REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION

....

EXAMEN DU BACCALAUREAT

SESSION 2018

	Sessi	on	de	con	trôle
--	-------	----	----	-----	-------

Epreuve:

Mathématiques

Section : Mathématiques

.

Durée: 4h

Coefficient de l'épreuve : 4

Le sujet comporte sept pages numérotées de 1/7 à 7/7. Les pages 5/7, 6/7 et 7/7 sont à rendre avec la copie.

Exercice 1 (5 points)

Le plan est orienté. Dans la Figure 1 de l'annexe jointe,

- ABC est un triangle équilatéral direct tel que $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{3} [2\pi]$;
- \mathcal{E}_1 est le cercle circonscrit au triangle ABC et O son centre;
- 1 est le milieu du segment [BC];
- AICD est un rectangle direct.
- Soit f le déplacement tel que f(A)=C et f(B)=A.
 Montrer que f est une rotation dont on précisera son centre et une mesure de son angle.
- 2) Soit g l'antidéplacement tel que g(A) = C et g(B) = A.
 - a) Justifier que g est une symétrie glissante.
 - b) Montrer que $g=t_{\overrightarrow{Bl}}$ o S_{Δ} , où Δ est la médiatrice du segment [A].
- 3) Soit h l'homothétie de centre A et telle que h(O)=I. On pose $\varphi = g \circ h \circ f$.
 - a) Montrer que φ est une similitude indirecte de rapport $\frac{3}{2}$.
 - b) Montrer que $\varphi(B) = C$ et $\varphi(O) = D$.
- 4) Soit $E=\varphi(C)$.
 - a) Montrer que le triangle DCE est isocèle en D.
 - b) Justifier que $(\overrightarrow{DC}, \overrightarrow{DE}) \equiv -\frac{2\pi}{3}[2\pi]$.
 - c) Construire alors le point E.
 - d) Soit Ω le centre de φ .

Montrer que $\overrightarrow{\Omega B} = \frac{4}{5} \overrightarrow{BE}$. Construire le point Ω .

5) On pose $\mathscr{C}_2 = \varphi(\mathscr{C}_1)$.

Le cercle \mathscr{C}_2 coupe le cercle \mathscr{C}_1 au point c et en un autre point M. On pose $N=\varphi(M)$. Montrer que les points Ω , B et M sont alignés. Construire alors le point N.

Exercice 2 (3 points)

Une urne contient six pièces de monnaie :

- quatre pièces sont équilibrées ;
- les deux autres pièces sont truquées de façon que la probabilité d'obtenir « FACE » est égale à 2/3.

On tire, au hasard, une pièce de l'urne et on effectue n lancers successifs de cette pièce, $n \ge 1$. On considère les événements suivants :

- E : « la pièce tirée est équilibrée ».
- . F.: « on obtient FACE pour les n lancers».
- 1) a) Déterminer p(E), $p(F_1/E)$ et $p(F_1/\bar{E})$.
 - b) Montrer que $p(F_1) = \frac{5}{9}$
- 2) Montrer que $p(F_n) = \frac{1}{3} \left(\left(\frac{1}{2} \right)^{n-1} + \left(\frac{2}{3} \right)^n \right)$.
- 3) Soit X_n la variable aléatoire définie de la manière suivante : $\begin{cases} X_n = n & \text{si } F_n \text{ est réalisé ;} \\ X_n = 0 & \text{si non.} \end{cases}$
 - a) Donner la loi de probabilité de X_n.
 - b) Déterminer l'espérance mathématique de X_n.
 - c) Dans la figure ci-dessous,
 - (O,i,j) est un repère orthonormé du plan,
 - (C) est la courbe représentative de la fonction f définie sur $[0,+\infty]$

$$par \ f(x) = \frac{x}{3} \left[\left(\frac{1}{2} \right)^{\! \left(x - 1 \right)} + \left(\frac{2}{3} \right)^{\! x} \right],$$

- (C') est la courbe représentative de la fonction dérivée f' de f,
- la courbe (C') coupe l'axe $(0, \vec{i})$ en un seul point d'abscisse x_0 ,
- (T) est la droite d'équation y = f(x₀).

Exploiter le graphique pour déterminer l'entier naturel n pour lequel l'espérance mathématique $E(X_n)$ est maximale.

Exercice 3 (7 points)

- 1) Soit g la fonction définie sur $]0,+\infty[$ par $g(x)=1-x+x\ln x$.
 - a) Etudier les variations de g.
 - b) En déduire que pour tout $x \in]0,+\infty[$, $1+x \ln x \ge x$.
- 2) Soit f la fonction définie sur $\left[0,+\infty\right[$ par $\left\{\begin{array}{l} f(x)=\frac{1}{1+x\ln x} & \text{si } x>0,\\ f(0)=1. \end{array}\right.$

On note (C_f) sa courbe représentative dans un repère orthonormé (O, i, j).

- a) Montrer que f est continue à droite en 0.
- b) Montrer que $\lim_{x\to 0^+} \frac{f(x)-1}{x} = +\infty$. Interpréter graphiquement.
- c) Calculer $\lim_{x \to +\infty} f(x)$. Interpréter graphiquement.
- 3) a) Montrer pour tout $x \in]0,+\infty[$, $f'(x) = -\frac{1+\ln x}{(1+x\ln x)^2}$.
 - b) Dresser le tableau de variation de f.
- 4) Dans la figure 2 de l'annexe jointe, on a tracé dans un repère orthonormé (O, \vec{i}, \vec{j}) , les courbes
 - $(C_1) \text{ et } (C_2) \text{ des fonctions définies sur } \big] 0, +\infty \big[\text{ respectivement par } x \mapsto \ln x \text{ et } x \mapsto \frac{1}{x}.$
 - a) Construire le point A de (C_1) d'abscisse $\frac{1}{e}$ et le point B de (C_2) d'abscisse $1-\frac{1}{e}$. En déduire une construction du point C de (C_f) d'abscisse $\frac{1}{e}$.
 - b) Déduire de la question 1) b) que pour tout $x \in]0, +\infty[, f(x) \le \frac{1}{x}]$.
 - Déterminer alors la position relative de (C_f) et (C_2) .
 - c) Tracer la courbe (Cf).
- 5) On considère la fonction F définie sur $[1, +\infty[$ par $F(x)=\int_1^x f(t) dt$.
 - a) Montrer que pour tout $t \in [1, +\infty[, \frac{1}{t + t \ln(t)} \le f(t)]$.
 - b) Montrer alors que pour tout $x \in \left[1, +\infty\right[, -\ln\left(1+\ln x\right) \le F\left(x\right) \le \ln x$.
 - c) Déterminer $\lim_{x\to +\infty} F(x)$ et $\lim_{x\to +\infty} \frac{F(x)}{x}$.
- 6) Soit n un entier naturel non nul.
 - a) Montrer que la fonction $h: x \mapsto x F(x)$ est une bijection de $[1, +\infty[$ sur $[1, +\infty[$.
 - b) En déduire que l'équation h(x) = n admet dans $[1, +\infty[$ une seule solution α_n .
 - c) Montrer que $\lim_{n\to+\infty} \alpha_n = +\infty$.
 - d) Vérifier que $\frac{\alpha_n}{n} = \frac{1}{1 \frac{F(\alpha_n)}{\alpha_n}}$. Déterminer alors $\lim_{n \to +\infty} \frac{\alpha_n}{n}$.

Exercice 4 (5 points)

- 1) On considère, dans \mathbb{C} , l'équation (E): $z^2-(1+i)z-i=0$. Résoudre l'équation (E). On note z_1 et z_2 , les solutions de (E).
- 2) Dans le plan rapporté à un repère orthonormé direct (O, u, v), on désigne par A, B, M₁ et M₂ les points d'affixes respectives 1, i, z, et z₂.

Soit z un nombre complexe distinct de 1, i, z_1 et z_2 .

On note M et M' les points d'affixes respectives z et $z' = \frac{z+i}{z-i}$.

Justifier que les points M et M' sont distincts.

Dans la suite de l'exercice on prend $z = i + 2e^{i\theta}$, où θ est un réel.

- 3) a) Montrer que M décrit le cercle Γ de centre B et de rayon 2.
 - b) Montrer que $z' = 1 + ie^{-i\theta}$.
 - c) Montrer que AM'=1 et que $\left(\overrightarrow{u}, \overrightarrow{AM'}\right) \equiv \frac{\pi}{2} \theta \left[2\pi\right]$.
 - d) Déterminer l'ensemble des points M' lorsque le point M décrit le cercle Γ .
- 4) Soit P le milieu du segment [MM'] et ZP son affixe.

On désigne par Q le point d'affixe $z_Q = e^{i\frac{\pi}{4}} z_P$.

- a) Vérifier que $z_P = \frac{1+i+2e^{i\theta}+ie^{-i\theta}}{2}$
- b) En déduire que $z_Q = \frac{i\sqrt{2} + 2e^{i\left(\theta + \frac{\pi}{4}\right)} e^{-i\left(\frac{\pi}{4} + \theta\right)}}{2}$.
- c) Montrer alors que z $_{Q}=\frac{1}{2}\cos\left(\theta+\frac{\pi}{4}\right) \ + \ i\left(\frac{\sqrt{2}}{2} \ + \ \frac{3}{2}\sin\left(\theta+\frac{\pi}{4}\right)\right).$
- 5) a) Montrer que lorsque le point M varie sur le cercle Γ , le point Q varie sur l'ellipse $\mathcal E$ d'équation $4x^2 + \frac{4}{9} \left| y \frac{\sqrt{2}}{2} \right|^2 = 1.$
 - b) Dans la figure 3 de l'annexe jointe, on a tracé dans le repère $\left(O,\vec{u},\vec{v}\right)$ le cercle Γ , l'ellipse \mathcal{E} , et on a placé un point M sur le cercle Γ tel que $\left(\overrightarrow{u},\overrightarrow{BM}\right) \equiv \theta \left[2\pi\right]$. Construire les points M' et Q.

Section:		Signatures des surveillants
Nom et Prénom :		
Date et lieu de naissance :		

Épreuve : Mathématiques - Section : Mathématiques - Session de contrôle - 2018

Annexe à rendre avec la copie

Figure 1

Ne rien écrire ici

Figure 2

Ne rien écrire ici

Figure 3