Web Developer Gera #3

Donnerstag, 7. November 2019

Über mich

- Johannes
- 34
- aus Gera
- Fachinformatiker f
 ür Systemintegration
- Bachelor Betriebliche IT-Systeme
- Master Informatik
- Arbeite seit mehreren Jahren als Webentwickler

Elsterkind GmbH

- Digitalagentur
- Online Marketing, Ads, Affiliate, Analytics, Webentwicklung...
- 2018 in Leipzig gegründet
- 10 Mitarbeiter + 6 Freelancer

Triple Stores, DBpedia & SPARQL

Thema

Disclaimer

Dieser Vortrag soll informativ sein und gegebenenfalls Interesse für das Thema wecken.

Ich bin darin kein Profi. Ich benutze das aktuell nicht produktiv. Ich verfolge nicht aktiv die Entwicklung der vorgestellten Techniken. ABER ich finde das Thema spannend.

Fragen werden nach bestem Wissen und Gewissen beantwortet.

Agenda

- Triple Store Datenbanken
- Projekt DBpedia
- Intro SPARQL mit Anwendungsbeispiel

Triple Stores

Triple Store

Wikipedia:

Ein Tripelspeicher oder RDF-Speicher (RDF = Resource Description Framework) ist eine speziell entwickelte Datenbank für das Speichern und Abrufen von Tripeln durch semantische Abfragen.

Triple:

 Datenentität, die aus Subjekt, Prädikat und Objekt besteht

Wer \rightarrow Hat \rightarrow Was

Aufbau eines Triples 1/2

- Subjekt:
 - Das Element, über das eine Aussage getroffen wird
- Prädikat:
 - Die Eigenschaft, über die eine Aussage getroffen wird
- Objekt:
 - Der Wert, den die Eigenschaft bekommt

Aufbau eines Triples

- Subjekt:
 - Beispiel: Das Kutscherhaus Gera
- Prädikat:
 - Beispiel: liegt am
- Objekt:
 - Beispiel: Mühlgraben

Aufbau eines Triples 2/2

- Die einzelnen Attribute werden mit URIs gekennzeichnet
 - URI = Uniform Resource Identifier
- Ähnlich zu URLs, aber muss nicht auf ein Webdokument zeigen
- Dienen zur weltweit eindeutigen Bezeichnung von Ressourcen
- Beispiel: http://gera.de/orte/Kutscherhaus

Aufbau eines Triples

- Subjekt:
 - Beispiel: Das Kutscherhaus Gera
 - URI: <http://gera.de/orte/Kutscherhaus>
- Prädikat:
 - Beispiel: liegt am
 - URI: <http://gera.de/geo/liegt_am>
- Objekt:
 - Beispiel: Mühlgraben
 - URI: <http://gera.de/gewässer/Mühlgraben>

RDF Graph

Ontologie

- Die Definition eines solchen Graphen, wird Ontologie bezeichnet
- Dies ähnelt einem Datenbankschema
 - Ort hat Longitude und Latitude als Literal
 - Ort hat Bürgermeister als Objekt
 - Bürgermeister hat Name als String
 - USW. USW.
- Auch können Regeln für diese Schemata festgelegt werden
 - Ort hat nur 1 Bürgermeister
 - Latitude und Longitude müssen Float sein
 - Es kann mehrere Orte geben

Notation

- Es gibt verschiedene Möglichkeiten Triple-Daten zu definieren
- Eine einfache Notation ist die Turtle Syntax

```
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix dbr: <http://dbpedia.org/resource/>.
@prefix dbp: <http://dbpedia.org/property/>.
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>.
dbr:Leipzig
                dbp:hasMayor
                                  dbr:Burkhard_Jung.
dbr:Leipzig
                rdfs:label
                                  "Leipzig"@de.
dbr:Leipzig
                                  "51.333332"^^xsd:float.
                geo:lat
dbr:Leipzig
                                  "12.383333"^^xsd:float.
                geo:long
```

Zusammenfassung

- Speicherung semantischer Daten
- Subjekt → Prädikat → Objekt
- Schema definiert Struktur
- Adressierung mit Hilfe von URIs
- Objekte können URIs oder Literale sein

DBpedia

Web Developer Gera 07.11.2019

DBpedia

- 2007 ins Leben gerufen
- Unter anderem von der Uni Leipzig
- Gemeinschaftsprojekt verschiedener Einrichtungen
- Ziel:
 - Wikipedia-Artikel nach den Konzepten von Linked
 Open Data für das Semantic Web transformieren

DBpedia

- Einfach gesagt:
 - Man nehme Wikipedia-Artikel und forme die Informationen so um, dass die Daten strukturiert und maschinenlesbar abgerufen werden können.

Web Developer Gera 07.11.2019

07.11.2019

Datenbasis

- Als Datenbasis dienen nicht die Fließtexte
- Ausgewertet werden:
 - Infoboxen, Tabellen, geographische
 Daten, Weblinks, etc.
- Die extrahierten Daten werden als RDF-Daten gespeichert
- Die RDF-Datenbank wird in längeren Abständen aus Wikipedia Daten neu erstellt

Deutsches DBpedia

- Projektseite: http://de.dbpedia.org/
- Deutsche Live-Datenbasis leider aktuell nicht verfügbar
- Vortrag vom 12.09.2019 14th DBpedia Community Meeting
 - "The Return of German DBpedia"
 - Man will wieder aktiv(er) an dem Projekt arbeiten
 - Verbesserung der deutschen Extraktionsdaten
 - Suche nach aktiven Mitgliedern/Unterstützung
 - Deutsches Wikipedia ist das 4. größte weltweit

DBpedia Datenbasis (2016-10 de)

Anzahl von Triplen	104.989.619
Anzahl von Entitäten (owl:Thing)	1.374.894
Anzahl von Personen (dbo:person)	627.264
Anzahl von Organisationen (dbo:organizations)	62.054
Anzahl von Orten (dbo:locations)	406.943
Mapped Templates	17,48 %
Mapped Properties	7,21 %

SPARQL

SPARQL

- Wikipedia:
 - SPARQL ist eine graphenbasierte Abfragesprache für RDF. Der Name ist ein rekursives Akronym für SPARQL Protocol and RDF Query Language.
- 2008 W3C-Standard
- Grobe Struktur ähnlich SQL

Arten von SPARQL Anfragen

SELECT

Gibt eine Tabelle mit Daten aus, die die Bedingungen erfüllen

CONSTRUCT

Wie SELECT, nur setzt Daten in neuer Form zusammen

DESCRIBE

Gibt alle Anweisungen im Datensatz aus

ASK

Prüft, ob es Daten gibt, die einem SELECT entsprechen

Struktur

- PREFIX
 - Definitionen von Präfixen, die in der Anfrage benutzt werden (ähnlich Namespaces)
- SELECT/...
 - Anfragetyp, was gesucht wird
- WHERE
 - Filter der Anfrage
- Dazu noch:
 - FILTER, ORDER, LIMIT, OFFSET, ...

- Einfaches Anwendungsbeispiel
- Nachvollziehbar auf http://dbpedia.org/sparql/
 - Einfach Query Text einfügen und "Run Query" ausführen
- Hinweis:
 - Die genutzten Prefixe sind vordefinierte Prefixe für die genutzte Ontologie. Daher müssen die hier nicht explizit definiert werden

```
SELECT ?person
WHERE {
  ?person dbo:birthPlace dbr:Gera .
LIMIT 10
```

person

http://dbpedia.org/resource/Max_Frankel

http://dbpedia.org/resource/Konrad_Weise

http://dbpedia.org/resource/Tina_Liebig

http://dbpedia.org/resource/Thomas Blaschek

http://dbpedia.org/resource/Jürgen_Simon

http://dbpedia.org/resource/Erik Balnuweit

http://dbpedia.org/resource/Prince Heinrich VIII Reuss of Köstritz

http://dbpedia.org/resource/Helga_Königsdorf

http://dbpedia.org/resource/Dietrich_Peltz

http://dbpedia.org/resource/Heike_Drechsler

Web Developer Gera 07.11.2019

SPARQL Beispiel

```
SELECT ?person
WHERE {
  ?person dbo:birthPlace dbr:Gera .
  ?person foaf:gender "female"@en .
LIMIT 10
```

person

http://dbpedia.org/resource/Tina_Liebig

http://dbpedia.org/resource/Helga_Königsdorf

http://dbpedia.org/resource/Heike_Drechsler

http://dbpedia.org/resource/Kathrin_Zimmermann

http://dbpedia.org/resource/Heidi_Eisenschmidt

http://dbpedia.org/resource/Marlies Göhr

http://dbpedia.org/resource/Margitta_Pufe

http://dbpedia.org/resource/Patricia_Polifka

http://dbpedia.org/resource/Karin_Hübner

http://dbpedia.org/resource/Bianca_Schmidt

```
SELECT ?person
WHERE {
  ?person dbo:birthPlace dbr:Gera .
   ?person foaf:gender "female"@en .
   MINUS {
        ?person dbo:deathDate ?deathDate .
LIMIT 10
```

person

http://dbpedia.org/resource/Tina_Liebig

http://dbpedia.org/resource/Heike_Drechsler

http://dbpedia.org/resource/Kathrin_Zimmermann

http://dbpedia.org/resource/Heidi_Eisenschmidt

http://dbpedia.org/resource/Marlies Göhr

http://dbpedia.org/resource/Margitta_Pufe

http://dbpedia.org/resource/Patricia_Polifka

http://dbpedia.org/resource/Bianca_Schmidt

http://dbpedia.org/resource/Sabrina_Schmutzler

<u> http://dbpedia.org/resource/Hanka_Kupfernagel</u>

```
SELECT ?person
WHERE {
  ?person dbo:birthPlace dbr:Gera .
  ?person foaf:gender "female"@en .
   ?person rdf:type dbo:Athlete.
   ?person dct:subject dbc:Olympic_athletes_of_East_Germany .
   MINUS {
        ?person dbo:deathDate ?deathDate .
LIMIT 10
```

Web Developer Gera 07.11.2019

SPARQL Beispiel

person

http://dbpedia.org/resource/Heike_Drechsler

http://dbpedia.org/resource/Margitta_Pufe

```
SELECT ?person, ?weight, ?height
WHERE {
  ?person dbo:birthPlace dbr:Gera .
   ?person foaf:gender "female"@en .
   ?person rdf:type dbo:Athlete.
   ?person dct:subject dbc:Olympic_athletes_of_East_Germany .
   ?person dbo:Person\/weight ?weight .
   ?person dbo:Person\/height ?height .
   MINUS {
        ?person dbo:deathDate ?deathDate .
 IMIT 10
```

Web Developer Gera 07.11.2019

SPARQL Beispiel

person	weight	height
http://dbpedia.org/resource/Heike_Drechsler	"68.0"^^ <http: datatype="" dbpedia.org="" kilogram=""></http:>	"181.0"^^ <http: centimetre="" datatype="" dbpedia.org=""></http:>
http://dbpedia.org/resource/Margitta_Pufe	"83.0"^^ <http: datatype="" dbpedia.org="" kilogram=""></http:>	"180.0"^^ <http: centimetre="" datatype="" dbpedia.org=""></http:>

Beispiel für semantische Suchmaschine

- Fragestellung:
 - "Wie groß ist Heike Drechsler?"

height

"181.0"^^<http://dbpedia.org/datatype/centimetre>

Beispiel für semantische Suchmaschine

- Fragestellung:
 - "Welche ist die größte Stadt Thüringens?"

```
SELECT ?city, ?population
WHERE {
    ?state rdfs:label "Thüringen"@de
    ?city dbo:federalState ?state
    ?city dbo:populationTotal ?population
} ORDER BY DESC(?population)
LIMIT 1
```

city	population
http://dbpedia.org/resource/Erfurt	"204880"^^ <http: 2001="" www.w3.org="" xmlschema#nonnegativeinteger=""></http:>

Web Developer Gera 07.11.2019

