STAT504 Assignment1

Anuradha Ramachandran

2023-01-15

Problem 1

(a) Simulate 100 draws from $Y = 10 + 5X + \epsilon$ where $X \sim N(0,1)$ and $\epsilon \sim N(0,1)$

```
# Sample size n = 100

n = 100
# Generate 100 random X and e from No(0,1)
x = rnorm(n = n, mean = 0, sd = 1)
e = rnorm(n = n, mean = 0, sd = 1)
# y = 10+5x+e
y = 10 + 5 * x + e
summary(y)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -4.884 6.510 10.610 10.270 13.445 23.634
```

(b) Fit OLS model by regressing Y on X

The coefficients from the regression is: Intercept = 10 Slope = 5

```
# OLS model for Y on X
ols = lm(y ~ x)
ols
```

```
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 9.883 5.098
```

(c) Scatterplot of X & Y with the regression line

```
plot(y ~ x)
abline(ols, col = "red")
```


Problem 2

2(a)

Sample space $\Omega=\{1,2,3,4,5,6\}$ Event space $S=\{\text{all subsets of }\Omega\}=2^6$ Probability measure of event $A\in S=P(A)=\frac{sizeofA}{sizeofomega}=\frac{|A|}{6}$ $P(\phi)=0$ $P(\Omega)=1$ $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=\frac{1}{6}$

2(b)

Let D=Democrat, R=Republican, I=Independent. Sample space $\Omega = \{ {\rm R, \ I, \ D} \}, \ |\Omega| = 1000 \ {\rm since} \ |R| = 200, \ |D| = 400, \ |I| = 400$ Event space S = {all subsets of $\Omega \} = \{ \phi, \, {\rm R, I, D, \{R, I\}, \{R, D\}, \{I, D\}, \{R, I, D\} \}}$ Probability measure of event $A \in S = P(A) = {\rm Total \ people}$ in event $A/1000 P(\phi) = 0$ $P(\Omega) = 1 P(D) = P(I) = \frac{400}{1000} = \frac{2}{5}$ $P(R) = \frac{200}{1000} = \frac{1}{5}$ $P(D, I) = \frac{800}{1000} = \frac{3}{5}$ $P(D, R) = \frac{600}{1000} = \frac{3}{5}$ $P(R, I) = \frac{600}{1000} = \frac{3}{5}$ $P(D, R, I) = \frac{1000}{1000} = 1$

Problem 3

3.1

(a) $E[X] = \int_{-\infty}^{\infty} x f(x) dx$ if x is continuous

(b)
$$Var(X) = E[(X - EX)^2]$$

(c) From definition of variance,
$$var(X) = E[(X - EX)^2]$$
 $var(X) = E[X^2 - 2XE[X] + E[X]^2] = E[X^2] - 2E[X]^2 + E[X]^2$ $var(X) = E[X^2] - E[X]^2$

(d)
$$SD(X) = \sqrt{var(X)}$$

(e) Assume X is discrete a random variable. Let
$$Y = g(x)$$
 $E[Y] = \sum_{y \in Y} y P(Y = y)$
$$E[Y] = \sum_{y \in Y} y P(x = g^{-1}(y))$$
 Since, $P(x = g^{-1}(y)) = f_X(x)$
$$E[Y] = \sum_{y \in Y} \sum_{x = g^{-1}(y)} y f_X(x)$$

$$E[Y] = \sum_x g(x) f_X(x)$$

(f)
$$E[a+bX] = \int_{-\infty}^{\infty} (a+bx)f(x)dx$$

 $E[a+bX] = a\int_{-\infty}^{\infty} f(x)dx + b\int_{-\infty}^{\infty} xf(x)dx$
Since $\int_{-\infty}^{\infty} f(x)dx = 1$
 $E[a+bX] = a+b\int_{-\infty}^{\infty} xf(x)dx$
 $E[a+bX] = a+bE[X]$

(g) By definition,
$$var(a+bX) = E[(a+bX-E[a+bX])^2]$$

 $var(a+bX) = E[(a+bX-a-bE[X])^2]$
 $var(a+bX) = E[b^2(X-E[X])^2] = b^2E[(X-EX)^2] = b^2var(X)$

(h)
$$SD[a+bX] = \sqrt{var(a+bX)}$$

From (g), $SD[a+bX] = \sqrt{b^2var(X)} = |b|SD(X)$

3.2

Markov's inequality: Let X be a random variable that takes only non negative values, then for any a >0, $P(X \ge a) \le \frac{E[X]}{a}$, provided E[X] exists.

Proof: Let X be a continuous random variable. $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$ $E[X] = \int_{-\infty}^{0} x f_X(x) dx + \int_{0}^{\infty} x f_X(x) dx$ $E[X] \ge \int_{a}^{\infty} x f_X(x) dx$, since $a \ge 0$ $E[X] \ge a \int_{a}^{\infty} f_X(x) dx = aP(X \ge a)$ Hence, $P(X \ge a) \le \frac{E[X]}{a}$

Chebychev's inequality: Let X be a random variable with finite variance then for any $\epsilon > 0$, $P(|X - EX| \ge \epsilon) \le \frac{var(X)}{\epsilon^2}$

Proof: Consider $(X - EX)^2$ to a random variable and it is strictly positive.

By applying Markov's inequality for any $\epsilon > 0$

By applying Markov's inequality for any
$$\epsilon$$
 , $P((X - EX)^2 \ge \epsilon^2) \le \frac{E[(X - EX)^2]}{\epsilon^2}$
Since $(X - EX)^2 \ge \epsilon^2 \implies |X - EX| \ge \epsilon$
By (b), $P(|X - EX| \ge \epsilon) \le \frac{var(X)}{\epsilon^2}$

According to Chebychev's inequality, the probability that the absolute deviation of a random variable from its mean will exceed a threshold ϵ times standard deviation is less than or equal to $\frac{1}{\epsilon^2}$.

3.3(a) PMF and CDF of X

```
# Load CSV
snow = read.csv("/Users/anuram/Library/Mobile Documents/com~apple~CloudDocs/MS Stats/Winter 2023/STAT50
# PMF of X
pmf = plot(snow$prob ~ snow$snowfall, type = "h", xlab = "snowfall(inches)",
   ylab = "Probability", main = "PMF of X")
```

PMF of X


```
# cdf of X
snow$CDF = cumsum(snow$prob)
plot(snow$CDF ~ snow$snowfall, type = "s", xlab = "snowfall(inches)",
   ylab = "cumulative probability", main = "CDF of X")
```

CDF of X

3.3(b) Mean, median, mode, variance of X and 95% percentile of X

$$E[X] = \Sigma_x x P(X = x) = 4.53$$

Median(X) is $mforwhichP(X \le m) = 0.5$.

Hence Median(X) = 1

Mode(X) is the X that has highest probability. Mode of this distribution is X = 0 inches

$$Var(X) = E[X^2] - EX^2 = 40.79$$

From the CDF, it can been that the 95% percentile of X is 17 inches.

```
# mean of X
mean = sum(snow$snowfall * snow$prob)
mean
```

[1] 4.53

```
median = subset(snow$snowfall, snow$CDF == 0.5)
median
```

[1] 1

```
# mode of X
mode = subset(snow$snowfall, snow$prob == max(snow$prob))
mode
```

[1] 0

```
# variance of X
exp_sq = sum((snow$snowfall^2) * snow$prob)
variance = exp_sq - mean^2
variance
```

```
## [1] 40.7891
```

```
# 95% percentile of X
percentile = subset(snow, snow$CDF >= 0.95)
percentile
```

```
## X snowfall prob CDF
## 13 13 17 0.04 0.95
## 14 14 18 0.02 0.97
## 15 15 23 0.02 0.99
## 16 16 31 0.01 1.00
```

3.3(c) Odds of snowing

```
Odd of snowing = \frac{P(snowfall>0)}{P(snowfall=0)} = 1.5
```

```
# odds of snowing
nosnow = subset(snow$prob, snow$snowfall == 0)
odds = (1 - nosnow)/nosnow
odds
```

```
## [1] 1.5
```

3.3(d)

The best predictors could be any of the summary statistics like mean, median, mode calculated above depending on the definition of the loss function. Eg: If MSE is the loss function, then mean(X) would be the best predictor that minimizes MSE and gives the best prediction of snowfall.

3.3(e) MSE when E(X) is used

```
MSE = E[(X - EX)^2] = var(X) = 40.7891
```

3.3(f) 95% prediction interval

```
95% Prediction Interval = [E[X] - 1.96 * SD[X], E[X] + 1.96 * SD[X]]
```

Lower_limit = -7.987. Since X represents snowfall in inches, the lowest value it can take is 0. Hence the lower limit in the prediction interval is 0. Upper_limit = 17 inches

95% prediction interval of snowfall = [0,17]

```
Lower_limit = mean - 1.96 * sqrt(variance)
Lower_limit
```

```
## [1] -7.987804
```

```
Upper_limit = mean + 1.96 * sqrt(variance)
Upper_limit
```

[1] 17.0478

Problem 4

4(a)

$$\begin{split} E[(X-c)^2] &= E[X^2 - 2cX + c^2] = E[X^2] - 2cE[X] + c^2 \\ E[(X-c)^2] &= E[X^2] - E[X]^2 + E[X]^2 - 2cE[X] + c^2 \\ E[(X-c)^2] &= E[X^2] - E[X]^2 + (E[X] - c)^2 \\ E[(X-c)^2] &= var(X) + (E[X] - c)^2 \end{split}$$

4(b)

Let $Y = argmin_{c \in R} E[(X - c)^2]$ From 4(a), $Y = argmin_{c \in R} var(X) + (E[X] - c)^2$ Differentiating Y with respect to c and equating to 0, c = E[X]Hence E[X] is the best predictor of X when MSE is the loss function.

4(c)

X is continuous random variable. Let $\phi = E[|X-c|] = \int_{-\infty}^c (c-x)f(x)dx + \int_c^\infty (x-c)f(x)dx$ Differentiating ϕ with respect to c and equating to 0 by using Leibniz's rule, $\frac{d\phi}{dc} = \int_{-\infty}^c \frac{\partial d}{\partial c}(c-x)f(x)dx + \int_c^\infty \frac{\partial d}{\partial c}(x-c)f(x)dx$ $\frac{d\phi}{dc} = \int_{-\infty}^c f(x)dx - \int_c^\infty f(x)dx = 0$ $\implies P(X \le c) = P(X > c)$ But $P(X \le c) = P(X > c) = 1$ $\implies P(X \le c) = P(X > c) = 1/2$ Hence Median[X] is the best predictor when mean absolute error is the loss function.

4(d)

 $\operatorname{Mode}(X)$ is the value $x \in X$ for which the marginal distribution of X (PDF if X is continuous or PMF if X is discrete) is maximum. $\operatorname{Mode}(X) = \operatorname{argmax}_{x \in X} P(X = x)$ \Longrightarrow the value of c that maximizes P(X = c) is $\operatorname{Mode}(X)$. Hence $\operatorname{Mode}[X] = \operatorname{argmax}_{c \in R} P(X = c)$

Problem 5

5.1

- (a) From definition of expectation, $E[a+bX+cY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (a+bX+cY)f(x,y)dxdy$ $E[a+bX+cY] = a \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)dxdy + b \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y)dxdy + c \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y)dxdy$ since, $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)dxdy = 1$ $\int_{-\infty}^{\infty} f(x,y)dy = f(x)$ $\int_{-\infty}^{\infty} f(x,y)dx = f(y)$ $\Longrightarrow E[a+bX+cY] = a+b \int_{-\infty}^{\infty} xf(x)dx + c \int_{-\infty}^{\infty} yf(y)dy$ $\Longrightarrow E[a+bX+cY] = a+bE[X] + cE[Y]$
- (b) $E[Y|X=x]=\int_{-\infty}^{\infty}yf(y|x)dy$ E[Y|X=x] is the expected values of Y given that a certain set of X=x is known to occur.
- (c) $var[Y|X=x] = E[(Y-E[Y|X])^2|X]$ var[Y|X=x] is the variance of Y given that a certain set of X=x is known to occur.
- (d) cov(X,Y) = E[(X EX)(Y EY)]
- (e) From (d), cov(X, Y) = E[XY XEY YEX + EXEY] cov(X, Y) = E[XY] - EXEY - EYEX + EXEYcov(X, Y) = E[XY] - EXEY

From the above results, $cov(X, X) = E[X^2] - E[X]^2 = var(X)$

```
(f) cov(bX, cY) = E[bXcY] - E[bX]E[cY]

cov(bX, cY) = bcE[XY] - bcE[X]E[Y] = bc(E[XY] - E[X]E[Y]) = bcCov(X, Y))
```

(g)
$$var(a + bX + cY) = var(bX + cY) = E[(bX + cY)^2] - E[(bX + cY)]^2$$

By expanding and grouping terms we get, $var(a + bX + cY) = b^2[E[X^2] - E[X]^2] + c^2[E[Y^2] - E[Y]^2] + 2bc(EXY - EXEY)$
 $var(a + bX + cY) = b^2var(X) + c^2var(Y) + 2bcCov(X, Y)$

(h)
$$cov(Y + X, Z) = E[(Y + X)Z] - E[Y + X]EZ$$

 $cov(Y + X, Z) = E[YZ + XZ] - E[Y]E[Z] - E[X]E[Z]$
 $cov(Y + X, Z) = E[YZ] - E[Y]E[Z] + E[XZ] - E[X]E[Z]$
 $cov(Y + X, Z) = cov(Y, Z) + cov(X, Z)$

(i)
$$cor(X,Y) = \frac{cov(X,Y)}{SD(X)SD(Y)}$$

$$\begin{aligned} \textbf{(j)} \quad & cor(a+bX,c+dY) = \frac{cov(a+bX,c+dY)}{SD(a+bX)SD(c+dY)} \\ & cov(a+bX,c+dY) = E[b(X-EX)d(Y-EY)] = bdcov(X,Y) \\ & SD(a+bX) = |b|SD(X) \\ & SD(c+dY) = |d|SD(Y) \\ & cor(a+bX,c+dY) = \frac{bdcov(X,Y)}{|bd|SD(X)SD(Y)} \end{aligned}$$

5.2(a)

Joint distribution is the probability of two events occurring together. $P(X,Y) = P(X \cap Y)$

5.2(b)

0.5 0.4 0.25 0.15 0.05 0 -0.05 -0.18 -0.25 ## P(Y=y) 0.07 0.065 0.098 0.208 0.302 0.029 0.095 0.07 0.063

```
# PMF of X
PMF_X = numeric(ncol(income))
for (i in (1:ncol(income))) {
   PMF X[i] = sum(income[i])
}
# marginal distribution of X table
dist_X = cbind(X = as.numeric(colnames(income)), P(X=x) = as.numeric(PMF_X))
dist_X
           X P(X=x)
##
##
  [1,] 0.5 0.041
## [2,] 1.5 0.093
## [3,] 2.5 0.093
## [4,] 3.5 0.082
## [5,] 4.5 0.113
## [6,] 5.5 0.103
## [7,] 6.7 0.155
## [8,] 8.8 0.155
## [9,] 12.5 0.113
## [10,] 17.5 0.052
5.2(c) Conditional distribution of Y given X for all values of X=x
P(Y|X = x) = \frac{P(X=x,Y=y)}{P(X=x)} \forall x \in X
# Conditional distribution of Y given X=x for all value of
\# X=x
cond_dist = data.frame(matrix(ncol = ncol(income), nrow = nrow(income)))
for (i in (1:ncol(income))) {
   cond_dist[i] = income[i]/PMF_X[i]
}
rownames(cond dist) = rownames(income)
colnames(cond_dist) = colnames(income)
# conditional distribution table for all Y=y given X=x
cond_dist
                         1.5
                                   2.5
                                              3.5
       0.02439024 0.11827957 0.07526882 0.07317073 0.044247788 0.04854369
## 0.5
## 0.4 0.02439024 0.02150538 0.06451613 0.08536585 0.088495575 0.06796117
## 0.15 0.04878049 0.09677419 0.09677419 0.14634146 0.141592920 0.19417476
## 0.05 0.24390244 0.24731183 0.35483871 0.37804878 0.362831858 0.28155340
        0.31707317\ 0.13978495\ 0.00000000\ 0.02439024\ 0.008849558\ 0.00000000
## -0.05 0.02439024 0.12903226 0.11827957 0.06097561 0.106194690 0.15533981
## -0.18 0.04878049 0.08602151 0.13978495 0.07317073 0.079646018 0.07766990
## -0.25 0.21951220 0.09677419 0.10752688 0.07317073 0.079646018 0.06796117
##
               6.7
                         8.8
                                  12.5
        0.05161290 0.05806452 0.12389381 0.07692308
## 0.5
## 0.4
       0.05161290 0.05806452 0.07079646 0.13461538
## 0.25 0.12903226 0.12258065 0.11504425 0.11538462
## 0.15 0.27096774 0.34838710 0.21238938 0.38461538
## 0.05 0.30322581 0.25161290 0.37168142 0.13461538
```

```
## -0.05 0.10967742 0.09032258 0.03539823 0.05769231
## -0.18 0.05161290 0.05161290 0.05309735 0.03846154
## -0.25 0.03225806 0.01935484 0.01769912 0.05769231
5.2(d) Conditional expectation of Y given X for all values of X=x
E[Y|X=x] = \Sigma_y y P(Y|X=x) \forall x \in X
y = as.numeric(rownames(cond_dist))
cond_exp = numeric(ncol(income))
for (i in (1:ncol(income))) {
    cond_exp[i] = sum(y * cond_dist[i])
x = as.numeric(colnames(cond_dist))
# conditional expectation of Y given X=x for all values of
condition_exp = cbind(X = x, P(Y|X=x) = cond_exp)
condition_exp
            Χ
                 P(Y|X=x)
##
##
  [1,] 0.5 -0.01121951
  [2,] 1.5 0.06462366
## [3,] 2.5 0.04849462
   [4,] 3.5 0.09841463
##
## [5,] 4.5 0.07946903
## [6,] 5.5 0.08262136
## [7,] 6.7 0.11167742
## [8,] 8.8 0.12909677
## [9,] 12.5 0.15371681
## [10,] 17.5 0.16134615
Expectation of Y, E[Y] = \sum y P(Y = y) = 0.0987
# Expectation of Y, E[Y]
mean_y = sum(y * PMF_Y)
mean_y
## [1] 0.0987
E[E[Y|X]] = \Sigma_x E[Y|X = x]P(X = x) = 0.0987
# Expectation of Y, E[E[Y|X]]
exp_y = sum(cond_exp * PMF_X)
exp_y
## [1] 0.0987
Hence it's proved that E[E[Y|X]] = E[Y] = 0.0987
5.2(e) Best Linear predictor (BLP) of Y given X
```

BLP of Y given X is $Y = \alpha + \beta X$ $\alpha = E[Y] - \frac{Cov(X,Y)}{var(X)}E[X] = 0.0432$

BLP of Y = 0.0432 + 0.0086X

 $\beta = \frac{Cov(X,Y)}{var(X)} = 0.0086$

```
# Expectation of X
x = as.numeric(colnames(cond_dist))
mean_x = sum(x * PMF_X)
mean_x
## [1] 6.4795
# variance of X
exp_xsq = sum(x^2 * PMF_X)
var_x = exp_xsq - (mean_x^2)
var_x
## [1] 17.76773
\# Cov(X,Y) = E[XY] - E[X]E[Y]
exp_xy = 0
for (i in (1:ncol(income))) {
   for (j in (1:nrow(income))) {
        exp_xy = exp_xy + x[i] * y[j] * income[j, i]
}
cov_xy = exp_xy - (mean_x * mean_y)
cov_xy
## [1] 0.1520084
# intercept alpha
alpha = mean_y - (cov_xy * mean_x/var_x)
alpha
## [1] 0.0432659
# slope beta
beta = cov_xy/var_x
beta
## [1] 0.008555305
# Y from Best Linear Predictor
y_blp = alpha + beta * x
blp = cbind(X = x, Y_blp = y_blp)
blp
##
           Х
                  Y_blp
## [1,] 0.5 0.04754355
## [2,] 1.5 0.05609886
## [3,] 2.5 0.06465416
## [4,] 3.5 0.07320947
## [5,] 4.5 0.08176477
## [6,] 5.5 0.09032008
## [7,] 6.7 0.10058644
## [8,] 8.8 0.11855259
## [9,] 12.5 0.15020721
## [10,] 17.5 0.19298374
```

5.2(f) Plot of BLP and CEF(=E[Y|X])

Problem 6

6(a)

Yes, there could be a positive correlation between income growth and incumbent vote%. As the income increases the confidence in the incumbent party's economic policy might get stronger and hence they might get higher share of vote.

6(b) Scatter plot of vote Vs growth

Scatter plot of Vote Vs Growth

Simple linear regression model of Y on X Intercept: 46.25 Slope: 3.06

```
fit = lm(election$vote ~ election$growth)
summary(fit)
```

```
##
## Call:
## lm(formula = election$vote ~ election$growth)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
  -8.9929 -0.6674 0.2556 2.3225
                                   5.3094
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                   46.2476
                               1.6219 28.514 8.41e-14 ***
                               0.6963
                                        4.396 0.00061 ***
## election$growth
                    3.0605
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.763 on 14 degrees of freedom
## Multiple R-squared: 0.5798, Adjusted R-squared: 0.5498
## F-statistic: 19.32 on 1 and 14 DF, p-value: 0.00061
```

The regression line seems to predict the trend of the data (ie, positive correlation between vote and growth), but adjusted R-squared is 0.55.

```
# plot with regression line
plot(election$vote ~ election$growth, ylab = "vote", xlab = "growth")
abline(fit, col = "red")
```


6(c) Regression model summary

The predicted regression model is Vote = 46.25 + 3.06 * Growth

From the regression line, it can interpreted that as growth in income increases by 1% the incumbent party's vote percentage increases by 3.06%.

The estimated regression coefficients are : Intercept: 46.25 This means that when there is no income growth in the previous years, the incumbent party's vote percentage on average would be 46.25%

Slope:3.06 Since the slope is positive, it indicates a positive linear relationship between income growth and incumbent party's vote %. Since slope is defined as $\frac{changeiny}{changeinx}$, if income grows by 1% in the previous years, it can predicted that the incumbent party's vote percentage would increase by 3.06%.

6(d) Prediction when average income growth is 2%

Given: if average income growth is 2%, from the regression model the incumbent party's vote percentage is 52.37%.

Vote% = 46.25 + 3.06 * 2 = 52.37

The actual vote% for the incumbent party was 51.1% in 2016 when the income growth was 2%. Hence the linear regression model is similar to the actual vote% observed.