Bandits

Spyros Samothrakis Lecturer/Assistant Director@IADS University of Essex

February 12, 2018

About

Bandits

Adapting to changing rewards regimes

The adversarial case

Contextual Bandits

Conclusion

BANDITS

- ► We will discuss bandits
- ► We are in effect revisiting some ideas from lecture two
 - ► Hypothesis testing
- ► I think this is a much easier to understand framework vs hypothesis testing

EXAMPLES

- ► You send a user an e-mail
 - User clicks on the link you get r=1
 - User fails to click on the link after 3 days r=0
- ► Playing games
 - ▶ What is the next best action to take in Chess?
 - ► Chess has a sequential element hence "Reinforcement Learning"
 - ▶ But close enough...
- ► Online adverts
 - User clicks on an advert (r=1)
 - User clicks fails to click on an advert (r=0)

THE BANDIT PROBLEM

- ▶ Bandits are a tuple $\langle A, R \rangle$
- ▶ Where $a \in A$ is a set of actions
 - ► Sometimes actions are called "arms"
- $ightharpoonup r \in R$ is a set of rewards
- ightharpoonup R(a,r) = P(r|a)
 - ▶ The probability of getting a reward r given that I have done action a
- ▶ "You do an action, you get some feedback"

THE GOAL

- ▶ Find an optimal policy $\pi(a) = P(a)$ that maximises the long term sum of rewards
 - \blacktriangleright Long term sum is $\sum\limits_{t=0}^{T}=r_{t}$
- ▶ The "action-value" function Q(a) is the expected reward for taking action a
 - ightharpoonup Q = E[r|a]
- ▶ The "value" function is $V = E_{\pi}[r]$
 - ► The average Q values, given a policy that I follow

Example problem

Dear Sir/Madam,

Best quality flasks and vials for your experiments

Click the link below to buy - discounted prices

(Link)

Dear <Name>,

This is Nick from www.MegaFlasksAndVials.com - super discounts below

(Link)

LET'S SIMULATE

- ightharpoonup First e-mail is a_0
- \triangleright Second e-mail is a_1
- Policy is $\pi(a_0) = 0.5, \pi(a_1) = 0.5$
- ► Let's manually calculate some Q's and V's on the e-mail sending problem

Goals (1)

- ► So our goal is to find the best action
- $\qquad \qquad \mathbf{P} \quad \text{Optimal } V^* = \max_{a \in A} Q(a)$
- ▶ But these values can only be found through averages
 - $ightharpoonup \hat{Q}(a), \hat{V}$
- ▶ We could have done hypothesis testing...
 - ▶ But this would entail a random policy
 - ► Maybe we can do better

Goals (2)

- ► We would like to find the best action using the minimum amount of samples possible
- ► Keep focusing on the best action
 - While also checking making sure that other actions are sufficiently explored
- ► This is known as the "exploration/exploitation" dilemma

Regret (1)

- Regret is $I_t = E\left[\sum_{t=0}^T (V^* Q(a_t))\right]$
 - Or, equivalently $E\left[\sum_{t=0}^{T}\left(\max_{a\in A}Q(a)-Q(a_t)\right)\right]$
- ▶ The count is $N_t(a)$, the number of times we took action a until time t
- ▶ The gap $\Delta_a = V^*(a) Q(a)$, the difference between the optimal action and the action taken

Regret (2)

- ▶ It turns out that
 - $\blacktriangleright \sum_{a \in A} \left(E\left[N_t(a) \Delta_a \right] \right)$
- ▶ We would like to minimise the times we have large gaps
- ▶ But we have no clue what the gaps are...

Another example

- ► Three actions to choose from
- ► Link in internal promo e-mail
 - ► Thus users more likely to click

```
n_actions = 3

def action_0():
    return np.random.choice([1,0], p=[0.5, 0.5])

def action_1():
    return np.random.choice([1,0], p=[0.6, 0.4])

def action_2():
    return np.random.choice([1,0], p=[0.2, 0.8])

rewards = [action_0, action_1, action_2]
```

PURE EXPLORATION

- ► Somewhat similiar to the A/B case
 - ▶ But in A/B you should have set a cut-off point
- ► You send more or less the equal number of e-mails
- ► Very simple setup

REGRET OF PURE EXPLORATION

GREEDY

- ▶ You choose the action with the highest $\hat{Q}(a)$
- ► Can you see a problem with this?
 - ▶ It might get stuck in suboptimal actions
- ► Let's try it out

REGRET OF GREEDY

ϵ -GREEDY

- \triangleright You set a small probability ϵ with which you act randomly
- ► The rest of the time you add greedily
 - ▶ i.e. you choose the best action
- ► This is a very common (but inefficient setup)
- ▶ What is the optimal ϵ ?

Regret of ϵ -greedy

ϵ -DECREASING

- ► Same as epsilon greedy, but now you decrease epsilon as you choose actions
- ► We do

$$e *= 0.99$$

Regret of ϵ -decreasing

OPTIMISM IN THE FACE OF UNCERTAINTY

- ► There is a principle termed "optimism in face of uncertainty"
- ► In practical terms this means that you should try actions with highly uncertain outcomes
 - ► You believe the best action is the one you haven't explored enough
- ► Works well in practice

Upper Confidence Bounds

- ► A very popular algorithm
- ► Fairly robust
- $UCB(a) = \hat{Q}(a) + U(a)$
- $\blacktriangleright UCB1(a) = \hat{Q}(a) + C\sqrt{\frac{log(t)}{N_t(a)}}$
- ▶ $N_t(a)$ is the times action a was executed
- \blacktriangleright t is the current timepoint/time
- ▶ $C \in [0, \inf]$ is a constant I set it to 0.5 for the plots below
 - ► Can you guess what the effect of C is?

REGRET OF UPPER CONFIDENCE BOUNDS

BOOTSTRAP THOMPSON SAMPLING

- ► What if you could take bootstrap samples of action rewards that we have collected?
- ► You would have incorporated the uncertainty within your bootstrap samples
- ▶ If you have a large number of bootstrap samples you have a distribution over possible $\hat{Q}(s)$
- ► Sample from this distribution
- ► A version of probability matching
 - $\pi(a) = P[\hat{Q}(a) > \hat{Q}(a'), \quad \forall a' \in A]$

PRIORS

- ► You can get stuck here as well (like greedy)
- ► Add some pseudo-rewards
- ► Or act randomly a bit

REGRET OF BOOTSTRAP THOMSON SAMPLING

CODE

```
class Bandit(object):
    def __init__(self,n_actions):
        self.counts = np.zeros(n_actions)
        self.action_rewards = [[] for i in range(n_actions)]
        self.rewards = []
        self.n_actions = n_actions
    def select action(self):
        """Selection which arm/action to pull"""
        pass
    def update(self,action,reward):
        """Update the actions"""
        self.counts[action] = self.counts[action] + 1
        self.action_rewards[action].append(reward)
        self.rewards.append(reward)
    def get_Q_values(self):
        Q values = []
        for q_v in self.action_rewards:
             Q_values.append(np.array(q_v).mean())
        return np.array(Q_values)
    def get_V_value(self):
        return np.array(self.v_value.mean())
```

Change of rewards

- ▶ What if rewards just change
- ▶ Because people are bored of your e-mails
 - ► They talk to each other
 - ► Out of fashion
- ► You might want to have continuous adaptation
- ▶ Keeping all values and finding $\hat{Q}(a)$ is expensive
 - ▶ What happens in e-mail 1000? e-mail 100K?
 - ► How many additions?

THE SEQUENTIAL CASE

- ▶ What if you are to take a series of actions?
- ► Surely your current action depends on your future actions
- ► Hence there is going to be a change in the distribution of rewards
 - ► Induced by the experimenter
- ► "Reinforcement Learning"

EXAMPLE E-MAIL CAMPAIGN

- ▶ You send your first e-mail
 - ▶ "Please buy this product"
- ► Send second e-mail
 - ▶ "Will you buy the add-on?"
- ► Send third e-mail
 - ► "Let us service your product"
- ► You want to maximise your rewards
- ► Creates a tree of possible actions

Tree

- ▶ Let's draw the tree of the above example
 - ► Three different actions for each "state"
- ► What do you observe?

Introducing state

- ▶ $s \in S$ can be used to differentiate between different "states", conditioning π , V and Q values on states
- $\blacktriangleright \pi(s,a), V(s), Q(s,a)$
- e.g. in the example above, you have Q("firstemail", "emailtypeA")
- ► Let's write the rest of the states, the policies, V and Q-Values

INCREMENTAL CALCULATION OF A MEAN

 v_t can be the reward or the sum of rewards you got at different steps

$$\hat{Q}_{t}(s, a) = \hat{Q}_{t-1}(s, a) + \underbrace{\frac{v_{t} - \hat{Q}_{t-1}(s, a)}{v_{t} - \hat{Q}_{t-1}(s, a)}}_{\mathbf{Error}}$$

$$\hat{Q}_{t}(s, a) = \hat{Q}_{t-1}(s, a) + \frac{1}{t} \underbrace{[v_{t} - \hat{Q}_{t-1}(s, a)]}_{\mathbf{V}_{t}(s, a) = \hat{Q}_{t-1}(s, a) + \alpha}_{\mathbf{V}_{t}(s, a) = \hat{Q}_{t-1}(s, a) + \alpha}$$

INCREMENTAL BOOTSTRAP

Oza, Nikunj C., and Stuart Russell "Online bagging and boosting." Systems, man and cybernetics, 2005 IEEE international conference on. Vol. 3. IEEE, 2005.

EQUILIBRIA

- ► We will discuss (very) briefly the notion of equilibria
 - ► Imagine you are putting up large advert banners on your website
 - ► They hide content
 - ▶ User can click on the top right corner and quit the banner
- ▶ Where should you put the banner?
- ► How often should the banner pop-up?

Adversarial bandits

- ► Most bandits we discussed until now assume the environment is indifferent
- ▶ i.e. the user will click in the link if she thinks it is interesting for her to click
- ► But quite often, people are annoyed by your efforts so they will try to "adapt" around you
 - ► Close the advert-super fast without thinking
- ► Solution put the advert in random places
 - ► Mixed policies
- ► Exp3 but not now

RETHINKING STATES

- ▶ States as we have defined them until now are black solid boxes
 - ► They can only be enumerated
- \blacktriangleright i.e. state s_0 , state s_1
- ▶ What if a state could be decomposed into a set of features?
 - ightharpoonup sex, age, married, job...
- ► Highly reminiscent of supervised learning
 - We are given features, we would like to predict the reward i.e. the outcome!
- ► We could now do something that looks like regression!

ABOUT BANDITS ADAPTING TO CHANGING REWARDS REGIMES THE ADVERSARIAL CASE CONTEXTUAL BANDITS CONCLUSION

COMBINING STATES AND ACTIONS

- ► So you now have features that you can encode
- ► Various encoding strategies
 - ► One regressor per action
 - ► A single regressor with dummy encoded actions
- ► Let's do an example
- ▶ What could be a problem if you don't have separate regressors for each action?

ϵ -GREEDY AND ϵ -DECREASING

- \blacktriangleright Set ϵ to some small value
- ► Keep decreasing...
- ► Very popular because of its simplicity
- ▶ You need to be smart about your decreasing schedule
 - ► Possibly set some lower bound

BOOTSTRAP THOMSON SAMPLING

- ► Get a bootstrap sample of all your data
- ► Learn a regressor
- ► Act greedily using the regressor you learned
- ► Repeat

CONCLUSION

- ▶ First hit on bandits
- ► Super-exciting research area
- ► Used quite a bit on website optimisation and recommender systems
- ► We will delve deeper in the adversarial case and recommender systems in the future
- ► Again, the bootstrap saves the day