Notations et définitions

Le problème traite de certaines propriétés concernant les racines de polynômes dont les coefficients sont aléatoires.

- Dans tout le problème, l'espace \mathbb{R}^n sera muni du produit scalaire canonique usuel défini, si $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n)$, par $\langle x, y \rangle = \sum_{k=1}^n x_k y_k$. La norme euclidienne associée sera notée $||x|| = \sqrt{\langle x, x \rangle}$.
- La sphère unité de \mathbb{R}^n sera notée S^{n-1} . C'est par définition $S^{n-1} = \{x \in \mathbb{R}^n, ||x|| = 1\}$. La boule unité fermée de \mathbb{R}^n sera notée $B^n = \{x \in \mathbb{R}^n, ||x|| \leq 1\}$.
- La mesure de Lebesgue sur \mathbb{R}^n sera notée λ_n , voire λ s'il n'y a pas d'ambiguité sur la valeur de n.
- Les coefficients binomiaux seront notés $\binom{n}{k} = \frac{n!}{k! (n-k)!}$. On pourra aussi utiliser la notation C_n^k .
- Si $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ sont deux suites de nombres réels, on dit que (u_n) est dominée par (v_n) , et on note $u_n \in O(v_n)$ ou bien $u_n = O(v_n)$, s'il existe une constante C telle que $|u_n| \leqslant C|v_n|$ à partir d'un certain rang.

Partie I Asymptotique du nombre de zéros

On définit dans cette partie pour t > 0 et $n \in \mathbb{N}^*$ les trois fonctions

$$A_n(t) = \frac{n^2}{t^2 + 2nt}, \ B_n(t) = \frac{(n+1)\left(1 + \frac{t}{n}\right)^n}{\left(1 + \frac{t}{n}\right)^{2n+2} - 1} \text{ et } \delta_n(t) = \sqrt{A_n^2(t) - B_n^2(t)}.$$

On admettra provisoirement que $A_n(t) \ge B_n(t)$ pour tout t > 0, ce qui garantit la définition de $\delta_n(t)$.

- 1. Calculer $\int_{1}^{+\infty} A_n(t) dt$.
- 2. Les inégalités des questions (a), (b) et (c) suivantes sont demandées pour tout t > 0.
 - (a) Justifier que $|\delta_n(t) A_n(t)| \leq \frac{B_n^2(t)}{A_n(t)}$.
 - (b) On pose $\varphi_n(t) = \frac{1}{\left(1 + \frac{t}{n}\right)^{2n+2} 1}$. Montrer que $\varphi_n(t) \leqslant \frac{1}{2t + 2t^2}$.
 - (c) Vérifier que $|\delta_n(t) A_n(t)| \leq -(n+1)t\varphi'_n(t)$.
 - (d) En déduire que la suite $\int_{1}^{+\infty} |\delta_n(t) A_n(t)| dt \in O(n)$ lorsque n tend vers $+\infty$.
 - (e) Déterminer un équivalent simple de $\int_1^{+\infty} \delta_n(t) dt$ lorsque n tend vers $+\infty$.

3. On pose

$$N_n(t) = \left(\left(1 + \frac{t}{n}\right)^{2n+2} - 1\right)^2 - (n+1)^2 \left(1 + \frac{t}{n}\right)^{2n} \left(\frac{2t}{n} + \frac{t^2}{n^2}\right)^2$$
$$D_n(t) = \left(\frac{2t}{n} + \frac{t^2}{n^2}\right)^2 \left(\left(1 + \frac{t}{n}\right)^{2n+2} - 1\right)^2$$

de sorte que $\delta_n(t)^2 = \frac{N_n(t)}{D_n(t)}$ pour tout t > 0.

- (a) À l'aide d'un développement limité, déterminer les valeurs de $N_n(0), N'_n(0), N''_n(0)$. En déduire l'intégrabilité de $\delta_n(t)$ en 0.
- (b) Vérifier que $\left(1 + \frac{t}{n}\right)^{2n} \leqslant e^2$ pour tout $t \in [0, 1]$.

On note \mathcal{B} l'ensemble des suites de fonctions $(g_n)_{n\geqslant 1}$ de classe \mathcal{C}^3 de [0,1] dans \mathbb{R} , pour lesquelles il existe M tel que $|g_n(t)|, |g_n'(t)|, |g_n''(t)|$ et $|g_n'''(t)|$ soient tous inférieurs à M pour tout t dans [0,1] et pour tout $n\geqslant 1$.

Montrer que \mathcal{B} est une algèbre, puis que $(N_n)_{n\geqslant 1}$ est dans \mathcal{B} .

- (c) Déduire des questions précédentes que $\int_0^1 \delta_n(t) dt \in O(n)$.
- 4. (a) Vérifier que $\frac{1}{t^2-1} \frac{(n+1)t^n}{t^{2n+2}-1} \geqslant 0$ pour tout t > 1.

On pourra utiliser sans démonstration l'inégalité $x + \frac{1}{x} \ge 2$ valable pour tout x > 0.

(b) On démontrera ultérieurement que

$$E_n = \frac{4}{\pi} \int_1^{+\infty} \sqrt{\frac{1}{(t^2 - 1)^2} - \frac{(n+1)^2 t^{2n}}{(t^{2n+2} - 1)^2}} \, dt$$

est le nombre moyen de racines réelles d'un polynôme de degré n dont les coefficients sont aléatoires.

À l'aide du changement de variable $t = 1 + \frac{x}{n}$, déterminer un équivalent de E_n lorsque n tend vers $+\infty$.

Partie II Balayages orthogonaux sur la sphère

II.A - Une mesure invariante sur la sphère

Dans cette partie, n est un entier fixé $(n \ge 3)$.

On construit une mesure sur la sphère S^{n-1} , héritée de la mesure de Lebesgue λ_n . Pour toute partie $A \subset S^{n-1}$, on définit le cône engendré par A comme l'ensemble

$$C = \{t.x \mid t \in [0,1], x \in A\}.$$

Lorsque C est mesurable, on pose alors $\lambda_S(A) = \frac{\lambda_n(C)}{\lambda_n(B^n)}$. On a en particulier $\lambda_S(S^{n-1}) = 1$.

On admet que les images réciproques de boréliens de \mathbb{R} par des restrictions à S^{n-1} de fonctions mesurables sur \mathbb{R}^n sont mesurables.

La présence de dessins clairs sera vivement appréciée.

1. Vérifier que pour tout h > 0 on a

$$\lambda_S\Big(S^{n-1}\cap([-h,h]\times[-1,1]^{n-1})\Big)\leqslant\frac{2^nh}{\lambda_n(B^n)}$$

- 2. Montrer que λ_S est invariante par rotation, i.e. pour toute rotation vectorielle r de \mathbb{R}^n et pour toute partie mesurable $A \subset S^{n-1}$ on a $\lambda_S(r(A)) = \lambda_S(A)$.
- 3. On définit, lorsque $0 \leqslant \alpha \leqslant \beta \leqslant 2\pi$, le quartier de disque $\Omega_{\alpha,\beta}$ comme l'ensemble

$$\Omega_{\alpha,\beta} = \{ (r\cos\theta, r\sin\theta) \mid r \in [0,1], \theta \in [\alpha,\beta] \},\$$

puis le quartier de sphère $Q_{\alpha,\beta}$ comme l'ensemble des points $(x_1,\ldots,x_n)\in S^{n-1}$ tels que $(x_1,x_2)\in\Omega_{\alpha,\beta}$.

Vérifier que lorsque θ et θ' sont positifs et que $\theta + \theta' \leq 2\pi$, alors

$$\lambda_S(Q_{0,\theta+\theta'}) = \lambda_S(Q_{0,\theta}) + \lambda_S(Q_{0,\theta'}).$$

En déduire que $\lambda_S(Q_{\alpha,\beta}) = \frac{\beta - \alpha}{2\pi}$.

Dans toute la suite du problème, lorsque a et b sont deux points de S^{n-1} , on appelle longueur d'arc entre a et b la quantité $L(ab) = \arccos(\langle a, b \rangle)$.

4. Soit a et b deux points de S^{n-1} . Montrer l'existence d'une constante K indépendante de a et b telle que

$$||b-a|| - K||b-a||^2 \le L(ab) \le ||b-a|| + K||b-a||^2.$$

5. On considère $\theta \in [0, \pi]$ et les deux points de S^{n-1} définis par $a = (1, 0, \dots, 0)$ et $b = (\cos \theta, \sin \theta, 0, \dots, 0)$. Déterminer en fonction de θ la quantité

$$\lambda_S \Big(\{ x \in S^{n-1} \mid \langle x, a \rangle \langle x, b \rangle \leqslant 0 \} \Big).$$

De façon générale, a et b étant cette fois-ci quelconques dans S^{n-1} , vérifier que

$$\lambda_S \Big(\{ x \in S^{n-1} \mid \langle x, a \rangle \langle x, b \rangle \leqslant 0 \} \Big) = \frac{\mathcal{L}(ab)}{\pi}.$$

II.B - Balayages orthogonaux

Soit $t \mapsto \gamma(t)$ une fonction régulière définie sur un **segment** $I \subset \mathbb{R}$ et à valeurs dans S^{n-1} . Pour tout point $a \in S^{n-1}$, on définit le nombre de passages orthogonaux en a pendant l'intervalle $J \subset I$ par

$$N_J(a) = \operatorname{Card}\{t \in J \mid a \perp \gamma(t)\},\$$

le cardinal étant à valeur dans $\mathbb{N} \cup \{+\infty\}$. L'aire orthogonale balayée par γ est alors

$$\mathcal{A}_I = \int_{a \in S^{n-1}} N_I(a) \, \mathrm{d}\lambda_S(a) = \sum_{k=0}^{+\infty} k \cdot \lambda_S(N_I^{-1}(k)).$$

On admet la mesurabilité des fonctions N_J .

On se place ici dans le cas où γ est de classe C^2 sur I et qu'il existe $M \in \mathbb{R}$ tel que pour presque tout $a \in S^{n-1}$, $N_I(a) \leqslant M$. Par ailleurs, on note $||\gamma'||_{\infty} = \sup_{t \in I} ||\gamma'(t)||$ et $||\gamma''||_{\infty} = \sup_{t \in I} ||\gamma''(t)||$.

- 1. Soit $a \in S^{n-1}$ et h > 0.
 - (a) Montrer que si $\langle a, \gamma(t) \rangle \langle a, \gamma(t+h) \rangle \leq 0$, alors $N_{[t,t+h]}(a) \geq 1$.
 - (b) Vérifier que si $N_{[t,t+h]}(a) \ge 2$, alors on peut trouver c dans [t,t+h] tel que a soit orthogonal à $\gamma'(c)$. En déduire que

$$|\langle a, \gamma(t) \rangle| \leqslant h^2 ||\gamma''||_{\infty}.$$

- (c) Montrer la même inégalité lorsque l'on a $\langle a, \gamma(t) \rangle \langle a, \gamma(t+h) \rangle > 0$ et $N_{[t,t+h]}(a) \ge 1$.
- 2. (a) Déduire des résultats précédents que les quantités suivantes peuvent être majorées par un terme proportionnel à h^2 et ne dépendant pas de t:

$$i) \left| \lambda_S \left(N_{[t,t+h]}^{-1}(1) \right) - \frac{L(\gamma(t)\gamma(t+h))}{\pi} \right| \qquad ii) \left| \mathcal{A}_{[t,t+h]} - \frac{||\gamma(t) - \gamma(t+h)||}{\pi} \right|$$

(b) Vérifier alors que $A_I = \frac{1}{\pi} \int_I ||\gamma'(t)|| dt$.

Partie III Le nombre moyen de zéros d'un polynôme

III.A - Coefficients de même loi gaussienne

On considère des variables aléatoires a_1, \ldots, a_n gaussiennes, indépendantes, de moyenne nulle et de variance 1. Leur loi jointe est définie par

$$\mathbb{P}\Big((a_1,\ldots,a_n)\in A\Big) = \frac{1}{(2\pi)^{n/2}} \int_A e^{-\frac{||x||^2}{2}} d\lambda_n(x).$$

On se donne n fonctions f_1, f_2, \ldots, f_n , formant un système libre dans l'espace des fonctions de classe C^2 d'un intervalle I dans \mathbb{R} . On définit la fonction aléatoire $f = a_1 f_1 + \ldots + a_n f_n$, et on s'intéresse au nombre moyen de zéros de la fonction f sur l'intervalle I.

On suppose que les (f_k) ne s'annulent pas simultanément; on pose $v(t) = (f_1(t), \dots, f_n(t))$ et $\gamma(t) = \frac{v(t)}{||v(t)||}$. On suppose aussi qu'il existe un nombre M tel que, presque sûrement, f admet moins de M zéros sur I.

1. Soit $a = (a_1, \ldots, a_n)$. La variable $\frac{a}{||a||}$ est à valeurs dans S^{n-1} . Montrer que la loi de $\frac{a}{||a||}$ est invariante par rotation, i.e. $\mathbb{P}\left(\frac{a}{||a||} \in A\right) = \mathbb{P}\left(\frac{a}{||a||} \in r^{-1}(A)\right)$ pour toute rotation vectorielle r de \mathbb{R}^n et tout borélien A.

Dans la suite, on admettra que la loi de $\frac{a}{||a||}$ est λ_S .

2. Montrer que le nombre moyen de zéros de f sur l'intervalle I est

$$\frac{1}{\pi} \int_{I} ||\gamma'(t)|| \, \mathrm{d}t$$

On prendra garde au fait que I n'est pas forcément un segment.

3. Montrer que $||\gamma'(t)||^2 = \frac{\partial^2 \varphi}{\partial x \partial y}(t,t)$, où φ est définie sur un ouvert autour de la droite y=x par

$$\varphi(x,y) = \ln \langle v(x), v(y) \rangle.$$

4. En déduire que le nombre moyen de zéros réels d'un polynôme $P = a_0 + a_1 X + \ldots + a_n X^n$, aléatoire de degré n, dont tous les coefficients (a_k) sont indépendants et de même loi gaussienne de moyenne nulle et de variance 1, est donné par la valeur E_n définie à la dernière question de la première partie.

III.B - Une classe de polynômes circulaires

Dans toute cette partie, n est un entier fixé. À un polynôme $P(X) = a_0 + a_1 X + \dots + a_n X^n$ on associe le polynôme homogénéisé $\tilde{P}(X,Y) = a_0 Y^n + a_1 X Y^{n-1} + \dots + a_{n-1} X^{n-1} Y + a_n X^n$, élément du sous-espace vectoriel E de $\mathbb{R}[X,Y]$ engendré par les monômes $X^k Y^{n-k}$ pour $k \in \{0,\dots,n\}$.

Pour tout $\theta \in \mathbb{R}$ on définit l'opérateur L_{θ} qui à $P(X,Y) \in E$ associe le polynôme

$$L_{\theta}(P) = P(\cos \theta X + \sin \theta Y, -\sin \theta X + \cos \theta Y).$$

- 1. (a) Montrer que L_{θ} est un endomorphisme de E. Que vaut $L_{\theta} \circ L_{\theta'}$?
 - (b) On associe chaque élément de E à ses coordonnées dans la base canonique $(X^kY^{n-k})_{0\leqslant k\leqslant n}$. L_{θ} est alors assimilé à un endomorphisme de \mathbb{R}^{n+1} .

Montrer que
$$\frac{\partial (L_{\theta}(P))}{\partial \theta} = A.L_{\theta}(P)$$
, avec

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ -n & \ddots & 2 & \ddots & \vdots \\ 0 & -(n-1) & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & n \\ 0 & \cdots & 0 & -1 & 0 \end{pmatrix}$$

la matrice $A = \left(a_{i,j}\right)_{\substack{0 \le i \le n \\ 0 \le j \le n}}$ étant définie par les relations

$$\begin{cases} a_{i,j} = j & \text{si } j = i+1 \\ a_{i,j} = j - n & \text{si } j = i-1 \\ a_{i,j} = 0 & \text{sinon} \end{cases}$$

(on pourra d'abord vérifier la relation en $\theta = 0$).

- (c) Prouver qu'il existe une unique matrice D diagonale à coefficients positifs, dont le premier coefficient diagonal est 1, et telle que $B = DAD^{-1}$ soit une matrice antisymétrique. Préciser les coefficients de D.
- (d) En déduire que pour tout θ il existe une matrice orthogonale $Q(\theta)$ telle que pour tout $P \in E$ on a $DL_{\theta}(P) = Q(\theta)DP$.
- 2. On considère une suite (a_0, \ldots, a_n) de variables aléatoires, indépendantes, de lois gausiennes de moyenne nulle et de variance $\operatorname{Var}(a_k) = \binom{n}{k}$, ce qui signifie que la loi jointe des variables $a_k \binom{n}{k}^{-1/2}$ est similaire (avec n+1 à la place de n) à celle qui est donnée dans le préambule de la partie **III.A**.

- (a) Soit $P \in E$ défini par $P = \sum_{k=0}^{n} a_k X^k Y^{n-k}$. On fixe $\theta \in \mathbb{R}$. Montrer que la variable aléatoire $L_{\theta}(P)$ à valeurs dans E a la même loi que P.
- (b) Calculer le nombre moyen de zéros réels de P contenus dans l'intervalle]a,b[, où a < b avec a,b éléments de $\mathbb{R} \cup \{-\infty,+\infty\}$.

Partie IV Quelques résultats sur les séries aléatoires

IV.A - Majoration du nombre de racines d'un polynôme

On considère dans cette partie un polynôme $P = \sum_{k=0}^{n} a_k X^k$ à coefficients complexes de degré n.

On définit la mesure de P par $M(P) = |a_n| \prod \max(1, |z|)$ où le produit est pris sur l'ensemble des racines complexes de P, répétées avec leur multiplicité.

On définit la norme de P par $||P|| = \left(\sum_{k=0}^{n} |a_k|^2\right)^{1/2}$.

1. (a) Montrer que pour tout polynôme Q à coefficients complexes, et pour tout $z\in\mathbb{C},$ on a l'égalité

$$||(X+z)Q(X)|| = ||(\overline{z}X+1)Q(X)||.$$

- (b) En déduire que $M(P) \leq ||P||$.
- 2. On considère $0<\rho<1$ et on suppose $a_0\neq 0$. Montrer que le nombre de racines de module inférieur à ρ^2 est inférieur à

$$\frac{1}{\ln\frac{1}{\rho}} \cdot \ln\frac{\sqrt{\sum_{k=0}^{n} a_k^2 \rho^{2k}}}{|a_0|}.$$

IV.B - Cas de la série $\sum_{k=0}^{+\infty} \frac{a_k}{\sqrt{k!}} x^k$

On considère une suite $(a_k)_{k\geqslant 0}$ de variables aléatoires indépendantes, de loi gaussienne de moyenne nulle et de variance 1.

Pour toute fonction g, on définit $Z_{[a,b]}(g)$, élément de $\mathbb{N} \cup \{+\infty\}$, par

$$Z_{[a,b]}(g) = \text{Card}\{t \in [a,b] \mid g(t) = 0\}.$$

On sera amené à utiliser dans cette partie la forme faible du théorème de Borel-Cantelli, que l'on rappelle ici : « $Si\ (A_n)_{n\geqslant 0}$ est une suite d'évènements aléatoires, tels que la série $\sum_{n\geqslant 0} \mathbb{P}(A_n)$

converge, alors $\mathbb{P}\left(\bigcap_{n\geqslant 0}\bigcup_{p\geqslant n}A_p\right)=0$ ».

- 1. Montrer que la série entière $\sum_{k=0}^{+\infty} \frac{a_k}{\sqrt{k!}} x^k$ est presque sûrement de rayon de convergence $+\infty$.
- 2. On pose $f(x) = \sum_{k=0}^{+\infty} \frac{a_k}{\sqrt{k!}} x^k$ et $S_n(x) = \sum_{k=0}^n \frac{a_k}{\sqrt{k!}} x^k$. Soit [a, b] un segment. Montrer que, presque sûrement, $Z_{[a,b]}(f)$ est finie, f et f' n'ont pas de zéro commun et $Z_{[a,b]}(S_n) \underset{n \to \infty}{\longrightarrow} Z_{[a,b]}(f)$.
- 3. Prouver que l'espérance $\mathbb{E}(Z_{[a,b]}(S_n)) \xrightarrow[n \to \infty]{} \mathbb{E}(Z_{[a,b]}(f))$ et calculer cette limite en fonction de a et de b.

IV.C - Cas de la série
$$\sum_{k=0}^{+\infty} a_k x^k$$

Ici encore, on considère une suite (a_k) de variables aléatoires indépendantes, de loi gaussienne de moyenne nulle et de variance 1.

Montrer que la série entière $f(x) = \sum_{k=0}^{+\infty} a_k x^k$ est presque sûrement de rayon de convergence 1, et calculer $\mathbb{E}(Z_{[a,b]}(f))$ lorsque -1 < a < b < 1.