6. Найти длину промежутков.

2)
$$\left[-\frac{1}{3}; \frac{7}{2}\right];$$
 3) $(-\pi; 2\pi).$

3)
$$(-\pi; 2\pi)$$
.

- 7. Изобразить на координатной прямой (числовой оси) промежутки.
- 1) (-5; 1); 2) [-3; 2); 3) [3; 7]; 4) $(-\infty; 4];$ 5) $(10; +\infty);$ 6) $[-25; +\infty).$

- 8. Изобразить на числовой оси и записать в виде промежутка следующие множества, задаваемые условиями.
 - 1) x < 1;
- 2) $x \ge 0$;
- 3) $x \le 8$; 4) -2 < x < 0;
- 5) $-1.5 \le x < 2$; 6) $0 < x \le 6$.
- 9. Найти объединение и пересечение промежутков.
- 1) [-2; 7) и (0; 10];

- 2) ($-\infty$; 3] и [-2; 1);
- 3) (3; $+\infty$) и [2; $+\infty$);
- 4) [-3: -1] и (-2: 4].
- 10. Изобразить на числовой оси и записать в виде промежутков (или их объединений) следующие множества

1)
$$(-3; -1] \cap (-2; +\infty);$$
 2) $\begin{cases} x \in (-3; -1], \\ x \in (-2; +\infty); \end{cases}$ 3) $\begin{cases} -3 < x \le -1, \\ x > -2; \end{cases}$

2)
$$\begin{cases} x \in (-3;-1], \\ x \in (-2;+\infty); \end{cases}$$

$$3) \begin{cases} -3 < x \le -1 \\ x > -2; \end{cases}$$

4)
$$([-2; 0) \cup [1; +\infty)) \cap [-1; 1]$$

4)
$$([-2; 0) \cup [1; +\infty)) \cap [-1; 1];$$
 5)
$$\begin{cases} x \in [-2; 0] \cup [1; +\infty), \\ x \in [-1; 1]; \end{cases}$$

6)
$$[-2; 0) \cup ([1; +\infty) \cap [-1; 1])$$

6)
$$[-2; 0) \cup ([1; +\infty) \cap [-1; 1]);$$
 7) $((-\infty; -3) \cup (3; +\infty)) \cap [-4; 4];$

8)
$$\begin{cases} x \in [-\infty; -3] \cup [3; +\infty), \\ x \in [-4; 4]; \end{cases}$$

9)
$$\begin{cases} x \in (-\infty; -3), \\ x \in (3; +\infty), \\ x \in [-4; 4]; \end{cases}$$

$$10) ((-\infty; +\infty) \cap (-\infty; 0)) \cap [-1, 2]$$

10)
$$((-\infty; +\infty) \cap (-\infty; 0)) \cap [-1, 2];$$
 11) $(-\infty; +\infty) \cap ((-\infty; 0) \cap [-1, 2]);$

$$\begin{cases} x \in \mathbb{R}, \\ x \in (-\infty; 0), \end{cases}$$

13)
$$((-\infty; 100) \cap (-\infty; 0)) \cap [1, 5];$$

$$x \in [-1, 2];$$

14)
$$(-\infty; 100) \cap ((-\infty; 0) \cap [1, 5]);$$
 15)
$$\begin{cases} x \in (-\infty; 100], \\ x \in (-\infty; 0), \\ x \in [1, 5]. \end{cases}$$

11. Найти объединение промежутков, изобразить на числовой оси.

3) (
$$-\infty$$
; 1) и ($-\infty$; 4];

4) (
$$-\infty$$
; 0) и (-2 ; $+\infty$); 5) $\begin{bmatrix} x \in (-\infty;1], \\ x \in (-1;+\infty); \end{bmatrix}$ 6) $\begin{bmatrix} x \le 1, \\ x > -1; \end{bmatrix}$

5)
$$\begin{cases} x \in (-\infty;1], \\ x \in (-1;+\infty); \end{cases}$$

$$6) \begin{bmatrix} x \le 1, \\ x > -1 \end{bmatrix}$$

7)
$$\begin{bmatrix} x \in (-\infty; -2) \cup (2; +\infty), \\ x \in [1; 3]; \end{bmatrix}$$
 8) $\begin{bmatrix} x < -2, \\ x > 2, \\ 1 \le x \le 3; \end{bmatrix}$ 9) $\begin{cases} x < -2, \\ x > 2, \\ x \ge 1; \end{cases}$

$$8) \begin{bmatrix} x < -2, \\ x > 2, \\ 1 \le x \le 3; \end{cases}$$

$$\begin{cases} x < -2, \\ x > 2, \\ x \le 3, \\ x \ge 1; \end{cases}$$

10)
$$\begin{bmatrix} x \in [-3;1), \\ x \in [1;2]; \end{bmatrix}$$

$$11) \begin{bmatrix} -3 \le x < 1 \\ 1 \le x \le 2; \end{bmatrix}$$

11)
$$\begin{bmatrix} -3 \le x < 1, \\ 1 \le x \le 2; \end{bmatrix}$$
 12)
$$\begin{cases} x \ge -3, \\ x < 1, \\ x \ge 1, \\ x \le 2; \end{cases}$$

13)
$$\begin{cases} x \in [0; +\infty), \\ x \in (-\infty; 3], \\ x \in (1; +\infty); \end{cases}$$
 14)
$$\begin{cases} x \ge 0, \\ x \le 3, \\ x > 1. \end{cases}$$

$$\begin{cases}
 x \ge 0, \\
 x \le 3, \\
 x > 1.
\end{cases}$$

12. Найти значение, раскрыв модуль.

1)
$$|2|$$
, $\left|-\frac{1}{3}\right|$, $|0|$, $|-3,5|$, $|3-\sqrt{2}|$, $|\sqrt{3}-2|$, $|6-\sqrt{35}|$, $|9-\sqrt{\frac{163}{2}}|$;

2)
$$M = x + |x - 3|$$

3)
$$M = |x + 3|$$
;

2)
$$M = x + |x - 3|$$
; 3) $M = |x + 3|$; 4) $M = |x - \sqrt{2}|$;
5) $M = x - 3 + |x|$; 6) $N = |x + 7|$; 7) $N = |x| + x$;
8) $N = -|\sqrt{3} - x|$; 9) $N = x + |-x|$.

5)
$$M = x - 3 + |x|$$
;

6)
$$N = |x + 7|$$
;

7)
$$N = |x| + x$$

8)
$$N = -|\sqrt{3} - x|$$
;

9)
$$N = x + |-x|$$

13. Упростить выражения.

1)
$$M = \frac{|x|}{x}$$
;

2)
$$M = \frac{|x+2|}{x+2}$$
; 3) $M = \frac{|x|+1}{x+1}$.

3)
$$M = \frac{|x|+1}{x+1}$$