211223US0X/hc Docket No.

IN THE UNITED STAT ATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Bettina MOECKEL, et al.

GAU:

1645

SERIAL NO: 09/938,540

EXAMINER:

FILED:

August 27, 2001

FOR:

NUCLEOTIDE SEQUENCES CODING FOR THE ccpA1 GENE

RECEIVED REQUEST FOR PRIORITY

JUN 1 3 2002

TECH CENTER 1600/2900

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

SIR:

- ☐ Full benefit of the filing date of U.S. Application Serial Number [US App No], filed [US App Dt], is claimed pursuant to the provisions of 35 U.S.C. §120.
- ☐ Full benefit of the filing date of U.S. Provisional Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §119(e).
- Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

COUNTRY	APPLICATION NUMBER	MONTH/DAY/YEAR
Germany	100 42 054.0	August 26, 2000
Germany	101 10 052.3	March 2, 2001

Certified copies of the corresponding Convention Application(s)

- are submitted herewith
- will be submitted prior to payment of the Final Fee
- were filed in prior application Serial No. filed
- were submitted to the International Bureau in PCT Application Number. Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.
- ☐ (A) Application Serial No.(s) were filed in prior application Serial No. filed ; and
 - (B) Application Serial No.(s)
 - are submitted herewith
 - will be submitted prior to payment of the Final Fee

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Norman F. Oblon

Registration No.

24,618

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 10/98)

Roland E. Martin Registration No. 48,082

09/938,540

BUNDESREPUBLIK DEUTSCHLAND

RECEIVED

JUN 1 3 2002

TECH CENTER 1600/2900

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

100 42 054.0

Anmeldetag:

26. August 2000

Anmelder/Inhaber:

Degussa AG, Düsseldorf/DE

Erstanmelder: Degussa-Hüls Aktiengesellschaft,

Frankfurt am Main/DE

Bezeichnung:

Neue für das ccpA1-Gen kodierende Nukleotidse-

quenzen

IPC:

C 07 H, C 12 N, C 12 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 5. Juli 2001 Deutsches Patent- und Markenamt Der Präsident

Im Auftmag

Į

Neue für das ccpAl-Gen kodierende Nukleotidsequenzen

Gegenstand der Erfindung sind für das ccpAl-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, durch Abschwächung des ccpAl-Gens. Das ccpAl-Gen kodiert für das CcpAl-Protein, welches ein Katabolit-Kontroll-Protein A ist.

Stand der Technik

L-Aminosäuren, insbesondere L-Lysin, finden in der
Humanmedizin und in der pharmazeutischen Industrie, in der
Lebensmittelindustrie und ganz besonders in der
Tierernährung Anwendung.

Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere

- Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die
- Zusammensetzung der Nährmedien, wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst
- 25 betreffen.

Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und die

für regulatorisch bedeutsame Metabolite sind un Aminosäuren produzieren.

000059 BT

2

Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierenden Stämmen von Corynebacterium eingesetzt.

5 Aufgabe der Erfindung

Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, bereitzustellen.

Beschreibung der Erfindung

- Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt, sind damit eine oder mehrere Aminosäuren einschließlich ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-
 - 15 Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin gemeint.

Werden im folgenden L-Lysin oder Lysin erwähnt, sind damit auch die Salze wie z.B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.

- Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das ccpAl-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
- a) Polynukleotid, das mindestens zu 70% identisch ist mit 25 einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No.
- 30 2,

000059 BT

5

10

C

- c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

wobei das Polypeptid bevorzugt die Aktivität des Katabolit-Kontroll-Proteins CcpAl aufweist.

Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:

- (i) die Nukleotidsequenz, gezeigt in SEQ ID No.1 oder
- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- 15 (iii) mindestens eine Sequenz, die mit den zu den Sequenzen (i) oder (ii) komplementären Sequenzen hybridisiert, und gegebenenfalls
 - (iv) funktionsneutralen Sinnmutationen in (i).

Weitere Gegenstände sind:

- 20 eine replizierbare DNA, enthaltend die Nukleotidsequenz, wie in SEQ ID No.1 dargestellt;
 - ein Polynukleotid, das für ein Polypeptid
 kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2
 dargestellt, enthält;
 - ein Vektor, enthaltend Teile des erfindungsgemäßen Polynukleotids, mindestens aber 15 aufeinanderfolgende Nukleotide der beanspruchten Sequenz;

10

15

und coryneforme Bakterien, in denen das ccpAl-Gen, insbesondere durch eine Insertion oder Deletion, abgeschwächt ist.

Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank eines coryneformen Bakteriums, die das vollständige Gen oder Teile davon enthält, mit einer Sonde, die die Sequenz des erfindungsgemäßen Polynukleotids gemäß SEQ ID No.1 oder ein Fragment davon enthält und Isolierung der genannten Polynukleotidsequenz.

Polynukleotidsequenzen gemäß der Erfindung sind als Hybridisierungssonden für RNA, cDNA und DNA geeignet, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene in voller Länge zu isolieren, die für das CcpAl-Protein kodieren oder um solche Nukleinsäuren beziehungsweise Polynukleotide oder Gene zu isolieren, die eine hohe Ähnlichkeit mit der Sequenz des ccpAl-Gens aufweisen.

Polynukleotidsequenzen gemäß der Erfindung sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase-Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für das CcpAl-Protein kodieren.

Solche als Sonden oder Primer dienende Oligonukleotide enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Nukleotiden.

"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.

30 "Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

10

15

Die Polynukleotide gemäß Erfindung schließen ein Polynukleotid gemäß SEQ ID No. 1 oder ein daraus hergestelltes Fragment und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders zu wenigstens 90% bis 95% identisch sind mit dem Polynukleotid gemäß SEQ ID No. 1 oder eines daraus hergestellten Fragments.

Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität des CcpAl-Proteins und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders zu wenigstens 90% bis 95% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.

Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L
Lysin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren und in denen die für das ccpAl-Gen kodierenden Nukleotidsequenzen abgeschwächt, insbesondere ausgeschaltet oder auf niedrigem Niveau exprimiert werden.

Der Begriff "Abschwächung" beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.

Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

Die Mikroorganismen, die Gegenstand der vorliegenden

Erfindung sind, können Aminosäuren, insbesondere L-Lysin
aus Glucose, Saccharose, Lactose, Fructose, Maltose,
Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol
herstellen. Es kann sich um Vertreter coryneformer
Bakterien insbesondere der Gattung Corynebacterium handeln.

Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosauren zu produzieren.

Geeignete Stämme der Gattung Corynebacterium, insbesondere 20 der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium melassecola ATCC17965
Corynebacterium thermoaminogenes FERM BP-1539
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020

oder daraus hergestellte L-Aminosäuren produzierende
Mutanten beziehungsweise Stämme, wie beispielsweise die LLysin produzierenden Stämme

Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464
Corynebacterium glutamicum DM58-1
Corynebacterium glutamicum DG52-5
Corynebacterium glutamicum DSM 5715 und
Corynebacterium glutamicum DSM 12866

Den Erfindern gelang es, das neue, für das CcpAl-Protein kodierende ccpAl-Gen von C. glutamicum, welches ein Katabolit-Kontroll-Protein A ist, zu isolieren.

Zur Isolierung des ccpAl-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses

- Mikroorganismus in Escherichia coli (E. coli) angelegt.

 Das Anlegen von Genbanken ist in allgemein bekannten
 Lehrbüchern und Handbüchern niedergeschrieben. Als
 Beispiel seien das Lehrbuch von Winnacker: Gene und Klone,
 Eine Einführung in die Gentechnologie (Verlag Chemie,
- Weinheim, Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in
- λ-Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E.
- coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575) angelegt wurde. Börmann et al. (Molecular Microbiology 6(3), 317-326 (1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmides pHC79 (Hohn und Collins, 1980, Gene
- 35 11, 291-298).

dargestellt.

Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, 1979, Life Sciences, 25, 807-818) oder pUC9 (Vieira et al., 1982, Gene, 19:259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli-Stämme, die restriktions- und rekombinationsdefekt sind wie beispielsweise der Stamm DH5α (Jeffrey H. Miller: "A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria", Cold Spring Harbour Laboratory Press, 1992).

Die mit Hilfe von Cosmiden oder anderen λ -Vektoren klonierten langen DNA-Fragmente können anschließend wiederum in gängige für die DNA-Sequenzierung geeignete Vektoren subkloniert werden.

- Methoden zur DNA-Sequenzierung sind unter anderem bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America USA, 74:5463-5467, 1977) beschrieben.
- Die erhaltenen DNA-Sequenzen können dann mit bekannten
 20 Algorithmen bzw. Sequenzanalyse-Programmen wie z.B. dem von
 Staden (Nucleic Acids Research 14, 217-232 (1986)), dem von
 Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder
 dem GCG-Programm von Butler (Methods of Biochemical
 Analysis 39, 74-97 (1998)) untersucht werden.
- Auf diese Weise wurde die neue für das ccpAl-Gen kodierende DNA-Sequenz von C. glutamicum erhalten, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des ccpAl-Genproduktes

Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. 5 der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" ("sense mutations") bekannt, 10 die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d.h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der 15 Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) und in bekannten Lehrbüchern der 20 Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.

Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Nukleotiden.

Anleitungen zur Identifizierung von DNA-Sequenzen mittels
Hybridisierung findet der Fachmann unter anderem im

30 Handbuch "The DIG System Users Guide for Filter
Hybridization" der Firma Boehringer Mannheim GmbH
(Mannheim, Deutschland, 1993) und bei Liebl et al.
(International Journal of Systematic Bacteriology 41: 255260 (1991)). Die Hybridisierung findet unter stringenten

35 Bedingungen statt, das heisst, es werden nur Hybride

1603558).

gebildet, bei denen Sonde und Zielsequenz, d.h. die mit der Sonde behandelten Polynukleotide, mindestens 70% identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der Salzkonzentration beeinflußt bzw. bestimmt wird. Die Hybridisierungsreaktion wird vorzugsweise bei relativ niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, 10 Teddington, UK, 1996).

Für die Hybridisierungsreaktion kann beispielsweise ein 5x SSC-Puffer bei einer Temperatur von ca. 50 - 68°C Dabei können Sonden auch mit eingesetzt werden. Polynukleotiden hybridisieren, die weniger als 70% 15 Identität zur Sequenz der Sonde aufweisen. sind weniger stabil und werden durch Waschen unter stringenten Bedingungen entfernt. Dies kann beispielsweise durch Senken der Salzkonzentration auf 2x SSC und nachfolgend 0,5x SSC (The DIG System User's Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, 20 Deutschland, 1995) erreicht werden, wobei eine Temperatur von ca. 50 - 68°C eingestellt wird. Es ist gegebenenfalls möglich die Salzkonzentration bis auf 0,1x SSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1 - 2°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder mindestens 90% bis 95% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter 30 Kits am Markt erhältlich (z.B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No.

Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonucleotide

Synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

Bei der Arbeit an der vorliegenden Erfindung konnte festgestellt werden, daß coryneforme Bakterien nach Abschwächung des ccpAl-Gens in verbesserter Weise Aminosäuren, insbesondere L-Lysin, produzieren.

Zur Erzielung einer Abschwächung können entweder die Expression des ccpA1-Gens oder die katalytischen Eigenschaften des Enzymproteins herabgesetzt oder ausgeschaltet werden. Gegebenenfalls können beide Maßnahmen kombiniert werden.

Kulturführung oder durch genetische Veränderung (Mutation)

der Signalstrukturen der Genexpression erfolgen.

Signalstrukturen der Genexpression sind beispielsweise
Repressorgene, Aktivatorgene, Operatoren, Promotoren,
Attenuatoren, Ribosomenbindungsstellen, das Startkodon und
Terminatoren. Angaben hierzu findet der Fachmann z.B. in

Die Verringerung der Genexpression kann durch geeignete

- der Patentanmeldung WO 96/15246, bei Boyd und Murphy (Journal of Bacteriology 170: 5949 (1988)), bei Voskuil und Chambliss (Nucleic Acids Research 26: 3548 (1998), bei Jensen und Hammer (Biotechnology and Bioengineering 58: 191 (1998)), bei Pátek et al. (Microbiology 142: 1297 (1996)),
- Vasicova et al. (Journal of Bacteriology 181: 6188 (1999)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem Lehrbuch von Knippers ("Molekulare Genetik", 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995) oder dem von Winnacker ("Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990).

Mutationen, die zu einer Veränderung bzw. Herabsetzung der katalytischen Eigenschaften von Enzymproteinen führen, sind aus dem Stand der Technik bekannt; als Beispiele seien die

Arbeiten von Qiu und Goodman (Journal of Biological Chemistry 272: 8611-8617 (1997)), Sugimoto et al. (Bioscience Biotechnology and Biochemistry 61: 1760-1762 (1997)) und Möckel ("Die Threonindehydratase aus

- Corynebacterium glutamicum: Aufhebung der allosterischen Regulation und Struktur des Enzyms", Berichte des Forschungszentrums Jülichs, Jül-2906, ISSN09442952, Jülich, Deutschland, 1994) genannt. Zusammenfassende Darstellungen können bekannten Lehrbüchern der Genetik und
- 10 Molekularbiologie wie z.B. dem von Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.

Als Mutationen kommen Transitionen, Transversionen, Insertionen und Deletionen in Betracht. In Abhängigkeit

- von der Wirkung des Aminosäureaustausches auf die Enzymaktivität wird von Fehlsinnmutationen ("missense mutations") oder Nichtsinnmutationen ("nonsense mutations") gesprochen. Insertionen oder Deletionen von mindestens einem Basenpaar (bp) in einem Gen führen zu
- 20 Rasterverschiebungsmutationen ("frame shift mutations"), in deren Folge falsche Aminosäuren eingebaut werden oder die Translation vorzeitig abbricht. Deletionen von mehreren Kodonen führen typischerweise zu einem vollständigen Ausfall der Enzymaktivität. Anleitungen zur Erzeugung
- derartiger Mutationen gehören zum Stand der Technik und können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z.B. dem Lehrbuch von Knippers ("Molekulare Genetik", 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995), dem von Winnacker ("Gene und
- 30 Klone", VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990) oder dem von Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.

Eine gebräuchliche Methode, Gene von C. glutamicum zu mutieren, ist die von Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991)) beschriebene Methode der Gen-Unterbrechung

("gene disruption") und des Gen-Austauschs ("gene replacement").

Bei der Methode der Gen-Unterbrechung wird ein zentraler Teil der Kodierregion des interessierenden Gens in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pK18mobsacB oder pK19mobsacB (Jäger et al., Journal of Bacteriology 174: 10 5462-65 (1992)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269:32678-84; US-Patent 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)) oder 15 pEM1 (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516) in Frage. Der Plasmidvektor, der das zentrale Teil der Kodierregion des Gens enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. 20 Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology . 25 and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross-over"-Ereignisses wird die Kodierregion des betreffenden Gens 30 durch die Vektorsequenz unterbrochen und man erhält zwei unvollständige Allele, denen jeweils das 3'- bzw. das 5'-Ende fehlt. Diese Methode wurde beispielsweise von Fitzpatrick et al. (Applied Microbiology and Biotechnology 42, 575-580 (1994)) zur Ausschaltung des recA-Gens von C. 35 glutamicum verwendet.

Bei der Methode des Genaustausches ("gene replacement") wird eine Mutation wie z.B. eine Deletion, Insertion oder Basenaustausch in dem interessierenden Gen in-vitro hergestellt. Das hergestellte Allel wird wiederum in einen für C. glutamicum nicht replikativen Vektor kloniert und dieser anschließend durch Transformation oder Konjugation in den gewünschten Wirt von C. glutamicum überführt. homologer Rekombination mittels eines ersten, Integration bewirkenden "cross-over"-Ereignisses und eines geeigneten zweiten, eine Exzision bewirkenden "cross-over"-Ereignisses 10 im Zielgen bzw. in der Zielsequenz erreicht man den Einbau der Mutation bzw. des Allels. Diese Methode wurde beispielsweise von Peters-Wendisch et al. (Microbiology 144, 915 - 927 (1998)) verwendet, um das pyc-Gen von C.

In das ccpAl-Gen kann auf diese Weise eine Deletion, Insertion oder ein Basenaustausch eingebaut werden.

glutamicum durch eine Deletion auszuschalten.

Zusätzlich kann es für die Produktion von L-Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, zusätzlich zur Abschwächung des ccpAl-Gens eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus, des Pentosephosphat-Zyklus oder des Aminosäure-Exports und gegebenenfalls regulatorische Proteine zu verstärken, insbesondere überzuexprimieren.

So kann beispielsweise für die Herstellung von L-Lysin gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe

- das für die Dihydrodipicolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
 - das für die Enolase kodierende Gen eno (DE: 19947791.4),
 - das für das zwf-Genprodukt kodierende Gen zwf (JP-A-09224661),

20

- gleichzeitig das für die Tetradihydrodipicolinat
 Succinylase kodierende dapD Gen (Wehrmann et al., Journal of Bacteriology 180, 3159-3165 (1998)),
- gleichzeitig das Gen für die Succinyldiaminopimelate Desuccinylase kodierende dapE Gen (Wehrmann et al.,
 Journal of Bacteriology 177: 5991-5993 (1995)),
 - gleichzeitig das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende gap-Gen (Eikmanns (1992). Journal of Bacteriology 174:6076-6086),
- das für die Pyruvat Carboxylase kodierende Gen pyc (Peters-Wendisch et al. (Microbiology 144, 915 927 (1998))
 - gleichzeitig das für die Malat:Chinon Oxidoreduktase kodierende mqo-Gen (Molenaar et al., European Journal of Biochemistry 254, 395 403 (1998)),
 - das für eine feed back resistente Aspartatkinase kodierende Gen lysC (Kalinowski et al. (1990), Molecular and General Genetics 224, 317-324; Accession No.P26512),
 - das für das Zwal-Protein kodierende Gen zwal (DE: 19959328.0, DSM 13115),
 - das für den Lysin-Export kodierende Gen lysE (DE-A-195 48 222)

verstärkt, insbesondere überexprimiert werden.

Außerdem kann es für die Produktion von Aminosäuren,
insbesondere L-Lysin, vorteilhaft sein, neben der
Abschwächung des ccpAl-Gens gleichzeitig eines oder mehrere
der Gene, ausgewählt aus der Gruppe

- das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1, DSM 13047),
- das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi (US 09/396,478, DSM 12969),
- das für das Zwa2-Protein kodierende Gen zwa2 (DE: 19959327.2, DSM 13113),
 - das für die Pyruvat-Oxidase kodierende Gen poxB DE:1995 1975.7, DSM 13114)

abzuschwächen.

20

- Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Lysin vorteilhaft sein, neben der Abschwächung des ccpAl-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products,
 - 15 Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

Die erfindungsgemäß hergestellten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von L-Aminosäuren, insbesondere

- L-Lysin kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die
- 25 (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.
- Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im

Handbuch "Manual of Methods for General Bacteriology, der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten. Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose,

- Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette, wie zum Beispiel Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren, wie zum Beispiel Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie zum Beispiel Glycerin und Ethanol und organische Säuren, wie zum
- 10 Beispiel Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.

Als Stickstoffquelle können organische Stickstoff-haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff

oder anorganische Verbindungen wie Ammoniumsulfat,
Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und
Ammoniumnitrat verwendet werden. Die Stickstoffquellen
können einzeln oder als Mischung verwendet werden.

Als Phosphorquelle können Phosphorsäure,

- 20 Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium-haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten, wie zum Beispiel Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind.
- 25 Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen 30 Ansatzes hinzugegeben oder in geeigneter Weise während der
- 30 Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.

Zur pH - Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak beziehungsweise Ammoniakwasser oder saure Verbindungen wie

35 Phosphorsäure oder Schwefelsäure in geeigneter Weise

eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel, wie zum Beispiel Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie zum Beispiel Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff-haltige Gasmischungen, wie zum Beispiel Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Methoden zur Bestimmung von L-Aminosäuren sind aus dem

Stand der Technik bekannt. Die Analyse kann zum Beispiel so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Anionenaustausch-Chromatographie mit anschließender Ninhydrin-Derivatisierung erfolgen, oder sie kann durch reversed

phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.

Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin.

Die vorliegende Erfindung wird im folgenden anhand von 25 Ausführungsbeispielen näher erläutert.

Die Isolierung von Plasmid-DNA aus Escherichia coli sowie alle Techniken zur Restriktion, Klenow- und alkalische Phosphatasebehandlung wurden nach Sambrook et al. (Molecular Cloning. A Laboratory Manual, 1989, Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA) durchgeführt. Methoden zur Transformation von Escherichia coli sind ebenfalls in diesem Handbuch beschrieben.

Die Zusammensetzung gängiger Nährmedien wie LB- oder TY-Medium kann ebenfalls dem Handbuch von Sambrook et al. entnommen werden.

Beispiel 1

25

30

Herstellung einer genomischen Cosmid-Genbank aus C. glutamicum ATCC 13032

Chromosomale DNA aus C. glutamicum ATCC 13032 wurde wie bei Tauch et al., (1995, Plasmid 33:168-179) beschrieben, isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche

- Molecular Biochemicals, Mannheim, Deutschland,
 Produktbeschreibung SAP, Code no. 1758250)
 dephosphoryliert. Die DNA des Cosmid-Vektors SuperCos1
 (Wahl et al. (1987), Proceedings of the National Academy of Sciences, USA 84:2160-2164), bezogen von der Firma
- 15 Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1
 Cosmid Vektor Kit, Code no. 251301) wurde mit dem
 Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg,
 Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02)
 gespalten und ebenfalls mit shrimp alkalischer Phosphatase
 20 dephosphoryliert.

Anschließend wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4-DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no.27-0870-04) behandelt. Das Ligationsgemisch wurde anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.

Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Res. 16:1563-1575) wurden die Zellen in 10 mM MgSO₄ aufgenommen und mit einem Aliquot der

Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1:190) + 100 µg/ml Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektioniert.

Beispiel 2

5

Isolierung und Sequenzierung des Gens ccpA1

- 10 Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-15 0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. gelelektrophoretischer Auftrennung erfolgte die Isolierung 20 der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).
- Die DNA des Sequenziervektors pZero-1 bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung

 Zero Background Cloning Kit, Product No. K2500-01) wurde mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm

15

20

30

35

DH5 α MCR (Grant, 1990, Proceedings of the National Academy of Sciences, U.S.A., 87:4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) und auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 50 μ g/ml Zeocin ausplattiert.

Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgte nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academies of Sciences, U.S.A., 74:5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wurde der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).

Die erhaltenen Roh-Sequenzdaten wurden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14:217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZerol-Derivate wurden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurden mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14:217-231) angefertigt. Weitere Analysen wurden mit den "BLAST search programs" (Altschul et al., 1997, Nucleic Acids Research, 25:33893402) gegen die non-redundant Datenbank des "National Center for Biotechnology Information" (NCBI, Bethesda, MD, USA) durchgeführt.

Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 1167 bp, welches als ccpAl-Gen bezeichnet wurde. Das ccpAl-Gen kodiert für ein Polypeptid von 388 Aminosäuren.

SEQUENZ PROTOKOLL

	<110> Degussa-Hüls AG														
5	<120> Neue fur das ccpA1-Gen kodierende Nukleotidsequenzen														
	<130> 000059 BT														
10	<140> <141>														
	<160> 2														
15	<170> PatentIn Ver. 2.1														
20	<210> 1 <211> 1600 <212> DNA <213> Corynebacterium glutamicum														
25	<220> <221> CDS <222> (225)(1388) <223> ccpA1-Gen														
23	<400> 1 tgggttactg cccaggcaat gtttggatag tttttcgggc ttttatcaac agccaataac 60														
30	agetettteg eccattgagg tggagggget gttttteat geegtaagga aagtgeaagt 1														
30	aagtgaaatc aagtggccta gatccattga cacttagact gtgacctagg cttgactttc 180														
35	gtgggggagt ggggataagt tcatcttaaa cacaatgcaa tcga ttg cat tta cgt 2 Met His Leu Arg 1														
40	tcc tta tcc cac aat agg ggt acc ttc cag aaa gtt ggt gag gag atg Ser Leu Ser His Asn Arg Gly Thr Phe Gln Lys Val Gly Glu Glu Met 5 10 20														
10	gct tcc gaa acc tcc agc ccg aag aag cgg gcc acc acg ctc aaa gac 332 Ala Ser Glu Thr Ser Ser Pro Lys Lys Arg Ala Thr Thr Leu Lys Asp 25 30 35														
45	atc gcg caa gca aca cag ctt tca gtc agc acg gtg tcc cgg gca ttg 380 Ile Ala Gln Ala Thr Gln Leu Ser Val Ser Thr Val Ser Arg Ala Leu 40 45 50														
50	gcc aac aac gcg agc att ccg gaa tcc aca cgc atc cga gtg gtt gaa 428 Ala Asn Asn Ala Ser Ile Pro Glu Ser Thr Arg Ile Arg Val Val Glu 55 60 65														
55	gcc gct caa aag ctg aac tac cgt ccc aat gcc caa gct cgt gca ttg Ala Ala Gln Lys Leu Asn Tyr Arg Pro Asn Ala Gln Ala Arg Ala Leu 70 75 80														
	cgg aag tcg agg aca gac acc atc ggt gtc atc att cca aac att gag 524														

	Arg 85	Lys	Ser	Arg	Thr	Asp 90	Thr	Ile	Gly	Val	Ile 95	Ile	Pro	Asn	Ile	Glu 100	
5	aac Asn	cca Pro	tat Tyr	ttc Phe	tcc Ser 105	tca Ser	cta Leu	gca Ala	gca Ala	tcg Ser 110	att Ile	caa Gln	aaa Lys	gct Ala	gct Ala 115	cgt Arg	572
10	gaa Glu	gct Ala	G] À Gga	gtg Val 120	tcc Ser	acc Thr	att Ile	ttg Leu	tcc Ser 125	aac Asn	tct Ser	gaa Glu	gaa Glu	aac Asn 130	cca Pro	gag Glu	620
15		ctt Leu															668
10		atc Ile 150															716
20		aac Asn															764
25		tct Ser															812
30		gtg Val															860
35	ggc Gly	ccg Pro	cag Gln 215	gat Asp	act Thr	tcc Ser	act Thr	ggt Gly 220	cag Gln	ctg Leu	cgt Arg	ctt Leu	aac Asn 225	act Thr	ttt Phe	gaa Glu	908
		cta Leu 230															956
40		tac Tyr															1004
45		gga Gly															1052
50		ttg Leu															1100
55		ctc Leu															1148
		ctg Leu 310															1196

		ttt Phe 325	gag Glu	att Ile	ctg Leu	cag Gln	aag Lys 330	ctg Leu	atc Ile	aat Asn	Gly	gac Asp 335	acc Thr	gcg Ala	caa Gln	aaa Lys	tct Ser 340	1244
	5	gtg Val	gtg Val	att Ile	cca Pro	acg Thr 345	cag Gln	ctc Leu	agc Ser	atc Ile	aat Asn 350	gga Gly	tca Ser	acg Thr	gcg Ala	gtt Val 355	tcc Ser	1292
	10		aag Lys															1340
•	15 _.		gcc Ala															1388
	tgaacaagcg cttcatcagc atgatectge accaatectt cagttggat														ata a	aagto	1448	
	20	gtcgtttggc ccagtcaacg tcattaatca agtgagcatc gatgttcgcc ctggcagggt															1508	
, is	20	gcttgcgctg ttgggtgaaa atggtgcggg taaatctacg ctgatcaaga tgatgtcggg															1568	
		tgt	gtato	cag o	cctga	atggo	g gg	gcaga	atttt	gg								1600
	25	<210> 2 <211> 388 <212> PRT <213> Corynebacterium glutamicum																
	30	<400		_														
		Met 1	His	Leu	Arg	Ser 5	Leu	Ser	His	Asn	Arg 10	Gly	Thr	Phe	Gln	Lys 15	Val	
	35	Gly	Glu	Glu	Met 20	Ala	Ser	Glu	Thr	Ser 25	Ser	Pro	Lys	Lys	Arg 30	Ala	Thr	
	40	Thr	Leu	Lys 35	Asp	Ile	Ala	Gln	Ala 40	Thr	Gln	Leu	Ser	Val 45	Ser	Thr	Val	
بنإ	40	Ser	Arg 50		Leu	Ala	Asn					Pro			Thr	Arg	Ile	
	4 5	Arg 65	Val	Val	Glu	Ala	Ala 70	Gln	Lys	Leu	Asn	Tyr 75	Arg	Pro	Asn	Ala	Gln 80	
		Ala	Arg	Ala	Leu	Arg 85	Lys	Ser	Arg	Thr	Asp 90	Thr	Ile	Gly	Val	Ile 95	Ile	
	50	Pro	Asn	Ile	Glu 100	Asn	Pro	Tyr	Phe	Ser 105	Ser	Leu	Ala	Ala	Ser 110	Ile	Gln	
	55	Lys	Ala	Ala 115	Arg	Glu	Ala	Gly	Val 120	Ser	Thr	Ile	Leu	Ser 125	Asn	Ser	Glu	
	-	Glu	Asn 130	Pro	Glu	Leu	Leu	Gly 135	Gln	Thr	Leu	Ala	Ile 140	Met	Asp	Asp	Gln	
		Arg	Leu	Asp	Gly	Ile	Ile	Val	Val	Pro	His	Ile	Gln	Ser	Glu	Glu	Gln	

		145					150					155					160
	5	Val	Thr	Asp	Leu	Val 165	Asn	Arg	Gly	Val	Pro 170	Val	Val	Leu	Ala	Asp 175	Arg
	J	Ser	Phe	Val	Asn 180	Ser	Ser	Ile	Pro	Ser 185	Val	Thr	Ser	Asp	Pro 190	Val	Pro
	10	Gly	Met	Thr 195	Glu	Ala	Val	Asp	Leu 200	Leu	Leu	Ala	Ala	Asp 205	Val	Gln	Leu
·		Gly	Tyr 210	Leu	Ala	Gly	Pro	Gln 215	Asp	Thr	Ser	Thr	Gly 220	Gln	Leu	Arg	Leu
	15	Asn 225	Thr	Phe	Glu	Arg	Leu 230	Cys	Val	Asp	Arg	Gly 235	Ile	Val	Gly	Ala	Ser 240
	20	Val	Tyr	Tyr	Gly	Gly 245	Tyr	Arg	Gln	Glu	Ser 250	Gly	Tyr	Asp	Gly	Ile 255	Lys
		Val	Leu	Ile	Lys 260	Gln	Gly	Ala	Asn	Ala 265	Ile	Ile	Ala	Gly	Asp 270	Ser	Met
	25	Met	Thr	Ile 275	Gly	Ala	Leu	Leu	Ala 280	Leu	His	Glu	Met	Asn 285	Leu	Lys	Ile
		Gly	Glu 290	Asp	Val	Gln	Leu	Ile 295	Gly	Phe	Asp	Asn	Asn 300	Pro	Ile	Phe	Arg
٠	30	Leu 305	Gln	Asn	Pro	Pro	Leu 310	Ser	Ile	Ile	Asp	Gln 315	His	Val	Gľn	Glu	Ile 320
	35	Gly	Lys	Arg	Ala	Phe 325	Glu	Ile	Leu	Gln	Lys 330	Leu	Ile	Asn	Gly	Asp 335	Thr
		Ala	Gln	Lys	Ser 340	Val	Val	Ile	Pro	Thr 345	Gln	Leu	Ser	Ile	Asn 350	Gly	Ser
	40	Thr	Ala	Val 355	Ser	Gln	Lys	Ala	Ala 360	Ala	Lys	Ala	Ala	Lys 365	Ala	Ala	Gln
		Lys	Ala 370	Ala	Ala	Lys	Ala	Ala 375	Gln	Asn	Thr	Gln	His 380	Glu	Val	Ser	Leu
	45	Asp 385	Gly	Glu	Leu												

Patentansprüche

- Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das ccpAl-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
- a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens zu 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15
 aufeinanderfolgende Nukleotide der
 Polynukleotidsequenz von a), b), oder c),
 wobei das Polypeptid bevorzugt die Aktivität des
 Katabolit-Kontroll-Proteins CcpAl aufweist.
- 20 2. Polynukleotide gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
 - 3. Polynukleotide gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
- 25 4. Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
 - 5. Replizierbare DNA gemäß Anspruch 2 enthaltend
 - (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder

10

- (ii) mindestens eine Sequenz, die der Sequenz(i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit den zu den Sequenzen (i) oder (ii) komplementären Sequenzen hybridisiert, und gegebenenfalls
- (iv) funktionsneutrale Sinnmutationen in (i).
- 6. Polynukleotidsequenz gemäß Anspruch 2, das für ein Polypeptid kodiert, das die Aminosäuresequenz in SEQ ID No. 2 darstellt, enthält.
- 7. Coryneforme Bakterien, in denen das ccpA1-Gen abgeschwächt, bevorzugt ausgeschaltet wird.
- 8. Verfahren zur Herstellung von L-Aminosäuren, insbesondere L-Lysin,
- dadurch gekennzeichnet, dass man folgende Schritte durchführt,
 - a) Fermentation der die gewünschte L-Aminosäure produzierenden Bakterien, in denen man zumindest das ccpAl-Gen abschwächt,
- 20 b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der L-Aminosäure.
- Verfahren gemäß Anspruch 8, d a d u r c h
 g e k e n n z e i c h n e t, dass man Bakterien
 einsetzt, in denen man zusätzlich weitere Gene des
 Biosyntheseweges der gewünschten
 L-Aminosäure verstärkt.
- 10. Verfahren gemäß Anspruch 8, d a d u r c h
 g e k e n n z e i c h n e t, dass man Bakterien
 30 einsetzt, in denen die Stoffwechselwege zumindest
 teilweise ausgeschaltet sind, die die Bildung der
 gewünschten L-Aminosäure verringern.

- 11. Verfahren gemäß Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, dass man die Expression des (der) Polynukleotids(e), das (die) für das ccpAl-Gen kodiert (kodieren) verringert, insbesondere ausschaltet.
- 12. Verfahren gemäß Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, dass man die regulatorischen Eigenschaften des Polypeptids herabsetzt, für das das Polynukleotid ccpAl kodiert.
- 10 13. Verfahren gemäß Anspruch 8, d a d u r c h
 g e k e n n z e i c h n e t, dass man für die
 Herstellung von L-Aminosäuren, insbesondere L-Lysin,
 Bakterien fermentiert, in denen man gleichzeitig eines
 oder mehrere der Gene, ausgewählt aus der Gruppe
- 13.1 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA,
 - 13.2 das für die Enolase kodierende Gen eno,
 - 13.3 das für das zwf-Genprodukt kodierende Gen zwf,
- das für die Pyruvat-Carboxylase kodierende Gen pyc,
 - 13.5 das für den Lysin-Export kodierende Gen lysE,
 - 13.6 gleichzeitig das für die Tetradihydrodipicolinat Succinylase kodierende dapD Gen,
- 13.7 gleichzeitig das Gen für die
 25 Succinyldiaminopimelate-Desuccinylase kodierende
 dapE Gen,
 - 13.8 gleichzeitig das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende gap-Gen,
- 13.9 gleichzeitig das für die Malat:Chinon30 Oxidoreduktase kodierende mgo-Gen,

- 13.10 das für eine feed back resistente Aspartatkinase kodierende Gen lysC,
- 13.11 das für das Zwal-Protein kodierende Gen zwal verstärkt, bevorzugt überexprimiert.
- 5 14. Verfahren gemäß Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, dass man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe:
 - 15.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck,
 - 15.2 das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi,
 - 15.3 das für die Pyruvat-Oxidase kodierende Gen poxB
 - 15.4 das für das Zwa2-Protein kodierende Gen zwa2
- 15 abschwächt.

000059 BT

- 15. Coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäß Anspruch 1 trägt.
- 16. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dad urch gekennzeichnet, dass man Mikroorganismen der Gattung Corynebacterium einsetzt.
- 17. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, die für das Katabolit-Kontroll-Protein CcpAl kodieren oder eine hohe Ähnlichkeit mit der Sequenz des ccpAl-Gens aufweisen, d a d u r c h g e k e n n z e i c h n e t, dass man die Polynukleotidsequenzen gemäß den Ansprüchen 1 bis 4 als Hybridisierungssonden einsetzt.

18. Verfahren gemäß Anspruch 17
d a d u r c h g e k e n n z e i c h n e t,
dass die Hybridisierung unter einer Stringenz
entsprechend höchstens 2x SSC durchgeführt wird.

Zusammenfassung

Die Erfindung betrifft isolierte Polynukleotide enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
- c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15
 aufeinanderfolgende Nukleotide der
 Polynukleotidsequenz von
 a), b) oder c),

und ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, in denen zumindest das ccpAl-Gen abgeschwächt vorliegt, und die Verwendung der Polynukleotidsequenzen als Hybridisierungssonden.