Laboratoria Podstawy Elektroniki							
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.				
Informatyka	_	I	I1				
Temat Laboratorium	Numer lab.						
Rezonans w obwodach RLC				3.1			
Skład grupy ćwiczeniowej oraz numery indeksów							
Stanisław Jasiewicz(116753), Krzysztof Michalak(132281), Wojciech Regulski(132312), Ewa Rudol(132314)							
Uwagi			Ocena				

1 Cel

TODO********

2 Pomiary

- Wartości parametrów:

$$C_x = 13,6nF$$

$$L_1=77mH$$

$$R_1 = 1000\Omega$$

$$R_L = TODO * * * * * * * * * * * *$$

- Schemat obwodu: TODO*********
- Tabela pomiary

Częstotliwość	Napięcie na źródle	Napięcie na kon-	Napięcie na cewce	Napięcie na rezy-
pobudzenia [kHz]	zasilania [V]	densatorze [V]	[mV]	storze [V]
1,223	3,03	3,21	0,19	0,33
1,121	3,02	3,62	0,67	0,65
2,983	3,05	4,47	1,62	1,12
5,021	3,03	7,01	7,34	3,01
6,973	2,99	2,52	5,11	1,51
9,121	3,03	1,16	4,05	0,91
12,231	3,01	0,553	3,52	0,58
15,221	3,03	0,331	3,30	0,44

- Tabela - zagęszczeni pomiarów dla szczytowych wartości napięcia

Częstotliwość	Napięcie na źródle	Napięcie na kon-	Napięcie na cewce	Napięcie na rezy-
pobudzenia [kHz]	zasilania [V]	densatorze [V]	[mV]	storze [V]
4,512	3,02	7,24	6,12	2,80
4,976	3,02	7,07	7,27	3,01
5,239	3,02	6,43	7,32	2,88
6,221	3,02	3,73	6,00	1,99

Zależność napięcia na źrodle napięcia i elemntach RLC od częstotliwości

- Częstotliwość rezonansowa (U_R największe - z pomiarów): 4976 Hz Z obliczeń:

$$f = \frac{1}{2\pi\sqrt{LC}}$$
$$f = 4920Hz$$

- TODO********** ZRZUT dla rezonansu

- TODO********* ZRZUT powyżej rezonansu ZRZUT poniżej rezonansu

Co można stwierdzić o przesunięciach fazowych Jakie są charaktery obwodu (indukcyjny/pojemnościowy) w obu przypadkach? Jaki jest charakter obwodu w stanie rezonansu?

- TODO********

$$Q_L = \frac{\omega_0 L}{R_L}$$

- Spice???
- Wnioski: TODO********