

Model Optimization and Tuning Phase Template

Date	27 June 2024
Team ID	SWTID1720428909
Project Title	Vitamin Vision: Unveiling the Spectrum of Nutrient Detection
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
CNN-VGG19	Hyperparam1: Earlystopping: Suggested code may be subject to a license # prompt: write a code to a hyperparameter for earlystopping from tensorflow.keras.callbacks import EarlyStopping early_stop = EarlyStopping(monitor='val_loss', patience=3, verbose=1)

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The choice of VGG19 as the final optimized model was driven by its superior performance and robustness in feature extraction and predictive accuracy. VGG19's architecture, with its 19 layers compared to VGG16's 16 layers, allows for a deeper and more detailed representation of features, which is crucial for handling complex datasets. This depth enables the model to capture intricate patterns and subtle nuances in the data, leading to improved accuracy and overall performance.
CNN-VGG19	During the optimization and evaluation phase, VGG19 consistently demonstrated better results across various performance metrics, including accuracy, precision, recall, and F1-score. The additional layers in VGG19 provided enhanced generalization capabilities, effectively mitigating overfitting and improving the model's performance on unseen data. This robustness was a key factor in its selection, ensuring that the model could deliver reliable predictions in real-world applications. Furthermore, VGG19's proven track record in numerous benchmarks and its widespread adoption in the research community reinforced its

credibility and reliability. The trade-off between computational cost and performance was carefully considered, and the incremental benefits in predictive accuracy and feature extraction offered by VGG19 justified its selection over VGG16.

In summary, VGG19 was chosen as the final optimized model due to its superior feature extraction capabilities, robust performance across metrics, and proven reliability, ensuring both efficiency and accuracy in predictive tasks.