LP 37 : Absorption et émission de la lumière

Niveau: L3

Prérequis:

 Mécanique quantique : Théorie des perturbations dépendantes du temps (cas sinusoïdal), règle d'or de Fermi et principe d'incertitude de Heisenberg

Approximation large spectre

Processus d'interaction lumière-matière selon Einstein (1916)

Lien durée de vie - élargissement spectral

Modélisation du système à 2 niveaux

$$|e\rangle$$
 : E_e , n_e

$$0$$

$$|f\rangle$$
 : E_f , n_f

Hypothèses:

- Même dégénérescence : g_e=g_f
- Système fermé : n_e + n_f = n = constante
- On néglige l'effet de l'émission spontanée sur le flux de photons, devant l'émission stimulée.

Évolution des populations du système à 2 niveaux

$$p_{\rm ph, \, sat} = \frac{\gamma}{2 \, \sigma_0}$$

Laser Nd³⁺: YAG: niveaux d'énergie du néodyme Nd³⁺

Définition:

Pompage : Ensemble des processus d'excitation des niveaux peuplés vers des niveaux de hautes énergies

Laser Nd³⁺: YAG: équations de populations

Hypothèses:

- Même dégénérescence : g_e=g_f
- Système fermé : n_e + n_f = n = constante
 On néglige l'effet de l'émission spontanée sur le flux de photons, devant l'émission stimulée.
 - γ_{32} , $\gamma_{10} >> \gamma_{30}$, γ_{21} , γ_{21} , $\gamma_{21} => n_3 \approx 0$ et $\gamma_{32} => n_1 \approx 0$

$$\left(\frac{\mathrm{d}n_2}{\mathrm{d}t}\right)_{\mathrm{tot}} = W_p \ n_0 - (\gamma_{21} + \sigma_0 \ \Phi_{\mathrm{ph}}) \ n_2$$

En stationnaire :

$$n_2 = D = \frac{W_p \ n}{W_p + \gamma_{21} + \sigma_0 \ \Phi_p}$$

Laser Nd³⁺: YAG: équations de populations

Laser Nd³⁺: YAG: solutions stationnaires stables

