Article Review

Improving Imbalanced Classification by Anomaly Detection 증강지능 연구실 황승현 2023-09-13

논문 소가

PPSN 2020: Parallel Problem Solving from Nature

Jiawen Kong 1 Wojtek Kowalczyk 1 Stefan Menzel 2 Thomas Bäck 1

[1] Leiden University, Leiden, The Netherlands

[2] Honda Research Institute Europe GmbH, Offenbach, Germany

Improving Imbalanced Classification by Anomaly Detection

Jiawen Kong^{1(⊠)}, Wojtek Kowalczyk¹, Stefan Menzel², and Thomas Bäck¹

Leiden University, Leiden, The Netherlands
 {j.kong,w.j.kowalczyk,t.h.w.baeck}@liacs.leidenuniv.nl
 Honda Research Institute Europe GmbH, Offenbach, Germany
 stefan.menzel@honda-ri.de

Abstract. Although the anomaly detection problem can be considered as an extreme case of class imbalance problem, very few studies consider improving class imbalance classification with anomaly detection ideas. Most data-level approaches in the imbalanced learning domain aim to introduce more information to the original dataset by generating synthetic samples. However, in this paper, we gain additional information in another way, by introducing additional attributes. We propose to introduce the outlier score and four types of samples (safe, borderline, rare, outlier) as additional attributes in order to gain more information on the data characteristics and improve the classification performance. According to our experimental results, introducing additional attributes can improve the imbalanced classification performance in most cases (6) out of 7 datasets). Further study shows that this performance improvement is mainly contributed by a more accurate classification in the overlapping region of the two classes (majority and minority classes). The proposed idea of introducing additional attributes is simple to implement and can be combined with resampling techniques and other algorithmiclevel approaches in the imbalanced learning domain.

Keywords: Class imbalance · Anomaly detection · Borderline samples

목차

- Imbalanced data란?
- 새로운 접근법 anomaly score, 4type
- 실험 분석
- 마무리

Imbalanced data란?

Imbalanced data의 정의와 기존 접근법 소개

Imbalanced classification

불균형 분류

각 클래스 비율 크게 차이

고혈압 분류: 정상 95명 비정상 5명

골다공증 분류: 정상 80명 비정상 20명

Rare class : 소수 (환자)

Abundant class : 다수 (정상인)

Imbalanced classification 문제점

- 대충 만들어도 Accuracy 가 높게 나온다
 - 모델이 모두 정상이라고 판단하면 된다.
 - 정상인 90명 환자 10명을 분류할 때, 모두 정상인이라고 분류하면?
 - 정확도 80%

$$(Accuracy) = \frac{TP + TN}{TP + FN + FP + TN}$$

접근법:Resampling

Oversampling

- Rare class 늘리기
- 소수를 복제하여 다수에 맞춤
- SMOTE, ADASYN 등

Undersampling

- Abundant class 줄이기
- 다수를 소수에 맞게 자름
- NCL, OSS 등

기존 접근법의 문제

- Oversampling: Overfitting
- Undersampling : 데이터 수↓
 - 학습 효율 떨어짐
- "합성"된 데이터
 - 원본 데이터 보장 x

새로운 접근법

논문에서 소개하는 접근법

Anomaly Detection을 이용한 Imbalanced Classification

새로운 접근법

- 데이터셋의 튜플을 늘리지 말고
 - Rows
- 데이터셋의 속성을 늘리자
 - Columns
- 추가 속성
 - 1. outlier score
 - 2. safe, borderline, rare, outlier

outlier score

- 이상치 점수
- 샘플이 이상치인지 아닌지 판단 하는 지표
- Local Outlier Factor(LOF)

LOF

주변 데이터에서 크게 벗어난 데이터 식별 이웃에서 크게 떨어져 있다면? 이상치

LOF 구하는 과정

Local Density Estimation

각 데이터 포인트 주변의 로컬 밀도 추정

데이터 포인트와 K-Nearest Neighbors 사이의 거리 계산

Reachability Distance

도달 가능 거리

한 포인트가 이웃 포인트와 얼마나 멀리 떨어져 있는 지

가장 가까운 k번째 이웃까지의 거리

LOF 계산

가장 가까운 k개 이웃의 평균 도달 가능 거리 자신의 도달 가능 거리의 비율

Algorithm 1: Local Outlier Factor (LOF) algorithm [2]

Input : X - input data $X = (X_1, ..., X_n)$

 \boldsymbol{n} - the number of input examples

k - the number of neighbours

Output: LOF score of every X_i

1 initialization;

2 calculate the distance $d(\cdot)$ between every two data points;

3 for i = 1 to n do

for j = 1 to n do

4 | calculate k-distance(X_i): the distance between X_i and its kth neighbour;

find out k-distance neighbourhood $N_k(X_i)$: the set of data points whose

distance from X_i is not greater than k-distance (X_i) ;

calculate reachability distance:

 $reach-dist_k(X_i, X_j) = \max\{k-distance(X_j), d(X_i, X_j)\};$

calculate local reachability density:

$$\begin{split} lrd_k(X_i) &= 1/avg\text{-}reach\text{-}dist_k(X_i) \\ &= 1/\bigg(\frac{\sum_{o \in N_k(X_i)} reach\text{-}dist_k(X_i, X_j)}{|N_k(X_i)|}\bigg); \end{split}$$

intuitively, the local reachability density of X_i is the inverse of the average reachability distance based on the k-nearest neighbours of X_i ; calculate LOF:

$$\begin{split} LOF_k(X_i) &= \frac{\sum_{o \in N_k(X_i)} lr d_k(X_j)}{|N_k(X_i)| \cdot lr d_k(X_i)} \\ &= \frac{\sum_{o \in N_k(X_i)} \frac{lr d_k(X_j)}{|lr d_k(X_i)|}}{|N_k(X_i)|} \end{split}$$

the LOF of X_i is the average local reachability density of X_i 's k-nearest neighbours divided by the local reachability density of X_i .

 \mid end

11 end

10

safe, borderline, rare, outlier

Napierala and Stefanowski

k-neighbourhood.

K: KNN 파라미터

 $R_{\text{min/all}}$

희귀한 이웃의 수 / 전체 이웃의 수

Table 1. Rules to assign the four types of minority examples.

From: Improving Imbalanced Classification by Anomaly Detection

Туре	Safe (S)	Borderline (B)	Rare (R)	Outlier (O)						
Rule	$rac{k+1}{2k} < R_{rac{min}{all}} \leqslant 1$	$rac{k-1}{2k} \leqslant R_{rac{min}{all}} \leqslant rac{k+1}{2k}$	$0 < R_{rac{min}{all}} < rac{k-1}{2k}$	$R_{rac{min}{all}}=0$						
E.G. given the	E.G. given the neighbourhood of a fixed size $k=5$									
Rule	$rac{3}{5} < R_{rac{min}{all}} \leqslant 1$	$rac{2}{5}\leqslant R_{rac{min}{all}}\leqslantrac{3}{5}$	$0 < R_{rac{min}{all}} < rac{2}{5}$	$R_{rac{min}{all}}=0$						

실험

메소드

- 시나리오
 - 1. 아무 것도 안 한 원본
 - 2. Resampling
 - 3. Resampling + 추가 속성
 - 4. 추가 속성
- t-tests로 데이터셋 유사하게 조정
- K-fold 5

데이터셋

Table 2. Information on benchmark datasets [1].

From: Improving Imbalanced Classification by Anomaly Detection

Datasets	#Attributes	#Samples	Imbalance ratio (IR)
glass1	9	214	1.82
ecoli4	7	336	15.8
vehicle1	18	846	2.9
yeast4	8	1484	28.1
wine quality	11	1599	29.17
page block	10	5472	8.79

결과

The experiment with the two additional attributes outperforms the experiment with the classical resampling technique SMOTE.

두 가지 속성 추가 >>>> SMOTE

2D chess dataset														
Methods	Add	AUC	Precision	Decision Tr Recall	ee F1	Gmean	AUC	Precision	SVM Recall	F1	Gmean			
NONE	NO	0.8482	0.5743	0.6992	0.6208	0.8047	0.8285	_	_	_	_			
NONE	YES	0.9771	0.9557	0.9070	0.9226	0.9469	0.9859	0.9846	0.9485	0.9643	0.9723			
SMOTE	YES	0.8584	0.6422	0.9061	0.9064	0.9453	0.8921	0.1636	0.9667	0.9622	0.9801			
ADASYN	NO	0.8482	0.5743	0.6992	0.6208	0.8047	0.6172	0.1434	0.5904	0.2299	0.5892			
	YES	0.9771 0.5786	0.9557	0.9070 0.6652	0.9226	0.9469 0.5541	0.9925 0.5290	0.8546	0.9667 0.4212	0.8999	0.9721 0.4802			
NCL	YES	0.9715	0.8542	0.9667	0.8988	0.9716	0.9946	0.9119	0.9667	0.9337	0.9766			
OSS	NO YES	0.7569 0.9743	0.4197 0.9321	0.5227 0.9391	0.4554 0.9316	0.6813 0.9640	0.6262 0.9937	0.3050 0.9532	0.0295	0.0535	0.0958 0.9745			
						ss1 dataset		515.552						
Methods	Add	dd AUC Precision Recall F1 Gme					AUC	Precision	SVM Recall	F1	Gmean			
NONE	NO	0.7029	0.6099	0.6235	0.6044	Gmean 0.6806	0.6779	0.6394	0.5533	0.5828	0.6633			
	YES	0.7328	0.6283	0.6344	0.6227	0.6956	0.7779	0.6506	0.65917	0.6430	0.7089			
SMOTE	YES	0.7008 0.7595	0.5750	0.6988	0.6589	0.6782 0.7273	0.7140 0.8288	0.5125 0.6537	0.7236 0.8802	0.5785	0.6111 0.7760			
ADASYN	NO YES	0.7095 0.7799	0.5922	0.6728 0.7106	0.6187	0.6842 0.7419	0.7336 0.8388	0.5159 0.6545	0.7982 0.8996	0.6103 0.7456	0.6271 0.7845			
	NO	0.7799	0.4401	0.9302	0.5843	0.7419	0.6750	0.4124	1.0000	0.5765	0.7845			
NCL	YES	0.5897	0.3976	0.9239	0.5527	0.3806	0.7790	0.4299	1.0000	0.5948	0.3403			
OSS	NO YES	0.7010 0.7611	0.5688 0.6342	0.6841	0.6132 0.6637	0.6804 0.7295	0.6810 0.7784	0.5850 0.6085	0.5837 0.7382	0.5683	0.6444 0.7128			
					600	li4 dataset								
Methods	Add	AUC	Precision	Decision Tr Recall	ee F1	Gmean	AUC	Precision	SVM Recall	F1	Gmean			
NONE	NO	0.8446	0.7241	0.6433	0.6432	0.7694	0.9919	0.8889	0.8000	0.7993	0.8797			
NONE	YES	0.8525	0.6435	0.6017	0.5734	0.6920	0.9889	0.9143	0.7500	0.7835	0.8512			
SMOTE	NO YES	0.8824 0.8629	0.7938 0.8315	0.7233 0.7300	0.7102 0.7262	0.8328 0.8303	0.9894 0.9931	0.8290 0.8824	0.8000	0.7268 0.8881	0.8457 0.9639			
ADASYN	NO	0.8719	0.8407	0.7083	0.7221	0.8236	0.9903	0.7813	0,8000	0.7034	0.8389			
	YES	0.8747	0.7833	0.6717	0.6623	0.7822	0.9934	0.8800	0.9500	0.8857	0.9634			
NCL	YES	0.8523	0.7297	0.7550	0.6499	0.7982	0.9914	0.8533	0.9500	0.8556	0.9549			
OSS	NO YES	0.8398	0.6284 0.6858	0.7250 0.8350	0.5958 0.6787	0.7872 0.8586	0.9877 0.9890	0.8458 0.8830	0.8133 0.9117	0.7580	0.8668			
	1 4.4.2	012440	0,0000	0.0000		cle1 dataset	013020	0,0000		0.0020	0.2400			
Methods	Add	AUC	Decision Tree AUC Precision Recall F1 Gmean					SVM AUC Precision Recall F1 Gmea						
MONT	NO	0.6699	0.5018	Recall 0.4301	0.4575	0.6004	0.8673	0.7074	0.3593	0.4747	0.5824			
NONE	YES	0.7385	0.5855	0.5329	0.5573	0.6794	0.9081	0.6873	0.6266	0.6536	0.7500			
SMOTE	NO YES	0.7241 0.7403	0.5398 0.5825	0.5557 0.5629	0.5458 0.5704	0.6796 0.6938	0.8945 0.9204	0.5538	0.9237 0.9745	0.6913 0.7272	0.8264 0.8582			
ADASYN	NO	0.7211	0.5359	0.5570	0.5446	0.6791	0.8995	0.5485	0.9465	0.6937	0.8303			
	YES	0.7481	0.5842	0.5789	0.5797	0.7025	0.9206	0.5800	0.9809	0.7284	0.8597			
NCL	YES	0.7781	0.4560	0.9392	0.6118	0.7529	0.8752	0.5076	1.0000	0.6728	0.8139			
OSS	NO YES	0.7125 0.7531	0.4857 0.5524	0.6066 0.6286	0.5370 0.5859	0.6837 0.7174	0.8702 0.9062	0.5745 0.6088	0.7014 0.9117	0.6293 0.7290	0.7560 0.8515			
					yea	st4 dataset		010000						
Methods	Add	AUC	Precision	Decision Tr Recall	ee F1	Gmean	AUC	Precision	SVM Recall	F1	Gmean			
NONE	NO	0.6736	0.3619	0.2217	0.2653	0.4482	0.8469				Gmean			
NONE	YES	0.8647 0.7320	0.8320	0.6708	0.7260	0.8132	0.9910 0.9052	0.8628	0.8036	0.8270	0.8920			
SMOTE	YES	0.7320	0.2632	0.4029 0.6892	0.3082	0.6082 0.8235	0.9052	0.7096	0.6769	0.8079	0.7773			
ADASYN	NO	0.7226	0.2494	0.3958	0.2963	0.6041	0.9011	0.2061	0.6902	0.3104	0.7815			
	YES NO	0.9114 0.8176	0.7531	0.6553	0.6906	0.8036	0.9923	0.6951	0.9618	0.8051	0.9727			
NCL	YES	0.9785	0.6733	0.9772	0.7928	0.7772 0.9791	0.9917	0.7512	0.9436	0.8337	0.9649			
OSS	NO YES	0.7066 0.9130	0.2899	0.3561 0.7699	0.3020 0.7532	0.5713 0.8708	0.8488 0.9892	0.2094 0.8312	0.0258	0.0447	0.0781 0.9121			
					wine q	uality datas	rt							
Methods	Add	AUC	Precision	Decision Tr Recall	ee F1	Gmean	AUC	Precision	SVM Recall	F1	Gmean			
NONE	NO	0.5844	0.1180	0.1275	0.1132	0.2817	0.9790	0.9653	0.9113	0.9333	0.9525			
	YES	0.9790 0.5597	0.9653	0.9113	0.9333	0.9525	0.9944	0.9636	0.8274	0.8761	0.9031			
SMOTE	YES	0.9685	0.9715	0.8630	0.9031	0.9239	0.9942	0.8809	0.9055	0.8890	0.9488			
ADASYN	NO YES	0.5601	0.0654	0.1909 0.8467	0.0953 0.8917	0.3800 0.9141	0.6920 0.9944	0.1039	0.4231	0.1650 0.8888	0.5933 0.9488			
NCL	NO	0.5922	0.1037	0.2593	0.8917	0.4817	0.9944	0.2582	0.1891	0.1818	0.9488			
NCL	YES	0.9845	0.8567	0.9492	0.8949	0.9703	0.9939	0.9359	0.8818	0.8890	0.9308			
OSS	NO YES	0.5733 0.9859	0.0729	0.2158 0.9818	0.1054 0.9723	0.4135 0.9901	0.5078 0.9941	0.9282	0.9424	0.9307	0.9690			
					page	block datase								
Methods	Add	AUC	Precision	Decision Tr Recall	ee F1	Gmean	AUC	Precision	SVM Recall	F1	Gmean			
NONE	NO	0.9083	0.8108	0.7442	0.7687	0.8519	0.9723	0.8743	0.7046	0.7663	0.8304			
	YES	0.9369	0.8535	0.8289	0.8350	0.9014 0.8735	0.9646	0.8481	0.8460	0.8379	0.9091			
SMOTE	YES	0.9300	0.8216	0.8404	0.8245	0.9051	0.9847	0.7404	0.9496	0.8251	0.9533			
ADASYN	NO YES	0.9130	0.7302 0.8452	0.7990	0.7558	0.8763 0.9032	0.9613 0.9843	0.5716	0.9277	0.6983	0.9194			
NCL	NO	0.9338	0.6528	0.9091	0.7502	0.9223	0.9669	0.6628	0.8950	0.7412	0.9127			
NCL	YES NO	0.9563	0.7318 0.7297	0.9400	0.8156	0.9474 0.8711	0.9844 0.9555	0.7355 0.8375	0.9606	0.8255	0.9577 0.8107			
OSS	YES	0.9248	0.7820	0.8349	0.7473	0.8972	0.9808	0.7845	0.8655	0.8111	0.9137			

결과 - 자세히

- 2D chess
 - None + yes : 0.9771
 - SMOTE + no: 0.8584
 - SMOTE + yes: 0.9704
- Yeast4
 - None + yes : 0.8647
 - SMOTE + no: 0.7320
 - SMOTE + yes : 0.9115
- Wine quality
 - None + yes : 0.9790
 - SMOTE + no: 0.5597
 - SMOTE + yes: 0.9685

2D chess dataset													
Methods	Add	AUC Precision Recall		ee F1	F1 Gmean AUC			SVM Recall	F1	Gmean			
NONE	NO	0.8482	0.5743	0.6992	0.6208	0.8047	0.8285	Precision	_		_		
	YES NO	0.9771	0.9557	0.9070	0.9226 0.6646	0.9469	0.9859 0.5921	0.9846	0.9485	0.9643	0.9723 0.5855		
SMOTE	YES	0.9704 0.8482	0.9191	0.9061	0.9064	0.9453 0.8047	0.9933 0.6172	0.9633	0.9667	0.9622	0.9801 0.5892		
ADASYN	YES	0.9771	0.9557	0.9070	0.6208 0.9226	0.8047 0.9469 0.5541	0.9925	0.8546	0.9967	0.8999	0.9721		
NCL	NO YES	0.5786 0.9715	0.1245 0.8542	0.6652 0.9667	0.2092 0.8988	0.5541 0.9716	0.5290 0.9946	0.1076 0.9119	0.4212 0.9667	0.1693 0.9337	0.4802 0.9766		
OSS	NO	0.7569	0.4197	0.5227	0.4554	0.6813	0.6262	0.3050	0.0295	0.0535	0.0958		
000	YES	0.9743	0.9321	0.9391	0.9316	0.9640 ssl dataset	0.9937	0.9532	0.9564	0.9524	0.9745		
Methods	Add			Decision Tr	00				SVM				
	NO	AUC 0.7029	Precision 0.6099	Recall 0.6235	F1 0.6044	Gmean 0.6806	AUC 0.6779	Precision 0.6394	Recall 0.5533	F1 0.5828	Gmean 0.6633		
NONE	YES	0.7328	0.6283	0.6344	0.6227	0.6956	0.7779	0.6506	0.65917	0.6430	0.7089		
SMOTE	NO YES	0.7008 0.7595	0.5750	0.6561	0.6060	0.6782 0.7273	0.7140 0.8288	0.5125 0.6537	0.7236	0.5785	0.6111 0.7760		
ADASYN	NO YES	0.7095	0.5922	0.6728	0.6187	0.6842	0.8288 0.7338	0.5159	0.8802 0.7982	0.6103	0.6271		
NCL	NO	0.7799	0.4401	0.7106	0.6780	0.7419	0.8388 0.6750	0.6545	0.8996 1.0000	0.7456	0.7845		
	YES NO	0.5897 0.7010	0.3976	0.9239 0.6841	0.5527 0.6132	0.3806	0.7790 0.6810	0.4299	1.0000 0.5837	0.5948	0.3403		
OSS	YES	0.7611	0.6342	0.7136	0.6637	0.7295	0.7784	0.6085	0.7382	0.6543	0.7128		
	ecoli4 dataset												
Methods	Add	AUC	Precision	Recall	F1	Gmean	AUC	Precision	Recall	F1	Gmean		
NONE	NO YES	0.8446 0.8525	0.7241 0.6435	0.6433 0.6017	0.6432 0.5734	0.7694 0.6920	0.9919 0.9889	0.8889	0.8000 0.7500	0.7993 0.7835	0.8797 0.8512		
SMOTE	NO	0.8824	0.7938	0.7233	0.7102	0.8328	0.9894	0.8290	0.8000	0.7268	0.8457		
	YES	0.8629 0.8719	0.8315	0.7300	0.7262	0.8303 0.8236	0.9931	0.8824	0.9500	0.8881	0.9639		
ADASYN	YES	0.8747	0.7833	0.6717	0.6623	0.7822	0.9934	0.8800	0.9500	0.8857	0.9634		
NCL	NO YES	0.8007 0.8523	0.6080 0.7297	0.6333	0.5651	0.7380 0.7982	0.9869 0.9914	0.8258 0.8533	0.9000	0.7886	0.8976		
OSS	NO YES	0.8398 0.9115	0.6284 0.6858	0.7250 0.8350	0.5958 0.6787	0.7872 0.8586	0.9677 0.9890	0.8458 0.8830	0.8133 0.9117	0.7580 0.8626	0.8668 0.9408		
	1 00	0.9115	0.0000	0.8330		icle1 dataset	0.9890	0.0030	0.9117	0.8020	0.5406		
Methods	Add	AUC	I D1-1	Decision Tr	ee P1		AUC	6					
NONE	NO	0.6699	Precision 0.5018	Recall 0.4301	F1 0.4575	Gmean 0.6004	0.8673	Precision 0.7074	Recall 0.3593	F1 0.4747	Gmean 0.5824		
NONE	YES	0.7385 0.7241	0.5855	0.5329	0.5573 0.5458	0.6794	0.9081 0.8945	0.6873	0.6266	0.6536	0.7500 0.8264		
SMOTE	YES	0.7403	0.5825	0.5629	0.5704	0.6938	0.9204	0.5808	0.9745	0.7272	0.8582		
ADASYN	NO YES	0.7211	0.5359	0.5570 0.5789	0.5446	0.6791 0.7025	0.8995	0.5485	0.9465	0.6937	0.8303 0.8597		
NCL	NO	0.7411	0.4153	0.9506	0.5769	0.7093	0.8411	0.4108	0.9768	0.5776	0.7059		
	YES NO	0.7781 0.7125	0.4560	0.9392	0.6118	0.7529 0.6837	0.8752 0.8702	0.5076	1.0000 0.7014	0.6728	0.8139 0.7560		
OSS	YES	0.7531	0.5524	0.6286	0.5859	0.7174	0.9062	0.6088	0.9117	0.7290	0.8515		
24-12-1	4.11			Decision Tr		st4 dataset			svM				
Methods	Add	AUC	Precision	Recall	F1	Gmean	AUC Precision Recall F1 G						
NONE	NO YES	0.6736 0.8647	0.3619	0.2217 0.6708	0.2653	0.4482 0.8132	0.8469 0.9910	0.8628	0.8036	0.8270	0.8920		
SMOTE	NO YES	0.7320 0.9115	0.2632	0.4029 0.6892	0.3082 0.7171	0.6082 0.8235	0.9052 0.9922	0.2112 0.7096	0.6769	0.3160 0.8079	0.7773 0.9639		
ADASYN	NO	0.7226	0.2494	0.3958	0.2963	0.6041	0.9011	0.2061	0.6902	0.3104	0.7815		
	YES NO	0.9114	0.7531	0.6553 0.6819	0.6906	0.8036	0.9923	0.6951	0.9618 0.5745	0.8051	0.9727 0.7256		
NCL	YES	0.9785	0.6733	0.9772	0.7928	0.9791	0.9917	0.7512	0.9436	0.8337	0.9649		
OSS	YES	0.7066 0.9130	0.2899	0.3561 0.7699	0.3020	0.8708	0.8488 0.9892	0.2094 0.8312	0.0258	0.0447 0.8310	0.0781 0.9121		
					wine o	quality datas	vt						
Methods	Add	AUC	Precision	Decision Tr Recall	ee F1	Gmean	AUC	Precision	SVM Recall	F1	Gmean		
NONE	NO YES	0.5844 0.9790	0.1180	0.1275 0.9113	0.1132	0.2817 0.9525	0.9790 0.9944	0.9653	0.9113 0.8274	0.9333	0.9525 0.9031		
SMOTE	NO	0.5597	0.0648	0.1801	0.0930	0.3704	0.6935	0.1065	0.4223	0.1680	0.5941		
	YES NO	0.9685	0.9715	0.8630	0.9081	0.9239	0.9942 0.6920	0.8809	0.9055	0.8890	0.9488		
ADASYN	YES	0.9859	0.9709	0.8467	0.8917	0.9141	0.9944	0.8805	0.9055	0.8888	0.9488		
NCL	NO YES	0.5922 0.9845	0.1037 0.8567	0.2593 0.9492	0.1423 0.8949	0.4817 0.9703	0.7207 0.9939	0.2582 0.9359	0.1891 0.8818	0.1818 0.8890	0.3755 0.9308		
OSS	NO	0.5733	0.0729	0.2158	0.1054	0.4135	0.5076	_	_	_	_		
	YES	0.9859	0.9636	0.9818	0.9723 page	0.9901 block dataset	0.9941	0.9282	0.9424	0.9307	0.9690		
Methods	Add			Decision Tr	ee				SVM				
	NO	AUC 0,9083	Precision 0.8108	Recall 0.7442	F1 0.7687	Gmean 0.8519	AUC 0.9723	Precision 0.8743	Recall 0.7046	F1 0.7663	Gmean 0.8304		
NONE	YES	0.9369	0.8535	0.8289	0.8350	0.9014	0.9880	0.8481	0.8460	0.8379	0.9091		
SMOTE	NO YES	0.9122 0.9300	0.7485 0.8216	0.7910 0.8404	0.7620 0.8245	0.8735 0.9051	0.9646 0.9847	0.6815 0.7404	0.8792 0.9496	0.7536 0.8251	0.9099 0.9533		
ADASYN	NO	0.9130	0.7302	0.7990	0.7558	0.8763	0.9613	0.5716	0.9277	0.6983	0.9194		
	YES	0.9328 0.9338	0.8452	0.8321	0.8356 0.7502	0.9032	0.9843 0.9669	0.7529 0.6628	0.9726	0.8435	0.9661 0.9127		
NCL	YES	0.9563	0.7318	0.9400	0.8156 0.7473	0.9474	0.9844	0.7355	0.9606	0.8255	0.9577		
oss	YES	0.9071 0.9248	0.7297 0.7820	0.7936 0.8349	0.7473	0.8711 0.8972	0.9555	0.8375 0.7845	0.6755 0.8655	0.7310 0.8111	0.8107		

결과

시각화 빨간색 동그라미: 잘못 분류된 것

아래 2개 비교

결과

Feature Importance 추가된 속성이 분류할 때 유의미하게 쓰임

2D chess dataset (2 original & 2 added attributes)													
Score Attr Add	org1	org2	add1	add2	_	_	_	_	_	_	_	_	_
NO YES	0.4636 0.0101	0.5364 0.0097	0.N152	0.1650		_			_				
			glass	1 data	aset (9	origina	l & 2 ac	dded at	tributes	s)		<u> </u>	
Score Attr Add	org1	org2	org3	org4	org5	org6	org7	org8	org9	add1	add2	_	_
NO YES	0.2063 0.1770	0.0213 0.0056	0.2354 0.1527	0.1291 0.1099	0.0302	0.0418	0.2634 0.1892	0.0000	0.0726	0.2413	0.1077		
ecoli4 dataset (7 original & 2 added attributes)													
Score Attr	org1	org2	org3	org4	org5	orge	org7	add1	add2	_	_	_	_
NO YES	0.1093	0.0587 0.0337	0.0000	0.0000	0.6591	0.1729 0.0000	0.0000	0.1742	0.0994				
vehicle1 dataset (18 original & 2 added attributes)													
Score Attr	org1	org2	org3	org4	orgā	org6	org7	org8	org9	org10	org11	org12	org13
NO YES	0.1304 0.0248	0.0654 0.0216	0.0892 0.1317	0.0403 0.0426	0.0563 0.0227	0.0233	0.0028 0.0179	0.0707	0.0000	0.0635 0.0338	0.0172 0.0260	0.0416 0.1291	0.0438 0.0828
Score Attr	org14	org15	org16	org17	org18	add1	add2	-	-	_	-	-	-
NO YES	0.0862	0.0414	0.0498 0.0025	0.0516	0.1265	0.2413	0.0485						
1 200	0.0140	U. U.S. LE		t4 data		origina		dded at	tribute	s)			
Score Attr	orgl	org2	org3	org4	org5	orge	org7	org8	add1	add2	_	_	_
NO YES	0.3301 0.0385	0.2446 0.0297	0.1839 0.0483	0.0720	0.0106	0.0000	0.1233	0.0355	0.7771	0.0546			
			ine qu					2 adde					
Score Attr Add	org1	org2	org3	org4	org5	orge	org7	org8	ong9	org10	org11	ndd1	add2
NO YES	0.0466	0.1402	0.1215	0.1194	0.0906	0.0635	0.0428	0.1287	0.0483	0.0841	0.1244 0.0000	0.9639	0.0000
			oage bl			10 orig		2 added	attrib				
Score Attr Add	org1	org2	org3	org4	org5	org6	orgī	org8	org9	org10	ndd1	add2	_
NO YES	0.5452 0.5282	0.0096 0.0006	0.0117 0.0036	0.1899 0.1745	0.0530 0.0205	0.0285 0.0223	0.0983 0.0833	0.0382 0.0129	0.0122 0.0007	0.0134	0.1288	0.0164	_

결론

- 1. In most cases, introducing these two additional attributes can improve the class imbalance classification performance. For some datasets, only introducing additional attributes gives better classification results than only performing resampling techniques.
- 2. An analysis of the experimental results also illustrates that the proposed method has a better ability to handle samples in the overlapping region

결론 3줄 요약

- 1. 추가 속성 2개(Outliar score, 4 Type) 넣으면 Resampling보다 더 성능 향상한다.
- 2. overlapping region(중복 영역)에서도 더 우수하다.
- 3. 꼭 넣어라

의문점

실험의 의문점. 이상치를 어떻게 구하나?

소스코드 분석

https://github.com/FayKong/PPSN2 020

논문에서 사용한 소스코드 공개

Outlier score

전체 데이터를 기준으로 한다.

```
import ...
                                                                                                ●3 A11 A5 ^\
glass1_data = pd.read_csv('~data/glass1.csv')
X = glass1_data.iloc[:, 0:9]
y = glass1_data['Class']
X = StandardScaler().fit_transform(X)
X = np.c_[X]
y_pred = clf.fit_predict(X)
X_scores = clf.negative_outlier_factor_
X_scores_1 = np.array([X_scores[x:x + 1] for x in range(0, len(X_scores), 1)]) # change shape (n,) to (n, 1)
X_all['LOF'] = X_scores_1
X_new = X_all.drop(['Class'], axis=1)
X_add = StandardScaler().fit_transform(X_new)
X_{add} = np.c_[X_{add}]
```

4 type

전체데이터를 기준으로 한다.

메소드

Decision tree, SVM 사용 Train, test 나누지 않고 모델 학습

- Imbalanced Benchmark
 - Baseline_DT_resampling.py
 - Benchmark_DT.py
 - Benchmark_DT_added.py
 - 💪 Benchmark_DT_added_resampling.py,
 - ち Benchmark_four_types.py
 - 뷶 Benchmark_LOF.py
 - Benchmark_SVM.py
 - Benchmark_SVM_added.py
 - Benchmark_SVM_added_resampling.py
 - Benchmark_SVM_resampling.py,

일반적인 머신러닝 모델 학습 과정

전체 데이터 100

• Train: 80

• Train: 64

Validation: 16

• Test: 20

전체 데이터

• 모델 학습할 때 쓰는 데이터

• 모델 학습

• 모델 검증 (과적합 방지 등)

• 학습완료한 모델의 성능 테스트

모델 학습 과정 중에 이상치는 어떻게..?

전체 데이터 100

• Train: 80

• Train: 64

Validation: 16

• Test: 20

전체 데이터의 이상치?

• Train의 이상치?

• Train의 이상치?

• Validation의 이상치?

• Test의 이상치?

전체 데이터를 기준으로 했을 때의 문제점

- 과적합
 - 학습한 모델에 새로운 데이터가 들어오면 잘 판단할 수 있을까?
- 의미있는 실험인가?
 - 애초에 Outliar score, type을 제공하고 학습
 - 정답을 보여주는 것과 다름 없지 않나?

마무리

결론, 향후 계획

결론

- 논문을 잘못 잡았다.
- 이 논문
 - 이상치 점수를 요소로 추가하여 머신러닝
- 내가 원했던 논문
 - 기존 머신러닝 알고리즘을 안 씀
 - 이상치 탐지 알고리즘을 이용하여 데이터 분석

향후 계획

- 전통적인 Outlier detection method 연구
 - Tukey's IQR method
 - Standard deviation method
 - Z-score method
 - Isolation Forest
 - DBSCAN
- 딥러닝 Outlier detection method 연구
 - Anomaly transformer 등등

- 현재 보유중인 데이터셋 활용 방안 탐구
 - 실험에 활용된 데이터셋 분석
 - 유사한 데이터셋에 적용