Рубежный контроль №1

Бурашников Владимир Владимирович, группа ИУ5-22М.Вариант №1, набор данных №2.

Задание

Для заданного набора данных постройте основные графики, входящие в этап разведочного анализа данных с использованием библиотек Matplotlib и Seaborn. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Какие графики Вы построили и почему? Какие выводы о наборе данных Вы можете сделать на основании построенных графиков? Проведите корреляционный анализ. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Решение

sepal.width - 0
petal.length - 0
petal.width - 0
variety - 0

Загрузка и предобработка данных

```
In [25]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
In [17]:
data = pd.read_csv('/home/vladimir/iris.csv', sep=",")
In [18]:
data.head()
Out[18]:
   sepal.length sepal.width petal.length petal.width variety
0
          5.1
                    3.5
                              1.4
                                            Setosa
         4.9
                    3.0
                              1.4
                                        0.2 Setosa
2
         47
                    32
                                        0.2 Setosa
                              1.3
3
          4.6
                    3.1
                              1.5
                                        0.2 Setosa
          5.0
                    3.6
                                        0.2 Setosa
In [19]:
data.shape
Out[19]:
(150, 5)
In [20]:
data.columns
Out[20]:
Index(['sepal.length', 'sepal.width', 'petal.length', 'petal.width',
        'variety'],
      dtype='object')
In [21]:
# ищем пропуски
for c in data.columns:
    null_count = data[data[c].isnull()].shape[0]
    print(f'{c} - {null_count}')
sepal.length - 0
```

In [22]:

data.dtypes

Out[22]:

sepal.length float64 sepal.width float64 petal.length float64 petal.width float64 variety object

dtype: object

In [23]:

характеристки набора данных data.describe()

Out[23]:

	sepal.length	sepal.width	petal.length	petal.width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Диаграмма рассеяния

Позволяет построить распределение двух колонок данных и визуально обнаружить наличие зависимости.

Построим диаграмму рассеяния для двух признаков - sepal.width и sepal.length. Видим, что первый признак влияет на второй и между ними существует зависимость, с увеличением первого признака увеличивается и второй.

In [50]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='petal.length', y='sepal.length', data=data)
```

Out[50]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f18a0512710>

In [51]:

```
# Оценим влияние признака variety на зависимость.
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='petal.length', y='sepal.length', data=data, hue='petal.width')
```

Out[51]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f18a04c4400>

Гистограмма

In [35]:

```
# Определение наиболее вероятного значения признака sepal.length fig, ax = plt.subplots(figsize=(10,10)) sns.distplot(data['sepal.length']) # Выяснили, что это около 5.8
```

Out[35]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f18a5d645f8>

In [36]:

```
data['sepal.length'].median()
```

Out[36]:

5.8

Joinplot

In [53]:

joinplot отображает зависимость petal.width om petal.length
p = sns.jointplot("petal.width", "petal.length", data)

Парные диаграммы

In [54]:

Парные диаграммы по признакам датасета sns.pairplot(data)

Out[54]:

<seaborn.axisgrid.PairGrid at 0x7f18a020d4e0>

In [55]:

Группировка по значениям признака variety sns.pairplot(data, hue="petal.width")

/home/vladimir/PycharmProjects/giis_lab1/env/lib/python3.6/site-packages/seaborn/distributions.py:28
8: UserWarning: Data must have variance to compute a kernel density estimate.
 warnings.warn(msg, UserWarning)

/home/vladimir/PycharmProjects/giis_lab1/env/lib/python3.6/site-packages/seaborn/distributions.py:28
8: UserWarning: Data must have variance to compute a kernel density estimate.
 warnings.warn(msg, UserWarning)

/home/vladimir/PycharmProjects/giis_lab1/env/lib/python3.6/site-packages/seaborn/distributions.py:28
8: UserWarning: Data must have variance to compute a kernel density estimate.
warnings.warn(msg, UserWarning)

/home/vladimir/PycharmProjects/giis_lab1/env/lib/python3.6/site-packages/seaborn/distributions.py:28
8: UserWarning: Data must have variance to compute a kernel density estimate.
warnings.warn(msg, UserWarning)

/home/vladimir/PycharmProjects/giis_lab1/env/lib/python3.6/site-packages/seaborn/distributions.py:28
8: UserWarning: Data must have variance to compute a kernel density estimate.
warnings.warn(msg, UserWarning)

/home/vladimir/PycharmProjects/giis_lab1/env/lib/python3.6/site-packages/seaborn/distributions.py:28
8: UserWarning: Data must have variance to compute a kernel density estimate.
warnings.warn(msg, UserWarning)

Out[55]:

<seaborn.axisgrid.PairGrid at 0x7f189be90780>

Ящик с усами

In [56]:

```
# Одномерное распределение вероятности sns.boxplot(x=data['petal.width'])
```

Out[56]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f189b3136a0>

In [57]:

```
# Распределение параметра petal.length сгруппированные по sepal.length sns.boxplot(x='petal.length', y='sepal.length', data=data)
```

Out[57]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f189b32c0b8>

Violin plot

In [59]:

```
# Распределение плотности признака University Rating fig, ax = plt.subplots(2, 1, figsize=(10,10)) sns.violinplot(ax=ax[0], x=data['petal.length']) sns.distplot(data['petal.length'], ax=ax[1])
```

Out[59]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f189b691278>

In [60]:

```
# Распределение параметра GRE Score сгруппированные по Chance of Admit.
sns.violinplot(x='petal.length', y='sepal.length', data=data)
```

Out[60]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f189bc2aa90>

Корреляционный анализ

In [61]:

data.corr()

Out[61]:

	sepal.length	sepal.width	petal.length	petal.width
sepal.length	1.000000	-0.117570	0.871754	0.817941
sepal.width	-0.117570	1.000000	-0.428440	-0.366126
petal.length	0.871754	-0.428440	1.000000	0.962865
petal.width	0.817941	-0.366126	0.962865	1.000000

In [62]:

data.corr(method='spearman')

Out[62]:

	sepal.length	sepal.width	petal.length	petal.width
sepal.length	1.000000	-0.166778	0.881898	0.834289
sepal.width	-0.166778	1.000000	-0.309635	-0.289032
petal.length	0.881898	-0.309635	1.000000	0.937667
petal.width	0.834289	-0.289032	0.937667	1.000000

In [70]:

sns.heatmap(data.corr(method='pearson'), annot=True, fmt='.2f')

Out[70]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f18993150b8>

In [71]:

sns.heatmap(data.corr(method='kendall'), annot=True, fmt='.2f')

Out[71]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f189926ce48>

In [72]:

sns.heatmap(data.corr(method='spearman'), annot=True, fmt='.2f')

Out[72]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f18991fbdd8>

Вывод

Корреляционная матрица содержит коэффициенты корреляции между всеми парами признаков.

На основе корреляционной матрицы можно сделать следующие выводы:

- 1. Целевой признак petal.length хорошо корреллирует с остальными признаками, слабее всего с sepal.width, что логично, т.к. этот признак слабее влияет на petal.length
- 2. Признаки petal.width и sepal.length коррелируют друг с другом. Можно оставить в модели один из этих признаков, к примеру, petal.width, они примерно одинаково коррелируют с целевым признаком.

In []:

В ходе выполнения РК1 был проведен разведочный анализ данных о прогнозе приема студентов. Были исследованы основные характеристики датасета, а также проведено визуальное исследование данных в результате которого были построены графики: диаграмма рассеяния, гистограммы распределения, joinplot(Комбинация гистограмм и диаграмм рассеивания), парные диаграммы, диаграмма "ящик с усами" и графики violin plot.

Диаграмма рассеивания позволяет построить распределение двух колонок данных и визуально обнаружить наличие зависимости. Исследовалась взаимосвязь между признаками - petal.length и sepal.length.

Гистограмма распределения позволяет оценить плотность вероятности распределения данных. При помощи гистограммы было исследовано распределение признака sepal.length. По гистограмме частот можно предположить, что признак описывается законом, близким к нормальному, и имеет наиболее вероятное значение, равное 5.8.

Joinplot - комбинация гистограмм и диаграмм рассеивания. С помощью этой гистограммы исследовалась взаимосвязь между признаками - petal.width и petal.length. По графику видно, что чем больше petal.length, тем больше petal.width.

Парные диаграммы представляют комбинацию гистограмм и диаграмм рассеивания для всего набора данных. Вывод содержит множество диаграмм рассеивания и гистограмм распределения.

На графиках violin plot по краям отображаются распределения плотности. При помощи данного вида графиков исследовался признак petal.length. Вместе с гистограммой график показывает, что наибольшее значение приходится примерно на 5.