Tema 1. Introducció

Joan Manuel Parcerisa

- Professor de teoria
 - Joan Manuel Parcerisa
 - o jmanel@ac.upc.edu
 - o Despatx C6-116

- Professor de teoria
 - Joan Manuel Parcerisa
 - jmanel@ac.upc.edu
 - Despatx C6-116
- Web de l'assignatura
 - http://docència.ac.upc.edu/FIB/grau/EC/
 - Conté
 - Apunts de l'assignatura
 - Col·lecció de Problemes
 - Enunciats, plantilles i simulador MARS per a fer les pràctiques a casa
 - Exàmens anteriors
 - Calendari de sessions de laboratori
 - etc.
 - Descàrrega de documents
 - Username: privatEC
 - Password: Secure2010

- Professor de teoria
 - Joan Manuel Parcerisa
 - jmanel@ac.upc.edu
 - Despatx C6-116
- Web de l'assignatura
 - http://docència.ac.upc.edu/FIB/grau/EC/
 - Conté
 - Apunts de l'assignatura
 - Col·lecció de Problemes
 - Enunciats, plantilles i simulador MARS per a fer les pràctiques a casa
 - Exàmens anteriors
 - Calendari de sessions de laboratori
 - etc.
 - Descàrrega de documents
 - Username: privatEC
 - Password: Secure2010
- Racó
 - https://raco.fib.upc.edu/

EC dins el pla d'estudis

S1	FM Fonaments Matemàtics		F Física		PRO1 Programació 1		IC Introducció als Computadors		
	7,5 ECTS	7,5 ECTS 7,5 E		CTS		7,5 ECTS		7,5 ECTS	
S2	M1 Matemàtiques	1 Mate	M2 Matemàtiques 2		PRO2 Programació 2		EC Estructura de Computadors		
	7,5 ECTS		7,5 ECTS		7,5 ECTS		7,5 ECTS		
S3	PE BD Probabilitat i Bases de Dades 6 ECTS 6 ECTS			SO Sistemes Operatius		EDA Estructura de Dades i Algorismes		CI Interfícies de Computadors	
			s	6 ECTS		6 ECTS		6 ECTS	
S4	EEE IES Empresa i Introducció a Entorn l'Enginyeria de Econòmic Software		cióa iadel (XC Xarxes de Computadors		PROP Projectes de Programació		AC Arquitectura de Computadors	
	6 ECTS	6 ECT	s	6 ECTS		6 ECTS		6 ECTS	

Teoria

- Tema 1 (1a part). Presentació
- Tema 2. Instruccions i tipus de dades bàsics
- Tema 3. Traducció de programes
- Tema 4. Matrius
- Tema 1 (2a part). Rendiment i Consum
- Tema 5. Aritmètica d'enters i coma flotant
- Tema 6. memòria cache
- Tema 7. Memòria virtual
- Tema 8. Excepcions i interrupcions

Teoria

- Tema 1 (1a part). Presentació
- Tema 2. Instruccions i tipus de dades bàsics
- Tema 3. Traducció de programes
- Tema 4. Matrius
- Tema 1 (2a part). Rendiment i Consum
- Tema 5. Aritmètica d'enters i coma flotant
- Tema 6. memòria cache
- Tema 7. Memòria virtual
- Tema 8. Excepcions i interrupcions

Bibliografia

- Bàsica: Apunts a la web (no cobreixen tot el temari)
- o Complementària: veure correspondència de temes a la web
 - D. Patterson and J. L. Hennessy. "Estructura y Diseño de Computadores: La Interfaz Hardware/ Software", 4a ed. Reverté, 2011.
 - ídem. "Computer Organization and Design: The Hardware/ Software Interface, 5th. ed. Morgan Kaufmann, 2013.

- Laboratori
 - 1 Sessió introductòria + 5 sessions avaluables
 - Calendari a la web

Laboratori

- 1 Sessió introductòria + 5 sessions avaluables
 - Calendari a la web
- Avaluació continuada: estudi previ + treball a l'aula
 - Estudi previ: INDIVIDUAL, a presentar a l'inici de cada sessió.
 Imprimiu-vos el quadern que trobareu a la web
 - Treball a l'aula: per PARELLES INDIVIDUAL

Laboratori

- 1 Sessió introductòria + 5 sessions avaluables
 - Calendari a la web
- Avaluació continuada: estudi previ + treball a l'aula
 - Estudi previ: INDIVIDUAL, a presentar a l'inici de cada sessió.
 Imprimiu-vos el quadern que trobareu a la web
 - Treball a l'aula: per PARELLES INDIVIDUAL
- Examen de Laboratori
 - INDIVIDUAL, als PCs de les aules, cap al final del curs

Laboratori

- 1 Sessió introductòria + 5 sessions avaluables
 - Calendari a la web
- Avaluació continuada: estudi previ + treball a l'aula
 - Estudi previ: INDIVIDUAL, a presentar a l'inici de cada sessió.
 Imprimiu-vos el quadern que trobareu a la web
 - Treball a l'aula: per PARELLES INDIVIDUAL
- Examen de Laboratori
 - INDIVIDUAL, als PCs de les aules, cap al final del curs
- Recomanació
 - Molt recomanable que us instal·leu el simulador MARS a casa
 - Feu servir la versió que hi ha a la web de l'assignatura
 - Seguiu les instruccions de la web (cal instal·lar el fitxer startup.s)
 - Està escrit en Java, funciona en totes les plataformes

Avaluació

- Examen Parcial (EP)
- Examen Final (EF), inclou tots els temes 1 al 8
- Examen de Laboratori (EL)
- Avaluació Continuada de laboratori (AC)

```
Nota = 0.2 \cdot max(EP,EF) + 0.6 \cdot EF + 0.2 \cdot (0.85 \cdot EL + 0.15 \cdot AC)
```

Competència Transversal

- Sostenibilitat i Compromís Social (SiCS)
- Nota A, B, C o D en l'expedient de l'alumne
- Breu treball escrit en grups de 3 alumnes
- S'informarà dels detalls més endavant

Introducció

- El computador com una jerarquia de nivells d'abstracció
 - Hardware: portes lògiques, multiplexors, biestables (IC)
 - És el que maneja un Arquitecte de Computadors
 - Llenguatge màquina/assembler: MIPS, x86, ARM, RISC-V (EC)
 - És el que maneja un programador de sistemes
 - Llenguatge d'alt nivell: C/C++, Java, Fortran, Python (Pro2)
 - És el que maneja un programador d'aplicacions
 - Interfície d'usuari: Menús, icones, Tallar-i-enganxar
 - És el que maneja un usuari final

- Cada nivell
 - Conté una implementació que és una "caixa negra"
 - Estableix una interfície amb la qual interactua el nivell superior

- L'abstracció ens ajuda a tractar la complexitat
 - Amaga els detalls de baix nivell

- Instruction Set Architecture (ISA)
 - Especificació que descriu els aspectes del processador visibles al programador de llenguatge màquina/assemblador

o Exemples: MIPS, ARM, RISC-V, x86, PowerPC

- Instruction Set Architecture (ISA)
 - Especificació que descriu els aspectes del processador visibles al programador de llenguatge màquina/assemblador

- Exemples: MIPS, ARM, RISC-V, x86, PowerPC
- Una mateixa ISA admet múltiples implementacions
 - o p.ex. succesives CPUs d'Intel i AMD implementen l'ISA x86

- Instruction Set Architecture (ISA)
 - Especificació que descriu els aspectes del processador visibles al programador de llenguatge màquina/assemblador

- Exemples: MIPS, ARM, RISC-V, x86, PowerPC
- Una mateixa ISA admet múltiples implementacions
 - p.ex. succesives CPUs d'Intel i AMD implementen l'ISA x86
- L'ISA és un compromís del fabricant amb el programador
 - El fabricant garanteix compatibilitat de la nova implementació amb els programes escrits per a aquest ISA

- Aplication Binary Interface (ABI)
 - Especificació que descriu la interfície de baix nivell entre un programa i el software de sistema

- Aplication Binary Interface (ABI)
 - Especificació que descriu la interfície de baix nivell entre un programa i el software de sistema
- Inclou les crides al sistema i a llibreries
 - E/S de dispositius
 - Gestió de memòria i disc
 - Planificació de tasques
 - Compartició de recursos
 - o Etc.

- Aplication Binary Interface (ABI)
 - Especificació que descriu la interfície de baix nivell entre un programa i el software de sistema
- Inclou les crides al sistema i a llibreries
 - E/S de dispositius
 - Gestió de memòria i disc
 - Planificació de tasques
 - Compartició de recursos
 - o Etc.
- Inclou també
 - Convenis de crida i retorn de funcions → EC Tema 3

- Aplication Binary Interface (ABI)
 - Especificació que descriu la interfície de baix nivell entre un programa i el software de sistema
- Inclou les crides al sistema i a llibreries
 - E/S de dispositius
 - Gestió de memòria i disc
 - Planificació de tasques
 - Compartició de recursos
 - o Etc.
- Inclou també
 - Convenis de crida i retorn de funcions → EC Tema 3
- Tot programa s'ha de recompilar per a cada ISA/ABI

Traducció entre nivells

- Llenguatge d'alt nivell
 - Nivell d'abstracció pròxim al domini del problema
 - Portable
 - Productiu (ràpid d'escriure)

High-level language program (in C)

```
swap(int v[], int k)
{int temp;
   temp = v[k];
   v[k] = v[k+1];
   v[k+1] = temp;
}
```

Traducció entre nivells

- Llenguatge d'alt nivell
 - Nivell d'abstracció pròxim al domini del problema
 - Portable
 - Productiu (ràpid d'escriure)
- Llenguatge assemblador
 - Llenguatge màquina en format textual "llegible"

High-level language program (in C)

Assembly language program (for MIPS)

```
swap(int v[], int k)
{int temp;
    temp = v[k]:
    v[k] = v[k+1];
    v\lceil k+1 \rceil = temp:
   Compiler
swap:
      muli $2, $5,4
            $2, $4,$2
       add
            $15, 0($2)
            $16, 4($2)
            $16, 0($2)
            $15. 4($2)
            $31
      .j r
```

Traducció entre nivells

- Llenguatge d'alt nivell
 - Nivell d'abstracció pròxim al domini del problema
 - Portable
 - Productiu (ràpid d'escriure)
- Llenguatge assemblador
 - Llenguatge màquina en format textual "llegible"
- Llenguatge màquina
 - Representació binària
 - Codifica dades i instruccions

High-level language program (in C)

Assembly language program (for MIPS)

```
swap(int v[], int k)
{int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
Compiler
```

swap:

muli \$2, \$5,4
add \$2, \$4,\$2
lw \$15, 0(\$2)
lw \$16, 4(\$2)
sw \$16, 0(\$2)
sw \$15, 4(\$2)
jr \$31

Binary machine language program (for MIPS)

Compilació vs Interpretació

Compilació

- Traducció del programa sencer tot d'una vegada (estàtic)
- o Per executar-lo no es necessita ni el compilador ni el codi font
- Programa generat molt ràpid
- Cal recompilar-lo per a cada ISA i/o ABI, procés complex
- Exemples: C/C++, Fortran, Pascal...

Compilació vs Interpretació

Compilació

- Traducció del programa sencer tot d'una vegada (estàtic)
- Per executar-lo no es necessita ni el compilador ni el codi font
- Programa generat molt ràpid
- Cal recompilar-lo per a cada ISA i/o ABI, procés complex
- Exemples: C/C++, Fortran, Pascal...

Interpretació

- Es tradueixen les accions una per una i es van executant
- o Cal tenir un intèrpret i el codi font per executar-lo
- o Execució més lenta
- Fàcil portabilitat del codi sense modificar a qualsevol entorn
- Exemples: Java, Python...

Compilació vs Interpretació

Compilació

- Traducció del programa sencer tot d'una vegada (estàtic)
- Per executar-lo no es necessita ni el compilador ni el codi font
- Programa generat molt ràpid
- Cal recompilar-lo per a cada ISA i/o ABI, procés complex
- Exemples: C/C++, Fortran, Pascal...

Interpretació

- Es tradueixen les accions una per una i es van executant
- Cal tenir un intèrpret i el codi font per executar-lo
- Execució més lenta
- Fàcil portabilitat del codi sense modificar a qualsevol entorn
- Exemples: Java, Python...
- Els llenguatges interpretats són més productius, portables i fàcils de distribuir i d'actualitzar... però són massa lents per a aplicacions on el rendiment és crític

Arquitectura Von Neumann (1945)

 Concepte: Instruccions i dades en el mateix espai d'adreces de memòria

Arquitectura Von Neumann (1945)

 Concepte: Instruccions i dades en el mateix espai d'adreces de memòria

Sovint, el model es presenta de forma simplificada:

