

Fractional networks

V. Batagelj

Bibliographic Coupling

Fractional bibliographic coupling and co-citation

Vladimir Batagelj

IMFM Ljubljana and IAM UP Koper

NetGloW 2018

St Petersburg, July 4-6, 2018

Outline

Fractional networks

V. Batagelj

Bibliographi Coupling

1 Bibliographic Coupling

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si

Current version of slides (July 4, 2018 at 15:36): slides PDF https://github.com/bavla/biblio/blob/master/doc/WS/fractional.pdf

Bibliographic Coupling

Fractional networks

V. Batagelj

Bibliographic Coupling

Bibliographic coupling occurs when two works each cite a third work in their bibliographies. The idea was introduced by Kessler (1963) and has been used extensively since then. See figure where two citing works, p and q, are shown. Work p cites five works and q cites seven works. The key idea is that there are three documents cited by both p and q. This suggests some content communality for the three works cited by both p and q. Having more works citing pairs of prior works increases the likelihood of them sharing content.

Bibliographic Coupling

Fractional networks

V. Batagelj

Bibliographic Coupling In WoS2Pajek the citation relation means

p **Ci** $q \equiv \text{ work } p \text{ cites work } r.$

Therefore the *bibliographic coupling* network **biCo** can be determined as

$$biCo = Ci * Ci^T$$

 $\mathit{bico}_{pq} = \#$ of works cited by both works p and $q = |\mathbf{Ci}(p) \cap \mathbf{Ci}(q)|$.

Bibliographic coupling weights are symmetric: $bico_{pq} = bico_{qp}$:

$$\mathbf{biCo}^T = (\mathbf{Ci} * \mathbf{Ci}^T)^T = \mathbf{Ci} * \mathbf{Ci}^T = \mathbf{biCo}$$

Example: clustering networks

Fractional networks

V. Batagelj

Bibliographic Coupling

We obtained bibliographic data from the Web of Science (WoS) by using the following terms in a general query:

"block model*" or "network cluster*" or "graph cluster*" or "community detect*" or "blockmodel*" or "block-model*" or "structural equival*" or "regular equival*"

Using WoS2Pajek we created the corresponding collection of networks – the number of works, |W|=117082; the number of contributing authors, |A|=62143; the number of journals where these works appear, |J|=12652; and the number of keywords employed to characterize works, |K|=10269. All these networks share the set of works (papers, reports, books, etc.), W. Number of works with complete description (hits) is 5695.

Example

Fractional networks

V. Batagelj

Bibliographic Coupling

Pairs with the largest value

- overview works
- same author works

```
 \begin{array}{l} \text{w(FORTUNAT\_S(2010)486:75, FORTUNAT\_S(2016)659:1)} = 53 \\ \text{w(FORTUNAT\_S(2010)486:75, BOCCALET\_S(2006)424:175)} = 51 \\ \text{w(CAl\_Q(2016)8:84, GONG\_M(2016)18:345)} = 50 \\ \text{w(FORTUNAT\_S(2010)486:75, FOUSS\_F(2016):1)} = 40 \\ \text{w(BOCCALET\_S(2006)424:175, NEWMAN\_M(2003)45:167)} = 38 \\ \end{array}
```


Bibliographic Coupling

cut at level 25

Fractional networks

V. Batagelj

Fractional networks

V. Batagelj

Bibliographic Coupling Again we have problems with works with many citations, especially with review papers. To neutralize their impact we can introduce normalized measures. Let's first look at

$$\mathbf{biC} = n(\mathbf{Ci}) * \mathbf{Ci}^T$$

where n(Ci) = D * Ci and $D = diag(\frac{1}{\max(1.outdeg(p))})$. $D^T = D$.

$$\mathsf{biC} = (\mathsf{D} * \mathsf{Ci}) * \mathsf{Ci}^\mathsf{T} = \mathsf{D} * \mathsf{biCo}$$

$$\mathsf{biC}^T = (\mathsf{D} * \mathsf{biCo})^T = \mathsf{biCo}^T * \mathsf{D}^T = \mathsf{biCo} * \mathsf{D}$$

For $Ci(p) \neq \emptyset$ and $Ci(q) \neq \emptyset$ it holds (proportions)

$$\mathbf{biC}_{pq} = rac{|\mathbf{Ci}(p) \cap \mathbf{Ci}(q)|}{|\mathbf{Ci}(p)|}$$
 and $\mathbf{biC}_{qp} = rac{|\mathbf{Ci}(p) \cap \mathbf{Ci}(q)|}{|\mathbf{Ci}(q)|} = \mathbf{biC}_{pq}^T$

and $\mathbf{biC}_{pq} \in [0,1]$. \mathbf{biC}_{pq} is the proportion of its references the work p shares with the work q.

Fractional networks

V. Batagelj

Bibliographic Coupling Using $\ensuremath{\text{biC}}$ we can construct different normalized measures such as

$$\mathbf{biCoa}_{pq} = \frac{1}{2}(\mathbf{biC}_{pq} + \mathbf{biC}_{qp}) \quad \mathsf{Average}$$

$$\mathbf{biCom}_{pq} = \min(\mathbf{biC}_{pq}, \mathbf{biC}_{qp})$$
 Minimum

or, may be more interesting

$$\mathbf{biCog}_{pq} = \sqrt{\mathbf{biC}_{pq} \cdot \mathbf{biC}_{qp}} = \frac{|\mathbf{Ci}(p) \cap \mathbf{Ci}(q)|}{\sqrt{|\mathbf{Ci}(p)| \cdot |\mathbf{Ci}(q)|}} \quad \begin{array}{l} \text{Geometric mean} \\ \text{Salton cosinus} \end{array}$$

$$\mathbf{biCoh}_{pq} = 2 \cdot (\mathbf{biC}_{pq}^{-1} + \mathbf{biC}_{qp}^{-1})^{-1} = \frac{2|\mathbf{Ci}(p) \cap \mathbf{Ci}(q)|}{|\mathbf{Ci}(p)| + |\mathbf{Ci}(q)|} \quad \text{Harmonic mean}$$

$$\mathbf{biCoj}_{pq} = (\mathbf{biC}_{pq}^{-1} + \mathbf{biC}_{qp}^{-1} - 1)^{-1} = \frac{|\mathbf{Ci}(p) \cap \mathbf{Ci}(q)|}{|\mathbf{Ci}(p) \cup \mathbf{Ci}(q)|} \quad \mathsf{Jaccard index}$$

All these measures are symmetric.

Fractional networks

V. Batagelj

Bibliographic Coupling It is easy to verify that $biCoX_{pq} \in [0,1]$ and: $biCoX_{pq} = 1$ iff the works p and q are referencing the same works, Ci(p) = Ci(q).

From
$$H \le G \le A$$
 and $J = \frac{H}{2-H}$, $2 - H \ge 1$ we get

$$\mathsf{biCom}_{pq} \leq \mathsf{biCoj}_{pq} \leq \mathsf{biCoh}_{pq} \leq \mathsf{biCog}_{pq} \leq \mathsf{biCoa}_{pq} \leq \mathsf{biCoM}_{pq}$$

The equalities hold iff Ci(p) = Ci(q).

To get a dissimilarity use dis = 1 - sim or $dis = \frac{1}{sim} - 1$ or $dis = -\log sim$. For example

$$\mathbf{biCod}_{pq} = 1 - \mathbf{biCoj}_{pq} = \frac{|\mathbf{Ci}(p) \oplus \mathbf{Ci}(q)|}{|\mathbf{Ci}(p) \cup \mathbf{Ci}(q)|}$$
 Jaccard distance

Jaccard islands

Fractional networks

V. Batagelj

Bibliographic Coupling

We computed Jaccard similarity measures for the network CiteB and determined corresponding link islands having sizes in the range [5,75]. The following table shows the distribution of sizes of 133 islands that were identified.

size															
num	33	16	11	17	12	8	4	2	2	3	1	4	2	1	1
size	28	31	33	34	40	43	48	51	52	55	58	70	71	75	
num	1	2	1	1	1	1	1	1	2	1	1	1	1	1	

Fractional bibliographic coupling some Jaccard islands

Fractional networks

V. Batagelj

in the social networks literature

Fractional networks

V. Batagelj

in the physicist-driven literature

Fractional networks

V. Batagelj

Bibliographic Coupling

990

selected islands

Fractional networks

V. Batagelj

the most cited works from works of the two largest islands

Fractional networks

V. Batagelj

	Socia	l network literature	(Physicist literature				
Rank	Count	Work	Rank	Count	Work		
1	58	LORRAIN_F(1971)1:49	1	45	GIRVAN_M(2002)99:7821		
2	50	WHITE_H(1976)81:730	2	43	#NEWMAN_M(2004)69:026113		
3	48	BREIGER_R(1975)12:328	2 3	40	CLAUSET_A(2004)70:066111		
4	33	ARABIE_P(1978)17:21	4	38	DUCH_J(2005)72:027104		
5	26	BOORMAN_S(1976)81:1384	5	36	GUIMERA_R(2005)433:895		
6	24	SAILER_L(1978)1:73	6	35	#NEWMAN_M(2004)38:321		
7	22	BURT_R(1976)55:93	7	34	RADICCHI_F(2004)101:2658		
8	22	WHITE_D(1983)5:193	8	31	#DANON_L(2005):		
9	15	NADEL_S(1957):	9	31	#ZACHARY_W(1977)33:452		
10	14	HEIL_G(1976)21:26	10	27	FORTUNAT_S(2007)104:36		
11	12	SAMPSON_S(1969):	11	25	ALBERT_R(2002)74:47		
12	12	HOLLAND_P(1981)76:33	12	25	NEWMAN_M(2003)45:167		
13	11	BURT_R(1983):	13	20	REICHARD_J(2006)74:016110		
14	11	JOHNSON_S(1967)32:241	14	20	REICHARD_J(2004)93:218701		
15	10	BURT_R(1982):	15	19	GUIMERA_R(2003)68:065103		
16	10	HOMANŠ_G(1950):	16	19	NEWMAN_M(2006)103:8577		
17	10	FAUST_K(1988)10:313	17	19	PALLA_G(2005)435:814		
18	10	FREEMAN_L(1979)1:215	18	19	WU_F(2004)38:331		
19	10	FIENBERG_S(1985)80:51	19	17	FLAKÈ_G(2002)35:66		
20	9	BORGATTI_S(1989)11:65	20	17	#BLONDEL_V(2008):P10008		
21	8	WHITE_H(1963):	21	17	BOCCALET_S(2006)424:175		
22	8 8	BURT_R(1980)6:79	22	17	GLEISER_P(2003)6:565		
23	8	BREIGER_R(1979)13:21	23	16	FORTUNAT_S(2010)486:75		
24	8 7	BATAGELJ_V(1992)14:121	24	16	RAVASZ_E(2002)297:1551		
25	7	MANDEL_M(1983)48:376	25	16	MEDUS_A(2005)358:593		
26	7	KNOKE_D(1982):	26	16	#DONETTI_L(2004):P10012		
27	7	DOREIAN_P(1988)13:243	27	15	NEWMAN_M(2006)74:036104		
28	7	BREIGER_R(1978)7:213	28	13	BRANDES_U(2008)20:172		
29	7	SNYDER_D(1979)84:1096	29	13	GUIMERA_R(2004)70:025101		
30	7	HUBERT_L(1978)43:31	30	→ □12	#IOLME=P(2003)19:532 = ✓		

for three smaller islands

Fractional networks

V. Batagelj

Physicist literature

WATTS_D(1998)393:440

BARARASÍ A(1999)286-509

23

the most cited works from works from three smaller islands

Fractional networks

V. Batagelj

Bibliographic Coupling

	- 1	10	2, 11 11 12, 1012 1(1333)200.003	/ /	22: 10:11:22(1500)00:10		
	3	17	ALBERT_R(1999)401:130	10	PERRUCHE_C(1983)16:213	11	DAVIS_J(1967)2
ı	4	15	WASSERMA_S(1994):	9	MURTAGH_F(1985)28:82	10	NEWCOMB_T(1
	5	15	AMARAL_L(2000)97:11149	8	FERLIGOJ_A(1983)48:541	9	WHITE_H(1976)
1	6	13	BOLLOBAS_B(1985):	6	GORDON_A(1996)21:17	8	HARARY_F(196
	7	13	FALOUTSO_M(1999)29:251	4	DUQUE_J(2007)30:195	8	DOREIAN_P(199
	8	13	NEWMAN_M(2001)98:404	4	KIRKPATR_S(1983)220:671	7	DOREIAN_P(200
	9	10	STROGATZ_S(2001)410:268	4	MACQUEEN_J(1967):281	7	HEIDER_F(1958
	10	10	ERDOS_P(1960)5:17	3	DESARBO_W(1984)49:187	6	BREIGER_R(197
	11	10	REDNER_S(1998)4:131	3	MARGULES_C(1985)17:397	6	HOMANS_G(195
	12	9	JEONG_H(2000)407:651	3	HANSEN_P(2003)20:143	6	BATAGELJ_V(19
1	13	9	ALBERT_R(2000)406:378	3	DUQUE_J(2011)43:104	5	BORGATTI_S(20
	14	9	MOLLOY_M(1995)6:161	3	MARAVALL_M(1997)24:217	5	LORRAIN_F(197
	15	9	MILGRAM_S(1967)1:61	3	GAREY_M(1979):	5	WHITE_D(1983)
_							

21

Clustering literature

FERLIGOJ_A(1982)47:413

LEEKOVIT I (1980)36:43

13

12

Signed networ

CARTWRIG_D(

HEIDER F(1946

the most frequent keywords in works of a given subnetworks

Fractional networks

V. Batagelj

		k literature		Physicist-driven literature				
Rank	Count	Work	Rank	Count	Work			
1	42	network	1	54	network			
2	34	social	2	52	community			
3	27	blockmodel	3	48	complex			
4	24	equivalence	4	30	structure			
5	23	analysis	5	30	modularity			
2 3 4 5 6 7	17	structure	2 3 4 5 6 7	28	detection			
7	17	role		19	algorithm			
8	15	structural	8	18	graph			
9	12	relation	9	17	metabolic			
10	11	multiple	10	12	resolution			
11	10	graph	11	12	model			
12	10	datum	12	12	optimization			
13	8	statistical	13	9	organization			
14	8 7 7 7	model	14	9 8 8 7	detect			
15	7	algorithm	15	8	cluster			
16	7	sociometric	16	7	identification			
17	7	position	17	6 6	dynamics			
18	7	regular	18	6	analysis			
19	6	relational	19	6	method			
20	6	computation	20	5	use			
21	6	two	21	5	base			
22	5	organization	22	6 5 5 4	hierarchical			
23	5	stochastic	23		overlap			
24	5	approach	24	4	pott			
25	6 5 5 5 4	direct	25	4	multi			
26	4	block	26	4	maximization			
27	4	similarity	27	4	world			
28	4	group	28	4	information			
29	4	application	29	4	biological			
30	3	measure	30	4	limit			

Co-Citation

Fractional networks

V. Batagelj

Bibliographic Coupling

Co-citation is a concept with strong parallels with bibliographic coupling (Small and Marshakova 1973). The focus is on the extent to which works are co-cited by later works. The basic intuition is that the more earlier works are cited, the higher the likelihood that they have common content. The *co-citation* network **coCi** can be determined as

$$\mathbf{coCi} = \mathbf{Ci}^T * \mathbf{Ci}$$

Co-Citation

Fractional networks

V. Batagelj

$$coci_{pq} = \#$$
 of works citing both works p and q .

$$coci_{pq} = coci_{qp}.$$

$$coCi^T = (Ci^T * Ci)^T = Ci^T * Ci = coCi$$