Theta series and tautological cycles on orthogonal Shimura varieties

International Seminar on Automorphic Forms

Zhiyuan Li

Shanghai Center for Mathmetical Science

May 13, 2025

Motivation: Moduli space of curves

• Let

$$\mathbf{M}_g = \left\{ \Sigma_g : \bigcirc \cdots \bigcirc \right\} / \cong$$

be the moduli space of compact Riemann surfaces of genus $g \geq 2$.

• By Teichmüller theory,

$$\mathbf{M}_a \cong \mathbf{T}/\mathrm{MCG}$$

where T is the Teichmüller space and MCG is the mapping class group.

• Deligne-Mumford: there is a projective compactification $\overline{\mathbf{M}}_g$ of \mathbf{M}_g , called Deligne-Mumford compactification. Its boundary $\partial(\overline{\mathbf{M}}_g)$ has $\left[\frac{g}{2}\right]+1$ irreducible components δ_i , $0 \le i \le \left[\frac{g}{2}\right]$, where

$$\delta_i = \Big\{ C \cup C' \mid \mathbf{gen}(C) = i, \ \mathbf{gen}(C') = g - i \Big\}.$$

Tautological cycles on M_g

Fact: The Chow ring $CH^*(\mathbf{M}_g)$ is highly complicated (e.g., potentially non-finitely generated). Mumford's tautological ring captures its most geometric/essential part.

• Geometry from Moduli Spaces: The moduli space \mathbf{M}_g "naturally carries" a universal family of smooth curves:

$$\pi: \mathbf{M}_{q,1} \to \mathbf{M}_q$$
, with fiber $\pi^{-1}([C]) = C$

• Set

$$T_{\pi} = \ker \left(T_{\mathbf{M}_{g,1}} \to \pi^* T_{\mathbf{M}_g} \right).$$

to be relative tangent bundle.

• Mumford's κ -Classes: define

$$\kappa_i = \pi_* \left(c_1(T_\pi)^{i+1} \right) \in \mathrm{CH}^i(\mathbf{M}_g).$$

and the subring $R^*(\mathbf{M}_g) \subset CH^*(\mathbf{M}_g)$ generated by κ_i is called the tautological ring for \mathbf{M}_g .

Core Insight: The tautological ring encodes essential intersection-theoretic data on \mathbf{M}_q .

Structure of the Tautological Ring

Theorem (Harer, Looijenga, Faber)

Let $R^*(\mathbf{M}_g) = \bigoplus_{d>0} R^d(\mathbf{M}_g)$. Then:

- (0) (Mumford's conjecture) $R^*(\mathbf{M}_g)$ is generated by $\kappa_1, \ldots, \kappa_{\lfloor g/3 \rfloor}$ and $R^1(\mathbf{M}_g) = \operatorname{Pic}(\mathbf{M}_g)$.
- (1) (Vanishing) $R^d(\mathbf{M}_g) = 0$ for d > g 2.
- (2) (1-Dimensionality) $R^{g-2}(\mathbf{M}_g) \cong \mathbb{Q}$.

Remark.

• Properties (1)–(2) is part of **Faber's conjecture**.

Faber's conjecture also include the (**Gorenstein Property**), i.e. the intersection pairing

$$R^{d}(\mathbf{M}_{q}) \times R^{g-2-d}(\mathbf{M}_{q}) \to R^{g-2}(\mathbf{M}_{q}) \cong \mathbb{Q}$$

is perfect, which imply a *Poincaré duality* structure on $R^*(\mathbf{M}_g)$. This is still open.

• There is an analogous result on $\overline{\mathbf{M}}_g$. e.g. $\mathrm{R}^1(\overline{\mathbf{M}}_g) = \mathrm{Pic}(\overline{\mathbf{M}}_g)$ is spanned by κ_1 and irreducible components of $\partial(\overline{\mathbf{M}}_g)$.

Higher dimensional case: K3 surfaces

Definition

- A compact complex surface S is a K3 surface if
 - 1. $\pi_1(S) = 1$,
 - 2. $H^0(S, \Omega_S^2)$ is spanned by a nowhere degenerated 2-form.
- A quasi-polarized K3 surface of genus g is a pair (S, L) where S is a K3 surface, $L \in Pic(S)$ is a nef line bundle with $L^2 = 2q 2$.
- Let

$$\mathbf{F}_g = \Big\{ (\mathbf{S}, \mathbf{L}) : \text{quasi-polarized K3 surfaces of genus } g \Big\} \big/ \cong$$

be the coarse moduli space of quasi-polarized K3 surfaces.

Global Torelli Theorem (Pjateckiĭ-Šapiro, Šafarevič)

 \mathbf{F}_g is isomorphic to a 19-dimensional quasi-projective Shimura variety via the period map, equipped with a canonical compactification $\overline{\mathbf{F}}_g$, called the **Baily-Borel compactification**.

Tautological ring of F_g

• Motivated from Mumford's work, Marian-Oprea-Pandaripande defined the κ -classes on family of quasi-polarized K3 surfaces $\pi: \mathcal{X} \to B$ as below

$$\kappa_{a_1,\ldots,a_k,b} := \pi_* (\mathcal{L}_1^{a_i} \cdots \mathcal{L}_k^{a_k} c_2 (T_\pi)^b)$$

where $\mathcal{L}_i \in \operatorname{Pic}(\mathcal{X})$.

- Let $R^*(\mathbf{F}_g) \subseteq CH^*(\mathbf{F}_g)$ be the subring generated by κ -classes on families of K3 surfaces over the **higher Noether-Lefschetz loci** of \mathbf{F}_g .
- MOP Conjecture:
 - (0) Generators: $\mathbf{R}^*(\mathbf{F}_g)$ is generated by components in the higher Noether-Lefschetz loci.
 - (1) Vanishing: $\mathbf{R}^d(\mathbf{F}_g) = 0$ for d > 19 2
 - (2) 1-Dim: $\mathbf{R}^{17}(\mathbf{F}_g) \cong \mathbb{Q}$
- (0) has been confirmed by Yin-Pandaripande, and also Bergero-L. (in cohomology) via different methods.

Current Progress

A Comparative Overview

Moduli space of curves

- $\operatorname{Pic}(\mathbf{M}_g) \cong \mathbb{Z}$
- $\operatorname{Pic}(\overline{\mathbf{M}}_g) \cong \mathbb{Z}^{\left[\frac{g}{2}\right]+2}$
- $R^*(\mathbf{M}_g)$ is finitely generated
- $R^{>g-2}(\mathbf{M}_g) = 0$
- $R^{g-2}(\mathbf{M}_g) \cong \mathbb{Q}$

Moduli space of quasi-polarized K3 surfaces

- $\operatorname{Pic}(\mathbf{F}_g) \cong \mathbb{Z}^{d(g)}, \ d(g) \approx \left[\frac{19g}{24}\right] + 1$
- $\operatorname{Pic}(\overline{\mathbf{F}}_g) \cong \mathbb{Z}$
- It remains open whether $R^*(\mathbf{F}_g)$ is finitely generated
- Petersen '19: $R^{>\dim \mathbf{F}_g-2}(\mathbf{F}_g) = 0$ modulo homologous equivalence
- Canning-Oprea-Pandharipande '24: $R^{\dim \mathbf{F}_g 2}(\mathbf{M}_g) \cong \mathbb{O}$ when g = 2.

We will discuss the generalization of this picture and the motivations.

General Setting: Shimura variety of orthogonal type

- M: an integral lattice of signature (2, n).
- $\mathbf{D} = \{ x \in \mathbb{P}(M \otimes \mathbb{C}) \mid x^2 = 0, (x, \bar{x}) > 0 \}$
- Γ : a congruence subgroup of the stable orthogonal group $\widetilde{\mathcal{O}}(M)$.
- Baily-Borel compactification: The Shimura variety $\operatorname{Sh}_{\Gamma}(M) = \Gamma \backslash \mathbf{D}$ is a quasi-projective variety, and it admits a canonical compactification:

$$\overline{\operatorname{Sh}}_{\Gamma}(M) = \operatorname{Proj} \bigoplus_{i} \operatorname{H}^{0}(\operatorname{Sh}_{\Gamma}(M), \lambda^{\otimes k}),$$

where λ is the **Hodge line bundle** on $Sh_{\Gamma}(M)$.

- Example. When $M = \langle 2 2g \rangle \oplus U^{\oplus 2} \oplus E_8^{\oplus 2}(-1)$ and $\Gamma = \widetilde{\mathcal{O}}(M), \operatorname{Sh}_{\Gamma}(M) \cong \mathbf{F}_g$.
- Geometric properties: $\operatorname{Sh}_{\Gamma}(M)$ has only quotient singularities and is therefore \mathbb{Q} -factorial, while $\overline{\operatorname{Sh}}_{\Gamma}(M)$ can have canonical singularities.

Tautological cycles on Sh(M)

• On $Sh_{\Gamma}(M)$, there are natural cycles of the form

$$\Gamma_v \backslash v^{\perp} \to \Gamma \backslash D$$

where $v \subseteq M$ is a negative definite subspace.

- When $\operatorname{Sh}_{\Gamma}(M) = \mathbf{F}_{q}$, these are irreducible components of higher Noether-Lefschetz loci.
- Let $R^*(Sh_{\Gamma}(M))$ be the subring of $CH^*(Sh_{\Gamma}(M))$ generated by all natural cycles.

A conjectural description is

Conjecture and questions

Assume dim $Sh_{\Gamma}(M) > 3$. Then

- 1. The cycle class map $R^*(Sh_{\Gamma}(M)) \to H^*(Sh_{\Gamma}(M), \mathbb{Q})$ is injective
- 2. $R^*(Sh_{\Gamma}(M))$ is finitely generated (A stronger version of Kudla's modularity).
- 3. $R^{>\dim -2}(Sh_{\Gamma}(M)) = 0.$
- 4? $R^{\dim -2}(\operatorname{Sh}_{\Gamma}(M)) = \mathbb{Q} \text{ for } \Gamma = \widetilde{O}(M)$?

Special Divisors on Orthogonal Shimura Varieties

The problem (4?) for $\Gamma = \widetilde{O}(M)$ is related to the study of divisors on $Sh_{\Gamma}(M)$.

• Heegner divisors: For $m \in \mathbb{Q}^{\geq 0}$ and $\gamma \in M^{\vee}/M$, define

$$H_{m,\gamma} = \begin{cases} \Gamma \backslash \sum_{\substack{v \in M + \gamma \\ \frac{v^2}{2} = -m}} v^{\perp}, & \text{if } (m,\gamma) \neq (0,0), \\ \frac{v^2}{2} = -m, & \text{if } (m,\gamma) = (0,0). \end{cases}$$

which can be regarded as an element in $Pic_{\mathbb{Q}}(Sh_{\Gamma}(M))$.

- Bergeron-L-Millson-Moeglin: If $\operatorname{rank}(M) \geq 5$, then $\operatorname{Pic}_{\mathbb{Q}}(\operatorname{Sh}_{\Gamma}(M))$ is spanned by the irreducible components of $\operatorname{H}_{m,\gamma}$.
- When M contains two hyperbolic lattices and $\Gamma = \widetilde{\mathcal{O}}(M)$, by using Eichler's criteria, $\operatorname{Pic}_{\mathbb{Q}}(\operatorname{Sh}(M))$ is spanned by Heegner divisors.
- If dim $Pic_{\mathbb{Q}}(Sh_{\Gamma}(M)) > 1$, Problem (4?) likely has a negative answer.

Picard group of Baily-Borel compactification

Theorem 1 (Huang-L-Müller-Ye)

Suppose

- 1. M contains two hyperbolic lattice;
- 2. rank(M) > 10;
- 3. $M \otimes \mathbb{Z}_p$ contains three hyperbolic for all p.

If
$$\Gamma = \widetilde{\mathcal{O}}(M)$$
, then

$$\operatorname{Pic}(\overline{\operatorname{Sh}}_{\Gamma}(M)) \cong \mathbb{Z}$$

is spanned by some multiple of the extended Hodge line bundle $\bar{\lambda}$.

Remark:

- It will be interesting to known if dim $\operatorname{Pic}_{\mathbb{Q}}(\overline{\operatorname{Sh}}_{\Gamma}(M)) = 1$ for more general Γ and M with $\operatorname{rank}(M) \geq 5$ or not, (In fact, we find that this also holds for 2-elementary lattice containing two hyperbolics)
- The proof heavily use the closed relation between Heegner divisors and vector-valued modular forms.

Modular Forms

• Vector-Valued version: Given $\rho : \operatorname{SL}_2(\mathbb{Z}) \to \operatorname{GL}(V)$ (or its double cover $\operatorname{Mp}_2(\mathbb{Z})$), a vector-valued function $f : \mathbb{H} \to V$ is called a **modular form of weight** k **of type** ρ if

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k \cdot \rho \begin{pmatrix} a & b \\ c & d \end{pmatrix} (f(z)), \quad \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

- If the constant terms in its Fourier expansion are all 0, it is called a cusp form. Set Cusp_k(ρ): space of cusp forms of weight k and type ρ.
- e.g. the Eisenstein series

$$\mathbf{E}_{2k}(z) = \frac{1}{2\zeta(2k)} \sum_{(m,n)\neq(0,0)} \frac{1}{(m+nz)^{2k}}.$$

is a modular form of weight 2k.

• If ρ is a Weil representation, a main source to construct vector-valued modular forms is from Borcherds' theta series.

Theta Series

• Borcherds' Theta Series

— for any even lattice L, there is a Weil representation of $\mathrm{Mp}_2(\mathbb{Z})$ attached to L

$$\rho_L: \mathrm{Mp}_2(\mathbb{Z}) \to \mathbb{C}[L^\vee/L]$$

— if L is definite and h is a harmonic polynomial of degree d > 0, the **vector-valued**Theta series

$$\Theta_{L,h}(z) = \sum_{v \in L^{\vee}} h(v) q^{\frac{v^2}{2}} \mathbf{e}_v,$$

is an element in $\mathbf{Cusp}_{d+\frac{\mathrm{rank}(L)}{2}}(\rho_L)$, where \mathbf{e}_v is the standard basis of $\mathbb{C}[L^\vee/L]$.

— Set $\operatorname{\mathbf{Cusp}}_k^{\theta}(\rho_L) \subseteq \operatorname{\mathbf{Cusp}}_k(\rho_L)$ to be the subspace generated by $\Theta_{\Lambda,h}$ for all definite lattice $\Lambda \in \operatorname{\mathbf{Gen}}(L)$.

A stronger version via Borcherds' theta lifting

Set $\operatorname{Sh}(M) = \operatorname{Sh}_{\widetilde{\operatorname{O}}(M)}(M)$. Bocherds introduces the **singular theta lifting**, which enable us to give an explicit description of $\operatorname{Pic}_{\mathbb{Q}}(\operatorname{Sh}(M))$ via modular forms.

Set

- $\mathbf{ACusp}_k(\rho_M)$: space generated by $\mathbf{Cusp}_k(\rho_M)$ and an Eisenstein series of weight k.
- M: even lattice of signature (2, n) containing two hyperbolic lattice

There is an isomorphism

$$\Upsilon : \operatorname{Pic}(\operatorname{Sh}(M))_{\mathbb{O}} \cong \operatorname{\mathbf{ACusp}}(\rho_M)^{\vee},$$

sending the Heegner divisor $H_{m,\gamma}$ to the **coefficients functional**

$$\begin{aligned} \mathbf{ACusp}_{\frac{n+2}{2}}(\rho_M) &\longrightarrow \mathbb{Q} \\ \sum_{m' \in \mathbb{Q}, \gamma' \in M^{\vee}/M} a_{m', \gamma'} q^{m'} \mathbf{e}_{\gamma'} &\mapsto a_{m, \gamma} \end{aligned}$$

Local obstruction for extending Heegner divisors

Question: when an element in $Pic_{\mathbb{Q}}(Sh(M))$ can be extended to the boundary?

• For $x \in \overline{\operatorname{Sh}}_{\Gamma}(M)$, the **local Picard group** at x is defined as:

$$\operatorname{Pic}_{\mathbb{Q}}(\overline{\operatorname{Sh}}_{\Gamma}(M),x):=\lim_{x\in U}\operatorname{Pic}_{\mathbb{Q}}(U\cap\operatorname{Sh}(M)).$$

• There is a restriction map:

$$\operatorname{Pic}_{\mathbb{Q}}(\operatorname{Sh}_{\Gamma}(M)) \to \operatorname{Pic}_{\mathbb{Q}}(\overline{\operatorname{Sh}}_{\Gamma}(M), x).$$

Some multiple of $H \in \text{Pic}(Sh_{\Gamma}(M))$ can be extended to x if its image in $\text{Pic}(\overline{Sh}_{\Gamma}(M), x)$ is trivial.

- Example: $\lambda^{\otimes n}$ can be extended to the boundary for sufficiently large n.
- Extension of λ (by Lan): If Γ is neat, then λ can be extended to $\overline{\mathrm{Sh}}_{\Gamma}(M)$.

Obstruction from theta series

Fact: the boundary components of $\overline{\mathrm{Sh}}(M)$ correspond to isotropic planes $J\subseteq M$.

Theorem (Bruinier-Freitag)

Suppose

- M: lattice of signature (2, n) and $U^{\oplus 2} \subseteq M$;
- $J \subseteq M$: an isotropic plane;
- $\partial_J \subseteq \overline{\operatorname{Sh}}(M) \operatorname{Sh}(M)$: the boundary component corresponds to J;
- $\mathbf{H} = \sum_{\gamma \in M^{\vee}/M} \sum_{m \in \mathbb{Q}} a_{m,\gamma} \mathbf{H}_{m,\gamma}$

Then H is trivial in $\operatorname{Pic}_{\mathbb{Q}}(\overline{\operatorname{Sh}}(M), x)$ for general $x \in \partial_J$ if and only if

$$\sum_{\gamma \in M^{\vee}/M} \sum_{m \in \mathbb{Q}} a_{m,\gamma} c_{m,\gamma} = 0$$

for all theta series $\Theta_{J^{\perp}/J,h} = \sum_{m,\gamma} c_{m,\gamma} q^m \mathbf{e}_{\gamma}$, where h runs over all harmonic polynomials of degree

Observations and question

• 1st observation: as M contains two hyperbolic, then

$$\left\{J^{\perp}/J\mid J\subseteq M \text{ is an isotropic plane }\right\}$$

contains the genus of negative definite lattices of rank n-2 with discriminant group $\cong M^{\vee}/M$.

• A necessary condition: if $H \in Pic_{\mathbb{Q}}(Sh(M))$ can be extended to $\overline{Sh}(M)$, then

$$\Upsilon(H)(f) = \sum_{\gamma \in M^{\vee}/M} \sum_{m \in \mathbb{Q}} a_{m,\gamma} c_{m,\gamma} = 0$$

for all $f \in \mathbf{Cusp}_{\underline{n+2}}^{\theta}(\rho_M)$.

• 2nd observation: $H \in Pic_{\mathbb{Q}}(Sh(M))$ is proportional to λ if and only if

$$\Upsilon(H)(f) = 0$$

for all $f \in \mathbf{Cusp}_{\frac{n+2}{2}}(\rho_M)$.

• Question: Is $\operatorname{Cusp}_{\frac{n+2}{2}}^{\theta}(\rho_M) = \operatorname{Cusp}_{\frac{n+2}{2}}(\rho_M)$? If this holds, then $\operatorname{Pic}_{\mathbb{Q}}(\overline{\operatorname{Sh}}(M))$ is spanned by λ .

Cusp forms as theta series

The proof of Theorem 1 relies on the following theta lifting result

Theorem 2 (Theta lifting)

With the assumption as before.

- $\mathbf{E}_{k,M}^{(2)}$: the vector-valued Siegel Eisenstein series of weight k and type $\rho_M^{(2)}$;
- Set $\vartheta(z,z') = \partial_d \mathbf{E}_{k,M}^{(2)}(z,z')$, where ∂_d is the Eichler-Zagier's differential operator.

For d > 0 and k = d + rank(M), there is an injective map

$$\Psi: \mathbf{Cusp}_k(\rho_M) \to \mathbf{Mod}_k(\rho_M) \tag{1}$$

given by

$$f \mapsto \int_{\mathrm{SL}_2(\mathbb{Z}) \setminus \mathbb{H}} \langle f(z), \vartheta(z, -\overline{z'}) \rangle \frac{\mathrm{d}x \mathrm{d}y}{y^{2-k}}$$

whose image is exactly $\operatorname{Cusp}_k^{\theta}(\rho_M)$. In other words, $\operatorname{Cusp}_k(\rho_M) = \operatorname{Cusp}_k^{\theta}(\rho_M)$.

Proof of Theorem 2

Image of Ψ : $\Psi(f) \in \mathbf{Cusp}_k^{\theta}(\rho_M)$ follows from a dedicated computation by using Siegel-Weil formula.

Injectivity of Ψ :

• The idea is to use vector-valued Hecke operators: for each $\alpha \in \mathbb{Z}$, there is an operator

$$\mathbf{T}_{\alpha^2}: \mathbf{Cusp}_k(
ho_M) o \mathbf{Cusp}_k(
ho_M)$$

defined by

$$\mathbf{T}_{\alpha^{2}}(f) = \alpha^{k-2} \sum_{i} \sum_{\gamma \in G} \left(f_{\gamma} \mid_{k} \left[\tilde{\delta}_{i} \right] \right) \otimes \left(\mathbf{e}_{\gamma} \mid \left[\tilde{\delta}_{i} \right] \right),$$

where $f = \sum_{\gamma \in G} f_{\gamma} \mathbf{e}_{\gamma}$ and $\tilde{\delta}_i$ are coset representatives of $\mathrm{Mp}_2(\mathbb{Z})$.

Proof of Theorem 2

- Properties of Hecke operators (Bruinier-Stein)
 - (i) They are self-adjoint with respect to the Petersson inner product.
 - (ii) Set $N := \min \left\{ m \in \mathbb{Z}_{>0} \mid mx^2 = 0, \forall x \in M^{\vee}/M \right\}$. The Hecke operators

$$\{\mathbf{T}_{\alpha^2}:\gcd(\alpha,N)=1\}$$

generate a commutative subalgebra.

(iii)
$$\mathbf{T}_{\alpha^2} \circ \mathbf{T}_{\beta^2} = \mathbf{T}_{(\alpha\beta)^2}$$
 if $gcd(\alpha, \beta) = 1$.

• For k > d + 3, we have

$$\Psi = C \sum_{\alpha=1}^{\infty} \frac{\mathbf{T}_{\alpha^2}}{\alpha^{2k-2-d}}.$$

for some non-zero constant C.

Theta lifting as Heck operators

- Injectivity of $\sum_{\alpha=1}^{\infty} \frac{\mathbf{T}_{\alpha^2}}{\alpha^{2k-2-d}}$.
 - $\operatorname{Cusp}_k(\rho_M)$ is spanned by simultaneous eigenforms of \mathbf{T}_{α^2} with $\gcd(\alpha, N) = 1$.
 - let $f \in \mathbf{Cusp}_k(\rho_M)$ be a non-zero simultaneous eigenform with eigenvalue ψ_{α^2} , then

$$\left(\sum_{\substack{\alpha \ge 1 \\ \gcd(\alpha, N) = 1}} \frac{\mathbf{T}_{\alpha^2}}{\alpha^{2k - 2 - d}}\right)(f) = \left(\sum_{\substack{\alpha \ge 1 \\ \gcd(\alpha, N) = 1}} \frac{\psi_{\alpha^2}}{\alpha^{2k - 2 - d}}\right) f = L(f, 2k - 2 - d) \cdot f \neq 0.$$

— The case $p \mid N$ needs addition attention. It makes use of the isotropic lift of modular forms.

Thanks!