III. DRUDE RESPONSE TO A SINUSOIDAL DRIVE

What is the expected response of a gas to a sinusoidal modulation of the scattering length? In linear response, we can start from Eq. (26) to find C(t). Let's assume a sinusoidal drive,

$$a^{-1}(t) = a_0^{-1} + Ak_F \sin[\omega(t - t_0)]$$

$$v(t) = v_0 + \frac{Ak_F}{4\pi m} \sin[\omega(t - t_0)] \quad \text{with} \quad A_v = \frac{Ak_F}{4\pi m}$$

$$\dot{v}(t) = \omega A_v \cos[\omega(t - t_0)] \quad (56)$$

Here A is our usual dimensionless drive; and $a_0^{-1} = 0$ is typically chosen in our recent experiments. We will use a Drude model the response:

$$\tilde{\zeta}(\omega) = \frac{\tilde{S}\tau}{1 - i\omega\tau}, \quad \tilde{\zeta}(0) = \tau\tilde{S}$$

$$\tilde{\chi} = \frac{S}{1 - i\omega\tau}$$
(57)

Here \tilde{S} is defined in Eq. (21); we could also write $(2/\pi) \int_0^\infty d\omega \operatorname{Re} \tilde{\zeta}(\omega) = \tilde{S}$. In the time domain, these responses are

$$\tilde{\zeta}(t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{-i\omega t} \tilde{\zeta}(\omega) = \tilde{S}e^{-t/\tau} \Theta(t) \quad \text{such that} \quad \int_{0}^{\infty} dt \, \tilde{\zeta}(t) = \tau \tilde{S} = \tilde{\zeta}(0)$$

$$\tilde{\chi}(t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{-i\omega t} \tilde{\chi}(\omega) = \frac{\tilde{S}}{\tau} e^{-t/\tau} \Theta(t) \quad \text{such that} \quad \int_{0}^{\infty} dt \, \tilde{\chi}(t) = \tilde{S}$$
(58)

Combining Eqs. (26), (56), and (58), we have

$$C(t) = C_{\text{eq}}(t) + \int_{t_0}^t dt' \left(Se^{(t-t')/\tau} \Theta(t-t') \right) \omega A_v \cos[\omega(t'-t_0)]$$

$$= C_{\text{eq}}(t) + \omega A_v \frac{S\tau}{1 + \omega^2 t^2} \left\{ -e^{-t/\tau} + \cos(\omega t) + \omega \tau \sin(\omega \tau) \right\}$$
(59)

If we are looking at $t \gg \tau$, the transient term, $e^{-t/\tau}$, can be dropped. The time-dependent $C_{\rm eq}(t) = C_0 + SA_v \sin(\omega t)$; separating into quadratures we have

$$\frac{\delta C(t)}{A_v} = \left(S - \omega \operatorname{Im} \tilde{\zeta}\right) \sin(\omega t) - (\omega \operatorname{Re} \zeta) \cos(\omega t) \quad \text{with} \quad \operatorname{Re} \tilde{\zeta} = \frac{\tau \tilde{S}}{1 + \tau^2 \omega^2}, \quad \operatorname{Im} \tilde{\zeta} = \tau \omega \operatorname{Re} \tilde{\zeta}$$
 (60)

Compared to the hydrodynamic expression (14), we see that $\operatorname{Im} \tilde{\zeta}$ now appears in the amplitude of the in-phase quadrature. For low frequency, ζ is real, and $\operatorname{Re} \zeta \to \zeta_0$.

We can rewrite this response in terms of a phase shift ϕ and amplitude A_C :

$$\delta C(t) = A_C(\omega) \sin[\omega t - \phi(\omega)] \tag{61}$$

where the phase lag of the response is

$$\tan \phi(\omega) = \frac{\omega \operatorname{Re} \tilde{\zeta}(\omega)}{S - \omega \operatorname{Im} \tilde{\zeta}(\omega)} = \omega \tau \tag{62}$$

and the amplitude of the response is

$$|\tilde{\chi}(\omega)| = \frac{A_C(\omega)}{A_v} = \frac{S}{\sqrt{1 + \omega^2 \tau^2}} \tag{63}$$

These are plotted in Fig. 1 and compared to predictions that use the HD formula, even at nonzero frequency.

The phase response, Fig. 1(a), shows a linear increase at low frequency, passing through $\phi = \pi/4$ at $\omega = \tau^{-1}$, and asymptoting to $\pi/2$, exactly out of phase. The amplitude response, Fig. 1(b), shows a linear decrease in $|\chi|/S$, with a response reduced by $\sqrt{2}$ at $\omega = \tau^{-1}$, and continuing to decrease as $\omega^{-1/2}$ thereafter.

FIG. 1 Dynamical contact response, Drude model. (a): The phase shift with respect to the drive, given by Eq. (62), is shown versus drive frequency ω rescaled with τ . The phase lag is $\pi/4$ at $\omega\tau=1$, and asymptotes to $\pi/2$. By comparison, using the HD prediction for C(t), Eq. (14), has a peak phase shift ≈ 0.46 and asymptotes to zero. (b) The response amplitude, $|\chi|/S$ as given by Eq. (63), decreases from unity to $1/\sqrt{2}$ at $\omega=\tau^{-1}$.

FIG. 2 Time lag of the dynamical response, Drude model. The contact response has a time lag shown here, versus drive frequency, in terms of τ . We see that for low frequencies, one expects a delay that is roughly independent of frequency; whereas at high frequency, the time lag no longer has information about τ .

By comparison, the "naive" HD prediction would be a peak phase lag at $\omega = \tau^{-1}$, and a relatively constant amplitude response. We should be able to distinguish between these alternatives by examining the experimental response at $\omega \approx \tau^{-1}$.

What is the time lag of the contact response predicted by a Drude model? Writing $\delta C(t) = A_C(\omega) \sin[\omega(t-\tau_{\text{lag}}(\omega))]$, this is related to the phase delay simply by ϕ/ω . This is plotted in Fig. 2. We see that at low frquency, one can anticipate a time lag that is comparable to τ independent of frequency. At $\omega = \tau^{-1}$, the time lag is $(\pi/4)\tau \approx 0.79\tau$. At high frequencies, however, the time lag no longer contains information about τ : it approaches $(\pi/2)\omega^{-1}$, independent of τ .

In reality, the Drude approximation will break down at high frequencies.