Recurrences

Recurrence Equation

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c \\ aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

- Technicalities
 - 1. Ignoring the assumption of integer arguments to function
 - 2. Ignoring boundary conditions
- Merge-Sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1 \end{cases}$$

After Ignoring 1& 2

$$T(n) = 2T(n/2) + \Theta(n)$$

Solving Recurrences

- 1. Substitution Method
- 2. Recursion-tree Method
- 3. Master Method

1. Substitution Method

- Guess the solution
- ✓ Use Mathematical induction to show that the solution works.

Examples:

- 1. $T(n) = 2T(\lfloor n/2 \rfloor) + n$
- 2. $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$

2. The Recursion-Tree Method

- Each node represents the cost of a single sub-problem
- ✓ Summing the cost within each level of the tree give a per-level costs
- ✓ Summing the pre-level cost gives the total costs of the recurrence.

Examples:

- 1. $T(n) = 3T(n/4) + cn^2$
- 2. T(n) = T(n/3) + T(2n/3) + O(n)

3. Master Method

Solve the recurrence of the form:

$$T(n)=a T(n/b) + f(n),$$

Where: $a \ge 1$, b > 1, f(n) asymptotically +ve function.

1. If
$$f(n) = O(n^{\log_b a - \varepsilon})$$
, $\varepsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

2. If
$$f(n) = \Theta(n^{\log_b a})$$
, then: $T(n) = \Theta(n^{\log_b a} \log n)$

3. If
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
, $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for $c < 1$, then: $T(n) = \Theta(f(n))$

Case 1:

If
$$f(n) = O(n^{\log_b a - \varepsilon})$$
, $\varepsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

If
$$n^{\log_b a} / f(n) = n^{\varepsilon}$$
 then: $T(n) = \Theta(n^{\log_b a})$

If
$$n^{\log_b a} > f(n)$$
 and $n^{\log_b a} / f(n) \neq n^{\varepsilon}$
then: $T(n) = !!!$

Case 2:

If
$$f(n) = \Theta(n^{\log_b a})$$
 ,then: $T(n) = \Theta(n^{\log_b a} \log n)$

If
$$n^{\log_b a} = f(n)$$
 then: $T(n) = \Theta(n^{\log_b a} \log n)$

Case 3:

If
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
, $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for $c < 1$, then: $T(n) = \Theta(f(n))$

If
$$f(n)/n^{\log_b a} = n^{\varepsilon}$$
 and $af(n/b) \le cf(n)$
then: $T(n) = \Theta(f(n))$

If
$$f(n) > n^{\log_b a}$$
 and $f(n) / n^{\log_b a} \neq n^{\varepsilon}$
then: $T(n) = !!!$

Examples:

1.
$$T(n) = 9T(n/3) + n$$

2.
$$T(n) = T(2n/3)+1$$

3.
$$T(n) = 4T(n/2) + n^3$$

4.
$$T(n) = 2T(n/2) + n \lg n$$