Геометрия

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В этой задаче необходимо реализовать набор классов для решения геометрических задач на плоскости. Все координаты предполагаются целочисленными.

- 1) Необходим класс Vector для вектора на плоскости, реализовать основные действия над векторами в виде методов и переопределения операций.
- 2) (Внимание! Для ИВТ данное задание не предполагает использования абстрактных классов и виртуальных функций!) Создать набор классов фигур, которые наследуются от абстрактного базового класса *IShape* для работы с двумерными геометрическими примитивами:
 - *Point* (точка);
 - Segment (отрезок);
 - *Line* (прямая);
 - Ray (луч);
 - *Polygon* (простой многоугольник часть плоскости, ограниченная замкнутой ломаной без самопересечений);
 - *Circle* (окружность).

В базовом классе предусмотреть виртуальные методы:

- Move(constVector&) сдвига на заданный вектор,
 метод должен изменять состояние объекта и возвращать ссылку на сам объект;
- ContainsPoint(constPoint&) проверки (true/false), содержит ли фигура точку;
- CrossesSegment(constSegment&) проверки (true/false), пересекается ли она с отрезком;
- *Clone*() копирования данного объекта (необходимо вернуть умный или обычный указатель на копию фигуры);
- *ToString*() строковое представление фигуры (формат см. в примерах).

В производных классах — реализовать эти методы.

В этой задаче нужно определить все классы, методы, функции так, чтобы предложенный тестирующий код выводил ожидаемый результат в соответствии с общепринятой семантикой (в частности, обратите внимание, что тестирующий код требует перегрузки операции разности двую точек). Исправлять код функций main и CheckFunctions запрещается.

Ссылка на код geometry.cpp:

 $\frac{\texttt{https://github.com/VladimirVolodya/Base_00P_A_problem/blob/geometry/geometry.cpp}}{(\text{Ссылка для } \text{ИВТ:}}.$

 $\frac{\texttt{https://github.com/VladimirVolodya/Base_00P_A_problem/blob/geometry_ivt/geometry_ivt.cpp)}{\texttt{Tectbi:}}$

- 1-6 совпадают с примером
- 7-15 point
- 16-46 segment
- 47-55 ray

- 56-60 line
- 61-71 *polygon*
- 72-80 *circle*

Формат входных данных

В первой строчке задается тип геометрического примитива: «point», «segment», «ray», «line», «circle» или «polygon». Далее вводится сам примитив.

После чего вводится две точки A и B, которые используются в CheckFunctions. Все числа целочисленные и не превосходят 10000 по модулю.

Формат выходных данных

Формат вывода можно посмотреть в *main* и в примерах.

Для Point выводятся ее координаты; Segment - два конца (точки); Ray - начало (точка) и направляющий вектор; Line - коэффициенты уравнения прямой (ax + by + c) с точностью до некоторого множителя (по идее система должна принимать и Line(1, -1, 1), и Line(-2, 2, -2)); Polygon - последовательность вершин; Circle - центр и радиус.

Примеры

стандартный ввод	стандартный вывод
point	Given shape does not contain point A
0 0	Given shape crosses segment AB
-1 -1 1 1	2 2
segment	Given shape contains point A
0 -1 0 1	Given shape crosses segment AB
0 0 0 1	0 0 0 2
ray	Given shape contains point A
0 0 1 1	Given shape crosses segment AB
2 2 3 2	1 0 2 1
line	Given shape does not contain point A
0 0 0 1	Given shape does not cross segment AB
1 1 2 1	1 0 1 1
polygon	Given shape contains point A
4	Given shape does not cross segment AB
0 0 3 0 3 3 0 3	4
1 1 2 2	1 1 4 1 4 4 1 4
circle	Given shape contains point A
0 0 5	Given shape crosses segment AB
0 0 5 5	5 5 5

Замечание

Старайтесь избегать использования чисел с плавающей точкой.

Используйте задачи этого контеста для тестирования некоторых функций.

В данной задаче многоугольник содержит точку, если она лежит в части плоскости, ограниченной замкнутой ломаной. Многоугольник пересекается с отрезком, если отрезок пересекается с замкнутой кривой.