A2-Answerkey

Chapter 15

- **P1**: a) 0.525m
 - b) 0.686s
- **P2**: a) f=5.58Hz
 - b) 0.325kg
 - c) 0.400m
- **P3**: a) f= 2.2Hz
 - b) v = 0.56 m/s
 - c) m = 0.100 kg
 - d) Equilibrium position= 0.200m
- **P4**: a) = f=2.25Hz
 - b)P.E =125J
 - c) K.E=250J
 - d) Amplitude = 0.866m
- **P5**: a) angular velocity = 39.5 rad/s
 - b) Angular velocity at displacement $\pi/2 = -34.2$ rad/s
 - c) Angular acceleration = -124 rad/s^2 or 124 rad/s^2
- **P6**: a) L = 0.499m
 - b) Max k.E = $9.40 \times 10^{-4} \text{ J}$
- **P7**: T = 0.366s
- **P8**: a) Min T= 2.26s
 - b) If d is chosen to minimize the period, then as L is increased the period will increase as well.
 - c) The period does not depend on the mass of the pendulum, so T does not change when m increases.
- **P9**: Damping factor = 0.39

P10: a)
$$k = 4.9x10^2 N/m$$

Chapter 16

P11: T = 30N

P12: T = 13.5 N

P13: a) 0.08 sin $(7.85x+6\pi t)$

b) $0.08 \sin (7.85x+6\pi t-0.785)$

P14: a) Amp=0.25m

- b) $\omega = 40 \text{ rad/s}$
- c) k = 0.30
- d) $\lambda = 20.94$ m
- e) v = 133.3 m/s
- f) Direction of motion is positive

P15: a) $\Delta x = 0.300$ meters (+x direction)

P16:

- a) Amp=0.0200m
- b) Wavelength = 2.98m
- c) f = 0.575Hz
- d) Speed of the wave =1.72 m/s

P17:

- a) Speed of the wave = 62.5m/s
- b) Wavelength =7.85m
- c) f = 7.96Hz
- d) Power = μ 21.1 w