Projet data visualisation

Vatin Antoine
Business Intelligence Analyst
Mars 2025

Elements disponibles:

- 3 Datasets: (ERP,Web et Liaison)
- Caractéristiques :
 - ERP: 825 observations, 6 colonnes
 - Web: 1513 observations, 29 colonnes
 - Liaison: 825 observations, 2 colonnes

Finalité - Harmonisation des données

- 1 Dataset : Merge (dataset consolidé et prêt pour analyse)
- Caractéristiques :
 - Merge: 714 observations, 18 colonnes
 - Conformité à la réglementation RGPD

Identification des incohérences et préparation des données pour une analyse fiable

- Inspection et validation des variables
 - Vérification de la répartition des prix et des stocks
 - Détection des liens de corrélation entre les colonnes
- Correction des valeurs aberrantes et incohérences
 - Stock et prix négatifs
 - Valeurs manquantes (product_type, SKU)

Distribution de stock_quantity selon stock status

instock

Boite à moustache montrant la relation entre la quantité de stock et son statut

		-,
oduct_id	onsale_web	price
4233	0	-20.0
5017	0	-8.0
6594	0	-9.1

Exemple d'incohérences de prix

product_id	stock_quantity	stock_status
4973	-10	outofstock
5700	-1	outofstock
4039	3	outofstock

Exemple d'incohérences de stock

Traitement réalisés

- Traitement des doublons et uniformisation
 - Suppression des SKU en doublons
 - Consolidation des informations pour éviter les biais
- Normalisation des données
 - Correction des statuts incohérents entre quantité de stock et statut affiché

sku	product_type	post_type
13127-1	Vin	product
bon-cadeau-25-euros	Autre	attachment
13127-1	Vin	attachment
bon-cadeau-25-euros	NaN	product

Exemple de type de produit manquant et de doublon

product_id	price	stock_quantity	stock_status
3847	24.2	16	instock
3849	34.3	10	instock
3850	20.8	0	outofstock
4032	14.1	26	instock
4039	46.0	3	instock

Extraction à la suite de la correction des incohérences de statut de stock

* Création de nouvelles variables pour une meilleure analyse :

- 📊 Taux de marge
- Mois de stock
- Rotation des stocks
- Prix HT

Extrait de données enrichies

Problèmes détectés :

Erreurs de saisie :

- Prix de vente négatifs (ERP)
- Incohérence de statut (ERP)
- Stock négatif (ERP)
- SKU manquante (Web)

De calcul:

Marge négative

De jointure :

'product_id' sans correspondance 'web_id' (liaison)

De doublons:

 Colonne 'post_type' ayant 'attachment' est un doublon inutile de 'product'

De type:

Type de produit NaN pour « bon-cadeau-25euros »

Fusion ou consolidations des données

Choix des attributs

 Seules les colonnes et lignes nous permettant d'effectuer nos analyses seront gardés

Clés utilisées

- id_web (Table liaison)
- product_id (Table erp)
- Sku (Table web)

Nom de la colonne	Type de donnée	Nombre d'éléments non-nuls
product_id	int64	714
price	float64	714
stock_quantity	int64	714
stock_status	object	714
purchase_price	float64	714
sku	object	714
total_sales	float64	714
product_type	object	714
post_title	object	714

Liste des colonnes présentent dans la table prête pour les analyses et suppression des « lignes vides » (85)

Fusion ou consolidations des données

Vigilances particulières

 Identification des lignes ne matchant pas

id_web	purchase_price	stock_status	stock_quantity	price	product_id
NaN	37.88	outofstock	0	86.1	4055
NaN	33.79	outofstock	0	73.0	4090
NaN	25.25	outofstock	0	47.0	4092
NaN	7.36	outofstock	0	14.1	4195
NaN	33.01	outofstock	0	73.5	4209
				-	

Difficultés ou pièges rencontrés

 Détermination que 'sku' correspondait à 'id_web' après analyse des structures de données. Nombre de lignes sans correspondance entre erp et liaison : 91

product_id	id_web	sku
5794	14692	14692
5827	15328	15328
4964	16515	16515
4223	16585	16585
5900	12869	12869

Extraction montrant le match entre 'id_web' et 'sku'

Analyses univariées du prix

Analyse de la répartition des prix

 Ce Boxplot (boite à moustaches) met en évidence une distribution asymétrique avec une forte présence de valeurs aberrantes (outliers), ce qui peut impacter les analyses

Limites de l'analyse

- Présence de nombreuses valeurs aberrantes
- Absence d'informations contextuelles
- Analyse statique sur une période donnée

Boite à moustaches représentant la répartition des prix

Analyses univariées du prix

La méthode du Z-score

- Permet d'identifier les valeurs extrêmes (outliers) en calculant combien d'écarts-types une valeur s'éloigne de la moyenne.
- Forte présences d'outliers (13), ces valeurs peuvent correspondre à des produits de luxe ou des erreurs de saisie.

Limites éventuelles de l'analyse

 Influence des valeurs extrêmes sur la moyenne (seuil prix de détermination des outliers est de 115,12€) La formule utilisée est :

$$Z = \frac{X - \mu}{\sigma}$$

où:

- X est la valeur observée (le prix),
- μ est la moyenne du prix (ici **32.33**),
- σ est l'écart-type du prix (ici **27.60**).

Z-score minimum : -0.98
Z-score maximum : 6.98
Nombre de valeurs aberrantes (|z-score| > 3) : 13

Résultat du calcul du Z-score, montrant le nombre de valeurs extrêmes

Analyses univariées du prix

Identification par l'interval interquartile (IQR)

 La méthode IQR détecte plus d'outliers (31) que la méthode du Zscore (13), car la distribution des prix est asymétrique

Limites éventuelles de l'analyse

- La méthode est sensible aux variations de données, si le nombre d'observations est faible l'IQR peut ne pas être fiable
- Exclusion potentielle de données pertinentes en fixant un seuil rigide, en particulier dans des marchés où les écarts de prix sont normaux.

$$IQR = Q_3 - Q_1$$

L'IQR (Intervalle Interquartile) est défini comme la différence entre le troisième quartile ((Q_3)) et le premier quartile ((Q_1)) d'une distribution. Il représente l'intervalle dans lequel se trouve la moitié centrale des données.

Une valeur x est considérée comme aberrante si $x < Q_1 - 1.5 \times \mathrm{IQR}$ ou $x > Q_3 + 1.5 \times \mathrm{IQR}$

Représentation graphique de l'IQR par catégorie de produit

Article

Top 20 des articles en CA

- CA Global de 143 680€
- 10% du CA représenté par le Top 20 des articles
- Les champagnes et vins dominent le classement
- Gestion des stocks primordial

Calcul des 20/80

 Définition : 20% des produits génèrent 80% du chiffre d'affaires total

Chez Bottleneck

- 434 articles représentent 80% du CA
- Soit environ 61% des produits

Optimisation du portefeuille produits

- **39%** des références absorbent des ressources sans générer une valeur proportionnelle.
- Une concentration sur les 434 articles stratégiques permettrait d'optimiser la rentabilité et la gestion des stocks.

Immobilisation de stock critique : jusqu'à 25 ans !

、Optimisation du portefeuille produits, impact financier : **87 108,25€**

L Envisager une **suppression** progressive

➡ Stratégie marketing et commerciale

Mettre en avant ces produits

Le stock total : 16 739 unités dont une part non rentable Immobilisation financière totale : 277 305€

- Rotation insuffisante sur certains produits
- Coût financier et logistique
- Surstockage vs. Rupture

Recommandations

★ Segmentation du stock

📊 Analyse de la demande

Plan de réduction des stocks dormants

Optimisation des réapprovisionnements

Taux de Marge et Rentabilité des Produits

- Taux de marge minimum : -86,39 %
- Taux de marge maximum : 91,41 %
- Taux de marge minimum sur les produits rentables : 30,73 %
- Un produit (Champagne Egly-Ouriet Grand Cru Blanc de Noirs) affiche un taux de marge négatif perte potentielle 6 493€

Recommandations

Optimisation des prix de vente
Segmentation des produits par rentabilité
Plan d'action pour la référence déficitaire
Alignement entre les coûts et la politique tarifaire

L'optimisation des marges est un levier clé pour améliorer la rentabilité globale de Bottleneck et sécuriser notre trésorerie

Analyse des Corrélations

- Corrélation positive entre le stock et les ventes
- Corrélation négative entre le prix et les ventes
- Corrélation légèrement négative entre le prix et le stock

Recommandations

- Optimisation des niveaux de stock
- Segmentation des stocks et gestion différenciée
- Stratégie tarifaire dynamique
 A sall construction of the construction
- **©** Analyse plus fine des produits premium

Actions pour la suite

- 🎯 Court terme (0-3 mois) :
 - Note: Note:
 - Ajustement des prix des références déficitaires
 - Lancement d'actions marketing sur les produits stratégiques
 - **Tableau de bord & KPI clés** (taux de rotation, marge, stock immobilisé)
- Moyen terme (3-6 mois):
 - Stratégie de pricing dynamique & ajustement des réapprovisionnements
 - Segmentation des produits selon la rentabilité
 - 📊 Suivi des ventes & ajustement des stratégies marketing
- 🗐 Long terme (6-12 mois) :
 - Automatisation des processus pour la gestion des stocks
 - **Définition des seuils critiques** (ex. +12 mois sans vente = action immédiate)
 - Optimisation des relations fournisseurs

Point sur les compétences apprises

- Points positifs : Ce qui s'est bien passé
 - **✓** Analyses fluides et structurées
 - **Détection intuitive des erreurs** dans un DataFrame (df.info(), df.isnull().sum(), describe())

tables reste un défi technique à surmonter.

- **Recherche de solutions** stimulante malgré sa complexité
- Défis rencontrés : Ce qui a été le plus difficile
- L'intégration des notions de jointures et leur impact sur la perte de données (qu'elle soit voulue ou subie) a été un point particulièrement complexe à appréhender. (Fusion de df_merge avec df_web)
 - Comprendre comment minimiser la perte d'information lors des fusions de

Point sur les compétences apprises

Axes d'amélioration : Points à approfondir

- **Compréhension des jointures** (tester différents types de merge et observer leur impact sur les données)
- **Gestion des pertes de données** utiliser .**shape** avant et après une jointure pour quantifier les pertes
- Anticipation des impacts
- **Formation continue** (ex : documentation Pandas, cours SQL, etc.)

Ces axes d'amélioration guideront mes prochaines analyses pour fiabiliser la consolidation des données et optimiser leur exploitation dans la prise de décision.