Analysis of admission data using data mining algorithms

HIMANI GUPTA-95529
PRIYA PHAPALE - 94662
PRAGYA MOHARATHA-95474

Introduction

- College application process can be quite intimidating.
- Objective here is to analyze student information and predict decision on acceptance for the student.
- We are using KNN, Naive Bayes, SVM to predict decision on student's acceptance.
- This is a binary classification problem.

Decision says - 1 if the student will get an acceptance letter or **0** otherwise.

^oSample Data and Statistics

SampleData														
	Serial No.	GRE Score	TOEF	L Score	Univer	sity Rating	SOP	LOR	CGPA	Resea	rch (Chance of Adr	nit	Decision
0	1	337		118		4	4.5	4.5	9.65		1	0	.92	1
1	2	324		107		4	4	4.5	8.87		1	0	.76	0
2	3	316		104		3	3	3.5	8		1	0	.72	0
3	4	322		110		3	3.5	2.5	8.67		1		0.8	1
4	5	314		103		2	2	3	8.21		0	0	.65	0
5	6	330		115		5	4.5	3	9.34		1		0.9	1
6	7	321		109		3	3	4	8.2		1	0	.75	0
	13.0	C	ount		mean	S	td	mi	n	25%	50	0% 75	5%	max
Ser	ial No.	40	00.0	200.50	0000	115.6143	801	1.00	0 100	.75	200.!	50 300.250	00	400.00
GRE	Score	40	00.0	316.80	7500	11.4736	46	290.00	308	.00	317.0	00 325.000	00	340.00
T0E	FL Score	4	00.0	107.41	0000	6.0695	14	92.00	0 103	.00	107.0	00 112.000	00	120.00
Uni	versity I	Rating 4	00.0	3.08	7500	1.1437	28	1.00	2	.00	3.0	00 4.000	00	5.00
SOP		40	00.0	3.40	0000	1.0068	869	1.00	a 2	.50	3.!	50 4.000	00	5.00
LOR		40	00.0	3.452500		0.898478		1.00	3	.00	3.!	50 4.000	00	5.00
CGPA		40	00.0	8.59	8.598925		317	6.80	8 0	. 17	8.6	61 9.062	25	9.92
Research		40	00.0	0.54	.547500 0.498		862	0.00 0		.00	1.0	00 1.000	00	1.00
Chance of Admit		dmit 4	00.0	0.72	24350 0.1426		609	0.34	4 0	. 64	0.	73 0.830	00	0.97
Decision		4	00.0	0.32	0.320000 0.467		160	0.00	a a	- 00	0.0	00 1.000	20	1.00

No missing values found.

Data Exploration

Features:

- GRE Score Continuous
- TOEFL Score Continuous
- University Rating Ordinal Categorical
- SOP Ordinal Categorical
- LOR Ordinal Categorical
- CGPA Continuous
- Research Discrete

Target:

Decision - Categorical

Chance of Admittance \rightarrow Decision.

- >= 80% is "Accepted"
 - < 80% is "Rejected"

IMPLEMENTATION

- Importing libraries
 - (Pandas, Numpy, matplotlib, sklearn)
- Importing the dataset
- Exploratory data analysis
- Data preprocessing
 - Divide the data into attributes and labels
 - Divide the data into training and testing sets.
- Training the algorithm
- Making predictions
- Evaluating the algorithm
- Results

SUPPORT VECTOR MACHINES (SVM)

- Supervised classification algorithm
- Finds most optimal decision boundary that maximizes the distance from the nearest data points of all the classes
- SVM kernels- Transforms low-dimensional input space and transforms it into a higher dimensional space


```
Linear Kernel

K(x, xi) = sum(x * xi)

Polynomial Kernel

K(x, xi) = 1 + sum(x * xi)^d

Radial Basis Function Kernel

K(x, xi) = 1 + sum(x * xi)^d
```

SVM Analysis of different kernels

```
# Kernel - linear
svc = SVC(kernel='linear', probability=True)
svc.fit(X train, y train)
y_pred_linear = svc.predict(X test)
# Kernel - Poly
svc = SVC(kernel='poly', probability=True)
svc.fit(X_train, y_train)
y_pred_poly = svc.predict(X test)
# Kernel - rbf
svc = SVC(kernel='rbf', probability=True)
svc.fit(X_train, y_train)
y_pred_rbf= svc.predict(X_test)
```

```
Linear: 0.91
Poly: 0.87
Radial: 0.93
----Linear----
 [[72 2]
 [ 7 19]]
----Poly-----
 [[74 0]
 [13 13]]
----RBF----
 [[72 2]
 [ 5 21]]
```

Confusion matrix

Accuracy

Training - 95%, Test - 93%

NAIVE BAYES ALGORITHM

- Naive Bayes is a statistical classification technique based on Bayes Theorem.
- It is one of the simplest supervised learning algorithms.
- Naive Bayes classifier assumes that the effect of a particular feature in a class is independent of other features.
- Even if these features are interdependent, these features are still considered independently. This assumption is called class conditional independence.
- This assumption simplifies computation, and that's why it is considered as naive.

- O1 CALCULATE PRIOR PROBABILITY FOR GIVEN CLASS LABELS
- O2 CALCULATE CONDITIONAL PROBABILITY WITH EACH ATTRIBUTE FOR EACH CLASS
- MULTIPLY SAME CLASS CONDITIONAL PROBABILITY.
- MULTIPLY PRIOR PROBABILITY WITH STEP 3 PROBABILITY.
- O5
 SEE WHICH CLASS HAS HIGHER PROBABILITY HIGHER PROBABILITY CLASS BELONGS TO GIVEN INPUT SET STEP.

Model Generation

Gaussian Naive Bayes: It is used in classification and it assumes that features follow a normal distribution.

```
from sklearn.naive_bayes import GaussianNB
#Create a Gaussian Classifier
gnb = GaussianNB()
#Train the model using the training sets
gnb.fit(X train, y train)
#Predict the response for test dataset
y_pred = gnb.predict(X_test)
```

Confusion Matrix

Accuracy

Training - 90%, Test - 93%

Naive Bayes Algorithm

Pros:

- It is not only a simple approach but also a fast and accurate method for prediction.
- Naive Bayes has very low computation cost.
- It can efficiently work on a large dataset.
- It is easy and fast to predict class of test data set.

Cons:

 One of the limitations of Naive Bayes is the assumption of independent predictors. In real life, it is almost impossible that we get a set of predictors which are completely independent.

KNN Algorithm

- ❖ K nearest neighbor supervised machine learning algorithm.
- calculates the distance of a new data point to all other training data points
- selects the K-nearest data points, where K can be any integer
- assigns the data point to the class to which the majority of the K data points belong.


```
knn = neighbors.KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
```

Scaling the data

- Dataset will contain features highly varying in magnitudes.
- Features with high magnitudes will weigh in a lot more in the distance calculations than features with low magnitudes
- KNN computes distance. Hence we need to bring all features to the same level of magnitudes.
- Common methods of scaling: MinMax Scaler, Standard Scaler, Normalization.

Scaling Data

$$x' = x - \overline{x} / \sigma$$

$$X' = x - \min(x) / \max(x) - \min(x)$$

Confusion Matrix

Accuracy

Training- 93%, Test - 90%

Classification Matrix - Report

		Pred		
		Positive	Negative	
Actual	Positive	20	6	26
Actual	Negative	4	70	74
		24	76	100

Specificity = TN / TN+FP =
$$70/74 = 0.95$$

False Positive rate = FP / FP+ TN
=
$$4/74 = 0.05$$

= 1- Specificity

Accuracy =
$$70 + 20/100$$

Positive Predictive Value = $20/24 = 0.83$ = **0.9**
Negative Predictive Value= $70/76 = 0.92$

COMPARISON ANALYSIS

- As per the ROC chart we can see Naive Bayes behaves better than other models
- Most inclination towards 1.
- Highest ROC curve area

Test accuracy scores

Thank you..