DS300.N11 - Hệ Khuyến Nghị Bài tập đánh giá hệ khuyến nghị

Nguyễn Văn Kiệt, Huỳnh Văn Tín Sinh viên: Phạm Đức Thể - 19522253

Thứ 3, ngày 11 tháng 10 năm 2022

Bài tập

1. Cho danh sách xếp hạng Top
5 đối tượng khuyến nghị trả về của thuật toán A, và thuật toán B với các giá trị liên quan thực sự như sau:

A = [1, 1, 1, 0, 0]

B = [0, 0, 1, 1, 1]

(1: liên quan so với GroundTruth, 0: không liên quan)

Tính P@Top5, MRR cho Top5 khuyến nghị cho thuật toán A, B. Nhận định thuật toán nào tốt hơn?

Lời giải.

- Thuật toán A:
 - Р@Тор5:

$$P@Top5 = \frac{3}{5} = 0.6$$

- MRR:

$$MRR = 1$$

- Thuật toán B:
 - P@Top5:

$$P@Top5 = \frac{3}{5} = 0.6$$

- MRR:

$$MRR = \frac{1}{3} = 0.333$$

Kết luận: Thuật toán A tốt hơn.

2. Cho danh sách xếp hạng Top
5 đối tượng khuyến nghị của thuật toán A, và thuật toán B với các giá trị liên quan thực sự như sau:

A = [0.9, 0.8, 0.7, 0.6, 0.5]

B = [0.5, 0.6, 0.7, 0.8, 0.9]

Tính P@Top5, MRR, NDCG cho Top5 khuyến nghị cho thuật toán A, B. Nhận định thuật toán nào tốt hơn? (Giả sử giá trị tương quan >= 0.5 thì xem là liên quan và nhỏ hơn thì là không liên quan)

Lời giải.

- Thuật toán A:
 - P@Top5:

$$P@Top5 = \frac{4}{5} = 0.8$$

- MRR:

$$MRR = 1$$

- NDCG:

$\ast\,$ Tính toán DCG:

Position(i)	$Relevance(rel_i)$	$log_2(i+1)$	$\frac{rel_i}{log_2(i+1)}$	DCG@k
1	0.9	$log_2(2) = 1$	0.9/1 = 0.9	0.9
2	0.8	$log_2(3) = 1.585$	0.8/1.585 = 0.505	0.9 + 0.505 = 1.405
3	0.7	$log_2(4) = 2$	0.7/2 = 0.35	0.9 + 0.505 + 0.35 = 1.755
4	0.6	$log_2(5) = 2.322$	0.6/2.322 = 0.258	0.9 + 0.505 + 0.35 + 0.258 = 2.013
5	0.5	$log_2(6) = 2.585$	0.5/2.585 = 0.193	0.9 + 0.505 + 0.35 + 0.258 + 0.193 = 2.206

$\ast\,$ Tính toán IDCG:

Position(i)	$Relevance(rel_i)$	$log_2(i+1)$	$\frac{rel_i}{log_2(i+1)}$	IDCG@k
1	0.9	$log_2(2) = 1$	0.9/1 = 0.9	0.9
2	0.8	$log_2(3) = 1.585$	0.8/1.585 = 0.505	0.9 + 0.505 = 1.405
3	0.7	$log_2(4) = 2$	0.7/2 = 0.35	0.9 + 0.505 + 0.35 = 1.755
4	0.6	$log_2(5) = 2.322$	0.6/2.322 = 0.258	0.9 + 0.505 + 0.35 + 0.258 = 2.013
5	0.5	$log_2(6) = 2.585$	0.5/2.585 = 0.193	0.9 + 0.505 + 0.35 + 0.258 + 0.193 = 2.206

$\ast\,$ Tính toán NDCG:

Position(i)	DCG@k	IDCG@k	$NDCG@k = \frac{DCG@k}{IDCG@k}$
1	0.9	0.9	0.9/0.9 = 1
2	1.405	1.405	1.405/1.405 = 1
3	1.755	1.755	1.755/1.755 = 1
4	2.013	2.013	2.013/2.013 = 1
5	2.206	2.206	2.206/2.206 = 1

• Thuật toán B:

- P@Top5:

$$P@Top5 = \frac{4}{5} = 0.8$$

- MRR:

$$MRR = \frac{1}{2} = 0.5$$

- NDCG:

 $\ast\,$ Tính toán DCG:

Position(i)	$Relevance(rel_i)$	$log_2(i+1)$	$\frac{rel_i}{log_2(i+1)}$	DCG@k
1	0.5	$log_2(2) = 1$	0.5/1 = 0.5	0.5
2	0.6	$log_2(3) = 1.585$	0.6/1.585 = 0.379	0.5 + 0.379 = 0.879
3	0.7	$log_2(4) = 2$	0.7/2 = 0.35	0.5 + 0.379 + 0.35 = 1.229
4	0.8	$log_2(5) = 2.322$	0.8/2.322 = 0.345	0.5 + 0.379 + 0.35 + 0.345 = 1.574
5	0.9	$log_2(6) = 2.585$	0.9/2.585 = 0.348	0.5 + 0.379 + 0.35 + 0.345 + 0.348 = 1.922

$\ast\,$ Tính toán IDCG:

Position(i)	$Relevance(rel_i)$	$log_2(i+1)$	$\frac{rel_i}{log_2(i+1)}$	IDCG@k
1	0.9	$log_2(2) = 1$	0.9/1 = 0.9	0.9
2	0.8	$log_2(3) = 1.585$	0.8/1.585 = 0.505	0.9 + 0.505 = 1.405
3	0.7	$log_2(4) = 2$	0.7/2 = 0.35	0.9 + 0.505 + 0.35 = 1.755
4	0.6	$log_2(5) = 2.322$	0.6/2.322 = 0.258	0.9 + 0.505 + 0.35 + 0.258 = 2.013
5	0.5	$log_2(6) = 2.585$	0.5/2.585 = 0.193	0.9 + 0.505 + 0.35 + 0.258 + 0.193 = 2.206

$\ast\,$ Tính toán NDCG:

Position(i)	DCG@k	IDCG@k	$NDCG@k = \frac{DCG@k}{IDCG@k}$
1	0.5	0.9	0.5/0.9 = 0.556
2	0.879	1.405	0.879/1.405 = 0.626
3	1.229	1.755	1.229/1.755 = 0.700
4	1.574	2.013	1.574/2.013 = 0.782
5	1.922	2.206	1.922/2.206 = 0.871

Kết luận: Thuật toán A tốt hơn.

3. Cho danh sách xếp hạng rating Top
15 đối tượng khuyến nghị của thuật toán A, các giá trị rating thực sự B
 như sau:

$$\begin{array}{l} A = [4,\,5,\,9,\,6,\,1,\,3,\,8,\,6,\,9,\,10,\,5,\,5,\,7,\,4,\,1] \\ B = [4,\,6,\,5,\,6,\,5,\,7,\,8,\,6,\,9,\,4,\,6,\,2,\,10,\,8,\,2] \; (Groundtruth) \\ Tính \; MAE, \; NMAE, \; RMSE, \; NRMSE? \end{array}$$

Lời giải.

To gial.
$$MAE = \frac{|5-6| + |9-5| + |1-5| + |3-7| + |10-4| + |5-6| + |5-2| + |7-10| + |4-8| + |1-2|}{15} = 2.067$$

$$NMAE = \frac{MAE}{10-2} = 0.258$$

$$RMSE = \sqrt{\frac{(5-6)^2 + (9-5)^2 + (1-5)^2 + (3-7)^2 + (10-4)^2 + (5-6)^2 + (5-2)^2 + (7-10)^2 + (4-8)^2 + (1-2)^2}{15}} = 2.840$$

$$NRMSE = \frac{RMSE}{10-2} = 0.355$$