論文輪講

Federated Optimization:

Distributed Machine Learning for On-Device Intelligence

杉浦 圭祐

慶應義塾大学理工学部情報工学科 松谷研究室

May 11, 2019

目次

- 1 問題設定
- ② 基本的な最適化アルゴリズム
- ③ ランダム化された最適化アルゴリズム
- 4 Federated Learning のための最適化アルゴリズム
- 5 最適化アルゴリズムの比較
- 6 結論

目次

問題の定式化

- 問題の定式化
 - 解くべき問題は次のように定式化される

$$\min_{\boldsymbol{w} \in \mathbb{R}^D} f(\boldsymbol{w}), \qquad f(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^N f_i(\boldsymbol{w})$$
 (1)

- ullet 入出力のデータを $\left\{oldsymbol{x}_i,y_i
 ight\}_{i=1}^N$ 、損失関数を $f_i(oldsymbol{w})$ とする
- 具体的には、以下のような問題が考えられる

線形回帰:

$$f_i(\boldsymbol{w}) = \frac{1}{2} (\boldsymbol{x}_i^T \boldsymbol{w} - y_i)^2, \ y_i \in \mathbb{R}$$
 (2)

ロジスティック回帰:

$$f_i(\boldsymbol{w}) = -\log\left(1 + \exp\left(-y_i \boldsymbol{x}_i^T \boldsymbol{w}\right)\right), \ y_i \in \{-1, 1\}$$
 (3)

サポートベクタマシン:

$$f_i(\mathbf{w}) = \max\{0, 1 - y_i \mathbf{x}_i^T \mathbf{w}\}, \ y_i \in \{-1, 1\}$$
 (4)

問題の定式化

- 問題の定式化
 - 上記は凸最適化問題である
 - 線形回帰、ロジスティック回帰、サポートベクタマシンより複雑なモデルにも適用可能
 - ⇒ 条件付き確率場や、ニューラルネットワーク
 - \Rightarrow 損失関数 $f_i(w)$ が非凸で、複雑な形状をしている場合
 - データ数 N が大き過ぎて、単一のノードで学習を進めるのは不可能 \Rightarrow 分散処理が必要 (データが複数の箇所に分散し、複数の相互接続されたノードで学習を行う)
 - ⇒ ノード間での通信時間がボトルネックとなる可能性
 - ⇒ 並列計算の利点を活かすために、モデルの学習を、単一ノードでの計算に適した簡単な問題に分割する必要がある

- 最新 (State-of-the-art) の最適化手法
 - シーケンシャルであるため、並列処理には向かない
 - 各イテレーションでの処理は非常に高速だが、イテレーションの実行を 何度も繰り返す必要がある
 - ⇒ 各イテレーションの実行後に、複数のノード間で通信を行うと、性能 が極端に落ちる
 - ⇒ 各イテレーションの実行時間より、ノード間の通信時間の方が遥か に大きい

- 従来手法における仮定
 - 1 データは各ノードに均等に分散している
 - 2 ノード数 K に比べて、1 つのノードが保持しているデータ数の平均 N/K の方が非常に大きい $(K \ll N/K)$
 - ⇒ 大規模なデータセンタに、データが格納されている想定
 - 3 各ノードが、分布をよく表現するデータを保持している ⇒ 各ノードが、独立同分布 (IID) 標本を持っているという前提
 - ⇒ 実際には、ノードの地理的な位置によって、各ノードが持つデータが、クラスタに分かれている可能性
 - ⇒ 各ノードが持つデータが時間的に変動し、ある時点では他のノード と似たようなデータを保持している可能性
 - ⇒ あるノードに頻繁に現れる特徴が、他のノードでは全く現れない可能性

- 従来手法における仮定
 - 従来手法では、上記3つの仮定が成立する⇒ Federated Learning では、これらの仮定を全く置かない
 - 従来手法では、最初に、デバイス上のデータを中央のノード (データセンタ等) に集める
 - ⇒ 集めたデータをランダムにシャッフルし、複数の計算ノードに均等な数だけ配分して、学習させる
 - Federated Learning では、デバイス上のデータを中央のノードに送信しない
 - ⇒ 各デバイスと中央のノードとの通信量が大幅に削減
 - ⇒ ユーザのプライバシーを保護し、セキュリティを向上させる
 - ⇒ データがデバイス上にしか存在しないので、中央のノードが攻撃されても、ユーザのデータが漏洩する危険性がない (攻撃されそうな箇所の候補が減る)

- Federated Learning での問題設定
 - Federated Learning では、次のような現実的な仮定を置く
 - 1 Massively Distributed: データは、多数のノードに分散 \Rightarrow ノード数 K と、1 つのノードが保持しているデータ数の平均 N/K を比較したとき、 $N/K \ll K$ となる可能性
 - Non-IID: 各ノードが保持するデータは、異なる分布からサンプルされた可能性
 - ⇒ あるノードが保持しているデータは、データ全体の分布を表現しているとは限らない
 - \Rightarrow 各ノードが保持するデータは、独立に同一の分布からサンプルされた (IID) とは、仮定し難い
 - 3 Unbalanced: ノードによって、保持しているデータ数は大きく異なる

- Federated Learning での問題設定
 - 上記に加えて、この論文では次のような仮定を置く

 - データはモバイル端末上に存在し、プライバシー上の配慮が必要 (Privacy Sensitive)
 - \Rightarrow 入出力データ $\{x_i,y_i\}$ はデバイス上で作られる
 - ⇒ 例えば、ユーザが次に入力する単語の予測、ユーザがシェアしそうな 写真の予測、ユーザにとってどの通知が重要かの予測

- 3 多数のデバイスが動作するので、事実上無限の計算能力が得られる ⇒ 但し、各デバイスと中央のノード間の、通信コストによって制限され る (バンド幅の制限)
 - ⇒ デバイスと中央のノード間の通信を、いかに減らせるかが、性能向上のための鍵となる
- 4 差分データ $\delta \in \mathbb{R}^D$ が、モデルの学習に使用する唯一の情報である \Rightarrow 各デバイスは、1 回の Round につき、モデルのパラメータの差分
 - $oldsymbol{\delta} \in \mathbb{R}^D$ を計算 (D は、モデルのパラメータの次元)
 - \Rightarrow 差分 δ が、デバイスから中央のノードにアップロードされる

- ullet Federated Learning で送信される差分データ δ について
 - $\pmb{\delta}$ は、ユーザのプライベートな情報を依然として含むかもしれないが、 訓練データ $\{\pmb{x}_i,y_i\}$ に比べれば無視できるほど小さい
 - ullet モデルのパラメータの差分ベクトル δ のサイズは、訓練データのサイズ には関係ない
 - ⇒ 訓練データが巨大 (例えばユーザが撮影した動画) であっても、データそのものではなく、差分データのみを中央のノードに送信すればよいため、通信量が大幅に削減できる

- 差分ベクトル δ の使途は、元の訓練データ $\{x_i,y_i\}$ に比べて限られる \Rightarrow モデルの訓練以外に、殆ど使い道がない \Rightarrow 各デバイスから送信された差分データは、モデルの訓練に使用した後は、破棄してよい
 - \Rightarrow ユーザにとっては、アップロードしたデータが、モデルの訓練にしか 使われない (想定外の方法で使われない) ことが分かっているので、安心 できる (プライバシーの保護につながる)
 - ⇒ モデルを訓練する側にとっては、ユーザのデータを保存する際の負担が軽減される
 - ⇒ 訓練データであれば、漏洩しないように厳重に管理する必要がある
 - ⇔ 差分データであれば、万が一不正にアクセスされても、ユーザの個人 情報が漏洩することはない

- 論文で提案された訓練アルゴリズムについて
 - Federated Learning のための訓練アルゴリズムを新たに設計した
 ← Massively Distributed、Non-IID、Unbalanced
 - 新たな訓練アルゴリズムによって、比較的少ない Round 数 (通信量) で、 モデルのパラメータを収束させることができた

目次

② 基本的な最適化アルゴリズム

- 解くべき問題は、次のように定式化された
 - ullet D はモデルのパラメータの次元数、N は訓練データ数
 - $oldsymbol{w} \in \mathbb{R}^D$ はパラメータベクトル、 $f_i(oldsymbol{w})$ は損失関数

$$\min_{\boldsymbol{w} \in \mathbb{R}^D} f(\boldsymbol{w}), \qquad f(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} f_i(\boldsymbol{w})$$
 (5)

- ベースラインアルゴリズム
 - 基本的なアルゴリズムとして、以下を紹介する
 - 勾配降下法 (GD; Gradient Descent)
 - 確率的勾配降下法 (SGD; Stochastic Gradient Descent)

- 勾配降下法 (GD; Gradient Descent)
 - パラメータの更新式は次のようになる

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t - h_t \nabla f(\boldsymbol{w}^t) \tag{6}$$

ullet $abla f(oldsymbol{w}^t)$ は次のように定義される

$$\nabla f(\boldsymbol{w}^t) \equiv \frac{\partial}{\partial \boldsymbol{w}} f(\boldsymbol{w}) \bigg|_{\boldsymbol{w} = \boldsymbol{w}^t}$$
 (7)

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial \boldsymbol{w}} f_i(\boldsymbol{w}) \bigg|_{\boldsymbol{w} = \boldsymbol{w}^t}$$
 (8)

$$= \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\boldsymbol{w}^t)$$
 (9)

損失関数 f(w) のパラメータ w による勾配の、 $w=w^t$ における値

• $h_t > 0$ は学習率 (ステップサイズ)

- 勾配降下法 (GD; Gradient Descent) の問題点
 - ullet 勾配 $abla f(oldsymbol{w}^t)$ を求めるためには、N 個の各データについての勾配 $abla f_i(oldsymbol{w}^t)$ を計算する必要がある
 - $\Rightarrow 1$ 回のパラメータ更新のために、全データを処理する必要がある
 - \Rightarrow データ数 N は非常に大きいため、勾配の計算に時間が掛かり過ぎる
 - ⇒ 勾配降下法は、遅すぎて使い物にならない
 - モメンタム項を加えることで、アルゴリズムを高速化できる⇒ 但し、1回のパラメータ更新のために、全データを処理する必要はある
 - ⇒ モメンタム項を加えても、やはり使い物にならない

- 確率的勾配降下法 (SGD; Stochastic Gradient Descent)
 - パラメータの更新式は次のようになる

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t - h_t \nabla f_{i_t}(\boldsymbol{w}^t) \tag{10}$$

• $abla f_{i_t}({m w}^t)$ は次のように定義される

$$\nabla f_{i_t}(\boldsymbol{w}^t) = \left. \frac{\partial}{\partial \boldsymbol{w}} f_{i_t}(\boldsymbol{w}) \right|_{\boldsymbol{w} = \boldsymbol{w}^t}$$
(11)

- ullet i_t は、1 から N の中から適当に選択されたインデックス \Rightarrow 時刻 t では、 i_t 番目のデータ $\{oldsymbol{x}_{i_t}, y_{i_t}\}$ とパラメータ $oldsymbol{w}^t$ を用いて、損失関数 $f_{i_t}(oldsymbol{w}^t)$ を計算
 - \Rightarrow 損失関数の勾配 $abla f_{i_t}(oldsymbol{w}^t)$ を求めて、パラメータ $oldsymbol{w}$ を勾配の方向に 更新

- 確率的勾配降下法 (SGD; Stochastic Gradient Descent)
 - 1 回のパラメータ更新のためには、1 つのデータ点に対する勾配 $\nabla f_{i_t}(\boldsymbol{w}^t)$ だけを求めればよい \Rightarrow 勾配降下法とは異なり、全データを処理する必要がない
 - ullet 1 つのデータ点に対する勾配の期待値は、損失関数 $f(oldsymbol{w})$ の勾配の不偏推定量となっている
 - $\Rightarrow \mathbb{E}\left[
 abla f_{i_t}(oldsymbol{w})
 ight] =
 abla f(oldsymbol{w}^t)$ であり、この手法が正当化される
 - ⇒ 実際には、データ点のサンプリングによって、(真の勾配に対して) ノイズが加わった勾配が得られるため、パラメータの収束が遅くなる
 - \Rightarrow 学習率 $(ステップサイズ)h_t$ の設定が重要になる
 - 勾配の計算に用いるデータ点 i_t を、毎回ランダムに選ぶのではなく、全データをランダムな順で取り出し、その勾配を求めてパラメータを更新していく手法がある

- GD と SGD との比較
 - GD ではパラメータの収束が速い ⇔ SGD は収束が遅い
 - GD では各イテレーションの計算に非常に時間が掛かる \leftarrow 各イテレーションにおいて、全データを処理する必要がある \leftrightarrow SGD では各イテレーションの計算は高速であり、計算時間はデータ 数 N に依存しない
 - 今回解こうとしている問題では、パラメータの精度はそこまで高くなく てもよい
 - \Rightarrow SGD で十分である (極端な場合には、全データを 1 回ずつ処理するだけで、パラメータが収束)
 - \Leftarrow GD の場合は、全データを 1 回ずつ処理して、ようやくパラメータを 1 回更新できる

目次

③ ランダム化された最適化アルゴリズム

- ランダム化された座標降下法 (RCD; Randomized Coordinate Descent)
 - パラメータの更新式は次のようになる

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t - h_{j_t} \nabla_{j_t} f(\boldsymbol{w}^t) \boldsymbol{e}_{j_t}$$
 (12)

- ullet j_t は、1 から D(パラメータの次元数) の中から適当に選択された次元
- $oldsymbol{e} h_{j_t}$ は学習率 (ステップサイズ)、 $oldsymbol{e}_{j_t} \in \mathbb{R}^D$ は次元 j_t 方向の標準基底ベクトル
- 勾配 $\nabla_i f({m w}^t)$ は次のように定義される

$$\nabla_j f(\boldsymbol{w}^t) = \frac{\partial}{\partial w_j} f(\boldsymbol{w}^t)$$
 (13)

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial w_j} f_i(\boldsymbol{w}) \bigg|_{\boldsymbol{w} = \boldsymbol{w}^t}$$
 (14)

$$= \frac{1}{N} \sum_{i=1}^{N} \nabla_{w_j} f_i(\boldsymbol{w}^t)$$
 (15)

- ランダム化された座標降下法 (RCD; Randomized Coordinate Descent)
 - 最適化問題 $\min_{oldsymbol{w} \in \mathbb{R}^D} f(oldsymbol{w})$ を、幾つかの部分問題に分割
 - f(w) を、 $j \neq j_t$ であるような変数については固定したまま、ある 1 つの変数 $j_t \in \{1, \ldots, D\}$ について最小化する \Rightarrow 一度に 1 つの座標を最適化するため、座標降下法とよばれる
 - ⇒ 一般に、変数の部分集合について同時に最小化を行うアルゴリズム を、ブロック座標降下法という
 - 座標降下法は、ある1つの変数が、他の変数の最適値に影響を与えない 場合に効果を発揮
 - ⇒ 「深層学習」の 8.7.2 節を参照

- SDCA; Stochastic Dual Coordinate Ascent
 - ullet 正則化項 $\psi(oldsymbol{w})$ を付加した、以下の最適化問題を考える

$$\min_{\boldsymbol{w} \in \mathbb{R}^D} f(\boldsymbol{X}\boldsymbol{w}) + \psi(\boldsymbol{w}), \qquad f(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^N f_i(y_i, \boldsymbol{x}_i^T \boldsymbol{w})$$
(16)

上記の双対問題 (Dual problem) は、Fenchel 双対定理から、次のようになる (K はデータ x の次元数) [3]

$$-\min_{\boldsymbol{u}\in\mathbb{R}^N} f^*(\boldsymbol{u}) + \psi^* \left(-\frac{\boldsymbol{X}^T \boldsymbol{u}}{N}\right)$$
 (17)

ullet 但し、 f^* と ψ^* は、それぞれ f と ψ のルジャンドル変換である

- SDCA: Stochastic Dual Coordinate Ascent
 - f(x) のルジャンドル変換 $f^*(y)$ とは、関数 f(x) の変数を、その微分 y=x' に置き換えた関数であり、次のように定義される (関数 f(x) を、その傾きの情報から捉えた関数)

$$f^*(\boldsymbol{y}) = \sup_{\boldsymbol{x}} \left\{ \boldsymbol{x}^T \boldsymbol{y} - f(\boldsymbol{x}) \right\}$$
 (18)

双対問題 (Dual problem) とは、最適化問題における主問題 (Primary problem) の補問題であり、主問題と双対問題は表裏一体の関係にある

- SDCA: Stochastic Dual Coordinate Ascent
 - 例えば、以下の問題 P(主問題) を、次のように定める

$$\min_{\boldsymbol{x}} \boldsymbol{c}^T \boldsymbol{x} \quad \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \ge 0 \tag{19}$$

● 一方の問題 D(双対問題) は、次のようになる

$$\max_{\boldsymbol{y}} \boldsymbol{b}^T \boldsymbol{y} \quad \text{s.t.} \quad \boldsymbol{A}^T \boldsymbol{y} \le \boldsymbol{c} \tag{20}$$

双対定理より、問題 P に最適解 x^* が存在すれば、問題 D にも最適解 y^* が存在して、 $c^Tx^*=b^Ty^*$ が成立

- SDCA; Stochastic Dual Coordinate Ascent
 - 今回の場合、問題 P(主問題) は、(正則化項付きの) 損失関数の最小化である
 - 問題 P の代わりに双対問題 D を解くことができる
 - このとき、問題 P の解が得られるので、最適なパラメータが求まる
 - SDCA は、このような考え方に基づくアルゴリズムである (詳細は省略)
 - 主問題と双対問題を、交互に解くアルゴリズムも考えられる
 - 以降のスライドでは、勾配 $\nabla f(m{w})$ の推定値に含まれる $m{J}$ イズを軽減するアルゴリズムをみていく

- SAG; Stochastic Average Gradient
 - 確率的勾配の平均を取るアルゴリズム
 - SAG は、GD(勾配降下法) と SGD(確率的勾配降下法) の中間に位置
 - SAG の各イテレーションでは、 $i_t \in \{1,\ldots,N\}$ を選択したうえで、次の処理が実行される

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t - \frac{\alpha_t}{N} \sum_{i=1}^N \boldsymbol{y}_i^t$$
 (21)

$$= \boldsymbol{w}^{t} - \frac{\alpha_{t}}{N} \left[\sum_{i=1}^{N} \boldsymbol{y}_{i}^{t-1} + \left(\boldsymbol{y}_{i_{t}}^{t} - \boldsymbol{y}_{i_{t}}^{t-1} \right) \right]$$
 (22)

$$= \mathbf{w}^{t} - \frac{\alpha_{t}}{N} \left[\sum_{i=1}^{N} \mathbf{y}_{i}^{t-1} + \left(\nabla f_{i_{t}}(\mathbf{w}^{t}) - \mathbf{y}_{i_{t}}^{t-1} \right) \right]$$
(23)

ullet 但し、 $oldsymbol{y}_i^t$ は次のように定義される

$$\mathbf{y}_i^t = \left\{ egin{array}{ll}
abla f_i(\mathbf{w}^t) & (i = i_t) \\
abla f_{i-1}^{t-1} & (それ以外のとき)
onumber \end{array}
ight.$$
 (24)

• 勾配 $\nabla f_i(\boldsymbol{w}^t)$ は次のように定義される

$$\nabla f_i(\boldsymbol{w}^t) \equiv \left. \frac{\partial}{\partial \boldsymbol{w}} f_i(\boldsymbol{w}) \right|_{\boldsymbol{w} = \boldsymbol{w}^t}$$
(25)

- SAG; Stochastic Average Gradient
 - GD では、現在のパラメータ $m{w}^t$ を基に、 $m{全てのデータについて</u>勾配 <math>
 abla f_i(m{w}^t)$ を計算
 - \Rightarrow その平均 $\sum_{i=1}^N
 abla f_i(m{w}^t)$ (Full gradient)を使って、パラメータ $m{w}$ を更新
 - $\Rightarrow 1$ 回のパラメータの更新には Full gradient が必要であり、全てのデータを使って計算するため、非常に処理が重い
 - SGD では、データ点 $i\in\{1,\ldots,N\}$ についてのみ ($\mathbf{1}$ つのデータについてのみ)、勾配 $\nabla f_i(\boldsymbol{w}^t)$ を計算
 - \Rightarrow その勾配 $\nabla f_i(\boldsymbol{w}^t)$ を使って、パラメータ \boldsymbol{w} を更新
 - $\Rightarrow 1$ 点における勾配 $abla f_i(oldsymbol{w}^t)$ を用いて、 $abla_{i=1}^N
 abla f_i(oldsymbol{w}^t)$ を近似
 - $\Rightarrow 1$ 回のパラメータの更新に必要な、計算量を少なく抑えられる

- SAG; Stochastic Average Gradient
 - SAG では、全データに対する勾配 (Full gradient) を、少しずつ更新していく
 - \Rightarrow ある 1 つのデータ点 $i_t \in \{1,\ldots,N\}$ について、現在のパラメータ $m{w}^t$ の下で勾配 $abla f_{i_t}(m{w}^t)$ を計算
 - \Rightarrow 新しく求めた勾配 $abla f_{i_t}(oldsymbol{w}^t)$ を使って、以下の式で Full gradient を更新

$$\sum_{i=1}^{N} \mathbf{y}_{i}^{t} = \sum_{j \neq i_{t}} \mathbf{y}_{j}^{t-1} + \nabla f_{i_{t}}(\mathbf{w}^{t})$$
 (26)

- \Rightarrow 更新された Full gradient を使って、パラメータ w を更新
- SAG では、計算される勾配にはバイアスが含まれる
 ⇒ 後述の SAGA で計算される勾配の期待値は、勾配 f(w) の不偏推定量に一致

- SAG; Stochastic Average Gradient
 - SAG では、各データにおける勾配の履歴 (現在の Full gradient)、従って $\left\{oldsymbol{y}_i^t
 ight\}_{i=1}^N$ を記憶しなければならないことが分かる
 - 比較的小規模のニューラルネットの学習であっても、勾配を記憶するためのメモリ使用量が大きいため、アルゴリズムは使い物にならなくなる
 - GD の速い収束と、SGD の速い計算時間という、双方の利点を受け継い だアルゴリズム
 - SAG の改良版として、SAGA アルゴリズムが存在 (詳細は省略)
 - 因みに、SAGA が何の略称なのかは不明

SAGA におけるパラメータの更新式は次のようになる [2]

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^{t} - \alpha_{t} \left[\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{y}_{i}^{t-1} + \left(\boldsymbol{y}_{i_{t}}^{t} - \boldsymbol{y}_{i_{t}}^{t-1} \right) \right]$$

$$= \boldsymbol{w}^{t} - \alpha_{t} \left[\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{y}_{i}^{t-1} + \left(\nabla f_{i_{t}}(\boldsymbol{w}^{t}) - \boldsymbol{y}_{i_{t}}^{t-1} \right) \right]$$
(28)

- SVRG; Stochastic Variance Reduced Gradient
 - 二重ループの最適化アルゴリズムである
 - 外側のループでは、Full gradient(全データについての勾配の平均) $abla f(oldsymbol{w}^t)$ を計算

$$\nabla f(\boldsymbol{w}^t) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\boldsymbol{w}^t) = \frac{1}{N} \sum_{i=1}^{N} \left. \frac{\partial}{\partial \boldsymbol{w}} f_i(\boldsymbol{w}) \right|_{\boldsymbol{w} = \boldsymbol{w}^t}$$
(29)

• 内側のループでは、インデックス $i \in \{1,\dots,N\}$ を選択し、次の式を用いてパラメータを更新していく

$$\boldsymbol{w} = \boldsymbol{w} - h \left[\nabla f_i(\boldsymbol{w}) - \nabla f_i(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t) \right]$$
(30)

ullet 確率的勾配 $abla f_i(oldsymbol{w}) -
abla f_i(oldsymbol{w}^t)$ は、 $oldsymbol{w}$ と $oldsymbol{w}^t$ における勾配の変化 $abla f(oldsymbol{w}) -
abla f(oldsymbol{w}^t)$ を推定するための項

• SVRG が完全な勾配 $\nabla f(\boldsymbol{w}^t)$ を計算している間、パラメータは一度も更新されないが、同じ時間で、SGD ではパラメータが N 回更新される \Rightarrow 最初は、SGD の方が学習が進むことが予測される

分散を抑えた確率的勾配降下法

Algorithm 1: SVRG; Stochastic Variance Reduced Gradient [2]

```
parameters: m = number of stochastic steps per epoch, h = stepsize
                  (learning rate)
 1: for s = 0, 1, \dots do
       Compute and store full gradient \nabla f(\mathbf{w}^t) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\mathbf{w}^t)
        // Full pass through data
 3: Set \boldsymbol{w} = \boldsymbol{w}^t
     for t=1 to m do
 4:
           Pick i \in \{1, ..., N\}, uniformly at random
 5:
           Update using \mathbf{w} = \mathbf{w} - h \left[ \nabla f_i(\mathbf{w}) - \nabla f_i(\mathbf{w}^t) + \nabla f(\mathbf{w}^t) \right]
 6:
           // Stochastic update
        end for
 7:
     w^{t+1} = w
```

9: end for

分散を抑えた確率的勾配降下法

- アルゴリズムについての補足
 - SGD と比較すると SVRG の性能は良く、各イテレーションでの分散が 小さい
 - SVRG と、ランダム化された座標降下法 (RCD; Randomized Coordinate Descent) とを結びつけるアルゴリズムが存在
 - SAGA が提唱された論文では、SAGA は SAG と SVRG の中間に位置付けられている
 - SVRG、SAGA、SAG、GD を一般化したアルゴリズムが登場している

目次

- Federated Learning のための最適化アルゴリズム
 - SVRG(Stochastic Variance Reduced Gradient) アルゴリズムと、 DANE(Distributed Approximate Newton) アルゴリズムを調べる
 - SVRG と DANE は一見無関係にみえるが、実は深く関連し合う
 - SVRG を改良した (Naive な)Federated SVRG について説明する
 - (Naive な)Federated SVRG を更に改良したアルゴリズムを、新たに提案 する
 - ← 各デバイスに保存された訓練データの個数、訓練データのスパース性、各デバイス上の訓練データのパターンの相違について考慮
 - Federated Learning では、訓練データが Massively Distributed、 Non-IID、Unbalanced であるという仮定を置く
 - これに加え、スパース性、Privacy Sensitive などの仮定を設けた

- Federated Learning のためのアルゴリズムに必要な特徴
 - 1 アルゴリズムの開始時に、パラメータが既に最適値であったなら、その アルゴリズムを何度実行しても、パラメータの値が変化しない
 - 2 訓練データが単一のノードにしかないとき、パラメータが収束するまで に必要な、中央のノードとの通信回数は $\mathcal{O}(1)$ に抑えられること
 - 3 データの各特徴が、単一のノードにしか現れないとき (解こうとしている問題が完全に分離され、各デバイスがパラメータの一部を学習しているとき)、 $\mathcal{O}(1)$ 回の通信回数の後に、パラメータが収束すること
 - \Leftarrow データの各次元が、ある1つのノードでは1になるが、他の全てのノードでは0になるような場合
 - 4 各ノードが完全に同一なデータセットを有するとき、 $\mathcal{O}(1)$ 回の通信回数の後に、パラメータが収束すること

- Federated Learning のためのアルゴリズムに必要な特徴
 - 「収束する」とは、「十分に精度のある適当な解が得られる」ことを意味 している
 - $\Rightarrow \mathcal{O}(1)$ 回とは、各デバイスと中央のノード間で、table たった 1 度だけやり取りすることに相当
 - (1) は、全ての最適化問題において、考慮する価値がある設定
 - (2) と (3) は、Federated Learning における極端なケース
 - (4) は、従来の最適化問題における設定 (中央の少数のノードが多量の データを保持している状況)
 - ⇒ (4) は、Federated Learning においては最も重要でない

Algorithm 2: SVRG; Stochastic Variance Reduced Gradient (Recall) [2]

parameters: m= number of stochastic steps per epoch, h= stepsize (learning rate) 1: for $s=0,1,\ldots$ do

- 2: Compute and store full gradient $\nabla f({m w}^t) = \frac{1}{N} \sum_{i=1}^N \nabla f_i({m w}^t)$ // Full pass through data
- 3: Set $\boldsymbol{w} = \boldsymbol{w}^t$
- 4: for t = 1 to m do
- 5: Pick $i \in \{1, ..., N\}$, uniformly at random
- 6: Update using $\mathbf{w} = \mathbf{w} h \left[\nabla f_i(\mathbf{w}) \nabla f_i(\mathbf{w}^t) + \nabla f(\mathbf{w}^t) \right]$ // Stochastic update
- 7: end for
- 8: $\boldsymbol{w}^{t+1} = \boldsymbol{w}$
- 9: end for

- SVRG; Stochastic Variance Reduced Gradient
 - 外側のループでは、Full gradient(全データについての勾配の平均) $abla f(oldsymbol{w}^t)$ を計算
 - 内側のループでは、確率的勾配によるパラメータの更新を m 回実行 $\Rightarrow m$ は、データ数 N の 1 倍から 5 倍程度の値に設定 $\Rightarrow m$ は、実用上は N にすることが多い
 - 内側のループでは、データ点iにおける勾配 $\nabla f_i(\boldsymbol{w}), \nabla f_i(\boldsymbol{w}^t)$ を計算
 - \Rightarrow これらの勾配の差 $\nabla f_i(m{w}) \nabla f_i(m{w}^t)$ を求めて、 $m{w}$ と $m{w}^t$ における Full gradient の差分 $\nabla f(m{w}) \nabla f(m{w}^t)$ を推定するための項とする
 - $\Rightarrow
 abla f_i(m{w})
 abla f_i(m{w}^t) +
 abla f(m{w}^t)$ は、 $abla f(m{w})$ の不偏推定量を導く

- SVRG; Stochastic Variance Reduced Gradient
 - 更新中の w と、固定された w^t との差が小さければ、 $\nabla f_i(w) \nabla f_i(w^t)$ も小さくなるので、 $\nabla f(w)$ (の予測値) に加わるノイズも小さくなっていると予想できる
 - 内側のループを実行する度に、 $m{w}$ が $m{w}^t$ から離れていくので、 $\nabla f_i(m{w}) \nabla f_i(m{w}^t)$ が増大し、従って Full gradient $\nabla f(m{w}^t)$ に加わるノイズが増大
 - \Rightarrow 外側のループが実行され、新たな Full gradient $abla f(m{w}^{t+1})$ が計算されると、Full gradient に加わるノイズは再び小さくなる
 - 関数 $f=\frac{1}{N}\sum_i f_i$ が λ -strongly convex function で、各 f_i が L-smooth function ならば、収束度合いは次のように表される (詳細は論文を参照)

$$\mathbb{E}\left[f(\boldsymbol{w}^t) - f(\boldsymbol{w}^*)\right] \le c^t \left[f(\boldsymbol{w}^0) - f(\boldsymbol{w}^*)\right] \tag{31}$$

 $oldsymbol{w}^*$ は $f(oldsymbol{w})$ を最小化する最適解、 $c = \Theta\left(rac{1}{mh}
ight) + \Theta(h)$ (詳細は略)

- Federated Learning のための問題設定
 - ullet 解くべき問題は、経験損失 $f(oldsymbol{w})$ の最小化であった

$$\min_{\boldsymbol{w} \in \mathbb{R}^D} f(\boldsymbol{w}), \qquad f(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^N f_i(\boldsymbol{w})$$
(32)

- 各 f_i は凸関数で、訓練データ $\left\{ m{x}_i, y_i \right\}_{i=1}^N$ が与えられている (多数のノードに不均等に分散)
- 分散学習のために、以下の記法を導入する
 - K をノード数とする
 - ullet \mathcal{P}_k を、ノード $k \in \{1,\dots,K\}$ が持つ訓練データのインデックス集合とする
 - ノードk が持つ訓練データの個数を、 $N_k=|\mathcal{P}_k|$ と表す $\Rightarrow k \neq l$ のとき $\mathcal{P}_k \cap \mathcal{P}_l = \varnothing$ (空集合)、そして $\sum_{k=1}^K N_k = N$

- Federated Learning のための問題設定
 - 経験損失 $f(oldsymbol{w})$ を、次の手順で書き直す

$$F_{k}(\boldsymbol{w}) \equiv \frac{1}{N_{k}} \sum_{i \in \mathcal{P}_{k}} f_{i}(\boldsymbol{w})$$

$$f(\boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^{N} f_{i}(\boldsymbol{w}) = \frac{1}{N} \sum_{k=1}^{K} \sum_{i \in \mathcal{P}_{k}} f_{i}(\boldsymbol{w})$$

$$= \frac{1}{N} \sum_{k=1}^{K} N_{k} \cdot \frac{1}{N_{k}} \sum_{i \in \mathcal{P}_{k}} f_{i}(\boldsymbol{w}) = \frac{1}{N} \sum_{k=1}^{K} N_{k} F_{k}(\boldsymbol{w})$$
 (34)

- \bullet $F_k(w)$ は、各ノード k が最小化すべき目的関数である (凸関数)
- これより、解くべき問題は次のように書き直される

$$\min_{\boldsymbol{w} \in \mathbb{R}^D} f(\boldsymbol{w}), \qquad f(\boldsymbol{w}) = \sum_{k=1}^K \frac{N_k}{N} F_k(\boldsymbol{w})$$
 (35)

- Federated Learning のための問題設定
 - この問題を解くための最も簡単な手法は、次の通りである

$$\boldsymbol{w}_{k}^{t+1} = \underset{\boldsymbol{w} \in \mathbb{R}^{D}}{\min} F_{k}(\boldsymbol{w}), \qquad \boldsymbol{w}^{t+1} = \sum_{k=1}^{K} \frac{N_{k}}{N} \boldsymbol{w}_{k}^{t+1}$$
 (36)

- ullet 各ノード上で目的関数 F_k を最小化し、得られた解 $oldsymbol{w}_k^{t+1}$ の N_k による 重み付け和を $oldsymbol{w}$ とする
- ullet この場合、上の問題を一度だけ解けば、解 w が得られる $(w_k^{t+1}$ の右辺は t には依存しない) ので、各デバイスと中央のノードとの一度だけのやりとりで済む

- Federated Learning のための問題設定
 - - \Leftarrow 関数 F_k の形が、全ての k について等しいならば、重み付け和にはなっている
 - \Leftarrow 関数の形が全て等しいならば、単一のノード上で $\min_{m{w}\in\mathbb{R}^D}F_1(m{w})$ を解けばよいので、分散アルゴリズムを考える必要はない
 - 分散アルゴリズムを導出したいが、上記のアルゴリズムでは無意味
 - 但し、各ノードkが、目的関数 F_k に含まれる曲がり具合の情報 (Curvature information) を最大限活用できるようにしたい

- Federated Learning のための問題設定
 - 分散アルゴリズムを導出するために、各 F_k に二次の項 $-\left(oldsymbol{a}_k^t
 ight)^Toldsymbol{w}+rac{\mu}{2}||oldsymbol{w}-oldsymbol{w}^t||^2$ を摂動として加算する
 - そして、各ノードが次の問題を解くようにする

$$\boldsymbol{w}_{k}^{t+1} = \arg \max_{\boldsymbol{w} \in \mathbb{R}^{D}} \left(F_{k}(\boldsymbol{w}) - \left(\boldsymbol{a}_{k}^{t}\right)^{T} \boldsymbol{w} + \frac{\mu}{2} ||\boldsymbol{w} - \boldsymbol{w}^{t}||^{2} \right)$$
(37)

$$\boldsymbol{w}^{t+1} = \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{w}_k^{t+1}$$
 (38)

• 各ノードkが、目的関数 F_k に含まれる曲がり具合の情報 (Curvature information) を最大限活用できるようにしたい \Rightarrow 各ノードが最適化する関数の、ヘッセ行列は $\nabla^2 F_k + \mu I$ となるので、関数 F_k に含まれる勾配の情報は、殆どそのまま保存される

- Federated Learning のための問題設定
 - ullet 以下の式を解きたいが、ベクトル $oldsymbol{a}_k^t$ の決め方が分からない

$$\boldsymbol{w}_k^{t+1} = \operatorname*{arg\,max}_{\boldsymbol{w} \in \mathbb{R}^D} \left(F_k(\boldsymbol{w}) - \left(\boldsymbol{a}_k^t\right)^T \boldsymbol{w} + \frac{\mu}{2} ||\boldsymbol{w} - \boldsymbol{w}^t||^2 \right)$$

ullet $t o\infty$ の極限では、 $oldsymbol{w}$ が最適 $(oldsymbol{w}=oldsymbol{w}^*)$ であるとき、上式の勾配が 0 となって欲しい

$$\nabla \left(F_k(\boldsymbol{w}) - \left(\boldsymbol{a}_k^t \right)^T \boldsymbol{w} + \frac{\mu}{2} ||\boldsymbol{w} - \boldsymbol{w}^t||^2 \right)$$

$$= \nabla F_k(\boldsymbol{w}) - \boldsymbol{a}_k^t + \mu \left(\boldsymbol{w} - \boldsymbol{w}^t \right) = 0$$

ullet 即ち、 $t o\infty$ の極限では、 $oldsymbol{a}_k^t$ は次のようになって欲しい

$$\boldsymbol{a}_{k}^{t} = \nabla F_{k}(\boldsymbol{w}) + \mu \left(\boldsymbol{w} - \boldsymbol{w}^{t}\right) \simeq \nabla F_{k}(\boldsymbol{w}^{*}) \ \left(: \boldsymbol{w}^{*} \simeq \boldsymbol{w}^{t}\right)$$

• 但し、 $m{w}^*$ を知らないので、 $m{a}_k^t =
abla F_k(m{w}^*)$ とはできない $\Rightarrow t \to \infty$ で、 $m{a}_k^t \to
abla F_k(m{w}^*)$ となるような更新式を編み出す

- DANE; Distributed Approximate Newton
 - ・ 先程の最適化問題は、双対問題と深く関連している⇒ 但し、上記のような問題がノード数分だけ存在するので、複雑である
 - DANE アルゴリズムでは、個々のノード上で解くための部分問題を構成することに主眼を置く \leftarrow 部分問題は、各ノード上のデータと、完全な勾配 $\nabla f(\boldsymbol{w}^t)$ にのみ依存 \leftarrow Full gradient $\nabla f(\boldsymbol{w}^t)$ は、各デバイスと中央のノード間で、1 度だけやり取りすれば計算可能
 - DANE アルゴリズムを次に示す

Algorithm 3: DANE; Distributed Approximate Newton [1]

input : regularizer $\mu \geq 0$, parameter η (default: $\mu = 0, \eta = 1$)

- 1: Initialize $oldsymbol{w}^0$
- 2: **for** t = 0, 1, ... **do**
- 3: Compute $\nabla f(\boldsymbol{w}^t) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\boldsymbol{w}^t)$
- 4: Distribute $\nabla f(\boldsymbol{w}^t)$ to all machines
- 5: For each node $k \in \{1, ..., K\}$, solve

$$\mathbf{w}_{k}^{t+1} = \underset{\mathbf{w} \in \mathbb{R}^{D}}{\operatorname{arg \, min}} \left(F_{k}(\mathbf{w}) - \left(\nabla F_{k}(\mathbf{w}^{t}) - \eta \nabla f(\mathbf{w}^{t}) \right)^{T} \mathbf{w} + \frac{\mu}{2} ||\mathbf{w} - \mathbf{w}^{t}||^{2} \right)$$
(39)

- 6: Compute $oldsymbol{w}^{t+1} = rac{1}{K} \sum_{k=1}^K oldsymbol{w}_k^{t+1}$
- 7: end for

- DANE; Distributed Approximate Newton
 - 5 行目では、各ノードが次の部分問題を解いている

$$\boldsymbol{w}_k^{t+1} = \operatorname*{arg\,min}_{\boldsymbol{w} \in \mathbb{R}^D} \left(F_k(\boldsymbol{w}) - \left(\nabla F_k(\boldsymbol{w}^t) - \eta \nabla f(\boldsymbol{w}^t) \right)^T \boldsymbol{w} + \frac{\mu}{2} ||\boldsymbol{w} - \boldsymbol{w}^t||^2 \right)$$

- この部分問題の解を得るためのアルゴリズムは、特に指定されていない (何でもよい)
- 問題を解くうえで、他のノードと通信する必要がない (通信コストを十分に小さくできる)
- 各ノードが、摂動を加えた最適化問題を解くアルゴリズムの 1 つ $\Leftarrow a_k^t$ を、 $a_k^t = \nabla F_k(\boldsymbol{w}^t) \eta \nabla f(\boldsymbol{w}^t)$ と定義している $\Leftarrow \boldsymbol{w}^t \to \boldsymbol{w}^*$ ならば $\nabla f(\boldsymbol{w}^t) \to \nabla f(\boldsymbol{w}^*) = 0$ であるので、 $a_k^t \to \nabla F_k(\boldsymbol{w}^*)$ が成立

- DANE; Distributed Approximate Newton
 - このアルゴリズムは、Federated Learning のために必要な条件 (2) と (3) を満たさない
 - $\mu = 0, \eta = 1$ ならば、条件 (4) を満たす
 - 任意の μ, η について、条件 (1) を満たす
 - このアルゴリズムでは、関数が2回微分可能であること、各ノードが独立同分布な標本を得られることを仮定
 - 正則化パラメータ μ の決め方については、改善の余地がある $\leftarrow \mu = 0$ であれば、ノード数 K が小さいときは速やかに収束するが、 K が増えるにつれて、急速に発散しやすくなる $\leftarrow \mu$ を大きくすれば、アルゴリズムは安定する (発散しづらくなる) が、その分パラメータの収束は遅くなる

- DANE と SVRG を融合したアルゴリズム
 - DANE アルゴリズムは、Federated Learning に適用できない (必要な条件を満たさない)
 - 部分問題の最適解を得る必要がある簡単な問題なら可能だが、複雑な問題であれば計算コストが掛かり 過ぎる
 - ⇒ 完全な最適解を得るのではなく、近似解を得るようなアルゴリズム に置き換える
 - ⇒ 部分問題を解くアルゴリズムとして、先程の SVRG を使用
 - SVRG アルゴリズムでは、外側のループの最初で、完全な勾配 $\nabla f(\boldsymbol{w}^t)$ を計算する必要があった (2 行目)
 - 完全な勾配 $\nabla f(\boldsymbol{w}^t)$ は、各ノードが部分問題を解く前の段階で、既に求まっている (3 行目)
 - ⇒ 各ノードでは、SVRG アルゴリズムの内側のループのみが実行され (後述)、完全な勾配を求める必要はない (既知であるとして扱う)

Algorithm 4: SVRG; Stochastic Variance Reduced Gradient (Recall) [2]

```
parameters: m = number of stochastic steps per epoch, h = stepsize
                   (learning rate)
 1: for s = 0, 1, \dots do
        Compute and store full gradient \nabla f(\boldsymbol{w}^t) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\boldsymbol{w}^t)
         // Full pass through data
 3: Set \boldsymbol{w} = \boldsymbol{w}^t
     for t=1 to m do
 4:
            Pick i \in \{1, ..., N\}, uniformly at random
 5:
            Update using \mathbf{w} = \mathbf{w} - h \left[ \nabla f_i(\mathbf{w}) - \nabla f_i(\mathbf{w}^t) + \nabla f(\mathbf{w}^t) \right]
 6:
            // Stochastic update
        end for
 7:
      \boldsymbol{w}^{t+1} = \boldsymbol{w}
 8:
```

9: end for

Algorithm 5: DANE; Distributed Approximate Newton (Recall) [1]

input : regularizer $\mu \geq 0$, parameter η (default: $\mu = 0, \eta = 1$)

- 1: Initialize $oldsymbol{w}^0$
- 2: **for** t = 0, 1, ... **do**
- 3: Compute $\nabla f(\boldsymbol{w}^t) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\boldsymbol{w}^t)$
- 4: Distribute $\nabla f(\boldsymbol{w}^t)$ to all machines
- 5: For each node $k \in \{1, \dots, K\}$, solve

$$\mathbf{w}_{k}^{t+1} = \underset{\mathbf{w} \in \mathbb{R}^{D}}{\operatorname{arg \, min}} \left(F_{k}(\mathbf{w}) - \left(\nabla F_{k}(\mathbf{w}^{t}) - \eta \nabla f(\mathbf{w}^{t}) \right)^{T} \mathbf{w} + \frac{\mu}{2} ||\mathbf{w} - \mathbf{w}^{t}||^{2} \right)$$

$$(40)$$

- 6: Compute $oldsymbol{w}^{t+1} = rac{1}{K} \sum_{k=1}^K oldsymbol{w}_k^{t+1}$
- 7: end for

- DANE と SVRG との関係性
 - DANE アルゴリズムは、ある特定の条件下では、分散化されたバージョンの SVRG アルゴリズムと等価
 - 以下の2つのアルゴリズムは等価である
 - ullet 下記の 2 つは、同一のパラメータ列 $\{oldsymbol{w}^t\}$ を出力
 - **1** $\mu = 0, \eta = 1$ の下で DANE を実行し、その部分問題は SVRG アルゴリズムで解く
 - 2 分散化されたバージョンの SVRG アルゴリズムを解く (後述)
 - 分散化された SVRG アルゴリズム (Naive Federated SVRG) を次に示す

Algorithm 6: Naive Federated SVRG (FSVRG) [1]

```
parameters: m =number of stochastic steps per epoch, h =stepsize,
                   data partition \{\mathcal{P}_k\}_{k=1}^K
 1: Initialize w^0
 2: for t = 0, 1, \dots do
        Compute \nabla f(\boldsymbol{w}^t) = \frac{1}{N} \sum_{i=1}^N \nabla f_i(\boldsymbol{w}^t), distribute to all machines
         for k = 1 to K do in parallel over nodes k do
 4:
            Initialize \boldsymbol{w}_k = \boldsymbol{w}^t
 5:
            for s=1 to m do
 6:
                Sample i \in \mathcal{P}_k uniformly at random
 7:
                Update using w_k = w_k - h \left[ \nabla f_i(w_k) - \nabla f_i(w^t) + \nabla f(w^t) \right]
 8:
            end for
 9:
         end for
10:
         Update using \boldsymbol{w}^{t+1} = \boldsymbol{w}^t + \frac{1}{K} \sum_{k=1}^{K} (\boldsymbol{w}_k - \boldsymbol{w}^t)
11:
12: end for
```

- 2つのアルゴリズムが等価であることの簡潔な証明
 - SVRG アルゴリズムでは、 $\nabla f(w) = \frac{1}{N} \sum_{i=1}^N \nabla f_i(w)$ の不偏推定量を得るために、 $\nabla f(w^t) + \nabla f_i(w) \nabla f_i(w^t)$ という項を用いた
 - ullet $abla f(w^t)$ は、外側のループの最初で計算される (適当な時間間隔で計算され、暫くの間固定される)
 - 内側のループを実行する度に、データ $i \in \{1,\dots,N\}$ について $\nabla f_i({m w}) \nabla f_i({m w}^t)$ を計算し、 $\nabla f({m w}^t)$ を補正する
 - DANE における部分問題を、各ノードが SVRG で解くことを考える (SVRG の内側のループのみが実行される)
 - SVRG で解くのは次の問題である $(\mu=0,\eta=1)$

$$\min_{\boldsymbol{w} \in \mathbb{R}^{D}} \left(F_{k}(\boldsymbol{w}) - \left(\nabla F_{k}(\boldsymbol{w}^{t}) - \eta \nabla f(\boldsymbol{w}^{t}) \right)^{T} \boldsymbol{w} + \frac{\mu}{2} ||\boldsymbol{w} - \boldsymbol{w}^{t}||^{2} \right) \\
= \min_{\boldsymbol{w} \in \mathbb{R}^{D}} \left(F_{k}(\boldsymbol{w}) - \left(\nabla F_{k}(\boldsymbol{w}^{t}) - \nabla f(\boldsymbol{w}^{t}) \right)^{T} \boldsymbol{w} \right) \tag{41}$$

- 2つのアルゴリズムが等価であることの簡潔な証明
 - SVRG で最小化しようとしている関数の勾配を求める

$$\frac{\partial}{\partial \boldsymbol{w}} \left(F_k(\boldsymbol{w}) - \left(\nabla F_k(\boldsymbol{w}^t) - \nabla f(\boldsymbol{w}^t) \right)^T \boldsymbol{w} \right)
= \nabla F_k(\boldsymbol{w}) - \nabla F_k(\boldsymbol{w}^t) - \nabla f(\boldsymbol{w}^t)$$
(42)

- 上式について、 $abla f(oldsymbol{w}^t)$ は、DANE アルゴリズムの 3 行目で既に求まっている
- 残りの $\nabla F_k(\boldsymbol{w})$ と $\nabla F_k(\boldsymbol{w}^t)$ の計算について考える
- $\nabla F_k(w) = \sum_{i \in \mathcal{P}_k} \nabla f_i(w)$ であるから、 $\nabla F_k(w)$ は、 $i \in \mathcal{P}_k$ である全ての i についての、勾配 $\nabla f_i(w)$ の足し合わせである $(\nabla F_k(w^t)$ についても同様)
- SVRG の内側のループでは、ある 1 つのインデックス $i \in \mathcal{P}_k$ をランダムに選び出し、パラメータ w を更新する

- 2つのアルゴリズムが等価であることの簡潔な証明
 - SVRG の内側のループでは、ある 1 つのインデックス $i \in \mathcal{P}_k$ をランダムに選び出し、パラメータ w を更新する
 - \Rightarrow 内側のループでは、1 つのデータ点 i についての確率的勾配だけを使って、 $\nabla F_k({m w}) \nabla F_k({m w}^t) \nabla f({m w}^t)$ を推定したい
 - $\Rightarrow
 abla f(m{w}^t)$ は既知であるから、残りの項 $abla F_k(m{w})
 abla F_k(m{w}^t)$ を、確率的勾配 $abla f_i(m{w}),
 abla f_i(m{w}^t)$ を使って近似する
 - SVRG のときと同じ方法で、次のように近似できる

$$\nabla F_k(\mathbf{w}) = \nabla F_k(\mathbf{w}^t) + \left(\nabla f_i(\mathbf{w}) - \nabla f_i(\mathbf{w}^t)\right)$$
(43)

$$\nabla F_k(\mathbf{w}^t) = \nabla F_k(\mathbf{w}^t) + \left(\nabla f_i(\mathbf{w}^t) - \nabla f_i(\mathbf{w}^t)\right)$$
(44)

- 2つのアルゴリズムが等価であることの簡潔な証明
 - 以下は単に、f(w) を $F_k(w)$ に置き換えているだけ

$$\nabla F_k(\boldsymbol{w}) = \nabla F_k(\boldsymbol{w}^t) + \left(\nabla f_i(\boldsymbol{w}) - \nabla f_i(\boldsymbol{w}^t)\right)$$
(45)

- $\nabla F_k(\boldsymbol{w}^t)$ を、内側のループが実行される度に計算するのは、計算コストの観点から避けたいので、適当な時間間隔で求めて、暫くの間は使い回すことにする
 - ⇒ 現在のパラメータ w についての勾配 $\nabla F_k(w)$ の不偏推定量を得るために、古いパラメータ w^t についての勾配 $\nabla F_k(w^t)$ を、データ i についての項 $\nabla f_i(w) \nabla f_i(w^t)$ で補正する

- 2つのアルゴリズムが等価であることの簡潔な証明
 - このような近似の下で、内側のループで計算される勾配は、次のように なる

$$\nabla F_k(\boldsymbol{w}) - \nabla F_k(\boldsymbol{w}^t) - \nabla f(\boldsymbol{w}^t)$$
(46)
=
$$\left[\nabla F_k(\boldsymbol{w}^t) + \nabla f_i(\boldsymbol{w}) - \nabla f_i(\boldsymbol{w}^t) \right]$$
$$- \left[\nabla F_k(\boldsymbol{w}^t) + \nabla f_i(\boldsymbol{w}^t) - \nabla f_i(\boldsymbol{w}^t) \right] - \nabla f(\boldsymbol{w}^t)$$
(47)
=
$$\nabla f_i(\boldsymbol{w}) - \nabla f_i(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t)$$
(48)

これより、DANE アルゴリズムの部分問題に、SVRG アルゴリズムを適用したとき、各ノードにおけるパラメータの更新式は次のようになる

$$\boldsymbol{w} = \boldsymbol{w} - h \left[\nabla f_i(\boldsymbol{w}) - \nabla f_i(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t) \right]$$
(49)

• 上の更新式は、FSVRG(Algorithm 6) の 8 行目と等しい \Rightarrow DANE($\mu=0,\eta=1$) の部分問題に SVRG を組み込んだアルゴリズムは、(Naive な)FSVRG と等価

- Naive Federated SVRG についての補足
 - 外側のループについて、最後の更新式が次のようになっている

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t + \frac{1}{K} \sum_{k=1}^{K} (\boldsymbol{w}_k - \boldsymbol{w}^t)$$
 (50)

これは、DANE における次の式に等しい

$$\mathbf{w}^{t+1} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{w}_k^{t+1}$$
 (51)

- ullet $(oldsymbol{w}_k oldsymbol{w}^t)$ は、各ノードから中央のサーバに送られる、パラメータの差分を表している
 - $\Rightarrow m{w}^t$ が中央のサーバから送られてきたパラメータ、 $m{w}_k$ はノード k 上の訓練データを使って更新されたパラメータ
 - $\Rightarrow w_k$ をそのまま送っても良いが、差分を送った方がデータを圧縮できる (通信量を削減)

- SVRG アルゴリズムの導出
 - (Naive な)Federated SVRG を更に改良したアルゴリズムを、ここでは提案する

← 各デバイスに保存された訓練データの個数、訓練データのスパース性、データが独立同分布でない (Non-IID) ことについて考慮

- 各デバイス間では、訓練データの個数が大きく異なる
- データのある特徴は、ごく少数のノードにだけ出現し、それ以外の大多数のノードには出現しないかもしれない
- 各デバイス上のデータは、データ全体の分布を表していない (データ全体は、デバイスの地理的な位置やタイムゾーンなどが影響し、特定のパターンによってクラスタ化されているかもしれない)

- SVRG アルゴリズムの導出 (記法の整理)
 - N:訓練データの個数, K: ノード数, D: パラメータの次元
 - \mathcal{P}_k : ノード k が保持する訓練データのインデックスの集合 $\Rightarrow \mathcal{P}_k \subseteq \{1,\ldots,N\}, \forall k \neq l \ \mathcal{P}_k \cap \mathcal{P}_l = \emptyset$
 - $ullet N_k = |\mathcal{P}_k|$: ノードk が保持する訓練データの個数 $\Rightarrow \sum_{k=1}^K N_k = N$
 - $N^j=\left|\left\{i\in\{1,\dots,N\}\left|m{x}_i^Tm{e}_j
 eq 0
 ight\}\right|:j$ 番目の次元が0ではない訓練データの個数
 - ullet $N_k^j=ig|ig\{i\in\mathcal{P}_k|m{x}_i^Tm{e}_j
 eq 0ig\}ig|:$ ノードk が保持する、j 番目の次元が0 ではない、訓練データの個数
 - $\phi^j = N^j/N$: 全訓練データのうち、j 番目の次元が 0 でないものの割合
 - $\phi_k^{\jmath}=N_k^{\jmath}/N_k$: ノード k が保持する全訓練データのうち、j 番目の次元が 0 でないものの割合

- $s_k^j = \phi^j/\phi_k^j$: 全訓練データと、ノード k が保持する訓練データにおける、j 番目の次元が 0 でない割合の比率 $\Rightarrow s_k^j$ が小さいとき、ノード k は、次元 j に関する訓練データを、他のノードよりも多く持っていることを意味している $\Rightarrow s_k^j$ の逆数は、ノード k が持っている訓練データは、次元 j に関してどの程度レアかを表すと考えられる
- $oldsymbol{\bullet}$ $oldsymbol{S}_k = \mathrm{diag}\left(s_k^j
 ight)\!\colon s_k^j$ を並べた対角行列 $(oldsymbol{S}_k \in \mathbb{R}^{D imes D})$
- $\omega^j = \left|\left\{\mathcal{P}_k|n_k^j \neq 0\right\}\right|$: 次元 j が 0 ではない訓練データを持っている、ノードの数
- $a^j=K/\omega^j$: 次元 j が 0 でない訓練データが、ノードに出現する割合 \Rightarrow 次元 j のレア度を表す
- $oldsymbol{\bullet}$ $oldsymbol{A} = \mathrm{diag}\left(a^j\right)$: a^j を並べた対角行列 $(oldsymbol{A} \in \mathbb{R}^{D imes D})$
- 提案された Federated SVRG アルゴリズムを、次に示す

Algorithm 7: Federated SVRG (FSVRG) [1]

```
parameters: h =stepsize, data partition \{\mathcal{P}_k\}_{k=1}^K, diagonal matrix
                        A, S_k \in \mathbb{R}^{D \times D} for k \in \{1, \dots, K\}
  1: for t = 0, 1, \dots do
          Compute \nabla f(\boldsymbol{w}^t) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\boldsymbol{w}^t)
  3:
           for k=1 to K do in parallel over nodes k do
               Initialize \boldsymbol{w}_k = \boldsymbol{w}^t, h_k = h/N_k
  4:
               Let \{i_s\}_{s=1}^{N_k} be random permutation of \mathcal{P}_k
  5:
               for s = 1, \ldots, N_{k} do
  6:
                   \mathbf{w}_k = \mathbf{w}_k - \mathbf{h}_k \left[ \mathbf{S}_k \left[ \nabla f_{i_s}(\mathbf{w}_k) - \nabla f_{i_s}(\mathbf{w}^t) \right] + \nabla f(\mathbf{w}^t) \right]
  7:
               end for
  8:
           end for
  9:
           oldsymbol{w}^t = oldsymbol{w}^t + oldsymbol{A} \sum_{k=1}^K rac{N_k}{N} \left( oldsymbol{w}_k - oldsymbol{w}^t 
ight)
10:
11: end for
```

- Federated SVRG アルゴリズムの改良点
 - **1** ノードごとにステップサイズを変更: $h_k = h/N_k$
 - ② 各ノードが保持するデータ数に比例した更新量: $rac{N_k}{N}\left(oldsymbol{w}_k oldsymbol{w}^t
 ight)$
 - 3 確率的勾配の各次元に対するスケーリング: S_k
 - 4 パラメータの差分の各次元に対するスケーリング: $A\left(oldsymbol{w}_k oldsymbol{w}^t
 ight)$
 - 個人的に、このようなアルゴリズムの細工にはあまり魅力を感じない
 - このような細工よりも、単純にデータ数を増やせば良いんじゃないか?
 - このアルゴリズムは、他のアルゴリズムよりも圧倒的に収束が速い

- 1 ノードごとにステップサイズを変更: $h_k = h/N_k$
 - Naive Federated SVRG では、各ノードでのパラメータの更新回数は、 m 回に統一されていた
 - ⇒ しかし、各ノードが保持する訓練データの数は大きく異なるのだから、パラメータの更新回数を、全ノードにわたって同じにするのは良くない
 - ⇒ それゆえ、各ノードでは、自身が持つ全ての訓練データを使って、パラメータを更新
 - ステップサイズを N_k に反比例するように設定し、各ノードのパラメータ更新量が同程度の大きさになるようにする

- $oxed{2}$ 各ノードが保持するデータ数に比例した更新量: $rac{N_k}{N}\left(oldsymbol{w}_k oldsymbol{w}^t
 ight)$
 - ullet Naive Federated SVRG では、以下のようにパラメータ w が更新された

$$\mathbf{w}^{t+1} = \mathbf{w}^{t} + \frac{1}{K} \sum_{k=1}^{K} \left(\mathbf{w}_{k} - \mathbf{w}^{t} \right)$$

$$= \mathbf{w}^{t} + \frac{h}{K} \sum_{k=1}^{K} \sum_{i} \left[\nabla f_{i}(\mathbf{w}_{k}) - \nabla f_{i}(\mathbf{w}^{t}) + \nabla f(\mathbf{w}^{t}) \right]$$

$$= \mathbf{w}^{t} + \frac{h}{K} \sum_{k=1}^{K} \sum_{i} \left[\nabla f_{i}(\mathbf{w}) - \nabla f_{i}(\mathbf{w}^{t}) + \nabla f(\mathbf{w}^{t}) \right]$$

$$\simeq \mathbf{w}^{t} + \frac{h}{K} \sum_{k=1}^{K} \mathbb{E} \left[\nabla f_{i}(\mathbf{w}) - \nabla f_{i}(\mathbf{w}^{t}) + \nabla f(\mathbf{w}^{t}) \right]$$

$$= \mathbf{w}^{t} + \frac{h}{K} \mathbb{E} \left[\sum_{k=1}^{K} \left(\nabla f_{i}(\mathbf{w}) - \nabla f_{i}(\mathbf{w}^{t}) + \nabla f(\mathbf{w}^{t}) \right) \right]$$

- 上式における i は、 \mathcal{P}_k から重複を許して、適当に選択された m 個のインデックスであるとする (但し、最後の式における i は、 \mathcal{P}_k から適当に選択されたインデックスである)
- また、ある時点において、全ての $k \in \{1,\dots,K\}$ について $oldsymbol{w}_k = oldsymbol{w}$ であるとしている
- ここでは、適当な α_k を導入して、 $\nabla f(\boldsymbol{w}^t)$ の不偏推定量が得られるようにしたい (i は \mathcal{P}_k から適当に選択されたもの) \leftarrow 勾配降下法などの、目的関数の勾配のみを用いたアルゴリズム (-x) 法; First-order method) に対して求められる性質
- ullet 即ち、以下が成り立って欲しい $(oldsymbol{w}^t$ に足される量が、 $abla f(oldsymbol{w}^t)$ に比例する)

$$\mathbb{E}\left[\sum_{k=1}^{K} \alpha_k \left(\nabla f_i(\boldsymbol{w}) - \nabla f_i(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t)\right)\right] = \nabla f(\boldsymbol{w}^t)$$
 (52)

α_k は次のようにして求められる

$$\mathbb{E}\left[\sum_{k=1}^{K} \alpha_{k} \left(\nabla f_{i}(\boldsymbol{w}) - \nabla f_{i}(\boldsymbol{w}^{t}) + \nabla f(\boldsymbol{w}^{t})\right)\right]$$

$$= \sum_{k=1}^{K} \alpha_{k} \mathbb{E}\left[\nabla f_{i}(\boldsymbol{w}) - \nabla f_{i}(\boldsymbol{w}^{t}) + \nabla f(\boldsymbol{w}^{t})\right]$$

$$\simeq \sum_{k=1}^{K} \alpha_{k} \frac{1}{N_{k}} \sum_{i \in \mathcal{P}_{k}} \left[\nabla f_{i}(\boldsymbol{w}) - \nabla f_{i}(\boldsymbol{w}^{t}) + \nabla f(\boldsymbol{w}^{t})\right]$$
(53)

• $\alpha_k = N_k/N$ とすることで以下を得る

$$= \frac{1}{N} \sum_{k=1}^{K} \sum_{i \in \mathcal{P}_k} \left[\nabla f_i(\boldsymbol{w}) - \nabla f_i(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t) \right] \simeq \nabla f(\boldsymbol{w})$$

• これより、各ノードで計算されたパラメータの差分が、 N_k に比例するように、更新量を調節することが考えられる

$$\mathbf{w}^{t+1} = \mathbf{w}^{t} + \frac{h}{K} \mathbb{E} \left[\sum_{k=1}^{K} \frac{N_{k}}{N} \left(\nabla f_{i}(\mathbf{w}) - \nabla f_{i}(\mathbf{w}^{t}) + \nabla f(\mathbf{w}^{t}) \right) \right]$$
$$= \mathbf{w}^{t} + \frac{h}{K} \frac{N_{k}}{N} \mathbb{E} \left[\sum_{k=1}^{K} \left(\nabla f_{i}(\mathbf{w}) - \nabla f_{i}(\mathbf{w}^{t}) + \nabla f(\mathbf{w}^{t}) \right) \right]$$

- 3 確率的勾配の各次元に対するスケーリング: $oldsymbol{S}_k$
 - 行列 S_k は、 $s_k^j = \phi^j/\phi_k^j$ を対角成分にもつ
 - データ数が $N=10^6$ 、ノード数が $K=10^3$ であるとする
 - 次元 j が非零になるデータは 10^3 個あるが、その全てが、ある 1 つの ノード k に集中しているとする
 - このとき $s_k^j=\phi^j/\phi_k^j=10^{-3}$ であるので、ノード k でパラメータ w が 更新されるとき、次元 j の更新量は 10^3 分の 1 倍される
 - 行列 S_k でスケーリングを行わない場合、ノード k における、次元 j に 対する更新量は、他のノードの 10^3 倍程度になる (或いは、パラメータ w の次元 j は、ノード k でしか更新されない) \Rightarrow パラメータ w の次元 i について、急速に発散してしまう恐れがある
 - パラメータ w の更新に使用する、勾配の (推定量の) 各次元が、大体同じになるように揃える役割 (個人的には、まだよく理解できていない)

- 4 パラメータの差分の各次元に対するスケーリング: $A\left(oldsymbol{w}_k oldsymbol{w}^t
 ight)$
 - 行列 A は、 $a_i = K/\omega_i$ を対角成分にもつ
 - 行列 A の各成分は、 ω_j に反比例している \Rightarrow 次元 j が非零であるデータを持つノード数 ω_j が少ないほど、パラメータ w の次元 j に対する更新量は大きくなる

 $\Rightarrow \omega_j$ が小さいとき、少ないノードから、次元 j に関する情報が伝達されているので、その情報の価値は高い (パラメータ w の次元 j の更新に際して、大いに役立つ情報である) と考えられる (従って更新量を大きくする)

- 4 つの改善のうち、どれが最も効果的であったかは不明であるほか、これらの改善策が、相互に干渉し合うと思われる
- $h_k, \frac{N_k}{N}, S_k, A$ によって、適切なスケーリングを行うことで、各ノード上の訓練データ数のばらつき、データのスパース性などに対処できそうなのは、直感的には分かる

目次

- 最適化アルゴリズムの比較
 - Google+の投稿に、1つ以上のコメントが付くかどうかを予測する、二値分類のタスク
 - L2 正則化項を含めたロジスティック回帰
 - Google+の投稿から作成したデータセットを、実験に使用
 - 各ユーザの投稿が、各ユーザの使うデバイス上に保存されているという 状況を想定
 - 10^2 以上のパブリックな投稿を英語で行っている、 10^4 のユーザをランダムに選択
 - 選択されたユーザの投稿を集めて、そのうちの 75% にあたる N=2,166,693 個を訓練データとした
 - 入力データとなる投稿は Bag-of-words 形式に変換された \Leftarrow (全投稿データを基に得られた) 最頻出単語 20,000 語と、それ以外の 不明な単語の出現回数と、バイアス項を加えたことで、パラメータ数は D=20,002 となった

- 最適化アルゴリズムの比較
 - 各ユーザが投稿する内容は一般に異なるので、各ユーザが保持するデータの特徴も全く異なる
 - ⇒ 各ユーザの投稿内容は、全データの分布内で、クラスタを形成していると考えられる
 - ⇒ 各ユーザの保持するデータは、独立同分布標本とは仮定できない
 - ⇒ もしそのような仮定をすると、全てのユーザが、あらゆる内容の投稿 を満遍なくしていることになる
 - 入力データは Bag-of-words 形式であるから、非常にスパースである
 ⇒ 殆どの投稿は、ごく一部の単語しか含んでいないので、入力データの中で非零になる要素数が少ない
 - ⇒ 殆どの次元は、非零になる (その次元に対応する特徴が出現する) 確率が低い
 - ⇒ 入力データの各特徴の出現確率を、次の図1に示す (不明な単語を表す次元の出現率が高くなっているが、これは実際とは異なる)

Figure 1: Features vs. appearance on nodes. The x-axis is a feature index, and the y-axis represents the number of nodes where a given feature is present.

図 1: 特徴の出現確率のヒストグラム [1]

- 最適化アルゴリズムの比較
 - Google+の投稿に、1つ以上のコメントが付くかどうかを予測する、二値分類のタスク
 - L2 正則化項を含めたロジスティック回帰の、テストデータに対する誤差 (分類誤り)を示す
 - 全ての投稿に対して、コメントが付かない (-1) という予測をすると、 誤差は 33.16%
 - 入力データを全て用いて、通常のロジスティック回帰を行うと、誤差は 26.27%
 - 各ユーザの全ての投稿に対して、同一の予測をすると、誤差は 17.14%
 ⇒ 個々の投稿内容ではなく、誰が投稿しているのかに着目して、コメントが付くかどうかの予測を行った方が、精度が良くなることを示唆 (直感的にもそうである)

- 最適化アルゴリズムの比較
 - 全ユーザで共通のモデルを基に、各ユーザごとにチューニングすることで、精度を向上させられる可能性⇒⇒もし精度が大幅に向上するのであれば、各ノードごとに、異なるデータのパターンが出現していることも確認できる
 - 各最適化アルゴリズムでの性能比較を行う
 - 提案手法 (Federated SVRG; Algorithm 7) のハイパーパラメータは、ステップサイズ h のみであるが、性能が最も良くなるものを選んだ

- 最適化アルゴリズムの比較
 - オフラインアルゴリズムで得られる最大の性能 (OPT)、勾配降下法 (GD)、CoCoA+アルゴリズム (詳細は略)、Federated SVRG アルゴリズム (FSVRG)、ランダムにデータをシャッフルした上で行う Federated SVRG(FSVRGR) の性能を比較
 - GD: 個々のノードが、自身が持つ訓練データを全て使って、勾配降下法を 行っている
 - CoCoA+: このスライドでは省略
 - FSVRG: この論文における提案手法
 - FSVRGR: 各ノードが保持するデータ数は変化させない (ばらつきは維持する) が、データを一旦全て集めて、ランダムにシャッフルした上で、個々のノードに戻している (各ノードが保持するデータが IID ではなくても、FSVRG アルゴリズムが動作することを示すために用意してある)
 - 目的関数の推移、またはテストデータに対する分類誤差の推移を縦軸 に、そして各デバイスと中央のサーバとの一連のやり取り (Round) の回 数を横軸に取ったグラフを、次の図 2 に示す

Figure 2: Rounds of communication vs. objective function (left) and test prediction error (right).

図 2: 最適化アルゴリズムの性能比較 [1]

- 最適化アルゴリズムの比較
 - FSVRG は、僅か 30 回程度の Round で収束しており、Federated
 Optimization における課題を最初に解決したアルゴリズムといえる
 - ⇒ CoCoA+や、それ以外の通信効率の良い (Communication-Efficient) 分散アルゴリズムでも、収束していない (学習が上手く行っていない)
 - ⇒ 学習が上手く行かないのは、他のアルゴリズムでは、全てのデバイスが独立同分布なデータをもつと仮定しているため
 - FSVRG と FSVRGR の結果の差はごく僅かであり、Naive Federated SVRG を改良することで、各デバイスが持つデータの分布に左右されない (ロバストな) アルゴリズムを得られた

目次

結論

- Federated Learning の特徴
 - Massively Distributed、Non-IID、Unbalanced、Privacy Sensitive、 Sparse の 5 つが挙げられる
 - これらの性質をもつ厳しい環境下においても、効率的に学習が進むアルゴリズムを設計可能
- 今後の研究の方向性について
 - 非同期版のアルゴリズムの開発や、アルゴリズムの理論的な解明 (特に 収束性)
 - 非凸関数の最適化 (ニューラルネットが代表例) についての理論的な解明
 - 全ユーザ間で共有されるモデルと、個々のユーザに特化したモデル双方 の活用

参考文献

[1] Jakub Konecný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik.

Federated optimization: Distributed machine learning for on-device intelligence.

arXiv:1610.02527, 2016.

[2] Pradeep Ravikumar.

Stochastic optimization methods.

http://www.cs.cmu.edu/~pradeepr/convexopt/Lecture_Slides/stochastic_optimization_methods.pdf, 2017.

[3] Suzuki Taiji.

機械学習におけるオンライン確率的最適化の理論.

https://www.slideshare.net/trinmu/stochasticoptim2013, 2013.