12 Fonction logarithme népérien

I – Définition et premières propriétés

Définition 12.1 – La fonction **logarithme népérien**, notée ln, est **la** primitive sur $]0, +\infty[$ de la fonction $x \mapsto \frac{1}{x}$ qui prend la valeur 0 lorsque x = 1.

Proposition 12.2

De cette définition résulte trois conclusions immédiates :

- La fonction logarithme népérien est définie sur l'intervalle $]0, +\infty[$.
- La fonction logarithme népérien s'annule lorsque x = 1, i.e. ln(1) = 0.
- Pour tout réel strictement positif $x \in \mathbb{R}_+^*$, $\ln'(x) = \frac{1}{x}$.

Proposition 12.3 – Propriété fondamentale du logarithme

Pour tous nombres réels strictement positifs $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}_+^*$,

$$\ln(a \times b) = \ln(a) + \ln(b).$$

Corollaire 12.4

De cette propriété algébrique fondamentale découle plusieurs conséquences.

- Pour tout nombre réel strictement positif $a \in \mathbb{R}_+^*$, $\ln\left(\frac{1}{a}\right) = -\ln(a)$.
- Pour tous nombres réels strictement positifs $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}_+^*$, $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$.
- Pour tout nombre réel strictement positif $a \in \mathbb{R}_+^*$ et tout entier relatif $n \in \mathbb{Z}$, $\ln(a^n) = n \ln(a)$.
- Pour tout nombre réel strictement positif $a \in \mathbb{R}_+^*$, $\ln(\sqrt{a}) = \frac{1}{2}\ln(a)$.

Démonstration.

Exemple 12.5 – Soient $x \in \mathbb{R}_+^*$ et $y \in \mathbb{R}_+^*$. Simplifier le plus possible les expressions suivantes.

1.
$$\ln(x^2) - \ln(x)$$

4.
$$2\ln(x^3) + \ln\left(\frac{1}{x^3}\right)$$

2.
$$ln(2x) - ln(x)$$

5.
$$\ln(1) + \ln\left(\frac{1}{x}\right) + \ln\left(\frac{1}{x^2}\right)$$

3.
$$\ln(x) - \ln\left(\frac{1}{x}\right)$$

6.
$$\ln\left(\frac{x}{y}\right) + \ln\left(\frac{y}{x}\right)$$

II - Étude de la fonction logarithme népérien

1 - Ensemble de définition

Proposition 12.6

La fonction logarithme népérien est définie pour tout $x \in \mathbb{R}_+^*$, *i.e.* sur $]0, +\infty[$, et a ses valeurs dans \mathbb{R} .

Ainsi dans le cas d'une fonction de la forme $f = \ln(u)$, l'ensemble de définition est donné par les solutions de l'inéquation u(x) > 0.

Exemple 12.7 – Déterminer l'ensemble de définition de la fonction f définie par $f(x) = \ln(x^2 - 3x + 2)$.

2 – <u>Variations</u>

Proposition 12.8

La fonction logarithme népérien est **continue** et **strictement croissante** sur $]0,+\infty[$.

Démonstration.

Proposition 12.9

Pour tous réels strictement positifs $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}_+^*$,

$$ln(a) = ln(b) \iff a = b$$
 et $ln(a) > ln(b) \iff a > b$.

Exemple 12.10 – Résoudre dans l'intervalle *I* les équations et inéquations suivantes.

1.
$$\ln(x+2) = 2\ln(x) \text{ sur } I =]0, +\infty[$$

2.
$$\ln(2x-3) + \ln(3) = 2\ln(x) \text{ sur } I = \left[\frac{3}{2}, +\infty\right[$$

3.
$$\ln(x) + \ln(x+2) = \ln(9x-12)$$
 sur $I = \left[\frac{4}{3}, +\infty\right[$

4.
$$\ln(3x-1) - \ln(x) = \ln(2)$$
 sur $I = \left[\frac{1}{3}, +\infty\right[$

5.
$$\ln(2x) < \ln(x+7) \text{ sur } I =]0, +\infty[$$

6.
$$\ln(3x+1) - \ln(x+1) \ge \ln(2) \text{ sur } I = \left] -\frac{1}{3}, +\infty \right[$$

Corollaire 12.11

En particulier, puisque ln(1) = 0, pour tout réel strictement positif $x \in \mathbb{R}_+^*$,

$$ln(x) = 0 \iff x = 1$$
, $ln(x) > 0 \iff x > 1$ et $ln(x) < 0 \iff 0 < x < 1$.

ATTENTION!

La fonction logarithme est définie sur \mathbb{R}_+^* mais prend des valeurs négatives!

3 - Limites

Proposition 12.12

La fonction logarithme népérien a pour limite $+\infty$ en $+\infty$, *i.e.*

$$\lim_{x\to +\infty}\ln(x)=+\infty.$$

La fonction logarithme népérien a pour limite $-\infty$ en 0^+ , *i.e.*

$$\lim_{x \to 0^+} \ln(x) = -\infty.$$

L'axe des ordonnées est **asymptote verticale** à la courbe d'équation $y = \ln(x)$.

Exemple 12.13 – Calculer $\lim_{x \to +\infty} \ln \left(\frac{2x-1}{x-3} \right)$, $\lim_{x \to 3^+} \ln \left(\frac{2x-1}{x-3} \right)$ et $\lim_{x \to \frac{1}{2}^-} \ln \left(\frac{2x-1}{x-3} \right)$.

4 – Nombre *e*

D'après les résultats des paragraphes précédents, la fonction logarithme népérien présente le tableau de variation suivant :

On en déduit donc l'allure de la courbe de la fonction logarithme.

On observe graphiquement qu'il existe un point unique de la courbe qui a pour ordonnée 1.

Son abscisse est voisine de 2.7.

Au-delà de cette observation graphique, l'existence d'un unique antécédent de 1 repose sur la variation de la fonction logarithme népérien qui est strictement croissante sur $]0,+\infty[$ et qui prend chaque valeur réelle une fois et une seule quand x varie dans l'intervalle $]0,+\infty[$.

Définition 12.14 – e est le nombre réel défini par l'équation ln(e) = 1.

Remarque 12.15 – Une valeur approchée (à connaître) de e est donnée par $e \approx 2.72$.

5 - Croissances comparées

Il existe aussi quelques limites remarquables, qui font intervenir la fonction logarithme. On étudie ce que l'on appelle des résultats de *croissances comparées*.

Proposition 12.16

Pour tout entier naturel non nul n,

$$\lim_{x \to 0^+} x^n \ln(x) = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0.$$

En particulier lorsque n = 1,

$$\lim_{x \to 0^+} x \ln(x) = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0.$$

Remarque 12.17 - Ces limites sont normalement des formes indéterminées.

Pour lever de telles indéterminations, on applique les résultats de *croissances comparées*. On retient que les puissances "l'emportent" sur le logarithme.

Exemple 12.18 – Calculer
$$\lim_{x \to 0^+} x^3 \ln(x) = 0$$
 et $\lim_{x \to +\infty} x^2 - \ln(x)$.

III – Étude d'une fonction de la forme ln(u)

Proposition 12.19

Soit u une fonction dérivable et **strictement positive** sur un intervalle I. La fonction composée $f = \ln \circ u$, définie sur I par

$$\forall x \in I, \quad f(x) = \ln(u(x))$$

est dérivable sur I et

$$\forall x \in I, \quad f'(x) = \frac{u'(x)}{u(x)}.$$

Exemple 12.20 – Soit f la fonction définie sur $]2, +\infty[$ par $f(x) = \ln(x^2 - 3x + 2)$. Calculer f'(x).

Exemple 12.21 – Soit f la fonction définie par $f(x) = \ln(x^2 - 5x + 6)$.

1. Déterminer l'ensemble de définition de la fonction f.

2. Calculer les limites de f aux bornes de son ensemble de définition.

3. Étudier les variations de la fonction f.

4. Tracer l'allure de la courbe de la fonction f.

IV- Primitive de la fonction logarithme

La fonction logarithme népérien étant désormais connue, on peut compléter le tableau des primitives usuelles en y ajoutant les deux lignes suivantes :

f est définie sur I par	une primitive F est donnée par
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$
$f = \frac{u'}{u}$	$F = \ln(u)$

Remarque 12.22 – On rappelle qu'une primitive est définie sur un intervalle.

Il suffit donc de regarder le signe de la fonction u sur l'intervalle pour retirer la fonction valeur absolue. Majoritairement u(x) > 0 sur l'intervalle proposé.

Exemple 12.23 – Calculer les primitives des fonctions suivantes sur l'intervalle donné.

1.
$$f(x) = \frac{2}{3x} \sin I =]0, +\infty[$$

1.
$$f(x) = \frac{2}{3x} \operatorname{sur} I = \left]0, +\infty\right[$$
 2. $f(x) = \frac{1}{x} - \frac{1}{x+1} \operatorname{sur} I = \mathbb{R}^*_+$ 3. $f(x) = \frac{x}{x^2+1} \operatorname{sur} I = \mathbb{R}$

3.
$$f(x) = \frac{x}{x^2 + 1} \text{ sur } I = \mathbb{F}$$

2.

3.