Package 'NestMRMC'

October 21, 2022

version 1.0
Description This R package provides a calculation of between-cases AUC estimate, corresponding co
variance, and variance estimate in the nested data problem. Also, the package has the func-
tion to simulate the nested data. The calculated between-cases AUC estimate is used to evalu-

ate the reader's diagnostic performance in clinical tasks with nested data. For more de-

tails on the above methods, please refer to the paper by H Du, S Wen, Y Guo, F Jin, BD Gallas (2022) <doi:10.1177/09622802221111539>.

Title Single Reader Between-Cases AUC Estimator in Nested Data

License CC0
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Imports magrittr, dplyr, mvtnorm, iMRMC, Rcpp
LinkingTo Rcpp
Depends R (>= 3.5.0)
NeedsCompilation yes
Author Hongfei Du [aut, cre] (https://orcid.org/0000-0002-0633-594X)
Maintainer Hongfei Du <hongfei@gwmail.gwu.edu></hongfei@gwmail.gwu.edu>
Repository CRAN
Date/Publication 2022-10-21 15:07:51 UTC

R topics documented:

AUC_cov_2reader_nest	2
AUC_per_reader_nest	2
cov_m8_f1	3
cov_m8_f2	4
data_MRMC	4
delete_diag	5
expected_data	5
m11_f	5

AUC_per_reader_nest

11

m8_f																6
simu_config																6
success_score																7
sum_diag																8
true_AUC_var_abitrar	y															8
true_AUC_var_abitrar	y_Rcp	p .														9
var_coef																10

AUC_cov_2reader_nest Function for calculating 2 reader AUC covariance

Description

Function for calculating 2 reader AUC covariance

Usage

Index

```
AUC_cov_2reader_nest(success_score)
```

Arguments

success_score The success score for nested data

Value

the covariance between two readers' AUC

Description

This function takes nested data as a data frame and runs a multi-reader multi-case analysis for single reader in nested data problem based on modified U-statistics as described in the following paper:

Usage

```
AUC_per_reader_nest(data)
```

Arguments

data

The nested data for analysis. This dataset should have specified columns: "patient", "reader1", "reader2", "reader3", "reader4", "reader5", "truth", "mod", "region".

cov_m8_f1 3

Value

This function returns a list containing three dataframes.

```
Here is a quick summary:
```

AUC_per_reader [data.frame] this data frame contains the AUC estimates for each reader under diffe AUC_Var_per_reader [data.frame] this data frame contains the AUC variance estimates for each reade numROI [data.frame] this data frame contains the number of positive and negative ROIs in each case.

Examples

```
data = NestMRMC::expected_data
Outputs = AUC_per_reader_nest(data)
```

cov_m8_f1

covariance 8th moment middle calculation part one

Description

covariance 8th moment middle calculation part one

Usage

```
cov_m8_f1(m)
```

Arguments

m

input matrix

Value

the middle values for calculating covariance 8th moment

4 data_MRMC

cov_m8_f2

covariance 8th moment middle calculation part two

Description

covariance 8th moment middle calculation part two

Usage

```
cov_m8_f2(m)
```

Arguments

m

input matrix

Value

the middle values for calculating covariance 8th moment

data_MRMC

Simulation function

Description

Simulation function

Usage

```
data_MRMC(sim.config)
```

Arguments

 $\verb|sim.config|$

list contains following parameters: I num The number of patients. k num The number of ROIs in each patient. R num The number of readers. correlation_t num The correlation for simulating truth label. potential_correlation_s num The correlation for simulating reading scores. AUC_all num The theoretical AUC values. same clustersize boolean The binary variable to decide whether we have same number of ROIs in each patient. rho num The scale parameter that infulence the covariance matrix in multivariate normal distribution. fix_design boolean Binary variable to decide whether fix the truth label in simulation. stream num The integer control the random number generator.

Value

A list and the only element in the list is the simulated data with following columns: "clusterID", "unitID", "reader1",..., "truth"

delete_diag 5

delete_diag

Delete diagonal term function

Description

Delete diagonal term function

Usage

```
delete_diag(m)
```

Arguments

m

the input matrix for deleting diagonal term

Value

diagonal term removed matrix

expected_data

The test demo data to be included in my package

Description

The test demo data to be included in my package

Author(s)

Hongfei Du <hongfei@gwu.edu>

 $m11_f$

function for calculating the 11th moment

Description

function for calculating the 11th moment

Usage

```
m11_f(m)
```

Arguments

m

input matrix

Value

the 11th moment

6 simu_config

 $m8_f$

function for calculating the 8th moment

Description

function for calculating the 8th moment

Usage

```
m8_f(m)
```

Arguments

m

input matrix

Value

the 8th moment

 $\verb|simu_config||$

Configuration function

Description

Configuration function

Usage

```
simu_config(
    I = 100,
    k = 10,
    R = 2,
    correlation_t = 0,
    potential_correlation_s = rep(0.5, 4),
    AUC_all = rep(0.7, 2),
    sameclustersize = TRUE,
    rho = 0.5,
    fix_design = FALSE,
    stream = 20220210,
    initial_seed = 20220222
)
```

success_score 7

Arguments

I The number of patients.

k The number of ROIs in each patient.

R The number of readers.

correlation_t The correlation for simulating truth label.

potential_correlation_s

The correlation for simulating reading scores.

AUC_all The theoretical AUC values.

sameclustersize

The binary variable to decide whether we have same number of ROIs in each

patient.

rho The scale parameter that influence the covariance matrix in multivariate normal

distribution.

fix_design Binary variable to decide whether fix the truth label in simulation.

stream The integer control the random number generator.

Value

A list of above parameters

success_score Calculate the success score

Description

Calculate the success score

Usage

success_score(data)

Arguments

data the nested MRMC data

Value

The success score and number of ROIs in each case

sum_diag

sum the diagonal terms

Description

sum the diagonal terms

Usage

```
sum_diag(m)
```

Arguments

m

input matrix

Value

sum of diagonal terms

true_AUC_var_abitrary Calculate the between-cases AUC estimator's theoretical variance and covariance

Description

This function calculates between-cases AUC estimator's theoretical variance and covariance based on all the truths, namely, the ROI's truth labels, AUC values, covariance between ROI scores within same reader, scale factor that influences the covariance between ROI scores between readers and the variances for positive and negative ROI scores. Detailed formulas are available in following paper: Single Reader Between-Cases AUC Estimator with Nested Data. Statistical Methods in Medical Research. https://doi.org/10.1177/09622802221111539. There is also a Rcpp version of this function in this package. The function name is 'true_AUC_var_abitrary_Rcpp', which is much faster than current version. They produce the exact same results.

Usage

```
true_AUC_var_abitrary(
  numROI,
  AUC = 0.7,
  cov = 0.5,
  rho = 0.5,
  sigma_pos = 1,
  sigma_neg = 1
)
```

Arguments

numRO1	The number of positive and negative ROIs in all the patients.
AUC	The AUC values used in simulated data.
cov	The covariance used in simulating reading scores.
rho	The scale factor used in simulating reading scores.
sigma_pos	The variacne for positive ROI's reading score, defalut is 1.
sigma_neg	The variacne for negative ROI's reading score, defalut is 1.

Value

The theoretical AUC estimator's (co)variance based on the simulation settings.

```
true_AUC_var_abitrary_Rcpp
```

Calculate the between-cases AUC estimator's theoretical variance and covariance

Description

This function calculates between-cases AUC estimator's theoretical variance and covariance based on all the truths, namely, the ROI's truth labels, AUC values, covariance between ROI scores within same reader, scale factor that influences the covariance between ROI scores between readers and the variances for positive and negative ROI scores. Detailed formulas are available in following paper: Single Reader Between-Cases AUC Estimator with Nested Data. Statistical Methods in Medical Research. https://doi.org/10.1177/09622802221111539. There is also a none Rcpp version of this function in this package. The function name is 'true_AUC_var_abitrary', which is slower but no need to install Rcpp. They produce the exact same results.

Usage

```
true_AUC_var_abitrary_Rcpp(
  numROI,
  AUC = 0.7,
  cov = 0.5,
  rho = 0.5,
  sigma_pos = 1,
  sigma_neg = 1
)
```

Arguments

numROI	The number of positive and negative ROIs in all the patients.
AUC	The AUC values used in simulated data.
cov	The covariance used in simulating reading scores.
rho	The scale factor used in simulating reading scores.
sigma_pos	The variacne for positive ROI's reading score, defalut is 1.

sigma_pos The variacne for positive ROI's reading score, default is 1.

sigma_neg The variacne for negative ROI's reading score, default is 1.

10 var_coef

Value

The theoretical AUC estimator's (co)variance based on the simulation settings.

var_coef

Calculate the each moments coefficient in variance

Description

Calculate the each moments coefficient in variance

Usage

```
var_coef(numROI)
```

Arguments

numROI

number of ROIs in each case

Value

all the coefficients

Index

```
* data
     {\tt expected\_data}, {\tt 5}
AUC_cov_2reader_nest, 2
\verb|AUC_per_reader_nest|, 2
cov_m8_f1, 3
cov_m8_f2, 4
data_MRMC, 4
delete_diag, 5
expected_data, 5
list, 3
m11_f, 5
m8_f, 6
\verb|simu_config|, 6
success_score, 7
{\tt sum\_diag}, {\color{red} 8}
true\_AUC\_var\_abitrary, 8
true\_AUC\_var\_abitrary\_Rcpp, 9
var\_coef, 10
```