1 Overview

Definition 1 A subset C of a topological space X is closed, if it's complement is open (i.e. $X \setminus C$ is open).

Definition 2 A point p is a limit point of a set $A \subseteq X$, where X is a topological space, if for any open set $U \in \tau_X$ such that $p \in U$, $A \cap U \setminus \{p\} \neq \emptyset$

One way to colloquially describe a limit point is "there is always something from A next to that point". Note that a limit point of a set A need not be in A.

Definition 3 Consider a sequence of points $x_i \in X$, where X is some topological space. A point $p \in X$ is the limit of the sequence X, if for any open set $U \in \tau_X$ with $p \in U$, $\exists N$ such that $\forall i > N$ $x_i \in U$. We denote the limit as $p = \lim_{n \to \infty} x_n$

2 Suggested Exercises IV

- I) Properties of Closed Sets. During our session, we briefly discussed the properties of closed sets analogous to open sets. We stated that X, \emptyset are also closed sets. We also noted that the arbitrary intersection of closed sets is a closed set. We have one statement left to prove. Finite union of closed sets, is still a closed set.
 - i) Prove that $\bigcup_{\alpha \in \Lambda} (X U_{\alpha}) = X \bigcap_{\alpha \in \Lambda} U_{\alpha}$ (drawing a Venn Diagram of two intersecting circles helps.
 - ii) Use the result above to prove that a finite union of closed sets is still a closed set.
- II) Closed sets and Limit Points.
 - i) Prove that a closed set contains all of its limit points (i.e. if p is a limit point of C then $p \in C$ for C closed)
 - ii) Prove that if a set contains all of its limit points, then it must be a closed set.
- III) Continuous Functions. Closed sets are an "alternative" definition of a topology (recall that if I tell you all the closed sets, then you know all the open sets and vice versa.). Prove that the following definitions of continuity are equivalent.
 - i) A function $f: X \to Y$ is continuous, if $\forall V \in \tau_Y$ $f^{-1}(V) \in \tau_X$
 - ii) A function $f: X \to Y$ is continuous, if for any closed set $C \subseteq Y$, $f^{-1}(C)$ is a closed set in X.
 - iii) A function $f: x \to Y$ is continuous, if for any converging sequence x_i have that $\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right)$ (*Hint: Use the definition in ii*))