

ANNUAL REPORT

BILL TILE COPY

WALLACE PETERS MD DSc

OCTOBER 15 1988

Supported by

US ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND

Fort Detrick, Frederick, Maryland 21701-5012

Contract No DAMD17-85-C-5172

Experimental Chemotherapy Unit

Department of Medical Parasitology

London School of Hygiene and Tropical Medicine

Keppel Street, London, WC1E 7HT, UK

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated in other authorised documents.

SECURITY CLASSIFICATION OF THIS PAGE						-	
REPORT DO	OCUMENTATION	PAGE				pproved o. 0704-0188	
la. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE	MARKINGS				
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	AVAILABILITY OF	REPORT			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			or public re on unlimited	-			
4. PERFORMING ORGANIZATION REPORT NUMBER	(S)	5. MONITORING	ORGANIZATION RE	PORT NUI	MBER(S)		
London School of Hygiene and	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	ONITORING ORGAN	IZATION			
Tropical Medicine 6c ADDRESS (City, State, and ZIP Code) Keppel Street London, WCLE 7HT, UK	·	7b. ADDRESS (Cit	y, State, and ZIP C	ode)			
8a. NAME OF FUNDING/SPONSORING ORGANIZATIONU.S. Army Medical Research & Development Command	8b. OFFICE SYMBOL (If applicable)		T INSTRUMENT IDE			BER	
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF F	UNDING NUMBERS				
Fort Detrick		PROGRAM	PROJECT	TASK		WORK UNIT	
Frederick, Maryland 21701-5012	2	ELEMENT NO. 62770A	NO. 3M1- 62770A870	NO. AJ	l l	010	
11. TITLE (Include Security Classification)		0211UK	1021108010	. AU		010	
Chemotherapy of Rodent Malaria							
12. PERSONAL AUTHOR(S) Wallace Peters. M.D. DSc							
13a. TYPE OF REPORT 13b. TIME CO			RT (Year, Month, I		PAGE C	OUNT	
Annual Report FROM	<u>1/87</u> то <u>10/15</u> /88	1988 Octo	ber 15		161		
13. 301 CEMENTAL NOTATION			*				
17. COSATI CODES	18. SUBJECT TERMS (C	ontinue on revers	se if necessary and	identify l	by block	number)	
FIELD GROUP SUB-GROUP	RA I; Lab An:	imals; Mice;	Malaria				
06 13 06 15				•			
19. ABSTRACT (Continue on reverse if necessary a	and identify by block nu	ımber)					
		eport for the evaluation of drug					
interactions with combinagent. The relative men						Tariai	
P. berghei and P. yoelii							
are discussed.						_	
Blood schizontocidal ac							
another source is summadifferent sensitive and							
drug interaction tests							
on the action of chlore	oquine agains	t chloroqu	ine-resis	tant I	уое.	lii	
ssp. NS strain, only WI							
high degree of synergis different isomers of the				natior	of ·	TWO	
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS R			ECURITY CLASSIFIC	ATION			
22a. NAME OF RESPONSIBLE INDIVIDUAL	LI DIIC USEKS		(Include Area Code) 22c. O	FFICE SY	MBOL	
Mrs. Virginia M. Miller		301/663			RD-RMI		

FOREWORD

In conducting research using animals, the investigator(s) adhered to the 'Guide for the Care and Use of Laboratory Animals" prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

cces	ston For	`
HTIS	GRA&I	r X
DITO	TAB	
Unann	februro	
Justi	fication_	
	ribution/	
Dist	Avail and Special	/o r :*
A-1		

TABLE OF CONTENTS

	Page
Report Documentation Page	
Poreword	1
1. INTRODUCTION	3
2. ADMINISTRATIVE EVENTS	3
3. CHEMOTHERAPY STUDIES	4
3.1 Evaluation of data from drug interaction studies.	4
3.2 The role of chloroquine resistant strains of rodent	
malaria in experimental chemotherapy.	6
3.3 Blood schizontocidal activity.	9
3.4 Cross resistance studies.	11
3.5 Drug interaction studies.	11
4. PUBLICATIONS	13
APPENDIX 1 Summary of blood schizontocidal activity test	s 14
APPENDIX 2 Cross-resistance studies	33
APPENDIX 3 Drug interaction studies	117

1. INTRODUCTION

In the period since that covered in the last Annual Report, eight new compounds have been submitted for testing by WRAIR. These have been examined for blood schizontocidal activity and, in some instances, the compounds have also been studied in drug interaction experiments.

The problems which we had experienced with cytoplasmic polyhedrosis virus in the mosquito colony have been largely overcome by a continuing programme of treatment of the stock cages. Transmission of malaria through the mosquitoes is better now than at any time since the colony was established.

A reassessment of the comparative usefulness of chloroquine resistant strains of <u>Plasmodium berghei</u> and <u>P.yoelii</u> as models for <u>P.falciparum</u> has led us to revise our method of calculating resistance indices (I_{90}) , and a new way of demonstrating quantitatively the degree of interaction between two drugs, where one compound has no antimalarial activity in its own right, has been developed.

2. ADMINISTRATIVE EVENTS.

Staff employed on US Army funds are as follows:

Senior Technologist/ - B.L.Robinson 100% Time

Research Assistant

Techicians - Ms A.West 100% Time
- Ms J.R.Cox 100% Time
Secretary - Mrs B.A.Sargeaunt 25% Time

Mrs Sargeaunt has recently retired, and the part time secretarial post has not yet been filled.

Other staff associated with the project but not financially supported by USAMRDC are:

Professor W. Peters (Principal Investigator) 20% Time

3

Dr D.C.Warhurst (Biologist)

20% Time

Dr S.L.Croft (Electron Microscopist)

10% Time

3. CHEMOTHERAPY STUDIES

3.1 Evaluation of data from drug interaction studies

Until recently, our studies on drug interactions have been involved with pairs of compounds, each of which possess significant degrees of antimalarial activity in their own right. Determining the effect of compounds like these upon one another could be done easily by constructing isobolograms, which illustrated graphically the presence of synergism or antagonism.

It has, however, becoming increasingly the case that interest in using compounds such as calcium channel blockers, which have little or no inherent antimalarial activity, to influence the action of chloroquine on chloroquine resistant parasites has provided us with pairs of compounds in which only one drug has a direct antimalarial effect. Clearly, this prevents the construction of a conventional isobologram for use in analysing the interaction between the two compounds, since the presence or absence of synergism can only be demonstrated by this technique when the EU90 of each of the pair is known.

To overcome this problem we have devised a method to illustrate graphically and to quantify the influence of an antimalarially inactive compound, eg Verapamil, on the activity of a known antimalarial, eg chloroquine, in our rodent model.

Graphically, this is done by plotting the ED_{90} of the active partner against varying dosage of the antimalarially inert drug on a simple graph which also has a line indicating

.

the ED_{90} of the active drug drawn onto it. Figure 1 illustrates this principle and shows how the different types of interaction present themselves by this technique. The single compound ED_{90} line may be bounded by the extreme limits of confidence and points falling within this zone are indicative of a total failure to influence the activity of the antimalarial partner. Synergism is demonstrated by a graph which drops away from the ED_{90} line toward the bottom axis, whilst if antagonism is present between the two compounds the curve will rise progressively as the dose increases.

Figure 1. Graphic illustration of drug interactions where only one of the paired drugs possesses innate antimalarial activity.

A quantitative assessment of the degree of influence

of inactive compound on its antimalarial partner is made by calculating the Activity Enhancement Index (AEI). This involves a simple calculation in which the ${\rm ED}_{90}$ of the active compound alone is divided by the ${\rm ED}_{90}$ of the paired drugs at each dose of the "inert" compound.

For example, in order to directly compare the influence of a second compound on the efficacy of chloroquine, we compare the ${\rm ED}_{90}$ of chloroquine alone (CQ) with that of chloroquine combined with the test compound (CQ + "Drug X") i.e.

In effect, this regards the activity of chloroquine alone as representing an AEI of 1.0 and enhanced activity resulting from the combination of chloroquine with a second compound produces an AEI value greater than 1.0. This will apply whether the companion compound possesses antimalarial activity in its own right or not, and regardless of the cause of enhancement e.g. synergism or reversal of resistance. Similarly, an antagonistic interaction would lead to the AEI being reduced to a value lower than 1.0.

The use of AEI analysis not only permits a direct comparison to be made between a series of compounds in separate experiments, but may also be used to indicate the dose of an individual compound which produces optimal enhancement of activity.

3.2 The role of chloroquine resistant strains of rodent malaria in experimental chemotherapy.

Our preliminary studies on the effect of calcium channel blockers, which used Verapamil as a representative

compound, were carried out on the highly chloroquineresistant RC strain of <u>P. berghei</u>. No evidence of any
activity was detected with Verapamil, neither alone nor in
combination with chloroquine. However, when these experiments
were repeated using <u>P.yoelii ssp.</u> NS strain, marked
potentiation of the effect of chloroquine was noted, although
Verapamil alone still produced no reduction at all in the
parasitaemia. This phenomenon was also experienced with other
Verapamil derivatives which were examined by us in our role
as a World Health Organisation Reference Centre.

We have long felt that <u>P.yoelii</u> NS is a better model for chloroquine resistant <u>P.falciparum</u> than <u>P.berghei</u> RC (see Peters <u>et al.</u>, 1975, <u>Ann.trop.Med.Parasitol.</u>, 69:155 - 171), and when these experiments were repeated using NS strain, marked enhancement of the activity of chloroquine occurred with most of the Verapamil derivatives. These results, which are compatible with those previously obtained with Verapamil itself used in combination with chloroquine <u>in vitro</u> against chloroquine resistant strains of <u>P.falciparum</u>, help to confirm the value of the NS strain as a suitable <u>in vivo</u> model for <u>P.falciparum</u>.

When these observations are considered in conjunction with the data obtained in our cross resistance studies, it becomes clear that not only is <u>P.yoelii ssp.</u> NS strain a superior in vivo model to <u>P.berghei</u> RC for <u>P.falciparum</u> but that, for the purposes of studies on blood schizontocidal activity and resistance, direct comparisons should not normally be made between <u>P.berghei</u> N strain and the NS strain. This constraint also applies to resistant lines derived from these two distinct species.

Table 1. A comparison of blood schizontocidal activity of a range of antimalarial compounds against $\underline{P.berghei}$ N strain and $\underline{P.yoelii}$ ssp NS strain. ED90 values are expressed in mg/kg X 4 sc.

	E	D ₉₀
COMPOUND	N STRAIN	NS STRAIN
CHLOROQUINE	3.1	56.0
MODIAQUINE	2.6	18.0
PRIMAQUINE	4.8	8.4
IEPACRINE	4.6	18.3
QUININE HCl (po)	118.0	290.0
CINCHONINE HCl (po)	125.0	220.0
QUINIDINE HCl (po)	31.0	195.0
EFLOQUINE HCl (po)	4.6	7.2
ALOFANTRINE	1.1	1.0
RTEMISININ	4.2	10.0
YRONARIDINE	0.7	1.2
YRIMETHAMINE (ip)	0.12	0.13
GULFADOXINE	4.4	0.26
ANSIDAR *	0.32	0.1
CYCLOGUANIL	3.3	6.9
ENOCTONE	1.4	4.5
LOXACRINE	1.0	0.6
LINDAMYCIN	36.0	55.0
OXYCYCLINE	2.7	98.0

^{*} PYRIMETHAMINE : SULFADOXINE (1:3)

It is apparent from Table 1 that the normal response of the NS strain to a substantial number of antimalarial drugs differs significantly from that of <u>P.berghei</u> N strain. These inherent differences also influence the resistance patterns of strains resistant to specific compounds which may be developed from these and, therefore, the response of any of these derived strains should only be assessed against the appropriate parent strain. For example, the ED $_{90}$ of chloroquine against the mefloquine-resistant NS1100 strain is 27.0 mg/kg. If this is compared with that of the N strain (3.1 mg/kg; I_{90} = 1.0) then one would say that an almost ninefold resistance to chloroquine has developed in the course of producing mefloquine resistance (I_{90} = 8.8). However, when the comparison is drawn with the parent NS

.

strain, which has an ED $_{90}$ of 56.0 mg/kg, it is immediately appared that in fact approximately half of the resistance to chloroquine possessed by the parent strain was lost in the process of producing the mefloquine resistance (I $_{90}$ NS1100 = 0.5). This same principle applies to any drug tested against resistant lines.

We have accordingly altered our previous practice of comparing all strains employed in blood schizontocidal activity tests with N strain to derive resistance factors, and in this and future reports we will be making comparisons with the appropriate parent strain. Summary sheets will therefore show two series of data for each compound in order to give as accurate a picture as possible of patterns of resistance.

3.3 Blood schizontocidal activity studies

Results from the blood schizontocidal activity tests are summarised in Tables 3 to 5, and detailed test data are contained in Tables 6 through 20.

(i) BK73252 and BL47346 (WR numbers not known)

These two compounds were tested for activity against P.berghei N strain, N1100, Q, KFY (resistant to mefloquine, quinine and Fansidar respectively), the chloroquine resistant P.yoelii ssp. NS and the artemisinin resistant ART (derived from NS).

BK73252 was the more active of the two compounds with an ED $_{90}$ in N strain of 0.08 mg/kg X 4 sc. Slight resistance to this compound was observed in the Q and KFY strains ($_{190}$ values : 2.5 and 2.4), but since this compound is tolerated at doses in excess of 100 mg/kg the therapeutic index is probably still very good. The NS was only slightly less

sensitive (ED $_{90}$: 0.15 mg/kg) and the ART showed a level of resistance comparable with the Q and KFY.

BL47346 was appreciably less active (ED $_{90}$ N strain: 7.9 and NS: 9.0 mg/kg). The other resistant lines, apart from KFY, showed some resistance, ranging from an I $_{90}$ value of 2.3 in the N1100 to 4.6 in the ART strain. The KFY strain was slightly more sensitive than the parent N strain (I $_{90}$: 0.7). (ii) Floxacrine analogues

Three floxacrine analogues have been received for testing. The first, WR 243251, has a similar level of activity to floxacrine against N strain (ED_{90} : 1.5 mg/kg X 4 sc). No cross resistance was observed in the N1100, Q and KFY strains of <u>P. berghei</u>, or in <u>P. yoelii ssp.</u> NS and ART.

The other two analogues were isomers of WR 243251. The R-isomer (WR 250547) was much less active with an ED_{90} of 83.0 mg/kg in N strain, but the L-isomer (WR 250548) had a level of activity through all the strains comparable to that of WR 243251.

(iii) Fusidic acid)

This compound was tested for blood schizontocidal activity prior to investigating its potential use in controlling cytoplasmic polyhedrosis virus in our mosquito colony. Slight antimalarial activity was detected against N strain (ED_{90} : >300 mg/kg X 4 sc).

(iv) Nifedipine (WR 255695 AE) and Diltiazem (WR 255693 AC)

These two calcium antagonists had been identified by workers at WRAIR as having an enhancing effect on the activity of chloroquine against <u>P.falciparum in vitro</u>. Prior to investigating this aspect <u>in vivo</u>, both compounds were tested for inherent antimalarial activity. Nifedipine was inactive at 100 mg/kg and Diltiazem hydrochloride showed only

very slight activity (ED $_{90}$: 540 mg/kg) against the N strain but was inactive against <u>P.yoelii ssp.</u> NS at 100 mg/kg X 4 sc.

(v) Phenytoin (WR 014044)

This compound was also submitted in connection with combination studies, although the hypothesis advanced was that simultaneous treatment with phenytoin and chloroquine would result in antagonism between the two compounds. Some blood schizontocidal activity was detected when phenytoin was tested against the N strain (ED_{90} : 150 mg/kg).

3.4 Cross-resistance studies

Our extended studies of the cross-resistance patterns of twenty-nine different sensitive and resistant strains of rodent malaria subjected to treatment with a range of twenty-one antimalarials is now nearing completion. Data from blood schizontocidal activity tests are included as Tables 25 to 103 and complete results of the cross-resistance studies completed to date are given in Tables 21 to 24.

3.5 Drug interaction studies

3.5.1 WR 014044 and chloroquine

As a result of the clinical failure of chloroquine in the treatment of <u>P.falciparum</u> in some patients receiving phenytoin, the hypothesis had been advanced that an interaction occurs between the two compounds effectively enhancing the parasite's resistance to chloroquine. In the <u>in vivo</u> rodent model, using <u>P.yoelii ssp.</u> NS strain, this did not prove to be the case. Indeed, phenytoin possesses some antimalarial activity in its own right and a clearly synergistic interaction was shown when chloroquine was administered simultaneously (Figure 2 and 3).

3.5.2 WR 255695 and chloroquine

Combination therapy with these two compounds (Figure
4) produces no more than a slight enhancement of the activity
of chloroquine against the NS strain.

3.5.3 WR 255693 and chloroquine

Simultaneous treatment with Diltiazem hydrochloride aand chloroquine has little more effect than treatment with chloroquine alone in the <u>in vivo</u> drug interaction test (Figure 5).

3.5.4 WR 250547 and WR 250548

A drug interaction test was performed to investigate the possible effects of administering these two isomers of the floxacrine analogue WR 243251 together. A high degree of synergism was obvious with this combination (Figure 6).

Table 2. Activity enhancement analysis of some WRAIR compounds combined with chloroquine. Verapamil data are included for comparison.

LON	BN No.	WRAIR	Dose	ED ₉₀ CQ	AEI
2109	Verapamil	hydrochloride	 - 1.0 3.0	23.0 28.0 21.0 12.5	- 0.82 1.10 1.84
			30.0	8.0	2.88
2164	BL 51831	014044	- 1.0 3.0 10.0	27.0 23.0 18.8 14.2 7.6	- 1.17 1.44 1.90 3.55
2142	 BL 48656 	255696 AE	 3.0 10.0 30.0 60.0	25.0 16.0 17.8 17.5 15.5	 1.56 1.40 1.43 1.61
2113	BL 19657 	255693 AC	3.0 10.0 30.0 60.0	21.0 24.0 24.0 23.0 16.5	1.00 1.00 1.04 1.45

4. PUBLICATIONS

BROSSI, A., Venugoplan, B., Dominguez Gerpe, L., Yeh, H.J.C., Flippen-Andersen, J.L., Buchs, P., Luo, X.D., Milhous, M. and Peters, W. (1988) Arteether, a new antimalarial drug: synthesis and antimalarial properties. <u>J.Medicinal Chemistry</u>, 31, 645-650.

JEFFORD, C.W., McGoran, E.C., Boukouvalas, J., Richardson, G., Robinson, B.L. and Peters, W. (1988) Synthesis of new 1,2,4-trioxanes and their antimalarial activity. <u>Helvetica Chimica Acta</u>, 71, 1805-1812.

MILLET, P., Landau, I. and Peters, W. (1987) <u>In vitro</u> testing of antimalarial exoerythrocytic schizontocides in primary cultures of hepatocytes. <u>Mem.Inst.Oswaldo Cruz, Rio de Janeiro</u>, 81, suppl. II, 131-141.

PETERS, W. (1986) Mode of action and drug resistance of quinghaosu and its derivatives. <u>Scientific Working Group on the Chemotherapy of Malaria</u>, 6-7 October 1986, Salle A WHO HQ, Geneva.

PETERS, W. and Robinson, B.L. (1988) The chemotherapy of rodent malaria. XLIII. Indolo(3,2-c)quinoline-N-oxides. Ann.Trop.Med.Parasitol., 82, 5, 423-427.

PETERS, W., Robinson, B.L. and Ellis, D.S. (1987) The chemotherapy of rodent malaria. XLII. Halofantrine and halofantrine resistance. <u>Ann.Trop.Med.Parasitol.</u>, <u>81</u>, 639-646.

PETERS, W., Robinson, B.L., Warhurst, D.C., Ellis, D.S. and Tovey, G. (1987) The chemotherapy of rodent malaria. XLIV. Studies on the mode of action of CM 6606, an indolo(3,2-c) quinoline-N-oxide. Ann.Trop.Med.Parasitol., (in press).

ROBINSON, B.L., Tovey, G. and Peters, W. (1988) Cytoplasmic Polyhedrosis Virus in <u>Anopheles stephensi</u>. XIIth International Congress for Tropical Medicine, Amsterdam, 18-23 September 1988.

RYALL, J.C.. Ekong, R.M., Warhurst, D.C. and Peters, W. (1987) Altered polypeptide synthesis in chloroquine-resistant Plasmodium falciparum. 3rd International Conference on Malaria and Babesiosis, Annecy, 1987.

STOHLER, H.R., Jaquet, C. and Peters, W. (1988) Biological characterization of novel bicyclic peroxides as potential antimalarial agents. XIIth International Congress for Tropical Medicine and Malaria, Amsterdam, 18-23 September 1988.

APPENDIX 1

SUMMARY OF BLOOD SCHIZONTOCIDAL ACTIVITY TEST DATA

SUMMARY OF BLOOD SCHIZONTCCIDAL (4 DAY TEST) DATA

		Z		Z	0017	Q	_	KFY	>								
	Route	ED	ED	ED	н 90	ED 90	1 90	8D 90	1 90	ЕD 90	1 90	ЕD 90	1 90	ED 90	1 8	23 G	н
LON 2145	Sc		80.0	F0,0	6.0	0.2	2.5	61'0	2.4								$\overline{}$
NR 1130 m																	
LON 2146) y	3,9	7.9	18.5	2.3	30.5	3.9	5.3	F,0								
WR BL 47346	,																
LON 2159	SS	4.0	n.	0:1	6.9	9.0	4,0	4	60								
WR 243 251 BL 21:00									1								<u> </u> -
		Z	SN	ART	た	-											- 1
		ED So	(F)	ED %	I 90	ED 90	°6 I	ED ₉₀	I 90	E S	I 30	ED90	I 90	ED %	I %	E S	Η̈́
LON 2145	S	0.03	0.15	0.37	2,5												
MR BK 73:252																	
LON 2146	Sc	5.2	9,0	41.0	ئا. 4												
WR BL 47346																	
LON 2159	SC	0,5	0:	1,2	1.2												-
B: 21100														- 1			1
ED_{EA} / ED_{QA} = $mg/kg \times 4$	9 × 4	= OTM	MTD = maximum tolerated	um tol		d ose								اعد	lable 3		

= mg/kg x 4 ED_{SO} / ED_{αλ}

SUMMARY OF BLOOD SCHIZONTOCIDAL (4 DAY TEST) DATA

	н								H					_		
	80 80								E S							
	90								I 90							Table 4
	50 90								ED %							1 4% H
	1 90						-		I 90							
	ЕD 90								ED90							
	1 90						,		I 90							
	ED 90								ED ₉₀		-				,	
\ \ \	1 90			6.0					T 90					,		1
KFY	ED 90			8-					ED ₉₀							
~	I 90			9					I 90							
G	ED 90			=					ED 90							
0017	1 90			1,25		·		1	I 90			Fio				٦,
Z	ED 90			2,5				ART	ED %			113				
	ED 90	83.0		2,0		>300		S	ED %	23.0		2,0				7
Z	ED 50	1		0.6		100		N N	ED	5.7		1,2				
	Route	Sc		SS		Sc				Sc		Sc		S		
	144	LQ2 22160	WR 250541 BL 29759	1917 POT	WR 250548 Bi 34170	LON 2147	Fusioic Aco			Lon 2160	WR 250547 BL 29159	LON 2161	WR 250548 BL 34170		.1	

 $ED_{\varsigma_{\Omega}}$ / $ED_{\varsigma_{\Omega}}$ = mg/kg x 4

MTD = maximum tolerated dose

SUMMARY OF BLOOD SCHIZONTOCIDAL (4 DAY TEST) DATA

		Z	-				-										
	Route		1	ED	н	ED	1 90	06 06	1 90	ЕD 90	1 90	ЕD 90	1 90	80 90	1 96	සු S	н
Lon 2142	,	9, 6	2 2	R	3												,
WR 255 695 AE	20	200%	3							•							
BL 48656																	
Lon 2143	S	0,0%	540														
WR 255 693 AC	20		;														
Bi 48657					1												T
LON 2164	Sc	30.0	150					- ::									1
WR 014044																	
BL 51831																	
		S				, -											
		ED So	ED 90	E S	I 90	ED %	I 30	ED ₉₀	I 90	E S	I 90	ED90	I 90	ED %	I 80	G G	ΗI
LON 2142	Sc	>100 %100															
WR 255695 AE																	ļ
BL 48656			†	1	†												
LON 2143	Ş	>100	00 ≪														
WR 255 693 AC																	
BL 43657			1		1												
	SS		<u>.</u>														
\$ \$ 53/8 = 1	4 4	- OTM	MTD = maximum tolerated	m tole		dose								Ta.	Table 5		

 ED_{cO} / ED_{cO} = $mg/kg \times 4$

17

COMPOUND NAME WR

(BK 73252)

OR NUMBER

LON 2145 PARASITE (SUB) SPECIES P. beighei

FORMULATION .Tween 30/H20 ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) .>! OO MG/KG X 4.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0:01	5			100 ± 0.6
	0.03	5		_	98.9±4.0
N	0.1	5	1		1.0±0.4
	0.3	5		_	0.01 ±0.01
	1.0	5		_	0
	Ø	10		. 22.6	

ED₅₀(range) 0.05(0.03-0.13)

ED₉₀(range)0.08(0.04-0.21)

Resistance factor I_{901.0}

	0.01	5		_	76.9 ± 10.1
	0.03	5		_	75.1±10.9
NIIOO	0.1	5	1	_	3.5 ± 0.8
	ο̈́ο	5		-	0.03±0.03
	110	5_		-	0
	Ø	10		6.8	
	,				

ED₅₀(range)0.03(0.02-0.05)

ED₉₀(range)0.07(0.04-0.11)

Resistance factor I900,0

COMPOUND NAME WR (BK 73252) LON 2145 PARASITE (SUB) SPECIES P. beighe! OR NUMBER FORMULATION TWOODS ON HO. ROUTE OF ADMINISTRATION: SC/1P/PO/IV MAXIMUM TOLERATED DOSE (MTD) > 100. MG/KG X 4.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.01	5			71.8 ± 5.7
	0.03	5			54.9 ± 6.3
Q	0.1	5_	ļ		50.9±11.7
	0.3	5_			40.9 ± 14.7
	1.0	5	<u> </u>		0.03 ±0.01
	Ø	10		. 6.4	

ED₅₀(range) 0.05(0.01-0.32) ED₉₀(range) 0.2(0.05-1.1)

Resistance factor I₉₀ 2.5

L					
	0.01	5		_	100 ± 07
	0.03	5		-	100
KFY	0.1	5	1	-	48.8 ± 18.9
	0.3	5		-	0.5 ± 0.3
	1.0	5		-	0 .
	Ø	10		16.8	
	,				

ED₅₀(range) 0.1(0.07 - 0.12

ED₉₀(range)0.19(0.13 - 0.2

Resistance factor I₉₀ 2.4

WR (BK 73252)
LON 2145 PARASITE (SUB) SPECIES P. York SSP. COMPOUND NAME OR NUMBER FORMULATION Tween 80/H, O. ROUTE OF ADMINISTRATION: SC/1P/PO/IV-MAXIMUM TOLERATED DOSE (MTD) > 100 MG/KG X 4.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.01	5		<u></u>	100 ± 1.5
	0.03	5			60.4 ± 6.1
NS	0.1	5)		52.9 ± 3.5
	0.3	5			3.4 ± 2.4
	1.0	5		_	0
	Ø	10		. 21.3	
		1			

 $ED_{50}(range) 0.07(0.03-0.11)$ $ED_{90}(range) 0.15(0.07-0.25)$ Resistance factor $I_{90} 1.0$

	0.01	5		-	100
	0.03	5		_	100
ART	0.1	5	1	_	100
	0.3	5			29.8 ± 10.0
	1.0	5		_	0.01 +0.01
	Ø	10		23-3	
	,				

 $ED_{50}(range)0.26(0.23-0.29)$

ED90(range)0.37(0.33-0,4)

Resistance factor I₉₀ 2.5

COMPOUND NAME

WR

(BL47346)

OR NUMBER

LON 2146 PARASITE (SUB) SPECIES P. berghei

FORMULATION . Twees 80./H20 ROUTE OF ADMINISTRATION: SC/1P/PO/IV

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	1.0	5			100
	3.0	5			71.0 ± 7.1
N	10.0	5	,	-	4.4 ± 1.3
	30.0	5		_	0.02±0.0
	Ø	10		22.6	
ED ₅₀ (range	2)3.9(3.4-4.6				
ED ₉₀ (range	e) 7.9(3.4_4.6 e) 7.9(6.8-9.5)	K			
	e factor I ₉₀ 1.0				_
	1.0	5			78,4 ± 8,1
	3.0	5		_	59.4 ± 12.
N 1100	10.0	5	\	_	48.8 ± 16.3
				_	
	30.0	5		<u></u>	1 30 € 112
	30.0 Ø	10		6.8	50 ± 1/4

ED₅₀(range) 3.9(1.9-15.3)

ED₉₀(range) 18.5(9.0-73.0

Resistance factor $I_{90} 2.3$

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	1.0	5		_	66.5 ± 8.7
	3.0	5		_	46.8±11.4
<u>Q</u>	10.0	5		_	46.2 = 10.8
· · · · · · · · · · · · · · · · · · ·	30.0	5		_	5:0 ± 2:7
	Ø	10		6.4	
ED ₅₀ (rang	1e)3.8(1.1-12.6				
ED ₉₀ (rang	1e)30,5(8,5 - 105				
Resistan	ce factor I ₉₀ 3.9		_		
	10	5		_	78,0 ±9,0
	3.0	5		_	56.5 ± 14.
KFY	10.0	5	1	_	3,2 ± 1,0
	30.0	5		_	0.01 ± 0.0

 $ED_{50}(range)$ 2.2(1.4-4.5) $ED_{90}(range)$ 5.7(3.6-11.8) Resistance factor I_{90} 0.7

Principal Investigator: Professor W.Peters
Department of Medical Protozoology
London School of Hygiene & Tropical Medicine

16.8

10

COMPOUND NAME WR (BL 47346)

OR NUMBER LON 2146 PARASITE (SUB)SPECIES P. Yorku sep.

FORMULATION TWEEN 80/H20. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) > 1.00. MG/KG x 4.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	1.0	5			96.9 ± 3.1
	3.0	5		-	93.9 ± 3.0
NS	10.0	5	1	_	15:3 ± 4.2
	30.0	5		-	0
	Ø	10		21.3	
				_	
ED ₅₀ (range	e)5.2(1.9-6.7)				
ED ₉₀ (range	e)9.0(3.4-12.0))			
Resistance	e factor I ₉₀ 1.0				
	1.0	5			87.4 ± 8.6
	3.0	5		_	75/3 ± 10.7
ART	10.0	5		_	58.2 + 12.0
	30.0	5		-	14.9 ± 4.2
	Ø	10		23.3	

ED₅₀(range) 7.3(2.9-20.0)

ED90(range)41.0(16.0-110)

Resistance factor 1904.6

COMPOUND NAME WR 243251 (BL 21100)

OR NUMBER

LON 2159 PARASITE (SUB) SPECIES P. berghei

FORMULATION TWEEN 80/H, Q. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) . > 10. MG/KG X 4.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.1	5		~	81.3 ±4.0
	0.3	5			75/3 ± 2/3
N	1.0	5	1	_	20.1 ± 6.6
	3.0	5		_	1.5 ± 0.9
	Ø	10		24.8	

ED₅₀(range) 0.4(0.2-0.7)

ED₉₀(range) 1.5(0.8-2.8

Resistance factor I₉₀ I_O

		_i			
	0:1	5		_	100 ± 6.6
	0.3	5		-	80.2 ± 14.4
N 1100	1.0	5	١	_	18.2 ± 6.2
	3,0	5		_	0.04 ± 0.04
	10.0	5		-	0
	\$	10		4.9	
	/				

ED₅₀(range)0.5(0.4-0.7)

ED90(range)1.0(0.7-1.4

Resistance factor Igo O

COMPOUND NAME WR 243251 (BL21100)

OR NUMBER LON 2159 PARASITE (SUB) SPECIES P. beighei

FORMULATION .Tween 80 /H20 ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) .>.!Q... MG/KG X 4...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0:1	5		_	100 ± 3.1
	0:3	5			76.8±11.5
Q	1.0	5	1	_	0.8±0.5
	3.0	5		_	0
	10.0	5			0
	Ø	10		. 7.3	

ED₅₀(range) 0.4(0.3-0.5)

ED₉₀(range) 0.6(0.5-0.8)

Resistance factor I₉₀0.4

	011	5		-	88,4±3,0
	6.3	5		-	87.4 ± 2.4
KFY	1.0	5)	_	21.4 ± 7.8
	3,0	5		-	1.0 + 0.5
	10.0	5		-	10,0°± 10,0
	Ø	10		19.9	

ED₅₀(range) 0.5(0.4-0.8)

ED₉₀(range) 1.4(1.1-2.2)

Resistance factor I₉₀ 0.9

0.08 ± 0.07

COMPOUND NAME WR 243251 (BL 21100)

OR NUMBER

LON 2159 PARASITE (SUB) SPECIES P. MORIU SSP...

FORMULATION Tween 80/HO. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) ≥!♀.. MG/KG X ⁴.

Strain	Daily dose .mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.1	5			99.7 ± 5.0
	0.3	5		_	90.6 ± 3.7
NS	1.0	5	1		1,5±0,4
	3:0	5		_	0.8 ± 0.6
	Ø	10		20.2	
	<u> </u>			·	
ED ₅₀ (range	e) 0.5(0.2-1.0	K			
ED ₉₀ (range	e)1.0(0.4-1.9)				
Resistanc	e factor I ₉₀ 1.0				
	0:1	5		-	97.5 = 1.6
	6.0	5		-	91.5 ± 6.7
ART	1.0	5	١	_	1.1 ± 0.2
	3.0	5		-	0.2 + 0.1
	1			1	1

ED₅₀(range) 0,6(0,25-1,9)

10.0

 $ED_{90}(range) 1.2(0.5-3.8)$

Resistance factor $I_{90} 1.2$

Principal Investigator: Professor W.Peters Department of Medical Protozoology London School of Hygiene & Tropical Medicine

19.9

5

10

COMPOUND NAME WR 250547 BL 29759

OR NUMBER LON 2160 PARASITE (SUB) SPECIES Propher

FORMULATION TWEEN 80 / H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) > 10:0. MG/KG X 4.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	0:1	5		-	95·5 ± 3·3
	0.3	5			89.2 ± 5.8
N	1.0	5	1	_	92.5 ± 3.0
	3.0	5			80·0 ± 4.0
	10.0	5			52.9 ± 7.1
	Ø	10		24.7	
ED ₅₀ (rang	e)10.3(8.0-15.0				
ED ₉₀ (rang	^{1e)} 83.0(65.0-118	3			
Resistanc	e factor I ₉₀				
<u></u>					
ED ₅₀ (ran	ge)				
ED ₉₀ (ran					
	ce factor I ₉₀				

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR% 100
	0:1	5_		_	93.7 ± 4.5
	0.3	5			88.7 ± 5.3
NS	1.0	5	1	-	92.1 ± 2.3
	3.0	5		_	82.7 ± 6.4
	10.0	5			22.7 ± 9.3
	Ø	10		26.3	
ED ₅₀ (rang	ge)5.7(3.0 - 11.0				
ED ₉₀ (rang	ge)5:7(3:0 - 11:0 ge)23:0(11:8-43				
Resistan	ce factor I ₉₀				
·					
	\	i	1	1	
			 		
					·

ED₅₀(range)

ED₉₀(range)

Resistance factor I₉₀

(BLOOD SCHIZONTOCIDES)

COMPOUND NAME WR 250548 (BL34170)

OR NUMBER

LON 2161 PARASITE (SUB) SPECIES P. beighei

FORMULATION Tween 80/HO ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) . > ! . . . MG/KG X 4.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Control PR% 100
	0:3	5		-	78.0±3.0
	1.0	5_	·	_	65.9 ± 7.3
N	3.0	5_	1		1.5 ± 0.3
	10:0	5_			0.17 ± 0.08
	Ø	10		24.8	
				•	

ED₅₀(range) 0.6(0.3-1.8) ED₉₀(range) 2.0(1.1-6.1)

Resistance factor I₉₀ 1.0

	011	S		_	73.3 ± 12.0
	0.3	5		-	65.6 ± 16.7
N 1100	1.0	5	1	-	43.3 ± 13.2
	3.0	5		-	811 ± 213
	10.0	5		-	1.7 ± 1.2
	Ø	10		4.9	

ED₅₀(range) 0,4(0,1-1,2

Resistance factor Igo 1,25

WR 250548 (BL 34170)

COMPOUND NAME

OR NUMBER

LON 2161 PARASITE (SUB) SPECIES . P. berghei

FORMULATION ... TWEEN SO. /HO ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) .>! ... MG/KG X $\stackrel{4}{\leftarrow}$.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	011	5		-	100
	0.3	5			64.3 ± 14.1
Q	110	5	1		36.8 ± 2.1
,	3.0	5		~	0.03 ± 0.03
	10.0	5			0
	Ø	10		. 7.3	
	,				

ED₅₀(range) 0.6(0.3-0.9)

ED₉₀(range) | . | (0.5 - 1.6)

Resistance factor I₉₀0,6

L		_1			
	0:1	5		-	100 ± 2.2
	6.0	5		_	88.4 ± 1.6
KFY	1.0	5)	~	28.3 ± 7.7
	3.0	5		-	5.8 ± 2.7
	10.0	5			0.02 ± 0.01
	Ø	10		19.9	

ED₅₀(range)0.6(0.4-1.0

EDgn(range)1,8(

Resistance factor I₉₀0.9

COMPOUND NAME WR 250548 (BL 34170)

OR NUMBER

LON 2161 PARASITE (SUB) SPECIES P. yodii SSp.

FORMULATION TWEE: 80/H20. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) .>10. MG/KG X 4.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3	5		_	100 ± 1.4
	1.0	5		_	76.9 ± 8.5
N5	3.0	5	1	_	0,4 ± 0,4
	10.0	5			0
	Ø	10		20.2	
ED ₅₀ (rang	ne) 1.2(0.6 - 1.5)				
ED ₉₀ (rang	ge) 2.0(1.1-2.5)				
Resistanc	ce factor I ₉₀ 1.0				
	0.1	5			100 ± 03
	0.3	5			96.0 ± 1.6
ART	1.0	5	1	_	8.9 ± 3.7
	3.0	5		-	0.9 + 0.2
	10.0	5		_	0.01 ±0.0
	Ø	10		28.3	
					

Resistance factor I₉₀ O.

COMPOUND NAME FUSIDIC ACID

OR NUMBER

LON 2147 PARASITE (SUB) SPECIES P. berghei

FORMULATION . Tween 80/HOROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) ≥300 MG/KG X 4.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5		_	79.7 ± 7.4
	10:0	5			68.3±6.5
7	30.0	5	١	_	55:3 ± 8:0
	100.0	5_		-	52.6 ± 6.9
	300.0	5			47.2 ± 4.4
	Ø	10		. 19.8	
				·	
ED ₅₀ (rang	1e)100(20-310)				
ED ₉₀ (rang	^{je)} >300				
Resistanc	e factor I ₉₀				
ED ₅₀ (ran	ge)				
ED ₉₀ (ran	Ge)				
Resistan	ce factor I ₉₀				

APPENDIX 2

CROSS-RESISTANCE STUDY DATA

* Pyrimethamine: Sulfadoxine (1:3)

Table 21. EDgo values of some antimalarial drugs against resistant lines of P. berghei.

	z	RC	G	0011N	Z	۵	В	PyR	ORA	MEN	NPN	80LIN	MFY	KFY	PFMA NI765	NI765	Z Z	S S
CHLOROQUINE	0:-	74.2	>19.4	1.5	2.3	7.0	1.5	=	1.2	0	<u>-</u>	3.3	œ -	1.3	6.5	1.3	1.78	98.4
AMODIAQUINE	1.0	162	11.5	7.7	2.1	8,0	8.0	1.3	1.0	1.7	12.3	2.0	2.4	0;-	2.4		135	115
WR 228258	0.1	1.3	» (o	2.6	⊘ 10	<0.3	<0.3	<0.3	60 3	<0.3	14.1	8.71	0.13	<0.3	<0.3	8.6	340	o!≪
PRIMAGUINE	1.0	2.7	3.9	6.1	2.2	15.4	1.3	2.0	0.5	2.0	1.8	1.5	4.3	2.2	4.3	6.1	9,4	4.4
QUININE	1.0	10.8	>5.0	14.4	8.1	1.2	1.4	1:1	1.6	6.0	7.6	1.5	r.s	-	4:1	5.6	7.2	6.91
CINCHONINE	1.0	37.6	37.6 34.8	3.2	2.3	L.0	0.4	۲٠٥	0.5	0.5	4.4	0.7	2.1	0.2	041	2.2	4.8	>4.8
QUINIDINE	1.0	3.0	15.2	8.6	3.8	1.2	1.1	3.0	۲:1	5.0	18.7	2.8	4.9	2.3	4.1	3.2	17.77	22.6
MEFLOQUINE	1.0	60.0	»13	LII	2.0	5.9	1.3	1.2	6.0	0.5	1.5	1.2	2,2	6.0	1.7	o i	20.7	185
HALOFANTRINE	1.0	891	16≪	123	3.3	1.4	3.8	1.2	1.7	ი.6	3.2	<u>+</u>	<u>-</u> ∞	3.1	2.1	0	27.3	164
MEPACRINE	1.0	8.9	100	103	2.5	1.5	2.4	9,0	-:	2,5	7.52	6.5	2,5	8.1	8.4	20.0	>5.3	8.51%
ARTEMISININ	1.0	102	63.5	4.0	5.2	5.9	2.0	1.1	ا· 8	<u>.</u> ئز	21.4	4:	2.3	2.1	5.0	3.3	128	12.4
PYRONARIDINE	1.0	14.3	14.3 \$ 143	2.3	1.1	1.4	2.0	1.6	2.1	1.0	19.3	1.0	1.3	0.1	1.7	1.9	3.7	12,9
PYRIMETHAMINE	0 -	9.4	0.25	6,0	2.2	1.4	20.0	28.3	4.2	3,3	~: ~:	80'0	247	30.8	9.0	0,01	2.2	4.0
SULFADOXINE	0.1	0.14	0.03	0.01	9.0	60.0	0,16	0,3	9,9	80.0	20.0	6.0	o.	13.0	70.0>	0.2	20.02	0.03
FANSIDAR	<u>.</u>	0.18	0.03	0.25	9.5	9.0	9:	6:1	1.5	0,2	60.0	6.0	611	911		<u>.</u>	91.0	0.16
CYCLOGUANIL	1.0	1.1	-0	8.0	0.1	97.0	>30	330	13.3	9	3,0	=	303	21.2	9,0	-:	9.1	1.2
MENOCTONE	0	7.9	1.3	6.0	1.1	1.5	4.9	5.1	6.1	2643	1.3	و -	-	 8	4:1	1:1	4	2.1
FLOXACRINE	<u>.</u>	6.0	0.5	6.0	8,0	4.0	4.0	4.0	4.0	<u>o</u>	0.9	9	0.5	0,45	4.0	0,8	ر ٥	7.0
CLINDAMYCIN	0.1	9:1	6.0	0.1	9.1	0.2	8.0	0.2	2,0	ح,٥	6.3	8.0	o S	8,0	ល	0.5	0.5	4.0
DOXYCYCLINE	1.0	1.4	3.4	12.2	7.4	1.2	6.5	3.1	66.7	4.8	3.3	6.9	<u>.</u>	6.1	15.6	4.4	4.3	6.7
LON 1765	0	4.8	329	20.3	52.9	1.2	8.1	6,1	2.4	3.0	3.9	6.5		2.8		28.8		

>5.0 Resistant [2.5-5.0 Slightly resistant [0.7-2.5] Sensitive [0.5-0.7] Slightly hypersensitive [<0.5] Hypersensitive Table 22. Resistance factors (Ig) of resistant strains of P. berghei to some antimalarial drygs.

	r · · · · · · · · · · · · · · · · · · ·	r								r	
	NS	N51100	SH	SPN	N51708	ART	NS 1765	SAM	mps	QMS	NIG
CHLOROQUINE	56.0	27.0	80.0	220	21.5	400	210	520	480	650	6.7
AMODIAQUINE	18.0	4.8	≫100	420	31.0	310	78.3	112	510	»100	6.3
WR 228258	2.9	90.0	0.4	156	125	%30	140	>100	≫100	145	0.75
PRIMAQUINE	8.4	18:4	9.2	13.7	9.0	11.5	10.2	220	9.5	20.0	19.5
QUININE	290	600	190	920	200	400	270	1080	8500	925	220
CINCHONINE	220	70.0	%600	1600	155	700	253	660	3200	>>600	115
QUINIDINE	195	230	1050	1000	72.0	385	115	490	620	5400	115
MEFLOQUINE	7.2	640	»100	20.0	7.5	65.0	11.0	128	180	»100	5.2
HALOFANTRINE	1.0	22.5	375	3.4	0.9	6.5	5.7	60.0	»30	»30	2.0
MEPACRINE	18.3	120	78.0	460	11.8	250	23.5	630	3550	30.0	13.0
ARTEMISININ	10.0	13.8	% 30	20.5	7.8	165	6.5	22.5	200	120	11.5
PYRONARIDINE	1.2	1.4	>100	33.5	1.4	19.5	2.2	3.2	14.3	46.0	1.1
PYRIMETHAMINE	0.13	0.08	0.18	0.37	0.21	0.05	0:43	0.03	0.12	0.06	0.09
SULFADOXINE	0.26	0.08	0.21	0.08	0.14	0.05	0113	(0.3	40.3	<0.3	048
FANSIDAR	0.1	0:14	0.19	0.08	0:1	0.05	0:1	<0.03	0.1	0.05	0:04
CYCLOGUANIL	6.9	4.8	6.8	11.5	5.0	6 3	2.4	3.1	2.5	2.2	12.3
MENOCTONE	4.5	3.1	3.8	4.3	3.5	1.2	3.0	2.0	2.2	2.7	3.2
FLOXACRINE	0.6	0.5	0.5	0.6	0.4	0.3	0.12	0.6	2.5	0.4	0.3
CLINDAMYUN	55.0	18.5	14.0	24.0	24.0	10.0	14.0	32.0	20.0	31.0	28.5
DOXYCYCLINE	98.0	28.0	17.0	28:0	34.0	32.0	15.5	58.0	42.0	13.8	37.5
LON 1765	6.0	8.2	18.0	56.0	11.2	125	220	10.6	18.0	70.0	

Table 23. ED 90 values of some antimalarial drugs against resistant lines of <u>P. yoelii ssp.</u> and <u>P.y. nigeriensis</u> (NIG).

	NS	NSIIOO	SH	SPN	N51708	ART	NS 1765	SAM	MPS	ams	NIG
CHLOROQUINE	1.0	0.5	1.4	3.9	0.4	7.1	3.8	9.3	8.6	11.6	0.1
AMODIAQUINE	1.0	0.3	۶5·6	23.3	1.7	17.2	4.4	6.2	28.3	516	0.4
WR 228258	1.0	31.0	0.1	53.8	43.1	»10.3	48.3	>34.5	»34.5	50.0	0.26
PRIMAQUINE	1.0	2.2	1.1	1.6	1.1	1.4	1.2	26.2	1.1	2.4	2.3
QUININE	1.0	2.1	0.7	3.2	0.7	1.4	0.9	3.7	29.3	3.2	0.8
CINCHONINE	1.0	0.3	>>2.7	7.3	0.7	3.2	1.2	3.0	14.5	>>2.7	0.5
QUINIDINE	1.0	1.2	5.4	5.1	0.4	2.0	0.6	2.5	3.2	27.7	0.6
MEFLOQUINE	·	88.9	%13.9	2.8	1.0	9.0	1.5	17.8	25.0	≫13 <i>A</i>	0.7
HALOFANTRINE	1.0	22.5	375	3.4	0.9	6.5	5.7	60.0	≫ 30	%30	2.0
MEPACRINE	1.0	6.6	4.3	25.1	0.6	13.7	1.3	34.4	194	1:6	0.7
ARTEMISININ	1.0	1.4	%3.0	2.1	0.8	16.5	0.7	2.3	20.0	12.0	1.2
PYRONARIDINE	1.0	1.2	>83.3	27.9	1.2	16.3	1.8	2.7	11.9	38.3	0.9
PYRIMETHAMINE	1.0	0.6	1.4	2.8	116	0.4	3.3	0.2	0.9	0.5	0.7
SULFADOXINE	1.0	0.3	0.8	0.3	0.5	0.2	0.5	<1.2	<1.2	<1.2	0.7
FANSIDAR	1.0	1.4	1.9	0.8	1.0	0.5	1.0	< 0.3	1.0	0.5	0.4
CYCLOGUANIL	1.0	0.7	1.0	1.7	0.7	0.9	0.3	0.4	0.4	0.3	1.8
MENOCTONE	1.0	0.7	0.8	1.0	0.8	0.3	0.7	0.4	0.5	0.6	0.7
FLOXACRINE	1.0	0.8	0.8	1.0	7.0	0 •5	0.2	0.9	8.0	0.7	0.5
CLINDAMYON	1.0	0.3	0.3	0.4	0.4	0.2	0.3	0.6	0.4	0.6	0.5
DOXACACTIME	1.0	0.3	0.2	0.3	0.3	0.3	0.2	0,3	0.4	0.1	0.4
LON 1765	1.0	1.4	3.0	9.3	1.9	20.8	36.7	1.8	3.0	11.7	0.9

Table 24. I go values of resistant strains of <u>P.yoelii ssp.</u> and <u>P.y. nigeriensis</u> (NIG) to some antimalarial drugs.

SUMMARY OF BLOOD SCHIZONIOCIDAL (4 DAY TEST) DATA

		٥		ď		PVR	α	ORA	4	MEZ	Z	MATY	7	KFY	7	PFM	Σ
	Route	ED			, –	ED	Ş	ED 90	96	ED 90	H 06	ED 90	1 90	ED 90	I 90	ED 90	н
	3	8	06	5	3	R						5.4	ŵ	3.9	1,25	20.02	.O
CHLOROQUILE	3																
	٥															6,2	2
ANIODIAQUINE	3																
	Sc	0.25	0,03 0,47		0.05	0.63	90'0	0.4	0.04	16:0	0,09			2,4	0.24	29.0	7.
WR 228258																	
38		N 1765	165	Z	NAM	MØ	<										
		ED %	1 80	E S	1 90	ED 90	I 90	ED ₉₀	I 90	ED 90	I 90	ED 90	1 9°	ED %	I 90	S Li	H
	S			270	87.1												
CHLCROQUINE										-							
	y			350/135	135												
AMODIAGOIAE	}																
	٥																-
	2																
						0000						_	Tabl	Table 25]
ED_{c} / ED_{c} = $mg/kg \times$	1 × 4	MTD =	= maximum tolerated	um tole		dose dose											

 ED_{c} / ED_{c} = mg/kg x 4

38

SUMMARY OF BLOOD SCHIZONTOCIDAL (4 DAY TEST) DATA

L					j		0		SOEL OIL	100	ART	 -	NS 1765	765	SAM	٤	MPS	ত্য
			Z _	のス	I S	-	Z ,	Z	100	0		-						Ţ ·
		Route	ED		ED	ו ו	GE Oo	1 00	ED 90	1 90	ED 90	1 90	ED 90	1 90	об 80	1 90	80 80	H
			20	8	S.	S	R	2							520	5.6	480	∞
	CHLORODOLDE	၁ လ																Τ
										,,,	<u> </u>							
		3													112	2:9	510	2
	AMODIAQUINE	رر								1								
						1			1	1	1			T				Ī
		200																
		3																
										1	1			1				Γ
39			Ğ	QMS	りえ	ড	-											- 1
·			ED S	I	ED	H	ED 30	1 3°	ED50	I 90	ED %	06 I	ED,	I 9°	ED %	I 30	E)	H
			8	?				T										
		ઝ	650	11.6														
	CHEOKOGOINE										•							1
						1												_
		S	\$100 \%P	≫5.6		<u>-</u>												}
	AMODIAGOINE																	
						1			1	T								
	OU OCC OF	သွ	-		54.0	0,26												-
	867077 VM																· · · · · · · · · · · · · · · · · · ·	
									1						1+	75 210 26	٥	
J	FD / ED = mg/kg x	×	MTD =	MTD = maximum tolerated	um tol	srated	dose								-	מסוכ ז	9	

 ED_{c} / ED_{Q} = mg/kg x 4

39

SUMMARY OF BLOOD SCHIZONTOCIDAL (4 DAY TEST) DATA

L					MAN	7	KEY	7	PFMA	40	ZXZ	۶	8	5				
		() (2			,	4.5		20	-	ED	ı	ED	Н	ED	I	ν	H
		Houre House	ED 20	ED 90	ED 90	1 80	06 (Ta	- 66	8	, 8	8	8	8	8	8	8	8	
		,	3		1.0		0,0	2.2	20.5	4 6	450	4,0		•				
	PRIMAQUINE	3			3	_	+-				•							
																		T
		Og			180	Si	130	111	165	4-	850	7.2						
	分してことの																	
1									12 CAL 14.0	7	000	0 4						
	CINCHONINE	20							2007		2	o F						
4																		
			SAM	5	M S	N	8	8mp										
					1	-	1	1	6		a	-	ED,	I	ED	<u>ب</u>	E)	H
			ED %	1 %	ED %	96 ۲	п.р. 90	7 30	50.30	8	8	- 30	95	000	2	_	3	
1	00000	သွ	220		9.S		20,0	2,4										
									-	, 								
1			1000	7	9500	20,2	200	3.5										
	カントンの	8	200		3		377	,										
								1	+	1								
1	UN TONIO	8	199	300	3200 14.5		£2≪ 009«	ドンペ										
		-									·							
				m 3 × f m	= mav(m)m tolerated dose	rated	dose		_							Table 27	27	

 $ED_{\varsigma_{O}}$ / $ED_{\varsigma_{O}}$ = mg/kg x 4

MTD = maximum tolerated

SUMMARY OF BLOOD SCHIZONTOCIDAL (4 DAY TEST) DATA

			2	-	N A B	7	KFY	7	PFMA	₹	MAN	٤	Ø				,	
		Route	03 03	2 品	ΩΞ	- Н	ED	G	ED	9	06 06	1 %	65 06	1 %	20 80	1 90	06 80	н
			ß	6	8	<u>S</u>	2	R										
分でいるのと		8	155	5.0						1								1
											.							1
					9	,	1	0	2.7	1	ST.O.	70.7					<u> </u>	
MEFLOODIAE	עי	o စ			5 5	4,4) F	_		$\neg \vdash$								T
)								·									T
		Sc	4	2,5							410	216	190	00				
MEPACRINE	עו												, , , , , , , , , , , , , , , , , , , 				···	
								1		1	-							<u> </u>
			SAM	٤.	MPS	25	Swo	S	SPN	7								
			ED %	1 %	ED %	I 90	ED 90	I 30	ED 80	I 90	ED %	I 90	ED,	I 30	E S	1 %	E S	Н
		9																
מַלְינִינְינְינִינְינִינְינִינְינִינְינִינְינִינְינִינְינִינְינִינְינִינְינְינִינְינִינְינִינְינְינִינְינְינִינְינְינִינְינְינְינִינְינְינִינְינְינְינִינְינְינְינִינְינְינְינְינְינְינְינְינְינְינְינְינְי																		
						T			1									
,	,	8	128	17.8	180	25.0	25.0 >> 100 >> 13.9	%13.9										T
32100079W	بر	+								·		***************************************						
	,	ပ္တ	630	344	34.4 35so	8	30.0	٥	460	25.1								-
METHORISM	<u>u</u>																	1
				dose	104	rated.	dose								•	Table 28	28	
,	לא/ לפ	۷ >		maxim:	100	うりょう)											

 ED_{c} / ED_{c} = mg/kg x 4

MTD = maximum tolerated dose

SUMMARY OF BLOOD SCHIZONTOCIDAL (4 DAY TEST) DATA

L			Σ	MFY	Ā	KFY	be	PFMA	Z	29 FIN	Ì	S & Z	QM	5			2	٦ ٦
		Route	ED 50	ED 90	ED 90	1 90	ED 90	1 90	ED 90	1 90	ED 90	1 90	ED 90	1 90	ED 90	1 90	ED 90	H
	PYRONARIOINE	25					1.2	1.7			2.6	3.7	0,0	6,21			=	O
											·							
L	PYRIMETHAMINE	. d							1,2	0٬01							0.09	0
									·									
I	SULFAMOXIME	Sc	3.7	810	54.0	13,0	<0،3	£0'0>			<٥،3	F0.0>						
4:																		
L		·	S	0	HS		SPA	7	NS1708	408	NSIZES	365	Shm	c	MPS	S	S M G	5
			ED 90	I 90	ED ₉₀	L 90	ED 30	1 90	ED ₉₀	L 90	ED 80	1 9°	ED9°	I 9.	ED so	I 90	E) &	1
	000000000000000000000000000000000000000	Sc																
-																		
L	PURIMITATION	.d	6110	0,-	0.18	1.4	£5'0	2.8 (0,21	9:1	0,43	3.3	0.03	2.0	0,12	6,0	9010	Ö
	Su room	SC											2003	41.2	<0,3	41.2	<0,3	\frac{1}{2}
	N 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																	
J	ED _{CO} / ED _{GO} = mg/kg x	× 4	MTD =	= maximum tolerated	um tole	rated	qose								۲	Table 29	8	

SUMMARY OF BLOOD SCHIZONTOCIDAL (4 DAY TEST) DATA

	1 06 06			_	\dashv		-	1	E) P I c	+	-		+			0
	8								I 90 E						\dashv	Table 30
	6		+		\dashv				ED % I					+		۲
	ED 06	·				2643			I %		-					
MEN	8					3700 2		1	ED ₉₀				1			
	1 ED 90					2.1 3			1 % I				_			
8	60 90					2.9 2		\ \ \	E) %		•					
٤	1 06	2.0		4,9		1.4			I 90 E					410		
NAM	ED 90	0.05		26.0		2,0		5 2	ED ₉₀					3.2		
4	1 90			0 0		4-		S	1 3°	0.5		0,3		<u>ه</u>		1
PFMA	ED 90			<u>ه-</u>		2,0		Smp	ED %	9,05		2.2		2.7		
>	н 66	116		21.2		8		S	I 90	0:1		4.0		0,5		1
KFY	ED 90	37.0		70.0		2.5		SAW	E %			2.5		2.2		
>	ED 90	19		303		=		٤	I 90	5003		4.0		4.0		
Σ π	ED 50	38.0		000		9		SAM	ED %	<0.03		3.1		2,0		
	Route	Sc		S		SS				S		Sc		S		
	Ľ,		X 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		יאניסלסדאי		MENOCHONE		1	L	TANN DAR		יין איניניליטין איניניליטין איניניליטין איניניליטין איניניליטין איניניליטין איניניליטין איניניליטין איניניליטין		2 M 2 O C O S M 2 O C O S M 2 O C O C O C O C O C O C O C O C O C O	

 ED_{c_0} / $ED_{q_0} = mg/kg \times 4$ MT

MTD = maximum tolerated dose

SUMMARY OF BLOOD SCHIZONTOCIDAL (4 DAY TEST) DATA

				7 7	\[V 20 0	1	2	< c	Σ Θ	\ \ \	80EIN	80		·		
	Route	ED		ED	~ H	GB	9	GB.	l C6	ED 90	_ g	8D 90	1 06	2D 90	ы 96	06 60	_
		20	8	8	3	2											
i i	Sc	Sign	O S	0,45	0.45								·				l_
TOXACRINE							···										
	3	<u>a</u>	6.0	0.90	80	[6:53	9.0	18.5	0.57	13.8	4.0						
CELDAMACIN	,					\top											
							1	1	1	1							
1	SS	32.0	6:11									18.5	619				
Doxycycriak																	}
44		2	\ \nabla \nabla \ \nabla \ \nabla \ \nabla \nabla \nabla \ \nabla \ \nabla \n	SAM	5	mPs	5	SWA	S	りえ	,hr	SPN	Z				i
		m P	I	E C	H	a a	90	ED ₉₀	I 90	⊕ %	I 90	ED,	I 90	ED so	I 30	E &	H
		R	?	3	1		\mathbf{T}		T-								
(,	ઝ			0.55	6,0	S _O	8,0	9	4								
TEXACRIN E										-							
	\			32,0	000	20.0	4:0	31.0 (9,0	28.5	0.5						
いっちゅかんらり										- -		,					
							T	1		27.6	4.0	08.0	0.3				_
į.	પ્ર	98,0	0				1	+			-						
Lox y cycling																	1
			= maximum tolerated dose	Im tole	rated	dose								Table	le 31		

EDEN / EDON = mg/kg x 4

MTD = maximum tolerated dose

OR NUMBER CHIOROGUME PARASITE (SUB)SPECIES PROBLEM FORMULATION TWO POUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	1.0	5		-	83.9 ± 5.4
	3.0	5			43.8 ± 8.5
MFY	10.0	5	•	_	3.1 ± 0.8
 	30.0	6		-	0.02 ± 0.0
	60.0	5		_	0
	ø	10		8.6	
· · · · · · · · · · · · · · · · · · ·				<u> </u>	<u> </u>
	e) 2.3(1.7 - 3.0)				
	e) 5.7(4.4-7.6	<u> </u>			
Resistanc	e factor I ₉₀				·
ED ₅₀ (ran	ge)				
ED ₉₀ (ran	ge)				
Resistan	ce factor I ₉₀				

COMPOUND NAME

OR NUMBER

Chloroquine PARASITE (SUB) SPECIES P. berghei

FORMULATION Tween 80/H2. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Resistance factor I₉₀

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5		-	11.9 ± 2.9
	10.0	5			3.3 ± 1.4
KFY	30.0	5	1	_	0.3 ± 0.3
	100.0	5		-	0
	Ø	10		6,7	
			<u> </u>		
ED ₅₀ (range	10.6(0.2-0.9)	1			
	(7.5 - 0.1)				
Resistance	e factor I ₉₀				
	3.0	5			91.7 ± 19.2
	10.0	S			28.6 ± 8.8
PFMA	30.0	S	1		13.1 ± 11.6
	100.0	5			0
	Ø	10		6.3	
FD (rang	6)00/00				

COMPOUND NAM				_
OR NUMBER	Chloroquine	. PARASITE	(SUB)SPECIES	P. berginei
FORMULATION	Tween 80/H.O. ROUTE OF	- ADMINISTRATI	ON: SC/ IP/P)/IV
MAXIMUM TOL	ERATED DUSE (MTD) MO	G/KG X		

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5		_	50.0 ± 7.1
	10.0	5		-	39.2 ± 10.0
NAM	30.0	5	1	-	25.3 ± 6.7
	100.0	5		-	17.2 ± 5.
	Ø	10		10.6	
	, in the second				
ED ₅₀ (rang	e) 3.0(1.3 - 7.5)				
ED ₉₀ (rang	e)270(120-650)	$\overline{\mathbb{N}}$			
Resistanc	e factor I ₉₀				
				·	
					
 					
ED ₅₀ (rang	je)			<u></u>	<u> </u>
ED ₉₀ (rang		1			
	ce factor I ₉₀	7			

COMPOUND NAME

OR NUMBER Chloroquine PARASITE (SUB) SPECIES P. yoeliu ssp

FORMULATION .Tween. 80/H20.. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

ED₉₀(range)480(210 ->1000)

Resistance factor I₉₀

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5		-	72.9 ± 1.8
	10.0	5		-	63.5 ± 3.9
SAM	30.0	5	<u> </u>	-	32.7 ± 10.0
	100.0	5		-	26.2 ± 5.1
	Ø	10		23.8	
ED ₅₀ (range	14.0(3.3 - 34.0))			<u></u>
	2) 520 (125 - >1000)	→			
	e factor I ₉₀				
	3.0	5		_	85.8 ± 11.6
	10.0	5			62.2 ± 6.4
MPS	30.0	5	1	-	50·1 ± 8·5
	100.0	5		-	44.3 ± 0.8
	ø	10		9.3	
ED ₅₀ (rang	e) 30.0(13.0 - 80.0	3			

COMPOUND NAME CHLOROGUINE PARASITE (SUB) SPECIES P. Moelin see OR NUMBER FORMULATION Tween 80 /H 20.. ROUTE OF ADMINISTRATION : SC/1P/PO/IV MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Control PR%X100
	1.0	5		-	100 ± 9.8
	3.0	5		-	79.6 ± 10.2
QMS	10.0	S	1	~	567 ± 18.0
	30.0	5		-	53.9 ± 8.6
	60.0	5		-	36.3 ± 12.5
	Ø	10		4.9	

ED₅₀(range) 22·0(4.6-70.6) ED₉₀(range) 650(140->1000)

Resistance factor I₉₀

				·
55 (`	1		

ED₅₀(range)

ED₉₀(range)

Resistance factor I_{90}

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

COMPOUND NAME Amodiaquine PARASITE (SUB)SPECIES P. berghei OR NUMBER FORMULATION . Tween 80/H20 ROUTE OF ADMINISTRATION: SC/IP/PO/IV MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR% 100
	3.0	5			79.0 ± 18.6
	10.0	5		<u> </u>	0.7 ± 0.6
PFMA	30.0	5	1	-	0
	100.0	5			0
	Ø	10		6.3	
ED ₅₀ (range	=)3.9(3.1-11.3)				
ED ₉₀ (range	=) 6.2 (4.9 - 18.0)				
Resistance	e factor I ₉₀				
	3.0	5		_	77.7 ± 4.0
	10.0	5			38.1 ± 11.6
NAM	30.0	5	11	-	30,4 ± 7.8
	100.0	5			30.6 ± 6.5
	Ø	10		10.6	·
50 /	` /				

ED₅₀(range) 11.5(1.8 - 40.0)

ED₉₀(range) 350(55.0->1000)

Resistance factor Ion

Treated PR%

Control PR

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

No. of

mice

Daily dose

ED₅₀(range) 26.0(9.3 - 80.0)

ED90(range)510(180->1000

Resistance factor I_{90}

mg/kg DO-D+3

Strain

No. of

experiments

Mean control

parasite rate %

	3.0	5		-	95.3 ± 2.7
	10.0	5		_	67.4 ± 1.5
SAM	30.0	5	1	_	31.3 ± 8.2
	100.0	5		_	17.8 ± 4.1
	Ø	10		23.8	
ED ₅₀ (range	e) 19.5(10.5 - 48.0)				
ED ₉₀ (range	e)112(59.0 - 265)				
Resistance	e factor I ₉₀				
	3.0	5			77.6 ± 8.3
	10.0	5			67.3 ± 5.0
MPS	30.0	5	١	-	49.5 ± 3.9
	100.0	5		_	40.2 ± 6.8
	ø	10		9.3	
		 	· · · · · · · · · · · · · · · · · · ·		

COMPOUND NAME	
OR NUMBER Amodiaquine PARASITE (SUB) SPECIES P. yorkin ssp	:.
FORMULATION . TWEED SO/H2O. ROUTE OF ADMINISTRATION: SC/1P/PO/IV	
MAXIMUM TOLERATED DOSE (MTD) MG/KG X	

		,	•		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X10
	3.0	5		_	100 ± 7.5
	10.0	5		_	100 ± 5.2
QM5	30.0	5	1	-	68.1 ± 10.3
	100.0	5_		-	60.9 ± 9.2
	Ø	10		67	
ED ₅₀ (range	e) > 100				
ED ₉₀ (range	e) » 100				
Resistance	e factor I ₉₀				
ED ₅₀ (rang	ie)				
ED ₉₀ (rang					
90,	· •	1			

Resistance factor I₉₀

COMPOUND NAME WR 228258 AH (BJ 30663)

OR NUMBER

LON 1708 PARASITE (SUB) SPECIES P. berghei

FORMULATION . Tween 80/H20 ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Control PR%X100
	0.03	5		~	100 ± 07
	0.1	5		-	87.6 ± 8.6
PFMA	0.3	5		_	74.5 ± 13.5
	1.0	5			70/3±13/2
	3.0	5			57.9 ± 15.2
	Ø	10		. 2.9	

ED₅₀(range) 2.1(0.5 - 10.8) ED₉₀(range) 29.0(7.0 - >100)

Resistance factor Ign

	0.03	5		_	92.3±5.6
	0.1	5			0.4 ± F.48
P	0.3	5	1	_	1.6 ± 0.6
	1.0	5			0
	3.0	5		_	0
	Ø	10		10.0	

ED₅₀(range) 0.11(0.06-0.22)

EDgo(range) 0.25(0.14-0.5)

Resistance factor I_{90}

COMPOUND NAME WR 228258 AH (BJ 30663)

LON 1708 PARASITE (SUB) SPECIES P. berghei OR NUMBER

FORMULATION TWEER 80./H.Q. ROUTE OF ADMINISTRATION: SC/IP/PO/IV-

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.03	5		_	100
	0.1	5		_	99.4 ± 5.1
В	0,3	5	1		4.5 ± 2.6
	1.0	5			3.0 ± 1.2
	3.0	5			0
	ø	10		. 9,4	

 $ED_{50}(range)$ 0.27(0.12 - 0.48) $ED_{90}(range)$ 0.47(0.21 - 0.82) Resistance factor I_{90}

0.03	5		-	100 ± 9.6
0.1	5		_	88.9±8.0
0.3	5	1	_	20.2±4.7
1.0	5		-	127±28
3.0	5		_	0 .
Ø	10		8.2	
	0.3	0.1 5 0.3 5 1.0 5 3.0 5	0.1 5 0.3 5 1 1.0 5 3.0 5	0.1 5 0.3 5 1.0 5 3.0 5

ED50(range) 0.29(0.16-0.95)

Resistance factor I₉₀

COMPOUND NAME WR 228258 AH (BJ 30663)

LON 1708 PARASITE (SUB) SPECIES . P. beighei OR NUMBER

FORMULATION Tween 80/H, Q. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100 Control PR%x100
	0.03	5			897 ± 513
	0:1	5			82.0±7.8
ORA	0:3	5	1		811 ± 1.9
	1.0	5			1.5 ± 0.3
	3.0	5			0.15 ± 0.1
	Ø	10		. 17.1	

ED₅₀(range)0.11(0.06-0.37) ED₉₀(range)0.4(0.23-1.4)

Resistance factor I_{90}

		1			
	0,03	5			100 ± 1.2
	6.1	5		_	97.3 ± 2.1
MEN	0.3	5	١		33,4±52
	1.0	5		_	18.0 ± 3.5
	3.0	5		-	0.6±0.2
	Ø	10		32.4	

ED₅₀(range) 0.36(0.19 - 0.156)

ED90(range)0.91(0.47-1.4)

Resistance factor I_{90}

WR 228258 AH (BJ 30663) COMPOUND NAME LON 1708 PARASITE (SUB) SPECIES P. berther OR NUMBER FORMULATION .Tween 80/HD. ROUTE OF ADMINISTRATION: SC/IP/PO/IV MAXIMUM TOLERATED DOSE (MTD) MG/KG X ... Daily dose No. of No. of Mean control Treated PR% 100 Control PR% Strain mg/kg DO-D+3 mice parasite rate % experiments 100 ±3:6 5 0.03 78.0 ± 12.4 0.1 KFY 5 44.3 ± 11.1 0.3 30.5 ±11.3 1.0 5 1411 +45 3.0 10 14.9 ED₅₀(range)0135(0115-0176) $ED_{90}(range)$ 2.4(1.0 - 5/2) Resistance factor I_{90}

ED₅₀(range)

ED₉₀(range)

Resistance factor I₉₀

COMPOUND NAME WR 228258 AH (BJ 30663)

OR NUMBER LON 1708 PARASITE (SUB) SPECIES Pringeriess.

FORMULATION TWEEN 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	0.03	5			957 ±17
	0.1	5			92.3 ± 3.7
NIG	0.3	5	1		45.5 ± 5.4
	1.0	5			30,2 ± 5,0
	3.0	5		_	0.15 ± 0.07
	Ø	10		. 27.2	
ED ₅₀ (range	e) 0.27(0.1-0i	76)			

ED₅₀(range) 0.27(0.1-0.76) ED₉₀(range) 0.75(0.29 - 2.1)

Resistance factor 190						
					·	

ED₅₀(range)
ED₉₀(range)
Resistance factor I₉₀

OR NUMBER Primaquine PARASITE (SUB) SPECIES P. berghei

FORMULATION . Tween 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ..

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	1.0	5		_	60.6 ± 10.8
	3.0	5		<u> </u>	54.3 ± 10.4
MFY	10.0	5	1	_	46.1 ± 9.6
	30.0	5		<u>-</u>	6.6 ± 2.7
·	Ø	10		9.8	
		-			
ED ₅₀ (rang	e)3.4(1.0 - 12.0)				
	e)20·5(5·9-73.0	<u> </u>			
Resistanc	e factor I ₉₀				
	İ	1	i	ł	1

	1.0	5		_	100 ± 1.5
	3.0	5		~	89.5 ± 15.7
KFY	10.0	6	1	_	30.0 ± 9.6
	30.0	5		-	0.02 ± 0.0
	Ø	10		8.8	
	•				

 $ED_{50}(range) 5.8(2.7-8.5)$

ED₉₀(range) 10.5(4.9-15.8)

Resistance factor I_{90}

Primaquine PARASITE (SUB) SPECIES P. berghei OR NUMBER

FORMULATION . Tween 80/H20 ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	1.0	5		-	100 ± 63
	3.0	5		-	87.4 ± 8.9
PFMA	10.0	5	1		75·3 ± 12·9
	30.0	5			8.8 ± 4.2
	Ø	10		7.3	
					<u></u>
ED ₅₀ (range	9,5(4.7-20.0)				

ED₉₀(range)20.5(10.0 - 43.0) Resistance factor I₉₀

	1.0	5		-	100 ± 4.7
	3.0	5		-	85.1 ± 6.5
NAM	10.0	5	1	-	73.2 ± 2.1
	30.0	5		-	46.8 ± 9.6
	Ø	10		11.8	
	_				

ED₅₀(range)15.5(5.5 - 35.0)

ED₉₀(range)45.0(16.0-100)

Resistance factor I₉₀

Principal Investigator: Professor W.Peters Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

OR NUMBER	Primaquin	ę	PARASIT	re (SUB)SPECIES .	yoelii ssp
FORMULATION	Tween 80/t	O ROUTE	OF ADMINISTRA	ATION : SC/ IP/PO/I	V
	ERATED DOSE (MTD)				
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	1.0	5		_	100 ± 3.9
	3.0	5			93.8 ± 4.8
SAM	10.0	5	1		85.7 ± 18.6
	30.0	5		-	38.8 ± 11.2
	Ø	10		9.9	
			<u> </u>		
ED ₅₀ (range	23.0(11.0 - 95.0				
ED ₉₀ (range	2)220(88.0 - 640)				
Resistance	e factor I ₉₀				
ED ₅₀ (rang	e)				
ED ₉₀ (rang					
Resistanc	e factor I ₉₀				

COMPOUND NAME

OR NUMBER PRIMAQUINE PARASITE (SUB)SPECIES P. your sep.

FORMULATION INC. 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) ... MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	1.0	5			100 ± 0.5
	3.0	5			97.4 ± 8.8
Qms	10.0	S	1		52.4 ± 19.1
	30.0	5	· ·		2.9 ± 1.6
	Ø	10		3.5	

ED₅₀(range) 9.5(5.9 - 14.0)

ED₉₀(range) 20.0(12.8 - 31.0)

Resistance factor Ion

	1.0	5		_	54.4 ± 11.1
	3.0	5		_	40.2 ± 9.4
MPS	10.0	5	(-	24.8 ± 6.9
	30.0	5		_	1.2 ± 0.4
	Ø	10		10.0	

ED₅₀(range) 2.2(0.8-5.6)

ED₉₀(range) 9.5(3.4 - 23.5)

Resistance factor I_{90}

OR NUMBER QUININE HCL PARASITE (SUB) SPECIES . P. berghei

FORMULATION . Tween 80/H20 ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR% 10C
	30.0	5		_	79,4 ± 7.4
	100.0	5		-	38.6 ± 14.3
MEY	300.0	5		-	24.7 ± 2.4
	600.0	5		-	0.08 ± 0.0
	Ø	10		9.8	
				·	
	1e) 80.0(42.0-200)				
ED ₉₀ (rang	je)180(92.0 - 440				
Resistanc	ce factor I ₉₀				
		_			050 137

	-90				
	30.0	5			95·2 ± 3·7
	100.0	5		-	13.2 ± 3.1
KFY	300.0	5	1	-	1.6 ± 1.1
	600.0	5		-	0
	Ø	10		8.8	

ED₅₀(range)60.0(44.0-90.6)

ED₉₀(range)130(95.0 - 195)

Resistance factor I₉₀

OR NUMBER

QUININE HCL PARASITE (SUB) SPECIES P. berghei

FORMULATION TWEEN SO / H.O... ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAYIMUM TOLEPATED DOSE (MTD)

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	30.0	5		_	100 ± 6.3
·	100.0	5	·	•	77.3 ± 8.4
PFMA	300.0	5	1	_	0.03 ± 0.03
	600.0	5			0
	Ø	10		7.3	
ED ₅₀ (range	2)80.0(36.0-175)				
ED ₉₀ (range	e)165 (72·0 -360)				
	factor I ₉₀]			
	T			<u> </u>	

L					
	30.0	5			99.3 ± 4.4
	100.0	5		_	65.3 ± 4.7
NAM	300.0	5	1	_	30.8 ± 3.3
	600.0	5		_	26.0 ± 11.8
	Ø	10		11.8	

ED₅₀(range)245(125 - 430)

ED₉₀ (range) 850 (430 - 1500)

Resistance factor I₉₀

OR NUMBER QUININE HCL PARASITE (SUB) SPECIES P. youli ssp.

FORMULATION . Tween 80 /H D. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	30.0	5			100 ± 4.5
	100.0	5			100 ± 13.6
SAM	300.0	5_	l	<u>-</u>	62.4 ± 13.4
	600.0	5		<u>-</u>	51.3 ± 9.9
	Ø	10		9.9	
	·				
ED ₅₀ (rang	e)450(280-720))			
ED ₉₀ (range	e) 1080(660 - 1700				
	e factor I ₉₀				
ED ₅₀ (rang	je)				
ED ₉₀ (rang		7			
Resistanc	ce factor I ₉₀	7			

COMPOUND NAME

OR NUMBER

Quinime Hydrochideide ... PARASITE (SUB) SPECIES P. Yorkin sep

FORMULATION . Tween 80 ... ROUTE OF ADMINISTRATION : SC/IP/PO/IY

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	30.0	5		_	78.4 ± 11.9
	100.0	5			61.6 ± 9.6
MPS	300.0	5	,	-	55.8 ± 12.4
	600.0	5		-	39.3 ± 12.4
	ø	10		10.0	
		1			

ED₅₀(range) 265(110 - 1050)

ED₉₀(range) 8500(3500 - >10000)

Resistance factor I₉₀

	30.0	S			100
	100.0	5			84.9 ± 14.2
Qms	300.0	5	,	-	84.3 ± 11.5
	600.0	5		-	39.0 ± 27.0
	Ø	10		3.5	·

ED₅₀(range) 360(145-800)

ED₉₀(range) 925(375 - 2000)

Resistance factor Iqn

COMPOUND NAME

OR NUMBER

CINCHONINE HYDROCHLORIDE PARASITE (SUB) SPECIES P. berghei

FORMULATION Tween 80/H2... ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	30.0	S		-	88.6 ± 4.4
	100.0	5		-	85.6 ± 10.2
PFMA	300.0	5	١	-	72.0 ± 5.1
	600.0	5		-	61.4 ± 10.9
	ø	10		2.6	

ED₅₀(range) 1050 (440 - 4200)

ED₉₀(range) 17500(780-7000)

Resistance factor I_{90}

_		_1			
	30.0	5			100 ± 5.8
	100.0	5		-	F.41 ± 2.15
NAM	300.0	5	(_	49.7 ± 12.1
	600.0	5		_	7.0 ± 2.5
	Ø	10		8.9	

ED₅₀(range) 225(110 - 370)

ED₉₀ (range) 600 (295 - 1020)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER

CINCHONINE HYDROCHLORIDE PARASITE (SUB) SPECIES Pypelin sep.

FORMULATION Tween 80 / H O .. ROUTE OF ADMINISTRATION : SC/IP/PO/IY

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	30.0	5		-	75.1 ± 7.3
	1000	5		-	75-3 1 7-2
SAM	300.0	5	1		44.8 ± 12.4
	600.0	5		_	8.4 = 2.3
	ø	10		24.4	
	·				

ED₅₀(range) 215(150 - 350) ED₉₀(range) 660(460 - 1080)

Resistance factor Ion

		_1			
	30.0	5		-	84.a ± 5.8
	100.0	5			59.2 ± 12.1
MPS	300.0	5	1	_	38.8 ± 11.1
	600.0	5		_	36.4 ± 10.9
	ø	10		10.0	·

ED₅₀(range) 190(72.0 - 500)

ED₉₀(range)3200(1250 - 8000)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER

CINCHONINE HYDROCHIORIDE PARASITE (SUB) SPECIES P. youli sep...

FORMULATION . Tween 80./H.O. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	30.0	5		-	100 ±
	100.0	5		_	98.6 ± 3.8
QMS	300.0	5			100 ± 6.6
	600.0	5		-	100 ± 4.4
	ø	10		3.5	
		<u> </u>			
		<u> </u>			
ED ₅₀ (range	e)				
ED ₉₀ (rang	e) NA 600				
Resistanc	e factor I ₉₀				
ED ₅₀ (rang	ge)				
ED ₉₀ (ran	ge)				
Resistan	ce factor I ₉₀				

OR NUMBER QUINIDINE HYDROCHLORIDE PARASITE (SUB) SPECIES P. berghei

FORMULATION Tween 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/HY

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

mg/kg DO-D+3	mice	No. of experiments	Mean control parasite rate %	Treated PR%X10
30.0	5			65.8 ± 11.4
100.0	5		-	21.7 ± 16:
300.0	5	1	-	0
600.0	5		-	0
Ø	10		10.3	
	 			
	ļ			
	100.0 300.0 600.0	100·0 5 300·0 5 600·0 5	30.0 5 100.0 5 300.0 5 1 600.0 5	30.0 5 - 100.0 5 - 300.0 5 1 - 600.0 5 - Ø 10 10.3

ED₉₀(range) 155(115 - 260)

Resistance factor I₉₀

	 	 <u> </u>	

ED₅₀(range)

ED₉₀(range)

Resistance factor I_{90}

OR NUMBER

MEFLOQUINE PARASITE (SUB) SPECIES . P. berghei

FORMULATION Tween 80./H20... ROUTE OF ADMINISTRATION: SC/IP/PO/HY

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	3.0	5		_	64.5 ± 10.6
	10.0	5			2.7 ± 1.7
MFY	30.0	5	1		0.4 ± 0.2
	100.0	5		-	0.08 ± 0.0
	Ø	10		16.1	
ED ₅₀ (rang	e)2.7(1.0 - 5.9)				
ED ₉₀ (rang	1e)10.0(3.5 - 21.5)			
Resistanc	e factor I ₉₀				
	3.0	5		-	23.8 ± 16.6
	10.0	5			0.3 ± 0.2
KFY	30.0	5	1	-	0_
	100.0	5			0
	ø	10		9.5	
	l				

ED₅₀(range) 1.9(1.2 - 2.6) ED₉₀(range) 4.0(2.6-5.6

Resistance factor I₉₀

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

COMPOUND NAME

OR NUMBER MEFLOQUINE PARASITE (SUB) SPECIES P. beighei

FORMULATION Tween 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5		_	100 ± 2.6
	10.0	5			0.7 ± 0.6
PFMA	30.0	5	1		0
	100.0	5		<u> </u>	0
	Ø	10		9.7	
ED ₅₀ (range	e) 6.0(5·2 - 6·9)				
	2) 7.7 (6.6 - 8.8)				
Resistance	e factor I ₉₀				·
	3.0	5		-	51.8 ± 7.7
	10.0	5		_	45.2 ± 7.6
NAM	30.0	5	١	_	20.4 ± 1.1
·	100.0	5		-	13.5 ± 3.5
	Ø	10		18.5	
ED ₅₀ (rang	e)4.7(2.0 - 12.0				
ED ₉₀ (rang	e) 95:0(41·0-23	(5)			
	e factor Inc	7			

COMPOUND NAME

OR NUMBER

MEFLOQUINE PARASITE (SUB) SPECIES P. 40elii SSP.

FORMULATION TWEEN 80/H20.. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR% 100
	3.0	_5		<u> </u>	60.0 ± 6.3
	10.0	5		<u> </u>	40.8 ± 6.6
SAM	30.0	5	١		24.0 ± 7.8
	100.0	5_		~	12.9 ± 3.4
	Ø	10		20.6	
ED ₅₀ (range	⁽²⁾ 5.4(2.8 - 9.6)				
ED ₉₀ (rang	e)128(66.0-240				
Resistanc	e factor I ₉₀				
	3.0	5		_	100 ± 3.3
	10.0	5			98.2 ± 3.5
MPS	30.0	5		_	66.5 ± 163
	100.0	5		-	60.7 ± 3.
	Ø	10		9.8	
				<u> </u>	_1

ED₅₀(range)63.0(29.0~138) ED₉₀ (range) 180 (87.0 - 400) Resistance factor I₉₀

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5_		_	97.3 ± 12.7
	10.0	5			90.0 ± 8.7
QMS	30.0	5			84.1 ± 10.5
	100.0	5_			78.2 ± 7.0
	Ø	10		4.4	
ED ₅₀ (range		<u> </u>			
ED ₉₀ (range	²⁾ » 100				
Resistance	e factor I ₉₀				
ED ₅₀ (rang	e)				
ED ₉₀ (rang					
Resistanc	e factor I ₉₀				

OR NUMBER

MEPACRINE PARASITE (SUB) SPECIES P. berghei.

FORMULATION . Twees 80/H, O. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3	5		-	FO ± 001
	1.0	5_		_	83.9 ± 2.1
MEN	3.0	S	1	-	71.7 ± 4.5
	10.0	5			0.6 ± 0.4
	30.0	5			0
	Ø	10		10.3	

ED₅₀(range) 2.3(1.6 - 4.4)

ED₉₀(range) 4.8(3.3-9.0

Resistance factor I_{90}

	10.0	5		-	100 ± 11.4
	30.0	5		-	78.8 ± 14.4
Q	60.0	5	1	_	40.8 ± 16.6
	100.0	5		-	34.6 ± 12.2
	ø	10			
			~		

ED₅₀(range) 83.0(37.0 - 280)

ED₉₀(range)190(82.0 - 640)

Resistance factor I₉₀

COMPOUND NAME

MEPACRINE	••••••	PARASIT	TE (SUB)SPECIES 🗜	berghei.
Tween 80/H2	ROUTE	OF ADMINISTRA	ATION : SC/ IP/PO/I	v
Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
10.0	5			48.9 ± 3.9
30.0	5			35.2 ± 6.4
60.0	5	1	_	26.1 ± 3.4
100.0	5		-	22.3 ± 6.8
ø	10		26.2	
<u> </u>				
9,0(4.0-15.5)			
e)410(190-700))			
e factor I ₉₀				
		<u> </u>		
				· · · · · ·
ge)				
ge)				
ce factor I ₉₀				
	Tween 80/H ₂ C ERATED DOSE (MTD) Daily dose mg/kg D0-D+3 10.0 30.0 60.0 100.0 \$\frac{2}{9}.0(4.0-15.\frac{2}{9}) \$\frac{2}{9}.0(190-700) Tween 80 H_Q	No. of No. of No. of mice experiments	Daily dose mg/kg D0-D+3	

OR NUMBER MEPACRI

MEPACRINE PARASITE (SUB) SPECIES P. yoekii ssp.

FORMULATION TWEEN 80/H20... ROUTE OF ADMINISTRATION : SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3	5_		_	94.2 ± 12.4
	1,0	5			58.8 ± 9.7
QMS	3.0	S	1	_	44.8 ± 6.8
	10:0	5		-	27.1 + 4.4
	30.0	5		-	20.6 ± 6.2
	ø	10		6.5	

ED₅₀(range) 2.7(0.9 - 9.3)

ED₉₀(range) 30.0(10.2 - 100)

Resistance factor I₉₀

	10.0	5			100 ± 1.5
	30.0	5			F.E ± 1.E.E
SPN	60.0	5	1		77.3±169
	100.0	5			61.1 ± 10.8
	Ø	10		7.5	

ED₅₀(range)125(93.0 - 175)

ED₉₀(range)460(340 - 640)

Resistance factor I₉₀

COMPOUND NAME rei MEPACRINE PARASITE (SUB) SPECIES P. Moelin SSP OR NUMBER FORMULATION TWEEN SO /H.O. ROUTE OF ADMINISTRATION: SC/IP/PO/IV MAXIMUM TOLERATED DOSE (MTD) MG/KG X ... Treated PR%X100 Daily dose No. of No. of Mean control Strain mg/kg DO-D+3 mice parasite rate % experiments ± 2.9 100 ± 3.9 5 10.0 1 ± 8.0 30.0 92.6 ± 6.8 5 5 ± 0.1 60.0 1 MPS 5 87.4 ± 9.5 100.0 77.8 ± 7.1 5 Ø 7.3 10 ED₅₀(range) 390(245-60d) ED₉₀(range) 3550(2250 - \$500) Resistance factor I_{90} 67.7 ± 8.6 5 10.0 1 ± 16.6 46.6 ± 6.8 S 30.0 39.2 ± 6.5 SAM 60.0 5 30.8 ± 3.4 100.0 5 10 **29.2** ED₅₀(range) 25.5(16.5 - 8.7) ED₉₀(range)630(400 - 2000) Resistance factor Iqn

TABLE 65

COMPOUND NAME Pyronaridine parasite (SUB) Species . P. beighei OR NUMBER FORMULATION . Tween 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X10
	0.3	5			100 ± 2.9
	1.0	5			12.4 ± 8.0
PFMA	3.0	5_	1	_	0.15 ± 0.1
	10.0	5		-	0
	Ø	10		16.4	
	,				
	(2.1-2.0)				
ED ₉₀ (range	e)1.2(0.8 - 2.6)				

Resistance factor I₉₀

		<u> </u>			
	0.3	5			100
	110	5			63.1 ± 16.6
NAM	3.0	5	١	<u>-</u>	9.1 ± 4.1
	10.0	5		_	0
	Ø	10		9.3	

ED₅₀(range) 1.2(0.9 - 1.6)

ED₉₀(range) 2.6(1.9 - 3.4)

Resistance factor I_{90}

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3	5		-	89.7 ± 6.3
	1.0	5_			53.2 ± 12.4
QM	3.0	5	1	_	19.7 ± 4.6
	10.0	5		-	13.6 ± 3.7
	Ø	10		20.7	
	,				
ED ₅₀ (rang	e) 1.4(0.7 - 3.9)				
ED ₉₀ (rang	e) 9.0(4.3 - 25.0	\mathbf{S}			
	e factor I ₉₀				
ED ₅₀ (rang	ge)				
ED ₉₀ (ran					
Resistan	ce factor I ₉₀				

OR NUMBER

PYRONARIDINE PARASITE (SUB) SPECIES P.y. nigeriensis

FORMULATION TWEEN. 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X10
	0.3	5			96.0 ± 2.1
	1.0	5			24.3 ± 16.7
NIG	3.0	5	(~	0.008 ± 0.0
	10.0	5			0
	Ø	10		25.2	
	,				
ED ₅₀ (rang	e) 0.6(0.5 - 0.9				
ED ₉₀ (rang	e) 1.1 (0.9 - 1.6)	5			
Resistanc	e factor I ₉₀				
					
ED ₅₀ (rang	 ge)		<u> </u>		
FD(rane		-			

ED₉₀(range)

Resistance factor I_{qn}

COMPOUND NAME
OR NUMBER PYRIMETHAMINE PARASITE (SUB)SPECIES P. Derghei
FORMULATION TWEENSO H O. ROUTE OF ADMINISTRATION: SCYIP/PO/IV

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	0.03	5			86.1 ± 5.2
	0.1	5			72.6±12.7
N 1765	0,3	5		-	29.3 ± 9.7
	1.0	5		-	24.4±11.5
	Ø	10		14.4	0
ED ₅₀ (range	1) 0.21(0.09 - 0	(6)			
ED ₉₀ (range	1,2(0,5 - 3	(A)			
Resistance	e factor I ₉₀				

 140001 190				
		}		
				·
stance	Stance 14000 190	Stance ractor 190	Stance 1000 190	Stance 140 to 190

 $EU_{50}(range)$ $EU_{90}(range)$ Resistance factor I_{90}

OR NUMBER PYRIMETHAMINE PARASITE (SUB) SPECIES P. youlu ssp.

FORMULATION . TWEEN SO /. H2 ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100 Control PR%X100
	0.001	5			91.0 ± 7.9
	0.003	5		-	85.9 ± 8.7
NS	0.01	5	1		70.5 ± 5.8
	0.03	5			42.1 ± 70
	0.1	5			14.7 ± 3.4
·	Ø	10		. 16:3	
ED ₅₀ (range	2)0.015(0.005	-0.03	55)		
ED ₉₀ (range	=10.13(0.043	-0.29			
Resistance	e factor I ₉₀ 1.0				
	0.001	5			100 ± 0.3
	0.003	5		_	95.6±3.8
SH	0.01	5	1	_	89.9 ± 6.0
	0.03	5			76.6±3.3
	0.1	5		_	31.4 = 7.2
	Ø	10		173	
CD ₅₀ (rang	^{je)} 0.031(0.015 -	0.08)			
ED ₉₀ (rang	de)0118(010PP -	0.35)			
Resistand	ce factor I ₉₀ 1.4				

PYRIMETHAMINE PARASITE (SUB) SPECIES P. YORLY SSP. OR NUMBER

FORMULATION ... Sec. 80./HO ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	0,003	5		-	96,2 ± 5,8
	0.01	5			88.4±4.9
SPN	0.03	5	١		82.0 ± 7.4
	0.1	5			47.2 ± 8.9
	0.3	5			13.2 ± 4.9
	Ø	10		. 17.6	
ED_o(range	e)0.06(0.02 -	0.175)			

ED₉₀(range)0.37(0.125-1.1)

Resistance factor I₉₀ 2.8

1		i			
	0,003	5			93.0 ± 4.4
	0.01	5		-	98.0 ± 1.5
NS 1708	0.03	5	١	-	76.9 ± 11.9
	0.1	5		-	36.2 ± 11.3
	0.3	5		-	5.5±50
	Ø	10		29.0	

EU₅₀(range)0.064(0.042 - 0.92)

Resistance factor I₉₀ 1.6

0.8 ± 0.4

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

COMPOUND NAME

PYRIMETHAMINE PARASITE (SUB) SPECIES Pypelii SSP. OR NUMBER

FORMULATION .Tween 80/H, O. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLE	ERATED DOSE (MTD)	• • • • • • • • • • • • • • • • • • • •	MG/KG X		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR% 100
	0.003	5		_	95.4±0.7
	0.01	5		•	94.9 ± 2.1
NS 1765	0,03	5		~	84.1 ± 9.6
· · · · · · · · · · · · · · · · · · ·	0.1	5		-	59.8±157
	0.3	5		_	16.5 ± 4.5
	Ø	10		. 29.0	
ED ₅₀ (range	0.095(0.055	- 0.2	4)		
	1)0,43(0,25-				
Resistance	factor I ₉₀ 3.3]			
	0,003	5		_	93.2 ± 2.7
	6.01	5		_	85.5 ± 5.5
NIG	0.03	5		_	59.7 ± 17.
	0.1	5		-	17.2 ± 12.7
				1	

ED₅₀(range) 0.024(0.011 - 0.056) ED90(range)0.085 Resistance factor 1900.7

0.3

1.0

5

10

Principal Investigator: Professor W.Peters Department of Medical Protozoology London School of Hygiene & Tropical Medicine

29.6

OR NUMBER

Pyrimethamine parasite (SUB) Species P. yoeli ssp.

FORMULATION Tween 80/HO. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.03	5		-	6.6 ± 3.4
	0.1	5	·	-	0.8 ± 0.4
SAM	0:3	5	1	-	0
	1.0	5		-	0
	Ø	10		27.2	

ED₅₀(range) 0.007(0.004 - 0.01) ED₉₀(range) 0.03(0.02 - 0.04)

Resistance factor I₉₀

L		1			
	0.1	_5		-	26.3 ± 18.6
	0.3	5		-	0.04 ± 0.00
MPS	1.0	5	}		0
	3.0	5		-	0
	Ø	10		9.8	

ED₅₀(range)0.07(0.05-0.1)

ED90(range)0.12(0.09-0.16)

Resistance factor Iqn

Principal Investigator: Professor W.Peters Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

COMPOUND NAME

PYRIMETHAMINE PARASITE (SUB) SPECIES . P. youlu sp OR NUMBER

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.03	5		-	62.5 ± 10.7
····	0.1	5		~	1.7 ± 1.0
QMS	0.3	5_	1		0
	1.0	5		-	0
	3.0	5_		-	0
	ø	10		7.3	
ED ₅₀ (rang	<u> </u> e) 0.035(0.03-0	0(04)	<u> </u>	<u> </u>	
ED ₉₀ (rang	e) 0.035(0.03-0	(80.0			
	e factor I ₉₀				

		_			
Resistance	factor I ₉₀				
					_
		 			

ED₅₀(range)

ED₉₀(range)

Resistance factor I₉₀

COMPOUND NAME

SULFADOXINE PARASITE (SUB) SPECIES P. bergher OR NUMBER

FORMULATION Tween 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) .>.3... MG/KG X ⁴..

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3	5			72.9 ± 4.0
· · · · · · · · · · · · · · · · · · ·	1.0	5			54.8 ± 12.6
MFY	3.0	5	1		20.7 ± 11.0
	10.0	5		~	2.3 ± 1.2
·	30.0	5			0.06 ± 0.0
	Ø	10		9.5	
ED ₅₀ (rang	e) 0.8(0.4 - 1.7)				
ED ₉₀ (rang	e)3.7(2.0-7.8)				
Resistanc	e factor I ₉₀				
	0.3	5			87.9 ± 4.4
· · · · · · · · · · · · · · · · · · ·	1.0	5			85.4 ± 5.5
KFY	3.0	5	1		73.2 ± 6.7
····	10.0	5			59.8 ± 12.6
	30.0	5			20.0 ± 16.9
	Ø	10		11.4	
ED ₅₀ (rang	je) 7.6(3.6 - 25.\$				
	ge)57.0(27.0-190	7			
Resistanc	ce factor I ₉₀				

Principal Investigator: Professor W.Peters Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

COMPOUND NAME

OR NUMBER SULFADOXINE PARASITE (SUB) SPECIES P. beighei

FORMULATION .Tween 80 /H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3	5		_	0.04 ± 0.0
	1.0	5	·		0
PFMA	3.0	5	1		0
	10.0	5		-	0
	30.0	5		<u>-</u>	0
***************************************	Ø	10		. 10:1	
ED ₅₀ (range	e) < 0·3				
ED ₉₀ (range	e) < 0·3				
Resistance	e factor I ₉₀				
	0.3	5			0
	1.0	5			0
NAM	3.0	5	1		0
	10.0	5		-	0
	30.0	5			0
	Ø	10		9.0	
ED ₅₀ (rang	e) < 0.3				
ED ₉₀ (rang	e) < 0.3				
Resistanc	e factor I ₉₀				

OR NUMBER

SULFADOXINE PARASITE (SUB) SPECIES P. 400 P.

FORMULATION . Tween 80/. H_O ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3	5		=	0.007±0.00
	1.0	5			0
SAM	3.0	5	\ \	-	0
	10.0	5		_	0
	Ø	10		27.2	
· · · · · · · · · · · · · · · · · · ·					
ED ₅₀ (range					
ED ₉₀ (range					
Resistance	factor I ₉₀			· · · · · · · · · · · · · · · · · · ·	
	1.0	5_			0.02 ±0.02
	3.0	5			0
MPS	10.0	5	1		0
	30.0	5			0
	Ø	10		9.8	
ED ₅₀ (rang	e) < 0·3				
ED ₉₀ (rang	e) <0.3				
Resistanc	e factor I ₉₀				

Principal Investigator: Professor W.Peters Department of Medical Protozoology

OR NUMBER SULFADOXINE PARASITE (SUB)SPECIES P. MORINISTRATION : SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) ... MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3	5		-	0.03 ± 0.03
	1.0	5		~	0.03 ± 0.03
QMS	3.0	5	1	•	0
	10.0	5_		-	0
	30.0	5		_	0
	ø	10		. 7.3	
·					
ED ₅₀ (range	e)				
ED ₉₀ (rang	e) < 0.3				
Resistanc	e factor I ₉₀				
					_
					_
ED ₅₀ (ran	ge)				
ED ₉₀ (ran	ge)				
	ce factor I ₉₀				

(1:3)COMPOUND NAME Pyrimethamine Sulfapoxine. PARASITE (SUB) SPECIES . P. berghei OR NUMBER FORMULATION Tween 80/H20... ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

	mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
0.03	5_			17.2 ± 7.2
0.1	5		<u>-</u>	4.3 ± 0.9
0.3	5	١		0.5 ± 0.3
1.0	5			0
<u> </u>	10		16.9	
· · · ·				
	0·1 0·3 1·0	0·1 5 0·3 5 1·0 5	0·1 5 0·3 5 1 1·0 5 Ø 10	0·1 5

Resistance factor I₉₀

	90				
					,
	<u> </u>	 	1	L	1

ED₅₀(range)

ED₉₀(range)

Resistance factor I₉₀

(1:3)

OR NUMBER

PYRIMETHAMINE: SULFADOKINE PARASITE (SUB) SPECIES . P. berghei

FORMULATION Tween 80 / H.O. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.03	5		-	93.0 ± 2.9
	0.1	5		_	97.4 ± 6.0
MFY	0.3	5_	11	_	87.9 ± 4.9
·	1.0 5			70.2 ± 12.3	
	3.0	5		_	56.3 ± 16.7
	Ø	10		8.6	

ED₅₀(range) 3.1(1.7 - 9.7)

ED₉₀(range) 38.0(20.5 - 120)

Resistance factor I_{90}

	0.03	5		-	100 ± 2.5
	011	5		-	953 ± 4.5
KFY	0.3	5	1	<u>-</u>	79.7 ± 8.4
	1.0	s		_	71.4 ± 11.0
	3.0	5		-	56.9 ± 8.5
	Ø	10		19.5	

 $ED_{50}(range)$ 2.9(0.9 - 6.6)

ED₉₀ (range) 37.0 (120 - 85.0)

Resistance factor I_{90}

(1:3)

OR NUMBER PYRIMETHAMINE: SULFADOXINE PARASITE (SUB) SPECIES . P. youli sep.

FORMULATION Tween 80/H20... ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.03	5		_	1.0 ± 0.8
-	0.1	5		_	0.13 ± 0.1
SAM	0.3	5	1	-	0
····	1.0	5		_	0
	Ø	10		18.9	
ED ₅₀ (rang	e) < 0.03				
ED ₉₀ (rang	e) <0.03	_			
Resistanc	e factor I ₉₀				
ED ₅₀ (rang	je)				
ED ₉₀ (rang	je)				
Resistanc	ce factor I ₉₀				

COMPOUND NAME

(1:3)

OR NUMBER

Pyrimethamine: Sulfadowine PARASITE (SUB) SPECIES . P. youli sip.

FORMULATION .Tween. 80/140... ROUTE OF ADMINISTRATION : SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	0.03	5		-	53.8 ± 17.8
	0.1	5			0.3 ± 0.3
QMS	0.3	5	1		0
	1.0	5			0
	3.0	s		-	0
	ø	10		. 7.3	
ED ₅₀ (rang	ge)0.03(0.02-0	(04)			

ED₉₀(range) 0.05(0.04-0.06)

Resistance factor I_{90}

	90	·			
	0.03	_5		-	99.7 ± 10.0
	0.1	5		-	0.6 ± 0.5
MPS	0.3	5	١	_	0.03 ± 0.03
	1.0	5		_	0
	3.0	5		-	0
	Ø	10		7.5	

ED₅₀(range) 0.06(0.03 - 0.11)

ED₉₀(range)0.10(0.05 - 0.18)

Resistance factor I_{q0}

Principal Investigator: Professor W.Peters Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

OR NUMBER CYCLOGUANIL PARASITE (SUB) SPECIES P. benghei

FORMULATION .Tween 80./H20 ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
·	0.3	5		_	75.5 ± 7.8
· 	1.0	5		<u>-</u>	61.5 ± 8.6
NAM	3.0	5	1	-	35.5 ± 15.8
	10.0	5		-	28.4 ± 15.5
	Ø	10		16.9	
	<u> </u>				
ED ₅₀ (range	(0.5 - 7.0)				
ED ₉₀ (range	e) 26.0(7.3-100				
	e factor I ₉₀				
		5		_	100 ± 4.5
	e factor I ₉₀			-	100 ± 4.5 93.0 ± 8.0
	e factor I ₉₀	5		-	
Resistance	0.3	5	1	-	93.0 ± 8.0
Resistance	0.3 1.0	5 5 5		- - - 7.7	93.0 ± 8.0 92.7 ± 7.0
Resistance	0.3 1.0 3.0	5 5 5 5	1	- - - 7.7	93.0 ± 8.0 92.7 ± 7.0
Resistance	0.3 1.0 3.0	5 5 5 5	1	- - - - 7:7	93.0 ± 8.0 92.7 ± 7.0
MFY	0.3 1.0 3.0	5 5 5 10			93.0 ± 8.0 92.7 ± 7.0 68.6 ± 11.5
MFY ED ₅₀ (rang	0.3 1.0 3.0 10.0	5 5 5 10		7.7	93.0 ± 8.0 92.7 ± 7.0 68.6 ± 11.5

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

OR NUMBER

CYCLOQUANIL PARASITE (SUB) SPECIES . P. berghei

FORMULATION Tween 80/H.O. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3	5		_	77.4 ± 171
	1.0	5_		_	49.8 ± 16.6
KFY	3.0	5	1		45.9 ± 5.8
	10.0	5_		_	42.5 ± 4.9
	Ø	10		13.3	
				·	

ED₅₀(range) 2.0 (0.3-8.0) ED₉₀(range) 70.0 (10.0->100)

Interpolated graphically

Resistance factor I_{90}

	0.3	5		_	41.2 ± 11.5
	1.0	5		_	15.9 ± 5.5
PFMA	3.0	5	1	_	6.0 ± 0.8
	10.0	5		_	1.9 ± 0.6
	Ø	10		17.9	
	7				

ED₅₀(range) 0.2(0.1 - 0.3)

ED₉₀(range)1.9(1.1 ~ 3.5)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER

CYCLOGUANIL PARASITE (SUB) SPECIES P. yorku SSP.

FORMULATION . Tween 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

ED₉₀(range) 2.5(1.8 - 4.1

Resistance factor I₉₀

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X10C
	0.3	5		-	95.0 ± 5.1
	1.0	5			39.9 ± 15.9
SAM	3.0	5	١	-	22.8 ± 6.5
	10.0	5_		-	0.4 ± 0.2
	Ø	10		18.9	
-					
ED ₅₀ (range	2) 1.1(0.5 - 2.0)				
ED ₉₀ (range	²⁾ 3.1(1.5 - 5.5)				
Resistance	e factor I ₉₀				
	0.3	5			49.1 ± 9.1
·	1.0	5			21.4 ± 7.6
MPS	3.0	5	<u> </u>	-	7-7 ± 2-7
	10.0	5			2.4 ± 0.6
	Ø	10		9.1	
ED _{EO} (rang	e) 0.25(0.2 = 0.4	<u> </u>	.		

OR NUMBER

CYCLOGUANIL PARASITE (SUB) SPECIES P. yorkin ssp.

FORMULATION . TWEEN SO / H2O. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x10
	0.3	5		_	91.4 ± 15.6
	1.0	5			77.7 ± 8.3
9MS	3.0	5	1	~	1.1 ± 0.5
	10.0	5		_	0
	Ø	10		3.9	
	/				
ED ₅₀ (range	2)1.0(0.4 - 1.9)				
ED ₉₀ (range	2)2.2(1.0 - 4.2				
	factor I ₉₀	7			
					+
ED ₅₀ (rang	e)				
ED ₉₀ (rang					
	e factor I _{oo}				

3.2 ± 1.0

0.6 ± 0.3

SUMMARY OF ANTIMALARIAL DRUG TESTS (BLOOD SCHIZONTOCIDES)

OR NUMBER MENOCIONE PARASITE (SUB) SPECIES Pregnei

FORMULATION Tween 80/HO. ROUTE OF ADMINISTRATION: SC/HP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) ... MG/KG X ...

	10.0	5		-	0
	Ø	10		9.9	
				9.9	
				-	0
				-	
	3.0	5		-	1.8 ± 1.7
MFY	1.0	5	1		46.0 ± 10.1
	0.3	5		_	84.6 ± 7.2
	0.1	5		-	92.6 ± 5.8
			CAPET TIMETIES	_	
Strain	mg/kg DO-D+3	mice	experiments	parasite rate %	Treated Control

5

5

10

ED₃₀(range)0.9(0.5 - 1.5) ED₉₀(range)2.5(1.5 - 4.2) Resistance factor I₉₀

3.0

10.0

Principal Investigator: Professor W.Peters
Department of Medical Protozoology
London School of Hygiene & Tropical Medicine

11.8

OR NUMBER MENOCTONE PARASITE (SUB) SPECIES P. Desghei.

FORMULATION TWEEN 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Control PR%X100
	10.0	5		-	89.6±33
	30.0	5		_	90.3 ± 3.1
MEN	100.0	5		-	70:4 ± 7:3
	300.0	5		-	55.3 ± 5.3
	Ø	10		21.0	
	,			·	

ED₅₀(range) 300 (180 - 500)

ED₉₀(range) 3700 (2200 - 6000)

Resistance factor I_{90}

	0.1	S		-	100
	0.3	S		-	89.4 ± 7.1
PFMA	1.0	S	1	-	50.9 ± 18.5
	3,0	5_		-	6.8 ± 5.8
	10.0	5			0.03 ± 0.03
	ø	01		5.9	
	•				

ED₅₀(range) **0.8(0.5 - 1.3)**

ED₉₀(range)2.0(1.5 - 3.4)

Resistance factor I₉₀

Principal Investigator: Professor W.Peters
Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

COMPOUND NAME MENOCTONE PARASITE (SUB) SPECIES . P. beggie OR NUMBER

FORMULATION . TWEEN SO /HO ROUTE OF ADMINISTRATION : SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.1	5		-	969 ± 4.5
	0.3	5		•	82.5 ± 7.6
NAM	1.0	5	1	-	74.5 ± 5.1
	3.0	5_		-	0.9 ± 0.3
	10.0	5_		-	0.01 = 0.01
	Ø	10		24.7	
	·				

ED₉₀(range) 2.0(1.0 - 5.5

Resistance factor Ion

		J			
	0.1	5		_	87.8 ± 8.4
	0.3	5		_	71.5 ± 7.3
QM	1.0	5	<u> </u>		58.6 ± 17.8
	3.0	5		_	19.5 ± 7.5
	10.0	5		-	0.02 ± 0.0)
	Ø	10		19.4	
 			<u> </u>		

 $ED_{50}(range) 0.5(0.2 - 2.3)$ $ED_{90}(range) 2.9(1.1 - 10.2)$

Resistance factor Iqn

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	0:1	5		-	73.9 ± 4.7
	0.3	5		<u> </u>	70·1 ± 7·7
SAM	1.0	5	11	-	57.7 ± 6.6
	3.0	5		-	16.1 ± 6.3
	10.0	5		-	0.3 ± 0.2
	Ø	10	<u> </u>	17-3	
ED ₅₀ (rang	e) 0.5(0.2 - 1.4)				
ED ₉₀ (rang	ge) 2.0(0.7 -5.6	}		*F	•
Resistanc	ce factor I ₉₀				

	0.1				100 ± 6.6
	0.3	5		_	97·2 ± 10·9
MPS	1.0	5	1		77.4±10.6
	3.0	5		-	1.3 ± 0.6
	10.0	S		-	0.03 ± 0.03
	Ø	10		6.4	
	7				
					

ED₅₀(range) 1.0(0.6-2.1)

ED₉₀(range) 2.2(1.3 -4.9)

Resistance factor I_{90}

OMPOUND NA				_	. • •
R NUMBER	MENOCTONE		PARASIT	TE (SUB)SPECIES 🎅	yodu sp
FORMULATION	Tween 80/H	O. ROUTE	OF ADMINISTRA	ATION : SC/ IP/PO/I	¥
MAXIMUM TOL	ERATED DOSE (MTD)		MG/KG X		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.1	5		-	94.7 ± 9.3
	0.3	5		•	100 ± 9.3
QMS	1.0	5	(•	78.6 ± 15.0
	3.0	5		-	4.6 ± 3.1
	10.0	5		•	0.05 ± 0.0
	Ø	10	ļ	. 4.4	
	<u> </u>				
ED ₅₀ (rang	e)1.3(0.8 - 2.3)				
ED ₉₀ (rang	e) 2.7(1.7 - 4.6)			
Resistanc	e factor I ₉₀				
ED ₅₀ (ran	ge)	 			
ED ₉₀ (ran	ge)				
Resistan	ce factor I ₉₀				

COMPOUND NAI	ME				
OR NUMBER	MENOCTONE	••••••	PARASIT	re (SUB)SPECIES 🤼	yinigeriensis
FORMULATION	Tween 80/H20	ROUTE	OF ADMINISTRA	ATION : SC/ IP/PO/I	Y
	ERATED DOSE (MTD)				
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR% 100
	0.1	5		•	92.9 ± 5.8
	0.3	5		_	88.6 ± 7.1
NIG	1.0	S	1		72.4 ± 4.4
	3.0	e		-	5.7 ± 2.2
	10.0	5		•	1.0 ± 0.7
	ø	10		14.0	
ED ₅₀ (range	e)0.9(0.3 - 1.8)				
ED ₉₀ (range	e) 3·2(1·2 - 6·7)				
Resistanc	e factor I ₉₀			·	
			<u> </u>		<u> </u>
			<u> </u>		
		ļ			<u> </u>
ED ₅₀ (rang	ge)] i			

Principal Investigator: Professor W.Peters
Department of Medical Protozoology
London School of Hygiene & Tropical Medicine

ED₉₀(range)

Resistance factor I₉₀

OR NUMBER FLOXACRINE PARASITE (SUB) SPECIES P. berghei

FORMULATION . Tween 80/H O. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X10C
	0.1	5			72.4 ± 11.3
	0.3	5		~	62.8 ± 9.4
MFY	1.0	5	1	-	1.0 ± 0.6
	3.0	5		-	0
	Ø	10		11.9	
				·	
ED ₅₀ (rang	e) 0.2(0.1 - 0.4				
EU90(rang	e) 0.5(0.3 - 1.1)			
	e) 0.5(0.3 - 1.1) e factor I ₉₀	<u>)</u>			
		5		_	96.6 ± 10.1
	e factor I ₉₀				96.6 ± 10.1 55.2 ± 14.
	e factor I ₉₀	5			
Resistanc	e factor I ₉₀	5	ı	-	55·2 ± 14.
Resistanc	0·1 0·3	5 5 5	ı	- 14-7	55·2 ± 14.
Resistanc	0·1 0·3 1·0 3·0	5 5 5	1		55·2 ± 14.

ED₅₀(range) 0.25(0.15-0.4)

Resistance factor I₉₀

COMPOUND NAME

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	0.1	5		_	100
	0.3	5			62.4 ± 9.9
SAM	1.0	S		-	0.3 ± 0.1
	3.0	5		-	0.01 ±0.01
	Ø	10		25.1	
	,				
ED ₅₀ (range	2)035(03-0.4)				
	2)0.55(0.4-0.5				
Resistance	factor I ₉₀				
	0.1	5		-	92.5 ± 11.5
	0.3	5			51.9 ± 5.9
MPS	1.0	5	1		C 2 ± 011
	3.0	5		-	0
	Ø	10		10.3	·

ED₅₀(range) 0.25(0.15 - 0.35)

 $\frac{ED_{90}(range)}{Resistance factor I_{90}}$

COMPOUND NA		J ⊆	DADACT	TE (SUB)SPECIES!	Punalii sa
OR NUMBER					
				ATION : SC/ IP/PO/I	₩
MAXIMUM TOL	ERATED DOSE (MTD)	• • • • • • •	MG/KG X		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.1	5			80.3 ± 7.3
	0.3	5			62.4 ± 18.9
QMS	1.0	5	ı	-	0.03 ± 0.03
	3.0	5		_	0
	Ø	10		6.6	
	, , , , , , , , , , , , , , , , , , ,				
ED ₅₀ (range	e) 0.2(0.1 - 0.5)				
ED ₉₀ (range	e) 0.4(0.25-0.9)				
Resistanc	e factor I ₉₀				
ED ₅₀ (rang	je)				
ED ₉₀ (rang		- 			

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER CLINDAMYCIN PARASITE (SUB) SPECIES . P. berghei

FORMULATION .Tween. 80/H.D. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X10C
	3.0	5		-	57.9 ± 4.2
	10.0	S		~	22.4 ± 4.2
MFY	30.0	5	1		3.5 ± 0.8
	100.0	5		-	1.3 ± 0.5
	Ø	10		11.9	

 $ED_{50}(range) 3.6(2.1-6.2)$

ED₉₀(range) 19.5(11.5-34.0

Resistance factor I_{90}

3.0	5		_	80.5 ± 15.2
10.0	5		-	21.8 ± 7.4
30.0	5	١		4.4 ± 1.0
100.0	5		-	2.9 ± 0.7
Ø	10		14.7	
	3.0 10.0 30.0	3.0 5 10.0 5 30.0 5 100.0 5	3.0 5 10.0 5 30.0 5 1	3.0 5 - 10.0 5 - 30.0 5 1 - 100.0 5 -

ED₅₀(range)5.3(2.5 - 24.5)

Ebg0 (range) 28.0 (13.0 - 135)

Resistance factor I₉₀

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

COMPOUND NAME

OR NUMBER

CLINDAMYCIN PARASITE (SUB) SPECIES . P. berghei

FORMULATION TWEED SO /H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

	, ,				
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR% 10C
	3.0	5			75.0 ± 12.1
	10.0	5			46.9 ± 11.1
PFMA	30.0	5_	\	_	5.5 ± 3.7
	100.0	5		~	0
	Ø	10		16.4	
	, , , , , , , , , , , , , , , , , , ,				
	2)6.5(3.7-11.6)				
ED ₉₀ (range	2)16,5(9.3 - 29.0)				
Resistance	factor I _{on}				

	90				
	3.0	5			75.4 ± 18.0
	10.0	5		-	49.9 ± 12.9
NAM	30.0	5	١	-	2.6 ± 1.2
	100.0	5		-	0.02 ± 0.02
	Ø	10		9.3	·

ED₅₀(range) 6.4(3.3 - 13.0)

ED901 range / 18.5 (9.7 - 37.0)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER	CLINDAMYC	IN.	PARASI	TE (SUB)SPECIES .	bergher
FORMULATIO	n Tween 80/H	Q ROUTE	OF ADMINISTRA	ATION : SC/ IP/PO/I	٧
MAXIMUM TO	LERATED DOSE (MTD)		MG/KG X		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	3.0	5		-	46,4 ± 5,4
	10.0	5			28.2 ± 6.2
QM	30.0	5	1		1.3 ± 0.4
	100.0	5		-	0
	ø	10	,	20.7	
				·	
ED ₅₀ (rang	ge) 3.5(2.0 - 6.6) ge) 13.8(8.0 - 26.5				
ED ₉₀ (rang	ge) 13.8(8.0-26.5	3			
Resistanc	e factor I ₉₀				·
ED ₅₀ (ran	ge)				
ED ₉₀ (ran	ge)				
Resistan	ce factor I ₉₀				

COMPOUND NAME

OR NUMBER

CLINDAMYCIN PARASITE (SUB) SPECIES Pyophi ssp

FORMULATION . TWREE . 80/H . O. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	S		-	65.2 ± 8.2
	10.0	5_		-	30.6 ± 14.1
MPS	30.0	5		-	7.9 ± 1.1
	100.0	5		-	0.2 ± 0.2
	Ø	10		10.3	
				·	

ED₅₀(range) 5.6(3.5 - 8.2)

ED90(range)20.0(12.5 - 29.0)

Resistance factor I_{qq}

10.0 5 - 55.5 ± 13. SAM 30.0 5 1 - 15.3 ± 3.			_1			
SAM 30.0 5 1 - 15.3 ± 3.		3.0	5			86.0 ± 4.8
100.0 5 - 0.4 ± 0.		10.0	5		-	55·5 ± 13.1
	SAM	30.0	5	(-	15·3 ± 3·9
Ø 10 25·1		100.0	5		-	0.4 ± 0.2
		Ø	10		25.1	·

ED₅₀(range) 10.0(7.4 - 16.0)

ED₉₀(range) 32.0(21.0-52.0)

Resistance factor I_{00}

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5		-	88.8 ± 12.5
	10.0	5			66.4 ± 19.2
QMS	30.0	5	(10.3 ± 4.1
	100.0	5		-	0.6 ± 0.3
	Ø	10		6.6	
ED ₅₀ (rang	e) 10.0(5.2 - 22.5				
ED ₉₀ (rang	e)31.0(16.5-70.	d)			
Resistanc	e factor I ₉₀				

 	 	 I	

ED₅₀(range)

ED₉₀(range)

Resistance factor I₉₀

COMPOUND NAME	
OR NUMBER CLINDAMYCIN	PARASITE (SUB) SPECIES P. M. nigenensis.
FORMULATION Tween 80/H2. ROUTE OF AC	
MAXIMUM TOLERATED DOSE (MTD) MG/KG	3 X

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5			68.9 ± 15.1
	10.0	5		_	55.7 ± 11.1
NIG	30.0	5	(5.8 ± 0.9
	100.0	5_		_	1.4 ± 0.7
	Ø	10		25.2	
	<u> </u>	<u> </u>			
ED ₅₀ (rang	e) 8.0(3.2 - 15.8)				
	e) 28.5(11.8 - 57.0				
	e factor I ₉₀	1			
ED ₅₀ (rang	_		_l,	_L	
ED ₉₀ (ran		1			
<i>3</i> U	•	1			

COMPOUND NAME

OR NUMBER

DOXYCYCLINE PARASITE (SUB) SPECIES . P. berghei

FORMULATION . Tween 80 /H a .. ROUTE OF ADMINISTRATION : SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5		_	91.9 ± 6.3
	10.0	5			35.2 ± 3.9
N 1708	30.0	5	1	-	4.6 ± 2.1
	60.0	5		-	0.1 ± 0.1
	100.0	5		_	0
	ø	10		. 19.2	

ED₅₀(range) 7.5(4.1 - 13.0)

ED₉₀(range) 18.5(10.3 - 32.4)

Resistance factor I_{90}

	3.0	5		_	69.9 ± 14.5
	10.0	5			63.6 ± 11.6
MFY	30.0	5	l		6.8 ± 1.3
	60.0	5		_	3.5 ± 0.7
	100.0	5			2.1 ± 0.4
	Ø	10		8.6	

ED₅₀(range) 8.0(5.0 - 20.5)

ED₉₀(range) 32.0(20.0 - 85.0)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER

Doxycycune PARASITE (SUB) SPECIES P. yoldin ssp.

FORMULATION . NOW SO . H.Q. ROUTE OF ADMINISTRATION : SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	S		_	100 ± 3.4
	10.0	5		-	86.7 ± 6.5
NS	30.0	5	1	-	45.2 ± 15.1
	60.0	5		-	27.5 ± 13.3
	100.0	5		_	9.9 ± 5.4
	ø	10		. 10.7	

ED₅₀(range) 28.5(17.5 - 48.0) ED₉₀(range) 98.0(60.0 - 170)

Resistance factor I_{90}

	3,0	5		-	83.1 ± 5.4
	10.0	5			63.7 ± 10.0
SPN	30.0	5	ı	-	9.2 ± 4.0
	60.0	5		-	2.5 ± 1.0
	100.0	5			0 .
	Ø	10		12.9	
					

ED₅₀(range) 8.5(5.7 - 16.8)

ED90(range)28.0(18.2 - 60.0

Resistance factor I_{90}

COMPOUND NAI		_	04040**	TE (SUB)SPECIES P.	
				TE (SUB)SPECIES :: ATION : SC/ IP/PO/I	_ •
				ATION : SC/ IP/PO/I	¥
MAXIMUM TOL	ERATED DOSE (MTD)	• • • • • • •	MG/KG X		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5			100 ± 1.6
	10.0	5		-	42.2 ± 10.0
NIG	30.0	5	<u> </u>	-	P.C ± 2.9
	60.0	5			3.3 ± 1.1
	100.0	5			2.3 ±0.2
	Ø	10		25.4	
					·
ED ₅₀ (range	e) 17:3(6.2-30:				
ED ₉₀ (rang	e) 37.5(16.0 ~ 67	(6)			
Resistanc	e factor I ₉₀				

ED₅₀(range)
ED₉₀(range)
Resistance factor I₉₀

APPENDIX 3

DRUG INTERACTION STUDIES

Figures 2 and 3. The synergistic interaction of WR 014044 and chloroquineillustrated graphically by two alternative methods.

COMPOUND NAME	WR 014044 BI	L 51831
OR NUMBER	LON 2164	PARASITE (SUB) SPECIES P. yophii ssp
FORMULATION .	ween 80/H20. ROU	TE OF ADMINISTRATION : SC/IP/PO/IV
MAXIMUM TOLERA	ATED DOSE (MTD)	MG/KG X

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	1.0	5		_	92.5 ± 7.1
	3.0	S			96.7 ± 1.9
NS	10.0	5_	1		93.0 ± 4.3
	30.0	5		-	50.6 ± 9.3
	Ø	10		28.8	
	,				
ED ₅₀ (rang	ge)30.0(3.8-110				
ED ₉₀ (rang	ge) 150 ⁽ 19.0 - 55	7			
Resistan	ce factor I ₉₀				
				-	

ED₅₀(range)

ED₀₀(range)

Resistance factor I₉₀

COMPOUND NAME CHLOROQUINE PARASITE (SUB) SPECIES P. youling ssp OR NUMBER FORMULATION Tween 80 / H,O. ROUTE OF ADMINISTRATION: SC/1P/PO/IV MAXIMUM TOLERATED DOSE (MTD) MG/KG X ... Treated PR% 100 Control PR% 100 Daily dose No. of No. of Mean control Strain mq/kg DO-D+3 mice parasite rate % experiments 3.0 5 60.5 ± 3.3 18.5 ± 5.5 10.0 5 NS 12.5 ± 1.5 30.0 S ١ 6.4 ± 1.5 5 60.0 28.8 10 ED₅₀(range) 3.2(1.5-5.8) ED90(range) 27.0(12.5 - 48.6) Resistance factor I₉₀

ED₅₀(range)

EDgn(range)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER LON 2164 + CHLOROQUINE PARASITE (SUB) SPECIES . P. yoekii SSP

FORMULATION . Tween 80/H2. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR% 100
	1.0 + 3.0	5		_	81.0 ± 6.1
	3.0 + 3.0	5			79.4 ± 6.5
NS	10.0 + 3.0	5	1	~	57·2 ± 9·3
·	30.0 + 3.0	5		-	32.7 ± 10·1
	ø	10		28.8	
		İ			
	,				
ED ₅₀ (rang	ge) 8.0(3.5 - 21.5)				
	^{je)} 88.0(36.0 - 235				
	ce factor I ₉₀				
	1.0 + 10.0	5			9.7 ± '.7
	3.0 + 10.0	S		_	9.0 ± 1.9
NS	10.0+10.0	5	1		7.9 ± 2.5
	30.0 + 10.0	5		_	1.5 ± 0.5
	Ø	10		28.8	
ED ₅₀ (ran	ige) < 0·1				
ED ₉₀ (rar	^{nge)} 2.3(0.7 - 10.1	7			
	nce factor I _{go}	7			

COMPOUND NAME

Resistance factor I₉₀

OR NUMBER LON 2164 + CHLOROQUINE PARASITE (SUB) SPECIES . P. yorkin ssp.

FORMULATION Tween 80/HO... ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

		No.		Was a series	T==== ~~~
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	1.0 + 30.0	5		·	6.0 ± 1.9
	3.0 + 30.0	5		<u> </u>	3.8 ± 1.5
NS	10.0 + 30.0	5	1	_	2.8 ± 1.0
	30.0 + 30.0	5		_	0.7 ± 0.2
	ø	10		28.8	
ED ₅₀ (range	5) < 0·1				-
ED ₉₀ (range	e) 0.5(0.2 - 1.8)				
	e factor I ₉₀			4	
	1.0 + 60.0	S		-	5.3 ± 1.1
	3.0 + 60.0	5		_	2.4 ± 0.8
NS	10.0 + 60.0	5_	1		2.1 ± 1.1
	30.0 + 60.0			_	0.5 ± 0.2
	Ø	10		28.8	
ED ₅₀ (rang	Je) < 0·1	1			
	ge)0,4(0,2-1,2	7			
	3.1(012-111	={			

COMPOUND NAME

OR NUMBER

Resistance factor I₉₀

CHLOROQUINE + LON 2164. PARASITE (SUB) SPECIES P. yorkin SSp.

FORMULATION TWEER 80/HO... ROUTE OF ADMINISTRATION : SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

	Daily dose	No. of	No. of	Mean control	I mantad now
Strain	mg/kg DO-D+3	mice	experiments	parasite rate %	Control PR%
	3.0 + 1.0	5		_	81.0 ± 6.1
	10.0 + 1.0	5_		-	9.7 ± 1.7
NS	30.0 +1.0	5	١	-	6.0±1.9
	60.0 + 1.0	5		-	5:3 ± 1.1
	ø	10		28.8	
	·				
ED ₅₀ (rang	ge) 6.7(2.6 - 13.5)				
ED ₉₀ (rang	^{je)} 23.0(8.7 - 47.6	3			
	ce factor I ₉₀		•		
	3.0 + 3.0	5		-	79.4 ± 6.
	10.0 + 3.0	5_		-	9.0 ± 1.9
NS	30.0 + 3.0	5_	(-	3.8 ± 1.5
	60.0 + 3.0	5_		-	2.4 ± 0
	ø	10		28.8	
					
ED ₅₀ (rar	nge) 6.0(2.7 - 11.3				

COMPOUND NAME

OR NUMBER

CHLOROQUINE + LON 2164 PARASITE (SUB) SPECIES P. yorkin ssp.

FORMULATION . TWEED SO /H20.. ROUTE OF ADMINISTRATION : SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0 + 10.0	5		-	57.2 ± 9.3
	10.0 + 10.0	5		_	7.9 ± 2.5
Ns	30.0 + 10.0	5	1		2.8 ± 1.0
	60.0 + 10.0	S		-	2.1 11.1
	ø	10		28.8	
			-		<u></u>
	<u></u>	<u> </u>]	
	e) 3.5(1.6 - 7.4)	7			
	e)14.2(6.6-31.0)				
Resistanc	e factor I ₉₀				
	3.0 + 30.0	5			32.7 ± 10.1
	10.0 + 30.0	5		-	1.5 ± 0.5
NS	30.0 + 30.0	5_	1	_	5.0 ± 5.0
	60.0 + 30.0	5		-	0.5 ± 0.2
	ø	10		28.8	
ED ₅₀ (rang	(2,6 – 5,0)Fil (^{9E}				-
ED ₉₀ (rang	ge) 7.6(2.9 - 15.5	3			
Posistan	ce factor I ₉₀	1			

Figure 4. Interaction of WRZ55695AE and chloroquine.

Figure 5. Interaction of WR255693AC and chloroquine.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X10
	3.0	5			92.9 ±3.9
	10.0	5			100 ± 2.4
N	30.0	5	1	-	937 ± 37
	100.0	5			85.2±2.3
	Ø	10		23.8	
	e) >100	1			
	le) ≫100	1			
Resistanc	ce factor I ₉₀		•	_	_
ED ₅₀ (rang	ge)				
ED ₉₀ (ran					
	ice factor I ₉₀	7			

COMPOUND NAME CHLOROQUINE PARASITE (SUB) SPECIES P. beighoi. OR NUMBER FORMULATION TWEEN SO J.H. Q. ROUTE OF ADMINISTRATION: SC/1P/PO/IV MAXIMUM TOLERATED DOSE (MTD) MG/KG X ... Daily dose mg/kg DO-D+3 Treated PR%X100 No. of No. of Mean control Strain mice parasite rate % experiments 901 ± 4.7 5 0,3 98.2 ± 4,4 1.0 5 51.4 ± 10.6 N 3.0 5 0.08 ± 0.08 5 10.0 10 23,8 $ED_{50}(range) 2.6(1.9-3.3)$ ED90(range) 4.4 (3.3-516 Resistance factor I_{90} ED₅₀(range)

Principal Investigator: Professor W.Peters
Department of Medical Protozoology
London School of Hygiene & Tropical Medicine

ED_{qn}(range)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER

LON 2142 + CHLOROQUINE PARASITE (SUB) SPECIES P. Deighou

FORMULATION Two SO/H2 ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

	•				
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Control PR%X100
	3,0+0,3	5			91.0 ± 4.4
	10.0 +0.3	5		_	83,4±4,9
N	30.0 +0.3	5	1		76.2 ± 2.2
	100.0 +0.3	5_			49.9 ± 6.6
	Ø	10		23.8	
	<u> </u>			•	
	, :				
ED ₅₀ (rang	e)90.0(40.0-	190)			
ED ₉₀ (rang	e)≫ 100				
Resistanc	e factor I ₉₀				
	3.0 + 1.0	5		_	82.2±3.5
	10.0 + 1.0	5		_	78.2 ± 4.9
7	30.0 + 1.0	5	1	-	53.9 ± 6.1
	100.0 +1.0	5		-	4311 ± 4,4
	Ø	10		23.8	
ED ₅₀ (ran	ge)50.0(22.0-	150)			
ED ₉₀ (ran	ge) ≫100				
Resistan	ce factor I ₉₀				

COMPOUND NAME

OR NUMBER

LON 2142 + CHLOROQUINE PARASITE (SUB) SPECIES P. beighei.

FORMULATION TWEEN 80/H20.. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Control PR%X100
	3,0 + 3,0	5			47.8 ± 11.1
	10.0 + 3.0	_5		-	45.9 ± 1.8
N	30.0 + 3.0	5	1		31.3 ± 3.3
	100.0 + 3.0	5		-	32.2 ± 2.2
	Ø	10		23.8	
ED ₅₀ (rang	ge) 3.0(1.0 - 9.0)				
ED ₉₀ (rang	Je) > 100				
Resistan	ce factor I ₉₀				
	3.0 + 10.0	5			0.3 ± 0.2
	10.0 + 10.0	5			0
N	30.0 + 10.0	5	1	-	0
	100.0 + 10.0	5			0
	ϕ	10		23.8	
ED ₅₀ (ran	ige) < 3.0				· · ·
ED ₉₀ (rar	ıge) < 3, O				
Resistar	nce factor I ₉₀				

COMPOUND NAME

OR NUMBER CHAROOVINE + LON 2142 PARASITE (SUB) SPECIES . P. DORODO

FORMULATION Two 80/H20. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

ED90 (range) 2.6 (0.9 - 5.6

Resistance factor I₉₀

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3 + 3.0	5		_	91.0 ± 4.4
	1.0 + 3.0	5			82,2 = 3,5
N	3.0 + 3.0	5)		47.8 ± 11.1
	10.0 + 3.0	5			0.3 ± 0.5
	Ø	10		23.8	
ED ₅₀ (rang	Je) 1.5(0.7 - 3.5)				
ED ₉₀ (rang	ge)4.5(2.1 - 10.0				
Resistan	ce factor I ₉₀		•		
	0.3 + 10.0	5			83.4 ± 4.9
	1.0 + 10.0	5			78.2 ± 4.
2	3.0 + 10.0	5		-	45,9 ± 1,8
	10.0 + 10.0	5		-	0
	Ø	10		23,8	
ED ₅₀ (rar	ige) 1.3(0.4-2.9	8			

Principal Investigator: Professor W.Peters

Department of Medical Protozoology

London School of Hygiene & Tropical Medicine

COMPOUND NAME

OR NUMBER CHLOROQUINE + LON 2142 PARASITE (SUB) SPECIES .P. DOCTION

FORMULATION Tween 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3 + 30.0	5		_	76.2 ± 2.2
	1.0 +30.0	5			53.9 ± 6.1
2	3.0 +30.0	5	1		31.3 ± 3.3
	10.0 + 30.0	5_			0
	Ø	10		23.8	
				·	
ED ₅₀ (rang	je)1.0(0.6-2.3))		1	
	ge)2.3(1.2 -5.0				
	ce factor I ₉₀				
	0.3 + 100.0	5			49.9 ± 6.6
	1.0 + 100.0	5			43.1 ± 4.4
N	3.0 + 100.0	5	1		32.2 ± 2.2
	10:0 + 100:0	5			0
	Ø	10		23.8	
ED ₅₀ (ran	1ge)0.8(0.3 - 2.2				
	nge) 1.9(0.6 - 5.				
Resista	nce factor I ₉₀				

COMPOUND NAME WR 255 695 AE (BL 48656)

OR NUMBER LON 2142 PARASITE (SUB) SPECIES Problem Sep...

FORMULATION TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5			98.6 ± 1.4
	10.0	5			92.0 ± 4.8
NS	30.0	5	(-	94.1 ± 2.5
	100.0	5		-	94.1 + 2.3
	Ø	10		2811	
					,
	·				
ED ₅₀ (rang	je) > 100				
ED ₉₀ (rang	Je) ≫ 100				
	ce factor I ₉₀		4		
ED ₅₀ (ran					
ED ₉₀ (rar					
}	nce factor I ₉₀				

COMPOUND NA		٧ <u>۴</u>	PARASIT	TE (SUB)SPECIES .F.	elu ssp
FORMULATION				ATION : SC/ IP/PO/I	$\mathbf{\circ}$
MAXIMUM TOL	ERATED DOSE (MTD)	• • • • • • •	MG/KG X		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X10C
	3.0	5		_	901 ± 33
	10.0	5			41.0 ± 1.9
NS	30.0	5_	1	<u>-</u>	315 ± 113
	60.0	5_			1.1 ± 0.8
	Ø	10		28.1	
	·				
ED ₅₀ (rang	1e) 8.3(4.9-16	.5)			
	je) 25,0(15,0 - 5				
Resistanc	ce factor I ₉₀	7	4		
	<u> </u>	1	1		

ED₅₀(range)

ED₉₀(range)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER LON 2142 + CHLOROGUINE PARASITE (SUB) SPECIES . P. yorkin 55.p. FORMULATION . Tween 80/HzO. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0 + 1.0	5		-	88.9 ± 3.4
	10.0 + 1.0	5		_	92.3 ± 2.0
NS	30.0 + 1.0	5		_	91.8 ± 2.5
	100.0 + 1.0	5_		_	89.2 ± 2.5
	Ø	10		28:1	
	·				
ED ₅₀ (rang	e) > 100	1			
ED ₉₀ (rang	e) >> 100				
Resistanc	e factor I ₉₀		· 		
	3.0 + 3.0	5			92.4 ± 3.3
	10.0 + 3.0	5		-	89.1 ± 2.0
NS	30.0 + 3.0	5	1	-	92.7 ± 2.8
	100.0 + 3.0	5		_	87.9 ± 3.9
	ø	10		28.1	
ED ₅₀ (ran	ge) > 100				
ED ₉₀ (ran	ge) ≫1○○				
Resistan	ce factor I ₉₀				

COMPOUND NAME

OR NUMBER

LON 2142 + CHLOROQUINE PARASITE (SUB) SPECIES P. yorkin ssp.

FORMULATION TWOODS SO H O. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0 + 10.0	5			2.6 ± 1.4
	10.0 + 10.0	5		-	4.2 ± 1.1
NS	30.0 + 10.0	5	1		40 = 1.2
	100.0 + 10.0	5		-	2.1 ± 0.5
	Ø	10		28.1	
	,				
ED ₅₀ (rang	e) < 3.0				
ED ₉₀ (rang	Je) < 3.0				
Resistan	ce factor I ₉₀		•		
	3.0 + 30.0	5_	<u> </u>		1.8 ± 1.0
	10.0 + 30.0	5			1.4 ± 0.3
N5	30.0 + 30.0	5	1	-	1,7 ± 0,3
	100.0 + 30.0	5			1.4 ± 0.7
	Ø	10		28:1	·
ED ₅₀ (ran	ige) < 3.0				
ED ₉₀ (rar	ige) < 3.0				
Resistar	nce factor I ₉₀				

COMPOUND NAME

OR NUMBER

LON 2142. + CHLOROQUINE PARASITE (SUB) SPECIES P. yorkin SSP.

FORMULATION Two. 80./H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR% 100
	3.0 + 60.0	5		-	0.6 ±0.2
	10.0 + 60.0	5		-	1.4 ± 0.2
NS	30.0 +60.0	5	١	-	1.4 = 0.6
	100.0 +60.0	5		-	1.4 ± 0.6
	Ø	10		28-1	
	/				
ED ₅₀ (rang	e) <3.0				
ED ₉₀ (rang	0, E > (a)		•		
Resistanc	e factor I ₉₀				
ED ₅₀ (ran	ge)				
ED ₉₀ (ran	ge)				
Resistan	ice factor I ₉₀				

COMPOUND NAME

OR NUMBER

CHLOROQUINE + LON 2142 PARASITE (SUB) SPECIES P. yorkin ssp...

FORMULATION Two 30/HO. ROUTE OF ADMINISTRATION: SC/11-/PO/14

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR% Control PR%
	1.0 + 3.0	5		_	88.9 ± 3.4
	3.0 + 3.0	5			92,4 ± 3,3
NS	10.0 + 3.0	5	1		2.6 ± 1.4
	30.0 + 3.0	5			1.8 ± 1.0
	60.0 + 3.0	5		-	0.6 ± 0.7
	ø	10		. 28.1	
	·				
ED ₅₀ (ran	ge) 8.0(2.2-21.0	5)			
ED ₉₀ (ran	ge)16:0(5:0-48	D			
Resistan	ce factor I _{oo}	7	4		

	1.0 + 10.0	ر ا		_	92,3 ± 2,0
	3.0 + 10.0	5			89.1 ± 2.0
NS	10.0 + 10.0	5	1		4.2 ± 1.1
	30.0 + 10.0	5		-	1.4 ± 0.3
	60.0+10.0	5		-	1.4 ± 0.2
	Ø	10		28:1	

ED₅₀(range) 5.0(1.5 - 11.0)

ED90 (range) 17.8 (5.2-40.0)

Resistance factor I₉₀

COMPOUND NAME

Resistance factor Ign

OR NUMBER

CHLOROQUINE + LON 2142 PARASITE (SUB) SPECIES P. yelv. s.p.

FORMULATION Tween 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100 Control PR%X100
	1.0 + 30.0	5		<u>-</u>	91.8 ± 2.5
	3,0 + 30,0	5		_	92.7 ± 2.8
NS	10.0 +30.0	5	١		4.0 ± 1.2
	30.0 + 30.0	5			1.7 = 0.3
	100.0 - 30.0	5			1.4 ± 0.6
	ø	10		. 28.1	
	·				
ED ₅₀ (range	=)5.0(1.6-14.5				
ED ₉₀ (range	=)17.5(5.3 - 50	(6)			
Resistanc	e factor I ₉₀				
	1.0 + 60.0	5			89.2 ± 2.5
	3.0 -60.0	5		<u> </u>	87.9 ± 3.9
NS	10.0 - 60.0	5	1		2.1 ± 0.5
	30.0 + 60.0	5			1.4 + 0.7
	100.0 + 60.0	5_			1.4 ±.0.6
	Ø	10		28.1	
ED ₅₀ (rang	je) 6,4(2,2-24,	9			
	ge) 15,5(5.3-56				

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X10
·	3.0	5		_	98.4 ± 2.5
	10.0	5			82.2±4.
N	30.0	5	1		75.1 ± 7.5
	100.0	5		-	59.2 ± 5.9
	Ø	10		21.8	
ED ₅₀ (rang	ge) 80.0(30.0 - 1	60)			
ED ₉₀ (rang	ge)540(210 - >	1000)			
	ce factor I ₉₀	7	4		
				 	

ED₅₀(range)

ED₉₀(range)

Resistance factor I₉₀

COMPOUND NAME CHIOROGUINE PARASITE (SUB) SPECIES . P. Soughei OR NUMBER MAXIMUM TOLERATED DOSE (MTD) MG/KG X ... Treated PR%X100 Daily dose No. of No. of Mean control Strain mg/kg DO-D+3 mice parasite rate % experiments 0.3 5 90.4 ± 3.0 91.7 ± 2.8 1.0 5 80.6 ± 3.0 N 3.0 5 10.0 5 4.0 ± F.0 10 21.8 ED₅₀(range) 3.1(1.9 - 5.2) EDgo(range) 6.5(3.9-11.9) Resistance factor I_{90}

ED₅₀(range)

EDqn(range)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER LON 2.143 + CHLOROQUINE PARASITE (SUB) SPECIES . P. Derghei FORMULATION . Tween 80/H20 ROUTE OF ADMINISTRATION : SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
····	3.0 + 0.3	5		<u>-</u>	97.6 ± 2.7
	10.0 + 0.3	5	·	-	89.7 ±4.3
Ŋ	30.0 + 0.3	5	1	-	90.7 ± 2.8
	100.0 + 0.3	5		-	83.7 ± 5.0
	Ø	10		21.8	
ED ₅₀ (ran	ge)				
ED ₉₀ (ran	ge) NA 100				
Resistan	ce factor I ₉₀		•		
	3.0 + 1.0	5			88.6 ± 6.0
	10.0 + 1.0	5			90.2 ± 3.5
N	30.0 + 1.0	5	1	~	86.4 ± 1.4
	i		1		1 .
<u> </u>	100.0 + 1.0	5			780 ± 6.2
	100.0 + 1.0	10		21.8	780 ± 62
	,			21.8	780 ± 62
	,			21.8	780 ± 62
ED ₅₀ (ra	ø			21.8	780 ± 6.2
<u> </u>	ø			21.8	780 ± 6·2

COMPOUND NAME

OR NUMBER

LON 2143 + CHLOROQUINE PARASITE (SUB) SPECIES . P. DEROTOR ...

FORMULATION Tween 80 / H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR% 100
3.0 + 3.0			~	348 ± 3.6
10.0 + 3.0	S		-	56.8 ± 16.8
30.0 + 3.0	5	1	_	36.6 ± 15.6
100.0 + 3.0	5		-	34.8 ± 9.8
Ø	10		21.8	
/				
<u></u>		<u> </u>		
e)	1			
e) >100				
e factor I ₉₀				
3.0 + 10.0	5	<u> </u>		0.2 ± 0.2
10.0 +10.0	5			0.4 ± 0.3
30.0 + 10.0	5_		_	0.09 ± 0.09
100.0 + 10.0	5			0
Ø	10		21.8	
ge) < 100				
ge) « 100				
ce factor I ₉₀				
	mg/kg D0-D+3 $3.0 + 3.0$ $10.0 + 3.0$ $30.0 + 3.0$ $100.0 + 3.0$ e) e) e) $3.0 + 10.0$ $10.0 + 10.0$ $10.0 + 10.0$ $10.0 + 10.0$ $10.0 + 10.0$ $10.0 + 10.0$ $10.0 + 10.0$	mg/kg D0-D+3 mice 3.0 + 3.0	mg/kg D0-D+3 mice experiments 3,0 + 3.0 5 1 100.0 + 3.0 5 1 100.0 + 3.0 5 1 100.0 + 10.0 5 1 100.0 + 10.0 5 1 100.0 + 10.0 5 1 100.0 + 10.0 5 100.0 + 10.0 5 100.0 + 10.0 5 100.0 + 10.0 5 100.0 + 10.0 5 100.0 + 10.0 5 100.0 + 10.0 5 100.0 + 10.0 5 100.0 6 6 6 6 6 6 6 6 6	mg/kg D0-D+3 mice experiments parasite rate % 3.0 + 3.0

COMPOUND NAME

OR NUMBER

CHLOROQUINE + LON 2143 PARASITE (SUB) SPECIES . P. toughoi

FORMULATION TWEEN 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

Strain	Daily dose	No. of	No. of	Mean control	Control PR%
	mg/kg DO-D+3	mice	experiments	parasite rate %	Control PR%
	0.3 + 3.0	5			97.6 ± 2.7
	1.0 + 3.0	5		<u></u>	88.6 ± 6.1
N	3.0 + 3.0	5	1	_	34.8 ± 3.
	10.0 + 3.0	5			0.2 ± 0.
	Ø	10		21.8	
,					
ED ₅₀ (rang	ge) 1.8(0.6-3.2)			
	ge) 4.6(1.5 -8.5	¬			
Resistan	ce factor I ₉₀		4		
	0.3 + 1.0	5			89.7 ± 4.0
	1.0 + 1'0	5		_	90.2 ± 3.
N	3.0 + 1.0	5	ı		56.8 ± 16.9
	10.0 + 1.0	5		-	0.4±0.3
	Ø	10		21.8	

ED₅₀(range) 2.6(ED90(range)5,4(3,3-9 Resistance factor I₉₀

COMPOUND NAME

CHLOROQUINE. + LON 2143 PARASITE (SUB) SPECIES . P. beighei. OR NUMBER

FORMULATION . Tween 80 / H20 ROUTE OF ADMINISTRATION : SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.3 + 30.0	_5			90.7 ± 2.8
	1.0 + 30.0	5			86.4 ± 1.4
N	3.0 +30.0	5	l		36.6 = 15.6
	10.0 + 30.0	_5_			0.09 ± 0.09
	Ø	10		21.8	
	•				
ED ₅₀ (rang	e)2.0(1.4-31)				
ED ₉₀ (rang	e)4.0(2.7-6.0	}			
Resistanc	e factor I ₉₀				
	0.3 + 100.0	5			837 ±50
	1.0 + 100.0	5			78.0 ± 6.2
N	3.0 + 100.0	5	١	-	34.2 ± 9.8
	10.0 + 100.0	5		_	0
	Ø	10		21.8	
ED ₅₀ (ran	ge) 1.7(1.3 - 2.7	1)			

ED90 (range) 3.1(2.3-5.0)

Resistance factor I_{90}

COMPOUND NAME WR 255693 AC (BL 48657)

OR NUMBER LON 2143 PARASITE (SUB) SPECIES . P. you'll ssp.

FORMULATION TWO 80/H20... ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) > 100. MG/KG X 4.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0	5			100 ±0.6
	10.0	5			96.5 ± 1.2
Ns	30.0	5	1		94,2 ± 0,5
	100.0	5			8811 = 6.3
	Ø	10		27.8	
				·	
	,				
ED ₅₀ (rang	e) > 100				
ED ₉₀ (rang	e) >> 100				
Resistanc	e factor I ₉₀	7	4		
ED ₅₀ (ran	ge)		·		
ED ₉₀ (ran	ge)				
	ce factor I ₉₀	7			

COMPOUND NA				r) '
OR NUMBER				TE (SUB)SPECIES	<u> </u>
FORMULATION	Tween 80/H20	ROUTE	OF ADMINISTRA	TION : SC/ IP/PO/I	1
MAXIMUM TOL	ERATED DOSE (MTD)	•••••	MG/KG X		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Ireated PR%x100
	3.0	5_			85.8 ± 5.5
	10.0	S			39.0 ± 0.6
NS	30.0	5		-	3.3 ±0.8
	60.0	5			1.5 = 0.3
	Ø	10		27.8	
ED ₅₀ (rang	1e)7,8(4,3-14,5 1e)24,0(13,0-42	3)			
ED ₉₀ (rang	1e)24.0(13.0-42	200			
1	ce factor I ₉₀		·		
					<u> </u>
					·
ED ₅₀ (ran	ge)				

ED₉₀(range)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER LON 2143 + CHLOROQUINE PARASITE (SUB) SPECIES Pygeller SSP.

FORMULATION TWEE SO 1.H.O. ROUTE OF ADMINISTRATION: SC/11/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Control PR% 100
	3.0 + 1.0	5		_	87.9 ± 7.5
	10:0 + 1:0	S		_	93.9 + 2.5
NS	30.0 + 1.0	5	1		91.9 ± 1.1
	100.0 + 1.0	5			100 = 1.5
	Ø	10		27.8	
	e) > 100				
	e) » 100				
Resistanc	e factor I ₉₀		·		
	3.0 + 3.0	5			83.5 ± 2.3
	10.0 + 3.0	5		_	75.8 ± 6.6
NS	30.0 + 3.0	5	1	_	72.5 ± 5.3
	100.0 + 3.0	5		_	64.6 ± 10.4
	ϕ	10		27.8	·
		<u> </u>			
 	ge)>100				
	ge) > 100				
Resistan	ce factor I ₉₀				

COMPOUND NAME

OR NUMBER

LON 2143 + CHLOROQUINE PARASITE (SUB) SPECIES Pychin SSP.

FORMULATION TWEEN SO J.H2 Q. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0 + 10.0	5		-	40.4 ± 1.8
	10.0 + 10.0	5			38.2 ± 0.2
NS	30.0 + 10.0	5	1		41.7 + 1.4
	100.0 + 10.0	5		-	377 ± 0.5
	Ø	10		27,8	
					
	·				
ED ₅₀ (rang	ge)				
ED ₉₀ (rang	ge) > 100				
Resistan	ce factor I ₉₀		·		·
	3.0 + 30.0	5			2.3 ± 1.0
	10.0 + 30.0	5			2.7 ± 1.0
NS	30.0 + 30.0	5	1		1.9 ± 1.0
	100,0 + 30,0	5		-	1.8 ± 0.7
	Ø	10		27.8	
ED ₅₀ (ran	ıge)<3.0				
ED ₉₀ (ran	1ge) < 3.0				
Resistar	nce factor I ₉₀				

COMPOUND NAME

OR NUMBER

LON 2143 + CHLOROQUINE PARASITE (SUB) SPECIES P. youlu sep.

FORMULATION Tween 80/H20. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	3.0 + 60.0	5			1.9 ± 0.6
	10.0 + 60.0	5			1,2 ± 0,5
NS	30.0 + 60.0	5	1		1.8 ± 0.6
	100.0 + 60.0	5			0.6 ± 0.3
	Ø	10		27.8	
ED ₅₀ (rang	ge) ∠ 3 , O				
ED ₉₀ (ran	ge) < 3.0				
Resistan	ce factor I ₉₀				
ED ₅₀ (rai	nge)				
ED ₉₀ (ra	nge)				
Resista	nce factor I ₉₀	_			

COMPOUND NAME

Resistance factor I₉₀

OR NUMBER CHLOROQUINE + LON 2143 PARASITE (SUB) SPECIES P. yorkin SSP

FORMULATION Tween 80/HO. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Control PR%X100
	1.0 + 3.0	5			87.9 ± 7.5
	3.0 + 3.0	5			83.5±2.3
NS	10.0 + 3.0	5	,	_	40.4 ± 1.8
	30.0 + 3.0	5		_	2.3 = 1.0
	60.0 + 3.0	5			1.9 ± 0.6
	Ø	10		. 27.8	
ED ₅₀ (rang	e) 7.2(2.2 -15.5	\bigcirc			
ED ₉₀ (rang	e)24.0(7.0-5	(0.0			
Resistanc	e factor I ₉₀		•		
	1.0 + 10.0	5			93.9 ± 2.5
	3.0 + 10.0	5_			75.8 ± 6.6
NS	10.0 + 10.0	5	1	_	38:2 ± 0:2
	30.0 + 10.0	5		-	2.7 ± 1.0
	60.0 + 10.0	5		_	1.2 ± 0.5
	Ø	10		27.8	
ED ₅₀ (ran	ge)6.2(3.0-10.	2)			
<u> </u>	ge)24.0(11.8-4	⊣ .			

COMPOUND NAME

OR NUMBER CHLOROQUINE + LON 2143. PARASITE (SUB) SPECIES P. MORLINES P. ...

FORMULATION TWEEN 80/H20.. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	1.0 + 30.0	5			91.9 ± 1.1
	3.0 +30.0	5		<u> </u>	72.5 ± 5.3
NS	10.0 + 30.0	5	1	-	41.7 ± 1.4
	30.0 + 30.0	5			1.9 ± 1.0
	60.0 + 30.0	5		-	1.8 ± 0.6
	Ø	10		. 27.8	
ED ₅₀ (rang	e)511(1.9 -8.8)				
ED ₉₀ (rang	e)23,0(8,0 - 39	(0.			
Resistanc	e factor I ₉₀				
	1.0 +100.0	5_		_	100 ± 1.2
	3.0 +100.0	5_			64.6 ± 10.9
NS	10.0 +100.0	5	1		37.7 ± 0.5
	30.0 +100.0	5		-	1/8 ± 0.7
	60.0 +100.0	5_		-	0.6 ± 0.3
	Ø	10		27.8	

ED₅₀(range) 7.3(3.0 - 22.d) ED₉₀(range)16.5(6.6 - 48.d)

Resistance factor I₉₀

Figure 6. Isobologram illustrating synergism between the two isomers of the floxacrine analogue WR 243251.

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Control PR%X100
	0:1	5			94.0 ± 2.9
	0,3	5		-	84.9 ± 1.2
N	1.0	5	1		87.8 ± 2.3
	3:0	5			87.8 ± 1.6
	10.0	5			62.6 ± 7.2
	ø	10		. 21.6	

ED₅₀(range) 15:0(11:3-18-3)

ED₉₀(range) 90:0(69:0-110)

Resistance factor I₉₀

ED₅₀(range)
ED₉₀(range)
Resistance factor I₉₀

COMPOUND NAME WR 250548 (BL 34170)

OR NUMBER LON 2161 PARASITE (SUB)SPECIES Proproduce.

FORMULATION Tween 80/H20. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

MAXIMUM TOL	ERATED DOSE (MTD)		MG/KG X		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.1	5			75.9 ± 6.9
	0.3	5			65.2 ± 5.4
N	1.0	5	(35.4 ± 8.8
	3.0	5		_	10.1 ± 4.1
	10.0	5_			2.2 ± 0.7
	Ø	10		21.6	
ED ₅₀ (rang	1e) 0,4(0,2 -0,8				
ED ₉₀ (rang	je) 2.9 (1.5 - 5.5				
	ce factor I ₉₀	1	4		

190		
ED (mange)	 	

ED₅₀(range)

ED₉₀(range)

Resistance factor I₉₀

COMPOUND NAME

Resistance factor I₉₀

OR NUMBER

LON 2160 + LON 2161. PARASITE (SUB) SPECIES . P. berghei.

FORMULATION .Tween 80/HZO. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Control PR%X100
	0.1 + 0.1	5			90.9 ± 2.1
	0.3 + 0.1	5			84.0 ± 2.0
N	1.0 + 0.1	5	1		77·2 ± 5·7
	3.0 + 0.1	5_		-	44.0 ± 15.0
	10.0 + 0.1	5_			9.8 ± 4.2
	Ø	10		21.6	
	. /	·			
ED ₅₀ (rang	e) 1.3(0.6-4.3				
ED ₉₀ (rang	e) 9.5(4.0-30	9			
	e factor I ₉₀		•		
	0.1 + 0.3	5		_	64.0 ± 6.7
	0.3 + 0.3	S		-	53.1 ± 4.5
N	1.0 + 0.3	_5		-	47.2 ± 10.8
	3.0 + 0.3	5		-	19.8 ± 12.0
	10.0 + 0.3	5		-	6.0 ± 1.6
	Ø	10		21.6	
ED ₅₀ (ran	ge) 0,4(0.1 - 1,4	+)			
ED ₉₀ (ran	ge) 5.5(2.0 - 20	7 3,5)			

COMPOUND NAME

OR NUMBER LON 2160 + LON 2161 PARASITE (SUB) SPECIES P. Derghen

FORMULATION TWEEN 80/H20. ROUTE OF ADMINISTRATION: SC/IP/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

AAXIMUM TO	LEKATED DOSE (MID)	• • • • • • •	MG/KG X		
Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%x100
	0.1 + 1.0	5		_	39.6 ± 14.6
	0.3 + 1.0	5		-	11.4 ± 1.2
N	1.0 - 1.0	5		_	7.0 ± 2.2
	3.0 +1.0	5		_	2.5 ± 1.0
	10.0 +1.0	5			1.6 ± 0.6
	Ø	10		. 21.6	
	, ,				
ED ₅₀ (rang	ge)0.05(0.02 - 0	(81.0			
ED ₉₀ (rang	ge)0,7(0,3-2	(2)			
	ce factor I ₉₀		4		
					1 1 1 1 7

ED₅₀(range) 0.01 (<0.01 - 0.02)

ED₉₀(range)0.07(0.05-0.12)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER

LON 2160 + LON 2161 PARASITE (SUB) SPECIES P. Derghon.

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.1 + 10.0	5		_	0
	0.3 + 10.0	5			0
Ν	1.0 +10.0	5	1		0
	3.0 +10.0	5		_	0
	10.0 +10.0	5			0
	Ø	10		. 21.6	
ED ₅₀ (rang	je)				
ED ₉₀ (rang	ge)				
Resistan	ce factor I ₉₀				
ED ₅₀ (rar	ige)		·•.		
ED ₉₀ (ran					
	nce factor I ₉₀				

COMPOUND NAME

OR NUMBER LON 2161 + LON 2160 PARASITE (SUB) SPECIES P. Deghei...
FORMULATION Tween 80/H20. ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.1 + 0.1	5		-	90.9 ± 2.1
	0.3 + 0.1	5		_	64.0 ± 6.7
N	1.0 + 0.1	5	ı	-	39.6 ± 14.6
	3.0 + 0.1	5		-	4.8 ± 0.7
	10.0 + 0.1	5			0
	Ø	10		. 21.6	<u> </u>
	·				
ED ₅₀ (ran	ge) 0.5(0.2 - 1.1	X			
ED ₉₀ (ran	ge) 1,4(0,7-2,5	3			
Resistan	ce factor I ₉₀				
	0.1 + 0.3	5		_	84.0 ± 2.0
	0.3 + 0.3	5			53.1 ± 4.5
N	1.0+0.3	5	1		11.4 ± 1.7
	3.0 + 0.3	5		_	2.5 ± 0.0
	10.0+0.3	5			0 .
	Ø	10		21.6	
	,				
ED ₅₀ (rai	nge) 0,3(0,2 - 0,9	5)			
	nge) 1, 0(0 i - 1.=	 1			
Resista	nce factor I ₉₀				

COMPOUND NAME

LON 2161 + LON 2160 PARASITE (SUB) SPECIES P. barghai OR NUMBER

FORMULATION TWOOD SO /HO ROUTE OF ADMINISTRATION: SC/IP/PO/IY

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Control PR%X100
	0.1 + 1.0	5			77.2 ± 5.7
	0.3 + 1.0	5			47.2 ± 10.8
N	1.0 + 1.0	5	1		7.0 ± 2.2
	3.0 + 1.0	5		<u>-</u>	0,2 ± 0,2
	10.0 + 1.0	5			O
	\$	10		. 21.6	
	. /				
ED ₅₀ (rang	1e) 0.2(0.15-0.	35)			

 $\frac{ED_{90}(\text{range})_{0.7}(0.5-1.0)}{\text{Resistance factor }I_{90}}$

<u> </u>	30				
	0.1 + 3.0	5			44.0 ± 15.0
	0.3+3.0	5			19.8 ± 12.0
N	1.0+3.0	5	1		2.5 ± 1.0
	3.0 + 3.0	5		-	0
	10:0+3:0	5		-	0
	Ø	10		2116	

ED₅₀(range)0.09(0.05 - 0.17)

ED₉₀(range)0.42(0.23-0.8)

Resistance factor I₉₀

COMPOUND NAME

OR NUMBER

LON 2161 + LON 2160. PARASITE (SUB) SPECIES . P. beighon.

FORMULATION Tween 80/H. O ROUTE OF ADMINISTRATION: SC/1P/PO/IV

MAXIMUM TOLERATED DOSE (MTD) MG/KG X ...

Strain	Daily dose mg/kg DO-D+3	No. of mice	No. of experiments	Mean control parasite rate %	Treated PR%X100
	0.1 + 10.0	5		-	9.8 ± 4.2
	0.3 + 10.0	5		_	6.0 ± 1.6
N	10 + 100	5	l		1.6 ± 0.6
	3.0 + 10.0	5			0
	10.0+10.0	5			0
	Ø	10		. 21.6	
	. ,				

ED₅₀(range)0.01(<0.01 - 0.02) ED₉₀(range)0.12(0.05 - 0.24)

Resistance factor I_{qn}

 90	 	
		·

ED₅₀(range)

ED₉₀(range)

Resistance factor I₉₀

DISTRIBUTION LIST

5 copies

Director

Walter Reed Army Institute of Research

Walter Reed Army Medical Center

ATTN: SGRD-UWZ-C

Washington, DC 20307-5100

1 Copy

Commander

US Army Medical Research and Development Command

ATTN: SGRD-RMI-S

Fort Detrick, Frederick, Maryland 21701-5012

2 copies

Defense Technical Information Center (DTIC)

ATTN: DTIC-FDAC Cameron Station

Alexandria, VA 22304-6145

1 copy

Dean

School of Medicine

Uniformed Services University of the

Health Sciences 4301 Jones Bridge Road Bethesda, MD 20814-4799

1 copy

Commandant

Academy of Health Sciences, US Army

ATTN: AHS-CDM

Fort Sam Houston, TX 78234-6100