Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau eir WAV Date

Fourier

Transformatio

Porforman

i citorinun

Konvergenzverhalt

Fehleranalyse

Leck-Effekt, Fensterfunktioner

Frequenzen filteri

Vorgehensweise Was kann schon schief gehen?

Demonstration des Programm

Fazit

Fourier Transformation anhand WAV-Audio Dateien

Len-Marvin Adler

Hochschule Bonn-Rhein-Sieg

6. August 2024

Rectangular Window

Inhaltsverzeichnis

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau ei WAV Dat

Fourier

Transformation

Performano

i eriorilaric

Konvergenzverhalt Fehleranalyse

Leck-Effekt, Fensterfunktioner

Frequenzen filtern

Vorgehensweise Was kann schon schi gehen?

Demonstration

Fazit

- 1 Begriffe der Digitalen Signalverarbeitung
- 2 Aufbau einer WAV Datei
- 3 Fourier Transformation
 - DFT, FFT
 - Performance
 - IDFT
 - Konvergenzverhalten, Fehleranalyse
 - Leck-Effekt, Fensterfunktionen
- 4 Frequenzen filtern
 - Vorgehensweise
 - Was kann schon schief gehen?
 - Demonstration des Programms
- 6 Fazit

Begriffe der Digitalen Signalverarbeitung

Begriffe der Digitalen Signalverarbeitung

- Signale sind immer diskret
- Nyquist-Shannon-Abtasttheorem¹: $f_{abtast} > 2 \cdot \hat{f}_{signal}$ sonst tritt Alias-Effekt auf

Nyquist-Frequenz $f_{Nvauist} := \frac{1}{2} f_{abtast}$ \Rightarrow also $\hat{f}_{signal} < f_{Nyauist}$

¹Steven W. Smith. The Scientist and Engineer's guide to Digital Signal Processing. Available at www.dspguide.com. California Technical Publishing, 1997. Kap. 3. ISBN: 0966017633

Aufbau einer WAV Datei

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau einer WAV Datei

Fourier

Transformat

DFI, FFI

renormano

Konvergenzverhal

Fehleranalyse

Fensterfunktione

Frequenzen filteri

Was kann schon schiel gehen?

Demonstration des Programms

F--:-

- basiert auf RIFF Dateiformat von Microsoft
- besteht aus den 3 Subchunks²
 - 'RIFF': enthält die Information, dass es sich um eine RIFF WAVE Datei handelt
 - 'fmt ': enthält Informationen über die Daten, wie z.B SampleRate, BitsPerSample
 - 'data': enthält Datenwerte

Abbildung: WAV-Header²

²Craig Stuart Sapp (craig@ccrma.stanford.edu). Wave PCM soundfile format. URL: http://soundfile.sapp.org/doc/WaweFormat/⟨ ৄ ♭ ⟨ ৄ ♭ ⟨ ৄ ♭ ⟩ ⟨ ৄ ⋄ ⟨ ৢ ৹ ⟨ o ⟩ ⟨

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau einer WAV Datei

Fourier Transformat

DFT, FFT

Performance

Konvergenzverha Fehleranalyse

Leck-Effekt, Fensterfunktionen

rrequenzen interi

Was kann schon schief gehen?

Demonstration des Programm

Fazi

Aufbau einer WAV Datei

52 49 46 46	CC BA 06 00	57 41 56 45 66 6D 74 2	0 RIFF̺WAVE <mark>fmt</mark>
10 00 00 00		44 AC 00 00 88 58 01 0	0D¬X
02001000	64 61 74 61	A8BA 06 00 00 00 9B 5	7data [∵] ºW
7F 19 D0 AF	29 CF F9 41	0A 44 D3 D1 86 AE 76 1	6Đ)ÏùA.DÓÑ.®v.
02 58 28 03	E8 A8 7F E3	CC 4E 6F 33 2B C0 FD B	9 X(.è".ãİNo3+Àý¹
74 2B A9 52	9A EC B2 A7	B3 F9 77 56 78 1F B0 B	$2[t+\mathbb{C}R.\dot{\iota}^2\S^3\dot{\iota}wVx.\dot{\circ}^2]$
		43 AC 4F 10 7B 58 72 0	9 .Ê.=çGR×C¬0.{Xr.
45 AA 9A DD	B9 4B 6F 38	B3 C4 4F B6 DA 25 B6 5	4 E ^a .ݹKo8³Ä0¶Ú%¶T

Abbildung: Ausschnitt einer WAV Datei mit markierten Subchunks, dargestellt in einem Hex-Editor

- Abtastrate ist oft 44.1 kHz ³, Menschen hören Töne im Bereich 20 Hz − 20 kHz ⁴
- Analoges Signal wird durch lineare Pulse Code Modulation (PCM) in ein digitales Signal umgewandelt (verlustfrei)
- ▶ PCM kodiert Daten oft als 16 bit signed integer, jeder Datenwert liegt im Bereich [-32767, 32767]

³44,100 Hz. Juli 2024. URL: https://en.wikipedia.org/wiki/44,100_Hz

⁴Hörbahn - so hören wir. URL: https://www.hno-aerzte-im-netz.de/unsere-sinne/hoeren/hoerbahn-hoerfrequenz-html

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau ei

_ .

Transforms

DFT. FFT

Danfarana

IDFT

Konvergenzverha Fehleranalyse

Leck-Effek

Fensterfunktione

Frequenzen filteri

Vorgehensweise Was kann schon schief gehen?

Demonstration des Programms

Fazit

Fourier Transformation

Rectangular Window

Schaltplan Spannungsbereinigung

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau einer WAV Datei

Fourier

Transformatio

Performance

Performano

Konvergenzverhalt Fehleranalyse

Leck-Effekt, Fensterfunktione

Frequenzen filter

Vorgehensweise Was kann schon schie gehen?

Demonstration des Programms

Fazit

Fourier Transformation

Performance

Rectangular Window

Messung und Bereinigung

Rectangular Window

Timer Interrupt

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau einer WAV Datei

Fourier

Transformation

Porforman

IDFT

Konvergenzverhalte

Fehleranalyse Leck-Effekt,

Frequenzen filtern

Vorgehensweise Was kann schon schief

Demonstration des Programms

Fazit

Fourier Transformation

 DFT als Matrix, IDFT als Matrix unitäre Matrix, Normalisierungfaktor

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau einer WAV Datei

Fourier

Transformation

DFT, FFT

Performance

IDFT

Konvergenzverhalten, Fehleranalyse

Leck-Effekt, Fensterfunktioner

Frequenzen filtern

Vorgehensweise Was kann schon schie gehen?

Demonstration des Programms

Fazit

Fourier Transformation

Konvergenzverhalten, Fehleranalyse

► Vandermonde-Matrix

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau eir WAV Date

Fourier

Transformatio

Performan

IDFT Konvorgonavorbalt

Fehleranalyse

Leck-Effekt, Fensterfunktionen

Frequenzen filterr

Vorgehensweise Was kann schon schief gehen?

Demonstration des Programm

Fazit

Fourier Transformation

Leck-Effekt, Fensterfunktionen

- Anzahl der Datenpunkte eines zeitdiskreten Signals ist kein ganzzahliges Vielfaches der Periodendauer
- DFT gibt Frequenzanteile an, die im unendlich langen Signal nicht vorkämen
- Leck-Effekt (spectral leakage) tritt auf, weil das Signal nur endlich lange beobachtet werden kann

Rechteck-Fensters, https://de.wikipedia.org/wiki/Leck-Effekt

Inhaltsverzeichnis

Begriffe der Digitalen Signal-

Aufbau eir

Fourier

Transformatio

DFT, FF

Performar

Konvergenzverhal

Fehleranalyse

Leck-Effekt, Fensterfunktionen

Frequenzen filtern

Vorgehensweise Was kann schon schief gehen?

Demonstration des Programm

Fazit

Fourier Transformation

Leck-Effekt, Fensterfunktionen

- Leck-Effekt lässt sich nicht komplett vermeiden
- Auswirkung aber reduzierbar durch Fensterfunktionen
- Fensterfunktion wird vor der DFT Operation auf das Signal angewendet, sodass das Signal künstlich periodisiert wird

Anwendung des Von-Hann-Fensters,

https://www.modalshop.com/rental/learn/basics/how-to-choose-fft-window

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau einer WAV Datei

Fourier Transformatio

DFT, FFT

Performance

Konvergenzverhalte Fehleranalyse

Leck-Effekt, Fensterfunktionen

Frequenzen filtern

Vorgehensweise Was kann schon schief

Demonstration des Programms

Fazit

Frequenzen filtern

Vorgehensweise

- Zeitdiskretes Signal durch DFT in Frequenzbereich überführen
- 2 Amplitude der zu filternden Frequenzen auf 0 setzen
- 3 IDFT anwenden um das gefilterte zeitdiskrete Signal zu erhalten
- Pitfalls:

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau eir WAV Date

Fourier

Transformatio

DFT, FFT

Performan

Konvergenzverhal

Fehleranalyse

Fensterfunktione

Frequenzen filtern

Was kann schon schief gehen?

Demonstration des Programm

Fazit

Frequenzen filtern

Was kann schon schief gehen?

- Multiplizieren der zu filternden Frequenzanteile mit 0 ist dasselbe wie ein Rechteck-Fenster anzuwenden
 - \Rightarrow Faltungssatz greift erneut

(IDFT von Rechteck-Fenster ist wieder Sinc-Funktion)

- ⇒ Frequenzanteile die nicht gefiltert werden sollen, werden auch (leicht) beeinflusst
- ► Lösung: Eine andere Fenster-Funktion als das Rechteck-Fenster zum Filtern verwenden

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau einer WAV Datei

Fourier

DET FET

Performan

IDFT

Konvergenzverhalte Fehleranalyse

Fensterfunkt

Frequenzen filteri

Vorgehensweise Was kann schon schie gehen?

Demonstration des Programms

Fazit

Demonstration des Programms

Test

Fazit

Inhaltsverzeichnis

Begriffe der Digitalen Signalverarbeitung

Aufbau einer WAV Datei

Fourier

Transformatio

DFT, FFT

Performano

Konvergenzverhalter

Fenieranalyse

Fensterfunktione

Frequenzen filtern

Vorgehensweise Was kann schon schief gehen?

Demonstration des Programms

Fazit

- Oszilloskop erfüllt die Anforderungen
- misst akkurat
- Anpassungsmöglichkeiten sind eingeschränkt
 - \Rightarrow für Hobbyprojekte ausreichend