Acids & Bases

Revision: Reactions of acids & bases

```
Acid + Metal Hydroxide → Salt + Water
Acid + Metal Oxide → Salt + Water
Acid + Carbonate → Salt + Water + CO<sub>2</sub>
Acid + Hydrogen carbonate → Salt + Water + CO<sub>2</sub>
Acid + Reactive metal → Salt + Hydrogen gas
Base + Ammonium salt → Salt + Water + Ammonia gas
```

Arrhenius theory

Main principles:

- Acids produce H⁺ ions when dissolved in water
- Bases produce OH⁻ ions when dissolved in water
- Acids and bases neutralise each other: $H^+(aq) + OH^-(aq) \rightarrow H_2O(\ell)$

Ionisation / Dissociation equations

- Ionisation refers to a <u>covalent molecular substance</u> forming ions
 - HCℓ(aq) → H⁺(aq) + Cℓ⁻(aq)
 - $CH_3COOH(aq) \rightleftharpoons CH_3COO^{-}(aq) + H^{+}(aq)$
- Dissociation refers to the separation of ions from an ionic substance when dissolved in water
 - NaOH(s) \rightarrow Na⁺(aq) + OH⁻(aq)
 - Ba(OH)₂(s) \rightarrow Ba²⁺(aq) + 2 OH⁻(aq)

Arrhenius theory

Monoprotic acids:

Only contain one <u>ionisable</u> proton

Examples: HCl, HNO₃, CH₃COOH

Diprotic: H₂SO₄, H₂CO₃ Triprotic: H₃PO₄

Polyprotic acids:

- Contain multiple ionisable protons
- Each ionisation step can be shown separately... (successive ionisation)
 - $H_3PO_4(aq) \rightleftharpoons H^+(aq) + H_2PO_4^-(aq)$
 - $H_2PO_4^-(aq) \rightleftharpoons H^+(aq) + HPO_4^{2-}(aq)$
 - $HPO_4^{2-}(aq) \rightleftharpoons H^+(aq) + PO_4^{3-}(aq)$

...or summarised into a single equation

• $H_3PO_4(aq) \rightleftharpoons 3 H^+(aq) + PO_4^{3-}(aq)$

Arrhenius theory

Citric acid $(C_6H_8O_7)$ is a weak, triprotic acid.

Write a successive ionisation equations for citric acid.

$$C_6H_8O_7(aq) \rightleftharpoons C_6H_7O_7^{-1}(aq) + H^+(aq)$$

$$C_6H_7O_7^-(aq) \rightleftharpoons C_6H_6O_7^{2-}(aq) + H^+(aq)$$

$$C_6H_6O_7^{2-}(aq) \rightleftharpoons C_6H_5O_7^{3-}(aq) + H^+(aq)$$

Monoprotic & Polyprotic acids

Determining whether acids are monoprotic or polyprotic:

Affects how many moles of acid are needed to neutralise a base.

<u>Equation</u>	Moles NaOH	Moles acid needed
NaOH + HCℓ → NaCℓ + H ₂ O	1.00 mol	1.00 mol
2 NaOH + H_2SO_4 \rightarrow Na $_2SO_4$ + 2 H_2O	1.00 mol	0.50 mol
$3 \text{ NaOH} + \text{H}_3 \text{PO}_4 \rightarrow \text{Na}_3 \text{PO}_4 + 3 \text{H}_2 \text{O}$	1.00 mol	0.33 mol

How could you <u>experimentally</u> determine whether an acid is monoprotic, diprotic or triprotic? What equipment and chemicals would you need?

Strong vs Weak

Strong acids fully ionise in solution.

Weak acids only partially ionise in solution. They exist in equilibrium with molecules.

Example:

HA is a strong acid...

$$HA(aq) \rightarrow H^{+}(aq) + A^{-}(aq)$$

HB is a weak acid...

$$HB(aq) \rightleftharpoons H^+(aq) + B^-(aq)$$

Strong vs Weak

Common acids:

Strong acids		Weak acids		
Hydrochloric acid	нс€	Ethanoic acid	CH₃COOH	
Nitric acid	HNO ₃	Carbonic acid	H ₂ CO ₃	
Sulfuric acid *	H ₂ SO ₄	Phosphoric acid	H ₃ PO ₄	
		Hydrofluoric acid	HF	
		Sulfurous acid	H ₂ SO ₃	

$$H_2SO_4(aq) \rightarrow H^+(aq) + HSO_4^-(aq)$$

 $HSO_4^-(aq) \rightleftharpoons H^+(aq) + SO_4^{2-}(aq)$

^{*} Note: Only the <u>first</u> ionisation of sulfuric acid is strong. The second ionisation is weak.

Strong vs Weak

Common bases:

Strong bases		Weak bases	
Metal hydroxides. e.g.	NaOH	Ammonia	NH ₃
	КОН	Methylamine	CH ₃ NH ₂
	Ba(OH) ₂	Carbonate ion	CO ₃ ²⁻

Evidence of Arrhenius Theory

Conductivity:

Solutions can be classified as:

Strong electrolytes (conduct electricity well)

Weak electrolytes (conduct electricity poorly)

Non-electrolytes (do not conduct electricity)

- Conduction of electricity is related to presence of mobile charged particles (e.g. individual ions)
- All solutions of acids and bases conduct electricity,
 all solutions of acids and bases contain free ions

Evidence of Arrhenius Theory

Electrical conductivity as KOH is added to 5 mol of HNO₃ solution

For the graph to the left:

 With the aid of an equation, explain why the solution of HNO₃ conducts electricity

 With the aid of an equation, explain why electrical conductivity decreases as KOH is added

 Explain why the electrical conductivity reaches a minimum after 5 moles of KOH is added, then increases again

Evidence of Arrhenius Theory

Electrical conductivity as Ba(OH)₂ is added to 5 mol of H₂SO₄ solution

For the graph to the left:

Using equations, explain the shape of the graph.

Problems with Arrhenius theory

* Some substances such as ammonia (NH₃) and sodium carbonate (Na₂CO₃) were known to be basic, but didn't contain OH in their formula.

Some scientists argued that Arrhenius theory was still valid, because these substances could react with water to form OH⁻ ions.

$$NH_3(aq) + H_2O(\ell) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

 $CO_3^{2-}(aq) + H_2O(\ell) \rightleftharpoons HCO_3^-(aq) + OH^-(aq)$

However, pure gaseous ammonia reacts with HCl even when there is no water present.

Problems with Arrhenius theory

* According to Arrhenius theory, acids and bases should produce neutral solutions, because the H⁺ ions will react with the OH⁻ ions to produce water.

```
• e.g. HC\ell(aq) + NaOH(aq) \rightarrow NaC\ell(aq) + H_2O(\ell)
```

NaCℓ(aq) is neutral ✓

However some acid-base reactions produce basic solutions

```
• e.g. CH_3COOH(aq) + NaOH(aq) \rightarrow NaCH_3COO(aq) + H_2O(\ell) NaCH_3COO(aq) is basic, not neutral
```

And some acid-base reactions produce acidic solutions

• e.g.
$$HC\ell(aq) + NH_3(aq) \rightarrow NH_4C\ell(aq)$$

 $NH_4C\ell(aq)$ is acidic, not neutral

Problems with Arrhenius theory

* H⁺ represents an individual proton.

In reality, $H^+(aq)$ would be too unstable to exist in solution for significant amounts of time. It would quickly react with water to form **hydronium ion** (H_3O^+).

$$H^+(aq) + H_2O(\ell) \rightarrow H_3O^+(aq)$$

Definitions:

- Acids are substances that donate one or more protons
- Bases are substances that accept one or more protons

('proton donors')

('proton acceptors')

Definitions:

- Acids are substances that donate one or more protons
- Bases are substances that accept one or more protons

('proton donors')
('proton acceptors')

HCℓ donates a proton
∴ HCℓ acts as an acid

NH₃ accepts a proton ∴ NH₃ acts as a base

Definitions:

- Acids are substances that donate one or more protons
- Bases are substances that accept one or more protons

('proton donors')
('proton acceptors')

Definitions:

- Acids are substances that donate one or more protons
- Bases are substances that accept one or more protons

('proton donors')
('proton acceptors')

HCℓ donates a proton
∴ HCℓ acts as an acid

OH⁻ accepts a proton
∴ OH⁻ acts as a base

Acids and bases in aqueous solutions:

Brønsted-Lowry theory also applies to acids and bases dissolving in water to form an aqueous solution. Water will either accept to proton to form $H_3O^+(aq)$ or donate a proton to form $OH^-(aq)$.

Acids and bases in aqueous solutions:

Brønsted-Lowry theory also applies to acids and bases dissolving in water to form an aqueous solution. Water will either accept to proton to form $H_3O^+(aq)$ or donate a proton to form $OH^-(aq)$.

HCℓ donates a proton
∴ HCℓ acts as an acid

H₂O **accepts** a proton ∴ H₂O acts as a **base**

Acids and bases in aqueous solutions:

Brønsted-Lowry theory also applies to acids and bases dissolving in water to form an aqueous solution. Water will either accept to proton to form $H_3O^+(aq)$ or donate a proton to form $OH^-(aq)$.

Acids and bases in aqueous solutions:

Brønsted-Lowry theory also applies to acids and bases dissolving in water to form an aqueous solution. Water will either accept to proton to form $H_3O^+(aq)$ or donate a proton to form $OH^-(aq)$.

NH₃ accepts a proton ∴ NH₃ acts as a base H₂O **donates** a proton ∴ H₂O acts as an **acid**

$$HC\ell(aq) + H_2O(\ell) \rightarrow H_3O^+(aq) + C\ell^-(aq)$$
 $NH_3(aq) + H_2O(\ell) \rightarrow NH_4^+(aq) + OH^-(aq)$

Base (Proton acceptor) (Proton donor)

Substances which can either accept or donate protons such as water are called **amphiprotic** or **amphoteric**.

IMPORTANT! This affects how we write ionisation equations for acids.

Arrhenius theory: $\rightarrow H^+(aq) + C\ell^-(aq)$

Brønsted-Lowry theory: $HC\ell(g) + H_2O(\ell) \rightarrow H_3O^+(aq) + C\ell^-(aq)$

Question:

- Write an ionisation equation using Arrhenius theory
 Write an ionisation equation using Brønsted-Lowry theory

	Arrhenius theory:	
Nitric acid	Brønsted-Lowry theory:	_
]
	Arrhenius theory:	
Hydrofluoric acid	Brønsted-Lowry theory:	
		J
Carbonate ion	Brønsted-Lowry theory:	
(weak base)		
Methylamine (CH ₃ NH ₂)	Brønsted-Lowry theory:	
(weak base)		

Identify the Brønsted-Lowry acids and bases. Show reasoning.

$$HSO_4^{-1}(aq) + HCO_3^{-1}(aq) \rightarrow SO_4^{2-1}(aq) + H_2CO_3(aq)$$

$$C_6H_5O^{-}(aq) + NH_3(aq) \rightarrow C_6H_5OH(aq) + NH_2^{-}(aq)$$

Recall that ammonia is a weak base, hence its ionisation is a reversible reaction.

How would you classify:

Ammonia (NH₃)

Water (H₂O)

Ammonium (NH₄⁺)

Hydroxide (OH-)

Recall that ammonia is a weak base, hence its ionisation is a reversible reaction.

Reaction between acetic acid and sodium carbonate:

How would you classify:

Ethanoic acid (CH₃COOH)

Carbonate ion (CO₃²⁻)

Ethanoate ion (CH₃COO⁻)

Hydrogencarbonate (HCO₃-)

Reaction between acetic acid and sodium carbonate:

In a reversible reaction:

- The species produced from a **weak acid** will be **basic**
- The species produced from a weak base will be acidic

These groups are referred to as conjugate acid-base pairs

For the above equation it can also be said that:

- NO₂⁻ is the conjugate base of HNO₂
- HNO₂ is the conjugate acid of NO₂⁻

H₂O is the conjugate base of H₃O⁺ H₃O⁺ is the conjugate acid of H₂O

An acid and its conjugate base will only differ in formula by one H⁺ ion.

Brønsted-Lowry Review Questions

Chemical equilibrium

Consider a solution of ethanoic acid in equilibrium:

$$CH_3COOH(aq) + H_2O(\ell) \rightleftharpoons CH_3COO^{-}(aq) + H_3O^{+}(aq)$$

This solution would be in chemical equilibrium, therefore we can apply principles from the equilibrium topic.

- While in equilibrium, the rate of forward and reverse reactions would be equal
- While in equilibrium, the concentration of all species would remain constant
- Changing the concentration of a species would affect equilibrium.
 e.g. according to Le Châtelier's Principle, removing H₃O⁺ would cause reaction to shift to the right

Chemical equilibrium

As with other systems, we can write **equilibrium constant expressions** to show the relative concentrations of species at equilibrium.

For the ionisation of an acid, this value is called the acid dissociation constant (K_a).

$$CH_{3}COOH(aq) + H_{2}O(\ell) \rightleftharpoons CH_{3}COO^{-}(aq) + H_{3}O^{+}(aq) \qquad K_{a} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH]} = 1.8 \times 10^{-5}$$

HF(aq) + H₂O(ℓ)
$$\rightleftharpoons$$
 F⁻(aq) + H₃O⁺(aq) $K_a = -------------= 7.2 \times 10^{-4}$

Equilibrium constants

$$CH_3COOH(aq) + H_2O(\ell) \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq)$$

$$K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]} = 1.8 \times 10^{-5}$$

$$HF(aq) + H_2O(\ell) \rightleftharpoons F^-(aq) + H_3O^+(aq)$$

$$K_a = \frac{[F^-][H_3O^+]}{[HF]} = 7.2 \times 10^{-4}$$

Q: What does the size of the acid dissociation constant (K_a) for CH₃COOH indicate?

Q: What do the K_a vales of CH₃COOH and HF indicate about their *relative* strengths?

	Name of Acid	Acid		Base	K_a
4	Perchloric	HC1O ₄	\rightarrow	H ⁺ + ClO ₄ ⁻	very large
2	Hydriodic	HI	\rightarrow	H ⁺ + I ⁻	very large
STRONG	Hydrobromic	HBr	\rightarrow	H+ + Br	very large
S	Hydrochloric	HC1	\rightarrow	H++Cl	very large
	Nitric	HNO ₃	\rightarrow	H ⁺ + NO ₃	very large
	Sulphuric	H ₂ SO ₄	\rightarrow	H+ + HSO ₄ -	very large
	Hydronium Ion				
	Iodic	HIO ₃	\rightleftharpoons	H ⁺ + IO ₃ ⁻	1.7×10^{-1}
	Oxalic	H ₂ C ₂ O ₄	\rightleftarrows	H+ + HC ₂ O ₄	5.9×10^{-2}
	Sulphurous (SO ₂ + H ₂ O)				
	Hydrogen sulphate ion	HSO ₄ -	\rightleftarrows	H+ + SO ₄ 2	1.2×10^{-2}
	Phosphoric	H ₃ PO ₄	\rightleftarrows	$H^+ + H_2PO_4^-$	7.5×10^{-3}
	Hexaaquoiron ion, iron(III) ion	Fe(H ₂ O) ₆ 3+	\rightleftarrows	$H^+ + Fe(H_2O)_5(OH)^{2+}$	6.0×10^{-3}
	Citric	H ₃ C ₆ H ₅ O ₇	\rightleftharpoons	$H^+ + H_2C_6H_5O_7^-$	7.1×10^{-4}
	Nitrous	HNO ₂	\rightleftarrows	H+ + NO ₂ -	4.6×10^{-4}
8	Hydrofluoric	HF	\rightleftarrows	$H^+ + F^-$	3.5×10^{-4}
Ă	Methanoic, formic				
STRENGTH OF ACID	Hexaaquochromium ion, chromium(III) ion	$Cr(H_2O)_6^{3+}$	\rightleftarrows	$H^+ + Cr(H_2O)_5(OH)^{2+}$	1.5×10^{-4}
픋	Benzoic				
S	Hydrogen oxalate ion	HC ₂ O ₄	\rightleftarrows	$H^+ + C_2O_4^{2-}$	6.4×10^{-5}
#	Ethanoic, acetic	CH ₃ COOH	\rightleftarrows	H++CH ₃ COO-	1.8×10^{-5}
S	Dihydrogen citrate ion	H ₂ C ₆ H ₅ O ₇ -	\rightleftarrows	$H^+ + HC_6H_5O_7^{2-}$	1.7×10^{-5}
	Hexaaquoaluminum ion, aluminum ion	Al(H ₂ O) ₆ 3+	\rightleftarrows	$H^+ + Al(H_2O)_5(OH)^{2+}$	1.4×10^{-5}
	Carbonic (CO ₂ + H ₂ O)			그 사람이 그리고 사람들이 살아 살아왔다. 그렇게 살아 보고 있다면 하나 있다면 하다 없었다.	
	Monohydrogen citrate ion				
	Hydrogen sulphite ion	HSO ₃ -	$\stackrel{\textstyle o}{\leftarrow}$	H ⁺ + SO ₃ ²⁻	1.0×10^{-7}
	Hydrogen sulphide	H ₂ S	\rightleftarrows	H ⁺ + HS ⁻	9.1×10^{-8}
	Dihydrogen phosphate ion				
	Boric				
	Ammonium ion				
	Hydrocyanic				
	Phenol		\rightleftarrows	$H^+ + C_6 H_5 O^-$	1.3×10^{-10}
	Hydrogen carbonate ion	HCO ₃ -	\rightleftarrows	H ⁺ + CO ₃ ²⁻	5.6×10^{-11}
~	Hydrogen peroxide				
WEAK	Monohydrogen phosphate ion	HPO ₄ ²⁻	\rightleftharpoons	H ⁺ + PO ₄ ³⁻	2.2×10^{-13}
3	Water	H ₂ O	\rightleftarrows	H+ + OH-	1.0×10^{-14}
16 18	Hydroxide ion	OH-	\leftarrow	H+ + O ²⁻	very small
	Ammonia	NH ₃	←	H ⁺ + NH ₂	very small

WEAK

STRENGTH OF BASE

STRONG

Indicators are chemical species that change colour in different pH conditions.

Most indicators are an acid-base conjugate pair, where each species in the pair is a different colour.

General equation: $HIn(aq) + H_2O(\ell) \rightleftharpoons In^-(aq) + H_3O^+(aq)$

In the above equation, "In" is used as shorthand for "indicator". The indicator molecule can either be protonated (HIn) or de-protonated (In⁻).

Assume that there is initially an equal mix of HIn(aq) and In-(aq).

According the Le Châtelier's principle, what would happen to the colour if...

- HCl(aq) was added?
- NaOH(aq) was added?

Phenolphthalein:

H-phph(aq) +
$$H_2O(\ell)$$
 \rightleftharpoons phph⁻(aq) + H_3O^+ (aq) colourless bright pink/purple

Explain using Le Châtelier's principle why phenolphthalein turns purple in solutions with pH >9.

Methyl orange indicator:

Determine the colours of Meor and H-Meor.

Justify your decision using Le Châtelier's principle.

Most indicators only have 2 or 3 different coloured forms.

Indicators do not necessarily change at pH 7. Their changing point depends on the equilibrium constant for that indicator.

Universal indicator is made of a mixture of four different types of indicator. This allows it to display a wide range of colours across the pH scale.

Q: To determine the pH of garden soil, a sample was first saturated with distilled water in a petri dish. Drops of three indicators listed below were added to separate parts of the sample. The colours observed are shown in the table.

Experimental results

Indicator Methyl yellow		Methyl red	Phenolphthalein	
	Colour observed	Yellow	Red	Colourless

Indicator colour ranges

Plant response

Plant	soil pH range for optimal growth
Carrot	5.5 - 6.8
Chrysanthemum	6.0 - 6.3
Hydrangea Blue	4.0 - 5.0
Hydrangea White	6.5 - 8.0
Potato	5.0 - 5.7

sing the information given, select the plant that will grow well at the current soil pH, and justify your selection.							
					•••••		

Salts from acid-base reactions

Salts are ionic compounds produced after the reaction of an acid and a base.

In general, the cation of the salt comes from the base and the anion comes from the acid.

KOH(aq) + HNO₃(aq)
$$\rightarrow$$
 KNO₃(aq) + H₂O(ℓ)

Not all salts are neutral. Salts may be acidic or basic!

Neutral salts

Salts produced from a strong acid and a strong base are neutral.

Example: Sodium chloride is a neutral salt produced from HCl and NaOH

$$HC\ell(aq) + NaOH(aq) \rightarrow NaC\ell(aq) + H_2O(\ell)$$

When solid sodium chloride is dissolved in water it dissociates, but does not **react with water** to produce H_3O^+ or OH^- ions.

$$NaC\ell(s) \rightarrow Na^+(aq) + C\ell^-(aq)$$

Basic salts

If is salt is produced from a weak acid, then the resulting salt will be basic.

Example: Sodium acetate is produced from the reaction between CH₃COOH and NaOH

$$CH_3COOH(aq) + NaOH(aq) \rightarrow NaCH_3COO(aq) + H_2O(\ell)$$

When solid sodium acetate is dissolved in water it first dissociates, but then the acetate ion will react with water to produce OH⁻ ions.

$$CH_3COO^-(aq) + H_2O(\ell) \rightleftharpoons CH_3COOH(aq) + OH^-(aq)$$

^ makes the solution basic!

This occurs because CH₃COO⁻ is the **conjugate base** of CH₃COOH.

Acidic salts

If is salt is produced from a weak base, then the resulting salt will be acidic.

Example: Ammonium chloride is produced from the reaction between HC₂ and NH₃

$$HC\ell(aq) + NH_3(aq) \rightarrow NH_4C\ell(aq)$$

When solid ammonium chloride is dissolved in water it first dissociates, but then the ammonium ion will react with water to produce H₃O⁺ ions.

$$NH_4^+(aq) + H_2O(\ell) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$$

^ makes the solution acidic!

This occurs because NH_4^+ is the **conjugate acid** of NH_3 .

Salts from polyprotic acids

If is salt is produced from a **polyprotic acid**, then the resulting salt might be acidic **or** basic, depending on which acid is involved.

Consider the salt sodium hydrogencarbonate (NaHCO₃). When dissolved in water, it will first dissociate and then the HCO₃⁻ can react with water. But it can do so in two different ways...

$$HCO_3^-(aq) + H_2O(\ell) \rightleftharpoons CO_3^{2-}(aq) + H_3O^+(aq)$$
 If HCO_3^- loses a proton then the resulting solution is **acidic**

or

 $HCO_3^-(aq) + H_2O(\ell) \rightleftharpoons H_2CO_3(aq) + OH^-(aq)$ If HCO_3^- gains a proton then the resulting solution is **basic**

Salts from polyprotic acids

HCO₃⁻(aq) + H₂O(
$$\ell$$
) \rightleftharpoons CO₃²⁻(aq) + H₃O⁺(aq) If HCO₃⁻ loses a proton then the resulting solution is **acidic**

or

HCO₃⁻(aq) + H₂O(ℓ) \rightleftharpoons H₂CO₃(aq) + OH⁻(aq) If HCO₃⁻ gains a proton then the resulting solution is **basic**

The final pH of the solution depends on which of the above reactions occurs to the greatest extent. This could be compared using **equilibrium constants**.

$$K_{a} = \frac{[CO_{3}^{2-}][H_{3}O^{+}]}{[HCO_{3}^{-}]} = 4.8 \times 10^{-11}$$

$$K_{b} = \frac{[H_{2}CO_{3}][OH^{-}]}{[HCO_{3}^{-}]} = 2.3 \times 10^{-8}$$

Based on the K_a and K_b values, would the HCO_3^- form an acidic or basic solution? Explain.

Salts from polyprotic acids

Unless provided with K_a and K_b values in a test, there is no way to determine whether an ion like HCO_3^- would form an acidic or basic solution.

That means that you will have to <u>memorise</u> the following table so you can correctly remember which salts from polyprotic acids are acidic, basic and neutral.

Salts from the first ionisation of sulfuric and phosphoric are acidic

Related acid	Acidic ions (will donate proton and form H ₃ O+)	Basic ions (will accept proton and form OH ⁻)
Sulfuric acid	HSO ₄ -	SO ₄ ²⁻
Carbonic acid		HCO ₃ - CO ₃ ²⁻
Phosphoric acid	H ₂ PO ₄ -	HPO ₄ ²⁻ PO ₄ ³⁻

_					
ດ		•	и.	^	•
	.,			.,	

1.	For each of the follo	owing, state whether the solution is acidic, basic or neutral. Support your answers with hydrolysis equations where
	appropriate	Hydrolysis equations are equations showing the acidic or basic species reacting with H ₂ O.

a)	NaNO₃	Acidic	/	Basic	/	Neutra

Equation:

Equation:

Equation:

Equation:

Equation:

2. Ammonium carbonate dissolve in water as follows:

Following dissociation, two further reactions occur as follows:

$$NH_4^+(aq) + H_2O(\ell) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$$

 $CO_3^2^-(aq) + H_2O(\ell) \rightleftharpoons HCO_3^-(aq) + OH^-(aq)$

Indicators show that an aqueous solution of $(NH_4)_2CO_3$ is basic. Explain this fact in view of the fact that there are twice as many NH_4^+ ions (which may produce H_3O^+) as there are CO_3^{2-} ions (which may produce OH_3) in any sample of ammonium carbonate.

Water as an electrolyte

Water is a weak electrolyte. It can self-ionise to produce OH⁻ and H⁺.

$$H_2O(\ell) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

Base Acid

Cains a proton

Loses a proton

As with other equilibrium reactions we can write an equation for the equilibrium constant.

$$K_{w} = [H_{3}O^{+}][OH^{-}]$$

At 25 °C, $K_w = 1.0 \times 10^{-14}$. This is a very small number and indicates that the reaction heavily favours the reactants. The concentration of H⁺ and OH⁻ in neutral water is very low.

Calculating [H⁺] and [OH⁻]

Note: In these calculations, H^+ and H_3O^+ can be used interchangeably. H^+ (from Arrhenius theory) is usually shown in calculations because it is faster and easier than writing H_3O^+ .

If we know [H⁺] in a solution, then we can calculate [OH⁻] using the value of K_w.

$$K_{w} = [H^{+}][OH^{-}]$$

$$\therefore [OH^{-}] = \frac{K_{W}}{[H^{+}]} = \frac{1 \times 10^{-14}}{[H^{+}]}$$

e.g. A solution of acid contains $1.5 \times 10^{-5} \text{ mol L}^{-1}$ of H⁺. Calculate [OH⁻].

$$[OH^{-}] = \frac{K_w}{[H^{+}]} = \frac{1 \times 10^{-14}}{1.5 \times 10^{-5}} = 6.67 \times 10^{-10} \, mol/L$$

Calculating [H⁺] and [OH⁻]

Example:

Calculate the concentration of H⁺ and OH⁻ in a 1.0 x 10⁻² mol L⁻¹ HC⁰ solution at 25 °C.

HCℓ(g) → H⁺(aq) + Cℓ⁻(aq)
$$[H^{+}] = [HCl]$$
= 1.0 × 10⁻² mol L⁻¹

$$K_{w} = [H^{+}][OH^{-}]$$

$$[OH^{-}] = \frac{K_{w}}{[H^{+}]}$$

$$= \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-2}}$$

$$= 1.0 \times 10^{-12} \ mol \ L^{-1}$$

Calculating [H⁺] and [OH⁻]

Note that we can also rearrange the K_w equation to find [H⁺] if we know [OH⁻].

$$K_{w} = [H^{+}][OH^{-}]$$

$$\therefore [H^+] = \frac{K_w}{[OH^-]} = \frac{1 \times 10^{-14}}{[OH^-]}$$

Complete questions on opposite page of workbook.

pH scale

pH is calculated using the following formula:

$$pH = -\log[H^+]$$

...where $[H^+]$ is the concentration of H^+ in mol L^{-1} .

The higher the concentration of H⁺, the lower the value for pH.

You can also do the inverse of this equation to find [H⁺] of a solution with known pH.

$$[H^+] = 10^{-\mathrm{pH}}$$

Calculating pH – Strong acids

To calculate the pH of a strong acid solution...

- 1. Find [H⁺]
- 2. Perform the pH calculation

e.g. Calculate the pH of a 0.06 mol L⁻¹ solution of HC₂.

$$[H^+] = [HCl] = 0.06 \text{ mol } L^{-1}$$

$$pH = -\log[H^+]$$

= $-\log[0.06]$
= 1.22

Calculating pH – Strong acids

Q: Calculate the pH of a 5.0 x 10⁻³ mol L⁻¹ solution of HNO₃

Q: 2 litres of hydrogen chloride gas (HCl) is collected at S.T.P. and is dissolved in 500 L of water. Calculate the pH of the resulting solution.

There are two ways to go about this. Both methods rely on the fact that $[OH^{-}]$ and $[H^{+}]$ are linked. Remember, $K_{w} = [H^{+}][OH^{-}]$

Method 1 (longer):

- 1. Find [OH-]
- 2. Find [H⁺] using the relationship with K_w . [H⁺] = K_w / [OH⁻]
- 3. Find pH using the formula $pH = -log[H^+]$

Example (Method 1): Calculate the pH of a 2.0 x 10⁻² mol L⁻¹ NaOH solution.

1

$$[OH^{-}] = [NaOH]$$

= 2.0 × 10⁻² mol L⁻¹

$$[H^+] = \frac{K_w}{[OH^-]}$$

$$= \frac{1.0 \times 10^{-14}}{2.0 \times 10^{-2}}$$
$$= 5.0 \times 10^{-13} \ mol \ L^{-1}$$

$$pH = -\log[H^+] = -\log[5.0 \times 10^{-13}] = 12.3$$

Just as pH is a measure of the concentration of H⁺, pOH is a measure of the concentration of OH⁻

$$pOH = -log[OH^-]$$

Due to the equilibrium constant of water, there is a relationship between pH and pOH.

$$pH + pOH = 14$$

This allows us to calculate pH of basic solutions using a shorter method.

Method 2 (shorter):

- 1. Find [OH⁻]
- 2. Find pOH using the formula pOH = $-log[OH^{-}]$
- 3. Find pH using the formula pH = 14 pOH

Example (Method 2): Calculate the pH of a 2.0 x 10⁻² mol L⁻¹ NaOH solution.

- $[OH^{-}] = [NaOH]$ = 2.0 × 10⁻² mol L⁻¹
- pOH = $-\log[OH^{-}] = -\log[2.0 \times 10^{-2}] = 1.70$
- pH = 14 pOH = 14 1.70 = 12.3

Calculating pH – Mixing two acids

Some problems might involve two acidic solutions with different pH values being mixed together.

To solve:

- 1. Find $n(H^+)$ in the *first solution* $n(H^+)_1$
- 2. Find $n(H^+)$ in the second solution $n(H^+)_2$
- 3. Find the total $n(H^+)$ ions $n(H^+)_{total} = n(H^+)_1 + n(H^+)_2$
- 4. Find the concentration of the total n(H⁺). Remember to use the volume of the total solution
- 5. Calculate pH as per previous pages

Calculating pH – Mixing two acids

Example: 100 mL of 0.005 mol L-1 HCe is added to 200 mL of 0.0001 mol L-1 HCe

- $n(H^+)_1 = c \times V$ $= 0.005 \times 0.100$ = 0.0005 mol
- $n(H^{+})_{total} = n(H^{+})_{1} + n(H^{+})_{2}$ = 0.0005 + 0.0002= 0.0007 mol

- Total volume = 300 mL = 0.3 L $c(H^{+})_{total} = n / V$ = 0.0007 / 0.300 $= 0.002333 \text{ mol } L^{-1}$
- pH = -log[H⁺] = -log[0.002333] = 2.63

Calculating pH – Mixing two bases

Perform this calculation in the same way as mixing two acids, only now you will be finding n(OH⁻).

To solve:

- 1. Find $n(OH^{-})$ in the *first solution* $n(OH^{-})_{1}$
- 2. Find $n(OH^{-})$ in the second solution $n(OH^{-})_{2}$
- 3. Find the total $n(OH^-)$ ions $n(OH^-)_{total} = n(OH^-)_1 + n(OH^-)_2$
- 4. Find the concentration of the total n(OH⁻). Remember to use the volume of the total solution
- 5. Calculate pH as per previous pages

Calculating pH – Mixing acid + base

Sometimes you may have a question where a strong acid is mixed with a strong base. Acids and bases neutralise each other...

$$H^+ + OH^- \rightarrow H_2O$$

...but if **excess acid** is used then the resulting solution will be **acidic**, and if **excess base** is used then the resulting solution will be **basic**.

You may need to calculate the pH of such a solution after the acid and base have been mixed together.

Calculating pH – Mixing acid + base

Method:

- 1. Find n(H⁺)
- 2. Find n(OH⁻)
- 3. Figure out which substance is in excess. Calculate n(H⁺ excess) or n(OH⁻ excess)
- 4. Find the concentration of the excess ions. Remember to use the volume of the total solution
- 5. Calculate pH as per previous pages

Calculating pH – Mixing acid + base

Example: 100 mL of 1 mol L⁻¹ Ca(OH)₂ is added to 400 mL of 0.300 mol L⁻¹ HC ℓ . What is the pH of the new solution?

1
$$n(Ca(OH)_2) = c \times V$$

= 1 x 0.1
= 0.1 mol

$$n(OH^{-}) = 2 \times n(Ca(OH)_{2})$$

= 0.2 mol

$$n(HC\ell) = c \times V$$

= 0.300 x 0.400
= 0.120 mol

$$n(H^+) = 0.120 \text{ mol}$$

$$H^+ + OH^- \rightarrow H_2O$$

$$n(OH^{-} excess) = n(OH^{-}) - n(H^{+})$$

= 0.200 - 0.120
= 0.080 mol

$$c(OH^- excess) = n / V$$

= 0.080 / 0.500
= 0.16 mol L⁻¹

$$pOH = -log[OH^{-}]$$

= $-log[0.16]$

$$pH = 14 - pOH$$

= 13.2

Acidic, Basic & Neutral

A **neutral solution** is defined as a solution with equal concentrations of H⁺ and OH⁻.

Even though pure water self-ionises to produce small amounts of $[H^+]$ and $[OH^-]$, the resulting solution will still be neutral because $[H^+] = [OH^-]$

$$H_2O \rightleftharpoons H^+ + OH^-$$

pH of Neutral Solutions

We can calculate the pH of neutral water at 25 °C by combining two equations:

Equation 1: $[H^+] = [OH^-]$ This equation is true for any neutral solution

Equation 2: $K_w = [H^+][OH^-]$ Equilibrium constant for water.

1 x **10**⁻¹⁴ = [H⁺] [OH⁻] This is the value of K_w at 25 °C

pH of Neutral Solutions

Example: Show using calculations that the pH of neutral water at 25 °C is equal to 7.

$$K_{w} = [H^{+}][OH^{-}]$$

$$= [H^{+}]^{2}$$

$$1.0 \times 10^{-14} = [H^{+}]^{2}$$

$$[H^{+}] = \sqrt{1.0 \times 10^{-14}}$$

$$= 1 \times 10^{-7}$$

$$pH = -\log[H^{+}]$$

$$= -\log[1 \times 10^{-7}]$$

$$= 7.00$$

The solution is neutral, $: [H^+] = [OH^-]$

At 25 °C,
$$K_w = 1.0 \times 10^{-14}$$

Effect of temperature of pH

Like all equilibrium reactions, the self-ionisation of water is affected by temperature.

Investigate the table to the right. Is the self-ionisation of water an **exothermic** or **endothermic process**?

Explain your answer in terms of Le Châtelier's principle.

Temperature (°C)	K _w
0	0.11 x 10 ⁻¹⁴
10	0.29 x 10 ⁻¹⁴
20	0.68 x 10 ⁻¹⁴
25	1.01 x 10 ⁻¹⁴
30	1.47 x 10 ⁻¹⁴
40	2.92 x 10 ⁻¹⁴
50	5.48 x 10 ⁻¹⁴
100	51.3 x 10 ⁻¹⁴

Effect of temperature of pH

You should be able to calculate the pH of neutral water at any temperature if given the value of K_w . The working will be similar to that on the previous page

Q: Calculate the pH of water at the following temperatures. Use the K_w values from the table above.

a. Neutral water at 10 °C

b. Neutral water at 50 °C

Buffers

A buffer is a solution that resists changes to pH.

Graph to right...

Blue line: Solution without buffer

Addition of acid/base causes large pH changes

Pink line: Solution with buffer

pH remains constant while acid/base is added (until buffer 'runs out')

Buffers – Composition

Buffers are composed of a weak acid and its conjugate base.

Examples:

- •A mixture of acetic acid (CH₃COOH) and sodium acetate (NaCH₃COO)
- •A mixture of **ammonia** (NH₃) and **ammonium** chloride (NH₄Cl)
- •A mixture of **phosphoric acid** (H₃PO₄) and sodium **phosphate** (Na₃PO₄)

Buffering capacity

Buffering capacity is a measure of how well a buffer can resist changes to pH.

A buffer with a **high buffering capacity** can have a <u>lot</u> of acid and base added before pH changes A buffer with a **low buffering capacity** can only prevent changes for a small amount of acid or base.

Two factors affect buffering capacity:

- The <u>relative</u> amounts of the weak acid and its conjugate base.

 Buffers work best with equimolar amounts. e.g. 0.5 mol CH₃COOH + 0.5 mol CH₃COO⁻ c.f. 0.5 mol + 0.1 mol
- The <u>overall</u> concentration of the buffer

 High concentration of buffers are better.

 e.g. 2 mol CH₃COOH + 2 mol CH₃COO⁻

 c.f. 0.5 mol + 0.5 mol

How buffers work

Buffer solutions contain a weak acid and its conjugate base. These substances will be in **equilibrium.** Their ability to resist changes to pH can be understood using Le Châtelier's Principle.

Q: Use Le Châtelier's principle to explain why pH does not change when acid is added to a mixture of acetic acid and sodium acetate.

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

A:

- When acid is added this would initially increase [H₃O⁺]
- According to Le Châtelier's Principle the system will react to oppose this change.
- The reaction will shift to the left, decreasing [H₃O⁺] close to its original value
- As [H₃O⁺] does not change greatly, there is little change to pH

Applications of buffers

Blood:

Cells need to maintain a relatively constant pH in order for enzymes to function correctly.

The pH of blood maintains a pH between 7.35 and 7.45. This pH is maintained through a number of chemical buffers.

One is an equilibrium system involving hydrogencarbonate ions, carbonic acid and CO₂(g).

$$H_3O^+(aq) + HCO_3^-(aq) \rightleftharpoons H_2O(l) + H_2CO_3(aq) \rightleftharpoons 2H_2O(l) + CO_2(g)$$

$$E_1$$

Increased atmospheric CO₂ levels:

Nelson pg. 114

- Combustion of fossil fuels leads to increased CO₂(g) emissions
- Clearing of forests reduces amount of CO₂(g) consumed through photosynthesis

Enhanced greenhouse effect:

- Greenhouse gases in atmosphere (including CO₂) reduce the amount of heat energy escaping Earth.
 Instead this energy is radiated back towards the surface.
- CO₂ dissolving into the ocean has had a positive effect on atmospheric warming. If no CO₂ dissolved into the oceans then atmospheric CO₂ levels would be higher, impacting on global temperatures.

CO₂ equilibrium:

- Dissolved CO₂ undergoes a series of equilibrium reactions
 - $CO_2(g) \rightleftharpoons CO_2(aq)$
 - $CO_2(aq) + H_2O(\ell) \rightleftharpoons H_2CO_3(aq)$
 - $H_2CO_3(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$
- Le Châtelier's principle predicts that increasing concentrations of CO₂(g) will increase [H₃O⁺] and [HCO₃⁻]

Calcification:

Nelson pg. 117

Many marine organisms build exoskeletons and shells from calcium carbonate.

$$Ca^{2+}(aq) + CO_3^{2-}(aq) \rightleftharpoons CaCO_3(s)$$

• CaCO₃ has a very low solubility, which means it is able to exist as a saturated solution in the ocean.

Effect of ocean acidification:

- H⁺ ions can react with $CO_3^{2-}(aq)$: H⁺(aq) + $CO_3^{2-}(aq)$ \rightleftharpoons HCO₃⁻(aq)
- Increased [H⁺] from ocean acidification...
 - ...reduces [CO₃²⁻] in the ocean
 - ...shifts the calcification equation to the left, decreasing ability of organisms to form CaCO₃ exoskeletons and shells
- Effect on coral: Great Barrier Reef mass decreased 50% over last 27 years

Actions to address CO₂ emissions:

- Intergovernmental Panel on Climate Change (IPCC)
 - Established 1988
 - Provides clear, scientific research on climate change to governmental bodies
- Kyoto Protocol
 - 1997 agreement between over 150 countries (including Australia) to set emission targets

Boyle: Used litmus (a plant dye / indicator) to classify acids and bases.

Summarised following properties:

Acids	Bases (Alkalies)
Sour taste	Feel slippery
Corrosive	
Turns blue litmus read	Turns red litmus blue
Becomes less acidic when combined with bases	Becomes less alkaline when combined with acids

Boyle 1660s Lavoisier 1770s Davy 1810s Arrhenius _{1880s} Brønsted-1920s

Lowry

Lavoisier:

- Studied the combustion of carbon, sulfur and phosphorus
- When the non-metal oxides were dissolved in water, they were acidic

Carbonic acid

Sulfuric acid

Phosphoric acid

Defined acids as substances containing non-metal atoms and oxygen

Boyle 1660s

Lavoisier _{1770s}

1810s Davy

Arrhenius _{1880s}

Davy:

- Showed that 'muriatic acid' (hydrochloric acid) did not contain oxygen (opposing Lavoisier's definition)
- Defined acids as substances that contain hydrogen which would be replaced by metals

e.g.
$$2 \text{ HC}\ell + \text{ Zn } \rightarrow \text{ ZnC}\ell_2 + \text{ H}_2$$

Boyle 1660s

Lavoisier _{1770s}

_{1810s} Davy

Arrhenius _{1880s}

1660s

Boyle

Arrhenius:

- Examined electrical conductivity of substances. Classified solutions that conduct electricity as "electrolytes"
- Solutions of acids and bases conducted electricity, therefore were electrolytes
- Proposed that acids dissolve to form H⁺ ions in solution
- Proposed that bases dissolve to form OH⁻ ions in solution

e.g.
$$HC\ell(aq) \rightarrow H^+(aq) + C\ell^-(aq)$$

NaOH(s) \rightarrow Na⁺(aq) + OH⁻(aq)

• Proposed that neutralisation was due to: $H^+(aq) + OH^-(aq) \rightarrow H_2O(\ell)$

Lavoisier 1770s

Arrhenius 1880s

Brønsted-1920s Lowry

1660s

Boyle

Problems with the Arrhenius model:

• #1: Ammonia (NH₃) was known to be basic, but doesn't contain OH ions

• #2: Substances could act as acids or bases without dissolving in water first

• #3: According to the Arrhenius model, all salts should be neutral because the H⁺ and OH⁻ have neutralised each other...

But when HC ℓ reacts with NH₃, the salt produced (NH₄C ℓ) is itself acidic.

• #4: Individual protons (H⁺) do not exist for very long in water. They would quickly react with H_2O to form H_3O ⁺ ions (hydronium ions).

Lavoisier ₁₇₇₀

1810s Davy

Arrhenius 1880s

Brønsted-Lowry model:

- Proposed that acids are proton donors
- Proposed that bases are proton acceptors

Explained acidity of a greater range of substances.

(See earlier parts of workbook for more details about Brønsted-Lowry model)

Boyle Boyle

Lavoisier ₁₇₇₀

1810s Davy

Arrhenius _{1880s}

MODELS OF ACIDS & BASES IS A POTENTIAL EXTENDED RESPONSE QUESTION

What the syllabus says	Key ideas
Models and theories are contested and refined or replaced when new evidence challenges them, or when a new model or theory has greater explanatory scope.	"Models and theories" Be able to explain what models and theories refer to, and be able to correctly use t "contested and refined [] new evidence" Explain how new evidence contradicted previous models, and how this lead to the development of newer models
Davy initially proposed that acids were substances that contained replaceable hydrogen (hydrogen that could be partly or totally replaced by metals) and bases were substances that reacted with acids to form salts and water.	 Clearly outline Davy's model Give supporting evidence that Davy used to justify model Be able to write equations to illustrate
The Arrhenius model, which includes only soluble acids and bases, identified acids as substances which produce hydrogen ions in solution and bases as substances which produce hydroxide ions in solution.	 Clearly outline the Arrhenius model Give supporting evidence that Arrhenius used to justify model Be able to write equations to illustrate Note the importance of "only includes soluble acids and bases" with regards to limitations
Subsequently, the Brønsted-Lowry model describes acid-base behaviour in terms of proton donors and proton acceptors.	 Clearly outline the Brønsted-Lowry model Give supporting evidence that Brønsted-Lowry used to justify model Be able to write equations to illustrate
[The Brønsted-Lowry] approach includes a wider range of substances and can be more broadly applied.	Compare the models of Davy, Arrhenius and Brønsted-Lowry in regards to what substances they can be applied to