Identidades Trigonométricas

Grado 10 http://mikemolina.github.io/repoedu

Contenido

- 1 Introducción
- Objetivos y aplicaciones
 - 2.1 Objetivo
 - 2.2 Aplicación
- 3 Identidades trigonométricas
 - 3.1 Identidades básicas
 - 3.2 Demostración de identidades
 - 3.3 Tabla de fórmulas
 - 3.4 Ejemplos
- Actividades
 - 4.1 Actividad 1

INTRODUCCIÓN

Visiones diferentes de una misma mirada

Movimiento Planetario

El movimiento de un planeta alrededor del Sol es debido a la fuerza de la gravedad.

Visiones diferentes de una misma mirada

Movimiento Planetario

El movimiento de un planeta alrededor del Sol es debido a la fuerza de la gravedad.

Visiones diferentes de una misma mirada

Movimiento Planetario

El movimiento de un planeta alrededor del Sol es debido a la fuerza de la gravedad.

Praga, 1609

E, Anomalía excéntrica

Londres, 1687

Isaac Newton Deducción dinámica $r = \frac{p}{1 + e \cos \theta}$

 θ , Anomalía verdadera

La Demostración...

```
X=aco=eea+rcoso > rcoso=a(cos=e)
       - Ecupiato di Keplor (Guerrelini) e- 102-62
                                                                                                                                                                                                                                                  = \areast - 2018 cost + ar + ar sent - e'ar sent = \ar - 2ar - 2ar ecost + arer - ea +ea
                                                                                                                                                                                                                                                        = Var - 2a/ecos E + e/a2 cosif = V(a-eoinx E)21 = a(1-ecos E)
         \frac{\chi}{y} = \frac{\text{cast}}{\text{bsnt}} = \frac{\text{catros}\theta}{\text{rsn}\theta} \cdot \frac{b}{0} \cdot \text{fon}E = \frac{rsn\theta}{\text{ea} + rca\theta} = \frac{ton\theta}{\frac{e\alpha}{\cos\theta} + 1} = \frac{ton\theta}{\alpha (\cos\theta - \epsilon) + 1} \cdot \frac{\cos\theta - \epsilon}{\cos\theta} + 1
    b to E cost e tono = tono = tono = tono = value tono = va
 When for E = L (0) the = L 2600 = 1-65 sup = 1-65 (0) E+1 (0) E+1 (1) E (0) E (0) E+1 
   Tier ton = 1er (1 ecosb) (1 fcost) ton & VATE tan = (1-e) (1 fcost) (1 fcost) (1 fcost) (1 fcost)
```

OBJETIVOS Y APLICACIONES

Objetivos y Aplicaciones

Figura. Algoritmo en el cubo de Rubik: secuencia de movimientos para obtener el cubo ordenado.

$$\frac{\cos^2\mu}{1+\sin\mu} \Longrightarrow 1 - \frac{1}{\csc\mu}$$

Algoritmo en la identidad: secuencia de transformaciones en un miembro (o ambos) para obtener la misma expresión a ambos lados de la igualdad.

Objetivos y Aplicaciones

Electrocardiograma (EKG)

Análisis gráfico de la actividad eléctrica del corazón en función del tiempo.

$$\frac{1}{2}(\text{sen}(3x) + \text{sen}(7x)) + \frac{1}{2}(\cos(5x) - \cos(3x)) = \\ \text{sen}(5x)\cos(2x) - \text{sen}(4x)\sin(1x)$$

IDENTIDADES TRIGONOMÉTRICAS

Identidades trigonométricas

Concepto de identidad trigonométrica (ITG)

Una ITG es una igualdad valida para cualquier ángulo, excepto donde no están definidas las funciones.

Identidades trigonométricas

Concepto de identidad trigonométrica (ITG)

Una ITG es una igualdad valida para cualquier ángulo, excepto donde no están definidas las funciones.

Demostración.

Es el proceso de efectuar transformaciones a través de recursos aritméticos (suma, productos, simplificaciones) y algebraicos (sustituciones, factorización, fórmulas) para obtener la misma expresión en ambos miembros de una igualdad.

Identidades trigonométricas

Concepto de identidad trigonométrica (ITG)

Una ITG es una igualdad valida para cualquier ángulo, excepto donde no están definidas las funciones.

Demostración.

Es el proceso de efectuar transformaciones a través de recursos aritméticos (suma, productos, simplificaciones) y algebraicos (sustituciones, factorización, fórmulas) para obtener la misma expresión en ambos miembros de una igualdad.

Clases de identidades

- Pitagóricas
- Recíprocas

- Cociente
- Paridad

Pitagóricas

$$x^{2} + y^{2} = r^{2}$$

$$\frac{x^{2}}{r^{2}} + \frac{y^{2}}{r^{2}} = \frac{r^{2}}{r^{2}}$$

$$\cos^{2} \phi + \sin^{2} \phi = 1$$

Pitagóricas

$$x^{2} + y^{2} = r^{2}$$

$$\frac{x^{2}}{r^{2}} + \frac{y^{2}}{r^{2}} = \frac{r^{2}}{r^{2}}$$

$$\cos^{2} \phi + \sin^{2} \phi = 1$$

Recíprocas

$$\cos \phi = \frac{x}{r}$$

$$\cos \phi = \frac{\frac{1}{1}}{\frac{r}{x}}$$

$$\cos \phi = \frac{1}{\sec \phi}$$

Pitagóricas

$$x^{2} + y^{2} = r^{2}$$

$$\frac{x^{2}}{r^{2}} + \frac{y^{2}}{r^{2}} = \frac{r^{2}}{r^{2}}$$

$$\cos^{2} \phi + \sin^{2} \phi = 1$$

Recíprocas

$$\cos \phi = \frac{x}{r}$$

$$\cos \phi = \frac{\frac{1}{1}}{\frac{r}{x}}$$

$$\cos \phi = \frac{1}{\sec \phi}$$

Cociente

$$\tan \phi = \frac{y}{x}$$

$$\tan \phi = \frac{y}{x} \frac{r}{r} = \frac{\frac{y}{r}}{\frac{x}{r}}$$

$$\tan \phi = \frac{\sec \phi}{\cos \phi}$$

Pitagóricas

$$x^{2} + y^{2} = r^{2}$$

$$\frac{x^{2}}{r^{2}} + \frac{y^{2}}{r^{2}} = \frac{r^{2}}{r^{2}}$$

$$\cos^{2} \phi + \sin^{2} \phi = 1$$

Recíprocas

$$\cos \phi = \frac{x}{r}$$

$$\cos \phi = \frac{\frac{1}{r}}{\frac{r}{x}}$$

$$\cos \phi = \frac{1}{\sec \phi}$$

Cociente

$$\tan \phi = \frac{y}{x}$$

$$\tan \phi = \frac{y}{x} \frac{r}{r} = \frac{\frac{y}{r}}{\frac{x}{r}}$$

$$\tan \phi = \frac{\sec \phi}{\cos \phi}$$

Paridad

$$\operatorname{sen}(-\phi) = -\operatorname{sen}\phi, \qquad \cos(-\phi) = \cos\phi$$

Demostración de identidades

No existe método general para demostrar identidades; se recurre a transformaciones sucesivas desde un miembro hasta obtener la misma expresión del otro miembro. A pesar de lo anterior, un esquema de razonamiento deductivo generalizado, permite aplicar a casos particulares.

Demostración de identidades

No existe método general para demostrar identidades; se recurre a transformaciones sucesivas desde un miembro hasta obtener la misma expresión del otro miembro. A pesar de lo anterior, un esquema de razonamiento deductivo generalizado, permite aplicar a casos particulares.

Esquema

- 1 Transformar el miembro más complejo de la identidad:
 - I) Por similitud con alguna fórmula.
 - II) Convertir a senos y cosenos.
 - III) Usando tablas de fórmulas (sustitución y despeje).
 - IV) Realizando operaciones indicadas.
 - V) Usando factorización.
- 2 Resolver operaciones aritméticas y algebraicas.
- 3 Mucha paciencia y menos pereza!

Breve tabla de fórmulas

Suma y diferencia de ángulos

$$sen(a \pm b) = sen a cos b \pm cos a sen b$$
$$cos(a \pm b) = cos a cos b \mp sen a sen b$$

Ángulo doble

$$sen(2a) = 2 sen a cos b$$
$$cos(2a) = cos^{2} a - sen^{2} b$$

Ángulo medio

$$\operatorname{sen}^{2} \frac{a}{2} = \frac{1 - \cos a}{2}$$
$$\cos^{2} \frac{a}{2} = \frac{1 + \cos a}{2}$$

Muchos ejemplos

Ejemplo 1. Por similitud

Demostrar $sen^2 \phi + cos^2 \phi = cos \phi sec \phi$.

Ejemplo 2. Por conversión a sen y cos

Demostrar

$$\frac{\sec\phi}{1+\csc\phi} = \frac{\tan\phi}{1+\sin\phi}.$$

Ejemplo 3. Usando tablas

Demostrar cos(x + y) + cos(x - y) = 2 cos x cos y.

Demostrar

$$sen 2\sigma = 2 \frac{\tan \sigma}{1 + \tan^2 \sigma}.$$

Muchos ejemplos

Ejemplo 4. Realizando operaciones

Demostrar

$$\frac{\cos\psi + \sin\psi\tan\psi}{\sin\psi\sec\psi}$$

Ejemplo 5. Usando factorización

Demostrar

$$\frac{\cos^2 \nu}{1 + \sec \nu} = 1 - \frac{1}{\csc \nu}.$$

Actividad 1

- 1. Obtener las identidades fundamentales:
 - a) Pitagóricas que relacionan tan sec y cot cosec.
 - b) Recíproca que relaciona sen cosec.
 - c) Cociente y Paridad para la cot.
- 2. Resolver expresando el resultado en número no-decimal
 - a) Si sen $\psi = \frac{5}{13}$, hallar

$$\frac{\cot^2 \psi - \csc^2 \psi}{\csc^2 \psi + 3}$$

b) Si $\cos \sigma = \frac{1}{2}$, hallar

$$\frac{\tan^2 \sigma - \sin^2 \sigma}{\sec^2 \sigma - \csc^2 \sigma}$$

3. Tarea!

Bibliografía I

- Milton Abramowitz e Irene Stegun (1972). *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.* tenth. National Bureau of Standards. Cap. 4, pág. 71.
- Marcos González, Fernando León y Mauricio Villegas (1990). *Matemática práctica 10.* tenth. Voluntad. Cap. 4, pág. 92.
- Roland Larson y Robert Hostetler (1989). Cálculo y Geometría Analítica. third. McGraw-Hill. Cap. 1, pág. 52.