Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

		, • 1	
Cognome,	nome e	matricola:	

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Sia $L = \{k\}$ un linguaggio del prim'ordine con k simbolo di funzione

2 punti

- binario. Quali delle seguenti affermazioni sono formalizzate dalla formula
- $\neg \forall w (k(w, w) = w)$ relativamente alla struttura $\langle \mathbb{R}, \cdot \rangle$?
- □ "Tutti i numeri reali coincidono con il proprio quadrato."
- □ "Nessun numero reale coincide con il proprio quadrato."
- "Non tutti i numeri reali coincidono con il proprio quadrato."
- \blacksquare "Esiste un numero reale w tale che $w \cdot w \neq w$."
- (b) Siano Q, R relazioni binarie su un insieme D. Stabilire quali delle seguenti affermazioni sono corrette.
 - Se per ogni $d, e \in D$ vale che Q(d, e) se e solo se R(e, d), allora $R = Q^{-1}$.
 - $\square \:$ Se Q è riflessiva e $Q \supseteq R,$ anche R è riflessiva.
 - $\blacksquare \:$ Se Q è riflessiva e $Q\subseteq R,$ anche R è riflessiva.
 - \blacksquare Se per ogni $d \in D$ esiste un solo $e \in D$ tale che Q(d, e), allora Q è una funzione.
- (c) Siano $k \colon \mathbb{Q}_{\geq 1} \to \mathbb{R}$, dove $\mathbb{Q}_{\geq 1}$ è l'insieme dei numeri reali maggiori o uguali a 1, e $f \colon \mathbb{Q} \to \mathbb{Q}_{\geq 1}$ definite da $k(w) = \sqrt{w-1}$ e $f(x) = x^2 + 1$. Stabilire quali delle seguenti affermazioni sono corrette.

2 punti

2 punti

- \Box f è una funzione iniettiva.
- $\blacksquare k \circ f : \mathbb{Q} \to \mathbb{R}.$
- $\blacksquare k \circ f(d) = d \text{ per ogni } d \in \mathbb{Q} \text{ con } d \ge 0.$
- \square k è una funzione suriettiva.

(d) Siano S e P formule proposizionali. Quali delle seguenti affermazioni sono corrette?

2 punti

- $\blacksquare S$ è una tautologia se e solo se $\neg S$ è insoddisfacibile.
- \blacksquare S \models P \rightarrow S
- \blacksquare S \vee P $\equiv \neg$ S \rightarrow P
- \square Se S è soddisfacibile allora \neg S è certamente insoddisfacibile.
- (e) Sia D un insieme non vuoto di cardinalità finita e A un insieme di cardinalità 2 punti infinita. Stabilire quali delle seguenti affermazioni sono corrette.
 - \square $A \setminus D$ ha cardinalità finita.
 - \square $D \times A$ ha cardinalità finita.
 - $\blacksquare \ D \setminus A$ ha cardinalità finita.
 - $\Box \ D \bigtriangleup A$ ha cardinalità finita.
- (f) Sia D un insieme non vuoto e sia $L = \{k\}$ un linguaggio del prim'ordine con 2 punti k simbolo di funzione unaria. Quali delle seguenti sono formule che formalizzano correttamente, relativamente alla struttura $\langle D, k \rangle$, l'affermazione: "k è biettiva"?
 - $\Box \exists x \forall y (k(x) = y) \land \forall x \forall y (x = y \to k(x) = k(y))$
 - $\Box \ \forall x \forall y (k(x) = k(y) \leftrightarrow x = y)$
 - $\Box \ \forall x \forall y (k(x) = k(y) \to x = y) \land \exists x \forall y (k(x) = y)$
- (g) Siano D, A, B lettere proposizionali e S una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

D	A	В	S
$\overline{\mathbf{V}}$	\mathbf{V}	\mathbf{V}	\mathbf{F}
\mathbf{V}	\mathbf{V}	${f F}$	${f F}$
\mathbf{V}	${f F}$	\mathbf{V}	${f F}$
\mathbf{V}	${f F}$	${f F}$	${f V}$
${f F}$	\mathbf{V}	\mathbf{V}	${f F}$
${f F}$	\mathbf{V}	${f F}$	${f V}$
${f F}$	${f F}$	\mathbf{V}	${f V}$
${f F}$	\mathbf{F}	\mathbf{F}	${f F}$

- \blacksquare ¬S è soddisfacibile.
- \square S non è soddisfacibile.
- \square D \leftrightarrow A \models S
- \blacksquare S $\models \neg(A \land B)$

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{Q, k, a\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario Q, un simbolo di funzione binario k e un simbolo di costante a.

Consideriamo la struttura $Q = \langle \mathbb{Q}, <, +, 1 \rangle$. Stabilire se:

- $\mathcal{Q} \models \neg(y=w) \land \neg(y=k(w,a))[w/4,y/4.5]$
- $\mathcal{Q} \models Q(y, w) \lor Q(k(w, a), y)[w/4, y/4.5]$
- $Q \models (\neg (y = w) \land \neg (y = k(w, a))) \rightarrow (Q(y, w) \lor Q(k(w, a), y))[w/4, y/4.5]$
- $Q \models \forall w \forall y [(\neg (y=w) \land \neg (y=k(w,a))) \rightarrow (Q(y,w) \lor Q(k(w,a),y))][w/4,y/3.5]$

Consideriamo ora la struttura $\mathcal{N} = \langle \mathbb{N}, <, +, 1 \rangle$.

Verificare se

$$\mathcal{N} \models \forall w \forall y [(\neg (y = w) \land \neg (y = k(w, a))) \rightarrow (Q(y, w) \lor Q(k(w, a), y))][w/4, y/5]$$

L'enunciato $\forall w \forall y [(\neg(y=w) \land \neg(y=k(w,a))) \rightarrow (Q(y,w) \lor Q(k(w,a),y))]$ è una tautologia?

Giustificare le proprie risposte.

Soluzione: Si verifica che:

- $\mathcal{Q} \models \neg(y=w) \land \neg(y=k(w,a))[w/4,y/4.5]$ se e solo se $4.5 \neq 4$ e $4.5 \neq 4+1=5$ che chiaramente è il caso.
- $Q \models Q(y, w) \lor Q(k(w, a), y)[w/4, y/4.5]$ se e solo se 4.5 < 4 o 4 + 1 = 5 < 4.5 che chiaramente non è il caso.
- $Q \not\models (\neg(y=w) \land \neg(y=k(w,a))) \rightarrow (Q(y,w) \lor Q(k(w,a),y))[w/4,y/4.5]$ dato che, come verificato nei due punti precedenti, la premessa dell'implicazione è verificata con l'assegnamento dato, mentre la tesi non lo è con lo stesso assegnamento.
- $Q \not\models \forall w \forall y [(\neg (y = w) \land \neg (y = k(w, a))) \rightarrow (Q(y, w) \lor Q(k(w, a), y))][w/4, y/3.5]$ come testimoniato dall'assegnamento al punto precedente alle variabili w, y.

Sia ψ l'enunciato

$$\forall w \forall y [(\neg (y = w) \land \neg (y = k(w, a))) \rightarrow (Q(y, w) \lor Q(k(w, a), y))].$$

Sia in \mathcal{Q} che in \mathcal{N} , l'interpretazione di ψ è

Per ogni w e y, se y è diverso sia da w che da w+1 allora o y < w oppure w+1 < y. (Equivalentemente: per ogni w non c'è alcun y strettamente compreso tra w e w+1.)

Quindi si ha che:

• $Q \not\models \psi$. Infatti, l'assegnamento w = 4 e y = 4.5 mostra che y è strettamente compreso tra w e w + 1 (come già visto per la soluzione del terzo e quarto item dell'esercizio).

• Al contrario, $\mathcal{N} \models \psi$ perché non c'è nessun numero naturale strettamente compreso tra due numeri consecutivi arbitrari (ovvero tra due numeri del tipo w e w+1).

L'enunciato ψ non è una tautologia in quanto risulta falso nella struttura \mathcal{Q} .

Esercizio 3 9 punti

Sia D un insieme non vuoto e $Q\subseteq D\times D$ una relazione binaria. Formalizzare relativamente alla struttura $\langle D,Q\rangle$ mediante il linguaggio $L=\{Q\}$ con un simbolo di relazione binaria le seguenti affermazioni:

- 1. Q è transitiva
- 2. Q è un pre-ordine
- 3. Q^{-1} è irriflessiva
- 4. $ran(Q) \neq D$.

Soluzione: 1. Q è transitiva: $\forall x \forall y \forall z (Q(x,y) \land Q(y,z) \rightarrow Q(x,z))$

2. Q è un pre-ordine:

$$\forall x Q(x, x) \land \forall x \forall y \forall z (Q(x, y) \land Q(y, z) \rightarrow Q(x, z))$$

- 3. Q^{-1} è irriflessiva: $\forall x \neg Q(x, x)$
- 4. $ran(Q) \neq D$: $\exists y \forall x \neg Q(x, y)$