Positive and negative feedback

Slides courtesy of prof. Rodolphe Sepulchre

July 9, 2015

Range-localized sensitivity is a nonlinear behavior

Black principle: negative feedback 'linearizes'

 $V = sat_1(I - KV) \equiv V = sat_{\frac{1}{1-IP}}(I)$

Sensitivity domain is spread by negative feedback (The essence of control theory)

Black principle: positive feedback 'quantizes'

$$V = sat_1(I + KV) \equiv V = egin{cases} +1 & I \geq -1 - K \ -1 & I \leq K - 1 \end{cases}$$

Sensitivity domain is spread by negative feedback

Black feedback principle

- Negative feedback linearizes
- Continuous behavior
- Analog technology
- Output primarily reflects the input
- Loops enhance or amplify the changes between input and output

- Positive feedback quantizes
- On-Off behavior
- Oigital Technology
- Output primarily reflects memory of the past
- Suppose to the changes between input and output suppose the changes between input suppose the changes between input and output suppose the changes between input suppose the cha

Balanced feedback 'localizes'

Robust space + time localization by feedback

Low frequency behavior

Necessary localization in same frequency range!