Mining text data

- 1. Overview
- 2. Preprocessing text data
- 3. Representations (bag-of-words)
- 4. Text clustering and its applications
- 5. Extra: Word embeddings

1. Overview: Text data

Corpus = collection of text documents $(\mathbf{d}_1, \dots, \mathbf{d}_n)$ Lexicon = set of words (w_1, \dots, w_m)

Document

- originally ordered: sequence of words (string), e.g., $\mathbf{d}_1 = (w_{11}, w_{12}, \dots, w_{1q})$, length q
- bag-of-words model: unordered set of words (+ frequencies), e.g., Our cat likes the neighbour's cat. → {our: 1, cat: 2, likes: 1, the: 1, neighbour's: 1}
- vector space presentation as a numerical (or binary) vector $\mathbf{x} = (x_1, \dots, x_m)$
 - very sparse! (many 0s)
 - occurrence of words more important than absence

Main steps and example tasks

2. Main tasks of preprocessing

- Tokenization (usually word=token)
- Lower-casing
- Remove stopwords (may be stemmed or not, may contain apostrophes (it's, you'd))
- Reduce inflected forms into a base form:
 - Stemming: cut suffixes (running →run)
 - Lemmatization: derive dictionary form (was → be, mice → mouse)
- Remove punctuation. Decide how to handle
 - digits (numbers sometimes informative)
 - dashes in compound words (cat-food → catfood or cat food?)

Stopwords

- frequently occurring words with little information about semantic content
- not discriminative
- articles, prepositions, pronouns, auxiliary verbs, ...
- multiple lists available
- Note: relevance of words depends on the context!
 → check & edit!

```
cannot
cant
CO
computer
con
could
              Warning:
couldnt
              may be
              relevant
cry
de
describe
detail
```

Stemming and lemmatization

Stemming cuts suffixes → root form

- Overstemming: word is over-truncated → false synonyms (e.g., hopping and hope → hop)
- Understemming: too little truncation → same root not detected (e.g., alumnus → alumnu vs. alumni → alumni)
- rule-based, possibly use look-up tables

Lemmatization derive dictionary form

- ullet utilize context, part-of-speech tagging a , look-up tables
- more difficult! → slower
- potentially better accuracy

^anoun, verb, adjective, ...; singular/plural; verb tense; subject, object, ...

Example: simple preprocessing

lowercasing punctuation and stopword removal

d1: The kitty likes mice and mouse-flavoured cat food

d2: The beer had a strong hop flavour.

d3: I saw big hops in the garden.

d4: I hopped the zoo tour hoping to see big cats.

d1: kitty likes mice mouse flavoured cat food

d2: beer strong hop flavour

d3: saw big hops garden

d4: hopped zoo tour hoping see big cats

lemmatization

stemming

d1: kitty like mouse mouse flavour cat food

d2: beer strong hop flavour

d3: see big hop garden

d4: hop zoo tour hope see big cat

d1: kitty like mice mouse flavour cat food

d2: beer strong hop flavour

d3: saw big hop garden

d4: hop zoo tour hope see big cat

synonymy: kitty, cat **polysemy/homonymy:** hop as a verb and a plant

Example: document-term matrix

d1: kitty like mouse mouse flavour cat food

d2: beer strong hop flavour

d3: see big hop garden

d4: hop zoo tour hope see big cat

Typically very sparse matrix! Present compactly!

	kitty	like	mouse	flavour	cat	food	beer	strong	hop	see
d 1	1	1	2	1	1	1				
d 2				1			1	1	1	
d 3									1	1
d 4					1				1	1

	big	garden	Z00	tour	hope
d 1					
d 2					
d 3	1	1			
d 4	1		1	1	1

Note: Os often skipped in visual presentation (not stored in real structure)

3. Representation (VSM=vector space model)

- 1. Frequency model: $x_{ij} = fr(w_j|\mathbf{d}_i) + \text{possibly normalize to}$ $||\mathbf{x}|| = 1$ ($fr(w_j|\mathbf{d}_i) = \text{number of times } w_j \text{ occurs in } \mathbf{d}_i$)
- **2. Boolean (binary) model:** $x_{ij} = 1$, if w_j occurs in \mathbf{d}_i and 0 otherwise
- 3. **Tf-idf representation**: $tf \cdot idf$, where tf=term frequency, idf=inverse document frequency
 - basic form $tfldf(w_j, \mathbf{d}_i) = fr(w_j | \mathbf{d}_i) \cdot \log \frac{n}{n_j}$
 - $df(w_j) = \frac{n_j}{n}$, $idf(w_j) = \frac{n}{n_j}$, n_j =number of documents containing w_j
 - When tfidf is maximal?
 - many variants! → Check what your library calculates!

Some tf-idf variants

- tf can be normalized: $\frac{fr(w_j|\mathbf{d}_i)}{len(\mathbf{d}_i)}$
- frequency damping: $tf(w_j, \mathbf{d}_i) = \log(fr(w_j|\mathbf{d}_i))$ or $\sqrt{fr(w_j|\mathbf{d}_i)}$
- Note: sklearn offers length-normalized a versions of either $fr(w_j|\mathbf{d}_i) \cdot \left(\log\left(\frac{1+n}{1+n_j}\right) + 1\right)$ or $fr(w_j|\mathbf{d}_i) \cdot \left(\log\left(\frac{n}{n_j}\right) + 1\right)$
 - always idf > 0
 - $\frac{1+n_j}{1+n}$ smoothed estimate of relative document frequency

^aeither $\sum_{j} x_{ij}^2 = 1$ or $\sum_{j} |x_{ij}| = 1$ or none

Example: Basic tf-idf

 $tf = fr(w_j | \mathbf{d}_i) = 1 \text{ or } 2 \text{ (mouse)}$ $n_j = df(w_j) \in \{1, 2, 3\} \Rightarrow idf(w_j) \in \{2, 1, 0.415\}.$

	kitty	like	mouse	flavour	cat	food	beer	strong	hop	see
d 1	2.0	2.0	4.0	1.0	1.0	2.0				
d 2				1.0			2.0	2.0	0.415	
d 3									0.415	1.0
d 4					1.0				0.415	1.0

	big	garden	Z00	tour	hope
d 1					
d 2					
d 3	1.0	2.0			
d 4	1.0		2.0	2.0	2.0

Are single words good features?

Basic features: (stemmed) words (excluding stopwords)

- 1. too frequent words don't separate documents
 - stopword removal and idf help
 - common word may be part of useful feature, e.g., data mining, data management, text data → word n-grams
- unique or rare words don't reveal similarity between documents
 - words may still be synonyms (kitty, cat) \rightarrow WordNet
 - or related → LSA and word embeddings can help
 - different spelling (neighbour, neighbor) or errors
- 3. polysemy problem: similar looking word (or stem) may have different meanings (*hop*)

Create features for word n-grams?

word n-gram = sequence of n words that often occur together (phrases, collocations)

- monogram (unigram, 1-gram): single word "data"
- bigram: two words: "data analysis"
- trigram: three words: "Bayesian data analysis"

results a lot of features! ⇒ filtering by

- frequency (keep if $fr(w_1w_2)$ high)
- significance of association (e.g., $MI(w_1, w_2)$, $\chi^2(w_1, w_2)$)
- dimension reduction (e.g., LSA)

Note: character n-grams = n consecutive characters

Latent semantic analysis (LSA) = SVD applied to text data

- radical dimension reduction (e.g., 100 000 → 300)
- helps with synonymy and a bit with polysemy
- similar/related terms tend to be combined, e.g., $\{car, truck, flower\} \rightarrow \{1.3452 \cdot car + 0.2828 \cdot truck, flower\}$

Recall: If old features F_1, \ldots, F_d and ith singular vector $(\mathbf{V}_{i1}, \ldots, \mathbf{V}_{id})^T$, ith new feature $\sum_{i=1}^d \mathbf{V}_{ij} F_j$. LSA: Recap Aggarwal 2.4.3.3. Image: Perunicic (2017).

4. Clustering text data

Given vector-space representation of text data: any common clustering method

- *K*-representatives, spectral, hierarchical, probabilistic EM-algorithm, affinity propagation
- distance/similarity: prefer cosine similarity! remember: if data normalized to $||\mathbf{x}|| = 1$, $L_2^2(\mathbf{x}_1, \mathbf{x}_2) = 2(1 cos(\mathbf{x}_1, \mathbf{x}_2)) \rightarrow L_2$ ok
- dimension reduction (PCA or LSA) can help

Suggestion: Use *K*-means always as a baseline to compare other methods!

Example: cos-sim vs. L_2 distance

d1: kitty like mouse mouse flavour cat food

d2: beer strong hop flavour

d3: see big hop garden

d4: hop zoo tour hope see big cat

 \cos_T =cos-sim of tfidf vectors, \cos_B =cos-sim of binary vectors, L_2 =Euclidean distance between tfidf vectors:

pair	\cos_T	\cos_B	L_2	note
(d 1, d 2)	0.0603	0.204	6.097	
(d 1, d 3)	0	0	6.014	No common words!
(d1, d4)	0.0469	0.154	6.571	
(d2, d3)	0.0229	0.250	3.873	
(d2, d4)	0.0146	0.189	4.899	
(d 3, d 4)	0.2245	0.567	4.123	

Special techniques for clustering text

- 1. Modifications of *K*-representatives
 - replace cluster centroids by cluster digests = most frequent words (e.g., 200–400)
 - better strategies to select seeds!
- 2. Co-clustering
 - Idea: cluster words and documents simultaneously
 - cluster $C_i = (R_i, V_i)$; V_i =most relevant words (cluster digest) in documents R_i

Note: "cluster digest" has slightly different meanings in different contexts (intention to describe the cluster)

Scatter/Gather: better K-means for text

- 1. Construct *K* seeds with agglomerative hierarchical clustering. Two alternatives:
 - a) Buckshot: choose \sqrt{Kn} random samples $\rightarrow K$ clusters $\rightarrow K$ seeds
 - b) **Fractionation**: divide data into $\frac{n}{m}$ buckets $\rightarrow \nu m$ clusters per bucket ($\nu \in]0,1[$) \rightarrow concatenate cluster documents \rightarrow repeat until K clusters left
- 2. Apply *K*-means
 - centroid=concatenation of documents + remove infrequent words

Scatter/Gather: better K-means for text

- 3. (Optionally) Refine clusters:
 - a) Split incoherent clusters
 - coherence score: $avg(sim(\mathbf{x}, \mathbf{c}))$ or $avg(sim(\mathbf{x}_i, \mathbf{x}_j) \mid \mathbf{x}_i, \mathbf{x}_j \in \mathbf{C})$
 - if too low \rightarrow Buckshot with K = 2 + recluster rest
 - b) Join similar clusters
 - topical words overlapping significantly

Cutting et al. (1992). Scatter/Gather: A cluster-based approach to browsing large document collections.

Co-clustering (biclustering)

Idea: rearrange rows and columns of doc-term matrix such that most non-zero entries form blocks.

(a) Document-term matrix

(b) Re-arranged document-term matrix

=Bipartite graph partitioning problem!

Image source Aggarwal Fig. 13.2

Graph partitioning

Construct graph $G = (U \cup V, E, \Gamma)$

- $U = \text{nodes for documents (for doc. } \mathbf{d}_i \text{ node } u_i)$
- $V = \text{nodes for words (for word } w_j \text{ node } v_j)$
- $\mathbf{E} = \text{edges}$ $(u_i, v_j) \in \mathbf{E}$, if word w_j occurs in \mathbf{d}_i
- Γ = weights $\gamma_{ij} = fr(w_j | \mathbf{d}_i)$ or $\gamma_{ij} = tfidf(w_j, \mathbf{d}_i)$

Objective: Partition $\mathbf{U} \cup \mathbf{V}$ into groups such that edge-cut cost ($\sum \gamma_{ij}$ between groups) minimal (+ extra constraints)

Solution: Spectral clustering or other graph partitioning methods (vs. community detection)

Application 1: clustering for classification

Centroid-based classifier:

- Cluster documents of each class (size n_i) into $k_i \propto n_i$ clusters
- cluster digest=most common words of the centroid
- For \mathbf{d}_{new} :
 - determine K nearest digests (clusters)
 - report the dominant label
- + fast alternative to K-NN classifier
- + handles synonymy (similar words → same centroid) and polysemy (different meanings → different centroids)

Application 2: Novelty detection

Problem: Temporal stream of text documents, when a new topic appears? (e.g., news)

Simple solution:

- Maintain a sample of documents, \mathcal{D}
- For \mathbf{d}_{new} calculate $sim(\mathbf{d}_{new}, \mathbf{d})$ for all $\mathbf{d} \in \mathcal{D}$
- If novelty score = $\frac{1}{\max_{d} sim(\mathbf{d}_{new}, \mathbf{d})}$ high, report \mathbf{d}_{new}

Problem: Pairwise similarity cannot handle synonymy or polysemy ⇒ Utilize micro-clustering

Novelty detection with micro-clustering

Idea: Maintain K document clusters C_1, \ldots, C_K .

For C_i : \mathbf{c}_i = centroid = **cluster digest**, $fr(w_j|C_i)$ word frequencies, t_i = time stamp when C_i updated

- lacktriangle given \mathbf{d}_{new} , determine nearest centroid \mathbf{c}_i
- if $(sim(\mathbf{d}_{new}, \mathbf{c}_i) \ge \theta)$
 - add \mathbf{d}_{new} to C_i
 - update $fr(w_i|C_i)$, \mathbf{c}_i (most frequent words) and t_i
- else
 - report \mathbf{d}_{new} as novelty
 - create a new cluster $C = \{\mathbf{d}_{new}\}$ (with new time stamp)
 - remove an old cluster C_i with earliest t_i

5. Extra: Word embeddings

Idea: Present words as numerical vectors such that distances reflect semantic similarity

2D presentation of embeddings:

image source Barla (2021)

Word embedding examples

image sources Zhang (2020) and Mikolov et al. (2013)

Word embeddings: popular approaches

- 1. Matrix factorization: typically truncated SVD of word co-occurrence (or term-doc) matrix
- 2. Word2vec models: learn a shallow neural network and use its weights
 - a) CBOW: predict target word given context words
 - b) Skip-gram: predict context words given target word
 - good embeddings require large training sets
 but models can be transfered to other similar contexts

Mikolov et al. (2013)

Word embeddings: popular approaches

- 3. GloVe: learn embedding vectors \mathbf{x}_i , $\tilde{\mathbf{x}}_i$, such that $\mathbf{x}_i \cdot \tilde{\mathbf{x}}_j \propto \log(P(w_j|w_i))$
 - $\tilde{\mathbf{x}}_i$ context embedding \rightarrow later combine with \mathbf{x}_i
 - + fast to learn
 - + requires less data

Pennington et al. (2014)

Note: *Hype* and *best* are not synonyms. Test always simpler presentations (bag-of-words), too!

Summary

- text presented in vector space (as numerical vectors)
 - simplest: document=bag-of-words with binary occurence, frequencies, or tfidf of words
- preprocessing important → features. Be careful!
- Goal: try to capture important (mid-frequency) words and phrases
 - prune out stopwords, stemming/lemmatization, detect collocations/n-grams, maybe spell-checking
- dimension reduction often useful (+ LSA helps with synonymy/polysemy)
- clustering: K-representatives + modifications, spectral, hierarchical, co-clustering, ...

References & image sources

- Barla (2021): The ultimate guide to word embeddings https://neptune.ai/blog/word-embeddings-guide
- Cutting et al. (1992): Scatter/Gather: A cluster-based approach to browsing large document collections. ACM SIGIR Conference, pp. 318-329.
- Mikolov et al. (2013): Efficient estimation of word representations in vector space. ICLR and arXiv:1301.3781
- Mikolov et al. (2013): Exploiting similarities among languages for machine translation. arXiv:1309.4168

References & image sources

- Pennington et al. (2014): GloVe: Global vectors for word representation. Empirical Methods in Natural Language Processing (EMNLP).
- Perunicic (2017): How are principal component analysis and singular value decomposition related? https://intoli.com/blog/pca-and-svd/
- Zhang (2020): Legal applications of neural word embeddings https://towardsdatascience.com/legalapplications-of-neural-word-embeddings-556b7515012f