(11)Publication number :

11-184434

(43)Date of publication of application: 09.07.1999

(51)Int.CI.

JUN 1 3 2000 P

G09G 3/36 G02F 1/13 G02F 1/133 G09G 3/20 G09G 3/20 G09G 3/20

(21)Application number : 09-351024 (22)Date of filing : 19.12.1997 (71)Applicant :

SEIKO EPSON CORP

19.12.1997 (72)Inventor:

YAMAZAKI TAKU

(54) LIQUID CRYSTAL DEVICE AND ELECTRONIC EQUIPMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To set freely a partial display area to a certain extent for a device user in a liquid crystal display device having a function making only a partial part of a screen a display state and making a remaining part a non-display state.

SOLUTION: When an area to be partially displayed is made the surrounded area from L1-th row to L2-th row and from M1-th column to M2-th column of a liquid crystal display panel 1, a register is provided in a control circuit, and values corresponding to L1, L2, M1, M2 are made to be written in beforehand to be partially displayed according to the values written therein

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision

of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

Japanese Publication for Unexamined Patent Application No. 184434/1999 (Tokukaihei 11-184434)

A. Relevance of the Above-identified Document

This document has relevance to <u>claims 1 - 4, 6, 9</u>
- 12, 14, 17, 18, 24, 27, 29, 33 - 37 of the present application.

B. <u>Translation of the Relevant Passages of the Document</u> [EMBODIMENTS]

In the case where the display panel is of the activematrix mode, because the voltage of the pixel portion is maintained in the non-select period, it is required to apply an OFF voltage to the pixels of nondisplay row when making transition to partial display. Indicated by VCT in the drawing is a signal voltage control signal. By setting the VCT to L level, the applied signal voltage to the pixel can be made substantially 0 V. For example, in the case of a TFT panel, by applying the same voltage as the common potential, the applied signal voltage to the pixel can be made substantially 0 V. In the activematrix mode, CNT3 and PDY are set to H level only for the F1 period so that the application of the CLY and the select voltage does not stop, and while the non-display row is

•---

selected, substantially 0 V is applied to the pixel, and, after the F2 period, the application of the CLY corresponding to the non-display portion is stopped, and the output of the select voltage from the Y driver is prevented.

i

(19)日本国格許庁 (JP)

€ 翐 ধ 盐 那都 | | (4 | (2)

(11)特許出限公開每号

特開平11-184434

(43)公開日 平成11年(1999)7月9日

(51) Int CL*		40000000		ъ. П				
0000	3/36			9609				
GOZF	1/13	505		G02F			505	
	1/133	505			1/133		209	
0600	3/20			0600			611A	
		621			•		621E	
			中推投資	9	中部中 報告は日本の日	č	(4 10 HZ)	は上世代日

(¥ 12 ¥) 製み者の数ものし **米哥米**

(11) 出版人 000002369

特配平9-351024 (21) 田野時中 日間(22)

平成9年(1997)12月19日

東京都新信区西斯信2丁目4番1号 セイコーエブソン株式会社 日本の日 (72)発明者

投野県諏訪市大和3丁目3番5号 セイコ

(42名) 弁理士 鈴木 為三郎 ーエゲンン株式会社内 (74)代理人

統品装置及び電子機器 (54) [発明の名称]

[21] [取称]

【輠烟】画面の一部分だけを表示状態とし、残りの部分 を非扱示状態にすることができる機能を有した液晶扱示 **岗圏において、装図使用着が部分表示領域をある程度自 由に股定できるようにする。**

けてし1、L2、M1、M2に対応する値を告き込める ようにしておき、そこに哲き込まれた値に従って部分表 のL1行目からL2行目までかつM1列目からM2列目 までの囲まれた領域とする時、傾御回路にレジスタを設 【解決手段】部分投示させたい領域を液晶表示パネル1

【枯粋腔状の穐囲】

[精求項1] 一部の領域を表示状態とし、他の領域を非 表示状態とする機能を有した液晶数固であって、扱示観 域あるいは非扱示領域の位置を制御回路のレジスタによ り可変させたことを特徴とする液晶装置。

扱示データの転送を停止させる 手段とを備えたことを特 非扱示領域の区分が信号電極によって区分される方向で フとなる電圧に固定する手段と、非扱示領域に対応する 【韓求頃2】 韓求頃1の液晶数图において、投示銀域と あって、非表示領域の信号電極への印加電圧を投示がオ 徴とする液晶数配。

非扱示領域の区分が走査電極によって区分される行方向 であって、全行に表示する場合と一部分の行に表示する 場合とで表示領域の走査電極に過択電圧を印加する時間 【樹求項3】 額求項1の液晶数配において、扱示領域と が同じであることを特徴とする液晶粒配。 【間次項4】 翻次項3の液晶装配において、扱示パネル してなり、前記画案電極にスイッチング素子が形成され てなり、非扱示領域にある行の画菜部の液晶への印加電 には画素電極がマトリックス状に形成され画素部を形成 圧をほぼOVに書き込む手段を備えていることを特徴と する液晶装配 [翻求項 5] 的記液品液配を搭載したことを特徴とする

[発明の詳細な説明]

[0001]

[発明の属する技術分野] 本発明は一部の領域だけを設 示状態とし、他の領域を非扱示状態にすることができる 機能を有した液晶装配に関する。

[0002]

いる表示数图はより多くの情報が表示できるように扱示 ドット数が年々増加して来ており、それに伴い扱示叛配 による消費電力も増大して来ている。携帯電子機器の電 数が多い表示装配においては必要な時は全画面を扱示状 間とするが、通常時は必要型小限の表示が出来るように **表示パネルの一部の領域だけを表示状態とし、他の領域** を非表示状態にして消費電力を低減する方法が検討され 淑は電池であるため電池寿命が長くできるように低消費 【従来の技術】携帯電話等の携帯電子機器に用いられて **町力であることが強く求められる。そのため投示ドット**

【0003】従来の液晶 表示数图においては全画面の扱 のある倒域だけを表示状態とし、他の領域を非投示状態 にする機能を持つものはまだ実用化されていない。そう の実施例1及び特囲平7 - 2 8 1 6 3 2 が提案されてい る。これらの従来例は2つとも液晶表示パネルが単純マ 示/非表示が郁御できる機能を持つものは多いが、画面 した機能を実現する方法としては特開平6-9562 トリックス方式の場合について述べている。

[0004] 図7、図8を用いて特開平6-95621

ネルであり、複数の走査電極を形成した基板と複数の個 6 は信号電極を駆動するXドライバである。被屈の駆動 ク52はそれらの回路に必要なタイミング信号や扱示用 択されている行の各画菜のオン/オフに従う信号机圧が の奥施例を以下に説明する。図7はこの奥施例の液晶製 母電極を形成した基板とが数μmの間隔で対向して配置 5 は走査電極を駆動するYドライパであり、プロック 5 に必要な複数の電圧レベルはプロック54の駆動電圧形 る。走査電極には耐吹1行ずつ選択電圧が印加され、そ の他の行には非選択電圧が印加される。信号電極には選 示数图のブロック図である。ブロック51は液晶投示パ され、その国際には液晶が封入されている。ブロック5 て被母扱示パネルに印加される。プロック57は赴査す へき走査気を極致を固御する走査原御回路である。 ブロッ **成回路で形成され、 XドライバとYドライバを経由し** データ信号および倒御信号を形成するLCDコントロー ラであり、ブロック53は以上の回路の町力供給淑であ 何次印加される。

町極の数は640とする。左半画面の部分扱示状型に移 行する的に、Xドライバには1行分の全回菜がオフのデ -タを貫き込んでおく。その後、LCDコントローラは Xドライバ内部のシフトレジスタを動作させるクロック CLXの周期を2倍にして1週択期間内のクロック数を まず部分表示が左半画面の場合について説明する。信号 半減するとともに、それに合わせて1行当たり320個 **素分の扱示データだけを転送する。この時、左半回面の** 320 画素分しやデータ気送が無くてもXドライバには 1行分の扱示データを記憶する回路が内蔵されているた め、メドライバの右半分は先に転送されていたオフのデ **一タを記憶し続け、Xドライバの右半分の320本の出** 力は扱示をオフする電圧を出力し続ける。こうして右半 フ扱示になることで、扱示戦闘の消費電力は金齟齬投示 画面をオン投示状態とすることができる。 Xドライバの と、さらにその方の上半分の場合にしてとばくている。 即作クロック周波数が半減することとパネルの半分が2 [0005]この政施例は部分扱示が左半回面の場合 状態の協合におくれ指
ド
減少する。

る。続いてLCDコントローラは部分扱示制御倡サPD PDか"H"レベルの場合にはパネルの上半分の走査机 を"H"レベルにして下半分を非扱示状態とする。PD か"し"レベルの場合には1/400デューティで全地 極だけを1/200デューティで建位することにより上 部分投示状態となる。1/200デューティへの切り铅 えはY ドライバ内部のシフトレジスタを動作させるクロ ックCLYの周期を2倍に切り倍えて1フレーム即間内 [0006]次に部分扱示が左半國面の内の上半分だけ 半回面が投示状態で残りの下半側面が非扱示状態という 査配極を走査することにより金画面が扱示状物となり、 る。まず前述した方法で左半画面のみを扱示状間とす の場合について説明する。建査机協の数は400とす

のクロック数を半減することによって行っている。部分 扱示状態における下半画面の走査電極の走査停止方法の るとYドライバ内のシフトレジスタの200段目から2 その結果、Yドライバの201番目~400番目の出力 **详細は記載されていないが、走査側御回路プロック54** の内部回路図から判断すると、PDを"H" レベルにす 0 1段目に転送するデータが"L"レベルに固定され、 が非選択電圧レベルを保つという方法である。

【0007】画菜のオン/オフ状態は液晶に加わる塩圧 の英効値で決まる。下半画面の液晶に加わる実効電圧は 画面のオフ投示状態となっている液晶に加わる実効電圧 よりもかなり小さくなり、その結果、下半画面は完全に 走査電極に選択電圧が全く加わらないために右上1/4 非表示状態となる。

的虹圧の設定変更が必要となる。以下にこの点を駆動電 ネルにおいては扱示デューティを切り替える場合には駆 **圧形成プロック53の内部回路である図8を用いて説明** 【0008】なお、単純マトリックス方式の液晶設示パ

ルを駆動するにはV0~V5の6レベルの電圧が必要に **適となる気圧V5を取り出す。抵抗R1~R5によりV** 0-V5の電圧を分圧して中間電圧を形成し、それらの V1~V4を出力する。スイッチS2aとS2bは逆動 【0009】まず図8の構成と機能についれ述べる。約 1/30デューティよりも南デューティの液晶表示パネ V0には+5Vの入力電源電圧をそのまま用いる。コン トラスト飼整用の可変抵抗RV1とトランジスタQ1と により0Vと-24Vの入力粗酸からコントラストが殴 中間電圧をオペアンプOP1~OP4で駆動能力を上げ スイッチであり個母PDのレベルに応じてR3aとR3 bのどちらか一方が接続状態となる。 R 3 a と R 3 b の **栢坑歯を異ならせておくことにより、PDのレベルに応** なる。液晶に印加される最大電圧はVO-V5であり、 じて異なる分圧比の∨0~∨5を形成することができ

朝比(Vo-V1)/ (Vo-V5) をパイアス比と呼 る。デューティを1/Nとする時、好ましいバイアス比 8において開示されている。従ってR3aとR3bの坻 ティ用に散定しておけば、各デューティにおいて好まし 【0010】V0~V5の固にはV0-V1=V1-V 2=V3-V4=V4-V5という関係があり、電圧分 **抗菌を各々1/400デューティ用と1/200デュー** は1/ (1+/N) であることが特公昭57-577 いバイアス比で既動することができる。

[0011] デューティを切り替える場合にはパイアス 七の切り替えだけでなく同時に駆動電圧=V0-V5の 比を好ましい値に切り替えてもコントラストが著しく思 を1/400から1/200に切り替えると、パイアス い表示となってしまう。これは選択電圧が液晶に加わっ **変更も必要である。駆動電圧を固定したままデューティ**

ている時間が2倍になるために液晶に加わる実効電圧が アス比の切り替えの必要性とその実現手段については詳 細に記載されているのに対して、駆動電圧切り替えの必 **感くなりすぎてしまうことによる。この実施例ではバイ** 要性とその実現手段については詳細な記載が無い。

大変不便なことである。駆動電圧自動散定手段の追加が N>>1の場合はV0-V5をほぼ√Nに比例して関整 する必要がある。たとえば1/400デューティの場合 の殷適なV0-V5を仮に28Vとすると、1/200 よって行うことになるが、それは装置使用者にとっては デューティの場合にはV0-V5を28V/√2キ20 Vに胸整する必要かある。この電圧胸整は全画面表示状 **間と上半画面扱示状態とを切り替える都度にコントラス** ト闘整用可変抵抗RV1を装置使用者が調整することに 必須であるが、パイアス比切り替え手段ほど容易ではな 【0012】具体的にはデューティを1/Nとすると、 いため駆動電圧形成回路は大幅に複雑化することにな

例で述べているが、ここではその実施例のこれ以上の説 【0013】 部分表示が十数行~20行前後とかなり小 と、好ましいパイアス比が1/3や1/4となる。液晶 の協合は5レベル、1/3パイアスの場合には4レベル となる。5レベルの電圧が必要な場合はR3aとR3b 特期平7-281632はこうした場合のパイアス比の 切り替え手段及び駆動電圧の切り替え手段について実施 の慰動に必要な亀圧は6レベルではなく1/4パイアス の内の部分表示時に接続される側の抵抗値を0.0にして おけばよいが、4レベルの電圧が必要な場合にはR3* ではなくR2及びR4を00にする手段が必要となる。 さい場合は、それに合わせてデューティを切り替える 明は省略する。 [発明が解決しようとする課題] 前述したこれまでに提 だけを表示状態とし、他の領域を非表示状態にする機能 案されている方法により、液晶表示パネルの一部の領域 クロックの周期を切り替えたり、パイアス比や駆動電圧 自体は可能となる。但し、部分表示する領域に対応して を切り替えなければならないということは、部分表示で きる領域が用意されている散定のみに限定されてしまう めに汎用性が極めて乏しいという欠点を伴う。

[0014]

フ機能を有しているものが多い。その機能を利用してド 法も可能ではあるが、やはり部分表示できる領域が用意 とによりICチップ単位で部分表示の領域を設定する方 ライバ I Cごとの表示オフ制御入力を個別に制御するこ されている散定のみに限定されてしまうので、汎用性に [0015] 液晶ドライバは制御入力端子により表示オ 又ける方法である。

[0016] そこで本発明は部分表示の領域がソフト的 こ散定できる汎用性の高い液晶表示装配を提供すること

【課題を解決するための手段】 請求項1記載の液品装置 は、一部の領域を表示状態とし、他の領域を非扱示状態 とする機能を有した液晶漿图であって、扱示領域あるい は非扱示領域の位置を制御回路のレジスタにより可変さ せたことを特徴とする。

目までの囲まれた領域とする時、制御回路にレジスタを 散けておきL1、L2、M1、M2に対応する個を告き 部分表示させることは技術的に可能である。こうした手 段を有した液晶装置は使用者が部分投示させたい領域を となる電圧に固定する手段と、非表示領域に対応する投 トのL1行目からL2行目までかつM1列目からM2列 【0019】 翻水項2記載の液晶装置は、投示領域と非 表示領域の区分が信号電極によって区分される方向であ 示データの転送を停止させる手段とを備えたことを特徴 【0018】たとえば部分扱示させたい領域を扱示ドッ って、非扱示領域の信号電極への印加電圧を扱示がオフ 込めるようにすること、そこに曹き込まれた値に従って かなり自由に設定できるため汎用性が高いものとなる。

ックの周期は金画面表示時と同一にしておき、非扱示部 【0020】部分表示時でも表示部分のデータ転送クロ 分のデータ転送期間ではデータ転送クロックあるいはデ 扱示領域と非扱示領域の

区分が

個号電極によって

区分さ ータの少なくとも一方を停止させるという方法により、 れる方向という場合の汎用性を保つことができる。

[0021] 翻水項3記載の液晶装置は、表示領域と非 表示領域の区分が走査電極によって区分される行方向で あって、全行に表示する場合と一部分の行に扱示する場 合とで扱示領域の走査電極に選択電圧を印加する時間が 同じであることを特徴とする。

電圧を印加する時間やパイアス比および駆動電圧を全画 面表示時と同じにするという方法により、表示領域と非 表示領域の区分が走査電極によって区分される方向とい 【0022】部分表示時でも表示領域の走査配極に選択 う場合の汎用性を保つことができる。

なり、非表示領域にある行の画素部の液晶への印加電圧 【0023】 翻水項4記載の液晶羧固は、設示パネルに は画素電極がマトリックス状に形成され画素部を形成し をほぼ0 Vに哲き込む手段を備えていることを特徴とす てなり、向記回茶電極にスイッチング茶子が形成されて

ことがたきるか、TFTやMIMなどのアクティブ・マ トリックス方式の場合は非選択の期間は画素部の配圧を 非選択電圧を印加するだけでその行を非扱示状態にする 保持し続けるため、部分表示状態に移行する前に非扱示 〒の画素にオフ電圧を售き込んでおく必要がある。 0 V 【0024】単純マトリックス方式の場合は走査配極に

の液品物面においても扱所領域と非扱成制域の区分が逆 **煮酢極によって区分される方向という場合の沢用性支保**

つことができる。 [0025]

分表示状態を示す図であり、解稿部分が投示状態、白地 の部分が非扱示状節となっている。必要な時には自地の 部分も扱示状態となるが、待機時には図のように液晶数 **基力いて観明する。図1は本発明の液価数固における部** [発明の英施の形物] 以下、本発明の英施形物を図面に 示パネル1の一部の領域だけに扱示する状態となる。

号電極によって区分される方向である場合、図1Bは扱 場合を示した図である。以後は信号配極によって区分さ れる方向を列方向と扱し、建査電極によって区分される 方向を行方向と扱す。以下の更施例で述べるように、即 ローラ)内部のレジスタに散定する値を通して散定でき [0026]図1Aは投示回域と非投示知域の区分が旧 示領域と非扱示領域の区分が走査電極によって区分され る方向である場合、図1CとDはその組み合わせによる 分表示する領域の広さや位配は制御回路 (LCDコン

プロック図である。1が液晶投示パネル、2がLCDコ イパである。 基本要素は従来技術で説明した図6と同様 トであるしてロコントローラの機能については各個号の 内容と合わせて個別の政施例で説明する。なお、図では 5 が走査低極脳動用ドライバ、6 が倍号低極観動用ドラ であるため、各型素の説明は省略する。本発明のポイン LCDコントローグは쉠立した回路プロックとして扱し てあるが、いずれかのドライバI Cチップに内蔵される 【0027】図2は本発明の液晶数示数層の構成を示す ントローラ、3が電力供給源、4が駆動電圧形成回路 場合もある。

【0028】 (奥施例1) 図1Aのような部分扱所状態 を倒御する回路ブロックである。また、図4は図3の回 を実現する方法の例について図3と図4を用いて説明す る。図3は液晶扱示数图に内蔵されるLCDコントロー ラの一部を示した回路図であり、列方向の部分投斥状態 路の動作を示すタイミング図である。

クの1クロックごとに複数ドット分の扱示データが転送 されるため、レジスタ7には部分表示の列数に対応する データ転送クロック数を設定すればよい。仮にデータ転 送クロックごとに8ドット分の扱示データが転送される とすると7ピットあれば2⁷×8ドット=1024ドッ 【0029】7は8ピット程度のレジスタであり、列方 対応した情報が散定される。通常はデータ転送用クロッ トまでの部分投示が8ドット単位で設定できることにな 句の部分表示を行うか否かの恟轍と部分扱示する列数に

[0030] 8はカウンタを主体とする回路プロック

データ転送用クロック CLX I といったタイミング信号 で、走査開始信号FRM、扱示データラッチ信号LP、

る。こうした手段によりアクティブ・マトリックス方式

に告き込んでおけば液晶に特有な交流駆動も不要とな

である。図を分かり弱くするために、LPー周期ごとの 8ドット分並列の場合にはLPー周期ごとのCLXIの とレジスタ7の設定値を基に、列方向の部分表示を制御 するタイミング信号CNT 1とCNT 2を形成する。F RM、LP、CLX1は図4に示したようなタイミング えば列方向の投示ドット数が320、表示データ転送が クロック数は40である。CLXIとDataIは部分 **扱示ではない時にデータ転送用クロックと表示データに** CLXIのクロック数を実際よりも少なく示した。たと なる簡母である。CLXとDataはLCDコントロー **シケの何中島極限制用ドライバに送り出される信号で、** 各々データ転送用クロックと扱示データである。

[0031] 図4のt 1は部分表示ではない状態から部 分扱示の状態に切り変わる時刻を示す。正確に言えば、 t 1から部分表示の処理が始まる。

Hレベルであった、いの時はANDゲート9と10が囲 DataIと同じ個号がそのまま送り出される。部分扱 示の状態においては非表示の部分に対応するCLXとD ataが停止するように、CNT1とCNT2は図4右 いたままとなり、CLXとDataには各々CLX1と [0032] t 1以街はCNT1とCNT2は危格的に 団のようなタイミングの信号となるようにする。

F RMかつL PがHレベルになった直後の1Hは1行目 **か選択されるので、その1H的に1行目の表示データが** オフ表示データも転送する必要がある。従って、 t 1 直 LPの1周期を1H期間と表す。ある行が遺択されてい りに従った電圧を出力するが、その行の投示データのX は、扱示する部分のデータとともに非表示とする部分の 後の11期間、すなわち、1行目の投示データを転送し ている期間のCLXはt1以前と同様に1行の全ドット **分のデータを送るクロック数が必要であるので、この間** はCNT 1はHレベルとする。一方、この 1 H期間の C NT2はオフ扱示データを転送する間だけしレベルとし 5 間は、Xドライバはその行にある各ドットの表示デー ドライバへの転送はそれよりも1H的の固に行われる。 [0033] ある1行を選択している期間、すなわち、 Xドライパへ転送される。1行目の表示データとして て、扱示データをしレベルに固定する。

送を行わなくても非扱示部分をオフ扱示状態とすること 【0034】t1直後の1Hだけそうしたデータ転送を いては先に転送されていたオフのデータを記憶し続ける ので、それ以降は非投示部分に対応する期間のデータ転 しておけばXドライバはデータ転送が無かった部分につ

【0035】以上の方法により図1Aのように投示領域 と非扱示領域の区分が信号電極によって区分される方向 という部分表示ができる。本実施例によれば部分表示の **広さをレジスタに散定する値に対応させて、たとえば8**

[0036]なお、部分表示の状態において、非表示の ドット単位で自由に可変できる。

でも部分表示が可能ではあるが、本実施例のように両方 部分に対応するCLXとDataの一方を停止するだけ とも伊止した方が低消費電力化の点で好ましい。

開始列前までの非表示部に対応する期間はCLXを動作 [0037]以上述べてきた方法は部分表示部が表示パ 2 系列設けて各々に部分表示部の開始列と終了列に対応 する値を設定できるようにすれば、部分表示部の列方向 回し、この場合は表示パネルの先頭列から部分表示部の
 ネルの先頭列から始まる場合の例であるが、レジスタを の広さだけでなく位配も自由に散定できるようになる。 させておく必要がある。

ラの一部を示した回路図であり、行方向の部分表示状態 [0038] (奥施例2) 図1Bのような部分表示状態 路の動作を示すタイミング図である。 表示パネルは1行 を制御する回路ブロックである。また、図6は図5の回 ずつの機順次駆動であって全部で200行あり、部分表 を実現する方法の例について図5と図6を用いて説明す る。図5は液晶表示数層に内蔵されるLCDコントロー 示状態では先頭から32行のみを表示する場合を示し

た。図6においてA、Bの部分は各々単純マトリックス 方式、アクティブマトリックス方式の液晶表示装配の場 台についての図である。

【0039】11は8ピット程度のレジスタであり、行 に対応した情報が設定される。行数の設定を7ピットで 択駆動のパネルでは27×4=512行までの部分扱示 方向の部分表示を行うか否かの情報と部分表示する行数 行えば、 $1行ずつの線順次駆動のパネルでは<math>2^7 = 12$ 8行までの部分表示が1行単位で設定でき、4行同時選 か4行単位で散定できることになる。

したようなタイミングである。CLYIは部分表示では LYはLCDコントローラからYドライバに送り出され る走査個号転送用クロックであり、ANDゲート13に YIといったタイミング信号とレジスタ11の設定値を 基に、行方向の部分表示を制御するタイミング信号PD YとCNT3を形成する。FRM、CLYIは図6に示 ない時に走査信号転送用クロックとなる信号である。C 【0040】12はカウンタを主体とする回路プロック で、走査開始信号FRM、走査信号転送用クロックCL LACNT 3 LCLY I LOANDHAUCLY EA

した制御入力となる信号であり、Lレベルの時は選択電 【0041】通常、Yドライバは過択電圧の出力を禁止 する制御入力を有している。PDYはYドライバのそう 圧の出力が禁止されてYドライバの全出力が非避択電圧 レベルになるものとする。 [0042] 図6のt2は部分表示ではない状態から部 **ム期間をF1、さらにその次の1フレーム期間をF2と** t 2から部分表示の処理が始まる。 t 2 直後の1フレー **分表示の状態に切り変わる時刻を示す。正確に書えば、**

[0043] t 2以前はCNT 3は定格的にHレベルで Y ドライバの各出力は**原次選択**既圧を出力して、全画面 **が表示状態となっている。部分表示状態においては非扱** 示の部分である33行~200行に対応するCLYが停 ように、CNT3とPDYは図6のようなタイミングの り、CLYにはCLYIと同じ倡号がそのまま送り出さ 止するとともに、Yドライバから選択電圧が出力しない れる。t2以前はPDYも定常的にHレベルであって、 あって、この時はANDゲート13が開いたままとな

【0044】部分表示状態においてもCLYの周期は変 更しないので、表示領域の走査電極に選択電圧を印加す る時間は全画面表示時と同じである。パイアス比や選択 **虹圧を変更する必要も無い。**

信号となるようにする。

圧を告き込んでおく必要がある。図のVCTは信号電圧 樹御信母で、NCTをLレベルにすると回菜への勧ぎ込 み間号電圧をほぼOVにすることができる信号であると する。たとえばTFTパネルの場合にはコモン電位と同 じ電圧を告き込めば、画菜への售き込み信号電圧をほぼ 0 Vにすることができる。アクティブマトリックス方式 の場合にはF1の期間だけはCLYや選択配圧印加が停 止しないようにCNT3とPDYはHレベルとし、非扱 F2以降は非扱示の部分に対応するCLYを停止すると 【0045】 扱示パネルがアクティブマトリックス方式 の場合には非選択の期間は画素部の乱圧を保持し続ける ため、部分表示に移行する際に非投示行の画案にオフ電 る。単純マトリックス方式の場合はも2以降の各フレー ともに、Yドライバから選択電圧が出力しないようにす **示行が選択されている間は画素にほぼ0Vを告き込み** ムは同じタイミング信号の繰り返しでよい。

【0046】以上の方法により図1Bのように投示領域 という部分表示かできる。本英施例によれば部分扱示の 広さをレジスタに設定する値に対応させて、1行ずつ線 [0047] なお、部分表示の状態において、非扱示の 部分に対応するCLYは停止せずに選択電圧の印加を停 ようにCLYも停止した方が低消費電力化の点で好まし い。FRMで内部がリセットされないYドライバを用い 節から全画面表示状態に移行する時に異常表示を避ける ために1フレーム間は過択電圧の印加を停止することが と非表示領域の区分が走査電極によって区分される方向 間次駆動の場合には1行単位で、複数行同時選択駆動の 止するだけでも部分表示が可能ではあるが、本実施例の て部分表示時のCLYを停止する場合には、部分扱示状 場合には同時選択する行数の単位で自由に可変できる。

ネルの先頭行から始まる場合の例であるが、レジスタを 2 系列設けて各々に部分表示部の開始行と終了行に対応 する値を設定できるようにすれば、部分扱示部の行方向 【0048】以上述へてきた方法は部分投示部が投示パ の広さだけでなく位配も自由に散定できるようになる。

但し、この場合は扱示パネルの先頭行から部分扱示部の 開始行前までの非扱示部に対応する期間はCLY.を動作 させておく必要がある。

ば、各々のレジスタが1系列の場合は図1Cのような部 [0049]また、実施例1と実施例2を組み合わせれ **分表示が可能となり、各々のレジスタが2 系列の場合に** は図10のような部分扱示が可能となる。

[0050] (英施例3) 次に、本発明の液晶坡置を搭 裁した気子機器について以下に説明する。 [0051] 上述の契施例の液晶扱示数配を用いて構成 008からのクロックに基づいて扱示情報を処理して出 カする。この表示情報処理回路1002は、例えば増幅 ・極性反転回路、相展開回路、ローテーション回路、ガ ノマ補正回路あるいはクランプ回路等を含むことができ 5。投示駆動回路1004は、走査側駆動回路及びデー 夕朗駆動回路を含んで構成され、液晶パネル1006を 扱示駆動する。電波回路1010は、上述の各回路に電 る。 投示情報出力版 1000は、ROM、RAMなどの メモリ、テレビ信号を同隔して出力する同類回路などを 合んで構成され、クロック発生回路1008からのクロ る。 扱示情報処理回路1002は、クロック発生回路1 生回路 1 0 0 8 及び電源回路 1 0 1 0 を含んで構成され 4、液晶パネルなどの投示パネル1006、クロック される電子機器は、図9に示す扱示情報出力図100 0、扱示情報処理回路1002、扱示駆動回路100 ックに基づいて、ビデオ信号などの扱示情報を出力す

【0052】このような辞成の亀子磁器として、図10 に示す液晶プロジェクタ、図1.1に示すマルチメディア **紅唇のスーンナドロンピュータ (PC) 及びエンジェア** リング・ワークステーション (EWS)、図12に示す くージャ、めるいは被告気格、ワードグロセッサ、 テフ ピ、ピューファインダ型又はモニタ直視型のピデオテ-ション波暦、POS端末、タッチパネルを備えた坡置も プレコーダ、電子手観、電子卓上計算機、カーナビゲ どを挙げることができる。

力を供給する。

ラー13は、光波10からの白色光球のうちの形色光を 過過させるとともに、背色光と緑色光とを反射する。通 反射のダイクロイックミラー14によって反射され、像 【0053】図10は、投写型投示設図の更部を示す概 8, 19, 20はリレーレンズ、22, 23, 24は被 2とからなる。韓色光・緑色光反射のダイクロイックミ 過した赤色光は反射ミラー17で反射されて、赤色光用 ックミラー 13で反射された色光のうち緑色光は緑色光 略構成図である。図中、10は光緻、13,14はダイ 牧邸ライトバルブ22に入射される。一方、ダイクロイ ム、26は投写レンズを示す。光顕10はメタルハラ・ ド毎のランブ11とランブの光を反射するリフレクタ クロイックミラー、15,16,17は反射ミラー、 **啞ライトバルブ、25はクロスダイクロイックブリズ**

特闘平11-184434

色光用液晶ライトバルブ23に入射される。一方、背色 リズムは4つの直角プリズムが貼り合わされ、その内面 光は第2のダイクロイックミラー14も通過する。 墳色 光に対しては、長い光路による光損失を防ぐため、入射 レンズ18、リレーレンズ19、出射レンズ20を合む リワーレンズ孫からなる導光手段21が設けられ、これ を介して質色光が質色光用液晶ライトバルブ24に入射 される。各ライトバルブにより変闘された 3 つの色光は クロスダイクロイックブリズム25に入射する。このブ こ赤光を反射する誘電体多層膜と背光を反射する誘電体 **多屈膜とが十字状に形成されている。これらの誘電体多 習膜によって3つの色光が合成されて、カラー画像を表** す光が形成される。合成された光は、投写光学系である 牧写レンズ26によってスクリーン27上に投写され、 画像が拡大されて扱示される。

[0054] 図11に示すパーソナルコンピュータ12 00は、キーポード1202を備えた本体部1204

と、液晶表示画面1206とを有する。

【0055】図12に示すページャ1300は、金属製 ルムキャリアテーブ1318を有する。2つの弾性導電 18は、液晶投示基板1304と回路基板1308とを ライト1306aを備えたライトガイド1306、回路 監板1308、第1, 第2のシールド板1310, 13 体1314,1316及びフィルムキャリアテーブ13 **フレーム1302内に、液晶扱示基板1304、パック** 12、2つの習性導配体1314、1316、及びフィ **多続するものである。**

け回路とされ、図12の場合には回路基板1308に搭 [0056] ここで、液晶扱示基板1304は、2枚の 透明基板1304a, 1304bの間に液晶を封入した もので、これにより少なくともドットマトリクス型の液 庁す駆動回路1004、あるいはこれに加えて表示情報 処理回路1002を形成することができる。液晶表示基 版1304に搭載されない回路は、液晶表示基板の外付 **協扱示パネルが構成される。一方の透明基板に、図9に**

【0057】図12はページャの構成を示すものである から、液晶投示站板1304以外に回路基板1308が 8要となるが、電子機器用の一部品として液晶表示漿配 が使用される場合であって、透明基板に表示駆動回路な どが搭載される場合には、その液晶表示装配の最小単位 は液晶扱示基板1304である。あるいは、液晶投示基 坂1304を筐体としての金属フレーム1302に固定 したものを、電子機器用の一部品である液晶表示装置と して使用することもできる。さらに、パックライト式の 場合には、金属製フレーム1302内に、液晶表示基板 1304と、パックライト1306ねを備えたライトガ イド1306とを組み込んで、液晶表示装置を構成する ことができる。これらに代えて、図13に示すように、

4a,1304bの一方に、金属の導電膜が形成された ポリイミドテーブ1322にICチップ1324を奥数 LATCP (Tape Carrier Packag e) 1320を接続して、電子機器用の一部品である液

のではなく、本発明の要旨の範囲内で種々の変形実施が 可能である。例えば、本発明は上述の各種の液晶パネル [0058]なお、本発明は上記実施例に限定されるも の駆動に適用されるものに限らず、エレクトロルミネッ センス、ブラズマディスプレー坡囮にも適用可能であ **品表示装配として使用することもできる。**

[0059]

【発明の効果】本発明によれば、装配使用者が部分表示 領域の必要な広さや位配をレジスタで設定できるため、

(図面の簡単な説明)

汎用性の高い液晶装置を提供できる。

[図1] 本発明の液晶表示装置における部分表示状態を

【図2】本発明の液晶表示装置のプロック図。 示す図。

「図3】本発明の実施例を示す液晶表示装置の制御回路

の部分図。

【図4】図3の回路の動作を示すタイミング図。

【図5】本発明の他の実施例を示す液晶表示装置の制御 回路の部分区。

【図6】図5の回路の動作を示すタイミング図。

【図7】 部分表示機能を有した従来の液晶表示装图のプ ロック図。

【図8】図7における液晶駆動電圧作成回路の詳細回路

【図9】本発明の液晶装配を用いた電子機器の機略図。

【図10】本発明の液晶装配を搭載した構成を示す電子

【図11】本発明の液晶装置を搭載した構成を示す電子 機器の概略図。

【図12】本発明の液晶装配を搭載した構成を示す電子 機器の概略図。

【図13】本発明の液晶装置を搭載した構成を示す電子 機器の概略図。 機器の概略図。

(布与の説明)

, 51 … 液晶表示パネル

53:100

、52 … LCDコントローラ

5,55 … 走査電極駆動用ドライバ ,54 … 駆動電圧形成部

56 … 信号電極駆動用ドライバ … 走套制御回路

8 … 列方向倒御倡号形成部 , 11 ··· レジスタ

9, 10, 13 ... ANDゲート

… 行方向制御信号形成部

液晶扱示基板1304を構成する2枚の透明基板130

R, R1, R2, R3a, R3b, R4, R5 小 抵抗 0.1 … バイボール・トレンジスタ 0P1~0P4 ... #KYVY S2a, S2b ... スイッチ V0~V5 … 液晶配動机 R V 1 … 可変抵抗 CNT1~CNT3, PDY, VCT … 即分表示用制 CLYI, CLY … 走査信号転送用クロック CLXI, CLX … データ転送用クロック DataI, Data … 数示データ LP … データラッチ信号 FRM … 走查開始信号

(図4)

(I | | | | |

語でし CAL MANNING 줃 Ē 3

[図2]

特開平11-184434

[图3]

[6國]

表示は自由しています。

Ξ

[図10]

[图12]

FI G09G 3/20

概別記号 680

(51)lnt.Cl.6 G 0 9 G 3/20

レロントページの税を

. (31)