Notes for Chapter 7: CIS 2033 Fall 2015 Computational Prob and Stat Shanshan Zhang (tuf14438@temple.edu)

Chapter 7: Expectation and Variance 1

Definition 1.1

Definition: $E[X] = \begin{cases} \sum_{x} x P(x), & X \text{ is discrete} \\ \int_{x} x f(x) dx, & X \text{ is continuous} \end{cases}, Var[X] = E[(X - E[X])^{2}]$

1.1.1 Important expectation and variance

	Notation	E[X]	Var[X]
Discrete	$X \sim Ber(p)$	p	p(1-p)
	$X \sim Bin(n,p)$	np	np(1-p)
	$X \sim Geo(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	$X \sim Pois(\mu)$	μ	μ
Continuous	$X \sim Unif(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	$X \sim Exp(\lambda)$	λ^{-1}	λ^{-2}
	$X \sim Par(\alpha)$	$\frac{\alpha}{\alpha-1}$	$\frac{\alpha}{(\alpha-1)^2(\alpha-2)}, for \ \alpha > 2$
	$X \sim N(\mu, \sigma^2)$	μ	σ^2

Change of variables

Exercise 7.3, 7.4

Exercise 7.3, 7.4

Definition:
$$E[g(X)] = \begin{cases} \sum_{x} g(x)P(X=x), & X \text{ is discrete} \\ \int_{x} g(x)f(x)dx, & X \text{ is continuous} \end{cases}; Var[g(X)] = E[(g(X) - E[g(X)])^{2}]$$

Useful formulas: $Var[X] = E[X^2] - (E[X])^2; E[aX + b] = aE[X] + b; Var[aX + b] = a^2Var[X]$