Algebra II Übung vom 27.4.06

Moduln

1.3

(a) R-Untermodul
n Eine Untergruppe Neines R-Modul
sMheißt R-Untermodul von M, fall
s $R\cdot N\subset N$

Beispiel

- $\bullet\,$ Jedes Ideal ist ein R-Untermodul von R
- R^a ist Untermodul von R^b mit $a \leq b \in \mathbb{N}$
- (b) Kern und Bild R-linearer Abbildungen sind R-Moduln. Sei $\varphi:M\to N$ R-lineare Abbildung
 - $\operatorname{Kern}(\varphi)$: $m \in \operatorname{Kern}(\varphi)$, $r \in R$: $\varphi(rm) = r\varphi(m) = 0 \Rightarrow R \cdot \operatorname{Kern}(\varphi) \subseteq \operatorname{Kern}\varphi$; Untergruppe klar
 - Bild φ : $n \in \text{Bild}\varphi$, d. h. $\exists m : n = \varphi(m), m \in M \Rightarrow r \in R : rn = r\varphi(m) = \varphi(rm) \in \text{Bild}(\varphi) \Rightarrow R \cdot \text{Bild}(\varphi) \subseteq \text{Bild}(\varphi)$
- (c) Zu jedem Untermodul $N\subseteq M$ gibt es einen Faktormodul M/N (M abelsch \Rightarrow jedes N Normalteiler)
 - M/N ist abelsche Gruppe
 - Wir definieren R-Aktion auf M/N durch r(m+N)=rm+N. Das ist wohldefiniert, denn $r((m+n)+N)=r(m+n)+N=rm+\underbrace{rn}_{\in N}+N=rm+N$
 - r((m + N) + (m' + N)) = r(m + m') + N) = r(m + m') + N = rm + N + rm' + N = r(m + N) + r(m' + N)
- (d) Homomorphiesatz: Für einen surjektiven homomorphismus $\varphi:M\to N$ gilt: $M/{\rm Kern}(\varphi)\cong N$ (Bild fehlt)
 - Wohldefiniertheit von $\tilde{\varphi}: M/\mathrm{Kern}(\varphi) \to N$: Sei $k \in \mathrm{Kern}\varphi: \varphi(m+k) = \varphi(m)$
 - surjektiv: $\forall n \in N : n = \varphi(m) = \tilde{\varphi}(m + \text{Kern}(\varphi))$
 - injektiv: $m, m' \in M$ mit $\varphi(m) = \varphi(m') = n \in N \leftrightarrow \varphi(m m') = 0 \rightarrow m + \text{Kern}(\varphi)(m) = \text{Kern}(\varphi)(m')$

- $\tilde{\varphi}$ ist R-linear. Klar, wegen φ R-linear.
- (e) Direktes Produkt: Sei $\{M_i\}_{i\in I}$ eine beliebige Meng von Moduln. Dann ist ihr direktes Produkt $\Pi_i M_i = X_i M_i$ gegeben durch die Menge aller Tupel $(m_i)_{i\in I}$ mit $m_i\in M_i$ und die R-Aktion $r(m_i)_{i\in I}=(rm_i)_{i\in I}$. Direkte Summe: Das gleiche wie beim dirketen Produkt, jedoch dürfen in den Tupeln nur endlich viele $m_i\neq 0$ sein.

Beispiel
$$R^n = \underbrace{R \times \ldots \times R}_{n-\text{mal}}$$

1.4

(f) - Freie Moduln verhalten sich wie Vektorräume Sei R ein Ring, M freier R-Modul $\{x_i\}_{i\in I}, x_i \neq x_j (i \neq j)$ Basis von M. Sei N weiterer R-Modul und $\{y_i\}_{i\in I}$ Familie von Elementen von N. Dann gibt es einen eindeutig bestimmten Homomorphismus $\varphi: M \to N$ mit $\varphi(x_i) = y_i \quad \forall i \in I$

Beweis: Sei $x \in M$. Dann ist durch $x = \sum_i a_i x_i \{a_i\}_{i \in I}$ eindeutig bestimmt.

Wir setzen: $\varphi(x) := \sum_i a_i y_i = \sum_i a_i \varphi(x_i)$

Korollar 1: Falls $\{y_i\}_{i\in I}, y_i\neq y_j (i\neq j)$ Basis von N ist, ist φ Ismomorphismus

Beweis: wir können den Beweis des Satzes rückwärts anwenden $\Rightarrow \exists \psi : N \to M \text{mit} \psi(y_i) = x_i \forall i \in I \Rightarrow \varphi \circ \psi = id_N, \psi \circ \varphi = id_M$

Korollar 2: Zwei freie Moduln mit gleicher Basis sind isomorph.

Proposition: Sei M freier Modul. Dann ist M^* wieder frei und hat dieselbe Dimension wie M

1.5 Proposition:

(b) Sei $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ exakt. Dann: $0 \to \operatorname{Hom}(M'', N) \xrightarrow{\beta^*} \operatorname{Hom}(M, N) \xrightarrow{\alpha^*} \operatorname{Hom}(M', N)$ exakt.

Beweis:

- β^* inj: Für $\varphi \in \text{Hom}(M'', N)$ ist $\beta^*(\varphi) = \varphi \circ \beta$ Sei $\beta^*(\varphi) = 0 \Rightarrow \varphi \circ \beta = 0 \xrightarrow{\beta} \text{surj.} \varphi = 0$.
- Bild(β^*) \subseteq Kern(α^*): $(\alpha^* \circ \beta^*)(\varphi) = \alpha^*(\varphi \circ \beta) = \varphi \circ \beta \underbrace{\circ \alpha}_{=0} = 0$
- $\operatorname{Kern}(\alpha^*) \subseteq \operatorname{Bild}(\beta^*)$: Sei $\psi \in \operatorname{Kern}(\alpha^*)$. D. h. $\psi \in \operatorname{Hom}(M,N)$ mit $\psi \circ \alpha = 0$ Weil ψ auf $\operatorname{Bild}(\alpha)$ verschwindet, kommutiert $\operatorname{DIAGRAMM} \Rightarrow \beta^*(\sigma) = \psi \Longrightarrow \operatorname{Beh}$.
- (c) im Allgemeinen sind β_* und α^* nicht surjektiv z.B.:
 - $\begin{array}{l} \alpha \colon \ 0 \to \mathbb{Z} \overset{\cdot 2}{\overset{\cdot 2}{\alpha}} \mathbb{Z} \overset{\beta}{\to} \mathbb{Z}/2\mathbb{Z} \to 0 \ \text{mit} \ N := \mathbb{Z}/2\mathbb{Z} \\ \text{Es gilt: } \operatorname{Hom}(N,\mathbb{Z}) = \{0\} \\ \operatorname{Hom}(N,\mathbb{Z}/2\mathbb{Z}) = \{0,id\} \Longrightarrow N \ \text{nicht projektiv!} \end{array}$
 - $\beta \colon \ 0 \to \mathbb{Z} \overset{\cdot 4}{i} \overset{\rightarrow}{\alpha} \mathbb{Z} \overset{\beta}{\to} \mathbb{Z}/4\mathbb{Z} \to 0 \text{ mit } N := 2 \cdot \mathbb{Z}/4\mathbb{Z} \\ \text{Hom}(\mathbb{Z}, N) = \{0, \Psi\}, \text{ wobei } \Psi(1) = 2. \\ \text{Dann: } \alpha^*(\Psi) = \Psi \circ \alpha = 0$

Satz: (a) Ein R-Modul N ist genau dann injektiv, wenn DIAGRAMM kommutiert (Von M' nach N kommutiert mit Einbettung α von M' in M und einer lin. Abb)

(b) Ein R-Modul N ist genau dann injektiv, falls DIAGRAMM kommutiert (phi nach (Ideal I einbettung in R) kommutiert mit abb von I nach N...)