

Mathematical Models of the Mammalian Circadian Oscillator and Alcohol Dependency

Grace E Kelting and Dr. Brittany E Bannish

Department of Mathematics and Statistics University of Central Oklahoma, Edmond, OK

Introduction

The mammalian circadian oscillator is the body's internal clock that controls brain wave activity, energy production, and other biological activities.

- Acute or chronic alcohol consumption disrupts a regular circadian rhythm.
- © A disrupted circadian rhythm affects mood regulation, sleep cycles, blood pressure, and other biological rhythms.
- \odot The Per2 gene of the mammalian circadian oscillator causes improper alcohol intake.

Goal: To understand the relation between alcohol and the circadian oscillator and to investigate the effects of alcohol on the system.

Model of the mammalian circadian oscillator.

Mathematical Model

Per2/Cry mRNA
$$\frac{dP_m}{dt} = \frac{\mathbf{a} \cdot v_P \cdot (B_a + c)}{k_{MP} \cdot (1 + (P_n/k_i)^s) + (B_a + c)} - d_{Pm} \cdot P_m$$
PER2/CRY complex in the cytoplasm
$$\frac{dP_c}{dt} = k_b \cdot P_m{}^q - d_{Pc} \cdot P_c - k_P^{in} \cdot P_c + k_P^{out} \cdot P_n$$
PER2/CRY complex in the nucleus
$$\frac{dP_n}{dt} = k_P^{in} \cdot P_c - k_P^{out} \cdot P_n - d_{Pn} \cdot P_n$$
Bmall mRNA
$$\frac{dB_m}{dt} = \frac{v_B \cdot P_n^T}{k_M^T B + P_n^T} - d_{Bm} \cdot B_m$$
BMAL1 protein in the cytoplasm
$$\frac{dB_c}{dt} = k_t \cdot B_m - d_{Bc} \cdot B_c - k_B^{in} \cdot B_c + k_B^{out} \cdot B_n$$
BMAL1 protein in the nucleus
$$\frac{dB_n}{dt} = k_B^{in} \cdot B_c - k_B^{out} \cdot B_n - d_{Bn} \cdot B_n + k_d \cdot B_a - d_{Ba} \cdot B_n$$
Transcriptionally active form BMAL1
$$\frac{dB_a}{dt} = k_a \cdot B_n - k_d \cdot B_a - d_{Ba} \cdot B_a$$

mRNA

Protein

Observations

mRNA

- \odot Bmal1 mRNA affected greatly by the change in alcohol parameter.
- \odot Per2 mRNA oscillations become more symmetric with the decrease in the alcohol parameter.

Protein

- \odot BMAL1 protein also affected greatly by the change in alcohol parameter.
- © Protein oscillations flatten significantly with the decrease in the alcohol parameter.

Both

- The oscillations' periods shorten as the alcohol parameter decreases.
- When the alcohol parameter is greater than 0.2, oscillations are recovered at lower levels than if alcohol was not present.
- When the alcohol parameter is less than 0.2 (meaning an extremely strong effect of alcohol on the system), oscillations disappear entirely.
- It is possible to recover the control oscillations if the alcohol parameter is set to 1 (meaning no effect of alcohol on the system).

Impact

- © Recovery of an unaffected circadian oscillation is possible after dependence on alcohol.
- © Recovery time-lines can be created for the affected circadian oscillator.
- © Targeting specific genes to decrease the chance of relapse.

Future Directions

- © Investigate the effects when the alcohol parameter is less than 0.2 using bifurcation analysis.
- \odot Create a more intricate model of the mammalian circadian oscillator to separate Per2 and Cry.
- © Build a similar model for drug dependency.

Acknowledgements and References

This project has benefited from research and travel grants from the UCO Office of Research and Sponsored Projects, Office of High-Impact Practices, the RCSA and CURE-STEM programs, and the College of Mathematics and Science.

Thank you to:

① University of Central Oklahoma for providing a research environment for undergraduate students.
② Dr. Sean Laverty for assistance with programming.

Caroline H. Ko and Joseph S. Takahashi. "Molecular components of the mammalian circadian clock." Human Molecular Genetics 15.2 (2006): 271-277. Oxford Academic. Web. Apr. 2017.
Sabine Becker-Weimann, Jana Wolf, Hanspeter Herzel, Achim Kramer. "Modeling Feedback Loops of the Mammalian Circadian Oscillator." Biophysical Journal 87.5 (2004): 3023-3034.

Science Direct. Web. Sept. 2017.