Computing Methods for Experimental Physics and Data Analysis

Data Analysis in Medical Physics

Lecture 1: Intro to Medical Image Processing and Analysis

Alessandra Retico <u>alessandra.retico@pi.infn.it</u> INFN - Pisa

Course objectives

- to provide students with an overview of the computational and mathematical methods used in medical image processing
- to complement the programming skills you acquired in the first two modules of this course with the knowledge of the Matlab programming language

In demos and hands-on lectures:

- practical examples of several methods currently used to enhance and extract relevant information from medical images
- a variety of data sets (2D, 3D, 4D), acquired with the main medical imaging modalities (e.g. RX, CT, MRI) will be made available

Course Calendar

- 1. Friday, November 22 11.00-13.00 room S1
- 2. Monday, November 25 9->11 room X1
- 3. Monday, November 25 16->18 room X1
- 4. Thursday, November 28 9->11 room V1
- 5. Friday, November 29 11.00-13.00 room S1
- 6. Thursday, December 5 9->11 room V1
- 7. Monday, December 9 9->11 room X1
- 8. Monday, December 9 16->18 room X1
- 9. Thursday, December 12 9->11 room V1
- 10. Monday, December 16 9->11 room X1
- 11. Monday, December 16 16->18 room X1
- 12. Thursday, December 19 9->11 room V1

Bring Your laptool.

Course overview

Medical data processing, feature extraction, feature/image classification:

- Handling standard-format medical data (DICOM), data anonymization, visualization
- Deriving features form images, image segmentation
- Data quality control pipelines, outlier removal, dimensionality reduction
- Data analysis and classification
- Performance evaluation: figures of merit, cross-validation, permutation test
- Machine-learning and deep-learning tools for segmentation and classification
- Data augmentation, transfer learning, retrieving localization information

Class prediction on unseen example

ed Case
fier Control

Medical Imaging: focus on diagnostic modalities

Medical images are more than pictures!!!

Medical vs. non-medical images

- Medical images reflect various physical properties of the body
 - Images are formed by interaction of radiation/ultrasounds with tissues/organs
- Medical images are not limited to 2D, as natural pictures generally are

- Medical images may allow to study:
 - the structure of tissues/organs
 - the function tissues/organs

The main diagnostic imaging modalities

TECHNIQUE	MEASURED PHYSICAL QUANTITY	INDIRECT CLINICAL INFORMATION	
X-Ray (Radiography, Computed tomography)	Intensity of transmitted X rays	Mapping tissue radiodensity. Mapping body cavity (e.g. vessels) through contrast agents	
Nuclear Medicine (SPECT, PET)	Intensity of emitted γ rays	Distribution functional radiotracers	
Ultrasound (US, Doppler)	Intensity / frequency of reflected ultrasound	Mapping tissue with different acoustic properties. Mapping blood velocity	
Nuclear Magnetic Resonance (MRI, fMRI,)	Intensity of stimulated emission of radiofrequency waves	Mapping tissues with different relaxation properties, different water content and different water aggregation status	
•••			

Medical Imaging: historical perspective

Invasive imaging

Non-invasive imaging

Fusion imaging

from T. Beyer et al., Insights Imaging (2011)

The role of computers in Medical Imaging

The computer revolution in medical imaging systems

Louis J. Heitlinger

Computers have become an essential part of medical imaging, where their many uses include control of hardware and image enhancement and generation

In a computerized tomography system, the X-ray data are acquired by a detector and converted to digital data. These data are then processed by the array processor and the minicomputer to generate the image, which is then displayed on a CRT.

The role of computers in Medical Imaging

• To reconstruct acquired signals to form diagnostic images

CT image reconstruction from sinogram

MRI image reconstruction from k-space data

To allow the visualization of the acquired information

Activated brain areas while executing a task

Axon fiber tracts from diffusion-weighted MRI data

The role of computers in Medical Imaging

- Algorithms for information processing enter at many levels in the image formation pipeline
- We will focus in this course on the high-level Analysis procedures, and we will not cover the countless other possibilities

Biomedical image processing and analysis

The main objectives are:

- To detect abnormalities in diagnostic images (lesions, etc.)
- To follow up pathological conditions (e.g. measuring the grow rate of lesions)
- To assessment treatment efficacy

→ Computer Aided Detection/ Diagnosis (CAD) systems

Historical development of CAD systems:

- '90 Old-fashion systems (Rule-based decision systems)
- 2) 2000-today Hand-crafted feature and Machine Learning classification
- 3) since 2016 Deep Learning-based data/image classification

Data dimensionality: 3D images

Computed Tomography

A thin-slice lung CT exam generates ~300 slices per subject

Volume display planes

 Medical images are usually displayed by anatomical planes

Data dimensionality: 3D and more...

Structural MRI T₁-weighted images

16 bit

3D array of data:

- The voxel is the "volume element"
- Typical "High resolution" MRI T_1 -w images: $v_x \times v_y \times v_z \approx 1 \times 1 \times 1 \text{ mm}^3$

~20 MB

Functional MRI (fMRI)

- BOLD Response: blood-oxygen-leveldependent (BOLD) contrast
- Typically, 1 volume per second (3x3x3mm³) is acquired for 4-5 min
- Stimuli (visual, auditory, tactile, ...) are administered to the subject during the scan
- Analysis of data time series to look for up-anddown signals that match the stimulus time series

Functional connectivity

 Resting state rs-fMRI: study of temporal correlations between spatially remote neurophysiological events

Data dimensionality: 2D/3D/4D/..nD images

- Image element:
 - pixel: picture element
 - voxel: volume element
- Images are n-D matrices of numbers (integer, real, complex)
- Typical data types:
 - signed/unsigned byte (8-bit)
 - signed/unsigned short (16-bit)
 - signed/unsigned int (32-bit)
 - float (32-bit) and double (64-bit)

00000001 00000100

16-bit integer

- Metadata is required for correct interpretation, e.g.:
 - pixel/voxel dimension (e.g. voxel size (mm): v_x, v_y, v_z)
 - machine settings
 - parameters used to produce the image
 - patient's positioning
 - patient's information (age, sex,...)
 - Intensity scaling information (only integers are often stored)

Errors introduced by the analog to digital conversion

- Most medical imaging devices need to convert analog signals into digital ones
- The bit dynamic range should be appropriate to catch the signal variability with minimum errors

2-bit vs. 4-bit dynamics

N. bit	Conversion dynamics	Decimal (binary) range of values	Maximum conversion error
2	$2^2 = 4$	from 0 (00) to 3 (11)	1/4*1/2=12.5%
4	$2^4 = 16$	from 0 (0000) to 15 (1111)	1/16*1/2= 3.1%
8	$2^8 = 256$	from 0 (00000000) to 255 (11111111)	1/256*1/2= 0.2%
12	$2^{12} = 4096$	from 0 (000000000000) to 4095 (11111111111)	1/4096*1/2= 0.012%
16	$2^{16} = 65536$	from 0 (0000000000000000) to 65535 (11111111111111)	1/65536*1/2= 7 10-4 %

Image representation with gray and color scales

 Usually, anatomical images are represented in gray scales, functional images and parametric maps in color scales

• Structural image

Functional image

Image overlay

Image windowing

- In Computed Tomography (CT) voxel intensities are expressed in Hounsfield Units (HU)
- The HU scale is a linear transformation of the original linear attenuation coefficient measurement into one in which the radiodensity of distilled water at standard pressure and temperature is defined as zero HU
- HU values of human tissues range in [-1000, 1000] HU
- To visualize CT images a window level (WL) and a window width (WW) should be chosen
- A linear transform is applied that maps the lower bound to zero and the upper bound to the maximum gray level (i.e., 255 for 8 bit images) for visualization

Hounsfield Units for human body

Bone	1000
Liver	40 to 60
White Matter	46
Grey Matter	43
Blood	40
Muscle	10 to 40
Kidney	30
Cerebrospinal Fluid	15
Water	0
Fat	-50 to -100
Air	-1000

Look-up tables (LUTs)

- Look-up tables (LUTs) are used for pseudo coloring.
 - Computer graphic boards typically limit the number of gray scales to 256 (8 bit), but offer 256^3 (~ $16\ 10^6$) colors.
 - Pseudo coloring allows presentation of data without reducing the information as it would result from windowing

Medical image file formats

- The file format describes how the image data are organized in the file and how pixel data should be interpreted by a software for correct reading and visualization
- Numerical values of the pixels depend on image modality, acquisition protocol, reconstruction and applied post processing algorithms:
 - A medical image which is separated from the context information is meaningless
- Medical image file formats belong to two categories:
 - Those intended to standardize images generated by different diagnostic modalities, e.g. the DICOM standard
 - Those aiming to facilitate the post-processing analysis (e.g. NIfTI for neuroimaging)

DICOM file format

- In response to the increased use of digital images in radiology the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) formed a joint committee in 1983 to create a standard format for storing and transmitting medical images.
- The committee published the original ACR-NEMA standard in 1985.
- This standard has subsequently been revised and in 1993 it was renamed DICOM.
 - <u>Digital Imaging and COmmunication in Medicine (DICOM):</u>
 - It is both a file format and communication protocol
 - It is the standard format used in digital imaging medical devices
 - The header and the image are contained in the same file
 - The header contains many information on the imaging device, the acquisition parameters, the patient and the physician
 - DICOM supports most imaging modalities

DICOM file format

- DICOM is most commonly used for storing and transmitting medical images enabling the integration of medical imaging devices such as scanners, servers, workstations, printers, network hardware, and picture archiving and communication systems (PACS) from multiple manufacturers.
- Pixel data cannot be separated from the description of the image formation procedure:
 - Images should be self-descriptive
- The DICOM format ("anachronistically") stores volume as a sequence of 2D slices.
 - (A 3D DICOM format exists, but it is not widespread).
 - It is not that bad to have images stored slice by slice, as some acquisition parameters may change slice-wise during the acquisition.
- The DICOM format only stores integer numbers as pixel values, thus a *slope* and an *intercept* to linearly transform data in the allowed range are specified

DICOM metadata

A **DICOM data element, or attribute,** is composed of the following most important parts:

- a tag that identifies the attribute, usually in the format (XXXX,XXXX) with hexadecimal numbers, and may be divided further into DICOM Group Number and DICOM Element Number;
- a DICOM Value Representation (VR) that describes the data type and format of the
 attribute value.

Check https://www.dicomlibrary.com/dicom/dicom-tags/

- Most fields are optional
- there are also vendors' private keys
- Some examples:
 - · Session Name and Study Number
 - (0008, 0090) ID Referring Physician
 - (0010,0010) Patient's Name
 - Image "Shape"
 - (0028, 0010) IMG Rows
 - (0028, 0011) IMG Columns
 - (0028, 0030) IMG Pixel Spacing
 - (0018, 0050) ACQ Slice Thickness
 - · How and where the image data is stored
 - (0028, 0100) IMG Bits Allocated
 - (0028, 0101) IMG Bits Stored
 - (0028, 0102) IMG High Bit

The Neuroimaging Informatics Technology Initiative (NIfTI) file format

Another file format commonly used to store brain imaging data obtained using Magnetic Resonance Imaging methods is the Neuroimaging Informatics Technology Initiative (NIFTI)

- The NIfTI stored volumes can be:
 - in dual file format: file.hdr, file.img
 - in a single file: file.nii
- NIfTI is the default file format of most software packages for neuroimaging postprocessing:
 - FSL, SPM, itk-SNAP, 3D Slicer, ITK & VTK, nipy, etc.
- The NIfTI format allows a double way to store the orientation of the image volume in the space:
 - 1. rotation + translation to be used to map voxel coordinates to the scanner reference frame
 - 2. 12-parameter or more general transformation adopted to realign the volume to a standard template coordinate system.

Images viewers

• MANGO: http://ric.uthscsa.edu/mango/index.html

Mango supports Mac, Windows, and Linux operating systems.

Download for Mac (v4.1)

Download for Windows (v4.1)

Download for Linux (v4.1)

Download Previous Versions 💠

License

Mango software is copyrighted by the University of Texas. Mango is available for use, as is, free of charge, for educational and scientific, non-commercial purposes. The software and data derived from Mango software may be used only for research and may not be used for clinical purposes. If Mango software or data derived from Mango software is used in scientific publications, we request that the 'Research Imaging Institute, UTHSCSA' be cited as a reference. Use or incorporation of this software or data derived from this software in commercial applications or commercial publications requires a written consent from the RII-UTHSCSA.

Let's read real images with Mango ...

- Explore 2D, 3D and 4D data sample
- Make image overlays

Other medical image viewers

- ImageJ
 - https://imagej.nih.gov/ij/
- OsiriX (only for Mac, iPhone, iPad)
 - https://www.osirix-viewer.com
- 3DSlicer
 - https://www.slicer.org
- itk-SNAP
 - http://www.itksnap.org/pmwiki/pmwiki.php

•

The pydicom library

- Pydicom is a pure Python package for working with DICOM files such as medical images, reports, and radiotherapy objects.
- Pydicom makes it easy to read these complex files into natural pythonic structures for easy manipulation.
- Requirements:
 - numpy library is recommended, (it is only required if manipulating pixel data)
 - matplotlib is necessary to visualize data

See demo code (Jupyter notebooks):

- Lecture1_demo1 _read_DICOM_file.ipynb (read and visualize dicom files, e.g. a 2D sclice)
- Lecture1_demo2 _read_DICOM_dir.ipynb (read and visualize dicom dirs, e.g. a 3D volume)

The General Data Protection Regulation (GDPR)

- The EU General Data Protection Regulation (GDPR) was approved by the EU Parliament on 14 April 2016
- It is designed to:
 - Harmonize data privacy laws across Europe
 - Protect and empower all EU citizens data privacy
 - Reshape the way organizations across the region approach data privacy
- GDPR and Data Science
 - De-identifying medical imaging is a fundamental prerequisite for data storing, processing and sharing within research projects to be compliant to GDPR:
 - Anonymization: using the Hash function (non-reversible)
 - Pseudo-anonymization: data is tokenized, a separate lookup file (with the original entry and the token) is generated and stored in a restricted database.

See demo code (Jupyter notebooks):

Lecture1_demo3 _anonymize.ipynb (how to anonymize dicom files)

References and sources

Books

- The Essential Physics of Medical Imaging, Jerrold T. Bushberg
- Digital Image Processing for Medical Applications, Geoff Dougherty
- Handbook of Medical Image Processing and Analysis, Isaac N. Bankman
- Image Processing and Acquisition using Python, Ravishankar Chityala & Sridevi Pudipeddi

Sources

- https://www.dicomstandard.org
- https://eugdpr.org
- https://pydicom.github.io/pydicom/

You will find the repository of course materials on https://github.com/retico/cmepda_medphys and the image data samples to use on https://pandora.infn.it/public/cmepda and on https://drive.google.com/open?id=1YqK7ZkM-P2IrqfD7Pj-SCmjz-GWd_1-Y

To do

University of Pisa has a Campus license for MATLAB

- Download and install MATLAB on your laptop: <u>http://doc.sid.unipi.it/Campus_Matlab</u>
- Follow the link <u>Come ottenere ed installare</u> <u>MATLAB</u> and then "Istruzioni ad uso degli studenti <u>(Installazione MATLAB Student)</u>"

• http://ric.uthscsa.edu/mango/index.html

System requirements and useful MATLAB toolboxes

- System requirements for installation:
 - Administrative rights
 - **Processors Minimum**: any Intel or AMD x86-64 processor
 - RAM Minimum: 3.3 GB. Recommended: 8 GB
 - DISK Minimum: 3.3 GB of HDD space for MATLAB only, 5-8 GB for a typical installation. Recommended: An SSD is recommended
- During the installation you have to specify the products to be installed, i.e. the MATLAB toolboxes.
- You may add some toolboxes you like to the suggested ones (e.g. the Statistics and Machine Learning toolbox, the Deep Learning toolbox)
 - Add wavelet toolbox and curve fitting toolbox we will use in exercises
- you can add more toolboxes whenever you need fro the Add-Ons drop down menu from the MATLAB desktop HOME tab.