Ontology Languages: Description Logics

(exercise solutions)

Oscar Romero
Facultat d'Informàtica de Barcelona
Universitat Politècnica de Catalunya

Further Examples of DL Constructs

- What is the meaning of these axioms?
 - Disjunction: ∀hasChild.(Doctor ⊔ Lawyer)
 - Qualified existential restriction: ∃hasChild.Doctor
 - Full negation: ¬(Doctor ⊔ Lawyer)
 - Number restrictions: $(\geq 2 \text{ hasChild}) \sqcap (\leq 1 \text{ sibling})$
 - Qualified number restrictions: $(\geq 2 \text{ hasChild. Doctor})$
 - Inverse role: ∀hasChild⁻.Doctor
 - Reflexive-transitive role closure: ∃hasChild*.Doctor

Oscar Romero

2

Exercise

Represent as concept expressions the following UML diagram


```
TBox T: \existshasFather \sqsubseteq Person \existshasFather \sqsubseteq Person \sqsubseteq \existshasFather
```

Oscar Romero 3

Represent as concept expressions the following UML diagram

Oscar Romero 4

Exercise

TBOX:

```
Researcher \sqsubseteq \neg Professor
Researcher \sqsubseteq \neg Lecturer
\exists TeachesTo^- \sqsubseteq Student
Student \sqcap \neg Undergrad \sqsubseteq GraduateStudent
\exists TeachesTo.Undergrad \sqsubseteq Professor \sqcup Lecturer
```

TBOX Inferences: Researcher $\sqsubseteq \forall$ Teaches To. Graduate Student

ABOX:

TeachesTo(dupond,pierre)

- ¬ GraduateStudent(pierre)
- ¬ Professor(dupond)

ABOX Inferences: Lecturer(dupond)

Oscar Romero

5

Complex Constraints (II)

Cardinalities on roles:

```
_:a rdfs:subClassOf owl:Restriction
_:a owl:onProperty RegisteredTo
_:a owl:minCardinality 3
_:b rdfs:subClassOf owl:Restriction
_:b owl:onProperty RegisteredTo
_:b owl:maxCardinality 6
:Student rdfs:subClassOf _:a
:Student rdfs:subClassOf _:b
```

How would you express on OWL the following constraint?

Oscar Romero 6