Complex Numbers

Compiled by: Nyasha P. Tarakino (Trockers)

+263772978155/+263717267175

ntarakino@gmail.com

15 MARCH 2019

SYLLABUS (6042) REQUIREMENTS

- Find the conjugates, moduli and arguments of complex numbers
- Carry out operations with complex numbers
- Represent complex numbers on an Argand diagram
- Solve polynomial equations with at least one pair of non- real roots
- Express complex numbers in polar form
- Carry out operations of complex numbers expressed in polar form
- Illustrate equations and inequalities involving complex numbers by means of loci in an Argand diagram
- Derive the DeMoivre's Theorem
- Prove the DeMoivre's Theorem
- Prove trigonometrical identities using DeMoivre's Theorem
- Solve equations using the DeMoivre's Theorem
- Solve problems involving complex numbers
- Nth roots of unity

The Complex Number System

o If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- Now $b^2 4ac$ is called the discriminant.
 - (i) If $b^2 4ac = 0$, there is one repeated real root
 - (ii) If $b^2 4ac > 0$, there are two distinct and real roots
 - (iii)If $b^2 4ac < 0$, there are no real roots but we have imaginary roots represented by i.

Example

Solve the equation $x^2 + 4x + 20 = 0$

Suggested solution

$$x^2 + 4x + 20 = 0$$

$$x^2 + 4x = -20$$

$$x^2 + 4x + (+2)^2 = -20 + (+2)^2$$

$$(x+2)^2 = -20 + (+2)^2$$

$$(x+2)^2 = -16$$

$$x + 2 = \pm \sqrt{-16}$$

$$x + 2 = \pm \sqrt{16 \times -1}$$

$$x + 2 = \pm 4\sqrt{-1}$$

$$x + 2 = \pm 4i$$

$$\therefore x = -2 \pm 4i$$

The symbol i is used to denote $\sqrt{-1}$

$$\Rightarrow -1 = i^2$$

The General Complex Number

- O A Complex number is represented in the form x + iy, where x and y are real numbers.
- \circ x represents the real part and y represents the imaginary part.
- \circ The set of real numbers (\mathbb{R}) is also a subset of the complex numbers (\mathbb{C})

NB: Real numbers can be expressed in the form x + 0i

The modulus and argument of a Complex Number

- o Complex numbers can be represented by points on a plane
- The diagram of points in Cartesian coordinates representing complex numbers is called an Argand diagram
- \circ The y-axis represents the imaginary part and the x-axis represents the real part of a complex number x + yi.

- o If the complex number x + yi is denoted by z, and hence z = x + yi, |z| is defined as the distance frpm the origin O to the point P representing z.
- Thus |z| = OP = r.
- The modulus of a complex number z is given by: $z = \sqrt{x^2 + y^2}$
- The argument of z, arg(z) is defined as the angle between the line OP and the positive x axis is usually in the range $(-\pi, \pi)$ or $(-180^{\circ}, 180^{\circ})$

- o $(\pi, -\pi)$ is sometimes referred to as the Principal argument.
- The argument of a complex number z is given by $arg(z) = \theta$, where:

$$tan\theta = \frac{y}{x}$$

- NB: One must be very careful when x or y, or both are negative. The quadrant in which it appears will determine whether its argument is negative or positive and whether it is acute or obtuse.
- (i) Angles in first quadrant are measured anticlockwise from the positive real axis so θ is the required angle.

(ii) Angles in second quadrant are measured anticlockwise from the positive real axis so the required angle is $(\pi - \theta)$ or $(180^{\circ} - \theta)$ or $\pi - \tan^{-1}\left(\frac{y}{x}\right)$ or $180^{\circ} - \tan^{-1}\left(\frac{y}{x}\right)$

(iii) Angles in third quadrant are measured clockwise from the positive real axis and is negative so the required angle is $-(\pi - \theta)$ or $-\left[\pi - tan^{-1}\left(\frac{y}{x}\right)\right]$ or $-\pi + tan^{-1}\left(\frac{y}{x}\right)$ or $-\left[180^{\circ} - \tan^{-1}\left(\frac{y}{x}\right)\right].$

(iv) Angles in fourth quadrant are measured clockwise from the positive real axis and is negative so the required angle is $-\theta$ or $\left[2\pi - tan^{-1}\left(\frac{y}{x}\right)\right]$ or $\left[360^{\circ} - tan^{-1}\left(\frac{y}{x}\right)\right]$.

NB: Degrees are also applicable

Solved Problems

Example

Find the modulus and argument of the complex numbers:

a)
$$-1 + \sqrt{3}i$$

b)
$$-\sqrt{3} - i$$
 c) $\sqrt{3} - i$

c)
$$\sqrt{3} - i$$

d)
$$1 + \sqrt{3}i$$

Suggested solution

a)
$$-1 + \sqrt{3}i$$

(i)
$$\sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{4} = 2$$

(ii) From the argand diagram, θ lies in the second quadrant hence

$$\theta = \pi - \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

b)
$$-\sqrt{3} - i$$

(i)
$$\sqrt{(-\sqrt{3})^2 + (-1)^2} = \sqrt{4} = 2$$

(ii) From the argand diagram, θ lies in the third quadrant hence

$$\theta = -\left[\pi - \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)\right] = -\left(\pi - \frac{\pi}{6}\right) = -\frac{5\pi}{6}$$

c)
$$\sqrt{3} - i$$

(i)
$$\sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{4} = 2$$

(ii) From the argand diagram, θ lies in the fourth quadrant hence

$$\theta = -\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$$

d) $1 + \sqrt{3}i$

(i)
$$\sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{4} = 2$$

(ii) From the argand diagram, θ lies in the first quadrant hence

$$\theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \tan^{-1}\left(\sqrt{3}\right) = \frac{\pi}{3}$$

Addition, Subtraction and Multiplication of complex number of the

$$\frac{form x + iy}{}$$

• In general, if
$$z_1 = a_1 + ib_1$$
 and $z_2 = a_2 + ib_2$ then:

(i)
$$z_1 + z_1 = (a_1 + a_2) + i(b_1 + b_2)$$

(ii)
$$z_1 - z_2 = (a_1 - a_2) + i(b_1 - b_2)$$

(iii)
$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + i(a_2 b_1 + a_1 b_2)$$

Example

Given that
$$z_1 = 3 + 4i$$
 and $z_2 = 1 - 2i$, find

a)
$$z_1 + z_2$$

b)
$$z_1 - z_2$$

c)
$$z_1 z_2$$

a)
$$z_1 + z_2 = (3 + 4i) + (1 - 2i)$$

= $3 + 4i + 1 - 2i$
= $4 + 2i$ or

$$z_1 + z_2 = (3 + 4i) + (1 - 2i)$$

= $(3 + 1) + i(4 - 2)$
= $4 + 2i$

b)
$$z_1 - z_2 = (3 + 4i) - (1 - 2i)$$

= $3 + 4i - 1 + 2i$
= $2 + 6i$ or

$$z_1 - z_2 = (3 + 4i) - (1 - 2i)$$

= $(3 - 1) + i[4 - 2]$
= $2 + 6i$

c)
$$z_1 z_2 = (3 + 4i)(1 - 2i)$$

= $3 - 6i + 4i - 8i^2$
= $3 - 2i + 8$ (since $i^2 = -1$)
= $11 - 2i$ or

$$z_1 z_2 = (3+4i)(1-2i)$$

$$= (3 \times 1 - 4 \times -2) + i(1 \times 4 + 3 \times -2)$$

$$= 11 - 2i$$

The conjugate of a complex number and the division of complex

numbers of the form x + iy

- The conjugate of a complex number Z = x + iy, is denoted Z^* or \bar{Z} , is the complex number $Z^* = x iy$ eg the conjugate of -3 + 2i is -3 2i
- \circ On an Argand diagram, the point representing the complex number Z^* is the reflection of the point representing Z on the x axis
- \circ The important property of Z^* is that the product ZZ^* is real since:

$$ZZ^* = (x + iy)(x - iy)$$
$$= (x^2 + ixy - ixy - i^2y^2)$$
$$= x^2 + y^2$$

NB: $ZZ^* = |z|^2$

When dividing complex numbers we use the complex conjugate.

Example

Simplify
$$\frac{z_1}{z_2}$$
 where $z_1 = 3 + 4i$ and $z_2 = 1 - 2i$

Suggested solution

$$\frac{z_1}{z_2} = \frac{(3+4i)}{(1-2i)}$$

[Multiply the numerator and denominator of $\frac{z_1}{z_2}$ by Z_2^* ie (1+2i)]

$$=\frac{(3+4i)(1+2i)}{(1-2i)(1+2i)}$$

$$=\frac{(3+6i+4i+i^28)}{(1^2+2^2)}$$

$$=\frac{(3+10i-8)}{5}$$

$$=\frac{-5+10i}{5}$$

$$= -1 + 2i$$

The Polar form of a complex number

- o In the diagram above $x = rCos\theta$ and $y = rSin\theta$
- o If P is the point representing the complex number z = x + iy, it follows that z may be written in the form $rCos\theta + irSin\theta$
- o This is called the polar form or modulus argument form of a complex number.
- O A complex number may be written in the form $Z = r(Cos\theta + iSin\theta)$, where |Z| = r and $arg(Z) = \theta$
- For brevity, $r(\cos\theta + i\sin\theta)$ can be written as (r, θ)

Example

- 1. Express $\frac{3}{1+i\sqrt{3}}$ in polar form, giving exact values of r and θ where possible, or value to two d.p.
- 2. Write in the form (a + ib), where $a \in \mathbb{R}$ and $b \in \mathbb{R}$.
 - a) $3\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$

b)
$$4\left(\cos\frac{-5\pi}{2} + i\sin\frac{-5\pi}{2}\right)$$

Suggested solution

1)
$$\frac{3}{1+i\sqrt{3}} = \frac{3(1-i\sqrt{3})}{(1+i\sqrt{3})(1-i\sqrt{3})}$$

$$=\frac{3-i3\sqrt{3}}{1^2+\left(\sqrt{3}\right)^2}$$

$$=\frac{3-i3\sqrt{3}}{4}$$

$$=\frac{3}{4}-i\,\frac{3\sqrt{3}}{4}$$

NB: Multiply the numerator and denominator of $\frac{3}{1+i\sqrt{3}}$ by the conjugate

i.e.
$$(1 - i\sqrt{3})$$
]

(i)
$$\sqrt{\left(\frac{3}{4}\right)^2 + \left(-\frac{3\sqrt{3}}{4}\right)^2} = \sqrt{\frac{9}{16} + \frac{9\times3}{16}} = \sqrt{\frac{36}{16}} = \frac{6}{4} = \frac{3}{2}$$

(ii) From the argand diagram, θ lies in the second quadrant hence

$$\theta = -\tan^{-1}\left(\frac{\frac{3\sqrt{3}}{4}}{\frac{3}{4}}\right) = -\tan^{-1}(\sqrt{3}) = -\frac{\pi}{3}$$

Therefore the solution is $\frac{3}{2} [Cos(-\frac{\pi}{3}) + iSin(-\frac{\pi}{3})]$

2) (a)
$$3\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = 3\sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right)$$
$$= \frac{3 \times 2}{2} + i \frac{3 \times 2}{2}$$
$$= 3 + 3i$$

(b)
$$4\left(\cos\frac{-5\pi}{2} + i\sin\frac{-5\pi}{2}\right) = 4\left[-\frac{\sqrt{3}}{2} + i\left(-\frac{1}{2}\right)\right]$$

= $-2\sqrt{3} - 2i$
= $-2(\sqrt{3} + i)$

Products and Quotients of complex number in their Polar form

o If
$$z_1 = r_1(Cos\theta_1 + iSin\theta_1)$$
 and $z_2 = r_2(Cos\theta_2 + iSin\theta_2)$ then:
(a) $z_1z_2 = r_1r_2[Cos(\theta_1 + \theta_2) + iSin(\theta_1 + \theta_2)]$ and
(b) $\frac{z_1}{z_2} = r_1r_2[Cos(\theta_1 - \theta_2) + iSin(\theta_1 - \theta_2)]$

<u>Example</u>

Simplify $z_1 z_2$ where $z_1 = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ and $z_2 = 3\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)$

Suggested Solution

$$\begin{split} z_1 z_2 &= 2 \left(Cos \frac{\pi}{3} + i Sin \frac{\pi}{3} \right) 3 \left(Cos \frac{\pi}{6} - i Sin \frac{\pi}{6} \right) \\ &= 6 \left[Cos \frac{\pi}{3} Cos \frac{\pi}{6} - i Cos \frac{\pi}{3} Sin \frac{\pi}{6} + i Sin \frac{\pi}{3} Cos \frac{\pi}{6} - i^2 Sin \frac{\pi}{3} Sin \frac{\pi}{6} \right] \\ &= 6 \left[\left(Cos \frac{\pi}{3} Cos \frac{\pi}{6} + i Sin \frac{\pi}{3} Sin \frac{\pi}{6} \right) + i \left(Sin \frac{\pi}{3} Cos \frac{\pi}{6} - Cos \frac{\pi}{3} Sin \frac{\pi}{6} \right) \right] \\ &= 6 \left[Cos \left(\frac{\pi}{3} - \frac{\pi}{6} \right) + i Sin \left(\frac{\pi}{3} - \frac{\pi}{6} \right) \right] \end{split}$$

NB Use the identities: Cos(A - B) = CosACosB + i SinASinB

Sin(A - B) = SinACosB + i CosASinB

$$= 6 \left[\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right]$$

Problems involving complex numbers

- You can solve problems by equating real parts and imaginary parts from each side of an equation involving complex numbers.
- o This technique can be used to find the square roots of a complex number
- o If $x_1 + iy_1 = x_2 + iy_2$, then $x_1 = x_2$ and $y_1 = y_2$

Worked Examples

Example 1

If 3 + 5i = (a + ib)(1 + i) where a and b are real, find the value of a and the value of b

Suggested Solution

$$(a+ib)(1+i) = a(1+i) + ib(1+i) = a+ai+bi-b = (a-b)+i(a+b)$$

So
$$(a - b) + i(a + b) = 3 + 5i$$

$$\Rightarrow a - b = 3$$
 (i) (Equating real parts)

$$a + b = 5$$
 (ii) (Equating imaginary parts)

Adding (i) and (ii): $2a = 8 \Rightarrow a = 4$

$$a - b = 3$$
 (i)

$$\Rightarrow 4-b=3$$

$$\therefore b = 1$$

Example 2

Find the square root of 3 + 4i.

Suggested Solution

Suppose the square root of 3 + 4i is a + ib where a and b are real.

$$\Rightarrow (a+ib)^2 = 3+4i$$

$$a^2 + 2abi + i^2b^2 = 3 + 4i$$

$$(a^2 - b^2) + 2abi = 3 + 4i$$

Equating real parts and Imaginary parts together:

$$a^2 - b^2 = 3$$

$$2ab = 4$$

From (ii):

$$b = \frac{2}{a}$$

$$\Rightarrow a^2 - \left(\frac{2}{a}\right)^2 = 3$$

$$\Rightarrow a^2 - \frac{4}{a^2} = 3$$

$$\Rightarrow a^4 - 3a^2 - 4 = 0$$

$$\Rightarrow a^4 - 4a^2 + a^2 - 4 = 0$$

$$\Rightarrow a^2(a^2-4)+1(a^2-4)=0$$

$$\Rightarrow (a^2 + 1)(a^2 - 4) = 0$$

$$\Rightarrow a^2 + 1 = 0 \text{ or } a^2 - 4 = 0$$

$$\Rightarrow$$
 No real solution or $a^2 - 4 = 0$

$$\Rightarrow a^2 - 4 = 0$$

$$\therefore a = \pm 2$$

$$b = \frac{2}{a}$$

$$\Rightarrow b = \pm \frac{2}{2}$$

$$\therefore b = \pm 1$$

⇒ The roots are
$$\pm(2+i)$$

Example 3

Simplify $\frac{(1+i)^4}{(2-2i)^3}$, giving your answer in the form a + bi

$$\frac{(1+i)^4}{(2-2i)^3} \equiv \frac{(1+i)^4}{2^3(1-i)^3}$$

$$= \frac{(1+i)^4}{8(1-i)^3}$$
Let $1+i \equiv i(1-i)$ br
$$\Rightarrow \frac{(1+i)^4}{8(1-i)^3} = \frac{[i(1-i)]^4}{8(1-i)^3}$$

$$= \frac{i^4(1-i)^4}{8(1-i)^3}$$

$$= \frac{1(1-i)^{4-3}}{8}$$

$$= \frac{1-i}{8}$$

 $=\frac{1}{8}-\frac{i}{8}$

Polynomials: Roots of Polynomial equations with real coefficients

- o If the roots α and β of a quadratic equation are complex, α and β are always a complex conjugate pair
- Given any complex root of a quadratic equation you can find the equation
- o Complex roots of a polynomial equation with real coefficients occur in conjugate pairs
- O Suppose the equation $ax^n+bx^{n-1}+cx^{n-2}+dx^{n-3}+\cdots+k$ has n roots α , β and γ , ... then the
 - (i) sum of the roots = $-\frac{b}{a}$
 - (ii) sum of the products of all possible pairs of roots = $\frac{c}{a}$
 - (iii)sum of products of all possible combinations of roots taken three at a time, and so on $=-\frac{d}{a}$
 - (iv)product of *n* roots = $\frac{(-1)^n k}{a}$.

Worked problems

Example 1

Given that the root of $3z^3 - 10z^2 + 20z - 16 = 0$ is $1 - \sqrt{3}i$. Find the other roots.

Suggested Solution

The other root is $1 + \sqrt{3}i$ (conjugate).

Since sum of roots = coefficient of $-\frac{z^2}{z^3}$:

Let the 3^{rd} root = x.

Hence $x + (1 + \sqrt{3}i + (1 - \sqrt{3}i)) = -(-\frac{10}{3})$

$$x + 1 + 1 = \frac{10}{3}$$

$$x = \frac{10}{3} - 2 = \frac{4}{3}$$
.

 \therefore The roots are $(1+\sqrt{3}i)$ and $\frac{4}{3}$.

Example 2

ZIMSEC 2018 Paper 1 #1

The equation $x^3 - 2x^2 + 4x + 8 = 0$ is 2i as one of its roots. Find the other roots. [3]

Suggested Solution

The other root is -2i (conjugate).

Since sum of roots = coefficient of $-\frac{x^2}{x^3}$:

Let the 3^{rd} root = x.

Hence $x + 2i - 2i = -\left(-\frac{2}{1}\right)$

x = 2.

 \therefore The roots are 2 and -2i.

Example 3

7 + 2i is one of the roots of a quadratic equation. Find its equation.

Suggested Solution

The other root is 7 - 2i (conjugate).

NB: The equation with roots α and β is $(x - \alpha)(x - \beta) = 0$

$$\Rightarrow [x - (7 - 2i)][x - (7 + 2i)] = 0$$

$$\Rightarrow x^{2} - x(7 + 2i) - x(7 - 2i) + (7 - 2i)(7 + 2i) = 0$$

$$\Rightarrow x^{2} - 7x - 7xi - 7x + 7xi + (7^{2} + 2^{2}) = 0$$

$$\Rightarrow x^{2} - 14x + 53 = 0$$

Example 4

Show that x = 2 is a solution of the cubic equation $x^3 - 6x^2 + 21x - 26 = 0$. Hence solve the equation completely.

Let
$$f(x) = x^3 - 6x^2 + 21x - 26$$

If $x = 2$ the $f(2) = 0$
 $\Rightarrow f(2) = (2)^3 - 6(2)^2 + 21(2) - 26 = 8 - 24 + 42 - 26 = 0$
 $\therefore (x - 2)$ is a solution.

$$x^{2} - 4x + 13$$

$$x - 2$$

$$x^{3} - 6x^{2} + 21x - 26$$

$$- x^{3} - 2x^{2}$$

$$-4x^{2} + 21x - 26$$

$$- 4x^{2} + 8x$$

$$13x - 26$$

$$- 13x - 26$$

$$f(x) = 0$$

 $\Rightarrow (x-2)(x^2 - 4x + 13) = 0$
 $\Rightarrow x - 2 = 0 \text{ or } x^2 - 4x + 13 = 0$

$$x^{2} - 4x = -13$$

$$x^{2} - 4x + (-2)^{2} = -13 + (-2)^{2}$$

$$(x - 2)^{2} = -9$$

$$x - 2 = \pm \sqrt{-9}$$

$$x - 2 = \pm 3i$$

$$x = 2 \pm 3i$$

$$x = 2; 2 + 3i \text{ or } 2 - 3i$$

NB: For a cubic equation either

- o all the three roots are real or
- o one of the roots is real and the other two roots form a complex conjugate pair.

Further consideration of $|Z_2 - Z_1|$ and $arg(Z_2 - Z_1)$

- o Let $Z = Z_2 Z_1$ where $Z_1 = x_1 + iy_1$ and $Z_2 = x_2 + iy_2$.
- \circ The points A and B represent Z_1 and Z_2 respectively, on Argand diagram.
- o $Z = Z_2 Z_1 = (x_2 x_1) + i(y_2 y_1)$. Hence *OABC* becomes a parallelogram.
- o $|Z_2 Z_1| = |\overrightarrow{OC}| = [(x_2 x_1)^2 + (y_2 y_1)^2]^{\frac{1}{2}}$ i.e. $|Z_2 Z_1|$ is the length of *AB* in the Argand diagram.

o arg $(Z_2 - Z_1)$ is the angle between OC and the positive direction of the x axis.

NB:
$$arg(u^*) - arg(u) \equiv arg(\frac{u^*}{u})$$

Example

Find $|Z_2 - Z_1|$ and $arg(Z_2 - Z_1)$ if $Z_1 = -1 + 2i$ and $Z_2 = -4 - 5i$.

<u>Solution</u>

$$Z = Z_2 - Z_1 = (-4 - 5i) + i(-1 + 2i)$$
$$= (-4 + 1) - i(5 + 2)$$
$$= -3 - 7i$$

Now.

$$|Z_2 - Z_1| = \sqrt{(-3)^2 + (-7)^2}$$

= $\sqrt{9 + 49} = \sqrt{58}$ and

$$\arg (Z_2 - Z_1) = \theta = -\left[\pi - \tan^{-1}\left(\frac{7}{3}\right)\right]$$

= -1.975688113 rad
= -1.98 rad

<mark>LOCI ON ARGAND DIAGRAM</mark>

- o A locus is a path traced out by a plant subjected to certain restrictions.
- Paths can be traced out by points representing variable complex numbers on an Argand diagram just as they can in any other coordinate system.

Types of LOCI

1) |Z| = k represents a circle with centre O and radius k.

If the point P represents the complex number Z: |Z| = k, then the distance of P from the origin O is a constant and so P will trace out a circle.

2) $|Z - Z_1| = k$ represents a circle with centre Z_1 and radius k.

If $|Z - Z_1| = k$, where Z_1 is a fixed complex number represented by point A on an argand diagram then $|Z - Z_1|$ represents the distance AP and is constant. It follows that P must lie on a circle with centre A and radius k.

3) $|Z - Z_1| \le k$ and $|Z - Z_1| < k$

If $|Z-Z_1| \le k$ or $|Z-Z_1| < k$ then the point representing P cannot lie only on the circumference (NB: for $|Z-Z_1| \le k$), but also anywhere inside the circle. The

locus P is therefore the region on (NB: for $|Z-Z_1| \le k$) and within the circle with centre Z_1 and radius k.

a) $|Z - Z_1| \le k$

b)
$$|Z - Z_1| < k$$

NB: $|Z - Z_1| = k|Z - Z_2|$ also represents a circle

4) $|Z - Z_1| = |Z - Z_2|$ represents a straight line. It is the perpendicular bisector of the line joining Z_1 and Z_2 . NB: $\frac{|Z - Z_1|}{|Z - Z_2|} = k \Longrightarrow |Z - Z_1| = |Z - Z_2|$

5) $|Z - Z_1| \le |Z - Z_2|$. The locus Z is not only the perpendicular bisector of AB, but also the whole half plane, in which A lies, bounded by this bisector.

NB: All the loci considered so far have been related to distances - there are also simple Loci in Argand diagrams involving angles.

The simplest case is the locus of P subject to the conditions that $\arg(z) = \infty$ where ∞ is a fixed angle.

6) $\arg(z) = \infty$ represents the half line through 0 inclined at an angle ∞ to the positive direction of Ox.

NB: The locus of P is only a half line - the other half, shown dotted in the diagram below, would have the equation $\arg(z) = \pi + \infty$ possibly $\pm 2\pi$ if

 $\pi + \infty$ falls outside the specified range for arg (z)

7) arg $(z - z_1) = \infty$ represents the half line through the point z_1 inclined at an angle ∞ to the positive direction of Ox.

8) $\propto \leq \arg(z - z_1) \leq \beta$ indicates that the angle between AP and the positive x - axis lies between \propto and β , so that P can be on or within the two half line as sown in the diagram below.

9) $arg\left(\frac{z-a}{z-b}\right) = \theta$ describes an arc with end points A and B making an angle θ . Draw an arc starting from A to B.

NB: If θ is positive, then draw the arc going anticlockwise () and if θ is negative then draw the arc going clockwise ()

NB:
$$arg\left(\frac{z-a}{z-b}\right) = \theta \equiv arg(z-a) - arg(z-b) = \theta$$

Solved Examples

Question 1

Sketch on argand diagram the locus of points satisfying:

a)
$$\arg (z - 1) = \frac{\pi}{4}$$

b)
$$|z - 2 - i| = 5$$
 c) $|z| = 3$

c)
$$|z| = 3$$

Suggested Solution

a)

$$\arg(z-1) = \frac{\pi}{4}$$

$$|z - (2 + i)| = 5$$

$$|z| = 3$$

Question 2

Sketch on argand diagram the locus of points satisfying:

a)
$$|z - 3i| \le 3$$

b)
$$\frac{\pi}{2} \le \arg(Z - 4 - 2i) \le \frac{5\pi}{6}$$

c) $\arg(\frac{z - 3i}{z + 4}) \le \frac{\pi}{3}$

c)
$$arg\left(\frac{z-3i}{z+4}\right) \le \frac{\pi}{3}$$

Suggested Solution

$$|z - 3i| \le 3$$

$$|z - 3i| \le 3$$
 $\frac{\pi}{2} \le arg (Z - 4 - 2i) \le \frac{5\pi}{6}$

$$arg\left(\frac{z-3i}{z+4}\right) \le \frac{\pi}{3}$$

Question 3

The point P represents a complex number z on an Argand diagram, where

$$|z - 6 + 3i| = 3|z + 2 - i|$$

Show that the locus of P is a circle, giving the coordinates of the centre and the radius of this circle.

Solution

Let
$$z = x + iy$$

$$|z - 6 + 3i| = 3|z + 2 - i|$$

$$|x + iy - 6 + 3i| = 3|x + iy + 2 - i|$$

$$|(x-6) + i(y+3)| = 3|(x+2) + i(y-1)|$$

$$(x-6)^2 + (y+3)^2 = 9[(x+2)^2 + (y-1)^2]$$

$$x^2 - 12x + 36 + y^2 + 6y + 9 = 9[x^2 + 4x + 4 + y^2 - 2y + 1]$$

$$8x^2 + 8y^2 + 48x - 24y = 0$$

$$x^2 + 6x + y^2 - 3y = 0$$

$$(x+3)^2 - 9 + \left(y - \frac{3}{2}\right)^2 - \frac{9}{4} = 0$$

$$(x+3)^2 + \left(y - \frac{3}{2}\right)^2 = \frac{45}{4}$$

center: $\left(-3, \frac{3}{2}\right)$ and radius: $\frac{3}{2}\sqrt{5}$

Question 3

Sketch on argand diagram the locus of points satisfying:

$$arg(z-2i) - arg(z+4) = -\frac{\pi}{12}$$

Solution

$$arg(z-2i) - arg(z+4) = -\frac{\pi}{12}$$

$$arg\left(\frac{z-2i}{z+4}\right) = -\frac{\pi}{12}$$

$$arg\left[\frac{z - (0 + 2i)}{z - (-4 + 0i)}\right] = -\frac{\pi}{12}$$

Solved Past Examination Questions

Question 1

ZIMSEC JUNE 2019 PAPER 2

On a single diagram shade the region defined by the inequalities

$$\frac{\pi}{6} \le \arg(Z - 4) \le \frac{\pi}{4} \text{ and } |z - 4| \le 4$$
 [3]

Solution

$$\frac{\pi}{6} \le \arg(Z - 4) \le \frac{\pi}{4}$$

The required region is:

Question 2

ZIMSEC NOVEMBER 2019 PAPER 2

The complex number **z** satisfies the inequalities $2 < |\mathbf{z}| < 3$ and $\frac{\pi}{6} < \arg \mathbf{z} < \frac{\pi}{3}$.

Sketch and shade on an Argand diagram the region represented by the inequalities.

[4]

Solution

$$\frac{\pi}{6} \le \arg \mathbf{z} \le \frac{\pi}{3}$$

The required region is:

DEMOIVRE'S THEOREM

O Given that $Z = r(Cos\theta + iSin\theta)$ is a complex number and n is a positive integer, then

$$Z^n = [r(Cos\theta + iSin\theta)]^n = r^n(Cosn\theta + iSinn\theta)$$

NB: DeMoivre's theorem holds not only when n is a positive integer, but also

when it is negative and even when it is fractional

o The DeMoivre's theorem can also be written as

$$Z^n = re^{in\theta}$$

o $Z = r(Cos\theta + iSin\theta)$ can also be written as $Z = re^{i\theta}$

NB: One very important application of DeMoivre's theorem is in condition of

complex numbers of the form $(a+ib)^n$

Solved Problems

Example 1

Simplify
$$\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^3$$

$$\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^3 = \cos\frac{3\pi}{6} + i\sin\frac{3\pi}{6}$$

$$= \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$

$$= 0 + i$$

$$= i$$

Example 2

Find $(\sqrt{3} + i)^{10}$ in the form a + ib.

Suggested solution

NB: (i) Clearly it would not be practical to multiply $(\sqrt{3} + i)$ by itself ten times.

(ii) Express it in polar form.

$$r = \sqrt{\left(\sqrt{3}\right)^2 + (1)^2} = \sqrt{4} = 2$$

$$tan\theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = \frac{\pi}{6}$$

Thus
$$(\sqrt{3} + i) = 2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$$
 and

$$\left(\sqrt{3} + i\right)^{10} = 2^{10} \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^{10} = 2^{10} \left(\cos\frac{10\pi}{6} + i\sin\frac{10\pi}{6}\right)$$
$$= 1024 \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$
$$= 512 - i512\sqrt{3}$$

Example 3

Simplify
$$\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^3$$

NB: DeMoivre's theorem applies only to expression in the form $(Cos\theta + iSin\theta)$

and not $(Cos\theta - iSin\theta)$, so the expression to be simplified must be written in

the form
$$[Cos(-\theta) + iSin(-\theta)]$$

$$\Rightarrow \left(\cos\frac{\pi}{6} - iSin\frac{\pi}{6}\right) = Cos\left(-\frac{\pi}{6}\right) + iSin\left(-\frac{\pi}{6}\right)$$

Hence

$$\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^{3} = \left[\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right]^{3}$$

$$= \cos\left(-\frac{3\pi}{6}\right) + i\sin\left(-\frac{3\pi}{6}\right)$$

$$= \cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)$$

$$= \cos\left(\frac{\pi}{2}\right) - i\sin\left(\frac{\pi}{2}\right)$$

$$= -i$$

Example 4

Find
$$\frac{1}{\left(-2+2\sqrt{3}i\right)^3}$$
 in the form $a+ib$.

$$r = \sqrt{(-2)^2 + (2\sqrt{3})^2} = \sqrt{16} = 4$$

$$\theta = \pi - tan^{-1} \left(\frac{2\sqrt{3}}{2}\right) \Rightarrow \theta = \pi - \frac{\pi}{3}$$

$$= \frac{2\pi}{3}$$
Now $\frac{1}{(-2+2\sqrt{3}i)^3} = (-2+2\sqrt{3}i)^{-3}$

$$= \left[4\left\{Cos\left(\frac{2\pi}{3}\right) + iSin\left(\frac{2\pi}{3}\right)\right\}\right]^{-3}$$

$$= 4^{-3}\left[Cos\left(-3 \times \frac{2\pi}{3}\right) + iSin\left(-3 \times \frac{2\pi}{3}\right)\right]$$

$$= \frac{1}{64}\left[Cos(-2\pi) + iSin(-2\pi)\right]$$

$$= \frac{1}{64}(1+0)$$

$$= \frac{1}{64}$$

Example 5

If $z = cos\theta + isin\theta$, show that

$$\frac{1}{z} = \cos\theta - i\sin\theta.$$

Hence use the DeMoivre's theorem to show that

$$cos\theta - isin\theta \equiv Cos(-\theta) + iSin(-\theta).$$

$$\frac{1}{z} = \frac{1}{\cos\theta + i\sin\theta}$$

$$=\frac{1(\cos\theta-\sin\theta)}{(\cos\theta+i\sin\theta)(\cos\theta-i\sin\theta)}$$

$$=\frac{\cos\theta-\sin\theta}{\cos^2\theta+\sin^2\theta}$$

$$=\frac{\cos\theta-\sin\theta}{1}$$

$$= cos\theta - sin\theta$$
 (as required)

Now:

$$\frac{1}{z} = z^{-1} = (\cos\theta + i\sin\theta)^{-1}$$
$$= \cos(-\theta) + i\sin(-\theta)$$
 Using DeMoivre's theorem

$$cos\theta - sin\theta \equiv cos(-\theta) + isin(-\theta)$$
 (as required)

APPLICATION OF DEMOIVRE'S THEOREM IN ESTABLISHING TRIGONOMETRIC IDENTITIES

Example 1

Show that $Cos3\theta = 4Cos^3\theta - 3Cos\theta$

Suggested Solution

 $Cos3\theta + iSin3\theta = (Cos\theta + iSin\theta)^3$ (Using DeMoivre's Theorem)

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)a^{n-2}}{2!}b^2 + \cdots$$

Now:

$$Cos3\theta + iSin3\theta = Cos^3\theta + 3Cos^2\theta(iSin\theta) + 3Cos\theta(iSin\theta)^2 + (iSin\theta)^3$$
$$= Cos^3\theta + 3iCos^2\theta Sin\theta - 3Cos\theta Sin^2\theta - iSin^3\theta \text{ (Since } i^2 = -1)$$

Now $Cos3\theta$ is the real part of the LHS of the equation, and the real parts of both sides can be equated

$$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$$

$$= Cos^{3}\theta - 3Cos\theta(1 - Cos^{2}\theta)$$
 (Since $Cos^{2}\theta + Sin^{2}\theta = 1$)
= $4Cos^{3}\theta - 3Cos\theta$

Example 2

Express $Tan3\theta$ in terms of $Tan\theta$.

Suggested Solution

$$Tan3\theta = \frac{Sin3\theta}{\cos 3\theta}$$

NB: $Sin3\theta$ and $Cos3\theta$ are obtained from the expansion of $(Cos\theta + iSin\theta)^3$.

Now

$$Tan3\theta = \frac{Sin3\theta}{Cos \ 3\theta} = \frac{3Cos^2\theta Sin\theta - Sin^3\theta}{Cos^3\theta - 3Cos\theta Sin^2\theta}$$

Dividing every term by $Cos^3\theta$

$$Tan3\theta = \frac{\left(\frac{3Cos^{2}\theta Sin\theta}{Cos^{3}\theta} - \frac{Sin^{3}\theta}{Cos^{3}\theta}\right)}{\left(\frac{Cos^{3}\theta}{Cos^{3}\theta} - \frac{3Cos\theta Sin^{2}\theta}{Cos^{3}\theta}\right)}$$

$$=\frac{\left(\frac{3Sin\theta}{Cos\theta}-\frac{Sin^3\theta}{Cos^3\theta}\right)}{\left(\frac{Cos^3\theta}{Cos^3\theta}-\frac{3Sin^2\theta}{Cos^2\theta}\right)}$$

$$=\frac{3Tan\theta-Tan^3\theta}{1-3Tan^2\theta}$$

Example 3

Express $Cot3\theta$ in terms of $Cot\theta$.

$$Cot3\theta = \frac{Cos3\theta}{Sin\ 3\theta}$$

NB: $Sin3\theta$ and $Cos3\theta$ are obtained from the expansion of $(Cos\theta + iSin\theta)^3$.

Now

$$Cot3\theta = \frac{Cos3\theta}{Sin\ 3\theta} = \frac{Cos^3\theta - 3Cos\theta Sin^2\theta}{3Cos^2\theta Sin\theta - Sin^3\theta}$$

Dividing every term by $Sin^3\theta$

$$Cot3\theta = \frac{\left(\frac{Cos^3\theta}{Sin^3\theta} - \frac{3Cos\theta Sin^2\theta}{Sin^3\theta}\right)}{\left(\frac{3Cos^2\theta Sin\theta}{Sin^3\theta} - \frac{Sin^3\theta}{Sin^3\theta}\right)}$$

$$=\frac{\left(\frac{Cos^{3}\theta}{Sin^{3}\theta}-\frac{3Cos\theta}{Sin\theta}\right)}{\left(\frac{3Cos^{2}\theta}{Sin^{2}\theta}-\frac{Sin^{3}\theta}{Sin^{3}\theta}\right)}$$

$$=\frac{Cot^3\theta - 3Cot\theta}{3Cot^2\theta - 1}$$

EXPRESSIONS FOR POWERS OF Sint AND Cost IN TERMS OF SINES AND COSINES OF MULTIPLES

• Expressions for powers of $Sin\theta$ and $Cos\theta$ in terms of sines and cosines of multiples of θ can be derived using the following results:

Suppose
$$z = Cos\theta + iSin\theta$$
, then

$$z^{-1} = \frac{1}{z} = (Cos\theta + iSin\theta)^{-1}$$
$$= Cos(-\theta) + iSin(-\theta)$$

 $= Cos\theta - iSin\theta$

- Therefore if $z = Cos\theta + iSin\theta$ then $\frac{1}{z} = Cos\theta iSin\theta$
 - (i) Adding $z + \frac{1}{z} = 2Cos\theta$ and
 - (ii) Subtracting $z \frac{1}{z} = 2iSin\theta$

NB: If $z = Cos\theta + iSin\theta$: $z + \frac{1}{z} = 2Cos\theta$ and $z - \frac{1}{z} = 2iSin\theta$

$$O Also z^n = (Cos\theta + iSin\theta)^n = Cos(n\theta) + iSin(n\theta),$$

$$\text{Then } z^{-n} = \frac{1}{z^n} = (Cos\theta + iSin\theta)^{-n}$$

$$= Cos(-n\theta) + iSin(-n\theta)$$

$$= Cos(n\theta) - iSin(n\theta)$$

- Combining z^n and $\frac{1}{z^n}$ as before:
 - (i) Adding $z^n + \frac{1}{z^n} = 2Cos(n\theta)$ and
 - (ii) Subtracting $z^n \frac{1}{z^n} = 2iSin(n\theta)$

NB: If $z = Cos\theta + iSin\theta$: $z^n + \frac{1}{z^n} = 2Cos(n\theta)$ and $z^n - \frac{1}{z^n} = 2iSin(n\theta)$

NB: A common mistake is to omit the i in $2iSin(n\theta)$, so make a point of remembering this result carefully.

Solved Examples

Example 1

Use DeMoivre's Theorem to show that $Cos^5\theta = \frac{1}{16}(Cos5\theta + 5Cos3\theta + 10Cos\theta)$.

Suggested Solution

Suppose $z = Cos\theta + iSin\theta$ then $z + \frac{1}{z} = 2Cos\theta$

Now

$$(2Cos\theta)^5 = \left(z + \frac{1}{z}\right)^5$$

$$\Rightarrow 32 \cos^5 \theta = z^5 + \left(\frac{1}{z}\right)^5 + 5z^3 + 5\left(\frac{1}{z}\right)^3 + 10z + 10\left(\frac{1}{z}\right)$$
$$= \left(z^5 + \frac{1}{z^5}\right) + 5\left[z^3 + \left(\frac{1}{z}\right)^3\right] + 10\left[z + \left(\frac{1}{z}\right)\right]$$

Using the results established earlier: $z^n + \frac{1}{z^n} = 2Cos(n\theta)$

$$z^5 + \frac{1}{z^5} = 2Cos(5\theta)$$

$$z^3 + \frac{1}{z^3} = 2Cos(3\theta)$$

and
$$z + \frac{1}{z} = 2Cos\theta$$

Hence $32 \cos^5 \theta = 2\cos(5\theta) + 5[2\cos(3\theta)] + 10(2\cos\theta)$

$$Cos^5\theta = \frac{2Cos(5\theta)}{32} + \frac{5[2Cos(3\theta)]}{32} + \frac{10(2Cos\theta)}{32}$$

$$\therefore \cos^5\theta = \frac{1}{16}(\cos 5\theta + 5\cos 3\theta + 10\cos \theta) \text{ {as required}}.$$

NB: One very successful application of the example above would be integrating $Cos^5\theta$

$$\int Cos^5 \theta = \int \frac{1}{16} (Cos5\theta + 5Cos3\theta + 10Cos\theta)$$
$$= \frac{1}{16} \left[\frac{Sin(5\theta)}{5} + \frac{5[Sin(3\theta)]}{3} + 10Sin\theta \right] + c$$

Example 2

- a) Show that $Cos^3\theta \ Sin^3\theta = \frac{1}{32}(3Sin2\theta Sin6\theta)$
- b) Evaluate

$$\int_{0}^{\frac{\pi}{2}} \cos^{3}\theta \ Sin^{3}\theta.$$

Suggested Solution

$$(2Cos\theta)^3 = \left(z + \frac{1}{z}\right)^3 \qquad \text{(i)}$$

$$(2iSin\theta)^3 = \left(z - \frac{1}{z}\right)^3 \qquad \text{(ii)}$$

Multiplying (i) and (ii)

$$8Cos^{3}\theta \times 8i^{3}Sin^{3}\theta = \left(z + \frac{1}{z}\right)^{3} \left(z - \frac{1}{z}\right)^{3}$$

$$-64iCos^{3}\theta Sin^{3}\theta = \left[\left(z - \frac{1}{z} \right) \left(z + \frac{1}{z} \right) \right]^{3} = \left(z^{2} - \frac{1}{z^{2}} \right)^{3}$$

$$= (z^{2})^{3} - 3(z^{2})^{2} \left(\frac{1}{z^{2}} \right) + 3(z^{2}) \left(\frac{1}{z^{2}} \right)^{2} - \left(\frac{1}{z^{2}} \right)^{3}$$

$$= z^{6} - 3z^{2} + 3\left(\frac{1}{z^{2}} \right) - \frac{1}{z^{6}}$$

$$= \left(z^{6} - \frac{1}{z^{6}} \right) - 3\left(z^{2} - \frac{1}{z^{2}} \right)$$

Now
$$z^6 - \frac{1}{z^6} = 2iSin6\theta$$
 and $z^2 - \frac{1}{z^2} = 2iSin2\theta$

$$\Rightarrow -64iCos^3\theta Sin^3\theta = 2iSin6\theta - 3(2iSin2\theta)$$

Dividing by (-64i)

$$Cos^{3}\theta Sin^{3}\theta = -\frac{1}{32}(Sin6\theta) + \frac{3}{32}(Sin2\theta) = \frac{1}{32}(3Sin2\theta - Sin6\theta)$$
 {as required}

b)

$$\int_{0}^{\frac{\pi}{2}} \cos^{3}\theta \, \sin^{3}\theta \, d\theta = \frac{1}{32} \int_{0}^{\frac{\pi}{2}} (3\sin 2\theta - \sin 6\theta) d\theta$$

$$= \frac{1}{32} \left[\frac{-3\cos 2\theta}{2} + \frac{\cos 6\theta}{6} \right] \frac{\pi/2}{0}$$

$$= \frac{1}{32} \left[\frac{3}{2} - \frac{1}{6} - \frac{3}{2} + \frac{1}{6} \right)$$

$$= \frac{1}{32} \times \frac{8}{3}$$

$$= \frac{1}{12}$$

Exponential Form of a Complex Number

If
$$Z = r(Cos\theta + iSin\theta)$$
 then $Z = re^{i\theta}$ and $Z^n = re^{ni\theta}$

Example

Express 2-2i in the form $re^{i\theta}$.

Suggested Solution

$$2 - 2i$$

(i)
$$\sqrt{(2)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$$

(ii) From the argand diagram, θ lies in the fourth quadrant hence

$$\theta = -\tan^{-1}\left(\frac{2}{2}\right) = -\frac{\pi}{4}$$

$$\therefore 2 - 2i = 2\sqrt{2}e^{-\frac{\pi i}{4}}$$

The Cube Roots of Unity

- o The cube roots of 1 are numbers: when they are cubed their value is 1.
- They satisfy the equation $z^3 1 = 0$.
- Clearly, one of the roots of $z^3 1$ is = 1

$$\Rightarrow$$
 $(z-1)$ must be a factor of z^3-1 .

- Factorising (after performing long division) we get $(z-1)(z^2+z+1)$
- Now the other roots come from the quadratic equation $z^2 + z + 1 = 0$.
- o If one of these roots is denoted by w, then w satisfies the equation $z^2 + z + 1 = 0$ so that $w^2 + w + 1 = 0$.
- It can also be shown that if w is a roots of $z^3 = 1$ then w^2 is also a root, in fact, the other root.
- i.e. Substituting w^2 into the left hand side of $z^3 = 1$ gives

$$(w^2)^3 = w^6 = (w^3)^2 = 1^2 = 1$$
, as $w^3 = 1$ since w is a solution of $z^3 = 1$.

- Thus the cube roots are 1, w and w^2 , where w and w^2 are non-real.
- o w can be expressed in the form a + ib.

$$w^2 + w + 1 = 0$$

$$\Longrightarrow \left(w + \frac{1}{2}\right)^2 - \frac{1}{4} + 1 = 0$$

$$\Rightarrow \left(w + \frac{1}{2}\right)^2 = -\frac{3}{4}$$

$$\Rightarrow w + \frac{1}{2} = \mp \sqrt{-\frac{3}{4}}$$

$$\Rightarrow w + \frac{1}{2} = \mp i \frac{\sqrt{3}}{2}$$

$$\Longrightarrow w = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$$

$$\therefore w = \frac{-1 \pm i\sqrt{3}}{2}$$

NB: It doesn't matter whether w is labelled as $\frac{-1+i\sqrt{3}}{2}$ or as $\frac{-1-i\sqrt{3}}{2}$ because each is

the square of the other.

In other words of $w = \frac{-1 + i\sqrt{3}}{2}$ then:

$$w^2 = \left(\frac{-1+i\sqrt{3}}{2}\right)^2 = \frac{1-2i\sqrt{3}+i^2(3)}{4}$$

$$= \frac{1-3-2i\sqrt{3})}{4}$$

$$= \frac{-2-2i\sqrt{3}}{4}$$

$$= \frac{-1-i\sqrt{3}}{2}, \text{ (which is the other root - conjugate)}$$

If
$$w = \frac{-1 + i\sqrt{3}}{2}$$
, then $w^2 = \frac{-1 - i\sqrt{3}}{2}$.

- Now the cube roots of unity are 1, w and w^2 , where:
 - (i) $w^3 = 1$
 - (ii) $1 + w + w^2 = 0$
 - (iii)the non-real roots are $\frac{-1+i\sqrt{3}}{2}$ and $\frac{-1-i\sqrt{3}}{2}$

Solved Examples

Example 1

Simplify $w^7 + w^8$ where w is a complex cube root of 1.

Suggested Solution

$$w^7 = w^6 \times w = (w^3)^2 \times w = 1^2 \times w = w$$
 {because $w^3 = 1$ }
 $w^8 = w^6 \times w^2 = (w^3)^2 \times w^2 = 1^2 \times w^2 = w^2$ {because $w^3 = 1$ }
 $w^7 + w^8 = w + w^2 = -1$ {because $u^3 = 1$ }

Example 2

Show that

$$\frac{1}{1+w} + \frac{1}{1+w^2} + \frac{1}{w+w^2} = 0$$

Suggested Solution

$$1 + w + w^2 = 0 \Longrightarrow (i) \ 1 + w = -w^2$$

(ii)
$$1 + w^2 = -w$$

(iii)
$$w + w^2 = -1$$

Now the equation simplifies to

$$\frac{1}{-w^2} + \frac{1}{-w} + \frac{1}{-1}$$

Multiply the first term by w and the second term by w^2 (NB: Multiply both on the numerator and the denominator)

$$\left(\frac{w}{w}\right)\frac{1}{-w^2} + \left(\frac{w^2}{w^2}\right)\frac{1}{-w} - 1 \Longrightarrow \frac{w}{-w^3} + \frac{w^2}{-w^3} - 1$$

But

$$w^{3} = 1 \Rightarrow \frac{w}{-1} + \frac{w^{2}}{-1} - 1 = -w - w^{2} - 1 = -1(w + w^{2} + 1)$$

$$= -1(0) = 0$$
{Since $1 + w + w^{2} = 0$ }

The Nth Roots of Unity

- The equation $z^n = 1$ clearly has at least one root, namely z = 1, but actually has many more, most of which (If not all) are complex.
- \circ To find the remaining roots, the right hand side of the equation $z^n = 1$ should be expressed in exponential form,

$$\Rightarrow z^n = e^{2k\pi i}$$

o Taking the nth root of both sides gives

$$z = e^{\frac{2k\pi i}{n}}$$

- \circ Different integer values of k will give rise to different roots
- Thus the equation $z^n = 1$ has roots:

$$z = e^{\frac{2k\pi i}{n}}, \ k = 0,1,2,3,...,(n-1)$$

Worked Examples

Example 1

Find in the form a + ib, the roots of the equation $z^6 = 1$ and illustrate these roots on an argand diagram.

Suggested Solution

$$z^6 = 1 = e^{\frac{2k\pi i}{6}} = e^{\frac{k\pi i}{3}}$$
 $k = 0,1,2,3,4,5$.

Thus the roots are:

$$k = 0; \quad z = 1$$

$$k = 1;$$
 $z = e^{\frac{\pi i}{3}} = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)$

$$=\frac{1}{2}+i\frac{\sqrt{3}}{2}$$

$$k=2;$$
 $z=e^{\frac{2\pi i}{3}}=\cos\left(\frac{2\pi}{3}\right)+i\sin\left(\frac{2\pi}{3}\right)$

$$= -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$k = 3; \quad z = e^{\pi i} = \cos(\pi) + i\sin(\pi)$$

$$= -1$$

$$k = 4; \quad z = e^{\frac{4\pi i}{3}} = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)$$
$$= -\frac{1}{2} - i\frac{\sqrt{3}}{2}$$

$$k = 5; \quad z = e^{\frac{5\pi i}{3}} = \cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right)$$
$$= \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

To summarise the sixth roots:

$$z = \pm 1$$
 and $z = \pm \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$

NB: (i) The arguments of the roots should be between $-\pi$ and $+\pi$ instead of 0

and 2π . In the example above the roots would be given as $z = e^{\frac{k\pi i}{3}}$ for

 $k = 0, \pm 1, \pm 2, 3.$

(ii) Some equation may not involve unity so they are treated as the example

below:

Example 2

Solve $z^6 = 64$

Suggested solution

$$z^6 = 64$$

$$z^6 = 2^6 e^{2k\pi i} \Longrightarrow 2e^{\frac{2k\pi i}{6}} \quad k = 0,1,2,3,4,5.$$

The only difference would be the modulus of each root would be 2 instead of 1, with the consequence that the six roots of $z^6 = 64$ would lie on the circle |z| = 2 instead |z| = 1.

Solutions of the Binomial Equations

Case 1

 $Z = A^N$ where A is a real positive number and N is a fraction.

$$Z = \sqrt[n]{A} \left[\cos \left(\frac{2k\pi}{n} \right) + i \sin \left(\frac{2k\pi}{n} \right) \right]$$

where k = 0,1,2,3,...,(n-1)

Case 2

 $Z = A^N$ where A is a real negative number and N is a fraction.

$$Z = \sqrt[n]{|A|} \left[\cos\left(\frac{\pi + 2k\pi}{n}\right) + i\sin\left(\frac{\pi + 2k\pi}{n}\right) \right]$$

where k = 0,1,2,3,...,(n-1)

Example

Solve
$$z^3 = -8$$
.

Suggested Solution

$$Z_k = \sqrt[3]{|-8|} \left[\cos\left(\frac{\pi + 2k\pi}{3}\right) + i\sin\left(\frac{\pi + 2k\pi}{3}\right) \right]$$

where
$$k = 0,1,2$$
.

$$Z_0 = -1 + i\sqrt{3}$$

$$Z_1 = -2$$

$$Z_3 = 1 - i\sqrt{3} .$$

The roots of $z^n = \alpha$ where α is a non-real number

- ο Every complex number of the form a+ib can be written in the form $re^{i\theta}$, where r is real and θ lies in an interval of 2π (Ussually from 0 to 2π or from $-\pi$ to π)
- Suppose that $\alpha = re^{i\theta}$
- O Now $e^{i\theta+2\pi i} = e^{i\theta} \times e^{2\pi i} = e^{i\theta}$ (because $e^{2\pi i} = \cos(2\pi) + i\sin(2\pi) = 1$)
- Similarly, $e^{i\theta+2k\pi i} = e^{i\theta} \times e^{2k\pi i} = e^{i\theta}$
- $\circ \quad \operatorname{So} z^n = \alpha = r e^{i\theta + 2k\pi i}$
- Taking the nth root of both sides

$$Z = r^{\frac{1}{n}} e^{i\left(\frac{\theta + 2k\pi}{n}\right)}$$
 $k = 0,1,2,3,...,(n-1).$

∴ The equation $z^n = α$, where $α = re^{iθ}$ has roots:

$$Z = \sqrt[n]{r}e^{i\left(\frac{\theta+2k\pi}{n}\right)}$$
 $k = 0,1,2,3,...,(n-1).$

$$Z = \sqrt[n]{r}e^{i\left(\frac{\theta+2k\pi}{n}\right)}$$
 $k = 0,1,2,3,...,(n-1)$ or

$$Z = \sqrt[n]{r} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right]$$
 where $k = 0, 1, 2, 3, ..., (n-1)$.

Worked Example

Example 1

Find the three roots of the equation $z^3 = 2 + 2i$.

Suggested Solution

Express 2 + 2i in exponential form.

(i)
$$\sqrt{(2)^2 + (2)^2} = \sqrt{8}$$

(ii) From the argand diagram, θ lies in the first quadrant hence

$$\theta = \tan^{-1}\left(\frac{2}{2}\right) = \frac{\pi}{4}$$

$$\therefore 2 + 2i = \sqrt{8}e^{i\frac{\pi}{4}}$$

$$\Rightarrow z^n = \sqrt{8}e^{i\left(\frac{\pi}{4} + 2k\pi\right)}$$

$$\Rightarrow Z = (\sqrt{8})^{\frac{1}{3}} e^{i\left(\frac{\pi}{4} + 2k\pi\right)} = \sqrt{2} e^{i\left[\frac{(1+8k)\pi}{12}\right]} \text{ where } k = 0,1,2$$

The roots are

$$k=0; \qquad z=\sqrt{2}e^{i\frac{\pi}{12}}$$

$$k = 0;$$
 $z = \sqrt{2}e^{i\frac{\pi}{12}}$
 $k = 1;$ $z = \sqrt{2}e^{i\frac{9\pi}{12}}$

$$k = 2;$$
 $z = \sqrt{2}e^{i\frac{17\pi}{12}} \text{ or } \left(\sqrt{2}e^{i\frac{-7\pi}{12}}\right)$

NB: These roots can be written in the form $r(\cos\theta + i\sin\theta)$ i.e.

$$\sqrt{2} \left[\cos \left(\frac{(1+8k)\pi}{12} \right) + i \sin \left(\frac{(1+8k)\pi}{12} \right) \right] \text{ for } k = 0,1,2(or-1).$$

NB: You can also express them in the form a + ib.

SOLVED PAST EXAMINATION QUESTIONS

Question 1

ZIMSEC JUNE 2010 PAPER 2

Express $-8 - i8\sqrt{3}$ in the form $r(\cos\theta + i\sin\theta)$. Hence or otherwise find all the fourth roots of $-8 - i8\sqrt{3}$.

Suggested Solution

Let
$$z = -8 - i8\sqrt{3}$$

$$\theta = -\left[\pi - \tan^{-1}\left(\frac{8\sqrt{3}}{8}\right)\right]$$
$$= -\left[\pi - \tan^{-1}\left(\sqrt{3}\right)\right]$$
$$= -\left(\pi - \frac{\pi}{3}\right)$$
$$= -\frac{2\pi}{3}$$

$$r = \sqrt{(8)^2 + (8\sqrt{3})^2}$$

$$= \sqrt{64 + 192}$$

$$= \sqrt{256}$$

$$= 16$$

$$\therefore z = 16 \left[\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right) \right]$$

$$\begin{split} &Z_k = \sqrt[n]{r} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i sin \left(\frac{\theta + 2k\pi}{n} \right) \right] \text{ where } k = 0,1,2 \text{ and } 3 \\ &\Rightarrow Z_k = \sqrt[4]{16} \left[\cos \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2k\pi}{4} \right\} + i sin \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2k\pi}{4} \right\} \right] \text{ where } k = 0,1,2 \text{ and } 3 \\ &\Rightarrow Z_k = 2 \left[\cos \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2k\pi}{4} \right\} + i sin \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2k\pi}{4} \right\} \right] \text{ where } k = 0,1,2 \text{ and } 3 \end{split}$$

$$\Rightarrow Z_0 = 2 \left[\cos \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2(0)\pi}{4} \right\} + i \sin \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2(0)\pi}{4} \right\} \right]$$

$$= 2 \left[\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right]$$

$$= 2 \left(\frac{\sqrt{3}}{2} - i \frac{1}{2} \right)$$

$$= \sqrt{3} - i$$

$$\Rightarrow Z_1 = 2 \left[\cos \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2(1)\pi}{4} \right\} + i \sin \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2(1)\pi}{4} \right\} \right]$$

$$= 2 \left[\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} \right) \right]$$

$$= 2 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right)$$

$$= 1 + i \sqrt{3}$$

$$\Rightarrow Z_2 = 2 \left[\cos \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2(2)\pi}{4} \right\} + i \sin \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2(2)\pi}{4} \right\} \right]$$

$$= 2 \left[\cos \left(\frac{5\pi}{6} \right) + i \sin \left(\frac{5\pi}{6} \right) \right]$$

$$= 2 \left(-\frac{\sqrt{3}}{2} + i \frac{1}{2} \right)$$

$$= -\sqrt{3} + i$$

$$\Rightarrow Z_3 = 2 \left[\cos \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2(3)\pi}{4} \right\} + i \sin \left\{ \frac{\left(-\frac{2\pi}{3} \right) + 2(3)\pi}{4} \right\} \right]$$

$$= 2 \left[\cos \left(\frac{4\pi}{3} \right) + i \sin \left(\frac{4\pi}{3} \right) \right]$$

$$= 2 \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2} \right)$$

$$= -1 - i \sqrt{3}$$

Question 2

ZIMSEC JUNE 2013

Using the substitution $w = z^4$, solve the equation $z^8 - z^4 - 6 = 0$ where z is a complex number.

Suggested Solution

$$z^8 - z^4 - 6 = 0$$

Let
$$w = z^4$$

$$\Rightarrow w^2 - w = 6$$

$$\Rightarrow w^2 - w + \left(-\frac{1}{2}\right)^2 = 6 + \left(-\frac{1}{2}\right)^2$$

$$\Rightarrow \left(w - \frac{1}{2}\right)^2 = 6 + \frac{1}{4}$$

$$\Rightarrow \left(w - \frac{1}{2}\right)^2 = \frac{25}{4}$$

$$\Rightarrow w - \frac{1}{2} = \pm \sqrt{\frac{25}{4}}$$

$$\Rightarrow w - \frac{1}{2} = \pm \frac{5}{2}$$

$$\Rightarrow w = \frac{1}{2} \pm \frac{5}{2}$$

$$\Rightarrow w = \frac{1}{2} + \frac{5}{2} \text{ or } \frac{1}{2} - \frac{5}{2}$$

$$\therefore w = 3 \text{ or } -2$$

But
$$z^4 = w$$

$$\Rightarrow z^4 = 3 \text{ or } z^4 = -2$$

NOW

$$z^4 = -2$$

$$Z_k = \sqrt[n]{|r|} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right] \text{ where } k = 0,1,2 \text{ and } 3$$

$$\Rightarrow Z_k = \sqrt[4]{|-2|} \left[\cos \left(\frac{\pi + 2k\pi}{4} \right) + i \sin \left(\frac{\pi + 2k\pi}{4} \right) \right] \text{ where } k = 0,1,2 \text{ and } 3$$

$$\Rightarrow Z_k = \sqrt[4]{2} \left[\cos \left(\frac{\pi + 2k\pi}{4} \right) + i \sin \left(\frac{\pi + 2k\pi}{4} \right) \right] \text{ where } k = 0,1,2 \text{ and } 3$$

$$\Rightarrow Z_0 = \sqrt[4]{2} \left[\cos \left\{ \frac{\pi + 2(0)\pi}{4} \right\} + i \sin \left\{ \frac{\pi + 2(0)\pi}{4} \right\} \right]$$

$$= \sqrt[4]{2} \left[\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right]$$

$$= \sqrt[4]{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right)$$

$$= 0.840896415 + i 0.840896415$$

$$= 0.84 + i 0.84 \text{ (to 2s. f.)}$$

$$\Rightarrow Z_1 = \sqrt[4]{2} \left[\cos \left\{ \frac{\pi + 2(1)\pi}{4} \right\} + i \sin \left\{ \frac{\pi + 2(1)\pi}{4} \right\} \right]$$

$$= \sqrt[4]{2} \left[\cos \left(\frac{3\pi}{4} \right) + i \sin \left(\frac{3\pi}{4} \right) \right]$$

$$= \sqrt[4]{2} \left(-\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right)$$

$$= -0.840896415 + i0.840896415$$

$$= -0.84 + i0.84 \text{ (to } 2s.f. \text{)}$$

$$\Rightarrow Z_2 = \sqrt[4]{2} \left[\cos \left\{ \frac{\pi + 2(2)\pi}{4} \right\} + i \sin \left\{ \frac{\pi + 2(2)\pi}{4} \right\} \right]$$

$$= \sqrt[4]{2} \left[\cos \left(\frac{5\pi}{4} \right) + i \sin \left(\frac{5\pi}{4} \right) \right]$$
$$= \sqrt[4]{2} \left(-\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right)$$
$$= -0.840896415 - i0.840896415$$

$$= -0.84 - i0.84$$
 (to 2s. f.)

$$\Rightarrow Z_3 = \sqrt[4]{2} \left[\cos \left\{ \frac{\pi + 2(3)\pi}{4} \right\} + i \sin \left\{ \frac{\pi + 2(3)\pi}{4} \right\} \right]$$

$$= \sqrt[4]{2} \left[\cos \left(\frac{7\pi}{4} \right) + i \sin \left(\frac{7\pi}{4} \right) \right]$$

$$= \sqrt[4]{2} \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right)$$

$$= 0.840896415 - i0.840896415$$

$$= 0.84 - i0.84 \text{ (to } 2s.f. \text{)}$$

ALSO:

$$z^4 = 3$$

$$Z_k = \sqrt[n]{r} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right]$$
 where $k = 0,1,2$ and 3

$$\Rightarrow Z_k = \sqrt[4]{3} \left[\cos \left(\frac{2k\pi}{4} \right) + i \sin \left(\frac{2k\pi}{4} \right) \right]$$
 where $k = 0,1,2$ and 3

$$\Rightarrow Z_0 = \sqrt[4]{3} \left[\cos \left\{ \frac{2(0)\pi}{4} \right\} + i \sin \left\{ \frac{2(0)\pi}{4} \right\} \right]$$

$$= \sqrt[4]{3}[\cos(0) + i\sin(0)]$$

$$=\sqrt[4]{3}(1)$$

$$= 1.316074013$$

$$= 1.3$$
 (to $2s.f.$)

$$\begin{split} \Rightarrow Z_1 &= \sqrt[4]{3} \left[\cos \left\{ \frac{2(1)\pi}{4} \right\} + i \sin \left\{ \frac{2(1)\pi}{4} \right\} \right] \\ &= \sqrt[4]{3} \left[\cos \left(\frac{\pi}{2} \right) + i \sin \left(\frac{\pi}{2} \right) \right] \end{split}$$

$$= \sqrt[4]{3}(i)$$

$$= 1.316074013i$$

$$= 1.3i$$
 (to 2s. f .)

$$\Rightarrow Z_2 = \sqrt[4]{3} \left[\cos \left\{ \frac{2(2)\pi}{4} \right\} + i \sin \left\{ \frac{2(2)\pi}{4} \right\} \right]$$

$$= \sqrt[4]{3}[\cos(\pi) + i\sin(\pi)]$$

$$=\sqrt[4]{3}(-1)$$

$$=-1.316074013$$

$$= -1.3$$
 (to 2s. f .)

$$\Rightarrow Z_3 = \sqrt[4]{3} \left[\cos \left\{ \frac{2(3)\pi}{4} \right\} + i \sin \left\{ \frac{2(3)\pi}{4} \right\} \right]$$

$$= \sqrt[4]{3} \left[\cos \left(\frac{3\pi}{2} \right) + i \sin \left(\frac{3\pi}{2} \right) \right]$$

$$=\sqrt[4]{3}(-i)$$

$$=-1.316074013i$$

$$= -1.3i$$
 (to 2s. f.)

PRACTICE QUESTIONS

Question 1

Solve the following equation $z^4 + 8 + i8\sqrt{3} = 0$, giving your answer in the form $r(\cos\theta + i\sin\theta)$

Question 2

Solve the following equations and express them in the form $re^{i\theta}$. Answers are in red.

a)
$$z^3 = 1 - i$$
 $\left[\sqrt[6]{2}e^{i\frac{(8k-1)\pi}{12}} for \ k = 1,2,3 \right]$

b)
$$z^8 = 1 - 3i \left[\sqrt[8]{2}e^{i\frac{(6k-1)\pi}{24}} for \ k = 1,2,3,...,8 \right]$$

c)
$$(z+1)^3 = 8i \left[2e^{i\frac{(4k-1)\pi}{6}} for \ k = 0,1,2 \right]$$

Question 3

- a) Use DeMoivre's theorem to show that $\cos 5\theta = \cos \theta (16\cos^4\theta 20\cos^2\theta = 5)$.
- b) By solving the equation $\cos 5\theta = 0$, deduce that $\cos^2 \theta \left(\frac{\pi}{10}\right) = \frac{5+\sqrt{5}}{2}$.
- c) Hence, or otherwise, write down the exact values of $cos^2\theta\left(\frac{3\pi}{10}\right)$, $cos^2\theta\left(\frac{7\pi}{10}\right)$ and $cos^2\theta\left(\frac{9\pi}{10}\right)$.

- a) Express 4-4i in the form $r(\cos\theta+i\sin\theta)$, where $r>0, -\pi<\theta<\pi$, where r and θ are exact values.
- b) Hence, or otherwise, solve the equation $z^5 = 4 4i$ leaving your answers in the form $z = Re^{-ik\pi}$, where R is the modulus of z and k is a rational number such that $-1 \le k \le 1$.
- c) Show on an Argand diagram the points representing your solution.

Question 5

Express $\frac{(\cos 3x + i\sin 3x)^2}{\cos x - i\sin x}$ in the form $\cos nx + i\sin nx$ where n is an integer to be found.

Question 6

Use DeMoivre's theorem to evaluate

a)
$$(1 - i)^6$$

b)
$$\frac{1}{\left(\frac{1}{2} - \frac{1}{2}\right)^{16}}$$

Question 7

- a) If $z = r(\cos\theta + i\sin\theta)$, use DeMoivre's theorem to show that $z^n + \frac{1}{z^n} = 2\cos n\theta$.
- b) Express $\left(z^2 + \frac{1}{z^2}\right)^3$ in term of $\cos 6\theta$ and $\cos 2\theta$.
- c) Hence, or otherwise, show that $cos^3 2\theta = acos 6\theta + bcos 2\theta$, where a and b are constants.
- d) Hence, or otherwise

$$\int_0^{\frac{\pi}{6}} \cos^3 2\theta \ d\theta = k\sqrt{3},$$

where k is a constant

e) Express $\frac{(\cos 3x + i\sin 3x)^2}{\cos -i\sin x}$ in the form $\cos nx + i\sin nx$ where n is an integer to be found.

Question 8

The region R in an argand diagram is satisfied by the inequalities $|z| \le 5$ and $|z| \le |z - 6|$. Draw an argand diagram and shade in the region R.

- a) Sketch in on the same Argand diagram:
 - (i) the locus of points representing |z 2| = |z 6 8i|,
 - (ii) the locus of points representing $arg(z-4-2i) \le 0$,

(iii) the locus of points representing $arg(z-4-2i) \le \frac{\pi}{2}$.

The region R in an argand diagram is satisfied by the inequalities |z-2|=|z-6-8i| and $arg(z-4-2i) \le \frac{\pi}{2}$.

b) On your sketch in part (a), identify, by shading the region R.

Question 10

- a) Find the solutions of the equation $z^6 1 = 0$. Hence, plot the answers on an Argand diagram.
- b) Sketch on an Argand diagram the locus of points satisfying both |z i| = |z + 1 + 2i| and $|z + 3i| \le 4$.

Question 11

- a) Express $sin3\theta$ in terms of powers of $sin\theta$.
- b) Find the fifth roots of unity in trigonometric form.
- c) Find the square roots of the complex number 15 + 8i in the form a + bi where a and b are real numbers.

Question 12

- a) Simplify $\frac{Z_1}{Z_2}$ where $Z_1 = 3 + 4i$ and $Z_2 = 1 2i$.
- b) Find $Z_1 Z_2$ if $Z_1 = 2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$ and $Z_2 = 3 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$
- c) Express $4(\sqrt{3} i)$ in the form $re^{i\theta}$ where r > 0 and $-\pi < \theta < \pi$.

- a) Express $\sin 5\theta$ in terms of powers of $\sin \theta$ and hence show that $\sin 5\theta 5\sin \theta = 16\sin^5\theta 20\sin^3\theta$.
- b) Find

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (16sin^5\theta - 20sin^3\theta)d\theta,$$

giving your answer in exact form.

Question 14

a) (i) Express
$$\frac{e^{\frac{\pi}{2}i}}{e^{\frac{\pi}{3}i}}$$
 in the form $a + ib$

- (ii) Hence find the sixth roots of a+ib, the complex number obtained above. Give your answer in the form $r(\cos\theta+i\sin\theta)$
- b) (i) Sketch on an argand diagram the locus of points of z where

$$|z - 1 - i| = |z + 2 + 3i|$$

(ii) Hence or otherwise state the Cartesian equation of this locus.

- a) The polynomial $2x^4 + x^3 + 17x^2 + 9x 9$ is denoted p(x).
 - (i) Show that 3i is a root of the equation p(x).
 - (ii) State the other complex root of the equation p(x) = 0.
 - (iii) Hence or otherwise find the other 2 roots of the equation p(x) = 0.
- b) Simplify $\frac{(1+i)^4}{(2-2i)^3}$ giving your answer in the form a+ib
- c) Use DeMoivre's theorem to show that

$$tan4\theta(1 - 6tan^2\theta + tan^4\theta) = 4tan\theta - 4tan^3\theta.$$

ZIMSEC PAST EXAMINATIONS QUESTIONS PAPER 1

ZIMSEC NOVEMBER 2003 SPECIMEN

a) Given that the imaginary part of Z is $-\frac{1}{2}$, where $Z = \frac{2-3i}{1-ai}$, find possible values of a.

[2]

- b) Given that $Z_1 = 1 + i\sqrt{3}$ and $Z_2 = \sqrt{3} + i$.
 - (i) Calculate the modulus and argument of Z_1 and Z_2 .
 - (ii) Hence plot on an Argand diagram Z_1Z_2 and $\frac{Z_1}{Z_2}$. [4]
- c) Given that $(a + ib)^2 = 8 + 6i$, find the values of a and b. [4]

ZIMSEC NOVEMBER 2003

Given that $z_1 = 1 + 3i$ and $z_2 = 3 + 2i$, find

(i)
$$|z_1|$$
, [1]

(ii)
$$arg z_2$$
, [1]

$$[2]$$

(iv)
$$\frac{z_1}{z_2}$$
, [2]

Show the complex numbers z_1 and z_2 on the same Argand diagram, clearly labelling $|z_1|$ and $arg\ z_2$.

ZIMSEC JUNE 2004

- a) Express $Z = \frac{2+i}{3-i}$ in modulus argument form. Hence find their simplest form the moduli and arguments of numbers:
 - (i) Z^2 ,

(ii)
$$\frac{1}{Z}$$

b) (i) Shade the area represented on an argand diagram by:

$$|Z - 1 + 2i| < 3$$
 [2]

(ii) Sketch the locus of Z if

$$arg(Z-1) - arg(Z+1) = \frac{\pi}{6},$$
 [3]

ZIMSEC NOVEMBER 2004

Given that Z = 4 - 2i, find

(i) |Z| and arg Z, [2]

(ii) $\frac{Z}{\bar{Z}}$ in the form a+bi, where \bar{Z} represents the conjugate Z and a and b are real numbers. [2]

ZIMSEC NOVEMBER 2005

The complex number z = 2 + 3i has a modulus k and argument \propto .

a) Determine the value k and \propto .

b) ω is the complex number z+3iz. Find ω in the form a+ib and hence represent ω on the Argand diagram. [3]

ZIMSEC JUNE 2006

- a) Express the complex number $z = \frac{6+4i}{1+5i}$ in the form a+ib. Hence find |z| and arg(z).
- b) Show by substitution that w = 2 3i is a root of the equation $w^2 4w + 13 = 0$.

ZIMSEC NOVEMEBER 2006

The complex number z = x + iy satisfies the equation $\frac{z}{z+2} = 2 - 1$.

Find the value of x and the value of y. [4]

ZIMSEC JUNE 2008

Given the complex number W = 2 - 3i,

evaluate

(i) iW,

(ii) W + iW.

Plot the points P, Q and R representing the complex numbers W, iW, W + iWrespectively on an Argand diagram. [2] Hence name the quadrilateral OPRQ, where O is the origin. [1] **ZIMSEC NOVEMBER 2008** A complex number z has modulus 8 and argument $\frac{3\pi}{4}$. State the modulus and argument of z^2 . [2] Using these values show the number z^2 on an Argand diagram, and hence express z^2 in the form a + bi. [2] **ZIMSEC JUNE 2009** The complex number p = 3 - 5i and it is given that q = 4ipa) State the relationship between (i) |p| and |q|, (ii) arg(p) and arg(q), [2] b) Given that r = p + q, find r in the form a + bi where a and b are real numbers. c) The points P, Q and R in an Argand diagram represent the complex numbers p, q and r respectively. (i) State the kind of quadrilateral that *OPRQ* is, where *O* is the origin. (ii) Find the area of OPRQ. [3] **ZIMSEC NOVEMBER 2009** The complex numbers z and w are given by -3 + 2i and w = 5 + 4i. Find

(i) |z|,

(ii) arg(z),

[1]

[2]

(iii) $\frac{z}{w}$ in the form a + ib where a and b are exact.

Hence represent $\frac{z}{w}$ in an Argand diagram.

[3]

ZIMSEC NOVEMBER 2010

Express $z = \frac{1+i}{3+4i}$ in the form a + bi, where a and b are real.

Hence or otherwise find |z| in the form $c\sqrt{d}$ where d is a prime number.

[2]

ZIMSEC JUNE 2011

It is given that $z_1 = 2 - 4i$ and $z_2 = 6 - 2i$.

a) Find $z_1 - z_2$ and $z_1 z_2$ in the form a + ib.

b) if $w = \frac{1}{z_1}$, obtain the exact values of the modulus and argument of w. [4]

ZIMSEC NOVEMBER 2011

a) The complex number u is such that (-1 + 3i)u = 5 - 3i.

Find

(i) the modulus of u,

(ii) the argument of u.

[4]

b) Given that complex number w is 2i.

Find in the form a + ib

(i) $\frac{u}{w}$,

(ii) uw.

ZIMSEC JUNE 2012

The complex number $w = \frac{4+3i}{3-2i}$.

a) Express w in the form x + iy where x and y are real.

[2]

- b) Find
 - (i) modulus of w,
 - (ii) argument of w.

[5]

ZIMSEC NOVEMBER 2012

A complex number z_1 has modulus 2 and is positioned as shown in the Argand diagram above.

- (i) State the principal argument of z_1 and write z_1 in the form a + ib where a and b are exact real numbers. [3]
- (ii) Find exactly in the form a + ib, the complex number w, given that

$$w = \frac{(-8\sqrt{3})i}{z_1}.$$

(iii)Show a sketch of w in an Argand diagram, labelling the modulus and argument values in your diagram. [3]

ZIMSEC JUNE 2013

Given that p = 5 + i and q = -2 + 3i,

- a) (i) show the complex numbers ip and p + q on an argand diagram,
 - (ii) describe the geometrical transformation which maps ip ont p.

[3]

- b) Find
 - (i) the modulus and argument of p,
 - (ii) pq,

$$(iii)\frac{p}{a}$$
.

[5]

ZIMSEC NOVEMBER 2013

If
$$Z_1 = -1 + i$$
 and $Z_2 = -1 - \sqrt{3}i$,

Find

(i) the modulus and argument of Z_2 .

[2]

(ii) (a) Z_1Z_2 ,

(b)
$$\frac{Z_1}{Z_2}$$
.

[4]

ZIMSEC JUNE 2014

Given that a = 2 + i and b = 1 + 3i,

- (i) show on a single argand diagram the complex numbers
 - 1. *ab*

2.
$$\frac{a}{b}$$
. [6]

(ii) find the modulus and argument of each case in (i)1 and (i)2. [4]

ZIMSEC NOVEMBER 2014

The complex number z satisfies the equation

$$z + 2\bar{z} = \frac{13}{-2+3i}$$

Find

(i)
$$z$$
 in the form $x + iy$, [3]

(ii) the modulus and argument of
$$\frac{1}{z}$$
. [4]

ZIMSEC JUNE 2015

The complex number w = 3 - 4i and u is such that $\frac{w}{u} = \frac{2}{13} + \frac{3}{13}i$

- a) Find
 - (i) u in the form x + iy
 - (ii) 1. |u|

2.
$$arg(u)$$
. [7]

b) Sketch u on an argand diagram showing clearly the |u| and arg(u). [2]

ZIMSEC NOVEMBER 2015

Two complex numbers z = x + iy and w = a + ib are such that

$$z + iw = 2$$
 and $iz + w = 2 + 3i$.

Find

(i) 1. z,

- (ii) the modulus of zw, [2]
- (iii) the argument $\frac{z}{w}$. [3]

ZIMSEC JUNE 2016

- (i) Express the complex number $w = 8 + \frac{4-1}{1+2i}$ in the form x + iy. [4]
- (ii) Hence, or otherwise, find
 - 1. |w| in the form $a\sqrt{b}$.
 - 2. argument of w. [6]

ZIMSEC JUNE 2017

The complex numbers z_1 and z_2 are such that $z_1 = 2 - 3i$ and $z_2 = 1 + 3i$.

a) Find

(i)
$$\frac{z_1}{z_2}$$
 in the form $x + iy$ [3]

(ii)
$$\left|\frac{z_1}{z_2}\right|$$
 [2]

(iii)arg
$$\left(\frac{z_1}{z_2}\right)$$
 [2]

b) Hence represent
$$\frac{z_1}{z_2}$$
 on a clearly labelled Argand diagram. [2]

ZIMSEC NOVEMEBR 2017

Given the complex numbers w = 1 + 2i and u = 3 - 1, find

a) in the form a + ib, where a and b are real numbers

(i)
$$u + w$$
 [1]

ZIMSEC JUNE 2018

The complex number $w = -2 + (2\sqrt{3})i$

Find

a)
$$|w|$$
 the modulus of w , [1]

b) the argument of the conjugate of
$$w$$
, [2]

c)
$$\frac{w+1}{w}$$
 in the form $x + iy$. [3]

ZIMSEC NOVEMBER 2019

A complex number is give by $=\frac{3+i}{2-i}$.

(a) Express
$$u$$
 in the form $a + ib$ where a and b are real numbers. [2]

(b) Find the modulus and argument of
$$u$$
. [2]

(c) Show the complex number
$$u$$
 on an Argand diagram. [1]

ZIMSEC PAST EXAMINATIONS QUESTIONS PAPER 2

ZIMSEC NOVEMBER 2019

- a) The equation $x^4 4x^3 + 3x^2 + 2x 6 = 0$ has a root 1 i. Find the other three roots. [6]
- b) The complex number \mathbf{z} satisfies the inequalities $2 < |\mathbf{z}| < 3$ and $\frac{\pi}{6} < \arg \mathbf{z} < \frac{\pi}{3}$. Sketch and shade on an Argand diagram the region represented by the inequalities.
- c) Solve the equation $z^4 8\sqrt{3} + 8i = 0$ giving your answers in the form a + ib, correct to 2 decimal places. [6]

ZIMSEC JUNE 2019

a) On a single diagram shade the region defined by the inequalities

$$\frac{\pi}{6} \le arg(z-4) \le \frac{\pi}{6} \text{ and } |z-4| \le 4.$$
 [3]

- b) Solve the equation $z^3 = -5 + 12i$. [6]
- c) Use DeMoivre's theorem to show that

$$sin\theta sin5\theta = 16sin^{6}\theta - 20sin^{4}\theta + 5sin^{2}\theta.$$
 [7]

ZIMSEC JUNE 2018

a) It is given that $(x + 2\sqrt{2})$ and $(x - 2\sqrt{2})$ are factor of the polynomial $f(x) = x^4 - 6x^3 + ax^2 + bx - 104$

- (i) Find the value of a and b. [5]
- (ii) Hence, or otherwise, find the roots of the equation f(x) = 0. [5]
- b) Find the real part of $\left(2 + \frac{1}{2}\right)^4$, giving your answer in exact form. [6]

ZIMSEC NOVEMBER 2017

- d) Find the value of $(2 + 2\sqrt{3}i)^4$ using the De Moivre's Theorem. [4]
- e) Express $\frac{\sin 6\theta}{4\sin \theta}$ in terms of $\cos \theta$. [6]

ZIMSEC JUNE 2017

a) Given that the complex numbers $W_1 = 1 + ix$ and $W_2 = x + iy$, where x and y are numbers, satisfy the equation $W_1 - W_2 = 3i$,

find the value of x and the value of y. [4]

b) Indicate by shading on a single Argand diagram the region in which both of the following inequalities are satisfied:

$$\frac{\pi}{4} \le \arg z \le \frac{\pi}{2}$$
$$|z - 3i| \le 3$$

[3]

- c) Use De-Moivres theorem to
 - (i) find the value of $\left(\cos\frac{1}{4}\pi + i\sin\frac{1}{4}\pi\right)^{12}$, [2]
 - (ii) Show that $\tan 4\theta = \frac{4tan\theta 4tan^3\theta}{1 6tan^2\theta + tan^4\theta}$. [2]

ZIMSEC NOVEMBER 2016

- a) Express in the form $r(\cos\theta + i\sin\theta)$, the roots of the equation $z^7 8 8i = 0$. [9]
- b) show $Arg(z+1) = \frac{\pi}{3}$ in an argand diagram. [2]

ZIMSEC NOVEMBER 2015

- (a) Is $z_1 = 3 + i$, $z_2 = -3 4i$ and $z_3 = x + iy$, sketch the locus of points $z_1 = 3 + P(x; y)$ on the Argand diagram for which $|z z_1| = |z_2|$. [3]
- (b) Hence, from (a) write down the number z corresponding to the point on the locus for which

(i) the imaginary part is i,

(ii)
$$\arg(z - z_1) = \frac{\pi}{2}$$
. [3]

(c) Given that $z = 3e^{-\frac{\pi i}{2}} + 4$,

find

(i) |z|,

(ii) arg(z). [3]

ZIMSEC JUNE 2015

- a) Given that $=\frac{5+i}{2+3i}$, find the fifth roots of z in the form $re^{i\theta}$. [8]
- b) Given that 1 + i is a root of the equation $z^3 + pz^2 + qz + 6 = 0$ where p and q are constants,

find

- 1. the other **two** roots.
- 2. the values of p and q.

ZIMSEC JUNE 2013

- (a) Using the substitution $w = z^4$, solve the equation $z^8 z^4 6 = 0$ where z is a complex number. [10]
- (b) The real part of the complex number $\frac{z+2}{z-2}$ is zero. Show that the locus of the point representing z in the Argand diagram plane is a circle centre (0,0) and radius 2. [4]
- (c) Sketch in an argand diagram the set of points representing all complex numbers z satisfying both the inequalities $|z-3-i| \le 4$ and $\frac{\pi}{3} \le \arg(z-4-2i) \le \frac{\pi}{2}$. [3]

ZIMSEC NOVEMBER 2012

(a) Simplify
$$\frac{(1+i)^4}{(2-2i)^3}$$
, giving your answer in the form $a+bi$. [4]

(b) (i) Simplify
$$\frac{\cos 3\theta + i\sin 3\theta}{\cos 2\theta - i\sin 2\theta}$$
, [2]

Tarakino N.P. (Trockers) ~ 0772978155/0717267175

- (ii) Use De Moivre's theorem to express $sin5\theta$ in terms of $sin\theta$. [6]
- (c) (i) Sketch an argand diagram of the locus of z where |z 1 i| = |z + 2 + 3i|
 - (ii) Hence or otherwise state the Cartesian equation of the locus. [5]

ZIMSEC NOVEMBER 2011

(a) Express in exponential form
$$\left(\frac{3}{5} + \frac{4i}{5}\right)^{20} - \left(\frac{3}{5} - \frac{4i}{5}\right)^{20}$$
. [5]

- (b) (i) Prove that $\tan 4\theta = \frac{4tan\theta 4tan^3\theta}{1 6tan^2\theta + tan^4\theta}$ based on DeMoivre's theorem.
 - (ii) Hence find the first four exact values of θ for which

$$tan^4\theta - 4tan^3\theta - 6tan^2\theta - 4tan\theta + 1 = 0.$$
 [10]

ZIMSEC NOVEMBER 2009

Given that
$$z = cos\theta + isin\theta$$
. Show that $z - \frac{1}{z} = 2isin\theta$. [3]

Hence express $sin^4\theta$ in terms of $cos^4\theta$ and $cos2\theta$ using De Moivre's theorem. [4]

a) Express
$$4(\sqrt{3}-i)$$
 in the form $re^{i\theta}$ where $r>0$ and $-\pi<\theta<\pi$. [3]

b) Given that
$$x_1 = 1 + 2i$$
 is a root of the equation $x^4 - 4x^3 - 6x^2 + 20x - 75 = 0$, find the other three roots. [5]

ZIMSEC NOVEMBER 2008

a) Find the modulus and argument of
$$\frac{(1+i)^5}{(1-i)^7}$$
 for $-\pi < argz < \pi$. [4]

b) Sketch in an Argand diagram the set of points representing all complex numbers z satisfying both of the inequalities.

$$|z - 2i| < 2 \quad and \quad |z - 2i| \le |z| \tag{3}$$

c) Use DeMoivre's theorem to express $sin5\theta$ in terms of $sin\theta$. [5]

ZIMSEC JUNE 2007

a) Illustrate on an Argand diagram the set of points representing the complex number z satisfying both

$$|z-1-2i| \le 3$$
 and $\arg(z-2-i) = \frac{3\pi}{4}$. [3]

- b) Given that $z = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$ and $w = \sqrt{3}\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$, find the modulus and argument of
 - [2]
 - (ii) $\frac{z}{w}$. [2]
- c) Given that $z = 1 + i\sqrt{3}$, prove that $z^{11} = 2^{10}(1 i\sqrt{3})$. [3]

ZIMSEC NOVEMBER 2006

- a) The equation $3z^3 10z^2 + 20z 16 = 0$ has $1 \sqrt{3}i$ as one of its roots.
 - (i) Find the other two roots. [5]
 - (ii) Sketch these roots in an Argand diagram. [2]
- b) Express $3\sqrt{3} 3i$ in the form $re^{i\theta}$. [3]

Hence find the 4th root of $3\sqrt{3} - 3i$, giving your answers correct to 2 decimal places. [5]

ZIMSEC NOVEMBER 2005

a) By using the substitution z = x + iy, show that the Cartesian equation of the circle representing the complex number z, where

|z+1| = 2|z-1|, can be expressed in the form $Ax^2 + Bx + Cy^2 + D = 0$, where A, B, C and D are integers. [3]

Sketch this circle on an Argand diagram. [3]

- b) Using De Moivre's theorem to express $cos6\theta$ in terms of powers of $cos\theta$. [6]
- c) Solve the equation $z^4 + 8 + i8\sqrt{3} = 0$ giving your answers in the form $r(\cos\theta + i\sin\theta).$ [8]

ZIMSEC NOVEMBER 2004

A complex number Z has modulus 8 and argument $\frac{\pi}{4}$. Another complex number W has modulus $\frac{1}{2}$ and argument $\frac{\pi}{8}$.

a) Write each of the complex numbers in the form a + ib.

(i)
$$ZW^4$$
, [6]

(ii)
$$\frac{Z^2}{W^2}$$
. [6]

b) Find the smallest value n such that $|W^n| < 0.01$. [3]

ZIMSEC JUNE 2004

- a) Use De Moivre's theorem to express $sin5\theta$ in terms of powers of $sin\theta$. [5]
- b) Given that $Z^4 = 8 i8\sqrt{3}$, find all possible values of Z giving your answers in the form a + ib with a and b correct to 2 decimal places. [7]
- c) Sketch on an Argand diagram the locus of Z, where

$$|Z+4|=|Z-4i|$$

[2]

Hence or otherwise state the Cartesian equation of the locus. [1]

ZIMSEC NOVEMBER 2003

a) Sketch the following locus on an Argand diagram

$$Arg\left(\frac{z-1}{z-4i}\right) = \frac{\pi}{3}$$

[4]

b) Express $\cos^5 \theta$ in terms of cosines of multiple angles.

[7]

c) Show that 2 + 3i is a root of the equation $z^3 - 3z^2 + 9z + 13 = 0$.

Hence find the other two roots. [6]

ASANTE SANA

******THERE IS A LIGHT AT THE END OF EVERY TUNNEL ******

ENJOY

Nyasha P. Tarakino (Trockers)

+263772978155/+263717267175

ntarakino@gmail.com