

Arbore = graf neorientat conex și aciclic

- Arbore = graf neorientat conex și aciclic
 - > Arbori filogenetici ilustrează evoluții
 - Arbori de dependențe, de joc
 - Probleme de rutare
 - Arbori aleatorii
 - Arbori economici (cu costul minim)
 - Structuri de date...

Leme

 Orice arbore T cu n>1 are cel puţin două vârfuri terminale (de grad 1)

Leme

 Orice arbore T cu n>1 are cel puţin două vârfuri terminale (de grad 1)

Fie P un lanț elementar maxim în T

Leme

 Orice arbore T cu n>1 are cel puţin două vârfuri terminale (de grad 1)

Fie P un lanț elementar maxim în T

Extremitățile lui P sunt vârfuri terminale, altfel:

Leme

Orice arbore T cu n>1 are cel puţin două vârfuri terminale
 (de grad 1)

Fie P un lanț elementar maxim în T

Extremitățile lui P sunt vârfuri terminale, altfel:

- putem extinde lanțul cu o muchie

sau

Leme

 Orice arbore T cu n>1 are cel puţin două vârfuri terminale (de grad 1)

Fie P un lanț elementar maxim în T

Extremitățile lui P sunt vârfuri terminale, altfel:

- putem extinde lanțul cu o muchie

sau

- se închide un ciclu în T

Leme

2. Fie T un arbore cu n>1 vârfuri și v un vârf terminal în T. Atunci T – v este arbore.

Leme

2. Fie T un arbore cu n>1 vârfuri și v un vârf terminal în T. Atunci T – v este arbore.

Rezultă din definiția conexității + un vârf terminal nu poate fi vârf intern al unui lanț elementar

3. Un arbore cu n vârfuri are n−1 muchii.

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n Verificare - n=1

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n

• Fie T este un arbore cu n vârfuri. Fie v vârf terminal în T (∃, Lema 1)

3. Un arbore cu n vârfuri are n-1 muchii.

Inducție după n

- Fie T este un arbore cu n vârfuri. Fie v vârf terminal în T (∃, Lema 1)
- => **T v** este arbore cu n-1 vârfuri (Lema 2)
- Aplicăm ipoteza de inducție pentru T-v

3. Un arbore cu n vârfuri are n-1 muchii.

$$\Rightarrow$$
 |E(T-v)| = |V(T-v)|-1 = (n-1)-1 = n-2

$$\Rightarrow$$
 |E(T)|= |E(T-v)| + 1 = n-1

Leme

4. Fie G un graf neorientat conex și C un ciclu in G.

Fie $e \in E(C)$ o muchie din ciclul C.

Atunci G-e este tot un graf conex.

Leme

4. Fie G un graf neorientat conex și C un ciclu in G.

Fie $e \in E(C)$ o muchie din ciclul C.

Atunci G-e este tot un graf conex.

Rezultă din definiția conexității + observația:

Leme

4. Fie G un graf neorientat conex și C un ciclu in G.

Fie $e \in E(C)$ o muchie din ciclul C.

Atunci G-e este tot un graf conex.

Rezultă din definiția conexității + observația:

dintr-un x-y lanţ în G care conţine muchia e se poate
 obţine un x-y lanţ în G-e înlocuind muchia e cu lanţul C-e.

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri. Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2.
- 3.
- 4
- 5
- 6.

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri.

Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal

3.

4

5

6.

prin eliminarea unei muchii din T se obține un graf care nu mai este conex

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri.

Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal
- 3. T este aciclic muchie-maximal
- 4
- 5
- 6.

prin eliminarea unei muchii din T se obține un graf care nu mai este conex

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri. Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal
- 3. T este aciclic muchie-maximal
- 4. T este conex și are n−1 muchii
- 5. T este aciclic și are n-1 muchii
- 6.

Definiții echivalente

Fie T un graf neorientat cu n>1 vârfuri.

Următoarele afirmații sunt echivalente.

- 1. T este arbore (conex și aciclic)
- 2. T este conex muchie-minimal
- T este aciclic muchie-maximal
- 4. T este conex și are n-1 muchii
- 5. T este aciclic și are n-1 muchii
- 6. Între oricare două vârfuri din T există un unic lanț elementar.

Demonstrații echivalențe - Temă (seminar)

Arbori parțiali ai unui graf

- "Scheletul" grafului
- Transmiterea de mesaje în rețea astfel încât mesajul să ajungă o singură dată în fiecare vârf
- Conectare fără redundanță + cu cost minim

Aplicații

- Determinarea unui arbore parțial al unui graf conex
- Pransmiterea unui mesaj în rețea: Între participanții la un curs s-au legat relații de prietenie și comunică și în afara cursului. Profesorul vrea să transmită un mesaj participanților și știe ce relații de prietenie s-au stabilit între ei. El vrea să contacteze cât mai puțini participanți, urmând ca aceștia să transmită mesajul între ei. Ajutați-l pe profesor să decidă cui trebuie să transmită inițial mesajul și să atașeze la mesaj o listă în care să arate fiecărui participant către ce prieteni trebuie să trimită mai departe mesajul, astfel încât mesajul să ajungă la fiecare participant la curs o singură dată.

relații de prietenie/comunicare

traseu de transmitere a unui mesaj

relații de prietenie/comunicare

traseu de transmitere a unui mesaj

Proprietate

Orice graf neorientat conex conține un arbore parțial (un graf parțial care este arbore).

Proprietate

Orice graf neorientat conex conține un arbore parțial

Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)

Proprietate

Orice graf neorientat conex conține un arbore parțial

Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)
$T \leftarrow (V, \varnothing)$	

Proprietate

Orice graf neorientat conex conține un arbore parțial

Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)
$T \leftarrow (V, \varnothing)$	
cat timp T nu este conex executa	
 alege e∈E(G) – E(T) care unește două componente conexe din T (nu formează cicluri cu muchiile din T) 	
• $E(T) \leftarrow E(T) \cup \{e\}$	
returneaza T	

Proprietate

Orice graf neorientat conex conține un arbore parțial

Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)
$T \leftarrow (V, \varnothing)$	
cat timp T nu este conex executa	
 alege e∈E(G) – E(T) care unește două componente conexe din T (nu formează cicluri cu muchiile din T) 	
• $E(T) \leftarrow E(T) \cup \{e\}$	
returneaza T	
În final T este conex și aciclic, deci arbore	

Proprietate

Orice graf neorientat conex conține un arbore parțial

Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)
$T \leftarrow (V, \varnothing)$	$T \leftarrow (V, E)$
cat timp T nu este conex executa	cat timp T conține cicluri executa
 alege e∈E(G) – E(T) care unește două componente conexe din T (nu formează cicluri cu muchiile din T) E(T) ← E(T) ∪ {e} returneaza T 	 alege e∈E(T) o muchie dintr-un ciclu E(T) ← E(T) - {e} returneaza T
În final T este conex și aciclic, deci arbore	

Proprietate

Orice graf neorientat conex conține un arbore parțial

Prin adăugare de muchii (bottom - up)	Prin eliminare de muchii (cut -down)
$T \leftarrow (V, \varnothing)$	T ← (V, E)
cat timp T nu este conex executa	cat timp T conține cicluri executa
 alege e∈E(G) – E(T) care unește două componente conexe din T (nu formează cicluri cu muchiile din T) E(T) ← E(T) ∪ {e} 	 alege e∈E(T) o muchie dintr-un ciclu E(T) ← E(T) - {e}
returneaza T	returneaza T
În final T este conex și aciclic, deci arbore	În final T este aciclic și conex (s-au eliminat doar muchii din ciclu), deci arbore

Algoritmi de determinare a unui arbore parțial al unui graf conex

Algoritmi de determinare a unui arbore parțial al unui graf conex

Complexitate algoritm?

arborele asociat unei parcurgeri este arbore parțial ⇒ determinăm un arbore parțial printr-o <u>parcurgere</u>