Poznámka

Stručný obsah: Diferencovatelnost v Banachových prostorech; Asplundovy prostory; slabé Asplundovy prostory; fragmentovanost a oddělovací spojitost; atd.

1 Diferencovatelnost

1.1 Základní pojmy

Poznámka

Většina by fungovala i pro NLP, ale my se pro jednoduchost zaměříme na Banachovy prostory.

Definice 1.1

X,Yreálné Banachovy prostory, $U\subset X$ otevřená, $f:U\to Y,\,x\in U,\,h\in X$:

$$\partial_h^+ f(x) = \lim_{t \to 0_+} \frac{f(x+t \cdot h) - f(x)}{t} \in Y$$
, pokud existuje,

$$\partial_h f(x) = \lim_{t \to 0} \frac{f(x+t \cdot h) - f(x)}{t} \in Y$$
, pokud existuje.

 $\partial_{\mathbf{o}}^+ f(x) = \partial_{\mathbf{o}} f(x) = 0$. Pokud ||h|| = 1, pak je to směrová derivace.

Pokud $\alpha > 0$, pak $\partial_{\alpha h}^+ f(x) = \alpha \partial_h^+ f(x)$, má-li alespoň jedna strana smysl. Podobně pro $\alpha \in \mathbb{R} \setminus \{0\}$ je $\partial_{\alpha h} f(x) = \alpha \partial_h f(x)$, má-li alespoň jedna strana smysl (speciálně $\alpha = -1$).

$$\exists \partial_h f(x) \Leftrightarrow \exists \partial_{-h}^+ f(x) = -\partial_h^+ f(x).$$

Definice 1.2 (Gateauxova derivace)

X,Y reálné Banachovy prostory, $U\subset X$ otevřená, $f:U\to Y,\ x\in U,\ h\in X$: Pokud $\exists L\in\mathcal{L}(X,Y),$ že $\forall h\in X:L(h)=\partial_hf(x),$ značíme $f'_g(x)=L.$

Poznámka

Stačí, aby $\forall h \in X: L(h) = \partial_u^+ f(a)$. Znamená to, že $h \mapsto \partial_h^{(+)} f(x)$ je omezený lineární operátor.

Definice 1.3 (Fréchetova derivace)

f má v bodě $x \in U$ Fréchetovu derivaci, pokud $\exists L \in \mathcal{L}(X,Y)$:

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - L(h)}{\|h\|} = 0.$$

Poznámka

Pokud takové L existuje, nutně platí $L=f_g'(x)$. Fréchetovu derivaci značíme $f_F'(x)$.

Poznámka

$$\exists f_F'(x) \Leftrightarrow \exists f_g'(x) \land \lim_{t \to 0} \frac{f(x+th) - f(x)}{t} = \partial_h f(x) \text{ stejnoměrně pro } h \in B_X \text{ (resp. } h \in S_X).$$

 $D\mathring{u}kaz$

 $f_F'(x)$ existuje \Leftrightarrow

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall h \in X, \|h\| < \delta : \|f(x+h) - f(x) - \partial_h f(x)\| \leqslant \varepsilon \cdot \|h\|$$

Existenci $f_g'(x)$ máme, tedy: $\varepsilon > 0$... najdeme to $\delta > 0$: $h \in B_x$, $t \in \mathbb{R}$, $0 < |t| < \delta$ $\implies ||t \cdot h|| < \delta$:

$$||f(x+th) - f(x) - \partial_{t \cdot h} f(x)|| \le \varepsilon ||t \cdot h|| = \varepsilon \cdot |t|$$

$$||\frac{f(x+th) - f(x)}{t} - \partial_h t(x)|| \le \varepsilon$$

to dává stejnoměrnou konvergenci " \Longrightarrow ".

 $,, \iff \text{``: Necht } \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall h \in \{x | \forall t \in P(\mathbf{o}, \delta)\}:$

$$\left\|\frac{f(x+t\cdot h)-f(x)}{t}-\partial_h f(x)\right\|\leqslant \varepsilon.$$

 $\varepsilon>0$... najdeme to $\delta>0$: Zvolíme $h\in X,\ 0<\|h\|<\delta\implies \frac{h}{\|h\|}\in S_X$

$$\implies \|\frac{f(x+h)-f(h)}{\|h\|} - \frac{\partial_h f(x)}{\|h\|}\| \leqslant \varepsilon \implies$$

$$\implies \frac{\|f(x+h) - f(x) - \partial_h f(x)\|}{\|h\|} < \varepsilon.$$

Poznámka

1. $X = \mathbb{R}$, pak je F. derivace, G. derivace a běžná derivace to samé.

- 2. TODO?
- 3. TODO?

Tvrzení 1.1

 $\dim X < \infty, \ U \subset X \ otevřená; \ f: U \to Y \ lipschitzovská, \ x \in U, \ f'_g(x) \ existuje \implies f'_F(x)$ existuje.

 $D\mathring{u}kaz$

f lipschitzovská \Longrightarrow existuje $L>0: \|f(x)-f(y)\| \leqslant L\cdot \|x-y\|$ $(x,y\in U)$. Nechť existuje $f_g'(x)$. Potom $\forall \varepsilon>0$ existuje $h_1,\ldots,h_N\in S_X$ ε -síť. Nechť $\delta>0$ je takové, že $B(x,\delta)\subset U$ a $0<|t|<\delta \implies \|\frac{f(x+th_i)-f(x)}{t}-f_g'(x)(h_i)\|<\varepsilon$.

Vezmeme $h \in S_X$ libovolné, $0 < |t| < \delta$. Existuje i, že $||h - h_i|| < \varepsilon$:

$$\left\| \frac{f(x+t\cdot h) - f(x)}{t} - f'_g(x)(h) \right\| \leq \left\| \frac{f(x+t\cdot h) - f(x+t\cdot h_i)}{t} \right\| + \left\| \frac{f(x+t\cdot h_i) - f(x)}{t} - f'_g(x) \right\| + \left\| f'_g(x) - f'_g$$

_ Poznámka

Stačí lokálně lipschitzovská.

Tvrzení 1.2

 $f:(a,b) \to \mathbb{R}$ konvexní $\Longrightarrow f'(x)$ existuje v každém bodě (a,b) až na spočetně mnoho.

 $D\mathring{u}kaz$

1) $\forall x \in (a,b)$ existuje vlastní $f'_+(x)$, nebot $f'_+(x) = \lim_{y \to x_+} \frac{f(y) - f(x)}{y - x}$, což je neklesající funkce v $y \in (x,b)$ a zdola omezená hodnotou $\frac{f(z) - f(x)}{z - x}$ pro $z \in (a,x)$.

2) $x \mapsto f'_+(x)$ je neklesající na (a,b). 3) Podobně pro f'_- . Tedy f je spojitá na (a,b). 4) f'(x) neexistuje $\Leftrightarrow f'_+$ má v bodě x skok. $(f'_+$ je spojitá v $x \implies f'_x(x) = \lim_{y \to x_-} f'_+(y) = \lim_{y \to x_-} f'_-(y), \ f'_-(y) \leqslant f'_-(z)$ pro z > y).

Tvrzení 1.3

 $f \ convex \ and \ bounded \ from \ above \ on \ B(x,r), \ x \in X, r > 0 \implies f \ \ is \ Lipschitz \ on \ B\left(x,\frac{1}{2}\right).$

 $D\mathring{u}kaz$

1) "
$$fM$$
 on $B(x,r) \implies f \ge 2f(x) - M$ on $B(x,r)$ ": $y \in B(x,r)$, $z := x + (x - y)$ $\implies z \in B(x,r)$, $x = \frac{1}{2}(y+z)$. $f(x) \le \frac{1}{2}(f(y) + f(z))$, $f(y) \ge 2f(x) - f(z) \ge 2f(x) - M$.

2) Assume $|f| \le M$ on B(x,r). Take $v, w \in B(x, \frac{r}{2}), v \ne w, z := w + \frac{z}{2} \frac{w-v}{\|w-v\|} \implies z \in B(x,r). \ w(1+\frac{z}{2\|w-v\|}) = z + \frac{z}{2\|w-v\|}v,$

$$f(w) \le \frac{f(z) + \frac{z}{2\|w - v\|} f(v)}{1 + \frac{z}{2\|w - v\|}}$$

$$f(w) - f(v) \le \frac{f(z) + f(v)}{1 + \frac{z}{2||w - v||}}$$

$$\frac{f(w) - f(v)}{\|w - v\|} \leqslant \frac{f(z) - f(v)}{\|w - v\| + 1/2} \leqslant \frac{2M}{\frac{r}{2}} = \frac{4M}{r}$$

 $\implies f \text{ is } \frac{4M}{r}\text{-lipschitz on } B(x, \frac{y}{2}).$

Dusledek

- dim $X < \infty$, $U \subset X$ open convex, $f: U \to \mathbb{R}$ convex $\Longrightarrow f$ is locally lipschitz on U. (WLOG: $X = (\mathbb{R}^n, \|\cdot\|_1)$. $x \in U \Longrightarrow \exists r > 0 \overline{B_{\|\cdot\|_1}(x,r)} \subset U$. $\overline{B_{\|\cdot\|_1}(x,r)} = \frac{\text{conv}\{x \pm re_i | i \in [n]\}}{B_{\|\cdot\|_1}(x,\frac{r}{2})}$ on $\overline{B_{\|\cdot\|_1}(x,\frac{r}{2})} \Longrightarrow f$ is Lipschitz on $\overline{B_{\|\cdot\|_1}(x,\frac{r}{2})}$
- dim $X < \infty$, $U \subset X$ open convex, $f: U \to \mathbb{R}$ convex, $x \in U \Longrightarrow f'_F(x)$ exists if and only if f'_g (,, \Longrightarrow " always, ,, \Leftarrow " from first item and tyrzeni above).
- X Banach space, $U \subset X$ open convex, $f: U \to \mathbb{R}$ continuous convex, then f is locally Lipschitz on U (f continuous \Longrightarrow f is locally bounded \Longrightarrow f is locally Lipschitz).

Věta 1.4

$$X = l_1, f: X \to \mathbb{R}, f(x) = ||x|| = \sum_{n=1}^{\infty} |x_n|.$$

$$\exists f'_g(x) \Leftrightarrow \forall n \in \mathbb{N} : x_n \neq 0. \implies f'_g(x) = (\operatorname{sgn} x_n)_{n=1}^{\infty} \in l_{\infty},$$

$$\forall x \in l_1 \not \equiv f_F'(x).$$

1) $x \in l_1$, $n \in \mathbb{N}$, $x_n = 0$. Take $h = e_n \sum_{k \neq n} |x_k| + |t|$. $\partial_h f(x) = \lim_{t \to 0} \frac{\|x + t \cdot e_n\| - \|x\|}{t} = \lim_{t \to \frac{|t|}{t}} \operatorname{doesn't}$ exist. This prove ".

$$\left| \frac{f(x+t\cdot h) - f(x)}{t} - \sum_{n=1}^{\infty} h_n \cdot \operatorname{sgn} x_n \right| = \left| \frac{1}{t} \sum_{n=1}^{\infty} (|x_n + t \cdot h_n| - |x_n| - th_n \operatorname{sgn} x_n) \right| \le \left| \frac{1}{t} \sum_{n=1}^{N} (...) \right| + \frac{1}{t} \sum_{n>N} (...)$$

5