Université de Tours-L2-Géométrie 2019-2020

Feuille 4

Exercice O Soient $A = (x_A, y_A), B = (x_B, y_B)$ deux points distincts du plan affine \mathbb{R}^2 .

- 1. Donner l'équation cartésienne de la droite (*AB*). Calculer la pente de cette droite en fonction des coordonnées de *A* et de *B*.
- 2. Montrer que deux droites sont orthogonales ssi leurs pentes p et p' satisfont l'équation pp' = -1 (on supposera que p et p' sont non nuls;
- 3. Soient a, b, c trois réels distincts non nuls. On considère le triangle du plan cartésien (A, B, C) où A = (a, 0), B = (b, 0), C = (0, c).
 - (a) Donner l'équation cartésienne de chacune des droites (AB), (AC) en fonction de a, b, c.
 - (b) Calculer l'équation cartésienne de la droite (BC) puis l'équation de la hauteur du triangle (A,B,C) passant par A.
- 4. En déduire que les trois hauteurs sont concourantes et calculer les coordonnées de l'orthocentre du triangle.

Exercice 1

- 1. Soient $A = (x_A, y_A)$ un point du plan cartésien et d une droite d'équation ax + by + c = 0. Calculer la distance du point A à la droite d.
- 2. Soient $A = (x_A, y_A, z_A)$ un point de l'espace cartésien et p un plan d'équation ax + by + cz + d = 0. Calculer la distance du point A au plan p.
- 3. (**) Soient deux droites d et d' de l'espace passant respectivement par les points A et B et de vecteur directeur respectif v et v'. Déterminer la distance de d à d'.

Exercice 2 Soient A = (0,0), B = (1,0), C = (1,1)

- 1. Construire le point X de coordonnées barycentriques (0,1,1) par rapport à (A,B,C)
- 2. Construire le point Y de coordonnées barycentriques (1,2) par rapport à (A,X)
- 3. Construire le point Z de coordonnées barycentriques (1, 1, 1) par rapport à (A, B, C). Que constatez vous?
- 4. Trouver les coordonnées cartésiennes du point T de coordonnées barycentriquesn(0,-2,1) par rapport à (A,B,C)
- 5. Représenter graphiquement le point de coordonnées barycentriques (30/100, 60/100, 10/100) par raport à trois points non alignés (S, C, B)
- 6. Décrire l'ensemble $\{M \in \mathbb{R}^2 : \overrightarrow{AM} = t\overrightarrow{AB} + (1-t)\overrightarrow{AC}, t \in [0,1]\}$
- 7. Montrer que M est de coordonnées (α, β) par rapport à deux points A, B distincts ssi

$$\frac{\alpha}{\beta} = \frac{\overline{AM}}{\overline{MB}}$$

(on supposera $\beta \neq 0$).

Exercice 3 Dans un plan vectoriel E, Soient A, B, C trois points non alignés et soit $M: (\alpha, \beta, \gamma)$ le point de coordonnées barycentriques (α, β, γ) dans la base affine (A, B, C)

- 1. Démontrer que la condition $\alpha = 0$ signifie que le point M appartient à la droite (BC)
- 2. Démontrer que la condition $\alpha = 1$ signifie que le vecteur \overrightarrow{AM} est colinéaire à \overrightarrow{BC}
- 3. Démontrer que l'ensemble des points $M: (\alpha, \beta, \gamma)$ tels que $u\alpha + v\beta + w\gamma = 0$ est une droite (u, v, w) sont des réels donnés. On pourra considérer le repère vectoriel $(\overrightarrow{AB}, \overrightarrow{AC})$.

Exercice 4 Soit (A,B,C) un triangle non plat. On notera a,b,c les longueurs des côtés BC,AC,AB. Supposons que la bissectrices en A coupe le côté BC en un point A'.

1. Montrer que

$$\frac{\overline{BA'}}{\overline{A'C}} = \frac{c}{b}$$

2. En déduire que les bissectrices intérieures du triangle sont concourantes et donner les coordonnées barycentriques du point d'intersection dans la base affine (A, B, C)

Exercice 5 Soit (A, B, E, C) un trapèze, les côtés AB et AC étant parallèles. Soit I le milieu de AC et J le milieu de EB; montrer que le segment IJ (médiane du trapèze) est de longueur

$$\frac{AB + AC}{2}$$

Exercice 6

On considère le plan P_1 de \mathbb{R}^3 d'équation x=0 et le plan P_2 d'équation x+y+z=1.

- 1) Déterminer $D := P_1 \cap P_2$.
- 2) Montrer que les plans P_{λ} d'équation $\lambda x + (1 \lambda)(x + y + z 1)$ contiennent tous D.
- 3) Soit D_a la droite passant par le point (1, 1, 1) et de vecteur directeur $(\cos a, \sin a, 0)$.

Pour chaque valeur de a déterminer si possible le point $P_a = D_a \cap P_2$