

T. P. Nº 9

FUNCIONES 1º PARTE

Problema 1) Determine el Dominio natural de las siguientes funciones:

a)
$$f(x) = \frac{\sqrt{x}}{x^2 - 2x - 3}$$
 b) $g(x) = \frac{\sqrt{4 + x}}{4 + x}$ c) $h(x) = \frac{x}{\sqrt{3x + 9}}$

b)
$$g(x) = \frac{\sqrt{4+x}}{4+x}$$

c)
$$h(x) = \frac{x}{\sqrt{3x+9}}$$

Problema 2) Considere las siguientes funciones:

$$f(x) = \sqrt{\frac{2x+1}{3x-2}} \quad g(x) = \frac{\sqrt{2x+1}}{\sqrt{3x-2}}$$

- a) Halle el dominio natural en ambos casos.
- b) ¿Es f(x) = g(x)?Justifique su respuesta.

Problema 3) Dadas las siguientes funciones:

$$h(x) = \sqrt{\frac{4x - 1}{2x - 3}} \quad j(x) = \frac{\sqrt{4x - 1}}{\sqrt{2x - 3}}$$

- a) Halle el dominio natural en ambos casos
- b) ¿Es h(x) = j(x)?Justifique su respuesta.

Indique, para cada una de las funciones graficadas en la figura, que transformación sufrió f(x) y cual es, en cada caso, la expresión de la función correspondiente.

Problema 4) Dada la función cuadrática $f(x) = x^2$, se pide:

- a) Grafíquela en el plano coordenado.
- b) Si f(x) sufre un desplazamiento horizontal de 2 unidades hacia la derecha y vertical de 9 unidades hacia abajo, ¿Cuál será la nueva función obtenida?. Realice su gráfica.
- c) Escriba la ecuación de la función hallada.

Problema 5) La forma de una función cuadrática depende única y exclusivamente del coeficiente **a** de x^2 , es decir, cualquier función del tipo $y = ax^2 + bx + c$ tiene la misma forma que la función $y = ax^2$. A partir del análisis del gráfico dado, se pide:

- a) Identifique los desplazamientos sufridos por la función $y = 2x^2$.
- b) Escriba la función que resulta teniendo en cuenta dichos desplazamientos.
- c) Verifique si la función obtenida es equivalente a $y = 2x^2 16x + 35$.
- d) ¿Cuál sería la transformación que sufriría la representación gráfica de la función, si se multiplica por (-1) al coeficiente del término cuadrático?

Problema 6) Cuál de las siguientes gráficas representa la función

$$f(x) = -2(x+2)^2 + 18.$$

- a) Gráfica 1
- b) Gráfica 2

c) Gráfica 3