Задача 1.

В пяти разных пробирках находятся растворы, в которых содержится по 1,000 г различных индивидуальных соединений (A_1 - A_5). Дополнительно известно, что каждое из этих веществ состоит из трёх элементов, а соотношение атомов в каждом из них одинаковое (например, CaS и ZnO- в обоих соединениях соотношение атомов 1:1). В таблице ниже приведены некоторые экспериментально полученные данные для этих веществ.

№	Цвет раствора	Добавление лакмуса	Дополнительная информация				
A 1	-	Раствор окрашивается в красный цвет	- при добавлении избытка гидрокарбоната натрия (реакция 1) выделяется 222,9 мл (н.у.) газа.				
A ₂	Малинов ый	Нет изменений	 распространенный реактив в аналитической химии, садоводстве, медицине; при пропускании сернистого газа раствор обесцвечивается (реакция 2). 				
A ₃	-	- при добавлении избытка раствора нитрата серебра, происходит образование белого творожистого осадка (<i>реакция 3</i>) массой 2,682 г.					
A4	-	Нет изменений	 при добавлении раствора сульфата марганца (II) в присутствии серной кислоты и нескольких капель нитрата серебра в качестве катализатора, наблюдается образование малинового раствора (реакция 4); массовая доля кислорода в соединении равна 47,41%. 				
A ₅	Желтый	Раствор окрашивается в оранжево-красный цвет	- при добавлении в раствор раствора сульфата железа (II) (реакция 5) происходит выпадение 0,579 г окрашенного осадка; - массовая доля водорода в соединении равна 0,294%.				

Определите индивидуальные соединения А1-А5.

Для веществ A_1 , A_3 - A_5 обязательно приведите необходимые расчеты.

Запишите уравнения реакций 1-5.

Решение

Соединение **A2** судя по цвету и описанию – однозначно перманганат калия **KMnO**4. Тогда соотношение атомов в оставшихся веществах – 1:1:4.

Вещество **А**1 вероятнее всего кислота (судя по окраске раствора после добавления в него лакмуса). Тогда уравнение реакции с гидрокарбонатом натрия будет иметь вид:

$$HA + NaHCO_3 \rightarrow NaA + CO_2 + H_2O$$

$$M(HA) = \frac{1,000}{0.2229/22.4} = 100,5 \text{ г/моль}$$

При условии, что скорее всего формула A1 – HЭO4, получаем, что A1 – HClO4

Вещество A_3 вероятнее всего хлорид, тогда уравнение реакции с нитратом серебра будет иметь вид:

$$XCl + AgNO_3 \rightarrow AgCl + XNO_3$$

$$M(XCl) = \frac{1,000}{2.682/143.5} = 53,5 г/моль$$

Вычитая 35,5 из полученной молярной массы, получаем, что M(X) = 18 г/моль, тогда под условие соотношения (1:4) подходит NH_4 , сл-но $A_3 - NH_4Cl$

Для вывода соединения A_4 , необходимо вспомнить, какие окислители переводят Mn^{2+} до MnO_4 , это могут быть, например, Cl_2 , $KBiO_3$, PbO_2 или $K_2S_2O_8$ ($K_2S_2O_6(O_2)$ – пероксодисульфат калия). Под условие 1:1:4 подходит пероксодисульфат калия ($K_2S_2O_8$). $\omega(O/K_2S_2O_8) = 128/270 = 0,4741$. Следовательно, $A_4 - K_2S_2O_8$.

Вещество **A**₅ вероятнее всего имеет формулу HYZ₄. При реакции с сульфатом железа (II) вероятнее всего протекает окислительно – восстановительная реакция.

$$\nu(HYZ_4) = \nu(H) = 1,000*0,00294/1 = 0,00294$$
 моль = M(Y)

Предположим, что темный осадок – это просто Y, тогда

M(Y) = 0.579/0.00294 = 197 г/моль, что соответствует золоту, тогда

 $M(Z_4) = 1/0,00294 - 197 - 1 = 142$ г/моль, M(Z) = 35,5 г/моль, что соответствует хлору.

Следовательно, **A**5 – **H**[**AuCl**4].

$\mathbf{A_1}$	HClO ₄	A ₂	KMnO ₄	A 3	NH ₄ Cl	A 4	K ₂ S ₂ O ₈	A5	H[AuCl4]
----------------	-------------------	----------------	-------------------	------------	--------------------	------------	--	----	----------

Уравнения реакций:

1)
$$HClO_4 + NaHCO_3 \rightarrow NaClO_4 + CO_2 + H_2O$$

2)
$$5SO_2 + 2KMnO_4 + 2H_2O \rightarrow 2H_2SO_4 + 2MnSO_4 + K_2SO_4$$

3)
$$NH_4Cl + AgNO_3 \rightarrow AgCl + NH_4NO_3$$

4)
$$2MnSO_4 + 5K_2S_2O_8 + 8H_2O \rightarrow 2KMnO_4 + 4K_2SO_4 + 8H_2SO_4$$

ИЛИ
$$2MnSO_4 + 5K_2S_2O_8 + 8H_2O \rightarrow 2HMnO_4 + 5K_2SO_4 + 7H_2SO_4$$

5)
$$H[AuCl_4] + 3FeSO_4 = Fe_2(SO_4)_3 + Au + HCl + FeCl_3$$

Критерии оценивания

Вывод вещества A₂ Вывод веществ A₁, A₃-A₅

2 балла

 $2 \times 4 = 8$ баллов

(без расчета – 0 баллов)

 $2 \times 5 = 10$ баллов

Уравнения реакций

(если реакция не уравнена, но верно записаны участники реакции – 1 балл)

(в случае если вещество не было доказано расчетом, но реакция записана верно – 2 балла)