Imagine you work for a bank and you want to predict whether a loan applicant will default on their loan or not based on some demographic and financial data. Here is a sample dataset containing 10 loan applicants and whether they defaulted on their loan or not:

yes = 3

no = 7

Applicant ID	Age	Income	Education Level	Defaulted
1	25 🗸	20,000 <i>J</i>	High School	No /
2	35 🗸	50,000 🗸	Bachelor's	No 🗸
3	45 🗸	80,000 🗸	Master's	No 🏑
4	28 🗸	22,000 🗸	High School	No 🗸
5	32	45,000	Bachelor's	Yes
6	46 🗸	70,000 🗸	Master's	No /
7	24	18,000	High School	Yes
8	38 /	60,000 🗸	Bachelor's	No /
9	32 🗸	48,000 🗸	Bachelor's	No 🗸
10	29	25,000	High School	Yes

Income = >= 20,000 , 20,000-40,000 , 40,000-60,000 , 60,000-80,000

Age = 10-19, 20-29, 30-39, 40-49

P (defaulted | age: 30-39 , income = 40,000-b0,000 , Education = bachelor's)

Likelihood

P (age: 30-39, income = 40,000-b0,000, Education = bachelor's | defaulted)

Yes $P(age = 30-39 \mid yes) \times P(income: 40,000-b0,000 \mid yes) \times P(education = bachelor's \mid yes)$

= 0.037

No P(age= 30-39 | no) x P (income: 40,000-b0,000 | no) x P(education = bachelor's | no)

= 0.105

Prior

Yes Defaulted =
$$\frac{3}{10}$$
 = 0.3

No Defaulted 7 1 0.7