Solution

To find the vertex, we look at the coefficients in the function $n(r) = ar^2 + br + c$

The first coordinate of the vertex has the formula: $\frac{-b}{2a}$ now, plugging into formula to get:

 $\frac{-b}{2a} = -\frac{8}{2(2)} = -2$

The second coordinate of the vertex is $n(-2) = 2(-2)^2 + 8(-2) - 6$

ne second coordinate of the vertex is $n(-2) = 2(-2)^{-}+8(-2)-6$

=-14

in this equation, a=2 and b=8