Espaços Métricos

Um par (X, d) é um espaço métrico se a função, $d: X \times X \to \mathbb{R}$, tem para todos $x, y, z \in X$, as propriedades:

- 1. $d(x,y) \ge 0$;
- 2. d(x,y) = d(y,x);
- 3. $d(x,y) = 0 \iff x = y;$
- 4. $d(x,z) \leq d(x,y) + d(y,z)$.

Comentário 1 d é a função distância. Os axiomas (1,2,3) são portanto bem naturais: A distância entre pontos distintos é positiva. A distância entre x e y é igual à distância entre y e x. E finalmente o axioma (4)—a desigualdade triangular-reflete a propriedade de que para os triângulos no plano, o comprimento de um lado é menor do que a soma dos comprimentos dos outros dois lados.

Exemplo 1 Um espaço com produto interno é um espaço métrico se $d(x,y) = |x-y| = \sqrt{\langle x-y, x-y \rangle}$.

Exemplo 2 (métrica discreta) Seja d(x,x) = 0 e d(x,y) = 1 se $x \neq y$. $d \notin a$ métrica discreta.

Exemplo 3 Se $Y \subset X$ e d'(x,y) = d(x,y) para $(x,y) \in Y \times Y$ então (Y,d') é um espaço métrico.

Exemplo 4 No \mathbb{R}^n temos a distância euclidiana, a distância do máximo e a distância da soma:

$$d(x,y) = \begin{cases} \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} & euclidiana \\ \max\{|x_i - y_i| : 1 \le i \le n\} & max \\ \sum_{i=1}^{n} |x_i - y_i| & soma. \end{cases}$$

Comentário 2 Essas 3 distâncias são exemplos de distâncias definidas a partir de uma norma: a norma euclidiana, a norma do máximo e a norma da soma.

Definição 1 (espaço normado) Um par (V, N) sendo V um espaço vetorial (sobre o corpo dos reais) e $N: V \to [0, \infty)$ é um espaço normado se para todos $v, w \in V$ e λ real,

- i) $N(v) = 0 \iff v = 0$
- ii) $N(v+w) \le N(v) + N(w)$
- iii) $N(\lambda v) = |\lambda| N(v)$.

Comentário 3 Por simplicidade usamos ||v|| := N(v).

Comentário 4 A métrica associada à norma $N \notin d(v, w) = N(v - w)$.

Definição 2 Seja (X, d) um espaço métrico.

- i) A bola aberta de centro $x \in X$ e raio r > 0 é $B(x,r) = \{y \in X : d(x,y) < r\};$
- ii) A bola fechada, $B[x,r] = \{y \in X : d(x,y) \le r\}$;
- **iii)** A esfera: $S(x,r) = \{y \in X : d(y,x) = r\}.$

Comentário 5 No caso de um espaço normado, $B[0,1] = \{y \in V : ||y|| \le 1\}$ é a bola unitária. Note que B(x,r) = x + rB(0,1) nesse caso. E a métrica é invariante por translações, d(x,y) = d(x+z,y+z).

A topologia dos espaços métricos

Definição 3 O par (X, τ) sendo $\tau \subset \mathscr{P}(X)$ é um espaço topológico e τ uma topologia se

- i) $\{\emptyset, X\} \subset \tau$;
- ii) Se $A, B \in \tau$ então $A \cap B \in \tau$;
- iii) Se $A_i \in \tau$ para todo $i \in I$ então $\bigcup_{i \in I} A_i \in \tau$.

Comentário 6 Os elementos de τ são ditos abertos. Assim o conjunto vazio e X são abertos. E a topologia é fechada por intersecções finitas e por uniões arbitrárias de seus elementos.

Definição 4 Seja (X, d) um espaço métrico. O conjunto $U \subset X$ é aberto se para todo $x \in U$ existir r > 0 tal que $B(x, r) \subset U$.

É imediato que o conjunto vazio e o espaço X são abertos. Seja $\tau = \tau_d = \{U \subset X : U \text{ é aberto}\}$ a família dos subconjuntos abertos de (X, d). Verifiquemos que τ é uma topologia.

Demonstração: (a) Sejam U e V abertos. Seja $z \in U \cap V$. Seja r' > 0 tal que $B(z,r') \subset U$. Seja r'' > 0 tal que $B(z,r'') \subset V$. Então se $r = \min\{r',r''\} > 0$, $B(z,r) \subset U \cap V$. (b) Verifiquemos que se $U_i \in \tau$ para $i \in I$ então $W = \bigcup_{i \in I} U_i \in \tau$. Seja $x \in W$. Existe $i \in I$ tal que $x \in U_i$. Seja $\epsilon > 0$ tal que $B(x,\epsilon) \subset U_i$. Então $B(x,\epsilon) \subset W$. Terminando a demonstração.

Lema 1 A bola aberta é aberta.

Demonstração: Para $z \in B(x,r)$ temos d(x,z) < r e então $\delta = r - d(x,z) > 0$. Para $y \in B(z,\delta)$ temos

$$d(x,y) \le d(x,z) + d(z,y) < d(x,z) + \delta = r$$

e portanto $B(z, \delta) \subset B(x, r)$.

Definição 5 $F \subset X$ é fechado se o complementar $F^c = X \setminus F$ for aberto.

É imediato que \emptyset e X são fechados. A união finita de fechados é fechada. E a intersercção de uma família de fechados é fechada.

Exemplo 5 Na métrica discreta todo subconjunto de X é aberto e é fechado.

Exemplo 6 $Em \mathbb{R}$ os intervalos abertos são abertos e os intervalos fechados são fechados. O intervalo (0,1] não é aberto nem fechado. Os racionais não são nem abertos nem fechados em \mathbb{R} .

Exemplo 7 Se X = [0, 1] então (0, 1] é aberto em X.

Definição 6 Duas métricas em X, d e d' são equivalentes se definem a mesma topologia: $\tau_d = \tau_{d'}$. Isto se $U \subset X$ é aberto em (X, d) se e somente se for aberto em (X, d').

Exemplo 8 Se d é uma métrica em X então $d'(x,y) = \frac{d(x,y)}{1+d(x,y)}$ e $d''(x,y) = \min\{1, d(x,y)\}$ são métricas equivalentes à d.

Primeiramente verifiquemos que d' e d'' são métricas.

d'') Se d''(x,y) = 0 então d(x,y) = 0 e logo x = y. Suponhamos, para obter uma contradição, que não vale a desigualdade triangular: existem x, y, z tais que:

$$1 \ge d''(x,y) > d''(x,z) + d''(z,y)$$
.

Portanto $d''(x, z) = \min \{1, d(x, z)\} = d(x, z)$ e d''(z, y) = d(z, y). Logo

$$d(x,y) \ge d''(x,y) > d(x,z) + d(z,y) \ge d(x,y)$$

contradição.

d') Sejam $a=d\left(x,z\right) ,b=d\left(x,y\right)$ e $c=d\left(y,z\right) .$ Sabemos que $a\leq b+c$. Então

$$d'(x,y) + d'(y,z) - d'(x,z) = \frac{b}{1+b} + \frac{c}{1+c} - \frac{a}{1+a} = \frac{b(1+c)(1+a) + c(1+b)(1+a) - a(1+b)(1+c)}{(1+a)(1+b)(1+c)} = \frac{b(1+a+c+ac) + c(1+a+b+ab) - a(1+c+b+bc)}{(1+a)(1+b)(1+c)} = \frac{b+ba+bc+bac+c+ca+cb+cab-(a+ac+ab+abc)}{(1+a)(1+b)(1+c)} = \frac{b+c-a+bc+cb+cab}{(1+a)(1+b)(1+c)} \ge 0.$$

Verifiquemos por exemplo que d e d'' são equivalentes. Seja B(x,r) a bola de centro x e raio r na métrica d e B''(x,r) a bola correspondente na métrica d''. Se r>1, $B''(x,r)=X\in\tau_d$. Para r<1, B(x,r)=B''(x,r). Seja $U\in\tau_d$. Seja $x\in U$ e $0<\epsilon<1$ tal que $B(x,\epsilon)\subset U$. Então $B''(x,\epsilon)=B(x,\epsilon)\subset U$. Portanto $U\in\tau_{d''}$. Recíprocamente se $B''(x,\epsilon)\subset U$. Se $\epsilon>1$, $U=X\in\tau_d$. Se $\epsilon\le 1$, $B(x,\epsilon)=B''(x,\epsilon)\subset U$. Para verificar que d e d' são equivalentes, note que se r<1,

$$B'(x,r) = \left\{ y \in X : \frac{d(x,y)}{1 + d(x,y)} < r \right\} = \left\{ y \in X : d(x,y) < \frac{r}{1 - r} \right\} = B\left(x, \frac{r}{1 - r}\right).$$

Se $r \ge 1$, B'(x, r) = X. Portanto

$$\bigcup_{i} B'(x_{i}, r_{i}) = \bigcup_{i} B\left(x_{i}, \frac{r_{i}}{1 - r_{i}}\right);$$

$$\bigcup_{i} B(x_{i}, r_{i}) = \bigcup_{i} B'\left(x_{i}, \frac{r_{i}}{1 + r_{i}}\right).$$

Teorema 1 Seja (X,d) espaço métrico e $Y \subset X$ um subespaço. Então $U \subset Y$ é aberto de Y se e somente se existir $W \subset X$ aberto tal que $U = W \cap Y$.

Demonstração: Notemos inicialmente que

$$B_Y(x,r) = \{ y \in Y : d(x,y) < r \} = Y \cap B(x,r).$$

Seja $\tau(Y)$ a família dos subconjuntos abertos em Y. E τ os abertos de X. Então se $U \in \tau(Y)$, para todo $u \in U$ existe $\epsilon(u) > 0$ tal que $B_Y(u, \epsilon(u)) = Y \cap B(u, \epsilon(u)) \subset U$. Mas então $W = \bigcup_{u \in U} B(u, \epsilon(u)) \in \tau$ e $W \cap Y = U$. Suponhamos agora $W \in \tau$. Cada $w \in W$ existe $B(w, r(w)) \subset W$. Então

$$U = \bigcup_{w \in W} Y \cap B(w, r(w)) = \bigcup_{w \in W} B_Y(w, r(w)) \in \tau(Y) \text{ e } U = W \cap Y.$$

Corolário 1 Nas mesmas condições do teorema anterior, $F \subset Y$ é fechado de Y se e somente se existir H fechado em X tal que $H \cap Y$.

Corolário 2 Se Y for fechado de X então F é fechado em Y se e somente se for fechado em X.

Produto cartesiano de espaços métricos

Sejam (X, d) e (Y, ρ) espaços métricos. O produto cartesiano $X \times Y$ pode ser metrizado de uma forma natural. Definamos para $z = (x, y) \in X \times Y$ e $z' = (x', y') \in X \times Y$,

$$\overline{d}\left(\left(x,y\right),\left(x',y'\right)\right)=d\left(x,x'\right)+\rho\left(y,y'\right).$$

Então verificamos de imediato que \overline{d} é uma métrica em $X \times Y$. Outras métricas são possíveis: $\max \{d(x,x'), \rho(y,y')\}$ ou $\sqrt{d(x,x')^2 + \rho(y,y')^2}$. Podemos verificar com pouca dificuldade que essas métricas são equivalentes

Produto finito de espaços métricos

Sejam (X_i, d_i) , $i \leq N$ espaços métricos. Podemos metrizar $X = \prod_{i=1}^{N} X_i$ de forma natural: se $x = (x_1, \dots, x_N)$, $y = (y_1, \dots, y_N)$,

$$d(x,y) = \sum_{i=1}^{N} d_i(x_i, y_i).$$

Outras possibilididades seriam

$$d'(x,y) = \sqrt{\sum_{i=1}^{N} d_i^2(x_i, y_i)};$$
$$d''(x,y) = \max_{i \le N} d_i(x_i, y_i).$$

Se tivermos espaços normados, $(V_i, |\cdot|_i)_{i \leq N}$ definimos

$$||x|| = \sum_{i=1}^{N} |x_i|_i$$
.

A verificação de que $\|\cdot\|$ é uma norma é um exercício rotineiro.

Produto infinito enumerável de espaços métricos

Sejam $(X_n, d_n)_{n\geq 1}$ espaços métricos e $X = \prod_{n=1}^{\infty} X_n$. Uma métrica natural, análoga à do caso de um produto finito é

$$d((x_n)_n, (y_n)_n) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}.$$
 (1)

Comentário 7 Note que usamos $\frac{d_n(x_n,y_n)}{1+d_n(x_n,y_n)} \leq 1$ e multiplicamos por 2^{-n} para garantir a convergência da série. O produto enumerável infinito de espaços normados é um espaço métrico mas não é um espaço normado.

Um subconjunto, M, de um espaço métrico é limitado se existirem $x \in X$ e r > 0 tais que $M \subset B(x,r)$. Isto é, M é limitado se estiver contido em alguma bola aberta. Propriedades elementares:

i) um subconjunto de um conjunto limitado é limitado;

ii) a união de uma família finita de conjuntos limitados é limitada.

Se
$$M_1 \subset B(x,r)$$
 e $M_2 \subset B(y,s)$ temos

$$M_1 \cup M_2 \subset B\left(x, \max\left\{r, s + d\left(x, y\right)\right\}\right)$$
.

Definição 7 Se $A \subset X$ é limitado e não-vazio, o diâmetro de A é $\delta(A) = \sup \{d(x,y) : x,y \in A\}.$

Por exemplo, o diâmetro de B(x,r) é no máximo 2r. Pois se $y,y' \in B(x,r)$, $d(y,y') \leq d(y,x) + d(x,y') < 2r$. E logo $\delta(B(x,r)) \leq 2r$. Na métrica discreta, $\delta(X) = 1$ se #X > 1.

Continuidade

Sejam (X,d) e (Y,ρ) espaços métricos. Uma função $f:X\to Y$ é contínua em $x^0\in X$ se para todo $\epsilon>0$ existir $\delta=\delta\left(x^0\right)>0$ tal que

$$d(x, x^{0}) < \delta \implies \rho(f(x), f(x^{0})) < \epsilon.$$

Em outras palavras: Para todo bola $B_{\rho}(f(x^0), \epsilon)$ existe uma bola $B_d(x^0, \delta)$ tal que $f(B_d(x^0, \delta)) \subset B_{\rho}(f(x^0), \epsilon)$.

Lema 2 f é contínua em x^0 se e somente se para todo $U \subset Y$ aberto tal que $f(x^0) \in U$ existe $W \ni x^0$ aberto de X tal que $f(W) \subset U$.

Definição 8 $f: X \to Y$ é contínua em X se para todo $x \in X$, f for contínua em x

Definição 9 E f \acute{e} uniformemente contínua em X se para todo $\epsilon>0$ existir $\delta>0$ tal que

$$\forall x, \forall x', d(x, x') < \delta \implies \rho(f(x), f(x')) < \epsilon.$$

Lema 3 $f: X \to Y$ é contínua em X se e somente se para todo $U \subset Y$ aberto, $f^{-1}(U) \subset X$ é aberto.

Proposição 1 Se $f:X\to Y$ e $g:Y\to Z$ são contínuas, $g\circ f:X\to Z$ é contínua.

Demonstração: Seja $W \subset Z$ aberto. Então $g^{-1}(W)$ é aberto de Y e $f^{-1}(g^{-1}(W)) = (g \circ f)^{-1}(W)$ é aberto.

Exemplo 9 Consideremos $X = \mathbb{R}^{\mathbb{N}}$ o produto cartesiano enumerável de \mathbb{R} . Seja

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}.$$

A projeção $\pi_m: X \to \mathbb{R}$, $\pi_m(x) = x_m$ é contínua (uniformemente). Seja $\epsilon > 0$. Seja $\delta = \frac{1}{2^m} \frac{\epsilon}{1+\epsilon}$. Portanto se $d(x,y) < \delta$ temos $\frac{1}{2^m} \frac{|x_m - y_m|}{1+|x_m - y_m|} \le d(x,y) < \delta = \frac{1}{2^m} \frac{\epsilon}{1+\epsilon}$ e então $|\pi_m(x) - \pi_m(y)| = |x_m - y_m| < \epsilon$.

Comentário 8 De maneira análogo podemos demonstrar que $f(x) = (x_1, \dots, x_m)$ é contínua.

Sequências e limites

Uma seqüência $(x_n)_{n\geq 1}$ no espaço métrico X converge para $x\in X$ se para todo $\epsilon>0$ existir $n'\geq 1$ tal que n>n' implica $d(x,x_n)<\epsilon$.

Notação 1 Escrevemos $\lim_{n\to\infty} x_n = x$ quando existir o limite de $(x_n)_n$ e for x.

Proposição 2 O limite quando existe é único

Demonstração: Sejam $x \neq y$ limites de $(x_n)_n$. E $\epsilon > 0$. Então existem n' e n'' tais que

$$d(x_n, x) < \frac{\epsilon}{2} \text{ para } n > n'$$

 $d(x_n, y) < \frac{\epsilon}{2} \text{ para } n > n''$

Então se $n > \max\{n', n''\}$, $d(x, y) \le d(x, x_n) + d(x_n, y) < \epsilon$. Então d(x, y) = 0 e x = y.

Teorema 2 Seja $f: X \to Y$. Então f é contínua em $a \in X$ se e somente se para todo seqüência $x_n \in X$ com limite a, $\lim_{n\to\infty} f(x_n) = f(a)$.

Demonstração: Suponhamos f contínua em a. Seja $\epsilon > 0$. Existe $\delta > 0$ tal que $d(x,a) < \delta \implies \rho(f(x),f(a)) < \epsilon$. Pela definição de limite existe n' tal que n > n' implica $d(x_n,a) < \delta$. Portanto n > n', temos $\rho(f(x_n),f(a)) < \epsilon$. E portanto $\lim_{n\to\infty} f(x_n) = f(a)$. Para demonstrar a recíproca, suponhamos que f fosse descontínua em a. Existe $\epsilon > 0$ tal que para todo $n \ge 1$ existe $x_n \in X$, $d(x_n,a) < \frac{1}{n}$ e $\rho(f(x_n),f(a)) \ge \epsilon$.

Comentário 9 Uma vantagem dos espaços métricos é podermos usar seqüências. Nos espaços topológicos, em geral, teoremas como o anterior não são válidos.

Fecho

Seja (X, d) métrico. Para $A \subset X$ definimos $\mathscr{F} = \{F : A \subset F \subset X, F \text{ fechado}\}$. Então $\overline{A} := \bigcap \{F : F \in \mathscr{F}\}$ é fechado e é o menor subconjunto fechado que contém A. Dizemos que \overline{A} é o fecho de A. As seguintes propriedades são imediatas:

- 1. Se $A \subset B \subset X$ então $\overline{A} \subset \overline{B}$;
- 2. $\overline{\overline{A}} = \overline{A}$;
- 3. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 4. A é fechado se e somente se $A = \overline{A}$.

Por exemplo $\overline{A} \cup \overline{B}$ é fechado por ser união de dois fechados. Agora $A \subset \overline{A}$ e $B \subset \overline{B}$ e portanto $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$. E de $A \subset A \cup B \subset \overline{A \cup B}$ vem $\overline{A} \subset \overline{A \cup B}$. Também $\overline{B} \subset \overline{A \cup B}$ e por fim $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$ demonstrando a igualdade.

Definição 10 Seja $A \subset X$ não-vazio. Para $x \in X$ definimos a distância de x a A por

$$d(x, A) = \inf \left\{ d(x, a) : a \in A \right\}.$$

Lema 4 d(x, A) = 0 se e somente se $x \in \overline{A}$.

Demonstração: Se $x \in X \setminus \overline{A}$ então existe r > 0, $B(x,r) \subset X \setminus \overline{A}$ e portanto $B(x,r) \cap A = \emptyset$. Logo $d(x,A) \geq r > 0$. Suponhamos d(x,A) > 0. Se 0 < r < d(x,A) temos $B(x,r) \cap A = \emptyset$. Logo $F = X \setminus B(x,r) \supset A$, é fechado e $x \notin F \supset \overline{A}$. Portanto $x \notin \overline{A}$.

Proposição 3 A função distância é uniformemente contínua. Na verdade vale um pouco mais: $|d(x, A) - d(y, A)| \le d(x, y)$.

Demonstração: Para $a \in A$, $d(x, a) \le d(x, y) + d(y, a)$. Logo $d(x, A) - d(x, y) \le d(y, a)$ e tomando o ínfimo novamente, $d(x, A) - d(x, y) \le d(y, A)$. Portanto $d(x, A) - d(y, A) \le d(x, y)$. Trocando os papéis de x e y obtemos d(y, A) - d(x, A) < d(y, x) = d(x, y) e |d(x, A) - d(y, A)| < d(x, y).

Proposição 4 $x \in \overline{A}$ se e somente se existe uma seqüência $(x_n)_n$ com $x_n \in A$ e $x = \lim_{n \to \infty} x_n$.

Demonstração: Se $x \in \overline{A}$ temos d(x, A) = 0. Portanto para cada $n \ge 1$ existe $x_n \in A$ tal que $d(x, x_n) < \frac{1}{n}$. Temos $\lim_{n \to \infty} x_n = x$. Suponhamos agora que $x_n \in A$ tem limite x. Portanto

Por isso, é recomendado praticar atividades físicas regularmente e aumentar o consumo de alimentos ricos em cálcio e vitamina D para evitar a osteopenia e a osteoporose.

$$d(x,A) \le d(x,x_n) < \frac{1}{n} \implies d(x,A) = 0 \implies x \in \overline{A}.$$

Definição 11 O ponto $x \in A$ é um ponto isolado de A em X se existir um aberto $U \subset X$ tal que $U \cap A = \{x\}$.

É imediato da definição que x é ponto isolado de A se existir r>0 tal que $B(x,r)\cap A=\{x\}.$

Exemplo 10 Todo ponto de $\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subset \mathbb{R}$ é isolado. Nenhum ponto de $\mathbb{Q} \subset \mathbb{R}$ é isolado.

Exemplo 11 O conjunto $A = \{0\} \cup \left\{\frac{1}{n} : n \in \mathbb{Z} \setminus \{0\}\right\}$ tem ponto isolados, $\frac{1}{n}, n \neq 0$. Mas $0 \in A$ não é ponto isolado pois $\lim_{n \to \infty} \frac{1}{n} = 0$.

Definição 12 O conjunto $P \subset X$ é perfeito se for fechado sem pontos isolados.

- 1. O conjunto $S \subset X$ é denso se o fecho de S for X.
- 2. O espaço métrico X é separável se existe $A\subset X$ enumerável e denso: $\overline{A}=X$.
- 3. O espaço métrico X tem base enumerável se existir uma família enumerável de abertos, $\mathfrak{B} = \{B_n : n \geq 1\}$ tal que todo aberto de X seja uma união de elementos de \mathfrak{B} .

Exemplo 12 \mathbb{R}^n é separável pois \mathbb{Q}^n é enumerável e denso. O conjunto funções contínuas reais de [a,b] na métrica do sup é separável (mas não é imediato de se demonstrar). l^{∞} não é separável mas l^1 e l^2 são separáveis.

Teorema 3 O espaço métrico X é separável se e somente se tem base enumerável.

Demonstração: Suponhamos $\{x_n:n\geq 1\}$ denso em X. Então a família de bolas de centro x_n e raio racional, $\{B(x_n,r):n\geq 1,r\in\mathbb{Q}_{++}\}$, é enumerável. Seja $\{B_n:n\geq 1\}$ uma enumeração dessa família. Seja $U\subset X$ aberto e $x\in U$. Existe $B(x,r)\subset U$. Sem perda de generalidade r é racional. Seja n' tal que $d(x,x_{n'})< r/2$. Então $B(x_{n'},\frac{r}{2})\subset B(x,r)\subset U$. Então se m é tal que $B_m=B(x_{n'},\frac{r}{2})$ temos $x\in B_m\subset U$. Recíprocamente suponhamos que $\{B_n:n\geq 1\}$ seja base enumerável de abertos. Sem perda de generalidade, B_n é não-vazio. Para cada B_m seja $x_m\in B_m$. Então $\{x_m:m\geq 1\}$ é denso em X.

Teorema 4 Se (X,d) é separável e $\{U_i : i \in I\}$ é uma família de abertos nãovazios dois a dois disjuntos, então I é enumerável.

Demonstração: Seja $\{x_n : n \ge 1\}$ denso em X. Para cada $i \in I$ existe n tal que $x_n \in U_i$. Definimos então $f : I \to \mathbb{N}$,

$$f(i) = \min \left\{ n : x_n \in U_i \right\}.$$

Note que se $i \neq j$ então $f(i) \neq f(j)$. Mas então I é enumerável.

Espaço métrico completo

Uma seqüência $(x_n)_n$ no espaço métrico (X, d), é de Cauchy, se para todo $\epsilon > 0$ existir natural n^0 tal que $n, m \ge n^0$, $d(x_n, x_m) < \epsilon$.

Lema 5 Toda seq. de Cauchy é limitada.

Demonstração: Seja $(x_n)_n$ de Cauchy em X. Existe p natural tal que $n, m \ge p$ implica $d(x_n, x_m) < 1$. Em particular $d(x_n, x_p) \le 1$ para $n \ge p$. Seja $M = \max\{1, d(x_1, x_p), \dots, d(x_{p-1}, x_p)\}$. Portanto $\{x_n : n \ge 1\} \subset B[x_p, M]$.

Proposição 5 Toda sequência convergente é de Cauchy.

Demonstração: Suponhamos $\lim_n x_n = x$. Seja n_0 tal que $n \ge n_0$ implica $d(x_n, x) < \frac{\epsilon}{2}$. Então se $n, m \ge n_0$, $d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

Definição 13 A seqüência $(y_n)_n$ é uma subseqüência de $(x_n)_n$ se existir $k : \mathbb{N} \to \mathbb{N}$ estritamente crescente tal que $y_n = x_{k(n)}$ para todo $n \ge 1$.

Lema 6 Uma seqüência de Cauchy que possui uma subseqüência convergente é, ela mesma, convergente.

Demonstração: Seja $(x_n)_n$ de Cauchy e $(x_{k(n)})_n$ subseqüência com limite x. Seja $\epsilon > 0$. Existe n' tal que $n \geq n' \implies d(x_{k(n)}, x) < \frac{\epsilon}{2}$. Seja n'' tal que $n, m \geq n'' \implies d(x_n, x_m) < \frac{\epsilon}{2}$. Então para $n \geq n'''$, $p \geq \max\{k^{-1}(n''), n'\}$,

$$d(x_n, x) \le d(x_n, x_{k(p)}) + d(x_{k(p)}, x) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Exemplo 13 No subespaço Y = (0,1] de X = [0,1] a seq. $x_n = \frac{1}{n}$ é de Cauchy mas não converge (o limite em X é $0 \notin Y$.)

Exemplo 14 Para $X = \mathbb{Q}$, a seqüência $x_n = \frac{[n\sqrt{2}]}{n}$ é de Cauchy mas não converge (o limite existe nos reais e é $\sqrt{2}$)

Definição 14 Um espaço métrico é completo se toda seqüência de Cauchy for convergente.

Exemplo 15 X com a métrica discreta é completo: Seja $(x_n)_n$ de Cauchy. Existe n^0 tal que $n, m \ge n^0$ implica $d(x_n, x_m) < 1$. Portanto $x_n = x_{n^0}$ se $n \ge n^0, m = n^0$.

Teorema 5 Seja (X, d) espaço métrico e $Y \subset X$ um subespaço completo. Então Y é fechado.

Demonstração: Seja $y \in \overline{Y}$ e seja $(y_n)_n \subset Y$ uma seqüência com limite y. Mas (y_n) é de Cauchy em X e pela mesma razão de Cauchy em Y. Mas Y sendo completo (y_n) converge para $x \in Y$. Mas então pela unicidade do limite $x = y \in Y$. Portanto $\overline{Y} = Y$ é fechado.

Teorema 6 \mathbb{R} é completo na métrica usual.

Demonstração: Seja $(x_n)_n$, $x_n \in \mathbb{R}$ de Cauchy. A seq. é portanto limitada. Seja M>0 tal que $-M \leq x_n \leq M$ para todo n. Seja $\alpha_n = \inf\{x_m : m \geq n\}$. A seq. $(\alpha_n)_n$ é crescente e limitada superiormente por M. Seja $x = \sup\{\alpha_n : n \geq 1\}$. É claro que $\lim_n \alpha_n = x$. Para cada N existe $k(N) \geq N$, $\alpha_N \leq x_{k(N)} < \alpha_N + \frac{1}{N}$. Então $\lim_N x_{k(N)} = \lim_N \alpha_N = x$. Logo $(x_n)_n$ converge pois é de Cauchy e possui uma subseqüência convergente.

Comentário 10 Em princípio pode acontecer que $k(N) = k(N+1) = \ldots = k(N+p)$. Entretanto isso ocorre somente um número finito de vezez pois $k(N) \ge N$. O conjunto $Z = \{k(N) : N \ge 1\}$ sendo infinito podemos obter uma seq. estritamente crescente: $l^1 = \min Z$, $l^2 = \min \{Z \setminus \{l^1\}\}$ etc. Uma outra possibilidade é notar que $\{m : \alpha_N \le x_m < x + \frac{1}{N}\}$ é infinito e incluir a condição k(N) > k(N-1) para definir k(N).

Teorema 7 \mathbb{R}^n é completo.

Demonstração: Basta notar que $((x_p(1), \ldots, x_p(n)))_{p=1}^{\infty} \subset \mathbb{R}^n$ é de Cauchy se e somente se cada $(x_p(i))_p$, $i = 1, \ldots, n$ é de Cauchy em \mathbb{R} . Seja $y_i = \lim_p x_p(i)$. Então $\lim_p x_p = y = (y_1, \ldots, y_n)$.

Lema 7 Se $F \subset X$ for fechado e X completo então F é completo.

Demonstração: Seja $(x_n)_n$ de Cauchy em F. Então $(x_n)_n$ é de Cauchy em X. Seja $x = \lim_n x_n \in X$. Mas F sendo fechado $x \in F$.

Teorema 8 Todo subespaço vetorial de \mathbb{R}^n é fechado (e completo)

Demonstração: Seja F um subespaço de \mathbb{R}^n . Vou demonstrar que F é fechado. Seja $\{v_1, \ldots, v_p\}$ uma base ortogonal de F e a completemos a uma base ortogonal $\{v_1, \ldots, v_p, v_{p+1}, \ldots, v_n\}$ de \mathbb{R}^n . Então

$$F = \{ y \in \mathbb{R}^n : (y, v_{p+i}) = 0, i = 1, \dots, n-p \} = \bigcap_{i=1}^{n-p} \{ y \in \mathbb{R}^n : (y, v_{p+i}) = 0 \}.$$

A função $f(y) = (y, v_{p+i})$ é contínua pois $|f(y) - f(z)| = |(y - z, v_{p+i})| \le |y - z| |v_{p+i}|$ e $f^{-1}(\{0\}) = \{y \in \mathbb{R}^n : (y, v_{p+i}) = 0\}.$ Para (X, d) e (M, ρ) espaços métricos:

Definição 15 Uma função $f: X \to M$ é limitada se existir uma bola aberta $B \subset M$ tal que $f(X) \subset B$. O conjunto, $\mathscr{B}(X, M)$, das funções limitadas de X em M possui uma métrica natural.. Seja para $f, g \in \mathscr{B}(X, M)$,

$$d\left(f,g\right)=\sup\left\{ \rho\left(f\left(x\right),g\left(x\right)\right):x\in X\right\} <\infty.$$

Teorema 9 Nas condições acima,

- a) $\mathscr{B}(X,M)$ é métrico.
- b) $\mathscr{B}(X,M)$ é completo se M for completo.

Demonstração: (a) Se $f(x) \neq g(x)$ vem $d(f,g) \geq \rho(f(x),g(x)) > 0$. É imediato que d(f,g) = d(g,f). Desigualdade triangular: se $f,g,h \in \mathcal{B}(X,M)$. Então

$$\rho\left(f\left(x\right),h\left(x\right)\right) \leq \rho\left(f\left(x\right),g\left(x\right)\right) + \rho\left(g\left(x\right),h\left(x\right)\right) \leq d\left(f,g\right) + d\left(g,h\right)$$

$$\implies d\left(f,h\right) = \sup_{x} \rho\left(f\left(x\right),h\left(x\right)\right) \leq d\left(f,g\right) + d\left(g,h\right).$$

(b) Seja $(f^p)_p \subset \mathcal{B}(X,M)$ de Cauchy. Então para cada $x \in X$, $(f^p(x))_{p\geq 1}$ de Cauchy em M. Seja $f(x) = \lim_{p\to\infty} f^p(x)$. Seja p(1) tal que $d(f^p, f^{p+q}) < 1$ se $p \geq p(1)$, $q \geq 1$. Então

$$\rho\left(f^{p(1)}\left(x\right), f^{p}\left(x\right)\right) \le 1, \forall x \in X.$$

No limite $p \to \infty$, $\rho\left(f^{p(1)}(x), f(x)\right) \le 1$ e então $f(\cdot)$ é limitada pois $f^{p(1)}$ é limitada. Finalmente se $\epsilon > 0$ seja N tal que $p, q \ge N$,

$$\rho\left(f^{p}\left(x\right), f^{q}\left(x\right)\right) \le d\left(f^{p}, f^{q}\right) < \epsilon.$$

No limite q tende ao infinito: para todo $x \in X$,

$$\rho\left(f^{p}\left(x\right), f\left(x\right)\right) \le \epsilon$$

e portanto $d(f^p, f) \leq \epsilon$.

Definição 16 Seja $\mathscr{C}_b(X, M) = \{ f \in \mathscr{B}(X, M) : f \notin contínua \}.$

Corolário 3 $\mathscr{C}_b(X, M)$ é completo se M for completo.

Demonstração: Basta demonstrar que $\mathscr{C}_b(X, M)$ é fechado em $\mathscr{B}(X, M)$. Seja então $f^p: X \to M$ limitada contínua e $f \in \mathscr{B}(X, M)$ limite de f^p . Seja $x^0 \in X$ dado e $x \in X$ qualquer. Seja $\epsilon > 0$ e $p(\epsilon)$ tal que para todo $x \in X$, $p \ge p(\epsilon)$

$$\rho\left(f^{p}\left(x\right), f^{p(\epsilon)}\left(x\right)\right) \leq \frac{\epsilon}{3},$$

$$\rho\left(f^{p}\left(x^{0}\right), f^{p(\epsilon)}\left(x^{0}\right)\right) \leq \frac{\epsilon}{3}.$$

Existe $\delta > 0$ tal que $d(x, x^0) < \delta$, $\rho\left(f^{p(\epsilon)}(x), f^{p(\epsilon)}(x^0)\right) < \frac{\epsilon}{3}$. Logo para $p \geq p(\epsilon)$,

$$\rho\left(f^{p}\left(x\right), f^{p}\left(x^{0}\right)\right) \leq \rho\left(f^{p}\left(x\right), f^{p(\epsilon)}\left(x\right)\right) + \rho\left(f^{p(\epsilon)}\left(x\right), f^{p(\epsilon)}\left(x^{0}\right)\right) + \rho\left(f^{p(\epsilon)}\left(x^{0}\right), f^{p}\left(x^{0}\right)\right) \leq \epsilon.$$

No limite, $\rho\left(f\left(x\right), f\left(x^{0}\right)\right) \leq \epsilon$.

Completamento de espaços métricos

Lema 8 Seja (X, d) métrico. Então $|d(x, a) - d(y, a)| \le d(x, y)$.

Demonstração: Definindo $A = \{a\}$ na proposição 3 obtemos o resultado.

Definição 17 Sejam (X,d) e $\left(\widetilde{X},\widetilde{d}\right)$ espaços métricos.

1. Uma função $f:X\to\widetilde{X}$ é uma imersão isométrica se

$$d\left(x,y\right) =\widetilde{d}\left(f\left(x\right) ,f\left(y\right) \right) ,x,y\in X.$$

Se f(x) = f(y) então d(x,y) = 0 e x = y. Toda imersão isométrica é injetiva e uniformemente contínua.

2. Uma isometria é uma imersão isométrica sobrejetiva.

Definição 18 $(\widetilde{X}, \widetilde{d})$ é completamento de (X, d) se $(\widetilde{X}, \widetilde{d})$ for completo e existir imersão isométrica $f: X \to \widetilde{X}$ com imagem densa em \widetilde{X} .

Teorema 10 Todo espaço métrico possui um completamento.

Demonstração: Seja (M, ρ) métrico. Vou demonstrar que é isométrico a um subespaço de $\mathscr{C}_b(M, \mathbb{R})$.

Seja $a \in M$ fixo. E definamos para $x \in M$, $f_x(z) = \rho(z, x) - \rho(z, a)$. Então $|f_x(z)| \le \rho(x, a)$ e então f_x é limitada. Temos

$$d\left(f_{x}, f_{y}\right) = \rho\left(x, y\right).$$

Para checar¹ isso,

$$\sup_{m} |f_{x}(m) - f_{y}(m)| = \sup_{m} |\rho(x, m) - \rho(m, a) - (\rho(y, m) - \rho(m, a))|$$
$$= \sup_{m} |\rho(x, m) - \rho(y, m)| = \rho(x, y).$$

Portanto $\Theta: X \to \mathscr{C}_b(M, \mathbb{R})$ definida por $\Theta(x) = f_x$ é uma imersão isométrica. Seja $\widetilde{M} = \overline{\Theta(M)} \subset \mathscr{C}_b(M, \mathbb{R})$. Então \widetilde{M} é o completamento de M pois é fechado e $\mathscr{C}_b(M, \mathbb{R})$ é completo.

Comentário 11 Os espaços métricos podem possuir vários completamentos mas todos são isométricos entre si.

Teorema 11 Sejam $(\widetilde{M}, \widetilde{d})$ e $(\widehat{M}, \widehat{d})$ completamentos de (M, d). Então \widetilde{M} e \widehat{M} são isométricos.

Demonstração: Seja $\phi: M \to \widetilde{M}$ imersão isométrica com image densa em \widetilde{M} e seja $\psi: M \to \widehat{M}$ imersão isométrica com imagem densa em \widehat{M} . Definamos $f: \phi(M) \to \psi(M)$ por $f(\phi(x)) = \psi(x), x \in M$. Temos

$$\hat{d}(\psi(x), \psi(y)) = \hat{d}(f(\phi(x)), f(\phi(y))) = \tilde{d}(\phi(x), \phi(y)).$$

Podemos extender f: Se $z \in \widetilde{M}$ existe $\phi(x_n) \to z$. Logo $(\phi(x_n))_n$ é de Cauchy e então $(\psi(x_n))_n$ é de Cauchy. Seja $f(z) = \lim_n \psi(x_n)$. Esta é a isometria procurada: Devemos verificar que a definição não depende da seq. (x_n) . Suponhamos $\phi(y_n) \to z$. Então se definirmos $x'_{2n} = x_n$ e $x'_{2n+1} = y_n$ temos $\lim \phi(x'_n) = z$ e portanto $(x'_n)_n$ é de Cauchy e logo $(\psi(x'_n))_n$ é de Cauchy e converge:

$$\lim \psi(x_n) = \lim \psi(x'_{2n}) = \lim \psi(x'_{2n+1}).$$

¹O supremo é alcançado para m = y.

Teorema 12 Seja (X, d) completo. E $F_n \supset F_{n+1}$ uma família de conjuntos fechados não-vazios de X com $\delta(F_n) \to 0$. Então $\cap_n F_n \neq \emptyset$.

Demonstração: Seja $x_n \in F_n$. Então $(x_n)_n$ é de Cauchy pois dado $\epsilon > 0$ e p natural é tal que $\delta(F_k) < \epsilon$ sempre que $k \ge p$ então se $n, m \ge p$, $\{x_n, x_m\} \subset F_p$ e logo $d(x_n, x_m) \le \delta(F_p) < \epsilon$. Agora (x_n) sendo de Cauchy tem $x = \lim_n x_n$. Mas $x_m \in F_n$ se $m \ge n$ logo $x \in F_n$ para todo n e $x \in \cap_n F_n$.

Teorema 13 Suponhamos que (X,d) seja tal que toda família de fechados decrescente com diâmetro convergindo para 0 tem intersecção não vazia. Então X é completo.

Demonstração: Seja $(x_n)_n$ de Cauchy. Para $\epsilon = \frac{1}{N}$ existe k(N) tal que $n, m \ge k(N) \implies d(x_n, x_m) < \frac{1}{N}$. Sem perda de generalidade k(N) é estritamente crescente. Logo se $F_N = \overline{\{x_n : n \ge k(N)\}}$ temos $\delta(F_N) \le \frac{1}{N}$ e $F_{N+1} \subset F_N$. Seja $x \in \cap_N F_N$. Então $\lim_n x_n = x$.

Completamento de espaços normados

Definição 19 Um espaço normado completo é um espaço de Banach.

Definição 20 Um espaço euclidiano completo é um espaço de Hilbert.

Teorema 14 O completamento de um espaço normado é um espaço de Banach.

Demonstração: Seja (V, ||||) um espaço normado. Sejam

$$c = \left\{ x \in V^{\mathbb{N}} : (x_n)_n \text{ \'e de Cauhy} \right\};$$

$$c_0 = \left\{ x \in V^{\mathbb{N}} : \lim_n x_n = 0 \right\};$$

$$B = c/c_0 = \left\{ x + c_0 : x \in c \right\}.$$

É fácil de se verificar que c é um subespaço vetorial de $V^{\mathbb{N}}$ e c_0 é subespaço vetorial de c. Para $x \in c$ o limite $\lim_n \|x_n\|$ existe pois $(x_n)_n$ é de Cauchy e

$$|||x_n|| - ||x_m||| \le ||x_n - x_m||$$
.

Se $x + c_0 = y + c_0$ então $x - y \in c_0$ e

$$||x_n|| \le ||x_n - y_n|| + ||y_n|| \implies \lim_n ||x_n|| \le \lim_n ||y_n||$$

pois $\lim_n x_n - y_n = 0$. Trocando x com y obtemos $\lim_n \|y_n\| \le \lim_n \|x_n\|$ e então $\lim_n \|x_n\| = \lim_n \|y_n\|$. Portanto $\|x + c_0\| := \lim_n \|x_n\|$ está bem definida e vamos verificar que é uma norma em B. Se $\|x + c_0\| = 0$ para $x \in c$. Então $\lim_n \|x_n\| = 0$ e então $x \in c_0$. Para λ real,

$$\|\lambda(x+c_0)\| = \|\lambda x + c_0\| = \lim_n \|\lambda x_n\| = |\lambda| \lim_n \|x_n\| = |\lambda| \|x+c_0\|.$$

Desigualdade triangular: se $x, y \in c$,

$$||(x+c_0) + (y+c_0)|| = ||x+y+c_0|| = \lim_n ||x_n + y_n||$$

$$\leq \lim_n ||x_n|| + \lim_n ||y_n|| = ||x+c_0|| + ||y+c_0||.$$

Vamos demonstrar que B é de Banach. Seja $(x^N + c_0)_{N \ge 1}$ de Cauchy em $B, x^N \in c$. Para cada $N \ge 1$ existe k(N) tal que

$$n, m \ge k(N) \implies \left\| x_m^N - x_n^N \right\| \le \frac{1}{N}.$$

Sem perda de generalidade k(N+1) > k(N). Seja $y_N = x_{k(N)}^N$ e $y = (y_N)_N$. Verifiquemos que $y \in c$. Dado $\epsilon > 0$ existe N_0 ,

$$||x^N - x^M + c_0|| \le \epsilon \text{ se } N, M \ge N_0 \ge \frac{1}{\epsilon}.$$

Existe $n\left(\epsilon\right)$ tal que $n\geq n\left(\epsilon\right) \implies \left\|x_{n}^{N}-x_{n}^{M}\right\|<2\epsilon.$ Seja $n=\max\left\{ n\left(\epsilon\right),k\left(N\right),k\left(M\right)\right\} .$

$$||y_N - y_M|| \le ||y_N - x_n^N|| + ||x_n^N - x_n^M|| + ||x_n^M - y_M|| \le \frac{1}{N} + 2\epsilon + \frac{1}{M} \le 4\epsilon.$$

Para demonstrar que $(x^N + c_0)_N$ converge para $y + c_0$ seja para dado $\epsilon > 0$, $n(\epsilon)$ tal que

$$n, m \ge n(\epsilon) \implies ||y_n - y_m|| \le \epsilon.$$

Seja $N_0 \ge \max \left\{ \frac{1}{\epsilon}, n(\epsilon) \right\}$. Então para $N \ge N_0$,

$$||x_n^N - y_N|| = ||x_n^N - x_{k(N)}^N|| \le \frac{1}{N} \le \frac{1}{N_0} \le \epsilon.$$

Então

$$||x_n^N - y_n|| \le ||x_n^N - y_N|| + ||y_N - y_n|| \le 2\epsilon.$$

Ou seja $N \ge N_0$, $||x^N - y + c_0|| = \lim_n ||x_n^N - y_n|| \le 2\epsilon$. Resta demonstrar que B é o completamento de V. Seja

$$\phi: V \to B$$

$$\phi(x) = (x, x, \ldots) + c_0.$$

Então $\|\phi(x)\| = \|x\|$. Densidade de $\phi(V)$. Seja $x \in c$. Dado $\epsilon > 0$ seja N tal que

$$||x_n - x_m|| \le \epsilon \text{ se } n, m \ge N.$$

Então $\|x_n - x_N\| \le \epsilon$. Logo $\lim_n \|x_n - x_N\| \le \epsilon$. Portanto $\|x + c_0 - \phi(x_N)\| \le \epsilon$.

Comentário 12 Uma demonstração semelhante permite demonstrar que o completamento de um espaço euclidiano é um espaço de Hilbert.

Método das aproximações sucessivas

Definição 21 Um ponto fixo de $f: M \to M$ é $a \in M$ tal que f(a) = a.

Definição 22 Uma função $f: M \to M$ é uma contração (ou λ contração) se existir $0 < \lambda < 1$ tal que

$$d(f(x), f(y)) \le \lambda d(x, y), x, y \in M.$$

Uma contração tem no máximo um ponto fixo: se f(x) = x e f(y) = y então

$$d(x,y) = d(f(x), f(y)) \le \lambda d(x,y) \implies (1 - \lambda) d(x,y) \le 0$$
$$\implies d(x,y) = 0 \implies x = y.$$

Teorema 15 (ponto fixo de Banach) Seja (M,d) completo $ef: M \to M$ uma λ contração. Então f tem um único ponto fixo. Além disso a seqüência $x_{n+1} = f(x_n)$ com $x_0 \in M$ converge para o ponto fixo.

Demonstração: Vou demonstrar que $(x_n)_n$ é de Cauchy. Temos

$$d(x_n, x_{n+1}) = d(f(x_{n-1}), f(x_n)) \le \lambda d(x_{n-1}, x_n) \le \lambda^2 d(x_{n-2}, x_{n-1}) \le \lambda^n d(x_0, x_1).$$

E para $p \ge 1$,

$$d(x_{n}, x_{n+p}) \leq d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+p-1}, x_{n+p})$$

$$\leq \lambda^{n} d(x_{0}, x_{1}) + \lambda^{n+1} d(x_{0}, x_{1}) + \dots + \lambda^{n+p-1} d(x_{0}, x_{1})$$

$$= (\lambda^{n} + \lambda^{n+1} + \dots + \lambda^{n+p-1}) d(x_{0}, x_{1}) \leq \frac{\lambda^{n}}{1 - \lambda} d(x_{0}, x_{1}).$$

Seja $\epsilon > 0$ e N tal que $\frac{\lambda^N}{1-\lambda}d\left(x_0,x_1\right) < \epsilon$. Então se $n,m \geq N,\ d\left(x_n,x_m\right) \leq \frac{\lambda^N}{1-\lambda}d\left(x_0,x_1\right) < \epsilon$. Seja $a = \lim_{n \to \infty} x_n$. Então a é um ponto fixo:

$$a = \lim_{n} x_{n+1} = \lim_{n} f(x_n) = f\left(\lim_{n} x_n\right) = f(a).$$

Comentário 13 Vemos pela demonstração que $d(a, x_n) \leq \frac{\lambda^n}{1-\lambda} d(x_0, x_1)$. A taxa de convergência é geométrica.

Teorema 16 (condição de Blackwell para uma contração) $Para X \subset \mathbb{R}^n$ $seja \ B(X) = \mathcal{B}(X,\mathbb{R})$. $Seja \ T: B(X) \to B(X)$ $tal \ que$

- a) se $f, g \in B(X)$ e $f \leq g$ temos $Tf \leq Tg$
- **b)** Existe $\beta \in (0,1)$ tal que $T(f+a) \leq Tf + \beta a$ se $a \geq 0$.

Então T é uma contração.

Demonstração: Para $f,g \in B(X), f(x) \leq g(x) + |f(x) - g(x)| \leq g(x) + |f - g|_{\infty}$. Logo $f \leq g + |f - g|_{\infty}$. Por (a),

$$Tf \le T (g + |f - g|_{\infty}) \le Tg + \beta |f - g|_{\infty}.$$

Trocando f com g: $Tg \le Tf + \beta |f - g|_{\infty}$. Portanto $|Tg - Tf|_{\infty} \le \beta |f - g|_{\infty}$.

Exemplo 16 (crescimento ótimo, um setor) O seguinte problema resume o aspecto matemático do problema:

$$Tv\left(k\right) = \max_{0 \le y \le f(k)} \left\{ U\left(f\left(k\right) - y\right) + \beta v\left(y\right) \right\}.$$

Se $v \le w$, $Tv \le Tw$ e vale (a). E

$$T(v+a)(k) = \max_{0 \le y \le f(k)} \left\{ U(f(k) - y) + \beta v(y) + \beta a \right\}$$
$$= \max_{0 \le y \le f(k)} \left\{ U(f(k) - y) + \beta v(y) \right\} + \beta a$$
$$= T(v)(k) + \beta a.$$

Outros exemplos em Stokey–Lucas.

Compacidade em espaços métricos

Definição 23 Seja (X, d) espaço métrico.

- 1. $\{U_i\}_{i\in I}$ é uma cobertura de X se $\bigcup_{i\in I} U_i = X$.
- 2. A cobertura $\{U_i\}_{i\in I}$ é uma cobertura aberta se cada U_i for aberto.

Comentário 14 A mesma definição vale para subespaços $A \subset X$ considerados com a métrica relativa. Nesse caso como os abertos de A são da forma $A \cap U_i$ podemos escrever $\cup_i U_i \supset A$ no lugar de $\cup_{i \in I} U_i \cap A = A$.

Definição 24 Se $\{U_i\}_{i\in I}$ é uma cobertura de X, se $J\subset I$ for tal que $\bigcup_{i\in J}U_i=X$ dizemos que $\{U_i:i\in J\}$ é uma subcobertura. A subcobertura é finita se J for finito.

Definição 25 (X,d) é compacto se toda cobertura aberta de X tem uma subcobertura finita.

Exemplo 17 Todo conjunto finito é compacto.

Exemplo 18 $A = \left\{\frac{1}{n} : n \geq 1\right\}$ não é compacto pois $U_n = \left(\frac{1}{n+1}, \infty\right) \supset \left\{\frac{1}{n}\right\}$, $n \geq 1$ é uma cobertura de A que não possui subcobertura finita.

Pois qualquer família finita $U_{n1} \cup U_{n2} \cup ... \cup U_{np} = U_m$ sendo $m = \max\{n1,...,np\}$. $Ent\tilde{ao} \frac{1}{m+1} \in A \setminus U_m$. Se K_1 e K_2 são compactos de X, $K_1 \cup K_2$ é compacto: Se $\bigcup_{i \in I} U_i \supset K_1 \cup K_2$ é cobertura aberta então existem J_1 e J_2 finitos tais que

$$\bigcup_{i \in J_1} U_i \supset K_1,$$

$$\bigcup_{i \in J_2} U_i \supset K_2$$

e portanto $\bigcup_{i \in J_1 \cup J_2} U_i \supset K_1 \cup K_2$.

Lema 9 Se $K \subset X$ é compacto então K é fechado.

Demonstração: Seja $x \in X \setminus K$. Para cada $k \in K$, B(x,r) e B(k,r) são bolas abertas disjuntas se $r = r(k) = \frac{d(x,k)}{2}$. A cobertura de K, $\bigcup_{k \in K} B(k,r(k))$ possui subcobertura finita $B(k_1,r_1)$, $B(k_2,r_2)$, ..., $B(k_p,r_p)$, $r_i = r(k_i)$. Seja $0 < r < \min_{1 \le i \le p} r_i$. Então

$$B(x,r) \cap B(k_i,r_i) \subset B(x,r_i) \cap B(k_i,r_i) = \emptyset, i \leq p \implies B(x,r) \cap K = \emptyset.$$

Portanto K^c é aberto.

Lema 10 Se X for compacto $e F \subset X$ fechado então F é compacto.

Demonstração: Seja $\{U_i : i \in I\}$ cobertura aberta de F. Seja $U_0 = F^c$. Então $\bigcup_{i \in I \cup \{0\}} U_i = X$. Seja U_0, U_1, \dots, U_n subcobertura finita:

$$U_0 \cup U_1 \cup \ldots \cup U_n = X \implies U_1 \cup U_2 \cup \ldots \cup U_n \supset F.$$

Corolário 4 Todo compacto é completo.

Demonstração: Seja \widehat{K} completamento do compacto K. Mas K sendo compacto é fechado de \widehat{K} . Logo $K = \overline{K} = \widehat{K}$.

01/03

Teorema 17 Seja $f: M \to N$ contínua. Se $K \subset M$ é compacto, $f(K) \subset N$ é compacto.

Demonstração: Seja $\{U_i\}_{i\in I}$ cobertura aberta de f(K). Então de

$$K \subset \bigcup_{i \in I} f^{-1} (U_i)$$

vem que $\{f^{-1}(U_i): i \in I\}$ é uma cobertura aberta de K. Seja $\{f^{-1}(U_i): i \in J\}$ subcobertura finita de K. Então

$$f(K) \subset f\left(\bigcup_{i \in J} f^{-1}(U_i)\right) \subset \bigcup_{i \in J} U_i.$$

Corolário 5 Se $f: M \to N$ é contínua e bijetiva. Então se M for compacto, f é homeomorfismo.

Demonstração: Devemos demonstrar que $f^{-1}: N \to M$ é contínua. Seja $F \subset M$ fechado. Então

F é compacto $\Longrightarrow (f^{-1})^{-1}(F) = f(F)$ é compacto $\Longrightarrow f(F)$ é fechado.

Corolário 6 Se $f: M \to \mathbb{R}$ for contínua e M compacto então f(M) é fechado limitado. Em particular f tem máximo pois $\sup f(M) \in f(M)$ e mínimo pois $\inf f(M) \in f(M)$.

Definição 26 A família de conjuntos $\{C_i : i \in I\}$ tem a propriedade da intersecção finita se $\cap_{i \in J} C_i \neq \emptyset$ para todo J finito.

Teorema 18 O espaço métrico M é compacto se e somente se toda família de fechados de M, $\{F_i : i \in I\}$, com a propriedade da intersecção finita tem intersecção $n\tilde{a}o-vazia: \cap_{i\in I}F_i\neq\emptyset$.

Demonstração: Suponhamos M compacto. E $\{F_i : i \in I\}$ família de fechados com a propriedade da intersecção finita. Então se $U_i = F_i^c$ temos para J finito,

$$(\bigcup_{i \in J} U_i)^c = \bigcap_{i \in J} U_i^c \neq \emptyset \implies \bigcup_{i \in J} U_i \neq M.$$

Portanto $\bigcup_{i\in I} U_i \neq M$ e logo $\bigcap_{i\in I} F_i \neq \emptyset$. Recíprocamente, seja $\bigcup_{i\in I} U_i = M$ cobertura aberta. Então $\bigcap_{i\in I} U_i^c = \emptyset$. Logo $\{U_i^c: i\in I\}$ não tem a propriedade de intersecção finita: existe J finito, $\bigcap_{i\in J} U_i^c = \emptyset$ e logo $\bigcup_{i\in J} U_i = M$.

Exemplo 19 (teorema de Dini) Seja M compacto e $f_n: M \to \mathbb{R}$ contínua. Suponhamos $f_n \leq f_{n+1}$ e $f(x) = \lim_{n\to\infty} f_n(x)$ contínua. Então f_n converge para f uniformemente.

Para ver isto seja para $\epsilon > 0$ dado,

$$F_{n} = \left\{ x \in M : f\left(x\right) - \epsilon \ge f_{n}\left(x\right) \right\}.$$

Então F_n é fechado pela continuidade de f_n e f. E $F_{n+1} \subset F_n$. De $\cap_n F_n = \emptyset$ vem que $\{F_n : n \geq 1\}$ não tem a propriedade de intersecção finita. Logo existe n_0 tal que $F_{n_0} = \emptyset$.

Definição 27 O subespaço Y do espaço métrico X é totalmente limitado se para todo $\epsilon > 0$ existem W_1, W_2, \ldots, W_n com $\delta(W_i) < \epsilon$ e $\cup_{i=1}^n W_i \supset Y$. Alternativamente $Y \subset B(x_1, \epsilon) \cup \ldots \cup B(x_n, \epsilon)$. E sem perda de generalidade $x_i \in Y$.

É imediato que totalmente limitado é limitado.

Definição 28 Seja $A \subset X$. O ponto $x \in X$ é ponto de acumulação de A se para todo r > 0, $B(x,r) \cap (A \setminus \{x\}) \neq \emptyset$.

Ou seja toda vizinhança de x contém pontos de A distintos de x. O conjunto dos pontos de acumulação de A é denotado A'. É imediato que para todo $x \in A'$, toda vizinhança de x é tem um número infinito de pontos de A.

Lema 11 $\overline{A} = A \cup A'$

Demonstração: Seja $x \in \overline{A} \setminus A$. Existe então $x_n \in A$ com limite x. Mas então a seqüência tem um número infinito de termos e portanto $x \in A'$. Suponhamo agora que $x \in A'$. Para todo n existe $x_n \in B\left(x, \frac{1}{n}\right) \cap (A \setminus \{x\})$. Portanto $\lim x_n = x$ e $x \in \overline{A}$.

Teorema 19 São equivalentes:

- a) X é compacto;
- b) Todo subconjunto infinito de X tem ponto de acumulação;
- c) toda seqüência em X possui subseqüência convergente;
- d) X é completo e totalmente limitado.

Demonstração: (a) \Longrightarrow (b). Suponhamos que $A \subset X$ não tem ponto de acumulação. Portanto A é fechado e então compacto pois X é compacto. Para cada $a \in A$ existe $r_a > 0$ tal que $A \cap B(a, r_a) = \{a\}$. Pela compacidade a cobertura $\{B(a, r_a), a \in A\}$ possui subcobertura finita $\{B(a_i, r_i) : i \leq N\}$ e logo $A = \{a_1, \dots, a_N\}$ é finito. (b) \Longrightarrow (c) Seja $(x_n)_n$ uma seqüência em X. Seja $A = \{x_n : n \ge 1\}$. Se A for finito então existe $a \in A$ tal que $\{n : x_n = a\}$ é infinito e com isto temos uma subsequência de $(x_n)_n$ que converge (para a.) Se A for infinito. Seja $x \in A'$. Então para todo n existe k(n) tal que $x_{k(n)} \in B(x, \frac{1}{n}) \cap A \setminus \{x\}$ e $\lim_n x_{k(n)} = x$. (c) implica (d) Se $(x_n)_n$ for de Cauchy, a existência de uma subsequência convergente por hipótese implica que (x_n) converge. Logo X é completo. Digamos para obter uma contradição que X não seja totalmente limitado. Existe então $\epsilon > 0$ tal que X não pode ser coberto por uma família finita de conjuntos com diâmetro inferior a ϵ . Para $x_0 \in X$, $B(x_0, \epsilon) \neq X$. Seja $x_1 \in X \setminus B(x_0, \epsilon)$. Então existe $x_2 \in X \setminus (B(x_0, \epsilon) \cup B(x_1, \epsilon))$. Prosseguindo indutivamente dados x_0, x_1, \ldots, x_n existe $x_{n+1} \in X \setminus \{B(x_0, \epsilon) \cup \ldots \cup B(x_n, \epsilon)\}$. Se $(x_{k(n)})_n$ for uma subsequência convergente temos para algum n que $d\left(x_{k(n+1)}, x_{k(n)}\right) < \epsilon$ contradição com $x_{k(n+1)} \in X \setminus \bigcup_{j=1}^{k(n+1)-1} B(x_j, \epsilon)$. (d) \Longrightarrow (a) Seja $\{U_i : i \in I\}$

cobertura aberta de X sem subcobertura finita. Sem perda de generalidade U_i não–vazio. Sejam $V_1^N \cup V_2^N \cup \ldots \cup V_{k(N)}^N = X$ com $\delta\left(V_i^N\right) < \frac{1}{N}$. Sem perda de generalidade V_i^N é fechado. Para N=1 existe $j\left(1\right) \leq k\left(1\right)$ tal que $V_{j(1)}^1$ não tem subcobertura finita de $\{U_i\}_{i \in I}$. Então definido o processo para N prosseguimos para N+1: $V_{j(N)}^N = V_1^{N+1} \cup \ldots V_{k(N+1)}^{N+1}$ cada um com diâmetro $<\frac{1}{N+1}$. Existe um $j\left(N+1\right) \leq k\left(N=1\right)$ para o qual a cobertura $\cup_{i \in I} U_i \supset V_{j(N+1)}^{N+1}$ não possui subcobertura finita. Seja $\{x^0\} = \cap_{N=1}^\infty V_{k(N)}^N$ que existe pois o espaço é completo. Seja $i^0 \in I$ tal que $x^0 \in U_{i^0}$. Para N tal que $\frac{1}{N} < \delta\left(U_{i^0}\right)$ temos que $V_{k(N)}^N \subset U_{i^0}$. Contradição.