九州大学大学院数理学府 平成 29 年度修士課程入学試験 専門科目問題

- **注意** 問題 [1][2][3][4][5][6][7][8][9][10] の中から 2 題を選択して解答せよ.
 - 解答用紙は、問題番号・受験番号・氏名を記入したものを必ず2題分 提出すること。
 - 以下 $\mathbb{N} = \{1,2,3,\ldots\}$ は自然数の全体、 \mathbb{Z} は整数の全体、 \mathbb{Q} は有理数の全体、 \mathbb{R} は実数の全体、 \mathbb{C} は複素数の全体を表す.

- [1] p を素数とする.以下の問に答えよ.
 - (1) 位数が p の群は巡回群であることを証明せよ.
 - (2) $G = (\mathbb{Z}/p\mathbb{Z})^2$ を和を演算とするアーベル群とする. このとき G の部分群がいくつあるかを答えよ.
 - (3) n を自然数とする. 位数 p^n の群 G の極大部分群は位数が p^{n-1} であることを示せ. ここで極大部分群とは, G でない部分群の中で包含関係に関して極大なもののことである. この (3) においては p-群の中心は非自明であることを証明なしに用いてよい.
- [2] $\alpha \in \mathbb{C}$ に対し、その複素共役を $\overline{\alpha}$ と書く、また虚数単位を i と書く、一意分解整域 $\mathbb{Z}[i]$ について、以下の問に答えよ、
 - (1) $\mathbb{Z}[i]$ の単元 (積に関する可逆元) 全体がなす集合を $\mathbb{Z}[i]^{\times}$ と書く、 $\mathbb{Z}[i]^{\times}$ を具体的に決定せよ、
 - (2) 次の (i), (ii) を証明せよ.
 - (i) $p \in \mathbb{Z}$ を素数とする. p が $\mathbb{Z}[i]$ の素元となるための必要十分条件は, $x^2 + y^2 = p$ を満たす整数の組 $(x,y) \in \mathbb{Z}^2$ が存在しないことである.
 - (ii) $\alpha \in \mathbb{Z}[i]$ は, $\alpha \overline{\alpha}$ が \mathbb{Z} の素数になるならば, $\mathbb{Z}[i]$ の素元である.また α が $\mathbb{Z}[i]$ の素元でかつ zu ($z \in \mathbb{Z}, u \in \mathbb{Z}[i]^{\times}$) の形でないならば, $\alpha \overline{\alpha}$ は \mathbb{Z} の素数である.
 - (3) 2016 を $\mathbb{Z}[i]$ の中で素元分解せよ.

- [3] p を 2 でない素数とし、 \mathbb{F}_p を位数 p の有限体とする.また α を巡回群 \mathbb{F}_p^{\times} の生成元とする.以下の問に答えよ.
 - (1) $\alpha^{\frac{p-1}{2}} = -1$ を示せ.
 - (2) -1 が \mathbb{F}_p^{\times} の平方元 $(\alpha$ の偶数べき) となるための必要十分条件は、 $\lceil p \mid$ は 4 で割って余り 1」であることを示せ、
 - (3) $R = \{t \in \mathbb{F}_p : t^2 = -1\}$ とする.写像 $f : \mathbb{F}_p \setminus R \to \mathbb{F}_p^2$ を $t \mapsto (\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2})$ で 定義する.このとき f の像は $\{(x,y) \in \mathbb{F}_p^2 : x^2 + y^2 = 1, \ (x,y) \neq (-1,0)\}$ であることを示せ.
 - (4) $S = \{(x,y) \in \mathbb{F}_p^2 : x^2 + y^2 = 1\}$ の元の数を求めよ.
- [4] 下図のような図形 $R = [0, 10] \times [0, 1]$ を用意する.

以下の問に答えよ.

- (1) 図形 R の辺 $AB=\{0\}\times[0,1]$ と辺 $CD=\{10\}\times[0,1]$ とを,すべての $t\in[0,1]$ に対して点 $(0,t)\in AB$ と点 $(10,t)\in CD$ とを同一視することで 貼り合せてできる図形を X とする.このとき整係数ホモロジー群 $H_*(X,\mathbb{Z})$ を求めよ.
- (2) 図形 R の辺 $AB = \{0\} \times [0,1]$ と辺 $CD = \{10\} \times [0,1]$ とを,すべての $t \in [0,1]$ に対して点 $(0,t) \in AB$ と点 $(10,1-t) \in CD$ とを同一視すること で貼り合せてできる図形を Y とする.また Y の中で開円板と同相な近傍をもたない点の全体を Y の境界 ∂Y とする.このとき整係数ホモロジー群 $H_*(\partial Y,\mathbb{Z})$ を求めよ.
- (3) (1) の図形 X と (2) の図形 Y とが同相となるかならないかを判定し、その証明を与えよ。