Examenul de bacalaureat național 2015

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{32} = 4\sqrt{2}$, $\sqrt{18} = 3\sqrt{2}$	2p
	$4\sqrt{2} - 3\sqrt{2} - \sqrt{2} = 0$	3 p
2.	$f(x) = g(x) \Leftrightarrow x+1 = 4-2x \Leftrightarrow 3x = 3$	3 p
	Coordonatele punctului de intersecție sunt $x=1$ și $y=2$	2p
3.	$5^{5-3x} = 5^2 \Leftrightarrow 5 - 3x = 2$	3 p
	x=1	2 p
4.	Cifra unităților poate fi aleasă în 2 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 5 moduri, deci se pot forma $2.5 = 10$ numere	3 p
5.	AB=3	2p
	$BC = 3 \Rightarrow AB = BC$	3 p
6.	$\sin 30^{\circ} = \frac{1}{2}$, $\sin 45^{\circ} = \frac{\sqrt{2}}{2}$, $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$	3 p
	$\frac{1}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{1}{2} + \frac{1}{2} = 1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$2015 \circ (-1) = 2015 \cdot (-1) + 2015 + (-1) =$	3p
	=-2015+2015-1=-1	2 p
2.	$(x \circ y) \circ z = (xy + x + y) \circ z = xyz + xz + yz + xy + x + y + z$	2 p
	$x \circ (y \circ z) = x \circ (yz + y + z) = xyz + xy + xz + x + yz + y + z = (x \circ y) \circ z$, pentru orice numere reale x , y şi z	3р
3.	$x \circ 0 = x \cdot 0 + x + 0 = x$	2p
	$0 \circ x = 0 \cdot x + 0 + x = x = x \circ 0$, pentru orice număr real x , deci $e = 0$ este element neutru al legii de compoziție " \circ "	3p
4.	$x \circ x = x \cdot x + x + x = x^2 + 2x =$	2p
	$=x^2+2x+1-1=(x+1)^2-1$, pentru orice număr real x	3 p
5.	$x \circ x \circ x \circ x = (x+1)^4 - 1$	2p
	$(x+1)^4 = 1 \Leftrightarrow x_1 = -2 \text{ si } x_2 = 0$	3 p
6.	$x \circ (x+1) - x = x(x+1) + x + x + 1 - x = x^2 + 2x + 1 =$	2p
	$=(x+1)^2 \ge 0$, deci $x \circ (x+1) \ge x$, pentru orice număr real x	3 p

SUBIECTUL al III-lea (30 de puncte)

		1
1.	$A(0) = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 2 \\ 1 & 1 \end{vmatrix} = 0 \cdot 1 - 1 \cdot 2 =$	3p
	=0-2=-2	2p
2.	$\det(A(a)) = \begin{vmatrix} a & 2 \\ 1 & a+1 \end{vmatrix} = a^2 + a - 2$	3p
	$a^2 + a - 2 = 0 \Leftrightarrow a_1 = -2 \text{ si } a_2 = 1$	2p
3.	$A(a) - I_2 = \begin{pmatrix} a - 1 & 2 \\ 1 & a \end{pmatrix} \Rightarrow \det(A(a) - I_2) = a^2 - a - 2$	2p
	$a^2 - a - 2 < 0 \Leftrightarrow a \in (-1, 2)$	3p
4.	$(2a+1)A(a) = \begin{pmatrix} 2a^2 + a & 4a+2\\ 2a+1 & 2a^2 + 3a+1 \end{pmatrix}$	1p
	$A(a) \cdot A(a) = \begin{pmatrix} a^2 + 2 & 4a + 2 \\ 2a + 1 & a^2 + 2a + 3 \end{pmatrix}$	2p
	$(2a+1)A(a)-A(a)\cdot A(a) = \begin{pmatrix} a^2+a-2 & 0 \\ 0 & a^2+a-2 \end{pmatrix} = (a^2+a-2)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (a^2+a-2)I_2,$	2p
	pentru orice număr real a	
5.	$A(2) = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}, \det(A(2)) = 4 \neq 0$	2p
	$(A(2))^{-1} = \begin{pmatrix} \frac{3}{4} & -\frac{1}{2} \\ -\frac{1}{4} & \frac{1}{2} \end{pmatrix}$	3р
6.	$\det(A(m)) \le 1 \Leftrightarrow m^2 + m - 3 \le 0$	2p
	Cum m este număr natural obținem $m = 0$ și $m = 1$	3p