

FIGURE 1

OLIGODEOXYNUCLEOTIDE SEQUENCE FOR 5' SIDE PRIMER

Primer HS-1	CGTGGCCATCCTGGGAAACACCCCTG	
	G C GG	CT
		G
		T

HTRHR	CCTGGGCATTGTAGGCAACATCATGGT
HUMRANTES	CATTGGCCTGGTTGGAAACATCCTGGT
HSBLR1A	CCTGGGCCTGGTGGCAACGCCCTGGT
HUMSOMAT	GGTGGGGCTGGTGGCAACGCCCTGGT
RNU02083	AGTGGGCCTTCGGAAACTTCCTGGT
U00442	GGTGGGCTTAGTGGCAATTCCCTGGT
HUMNMBR	CGTGGGCTTGCTGGCAACATCATGCT
HSHM4	GGTGACCATCATGGCAACATCCTGGT
RATAADRE01	CTTGCCATCGTGGCAACATCTGGT
HUMSSTR3X	GGTGGGCCTGCTGGTAACTCGCTGGT
HUMC5AAR	GGTGGGAGTGTGGCAATGCCCTGGT
HUMRDC1A	CATGGCATGATTGCCAACCTCGTGGT
HUMOPIODRE	CGTGGCGGTGCTGGCAACCTCGTGGT
RATA2BAR	GCTGGCAGTGGCGGGCAACGTGCTGGT

FIGURE 2

OLIGODEOXYNUCLEOTIDE SEQUENCE FOR 3' SIDE PRIMER

Complementary Sequence to Primer HS-2	TTTGCCATCTGCTGGATGCCCAAC C C TTT C G G T T
HUMSGIR	TTTGCCCTCTGCTGGTTCCCTCTCAAC
HUMBOMB3S	TTTGCCCTCTGCTGGTTGCCAAATCAC
S46950	TTTGCCCTCTGCTGGCTGCCCTACAC
MUSGPCR	TTTGCCCTCGTCTGGTGCCCTCTCAAC
S43387	TTTGCCCTTTATGGATGCCCTACAGG
RATNEURA	TTTGCCATCTGCTGGCTGCCCTATCAC
RATA1ARA	TTTGCCCTCAGCTGGCTGCCGCTGCAT
HUMPIODRE	TTTGCCATCTGCTGGCTGCCCTATCAC
HUMNEKAR	TTTGCCATCTGCTGGCTGCCCTACAC
RATADENREC	TTTGCCCTGTGCTGGCTGCCCTTGCC
HUMSRI1A	TTTGTATCTGCTGGATGCCCTTCAC
S8637154	TTTGCTATCTGCTGGCTGCCCTATCAT
RNCGPCR	TTTGCCGCCTGCTGGATGCCCTTAC
HUMSSTR4Z	TTTGTGCTTGCTGGATGCCCTTAC
RATGNRHA	TTTGACACTGGTCGAAGCCAGACAAA

FIGURE 3

OLIGODEOXYNUCLEOTIDE SEQUENCE FOR 5' SIDE PRIMER

Primer 3A	CTGACCGCTCTIACIACTGACCGATAC T T GG GT A C G
Primer 3B	CTGACCGCTCTIACIACTGACCGATAT T T GG GT A C G
L11064	CTCACCATGATGAGCGTGGACCGCTAC
L11065	TTGACCATGATGGAGTGTGACCGCTAC
D16349	CTCTGCACCATGAGCGTGGACCGCTAC
X69676	CTGATGCTCGTGAGTATCGACCGCTAC
M35328	CTTACGGCACTGTCAGCTGACAGGTAC
M73482	CTCACTGCCCTCAGCGCCGACAGGTAC
M73481	CTCACGGCGCTCTCGGCAGACAGATAAC
L08893	TTAACAAATTCTCAGCGCTGACAGATAAC
X62933	ATGACCGCCATCGCCGCTGACAGGTAC
X62934	ATGACAACGTGGCCTTGACAGATAAC
J05189	ATGACAGCCATTGCAGTGGACAGGTAT
M60786	CTCTGCCTCTCAGTGTGGACAGGTAC
L04672	CTCACCTGCCTCAGCATTGACCGCTAC
X61496	TTGCTGGCTATCACTGTGGACCGCTAC
X59249	TTGCTGGCCATTGCTGTAGACCGATAAC
L09249	CTCACCTGCCTCAGCATTGACCGCTAC
P30731	CTGACAGCTATCGCAGTGGACCGCCAC
M31210	CTCCTGCCATGCCATTGAGCGCTAT
U03642	CTCACCGGCCCTCAGCTTCAGCGCTAC

667760-2X583060

FIGURE 4

OLIGODEOXYNUCLEOTIDE SEQUENCE FOR 5' SIDE PRIMER

Primer 3C CTCGCCGCTATIAGCATGGACCGITAC
 G CC G T T

Primer 3D CTCGCCGCTATIAGCATGGACCGITAT
 G CC G T T

L32840 ATTACCTGCATGAGTGTGATAGGTAC
X64052 CTCACGTGTCTCAGCATCGATCGCTAC
M90065 CTCACGTGTCTCAGCATCGATCGCTAC
M91464 CTCACGTGTCTCAGCATTGATCGATAAC
M88096 CTGGTAGCCATCTCTGGAGAGATAT
M99418 CTCGTGGCCATAGCCCTGGAGCGATAAC
L04473 CTCGTGGCCATCGCACTGGAGCGGTAC
M73969 CTGGCCTGCATCAGTGTGGACCGTTAC
X65858 TTGGCCTGCATCAGTGTGGACCGTTAC
S46665 CTGGCTACCATTAGTGCCGACCGTTTC
M60626 ATGCCCTCATGGCTCTGGACCGCTGT

BOSTON UNIVERSITY LIBRARIES

FIGURE 5

OLIGODEOXYNUCLEOTIDE SEQUENCE FOR 3' SIDE PRIMER

Complementary Sequence TTTACCICTGTGGICGCCCTACCACATC
to Primer 6A GT TC T T

L11064	TTCGTGGTGTGCTGGCGCCATCCACATC
L11065	TTCATCATCTGTTGGACCCCCATTACACATC
D16349	TTTATCGTCTGCTGGACCCCCATCCACATC
X69676	TTTGTGCTGTGTTGGTGCCTTCCAGATC
M35328	TTTGCCCTCTGCTGGCTCCCCAACCATGTC
M73482	TTCATCTTCTGTTGGTTCCAACCACATC
M73481	TTCGCCCTCTGCTGGCTCCCCAATCATGTC
L08893	TTTGCCCTCTGCTGGTTGCCAAATCACCTC
X62933	TTTGCCATCTGCTGGCTGCCCTACCACCTC
X62934	TTCGCCATCTGCTGGCTGCCCTACACATC
J05189	TTTGCCATCTGCTGGCTGCCCTATCACGTG
M60786	TTCGCCCTGTGCTGGTTCCCTCTTCACTTA
L04672	TTTGTCATCTGCTGGCTGCCCTACCACGTG
X61496	TTTGCCGCCTGCTGGATGCCCTTACCCCTC
X59249	TTTGCCCTGTGCTGGCTGCCCTTGTCCATC
L09249	TTTGCCATCTGCTGGCTGCCCTACCACGTG
P30731	TTTGCCCTCTGCTGGTTCCCTCTCAACTGC
M31210	TTCATGCCCTGCTGGCACCGCTTCACTC
U03642	TTTGCCCTGTGCTGGATGCCCTACCACCTG

FIGURE 6

OLIGODEOXYNUCLEOTIDE SEQUENCE FOR 3' SIDE PRIMER

Complementary Sequence TTTTCITTGCTGGITTCCCTACCAACATG
to Primer 6C CC T G C T T

L32840	TTCATCATTGCTGGCTTCCCTCATGTT
X64052	TTCTTCTTTCTGGTTCCCCACCAAATA
M90065	TTCTTCTTTCTGGTTCCCCACCAAATA
M91464	TTTTTCTTTCTGGATTCCCCACCAAATA
M88096	TTCTTCCTGTGCTGGATGCCATCTCAGC
M99418	TTCTTCCTGTGTTGGCTGCCAGTGTACAGC
L04473	TTTTTCTGTGTTGGTTGCCAGTTATAGT
M73969	TTCCTGCTTGCTGGCTGCCCTACAACCTG
X65858	TTCCTGCTTGCTGGCTGCCCTACAACCTG
S46665	TTCTTTATCTTCTGGCTGCCCTATCAGGTG
M60626	TTTTTCTGTGGTCCCCATATCAGGTG

FIGURE 7

OLIGODEOXYNUCLEOTIDE SEQUENCE FOR 5' SIDE PRIMER

Primer T2A

GTCACCAACITGTTCATCCTCAICCTG
 C AC GT T
 A

HUMGALAREC	ACCACCAACCTGTTCATCCTCAACCTG
RATADRA1B	CCCACCAACTACTTATCGTCAACCTG
HUMADRB1	ACCACCAACCTGTTCATCCTCAACCTG
RABIL8RSB	GTCACCGACGTCTACCTGCTGAACCTG
HUMOPIODRE	GTCACCAACTCCTCCTCGTGAACCTG
BTSKR	GTGACCAACTACTTCATCGTCAACCTG
HUMSRI2A	ATCACCAACATTACATCCTCAACCTG
HUMSSTR3Y	GTCACCAACGTCTACATCCTCAACCTG
HUMGARE	GTCACCAACGCCTTCCTCCTCACTG
HUMCCKAR	GTCACCAACATCTCCTCCTCCCTG
HUMSHTR	CCCTCCAACCTACCTGATCGTGTCCCTG
HUMD1B	ATGACCAACGTCTTCATCGTGTCTTG
HUM5HT1E	CCTGCCAACTAACCTAAATCTGTTCTTG
HUMD4C	CCCACCAACTCCTCATCGTGAGCCTG
MMSERO	GCCACCAACTATTCCATCGTGAACCTG
RATADRA1A	GTCACCAACTATTTCATCGTGAACCTG
S57565	CTGACCAATTGCTTCATTGTGTCCCTG

851460-24550060

FIGURE 8

COMPLEMENTARY OLIGODEOXYNUCLEOTIDE SEQUENCE TO 3' SIDE PRIMER

Complementary Sequence to Primer T7A	AACCCCITCITCTATTGCTTTTCICT
	T T C C C G G
HUMGALAREC	AATCCTATCATTTATGCATTTCTCTCT
RATA1ADREC	AACCCCACATCGTCTATGCCTTCCGGATC
PIGA2R	AATCCTCTCTTTATGGCTTCTGGGG
RAT5HTRTC	AACCCTATCATCTACCCGCTTTATG
S58541	AACCCCATCATTATGCCTTAATGCT
HUMGRPR	AACCCCTTGCCCTTACCTGCTGAGC
MUSGRPBM	AACCCCTTGCTCTTATCTGCTGAGC
RRVT1AIIR	AACCCTCTGTTCTACGGCTTCTGGGG
HUMADRB1	AACCCCATCATCTACTGCCGAGCCCC
HSHM4	AACCCCGTGTGCTATGCTCTGTGCAAC
HUMGARE	AACCCCTGGTCTACTGCTTATGCAC
RATCCKAR	AACCCCATCATCTATTGCTTATGAAC
S59749	AATCCCATGCTCTACACCTTCGCTGGC
HUMSST28A	AACCCCGTCTCTACGGCTTCTCTCG
RNGPROCR	AACCCCATCCTCTACGGCTTCTCTCC
MUSSRI1A	AACCCCATACTCTACGGCTTCTGTG
HUMA1AADR	AACCCGCTCATCTACCCCTGTTCCAGC
S66181	AACCCGGTTCTCTACGCCCTCTGGAC
HUMSSTR3Y	AACCCCATCCTTATGGCTTCTCTCC

FIGURE 9

OLIGODEOXYNUCLEOTIDE SEQUENCE FOR 5' SIDE PRIMER

Primer TM1-A2

TGITGGTTATIGGIGTTGTIGGIAA
CC GC C G

MUSBB2R	TGGTGGTGGTGGTGGTGGTGGCAAA
BTSKR	TGGTGCTGGTGGCTGTGATGGCAAA
BOVEETBR	TGTCGTGCTGGGCATCATCGGAAA
HUMNEYREC	TGATCATTCTTGGTGTCTCTGGAAA
MMSUBKREC	TGGTGCTGGTGGCTGTAACAGGCAA
HUMPGE2R	TGTTCATCTTGGGGTGGTGGCAAA
HUMPIR	TGTCGTGGCCGGTGTGGTGGCAAA
HSU11053	TGTCGTGGCTTGGTGGCAAA
RRMC3RA	TGGTGATCCTGGCTGTGGTAGGAA
HUMMR	TGGTTATCCTGGCCGTGGTCAGGAA
MUSGRPBM	TCATCGTGTAGGTCTTATTGGCAA
RATCHOLREC	TCTTCTGATGAGTGTGGCGGAAA
RATCCKAR	TATTCTTCTCAGTGTGCGGGGGAA

FIGURE 10

COMPLEMENTARY OLIGODEOXYNUCLEOTIDE SEQUENCE TO 3' SIDE PRIMER

Complementary Sequence GCCATIACCITGGACAGATAACCGAT
to Primer TM3-B2 A T A C G A G

HUMCCKR	GCCATCGCACTGGAGCGGTACAG
HUMCCKBGR	GCCATCGCACTGGAGCGGTACAG
MMGMC5R	GCCATTGCGGTGGACAGGTACA
HUMV2R	GCCATGACGCTGGACCGCCACCG
RATNEURA	GCCATTGCAGTGGACAGGTA
DOGGSTRN	GCCATGCCCTGGAGCGATAACAG
RAT5HT5A	GCAATAGCTTGGACCGCTACTGGT
MUSALP2ADA	GCCATTAGTCGGACCGCTACTGGT
HUMADORA1X	GCAATTGCTGTGGACCGCTACC
HUMOPIODRE	GCCATCGCGGTGGACAGATAACA
MUSGRPBM	GCACTGTCAGCTGACAGGGTACAAA
RATCCKAR	GCCATCTCTGGAGAGATATGG
HSTRHREC	GCCTTACCATTGAGAGGTACATA

FIGURE 11

OLIGODEOXYNUCLEOTIDE SEQUENCE FOR 5' SIDE PRIMER

Primer TM3-C2

CATGGCCGTGGAGAGITACITGGC
TT C C T A

HUMNK3R	CATTGCGGTGGACAGGTATATGGC
HSMRNAOXY	CATGTCCCTGGACCGCTGCCTGGC
S68242	CATATCGCTGGAGAGATAACGGAGC
CFGPCR4	CATCGCTCTGGACAGGTACTGGGC
MMSUBPREC	TGGCCTTTGACAGATAACATGGC
HUMOPIODRE	CATCGCGGTGGACAGATAACATGGC
HUMGALAREC	ATGTCCGTGGACCGCTACGTGGC
HSS31G	CATTGCCCTGGACAGGTACTGGGC
HUMARB3A	CCTGGCCGTGGACCGCTACCTGGC
HUMHPR	CATGGCCGTGGAGAGCGCTGCCTGGC
RATCCKAR	CATCTCTGGAGAGATAATGGCGC

FIGURE 12

COMPLEMENTARY OLIGODEOXYNUCLEOTIDE SEQUENCE TO 3' SIDE PRIMER

Complementary Sequence TTTGCCITCTGCTGGATCCCCAAC
to Primer TM6-E2 C G C G TT

HUMNEKAR	TTTGCCATCTGCTGGCTGCCCTAC
HUMSUBPRA	TTCGCCATCTGCTGGCTGCCCTTC
RATSKR	TTTGCCATCTGCTGGCTGCCCTAC
MUSGRPBM	TTTGCCTCTGCTGGCTCCCCAAC
HUMOPIODRE	TTTGCCATCTGCTGGCTGCCCTA
HUMA2XXX	TTTGCCTCTGCTGGCTGCCCT
HUMADRBR	TTCACCCCTTGCTGGCTGCCCTC
CFGPCR8	TTCGCCCTCTGCTGGCTGCCCTC
HUMETSR	TTTGCCTCTGCTGGCTCCCCCT
MMNPY1CDS	TTCGCCGTCTGCTGGCTGCCCT
HSMRNAOXY	TTCATCGTGTGCTGGACGCCCTTC
RATCCKAR	TTCTCCTGTGCTGGATGCCCATC

FIGURE 13

OLIGODEOXYNUCLEOTIDE SEQUENCE FOR 5' SIDE PRIMER

Primer TM2F18

ARYYTIGCIITIGCNGAY

HUMTSHX	AACCTGGCCTTGCGGAT
HUMNEKAR	AATCTGGCGCTGGCTGAC
HUMFMLP	AACCTGGCCGTGGCTGAC
HUMINTLEU8	AACCTAGCCTTGGCCGAC
HUMA1AADR	AACCTGGCCGTGGCCGAC
HUMIL8RA	AACCTGGCCTTGGCCGAC
HSDD2	AGCCTCGCAGTGGCCGAC
HUMANТИR	AATTTAGCACTGGCTGAC
HUMSOMAT	AACCTGGCCGTAGCCGAC
HUMEL4REC	AGCTTGGCTGTGGCTGAT
HSTRHREC	AGCCTGGCAGTAGCTGAT
HSU07882	AACCTGGCCTTAGCCGAT

(R = A or G, Y = C or T, N = A, C, G or T, and
I = Inosine)

B6TPEO-24583060

FIGURE 14

COMPLEMENTARY OLIGODEOXYNUCLEOTIDE SEQUENCE TO 3' SIDE PRIMER

Complementary Sequence TTYNYNNTNTGTYTGGITICCI
to Primer TM6R21

HSBAR	TTCA CC CTCTGCTGGCTGCC
HUMNEKAR	TTTGCCATCTGCTGGCTGCC
HUMETN1R	TTTGCTCTTGCTGGTCCCT
HUMHISH2R	TTCATCATCTGCTGGTTCCC
HUMA1AADR	TTCGTGCTCTGCTGGTCCCT
HUMIL8RA	TTCCCTGCTTGCTGGCTGCC
HUMNMBR	TTCATCTTCTGTTGGTTCCCT
HUMNKIRX	TTCGCCATCTGCTGGCTGCC
HUMSUBPRA	TTCGCCATCTGCTGGCTGCC
HUM5HT1DA	TTTATCATCTGCTGGCTGCC
HUMPFPR2A	TTCTTCATCTGTTGGTTCCC
HSDD2	TTCATCATCTGCTGGCTGCC
HUMNEYREC	TTTGCAGTCTGCTGGCTCCCT
HUM2XXX	TTTGCCCTCTGCTGGCTGCC
HUMBK2A	TTCATCATCTGCTGGCTGCC
HUMFMLPX	TTCTTCATCTGTTGGTTCCC
HUMSSTR3X	TTCGTGCTCTGCTGGATGCC
HUMCCKR	TTTTTCTGTGTTGGTTGCCA
HSNEURA	TTTGTGGTCTGCTGGCTGCC

(Y = C or T, N = A, C, G or T, and I = Inosine)

FIGURE 15

OLIGODEOXYNUCLEOTIDE SEQUENCE FOR 5' SIDE PRIMER

Primer S3A

GCCTGITAIGATGAGTGTGGAIAGIT
C G C T C C

HUMGALAREC
S70057
S67127
S44866
HUMC5AAR
HUMANTIR
HUMBK2A
HSNEURA
HUMGRPR
HUMFSRS
HUMIL8RA
HUMNEKAR

CCCTGGCCGCGATGTCGTGGACCGCT
GCCTCGTGGCCATCGCACTGGAGCGGT
ACCTCTGCGCTCTTAGTGTTGACAGGT
GTCTATGTGCTCTGAGTATTGACAGAT
TCCTGGCCACCATCAGCGCCGACCGCT
TACTCACGTGTCTCAGCATTGATCGAT
TCCTGATGCTGGTGAGCATCGACCGCT
ACGTGGCCAGCCTGAGTGTGGAGCGCT
CACTCACGGCGCTCTGGCAGACAGAT
GCCTGACAGTCATGAGCGTGGACCGCT
TGTTGGCCTGCATCAGTGTGGACCGTT
CCATGACCGCCATTGCTGCCGACAGGT

86 TECNICON 600

FIGURE 16

COMPLEMENTARY OLIGODEOXYNUCLEOTIDE SEQUENCE TO 3' SIDE PRIMER

Complementary Sequence TGGITICCCTACCACITIATCAICATC
to Primer S6A T T GG GT

HUMGALAREC	TGGCTGCCGCACCATCATCCATCTC
S70057	TGGTTGCCAGTTATAGTGCCAACACG
S67127	TGGTTCCCTCTTCATTAAAGCCGTATA
S44866	TGGCTTCCCCCTCACCTCAGCAGGATT
HUMC5AAR	TGGTTGCCCTTACCAAGGTGACGGGGATA
HUMANTIR	TGGATTCCCCACCAAATATTCACTTTT
HUMBK2A	TGGCTGCCCTTCCAGATCAGCACCTTC
HSNEURA	TGGACTCCCGTTCCCTATGACTTCTAC
HUMGRPR	TGGCTCCCCAATCATGTCATCTACCTG
HUMFSRS	TGGCTGCCCTTCTTACCGTAAACATC
HUMIL8RA	TGGCTGCCCTACAACCTGGTCCTGCTG
HUMNEKAR	TGGCTGCCCTTACCAACCTTACTTCATC

86 TECO EXCEDE

17 / 79

FIGURE 17

FIGURE 18

1 8 / 7 9

A58-T7-2	10	20	30	40	50
	<u>GTGGGCATGGTGGCAACCCCTGGTCATCTTCTGATCCCTTCGCTAACGC</u>				
HUMSOMAT	X:::	::::	::::	::::	::::
	GTGGGCTGGCAACGCCCTGGTCATCTTCTGATCCCTTCGCTAACGC				
	285	295	305	315	325
A58-T7-2	60	70	80	90	100
	CAAGATGAAGACGGCTACCAACATCTACCTGCTCAAACCTGCCGTAGGCC				
HUMSOMAT					
	CAAGATGAAGACGGCTACCAACATCTACCTGCTCAAACCTGCCGTAGGCC				
	335	345	355	365	375
	110	120	130	140	150
A58-T7-2					
	ACGAGCTCTTCATGCTGAGCGTGGCCCTTCGTGGCCCTCGTGGCCCTG				
HUMSOMAT					
	ACGAGCTCTTCATGCTGAGCGTGGCCCTTCGTGGCCCTCGTGGCCCTG				
	385	395	405	415	425
	160	170	180	190	200
A58-T7-2					
	CGCCACTGGCCCTTCGGCTCCGTGCTGGCGGGTGCTCAGGGTCGA				
HUMSOMAT					
	CGCCACTGGCCCTTCGGCTCCGTGCTGGCGGGTGCTCAGGGTCGA				
	435	445	455	465	475
	210	220	230	240	
A58-T7-2					
	CGGCCTCAACATGTTACCAAGGGCTCTCTGCTCACCGTGTCTCAGCGT				
HUMSOMAT					
	CGGCCTCAACATGTTACCAAGGGCTCTCTGCTCACCGTGTCTCAGCGT				
	485	495	505	515	

FIGURE 19

1 9 / 7 9

A58-SP6		10	20	30	40	50
HUMSOMATA		CAGTGTCACACCCCCCTGCTGGCAAGTCTTCTGGTCTACACTTTCTT	X:::			
		CAGTGGCCACACCCCCCTGCTGGCAAGTCTTCTGGTCTACACTTTCTT				
		706	716	726	736	746
A58-SP6		60	70	80	90	100
HUMSOMATA		GCTGGCTTCCCTGCTGTCCGGCTGCTGCATGGCCTGCTACCTGCTCA				
		GCTGGCTTCCCTGCTGCCCGCATGGCCTGCTGTGCTACCTGCTCA				
		756	766	776	786	796
A58-SP6		110	120	130	140	150
HUMSOMATA		TCGTGGCAAGATGGCGCCGTGCTCCCTGCGGGCTGGCTGGCAGCAGGC				
		TCGTGGCAAGATGGCGCCGTGGCCCTGCGGGCTGGCTGGCAGCAGGC				
		806	816	826	836	846
A58-SP6		160	170	180	190	200
HUMSOMATA		AGGGGCTCGGAGAAGAAAATCACCAAGGCTGGTGGCTGATGGTCGTGGT				
		AGGGGCTCGGAGAAGAAAATCACCAAGGCTGGTGGCTGATGGTCGTGGT				
		856	866	876	886	896
A58-SP6		210	220			
HUMSOMATA		CTTGGCCCTCTGGCTGGCTGCCCTCTCCAC				
		CTTGTGCTCTGGATGCCCTTCTAC				
		906	916			

FIGURE 20

	10	20	30	40	50
57-A-2	<u>GTGGGCATGCTGGCAACCTCCTGGAAAGGCAGTCGCCGAGGTGGCCGGTT</u>				
HUMDRD5A	X::::: :::::: :: : :::::::::::::::::::::::::::::::::::::				
	<u>GTGGCGCTGGTCATGC-CCTGGAAAGGCAGTCGCCGAGGTGGCCGGTT</u>				
	424	434	444	454	
	60	70	80	90	100
57-A-2	ACTGGCCCTTGGAGCGTTCTGCGACGTCTGGGTGGCCTTCGACATCATG				
HUMDRD5A	:::				
	<u>ACTGGCCCTTGGAGCGTTCTGCGACGTCTGGGTGGCCTTCGACATCATG</u>				
	464	474	484	494	504
	110	120	130	140	150
57-A-2	TGCTCCACTGCCTCCATCCTGAACCTGTGCGTCATCAGCGTGGACCCTA				
HUMDRD5A	:::				
	<u>TGCTCCACTGCCTCCATCCTGAACCTGTGCGTCATCAGCGTGGACCCTA</u>				
	514	524	534	544	554
	160	170	180	190	200
57-A-2	CTGGGCCATCTCCAGGCCCTTCCGCTACAAGCGCAAGATGACTCAGCGCA				
HUMDRD5A	:::				
	<u>CTGGGCCATCTCCAGGCCCTTCCGCTACAAGCGCAAGATGACTCAGCGCA</u>				
	564	574	584	594	604
	210	220	230	240	250
57-A-2	TGGCCTTGGTCATGGTCGGCTGGCATGGACCTGTCCATCCTCATCTCC				
HUMDRD5A	:::				
	<u>TGGCCTTGGTCATGGTCGGCTGGCATGGACCTGTCCATCCTCATCTCC</u>				
	614	624	634	644	654
	260	270	280	290	300
57-A-2	TTCATTCGGTCAGGTCAACTGGCACAGGGACCAAGGCGGCTCTTGGGG				
HUMDRD5A	:::::::::::::::: :::::::::: :::::::::: :::::::::: :::::::::::::				
	<u>TTCATTCGGTCAGGTCAACTGGCACAGGGACCAAGGCGGCTCTTGGGG</u>				
	664	674	684	694	704
	310				
57-A-2	GGGGCTGGACCTGCCAAA				
HUMDRD5A	::::::::::::::::::X				
	<u>GGGGCTGGACCTGCCAAA</u>				
	714	724			

FIGURE 21

B54		10	20	30	40	50
	<u>GTGGGCATCGTGGCAACATCCTGGTCATATTCGTGATCCTACGCTATGC</u>					
RNU04738	X::: :: :	:: :: :	:: :: :	:: :: :	:: :: :	:: :: :
	GTTGGCCTGGTAGGAAACGCCCTGGTCATATTCGTGATCCTACGCTATGC					
	233	243	253	263	273	
B54	60	70	80	90	100	
	CAAATGAAGACAGGCCACCAACATCTACCTGCTAACCTGGCCCTGGCTC					
RNU04738	:: ::	:: ::	:: ::	:: ::	:: ::	:: ::
	CAAATGAAGACAGGCCACCAACATCTACCTGCTAACCTGGCCGTGGCTC					
	283	293	303	313	323	
B54	110	120	130	140	150	
	ATGAGCTCTCATGCTCAGTGTGCCATTGTGGCCTGGGGCTGCCCTG					
RNU04738	:: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: ::	:: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: ::	:: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: ::	:: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: ::	:: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: ::	:: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: ::
	ATGAGCTCTCATGCTCAGTGTGCCATTGTGGCCTGGGGCTGCCCTG					
	333	343	353	363	373	
B54	160	170	180			
	CGCCACTGGCCGTTGGGGGGGTGCTGTGCCGC					
RNU04738	:: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: ::	:: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: ::	X			
	CGCCACTGGCCGTTGGGGGGGTGCTGTGCCGC					
	383	393	403			

FIGURE 22

9	18	27	36	45	54
GTG	GGC	ATG	GTG	GGC	AAC
CTG	CAC	AAC	GTG	ACG	AAC
---	---	---	---	---	---
Val	Gly	Met	Val	Gly	Asn
63	72	81	90	99	108
CTG	CAC	AAC	CTG	CTG	CTG
---	---	---	---	---	---
Leu	His	Asn	Val	Thr	Asn
117	126	135	144	153	162
ATG	TGC	ACC	TGC	CCG	CTG
---	---	---	---	---	---
Met	Cys	Thr	Ala	Cys	Val
171	180	189	198	207	216
TGG	TTC	GGC	CTG	TGC	TGC
---	---	---	---	---	---
Ile	Phe	Gly	Gly	Leu	Cys
225	234	243	252	261	270
GTC	TAT	TTC	AGC	ACC	ATC
---	---	---	---	---	---
Val	Tyr	Val	Phe	Thr	Leu
279	288	297			
GCT	GGT	GCA	CCC	GCT	GAG
---	---	---	---	---	---
Ala	Gly	Ala	Pro	Ala	Glu

FIGURE 23

5'	GGC	CTG	CTG	CTG	GTC	ACC	TAC	CTG	CTG	CCT	CTG	GTC	ATC	CTG	CTG	TCT	TAC	54
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Gly	Leu	Leu	Leu	Val	Thr	Tyr	Leu	Leu	Pro	Leu	Ile	Leu	Val	Ile	Leu	Leu	Ser	Tyr
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	63				72			81			90			99			108	
GTC	CGG	GTC	TCA	GTG	AAG	CTC	CGC	AAC	CCG	GTG	CGG	GTC	TGC	GTG	ACC	CAG		
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Val	Arg	Val	Ser	Val	Lys	Leu	Arg	Asn	Pro	Val	Val	Pro	Val	Cys	Val	Thr	Gln	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	117				126			135			144			153			162	
AGC	CAG	GCC	GAC	TGG	GAC	CGC	GCT	CGG	CGC	CGG	CGC	ACC	TTC	TGC	TTG	CTG	GTG	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ser	Gln	Ala	Asp	Trp	Asp	Arg	Ala	Arg	Arg	Arg	Arg	Arg	Thr	Phe	Cys	Leu	Leu	Val
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	171				180			189			198							
GTC	GTC	GTC	GTC	GTG	GTG	TTT	GCC	ATC	TGC	TGG	TTC	CCT	TAC	TAC	3'			
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Val	Val	Val	Val	Phe	Ala	Ile	Cys	Ile	Cys	Trp	Leu	Pro	Tyr	Tyr				

2 4 / 7 9

FIGURE 24

86 TIEO 23082060

2 5 / 7 9

FIGURE 25

FIGURE 26

FIGURE 26

2 6 / 7 9

p19P2	1	VGMVGNVLLV	LVIARVRRRH	NVTNFLIGNL	ALSDVLMCTA	CVPILTLAYAF	50
S12863	1	LGvSGNLALI	IILKQKEMR	NVTNLLIVNL	SFSDLVAVM	CLPFITFYTL	50
p19P2	51	EPRGWVFGGG	LCCHLVFFLQP	VTYYVSVFTL	TTIEVDRYVG	AGAPAEAGH	100
S12863	51	MDH-WVFGET	MCKLNPFVQC	VSITSVSIFSL	VLIAYERHQL	IINPRGWRPN	100
p19P2	101			110	120	130	140
S12863	101	NRHAYIGITV	IWVLAVASSL	PFVIYQILTD	EPFQNVSLAA	FKDKYVCFDK	150
p19P2	151	GLLLV	TYLLPLLVIL	LS-----Y	VRSVKLRNPV	VPVCVTSQA	200
S12863	151	FPSDSHRLSY	TLLLVLQYF	GPLCFIFICY	FKIYIRLKRR	NNMMDKIRD S	200
p19P2	201	DWDRAARRRT	FCLEVVVVVV	FAICWLPHY.	250
S12863	201	KYRSSETKRI	NVMLLSIVVA	FAVCWLPLT.	250

FIGURE 27

5' GTG GGC ATG GTG GGC AAC ATC CTG CTG GTG CTG GTG ATC GCG CGG GTG CGC CGG
 Val Gly Met Val Gly Asn Ile Leu Leu Val Val Ile Ala Arg Val Arg Arg

63 72 81 90 99 108
 CTG TAC AAC GTG ACG AAT TTC CTC ATC GGC AAC CTG GCC TTG TCC GAC GTG CTC
 Leu Tyr Asn Val Thr Asn Phe Leu Ile Gly Asn Leu Ala Leu Ser Asp Val Leu

117 126 135 144 153 162
 ATG TGC ACC GCC TGC GTG CCG CTC ACG CTG GCC TAT GCC TTC GAG CCA CGC GGC
 Met Cys Thr Ala Cys Val Pro Leu Thr Leu Ala Tyr Ala Phe Glu Pro Arg Gly

171 180 189 198 207 216
 TGG GTG TTC GGC GGC GGC CTG TGC CAC CTG GTC TTC CTG CAG GCG GTC ACC
 Trp Val Phe Gly Gly Leu Cys His Leu Val Phe Phe Leu Gln Ala Val Thr

225 234 243 252 261 270
 GTC TAT GTG TCG GTG TTC ACG CTC ACC ACC ATC GCA GTG GAC CGC TAC GTC GTG
 Val Tyr Val Ser Val Phe Thr Leu Thr Ile Ala Val Asp Arg Tyr Val Val

279 288 297 306 315 324
 CTG GTG CAC CCG CTG AGG CGG CGC ATC TCG CTG CGC CTC AGC GCC TAC GCT GTG
 Leu Val His Pro Leu Arg Arg Arg Ile Ser Leu Arg Leu Ser Ala Tyr Ala Val

333 342 351 360 369 378
 CTG GCC ATC TGG GTG CTG TCC GCG GTG CTG GCG CTG CCC GCC GCC GTG CAC ACC
 Leu Ala Ile Trp Val Leu Ser Ala Val Leu Ala Leu Pro Ala Ala Val His Thr

387 396 405 414 423 432
 TAT CAC GTG GAG CTC AAG CCG CAC GAC GTG CGC CTC TGC GAG GAG TTC TGG GGC
 Tyr His Val Glu Leu Lys Pro His Asp Val Arg Leu Cys Glu Glu Phe Trp Gly

441 450 459 468 477 486
 TCC CAG GAG CGC CAG CGC CAG CTC TAC GCC TGG GGG CTG CTG CTG GTC ACC TAC
 Ser Gln Glu Arg Gln Arg Gln Leu Tyr Ala Trp Gly Leu Leu Leu Val Thr Tyr

495 504 513 522 531 540
 CTG CTC CCT CTG CTG GTC ATC CTC CTG TCT TAC GCC CGG GTG TCA GTG AAG CTC
 Leu Leu Pro Leu Leu Val Ile Leu Leu Ser Tyr Ala Arg Val Ser Val Lys Leu

549 558 567 576 585 594
 CGC AAC CGC GTG GTG CCG GGC CGC GTG ACC CAG ACC CAG GCC GAC TGG GAC CGC
 Arg Asn Arg Val Val Pro Gly Arg Val Thr Gln Ser Gln Ala Asp Trp Asp Arg

603 612 621 630 639 648
 GCT CGG CGC CGG CGC ACC TTC TGC TTG CTG GTG GTG GTC GTG GTG GTG TTC ACC
 Ala Arg Arg Arg Arg Thr Phe Cys Leu Leu Val Val Val Val Val Phe Thr

657 666
 CTC TGC TGG CTG CCC TTC TTC 3'
 Leu Cys Trp Leu Pro Phe Phe

28 / 79

FIGURE 28

FIGURE 29

FIGURE 30

5'	GAG	CCA	GCT	GAC	CTC	TTC	TGG	AAG	AAC	CTG	GAC	TTG	CCC	ACC	TTC	ATC	CTG	CTC	54
Glu	Pro	Ala	Asp	Leu	Phe	Trp	Lys	Asn	Leu	Asp	Leu	Pro	Thr	Phe	Ile	Ile	Leu	Leu	
63																			108
AAC	ATC	CTG	CCC	CTC	ATC	ATC	TCT	GTG	GCC	TAC	GTG	CGT	GTG	ACC	AAG	AAG	AAA		
Asn	Ile	Leu	Pro	Leu	Ile	Ile	Ser	Val	Ala	Tyr	Val	Arg	Val	Thr	Lys	Lys			
117																			162
CTG	TGG	CTG	TGT	AAT	ATG	ATT	GTC	GAT	GTG	ACC	ACA	GAG	CAG	TAC	TTT	GCC	CTG		
Leu	Trp	Leu	Cys	Asn	Met	Ile	Val	Asp	Val	Thr	Thr	Glu	Gln	Tyr	Phe	Ala	Ile		
171																			216
CGG	CCC	AAA	AAG	AAG	ACC	ATC	AAG	ATG	TTG	ATG	CTG	GTG	GTA	GTC	CTC	CTC	TTT		
Arg	Pro	Lys	Lys	Lys	Thr	Ile	Lys	Met	Leu	Met	Leu	Val	Val	Val	Val	Leu	Phe		
225																			207
GCC	CTC	TGC	TGG	TTG	CCT	CTC	GAC	3'											234
Ala	Leu	Cys	Trp	Leu	Pro	Leu	Asp												

FIGURE 31

FIGURE 32

FIGURE 32

3 2 / 7 9

FIGURE 33

		10	20	30	40	50
p63A2 P30731	1 1	VCHVTFRNQR VCHVTEKNQR	MHSATSTLEIV MHSATSLEIV	NIAVADIMITI NIAVADIMITI	LINTPFELVR LINTPFELVR	FVNCTWIFQR FVNCTWIFQR
		60	70	80	90	100
p63A2 P30731	51 51	GMCHYVSRAQ GMCHYVSRAQ	YCSLHVSLT YCSLHVSLT	LTATAVDRHQ	VIMHPLKPRI	SITKGVTYIA
		110	120	130	140	150
p63A2 P30731	101 101	VIWWMATFFS	LPHALICQKLF	TFKYSEDIVR	SLCLPDFPEP	ADLEWANIDIE ADLEWANIDIE
		160	170	180	190	200
p63A2 P30731	151 151	PTEFTINNIB ATKFLLYLIP	ILITISVAYR ILITISVAYR	UTKTKTMCM VAKCMLCMT	IJDVITTEQYL IGDVITTEQYL	AIRPKKKKII AIRRKCKTV
		210	220	230	240	250
p63A2 P30731	201 201	KMIMIAYVAV KHEVIVVAVU	250
						250

FIGURE 34

1	CATCGTCAAGCAGATGAAGATCATCCACGAGGA	TGGCTACTCCGAGGGCCAGCAGAAATT	60
1			1
61	CTGCCCTTCCTCCCGAGTGCTTCCCGCTCTCAA	ACCCCCACTCCCAGGTGGCCATG	120
1		Met	1
121	GCCTCATCGACCCTCGGGGCCAGGGTTCTGACT	TATTTCTGGGCTGCGCGGGCG	180
1	AlaSerSerThrThrArgGlyProArgValSerAspLeuPheSerGlyLeuProProAla		21
181	GTCACAACTCCGCCAACAGAGCGCAGAGGCC	TOGGCGGCCAACGGGTCGGTGGCTGGC	240
21	ValThrThrProAlaAsnGlnSerAlaGluAlaSerAlaGlyAsnGlySerValAlaGly		41
241	GCGGACCGCTCCAGCGTCACGCCCTTCCAGAGC	CTGCAGCTGGTGCATCAGCTGAAGGGG	300
41	AlaAspAlaProAlaValThrProPheGlnSerLeuGlnLeuValHisGlnLeuLysGly		61
301	CTGATCGCTGCTCACAGCGCTGGTGGCTGGG	CTGGTGGCAACTGCCTGCTG	360
61	LeuIleValLeuTyrSerValValValValGly	LeuValGlyAsnCysLeuLeu	81
361	GTGCTGGTGTGCGCGGGTGCGCCGGCTGCACA	ACCGTGACGAACCTCCATCGGCCAAC	420
81	ValLeuValIleAlaArgValArgArgLeuHisAsnValThrAsnPheLeuIleGlyAsn		101
421	CTGGCCCTGGTCCGACGTGCTCATGTGCA	CCCGCTTGCGCTACGCTGCGCTACG	480
101	LeuAlaLeuSerAspValLeuMetCysThrAlaCysValProLeuThrLeuAlaTyrAla		121
481	TTCGAGCCACGGCTGGTGTGCGCCGCGC	CTGTGCCACCTGGCTTCTCTCTGCGAG	540
121	PheGluProArgGlyTrpValPheGlyGly	LeuCysHisLeuValPheLeuGln	141
541	CCGGTCACCGCTATGIGTGGTTCACGCTCAC	ACCACATCGCAGTGGACCGCTACGTC	600
141	ProValThrValTyrValSerValPheThr	LeuThrThrIleAlaValAspArgTyrVal	161
601	GTGCTGGTGCACCCGCTGAGGCCGCA	TCTCGCTGCCCTCAGGCCCTACGCTGCTG	660
161	ValLeuValHisProLeuArgArgIleSerLeuArgLeuSerAlaTyrAlaValLeu		181
661	GCCATCTGGCGCTGTCGGCTGGCGCTGCCG	CGCCTGCGCACACCTATCACGTG	720
181	AlaIleTrpAlaLeuSerAlaValLeuAlaLeuProAlaAlaValHisThrTyrHisVal		201
721	GAGCTCAAGCCGACGACGTGCGCTCTGCGA	GAGGAGTTCTGGGGCTCCAGGAGCGGCCAG	780
201	GluLeuLysProHisAspValArgLeuCysGluGluPheTrpGlySerGlnGluArgGln		221
781	CGCCAGCTTACGCCCTGGGCTGCTGGTCA	CCACTACCTGCTCCCTCTGCTGGTCATC	840
221	ArgGlnLeuTyrAlaTrpGlyLeuLeuLeuValThrTyrLeuLeuProLeuLeuValIle		241
841	CTCCTGTCTTACGTCCGGTGTCACTGAA	AGCTCCGCAACCGCGTGGTGCCTGGCTGCGTG	900
241	LeuLeuSerTyrValArgValSerValLys	LeuArgAsnArgValValProGlyCysVal	261
901	ACCCAGAGCCAGGCCGACTGGGACCGCGC	TGCCGCGCACCTCTGCTTGCTGGTG	960
261	ThrGlnSerGlnAlaAspTrpAspArgAlaArgArgArgArgThrPheCysLeuLeuVal		281
961	GTGGTCGTGGTGGTGTGCGCTGCTGGCT	GGCGCTGCACGCTCTCAACCTGCTGCGG	1020
281	ValValValValValPheAlaValCysTrpLeuProLeuHisValPheAsnLeuLeuArg		301
1021	GACCTCGACCCCCACGCCATCGACCC	CTTACGCCCTGGGCTGGTCAGCTGCTCTGCCAC	1080
301	AspLeuAspProHisAlaIleAspProTyrAlaPheGlyLeuValGlnLeuLeuCysHis		321
1081	TGGCTCGCACTGAGTTGGCCTGCTACAA	CCCCTCTACGCCCTGGCTGCAACGACAGC	1140
321	TrpLeuAlaMetSerSerAlaCysTyrAsnProPheIleTyrAlaTrpLeuHisAspSer		341
1141	TTCCCGCAGGGAGCTGCCAAACTGTTGG	TGCTGGCCGGCAAGATAGCCCCCATGGC	1200
341	PheArgGluGluLeuArgLysLeuLeuValAlaTrpProArgLysIleAlaProHisGly		361
1201	CAGAATATGACCGTCAGCGTGGTCATCTG	ATGCCACTTAGCCAGGCCTGGTCAAGGACC	1260
361	GlnAsnMetThrValSerValValIle***		371
1261	TCCACTTCAACTGGCCTCTAGGGCACCAC	TCGAGGTCAATCIGGTGCTTATTCTCAGCA	1320
371			371
1321	CCAGAGCTAGC		1331
371			371

FIGURE 35

STEREOTYPE

3 6 / 7 9

FIGURE 36

FIGURE 37

5' GTG GGC CTG GTG GGC AAC ATC CTG GCT TCC TGG CAC AAG CGT GGA GGT CGC CGT
 Val Gly Leu Val Gly Asn Ile Leu Ala Ser Trp His Lys Arg Gly Gly Arg Arg
 GCT GCT TGG GTA GTG TGT GGA GTC GTG TGG CTG GCT GTG ACA GCC CAG TGC CTG
 Ala Ala Trp Val Val Cys Gly Val Val Trp Leu Ala Val Thr Ala Gln Cys Leu
 CCC ACG GCA GTC TTT GCT GCC ACA GGC ATC CAG CGC AAC CGC ACT GTG TGC TAC
 Pro Thr Ala Val Phe Ala Ala Thr Gly Ile Gln Arg Asn Arg Thr Val Cys Tyr
 GAC CTG AGC CCA CCC ATC CTG TCT ACT CGC TAC CTG CCC TAT GGT ATG GCC CTC
 Asp Leu Ser Pro Pro Ile Leu Ser Thr Arg Tyr Tyr Leu Pro Tyr Gly Met Ala Leu
 ACG GTC ATC GGC TTC TTG CTG CCC TTC ATA GCC TTA CTG GCT TGT TAT TGT CGC
 Thr Val Ile Gly Phe Leu Leu Pro Phe Ile Ala Leu Leu Ala Cys Tyr Cys Arg
 ATG GCC CGC CGC CTG TGT CGC CAG GAT GGC CCA GCA GGT CCT GTG GCC CAA GAG
 Met Ala Arg Arg Leu Cys Arg Gln Asp Gly Pro Ala Gly Pro Val Ala Gln Glu
 CGG CGC AGC AAG GCG GCT CGT ATG GCT GTG GTG GCA GCT GTC TTT GCC CTC
 Arg Arg Ser Lys Ala Ala Arg Met Ala Val Val Val Ala Ala Val Phe Ala Leu
 TGC TGG CTG CCT CTC TAC 3'
 Cys Trp Leu Pro Leu Tyr

3 8 / 7 9

FIGURE 38

FIGURE 39

3 9 / 7 9

		1 0	2 0	3 0	4 0	5 0
P 3 H 2 - 1 7	1	V G L I V G N I L A S	W H K R G G R R A A	W V V C G V V W L A	V T A Q C L P T A V	F A A T G I Q R N -
P 3 4 9 9 6	1	R Y T G V V H P L K	S I L G R L K K N A	V Y V S S L V W A L	V V A V I A P T I F	Y S G I T G V R R N -
A 4 6 2 2 6	1	R Y L A V V H P T R	S A R W R T A P V A	R T V S A A V W V A	S A V V V L P V V V	F -- S G V P R G -
J N 0 6 0 5	1	R Y V A V V H P L R	A A T Y R R P S V A	K L I N L G V W L A	S I L V T L P I A I	F A D T R P A R G G
S 2 8 7 8 7	1	R Y L A I V H A T N	S Q K P R K L L A E	K V V Y V G V W L P	A V L L T I P D L I I	F A D I K E V D E -
		6 0	7 0	8 0	9 0	1 0 0
P 3 H 2 - 1 7	5 1	R T V - C Y D L --	S P P I L S T R Y L	P Y G M A L T V I G	F L L P F I A L L A	C Y C R M A R R I C
P 3 4 9 9 6	5 1	K T I T C Y D T --	T A D E Y L R S Y F	V Y S M C T T V F M	F C I P F I V I L G	C Y G L I V K A L I
A 4 6 2 2 6	5 1	M S T - C H M Q W P	E P A A A W R A G E	I I Y -- I T A A L G	F F G P L L V T I C L	C Y L I I V V K V R
J N 0 6 0 5	5 1	Q A V A G N L Q W P	H P A W S A V F V V	Y T F -- -- L L G	F L L P V L A T I G E	C Y L I I V G K V R
S 2 8 7 8 7	5 1	R Y I I - C D R F --	Y P S D L W L V V E	Q F Q -- H I V V G	L L I P G I V I L S	C Y C I I I S K L S
		1 1 0	1 2 0	1 3 0	1 4 0	1 5 0
P 3 H 2 - 1 7	1 0 1	R Q D G P A - G P V	A Q E - R R S -- K	A A R M A V V V A A	V F A L C W L P I Y	• • • • •
P 3 4 9 9 6	1 0 1	Y K D L D N - S P L	-- R R -- -- K	S I Y L V I I V L T	V F A V S Y L P F H	• • • • •
A 4 6 2 2 6	1 0 1	S A G R R V W A P S	C Q R R R S E R R	V I T R M V V A V V A	L F V L C W V P F Y	• • • • •
J N 0 6 0 5	1 0 1	A V A L R A -- G	W Q Q R R R S E K K	I T R L V I L M V V V	V F V L C W V P F Y	• • • • •
S 2 8 7 8 7	1 0 1	H S K G -- -- --	Y Q K R -- -- -- K	A L K T T V I L I L	T F F A C W L P Y	• • • • •

FIGURE 40

10 19 28 37 46 55

5' GTG GGC CTG GTG GGC AAC TTC CTG GCC GCG ATG TCT GTG GAT CGC TAC GTG GCC
Val Gly Leu Val Gly Asn Phe Leu Ala Ala Met Ser Val Asp Arg Tyr Val Ala

64 73 82 91 100 109

ATT GTG CAC TCG CGG CGC TCC TCC CTC AGG GTG TCC CGC AAC GCA CTG CTG
Ile Val His Ser Arg Arg Ser Ser Leu Arg Val Ser Arg Asn Ala Leu Leu

118 127 136 145 154 163

GGC GTG GGC TTC ATC TGG GCG CTG TCC ATC GCC ATG GCC TCG CCG GTG GCC TAC
Gly Val Gly Phe Ile Trp Ala Leu Ser Ile Ala Met Ala Ser Pro Val Ala Tyr

172 181 190 199 208 217

CAC CAG CGT CTT TTC CAT CGG GAC AGC AAC CAG ACC TTC TGC TGG GAG CAG TGG
His Gln Arg Leu Phe His Arg Asp Ser Asn Gln Thr Phe Cys Trp Glu Gln Trp

226 235 244 253 262 271

CCC AAC AAG CTC CAC AAG AAG GCT TAC GTG GTG TGC ACT TTC GTC TTT GGG TAC
Pro Asn Lys Leu His Lys Ala Tyr Val Val Cys Thr Phe Val Phe Gly Tyr

280 289 298 307 316 325

CTT CTG CCC TTA CTG CTC ATC TGC TTT TGC TAT GCC AAG GTC CTT AAT CAT CTG
Leu Leu Pro Leu Leu Ile Cys Phe Cys Tyr Ala Lys Val Leu Asn His Leu

334 343 352 361 370 379

CAT AAA AAG CTG AAA AAC ATG TCA AAA AAG TCT GAA GCA TCC AAG AAA AAG ACT
His Lys Lys Leu Lys Asn Met Ser Lys Lys Ser Glu Ala Ser Lys Lys Thr

388 397 406 415 424 433

GCA CAG ACC GTC CTG GTG GTC GTT GTA GTA TTT GCC CTC TGC TGG CTG CCT TTC
Ala Gln Thr Val Leu Val Val Val Val Phe Ala Leu Cys Trp Leu Pro Phe

TAC 3'

Tyr

FIGURE 41

FIGURE 42

	10	20	30	40	50	
p3H2-34	VGLVNF	MSVDRYVA	HSR RSSLRV	SRNALLVEGF	IPLLSIAMS	
JN0605	MEFSEFCITY	ESVDRYVA	HPI RAAYRR	PSVAKLTNLG	VMAASH4MTE	50
B41795	QFSTIEFCITY	MSVDRYVA	HPI SAKWRR	PRFAKMTMA	WCFSLLVYI	50
A39297	METSIYCFITY	ESVDRYVA	HPI KAAVRR	PIVAKVNLG	WMLSLLVIL	50
p3H2-34	PVA-YHORLF	HRDSNQTFCM	EOWENKLHK-	-KAYVVCPTEV	EGMLLPILLI	100
JN0605	PTAIFADTRP	AREGQAVACN	LQWP-HPAWS-	-AVFVWYTFL	LGFELLEVLA	100
B41795	PIMIYAGLRS	NQWGRSS-CT	INWFGEESGAW	YTGFILLYTFL	LGFELVPLII	100
A39297	PIWFEVRTIA	NSFGTVA-CN	MLMPEPAQRW	LUGFVLYTFL	MCFLLPGAI	100
p3H2-34	CFCY---AK	VLNHLHKLIK	NMSRKSEASK	KKPAOFVIVW	WWVFALCMLF	150
JN0605	CLCYLEIYGK	MRVALRAGW	QQRRISE---	RKITRIVLMV	VVVFVLCKWP	150
B41795	CLCYLEIYGK	VKSSEGIRVGS	SKRKSE---	KKVTRMVSTV	VAVFIFCWLWP	150
A39297	CLCYVLTAK	MRMVALKACW	QQRKSE---	RKITMMVMMV	VVVEVICWMF	150
p3H2-34		160	170	180	190	200
JN0605	FY.....	200
B41795	FY.....	200
A39297	FY.....	200

FIGURE 43

5'	GTG	GGC	ARG	GTC	GGC	AAC	GTC	CTG	GTG	CTC	TCC	TTC	GCC	TTC	TCC	ATC	AAG	55
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
Val	Gly	Met	Val	Gly	Asn	Val	Leu	Val	Leu	Trp	Phe	Phe	Gly	Phe	Ser	Ile	Lys	
64	64	CCC	TTC	TCC	GTC	TAC	TTC	CTG	CAC	CTG	GCC	AGC	GCC	GAC	GCC	GCC	GCC	109
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
Arg	Thr	Pro	Phe	Ser	Vai	Tyr	Phe	Leu	His	Leu	Ala	Ser	Ala	Asp	Gly	Ala	Tyr	
118	118	AGC	AAG	GCC	GNG	TTC	TCC	CTG	AAC	GCC	TAC	163						
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
Leu	Phe	Ser	Lys	Ala	Val	Phe	Ser	Leu	Leu	Asn	Ala	Gly	Gly	Phe	Leu	Gly	Thr	
172	172	CAC	TAT	GTG	CGC	AGC	GTG	GCC	CGG	GTG	CTG	GCG	TTC	TTC	CTG	GGC	ACC	217
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
Phe	Ala	His	Tyr	Val	Arg	Ser	Val	Ala	Arg	Val	Leu	Gly	Leu	Cys	Ala	Phe	Val	
226	226	GCG	GTG	AGC	CTC	CTG	CCG	GCC	GTC	AGC	ATG	GAG	CCG	TTC	GCG	TCT	G 3'	262
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
Ala	Gly	Val	Ser	Leu	Leu	Pro	Ala	Val	Ser	Met	Glu	Arg	Cys	Ala	Ser			

26 TUE 1988

4 4 / 7 9

FIGURE 44

FIGURE 45

4 5 / 7 9

PMD4 A35639	PMD4 A35639	PMD4 A35639
1 VGMVGNVIVL 1 CGLVGNGLVL	1 WFERGFSIKRT 1 WFFFGFSIKRT	1 PFSVYFELHLA 1 PFSIYFELHLA
10 VGMVGNVIVL 1 CGLVGNGLVL	20 WFERGFSIKRT 20 WFFFGFSIKRT	30 PFSVYFELHLA 30 PFSIYFELHLA
50 SADGAAYLFESK 50 AVFESLLNAGC	40 SADGAAYLFESK 40 AVFESLLNAGC	50 SADGAAYLFESK 50 AVFESLLNAGC
51 ELGTFAHYVR 51 ELGSEPDYVR	60 SVARVLLGLCA 60 RVSRIVGLCT	70 FVAGVSLLPA 70 FFAGVSLLPA
51 VSMERCAS... 51 ISIERCVS...	80 VSMERCAS... 80 FFAGVSLLPA	90 VSMERCAS... 90 FFAGVSLLPA
		100 ... 100 ...
		100 ... 100 ...

FIGURE 46

1	CAAAGCAACAGGTGCAACCTCAAGGCACTGAAAGCAAGGGACGCAGCTACAAGGGCCAAGGGATTGAACC	72
1		1
73	CATAACCGCTCAGAAGATTCTCCGCCTGCGGAGAGCTGCGGAGGAGTCCCACCCGTCCAGCTTGCTGACTGC	144
1		1
145	GAGCAGTGAGAGTCGCCCTAGACCCGTACCTCTGTGTTCTGGAGCCTGCCGCCCCCGCACGGAAAGGCTTAG	216
1		1
217	CTCGGGACTTGCAGCACCGCCTCCCTTTAGCCAGGCCAGGCACGAGGATAGTGTGATCGGGCACAGCCAGG	288
1		1
289	GTCGCTCTTCCAGGCTTCTTGCAGGGTTGCGGGAGGTACTAGTGGAGACGCGCGCCTCGCTCTCGCCGCT	360
1		1
361	CTGTCCCTGGGCCACTCCGTGATCCTAGGCTACCTCCAGAGCCAGTTTCCCTGGCTGGCACAACTCTCCAGG	432
1		1
433	GCGCTCCGGTCCGTTGCACAGCGCCCCAAGGGGTATCCCAGTAAGTGATGGAACCTGGCTATGGTGAACCTC	504
1	MetGluLeuAlaMetValAsnLeu	8
505	AGTGAAGGAAATCGGAGCGACCCAGAGCCGCCAGCCCCCGAGTCCAGGCCCTCTCGGCATTGGCGTGGAG	576
8	SerGluGlyAsnGlySerAspProGluProProAlaProGluSerArgProLeuPheGlyIleGlyValGlu	32
577	AACTTCATTACCGCTGGTAGTGTGTTGGCTGATTTCGCGATGGCGTGCTGGCAACAGCCTGGTGATCACC	648
32	AsnPheIleThrLeuValValPheGlyLeuIlePheAlaMetGlyValLeuGlyAsnSerLeuValIleThr	56
649	GTGCTGGCGCCAGCAAACCAGGCAAGGCCGCGCAGCACCAACCTGTTATCCTCAATCTGAGCATCGCA	720
56	ValLeuAlaArgSerLysProGlyLysProArgSerThrThrAsnLeuPheIleLeuAsnLeuSerIleAla	80
721	GACCTGGCCTACCTGCTCTCTGCATCCCTTTCAGGCCACCGTGATGCACTGCCAACCTGGGTGCTGGC	792
80	AspLeuAlaTyrLeuLeuPheCysIleProPheGlnAlaThrValTyrAlaLeuProThrTrpValLeuGly	104
793	GCCTTCATCTGCAAGTTTATACACTACTTCTCACCGTGTCCATGCTGGTGAGCATCTTCACCCCTGGCCGCG	864
104	AlaPheIleCysLysPheIleHisTyrPhePheThrValSerMetLeuValSerIlePheThrLeuAlaAla	128
865	ATGTCTGGATCGCTACGTGGCCATTGTGCACTCGCGGCCCTCCTCCCTCAGGGTGTCCCGCAACGCA	936
128	MetSerValAspArgTyrValAlaIleValHisSerArgSerSerLeuArgValSerArgAsnAla	152
937	CTGCTGGCGTGGCTTCATCTGGCGCTGTCCATGCCATGGCCTCGCCGTTGGCTACCACCAGCGCTTT	1008
152	LeuLeuGlyValGlyPheIleTrpAlaLeuSerIleAlaMetAlaSerProValAlaTyrHisGlnArgLeu	176
1009	TTCCATCGGGACAGCAACCAGACCTCTGCTGGGAGCAGTGGCCAAACAAGCTCCACAAGAAGGCTTACGTG	1080
176	PheHisArgAspSerAsnGlnThrPheCysTrpGluGlnTrpProAsnLysLeuHisLysAlaTyrVal	200
1081	GTGTGCACTTCGTCTTGGTACCTCTGCCCTTACTGCTCATCTGCTTTTGCTATGCCAAGGTCTTAAT	1152
200	ValCysThrPheValPheGlyTyrLeuLeuProLeuLeuIleCysPheCysTyrAlaLysValLeuAsn	224
1153	CACTCGCATAAAAAGCTGAAAAACATGTCAAAAAGCTGAAAGCATCCAAGAAAAAGACTGCACAGACCGTC	1224
224	HisLeuHisLysLeuLysAsnMetSerLysSerGluAlaSerLysLysThrAlaGlnThrVal	248
1225	CTGGTGGTCGTGTAGTATTGGCATATCCTGGCTGCCCATCATGTCGCCACCTCTGGCTGAGTTGGA	1296
248	LeuValValValValPheGlyIleSerTrpLeuProHisHisValValHisLeuTrpAlaGluPheGly	272
1297	GCCTCCCCTACTGACGCCAGCTTCTCTCTCAGAACATCAGGCCATTGCTGGCATACAGCAACTCCTCA	1368
272	AlaPheProLeuThrProAlaSerPhePheArgIleThrAlaHisCysLeuAlaTyrSerAsnSerSer	296
1369	GTGAACCCCATCATATGCCCTCTCAGAAAACCTCCGGAAAGGCGTACAAGCAAGTGTCAAGTGTCA	1440
296	ValAsnProIleIleTyrAlaPheLeuSerGluAsnPheArgLysAlaTyrLysGlnValPheLysCysHis	320
1441	GTTTGGATGAACTCCACGCAGTGAAACTAAGGAAAACAAGAGCCGGATGGCACCCCCGCCATCCACCAAC	1512
320	ValCysAspGluSerProArgSerGluThrLysGluAsnLysSerArgMetAspThrProProSerThrAsn	344
1513	TGCACCCACGTGTGAAGGTTGGGGAGCCCTCCGACTTCCAGCTCCCATGTCAGTGTGTTAGAGAGAGGGCG	1584
344	CysThrHisVal***	349
1585	GAGCGAATTATCAAGTAACATGG	1607
349		349

47 / 79

FIGURE 47

FIGURE 48

MOUSEGALRECE	1	MELAVVNLSE	10	GNCSDPEPPA	20	PESRPLFGIG	30	VENFTLWVF	40	GHIFAGVLS	50
HUMGALAMI	1	MELAVVNLSE	60	GNASCPEPPA	70	PEPGPLFGIG	80	VENFTLWVF	90	GHIFAGVLS	50
MOUSEGALRECE	51	NSLVITFVAR	51	SKPGKPRSTT	51	NLFILNLSIA	90	DAYLFCIP	100	FQATVYALPT	100
HUMGALAMI	51	NSLVITFVAR	51	SKPGKPRSTT	51	NLFILNLSIA	90	DAYLFCIP	100	FQATVYALPT	100
MOUSEGALRECE	101	WVLGAFICKF	101	IHYFFFTVSH	110	VSIFTLAAMS	120	VDRYVATVRS	130	RSSSLRVSR	150
HUMGALAMI	101	WVLGAFICKF	101	IHYFFFTVSH	110	VSIFTLAAMS	120	VDRYVATVRS	130	RSSSLRVSR	150
MOUSEGALRECE	151	NALLGVGFIM	151	ALSIAMASPV	160	AHQDFEH-R	170	DSNOTFCWEQ	180	WPNKLUHKKAY	200
HUMGALAMI	151	NALLGVGFIM	151	ALSIAMASPV	160	AHQDFEHPR	170	DSNOTFCWEQ	180	WPDPRHKKAY	200
MOUSEGALRECE	201	WVCTFVEGYL	201	LPLLLICFCY	210	AKVLNHLKK	220	DSNOTFCWEQ	230	SKKKTAOFVL	250
HUMGALAMI	201	WVCTFVEGYL	201	LPLLLICFCY	210	AKVLNHLKK	220	DSNOTFCWEQ	230	SKKKTAOFVL	250
MOUSEGALRECE	251	VVVVYFGISM	251	LPHHVHLWA	260	EFGAFPLTPA	270	SFERITAHC	280	LAYSNSVNP	300
HUMGALAMI	251	VVVVYFGISM	251	LPHHVHLWA	260	EFGAFPLTPA	270	SFERITAHC	280	LAYSNSVNP	300
MOUSEGALRECE	301	IIYAFLESENF	301	RKAYKQVFKC	310	HCDCESPRSE	320	TKENKSRMT	330	PPSTNCTHVK	350
HUMGALAMI	301	IIYAFLESENF	301	RKAYKQVFKC	310	HCDCESPRSE	320	TKENKSRMT	330	PPSTNCTHVK	350
MOUSEGALRECE	351	X.....	351	X.....	360	370	380	400
HUMGALAMI	351	X.....	351	X.....	360	370	380	400

FIGURE 49

9 18 27 36 45 54

5' CTC GCG GCT CTG GGT ATG GAT CGG TAT CTT CTC ACC CTT CAC CCA GTG TGG TCC

Leu Leu Thr Leu His Pro Val Trp Ser

63 72 81 90 99 108

CAA AAG CAC CGA ACC TCA CAC TGG GCT TCC AGA GTC GTT CTG GGA GTC TGG CTC

Gln Lys His Arg Thr Ser His Trp Ala Ser Arg Val Val Leu Gly Val Trp Leu

117 126 135 144 153 162

TCT GCC ACT GCC TTC AGC GTG CCC TAT TTG GTT TTC AGG GAG ACA TAT GAT GAC

Ser Ala Thr Ala Phe Ser Val Pro Tyr Leu Val Phe Arg Glu Thr Tyr Asp Asp

171 180 189 198 207 216

CGT AAA GGA AGA GTG ACC TGC AGA AAT AAC TAC GCT GTG TCC ACT GAC TGG GAA

Arg Lys Gly Arg Val Thr Cys Arg Asn Asn Tyr Ala Val Ser Thr Asp Trp Glu

225 234 243 252 261 270

AGC AAA GAG ATG CAA ACA GTA AGA CAA TGG ATT CAT GCC ACC TGT TTC ATC AGC

Ser Lys Glu Met Gln Thr Val Arg Gln Trp Ile His Ala Thr Cys Phe Ile Ser

279 288 297 306 315 324

CGC TTC ATA CTG GGC TTC CTT CTG CCT TTC TTA GTC ATT GGC TTT TGT TAT GAA

Arg Phe Ile Leu Gly Phe Leu Leu Pro Phe Leu Val Ile Gly Phe Cys Tyr Glu

333 342 351 360 369 378

AGA GTA GCC CGC AAG ATG AAA GAG AGG GGC CTC TTT AAA TCC AGC AAA CCC TTC

Arg Val Ala Arg Lys Met Lys Glu Arg Gly Leu Phe Lys Ser Ser Lys Pro Phe

387 396 405 414 423 432

AAA GTC ACG ATG ACT GCT GTT ATC TCT TTT TTC TGT CCT GGC TTC CCT ACC ACA

Lys Val Thr Met Thr Ala Val Ile

TG 3'

FIGURE 50

FIGURE 50

FIGURE 52

9	18	27	36	45	54
CTG ACT GCT CTG GGG ACT GAC CGG TAT TTC AAG ATT GTG AAG CCC CTT TCC ACG					
---	---	---	---	---	
	Phe Lys Ile Val Lys Pro Leu Ser Thr				
63	72	81	90	99	108
TCC TTC ATC CAG TCT GTG AAC TAC AGC AAA CTC GTC TCG CTG GTG GTC TGG TTG					
---	---	---	---	---	
Ser Phe Ile Gln Ser Val Asn Tyr Ser Lys Leu Val Ser Leu Val Val Trp Leu					
117	126	135	144	153	162
CTC ATG CTC CTC CTC GCC GTC CCC AAC GTC ATT CTC ACC AAC CAG AGA GTT AAG					
---	---	---	---	---	
Leu Met Leu Leu Ala Val Pro Asn Val Ile Leu Thr Asn Gln Arg Val Lys					
171	180	189	198	207	216
GAC GTG ACG CAG ATA AAA TGC ATG GAA CTT AAA AAC GAA CTG GGC CGC CAG TGG					
---	---	---	---	---	
Asp Val Thr Gln Ile Lys Cys Met Glu Leu Lys Asn Glu Leu Gly Arg Gln Trp					
225	234	243	252	261	270
CAC AAG GCG TCA AAC TAC ATC TTT GTG GGC ATT TTC TGG CTT GTG TTC CTT TTG					
---	---	---	---	---	
His Lys Ala Ser Asn Tyr Ile Phe Val Gly Ile Phe Trp Leu Val Phe Leu Leu					
279	288	297	306	315	324
CTA ATC ATT TTC TAC ACT GCT ATC ACC AGG AAA ATC TTT AAG TCC CAC CTG AAA					
---	---	---	---	---	
Leu Ile Ile Phe Tyr Thr Ala Ile Thr Arg Lys Ile Phe Lys Ser His Leu Lys					
333	342	351	360	369	378
TCC AGA AAG AAT TCC ATC TCG GTC AAA AAG AAA TCT AGC CGC AAC ATC TTC AGC					
---	---	---	---	---	
Ser Arg Lys Asn Ser Ile Ser Val Lys Lys Lys Ser Ser Arg Asn Ile Phe Ser					
387	396	405	414		
ATC GTG TTT ATC CTC TGT TGG CCC CCC TAC CAC ATC 3'					
---	---	---	---	---	
Ile Val					

5 3 / 7 9

FIGURE 53

FIGURE 54

5 4 / 7 9

PMH28	10	FKIVKPLSTS	FQSVNYSKL	VSLVWILLME	LAVPNVILIT	NQRYKDVTQI	50
P35343	1	LAEVHATSR-	LIQKHLVKE	VCIAMMILSV	IYALPILHR	NPVKVNLSL	50
A41795	1	VAVVHPRAA	RYRRPTVAKV	VNLGYWVSE	LVLPIEVFS	RTRANSDDIV	50
A47457	1	VAVVHPRAA	TYRRPSVAKL	INLGVMLASL	LvtDPIAIFPA	DTRPARCGQ-	50
PMH28	20						
P35343	51	KCME-LKNEI	GROWHKASNY	IFVGI F-WIV	FLLIIFYTA	IT-RKIFKSH	100
A41795	51	VCYEDVGNNNT	SPL--RIVLRL	ILPOTEGFLV	PLIMLFCYG	FTLRLFEKAH	100
A47457	51	ACNM-LMPPEP	AQRWLVGFV-	LYTFLMGFLL	PVGATCLCYV	DLIAKMRMVA	100
PMH28	30						
P35343	51	AVAC-NLQWP	HPAWSAIFV-	VYTFLLGFLL	PMLAIGLCYL	IVCGKMRMVA	100
A41795	60						
A47457	70						
PMH28	40						
P35343	80						
A41795	90						
A47457	100						
PMH28	110						
P35343	120						
A41795	130						
A47457	140						
PMH28	150						
P35343	150						
A41795	150						
A47457	150						

FIGURE 55

9 18 27 36 45 54

5' GCC ACC AAC GTG TTC ATC CTG TGT CTG GTG GAC CTG CTG GCT GCC CTG ACC CTC

Val Asp Leu Leu Ala Ala Leu Thr Leu

63 72 81 90 99 108
ATG CCT CTG GCC ATG CTC TCC AGC TCC GCC CTC TTT GAC CAC GCC CTC TTT GGG

Met Pro Leu Ala Met Leu Ser Ser Ser Ala Leu Phe Asp His Ala Leu Phe Gly

117 126 135 144 153 162
GAG GTG GCC TGC CGC CTC TAC TTG TTC CTG AGC GTC TGC TTT GTC AGC CTG GCC

Glu Val Ala Cys Arg Leu Tyr Leu Phe Leu Ser Val Cys Phe Val Ser Leu Ala

171 180 189 198 207 216
ATC CTC TCG GTG TCC GCC ATC AAT GTG GAG CGC TAC TAT TAT GTG GTC CAC CCC

Ile Leu Ser Val Ser Ala Ile Asn Val Glu Arg Tyr Tyr Tyr Val Val His Pro

225 234 243 252 261 270
ATG CGC TAT GAG GTG CGC ATG AAA CTG GGG CTG GTG GCC TCT GTG CTG GTG GGC

Met Arg Tyr Glu Val Arg Met Lys Leu Gly Leu Val Ala Ser Val Leu Val Gly

279 288 297 306 315 324
GTG TGG GTG AAG GCC CTG GCC ATG GCT TCT GTG CCA GTG TTG GGA AGG GTG TCC

Val Trp Val Lys Ala Leu Ala Met Ala Ser Val Pro Val Leu Gly Arg Val Ser

333 342 351 360 369 378
TGG GAG GAA GGC CCT CCC AGT GTC CCC CCA GGC TGT TCA CTC CAA TGG AGC CAC

Trp Glu Glu Gly Pro Pro Ser Val Pro Pro Gly Cys Ser Leu Gln Trp Ser His

387 396 405 414 423 432
AGT GCC TAC TGC CAG CTT TTC GTG GTG GTC TTC GCC GTC CTC TAC TTC CTG CTG

Ser Ala Tyr Cys Gln Leu Phe Val Val Phe Ala Val Leu Tyr Phe Leu Leu

441 450 459 468 477 486
CCC CTG CTC CTC ATC CTT GTG GTC TAC TGC AGC ATG TTC CGG GTG GCT CGT GTG

Pro Leu Leu Leu Ile Leu Val Val Tyr Cys Ser Met Phe Arg Val Ala Arg Val

495 504 513 522 531 540
GCT GCC ATG CAG CAC GGG CCG CTG CCC ACG TGG ATG GAG ACG CCC CGG CAA CGC

Ala Ala Met Gln His Gly Pro Leu Pro Thr Trp Met Glu Thr Pro Arg Gln Arg

FIGURE 56

549	558	567	576	585	594												
TCC	GAG	TCT	CTC	AGC	AGC	CGC	TCC	ACT	ATG	GTC	ACC	AGC	TCG	GGG	GCC	CCG	CAG

Ser	Glu	Ser	Leu	Ser	Ser	Arg	Ser	Thr	Met	Val	Thr	Ser	Ser	Gly	Ala	Pro	Gln

603	612	621	630	639	648												
ACC	ACC	CCT	CAC	CGG	ACG	TTT	GGC	GGA	GGG	AAG	GCA	GCA	GTG	GTC	CTC	CTG	GCT

Thr	Thr	Pro	His	Arg	Thr	Phe	Gly	Gly	Gly	Lys	Ala	Ala	Val	Val	Leu	Leu	Ala

657	666	675	684	693	702												
GTG	GGA	GGA	CAG	TTC	CTG	CTC	TGT	TGG	TTG	CCC	TAC	TTC	TCC	TTC	CAC	CTC	TAT

Val	Gly	Gly	Gln	Phe	Leu	Leu	Cys	Trp	Leu	Pro	Tyr	Phe	Ser	Phe	His	Leu	Tyr

711	720	729	738	747	756												
GTG	GCC	CTG	AGC	GCT	CAG	CCC	ATT	GCA	GCG	GGG	CAG	GTG	GAG	AAC	GTG	GTG	ACC

Val	Ala	Leu	Ser	Ala	Gln	Pro	Ile	Ala	Ala	Gly	Gln	Val	Glu	Asn	Val	Val	Thr

765	774	783	792	801	810												
TGG	ATT	GGC	TAC	TTC	TGC	TTC	ACC	TCC	<u>AAC</u>	CCT	CTC	CTC	TAT	TCC	TTC	CTC	CCT

Trp	Ile	Gly	Tyr	Phe	Cys	Phe	Thr	Ser									

FIGURE 57

FIGURE 58

5 9 / 7 9

FIGURE 59

FIGURE 60

p19P2	1	VCGMGNL LV	10	LVTARVRLH	20	NVTNF LIGNL	30	ALSDV LMCTA	40	CYPLTAYAF 50	
S12863	1	LGVS GNLAEI	11	ILKQKEMR	21	NVNTN LIVNL	31	SFSDL EVAVM	41	CLEFF IFVYT	50
p19P2	51	EPRG WVFGGG	60	LCH VFELOP	70	Vrryy SVFEL	80	TTIAV DYYVV	90	LVH PLRRRI-	100
S12863	51	MDH- WVFGET	52	MCKLN PEVQC	62	VSITV SIFSL	72	VLIAVERHQL	82	IIN PRGWRPN	100
p19P2	101	-----	110	-----	120	-----	130	-----	140	-----	150
S12863	101	NRHAYIGITV	101	IWVLAVASSL	101	PFVIIYQILTD	101	EFQONVSLAA	101	FKDKYVCDFK	150
p19P2	151	-----GL LLV	160	TYEL PLIVIL	170	LS-----Y	180	VRVSVK LRNR	190	VYPGCVTVSQ	200
S12863	151	FPSDSHR LSY	151	ITELIV LQYF	151	GPLCFIFICY	151	FKIYIR EKR	151	NNMMDDKIRD S	200
p19P2	201	ADWDRAARRR	210	LIIVVV	220	VFAICMLPY	230	240	250
S12863	201	KYRSSETKRT	201	NVM HLSIWA	201	-FAVCM MLPT	201	201	250

FIGURE 61

p19P2 pG3-2/pG1-10	1	VGMVGNVLLIV VGMVGNVLLIV	10	LVIARVRRLH LVIARVRRLY	20	NVTNEFLIGNL NVTNEFLIGNL	30	ALSDVLMCTA ALSDVLMCTA	40	CVPPLTLAYAF CVPPLTAYAF	50	50
p19P2 pG3-2/pG1-10	51	EPRGMWVFGGG EPRGMWVFGGG	60	LCHLVFFLQP LCHLVFFLQA	70	VTYYVSVETL VTTAAVSVETL	80	TTIAVDRVV TTIAVDRVV	90	LYHPLRRI LYHPLRRI	100	100
p19P2 pG3-2/pG1-10	101	----- 101 LRLSAYAVLA	110	----- IWVLSAVLAL	120	----- PAAVHTYHE	130	----- LKPHDVRICE	140	----- EWNGSQERQR	150	150
p19P2 pG3-2/pG1-10	151	----- 151 QLYAWGGLLV	160	TYLLPELVIL TYLLPELVIL	170	LSYVRYSVKL LSYARYSVKL	180	RNRVVPCCVT RNRVVPGRVT	190	OSQADMDRAR OSQADMDRAR	200	200
p19P2 pG3-2/pG1-10	201	RRRTFCLLVV RRRTFCLLVV	210	----- VVVVFACWL	220	----- PYY.....	230	----- PFF.....	240	-----	250	250
p19P2 pG3-2/pG1-10	201	RRRTFCLLVV RRRTFCLLVV	201	----- VVVVFACWL	201	----- PFF.....	201	-----	201	-----	250	250

FIGURE 62

5' 9 18 27 36 45 54

CTG TGT GTC ATC GCG GTG GAT ACG TAC GTG GTT CTG GTG CAC CCG CTA CGT CGG
Leu Cys Val Ile Ala Val Asp Arg Tyr Val Val Leu Val His Pro Leu Arg Arg

 63 72 81 90 99 108
CGC ATT TCA CTG AGG CTC AGC GCC TAC GCG GTG CTG GGC ATC TGG GCT CTA TCT
Arg Ile Ser Leu Arg Leu Ser Ala Tyr Ala Val Leu Gly Ile Trp Ala Leu Ser

 117 126 135 144 153 162
GCA GTG CTG GCG CTG CCG GCC GCG GTG CAC ACC TAC CAT GTG GAG CTC AAG CCC
Ala Val Leu Ala Leu Pro Ala Ala Val His Thr Tyr His Val Glu Leu Lys Pro

 171 180 189 198 207 216
CAC GAC GTG AGC CTC TGC GAG GAG TTC TGG GGC TCG CAG GAG CGC CAA CGC CAG
His Asp Val Ser Leu Cys Glu Phe Trp Gly Ser Gln Glu Arg Gln Arg Gln

 225 234 243 252 261 270
ATC TAC GCC TGG GGG CTG CTT CTG GGC ACC TAT TTG CTC CCC CTG CTG GCC ATC
Ile Tyr Ala Trp Gly Leu Leu Leu Gly Thr Tyr Leu Leu Pro Leu Leu Ala Ile

 279 288 297 306 315 324
CTC CTG TCT TAC GTA CGG GTG TCA GTG AAG CTG AGG AAC CGC GTG GTG CCT GGC
Leu Leu Ser Tyr Val Arg Val Ser Val Lys Leu Arg Asn Arg Val Val Pro Gly

 333 342 351 360 369 378
AGC GTG ACC CAG AGT CAA GCT GAC TGG GAC CGA GCG CGT CGC CGC ACT TTC
Ser Val Thr Gln Ser Gln Ala Asp Trp Asp Arg Ala Arg Arg Arg Arg Thr Phe

 387 396 405 414 423 432
TGT CTG CTG GTG GTG GTG GTA GTG TTC ACG CTC TGC TGG CTG CCC TTC TAC
Cys Leu Leu Val Val Val Val Phe Thr Leu Cys Trp Leu Pro Phe Tyr

 CT 3'

 --

 --

FIGURE 63

6 3 / 7 9

p19P2	1	VGMVGNVLLV	10	EYIAYVRREH	20	NVTNEFLIGNL	30	ALISDVLMCTA	40	CYPLTLAYAF	50
PG3-2/pg1-10	1	VGMVGNVLLV	-79	EYIAYVRREH		NVTNEFLIGNL		ALISDVLMCTA		CYPLTLAYAF	50
p5S38											-30
p19P2	51	EPRGMVFGGG	60	LCHLVFFLOP	70	VTVAVSVETL	80	TTIAVDRYVV	90	EVHPLRRRI-	100
PG3-2/pg1-10	51	EPRGMVFGGG	-29	LCHEVEFLOA		VTVAVSVETL		TTIAVDRYVV		EVHPLRRRI-	100
p5S38									L	CVIAVDRYVV	21
p19P2	101	URLSAYAVLA	110	IWVLSAVILAL	120	PAAVHTYHVE	130	EKPHDVLCE	140	EFWGSQERQR	150
PG3-2/pg1-10	101	URLSAYAVLA	22	IWLSSAYAVLG		PAAVHTYHVE		EKPHDVSCE		EFWGSQERQR	150
p5S38											71
p19P2	151	GLLLV	160	TYLLPLLVIL	170	LSYVRSVKL	180	RNRVVPGCVT	190	QSQADMDRAR	200
PG3-2/pg1-10	151	QIYANGGLLV	72	TYLLPLLVIL		LSYVRSVKL		RNRVVPGCVT		QSOADMDRAR	200
p5S38		QIYANGGLLLS		TYLLPLLVIL		LSYVRSVKL		RNRVVPGCVT		QSOADMDRAR	121
p19P2	201	RRRTFCLLVV	210	VVVVFACWLV	220	PYY	230	...PYY	240	...	250
PG3-2/pg1-10	201	RRRTFCLLVV	122	VVVVFACWLV		PFE		...PFE		...	250
p5S38				VVVVFACWLV		PFY		...PFY		...	171

FIGURE 64

6 5 / 7 9

FIGURE 65

6 6 / 7 9

FIGURE 66

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

6 7 / 7 9

FIGURE 67

3H2-17 FRAGMENT

FIGURE 68

3H2-17 FRAGMENT

① ② ③ ④

6 8 / 7 9

FIGURE 69

1	GAGCATAAGGAAACGCTGACAGGCAGTTATGGACCACCGACAATGGCACCATCCAGGCTCCA MetGluGlnAspAsnGlyThrIleGlnAlaPro	60 11
61	GGCTTGCCTCCCCACCACTGCCCTACCGTGAGGATTCAAGCGACTGCTGCTAACCCCG 11 GlyLeuProProThrThrCysValTyrArgGluAspPheLysArgLeuLeuLeuThrPro	120 31
121	GTATACTCGGTGGTGCCTGGTGGCTGCCACTGAACATCTGGCTATTGCCAGATC 31 ValTyrSerValValLeuValGlyLeuProLeuAsnIleCysValIleAlaGlnIle	180 51
181	TGCGCATCCGCCGGACCTGACCCGTTCCGCTGTGTACACCCCTGAACCTGGCAGTGGCG 51 CysAlaSerArgArgThrLeuThrArgSerAlaValTyrThrLeuAsnLeuAlaLeuAla	240 71
241	GACCTGATGTATGCCCTGTCACTACCCCTACTTATCTATAACTACGCCAGAGGGGACAC 71 AspLeuMetTyrAlaCysSerLeuProLeuLeuIleTyrAsnTyrAlaArgGlyAspHis	300 91
301	TGGCCCTTCGGAGACCTCGCCTGCCCTTGTACCGCTTCCTCTCTATGCCAATCTACAT 91 TrpProPheGlyAspLeuAlaCysArgPheValArgPheLeuPheTyrAlaAsnLeuHis	360 111
361	GGCAGCATCCTGTTCTCACCTGCATTAGCTTCCAGCGCTACCTGGGCATCTGCCACCC 111 GlySerIleLeuPheLeuThrCysIleSerPheGlnArgTyrLeuGlyIleCysHisPro	420 131
421	CTGGCTTCTGGCACAAAGCGTGGAGGTGGCCGTGCTTGGGTAGTGTGTGGAGTCGTG 131 LeuAlaSerTrpHisLysArgGlyGlyArgArgAlaAlaTrpValValCysGlyValVal	480 151
481	TGGCTGGCTGTGACAGCCCAGTGCCTGCCACGGCAGTCTTGCTGCCACAGGCATCCAG 151 TrpLeuAlaValThrAlaGlnCysLeuProThrAlaValPheAlaAlaThrGlyIleGln	540 171
541	CGCAACCGCACTGTGCTACGACCTGAGCCCACCCATCTGTCTACTCGCTACCTGCC 171 ArgAsnArgThrValCysTyrAspLeuSerProProIleLeuSerThrArgTyrLeuPro	600 191
601	TATGGTATGGCCCTCACGGTCATGGCTTCTTGCTGCCCTCATAGCCTTACTGGCTTGT 191 TyrGlyMetAlaLeuThrValIleGlyPheLeuLeuProPheIleAlaLeuAlaCys	660 211
661	TATTGTCGCATGGCCCGCCGCTGTGCGCCAGGATGGCCACGGCAGGTCTGTGGCCCAA 211 TyrCysArgMetAlaArgArgLeuCysArgGlnAspGlyProAlaGlyProValAlaGln	720 231
721	GAGCGGCGCAGCAAGGCCGCTGTGCTGGTGGTGGCAGCTGCTTGTGCCATCAGC 231 GluArgArgSerLysAlaAlaArgMetAlaValValAlaAlaValPheAlaIleSer	780 251
781	TTCCTGCCTTCCACATACCAAGACAGCCTACTTGGCTGTGCGCTCCACGCCGGTGTC 251 PheLeuProPheHisIleThrLysThrAlaTyrLeuAlaValArgSerThrProGlyVal	840 271
841	TCTTGCCCTGTGCTGGAGACCTTCGCTGCTGCCACAAAGGCACCTGGCCCTCGCCAGT 271 SerCysProValLeuGluThrPheAlaAlaTyrLysGlyThrArgProPheAlaSer	900 291
901	GTCAACACTGTCTGGACCCATTCTCTACTTCACACAACAGAAGTCCGGCGGCAA 291 ValAsnSerValLeuAspProIleLeuPheTyrPheThrGlnGlnLysPheArgArgGln	960 311
961	CCCCACGATCTTACAGAGGCTCACACCCAAGTGGCAGAGGCAGAGAGTCTGAGGCC 311 ProHisAspLeuLeuGlnArgLeuThrAlaLysTrpGlnArgGlnArgVal***	1020 329

70 / 79

FIGURE 70

FIGURE 71

	10	20	30	40	50	
75+13, CODING	1 MPPD-----	--NGIILDAFG	EP-----	-IT-SVYR-E	DFKRLLLTP-	50
P2UR_MOUSE	1 YAAADLEPWN-----	TIGNGIWEGLDE	LSY-----	-KCRFN-E	DEKVVL-L-P-	50
P2YR_CHICK	1 RIEALISAA-----	NGT-S-PE	LAGGWAAGN	AITTKCSLTKT	GEQFYYL-ET	50
	60	70	80	90	100	
75+13, CODING	51 W-YSVVLLWG-----	-EPLNIVCIVIA	QI-CASRRT	LTR-SAVVIL	NLALADIMYA	100
P2UR_MOUSE	51 VSYGVVVCVLS-----	-IOLNVVVALY	-IPLC-RLKI	WNA-SITVMF	HLAVSESLYA	100
P2YR_CHICK	51 V-YILVFTTS-----	PIG-NSVALW	M-S-VFHMRP	REGIS-VYMF	NLALADFLYN	100
	110	120	130	140	150	
75+13, CODING	101 CSLPLLIVY-----	ARG-DHWPFG	D-LACRFVRFL	FYANLHSIL	FLTCIS-QRY	150
P2UR_MOUSE	101 ASLPLLIVY-----	ARG-DHWPFS	TVLCKLVRF	FYVNLQCSIL	FLTCISVHRC	150
P2YR_CHICK	101 LTLPALIY-----	FNKTE-SIFG	DVCKLQRFL	SIVNLQGSIL	FLTCISVHRV	150
	160	170	180	190	200	
75+13, CODING	151 LGICHPLIASW-----	HKRGCP-RRA	WVVCGVVVLA	VTAQCL-SPA	VFAA-IGIQR	200
P2UR_MOUSE	151 LGVLRPLHSL-----	--RWGRARIA	RRVAAVVVWL	VIA-CQAPVL	YFVT-ISVRG	200
P2YR_CHICK	151 TGVVHPLKSL-----	G-SLKGN-3	VYVSSLVIAL	WVAVIA-PIL	-FYSIGIGVRR	200
	210	220	230	240	250	
75+13, CODING	201 NRT-VCYDLS-----	PPI-L-SIRY	LPYGMALIVI	GRLLPFIALE	ACYCRMARRL	250
P2UR_MOUSE	201 TS-ITC-DOTS-----	ARE-LFSHEV	A-YSSVMGL	LFAVPFSVIL	VCVVLMARRL	250
P2YR_CHICK	201 NKMTICVDIT-----	ADSYERSMEV	--YSMCTIVF	MCIPTFIVIL	CGYGLIVKAL	250
	260	270	280	290	300	
75+13, CODING	251 CRODGPA-CP-----	VAQERSKAA	--RMAVVAIA	VFAISELPFH	ITKTAIVAVR	300
P2UR_MOUSE	251 -LR--PAVGT-----	TGGDPARK	SVEVIALVIA	VFAICELPFH	VTRITLYMSFR	300
P2YR_CHICK	251 TYKD-LDNSP-----	--L-PRK--	STYLVIIIVL	VFAVSYELPFH	VMKTLNFRAN	300
	310	320	330	340	350	
75+13, CODING	301 STP---GVSC-----	PVLETFAAY	RGTRPFAVN	SVLDPILFYF	TQKFEROPH	350
P2UR_MOUSE	301 SLD---LSC-----	HTLNAINMAY	KIKRPLASAN	SCLDPVLYFL	AGQLIVFAR	350
P2YR_CHICK	301 -LDFQTFQMC-----	AFNDKVVAIY	QVTRGEASLN	SCQDPILYFL	AGDTERRLS	350
	360	370	380	390	400	
75+13, CODING	351 DLLRLTAKW-----	QRORV*	400
P2UR_MOUSE	351 DAXPPTEPTP-----	SEPARRLGL	HRSNRTVRKD	LSVSSDDSR	TESTPAGSET	400
P2YR_CHICK	351 RTRKSSRRS-----	EPNVQSKSEE	MTLNILTEYK	QNGDTSL	400
	410	420	430	440	450	
75+13, CODING	401	450
P2UR_MOUSE	401 KDIRL.....	450
P2YR_CHICK	401	450

FIGURE 72

9 18 27 36 45 54

5' GCC ACC AAC GTG TTC ATC CTG TCA CTG GCC GAT GTG CTG GTG ACA GCC ATC TGC

Ala Asp Val Leu Val Thr Ala Ile Cys

63 72 81 90 99 108

CTG CCG GCC AGT CTG CTG GTA GAC ATC ACG GAA TCC TGG CTC TTT GGC CAT GCC

Leu Pro Ala Ser Leu Leu Val Asp Ile Thr Glu Ser Trp Leu Phe Gly His Ala

117 126 135 144 153 162

CTC TGC AAG GTC ATC CCC TAT CTA CAG GCC GTG TCC GTG TCA GTG GTC GTG CTG

Leu Cys Lys Val Ile Pro Tyr Leu Gln Ala Val Ser Val Ser Val Val Leu

171 180 189 198 207 216

ACT CTC AGC TCC ATC GCC CTG GAC CGC TGG TAC GCC ATC TGC CAC CCG CTG TTG

Thr Leu Ser Ser Ile Ala Leu Asp Arg Trp Tyr Ala Ile Cys His Pro Leu Leu

225 234 243 252 261 270

TTC AAG AGC ACT GCC CGG CGC GCC CGC GGC TCC ATC CTC GGC ATC TGG GCG GTG

Phe Lys Ser Thr Ala Arg Arg Ala Arg Gly Ser Ile Leu Gly Ile Trp Ala Val

279 288 297 306 315 324

TCG CTG GCT GTC ATG GTG CCT CAG GCT GTC ATG GAG TGT AGC AGC GTG CTG

Ser Leu Ala Val Met Val Pro Gln Ala Ala Val Met Glu Cys Ser Ser Val Leu

333 342 351 360 369 378

CCC GAG CTG GCC AAC CGC ACC CGC CTC CTG TCT GTC TGT GAT GAG CGC TGG GCA

Pro Glu Leu Ala Asn Arg Thr Arg Leu Leu Ser Val Cys Asp Glu Arg Trp Ala

387 396 405 414 423 432

GAC GAC CTG TAC CCC AAG ATC TAC CAC AGC TGC TTC ATT GTC ACC TAC CTG

Asp Asp Leu Tyr Pro Lys Ile Tyr His Ser Cys Phe Phe Ile Val Thr Tyr Leu

441 450 459 468 477 486

GCC CCA CTG GGC CTC ATG GCC ATG GCC TAT TTC CAG ATC TTC CGC AAG CTC TGG

Ala Pro Leu Gly Leu Met Ala Met Ala Tyr Phe Gln Ile Phe Arg Lys Leu Trp

495 504 513 522 531 540

GGC CGC CAG ATC CCC GGC ACC ACC TCG GCC CTG GTG CGC AAC TGG AAG CGG CCC

FIGURE 73

Gly Arg Gln Ile Pro Gly Thr Thr Ser Ala Leu Val Arg Asn Trp Lys Arg Pro
 549 558 567 576 585 594
 TCA GAC CAG CTG GAC GAC CAG GGC CAG GGC CTG AGC TCA GAG CCC CAG CCC CGG

 Ser Asp Gln Leu Asp Asp Gln Gly Gln Gly Leu Ser Ser Glu Pro Gln Pro Arg
 603 612 621 630 639 648
 GCC CGC GCC TTC CTG GCC GAG GTG AAA CAG ATG CGA GCC CGG AGG AAG ACG GCC

 Ala Arg Ala Phe Leu Ala Glu Val Lys Gln Met Arg Ala Arg Arg Lys Thr Ala
 657 666 675 684 693 702
 AAG ATG CTG ATG GTG GTG CTG CTG GTC TTC GCC CTC TGC TAC CTG CCC ATC AGT

 Lys Met Leu Met Val Val Leu Val Phe Ala Leu Cys Tyr Leu Pro Ile Ser
 711 720 729 738 747 756
 GTC CTC AAC GTC CTC AAG AGG GTC TTC GGG ATG TTC CGC CAA GCC AGC GAC CGA

 Val Leu Asn Val Leu Lys Arg Val Phe Gly Met Phe Arg Gln Ala Ser Asp Arg
 765 774 783 792 801 810
 GAG GCC ATC TAC GCC TGC TTC ACC TTC TCC CAC TGG CTG GTG TAC GCC AAC AGC

 Glu Ala Ile Tyr Ala Cys Phe Thr Phe Ser His Trp Leu Val Tyr Ala Asn Ser
 819 828 837
 GCC GCC AAT CCC CTC CTC TAC TCC TTC CTC CCT 3'

 Ala Ala

74 / 79

FIGURE 74

7 5 / 7 9

FIGURE 75

09036576 031196

FIGURE 76

7 6 / 7 9

	10	20	30	40	50	50
h3H2-17(5'-)	1	1				
p3H2-17(5')		GTCGCCCTGG	TCCCACAT	CCTGGCTTCC	TGGCACAGC	GTGGACCTCG
						50
h3H2-17(5'-)	51	60	70	80	90	100
p3H2-17(5')	51	CCGTGCTGCT	TGGCTAGTGT	GTGGAGTGT	GTGGCTGGCT	GTGGCTGGCT
						100
						100
h3H2-17(5'-)	101	110	120	130	140	150
p3H2-17(5')	101	AGTGCCCTGC	CACAACATC	TTCGCTTCC	CGCCATCA	CGGTAACTCC
	101	AGTGCCCTGC	CACGGCACTC	TTCGCTTCC	CGCCATCA	CGGCACCCG
						150
h3H2-17(5'-)	151	160	170	180	190	200
p3H2-17(5')	151	ACGTGCTGC	ATGGCTAGC	CCGCGCTGGC	CTGGCAGCC	ACGTATACTCC
		ACGTGCTGC	ACGACCTAGC	CCGCGCTGGC	CTGGCAGCC	CGAACCTCC
						200
h3H2-17(5'-)	201	210	220	230	240	250
p3H2-17(5')	201	CTTTTCTCATC	CTCTCTCTG	TGGCTGGT	CTCTCTCTG	TGGCTGGT
		CTTTTCTCATC	GGCTCTTGGC	TGGCTGGT	CTCTCTCTG	TGGCTGGT
						250
h3H2-17(5'-)	251	260	270	280	290	300
p3H2-17(5')	251	TCTGGCTG	CTCTCTCTG	CTCTCTCTG	CTCTCTCTG	CTCTCTCTG
		TCTGGCTG	TTATGCTGC	ATGGCTGC	CTCTCTCTG	CTCTCTCTG
						300
h3H2-17(5'-)	301	310	320	330	340	350
p3H2-17(5')	301	CCAGCCAGGTG	CTCTGGCCCA	AGAGGGGGC	AGCAAGGGGG	CTCGTATGGC
						350
						350
h3H2-17(5'-)	351	360	370	380	390	400
p3H2-17(5')	351	TGTTGGTGG	GCAGGCTGTCT	TGGCCCTCTG	CTGGCTGGCT	CTCTAC...
						400
						400

FIGURE 77

1	TGACTCCCTGAACATAGGAAACCACCTGGGCAGCCATGGAATGGGACAATGGCACAGGC 1		MetGluTrpAspAsnGlyThrGly	60
61	CAGGCTCTGGGCTTGCCACCCACCACCTGTGTCTACCGCGAGAACCTCAAGCAACTGCTG 8 GlnAlaLeuGlyLeuProProThrThrCysValTyrArgGluAsnPheLysGlnLeuLeu			120
121	CTGCCACCTGTGTATTGGCGGTGCTGGCGGCTGGCGCTGCCGCTGAAACATCTGTGTCATT 28 LeuProProValTyrSerAlaValLeuAlaAlaGlyLeuProLeuAsnIleCysValIle			180
181	ACCCAGATCTGCACCGTCCCCGCCGGGCTTGACCCGCACGGCCGTGTACACCCCTAAACCTT 48 ThrGlnIleCysThrSerArgArgAlaLeuThrArgThrAlaValTyrThrLeuAsnLeu			240
241	GCTCTGGCTGACCTGCTATATGCCCTGCTCCCTGCCCTGCTCATCTACAACATATGCCCAA 68 AlaLeuAlaAspLeuLeuTyrAlaCysSerLeuProLeuLeuIleTyrAsnTyrAlaGln			300
301	GGTGATCACTGGCCCTTGGCGACTTCGCCTGCCCTGGTCCGCTTCTCTCTATGCC 88 GlyAspHisTrpProPheGlyAspPheAlaCysArgLeuValArgPheLeuPheTyrAla			360
361	AACCTGCACGGCAGCATCCTCTCCTCACCTGCATCAGCTTCCAGGCCAACCTGGCCATC 108 AsnLeuHisGlySerIleLeuPheLeuThrCysIleSerPheGlnArgTyrLeuGlyIle			420
421	TGCCACCCGCTGGCCCCCTGGCACAAACGTGGGGCCGGGCTGCCCTGGCTAGTGTGT 128 CysHisProLeuAlaProTrpHisLysArgGlyGlyArgArgAlaAlaTrpLeuValCys			480
481	GTAACCGTGTGGCTGGCGTGACAACCCAGTGCTGCCACAGCCATCTCGCTGCCACA 148 ValThrValTrpLeuAlaValThrThrGlnCysLeuProThrAlaIlePheAlaAlaThr			540
541	GGCATCCAGCGTAACCGCACTGTCTGCTATGACCTCAGCCCCTGCCCTGGCCACCCAC 168 GlyIleGlnArgAsnArgThrValCysTyrAspLeuSerProProAlaLeuAlaThrHis			600
601	TATATGCCCTATGGCATGGCTCTCACTGTCATCGGCTTCTGCTGCCCTTGCTGCCCTG 188 TyrMetProTyrGlyMetAlaLeuThrValIleGlyPheLeuLeuProPheAlaAlaLeu			660
661	CTGGCCTGCTACTGTCTCTGGCTGCCCTGTGCCGCCAGGATGGCCCGAGAGCCT 208 LeuAlaCysTyrCysLeuLeuAlaCysArgLeuCysArgGlnAspGlyProAlaGluPro			720
721	GTGGCCCAGGAGCCGGCTGGCAAGGCGGGCCGATGGCCGTGGTGGCTGCTGCCCTT 228 ValAlaGlnGluArgArgLysAlaAlaArgMetAlaValValAlaAlaAlaPhe			780
781	GCCATCAGCTTCCCTGCCCTTCACATCACCAAGACAGCCTACCTGGCAGTGGCTCGACG 248 AlaIleSerPheLeuProPheHisIleThrLysThrAlaTyrLeuAlaValGlySerThr			840
841	CCGGGCGTCCCCCTGCACTGTATTGGAGGCCTTGCAAGCGCTACAAAGGCACGCCCG 268 ProGlyValProCysThrValLeuGluAlaPheAlaAlaAlaTyrLysGlyThrArgPro			900
901	TTTGGCAGTGCCAACAGCGTGCTGGACCCATCCTCTACTTCACCCAGAAGAAGTTC 288 PheAlaSerAlaAsnSerValLeuAspProIleLeuPheTyrPheThrGlnLysPhe			960
961	CGCCGGCGACCACATGAGCTCCTACAGAAAATGGCAGAGGCAGGGTCGC 308 ArgArgArgProHisGluLeuLeuGlnLysLeuThrAlaLysTrpGlnArgGlnGlyArg			1020
1021	TGA 328 ***			329

FIGURE 78

FIGURE 79

human prino, mouseFULL3H2	1 1	10 10	20 20	30 30	40 40	50 50
		LEWONGTQA LEWONGTQA	LGLPPTTCVY PGLPPTTCVY	RENFKOLLIP REDFEKILLIP	PVSYAVLAC PVSYAVLAC	[PLNICVITQ [PLNICVITQ
human prino, mouseFULL3H2	51 51	60 60	70 70	80 80	90 90	100 100
		ICPSRRAILTR ICASRRAILTR	TAVYTNLAL SAVYTNLAL	ADLYACSLP ADLYACSLF	LLIINYAAGD LLIINYAARGD	HMPFGDFACR HMPFGDLAGC
human prino, mouseFULL3H2	101 101	110 110	120 120	130 130	140 140	150 150
		LVRFLFYANL FVRFLFYANL	HGSILFLTCI HGSILFLTCI	SFQRYLGICH SFQRYLGICH	PLASWHKRGG PLASWHKRGG	RRAAW[VCVT RRAAM[VCVT
human prino, mouseFULL3H2	151 151	160 160	170 170	180 180	190 190	200 200
		WILAVTAQCL WILAVTAQCL	PTAIFAATGI PTAIFAATGI	QRNRTVCYDL QRNRTVCYDL	SPPEATHYM SPPEISTRYL	PYGMALTVIG PYGMALTVIG
human prino, mouseFULL3H2	201 201	210 210	220 220	230 230	240 240	250 250
		FLLPFALLA FLLPFALLA	CYCILARLC CYCRMARRLC	RQDGPAEPVA RQDGPAEPVA	QERRSKAARN QERRSKAARN	AVVVAAPAI AVVVAAPAI
human prino, mouseFULL3H2	251 251	260 260	270 270	280 280	290 290	300 300
		SFLPFHITKT SFLPFHITKT	AYLAVSSTPG AYLAVSSTPG	VPCIVLEAFA VSCPVLEFA	AAYKGTRPEA AAVKGTRPEA	SANSVLDPL SVMNVLDPL
human prino, mouseFULL3H2	301 301	310 310	320 320	330 330	340 340	350 350
		FYFTCKKFER FYFTCKKFER	RPHELLQKLT QPHDLORLT	AKMQRGR* AKMQRGR*