The second neuron in the second layer is dropped out, this means the gradient with respect to second row of weight $M^{(2)}$ and the second element of Bias $B^{(2)}$ will be zero.

The second and third neurons in the third layer are dropped out, this means the gradient with respect to the second and third rows of weights M⁽³⁾ and the second and third elements of Bias B⁽³⁾ will be zero.

Given the loss function with dropout, the architecture of this network is constructed in such a way that a dropout matrix D_2 is multiplied to the output of first layer (or the second weight matrix $M^{(2)}$) before passing to the activation function S; and another dropout matrix D_3 is multiplied to the output of second layer (or the third weight matrix $M^{(3)}$) before passing to the activation function S.

Notice that when applying dropout to a layer's output (or its pre-activation weights), the multiplication between the dropout matrix and the previous layer's output matrix is an element-wise multiplication. A zero in the dropout matrix means the corresponding neuron will be set to 0 after element-wise multiplication. Consider a weight matrix:

```
[[W_{1,1} W_{1,2} W_{1,3}],
[W_{2,1} W_{2,2} W_{2,3}],
```

$$[W_{3.1} W_{3.2} W_{3.3}]]$$

Each row determines the weighted sum for each corresponding neuron in the next layer, i.e.

 $[W_{11}, W_{12}, W_{13}]$ determines the weighted sum for the first neuron in the next layer.

If we element-wise multiply this row by [0, 0, 0], then first neuron of the next layer will be 0.

In this specific question, the values of second row of D_2 are 0, so the second neuron in the next layer is dropped out. The values of second row and third row of D_3 are 0, so the second and third neurons in the next layer are dropped out.