Stock News Classification, Prediction, & Analysis

BY: Vincent Welsh 11-24-2021

Outline

- Business Problem & Understanding
- Data
- Modeling Methodology & Metrics
- Results
 - Title and Text sentiment analyses are equally important for machine learning
 - Optimal weights to use to deal with class imbalance
 - Best model for stock news classification
- Conclusions
- Further Work

Business Problem

- Predicting stock prices is a highly valuable asset to have. Assuming high precision in our predictions, we can:
 - Profit from short or long term stock purchases
 - Analyze company projected growth or decline
 - Determine public sentiment toward a company or industry

- The Assumption of this project is that stock news is related to stock price. This
 assumption is based on:
 - How stock prices move up or down
 - Public sentiment toward a stock and stock price

Business Understanding

- Understanding the value that comes from stock prediction, I went into this project with the following goals:
 - Build various machine learning models predicting stock price with precision and accuracy as the goal metrics.
 - Value: If we have a model that can confidently predict a gain or loss for a given stock then we can invest company funds with higher confidence
 - Derive Importance Results
 - Value: Is the headline of a news article have more valuable information than the text?
 Knowing this will allow for more advanced models in the future
 - Visualize Relationships
 - Value: By creating a visual representation of the relationship between stock news and a given stock we can detect patterns which can be used to enhance model performance

Data

- All of the data was retrieved from the FMP Cloud API (https://fmpcloud.io/)
- Preprocessing:
 - Obtain Stock News using api key, limit (Number of News articles to retrieve) stock symbol list
 - This returns the title and text of the news, date + time published
 - Custom Features:
 - Vader sentiment scores (For first two models)
 - Boolean is_weekday (True if on Friday, Saturday, Sunday)
 - Weekday number (0 = Monday)
 - Stock Prediction Day
 - Obtain stock price using the date range from the stock news dataframe above

NLP

- For the recurrent networks and transformer model I took the following natural language process steps
 - Combine title and text of a news article
 - Count unique words
 - Determine max length of a given text
 - Tokenize words (removes punctuation)
 - Embed words using Glove word vector matrix
 - (https://nlp.stanford.edu/projects/glove/)

Methodology (Baseline Models)

- I define gain/loss by change i.e. Stock Open Price Stock Close Price
 - If change > 0 stock == gain
 - o If change < 0 stock == loss</p>
- Baseline Model (Vader Sentiment Scores)
 - Does not use machine learning
 - Predicts stock price using average score of title and text
- Baseline Model (XGBOOST with Vader Sentiment Scores)
 - Supervised binary classification machine learning
 - Predicts stock price using vader sentiment scores after being trained on actual gain/loss of a stock

Metrics (Baseline Models)

Vader Sentiment Model

Vader Sentiment XGBOOST Model

Methodology (Recurrent Neural Networks)

- GRU Model
 - Embedding layer with 50 vector size
 - GRU layer
 - 64 neurons
 - L2 regularizer
 - Dense Layer
 - 128 neurons
 - Tanh activation
 - Output Layer
 - Sigmoid activation
 - Loss: binary_crossentropy
 - Optimizer : Adam

- LSTM Model
 - Embedding layer with 50 vector size
 - LSTM Layer
 - 64 neurons
 - L2 regularizer
 - Dropout Layer
 - Rate:.2
 - Dense Layer
 - 128 neurons
 - Tanh activation
 - Output Layer
 - Sigmoid Activation
 - Loss: binary_crossentropy
 - Optimizer : Adam

Metrics (GRU Recurrent Network)

Metrics (LSTM Recurrent Network)

Results #1

 Text & Title are equally important when classifying stock news data

Results #1 Additional Evidence

Results #2

The best weighting system for larger ratios, loss/gain, is the averaged weights

Results #2

The best weighting system for smaller ratios, loss/gain, is the sklearn weights

Results#3 Best Model

1.00

0.50

0.18

0.30

0.18

0.15

0.05

				\cup

0.18

0.59

0.85

Recurrent Network GRU

1

accuracy

macro avq

weighted avg

	precision	recall	f1-score	support		precision	recall	f1-score	support	
0	0.00	0.00	0.00	2375	0	0.82	0.80	0.81	2402	
1	0.19	1.00	0.32	557	1	0.18	0.20	0.18	528	
accuracy			0.19	2932	accuracy			0.69	2930	
macro avg	0.09	0.50	0.16	2932	macro avg	0.50	0.50	0.50	2930	
weighted avg	0.04	0.19	0.06	2932	weighted avg	0.70	0.69	0.70	2930	
Recurrent N	etwork LS	ТМ					Baseline (Sentiment NON ML)			
	precision	recall	f1-score	support		precision	recall	f1-score	support	
0	1.00	0.00	0.00	2415	loss gain	0.10 0.51	0.00	0.00	1145 1201	
514.	0.18	1 (1)(1)	0 30	518	9					

NotEnoughData

accuracy

macro avg

weighted avg

0.00

0.20

0.31

0.00

0.33

0.51

518

2933

2933

2933

Baseline

(XGBOOST)

0.00

0.51

0.22

0.34

4

2350

2350

2350

Conclusions

- Develop & patent custom Natural Language Processing for stock news titles
 AND their corresponding text.
 - This will lead to higher return on investments,
 - business insights,
 - and allow your company to understand the sentiment of investors.
- To best handle the class imbalance where ratio = loss/gain:
 - Smaller Ratios (<8): Use Sklearn generated weights
 - Larger Ratios (>8): Use the average weight between sklearn and the general formula class/class
- Develop a sentiment analysis tool specifically for stock data. This will include labeling data for training, this should be done by human experts.

Further Work

Provided with more time, I would....

- Further develop transformer model
 - Parameter Optimization
 - Add weights
- Develop business product capable of analyzing stock sentiment to enhance company & customer return on investment
- Develop custom filtering methods capable of determining:
 - Optimal weights for class imbalance
 - Trending stocks (positive or negative)
- Develop process that collects equal gain & loss metrics so that models have higher performance

Questions?

Where to reach me:

Email: jvincentwelsh99@hotmail.com

LinkedIn:

https://www.linkedin.com/in/vincent-404/

GitHub: https://github.com/Eucalyptusss