

破题标志词

- 一元二次方程有两负根⇔ Δ ≥0 且 a,b,c 同号.
- 一元二次方程有两正根⇔ $\Delta \ge 0$, a 与 c 同号, a 与 b 异号.

总结以上三个破题标志词可知,若我们将方程化为二次项系数 a > 0 的标准二次方 程,则有:

系数特征	方程的根	根的判别式 △
c<0	一正一负两实根	自动满足
正 x^2+ 负 $x+$ 正 $=0$	两正根	A > 0
$\mathbb{E} x^2 + \mathbb{E} x + \mathbb{E} = 0$	两负根	$\Delta \geqslant 0$

- ▶11 【2005.10.05】(条件充分性判断)方程 $x^2 + ax + b = 0$ 有一正一负两个实根.(
 - $(1)b = -C_{4}^{3}$.
 - $(2)b = -C_7^5$.

不等式

【不等式】把两个解析式用大于号(>)、小于号(<)、大于等于号(≥)或小于等于号 (≤)连接起来,所得到的式子叫作不等式.

如: $x^2-1 \ge 0$, $\sqrt{2x+3} < 5$, $\log_2 5x > 0$, $2^x-1 > 1$ 等都是不等式.

【不等式的解集】能够使不等式成立所有未知数的值构成的集合叫作不等式的解集. 如:不等式 2x < 8 的解可以表示为 x < 4 或 $(-\infty, 4)$.

【不等式的性质】

- &【对逆性】如果 a>b,那么 b<a.
- %【传递性】如果 a>b 且 b>c,那么 a>c.

即不等式两边都加上(或者减去)同一个数或者同一个整式,所得的不等式和原不等 式同解.

- ※一个不等式:左右两边同乘以正数不等号不变,同乘以负数不等号变方向.
- 注意:未知乘数的正负不能乘.
- ◈两个不等式之间:可加不可减,相加要同向,加后不可逆.

如果 a > b, c > d,那么 a + c > b + d.

- *【不等式取倒数】如果 a>b>0,那么 $\frac{1}{a}<\frac{1}{b}$;

如果
$$a>0>b$$
,那么 $\frac{1}{a}>\frac{1}{b}$;

如果
$$0>a>b$$
,那么 $\frac{1}{a}<\frac{1}{b}$.

- ≪【不等式两边平方】不等式仅可以在两边非负的情况下平方,即有:若 $a,b \ge 0$,则 $a>b\Leftrightarrow a^2>b^2$.
- ▶12 【2016.19】(条件充分性判断)设 x,y 是实数.则 x≤6,y≤4.()
 - $(1)x \le y + 2.$
 - $(2)2y \le x + 2.$
- ▶**13** 【2015.17】(条件充分性判断)已知 a,b 为实数.则 a≥2 或 b≥2.(
 - $(1)a+b \ge 4$.
 - $(2)ab \ge 4.$
- ▶14 【2024. 21】(条件充分性判断)设 a,b 为正实数. 则能确定 $a \ge b$. (
 - $(1)a + \frac{1}{a} \geqslant b + \frac{1}{b}$.
 - $(2)a^2 + a \geqslant b^2 + b$.

思号与总结

第六章

数列

6. 1

数列基础

【数列的定义和分类】按一定次序排列的一列数叫作数列.数列中每一个数叫作这个数列的项,数列一般形式可以写为: $a_1,a_2,a_3,\dots,a_n,\dots$ 简记为数列 $\{a_n\}$.其中数列第一项 a_1 也称为首项, a_n 是数列的第n 项,也叫作数列的通项.

数列按照不同的特征可进行如下分类:

有穷数列:如:1,2,3,4,5,6,7

无穷数列:如: $1,2,3,4,5,6,7,\cdots$

递增数列:第二项起,每一项都比前一项大.如:1,2,3,4,5,6,7,…

递减数列:第二项起,每一项都比前一项小.如:7,6,5,4,3,2,1,…

摆动数列:从第二项起,有些项大于它的前一项,有些项小于它的前一项.

如 $:1,-1,1,-1,1,-1,1,-1,\dots$ (事实上,这也是一个首项为1,公比为-1的等比数列).

常数列:各项均为同一个常数(常用于作为特值解题).

【数列的通项公式】即数列的第n 项 a_n 与其序号n 之间的关系.

如果数列中的第n 项 a_n 与其项数n 的关系可以用一个公式来表示,则称这个公式为通项公式.知道了一个数列的通项公式,就可以求出这个数列中的任意一项.

【数列前 n 项和】从数列第一项 a_1 开始依次相加,至第 n 项 a_n ,这 n 项的和称为数列的前 n 项和,记为 $S_n=a_1+a_2+a_3+\cdots+a_n$.

▶ 1 【2016. 24】(条件充分性判断)已知数列 a_1 , a_2 , a_3 , ..., a_{10} . 则 $a_1 - a_2 + a_3 - \dots + a_9 - \dots + a_9$

 $a_{10} \geqslant 0.$ ()

 $(1)a_n \geqslant a_{n+1}, n=1,2,\cdots,9.$

 $(2)a_n^2 \geqslant a_{n+1}^2, n=1,2,\cdots,9.$

相关概念

【等差数列】如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一 常数, $a_{n+1}-a_n=d(n=1,2,\cdots)$,那么这个数列就叫作等差数列,这个常数叫作等差数列 的公差 d. 等差数列的一般表达式为; $a_1,a_1+d,a_1+2d,\dots,a_1+(n-1)d,\dots$. 如; $2,4,6,\dots$ 8.10.....

【等差数列通项公式】 $a_n = a_1 + (n-1)d = a_m + (n-m)d$.

【等差数列前 n 项和公式】 $S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + \frac{2a_1 - d}{2}n$.

▶ 2 【2024.06】已知等差数列{a_n}满足a₂a₃=a₁a₄+50,且a₂+a₃<a₁+a₅,则公差为</p>

A. 2

B. -2

C. 5

D. -5

E. 10

等差数列中常用的设项方法

(1)通项法:根据等差数列的通项公式 $a_n = a_1 + (n-1)d$,设第一项为 a_1 ,第二项为 a_1 +d,第三项为 a_1+2d ,…,以此类推.

(2)对称设:

项数	设项原则	常见应用
法独大业人石上签		三项成等差,设为 $a-d$, a , $a+d$
连续奇数个项成等差数列	设中间一项为 a, 再以 d 为公差向两边分 别设项	五项成等差,设为 $a-2d,a-d,a,$ $a+d,a+2d$
连续偶数个项成等 差数列	设中间两项分别为 $a-d$ 和 $a+d$,再以 $2d$ 为公差向两边分别设项	四项成等差,设为 $a-3d,a-d,a$ + $d,a+3d$

说明:已给出字母 a,b,c 三项,且符合等差数列,则相当于给出关于 a,b,c 的等式 2b=a+c. 事实上对于题目中给出三项成等差(或下一节的等比数列),实际上等同于给 出了这三个变量的一个关系式,可以被用在任何知识点.

破题标志词

三项成等差数列 \Rightarrow ①给出a,b,c为等差,则有2b=a+c

②需要设项,则直接设为a-d,a,a+d,自动满足.

▶ 3 【2021.02】三位年轻人的年龄成等差数列,且最大与最小的两人年龄之差的 10 倍 是另一人的年龄,则三人中年龄最大的是().

A. 19

B. 20

C. 21

D. 22

E. 23

等差数列的判定

判定方法	详细描述
定义法	任意相邻两项之差 $a_{n+1}-a_n$ 为常数
等差中项法	$2a_{n+1} = a_n + a_{n+2}$
通项公式法	$a_n = dn + m$ (形似关于 n 的一次函数)
前 n 项和法	$S_n = An^2 + Bn$
	(形似关于 n 的二次函数,其中 A 与 B 均可能为 0 ,但一定不含常数项)

说明:以上 n 为正整数

- ▶ 4 【模拟题】已知数列 $\{a_n\}$ 中任意一项均非零,且方程 $a_n x^2 + 2a_{n+1} x + a_{n+2} = 0$ 有一根 为-1,是否可充分推出 $\{a_n\}$ 为等差数列.
- ▶ **5** 【2019. 25】(条件充分性判断)设数列 $\{a_n\}$ 的前 n 项和为 S_n . 则 $\{a_n\}$ 为等差数列.() $(1) S_n = n^2 + 2n, n = 1, 2, 3 \cdots$ $(2) S_n = n^2 + 2n + 1, n = 1, 2, 3 \cdots$

等差数列的性质

性质	说明与举例
单调性	若公差 $d>0$,数列为递增数列
	若公差 $d < 0$,数列为递减数列
	若公差 $d=0$,数列为常数列
$a_n = a_m + (n-m)d; d = \frac{a_n - a_m}{n-m}$	$a_5 = a_2 + (5-2)d; d = \frac{a_5 - a_2}{5-2}$
等差数列下标和相等的两项之 和相等	如下标 $1+10=2+9=3+8=4+7=\cdots$,则有 a_1+
	$a_{10} = a_2 + a_9 = a_3 + a_8 = a_4 + a_7 = \cdots$
	注意:等号左右下标和相等,项数也要相等
等差数列下标和相等的同数量 项之和相等	如下标 $3+5+7=2+4+9$,则有 $a_3+a_5+a_7=$
	$a_2 + a_4 + a_9$
	要求:两组项下标和相等,项数也要相同

续表

性质	说明与举例
若{a _n }为有穷等差数列,则与 首末两项距离相等的两项之和 都相等,且等于首末两项的和	$a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = a_4 + a_{n-3} = \cdots$
对等差数列前奇数项和:	若已知前 9 项的中间项 $a_5=3$,则有 $S_9=9a_5=27$;
$S_n = n \cdot a$ 中间项 a 中间项 $= \frac{1}{n} S_n$	反之若已知 $S_9=27$,则其中间项 $a_5=\frac{S_9}{9}=3$.
n^{-n}	特别地,两数列前奇数个项和之比=中间项之比

破题标志词 -

等差数列某几项和⇒下标和相等的同数量项之和相等.

▶ 6 【2013.01.13】已知{ a_n }为等差数列,若 a_2 与 a_{10} 是方程 $x^2-10x-9=0$ 的两个根, 则 $a_5 + a_7 = ($).

- A. -10 B. -9
- C. 9
- D. 10

E. 12

▶ 7 【2018.17】(条件充分性判断)设 $\{a_n\}$ 为等差数列.则能确定 $a_1+a_2+\cdots+a_9$ 的值. ()

- (1)已知 a_1 的值,
- (2)已知 a₅的值.

▶ 8 【2009.01.25】(条件充分性判断) {a_n}的前 n 项和 S_n 与 {b_n}的前 n 项和 T_n 满足 $S_{19}: T_{19} = 3:2.$ () $(1)\{a_n\}$ 和 $\{b_n\}$ 是等差数列.

 $(2)a_{10}:b_{10}=3:2.$

▶ 9 【2017.07】在 1 到 100 之间,能被 9 整除的整数的平均值是().

- A. 27
- В. 36
- C. 45
- D. 54

E. 63

等比数列

相关概念

【等比数列定义】如果一个数列从第二项起,每一项与它的前一项的比都等于同一非 零常数,即存在常数 $q \neq 0$,使 $\frac{a_{n+1}}{q} = q(n=1,2,\cdots)$,那么这个数列就叫作等比数列,这个 常数就叫作等比数列的公比 $q(q \neq 0)$ (等比数列每一项 a_n 和公比 q 均不为 0),如:2,4, 8.16.32.....

【等比数列通项公式】 $a_n = a_1 q^{n-1} = a_k q^{n-k} (q \neq 0)$.

等比数列中常用的设项方法

(1)通项法:根据等比数列的通项公式 $a_n = a_1 q^{n-1}$,设第一项为 a_1 ,第二项为 $a_1 q$,第 三项为 $a_1q^2, \dots,$ 以此类推.

(2)对称设:

项数	设项原则	常见应用
连续奇数个项成等	设中间一项为 a, 再以 q 为公比向两边	三项成等比,设为 $\frac{a}{q}$, a , aq
比数列	分别设项	五项成等比,设为 $\frac{a}{q^2}$, $\frac{a}{q}$, a , aq , aq^2
连续偶数个项成等 比数列	设中间两项分别为 $\frac{a}{q}$ 和 aq ,再以 q^2 为公比向两边分别设项	四项成等比,设为 $\frac{a}{q^3}$, $\frac{a}{q}$, aq , aq^3

破题标志词 —

- ▶10 【2018.19】(条件充分性判断)甲、乙、丙三人的年收入成等比数列.则能确定乙的 年收入的最大值.(
 - (1)已知甲、丙两人的年收入之和.
 - (2)已知甲、丙两人的年收入之积.

等比数列的判定

判定方法	详细描述
定义法	验证 $\frac{a_{n+1}}{a_n}$ 是否为常数,应注意必须从 $n=1$ 起所有项都满足此等式
等比中项法	验证 $a_{n+1}^2 = a_n \cdot a_{n+2}$ 是否成立,应注意这里 $a_n \neq 0$
通项公式法	验证 $a_n = a_1 \cdot q^{n-1}$ 是否成立,应注意这里的 $a_1 \neq 0$ 且 $q \neq 0$
前 n 项和法	$S_n = A - A q^n$,其中 $A = \frac{a_1}{1 - q}$,且 $q \neq 0$, $q \neq 1$.

【拓展】若 $\{a_n\}$ 为等比数列,则 $\{Ca_n\}$, $\left\{\frac{1}{a_n}\right\}$, $\{|a_n|\}$, $\{a_n^2\}$ 均为等比数列,公比分别 为: $q \cdot \frac{1}{q} \cdot |q| \cdot q^2$. (其中 C 为非零常数)

- ▶11 【模拟题】(条件充分性判断)a,b,c,d 为四个实数.则 a+b,b+c,c+d 成等比数列.(
 - (1)a,b,c,d 成等比数列.
 - (2)a+b,b+c,c+d 均不为 0.
- ▶12 【2021.24】(条件充分性判断)已知数列 $\{a_n\}$. 则数列 $\{a_n\}$ 为等比数列.(
 - $(1)a_na_{n+1}>0.$
 - $(2)a_{n+1}^2 2a_n^2 a_n a_{n+1} = 0.$

等比数列的性质

性质	举例
	$\left\{egin{aligned} a_1 > 0 & a_1 < 0 \ q > 1 \end{aligned} ight.$ 点等比数列 $\left\{a_n\right\}$ 为递增数列
单调性	$ \begin{cases} a_1 > 0 \\ 0 < q < 1 \end{cases} \stackrel{d_1 < 0}{\Leftrightarrow} $
	q =1⇔等比数列 $\{a_n\}$ 为常数列
	q < 0 ⇔等比数列 $\{a_n\}$ 为摆动数列

续表

性质	举例
等比数列下标和相等的两项乘积相等	如下标 $1+10=2+9=3+8=4+7=\cdots$,则有 a_1a_{10} $=a_2a_9=a_3a_8=a_4a_7=\cdots$ 注意等号左右下标和相等,项数也要相等
若{a _n }为有穷等比数列,则与首末两项距离相等的两项之积都相等,且等于首末两项的积	$a_1 \cdot a_n = a_2 \cdot a_{n-1} = a_3 \cdot a_{n-2} = a_4 \cdot a_{n-3} = \cdots$
等比数列下标和相等的同数量项乘积相等	如下标 $3+5+7=2+4+9$,则有 $a_3a_5a_7=a_2a_4a_9$ 两组项下标和相等,项数相同,则这两组项乘积相等

破题标志词

等比数列某几项之积⇒下标和相等的同数量项乘积相等.

▶13 【2023.18】(条件充分性判断)已知等比数列{a_n}的公比大于 1.则{a_n}单调递增.

- $(1)a_1$ 是方程 $x^2-x-2=0$ 的根.
- $(2)a_1$ 是方程 $x^2+x-6=0$ 的根.
- ▶14 【2010. 10. 13】等比数列 $\{a_n\}$ 中 $,a_3,a_8$ 是方程 $3x^2+2x-18=0$ 的两个根,则 $a_4a_7=($).

A. - 9

- B. 8
- C. -6
- D. 6
- E. 8

等比数列求和

【等比数列求和公式】

当
$$q\neq 1$$
时, $S_n = \frac{a_1(1-q^n)}{1-q}$

当 q=1 时, $S_n=na_1$ (此时数列 $\{a_n\}$ 为常数列)

当
$$n \to \infty$$
,且 $0 < |q| < 1$ 时, $S_n = \lim_{n \to \infty} \frac{a_1(1-q^n)}{1-q} = \frac{a_1}{1-q}$

注意:等比数列求和时:若不能确定 q 的取值,应分 q=1 和 $q\neq 1$ 两种情况讨论.

▶15 【2018.07】如图,四边形 $A_1B_1C_1$ D_1 是平行四边形, A_2 , B_2 , C_2 , D_2 分别是 $A_1B_1C_1$ D_1 四边的中点, A_3 , B_3 , C_3 , D_3 分别是四边形 $A_2B_2C_2$ D_2 四边的中点,依次下去, 得到四边形序列 $A_nB_nC_nD_n(n=1,2,3,\cdots)$,设 $A_nB_nC_nD_n$ 是面积为 S_n ,且 $S_1=12$, 则 $S_1 + S_2 + S_3 + \cdots = ($).

A. 16

B. 20

E. 30

相关知识点补充:

破题标志词

任意四边形的中点四边形 \rightarrow 面积为原四边形的 $\frac{1}{2}$. 同型题目【2008. 01. 03】

- ▶16 【模拟题】30 年之后要筹措到 300 万元的养老金,假定平均的年回报率是 3%, 每年以复利计息,那么,现在必须投入的本金是多少万元?

等差数列与等比数列的相似特性

片段和定理

破题标志词

题目中出现形如 S_3 , S_6 , S_9 或 S_5 , S_{10} , S_{15} 等落在等差数列等长度片段节点的 一组前 n 项和具体值时,往往考虑使用片段和定理,即:

【等差数列片段和定理】 如果 $a_1, a_2, a_3, \dots, a_n$ 为等差数列,那么这个数列连续的 n项之和也是等差数列,即 S_n , S_{2n} S_n S_{2n} S_{2 公差为 n^2d .(n代表片段长度)

【举例】设 $\{a_n\}$ 为等差数列,前n项和为 S_n ,则有:

$$S_3 = a_1 + a_2 + a_3$$
;

$$S_6 - S_3 = a_4 + a_5 + a_6 = (a_1 + a_2 + a_3) + 3 \cdot 3d = S_3 + 3 \cdot 3d;$$

$$S_9 - S_6 = a_7 + a_8 + a_9 = (a_4 + a_5 + a_6) + 3 \cdot 3d$$
.

它们为数列 $\{a_n\}$ 等长度片段,片段长度为3,组成了公差为 $3^2d=9d$ 的新的等差 数列.

类似地, S_4 , S_8 - S_4 ,和 S_{12} - S_8 ·······片段长度为 4,组成了公差为 4^2 d=16d 的新的等 差数列,以此类推,

注:是 S_{n} , S_{2n} - S_{n} 和 S_{3n} - S_{2n} 成等差数列,而非 S_{n} , S_{2n} , S_{3n} 成等差数列.

当题目中出现【破题标志词】形如 S_0 , S_0 , S_0 , S_1 , S_1 , 等落在等比数列等长度片段 节点的一组前 n 项和具体值时,往往考虑使用等比数列片段和定理.

等比数列片段和定理:如果 a_1,a_2,a_3,\dots,a_n 构成等比数列 $\{a_n\},$ 那么若这个数列连续的 n 项之和非零,则 S_a , S_{2a} - S_a , S_{2a} - S_{2 注:是 S_n , S_{2n} - S_n 和 S_{3n} - S_{2n} ···成等比数列,而非 S_n , S_{2n} , S_{3n} ···成等比数列.

- ▶17 【模拟题】等差数列 $\{a_n\}$ 的前n项和为 S_n ,已知 S_3 =3, S_6 =24,则此等差数列的公差 d 等干().
 - A. 3
- B. 2
- C. 1
- D. $\frac{1}{2}$ E. $\frac{1}{3}$
- ▶18 【2024.25】(条件充分性判断)设 a_n 为等比数列, S_n 是{ a_n }的前 n 项和.则能确定 a_n 的公比.(
 - $(1)S_3 = 2.$
 - $(2)S_9 = 26.$

等间距取出项

对于一个等差数列,等间隔取出的项仍构成等差数列,若取出的相邻两项下标差为 n,则新公差为 nd.

对于一个等比数列,等间隔取出的项仍构成等比数列.若取出的相邻两项下标差为 n,则新公比为 g^n .

- ▶19 【模拟题】 $\{a_n\}$ 是公差为 $\frac{1}{2}$ 的等差数列,且 S_{100} =145,则 $a_1+a_3+a_5+\cdots+a_{99}$ =(
 - A. 70
- B. 60
- C. 50
- D. 40