Time Series Based Traffic Flow Prediction

——Bill (Lin Yuchen) 2016.5.25

Outline

- Introduction
- Problem Definition
- Solutions
- Performance Evaluation
- Conclusion

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
- 4. Performance Evaluation
- 5. Conclusion

Introduction

- Traffic Congestion wastes time and energy.
- Traffic Flow Prediction is a HOT topic in many disciplines:
 - Transportation Science
 - Civil Engineering
 - Policy Planning
 - Operation Research

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
- 4. Performance Evaluation
- 5. Conclusion
- · 3 main previous methods:
 - Mathematical models, Simulation studies, Field survey

Introduction

- Now we have a gold mine of real-time traffic data.
 - CCTV cameras
 - GPS devices
 - Other Traffic sensors: under-pavement loop detectors
- We can implement Data Mining Techniques on them.

- 1. Introduction
- 2. Problem Definition

3. Solutions

Problem Definition

4. Performance Evaluation

5. Conclusion

- Consider a set of **n** road segments comprising **n** traffic sensors (e.g., loop detectors).
- We assume that at given time interval t (e.g., every 5 mins), each sensor provides a traffic data reading, e.g., speed v[t].
- Definition 1:
 - {i} denotes sensors and {j} denotes a series of continuous time
 - Given a set of observed speed readings $V=\{v_i(j), i=1,...,n; j=1,...,t\}$
 - The prediction problem is to find the set $V=\{v_i(j), j=t+1, t+2,...t+h\}$ for each sensor i, where **h** denotes the prediction horizon.

- 1. Introduction
- 2. Problem Definition
- 3. Solutions

Problem Definition

- 4. Performance Evaluation
- 5. Conclusion
 - Example:

Time Interval=5min h=3

sensor \time	8:05	8:10	8:15	8:20	8:25	8:30
V1	10.1	13.5	14.9	?	?	?
V2	9.2	7.5	8.2	?	?	?
V3	9.2	9.6	9.4	?	?	?

- Definition 2:
 - When h = 1, it refers to a short-term prediction
 - When h > 1, it refers to a long-term prediction

- 1. Introduction
- 2. Problem Definition

3. Solutions

- 1. ARIMA
- **2. HAM**
- 3. H-ARIMA
- 4. Performance Evaluation
- 5. Conclusion

ARIMA Model

- Auto-Regressive Integrated Moving Average (ARIMA)
- {Yt} refers to a time series data (e.g., the sequence of speed readings).

$$Y_{t+1} = \sum_{i=1}^{p} \alpha_i Y_{t-i+1} + \sum_{i=1}^{q} \beta_i \varepsilon_{t-i+1} + \varepsilon_{t+1}$$

Auto-Regressive component:

a linear weighted combination of previous data is calculated, where $\bf p$ refers to the order of this model and $\bf a_i$ refers to the weight of (t-i+1)-th speed

Noise Items From Moving Average Model

the sum of weighted noise from the moving average model is calculated, where **q refers to** its order , ϵ denotes the noise, and β i represents the weight of (t – i + 1)-th noise.

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
 - 1. ARIMA
 - 2. HAM
 - 3. H-ARIMA
- 4. Performance Evaluation
- 5. Conclusion

ARIMA Model

$$Y_{t+1} = \sum_{i=1}^{p} \alpha_i Y_{t-i+1} + \sum_{i=1}^{q} \beta_i \varepsilon_{t-i+1} + \varepsilon_{t+1}$$

- The predicted value mainly relies on the linear combination of the data that occurred before time t.
- This model can be directly used to predict the traffic speed data, when prediction horizon h=1.
- When h >1, we can iterate the prediction process h times by using the predicted value as the input to predict the next value.
- An obvious disadvantage: When h is increasing, the accuracy is decreasing.

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
 - 1. ARIMA
 - 2. HAM
 - 3. H-ARIMA
- 4. Performance Evaluation
- 5. Conclusion

HAM

Historical Average Model

Speed of A certain Sensor

	Monday Of Week3	Monday Of Week4	Monday Of Week5	Monday Of Week6	
8:30	10.1	10.3	10.2	?	†
8:40	10.5	10.4	10.6	?	
8:50	9.9	9.8	9.8	?	
9:00	7.8	7.7	7.6	?	

$$v(t_{d,w} + h) = \frac{1}{|V(d,w)|} \sum_{s \in V(d,w)} v(s)$$

V (d, w) refers to the subset of past observations that happened at the same time **d** on the same day **w**.

d captures the daily effectsw captures the weekly effects

$$(10.1+10.3+10.2)/3 = 10.2$$

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
 - 1. ARIMA
 - 2. HAM
 - 3. H-ARIMA
- 4. Performance Evaluation
- 5. Conclusion

Hypothesis1:

The prediction horizon(h) has no noticeable effect on HAM. However, as the h increases, the accuracy of ARIMA decreases.

The dataset is from LA County road network

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
 - 1. ARIMA
 - 2. HAM
 - 3. H-ARIMA
- 4. Performance Evaluation
- 5. Conclusion

Hypothesis2:

HAM can effectively predict the **sudden speed changes** at the boundaries (i.e., beginning and end) of rush hours.

ARIMA has a delayed reaction on the boundaries

Figure 2. Effect of rush-hour boundaries

- 1. Introduction
- 2. Problem Definition

H-ARIMA

- 3. Solutions
 - 1. ARIMA
 - 2. HAM
 - 3. H-ARIMA
- 4. Performance Evaluation
- 5. Conclusion

Historical ARIMA (H-ARIMA) **selects** in <u>real-time</u> between <u>ARIMA</u> or <u>HAM</u> based on their **accuracy**.

We train a **decision-tree model**.

- (λ) = the decision parameter
- $(\Phi) = threshold$

For each \mathbf{t} , we choose between ARIMA and HAM based on the trained value of $\lambda \mathbf{t}$. If $\lambda \mathbf{t} \leq \boldsymbol{\phi}$, we choose ARIMA, otherwise, we choose HAM.

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
 - 1. ARIMA
 - 2. HAM
 - 3. H-ARIMA
- 4. Performance Evaluation
- 5. Conclusion

Get ARIMA Model

Get prediction VHAM from HAM

11: Return λ .

H-ARIMA

```
dataset
                                  4:00PM, Monday
Algorithm 1 Get \lambda(\{v(j)\}, d, w)
Output: \lambda
                                         _ subset of {v(j)} for HAM
 1: Let S = \{V(\{v(j)\}, d, w)\}
 2: Let Err_{ARIMA} = 0; Err_{HAM} = 0 init two Error
 3: Initialize ARIMA model with training dataset \{v(j)\}
 4: v_{\text{HAM}} = \text{Average}(V\{d,w\});
 5: for all v_i \in S do
                                    Get prediction VARIMA from ARIMA model
       v_{\text{ARIMA}} = \text{ARIMA}(i); \leftarrow
     Err_{ARIMA} = Err_{ARIMA} + RMSE(v_i, v_{ARIMA});
 7:
       Err_{HAM} = Err_{HAM} + RMSE(v_i, v_{HAM}); accumulate the two error
 9: end for
10: \lambda = Err_{ARIMA} / (Err_{ARIMA} + Err_{HAM})
```

if $\lambda <= 0.5$, ARIMA is better if $\lambda > 0.5$, HAM is better so threshold $\phi = 0.5$

set λ the ratio of Erranma

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
 - 1. ARIMA
 - 2. HAM
 - 3. H-ARIMA
- 4. Performance Evaluation
- 5. Conclusion

H-ARIMA

The effect of d on λ .

(a) h=1 (5-min in advance prediction)

(b) h=6 (30-min in advance prediction)

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
 - 1. ARIMA
 - **2. HAM**
 - 3. H-ARIMA
- 4. Performance Evaluation
- 5. Conclusion

H-ARIMA

The effect of rush hours.

(b) Historical average over time

Figure 4. Effects of rush-hour boundaries over λ

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
- 4. Performance Evaluation
- 5. Conclusion

Fitness Measurements

(MAPE) Mean Absolute Percent Error (RMSE) Root Mean Square Error

$$\begin{aligned} \text{MAPE} &= (\frac{1}{N} \sum_{i=1}^{N} \frac{|y_i - \widehat{y}_i|}{y_i}) \times 100 \\ \text{RMSE} &= \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \widehat{y}_i)^2} \\ \text{the number of predictions} \end{aligned}$$

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
- 4. Performance Evalua
- 5. Conclusion

★ES **★**ARIMA **+**NNet **+**H-ARIMA

(a) Rush hour

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
- 4. Performance Evaluation
- 5. Conclusion

→ES →ARIMA →NNet →H-ARIMA

(b) Non-rush hour

- 1. Introduction
- 2. Problem Definition

- 3. Solutions
- 4. Performance Evaluation
- 5. Conclusion

Figure 8. Case study on I-5 S. segment from Downtown

- 1. Introduction
- 2. Problem Definition

- 3. Solutions
- 4. Performance Evaluation
- 5. Conclusion

Figure 9. Case study on I-10 W. segment to West-LA

- 1. Introduction
- 2. Problem Definition

Long-term Prediction(h=6)

- 3. Solutions
- 4. Performance Evaluation
- 5. Conclusion

(a) Rush hour

(b) Non-rush hour

Figure 10. Overall RMSE (h=6)

- 1. Introduction
- 2. Problem Definition

Long-term Prediction(h=6)

- 3. Solutions
- 4. Performance Evaluation
- 5. Conclusion

(a) Actual speed

(b) MAPE of the road

Figure 11. Case study on I-10 E. segment to Downtown

- 1. Introduction
- 2. Problem Definition
- 3. Solutions
- 4. Performance Evaluation
- 5. Conclusion

Conclusion

- 1. The traditional prediction approaches that treat traffic data streams as generic time series fail to forecast traffic during traffic peak hours.
- 2.H-ARIMA significantly improves the prediction accuracy of existing approaches(HAM、ARIMA) by incorporating the historical traffic data into the prediction model.
- 3. The accuracy of H-ARIMA is 67% in short-term and 78% in long-term predictions.
- 4.Event information (e.g. traffic accidents) and location features (e.g. there is a super market nearby),

Thank you for listening.