INF5130 - Algorithmique

Série d'exercices - 2

Exercice 1. Soit f et g deux fonctions de \mathbb{N} dans \mathbb{N} telles que $f(n) \geq 0$ et $g(n) \geq 0$ pour tout n. Prouvez que

$$f(n) + g(n) \in \Theta(max(f(n), g(n)))$$

en utilisant la définition de la notation Θ .

Exercice 2. Soit a et b deux constantes réelles strictement positives. Prouvez que,

$$(n+a)^b \in \Theta(n^b)$$

pour n un entier naturel, en utilisant la définition de la notation Θ . Si cette équation vous semble trop abstraite, remplacez a par 15 et b par 10.

Exercice 3. Prouvez que $a^{\log_b(n)} = n^{\log_b(a)}$ pour tout nombre naturel n > 0, tout nombre réel a > 0 et tout nombre réel b > 1.

Suggestion: servez-vous du fait que la fonction $\log_b(x)$ est injective, c'est-à-dire que $\log_b(x) = \log_b(y)$ si et seulement si x = y.

Exercice 4. Classez les fonctions suivantes par ordre croissant; autrement dit, si la fonction f(n) est dans o(g(n)), f(n) doit être placée à gauche de g(n). Si $f(n) \in \Theta(g(n))$, f(n) doit être placée au-dessus ou au-dessous de g(n) (c'est-à-dire au même niveau que g(n)).

$$\left(\frac{3}{2}\right)^n,\ n^3,\ \log^2(n),\ \log(n!),\ 2^{2^n},\ (\sqrt{n})^{\log(n)},\ 2^{\log(n)},\ (\log(n))^{\log(n)},\ 4^{\log(n)},\ n!,\sqrt{\log(n)}$$

Remarque : tous les logarithmes sont des logarithmes dans la base deux.

Exercice 5. Pour chacun des énoncés suivants, dites s'il est *Vrai* ou *Faux*. Justifiez brièvement chacune de vos réponses. Tous les logarithmes sont des logarithmes dans la base deux.

(a)
$$\Theta(2n) = \Theta(n)$$

(c)
$$n^{\frac{1}{2}} \in \omega(\sqrt{n})$$

(b)
$$\left(\frac{n}{\log(n)}\right)^2 \in o\left(\frac{n^2}{\log(n)}\right)$$

(d)
$$\log(4^n) \in \Theta(n)$$

(e)
$$2^n \in \Omega(3^n)$$

Exercice 6. Chacun des énoncés ci-dessous est faux. Montrez-le en donnant un contre-exemple, c'est-à-dire en remplaçant f(n) et g(n) par des fonctions particulières pour lesquelles l'énoncé est faux.

(a) Si
$$f(n) \in O(g(n))$$
, alors $2^{f(n)} \in O\left(2^{g(n)}\right)$
(b) $f(n) + g(n) \in \Theta(\min(f(n), g(n)))$

(b)
$$f(n) + g(n) \in \Theta(\min(f(n), g(n)))$$