

Optimizing the NEXI acquisition protocol for human gray matter microstructure mapping on a clinical MRI scanner using Explainable AI

Quentin Uhl¹, Tommaso Pavan¹, Thorsten Feiweier², Erick Jorge Canales-Rodríguez³ and Ileana Jelescu¹

¹Dept. of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland;

²Siemens Healthcare GmbH, Erlangen, Germany

³Signal Processing Lab 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

#0948

ISMRM & ISMRT Annual Meeting & Exhibition 2023 03-08 June 2023

Declaration of Financial Interests or Relationships

Speaker Name: Quentin Uhl

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

The Neurite Exchange Imaging model

Grey matter microstructure (under the electron microscope)

- Geometry different from white matter
- Little myelin: water exchange across the cell membrane

From the parameters to the signal

Kernel:	$\mathcal{K}(q, t, \mathbf{g} \cdot \mathbf{n}; f, D_{i,\parallel}, D_e, t_{ex}) = f' e^{-q^2 t D_i'} + (1 - f') e^{-q^2 t D_e'}$
Where: "apparent" diffusivities	$D'_{i/e} = \frac{1}{2} \left\{ D_{i,\parallel} (\mathbf{g} \cdot \mathbf{n})^2 + D_e + \frac{1}{q^2 t_{ex}} \mp \left[\left[D_e - D_{i,\parallel} (\mathbf{g} \cdot \mathbf{n})^2 + \frac{2f - 1}{q^2 t_{ex}} \right]^2 + \frac{4f(1 - f)}{q^4 t_{ex}^2} \right]^{\frac{1}{2}} \right\}$
"apparent" fraction	$f' = \frac{1}{D_i' - D_e'} \left[f D_{i,\parallel} (\mathbf{g} \cdot \mathbf{n})^2 + (1 - f) D_e - D_e' \right]$
Powder average (over directions):	$\bar{S}(\mathbf{p},q,t) = S \Big _{q=0} \cdot \int_0^1 \mathcal{K}(q,t,\mathbf{g} \cdot \mathbf{n};\mathbf{p}) d(\mathbf{g} \cdot \mathbf{n})$

$$b = q^2 t = (\gamma G \delta)^2 t$$

multiple acquisition parameter combinations

Our MRI Protocol on the clinical 3T Prisma Scanner

Powder-averaged signal S depends on b and t_d

Retrieving parameters using a Multi-Layer Perceptron (MLP)

3 hidden layers, 500 neurons each

Retrieving parameters using a Multi-Layer Perceptron (MLP)

Training set: 2 000 000 examples

Test set: 10 000 examples

SNR: 80-120

	t _{ex} (ms)	Di (μm²/ms)	De (μm²/ms)	f
Clinical Protocol Mean Absolute Error (MAE)	27.457	0.423	0.351	0.083

MLP estimates on an axial slice of the human brain

Statistics on the cortical ribbon

Median [1st, 3rd quartile] of cortical map

Comparison with the Non-linear Least Squares estimates

How to improve this protocol to get lower errors?

Explainable AI

Shapley value of input i ~ its contribution to the output

Explainable AI using Shapley values

Shapley value of player i ~ his/her contribution to the game:

$$\varphi_i = \frac{1}{\# \ of \ players} \sum_{coalitions \ excluding \ i} \frac{marginal \ contribution \ of \ i \ to \ coalition}{\# \ of \ coalitions \ excluding \ i} \ \# \ of \ coalitions \ excluding \ i \ of \ this \ size$$

the score of the team with the player

the score of the team without the player

Looking for an optimized protocol

Sign(Median(SHAP value)) x Mean(|SHAP value|) per (b, td) couple for each parameter

Source: SHAP, Scott Lundberg

The two protocols

Is this new protocol really better?

	t _{ex} (ms)	Di (μm²/ms)	De (μm²/ms)	f
Clinical Protocol MAE	27.457	0.423	0.351	0.083
Optimized Protocol MAE	25.496	0.419	0.330	0.076
	-1.961	-0.004	-0.021	-0.007

→ **A** Still dependent on the training & test sets

Is this new protocol really better?

To compare protocols, we set side by side their associated **Cramer-Rao Lower Bound (CRLB)** on some sets of microstructure parameters.

Around [24, 2.5, 0.89, 0.4]

▲ Depends on the parameters p (4D)

Summary & Perspectives

- ➤ We succeeded in estimating NEXI parameters on the human brain on a clinical scanner.
- > A naïve protocol seems to already hold reasonable results.
- ➤ Next, we will identify a new protocol with this method within a range adapted to the Prisma gradient limitations, implement it experimentally and compare the maps.

Acknowledgments

The **Microstructure Mapping** team (Lausanne, Switzerland):

- Ileana O. Jelescu
- Tommaso Pavan
- Yujian Diao
- Andreea Hertanu
- Jasmine Nguyen-Duc
- Inès de Riedmatten
- Saina Asadi

Collaborators:

Thorsten Feiweier (Siemens Healthineers)

Erick Jorge Canales-Rodríguez (LTS5, EPFL)

Our funding:

PCEFP2_194260

