

Hi3516D V300 DDR3L Test Report

System History

Contents	Remarks
The test is performed based on the DDR3L 1866MHz AC135 standard	
t data in this report is the test result of the HiSilicon ote that the tests conducted by HiSilicon cannot rep	•
t	The test is performed based on the DDR3L 1866MHz AC135 standard t data in this report is the test result of the HiSilicon

Information

Chipset	Hi3516DV300
Board Name	HI3516DV300MEBLITE VER.A
DRAM Part Number	MT41K256M16TW-093:P
Oscilloscope	DSA72004C TEKTRONIX
Temperature	25°C
DRAM Operating Frequency	900MHz(DDR3L)
VPP/Vdd/Vref_CA/Vref_DQ/Vcore	1.35V/0.675V/0.675V/0.9V
DRAM_ODT	120ohm
SOC_ODT	120ohm
DRAM_RON	40ohm
SOC_RON	CK=34ohm 1T(CS/CKE/ODT)=34ohm 2T=34ohm DQ=40ohm DQS=40ohm

Signal Integrity Summary& Conclusion

Judgment&Summary

1.tDQSH, tDQSL fail

Impact: This indicator affects the window size in the write direction of the DQ. The margin of the measured window is sufficient. The risk of this indicator failure is low.

Measurement Item	Result	Remark
Sequence Check	PASS	
Power Check	PASS	
Signal Integrity Check	FAIL	

■ SPEC

3.3.1 Power-up Initialization Sequence (Cont'd)

■ Stable VDD to /Reset Up

Parameter	Time	Spec	Result	Remark
Stable VDD to /Reset Up	148.3ms	Min:200us	PASS	RESET_n needs to be maintained for minimum 200us with stable power

tCKSRX

Parameter	Time	Spec	Result	Remark
/Reset Up To CKE Up	516us	Min:500us	PASS	After /RESET is de-asserted. Wait for another 500us until CKE becomes active.(JEDEC spec.)
tCKSRX	1.6ms	Min:Max(5nCK,10ns)	PASS	Clocks (CK, CK#) need to be started and stabilized for at least 10 ns or 5 tCK (which is larger) before CKE goes active.(JEDEC spec.)

■ CKE Hold LOW Time To Reset Rising Edge

Parameter	Time	Spec	Result	Remark
VDD Rising Time	414us	Max:200ms	PASS	The power voltage ramp time between 300 mv to VDDmin must be no greater than 200 ms.(JEDEC spec.)
CKE Falling Edge to Reset Rising Edge	>10ns	Min:10ns	PASS	CKE is pulled "Low" anytime before RESET# being de-asserted (min. time 10 ns).

Reset Initialization Sequence Check Result

CKE Hold LOW TimeTo Reset Rising Edge_DDR

Parameter	Time	Spec	Result	Remark
CKE Falling Edge To Reset Rising Edge	> 10ns	Min:10ns	PASS	CKE is pulled "Low" anytime before RESET# being de-asserted (min. time 10 ns).

Reset Initialization Sequence Check Result

■ Reset Low Level Voltage

■ Reset High Level Voltage

Parameter	Voltage	Spec	Result	Remark
Reset Low Level Voltage	80mV	Max:300mV	PASS	Reset Low Level Voltage must be within 300mV.
Reset High Level Voltage	1.608V	Min:1.2V	PASS	Reset High Level Voltage must be above 1.2V.

Average Periodic Refresh Interval Check Result

SPEC

12.2 Refresh parameters by device density

Table 61 — Refresh parameters by device density

Parameter	Symbol		512Mb	1Gb	2Gb	4Gb	8Gb	Units	Notes
REF command to ACT or REF command time		tRFC	90	110	160	300	350	ns	
Average periodic refresh	tREFI	0 °C ≤ T _{CASE} ≤ 85 °C	7.8	7.8	7.8	7.8	7.8	μs	
interval		85 °C < T _{CASE} ≤ 95 °C	3.9	3.9	3.9	3.9	3.9	μs	1

NOTE 1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material.

Average Periodic Refresh Interval

Parameter	Time	Spec	Result	Remark
tREFI	3.838us	Max:7.8us	PASS	

Power Check Result

■ AC Peak-Peak Noise Check Result

Parameter	Spec (PK-PK)	Value (PK-PK)	Unit	Result	Position	Test Point
VDD_IO	NA	71.2	mV	NA	DRAM	C282
VREFCA	30	17.8	mV	PASS	DRAM	C153
VREFDQ	30	20.8	mV	PASS	DRAM	C161

VDD_IO Supply Voltage

Parameter	Spec	Value	Unit	Result	Position	Test Point
VDD_IO	Min:1.283	1.341	V	PASS	SOC	C3
	Max:1.45	1.342	V	PASS	DDR	C157

Signal Integrity Test Result (Clock)

■ Clock Signal Integrity Test Result

Parameter	Spec (Min)	Spec (Max)	Measurement data (Min)	Measurement data (Max)	Unit	Remark
Vix	-150	150	-110.96	25.51	mV	PASS
tCK(avg)	1.07	1.25	1.1108	1.1114	ps	PASS
tCH(avg)	470	530	498.44	501.98	mtCK(avg)	PASS
tCL(avg)	470	530	497.95	501.54	mtCK(avg)	PASS
tJIT(per)	-70	70	-17.288	18.08	ps	PASS
tJIT(cc)	-140	140	-30.073	28.823	ps	PASS
InputSlew-Diff- Rise	-	-	-	6.568	V/ns	-
InputSlew-Diff- Fall	-	-	-	-6.6804	V/ns	-

Signal Integrity Test Result (Clock)

©CLK Different modle signal

■CLK Single signal

About 1T&2T signal test

1 T signal include: CS, ODT, CKE; other address and cmd signal are 2T signal. For 1T signal, you can test the signal using DDR3 test analysis module, but for 2T signal you can't test using the test module.

■ SPEC

Symbol	Reference	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600	DDR3-1866	DDR3-2133	Units
tIS(base) AC175	V _{IH/L(ac)}	200	125	65	45	-	•	ps
tIS(base) AC150	V _{IH/L(ac)}	350	275	190	170	-	-	ps
tIS(base) AC135	V _{IH/L(ac)}	-	-	-	-	65	60	ps
tIS(base) AC125	V _{IH/L(ac)}	-	-	-	-	150	135	ps
tIH(base) DC100	V _{IH/L(dc)}	275	200	140	120	100	95	ps

	ΔtIS, ΔtIH derating in [ps] AC/DC based Alternate AC125 Threshold -> VIH(ac)=VREF(dc)+135mV, VIL(ac)=VREF(dc)-135mV																
		CK,CK# Differential Slew Rate															
		4.0 V/ns		3.0 V/ns		2.0	2.0 V/ns		1.8 V/ns		1.6 V/ns		V/ns	1.2 V/ns		1.0 V/ns	
		ΔtIS	ΔtIH	ΔtIS	ΔtIH	ΔtIS	ΔtIH	ΔtIS	ΔtIH	ΔtIS	ΔtIH	ΔtIS	ΔtIH	ΔtIS	ΔtIH	ΔtIS	ΔtIH
	2.0	68	50	68	50	68	50	76	58	84	66	92	74	100	84	108	100
	1.5	45	34	45	34	45	34	53	42	61	50	69	58	77	68	85	84
	1.0	0	0	0	0	0	0	8	8	16	16	24	24	32	34	40	50
ADD	0.9	2	-4	2	-4	2	-4	10	4	18	12	26	20	34	30	42	46
Slew	0.8	3	-10	3	-10	3	-10	11	-2	19	6	27	14	35	24	43	40
rate V/ns	0.7	6	-16	6	-16	6	-16	14	-8	22	0	30	8	38	18	46	34
	0.6	9	-26	9	-26	9	-26	17	-18	25	-10	33	-2	41	8	49	24
	0.5	5	-40	5	-40	5	-40	13	-32	21	-24	29	-16	37	-6	45	10
	0.4	-3	-60	-3	-60	-3	-60	6	-52	14	-44	22	-36	30	-26	38	-10

■Command Signal Integrity Test Result

CMD /ADD	Input SetupTime (tIS)@AC150 tIS(min)(ps)	Input Hold Time (tIH)@DC100 tIH(min) (ps)	Input Slew Rate (RisingTime) (V/ns)	Input Slew Rate (FallingTime) (V/ns)
SPEC	133	150		
CS_N	616. 35	295. 46	4. 3141	-4. 3011
ODT	588. 71	390. 77	3. 9206	-3. 4875

■ 1T_CMD_ADDR CS#

■ 1T_CMD_ADDR ODT

Address Signal Integrity Test Result

CMD /ADD	Input SetupTime (tIS)@AC150 tIS(min)(ps)	Input Hold Time (tIH)@DC100 tIH(min)(ps)	Input Slew Rate (RisingTime) (V/ns)	Input Slew Rate (FallingTime) (V/ns)
SPEC	133	150		
A7	893.48	1033.5	3.2578	-3.6947
A13	958.5	1020.8	3.3281	-3.5203

■ 2T_CMD_ADDR A7

■ 2T_CMD_ADDR A13

■ SPEC

Symbol	Reference	DDR3- 800	DDR3- 1066	DDR3- 1333	DDR3- 1600	DDR3- 1866	DDR3- 2133	Units	Notes
tDS(base) AC175	V _{IH/L(ac)} SR=1V/ns	75	25	-	-	-	-	ps	2
tDS(base) AC150	V _{IH/L(ac)} SR=1V/ns	125	75	30	10	-	-	ps	2
tDS(base) AC135	V _{IH/L(ac)} SR=1V/ns	165	115	60	40			ps	2, 3
tDS(base) AC135	V _{IH/L(ac)} SR=2V/ns	-	-	-	-	<mark>6</mark> 8	53	ps	1
tDH(base) DC100	V _{IH/L(de)} SR=1V/ns	150	100	65	45	-	-	ps	2
tDH(base)DC100	V _{IH/L(dc)} SR=2V/ns					70	55	ps	1

	∆tDS, ∆tDH derating in [ps] AC/DC based Alternate AC135 Threshold -> VIH(ac)=VREF(dc)+135mV, VIL(ac)=VREF(dc)-135mV Alternate DC 100 Threshold -> VIH(dc)=VREF(dc)+100mV, VIL(dc)=VREF(dc)-100mV																								
			DQS,DQS# Differential Slew Rate																						
		8.0	V/ns	7.0 \	V/ns	6.0	V/ns	5.0 \	V/ns	4.0	4.0 V/ns 3.0 V/ns 2.0			2.0	V/ns	1.8 \	V/ns	1.6 \	V/ns	ns 1.4 V/ns			1.2 V/ns		V/ns
		∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	∆tDS	∆tDH	ΔtDS	∆tDH
	4.0	34	25	34	25	34	25	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-
	3.5	29	21	29	21	29	21	29	21	-	-	-	-	-	-	-	•	-	-	,	,	-	-	-	-
	3.0	23	17	23	17	23	17	23	17	23	17	-	-	-	-	-	•	-	-	ı	•	-	-	-	-
	2.5	-	-	14	10	14	10	14	10	14	10	14	10	-	-	-	-	-	-	1	1	-	-	-	-
	2.0	-	-	-	-	0	0	0	0	0	0	0	0	0	0	-	•	-	-	ı	•	-	-	-	-
DQS	1.5	-	-	-	-	-	-	-23	-17	-23	-17	-23	-17	-23	-17	-15	-9	-	-	1	1	-	-	-	-
Slew rate	1.0	-	-	-	-	-	-	-	-	-68	-50	-68	-50	-68	-50	-60	-42	-52	-34	ı	1	-	-	-	-
V/ns	0.9	-	-	-	-	-	-	-	-	-	-	-66	-54	-66	-54	-58	-46	-50	-38	-42	-30	-	-	-	-
	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-64	-60	-56	-52	-48	-44	-40	-36	-32	-26	-	-
	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-53	-59	-45	-51	-37	-43	-29	-33	-21	-17
	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-43	-61	-35	-53	-27	-43	-19	-27
	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	-39	-66	-31	-56	-23	-40
	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	•	1	-38	-76	-30	-60

■ Data Signal Integrity Test Result

Parameter	Spec	Unit	DQ10	DQ12	Remarks
Input Slew Rate(Setup-time)	-	V/ns	2.6952	3.0897	-
Input Slew Rate(Hold-time)	-	V/ns	-3.079	-3.5422	-
Input Setup-Time(tDS)@AC135 [tDS(base)=68ps]	min:91	ps	101.07	98.945	PASS
Input Hold-Time(tDH)@DC100 [tDH(base)=70ps]	min:87	ps	174.77	208.58	PASS

DDR0-DQ10

■ DDR0-DQ12

■ tDQSH, tDQSL fail

▶ Pass/Fail Information

Measurement	tDQSH			
Source1	DQS(Ch2)			
	Value	High Limit	Low Limit	Pass Fail
Min	496.82mtCK(avg)		450.00mtCK(avg)	Pass
Max	579.24mtCK(avg)	550.00mtCK(avg)		Fail

▶ Pass/Fail Information

Measurement	tDQSL			
Source1	DQS(Ch2)			
	Value	High Limit	Low Limit	Pass Fail
Min	478.36mtCK(avg)		450.00mtCK(avg)	Pass
Max	551.28mtCK(avg)	550.00mtCK(avg)		Fail

DDR Training Window

DDR Training write window

	te window of prebit-deskew:			
DQ	0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 RANGE XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	DQPH 0x7	DQ 63	WIN 53
1	^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^	0x1	60	55
1	^^^^^^^^^^^^	0x1	63	55 54
2	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0x1	60	52
1		0x1	62	56
4	^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^	0x1	57	54
6		0x1	65	56
7	^^^^^^^^^^^^^^^^^^^^^^^	0x1	53	57
Ö	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0x7	60	56
٥	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0x7	60	56
10	<u></u>	0x7	61	55
11	**************************************	0x7	64	56
12	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	0x7	64	56
13	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x7	64	53
14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x7	59	54
15	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x7	62	56
16	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x8	57	54
17	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 x 8	59	51
18	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0 x 8	54	53
19	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x8	60	56
20	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x8	55	53
21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x8	61	56
22	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x8	57	53
23	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x8	60	52
24	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x7	67	53
25	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x7	68	50
26	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x7	69	50
27	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x7	67	53
28	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x7	72	56
29	**************************************	0x7	67	54
30	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x7	69	57
31	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x7	71	54

Sum WIN: 1734. Avg WIN: 54 Min WIN: 50. DQ Index: 25 26 Max WIN: 57. DQ Index: 7 30

DDR Training Window

■ DDR Training-read window

Rea	rad window of prebit-deskew: 0				
DQ		RANGE	DQS	DQ	WIN
0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x00280060	0x30	68	57
1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x0028005a	0x30	65	51
2	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x0028005e	0 x 30	67	55
3	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x00240058	0 x 30	62	53
4	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x0025005b	0x30	64	55
5	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x001e0055	0 x 30	58	56
6	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x002b005f	0 x 30	69	53
7	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x001e0053	0 x 30	57	54
8	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x00250057	0 x 30	62	51
9	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x0028005c	0x30	66	53
10	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x00240057	0x30	62	52
11	***************************************	0x002c005e	0x30	69	51
12	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x0026005c	0x30	65	55
13		0x0028005c	0x30	66 60	53
14		0x00220055	0x30 0x30	67	52 52
10		0x00290050	0x30 0x2b	62	52 52
17		0.000240001	0x2b	66	50
18		0x00230054	0x2b	63	50
19	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x00200051	0x2b	66	52
20		0x00240056	0x2b	61	51
21	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x0029005e	0x2b	68	54
22	: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x00240058	0x2b	62	53
23	\$\xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	0x0027005b	0x2b	65	53
24	. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x00240057	0x2d	62	52
25	· xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	0x00250058	0x2d	63	52
26	· XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x00250058	0x2d	63	52
27	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x00250058	0x2d	63	52
28	;	0x0028005b	0 x 2d	66	52
29	· XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x00200058	0x2d	60	57
30	· XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x00290058	0x2d	65	48
31	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0x0028005b	0x2d	66	52

Sum WIN: 1685. Avg WIN: 52 Min WIN: 48. DQ Index: 30 Max WIN: 57. DQ Index: 0 29

Thank you