MMF1922 Presentation

Auto Machine Learning (AutoML)

Group #3: Shuqi (Serena) Chang; Samantha MacPherson; Xinyi (Cynthia) Shen; Jinzhu (Gloria) Yang

Table of Content

- → Introduction of AutoML
- → Why AutoML is Important
- → Popular AutoML Tools
- **→** Comparisons between Different Tools
- **→** Conclusions

Please download and install the Slido app on all computers you use

What is AutoML?

(i) Start presenting to display the poll results on this slide.

Introduction

What is AutoML?

- ➤ **Definition**: Automated machine learning (AutoML) is the process of automating the tasks of applying machine learning to real-world problems [Wikipedia]. It is the combination of automation and ML.
- Differences between AutoML and Traditional Machine Learning:
 - Automation vs. Manual Effort
 - ☐ Standardization vs. Flexibility in Deployment
 - Expertise and Cost (Low vs. High)

The AutoML Process

1. Data Preparation:	□ Detect data types□ Suggest suitable transformations
2. Feature Engineering:	☐ Algorithms, e.g., PCA☐ Prior knowledge
3. Model Selection:	□ Perform ensemble learning□ Test multiple algorithms
4. Hyperparameter Tuning:	☐ Grid search ☐ Bayesian optimization ☐ Genetic algorithms
5. Deployment:	☐ Built-in deployment tools, e.g., API☐ Monitor performance over time

Why AutoML is Important

- Democratization of Machine Learning and Reducing Skill Barriers
 - Making Machine Learning Easier
 - Broader Access for Businesses

- Driving Innovation
 - Encouraging New Ideas
 - Leveraging Expertise
- > Efficiency
 - Streamlining Processes
 - Saving Time

Popular AutoML Tools

Google AutoML

- Strengths:
 - ☐ User-Friendly
 - □ Cloud-Based
 - ☐ Integration with Google Services
 - **☐** Pre-trained Models
- > Weaknesses:
 - **□** Limited Customizations
 - ☐ Cost
 - **☐** Primarily Cloud-Dependent

H2O.ai AutoML

- Strengths:
- **□** Open-Source
- **☐** Wide Range of Algorithms
- ☐ Scalability
- □ Flexibility
- > Weaknesses:
 - □ Complexity
 - □ Less Polished UI
 - □ No Built-In Deployment Support

Microsoft Azure AutoML

- > Strengths:
 - □ End-to-End Automation
 - ☐ Great for Time Series
 - ☐ Enterprise-Ready
- ☐ Multiple Language Support
- > Weaknesses:
 - □ Cost
 - □ Learning Curve
 - ☐ Limited Open-Source Integration

Popular AutoML Tools

auto-sklearn

> Strengths:

- □ Open-Source
- ☐ Meta-Learning
- ☐ Great for Small Datasets
- □ Ease of Use
- > Weaknesses:
 - ☐ Scalability
 - ☐ Limited to Scikit-learn Models
 - ☐ Manual Deployment

TPOT

Tree-based Pipeline Optimization Tool

- > Strengths:
 - **☐** Genetic Programming
 - □ Pipeline Focus
 - **□** Open-Source
- > Weaknesses:
 - □ Slow for Large Datasets
 - ☐ Limited Algorithm Choices
 - □ No Native Deployment Support

DataRobot

- Strengths:
 - □ End-to-End Automation
 - ☐ Great for Time Series
 - **□** Enterprise-Ready
 - □ Multiple Language Support
- Weaknesses:
 - □ Cost
 - □ Learning Curve
 - **☐** Limited Open-Source Integration

Comparisons between Different Tools

- Open-source libraries like auto-sklearn and TPOT are great for smaller or academic projects.
- Cloud-based solutions like Google AutoML and Azure AutoML are preferred for enterprise-scale applications due to their robust infrastructure.

AutoML Tool	Open Source	Algorithms Supported	Deployment Support	Ease of Use	Scalability	Cost
Google AutoML	×	Pre-trained & Custom Models	Easy, Cloud-Based	High	High	Expensive
H2O.ai AutoML	√	GBM, DL, RF, XGBoost, etc.	Manual	Moderate	High	Free (OSS)
MS Azure AutoML	×	Wide Range (good for time series)	Easy, Cloud-Based	Moderate	High	Expensive
auto-sklearn	√	Scikit-Learn Algorithms	Manual	Moderate	Limited	Free
ТРОТ	√	Scikit-Learn Algorithms	Manual	Moderate	Limited	Free
DataRobot	×	Wide Range	Easy, No-Code	High	High	Very Expensive

Which AutoML platform offers a no-code interface for beginners?

i Start presenting to display the poll results on this slide.

Which platform is ideal for experimentation using genetic programming?

i Start presenting to display the poll results on this slide.

When should businesses prefer H2O.ai over Google AutoML?

(i) Start presenting to display the poll results on this slide.

Key Takeaways

- Democratization of ML: AutoML bridges the gap between technical and non-technical users.
- Platform Selection: Choose based on your needs—user-friendliness vs. flexibility vs. enterprise scalability.
- Future Outlook: AutoML will continue evolving, making advanced ML more accessible to businesses and individuals.

- Encourage participants to explore AutoML platforms for their projects.
- Highlight the importance of aligning AutoML solutions with business goals.

THANK YOU