

Aufgaben zur Linearen Algebra - Blatt 9

elektronische Abgabe im OLAT Kurs des Proseminars (z.B. bis So. 6. Dezember 2020, 23:59 Uhr)

Aufgabe 33

Bestimmen Sie für die folgende Matrix $A \in \operatorname{Mat}_{3,5}(\mathbb{Q})$ eine Basis des Lösungsraums $L(A,0) \subseteq \mathbb{Q}^5$:

$$A = \left(\begin{array}{rrrrr} 1 & 2 & -1 & 3 & 0 \\ -1 & 1 & 1 & -4 & 2 \\ 1 & -7 & 5 & 2 & -1 \end{array}\right).$$

Lösung:

$$\begin{pmatrix} 1 & 2 & -1 & 3 & 0 \\ -1 & 1 & 1 & -4 & 2 \\ 1 & -7 & 5 & 2 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 & -1 & 3 & 0 \\ 0 & 3 & 0 & -1 & 2 \\ 0 & -9 & 6 & -1 & -1 \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} 6 & 12 & -6 & 18 & 0 \\ 0 & 3 & 0 & -1 & 2 \\ 0 & 0 & 6 & -4 & 5 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 6 & 12 & 0 & 14 & 5 \\ 0 & 3 & 0 & -1 & 2 \\ 0 & 0 & 6 & -4 & 5 \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} 6 & 0 & 0 & 18 & -3 \\ 0 & 3 & 0 & -1 & 2 \\ 0 & 0 & 6 & -4 & 5 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & 3 & -1/2 \\ 0 & 1 & 0 & -1/3 & 2/3 \\ 0 & 0 & 1 & -2/3 & 5/6 \end{pmatrix}$$

Wir bekommen also

$$x_3 = \frac{2}{3}x_4 - \frac{5}{6}x_5$$
 $x_2 = \frac{1}{3}x_4 - \frac{2}{3}x_5$ $x_1 = -3x_4 + \frac{1}{2}x_5$

oder

$$\begin{split} L(A,0) &= \{ (-3x_4 + \frac{1}{2}x_5, \frac{1}{3}x_4 - \frac{2}{3}x_5, \frac{2}{3}x_4 - \frac{5}{6}x_5, x_4, x_5) \mid x_4, x_5 \in \mathbb{Q} \} \\ &= \{ x_4 \cdot (-3, \frac{1}{3}, \frac{2}{3}, 1, 0) + x_5 \cdot (\frac{1}{2}, -\frac{2}{3}, -\frac{5}{6}, 0, 1) \mid x_4, x_5 \in \mathbb{Q} \} \\ &= \{ a \cdot (-9, 1, 2, 3, 0) + b \cdot (3, -4, -5, 0, 6) \mid a, b \in \mathbb{Q} \}. \end{split}$$

Daraus lesen wir ab, dass zum Beispiel $((-9,1,2,3,0)^t,(3,-4,-5,0,6)^t)$ eine Basis des Lösungsraums L(A,0) ist.

Häufige Probleme bei Aufgabe 33:

 Unterscheiden Sie genau zwischen der Angabe der Lösungsmenge in parametrisierter Form und einer Basis der Lösungsmenge! Eine Basis besteht hier einfach aus zwei geeigneten Vektoren.

Aufgabe 34

Bestimmen Sie für die folgenden Unterräume von \mathbb{R}^4 jeweils eine Basis und die Dimension:

(a)
$$U_1 = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_2 + a_3 = 0\}$$

(b)
$$U_2 = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_2 = 2a_1 - a_3 - a_4\}$$

(c) $U_1 \cap U_2$.

(d)
$$U_1 + U_2$$
.

Lösung:

(a) Jeder Vektor in U_1 erfüllt $a_2 + a_3 = 0$ also $a_3 = -a_2$. Das legt nahe, dass $B_1 = ((1,0,0,0), (0,1,-1,0), (0,0,0,1))$ eine Basis von U_1 ist. Wir zeigen zuerst die lineare Unabhängigkeit:

$$\lambda_1 \cdot (1,0,0,0) + \lambda_2 \cdot (0,1,-1,0) + \lambda_3 \cdot (0,0,0,1) = (0,0,0,0)$$

$$\Rightarrow (\lambda_1, \lambda_2, -\lambda_2, \lambda_3) = (0,0,0,0) \Rightarrow \lambda_1 = 0, \quad \lambda_2 = 0, \quad \lambda_3 = 0. \quad \checkmark$$

Als nächstes zeigen wir, dass B_1 den Unterraum U_1 aufspannt. Da $a_2 + a_3 = 0$ genau dann wenn $a_3 = -a_2$ gilt, hat jeder Vektor in U_1 die Gestalt $(a_1, a_2, -a_2, a_4)$ für $a_1, a_2, a_4 \in \mathbb{R}$ und es gilt,

$$(a_1, a_2, -a_2, a_4) = a_1 \cdot (1, 0, 0, 0) + a_2 \cdot (0, 1, -1, 0) + a_4 \cdot (0, 0, 0, 1).$$

Da die Basis B_1 drei Elemente enthält, gilt $\dim(U_1) = 3$.

(b) Analog zu (a) vermuten wir, dass $B_2 = ((1, 2, 0, 0), (0, -1, 1, 0), (0, -1, 0, 1))$ eine Basis von U_2 ist.

Wir zeigen zuerst die lineare Unabhängigkeit:

$$\lambda_1 \cdot (1, 2, 0, 0) + \lambda_2 \cdot (0, -1, 1, 0) + \lambda_3 \cdot (0, -1, 0, 1) = (0, 0, 0, 0)$$

$$\Rightarrow (\lambda_1, 2\lambda_1 - \lambda_2 - \lambda_3, \lambda_2, \lambda_3) = (0, 0, 0, 0) \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0. \quad \checkmark$$

Als nächstes zeigen wir, dass B_2 den Unterraum U_2 aufspannt. Jeder Vektor in U_2 hat die Gestalt $(a_1, 2a_1 - a_3 - a_4, a_3, a_4)$ für $a_1, a_3, a_4 \in \mathbb{R}$, also gilt

$$(a_1, 2a_1 - a_3 - a_4, a_3, a_4) = a_1 \cdot (1, 2, 0, 0)$$

 $+ a_3 \cdot (0, -1, 1, 0) + a_4 \cdot (0, -1, 0, 1).$

Da die Basis B_2 drei Elemente enthält, gilt $\dim(U_2) = 3$.

(c) Es gilt

$$U_1 \cap U_2 = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_2 + a_3 = 0 \land a_2 = 2a_1 - a_3 - a_4\}$$
$$= \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_2 + a_3 = 0 \land a_2 + a_3 = 2a_1 - a_4\}$$
$$= \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 \mid a_3 = -a_2 \land a_4 = 2a_1\}$$

Das legt nahe, dass $B_3 = ((1,0,0,2),(0,1,-1,0))$ eine Basis von $U_1 \cap U_2$ ist. Wir zeigen zuerst die lineare Unabhängigkeit:

$$\lambda_1 \cdot (1, 0, 0, 2) + \lambda_2 \cdot (0, 1, -1, 0) = (0, 0, 0, 0)$$

$$\Rightarrow (\lambda_1, \lambda_2, -\lambda_2, 2\lambda_1) = (0, 0, 0, 0) \Rightarrow \lambda_1 = \lambda_2 = 0. \checkmark$$

Als nächstes zeigen wir, dass B_3 den Unterraum $U_1 \cap U_2$ aufspannt. Jeder Vektor in $U_1 \cap U_2$ hat die Gestalt $(a_1, a_2, -a_2, 2a_1)$ für $a_1, a_2 \in \mathbb{R}$, also gilt,

$$(a_1, a_2, -a_2, 2a_1) = a_1 \cdot (1, 0, 0, 2) + a_2 \cdot (0, 1, -1, 0).$$

Da die Basis B_3 zwei Elemente enthält, gilt $\dim(U_1 \cap U_2) = 2$.

(d) Da $U_1 + U_2$ sowohl U_1 als auch U_2 enthält, wählen wir B_4 bestehend aus B_1 und $(1,2,0,0) \in U_2$. Da (1,2,0,0) nicht in U_1 liegt, spannt B_4 einen größeren Raum als U_1 auf. Daraus folgt bereits $U_1 + U_2 = \mathbb{R}^4$ und B_4 ist automatisch eine Basis.

Häufige Probleme bei Aufgabe 34:

 In (c) müssen beide Gleichungen gleichzeitig gelten, das ist nicht dasselbe wie die Summe der Gleichungen!

• In (d) muss man Summen von Elementen aus U_1 und U_2 bilden. Das ist nicht dasselbe wie die definierenden Gleichungen zu summieren!

Aufgabe 35

Wir betrachten folgende Menge:

 $Q := \{ M \in \operatorname{Mat}_3(\mathbb{Q}) \mid \text{jede Zeile und jede Spalte von } M \text{ summiert sich zu } 1 \}.$

- (a) Zeigen Sie, dass Q ein affiner Unterraum von $\operatorname{Mat}_3(\mathbb{Q})$ ist und bestimmen Sie den zu Q parallelen Untervektorraum $U \subseteq \operatorname{Mat}_3(\mathbb{Q})$.
- (b) Bestimmen Sie eine Basis von U.

Lösung: (a) Wir nehmen ein Element $q^* \in Q$, z.B. $q^* = I_3$, und definieren

$$U := Q - q^* = \{q - q^* \mid q \in Q\}.$$

Als nächstes zeigen wir, dass U ein Untervektorraum ist. Es gilt $U \neq \emptyset$, da $0 = q^* - q^* \in U$. Seien also $u_1, u_2 \in U$. Nach Konstruktion gibt es $q_1, q_2 \in Q$ mit $u_1 = q_1 - q^*$ und $u_2 = q_2 - q^*$. Wir haben also

$$u_1 + u_2 = \underbrace{q_1 - q^* + q_2}_{:=q_3} - q^*$$

und müssen nur noch zeigen, dass $q_3 \in Q$. Dazu beachten wir Folgendes

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} + a_{12} + a_{13} \\ a_{21} + a_{22} + a_{23} \\ a_{31} + a_{32} + a_{33} \end{pmatrix}.$$

Wenn wir $e = (1, 1, 1)^t$ setzen, ist die Eigenschaft, dass sich alle Zeilen von q zu 1 summieren, äquivalent zu qe = e, analog ist die Eigenschaft, dass sich alle Spalten zu 1 summieren, äquivalent zu $e^t q = e^t$. Wir bekommen

$$q_3e = (q_1 - q^* + q_2)e = q_1e - q^*e + q_2e = e - e + e = e, \quad \checkmark$$

 $e^tq_3 = e^t(q_1 - q^* + q_2) = e^tq_1 - e^tq^* + e^tq_2 = e^t - e^t + e^t = e^t, \quad \checkmark$

also gilt $q_3 \in Q$ und damit $u_1 + u_2 \in U$.

Sei nun $\lambda \in \mathbb{Q}$ beliebig. Es gilt

$$\lambda u_1 = \lambda (q_1 - q^*) = \underbrace{\lambda q_1 - (\lambda - 1)q^*}_{=:q_4} - q^*$$

und

$$q_4 e = (\lambda q_1 - (\lambda - 1)q^*)e = \lambda q_1 e - (\lambda - 1)q^* e = \lambda e - (\lambda - 1)e = e, \quad \checkmark$$

$$e^t q_4 = e^t (\lambda q_1 - (\lambda - 1)q^*) = e^t q_1 \lambda - e^t q^* (\lambda - 1) = e^t \lambda - e^t (\lambda - 1) = e^t. \quad \checkmark$$

In Folge haben wir $q_4 \in Q$, also $\lambda u_1 \in U$, und somit ist U ein Untervektorraum. Nach Konstruktion gilt $Q = U + q^*$, also ist Q ein affiner Unterraum.

(b) Aus (a) können wir ableiten, dass $u \in U$ genau dann wenn ue = 0 und $e^t u = 0$. Es muss also gelten

$$\begin{array}{lll} u_{11} + u_{12} + u_{13} = 0 & \Rightarrow & u_{13} = -u_{11} - u_{12} \\ u_{21} + u_{22} + u_{23} = 0 & \Rightarrow & u_{23} = -u_{21} - u_{22} \\ u_{31} + u_{32} + u_{33} = 0 & & & \\ u_{11} + u_{21} + u_{31} = 0 & \Rightarrow & u_{31} = -u_{11} - u_{21} \\ u_{12} + u_{22} + u_{32} = 0 & \Rightarrow & u_{32} = -u_{21} - u_{22} \\ u_{13} + u_{23} + u_{33} = 0 & & & & \end{array}$$

Desweiteren ergibt sich

$$u_{33} = -u_{31} - u_{32} = u_{11} + u_{21} + u_{21} + u_{22} \qquad (= -u_{13} - u_{23} \quad \checkmark),$$

also ist jedes $u \in U$ eindeutig durch seine Einträge $u_{11}, u_{21}, u_{21}, u_{22}$ bestimmt. Wir bekommen also als Basis

$$B = \left(\begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \right).$$

Aufgabe 36

Seien V ein K-Vektorraum und $V_1,V_2\subseteq V$ Untervektorräume mit $V_1\cap V_2=\{0\}$. Seien $x_1,\ldots,x_m\in V_1$ und $y_1,\ldots,y_n\in V_2$ jeweils linear unabhängig. Zeigen Sie, dass dann auch

$$x_1,\ldots,x_m,y_1,\ldots,y_n$$

linear unabhängig sind.

Lösung: Wir müssen zeigen, dass aus

$$\lambda_1 x_1 + \ldots + \lambda_m x_m + \gamma_1 y_1 + \ldots + \gamma_n y_n = 0$$

schon
$$\lambda_1 = \ldots = \lambda_m = \gamma_1 = \ldots = \gamma_n = 0$$
 folgt.

Zuerst formen wir die obere Linearkombination um zu

$$\lambda_1 x_1 + \ldots + \lambda_m x_m = -\gamma_1 y_1 - \ldots - \gamma_n y_n := v.$$

Als Linearkombination von x_1, \ldots, x_m gilt $v \in V_1$. Gleichzeitig liegt v als Linearkombination von y_1, \ldots, y_n auch in V_2 , also $v \in V_1 \cap V_2$. Da $V_1 \cap V_2$ nur 0 enthält, muss gelten v = 0, also

$$\lambda_1 x_1 + \ldots + \lambda_m x_m = 0$$
 und $-\gamma_1 y_1 - \ldots - \gamma_n y_n = 0$.

Aus der linearen Unabhängigkeit von x_1, \ldots, x_m folgt $\lambda_1 = \ldots = \lambda_m = 0$, und aus der linearen Unabhängigkeit von y_1, \ldots, y_n folgt $\gamma_1 = \ldots = \gamma_n = 0$, also

$$\lambda_1 = \ldots = \lambda_m = \gamma_1 = \ldots = \gamma_n = 0.$$
 \checkmark

Häufige Probleme bei Aufgabe 36:

• Von den Vektoren x_1, \ldots, x_m bzw. y_1, \ldots, y_n ist nur die lineare Unabhängigkeit vorausgesetzt, keine Basiseigenschaften etc... Auch über die Dimension von $V_1 + V_2$ ist nichts vorausgesetzt.