UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Finančna matematika – 1. stopnja

Anej Rozman Sestavljeni Poissonov proces in njegova uporaba v financah

Delo diplomskega seminarja

Mentor: doc. dr. Martin Raič

Kazalo

1. Uvod	4
2. Sestavljeni Poissonov proces	5
2.1. Osnovne lastnosti	5
2.2. Rodovne funkcije	6
2.3. Porazdelitev CPP	7
2.4. CPP kot martingal	10
3. Cramér-Lundbergov model	10
3.1. Proces tveganja in verjetnost propada	11
3.2. Lahkorepe porazdelitve	14
3.3. Težkorepe porazdelitve	19
4. Dostavek	20
Slovar strokovnih izrazov	21
Literatura	21

Sestavljeni Poissonov proces in njegova uporaba v financah ${\tt Povzetek}$

Compound Poisson process and its application in finance ${\rm ABSTRACT}$

Math. Subj. Class. (2020): 60G07 60G20 60G51

Ključne besede: slučajni procesi, sestavljeni Poissonov proces,

Cramér–Lundbergov model

Keywords: stochastic processes, compound Poisson process, Cramér-Lundberg

model

Uvodni tekst in motivacija za študiranje procesa, nakaži da boš obravnaval Cramer-Ludenbergov model

SLIKA 1. Primer trajektorije sestavljenega Poissonovega procesa

Definicija 1.1. Naj bo $(\Omega, \mathcal{F}, \mathbb{P})$ verjetnostni prostor in naj bo $T \neq \emptyset$ neprazna indeksna množica ter (E, Σ) merljiv prostor. *Slučajni proces*, parametriziran s T, je družina slučajnih elementov $X_t : \Omega \to E$, ki so (\mathcal{F}, Σ) -merljivi za vsak $t \in T$.

Opomba 1.2. V delu se bomo omejili na primer, ko T predstavlja čas, torej $T = [0, \infty)$ in da slučajne spremenljivke zavzemajo vrednosti v realnih številih, torej $(E, \Sigma) = (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, kjer $\mathcal{B}_{\mathbb{R}}$ predstavlja Borelovo σ -algebro na \mathbb{R} .

Definicija 1.3. Za fiksen $\omega \in \Omega$ je preslikava $[0, \infty) \to \mathbb{R}$; $t \mapsto X_t(\omega)$ trajektorija oziroma realizacija slučajnega procesa $(X_t)_{t\geq 0}$. Tako lahko slučajni proces gledamo kot predpis, ki vsakemu elementu vzorčnega prostora Ω priredi slučajno funkcijo $(X_t(\omega))_{t\geq 0}: [0,\infty) \to \mathbb{R}$.

Definicija 1.4. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem za s < t definiramo prirastek $procesa X_t - X_s$ na intervalu [s,t]. Proces $(X_t)_{t\geq 0}$ ima $neodvisne\ prirastke$, če so za vsak nabor realnih števil $0 \le t_1 < t_2 < \ldots < t_n < \infty$ prirastki

$$X_{t_2} - X_{t_1}, \ X_{t_3} - X_{t_2}, \ \dots, \ X_{t_n} - X_{t_{n-1}}$$

med seboj neodvisni.

Trditev 1.5. Naj bo $(X_t)_{t\geq 0}$ slučajni proces na $(\Omega, \mathcal{F}, \mathbb{P})$. Potem ima $(X_t)_{t\geq 0}$ neodvisne prirastke natanko tedaj, ko je za vsak nabor realnih števil $0 \leq t_1 < \ldots < t_n < t_{n+1} < \infty$ prirastek $X_{t_{n+1}} - X_{t_n}$ neodvisen od slučajnega vektorja $(X_{t_1}, \ldots, X_{t_n})$.

$$Dokaz. \ (\Rightarrow): \ (\Leftarrow):$$

Definicija 1.6. Naj bo $(X_t)_{t\geq 0}$ slučajni proces. Potem pravimo, da ima proces stacionarne prirastke, če za vsak s < t in vsak h > 0 velja, da ima $X_{t+h} - X_{s+h}$ enako porazdelitev kot $X_t - X_s$.

Definicija 1.7. Naj bo $\lambda > 0$. Slučajnemu procesu $(N_t)_{t\geq 0}$, definiranem na verjetnostnem prostoru $(\Omega, \mathcal{F}, \mathbb{P})$ in z vrednostmi v \mathbb{N}_0 , pravimo *Poissonov proces* z intenzivnostjo λ , če zadošča naslednjim pogojem:

- (1) $N_0 = 0$ P-skoraj gotovo.
- (2) $(N_t)_{t\geq 0}$ ima neodvisne in stacionarne prirastke,
- (3) Za $0 \le s < t$ velja $N_t N_s \sim \text{Pois}(\lambda(t-s))$,

Opomba 1.8. Vidimo, da v definiciji ne zahtevamo, da so skoki procesa le +1. To sledi iz...

2. Sestavljeni Poissonov proces

Povzetek poglavja/krajsi uvod

Definicija 2.1. Naj bo $(N_t)_{t\geq 0}$ Poissonov proces z intenzivnostjo λ . Naj bo $(X_i)_{i\geq 1}$ zaporedje neodvisnih (med sabo in $(N_t)_{t\geq 0}$) in enako porazdeljenih slučajnih spremenljivk z vrednostmi v \mathbb{R} . Potem je sestavljeni Poissonov proces $(S_t)_{t\geq 0}$ definiran kot

$$S_t = \sum_{i=1}^{N_t} X_i.$$

Opomba 2.2. Vidimo, da je sestavljeni Poissonov proces posplošitev homogenega Poissonovega procesa, saj če za X_i vzamemo konstantno funkcijo $X_i = 1$ za vsak i, dobimo ravno HPP. Bolj v splošnem, če za X_i postavimo $X_i = \alpha$, potem velja $S_t = \alpha N_t$.

V nadaljevanju bomo homogen Poissonov proces z intenzivnostjo $\lambda > 0$ označevali s $HPP(\lambda)$ ali naborom slučajnih spremenljivk $(N_t)_{t\geq 0}$ (angl. Homogeneous Poisson Process), sestavljeni Poissonov proces pa s CPP ali naborom slučajnih spremenljivk $(S_t)_{t\geq 0}$ (angl. Compound Poisson Process), kjer bo vsota sledila $HPP(\lambda)$.

2.1. Osnovne lastnosti.

Trditev 2.3. CPP ima neodvisne in stacionarne prirastke.

Dokaz. Za nabor realnih števil $0 \le t_1 < t_2 < \ldots < t_n < \infty$ lahko slučajne spremeljivke $S_{t_i} - S_{t_{i-1}}$ zapišemo kot

$$S_{t_i} - S_{t_{i-1}} = \sum_{j=N_{t_{i-1}}+1}^{N_{t_i}} X_j.$$

Neodvisnost prirastkov sledi po neodvisnosti X_i od X_j za $i \neq j$ in N_t . Naj bo h > 0 in s < t. Potem velja

$$S_{t+h} - S_{s+h} = \sum_{j=N_{s+h}+1}^{N_{t+h}} X_j$$

Vsota ima $N_{t+h}-N_{s+h}$ členov. Ker za HPP velja $N_{t+h}-N_{s+h}\sim N_t-N_s$, je

$$\sum_{j=N_{s+h}+1}^{N_{t+h}} X_j = \sum_{j=N_s+1}^{N_t} X_j = S_t - S_s.$$

Trditev 2.4. Naj bo $(S_t)_{t\geq 0}$ CPP in naj bosta $\mu = \mathbb{E}[X_i] < \infty$ pričakovana vrednost in $\sigma^2 = Var[X_i] < \infty$ varianca slučajnih spremenljivk X_i za vsak i. Potem sta za $t \geq 0$ pričakovana vrednost in varianca S_t enaki

$$\mathbb{E}[S_t] = \mu \lambda t$$
 in $Var[S_t] = \lambda t \left(\sigma^2 + \mu^2\right)$.

Dokaz. Definiramo slučajno spremenljivko

$$Y_k = X_1 + X_2 + \dots + X_k \tag{1}$$

in vidimo, da je za $t \geq 0$ S_t pogojno na $N_t = k$ enako porazdeljena kot Y_k . Tako dobimo

$$\mathbb{E}\left[S_t \mid N_t = k\right] = \mathbb{E}\left[Y_k\right] = k\mu \quad \text{in} \quad \operatorname{Var}\left[S_t \mid N_t = k\right] = \operatorname{Var}\left[Y_k\right] = k\sigma^2.$$

Po formuli za popolno pričakovano vrednost velja $\mathbb{E}[S_t \mid \mathbb{E}[S_t \mid N_t]]$. Torej

$$\mathbb{E}[S_t] = \mathbb{E}[\mathbb{E}[S_t \mid N_t]] = \mathbb{E}[\mu N_t] = \mu \lambda t.$$

Prek formule $\operatorname{Var}\left[S_{t}\right]=\mathbb{E}\left[\operatorname{Var}\left[S_{t}\mid N_{t}\right]\right]+\operatorname{Var}\left[\mathbb{E}\left[S_{t}\mid N_{t}\right]\right]$ računamo

$$\mathbb{E}\left[\operatorname{Var}\left[S_{t}\mid N_{t}\right]\right] = \mathbb{E}\left[\operatorname{Var}\left[X_{i}\right]N_{t}\right] = \sigma^{2}\lambda t$$

in

$$\operatorname{Var}\left[\mathbb{E}\left[S_{t}\mid N_{t}\right]\right] = \operatorname{Var}\left[\mathbb{E}\left[X_{i}\right]N_{t}\right] = \mu^{2}\lambda t,$$

saj $N_t \sim \text{Pois}(\lambda t)$. Skupaj dobimo $\text{Var}[S_t] = \lambda t (\sigma^2 + \mu^2)$.

2.2. Rodovne funkcije.

Trditev 2.5. Naj bo $(S_t)_{t\geq 0}$ CPP. Naj bodo slučajne spremenljivke X_i , ki jih seštevamo v CPP enako porazdeljene kot X. Potem ima za $t\geq 0$ karakteristična funkcija φ_{S_t} obliko

$$\varphi_{S_t}(u) = e^{\lambda t(\varphi_X(u) - 1)}$$

 $kjer \varphi_X$ označuje karakteristično funkcijo X.

Dokaz.

$$\varphi_{S_t}(u) = \mathbb{E}\left[\exp\left[iuS_t\right]\right] = \mathbb{E}\left[\exp\left[iu\sum_{i=1}^{N_t} X_i\right]\right]$$

$$= \sum_{k=0}^{\infty} \mathbb{E} \left[\exp \left[iu \sum_{i=1}^{N_t} X_i \mid N_t = k \right] \right] \mathbb{P} (N_t = k)$$

$$= \sum_{k=0}^{\infty} \mathbb{E} \left[\exp \left[iu \sum_{i=1}^{k} X_i \right] \right] \mathbb{P} (N_t = k)$$

$$= \sum_{k=0}^{\infty} \underbrace{\mathbb{E} \left[e^{iuX} \right]^k}_{\varphi_X(u)^k} \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$= e^{-\lambda t} + e^{-\lambda t} \sum_{k=1}^{\infty} \frac{(\varphi_X(u)\lambda t)^k}{k!}$$

$$= e^{\lambda t(\varphi_X(u)-1)}$$
(2)

Hitro lahko vidimo, da sta karakteristična in rodovna funkcija CPP enaki

$$\varphi_{S_t}(u) = e^{\lambda t(\varphi_X(u)-1)}$$
 in $G_{S_t}(u) = e^{\lambda t(G_X(u)-1)}$,

saj v splošnem velja, da je karakteristična funkcija neke slučajne spremenljivke Y enaka njeni momentno rodovni funkciji izvrednoteni v iu, torej $\varphi_Y(u) = G_Y(iu)$. Rodovna pa izverdnotena v $\ln(u)$, torej $G_Y(u) = M_Y(\ln(u))$, če obstajata. V nadaljevanju bomo uporabljali predvsem karakteristično funkcijo CPP, saj je ta vedno definirana za vsak $u \in \mathbb{R}$. Prav nam bo prišla tudi naslednja povezava med karakteristično funkcijo CPP in rodovno funkcijo $HPP(\lambda)$.

Trditev 2.6. Naj bosta $(S_t)_{t\geq 0}$ CPP in $(N_t)_{t\geq 0}$ HPP (λ) neodvisna. Naj bodo slučajne spremenljivke X_i , ki jih seštevamo v CPP enako porazdeljene kot X. Potem za fiksen $t\geq 0$ velja

$$\varphi_{S_t}(u) = G_{N_t} \left(\varphi_X(u) \right).$$

Dokaz. Po enačbi (2) iz trditve 2.5 velja, da je $\varphi_{S_t}(u)$ enaka

$$\varphi_{S_t}(u) = \sum_{k=0}^{\infty} \varphi_X(u)^n \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
$$= G_{N_t}(\varphi_X(u)).$$

2.3. **Porazdelitev CPP.** Sedaj se posvetimo vprašanju, kako je porazdeljena slučajna spremenljivka S_t za $t \geq 0$? Iz definicije $HPP(\lambda)$ vemo, da je N_t za $t \geq 0$ porazdeljena kot Poissonova slučajna spremenljivka s parametrom λt . Fiksiramo $t \geq 0$ in dobimo

$$F_{S_t}(x) = \mathbb{P}(S_t \le x) = \sum_{k=0}^{\infty} \mathbb{P}(S_t \le x \mid N_t = k) \mathbb{P}(N_t = k)$$
$$= \sum_{k=0}^{\infty} \mathbb{P}(\sum_{i=1}^{k} X_i \le x) \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$= \sum_{k=0}^{\infty} F_X^{*k}(x) \frac{(\lambda t)^k}{k!} e^{-\lambda t},$$

kjer je $F_X^{*k}(x)$ porazdelitev k-te konvolucije slučajne spremenljivke X. Razen za posebne primere, je zgornji izraz za praktične namene ne-izračunljiv in nam ne pomaga veliko.

Zgled 2.7. Če pogledamo primer, ko so X_1, X_2, \ldots neodvisne enako porazdeljene slučajne spremenljivke, porazdeljene kot X

$$X \sim \text{Gamma}(a)$$

$$f_X(x) = \frac{1}{\Gamma(a)} x^{a-1} e^{-x}$$

s parametrom a > 0, lahko pridemo do razmeroma eksplicitne porazdelitve CPP. Gostota k-te konvolucije $X_1 + \cdots + X_k$ ima formulo

$$f_{X_1 + \dots + X_k}(x) = \frac{1}{\Gamma(na)} x^{na-1} e^{-x}.$$

Za $t \ge 0$ in $x \ge 0$ torej velja

$$F_{S_t}(x) = \mathbb{P}(S_t \le x) = \sum_{k=0}^{\infty} F_X^{*k}(x) \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$
$$= \sum_{k=0}^{\infty} \dots$$

 \Diamond

Trditev 2.8. Naj bo $N \sim Pois(\lambda)$ za $\lambda > 0$ in $X_1, X_2, ... X_n$ neodvisne s.s. (neodvisne med sabo in od N) enako porazdeljene kot

$$X \sim \begin{pmatrix} a_1 & a_2 & a_3 \dots \\ \frac{\lambda_1}{\lambda} & \frac{\lambda_2}{\lambda} & \frac{\lambda_3}{\lambda} \dots \end{pmatrix},$$

za poljubne $a_1, a_2, \ldots, a_n \in \mathbb{R}$ in $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}^+$ za katere velja $\sum_{i=1}^n \lambda_i = \lambda$. Potem velja

$$\sum_{j=1}^{\infty} a_j Y_j \sim \sum_{j=1}^{N} X_j,$$

kjer so Y_1, Y_2, \ldots neodvisne s.s. porazdeljene kot $Pois(\lambda_1), Pois(\lambda_2), \ldots$

Dokaz. S $\varphi_{Z_n}(u)$ označimo karakteristično funkcijo s.s. $Z_n:=a_1Y_1+a_2Y_2+\cdots+a_nY_n$ in s $\varphi_Z(u)$ karakteristično funkcijo s.s. $Z:=\sum_{j=1}^N X_j$. Po neodvisnosti velja

$$\varphi_{Z_n}(u) = \prod_{j=1}^n \varphi_{Y_j}(a_j u)$$

$$= \prod_{j=1}^n \exp\left[\lambda_j \left(e^{a_j i u} - 1\right)\right]$$

$$= \exp\left[\sum_{j=1}^n \lambda_j \left(e^{a_j i u} - 1\right)\right].$$

Po trditvi 2.6 velja

$$\varphi_Z(u) = G_N (\varphi_X(u))$$

$$= \exp \left[\lambda (\varphi_X(u) - 1)\right]$$

$$= \exp \left[\lambda \left(\sum_{j=1}^{\infty} \frac{\lambda_j}{\lambda} e^{a_j i u} - 1\right)\right]$$

$$= \exp \left[\sum_{j=1}^{\infty} \lambda_j \left(e^{a_j i u} - 1\right)\right]$$

Vidimo, da velja

$$\varphi_{Z_n} \xrightarrow{n \to \infty} \varphi_Z,$$

torej po Lévijevem izreku o kontinuiteti velja $Z_{\infty} := \lim_{n \to \infty} Z_n \sim Z$.

Posledica 2.9. Naj bo $(a_n)_{n\in\mathbb{N}}$ poljubno zaporedje realnih števil in $(\lambda_n)_{n\in\mathbb{N}}$ zaporedje pozitivnih realnih števil, za katere velja $\sum_{n=1}^{\infty} \lambda_n = \lambda$ in

$$X \sim \begin{pmatrix} a_1 & a_2 & \dots \\ \frac{\lambda_1}{\lambda} & \frac{\lambda_2}{\lambda} & \dots \end{pmatrix}.$$

Potem velja

$$\sum_{j=1}^{n} a_j Y_j \xrightarrow[n \to \infty]{d} \sum_{j=1}^{N} X_j,$$

Dokaz. Ker velja $\varphi_{Z_n}(u) \xrightarrow{n \to \infty} \varphi_Z(u)$ za vsak $u \in \mathbb{R}$, po Lévijevem izreku o zveznosti sledi, da $Z_n \xrightarrow[n \to \infty]{d} Z$.

Kaj pa v primeru, ko so X_i zvezno porazdeljene? Tedaj se problema lotimo na sledeč način. Definiramo $F_n(x) := F(\frac{m}{n})$ kjer je F(x) porazdelitvena funkcija slučajne spremenljivke Z_n in $m = \min\{k \in \mathbb{Z} \mid \frac{k}{n} > F_n(x)\}$.

SLIKA 2. Aproksimacija F s F_n

Kot je razvidno iz slike 2, je $F_n(x)$ stopničasta funkcija, ki aproksimira porazdelitveno funkcijo F(x). Velja $F_n \xrightarrow{n \to \infty} F$ povsod kjer je F zvezna.

2.4. CPP kot martingal.

Definicija 2.10. Slučajni proces X_t prilagojen glede na filtracijo $(\mathcal{F}_t)_{t\geq 0}$ martingal, če velja

$$\mathbb{E}\left[X_t \mid \mathcal{F}_s\right] = X_s$$

za vsak $0 \le s \le t$.

Pokažimo, da v splošnem *CPP* ni martingal.

Trditev 2.11. Naj bo $(S_t)_{t\geq 0}$ CPP z intenzivnostjo $\lambda > 0$ in naj bodo X_i neodvisne in enako porazdeljene slučajne spremenljivke z $\mathbb{E}[X_i] = \mu$ za vsak i. Potem je S_t martingal natanko tedaj, ko je $\mu = 0$.

Dokaz. Naj bo $0 \le s \le t$. Potem velja

$$\mathbb{E}\left[S_t \mid \mathcal{F}_s\right] = \mathbb{E}\left[S_t - S_s + S_s \mid \mathcal{F}_s\right]$$
$$= \mathbb{E}\left[S_t - S_s\right] + \mathbb{E}\left[S_s \mid \mathcal{F}_s\right]$$
$$= \mu\lambda(t - s) + S_s$$

Enakost $\mu \lambda(t-s) + S_s = S_s$ velja $\iff \mu \lambda(t-s) = 0 \iff \mu = 0.$

Opomba 2.12. Seveda, če velja $\mu \geq 0$, potem je S_t submartingal, če pa $\mu \leq 0$, je S_t supermartingal.

Trditev 2.13. Naj bo $(S_t)_{t\geq 0}$ CPP z intenzivnostjo $\lambda > 0$ in naj bodo X_i neodvisne in enako porazdeljene slučajne spremenljivke $z \mathbb{E}[X_i] = \mu$ za vsak i, Potem je proces

$$S_t - \mu \lambda t$$

martingal.

Dokaz. Naj bosta $0 \le s < t$. Prirastek $S_t - S_s$ je neodvisen od \mathcal{F}_s in ima pričakovano vrednost $\mu \lambda(t-s)$. Torej

$$\mathbb{E}\left[S_t - \mu \lambda t \mid \mathcal{F}_s\right] = \mathbb{E}\left[S_t - S_s\right] + S_s - \mu \lambda t$$
$$= \mu \lambda (t - s) + S_s - \mu \lambda t$$
$$= S_s - \mu \lambda s.$$

3. Cramér-Lundbergov model

V tem razdelku obravnavamo najbolj intenzivno raziskan model v teoriji propada, običajno imenovan Cramér-Lundbergov model. V svoji najosnovnejši obliki ga je v zgodnjih 1900. letih izpeljal švedski aktuar Filip Lundberg, da bi ocenil ranljivost zavarovalnice za propad. Čeprav je model v svoji ideji dokaj preprost, lepo zajema bistvo dinamike ravni rezerv zavarovalne družbe in njene izpostavljenosti tveganju, kar pojasnjuje, zakaj je postal temeljni merilni model v teoriji propada. V preteklem stoletju je bilo razvitih veliko tehnik za analizo Cramér-Lundbergovega modela, ki so se večinoma osredotočile na kvantifikacijo verjetnosti propada. V razdelku podamo pregled glavnih rezultatov in osnovnih tehnik, ter jih ponazorimo na primerih, ko zavarovalniške zahtevke modeliramo z lahkorepimi in težkorepimi porazdelitvami.

3.1. Proces tveganja in verjetnost propada.

Definicija 3.1. Naj bo $(S_t)_{t\geq 0}$ *CPP. Proces tveganja* v Cramér-Lundbergovem modelu definiramo kot

$$U_t = u + p(t) - S_t,$$

kjer je $u \ge 0$ začetni kapital zavarovalnice in p(t) funkcija prihodkov iz premij.

Opomba 3.2. V resnici lahko veliko lastnosti procesa tveganja izpeljemo brez da predpostavimo, da prihodi zahtevkov v $(S_t)_{t\geq 0}$ sledijo Poissonovemu procesu, ampak splošnemu prenovitvenemu procesu (4.11) in zato na začetku ne bomo uporabljali rezultatov, ki smo jih do sedaj izpeljali.

Vrednost U_t predstavlja kapital zavarovalnice ob času $t \geq 0$. Standardno je za p(t) vzeti deterministično funkcijo p(t) = ct, kjer je c > 0 stopnja prihodkov premij. Uporaba linearne funkcije za modeliranje premijskega dohodka v Cramér-Lundbergovem modelu ponuja realističen približek zato, ker zavarovalnice pogosto doživljajo stabilno povečevanje premijskega dohodka skozi čas. Poleg tega je izbira linearne funkcije preprosta, zato bomo v nadaljevanju privzeli, da je p(t) = ct. Poglejmo si realizaciji procesa tveganja, ko so zahtevki X_i porazdeljeni Weibullovo (4.7) z različnimi parametri.

Zgled 3.3. Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér-Lundbergovem modelu z začetnim kapitalom u=1000 in p(t)=200t ter intenzivnostjo prihodov zahtevkov $\lambda=1$. Naj bodo v prvem primeru (rdeča) zahtevki porazdeljeni kot $X_i \sim \text{Weibull}(2,434)$ in v drugem primeru (modra) kot $Y_i \sim \text{Weibull}(\frac{1}{4},16)$.

Realizacija procesa tveganja z Weibullovo porazdeljenimi zahtevki

Slika 3. Realizaciji procesa tveganja

Pri obeh realizacijah vidimo, da proces tveganja v nekem trenutku pade pod 0 (tam ga tudi ustavimo). Čeprav je pričakova vrednost $\mathbb{E}[Y_i] = 384 \approx \mathbb{E}[X_i] = 217\sqrt{\pi} \approx 384,62$ opazimo bistveno razliko med realizacijama. V rdečem primeru proces pade pod 0 po več zaporednih manjših izgubah, v modrem primeru pa po eni zelo veliki izgubi. V nadaljevanju bomo primera ločili, ampak pred tem definirajmo kako obravnavamo dogodek, ko proces tveganja pade pod 0.

Definicija 3.4. Propad definiramo kot dogodek, da proces tveganja $(U_t)_{t\geq 0}$ kadarkoli pade pod 0. Torej

$$\{U_t < 0 \text{ za } t \ge 0\}$$

in času

$$T = \inf\{t \ge 0 \mid U_t < 0\},\$$

pravimo čas propada. Seveda velja enakost med dogodkoma

$$\{U_t < 0 \text{ za } t \ge 0\} = \{T < \infty\}.$$

Definicija 3.5. Verjetnost propada je definirana kot funckija $\psi(u):(0,\infty)\to[0,1]$ podana s predpisom

$$\psi(u) = \mathbb{P}(T < \infty \mid U_0 = u).$$

Definicija 3.6. Po konstrukciji procesa tveganja $(U_t)_{t\geq 0}$ je verjentost propada mogoča le ob prihodih zahtevkov. S T_n označimo čas n-tega prihoda in definiramo ogrodje procesa tveganja kot $(U_{T_n})_{n\in\mathbb{N}}$.

Trditev 3.7. Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér-Lundbergovem modelu in $(U_{T_n})_{n\in\mathbb{N}}$ njegovo ogrodje ter $W_n:=T_n-T_{n-1}$ medpirhodni čas n-tega zahtevka $(W_0=T_0=0)$. Potem velja

$$\psi(u) = \mathbb{P}\left(\sup_{n \in \mathbb{N}} Z_n > u\right),\,$$

kjer je $Z_n = \sum_{i=1}^n Y_i$ komulativna izguba po n prihodih in $Y_i = X_i - cW_i$ izguba i-tega prihoda.

Dokaz. S pomočjo ogrodja procesa tveganja lahko dogodek propada zapišemo kot

$$= \left\{ \sup_{n \in \mathbb{N}} Z_n > u \right\},\,$$

kar nam da željeno enakost.

Tako verjetnost propada prevedemo na prehodno verjetnost diskretnega slučajnega sprehoda $(Z_n)_{n\in\mathbb{N}}$. V nadaljevanju nas bo predvsem zanimalo asimptotično vedenje $\psi(u)$, ko gre $u\to\infty$. Cilj obravnavanja verjetnosti propada v Cramér-Lundbergovem modelu je, da se izognemo propadu z verjetnostjo 1 oziroma, da je verjetnost, da $(Z_n)_{n\in\mathbb{N}}$ preseže u tako majhna, da lahko v praksi dogodek propada izključimo.

Trditev 3.8. Naj bo $(Z_n)_{n\in\mathbb{N}}$ zaporedje slučajnih spremenljivk definirano kot $Z_n = \sum_{i=1}^n Y_i$ za neodvisne in enako porazdeljene slučajne spremenljivke Y_i z $\mathbb{E}[Y_i] = \mu < \infty$. Potem za vsak u > 0 velja

$$\mathbb{P}\left(\sup_{n\in\mathbb{N}} Z_n > u\right) = 1 \quad za \ u > 0,$$

če velja $\mathbb{E}[Y_i] \geq 0$.

Dokaz. Zaporedje slučajnih spremenljivk $(Y_i)_{i\in\mathbb{N}}$ zadostuje krepkemu zakonu velikih števil (4.6), torej velja

$$\frac{Y_1 + Y_2 + \cdots Y_n}{n} = \frac{Z_n}{n} \xrightarrow[n \to \infty]{s.g.} \mathbb{E}[Y_n].$$

Torej bo Z_n v primeru ko je $\mu > 0$ skoraj gotovo asimptotično linearno narašcal proti ∞ kot μn in bo za poljuben u > 0

$$\mathbb{P}\left(\sup_{n\in\mathbb{N}} Z_n > u\right) = 1.$$

Dokaz za primer, ko je $\mu = 0$ je precej bolj tehničen in ne preveč informativen, zato ga bomo izpustili. Lahko ga najdemo v [Spitzer, 138].

Opomba 3.9. Iz trditve 3.8 (ob predpostavkah $\mathbb{E}[X_i] < \infty$ in $\mathbb{E}[W_i] < \infty$) sledi, da moramo premijo c izbrati tako, da bo $\mathbb{E}[Y_i] < 0$, saj je to edini način, ko lahko upamo, da verjetnost propada ne bo enaka 1.

Definicija 3.10. Pravimo, da proces tveganja $(U_t)_{t\geq 0}$ v Cramér-Lundbergovem modelu zadostuje pogoju neto zaslužka (ang. net profit condition), če velja

$$c > \frac{\mathbb{E}[X]}{\mathbb{E}[W]}$$
 oziroma $c = (1 + \rho) \frac{\mathbb{E}[X]}{\mathbb{E}[W]}$ za $\rho > 0$.

Pogoj bomo v nadaljenvanju imenovali NPC.

Zahteva NPC za analizo poslovanja zavarovalnice je kar intuitivna, saj pove, da mora v neki čavni enoti biti pričakoan dohodek iz premij večji od pričakovanega izplačila zahtevkov.

Zgled 3.11 (Nadaljevnaje zgleda 3.3). V zgledu 3.3 smo obravnavali proces tveganja v Cramér-Lundbergovem modelu, kjer so zahtevki (rdeča) $X_i \sim \text{Weibull}(2, 434)$ in (modra) $Y_i \sim \text{Weibull}(\frac{1}{4}, 16)$. Opazili smo, da je v prvem primeru propad posledica več manjših izgub, v drugem pa ene velike izgube. Razlog za to je ta, da ima Weibullova porazdelitev za $a \geq 1$ lahkorepno, za a < 1 pa težkorepno porazdelitev.

Dokaz. Momentno rodovna funkcija $X \sim \text{Weibull}(a, b)$ je enaka

$$M_X(u) = \int_0^\infty e^{ux} \frac{a}{b} \left(\frac{x}{b}\right)^{a-1} e^{-\left(\frac{x}{b}\right)^a} dx \qquad \left(y = \frac{x}{b}, \ dy = \frac{dx}{b}\right)$$
$$= \int_0^\infty e^{uby} ay^{a-1} e^{-y^a} dy.$$

Vidimo, da je zgornji integral končen za $a \ge 1$ in divergira za a < 1, če v nadaljevanju predpostavimo $a \ge 1$ in uvedemo $z = y^a$, $dz = ay^{a-1}dy$ dobimo

$$M_X(u) = \int_0^\infty e^{ubz^{\frac{1}{a}}} e^{-z} dz$$

$$= \int_0^\infty \sum_{k=0}^\infty \frac{(ubz^{\frac{1}{a}})^k}{k!} e^{-z} dz$$

$$= \sum_{k=0}^\infty \frac{(ub)^k}{k!} \int_0^\infty z^{\frac{k}{a}} e^{-z} dz$$

$$= \sum_{k=0}^\infty \frac{(ub)^k}{k!} \Gamma\left(\frac{k}{a} + 1\right).$$
Tonelli 4.5

 \Diamond

3.2. Lahkorepe porazdelitve.

3.2.1. Lundbergova neenakost. Od sedaj naprej bomo predpostavili, da je S_t v procesu tveganja $(U_t)_{t\geq 0}$ CPP. Najprej se bomo omejili na primer, ko ima porazdelitev slučajnih spremenljivk X_i , ki jih seštevamo v CPP lahek rep, saj je bila osnovna teorija, ki sta jo razvila Cramér in Lundberg, izpeljana pod to predpostavko.

Definicija 3.12. Pravimo, da ima slučajna spremenljivka X lahkorepno porazdelitev, če velja

$$\mathbb{E}\left[e^{uX}\right] = M_X(u) < \infty \quad \text{za } u \in (-\varepsilon, \varepsilon)$$

za nek $\varepsilon > 0$. Sicer pravimo, da ima X težkorepno porazdelitev.

Opomba 3.13. V praksi z lahkorepnimi porazdelitvami modeliramo zahtevke, kjer verjentosti ekstremnih dogodkov (torej zelo velikih zahtevkov) eksponentno pada proti 0. To direktno sledi iz definicije 3.12 in neenakosti Markova 4.12, saj za vsak x > 0 in $u \in (-\varepsilon, \varepsilon)$ velja

$$\mathbb{P}\left(X>x\right) = \mathbb{P}\left(e^{uX}>e^{ux}\right) \le \frac{\mathbb{E}\left[e^{uX}\right]}{e^{ux}}.$$

Definicija 3.14. Naj velja, da ima slučajna spremenljivka Y_1 iz trditve 3.7 lahek rep. Če obstaja pozitivna enolična rešitev enačbe

$$M_{1Y_1}(\ell) = 1,$$

številu ℓ pravimo Lundbergov koeficient.

Trditev 3.15. mogoče dokazi da je ℓ res enolična rešitev.

Izrek 3.16. (Lundbergova neenakost) Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér-Lundbergovem modelu, ki zadostuje NPC in naj zanj obstaja Lundebrgov koeficient ℓ . Potem za vsak u > 0 velja

$$\psi(u) \le e^{-\ell u}.$$

Dokaz. Neenakost bomo dokazali z indukcijo. Za u>0 in $n\in\mathbb{N}$ definiramo

$$\psi_n(u) = \mathbb{P}\left(\max_{1 \le k \le n} Z_k > u\right)$$

in vidimo, da je (po zveznosti \mathbb{P} od spodaj) $\psi(u) = \lim_{n\to\infty} \psi_n(u)$, torej moramo pokazati, da za vsak $n \in \mathbb{N}$ velja $\psi_n(u) \leq e^{-\ell u}$.

(n = 1): Kot v opombi 3.13 uporabimo neenakost Markova in dobimo

$$\psi_1(u) = \mathbb{P}\left(e^{\ell Z_1} > e^{\ell u}\right) \le \frac{M_{Z_1}(\ell)}{e^{\ell u}} = e^{-\ell u}.$$

(n \rightarrow n+1): Označimo s F_{Y_1} porazdeliltev $Y_1.$ Potem velja

$$\psi_{n+1}(u) = \mathbb{P}\left(\max_{1 \le k \le n+1} Z_k > u\right)$$

$$= \underbrace{\mathbb{P}\left(Y_1 > u\right)}_{(i)} + \underbrace{\mathbb{P}\left(\max_{2 \le k \le n+1} \left\{Y_1 + (Z_k - Y_1)\right\} > u, Y_1 \le u\right)}_{(ii)}$$

Najprej se posvetimo (ii). Po indukcijski predpostavki velja

$$(ii) = \int_{(-\infty,u]} \mathbb{P}\left(\max_{1 \le k \le n} \left\{x + Z_k\right\} > u\right) dF_{Y_1}(x)$$

$$= \int_{(-\infty,u]} \mathbb{P}\left(\max_{1 \le k \le n} Z_k > u - x\right) dF_{Y_1}(x)$$

$$\stackrel{\text{I.P.}}{=} \int_{(-\infty,u]} \psi_n(u - x) dF_{Y_1}(x)$$

$$\leq \int_{(-\infty,u]} e^{-\ell(u - x)} dF_{Y_1}(x).$$

Za oceno (i) kot v primeru n=1 uporabimo neenakost Markova in dobimo

$$(i) = \psi_1(u) = \int_{(u,\infty)} dF_{Y_1}(x) \le \int_{(u,\infty)} e^{\ell(x-u)} dF_{Y_1}(x).$$

Če torej seštejemo (i) in (ii) dobimo željeno oceno

$$\psi_{n+1}(u) \le \int_{\mathbb{R}} e^{\ell(x-u)} dF_{Y_1}(x)$$
$$= e^{-\ell u} M_{Y_1}(\ell)$$
$$= e^{-\ell u}$$

Opomba 3.17. Iz izreka 3.16 je razvidno, da z dovolj visokim začetnim kapitalom u verjetnost propada lahko v praksi zadovoljivo omejimo blizu 0. Seveda je meja odvisna tudi od Lundbergovega koeficienta ℓ in krepko temelji na predpostavki lahkorepnih porazdelitev, ki pa v praksi pogosto niso izpolnjene.

Zgled 3.18. Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér-Lundbergovem modelu, ki zadostuje NPC. Naj nadalje velja da so X_i eksponentno porazdeljene slučajne spremenljivke s parametrom μ $(X_i \sim \operatorname{Exp}(\mu) \operatorname{za} \operatorname{vsak} i)$. Vemo, da ima momentno rodovna funkcija X_i obliko

$$M_{X_i}(u) = \frac{\mu}{\mu - u} \text{ za } u < \mu. \tag{3}$$

Tako dobimo, da ima momentno rodovna funkcija $Y_1 = X_1 - cW_1$ obliko

$$M_{Y_1}(u) = M_{X_1}(u)M_{W_1}(-cu) = \frac{\mu}{\mu - u} \frac{\lambda}{\lambda + cu} \text{ za } u \in (-\frac{\lambda}{c}, \mu).$$

Sedaj lahko izračunamo Lundbergov koeficient ℓ

$$M_{Y_1}(\ell) = 1,$$

$$\frac{\mu}{\mu - \ell} \frac{\lambda}{\lambda + c\ell} = 1,$$

$$\mu \lambda = (\mu - \ell)(\lambda + c\ell),$$

$$\mu \lambda = \mu \lambda - \ell \lambda + \mu c - c\ell^2,$$

$$0 = \mu c - c\ell - \lambda.$$

Dobimo

$$\ell = \mu - \frac{\lambda}{c} \in (0, \mu),$$

saj v našem modelu velja NPC pogoj

$$\frac{\mathbb{E}[X_1]}{\mathbb{E}[W_1]} = \frac{\lambda}{\mu} < c \iff \mu > \frac{\lambda}{c}.$$

Če uporabimo alternativno formulacijo NPC pogoja, dobimo

$$c = (1+\rho)\frac{\lambda}{\mu} \Rightarrow \ell = \mu - \frac{\lambda}{(1+\rho)\frac{\lambda}{\mu}} = \mu\left(\frac{\rho}{1+\rho}\right).$$

Tako dobimo zgornjo mejo za verjetnost propada

$$\psi(u) < e^{-\ell u} = e^{-\mu u \left(\frac{\rho}{1+\rho}\right)}$$

in vidimo, da povečanje premije čez neko mejo ne bistveno vpliva na oceno, saj

$$\lim_{\rho \to \infty} e^{-\mu u \left(\frac{\rho}{1+\rho}\right)} = e^{-\mu u}.$$

V nadaljevanju bomo videli, da je Lundbergova neenakost v primeru eksponentno porazdeljenih zahtevkov skoraj točna vrednost verjetnosti propada, zgrešena le za konstanto. V splošnem pa je zelo težko določiti Lunbergov koeficient kot funkcijo parametrov porazdelittev X_1 in W_1 in zato uporabljamo numerične metode za njegovo aproksimacijo kot na primer Monte Carlo simulacije.

3.2.2. *Cramérjeva meja za propad*. Sedaj se bomo posvetili enemu najpomembnejših rezultatov v teoriji propada.

Definicija 3.19. Za lažjo notacijo v nadaljevanju definiramo funkcijo *verjentosti* preživetja kot $\theta(u): (0, \infty) \to [0, 1]$ s predpisom

$$\theta(u) = \mathbb{P}\left(T = \infty \mid U_0 = u\right) = 1 - \psi(u).$$

Lema 3.20. Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér-Lundbergovem modelu, ki zadostuje NPC in naj velja $\mathbb{E}[X] < \infty$ ter, da je F_X absolutno zvezna glede na Lebesgueovo mero \mathcal{L} . Potem $\theta(u)$ zadošca naslednji enakosti

$$\theta(u) = \theta(0) + \frac{1}{(1+\rho)\mathbb{E}[X]} \int_{(0,u]} \left((1 - F_X(x))\theta(u - x) \right) dx. \tag{4}$$

Dokaz. Po trditvi 3.7 velja

$$\psi(u) = \mathbb{P}\left(\sup_{n \in \mathbb{N}} Z_n > u\right),\,$$

kjer je $Z_n = \sum_{i=1}^n Y_i$ in $Y_i = X_i - cW_i$. Torej je

$$\theta(u) = \mathbb{P}\left(\sup_{n \in \mathbb{N}} Z_n \le u\right)$$

$$= \mathbb{P}\left(\left\{Z_n \le u \mid \forall n \in \mathbb{N}\right\}\right)$$

$$= \mathbb{P}\left(\left\{Y_1 \le u\right\} \cap \left\{Z_n - Y_1 \le u - Y_1 \mid \forall n \ge 2\right\}\right)$$

$$= \mathbb{E}\left[\mathbb{1}_{\left\{Y_1 \le u\right\}} \mathbb{P}\left(\left\{Z_n - Y_1 \le u - Y_1 \mid \forall n \ge 2\right\} \mid Y_1\right)\right].$$

Sedaj upoštevamo, da je $Y_1 = X_1 - cW_1$ in je torej dogodek $\{Y_1 \leq u\}$ enak dogodku $\{X_1 \leq u + cW_1\}$. Poleg tega velja, da je $(Z_n - Y_1)_{n \geq 2} \sim (Z_n)_{n \in \mathbb{N}}$, saj so Y_i neodvisne in enako porazdeljene. Upoštevamo še, da je tokrat W_1 medprihodni čas v $HPP(\lambda)$ in je torej eksponentno porazdeljen. Tako dobimo

$$\theta(u) = \int_{(0,\infty)} \int_{(0,u+cw]} \mathbb{P}\left(\left\{Z_n \le u - (x - cw) \mid \forall n \in \mathbb{N}\right\}\right) dF_{X_1}(x) \lambda e^{-\lambda w} dw.$$

$$= \int_{(0,\infty)} \int_{(0,u+cw]} \theta(u - x + cw) dF_{X_1}(x) \lambda e^{-\lambda w} dw.$$

Uvedemo novo spremenljivko z=u+cw (torej $w=\frac{z-u}{c}$ in $dw=\frac{dz}{c})$ ter dobimo

$$\theta(u) = \frac{\lambda}{c} e^{\frac{\lambda u}{c}} \int_{(u,\infty)} e^{\frac{-\lambda z}{c}} \underbrace{\int_{(0,z)} \theta(z-x) dF_{X_1}(x)}_{g(z)} dz.$$

Ker ima porazdelitev F_X gostoto je funkcija g(z) zvezna in celo odvedljiva, ker... $\theta(u)$ lahko tako odvajamo in dobimo

$$\theta'(u) = \frac{\lambda}{c}\theta(u) - \frac{\lambda}{c} \int_{(0,u)} \theta(u-x) dF_{X_1}(x).$$

Če sedaj obe strani integriramo po u dobimo

$$\int_{(0,t]} \theta'(u) du = \frac{\lambda}{c} \int_{(0,t]} \theta(u) du - \frac{\lambda}{c} \int_{(0,t]} \underbrace{\int_{(0,u)} \theta(u-x) dF_{X_1}(x)}_{(i)} du, \tag{5}$$

Na integralu (i) uporabimo per partes ($\alpha = \theta(u-x)$ in $d\beta = dF_{X_1}(x)$) in dobimo

$$(i) = (\theta(u - x)F_X(u))\Big|_0^u + \int_{(0,u)} \theta'(u - x)F_X(x)dx$$
$$= \theta(0)F_X(u) - \int_{(0,u)} \theta'(u - x)F_X(x)dx.$$

Kjer upoštevamo da je $F_X(0) = 0$ saj je X > 0 skoraj gotovo. Vstavimo (i) v enačbo (5) in dobimo

$$\theta(t)-\theta(0) = \frac{\lambda}{c} \int (0,t] \theta(u) du - \frac{\lambda}{c} \int_{(0,t]} \theta(0) F_X(u) du - \frac{\lambda}{c} \int_{(0,t]} \int_{(0,u)} \theta'(u-x) F_X(x) dx du.$$

Po Tonellijevem izreku 4.5 lahko zamenjamo vrstni red integracije in dobimo

$$\theta(t) - \theta(0) = \frac{\lambda}{c} \int_{(0,t]} \theta(u) du - \frac{\lambda}{c} \int_{(0,t]} \theta(0) F_X(u) du - \frac{\lambda}{c} \int_{(0,t]} \int_{(x,t)} \theta'(u-x) F_X(x) du dx,$$

$$\theta(t) - \theta(0) = \frac{\lambda}{c} \int_{(0,t]} \theta(u) du - \frac{\lambda}{c} \int_{(0,t]} \theta(0) F_X(u) du - \frac{\lambda}{c} \int_{(0,t]} F_X(x) (\theta(t-x) - \theta(0)) dx,$$

$$\theta(t) = \theta(0) + \frac{\lambda}{c} \int_{(0,t]} \theta(u) du - \frac{\lambda}{c} \int_{(0,t]} \theta(0) F_X(u) du - \frac{\lambda}{c} \int_{(0,t]} F_X(x) \theta(t-x) dx.$$

Če sedaj upoštevamo enakost

$$\frac{\lambda}{c} = \frac{1}{1+\rho} \frac{1}{\mathbb{E}\left[X\right]}$$

in spremenimo oznake $t \to u$ in $x \to y$ dobimo željeno enakost (4).

Opomba 3.21. Enačbo (4) lahko zapišemo tudi v obliki

$$\theta(u) = \theta(0) + \frac{1}{(1+\rho)} \int_{(0,u]} \theta(u-x) dF_X^I(x)$$

kjer je $F_X^I(x)$ podana z enačbo

$$F_X^I(x) = \frac{1}{\mathbb{E}[X]} \int_{(0,x]} (1 - F_X(y)) dy$$
. za $x > 0$.

Hitro lahko preverimo, da je $F_X^I(x)$ porazdelitvena funkcija, saj je $F_X^I(0) = 0$, $F_X^I(x)$ je naraščajoča in $F_X^I(x) \uparrow 1$ za $x \to \infty$, ker velja $\mathbb{E}[X] = \int_{(0,\infty)} (1 - F_X(x)) dx$. Po osnovnem izreku analize pa neposredno sledi enakost.

Izrek 3.22. (Cramérjeva meja za propad) Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér-Lundbergovem modelu, ki zadostuje NPC in naj zanj obstaja Lundbergov koeficient ℓ . Naj bo F_X porazdelitev slučajnih spremenjlvk X_i , ki je absolutno zvezna glede na Lebesgueovo mero \mathcal{L} . Potem obstaja konstanta C > 0 da velja

$$\lim_{u \to \infty} e^{\ell u} \psi(u) = C.$$

Dokaz. TRIVIALNO □

Zgled 3.23 (Nadaljevnaje zgleda 3.18). Vemo, da rešitve prenovitvene enačbe iz izreka 3.22 v splošnem ne moremo izračuanti. V zgledu 3.18 smo pa privzeli, da zahtevke modeliramo z eksponentno porazdelitvijo, torej $X_i \sim \text{Exp}(\mu)$. V tem primeru se izkaže, da lahko explicitno izračunamo verjentost propada

$$\psi(u) = \frac{e^{-u\mu\left(\frac{\rho}{1+\rho}\right)}}{1+\rho},\tag{6}$$

ampak to je zelo poseben primer, ko lahko vse izračunamo eksplicitno. Pokažimo, kako bi do približka lahko prisli z Monte Carlo simulacijami.

Recimo, da v našem modelu pridemo do sklepa, da zahtevki prihajajo z intenzivnostjo $\lambda=1$ in so eksponentno porazdeljeni s parametrom $\mu=1$, ter da prejemamo premije s konstantno stopnjo c=1. Vemo,

 \Diamond

3.3. Težkorepe porazdelitve.

Izrek 3.24. Naj bo $(U_t)_{t\geq 0}$ proces tveganja v Cramér-Lundbergovem modelu, ki zadostuje NPC in naj velja $\mathbb{E}[X] < \infty$ ter, da je F_X absolutno zvezna glede na Lebesgueovo mero \mathcal{L} . Naj velja še, da je porazdelitev F_X^I težkorepna. Potem velja

$$\lim_{u \to \infty} \frac{\psi(u)}{1 - F_X^I(u)} = \frac{1}{\rho}.\tag{7}$$

Dokaz. TRIVIALNO

4. Dostavek

Dostavek je namenjen predvsem za dodatne definicije in trditve, ki so bile izpušcene v glavnem za namene preglednosti besdila. V primeru, če bralec potrebuje osvežiti določene pojme jih večino lahko najde v tem razdelku.

Definicija 4.1. Naj bo X slučajna spremenljivka. Potem so njena $rodovna\ funkcija$, $momentno\ rodovna\ funkcija$ in $karakteristična\ funkcija$ definirane kot

$$G_X(u) = \mathbb{E}\left[u^X\right], \quad M_X(u) = \mathbb{E}\left[e^{uX}\right], \quad \varphi_X(u) = \mathbb{E}\left[e^{iuX}\right],$$

če upanja obstajajo.

Izrek 4.2. (Lévijev izrek o kontinuiteti) Naj bo $(X_n)_{n\in\mathbb{N}}$ zaporedje slučajnih spremenlijivk (ne nujno na istem verjetnostnem prostoru) in X še ena slučajna spremenljivka. Potem velja

$$\varphi_{X_n}(u) \xrightarrow{n \to \infty} \varphi_X(u) \quad za \ vsak \ u \in \mathbb{R}$$

natanko tedaj, ko velja

$$X_n \xrightarrow[n\to\infty]{d} X.$$

Dokaz. Dokaz izreka je precej tehničen in ga bomo izpustili. Podroben dokaz lahko bralec najde v [Fristedt, B.E., Gray L.F. (1996) A modern approach to probability theory].

Izrek 4.3. (O enoličnosti) One to one correspondence between characteristic functions and distributions.

Definicija 4.4. Naj bo X slučajna spremenljivka in F_X njena porazdelitev. Potem za $u \in \mathbb{R}$ Laplace-Stiltjesovo transformacijo porazdelitve F_X definiramo kot

$$\hat{F}_X(u) = \int_{-\infty}^{\infty} e^{-ux} dF_X(x).$$

Izrek 4.5. (Tonelli (Prirejen)) Naj bosta X in Y slučajni spremenljivki definirani vsaka na svojem verjentnostnem prostoru in naj imata vsaka svojo gostoto f_X in f_Y glede na Lebesgueovo mero. Potem velja

$$\int_{\mathbb{R}^2} f_{X,Y}(x,y) \mathcal{L}^2(dx,dy) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f_{X,Y}(x,y) dx \right) dy = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f_{X,Y}(x,y) dy \right) dx,$$

Izrek 4.6. (Krepki zakon velikih števi) Naj bo $(X_n)_{n\in\mathbb{N}}$ zaporedje neodvisnih enako porazdeljenih slučajnih spremenljivk s pričakovano vrendostjo $\mathbb{E}[X_i] = \mu < \infty$. Potem velja

$$\frac{X_1 + X_2 + \cdots X_n}{n} \xrightarrow[n \to \infty]{s.g.} \mu.$$

Definicija 4.7. Slučajna spremenljivka X ima Weibullovo porazdelitev s parametri a, b > 0, če ima njena porazdelitev obliko

$$F_X(x) = 1 - e^{-\left(\frac{x}{b}\right)^a}$$
 za $x \ge 0$

in gostota obliko

$$f_X(x) = \left(\frac{a}{b}\right) \left(\frac{x}{b}\right)^{a-1} e^{-\left(\frac{x}{b}\right)^a}$$
 za $x \ge 0$.

Definicija 4.8. Naj bo F porazdelitvena funkcija. Potem je

$$F^{-}(x) = \int$$

porazdelitev integrarnega repa F.

Izrek 4.9. izrek o sliki mere

Trditev 4.10. pricakovana vrednost kot $\int_{(0,\infty)} P(X>x) dx$ za pozitivne slucajne spremenljivke

Dokaz. dokaz trditve

Definicija 4.11. Prenovitveni proces na verjentostnem protoru $(\Omega, \mathcal{F}, \mathbb{P})$ je slučajni proces karatkteriziran z zaporedjem medprihodnih časov $(W_n)_{n\in\mathbb{N}}$, ki zavzamejo vrednosti v $\mathbb{R}^+ \cup \{\infty\}$ in je podan z zvezo

$$N_t = \sum_{n=1}^{\infty} \mathbb{1}_{\{T_n \le t\}},$$

kjer je $T_n = W_1 + W_2 + \cdots + W_n$ čas n-tega prihoda.

Trditev 4.12. (Neenakost Markova) Za vsak x > 0 in $u \in (-\varepsilon, \varepsilon)$ velja

$$\mathbb{P}\left(X > x\right) \le \frac{\mathbb{E}\left[X\right]}{x}.$$

Izrek 4.13. (Smith) neki

SLOVAR STROKOVNIH IZRAZOV

trajektorija sample path

LITERATURA

- [1] S.E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer, (2004).
- [2] S.M. Ross, Stochatic Processes: Second Edition, Wiley, (1996).
- [3] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling Extremal Events: For Insurance and Finance, Springer, (1997).
- [4] T.Mikosch, Non-Life Insurance Mathematics: An Introduction with the Poisson Process, Springer, Second Edition, (2009).