

Program Mathematics Unit

Syllabus of Course 90911

Introduction To Probability

Academic Year	2025	
No. of course hours	4.00 Semestrial hours [Lecture 3.00 + tutorial -1.00]	
Academic credits	3.50	
Prerequisites	Pre: 90901 Differential And Integral Calculus1	
Please note that		
The prerequisites are for all programs, you are required to be updated on the prerequisites you need according to your personal program.		
Class Attendance	Not mandatory	
Objectives	Probability Theory as a mathematical model to analyze problem of uncertainty.	
Abstract	Basic concepts in probability theory: sample space, elementary	
	theorems, combinatorial calculations, conditional probability and	
	independence, random discrete variables, expected value and	
	variance, special random variables,	
	multivariate variables, central limit theorem. Basic concepts in	
	statistics: statistical estimation and testing, confidence intervals.	

Academic learning outcomes	
Learning outcomes related to	The ability to define and solve problems in probability and statistics
the content of the course	

Learning outcomes - Skills

Integrative learning: linking to practical experience. The ability to identify connections between experience and similarly perceived ideas.

Problem solving: defining problems and identifying strategies. The ability to identify one or more approaches to problem solving without application in a specific context.

Critical thinking: explaining the issues, foundation, contexts, and taking a position. Presenting the subject based on information sources without interpretation, evaluation or taking a position.

Further points of emphasis	

Lecture topics by weeks

The order of the topics can be changed at the lecturer's discretion.

1	Introduction, definitions of probability, sample space, operation on events.	
2	Axioms of probability, sample and space events, symmetric sample spaces, basic principles of	
	combinatorial computations of probabilities.	
3	Conditional probability: Probability trees, Bayes' formula.	
4	Independent event, the sequence of independent trials, Binomial and Geometric probabilities.	
5	Discrete random variables: Distribution function, expected value, variance.	
6	Special random variables: Uniform distribution, Bernoulli and Binomial random variables,	
	Geometric distribution, Hyper geometric distribution, Poisson distribution.	
7	Continuous random variables: Distribution and density func tions, Expectation and Variance,	
	Uniform distribution, Exponential distribution, Normal distribution.	
8	Multivariate discrete random variables: joint distribution table, independent random variables,	
	conditional distribution. Expectation of a sum of random variables, Covariance, Variance of	
	sums, Pearson correlation coefficient.	
9	Sequence of independent and identically distributed random variables. Sample Mean, The	
	Central Limit Theorem. Normal approximation of Binomial distribution.	

10	Topics in statistics: Estimation, unbiased estimator, Mean squared error (MSE), confidence
	interval for mean, confidence interval for variance,
11	Statistical hypothesis testing, error types, p-value, power,
12	Hypothesis Test for One Population Mean when variance known, Hypothesis Test for One
	Population Mean when variance unknown - t test.
13	Review

Tutorials / Labs topics by weeks

The order of the topics can be changed at the lab instructor's / tutor's discretion.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	

Language of instruction	Hebrew	
Subjects for self-tutoring		
Textbooks and Recommended Bibliography	Sheldon M. Ross, A First Course in Probability,	
	Prentice Hall, 1998.	
	A. Raviv and T. Leviatan, Introduction to Probability	
	and Statistics: Statistical Inference. (In Hebrew),	
	Amihai	
	(1994), 299p.	

Course Requirements and Calculation of Final Grade

Task Type	Percentage of Final Grade
Final Exam Grade	90
Midterm Exam Grade	0
Homework Assignments	10
A project in a course where there is no Final Exam	0
A project in a course where there is a Final Exam	0
Final Grade	0

Clarification to pass the course:

In order to pass the course, students must fulfill the following conditions [excluding the English Beginners Course, Labs and Workshops]:

- 1. Final course grade of at least 60 [taking into consideration all the above course requirements].
- 2. Attendance according to the attendance requirement [see section regarding attendance].

Exam and Midterm Exam

Type of Midterm Exam

Duration of Midterm Exam

Location of Midterm exam

Duration of Final Exam 180 minutes

Location of Final exam Regular class (no computers)

Permitted Material/Tools for Exams Standard calculator

Details of permitted materials for exam

Formula Sheets Formula sheets written by the lecturer

No. of Pages