial: Thursday, 9am-10am                       | <u>Lab 1</u> (15%)<br>Decoders and Multiplexers<br>Friday: 10am-12pm     |
| Week 4<br>4 <sup>th</sup> Oct   | Datapath Components – Registers                                         | V7<br>LS7                       | Lecture: Monday, 10am-11am Tutorial: Thursday, 9am-10am                       |                                                                          |
| Week 5<br>11 <sup>th</sup> Oct  | Sequential Logic Design –<br>Controller Design                          | V8<br>LS8                       | Lecture: Monday, 10am-11am Tutorial: Thursday, 9am-10am                       | <u>Lab 2</u> (15%)<br>Multi Function Registers<br>Friday: 10am-12pm      |
| Week 6<br>18 <sup>th</sup> Oct  | Consolidation Week                                                      |                                 |                                                                               |                                                                          |



# **Planning**

#### [B38DB] Edinburgh Campus Planning – 2021 Virtual Classroom

| Week/<br>Date                   | Learning Units <u>Chapters</u> Videos: V1-V15  Lecture Slides: LS1-LS14     | Videos and<br>Lecture<br>Slides | Live Online Lecture Sessions (Videos should be watched prior to the lecture!) | Assessments<br>(Live Online Lab Sessions)        |
|---------------------------------|-----------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|
| Week 7<br>25 <sup>th</sup> Oct  | Sequential Logic Design – Controller<br>Examples;<br>Adders and Comparators | V9, V10<br>LS9, LS10            | Lecture: Monday, 10am-11am Tutorial: Thursday, 9am-10am                       |                                                  |
| Week 8<br>1 <sup>st</sup> Nov   | Datapath components –<br>Subtractors and Counters                           | V11<br>LS11                     | Lecture: Monday, 10am-11am Tutorial: Thursday, 9am-10am                       | Lab 3 (20%)<br>Adders<br>Friday: 10am-12pm       |
| Week 9<br>8 <sup>th</sup> Nov   | Datapath components –ALU, Register file                                     | V12<br>LS12, LS13               | Lecture: Monday, 10am-11am Tutorial: Thursday, 9am-10am                       |                                                  |
| Week 10<br>15 <sup>th</sup> Nov | High-Level State Machines                                                   | V13<br>LS14                     | Lecture: Monday, 10am-11am Tutorial: Thursday, 9am-10am                       | <u>Take-Home Test</u> (30%)<br>Friday: 10am-12pm |
| Week 11<br>23 <sup>rd</sup> Nov | Simple Data Path; Simple Data Path<br>Processing                            | V14 V15<br>LS14                 | Lecture: Monday, 10am-11am Tutorial: (Test Solutions) Thursday, 9am-10am      | <u>Lab 4</u> (20%)<br>ALU<br>Friday: 10am-12pm   |
| Week 12<br>29 <sup>th</sup> Dec | Verilog Intro                                                               |                                 | <u>Lecture:</u><br>Monday, 10am-11am                                          |                                                  |



#### **Recommended Main Textbooks**

- Frank Vahid, "Digital Design", 2<sup>nd</sup> edition, Wiley, 2011.
- Frank Vahid, "Digital Design", 1<sup>st</sup> edition, Wiley, 2007.
   <a href="http://www.cs.ucr.edu/~vahid/dd/">http://www.cs.ucr.edu/~vahid/dd/</a>
- Slides from these textbooks are used with permission for educational use with this course.







#### Why Study Digital Design?

- Electronic devices becoming digital
- Analogue systems → Digital Systems
  - Shrinking of components
  - More capable components (chips)
  - Better devices: Better sound recorders, cameras, cars, cell phones, medical devices,...
  - New devices: Video games, PDAs, ...
- Embedded systems (Wikipedia)
  - "A **computer system** with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints"
  - "low power consumption, small size, rugged operating ranges, and **low per-unit cost**"
  - "limited processing resources, which make them significantly **more difficult to program** and to interface with" (Wikipedia)





## What Does "Digital" Mean?

- Analog signal
  - Infinite possible values

- Ex: voltage on a wire created by microphone



- Digital signal
  - Finite possible values
    - Ex: button pressed on a keypad





# Digital Signals with Only Two Values: Binary

- Binary digital signal only two possible values
  - Typically represented as 0 and 1
  - One binary digit is a bit
  - We'll only consider binary digital signals
  - Binary is popular because
    - Transistors, the basic digital electric components, operate using two voltages
    - Storing/transmitting one of *two* values is easier than three or more (e.g., loud beep or quiet beep, reflection or no reflection)





## **Benefit of Digitalization**

- Analog signal (e.g., audio) may loose quality
  - Voltage levels not perfectly
    - -Saved
    - -Copied
    - -Transmitted
  - Digitized version near-perfectly
    - -Saved
    - Copied
    - Transmitted
  - How come?
  - Voltage levels still not be kept perfectly
  - But we can distinguish 0s from 1s



#### **Example of Digitization Benefit**





# **Digitized Audio: Compression Benefit**

- Digitized audio can be compressed
  - e.g., MP3s
  - A CD can hold about 20 songs uncompressed, but about 200 compressed
- Compression is also done on digitized pictures (jpeg), movies (mpeg), and more.
- Digitization has many other benefits...

Example compression scheme:



#### **How to Encode Text: ASCII, Unicode**

- ASCII: 7- (or 8-) bit encoding of each letter, number, or symbol
- Unicode: Increasingly popular16-bit encoding
  - Encodes characters from various world languages

| Encoding |
|----------|
| 1010010  |
| 1010011  |
| 1010100  |
| 1001100  |
| 1001110  |
| 1000101  |
| 0110000  |
| 0101110  |
| 0001001  |
|          |

| Symbol            | Encoding |
|-------------------|----------|
| r                 | 1110010  |
| S                 | 1110011  |
| t                 | 1110100  |
| 1                 | 1101100  |
| n                 | 1101110  |
| е                 | 1100101  |
| 9                 | 0111001  |
| !                 | 0100001  |
| <spa ce=""></spa> | 0100000  |

#### Question:

What does this ASCII bit sequence represent? 1010010 1000101 1010011 1010100





# Base Sixteen: Another Base Used by Digital Designers

| bina ry |
|---------|
| 0000    |
| 0001    |
| 0010    |
| 0011    |
| 0100    |
| 0101    |
| 0110    |
| 0111    |
|         |

| hex | bina ry |
|-----|---------|
| 8   | 1000    |
| 9   | 1001    |
| А   | 1010    |
| В   | 1011    |
| С   | 1100    |
| D   | 1101    |
| Е   | 1110    |
| F   | 1111    |
|     |         |

- Nice because each position represents four "base two" positions
  - Used as compact means to write binary numbers
- Known as *hexadecimal*, or just *hex*

# **Implementing Digital Systems:**

## Programming Microprocessors vs. Designing Digital Circuits



