CMPT 210: Probability and Computing

Lecture 9

Sharan Vaswani

February 6, 2024

Recap

For events E and F, we wish to compute Pr[E|F], the probability of event E conditioned on F.

Approach 1: With conditioning, F can be interpreted as the *new sample space* such that for $\omega \notin F$, $\Pr[\omega|F] = 0$.

Approach 2:
$$Pr[E|F] = \frac{Pr[E \cap F]}{Pr[F]}$$
.

Multiplication Rule: For events E_1, E_2, \dots, E_n , $Pr[E_1 \cap E_2 \dots \cap E_n] = Pr[E_1] Pr[E_2|E_1] Pr[E_3|E_1 \cap E_2] \dots Pr[E_n|E_1 \cap E_2 \cap \dots \cap E_{n-1}]$.

Tree Diagrams:

- Helpful in calculating probabilities in a sequential process (E.g. In the Monty Hall problem, the process is choose car location, choose door, reveal door).
- In a tree diagram, edge-weights correspond to conditional probabilities and leaf nodes correspond to outcomes.
- The probability of an outcome can be calculated by multiplying the relevant probabilities along a path.

1

Let us play a game with three strange dice shown in the figure. Each player selects one die and rolls it once. The player with the lower value pays the other player \$100. We can pick a die first, after which the other player can pick one of the other two.

Let us play a game with three strange dice shown in the figure. Each player selects one die and rolls it once. The player with the lower value pays the other player \$100. We can pick a die first, after which the other player can pick one of the other two.

Q: Suppose we choose die B because it has a 9, and the other player selects die A. What is the probability that we will win?

Identify Outcomes: Each leaf is an outcome and $S = \{(2,1),(2,5),(2,9),(6,1),(6,5),(6,9),(7,1),(7,5),(7,9)\}.$

Identify Event: $E = \{(2,5), (2,9), (6,9), (7,9)\}$. **Compute probabilities**: $Pr[Dice 1 \text{ is } 6] = \frac{1}{3}$. $Pr[(6,5)] = Pr[Dice 2 \text{ is } 5 \cap Dice 1 \text{ is } 6] =$ $Pr[Dice 2 \text{ is } 5 \mid Dice 1 \text{ is } 6] Pr[Dice 1 \text{ is } 6] = \frac{1}{3}\frac{1}{3} = \frac{1}{9}$. $Pr[E] = Pr[(2,5)] + Pr[(2,9)] + Pr[(6,9)] + Pr[(7,9)] = \frac{4}{9}$. Meaning that there is less than 50% chance of winning.

 \mathbf{Q} : We get another chance – this time we know that die A is good (since we lost to it previously), we choose die A and the other player chooses die C. What is our probability of winning?

Q: We get another chance – this time we know that die A is good (since we lost to it previously), we choose die A and the other player chooses die C. What is our probability of winning?

Q: We get another chance – this time we know that die A is good (since we lost to it previously), we choose die A and the other player chooses die C. What is our probability of winning?

Now, $E = \{(3,6), (3,7), (4,6), (4,7)\}$ and hence $\Pr[E] = \frac{4}{9}$. Meaning that there is less than 50% chance of winning.

We get yet another chance, and this time we choose die C, because we reason that die A is better than B, and C is better than A.

We get yet another chance, and this time we choose die C, because we reason that die A is better than B, and C is better than A.

We can construct a similar tree diagram to show that the probability that we win is again $\frac{4}{9}$.

We get yet another chance, and this time we choose die C, because we reason that die A is better than B, and C is better than A.

We can construct a similar tree diagram to show that the probability that we win is again $\frac{4}{9}$.

- A beats B with probability $\frac{5}{9}$ (first game).
- C beats A with probability $\frac{5}{9}$ (second game).
- B beats C with probability $\frac{5}{9}$ (third game).

We get yet another chance, and this time we choose die C, because we reason that die A is better than B, and C is better than A.

We can construct a similar tree diagram to show that the probability that we win is again $\frac{4}{9}$.

- A beats B with probability $\frac{5}{9}$ (first game).
- C beats A with probability $\frac{5}{9}$ (second game).
- B beats C with probability $\frac{5}{9}$ (third game).

Since A will beat B more often than not, and B will beat C more often than not, it seems like A ought to beat C more often than not, that is, the "beats more often" relation ought to be transitive. But this intuitive idea is false: whatever die we pick, the second player can pick one of the others and be likely to win. So picking first is actually a disadvantage!

We get yet another chance, and this time we choose die C, because we reason that die A is better than B, and C is better than A.

We can construct a similar tree diagram to show that the probability that we win is again $\frac{4}{9}$.

- A beats B with probability $\frac{5}{9}$ (first game).
- C beats A with probability $\frac{5}{9}$ (second game).
- B beats C with probability $\frac{5}{9}$ (third game).

Since A will beat B more often than not, and B will beat C more often than not, it seems like A ought to beat C more often than not, that is, the "beats more often" relation ought to be transitive. But this intuitive idea is false: whatever die we pick, the second player can pick one of the others and be likely to win. So picking first is actually a disadvantage!

This is the topic of some recent research and was covered in this article: https://www.guantamagazine.org/

mathematicians-roll-dice-and-get-rock-paper-scissors-20230119/

Q: A test for detecting cancer has the following accuracy – (i) If a person has cancer, there is a 10% chance that the test will say that the person does not have it. This is called a "false negative" and (ii) If a person does not have cancer, there is a 5% chance that the test will say that the person does have it. This is called a "false positive". For patients that have no family history of cancer, the incidence of cancer is 1%. Person X does not have any family history of cancer, but is detected to have cancer. What is the probability that the Person X does have cancer?

 $\mathcal{S} = \{(\textit{Healthy}, \textit{Positive}), (\textit{Healthy}, \textit{Negative}), (\textit{Sick}, \textit{Positive}), (\textit{Sick}, \textit{Negative})\}.$

A is the event that Person X has cancer. B is the event that the test is positive.

 $\mathcal{S} = \{(\textit{Healthy}, \textit{Positive}), (\textit{Healthy}, \textit{Negative}), (\textit{Sick}, \textit{Positive}), (\textit{Sick}, \textit{Negative})\}.$

A is the event that Person X has cancer. B is the event that the test is positive.

$$\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{\Pr[\{(S,P)\}]}{\Pr[\{(S,P),(H,P)\}]} = \frac{0.0090}{0.0090 + 0.0495} \approx 15.4\%.$$

Conditional Probability

Conditional probability for complement events: For events E, F, $Pr[E^c|F] = 1 - Pr[E|F]$.

Conditional Probability

Conditional probability for complement events: For events E, F, $Pr[E^c|F] = 1 - Pr[E|F]$.

Proof: Since $E \cup E^c = S$, for an event F such that $Pr[F] \neq 0$,

$$(E \cup E^c) \cap F = S \cap F = F$$

$$(E \cup E^c) \cap F = (E \cap F) \cup (E^c \cap F)$$

$$\implies \Pr[(E \cap F) \cup (E^c \cap F)] = \Pr[(E \cup E^c) \cap F]$$
(Distributive Law)

Since $E \cap F$ and $E^c \cap F$ are mutually exclusive events,

$$\Pr[E \cap F] + \Pr[E^c \cap F] = \Pr[F] \implies \frac{\Pr[E^c \cap F]}{\Pr[F]} = 1 - \frac{\Pr[E \cap F]}{\Pr[F]}$$

$$\implies \Pr[E^c | F] = 1 - \Pr[E | F] \qquad \text{(By def. of conditional probability)}$$

Bayes Rule

Bayes Rule: For events E and F if $\Pr[E] \neq 0$ and $\Pr[F] \neq 0$, then, $\Pr[F|E] = \frac{\Pr[E|F]\Pr[F]}{\Pr[E]}$.

Bayes Rule

Bayes Rule: For events E and F if $\Pr[E] \neq 0$ and $\Pr[F] \neq 0$, then, $\Pr[F|E] = \frac{\Pr[E|F] \Pr[F]}{\Pr[E]}$. *Proof*: Using the formula for conditional probability,

$$\Pr[E|F] = \frac{\Pr[E \cap F]}{\Pr[F]} \quad ; \quad \Pr[F|E] = \frac{\Pr[F \cap E]}{\Pr[E]}$$

$$\implies \Pr[E \cap F] = \Pr[E|F] \Pr[F] \quad ; \quad \Pr[F \cap E] = \Pr[F|E] \Pr[E]$$

$$\implies \Pr[E|F] \Pr[F] = \Pr[F|E] \Pr[E]$$

$$\implies \Pr[F|E] = \frac{\Pr[E|F] \Pr[F]}{\Pr[E]}$$

9

Bayes Rule

Bayes Rule: For events E and F if $\Pr[E] \neq 0$ and $\Pr[F] \neq 0$, then, $\Pr[F|E] = \frac{\Pr[E|F] \Pr[F]}{\Pr[E]}$. *Proof*: Using the formula for conditional probability,

$$\Pr[E|F] = \frac{\Pr[E \cap F]}{\Pr[F]} \quad ; \quad \Pr[F|E] = \frac{\Pr[F \cap E]}{\Pr[E]}$$

$$\implies \Pr[E \cap F] = \Pr[E|F] \Pr[F] \quad ; \quad \Pr[F \cap E] = \Pr[F|E] \Pr[E]$$

$$\implies \Pr[E|F] \Pr[F] = \Pr[F|E] \Pr[E]$$

$$\implies \Pr[F|E] = \frac{\Pr[E|F] \Pr[F]}{\Pr[E]}$$

Allows us to compute Pr[F|E] using Pr[E|F]. Later in the course, we will see an application of the Bayes rule to machine learning.

9

Law of Total Probability and Bayes rule

Law of Total Probability: For events E and F, $Pr[E] = Pr[E|F] Pr[F] + Pr[E|F^c] Pr[F^c]$.

Law of Total Probability and Bayes rule

Law of Total Probability: For events E and F, $Pr[E] = Pr[E|F] Pr[F] + Pr[E|F^c] Pr[F^c]$. *Proof*:

$$E = (E \cap F) \cup (E \cap F^c)$$

$$\implies \Pr[E] = \Pr[(E \cap F) \cup (E \cap F^c)] = \Pr[E \cap F] + \Pr[E \cap F^c]$$
(By union-rule for disjoint events)
$$\Pr[E] = \Pr[E|F] \Pr[F] + \Pr[E|F^c] \Pr[F^c]$$
(By definition of conditional probability)

Law of Total Probability and Bayes rule

Law of Total Probability: For events E and F, $Pr[E] = Pr[E|F] Pr[F] + Pr[E|F^c] Pr[F^c]$. *Proof*:

$$E = (E \cap F) \cup (E \cap F^c)$$

$$\implies \Pr[E] = \Pr[(E \cap F) \cup (E \cap F^c)] = \Pr[E \cap F] + \Pr[E \cap F^c]$$
(By union-rule for disjoint events)
$$\Pr[E] = \Pr[E|F] \Pr[F] + \Pr[E|F^c] \Pr[F^c]$$
(By definition of conditional probability)

Combining Bayes rule and Law of total probability

$$\Pr[F|E] = \frac{\Pr[F \cap E]}{\Pr[E]} = \frac{\Pr[E|F] \Pr[F]}{\Pr[E]}$$
 (By definition of conditional probability)
$$\Pr[F|E] = \frac{\Pr[E|F] \Pr[F]}{\Pr[E|F] \Pr[F] + \Pr[E|F^c] \Pr[F^c]}$$
 (By law of total probability)

Q: In answering a question on a multiple-choice test, a student either knows the answer or she guesses. Let p be the probability that she knows the answer and 1-p the probability that she guesses. Assume that a student who guesses at the answer will be correct with probability $\frac{1}{m}$, where m is the number of multiple-choice alternatives. What is the conditional probability that a student knew the answer to a question given that she answered it correctly?

Q: In answering a question on a multiple-choice test, a student either knows the answer or she guesses. Let p be the probability that she knows the answer and 1-p the probability that she guesses. Assume that a student who guesses at the answer will be correct with probability $\frac{1}{m}$, where m is the number of multiple-choice alternatives. What is the conditional probability that a student knew the answer to a question given that she answered it correctly?

Let C be the event that the student answers the question correctly. Let K be the event that the student knows the answer. We wish to compute $\Pr[K|C]$.

We know that
$$\Pr[K] = p$$
 and $\Pr[C|K^c] = 1/m$, $\Pr[C|K] = 1$. Hence, $\Pr[C] = \Pr[C|K] \Pr[K] + \Pr[C|K^c] \Pr[K^c] = (1)(p) + \frac{1}{m}(1-p)$.
$$\Pr[K|C] = \frac{\Pr[C|K] \Pr[K]}{\Pr[C]} = \frac{mp}{1+(m-1)p}$$
.

Q: An insurance company believes that people can be divided into two classes — those that are accident prone and those that are not. Their statistics show that an accident-prone person will have an accident at some time within a fixed 1-year period with probability 0.4, whereas this probability decreases to 0.2 for a non-accident-prone person. If we assume that 30% of the population is accident prone, what is the probability that a new policy holder will have an accident within a year of purchasing a policy?

Q: An insurance company believes that people can be divided into two classes — those that are accident prone and those that are not. Their statistics show that an accident-prone person will have an accident at some time within a fixed 1-year period with probability 0.4, whereas this probability decreases to 0.2 for a non-accident-prone person. If we assume that 30% of the population is accident prone, what is the probability that a new policy holder will have an accident within a year of purchasing a policy?

Let A= event that a new policy holder will have an accident within a year of purchasing a policy. Let B= event that the new policy holder is accident prone. We know that $\Pr[B]=0.3$, $\Pr[A|B]=0.4$, $\Pr[A|B^c]=0.2$. By the law of total probability, $\Pr[A]=\Pr[A|B]\Pr[B]+\Pr[A|B^c]$ $\Pr[B^c]=(0.4)(0.3)+(0.2)(0.7)=0.26$.

Q: An insurance company believes that people can be divided into two classes — those that are accident prone and those that are not. Their statistics show that an accident-prone person will have an accident at some time within a fixed 1-year period with probability 0.4, whereas this probability decreases to 0.2 for a non-accident-prone person. If we assume that 30% of the population is accident prone, what is the probability that a new policy holder will have an accident within a year of purchasing a policy?

Let A= event that a new policy holder will have an accident within a year of purchasing a policy. Let B= event that the new policy holder is accident prone. We know that $\Pr[B]=0.3$, $\Pr[A|B]=0.4$, $\Pr[A|B^c]=0.2$. By the law of total probability, $\Pr[A]=\Pr[A|B]\Pr[B]+\Pr[A|B^c]\Pr[B^c]=(0.4)(0.3)+(0.2)(0.7)=0.26$.

Q: Suppose that a new policy holder has an accident within a year of purchasing their policy. What is the probability that they are accident prone?

Q: An insurance company believes that people can be divided into two classes — those that are accident prone and those that are not. Their statistics show that an accident-prone person will have an accident at some time within a fixed 1-year period with probability 0.4, whereas this probability decreases to 0.2 for a non-accident-prone person. If we assume that 30% of the population is accident prone, what is the probability that a new policy holder will have an accident within a year of purchasing a policy?

Let A= event that a new policy holder will have an accident within a year of purchasing a policy. Let B= event that the new policy holder is accident prone. We know that $\Pr[B]=0.3$, $\Pr[A|B]=0.4$, $\Pr[A|B^c]=0.2$. By the law of total probability, $\Pr[A]=\Pr[A|B]\Pr[B]+\Pr[A|B^c]$ $\Pr[B^c]=(0.4)(0.3)+(0.2)(0.7)=0.26$.

 ${f Q}$: Suppose that a new policy holder has an accident within a year of purchasing their policy. What is the probability that they are accident prone?

Compute
$$Pr[B|A] = \frac{Pr[A|B] Pr[B]}{Pr[A]} = \frac{0.12}{0.26} = 0.4615$$
.

Q: Alice is taking a probability class and at the end of each week she can be either up-to-date or she may have fallen behind. If she is up-to-date in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.8 (or 0.2, respectively). If she is behind in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). Alice is (by default) up-to-date when she starts the class. What is the probability that she is up-to-date after three weeks?

Q: Alice is taking a probability class and at the end of each week she can be either up-to-date or she may have fallen behind. If she is up-to-date in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.8 (or 0.2, respectively). If she is behind in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). Alice is (by default) up-to-date when she starts the class. What is the probability that she is up-to-date after three weeks?

Let U_i and B_i be the events that Alice is up-to-date or behind respectively after i weeks. Since Alice starts the class up-to-date, $\Pr[U_1]=0.8$ and $\Pr[B_1]=0.2$. We also know that $\Pr[U_2|U_1]=0.8$, $\Pr[U_3|U_2]=0.8$ and $\Pr[B_2|U_1]=0.2$, $\Pr[B_3|U_2]=0.2$. Similarly, $\Pr[U_2|B_1]=0.6$, $\Pr[U_3|B_2]=0.6$ and $\Pr[B_2|B_1]=0.4$, $\Pr[B_3|B_2]=0.4$.

Q: Alice is taking a probability class and at the end of each week she can be either up-to-date or she may have fallen behind. If she is up-to-date in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.8 (or 0.2, respectively). If she is behind in a given week, the probability that she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). Alice is (by default) up-to-date when she starts the class. What is the probability that she is up-to-date after three weeks?

Let U_i and B_i be the events that Alice is up-to-date or behind respectively after i weeks. Since Alice starts the class up-to-date, $\Pr[U_1]=0.8$ and $\Pr[B_1]=0.2$. We also know that $\Pr[U_2|U_1]=0.8$, $\Pr[U_3|U_2]=0.8$ and $\Pr[B_2|U_1]=0.2$, $\Pr[B_3|U_2]=0.2$. Similarly, $\Pr[U_2|B_1]=0.6$, $\Pr[U_3|B_2]=0.6$ and $\Pr[B_2|B_1]=0.4$, $\Pr[B_3|B_2]=0.4$.

We wish to compute $Pr[U_3]$. By the law of total probability,

$$Pr[U_3] = Pr[U_3|U_2] Pr[U_2] + Pr[U_3|B_2] Pr[B_2]$$
 and $Pr[U_2] = Pr[U_2|U_1] Pr[U_1] + Pr[U_2|B_1] Pr[B_1]$.

Hence,
$$Pr[U_2] = (0.8)(0.8) + (0.6)(0.2) = 0.76$$
, and $Pr[U_3] = (0.8)(0.76) + (0.6)(0.24) = 0.752$.