

New Product

Dual N-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A)		
30	0.036 @ V _{GS} = 10 V	5.9		
	0.053 @ V _{GS} = 4.5 V	4.9		

N-Channel MOSFET

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)						
Parameter		Symbol	10 secs	Steady State	Unit	
Drain-Source Voltage		V _{DS}	30		V	
Gate-Source Voltage	V _{GS} ±20		20	ľ		
Continuous Drain Current (T _{.I} = 150°C) ^a	T _A = 25°C	I _D	5.9	4.4	A	
Continuous Diain Current (1) = 130 C)	T _A = 70°C		4.7	3.6		
Pulsed Drain Current		I _{DM}	±30		_ ^	
Continuous Source Current (Diode Conduction) ^a		I _S	1.7	0.9		
Maximum Power Dissipationa	T _A = 25°C	Pn	2.0	1.1	W	
Waximum Ower Dissipation	T _A = 70°C	' '	1.3	0.7	**	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambienta	t ≤ 10 sec	R _{thJA}	50	62.5	°C/W	
Maximum Junction-to-Ambiente	Steady State		90	110		
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	32	40		

Notes

a. Surface Mounted on 1" x 1" FR4 Board.

Vishay Siliconix

New Product

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)								
Parameter	Symbol	bol Test Condition		Тур	Max	Unit		
Static								
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.0			V		
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V			±100	nA		
Zero Gate Voltage Drain Current	1	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1			
Zero Gate voltage Drain Current	loss —	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			5	μА		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	30			А		
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 5.9 A		0.032	0.036	Ω		
Diali-Source Oil-State Resistance		$V_{GS} = 4.5 \text{ V}, I_D = 4.9 \text{ A}$		0.042	0.053	1 52		
Forward Transconductancea	9 _{fs}	$V_{DS} = 15 \text{ V}, I_D = 5.9 \text{ A}$		15		S		
Diode Forward Voltage ^a	V _{SD}	$I_S = 1.7 \text{ A}, V_{GS} = 0 \text{ V}$		0.8	1.2	V		
Dynamic ^b								
Total Gate Charge	Qg			13	20	nC		
Gate-Source Charge	Q _{gs}	V_{DS} = 15 V, V_{GS} = 10 V, I_D = 5.9 A		2.3				
Gate-Drain Charge	Q _{gd}			2.0		1		
Turn-On Delay Time	t _{d(on)}			6	12	ns		
Rise Time	t _r	V_{DD} = 15 V, R_L = 15 Ω $I_D \cong 1 A$, V_{GEN} = 10 V, R_G = 6 Ω		14	25			
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 1 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 6 \Omega$		30	60			
Fall Time	t _f			5	10			
Source-Drain Reverse Recovery Time	t _{rr}	I _F = 1.7 A, di/dt = 100 A/μs		30	60]		

Notes

- a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.
- b. Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

V_{GS} - Gate-to-Source Voltage (V)

Is - Source Current (A)

New Product

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Source-Drain Diode Forward Voltage

Capacitance

V_{DS} - Drain-to-Source Voltage (V)

On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

New Product

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

