# Theory of Computing CSE - 203

# **Course Objective:**

- Introduce concepts in automata theory and theory of computation
- Identify different formal language classes and their relationships
- Design grammars and recognizers for different formal languages
- Prove or disprove theorems in automata theory using its properties
- Determine the decidability and intractability of computational problems

## Why should I study CSE-203?

- Regular expressions are used in many systems, Like UNIX.
- Context-free grammars are used to describe the syntax of essentially every programming language.
- When developing solutions to real problems, we often confront the limitations of what software can do. CSE-203 gives you the tools.

### **Syllabus**

| <ol> <li>Introduction to Automata</li> </ol> | 6. Non Context Free Language (NCFL) |
|----------------------------------------------|-------------------------------------|
| 2. Deterministic Finite Automata             | 7. Parse Trees                      |
| 3. Nondeterministic Finite Automata          | 8. PushDown Automata (PDA)          |
| 4. Regular Expressions                       | 9. Turing Machines                  |
| 5. Context-Free Languages                    | 10. Undecidable Problems            |

#### **Text Book**

| Reference | Introduction to the Theory of Computation Michael Sipser: 3 <sup>rd</sup> Edition       |
|-----------|-----------------------------------------------------------------------------------------|
| Further   | Introduction to automata theory, languages and computation                              |
| Reading   | (JE Hopcroft, R Motwani and JD Ullman) Addison Wesley/ Pearson; 3 <sup>rd</sup> Edition |

## **Marks Distribution**

| S.L | Exam               | Mark | Syllabus                            |  |
|-----|--------------------|------|-------------------------------------|--|
| 1   | Midterm            | 30   | 1-5                                 |  |
| 2   | Assignment         | 10   | A-1, A-2                            |  |
| 5   | Final              | 40   | 6 - 10                              |  |
| 4   | Teacher Assessment | 10   | Class attendance, Class Performance |  |
|     | Total              | 100  |                                     |  |

#### **Assignment policy:**

- Assignment must be submitted in class as hardcopy on the due date mentioned in the homework
- All Assignment must be done individually.
- No late submissions will be allowed on any Assignment.

# **Introduction to Automata**

#### Automata - What is it?

Study of abstract computing devices, or "machines"

The term "Automata" is derived from the Greek word " $\alpha \dot{\upsilon} \tau \dot{\upsilon} \mu \alpha \tau \alpha$ " which means "selfacting". An automaton (Automata in plural) is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a **Finite Automaton** (FA) or **Finite State Machine** (FSM).

### **Alphabet**

An alphabet is any finite, non-empty set of symbols. We use the symbol  $\Sigma$  (sigma) to denote an alphabet. Examples:

• Binary:  $\Sigma = \{0,1\}$ 

• All lower case letters: Σ = {a, b, c, ..z}

• Alphanumeric:  $\Sigma = \{a-z, A-Z, 0-9\}$ 

• DNA molecule letters: Σ = {a,c,g,t}

Where 'a', 'b', 'c', and 'd' are symbols.

#### String

A *string* is a finite sequence of symbols taken from  $\Sigma$ .

Example: 'cabcad' is a valid string on the alphabet set  $\Sigma = \{a, b, c, d\}$ 

## Length of a String

It is the number of symbols present in a string. (Denoted by **|S|**). Examples:

- If S='cabcad', |S|= 6
- If |S| = 0, it is called an empty string (Denoted by  $\lambda$  or  $\varepsilon$ )

#### **Kleene Star**

The Kleene star,  $\Sigma^*$ , is a unary operator on a set of symbols or strings,  $\Sigma$ , that gives the infinite set of all possible strings of all possible lengths over  $\Sigma$  including  $\lambda$ .

Representation:  $\Sigma^* = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \dots$  Where  $\Sigma_p$  is the set of all possible strings of length p. Example: If  $\Sigma = \{a, b\}, \Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, \dots \}$ 

#### **Kleene Closure / Plus**

The set  $\Sigma^+$  is the infinite set of all possible strings of all possible lengths over  $\Sigma$  excluding  $\lambda$ .

Representation:  $\Sigma^+ = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \ldots$ 

$$\Sigma$$
+ =  $\Sigma$ \* - { $\lambda$ }

Example: If  $\Sigma = \{a, b\}$ ,  $\Sigma + = \{a, b, aa, ab, ba, bb, ......\}$ 

#### Language

A language is a subset of  $\Sigma^*$  for some alphabet  $\Sigma$ . It can be finite or infinite. Example: If the language takes all possible strings of length 2 over  $\Sigma = \{a, b\}$ ,

then L = { ab, bb, ba, bb}

Finite Automaton can be classified into two types -

- Deterministic Finite Automaton (DFA)
- Non-deterministic Finite Automaton (NDFA / NFA)

### **Deterministic Finite Automaton (DFA)**

In DFA, for each input symbol, one can determine the state to which the machine will move. Hence, it is called Deterministic Automaton. As it has a finite number of states, the machine is called Deterministic Finite Machine or Deterministic Finite Automaton.

#### Formal Definition of a DFA

A DFA can be represented by a 5-tuple (Q,  $\sum$ ,  $\delta$ , q<sub>0</sub>, F) where –

- **Q** is a finite set of states.
- **5** is a finite set of symbols called the alphabet.
- $\delta$  is the transition function where  $\delta: Q \times \Sigma \to Q$
- $q_0$  is the initial state from where any input is processed  $(q_0 \in Q)$ .
- **F** is a set of final state/states of Q (F ⊆ Q).

### **Graphical Representation of a DFA**

A DFA is represented by digraphs called **state diagram**.

- > The vertices represent the states.
- The arcs labeled with an input alphabet show the transitions.
- ➤ The initial state is denoted by an empty single incoming arc.
- > The final state is indicated by double circles.

#### **Example**

Let a deterministic finite automaton be →

- Q = {a, b, c},
- $\sum = \{0, 1\},$
- $q_0 = \{a\},$
- F = {c}, and

Transition function  $\delta$  as shown by the following table –

| Present State | Next State for Input 0 | Next State for Input 1 |
|---------------|------------------------|------------------------|
| а             | а                      | b                      |
| b             | С                      | a                      |
| С             | b                      | С                      |

Its graphical representation would be as follows -



#### **Finite Automata**

#### Some Applications

- Software for designing and checking the behavior of digital circuits
- Lexical analyzer of a typical compiler
- Software for scanning large bodies of text (e.g., web pages) for pattern finding
- Software for verifying systems of all types that have a finite number of states (e.g., stock market transaction, communication/network protocol)

## Example



#### **Structural Representations**

There are two important notations that are not automaton like, but play an important role in the study of automata and their applications.

- 1. **Grammars** are useful models when designing software that processes data with a recursive structure. The best known example is a "parser" the component of a compiler that deals with the recursively nested features of the typical programming language, such as expressions, arithmetic, conditional, and so on.
- 2. Regular Expressions also denote the structure of data especially text strings.

The UNIX style regular expression "[A-Z] [a-z]\*[ ] [A-Z] [A-Z]"represents capitalized words followed by a space and two capital letters. This expression represents patterns in text that could be a city and state, e.g., Ithaca NY.

It misses multiword city names such as **Palo Alto CA** which could be captured by the more complex expression

# "[A-Z] [a-z]\*([][A-Z][a-z]\*)\*[][A-Z][A-Z]"

# **Automata and Complexity**

Automata are essential for the study of the limits of computation. There are two important issues.

- What can a computer do at all? This study is called "decidability", and the problems that can be solved by computer are called "decidable".
- What can a computer do efficiently? This study is called "intractability", and the problems that can be solved by a computer using no more time than some slowly growing function of the size of the input are called "tractable".

#### Meet "ABA" The Automaton!



| Input String | Result |
|--------------|--------|
| aba          | Accept |
| aabb         | Reject |
| aabba        | Accept |
| 3            | Accept |

## **How Machine M operates**

- M "reads" one letter at a time from the input string (going from left to right)
- $\triangleright$  M starts in state  $q_0$ .
- If M is in state q<sub>i</sub> reads the letter a then

If  $\delta(q_i, a)$  is undefined then CRASH. Otherwise M moves to state  $\delta(q_i, a)$ 

#### **Finite Automation**

| Finite set of states          | > ©           | $Q = \{q_0, q_1, q_2,, q_k\}$                  |
|-------------------------------|---------------|------------------------------------------------|
| A start state                 | >             | q <sub>o</sub>                                 |
| A set of accepting states     | 000           | $F = \{q_{io}, q_{i1}, q_{i2},, q_{ir}\}$      |
| A finite alphabet             | a, b, #, x, 1 | Σ                                              |
| State transition instructions |               | &: $Q \times \Sigma -> Q$<br>$d(q_i, a) = q_j$ |
|                               |               | $d(q_i, a) = q_j$                              |

## Let $M = (Q, \sum, F, \&)$ be a finite automaton.

*M* accepts the string *x* if when *M* reads *x* it ends in an accepting state.

*M rejects* the string *x* if when *M* reads *x* it ends in a non-accepting state.

*M crashes* on *x* if *M* crashes while reading *x*.















L = all strings containing ababb as a consecutive substring



## **Formal Proofs**

- 1. Inductive Proof
- 2. Deductive Proof

(Self-Study.....see reference book chapter 0)

### Quantifiers

- For all" or "For every"
  - Universal proofs
  - o Notation =  $\forall$
- "There exists"
  - Used in existential proofs
  - $\circ$  Notation =  $\exists$
- > Implication is denoted by =>

E.g., "IF A THEN B" can also be written as "A=>B"

#### Homework

Consider the following two languages on the alphabet  $\Sigma = \{a, b\}$ 

$$L_1 = \{a^n : n \ge 1\}$$
  
$$L_2 = \{b^n : n \ge 1\}$$

Describe the languages below, using either the set notatin or precise definitions in English

$$L_{3} = L_{1}^{*}$$

$$L_{4} = \overline{L_{1}}$$

$$L_{5} = L_{1} \cup L_{2}$$

$$L_{6} = L_{1}L_{2}$$

$$L_{7} = (L_{1}^{2})(L_{2}^{2})(L_{1}^{2})$$

$$L_{8} = (L_{1} \cup L_{2})^{*}$$

$$L_{9} = (L_{1}L_{2})^{*}$$