Perceptrón multicapa

Diego Milone y Leonardo Rufiner Inteligencia Computacional Departamento de Informática FICH-UNL

Organización

Un poco de historia...

¿Cómo resolver el problema XOR?

Métodos de gradiente para el entrenamiento

Perceptrón multicapa

Retropropagación en el perceptrón multicapa

Un poco de historia...

Notas históricas

- 1957 Rosenblatt comienza el desarrollo del Perceptrón (simple).
- 1960 Widrow y Hoff desarrollan el modelo Adaline (ADAptative LINear Elements).
- 1969 Minsky y Papert prueban que el Perceptrón no es capaz de resolver problemas sencillos (XOR).
- 1974 Werbos desarrolla la idea básica del algoritmo de retro-propagación (BP).
- 1986 Rumelhart y Hinton redescubren y mejoran el algoritmo de BP.

Organización

Un poco de historia..

¿Cómo resolver el problema XOR?

Métodos de gradiente para el entrenamiento

Perceptrón multicapa

Retropropagación en el perceptrón multicapa

El problema del XOR

Figura: Representación gráfica del problema del OR exclusivo.

¿Cómo podemos combinar dos o más PS para resolver el problema XOR?

¿Cómo podemos combinar dos o más PS para resolver el problema XOR?

Perceptrón A: $x_2 = -1 - x_1$

¿Cómo podemos combinar dos o más PS para resolver el problema XOR?

Perceptrón A:
$$x_2 = -1 - x_1 = \frac{w_{A0}}{w_{A2}} - \frac{w_{A1}}{w_{A2}} x_1$$

¿Cómo podemos combinar dos o más PS para resolver el problema XOR?

Perceptrón A:
$$x_2 = -1 - x_1 = \frac{w_{A0}}{w_{A2}} - \frac{w_{A1}}{w_{A2}} x_1$$

$$\rightarrow \left\{ \begin{array}{l} w_{A0} = -1 \\ w_{A1} = +1 \\ w_{A2} = +1 \end{array} \right\} \rightarrow y_A = \operatorname{sgn}(x_2 + x_1 + 1)$$

¿Cómo podemos combinar dos o más PS para resolver el problema XOR?

Perceptrón A:
$$x_2 = -1 - x_1 = \frac{w_{A0}}{w_{A2}} - \frac{w_{A1}}{w_{A2}} x_1$$

$$\rightarrow \left\{ \begin{array}{l} w_{A0} = -1 \\ w_{A1} = +1 \\ w_{A2} = +1 \end{array} \right\} \rightarrow y_A = \operatorname{sgn}(x_2 + x_1 + 1)$$

Perceptrón B: $x_2 = +1 - x_1$

¿Cómo podemos combinar dos o más PS para resolver el problema XOR?

Perceptrón A:
$$x_2 = -1 - x_1 = \frac{w_{A0}}{w_{A2}} - \frac{w_{A1}}{w_{A2}} x_1$$

$$\Rightarrow \begin{cases} w_{A0} = -1 \\ w_{A1} = +1 \\ w_{A2} = +1 \end{cases} \Rightarrow y_A = \operatorname{sgn}(x_2 + x_1 + 1)$$

Perceptrón B: $x_2 = +1 - x_1$

$$\rightarrow \left\{ \begin{array}{l} w_{B0} = +1 \\ w_{B1} = +1 \\ w_{B2} = +1 \end{array} \right\} \rightarrow y_B = \operatorname{sgn}(x_2 + x_1 - 1)$$

Perceptrón C: $y_A = +1 + y_B$

Perceptrón C:
$$y_A = +1 + y_B$$

Perceptrón C:
$$y_A = +1 + y_B$$

¿Cómo es la arquitectura de esta red neuronal?

$$\begin{cases} y_A = \operatorname{sgn}(x_2 + x_1 + 1) \\ y_B = \operatorname{sgn}(x_2 + x_1 - 1) \end{cases}$$
 $\Rightarrow y_C = \operatorname{sgn}(y_A - y_B - 1)$

Perceptrón C: $y_A = +1 + y_B$

¿Cómo es la arquitectura de esta red neuronal?

$$\begin{cases} y_A = \text{sgn}(x_2 + x_1 + 1) \\ y_B = \text{sgn}(x_2 + x_1 - 1) \end{cases} \to y_C = \text{sgn}(y_A - y_B - 1)$$

¿Resuelve el problema XOR?

Figura: (a) Arquitectura de una red para resolver el problema del XOR. (b) Gráfico de flujo de señal de la red.

Figura: (a) Límite de decisión construido por la neurona oculta 1 de la red en la fig. anterior. (b) Límite de decisión construido por la neurona oculta 2 de la red. (c) Límite de decisión construido por la red completa.

Métodos de gradiente para el entrenamiento

Concepto:
 Mover los pesos en la dirección en que se reduce el error,
 dirección que es opuesta a su gradiente con respecto a los pesos

- Concepto:
 Mover los pesos en la dirección en que se reduce el error,
 dirección que es opuesta a su gradiente con respecto a los pesos
- Interpretación gráfica

- Concepto:
 Mover los pesos en la dirección en que se reduce el error,
 dirección que es opuesta a su gradiente con respecto a los pesos
- Interpretación gráfica
- Ecuación básica:

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mu \nabla_{w} \xi(\mathbf{w}(n))$$

- Concepto:
 Mover los pesos en la dirección en que se reduce el error,
 dirección que es opuesta a su gradiente con respecto a los pesos
- Interpretación gráfica
- Ecuación básica:

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mu \nabla_w \xi(\mathbf{w}(n))$$

- Aplicación:
 - Caso sencillo: perpectrón simple (least mean squares)
 - Caso más general: perceptrón multicapa (back-propagation)

Organización

Un poco de historia..

¿Cómo resolver el problema XOR?

Métodos de gradiente para el entrenamiento

Perceptrón multicapa

Retropropagación en el perceptrón multicapa

Extensión del algoritmo a múltiples capas

- Entrenamiento por gradiente en el ADALINE
- Entrenamiento por gradiente en el MADALINE
- Entrenamiento por gradiente en el caso general
- Regiones de decisión

Regiones para varias capas

Estructura	Tipos de regiones de decisión	Problema XOR	Separación en clases	Formas regiones más generales
Una capa	hemiplano limitado por hiperplano	A B A	BGA	
Dos capas	Regiones convexas abiertas o cerradas	A B A	BSA	
Tres capas	Arbitrarias (Complejidad limitada por N°. de Nodos)	(A) (B) (A)	B	

Figura: Diferentes problemas no-linealmente separables (Lippmann, 1987).

Arquitectura del perceptrón multicapa

Figura: Arquitectura de un perceptrón multicapa (PMC) con dos capas ocultas.

Arquitectura del perceptrón multicapa

Figura: Ilustración de las dos direcciones básicas de flujos de señal en un PMC.

Arquitectura del perceptrón multicapa

- Representación gráfica de 3 capas
- Cálculo de las salidas en cada capa
- Criterio: suma del error cuadrático instantáneo

Cálculo de las salidas en cada capa

· Capa I:

$$v_j^I = \left< \mathbf{w}^I, \mathbf{x} \right> = \sum\limits_{i=0}^N w_{ji}^I x_i$$
 (completo $\mathbf{v}^I = \mathbf{W} \mathbf{x}$)

Cálculo de las salidas en cada capa

· Capa I:

$$v_j^I = \left\langle \mathbf{w}^I, \mathbf{x} \right\rangle = \sum\limits_{i=0}^N w_{ji}^I x_i \quad \text{(completo } \mathbf{v}^I = \mathbf{W} \mathbf{x} \text{)}$$
 $y_j^I = \phi(v_j^I) = \frac{2}{1 + e^{-bv_j^I}} - 1 \quad \text{(simétrica} \pm 1)$

Cálculo de las salidas en cada capa

Capa I:

$$v_j^I = \left\langle \mathbf{w}^I, \mathbf{x} \right\rangle = \sum\limits_{i=0}^N w_{ji}^I x_i \quad \text{(completo } \mathbf{v}^I = \mathbf{W}\mathbf{x} \text{)}$$
 $y_j^I = \phi(v_j^I) = \frac{2}{1 + e^{-bv_j^I}} - 1 \quad \text{(simétrica} \pm 1 \text{)}$

Capa II: $v_i^{II} = \langle \mathbf{w}^{II}, \mathbf{y}^I \rangle \quad \rightarrow \quad v_i^{II} = \phi(v_i^{II})$

Capa III: $v_i^{III} = \langle \mathbf{w}^{III}, \mathbf{y}^{II} \rangle \rightarrow y_i^{III} = \phi(v_i^{III}) = y_i$

Criterio de error

Suma del error cuadrático instantáneo

$$\xi(n) = \frac{1}{2} \sum_{j=1}^{M} e_j^2(n)$$

Aplicación del gradiente (caso general)

$$\Delta w_{ji}(n) = -\mu \frac{\partial \xi(n)}{\partial w_{ji}(n)}$$

Aplicación del gradiente (caso general)

$$\Delta w_{ji}(n) = -\mu \frac{\partial \xi(n)}{\partial w_{ji}(n)}$$

$$\frac{\partial \xi(n)}{\partial w_{ji}(n)} = \frac{\partial \xi(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \frac{\partial v_j(n)}{\partial w_{ji}(n)}$$

Aplicación del gradiente (caso general)

$$\Delta w_{ji}(n) = -\mu \frac{\partial \xi(n)}{\partial w_{ji}(n)}$$

$$\frac{\partial \xi(n)}{\partial w_{ji}(n)} = \frac{\partial \xi(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \left[\frac{\partial v_j(n)}{\partial w_{ji}(n)} \right]$$

$$\frac{\partial v_j(n)}{\partial w_{ji}(n)} = \frac{\partial \sum_{i=0}^{N} w_{ji}(n) y_i(n)}{\partial w_{ji}(n)} = y_i(n)$$

Aplicación del gradiente (caso general)

$$\Delta w_{ji}(n) = -\mu \frac{\partial \xi(n)}{\partial w_{ji}(n)}$$

$$\frac{\partial \xi(n)}{\partial w_{ji}(n)} = \left[\frac{\partial \xi(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \right] y_i(n)$$

Gradiente de error local instantáneo: $\delta_j = \frac{\partial \xi(n)}{\partial y_i(n)} \frac{\partial y_j(n)}{\partial v_i(n)}$

Aplicación del gradiente (caso general)

$$\Delta w_{ji}(n) = \mu \delta_j(n) y_i(n)$$

Gradiente de error local instantáneo:
$$\delta_j = \frac{\partial \xi(n)}{\partial y_j(n)} \left| \frac{\partial y_j(n)}{\partial v_j(n)} \right|$$

Derivada de la función de activación simétrica (1/2)

$$\frac{\partial y_j(n)}{\partial v_j(n)} = \frac{\partial \left\{ \frac{2}{1+e^{-v_j(n)}} - 1 \right\}}{\partial v_j(n)}$$

$$= 2 \frac{e^{-v_j(n)}}{\left(1 + e^{-v_j(n)}\right)^2}$$

$$= 2 \frac{1}{1 + e^{-v_j(n)}} \frac{e^{-v_j(n)}}{1 + e^{-v_j(n)}}$$

$$= 2 \frac{1}{1 + e^{-v_j(n)}} \underbrace{\frac{0}{1 + 1 + e^{-v_j(n)}}}_{1 + e^{-v_j(n)}}$$

$$= 2 \frac{1}{1 + e^{-v_j(n)}} \left(\frac{-1}{1 + e^{-v_j(n)}} + \frac{1 + e^{-v_j(n)}}{1 + e^{-v_j(n)}} \right)$$

Derivada de la función de activación simétrica (2/2)

$$\frac{\partial y_j(n)}{\partial v_j(n)} = 2\frac{1}{1 + e^{-v_j(n)}} \left(1 - \frac{1}{1 + e^{-v_j(n)}} \right)
= 2\frac{y_j(n) + 1}{2} \left(1 - \frac{y_j(n) + 1}{2} \right)
= (y_j(n) + 1) \left(1 - \frac{y_j(n) + 1}{2} \right)
= (y_j(n) + 1) \left(\frac{2 - y_j(n) - 1}{2} \right)
= \frac{1}{2} (y_j(n) + 1) (y_j(n) - 1)$$

Aplicación del gradiente (caso general)

$$\Delta w_{ji}(n) = \mu \delta_j(n) y_i(n)$$

Gradiente de error local instantáneo:
$$\delta_j = -\frac{\partial \xi(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)}$$

$$\delta_j = \frac{\partial \xi(n)}{\partial y_j(n)} \frac{1}{2} (1 + y_j(n)) (1 - y_j(n))$$

Organización

Un poco de historia...

¿Cómo resolver el problema XOR?

Métodos de gradiente para el entrenamiento

Perceptrón multicapa

Retropropagación en el perceptrón multicapa

$$\Delta w_{ji}^{III}(n) = \mu \delta_j^{III}(n) y_i^{II}(n)$$

$$\Delta w_{ji}^{III}(n) = \mu \delta_j^{III}(n) y_i^{II}(n)$$

$$\delta_j^{III}(n) = -\frac{\partial \xi(n)}{\partial y_j^{III}(n)} \frac{1}{2} (1 + y_j^{III}(n)) (1 - y_j^{III}(n))$$

$$\Delta w_{ji}^{III}(n) = \mu \delta_j^{III}(n) y_i^{II}(n)$$

$$\delta_{j}^{III}(n) = -\frac{\partial \xi(n)}{\partial y_{j}^{III}(n)} \frac{1}{2} (1 + y_{j}^{III}(n)) (1 - y_{j}^{III}(n))$$

$$\delta_{j}^{III}(n) = -\frac{\partial \xi(n)}{\partial e_{j}(n)} \frac{\partial e_{j}(n)}{\partial y_{j}^{III}(n)} \frac{1}{2} (1 + y_{j}^{III}(n)) (1 - y_{j}^{III}(n))$$

$$\delta_{j}^{III}(n) = -\frac{\partial \left\{ \frac{1}{2} \sum_{j} e_{j}^{2}(n) \right\}}{\partial e_{j}(n)} \cdot \frac{\partial \left\{ d_{j}^{III}(n) - y_{j}^{III}(n) \right\}}{\partial y_{j}^{III}(n)} \cdot \frac{1}{2} (1 + y_{j}^{III}(n))(1 - y_{j}^{III}(n))$$

$$\delta_{j}^{III}(n) = -\frac{\partial \left\{\frac{1}{2}\sum_{j}e_{j}^{2}(n)\right\}}{\partial e_{j}(n)} \cdot \frac{\partial \left\{d_{j}^{III}(n) - y_{j}^{III}(n)\right\}}{\partial y_{j}^{III}(n)} \cdot \frac{1}{2}(1 + y_{j}^{III}(n))(1 - y_{j}^{III}(n))$$

$$\delta_{j}^{III}(n) = \frac{1}{2}e_{j}(n)(1+y_{j}^{III}(n))(1-y_{j}^{III}(n))^{*}$$

$$\delta_{j}^{III}(n) = -\frac{\partial \left\{\frac{1}{2}\sum_{j}e_{j}^{2}(n)\right\}}{\partial e_{j}(n)} \cdot \frac{\partial \left\{d_{j}^{III}(n) - y_{j}^{III}(n)\right\}}{\partial y_{j}^{III}(n)} \cdot \frac{1}{2}(1 + y_{j}^{III}(n))(1 - y_{j}^{III}(n))$$

$$\delta_j^{III}(n) = \frac{1}{2}e_j(n)(1+y_j^{III}(n))(1-y_j^{III}(n)) \bigstar$$

$$\Delta w_{ji}^{III}(n) = \eta e_j(n) (1 + y_j^{III}(n)) (1 - y_j^{III}(n)) y_i^{II}(n)$$

$$\Delta w_{ji}^{II}(n) = \mu \delta_j^{II}(n) y_i^I(n)$$

$$\Delta w_{ji}^{II}(n) = \mu \delta_j^{II}(n) y_i^{I}(n)$$

$$\delta_j^{II}(n) = -\frac{\partial \xi(n)}{\partial y_j^{II}(n)} \frac{1}{2} (1 + y_j^{II}(n)) (1 - y_j^{II}(n))$$

$$\Delta w_{ji}^{II}(n) = \mu \delta_j^{II}(n) y_i^I(n)$$

$$\delta_{j}^{II}(n) = -\frac{\partial \xi(n)}{\partial y_{j}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n))$$

$$\delta_{j}^{II}(n) = -\frac{\partial \left\{ \frac{1}{2} \sum_{k} e_{k}^{2}(n) \right\}}{\partial y_{j}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n))$$

$$\begin{split} & \Delta w_{ji}^{II}(n) = \mu \delta_{j}^{II}(n) y_{i}^{I}(n) \\ & \delta_{j}^{II}(n) = -\frac{\partial \xi(n)}{\partial y_{j}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n)) \\ & \delta_{j}^{II}(n) = -\frac{\partial \left\{ \frac{1}{2} \sum_{k} e_{k}^{2}(n) \right\}}{\partial y_{j}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n)) \\ & \delta_{j}^{II}(n) = -\frac{1}{2} \sum_{i} \frac{\partial e_{k}^{2}(n)}{\partial y_{i}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n)) \end{split}$$

$$\begin{split} & \Delta w_{ji}^{II}(n) = \mu \delta_{j}^{II}(n) y_{i}^{I}(n) \\ & \delta_{j}^{II}(n) = -\frac{\partial \xi(n)}{\partial y_{j}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n)) \\ & \delta_{j}^{II}(n) = -\frac{\partial \left\{ \frac{1}{2} \sum_{k} e_{k}^{2}(n) \right\}}{\partial y_{j}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n)) \\ & \delta_{j}^{II}(n) = -\frac{1}{2} \sum_{k} \frac{\partial e_{k}^{2}(n)}{\partial y_{j}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n)) \\ & \delta_{j}^{II}(n) = -\sum_{k} e_{k}(n) \frac{\partial e_{k}(n)}{\partial y_{j}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n)) \end{split}$$

$$\delta_{j}^{II}(n) = -\sum_{k} e_{k}(n) \frac{\partial e_{k}(n)}{\partial y_{k}^{III}(n)} \frac{\partial y_{k}^{III}(n)}{\partial v_{k}^{III}(n)} \frac{\partial v_{k}^{III}(n)}{\partial y_{i}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n))$$

$$\delta_{j}^{II}(n) = -\sum_{k} e_{k}(n) \frac{\partial e_{k}(n)}{\partial y_{k}^{III}(n)} \frac{\partial y_{k}^{III}(n)}{\partial v_{k}^{III}(n)} \frac{\partial v_{k}^{III}(n)}{\partial y_{j}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n))$$

$$\delta_{j}^{II}(n) = -\sum_{k} e_{k}(n) \cdot \frac{\partial \left\{ d_{k}^{III}(n) - y_{k}^{III}(n) \right\}}{\partial y_{k}^{III}(n)} \cdot \frac{1}{2} (1 + y_{k}^{III}(n)) (1 - y_{k}^{III}(n)) \cdot \frac{\partial \left\{ \sum_{j} w_{kj}^{III} y_{j}^{II}(n) \right\}}{\partial y_{k}^{II}(n)} \cdot \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n))$$

$$\delta_{j}^{II}(n) = -\sum_{i} e_{k}(n) \frac{\partial e_{k}(n)}{\partial y_{i}^{III}(n)} \frac{\partial y_{k}^{III}(n)}{\partial v_{i}^{III}(n)} \frac{\partial v_{k}^{III}(n)}{\partial y_{i}^{II}(n)} \frac{1}{2} (1 + y_{j}^{II}(n))(1 - y_{j}^{II}(n))$$

$$\delta_{j}^{II}(n) = -\sum_{k} e_{k}(n) \cdot \frac{\partial \left\{ d_{k}^{III}(n) - y_{k}^{III}(n) \right\}}{\partial y_{k}^{III}(n)} \cdot \frac{1}{2} (1 + y_{k}^{III}(n)) (1 - y_{k}^{III}(n)) \cdot \frac{\partial \left\{ \sum_{j} w_{kj}^{III} y_{j}^{II}(n) \right\}}{\partial y_{i}^{II}(n)} \cdot \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n))$$

$$\begin{split} \delta_j^{II}(n) &= -\sum_k e_k(n) \cdot (-1) \cdot \frac{1}{2} (1 + y_k^{III}(n)) (1 - y_k^{III}(n)) \cdot \\ &\cdot w_{kj}^{III} \cdot \frac{1}{2} (1 + y_j^{II}(n)) (1 - y_j^{II}(n)) \end{split}$$

$$\delta_{j}^{II}(n) = \sum_{k} e_{k}(n) \cdot \frac{1}{2} (1 + y_{k}^{III}(n)) (1 - y_{k}^{III}(n)) \cdot w_{kj}^{III} \cdot \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n))$$

$$\delta_{j}^{II}(n) = \sum_{k} e_{k}(n) \cdot \frac{1}{2} (1 + y_{k}^{III}(n)) (1 - y_{k}^{III}(n)) \cdot w_{kj}^{III} \cdot \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n))$$

Pero de la capa III* sabemos que:

$$\delta_k^{III}(n) = \frac{1}{2}e_k(n)(1 + y_k^{III}(n))(1 - y_k^{III}(n))$$

$$\delta_{j}^{II}(n) = \sum_{k} e_{k}(n) \cdot \frac{1}{2} (1 + y_{k}^{III}(n)) (1 - y_{k}^{III}(n)) \cdot w_{kj}^{III} \cdot \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n))$$

Pero de la capa III* sabemos que:

$$\delta_k^{III}(n) = \frac{1}{2}e_k(n)(1 + y_k^{III}(n))(1 - y_k^{III}(n))$$

Reemplzando:

$$\delta_{j}^{II}(n) = \sum_{k} \delta_{k}^{III}(n) w_{kj}^{III} \cdot \frac{1}{2} (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n))$$

Volviendo a:

$$\Delta w_{ji}^{II}(n) = \mu \delta_j^{II}(n) y_i^I(n)$$

Retropropagación

Volviendo a:

$$\Delta w_{ii}^{II}(n) = \mu \delta_i^{II}(n) y_i^{I}(n)$$

Por lo tanto:

$$\Delta w_{ji}^{II}(n) = \eta \left[\sum_{k} \delta_{k}^{III} w_{kj}^{III}(n) \right] (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n)) y_{i}^{I}(n)$$

Generalizando para la capa "p"

$$\Delta w_{ji}^{II}(n) = \eta \left[\sum_{k} \delta_{k}^{III} w_{kj}^{III}(n) \right] (1 + y_{j}^{II}(n)) (1 - y_{j}^{II}(n)) y_{i}^{I}(n)$$

$$\downarrow \downarrow$$

$$\Delta w_{ji}^{(p)}(n) = \eta \left\langle \delta^{(p+1)}, \mathbf{w}_{j}^{(p+1)} \right\rangle (1 + y_{j}^{(p)}(n)) (1 - y_{j}^{(p)}(n)) y_{i}^{(p-1)}(n)$$

Resumen del algoritmo de retropropagación (BP)

- 1. Inicialización aleatoria
- 2. Propagación hacia adelante (de la entrada)
- 3. Propagación hacia atras (del error)
- 4. Adaptación de los pesos
- 5. Iteración: vuelve a 2 hasta convergencia o finalización

Ejemplo gráfico BP con PMC 3 capas

Figura: Ejemplo de un PMC de 3 capas.

Figura: Cálculo salida capa I, neurona 1.

Figura: Cálculo salida capa I, neurona 2.

Figura: Cálculo salida capa I, neurona 3.

Figura: Cálculo salida capa II, neurona 1.

Figura: Cálculo salida capa II, neurona 2.

Figura: Cálculo salida capa III, neurona 1.

Ejemplo: Retropropagación en la capa III (salida)

Figura: Cálculo del error en capa III, neurona 1.

Ejemplo: Retropropagación en la capa III (salida)

Figura: Propagación del error a la capa II, neurona 1.

Ejemplo: Retropropagación en la capa III (salida)

Figura: Propagación del error a la capa II, neurona 2.

Ejemplo: Retropropagación en la capa II (oculta)

Figura: Propagación del error a la capa I, neurona 1.

Ejemplo: Retropropagación en la capa II (oculta)

Figura: Propagacion del error a la capa I, neurona 2.

Ejemplo: Retropropagación en la capa II (oculta)

Figura: Propagación del error a la capa I, neurona 3.

Figura: Actualización de pesos capa I, neurona 1.

Figura: Actualización de pesos capa I, neurona 2.

Figura: Actualizacion de pesos capa I, neurona 3.

Figura: Actualización de pesos capa II, neurona 1.

Figura: Actualización de pesos capa II, neurona 2.

Figura: Actualización de pesos capa III, neurona 1.

Término de momento

Modificación adaptativa de la velocidad de aprendizaje. (ver Haykin Sección 6.3)