Problem Sheet 4 for the Tutorial, October 20. $_{\rm (Partial\ Derivatives.)}$

Problem 1. Find and sketch the domain for each function

- a) $f(x,y) = \ln(x^2 + y^2 4)$. b) $f(x,y) = \frac{1}{\ln(4 x^2 y^2)}$

Problem 2. Given a function $f(x,y) = e^{-(x^2+y^2)}$,

- (a) find the function's domain,
- (b) find the function's range,
- (c) describe the function's level curves,
- (d) find the boundary of the function's domain,
- (e) determine if the domain is an open region, a closed region, or neither, and
- (f) decide if the domain is bounded or unbounded.

Problem 3. Find an equation for and sketch the graph of the level curve of the function $f(x,y) = \frac{2y-x}{x+y+1}$ that passes through the point (-1,1).

Problem 4. Show that the limits do not exist

a)

$$\lim_{(x,y)\to(1,1)} \frac{xy^2 - 1}{y - 1}$$

b)

$$\lim_{(x,y)\to(0,1)} \frac{x \ln y}{x^2 + (\ln y)^2}$$

Problem 5. At what points (x, y, z) in space is the functions continuous

- a) $f(x, y, z) = \ln(xyz)$,
- b) $f(x, y, z) = e^{x+y} \cos z$?