

2012级大学物理2期末试题(信二学习部整理)

物理常数:
真空介电常量的=8.85×10 ⁻¹² C ² ·N ⁻¹ ·m ⁻² ,真空磁导率μ ₀ =4π×10 ⁻⁷ N·A ⁻² ,
曾朗克常量 h=6.63×10 ⁻³⁴ J·s,基本电荷 e=1.60×10 ⁻¹⁹ C,
电子质量 m _e =9.11×10 ⁻³¹ kg. 质子质量 m _p =1.67×10 ⁻²⁷ kg,
一、填空题(共40分,请将答案写在卷面指定的横线上。)
1. (3分) 空气的击穿电场强度为 2×10° V·m², 直径为 0.10 m 的导体球在空气中时最多能带的电荷为C。
t. (3分)一均匀带电球体,如果其电荷分布的体密度增大为原来的 2 倍,则其电场的能量变为原来的倍。
6. (3分)一自感线圈中,电流强度在 0.002 s 内均匀地由 10 A 增加到 12 A,此过程中线图内自感电动势为 400 V,则线圈的自感系数为 L=H。
4. (3分)在电子单缝衍射实验中,缝宽 $a=1.0\times10^{-10}$ m,电子束垂直射在单缝面上。则衍射的电子模向动量的最小不确定量 $\Delta p_p=$ N·s。(不确定关系式 $\Delta y_{\Delta}p_p\geq\frac{1}{2}\hbar$)
india 3 E 3 = 3 in 3 I E
5. (4分)如图所示,一铜球带电量为 Q, 半径为 R, 上半个球被相对介电常量为 G, 的电介质包围, 下半个球被相对介电常 R
量为5%的电介质包围。若将上、下两个半球上的电荷分别看成均匀分布,则上表面介质上束缚电荷面密度为

9 (43) -80	照用和语词 q=	2.0×10 C)。以速度	v=3.0×10°	m·s" (t. 4	在为 R = 6.0	×10 -
m的图图上。作	匀速圈周运动。	该带电质点	法在轨道中	中心所产生的	的磁感强度	£ B =	T.
读带电质点轨道	t运动的磁矩 p.	a ^N	A·m²				
环路 L ₂ 磁场强	、将 B 极板以 器内位移电流 度 H 的环流 度 H 的环流。	匀速 v 向右 密度的大小 (填	拉开、如 、为 大于、等于	图。当极板 : F或小子)			
8. (4分) 地面 中的光速) 速/	i上运动员用 10 变向西飞行的飞	s 跑完 100 船中的观察	m 全程, 於者看来。	^跑 道由西向 运动员跑的	东。在以 內路程为	0.98c(c 为:	真空
用时间为		(43.54)					
0 (1A)d	2子以 ~0.99c	(No the sheet	100 14:38.7	かけ まけそう	h Wats	子的运动员	份大
	_kg: 电子的总				A). Luga . (3 1 1176-910	(22/3
	自被长为 3000						
4.0×10° J. if	作上述光电效图	应实验时遏	止电压为	U_o =	V;	此金属的	战止频
16.10 m	Hz,						
光子能量是	繁原子从能量为 eV. 炎	3是电子从	nr	的能级到	n=2的能	级的跃迁。	
	(毎題3分,共						
1. C ₁ 和 C ₂ 两 - 若把它们率 (A) C	个电容器,其上	分别标明 2 加上 1000	200 pF(电容 V 电压,系 (B)	学量)、500 V N []	(耐压值)和 , C ₁ 不被t	300 pF .900) V.
米绕10匝。	,一細螺绕环虫 当导线中的电流 1.0T,则可求	液 I 为 2.0 A	时,溯得	铁环内的磁		TE THE	}
	.96×10 ² ;			474 6	-	2240	7
	.99×10 ² ;					TY	

- 3. 长直电流 5.与颐形电流 5.共丽、并与其一直径相重合如图(但两多问题 缘),设长直电流不动,则圆形电流将[

 - (A) 绕九旋转;(B) 向左运动;
 - (C) 向右运动; (D) 不动。

- 4. 一张气泡室照片表明, 质子的运动轨迹是一半径为 10 cm 的圆弧, 运动轨迹平面与磁 场垂直, 磁感强度大小为 0.3 Wb/m2。该质子动能的数量级为 [
 - (A) 0.01 MeV:

(B) 0.1 MeV:

(C) 1 MeV;

- (D) 10 MeV.
- 5. 氢原子中处于 2p 状态的电子, 描述其量子态的四个量子数(n, l, mi, ms)可能取的值 为「
 - (A) $(2, 2, 1, -\frac{1}{2})$; (B) $(2, 0, 0, \frac{1}{2})$; (C) $(2, 1, -1, -\frac{1}{2})$; (D) $(2, 0, 1, \frac{1}{2})$.

三、计算题(共45分)

- 1. (10 分)已知一无限长均匀带电器柱体,半径为 R, 电荷体密度为 p。 求:
- (1) 圆柱体内外的电场强度分布:
- (2) 圆柱体内与其轴距离为r点的电势(选轴线为电势等点)。

信息与由子二学部学生会

2. (10分)如影所标,将一元限大均匀致流平面放入匀量磁场中、匀强磁场方向沿 Ox 轴正方向,电流方向与磁场方向器直指向纸面内。已知放入后平面两侧的总磁感强度分 别为员与员。或该载流平面上单位面积所受的磁场力。

信息

3. (10 分)如图所示、一内外半径分别为 R₁、R₂ 的均匀带电平面图环,电荷面密度为c. 其中心有一半径为r 的导体小环(R₁>>r),二者同心共面放置。设该带电平面图环以交角速度 a = a x n 统善 直于环面的中心独旋转。求导体小环中的感应电流 i 的大小和方 向(已知于环的电阻为 R')。

信息与电子二学部学生

学习部

4. (10分)已知在宽度为a的一维无限深方势防中运动的电子。其波函数为。

$$\psi_n(x) = \begin{cases} 0 & x \le 0, x \ge a \\ A\sin(n\pi x/a) & 0 < x < a \end{cases}$$

求: (1) 归一化常数 A;

- (2) n=1 时,发现电子的概率为最大的位置:
- (3) n=1 时, 电子在 a/4<x<3a/4 范围内的凝率。

[提示: 积分公式 $\int \sin^2 x \, dx = \frac{1}{2}x - (1/4)\sin 2x + C$]

- 5. (5分) 科学研究已经证实反粒子和反物质的存在。反粒子的质量、粉含、自读等与相应的粒子相同,但电荷、重子数、轻子数等量子数与之相反。如反质子、反中子,反电子(即正电子)等。由反粒子可以构成反物质。欧洲核子研究中心在 1995 年已经成功地制造出了世界上第一批反物质--反氢原子(由一个反质子和一个反电子构成)。我们知道,正反物质相遇发生湮灭会释放出巨大的能量,而且释能效率非常高。试用所学物理知识解释:
- (1) 物质与反物质的湮灭过程的释能效率理论上可达 100%;
- (2) 正负电子湮灭将至少产生一个以上的光子。