ECE 712: Mini Assignment 2

Dai, Jiatao

Problem

Consider any tall matrix $A \in \mathbb{R}^{m \times n}$, which may be rank deficient, and a corresponding vector $b \in \mathbb{R}^m$.

- Under what condition(s) does an exact solution x exist for the system of equations Ax = b?
- Develop a complete description for the solution x.

Solution

We are asked to analyze the linear system

$$Ax = b, \quad A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m,$$

where A is a tall matrix $(m \ge n)$ which may be rank-deficient.

Existence of a solution

The system Ax = b has a solution if and only if b lies in the column space of A, i.e.

$$b \in R(A)$$
.

If $b \notin R(A)$, then no exact solution exists.

Description of the solution

Assume $b \in R(A)$. Then there exists at least one solution x_p such that

$$Ax_p = b$$
.

The set of all solutions can be described using the null space N(A). If $z \in N(A)$, then

$$A(x_p + z) = Ax_p + Az = b + 0 = b.$$

Therefore, every solution can be written as

$$x = x_p + z, \quad z \in N(A).$$

Final Answer

The system has a solution if and only if $b \in R(A)$. If a solution exists, then the general solution is

$$x = x_p + N(A),$$

where x_p is any particular solution and N(A) is the null space of A.

If A has full column rank $(\operatorname{rank}(A) = n)$, then $N(A) = \{0\}$ and the solution is unique.

If A is rank-deficient, then N(A) has nonzero dimension and the solution set forms an affine subspace.