考研数学笔记 以姜晓千强化课讲义为底本

Weary Bird

2025年7月31日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月31日

目录

第一章	无穷级数	1
1.1	数项级数敛散性的判定	1
1.2	交错级数	2
1.3	任意项级数	3
1.4	幂级数求收敛半径与收敛域	4
1.5	幂级数求和	6
1.6	幂级数展开	8
1.7	无穷级数证明题	9
1.8	傅里叶级数	11

第一章 无穷级数

数项级数敛散性的判定 1.1

Remark. 正项级数敛散性的判断

比较判别法(放缩/等价/Taylor展开)

比值判别法(当出现 n!)

根值判别法 (当出现 n^n)

积分判别法 (P级数/对数 P级数)

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \text{收敛}, & p > 1 \\ \text{发散}, & p \le 1 \end{cases}$$

推广

$$\sum_{n=1}^{\infty} \frac{\ln^{\alpha} n}{n^p} \sim \sum_{n=1}^{\infty} \frac{1}{n^p}$$

对数P级数

$$\sum_{n=2}^{\infty} \frac{1}{n \ln^p n} \begin{cases} \psi \otimes, & p > 1 \\ \xi \otimes, & p \le 1 \end{cases} \leftarrow \int \frac{\mathrm{d}x}{x \ln^p n} = \int \frac{d \ln x}{\ln^p x}$$

故其与 P 级数的敛散性与 P 的关系一致, 推广

$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha} \ln^{p} n} \sim \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \begin{cases} \alpha > 1, & \text{收敛} \\ \aleph \leq 1, & \text{发散} \end{cases}$$

1. (2015, 数三) 下列级数中发散的是
$$(A)\sum_{n=1}^{\infty}\frac{n}{3^n}$$
 $(B)\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}\ln\left(1+\frac{1}{n}\right)$

1.2 交错级数 第一章 无穷级数

$$(C)\sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n} \qquad (D)\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Solution. (A) 由根值判别法 $\lim_{n\to\infty} \sqrt[n]{\frac{n}{3^n}} = \frac{1}{3} < 1$ 收敛

- (B) 由于 $\frac{1}{\sqrt{n}} \ln (1 + \frac{1}{n}) \sim \frac{1}{n^{\frac{3}{2}}}$, 而 $\frac{3}{2} > 1$ 故原级数收敛
- (C) 原级数等于 $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n} + \sum_{n=2}^{\infty} \frac{1}{\ln n}$ 前一个级数由莱布尼兹判别法知收敛, 第二个级数由 P 级数的推广容易得知其发散 故原级数发散

(D) 由比值判别法有
$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^2=e^{-1}<1$$
 故原级数收敛

2. (2017, 数三) 若级数
$$\sum_{n=2}^{\infty} \left[\sin \frac{1}{n} - k \ln \left(1 - \frac{1}{n} \right) \right]$$
 收敛, 则 $k = (A)$ 1 (B) 2 (C) $-$ 1 (D) $-$ 2

Solution.

原式
$$=\frac{Taylor}{n} \frac{1}{n} - \frac{1}{6n^3} + o(\frac{1}{n^3}) - k\left[\frac{1}{n} - \frac{1}{2n^2} + O(\frac{1}{n^2})\right]$$

$$= \frac{1+k}{n} + \frac{k}{2} \cdot \frac{1}{n^2} + o(\frac{1}{n^2})$$

由 P 级数判别法可知, $1+k=0 \implies k=-1$

1.2 交错级数

Remark. 交错级数敛散性的判断

莱布尼兹判别,通项单调递减趋于0可以判断原级数收敛.

取绝对值, 若其绝对收敛则原级数也收敛

3. 判定下列级数的敛散性

$$(1) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n - \ln n}$$

$$(2) \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$$

Solution. (1) 记 $f(x) = \frac{1}{x - \ln x}$, $f'(x) = -\frac{1 - \frac{1}{x}}{(x - \ln x)^2} < 0$ 从而 u_n 单调递减, 又 $\lim_{n \to \infty} u_n = 0$ 故由莱布尼兹判别法可知 $\sum_{i=1}^{n} \frac{(-1)^{n-1}}{n - \ln n}$ 收敛

(2) 在一起不好判断的时候, 把它们拆开了分别做

原式 =
$$\sum_{n=2}^{\infty} \frac{(-1)^n \sqrt{n}}{n-1} - \sum_{n=1}^{\infty} \frac{1}{n-1}$$

由莱布尼兹判别法易知第一个级数收敛, 第二个级数由 P 级数可知其发散. 故原级数发散

1.3 任意项级数

Remark. 任意项级数

收敛级数的定义(部分和极限存在)

$$S_n = u_1 + u_2 + \dots u_n = \sum_{i=1}^n u_i$$
, 若级数收敛 $\iff \lim_{n \to \infty} S_n \exists$

级数的性质 改变有限项级数的敛散性不变

级数的性质 结合律, 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 则<u>不改变其项的次序间任意添加符号</u>, 并把每个括号内的数作为一项, 这样得到的新奇数仍然收敛, 且其和不变. 反之不然.

结合律的推论 1 若加括号后的级数发散,则原级数必然发散

结合律的推论 2 若 $\lim_{n\to\infty}=0$ 又其相继两项加括号后的级数收敛, 则原级数也收敛, 且和相等

收敛级数的必要条件 若 $\sum_{n=1}^{\infty} u_n$ 收敛, 则 $\lim_{n\to\infty} u_n = 0$

4. (2002, 数一) 设 $u_n \neq 0 (n = 1, 2, 3, \cdots)$, 且 $\lim_{n \to \infty} \frac{n}{u_n} = 1$

则级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right)$

(A) 发散 (B) 绝对收敛 (C) 条件收敛 (D) 敛散性根据所给条件不能判定

Solution. 这种题首先判断是否绝对收敛, 由 $\lim_{n\to\infty}\frac{n}{u_n}=1$ 可知其一定不可能绝对收敛让后判断级数本身是否收敛, 这种形式的题目大概率就是要使用定义, 求其部分和

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{u_1} + \frac{1}{u_2} - \frac{1}{u_2} - \frac{1}{u_3} + \dots + (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right) \right)$$

故

$$\lim_{n \to \infty} S_n = \frac{1}{n_1}$$

因此原级数条件收敛

5. (2019, 数三) 若级数 $\sum_{n=1}^{\infty} nu_n$ 绝对收敛, $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件收敛, 则

$$(A)$$
 $\sum_{n=1}^{\infty} u_n v_n$ 条件收敛 (B) $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛

$$(C)$$
 $\sum_{n=1}^{\infty} (u_n + v_n)$ 收敛 (D) $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散

Solution. 这种题目比较好的解法是用特殊值筛选掉错误答案. 如令 $u_n=0$ 则 A 错误, $v_n=(-1)^n$ 则 B 错误, $v_n=\frac{(-1)^n}{\ln n}$ 则 D 错误

证明 B 选项正确, 关键点考虑 极限的有界性 由 $\sum \frac{v_n}{n}$ 收敛可知

$$\lim_{n\to\infty}\frac{v_n}{n}=0$$

由极限的有界性,可知

$$\exists M, \forall n, \left| \frac{v_n}{n} \right| \le M$$

从而

$$|u_n v_n| = \left| n u_n \cdot \frac{v_n}{n} \right| \le M |nn|$$

故B选项正确

1.4 幂级数求收敛半径与收敛域

Remark. 方法一: 阿贝尔定理. 收敛的幂级数在收敛区间内<u>绝对收敛</u>, 在收敛域外<u>发散</u>, 在边界点上可能收敛也可能发散, 可能绝对收敛也可能条件收敛

方法二: 比值定理/根值定理

方法三:柯西判别法 最常用

逐项求导/逐项积分,收敛区间不变,需要注意边界点,其敛散性可能发生改变.

6. (2015, 数一) 若级数 $\sum_{n=0}^{\infty} a_n$ 条件收敛则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数

$$\sum_{n=1}^{\infty} n a_n (x-1)^n \text{ in}$$

- (A) 收敛点, 收敛点
- (B) 收敛点, 发散点
- (C) 发散点, 收敛点 (D) 发散点, 发散点

Solution. 由题设条件可知级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛区间为 (-1,1)

$$\sum_{n=1}^{\infty} n a_n (x-1)^n = (x-1) \sum_{n=1}^{\infty} n a_n (x-1)^{n-1}$$
$$= (x-1) \left[\sum_{n=1}^{\infty} n a_n (x-1)^n \right]'$$

故其收敛区间为 $-1 < x - 1 < 1 \implies x \in (0,2)$ 由阿贝尔定理可知 $x = \sqrt{3}$ 为绝对收敛 点,x=3 为发散点

7. 求幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{3^n(2n+1)}$ 的收敛域.

Solution. 这种题目优先考虑柯西定理, 即

$$\lim_{n \to \infty} \sqrt[n]{|u_n(x)|} = \frac{x^2}{3} < 1$$

即 $x \in (-\sqrt{3}, \sqrt{3})$ (收敛区间). 接着判断边界点的敛散性. 当 $x = \pm \sqrt{3}$ 有

$$\sum_{n=1}^{\infty} (-1)^n \frac{\pm \sqrt{3}}{2n+1}$$

由莱布尼兹判别法可知其条件收敛, 故原级数的收敛域为 $[-\sqrt{3},\sqrt{3}]$

1.5 幂级数求和

Remark. 关键就是六组公式

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, x \in (-\infty, +\infty)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}, x \in (-\infty, +\infty)$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}, x \in (-\infty, +\infty)$$

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{2n+1}, x \in (-\infty, +\infty)$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n}, x \in (-1, 1)$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n} x^{n}, x \in (-1, 1)$$

$$\ln (1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}, x \in (-1, 1]$$

$$\ln (1-x) = -\sum_{n=1}^{\infty} \frac{x^{n}}{n}, x \in [-1, 1)$$

8. (2005, 数一) 求幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)} \right] x^{2n}$$
 的收敛区间与和函数 $f(x)$.

Solution. 这种题都可以说是套路题, 第一步先求收敛域. 由柯西定理有

$$\lim_{n \to \infty} \sqrt[n]{\left| (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)} \right] x^{2n} \right|} = x^2 < 1$$

故收敛区间为 (-1,1)

$$S(x) = \sum_{n=1}^{\infty} (-1)^{n-1} x^{2n} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} x^{2n}$$

其中

$$S_1(x) = \sum_{n=1}^{\infty} (-1)^{n-1} x^{2n} = \frac{x^2}{1+x^2}, x \in (-1,1)$$

1.5 幂级数求和 第一章 无穷级数

$$\begin{split} S_2(x) &= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} x^{2n} \\ &= 2x \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \cdot x^{2n-1} - \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{2n} \\ &= 2x \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \cdot x^{2n+1} - \ln(1+x^2) \\ &= 2x \arctan x - \ln(1+x^2) \end{split}$$

综上, 和函数为 $f(x) = \frac{x^2}{1+x^2} + 2x \arctan x - \ln(1+x^2)$

9. (2012, 数一) 求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数.

Solution. 由柯西定理有

$$\lim_{n \to \infty} \sqrt[n]{\left| \frac{4n^2 + 4n + 3}{2n + 1} \cdot x^{2n} \right|} = x^2 < 1$$

从而收敛区间为 $x \in (-1,1)$ 当 $x = \pm 1$ 时级数为

$$\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n+1}$$

显然发散. 故收敛域为 (-1,1), 接下来求和函数.

$$S(x) = \sum_{n=0}^{\infty} (2n+1)x^{2n} + \frac{2}{x} \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}, x \neq 0$$

其中

$$S_1(x) = \sum_{n=0}^{\infty} (2n+1)x^{2n} = \left(x\sum_{n=0}^{\infty} x^{2n}\right)' = \left(\frac{x}{1-x^2}\right)' = \frac{1+x^2}{(1-x^2)^2}$$
$$S_2'(x) = \sum_{n=0}^{\infty} x^{2n} = \frac{1}{1-x^2}$$

故

$$S_2(x) = S_2(x) + \int_0^x S'(t) dt = \frac{1}{2} \ln \frac{1+x}{1-x}$$

需要单独计算 S(0) = 3

综上和函数为
$$S(x)$$

$$\begin{cases} \frac{1+x^2}{(1-x^2)^2} + \frac{1}{x} \ln \frac{1+x}{1-x}, & x \in (-1,0) \cup (0,1) \\ 3, & x = 0 \end{cases}$$

10. (2004, 数三) 设级数 $\frac{x^4}{2\cdot 4} + \frac{x^6}{2\cdot 4\cdot 6} + \frac{x^8}{2\cdot 4\cdot 6\cdot 8} + \cdots \quad (-\infty < x < +\infty)$ 的和函数为 S(x)。求:

- (1) S(x) 所满足的一阶微分方程;
- (2) S(x) 的表达式.

Solution. (1) 求上述级数求导

$$S'(x) = \frac{x^3}{2} + \frac{x^5}{2 \cdot 4} + \dots$$
$$= x \left(\frac{x^2}{2} + \frac{x^4}{2 \cdot 4} + \dots \right)$$
$$= x \left[\frac{x^2}{2} + S(x) \right]$$

且有初值 S(0)=0. (2) 上述问题转换为如下初值问题

$$\begin{cases} y' - xy = \frac{x^3}{2} \\ y(0) = 0 \end{cases}$$

可以解出 $S(x) = e^{\frac{x^2}{2}} - \frac{x^2}{2} - 1$

1.6 幂级数展开

11. (2007, 数三) 将函数 $f(x) = \frac{1}{x^2 - 3x - 4}$ 展开成 x - 1 的幂级数, 并指出其收敛区间.

Solution.

$$f(x) = \frac{1}{(x-4)(x+1)} = \frac{1}{5} \left(\frac{1}{x-4} - \frac{1}{x+1} \right)$$

其中

$$\frac{1}{x-4} = \frac{1}{-3+x-1}$$

$$= -\frac{1}{3} \frac{1}{1-\frac{x-1}{3}}$$

$$= -\frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{x-1}{3}\right)^n, x \in (-2,4)$$

$$= \sum_{n=0}^{\infty} -\frac{1}{3^{n+1}} (x-1)^n$$

同理另一部分为

$$\frac{1}{x+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-1)^n, x \in (-1,3)$$

故

$$f(x) = -\frac{1}{5} \sum_{n=0}^{\infty} \left[\frac{1}{3^{n+1}} + \frac{(-1)^n}{2^{n+1}} \right] (x-1)^n, x \in (-1,3)$$

1.7 无穷级数证明题

12. 设
$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$

(I) 求
$$\sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$$
 的值

(II) 证明任意常数 $\lambda > 0$, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛

Solution. (1)

$$a_{n+2} = \int_0^{\frac{\pi}{4}} \tan^{n+2} x dx$$

$$a_n + a_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x (1 + \tan^2 x) dx$$
$$= \frac{\tan^{n+1} x}{n+1} \Big|_0^{\frac{\pi}{4}}$$
$$= \frac{1}{n+1}$$

故原级数等于

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{n \to \infty} \left(1 - \frac{1}{2} + \frac{1}{2} - \dots + \frac{1}{n} - \frac{1}{n+1} \right) = 1$$

(2) 由一可知

$$a_n = \frac{1}{n+1} - a_{n+2} \implies a_n < \frac{1}{n+1}$$

故要证级数的通项满足

$$\frac{a_n}{n^{\lambda}} < \frac{1}{n^{\lambda}(n+1)} < \frac{1}{n^{(\lambda+1)}}$$

当 $\lambda > 0$ 级数 $\sum_{n=1}^{\infty} \frac{1}{n^{(\lambda+1)}}$ 收敛, 由比较判别法可知原级数收敛

13. (2016, 数一) 已知函数 f(x) 可导,且 $f(0) = 1,0 < f'(x) < \frac{1}{2}$ 。 设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)(n=1,2,\cdots)$ 。 证明:

(I) 级数
$$\sum_{n=1}^{\infty} (x_{n+1} - x_n)$$
 绝对收敛;

(II) $\lim_{n\to\infty} x_n$ 存在, 且 $0 < \lim_{n\to\infty} x_n < 2$.

Solution. (1) 本质考察的为压缩映射的证明

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})|$$

$$= |f'(\xi)| \cdot |x_n - x_{n-1}|$$

$$< \frac{1}{2} |x_n - x_{n-1}|$$

$$\cdots$$

$$< \frac{1}{2^{n-1}} |x_2 - x_1|$$

由级数 $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ 收敛, 故原级数收敛

(2) 由 (1) 级数的收敛有

$$\lim_{n \to \infty} S_n \exists \implies \lim_{n \to \infty} x_{n+1} = A + x_1 = a$$

故极限存在, 有题设有 f(a) = a 记 g(x) = x - f(x) 有 g'(x) = 1 - f'(x) > 0 故 g(x) 单调递增, 又 g(0) = -1 < 0

$$g(2) = 2 - f(2) = 1 - [f(2) - f(0)] = 1 - 2f'(\xi) > 0, \xi \in (0, 2)$$

由零点存在定理可知有且仅有唯一零点且 0 < a < 2

- 14. (2014, 数一) 设数列 $\{a_n\}$, $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}$, $0 < b_n < \frac{\pi}{2}$, $\cos a_n a_n = \cos b_n$, 且级数 $\sum_{n=1}^{\infty} b_n$ 收敛。
 - (1) 证明 $\lim_{n\to\infty} a_n = 0$;
 - (2) 证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

Solution. (1) 由题设条件有

$$\cos b_n > \cos a_n \implies 0 < a_n < b_n$$

由于级数 $\sum_{n=1}^{\infty} b_n$ 收敛, 故 $\lim_{n\to\infty} b_n = 0$ 再由夹逼定理有

$$\lim_{n\to\infty} a_n = 0$$

(2) 方法一: 拉格朗日中值定理

$$\frac{a_n}{b_n} = \frac{\cos a_n - \cos b_n}{b_n}$$

$$= \frac{-\sin \xi (a_n - b_n)}{b_n}, \xi \in (a_n, b_n)$$

$$= \frac{(b_n - a_n) \cdot \sin \xi}{a_n} < b_n - a_n < b_n$$

方法二: 等价代换

$$\frac{a_n}{b_n} = \frac{\cos a_n - \cos b_n}{b_n} < \frac{1 - \cos b_n}{b_n} \sim \frac{1}{2}b_n$$

级数 $\sum_{n=1}^{\infty} b_n$ 收敛, 故原级数收敛

1.8 傅里叶级数

Remark. 傅里叶级数就两个考点

(一) 求傅里叶级数的展开式(以 2l 为周期)

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x \right)$$

其中系数为

$$\begin{cases} a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx, n = 0, 1, 2, \dots \\ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx, n = 1, 2, 3, \dots \end{cases}$$

- (二) 狄利克雷收敛定理 (充分条件) 若函数在区间 [-1,1] 上满足
 - (1) 连续,或只有有限个间断点,且都是第一类间断点
 - (2) 只有有限个极值点

则 f(x) 在区间 (-l,l) 上的傅里叶级数收敛, 且满足

$$f(x)$$
对应傅里叶级数 =
$$\begin{cases} f(x), & x$$
为连续点
$$\frac{1}{2} \left[f(x+0) + f(x-0) \right], & x$$
为第一类间断点
$$\frac{1}{2} \left[f(-l+0) + f(l-0) \right], & x$$
为区间端点

1.8 傅里叶级数

第一章 无穷级数

15. 设函数

$$f(x) = \begin{cases} e^x, & -\pi \le x < 0 \\ 1, & 0 \le x < \pi \end{cases}$$

则其以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于?, 在 $x = 2\pi$ 收敛于?.

Solution. 由狄利克雷收敛定理知, f(x) 以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于

$$S(\pi) = \frac{f(\pi - 0) + f(-\pi + 0)}{2} = \frac{1 + e^{-\pi}}{2}$$

在 $x = 2\pi$ 收敛于

$$S(2\pi) = S(0) = \frac{f(0-0) + f(0+0)}{2} = \frac{1+1}{2} = 1$$

16. 将 $f(x) = 1 - x^2, 0 \le x \le \pi$, 展开成余弦级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

Solution. 对 $f(x) = 1 - x^2$ 进行偶延拓, 由 $f(x) = 1 - x^2$ 为偶函数, 知 $b_n = 0$ 。

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) dx = 2\left(1 - \frac{\pi^2}{3}\right)$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) \cos nx dx = \frac{4(-1)^{n+1}}{n^2} \quad (n = 1, 2, \dots)$$

$$f(x) = 1 - x^2 = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = 1 - \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \cos nx$$

令 x = 0, 代入上式, 得

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$$