컨텍스트 스위칭(Context Switching)

CPU가 어떤 프로세스를 실행하고 있는 상태에서 인터럽트에 의해다음 우선 순위를 가진 프로레스가 실행되어야 할 때 기존의 프로세스 정보들은 PCB에 저장 하고 다음 프로세스의 정보를 PCB에서 가져와 교체하는 작업을 컨텍스트 스위칭이라 한다. 이러한 컨텍스트 스위칭을 통해 우리는 멀티 프로세싱, 멀티 스레딩 운영이 가능하다.

PCB란?

PCB(프로세스 제어블록)는 운영체제가 프로세스에 대한 중요한 정보를 저장해 놓는 곳으로 Task Control Block 또는 Job Control Block이라고도 합니다. 각 프로세스가 생성될 때마다 고유의 PCB가 생성되며 프로세스가 완료되면 PCB는 제거됩니다.

스레드 컨텍스트 스위칭(Thread Context Switching

• OS는 스레드 하나의 작업을 진행하기 위해 해당 스레드의 Context를 읽어오고, 다시 다른 스레드로 작업을 변경할 때, 이전 스레드의 Context를 저장하고 작업을 진행할 스레드의 Context를 읽어오는 작업을 말한다.

한 스레드에서 다른 스레드로 작업을 넘기는 과정

Context 란?

정보를 나타내는데 레지스터, 커널 스택, 사용자 스택 등의 여러 정보를 의미

스핀락(Spinlock)

- 임계 구역(critical section)에 진입이 불가능할 때 진입이 가능할 때 까지 루프를 돌면서 재시도하는 방식으로 구현된 락
- 스핀락이라는 이름은 락을 흭득할 때까지 해당 스레드가 빙빙 돌고 있다(spinning)는 것을 의미
- 스핀락은 상대적으로 짧은 시간 안에 끝나는 작업들의 동기화에 쓰인다. 만약 오래걸리는 작업들의 동기화의 스핀락을 사용한다면 많은 스레드들이 락을 잡으려고 시도를 하고, cpu점유율이 엄청 올라가기때문