

Redhat ©CP Migration

From 3.x to 4.x

Why

- OCP 3.9 reached EOL 1 Year back
 - Security risk
 - Redhat doesn't provide security patches anymore for this version
- Outdated K8s version
 - OCP 3.9 based on K8s 1.9 (current version 1.26)
 - Outdated K8s API versions
- Bring the infrastructure to state-of-the-art

OCP 3.x vs OCP 4.x

Difference:

- Installation
- Architecture
- Maintenance

OPENSHIFT 4

OCP 4.x

Red Hat CoreOS (RHCOS)

 Immutable, lower footprint, optimized for running containers and managing Kubernetes clusters at scale

Operator-based management

- In OCP 3.x, the cluster is upgraded by running Ansible playbooks
- In OCP 4.x, the cluster manages its own updates, including updates to RHCOS on cluster nodes

Automated installation and day-2 Operations

Makes it easier to administrate and upgrade

Redhat OCP 4.x platform

Migration

Plan

- PoC -> Non-prod -> Prod
- Cutover from 3.x to 4.x
- Validation (Functional tests, performance tests, e2e tests with sonobuoy)
- Decommission of the old Cluster

Migration requirements

- Stable and reliable OCP 4.x using WMware vSphere on-Premises DC
- Ensure Platform stays in Redhat Supported version
- Migrate workloads from 3.x to 4.x with Kubernetes API conformance
- Business process continuity while supporting & enabling migration

Post migration

- Improve experience for Developers/SRE for application operations with GitOps
- Improve security posture of application operations

OCP 4.x Installation

HA control plane

Minimum of 3 master nodes (Raft Consensus Algorithm)

Load balancing with Metallb

Adds a fault-tolerant external IP address for the K8s services

Cluster autoscaler

 Automatically adjusts the size of a Kubernetes Cluster so that all pods have a place to run and there are no unneeded nodes.

Multicluster

- Prod
- Staging
- Dev

MultiCluster

- Dev Cluster
 - Contains development builds, workloads and CI/CD
- Prod Cluster
 - Where applications are securely deployed and monitored
- Staging Clusters
 - Replicates the Prod and dev Cluster
 - Used to test changes/ regular upgrades without impacting the production to ensure that the cluster is running the latest features and bug fixes
 - Could be immutable to save costs

MultiCluster Pros & Cons

- + Better isolation for security
- Testing upgrades without impacting prod
- + Separation of workloads (Dev cluster heavy daily developer builds)
- Control plane overhead (CP pro Cluster)
- Maintenance & Administration overhead

MultiCluster/MultiCloud with Hypershift

- K8s in K8s
 - Control Plain as pods
- Decoupled Control Plane and Workload Clusters
 - Deploy worker nodes across cloud providers
 - Upgrade Management Cluster und Workload Clusters separately
- Centralized management
 - Centralized Logging and monitoring
 - Centralized Image registry
 - 0 ...
- Migrating existing Cluster to Hypershift hosted cluster will not be supported
 - Workload migration
- Still in Tech preview!

MultiCluster/MultiCloud with Hypershift

Standalone OpenShift

Low CAPEX and OPEX costs (bundling of CPs + CP as pods)

\$

Central Management of CPs (easy operation & maintenance)

Multi-arch support

(e.g. CP x86, workers

HyperShift

Network & Trust segmentation Mixed laas For CP and Workers Fast cluster bootstrapping (CP as Pods)

Workload migration from 3.x to 4.x

- Two different types of workloads
 - Stateless workloads
 - Stateful workloads
- Stateless workloads with Helm
 - Convert existing manifest into Helm charts
 - Use https://github.com/google/shifter to convert Openshift manifests into K8s conform manifests
 - A.k.
 - Templates -> Deployment, Helm Chart
 - DeploymentConfigs -> Deployment
 - ..
 - Write Helm chart templates using the K8s manifests
- Stateful workloads using Redhat Migration Toolkit for containers
 - Migrate the PVCs using Direct Volume Migration
 - Migrate the manifests similar to the stateless workloads section with Helm
 - Make sure to attach the PVCs to the corresponding Stateful sets/Deployments
- Why Helm?
 - Versioning
 - Reusability of charts across multiple environments
 - Release Rollbacks
- Blue / Green deployments to eliminate downtime during migration

GitOps for developers

- Two different repositories for application and Helm charts
- Red Hat OpenShift Pipelines (Tekton) for CI
 - Push based
 - Code testing
 - Build the dockerfiles and push the images to the registry
 - Update the Helm charts with the new image tag
- Red Hat OpenShift GitOps (ArgoCD) for CD
 - Pull based
 - Sync the state of the Helm chart to the corresponding K8s cluster

GitOps for SREs

Chicken or the egg

- Red Hat OpenShift Pipelines & Red Hat OpenShift Gitops
 - Can be used similarly as the developers for infrastructure applications on OCP
- Infrastructure Pipeline
 - Red Hat OpenShift Pipelines is a part of Red Hat OCP to provision the initial infrastructure on vSphere another pipeline is needed
- Terraform
 - Redhat provides Terraform modules to provision OCP 4 infrastructure on vSphere using openshift-installer

Securing Applications

- Securing the applications deployed is also about securing the supply chain
 - Not all applications are built in-house
- SBOM
 - ldentify and track all third-party components, in particular open source components
- Redhat Advanced Cluster Security (Stackrox)
 - o Integrates with every stage of container lifecycle: build, deploy and runtime
 - Build: Fails the CI builds when images matches the condition of the policy
 - Deploy: Blocks creation of deployments that match the conscious of the policy
 - Runtime: Kills pods that match the conditions of the policy
 - Manages network policies
 - secure access to and from applications
 - Vulnerability management
 - Scan Docker image layers for vulnerabilities
- Open Policy Agent
 - Enforce policies utilizing K8s validating and mutating admission controllers
 - E.g.
 - Prohibit {insecure registries, insecure capabilities}
 - Enforce {labeling, network policies}