

OAP 2022 Lekcija 6: Elektromagnetno Zračenje Nebeskih Tela.

Ivan Milić (AOB / MATF)

21/10/2022

O čemu smo pričali do sada:

- Gde prividno vidimo nebeska tela i kako da im odredimo koordinate (koordinatni sistemi).
- Kako se ta tela prividno kreću po nebeskoj sferi (sistemi vremena)
- Zašto se u stvari ta tela kreću (Gravitaciona interakcija i Keplerovi zakoni)
- Danas pričamo o tome šta mi u stvari vidimo!
- Razlog što možemo da posmatramo nebeska tela je što ta tela emituju (ili reflektuju, ili rasipaju) neku svetlost, odnosno EM zračenje.
- Danas: Šta je svetlost kako nastaje i kako da je objasnimo i opišemo zračenje nebeskih tela!

Za početak – Kako nastaje svetlost u svetu oko nas?

- Tj. zašto uopšte vidimo to što vidimo
- 2-3 minuta za ideje + tabla.

Za početak - Kako nastaje svetlost u svetu oko nas?

- Vatra hemijska energija u svetlosnu
- Neonke i LED lampe električna energija u svetlosnu
- Obične sijalice od wolframa električna u toplotnu, pa u svetlosnu
- Ljudi i predmeti oko nas refleksija dnevne i veštačke svetlosti
- Sunce ???
- Planete ???
- Radio signali, X zračenje, Gama zračenje, itd. Itd.
- Radioaktivni raspad jeste zračenje, ali nije svetlost!

Svetlost = EM zračenje

- Klasično gledano svetlost je talas
- Talas je putujuća perturbacija

• Kako su nastali ovi talasi? Kako putuje perturbacija?

Talasi

Perturbacija nastaje u centru i putuje ka spolja

Energija se transportuje u istom pravcu

- Ovo je primer tzv 2D talasa, gde se perturbacija prostire u treću dimenziju.
- Ovo je takodje transverzalan talas, znači da je perturbacija normalna na pravac prostiranja.

Jednostavnije – 1D talasi

Talas se prostire duž jedne ose, perturbacija normalno na pravac prostiranja.

 Talas ne mora da bude harmonijska funkcija. Mi uvek crtamo talase kao neke sinuse i kosinuse, ali svaka funkcija koja ispunjava:

$$f(x,t) = g(x - vt)$$

Je talas. g može da bude bilo koja diferencijabilna funkcija.

1D talasi

 Fizički, talasi se pojavljuju kada se sredina kroz koju se talas prostire ponaša u skladu sa talasnom jednačinom:

$$\frac{\partial^2 f}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}$$

• I ovo su talasi:

Obratite pažnju:

- Čak i u 1D, talas je 2D funkcija (x, t)
- "Perturbacija" ne mora da znači da se čestice "podižu i spuštaju", možemo da imamo bilo kakav poremećaj bilo koje fizičke veličine
- Npr. zvuk je longitudinalan talas. U pitanju je prostiranje perturbacije u pritisku/gustini:

Šta je onda svetlost?

- Svetlost je prostiranje poremećaja u električnom i magnetnom polju: Elektro-Magnetni (EM) talas
- Teorijsko opravdanje za postojanje ovih talasa dato je **Maksvelovim jednačinama:**

$$\nabla \cdot \vec{E} = 0$$

$$\nabla \cdot \vec{B} = 0$$

Nema izvora električnog i magnetnog polja!

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Promenljivo magnetno polje indukuje električno polje

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

Promenljivo električno polje indukuje magnetno polje

Brzina prostiranja talasa

Harmonijski ravni talasi

- Prvo, fokusiramo se na električno polje, magnetno polje je normalno na električno i ima istu vremensku i prostornu zavisnost.
- Svaki talas je rešenje Maksvelovih jednačina.
- Specifična rešenja slede iz graničnih uslova (tj. od prirode izvora).
- Zanimaju nas harmonijski ravni talasi, pošto svaki drugi talas možemo da razložimo na harmonijske ravne talase (npr. Furijeovom transformacijom).
- Oni imaju ovakav oblik:

$$\vec{E}(\vec{r},t) = \vec{E}_0 e^{i(\vec{k}\vec{r} - \omega t)}$$

Harmonijski ravni talasi

• Obično orijentišemo koordinatni sistem tako da se talas prostire duž z ose:

• Ovde je:
$$k=rac{2\pi}{\lambda}; \omega=rac{\mathrm{Frekvencija}}{2\pi
u}$$

Talasna dužina

$$c = \lambda \nu = 3 \times 10^8 \text{m/s} = \text{const}$$

Harmonijski ravni talasi

Najjednostavniji primer generatora EM talasa – antena!

- Kretanje naelektrisanih čestica prouzrokuje EM talase. Radio zračenje je takodje svetlost! (Naravno, ne vidljiva).
- Videćemo da se svi izvori svetlosti mogu predstaviti kao neko kretanje (oscilacije) naelektrisanih čestica!

Spektar EM zračenja

Drugi način da reprezentujemo svetlost - fotoni!

- Svetlost se može predstaviti kao "snop" čestica. Te čestice zovemo fotoni
- ullet Svaki foton ima energiju direktno srazmernu frekvenciji: E=h
 u
- Fotoni nemaju masu i kreću se (surprise!) brzinom svetlosti
- Fotoni su jedna od reprezentacije tzv. dualne prirode svetlosti (svetlost je i talas i čestica).
- Možemo da kažemo da sijalica emituje EM talase, a možemo da kažemo i da emituje fotone.
- U različitim fenomenima se manifestuju različiti aspekti prirode svetlosti.
- Generalna teorija se zove kvantna elektrodinamika i njom se nećemo baviti :)

Spektri nebeskih tela:

Šta za vas, u svakodnevnom životu, predstavlja reč **spektar? (2-3 minuta diskusija)**

Spektri nebeskih tela:

Šta za vas, u svakodnevnom životu, predstavlja reč **spektar? (2-3 minuta diskusija)**

- "Širok spektar ponude"
- "Čitav spektar različitih proizvoda"
- "Uzak spektar zanimanja"
- Spektar matrice
- Spektralni metodi za rešavanje diferencijalnih jednačina
- **Desno: ZX spectrum,** jedan od prvih personalnih računara (nema veze sa astronomijom)
- Spektar: skup, raspodela....

Spektar nebeskih tela

Ako zračenje koje dobijamo predstavimo kao skup harmonijskih ravnih talasa različitih talasnih dužina, gde svaka talasna dužina nosi neku količinu energije, spektar je funkcija raspodele:

$$E(\lambda) = rac{dE}{d\lambda} = rac{dn}{d\lambda} rac{hc}{\lambda}$$
 Energija jednog fotona date talasne dužine

Energija dužine

Ukupna energija primljena na nekom intervalu je onda:

$$\Delta E = \int_{\lambda_1}^{\lambda_2} E(\lambda) d\lambda$$

Spektri nebeskih tela

• Spektar nas automatski asocira na neku "dugu":

A duga je u stvari spektar sunčeve svetlosti

Spektri različitih zvezda

Oslikavaju razlike, u njihovim fizičkim karakteristikama (5 min diskusija)

Spektar Sunca

- Spektar kao "sličica" nam nije od neke praktične koristi, češće ćemo crtati spektar kao funkciju:
- Levo: raspodela energije koju dobijamo od Sunca. Desno: raspodela fotona po energijama.

Kirchhoff-ovi zakoni apsorpcije i emisije

Apsolutno crno telo

- Teorijska idealizacija, opisuje raspodelu fotona u nekom idealnom ravnotežnom stanju.
- Usijana gusta tela (zvezde, čvrsta tela) se mogu dobro aproksimirati kao apsolutno crna tela. Ovo su "teorijski" spektri zvezda različitih temperatura

Plankov zakon zračenja apsolutno crnog tela

Ova funkcija se može analitički zapisati:

Plankov zakon zračenja apsolutno crnog tela

• Iz nje se može izvesti takozvani Štefan-Bolcmanov zakon: ϵ

$$\epsilon = \sigma T^4$$

 Izračena energija na svim talasnim dužinama (integraljena po talasnim dužinama), po jedinici površine, srazmerna je četvrtom stepenu temperature!

Luminoznost zvezda

• Ukupna energija koju zvezda izrači u jedinici vremena jednaka je proizvodu površne i ukupne emisivnosti. Luminoznost Sunca je 3.828 x 10²⁶ W! (Vati)

Pitanje:

 Ako postoje zvezde koje emituju više od Sunca, zašto nam Sunce izgleda sjajnije?

Pitanje:

- Ako postoje zvezde koje emituju više od Sunca, zašto nam Sunce izgleda sjajnije?
- Zato što je bliže!

- $\mathcal{E} = \frac{dE^{\text{primljeno}}}{dA^{\text{primljeno}}} = \frac{L}{4\pi d^2}$
- Veličina koju merimo se zove osvetljenost (irradiance):

The Inverse-Square Relationship for Light

Osvetljenost koju Zemlja dobija od Sunca iznosi oko 1400 W po m^2!

At a distance 2r from the source the radiation is spread over four times the area so is only 1/4 the intensity that it is a distance r.

Radiation obeys an inverse-square relationship with distance.

Wien-ov (Vinov) zakon pomeranja

 Maksimum zračenja se pomera ka većim talasnim dužinama za manje temperature emitujućeg tela:

Pitanje

- Maksimum Sunčevog zračenja je na nekih 500 nm, na kojoj talasnoj dužini je maksimum zračenja (ne refleksije!) ljudskog tela?
- Kom delu spektra to odgovara?

Pitanje

- Maksimum Sunčevog zračenja je na nekih 500 nm, na kojoj talasnoj dužini je maksimum zračenja (ne refleksije!) ljudskog tela?
- Kom delu spektra to odgovara?
- Odgovor: Ljudsko telo je nekih 20 puta hladnije od Sunčeve površine pa je talasna dužina oko 20 puta veća, dakle oko 10 mikrometara. (IC deo spektra)

Klasifikacija zvezda po bojama / Luminoznosti

