

LOW NOISE 150mA LDO REGULATOR

R1113Z SERIES

NO. EA-101-0504

OUTLINE

The R1113Z Series are CMOS-based voltage regulator ICs with high output voltage accuracy, extremely low supply current, low ON-resistance, and high ripple rejection. Each of these ICs consists of a voltage reference unit, an error amplifier, resistors, a current limit circuit, and a chip enable circuit.

These ICs perform with low dropout voltage and a chip enable function. The line transient response and load transient response of the R1113Z Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The output voltage of these ICs is fixed with high accuracy. Since the package for these ICs is WL-CSP4-P1 (Wafer Level CSP), high density mounting of the ICs on boards is possible.

FEATURES

Ultra-Low Supply Current	Tvn 100μΔ
Standby Mode	• • • • •
Low Dropout Voltage	Typ. 0.23V (lout=100mA 3.0V Output type)
High Ripple Rejection	Typ. 80dB(f=1kHz 3.0V Output type)
• Low Temperature-Drift Coefficient of Output Voltage	Typ. ±100ppm/°C
Excellent Line Regulation	Typ. 0.05%/V
High Output Voltage Accuracy	±2.0%
Excellent Dynamic Response	
Small Package	WL-CSP4-P1 (Wafer Level CSP)
Output Voltage	Stepwise setting with a step of 0.1V in the range
	of 1.5V to5.0V is possible
• Built-in Chip Enable Circuit (2 types; A: active low, B:	active high)
Built-in Fold Back Protection Circuit	Typ. 30mA (Current at short mode)
• Ceramic capacitors are recommended to be used with	this IC

APPLICATIONS

- Power source for cellular phones such as GSM, CDMA and various kinds of PCS.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

BLOCK DIAGRAM

SELECTION GUIDE

The output voltage, the active type, the packing type, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below;

$$\begin{array}{ccc} R1113x\underline{x}\underline{x}1x\underline{-}\underline{x}\underline{x} & \leftarrow \text{Part Number} \\ \uparrow \uparrow & \uparrow & \uparrow \\ \text{a b} & \text{c} & \text{d} \end{array}$$

Code	Contents
а	Designation of Package Type : Z:WL-CSP4-P1 (Wafer Level CSP)
b	Setting Output Voltage (Vout): Stepwise setting with a step of 0.1V in the range of 1.5V to 5.0V is possible.
С	Designation of Active Type : A : active low type B : active high type
d	Designation of Taping Type : Ex. TR, TL (refer to Taping Specifications; TR type is the standard direction.)

PIN CONFIGURATION

WL-CSP4-P1

PIN DESCRIPTION

Pin No	Symbol	Description
1	GND	Ground Pin
2	Vouт	Output pin
3	V _{DD}	Input Pin
4	CE or CE	Chip Enable Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item Rating		Unit
VIN	Input Voltage	7.0	V
Vce	Input Voltage(CE or CE Pin)	-0.3 ~ VIN+0.3	V
Vouт	Output Voltage	-0.3 ~ VIN+0.3	V
Іоит	Output Current	200	mA
PD	Power Dissipation	190	mW
Topt	Operating Temperature Range	-40 ~ 85	°C
Tstg	Storage Temperature Range	-55 ~ 125	°C

Power Dissipation

Typical Characteristics

*Measurement Conditions

Mounted on board (Wind velocity=0m/s) Board Material: FR-4 (Double-layer) Board Size: 40mm×40mm×t1.6mm Wiring area ratio against the board: 50%

*Result

Power dissipation 465mW Thermal Resistance 215°C/W

ELECTRICAL CHARACTERISTICS

• R1113Zxx1A Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vout	Output Voltage	$VIN = Set VOUT+1V 1mA \leq IOUT \leq 30mA$	Vouт×0.98		Vоит×1.02	V
Іоит	Output Current	VIN – VOUT = 1.0V	150			mA
ΔVουτ/ΔΙουτ	Load Regulation	VIN = Set Vour+1V 1mA ≤ IouT ≤ 80mA		20	45	mV
VDIF	Dropout Voltage	Refer to the ELECTRICAL CHARACTERISTIC	CS by OUTPU	IT VOLTA	GE	
Iss	Supply Current	VIN = Set Vour+1V		100	170	μА
Istandby	Supply Current (Standby)	VIN = VCE = Set VouT+1V		0.1	1.0	μА
ΔVουτ/ΔVιν	Line Regulation	Set Vour+0.5V ≦ VIN ≦ 6V IOUT = 30mA		0.05	0.20	%/V
RR	Ripple Rejection	Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE				
Vin	Input Voltage		2.0		6.0	V
ΔVουτ/ΔΤ	Output Voltage Temperature Coefficient	Iout = 30mA −40°C ≦ Topt ≦ 85°C		±100		ppm/°C
Ішм	Short Current Limit	VOUT = 0V		30		mA
Rpu	CE Pull-up Resistance		2.5	5.0	10.0	ΜΩ
Vсен	CE Input Voltage "H"		1.5		Vin	V
VCEL	CE Input Voltage "L"		0.00		0.25	V
en	Output Noise	BW=10Hz to 100kHz		30		μVrms

• R1113Zxx1B Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vout	Output Voltage	VIN = Set Vour+1V 1mA ≤ Iouт ≤ 30mA	Vоит×0.98		Vouт×1.02	V
Іоит	Output Current	VIN – VOUT = 1.0V	150			mA
ΔVουτ/ΔΙουτ	Load Regulation	VIN = Set Vour+1V 1mA ≦ lour ≦ 80mA		20	45	mV
VDIF	Dropout Voltage	Refer to the ELECTRICAL CHARACTERISTIC	CS by OUTPL	IT VOLTA	GE	
Iss	Supply Current	VIN = Set Vout+1V		100	170	μА
Istandby	Supply Current (Standby)	VIN = VCE = Set VouT+1V		0.1	1.0	μА
ΔVουτ/ΔVιν	Line Regulation			0.05	0.20	%/V
RR	Ripple Rejection	Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE				
Vin	Input Voltage		2.0		6.0	٧
ΔVουτ/ΔΤ	Output Voltage Temperature Coefficient	Iouт = 30mA −40°C ≦ Topt ≦ 85°C		±100		ppm/°C
Ішм	Short Current Limit	Vout = 0V		30		mA
Rpu	CE Pull-up Resistance		2.5	5.0	10.0	ΜΩ
Vсен	CE Input Voltage "H"		1.5		VIN	V
VCEL	CE Input Voltage "L"		0.00		0.25	V
e n	Output Noise	BW=10Hz to 100kHz		30		μVrms

ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

Topt = 25° C

	Dropout Voltage		opt – 20 C
Output Voltage Vout (V)	V _{DIF} (V)		
	Condition	Тур.	Max.
1.5	louт = 100mA	0.50	0.70
1.6		0.45	0.65
1.7		0.40	0.60
1.8		0.34	0.55
1.9		0.28	0.44
$2.0 \le V_{\text{OUT}} \le 2.3$		0.25	0.35
2.4 ≦ Vout ≦ 2.7		0.24	0.29
$2.8 \leq V_{\text{OUT}} \leq 5.0$		0.23	0.26

Topt = 25° C

	Ripple Rejection		
Output Voltage Vout (V)	RR (dB)		
	Condition	Тур.	Max.
$1.5 \leq V_{\text{OUT}} \leq 4.0$	f = 1kHz, Ripple 0.5Vp-p	80	
$4.1 \le V_{\text{OUT}} \le 5.0$	$V_{IN} = Set V_{OUT} + 1V$	70	

OPERATION

In these ICs, fluctuation of output voltage, Vout is detected by feedback registers R1, R2, and the result is compared with a reference voltage by the error amplifier, so that a constant voltage is output. A current limit circuit for protection in short mode and a chip enable circuit, are included.

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance).

We use Ceramic Capacitors for evaluation of these ICs.

Recommended Capacitors; GRM40X5R225K6.3 (Murata)

GRM40-034X5R335K6.3 (Murata)

GRM40-034X5R475K6.3 (Murata)

(Note: When the additional ceramic capacitors are connected to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as $2.2\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as short as possible.

TEST CIRCUITS

Fig.1 Standard test Circuit

Fig.2 Supply Current Test Circuit

Fig.3 Ripple Rejection, Line Transient Response Test Circuit

Fig.4 Load Transient Response Test Circuit

TYPICAL APPLICATION

(External Components)

Output Capacitor; Ceramic 2.2µF (Set Output Voltage in the range from 2.6 to 5.0V)

Ceramic 4.7µF (Set Output Voltage in the range from 1.5 to 2.5V)

Input Capacitor ; Ceramic 2.2μF

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current Topt=25°C R1113Z201B

2) Output Voltage vs. Input Voltage Topt=25°C

3) Dropout Voltage vs. Output Current R1113Z201B

4) Output Voltage vs. Temperature R1113Z201B

5) Supply Current vs. Input Voltage Topt=25°C R1113Z201B

6) Supply Current vs. Temperature R1113Z201B

7) Dropout Voltage vs. Set Output Voltage R1113Zxx1B

8) Ripple Rejection vs. Frequency R1113Z201B

R1113Z301B VIN=4.0V+0.5Vp-p, $COUT=ceramic~2.2\mu F$ 90 80 Ripple Rejection RR(dB) 70 60 50 40 IOUT=1mA 30 - Iou⊤=30mA 20 10 0 0.1 10 100 Frequency f(kHz)

9) Ripple Rejection vs. Input Voltage (DC bias)

10) Input Transient Response

 $V_{IN}=3.0V \leftrightarrow 4.0V$ $I_{OUT}=30mA$ $C_{IN}=none$ $C_{OUT}=4.7\mu F$ $tr/tf=5\mu s$

R1113Z301B

Topt=25°C

 V_{IN} =4.0V \leftrightarrow 5.0V I_{OUT} =30mA C_{IN} =none C_{OUT} =2.2 μ Ftr/tf=5 μ s

R1113Z401B

Topt=25°C

 $V_{IN}=5.0V \leftrightarrow 6.0V$ $I_{OUT}=30mA$ $C_{IN}=none$ $C_{OUT}=2.2\mu F$ $tr/tf=5\mu s$

R1113Z501B

Topt=25°C

Vin=6.0V → 7.0V Iout=30mA Cin=none Cout=2.2µF tr/tf=5µs

11) Load Transient Response

I_{OUT}=50mA↔100mA V_{IN}=3.0V C_{IN}=2.2μF C_{OUT}=4.7μF tr/tf=5μs

 $\begin{array}{l} \text{Iout=50mA} \longleftrightarrow \text{100mA} \\ \text{V}_{\text{IN}=4.0V} \\ \text{C}_{\text{IN}=2.2\mu\text{F}} \\ \text{C}_{\text{OUT}=2.2\mu\text{F}} \\ \text{tr/tf=5} \text{ } \mu\text{s} \end{array}$

 $\begin{array}{l} \text{Iout=50mA} {\longleftrightarrow} 100\text{mA} \\ \text{V}_{\text{IN}} {=} 5.0\text{V} \\ \text{C}_{\text{IN}} {=} 2.2\mu\text{F} \\ \text{Cout=} 2.2\mu\text{F} \\ \text{tr/tf=5}\mu\text{s} \end{array}$

IOUT= $50\text{mA}\leftrightarrow 100\text{mA}$ VIN=6.0VCIN= $2.2\mu\text{F}$ COUT= $2.2\mu\text{F}$ tr/tf= $5\mu\text{s}$

TECHNICAL NOTES

When using these ICs, consider the following points:

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance) of which is in the range described as follows:

Measuring Circuit for white noise; R1113Zxx1B

The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under $40\mu V$ (Avg.) are marked as the hatched area in the graph.

(Note: If additional ceramic capacitors are connected to the Output Pin with Output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

<Measurement conditions>

(1) VIN=VOUT+1V

(2) Frequency Band: 10Hz to 1MHz

(3) Temperature: 25°C

