Coding Problem Number 3: Euler Step Method and Predictor-Corrector Method for Solving First-order Differential Equations.

We wish to solve the following equation and boundary condition

$$\frac{dy}{dx} = f(x,y)$$

$$y|_{x=x_{\Delta}} = y_{A}$$
(1a,b)

for the function y(x). Here x_A and y_A are specified, and the function f(x,y) is known.

We discretize x as

$$x_i = x_A + (i-1)\Delta x$$
, $i = 1, 2, 3...$ (2)

Now (1a) integrates exactly to give

$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} f(x, y) dx$$
 (3)

We cannot implement (3) directly, because y, which is the parameter we want to solve for, is needed in order to compute y.

Euler Step Method Now suppose we know y_i . If Δx is not too large, we can approximate

$$f(x,y) \cong f(x_i,y_i) \quad , \quad x_i \le x \le x_{i+1} \tag{4}$$

In this approximation, (3) reduces to

$$y_{i+1} = y_i + f(x_i, y_i) \Delta x \tag{5}$$

Thus if we know y_i we can compute y_{i+1} , out to as far a value of x_i as we want. We start with $y_1 = y_A$, a value we know from the boundary condition. The Euler Step method is an extension of the Rectangular Rule.

Predictor-Corrector Method (2nd Order Runge-Kutta Scheme) A better approximation of (3) uses the trapezoidal rule:

$$y_{i+1} = y_i + \frac{1}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})] \Delta x$$
 (6)

But again, in order to compute y_i on the left-hand side of the equation, we need to know y_i on the right-hand side. In principle, we can iterate using (e.g. Newton-Raphson) in order to do this. But a simpler way involves estimating y_{i+1} on the right-hand side using the Euler Step Method. Let y_p be the value of y_{i+1} predicted by (5);

$$y_p = y_i + f(x_i, y_i) \Delta x \tag{7}$$

We can now estimate yi+1 from (6) as

$$y_{i+1} = y_i + \frac{1}{2} [f(x_i, y_i) + f(x_{i+1}, y_p)] \Delta x$$
 (8)

Grid Invariance You should choose your value of Δx to be large enough for accuracy, but no larger. Suppose we want to compute y(x) from x_A to x_B . As in Coding Problem 2, we can divide the interval into N subintervals, so that

$$\Delta X = \frac{X_B - X_A}{N} \tag{9}$$

We then discretize this interval as

$$x_i = x_A + (i-1)\Delta x$$
 , $i = 1..N+1$ (10)

We can now compute y from x_A to x_B using various values of N, e.g. N = 2, 4, 6, 8... By choosing even numbers, we know that the point $x_{N/2+1}$ always denotes a center point x_C .

Let $y_{C,N}$ and $y_{B,N}$ denote the values of y_C and y_B computed using N number of intervals

Now the relative errors ϵ_C and ϵ_B between the result of the computation using a value $N=N_1$ and a larger value $N_2=N_1+2$ at $x_C=x_{N/2+1}$ (center point) and x_B , respectively, are given as

$$\varepsilon_{C} = \frac{\left| \left(y_{C,N_{2}} - y_{C,N_{1}} \right) \right|}{\frac{1}{2} \left(y_{C,N_{2}} + y_{C,N_{1}} \right)}$$

$$\varepsilon_{B} = \frac{\left| \left(y_{B,N_{2}} - y_{B,N_{1}} \right) \right|}{\frac{1}{2} \left(y_{B,N_{2}} + y_{B,N_{1}} \right)}$$
(11a,b)

You can define grid invariance as where the maximum of ϵ_B and ϵ_C falls below some tolerance δ which you choose (e.g. 0.001 for 0.1% accuracy, or 0.0001 for 0.01% accuracy.

Problem:

Write a program to compute y(x) from x_A to x_B , where the function f(x,y) in (1a) is

$$f(x,y) = -k \frac{\sqrt{y}}{\ell n(x+1)}$$
 (12)

and k is a specified constant. Your program should use both the Euler Step Method and the Predictor-Corrector Method. Implement it for values k=0.25 and 0.5, with $x_A=1$, $x_B=5$, and $y_A=4$. Plot your results for some representative (even) values of N (4 or 5 values?). How large does N have to be to achieve grid-invariance, using a tolerance that you have chosen?

Your assignment should consist of a) a printout of your code + GUI, b) your choice for δ , and c) Plots of y versus x for N = 2, 4, 6 up to the value corresponding to grid-invariance within your specified tolerance.

NOTE As in Coding Problem 2, it will be easier if you use arrays in this problem. The first step is to write a) a working code that computes y(i) for all value x(i) =

xA + (i - 1)*Dx with specified values of xA, xB, yA and N with the Euler method and b) the same for the predictor-corrector method. Don't try to automate the code for grid invariance (so that it runs through N = 2, 4, 6... to within a tolerance) until you have completed steps a) and b).