```
from sklearn.cluster import KMeans
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
```

df = pd.read_csv("/content/income.csv")
df.head()

₹		Name	Age	Income(\$)	
	0	Rob	27	70000	ıl.
	1	Michael	29	90000	
	2	Mohan	29	61000	
	3	Ismail	28	60000	
	4	Kory	42	150000	

```
plt.scatter(df.Age,df['Income($)'])
plt.xlabel('Age')
plt.ylabel('Income($)')
```



```
km = KMeans(n_clusters=3)
y_predicted = km.fit_predict(df[['Age','Income($)']])
y_predicted
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change frow warnings.warn(
array([2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1],
dtype=int32)

df['cluster']=y_predicted
df.head()

	Name	Age	<pre>Income(\$)</pre>	cluster	\blacksquare
0	Rob	27	70000	2	ılı
1	Michael	29	90000	2	
2	Mohan	29	61000	1	
3	Ismail	28	60000	1	
4	Kory	42	150000	0	
	1 2 3	0 Rob1 Michael2 Mohan3 Ismail	Rob 27Michael 29Mohan 29Ismail 28	0 Rob 27 70000 1 Michael 29 90000 2 Mohan 29 61000 3 Ismail 28 60000	0 Rob 27 70000 2 1 Michael 29 90000 2 2 Mohan 29 61000 1 3 Ismail 28 60000 1

```
6/2/24, 12:10 PM
                                                              k_means_cluster_LAB_AND_CLASS.ipynb - Colab
    km.cluster_centers_
    ⇒ array([[3.82857143e+01, 1.50000000e+05],
                [3.29090909e+01, 5.61363636e+04],
                [3.4000000e+01, 8.05000000e+04]])
    df1 = df[df.cluster==0]
    df2 = df[df.cluster==1]
    df3 = df[df.cluster==2]
    plt.scatter(df1.Age,df1['Income($)'],color='green')
    plt.scatter(df2.Age,df2['Income($)'],color='red')
    plt.scatter(df3.Age,df3['Income($)'],color='black')
    \verb|plt.scatter| (km.cluster_centers_[:,0], km.cluster_centers_[:,1], color='purple', marker='*', label='centroid')|
    plt.xlabel('Age')
    plt.ylabel('Income ($)')
    plt.legend()
    <matplotlib.legend.Legend at 0x7c5f3f4094b0>
                            centroid
             160000
             140000
             120000
             100000
              80000
              60000
              40000
                            27.5
                                                                37.5
                                                                                   42.5
                                     30.0
                                              32.5
                                                       35.0
                                                                         40.0
                                                      Age
    scaler = MinMaxScaler()
    scaler.fit(df[['Income($)']])
    df['Income($)'] = scaler.transform(df[['Income($)']])
    scaler.fit(df[['Age']])
    df['Age'] = scaler.transform(df[['Age']])
    df.head()
    \overline{\mathbf{x}}
                          Age
                               Income($) cluster
                                                     \blacksquare
          0
                Rob 0.058824
                                0.213675
                                                      ılı.
          1 Michael 0.176471
                                0.384615
                                                 2
              Mohan 0.176471
                                 0.136752
                                                 1
              Ismail 0.117647
                                 0.128205
          3
                                                 1
                    0.941176
                                0.897436
                                                 0
               Kory
```

```
plt.scatter(df.Age,df['Income($)'])
```

View recommended plots

Next steps:

```
<matplotlib.collections.PathCollection at 0x7c5f3f4a2710>
     1.0
```

```
0.8
0.6
0.4
0.2
0.0
       0.0
                     0.2
                                    0.4
                                                  0.6
                                                                 0.8
                                                                               1.0
```

```
km = KMeans(n_clusters=3)
y_predicted = km.fit_predict(df[['Age','Income($)']])
y_predicted
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from
   warnings.warn(
 \mathsf{array}([1,\ 1,\ 1,\ 1,\ 2,\ 2,\ 2,\ 2,\ 2,\ 2,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0],
       dtype=int32)
```

df['cluster']=y_predicted df.head()

4

Next steps: View recommended plots

array([[0.85294118, 0.2022792],

```
km.cluster_centers_
```

```
[0.1372549 , 0.11633428],
[0.72268908, 0.8974359 ]])
df1 = df[df.cluster==0]
df2 = df[df.cluster==1]
df3 = df[df.cluster==2]
plt.scatter(df1.Age,df1['Income($)'],color='green')
plt.scatter(df2.Age,df2['Income($)'],color='red')
plt.scatter(df3.Age,df3['Income($)'],color='black')
\verb|plt.scatter| (km.cluster_centers_[:,0], km.cluster_centers_[:,1], color='purple', marker='*', label='centroid')|
plt.legend()
```


Elbow Plot

```
sse = []
k_rng = range(1,10)
for k in k_rng:
    km = KMeans(n_clusters=k)
    km.fit(df[['Age','Income($)']])
    sse.append(km.inertia_)
```

Show hidden output

plt.xlabel('K')
plt.ylabel('Sum of squared error')
plt.plot(k_rng,sse)

[<matplotlib.lines.Line2D at 0x7c5f3f247be0>]

