It Can Be Shown

 $Benjamin\ Nutter$

Contents

I Probability Distributions					
	The	e Bernoulli Distribution	9		
	1	Probability Mass Function	9		
	2	Cumulative Distribution Function	9		
	3 Expected Values				
4 Moment Generating Function					
	5	Theorems for the Bernoulli Distribution	11		
		5.1 Validity of the Distribution	11		
		5.2 Sum of Bernoulli Random Variables	11		
	The	e Binomial Distribution	13		
	1	Probability Mass Function	13		
2 Cumulative Distribution Function		Cumulative Distribution Function	13		
3 Expected Values					
	4 Moment Generating Function				
5 Maximum Likelihood Estimator		Maximum Likelihood Estimator	18		
		5.1 Likelihood Function	18		
		5.2 Log-likelihood Function	18		
		5.3 MLE for p	19		
6 Theorems for the Binomial Distribution		Theorems for the Binomial Distribution	19		
		6.1 Validity of the Distribution	19		
		6.2 Sum of Binomial Random Variables	19		
		6.3 Sum of Bernoulli Random Variables	20		
	The	e Chi-Square Distribution	21		
	1 Probability Distribution Function				
	2	Cumulative Distribution Function	21		
	3	Expected Values	22		
	4 Moment Generating Function				

	5	Maximum Likelihood Function			
		5.1	Likelihood Function	26	
		5.2	Log-likelihood Function	26	
		5.3	MLE for ν	26	
	6	Theorems for the Chi-Square Distribution			
		6.1	Validity of the Distribution	27	
		6.2	Sum of Chi-Square Random Variables	27	
		6.3	Square of a Standard Normal Random Variable	28	
	Th	пе Ехр	onential Distribution	31	
	Th	ne Gan	nma Distribution	33	
	Th	ne Geo	metric Distribution	35	
	Th	пе Нур	pergeometric Distribution	37	
	Th	ne Mul	tinomial Distribution	39	
	Th	ne Nor	mal Distribution	41	
	Th	ne Pois	sson Distribution	43	
	Th	ne Skev	w-Normal Distribution	45	
	Th	ne Uni	form Distribution	47	
	Th	ne Wei	bull Distribution	49	
II	F	reque	entist Hypothesis Testing	51	
	Ma	antel-I	Haenszel Test	53	
III	. ;	Suppl	lemental Subjects	55	
	Cł	nebych	ev's Theorem	57	
	Co	ombina	ations	59	
	Th	ne Cor	relation Coefficient	61	
	Co	ovarian	ace	63	

CONTENTS 5

Experimental Designs					
Moments and Moment Generating Functions					
\mathbf{S}	ummati	on	69		
Т	he Met	hod of Transformations	71		
V	⁷ ariance	Paramter	7 3		
IV Non-Statistical Proofs					
Т	he Bind	omial Theorem	77		
Fu	ınctions		7 9		
1	Funda	amental Concepts and Definitions	79		
	1.1	Function Operations	79		
2	Identi	ties and Inverses	79		
3	Odd a	and Even Functions	80		
4	Theor	rems for Functions	. 80		
	4.1	Operations on Even Functions	80		
	4.2	Operations on Odd Functions	81		
	4.3	Operations on an Odd and Even Function	82		
	4.4	Derivatives and Anti-derivatives of Odd Functions	83		
	4.5	Derivatives and Anti-derivatives of Even Functions	83		
Т	he Geo	metric Series	85		
Iı	Integraion: Techniques and Theorems Logarithmic and Exponential Functions				
${f L}$					
Т	The Real Number System 91				

The content of these pages is intended to make explicit the development of mathematical and statistical theory while avoiding the nebulous "It can be shown." As much as possible, the equations are developed step-by-step so that each step can be followed and understood.

In instances where the changes are not obvious, explanations are provided in red. Originally, these explanations were intended to be footnotes, but footnotes are not well suited to the web page format. For consistency, the PDF version of these pages is produced in an identical format. The PDF may be downloaded from the https://github.com/nutterb/ItCanBeShown GitHub repository.

Additions, corrections, and suggestions are welcome on GitHub.

6 CONTENTS

Part I Probability Distributions

The Bernoulli Distribution

1 Probability Mass Function

A random variable is said to have a Bernoulli Distribution with parameter p if its probability mass function is:

$$p(x) = \begin{cases} p^x (1-p)^{1-x}, & x = 0, 1\\ 0 & \text{otherwise} \end{cases}$$

Where p is the probability of a sucess.

2 Cumulative Distribution Function

$$P(x) = \begin{cases} 0 & x < 0 \\ 1 - p & x = 0 \\ 1 & 1 \le x \end{cases}$$

Figure .1: The graphs on the left and right show a Binomial Probability Distribution and Cumulative Distribution Function, respectively, with p = .4. Note that this is identical to a Binomial Distribution with parameters n = 1 and p = .4.

3 Expected Values

$$E(X) = \sum_{i=0}^{1} x \cdot p(x)$$

$$= \sum_{i=0}^{1} x \cdot p^{x} (1-p)^{1-x}$$

$$= 0 \cdot p^{0} (1-p)^{1-0} + 1 \cdot p^{1} (1-p)^{1-1}$$

$$= 0 + p(1-p)^{0}$$

$$= p$$

$$E(X^{2}) = \sum_{i=0}^{1} x^{2} \cdot p(x)$$

$$= \sum_{i=0}^{1} x^{2} \cdot p^{x} (1-p)^{1-x}$$

$$= \sum_{i=0}^{1} 0^{2} \cdot p^{0} (1-p)^{1-0} + 1^{2} \cdot p^{1} (1-p)^{1-1}$$

$$= 0 \cdot 1 \cdot 1 + 1 \cdot p \cdot 1$$

$$= 0 + p$$

$$= p$$

$$\mu = E(X) = p$$

 $\sigma^2 = E(X^2) - E(X)^2 = p - p^2 = p(1-p)$

4 Moment Generating Function

$$M_X(t) = E(e^{tX}) = \sum_{i=0}^{1} e^{tx} p(x) = \sum_{i=0}^{1} e^{tx} p^x (1-p)^{1-x}$$
$$= e^{t0} p^0 (1-p)^{1-0} + e^t p^t (1-p)^{1-1} = (1-p) + e^t p = pe^t + (1-p)$$

$$M_X^{(1)}(t) = pe^t$$
$$M_X^{(2)}(t) = pe^t$$

$$E(X) = M_X^{(1)}(0) = pe^0 = p \cdot 1 = p$$

$$E(X^2) = M_X^{(2)}(0) = pe^0 = p$$

$$\mu = E(X) = p$$

$$\sigma^2 = E(X^2) - E(X)^2 = p - p^2 = p(1 - p)$$

5 Theorems for the Bernoulli Distribution

5.1 Validity of the Distribution

$$\sum_{x=0}^{1} p^{x} (1-p)^{1-x} = 1$$

Proof:

$$\sum_{x=0}^{1} p^{x} (1-p)^{1-x} = p^{0} (1-p)^{1} + p^{1} (1-p)^{0} = (1-p) + p = 1$$

5.2 Sum of Bernoulli Random Variables

Let $X_1, X_2, ..., X_n$ be independent and identically distributed random variables from a Bernoulli distribution with parameter p. Let $Y = \sum_{i=1}^{n} X_i$.

Then $Y \sim \text{Binomial}(n, p)$

Proof:

$$M_Y(t) = E(e^{tY}) = E(e^{tX_1}e^{tX_2}\cdots e^{tX_n}) = E(e^{tX_1})E(e^{tX_2})\cdots E(e^{tX_n})$$

$$= (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p)) = (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p))(pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p))(pe^t + (1-p))(pe$$

Which is the mgf of a Binomial random variable with parameters n and p. Thus, $Y \sim \text{Binomial}(n, p)$.

The Binomial Distribution

1 Probability Mass Function

A random variable is said to follow a Binomial distribution with parameters n and p if its probability mass function is:\

$$p(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & x = 0, 1, 2, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

Where n is the number of trials performed and p is the probability of a success on each individual trial.

2 Cumulative Distribution Function

$$P(x) = \begin{cases} 0 & x < 0\\ \sum_{i=0}^{x} {n \choose i} p^{i} (1-p)^{n-i} & 0 \le x = 0, 1, 2, \dots, n\\ 1 & n \le x \end{cases}$$

A recursive form of the cdf can be derived and has some usefulness in computer applications. With it, one need only initiate the first value and additional cumulative probabilities can be calculated. It is derived as follows:

$$\begin{split} F(x+1) &= \binom{n}{x+1} p^{x+1} (1-p)^{n-(x+1)} \\ &= \frac{n!}{(x+1)!(n-(x+1))!} p^{x+1} (1-p)^{n-(x+1)} \\ &= \frac{n!}{(x+1)!(n-x-1)!} p^{x+1} (1-p)^{n-x-1} \\ &= \frac{(n-x)n!}{(x+1)x!(n-x)(n-x-1)!} p \cdot p^x \frac{(1-p)^{n-x}}{(1-p)} \\ &= \frac{(n-x)n!}{(x+1)x!(n-x)!} \cdot \frac{p}{1-p} p^x (1-p)^{n-x} \\ &= \frac{p}{1-p} \cdot \frac{n-x}{x+1} \cdot \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \\ &= \frac{p}{1-p} \cdot \frac{n-x}{x+1} \cdot \binom{n}{x} p^x (1-p)^{n-x} \\ &= \frac{p}{1-p} \cdot \frac{n-x}{x+1} \cdot F(x) \end{split}$$

Figure .1: plot of chunk unnamed-chunk-9

3 Expected Values

$$E(X) = \sum_{x=0}^{n} x \cdot p(x)$$
$$= \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x}$$

For convenience, let q = (1 - p)

$$\begin{split} &= \sum_{x=0}^n x \binom{n}{x} p^x q^{n-x} \\ &= \sum_{x=0}^n x \binom{n}{x} p^x q^{n-x} \\ &= 0 \cdot \binom{n}{0} p^0 q^n + 1 \cdot \binom{n}{1} p^1 q^{n-1} + \dots + n \binom{n}{n} p^n q^{n-n} \\ &= 0 + 1 \binom{n}{1} p^1 q^{n-1} + 2 \binom{n}{2} p^2 q^{n-2} + \dots + n \binom{n}{n} p^n q^{n-n} \\ &= n p^1 q^{n-1} + n (n-1) p^2 q^{n-2} + \dots + n (n-1) p^{n-1} q^{n-(n-1)} + n p^n \\ &= n p [q^{n-1} + (n-1) p q^{n-2} + \dots + p^{n-1}] \\ &= n p [\binom{n-1}{0} p^0 q^{n-1} + \binom{n-1}{1} p^1 q^{(n-1)-1} + \dots + \binom{n-1}{n-1} p^{n-1} q^{(n-1)} \\ &= n p (\sum_{x=0}^{n-1} \binom{n-1}{x} p^x q^{(n-1)-x}) \end{split}$$

By the Binomial Theorem, $\sum_{x=0}^{n} \binom{n}{x} a^x b^{n-x} = (a+b)^n$

$$= np(p+q)^{n-1}$$

Resubstituting (1-p) for q gives us

$$= np(p + (1 - p))^{n-1}$$

$$= np(p + 1 - p)^{n-1}$$

$$= np(1)^{n-1}$$

$$= np(1)$$

$$= np$$

$$E(X^{2}) = \sum_{x=0}^{n} x^{2} p(x)$$
$$= \sum_{x=0}^{n} x^{2} {n \choose x} p^{x} (1-p)^{n-x}$$

For convenience, let q = (1 - p)

$$\begin{split} &= \sum_{x=0}^n x^2 \binom{n}{x} p^x q^{n-x} \\ &= 0^2 \frac{n!}{0!(n-0)!} p^0 q^n + 1^2 \frac{n!}{1!(n-1)!} p^1 q^{n-1} + \dots + n^2 \frac{n!}{n!(n-n)!} p^n q^{n-n} \\ &= 0 + 1 \frac{n!}{(n-1)!} p q^{n-1} + 2 \frac{n!}{1 \cdot (n-2)!} p^2 q^{n-2} + \dots + n \frac{n!}{(n-1)!(n-n)!} p^n \\ &= n p \Big[1 \frac{(n-1)!}{(n-1)!} p^0 q^{n-1} + 2 \frac{(n-1)!}{1(n-2)!} p^2 q^{n-2} + \dots + n \frac{(n-1)!}{(n-1)!(n-n)!} p^{n-1} \Big] \\ &= n p \Big[1 \frac{(n-1)!}{(1-1)!((n-1)-(-1-1))!} p^{1-1} q^{n-1} + \dots + n \frac{(n-1)!}{(n-1)!((n-1)-(n-1))!} p^{n-1} q^{n-1} \Big] \\ &= n p \sum_{x=1}^n x \binom{n-1}{x-1} p^{x-1} 1^{(n-1)-(x-1)} \end{split}$$

Let y = x - 1 and n = m + 1 $\Rightarrow x = y + 1$ and m = n - 1

$$\begin{split} &= \sum_{y=0}^m (y+1) \binom{m}{y} p^y q^{m-y} \\ &= np \Big[\sum_{y=0}^m y \binom{m}{y} p^y q^{m-y} + \binom{m}{y} p^y q^{m-y} \Big] \\ &= np \Big[\sum_{y=0}^m y \binom{m}{y} p^y q^{m-y} + \sum_{y=0}^m \binom{m}{y} p^y q^{m-y} \Big] \end{split}$$

$$\sum_{n=0}^{m} y \binom{m}{y} p^{y} q^{m-y}$$
 is of the form

of the expected value of Y, and E(Y) = mp = (n-1)p

$$\sum_{y=0}^{m} {m \choose y} p^{y} q^{m-y}$$
 is the sum of all

probabilities over the domain of Y,

which is 1.

$$= np(mp + 1)$$

$$= np[(n - 1)p + 1]$$

$$= np(np - p + 1)$$

$$= n^2p^2 - np^2 + np$$

The mean of X can be calculated as

$$\mu = E(X) = np$$

And the variance of X can be calculated by

$$\sigma^{2} = E(X^{2}) - E(X)^{2}$$

$$= n^{2}p^{2} - np^{2} + np - n^{2}p^{2}$$

$$= -np^{2} + np$$

$$= np(-p - 1)$$

$$= np(1 - p)$$

4 Moment Generating Function

$$M_X(t) = E(e^{tX}) = \sum_{x=0}^n e^{tx} p(x)$$

$$= \sum_{x=0}^n e^{tx} \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=0}^n \binom{n}{x} e^{tx} p^x (1-p)^{n-x}$$

$$= \sum_{x=0}^n \binom{n}{x} (pe^{tx})^x (1-p)^{n-x}$$

By Binomial Theorem REF

$$\sum_{x=0}^{n} \binom{n}{x} b^x a^{n-x} = (a+b)^n$$

$$= [(1-p) + pe^t]^n$$

$$M_X^{(1)}(t) = n[(1-p) + pe^t]^{n-1}pe^t$$

$$\begin{split} M_X^{(2)}(t) &= n[(1-p) + pe^t]^{n-1}pe^t + n(n-1)[(1-p) + pe^t]^{n-2}(pe^t)^2 \\ &= npe^t[(1-p) + pe^t]^{n-1} + n(n-1)pe^{2t}[(1-p) + pe^t]^{n-2} \end{split}$$

$$\begin{split} E(X) &= M_X^{(1)}(0) \\ &= n[(1-p) + pe^0]^{n-1} pe^0 \\ &= n[1-p+p^{n-1}p \\ &= n(1)^{n-1}p = np \end{split}$$

$$\begin{split} E(X^2) &= M_X^{(2)}(0) = npe^0[(1-p) + pe^0]^{n-1} + n(n-2)pe^{2\cdot 0}[(1-p) + pe^0]^{n-2} \\ &= np(1-p+p)^{n-2} + n(n-1)p^2(1-p+p^{n-2}) \\ &= np(1)^{n-1} + n(n-1)p^2(1)^{n-2} = np + n(n-1)p^2 = np + (n^2-n)p^2 \\ &= np + n^2 + n^2p^2 - np^2 \end{split}$$

$$\mu = E(X) = np$$

 $\sigma^{2} = E(X^{2}) - E(X)^{2}$ $= np + n^{2}p^{2} - np^{2} - n^{2}p^{2}$ $= np - np^{2}$ = np(1 - p)

5 Maximum Likelihood Estimator

Since n is fixed in each Binomial experiment, and must therefore be given, it is unnecessary to develop an estimator for n. The mean and variance can both be estimated from the single parameter p.

Let X be a Binomial random variable with parameter p and n outcomes $(x_1, x_2, ..., x_n)$. Let $x_i = 0$ for a failure and $x_i = 1$ for a success. In other words, X is the sum of n Bernoulli trials with equal probability of success and $X = \sum_{i=1}^{n} x_i$.

5.1 Likelihood Function

$$L(\theta) = L(x_1, x_2, \dots, x_n | \theta)$$

$$= P(x_1 | \theta) P(x_2 | \theta) \cdots P(x_n | \theta)$$

$$= [\theta^{x_1} (1 - \theta)^{1 - x_1}] [\theta^{x_2} (1 - \theta)^{1 - x_2}] \cdots [\theta^{x_n} (1 - \theta)^{1 - x_n}]$$

$$= \exp_{\theta} \left\{ \sum_{i=1}^{n} x_i \right\} \exp_{(1 - \theta)} \left\{ n - \sum_{i=1}^{n} x_i \right\}$$

$$= \theta^X (1 - \theta)^{n - X}$$

5.2 Log-likelihood Function

$$\ell(\theta) = \ln L(\theta)$$

$$= \ln \left(\theta^X (1 - \theta)^{n - X}\right)$$

$$= X \ln(\theta) + (n - X) \ln(1 - \theta)$$

5.3 MLE for p

$$\frac{d\ell(p)}{dp} = \frac{X}{p} - \frac{n - X}{1 - p}$$

$$0 = \frac{X}{p} - \frac{n - X}{1 - p}$$

$$\frac{X}{p} = \frac{n - X}{1 - p}$$

$$(1 - p)X = p(n - X)$$

$$X - pX = np - pX$$

$$X = np$$

$$\frac{X}{n} = p$$

So $\hat{p} = \frac{X}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the maximum likelihood estimator for p.

6 Theorems for the Binomial Distribution

6.1 Validity of the Distribution

$$\sum_{x=0}^{n} \binom{n}{x} p^{x} (1-p)^{n-x} = 1$$

Proof:

$$\sum_{x=0}^{n} \binom{n}{x} p^x (1-p)^{n-x} =$$

$$\sum_{x=0}^{n} \binom{n}{x} a^x b^{n-x} (a+b)^n.$$

See Binomial Theorem REF.

$$= big(p + (1 - p))^n$$
$$= (1)^n$$
$$= 1$$

6.2 Sum of Binomial Random Variables

Let X_1, X_2, \ldots, X_k be independent random variables where X_i comes from a Binomial distribution with parameters n_i and p. That is $X_i \sim (n_i, p)$.\ Let $Y = \sum_{i=1}^{n} k X_i$. Then $Y \sim \text{Binomial}(\sum_{i=1}^{k} n_i, p)$.

Proof:

$$M_Y(t) = E(e^{tY})$$

$$= E(e^{t(x_1 + X_2 + \dots + X_k)})$$

$$= E(e^{tX_1}e^{tX_2} \dots e^{tX_k})$$

$$= E(e^{tX_1})E(e^{tX_2}) \dots E(e^{tX_k})$$

$$= \prod_{i=1}^k [(1-p) + pe^t]^{n_i}$$

$$= [(1-p) + pe^t]^{\sum_{i=1}^k n_i}$$

\ \ Which is the mgf of a Binomial random variable with parameters $\sum_{i=1}^k n_i$ and p.

Thus $Y \sim \text{Binomial}(\sum_{i=1}^k n_i, p).$

6.3 Sum of Bernoulli Random Variables

Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables from a Bernoulli distribution with parameter p. Let $Y = \sum_{i=1}^{n} X_i$.

Then $Y \sim \text{Binomial}(n, p)$

Proof:

$$M_Y(t) = E(e^{tY})$$

$$= E(e^{tX_1}e^{tX_2}\cdots e^{tX_n})$$

$$= E(e^{tX_1})E(e^{tX_2})\cdots E(e^{tX_n})$$

$$= (pe^t + (1-p))(pe^t + (1-p))\cdots (pe^t + (1-p))$$

$$= (pe^t + (1-p))^n$$

Which is the mgf of a Binomial random variable with parameters n and p. Thus, $Y \sim \text{Binomial}(n, p)$.

The Chi-Square Distribution

1 Probability Distribution Function

A random variable X is said to have a Chi-Square Distribution with parameter ν if its probability distribution function is

$$f(x) = \begin{cases} \frac{x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} & 0 < x, \ 0 < \nu \\ 0 & otherwise \end{cases}$$

 ν is commonly referred to as the degrees of freedom.

2 Cumulative Distribution Function

The cumulative distribution function for the Chi-Square Distribution cannot be written in closed form. It's integral form is expressed as

$$F(x) = \begin{cases} \int_0^x \frac{t^{\frac{\nu}{2} - 1} e^{-\frac{t}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} dt & 0 < x, \ 0 < \nu \\ 0 & otherwise \end{cases}$$

Figure .1: The graphs on the left and right depict the Chi-Square probability distribution and cumulative distribution functions, respectively, for $\nu=4,7,10$. As ν gets larger, the distribution becomes flatter with thicker tails.

3 Expected Values

$$\begin{split} E(X) &= \int_{0}^{\infty} x \frac{x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x \cdot x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x^{\frac{\nu}{2}} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x^{\frac{\nu}{2}} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \left[\Gamma(\frac{\nu}{2} + 1) 2^{\frac{\nu}{2} + 1} \right] \\ &= \frac{\Gamma(\frac{\nu}{2} + 1) 2^{\frac{\nu}{2} + 1}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \\ &= \frac{\frac{\nu}{2} \Gamma(\frac{\nu}{2}) 2^{\frac{\nu}{2} + 1}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \\ &= \frac{2\nu}{2} \\ &= \nu \end{split}$$

$$E(X^{2}) = \int_{0}^{\infty} x^{2} \frac{x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} dx$$

$$= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x^{2} \cdot x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}} dx$$

$$= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x^{\frac{\nu}{2} + 1} e^{-\frac{x}{2}} dx$$

$$\int_{0}^{\infty} x^{\alpha - 1} e^{-\frac{x}{\beta}} dx = \beta^{\alpha} \Gamma(\alpha)$$

$$= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \left[\Gamma(\frac{\nu}{2} + 2) 2^{\frac{\nu}{2} + 2} \right]$$

$$= \frac{\Gamma(\frac{\nu}{2} + 2) 2^{\frac{\nu}{2} + 2}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})}$$

$$= \frac{(\frac{\nu}{2} + 1) \Gamma(\frac{\nu}{2} + 1) 2^{\frac{\nu}{2} + 2}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})}$$

$$= \frac{(\frac{\nu}{2} + 1) \frac{\nu}{2} \Gamma(\frac{\nu}{2}) 2^{\frac{\nu}{2} + 2}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})}$$

$$= (\frac{\nu}{2} + 1) \frac{\nu}{2} \cdot 2^{2} = 2(\frac{\nu}{2} + 1) \nu$$

$$= (\nu + 2) \nu = \nu^{2} + 2\nu$$

$$\mu = E(X) = \nu$$

$$\sigma^2 = E(X^2) - E(X)^2 = \nu^2 + 2\nu - \nu^2 = 2\nu$$

4 Moment Generating Function

$$\begin{split} M_X(t) &= E(e^{tX}) \\ &= \int_0^\infty e^{tx} \frac{x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty e^{tx} \cdot x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{tx} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{tx} e^{-\frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-\frac{2tx}{2} - \frac{x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-\frac{2tx-x}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-x \frac{-2t+1}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-x \frac{1-2t}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-x \frac{1-2t}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-x \frac{1-2t}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \int_0^\infty x^{\frac{\nu}{2} - 1} e^{-x \frac{1-2t}{2}} dx \\ &= \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \left[\left(\frac{2}{1-2t} \right)^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2}) \right] \\ &= \frac{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2}) (1-2t)^{\frac{\nu}{2}}} \\ &= \frac{1}{(1-2t)^{\frac{\nu}{2}}} \\ &= (1-2t)^{-\frac{\nu}{2}} \end{split}$$

$$\begin{split} M_X^{(1)}(t) &= -\frac{\nu}{2} (1 - 2t)^{-\frac{\nu}{2} - 1} (-2) \\ &= \frac{2\nu}{2} (1 - 2t)^{-\frac{\nu}{2} - 1} \\ &= \nu (1 - 2t)^{-\frac{\nu}{2} - 1} \end{split}$$

$$\begin{split} M_X^{(2)}(t) &= (-\frac{\nu}{2} - 1)\nu(1 - 2t)^{-\frac{\nu}{2} - 2}(-2) \\ &= (\frac{2\nu}{2} + 2)\nu(1 - 2t)^{-\frac{\nu}{2} - 2} \\ &= (\nu + 2)\nu)(1 - 2t)^{-\frac{\nu}{2} - 2} \\ &= (\nu^2 + 2\nu)(1 - 2t)^{-\frac{\nu}{2} - 2} \end{split}$$

$$\begin{split} M_X^{(1)}(0) &= \nu (1 - 2 \cdot 0)^{-\frac{\nu}{2} - 1} \\ &= \nu (1 - 0)^{-\frac{\nu}{2} - 1} \\ &= \nu (1)^{-\frac{\nu}{2} - 1} \\ &= \nu \end{split}$$

$$\begin{split} M_X^{(2)}(0) &= (\nu^2 + 2\nu)(1 - 2 \cdot 0)^{-\frac{\nu}{2} - 2} \\ &= (\nu^2 + 2\nu)(1 - 0)^{-\frac{\nu}{2} - 2} \\ &= (\nu^2 + 2\nu)(1)^{-\frac{\nu}{2} - 2} \\ &= (\nu^2 + 2\nu) \end{split}$$

$$E(X) = M_X^{(1)}(0) = \nu$$

$$E(X^2) = M_X^{(2)}(0) = (\nu^2 + 2\nu)$$

$$\mu = E(X) = \nu$$

$$\sigma^2 = E(X^2) - E(X)^2 = \nu^2 + 2\nu - \nu^2 = 2\nu$$

5 Maximum Likelihood Function

Let x_1, x_2, \ldots, x_n be a random sample from a Chi-square distribution with parameter ν .

5.1 Likelihood Function

$$\begin{split} L(\theta) &= f(x_1|\theta) f(x_2|\theta) \cdots f(x_n|\theta) \\ &= \frac{x_1^{\nu/2 - 1} e^{-x_1/2}}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)} \cdot \frac{x_2^{\nu/2 - 1} e^{-x_2/2}}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)} \cdots \frac{x_n^{\nu/2 - 1} e^{-x_n/2}}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)} \\ &= \prod_{i=1}^n \frac{x_i^{\nu/2 - 1} e^{-x_i/2}}{2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)} \\ &= \left(2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)\right) \prod_{i=1}^n x_i^{\nu/2 - 1} e^{-x_i/2} \\ &= \left(2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)\right) \cdot \exp\left\{\sum_{i=1}^n \frac{x_i}{2}\right\} \cdot \prod_{i=1}^n x_i^{\nu/2 - 1} \\ &= \left(2^{\nu/2} \Gamma\left(\frac{\nu}{2}\right)\right) \cdot \exp\left\{\frac{1}{2} \sum_{i=1}^n x_i\right\} \cdot \prod_{i=1}^n x_i^{\nu/2 - 1} \end{split}$$

5.2 Log-likelihood Function

$$\begin{split} &\ell(\theta) = \ln\left(L(\theta)\right) \\ &= \ln\left[\left(2^{\nu/2}\Gamma\left(\frac{\nu}{2}\right)\right) \cdot \exp\left\{\frac{1}{2}\sum_{i=1}^{n}x_{i}\right\} \cdot \prod_{i=1}^{n}x_{i}^{\nu/2-1}\right] \\ &= \ln\left[\left(2^{\nu/2}\Gamma\left(\frac{\nu}{2}\right)\right)\right] + \ln\left(\exp\left\{\frac{1}{2}\sum_{i=1}^{n}x_{i}\right\}\right) + \ln\left(\prod_{i=1}^{n}x_{i}^{\nu/2-1}\right) \\ &= -n\ln\left(2^{\nu/2}\Gamma\left(\frac{\nu}{2}\right)\right) + \frac{1}{2}\sum_{i=1}^{n}x_{i} + \left(\frac{\nu}{2} - 1\right)\ln\left(\prod_{i=1}^{n}x_{i}\right) \\ &= -n\left(\ln(2^{\nu/2}) + \Gamma\left(\frac{\nu}{2}\right)\right) + \frac{1}{2}\sum_{i=1}^{n}x_{i} + \left(\frac{\nu}{2} - 1\right)\sum_{i=1}^{n}\ln x_{i} \\ &= -n\left(\frac{\nu}{2}\ln 2 + \ln\Gamma\left(\frac{\nu}{2}\right)\right) + \frac{1}{2}\sum_{i=1}^{n}x_{i} + \left(\frac{\nu}{2} - 1\right)\sum_{i=1}^{n}\ln x_{i} \\ &= -\frac{n\nu}{2}\ln 2 - n\ln\Gamma\left(\frac{\nu}{2}\right) + \frac{1}{2}\sum_{i=1}^{n}x_{i} + \left(\frac{\nu}{2} - 1\right)\sum_{i=1}^{n}\ln x_{i} \end{split}$$

5.3 MLE for ν

$$\frac{d\ell}{d\nu} = -\frac{n}{2}\ln 2 - \frac{n}{\Gamma(\frac{\nu}{2})}\Gamma'(\frac{\nu}{2}) \cdot \frac{1}{2} + 0 + \frac{1}{2}\sum_{i=1}^{n}\ln x_i$$
$$= -\frac{n}{2}\ln 2 - \frac{n}{2\Gamma(\frac{\nu}{2})}\Gamma'(\frac{\nu}{2}) + \frac{1}{2}\sum_{i=1}^{n}\ln x_i$$

$$0 = -\frac{n}{2} \ln 2 - \frac{n}{2\Gamma(\frac{\nu}{2})} \Gamma'(\frac{\nu}{2}) + \frac{1}{2} \sum_{i=1}^{n} \ln x_i$$

$$\frac{n}{2} \ln 2 - \frac{1}{2} \sum_{i=1}^{n} \ln x_i = -\frac{n}{2\Gamma(\frac{\nu}{2})} \Gamma'(\frac{\nu}{2})$$

$$n \ln 2 - \sum_{i=1}^{n} \ln x_i = -\frac{n}{\Gamma(\frac{\nu}{2})} \Gamma'(\frac{\nu}{2})$$

$$\frac{\sum_{i=1}^{n} \ln x_i - n \ln 2}{n} = \frac{\Gamma'(\frac{\nu}{2})}{\Gamma(\frac{\nu}{2})}$$

Due to the complexity of the Gamma function in this equation, no solution can be developed for ν in closed form. Thus, we have to rely on numerical methods to obtain a solution to the equation and find the maximum likelihood estimator.

6 Theorems for the Chi-Square Distribution

6.1 Validity of the Distribution

$$\int_{0}^{\infty} \frac{x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} dx = 1$$

Proof:

$$\int_{0}^{\infty} \frac{x^{\frac{\nu}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})} dx = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})} \int_{0}^{\infty} x^{\frac{\nu}{2}-1}e^{-\frac{x}{2}} dx$$

$$\int_{0}^{\infty} x^{\alpha-1}e^{-\frac{x}{\beta}} dx = \beta^{\alpha}\Gamma(\alpha)$$

$$= \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})} \left[2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})\right]$$

$$= \frac{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$$

$$= 1$$

6.2 Sum of Chi-Square Random Variables

Let X_1, X_2, \ldots, X_n be independent Chi-Square random variables with parameter ν_i , that is $X_i \sim \chi^2(\nu_i)$, $i = 1, 2, \ldots, n$.

Suppose
$$Y = \sum_{i=1}^{n} X_i$$
.

Then
$$Y \sim \chi^2(\sum_{i=1}^n \nu_i)$$
.

28

_Proof:

$$M_Y(t) = E(e^{tY} = E(e^{t(X_1 + X_2 + \dots + X_n)})$$

$$= E(e^{tX_1}e^{tX_2} \dots e^{tX_n})$$

$$= E(e^{tX_1})E(e^{tX_2}) \dots E(e^{tX_n})$$

$$= (1 - 2t)^{-\frac{\nu_1}{2}}(1 - 2t)^{-\frac{\nu_2}{2}} \dots (1 - 2t)^{-\frac{\nu_n}{2}}$$

$$= (1 - 2t)^{\sum_{i=1}^{n} \nu_i}$$

Which is the mgf of a Chi-Square random variable with parameter $\sum_{i=1}^{n} \nu_i$.

Thus
$$Y \sim \chi^2 \left(\sum_{i=1}^n \nu_i \right)$$
.

6.3 Square of a Standard Normal Random Variable

If
$$Z \sim N(0, 1)$$
, then $Z^2 \sim \chi^2(1)$.

Proof:

$$\begin{split} M_{Z^2}(t) &= E(e^{tZ^2}) \\ &= \int_{-\infty}^{\infty} e^{tz^2} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tz^2} e^{-\frac{z^2}{2}} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}(-2t+1)} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}(1-2t)} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}(1-2t)} dz \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}(1-2t)} dz \\ \text{When } f(x) \text{ is an even function } (??) \\ &= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\frac{z^2}{2}(1-2t)} dz \\ \text{Let } u &= \frac{z^2}{2} (1-2t) \\ &\Rightarrow z &= \frac{\sqrt{2}u^{\frac{1}{2}}}{(1-2t)^{\frac{1}{2}}} \\ \text{So } dz &= \frac{\sqrt{2}u^{-\frac{1}{2}}}{2(1-2t)^{\frac{1}{2}}} \\ &= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-u} \frac{\sqrt{2}u^{-\frac{1}{2}}}{2(1-2t)^{\frac{1}{2}}} du \\ &= \frac{2\sqrt{2}}{2\sqrt{2\pi}(1-2t)^{\frac{1}{2}}} \int_{0}^{\infty} e^{-u} u^{-\frac{1}{2}} du \\ &= \frac{2\sqrt{2}}{2\sqrt{2\pi}(1-2t)^{\frac{1}{2}}} \int_{0}^{\infty} u^{\frac{1}{2}-1} e^{-u} du \\ \int_{0}^{\infty} x^{\alpha-1} e^{-\frac{\pi}{2}} dx = \beta^{\alpha} \Gamma(\alpha) \\ &= \frac{1}{\sqrt{\pi}(1-2t)^{\frac{1}{2}}} \Gamma(\frac{1}{2}) \\ &= \frac{\sqrt{\pi}}{\sqrt{\pi}(1-2t)^{\frac{1}{2}}} = (1-2t)^{-\frac{1}{2}} \end{split}$$

Which is the mgf of a Chi-Square random variable with 1 degree of freedom. Thus $Z^2 \sim \chi^2(1)$.

The Exponential Distribution

The Gamma Distribution

The Geometric Distribution

The Hypergeometric Distribution

The Multinomial Distribution

The Normal Distribution

The Poisson Distribution

The Skew-Normal Distribution

The Uniform Distribution

The Weibull Distribution

Part II Frequentist Hypothesis Testing

Mantel-Haenszel Test

Part III Supplemental Subjects

Chebychev's Theorem

Combinations

60 . COMBINATIONS

The Correlation Coefficient

Covariance

. COVARIANCE

Experimental Designs

Moments and Moment Generating Functions

Summation

70 . SUMMATION

The Method of Transformations

Variance Paramter

Part IV Non-Statistical Proofs

The Binomial Theorem

Functions

1 Fundamental Concepts and Definitions

Much of this chapter is taken from the lectures of Dr. John Brunette, University of Southern Maine.

A function is a collection of ordered pairs in which no two pairs have the same first element.

The set of all *first* members of the pairs is called the *domain*.

The set of all *second* members of the pairs is called the *range*.

Suppose now that for any function f we have two items x and y such that $x \in dom(f)$ and $y \in ran(x)$ where dom(f) and ran(f) denote the domain and range of f, respectively. It is said that f maps x onto y, written

$$f: x \mapsto y$$

It is common to write the ran(f) as some expression of x. For example, $f: x \mapsto x^2$ takes each element in the domain, and pairs it with it's square. The common shorthand for this is $f(x) = x^2$, meaning that whatever appears between the parentheses following the f is to be squared.

1.1 Function Operations

The three basic operations that can be performed on functions are addition, multiplication, and composition. For any two functions f and g these operations are defined as:\

$$\begin{array}{ll} Addition & [f+g](x) =: \left\{ \left(x, f(x) + g(x)\right) | x \in dom(f) \cap dom(g) \right\} \\ Multiplication & [f \cdot g](x) := \left\{ \left(x, f(x) \cdot g(x)\right) | x \in dom(f) \cap dom(g) \right\} \\ Composition & [f \circ g](x) = \left\{ \left(x, f\left(g(x)\right) | x \in dom(g) \text{ and } g(x) \in dom(f) \right\} \end{array}$$

Notice that the composition $[f \circ g](x) = f \circ g : g(x) \mapsto f(x)$. In other words, the result of g is then applied to f to produce the result of the composition.

2 Identities and Inverses

Recall that addition and multiplication have identity properties. Specifically, for any real number x, applying one of these identities returns the value x, i.e. x + 0 = x and $x \cdot 1 = x$. Functions also have an identity, denoted id(x), that is defined as

80 . FUNCTIONS

$$id: x \mapsto x$$

Furthermore, the composition of id with f behaves in this way:

$$id \circ f = f \circ id = f$$

Functions may also exhibit the property of inverses that are exhibited by addition and multiplication. In the latter two, combining any real number x and its inverse returns the identity of that operation, i.e. x + -x = 0 and $x \cdot x^{-1} = 1$, $x \neq 0$. Likewise, some functions have an inverse function. If a function f has an inverse f^{-1} , then

$$f \circ f^{-1} = f^{-1} \circ f = id.$$

On closer observation, we see $f^{-1} \circ f(dom(x)) = f^{-1}(f(dom(x))) = f^{-1}(ran(x)) = dom(x)$. So f^{-1} must be the set of all ordered pairs (y,x) where $x \in dom(x)$ and $y \in ran(x)$, i.e. $f^{-1}(x) = \{(y,x)|x \in dom(x) \text{ and } y \in ran(x)\}$. By the definition of functions, no two first elements in f^{-1} can be the same. But the first elements in f^{-1} are the second elements in f. So f^{-1} only exists if no two second elements in f are the same. We thus make the following definition:

A function f is called a **one-to-one** function if it has no two ordered pairs with the same second element.

For any one-to-one function f, no two of the first elements are the same, and no two of the second elements are the same. Thus, f^{-1} is a function, because no two of its first elements are the same, and because the range of f^{-1} is the domain of f, no two second elements in f^{-1} are the same, and f^{-1} is a one-to-one function. Thus, every one-to-one function has an inverse.

If a function f is not one-to-one, however, then there exist two pairs in f that have the same second element. The inverse f^{-1} therefore has two pairs where the first element is the same. When such is the case, the definition of a function is violated, and f^{-1} cannot be a function. Thus, if a function is invertible, it must be one-to-one.

3 Odd and Even Functions

A function is said to be *even* if for any real number x, f(-x) = f(x).

A function is said to be *odd* if for any real number x, f(-x) = -f(x).

If neither of these criteria are met, the function is simply said to be neither odd nor even.

4 Theorems for Functions

4.1 Operations on Even Functions

Let f and g both be even functions. Then:

- i. [f+g](x) is an even function
- ii. $[f \cdot g](x)$ is an even function
- iii. $[f \circ g](x)$ is an even function.

Proof:

i. [f+g](x) is an even function

$$(f+g)(-x) = f(-x) + g(-x)$$
$$= f(x) + g(x)$$
$$= [f+g](x)$$

so [f+g](x) is an even function.

ii. $[f \cdot g](x)$ is an even function

$$(f \cdot g)(-x) = f(-x) \cdot g(-x)$$
$$= f(x) \cdot g(x)$$
$$= [f \cdot g](x)$$

so $[f \cdot g](x)$ is an even function.

iii. $[f \circ g](x)$ is an even function.

$$(f \circ g)(-x) = f(g(-x))$$
$$= f(g(x))$$
$$= [f \circ g](x)$$

so $[f \circ g](x)$ is an even function.

4.2 Operations on Odd Functions

Let f and g both be even functions. Then:

- i. [f+g](x) is an odd function
- ii. $[f \cdot g](x)$ is an even function
- iii. $[f \circ g](x)$ is an odd function.

Proof:

_i. [f+g](x) is an odd function

$$[f+g](-x) = f(-x) + g(-x)$$

= -f(x) - g(x)
= -[f+g](x)

so [f+g](x) is an odd function.

ii. $[f \cdot g](x)$ is an even function

$$[f \cdot g](-x) = f(-x) \cdot g(-x)$$

$$= -f(x) \cdot -g(x)$$

$$= f(x) \cdot g(x)$$

$$= [f \cdot g](x)$$

so $[f \cdot g](x)$ is an even function.

82 . FUNCTIONS

iii. iii. $[f \circ g](x)$ is an odd function.

$$[f \circ g](-x) = f(g(-x))$$

$$= f(-g(x))$$

$$= -f(g(x))$$

$$= -[f \circ g](x)$$

so $[f\circ g](x)$ is an odd function. $\blacksquare \setminus \mathrm{end}\{\mathrm{itemize}\}$

4.3 Operations on an Odd and Even Function

Let f be an even function and let g both be an odd function. Then:

- i. [f+g](x) is neither an odd nor an even function
- ii. $[f \cdot g](x)$ is an odd function
- iii. $[f \circ g](x)$ is an even function
- iv. $[g \circ f](x)$ is an even function.

Proof:

i. [f+g](x) is neither an odd nor an even function

$$[f+g](-x) = f(-x) + g(-x) = -f(x) - g(x)$$

so [f+g](x) is neither an odd nor an even function.

ii. $[f \cdot g](x)$ is an odd function

$$\begin{split} [f\cdot g](-x) &= f(-x)\cdot g(-x) \\ &= f(x)\cdot -g(x) \\ &= -\big(f(x)\cdot g(x)\big) \\ &= -[f\cdot g](x) \end{split}$$

so $[f \cdot g](x)$ is an odd function.

iii. $[f \circ g](x)$ is an even function

$$[f \circ g](-x) = f(g(-x))$$

$$= f(-g(x))$$

$$= f(g(x))$$

$$= [f \circ g](x)$$

so $[f \circ g](x)$ is an even function.

iv. $[g \circ f](x)$ is an even function.

$$[g \circ f](-x) = g(f(-x))$$
$$= g(f(x))$$
$$= [g \circ f](x)$$

so $[f \circ g](x)$ is an even function.

4.4 Derivatives and Anti-derivatives of Odd Functions

Let f be an odd function and let f' and F denote the derivative and anti-derivative of f, respectively. Then f' and F are both even functions.

Proof:

$$f(-x) = -f(x)$$

$$\frac{d}{dx} [f(-x)] = \frac{d}{dx} [-f(x)]$$

$$f'(-x) \cdot -1 = -f'(x)$$

$$-f'(-x) = -f'(x)$$

$$f'(-x) = f'(x)$$

So f' is an even function.

$$f(-x) = -f(x)$$

$$\int f(-x) = \int -f(x)$$

$$F(-x) \cdot -1 = -F(x)$$

$$-F(-x) = -F(x)$$

$$F(-x) = F(x)$$

So F is also an even function. \blacksquare

4.5 Derivatives and Anti-derivatives of Even Functions

Let g be an even function, and let g' and G denote the derivative and anti-derivative of g, respectively. Then g' and G are both odd functions.

Proof:

$$g(-x) = g(x)$$

$$\frac{d}{dx} [g(-x)] = \frac{d}{dx} [g(x)]$$

$$g'(-x) \cdot -1* = g'(x)$$

$$-g'(-x) = g'(x)$$

$$g'(-x) = -g'(x)$$

So g' is an odd function.

. FUNCTIONS

$$g(-x) = g(x)$$

$$\int g(-x) = \int g(x)$$

$$G(-x) \cdot -1 = G(x)$$

$$-G(-x) = G(x)$$

$$G(-x) = -G(x)$$

So G is also an odd function. \blacksquare

The Geometric Series

Integraion: Techniques and Theorems

Logarithmic and Exponential Functions

The Real Number System