Sequence modelling with RNNs: Main ideas

Dr. Benjamin Roth

CIS LMU München

Recurrent Neural Networks (RNNs): Representation Learning for Sequences

- Family of neural networks for processing sequential data $\mathbf{x}^{(1)} \dots \mathbf{x}^{(\tau)}$. ⇒ Sequences of words, characters, ...
- Simplest case: for each time step t there is a representation $\mathbf{h}^{(t)}$ computed from current input $\mathbf{x}^{(t)}$ and previous representation $\mathbf{h}^{(t-1)}$. Extensions:
 - ▶ Representation at time t can be complex, e.g. several layers.
 - **Representation** $\mathbf{h}^{(t)}$ can depend on more than one previous \mathbf{h} .
 - A context window of inputs can be used for computation of $\mathbf{h}^{(t)}$, e.g. $\mathbf{x}^{(t-2)}, \mathbf{x}^{(t-1)}, \mathbf{x}^{(t)}, \mathbf{x}^{(t+1)}, \mathbf{x}^{(t+2)}$

Recurrent Neural Networks (RNNs): Parameter Sharing

• Parameter sharing: going from a time step t-1 to t is parameterized the same for all t.

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta)$$

ullet Representation $oldsymbol{\mathbf{h}}^{(t)}$ contains (some) information from all previous time steps.

Recurrent Neural Networks (RNNs): Output

 The output of a standard RNN is computed from the hidden representation at time t:

$$\mathbf{o}^{(t)} = f(\mathbf{h}^{(t)}; \theta)$$

- Some RNNs architectures provide output $\mathbf{o}^{(t)}$ at every time step, other architectures only at the last time step $(\mathbf{o}^{(au)})$
 - Every time step: Tagging (POS Tagging, NER, ...)
 - Last time step: Sentence classification (Sentiment polarity, ...)

Recurrent Neural Networks (RNNs): Loss Function

- Loss function that drives training:
 - Every time step: $\mathcal{L}(y^{(1)}, y^{(2)} \dots y^{(\tau)}; o^{(1)}, o^{(2)} \dots o^{(\tau)})$
 - ▶ Last time step: $\mathcal{L}(y; o^{(\tau)})$
- Example: Tagging
 - Output o (for training) is predicted distribution over tags
 - \star $\mathbf{o}^{(t)} = P(\mathsf{tag} = ?|\mathbf{h}^{(t)}; \theta)$
 - ★ Can be softmax, for example
 - Loss at time t is e.g. negative log-likelihood (NLL) of training label $y^{(t)}$

$$\mathcal{L}^{(t)} = -\log P(\mathsf{tag} = y^{(t)}|\mathbf{h}^{(t)};\theta)$$

Overall NLL-loss:

$$\mathcal{L} = \sum_{t=1}^{ au} \mathcal{L}^{(t)}$$

- At test time, output and loss are different
 - ★ Output: most likely label at t
 - ★ Loss: Accuracy, F1-score, ...

Graphical Notation

- Nodes indicate input data (x) or function outputs (otherwise).
- Arrows indicate functions arguments.
- Compact notation (left):
 - All time steps conflated.
 - ▶ Black square indicates "delay" of 1 time unit.

Source: Goodfellow et al.: Deep Learning.

Graphical Notation: Including Output and Loss Function

Source: Goodfellow et al.: Deep Learning.