Advanced Natural Language Processing

About the course

Grading formula:

Total = Rounding(0.4 * HW + 0.3 * Midterm + 0.3 * Exam)

- 6 homework assignments
- If the grade \geq 8 before rounding, you can skip the exam

Links:

Telegram chat: https://t.me/+fVXUjKGd0VNmYTdi

GitHub: https://github.com/ashaba1in/hse-nlp/tree/eng

About homeworks

All homework will require writing code and a report

Code implementation:

- You can do it as you like
- Better to built it as a project, because
 - 1. It's easier not to get confused in the code when there's a lot of it
 - 2. It's easier for us to check structured homework
 - 3. The project can be posted on git and bragged about

Report:

- PDF document describing the work done
- We need it to simplify the check
- You need it to learn to summarize your work

Course topics

- 1. Text Classification
- 2. Text Generation, RNN
- 3. Transformers
- 4. BERT and GPT
- 5. Quantization and Distillation
- 6. Modern Transformer Architectures
- 7. Parameter-Efficient Fine-Tuning
- 8. Instruction tuning
- 9. Retrieval-Augmented Generation
- 10. Al Safety
- 11. State-Space Models
- 12. Text Diffusion Models
- 13. Multimodal Models

Text classification

Agenda

- Types of classification tasks
- Generative and discriminative models
- Neural networks for text

Types of NLP classification tasks

Binary classification

Is message a spam or not

Multi-class classification

How urgently do you need to respond to the client?

Multi-label classification

What is the topic of the paper?

Word classification

- Named Entity Recognition (NER)
- Text generation (spoilers)

Datasets for classification

Name	Task	Classes	Size	Average Length	Metric
SST	tonality	5 or 2	11,855	19	Accuracy
Yelp	tonality	5 or 2	280,000	179	Accuracy
IMDb	tonality	2	50,000	271	Accuracy
QQP	paraphrasing	2	404,291	22	F1 / Accuracy
CoLA	grammaticality	2	10,657	9	Matthew's Corr
AG News	topic	4	120,000	44	Accuracy
Yahoo! Answers	topic	10	1,400,000	131	Accuracy
DBpedia	topic	14	560,000	67	Accuracy

General scheme of the solution

Example of data distribution for two classes

Generative

Discriminative

Generative

Learn: p(x | y = k)

Predict:

$$\hat{y} = \underset{y}{\operatorname{arg max}} p(y, x) = \underset{y}{\operatorname{arg max}} p(x \mid y)p(y)$$

Discriminative

Learn: p(y = k | x)

Predict:

$$\hat{y} = \underset{y}{\text{arg max}} p(y \mid x)$$

Almost all models

are discriminative

Generative

Learn: p(x | y = k)

Predict:

$$\hat{y} = \arg \max_{y} p(y, x) = \arg \max_{y} p(x | y)p(y)$$

Discriminative

Learn: p(y = k | x)

Predict:

$$\hat{y} = \underset{y}{\text{arg max}} p(y \mid x)$$

When are generative models useful?

- When there are outliers in the data
- When the distribution of the test sample is different
- When the train size is small and a discriminative model overfits

Naive Bayes

Bayes' theorem
$$p(x)$$
 does not depend on y

$$y = \arg\max_{y} p(y|x) = \arg\max_{y} \frac{p(x|y) \cdot p(y)}{p(x)} = \arg\max_{y} p(x|y)p(y)$$

How to derive p(x | y) and p(y)?

How to derive p(x | y) and p(y)?

Let's calculate the proportions of each class in the sample

$$p(y = k) = \frac{1}{N} \sum_{i=1}^{N} [y_i = k]$$

We assume that:

- Word order is not important
- The probability of a word does not depend on neighbouring words

$$p(x|y = k) = p(x_1, ..., x_n|y = k) \approx \prod_{i=1}^{n} p(x_i|y = k)$$

Why does this work?

$$p(x|y) = \prod_{i=1}^{n} p(x_i|y)$$

For simple tasks, this assumption makes sense!

```
p(\text{very good food } | y = -)
= p(\text{very } | y = -)
\times p(\text{good } | y = -)
\times p(\text{food } | y = -)
```

```
p(\text{very good food } | y = +)
= p(\text{very } | y = +)
\times p(\text{good } | y = +)
\times p(\text{food } | y = +)
```

Why does this work?

$$p(x|y) = \prod_{i=1}^{n} p(x_i|y)$$

For simple tasks, this assumption makes sense!

$$p(\text{very good food } | y = -)$$

$$= p(\text{very } | y = -)$$

$$\times p(\text{good } | y = -)$$

$$\times p(\text{food } | y = -)$$

$$p(\text{very good food } | y = +)$$

$$= p(\text{very } | y = +)$$

$$\times p(\text{good } | y = +)$$

$$\times p(\text{food } | y = +)$$

Key words

$$p(\text{good} \mid y = -) < p(\text{good} \mid y = +)$$

How to derive $p(x_i | y)$?

How many times did the word x_i appear in texts with the label k

$$p(x_i | y = k) = \frac{N(x_i, y = k)}{\sum_{j=1}^{|V|} N(x_j, y = k)}$$

What if $N(x_i, y = k) = 0$?

How to derive $p(x_i | y)$?

How many times did the word x_i appear in texts with the label k

$$p(x_i | y = k) = \frac{N(x_i, y = k)}{\sum_{j=1}^{|V|} N(x_j, y = k)}$$

What if $N(x_i, y = k) = 0$?

```
p(\text{very good Bratwurst} \mid y = +)
= p(\text{very} \mid y = +)
\times p(\text{good} \mid y = +)
\times p(\text{Bratwurst} \mid y = +)
= 0
```

Laplace smoothing

$$p(x_i | y = k) = \frac{N(x_i, y = k) + \delta}{\sum_{j=1}^{|V|} N(x_j, y = k) + |V| \cdot \delta}$$
 $\delta \in [0,1]$

If $\delta = 1$, then smoothing is called Laplace smoothing

How to predict?

```
\hat{y} = \underset{y}{\operatorname{argmax}} p(x|y) \cdot p(y)
x = \text{"very good food"}
```

$$p(\text{very good food } | \mathbf{y} = -)p(\mathbf{y} = -)$$

$$= p(\text{very } | \mathbf{y} = -)$$

$$\times p(\text{good } | \mathbf{y} = -)$$

$$\times p(\text{food } | \mathbf{y} = -)$$

$$\times p(\mathbf{y} = -)$$

$$p(\text{very good food } | y = +)p(y = +)$$

$$= p(\text{very } | y = +)$$

$$\times p(\text{good } | y = +)$$

$$\times p(\text{food } | y = +)$$

$$\times p(y = +)$$

If
$$p(y = -) \approx p(y = +)$$

Naive Bayes

Logistic Regression

Logistic Regression

Linear layer

Linear layer

Linear layer

The vectors of the linear layer for each class should be correlated with the vector representations of the class elements.

The scalar product of the vectors is **maximal** when they are **co-directed**.

Disadvantages of approaches

- They don't take into account the relationship between words
- They don't take into account the word order

Features are extracted manually

Advantages of approaches

- Fairly good at simple tasks
- Working speed
- Learning time
- Interpretability

Interpretability is very important when the cost of error is high

- Medical diagnosis
- Sentencing in court

Neural networks

How to extract features?

Bag of Embeddings

Represent text as a sum of embeddings

Bag of Embeddings

Represent text as a sum of embeddings

- + Very easy to implement
- Do not consider word relations
- Neutral words have large cumulative weight

Weighted Bag of Embeddings

- Multiply embeddings by TF-IDF weights
- Sum up all embeddings
- + Still easy to implement
- + Less important words have lower weight
- Do not consider word relations

Most important

- Text/word classification is the most popular task
- Very often, simple methods perform well
- Quality directly depends on how good features were extracted