Chapter 6

这一讲我们来简单介绍一下一些代数方法在极值图论中的应用.代数方法,顾名思义,就是使用一些代数技巧(如线性代数,多项式)来解决图论中的问题.在前面的章节中,我们已经运用代数中的一些结构,来给出了图论中的构造.本节将选取几个例子来展示代数方法在图论中的威力.我们首先介绍一个概念.

Definition. 设图 G 的顶点为 $1, 2, \dots, k$, 则我们定义 $k \times k$ 的矩阵

$$M_{uv} = \begin{cases} 1, & \text{ äta } G \to u \sim v \\ 0, & \text{ ita } G \to u \nsim v \end{cases}.$$

为图 G 的邻接矩阵.

Theorem. 设 K_n 为 m 个互不相交的完全二部图的并. 则 $m \ge n-1$.

Proof. 设 K_n 为图 $G_1.G_2, \dots, G_m$ 的并, 且设 K_n 的邻接矩阵为 M, G_i 的邻接矩阵为 M_i , 则

$$M = \sum_{i=1}^{m} M_i.$$

一方面, 由于 M 为 K_n 的邻接矩阵, 故 $M = J_n - I_n$, 其中 I_n 为单位矩阵, J_n 为所有元素均为 1 的矩阵.

另一方面, 我们不妨设 G_i 的两个部分为 A_i, B_i . 定义矩阵 L_i 如下:

$$(L_i)_{uv} = \begin{cases} 1, & \text{ 若} u \in A_i \ \exists v \in B_i \\ 0, & \text{ 其他情形.} \end{cases}.$$

则 $M_i = L_i + L_i^{\top}$. 因此, 我们有

$$I_n = J_n - \sum_{i=1}^m (L_i + L_i^{\top}).$$

若 $m \le n-2$, 我们就可以找到一个向量 $\vec{0} \ne \vec{x} \in \mathbb{R}^n$ 满足下述条件:

$$\begin{cases} L_i \vec{x} = \vec{0} \\ J_n \vec{x} = \vec{0} \end{cases} .$$

此时我们有

$$\|\vec{x}\|^2 = \vec{x}^{\top} I_n \vec{x} = \vec{x}^{\top} (J_n - \sum_{i=1}^m (L_i + L_i^{\top})) \vec{x} = -\sum_{i=1}^m \vec{x}^{\top} (L_i + L_i^{\top}) \vec{x} = 0,$$

这就导出了矛盾. □

这一简单的例子向我们展示了代数方法的威力. 在上一个例子中, 我们同时结合了矩阵的技巧以及线性代数的技巧, 通过图本身矩阵良好的结构, 导出了矛盾, 解决了问题. 下一个例子也是这一方法的典型运用.

Theorem. 设简单图 G 有 n 个顶点. 若 G 的任意两个顶点都有且恰有一个公共邻居, 则 G 有一个顶点有 n-1 个邻居.

Proof. 我们用反证法. 假设 $\Delta(G) < n-1$. 对 G 中任意两个不相邻的顶点 x, y, 它们有一个公共的邻居 z. 对于 x 的任一不同于 z 的邻居 v, v 和 y 有一个公共的邻居 f(v), 并且 f(v) 和 x 有唯一公共的邻居 v, 因此对不同的 v, f(v) 两两不同, 且显然 $f(v) \neq z$. 因此, 这就诱导了一个 $N(x) \setminus \{z\}$ 到 $N(y) \setminus \{z\}$ 的单射, 故 $d(x) \leq d(y)$. 同理, $d(y) \leq d(x)$, 故 d(x) = d(y).

考虑 G 的补图 \bar{G} , 则 \bar{G} 中任意两个相邻顶点度数相同. 若 \bar{G} 不是连通图, 由于 $\Delta(G) < n-1$, 故 \bar{G} 没有顶点个数为 1 的连通分支. 对于 \bar{G} 中任意两个连通分支, 从两个连通分支中各取两个点 u,v 和 r,s, 则在图 G 中 u,v 均和点 r,s 相邻, 矛盾! 故 \bar{G} 是连通图, 因此 \bar{G} 中所有顶点度数相同, 即 G 中所有顶点度数相同.

设 G 的每个顶点的度数均为 k. 考虑 G 中如下的三元组 (u,v,w): u 和 v,w 均相邻, 且 $v \neq w$. 我们对这样的三元组的个数算两次. 一方面, 对所有对 (v,w), 均有唯一的 u 使得 u 与 v,w 均相邻, 因此这样的三元组有 n(n-1) 个; 另一方面, 对于任意的 u, 这样的三元对有 k(k-1) 个, 因此 n(n-1) = nk(k-1), 故 $n = k^2 - k + 1$.

设 G 的邻接矩阵为 A, 我们考虑 $B = A^2$. 则我们有

$$b_{ij} = \sum_{r=1}^{n} a_{ir} a_{rj},$$

即 b_{ij} 表示同时与 i,j 相连的点的个数. 因此, B 的每个对角元为 k, 其余元为 1. 设 J_n 为所有元素均为 1 的矩阵, 故我们有

$$A^2 = J_n + (k-1)I_n.$$

注意到 J_n 的特征值为 0(重数 n-1) 和 n(重数 1), I_n 的特征值为 1(重数 n-1), 因此 A^2 的特征值为 k-1(重数 n-1) 和 $n+k-1=k^2(重数 1)$. 而 A 是图的邻接矩阵, 故 $\operatorname{tr}(A)=0$, 因此存在正整数 t 使得

$$t\sqrt{k-1} = k.$$

由整除关系知只能 k=2, n=3,而此时有一个顶点度数为 2, 矛盾! 因此反证假设不成立, 故 $\Delta(G)=n-1$.

这一问题结合了传统的图论技巧和矩阵技巧, 充分展现了代数方法的魅力. 下一个结果看似简单, 却是困扰了数学家们非常多年的著名猜想, 其在 2019 年才由我国数学家黄皓使用矩阵技巧一举解决.

Theorem. 对任意正整数 $n \ge 1$, 设 H 为任一 Q^n 的 $(2^{n-1}+1)$ 个顶点的导出子图, 其中 Q^n 为 n 维 cube graph(顶点集为一切长度为 n 的 0,1 向量构成的集合, 两个顶点相邻当且仅当它们只有一个分量不同). 则

$$\Delta(H) \geqslant \sqrt{n}$$
,

且 n 为完全平方数时等号可以成立.

Proof. 首先, 我们证明 n 为完全平方数时等号成立. 自然地视 Q^n 的顶点集为 $\{1,2,\cdots,n\}$ 的所有子集, 则此时 A_i 与 A_j 相邻当且仅当 $|A_i\Delta A_j| \leq 1$.

设
$$n = k^2$$
. 记 $G_i = \{ik + j | j = 1, 2, ..., k\}, i = 0, 1, ..., k - 1$. 定义
$$X_1 = \{X | |X| - k$$
 奇数,且至少存在一个 G_i 满足 $G_i \cap X = \emptyset$;
$$X_2 = \{X | |X| - k$$
 为偶数,且对一切 G_i , $G_i \cap X \neq \emptyset$. }

我们下面说明,由 $X = X_1 \cup X_2$ 诱导的图 X' 就满足条件.为此,我们只需证明以下两个事实: 事实 $1. |X| = 2^{n-1} + 1.$ 为此,记

$$X_3 = \{X \mid |X| - k$$
为奇数,且对一切 $G_i, G_i \cap X \neq \emptyset.\}$

则 $X_1 \cup X_3$ 为一切元素个数与 k 同奇偶的集合, 共 2^{n-1} 个, 因此我们只需证明 $|X_2| - |X_3| = 1$. 为此, 记 $G = \{ik+1|i=0,1,...,k-1\} \in X_2$, 则我们只需建立 X_3 到 $X_2 \setminus \{G\}$ 的双射. 对任意 $X \in X_3$, 取 i 为最小的使得 $X \cap G_i \neq \{ik+1\}$ 的正整数 i(由于 |X| - k 是奇数, 这可以做到). 考虑 映射 $X \mapsto X\Delta\{ik+1\}$. 显然这是一个 X_3 到 $(X_2 \setminus \{G\})$ 的可逆映射, 因此它是双射. 事实 1 得证.

事实 2. $\Delta(X') \leq k.$ 由奇偶性易知 X_1 或 X_2 中的点两两不相邻. 对于任意 X_1 中的点, 其只能通过加一个元素来和 X_2 中的点相邻,且该元素只能选自唯一的 G_i ,否则会有两个 $G_i \cap X = \emptyset$,这个点就不可能与 X_2 中的点相邻了;因此这个元素只有至多 k 种选择,故 X_1 中的点的度数均小于等于 k. 同理有 X_2 中的点的度数均小于等于 k. 事实 2 得证.

接下来我们证明该不等式. 为此, 我们首先指出下面的引理:

Lemma. 设 A 为 n 阶对称矩阵, B 为 A 的 m 阶主子阵. 设 A 的特征值为 $\lambda_n \leq \cdots \leq \lambda_1$, B 的特征值为 $\mu_{n-1} \leq \cdots \leq \mu_1$, 则对任意正整数 $i \leq n-1$, 我们有 $\lambda_{i+n-m} \leq \mu_i \leq \lambda_i$.

这个引理的证明需要繁复的线性代数技巧, 故我们在此略去. 我们直接使用该引理来证明命题. 为此, 我们考虑如下定义的矩阵序列:

$$A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, A_{n+1} = \begin{bmatrix} A_{n-1} & I \\ I & -A_{n-1}. \end{bmatrix}.$$

那么, 我们有 $A_1^2 = I$. 注意到

$$A_n^2 = \begin{bmatrix} A_{n-1}^2 + I & 0 \\ 0 & A_{n-1}^2 + I \end{bmatrix},$$

故由数学归纳法, 我们显然有 $A_n^2 = nI$, 因此 A_n 的特征值只能为 \sqrt{n} 或 $-\sqrt{n}$. 又因为 $Tr(A_n) = 0$, 故 A_n 的特征值有一半为 \sqrt{n} , 一半为 $-\sqrt{n}$.

如果将 A_n 中的所有 -1 改成 1, 我们不难发现, 此时得到的矩阵 B_n 就是 Q^n 的邻接矩阵. 因此, 对于任意 Q^n 的 $2^{n-1}+1$ 阶子图 H, 我们考虑由 H 诱导的主子阵 A_H . 由柯西交错定理, 设 A_H 最大的特征值为 $\lambda_1(A_H)$, 则我们有

$$\lambda_1(A_H) \ge \sqrt{n}$$
.

最后我们说明 $\Delta(H) \geq \lambda_1(A_H)$ 来完成本结论的证明. 为此, 我们设图 H 的邻接矩阵为 B_H , 则 B_H 与 A_H 每个元素的绝对值均相同. 设 \vec{v} 为 $\lambda_1(A_H)$ 对应的特征向量, 并设 v_1 为 v 的所有分量中绝对值最大的一项. 简记 $A = A_H$, 则我们有

$$|\lambda_1(A)v_1| = |(A\vec{v})_1| = \left|\sum_{j=1}^m A_{1,j}v_j\right| \le \sum_{j=1}^m |A_{1,j}||v_1| \le \Delta(H)|v_1|.$$

最后一个不等式是由于 B_H 与 A_H 每个元素的绝对值均相同, 故

$$\sum_{j=1}^{m} |A_{1,j}|$$

就表示图 H 中顶点 1 的度数,因此自然小于等于 $\Delta(H)$. 因此,我们就推出 $\Delta(H) \geq \lambda_1(A_H)$. 结论得证.

除了矩阵技巧,多项式技巧也是一种重要的解决图论问题的代数方法.下面这个例子向我们展示了多项式方法的威力.

Definition. 对于图 G_1, G_2 , 定义 $G_1 \times G_2$ 如下: 其顶点集为 $U_1 \times U_2$, (v_1, v_2) 和 (w_1, w_2) 连边当 且仅当 v_1 和 w_1 相连, v_2 也和 w_2 相连. 对于图 G, 定义图 G 的维数 d(G) 如下: d(G) 为最小的整数 n, 使得存在完全图 T_1, T_2, \cdots, T_n , 使得 G 为 $T_1 \times T_2 \cdots \times T_n$ 的导出子图.

Theorem. 对于非平凡的完全图 $T_1, T_2, \dots, T_n, T_1 \times T_2 \dots \times T_n$ 的维数为 n.

Proof. 我们只需证明其维数大于等于 n. 注意到 A 为 B 的导出子图时, $d(A) \le d(B)$, 因此我们只需证明一切 T_i 都为 K_2 的情形. 此时该图 G 为 2^{n-1} 个 K_2 的无交并.

设 d(G)=d,则存在完全图 T_1,T_2,\cdots,T_d 使得 G 为 $T_1\times T_2\cdots\times T_d$ 的导出子图. 因此,我们总是可以改设 G 的任意一个顶点 v 为向量 $x(v)=(x_1(v),x_2(v),\cdots,x_d(v))$,其中 G 中两个点 v,w 相邻当且仅当对于任意 $1\leq i\leq d$,均有 $x_i(v)\neq x_i(w)$.

考虑多项式

$$f_v(x_1, x_2, \dots, x_d) = \prod_{i=1}^d (x_i - x_i(v)),$$

则 $f_v(x(w)) = 0$ 为 v, w 不相邻的充要条件. 考虑所有的多项式 f_v 和所有向量 x(w), 由于每个点在图 G 中与且只与一个其他点相邻, 故 f_v 恰在唯一的 x(w) 处非零, 因此 f_v 线性无关. 而 f_v 对于每个变量的次数均分别不超过 1, 故 $2^n \le 2^d$, 即 $d \ge n$. 因此原命题得证.

接下来介绍的另一例子则结合了著名的 Chevalley-Warning 定理, 导出了一个关于图的子图的漂亮的结果.

Lemma. (Chevalley-Warning) 设 p 为素数, $q = p^m$, P_1, P_2, \dots, P_m 为 $\mathbb{F}_q[x_1, x_2, \dots, x_n]$ 上的多项式. 若 $\deg(P_1P_2 \dots P_m) < n$, 则 P_i 的公共根个数为 p 的倍数.

Proof. 记

$$P = \prod_{i=1}^{m} (1 - P_i^{q-1}).$$

则 x 为 P_i 的公共根时 P(x) = 1, 否则 P(x) = 0. 另一方面, 由于 d < q - 1 时,

$$\sum_{x \in F_a} x^d = 0,$$

而 $\deg(P) < n(q-1)$, 因此 P 的各单项式中必有一个变量次数小于 q-1, 因此全部求和知

$$\sum_{x \in F_q^n} P(x) = 0,$$

引理得证.

由引理, 我们可以证明下述结论:

Theorem. 给定素数 p. 若图 G(V, E) 的平均度数大于等于 2p-2, 且 G 中每个顶点的度数均小于等于 2p-1, 则 G 存在一个子图, 每个顶点的度数均为 p. (这种子图也被称为 p-regular 的子图.)

Proof. 考虑 $\mathbb{F}_p[x_e:e\in E]$. 对于每个 $v\in V$, 记

$$P_v = \sum_{v \in e \in E} x_e^{p-1}.$$

那么 0 为 P_v 的公共根. 显然我们可以不妨设 G 中无孤立点. 因此 $\deg P_v = p - 1$, 故

$$\sum_{v \in V} \deg P_v = (p-1)|V| < |E|.$$

因此, 由 Chevalley-Warning Theorem, 我们可以找到 P_v 的另一个公共根 c. 记 $c=(c_e)_{e\in E}$, 并记

$$E' = \{ e \in E : c_e \neq 0 \}.$$

那么, 对于任意 $v \in e \in E'$, 由于 c 为 P_v 的公共根, 我们有

$$0 = \sum_{v \in e \in E} c_e^{p-1} = \sum_{v \in e \in E'} c_e^{p-1} = \sum_{v \in e \in E'} 1,$$

故 E' 中含包含点 v 的边数为 p 的倍数, 故只能为 p, 因此 E' 就诱导一个每个顶点的度数均为 p 的子图.

这个定理的条件看似限制很大,应用范围不广泛,然而事实上,使用上一个定理,结合一些图论技术,可以证明下述结论:

Corollary. (Pyber Theorem) 给定正整数 n. 设图 G(V,E) 满足 $|V|=n, |E| \geq Cn \ln n$, 其中 C(k) 是只和 k 相关的常数. 则 G 含一个 k-regular 的子图.

注意,这一定理并不要求素数,并且其条件比上一定理的限制要少得多,因此这一定理给了我们一个在一般的图中寻找正则图的重要工具.