西元 2014 年 12 月我們把真正的硬幣近似成一個無厚度的圓面,並且此圓面由許多扇形三角形組成,每個扇形三角形的張角為 θ ,我們知道,當 θ 取很小時,此近似就會接近一個真正的正圓。

這樣的話,當硬幣在滾動時,就相當是與地面的接觸點在眾多扇形三角形的鈍頂點 變化變換的一個運動。

我們考慮此近似下的一小部分轉動,也就是與地面接觸點從一個鈍頂點變換到下一個鈍頂點的運動,這也是構成整的硬幣滾動的基礎轉動,當 θ 夠小,這一步的轉動也可視為一微小轉動。接著,我們再把這一個微小轉動分成三個步驟,這三個步驟也是三個轉動,因為考慮到微小轉動向量加法的可交換性 (associative),我們選擇一特定順序並且沿著彼此互垂的三個轉軸的三個轉動,以便我們使用尤拉方程中的貼體角速度來做數值模擬。

以下就為這三步驟轉動作詳細描述:

- 1. 第一步先沿著 CP_0CM_0 軸轉,轉到 $cirCP_1$ 觸地為止,轉動的速率為沿 body \hat{y}_0 的 角速度 ω_y ,跟上一章一樣我們會以下一步的時間 t_1 來近似,即 $\omega_y(t_1)$ 。
- 2. 設 $cirCP_1$ 觸地位置為 CP_0' · 由於 $cirCP_1$ 已觸地 · 接下來代表三角形在 CP_0 的端點會被抬起 · 因此這一步我們考慮三角扇形沿著 $CP_0'CM_0$ 軸轉動 · 由於當我們取微小轉動時 · 轉動的接觸點的速度在觸地前後是連續而且平滑的 · ,因此我們可以近似此部分沿著 $CP_0'CM_0$ 轉動的角速度為觸地前沿著 CP_0CM_0 轉動的角速度 · 即 $\omega_y(t_1)$ 。以上兩部分歷經 2dt 時間 · 分別沿著兩個軸 、兩個接觸點 、及角速度近似為相同的轉動後 · 此時扇形三角形 (或硬幣) 在 $\hat{y}_0\hat{x}_1$ 平面。
- 3. 接著硬幣沿著 body \hat{z}_0' 軸轉,這只會造成 \hat{x}_0' 方向上的平移,接觸點 CP_0' 平移到 CP_1 ,質心 CM_0 到 CM_0' ,這步驟的角速度為 $\omega_{z0}(t_1)$,注意我們還是取下一時間 t_1 時間的角速度近似值。 \mathfrak{c} 由於當 θ 取極限小後,硬幣在這一步的轉動具有 CMCP 軸總是與地面的接觸點切線方向垂直的特性,因此這裡我們不細探此轉動過程,而做這一簡化。若要更仔細,我們也是可以再考慮三角形沿中心點鈍角 CP_0' 點及 z_0' 軸轉動,直到三角型另一鈍點觸地,此點為 CP_1 ,接著三角形以 CP_1 為中心點, z_1 軸為轉軸, CP_0' 點抬起,到 $CM_0'CP_1$ 與 x_1 垂直。不過我們可以先看看我們的簡化表現如何。 \mathfrak{c} 注意我們都是用下一時刻 t_{i+1} 的時間來做 t_i 到 t_{i+1} 時轉動。)
- 4. 然後沿著 x_0' 軸以 $\omega_{x_0'}$ 角速度轉 C_0' 軸轉到 C_1 。此步描述硬幣的高度變化。
- 5. 這樣完成一次 $t_0 {\sim} t_1$ 的轉動,接著重複以上來達成 $t_1 {\sim} t_2$ 轉動。

在假設硬幣為扇形的狀態下,我們必須先討論一個狀況,假設硬幣只沿著 $\overline{CP_0CM_0}$ 轉動,且我們考慮轉動到 CP_0CP_1 兩點都觸地為止,見圖??,原本硬幣在 $\Delta CP_0CM_0cirCP_1$ 平面,轉動後硬幣在 $\Delta CP_0CM_0CP_1$ 平面。我們想要將 CP_1 的位置表達成我們已知參數的函數,更重要的是,我們要知道 CP_1 的位置與沿著 $\overline{CP_0CM_0}$ 軸的貼體轉動角速度的關係。若假設 $\overline{CP_0CP_1}$ 與 \hat{x}_0 的夾角為 α 光 \overline{X} \overline{X}

$$\cos\left(\phi\right) = \frac{\cos\left(\alpha\right)}{\cos\left(\frac{\theta}{2}\right)}$$

並且

$$\sin\left(\alpha\right) = \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\beta\right)}$$

¹這邊需要一點解釋或引用。

 $^{^2}$ 若從 $cirCP_1 imes CP_1$ 分別作垂線至 $\overline{CP_0CM_0} \cdot \phi$ 即為兩垂線的夾角,見圖。