Оглавление

1	Множества		2
	1.1	Операции над множествами	2
	1.2	Отображения	7

Глава 1

Множества

Лекция 1: Операции над множествами

08.09.2023

1.1 Операции над множествами

Обозначение. $x \in A$ означает, что элемент х принадлежит множеству A.

 $x \notin A$ означает, что элемент x не принадлежит множеству A.

Определение 1. \emptyset , пустое множество - множество, не содержащее ни одного элемента.

Определение 2. Множество B называют подмножеством A, если любой элемент B принадлежит A.

Обозначение. $B \subset A$

Пример. $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

Операции.

1. Пересечение множеств A и B - это множество из элементов принадлежащих A и B.

Обозначение. $A \cap B$

2. Объединение множеств А и В - множество из элементов А или В.

Обозначение. $A \cup B$

3. Разность множеств A и B - множество элементов A, не принадлежащих B.

Обозначение. $A \setminus B$

4. Симметрическая разность

Пример.
$$A\triangle B=(A\setminus B)\cup (B\setminus A)$$
 $A\triangle B=(A\cup B)\setminus (A\cap B)$

5. Дополнение

Если предположить, что все множества являются подниножествами некоторого универсального множества, дополнение множества A - это множество элементов U, не принадлежащих A.

Пример. $U = \mathbb{Z}$

A - множество чётных чисел

 \overline{A} - множество нечётных чисел

Порядок действий

- 1. Дополнение
- 2. Пересечение
- 3. Объединение, рахность, симметрическая разность

Приоритет слева направо.

Пример.
$$U=\{1,2,3,4,5\}$$
 $A=\{1,2,3\}$ $B=\{3,4\}$ $C=\{4,5\}$ $\overline{A\cup B\cap \overline{C}\setminus \overline{B}}$

- 1. $\overline{C} = \{1, 2, 3\}$
- 2. $\overline{B} = \{1, 2, 5\}$
- 3. $B \cap \overline{C} = \{3\}$

$$4. \ A \cup B \cap \overline{C} = \{1, 2, 3\}$$

5.
$$A \cup B \cap \overline{C} \setminus \overline{B} = \{3\}$$

6.
$$\dots = \{1, 2, 4, 5\}$$

Свойства:

1. Дистрибутивность

(a)
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

(b)
$$(A \cup B) \cap = (A \cap C) \cup (B \cap C)$$

Доказательство. Положим $D=(A\cap B)\cup C$

$$E = (A \cup C) \cap (B \cup C)$$

Докажем, что $C\subset E$

Пусть $x \in D$, тогда выполняется

- (a) $x \in A \cup B$ или
- (b) $x \in C$

Если выполнено 1, то $\mathbf{x} \in A \cup B => x \in A => x \in A \cup C \in A \cap B => A \in B => x \in B \cup C => x \in (A \cup C) \cap (B \cup C)$

Если выполнено 2, то $x \in C => x \in AcupC => x \in (A \cup C) \cap (B \cup C)$

 $x \in C => x \in B \cup c$

 $x \in E => x \in A \cup C$ и $x \in B \cup C$

Случай 1. $x \notin C$

 $\bullet \ \ x \not\in C, \, x \in A \cup C => x \in A$

•
$$x \neq C, x \in B \cup C => x \in B$$

$$=> x \in A \cap B = .x \in B$$
 Случай 2. $x \in C$
$$=> x \in (A \cap B) \cup C => x \in D$$

- 2. Законы де Моргана
 - (a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$
 - (b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Прямым или декартовым произведеним множеств A и B называют множество упорядоченных пар (a, b), где $a \in A, b \in B$

Обозначение. $A \times B$

Пример. 1.
$$A=\{1,2\},\,B=\{x,y\}$$
 $A\times B=\{(1,x),(1,y),(2,x),(2,y)\}$ 2. $A=\{1,2\},\,B=\{1\}$ $A\times B=\{(x,y)|x,y\in\mathbb{R}\}$ 3. $A=B=R$ $A\times B=\{(x,y)|x,y\in\mathbb{R}\}$

Св-во: между элементами множеств $(A \times B) \times C$ и $A \times (B\ timesC)$ есть взаимно однозначное соответствие.

Определение 3.
$$A \times B \times C$$
 - Это $(A \times B) \times C$ $A^n = A \times A \times ...A$

Пример.
$$0, 1^3$$
 элементов $(0,0,0), (0,0,1), ..., (1,1,1)$

1.2 Отображения

Определение 4. Отображением или функцией из множества X в множество Y называют правило, которое каждому элементу множества X сопоставляет ровно один элемент из множества Y.

Пример. 1.
$$X = \{a,b,c,d\}$$
 $Y = \{1,2,3\}$ $f(a) = 1$ $f(b) = 2$ $f(c) = 1$ $f(d) = 1$

$$2. \ X = Y = \mathbb{R}$$
$$f(x) = x^2 =$$

Определение 5. Образом отображения f называют множество элементов f(x) т.к. $\{f(x)|x\in X\}$

Обозначение. Imf, f(X)

Определение 6. Прообразом элемента $y \in X$ называют множество элементов множества X, которые переходят в y, т.е.

$$\{x \in X | f(x) = y\}$$

Обозначение. $f^{-1}(y)$ Если $y_1 \subset y$, то $f^{-1}(y_1) = \{x \in X | f(x) \in y_1\}$

Определение 7. Отображением f называют инъективным, если прообраз любого элемента содержит не более одного элемента.

Др. названия:

- ullet иньекция
- \bullet f является отображением в

Определение 8. Отображение f называется сюрьективным, если если прообраз любого элемента содержит хотя бы один элемент.

Др. названия:

- \bullet f сюрьекция
- \bullet f является отображением на

Определение 9. Отображение f называется биективным, если прообраз любого элемента состоит ровно из одного элемента.

Др. названия:

- \bullet f биекция
- ullet взаимно однозначное отображение

Замечание. f биекция <=> f - инъекция и сюръекция.

Пример. $f: \mathbb{Z} \to \mathbb{Z}$

- 1. f(x) = x + 1 биекция
- 2. $f(x) = x^2$ не иньекция, не биекция

$$f^{-1}(4) = \{2. - 2\}$$
$$f^{-1}(5) = \emptyset$$
$$\alpha \subset 2$$

- 3. f(x)=2x инъекция, не сюръекция $f^{-1}=\emptyset$ $x_1\neq x_2=>2x_1\neq 2x_2$
- $f(x)=[rac{x}{2}]$ не иньекция $[rac{0}{2}]=[rac{1}{2}]$ $2n\in f^{-1}(n)$ => $f^{-1}(n)
 eq \emptyset$

Определение 10. Тождественное отображение $e_x: x \to x_1, e_x(x) = x$

Определение 11. Пусть y:X-Y,f:X o Z

отображение композиция fog определяется как (fog)(x) = f(g(x))

Пример.
$$X = Y = \mathbb{Z} = \mathbb{R}$$
 $f(x) = x + 1, y(x) = x$ $(fog)(x) = x^2 + 1$ $(gof)(x) = (x + 1)^2$

Замечание. (fog)oh = fo(goh)

Обозначение. fogoh

Определение 12. Пусть $f:X \to Y, y:Y \to V$

Отображение у называют образом к отображениб f, если

$$fog = e$$

$$gof = e$$

Пример.
$$X=Y=[0;+\infty]$$
 $f(x)=x^2,y(x)=\sqrt{x}$

Определение 13. Обратное отображение к f обозначается f^{-1} (Корректность, т.е. единственность отображения обратных - ниже)

Теорема 1. (Существование обр. отображения) Обратное отображение к f существует тогда и только тогда, когда f является биекцией.

Доказательство. 1. Доказать, что если f биекция, то существует y, обратное к f

Пусть $y \in X \exists ! x$, такой, что f(x) = y

Положим y(y) = x

Глава 1. МНОЖЕСТВА

Теорема 2. (Единственности обратного отображения) Пусть f - Биекция $X \to Y$. Тогда не существует различных отображений y_1, y_2 являющихся обратными к $\overset{\circ}{\mathrm{A}}.$

Доказательство: Упражнение!