Universidad Peruana de Ciencias Aplicadas Escuela de Ingeniería de Sistemas y Computación Carrera de Ciencias de la Computación

CC53 Procesamiento de Imágenes

Introducción al procesamiento de Imágenes

Prof. Peter Montalvo

Agenda

- ¿Qué es procesamiento de imágenes?
- Origen
- Imágenes digitales
- Muestreo y cuantización
- Filtro
- Componentes de un sistema de procesamiento de imágenes

Nota

 Esta sesión está basada en el libro "Digital Image Processing" 3ra edición de Rafael C. González y Richard E. Woods. En especial el capítulo 1 y 2.

¿Qué es procesamiento de imágenes?

- No hay un límite claro con otras áreas: Computer Vision, Machine Learning, Análisis de Imágenes
- Tipos de procesamiento:
 - Bajo nivel
 - Nivel Medio
 - Alto nivel

Orígenes del Procesamiento de Imágenes

- Una de las primeras aplicaciones fue el envío de fotos por cable, en la industria de periódicos (en 1920)
- 5 niveles de gris originalmente
- 15 niveles en 1929

Digital Image Processing, 3rd ed.

www.ImageProcessingPlace.com

Chapter 2 Digital Image Fundamentals

figure 1.1 A digital picture produced in 1921 from a coded tape by a telegraph printer with special type faces. (McFarlane.†)

Representando Imágenes digitales

- Sea f(s,t) una imagen continua de dos variables s y t donde f(s,t) es el nivel de intensidad
- Convertimos esta función en una imagen digital al muestrear y cuantizar

Muestreo

https://en.wikipedia.org/wiki/Sampling (signal processing)

Cuantización

Sensores

1

FIGURE 2.12

- (a) Single imaging sensor.
- (b) Line sensor.
- (c) Array sensor.

Digital Image Processing, 3rd ed.

Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 2 Digital Image Fundamentals

Imagen continua -> Arreglo de sensores

Digital Image Processing, 3rd ed.

Gonzalez & Woods
www.ImageProcessingPlace.com

Chapter 2 Digital Image Fundamentals

a b

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.

Formación de imágenes

Digital Image Processing, 3rd ed.

Gonzalez & Woods

www.ImageProcessingPlace.com

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Representando imágenes

digitales

Digital Image Processing, 3rd ed.

Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 2 Digital Image Fundamentals

FIGURE 2.18

- (a) Image plotted as a surface. (b) Image displayed as a visual intensity array. (c) Image shown
- as a 2-D numerical array (0, .5, and 1)represent black, gray, and white, respectively).

By en:User:Cburnett - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1496858

Filtro Bayer

- El filtro funciona al dejar pasar solo una longitud de onda (o color) a cada elemento de la grilla del sensor
- Se interpola para los valores faltantes

By en:User:Cburnett - Own workThis W3C-unspecified vector image was created with Inkscape., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1496872

Filtro Bayer: notas

- El filtro tiene
 - 50% verde -- para simular la fisiología del ojo humano
 - 25% rojo
 - 25% azul
- Patente de Bryce E. Bayer (Eastman Kodak)
- Año 1975

United States Patent	[19]	[11]	3,971,065	
Rayer		[45]	July 20, 1976	

[54]	4] COLOR IMAGING ARRAY		[57] ABSTRACT		
[75]	Inventor:	Bryce E. Bayer, Rochester, N.Y.	A sensing array for color imaging includes individual		
[73]	Assignee:	Eastman Kodak Company, Rochester, N.Y.	luminance- and chrominance-sensitive elements that are so intermixed that each type of element (i.e., according to sensitivity characteristics) occurs in a re-		
[22]	Filed:	Mar. 5, 1975	peated pattern with luminance elements dominating		
[21]] Appl. No.: 555,477		the array. Preferably, luminance elements occur at every other element position to provide a relatively		
[52]	U.S. Cl		high frequency sampling pattern which is uniform in two perpendicular directions (e.g., horizontal and ver- tical). The chrominance patterns are interlaid there-		
[51]	Int. Cl.2	H04N 9/24	with and fill the remaining element positions to pro-		
[58]		earch 358/44, 45, 46, 47,	vide relatively lower frequencies of sampling.		
358/48; 350/317, 162 SF; 315/169 TV			In a presently preferred implementation, a mosaic of selectively transmissive filters is superposed in		

[56]	References Cited		
	UNITED	STATES PATENTS	
2,446,791	8/1948	Schroeder	358/44
2,508,267	5/1950	Kasperowicz	358/44
2,884,483	4/1959	Ehrenhaft et al	
3,725,572	4/1973	Kurokawa et al	358/46

Primary Examiner-George H. Libman Attorney, Agent, or Firm-George E. Grosser

erred implementation, a mosaic of issive filters is superposed in registration with a solid state imaging array having a broad range of light sensitivity, the distribution of filter types in the mosaic being in accordance with the above-described patterns.

11 Claims, 10 Drawing Figures

Componentes de un sistema de Procesamiento

FIGURE 1.24

Components of a general-purpose image processing system.

Digital Image Processing, 3rd ed.

Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 2 Digital Image Fundamentals

Ver más:

https://youtu.be/LWxu4rkZBLw

