Measurement of hardness of water

- Hardness of water is measured in parts per millions (ppm) as calcium carbonate equivalents.
- Reasons for expressing hardness in CaCO₃ equivalents:
 - its molecular weight is 100; equivalent weight is 50.
 - it is the most common insoluble impurity in water.

```
Hardness in terms of Equivalents of CaCO_3 = \frac{\text{Mass of Hardness}}{\text{Producing Substance}} \times \text{Equivalent Weight of CaCO}_3
Equivalents of CaCO_3
```

Total Hardness= Temporary Water Hardness + Permanent Water Hardness

Calculate the temporary hardness and permanent hardness of a sample water containing $Mg(HCO_3)_2 = 7.3$ mg/L; $Ca(HCO_3)_2 = 16.2$ mg/L; $MgCl_2 = 9.5$ mg/L; $CaSO_4 = 13.6$ mg/L (atomic weight of Mg = 24, Ca = 40, Cl = 35.45 and S = 32). (Ans.: Temporary = 15 ppm, Permanent = 20 ppm)

Problem 1 for DA

Calculate the temporary hardness, permanent magnesium hardness, total permanent hardness & total hardness in terms of calcium carbonate equivalents in a water sample containing calcium bicarbonate (12.2 mg), magnesium bicarbonate (8.2 mg), magnesium sulphate (5.6 mg), magnesium chloride (6.2 mg), calcium sulphate (10.3 mg) & sodium sulphate (7.5 mg). Given that at. Wt. of Mg=24 amu, S=32 amu, Cl=35.5 amu, Ca=40 amu, O=16 amu, C=12 amu, H=1 amu.

Measurement of hardness of water

Units of hardness

Parts Per million (ppm)

Parts of CaCO₃ eq./10⁶ parts of water

❖ Milligrams per liter (mg/l)

mg of CaCO₃ eq. present/ liter of water

Degree Clarke (°Cl)

No. of geqv. of CaCO₃/70000 parts of water

Degree French (°Fr)

No. of geqv. of CaCO₃/10⁵ parts of water

Relationship between units of water hardness

☐ 1 ppm = 1 mg/L = 0.1 °French = 0.07 °Clark

Estimation of hardness of water

- > O. Hehner's method:
- Temporary Hardness: Acidbase titration is performed before and after boiling the hard water

<u>Permanent Hardness:</u> Chloride and sulphates of Ca and Mg are removed as insoluble CaCO₃ and MgCO₃ by boiling the hard water with excess Na₂CO₃. Acid-base titration is performed before and after removal

Ca(HCO₃)₂
$$\xrightarrow{\text{Boiling}}$$
 CaCO₃ \downarrow + H₂O + CO₂

Mg(HCO₃)₂ $\xrightarrow{\text{Boiling}}$ Mg(OH)₂ \downarrow + CO₂

CaCl₂ + Na₂CO₃
$$\xrightarrow{\text{Boiling}}$$
 CaCO₃ \downarrow + 2 NaCl

MgSO₄ + Na₂CO₃ $\xrightarrow{\text{Boiling}}$ MgCO₃ \downarrow + 2 Na₂SO₄

Soap titration method:

Hardness is estimated by adding a soap solution of known strength to a sample water solution until a permanent lather is formed after shaking

$$2 C_{17}H_{35}COONa + Ca(HCO_3)_2 \longrightarrow (C_{17}H_{35}COO)_2Ca \downarrow + 2 NaHCO_3$$

$$2 C_{17}H_{35}COONa + MgCl_2 \longrightarrow (C_{17}H_{35}COO)_2Mg \downarrow + 2 NaCl$$

$$2 C_{17}H_{35}COONa + CaSO_4 \longrightarrow (C_{17}H_{35}COO)_2Ca \downarrow + Na_2SO_4$$

Estimation of hardness of water: EDTA method

Vellore Institute of Technology
(Deemed to be University under section 3 of UGC Act, 1956

- Water hardness can be readily determined by complexometric titration with the chelating agent EDTA
- EDTA is <u>ethylene diamine tetraacetic acid</u>.
- **EDTA** solution is colorless
- Corresponding disodium salt is used for the hardness estimation, as this slat forms very strong and stable complex with Ca²⁺ and Mg²⁺.
 - Initially, Ca²⁺ and Mg²⁺ or the are treated with Eriochrome black T (EBT) indicator using ammonia buffer (to maintain pH between 9-10) to get an unstable Ca²⁺/Mg²⁺ complex which imparts wine-red colour to the solution

HO

