Lipschitz estimates in quasi-Banach Schatten ideals

Ed McDonald Joint with F. Sukochev.

Penn State University

August 21, 2023

Introduction

This talk is mostly about the paper

M., Sukochev, Lipschitz estimates in quasi-Banach Schatten ideals. *Math. Ann.* 383 (2022), no.1–2, 571–619.

Plan for this talk

- Operator Lipschitz functions: some basic concepts and history.
- ② Some very light background on Schatten ideals: the problem with p < 1.
- Besov spaces and wavelets

Let H be a (complex and separable) Hilbert space, and denote the operator norm by $\|\cdot\|_{\infty}$. A function $f:\mathbb{R}\to\mathbb{C}$ is said to be *operator Lipschitz* if there exists a constant C_f such that

$$\|f(A) - f(B)\|_{\infty} \le C_f \|A - B\|_{\infty}, \quad A, B \in \mathcal{B}_{\mathrm{sa}}(H)$$

Question (from Krein)

Is every Lipschitz function operator Lipschitz?

Let H be a (complex and separable) Hilbert space, and denote the operator norm by $\|\cdot\|_{\infty}$. A function $f:\mathbb{R}\to\mathbb{C}$ is said to be *operator Lipschitz* if there exists a constant C_f such that

$$||f(A) - f(B)||_{\infty} \le C_f ||A - B||_{\infty}, \quad A, B \in \mathcal{B}_{sa}(H)$$

Question (from Krein)

Is every Lipschitz function operator Lipschitz? That is, does

$$|f(t) - f(s)| \lesssim |t - s|$$
 imply that $||f(A) - f(B)||_{\infty} \lesssim ||A - B||_{\infty}$?

Answer

No.

Answer

No.

Farforovskaya (1968): There exist Lipschitz functions that are not operator Lipschitz

Answer

No.

Farforovskaya (1968): There exist Lipschitz functions that are not operator Lipschitz

Kato (1973): The absolute value function f(t) = |t| is not operator

Lipschitz

Answer

No.

Farforovskaya (1968): There exist Lipschitz functions that are not operator

Lipschitz

Kato (1973): The absolute value function f(t) = |t| is not operator

Lipschitz

Johnson & Williams (1975): An operator Lipschitz function is

differentiable.

Finite-dimensional case

If H is N-dimensional, then

$$||f(A) - f(B)||_{\infty} \le C_{\text{abs}} \log(1+N) ||f||_{\text{Lip}} ||A - B||_{\infty}$$

where $C_{\rm abs}$ is an absolute constant. This is sharp in the order of growth as $N \to \infty$. I do not know if a sharp estimate for $C_{\rm abs}$ is known.

It is easy to check that sufficiently good functions are operator Lipschitz. Let's check the function $f(x)=e^{i\xi x}$ for $\xi\in\mathbb{R}$. We have

$$e^{i\xi A}-e^{i\xi B}=i\xi\int_0^1e^{i\xi(1-\theta)A}(A-B)e^{i\xi\theta B}\,d\theta.$$

The integral converges in the Bochner sense. The triangle inequality implies

$$\|e^{i\xi A} - e^{i\xi B}\|_{\infty} \le |\xi| \|A - B\|_{\infty}.$$

It is easy to check that sufficiently good functions are operator Lipschitz. Let's check the function $f(x)=e^{i\xi x}$ for $\xi\in\mathbb{R}$. We have

$$e^{i\xi A}-e^{i\xi B}=i\xi\int_0^1e^{i\xi(1-\theta)A}(A-B)e^{i\xi\theta B}\,d\theta.$$

The integral converges in the Bochner sense. The triangle inequality implies

$$||e^{i\xi A} - e^{i\xi B}||_{\infty} \le |\xi| ||A - B||_{\infty}.$$

By Fourier inversion,

$$||f(A)-f(B)||_{\infty} \leq ||A-B||_{\infty} \cdot 2\pi ||\widehat{\partial f}||_{1}.$$

It is easy to check that sufficiently good functions are operator Lipschitz. Let's check the function $f(x)=e^{i\xi x}$ for $\xi\in\mathbb{R}$. We have

$$e^{i\xi A}-e^{i\xi B}=i\xi\int_0^1e^{i\xi(1-\theta)A}(A-B)e^{i\xi\theta B}\,d\theta.$$

The integral converges in the Bochner sense. The triangle inequality implies

$$||e^{i\xi A} - e^{i\xi B}||_{\infty} \le |\xi| ||A - B||_{\infty}.$$

By Fourier inversion,

$$||f(A) - f(B)||_{\infty} \le ||A - B||_{\infty} \cdot 2\pi ||\widehat{\partial f}||_{1}.$$

By Cauchy-Schwarz, $\|\widehat{\partial f}\|_1 \leq \|f'\|_2 + \|f''\|_2$. This is a "good enough" sufficient condition for most purposes.

The previous computation was based on Fourier inversion of f and a description of $e^{i\xi A}-e^{i\xi B}$ as an integral (Duhamel's integral).

The previous computation was based on Fourier inversion of f and a description of $e^{i\xi A}-e^{i\xi B}$ as an integral (Duhamel's integral). Using a more subtle description of $e^{i\xi A}-e^{i\xi B}$, and handling the Littlewood-Paley components of f individually, V. V. Peller has proved the following:

Theorem (Peller (1990))

If f is Lipschitz and belongs to the homogeneous Besov class $\dot{B}^1_{\infty,1}(\mathbb{R})$ then f is operator Lipschitz.

The previous computation was based on Fourier inversion of f and a description of $e^{i\xi A}-e^{i\xi B}$ as an integral (Duhamel's integral). Using a more subtle description of $e^{i\xi A}-e^{i\xi B}$, and handling the Littlewood-Paley components of f individually, V. V. Peller has proved the following:

Theorem (Peller (1990))

If f is Lipschitz and belongs to the homogeneous Besov class $\dot{B}^1_{\infty,1}(\mathbb{R})$ then f is operator Lipschitz.

In other words, if

$$\int_0^\infty \sup_{t\in\mathbb{R}} \frac{|f(t-h)-2f(t)+f(t+h)|}{h^2} dh + \sup_{t\in\mathbb{R},h>0} \frac{|f(t+h)-f(t)|}{h} < \infty$$

then f is operator Lipschitz.

The previous computation was based on Fourier inversion of f and a description of $e^{i\xi A}-e^{i\xi B}$ as an integral (Duhamel's integral). Using a more subtle description of $e^{i\xi A}-e^{i\xi B}$, and handling the Littlewood-Paley components of f individually, V. V. Peller has proved the following:

Theorem (Peller (1990))

If f is Lipschitz and belongs to the homogeneous Besov class $\dot{B}^1_{\infty,1}(\mathbb{R})$ then f is operator Lipschitz.

In other words, if

$$\int_0^\infty \sup_{t\in\mathbb{R}} \frac{|f(t-h)-2f(t)+f(t+h)|}{h^2} \, dh + \sup_{t\in\mathbb{R}, h>0} \frac{|f(t+h)-f(t)|}{h} < \infty$$

then f is operator Lipschitz. For example, if $f' \in W^1_\infty(\mathbb{R})$ then f is operator Lipschitz.

Peller's operator Bernstein inequality

The classical Bernstein inequality states that if $f \in L_{\infty}(\mathbb{R})$ has Fourier transform supported in the interval $[-\sigma, \sigma]$, then

$$||f||_{\text{Lip}} \leq C\sigma ||f||_{\infty}.$$

Peller's operator Bernstein inequality

The classical Bernstein inequality states that if $f \in L_{\infty}(\mathbb{R})$ has Fourier transform supported in the interval $[-\sigma, \sigma]$, then

$$||f||_{\text{Lip}} \leq C\sigma ||f||_{\infty}.$$

Peller's theorem is a consequence of his operator Bernstein inequality.

Theorem (Peller (1990))

If $f \in L_{\infty}(\mathbb{R})$ has Fourier transform supported in the interval $[-\sigma,\sigma]$, then

$$||f||_{\mathrm{O-Lip}} \leq C\sigma ||f||_{\infty}.$$

Here $||f||_{O-Lip}$ is the operator Lipschitz seminorm, i.e.

$$||f||_{\mathrm{O-Lip}} := \sup_{A=A^*, B=B^* \in \mathcal{B}(H)} \frac{||f(A) - f(B)||_{\infty}}{||A - B||_{\infty}}.$$

Schatten ideals

If T is a compact operator on H, the singular value sequence of T is defined as

$$\mu(k, T) := \inf\{\|T - R\|_{\infty} : \operatorname{rank}(R) \le k\}, \quad k \ge 0.$$

(Equivalently, $\mu(T) = \{\mu(k,T)\}_{k=0}^{\infty}$ is the sequence of eigenvalues of the absolute value |T| arranged in non-increasing order with multiplicities.)

Schatten ideals

If T is a compact operator on H, the singular value sequence of T is defined as

$$\mu(k, T) := \inf\{\|T - R\|_{\infty} : \operatorname{rank}(R) \le k\}, \quad k \ge 0.$$

(Equivalently, $\mu(T) = \{\mu(k,T)\}_{k=0}^{\infty}$ is the sequence of eigenvalues of the absolute value |T| arranged in non-increasing order with multiplicities.) Note that $\|T\|_{\infty} = \mu(0,T) = \|\mu(T)\|_{\ell_{\infty}}$.

Schatten ideals

If T is a compact operator on H, the singular value sequence of T is defined as

$$\mu(k, T) := \inf\{\|T - R\|_{\infty} : \operatorname{rank}(R) \le k\}, \quad k \ge 0.$$

(Equivalently, $\mu(T)=\{\mu(k,T)\}_{k=0}^{\infty}$ is the sequence of eigenvalues of the absolute value |T| arranged in non-increasing order with multiplicities.) Note that $\|T\|_{\infty}=\mu(0,T)=\|\mu(T)\|_{\ell_{\infty}}.$ For $1\leq p<\infty$, the Schatten \mathcal{L}_p -norm of a compact operator T is

$$\|T\|_{p} := \|\mu(T)\|_{\ell_{p}} = \left(\sum_{k=0}^{\infty} \mu(k,T)^{p}\right)^{\frac{1}{p}}.$$

Equivalently, $||T||_p = \text{Tr}(|T|^p)^{1/p}$. It is not obvious, but this is a norm (i.e. $||T + S||_p \le ||T||_p + ||S||_p$.)

A function f on $\mathbb R$ is said to be $\mathcal L_p$ -operator Lipschitz if there exists a constant $\mathcal C_f>0$ such that

$$||f(A)-f(B)||_p \leq C_f ||A-B||_p, \quad A,B \in \mathcal{B}_{\mathrm{sa}}(H).$$

By a duality argument, \mathcal{L}_1 -operator Lipschitz is the same thing as operator Lipschitz.

A function f on $\mathbb R$ is said to be $\mathcal L_p$ -operator Lipschitz if there exists a constant $\mathcal C_f>0$ such that

$$||f(A)-f(B)||_p \leq C_f ||A-B||_p, \quad A,B \in \mathcal{B}_{\mathrm{sa}}(H).$$

By a duality argument, \mathcal{L}_1 -operator Lipschitz is the same thing as operator Lipschitz.

What about 1 ?

A function f on $\mathbb R$ is said to be $\mathcal L_p$ -operator Lipschitz if there exists a constant $\mathcal C_f>0$ such that

$$||f(A)-f(B)||_p \leq C_f ||A-B||_p, \quad A,B \in \mathcal{B}_{\mathrm{sa}}(H).$$

By a duality argument, \mathcal{L}_1 -operator Lipschitz is the same thing as operator Lipschitz.

What about 1 ?

Theorem (Potapov and Sukochev (2010))

For $1 , all Lipschitz functions are <math>\mathcal{L}_p$ -operator Lipschitz.

A function f on $\mathbb R$ is said to be $\mathcal L_p$ -operator Lipschitz if there exists a constant $\mathcal C_f>0$ such that

$$||f(A)-f(B)||_p \leq C_f ||A-B||_p, \quad A,B \in \mathcal{B}_{\mathrm{sa}}(H).$$

By a duality argument, \mathcal{L}_1 -operator Lipschitz is the same thing as operator Lipschitz.

What about 1 ?

Theorem (Potapov and Sukochev (2010))

For $1 , all Lipschitz functions are <math>\mathcal{L}_p$ -operator Lipschitz.

For p=2 this is almost trivial and has been known for approx. 110 years. For $p \neq 2$, this requires some very deep harmonic analysis.

A function f on $\mathbb R$ is said to be $\mathcal L_p$ -operator Lipschitz if there exists a constant $\mathcal C_f>0$ such that

$$||f(A)-f(B)||_p \leq C_f ||A-B||_p, \quad A,B \in \mathcal{B}_{\mathrm{sa}}(H).$$

By a duality argument, \mathcal{L}_1 -operator Lipschitz is the same thing as operator Lipschitz.

What about 1 ?

Theorem (Potapov and Sukochev (2010))

For $1 , all Lipschitz functions are <math>\mathcal{L}_p$ -operator Lipschitz.

For p=2 this is almost trivial and has been known for approx. 110 years. For $p\neq 2$, this requires some very deep harmonic analysis. Last year, Conde-Alonso, González-Pérez, Parcet and Tablate have a new proof using operator-valued harmonic analysis.

What about 0 ?

For 0 , we can still define

$$||T||_p := ||\mu(T)||_{\ell_p} = \operatorname{Tr}(|T|^p)^{\frac{1}{p}}.$$

This is not a norm, merely a quasi-norm. There is no triangle inequality, merely a quasi-triangle inequality

$$||T + S||_p \le 2^{\frac{1}{p}-1} (||T||_p + ||S||_p).$$

What about 0 ?

For 0 , we can still define

$$||T||_p := ||\mu(T)||_{\ell_p} = \operatorname{Tr}(|T|^p)^{\frac{1}{p}}.$$

This is not a norm, merely a quasi-norm. There is no triangle inequality, merely a quasi-triangle inequality

$$||T + S||_p \le 2^{\frac{1}{p}-1} (||T||_p + ||S||_p).$$

Nonetheless, we have

$$||T + S||_p^p \le ||T||_p^p + ||S||_p^p.$$

Geometry in \mathcal{L}_p .

The unit ball $B = \{T : ||T||_p \le 1\}$ in \mathcal{L}_p is not convex. I.e., if $\xi_1, \ldots, \xi_n \in B$ then it might happen that

$$\theta_1 \xi_1 + \cdots + \theta_n \xi_n \notin B$$
, $|\theta_1| + \cdots + |\theta_n| \le 1$.

For this reason the theory of integration \mathcal{L}_p -valued functions is not straightforward. We could have continuous functions $f \in C([0,1],\mathcal{L}_p)$ whose integral is not in \mathcal{L}_p .

Geometry in \mathcal{L}_p .

The unit ball $B = \{T : ||T||_p \le 1\}$ in \mathcal{L}_p is not convex. I.e., if $\xi_1, \ldots, \xi_n \in B$ then it might happen that

$$\theta_1 \xi_1 + \cdots + \theta_n \xi_n \notin B, \quad |\theta_1| + \cdots + |\theta_n| \leq 1.$$

For this reason the theory of integration \mathcal{L}_p -valued functions is not straightforward. We could have continuous functions $f \in C([0,1],\mathcal{L}_p)$ whose integral is not in \mathcal{L}_p .

Instead, B is only closed under p-convex combinations, i.e.

$$\theta_1 \xi_1 + \dots + \theta_n \xi_n \in B, \quad |\theta_1|^p + \dots + |\theta_n|^p \le 1.$$

\mathcal{L}_p -Lipschitz functions for 0 .

Which functions are Lipschitz in \mathcal{L}_p when 0 ?

\mathcal{L}_p -Lipschitz functions for 0 .

Which functions are Lipschitz in \mathcal{L}_p when 0 ? $At least some functions are, for example <math>f(t) = (t + \lambda)^{-1}$, $\lambda \in \mathbb{C} \setminus \mathbb{R}$.

\mathcal{L}_p -Lipschitz functions for 0 .

Which functions are Lipschitz in \mathcal{L}_p when 0 ? $At least some functions are, for example <math>f(t) = (t + \lambda)^{-1}$, $\lambda \in \mathbb{C} \setminus \mathbb{R}$. What about $f(t) = \exp(it\xi)$ for $\xi \in \mathbb{R}$?

Periodic functions are not \mathcal{L}_p -Lipschitz for 0 .

A first hint that the 0 case is interesting comes from the following:

Lemma (M. and Sukochev (2022))

Let 0 , and let <math>f be a periodic function on \mathbb{R} . Then f is \mathcal{L}_p -Lipschitz if and only if it is constant.

What does this imply?

Periodic functions are not \mathcal{L}_p -Lipschitz for 0 .

A first hint that the 0 case is interesting comes from the following:

Lemma (M. and Sukochev (2022))

Let $0 , and let f be a periodic function on <math>\mathbb{R}$. Then f is \mathcal{L}_p -Lipschitz if and only if it is constant.

What does this imply?

- Even C^{∞} functions with all derivatives bounded may not be \mathcal{L}_p -Lipschitz;
- In particular f(t) = exp(itξ), ξ ≠ 0 is not L_p-Lipschitz for any 0

Fourier multipliers

An analogous issue is Fourier multipliers in $L_p(\mathbb{T})$ for 0 .

Theorem

Let $m \in \ell_{\infty}(\mathbb{Z})$ and 0 . The Fourier multiplier

$$T_m: L_2(\mathbb{T}) \to L_2(\mathbb{T}), \quad T_m(\exp(i\theta n)) = m(n) \exp(i\theta n), \quad n \in \mathbb{Z}$$

is bounded on $L_p(\mathbb{T})$ if and only if m has the form

$$m(n) = \sum_{i=0}^{\infty} c_i \exp(in\zeta_i), \quad n \in \mathbb{Z}$$

where $\sum_{j} |c_{j}|^{p} < \infty$.

In other words, the only $L_p(\mathbb{T})$ multipliers for 0 are shift operators and <math>p-convex combinations of shifts.

Strategies to get \mathcal{L}_p -operator Lipschitz estimates

In the \mathcal{L}_{∞} case, we started with a class of functions $\{\exp(i\xi x)\}_{\xi\in\mathbb{R}}$ for which Lipschitz estimates are easy, and derived a more general class by taking convex combinations.

If we could find some set $\{\psi_j\}$ of functions which we know are \mathcal{L}_p -Lipschitz, then we could conclude that functions of the form

$$\sum_{j} c_{j} \psi_{j}$$

are also \mathcal{L}_p -operator Lipschitz.

Strategies to get \mathcal{L}_p -operator Lipschitz estimates

We know that if
$$f_{\lambda}(t)=(t+\lambda)^{-1}$$
, where $\lambda\in\mathbb{C}\setminus\mathbb{R}$, then
$$\|f_{\lambda}\|_{\mathcal{L}_{p}-\mathrm{Lip}}\leq |\Im(\lambda)|^{-2}.$$

Essentially every smooth function on \mathbb{R} belongs to the closed convex hull of $\{f_{\lambda}\}_{\Im(\lambda)\neq 0}$.

Strategies to get \mathcal{L}_p -operator Lipschitz estimates

We know that if $f_\lambda(t)=(t+\lambda)^{-1},$ where $\lambda\in\mathbb{C}\setminus\mathbb{R},$ then $\|f_\lambda\|_{\mathcal{L}_\rho-\mathrm{Lip}}\leq |\Im(\lambda)|^{-2}.$

Essentially every smooth function on \mathbb{R} belongs to the closed convex hull of $\{f_{\lambda}\}_{\Im(\lambda)\neq 0}$.

I tried for a long time to characterize functions f having a decomposition like

$$f(t) = \sum_{j=0}^{\infty} c_j |\Im(\lambda_j)|^2 f_{\lambda_j}(t)$$

where $\sum_{j=0}^{\infty}|c_j|^p<\infty,$ but with no success.

It is possible to prove that if f is a compactly supported C^k function where $k > \frac{1}{p}$ then f is \mathcal{L}_p -Lipschitz.

It is possible to prove that if f is a compactly supported C^k function where $k>\frac{1}{p}$ then f is \mathcal{L}_p -Lipschitz. What is a good way of approximating a general function from compactly supported C^k -functions?

It is possible to prove that if f is a compactly supported C^k function where $k > \frac{1}{p}$ then f is \mathcal{L}_p -Lipschitz. What is a good way of approximating a general function from compactly supported C^k -functions?

Theorem (Daubechies (1988))

For all k > 0, there exists a compactly supported C^k function ψ such that the system of translations and dilations

$$\psi_{j,k}(t) := 2^{\frac{j}{2}} \psi(2^j t - k), \quad j,k \in \mathbb{Z}$$

forms an orthonormal basis of $L_2(\mathbb{R})$.

A new result

Using wavelet methods we can get the following:

Theorem (M. and Sukochev (2022))

Let $0 . Let <math>f \in \dot{B}^{\frac{1}{p}}_{\frac{p}{1-p},p}(\mathbb{R})$ be Lipschitz continuous. Then f is \mathcal{L}_p -Lipschitz and

$$\|f(A) - f(B)\|_{p} \leq C_{p}(\|f'\|_{\infty} + \|f\|_{\dot{B}^{\frac{1}{p}}_{\frac{1}{1-p},p}(\mathbb{R})})\|A - B\|_{p}, \quad A, B \in \mathcal{B}_{\mathrm{sa}}(H).$$

A new result

Using wavelet methods we can get the following:

Theorem (M. and Sukochev (2022))

Let $0 . Let <math>f \in \dot{B}^{\frac{1}{p}}_{\frac{p}{1-p},p}(\mathbb{R})$ be Lipschitz continuous. Then f is \mathcal{L}_p -Lipschitz and

$$\|f(A)-f(B)\|_{p} \leq C_{p}(\|f'\|_{\infty}+\|f\|_{\dot{B}^{\frac{1}{p}}_{\frac{p}{1-p},p}(\mathbb{R})})\|A-B\|_{p}, \quad A,B \in \mathcal{B}_{\mathrm{sa}}(H).$$

In other words, we require that f be Lipschitz and for some $n > \frac{1}{p}$ that

$$\int_0^\infty \left(\int_{-\infty}^\infty \left| \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} f(t+kh) \right|^{\frac{\rho}{1-\rho}} dt \right)^{1-\rho} \frac{dh}{h^2} < \infty.$$

A new result

Using wavelet methods we can get the following:

Theorem (M. and Sukochev (2022))

Let $0 . Let <math>f \in \dot{B}^{\frac{1}{p}}_{\frac{p}{1-p},p}(\mathbb{R})$ be Lipschitz continuous. Then f is \mathcal{L}_p -Lipschitz and

$$\|f(A)-f(B)\|_{p}\leq C_{p}(\|f'\|_{\infty}+\|f\|_{\dot{B}^{\frac{1}{p}}_{\overline{1-p},p}(\mathbb{R})})\|A-B\|_{p},\quad A,B\in\mathcal{B}_{\mathrm{sa}}(H).$$

In other words, we require that f be Lipschitz and for some $n > \frac{1}{p}$ that

$$\int_0^\infty \left(\int_{-\infty}^\infty \left| \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} f(t+kh) \right|^{\frac{\rho}{1-\rho}} dt \right)^{1-\rho} \frac{dh}{h^2} < \infty.$$

For example, if $f' \in W^k_{\frac{p}{p-1}}(\mathbb{R})$ where $k > \frac{1}{p}-1$ then f is \mathcal{L}_p -Lipschitz.

What else can we do?

Wavelets are not new, but their application to this theory is.

What else can we do?

Wavelets are not new, but their application to this theory is. Some other things we can achieve:

• For all $n \ge 0$, the inequality

$$\sum_{k=0}^{n} \mu(k, f(A) - f(B))^{p} \lesssim (\|f'\|_{\infty} + \|f\|_{\dot{B}^{\frac{1}{p}}_{\frac{p}{p-1}, p}}) \sum_{k=0}^{n} \mu(k, A - B)^{p}$$

(this recovers the previous result with $n = \infty$.)

What else can we do?

Wavelets are not new, but their application to this theory is. Some other things we can achieve:

• For all $n \ge 0$, the inequality

$$\sum_{k=0}^{n} \mu(k, f(A) - f(B))^{p} \lesssim (\|f'\|_{\infty} + \|f\|_{\dot{B}^{\frac{1}{p}}_{\frac{p}{p-1}, p}}) \sum_{k=0}^{n} \mu(k, A - B)^{p}$$

(this recovers the previous result with $n = \infty$.)

• Hölder-type estimates of the form

$$||f(A) - f(B)||_p \lesssim_f |||A - B|^{\alpha}||_p$$

for f in some Besov space.

Wavelets are analogous to Fourier series, in the sense that if

$$f(t) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} c_{j,k} \psi_{j,k}(t)$$

then the coefficients $c_{j,k}$ for j>N represent oscillatoins of f on the scale $\sim 2^{-N}$. A function of the form

$$f(t) = \sum_{j < N} \sum_{k \in \mathbb{Z}} c_{j,k} \psi_{j,k}(t)$$

does not oscillate greatly on scales smaller than 2^{-N} . This is similar to functions with Fourier transform supported in $[-2^N, 2^N]$.

Wavelet Bernstein inequality

How do we use wavelet methods? The key is again a Bernstein inequality.

Theorem (Meyer(?) (1980s))

Let $f \in L_{\infty}(\mathbb{R})$ have Wavelet expansion

$$f(t) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} c_{j,k} \psi_{j,k}(t)$$

where $c_{i,k} = 0$ for k > N. Then

$$||f||_{\mathrm{Lip}} \leq C2^N ||f||_{\infty}.$$

An \mathcal{L}_p -Lipschitz Bernstein inequality

Theorem (M.-Sukochev (2022))

Let $f \in L_{rac{p}{p-1}}(\mathbb{R})$ have Wavelet expansion

$$f(t) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} c_{j,k} \psi_{j,k}(t)$$

where $c_{i,k} = 0$ for k > N. Then

$$||f||_{\mathcal{L}_p-\mathrm{Lip}} \leq C2^{\frac{N}{p}}||f||_{\frac{p}{p-1}}.$$

With p=1, this is the wavelet analogy of Peller's operator Bernstein inequality. For p<1 it is new.

Wavelets and Besov spaces

It follows from the Wavelet Bernstein inequality that Besov spaces have a very simple characterisation in terms of wavelet coefficients.

Theorem (Meyer (1986))

Let $s \in \mathbb{R}$ and $p, q \in (0, \infty]$. Let ψ be a compactly supported C^k wavelet where k > -s. Then a distribution $f \in \mathcal{D}'(\mathbb{R})$ belongs to the homogeneous Besov space $\dot{B}^s_{p,q}(\mathbb{R})$ if and only if

$$\|f\|_{B^s_{p,q}}pprox \sum_{j\in\mathbb{Z}}2^{jq(s+rac{1}{2}-rac{1}{p})}\left(\sum_{k\in\mathbb{Z}}|\langle f,\psi_{j,k}
angle|^p
ight)^{rac{q}{p}}<\infty.$$

Using the *p*-triangle inequality and the \mathcal{L}_p -Lipschitz Bernstein inequality, we easily conclude that $\|f\|_{\mathcal{L}_p-\mathrm{Lip}}\lesssim \|f\|_{B^{\frac{1}{p}}_{\frac{p}{p},p}(\mathbb{R})}$.

Thank you for listening!