Лекція 5

Формула повної ймовірності і формула Байє са

Важливу роль в теорії ймовірностей відіграє наступний результат.

<u>**T е о р е м а 1 (формула повної ймовірності).**</u> Нехай для події A існує послідовність подій B_i , i=1,2,... таких, що $B_i\cap B_j=\varnothing$ для $i\neq j$, $P(B_i)>0$ для i=1,2,..., і крім того $A\subset \bigcup_{i=1}^\infty B_i$. Тоді

$$P(A) = \sum_{i=1}^{\infty} P(B_i) P(A/B_i).$$
 (5.1)

Доведення. З несумісності подій B_i , i=1,2,... і аксіоми про σ - адитивність випливає

$$P(A) = P\left(A \cap \left(\bigcup_{i=1}^{\infty} B_i\right)\right) = P\left(\bigcup_{i=1}^{\infty} \left(A \cap B_i\right)\right) = \sum_{i=1}^{\infty} P\left(A \cap B_i\right).$$

Підставляючи в останню формулу $P(A \cap B_i) = P(A/B_i)P(B_i)$, i = 1,2,..., приходимо до формули повної ймовірності (5.1).

<u>Приклад 1.</u> Є N урн з білими і чорними кулями, причому в кожній урні m_i білих куль і (n_i-m_i) чорних куль. Експеримент полягає у виборі навмання однієї з урн і вилучення з неї однієї кулі. Знайти ймовірність події A, яка полягає у тому, що вилучена біла куля?

Розв'язання: Нехай B_i , i=1,...,N — подія, яка полягає у тому, що на першому кроці була витягнута i-та урна. Тоді $P(B_i)=1/N$, $P(A/B_i)=m_i/n_i$, i=1,2,...,N. Використовуючи (2.3) знаходимо $P(A)=\sum_{i=1}^N \frac{1}{N} \frac{m_i}{n_i}$.

Теорема 2 (формула Байєса).

Визначення. Будемо говорити, що події $H_1,...,H_n,...$ утворюють повну групу подій, якщо є виконаними наступні умови:

$$1) \bigcup_{i=1}^{\infty} H_i = \Omega$$
; $2) H_i \cap H_j = \emptyset$ для $i \neq j$; $3) P(H_i) > 0$, $i = 1, 2, ...$,

Зазвичай події H_i , i = 1, 2, ... називають гіпотезами.

Нехай $H_1,...,H_n,...$ - повна група подій (гіпотез) і B — деяка подія така, що P(B)>0. Тоді

$$P(H_i/B) = \frac{P(B/H_i)P(H_i)}{\sum_{k=1}^{\infty} P(B/H_k)P(H_k)}.$$
 (5.2)

Доведення. З визначення умовної ймовірності маємо

$$P(H_i/B) = \frac{P(H_i \cap B)}{P(B)} = \frac{P(B/H_i)P(H_i)}{P(B)}$$
. Застосовуючи до знаменника $P(B)$

формулу повної ймовірності $P(B) = \sum_{k=1}^{\infty} P(B/H_k) P(H_k)$, приходимо до (5.2). Теорему доведено.

Формулі Байєса можна дати наступну інтерпретацію. Нехай подія B — результат деякого експерименту. Імовірність $P(H_i)$ — це апріорні ймовірності гіпотез, які підраховані до проведення експерименту. Умовні ймовірності $P(H_i/B)$ — це апостеріорні ймовірності гіпотез, які підраховані після того, як став відомим результат B. Формула Байєса дозволяє за апріорними ймовірностями і за умовними ймовірностями події B при гіпотезах H_i підраховувати апостеріорні ймовірності.

Приклад 1. Нехай деякий прилад виробляється двома підприємствами, причому обсяг продукції другого підприємства в k разів більший за обсяг продукції першого. Нехай p_1 і p_2 - ймовірності того, що прилад виявився бракованим на першому і другому підприємстві відповідно. Прилади пішли у продаж. Яка ймовірність того, що ви купили прилад з другого підприємства, якщо він виявився бракованим?

Розв'язання: Введемо гіпотези : H_1 - навмання обраний прилад зроблено на першому підприємстві, H_2 – на другому підприємстві. Нехай

x- кількість приладів, які виробив перший пілприємстві, а kx - другий. Тоді $P(H_1) = \frac{x}{x+kx} = \frac{1}{1+k}$; $P(H_2) = \frac{kx}{x+kx} = \frac{k}{k+1}$. Нехай B — навмання обраний прилад виявився бракованим. За формулою Байєса знаходимо

$$P(H_2/B) = \frac{\frac{k}{1+k} \cdot p_2}{\frac{1}{1+k} \cdot p_1 + \frac{k}{1+k} \cdot p_2} = \frac{k \cdot p_2}{p_1 + k \cdot p_2}.$$