	7
	7
	O
	=
	•
	1
	÷
	٦
	,
	1
	7
	-
	0
	_

(Ja	ď.																																			bar)
Rb ₁ (ref)	p* = 0.1 MPa	log K,	000	ံ ဝံ	ó	1 QD	o o	o'c			0	000	000	ď	joc	ó	ರರ	ಶರರ	Ö	doc	ó	00	ddd	်ဝံ	ರ ರ	ÖÖ	00	ooo	ó	o o o	i oʻ	500	တ်ဝံ	6	ಶರರರ	ж 1983 (1
		Φ.	ರರಂ	ံ ဝံ	ď	AL <> LIQUID TRANSTITION	o o	00	ಶರ	ACITY = 1 bar		ರರ	ಶರರ	d	jóc	်ဝံ	00	ರ ಿ	600	do	óó	ರ ರ	ರರಂ	် ဝံ	ರ ಧ	o o	00	o o c	Ö	900	i di	ಶರಣ	ಶರರ	6	ಶರರರ	CURRENT, December 1983 (1 bar)
	Standard State Pressure	Δ,H°	000	်ဝံ	ö	CRYSTAL	o d	o	ಶರರ	LIQUID <> II	Ö	00	ಶರರ	o	ာ်တံင	öö	00	ာ်တံတ	i ဝ	jo	öö	o o .	ರರಂ	် ဝံ	ರರ	ರ ರ	o' o'	ddd	်ဝံ	doc	io (၁၀	ာ်ဝင်	ioi	ಶರರರ	CURR
	S	$H^{\circ}-H^{\circ}(T_{\epsilon})$	-7.490	0.00	0.058	0.460	5.449 8.593	11.694	17.835	23.086	95.489	97.567	103.804 103.804 105.884	107.965	112.135	116.324	118.430	124.824	129.178	133.638	138.235	140.596 143.006	147.966	153.179	155.893 158.684	161.559 164.507	167.561 170.714	173.970	183.780	191.053	198.498	202.463	214.961 219.322	223.394	227.891 232.472 237.131 241.864	
	- T, = 298.15 K	-[G*-H'(T,)]/T	INFINITE 101,811	76.778	76.779	76.813 76.813	79.566	86.371	92.402 95.084	96.854	99.759	108.531	128.097 128.097 133.088	137.542	141.249	15151	154.315 156.901	159,504 161,546 153,644	165.614	169.222	172.457	173.956 175.385	176.751	180517	181. <i>671</i> 182.796	183.876 184.921	185.933 186.915	187.869 188.791 180.600	190.569	192.266	193.883	195.46	186.941	188.381	199.088 199.784 200.470 201.147	
	mperature = 7	S[G	0. IP		76.971	78.284 85.300	93.188	105.861	114.695	120.645	195.248	197.229	202.242	205.020	207.476	209.683	210.710	212.642 213.555 214.439	215.298	216.950	218.536	219.310 220.075	220.827 221.578 324.575	223.067	223 810 224.555	225.302 226.048	226.802 227.561	228.328 229.027	230.521	232.069	233.583	235.158	236.749 237.549	238.273	239.069 239.866 240.662 241.458	
(Rb)	ference Ter	ಬ	25.510	31.062	31.188	32.401 32.307	31.715	30.850	30.669	31.053	20.786	20.786	20.795 20.795 20.805	20.821	20.886	21.015	21.110	22.27	22.016	22,616	23.389	23 846 24.355	25.442 25.442 88.23	26.766	27.516 28.322	29.184 30.060	31.023 32.038	33.104	35.326	37.419	39.145	40.162	43.133	44.545	46.394 46.972 40.693	
A, = 85.4678 Rubidium (Rb)	Enthalpy Reference Temperature	τÆ	°88	298.15	900	312.650	\$	88	388	970.385	1000	200	3 <u>4 8</u>	89	288	2002	2200	885 885 885	7600	888	3008	3200	3400	3600	3800 3800	96.4 900 900	4500 4500	888	8 4 6 8 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$ 4 508 508 508	200	2200	955	260	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	PREVIOUS:
.4678 R												·												•												
A _r = 85																																				

REFERENCE STATE

312.65 K crystal 970.385 K liquid 970.385 K ideal monatomic gas

2 2

Refer to the individual tables for details.

Rb₁(cr)

Rubidium (Rb)

PREVIOUS:

CURRENT: December 1983

1850)				MALCOLM W. CHASE
Rb ₁ (cr)	= 0.1 MPa log K,	00000000000000000000000000000000000000	-0.039 -0.076 -0.109 -0.109		
	Pressure = p	0. 0. 0. 0. 0. 1.<> L<>	0.259 0.581 0.848 1.040 1.134		
	Standard State Pressure = p = 0.1 MPa Ld·mol ⁻¹ AH* A.G* log K ₁	0. 0. 0. 0. CRYSTAL	-2.121 -1.806 -1.246 -0.443 1.888		
	H*-H*(T,)	-7.490 -5.479 -2.828 -1.428 0. 0.058	1.735 3.642 5.781 8.151 13.582		
	Enthalpy Reference Temperature = $T_s = 298.15 \text{ K}$ T/K C_p^* $S^* = (G^* - H^*G_*))T$	NEWITE 101.811 79.458 77.272 76.778 76.779	77.176 78.114 79.406 80.940 84.482		
	J·K ⁻¹ mol ⁻¹ S* -{G	0. 47,022 65,316 71,560 76,778 76,971	82.132 87.220 92.253 97.242 107.119		
ı (Rb)	leference To		35.848 40.465 49.699 58.932		
Rubidium (Rb)	Enthalpy F	0 100 200 250 28.15 300 312.650	SE 8 2 8 8		
A _r = 85.4678	$\Delta_t H^0(0 \text{ K}) = \text{Ld} \cdot \text{mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = 0 \text{ Ld} \cdot \text{mol}^{-1}$ $\Delta_t u H^0 = 2.19 \pm 0.09 \text{ kd} \cdot \text{mol}^{-1}$	these functions are based on the previous and Phillips (0.19-4.1 K).* Filby and Martin Martin (0.4-3 K).*	ssed on their analysis of seven experimental et al. (312.54 K), ¹² Filby and Martin 7 K). ⁴ Rengade, ¹¹ Filby and Martin, ² and Martin; ⁴		Chem Thermodyn. 10, 903 (1978). ements," American Society for Metals, Metals s," STANDARDS, Moscow, (1970). int Data of the Alkali Metals," Chapter 6.1 in ed., Blackwell Scientific Publishers, London, son Air Force Base, Report ASD-TR-63, 413, (1969). i C. C. Hsu, Trans, Faraday Soc. 66, 25 (1970).
CRYSTAL		Enthalpy of Formation Zero by definition. Heat Capacity and Entropy The thermal functions for Rb(cr) are derived following CODATA recommendations.¹ That is, these functions are based on the previous evaluation of Hulignen et al., Martin, ** and Shipil'rain et al.* The prime sources of data are: Lien and Phillips (0.19-4.1 K),* Filby and Martin (0.4-1.5 K, 3-320 K),* McCallum and Silsbee (1.3-12 K),* Dauphinee et al. (25-300 K),* and Martin (0.4-3 K).*	Fusion Data The adopted fusion temperature, $T_{tar} = 312.65 \pm 0.1 \text{K}$, is that recommended by Ohse et al. ¹⁰ based on their analysis of seven experimental studies: Rengade (312.15 ± 0.05 K), ¹¹ Dauphine et al. (311.90 ± 0.5 K), ¹² Weatherford et al. (312.54 K), ¹³ Filby and Martin (312.65 ± 0.01 K), Basin et al. (312.31 ± 0.05 K), ¹³ Ont et al. (312.45 K), ¹⁴ and Martin (312.47 K), ¹⁴ The adopted enthalpy of fusion, $\Delta_{tar}H^2$, 2.19 ± 0.09 kJ·mol ⁻¹ , is derived from the studies of Rengade, ¹¹ Filby and Martin, ² and Martini, ² all three results being within 1 kcal·mol ⁻¹ .		ues for Thermodynamics, J. Jynamic Properties of the Eil operties of the Alkali Metal 962). Roy. Soc. A233, 214 (1955) Ing. Boiling, and Critical Po kali Metals, " R. W. Ohse, ems Division, WrightPatter cth. and Tech. Phys. 10, 961 (0); J. R. Goates, J. B. Ott and
Rubidium (Rb)	$S^{\circ}(298.15 \text{ K}) = 76.78 \pm 0.30 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tm}} = 312.65 \pm 0.1 \text{ K}$	Enthalpy of Formation Zero by definition. Heat Capacity and Entropy The thermal functions for Rb(cr) are derive evaluation of Hultgren et al., Martin, ** and Sh (0.4-1.5 K, 3-320 K), McCallum and Silsbee	Fusion Data The adopted fusion temperature, $T_{tea} = 312.6$ studies: Rengade (312.15 ± 0.05 K). ¹¹ Dat (312.65 ± 0.01 K), ¹² Basin <i>et al.</i> (312.31 ± 0.0 The adopted enthalpy of fusion, $\Delta_{tea}H^a$, 2.19 all three results being within 1 kcal·mol ⁻¹ .	Sublimation Data Refer to the ideal gas tables for details.	Heferences 1. D. Cox, Chairman, ICSU-CODATA Task Group on Key Val R. Hultgren, P. D. Desai, et al., "Selected Values of the Thermoon Park, Ohio, (1973). 2. L. Martin, Phys. Rev. 1394, 150 (1965). 3. L. Martin, Can. J. Phys. 48, 1327 (1970). 4. E. Shpil'ran, K. A. Yakimovich, et al., "Thermophysical Properties and N. E. Phillips, Phys. Rev. 133, A1370 (1964). 7. D. Filby and D. L. Martin, Proc. Roy. Soc. A284, 83 (1965). 8. D. C. McCollum, Jr., and H. B. Silsbee, Phys. Rev. 127, 119 (187). 9. C. McCollum, Jr., and H. B. Silsbee, Phys. Rev. 127, 119 (187). 17. M. Dauphinee, D. L. Martin and H. Preston-Thomas, Proc. In R. W. Ohise, JF. Babelot, et al., "An Assessment of the Melti." "Handbook of Thermodynamic and Transport Properties of Al (1983). 18. Rengade, Compt. Rend. 156, 1897 (1913). 19. A. Wastherford, Jr., R. K. Johnston, et al., Aeronautical Syst (1963). 19. Sain, S. P. Volchkova, and A. N. Soloviev, J. Appl. Meltin. B. Ott and J. R. Goates, Tech. Prog. Report COO-1707-9 (197).

		IVIC	TOANAF ITIENMOOHEMIOAL TABLES	1031
Rb ₁ (I)	- p - = 0.1 MPz log Kr	-0.018 -0.015 0.00 0.00 0.00 0.00 0.00	2.186 -0.114 9.502 -0.451 16.718 -0.728 23.838 -0.958 37.791 -1.152 37.791 -1.156 44 622 -1.457	Rb ₁ (!)
		77 0.007 - VSTAL <> LIQUID 0.009 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	2.18	
	Standard State Pressure kJ·mol ⁻¹ A _i H* A _i G*	2.184 2.187 2.187 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	- 71.481 - 6.537 - 6.5408 - 6.5408 - 6.5881	
	H*-H*(T,)	0. 0.060 0.469 1.671 1.671 2.284 12.584 12.584 13.650 13.650 13.650 13.650	24.964 24.964 31.4164 31.211 41.839	
	Enthalpy Reference Temperature = T, = 298.15 K TR C, S = -[G*-H*CL;]/T	83.764 83.765 83.800 84.138 86.145 86.145 87.389 92.011 92.0113	99.773 101.879 105.888 105.888 111.019 111.019	
	emperature J·K -1mol ⁻¹ S* -{G	83.764 83.965 85.300 88.932 98.937 100.207 110.207 111.4695	12.4573 12.4573 13.4573 13.7206 13.7206	
(Rb)	eference Te	32.403 32.403 32.403 31.203 31.715 31.475 31.197 30.659 30.659 30.659		n (Rb)
Rubidium	Enthalpy R	100 100 200 200 3015 3015 3015 400 400 400 400 400 400 400 400 400 40	1100 1100 1100 1100 1100 1100 1100 110	Rubidium (Rb)
A _r = 85.4678 Rubidium (Rb)	$\Delta_i H^{\circ}(298.15 \text{ K}) = [2.184] \text{ kJ·mol}^{-1}$ $\Delta_{ku} H^{\circ} = 2.19 \pm 0.09 \text{ kJ·mol}^{-1}$	hat H"(298.15 K) between the crystal and liquid. Heat Capacity and Entropy Heat Capacity and Entropy The adopted hear capacity values for Rb(l) are those recommended by Fink and Leibowitz. These authors reviewed the liquid phase heat capacity and enthalpy studies for all alkali metals and recommended by Fink and Leibowitz. These authors reviewed the liquid phase heat capacity and enthalpy studies for all alkali metals and recommended by Fink and Leibowitz. These authors reviewed the liquid phase heat capacity and enthalpy studies for all alkali metals and recommended by Fink and information in the liquid region up to 1334 K. The equation recommend by Fink and Liebowitz! is \$C_p^* = 35.494 - 0.012864 T + 0.85409 \times 10^{-3} T^2 (J·K.^{-1}.mol^{-1}). Vaporization Data Refer to the ideal gas table for details. Refer note ideal gas table for details. References 1. K. Fink and L. Leibowitz, "Entalpy, Entropy, and Specific HeatIndashData Assessment," Chapter 6.3.2 in "Handbook of Thermodynamic	and Transports of Alkali Metals." R. W. Olse, ed., Blackwell Scientific publications, London, (1985). P. Tepper, A. Murchison, et al., MSR Seazent Corporation Report Mar-TDR-64-42, (1964). P. Y. Achener, Aerojet-General Nucleonies Report AGN-8500, (1984). P. Schibura and D. N. Kagam, Teploffz. Vys. Term. 14, 75(1976). E. E. Sipilitain and D. N. Kagam, Teploffz. Vys. Term. 7, 352(1594). E. E. Sipilitain and D. N. Kagam, Teploffz. Vys. Term. 7, 352(1594). E. E. Sipilitain and D. N. Kagam, Teploffz. Vys. Term. 7, 352(1694). 140-1, 147, 155-57, Moscow, (1970). P. F. Young, Aerojet-General Nucleonics Report AGN-8034, (1952). P. F. Young, Aerojet-General Nucleonics Report AGN-8034, (1952).	
LIQUID		om that of the crystal by adding the enthalpy, ad liquid.) are those recommended by Fink and Leibov etals and recommended a C, equation for Rby These studies provided information in the liquid the studies provided information in the liquid the studies for the studies	"R. W. Oise, ed., Blackwell Scientific publicarth Corporation Report ML-TDR-64-42, 63. Report AGN-8090, (1964). S. Report AGN-8090, (1964). Vys. Temp. 7, 362(1969). rophysical Properties of Alkali Metals," E. E. Corport AGN-8034, (1962). Report AGN-8034, (1962).	
Rubidium (Rb)	S*(298.15 K) = [83.764] J·K ⁻¹ ·mol ⁻¹ T _{to} = 312.65 ± 0.1 K	The enthalty of formation is calculated from that of hidash H ^o (298.15 K), between the crystal and liquid. Heat Capacity and Entropy The adopted heat capacity values for Rb(I) are thos capacity and enthalty studies for all alkali metals and three heat capacity experimental studies. These sure the equation recommend by Fink and Liebowitz! Vaportzation Data Refer to the ideal gas table for details. References 1. K. Fink and L. Leibowitz, "Entalpy, Entropy, and S.	and Transport Properties of Alkalj Metals," R. W. Oitse, ed., Blackwell Scientific publication, Freper, A. Murchison, ed., MAS Researt Conporation Report ML—TDR—64—2, (1965). P. Y. Achenr, Aenopic-Ceneral Nucleonies Report AGN—8090, (1964). L. I. Novikov, V. V. Roshchupkin, and L. K. Fordeeva, Teplofiz, Vys. Temp. 14, 75(1976). E. E. Shpilirain and D. N. Kagarn, Teplofiz, Vys. Temp. 7, 362(1969). L. Aladyev and I. M. Pechkin, in "Thermophysical Properties of Alkali Metals," E. E. Shpilirain and D. L. Martin, Proc. Roy. Soc. (London) A284, 83(1965). J. D. Filby and D. L. Martin, Proc. Roy. Soc. (London) A284, 83(1965). P. F. Young, Aerojet—General Nucleonics Report AGN—8034, (1962).	

	_	
	٠	•
	,	:
	Ç	,
ı	•	۰
	2	i
	٤	2
	ă	2

- 87 	Rubidium (Rb)	(Rb)					į	Rb ₁ (cr,I)
	Enthalpy Ro	eference To	Enthalpy Reference Temperature = T_r	= 7, = 298.15 K		Standard State Pressure		p* = 0.1 MPa
	7/K	ប	S - [C	-[G*-H*(T,)]T	$H^{\bullet}-H^{\bullet}(T_t)$		Φ.Θ.	log Kr
	°8	0.	0.	INFINITE 101.811	-7.490	o c	o c	Ö
	88	28.690	65.316 71.560	79.458	-2.828	ာ်ဝင	်ဝံင	ာ် oʻ c
	298.15	31.062	76.778	76.778	ď	ó	i o	်ဝံ
	312.650	37.188	76.971	76.779	0.058	0.	0.	o:
	312.650	32,307	85,300	76.813	2.653	KYSIAL	IL <> LIQUID TRANSITION	
	₹ 8	32,038	88.932 93.188	71.917	3.855	o' c	o c	o' c
	\$	31.435	96.907	81.291	7.028	်ငံ	်ဝံ	ံဝံ
	3 8	30.197	100.207	83.020	8.593	oʻ	o ·	o.
	38	30.674	10.60	89.503	14.75	တ်ဝ	o c	o' c
	88	30.669	114.695	92.402	17.835	Ö	i oi i	i ci
_	970 385	31.053	20001	93.084	20.908	ö		ď
	1000	11 17	121 580	4000	23,030	FUGACIIY		
	001	31.678	124 573	6863	77 149	70.410	2.180	-0.114
	500	32,356	127.358	102.067	30,349	-69.297	16.719	-0.728
	88	33.205	132.477	104.114	33,625	-68.100	23.839	-0.958
	1500	35.415	134.878	107.894	40.476	-65.408	37.791	-1.132
	1600	36.776	137,206	109.653	44.084	-63.881	44.622	-1.457
TOTAL CONTRACTOR CONTR								
	PREVIOUS:						CURRENT: December 1983	ecember 1983

CRYSTAL-LIQUID

Refer to the individual tables for details.

Rubidium (Rb)

CURRENT

PREVIOUS:

Rubidium (Rb) IDEAL GAS	A _r = 85.4678 Rubidium (Rb)	ubidium ((Pap)						Rb ₁ (g)
IP(Rb, g) = 33690.81 ± 0.01 cm ⁻¹ S*(298.15 K) = 170.093 ± 0.025 J·K ⁻¹ ·mol ⁻¹	$\Delta_t H^{\circ}(298.15 \text{ K}) = 82.2 \pm 0.4 \text{ M} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 80.9 \pm 0.4 \text{ KJ} \cdot \text{mol}^{-1}$	Enthalpy Ref	erence Ten	J·K-'mol-'	Enthalpy Reference Temperature = T_r = 298.15 K T/K C_s S^s = $(G^s - H^sT_s)/T$	H*-H*(T.)	Standard State Pressure = p^* $kJ \cdot mol^{-1}$ ΔH^*	Pressure = p'	- 0.1 MPa
Electronic Levels and Quantum Weights State		°888	0. 20.786 20.786	0. II 147.386 161.794	INFINITE 188.573 171.994	-6.197 -4.119 -2.040	82.192 82.260 81.688	2223	-37.726 -16.295
		238.15	20.786		170.093	-[.00] - 0.	80.900		-12037
² P ₁₂ 12578.96 2 ² P ₂₂ 12816.56 4		88	20.786 20.786	173.426	170,094 170,347	0.038	80.881 78.122	52,906 48,550	-9212 -7246
		\$ \$8	20.786 20.786 20.786	176.202 178.650 180.840	170.909 171.636 172.448	2.12 1.88 1.88	77.568 77.029 76.503	44.363 40.245 36.186	-5.793 -4.671 -3.780
		888	20.786 20.786 20.786	184.630 187.834 190.609	174.172 175.901 177.570	6.274 8.353 10.431	75.480 74.484 73.497	28.219 20.421 12.766	-2.457 -1.524 -0.834
² P ₃₂ 33671.07 4		900	20.786	193.058	179.157	13.973	72.502 S	5234 CITY = 1 bar	-0.304
n to be the va	his value was obtained from 2nd and prection for the presence of the dimer	3 12 2 2 5 3 2 2 2 5 5 2 2 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 5 5	20.786 20.787 20.790 20.795	197.229 199.037 200.701 202.242	182.077 183.416 183.826 185.882	14.369 16.667 18.746 22.904	ರ ರಲ್ಲಿಂದ	ರ ರರದರ	ರ ರಲ್ಲಿ
in the vapor phase was made using a virial treatment, since the dissociation energy of Rb4g) was not well established. The six studies used by Hultgren et al. 'are: Volyak et al. (594-970 K), 'Achener (745-1260 K), 'Tepper et al. (716-1353 K), Buck and Pauly (307-363 K), 'Kijlian (312-377 K), 'and Scott (365-400 K).	well established pper et al. (716–1353 K), ⁵ Buck and	8 9 2 9 8 8	20.847 20.847 20.941	205.020 206.283 207.476 208.607	188.105 189.137 190.123	27.065 29.149 31.235 33.326	್ರಂಶರ	್ ರಲ್ಲಿ	ರರರರ
Heat Capacity and Entropy The thermal functions for the five alkali metal monatomic gases are calculated by the same procedure. Oberved and estimated atomic energy levels are included in the partition function calculation, using an ionization potential lowering (IP-KT) technique as the cutoff procedure in the energy level summation.	procedure. Oberved and estimated atomic energy ing (IP-kT) technique as the cutoff procedure in	2500 2500 2500 2500 2500	22.110 22.231 22.231 21.558	205.653 210.710 211.695 212.642 213.555 214.439	191.971 192.839 193.674 194.478 195.254	35.424 37.530 39.647 43.924 46.090	ರ ಪರಪರವ	ವ ರದರರದ	ರ ಧರಧರದ
The lowest lying levels for these metals [14904 cm ⁻¹ (Li), 16956 cm ⁻¹ (Na), 12985 cm ⁻¹ (K), 12578 cm ⁻¹ (Rb), and 11178 cm ⁻¹ (Cs)] do not contribute to the thermal functions below ~1000 K; there is only a translational contribution below this temperature. Above this approximate temperature, the thermal functions become increasingly sensitive to the partition function cutoff procedure used, due to the combined effect of the Asservation of atomic exercts levels of high principal mantum number and a low ionization retential Factors levels.	78 cm ⁻¹ (Rb), and 11178 cm ⁻¹ (Cs)] below this temperature. Above this no cutoff procedure used, due to the wionization potential Energy levels.	2500 2700 2800 2800 3000	22.016 22.294 22.616 22.980 23.389	215.298 216.134 216.950 217.750 218.536	196.729 197.433 198.115 198.778	48.278 50.493 52.738 55.017	ರರರರ	ರರರರ	ರರರರ
have been observed up to $n = 42$ (L.), 59(Na), 79(K), 77(Rb), and 73(Cs), However, not all predicted levels have been observed for each of these principal quantum numbers. The ionization potentials vary from 43487.29 cm ⁻¹ for Li to 31406.1 cm ⁻¹ for Cs. In calculating the thermal functions with the inclusion of missing levels up to the high principal quantum numbers just mentioned, the Gibbs energy functions show the first of the contract	predicted levels have been observed for each of o 31406.1 cm ⁻¹ for Cs. In calculating the thermal 1st mentioned, the Gibbs energy functions show	3100 3300 3400 3400	24355 24355 25,442 25,442	219.310 220.075 220.827 221.578	200.053 200.667 201.266 201.852	59.696 62.106 67.066	ರರರರ	ರರರರ	ರರರಿಂದ
r. First, the en ions are based	lated values for the thermal functions are similar tropy differs by 0.1094 J·K ⁻¹ ·mol ⁻¹ because this I on 1 atm. Second, the entropies at 298.15 K for by different values for auxiliary data	3600 3700 3800 4000	26.766 27.516 28.322 29.184 30.060	223.067 223.810 224.555 225.302 226.048	202.989 203.542 204.620 204.620 205.146	72.779 74.593 77.784 80.659 83.607	್ ರಂದರರ	: ರರರರರ	್ ಲಿಲಿಲಿಲಿಲಿ
References 1. D. Cox, chaiman, CODATA Task Group on Key values for Thermodynamics, J. Chem. Thermodyn. 10, 903 (2978); CODATA Special	n. 10, 903 (2978); CODATA Special	250 250 250 250 250 250 250	31.023 32.038 33.104 33.569 34.345	226.802 227.561 228.328 229.027	205.665 206.177 206.683 207.177 207.668	86.661 89.814 93.070 96.138	ರರರರ	ರರರರರ	ರರರರರ
neptor inc. o, (1920). R. Huligren, P. D. Desai, et al., "Selected Values of the Thermodynamic Properties of the Elements," Park, Ohio, (1973). The Polyak, Yu. K. Vinogradov, and V. M. Anisimov, High Temp. 6, 719 (1968).	Elements," American Society for Metals, Metals	600 600 600 600 600 600 600 600 600 600	35,326 36,365 37,419 38,481	230.521 231.292 232.069 232.851	208.156 208.640 209.120 209.596	102.830 106.464 110.154 113.948	ರರಿಂದರ	ರರರರ	ರರರರ
 T. Achener, D. S. Art. Keport AUN-2009, (1904). F. Tepper, A. Murchison, J. Zelinek, and F. Roehifek, AFML Report RTD-TDR-63-4018, Part I, (1963). U. Buck and H. Pauley, Z. Physik, Chem. 44, 345 (1965). T. Killian, Phys. Rev. 27, 578 (1926). 	963).	\$200 \$300 \$400 \$500	40.169 40.169 40.161 40.133	234.368 235.351 235.351 236.749	210.532 210.998 211.461 211.922	121.563 125.630 129.797 134.062	ರಧರರ	ರದ್ದದ್	ರರಲಿಲಿ
 H. Scott, Phil. Mag. 47, 32 (1924). E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS 34, 8 pp. (1970). E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS 35 Volume II, 1970 [Reprint of NBS circular 467, Volume II, 1952] I. R. Downey, Ir., The Dow Chemical Company, Rept. AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978) 	57, Volume II, 1952]. -75-1-0048, (1978).	8200 8200 8200 8200 8200 8200 8200 8200	44.545 46.204 46.597 46.693	238.273 239.069 239.866 240.662 241.458	212.828 213.281 213.733 214.182	142.494 146.991 151.572 156.231 160.964	; ರವವವವ	್ ರರ್ಧರ	್ ಧರ್ಧರ್

CURRENT: December 1983 (1 bar)

(Rb*)
<u>6</u>
Ę,
ibidi
2

PREVIOUS

Rb‡(g)	Standard State Pressure = p° = 0.1 MPa K/mol-1
M; = 85.46725 Rubidium, Ion (Rb")	Δ ₄ H ² (0 K) = 485.224 kJ·mo] ⁻¹ Enthalpy Reference Temperature = T _s = 298.15 K Standard State Pressure = p = 0.1 M [490.129] kJ·mol ⁻¹ Tre c c c c remains
$M_r = 85.46725$	$\Delta_t H^0(0 \text{ K}) = 485.224 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = [490.129] \text{ kJ} \cdot \text{mol}^{-1}$
IDEAL GAS	
Rubidium, Ion (Rb†)	IP(Rb', g) = 220048 ± 30 cm ⁻¹ S'(298.15 K) = 164.330 ± 0.02 J·K ⁻¹ ·mol ⁻¹

Δ _t H°(298.15 K) = Electronic Level and Quantum Weight State ξ, cm ⁻¹ S ₀ 1
--

Enthalpy of Formation

 $\Delta_i H^0(Rb^*, g, 0 R)$ is calculated from $\Delta_i H^0(Rb, g, 0 R)^1$ using the spectroscopic value of IP(Rb) = 33690.81 \pm 0.01 cm⁻¹(403.032 \pm .000 E^{-1} from Moore. The ionization limit is converted from cm⁻¹ to EJ mol⁻¹ using the factor, 1 cm⁻¹ = 0.01196266 EJ mol⁻¹, which iderived from the 1973 CODATA fundamental constants. Resenstock *et all* and Levin and Lias have summarized additional ionization an appearance potential data.

 $\Delta H^2(Rb^+, g$, 298 15 K) is calculated from $\Delta H^2(Rb, g$, 0 K) by using IP(Rb) with JANAF'enthalpies, $H^2(0K) - H^2(298.15 \text{ K})$, for Rb(g), and e (ref). $\Delta H^2(Rb \to Rb^+ + e^-, 298.15 \text{ K})$ differs from a room temperature threshold energy due to inclusion of these enthalpie and to threshold effects discussed by Rosenstock et al. $\Delta H^2(298.15 \text{ K})$ should be changed by $-6.197 \text{ kJ} \cdot mol^{-1}$ if it is to be used in the lot convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

levels have not been observed. Our calculations indicate that any reasonable method of filling in these missing levels and cutting off th has no effect on the thermodynamic functions (to 6000 K), we list only the ground state. The reported uncertainty in \$°(298.15 K) is due tuncertainties in the relative ionic mass and the fundamental constants. Extension of these calculations above 6000 K may require consideration summation in the partition function? has no effect on the thermodynamic functions to 6000 K. This is a result of the high energy of all leve The information on electronic energy levels and quantum weights, given by Moore is incomplete because many theoretically predicts other than the ground state; the first excited state is approximately 126454 cm - above the ground state. Since inclusion of these excited state of the excited states and use of different fill and cutoff procedures.

References

JANAF Thermochemical Tables: Rb(g), 12-31-83; e (ref), 3-31-82.

*C. E. Moore, U. S. Nat. Bur. Stand, NSRDS-NBS-34, 8 pp. (1970).
 *E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 633 (1973).
 *H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).
 *R. D. Levin and S. G. Lias, U. S. Nat. Bur. Stand, NSRDS-NBS-71, 634 pp. (1982).
 *C. E. Moore, U. S. Nat. Bur. Stand, NSRDS-NBS-35, Volume II, (1970) (Reprint of NBS Circular 467, Volume II, 1952).
 *J. R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978).

1-15	Enthalov R	Teference T	emnerature	Enthaloy Reference Temperature = T = 708 15 W		Crandond Crass D		
<u>.</u> _			J.K-'mol-	1000		Lidendard State		= p = u.i nira
	7. X.	ઇ	S[C.	-H(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	$\Delta_t H^{\bullet}$	Φ.	log Kr
	25000 25000	0. 20.786 20.786 20.786	0 141.623 156.031 160.669	INFINITE 182.810 166.231 164.672	-6.197 -4.119 -2.040 -1.001	485.224		
	298.15	20.786	164,330	164,330	ó	490.129	457.771	-80.200
	88	20.786 20.786	164.459	164330	0.038	490.148	457.570	-79.670
	\$ 5	20.786	170.438	165.146	2.117	488.914	447.179	-58396
;	38	20.786	175.077	166.685	3.156 4.196	489.414	441.933	-51.298
ت ج	88	20.786	178,866	168.409	6.274	490.983	425.871	-37.075
e e	88	20.786	84.846	171.807	10.431	493.157	403.841	-26.368
	88	20.786	189.484	174.896	14.589	494.241 423.818	392.611 383.448	-22.787
(g). §	17 <u>8</u>	20.786 20.786	191.465	176.313	16.667	425.896	379.310	-18.012
.e	1300	20.786	194.938	178.919	20.824	430.053	370.483	-14.886
	285	20.786	197.912	181.258	24.982	432.131 434.209	365.823 361.014	-13.649
	92	20.786	200.514	182,341	27,060	436.285	356.067	-11.624
g	0081	20.786	201.702	184.359	31.217	440.429	345.791	-10.785
the	2002	20.786	202.826	185,302	33.2% 35.375	442.495 444.555	340.477	-9.360
e e	2100	20.786	204.906	187.071	37.453	446.606	329.528	-8.197
3 2	2300	20.786	206.797	188.706	39.532 41.610	48.646 450.673	323.906	-7.690
.5	2400 2500	20.786 20.786	207.682 208.530	189.478 190.223	43.689	452.684	312.387	6.799
	2600	20.786	209.346	190.943	47.846	456.643	300.534	-6.038
	2800	20.786	210.886	192,313	\$2.004 \$2.004	458.586 460.498	288.380	-5.697
	3000	20.786 20.786	211.615	192,966 193,600	54.082 56.161	462.376 464.215	282,200	-5.083
	3100	20.786	213.002	194215	58.239	466.011	269.650	-4544
	3300	20.786	213.662	194.812	60.318 62.397	469.469	263.288	-4.298
	3400 3500	20.786 20.786	214.922	195.959	64.475	471.113	250.404	-3.847
	3000	20.786	216.110	197.045	68.632	474215	237.330	44.
	888	20.786 20.786	216.679	197.568	11.05 11.05 19.7	475.658	230.729	-3.257
	3900 4000	20.786 20.786	217.774	198.577	74.868	478.307	217.418	-2.912 -2.752
	4200	20.786	218.813	199.539	79.025	480.619	203.978	-2599
	4300	20.786	219.803	200.458	83.183	482.524	197.416	-2313
	\$200	20.786	220.748	201.339	87.340	483.613 484.491	183.603	-2.180 -2.052
	9 9 9 9 9 9 9	20.786 20.786	221.205	201.766	89.418	485.186	169.914	-1929
	4800	20.786	222.090	202.595	93.576	486.227	156.183	-1.700
	2000	20.786	222.938	203.392	97.733	480.389	149,303	-1.592 -1.487
	230 230	20.786	223.350	203.779	99.811	487.289	135.490	-1.388
	2300	20.786	224.149	204533	103.969	487.370	121.691	-1.19
	2500	20.786	224.919	205.260	108.126	487.058 487.058	107.896	-1.110
	2,500 2,700 0,000	20.786	225.294	205.614	110,204	487.144	100.950	-0.942
	2800	20.786	226.023	206.306	114362	486.381	87.178	-0.785
	0009	20.786	226.728	206.975	118.519	485,302	73.422	-0.639
•								•

CURRENT December 1983 (1 bar)

-2965 -3.000 -3.068 -3.102

289.540 298.681 307.901

195.575

\$0.842 \$7.628 64.510 71.484 78.549 85.701 92.938 100.257 107.657

-90.611 -92.728 -94.858 -97.005

37.453 39.532 41.610 43.689 45.768

87.904 88.706 89.478

204.906 205.873 206.797 207.682 208.531

-101.360 -103.574 -105.819 -108.098 -110.416

122.693 130.327 138.037 145.822 153.682

-112.777 -115.187 -117.634 -120.147

-125360

-130.865 -133.740 -136.688

-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%
-1.3%

-69.748 -71.827 -73.906 -75.985 -78.065

20.824 22.903 24.982

191.466 193.274 194.938 196.478

0.649 6.462 12.424 18.524 24.755 31.108 37.577

-80.146 -82.230 -84.316 -86.407 -88.505

82.341 83.374 84.359 85.302 86.205

199254 200514 201.702 202.826 203.892

-6.369 -9.875 -12.941 -15.622

178.866 182.071 184.846 187.295 189.485

PREVIOUS:

IDEAL GAS
n (Rb)
Rubidium, los

EA(Rb, g) = 0.48592 ± 0.00002 eV S°(298.15 K) = 164.330 ± 0.005 J·K⁻¹·mol⁻¹

0.4 kJ·mol⁻¹

Rb₁(g)

Standard State Pressure = $p^* = 0.1$ MPa

Enthalpy Reference Temperature = T, = 298.15 K

M, = 85.46835 Rubidium, Ion (Rb-)

k I-mol Δ_{cH}

> $H^{\bullet}-H^{\circ}(T_{\bullet})$ -6.197

S -[G-H'(T,)]T

ΤÆ

J·K-'mol-'

164,330 164.331 164.584 165.146 165.873

20.786 20.786 20.786 20.786

0. 141.623 156.031 160.669 164.330 64.459 67.663 70.438 72.887 75.077

0. 20.786 20.786 20.786

298.15

log Kr

δĠ

$\Delta_e H^{\circ}(0 \text{ K}) = 35.308 \pm$	$\Delta_t H^{\circ}(298.15 \text{ K}) = [27.8]$	

() = 164.330 ± 0.005 J·K ⁻¹ ·mol ⁻¹			Δ _t H°(298.15 K) =	Δ _t H°(298.15 K) = [27.819] kJ·mol ⁻¹
	Electronic Le State	Electronic Level and Quantum Weight State \$\epsilon_{\pi}\$ cm^{-1} & \$\epsilon_{\pi}\$	Weight 8.	
	s,	0.0	-	
If Formation 1. Solvential (1978) Is calculated from the adopted electron affinity, EA(Rb, g) = 0.48592 ± 0.00002 eV 1. This value, recommended by Hotop and Lineberger, was measured by a tunable laser photodetachment threshold 1. Additional discussion on Rb (190) may be obtained in the critical discussions of Date and Lineberger, and discussions of Broad and Lineberger, and described the control of the critical discussions of the control of the cont	is calculated fro	m the adopted el Lineberger, was m	ectron affinity, EA(Rb, g) = 0.485 easured by a tunable laser photodet	92 ± 0.00002 eV schment threshold

Enthalpy of The entha $(46.884 \pm 0.$ echnique. 2 Massev

Δ_tH°(Rb⁻, g, 298.15 K) is obtained from Δ_tH°(Rb, g, 0 K) by using EA(Rb, g) with JANAF' enthalpies, H°(0 K)— H°(298.15 K), for Rb [g), Rb(g), and e (ref). ΔH° (Rb $^{-} \to$ Rb $^{+}$ e $^{-}$, 298.15 K) differs from a room-temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock et al. $^{3}\Delta H^{\circ}$ (298.15 K) should be changed by $^{+}$ 6.197 kJ·mol $^{-1}$ if it is to be used in the ion convention which excludes the enthalpy of the electron.

Heat Capacity and Entropy

The ground state configuration for Rb [g) is given by Hotop and Lineberger^{1,6} and Rosenstock et al. ³ Lacking any experimental evidence as to the stability of any excited states, we assume that no stable excited states exist.

⁴P. Frey, F. Breyt, and H. Hotop, J. Phys. B: Ann. Molec. Phys. 11, 1589 (1978).
⁴H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).
⁴H. S. W. Massey, "Negative Ions," 3rd ed., Cambridge University Press, Cambridge, 741 pp. (1976).
⁵JANAF Thermochemical Tables: Rb(g), 3-31-82; e⁻(ref), 3-31-82.
⁶H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985). H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).

47.846 49.925 52.004 54.082 56.161 58.239 60.318 62.397 64.475 66.554 68.632 70.711 72.790 74.868 79.025 81.104 83.183 85.261 87.340 190.941 191.540 192.341 192.360 194.215 194.215 195.393 195.393 195.393 197.046 200.347 200.34 209.346 210.130 210.886 211.616 212.320 213.002 213.662 214.301 214.922 215.524 216.110 216.680 217.234 217.774 218.300 218.813 219.314 219.803 220.281 220.748 221.205 222.0502 222.0503 222.518 222.338 223.350 223.754 224.150 224.538 20.785
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786
20.786 20.785 20.785 20.786 20.786 20.786 20.786 20.786 20.786

161.616 169.624 117.707 183.865 194.096 210.746 210.746 210.746 2245.020 225.343 225.6345 225.6343 225

42.895 -139.742

149.219 152.499

155.961 163,235 167,029 170,679 $Rb_2(g)$

CURRENT: December 1983 (1 bar)

-	_

Rubidium (Rb,

 $D_0^* = 46.91 \pm 1.9 \text{ kJ·mol}^{-1} \text{ (natural abundance)}$ $S_0^* (298.15 \text{ K}) = 271.07 \pm 0.08 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

M. = 169.8234 Rubidium (Rb₂)

 $\Delta_t H^{\circ}(0 \text{ K}) = 117.34 \pm 2.5 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 113.29 \pm 2.5 \text{ kJ} \cdot \text{mol}^{-1}$

IDEAL GAS

Spectroscopic Data for ¹⁵Rb₂ (Ground State: ¹∑₂) in cm⁻¹ B. - 0.02278 ω_c = 57.747

 $\alpha_e = 4.7 \times 10^{-5}$ $r_e = 4.173 \text{ Å}$ w.z. = 0.1582

 $D_c = 1.5 \times 10^{-6}$

Heat of Formation

calculate $\Delta H^{*}(Rb_{2}, g, 0 K) = 117.34 \text{ Limbility}$. Using the NBS enthalpy value for REACOS.15 K)—(RV, g, 0 K) = 2.7489 Limbility and the current JANAF value for $H^{*}(298.15 K) = 113.29 \text{ Limbility}$. When the spectrometric study by Piacente et al., the dissociation energy of Rb₂(g) was determined as $41.84 \pm 2.1 \text{ kJ} \cdot \text{mol}^{-1}$. This value appears to be low when compared to the alkali metal group trends appearent in plots of D_0^{*} versus r_{*} or D_0^{*} versus group member. Using the adopted value of the dissociation energy for Rb4g), Do. = 46.91 kJ·mol⁻¹ (natural abundance Rb.) as deduced from the ^{ES}Rb dissociation energy from reference $^4(D^\circ - 47.277 \pm 1.93 \,\mathrm{kJ \cdot mol^{-1}})$ and the recommended $\Delta_t H^0(\mathrm{Rb}, g, 0 \,\mathrm{K}) - 82.17 \,\mathrm{kJ \cdot mol^{-1}}$ from NBS, 3 we

Heat Capacity and Entropy

The heat capacity and entropy were calculated using a direct summation technique similar to the Li₂(g) species² using the data for the ¹⁸Rb, species given above. ¹² Since insufficient spectroscopic data exist for the lower lying excited electronic states, we performed the calculation on the ground state only as discussed in the Kr₂(g) table. ¹⁸ Separate calculations were performed on the isotopic species ¹⁸Rb, ¹

namic functions (except for C₂) at temperatures below ca. 2000 K. We estimate that the entropy and Gibbs energy function at 3000 K are too low by ca. 0.4 J·K⁻¹·mol⁻¹ due to the neglect of the excited states. The adopted value of \$°(298.15 K) is 0.07 J·K⁻¹·mol⁻¹ larger than that adopted by Gurvich et al.*

¹W. C. Stwalley, Director: Iowa Laser Facility and Professor of Chemistry and Physics, University of Iowa, personal communcation (1982), ²C. D. Caldwell, F. Engelke and H. Hage, Chem. Phys. **54**, 21 (1980).

¹Handbook of Chemistry and Physics, R. C. Weast, Editor, CRC Press, 57th edition, p. B-288 (1977), ⁴Ny Tsi-ze and T. S. Tsiang, Phys. Rev. 52, 91 (1937).
⁵D. D. Wagman, et al., J. Phys. Chem. Ref. Data 11, Supp. 2 (1982).
⁶V. Piacente, G. Bardi and L. Malaspina, J. Chem. Thermodynamics 5, 219 (1973).
⁷ANAF Thermochemical Tables: Li₂(g), 12-31-82; Ks, 12-31-82; Css, 12-31-82.

'L. V. Gurvich, et al., "Thermodynamic Properties of Individual Substances," Volume IV, 3rd ed., Nauka, Moscow, (1982).

<u> </u>	Enthalpy R	reference To	Enthalpy Reference Temperature = T,	- T, - 298.15 K		Standard State Pressure		p° = 0.1 MPa
	7.K	ប	S -{G	-[G*-H*(T,)]/T	H*-H*(T,)	 ₽#¥	Φ.G.	log K,
	0	ó	ó	INFINITE	-10.934	117.335	117.335	INFINITE
	<u>8</u> 8	37.185 37.77	255.918	304.707	-3.775	116,769	103.181	-53.896
	298.15	38.116	71.067	271.067	o	113.290	78.254	-13.710
	88	38.123	271.302	71.067	1200	113.245	78.037	-13.587
	88	38.631	290.917	275.407	7.754	103.858	67.916 58.607	-6.123
	88	38.475	297.953	278.597	11.614	101.515	49.77	-4.333
	88	36.797	308.831	284.871	19.168	82.783	33.236	-2170
	38	34.084	315,092	290.495	26.263	-51.424	22.22	-1.47 -1.168
	2002	32,696	322.730	293.031	29.602	-52.243	29.725	-1.412
	8	30.221	325.196	297.592	35.885	-54274	44.795	-1.800
	88	28.258	329.370	301.561	38.854 41.775	-55.464	52.460 60.213	-1.957 2.097
	900	26.760	331.175	303.356	44.510	-58.131	68.055	-2222
	88.5	26.154	334330	306.627	49.865	-61.115	84,005	-2.438
	200	25.165	337.032	309.536	54.992	-64.366	100.301	-2532
	2200 2200	24.762 24.408	338,250	310.874	59.946	-66.082	116,935	-2.701
	2300	24.096	340.471	313,354	62.371	-69.693	125.375	-2847
	2500	13.577	342.458	315.604	67.136 67.136	-73.553 -73.553	142.499	-2.914
	700 7100 7100	23.360	343,379	316.654	69.483	-75.584	151.181	-3.037
_	280	22.992	345.096	318.625	74.117	-79.869	168.783	-3.149
	308	22.695	346.672	320.443	78.684	-82.137 -84.496	186,703	-3.20 -3.251
	3200	22.453	347.414 348.128	321.302	80.947	-86.955	195.783	-3.299
	3300	22.348	348.818	322.927	85.438	-92.177	214.186	-3390
	3200	22.166	350.127	324.445	89.889	-97.906	232,920	-3.476
	3600 3700	22.086 22.013	350.750	325.167 325.866	92.102 94.307	-100.966 -104.188	242.415 251.997	-3.517
	3800	21.945 21.884	351.941 352.510	326.545	96.505 98.696	-107 <i>5</i> 73 -111.132	261.669	-3.597
	4000	21.826	353.063	327.843	188'001	-114.843	281.285	-3.673
	450	21.773	353.601 354.126	328.465	103.061	-118.71 -122.901	291.237 301.287	-3.710
	64 4 86 8	21.679 21.636	354.636 355.134	329.658 330.231	107.406	-127244 -131214	321.630	-3.783
	4200	21.597	355.620	330.790	111.734	-135.612	331.947	-3.853
	966 907 900	21.580	356.094	331,335	113.892	-140.378 -145.393	342,385	-3.888
	84 64 898 69	21.493 21.463	357,010	332.386	118.197	-150.620 -156.062	363.590	-3.957
	2000	21.435	357.887	333,389	122.489	-161.216	385.179	-4.024
	2500 2500	21.408	358.311 358.726	333.873 334.347	124.631 126.771	-167.005 -172.999	3%.164 407.266	-4.058 -4.091
-	5300 5400	21.360	359.133	334.811	128.908	-179.195	418.483	-4.124
-	2200	21317	359.924	335.710	133.176	-192.179	41.27	4.191
	8 8 8 8 8 8	21.297	360,308 360,684	336.146	135,306	-198.192 -205.058	452.746	-4223 -4256
	5800	21.261	361.054	336.992	139.562	-212.091	476.236	4289
	800	21.228	361.775	337.806	143.811	-226.628	500.217	4355
-								

PREVIOUS: