

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	48	((finite adj2 impluse adj2 response) or FIR) and (viterbi near3 (decod\$3 or detect\$3)) and ((linear or non-linear) near3 process\$3)	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/07/25 16:47
L2	258	((finite adj2 impluse adj2 response) or FIR) and (viterbi near3 (decod\$3 or detect\$3)) and (signal near2 detect\$4) and (linear or non-linear) and noise	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/07/25 16:50
L3	143	((finite adj2 impluse adj2 response) or FIR) and (viterbi near3 (decod\$3 or detect\$3)) and (signal near2 detect\$4) and (linear or non-linear) and noise and ((most adj2 likely) or MLDP or (maximum adj1 likelihood))	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/07/25 16:53
L4	36	((finite adj2 impluse adj2 response) or FIR) and (viterbi near3 (decod\$3 or detect\$3)) and (signal near2 detect\$4) and (linear or non-linear) and ((measur\$3 or estimat\$4) near3 noise) and ((most adj2 likely) or MLDP or (maximum adj1 likelihood))	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/07/25 16:54
L5	21	((finite adj2 impluse adj2 response) or FIR) and (viterbi near3 (decod\$3 or detect\$3)) and (signal near2 detect\$4) and (linear or non-linear) and ((measur\$3 or estimat\$4) near3 noise) and ((most adj2 likely) or MLDP or (maximum adj1 likelihood)) and processor	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/07/25 16:54
L6	21	((finite adj2 impluse adj2 response) or FIR) and (viterbi near3 (decod\$3 or detect\$3)) and (signal near2 detect\$4) and (linear or non-linear) and ((measur\$3 or estimat\$4) near3 noise) and ((most adj2 likely) or MLDP or (maximum adj1 likelihood)) and processor\$1	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/07/25 16:54
L7	36	((finite adj2 impluse adj2 response) or FIR) and (viterbi near3 (decod\$3 or detect\$3)) and (signal near2 detect\$4) and (linear or non-linear) and ((measur\$3 or estimat\$4) near3 noise) and ((most adj2 likely) or MLDP or (maximum adj1 likelihood)) and process\$3	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/07/25 16:55

EAST Search History

L8	13	((finite adj2 impluse adj2 response) or FIR) and (viterbi near3 (decod\$3 or detect\$3)) and (signal near2 detect\$4) and (linear or non-linear) and ((measur\$3 or estimat\$4) near3 noise) and ((most adj2 likely) or MLDP or (maximum adj1 likelihood)) and process\$3 and (path near3 metric\$1)	USPAT; EPO; JPO; DERWENT	OR	OFF	2006/07/25 16:55
L9	17	((finite adj2 impluse adj2 response) or FIR) and (viterbi near3 (decod\$3 or detect\$3)) and (signal near2 detect\$4) and (linear or non-linear) and ((measur\$3 or estimat\$4) near3 noise) and ((most adj2 likely) or MLDP or (maximum adj1 likelihood)) and process\$3 and (path near3 metric\$1)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 16:55
L10	52	((finite adj2 impluse adj2 response) or FIR) and (viterbi near3 (decod\$3 or detect\$3)) and (signal near2 detect\$4) and (linear or non-linear) and ((measur\$3 or estimat\$4) near3 noise) and ((most adj2 likely) or MLDP or (maximum adj1 likelihood)) and process\$3 and (path near3 metric\$1)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 16:57
L11	8	((finite adj2 impluse adj2 response) or FIR) and (viterbi near3 (decod\$3 or detect\$3)) and (signal near2 detect\$4) and (linear or non-linear) and ((measur\$3 or estimat\$4) near3 noise) and ((most adj2 likely) or MLDP or (maximum adj1 likelihood)) and ((post near2 process\$3) or post-processor)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 17:01
L12	22	(viterbi adj2 (detector or decoder)) and (FIR or ("finite impluse response")) and (comput\$5 near4 (path adj2 metric))	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 17:06
L13	34	(viterbi adj2 (detector or decoder)) and (FIR or ("finite impluse response")) and ((linear or non-linear) adj2 proces\$5)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 17:08

EAST Search History

L14	50	(viterbi adj2 (detector or decoder)) and (FIR or ("finite impluse response")) and ((linear or non-linear) near2 proces\$5)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 17:08
L15	856	(viterbi adj2 (detector or decoder)) and (FIR or ("finite impluse response")) and ((linear or non-linear or signal) near2 proces\$5)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 17:08
L16	521	(viterbi adj2 (detector or decoder)) and (FIR or ("finite impluse response")) and ((linear or non-linear or signal) near2 proces\$5) and ((path adj3 metric) or (maximum adj2 likelihood))	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 17:09
L17	23	(viterbi adj2 (detector or decoder)) same (FIR or ("finite impluse response")) same ((linear or non-linear or signal) near2 proces\$5) same ((path adj3 metric) or (maximum adj2 likelihood))	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 17:15
L18	128	(viterbi adj2 (detector or decoder)) and (FIR or ("finite impluse response")) and ((path adj3 metric) or (maximum adj2 likelihood)) and (signal adj2 detector)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 17:16
L19	112	(viterbi adj2 (detector or decoder)) and ((FIR or ("finite impluse response")) adj2 filter) and ((path adj3 metric) or (maximum adj2 likelihood)) and (signal adj2 detector)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 17:17
L20	57	((viterbi adj2 (detector or decoder)) and ((FIR or ("finite impluse response")) adj2 filter) same ((path adj3 metric) or (maximum adj2 likelihood))) and (signal adj2 (processor or detector))	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	OFF	2006/07/25 17:17

Day :
 Tuesday
 Date:
 7/25/2006

Time:
 15:01:10

PALM INTRANET

Inventor Name Search Result

Your Search was:

Last Name = BURD

First Name = GREGORY

Application#	Patent#	Status	Date Filed	Title	Inventor Name
09699513	6504493	150	10/31/2000	METHOD AND APPARATUS FOR ENCODING/DECODING DATA	BURD, GREGORY
09730597	6965652	150	12/07/2000	ADDRESS GENERATOR FOR LDPC ENCODER AND DECODER AND METHOD THEREOF	BURD, GREGORY
09730598	7000177	150	12/07/2000	PARITY CHECK MATRIX AND METHOD OF FORMING THEREOF	BURD, GREGORY
09730603	Not Issued	95	12/07/2000	LDPC ENCODER AND DECODER AND METHOD THEREOF	BURD, GREGORY
09730752	7072417	150	12/07/2000	LDPC ENCODER AND METHOD THEREOF	BURD, GREGORY
09901507	Not Issued	95	07/09/2001	SOFT-OUTPUT DECODING METHOD AND APPARATUS FOR CONTROLLED INTERSYMBOL INTERFERENCE CHANNELS	BURD, GREGORY
10135422	6961197	150	04/29/2002	CORRECTING ERRORS IN DISK DRIVE READ BACK SIGNALS BY ITERATING WITH THE REED-SOLOMON DECODER	BURD, GREGORY
10155777	6917313	150	05/24/2002	DC-FREE CODES	BURD, GREGORY
10208312	6931585	150	07/29/2002	DETECTION IN THE PRESENCE OF MEDIA	BURD, GREGORY

Applicant

NOISE					
<u>10313651</u>	Not Issued	61	12/06/2002	Correcting errors in disk drive read back signals by iterating with the Reed-Solomon decoder	BURD, GREGORY
<u>10698660</u>	Not Issued	30	10/31/2003	Detection in the presence of media noise	BURD, GREGORY
<u>10752339</u>	Not Issued	30	01/06/2004	Error correction using error detection codes	BURD, GREGORY
<u>10765431</u>	Not Issued	41	01/26/2004	FILTER DRIVEN DC-FREE CODES	BURD, GREGORY
<u>11006381</u>	Not Issued	30	12/07/2004	Iterative reed-solomon error-correction decoding	BURD, GREGORY
<u>11090209</u>	Not Issued	41	03/28/2005	Correcting errors in disk drive read back signals by iterating with the reed-solomon decoder	BURD, GREGORY
<u>11166548</u>	Not Issued	30	06/23/2005	Methods and algorithms for joint channel-code decoding of linear block codes	BURD, GREGORY
<u>11181084</u>	Not Issued	95	07/14/2005	DC-FREE CODES	BURD, GREGORY
<u>11181401</u>	Not Issued	100	07/14/2005	DC-FREE CODES	BURD, GREGORY
<u>11181545</u>	Not Issued	61	07/14/2005	DC-free codes	BURD, GREGORY
<u>11195087</u>	Not Issued	30	08/01/2005	Architecture and control of reed-solomon error-correction decoding	BURD, GREGORY
<u>11195183</u>	Not Issued	30	08/01/2005	Architecture and control of reed-solomon list decoding	BURD, GREGORY
<u>11195403</u>	Not Issued	30	08/01/2005	Architecture and control of reed-solomon error identification and evaluation	BURD, GREGORY
<u>11217349</u>	Not Issued	71	09/02/2005	Correcting errors in disk drive read back signals by iterating with the Reed-Solomon decoder	BURD, GREGORY
<u>11217408</u>	Not Issued	30	09/02/2005	Soft-output decoding method and apparatus for controlled intersymbol interference channels	BURD, GREGORY
<u>11217409</u>	Not Issued	20	09/02/2005	Address generator for LDPC encoder and decoder and method thereof	BURD, GREGORY

Day :
 Tuesday
 Date:
 7/25/2006

PALM INTRANET

Time:
 15:01:47

Inventor Name Search Result

Your Search was:

Last Name = BURD

First Name = GREGORY

Application#	Patent#	Status	Date Filed	Title	Inventor Name
60794956	Not Issued	20	04/25/2006	Parity insertion for iterative architecture	BURD, GREGORY
60797275	Not Issued	20	05/03/2006	Parity insertion for iterative architecture	BURD, GREGORY
60797591	Not Issued	20	05/04/2006	Channel estimation for multi-level flash memories using pilots	BURD, GREGORY
60798667	Not Issued	20	05/08/2006	Methodology and apparatus for improved code design for time or space-varying channels with known or estimated SNR patterns	BURD, GREGORY
60799958	Not Issued	20	05/12/2006	Trellis based SOVA with trace back	BURD, GREGORY
60800823	Not Issued	20	05/16/2006	Fixed parity block length	BURD, GREGORY
60810495	Not Issued	20	06/02/2006	Microarchitecture design	BURD, GREGORY
60662872	Not Issued	159	03/17/2005	System and method for analysis, visualization, and trading of securities through a video game console	BURD, GREGORY SCOTT
09678971	6320419	150	10/04/2000	Non-latency affected contention prevention during scan-based test	BURDA, GREGORY CHRISTOPHER
10065626	6735145	150	11/04/2002	METHOD AND CIRCUIT FOR OPTIMIZING POWER CONSUMPTION AND PERFORMANCE OF DRIVER CIRCUITS	BURDA, GREGORY CHRISTOPHER

<u>11152982</u>	Not Issued	30	06/14/2005	Methods and apparatus for reading a full-swing memory array	BURDA, GREGORY CHRISTOPHER
<u>11201542</u>	Not Issued	20	08/10/2005	Method and system for providing an energy efficient register file	BURDA, GREGORY CHRISTOPHER
<u>10774638</u>	Not Issued	71	07/02/2002	Method and apparatus for accelerating CPE-based VPN transmissions over a wireless network	BURDETT, GREGORY
<u>60378510</u>	Not Issued	159	05/07/2002	Method for securely accelerating CPE-based VPNs in a wireless carrier network	BURDETT, GREGORY P.
<u>08568724</u>	<u>5566162</u>	150	12/07/1995	METHOD OF SECTIONALIZING TROUBLE ON TELECOMMUNICATION NETWORK CONNECTIONS	BURDETT, GREGORY P.
<u>09126855</u>	<u>6327675</u>	150	07/31/1998	FAULT TOLERANT SYSTEM AND METHOD	BURDETT, GREGORY P.
<u>07477317</u>	Not Issued	161	02/08/1990	IMMUNOASSAY FOR DOUBLE-STRANDED, DNA-SPECIFIC ANTIBODIES	BURDICK, GREGORY D.
<u>07799089</u>	Not Issued	161	11/27/1991	IMMUNOASSAY FOR DOUBLE-STRANDED DNA-SPECIFIC ANTIBODIES	BURDICK, GREGORY D.
<u>07628163</u>	<u>5094640</u>	150	12/14/1990	MARINE ENGINE NOISE SUPPRESSOR WITH SWIM PLATFORM	BURDICK, GREGORY N.
<u>09106429</u>	<u>6477586</u>	150	06/29/1998	REMOTE PROCEDURE CALLS IN DISTRIBUTED SYSTEMS	BURDZINSKI, GREGORY

Inventor Search Completed: No Records to Display.

Search Another: Inventor	Last Name	First Name
	<input type="text" value="BURD"/>	<input type="text" value="GREGORY"/>
	<input type="button" value="Search"/>	

To go back use Back button on your browser toolbar.

Back to [PALM](#) | [ASSIGNMENT](#) | [OASIS](#) | [Home page](#)

<u>11281400</u>	Not Issued	98	11/18/2005	PARITY CHECK MATRIX AND METHOD OF FORMING THEREOF	BURD, GREGORY
<u>11343775</u>	Not Issued	25	01/31/2006	LDPC encoder method thereof	BURD, GREGORY
<u>11397318</u>	Not Issued	19	04/04/2006	LDPC encoder and encoder and method thereof	BURD, GREGORY
<u>11449066</u>	Not Issued	20	06/07/2006	Tensor product codes containing an iterative code	BURD, GREGORY
<u>60239254</u>	Not Issued	159	10/12/2000	Soft-output decoding method and apparatus for controlled intersymbol interference channels	BURD, GREGORY
<u>60344407</u>	Not Issued	159	12/28/2001	Correcting errors in disk drive read back signals by iterating with the reed-solomon decoder	BURD, GREGORY
<u>60345725</u>	Not Issued	159	01/03/2002	Detection in the presence of media noise	BURD, GREGORY
<u>60349895</u>	Not Issued	159	01/16/2002	C7500 DC-free codes	BURD, GREGORY
<u>60352756</u>	Not Issued	159	01/28/2002	Correcting errors in disk drive read back signals by iterating with the reed-solomon decoder	BURD, GREGORY
<u>60352776</u>	Not Issued	159	01/28/2002	C7555 DC-free codes	BURD, GREGORY
<u>60460437</u>	Not Issued	159	04/03/2003	Error correction method for hard disk drives using the existing CRC codes	BURD, GREGORY
<u>60561810</u>	Not Issued	159	04/13/2004	On list ECC decoding	BURD, GREGORY
<u>60622429</u>	Not Issued	159	10/27/2004	Advanced ECC description	BURD, GREGORY
<u>60680969</u>	Not Issued	159	05/12/2005	Implementation of list ECC decoding	BURD, GREGORY
<u>60714125</u>	Not Issued	20	09/01/2005	Iterative tensor product codes	BURD, GREGORY
<u>60721663</u>	Not Issued	20	09/29/2005	Trellis based SOVA with trace back	BURD, GREGORY
<u>60725510</u>	Not Issued	20	10/10/2005	Trellis based SOVA with trace back	BURD, GREGORY
<u>60729921</u>	Not Issued	20	10/25/2005	Trace back SOVA design	BURD, GREGORY

<u>60772756</u>	Not Issued	20	02/13/2006	Reduced-complexity decoding algorithm for non-binary LDPC codes	BURD, GREGORY
<u>60775290</u>	Not Issued	20	02/21/2006	Full disk encryption (FDE) technology	BURD, GREGORY
<u>60780416</u>	Not Issued	20	03/08/2006	Achieving higher coding rate by using single RLL code with interleaving	BURD, GREGORY
<u>60790923</u>	Not Issued	20	04/11/2006	DPP proposal	BURD, GREGORY
<u>60792492</u>	Not Issued	20	04/17/2006	ECC Design for raid hard disk drives	BURD, GREGORY
<u>60793119</u>	Not Issued	20	04/19/2006	Achieving higher coding rate by using single RLL code with interleaving of ECC (RS codes)	BURD, GREGORY
<u>60794407</u>	Not Issued	20	04/24/2006	Method for allocating parity bit locations	BURD, GREGORY

[Search and Display More Records.](#)

Search Another: Inventor	Last Name	First Name
	<input type="text" value="BURD"/>	<input type="text" value="GREGORY"/>
	<input type="button" value="Search"/>	

To go back use Back button on your browser toolbar.

Back to [PALM](#) | [ASSIGNMENT](#) | [OASIS](#) | Home page

JBL9 Access DB# 196504
127

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's Full Name: Esaw Abraham Examiner #: 75692 Date: 02/25/06
Art Unit: 2133 Phone Number 3033812 Serial Number: 101698 660
Mail Box and Bldg/Room Location: 4B67 Results Format Preferred (circle): PAPER DISK E-MAIL

If more than one search is submitted, please prioritize searches in order of need.

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc, if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention: Detection in the Presence of Media Noise

Inventors (please provide full names): _____

Earliest Priority Filing Date: 1/3/2002

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

Signal detector Comprising

- Viterbi detector for matching and generating most likely path
- Linear processor for matching a primary & secondary targets, for determining most likely errors and further for revising paths based on the most likely errors.
- Noise processor matched to the second target and to compute path metrics corresponding to each of the revised paths as a function of ~~the~~ non-Lin. noise and select one of the revised paths
- FIR filter to equalize ~~the~~ a data

RECEIVE
JUL 25 2006

BY: _____

STAFF USE ONLY		Type of Search	Vendors and cost where applicable
Searcher:	<u>Edmonds</u>	NA Sequence (#)	STN
Searcher Phone #:	<u>28403</u>	AA Sequence (#)	Dialog
Searcher Location:	<u>4B35</u>	Structure (#)	Questel/Orbit
Date Searcher Picked Up:	<u>07/28/06</u>	Bibliographic	Dr.Link
Date Completed:	<u>08/01/06</u>	Litigation	Lexis/Nexis
Searcher Prep & Review Time:	<u>t286</u>	Fulltext	Sequence Systems
Clerical Prep Time:	<u> </u>	Patent Family	WWW/Internet <u>(Google, Yahoo, Digital, Springer, etc.)</u>
Online Time:	<u>89</u>	Other	Other (specify)

Edmonds, Warren (ASRC)

From: Abraham, Esaw
Sent: Monday, July 31, 2006 12:50 PM
To: Edmonds, Warren (ASRC)
Subject: RE: SN 10/698,660

Hi Warren, I think you can search for linear or non-linear processors as a general "processor" but for FIR and Viterbi, they're known terms so they can be searched as in the claim language.

Thanks

Esaw Abraham
2133

-----Original Message-----

From: Edmonds, Warren (ASRC)
Sent: Monday, July 31, 2006 12:41 PM
To: Abraham, Esaw
Subject: RE: SN 10/698,660

Couple more questions:

On the search request, are there any other terms germane to the "linear post-processor," "media noise processor," and the "FIR filter," or "finite impulse response filter"?

Also, does the term "Viterbi" have to be in the search or would a 'decoder' or 'detector' be sufficient?

Thanks,

Warren

Warren S. Edmonds
Technical Information Specialist
ASRC Aerospace
571-272-8403
warren.edmonds@uspto.gov

-----Original Message-----

From: Edmonds, Warren (ASRC)
Sent: Friday, July 28, 2006 11:06 AM
To: Abraham, Esaw
Subject: SN 10/698,660

Examiner Abraham-

I'm working on your STIC search request and have a few questions. Please answer them below and return this email....or you can call me at 2-8403....if you want to chat in person, I'm in EIC 2100, Randolph 4 B 35.

1) Any suggested keywords, terms of art, buzzwords, concepts, synonyms, acronyms, definitions, strategies, or the like that you'd recommend? Should I avoid certain words or references which may teach away from what you're looking for?

2) Do you want all results limited to the priority date and before? (please provide the

date here if you have not done so in your request)

3) What is the best art you've found so far, if any?

4) Is there a key aspect, novelty, motivation, utility, or other specific detail(s) not described in the request which you'd like us to find or focus on?

5) Are you looking for an exact "102" type reference, or would you like to see similar, more broadly related "103" type art?

6) Is there a deadline or time-sensitive nature to this search request?

Thank You,
Warren Edmonds

Warren S. Edmonds
Technical Information Specialist
ASRC Aerospace
571-272-8403
warren.edmonds@uspto.gov

File 350:Derwent WPIX 1963-2006/UD=200648
(c) 2006 The Thomson Corporation
File 347:JAPIO Dec 1976-2005/Dec(Updated 060404)
(c) 2006 JPO & JAPIO

Set	Items	Description
S1	9604	(FINITE(3W)RESPONSE OR IMPULSE(2W)RESPONSE OR FINITE(2W)IMPULSE OR FIR)
S2	3800	VITERBI
S3	105	S1(50N)S2
S4	51	S3(100N) (PROCESS? OR UNIT OR CPU OR ALU OR MULTIPROCESS? OR MULTI()PROCESS? OR COPROCESS? OR CO()PROCESS?)
S5	39	S4 AND PY<=2002
S6	39	S4 AND PY=1976:2002
S7	39	S5:S6
S8	4	(LINEAR OR NON()LINEAR OR NOISE OR MEDIA) (50N)S7

8/3,K/1 (Item 1 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2006 The Thomson Corporation. All rts. reserv.

0012326235 - Drawing available

WPI ACC NO: 2002-268074/200231

XRPX Acc No: N2002-208541

Generalized partial response maximum likelihood read/write channel circuit for magnetic disk drive, compensates read signal for thermal asperity and magneto-resistive asymmetry

Patent Assignee: ASHLEY J (ASHL-I); BLISS W (BLIS-I); DRILLER M (DRIL-I); FRANCK S J (FRAN-I); INFINEON TECHNOLOGIES NORTH AMERICA CORP (INFN); KARABED R (KARA-I); MARGRAF D (MARG-I); MISTLBURGER F (MIST-I); RAE J W (RAEJ-I); STOCKMANNS H (STOC-I)

Inventor: ASHLEY J; BLISS W; DRILLER M; FRANCK S J; KARABED R; MARGRAF D; MISTLBURGER F; MISTLEBERGER F; RAE J W; STOCKMANNS H; STOCKMANS H

Patent Family (3 patents, 23 countries)

Patent	Application					
Number	Kind Date	Number	Kind Date	Update		
WO 2001080238	A1 20011025	WO 2001US11399	A 20010405	200231	B	
US 20020154430	A1 20021024	US 2000194954	P 20000405	200273	E	
		US 2001826633	A 20010405			
		US 200125001	A 20011218			
US 6594094	B2 20030715	US 2000194954	P 20000405	200348	E	
		US 2001826633	A 20010405			
		US 200125001	A 20011218			

Priority Applications (no., kind, date): US 200125001 A 20011218; US 2001826633 A 20010405; US 2000194954 P 20000405

Patent Details

Number Kind Lan Pg Dwg Filing Notes

WO 2001080238 A1 EN 204 54

National Designated States,Original: CN JP SG

Regional Designated States,Original: AT BE CH CY DE DK ES FI FR GB GR IE
IT LU MC NL PT SE TR

US 20020154430 A1 EN Related to Provisional US 2000194954

Continuation of application US 2001826633

US 6594094 B2 EN Related to Provisional US 2000194954

Continuation of application US 2001826633

Original Publication Data by Authority

Claims:

We claim: b 1 /b . A read/write channel circuit, comprising:a read path including:a thermal asperity compensation unit for thermal asperity compensation;a variable gain amplifier for adjusting an amplitude of a read signal;an asymmetry control unit to compensate for magneto-resistive asymmetry;a continuous time filter to attenuate high frequency noise;a finite impulse response filter to provide equalization of said read signal;an interpolated timing recovery unit for sequence recovery;a sync byte detector for providing sync mark detection; and a Viterbi detector;a write path including:a read/write interface for interfacing write data;an encoder for encoding said write data; anda PECL driver; anda servo path including:said variable gain amplifier;said continuous time filter ;said finite impulse response filter; anda servo synchronizer for determining time intervals needed for peak detection...

8/3,K/2 (Item 2 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2006 The Thomson Corporation. All rts. reserv.

0007110595 - Drawing available

WPI ACC NO: 1995-139792/199518

XRPX Acc No: N1995-109844

Simulcast communication system for transferring data from several base stations to receiver - compensates differences in propagation time, lack of transmitter synchronisation and multipath fading to recover transmitted data

Patent Assignee: GLENAYRE ELECTRONICS INC (GLEN-N)

Inventor: HO K P; HO P; HO P K; MARCHETTO R F; STEWART T A

Patent Family (7 patents, 59 countries)

Patent Application

Number	Kind	Date	Number	Kind	Date	Update
WO 1995008889	A1	19950330	WO 1994US10662	A	19940919	199518 B
AU 199477997	A	19950410	AU 199477997	A	19940919	199530 E
US 5513215	A	19960430	US 1993124155	A	19930920	199623 E
EP 720798	A1	19960710	EP 1994928635	A	19940919	199632 E
			WO 1994US10662	A	19940919	
SE 199600966	A	19960517	WO 1994US10662	A	19940919	199636 E
			SE 1996966	A	19960313	
CN 1131490	A	19960918	CN 1994193450	A	19940919	199801 E
KR 299625	B	20011022	WO 1994US10662	A	19940919	200236 E
			KR 1996701445	A	19960320	

Priority Applications (no., kind, date): US 1993124155 A 19930920

Patent Details

Number Kind Lan Pg Dwg Filing Notes

WO 1995008889 A1 EN 68 20

National Designated States,Original: AM AT AU BB BG BR BY CA CH CN CZ DE
DK EE ES FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW NL NO
NZ PL PT RO RU SD SE SI SK TJ TT UA UZ VN

Regional Designated States,Original: AT BE CH DE DK ES FR GB GR IE IT KE
LU MC MW NL OA PT SD SE SZ

AU 199477997 A EN Based on OPI patent WO 1995008889

US 5513215 A EN 35 20

EP 720798 A1 EN 1 PCT Application WO 1994US10662
Based on OPI patent WO 1995008889

Regional Designated States,Original: AT BE CH DE DK ES FR GB GR IE IT LI
LU MC NL PT SE

SE 199600966 A SV PCT Application WO 1994US10662

KR 299625 B KO PCT Application WO 1994US10662

Previously issued patent KR 96705438

Based on OPI patent WO 1995008889

Original Publication Data by Authority

Original Abstracts:

...transmitted to a receiving device. In a simulcast communication system(26) that comprises a plurality of transmitters (32), a receiver (36) includes a digital signal processor (DSP) (86) that processes a demodulated received signal to adaptively compensate for changes in the channel through which a multipath signal is propagated from the transmitters to the receiver...

...the equalizer through a comparison of the estimated symbols with symbols most likely transmitted, for use in updating filter coefficients used by the equalizer in processing the received signal. Alternatively, in a

linear adaptive equalizer, reference or pilot symbols transmitted with the data symbols are used to determine the error signal. Another embodiment implements a **Viterbi** algorithm to make decisions of the most likely data symbols in response to estimates of the channel **impulse response**. Further, a hybrid embodiment combines the **Viterbi** decoder with a bi-directional decision feedback equalizer that produces forward and reverse estimates of the sequence of data symbols. The **Viterbi** decoder selects between the forward and reverse sequences based upon channel **impulse response** estimates to dynamically compensate for varying channel conditions. Using any one of these embodiments, a linear modulated signal can be decoded to recover the data...

8/3,K/3 (Item 3 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2006 The Thomson Corporation. All rts. reserv.

0005523157 - Drawing available

WPI ACC NO: 1991-126908/

XRPX Acc No: N1991-097667

Adapting Viterbi algorithm to variable transmission channel - making separate channel estimates for separate states of algorithm then updating at sampling time points w.r.t. selected transition state

Patent Assignee: TELEFONAKTIEBOLAGET ERICSSON L M (TELF)

Inventor: GUDMUNDSON P B O; PEROLS B O G

Patent Family (17 patents, 23 countries)

Patent Application

Number	Kind	Date	Number	Kind	Date	Update
EP 425458	A	19910502	EP 1990850301	A	19900910	199118 B
WO 1991007035	A	19910516	WO 1990SE575	A	19900910	199122 E
SE 198903526	A	19910425	SE 19893526	A	19891024	199125 E
SE 464902	B	19910624	SE 19893526	A	19891024	199128 E
AU 199065492	A	19910531				199135 E
FI 199102862	A	19910613				199135 E
NO 199102432	A	19910621				199143 E
JP 4502695	W	19920514	JP 1990514469	A	19900910	199226 E
			WO 1990SE575	A	19900910	
US 5164961	A	19921117	US 1990599896	A	19901019	199249 E
NZ 235350	A	19930428	NZ 235350	A	19900917	199320 E
EP 425458	B1	19940608	EP 1990850301	A	19900910	199422 E
DE 69009674	E	19940714	DE 69009674	A	19900910	199428 E
			EP 1990850301	A	19900910	
ES 2054326	T3	19940801	EP 1990850301	A	19900910	199432 E
IE 65267	B	19951018	IE 19903522	A	19901002	199603 E
NO 302730	B1	19980414	WO 1990SE575	A	19900910	199822 E
			NO 19912432	A	19910621	
CA 2044261	C	19990427	CA 2044261	A	19900910	199935 E
			WO 1990SE575	A	19900910	
KR 199707615	B1	19970513	WO 1990SE575	A	19900910	199942 E
			KR 1991700644	A	19910624	

Priority Applications (no., kind, date): SE 19893526 A 19891024

Patent Details

Number Kind Lan Pg Dwg Filing Notes

EP 425458 A EN

Regional Designated States,Original: AT BE CH DE ES FR GB GR IT LI LU NL

WO 1991007035 A EN

National Designated States,Original: AU CA FI JP KR NO

SE 198903526 A SV

SE 464902 B SV

JP 4502695 W JA 7 PCT Application WO 1990SE575
Based on OPI patent WO 1991007035

US 5164961 A EN 9 6

NZ 235350 A EN

EP 425458 B1 EN 13

Regional Designated States,Original: AT BE CH DE DK ES FR GB GR IT LI LU
NL SE

DE 69009674 E DE Application EP 1990850301
Based on OPI patent EP 425458

ES 2054326 T3 ES Application EP 1990850301
Based on OPI patent EP 425458

IE 65267 B EN

NO 302730 B1 NO PCT Application WO 1990SE575

File 8:EI Compendex(R) 1970-2006/Jul W4
(c) 2006 Elsevier Eng. Info. Inc.
File 35:Dissertation Abs Online 1861-2006/Jun
(c) 2006 ProQuest Info&Learning
File 65:Inside Conferences 1993-2006/Jul 31
(c) 2006 BLDSC all rts. reserv.
File 2:INSPEC 1898-2006/Jul W4
(c) 2006 Institution of Electrical Engineers
File 94:JICST-EPlus 1985-2006/Apr W4
(c) 2006 Japan Science and Tech Corp(JST)
File 483:Newspaper Abs Daily 1986-2006/Jul 27
(c) 2006 ProQuest Info&Learning
File 6:NTIS 1964-2006/Jul W3
(c) 2006 NTIS, Intl Cpyrgh All Rights Res
File 144:Pascal 1973-2006/Jul W2
(c) 2006 INIST/CNRS
File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec
(c) 2006 The Thomson Corp
File 34:SciSearch(R) Cited Ref Sci 1990-2006/Jul W4
(c) 2006 The Thomson Corp
File 99:Wilson Appl. Sci & Tech Abs 1983-2006/Jul
(c) 2006 The HW Wilson Co.
File 583:Gale Group Globalbase(TM) 1986-2002/Dec 13
(c) 2002 The Gale Group
File 266:FEDRIP 2005/Dec
Comp & dist by NTIS, Intl Copyright All Rights Res
File 95:TEME-Technology & Management 1989-2006/Jul W4
(c) 2006 FIZ TECHNIK
File 62:SPIN(R) 1975-2006/Apr W3
(c) 2006 American Institute of Physics
File 239:Mathsci 1940-2006/Sep
(c) 2006 American Mathematical Society

Set	Items	Description
S1	37449	(FINITE(3W)RESPONSE OR IMPULSE(2W)RESPONSE OR FINITE(2W)IMPULSE OR FIR)(5N)(FILTER? OR CLARIF? OR REFIN? OR SCREEN? OR SCAN)
S2	16582	VITERBI
S3	11047028	PROCESS? OR UNIT OR CPU OR ALU OR MULTIPROCESS? OR MULTI() - PROCESS? OR COPROCESS? OR CO() PROCESS?
S4	79373	(LINEAR OR NON()LINEAR OR NOISE OR MEDIA)(5W)S3
S5	88	S1(30N)S2
S6	0	S5(30N)S4
S7	108	S2(100N)S4
S8	92	S7 AND PY<=2002
S9	88	S7 AND PY=1976:2002
S10	10	S7 AND (1976:2002)/PY
S11	69735	FIR
S12	144	S2(100N)S11
S13	122	S12 AND PY<=2002
S14	122	S12 AND PY=1976:2002
S15	107	(FINITE(3W)RESPONSE OR IMPULSE(2W)RESPONSE OR FINITE(2W)IMPULSE OR FIR)(50N)S2
S16	104	S15 AND PY<=2002
S17	101	S15 AND PY=1976:2002
S18	182	S8 OR S9 OR S10 OR S13 OR S14 OR S16 OR S17
S19	65	S18(100N)S3
S20	39	RD (unique items)

File 349:PCT FULLTEXT 1979-2006/UB=20060727,UT=20060720

(c) 2006 WIPO/Univentio

File 348:EUROPEAN PATENTS 1978-2006/ 200630

(c) 2006 European Patent Office

Set	Items	Description
S1	20353	(FINITE(3W)RESPONSE OR IMPULSE(2W)RESPONSE OR FINITE(2W)IMPULSE OR FIR)
S2	5974	VITERBI
S3	398	S1(50N)S2
S4	254	S3(100N) (PROCESS???? OR UNIT OR UNITS OR CPU? ? OR ALU? ? - OR MULTIPROCESS???? OR MULTI()PROCESS???? OR COPROCESS???? OR CO()PROCESS????)
S5	189	S4 AND PY<=2002
S6	189	S4 AND PY=1976:2002
S7	189	S5:S6
S8	34	(LINEAR OR NON()LINEAR OR NOISE OR MEDIA) (5W)S7
S9	34	IDPAT S8 (sorted in duplicate/non-duplicate order)
S10	33	IDPAT S8 (primary/non-duplicate records only)

File 15:ABI/Inform(R) 1971-2006/Jul 31
(c) 2006 ProQuest Info&Learning
File 635:Business Dateline(R) 1985-2006/Jul 31
(c) 2006 ProQuest Info&Learning
File 9:Business & Industry(R) Jul/1994-2006/Jul 28
(c) 2006 The Gale Group
File 810:Business Wire 1986-1999/Feb 28
(c) 1999 Business Wire
File 610:Business Wire 1999-2006/Jul 31
(c) 2006 Business Wire.
File 647:CMF Computer Fulltext 1988-2006/Aug W3
(c) 2006 CMF Media, LLC
File 275:Gale Group Computer DB(TM) 1983-2006/Jul 28
(c) 2006 The Gale Group
File 674:Computer News Fulltext 1989-2006/Jul W3
(c) 2006 IDG Communications
File 696:DIALOG Telecom. Newsletters 1995-2006/Jul 28
(c) 2006 Dialog
File 98:General Sci Abs 1984-2005/Jan
(c) 2006 The HW Wilson Co.
File 624:McGraw-Hill Publications 1985-2006/Jul 31
(c) 2006 McGraw-Hill Co. Inc
File 621:Gale Group New Prod.Annou.(R) 1985-2006/Jul 28
(c) 2006 The Gale Group
File 636:Gale Group Newsletter DB(TM) 1987-2006/Jul 28
(c) 2006 The Gale Group
File 369:New Scientist 1994-2006/Jul W2
(c) 2006 Reed Business Information Ltd.
File 813:PR Newswire 1987-1999/Apr 30
(c) 1999 PR Newswire Association Inc
File 613:PR Newswire 1999-2006/Jul 31
(c) 2006 PR Newswire Association Inc
File 16:Gale Group PROMT(R) 1990-2006/Jul 28
(c) 2006 The Gale Group
File 160:Gale Group PROMT(R) 1972-1989
(c) 1999 The Gale Group
File 370:Science 1996-1999/Jul W3
(c) 1999 AAAS
File 148:Gale Group Trade & Industry DB 1976-2006/Jul 28
(c) 2006 The Gale Group
File 553:Wilson Bus. Abs. 1982-2006/Jul
(c) 2006 The HW Wilson Co
File 634:San Jose Mercury Jun 1985-2006/Jul 29
(c) 2006 San Jose Mercury News
File 88:Gale Group Business A.R.T.S. 1976-2006/Jul 19
(c) 2006 The Gale Group

Set	Items	Description
S1	25799	(FINITE(3W)RESPONSE OR IMPULSE(2W)RESPONSE OR FINITE(2W)IMPULSE OR FIR)
S2	3808	VITERBI
S3	248	S1(50N)S2
S4	154	S3(100N)(PROCESS? OR UNIT OR CPU OR ALU OR MULTIPROCESS? OR MULTI()PROCESS? OR COPROCESS? OR CO()PROCESS?)
S5	98	S4 AND PY<=2002
S6	98	S4 AND PY=1976:2002
S7	98	S5:S6
S8	14	(LINEAR OR NON()LINEAR OR NOISE OR MEDIA) (50W) S7
S9	10	RD (unique items)