

Technische Grundlagen der Informatik 2 Rechnerorganisation

Probeklausur

Prof. Dr. Ben Juurlink

Fachgebiet: Architektur eingebetteter Systeme
Institut für Technische Informatik und Mikroelektronik
Fak. IV – Elektrotechnik und Informatik

Aufgabe 1: MIPS Assemblersprache

 Übersetzen Sie die folgende Funktion nach MIPS – Assembler.
 Beachten Sie dabei die MIPS-Register Konventionen. Pseudo-Befehle dürfen verwendet werden.

```
void doit(int a[], int n)
{
   int i;

   for (i=0; i<n; i++)
      if (a[i]<0)
      a[i] = i;
}</pre>
```



```
void doit(int a[], int n)
{
   int i;

   for (i=0; i<n; i++)
      if (a[i]<0)
      a[i] = i;
}</pre>
```

```
doit:
```


Aufgabe 2: Zahlendarstellungen

• Stellen Sie die Zahl 10,25 in binärer Darstellung nach IEEE 754 mit einfacher Genauigkeit dar.

 Drei Programme (P1, P2 und P3) werden auf zwei verschiedenen Computern (M1 und M2) ausgeführt. Die folgende Tabelle zeigt die Ausführungszeiten beider Programme auf den beiden Computern.

	M1	M2
P1	1	10
P2	100	10
Р3	10	5

- a) Welches System ist schneller wenn die Ausführungszeit auf M1 normiert wird und der arithmetisch Mittelwert verwendet wird? Begründen Sie ihre Antwort.
- b) Welches System ist schneller wenn die Ausführungszeit auf M2 normiert wird und der arithmetisch Mittelwert verwendet wird? Begründen Sie ihre Antwort.
- c) Welches System ist schneller wenn der geometrische Mittelwert verwendet wird. Begründen Sie Ihre Antwort.

a) Welches System ist schneller wenn die Ausführungszeit auf M1 normiert wird und der arithmetische Mittelwert verwendet wird? Begründen Sie ihre Antwort.

VCI VVCI	<u>IGCL VVI</u>	IU: DUSI
	M1	M2
P1	1	10
P2	100	10
Р3	10	5

<u> Jen Jie iine And</u>	VV OI C.	
	M1	M2
P1		
P2		
Р3		
arithmetische Mittelwert		

?

b) Welches System ist schneller wenn die Ausführungszeit auf M2 normiert wird und der arithmetische Mittelwert verwendet wird? Begründen Sie ihre Antwort.

VCI VVCI	IGCL VVI	IG. DUSI
	M1	M2
P1	1	10
P2	100	10
Р3	10	5

ACH SIC IIII C AIIC	<u>vv Oi t.</u>	
	M1	M2
P1		
P2		
P3		
arithmetische Mittelwert		

7

c) Welches System ist schneller wenn der geometrische Mittelwert verwendet wird. Begründen Sie Ihre Antwort.

	M1	M2
P1		
P2		
P3		
geometrische Mittelwert		

	M1	M2
P1		
P2		
P3		
geometrische Mittelwert		

?

Aufgabe 4. Der Eintaktprozessor

- Wir möchten den Eintaktprozessor um den Befehl bne (branch not equal) erweitern.
 - Fügen Sie die erforderlichen Datenpfade und Steuersignale hinzu.
 - ➤ Geben Sie die Belegung aller Steuersignale an. Benutzen Sie Don't-cares, wenn möglich.

Loesung Teil 1

Loesung Teil 2

Instruction	RegDst	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite	Branch	ALUOp	BrNoEq
R-format	1	0	0	1	0	0	0	10	
lw	0	1	1	1	1	0	0	00	
sw	Х	1	Х	0	0	1	0	00	
beq	Х	0	Х	0	0	0	1	01	
bne									

Aufgabe 5. Pipelining

Gegeben ist der klassiche MIPS-Prozessor mit einer 5-Stufen-Pipeline (IF, ID, EX, MEM, WB), einer forwarding-Einheit, hazard detection und branch delay slot.

Aufgabe 5. Pipelining (cont'd)

Die folgende Tabelle zeigt die source/destination Register in der EX,
 MEM und WB Stufe (z.B. ID/EX.Rs ist die Abkürzung für ID/EX.RegisterRs). Vervollständigen Sie die Tabelle:

ID/EX.Rs	ID/EX.Rt	EX/MEM.Rd	EX/Mem.RegWrite	MEM/WB.Rd	MEM/WB.RegWrite	ForwardA	ForwardB
6	7	7	0	8	1		
6	7	6	1	7	1		
6	7	6	1	6	1		
6	0	0	1	6	0		

Aufgabe 6. Caches

- Der AMD Athlon 64 Prozessor Befehlscache auf erster Ebene hat folgende Eigenschaften:
 - Kapazität: 64 KB
 - 2-fach satzassoziativ
 - Blockgroesse: 64 Bytes
 - Adresslänge: 64 Bit
- Wie groß ist der Index und wie groß ist der Tag?
- Auf welchem Satz wird Byteadresse 64132 abgebildet? Geben Sie den Index an.