Chapitre 4 ANNEAUX - CORPS

II/ Corps

1. Définition - Exemples

Un ensemble K muni de 2 opérations + et \times . est un **corps** ($K\ddot{o}rper$) si

- \Box $(K,+,\times)$ est un anneau.
 - On note 0 son élément neutre de + et 1 l'élément neutre de ×
- \Box Tout élément de $K-\{0\}$ a un inverse pour la loi \times

Si, de plus, la loi \times est commutative, on dit que $(K,+,\times)$ est un **corps commutatif**. Quand on parle de **corps**, on sous-entend fréquemment **corps commutatif** (*Field*)

Remarque (théorème de Wedderburn) Tout corps fini est nécessairement commutatif.

Exemples:

- \triangleright $(\mathbb{R},+,\times),(\mathbb{C},+,\times),(\mathbb{Q},+,\times)$ sont des corps commutatifs
- \triangleright L'anneau ($\mathbb{Z},+,\times$) n'est pas un corps
- \triangleright L'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un corps si et seulement si n est premier. Si n = p est premier, on le note \mathbb{F}_p

- \triangleright L'anneau $(\mathcal{M}_n(\mathbb{R}),+,\times)$ des matrices $n\times n$ n'est pas un corps (si $n\geqslant 2$)
- Soit $\mathbb{Q}\left[\sqrt{2}\right]$ l'ensemble des réels de la forme $a+b\sqrt{2}$ où a et b sont des rationnels quelconques. $\left(\mathbb{Q}\left[\sqrt{2}\right],+,\times\right)$ est un corps commutatif.

De même $\mathbb{Q}[\pi]$, $\mathbb{Q}\left[\cos\left(\frac{2\pi}{5}\right)\right]$, $\mathbb{Q}\left[\cos\left(\frac{2\pi}{7}\right)\right]$ sont des corps commutatifs, ainsi que $\mathbb{Q}\left[\sqrt{2}\right]\left[\sqrt{5}\right]$ noté $\mathbb{Q}\left[\sqrt{2},\sqrt{5}\right]$, etc...

Le « corps des nombres constructibles » (à la règle et au compas) est un corps.

Avec la règle et le compas, on peut construire :

la perpendiculaire issue de M à une droite

la parallèle issue de M à une droite

Par conséquent, 2 réels constructibles étant donnés, on peut construire : leur somme leur différence

source : wikipedia

2. Propriétés

- Tout corps est un anneau intègre. (réciproque fausse)
- Propriété caractéristique :

Dans un corps (commutatif) K, si $a \ne 0$, l'équation ax + b = 0 a une solution unique $x = -ba^{-1}$.

On la note souvent $-\frac{b}{a}$

• Dans un corps (commutatif) K, tout polynôme de degré n a au plus n racines.

3. Sous-corps

Soient $(K,+,\times)$ un corps et A une partie de K.

A est un **sous-corps** de K si et seulement si

- \Box $(A,+,\times)$ est un sous-anneau de K.
- □ Tout élément de $A \{0\}$ a un inverse sans A pour la loi \times (i.e A est un corps)

Dans ce cas on dit aussi que K est une **extension** de A.

Propriété caractéristique :

- $0 \in A, 1 \in A$
- \Box A est stable par les opérations + et \times

Exemples:

- \triangleright $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$
- $ightharpoonup \mathbb{Q}\left[\sqrt{2}\right] \subset \mathbb{Q}\left[\sqrt{2},\sqrt{3}\right] \subset \mathbb{R}$

4. Morphisme de corps

Définition:

Soient $(A, +, \times)$ et $(B, +, \times)$ deux corps et f une application de A dans B.

On dit que f est un morphisme de corps si et seulement si c'est un morphisme d'anneaux :

$$\Box f(1_A) = 1_B$$

$$\neg \forall x, y \in A / f(x+y) = f(x) + f(y)$$

$$\neg \forall x, y \in A / f(xy) = f(x)f(y)$$

Propriétés:

- □ Tout morphisme de corps est injectif.
- \Box Si f est un morphisme de corps $f(x^{-1}) = (f(x))^{-1}$

5. Caractéristique d'un corps

Soit $(K,+,\times)$ un corps (commutatif) On note ici e l'élément neutre de \times

Soit
$$f: \mathbb{Z} \xrightarrow{n \to K} K$$
, où si $n > 0$, $n.e = e + e + ... + e$, $(-n).e = -(n.e)$ et $0.e = 0_K$

Alors f est un morphisme du groupe $(\mathbb{Z},+)$ dans le groupe (K,+).

Son noyau est donc un sous-groupe de \mathbb{Z} , donc de la forme $n\mathbb{Z}$.

• Si n=0, on dit que K est un corps de caractéristique nulle. Dans ce cas, on a $\forall x \in K / \forall n \in \mathbb{Z} / n.x = 0 \Leftrightarrow (n=0 \text{ ou } x=0)$

exemples :
$$\mathbb{Q},\mathbb{R},\mathbb{C},\mathbb{Q}\Big[\sqrt{2}\,\Big]...$$

• Sinon, on dit que K est un corps de caractéristique n. Dans ce cas, on démontre que n est un nombre premier p, et on a alors $\forall x \in K / p.x = 0$ Exemple : $\mathbb{Z}/p\mathbb{Z}$

Si *K* est un corps de caractéristique *p*, alors $\forall x, y \in K, \forall n \in \mathbb{N} / (x+y)^p = x^p + y^p$