Hilbert Functions of Chopped Ideals

Fulvio Gesmundo¹ Leonie Kayser²

Simon Telen²

¹University of Saarland

²Max Planck Institute for Mathematics in the Sciences

Chopped ideals

Let $S = \mathbb{k}[x_0, \dots, x_n]$ be a polynomial ring over an algebraically closed field of characteristic 0. Let $0 \neq I \subseteq S$ be a homogeneous ideal.

Definition. The *chopped ideal* of I is the ideal $I_{\langle d \rangle} := \langle I_d \rangle_S$ generated by the nonzero component of lowest degree d.

Now let I=I(Z) be the ideal of a finite set of points $Z=\{z_1,\ldots,z_r\}\subseteq \mathbb{P}^n(\mathbb{k})$. In chopping the ideal, we consider only the equations on Z of lowest degree. The goal is to recover Z from $I_{\langle d \rangle}$. In most cases $I_{\langle d \rangle} \subsetneq I$, but one may hope that

$$I(Z) \stackrel{?}{=} (I_{\langle d \rangle})^{\text{sat}} := (I_{\langle d \rangle} : \mathfrak{m}^{\infty}), \qquad \mathfrak{m} = \langle x_0, \dots, x_n \rangle_S.$$

This is the case if and only if Z is scheme-theoretically cut out by $I(Z)_d$.

Theorem. Let $Z \subseteq \mathbb{P}^n$ be a sufficiently general collection of r points and let d be the chop degree of I = I(Z).

- If $r > \binom{n+d}{n} n$, then $V(I_{\langle d \rangle})$ is a positive-dimensional complete intersection.
- If $r = \binom{n+d}{n} n$, then $V(I_{\langle d \rangle})$ is a complete intersection of d^n points.
- If $r < \binom{n+d}{n} n$, then $I_{\langle d \rangle}$ cuts out Z scheme-theoretically.

In particular, $(I_{\langle d \rangle})^{\mathrm{sat}} = I$ if and only if $r < \binom{n+d}{n} - n$ or (n,r) = (2,4).

Hilbert functions

The Hilbert function of a finite graded S-module M is $h_M(j) := \dim_{\mathbb{K}} M_j$. The Hilbert function of a set of r points $h_Z := h_{S/I(Z)}$ is non-decreasing towards r. If Z is in general position, then

$$h_Z(j) = \min\{h_S(j), r\}, \qquad h_S(j) = \max\{\binom{n+j}{n}, 0\}.$$

As noted in the previous section, for general Z one has

$$(I_{\langle d \rangle})_d = I_d, \qquad (I_{\langle d \rangle})_j = I_j, \quad j \gg 0,$$

since saturation alters only finitely many components.

Question. What are the values of $h_{S/I_{(d)}}$ in between? How large is the saturation gap?

The components of $I_{\langle d \rangle}$ are the images under the multiplication maps

$$\mu_e \colon S_e \otimes I_d \to I_{d+e}.$$

Assuming this linear map has the largest rank possible, one expects:

Conjecture (Expected syzygy conjecture). For Z general and $j \geq d$ one has

$$h_{S/I_{\langle d \rangle}}(j) = \max \left\{ \sum_{k \ge 0} (-1)^k \cdot h_S(j - kd) \cdot \binom{h_S(d) - r}{k}, r \right\}. \tag{1}$$

The Hilbert function of $S/I_{\langle d \rangle}$ returns to r as soon as this sum is less than or equal to r.

This expression is always a lower bound due to a famous theorem of Fröberg [1]. The case j=d+1 is equivalent to the *Ideal Generation Conjecture* (IGC) [2]; our conjecture is a natural generalization thereof.

Example: 18 points in the plane

The smallest interesting example occurs for r=18 general points Z in the plane (see also fig. 4). The Hilbert function h_Z becomes constant in degree 5, which is also its chop degree.

The component I_5 is generated by $h_S(5)-18=3$ quintics q_1,q_2,q_3 , but these do not generate I; indeed $h_I(6)=10>3\cdot 3=h_I(5)\cdot h_S(1)$. In this case the multiplication map μ_e has maximal rank, and the Hilbert function of $S/\langle q_1,q_2,q_3\rangle$ is as follows:

Figure 1. The Hilbert function of the chopped ideal of 18 points.

Which generator in I_6 is missing? Splitting the points in groups of 9+9, there is a unique cubic through each group. Their product spans a complement of $(I_{\langle 5 \rangle})_6$ in I_6 .

Figure 2. Three quintics (left) and a split sextic (right) through 18 points.

Main results

Theorem. Conjecture (1) is true in the following cases:

- $r_{\max} \coloneqq h_S(d) (n+1)$ for all d in all dimensions n.
- In the plane for $r_{\min} = \frac{1}{2}(d+1)^2$ when d is odd.
- $r \leq \frac{1}{n}((n+1)h_S(d) \bar{h}_S(d+1))$ and $n \leq 4$, or generally whenever (IGC) holds.
- In a large number of individual cases in low dimension, see next section.

Furthermore, the length of the saturation gap is bounded above by

$$\min\{e > 0 \mid (I_{\langle d \rangle})_{d+e} = I_{d+e}\} \le (n-1)d - (n+1).$$

The alternating sum in (1) is really necessary, as witnessed by fig. 3 (e > d).

Figure 3. The Hilbert function of the chopped ideal of 80 points in \mathbb{P}^3 .

Theorem. Whenever $I_{\langle d \rangle}$ is non-saturated, one has

$$\operatorname{reg}_{\mathrm{CM}} S/I_{\langle d \rangle} = \operatorname{reg}_{\mathrm{H}} S/I_{\langle d \rangle} - 1.$$

Here reg_{CM} is the Castelnuovo-Mumford regularity and reg_H is the degree from which on the Hilbert function becomes constant.

The methods used in the proofs include syzygies, liaison (in higher codimension), the mapping cone construction, Hilbert-Burch theory and local cohomology.

Verification using computer algebra

To test the conjecture, one can randomly sample r points from $\mathbb{P}^n(\mathbb{Q})$ and calculate the Hilbert function using computer algebra. If the sample satisfies (1), then by the following theorem the conjecture holds true for this r.

Theorem. The map $Z \mapsto h_{S/I(Z)_{\langle d \rangle}}(j)$ is upper semicontinuous on the set $U \subseteq (\mathbb{P}^n)^r$ of points with generic Hilbert function.

To further speed up the computation, it suffices to verify the conjecture over a finite field \mathbb{F}_p . Using Macaulay2 we verified the conjecture in \mathbb{P}^2 for $r \leq 430$ points, in \mathbb{P}^3 for $r \leq 157$ points and in \mathbb{P}^4 for $r \leq 65$ points.

The following figure shows the distributions of the gap lengths for various r in the plane.

Figure 4. The saturation gaps for all values of $r \leq 102$ in \mathbb{P}^2 .

Motivation: Tensor decomposition using eigenvalue methods

In symmetric tensor decomposition the goal is to express a form $F \in T := \mathbb{k}[X_0, \dots, X_n]$ of degree D as a minimal sum of powers of linear forms $F = L_1^D + \dots + L_r^D$. Consider the low rank case $r < h_S(|D/2|) - n$, then this decomposition is generically unique.

The points $Z=\{[L_1],\ldots,[L_r]\}\subseteq \mathbb{P}(T_1)$ are solutions to an over-determined system of polynomial equations arising from the *catalecticant matrix* of F. These equations generate the chopped ideal of Z! The case of $F\in \Bbbk[X_0,X_1,X_2]_{10}$ of rank 18 corresponds to the example on the left; the catalecticant method produces the three quintics.

In order to numerically solve these systems, one can employ *numerical normal form methods* [3]. These transform zero-dimensional systems of polynomial equations into eigenvalue problems. The complexity of this algorithms is governed by the Hilbert regularity of the equations $I_{\langle d \rangle}$ at hand, predicted by the conjecture. This procedure has been implemented in **Julia** and routinely outperforms homotopy continuation methods.

References

- [1] R. Fröberg, "An inequality for hilbert series of graded algebras," *Mathematica Scandinavica*, vol. 56, no. 2, 1985.
- [2] A. Lorenzini, "The minimal resolution conjecture," Journal of Algebra, vol. 156, no. 1, 1993.
- [3] S. Telen, "Solving systems of polynomial equations," Ph.D. dissertation, KU Leuven, Leuven, Belgium, 2020.