

Architecture of CNN's

CONVOLUTIONAL NEURAL NETWORKS, ALSO KNOWN AS CNNS, ARE A SPECIFIC TYPE OF NEURAL NETWORKS THAT ARE GENERALLY COMPOSED OF THE FOLLOWING LAYERS:

Convolutional layer (CONV)

THE CONVOLUTION LAYER (CONV) USES FILTERS THAT PERFORM CONVOLUTION OPERATIONS AS IT IS SCANNING THE INPUT I WITH RESPECT TO ITS DIMENSIONS. ITS HYPERPA RAMETERS INCLUDE THE FILTER SIZE F AND STRIDE S. THE RESULTING OUTPUT O IS CALLED FEATURE MAP OR ACTIVATION MAP.

$$z=w*x+b$$

 $a=g(z)$

Trickier cases

Deciding is hard

What computers see

ConvNets match pieces of the image

features

Filtering: The math behind the match

1 -1 -1 -1 1 -1 -1 1

```
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      <td
```


Input

Filtering: The math behind the match

$$\frac{1+1+1+1+1+1+1+1}{9} = 1$$

Convolution: Trying every possible match

```
1 -1 -1
-1 1 -1
-1 1
```

	-1							
	1							
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
	-1							
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

Convolution layer

One image becomes a stack of filtered images

Neural Network Basics

36×36 ×3 = 3882

36×36×3

Filter 2

Filter 1

Filter K

شكراً على حسن المتابعة والاهتمام