FLIGHT STATUS PREDICTOR

A Classification Machine Learning Project

By: Brian Treftz, MS Data Science Student

TABLE OF CONTENTS

- **O** INTRODUCTION
- 02 DATA
- 03 ML PIPELINE
- **04** RESULTS
- 05 CONCLUSION

01 INTRODUCTION

0

PROJECT MOTIVATION

Flight delays create logistical challenges for travelers, airlines, and airports, often resulting in cascading effects across the entire aviation system.

Advance notice of potential delays empowers stakeholders to take proactive actions instead of reacting to last-minute disruptions.

IMPACT ON KEY STAKEHOLDERS

- Decreased stress
- Less missed connections
- Reduced last-minute schedule adjustments
 - o Ground transportation
 - Meeting schedules

AIRLINES

- Turnaround disruptions
- Increased fuel costs
- Scheduling inefficiencies

AIRPORTS

- Gate congestion
- Resource strain
- Operational delays

MACHINE LEARNING OF COURSE!

TWO SUPERVISED LEARNING APPROACHES:

REGRESSION MODEL - Quantify magnitude of the delay

CLASSIFICATION MODEL - Binary label (1 = Yes, 0 = No) for arrival delays >= 15min


```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6777978 entries, 0 to 677797
Data columns (total 43 columns):
     Column
     Carrier Name
     Year
     Ouarter
     Month
     Month Day
     Week Day
     Flight_Date
     Airline DOT ID
     Tail Number
     Flight_Number
     Origin_Airport_ID
     Origin_City_Market_ID
     Origin_IATA_Code
     Origin_City_State
     Destination_Airport_ID
     Destination_City_Market_ID
     Destination IATA Code
     Destination_City_State
     Dep Time Block Group
     Scheduled_Departure_Time
     Actual_Dep_Time
    Dep_Time_Offset
```

02 DATA

AIRLINE ON-TIME PERFORMANCE DATA

WHAT: Monthly data on flights reported by US certified air carriers

CONTENTS: Flight details, performance data, and operational data

SOURCE: Bureau of Transportations Statistics

TIME FRAME: 01 Apr 2023 - 31 Mar 2024

Raw Data Example

А	В	С	D	Е	F	G	Н	I	J	K	L	M	N
Year	Quarter	Month	DayofMonth	DayOfWeek	FlightDate	Reporting_A	DOT_ID_Rep	IATA_CODE_	Tail_Numbe	Flight_Numb	OriginAirpor	OriginAirpor	OriginCityMa
2023	4	12	25	1	12/25/23	00	20304	00	N611SK	3173	11982	1198202	31982
2023	4	12	25	1	12/25/23	00	20304	00	N762SK	3178	12915	1291503	31205
2023	4	12	25	1	12/25/23	00	20304	00	N608SK	3205	16218	1621802	33785
2023	4	12	25	1	12/25/23	00	20304	00	N760SK	3232	12278	1227805	30928
2023	4	12	20	3	12/20/23	00	20304	00	N797SK	5772	10372	1037205	30372
2023	4	12	20	3	12/20/23	00	20304	00	N793SK	5776	10372	1037205	30372

BF	BG	ВН	ВІ	BJ	BK	BL	BM	BN	ВО	ВР
WeatherDela	NASDelay	SecurityDela	LateAircraft[FirstDepTime	TotalAddGTi	LongestAdd	DivAirportLa	DivReachedD	DivActualEla	DivArrDelay
							0			
							0			
							0			
							0			
							0			
							0			

RAW DATA

DATA FOR PROJECT

6,884,250

Number of Flights (Rows)

6,777,978

Ш

Number of Features (Columns)

43

3.11 Gb

CSV File Size

1.48 Gb

11.0 Gb

Pandas DF Memory Usage

1.2 Gb

O3 ML PIPELINE

*

DESIGN DIAGRAM

DIMENTIONALITY REDUCTION

EDA

- Distributions
- Correlations
- Summary statistics

FEATURE ENGINEERING

- Renaming features
- Binning
- Adding carrier names

TARGET ANALYSIS (TA)

- Quantifying delayed flights
- Temporal analysis
- Geographic Analysis

FEATURE SELECTION

- Extracting Training and Testing datasets
- Down sampling to address imbalance in Target
- Feature importance
- Cramer's V score
- Pearson

EDA and TA

% Delayed of all the flights

No. Flights Vs. Carrier

EDA and TA

% Delayed VS Origin

No. of Flights vs Origin

% Delayed VS Destination

No. of Flights vs Destination

*

EDA and TA

Delay Rate VS Month

% Delay VS Weekday

No. of Flights VS Weekday

EDA and TA

EDA and TA

EDA and TA - Takeaways

- Model accuracy >= 80% is the starting benchmark
- Highest rate of delays occurs in July
- Largest % delays occur on Sundays and Fridays
- Delays are inevitable.
 - It'd be nice to know in advance.

*

FEATURE SELECTION

Down sampling to address imbalance

Before

```
# Display values before downsampling
print(training_df['Delayed'].value_counts())

# Display shape before downsampling
print(training_df.shape)
```

```
0 4183104
1 1072668
Name: Delayed, dtype: int64
(5255772, 18)
```

After

```
# Verify the new class distribution
print(training_df_ds['Delayed'].value_counts())
# Verify new dataframe shape
print(training_df_ds.shape)
```

```
1 1072668
0 1072668
Name: Delayed, dtype: int64
(2145336, 18)
```

FEATURE SELECTION

Quantifying effect size of categorical features. (Cramér's V)

	Chi2	p-value	Cramér's V
Carrier_Name	41816.6	0.0	0.140
Month	41426.3	0.0	0.139
Week_Day	8241.7	0.0	0.062
Origin	30172.1	0.0	0.119
Destination	21420.5	0.0	0.100
<pre>Dep_Time_Block_Group</pre>	87840.9	0.0	0.202
Arr_Time_Block_Group	75797.0	0.0	0.188
Distance_Group	7441.8	0.0	0.059

Pearson Correlation for numerical feature

Pearson correlation for 'Scheduled_Duration': 0.034

04 RESULTS

MODEL SELECTION

Model	Train Runtime	Predict Runtime	ROC AUC	Accuracy	F1 Score
XGBoost	00:05.0	00:00.0	0.64	0.64	0.64
CatBoost	01:00.0	0.0000	0.64	0.64	0.64
LightGBM	00:19.0	00:02.0	0.64	0.64	0.641
Random Forest	00:48.0	0.00:00	0.63	0.63	0.634
Logistic Regression	00:10.0	00:00.0	0.61	0.61	0.623
SVM	11:49.0	00:17.0	0.51	0.51	0.434

HYPERPARAMETER TUNING

Method - GridSearchCV

Parameter	Default Value	Input Values	Output
Learning Rate	0.3	0.01, 0.05, 0.1, 0.2	0.2
Max Depth	6	3, 5, 7, 10	10
Subsample	0.9	0.7, 0.8, 0.9, 1.0	0.9

FINAL MODEL PERFORMANCE

Metric	Training Do	Test Data	
	Before Tuning	Value	
Accuracy	0.64	0.65	0.67 ↑
F1 Score	0.64	0.64	0.41 ↓
ROC AUC	0.64	0.65	0.64 ↓

05 CONCLUSION

What did I learn?

- I have more questions now than when I started (and that's a good thing!).
- Striving to build a robust and accurate model is important, and awesome.
- But even more important is being able to succinctly convey insights and ensure stakeholders see the value of the work.
- This is just the beginning of this project...

DESIGN DIAGRAM - V2

THANKYOU

Questions?
Please reach out to me at brian.treftz@gmail.com