

4b.

Piezoodporové senzory tlaku

Přednášející: prof. Ing. Miroslav Husák, CSc.

husak@fel.cvut.cz,

http://micro.feld.cvut.cz

tel.: 2 2435 2267

Cvičící: Ing. Adam Bouřa, Ph.D.

Ing. Alexandr Laposa, Ph.D.

Ing. Tomáš Teplý

Jednotky tlaku a převody

	bar	PSI	Pa	kPa	inch H₂O	cm H ₂ O	mmHg
bar	1	14.504	10 ⁵	100	401.47	1019.73	750.06
PSI	0.06895	1	6894.7	6.8947	27.68	70.308	51.715
Pa	10⁵	145.04 x10 ⁻⁶	1	10 ⁻³	4.0147 x10 ⁻³	10.197 x10 ⁻³	7.5006 x10 ⁻³
kPa	0.01	0.14504	1000	1	4.0147	10.197	7.5006
inch H₂O	2.491 x10 ⁻³	0.03613	249.1	0.2491	1	2.54	1.8683
cm H ₂ O	980.6 x10 ⁻⁶	14.22 x10 ⁻³	98.06	98.06 x10 ⁻³	0.3937	1	0.7355
mm Hg	1.3332 x10°	0.01934	133.2	0.1332	0.53525	1.3595	1

Senzory tlaku – rozdělení

- Absolutní tlak působí na jednu stranu membrány, na druhou referenční tlak (vakuum)
- Diferenciální tlaky působí na obě strany membrány, měří se rozdíl tlaků
- Manometrické diferenciální, referenční tlak je atmosférický tlak

? Nakreslete princip činnosti tlakového senzoru pro měření absolutního tlaku a senzoru pro měření diferenciálního tlaku.

Senzory tlaku – v pouzdře

Silicone Gel Die Coat Die Metal Cover Epoxy
Case

Absolute Element Die Bond

Absolutní

Senzory tlaku polovodičové – rozdělení

Piezoodporové senzory tlaku - uspořádání

Piezoodporové senzory tlaku – uspořádání

Membrána - mechanické namáhání, uspořádání tenzometrů

Piezoodporové senzory tlaku – uspořádání

? Nakreslete základní uspořádání piezoelektrického tlakového senzoru se 4 piezoodporovými tenzometry na membráně.

Nakreslete obvodové zapojení s můstkem pro vyhodnocování signálu ze 4 piezoodporů tlakového senzoru.

Zkou ška

Uspořádání piezoodporů (tenzometrů) na membráně

Příklad layout tlakového senzoru

Uspořádání piezoodporů (tenzometrů) na membráně

Integrované piezoodporové senzory tlaku

Integrovaný jednočipový (monolitický)

Hybridní struktura (lepený)

Zpracování signálu z piezoodporů, teplotní kompenzace

Základní zapojení můstku

Typická teplotní závislost piezoodporů (pouze pro informaci) Rakreslete zjednodušené elektronické obvodové zapojení s můstkem pro vyhodnocování signálu z piezoodporů tlakového senzoru. Do zapojení nakreslete princip jednoduché teplotní kompenzace s termistorem.

Relativní odporová změna poly-Si odporů jako funkce teploty (Si dotovaný B) Obvod pro teplotní kompenzaci

Teplotní závislosti a) offset, b) relativní citlivost

Externí obvod pro vyvážení můstku

- Externí součástková síť nulování, rekalibrace, nulování ofsetu.
- Vytvoření plně kompenzovaného senzoru je dosti obtížné vyžaduje zkušenost, podrobné znalosti systému.

Diferenciální tlakové měření – 2 tlakové senzory

- R1 nastavuje vyvážení bez přítomnosti tlaku
- R2 nulový výstupní signál při max. tlaku na obou senzorech současně
- Výstup 50 mV na plnou diferenciální výchylku, obousměrná činnost

Chybové pásmo - nekompenzovaný a kompenzovaný senzor

PGA309 - Integrovaný vyhodnocovací obvod pro můstky

SP100 je integrovaný MEMS tlakový senzor určený pro měření tlaku vzduchu. Senzor má digitální rozhraní navržené pro použití v mikrokontrolérových aplikacích. SP100 nevyžaduje žádné externí komponenty.

MS5611-01BA je tlakový senzor pro měření barometrického tlaku s vysokým rozlišením s SPI a I²C sběrnicí, je určený pro výškoměry a variometry s výškovým rozlišením 10 cm.

Senzory tlaku

 Měření krevního tlaku pomocí piezoodporových a kapacitních senzorů

Obr. 1. Absolutní tlakový senzor MS7801 v nerezovém pouzdře a detail čipu, zapojení Wheatstoneov:

[1] http://www.lekarna.cz/tonometr-digitalnitensoval-duo-control-ii-large/

Obr. 4. Přípravek s piezorezistivním a kapacitním tlakovým senzorem

Pouzdra

BASIC ELEMENT CASE 344-15 SUFFIX A/D

GAUGE PORT CASE 344B-01 SUFFIX AP/GP

DUAL PORT CASE 344C-01 SUFFIX DP

MEDICAL CHIP PAK CASE 423A-03

STOVEPI CASE 3 SUFFIX

BASIC ELEMENT CASE 867-08 SUFFIX A/D

GAUGE PORT CASE 867B-04 SUFFIX AP/GP

DUAL PORT CASE 867C-05 SUFFIX DP

AXIAL PORT CASE 867F-03 SUFFIX ASX/GSX

SUFFIX AS/GS

CASE 1352-01

SMALL OUTLINE (SURFACE MOUNT) * CASE 482-01

SMALL OUTLINE (PORTED/SURFACE MOUNT) ** CASE 482A-01

SMALL OUTLINE (DIP) * CASE 482B-03

SMALL OUTLINE (PORTED/DIP) * CASE 482C-03

SUPER SMALL OUTLINE PACKAGE CASE 1317-03

PACKAG CASE 1317/

sterred packaging options

Aplikace

piezoodporových tlakových senzorů

Aplikace piezoodporových tlakových senzorů

Příklad 2 - integrovaný tlakový senzor MPX 4115A

Řada MPX4115A je navržena pro snímání absolutního tlaku vzduchu v aplikacích výškoměru nebo barometru. Senzor integruje obvody na čipu, bipolární operační zesilovač a sítě rezistorů pro analogový výstupní signál a teplotní kompenzaci.

Doporučené zapojení – napájení a výstupní filtr

Aplikace:

- Výškoměr
- Barometr
- Letecké výškoměry
- Průmyslové ovládací prvky
- Řízení motoru
- Meteorologické stanice a zařízení pro hlášení počasí

Parametry

- Rozsah tlaků: 15 až 115 kPa (2,2 až 16,7 psi)
- Výstup: 0,2 až 4,8 V
- Maximální chyba v rozsahu 0° až 85°C: 1,5 %
- Ideální pro mikroprocesorové rozhraní nebo systémy založené na mikrokontrolérech
- Teplotní kompenzace: rozmezí teplot -40°C až +125°C

Aplikace piezoodporových tlakových senzorů

Příklad:

Elektronický barometr s MPXS4100A (Motorola)

945 hPa = nulový signál (diody nesvítí) nastavení pomocí P2, R3, R4

Aplikace piezoodporových tlakových senzorů

Příklad 4 – Tlakem řízený "odpor" s MPX700 (Motorola)

Aplikace tlakových senzorů

Firemní stránky:

www.honeywell.com

www.infineon.com

e-www.motorola.com

www.sensortechnics.com

www.si-micro.com

В.		_		_	-
	ro	а	u	С	15

Amplifiers amplifier.ti.com

Data Converters dataconverter.ti.com

dsp.ti.com

logic.ti.com

DSP

Interface interface.ti.com

Logic

Power Mgmt power.ti.com

Microcontrollers microcontroller.ti.com

Applications

Audio www.ti.com/audio

Automotive www.ti.com/automotive

Broadband www.ti.com/broadband

Digital Control www.ti.com/digitalcontrol

Military www.ti.com/military

Optical Networking www.ti.com/opticalnetwork

Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Zkouškové otázky

- 1. Nakreslete princip činnosti tlakového senzoru pro měření absolutního tlaku a senzoru pro měření diferenciálního tlaku.
- 2. Napište alespoň 3 základní typy polovodičových tlakových senzorů
- 3. Nakreslete základní uspořádání piezoelektrického tlakového senzoru se 4 piezoodporovými tenzometry na membráně.
- 4. Nakreslete obvodové zapojení s můstkem pro vyhodnocování signálu ze 4 piezoodporů tlakového senzoru
- 5. Nakreslete zjednodušené elektronické obvodové zapojení s můstkem pro vyhodnocování signálu z piezoodporů tlakového senzoru. Do zapojení nakreslete princip jednoduché teplotní kompenzace s termistorem.

