学号:	 姓名:	*************

阅卷教师

4

试卷序号:

2016-2017 学年 第二学期期末考试

<u>大学物理(上)(150708)</u>(B卷)答题时间: 120分钟

9、如图所示,一定量理想气体从体积 5、膨胀到体积 5分别经历的过程是: A→B等压过程。

(D) 动能最大, 势能为零。

动能为零,势能为零;

(B)

A→C等温过程: A→D绝热过程, 其中吸热量最多的过程:(

(B) A→C:

(A) $A \rightarrow B$:

(A) 25%:

(B) 50%;

(C) 75%:

(D) 91.74%

阅卷教师

填空题(本大题共8小题,每题2分,共16分。)

上的最大效率为:(

(C) 动能最大,势能最大; (A) 动能为零, 势能最大; 一平面简谐被在弹性媒质中传播时,某一时刻煤质中某质元在负的最大位移处,则它的能

(C) 2E₁:

(D) 4 E₁

(C)A o D: (D) 既是 A o B 也是 A o C,两过程吸热一样多。 10、在温度分别为 327℃和 27℃的高温热源和低温热源之间工作的热机,理论

寅
田
用班级:
115
7.
_
9
設
级理
H
W
类本
到
租考试法
虹
4
方式
N.
Œ
若

得分	中
	ı
	Į1
	ļtļ
	四
	五
	*
	总分
	阅卷教师

 $k=1.38\times10^{-23}J \cdot K^{-1}$: (阿伏加德罗常数 $N_{_A}=6.02 \times 10^{13} \, mol^{-1}$; 摩尔气体常数 $R=8.31 \, J_{mol \, \bullet \, K}$; 玻尔兹曼常数 g=10m/s2)

选择题(本大题共10小题,每题2分,共20分。)

1、质点作半径为 R 的变速圆周运动时的加速度大小为(θ , ν 表示任一时刻质点的角位置和速 度大小): (

(A) $\frac{d^2\theta}{d}$ 2、质量为 m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动。 己知地球质量为 M. 万有引力恒量为 G. 则当它从距地球中心 R. 处下降到 R2 处时,飞船增 加的动能应等于:($(B)\frac{v^2}{R};$ $(C)\frac{dv}{dt} + \frac{v^2}{R}:$ (D) $\sqrt{(\frac{d^2\theta}{dt^2})^2R^2 + \frac{v^4}{R^2}}$

3、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?($GMm^{R_1-R_2}$ R_1R_2 $GMm \frac{R_1 - R_2}{r^2}$ R_1^2 (D) GMm- R_1-R_2

(A) R_2^2

(A) 合外力为 0:

(C) 外力和非保守内力都不作功; (B) 合外力不作功: (D) 外力和保守内力都不作功。

4、关于刚体对轴的转动惯量,下列说法中正确的是:((B) 取决于刚体的质量和质量的空间分布,与轴的位置无关: (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关;

(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。 (C) 取决于刚体的质量、质量的空间分布和轴的位置;

5、一质点作简谐振动,振动方程为 $x=A\cos(\omega t+\phi)$, 当时同t=T/2(T为周期)时,质点

6、频率为 100 Hz,传播速度为 300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相 (A) $-A\omega\sin\phi$; (B) $A\omega\sin\phi$; (C) $-A\omega\cos\phi$: Ð $A\omega\cos\phi$.

一弹簧振子作简谐振动,总统量为 E1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量 E2 变为:() 位差为 $\frac{\pi}{3}$,则此两点相距:((B) 2.19 m; (C) 0.5 m: (D) 0.25 m »

1、已知质点的运动方程为 $\vec{r}=2\vec{u}+(t^2-1)\vec{j}$,式中r 的单位为 m, t 的单位为 s,则 t=3 s 时, 质点的位矢大小为。

一简谐振动的运动曲线如图所示,则运动周期是

一质点同时参与两个在同一直线上的简谐振动 $x_1 = 4 \times 10^{-2} \cos(\omega t + \frac{\pi}{4})$,

示合振动方程情况下) $x_2 = 2 \times 10^{-2} \cos(\omega t - \frac{3\pi}{4})$ (SI)、则该质点合振动的初相位为 。(余弦形式表

5、一定量的理想气体如图所示经历 acb过程时吸热500 J。则经历 acbda过程时,吸热为

6、质量为20g的子弹沿 X轴正向以500m/s的速率射入一木块后,与木块一起仍沿 X轴正向 以 50 m/s 的速率前进,在此过程中本块所受冲量的大小为

7、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J。角速度为o。

第1页 共3页

【卷序号:	班级:		学	号:		姓名:	*************
	***************************************	1、已知一质点运动方程为 $r = 2ti + (4t^2 + 1) J$, 其中 r 、 t 的单位分别为 m 、 s , 求: (1) 质点的轨迹方程: (2) 质点在 $t = 2s$ 到 $t = 3s$ 的位移的大小: (3) 质点在 $t = 3s$ 时刻的加速度。	要使汽车不至于发生侧向打滑,汽车在该处的行驶速率不得小于√μgR。 四、	守恒、机械庇守恒。 ()7、从宏观上说,一切与热现象有关的实际的过程都是不可逆过程。 ()7、从宏观上说,一切与热现象有关的实际的过程都是不可逆过程。 ()8、作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。 ()9、质点运动经一闭合路径,保守力对质点作的功为零。 ()10、一段路面水平的公路,转弯处轨道半径为 8.汽车轮胎与路面间的摩擦因数为 μ,	Set 1	得 分	然后她将两臂收回,使转动惯量减少为3.5。这时她转动的角速度变为。8、一弹簧振子作简谐振动,当位移为振幅的一半时,其动能占总能量的。三、 图卷数师

i	7
	ind,
	LT
	2
	100
	TIS
	14
	HQ.
	~
	_
	.0
	20 ₁₁
	-
	25
	5
	==
	38
	200
	12.5
	2
	7
	-
	1
	3
	1
	1
	100
	_
	1/2
	60%
	A
	Ville
	100
	24
	41
	211
	~
	771
	프
	王
	~
	20
	H
	20
	发
	SI.
	711
	**
	0
	0
	11
	2
	+
	T
	4
	43
	0
	20
	*
	**

- (1) t = 2s 时,它的法向加速度和切向加速度;
- (2) 当切向加速度恰为总加速度大小的一半时,8 为何值?

得 分	阅卷教师
	计算
	.题(本大题共2小题,
	每题 10 分,
	共20分。

五、

1、如图所示,质量为m、速度为w的钢球,射向质量为m′的靶,靶中心有一小孔,内有劲度系数为k的弹簧,此靶最初处于静止状态,但可在水平面上作无摩擦滑动,求子弹射入靶内弹簧后,弹簧的最大压缩距离。

六

阅卷教师 分

计算题(本大题共2小题,每题12分,共24分。)要求写出解题所依据的定理、定律、公式、画出必要的图。

(2) 滑轮两边绳子的张力.

(1) 写出此波的波函数;

2、一平面简谐波,沿x轴正向传播,波速为4m/s,已知位于坐标原点处质点的振动曲线如图

(2) x = 4 m处质点在t = 2 s时的振动速度。 0

也略去不计. r, 两轮的转动惯量分别为 J.和 J., 轮与轴承间、绳索与轮间的摩擦力均略去不计, 绳的质量 1、质量为 m 和 m 的两物体 A、B 分别悬挂在如图所示的组合轮两端. 设两轮的半径分别为 R 和 试求: (1) 两物体的加速度;

第3页 共3页

 $V_c = V_d = 3 \times 10^{-3} \, m^3$

 $P_a = P_d = 1 \times 10^5 \, Pa$; $P_b = P_c = 2 \times 10^5 \, Pa$;

 $V_a = V_b = 2 \times 10^{-3} \, m^3$

2、如图所示,一定量的可视为可理想气体的 O_2 经历 abcda 循环过程,已知:

求: (1) 各过程中系统从外界共吸收的热量;

(2) 各过程系统对外做的功;

(3) 此循环过程的效率

