CS 4341 Introduction to Artificial Intelligence C-Term 2018

Reinforcement Learning

Adapted from slides by Peter Bodik at UC Berkeley

Ahmedul Kabir

Overview

- Examples
- Defining an RL problem
 - Markov Decision Processes

- Solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning

Robot in a room

actions: UP, DOWN, LEFT, RIGHT

WP
80% move UP
10% move LEFT
10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?
- what if the actions were deterministic?

Other examples

- pole-balancing
- TD-Gammon [Gerry Tesauro]
- helicopter [Andrew Ng]
- no teacher who would say "good" or "bad"
 - is reward "10" good or bad?
 - rewards could be delayed
- explore the environment and learn from experience
 - not just blind search, try to be smart about it

Resource allocation in datacenters

- A Hybrid Reinforcement Learning Approach to Autonomic Resource Allocation
 - Tesauro, Jong, Das, Bennani (IBM)
 - ICAC 2006

Outline

- Examples
- Defining an RL problem
 - Markov Decision Processes

- Solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning

Robot in a room

		+1
		-1
START		

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP 10% move LEFT 10% move RIGHT ◀

reward +1 at [4,3], -1 at [4,2] reward -0.04 for each step

- states
- actions
- rewards

what is the solution?

Is this a solution?

- only if actions deterministic
 - not in this case (actions are stochastic)
- solution/policy
 - mapping from each state to an action

Optimal policy

Reward for each step: -2

Reward for each step: -0.1

Reward for each step: -0.04

Reward for each step: -0.01

Reward for each step: +0.01

Markov Decision Process (MDP)

- set of states S, set of actions A, initial state S_0
- transition model P(s,a,s')
 - P([1,1], up, [1,2]) = 0.8
- reward function r(s)
 - r([4,3]) = +1

- policy: mapping from S to A
 - $\pi(s)$ or $\pi(s,a)$ (deterministic vs. stochastic)
- reinforcement learning
 - transitions and rewards usually not available
 - how to change the policy based on experience
 - how to explore the environment

Computing return from rewards

- episodic (vs. continuing) tasks
 - "game over" after N steps
 - optimal policy depends on N; harder to analyze

- additive rewards
 - $V(s_0, s_1, ...) = r(s_0) + r(s_1) + r(s_2) + ...$
 - infinite value for continuing tasks

- discounted rewards
 - $V(s_0, s_1, ...) = r(s_0) + \gamma * r(s_1) + \gamma^2 * r(s_2) + ...$
 - value bounded if rewards bounded

Value functions

- state utility function: $U^{\pi}(s)$
 - expected return when starting in s and following π
- state-action value function: $Q^{\pi}(s,a)$
 - expected return when starting in s, performing a, and following π
- useful for finding the optimal policy
 - can estimate from experience
 - pick the best action using $Q^{\pi}(s,a)$

Outline

- examples
- defining an RL problem
 - Markov Decision Processes

- solving an RL problem
 - Dynamic Programming
 - Monte Carlo methods
 - Temporal-Difference learning

Different approaches to RL

- Passive vs Active Learning
- Model-based vs Model-free learning
- Exploration vs Exploitation

Passive vs Active RL

- Passive learning
 - The agent simply watches the world going by and tries to learn the utilities of being in various states
- Active learning
 - The agent not simply watches, but also acts

Model-free vs Model-based RL

Model based approach:

- learn the model, and use it to derive the optimal policy
- e.g Adaptive dynamic programming (ADP)

• Model free approach:

- derive the optimal policy without learning the model.
- e.g Temporal difference approach

Figure 1: Two ways to choose which route to take when traveling home from work on friday evening.

Exploration vs Exploitation

- deterministic/greedy policy won't explore all actions
 - don't know anything about the environment at the beginning
 - need to try all actions to find the optimal one
- maintain exploration
 - use *soft* policies instead: $\pi(s,a) > 0$ (for all s,a)
- ε-greedy policy
 - with probability 1-ε perform the optimal/greedy action
 - with probability ε perform a random action
 - will keep exploring the environment
 - slowly move it towards greedy policy: $\epsilon \rightarrow 0$

Dynamic programming

- main idea
 - use value functions to structure the search for good policies
 - need a perfect model of the environment
- two main components

policy evaluation: compute U^{π} from π policy improvement: improve π based on U^{π}

- start with an arbitrary policy
- repeat evaluation/improvement until convergence

Monte Carlo methods

- don't need full knowledge of environment
 - just experience, or
 - simulated experience
- but similar to DP
 - policy evaluation, policy improvement
- averaging sample returns
 - defined only for episodic tasks

Temporal Difference Learning

- combines ideas from MC and DP
 - like MC: learn directly from experience (don't need a model)
 - like DP: learn from values of successors
 - works for continuous tasks, usually faster than MC
- Examples
 - SARSA, Q-Learning

Summary

- Reinforcement learning
 - use when need to make decisions in uncertain environment
- solution methods
 - dynamic programming
 - need complete model
 - Monte Carlo
 - time-difference learning (Sarsa, Q-learning)
- most work
 - algorithms simple
 - need to design features, state representation, rewards