Chapter 6 Nonparametric Techniques

Introduction

- The assumed parametric form may not fit the ground-truth density encountered in practice
- $p\left(\mathbf{x}\mid\omega_{j}\right)$ doesn't have parametric form

Two methods

- Parzen Windows
- K-nearest-neighbor

Density Estimation

- Feature space: $\mathcal{F} = \mathbf{R}^d$
- Feature vector: $\mathbf{x} \in \mathcal{F}$
- pdf function: $\mathbf{x} \sim p(\cdot)$
- The probability of a vector ${\bf x}$ falling into a region ${\cal R}\subset {\cal F}$: P

$$P = ext{Pr}[\mathbf{x} \in \mathcal{R}] = \int_{\mathcal{R}} p\left(\mathbf{x}'
ight) d\mathbf{x}' \simeq p(\mathbf{x}) \int_{\mathcal{R}} 1 d\mathbf{x}'
onumber \ P \simeq p(\mathbf{x}) V$$

• the number of examples falling into \mathcal{R} : X

$$X \sim \mathcal{B}(n,P)$$
 $P = rac{\mathcal{E}[X]}{r}$

• from above we get

$$p(\mathbf{x}) = rac{\mathcal{E}[X]/n}{V} = rac{k/n}{V}$$

where we have Let k to be the actual value of X after observing the i.i.d. training examples $\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n\}$

• To show the explicit relationships with n:

$$p_n(\mathbf{x}) = rac{k_n/n}{V_n}$$

where

- $\circ V_n:$ volume of \mathcal{R}_n
- \circ n: # training examples
- $\circ \;\; k_n:$ training examples falling within \mathcal{R}_n
- ullet Fix V_n and determine $k_n \, o \,$ Parzen Windows
- ullet Fix k_n and determine $V_n
 ightarrow$ k-nearest-neighbor

Parzen Windows

$$p_n(\mathbf{x}) = rac{k_n/n}{V_n}$$

• Fix V_n , and then determine k_n

Window function

- Assume \mathcal{R}_n is a d -dimensional hypercube (超立方体)
- The length of each edge is h_n
- $V_n = h_n^d$

$$arphi(\mathbf{u}) = \left\{egin{array}{ll} 1 & |u_j| \leq 1/2; & j=1,\ldots,d \ 0 & ext{otherwise} \end{array}
ight.$$

 $arphi(\mathbf{u})$ defines a unit hypercube **centered at the origin**

so we have

$$\varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) = 1$$

which means \mathbf{x}_i falls within the hypercube of volume V_n centered at \mathbf{x}

then

$$k_n = \sum_{i=1}^n arphi\left(rac{\mathbf{x} - \mathbf{x}_i}{h_n}
ight)$$

so we have $p_n(x)$, an average of functions of ${\bf x}$ and ${\bf x_i}$

$$p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

Note that $\varphi(\cdot)$ is not limited to be the hypercube window function, it could be **any pdf function**

let

$$\delta_n(\mathbf{x}) = rac{1}{V_n} arphi\left(rac{\mathbf{x}}{h_n}
ight)$$

then

$$p_n(\mathbf{x}) = rac{1}{n} \sum_{i=1}^n \delta_n \left(\mathbf{x} - \mathbf{x}_i
ight)$$

here

- $p_n(\mathbf{x})$: superposition (叠加) of n interpolations (插值)
- \mathbf{x}_i : contributes to $p_n(\mathbf{x})$ based on its "distance" from \mathbf{x} (i.e. " $\mathbf{x} \mathbf{x}_i$ ")

The effect of h_n (window width)

$$\delta_n(\mathbf{x}) = rac{1}{V_n} arphi\left(rac{\mathbf{x}}{h_n}
ight) = rac{1}{h_n^d} arphi\left(rac{\mathbf{x}}{h_n}
ight)$$

here

- $\frac{1}{h_n^d}$ Affects the amplitude (vertical scale, 幅度) $\frac{\mathbf{x}}{h_n}$ Affects the width (horizontal scale, 宽度)

- ullet h_n very large $o \delta_n(\mathbf{x})$ being broad with small amplitude
- ullet h_n very small $o \delta_n(\mathbf{x})$ being sharp with large amplitude
- A compromised value (折衷値) of h_n should be sought for limited number of training examples

The shape of $p_n(x)$ with decreasing values of h_n

k_n -Nearest-Neighbor

Fix k_n , and then determine V_n

$$p_n(\mathbf{x}) = rac{k_n/n}{V_n}$$

Step

- specify k_n
- ullet center a cell about ${f x}$
- grow the cell until
 - o the cell can be any shape: e.g. hypercube/sphere
- ullet capturing k_n nearest examples
- return cell volume as V_n

The principled rule to specify \boldsymbol{k}_n

A rule-of-thumb choice for k_n :

$$k_n = \sqrt{n}$$

Eight points in one dimension (n=8, d=1)

red curve: $k_n=3$

black curve: $k_n=5$

Thirty-one points in two dimensions (n=31, d=2)

black surface: $k_n=5$

Note that they may not be normalized!

Nearest Neighbor Rule

Nearest-Neighbor (NN) Rule

- Given the label space $\Omega=\{\omega_1,\omega_2,\ldots,\omega_c\}$ and a set of n labeled training examples $\mathcal{D}^n=\{(\mathbf{x}_i,\theta_i)\mid 1\leq i\leq n\}$, where $\mathbf{x}_i\in\mathbf{R}^d$ and $\theta_i\in\Omega$
- for test example \mathbf{x} , identify $\mathbf{x}' = \operatorname{argmin}_{\mathbf{x}_i \in \{\mathbf{x}_1, \dots, \mathbf{x}_n\}} D(\mathbf{x}_i, \mathbf{x})$ and then assign the label θ' associated with \mathbf{x}' to \mathbf{x}
- $D(\mathbf{a},\mathbf{b})$: distance metric between two vectors \mathbf{a} and \mathbf{b} , e.g. the Euclidean distance

Voronoi tessellation

- ullet Each training example x leads to a cell in the Voronoi tessellation
- any point in the cell is closer to **x** than to any other training examples
- partition the feature space into n cells
- any point in the cell shares the same class label as x

Error bounds of nearest neighbor rule

$$P^*(e) \leq P(e) \leq P^*(e) \left(2 - rac{c}{c-1}P^*(e)
ight)$$

where

- c: the number of class labels
- $P(e \mid \mathbf{x})$: The probability of making an erroneous classification on \mathbf{x} based on nearest-neighbor rule
- P(e) : The **average probability of error** based on nearest-neighbor rule: $P(e) = \int P(e \mid \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$
- $P^*(e \mid \mathbf{x})$: The **minimum** possible value of $P(e \mid \mathbf{x})$, i.e. the one given by Bayesian decision rule:

$$P^*(e \mid \mathbf{x}) = 1 - \max_{1 < i < c} P\left(\omega_i \mid \mathbf{x}
ight)$$

ullet $P^*(e)$: The Bayes risk (under zero-one loss): $P^*(e) = \int P^*(e \mid \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$

k-Nearest-Neighbor (kNN) Rule

- Given the label space $\Omega=\{\omega_1,\omega_2,\ldots,\omega_c\}$ and a set of n labeled training examples $\mathcal{D}^n=\{(\mathbf{x}_i,\theta_i)\mid 1\leq i\leq n\}$, where $\mathbf{x}_i\in\mathbf{R}^d$ and $\theta_i\in\Omega$
- for test example \mathbf{x} , identify $S'=\{\mathbf{x}_i\mid \mathbf{x}_i \text{ is among the }k\mathrm{NN}\text{ of }\mathbf{x}\}$ and then **assign the most frequent label** w.r.t. S', i.e. $\arg\max_{\pmb{\omega}_i\in\Omega}\sum_{\mathbf{x}_i\in S'}1_{\theta_i=\omega_i}$ to \mathbf{x}

- ullet $1_\pi:$ an indicator function which returns 1 if predicate π holds, and 0 otherwise
- ullet For binary classification problem (c=2), an odd value of ${f k}$ is generally used to avoid ties

Computational Complexity

- Pre-structuring:
 - create some form of search tree, where nearest neighbors are recursively identified following the tree structure
- Editing/Pruning/Condensing:
 - eliminate "redundant" ("useless") examples from the training set
 - e.g. example surrounded by training examples of the same class label

Distance Metric

Four properties

- non-negativity: $D(\mathbf{a}, \mathbf{b}) \geq 0$
- reflexivity: $D(\mathbf{a}, \mathbf{b}) = 0$ if and only if $\mathbf{a} = \mathbf{b}$
- symmetry: $D(\mathbf{a}, \mathbf{b}) = D(\mathbf{b}, \mathbf{a})$
- triangle inequality: $D(\mathbf{a}, \mathbf{b}) + D(\mathbf{b}, \mathbf{c}) \geq D(\mathbf{a}, \mathbf{c})$

About Euclidean distance

Problem

Scaling the features ightarrow change the distance relationship

Solution

normalize each feature into equal-sized intervals, e.g. [0,1]

Types

 L_k norm

$$L_k(\mathbf{a},\mathbf{b}) = \left(\sum_{j=1}^d \left|a_j - b_j
ight|^k
ight)^{rac{1}{k}} \quad (k>0)$$

- k=2: Euclidean distance
- k=1: Manhattan distance (city block distance),

$$L_1(\mathbf{a},\mathbf{b}) = \sum_{j=1}^d |a_j - b_j|$$

• $k=\infty:L_\infty$ distance

$$L_{\infty}(\mathbf{a},\mathbf{b}) = \max_{1 \leq i \leq d} |a_j - b_j|$$

Tanimoto distance

$$egin{aligned} D_{ ext{Tanimoto}} \; \left(S_1, S_2
ight) &= rac{n_1 + n_2 - 2n_{12}}{n_1 + n_2 - n_{12}} \ \left(n_1 = \left| S_1
ight|, n_2 = \left| S_2
ight|, n_{12} = \left| S_1 \cap S_2
ight|
ight) \end{aligned}$$

Example: treat each word as a set of characters

Which word out of 'cat', 'pots' and 'patches' mostly resembles 'pat'?

cat

$$S_{1} = \{p, a, t\}$$

$$D_{Tanimoto}(S_{1}, S_{2}) = \frac{3+3-2*2}{3+3-2} = 0.5$$

$$S_{2} = \{c, a, t\}$$

$$S_{3} = \{p, o, t, s\}$$

$$D_{Tanimoto}(S_{1}, S_{3}) = \frac{3+4-2*2}{3+4-2} = 0.6$$

$$D_{Tanimoto}(S_{1}, S_{3}) = \frac{3+7-2*3}{3+7-3} = 0.571$$

Hausdorff distance

$$D_{H}\left(S_{1},S_{2}
ight)=\max\left(\max_{\mathbf{s}_{1}\in S_{1}\mathbf{s}_{2}\in S_{2}}\min_{D}\left(\mathbf{s}_{1},\mathbf{s}_{2}
ight),\max_{\mathbf{s}_{2}\in S_{2}}\min_{\mathbf{s}_{1}\in S_{1}}D\left(\mathbf{s}_{2},\mathbf{s}_{1}
ight)
ight)$$

where $D\left(\mathbf{s}_{1},\mathbf{s}_{2}\right)$ is any distance metric between \mathbf{s}_{1} and \mathbf{s}_{2}

e.g. Hausdorff distance between two sets of feature vectors

$$S_1 = \left\{ (0.1, 0.2)^t, \, (0.3, 0.8)^t
ight\} \quad S_2 = \left\{ (0.5, 0.5)^t, (0.7, 0.3)^t
ight\}$$

$$\begin{aligned} D_H\left(S_1, S_2\right) &= \max(\max(0.5, 0.36), \max(0.36, 0.61)) \\ &= \max(0.5, 0.61) \\ &= 0.61 \end{aligned}$$

