

T terronz

Shal vist at det fins punt e på hantet som sværen ble det gunntet det ligger ræt over i terrenget

F: K -) T x -> 5 = F(x) x somer his 5 i torrespet

6= F: T-1 K

p: K -> T prx) puilited i terrenged shill ex X ligger rest are dette punkted. F, C, p er alle horstinvelige.

1

Et hard her vantigvis en shala (f. dr. 1/0000, cl(x1,x2)= h = $\frac{1}{1000}$ d(F(x), F(x)) Kon anto d(x1,x2) = Cd(F(x,1,F(x2)) der 0 < C < 1 Se pi Gop=Fop=H d(H(x), H(x')) = d(G(p(xi), G(p(x')) = C(p(x), p(x')) = C(x,x')fordi per projetsjon og beværeren austand. Her altsi en hontrassjun med hondrakrjons faht or C = mélostobler på kertet. H: K- K 2 x x o E K, definer ? Xns filze i K, wd Xn+1 = H(xn) Bancah filspunkt tearen =) ∃ e∈K s.s. xn→e

Sett yn = p(xn) (Xu) er (anchy filge ig p bevarer austand si (/2) en Canchy folly i terrenget fing de T s.a. y - d Davie G(yn) -> G(d) G(yn) = G(P(Xn)) = H(xn) = Xny, - 1e må ha G(d)=e dus. e oj d Source Fil her andre Har viden yn = P(xn) -> P(e) e er vant soldt punkt (e ligger i Kelleri K-K ves at det somme de d)

4

b) the view indydig filopunkt for $F^{\circ k}$ (siden $F^{\circ k}$ en huntimalsjin) De en ope F(x) et hilopunkt fon $F^{\circ k}$. Vi ha $F^{\circ k}(x) = F(F^{\circ k}(x)) = F(x)$

=) F(x) en fib pankt for For dos. p.gr. an endydighet en F(x)=x

=) X en fibspankt for F

His no y var ex filspankt for F

a) y en da fibspankt for For

en dydighet gri da y = X

Har benist:

Fhor et en try dig filspunkt (wendy filspunkt til For)

5.5.5c)

F:
$$|R^2 \rightarrow |R^2$$

F(x,y) = $(2y+1, \frac{x}{3}+1)$

For anyon 4 on trucksjon:

 $|F(x,y) - F(u,v)| =$
 $= \{((2y+1)-(2v+1))^2 + ((\frac{x}{3}+1)-(\frac{u}{3}+1))^2\}^{\frac{1}{2}}$

H vis $x = u = 0$
 $|F(0,y) - F(0,v)| = (2)(y-v)$
 $= 2|(0,y) - (0,v)| (2>1)$

For $(x,y) = F(2y+1, \frac{x}{3}+1)$
 $= (2(\frac{x}{3}+1)^4, \frac{2y+1}{3}+1) = (\frac{2}{3}x+3, \frac{2y}{3}+\frac{4}{3})$
 $|F - F(x,y) - F - F(u,v)|$
 $= \frac{2}{3}|(x,y) - (u,v)| \quad 0 < 0 = \frac{2}{3} < 1$

Kontrakijan.

Shad firm filspankt for f som a LL filspankt for $f^{\circ 2} = f \circ f$ $(f \circ f)(x,y) = (\frac{2}{3}x+3, \frac{2}{3}y+\frac{4}{3})$ $\frac{2}{3}x+3=x=1$ $\frac{1}{3}x=3$, x=9 $\frac{2}{3}y+\frac{4}{3}=y=1$ $\frac{1}{3}y=\frac{4}{3}$, y=4(9,4) a flopunkt for f.

5.6

1) f: IR > IR

 $f(x) = X^{1}-X$

 $f(x) = 0, \quad x^3 - x = 0$

 $(X^{2}-1)=0 \Rightarrow X=0, X=-1, X=1$

shet bruce Newtons metale til

å, behntte "dette Eller men

présist: Bélierte Newdonsmitude ved

ehsemplet. $f(x)=x^3-x$ $f'(x)=3x^2-1=0$

メニナー

5)
$$e^{x+5} = Ain(x-5)$$

 $y^2 - \hat{x}^2 = 1$
 $e^{x+5} = 1$
 e^{x

5.6. 6

$$X^{2}+y^{2}+z^{2}=9$$

$$X^{1}-y^{2}+2z^{2}=1$$

$$X+y+10z=1$$

$$F(x,y,z)=(x^{2}+y^{2}+z^{2}-9,x^{2}+2z^{2}-1,x+y+10z-1)$$

$$F(x,y,z)=(0,0,0)$$

$$F'(x,y,z)=(0,0,0)$$

$$F'(x,y,z)=(2x-2y-4z-1,y+2)$$

$$=(2x-2y-4z-1,y+2)$$

5.7.3

$$X^3 + y^3 + y = 1 = g(x,y)$$
 (x_0, y_0) view part part part part $g(x,y) = 1$

Status at sund x_0 Lon define

 $y = f(x)$ she at $g(x, f(x)) = 1$
 $\frac{\partial g}{\partial g}(x_0, y_0) = 3y_0 + 1 > 0 + y_0$.

 p_0^2 standar filger for implicit functions terrem.

 $x^3 + y^3 + y - 1 = 0$, $y = f(x)$
 $3x^2 + 3y^2 f(x) + f'(x) = 0$
 $f'(x_0) = \frac{-3x_0^3}{1+3y_0^2}$

4)
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x_1 y_1 z) = x y^2 e^t + z$
 $5 \text{ Let } \text{ wise all } \text{ remode } (-1, 2, 0)$
 $ex \text{ flaten } f(x_1 y_1 z) = -4$
 $gith som $z = g(x, y)$
 $den g(-1, 2) = 0$, $f(x_1 y_1 g(x_1 y_1)) = -4$
 $No h$ is not all $\frac{2f}{2z}(-1, 2, 0) \neq 0$
 $\frac{2f}{2z} = x y^2 e^z + 1$, $\frac{2f}{2x} = y^2 e^z$, $\frac{2f}{2x} = 2x y e^z$
 $\frac{2f}{2x}(-1, 2, 0) = -2e^z + 1 = -3 \neq 0$
 $\frac{2g}{2x}(-1, 2) = -\frac{2f}{2x}(-1, 2, 0) = -\frac{4}{3}$
 $\frac{2g}{2x}(-1, 2) = -\frac{2f}{2x}(-1, 2, 0) = -\frac{4}{3}$$

6)
$$\frac{\chi^2}{q^2} + \frac{5^2}{b^2} = 1$$
 $(\chi_0, y_0) \in E$
 $y_0 \neq 0$

$$\frac{\partial f(\chi_0)}{\partial g} = \frac{\chi^2}{g^2} + \frac{y^2}{b^2}$$

$$\frac{\partial f(\chi_0)}{\partial g} = \frac{2g_0}{b^2} \neq 0 \quad y_0 \neq 0$$

Vet at mult (χ_0, y_0) hen ellipses
$$y_0 = \frac{\partial f(\chi_0, y_0)}{\partial g} = -\frac{2\chi_0}{g^2} = -\frac{5}{g^2} \chi_0$$
Stigming tallet til ellipses

10)
$$x + y^{2} + z^{3} = 3xyz$$
 $z(x,5)$ his formulable data

 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y} = \frac{7}{3}$
 $f(x,5)z(x,5) = 0$
 $\frac{\partial f}{\partial x} = 1 - 3yz$, $\frac{\partial f}{\partial y} = 2y - 3xz$
 $\frac{\partial f}{\partial x} = 3z^{2} - 3xy$
 $\frac{\partial f}{\partial x} = -\frac{\partial f}{\partial y} \frac{\partial f}{\partial z} = -\frac{1 - 3yz}{3z^{2} - 3xy}$
 $\frac{\partial z}{\partial y} = -\frac{\partial f}{\partial y} \frac{\partial f}{\partial z} = -\frac{2y - 3xz}{3z^{2} - 3xy}$