DDR3+乒乓操作

大纲

- 1. DDR3
 - 1.1 DDR3介绍
 - 1.2 MIG IP核
 - 1.2.1 MIG IP核介绍
 - 1.2.2 MIG IP核时钟域与位宽计算
 - 1.2.3 DDR3控制器设计
 - 整体模块
 - test_data模块
 - ddr3_controler模块
 - ddr3_rw模块
 - ddr3_fifo_ctrl
 - 仿真-数据的突发写入
 - 1.2.4 init_calib_complete和app_rdy信号之间先后顺序
 - 1.2.5一些疑问
- 2. 乒乓操作

1.1 DDR3介绍

• DDR3 SDRAM是DDR3的全称,它针对Intel新型芯片的一代内存技术(但主要用于显卡内存),频率在800M以上。DDR3是在DDR2基础上采用的新型设计,与DDR2 SDRAM相比具有功耗和发热量较小、工作频率更高、降低显卡整体成本、通用性好的优势。

•同 SDRAM 相比,DDR SDRAM 的最大特点是双沿触发

1.2.2 MIG IP核时钟域与位宽计算

参考时钟clk_ref_i是MIG IP核用于校准和同步的时钟,主要用于IDELAYCTRL模块的延迟校准。

固定频率,通常为200MHz(DDR工作频率≤666MHz时) 或300MHz/400MHz(DDR工作频率>666MHz时)。 系统时钟sys_clk_i是MIG IP核的主输入时钟,用于驱动IP核内部逻辑和生成DDR芯片的时钟信号。

根据DDR芯片的工作频率和IP核配置而定,通常在100MHz 至400MHz之间。

数据的位宽app_wdf_data的计算

MIG IP核的用户接口数据总线宽度(DATA_WIDTH)取决于两个因素:

DDR芯片的数据位宽 (NUM_DQ_PINS): 这是指连接到FPGA的DDR芯片的数据线总数。例如,如果你使用了一个16位的DDR芯片,那么NUM_DQ_PINS就是16。PHY到控制器的时钟比例 (nCK_PER_CLK): 这个比例决定了用户接口时钟(ui_clk)和DDR芯片时钟之间的关系。常见的比例有2:1和4:1。

用户接口数据总线宽度 DATA_WIDTH 的计算公式为: DATA_WIDTH=NUM_DQ_PINS×nCK_PER_CLK×2

本例中使用了一个32位的DDR芯片,并且选择了4:1的时钟比例,那么:

DATA_WIDTH=32×4×2=256位

1.2.

test_data模块

ddr 测试数据模块的作用是写入和读出 ddr 控制器的数据并且将读写数据进行比较

在当前时钟拉高 app_en,同时发送命令(app_cmd)和地址(app_addr),此时命令和地址被写入

图 42.4.26 ddr3 读写模块框图

ddr3_fifo_ctrl 模块

• 负责对输入和输出的数据进行<mark>时钟域的切换</mark>和<mark>位宽的转换</mark>。fifo 控制模块的框图如下

写 fifo(wr_fifo)写入时钟为系统时钟 50MHz, 读时钟为用户时钟(即MIG IP 核输出的时钟)100MHz。

1.2.4 init_calib_complete和app_rdy信号之间先后顺序

先: init_calib_complete 拉高,表示 DDR 内存初始化和校准完成。

后: app_rdy 拉高,表示 MIG IP 核准备好接收用户命令。

1.2.5—些疑问

- 突发体现在哪?
 - 顶层文件的

```
assign app_addr_wr_min =28'd0;
assign app_addr_wr_max =28'd512
说明要传输512个字节的数据量
```

突发怎么体现的?

顶层文件的assign wr_bust_len = 8'd32;

2. 乒乓操作

- 用于FIFO、RAM、DDR
- 应用范例: 视频的采集与显示-多帧缓存-防止视频撕裂

A B C

两种情况:

- 1. 写的快, 读的慢
- 2. 写的慢, 度的快

多帧缓存、品乓操作的目的是不让读写冲突、防止视频出现撕裂