Modulação Digital

- > fsk
- > psk
- > qam

introdução

- estuda a transmissão dos dígitos binários através de um canal passa banda.
- um trem de pulsos modula (chaveia) algum parâmetro de uma portadora senoidal:

informação na forma digital

nos sistemas PCM cada pulso é digitalizado por uma palavra código de 8 bits.

as técnicas de modulação digital são empregadas quando se quer transmitir os dados digitais através de canais de comunicação passabanda.

> canais:

- > link de micro-ondas, satélite, linha telefônica, cabos, ...
- ❖ o sinal de informação consiste de um trem de pulsos digitais do tipo NRZ que irá chavear algum parâmetro de um sinal senoidal de alta frequência.

❖ Taxa de bits: f_b = R_b = Nro de bits da palavra / T_a

- o processo de modulação digital envolve o chaveamento de algum parâmetro de uma portadora senoidal:
 - > amplitude, frequência ou fase.

- ❖ do mesmo modo que na transmissão analógica tem-se três tipos básicos de modulação digital, identificadas pelas siglas: ASK, FSK e PSK.
 - > ASK: modulação por deslocamento (chaveamento) de amplitude,
 - > FSK: modulação por deslocamento (chaveamento) da frequência,
 - > PSK: modulação por deslocamento (chaveamento) da fase.

tipos básicos de modulação digital

modulação por chaveamento de amplitude - ASK

- * modula a amplitude da portadora pelo sinal binário na banda básica:
 - \triangleright amplitudes: $2E_0 \rightarrow bit 1 ou nula \rightarrow bit 0,$
 - > corresponde à modulação AM com índice de modulação 100%,
- * geração: moduladores AM ou chaveamento do portadora de RF.

- largura de faixa mínima de transmissão
 - \triangleright Bw_{ASK} = 2B_{MIN} = f_b em que B_{MIN} = f_b/2
- demodulação:
 - detectores de envoltória ou demodulação coerente.

ASK

- inconvenientes da modulação ASK:
 - > 50% da energia do sinal é gasta na transmissão da portadora,
 - > O detector de envoltória apresenta baixa relação sinal-ruído.
- tem-se outros sistemas mais eficientes:
 - > AMDSB-SC onde não há desperdício da portadora (semelhante ao PSK),
 - A detecção coerente melhora a SNR.
- nomenclatura:
 - **≻** ASK → BASK → transmissão binária,
 - ➤ MASK → transmissão de M símbolos.

* transmissor:

modulação por chaveamento de frequência - FSK

- duas senóides de mesma amplitude e frequências diferentes transmitem os bits "0" e "1".
- corresponde a dois sistemas ASK tal que:
 - $ightharpoonup ASK_1
 ightharpoonup f_1
 ightharpoonup para o sinal digital,$
 - ightharpoonup ASK₂ ightharpoonup para o complemento do sinal digital.
 - > O FSK é encarado como a soma de dois ASK complementares.

- ❖ largura de faixa: $Bw_{FSK} = (f_2 + B_{MIN}) (f_1 B_{MIN}) = 2 B_{MIN} + f_2 f_1$
 - ightharpoonup admitindo $\Delta f = (f_2 f_1)/2 \rightarrow Bw_{ESK} = 2B_{MIN} + 2\Delta f$
- ❖ desvio de fase: $\Delta \phi = \Delta f / B_{MIN}$
- ❖ a frequência central: $f_o = (f_1 + f_2)/2$

❖ Demodulação - PLL

- ❖ vantagens da modulação FSK:
 - Propriedades da modulação angular (menor sensibilidade ac ruído)
- desvantagens:
 - Largura de faixa (Bw) é duas vezes a do sistema ASK.
 - > transmissão das portadoras.

modulação por chaveamento de fase - PSK

- \bullet dois ângulos de fase 0° (0) e 180° (π) são utilizados para representar os estados -E₀ (0) e E₀ (1) do sinal digital.
 - → observe que um deslocamento de 180° → produz uma inversão de sinal na portadora.
 - > assim, o sinal PSK pode ser representado pela seguinte equação:

$$e(t) = v(t)cos(2\pi f_0 t)$$
 em que: $v(t) = \pm E_0 \rightarrow \text{sinal digital NRZ}$

- ❖ o sistema PSK corresponde a uma modulação AMDSB-SC.
- ❖ largura de faixa Bw = 2B_{MIN} igual à do sistema ASK.

vantagens:

- apresenta as propriedades da modulação angular.
- largura de faixa menor do que o sistema FSK.
- > economia de 50% de potência na transmissão.
- demodulação do sinal PSK detector coerente

modulação digital marcelo bj 12

problemas:

- deve-se recuperar a portadora com sincronismo de frequência e fase
- > necessidade de se transmitir um pequeno nível da portadora.
- > paso contrário recuperação com ambiguidade de fase: 0º ou 180º
 - > pode-se detectar o complemento do sinal.

nomenclaturas:

- ▶ BPSK → PSK → transmissão binária.
- ➤ QPSK → 4 níveis (fases).
- ➤ MPSK → transmissão de M símbolos.

modulação QPSK - PSK em quadratura ou 4-PSK

- quatro fases (45°, 135°, -45° e -135°) são utilizadas para codificar os bits.
- A cada dois bits consecutivos (DBIT) associa-se uma das fases).
- vantagem
 - > redução na taxa de transmissão de símbolos pela metade.

Dbit	fase
00	135°
01	45°
10	-135°
11	-45°

esquema de geração:

distribuidor de sequências:

- > coloca alternadamente nas duas saídas os bits do sinal digital.
- Uma das saídas é atrasada de T_b segundos.
- ➤ Tem-se duas sequências, S_I e S_Q, que formam os dbits.

- observe que a taxa de símbolos destas sequências foi reduzida para a metade.
- ❖ a sequência S_I modula uma portadora com fase nula e a S_Q modula a portadora com fase 90°.
- tem-se dois sinais BPSK: e₁(t) e e₂(t)

$$e_I(t) = V_I \cos(2\pi f_0 t)$$
 e $e_O(t) = V_O \sin(2\pi f_0 t)$

estes dois sinais são somados para gerar o sinal QPSK.

$$e_{OPSK}(t) = V_I \cos(2\pi f_0 t) + V_O \sin(2\pi f_0 t)$$

$$e_{QPSK}(t) = V_I \cos(2\pi f_0 t) + V_Q \sin(2\pi f_0 t)$$

- ♦ observe que e₁ tem fases 0° e 180° e e₀ tem fases 90° e -90°.
- **❖** A soma: e_I + e_Q apresenta fases 45°, 135°, -45°, e -135°.
- o intervalo entre símbolos é $2T_b \rightarrow a$ taxa de transmissão é reduzida para a metade.
 - ❖ sistemas QPSK com mesma largura de banda que o PSK transmitem o dobro de informação.

demodulação coerente para o sistema QPSK

ightharpoonup na entrada: $e_{QPSK}(t) = V_I \cos(2\pi f_0 t) + V_Q \sin(2\pi f_0 t)$

$$e_I = e_{QPSK} \cos(w_0 t) = \frac{1}{2} V_I + \frac{1}{2} V_I \cos(2w_0 t) + \frac{1}{2} V_Q \sin(2w_0 t)$$

$$e_Q = e_{QPSK} \operatorname{sen}(w_0 t) = \frac{1}{2} V_Q - \frac{1}{2} V_Q \cos(2w_0 t) + \frac{1}{2} V_I \operatorname{sen}(2w_0 t)$$

- ❖ eles são filtrados e aplicados nos regeneradores para recuperar S₁ e S₂.

modulação QAM

- ❖ QAM → modulação em amplitude e em quadratura.
 - é uma extensão do sistema M-PSK (fases múltiplas),
 - > combina deslocamentos amplitude (ASK) e de fase (PSK),
 - > representação: M-QAM.
 - > em que:

$$M = 2^{v}$$
 : $v = 2, \dots, 8$

- resultando nos sistemas 4-QAM, 8-QAM, 16-QAM, . . . 256-QAM.
- \triangleright para v = 2 tem-se o sistema QPSK.
- cada estado está relacionado com v bits o que permite uma redução na largura de faixa para 1/v em relação ao sistema BPSK.
- constelação para os sistemas 16-PSK e 16-QAM

marcelo bi

exemplo: sistema 16QAM

composição dos sinais - 16QAM

diagrama em blocos do demodulador - 16QAM

❖ 1 - PSK; 2 - FSK e ASK; 3 - DEBPSK.

comparação de sistemas M-PSK e M-QAM

❖ probabilidade de erro : $P_E = 10^{-6}$.

❖ densidade de informação:
$$\delta = \frac{R_b}{Bw} \frac{[bps]}{[Hz]}$$

sistema	bps/Hz	
2-PSK	1	10.6
4-PSK / 4-QAM	2	10.6
8-PSK	3	14.0
16-PSK	4	18.3
16-QAM	4	14.5
32-QAM	5	17.4
64-QAM	6	18.8

SNR [dB]