

Transformée de Laplace

Exercice 23. Pour toute fonction $f \in \mathscr{C}(\mathbb{R}_+, \mathbb{R})$, on note, lorsqu'elle converge, $\mathscr{L}(f)(p) = \int_0^{+\infty} e^{-pt} f(t) dt$. La fonction $\mathscr{L}(f)$ est la transformée de **Laplace** de f.

1. Soient $\lambda \in \mathbb{C}$ et $n \in \mathbb{N}$. Pour chacune des fonctions suivantes, déterminer leur transformée de Laplace en précisant son domaine de définition :

a)
$$t \mapsto 1$$
.

b)
$$t \mapsto e^{\lambda t}$$
.

c)
$$t \mapsto t^n$$
.

2. On suppose que f est bornée. Montrer que $\mathcal{L}(f)$ est définie et de classe \mathscr{C}^{∞} sur \mathbb{R}_{+}^{*} .

3. Théorème de la valeur finale. On suppose qu'il existe un réel ℓ non nul tel que $\lim_{t\to\infty} f(x) = \ell$. Déterminer un équivalent de $\mathcal{L}(f)$ en 0.

On suppose f continue uniquement sur \mathbb{R}_+^* et qu'il existe $p_0 > 0$ tel que, pour pour tout $p > p_0$, $t \mapsto e^{-pt} f(t)$ est intégrable sur \mathbb{R}_+ .

4. Montrer que $\mathcal{L}(f)$ est définie et continue sur $p_0, +\infty$.

5. Théorème de la valeur initiale. On note $\ell = \lim_{t \to 0^+} f(t)$. Déterminer la limite de $p \mapsto p \mathcal{L}(f)(p)$ en $+\infty$.