DISTRIBUTED SYSTEMS (COMP9243)

Lecture 9a: Naming

Slide 1

- ① Basic Concepts
- ② Naming Services
- 3 Attribute-based Naming (aka Directory Services)
- Distributed hash tables

WHAT IS NAMING?

Systems manage a wide collection of entities of different kinds. They are identified by different kinds of names:

- → Files: /boot/vmlinuz,~/lectures/DS/notes/tex/naming.tex
- → Processes: 1, 14293
- → devices: /dev/hda,/dev/ttyS1
- → Users: chak, ikuz, cs9243
 - → networked hosts: weill, wagner, vina01
 - → ...

Uniform naming (and access) is a powerful technique:

- → UNIX: uniform names for files, devices, sockets, etc.
- → /proc file system: maps process names to the file names
- → Plan 9, Inferno: "All resources are named and accessed like files in a forest of hierarchical file systems"

BASIC CONCEPTS

Name:

- → String of bits or characters
- → Refers to an entity

Entity:

Slide 3

- → Resource, process, user, etc.
- → Operations performed on entities at access points

Address:

- → Access point named by an address
- → Entity address = address of entity's access point
- → Multiple access points per entity
- → Entity's access points may change

Identifier:

- → Name that *uniquely* identifies entity
- → Properties:
 - ① Refers to at most one entity
 - ② Entity referred to by at most one identifier

Slide 4

1

- ③ Always refers to same entity (i.e. no reuse)
- → Allows easy comparison of references

Location Independent Name:

- → Independent of entity's address
- → Remains valid if entity address changes

SYSTEM-ORIENTED VS HUMAN-ORIENTED NAMES

System-Oriented Names:

- → Represented in machine readable form (32 or 64 bit strings)
- → Structured or unstructured
- Easy to store, manipulate, compare
- Not easy to remember, hard for humans to use
- → Example: inode (0x00245dad)

Slide 5

Human-Oriented Names:

- → Variable length character strings
- → Usually structured
- → Often many human-oriented names map onto a single system-oriented name
- Easy to remember and distinguish between
- Hard for machine to process
- → Example: URL (http://www.cse.unsw.edu.au/~cs9243/lectures)

NAME SPACES

Slide 6

Structure options:

- → Flat (only leaf nodes)
- → Strictly hierarchical
- → Directed acyclic graph (DAG)
- → Multiple root nodes

Slide 7

Path Names:

- → Sequence of edge labels
- → Refers to a leaf node or a directory node
- → Absolute: if first node in path name is a root node
- → Relative: otherwise

Aliasing:

- → Alias: another name for an entity
- → Hard link: two or more paths to an entity in the graph
- → Soft link: leaf node stores a (absolute) path name to another node

Merging:

- → Mounting
 - Directory node stores info about a directory node in other name space
 - Need: protocol, server, path name, authentication and authorisation info, keys for secure communication, etc.

Slide 9

- → Combining name spaces
 - http://www.cse.unsw.edu.au/~cs9243/naming-slides.pdf
 - Name Spaces: Protocol, DNS, File System

NAMING SERVICES

A naming service provides a name space

Name Server:

- → Naming service implemented by name servers
- → Implements naming service operations

Slide 10 Operations:

- → Lookup: resolve a path name, or element of a path name
- → Add: add a directory or leaf node
- → Remove: remove a subtree or leaf node
- → Modify: modify the contents of a directory or leaf node

Client:

→ Invokes naming service operations

DISTRIBUTED NAMING SERVICE

Non-Distributed Naming Service:

- → Single name server
- → Remote or local

Slide 11 Distributed Naming Service:

- → Multiple name servers
- → Name space is replicated and/or partitioned
- → Try to distribute name space management and name resolution
- → Example: DNS

NAME RESOLUTION

The process of looking up a name

Resolution:

- → Mapping a name onto the node referred to by the name
- → Interested in the data stored by the node

Path Name Resolution:

Slide 12

- → Starts at a begin node (first element of the path name)
 - Root node for absolute name
 - Directory node for relative name
- → Ends with data from (or a reference to) the last node (last element of path name)

Resolver:

- → Does name resolution on behalf of client
- → In client process, in client's kernel, process on client's machine

Iterative Resolution:

- Caching only at resolver
- Lots of communication

Recursive Resolution:

Slide 14

- $\ensuremath{\mathbf{Z}}$ Effective caching at name servers
- Reduced communication (if name servers close together)
- Name servers can be protected from external access
- Higher performance demand placed on servers

NAMING SERVICE IMPLEMENTATION ISSUES

Performance and Scalability:

- → Limit load on name servers
- → Limit communication required
- → Partitioning: split name space over multiple name servers

Slide 15

→ Replication: copy (parts of) name space on multiple name servers

Fault Tolerance:

→ Replication

Authoritative Name Server:

→ Name server that stores an entity's original attributes

PARTITIONING

Split name space over multiple servers

Structured Partitioning:

- → split name space according to graph structure
- → Name resolution can use zone hints to quickly find appropriate server
- → Example: associate path name prefixes to zones

Slide 16

7

Improved lookup performance due to knowledge of structure

Rigid structure

Structure-free Partitioning:

- → content placed on servers independent of name space
- Flexible
- Decreased lookup performance
- x increased load on root

Slide 17

REPLICATION

Copy name space to multiple servers

Full Replication:

- → copy complete name space
- Fast performance
- Size (each server must store whole name space)

Slide 18

Consistency (any change has to be performed at all replicas)Administration (who has rights to make changes where?)

9

Partial replication:

- → Replicate full name servers
- → Replicate zones
- Improved performance
- Less administrative problems
- Less consistency problems

Slide 19

Caching:

- → Cache query results
- No administrative problems
- → Types of caches:
 - Directory cache: cache directory node information
 - Prefix cache: cache path name prefixes
 - Full-name cache: cache full names
- → Cache implementations:

- Process-local cache: in address space of process
- Kernel cache: cache kept by kernel
- User-process cache: separate shared service
- → Cache updates and consistency
 - On use checking
 - Timeout
 - Invalidation
 - Slow propagation

DNS (DOMAIN NAME SYSTEM)

Structure:

- → Hierarchical structure (tree)
- → Top-level domains (TLD) (.com, .org, .net, .au, .nl, ...)
- → Zone: a (group of) directory node
- → Resource records: contents of a node
- → Domain: a subtree of the global tree

Slide 21

Slide 22

→ Domain name: an absolute path name

Type of record	Associated entity	Description
SOA	Zone	Holds information on the represented zone
A	Host	Contains an IP address of the host this node represents
MX	Domain	Refers to a mail server to handle mail addressed to this node
SRV	Domain	Refers to a server handling a specific service
NS	Zone	Refers to a name server that implements the represented zone
CNAME	Node	Symbolic link with the primary name of the represented node
PTR	Host	Contains the canonical name of a host
HINFO	Host	Holds information on the host this node represents
TXT	Any kind	Contains any entity-specific information considered useful

Partitioning:

→ Each zone implemented by a name server

Replication:

- → Each zone replicated on at least two servers
- → Updates performed on *primary*
- → Contents transferred to *secondary* using *zone transfer*
- → Higher levels have many more replicas (12 root replicas)

Slide 23 Caching:

- → Servers cache results of queries
- → Original entries have time-to-live field (TTL)
- → Cached data is non-authoritative, provided until TL expires

Name Resolution:

- → Query sent to local server
- → If cannot resolve locally then sent to root
- → Resolved recursively or iteratively

LDAP & ATTRIBUTE-BASED NAMING

White Pages vs Yellow Pages:

- → White Pages: Name Phone number
- → Yellow Pages: Attribute -Set of entities with that attribute
- → Example: X.500 and LDAP

Slide 24

11

Attribute-Based Names:

- → Example:/C=AU/0=UNSW/0U=CSE/CN=WWW
 Server/Hardware=Sparc/OS=Solaris/Server=Apache
- → Compared to conventional naming: www.cse.unsw.edu.au
- → Distinguished name (DN): set of attributes that forms a canonical name for an entity
- → Distinguished attribute: an attribute that is part of a distinguished name (aka Relative DN)

Attribute-Based Naming:

- → Lookup entities based on attributes
- → Example: search("&(C=AU)(O=UNSW)(OU=*)(CN=WWW Server)")
- → Attributes stored in *directory entry*
- → Collection of all directory entries forms *directory*
- → Directory implemented by directory service

Slide 25

- → Directory Information Tree (DIT) logical structure of information in directory (naming graph)
- → Directory Information Base (DIB) contents of the directory

Name Space:

- → Flat: no structure in directory service
- → Hierarchical: structured according to a hierarchy
- → Distinguished name mirrors structure of name space
- → All possible attribute types and name space defined by schema

Slide 26

DIRECTORY SERVICES

A directory service implements a directory

Operations:

- → Lookup: resolve a distinguished name
- → Add: add an entity
- → Remove: remove an entity

Slide 27

Slide 28

13

- → Modify: modify the attributes of an entity
- → Search: search for entities that have particular attributes
- → Search can use partial knowledge
- → Search does not have to include distinguished attributes
- → Most important qualities: allow browsing and allow searching

Client:

→ Invokes directory service operations

DISTRIBUTED DIRECTORY SERVICE

Partitionina:

→ Partitioned according to name space structure (e.g., hierarchy)

DIRECTORY SERVICES

Replication:

- → Replicate whole directory
- → Replicate partitions
- → Read/Write and read only replicas (e.g. primary-backup)
- → Catalog and cache replicas

Slide 29

SEARCHING AND LOOKUP IN A DISTRIBUTED DIRECTORY

Slide 30

Approaches:

- → Chaining (recursive)
- → Referral (iterative)
- → Multicasting (uncommon)

Performance of Searching:

Slide 31

- → Searching whole name space: must visit each directory server
- bad scalability
- → Limit searches by specifying *context*
- → Catalog: stores copy of subset of DIB information in each server
- → Main problem: multiple attributes mean multiple possible decompositions for partitioning BUT only one decomposition can be implemented

X.500 AND LDAP

X.500:

- → ISO standard
- → Global DIT
- → Defines DIB, DIB partitioning, and DIB replication

Slide 32 LDAP

LDAP (Lightweight Directory Access Protocol):

- → X.500 access over TCP/IP
 - X.500 is defined for OSI Application layer
- → Textual X.500 name representation
- → Popular on Internet
- → Also X.500 free implementations (e.g. openIdap)
- → Used in Windows for Active Directory

15

16

ADDRESS RESOLUTION OF UNSTRUCTURED IDENTIFIERS

Unstructured Identifiers:

Slide 33

- → Practically random bit strings
- → Example: random key, hash value
- → No location information whatsoever
- → How to find corresponding address of entity?

Simple Solution: Broadcasting:

- → Resolver broadcasts query to every node
- → Only nodes that have access point will answer

Example - ARP:

Slide 34

Protocol to resolve MAC addresses from IP addresses.

- → Resolver broadcasts:

 Who has 129.94.242.201? Tell 129.94.242.200
- → 129.94.242.201 answers to 129.94.242.200: 129.94.242.201 is at 00:15:C5:FB:AD:95

DISTRIBUTED HASH TABLES

Hash table (key value store) as overlay network:

→ put(key, value), value = get(key), remove(key)

Example: look up unstructured host names:

Slide 35

```
put(weill, 129.94.242.49)
put(beethoven, 129.94.172.11)
put(maestro, 129.94.242.33)
```

address = get(beethoven)

→ How high is performance cost of lookup?

CHORD: DISTRIBUTED HASH TABLE

General Structure:

- → keys and node IP addresses mapped to identifier
- → consistent hashing (SHA-1 m-bits)
- ightharpoonup key assigned to first node with id > key o successor (key)

A simple lookup:

Slide 37

- → use successors function
- → recursive RPCs until node with key is found
- \rightarrow O(n) cost

A scalable lookup:

Slide 38

- → routing table at every node: finger table
- \rightarrow ith entry is $successor(n+2^{i-1})$
- → finger[1] is successor

Slide 39

- ightharpoonup lookup greatest node id in table < k
- → ask it to lookup the key
- → exponentially smaller jumps

Adding a node:

- → stabilize: ensure successor pointers up-to-date
- → fix_fingers: ensure that finger tables updated

Dealing with node failure:

- ightharpoonup successor list: r successors to handle r-1 failures
- → higher level must handle loss of data relating to failure

Slide 41 Analysis:

- \rightarrow finger table size: O(logn).
- \rightarrow O(logn) nodes contacted for lookup
- → 1/2logn average

Using a DHT:

- → Search index
- → Database
- → File system
- → Shared mirrors/storage

Slide 42

READING LIST

Domain Names - Implementation and Specification RFC 1035 $$\operatorname{DNS}$$

Slide 43

The Lightweight Directory Access Protocol: X.500 Lite LDAP

Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications Chord

READING LIST 21 READING LIST 22