31_Reena Vaidya_AI&DS

Experiment No. 2
Implement Multilayer Perceptron algorithm to simulate XOR
gate
Date of Performance:
Date of Submission:

Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

Aim: Implement Multilayer Perceptron algorithm to simulate XOR gate.

Objective: Ability to perform experiments on different architectures of multilayer perceptorn.

Theory:

multilayer artificial neuron network is an integral part of deep learning. And this lesson will help you with an overview of multilayer ANN along with overfitting and underfitting.

A fully connected multi-layer neural network is called a Multilayer Perceptron (MLP).

At has 3 layers including one hidden layer. If it has more than 1 hidden layer, it is called a deep ANN. An MLP is a typical example of a feedforward artificial neural network. In this figure, the ith activation unit in the lth layer is denoted as ai(l).

The number of layers and the number of neurons are referred to as hyperparameters of a neural network, and these need tuning. Cross-validation techniques must be used to find ideal values for these.

Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

The weight adjustment training is done via backpropagation. Deeper neural networks are better at processing data. However, deeper layers can lead to vanishing gradient problems. Special algorithms are required to solve this issue.

A multilayer perceptron (MLP) is a feed forward artificial neural network that generates a set of outputs from a set of inputs. An MLP is characterized by several layers of input nodes connected as a directed graph between the input nodes connected as a directed graph between the input and output layers. MLP uses backpropagation for training the network. MLP is a deep learning method.

```
Code-
import numpy as np
def converter(a):
  if (a >= 0):
    return 1
  else:
    return 0
def PerceptronModel(x, w, b):
  a = np.dot(w, x)+b
  y = converter(a)
  return y
# And Logic
def AND logic(x):
  w = np.array([1, 1])
  bAND = -1.5
  return PerceptronModel(x, w, bAND)
# OR Logic
def OR logic(x):
  w = np.array([2, 2])
  bOR = -1
  return PerceptronModel(x, w, bOR)
```

NAVAROTHIAN IN THE PROPERTY OF THE PROPERTY OF

Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

```
# NOT logic
def NOT_logic(x):
  w = -1
  bNOT = 0.5
  return PerceptronModel(x, w, bNOT)
def XOR logic(x):
  y1 = AND_logic(x)
  y2 = OR_logic(x)
  y3 = NOT_logic(y1) Fin_x
  = np.array([y2, y3])
  F_Output = AND_logic(Fin_x)
  return F Output
# Model Testing
test1 = np.array([0,
0])
         test2
np.array([0, 1]) test3
= np.array([1, 0])
test4 = np.array([1,
1])
print("XOR({}, {}) = {}".format(0, 0, XOR logic(test1)))
print("XOR({}, {}) = {}".format(0, 1, XOR logic(test2)))
print("XOR({}, {}) = {}".format(0, 1, XOR logic(test3)))
print("XOR({}, {}) = {}".format(1, 1, XOR\_logic(test4)))
```


Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

Conclusion:

Certainly! Neural networks are powerful models inspired by the brain's structure, with layers of interconnected nodes. The backpropagation algorithm is a technique to train these networks. It calculates the difference between predicted and actual outputs, adjusts weights accordingly to minimize the difference, and repeats until the network learns patterns in data. This approach has been transformative in machine learning but requires careful parameter tuning and can face challenges like vanishing/exploding gradients.