ESTATÍSTICA E PROBABILIDADE

Bacharelado em Sistema de Informação

Prof^a. Patrícia Stülp

Instituto Federal Catarinense - Campus Camboriú

27 de agosto de 2025

Revisão de Conjuntos

Os conjuntos são representados por letras maiúsculas (A, B, C, ···), enquanto seus elementos são representados por letras minúsculas (a, b, c, ···).

 A notação a ∈ A significa "o elemento a pertence ao conjunto A", enquanto a ∉ A significa "o elemento a não pertence ao conjunto A".

Exemplos

- 1) Conjunto dos números Reais: $\mathbb{R} = \{x \mid x \text{ \'e número real}\}$
- 2) Conjunto dos números Naturais:

$$\mathbb{N} = \{ n \mid n \text{ \'e n\'umero natural} \}$$

- 3) Conjunto dos números Inteiros: $\mathbb{Z} = \{n \mid n \text{ \'e número inteiro}\}$
- 4) Conjunto dos números Racionais:

$$\mathbb{Q} = \{ n/m \mid n, m \in \mathbb{Z} \text{ e } m \neq 0 \}$$

5) Conjunto dos números Primos:

$$P = \{p \in \mathbb{N} \mid p \text{ \'e divis\'ivel por 1 e por ele mesmo}\}$$

Observação: Todos os conjuntos anteriores foram descritos a partir de uma propriedade. Ao invés disso, poderíamos ter listado todos os seus elementos, por exemplo:

Conjunto dos números Naturais:

$$\mathbb{N} = \{0, 1, 2, 3, \cdots\}$$

Conjunto dos números Inteiros:

$$\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, 3, \cdots\}$$

Conjunto unitário

Chama-se conjunto unitário aquele que possui um único elemento.

Exemplos:

- 1°) conjunto dos divisores de 1, inteiros e positivos: $\{1\}$
- 2°) conjunto das soluções da equação 3x + 1 = 10: $\{3\}$
- 3º) conjunto dos estados brasileiros que fazem fronteira com o Uruguai: {Rio Grande do Sul}
- 4º) $A = \{x \in \mathbb{R}^+ : x^2 = 2\}: \{\sqrt{2}\}$

Conjunto vazio

Chama-se conjunto vazio aquele que não possui elemento algum. O símbolo usual para o conjunto vazio é \emptyset . Pode também ser representado por $\{\}$.

Exemplos:

$$1^{\underline{0}}) \ \{x : x \neq x\} = \emptyset$$

$$2^{\circ}$$
) $\{x : x \in \text{impar e multiplo de } 2\} = \emptyset$

$$3^{\circ}$$
) $\{x: x > 0 \text{ e } x < 0\} = \emptyset$

$$4^{\circ}$$
) $B = \{x \in \mathbb{N} : x^2 = 2\}; B = \emptyset$

Conjunto universo

O conjunto universo é o conjunto que contém todos os elementos que estão sendo considerados em um dado contexto.

Geralmente, o conjunto universo é representado pela letra U, mas nesta disciplina usaremos a letra grega Ω para representar o conjunto universo.

A relação de inclusão

Dizemos que A está contido em B ou que A é um subconjunto de B, $A \subset B$, se todo elemento de A for elemento de B. Formalmente, $A \subset B$ se

$$x \in A \Rightarrow x \in B$$

- Exemplo 1: sejam T o conjunto dos triângulos e P o conjunto dos polígonos do plano. Todo triângulo é um polígono, logo T ⊂ P.
- Exemplo 2: Para os conjuntos numéricos apresentados na aula anterior, temos $P \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Quando A não é um subconjunto de B, escreve-se $A \not\subset B$. Isto significa que nem todo elemento de A pertence a B, ou seja, que existe pelo menos um elemento a tal que $a \in A$ e $a \notin B$.

 Exemplo: sejam A o conjunto dos números pares e B o conjunto dos múltiplos de 3. Tem-se A ⊄ B pois 2 ∈ A, mas 2 ∉ B. Além disso, B ⊄ A, pois 3 ∈ B mas 3 ∉ A.

Observação

Há duas inclusões extremas:

- 1^a) Para todo conjunto A, então $A \subset A$ (pois é claro que todo elemento de A pertence a A);
- $2^{\underline{a}}$) Para qualquer conjunto A, $\emptyset \subset A$.

Operações de Conjuntos

União:

A união entre dois conjuntos A e B, $A \cup B$, é o conjunto formado pelos elementos que pertencem a A ou a B, isto é

$$A \cup B = \{ \omega \in \Omega \mid \omega \in A \text{ ou } \omega \in B \}$$

Exemplo: Sejam os conjuntos $A = \{1, 2, 3\}$ e $B = \{3, 4, 5\}$. Determinar o conjunto $A \cup B$.

Interseção:

A interseção entre dois conjuntos A e B, $A \cap B$, é o conjunto formado pelos elementos que pertencem a A e a B, isto é

$$A \cap B = \{ \omega \in \Omega \mid \omega \in A \text{ e } \omega \in B \}$$

Exemplo: Sejam os conjuntos $A = \{1, 2, 3\}$ e $B = \{3, 4, 5\}$. Determinar o conjunto $A \cap B$.

Diferença:

A diferença entre dois conjuntos B e A, B-A, \acute{e} o conjunto dos elementos que pertencem a B e não pertencem a A, isto \acute{e}

$$B - A = \{ \omega \in \Omega \mid \omega \in B \in \omega \notin A \}$$

Exemplo: Sejam os conjuntos $A = \{1, 2, 3\}$ e $B = \{3, 4, 5\}$. Determinar o conjunto A - B.

Complementar:

O complementar de um conjunto A, A^c , \acute{e} o conjunto dos elementos que pertencem a Ω e não pertencem a A, isto \acute{e}

$$A^c = \{ \omega \in \Omega \mid \omega \notin A \}$$

Exemplo: Seja $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8\}$ e considere os conjuntos $A = \{1, 2, 3\}$ e $B = \{3, 4, 5\}$. Determinar o conjunto A^c e B^c .

Representação de Conjuntos Diagramas de Venn

- Os diagramas de Venn são representações visuais que nos auxiliam a compreender as relações e interações entre conjuntos.
- Esses diagramas são compostos por círculos ou elipses que representam os conjuntos em questão.
- Cada conjunto é representado por um círculo separado, e a sobreposição entre os círculos indica a interseção entre os conjuntos.
- Os diagramas de Venn podem ser expandidos para representar mais de dois conjuntos, utilizando círculos sobrepostos adicionais.

Representação gráfica de operações com conjuntos

A união de dois conjuntos A e B é representada graficamente pela sobreposição dos círculos ou conjuntos correspondentes a cada um deles. A região que representa a união inclui todos os elementos presentes em pelo menos um dos conjuntos.

A interseção de dois conjuntos A e B é representada pela área em comum entre os círculos ou conjuntos correspondentes. Essa área representa os elementos que estão presentes em ambos os conjuntos.

A diferença entre dois conjuntos A e B é representada pela área do conjunto A sem a sobreposição com o conjunto B. Essa área corresponde aos elementos presentes apenas em A, excluindo aqueles que também pertencem a B.

Introdução à Probabilidade

Conceitos básicos de Probabilidades

■ Experimento aleatório: Um experimento cujo resultado não se prevê com certeza, mesmo se repetido nas mesmas condições.

- **Espaço amostral** (Ω) : Conjunto cujos elementos são todos os possíveis resultados do experimento. Pode ser discreto (finito ou infinito enumerável) ou contínuo.
- **Evento** (A, B, \cdots) : Qualquer subconjunto de Ω .

Eventos mutuamente excludentes: A e B são dois eventos mutuamente exclusivos se não têm intersecção $(A \cap B = \emptyset)$.

■ Eventos complementares: A e B são dois eventos complementares se não têm intersecção e se sua união formam o espaço amostral:

$$A \cap B = \emptyset$$

$$A \cup B = \Omega$$

Operações com Eventos

Diagrama de Venn:

- União: $A \cup B$
- Intersecção: $A \cap B$
- Mutuamente exclusivos ou disjuntos: $B \cap C = \emptyset$
- Complementares: $A \cap A^c = \emptyset$ e $A \cup A^c = \Omega$

Partição do espaço amostral:

A,B e C formam uma partição de Ω se forem mutuamente exclusivos e se $(A \cup B \cup C) = \Omega$.

Leis de De Morgan:

$$\left(\bigcup_{i=1}^n A_i\right)^c = \bigcap_{i=1}^n A_i^c$$

$$\left(\bigcap_{i=1}^n A_i\right)^c = \bigcup_{i=1}^n A_i^c$$

• Demonstração $\left(\bigcup_{i=1}^n A_i\right)^c = \bigcap_{i=1}^n A_i^c$.

$$(\Rightarrow)$$
 Mostrar que $(\bigcup_{i=1}^n A_i)^c \subset (\bigcap_{i=1}^n A_i^c)$.

Seja $x \in (\bigcup_{i=1}^n A_i)^c$, então $x \notin (\bigcup_{i=1}^n A_i)$, ou seja, $x \notin A_1$ e $x \notin A_2$ e \cdots e $x \notin A_n$. Com isso, $x \in (A_1)^c$ e $x \in (A_2)^c$ e \cdots e $x \in (A_n)^c$. Logo, $x \in (\bigcap_{i=1}^n A_i^c)$.

$$(\Leftarrow)$$
 Mostrar que $(\bigcap_{i=1}^n A_i^c) \subset (\bigcup_{i=1}^n A_i)^c$.
Exercício.

• Demonstração $\left(\bigcap_{i=1}^n A_i\right)^c = \bigcup_{i=1}^n A_i^c$. Exercício.

Probabilidade

Probabilidade Clássica

Se os elementos de Ω são equiprováveis e mutuamente exclusivos, a probabilidade de um evento A (subconjunto de Ω) é:

$$\mathbb{P}(A) = \frac{\#A}{\#\Omega}$$

#A: número de elementos no conjunto A.

Exemplo

Considere o lançamento de dois dados balanceados. Calcular a probabilidade de:

- a) se obter soma das faces igual a 7;
- b) se obter soma maior do que 5;
- c) que o resultado do primeiro dado seja maior do que o resultado do segundo.

Axiomas da Probabilidade

1°)
$$0 \leq \mathbb{P}(A) \leq 1, \quad \forall A \subset \Omega$$

$$2^{o}$$
) $\mathbb{P}(\Omega)=1$

 3°) Se A_1, A_2, \cdots são mutuamente exclusivos, então

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

Propriedades

Dado $(\Omega, \mathcal{A}, \mathbb{P})$, considere que os conjuntos são eventos nesse espaço de probabilidade, então:

P1)
$$\mathbb{P}(A) = 1 - \mathbb{P}(A^c)$$

P2) Sendo A e B dois eventos quaisquer, então

$$\mathbb{P}(B) = \mathbb{P}(B \cap A) + \mathbb{P}(B \cap A^c)$$

P3) Se $A \subset B$, então $\mathbb{P}(A) < \mathbb{P}(B)$

P4) Regra da adição de probabilidade:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Exemplo: Um inteiro é escolhido ao acaso, dentre os números $1, 2, \cdots, 50$. Qual será a probabilidade de que o número escolhido seja divisível por 6 ou por 8?

• Se $A, B, C \subset \Omega$, então

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) \\ - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

Exemplo: Sejam A, B e C eventos tais que $\mathbb{P}(A) = \mathbb{P}(B) = \mathbb{P}(C) = \frac{1}{5}$, $A \cap B = \emptyset$, $A \cap C = \emptyset$ e $\mathbb{P}(B \cap C) = \frac{1}{7}$. Calcule a probabilidade de que pelo menos um dos eventos A, B ou C ocorra.

P5) Para quaisquer eventos A_1, A_2, \cdots

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)\leq\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

- P6) Se $A_n \uparrow A$, então $\mathbb{P}(A_n) \uparrow \mathbb{P}(A)$. De forma similar, se $A_n \downarrow A$, então $\mathbb{P}(A_n) \downarrow \mathbb{P}(A)$.
- P7) Se $A_1,A_2,\dots\in\mathcal{A}$, então

$$\mathbb{P}(lim_{n\to\infty}infA_n) \leq \mathbb{P}(lim_{n\to\infty}supA_n)$$

Demonstração

P1) Os eventos A e A^c formam uma partição de Ω , portanto,

$$\mathbb{P}(\Omega) = \mathbb{P}(A) + \mathbb{P}(A^c)$$
 $1 = \mathbb{P}(A) + \mathbb{P}(A^c)$
 $\Rightarrow \mathbb{P}(A) = 1 - \mathbb{P}(A^c)$

P2) Da teoria de conjuntos, $B = (B \cap A) \cup (B \cap A^c)$. Aplicando probabilidade,

$$\mathbb{P}(B) = \mathbb{P}((B \cap A) \cup (B \cap A^c))$$

$$\mathbb{P}(B) = \mathbb{P}(B \cap A) + \mathbb{P}(B \cap A^c)$$

36 / 37

P3) Se $A \subset B$, o evento B pode ser particionado como

$$B = (B \cap A) \cup (B \cap A^{c})$$
$$= A \cup (B \cap A^{c})$$

Portanto, aplicando probabilidade,

$$\mathbb{P}(B) = \mathbb{P}(A \cup (B \cap A^c))$$
$$= \mathbb{P}(A) + \mathbb{P}(B \cap A^c)$$

Como $\mathbb{P}(B \cap A^c) \geq 0$, então $\mathbb{P}(A) < \mathbb{P}(B)$.

P4) Exercício.

Dica: escreva $(A \cup B)$ como a união de eventos disjuntos.