Universidade de São Paulo Instituto de Matemática e Estatística Bacharelado em Matemática Aplicada

Redes Neurais aplicadas

Eduardo Galvani Massino

Monografia Final map2010 — Trabalho de Formatura

Orientador: José Coelho de Pina Junior

São Paulo Dezembro de 2020

Esta seção é opcional e fica numa página separada; ela pode ser usada para uma dedicatória ou epígrafe.

Agradecimentos

Do. Or do not. There is no try.

— Mestre Yoda

Texto texto. Texto opcional.

Resumo

Eduardo Galvani Massino. **Redes Neurais aplicadas**. Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2020.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Deve ser precedido da referência do documento. Texto texto

Palavras-chave: redes-neurais. perceptron.

Abstract

Eduardo Galvani Massino. **Redes Neurais aplicadas**. Capstone Project Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2020.

Keywords: neural-nets. perceptron.

Lista de Abreviaturas

CFT	Transformada contínua de Fourier (Continuous Fourier Transform)
DFT	Transformada discreta de Fourier (Discrete Fourier Transform)
EIIP	Potencial de interação elétron-íon (Electron-Ion Interaction Potentials)
STFT	Transformada de Fourier de tempo reduzido (Short-Time Fourier Transform)
ABNT	Associação Brasileira de Normas Técnicas
URL	Localizador Uniforme de Recursos (Uniform Resource Locator)
IME	Instituto de Matemática e Estatística
USP	Universidade de São Paulo

Lista de Símbolos

- ω Frequência angular
- ψ Função de análise wavelet
- Ψ Transformada de Fourier de ψ

Lista de Figuras

2.1 Rede neural simples, o perceptron de única camada	5
Lista de Tabelas	
Lista de Programas	
A.1 Máximo divisor comum (arquivo importado)	7 7

Sumário

1	Intr	rodução	1
2	Red	es neurais multicamadas	3
	2.1	Aprendizado de máquina supervisionado	3
	2.2	Aprendizado não-supervisionado	4
	2.3	Técnicas de Classificação	4
	2.4	Redes Neurais	5
	2.5	Perceptron	5
A	•	ligo-Fonte e Pseudocódigo	7
		ncias	9
Ín	dice l	Remissivo	11

Capítulo 1

Introdução

De tempos pra cá, ler e ouvir falar de **ciência de dados** tornou-se muito comum, tanto nos meios profissionais e científicos quanto na mídia. Existem atualmente aplicações em praticamente todas as áreas do conhecimento humano, da agricultura à indústria e ao entretenimento.

Uma busca rápida na *Wikipedia* (*Ciência de Dados* 2020) define ciência de dados como um conjunto de ferramentas que extrai informações ou previsões a partir de um grande volume de dados, que podem ser números, textos, áudio, vídeo, entre outros, para ajudar na tomada de decisões de negócios.

Apesar de não ser a única definição para o termo, Pedro A. Morettin e Julio M. Singer (Pedro A. Morettin, 2020) nos lembram que essa também é uma definição da estatística. Eles comparam o uso dos termos e apontam que o trabalho dos *cientistas de dados* diferem dos *estatísticos* apenas quando eles usam dados de natureza multimídia como áudio e vídeo, por exemplo. Mas que, uma vez que esses dados são processados e tornam-se números, as técnicas e conceitos utilizados pelos primeiros passam a ser basicamente os mesmos utilizados pelos segundos.

Na verdade, Morettin & Singer (Pedro A. Morettin, 2020) citam que na década de 80 houve uma primeira tentativa de aplicar o rótulo *ciência de dados*, (*Data Science*), ao trabalho feito pelos estatísticos aplicados da época, como uma forma de dar-lhes mais visibilidade. Curiosamente, fato mencionado pelos autores, existem atualmente cursos específicos de ciência de dados em universidades ao redor do mundo, mas a maioria deles situada em institutos de áreas aplicadas como Engenharia e Economia, e raramente nos institutos de Estatística propriamente ditos.

Para entender um pouco mais de seu escopo, David M. Blei e Padhraic Smyth (DAVID M. BLEI, 2017) discutem ciência de dados sob as visões estatística, computacional e humana. Eles argumentam que é a combinação desses três componentes que formam a essência do que ela é e, assim como, do conhecimento que ela é capaz de produzir.

Em resumo, a estatística guia a coleta e análise dos dados. A computação cria algoritmos, técnicas de processamento em paralelo e gerenciamento de memória eficazes para que sua execução seja efetiva. E o papel humano é o de avaliar quais tipos de dados, técnicas de

análises, algoritmos e modelos são apropriados para responder ao problema em questão. Este é o papel do *cientista de dados*.

Enquanto isso, algoritmos de **aprendizado de máquina** vem sendo utilizados em grande parte dos modelos de ciência de dados. Mas o que é aprendizado de máquina? Ou então, o que significa dizer que o computador, neste caso a "máquina", está *aprendendo*?

Antes da definição formal, Aurélien Géron (GÉRON, 2019) nos dá uma ideia geral lembrando que uma das primeiras aplicações de sucesso de aprendizado de máquina foi o filtro de *spam*, criado na década de 90. Uma das fases de seu desenvolvimento foi aquela em que os usuários assinalavam que certos e-mails eram *spams* e outros não eram. Hoje em dia, raramente temos que marcar ou desmarcar e-mails, pois a maioria dos filtros já "aprenderam" a fazer seu trabalho de forma muito eficiente.

Dentre as muitas definições de aprendizado de máquina, de modo geral uma área da ciência da computação, no contexto de ciência de dados, Joel Grus (Grus, 2016) define-o como a "criação e o uso de modelos que são ajustados a partir dos dados". Seu objetivo é usar dados existentes para desenvolver modelos que possamos usar para *prever* possíveis saídas para dados novos. Exemplos, além do filtro de *spams* podem ser: prever transações de crédito fraudulentas, prever a chance de um cliente clicar em uma propaganda ou então prever qual time de futebol irá vencer o Campeonato Brasileiro.

Uma **rede neural** é um exemplo de modelo preditivo de aprendizado de máquina. Tal modelo foi criado com inspiração no funcionamento do cérebro biológico, e que, apesar de terem sido as primeiras a serem criadas, conforme descrito por David Kopec (KOPEC, 2019), vem ganhando nova importância na última década, graças ao avanço computacional, uma vez que exigem muito processamento, e também porque podem ser usadas para resolver problemas de aprendizagem dos mais variados tipos.

Atualmente existem vários tipos de redes neurais, porém este trabalho lida principalmente com aquele tipo que foi originalmente criado sob a inspiração do funcionamento do cérebro, chamado de **perceptron**, e que portanto tenta imitar o comportamento dos neurônios e suas conexões, aprendendo padrões a partir de dados existentes e tentando prever o comportamento de dados novos a partir do padrão aprendido.

[Ao final a uma breve descrição do conteúdo do texto.]

Capítulo 2

Redes neurais multicamadas

Neste capítulo são apresentados alguns conceitos básicos de **aprendizado de máquina**, com foco nos algoritmos de redes neurais multicamadas, em especial o **perceptron**, cujo desenvolvimento foi inspirado nas redes neurais biológicas, ou seja, os neurônios e suas conexões no cérebro, conforme descrito por Kopec (KOPEC, 2019).

Pode-se classificar as técnicas de aprendizado de várias formas, de acordo com alguma de suas características. Por exemplo, Géron (Géron, 2019) utiliza o grau de supervisão humana durante o seu funcionamento para classificá-los em aprendizado supervisionado ou não-supervisionado.

2.1 Aprendizado de máquina supervisionado

Um algoritmo de **aprendizado supervisionado** é usado quando conhecemos os rótulos dos dados que estamos utilizando para o treinamento, ou seja, temos a resposta correta da aprendizagem. Por exemplo, se estamos classificando fotos de animais, possuímos um conjunto de fotos em que já sabemos de antemão quais são de gatos, cachorros, etc.

O ato de rotular ou classificar os dados que usamos no aprendizado é o que designamos de supervisão humana. Uma vez *treinado*, o algoritmo recebe uma foto nova e então a classifica como sendo uma foto de um gato, ou cachorro, ou qualquer outra resposta daquelas que foram dadas como exemplos durante o treinamento.

Dentro do aprendizado supervisionado temos duas técnicas principais. A regressão é usada para prever valores, e a classificação é usada para prever os rótulos dos dados, que também são chamados de classes. Neste texto os termos "algoritmo" e "técnica" serão usados livremente como sinônimos, pois uma técnica de aprendizado de máquina, no contexto atual, é obviamente um algoritmo executado no computador.

Colocar exemplos...

2.2 Aprendizado não-supervisionado

Nesse tipo de aprendizado de máquina, não sabemos os rótulos dos dados que estamos lidando, assim o algoritmo poderá agrupar os dados de forma automática, por exemplo, se estiver sendo usado um algoritmo classificador.

Alguns métodos não-supervisionadas de aprendizado foram enumeradas por Géron (GÉRON, 2019). O **agrupamento** de dados similares, sendo essa similaridade podendo ser uma distância no espaço dos dados (inspiração geométrica), e utiliza-se algoritmos como k-Vizinhos, k-Means, k-Medians, etc. Exemplos de aplicações são agrupamento de produtos em supermercados, interesses comuns de clientes em sites de conteúdo digital, etc.

Outra técnida é a **detecção de anomalias**, cujo objetivo é ter uma descrição de como os dados considerados "normais" se parecem, e usa esse agrupamento para detectar se novos dados estariam "fora" desse padrão. Um exemplo é a detecção de fraudes.

Também pode-se citar sobre a técnica de **estimação de densidades**, que tem como objetivo a estimação da função densidade de probabilidade de um conjunto de dados gerados por algum processo aleatório.

Colocar exemplos...

2.3 Técnicas de Classificação

Sendo uma das duas técnicas principais do aprendizado supervisionado, problemas desse tipo buscam aprender com um conjunto de dados previamente rotulados, como "se parecem" os dados que pertencem às classes que queremos classificar, para que quando processarmos novos dados, o algoritmo usado possa identificar, o mais corretamente possível, as classes às quais pertecem esses dados, dentro do conjunto de classes que já definimos ao rotular os dados iniciais.

Existem vários tipos de algoritmos de classificação, dentre eles podemos mencionar: Máquina de Vetor Suporte, em inglês Support Vector Machine (SVM), Árvores de decisão, Florestas aleatórias (podendo ser entendidas como um conjunto de centenas de árvores de decisão aleatoriamente definidas) e as Redes neurais artificiais.

Colocar exemplos de aplicações...

Todos essas técnicas podem ser usadas para classificação linear ou não-linear, no sentido em que valores eles estão classificando, assim como na forma que está sendo feita essa classificação. Se imaginamos um espaço bidimensional, um algoritmo de classificação linear irá separar as classes de dados por retas, enquanto que um classificador não-linear poderá usar outra curva qualquer para a separação. Abstraindo o espaço bidimensional para os espaços multidimensionais dos dados que são comumente analisados, podemos pensar em hiperplanos (estruturas (*n*–1-dimensionais de espaços *n*-dimensionais) para o caso dos classificadores lineares, ou subespaços quaisquer para os não-lineares.

2.4 Redes Neurais

Uma rede neural artificial é um dentre vários métodos de classificação, ou seja, de aprendizado supervisionado. De acordo com Kopec (Kopec, 2019), ele é utilizado como um classificador não-linear, e por isso pode ser utilizado para prever tipos de dados genéricos, que podem ou não ser lineares.

Kopec (Kopec, 2019) também cita que apesar das primeiras redes neurais artificiais, ou *perceptrons* tivessem sido desenvolvidas ainda na década de 1950, sob a inspiração do funcionamento do cérebro, nota-se que, de tempos pra cá, vem recebendo muita importância graças à evolução computacional de hardware e software desde o início dos anos 2000.

Contextualizar mais as redes neurais aqui ...

2.5 Perceptron

A rede neural mais simples, isto é, a primeira que foi criada, chama-se *perceptron*. Mais recentemente surgiu a rede perceptron de várias camadas (*multi-layer perceptron*), àquela mais simples e antiga dá-se o nome de perceptron de única camada (*single-layer perceptron*), uma ilustração dela está na Figura 2.1.

Figura 2.1: Rede neural simples, o perceptron de única camada.

O perceptron de camada única consiste de uma camada de neurônios de entrada, uma camada oculta de neurônios usados na otimização, e uma camada de saída, que irá conter os dados previstos, ou ainda as probabilidades do dado pertencer a alguma das classes que a rede poderá classificá-lo.

Os neurônios são representados por círculos, cada coluna de neurônios representa uma camada, nesse caso, da esquerda para a direita temos a camada de entrada, a camada oculta e a camada de saída. As linhas representam as ligações entre os neurônios, sendo que cada neurônio de uma camada está ligado a todos da camada anterior.

Vou descrever aqui as contas...

Apêndice A

Código-Fonte e Pseudocódigo

Com a *package* listings, programas podem ser inseridos diretamente no arquivo, como feito no caso do Programa 4.1 ou importados de um arquivo externo com o comando \lstinputlisting, como no caso do Programa A.1.

Programa A.1 Máximo divisor comum (arquivo importado).

```
FUNCTION euclid(a, b) \Rightarrow The g.c.d. of a and b
1
            r \leftarrow a \bmod b
2
3
            while r \neq 0 \Rightarrow We have the answer if r is 0
                  a \leftarrow b
                  b \leftarrow r
6
                  r \leftarrow a \bmod b
7
            end
            return b \triangleright The g.c.d. is b
8
9
      end
```

Trechos de código curtos (menores que uma página) podem ou não ser incluídos como *floats*; trechos longos necessariamente incluem quebras de página e, portanto, não podem ser *floats*. Com *floats*, a legenda e as linhas separadoras são colocadas pelo comando \begin{program}; sem eles, utilize o ambiente programruledcaption (atenção para a colocação do comando \label{}, dentro da legenda), como no Programa A.2¹:

Programa A.2 Máximo divisor comum.

```
FUNCTION euclid(a, b) \triangleright The g.c.d. of a and b

r \leftarrow a \mod b

while r \neq 0 \triangleright We have the answer if r is 0

a \leftarrow b

b \leftarrow r
```

 $cont \longrightarrow$

¹listings oferece alguns recursos próprios para a definição de *floats* e legendas, mas neste modelo não os utilizamos.

```
\longrightarrow cont
6   r \leftarrow a \mod b
7   end
8   return b \triangleright The \ g.c.d. \ is \ b
9  end
```

Além do suporte às várias linguagens incluídas em listings, este modelo traz uma extensão para permitir o uso de pseudocódigo, útil para a descrição de algoritmos em alto nível. Ela oferece diversos recursos:

- Comentários seguem o padrão de C++ (// e /* ... */), mas o delimitador é impresso como "⊳".
- ":=", "<>", "<=", ">=" e "!=" são substituídos pelo símbolo matemático adequado.
- É possível acrescentar palavras-chave além de "if", "and" etc. com a opção "morekeywords={pchave1,pchave2}" (para um trecho de código específico) ou com o comando \lstset{morekeywords={pchave1,pchave2}} (como comando de configuração geral).
- É possível usar pequenos trechos de código, como nomes de variáveis, dentro de um parágrafo normal com \lstinline{blah}.
- "\$...\$" ativa o modo matemático em qualquer lugar.
- Outros comandos LaTeX funcionam apenas em comentários; fora, a linguagem simula alguns pré-definidos (\textit{}, \textit{} etc.).
- O comando \label também funciona em comentários; a referência correspondente (\ref) indica o número da linha de código. Se quiser usá-lo numa linha sem comentários, use /// \label{blah}; "///" funciona como //, permitindo a inserção de comandos ETFX, mas não imprime o delimitador (>).
- Para suspender a formatação automática, use \noparse{blah}.
- Para forçar a formatação de um texto como função, identificador, palavra-chave ou comentário, use \func{blah}, \id{blah}, \kw{blah} ou \comment{blah}.
- Palavras-chave dentro de comentários não são formatadas automaticamente; se necessário, use \func\{\}, \id\{\} etc. ou comandos \textit{ETEX padrão}.
- As palavras "Program", "Procedure" e "Function" têm formatação especial e fazem a palavra seguinte ser formatada como função. Funções em outros lugares *não* são detectadas automaticamente; use \func{}, a opção "functions={func1,func2}" ou o comando "\lstset{functions={func1,func2}}" para que elas sejam detectadas.
- Além de funções, palavras-chave, strings, comentários e identificadores, há "specialidentifiers". Você pode usá-los com \specialid{blah}, com a opção "specialidentifiers={id1,id2}" ou com o comando "\lstset{specialidentifiers={id1,id2}}".

Referências

- [Ciência de Dados 2020] Ciência de Dados. https://pt.wikipedia.org/wiki/Ci%C3% AAncia_de_dados. Mar. de 2020 (citado na pg. 1).
- [DAVID M. Blei 2017] Padhraic Smyth DAVID M. Blei. "Science and data science". Em: *PNAS* 114.33 (ago. de 2017), pgs. 8689–8692 (citado na pg. 1).
- [GÉRON 2019] Aurélien GÉRON. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. 2°. O'Reilly, 2019 (citado nas pgs. 2-4).
- [GRUS 2016] Joel GRUS. Data Science do Zero. 1°. O'Reilly, 2016 (citado na pg. 2).
- [KOPEC 2019] David KOPEC. *Problemas Clássicos de Ciência da Computação com Python.* 1°. Novatec, 2019 (citado nas pgs. 2, 3, 5).
- [Pedro A. Morettin 2020] Julio M. Stinger Pedro A. Morettin. *Introdução à Ciência de Dados Fundamentos e Aplicações*. Departamento de Estatística. Universidade de São Paulo, 2020 (citado na pg. 1).

Índice Remissivo

C

Captions, *veja* Legendas Código-fonte, *veja* Floats

E

Equações, veja Modo Matemático

F

Figuras, *veja* Floats

Floats

Algoritmo, *veja* Floats, Ordem Fórmulas, *veja* Modo Matemático

I

Inglês, veja Língua estrangeira

P

Palavras estrangeiras, veja Língua

estrangeira

R

Rodapé, notas, veja Notas de rodapé

S

Subcaptions, *veja* Subfiguras Sublegendas, *veja* Subfiguras

 \mathbf{T}

Tabelas, veja Floats

 \mathbf{V}

Versão corrigida, *veja* Tese/Dissertação, versões

Versão original, *veja* Tese/Dissertação, versões