Contents

1	Functions			2
	1.1	1 poly.factor — 多項式の因数分解		2
		1.1.1	brute force search — 総当たりで因数分解を探す	2
		1.1.2	divisibility test – 整除テスト	2
		1.1.3	minimum absolute injection — 係数を絶対最少表現に渡す	2
		1.1.4	padic factorization — p 進数多項式	3
		1.1.5	upper bound of coefficient –Landau-Mignotte の係数の	
				3
		1.1.6	zassenhaus - Zassenhaus 方による平方因子のない整数多	
			項式の因数分解・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
		1.1.7	integer polynomial factorization - 整数多項式の因数分解	3

Chapter 1

Functions

1.1 poly.factor – 多項式の因数分解

factor モジュールは一変数多項式の整数係数の因数分解のためのもの. このモジュールは以下に示す型を使用:

polynomial:

polynomial は poly.uniutil.polynomial によって生成された多項式.

1.1.1 brute force search – 総当たりで因数分解を探す

 ${
m fp_factors}$ 上でいくつかの積の組み合わせである係数を探すことにより ${
m f}$ の因数分解を見つける。この組み合わせは総当たりで探される。

引数 fp_factors は poly.uniutil.FinitePrimeFieldPolynomial のリストです.

1.1.2 divisibility_test – 整除テスト

 $\textbf{divisibility} \quad \textbf{test(f:} \ \textit{polynomial}, \ \textbf{g:} \ \textit{polynomial}) \rightarrow \textit{bool}$

多項式において、fがgで割り切れるかどうか、Boolean値を返す.

1.1.3 minimum_absolute_injection – 係数を絶対最少表現に 渡す

 $ext{minimum} ext{ absolute injection(f: } ext{polynomial)}
ightarrow ext{\textit{F}}$

各係数を絶対最少表現に渡す $\mathbf{Z}/p\mathbf{Z}$ 係数多項式 \mathbf{f} の単射により多項式 \mathbf{F} の整数係数を返す.

与えられた多項式 f の係数環は Integer Residue Class Ring または Finite Prime-Field でなければならない.

1.1.4 padic factorization - p 進数多項式

 $\operatorname{padic_factorization}(\operatorname{f:}\ polynomial) \rightarrow p,\ factors$

素数 p と、与えられた平方因子を含まない多項式 f の整数係数の p 進数因数分解を返す factors の結果は整数係数を持ち、 \mathbb{F}_p からその絶対最少表現に投入された。

- †素数は以下のように選ばれる:
- 1. fmod p でも平方因子を持たない,
- 2. 因数の数は次の素数よりも小さい.

与えられた多項式 f は poly.uniutil.IntegerPolynomial でなければならない.

1.1.5 upper_bound_of_coefficient -Landau-Mignotte の 係数の範囲

 $ext{upper bound of coefficient(f: } polynomial)
ightarrow long$

次数は与えられた f の半分と同じくらいの大きさである Landau-Mignotte の 因数の係数の範囲を計算.

与えられた多項式 f は整数係数でなければならない.

1.1.6 zassenhaus – Zassenhaus 方による平方因子のない整数多 項式の因数分解

 $zassenhaus(f: polynomial) \rightarrow list \ of \ factors \ f$

Berlekamp-Zassenhaus 法による平方数のない整数係数の多項式 f の因数.

1.1.7 integerpolynomialfactorization – 整数多項式の因数分解

integer polynomial factorization (f: polynomial)
ightarrow factor

Berlekamp-Zassenhaus 法による整数係数多項式 f の因数.

因数は (factor, index) という形式のタプルのリストの形式で出力される.