RL: Basics

The Markov Reward Process

Marius Lindauer

Winter Term 2021

Markov Reward Process (MRP)

- Extend Markov Process by rewards
- ▶ Definition of Markov Reward Process (MRP) $M = (S, P, R, \gamma)$
 - ► S is a (finite)
 - \blacktriangleright P is dynamics/transition model that specifies $P(s_{t+1}=s'\mid s_t=s)$
 - $\blacktriangleright \ \ \text{R is a reward function} \ R(s_t = s) = \mathbb{E}[r_t \mid s_t = s]$
 - $\qquad \textbf{ Discount factor } \gamma \in [0,1]$
- Note: no actions
- lacktriangle If finite number (N) of states, we can express R as a vector

Mars Rover as MRP

Rewards:

Lindauer

- ightharpoonup +1 in s_1 ,
- $ightharpoonup +10 \text{ in } s_7$,
- ▶ 0 in all other states

Return & Value Function

- Definition of Horizon
 - ▶ Number of time steps in each episode
 - ► Can be infinite
 - Otherwise called finite Markov reward process

Return & Value Function

- Definition of Horizon
 - Number of time steps in each episode
 - ► Can be infinite
 - Otherwise called finite Markov reward process
- ▶ Definition of Return: G_t (for a MRP)
 - ightharpoonup Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$$

Return & Value Function

- Definition of Horizon
 - Number of time steps in each episode
 - ► Can be infinite
 - Otherwise called finite Markov reward process
- ▶ Definition of Return: G_t (for a MRP)
 - ightharpoonup Discounted sum of rewards from time step t to horizon

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$$

- lacktriangle Definition of State Value Function: V(s) for a MRP
 - Expected return from starting in state s

$$V(s) = \mathbb{E}[G_t \mid s_t = s] == \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots \mid s_t = s]$$

Discount Factor

$$V(s) = \mathbb{E}[G_t \mid s_t = s] == \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots \mid s_t = s]$$

- Mathematically convenient (avoid infinite returns and values)
- lacktriangle Humans often act as if there's a discount factor $\gamma < 1$
- $ightharpoonup \gamma = 0$: Only care about immediate reward
- $ightharpoonup \gamma = 1$: Future reward is as beneficial as immediate reward
- lacktriangle If episode lengths are always finite, can use $\gamma=1$ (but don't have to)

Mars Rover as MRP

Rewards:

- ightharpoonup +1 in s_1 ,
- $ightharpoonup +10 \text{ in } s_7$,
- ▶ 0 in all other states

Sample returns for 4-step episodes, $\gamma=1/2$

 $ightharpoonup s_4, s_5, s_6, s_7: 0 + \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot 0 + \frac{1}{8} \cdot 10 = 1.25$

Mars Rover as MRP

Rewards:

ightharpoonup +1 in s_1 , +10 in s_7 , 0 in all other states

$$V(s) = \mathbb{E}[G_t \mid s_t = s] == \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots \mid s_t = s]$$

$$ightarrow V(s_1) = 1.53, V(s_2) = 0.37, \dots, V(s_7) = 15.31$$

Computing the Value of a Markov Reward Process

- Could estimate by simulation:
 - 1. Generate a large number of episodes
 - 2. Average returns
- ► Requires no assumption of Markov structure

Computing the Value of a Markov Reward Process

- ► Could estimate by simulation:
- Markov property yields additional structure
- ► MRP value function satisfies

$$V(s) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s) V(s')$$

Matrix Form of Bellman Equation for MRP

$$\begin{pmatrix} V(s_1) \\ \dots \\ V(s_n) \end{pmatrix} = \begin{pmatrix} R(s_1) \\ \dots \\ R(s_n) \end{pmatrix} + \gamma \begin{pmatrix} P(s_1|s_1) & \dots & P(s_n \mid s_1) \\ \dots & & \dots \\ P(s_1|s_n) & \dots & P(s_n \mid s_n) \end{pmatrix} \begin{pmatrix} V(s_1) \\ \dots \\ V(s_n) \end{pmatrix}$$

Lindauer

Matrix Form of Bellman Equation for MRP

$$\begin{pmatrix} V(s_1) \\ \dots \\ V(s_n) \end{pmatrix} = \begin{pmatrix} R(s_1) \\ \dots \\ R(s_n) \end{pmatrix} + \gamma \begin{pmatrix} P(s_1|s_1) & \dots & P(s_n \mid s_1) \\ \dots & & \dots \\ P(s_1|s_n) & \dots & P(s_n \mid s_n) \end{pmatrix} \begin{pmatrix} V(s_1) \\ \dots \\ V(s_n) \end{pmatrix}$$

$$V = R + \gamma PV \tag{1}$$

$$V - \gamma PV = R$$

$$1 - \gamma P)V = R \tag{3}$$

$$V = (1 - \gamma P)^{-1}R \tag{4}$$

Lindauer

Matrix Form of Bellman Equation for MRP

$$\begin{pmatrix} V(s_1) \\ \dots \\ V(s_n) \end{pmatrix} = \begin{pmatrix} R(s_1) \\ \dots \\ R(s_n) \end{pmatrix} + \gamma \begin{pmatrix} P(s_1|s_1) & \dots & P(s_n \mid s_1) \\ \dots & & \dots \\ P(s_1|s_n) & \dots & P(s_n \mid s_n) \end{pmatrix} \begin{pmatrix} V(s_1) \\ \dots \\ V(s_n) \end{pmatrix}$$

$$V = R + \gamma PV \tag{1}$$

$$V - \gamma PV = R$$

$$(1 - \gamma P)V = R \tag{3}$$

$$V = (1 - \gamma P)^{-1}R \tag{4}$$

 \leadsto Solving directly requires taking a matrix inverse $O(n^3)$

Iterative Algorithm for Computing Value of a MRP

- Dynamic Programming :
 - ▶ Initialize $V_0(s) = 0$ for all s
 - For k = 1 until convergence
 - ightharpoonup For all s in S

$$V_k(s) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s) V_{k-1}(s')$$

Iterative Algorithm for Computing Value of a MRP

- Dynamic Programming :
 - ▶ Initialize $V_0(s) = 0$ for all s
 - For k = 1 until convergence
 - ightharpoonup For all s in S

$$V_k(s) = R(s) + \gamma \sum_{s' \in S} P(s' \mid s) V_{k-1}(s')$$

▶ Computational complexity: $O(|S|^2)$ for each iteration (|S| = n)