

Loading data into xts object

Aric LaBarr, Ph.D.
Senior Data Scientist, Elder Research

xts objects

- eXtensible Time Series object
- Builds upon zoo objects

Loading Data Into xts Object

- Attach a date index on to a data matrix
- Very easy to manipulate!

xts objects

Manipulating Time Series Data in R with xts & zoo

Manipulating Time Series Data in R: Case Studies

Loading Data Example

Let's practice!

FORECASTING PRODUCT DEMAND IN R

ARIMA Time Series 101

Aric LaBarr, Ph.D.
Senior Data Scientist, Elder Research

Other courses on time series

Time Series with R skill track

What is an ARIMA Model?

- AutoRegressive Models
- Integrated
- Moving Average

Integrated - Stationarity

- Does your data have a dependence across time?
- How long does this dependence last?

Stationarity

- Effect of an observation dissipates as time goes on
- Best long term prediction is the mean of the series
- Commonly achieved through differencing

Differencing

Typically used to remove trend...

$$Y_t - Y_{t-1}$$

... or seasonality

$$Y_t - Y_{t-12}$$

Autoregressive (AR) Piece

- AutoRegressive Models
 - Depend only on previous values called lags.
 - $Y_t = \omega_0 + \alpha_1 Y_{t-1} + \alpha_2 Y_{t-2} + ... + \varepsilon_t$
 - Long-memory models effect slowly dissipates

Moving Average (MA) Piece

- Moving Average Models
 - Depend only on previous "shocks" or errors
 - $Y_t = \omega_0 + \varepsilon_t + \beta_1 \varepsilon_{t-1} + \beta_2 \varepsilon_{t-2} + \dots$
 - Short-memory models effects quickly disappear completely

Training vs. Validation


```
M_t <- bev_xts[,"M.hi"] + bev_xts[,"M.lo"]</pre>
```


Training vs. Validation


```
M_t_train <- M_t[index(M_t) < "2017-01-01"]
M_t_valid <- M_t[index(M_t) >= "2017-01-01"]
```


How to Build ARIMA Models?

Let's practice!

FORECASTING PRODUCT DEMAND IN R

Forecasting with time series

Aric LaBarr, Ph.D.
Senior Data Scientist, Elder Research

Forecasting

- Goal of most time series models!
- Models use past values or "shocks" to predict the future
- Pattern recognition followed by pattern repetition

Forecasting

Forecasts extrapolate signal portion of model.

Confidence intervals account for uncertainty.

Forecasting Example

```
forecast_M_t <- forecast(M_t_model, h = 22)

for_dates <- seq(as.Date("2017-01-01"), length = 22, by = "weeks")
for_M_t_xts <- xts(forecast_M_t$mean, order.by = for_dates)

plot(M_t_valid, main = 'Forecast Comparison')
lines(for_M_t_xts, col = "blue")</pre>
```


How to Evaluate Forecasts?

- 2 Common Measures of Accuracy:
 - 1. Mean Absolute Error (MAE)

$$\frac{1}{n}\sum_{i=1}^n |Y_t - \hat{Y}_t|$$

2. Mean Absolute Percentage Error (MAPE)

$$rac{1}{n}\sum_{i=1}^n |rac{Y_t-\hat{Y}_t}{Y_t}| imes 100$$

MAE and MAPE Example

```
for_M_t <- as.numeric(forecast_M_t$mean)
v_M_t <- as.numeric(M_t_valid)

MAE <- mean(abs(for_M_t - v_M_t))
MAPE <- 100*mean(abs((for_M_t - v_M_t)/v_M_t))

> print(MAE)
[1] 198.7976

> print(MAPE)
[1] 9.576247
```


Let's practice!