5G WIRELESS TECHNOLOGIES

Timing Recovery

Deniss Kolosovs Deniss.Kolosovs@rtu.lv

Riga Technical university

27th April 2021

Operations to perform in analog domain

Transmitter

Tasks for the transmitter:

- Digital-analog conversion;
- Smoothing-filter application;
- Quadrature modulation;
- Power amplification.

27th April 2021 2 / 42

Operations to perform in analog domain

Receiver

Tasks for the receiver:

- Low-noise amplification;
- Automatic gain control;
- Image channel suppression and mixig (if necessary);
- Quadrature demodulation: <u>r(t)</u>
- Double-frequency component suppression;
- Anti-aliasing filter application;
- Analog-to-digital conversion.

27th April 2021 3 / 42

Operations to perform in digital domain

- Tasks for the transmitter:
 - User data mapping to symbols and zeros insertion;
 - Pulse-shaping filtration;
 - Pre-distortions.
- Tasks for the receiver:
 - Distorting effect mitigation;
 - Timing and carrier recovery;
 - Matched filtration;
 - Detection.

27th April 2021 4 / 42

Timing recovery

Reason and compensation objectives

Time processes to be reconstructed:

- FPGA clock phase and frequency;
- Symbol position among other samples.

The difference in clock frequencies means:

- Data generation and acquision are performed with different frequencies;
- ADC and DAC are clocked with different clocks:
- Different sampling frequencies.

Usually, the difference is small (5–50ppm), but recovery is needed!

27th April 2021 5 / 42

Timing recovery

Visual evidences

- In time domain, the signal is either shrinked or expanded—well visually witnessable from the timing diagrams of I(t) and Q(t). **Draw sampling process!**
- On constellation, appears as noisy points or a complete ravel.
- Considering frequency response, from the properties of the Fourier transform:

$$s(t) \Leftrightarrow \dot{S}(\omega)$$

$$s(at) \Leftrightarrow \frac{1}{a}\dot{S}\left(\frac{\omega}{a}\right).$$

Thus, the spectrum becomes wider or narrower.

• Definetely needs to be recovered! Performed in the modem, combined with the slicing procedure (because of the cost function).

27th April 2021 6 / 42

Problem definition

Assume n-th baseband sample x[n] should be delayed by $\tau[n]$. Depending on the form of $\tau[n]$, the following situations are possible:

- Constant integer delay $\tau[n] = t_0 \mod K \in \mathbb{Z}$, where K is number of samples per symbol. Implies wrong sample symbol assumption as a symbol.
- Constant fractional delay $\tau[n] = t_0 < 1$ is a constant phase shift between transmitter and receiver clock signal generators.
- Linearly growing delay $\tau[n] = f_0 n$ describes the frequency difference f_0 between transmitter and receiver generators.
- Stochastic delay $\tau[n] = w[n]$ denotes frequency jitter.

Objective: introduce time-varying fractional delay $\tau[n]$ into a signal.

27th April 2021 7 / 42

Simulation model

The reason for the distortion is the clock signal differences.

- Perform generation, transition D/A and A/D with different clocks. Shows the essence of the phenomenon, though impractical in simulation.
- Emulate this process resampling signal in a simulation model. Accurate theoretical model, but too calculation-consuming; non-real-time approach.
- Linear interpolation between samples (coefficients α and $1-\alpha$) in baseband. Simple implementation, but too inaccurate.

Objective clarification: Accurate interpolation (equivalent to the time shift) in baseband.

27th April 2021 8 / 42

Linear interpolation

- Assume we have a discrete signal y[n], which corresponds to continuous-time signal y(t);
- To calculate signal's value at $t = n + \tau$, $(\tau < 1)$, one can use linear interpolation:

$$y(n-\tau) = (1-\tau)y[n] + \tau y[n-1];$$

- Filter-like structure;
- Frequency response—narrow-band low-pass filter. Inaccurate for wide-band signals, which have meaningful components near the Nyquist frequency.

27th April 2021 9 / 42

Ideal filter

- An interpolation output can be considered an FIR filter;
- Ideal filter is the one that ensures the signal recovery in the analog domain:

$$y(t) = \sum_{n = -\infty}^{\infty} y(nT)h_{id}(t - nT),$$

where T is a sampling step;

 To obtain an analog signal, the signal should be passed through square pulse; therefore,

$$h_{id}(t) = \operatorname{sinc}\left(\frac{\pi t}{T}\right).$$

Digital-to-analog conversion

• Substituting ideal filter impulse response into convolution expression:

$$y(t) = \sum_{n=-\infty}^{\infty} y(nT) \operatorname{sinc}\left(\frac{\pi}{T}(t-nT)\right);$$

- In the time domain, the recovered signal is a weighted sum of sinc-functions;
- Gives us a possibility to calculate values in between samples;
- Needs infinite sum of sinc-functions—can not be implemented in a real-world application.

27th April 2021 11 / 42

Delay filter I

Requirements for ideal delay filter:

- Constant amplitude-frequency response in range $(-f_N, f_N)$, i.e., square filter;
- Linear phase-frequency response with the slope $-2\pi\tau$.

That leads to:

• The requency response has only a phase-frequency component:

$$H_{id}(f) = e^{j\varphi(f)} = e^{-j2\pi f\tau};$$

• Group delay is equal:

$$\tau_g(f) = -\frac{1}{2\pi} \frac{\mathrm{d}\varphi(f)}{\mathrm{d}f} = \tau.$$

Delay filter II

 The frequency response has only a phase-frequency component

$$H_{id}(f) = e^{j\varphi(f)} = e^{-j2\pi f\tau};$$

From the Fourier transfrom properties:

$$s(t) \Leftrightarrow \dot{S}(\omega)$$

$$s(t-\tau) \Leftrightarrow \dot{S}(\omega) e^{-j\omega\tau};$$

• Thus, an impulse response of the ideal fractional delay τ filter is:

$$h(t) = \operatorname{sinc}\left(\frac{\pi(t-\tau)}{T}\right).$$

Nyquist filter

• Instead, we can use any Nyquist filter with a band wider than the signal:

$$h(nT) = \begin{cases} 1; & n = 0 \\ 0; & n \neq 0 \end{cases}$$

• Truncation of sinc-function to N samples:

$$y(t) = \sum_{n=-N/2}^{N/2-1} y(nT) \operatorname{sinc}\left(\frac{\pi}{T}(t-nT)\right);$$

• Windowed w(n) sinc-function:

$$y(t) = \sum_{n=-N/2}^{N/2-1} y(nT)w(n-\tau)\operatorname{sinc}\left(\frac{\pi}{T}(t-nT)\right).$$

Kaiser-Windowed Sinc Transform

Lagrange polynomial

- Polynomial interpolation for which N-th order polynomial interpolates N+1 points—zero-delay corresponds to the point itself;
- Assume we have N+1 points: $(x_0,y_0),\ldots,(x_j,y_j),\ldots,(x_k,y_k)$;
- The task is to find <u>unique</u> set of polynomials of the order N, which interpolates y(x) in a form of linear combination:

$$y(x) = \sum_{j=0}^{k} y_j \ell_j(x),$$

where $\ell_i(x)$ is a Langrage polynomial:

$$\ell_j(x) = \prod_{\substack{0 \le m \le k \\ m \ne j}} \frac{x - x_m}{x_j - x_m} = \frac{(x - x_0)}{(x_j - x_0)} \cdots \frac{(x - x_{j-1})}{(x_j - x_{j-1})} \frac{(x - x_{j+1})}{(x_j - x_{j+1})} \cdots \frac{(x - x_k)}{(x_j - x_k)}.$$

27th April 2021 15 / 42

Lagrange polynomial properties

• The *j*-th Langrage polynomial:

$$\ell_j(x) = \prod_{\substack{0 \le m \le k \\ m \ne j}} \frac{x - x_m}{x_j - x_m};$$

• The numerator is 0 for all $j \neq k$, i.e.,

$$\ell_k(x_j) = \begin{cases} 1; & j = k \\ 0; & j \neq k \end{cases};$$

- For equally spaced samples x_k and infinite N, becomes a sinc-function;
- In this case, the value of $\ell_k(x)$ is equal to $\operatorname{sinc}(x-x_k)$;
- Maximally flat at DC.

Lagrange polynomial 4th order

Order 4 Amplitude Response Over a Range of Fractional Delays

Order 4 Phase Delay Over a Range of Fractional Delays

Lagrange polynomial 5th order

Order 5 Amplitude Response Over a Range of Fractional Delays

Order 5 Phase Delay Over a Range of Fractional Delays

 $\Delta = 2.0 \colon\! 0.1 \colon\! 3.0$ plus 2.495 and 2.505

Interpolation FIR filter I

- Assume samples are spaced with T, i.e., with sampling step;
- An interpolated value of y(t) is equal to:

$$y(n+\tau) = \sum_{k=0}^{K} y(nT)\ell_k(\tau) = \sum_{k=0}^{K} y(nT)h_{\tau}(k),$$

where the impulse response is equal to:

$$h_{\tau}(n) = \prod_{\substack{k=0\\k\neq n}} \frac{\tau - k}{n - k};$$

• FIR filter structure:

27th April 2021

Interpolation FIR filter II

• The impulse response is equal to:

$$h_{\tau}(n) = \prod_{\substack{k=0\\k\neq n}} \frac{\tau - k}{n - k};$$

• Calculating coefficients:

Order	$h_{ au}(0)$	$h_{\tau}(1)$	$h_{\tau}(2)$	$h_{\tau}(3)$
N=1	1- au	au		
N=2	$\frac{(\tau-1)(\tau-2)}{2}$	- au(au-2)	$\frac{\tau(\tau-1)}{2}$	
N=3	$-\frac{(\tau-1)(\tau-2)(\tau-3)}{6}$	$\frac{\tau(\tau-2)(\tau-3)}{2}$	$-\frac{\tau(\tau-1)(\tau-3)}{2}$	$\frac{\tau(\tau-1)(\tau-2)}{6}$

• Create coefficients calculating function in Matlab.

Optimization idea

• The impulse response can be expressed as:

$$h_{\tau}(n) = \sum_{m=0}^{N_c} c_n(m) \tau^m;$$

Then z-transform is:

$$H_{\tau}(z) = \sum_{n=0}^{N_h} h_{\tau} z^{-n} = \sum_{n=0}^{N_h} \left[\sum_{m=0}^{N_c} c_n(m) \tau^m \right] z^{-n} = \sum_{m=0}^{N_c} \left[\sum_{n=0}^{N_h} c_n(m) z^{-n} \right] \tau^m = \sum_{m=0}^{N_c} C_m(z) \tau^m;$$

Applying Horner's method:

$$Y_{\tau}(z) = X(z) \sum_{n=0}^{N_c} C_m(z) \tau^m = C_0(z) X(z) + \tau \left[C_1(z) X(z) + \tau \left[\cdots + \tau C_{N_c - 1}(z) X \right] \right].$$

27th April 2021 21 / 42

Filter structure

• The output of the Farrow structure is:

$$Y_{\tau}(z) = X(z) \sum_{m=0}^{N_c} C_m(z) \tau^m = C_0(z) X(z) + \tau \left[C_1(z) X(z) + \tau \left[\cdots + \tau C_{N_c - 1}(z) X \right] \right];$$

• The structure of the Farrow filter:

27th April 2021 22 / 42

Polynomial calculation

• Polynomial $C_m(z)$ coefficients can be calculated from:

$$z^{-\tau} = \sum_{m=0}^{N_c} C_m(z) \tau^m \text{ for } \tau = 0, \dots N_c;$$

• Constructing system of the linear equations in matrix form MC = z for $N_c = 2$:

$$\begin{bmatrix} C_0(z)0^0 + C_1(z)0^1 + C_2(z)0^2 \\ C_0(z)1^0 + C_1(z)1^1 + C_2(z)1^2 \\ C_0(z)2^0 + C_1(z)2^1 + C_2(z)2^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} C_0(z) \\ C_1(z) \\ C_2(z) \end{bmatrix} = \begin{bmatrix} 1 \\ z^{-1} \\ z^{-2} \end{bmatrix};$$

• Polynomicals C(z) can be found as:

$$C = M^{-1}MC = M^{-1}z$$
:

• As a result, our goal is simply to calculate inverse matrix M^{-1} !

Filter construction

• Calculating inverse matrix, obtain:

$$\mathbf{M}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -3/2 & 2 & -1/2 \\ 1/2 & -1 & 1/2 \end{bmatrix};$$

• Thus, polynomials are:

$$C_0(z) = 1;$$

$$C_1(z) = -\frac{3}{2} + 2z^{-1} - \frac{1}{2}z^{-2};$$

$$C_2(z) = \frac{1}{2} - z^{-1} + \frac{1}{2}z^{-2};$$

• Recall, filter's frequency response is in the form:

$$H_{\tau}(z) = \sum_{n=0}^{N_c} C_m(z) \tau^m \text{ for } \tau = 0, \cdots N_c.$$

Modified Farrow filter

- For our implementation, there were no restrictions on τ value, i.e., $\tau \in (0, N_c)$;
- Let us limit its range to $\tau \frac{N_c + 1}{2} \in (0, 1)$;
- It can be done (without proof), introducing a transformation matrix **T**, whose each element is defined as:

$$T_{n,m} = \begin{cases} \left\lceil \frac{N_c}{2} \right\rceil^{n-m} \binom{n}{m} & \text{if } n \geqslant m \\ 0 & \text{if } n < m; \end{cases}$$

- To apply the transformation, we have to substitute M^{-1} by TM^{-1} ;
- For the $N_c=2$ polynomials order example, we have:

$$\mathbf{T}\mathbf{M}^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ -3/2 & 2 & -1/2 \\ 1/2 & -1 & 1/2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \\ 1/2 & -1 & 1/2 \end{bmatrix}.$$

Original Farrow filter vs Modified Farrow filter

27th April 2021 26 / 42

3rd order example

 Matrix of the polynomials' coefficients:

$$\mathbf{T}\mathbf{M}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & -\frac{1}{6} \\ \frac{1}{2} & -1 & \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{6} \end{bmatrix}$$

Phase difference

- Positive constant phase shift τ :
 - Apply filter of order N that implements delay τ;
 - Delete N/2 first output signal samples to compensate filter's integer delay;
- Negative constant phase shift τ :
 - Apply filter of order N that implements delay 1τ ;
 - Delete N/2-1 first output signal samples to compensate filter's integer delay;
- Positive/negative frequency difference.

27th April 2021 28 / 42

Frequency difference

 Calculate unique delay (and filter) for each sample:

$$\tau[n] = f_0 n \mod 1;$$

- Apply different filters at each clock cycle;
- At the phase jumps:
 - For higher frequency (lower period), use the same inputs twice;
 - For lower frequency (higher period), skip current input sample set;
- Delete N/2 first output signal samples to compensate filter's integer delay.
- Draw increments and see in Matlah

27th April 2021 29 / 42

Lower frequency example

							•				
phi =											
0	0.2300	0.4600	0.6900	0.9200	0.1500	0.3800	0.6100	0.8400	0.0700	0.3000	0.5300
ans =											
0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000
X =	1 1007	1 0400	0.5700	0.5070	0.7546	0.1000	0.4101	0.4040	1 1000	1 1664	0.7600
0.3166	1.1867	1.2422	-0.5702	-0.5873	-0.7546	0.1898	-0.4181	-0.4842	1.1303	-1.1664	0.7609
y =											
0.3166	1.1867 0.3166	1.2422	-0.5702 1.2422	-0.5873 -0.5702	-0.7546 -0.5873	0.1898 -0.7546	-0.4181 0.1898	-0.4842 -0.4181	1.1303	-1.1664 1.1303	0.7609 -1.1664
0	0.3100	0.3166	1.1867	1.2422	-0.5702 1.2422	-0.5873 -0.5702	-0.7546 -0.5873	0.1898	-0.4181 0.1898	-0.4842 -0.4181	1.1303
O	0	0	0.3100	1.100/	1.2422	-0.5702	-0.56/5	-0.7546	0.1090	-0.4101	-0.4042
ans =											
0.3166	1.1867 0.3166	1.2422	-0.5702 1.2422	-0.5873 -0.5702	0.1898 -0.7546	-0.4181 0.1898	-0.4842 -0.4181	-1.1664 1.1303	0.7609 -1.1664	0.7950 0.7609	-1.4576 0.7950
0	0	0.3166	1.1867	1.2422	-0.5873 -0.5702	-0.7546 -0.5873	0.1898	-0.4842 -0.4181	1.1303	-1.1664 1.1303	0.7609 -1.1664
•	•		0.5100	1.1007	0.5/02	0.50/5	0.7540	0. 1101	0.1042	1.1303	1.1004

27th April 2021

Higher frequency example

phi =	0	0.7100	0.4200	0.1300	0.8400	0.5500	0.2600	0.9700	0.6800	0.3900	0.1000	0.8100
ans =	0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	1.0000
x =	3359	-1.8788	1.2296	0.9412	-1.1044	0.1236	-0.7855	-1.7368	-0.1915	-0.2251	1.0809	-1.0540
y = 0.	3359 0 0	-1.8788 0.3359 0	1.2296 -1.8788 0.3359 0	0.9412 1.2296 -1.8788 0.3359	-1.1044 0.9412 1.2296 -1.8788	0.1236 -1.1044 0.9412 1.2296	-0.7855 0.1236 -1.1044 0.9412	-1.7368 -0.7855 0.1236 -1.1044	-0.1915 -1.7368 -0.7855 0.1236	-0.2251 -0.1915 -1.7368 -0.7855	1.0809 -0.2251 -0.1915 -1.7368	-1.0540 1.0809 -0.2251 -0.1915
ans =												
0.	3359 0 0 0	0.3359 0 0 0	-1.8788 0.3359 0	1.2296 -1.8788 0.3359	0.9412 1.2296 -1.8788 0.3359	0.9412 1.2296 -1.8788 0.3359	-1.1044 0.9412 1.2296 -1.8788	0.1236 -1.1044 0.9412 1.2296	-0.7855 0.1236 -1.1044 0.9412	-0.7855 0.1236 -1.1044 0.9412	-1.7368 -0.7855 0.1236 -1.1044	-0.1915 -1.7368 -0.7855 0.1236

27th April 2021

Main dynamic system construction stages

The following requirements must be fulfilled to create a dynamic system:

- Define a way how to compensate a distortion if its amount in the signal is static precisely known—compensation application;
- Understand how distortion affects a signal and find a mathematical expression that shows the consequences of its presence—cost function;
- Find an algorithm to calculate an amount of compensation from the cost function—compensation algorithm.

27th April 2021 32 / 42

Timing recovery block implementation

- Goal: recover samples that correspond to symbols and create a marker that indicates which one is a symbol;
- Correction application: interpolation and skip-sample management;
- Cost function:
 - Gardner algorithm;
 - Early-late algorithm;
 - Band-edge-based cost function.
- Compensation algorithm derivation uses a stochastic gradient approach.

27th April 2021 33 / 42

Gardner scheme

Cost function definition

• An application of the correction looks like:

$$y[n] = f(x[n], \tau[n-1]) = x[n-\tau[n-1]];$$

• Cost function that minimizes error at the moment of the transition between symbols y[n]:

$$J[n] = E\left[\left(y[n] - \hat{y}[n] \right)^2 \right]$$

• Then increment of the delay value $\tau[n]$ is expressable through:

$$\tau[n] = \tau[n-1] - \mu \frac{\mathrm{d}J[n]}{\mathrm{d}\tau[n-1]} =$$

$$= \tau[n-1] + 2\mu(y[n] - \hat{y}[n])y'[n]$$

Gardner scheme

Timing error explanation

- The output of the dynamic block at time moment n is y[n]; previous and next samples are y[n-1] and y[n+1], correspondingly;
- The cost function in the case of $\hat{y}[n] = 0$ is a multiplication of the sample and its derivative:

$$e[n] = y[n]y'[n];$$

 As the precise value is not known, we approximate it:

$$e[n] \simeq y[n](y[n+1] - y[n-1]).$$

Gardner scheme

Timing error examples

- If sampling moment corresponds to transition through zero (y[n] = 0), error also is equal to zero e[n] = 0;
- If sampling moment advances transition through zero, derivative and sampling result are of different signs, and error is negative e[n] < 0;
- If sampling moment is delayed after transition through zero, derivative and sampling result is of the same sign, and error is positive e[n]>0.

27th April 2021 36 / 42

Early-late detector

Timing error examples

- Goal is to find place in the signal, where derivative is zero;
- Symbol point is y[n]—compare to Gardner scheme:
- Cost function approximation:

$$\frac{\mathrm{d} y^2[n]}{\mathrm{d} \tau[n-1]} \simeq \frac{y^2[n+1]-y^2[n-1]}{2};$$

• In this way, instantaneous delay is:

$$\tau[n] = \tau[n-1] - \mu \frac{y^2[n+1] - y^2[n-1]}{2}.$$

27th April 2021

Application to QAM timing recovery

- In the case of PAM, process signal; in the case of QAM—absolute values;
- Mueller–Müller algorithm for only symbols—not covered in this course;
- Gardner scheme cost function and decision-aided recovery;
- The cost function tracks symbol position y[n], not a sample between symbols;
- A value $\hat{y}[n] \neq 0$ now is not equal to zero;
- Error function becomes:

$$e[n] \simeq (y[n] - \hat{y}[n])(y[n+1] - y[n-1])$$

27th April 2021

Band-edge cost function

Idea

- In parallel to the data flow, it is possible to introduce additional processing;
- At the frequency that corresponds to the symbols sequence, there is information on the data rate, but no data itself;
- Filter out the edge of the signal frequency band.

27th April 2021 39 / 42

Band-edge cost function

Application

- Maximal value corresponds to the symbol; zero—to the transition;
- Symmetrical pulses;
- Use early-late algorithm;
- Advantage: detection is not needed, there are no wrong adjustments;
- Drawbacks: either noisy or high latency; additional circuitry.

27th April 2021 40 / 42

Binary symbol synchronization

- Cost function is equality of two strobes;
- Distance from the rising edge of the early strobe to the falling edge of the late strobe must be equal to the bit duration;
- If rising edges of bit and early strobe coincide, strobe values are equal—correct synchronization;
- If rising edges of bit and early strobe do not coincide, strobe values are different—control sign to move to the correct direction:
- Direction is dependent on the bit value.

27th April 2021 41 / 42

Tracking controller

- In the steady-state—no changes;
- Different frequency requires constantly rising/falling delay $\tau[n]$;
- Use PI (proportional and integral) controller;
- TED—time error discriminator:
- PI controller consists of proportional α and integral β branches;
- Intergral accumulator and $\tau[n]$ containin accumulator describe frequency differenc

27th April 2021 42 / 42