S1. Cost assumptions

Table S1: Overnight investment cost assumptions per technology and year. All costs are given in real 2015 money.

Technology	Unit	2020	2025	2030	2035	2040	2045	2050	source
Onshore Wind	€/kW	1118	1077	1035	1006	977	970	963	[1]
Offshore Wind	€/kW	1748	1660	1573	1510	1447	1431	1415	[1]
Solar PV (utility-scale)	€/kW	529	452	376	352	329	315	301	[1]
Solar PV (rooftop)	€/kW	1127	955	784	723	661	600	539	[<mark>2</mark>]
OCGT	€/kW	453	444	435	429	423	417	411	[1]
CCGT	€/kW	880	855	830	822	815	807	800	[1]
Coal power plant	$€/kW_{el}$	3845	3845	3845	3845	3845	3845	3845	[3]
Lignite	$€/kW_{el}$	3845	3845	3845	3845	3845	3845	3845	[3]
Nuclear	\in /kW _{el}	7940	7940	7940	7940	7940	7940	7940	[3]
Reservoir hydro	€/k W_{el}	2208	2208	2208	2208	2208	2208	2208	[4]
Run of river	€/kW _{el}	3312	3312	3312	3312	3312	3312	3312	[4]
PHS	€/k W_{el}	2208	2208	2208	2208	2208	2208	2208	[4]
Gas CHP	€/kW	590	575	560	550	540	530	520	[1]
Biomass CHP	\in /kW _{el}	3381	3295	3210	3135	3061	2986	2912	[1]
HVDC overhead	€/MWkm	400	400	400	400	400	400	400	[5]
HVDC inverter pair	€/MW	150000	150000	150000	150000	150000	150000	150000	[5]
Battery storage	€/kWh	232	187	142	118	94	84	75	[1]
Battery inverter	€/kW	270	215	160	130	100	80	60	[1]
Home battery storage	€/kWh	323	264	202	169	136	122	108	[1, 6]
Home battery inverter	€/kW	377	303	228	186	144	115	87	[1, 6]
Electrolysis	$€/kW_{el}$	650	550	450	375	300	275	250	[1]
Fuel cell	€/k W_{el}	1300	1200	1100	1025	950	875	800	[1]
H ₂ storage underground	€/kWh	3.0	2.5	2.0	1.8	1.5	1.4	1.2	[1]
H ₂ storage tank	USD/kWh	11	11	11	11	11	11	11	[1, 7]
direct air capture	\in /(tCO ₂ /h)	7000000	7000000	6000000	5500000	5000000	4500000	4000000	[1]
Methanation	\in /kW $_{CH4}$	278	278	278	252	226	226	226	[8]
Central gas boiler	\in /kW _{th}	60	55	50	50	50	50	50	[1]
Domestic gas boiler	$€/kW_{th}$	312	304	296	289	282	275	268	[1]
Central resistive heater	\in /kW _{th}	70	65	60	60	60	60	60	[1]
Domestic resistive heater	\in /kWh _{th}	100	100	100	100	100	100	100	[9]
Central water tank storage	€/kWh	0.6	0.6	0.5	0.5	0.5	0.5	0.5	[1]
Domestic water tank storage	€/kWh	18	18	18	18	18	18	18	[1, 10]
Domestic air-sourced heat pump	$€/kW_{th}$	940	895	850	827	805	782	760	[1]
Central air-sourced heat pump	\in /kW $_{th}$	951	951	856	856	856	856	856	[1]
Domestic ground-sourced heat pump	€/k W_{th}	1500	1450	1400	1350	1300	1250	1200	[1]
CO ₂ capture in CHP	\in /(tCO ₂ /h)	3300000	3000000	2700000	2550000	2400000	2200000	2000000	[1]
Fischer-Tropsch	€/kW _{FT} /a	2100	1850	1600	1350	1100	1000	900	[1]
Steam Methane Reforming	\in /kW $_{CH4}$	540	540	540	540	540	540	540	[11]
Steam Methane Reforming with CC	€/kW $_{CH4}$	1032	1032	1032	1032	1032	1032	1032	[11]

Supplemental References

- [1] Technology Data for Generation of Electricity and District Heating, update November 2019, Tech. rep., Danish Energy Agency and Energinet.dk (2019).
- URL https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-generation-electricity-and [2] E. Vartiainen, G. Masson, C. Breyer, The true competitiveness of solar PV: a European case study, Tech. rep., European Technology and Innovation Platform for Photovoltaics (ETIP) (2017).
 - $\label{localizations} \begin{tabular}{ll} URL \ http://www.etip-pv.eu/fileadmin/Documents/ETIP_PV_Publications_2017-2018/LC0E_Report_March_2017.pdf \end{tabular}$
- [3] Lazard's Levelized Cost of Energy Analysis, version 13.0.
 - URL https://www.lazard.com/media/451086/lazards-levelized-cost-of-energy-version-130-vf.pdf
- [4] A. Schröeder, F. Kunz, F. Meiss, R. Mendelevitch, C. von Hirschhausen, Current and prospective costs of electricity generation until 2050, Data Documentation, DIW 68. Berlin: Deutsches Institut. URL https://www.econstor.eu/handle/10419/80348
- [5] S. Hagspiel, C. Jägemann, D. Lindenberger, T. Brown, S. Cherevatskiy, E. Tröster, Cost-optimal power system extension under flow-based market coupling, Energy 66 (2014) 654–666. doi:10.1016/j.energy.2014.01.025. URL http://www.sciencedirect.com/science/article/pii/S0360544214000322

Table S2: Efficiency, lifetime and FOM cost per technology (values shown corresponds to 2020).

Technology	FOM ^a [%/a]	Lifetime [a]	Efficiency	Source
Onshore Wind	1.2	27		[1]
Offshore Wind	2.3	27		[1]
Solar PV (utility-scale)	1.6	35		[1]
Solar PV (rooftop)	1.2	30		[2]
OCGT	1.8	25	0.4	[1]
CCGT	3.3	25	0.56	[1]
Coal power plant	1.6	40	0.33	[3]
Lignite	1.6	40	0.33	[3]
Nuclear	1.4	40	0.33	[3]
Reservoir hydro	1.0	80	0.9	[4]
Run of river	2.0	80	0.9	[4]
PHS	1.0	80	0.75	[4]
Gas CHP	3.3	25		[1]
Biomass CHP	3.6	25		[1]
HVDC overhead	2.0	40		[5]
HVDC inverter pair	2.0	40		[5]
Battery storage		20		[1]
Battery inverter	0.2	10	0.95	[1]
Home battery storage		20		[1, 6]
Home battery inverter	0.2	10	0.95	[1, 6]
Electrolysis	2.0	25	0.66	[1]
Fuel cell	5.0	10	0.5	[1]
H ₂ storage underground	0.0	100		[1]
H ₂ storage tank		20		[1, 7]
direct air capture	5.0	20		[1]
Methanation	4.0	30	0.8	[8]
Central gas boiler	3.2	25	1.03	[1]
Domestic gas boiler	6.6	20	0.97	[1]
Central resistive heater	1.5	20	0.99	[1]
Domestic resistive heater	2.0	20	0.9	[9]
Central water tank storage	0.5	20		[1]
Domestic water tank storage	1.0	20		[1, 10]
Water tank charger/discharger			0.84	- · ·
Domestic air-sourced heat pump	3.0	18		[1]
Central air-sourced heat pump	0.2	25	3.4	[1]
Domestic ground-sourced heat pump	1.8	20		[1]
CO ₂ capture in CHP	3.0	25		[1]
Fischer-Tropsch	3.0	25	0.65	[1]
Steam Methane Reforming	5.4	25	0.74	[11]
Steam Methane Reforming with CC	5.4	25	0.67	[11]

 ^a Fixed Operation and Maintenance (FOM) costs are given as a percentage of the overnight cost per year.
 ^b Hydroelectric facilities are not expanded in this model and are considered to be fully amor-

tized.

^c Coefficient of performance (COP) of heat pumps is modelled as a function of temperature, as described in the text.

Table S3: Costs and emissions coefficient of fuels.

Fuel	$\operatornamewithlimits{Cost}_{[\in/MWh_{th}]}$	Source	Emissions $[tCO_2/MWh_{th}]$	Source
coal lignite gas oil nuclear solid biomass	8.2 2.9 20.1 50.0 2.6 25.2	[12] [4] [12] [14] [3] [15, 16]	0.34 0.41 0.2 0.27 0 0	[13] [13] [13] [13]

^a Raw biomass fuel cost is assumed as the middle value of the range provided in the references for different European countries and types of sustainable biomass.

- [6] M. Ram, D. Bogdanov, A. Aghahosseini, A. Gulagi, A. S. Oyewo, M. Child, U. Caldera, K. Sadovskaia, J. Farfan, L. S. Barbosa, S. Khalili, C. Breyer, Global energy system based on 100% renewable energy power, heat, transport and desalination sectors. Study by Lappeenranta University of Technology and Energy Watch Group, Tech. rep. (2019). URL http://energywatchgroup.org/new-study-global-energy-system-based-100-renewable-energy
- [7] C. Budischak, D. Sewell, H. Thomson, L. Mach, D. E. Veron, W. Kempton, Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time, Journal of Power Sources 225 (2013) 60–74. doi:10.1016/j.jpowsour.2012.09.054.
 - URL http://www.sciencedirect.com/science/article/pii/S0378775312014759
- [8] M. Fasihi, D. Bogdanov, C. Breyer, Long-Term Hydrocarbon Trade Options for the Maghreb Region and Europe—Renewable Energy Based Synthetic Fuels for a Net Zero Emissions World, Sustainability 9 (2) (2017) 306. doi:10.3390/su9020306. URL https://www.mdpi.com/2071-1050/9/2/306
- [9] K. Schaber, Integration of Variable Renewable Energies in the European power system: a model-based analysis of transmission grid extensions and energy sector coupling, Ph.D. thesis, TU München (2013). URL https://d-nb.info/1058680781/34
- [10] N. Gerhardt, A. Scholz, F. Sandau, H. H., Interaktion EE-Strom, Wärme und Verkehr. Tech. rep. Fraunhofer IWES. URL http://www.energiesystemtechnik.iwes.fraunhofer.de/de/projekte/suche/2015/interaktion_strom_waerme_verkehr.html
- [11] Hydrogen supply chain: evidence base, Department for Business, Energy & Industrial Strategy, GovUK, Tech. rep. (2018).

 URL https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/760479/H2_supply_chain_evidence_-publication_version.pdf
- [12] BP Statistical Review of World Energy.
 - URL https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/
 statistical-review/bp-stats-review-2019-full-report.pdf
- [13] Development of the specific carbon dioxide emissions of the German electricity mix in the years 1990 2018, German Environment Agency.
 - $\begin{tabular}{ll} URL & https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-04-10_cc_10-2019_strommix_2019.pdf \end{tabular}$
- [14] Word Energy Outlook 2017, International Energy Agency, Tech. rep.
- [15] W. Zappa, M. Junginger, M. van den Broek, Is a 100% renewable European power system feasible by 2050?, Applied Energy 233-234 (2019) 1027–1050. doi:10.1016/j.apenergy.2018.08.109. URL http://www.sciencedirect.com/science/article/pii/S0306261918312790
- [16] P. Ruiz, A. Sgobbi, W. Nijs, C. Thiel, F. Dalla, T. Kobert, B. Elbersen, G. H. Alterra, The JRC-EU-TIMES model. bioenergy potentials for EU and neighbouring countries.
 - URL https://setis.ec.europa.eu/sites/default/files/reports/biomass_potentials_in_europe.pdf