Side 1 av 5 **Student nr.:**

Kontinuasjonseksamen i fag

SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. **Hjelpemidler**: Alle kalkulatortyper tillatt. Alle trykte og håndskrevne hjelpemidler tillatt. **Rubrikksvar:** Alle svar skal avgis i angitte svar-ruter. Stryk over det svaret (JA eller NEI) du mener er galt. **Krav**: Det kreves "bestått" både på de ordinære og på de øvingsrelaterte spørsmål, Oppg. 15-20. **Husk:** Fyll inn rubrikken "Student nr" øverst på alle ark. **OPPGAVE 1. (3%)** Påstand: Når vi bruker uttrykket "algoritme A er O(f(n))" er det underforstått at vi sikter til gjennomsnittlig kjøretid ("average case") for algoritmen A. Svar: JA / NEI Begrunnelse: **OPPGAVE 2.** (3%) Påstand: θ (ln n) = θ (lg n). Svar: JA / NEI Begrunnelse: **OPPGAVE 3.** (3%) Påstand: $n = O(n^2)$. Svar: JA / NEI Begrunnelse: **OPPGAVE 4.** (4%)

Påstand: Det er mer nyttig å vite at en algoritme er $\theta(g(n))$ enn at den er O(g(n)).

Svar: IA / NEI

Svai. 311/ NEI
Begrunnelse:

Student nr.: Side 2 av 5
OPPGAVE 5. (4%) Påstand: Sortering ved innsetting utnytter kunnskap om verdiområdet til de verdier som skal sorteres. Svar: JA / NEI Begrunnelse:
OPPGAVE 6. (4%) Påstand: Alle trestrukturer med n løvnoder har høyde O(lg n). Svar: JA / NEI Begrunnelse:
OPPGAVE 7. (4%) Påstand: QUICKSORT er den beste sorteringsmetoden når en skal sortere desimaltall (flyttall). Svar: JA / NEI Begrunnelse:
OPPGAVE 8. (6%) Påstand: Når vi trenger binomialkoeffisientene n! / (k! (n-k)!), der n = 0,1,2,,N, kreves det O(N³) tid å beregne disse 1. gang, men O(1) tid å finne en koeffisient senere. Svar: JA / NEI Begrunnelse:
OPPGAVE 9. (6%) Påstand: For å finne korteste vei i asykliske grafer, der negative kantlengder tillates, er Bellman-Ford's algoritme best egnet. Svar: JA / NEI Begrunnelse:

Student nr.: Side 3 av 5		
OPPGAVE 10. (6%)		
Påstand: Kjøretiden for en algoritme som avgjør om et tre $G = (V,E)$ er tofargbart		
(d.v.s.: nabonoder skal gis forskjellig farge.) er $\Omega(V)$		
Svar: JA / NEI		
Begrunnelse:		
OPPGAVE 11. (8%)		
Påstand: Verdien x ⁿ , der x er et flyttall og n et stort heltall, beregnes effektivt ved Dynamisk		
Programmering.		
Svar: JA / NEI		
Begrunnelse:		
Degramerse.		
ODDCAVE 12 (00/)		
OPPGAVE 12. (8%)		
Påstand: Dersom vi i grafen $G = (V,E)$ vil undersøke om det finnes en node v som har inngående		
kanter fra samtlige øvrige noder, inklusive seg selv, kan dette gjøres med en $\Omega(V)$ -algoritme. Noden v skal ialt ha $ V $ kanter.		
Svar: JA / NEI		
Begrunnelse:		
OPPGAVE 13. (8%)		
Påstand: 0/1 Ryggsekkproblemet (Knapsack) er NP-komplett.		
Svar: JA / NEI		
Begrunnelse:		
<u>OPPGAVE 14. (8%)</u>		
Påstand: Når vi har funnet en maksimal flyt i et nettverk finner vi samtidig også nettverkets		
"flaskehals" (et entydig såkalt minimalt snitt) der kapasitetsøkning eventuelt kan foretas.		
Svar: JA / NEI		
Begrunnelse:		

Student nr.:	Side 4 av 5
OPPGAVE 15. (5%)	
Påstand: n tall i tallområdet 0 til n*log(n) kan sorteres i O(n) tid.	
Svar: JA / NEI Begrunnelse:	
OPPGAVE 16. (5%)	
Påstand: Memoisering er mer effektivt enn vanlig dynamisk programmering.	
Svar: JA / NEI Begrunnelse:	
OPPGAVE 17. (5%)	
Påstand: Et Huffman-tre der nodene har frekvenser 2, 4, 8,, 2^n vil ha høyde $\theta(n)$.	
Svar: JA / NEI Begrunnelse:	
OPPGAVE 18. (5%)	
Påstand: Dijkstras algoritme kan ikke brukes på grafer som inneholder negative kanter fordi den vil havne i en uendelig løkke.	
Svar: JA / NEI Begrunnelse:	

Student nr.:	Side 5 av 5		
OPPGAVE 19. (5%)			
Påstand: n heltall representert med totalt m bits kan sorteres i O(n*log(m)) tid.			
Svar: JA / NEI Begrunnelse:			
OPPGAVE 20. (5%) Påstand: Topologisk sortering av en komplett graf med n noder tar $\theta(n^2)$ tid.			
Svar: JA / NEI Begrunnelse:			

Benytt plassen nedenfor til eventuelle kommentarer: