Examples of Logical Implication

$$\forall x Qx \models Qy$$

Proof:

Let \mathfrak{A} be a structure and v an assignment.

$$\models_{\mathfrak{A}} \forall x Q x [v]$$

- \Rightarrow for each $d \in |\mathfrak{A}|, \models_{\mathfrak{A}} Qx[v(x/d)]$
- \Rightarrow for each $d \in |\mathfrak{A}|, d \in Q^{\mathfrak{A}}$
- \Rightarrow letting d = v(y), $\models_{\mathfrak{A}} Qy[v]$ (Note that y is not a free variable in $\forall xQx$)

$Qy \not\models \forall xQx$

Proof?

$$|\mathcal{A}| = |\mathcal{R}|$$

$$Q^{a} = (0,5)$$

$$V(y) = 1$$

$$V(y) = 1$$

 $\models \exists x(Qx \rightarrow \forall xQx)$?

Equivalently: is $\exists x(Qx \rightarrow \forall xQx)$ valid?

Yes, proof?

€ For every structure a , every assignt v, Fa ∃x (Qx → ∀xQx) [v]

€ " there exists d∈ |a|

E QX -> VXQX [V(X/d)]

" Here exists d \(\begin{align*} (\alpha \big| \lambda \big|) \\ \alpha \big| \\ \alph

eithe #a Ox(v(x/a)), or Fa Yx Ox [v(x/a)] Fa Vx Q(x)[v]

either $d \notin Q^a$, or for each $d' \in |a| = \frac{\pi}{a} G_x(v(x/a'))$

€) true

Example: $\exists x \forall y P x y \models \forall y \exists x P x y$? Yes $= \frac{1}{2}$?

Homomorphism

Let \mathfrak{A} , \mathfrak{B} be two structures (of some logic language) A mapping $h: |\mathfrak{A}| \to |\mathfrak{B}|$ is a *homomorphism* of \mathfrak{A} *into* \mathfrak{B} if

- 1. for each n-ary predicate symbol P and elements $a_1,...,a_n, (a_1,...,a_n) \in P^{\mathfrak{A}}$ iff $(\mathbf{h}(a_1),...,\mathbf{h}(a_n)) \in P^{\mathfrak{B}}$,
- 2. for each n-ary function symbol f and each n-tuple $(a_1,...,a_n)$, $h(f^{\mathfrak{A}}(a_1,...,a_n)) = f^{\mathfrak{B}}(h(a_1),...,h(a_n))$, and
- 3. for each constant symbol c, $h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$

$$<$$
 $<$ $<$ $>$ $<$ $>$ $>$ $<$ $>$ $>$ $<$ $> P possible numbers $<$ $<$ $> h_1(n) = n$ not onto $>$ > 0 not onto$

Isomorphism

Let h be a homomorphism of \mathfrak{A} into \mathfrak{B} .

- If h is 1-to-1, it is an *isomorphism* of $\mathfrak A$ into $\mathfrak B$
- If h is 1-to-1 and onto, it is an *isomorphism* of $\mathfrak A$ onto $\mathfrak B$
- $\mathfrak A$ and $\mathfrak B$ are *isomorphic*, denoted as $\mathfrak A\cong\mathfrak B$, if there is an isomorphism of $\mathfrak A$ onto $\mathfrak B$

Homomorphism Theorem

Theorem:

Let h be a homomorphism from $\mathfrak A$ into $\mathfrak B$ and v an assignment for $\mathfrak A$ (mapping from variables to $|\mathfrak A|$).

- 1. For each term t, we have $h(\bar{v}(t)) = \overline{h \circ v}(t)$
- 2. For each quantifier-free formula φ not containing the equality symbol, $\models_{\mathfrak{A}} \varphi[v]$ iff $\models_{\mathfrak{B}} \varphi[h \circ v]$
- 3. If *h* is one-to-one, then "not containing the equality symbol" in (2) can be dropped
- 4. If h is onto, then "quantifier-free" in (2) can be dropped
- 1) By induction on to fin symbols int terms

Datis:
$$n=0$$

Case $1 + c = c : h(\nabla(c)) = h(c^2) = c^3$

$$hov(c) = c^3$$

Case 2:
$$t = \infty$$
 $h(\bar{v}(x)) = h(v(x)) = hov(x)$
 $= hov(x)$