

- Simple data entry (over the phone)
- Dictation
- · Interactive conversation (understanding needed)
 - Information kiosks
 - Transactional processing
 - Intelligent agents

Parameters that Characterize the Capabilities of ASR Systems **Parameters** Range Speaking Mode: Isolated word to continuous speech Speaking Style: Read speech to spontaneous speech Enrollment: Speaker-dependent to speaker-independent Vocabulary: Small (<20 words) to large (>50,000 words) Finite-state to context-sensitive Language Model: Perplexity: Low (<10) to high (>200) SNR: High (>30dB) to low (<10dB) Transducer: Noise-canceling microphone to cell phone

Read versus Spontaneous Speech Filled and unfilled pauses: read, spontaneous Lengthened words: read, spontaneous False starts: read, spontaneous

Speech Recognition: Where Are We Now?

- · High performance, speaker-independent speech recognition is now possible
 - Large vocabulary (for cooperative speakers in benign environments)
 - Moderate vocabulary (for spontaneous speech over the phone)
- · Commercial recognition systems are now available
 - Dictation (e.g., IBM, Microsoft, Nuance, etc.)
 - Telephone transactions (e.g., AT&T, Nuance, VST, etc.) 🐗 🐗
- · When well-matched to applications, technology is able to help perform real work
- Demos:
 - Speaker-independent, medium-vocabulary, small footprint ASR
 - Dynamic vocabulary speech recognition with constrained grammar (http://web.sls.csail.mit.edu/city)
 - Academic spoken lecture transcription and retrieval (http://web.sls.csail.mit.edu/lectures)

video

The Importance of Data

- · We need data for analysis, modeling, training, and evaluation
 - "There is no data like more data"
- · However, we need to have the right kind of data
 - From real users
 - Solving real problems
- Conduct research within the context of real application domains
 - Forces us to confront critical technical issues (e.g., rejection, new word
 - Provides a rich and continuing source of useful data
 - Demonstrates the usefulness of the technology
 - Facilitates technology transfer

Important Lessons Learned • Statistical modeling and data-driven approaches have proved to be powerful • Research infrastructure is crucial: - Large amounts of linguistic data - Evaluation methodologies • Availability and affordability of computing power lead to shorter technology development cycles and real-time systems • Performance-driven paradigm accelerates technology development • Interdisciplinary collaboration produces enhanced capabilities (e.g., spoken language understanding)

	before mid 70's	mid 70's - mid 80's	after mid 80's
Recognition Units:	whole-word and sub-word units	sub-word units	sub-word units
Modeling Approaches:	heuristic and ad hoc	template matching	mathematical and formal
	rule-based and declarative	deterministic and data-driven	probabilistic and data-drive
Knowledge Representation:	heterogeneous and complex	homogeneous and simple	homogeneous and simple
Knowledge Acquisition:	intense knowledge engineering	embedded in simple structure	automatic learning

But We Are Far from Done!					
Corpus	Speech Type	Lexicon Size	Word Error Rate (%)	Human Error Rate (%) *	
Digit Strings (phone)	spontaneous	10	0.3	0.009	
Resource Management	read	1000	3.6	0.1	
ATIS	spontaneous	2000	2		
Wall Street Journal	read	~20K	6.6	1	
Broadcast News	mixed	~64K	9.4		
Switchboard (phone)	conversation	~25K	13.1	4	
Meetings	conversation	~25K	30		
* Lippmann, 1997 Automatic Speech Recognitie					

Finite-State Transducers

- Most speech recognition constraints and results can be represented as finite-state automata:
 - Language models (e.g., n-grams and word networks)
 - Lexicons
 - Phonological rules
 - N-best lists
 - Word graphs
 - Recognition paths
- · Common representation and algorithms desirable
- Powerful algorithms can be employed throughout system
- Flexibility to combine or factor in unforeseen ways
- · Finite-state transducers (FSTs) are effective for defining weighted relationships between regular languages
 - Extend FSAs by enabling transduction between input and output strings
 - Pioneered by researchers at AT&T for use in speech recognition

Speech Recognition as Cascade of FSTs

· Cascade of FSTs

Oo(MoPoLoG)

- G: language model $(weighted\ words \leftarrow words)$ $(phonemes \leftarrow words)$ - L: lexicon - P: phonological rule application (phones ← phonemes) - M: model topology (e.g., HMM) (states ← phones)

- O: observations with acoustic model scores

- (M o P o L o G) is single FST seen by search
- Search performs composition of O with (M o P o L o G)
- · Gives great flexibility in how components are combined

MIT

Related Areas of Research

- · Speech understanding and spoken dialogue
- Multimodal interaction
- Audio-visual analysis (e.g., AVSR)
- · Spoken document retrieval
- · Speaker identification and verification
- Paralinguistic analysis (e.g., emotion)
- Acoustic scene analysis (e.g., CASA)
- ...

ntelligent Multimodal Interfaces (6.870)

utomatic Speech Recognition