On Type-directed Generation of Lambda Terms

Paul Tarau

Department of Computer Science and Engineering University of North Texas

ICLP'2015

Research supported by NSF grant 1423324.

Motivation

- λ-calculus is possibly the most heavily researched computational mechanism, but it has a nice property: the deeper you dig, the more interesting it becomes :-)
- ullet λ -terms provide a foundation to modern functional languages, type theory and proof assistants
- they are now part of mainstream programming languages including Java
 8, C# and Apple's Swift, C++ 11
- Prolog's backtracking, sound unification and Definite Clause Grammars make it an "all-in-one" meta-language for generation, type inference, symbolic computation
- this is part of a Prolog-based declarative playground for λ -terms, types and combinators at http://arxiv.org/abs/1507.06944 (70 pages and growing!)

De Bruijn Indices

Our metalanguage: a subset of Prolog, with occasional use of some built-ins, Horn clauses of the form $a_0:-a_1, a_2 \dots a_n$.

- a lambda term: $\lambda a.(\lambda b.(a(bb)) \lambda c.(a(cc))) \Rightarrow$
- in Prolog: I(A,a(I(B,a(A,a(B,B))),I(C,a(A,a(C,C)))))
- de Bruijn Indices provide a name-free representation of lambda terms
- ullet terms that can be transformed by a renaming of variables (lpha-conversion) will share a unique representation
 - variables following lambda abstractions are omitted
 - their occurrences are marked with positive integers counting the number of lambdas until the one binding them on the way up to the root of the term
- term with canonical names: $I(A,a(I(B,a(A,a(B,B))),I(C,a(A,a(C,C))))) \Rightarrow$
- de Bruijn term: I(a(I(a(v(1),a(v(0),v(0)))),I(a(v(1),a(v(0),v(0))))))
- note: we start counting up from 0
- closed terms: every variable occurrence belongs to a binder
- open terms: otherwise

Type inference algorithm for Bruijn terms

- we associate the same logical variable, denoting its type, to each variable
- each leaf $\sqrt{1}$ corresponds via its de Bruijn index to its binder
- the built-in nth0 (I, Vs, V0) unifies V0 with the I-th element of the type context Vs
- unification with occurs-check needs to be used to avoid cycles in the inferred type formulas

```
boundTypeOf(v(I),V,Vs):-
  nth0(I,Vs,V0),
  unify_with_occurs_check(V,V0).
boundTypeOf(a(A,B),Y,Vs):-
  boundTypeOf(B,(X->Y),Vs),
  boundTypeOf(B,X,Vs).
boundTypeOf(1(A),(X->Y),Vs):-
  boundTypeOf(A,Y,[X|Vs]).
```

Generating well typed de Bruijn terms of a given size

- we can interleave generation and type inference in one program
- DCG grammars control size of the terms with predicate down/2
- in terms of the Curry-Howard correspondence, the size of the generated term corresponds to the size of the (Hilbert-style) proof of the intuitionistic formula defining its type

```
genTypedB(v(I),V,Vs)-->
    {
       nth0(I,Vs,V0), % pick binder and ensure types match
       unify_with_occurs_check(V,V0)
    }.
genTypedB(a(A,B),Y,Vs)-->down, % application node
    genTypedB(A, (X->Y),Vs),
    genTypedB(B,X,Vs).
genTypedB(1(A),(X->Y),Vs)-->down, % lambda node
    genTypedB(A,Y,[X|Vs]).
```

Merging term generation and type inference \Rightarrow improved performance

Size	Slow 0->0	Slow 0->0->0	Fast o->o	Fast 0->0->0	Fast o
1	39	39	38	27	15
2	126	126	60	109	36
3	552	552	240	200	88
4	3,108	3,108	634	1,063	290
5	21,840	21,840	3,213	3,001	1,039
6	181,566	181,566	12,721	19,598	4,762
7	1,724,131	1,724,131	76,473	81,290	23,142
8	18,307,585	18,307,585	407,639	584,226	133,554
9	213,940,146	213,940,146	2,809,853	3,254,363	812,730

Figure: Number of logical inferences as counted by SWI-Prolog for our algorithms when querying generators with type patterns given in advance

Querying for inhabitants of a given type

```
genTypedB(L,B,T):-genTypedB(B,T,[],L,0),bindType(T).
queryTypedB(L,Term,QueryType):-
   genTypedB(L,Term,Type),
   Type=QueryType.
```

Terms of type x>x of size 4

 the last query, taking about half a minute, shows that no closed terms of type (o->o) ->o exist up to size 10

Discovering frequently occurring type patterns

Term size	Types	Terms	Ratio	1-st frequent	2-nd frequent
1	1	1	1.0	1: 0->0	
2	1	2	0.5	2: 0->0->0	
3	5	9	0.555	3: 0->0->0	3: 0->0
4	16	40	0.4	14: 0->0->0	4:
5	55	238	0.231	38: 0->0->0	31: 0->0
6	235	1564	0.150	201: 0->0->0	80:
7	1102	11807	0.093	732: 0->0->0	596 : 0->0
8	5757	98529	0.058	4632: 0->0->0	2500: 0->0
9	33251	904318	0.036	20214: 0->0->0	19855:

Figure: Counts for terms and types for sizes 1 to 9 + first two most frequent types

Some "popular" types

Figure ?? shows the "most popular types" for the about 1 million closed well-typed terms up to size 9 and the count of their inhabitants.

Count	Туре
23095	0->0->0
22811	(0->0)->0->0
22514	0->0->0
21686	0->0
18271	0-> (0->0)->0
14159	(0->0)->0->0
13254	((0->0)->0)->
12921	0-> (0->0)->0->0
11541	(0->0)-> ((0->0)->0)->0
10919	(0->0->0) ->0->0

Figure: Most frequent types, out of a total of 33972 distinct types, of 1016508 terms up to size 9.

Generating well-typed, closed BCK(p) terms of a given size

```
genTBCK(K, L, X, T) := genTBCX(X, T, K, I, 0, [], [], L, 0). % for I = 0, BCI(p)
genTBCX(v(X), T, K1, K2, V, Vs1, Vs2) \longrightarrow {
     selsub(V, X:C1:T0, X:C2:T, Vs1, Vs2), down(C1, C2),
     unify with occurs check (T, T0)
genTBCX(1(A), (X->Y), K1, K2, V, Vs1, Vs2) --> down,
  {up(V,NewV)},
  genTBCX(A, Y, K1, K2, NewV, [V:K1:X | Vs1], [V:NewK: | Vs2]),
  \{ + + (\text{NewK}=\text{K2}) \}.
genTBCX(a(A,B),Y,K1,K2,V,Vs1,Vs3) \longrightarrow down,
  genTBCX(A, (X->Y), K1, K2, V, Vs1, Vs2),
  genTBCX(B, X, K1, K2, V, Vs2, Vs3).
selsub(I, X, Y, [X|Xs], [Y|Xs]) := down(I, _).
selsub(I, X, Y, [Z|Xs], [Z|Ys]) := down(I, I1), selsub(I1, X, Y, Xs, Ys).
```

Relational queries that we can answer

- How many distinct types occur for terms up to a given size?
- What are the most popular types?
- What are the terms that share a given type?
- What is the smallest term that has a given type?
- What smaller terms have the same type as this term?

Conclusion

Prolog code at:

http://www.cse.unt.edu/~tarau/research/2015/dbt.pro

- logic programming is used as a meta-language for lambda terms and types
- Compactness and simplicity of the code is coming from a combination of:
 - logic variables / unification with occurs check / acyclic term testing
 - Prolog's backtracking and occasional CUTs :-)
 - DCGs for size constraints in generators and for relation composition

The same is doable in functional programming - but with a much richer "language ontology" needed for managing state, backtracking, unification.