Table 10 Sur	nmary of packet lc	Table 10 Summary of packet loss classification using offlir	ne training at end-systems of the network	s of the network			
Ref.	ML Technique	Network	Dataset	Features	Classification	Evaluation	
						Settings	Results
Liu et al. [282]	Unsupervised: • EM for HMM	Hybrid wired and wireless	Synthetic data: • ns-2 simulation • 4-linear topology Data distribution: • Training = 10k	· Loss pair RTT	· Congestion loss · Wireless loss	· 4-state HMM · Gaussian variables · Viterbi inference	HMM accuracy ^a : . 44 – 98%
Barman and Matta [38]	Unsupervised: • EM for HMM	Hybrid wired and wireless	Synthetic data: • ns-2 simulation • Topology: - 4-linear	 Loss pair delay Loss probabilities: Congestion Wireless (nw) nw: network support 	· Congestion loss · Wireless loss	2-state HMMGaussian variablesBayesian inferenceDiscretized values:10 symbols	HMM accuracy ^a : · 92 – 98%
El Khayat et al. [129, 130, 163]	Supervised: Boosting DT DT RF RE Bagging DT Extra-trees MLP-NN	Hybrid wired and wireless	Synthetic data: Simulation in: - ns-2 - BRITE -> 1k random topologies Data distribution: · Training = 25k . Testing = 10k	40 features applying avg, stdev, min, and max on parameters: One-way delay IAT And on packets: 3 following loss 1 before loss	· Congestion loss · Wireless loss	Ensemble DT: 25 trees NN: 40 input neurons 2 hidden layers with 30 neurons 1 output neuron LMA ^b learning k-NN: k = 7	AUC (%) ^C : · 98.40 · 94.24 · 98.23 · 97.96 · 98.13 · 97.61
				[130] finds that adding the number of losses is insignificant			
Fonseca and Crovella [150]	Supervised: · Bayesian	Wired	Real data: • PMA project • BU Web server	· Loss pair RTT	· Congestion loss · Reordering	Gaussian variables 0 to 3 historic	In PMA: • TPR = 80% • FPR = 40% In BU: • TPR = 90% • FPR = 20%
Jayaraj et al. [214]	Unsupervised: • EM for HMM • EM-clustering	Optical	Synthetic data: • ns-2 simulation • NSFNET topology Data distribution: • Training = 25k • Testing = 15k	· Number of bursts between failures	· Contention loss	HMM: 8 states Gaussian variables Viterbi inference 26 EM iterations Clustering: 8 clusters 24 EM iterations	CV ^c : 0.16 – 0.42 0.15 – 0.28 HMM accuracy ² : 86 – 96%

^aVaries according to HMM prior estimates and network simulation settings (e.g. loss rate, error model, delay, traffic) ^bLevenberg-Marquardt Algorithm (LMA) ^cRespectively to the list of elements in the column ML technique