PROJECT-CUSTOMER SEGMENTATION USING DATA SCIENCE PHASE 3

DATASET AND ITS EXPLANATION:

https://www.kaggle.com/datasets/kandij/mall-customers

This dataset we used for this project in phase 3. Below is explanation for the dataset

Customer segmentation is a crucial marketing and business strategy that involves dividing a customer base into distinct groups based on specific characteristics. Here's an explanation of some common variables often used in a customer segmentation dataset:

DEMOGRAPHIC VARIABLES:

Age: Segmenting customers by age can help target products and marketing messages to specific age groups. For example, products for children, teenagers, adults, or seniors may differ significantly.

Gender: Gender-based segmentation can be useful for businesses offering gender-specific products.

Income: Income-based segmentation can help target products and services to customers with different spending power.

Customer id: In customer segmentation, it's common to include a unique customer identifier, often referred to as "Customer ID" or "Customer Number," in the dataset.

Spending score: In customer segmentation, the "spending score" is often an essential feature used for clustering customers based on their spending behaviour

STEPS WE USED IN THIS PROJECT PHASE

IMPORT NECESSARY LIBRARIES

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import IsolationForest

LOAD THE DATASET

Loading a dataset for customer segmentation involves reading the data from an external source, such as a CSV file, a database, or an API, into your program or environment for further analysis and segmentation.

CSV File (Pandas in Python): If your dataset is in a CSV file, you can use the pd.read_csv() function from the Pandas library in Python to load the data into a DataFrame.

import pandas as pd data = pd.read csv('your dataset.csv')

PREPROCESS THE DATASET

Here are some common preprocessing steps:

Data Exploration: Examine the dataset by checking its structure, the first few rows, data types, and summary statistics.

Handling missing values: You can use methods like data.fillna() to fill in missing data or data.dropna() to remove rows with missing values.

Encoding categorical features: If your dataset contains categorical variables, you can use one-hot encoding or label encoding to convert them into numeric values.

Standardizing numerical features: Standardization ensures that all numerical features have a mean of 0 and a standard deviation of 1.

Outlier Detection: Identify and handle outliers in your data.

CODE:

```
import pandas as pd

from sklearn.preprocessing import StandardScaler

data = pd.read_csv("D:\IBM project\Mall_Customers.csv")

print(data.head())

print(data.info())

data.fillna(data.mean(), inplace=True)

data = pd.get_dummies(data, columns=['Gender'], drop_first=True)

numerical_features = ['Age', 'Annual_Income_(k$)', 'Spending_Score']

scaler = StandardScaler()

data[numerical_features] = scaler.fit_transform(data[numerical_features])

X = data[['Age', 'Annual_Income_(k$)', 'Spending_Score']]

from sklearn.ensemble import IsolationForest

outlier_detector = IsolationForest(contamination=0.05)

data['IsOutlier'] = outlier_detector.fit_predict(X)

data = data[data['IsOutlier'] != -1]
```

OUTPUT:

Head data

	CustomerI	D Genre	Age	Annual_Income_(k\$)	Spending_Score
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

Info data

None