www.th-owl.de	Exercise - DSS	DSS-ex5-2
	Discrete Signals and Systems	18.01.2020
Prof. Dr. Uwe Meier	Discrete-Time Systems	Page 1

Problem 1 Compute the frequency response of a moving average filter. Its impulse response is given by

$$h[n] = \begin{cases} 1/M & \text{, } 0 \le n \le M - 1 \\ 0 & \text{, otherwise} \end{cases}$$

Problem 2 Consider a causal LTI discrete-time system with real impulse response h[n]. Compute the steady-state response for the sinusoidal input

$$x[n] = A \cdot \cos(\Omega_0 n + \phi)$$

where $\Omega_0 = \omega_0 \cdot T_s$ is the normalized radian frequency.

Problem 3 Consider a causal and stable LTI discrete-time system with real impulse response h[n]. Compute the response to the causal exponential sequence

$$x[n] = e^{jn\Omega} \cdot u[n]$$

where $\Omega = \omega \cdot T_s$ is the normalized radian frequency and u[n] is the unit step sequence. Identify and discuss the different parts of the solution.

Problem 4 Prove the bilateral z-transforms and the region of convergence as listed in appendix B:

- a) $x[n] = \alpha^n \cdot u[n]$
- b) $x[n] = \cos(\Omega_0 \cdot n) \cdot u[n]$
- c) $x[n] = r^n \cdot \cos(\Omega_0 \cdot n) \cdot u[n]$

Problem 5 Determine the bilateral z-transform in a closed form and the region of convergence of the following series:

a)
$$x[n] = \begin{cases} \alpha^n, & M \le n \le N-1 \\ 0, & \text{otherwise} \end{cases}$$

b)
$$x[n] = 7 \cdot \left(\frac{1}{3}\right)^n \cdot u[n] - 6 \cdot \left(\frac{1}{2}\right)^n \cdot u[n]$$

Check the initial- and final-value theorems if possible.

Problem 6 Determine the inverse causal z-transforms:

a)
$$X(z) = \frac{z \cdot (z+2)}{(z-0.2) \cdot (z+0.6)}$$

b)
$$X(z) = \frac{2 + 0.8 \cdot z^{-1} + 0.5 \cdot z^{-2} + 0.3 \cdot z^{-3}}{1 + 0.8 \cdot z^{-1} + 0.2 \cdot z^{-2}}$$

c)
$$X(z) = \frac{3 \cdot z^2 + 2 \cdot z - 10}{z^3 - 5 \cdot z^2 + 8z - 4}$$
 with $p_1 = 1$

Check the initial- and final-value theorems.

Answers

Problem 1

$$H(e^{j\Omega}) = \frac{1}{M} \cdot \frac{\sin(M\Omega/2)}{\sin(\Omega/2)} \cdot e^{-j(M-1)\Omega/2}$$

Problem 2

$$y[n] = A \cdot \left| H(e^{j\Omega_0}) \cdot \cos(\Omega_0 n + \phi + \varphi(\Omega_0)) \right|$$
; $\varphi(\Omega_0)$: phase response

Problem 3

$$y[n] = H(e^{j\Omega}) \cdot e^{jn\Omega} - \left(\sum_{k=n+1}^{\infty} h[k] \cdot e^{-jk\Omega}\right) \cdot e^{jn\Omega} ; n \ge 0$$

Problem 4

see appendix B

Problem 5

a)
$$X(z) = \frac{\alpha^{M} \cdot z^{-M} - \alpha^{N} \cdot z^{-N}}{1 - \alpha \cdot z^{-1}}$$

ROC is the entire z-plane, except: 1) z = 0 for $0 \le M < N$; 2) z = 0 and $z = \infty$ for M < 0 < N;

3)
$$z = \infty$$
 for $M < N < 0$.

b)
$$X(z) = \frac{z\left(z - \frac{3}{2}\right)}{\left(z - \frac{1}{3}\right) \cdot \left(z - \frac{1}{2}\right)}$$
; ROC: $|z| > \frac{1}{2}$

Problem 6

a)
$$x[n] = 2.75 \cdot (0.2)^n \cdot u[n] - 1.75 \cdot (-0.6)^n \cdot u[n]$$

b)
$$x[n] = -3.5 \cdot \delta[n] + 1.5 \cdot \delta[n-1] + (2.75 + j0.25) \cdot (-0.4 + j0.2)^n \cdot u[n] + (2.75 - j0.25) \cdot (-0.4 - j0.2)^n \cdot u[n]$$

c)
$$x[n] = 2.5 \cdot \delta[n] - 5 \cdot u[n] + 2.5 \cdot 2^n \cdot u[n] + 1.5 \cdot n \cdot 2^n \cdot u[n]$$

 $\{x[n]\} = \{0, 3, 17, 51, ...\}$ with $n = 0, 1, 2, 3, ...$

or
$$x[n] = -5 \cdot u[n-1] + 4 \cdot n \cdot 2^n \cdot u[n] - 5 \cdot (n-1) \cdot 2^{n-1} \cdot u[n-1]$$