Simulação Numérica em Elementos Finitos do Escoamento em Artéria Coronária

Leandro Marques

Orientadores: Gustavo Anjos e José Pontes

Universidade do Estado do Rio de Janeiro 10 de Setembro de 2018

Sumário

- 1. Introdução
- 2. Revisão Bibliográfica
- 3. Equações de Governo
- 4. Método dos Elementos Finitos
- 5. Validação do Código Numérico
- 6. Resultados
- 7. Conclusão

Introdução - Motivação

Introdução - Objetivos

1. Desenvolver um código em Elementos Finitos para a formulação corrente-vorticidade com o transporte de espécie química

 Conhecer a dinâmica do escoamento sanguíneo numa artéria coronária com aterosclerose e com stent farmacológico implantado

- 1. Introdução
- 2. Revisão Bibliográfica
- 3. Equações de Governo
- 4. Método dos Elementos Finitos
- 5. Validação do Código Numérico
- 6. Resultados
- 7. Conclusão

Review - Stent Farmacológico

Review - Stent Farmacológico

Comparativo dos procedimentos PTCA: (a) balão inflável e (b) stent.

Review - Método dos Elementos Finitos

Review - Método dos Elementos Finitos

Hipóteses:

- 1. Fluido como um Meio Contínuo
- 2. Fluido incompressível
- 3. Fluido newtoniano
- 4. Escoamento monofásico
- 5. Escoamento bidimensional
- 6. Elevado número de Reynolds ($Re = \infty$)

$$\frac{\partial c}{\partial t} + \mathbf{v} \cdot \nabla c = 0$$

Video

- 1. Introdução
- 2. Revisão Bibliográfica
- 3. Equações de Governo
- 4. Método dos Elementos Finitos
- 5. Validação do Código Numérico
- 6. Resultados
- 7. Conclusão

Equações de Governo

Hipóteses:

- 1. Fluido como um Meio Contínuo
- 2. Fluido incompressível
- 3. Fluido homogêneo e isotrópico
- 4. Fluido newtoniano
- 5. Fluido com difusividade de massa constante
- 6. Escoamento monofásico
- 7. Escoamento sem geração de espécie química

$$\nabla \cdot \mathbf{v} = 0$$

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{v} + \mathbf{g}$$

$$\frac{\partial c}{\partial t} + \mathbf{v} \cdot \nabla c = D \nabla^2 c$$

Equações de Governo - Adimensionalização

$$p = \rho_0 U^2 p^* \qquad c = (c_s - c_0) c^* + c_0 \qquad \nu = \nu_0 \nu^* \qquad D = D_0 D^* \qquad x = L x^*$$

$$\mathbf{v} = U \mathbf{v}^* \qquad \mathbf{g} = g_0 \mathbf{g}^* \qquad \rho = \rho_0 \rho^* \qquad \nabla = \frac{1}{L} \nabla^* \qquad t = \frac{L}{U} t^*$$

$$\nabla \cdot \mathbf{v} = 0$$

$$\begin{split} \frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} &= -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{v} + \frac{1}{Fr^2} \mathbf{g} \\ \frac{\partial c}{\partial t} + \mathbf{v} \cdot \nabla c &= \frac{1}{ReSc} \nabla^2 c \end{split}$$

Equações de Governo - Formulação Corrente-Vorticidade

$$\mathbf{v} \cdot \nabla \mathbf{v} = \nabla \frac{v^2}{2} - \mathbf{v} \times \nabla \times \mathbf{v}$$

$$\nabla \times [\mathbf{v} \times \omega] = -\mathbf{v} \cdot \nabla \omega + \omega \cdot \nabla v$$

$$\frac{\partial \omega}{\partial t} + \mathbf{v} \cdot \nabla \omega = \frac{1}{Re} \nabla^2 \omega$$

$$\nabla^2 \psi = -\omega$$

$$\mathbf{v}=\mathbf{D}\psi$$

$$\frac{\partial c}{\partial t} + \mathbf{v} \cdot \nabla c = \frac{1}{ReSc} \nabla^2 c$$

Onde **D** é um operador diferencial cujas componentes são $\left[\partial/\partial y, -\partial/\partial x\right]$

- 1. Introdução
- 2. Revisão Bibliográfica
- 3. Equações de Governo
- 4. Método dos Elementos Finitos
- 5. Validação do Código Numérico
- 6. Resultados
- 7. Conclusão

MEF - Discretização no tempo

$$\dot{\omega} + \mathbf{v} \cdot \nabla \omega^n = \frac{1}{Re} \nabla^2 \omega^n + \frac{\Delta t}{2} \mathbf{v} \cdot \nabla \left[\mathbf{v} \cdot \nabla \omega^n \right]$$

$$\nabla^2 \psi = -\omega$$

$$\mathbf{v} = \mathbf{D} \psi$$

$$\dot{c} + \mathbf{v} \cdot \nabla c^n = \frac{1}{ReSc} \nabla^2 c^n + \frac{\Delta t}{2} \mathbf{v} \cdot \nabla [\mathbf{v} \cdot \nabla c^n]$$

Onde $\dot{\omega}$ e \dot{c} são $\left[\omega^{n+1}-\omega^n\right]/\Delta t$ e $\left[c^{n+1}-c^n\right]/\Delta t$ respectivamente, \mathbf{v} é o vetor velocidade cujas componentes são $\mathbf{v}=\left[u,v\right]$ e \mathbf{D} é um operador matemático com componentes $\mathbf{D}=\left[\partial/\partial y,-\partial/\partial x\right]$

MEF - Forma Matricial

$$\frac{M}{\Delta t}\omega^{n+1} = \frac{M}{\Delta t}\omega^n - u \cdot G_x\omega^n - v \cdot G_y\omega^n - \frac{1}{Re} \Big[K_{xx} + K_{yy}\Big]\omega^n$$
$$-\frac{\Delta t}{2}u\Big[uK_{xx} + vK_{yx}\Big]\omega^n - \frac{\Delta t}{2}v\Big[uK_{xy} + vK_{yy}\Big]\omega^n$$

$$\left[K_{xx} + K_{yy}\right]\psi = M\omega$$

$$Mu = G_y \psi$$

$$Mv = -G_{\star}\psi$$

$$\frac{M}{\Delta t}c^{n+1} = \frac{M}{\Delta t}c^n - u \cdot G_x c^n - v \cdot G_y c^n - \frac{1}{ReSc} \left[K_{xx} + K_{yy} \right] c^n$$
$$- \frac{\Delta t}{2} u \left[u K_{xx} + v K_{yx} \right] c^n - \frac{\Delta t}{2} v \left[u K_{xy} + v K_{yy} \right] c^n$$

MEF - Algoritmo de Solução

Algoritmo de solução da formulação corrente-vorticidade com transporte de espécie química

- 1. Introdução
- 2. Revisão Bibliográfica
- 3. Equações de Governo
- 4. Método dos Elementos Finitos
- 5. Validação do Código Numérico
- 6. Resultados
- 7. Conclusão

Validação do Código Numérico - Escoamento de Couette

As condições de contorno são:

Placa Superior: $u = U_{top}$ onde $U_{top} = 1$, v = 0 e $\psi = 0$;

Placa Inferior: $u=U_{bottom}$ onde $U_{bottom}=-1$, v=0 e $\psi=0$

$$u = \left[U_{top} - U_{bottom}\right] \frac{y}{L} + U_{bottom}$$

Evolução do perfil de velocidade no tempo para ${\sf Re}=100$ e a comparação da solução numérica com a solução analítica.

Validação do Código Numérico - Escoamento de Poiseuille

As condições de contorno são:

Condição de Entrada: u=1, v=0 e $\psi=y$;

Condição de Saida: $\psi = y$;

Parede superior: u = 0, v = 0, $\psi = 1$;

Parede inferior: u=0, v=0, $\psi=0$

$$u = \frac{4u_{max}}{L^2}y[L - y]$$

Evolução do perfil de velocidade no tempo para ${\sf Re}=100$ e a comparação da solução numérica com a solução analítica.

As condições de contorno são:

Paredes laterais e inferior: u = 0, v = 0 e $\psi = 0$;

Parede superior: u=1, v=0 e $\psi=0$

Perfil de u na linha central da cavidade (x=0.5) para Reynolds Re=100.

Perfil de v na linha central da cavidade (y=0.5) para Reynolds Re=100.

- 1. Introdução
- 2. Revisão Bibliográfica
- 3. Equações de Governo
- 4. Método dos Elementos Finitos
- 5. Validação do Código Numérico
- 6. Resultados
- 7. Conclusão

Resultados

Geometria não dimensional para escoamento sanguíneao em artéria coronária. (a) Canal Curvado com Stent (b) Canal Real com Stent.

As condições de contorno são:

Condição de Entrada: u = 1, v = 0 e $\psi = y$;

Condição de Saida: $\psi = y$;

Parede superior: u = 0, v = 0, $\psi = 1$;

Eixo de simetria: v= 0, $\psi=$ 0;

Stent Farmacológico: u= 0, v= 0, $\psi=$ 1 e c= 1

R = 0.0015 m $\mu = 0.0035 Pa.s$ $\rho = 1060 kg/m^3$ u = 12 cm/sRe = 54.5

Resultados - Canal Curvado com Stent

Evolução no tempo e no espaço do campo de velocidade para o Canal Curvado com Stent Farmacológico

Resultados - Canal Curvado com Stent

Evolução no tempo do perfil da velocidade para o Canal Curvado com Stent Farmacológico

Resultados - Canal Curvado com Stent

Canal Curvado com Stent Farmacológico cujo Sc = 1.

Canal Curvado com Stent Farmacológico cujo $\mathit{Sc}=10.$

Resultados - Canal Real com Stent

Evolução no tempo e no espaço do campo de velocidade para o Canal Real com Stent Farmacológico

Resultados - Canal Real com Stent

Evolução no tempo do perfil da velocidade para o Canal Real com Stent Farmacológico

Resultados - Canal Real com Stent

Canal Real com Stent Farmacológico cujo Sc = 1.

Canal Real com Stent Farmacológico cujo $\mathit{Sc}=10.$

- 1. Introdução
- 2. Revisão Bibliográfica
- 3. Equações de Governo
- 4. Método dos Elementos Finitos
- 5. Validação do Código Numérico
- 6. Resultados
- 7. Conclusão

Conclusão

- Foi construído um código completo em linguagem de programação de alto nível (Python) usando o paradigma de orientação de objetos e partir do presente momento, possuímos uma plataforma de estudos de problemas de escoamento de fármacos em artérias
- O simulador é capaz também de descrever em detalhes problemas envolvendo escoamento de fluidos newtonianos com transporte de natureza escalar (concentração ou temperatura) devido a construção generalizada do código
- 3. A formulação corrente-vorticidade se mostrou uma aproximação usual para calcular os campos de velocidade e concentração já que as variáveis são escalares permitindo uma implementação suave
- 4. Foi observado que o número de Schmidt influencia diretamente no transporte do fármaco na corrente sanguínea. Para elevados valores de Schmidt, o transporte de espécie química torna-se puramente convectivo e sua influência na parede da artéria deve ser verificada

Conclusão - Trabalhos Futuros

1. Implementação do esquema Semi-Lagrangeano

2. Utilização das variáveis primitivas na equação Navier-Stokes numa abordagem 3D

- 3. Modelar o escoamento sanguíneo como um problema multifásico
- 4. Simular a transferência de espécie química na parede da artéria

Obrigado!

marquesleandro67@gmail.com