Sistemas Concurrentes y Distribuidos I CUL1 SIDAD DE GRANADA Los Del DGIIM, losdeldgiim.github.io Doble Grado en Ingeniería Informática y Matemáticas Universidad de Granada

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Sistemas Concurrentes y Distribuidos

Los Del DGIIM, losdeldgiim.github.io

José Juan Urrutia Milán Arturo Olivares Martos

Granada, 2024-2025

Índice general

1.	Intr	oducci	ión a la Programación Concurrente	5							
	1.1.	1. Conceptos básicos									
		1.1.1.	Comparación de programas concurrentes con secuenciales	5							
		1.1.2.	Definición de concurrencia	6							
		1.1.3.	Axiomas de la programación concurrente	6							
	1.2.										
		1.2.1.	Grafos de Sincronización	8							
		1.2.2.	Definición estructurada de procesos	9							
		1.2.3.	Definición no estructurada de procesos	9							
	1.3.	. Exclusión mutua y sincronización									
	1.4.	.4. Propiedades de los sistemas concurrentes									
		1.4.1.	Propiedades de seguridad (safety)	12							
		1.4.2.	Propiedades de vivacidad (<i>liveness</i>)	13							
	1.5.	Lógica	de programas de Hoare y verificación de programas concurrentes	14							
		1.5.1.	Corrección de los programas concurrentes	14							
		1.5.2.	Introducción a la Lógica de Hoare	15							
		1.5.3.	Verificación de sentencias concurrentes	19							
		1.5.4.	Verificación usando invariantes globales	23							
2.	Relaciones de problemas										
	2.1.	Introd	ucción	25							

SCD Índice general

1. Introducción a la Programación Concurrente

1.1. Conceptos básicos

Hasta ahora, nos hemos dedicado al estudio y desarrollo de programas secuenciales, que podemos entender de forma intuitiva como una ejecución lineal de instrucciones.

En programación concurrente, tendremos ahora múltiples unidades de ejecución independientes, a las que llamaremos procesos (sea un core o un procesador). La programación concurrente trata de coordinar los procesos para que cooperen entre sí con el fin de realizar un problema global de forma mucho más rápida de como lo haría un programa secuencial.

Podemos pensar que un proceso es una unidad de software abstracta conformada por con un conjunto de instrucciones a ejecutar y por el contexto del procesador (como los valores de los registros, el contador de programa, el puntero de pila, la memoria Heap, memoria para variables, el acceso a determinados recursos, ...), al que llamamos estado del proceso.

Cuando en esta asignatura aparezca "flujo de control", debemos pensar en una secuencia de ejecución de instrucciones. Es decir, como si fuera un proceso pero carente de un estado.

Nuestro trabajo en esta asignatura será gestionar la concurrencia, es decir, la ejecución independiente de dichos procesos con el fin de que no sea una sucesión de eventos incontrolados.

1.1.1. Comparación de programas concurrentes con secuenciales

Normalmente, en un programa concurrente tendremos más procesos que núcleos donde ejecutar dichos procesos, de donde aparece el concepto de concurrencia: en programación concurrente debe parecer que todos los procesos avanzan de forma simultánea, pese a haber más procesos que núcleos.

Si provocamos cambios de contexto dejando avanzar al resto de flujos de con-

trol, el programa no sufrirá las latencias provocadas por los procesos de E/S (por ejemplo), haciendo que el programa global sea más eficiente gracias a la concurrencia.

En sistemas que simulen el mundo real, podemos asociar un proceso con cada ente que intervenga en nuestro sistema (como una simulación del tráfico en una ciudad, o del movimiento de planetas), con lo que los sistemas de simulación pueden modelarse mejor con procesos concurrentes independientes, más que con programas secuenciales.

1.1.2. Definición de concurrencia

Podríamos definir la concurrencia como el paralelismo potencial que existe en los programa que puede aprovecharse independientemente de las limitaciones del hardware en el que se ejecuta el programa.

Como ya hemos mencionado, podremos tener un mayor número de procesos que de cores, y con este modelo cada uno de los procesos se ejecuta aparentemente al mismo tiempo que los demás.

El concepto de concurrencia es un concepto de programación a alto nivel que trata de representar el paralelismo potencial que existe en un programa. Con los compiladores adecuados, podemos programar en función de dichas características sin limitarnos por la arquitectura hardware del ordenador.

El objetivo fundamental de la concurrencia es simplificar toda la parte de la sincronización y comunicación entre los diferentes procesos de un programa, el cual suele ser un problema complejo sin solución fácil. Nos da un nivel algorítmico suficientemente independiente de los detalles del hardware para resolver dichos problemas, facilitando la portabilidad del código entre arquitecturas y lenguajes de programación.

Como beneficios de este modelo abstracto (el de la concurrencia), podemos destacar:

- Da herramientas, instrucciones y sentencias útiles para problemas de sincronización entre procesos.
- Las primitivas de programación en un lenguaje de alto nivel (como son los lenguajes concurrentes) son más fáciles de utilizar que con lenguajes de bajo nivel. Por ejemplo, los semáforos son más complejos que los monitores.
- Evita la dependencia con instrucciones de bajo nivel, haciendo que el programa pueda ejecutarse en otra computadora.

1.1.3. Axiomas de la programación concurrente

La programación concurrente es un modelo abstracto definido en base a 5 axiomas que nos dicen si un lenguaje es o no concurrente. En caso de no cumplirse, el código no va a poder ser transportable ni verificable.

Estos axiomas son:

1. Atomicidad y entrelazamiento de instrucciones atómicas.

Al menos ciertas instrucciones han de ser atómicas (esto es, instrucciones que no pueden ser interrumpidas, como por ejemplo las lecturas y escrituras en memoria).

2. Consistencia de los datos tras un acceso concurrente.

El entrelazamiento de instrucciones atómicas preserva la consistencia de los resultados de las operaciones. Es decir, si tenemos muchos procesos actuando a la vez sobre un conjunto de datos compartidos, debemos estar seguros de que los accesos a los mismos no los estropeen.

3. Irrepetibilidad de las secuencias de instrucciones.

Cuando se ejecuta un programa concurrente, se sucede un entrelazamiento de las instrucciones de los procesos que se ejecutan a la vez, con lo que la secuencia de instrucciones que obtenemos como resultado de volver a ejecutar el mismo programa con otros datos es muy probable que no sea la misma.

Esto dificulta el "debugging" de un programa concurrente, ya que podemos tener un error en el programa que repercuta en el mal funcionamiento del mismo sólo cuando se suceda una secuencia de instrucciones específica en la ejecución del mismo.

4. Independencia de la velocidad de los procesos.

No puede hacerse ninguna suposición en la velocidad de ejecución de un proceso, ya que este puede verse suspendido o ralentizado, salvo que esta es positiva.

La corrección en programas concurrentes no debe depender de la velocidad relativa de los procesos.

5. Hipótesis del progreso finito.

- Un proceso debe tratar de avanzar todo lo que pueda. Esto es, si un proceso se está ejecutando, debe tratar de ejecutar tantas instrucciones como sea posible.
- Una vez que un proceso comienza a ejecutar una sección de código, debe terminar dicha sección.
- Todo proceso debe seguir progresando durante la ejecución de un programa.

Cuando se interpreta la ejecución de un programa concurrente como un conjunto de trazas de las cuales elegimos una al ejecutar el programa, estamos ignorando ciertos detalles, como:

- El estado de la memoria asignado a cada proceso.
- El valor de los registros de cada proceso.
- El coste computacional de los cambios de contexto.
- La política de planificación que se emplea de los procesos.
- El desarrollo de los programas es independiente del hardware.

1.2. Modelos para creación de procesos en un programa

En relación al número de procesos que se ejecutan en un programa, podemos clasificarlos en:

- Sistemas estáticos: El número de proesos en el programa es el mismo durante su ejecución. Dicho número se define al programarlo y en el momento de la compilación.
- Sistemas dinámicos: El número de procesos es variable, de forma que durante la ejecución del programa pueden crearse y destruirse procesos.

1.2.1. Grafos de Sincronización

Un Grafo de Sincronización es un Grafo Dirigido Acíclico (DAG) donde cada nodo representa una secuencia de sentencias del programa (o actividad). Nos sirven para definir situaciones de precedencia en la ejecución de un programa. Tenemos que tener instrucciones en el lenguaje concurrente que nos permitan representar el comienzo de las instrucciones con un DAG.

En un DAG, se suceden dependencias secuenciales, esto es, un proceso no empieza hasta que termina otro: dadas dos actividades S_1 y S_2 , una arista desde la primera hacia la segunda $(S_1 \to S_2)$ significa que S_2 no puede comenzar su ejecución hasta que S_1 haya finalizado.

Ejemplo. El DAG de la Figura 1.1 nos indica que la primera actividad que tendrá lugar en nuestro programa será la actividad S_1 . Tras el fin de esta, se sucederán de forma concurrente las actividades S_2 y S_3 . Tras terminar S_2 , comenzará S_4 y, tras esta, se ejecutarán de forma concurrente S_5 y S_6 . Finalmente, tras el final de S_5 , S_6 y S_3 , el programa terminará con la actividad S_7 .

Figura 1.1: Ejemplo de DAG

En relación a cómo podemos crear los procesos, destacamos dos formas que podemos encontrarnos en los lenguajes paralelos:

1.2.2. Definición estructurada de procesos

En programación estructurada, contaremos con dos palabras reservadas del lenguaje que nos permitirán recrear la siguiente funcionalidad a explicar. En pseudocódigo, nos referiremos a ellas como cobegin y coend.

Dados dos procesos P_1 y P_2 que queremos que se ejecuten de forma concurrente, bastará especificar en pseudocódigo:

```
cobegin
P1;
P2;
coend
```

Hasta llegar a la palabra cobegin no comenzará ningún proceso. Tras esta, se sucederá un entrelazado de las instrucciones de P_1 y P_2 , y no se saldrá de dicha región hasta que terminen ambos procesos.

Ejemplo. Un programa utilizando la definición estructurada de procesos que cumpla el DAG de la Figura 1.1 es el siguiente:

```
begin
      S1;
       cobegin
         begin
           S2;
5
           S4;
           cobegin
              S5;
              S6;
10
           coend
         end
         S3;
       coend
      S7;
    end
```

1.2.3. Definición no estructurada de procesos

En lenguajes concurrentes que no cuenten con palabras reservadas que simulen cobegin y coend, contaremos con dos llamadas al sistema que nos permitirán replicar dicha funcionalidad para crear procesos:

fork

Duplica el proceso que actualmente se está ejecutando y lo lanza a ejecución. Si se le especifica una rutina, cambiará el código del clon por dicha rutina.

join

Espera a que cierto proceso termine de ejecutarse antes de proseguir con la ejecución del resto de instrucciones.

La función fork ya se vió en la asignatura de Sistemas Operativos, por lo que el estudiante debería estar familiarizado con ella.

Ejemplo. Un programa con definición no estructurada de procesos para el DAG de la Figura 1.1 es el siguiente:

```
begin
    S1;
    fork S3;
    S2;

5    S4;
    fork S6;
    S5;
    join S3;
    join S6;

S7;
end
```

1.3. Exclusión mutua y sincronización

No todas las secuencias de entrelazamiento de un programa concurrente van a ser aceptables. Para impedir que sucedan ciertas secuencias (o trazas) tenemos condiciones de sincronización, relacionadas con instrucciones de lenguajes de programación de tal forma que dichas instrucciones no se ejecutan hasta que no es cierta una condición que depende de las variables del proceso.

De esta forma, una **condición de sincronización** es una restricción en el orden en que se pueden entremezclar las instrucciones que generan los procesos de un programa. Podemos utilizarlas para asegurarnos de que todas las trazas del programa son correctas.

La **exclusión mutua** es un caso particular de sincronización en el que se obliga a que un trozo de código de un proceso sea ejecutado de forma totalmente secuencial de manera que no se permita el entrelazamiento con otros procesos. Este trozo de código (en el que no se permite el entrelazamiento de instrucciones con otros procesos) recibe el nombre de **sección crítica**. Se dice que las secciones críticas se ejecutan en exclusión mutua.

La mayoría de instrucciones en un programa son instrucciones compuestas (esto es, formadas por varias instrucciones en lenguaje máquina). Si queremos establecer secciones críticas para la ejecución de cada una de dichas instrucciones, rodearemos la instrucción por < y >. Notaremos así que se ejecuta de forma atómica.

Ejemplo. Por ejemplo, ante el siguiente código concurrente:

```
begin
    x := 0;
    cobegin
    x := x+1;
    x := x-1;
    coend
end
```

El resultado obtenido en la variable x es indeterminado, ya que puede ser 1, -1 o 0:

- El segundo proceso puede leer la variable **x** antes de que el primero escriba en ella, leyendo 0; y podría escribir en ella después de que lo haga el primer proceso, escribiendo finalmente un −1.
- Podría ejecutarse el primer proceso antes que el segundo, dejando la variable x a 1 y el segundo le cambiaría el valor a 0.
- El primer proceso puede leer la variable x antes de que el segundo escriba en ella, leyendo 0; y podría escribir en ella después de que lo haga el segundo proceso, escribiendo finalmente un 1.

Notemos que esto sucede ya que la instrucción x := x OP a es una instrucción compuesta de las instrucciones máquina: LOAD x, OP a, x y STORE x.

Sin embargo, ante el siguiente código concurrente:

Obtenemos siempre 0 en x, ya que las instrucciones de cada instrucción compeusta no se entrelazan, al ser secciones críticas.

Paradigma del Productor Consumidor

El paradigma del productor/consumidor es una situación de dos procesos que cooperan, uno escribiendo datos en una variable, al que llamaremos productor; y otro que leerá dicha variable y realizará cálculos con ella, al que llamaremos consumidor.

Este paradigma nos sirve de ejemplo para justificar las condiciones de sincronización, así como para ponerlas en práctica.

Son necesarias condiciones de sincronización ya que no todas las trazas de ejecución de un programa con estructura productor/consumidor son correctas.

Ejemplo. Si notamos por L a las lecturas del consumidor y por E a las escrituras del productor, las tres siguientes trazas de ejecución no son correctas:

- 1. L, E, L, E, ..., porque leemos una lectura de la variable antes de que el productor escriba en ella, leyendo un valor indeterminado y puediendo provocar el fallo del programa.
- 2. E, L, E, E, L, ..., porque el consumidor se ha perdido una escritura del productor en la variable, que puede hacer que cambie la salida del programa a una errónea.
- 3. E, L, L, E, L, ..., porque el consumidor ha usado un mismo dato dos veces, que también puede resultar en un mal funcionamiento del programa.

Para que el paradigma del productor/consumidor funcione correctamente, han de cumplirse las dos condiciones de sincronización siguientes:

- 1. El consumidor no puede leer la variable hasta que el productor haya escrito en ella. Cuando el consumidor lee, debe esperar a que el productor proporcione un nuevo dato antes de volver a leer.
- 2. El productor no puede escribir un nuevo valor hasta que el consumidor haya leido el último dato escrito (salvo en el primer valor a escribir).

Para cumplir con las condiciones de sincronización, deberemos añadir instrucciones en el código para que:

- El consumidor se detenga la primera vez hasta que el productor escriba en la variable.
- Se impida un segundo ciclo del consumidor hasta que se produzca el siguiente dato
- Se impida un segundo ciclo del productor hasta que el dato anterior no haya sido leído por el consumidor.

1.4. Propiedades de los sistemas concurrentes

Una propiedad de un sistema concurrente es un atributo que se cumple en toda la ejecución del sistema, mientras que el conjunto de todas sus ejecuciones (de todas las posibles trazas generadas en la ejecución) nos dan el comportamiento del sistema.

Cualquier propiedad de un sistema concurrente puede ser formulada como combinación de dos tipos de propiedades fundamentales:

- Propiedades de seguridad (*safety*): Una propiedad de este tipo afirma que hay un estado del programa que es inalcanzable.
- Propiedades de vivacidad (*liveness*): Propiedades que afirman que en algún momento se alcanzará un estado deseado.

1.4.1. Propiedades de seguridad (safety)

Estas propiedades expresan determinadas condiciones que han de cumplirse durante toda la ejecución del programa. Cualquier propiedad que pueda ser formulada por la existencia de un estado inalcanzable, es una propiedad de seguridad. En dicho caso, deberíamos poder definir qué estado es inalcanzable y demostrar que el programa concurrente nunca puede llegar a dicho estado.

Las propiedades de seguridad pueden ya comprobarse en tiempo de compilación, ya que se cumplen independientemente de la ejecución concreta que sigue el sistema en tiempo de ejecución. Es por esto que se trata de una propiedad estática.

Ejemplos de problemas donde vemos propiedades de seguridad son:

- El problema de la exclusión mutua: La condición de que dos procesos del programa no puedan ejecutar simultáneamente las instrucciones de una sección crítica es de seguridad.
- Problema del productor/consumidor: Todos los estados que lleven a una traza distinta de E, L, E, L, ... son estados prohibidos.
- La situación de interbloqueo: Es una de las situaciones más críticas que se dan tras quebrantar una propiedad de seguridad, ya que hay procesos ocupando recursos que no están usando y que no liberarán.

1.4.2. Propiedades de vivacidad (liveness)

Las propiedades de vivacidad expresan que el sistema llegará en un futuro a cumplir determinadas condiciones (en un tiempo no indeterminado). En determinados ejemplos, dichas propiedades pueden entenderse como que las condiciones dinámicas de ejecución no lleven a que determinados procesos sean sistemáticamente adelantados por otros, no pudiendo avanzar en la ejecución de instrucciones útiles, de forma que el proceso sufra inanición (starvation).

Para demostrar que una propiedad es de vivacidad, debemos definir un "buen estado" del programa, y demostrar que es alcanzable para todos los procesos en un determinado tiempo.

Ejemplos de problemas donde vemos propiedades de vivacidad son:

- El problema de la exclusión mutua: Las secciones críticas se ejecutan por un proceso a vez. El sistema debe garantizar que, en la espera por entrar a una región crítica, no ocurra que un proceso sea siempre adelantado por otros procesos, llevando a que dicho proceso nunca ejecute la región crítica (que es nuestro estado deseado).
- El problema del productor/consumidor: Un proceso que quiera escribir o leer de la variable compartida ha de poder hacerlo en un tiempo finito.

Debemos notar que el axioma de proceso finito expuesto en secciones anteriores no tiene nada que ver con la ausencia de inanición:

- El axioma de proceso finito afirma que los procesos no pueden quedarse parados arbitrariamente, sino que estos deben intentar ejecutar instrucciones conforme les sea posible.
- Un proceso puede estar ejecutando instrucciones en un bucle indefinido pero no avanzar en la ejecución de las instrucciones de su código (es decir, puede estar realizando un trabajo inútil). En este caso, se cumpliría el axioma del proceso finito pero no se cumpliría la propiedad de vivacidad, ya que el proceso sufriría inanición.

Como ya venimos avisando, el no cumplimiento de la propiedad de vivacidad puede llevar a uno o más procesos a un estado de inanición (es indefinidamente pospuesto por otros, de forma que no pueda realizar aquello para lo que está programado). Aunque dicha situación es menos grave que una situación de interbloqueo

(ya que hace que el programa no avance nada), tenemos procesos inoperantes (que no realizan su trabajo), por lo que consideraríamos que el programa concurrente no es correcto.

De esta forma, un programa concurrente solo podrá ser completamente correcto cuando se demuestre que los procesos que lo integran no sufren inanición en ninguna de sus posibles ejecuciones.

Ejemplo (Cena de filósofos). Disponemos de cinco filósofos, F_0 , F_1 , F_2 , F_3 y F_4 , que dedican su vida a pensar y en algún momento desean comer. Acceden a una mesa redonda en la que hay un plato del que todos pueden comer, siempre y cuando dispongan de dos palillos. Sólo hay 5 palillos, estos distribuidos de forma que entre dos filósofos hay un palillo.

Los filósofos son cabezotas, por lo que una vez congen un palillo, no están dispuestos a soltarlo. Ademá, no pueden arrebatar un palillo a otro filósofo por ir en contra de sus ideales morales.

Ante la situación descrita, podemos llegar a ver los dos ejemplos siguientes:

- Si todos los filósofos cogen a la vez el palillo de su derecha, cada filósofo dispondrá de un palillo y no habrá más palillos libres.
 - Estamos ante una situación de interbloqueo: ningún filósofo puede comer y no podrá hacerlo jamás. Como resultado, todos los filósofos se morirán de hambre.
- Si, por ejemplo, los filósofos F_0 y F_2 (que rodean al filósofo F_1 en la mesa) conspiran para dejar morir de hambre al filósofo F_1 de forma que cuando F_0 deje el palillo que hay entre F_0 y F_1 , F_2 coja el palillo que hay entre él y F_1 (y viceversa), conseguirán que F_1 nunca consiga sus dos palillos, llevando al filósofo a un estado de inanición y, posteriormente, la muerte.

Esta asignatura trata de crear protocolos que podamos demostrar que cumplen con las propiedades de seguridad y vivacidad, con el fin de no llevar nunca a situaciones de interbloqueos, inanición de algún(os) proceso(s), o alguna de las malas situaciones comentadas anteriormente.

1.5. Lógica de programas de Hoare y verificación de programas concurrentes

1.5.1. Corrección de los programas concurrentes

En los programas secuenciales, para comprobar la corrección total de los mismos, debemos probar que el programa **termina** dando **salidas esperadas** ante determinadas entradas.

Diremos que un programa secuencial es *parcialmente correcto* si, supuesto que este termine, entonces los resultados que obtiene tras ejecutarse son esperados.

En un programa secuencial, hay un único conjunto de datos de entrada que provoca un único conjunto de datos de salida. Esto no sucede en programas concurrentes, ya que el indeterminismo en la ejecución provoca distintas trazas posibles del programa, y es bastante probable que todas las trazas posibles no provoquen los mismos resultados.

Para extender la definición de programa correcto a los programs concurrentes, notemos primero que muchos de ellos están pensado para no terminar nunca, de forma que su fin esté relacionado con alguna situación de error. Los sistemas operativos o los cajeros automáticos son programas concurrentes que están pensados para que nunca terminen, por lo que no podemos decir que una condición necesaria para que un programa concurrente sea correcto es que termine.

Para llevar a cabo la verificación de software, es decir, la demostración de que un programa es correcto, podemos emplear diferentes métodos:

Depuración de código. Explorar algunas ejecuciones de un código y comprobar que dichas ejecuciones son aceptables porque se cumplen las propiedades previamente fijadas.

Este método sirve para programas secuenciales, pero no para programas paralelos, ya que nos es imposible depurar un código ante todas las posibles combinaciones de distintas trazas de ejecución.

Razonamiento operacional. Realizar un análisis de casos exhaustivo para explorar todas las posibilidades de secuencias de ejecución de un código con el fin de garantizar que todas son correctas.

Es un método inviable para programas concurrentes. Por ejemplo, en un programa que use dos procesos, cada uno con 3 instrucciones atómicas, el número de posibles trazas de ejecución es de 20.

Razonamiento asertivo. Realizar un análisis abstracto basado en Lógica Matemática que permita representar de forma abstracta los estados¹ concretos que un programa alcanza.

De esta forma, el únifco enfoque posible es el razonamiento asertivo.

1.5.2. Introducción a la Lógica de Hoare

Axiomática del lenguaje

Construiremos ahora un sistema lógico formal (SLF) que facilite la elaboración de asertos o proposiciones lógicas ciertas con una base lógico-matemática precisa.

Nuestro SLF estará formado por:

- Símbolos: Como sentencias del lenguaje de programación, variables proposicionales, operadores, . . .
- Fórmulas: Secuencias de símbolos bien formadas².

¹Un estado del programa viene definido por los valores que tienen las variables del programa en determinado instante durante su ejecución.

²Entendemos por esto a sucesiones de símbolos con un significado fácilmente entendible.

- Axiomas: Proposiciones que mediante un consenso se consideran verdaderas.
- Reglas de inferencia o de derivación: Reglas que nos permiten derivar fórmulas ciertas a partir de axiomas o de fórmulas que ya conocemos que son ciertas.

Podemos pensar en las reglas de inferencia como teoremas matemáticos: tienen unas hipótesis y unas tesis de forma que, en cualquier situación que las hipótesis sean ciertas, las tesis lo serán.

Notación. Notaremos a las reglas de inferencia por:

(nombre de la regla)
$$\frac{H_1, H_2, \dots, H_n}{C}$$

De forma que disponemos de n hipótesis (H_1, H_2, \ldots, H_n) en conjunción que nos llevan a la tesis C.

Para proseguir con el detallamiento del SLF, es necesario antes la definición de interpretación:

Definición 1.1 (Interpretación). Sea A el conjunto de todos los asertos o fórmulas lógicas, una interpretación será una aplicación de dominio A y codominio el conjunto $\{V, F\}^3$.

De esta forma, dada una interpretación y un aserto v, podemos ver la veracidad o falsedad de v gracias a la interpretación.

Para que las demostraciones de nuestro SLF sean confiables, este sistema debe ser seguro y completo. Fijada una interpretación:

- Decimos que un sistema es seguro si todos los asertos son hechos ciertos.
- Decimos que un sistema es completo si todos los hechos ciertos son asertos.

A partir de ahora, supondremos que no hay diferencia entre asertos y hechos ciertos. Es decir, que nuestro sistema es seguro y completo.

Lógica proposicional

Las fórmulas del SLF que estamos construyendo se llaman proposiciones, y están formadas por:

- Constantes proposicionales $\{V, F\}$.
- Variables proposicionales $\{p, q, r, \ldots\}$.
- Operadores lógicos $\{\neg, \land, \lor, \rightarrow, \leftarrow, \longleftrightarrow\}$.
- Expresiones formadas por constantes, variables y operadores.

³Cuyos elementos interpretamos como verdadero y falso.

Al igual que sucedía en la asignatura de Lógica y Métodos Discretos, podemos extender la definición de las interpretaciones y aplicarlas sobre las proposiciones del lenguaje, mediante unas reglas ya conocidas.

De esta forma, diremos que:

- Una fórmula es satisfacible si existe alguna interpretación que la satisfaga.
- Una fórmula será válida si se satisface en cualquier estado del programa (es decir, si cualquier interpretación la satisface). Las llamaremos tautologías.

Dentro de la lógica proposicional de este SLF son tautologías algunas fórmulas ya conocidas, como la distributiva de \land y de \lor o la conmutatividad de las mismas, por ejemplo.

Definición 1.2. Dadas dos fórmulas P y Q, diremos que son equivalentes siempre y cuando que P se satisfaga para una cierta interpretación si y solo si Q se satisface para la misma interpretación.

Por ejemplo, $p \to q$ y $\neg q \to p$ son fórmulas equivalentes.

Lógica de programas

Este SLF trata de hacer afirmaciones sobre la ejecución de un programa. Incluimos por tanto a los triples, que tienen la forma

$${P}S{Q}$$

donde P y Q son asertos (llamados precondición y poscondición, respectivamente) y S es una sentencia simple o estructurada de un lenguaje de programación. En P y Q podrán aparecer tanto variables lógico-matemáticas como variables del propio programa. Para distinguirlas, notaremos a las primeras con letas mayúsculas y a las segundas con minúsculas.

Un triple $\{P\}S\{Q\}$ se interpreta como cierto si, ante cualquier estado del programa que satisfaga P y después de la ejecución de cualquier entrelazamiento de instrucciones atómicas de S^4 , llegamos a un estado del programa que satisfaga Q.

Notación. A partir de la notación de los triples, y siendo P una fórmula del lenguaje, notaremos por

 $\{P\}$

Al conjunto de los estados del programa que verifican P.

De esta forma, $\{V\}$ es el conjunto de todos los estados de un programa, ya que todos los estados de dicho programa verifican V. Análogamente, $\{F\}$ se corresponde con el conjunto vacío.

 $^{^4}$ Por tanto, S ha de finalizar en algún momento.

Notación. Dadas P y Q asertos equivalentes, entonces obtenemos el mismo conjunto de estados del programa que verifican dichos asertos:

$$\{P\} = \{Q\}$$

Sin embargo, para evitar la confusión con el operador de asignación, notaremos las igualdades entre los conjuntos de estados de un programa con el operador \equiv .

Definición 1.3 (Sustitución textual). Dado un aserto P, que contiene al menos una aparición libre de la variable x, y una expresión e, definimos la sustitución textual de x por e, notado por P_e^x , como la sustitución textual de todas las ocurrencias libres de x en P por e.

Enumeramos ahora los axiomas de nuestra Lógica de programas:

Axioma de la sentencia nula $\{P\}$ null $\{P\}$.

Es decir, si el aserto P es cierto antes de la ejecución de la sentencia nula (esta es, la que no cambia nada en el programa), P seguirá siendo cierto tras la ejecución de la misma.

Axioma de asignación $\{P_e^x\}$ x = e $\{P\}$.

Es decir, la asignación de un determinado valor e a una variable x solo cambia en el programa el valor de dicha variable x.

Ejemplo. Un ejemplo de uso del axioma de asignación es el siguiente:

Tratamos de probar que el triple $\{V\}$ x=5 $\{x=5\}$ es cierto. Es decir, que desde cualquier estado del programa, si asignamos 5 a x, acabaremos en cualquier estado del programa en el que x valga 5.

Demostración. Sea P la fórmula dada por x=5 y e el valor numérico 5, sabemos que el axioma de asignación es cierto, luego se cumplirá que:

$$\{P_e^x\}\ x = e\ \{P\}$$

de donde:

$$\{V\} \equiv \{5 = 5\} \ x = e \ \{x = 5\}$$

Seguidamente, para cada una de las sentencias que afectan al flujo de control en un programa secuencial, contamos con reglas de inferencia para poder formar triples correctos en las demostraciones; además de dos reglas básicas de consecuencia.

Regla de la consecuencia (1).

$$\frac{\{P\}S\{Q\}, \{Q\} \to \{R\}}{\{P\}S\{R\}}$$

Es decir, siempre podemos hacer más débil la poscondición de un triple, de forma que este siga siendo cierto.

Regla de la consecuencia (2).

$$\frac{\{R\} \to \{P\}, \{P\}S\{Q\}}{\{R\}S\{Q\}}$$

Es decir, siempre podemos hacer más fuerta la precondición de un triple, manteniendo su veracidad.

Regla de la composición.

$$\frac{\{P\}S_1\{Q\},\{Q\}S_2\{R\}}{\{P\}S_1;S_2\{R\}}$$

Es decir, podemos condensar dos triples en uno, siempre y cuando la poscondición de uno sea la precondición del otro.

Regla del if.

$$\frac{\{P \wedge B\}S_1\{Q\}, \{P \wedge \neg B\}S_2\{Q\}}{\{P\} \text{ if B then } S_1 \text{ else } S_2 \{Q\}}$$

De esta forma, siempre que queramos probar que una tripleta de la forma

$$\{P\}$$
 if X then S_1 else S_2 $\{Q\}$

es cierta, tendremos que probar que las tripletas

$${P \wedge X}S_1{Q} \qquad {P \wedge \neg X}S_2{Q}$$

son ciertas.

Regla de la iteración. Suponiendo que una sentencia while puede iterar un número arbitrario de veces (incluso 0), tenemos que:

$$\frac{\{I \wedge B\}S\{I\}}{\{I\} \text{ while B do } S \text{ end do } \{I \wedge \neg B\}}$$

Donde a la proposición I la llameremos invariante.

1.5.3. Verificación de sentencias concurrentes

Sabemos ya hacer demostraciones para verificar la corrección de programas secuenciales. Será de nuestro interés ahora permitir la ejecución concurrente de dichos flujos de ejecución secuenciales, con el objetivo de probar la corrección de un programa concurrente.

Si entendemos la ejecución de un programa concurrente como un entrelazamiento de las instrucciones atómicas ejecutadas por los procesos del programa, entonces hemos de tener en cuenta para la demostración de corrección que no todas las secuencias de entrelazamiento resultan ser aceptables. Para poder programar correctamente, usamos sentencias de sincronización, tales como:

• Secciones críticas en el código para evitar condiciones de carrera.

 Sincronización con una condición (hacer que un proceso espere hasta que se dé una determinada condición en el estado del programa).

Dados varios triples de Hoare que representan secciones de programas secuenciales de los que hemos probado su corrección parcial, tratamos ahora de introducir estas secciones de programa en un programa concurrente.

Sin embargo, puede suceder que un proceso ejecute una instrucción atómica de su región de código que haga falsa la precondición o la poscondición de una sentencia que esté siendo simultáneamente ejecutada por otro proceso, invalidando su corrección.

Ejemplo. Por ejemplo, tenemos los dos siguientes triples:

$${x = 0} \ x = x + 2 \ {x = 2}$$

 ${V} \ x = 0 \ {x = 0}$

cuya corrección puede comprobarse fácilmente usando el axioma de asignación.

Ahora, nos disponemos a ejecutar el siguiente código concurrente:

donde podemos ver que la ejecución de una instrucción *interfiere* con la poscondición de la otra instrucción:

- La poscondición $\{x=0\}$ de la instrucción de la derecha no se cumple tras la ejecución de $\langle x=x+2; \rangle$ (en caso de que esta se ejecute después).
- La poscondición $\{x=2\}$ de la instrucción de la izquierda no se cumple tras la ejecución de $\langle x=0; \rangle$ (en caso de que esta se ejecute después).
- Notemos que la ejecución de una instrucción no interfiere con la precondición de la otra.

La ejecución de una instrucción hace falsa la poscondición de la otra, invalidando la demostración del programa concurrente.

Sin embargo, podemos hacer un cambio en los triples iniciales para no tener este problema: usando la regla de la consecuencia (1), podemos relajar las poscondiciones de ambos triples:

$$\{x = 0\} \ x = x + 2 \ \{x = 0 \lor x = 2\}$$

$$\{V\} \ x = 0 \ \{x = 0 \lor x = 2\}$$

haciendo que estos sigan siendo correctos. Si ahora tratamos de ejecutar de forma concurrente estas dos instrucciones, observamos que independientemente de la traza de ejecución, la ejecución de una instrucción no hace falsas las pre o poscondición de la otra.

Antes de proceder a la formalización del concepto de interferencia, hemos de comentar ciertos detalles:

 Una acción atómica elemental o sección crítica realiza una transformación indivisible del estado del programa, de forma que cualquier estado intermedio que pudiera existir no sería visible para el resto de los procesos.

En los programas concurrentes, puede suceder que las asignaciones no sean atomicas, por estar típicamente implementadas por varias instrucciones máquina:

```
y = 0; z = 0;
cobegin
    x = y + z; | y = 1; z = 2
coend
```

El programa superior puede dar como resultados esperados de \mathbf{x} 0, 1, 3 (como el lector habrá podido adivinar) y 2. Este último valor sería resultado de haber leído la instrucción de la izquierda \mathbf{y} , la ejecución de las dos instrucciones de la derecha, y finalmente añadir \mathbf{z} al valor leído, guardándolo en \mathbf{x} .

Se trata de un ejemplo curioso, ya que z + y = 2 no se correponde con ningún estado del programa. Esta situación puede resolverse con el uso de secciones críticas.

• Una expresión que no hace referencia a ninguna variable modificada por otro proceso será evaludad de forma atómica, ya que ninguno de los valores de la variable puede ser modificada mientras la expresión resulta evaludada.

De esta forma, si consideramos el siguiente programa concurrente en el que los procesos se encuentran usando variables disjuntas:

```
x = 0; y = 0; cobegin x = x + 1; y = y + 1; coend
```

La ejecución de una instrucción no tiene nada que ver con la ejecución de la otra.

Interferencia

Dado un triple $\{P\}S\{Q\}$, este puede contener varios asertos: $\{P\}$, $\{Q\}$ y cualquiera que sirve como pre y poscondición entre las acciones atómicas incluidas en la sección de código S.

Ejemplo. De esta forma, el triple $\{V\}x = 0; x = x + 1\{x = 1\}$ contiene los asertos $\{V\}, \{x = 0\} \ y \ \{x = 1\}.$

Definición 1.4 (Interferencia). Dado un triple $\{P\}S\{Q\}$ y una sentencia R con precondición pre(R), decimos que R no interfiere con $\{P\}S\{Q\}$ si para todo aserto a del triple se cumple el triple

$$NI(a,R) \equiv \{a \land pre(R)\}R\{a\}$$

Es decir, si el aserto a es invariante para la sentencia R.

Definición 1.5. Dados n triples $\{P_i\}S_i\{Q_i\}$, decimos que están libres de interferencia si S_i no interfiere con $\{P_i\}S_i\{Q_i\}$, para cada par (i,j) con $i \neq j$.

La falta de interferencia significa que la ejecución atómica de pasos de un proceso del programa nunca falsifica los asertos usados en las demostraciones de los otros procesos.

Ejemplo. Recuperando el ejemplo del inicio de la sección, nos disponemos a demostrar que los triples $\{x=0\}$ x=x+2 $\{x=0 \lor x=2\}$, $\{V\}$ x=0 $\{x=0 \lor x=2\}$ están libres de interferencia:

- x = x + 2 no interfiere con $\{V\}$ x = 0 $\{x = 0 \lor x = 2\}$:
 - 1. Para la precondición:

$${x = 0} \equiv {V \land x = 0} \ x = x + 2 \ {V}$$

se cumple por la regla de la consecuencia (1), ya que se verifican $\{x = 0\}$ x = x + 2 $\{x = 2\}$, $\{x = 2\} \rightarrow \{V\}$.

2. Para la poscondición:

$$\{x=0\} \equiv \{(x=0 \lor x=2) \land x=0\} \ x=x+2 \ \{x=0 \lor x=2\}$$

se cumple por la regla de la consecuencia (1), ya que se verifican $\{x=0\}$ x=x+2 $\{x=2\}$, $\{x=2\}$ \to $\{x=0 \lor x=2\}$.

- x = 0 no interfiere con $\{x = 0\}$ x = x + 2 $\{x = 0 \lor x = 2\}$:
 - 1. Para la precondición:

$$\{x = 0\} \equiv \{x = 0 \land V\} \ x = 0 \ \{x = 0 \lor x = 2\}$$

se cumple lor la regla de la consecuencia (1), ya que se verifican $\{x = 0\}$ x = 0 $\{x = 0\}$ y $\{x = 0\}$ \rightarrow $\{x = 0 \lor x = 2\}$.

2. Para la poscondición:

$$\{x = 0 \lor x = 2\} \equiv \{(x = 0 \lor x = 2) \land V\} \ x = 0 \ \{x = 0 \lor x = 2\}$$

se cumple por la regla de la consecuencia (1), ya que se verifican $\{x = 0 \lor x = 2\}$ x = 0 $\{x = 0\}$ y $\{x = 0\} \to \{x = 0 \lor x = 2\}$.

Finalmente, llegamos a una regla de inferencia que nos permitirá demostrar la corrección de un programa concurrente:

Regla de la composición concurrente segura de procesos.

$$\frac{\{P_i\}\ S_i\ \{Q_i\}\ \text{son triples libres de interferencia}\ 1\leqslant i\leqslant n}{\{P_1\wedge P_2\wedge\ldots\wedge P_n\}\ \text{cobegin}\ S_1\mid\mid S_2\mid\mid\ldots\mid\mid S_n\ \text{coend}\ \{Q_1\wedge Q_2\wedge\ldots\wedge Q_n\}}$$

Ejemplo. Aplicando la regla de la composición concurrente al ejemplo que venimos manejando, como los triples $\{x=0\}$ x=x+2 $\{x=0 \lor x=2\}$, $\{V\}$ x=0 $\{x=0 \lor x=2\}$ están libres de interferencia, podemos aplicar la regla de la composición concurrente, llegando a que el triple

$$\{x=0\}$$
 cobegin $x=x+2; \mid\mid x=0;$ coend
$$\{x=0 \lor x=2\}$$

es cierto.

1.5.4. Verificación usando invariantes globales

La demostración de verificación de programas concurrntes usando la regla de la composición concurrentes es tediosa, ya que es necesario comprobar la veracidad de muchos triples antes de poder aplicarla. Es por tanto que buscamos otra forma predominante de probar los programas concurrentes.

Los invariantes globales (IG) de un programa pueden entenderse como expresiones definidas a partir de las variables globales de un programa. Estas suelen definirse como un predicado de la Lógica de Programas que captura la relación que existe entre las variables compartidas por los procesos de un programa concurrente.

Si cualquier aserto crítico $\{C\}$ (esto es, un aserto que aparece en un triple) de las demostraciones individuales de los programas concurrntes $\{P_i\}$ S_i $\{Q_i\}$ se puede escribir como una conjunción del tipo $\{IG \land L\}$ donde IG es un invariante global del programa y $\{L\}$ es un predicado en el que intervienen solo variables de un proceso o parámetros de una función, entonces las demostraciones de los procesos secuenciales estarán libres de interferencias.

Para que un predicado $\{I\}$ definido a partir de las variables compartidas entre los procesos pueda ser considerado un IG válido, se han de cumplir:

- 1. Es cierto para los valores iniciales de las variables que aparecen en $\{I\}$.
- 2. Se ha de poder demostrar la no interferencia de dicho aserto con cualquier sentencia elemental de S_i , es decir, se ha de poder probar el triple

$$NI(I,R) \equiv \{I \land pre(R)\} \ R \ \{I\}$$

para toda R de S_i .

2. Relaciones de problemas

2.1. Introducción

Ejercicio 2.1.1. Considerar el siguiente fragmento de programa para 2 procesos P1 y P2: Los dos procesos pueden ejecutarse a cualquier velocidad. ¿Cuáles son los posibles valores resultantes para la variable x? Suponer que x debe ser cargada en un registro para incrementarse y que cada proceso usa un registro diferente para realizar el incremento.

```
1 {variables compartidas}
var x : integer := 0 ;
Process P1;
var i: integer;
5 begin
   begin
   for i:= 1 to 2 do begin
      x:= x + 1;
   end
end
```

```
Process P2;
var j: integer;
begin
begin
for j:= 1 to 2 do begin
x:= x + 1;
end
end
end
```

Observando el código, cada proceso hace 2 lecturas y dos escrituras (incrementos) en \mathbf{x} .

- Como cada proceso aumenta dos veces el valor de x, el valor de x ha de ser, como mínimo, 2.
- Como en total se hacen 4 incrementos, el valor de x ha de ser 4 como máximo.

Notando por l_{ij} a la j-ésima lectura del proceso i y por e_{ij} a la j-ésima escritura del proceso i, ambas referidas a la variable \mathbf{x} , podemos obtener cualquiera de las siguientes trazas de ejecución:

P1	P2	х									
l_{11}	-	0	l_{11}	-	0	l_{11}	_	0	l_{11}	-	0
e_{11}	-	1	-	l_{21}	0	e_{11}	-	1	-	l_{21}	0
-	l_{21}	1	e_{11}	-	1	-	l_{21}	1	e_{11}	-	1
-	e_{21}	2	-	e_{21}	1	-	e_{21}	2	-	e_{21}	1
l_{12}	-	2	l_{12}	-	1	l_{12}	-	2	l_{12}	-	1
e_{12}	-	3	e_{12}	-	2	-	l_{22}	2	-	l_{22}	1
-	l_{22}	3	-	l_{22}	2	e_{12}	-	3	e_{12}	-	2
-	e_{22}	4	-	e_{22}	3	-	e_{22}	3	-	e_{22}	2

Luego los posibles valores resultantes para x son: 2, 3 y 4.

Ejercicio 2.1.2. ¿Cómo se podría hacer la copia del fichero f en otro g, de forma concurrente, utilizando la instrucción concurrente cobegin-coend? Para ello, suponer que:

- 1. Los archivos son una secuencia de items de un tipo arbitrario T, y se encuentran ya abiertos para lectura (f) y escritura (g). Para leer un ítem de f se usa la llamada a función leer(f) y para saber si se han leído todos los ítems de f, se puede usar la llamada fin(f) que devuelve verdadero si ha habido al menos un intento de leer cuando ya no quedan datos. Para escribir un dato x en g se puede usar la llamada a procedimiento escribir(g,x).
- 2. El orden de los items escritos en g debe coincidir con el de f.
- 3. Dos accesos a dos archivos distintos pueden solaparse en el tiempo.

La copia del fichero **f** en el fichero **g** se podría realizar siguiendo el paradigma productor/consumidor que hemos visto en teoría en el Tema 1, mediante el uso de dos procesos:

- Uno que lea un ítem del fichero f y lo escriba en una variable compartida.
- Otro que lea dicha variable compartida y escriba el ítem en el fichero g.

En dicho código, debemos garantizar que:

- El consumidor no lea la variable antes de que el productor escriba en ella.
- En la segunda escritura del productor, debemos esperar a que antes la haya leído el consumidor.
- En la segunda lectura del consumidor, debemos esperar a que antes haya modificado la variable el productor.

Siguiendo estos pasos, obtendríamos un código como el siguiente:

```
process CopiaFicheros;
var ant, sig : T;
begin
    sig = leer(f);
while not fin(f) do begin
    ant = sig;
    cobegin
    escribir(g, anterior);
    sig = leer(f);
    coend
    end
end
```


- (a) DAG del apartado 1.
- (b) DAG del apartado 2.
- (c) DAG del apartado 3.

Figura 2.1: Grafos de precedencia del ejercicio 2.1.3.

Ejercicio 2.1.3. Construir, utilizando las instrucciones concurrentes cobegin-coend y fork-join, programas concurrentes que se correspondan con los grafos de precedencia que se muestran en la figura 2.1.

begin

begin

1. Grafo de precedencia de la figura 2.1a:

```
P0;
                                                   cobegin
                                                     P2;
begin
                                                     begin
                                             5
  P0;
                                                       P1;
  fork P2; P1;
                                                       P3;
  Р3;
                                                       cobegin P4; P5; coend
  fork P5; P4;
                                                     end
  join P2; join P5;
                                                   coend
                                            10
  P6;
                                                   P6;
end
                                                 end
```

2. Grafo de precedencia de la figura 2.1b:

```
P0;
                                                  cobegin
                                                    P2;
begin
                                                    begin
  P0;
  fork P2; P1;
                                                      cobegin P4; P3; P5; coend
  fork P5; fork P3; P4;
                                                    end
  join P2; join P5; join P3;
                                                  coend
  P6;
                                                  P6;
                                           10
end
                                                end
```

3. Grafo de precedencia de la figura 2.1c:

```
begin
    P0;
    fork P2; P1;
    P3;
    fork P4; join P2; P5;
    join P4;
    P6;
end
```

Sin embargo, no podemos hacer al 100% el DAG de la figura 2.1c, ya que tras P3 debemos crear una estructura cobegin-coend. Sin embargo, este debe esperar a P2, por lo que la estructura cobegin-coend tendrá que esperar a P2, pero es que P4 no necesita que P2 termine.

Por tanto, no se puede programar con creación de hebras de forma estructurada. Sin embargo, podemos ofrecer dos soluciones, cada una que impone algo que el grafo no nos dice:

a) Si obligamos a que P4 también espere a P2, obtendríamos el código:

```
begin
   P0;
   cobegin
   P2;
   begin
       P1; P3;
      end
   coend
   cobegin P4; P5; coend
P6;
end
```

b) Si ahora queremos ejecutar de forma concurrente el flujo que tiene a P1, P3 y P4 con el flujo que tiene a P2, entonces obligamos a que P5 espere a P4 (que no nos lo especifica el DAG, pero lo necesitamos para poder programarlo de forma estructurada):

```
begin
    P0;
    cobegin
    begin P1; P3; P4; end

P2;
    coend
    P5;
    P6;
    end
```

Ejercicio 2.1.4. Dados los siguientes fragmentos de programas concurrentes, obtener sus grafos de precedencia asociados:

```
begin
                                                          PO ;
                                                           cobegin
                                                               begin
                                                                    cobegin
                                                  5
                                                                        P1 ; P2 ;
    begin
                                                                    coend
        PO ;
                                                                    P5 ;
        cobegin
                                                               end
             P1 ;
                                                               begin
                                                 10
             P2 ;
                                                                    cobegin
5
                                                                       P3 ; P4 ;
             {\tt cobegin}
                 P3 ; P4 ; P5 ; P6 ;
                                                                    coend
                                                                    P6 ;
             coend ;
             P7 ;
                                                               end
                                                 15
         coend
                                                           coend
10
        P8 ;
                                                           P7 ;
    end
                                                      end
```

(a) Programa 1.

(b) Programa 2.

Figura 2.4: Programas concurrentes del ejercicio 2.1.4.

1. Programa de la figura 2.4a.

Figura 2.5: DAG para la figura 2.4a.

2. Programa de la figura 2.4b.

Figura 2.6: DAG para la figura 2.4b.

Ejercicio 2.1.5. Suponer un sistema de tiempo real que dispone de un captador de impulsos conectado a un contador de energía eléctrica. La función del sistema consiste en contar el número de impulsos producidos en 1 hora (cada Kwh consumido se cuenta como un impulso) e imprimir este número en un dispositivo de salida. Para ello se dispone de un programa concurrente con 2 procesos: un proceso acumulador (lleva la cuenta de los impulsos recibidos) y un proceso escritor (escribe en la impresora). En la variable común a los 2 procesos n se lleva la cuenta de los impulsos. El proceso acumulador puede invocar un procedimiento Espera_impulso para esperar a que llegue un impulso, y el proceso escritor puede llamar a Espera_fin_hora para esperar a que termine una hora. El código de los procesos de este programa podría ser el descrito en el Código Fuente 1.

Observación. En el programa se usan sentencias de acceso a la variable n encerradas entre los símbolos < y >. Esto significa que cada una de esas sentencias se ejecuta en exclusión mutua entre los dos procesos, es decir, esas sentencias se ejecutan de principio a fin sin entremezclarse entre ellas. Supongamos que en un instante dado el acumulador está esperando un impulso, el escritor está esperando el fin de una hora, y la variable n vale k. Después se produce de forma simultánea un nuevo impulso y el fin del periodo de una hora.

Obtener las posibles secuencias de interfolicación de las instrucciones (1),(2), y (3) a partir de dicho instante, e indicar cuales de ellas son correctas y cuales incorrectas (las incorrectas son aquellas en las cuales el impulso no se contabiliza).

Ejercicio 2.1.6. Supongamos un programa concurrente en el cual hay, en memoria compartida dos vectores a y b de enteros y con tamaño par, declarados como sigue:

```
var a,b : array[1..2*n] of integer ; { n es una constante predefinida }
```

Queremos escribir un programa para obtener en b una copia ordenada del contenido de a (nos da igual el estado en que queda a después de obtener b). Para ello disponemos de la función Sort que ordena un tramo de a (entre las entradas s y t, ambas incluidas). También disponemos la función Copiar, que copia un tramo de a (desde s hasta t) en b (a partir de o). Estas funciones se muestran en el Código Fuente 2.

El programa para ordenar se puede implementar de dos formas:

```
{ variable compartida: }
   var n : integer; { contabiliza impulsos }
   begin
   while true do begin
       Espera_impulso();
       < n := n+1 > ; { (1) }
        end
   process Escritor ;
   begin
   while true do begin
       Espera_fin_hora();
       write( n ) ; { (2) }
        < n := 0 > ; { (3) }
        end
15
   end
```

Código fuente 1: Código acumulador-escritor del ejercicio 2.1.5.

```
procedure Sort( s,t : integer );
       var i, j : integer ;
       begin
            for i := s to t do
            for j := s+1 to t do
5
                if a[i] < a[j] then
                    swap( a[i], b[j] );
        end
   procedure Copiar( o,s,t : integer );
       var d : integer ;
       begin
            for d := 0 to t-s do
                b[o+d] := a[s+d] ;
        end
15
```

Código fuente 2: Procedimientos Sort y Copiar del ejercicio 2.1.6.

```
procedure Secuencial();
    var i : integer ;
    begin
        Sort( 1, 2*n ); { ordena a }
        Copiar( 1, 2*n ); { copia a en b }
    end

procedure Concurrente();
    begin
        cobegin
        Sort( 1, n );
        Sort( n+1, 2*n );
        coend
        Merge( 1, n+1, 2*n );
    end
```

Código fuente 3: Procedimientos Secuencial y Concurrente del ejercicio 2.1.6.

- 1. Ordenar todo el vector a, de forma secuencial con la función Sort, y después copiar cada entrada de a en b, con la función Copiar.
- 2. Ordenar las dos mitades de a de forma concurrente, y después mezclar dichas dos mitades en un segundo vector b (para mezclar usamos un procedimiento Merge).

En el Código Fuente 3 se muestra el código de ambas versiones.

El código de la función Merge, disponible en el Código Fuente 4, se encarga de ir leyendo las dos mitades de a, en cada paso, seleccionar el menor elemento de los dos siguientes por leer (uno en cada mitad), y escribir dicho menor elemento en la siguiente mitad del vector mezclado b.

Llamaremos $T_s(k)$ al tiempo que tarda el procedimiento Sort cuando actúa sobre un segmento del vector con k entradas. Suponemos que el tiempo que (en media) tarda cada iteración del bucle interno que hay en Sort es la unidad (por definición).

Es evidente que ese bucle tiene $\frac{k(k-1)}{2}$ iteraciones, luego:

$$T_s(k) = \frac{k(k-1)}{2} = \frac{1}{2} \cdot k^2 - \frac{1}{2} \cdot k$$

El tiempo que tarda la versión secuencial sobre 2n elementos (llamaremos S a dicho tiempo) será evidentemente $T_s(2n)$, luego:

$$S = T_s(n) = \frac{1}{2} \cdot (2n)^2 - \frac{1}{2} \cdot 2n = 2n^2 - n$$

Con estas definiciones, calcular el tiempo que tardará la versión paralela, en dos casos:

- 1. Las dos instancias concurrentes de Sort se ejecutan en el mismo procesador (llamamos P_1 al tiempo que tarda).
- 2. Cada instancia de Sort se ejecuta en un procesador distinto (lo llamamos P_2).

```
procedure Merge( inferior, medio, superior: integer ) ;
        { siguiente posicion a escribir en b }
       var escribir : integer := 1 ;
        { siguiente pos. a leer en primera mitad de a }
        var leer1 : integer := inferior ;
5
        { siquiente pos. a leer en segunda mitad de a }
        var leer2 : integer := medio ;
        begin
            { mientras no haya terminado con alguna mitad }
            while leer1 < medio and leer2 <= superior do begin
10
                if a[leer1] < a[leer2] then begin { minimo en la primera mitad }
                    b[escribir] := a[leer1] ;
                    leer1 := leer1 + 1 ;
                end else begin { minimo en la segunda mitad }
                    b[escribir] := a[leer2] ;
15
                    leer2 := leer2 + 1 ;
                end
                escribir := escribir+1 ;
            end
            { se ha terminado de copiar una de las mitades,
20
            copiar lo que quede de la otra }
            if leer2 > superior then
                { copiar primera } Copiar( escribir, leer1, medio-1 );
            else Copiar( escribir, leer2, superior ); { copiar segunda }
        end
```

Código fuente 4: Procedimiento Merge del ejercicio 2.1.6.

Escribe una comparación cualitativa de los tres tiempos $(S, P_1 \ y \ P_2)$. Para esto, hay que suponer que cuando el procedimiento Merge actúa sobre un vector con p entradas, tarda p unidades de tiempo en ello, lo cual es razonable teniendo en cuenta que en esas circunstancias Merge copia p valores desde a hacia b. Si llamamos a este tiempo $T_m(p)$, podemos escribir $T_m(p) = p$.

Ejercicio 2.1.7. Supongamos que tenemos un programa con tres matrices (a, b y c) de valores flotantes declaradas como variables globales. La multiplicación secuencial de a y b (almacenando el resultado en c) se puede hacer mediante un procedimiento MultiplicacionSec declarado como aparece aquí:

Escribir un programa con el mismo fin, pero que use 3 procesos concurrentes. Suponer que los elementos de las matrices a y b se pueden leer simultáneamente, así

Figura 2.7: Figuras del ejercicio 2.1.8.

como que elementos distintos de c pueden escribirse simultáneamente.

Ejercicio 2.1.8. Un trozo de programa ejecuta nueve rutinas o actividades (P1, P2, ..., P9), repetidas veces, de forma concurrentemente con cobegin-coend (ver trozo de código de la figura 2.7a), pero que requieren sincronizarse según determinado grafo (ver la figura 2.7b).

Supón que queremos realizar la sincronización indicada en el grafo, usando para ello llamadas desde cada rutina a dos procedimientos (EsperarPor y Acabar). Se dan los siguientes hechos:

- El procedimiento EsperarPor(i) es llamado por una rutina cualquiera (la número k) para esperar a que termine la rutina número i, usando espera ocupada. Por tanto, se usa por la rutina k al inicio para esperar la terminación de las otras rutinas que corresponda según el grafo.
- El procedimiento Acabar(i) es llamado por la rutina número i, al final de la misma, para indicar que dicha rutina ya ha finalizado.
- Ambos procedimientos pueden acceder a variables globales en memoria compartida.
- Las rutinas se sincronizan única y exclusivamente mediante llamadas a estos procedimientos, siendo la implementación de los mismos completamente transparente para las rutinas.

Escribe una implementación de EsperarPor y Acabar (junto con la declaración e inicialización de las variables compartidas necesarias) que cumpla con los requisitos dados.

Ejercicio 2.1.9. En el ejercicio 2.1.8 los procesos P1, P2, ..., P9 se ponen en marcha usando cobegin-coend. Escribe un programa equivalente, que ponga en marcha todos los procesos, pero que use declaración estática de procesos, usando un vector

de procesos P, con índices desde 1 hasta 9, ambos incluidos. El proceso P[n] contiene una secuencia de instrucciones desconocida, que llamamos S_n, y además debe incluir las llamadas necesarias a Acabar y EsperarPor (con la misma implementación que antes) para lograr la sincronización adecuada. Se incluye aquí una plantilla:

```
Process P[ n : 1..9 ]
begin
    ..... { esperar (si es necesario) a los procesos que corresponda }
    S_n ; { sentencias especificas de este proceso (desconocidas) }
    ..... { senalar que hemos terminado }
end
```

Ejercicio 2.1.10. Para los siguientes fragmentos de código, obtener la *poscondición* adecuada para convertirlo en un triple demostrable con la Lógica de Programas:

1. $\{i < 10\}$ i = 2 * i + 1 $\{\}$ Obtenemos la poscondición de este triple razonando matemáticamente:

$$i < 10$$

 $2 * i < 20$
 $i' = 2 * i + 1 < 21$

donde hemos notado por i' al nuevo valor que adopta la variable i.

Por tanto, la poscondición del triple es: i < 21.

Pasamos ahora a demostrar el triple

$$\{i<10\} \quad i=2*i+1 \quad \{i<21\}$$

usando el axioma de asignación:

$$\{i < 21\}_{2*i+1}^{i} \quad i = 2*i+1 \quad \{i < 21\}$$

$$\{i < 21\}_{2*i+1}^{i} \equiv \{2*i+1 < 21\} \equiv \{i < 10\}$$

y obteniendo finalmente

$$\{i < 10\}$$
 $i = 2 * i + 1$ $\{i < 21\}$

2. $\{i > 0\}$ i = i - 1; $\{\}$ Obtenemos la poscondición:

$$i > 0$$
$$i' = i - 1 > -1$$

Y pasamos ahora a demostrar el triple

$$\{i>0\}\quad i=i-1\quad \{i>-1\}$$

usando el axioma de asignación:

$${i > 0} \equiv {i - 1 > -1} \equiv {i > -1}_{i-1}^{i} \quad i = i - 1 \quad {i > -1}$$

3. $\{i > j\}$ i = i + 1; j = j + 1 $\{\}$

De forma matemática y notando por i' y j' a las modificaciones de i y j, respectivamente:

$$i > j$$

$$i' = i + 1 > j + 1$$

$$i' > j + 1 = j'$$

$$i' > j'$$

Demostramos ahora el triple

$${i > j}$$
 $i = i + 1; j = j + 1$ ${i > j}$

usando la regla de la composición:

$$\frac{\{P\}S_1\{Q\},\{Q\}S_2\{R\}}{\{P\}S_1;S_2\{R\}}$$

Por lo que bastará probar los triples

$${i > j} i = i + 1 {i > j + 1}$$
 ${i > j + 1} j = j + 1 {i > j}$

para tener demostrado el triple que nos interesa.

a) Probamos el primer triple mediante el axioma de asignación:

$$\{i>j\} \equiv \{i+1>j+1\} \equiv \{i>j+1\}_{i+1}^i \ i=i+1 \ \{i>j+1\}$$

b) Y finalmente probamos el segundo trambién mediante el axioma de asignación:

$$\{i>j+1\} \equiv \{i>j\}_{j+1}^j \ j=j+1 \ \{i>j\}$$

Como ambos son ciertos, el triple que queríamos demostrar también lo es, gracias a la regla de composición.

4. $\{falso\}$ $a = a + 7; \{\}$

En este caso, partimos de un estado del programa inalcanzable, por lo que en la poscondición podemos poner cualquier estado del programa, es decir, {verdad}.

5. $\{\text{verdad}\}$ i = 3; j = 2 * i $\{\}$

Como partimos de cualquier estado del programa y sólo se realizan asignaciones, es fácil intuir cuál será la poscondición:

$$i = 3$$

 $i = 2 * i = 2 * 3 = 6$

Pasamos a demostrar el triple

$$\{\text{verdad}\}\ i = 3;\ j = 2 * i\ \{i = 3 \land j = 6\}$$

usando la regla de composición, por lo que nos será suficiente probar los triples:

$$\{\text{verdad}\}\ i = 3\ \{i = 3\}\ \ \{i = 3\}\ j = 2 * i\ \{i = 3\ \land\ j = 6\}$$

a) Para el primer triple, usamos el axioma de asignación:

$$\{\text{verdad}\} \equiv \{3 = 3\} \equiv \{i = 3\}_3^i \ i = 3 \ \{i = 3\}$$

b) Para el segundo, volvemos a usar el axioma de asignación:

$$\{i = 3 \land j = 6\}_{2*i}^{j} \ j = 2*i \ \{i = 3 \land j = 6\}$$
$$\{i = 3 \land j = 6\}_{2*i}^{j} \equiv \{i = 3 \land 2*i = 6\} \equiv$$
$$\equiv \{i = 3 \land 2*3 = 6\} \equiv \{i = 3 \land 6 = 6\} \equiv \{i = 3\}$$

Ambos triples son ciertos, luego por la regla de la composición tenemos demostrado nuestro triple.

6. {verdad} c = a + b; c = c/2 {} Notando por c' al nuevo valor de c:

$$c = a + b$$
$$c' = c/2 = \frac{a+b}{2}$$

Tratamos de probar el triple

{verdad}
$$c = a + b$$
; $c = c/2$ $\left\{c = \frac{a+b}{2}\right\}$

usando la regla de la composición, basta con probar los triples

{verdad}
$$c = a + b$$
; $\{c = a + b\}$ $\{c = a + b\}$ $c = c/2$; $\{c = \frac{a + b}{2}\}$

a) Para el primero, usamos el axioma de asignación:

$$\{\text{verdad}\} \equiv \{a+b=a+b\} \equiv \{c=a+b\}_{a+b}^c \ c=a+b \ \{c=a+b\}$$

b) Para la segunda, también usamos el axioma de asignación:

$$\{c = a + b\} \equiv \left\{\frac{c}{2} = \frac{a + b}{2}\right\} \equiv \left\{c = \frac{a + b}{2}\right\}_{c/2}^{c} \ c = c/2 \ \left\{c = \frac{a + b}{2}\right\}$$

Usando la relga de composición, tenemos demostrado nuestro triple.

Ejercicio 2.1.11. ¿Cuáles de los siguientes triples no son demostrables con la Lógica de Programas? (Considerando que $i, x, a \in \mathbb{Z}$)

1.
$$\{i > 0\}$$
 $i = i - 1$; $\{i \ge 0\}$

$${i > 0} \ i = i - 1 \ {i > -1}$$

 $\{i>-1\}\to\{i\geqslant 0\},$ luego es cierto por la primera regla de la consecuencia.

2. $\{x \ge 7\}$ x = x + 3; $\{x \ge 9\}$

$$\{x \geqslant 7\} \ x = x + 3 \ \{x \geqslant 10\}$$

 $\{x \ge 10\} \to \{x \ge 9\}$, luego es cierto por la primera regla de la consecuencia.

3. $\{i < 9\}$ i = 2 * i + 1; $\{i \le 20\}$

$${i < 9} \ i = 2 * i + 1 \ {i < 19}$$

 $\{i<19\} \rightarrow \{i\leqslant 20\},$ luego es cierto por la segunda regla de la consecuencia.

4. $\{a > 0\}$ a = a - 7; $\{a > -6\}$

$${a>0} \ a=a-7 \ {a>-7}$$

Pero $\{a > -7\} \not\to \{a > -6\}$, luego este triple no es demostrable.

Ejercicio 2.1.12. Si el triple $\{P\}C\{Q\}$ es demostrable, indicar por qué los siguientes triples también lo son (o no se pueden demostrar y por qué):

1. $\{P\}C\{Q \lor P\}$

Es demostrable, ya que $\{Q\} \to \{Q \lor P\}$ y por la primera regla de la consecuencia, tomando $R = Q \lor P$:

$$\frac{\{P\}C\{Q\},\{Q\}\to\{R\}}{\{P\}C\{R\}}$$

 $2. \ \{P \wedge D\}C\{Q\}$

Es demostrable, ya que $\{P \land D\} \rightarrow \{P\}$ y por la segunda regla de la consecuencia, tomando $R = P \land D$:

$$\frac{\{P\} \to \{R\}, \{R\}C\{Q\}}{\{P\}C\{Q\}}$$

 $3. \ \{P \lor D\}C\{Q\}$

No es demostrable, porque se debilita la condición.

 $4. \ \{P\}C\{Q \lor D\}$

Al igual que hemos hecho en el apartado 1, es demostrable ya que $\{Q\} \to \{Q \lor D\}$ y usando la primera regla de la consecuencia.

5. $\{P\}C\{Q \wedge P\}$

No podemos demostrarlo, ya que se fortalece la poscondición.

Ejercicio 2.1.13. Si el triple $\{P\}C\{Q\}$ es demostrable, ¿cuál de los siguientes triples no se puede demostrar?

1. $\{P \wedge D\}C\{Q\}$ $\{P \wedge D\} \to \{P\}$, luego puede demostrarse, por la segunda regla de la consecuencia.

2. $\{P \lor D\}C\{Q\}$

No puede demostrarse, porque se debilita la precondición.

3. $\{P\}C\{Q \lor D\}$

Puede demostrarse mediante la primera regla de la consecuencia, ya que $\{Q\} \to \{Q \lor D\}$.

 $4. \ \{P\}C\{Q \lor P\}$

Puede demostrarse mediante la primera regla de la consecuencia, ya que $\{Q\} \to \{Q \lor P\}$.

Ejercicio 2.1.14. Dado el siguiente programa, obtener:

- 1. Valores finales de x e y.
- 2. Valores finales de x e y si quitamos los símbolos $\langle \rangle$ de instrucción atómica.
- 1. Tenemos dos posibles trazas de ejecución:
 - a) Primero se ejecuta la primera instrucción, por lo que obtendríamos x=7 y y=14.
 - b) Primero se ejecuta la segunda instrucción, por lo que obtendríamos x=15 y y=10.
- 2. Encontramos cada uno de los dos estados anteriores, además de x = 7 y y = 10.

Ejercicio 2.1.15. Comprobar si la demostración del siguiente triple interfiere con los teoremas siguientes:

$$\{x \ge 2\}$$
 $< x = x - 2 > \{x \ge 0\}$

Es decir, queremos comprobar si $R \equiv \langle x = x - 2 \rangle$ con $pre(R) = \{x \geq 2\}$ no interfiere con los triples siguientes:

1.
$$\{x \ge 0\}$$
 $\langle x = x + 3 \rangle$ $\{x \ge 3\}$

$$\{x \ge 0 \land x \ge 2\} < x = x - 2 > \{x \ge 0\}$$

correcto.

$$\{x \geqslant 3 \land x \geqslant 2\} < x = x - 2 > \{x \geqslant 1\}$$

 $\{x \ge 1\} \not\to \{x \ge 3\}$, luego R interfiere con la poscondición de este triple.

2.
$$\{x \ge 0\}$$
 $< x = x + 3 > \{x \ge 0\}$

$$\{x \ge 0 \land x \ge 2\} < x = x - 2 > \{x \ge 0\}$$

correcto, y como las pre y poscondición son iguales, R no interfiere con este triple.

3.
$$\{x \geqslant 7\}$$
 $< x = x + 3 > \{x \geqslant 10\}$ $\{x \geqslant 7 \land x \geqslant 2\}$ $< x = x - 2 > \{x \geqslant 5\}$

 $\{x \ge 5\} \not\to \{x \ge 7\}$, luego R interfiere con la precondición de este triple.

- 4. $\{y \ge 0\}$ $< y = y + 3 > \{y \ge 3\}$ R no interfiere con este triple, ya que son variables disjuntas.
- 5. $\{x \text{ es impar}\}\ < y = x + 1 > \{y \text{ es par}\}\$

$$\{x \text{ es impar } \land x \geqslant 2\} < x = x - 2 > \{x \text{ es impar } \land x \geqslant 0\}$$

 $\{x \text{ es impar } \land x \geqslant 0\} \rightarrow \{x \text{ es impar }\}, \text{ correcto.}$

$$\{y \text{ es par } \land x \geqslant 0\} < x = x - 2 > \{y \text{ es par } \land x \geqslant -2\}$$

 $\{y \text{ es par } \land x \geqslant -2\} \rightarrow \{y \text{ es par }\}$, correcto, luego R no interfiere con este triple.

Ejercicio 2.1.16. Dado el siguiente triple:

$$\{x=0\}$$
 cobegin
$$< x=x+a>||< x=x+b>||< x=x+c>$$
 coend
$$\{x=a+b+c\}$$

Demostrarlo utilizando la lógica de asertos para cada una de las tres instrucciones atómicas y después que se llega a la poscondición final x == a + b + c utilizando para ello la regla de la composición concurrente de instrucciones atómicas.

Inicialmente, demostraremos los triples:

$$\{x = 0 \lor x = b \lor x = c \lor x = b + c\} < x = x + a >$$

$$\{x = a \lor x = a + b \lor x = a + c \lor x = a + b + c\}$$

$$\{x = 0 \lor x = a \lor x = c \lor x = a + c\} < x = x + b >$$

$$\{x = b \lor x = a + b \lor x = b + c \lor x = a + b + c\}$$

$$\{x = 0 \lor x = b \lor x = a \lor x = a + b\} < x = x + c >$$

$$\{x = c \lor x = a + c \lor x = b + c \lor x = a + b + c\}$$

Seguidamente, tenemos que ver que dichos triples están libres de interferencias, para finalmente aplicar la regla de la composición concurrente y obtener que:

$$\{x = 0\}$$
 cobegin
$$\langle x = x + a \rangle || \langle x = x + b \rangle || \langle x = x + c \rangle$$
 coend
$$\{x = a + b + c\}$$

Ejercicio 2.1.17. El siguiente triple:

$$\{x = 0 \land y = 0 \land z = 0\}$$

$$< x = z + a > || < y = x + b >$$

$$\{(x = a) \land (y = b \lor y = a + b) \land z = 0\}$$

- (a) Es indemostrable salvo que se cumpla siempre que a = 0.
- (b) El triple anterior es demostrable para cualquier valor de las variables $a \circ b$.
- (c) Es indemostrable salvo que se cumpla siempre que b = 0.
- (d) Es indemostrable salvo que se cumpla siempre que $a = 0 \land b = 0$.

Ejercicio 2.1.18. Suponer que $\{suma > 1\}$ suma = suma + 4 $\{suma > 5\}$ es demostrable, entonces: ¿cuál de los siguientes triples es también demostrable? (indicar por qué)

- (a) $\{suma > 2\}$ suma = suma + 4 $\{suma > 5\}$. Es demostrable, ya que $\{suma > 2\} \rightarrow \{suma > 1\}$ y podemos aplicar la segunda regla de la consecuencia.
- (b) $\{suma \ge 1\}$ suma = suma + 4 $\{suma > 5\}$. No es demostarble, ya que debilita la precondición.
- (c) $\{suma > 0\}$ suma = suma + 4 $\{suma > 5\}$. No es demostarble, ya que debilita la precondición.
- (d) $\{suma > 1\}$ suma = suma + 4 $\{suma > 6\}$. No es demostrable, ya que fortalece la poscondición.

Ejercicio 2.1.19. Suponer que $\{x < y\}$ C_1 $\{u < v\}$ es demostrable, entonces: ¿cuáles de los siguientes triples son también demostrables? (indicar por qué)

- (a) $\{x \leq y\}$ C_1 $\{u < v\}$. No es demostrable, ya que debilita la precondición.
- (b) $\{x \leq y 2\}$ C_1 $\{u < v\}$. Es demostrable, ya que $\{x \leq y - 2\} \rightarrow \{x + 2 \leq y\} \rightarrow \{x < y\}$, y falta aplicar la segunda regla de la consecuencia.

(c) $\{x \leqslant y\}$ C_1 $\{u \leqslant v\}$. El triple

$$\{x < y\} \ C_1 \ \{u \leqslant v\}$$

Sí que es demostrable, ya que relaja la poscondición, pero el triple que se nos dice no es demostrable, ya que también relaja la precondición.

(d) $\{x < y\}$ C_1 $\{u < v - 2\}$. No es demostrable, ya que fortalecemos la poscondición.

Ejercicio 2.1.20. Seleccionar el valor correcto de las 2 variables (x e y) después de ejecutarse el siguiente programa concurrente:

```
int x=5, y=2;
cobegin <x=x+y>; <y=x*y>; <x=x-y>; coend;
```

- (a) x = 7 y y = 14.
- (b) x = 5 y y = 10.
- (c) x = -7 y y = 14.
- (d) x = -3 y y = 10.

Ejercicio 2.1.21. El siguiente código concurrente no puede ser demostrado directamente con la lógica de aserciones (pre y poscondiciones). Elegir la respuesta que explica correctamente la razón de que ocurra esto.

```
\{x=0\} cobegin <x=x+a>; <x=x+a> coend; \{x=2*a\} (a es un valor entero positivo)
```

- (a) Porque la poscondición que se propone $\{x = 2 * a\}$ es falsa.
- (b) Porque falta incluir la posibilidad de que el valor final de x sea también $\{x=a\}.$
- (c) Porque al aplicar directamente la regla de inferencia de la composición concurrente utilizo unas condiciones (pre y post-condiciones) demasiado débiles.
- (d) Porque tengo que incluir en los asertos el valor del contador de programa de cada procesador.

Ejercicio 2.1.22. Estudiar cuáles son los valores finales de las variables x e y en el siguiente programa. Insertar los asertos adecuados entre llaves, antes y después de cada sentencia, para poder obtener una traza de demostración del programa, que incluya en su último aserto los valores finales de las variables.

```
int x = c1;
int y = c2;
x = x + y;
y = x * y;
x = x - y;
```

$$\{x = c_1 \land y = c_2\}$$

$$x = x + y$$

$$\{x = c_1 + c_2 \land y = c_2\}$$

$$y = x * y$$

$$\{x = c_1 + c_2 \land y = (c_1 + c_2) \cdot c_2\}$$

$$x = x - y$$

$$\{x = (c_1 + c_2) - (c_1 + c_2) \cdot c_2 = (c_1 + c_2) \cdot (1 - c_2) \land y = (c_1 + c_2) \cdot c_2\}$$

Ejercicio 2.1.23. Demostrar que el siguiente triple es cierto:

$$\{x=0\}$$

$$\texttt{cobegin}$$

$$< x=x+1>||< x=x+2>||< x=x+4>$$

$$\texttt{coend}$$

$$\{x=7\}$$

Ejercicio 2.1.24. Dada la siguiente construcción de composición concurrente P:

cobegin
$$< x = x - 1 >; < x = x + 1 >; || < y = y - 1 >; < y = y + 1 >;$$
 coend

demostrar que se cumple la invarianza de $\{x=y\}$, es decir, que $\{x=y\}$ P $\{x=y\}$ es un triple cierto.

Para ello, comenzamos demostrando los triples:

$${x = y} \ x = x - 1; x = x + 1; \ {x = y}$$

 ${x = y} \ y = y - 1; y = y + 1; \ {x = y}$

1.

$${x = y} \ x = x - 1 \ {x + 1 = y}$$

 ${x + 1 = y} \ x = x + 1 \ {x = y}$

y usamos la regla de la composición.

2.

$${y = x} y = y - 1 {y + 1 = x}$$

 ${y + 1 = x} y = y + 1 {y = x}$

y usamos la regla de la composición.

Ahora, los triples son libres de interferencia, por tener variables disjuntas. Podemos aplicar por tanto la regla de la composición concurrente, llegando a que:

$$\{x = y\}$$
 cobegin
$$< x = x - 1 >; < x = x + 1 >; || < y = y - 1 >; < y = y + 1 >;$$
 coend
$$\{x = y\}$$

Que era lo que queríamos probar.

Ejercicio 2.1.25. Usando la regla de la conjunción, demostrar que

$$\{i > 2\}\ i = 2 * i \{i > 4\}$$

Ejercicio 2.1.26. Se dan los siguientes triples de Hoare:

$${j>1}$$
 $i = i+2;$ $j = j+3;$ ${j>4}$ ${i>2}$ $i = i+2;$ $j = j+3;$ ${i>4}$

Demostrar que estos triples implican que

$${j > 1 \land i > 2} \ i = i + 2; \ j = j + 3 \ {j > 4 \land i > 4}$$

¿Qué regla se debe utilizar para la demostración?

Ejercicio 2.1.27. Sean A y B los valores iniciales de a y b respectivamente. Escribir un fragmento de código que tenga $\{a = A + B \land b = A - B\}$ como poscondición y demostrar que el código es correcto.

Ejercicio 2.1.28. Demostrar que la siguiente sentencia tiene la poscondición $\{x \ge 0, x^2 \ge a^2\}$. if a > 0 then x = a else x = -a. Es decir, probar el triple:

$$\{V\}$$
 if a > 0 then x = a else x = -a $\{x\geqslant 0, x^2\geqslant a^2\}$

Para ello, tenemos que usar la regla del if:

$$\frac{\{P \wedge B\}S_1\{Q\}, \{P \wedge \neg B\}S_2\{Q\}}{\{P\} \text{ if B then } S_1 \text{ else } S_2 \text{ } \{Q\}}$$

Luego bastará con probar los triples

$$\{a > 0\} \equiv \{V \land a > 0\} \ x = a \ \{x \geqslant 0 \land x^2 \geqslant a^2\}$$
$$\{a \leqslant 0\} \equiv \{V \land a \leqslant 0\} \ x = -a \ \{x \geqslant 0 \land x^2 \geqslant a^2\}$$

1. Usando el axioma de asignación:

$$\{a \geqslant 0\} \equiv \{a \geqslant 0 \land a^2 \geqslant a^2\} \equiv \{x \geqslant 0 \land x^2 \geqslant a^2\}_a^x \ x = a \ \{x \geqslant 0 \land x^2 \geqslant a^2\}$$

Como $\{a>0\} \to \{a\geqslant 0\}$, usamos la segunda regla de la consecuencia y tenemos el primer triple demostrado.

2. Usando el axioma de asignación:

$$\{a\leqslant 0\} \equiv \{-a\geqslant 0 \land a^2\geqslant a^2\} \equiv \{x\geqslant 0 \land x^2\geqslant a^2\}_{-a}^x \ x=-a \ \{x\geqslant 0 \land x^2\geqslant a^2\}$$

Y acabamos de probar el triple que nos pedía el ejercicio.

Ejercicio 2.1.29. El siguiente fragmento de código tiene $\{P\} \equiv \left\{sum = \frac{j(j-1)}{2}\right\}$ como precondición y poscondición. Demostrar que es verdadero:

$$\{P\} \ sum = sum + j; \ j = j + 1; \ \{P\}$$

Queremos demostrar el triple:

$$\left\{sum = \frac{j(j-1)}{2}\right\} \ sum = sum + j; \ j = j+1; \ \left\{sum = \frac{j(j-1)}{2}\right\}$$

Para ello, será suficiente con demostrar los triples

$$\left\{sum = \frac{j(j-1)}{2}\right\} sum = sum + j; \left\{sum = \frac{(j+1)j}{2}\right\}$$
$$\left\{sum = \frac{(j+1)j}{2}\right\} j = j+1; \left\{sum = \frac{j(j-1)}{2}\right\}$$

y aplicar la regla de composición.

1. Para demostrar el primer triple, usamos el axioma de asignación:

$$\left\{sum = \frac{(j+1)j}{2}\right\}_{sum+j}^{sum} \quad sum = sum + j; \quad \left\{sum = \frac{(j+1)j}{2}\right\}$$

$$\left\{sum = \frac{(j+1)j}{2}\right\}_{sum+j}^{sum} \equiv \left\{sum + j = \frac{(j+1)j}{2}\right\} \equiv$$

$$\equiv \left\{sum = \frac{(j+1)j}{2} - j\right\} \equiv \left\{sum = \frac{j(j-1)}{2}\right\}$$

2. Para el segundo, usamos también el axioma de asignación:

$$\left\{ sum = \frac{j(j-1)}{2} \right\}_{j+1}^{j} j = j+1; \ \left\{ sum = \frac{j(j-1)}{2} \right\}$$

$$\left\{sum = \frac{j(j-1)}{2}\right\}_{j+1}^j \equiv \left\{sum = \frac{(j+1)(j+1-1)}{2}\right\} \equiv \left\{sum = \frac{(j+1)j}{2}\right\}$$

Por lo que el triple del enunciado es cierto.

Ejercicio 2.1.30. Demostrar que

$${i * j + 2 * j + 3 * i = 0} \ j = j + 3; \ i = i + 2; \ {i * j = 6}$$

Ejercicio 2.1.31. ¿Por qué en la regla del while B, la condición B debe ser verdadera al comienzo del bucle?

Ejercicio 2.1.32. Considerar una función con dos argumentos que se usa en un programa. Explicar por qué el uso de alias puede ser un problema en este caso.

Ejercicio 2.1.33. Demostrar la corrección parcial del siguiente fragmento de programa:

$$sum = 0;$$

$$j = 1;$$

$$\text{while}(j != c) \text{do begin}$$

$$sum = sum + j;$$

$$j = j + 1;$$

$$\text{end}$$

$$\{sum = c * (c - 1)/2\}$$

Para ello, tenemos que hacer uso de la regla de la iteración:

$$\frac{\{I \wedge B\}S\{I\}}{\{I\} \text{ while B do } S \text{ end do } \{I \wedge \neg B\}}$$

Luego tendremos que probar que se cumple el triple

$$\left\{sum = \frac{j(j-1)}{2} \land j \neq c\right\} \ sum = sum + j; j = j+1; \ \left\{sum = \frac{j(j-1)}{2}\right\}$$

Para ello, será suficiente con demostrar los triples

$$\left\{sum = \frac{j(j-1)}{2} \land j \neq c\right\} \quad sum = sum + j; \quad \left\{sum = \frac{(j+1)j}{2} \land j \neq c\right\}$$
$$\left\{sum = \frac{(j+1)j}{2} \land j \neq c\right\} \quad j = j+1; \quad \left\{sum = \frac{j(j-1)}{2}\right\}$$

y aplicar la regla de composición.

1. Para demostrar el primer triple, usamos el axioma de asignación:

$$\left\{sum = \frac{(j+1)j}{2} \land j \neq c\right\}_{sum+j}^{sum} \quad sum = sum+j; \quad \left\{sum = \frac{(j+1)j}{2} \land j \neq c\right\}$$

$$\left\{sum = \frac{(j+1)j}{2} \land j \neq c\right\}_{sum+j}^{sum} \equiv \left\{sum + j = \frac{(j+1)j}{2} \land j \neq c\right\} \equiv$$

$$\equiv \left\{sum = \frac{(j+1)j}{2} - j \land j \neq c\right\} \equiv \left\{sum = \frac{j(j-1)}{2} \land j \neq c\right\}$$

2. Para el segundo, usamos también el axioma de asignación:

$$\left\{ sum = \frac{j(j-1)}{2} \right\}_{j+1}^{j} j = j+1; \ \left\{ sum = \frac{j(j-1)}{2} \right\}$$

$$\left\{sum = \frac{j(j-1)}{2}\right\}_{j+1}^{j} \equiv \left\{sum = \frac{(j+1)(j+1-1)}{2}\right\} \equiv \left\{sum = \frac{(j+1)j}{2}\right\}$$

y como:

$$\left\{sum = \frac{(j+1)j}{2} \land j \neq c\right\} \rightarrow \left\{sum = \frac{(j+1)j}{2}\right\}$$

tenemos el segundo triple, usando la segunda regla de la consecuencia.

Ejercicio 2.1.34. Demostrar la corrección del siguiente triple:

$${a[i] \geqslant 0} \ a[i] = a[i] + a[j]; \ {a[i] \geqslant a[j]}$$

Para ello, basta aplicar el axioma de la asignación:

$$\{a[i] \geqslant a[j]\}_{a[i]+a[j]}^{a[i]} \ a[i] = a[i] + a[j]; \ \{a[i] \geqslant a[j]\}$$

$$\{a[i] \geqslant a[j]\}_{a[i]+a[j]}^{a[i]} \equiv \{a[i] + a[j] \geqslant a[j]\} \equiv \{a[i] \geqslant 0\}$$

Ejercicio 2.1.35. Verificar el siguiente segmento de programa:

$$\{n\geqslant 0\}$$
 $i=1;$ while $i\leqslant n$ do begin $a[i]=b[i];$ $i=i+1;$ end $\left\{\bigwedge_{i=1}^n(a[i]=b[i])
ight\}$

Ejercicio 2.1.36. El siguiente fragmento de programa calcula $\sum_{i=1}^{n} i!$. Demostrar que es correcto.

```
i = 1; sum = 0; f = 1;
while i <> n+1 do begin
    sum = sum + f;
    i = i + 1;
    f = f * 1;
end
```

Ejercicio 2.1.37. Hallar la precondición $\{P\}$ que hace que el siguiente triple sea correcto:

$$\{P\} \ a[i] = 2 * b; \ \{j \le i \land k < i \land a[i] + a[j-1] + a[k] > b\}$$

Para ello, basta aplicar el axioma de asignación:

$$\{j \leqslant i \land k < i \land a[i] + a[j-1] + a[k] > b\}_{2:b}^{a[i]} a[i] = 2 * b;$$

$$\{j \leqslant i \land k < i \land a[i] + a[j-1] + a[k] > b\}$$

$$\{j \leqslant i \land k < i \land a[i] + a[j-1] + a[k] > b\}_{2\cdot b}^{a[i]} \equiv \equiv \{j \leqslant i \land k < i \land 2 \cdot b + a[j-1] + a[k] > b\}$$

Luego estamos buscando la precondición:

$$\{P\} \equiv \{j \le i \land k < i \land 2 \cdot b + a[j-1] + a[k] > b\}$$

Ejercicio 2.1.38. Demostrar que para n > 0 el siguiente fragmento de programa termina.

```
i = 1; f = 1;
while i <> n do begin
    i = i + 1;
    f = f * r;
end
```

Ejercicio 2.1.39. Hallar la precondición de la terna:

$$\{P\}\ a[i] = b;\ \{a[j] = 2 * a[i]\}$$

Para ello, simplemente aplicamos el axioma de asignación:

$${a[j] = 2 * b} \equiv {a[j] = 2 * a[i]}_{b}^{a[i]} a[i] = b; {a[j] = 2 * a[i]}$$

Ejercicio 2.1.40. Para cada uno de los siguientes fragmentos de código, obtener la poscondición apropiada:

(a) $\{i < 10\}\ i = 2 * i + 1$;. La poscondición es $\{i < 21\}$:

$$\{i<10\}\ i=2*i+1; \{i<21\}$$

que puede demostrarse aplicando el axioma de asignación.

(b) $\{i > 0\}$ i = i - 1;. La poscondición es $\{i > -1\}$:

$$\{i > 0\} \ i = i - 1; \{i > -1\}$$

que puede demostrarse aplicando el axioma de asignación.

(c) $\{i > j\}$ i = i + 1; j = j + 1;. La poscondición es $\{i > j\}$:

$${i > j} i = i + 1; {i > j + 1}$$

 ${i > j + 1} j = j + 1; {i > j}$

ambos pueden demostrarse aplicando el axioma de asignación y finalmente tenemos que:

$${i > j} i = i + 1; j = j + 1; {i > j}$$

aplicando la regla de composición.

(d) $\{V\}\ i = 3;\ j = 2 * i.$ La poscondición es $\{i = 3 \land j = 6\}$:

$$\{V\} \ i = 3; \ \{i = 3\}$$
$$\{i = 3\} \ j = 2 * i; \ \{i = 3 \land j = 6\}$$

Ejercicio 2.1.41. Para cada uno de los siguientes fragmentos de código, obtener las precondiciones apropiadas.

(a) $i = 3 * k; \{i > 6\}.$

Aplicando el axioma de asignación:

$$\{k > 2\} \equiv \{3 \cdot k > 6\} \equiv \{i > 6\}_{3,k}^{i} \ i = 3 * k; \ \{i > 6\}$$

obtenemos que la precondición es $\{k > 2\}$.

(b) a = b * c; $\{a = 1\}$. Aplicando el axioma de asignación:

$${b = c^{-1}} \equiv {b \cdot c = 1} \equiv {a = 1}_{b \cdot c}^{a} \ a = b * c; \ {a = 1}$$

La precondición es $\{b = c^{-1}\}.$

(c) b = c - 2; a = a/b;¹

Ejercicio 2.1.42. Verificar el siguiente código. Indicar todas las reglas usadas.

$${y > 0} \ xa = x + y; \ xb = x - y;$$

Ejercicio 2.1.43. Verificar el siguiente código, indicando todas las reglas usadas.

$$\{V\} \ if \ x < 0 \ then \ x = -x \ \{x \geqslant 0\}$$

Para comenzar, probamos que $\{x<0\}$ x=-x; $\{x\geqslant 0\}$ usando el axioma de asignación:

$${x < 0} \equiv {-x \ge 0} \equiv {x \ge 0}_{-x}^{x} \ x = -x; \ {x \ge 0}$$

Posteriormente, como sabemos que $\{V \land x < 0\} \equiv \{x < 0\}$ y que $\{x \ge 0\}$ null $\{x \ge 0\}$ por el axioma de la sentencia nula, podemos aplicar la regla del if:

$$\frac{\{V \land x < 0\} \ x = -x; \ \{x \geqslant 0\}, \{V \land x \geqslant 0\} \ null \ \{x \geqslant 0\}}{\{V\} \ \text{if} \ x < 0 \ \text{then} \ x = -x \ \text{else null} \ \{x \geqslant 0\}}$$

 $^{^{1}\}mathrm{Esto}$ es lo que pone en la relación, falta la poscondición para poder hacerse.

Ejercicio 2.1.44. Verificar el siguiente segmento de programa:

$$\begin{aligned} \max &= a[1]; i = 1; \\ \text{while } i <> n+1 \text{ do begin} \\ \text{if } a[i] \geqslant \max \text{ then } \max = a[i]; \\ i &= i+1; \\ \text{end} \\ \left\{ \bigwedge_{i=1}^n (\max \geqslant a[i]) \right\} \end{aligned}$$

Ejercicio 2.1.45. Demostrar la corrección parcial del siguiente código:

$$\begin{aligned} \max &= a[1]; i = 1; \\ \text{while } i < n \text{ do begin} \\ i &= i + 1; \\ \text{if } a[i] \geqslant \max \text{ then } \max = a[i]; \\ \text{end} \\ \left\{ \bigwedge_{i=1}^n (\max \geqslant a[i]), \bigvee_{j=1}^n (\max = a[i]) \right\} \end{aligned}$$

Ejercicio 2.1.46. Demostrar la corrección parcial del siguiente código:

$$i=0; j=n;$$
 while $i< n$ do begin
$$i=i+1;$$

$$j=j-1;$$

$$a[i]=b[j]$$
 end
$$\left\{\bigwedge_{i=1}^n (a[i]=b[n-i])\right\}$$

Ejercicio 2.1.47. Demostrar la corrección parcial del siguiente código:

```
i = 0;
s = 0;
while i <= n do begin
s = s + a[i];
a[i] = s;
i = i + 1;
end</pre>
```

Ejercicio 2.1.48. Dados $n \ge 0$, $i \le n$, demostrar que el siguiente segmento de progama evalúa

$$\frac{n!}{i!(n-i)!}$$

```
k = 0; fact = 1;
while k <> n do begin
    k = k + 1;
    fact = fact * k;

if k <= i then afact = fact;
    if k <= n-i then bfact = fact;
end
bcof = fact/(afact*bfact);</pre>
```

Ejercicio 2.1.49. Demostrar la terminación del fragmento de programa dado en el problema 2.1.44 ¿Qué condición se debe imponer para realizar la demostración?