ATMEGA328/Arduino Uno - I/O Pins - INPUT with Tactile Switch

https://github.com/teaksoon/lmaewapm

Apart from the **Power Supply Pins (GND, VCC, AVcc)**, the ATMEGA328P microcontroller have many other pins coming out from its physical chip packaging. Those other Pins are known as **I/O Pins** connected to **Arduino Uno Board with label AO to A5 and O to 13**

Once the I/O Pins are set to be INPUT Pin (from our Program), our Program can check the VOLTAGE that is currently on INPUT I/O Pin.

Programming "INPUT I/O Pin" is all about reading the VOLTAGE on the I/O pin from our PROGRAM

Button is released A/B is disconnected

Button
is held-down
A/B is connected

Tactile Switch is a mechanical switch.

It has a button on the outside and two separate metal plates inside the casing, Side A and Side B with both coming out of the casing.

When the Button is held-down, Side A and Side B will be connected, when Button is released, Side A and Side B will automatically be disconnected

INPUT I/O Pin with Tactile Switch

1x Computer with Arduino IDE Software
1x USB 2.0 Type A/B Data Cable
1x Arduino Uno Board

1x Solderless Breadboard
Jumper wires
1x Tactile Switch
1x 10 KOhm Resistor
--Tactile A Side, to Arduino 5V
Tactile B Side, to Arduino A0
Tactile B Side, to Resistor to GND

When **button is released**, A0 will only have path to Resistor and GND since the Tactile A/B sides are not connected. A0 will get 0V

When **button is held-down**, A0 will have a path directly to 5V Pin through the connected Tactile A/B Sides. A0 will get 5V

Program: io_input_tactile_raw_reading

```
void setup() {
  pinMode(A0, INPUT);
  Serial.begin(9600);
}

void loop() {
  int pinDigital = digitalRead(A0);
  int pinAnalog = analogRead(A0);

  Serial.print("\nA0: ");
  Serial.print(" Digital="); Serial.print(pinDigital);
  Serial.print(", Analog="); Serial.print(pinAnalog);
  Serial.print(", Voltage="); Serial.print((float) (pinAnalog*5)/1023,2);
}
```

While watching the Serial Monitor screen, hold-down the Tactile Switch Button and then release the Tactile Switch button https://github.com/teaksoon/lmaewapm

Button
is released
A/B is disconnected

Button
is held-down
A/B is connected

Mechanical switch do have a behaviour that will cause problem for us in some applications. During the process of holding down the Button or releasing the Button, there will be some electrical "jitters" that we did not want, called "DEBOUNCE". Jitters may happen in a very short period of time in a few miliseconds.

If we are making a simple ON/OFF switch, we dont care about this, but for some other case like: if each Button click is supposed to something different, "DEBOUNCE" will become a serious issue (a single Click will become a multiple Clicks and our Program will be doing wrong thing). We need to get rid of this "DEBOUNCE", we can either do it via extra hardware or we simply use some creative Prgramming to deal with this issue.

Program: io_input_tactile_debounce

```
#define T1_PIN
                 A0
unsigned long debounce_delay = 40;
unsigned long debounce_timer;
int T1_data;
int prev_T1_data;
int hitCounter = 0;
void setup() {
  pinMode(T1_PIN, INPUT);
  Serial.begin(9600);
  prev_T1_data = digitalRead(A0); // Initial value
void loop() {
int new_reading;
  // start - Tactile Switch Processing -
  new_reading = digitalRead(T1_PIN);
  if (new_reading != prev_T1_data) {
    debounce_timer = millis();
  if ((millis()-debounce_timer) > debounce_delay) {
    if (new_reading != T1_data) {
      T1_data = new_reading;
      if (T1_data == HIGH) {
        Serial.print("\nButton Pressed: "); Serial.print(++hitCounter);
  prev_T1_data = new_reading;
  // end - Tactile Switch Processing -
```

While watching the Serial Monitor screen, hold-down the Tactile Switch Button and then release the Tactile Switch button https://github.com/teaksoon/lmaewapm

Button
is released
A/B is disconnected

Button
is held-down
A/B is connected

Below is code for very simple Tactile Switch use, without dealing with "DEBOUNCE". Whether the "DEBOUNCE" will become an issue, depends on what our Tactile Switch is used for. There is nothing wrong with this code, this code simply dont care about "DEBOUNCE"

Program: io_input_tactile_no_debounce

```
#define T1 PIN
                    Α0
int T1 data;
int hitCounter = 0;
void setup() {
  pinMode(T1_PIN, INPUT);
  Serial.begin(9600);
void loop() {
int new_reading;
  // start - Tactile Switch Processing -
  new_reading = digitalRead(T1_PIN);
  if (new reading != T1 data) {
    T1_data = new_reading;
    if (T1_data == 1) {
      Serial.print("\nButton Pressed: "); Serial.print(++hitCounter);
// delay(40); // put this in for a "crude" debounce filter
     end - Tactile Switch Processing -
```

While watching the Serial Monitor screen, hold-down the Tactile Switch Button and then release the Tactile Switch button.

This code is very much simpler compared to the one dealing with "DEBOUNCE". From the Serial Monitor, we can see that there are "Button Pressed" message that is not physically pressed by us.

We can still have a very "crude" debounce filter by adding in a delay() function after the INPUT I/O Pin reading (40ms should be enough, you can try different delay time). Try that and watch the Serial Monitor Screen while pressing and releasing the Button, we now have a very "crude" debounce filter

"DEBOUNCE" only happen during the Pressing and Releasing of Button

When a Button has already been Held Down or when a Button has already been Released (for a few milli-seconds), the Voltage will not jitter anymore, it will stay stable and no more "DEBOUNCE"