Интерференция лазерного излучения

Гончаров Марк

21 апреля 2021 г.

1 Теория

LASER - Light Amplification by Stimulated Emission of Radiation.

Интенсивность волны в среде при $\alpha = Const$ (коэффициент поглощения) изменяется по закону Бугера-Ламберта-Бера

$$I(x) = I_0 \exp\{-\alpha x\}.$$

Также вводят часто понятие коэффициента усиления $\gamma = -\alpha$. В активной среде он равен

$$\gamma = B \frac{\overline{h}\omega}{v} \Delta N.$$

Мы будем наблюдать интерфереционную картину, характеризующуюся периодом $\Lambda=\frac{\lambda}{\alpha}$. Оценивать видность будем по формуле $V=\frac{I_{\max}}{I_{\min}}$.

В реальности имеется множество мод, причём разные моды не интерферируют друг с другом, а суммарный результат интерференции равен сумме интерференционных картин разных мод. Поэтому видность получается равной

$$V = \left| \frac{1}{n} \frac{\sin \frac{\pi l}{2L} n}{\sin \frac{\pi l}{2L}} \right|.$$

Рис. 1: Осциллограмма сигналов с фотодиода.

Также видность будет измеряться, как

$$V = \frac{2\sqrt{\delta}}{1+\delta} = \frac{h_4 - h_3}{h_4 + h_3},$$

где $\delta = \frac{h_1}{h_2}$ из рисунка выше

2 Выполнение

Сначала исследуем зависимость видности интерференционной картины от угла поворота поляроида при нулевой разности хода. В нашем случае при L=15см. Тогда исследуемая видность

$$\gamma_3 = \frac{\gamma}{\gamma_1} = \frac{h_4 - h_3}{h_4 + h_3} \cdot \frac{1 + \delta}{2\sqrt{\delta}},$$

где $\delta = \frac{h_1}{h_2}$. Величины h сняты в относительных единицах осциллографа. Единицы не имеют значения, так как для опредления видности необходимо только отношение высот показаний с осциллографа. Также снизу укажем абсолютные погрешности измерений величин. С другой стороны, теоретически, должна быть зависимость $\gamma_3 = |\cos \alpha|$.

h1	h2	h3	h4	<u>Ļ</u> , см	Угол, рад		Практика	Теория
0,80	0,90	0,20	3,00	15,00	0,00		0,96	1,00
0,65	0,95	0,40	2,30	15,00	0,52		0,78	0,87
0,30	0,95	0,70	1,90	15,00	1,05		0,47	0,50
0,15	0,95	0,90	1,30	15,00	1,57	видность	0,23	0,00
0,30	0,95	0,80	1,80	15,00	2,09		0,41	0,50
0,45	0,95	0,50	2,20	15,00	2,62		0,72	0,87
0,65	0,90	0,20	2,90	15,00	3,14		0,95	1,00
0,05	0,05	0,05	0,05	0,03	0	ПОГРЕШНОСТЬ	32,50%	0

Рис. 2: Показания при повороте поляроида.

Что мы наблюдаем: теоретически видность должна немного быстрее изменяться при повороте поляроида. Скорее всего, это связано с неидеальной настройкой приборов (всё таки мне самому не дали настроить). Более того, нулевую видимость мы не можем получить, так как происходит небольшое рассеяние, спектр у лазера хоть и узкий, но неидеальный. Наши измерения, как показывает относительная погрешность, не очень точные из-за измерений. Основа погрешности h - абсолютная сравнима с показаниями. Поэтому в целом, результат неплохой.

Следующий эксперимент: перемещение зеркала вдоль оси. По результатам измерений вычисляем по формулам

$$\delta = \frac{h_1}{h_2}, \gamma = \frac{h_4 - h_3}{h_4 + h_3}, \gamma_2 = \gamma \cdot \frac{1 + \delta}{2\sqrt{\delta}}.$$

<u>↓</u> , см	Дельта	Гамма1	Гамма	Гамма2
10	0,80	1,00	0,67	0,67
12	0,88	0,99	0,75	0,75
13	0,80	0,99	0,83	0,83
14	0,65	0,98	0,88	0,88
15	0,88	1,00	0,93	0,93
16	1,83	0,96	0,94	0,98
18	0,60	0,97	0,86	0,89
20	2,00	0,94	0,76	0,81
22	3,00	0,87	0,60	0,69
24	2,00	0,94	0,47	0,49
28	2,00	0,94	0,25	0,27
34	0,79	0,99	0,12	0,12
40	1,33	0,99	0,16	0,16
46	1,09	1,00	0,17	0,17
50	3,00	0,87	0,14	0,16
64	1,50	0,98	0,04	0,04
70	0,43	0,92	0,30	0,33
72	0,54	0,95	0,40	0,42
73	0,47	0,93	0,57	0,62
74	0,44	0,92	0,62	0,67
75	0,48	0,94	0,67	0,71
76	0,50	0,94	0,75	0,80
77	0,44	0,92	0,76	0,82
78	0,46	0,93	0,76	0,82
79	0,40	0,90	0,78	0,86
80	0,42	0,91	0,81	0,89
81	0,36	0,88	0,73	0,87
82	0,35	0,88	0,73	0,84
83	0,40	0,90	0,75	0,83
84	0,48	0,94	0,75	0,80
85	0,48	0,94	0,71	0,76
86	0,36	0,88	0,62	0,70
87	0,80	0,99	0,59	0,59
88	0,89	1,00	0,51	0,51

Рис. 3: Показания при смещениии.

Видим два ярко выраженных максимума, находящихся на расстоянии $\Delta L = 80-16=64\pm1$ см. Тогда межмодовое расстояние

$$\Delta \nu = \frac{c}{2L} = \frac{c}{\Delta L} = (4.7 \pm 0.1) \cdot 10^8 Hz.$$

Полуширина отдельного максимума на половине высоты $l_{0.5}=(9\pm1)$ см для обоих максимумов (для втрого на полсантиметра больше).

Диапазон частот, в которых происходит генерация продольных мод:

$$2\Delta F \approx \frac{0.52c}{l_{0.5}} = (17 \pm 2) \cdot 10^8 Hz.$$

Число генерируемых лазером подольных мод:

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu} = 5 \pm 1.$$

Видность при перемещении

3 Вывод

Мы научились анализировать сигнал с лазера, вычислять видность интерференционной картины по показаниям осциллографа. Также научились косвенно оценивать число генерируемых лазером продольных мод.