1. Importing necessasary libraries

In [1]: import pandas as pd
 import numpy as np
 from matplotlib import pyplot as plt
 import seaborn as sns

2. Importing data

```
In [2]: salary_data = pd.read_csv("Salary_Data.csv")
salary_data
```

Out[2]:		YearsExperience	Salary
	0	1.1	39343.0
	1	1.3	46205.0
	2	1.5	37731.0
	3	2.0	43525.0
	4	2.2	39891.0
	5	2.9	56642.0
	6	3.0	60150.0
	7	3.2	54445.0
	8	3.2	64445.0
	9	3.7	57189.0
	10	3.9	63218.0
	11	4.0	55794.0
	12	4.0	56957.0
	13	4.1	57081.0
	14	4.5	61111.0
	15	4.9	67938.0
	16	5.1	66029.0
	17	5.3	83088.0
	18	5.9	81363.0
	19	6.0	93940.0
	20	6.8	91738.0
	21	7.1	98273.0
	22	7.9	101302.0
	23	8.2	113812.0
	24	8.7	109431.0
	25	9.0	105582.0
	26	9.5	116969.0
	27	9.6	112635.0
	28	10.3	122391.0
	29	10.5	121872.0

3. Data Understanding

```
In [3]: salary_data.shape
Out[3]: (30, 2)
         salary_data.isna().sum()
In [4]:
Out[4]: YearsExperience
                              0
         Salary
                              0
         dtype: int64
In [5]: | salary_data.dtypes
Out[5]: YearsExperience
                              float64
         Salary
                              float64
         dtype: object
In [6]:
         salary_data.describe(include='all')
Out[6]:
                 YearsExperience
                                        Salary
                      30.000000
                                    30.000000
          count
          mean
                       5.313333
                                  76003.000000
                       2.837888
                                  27414.429785
            std
                       1.100000
                                  37731.000000
            min
           25%
                       3.200000
                                 56720.750000
           50%
                       4.700000
                                 65237.000000
           75%
                       7.700000
                                100544.750000
                       10.500000
                                122391.000000
           max
```

4. Check Assumptions are matching

1. Check for linearity.

```
In [7]: sns.scatterplot(x = 'YearsExperience',y= 'Salary',data=salary_data)
    plt.title('YearsExperience VS Salary',size = 17)
    plt.show()
```



```
In [8]: sns.lmplot(x = 'YearsExperience',y= 'Salary',data=salary_data)
plt.title('YearsExperience VS Salary',size = 17)
plt.show()
```


Observation = Linearity check is passed

In [9]: salary_data.corr().round(2)

Out[9]:

	YearsExperience	Salary
YearsExperience	1.00	0.98
Salary	0.98	1.00

- 2.Homoscadasticity-it can be checked post model building and training
- 3.NO multicollinarity
- 4. No Autoregression
- 5. zero residual mean-it can be checked post model building and training
- 5.Data preparation

In [10]: salary_data #no unwanted parameters.

Out	[10]	:

	YearsExperience	Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0
5	2.9	56642.0
6	3.0	60150.0
7	3.2	54445.0
8	3.2	64445.0
9	3.7	57189.0
10	3.9	63218.0
11	4.0	55794.0
12	4.0	56957.0
13	4.1	57081.0
14	4.5	61111.0
15	4.9	67938.0
16	5.1	66029.0
17	5.3	83088.0
18	5.9	81363.0
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

6. Model Building and Model training

There are basically 2 libraries that supports Linear Regression algorithm.

- 1.Statsmodels libraries-ols techniques.
- · 2.sklearn libraries-linear regression.

```
In [11]: import statsmodels.formula.api as smf
In [21]: lin_reg_model = smf.ols(formula='Salary~YearsExperience', data= salary_data).fit()
```

note- with stats models model building and training is happening at the same tim

7. Model Testing

Manual Testing

```
In [15]: # y = mx + c
#for x = 1.3 y=?
In [23]: 9449.962321 *1.1 +25792.200199
Out[23]: 36187.158752100004
In [25]: 9449.962321 *1.3 +25792.200199
Out[25]: 38077.1512163
In [26]: 9449.962321 *1.5 +25792.200199
Out[26]: 39967.1436805
In [27]: 9449.962321 *2 +25792.200199
Out[27]: 44692.124841
In [28]: 9449.962321 *2.2 +25792.200199
Out[28]: 46582.1173052
```

Machine Prediction

```
In [30]: test_data = pd.read_csv('salary_test_data.csv')
test_data
```

Out[30]:	YearsExperience	
	0	1.1
	1	1.3
	2	1.5
	3	2.0
	4	2.2

8. Model Evaluation

```
In [32]: lin_reg_model.rsquared,lin_reg_model.rsquared_adj
Out[32]: (0.9569566641435086, 0.9554194021486339)
In [33]: lin_reg_model.aic,lin_reg_model.bic ##is an estimator of prediction error
Out[33]: (606.882316930432, 609.6847116937563)
```

9. Model Deployement

```
In [34]: from pickle import dump
In [35]: dump(lin_reg_model,open('linear_regression.pkl','wb'))
In [36]: from pickle import load
In [37]: tested_linear_model = load(open('linear_regression.pkl','rb'))
```

Assumtion check

Homoscedaticity

```
In [39]: from sklearn.preprocessing import StandardScaler
         std scaler = StandardScaler()
         scaled x = std scaler.fit transform(salary data)
         print(scaled x)
         [[-1.51005294 -1.36011263]
          [-1.43837321 -1.10552744]
          [-1.36669348 -1.419919
          [-1.18749416 -1.20495739]
          [-1.11581443 -1.33978143]
          [-0.86493538 -0.71830716]
          [-0.82909552 -0.58815781]
          [-0.75741579 -0.79981746]
          [-0.75741579 -0.42881019]
          [-0.57821647 -0.69801306]
          [-0.50653674 -0.47433279]
          [-0.47069688 -0.74976858]
          [-0.47069688 -0.70662043]
          [-0.43485702 -0.70201994]
          [-0.29149756 -0.55250402]
          [-0.1481381 -0.29921736]
          [-0.07645838 -0.37004264]
          [-0.00477865 0.26285865]
          [ 0.21026054 0.19885989]
            0.2461004
                        0.66547573]
          [ 0.53281931  0.58377993]
            0.6403389
                        0.82623317]
           0.92705781 0.93861127]
            1.03457741 1.40274136]
            1.21377673 1.24020308]
          1.50049564
                       1.51986835]
          [ 1.5363355
                        1.3590738 ]
          [ 1.78721455
                       1.72102849]
          [ 1.85889428
                       1.70177321]]
In [40]: | scaled_x.mean(), scaled_x.std()
Out[40]: (-2.2204460492503132e-17, 1.0)
```

Zero residual mean

```
In [44]: np.mean(scaled_x)
```

Out[44]: -2.2204460492503132e-17