Exploring U.S. Congressional Voting Behavior Using Bayesian Models

Ana Mateos Mata

January 2025

Introduction

- Machine learning revolutionizes political science.
- Study focuses on the voting behavior of the U.S. Congress.
- Uses 1984 U.S. Congressional Voting Records dataset.
- Goal: Analyze voting patterns and predict behavior using Bayesian models.

Dataset Overview

- Source: 1984 Congressional Voting Records dataset.
- Includes 435 members of Congress, 16 critical issues.
- Features voting outcomes: Yea, Nay, and Unknown.
- Party affiliation: Democrat (267) and Republican (168).

Software Used

- Python library: pgmpy.
- Tailored for probabilistic graphical models.
- Facilitates Bayesian Network construction and inference.
- Chosen for ease of integration and robust features.

Exploratory Data Analysis

- Class imbalance: Democrats overrepresented.
- Strong correlations: Key features like physician-fee-freeze and education-spending.
- Weak correlations: Features like water-project-cost-sharing.

Data Preprocessing

- Missing data: Less than 7% for most features.
- Strategy:
 - Abstentions treated as a separate category.
 - Maintains political context of abstentions.

Structure Planning

- Compared PC algorithm and Hill Climb Search.
- Evaluation metrics: BIC, K2, BDeu, Fisher's C, etc.
- Trade-off: Simplicity (PC) vs. complexity (K2).

	Score Method Model	Number of Edges	Log-Likelihood Scores	Correlation Scores	Fisher's C	k2	bdeu	bds	bic
0	BIC	17	-4348.815021	0.000000	0.000000e+00	-4.574580e+03	-4582.117516	-4.688169e+03	-4.649545e+03
1	K2	117	-2651.431347	0.000000	5.831104e-04	2.982926e+07	-7322.512028	-1.478398e+08	-2.615133e+08
2	BDeu	30	-4089.303682	0.000000	2.341967e-08	-4.498432e+03	-4479.501010	-4.614306e+03	-4.833534e+03
3	BDs	29	-4099.487793	0.000000	1.087064e-11	-4.492308e+03	-4492.758625	-4.610651e+03	-4.807266e+03
4	PC	9		0.092308	0.000000e+00	-5.310152e+03	-5325.158266	-5.425665e+03	-5.362571e+03

Figure: Evaluation of Model Structures

Model Evaluation

- K2: Highest log-likelihood (-2651.43) but more complex (117 edges).
- PC: Simpler model with 9 edges, better interpretability.
- Chose K2 for inference due to its better fit.

Parameter Training

- Conditional Probability Distributions (CPDs) estimated.
- Used MaximumLikelihoodEstimator.
- Parameters derived from the learned network structure.

	• • •		8								
CPU TOT Water-project-cost-sharing:											
Class		Class(republican)									
adoption-of-the-budget-resolution		adoption-of-the-budget-resolution(y)									
aid-to-nicaraguan-contras		aid-to-nicaraguan-contras(y)									
anti-satellite-test-ban		anti-satellite-test-ban(y)									
el-salvador-aid		el-salvador-aid(y)									
export-administration-act-south-africa		export-administration-act-south-africa(y)									
immigration		immigration(y)									
physician-fee-freeze		physician-fee-freeze(y)									
religious-groups-in-schools		religious-groups-in-schools(y)									
water-project-cost-sharing(n)		0.66666666666666									
water-project-cost-sharing(p)		0.0									
water-project-cost-sharing(y)		0.33333333333333									

Inference Results

- Prior probabilities: Democrat (61.38%), Republican (38.62%).
- Advanced queries reveal:
 - Impact of economic sanctions on missile defense.
 - Education spending linked to religious groups in schools.

Advanced Query Example

- Query: Probability of mx-missile given votes on economic sanctions.
- Result: Sanctions increase missile defense probability to 81.6%.

```
\begin{split} & \text{prob}_{m} x_{m} \textit{issile}_{g} \textit{iven}_{s} \textit{anctions} = \textit{infer.query}(\textit{variables} = ['\textit{mx} - \textit{missile'}], \\ & \text{evidence='export-administration-act-south-africa': 'y', 'duty-free-exports': 'y'}) \end{split}
```

Key Insights

- Bayesian Networks capture interdependencies between policies.
- Military policies influence social policy outcomes.
- K2 provides better fit but at the cost of complexity.
- PC is more interpretable, suited for causal insights.

Conclusion

- Bayesian models offer robust tools for analyzing voting behavior.
- Findings reveal how party affiliation and policies interact.
- Future work: Extend analysis to newer datasets or include additional policy features. Absent analysis, better comparison between models, K2 is the best?