Nom, prénom:			Contrôle court n°2 - Durée 1 heure
Grp: A	В	С	Calculatrice et documents interdits - répondre sur la feuille

EXERCICE 1.: PILE

1.1. Quelles sont les instructions permettant d'accéder à la pile ? Précisez la taille des opérandes.

```
Mettre sur la pile PUSH registre 16 bits
Retirer de la pile POP registre 16 bits
```

1.2. Quels éléments du processeur permettent de gérer la pile ?

```
Registres SS (segment pile),
SP (stack pointer),
BP (base pointer)
Tous 16 bits
```

1.3. A partir de la taille de ces éléments, déterminez la taille maximum d'une pile.

```
Registre SP 16 bits
Pile de 2<sup>16</sup> octets (64ko)
```

1.4. Donnez tous les éléments de déclaration et d'initialisations utiles pour une pile.

```
ASSUME SS:Pile
Pile SEGMENT STACK

DW FFFFH DUP (?) # les 10000H octets, c'est avec 'bas'
bas EQU THIS WORD
Pile ENDS

Dans le code segment :
MOV AX,Pile
MOV SS,AX
MOV AX,bas
MOV SP,AX
MOV BP,SP
```

1.5. Représentez l'état de la pile et des registres utiles à la fin des instructions suivantes :

```
MOV BX,OFFSET tab ;tab contient octets -1,-2,-3...

PUSH BX ;tab rangé à 1'@ 1H

PUSH n ;N contient 203H

CALL fonction
```

La procédure fonction implantée en 0405H commence par les instructions :

```
PUSH BP ; à cet instant BP à 607H
MOV BP,SP
SUB SP,2
MOV BX, [BP+6]
MOV BYTE PTR [BP-2], [BX]
```

EXERCICE 2.: PROCEDURE ET INTERRUPTIONS LOGICIELLES

2.1. Donnez les directives assembleur nécéssaires à l'établissement d'une procédure fonction.

```
fonction PROC NEAR fonction ENDP
```

2.2. Complétez la procédure fonction qui change les éléments d'un tableau, dont l'adresse et le nombre sont passé en paramètre par la pile, en leur opposé (modifiez un minimum de registres).

```
PUSH BP
       MOV
            BP, SP
       SUB SP, 2
       MOV BX, [BP+6]
repet: MOV
           BYTE PTR [BP-2], [BX]
       CMP
            [BP+4],00H
       JEQ
           retour
       XOR
            [BP-2],11111111b
       ADD
           [BP-2], 1
       MOV
           [BX],[BP-2]
            [BP+4]
       INC
       JMP
            repet
            SP,2
       ADD
       POP
            BP
retour: RET
```

- 2.3. S'il s'agissait d'un traitant d'interruption...
 - a) Quelle serait la principale différence dans les instructions de la procédure?

```
IRET au lieu de RET
```

b) Comment serait appelé ce traitant d'interruption?

```
INT XX au lieu de CALL
```

c) Expliquez précisément les différences (expliquez le fonctionnement de l'appel).

```
INT N va chercher l'@ du traitant en 4xN
Il empile le registre d'état
et CS:IP au lieu de IP seul puis appelle le traitant
IRET dépile CS:IP et le registre d'état
```

EXERCICE 3.: INTERRUPTIONS MATERIELLES

3.1. Quelle est la différence fondamentale entre une interruption matérielle et une interruption logicielle...?

Déclenché par un dispositif extérieur au processeur

3.2. Quelles sont les bornes du processeur liées au interruptions ? Précisez leur rôle.

```
INT interruption simple
INTA ack
NMI interruption non masquable
```

- 3.3. Connexions
 - a) En connexion directe, combien de dispositifs peuvent faire des interruptions?
 - b) Quelle est la solution adoptée ?

c) Représentez le branchement de deux interfaces travaillant par interruption (clavier et souris).

```
INT PIC -> INT CPU, INTA CPU -> INTA PIC
INT interfaces -> IRQ PIC
@ et IO/M CPU -> @ décodeur
@ decodeur > @ et CS interfaces
data CPU <-> PIC <-> interfaces
```

3.4. Donnez les étapes du traitement d'une interruption (par exemple appui d'une touche sur le clavier).

```
Identification n° par le PIC, mise en attente
INT PIC -> CPU
CPU : vérif IF
si ok INTA CPU -> PIC
CPU sauve registre etat et CS:IP
PIC n°IRQ sur data
Lit n°IRQ
(calcule correspondance INT)
CPU IF = 1
```