1 Mengen

Obere Schranke: $\exists b \in \mathbb{R} \ \forall a \in A: \ a \leq b$

Supremum: kleinste obere Schranke sup A Infimum: grösste untere Schranke inf A

Maximum/Minimum: $\sup A \in A$, $\inf A \in A$

2 Komplexe Zahlen

2.1 Polarform

$$\begin{split} z &= x + iy = r(\cos(\varphi) + i\sin(\varphi)) = re^{i\varphi} \\ r &= |z| = \sqrt{x^2 + y^2} \\ \varphi &= \arctan(\frac{y}{x}) = \\ x &= r\cos(\varphi) \\ y &= r\sin(\varphi) \\ zw &= (re^{i\varphi}) \cdot (se^{i\psi}) = rse^{i(\varphi + \psi)} \\ \sqrt[q]{z} &= \sqrt[q]{s}e^{i\phi}, \text{ wobei } \phi = \frac{\varphi}{q} \mod \frac{2\pi}{q} \\ e^{i\frac{\pi}{2}} &= i, \ e^{i\pi} = 1, \ e^{-i\pi} = -1 \end{split}$$

2.2 Identitäten

$$\overline{z} = x - iy$$

$$(a,b) \cdot (b,c) = (ac - bd, ad + bc)$$

$$i = \sqrt{-1}$$

$$i^2 = -1$$

$$|zw|^2 = (zw) \cdot \overline{(zw)} = |z|^2 |w|^2$$

3 Trigonometrie

$$\sin(0) = 0$$
, $\sin(\frac{\pi}{2}) = 1$, $\sin(\pi) = 0$
 $\cos(0) = 1$, $\cos(\frac{\pi}{2}) = 0$, $\cos(\pi) = -1$

1

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$

$$\sin^{2}(x) + \cos^{2}(x) = 1$$

4 Grenzwert

4.1 Dominanz

Für
$$x \to +\infty$$
: ... $< \log(\log(x)) < \log(x) < x^{\alpha} < \alpha^{x} < x! < x^{x}$
Für $x \to 0$: ... $< \log(\log(x)) < \log(x) < (\frac{1}{x})^{\alpha}$

4.2 Tipps

$$\lim_{x \to a} \frac{\sin \odot}{\odot} = 1 \text{ mit } \odot \xrightarrow{x \to a} 0$$

$$\lim_{x \to a} (1 + \frac{1}{\odot})^{\odot} = e \text{ mit } \odot \xrightarrow{x \to a} \infty$$

$$\lim_{x \to a} (1 + \odot)^{\frac{1}{\odot}} = e \text{ mit } \odot \xrightarrow{x \to a} 0$$

4.3 Wurzeltrick

$$\lim_{x \to \infty} \sqrt{\alpha} + \beta = \lim_{x \to \infty} (\sqrt{\alpha} + \beta) \frac{\sqrt{\alpha} - \beta}{\sqrt{\alpha} - \beta}$$

4.4 $e^{\log(x)}$ -Trick

Anforderung

Term der Form $f(x)^{g(x)}$ mit Grenzwert "0", " ∞ " oder "1 $^{\infty}$ " für $x \to 0$

Vorgehen

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} e^{g(x) \cdot \log(f(x))}$$

4.5 Satz von Bernoulli-de l'Hôpital

Anforderung

Term der Form $\frac{f(x)}{g(x)}$ mit Grenzwert entweder " $\frac{0}{0}$ " oder " $\frac{\infty}{\infty}$ " mit $g'(x) \neq 0$. Falls die Grenzwerte $0 \neq \infty$ verschieden sind, kann man umformen: $\frac{f(x)}{\frac{1}{2}(x)}$.

Vorgehen

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g(x)}$$

5 Folgen und Reihen

6 Differenzialrechnung

Eine stetige Funktion ist differenzierbar, falls der Grenzwert $f'(x_0)$ existiert:

$$f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

6.1 Umkehrsatz

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

6.2 Mittelwertsatz

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

6.3 Taylorpolynom

Das Taylorpolynom m-ter Ordnung von f(x) an der Stelle x = a

$$P_m^a(x) := f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \dots + \frac{1}{m!}f^{(m)}(a)(x - a)^m$$

mit dem Fehlerterm $R_m^a(x)$, wobei ξ zwischen a und b liegt:

$$R_m^a(x) = \frac{f^{(m+1)}(\xi)}{(m+1)!}(x+a)^{m+1}$$
, wobei $f(x) = P_m^a(x) + R_m^a(x)$

7 Integration

7.1 Elementare Integrale

f(x)	F(x)
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1} + C$
$\frac{1}{x}$	$\log(x) + C$
$\frac{1}{x^2}$	$\frac{1}{x} + C$
$\sin(x)$	$-\cos(x) + C$
$\cos(x)$	$\sin(x) + C$

7.2 Regeln

Direkter Integral
$$\int f(g(x))g'(x) \ dx = F(g(x))$$

Partielle Integration $\int f' \cdot g \ dx = f \cdot g - \int f \cdot g' \ dx$

mit Polynomen $\int \frac{p(x)}{q(x)} \ dx \Rightarrow \text{Partialbruchzerlegung}$

Substitution $\int_a^b f(\varphi(t))\varphi'(t) \ dt = \int_{\varphi(a)}^{\varphi(b)} f(x) \ dx \text{ mit } x = \varphi(t)$

7.3 Tipps

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\log|\cos(x)|$$
$$\int \frac{1}{x - \alpha} = \log(x - \alpha)$$

8 Differentialgleichungen

8.1 Grundbegriffe

Ordnung: höchste vorkommende Ableitung

linear: alle y-abhängigen Terme kommen linear vor (keine Terme wie zum Beispiel

 y^2 , $(y'')^3$, $\sin(y)$, $e^{y'}$)

homogen: Gleichung ohne Störfunktionen

Störfunktion: Term, der rein von der Funktionsvariablen x abhängt

8.2 Methoden

	Problem	Anforderungen
Trennung der Variablen	$y' = \frac{dy}{dx} = h(x) \cdot g(y)$	1. Ordnung
Variation der Konstanten	$y' = \frac{dy}{dx} = h(x)y + b(x)$	1. Ordnung
		inhomogen
Euler-Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0$	n. Ordnung
		linear
		homogen
Direkter Ansatz	$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b(x)$	n. Ordnung
		linear
		inhomogen

8.2.1 Trennung der Variable

$$y' + x \tan y = 0, \ y(0) = \frac{\pi}{2}$$

umformen $\frac{dy}{dx} = -x \tan y$

konstante Lösungen $y(x) \equiv 0$ erfüllt jedoch $y(0) \equiv \frac{\pi}{2}$ nicht

Trennung $\frac{dy}{\tan y} = -xdx$

integrieren $\int \frac{\cos y}{\sin y} dy = -\int x dx \Rightarrow \log|\sin y| = -\frac{x^2}{2} + C$ $\Rightarrow |\sin y| = e^C e^{\frac{-x^2}{2}} \Rightarrow \sin y = \pm e^C e^{\frac{-x^2}{2}} = C e^{\frac{-x^2}{2}}$

Anfangsbedingung gebrauchen $\sin(y(0)) = \sin(\frac{\pi}{2}) = 1 \Rightarrow C = 1$

Lösung $y(x) = \arcsin(e^{\frac{-x^2}{2}})$

8.2.2 Variation der Konstanten

Grundsatz: $y(x) = y_{\text{homo}}(x) + y_p(x)$

$$y' - y = 1, \ y(0) = 0$$

homogener Ansatz y' = y

konstante Lösungen $y(x) \equiv 0$

Trennung
$$\frac{dy}{y} = dx \Rightarrow \int \frac{dy}{y} = \int dx \Rightarrow \log|y| = x$$

homogene Lösung $y_{\text{homo}}(x) = Ae^x, \ A = e^C \in \mathbb{R}$

partikulärer Ansatz $y_p(x) = A(x)e^x$

einsetzen
$$A'e^x + Ae^x - Ae^x = 1 \Rightarrow A' = e^{-x} \Rightarrow A(x) = \int e^{-x} dx = -e^{-x}$$

partikuläre Lösung $y_p(x) = -1$

Lösung
$$y(x) = Ae^x - 1$$
 mit Anfangsbedingung $A = 1$
 $\Rightarrow y(x) = e^x - 1$

8.2.3 Euler-Ansatz

$$y'' - 2y' - 8y = 0, \ y(1) = 1, y'(1) = 0$$

Euler-Ansatz $y(x) = e^{\lambda x}$

einsetzen $\lambda^2 e^{\lambda x} - 2\lambda e^{\lambda x} - 8e^{\lambda x} = 0$

charakt. Polynom $\lambda^2 - 2\lambda - 8 = (\lambda - 4)(\lambda + 2) = 0$

Nullstellen 4, -2

allgemeine Lösung $y(x) = Ae^{4x} + Be^{-2x}$

Anfangsbedingung gebrauchen $y(1) = Ae^4 + Be^{-2} = 1, y'(1) = 4Ae^4 - 2Be^{-2} = 0$

$$\Rightarrow A = \frac{1}{3}e^{-4}, B = \frac{2}{3}e^{2}$$

Lösung $y(x) = \frac{1}{3}e^{4x-4} + \frac{2}{3}e^{2-2x}$

Bemerkung: Zu einer m-fachen Nullstelle λ gehören die m linear unabhängigen Lösungen $e^{\lambda x}$, $x \cdot e^{\lambda x}$, ..., $x^{m-1} \cdot e^{\lambda x}$. Zur m-fachen Nullstelle $\lambda = 0$ gehören die Lösungen $1, x, \ldots, x^{m-1}$.

8.2.4 Direkter Ansatz

Grundsatz: $y(x) = y_{\text{homo}}(x) + y_p(x)$

Inhomogener Term $b(x)$	Ansatz für $y_p(x)$	zu bestimmen
Polynom	$Ax^2 + Bx + C$	A, B, C
ce^{kx}	Ae^{kx}	A
$c\sin(kx)$ oder $c\cos(kx)$	$A\sin(kx) + B\cos(kx)$	A, B

$$y'' - y' + \frac{1}{4}y = \cos(x)$$
 homogener
$$y'' + y' + \frac{1}{4}y = 0$$
 Euler-Ansatz anwenden
$$\lambda^2 + \lambda + \frac{1}{4} = (\lambda + \frac{1}{2})^2 = 0$$
 homogene Lösung
$$\Rightarrow y_{\text{homo}}(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}}$$
 Ansatz wählen
$$y_p(x) = a\cos(x) + b\sin(x)$$

$$\Rightarrow y_p'(x) = -a\sin(x) + b\cos(x), \ y_p''(x) = -a\cos(x) - b\sin(x)$$
 Einsetzen
$$(-a + b + \frac{a}{4})\cos(x) + (-b - a + \frac{1}{4}b)\sin(x) = \cos(x)$$
 Koeffizientenvergleich
$$-\frac{3}{4}a + b = 1, \ -a - \frac{3}{4}b = 0$$
 partikuläre Lösung
$$y_p(x) = -\frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$
 Lösung
$$y(x) = Ae^{-\frac{x}{2}} + Bx \cdot e^{-\frac{x}{2}} - \frac{12}{25}\cos(x) + \frac{16}{25}\sin(x)$$

9 Wegintegral

9.1 Standard Methode

$$\begin{aligned} \mathbf{Grundsatz:} \quad & \int_{\gamma} \vec{v} \cdot d\vec{s} := \int_{a}^{b} \vec{v}(\vec{\gamma}(t)) \cdot \dot{\vec{\gamma}}(t) \ dt \\ \vec{v} &= \begin{pmatrix} y \\ 0 \end{pmatrix}, \ \gamma : [0, 2\pi] \mapsto \mathbb{R}^{2}, \ t \mapsto \begin{pmatrix} t - \sin(t) \\ 1 - \cos(t) \end{pmatrix} \\ \text{parametrisieren} \quad & \text{hier bereits gegeben} \\ \gamma \text{ ableiten} \quad & \dot{\gamma} &= \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix} \\ \text{in Formel einsetzen} \quad & \int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{0}^{2\pi} \begin{pmatrix} 1 - \cos(t) \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 - \cos(t) \\ \sin(t) \end{pmatrix} \ dt \\ &= \int_{0}^{2\pi} (1 - \cos(t))^{2} \ dt = \int_{0}^{2\pi} (1 - 2\cos(t) + \cos^{2}(t)) \ dt \end{aligned}$$

9.2 In Potenzialfeldern

Anforderung: Das Vektorfeld \vec{v} ist konservativ. Es existiert ein Potenzial.

Lösung $2\pi - 0 + \pi = 3\pi$

Grundsatz:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \Phi(\text{Ende}) - \Phi(\text{Anfang})$$

$$\vec{v} = \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix}, \text{ Kreisbogen von } (1,0) \text{ nach } (-1,0)$$
 gleichsetzen:
$$\vec{v} = \begin{pmatrix} e^{xy}(1+xy) \\ e^{xy}x^2 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \nabla \Phi$$

$$\frac{\partial \Phi}{\partial y} = e^{xy}x^2 \Rightarrow \Phi = \int e^{xy}x^2 \ dy = xe^{xy} + C(x)$$
 ableiten:
$$\frac{\partial \Phi}{\partial x} = e^{xy} + xye^{xy} + C' \stackrel{!}{=} e^{xy} + xye^{xy}$$

$$\Rightarrow C' = 0 \Rightarrow C = \text{const.}$$

Potenzial: $\Phi = xe^{xy} + \text{const.}$

Lösung:
$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \Phi(-1,0) - \Phi(1,0) = -1 + C - 1 - C = 2$$

9.3 Satz von Green

Anforderung: Der Rand muss im positiven mathematischen Sinn umlaufen werden (d.h. im Gegenuhrzeigersinn)

$$\begin{aligned} \textbf{Grundsatz:} \quad & \int_{\gamma=\partial C} \vec{v} \cdot d\vec{s} = \int_{C} (\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}) \ dxdy \\ & \vec{v} = \binom{x+y}{y}, \ \text{Kreisbogen mit Radius 1 um } (0,0) \\ \text{Rotation berechnen:} \quad & rot(\vec{v}) = \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} = 0 - 1 = -1 \\ \text{Normalbereich:} \quad & E = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 \leq 1\} \\ \text{in Formel einsetzen:} \quad & \int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{E} -1 \ dxdy = -\mu(E) = -\pi \end{aligned}$$

10 Flächenintegral

Normalbereich 10.1

$$\int_{\Omega} F \ d\mu = \int_{a}^{b} dx \int_{f(x)}^{g(x)} dy \ F(x,y)$$

$$\int_{\Omega} xy \ d\mu, \ \Omega = \{(x,y) \in \mathbb{R}^{2} | y \geq x^{2}, x \geq y^{2} \}$$
 als Normalbereich schreiben:
$$\Omega = \{(x,y) \in \mathbb{R}^{2} | 0 \leq x \leq 1, x^{2} \leq y \leq \sqrt{x} \}$$
 in Formel einsetzen:
$$\int_{\Omega} xy \ d\mu = \int_{0}^{1} dx \int_{x^{2}}^{\sqrt{x}} dyxy = \int_{0}^{1} dx \ x \Big[\frac{y^{2}}{2} \Big]_{x^{2}}^{\sqrt{x}}$$

$$= \int_{0}^{1} \Big(\frac{x^{2}}{2} - \frac{x^{5}}{2} \Big) dx = \frac{1}{12}$$

Grundsatz: $\Omega = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, f(x) \le y \le g(x) \}$

10.2 Satz von Green

Grundsatz:
$$\mu(C) = \int_{\gamma = \partial C} \vec{v} \cdot d\vec{s}$$
, falls $rot(\vec{v}) = 1$

Flächeninhalt der Ellipse E, berandet durch $x=a\cos(\theta),\ y=b\sin(\theta)$

Rand parametrisieren:
$$\gamma: [0, 2\pi] \mapsto \mathbb{R}^2, \ \theta \mapsto \begin{pmatrix} a\cos(\theta) \\ b\sin(\theta) \end{pmatrix}$$

Vektorfeld auswählen:
$$\vec{v}_1 = \begin{pmatrix} 0 \\ x \end{pmatrix}$$
 oder $\vec{v}_2 = \begin{pmatrix} -y \\ 0 \end{pmatrix}$

Wegintegral ausrechnen $\mu(E) = \pi ab$

11 Kurvendiskussion

11.1 Extrema/Minima

Kritischer Punkt: $p_0 \in \Omega$ für welchen $df(p_0)$ nicht den maximalen Rang besitzt, also falls $Rang(df(p_0)) < \min n, m$.