Министерство образования и науки Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

И.И. Кручинин (к.т.н. доцент)

ЛАБОРАТОРНАЯ РАБОТА № 1 по курсу «Методы машинного обучения» ЛИНЕЙНЫЕ КЛАССИФИКАТОРЫ ПРИЛОЖЕНИЕ

Примеры программ на языке <u>R</u>

Пример 1. Реализация вычислительного процесса rm(list = ls()) #очистка памяти

```
kol = function(x) { #количество эл в векторе
x = length(min(x):max(x))
return(x)
div = function(x, k = length(x) / 10)  { # разбиение вектора на k равных интервалов
\#tmp = round(seq(min(x), max(x), len = k + 1))
  tmp = seq(min(x), max(x), len = k + 1)
  print(tmp)
  i = 1
  x abc = list()
  y \text{ ord} = list()
  while (i < length(tmp)) {
     str = tmp[i]: tmp[i + 1]
     print(str)
     x abc = c(median(str), x abc)
     y \text{ ord} = c(kol(str) / kol(tmp), y \text{ ord})
text = c("количество элементов равно", kol(str))
print(text)
     i = i + 1
  plot(x_abc, y_ord, type = "o")
\#x = round(runif(20, 1, 100))
#print(x)
\#div(x, 5)
x = runif(5000, 1, 100)
1 = 500
func = 1 * exp(-1 * x)
#print(func)
div(func, 100)
```

Пример 2. Построение фрейма

```
rm(list = ls()) #очистка памяти
kol = function(x) { #количество эл в векторе
x = length(min(x):max(x))
return(x)
div = function(x, k = length(x) / 10)  { # разбиение вектора на k равных интервалов
\#tmp = round(seq(min(x), max(x), len = k + 1))
  tmp = seq(min(x), max(x), len = k + 1)
  print(tmp)
  i = 1
  x abc = list()
  y_ord = list()
  while (i < length(tmp)) {
     str = tmp[i]: tmp[i + 1]
     print(str)
     x abc = c(median(str), x abc)
     y_ord = c(kol(str) / kol(tmp), y_ord)
text = c("количество элементов равно", kol(str))
print(text)
```

```
i = i + 1
}
plot(x_abc, y_ord, type = "o")
}

#x = round(runif(20, 1, 100))
#print(x)
#div(x, 5)

x = runif(5000, 1, 100)
1 = 500
func = 1 * exp(-1 * x)
#print(func)
div(func, 100)
```

Данные из текстового файла:

country population area gdp ind China 1319498000 9640821 2630113 ind India 1169016000 3287263 886867 ind USA 302425000 9629091 13244550 ind Indonesia 231627000 1904569 364239 ind Brazil 186736000 8514877 1067706 ind Pakistan 160757000 880254 128996 ind Bangladesh 158665000 143998 65216 ind Nigeria 148093000 923768 115350 ind Russia 142499000 17098242 979048 ind

Пример 3. Построениемашины опорных векторов.

```
\label{eq:problem} \begin{tabular}{l} \#install.packages('e1071\_1.6-8.zip', dependencies = TRUE) \\ library(e1071) \\ data1 = data.frame(read.table("svmdata3.txt", header = TRUE, sep = "")) \\ test = data.frame(read.table("svmdata3test.txt", header = TRUE, sep = "")) \\ names(data1)[1] <- "X1" \\ names(test)[1] <- "X1" \\ model1a = svm(Colors \sim ., data = data1, kernel = "polynomial", degree=10) \\ model1b = svm(Colors \sim ., data = data1, kernel = "polynomial", degree = 1000) \\ model2 = svm(Colors \sim ., data = data1, kernel = "radial") \\ model3 = svm(Colors \sim ., data = data1, kernel = "sigmoid") \\ print(data1) \\ \#plot(x = model1b, data = test) \\ \#plot(x = model3, data = test) \\ \#plot(x = model
```

Данные из текстовых файлов

X1	X2 Colors		
1	-0.335467047065564	0.102235638179093	red
2	0.671854180794949	0.787542430583787	green
3	1.91690032289261	-0.909648739038396	green
4	-0.582359432991493	0.632418469789369	red
5	-0.329231896660673	0.927994003174767	red
6	-0.984695346615275	-0.0510385551171024	red
7	-0.520880129353124	-0.513199165056229	red
8	-0.371719714248278	-0.155616389580535	red
9	-0.289211322827175	0.246015648044419	red
10	0.165635685835116	-0.642558763025519	red

X1	X2 Colors		
1	-2.24246004235479	0.47048871459103	green
2	-0.305601118344231	0.194386931492083	red
3	-1.03924465132247	1.32822561738792	green
4	-0.635354620495016	-1.0256581475334	green
5	-1.07819131338742	-0.881511993751145	green
6	0.321438347662475	-0.404281649168687	red
7	1.49786129222265	1.25377726498095	green
8	0.403182073193313	1.37752261137620	green
9	0.802650744279983	-0.384938550369766	red

Пример 4. Создание табличных фреймовых структур

```
#вспомогательныефункции
rndSeq = function(characterSet, len) {
    return(paste(sample(characterSet, len, TRUE), sep = "", collapse = ""))
}

getRndNames = function(characterSet, count, len) {
    tmp = c(rndSeq(characterSet, len))
    for (i in 2:count) {
        tmp = c(tmp, rndSeq(characterSet, len))
```

```
return(tmp)
getRndEmployYears = function(birthYears, lastYear, employAge = 18) {
  tmp = round(runif(1, birthYears[1] + employAge, lastYear))
  for (i in 2:length(birthYears)) {
    tmp = c(tmp, round(runif(1, birthYears[i] + employAge, lastYear)))
  return(tmp)
getSalaryForYear = function(birthYear, employYear, minYear, year, baseSalary) {
  if (year == employYear) {
    return (baseSalary)
  if (birthYear > minYear) {
    return((log(year - employYear) + 1) * baseSalary)
  return((log(year - employYear, 2) + 1) * baseSalary)
getCurrentSalayForEachEmployee = function(birthYears, employYears, minYear, currentYear, baseSalary) {
  tmp = getSalaryForYear(birthYears[1], employYears[1], minYear, currentYear, baseSalary)
  for (i in 2:length(birthYears)) {
    tmp = c(tmp, getSalaryForYear(birthYears[i], employYears[i], minYear, currentYear, baseSalary))
  return (tmp)
getEmployeesWithSalaryMoreThan = function(frame, salary) {
  result = character()
  for (i in 1:length(frame[["Nrow"]])) {
    if (frame[["Salary"]][i] > salary) {
       result = c(result, as.character(frame[["Name"]])[i])
  return (result)
getIncomeTaxForYear = function(birthYear, employYear, minYear, year, baseSalary, rate) {
  return(rate * getSalaryForYear(birthYear, employYear, minYear, year, baseSalary))
```

```
getTotalIncomeTax = function(birthYear, employYear, minYear, currentYear, baseSalary, rate) {
  result = 0
  for (i in employYear:currentYear) {
    result = result + getIncomeTaxForYear(birthYear, employYear, minYear, i, baseSalary, rate)
  return (result)
getTotalIncomeTaxForEachEmployee = function(birthYears, employYears, minYear, currentYear, baseSalary, rate) {
  result = double()
  for (i in 1:length(birthYears)) {
    result = c(result, getTotalIncomeTax(birthYears[i], employYears[i], minYear, currentYear, baseSalary, rate))
  return (result)
#подготовка данных для фрейма
N = 20
Nrow = 1:N
Name = getRndNames(LETTERS, N, 5)
BirthYear = round(runif(N, 1960, 1985))
EmployYear = getRndEmployYears(BirthYear, 2006)
Salary = getCurrentSalayForEachEmployee(BirthYear, EmployYear, 1975, 2007, 8000)
#созданиефрейма
frame = data.frame(Nrow, Name, BirthYear, EmployYear, Salary)
print(frame)
#подсчет количества сотрудников с зарплатой, большей 15000
employeesCount = length(getEmployeesWithSalaryMoreThan(frame, 15000))
print(employeesCount)
#добавлениеполя "подоходныйналог"
TotalIncomeTax = getTotalIncomeTaxForEachEmployee(BirthYear, EmployYear, 1975, 2007, 8000, 0.13)
frame = data.frame(Nrow, Name, BirthYear, EmployYear, Salary, TotalIncomeTax)
print(frame)
```

Пример. 5 Алгоритм сортировки вставками.

<u>Cu</u>

```
int pass, j, hold;
         for (pass = 0; pass < SIZE-1; pass++){
                   for (j = pass+1; j < SIZE; j++){
                            if (n[pass]>n[j]){
                                     hold = n[i];
                                     n[i] = n[pass];
                                     n[pass] = hold;
                            }
typedef struct List {
  struct List* next;
  struct List* prev;
  uint32_t id;
} list t;
void list insert prev(list t* head, list t* tail) {
  tail->prev = head->prev;
  tail->next = head:
  head->prev = tail;
```

```
if (tail->prev) tail->prev->next = tail;
}
list_t* list_cut(list_t* head) {
    list_t* cut = head;
    if (cut->next) head->next->prev = head->prev;
    if (cut->prev) head->prev->next = head->next;
    return cut;
}
void list_insertion_sort(list_t* head) {
    while (head->next) {
        if (head->next->id < head->id) {
            list_t* cut = list_cut(head->next);
            while ((head->prev) && (cut->id < head->prev->id)) {
                head = head->prev;
            }
            list_insert_prev(head, cut);
} else {
            head = head->next;
        }
}
```

Python

Например, простая *сортировка вставкой* (insertion sort) многократно находит минимальное значение из списка и выполняет перестановки до тех пор, пока список не будет отсортирован. Это можно запрограммировать с помощью всего нескольких строк кода на языке Python:

```
In[1]: import numpy as np

    def selection_sort(x):
        for i in range(len(x)):
            swap = i + np.argmin(x[i:])
            (x[i], x[swap]) = (x[swap], x[i])
        return x

In[2]: x = np.array([2, 1, 4, 3, 5])
        selection_sort(x)

Out[2]: array([1, 2, 3, 4, 5])
```

```
def insertion_sort(a):
 for j in range(1,len(a)):
   key = a[j]
   i = j-1
   while (i > -1) and key < a[i]:
     a[i+1]=a[i]
     i=i-1
   a[i+1] = key
return a
      Даже сортировка выбором гораздо лучше моего фаворита среди всех алгоритмов
      сортировки — случайной сортировки (bogosort):
      In[3]: def bogosort(x):
                  while np.any(x[:-1] > x[1:]):
                       np.random.shuffle(x)
                  return x
    In[4]: x = np.array([2, 1, 4, 3, 5])
            bogosort(x)
    Out[4]: array([1, 2, 3, 4, 5])
```

Хотя в языке Python имеются встроенные функции sort и sorted для работы со списками, мы не будем их рассматривать, поскольку функция библиотеки NumPy np.sort оказывается намного более эффективной и подходящей для наших целей. По умолчанию функция np.sort использует имеющий сложность $O[N\log N]$: алгоритм быстрой сортировки (quicksort), хотя доступны для использования также алгоритмы сортировки слиянием (mergesort) и пирамидальной сортировки (heapsort). Для большинства приложений используемой по умолчанию быстрой сортировки более чем достаточно.

Чтобы получить отсортированную версию входного массива без его изменения, можно использовать функцию np.sort:

Если же вы предпочитаете отсортировать имеющийся массив, то можно вместо этого применять метод sort массивов:

Имеется также родственная функция argsort, возвращающая *индексы* отсортированных элементов:

```
In[7]: x = np.array([2, 1, 4, 3, 5])
        i = np.argsort(x)
        print(i)

[1 0 3 2 4]
```

Паскаль

```
const N = 255:
type TArray = array [1..N] of integer;
procedure InsertSort(var x: TArray);
var
 i, j, buf: integer;
begin
 for i := 2 to N do
 begin
  buf := x[i];
  i := i - 1;
  while (j \ge 1) and (x[j] \ge buf) do
  begin
   x[j+1] := x[j];
   j := j - 1;
  end;
  x[j + 1] := buf;
 end;
end:
```

Пример 6. Метод градиентного спуска (язык Python)

```
import numpy
import math
from pylab import *
from sympy import *
from scipy.optimize import minimize scalar
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import axes3d, Axes3D
z str = '3 * a[0] ** 2 + a[1] ** 2 - a[0] * a[1] - 4 * a[0]'
exec 'z = lambda a: ' + z_str
z str = z str.replace('a[0]', 'x')
z str = z str.replace('a[1]', 'y')
def z_grad(a):
  x = Symbol('x')
  y = Symbol('y')
  exec'z_d = ' + z_str
  yprime = z_d.diff(y)
  dif_y=str(yprime).replace('y', str(a[1]))
  dif y=dif y.replace('x', str(a[0]))
  yprime = z_d.diff(x)
  dif x=str(yprime).replace('y', str(a[1]))
  dif_x=dif_x.replace('x', str(a[0]))
  return numpy.array([eval(dif_y), eval(dif_x)])
def mininize(a):
  1_min = minimize_scalar(lambda l: z(a - l * z_grad(a))).x
  return a - 1 min * z grad(a)
def norm(a):
  return math.sqrt(a[0] ** 2 + a[1] ** 2)
def grad step(dot):
  return mininize(dot)
dot = [numpy.array([-150.0, 150.0])]
dot.append(grad_step(dot[0]))
eps = 0.0001
while norm(dot[-2] - dot[-1]) > eps: dot.append(grad_step(dot[-1]))
def makeData ():
  x = numpy.arange (-200, 200, 1.0)
  y = numpy.arange (-200, 200, 1.0)
  xgrid, ygrid = numpy.meshgrid(x, y)
  zgrid = z([xgrid, ygrid])
  return xgrid, ygrid, zgrid
xt, yt, zt = makeData()
fig = plt.figure()
ax = plt.axes(projection='3d')
```

 $\begin{array}{l} ax.plot_surface(xt,\,yt,\,zt,\,cmap=cm.hot)\\ ax.plot([x[0]\,\,for\,\,x\,\,in\,\,dot],\,[x[1]\,\,for\,\,x\,\,in\,\,dot],\,[z(x)\,\,for\,\,x\,\,in\,\,dot],\,color='b')\\ plt.show() \end{array}$

Таблица показателей анализа крови

No	Показатель	Диапазон значений считающихся нормальными	Примечание
1	Альбумин	35-50	
2	Трансферрин	2-4	
3	Ферритин	20-250	
4	Билирубин	8,6-20,5	
5	Глобулин	40-60	
6	ГЕМОГЛОБИН	120-160	
7	ЭРИТРОЦИТЫ	3.7-5.1	
8	ЛЕЙКОЦИТЫ	4-9	
9	лимфоциты,	40.7	
10	нейтрофилы, ,	2-11	
11	Базофилы	0.3	
12	плазмоциты	3-11	
13	Эозинофилы	2.4	
14	ТРОМБОЦИТЫ	160-320	
15	ГЛЮКОЗА	3.5-6.5	
16	ОБЩИЙ БЕЛОК	60-80	
17	КРЕАТИНИН	0.18	
18	Гематокрит	36-48	
19	Ретикулоциты	2-12	
20	Моноциты	10	

Формы заболевания болезни Паркинсона: Дрожательно-ригидная, Акинетико-ригидная, Акинетическая форма, Дрожательная форма, ригидная форма. Степень заболевания характеризуется этапами от 0 до 5 (бессимптомное

течение, маловыраженные односторонние изменения. маловыраженные двусторонние изменения, двусторонние изменения с появлением первых заметных двигательных ограничений, ощутимые ограничения, пациент сам не справляется, полная потеря трудоспособности и самостоятельной жизнедеятельности).

Примеры программного кода.

Персептрон Розенблатта.

```
#data(iris)
library(kohonen)
library(RSNNS)
library(class)
library(gmodels)
library(modeest)
library(nnet)
library(e1071)
ramFo = data.frame(read.table("cleverK.txt", header = TRUE, sep = ""))
#print("Исходные данные")
#print(ramFo)
alg <- matrix(0:0, nrow=150, ncol=4)
for (i in 1:50) {
 for (j in 1:4)
  alg[i,j] = sample(5:50,1)
for (i in 51:100) {
 for (j in 1:4)
  alg[i,j] = sample(51:95,1)
for (i in 101:150) {
 for (j in 1:4)
  alg[i,j] = sample(1:4,1)
#alg
write.table(alg, file="GMB1.txt")
ramFo2 = data.frame(read.table("GMB1.txt", header = TRUE, sep = ""))
#C1 <- c("Выгодная")
ramFoT = data.frame(read.table("org.txt", header = TRUE, sep = ""))
ramFo2 <- cbind(ramFo2, ramFoT$V1)
#ramFo2
trainPerceptron <- function(dm, dc) {
result <- list()
oldW <- c()
w \le rep(0, ncol(dm))
while (!identical(w, oldW)) {
oldW <- w
for (i in 1:nrow(dm)) {
pred \le sign(dm[i,] \% w)
w = w+ (dc[i] - pred) * dm[i, ]
```

```
result <- c(result, list(w))
result
}
plotPerceptronSteps <- function(pcResult, dm, dc, steps) {</pre>
for (s in steps) {
w <- pcResult[[s]]
plot(dm[,1:2], main=paste("step", s),
pch=ifelse(dc > 0, 1, 2), sub=paste(w, collapse="))
abline(-w[3] / w[2], -w[1] / w[2])
}
dd <- ramFo2[ramFoT$V1 != "Мини-Скидка", -(3:4)]
dm <- data.matrix(dd[, 1:2])
dm <- cbind(dm, 1)
dc \le rep(1, nrow(dm))
dc[ramFoT$V1 == "Выгодная"] <- -1
pc <- trainPerceptron(dm, dc)
plotPerceptronSteps(pc, dm, dc, length(pc))
\#par(mfrow=c(2,2))
#plotPerceptronSteps(pc, dm, dc, c(20, 50, 250,length(pc)))
Машина опорных векторов.
#data(iris)
library(kohonen)
library(RSNNS)
library(class)
library(gmodels)
library(modeest)
library(nnet)
library(e1071)
ramFo = data.frame(read.table("cleverK.txt", header = TRUE, sep = ""))
#print("Исходные данные")
#print(ramFo)
alg <- matrix(0:0, nrow=150, ncol=4)
for (i in 1:50) {
 for (j in 1:4)
  alg[i,j] = sample(5:50,1)
for (i in 51:100) {
 for (j in 1:4)
  alg[i,j] = sample(51:95,1)
for (i in 101:150) {
 for (j in 1:4)
  alg[i,j] = sample(1:4,1)
#alg
```

```
write.table(alg, file="GMB1.txt")
ramFo2 = data.frame(read.table("GMB1.txt", header = TRUE, sep = ""))
#C1 <- c("Выгодная")
ramFoT = data.frame(read.table("org.txt", header = TRUE, sep = ""))
ramFo2 <- cbind(ramFo2, ramFoT$V1)
#ramFo2
## classification mode
# default with factor response:
model <- svm(ramFoT$V1 ~ ., data = ramFo2, type = "C-classification", kernel="linear")
# alternatively the traditional interface:
x <- subset(ramFo2)
y <- ramFoT$V1
model \le svm(x, y)
print(model)
summary(model)
# test with train data
pred <- predict(model, x)</pre>
# (same as:)
pred <- fitted(model)</pre>
# Check accuracy:
table(pred, y)
# compute decision values and probabilities:
pred <- predict(model, x, decision.values = TRUE)</pre>
attr(pred, "decision.values")[1:4,]
# visualize (classes by color, SV by crosses):
plot(cmdscale(dist(ramFo2[,-5])),
col = as.integer(ramFo2[,5]),
pch = c("o","+")[1:150 \%in\% model\$index + 1])
```

Заданияклабораторнойработе

Вариант 1

1. Создайте фрейм данных из N=25 записей со следующими полями: Nrow — номер записи, Name — имя сотрудника, BirthYear — год рождения, EmployYear — год приема на работу, Salary — зарплата. EyEColor—цвет глаз, SkinColor—цвет кожи, BloodType—группа крови, HairColor—цвет волос на голове. Заполните данный фрейм данными так, что Nrow изменяется от 1 до N,

Рис. 1:

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1978,1995], EmployYear распределен равномерно на отрезке [BirthYear+18,2015], Salary для работников младше 1990 г.р. определяется по формуле Salary = (ln(2016 - EmployYear) + 1) * 9000, для остальных Salary = (log2(2016 - EmployYear) + 1) * 9000.

Nro	Name	BirthYea	EmployYear	Salar	EyEColor	SkinColo	BloodTyp	HairColo	Прим.
w		r		Y		r	e	r	
1	Ярослав	1978	2014		01	09	2	15	Укр
2	Осип	1979	2013		04	09	2	17	Укр
3	Олесь	1981	2015		06	09	2	16	Укр
4	Микита	1988	2007		01	09	2	17	Укр
5	Данило	1991	2011		04	09	2	16	Укр
6	Рати	1992	2010		01	14	1	01	Инд
7	Амита	1980	2015		01	14	1	15	Инд
8	Аванти	1984	2002		05	14	1	15	Инд
9	Амала	1985	2003		01	14	1	15	Инд
10	Вазанта	1986	2004		05	14	1	15	Инд
11	Бхарат	1987	2005		01	14	1	15	Инд
12	Тришна	1988	2008		05	14	1	15	Инд
13	Йенс	1992	2012		05	09	2	16	Дат
14	Ларс	1991	2014		04	09	2	16	Дат
15	Бент	1993	2015		04	09	2	16	Дат
16	Хенрик	1994	2014		04	09	2	16	Дат
17	Браин	1995	2015		05	09	2	16	Дат
18	Джеспе р	1978	2008		04	09	2	16	Дат
19	Вилфре д	1989	2007		05	09	2	16	Дат
20	Лин	1990	2010		01	14	3	15	Бирм
21	Кхи	1992	2012		06	09	3	15	Бирм
22	Аун	1991	2011		05	14	3	15	Бирм
23	Чжи	1993	2013		01	09	3	15	Бирм
24	Док Ха	1994	2014		05	14	3	15	Бирм
25	Зе Бе	1995	2015		06	14	3	15	Бирм

Вспомогательная таблица цветов

№	Цвет	Код цвета	Код цвета	Код	Примечание
		глаз	кожи	цветаволос	
1	Черный	01	08	15	
2	Белый	02	09	16	
3	Рыжий	03	10	17	
4	Голубой	04	11	18	
5	Карий	05	12	19	
6	Серый	06	13	21	
7	Желтый	07	14	22	

В Excel применим полезные функции =СЛУЧМЕЖДУ(1978;1995), =СЛУЧМЕЖДУ(C2+18;2015), =ВПР(K2;\$M\$11:\$O\$25;3;0), =(LOG10(2016-D2)+1)*9000, =(LOG(2016-D22;2)+1)*9000

Подсчитайте число сотрудников с зарплатой, большей 17000 (отсортировать сотрудников по размеру зарплаты по возрастающей использованием известных стандартных средств сортировки). Добавьте в таблицу поле, соответствующее суммарному подоходному налогу (ставка 13%), выплаченному сотрудником за время работы в организации, если его зарплата за каждый год начислялась согласно формулам для *Salary*, где вместо 2016 следует последовательно подставить каждый год работы сотрудника в организации.

```
import numpy as np
import pandas as pd

sals = pd.read_csv('clever.csv')
sals

df = pd.DataFrame(rng.rand(1000, 3), columns=['A', 'B', 'C'])
df.head()

df.eval('D = (A + B) / C', inplace=True)
df.head()
```

2. Постройте линейный классификатор для классификации сотрудников данной международной организации (признаки классификации: группа крови, цвет волос, глаз и цвет кожи). Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить.

Таблица соответствия групп крови национальностям

№	Национальность	Преобладающая группа крови	Примечание
1	Исландцы	1	
2	Англичане	1	
3	Итальянцы	1	
4	Датчане	2	
5	Немцы	2	
6	Русские	2	
7	Испанцы	2	
8	Китайцы	1	
9	Индусы	1	
10	Бирманцы	3	
11	Японцы	2	
12	Татары	2	
13	Китайцы Пекина	3	
14	Украинцы	2	
15	Португальцы	2	

Цвет глаз, кожи или волос можно закодировать определенным числом. В данном варианте использовать национальности: Украинец, Индус, Датчанин, Бирманец.

Таким образом, в задании 4 группы (или класса) для классификации:

No	Группы	Группа	Цвет глаз	Цвет кожи	Цвет волос
		крови			
1	Украинец	2	Голубой,	белый	Черный,
			черный,		белый,
			карий		рыжий
2	Индус	1	Черный,	желтый	Черный,
			карий,		серый
			серый		
3	Датчанин	2	Голубой,	белый	Белый,
			карий,		черный,
			серый		серый
4	Бирманец	3	Черный,	Черный и	Черный
			карий	желтый	

Для машины опорных векторов типа "C-classification" c линейным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра C.

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так:

$$f(x_1,x_2) = (x_1 - 2)^2 + (x_2 - 5)^2$$

Найти координаты и значение функции в точке минимума методом градиентного спуска.

Вариант 2

1. Создайте фрейм данных из *N* = 30 записей со следующими полями: *Nrow* – номер записи, *Name* – имя сотрудника, *BirthYear* – год рождения, *EmployYear* – год приема на работу, *Salary* – зарплата. EyEColor–цвет глаз, SkinColor–цвет кожи, BloodType–группа крови, HairColor–цвет волос на голове. Заполните данный фрейм данными так, что *Nrow* изменяется от 1 до *N*,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1974,1993], EmployYear распределен равномерно на отрезке [BirthYear+17,2014], Salary для работников младше 1989 г.р. определяется по формуле Salary = (ln(2015 - EmployYear) + 1) * 7000, для остальных Salary = (log2(2015 - EmployYear) + 1) * 7000.

Nro w	Name	BirthYea r	EmployYear	Salar Y	EyEColor	SkinColo r	BloodTyp e	HairColo r	Прим.
1	Стивен	1974	2013		01	09	1	15	Анг
2	Чарльз	1978	2012		04	09	1	17	Анг
3	Джон	1980	2014		06	09	1	16	Анг
4	Пол	1987	2006		01	09	1	17	Анг
5	Уэйн	1990	2010		04	09	1	16	Анг
6	Дональ д	1991	2009		01	09	1	01	Анг
7	Бенджа мин	1979	2014		01	09	1	15	Анг
8	Майкл	1983	2001		05	09	1	15	Анг
9	Никола с	1984	2002		01	09	1	15	Анг
10	Джерал ьд	1985	2003		05	09	1	15	Анг
11	Чжен	1986	2004		01	14	3	15	Кит
12	Шеньча о	1987	2007		05	14	3	15	Кит
13	Ханьвэ нь	1991	2011		05	14	3	16	Кит
14	Ли Сюэпин	1990	2013		04	14	3	16	Кит

15	Лю Имин	1992	2014	01	09	3	16	Кит
16	Фань Сяодун	1993	2013	04	14	3	16	Кит
17	Хэ Гуань	1994	2014	05	09	3	16	Кит
18	Цзян Чжи	1977	2007	04	14	3	16	Кит
19	Линьпэ н	1988	2006	05	09	3	16	Кит
20	Томас	1989	2009	01	09	2	15	Нем
21	Франц	1991	2011	06	09	2	15	Нем
22	Марио	1990	2010	05	09	2	16	Нем
23	Гюнтер	1992	2012	01	09	2	15	Нем
24	Карл	1994	2013	05	09	2	16	Нем
25	Пьер	1979	2007	06	09	2	17	Нем
26	Оливер	1992	2014	06	09	2	15	Нем
27	Гердт	1981	2001	01	09	2	16	Нем
28	Филипп	1982	2002	04	09	2	17	Нем
29	Мануэл ь	1974	2001	06	09	2	15	Нем
30	Генри	1990	2000	04	09	2	16	Нем

Вспомогательная таблица цветов

No	Цвет	Код цвета	Код цвета	Код цвета	Примечание
		глаз	кожи	волос	
1	Черный	01	08	15	
2	Белый	02	09	16	
3	Рыжий	03	10	17	
4	Голубой	04	11	18	
5	Карий	05	12	19	
6	Серый	06	13	21	
7	Желтый	07	14	22	

Подсчитайте число сотрудников с зарплатой, большей 16000(отсортировать сотрудников по размеру зарплаты по возрастающей использованием известных стандартных средств сортировки). Добавьте в таблицу поле, соответствующее суммарному подоходному налогу (ставка 13%), выплаченному сотрудником за время работы в организации, если его зарплата за каждый год начислялась согласно формулам для *Salary*, где вместо 2015 следует последовательно подставить каждый год работы сотрудника в организации.

2. Постройте линейный классификатор для классификации сотрудников данной международной организации (признаки классификации: группа крови, цвет волос, глаз и цвет кожи). Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить.

Цвет глаз, кожи или волос можно закодировать определенным числом. В данном варианте использовать национальности: **Англичанин, Китаец Пекина, Немец**.

Таким образом, в залании 3 группы (или класса) для классификации:

№	Группы	Группа	Цвет глаз	Цвет кожи	Цвет волос
		крови			
1	Англичанин	1	Голубой,	белый	Черный,
			черный,		белый,
			карий		рыжий
2	Китаец	1	Черный,	Желтый,	Черный,
	Пекина		карий,	белый	серый

			серый		
3	Немец	2	Голубой,	белый	Белый,
			карий,		черный,
			серый		серый,
					рыжий

Для машины опорных векторов типа "C-classification" с сигмоидальным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра *C*.

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так: $f(x_1,x_2) = (x_2^2 + x_1^2 - 1)^2 + (x_1 + x_2 - 1)^2$

Найти координаты и значение функции в точке минимума методом наискорейшего градиентного спуска.

Вариант 3

1. Создайте фрейм данных из *N* = 27 записей со следующими полями: *Nrow* – номер записи, *Name* – имя сотрудника, *BirthYear* – год рождения, *EmployYear* – год приема на работу, *Salary* – зарплата. EyEColor–цвет глаз, SkinColor–цвет кожи, BloodType–группа крови, HairColor–цвет волос на голове. Заполните данный фрейм данными так, что *Nrow* изменяется от 1 до *N*,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1972,1994], EmployYear распределен равномерно на отрезке [BirthYear+19,2013], Salary для работников младше 1980 г.р. определяется по формуле Salary = (ln(2014 - EmployYear) + 1) * 8000, для остальных Salary = (log2(2014 - EmployYear) + 1) * 8000.

Nro	Name	BirthYea	EmployYear	Salar	EyEColor	SkinColo	BloodTyp	HairColo	Прим.
w		r		Y		r	e	r	
1	Степан	1972	2011		01	09	2	15	Pyc
2	Федор	1976	2010		04	09	2	17	Pyc
3	Иван	1978	2012		06	09	2	16	Pyc
4	Максим	1985	2004		05	09	2	17	Pyc
5	Евгени й	1988	2008		04	09	2	16	Pyc
6	Курбан	1991	2009		01	14	2	15	Тат
7	Малик	1977	2012		01	14	2	15	Тат
8	Эльмир	1983	2001		06	14	2	15	Тат
9	Далер	1984	2002		05	14	2	15	Тат
10	Ильзат	1985	2003		01	14	2	15	Тат
11	Мигель	1986	2004		01	14	2	15	Пор
12	Густаво	1987	2007		05	09	2	15	Пор
13	Энцо	1989	2009		05	14	2	16	Пор
14	Педро	1988	2011		04	14	2	16	Пор
15	Мануэл ла	1992	2014		01	09	2	16	Пор
16	Азуми	1993	2013		01	14	2	16	Япон
17	Акира	1994	2014		05	14	2	16	Япон
18	Киоко	1977	2007		01	09	2	16	Япон
19	Кэори	1988	2006		05	14	2	16	Япон
20	Мидори	1989	2009		01	09	2	15	Япон
21	Иошико	1991	2011		06	14	2	15	Япон
22	Марко	1990	2010		04	09	1	16	Итал
23	Лука	1992	2012		01	09	1	15	Итал

24	Луиджи	1994	2013	05	09	1	16	Итал
25	Фабио	1979	2007	06	09	1	17	Итал
26	Паоло	1992	2014	04	09	1	15	Итал
27	Роберто	1994	2001	01	09	1	16	Итал

Вспомогательная таблица цветов

No	Цвет	Код цвета	Код цвета	Код цвета	Примечание
		глаз	кожи	волос	
1	Черный	01	08	15	
2	Белый	02	09	16	
3	Рыжий	03	10	17	
4	Голубой	04	11	18	
5	Карий	05	12	19	
6	Серый	06	13	21	
7	Желтый	07	14	22	

Подсчитайте число сотрудников с зарплатой, большей 14000(отсортировать сотрудников по размеру зарплаты по возрастающей использованием известных стандартных средств сортировки). Добавьте в таблицу поле, соответствующее суммарному подоходному налогу (ставка 13%), выплаченному сотрудником за время работы в организации, если его зарплата за каждый год начислялась согласно формулам для *Salary*, где вместо 2014 следует последовательно подставить каждый год работы сотрудника в организации.

2. Постройте линейный классификатор для классификации сотрудников данной международной организации (признаки классификации: группа крови, цвет волос, глаз и цвет кожи). Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить.

Цвет глаз, кожи или волос можно закодировать определенным числом. В данном варианте использовать национальности: Русский, Татарин, Португалец, Японец, Итальянец.

Таким образом, в задании 5 групп (или класса) для классификации:

№	Группы	Группа крови	Цвет глаз	Цвет кожи	Цвет волос
1	Русский	2	Голубой, черный, карий	белый	Черный, белый, рыжий
2	Татарин	2	Черный, карий, серый	желтый	Черный, с
3	Португалец	2	Голубой, карий, серый	Белый, желтый	черный, серый
4	Японец	2	Черный, карий	Желтый, белый	Черный
5	Итальянец	1	Голубой, черный	белый	Черный, белый

Для машины опорных векторов типа "C-classification" с радиальным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра C.

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так:

$$f(x_1, x_2) = 5 \cdot x_1^2 + 5 \cdot x_2^2 - 8 \cdot x_1 \cdot x_2$$

Найти координаты и значение функции в точке минимума методом градиентного спуска.

Вариант 4

1. Создайте фрейм данных из *N* = 24 записей со следующими полями: *Nrow* – номер записи, *Name* – имя пациента, *BirthYear* – год рождения, *Employ* – место работы, *Salary* – зарплата. *Cost*–стоимость лечения, *Albumin*–содержание альбумина в крови, *TransFerrin*–содержание трансферрина в крови, *Ferritin*–содержание ферритина в крови. Заполните данный фрейм данными так, что *Nrow* изменяется от 1 до *N*,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1971,1997], , Costдля пациентов младше 1991 г.р. определяется по формуле Cost= (ln(2013 - BirthYear) + 1) * 11000, для остальных Cost= (log2(2013 - BirthYear) + 1) * 10000.

Nro w	Name	BirthYea r	Employ	Salar Y	Cost	Albumin	TransFerr in	Ferritin	Прим.
1	Степан	1971	АО АЛМАЗ	33000		0.233	0.957	6.528	
2	Федор	1975	НП ПРОГРЕСС	28000		0.245	0.147	6.53	
3	Иван	1978	АО ВОСТОК	41000		0.238	0.145	5.21	
4	Максим	1984	OA CEBEP	53000		0.32	0.21	4.79	
5	Евгени й	1989	НФ ЛУЧ	62000		0.459	0.27	1.411	
6	Курбан	1990	АО АЛМАЗ	18000		0.741	0.318	1.47	
7	Малик	1976	НП ПРОГРЕСС	23000		0.886	0.407	2.089	
8	Эльмир	1983	AO BOCTOK	29000		0.614	0.581	3.143	
9	Далер	1984	OA CEBEP	31000		0.548	0.645	4.35	
10	Ильзат	1985	НФ ЛУЧ	19500		0.231	0.714	3.076	
11	Михаил	1986	АО АЛМАЗ	42000		0.89	0.803	3.48	
12	Павел	1987	НП ПРОГРЕСС	61000		0.437	0.91	3.591	
13	Роберт	1989	AO BOCTOK	28000		0.362	0.923	2.57	
14	Петр	1988	OA CEBEP	26490		0.258	0.947	6.24	
15	Фарид	1992	НФ ЛУЧ	19800		0.339	0.891	1.78	
16	Гумар	1993	AO HEBA	34300		0.515	0.87	1.86	
17	Анна	1995	АО ОКА	37340		0.657	0.862	1.44	
18	Ольга	1977	НП ВЕГА	53000		0.76	0.673	2.33	
19	Ксения	1988	НП КОЛОС	59000		0.83	0.651	2.709	
20	Оксана	1989	AO HEBA	64000		0.841	0.704	2.21	
21	Марина	1991	АО ОКА	60200		0.738	0.96	5.81	
22	Леонид	1990	НП ВЕГА	18900		0.746	0.495	5.08	
23	Дамир	1996	НП КОЛОС	31786		0.238	0.838	4.743	
24	Антон	1997	ФК МАРС	50221		0.883	0.163	4.09	

Ранжируйте пациентов по стоимости лечения, начиная с минимальной суммы(отсортировать пациентов с использованием известных стандартных средств сортировки). Добавьте в таблицу поле, соответствующее общему социальному вычету за лечение (ставка 13%), выплаченному пациенту, если стоимость лечения за каждый год начислялась согласно формулам для Cost, где вместо 2013 следует последовательно подставить каждый год нахождения пациента под наблюдением.

^{2.} Постройте линейный классификатор для классификации пациентов по степени развития болезни Паркинсона (*3 степени - бессимптомное течение, маловыраженные односторонние изменения, маловыраженные двусторонние изменения*) на основе трех признаков — содержания в крови **альбумина, трансферрина, ферритина**.

Таким образом, в задании 3 группы (или класса) для классификации:

N₂	Группы	Альбумин	Трасферрин	Ферритин	Примечание
1	бессимптомное течение	0.23-0.44	0.14-0.32	1.41-2.08	
2	маловыраженные односторонние изменения	0.45-0.67	0.33-0.72	2.09-4.43	
3	маловыраженные двусторонние изменения	0.68-0.89	0.73-0.96	4.44-6.53	

Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить с использованием функций языка R - Predict и Table.

Для машины опорных векторов типа "C-classification" c линейным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра C.

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так:

$$f(x_1, x_2) = x_1^3 + x_2^2 - x_1 \cdot x_2 - 2x_1 + 3x_2 - 4$$

Найти координаты и значение функции в точке минимума методом градиентного спуска.

Вариант 5

1. Создайте фрейм данных из N = 30 записей со следующими полями: Nrow — номер записи, Name — имя пациента, BirthYear — год рождения, Employ — место работы, Salary — зарплата. Cost—стоимость лечения, Monocit—содержание моноцитов в крови, Retikullocit—содержание ретилкуллоцитов в крови, Retikullocit—содержание гематокрита в крови, Retikullocit—содержание креатина в крови. Заполните данный фрейм данными так, что Retikullocit — содержание креатина в крови. Заполните данный фрейм данными так, что Retikullocit — содержание креатина в крови.

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1975,1995], , Costдля пациентов младше 1988 г.р. определяется по формуле Cost= (ln(2012 - BirthYear) + 1) * 6000, для остальных Cost= (log2(2012 - BirthYear) + 1) * 7000.

Nro w	Name	BirthYea r	Employ	Salary	Cost	Monocit	Retikulloc it	Gematokr it	Creati n
1	Степан	1976	АО АЛМАЗ	33000		0.37	0.78	2.33	1.47
2	Федор	1975	НП ПРОГРЕСС	28000		0.56	0.77	2.88	3.34
3	Иван	1978	АО ВОСТОК	41000		0.81	0.778	2.92	3.36
4	Максим	1984	OA CEBEP	53000		0.95	1.46	8.33	9.21
5	Евгени й	1989	НФ ЛУЧ	62000		1.31	1.41	7.64	9.203
6	Курбан	1990	АО АЛМАЗ	18000		0.43	1.47	6.39	8.05
7	Малик	1976	НП ПРОГРЕСС	23000		0.42	1.74	3.11	5.62
8	Эльмир	1983	АО ВОСТОК	29000		0.51	2.23	4.12	5.47
9	Далер	1984	OA CEBEP	31000		0.62	2.92	5.18	3.54
10	Ильзат	1985	НФ ЛУЧ	19500		0.63	3.56	2.77	2.58
11	Михаил	1986	АО АЛМАЗ	42000		0.64	4.21	6.1	3.09
12	Павел	1987	НП ПРОГРЕСС	61000		0.49	4.097	6.23	4.108

13	Роберт	1989	AO BOCTOK	28000	0.498	5.78	7.34	7.17
14	Петр	1988	OA CEBEP	26490	1.112	5.32	6.7	6.22
15	Фарид	1992	НФ ЛУЧ	19800	1.212	5.31	6.08	6.189
16	Гумар	1993	AO HEBA	34300	1.132	4.56	4.08	9.17
17	Анна	1995	АО ОКА	37340	1.304	2.09	2.409	8.45
18	Ольга	1977	НП ВЕГА	53000	0.907	1.98	2.363	7.62
19	Ксения	1988	НП КОЛОС	59000	0.91	1.913	7.86	6.74
20	Оксана	1989	AO HEBA	64000	0.88	1.55	4.58	4.63
21	Марина	1991	АО ОКА	60200	0.79	3.45	6.32	9.03
22	Леонид	1990	НП ВЕГА	18900	0.76	5.8	7.31	7.224
23	Дамир	1994	НП КОЛОС	31786	0.681	4.4	3.42	1.63
24	Антон	1995	ФК МАРС	50221	0.973	4.3	5.154	1.863
25	Федор	1975	АО ВОСТОК	38022	0.397	1.5	8.17	3.331
26	Матвей	1977	OA CEBEP	26871	1.045	0.79	5.446	1.481
27	Андрей	1989	НФ ЛУЧ	43000	1.064	0.71	7.341	3.43
28	Полина	1986	AO HEBA	47900	0.52	0.88		
29	Семен	1985	АО ОКА	59800	0.605	1.47	8.072	1.78
30	Гурам	1991	АО ТОПАЗ	63000	0.752	2.124	8.26	3.37

Ранжируйте пациентов по стоимости лечения, начиная с максимальной суммы (с использованием известных алгоритмов сортировки). Добавьте в таблицу поле, соответствующее общему социальному вычету за лечение (ставка 13%), выплаченному пациенту, если стоимость лечения за каждый год начислялась согласно формулам для Cost, где вместо 2012 следует последовательно подставить каждый год нахождения пациента под наблюдением.

2. Постройте линейный классификатор для классификации пациентов по степени развития болезни Паркинсона (4 степени - двусторонние изменения с появлением первых заметных двигательных ограничений, маловыраженные односторонние изменения, маловыраженные двусторонние изменения, полная потеря трудоспособности и самостоятельной жизнедеятельности) на основе четырех признаков – содержания в крови креатина, моноцитов, гематокрита, ретилкуллоцитов.

Таким образом, в задании 4 группы (или класса) для классификации:

№	Группы	Креатин	Моноциты	Гематокрит	Ретилкуллоциты
1	двусторонние	1.47-3.34	0.34-0.51	2.33-2.89	0.77-1.5
	изменения с				
	появлением первых				
	заметных				
	двигательных				
	ограничений				
2	маловыраженные	3.35-5.61	0.52-0.73	2.9-3.41	1.6-2.1
	односторонние				
	изменения				
3	маловыраженные	5.62-7.16	0.74-0.93	3.42-5.1	2.2-4.3
	двусторонние				
	изменения				
4	полная потеря	7.17-9.21	0.94-1.32	5.2-8.4	4.4-5.8
	трудоспособности				
	и самостоятельной				
	жизнедеятельности				

Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить с использованием функций языка R - Predict и Table.

Для машины опорных векторов типа "C-classification" с полиномиальным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра C.

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так:

$$f(x_1, x_2) = 1 - 3 \cdot x_1 - 4 \cdot x_2 - 5 \cdot x_1 \cdot x_2 + 6 \cdot x_1^2 + 7 \cdot x_2^2$$

Найти координаты и значение функции в точке минимума методом градиентного спуска.

Вариант 6

1. Создайте фрейм данных из N = 28 записей со следующими полями: Nrow — номер записи, Name — имя пациента, BirthYear — год рождения, Employ — место работы, Salary — зарплата. Cost—стоимость лечения, Glukosa—содержание глюкозы в крови, Trombocit—содержание тромбоцитов в крови, Belok—содержание белков в крови, Eozinofil — содержание эозинофила в крови, Plazmocit - содержание плазмоцитов в крови. Заполните данный фрейм данными так, что Nrow изменяется от 1 до N,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1974,1994], , Costдля пациентов младше 1988 г.р. определяется по формуле Cost= (ln(2011 - BirthYear) + 1) * 9000, для остальных Cost= (log2(2011 - BirthYear) + 1) * 8000.

Nro w	Name	BirthYea r	Employ	Salary	Cost	Glukosa	Tromboci t	Belok	Eozin ofil	Plazm ocit
1	Степан	1974	АО АЛМАЗ	33000		0.37	0.78	2.33	1.47	
2	Федор	1994	НП ПРОГРЕСС	28000		0.56	0.77	2.88	3.34	
3	Иван	1978	АО ВОСТОК	41000		0.81	0.778	2.92	3.36	
4	Максим	1984	OA CEBEP	53000		0.95	1.46	8.33	9.21	
5	Евгени й	1989	НФ ЛУЧ	62000		1.31	1.41	7.64	9.203	
6	Курбан	1990	АО АЛМАЗ	18000		0.43	1.47	6.39	8.05	
7	Малик	1976	НП ПРОГРЕСС	23000		0.42	1.74	3.11	5.62	
8	Эльмир	1983	AO BOCTOK	29000		0.51	2.23	4.12	5.47	
9	Далер	1984	OA CEBEP	31000		0.62	2.92	5.18	3.54	
10	Ильзат	1985	НФ ЛУЧ	19500		0.63	3.56	2.77	2.58	
11	Михаил	1986	АО АЛМАЗ	42000		0.64	4.21	6.1	3.09	
12	Павел	1987	НП ПРОГРЕСС	61000		0.49	4.097	6.23	4.108	
13	Роберт	1989	АО ВОСТОК	28000		0.498	5.78	7.34	7.17	
14	Петр	1988	OA CEBEP	26490		1.112	5.32	6.7	6.22	
15	Фарид	1992	НФ ЛУЧ	19800		1.212	5.31	6.08	6.189	
16	Гумар	1993	AO HEBA	34300		1.132	4.56	4.08	9.17	
17	Анна	1995	АО ОКА	37340		1.304	2.09	2.409	8.45	
18	Ольга	1977	НП ВЕГА	53000		0.907	1.98	2.363	7.62	
19	Ксения	1988	НП КОЛОС	59000		0.91	1.913	7.86	6.74	
20	Оксана	1989	AO HEBA	64000		0.88	1.55	4.58	4.63	
21	Марина	1991	АО ОКА	60200		0.79	3.45	6.32	9.03	
22	Леонид	1990	НП ВЕГА	18900		0.76	5.8	7.31	7.224	
23	Дамир	1994	НП КОЛОС	31786		0.681	4.4	3.42	1.63	
24	Антон	1995	ФК МАРС	50221		0.973	4.3	5.154	1.863	

25	Федор	1975	AO BOCTOK	38022	0.397	1.5	8.17	3.331	
26	Матвей	1977	OA CEBEP	26871	1.045	0.79	5.446	1.481	
27	Андрей	1989	НФ ЛУЧ	43000	1.064	0.71	7.341	3.43	
28	Полина	1986	AO HEBA	47900	0.52	0.88			
29	Семен	1985	АО ОКА	59800	0.605	1.47	8.072	1.78	
30	Гурам	1991	АО ТОПАЗ	63000	0.752	2.124	8.26	3.37	

Ранжируйте пациентов по стоимости лечения, начиная с максимальной суммы. Добавьте в таблицу поле, соответствующее общему социальному вычету за лечение (ставка 13%), выплаченному пациенту, если стоимость лечения за каждый год начислялась согласно формулам для Cost, где вместо 2011 следует последовательно подставить каждый год нахождения пациента под наблюдением.

2. Постройте линейный классификатор для классификации пациентов по формам болезни Паркинсона (5 форм - Дрожательно-ригидная, Акинетико-ригидная, Акинетическая форма, Дрожательная форма, ригидная форма) на основе пяти признаков – содержания в крови глюкозы, тромбоцитов, белков, эозинофилов, плазмоцитов. Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить с использованием функций языка R - Predict и Table.

№	Группы	Glukosa	Trombocit	Belok	Eozinofil	Plazmocit
1	Дрожательно- ригидная	4.47-8.34	2.34-5.51	5.33-9.89	1.77-3.5	9.2-11.7
2	Акинетико- ригидная	8.35-11.61	5.52-8.73	9.9-14.41	3.6-7.1	11.8-16.93
3	Дрожательная форма	11.62-17.16	8.74-10.93	14.42-18.1	7.2-12.3	16.94-21.33
4	ригидная форма	17.17-19.21	10.94-14.32	18.2-20.4	12.4-17.8	21.34-26.57
5	Акинетическая форма	19.22-23.43	14.33-18.57	20.41-27.3	17.9-22.89	26.58-31.08

Для машины опорных векторов среди ядер "polynomial", "radial" выберите оптимальное в плане количества ошибок на тестовой выборке, для ядра типа polynomial можно изменять значение параметра degree

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так: $f\left(x_1, x_2\right) = 70 \cdot \left(x_2 - x_1^2\right)^2 + \left(2 - x_1\right)^2$

Найти координаты и значение функции в точке минимума методом градиентного спуска.

Вариант 7

1. Создайте фрейм данных из N = 32 записей со следующими полями: Nrow — номер записи, Name — имя пациента, BirthYear — год рождения, Employ — место работы, Salary — зарплата. Cost—стоимость лечения, Basifil—содержание базифилов в крови, Neitrofil—содержание нейтрофилов в крови, Limfocit—содержание лимфоцитов в крови, Leikocit — содержание лейкоцитов в крови. Заполните данный фрейм данными так, что Nrow изменяется от 1 до N,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1972,1992], , Costдля пациентов младше 1988 г.р. определяется по формуле Cost= (ln(2013 - BirthYear) + 1) * 11000, для остальных Cost= (log2(2013 - BirthYear) + 1) * 9000.

Ранжируйте пациентов по стоимости лечения, начиная с минимальной суммы. Добавьте в таблицу поле, соответствующее общему социальному вычету за лечение (ставка 13%), выплаченному пациенту, если стоимость лечения за каждый год начислялась согласно формулам для Cost, где вместо 2013 следует последовательно подставить каждый год нахождения пациента под наблюдением.

2. Постройте линейный классификатор для классификации пациентов по формам болезни Паркинсона (4 формы - Дрожательно-ригидная, Акинетико-ригидная, Акинетическая форма, Дрожательная форма) на основе четырех признаков — содержания в крови базифилов, нейтрофилов, лимфоцитов, лейкоцитов. Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить с использованием функций языка R - Predict и Table.

Для машины опорных векторов среди ядер линейное и сигмоидальное выберите оптимальное в плане количества ошибок на тестовой и обучающей выборке

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так: $f(x_1,x_2) = (x_1-2)^2 + (x_2-5)^2$

Найти координаты и значение функции в точке минимума методом градиентного спуска.

Вариант 8

1. Создайте фрейм данных из *N* = 27 записей со следующими полями: *Nrow* — номер записи, *Name* — имя пациента, *BirthYear* — год рождения, *Employ* — место работы, *Salary* — зарплата. Cost—стоимость лечения, Gemoglobin—содержание гемоглобина в крови, Limfocit—содержание лимфоцитов в крови, Bilirubin—содержание билирубина в крови. Заполните данный фрейм данными так, что *Nrow* изменяется от 1 до *N*,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1971,1991], , Costдля пациентов младше 1988 г.р. определяется по формуле Cost= (ln(2010 - BirthYear) + 1) * 10000, для остальных Cost= (log2(2010 - BirthYear) + 1) * 7000.

Ранжируйте пациентов по стоимости лечения, начиная с минимальной суммы. Добавьте в таблицу поле, соответствующее общему социальному вычету за лечение (ставка 13%), выплаченному пациенту, если стоимость лечения за каждый год начислялась согласно формулам для Cost, где вместо 2010 следует последовательно подставить каждый год нахождения пациента под наблюдением.

2. Постройте линейный классификатор для классификации пациентов по формам болезни Паркинсона (3 формы - Дрожательно-ригидная, Акинетико-ригидная, Дрожательная форма) на основе трех признаков – содержания в крови гемоглобина, лимфоцитов, билирубина. Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить с использованием функций языка R - Predict и Table.

Для машины опорных векторов среди ядер полиномиальное и сигмоидальное выберите оптимальное в плане количества ошибок на тестовой и обучающей выборке (для ядра типа polynomial можно изменять значение параметра degree)

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так: $f(x_1,x_2) = (x_1^2 + x_2 - 8)^3 + (x_1 + x_2^3 - 3)^2$

Найти координаты и значение функции в точке минимума методом градиентного спуска.

Вариант 9

1. Создайте фрейм данных из *N* = 28 записей со следующими полями: *Nrow* – номер записи, *Name* – имя сотрудника, *BirthYear* – год рождения, *EmployYear* – год приема на работу, *Salary* – зарплата. EyEColor–цвет глаз, SkinColor–цвет кожи, BloodType–группа крови, HairColor–цвет волос на голове. Заполните данный фрейм данными так, что *Nrow* изменяется от 1 до *N*,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1974,1994], EmployYear распределен равномерно на отрезке [BirthYear+17,2013], Salary для работников младше 1990 г.р. определяется по формуле Salary = (ln(2014 - EmployYear) + 1) * 9000, для остальных Salary = (log2(2014 - EmployYear) + 1) * 9000.

Подсчитайте число сотрудников с зарплатой, большей 18000. Добавьте в таблицу поле, соответствующее суммарному подоходному налогу (ставка 13%), выплаченному сотрудником за время работы в организации, если его зарплата за каждый год начислялась согласно формулам для Salary, где вместо 2014 следует последовательно подставить каждый год работы сотрудника в организации.

2. Постройте линейный классификатор для классификации сотрудников данной международной организации (признаки классификации: группа крови, цвет волос, глаз и цвет кожи). Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить.

Цвет глаз, кожи или волос можно закодировать определенным числом. В данном варианте использовать национальности: Англичанин, Китаец, Датчанин, Китаец из Пекина, Исландец.

Для машины опорных векторов типа "C-classification" с полиномиальным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра C (для ядра типа polynomial можно изменять значение параметра degree).

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так:

$$f(x_1,x_2)=3\cdot x_1^2+3\cdot x_2^3-9\cdot x_1\cdot x_2$$

Найти координаты и значение функции в точке минимума методом наискорейшего градиентного спуска.

Вариант 10

1. Создайте фрейм данных из N = 32 записей со следующими полями: Nrow — номер записи, Name — имя пациента, BirthYear - год рождения, Employ - место работы, Salary - зарплата. Cost-стоимость лечения, Plazmocitt-содержание плазмоцитов в крови, Gemoglobin-содержание гемоглобина в крови, Neitrifilсодержание нейтрофилов в крови, Creatin - содержание креатина в крови, Gematokrit - содержание гематокрита в крови, Globulin – содержание глобулина в крови. Заполните данный фрейм данными так, что Nrow изменяется от 1 до N,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1972,1994], , Costдля пациентов младше 1986 г.р. определяется по формуле Cost= (ln(2010 - BirthY ear) + 1) * 7000, для остальных Cost= (log 2(2010 - BirthY ear) + 1) * 9000.

Ранжируйте пациентов по стоимости лечения, начиная с максимальной суммы. Добавьте в таблицу поле, соответствующее общему социальному вычету за лечение (ставка 13%), выплаченному пациенту, если стоимость лечения за каждый год начислялась согласно формулам для Cost, где вместо 2010 следует последовательно подставить каждый год нахождения пациента под наблюдением.

Постройте линейный классификатор для классификации пациентов по степени развития болезни Паркинсона (3 степени - маловыраженные односторонние изменения, маловыраженные двусторонние изменения, полная потеря трудоспособности и самостоятельной жизнедеятельности) на основе шести признаков – содержания в крови плазмоцитов, гемоглобина, нейтрофилов, креатина, гематокрита, глобулина. Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить с использованием функций языка R - Predict и Table.

Для машины опорных векторов типа "C-classification" с радиальным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра C.

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так:

$$f(x_1,x_2) = 5 - 4 \cdot x_1 - 3 \cdot x_2 - 2 \cdot x_1 \cdot x_2 + 4 \cdot x_1^3 + 8 \cdot x_2^3$$
 Найти координаты и значение функции в точке минимума методом градиентного спуска.

Таблица характеристик полезных ископаемых – цветных металлов

№	Полезные	Энергия	Относите	Радиус
	ископаемые	ионизац ии атома, ЭВ	льная электроот рицатель ность	атома, НМ
1	Церий	5.6	1.12	0.181

	(редкоземельные)			
2	Лантан (редкоземельные)	5.61	1.1	0.187
3	Самарий (редкоземельные)	5.4	1.17	0.181
4	Европий (редкоземельные)	5.47	1.2	0.185
5	Неодим (редкоземельные)	5.32	1.14	0.182
6	Тербий (редкоземельные)	5.69	1.2	0.18
7	Гадолиний (редкоземельные)	5.94	1.2	0.179
8	Диспрозий (редкоземельные)	5.67	1.2	0.18
9	Эрбий (редкоземельные)	5.84	1.24	0.178
10	Гольмий (редкоземельные)	5.74	1.23	0.179
11	Лютеций (редкоземельные)	5.13	1.27	0.175
12	Иттрий (редкоземельные)	6.15	1.22	0.178
13	Тулий (редкоземельные)	5.89	1.25	0.177
14	Тербий (редкоземельные)	5.69	1.2	0.18
15	Бериллий (легкие цветные металлы)	8.98	1.67	0.112
16	Барий (легкие цветные металлы)	5.21	0.89	0.222
17	Цинк (тяжелые)	9.06	1.65	0.138
18	Олово (тяжелые)	7.34	1.96	0.162
19	Титан (легкие)	6.58	1.54	0.147
20	Литий (легкие)	5.39	0.98	0.155
21	Рубидий (легкие)	4.17	0.82	0.248
22	Цезий (легкие цветные металлы)	3.89	0.79	0.267

Вариант 11

1. Создайте фрейм данных из *N* = 29 записей со следующими полями: *Nrow* – номер записи, *Name* – место нахождение цветного металла, *BirthYear* – год обнаружения, Count–прогнозируемое количество, *Salary* – стоимость добычи. Cost–стоимость перевозки, PowerIOn–значение энергии ионизации, Electro– относительная электроотрицательности, Radius – радиус атома. Заполните данный фрейм данными так, что *Nrow* изменяется от 1 до *N*,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1971,1997], , Costдля ископаемых найденных до 1989 г.р. определяется по формуле Cost= (ln(2006 - BirthYear) + 1) * 45000, для остальных Cost= (log2(2006 - BirthYear) + 1) * 65000. Стоимость добычи Salary = (log2(2013 + BirthYear) + 1)*73000

Ранжируйте ископаемые по стоимости добычи, начиная с максимальной суммы. Добавьте в таблицу поле, соответствующее общему социальному вычету за перевозки грузов (ставка 7%), выплаченному, если стоимость перевозок за каждый год начислялась согласно формулам для Cost, где вместо 2006 следует последовательно подставить каждый год добычи полезных ископаемых.

2. Постройте линейный классификатор для классификации 5 редкоземельных цветных металлов церия, лантана, самария, европия и неодима на основе трех признаков – Энергия ионизации атома, радиус атома, Относительная электроотрицательность. Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить с использованием функций языка R - Predict и Table.

Для машины опорных векторов типа "C-classification" c линейным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра C.

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так:

$$f(x_1,x_2) = [(x_2+1)^2 + x_1^2] \times [x_1^2 + (x_2-1)^2]$$

Найти координаты и значение функции в точке минимума методом градиентного спуска.

Вариант 12

1. Создайте фрейм данных из *N* = 33 записей со следующими полями: *Nrow* – номер записи, *Name* – место нахождение цветного металла, *BirthYear* – год обнаружения, Count–прогнозируемое количество, *Salary* – стоимость добычи. Cost–стоимость перевозки, PowerIOn–значение энергии ионизации, Electro– относительная электроотрицательности, Radius – радиус атома. Заполните данный фрейм данными так, что *Nrow* изменяется от 1 до *N*,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1972,1996], , Costдля ископаемых найденных до 1990 г.р. определяется по формуле Cost= (ln(2012 - BirthYear) + 1) * 55000, для остальных Cost= (log2(2012 - BirthYear) + 1) * 63000. Стоимость добычи Salary = (log2(2007 + BirthYear) + 1)*74000

Ранжируйте ископаемые по стоимости добычи, начиная с максимальной суммы. Добавьте в таблицу поле, соответствующее общему социальному вычету за перевозки грузов (ставка 8%), выплаченному, если стоимость перевозок за каждый год начислялась согласно формулам для Cost, где вместо 2012 следует последовательно подставить каждый год добычи полезных ископаемых.

2. Постройте линейный классификатор для классификации 4 редкоземельных цветных металлов тербия, гадолиния, диспрозия, эрбия на основе трех признаков — Энергия ионизации атома, радиус атома, Относительная электроотрицательность. Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить с использованием функций языка R - Predict и Table.

Для машины опорных векторов типа "C-classification" с радиальным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра C.

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так:

$$f(x_1,x_2) = x_1^3 + x_2^2 - x_1 \cdot x_2 - 2x_1 + 3x_2 - 4$$

Найти координаты и значение функции в точке минимума методом градиентного спуска.

Вариант 13

1. Создайте фрейм данных из *N* = 30 записей со следующими полями: *Nrow* – номер записи, *Name* – место нахождение цветного металла, *BirthYear* – год обнаружения, Count–прогнозируемое количество, *Salary* – стоимость добычи. Cost–стоимость перевозки, PowerIOn–значение энергии ионизации, Electro– относительная электроотрицательности, Radius – радиус атома. Заполните данный фрейм данными так, что *Nrow* изменяется от 1 до *N*,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1973,1999], , Costдля ископаемых найденных до 1990 г.р. определяется по формуле Cost= (ln(2008 - BirthYear) + 1) * 57000, для остальных Cost= (log2(2008 - BirthYear) + 1) * 67000. Стоимость добычи Salary = (log2(2005 + BirthYear) + 1)*77000

Ранжируйте ископаемые по стоимости добычи, начиная с максимальной суммы. Добавьте в таблицу поле, соответствующее общему социальному вычету за перевозки грузов (ставка 11%), выплаченному, если стоимость перевозок за каждый год начислялась согласно формулам для Cost, где вместо 2008 следует последовательно подставить каждый год добычи полезных ископаемых.

2. Постройте линейный классификатор для классификации 5 редкоземельных цветных металлов гольмия, лютеция, иттрия, тулия, тербия на основе трех признаков — Энергия ионизации атома, радиус атома, Относительная электроотрицательность. Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить с использованием функций языка R - Predict и Table.

Для машины опорных векторов типа "C-classification" с полиномиальным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра С.Изменяя значение параметра gamma, продемонстрируйте эффект переобучения, выполните при этом визуализацию разбиения пространства признаков на области

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так: $f(x_1,x_2) = (x_2^2 + x_1^2 - 1)^2 + (x_1 + x_2 - 1)^2$

Найти координаты и значение функции в точке минимума методом градиентного спуска.

Вариант 14

1. Создайте фрейм данных из *N* = 27 записей со следующими полями: *Nrow* – номер записи, *Name* – место нахождение цветного металла, *BirthYear* – год обнаружения, Count–прогнозируемое количество, *Salary* – стоимость добычи. Cost–стоимость перевозки, PowerIOn–значение энергии ионизации, Electro–относительная электроотрицательности, Radius – радиус атома. Заполните данный фрейм данными так, что *Nrow* изменяется от 1 до *N*,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1970,1994], , Costдля ископаемых найденных до 1977 г.р. определяется по формуле Cost= (ln(2009 - BirthYear) + 1) * 59000, для остальных Cost= (log2(2009 - BirthYear) + 1) * 69000. Стоимость добычи Salary = (log2(2007 + BirthYear) + 1)*79000

Ранжируйте ископаемые по стоимости добычи, начиная с минимальной суммы. Добавьте в таблицу поле, соответствующее общему социальному вычету за перевозки грузов (ставка 10%), выплаченному, если стоимость перевозок за каждый год начислялась согласно формулам для Cost, где вместо 2009 следует последовательно подставить каждый год добычи полезных ископаемых.

2. Постройте линейный классификатор для классификации тяжелых и легких цветных металлов цинка, олова, бериллия, титана, лития, рубидия на основе трех признаков — Энергия ионизации атома, радиус атома, Относительная электроотрицательность. Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить с использованием функций языка R - Predict и Table.

Для машины опорных векторов типа "C-classification" с сигмоидальным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра С.Изменяя значение параметра датта, продемонстрируйте эффект переобучения, выполните при этом визуализацию разбиения пространства признаков на области

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так:

$$f(x_1, x_2) = 5 \cdot x_1^2 + 5 \cdot x_2^2 - 8 \cdot x_1 \cdot x_2$$

Найти координаты и значение функции в точке минимума методом градиентного спуска.

Вариант 15

1. Создайте фрейм данных из *N* = 31 записей со следующими полями: *Nrow* – номер записи, *Name* – место нахождение цветного металла, *BirthYear* – год обнаружения, Count–прогнозируемое количество, *Salary* – стоимость добычи. Cost–стоимость перевозки, PowerIOn–значение энергии ионизации, Electro– относительная электроотрицательности, Radius – радиус атома. Заполните данный фрейм данными так, что *Nrow* изменяется от 1 до *N*,

Name задается произвольно, BithYear распределен равномерно (случайно) на отрезке [1974,1999], , Costдля ископаемых найденных до 1977 г.р. определяется по формуле Cost= (ln(2010 - BirthYear) + 1) * 54000, для остальных Cost= (log2(2010 - BirthYear) + 1) * 64000. Стоимость добычи Salary = (log2(2009 + BirthYear) + 1)*74000

Ранжируйте ископаемые по стоимости добычи, начиная с минимальной суммы. Добавьте в таблицу поле, соответствующее общему социальному вычету за перевозки грузов (ставка 8%), выплаченному, если стоимость перевозок за каждый год начислялась согласно формулам для Cost, где вместо 2010 следует последовательно подставить каждый год добычи полезных ископаемых.

2. Постройте линейный классификатор для классификации тяжелых, легких и редкоземельных цветных металлов цинка, олова, бериллия, титана, лития, рубидия, лантана, самария, европия, эрбия на основе трех признаков — Энергия ионизации атома, радиус атома, Относительная электроотрицательность. Использовать машину опорных векторов и алгоритм персептрона. Полученные результаты сравнить с использованием функций языка R - Predict и Table.

Для машины опорных векторов типа "C-classification" с полиномиальным ядром, добейтесь нулевой ошибки сначала на обучающей выборке, а затем на тестовой, путем изменения параметра С.Изменяя значение параметра gamma, продемонстрируйте эффект переобучения, выполните при этом визуализацию разбиения пространства признаков на области

3. Допустим, что решающая функция линейного классификатора в упрощенном виде выглядит так: $f(x_1, x_2, x_3) = x_1^3 \cdot x_2^2 \cdot x_3^2 \cdot x_3^2$

$$f(x_1,x_2)=x_1^3+x_2^2-3\cdot x_1-2\cdot x_2+2$$

Найти координаты и значение функции в точке минимума методом градиентного спуска.