Corrigé Type du CF-2CPI-2017/2018

Exercice 1 (3,(3,5 points): En utilisant un changement de variables en coordonnées polaires, calculer

$$\iint_{D} \frac{x-y}{x^2+y^2} dx dy,$$

où $D = \{(x,y) \in \mathbb{R}^2 / y \ge 0; \ x^2 + y^2 - 2x \le 0; \ x^2 + y^2 - x \ge 0\}.$

Solution: Le changement de variable en CP est donné par $\varphi(r,\theta) = (x,y)$ avec

$$x = r \cos \theta$$
, $y = r \sin \theta$, $r \in \mathbb{R}_+$ et $\theta \in [0, 2\pi]$.

Déterminons le transformé D' de D par les CP. Soit $(x,y) \in D$. Alors (vu que $r \geq 0$),

$$(x,y) \in D \Leftrightarrow \begin{cases} y \geq 0, \\ x^2 + y^2 - 2x \leq 0, \\ x^2 + y^2 - x \geq 0, \end{cases} \Leftrightarrow \begin{cases} r \sin \theta \geq 0, \\ r^2 - 2r \cos \theta \leq 0, \\ r^2 - r \sin \theta \geq 0, \end{cases}$$

$$\Leftrightarrow \begin{cases} \sin \theta \geq 0, \\ 0 \leq r \leq 2 \cos \theta, \\ r \geq \cos \theta, \end{cases} \Leftrightarrow \begin{cases} \sin \theta \geq 0, \\ \cos \theta \geq 0, \\ \cos \theta \leq r \leq 2 \cos \theta, \end{cases}$$

Donc,
$$D' = \left\{ (r, \theta) \in \mathbb{R}_+ \times [0, 2\pi[\text{ t.q. } 0 \le \theta \le \frac{\pi}{2}, \cos \theta \le r \le 2\cos \theta \right\}$$
 $\boxed{0, 25 \text{ pts pour chaque borne=1}}$
On a, si on pose $f(x, y) = \frac{x - y}{x^2 + y^2}$ et $I = \iint_D \frac{x - y}{x^2 + y^2} dx dy$, ainsi

$$I = \iint_{D} f(\varphi(r,\theta)) \left| \det J_{\varphi} \right| dr d\theta = \int_{0}^{\frac{\pi}{2}} \left(\int_{\cos \theta}^{2\cos \theta} \frac{r \cos \theta - r \sin \theta}{r^{2}} r dr \right) d\theta \quad \boxed{0,5 \text{ pts}}$$

$$= \int_{0}^{\frac{\pi}{2}} \left(\int_{\cos \theta}^{2\cos \theta} (\cos \theta - \sin \theta) dr \right) d\theta = \int_{0}^{\frac{\pi}{2}} (\cos \theta - \sin \theta) \left(\int_{\cos \theta}^{2\cos \theta} dr \right) d\theta = \int_{0}^{\frac{\pi}{2}} (\cos \theta - \sin \theta) \cos \theta d\theta \quad \boxed{0,5 \text{ pts}}$$

$$= \int_{0}^{\frac{\pi}{2}} \cos^{2}\theta \ d\theta - \int_{0}^{\frac{\pi}{2}} \sin\theta \cos\theta \ d\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos 2\theta) \ d\theta - \int_{0}^{\frac{\pi}{2}} \sin\theta \cos\theta \ d\theta \quad \boxed{0, 25 \text{ pts}}$$
$$= \frac{1}{2} \left[\theta + \frac{1}{2} \sin 2\theta \right]_{0}^{\frac{\pi}{2}} - \left[\sin^{2}\theta \right]_{0}^{\frac{\pi}{2}} \quad \boxed{0, 25 \text{ pts}} = \frac{\pi}{4} - \frac{1}{2}. \quad \boxed{0, 5 \text{ pts}}$$

Remarque: Pour la personne qui se trompe de borne en mettant $0 \le \theta \le \pi$, elle perd 0,25 pts pour la borne et 0,5 pts pour le calcul de I, donc elle perd 0,75 pts.

Exercice 2 (3,5 points): Etudier la continuité et la dérivabilité de la fonction

$$F(x) = \int_{1}^{+\infty} \frac{\sin t}{(x^2 + t^2)} dt, \quad x \ge 0$$

Solution:

Posons,
$$f(t,x) = \frac{\sin t}{(x^2 + t^2)}$$
 et $\Delta = [1, +\infty[\times [0, +\infty[$.

Première manière

La continuité: On a

- 1) f est de classe \mathcal{C}^1 sur U (U ouvert contenant Δ) car c'est une composée et rapport de fonctions C^1 .. 0, 25 pt
 - 2) Etudions la convergence uniforme (par la convergence dominée) de $\int_{-\infty}^{+\infty} f(t,x)dt$.:

On a
$$|f(t,x)| \le \frac{1}{t^2} = g(t)$$
 $\boxed{0,25 \text{ pt}}$ $\forall t \in [1,+\infty[, \forall x \in [0,+\infty[$ $\boxed{0,5 \text{ pt}}$

On a
$$|f(t,x)| \le \frac{1}{t^2} = g(t)$$
 $0,25$ **pt**. $\forall t \in [1,+\infty[, \forall x \in [0,+\infty[0,5$ **pt**] et $\int_{1}^{+\infty} \frac{1}{t^2} dt$ converge (intégrale de Riemann) $0,25$ **pt**, donc, $\int_{1}^{+\infty} f(t,x) dt$ converge uniformément sur $[0,+\infty[$.

Conclusion: de (1) et (2), on déduit, grâce au théorème de conservation de la continuité, la continuité de F sur $[0, +\infty[$..

La dérivabilité: On a

- 1) f est de classe \mathcal{C}^1 sur U (U ouvert contenant Δ) car c'est une composée et rapport de fonctions C^1 .
- **2)** Comme F est continue sur $[0, +\infty[$, donc $\exists x_0 \in [0, +\infty[$ tel que $\int_1^{+\infty} f(t, x_0) dt$ bien définie. 0,25 pt
 - 3) Etudions la convergence uniforme de $\int_{1}^{+\infty} \frac{\partial f}{\partial x}(t,x)dt$. On a:

$$\frac{\partial f}{\partial x}(t,x) = \sin t \frac{-2x}{(x^2 + t^2)^2}, \quad \boxed{0,25 \text{ pts}}$$

$$\left|\frac{\partial f}{\partial x}(t,x)\right| \leq \frac{2x}{t^4} \leq \frac{2A}{t^4} \doteq h(t) \quad \boxed{0,5 \text{ pt}}. \forall t \in [1,+\infty[, \ \forall x \in [0,A], \ \forall A>0 \quad \boxed{0,25 \text{ pt}}$$

et
$$\int_{1}^{+\infty} h(t)dt$$
 converge (intégrale de Riemann) $[0,25 \text{ pt}]$

Conclusion: de (1), (2) et (3), on déduit, grâce au théorème de conservation de la dérivabilité de F sur tout $[0,A] \subset [0,+\infty[$ 0,25 pt . On en déduit ainsi, que F est dérivable sur $[0, +\infty[$ 0, 25 **pts**

Deuxième manière

La continuité: On a

- 1) f est continue sur Δ car c'est une composée et rapport de fonctions continues 0, 25 pt.
 - 2) La condtion de domination sur f:

On a

•
$$|f(t,x)| \le \frac{1}{t^2} = g(t);$$
 $0,25 \text{ pt}$... $\forall t \in [1,+\infty[, \forall x \in [0,+\infty[$

0,5 **pt**

• $\int_{1}^{+\infty} \frac{1}{t^2} dt$ converge (intégrale de Riemann [0, 25 pt].

On obtient d'aprés le théorème de la conservation de la continuité sous le signe \int ..., la continuité de F sur $[0, +\infty[$ 0, 25 pt.

La dérivabilité: On a

- 1) f f est continue sur Δ et $\int_{1}^{+\infty} f(t,x)dt$ converge pour tout $x \in [0,+\infty[$.
- 2) La dérivée partiel de f par rapport à "x" existe et :

$$\frac{\partial f}{\partial x}(t,x) = \sin t \frac{-2x}{(x^2+t^2)^2} \quad \boxed{0,25 \text{ pt}},$$

donc $x\mapsto \frac{\partial f}{\partial x}(t,x)$ est continue sur Δ (composée et rapport de fonctions continues) $\boxed{0,25~{\bf pt}}$.

2) On a

$$\left|\frac{\partial f}{\partial x}(t,x)\right| \leq \frac{2x}{t^4} \leq \frac{2A}{t^4} \doteq h(t) \qquad \boxed{0,5 \text{ pt}}. \\ \forall t \in [1,+\infty[, \ \forall x \in [0,A], \ \forall A > 0 \quad \boxed{0,25 \text{ pt}}.$$

et
$$\int_{1}^{+\infty} h(t)dt$$
 converge (intégrale de Riemann) $\boxed{0,25 \text{ pt}}$

On obtient d'aprés le théorème de la conservation de la dérivabilité sous le signe \int , la dérivabilité de F sur [0,A], on en déduit ainsi [0,25 pts], que F est dérivable sur $[0,+\infty[$ [0,25 pts].

Exercice 3 (6,75 points):

A.

- 1. Vérifier que $\frac{1}{(x^2+1)(x^2+2x+5)} = \frac{\frac{-1}{10}x + \frac{1}{5}}{x^2+1} + \frac{\frac{1}{10}x}{x^2+2x+5} \quad \forall x \in \mathbb{R}.$
- 2. En supposant que $y \in C^2(\mathbb{R}^+)$ et y, y' sont d'ordre exponentiel, Résoudre l'équation différentielle suivante

$$\left\{ \begin{array}{lll} y"+2y'+5y & = & \sin t & \forall t \geq 0, \\ y\left(0\right)=1 & \text{et} & y'\left(0\right)=2. \end{array} \right.$$

B- Soit f une fonction de $\mathbb{R} \to \mathbb{R}$. Posons

$$\begin{cases} f_{+}(t) = f(t) & si \ t \ge 0, \\ f_{-}(t) = f(-t) & si \ t \ge 0. \end{cases}$$

En supposant que $\mathcal{F}(f)$, $\mathcal{L}(f_{+})$ et $\mathcal{L}(f_{-})$ sont bien définies, montrer que

$$\mathcal{F}(f)(x) = \mathcal{L}(f_{+})(ix) + \mathcal{L}(f_{-})(-ix),$$

et déduire $\mathcal{F}\left(t^2e^{-|t|}\right)(x)$.

NB: Voir la table des TL au verso de la feuille.

Solution: A]

- 1. Par calcul on a $\frac{-\frac{1}{10}x + \frac{1}{5}}{x^2 + 1} + \frac{\frac{1}{10}x}{x^2 + 2x + 5} = \frac{1}{(x^2 + 1)(x^2 + 2x + 5)} \quad \boxed{0,5 \text{ pt}}$
- 2. On pose $Y(x) = \mathcal{L}(y)(x)$ a,

$$\begin{cases} \mathcal{L}(y")(x) = x^{2}Y - x - 2, & \boxed{0,25 \text{ pt}} \\ \mathcal{L}(y')(x) = xY - 1, & \boxed{0,25 \text{ pt}} \end{cases}$$

Donc,

$$\mathcal{L}(y" + 2y' + 5y)(x) = \mathcal{L}(\sin t)(x) \iff (x^2 + 2x + 5)Y = x + 4 + \frac{1}{x^2 + 1}$$

$$\Leftrightarrow Y = \frac{x + 4}{(x^2 + 2x + 5)} + \frac{1}{(x^2 + 1)(x^2 + 2x + 5)} \quad \boxed{0,5 \text{ pt}}$$

3. Ainsi, d'aprés la première question,

$$Y(x) = \frac{x+4}{x^2+2x+5} + \frac{\frac{-1}{10}x + \frac{1}{5}}{x^2+1} + \frac{\frac{1}{10}x}{x^2+2x+5}.$$
$$= \frac{\frac{11}{10}x+4}{x^2+2x+5} + \frac{\frac{-1}{10}x + \frac{1}{5}}{x^2+1}. \quad \boxed{0,5 \text{ pt}}$$

Alors,

$$y(t) = \mathcal{L}^{-1}\left(\frac{\frac{11}{10}x + 4}{x^2 + 2x + 5}\right) + \mathcal{L}^{-1}\left(\frac{\frac{-1}{10}x + \frac{1}{5}}{x^2 + 1}\right).$$

Par ailleurs,

•
$$\mathcal{L}^{-1}\left(\frac{\frac{-1}{10}x + \frac{1}{5}}{x^2 + 1}\right) = \frac{-1}{10}cos(t) + \frac{1}{5}\sin t.$$
 $\boxed{0,5 \text{ pt}}$

• vu que
$$\frac{11}{10}x + 4 = \frac{11}{10}\left(x + 1 - 1 + 4\frac{10}{11}\right)$$
, on a

$$\mathcal{L}^{-1}\left(\frac{\frac{11}{10}x+4}{x^2+2x+5}\right) = \frac{11}{10}\mathcal{L}^{-1}\left(\frac{x+1-1+4\frac{10}{11}}{(x+1)^2+4}\right) = \frac{11}{10}\mathcal{L}^{-1}\left(\frac{x+1+\frac{29}{11}}{(x+1)^2+4}\right)$$
$$= \frac{11}{10}\mathcal{L}^{-1}\left(\frac{x+1}{(x+1)^2+4}\right) + \frac{11}{10}\mathcal{L}^{-1}\left(\frac{\frac{29}{11}}{(x+1)^2+4}\right) \quad \boxed{0,5 \text{ pt}}$$

Or
$$\to \mathcal{L}^{-1}\left(\frac{x+1}{(x+1)^2+4}\right) = e^{-t}cos(2t)$$
 $\boxed{0,75 \text{ pt}}$
 $\to \mathcal{L}^{-1}\left(\frac{\frac{29}{11}}{(x+1)^2+4}\right) = \frac{29}{22}\mathcal{L}^{-1}\left(\frac{2}{(x+1)^2+4}\right) = \frac{29}{22}e^{-t}\sin(2t)$ $\boxed{0,75 \text{ pt}}$
on en déduit, $y(t) = \frac{-1}{10}cos(t) + \frac{1}{5}\sin t + \frac{11}{10}e^{-t}cos(2t) + \frac{29}{20}e^{-t}\sin(2t)$. $\boxed{0,25 \text{ pt}}$

B] Montrons la formulle $\mathcal{F}(f)(x) = \mathcal{L}(f_{+})(ix) + \mathcal{L}(f_{-})(-ix)$. On a

$$\mathcal{F}\left(f\right)\left(x\right) \doteq \int\limits_{-\infty}^{+\infty} e^{-ixt}.f(t)dt = \int\limits_{0}^{+\infty} e^{-ixt}.f(t)dt + \int\limits_{-\infty}^{0} e^{-ixt}.f(t)dt \quad \boxed{0,25 \text{ pt}}$$

• D'une part en remarquant que pour $t \in [0, +\infty[$, $f(t) = f_+(t)$ et en posant y = ix, il vient

$$\int_{0}^{+\infty} e^{-ixt} \cdot f(t)dt = \int_{0}^{+\infty} e^{-yt} \cdot f_{+}(t)dt = \mathcal{L}\left(f_{+}\right)\left(y\right) = \mathcal{L}\left(f_{+}\right)\left(ix\right). \quad \boxed{0,25 \text{ pt}}$$

• D'autre part, on

$$\int\limits_{-\infty}^{0}e^{-ixt}.f(t)dt\stackrel{s=-t}{=}\int\limits_{+\infty}^{0}-e^{ixs}.f(-s)ds=\int\limits_{0}^{+\infty}e^{ixs}.f(-s)ds\ \ \boxed{0,25\ \mathbf{pt}}$$

en remarquant que pour $s \in [0, +\infty[, f(-s) = f_{-}(s)]$ et en posant z = -ix, il vient

$$\int\limits_{-\infty}^{0}e^{-ixt}.f(t)dt=\int\limits_{0}^{+\infty}e^{-zs}.f_{-}(s)ds=\mathcal{L}\left(f_{-}\right)\left(z\right)=\mathcal{L}\left(f_{-}\right)\left(-ix\right).\ \ \boxed{0,25\ \mathbf{pt}}$$

Déduisons $\mathcal{F}\left(t^2e^{-|t|}\right)(x)$.

Posons $f(t)=t^2e^{-|t|}$. Alors, $f_+(t)=t^2e^{-t}$, pour $t\geq 0$. Donc, d'aprés la propriété de la dérivée de la TL, il vient

$$\mathcal{L}\left(f_{+}\right)\left(x\right) = \mathcal{L}\left(t^{2}e^{-t}\right)\left(x\right) = \mathcal{L}\left(e^{-t}\right)^{(2)}\left(x\right), \quad \boxed{0,25 \text{ pt}}$$

mais d'aprés la table des TL, $\mathcal{L}(e^{-t})(x) = \frac{1}{x+1} \left[0, 25 \text{ pt}\right]$, ainsi

$$\mathcal{L}(f_{+})(x) = \frac{2}{(x+1)^{3}} \left[0,25 \text{ pt}\right].$$

Comme f est paire, on en déduit que $f_{+} = f_{-}$. Ainsi, $\mathcal{L}(f_{+})(x) = \mathcal{L}(f_{-})(x) = \frac{2}{\left(x+1\right)^{3}}$. Donc,

$$\mathcal{F}(f)(x) = \mathcal{L}(f_{+})(ix) + \mathcal{L}(f_{-})(-ix) = \frac{2}{(ix+1)^{3}} + \frac{2}{(-ix+1)^{3}} = \frac{4-12x^{2}}{(x^{2}+1)^{3}} \left[0,25 \text{ pt}\right].$$

Remarque: On peut déduire $\mathcal{F}\left(t^2e^{-|t|}\right)(x)$ d'une autre manière (plus riguoureuse).

- Vérifier par un calcul directe que $\mathcal{L}\left(e^{-t}\right)\left(ix\right) = \frac{1}{ix+1}$ (facile).
- Vérifier que $(\mathcal{L}(g)(ix))^{(2)} = -\mathcal{L}(t^2g(t))(ix)$ pour tout $g \in \mathcal{L}^1(\mathbb{R})$ (facile)
- Déduire $\mathcal{L}\left(t^2e^{-t}\right)(ix)$.
- Utiliser la formule pour déduire $\mathcal{F}(f)(x)$.

Exercice 4 (6,25 points):

- 1. Sachant que $\mathcal{F}\left(e^{-|t|}\right)(x) = \frac{2}{x^2+1}$, en déduire $\mathcal{F}\left(e^{-a|t|}\right)$ pour a > 0.
- 2. Montrer que si $f, f' \in L^1(\mathbb{R})$ alors $\mathcal{F}(f')(x) = ix\mathcal{F}(f)(x)$.
- 3. En appliquant la transformée de Fourier à l'équation différentielle suivante

$$-2y$$
" $(t) + 6y(t) = e^{-3|t|}, \ \forall t \in \mathbb{R}.$

(a) Montrer que si une fonction g telle que $g, g', g'' \in L^1(\mathbb{R})$ est solution de cette équation alors

$$\mathcal{F}(g)(x) = \frac{1}{2} \left(\frac{1}{x^2 + 3} - \frac{1}{x^2 + 9} \right).$$

(b) En supposant que g est continue sur $\mathbb R$ et dérivable à gauche et à droite de tout $t \in \mathbb R$, déduire l'expression de g (justifier votre réponse).

Solution:

1. On a pour a>0, grâce à la propriété de la TL d'une dilatée (changement d'èchelle)

$$\mathcal{F}\left(e^{-a|t|}\right)(x) = \mathcal{F}\left(e^{-|\alpha t|}\right)(x)$$

$$= \frac{1}{\alpha}\mathcal{F}\left(e^{-|t|}\right)\left(\frac{x}{\alpha}\right) \quad \boxed{0,5 \text{ pt}}$$

$$= \frac{1}{\alpha}\frac{2}{\left(\frac{x}{\alpha}\right)^2 + 1} = \frac{1}{\alpha}\frac{2\alpha^2}{x^2 + \alpha^2} = \frac{2\alpha}{x^2 + \alpha^2}. \quad \boxed{0,5 \text{ pt}}$$

2. <u>Premère manière:</u> Comme $f' \in L^1(\mathbb{R})$, alors, $\mathcal{F}(f')$ est bien définie et

$$\mathcal{F}(f')(x) = \int_{0}^{+\infty} e^{-ixt} \cdot f'(t)dt + \int_{-\infty}^{0} e^{-ixt} \cdot f'(t)dt.$$

D'une part,

$$\int_{0}^{+\infty} e^{-ixt} \cdot f'(t) dt = \lim_{y \to +\infty} \left(\int_{0}^{y} e^{-ixt} \cdot f'(t) dt \right) = \lim_{y \to +\infty} \left(e^{-ixt} \cdot f(t) \right]_{0}^{y} + ix \int_{0}^{y} e^{-ixt} \cdot f(t) dt \right).$$

$$\operatorname{Or} \left\{ \begin{array}{ll} \int\limits_{0}^{+\infty} |f'(t)| \, dt & \operatorname{converge} \Longrightarrow \int\limits_{0}^{+\infty} f'(t) dt & \operatorname{converge}, \\ \int\limits_{+\infty}^{0} f'(t) dt = \lim_{y \to +\infty} f(y) - f(0), \end{array} \right. \quad \operatorname{donc} \lim_{y \to +\infty} f(y)$$

existe et finie. 0,25 **pts**

Notons $\lim_{y\to+\infty} f(y) = 0$ et montrons que L = 0. Supposons que L > 0. On a par définition de la limite (en prenant $\varepsilon = \frac{L}{2}$)

$$\exists A > 0: \ \forall t > A \Longrightarrow |f(t) - L| \le \frac{L}{2} \Leftrightarrow \frac{L}{2} \le f(t) \le \frac{3L}{2} \Rightarrow \frac{L}{2} \int_{0}^{+\infty} dt \le \int_{0}^{+\infty} f(t) dt$$

D'où $\int\limits_0^{+\infty} f(t)dt$ diverge ce qui contredit le fait que $f\in L^1(\mathbb{R}).$ Donc, L<0.

De la même manière on montre que L ne peut pas être <0, . Ainsi L=0, c'est à dire $\lim_{y\to +\infty} f(y)=0$ **pour montrer que** $\lim_{y\to +\infty} f(y)=0$ **Remarque** On peut montrer que L=0 autrement, en utilisant le lemme

Remarque On peut montrer que L=0 autrement, en utilisant le lemme suivant: Soit $f \in R_{loc}[0, +\infty[$, si $\int\limits_0^+ f(t)dt$ converge alors $\lim\limits_{t \to +\infty} f(t) = 0$ ou n' \sharp Comme on a montré que $\lim\limits_{y \to +\infty} f(y)$ existe et finie, alors $\lim\limits_{t \to +\infty} f(t) = 0$. D'où $\lim\limits_{y \to +\infty} e^{-ixy} \cdot f(y) = 0$ car e^{-ixy} est bornée.Donc,

$$\int_{0}^{+\infty} e^{-ixt} \cdot f'(t)dt = -f(0) + ix \int_{0}^{+\infty} e^{-ixt} \cdot f(t)dt. \quad \boxed{0,25 \text{ pt}}$$

De même $\int_{-\infty}^{0} e^{-ixt} \cdot f'(t)dt = f(0) + ix \int_{-\infty}^{0} e^{-ixt} \cdot f(t)dt \quad \boxed{0,25 \text{ pt}}, \text{ Ainsi},$

$$\mathcal{F}(f')(x) = \int_{-\infty}^{+\infty} e^{-ixt} \cdot f'(t) dt = ix \int_{-\infty}^{+\infty} e^{-ixt} \cdot f(t) dt.$$

<u>Deuxième manière:</u> On a $\mathcal{F}(f')(x) = \int_{-\infty}^{+\infty} e^{-ixt} \cdot f'(t) dt = \left[e^{-ixt} \cdot f(t)\right]_{-\infty}^{+\infty} + \frac{1}{2} \left[e^{-ixt} \cdot f(t)\right]_{-\infty}^{+\infty}$

$$ix \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt$$
 (après une IPP), pour calculer $\left[e^{-ixt} f(t)\right]_{-\infty}^{+\infty}$ il suffira

de calculer $\lim_{t\to +\infty} \cos(xt) f(t)$, $\lim_{t\to +\infty} \sin(xt) f(t)$, $\lim_{t\to -\infty} \cos(xt) f(t)$, $\lim_{t\to -\infty} \sin(xt) f(t)$ ce qui correspond aux parties réelles et parties imaginaires, choisissons de calculer $\lim_{t\to +\infty} \cos(xt) f(t)$, les autres limites se feront de façon analogue:

Pour cela utilisons le lemme suivant: Soit $f \in R_{loc}[0, +\infty[$, si $\int_{0}^{+\infty} f(t)dt$

converge alors $\lim_{t\to +\infty} f(t) = 0$ ou n' \nexists :

(en effet les deux autres cas $\lim_{t\to +\infty} f(t) = k \neq 0$ et $\lim_{t\to +\infty} f(t) = \pm \infty$ don-

neraient $\int_{0}^{+\infty} f(t)dt$ diverge - par la régle de l'ordre- ce qui est contradictoire). 0,25 pt

Utilisons alors ce lemme, puisque $f \in \mathcal{L}^1(\mathbb{R})$ alors $\int_{-\infty}^{+\infty} |f(t)| dt$ converge

donc $\int\limits_0^{+\infty} f(t)dt$ converge ie $\lim\limits_{t\to +\infty} f(t)=0$ ou n' \nexists ... $\boxed{0,25~{\bf pt}}$. D'autre part

$$f' \in \mathcal{L}^{1}(\mathbb{R}) \Rightarrow \int_{0}^{+\infty} |f'(t)| dt$$
 converge $\Longrightarrow \int_{0}^{+\infty} f'(t) dt$ converge,

or
$$\int_{0}^{+\infty} f'(t)dt = \lim_{t \to +\infty} f(t) - f(0) \in \mathbb{R}$$
 donc $\lim_{t \to +\infty} f(t)$ existe et est

égale à une constante, on en conclut, d'aprés le lemme cité au dessous, $\lim_{t\to +\infty} f(t)=0...\boxed{0,25~{\bf pt}}.$

On obtient que $\lim_{t\to+\infty}\cos\left(xt\right)f(t)=0$, de même pour les autres limites. Conclusion : $\mathcal{F}(f')(x)=ix\mathcal{F}(f)(x)$

1. on a
$$-2g''(t) + 6g(t) = e^{-3|t|} \ \forall t$$

(a) Comme
$$g, g', g'' \in L^1(\mathbb{R})$$
 alors
$$\mathcal{F}\left(-2g''(t) + 6g(t)\right)(x) = \mathcal{F}\left(e^{-3|t|}\right)(x) \Longleftrightarrow -2\mathcal{F}\left(g''(t)\right)(x) + 6\mathcal{F}\left(g(t)\right)(x) = \frac{6}{x^2 + 9} \boxed{0, 25 \text{ pt}}$$
Mais,
$$\rightarrow \quad g, g' \in L^1(\mathbb{R}) \Longrightarrow \mathcal{F}\left(g'\right)(x) = ix\mathcal{F}\left(g\right)(x) \ \forall x, \ \boxed{0, 25 \text{ pt}}$$

$$\rightarrow g', g" \in L^{1}(\mathbb{R}) \Longrightarrow \mathcal{F}(g")(x) = ix\mathcal{F}(g')(x) = ix(ix\mathcal{F}(g)(x)) = -x^{2}\mathcal{F}(g)(x) \quad \forall x, \quad \boxed{0,25 \text{ pt}}$$
ce qui joint à (1), donne

$$2x^{2}\mathcal{F}\left(g\right)\left(x\right)+6\mathcal{F}\left(g\right)\left(x\right)=\frac{6}{x^{2}+9}\boxed{0,25~\mathbf{pt}}\Longleftrightarrow\mathcal{F}\left(g\right)\left(x\right)=\frac{3}{\left(x^{2}+3\right)\left(x^{2}+9\right)}\forall x\in\mathbb{R}.\boxed{0,25~\mathbf{pt}}$$

Il est clair que $\frac{1}{2} \left(\frac{1}{3+x^2} - \frac{1}{9+x^2} \right) = \frac{3}{(x^2+3)(x^2+9)} \ \forall x \in \mathbb{R}, \ \boxed{0,25 \ \mathbf{pt}}, \ \mathrm{donc}$

$$\mathcal{F}(g)(x) = \frac{1}{2} \left(\frac{1}{3+x^2} - \frac{1}{9+x^2} \right).$$

(b) D'après la première question, $\frac{2\alpha}{x^2 + \alpha^2} = \mathcal{F}\left(e^{-|\alpha t|}\right)(x)$. Donc,

$$\rightarrow$$
 pour $\alpha = \sqrt{3}$, $\frac{1}{3+x^2} = \frac{1}{2\sqrt{3}} \mathcal{F}\left(e^{-\sqrt{3}|t|}\right)(x)$. $\boxed{0,25 \text{ pt}}$

$$\rightarrow$$
 pour $\alpha = 3$, $\frac{1}{9+x^2} = \frac{1}{6} \mathcal{F}\left(e^{-|3t|}\right)(x)$. $\boxed{0,25 \text{ pt}}$

Par conséquen

$$\mathcal{F}(g)(x) = \frac{1}{2} \left(\frac{1}{3+x^2} - \frac{1}{9+x^2} \right) = \frac{1}{2} \left(\frac{1}{2\sqrt{3}} \mathcal{F}\left(e^{-\sqrt{3}|t|}\right)(x) - \frac{1}{6} \mathcal{F}\left(e^{-|3t|}\right)(x) \right)$$

$$= \mathcal{F}\left(\frac{1}{4\sqrt{3}} e^{-\sqrt{3}|t|} - \frac{1}{12} e^{-|3t|} \right)(x) \quad \boxed{0,25 \text{ pts}}$$

$$= \mathcal{F}(h)(x), \forall x. \tag{(2)}$$

avec
$$h(t) = \frac{1}{4\sqrt{3}}e^{-\sqrt{3}|t|} - \frac{1}{12}e^{-|3t|}$$

Ainsi, en appliquant le théorème d'inversion de Fourier

ightarrowcomme g est continue et C^1 par morceaux sur \mathbb{R} $\boxed{0,25~\mathbf{pt}}$, il vient

$$g(t) = \frac{1}{2\pi} \lim_{A \to +\infty} \left(\int_{-A}^{+A} e^{iax} \mathcal{F}g(x) dx \right), \qquad \boxed{0,5 \text{ pt}}$$
 ((3))

 \rightarrow comme:h est continue sur \mathbb{R} et derivable sur \mathbb{R}^* 0,25 \mathbf{pt} , et de plus elle est derivable a droite et a gauche de 0 0,25 \mathbf{pt} , il vient

$$h(t) = \frac{1}{2\pi} \lim_{A \to +\infty} \left(\int_{-A}^{+A} e^{iax} \mathcal{F}h(x) dx \right). \quad \boxed{0,5 \text{ pt}}$$
 ((4))

De (2), (3) et (4) on obtient $g(t) = h(t) = \frac{1}{4\sqrt{3}}e^{-\sqrt{3}|t|} - \frac{1}{12}e^{-|3t|}, \forall t...$