CTM - TD 2

Cinétique chimique

I - Cinétique formelle

À la température $T=20\,^{\circ}\mathrm{C}$, on envisage la réaction isochore en solution aqueuse diluée suivante :

$$2A \longrightarrow B + C$$

On suppose que cette réaction admet un ordre global égal à 2. La concentration [A](t) sera notée a(t), et la concentration initiale [A](t = 0) sera notée a_0 .

1. Déterminer l'expression littérale de a(t) (a = [A] sera donc exprimé en fonction de a_0 , k et t).

Nous avons initialement $a_0 = 0.20 \,\mathrm{mol}\,\mathrm{L}^{-1}$. Au bout d'un temps $t_1 = 30 \,\mathrm{min}$, $20 \,\%$ du réactif A ont disparu.

- 2. Déterminer l'expression littérale de la constante de vitesse k à la température de l'expérience en fonction de t_1 et a_0 . Faire l'application numérique et donner la valeur de k (unité demandée : Lmol⁻¹min⁻¹).
- 3. En déduire la valeur du temps de demi réaction $t_{\frac{1}{2}}$ (que l'on exprimera en minutes).
- 4. Que deviennent respectivement k et $t_{\frac{1}{2}}$ si l'on divise la concentration initiale par 2?

La même expérience étant réalisée à la température $T' = 373 \,\mathrm{K}$, la constante de vitesse augmente et prend une nouvelle valeur $k' = 0.10 \,\mathrm{Lmol}^{-1} \mathrm{min}^{-1}$.

- 5. Calculer l'énergie molaire d'activation E_a de la réaction (on donnera d'abord une expression littérale puis l'application numérique).
- 6. À quelle température T'' faut-il réaliser l'expérience pour que la nouvelle constante de vitesse de réaction soit 10 fois plus grande que k'?

II - Décomposition d'un peroxyde en phase gazeuse

On considère, en phase gazeuse, la décomposition du peroxyde de ditertiobutyle:

$$(CH_3)_3C-O-O-C(CH_3)_3 \longrightarrow 2CH_3 - CO - CH_3 + C_2H_6$$

Une masse déterminée de réactif (peroxyde) est enfermée à température T constante dans un réacteur isochore (volume noté V) et on suit les variations de la pression en fonction du temps. Pour simplifier nous écrirons la réaction

$$A \longrightarrow 2B + C$$

avec $n_{A0} = n_0$; $n_{B0} = n_{C0} = 0$

- 1. Sachant que la réaction est d'ordre un (constante cinétique notée k), démontrer l'expression de [A](t) en fonction de n_0 , V, k, t, puis celle de $P_A(t)$ (pression partielle en A) en fonction de P_0 (pression initiale du système), k, t.
- 2. Exprimer P_B (pression partielle en B) en fonction de P_A et P_0 puis P_C (pression partielle en C) en fonction de P_A et P_0 .
- 3. Déterminer la relation entre P, P_A et P_0 et en déduire l'expression temporelle P(t) de la pression du système au cours de la réaction.
- 4. Représenter l'allure de la courbe de P = f(t).
- 5. Démontrer l'expression de $t_{\frac{1}{2}}$.
- 6. Calculer la valeur de k (en min⁻¹) sachant que l'on a :

t (min)	0	50	
P (hPa)	250	431	

- 7. En déduire la valeur numérique de $t_{\frac{1}{2}}$.
- 8. Application : déterminer à quel instant t_1 , la pression du système sera égale à $P_1=600\,\mathrm{hPa}$.

III - Énergie d'activation

Dans un cahier de laboratoire, on trouve des résultats concernant la détermination à différentes températures T de la constante de vitesse k de la réaction du dioxyde d'azote avec le monoxyde de carbone gazeux, modélisée par l'équation-bilan suivante :

$$NO_2(g) + CO(g) \longrightarrow CO_2(g) + NO(g)$$

Les résultats sont présentés dans le tableau ci-dessous :

T(K)	600	650	700	750	800
$k \text{ (L.mol}^{-1}.\text{s}^{-1})$	0,028	0,18	1,4	5,0	23

Est également consignée une modélisation affine de la relation entre ces données sous la forme $\ln k = a \frac{1}{T} + b$, avec les résultats suivants :

a	-16.10^{3}
b	23
Incertitude-type sur a	4.10^{2}
Incertitude-type sur b	0,63
Coefficient de détermination r^2	0,9978
Nombre de degrés de liberté	3

Malheureusement, l'interprétation des ces données n'a pas été consignée dans le cahier de laboratoire...

- 1. Quel est l'ordre de la réaction? Justifier.
- 2. Grâce aux résultats de la modélisation, déterminer une estimation de l'énergie d'activation de la réaction étudiée.
- 3. Pour la détermination des incertitudes, une table de Student nous indique que, pour un niveau de confiance de 95 % et 3 degrés de liberté, on a un facteur d'élargissement $m \approx 3$. En déduire l'incertitude élargie sur l'énergie d'activation.
- 4. Écrire le résultat de la mesure de l'énergie d'activation.
- 5. Que nous permet de connaître le coefficient b?

On donne : $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

IV - Spectrophotométrie

On étudie l'oxydation d'un alcène par le permanganate dilué $\mathrm{MnO_4^-}$ en milieu tampon (pH = 6,8) à 25 °C.

$$MnO_4^- + alcène \xrightarrow{k} MnO_n + produit$$

On considère que la réaction est quasi-totale et que tous les constituants physico-chimiques sont des solutés en solution aqueuse. On suit grâce à un spectrophotomètre UV-visible la disparition de $\mathrm{MnO_4}^-$ en mesurant l'absorbance de la solution A à $\lambda=526\,\mathrm{nm}$. À cette longueur d'onde, absorbent le permanganate ainsi que son produit de réduction noté $\mathrm{MnO_n}$. On appelle ε_1 et ε_2 le deux coefficients d'extinction molaire et L la longueur de la cuve. L'abosrbance d'une espèce chimique est donnée par la loi de Beer-Lambert : $A(\lambda)=\varepsilon(\lambda)\cdot L\cdot C$ où L est la longueur du trajet parcouru par le rayonnement, C la concentration de l'espèce chimique et ε le coefficient d'extinction molaire. On appelle ε_1 le coefficient d'extinction molaire à $\lambda=526\,\mathrm{nm}$ du permanganate et ε_2 celui de son produit.

- 1. Déterminer A_0 , A_t et A_{∞} les absorbances initiale, courante à l'instant t et finale en fonction de c_0 et c_t , les concentrations initiale et courante en permanganate, ε_1 , ε_2 et L.
- 2. On travaille avec un large excès d'alcène vis-à-vis de MnO_4^- . Dans l'hypothèse où la loi de vitesse est une loi de Van't Hoff 1 , quelle fonction Y de A_0 , A_t et A_∞ doit-on tracer pour déduire la constante apparente de vitesse?
- 3. Lecture graphique : la courbe représentative de Y en fonction du temps est donnée à la figure $\ref{eq:constant}$. En déduire la valeur de la constante apparente.

^{1.} Une cinétique chimique suit une loi de Van't Hoff si les ordres partiels des réactifs sont égaux à leurs coefficients stœchiométriques.

FIGURE 1.1 – Courbe représentative de Y en fonction du temps.

V - Décomposition de l'éthanal

Dans un réacteur de volume V constant, on introduit de l'éthanal pur qui se décompose suivant la réaction totale en phase vapeur :

$$CH_3CHO_{(g)} \longrightarrow CH_{4(g)} + CO_{(g)}$$

que l'on notera pour simplifier en

$$A \longrightarrow B + C$$

Les gaz A, B et C peuvent être considérés comme parfaits. On donne $R = 8,31 \,\mathrm{J\,mol}^{-1}\,\mathrm{K}^{-1}$. La pression totale du mélange gazeux, dont la température est maintenue à $477\,^{\circ}\mathrm{C}$, est notée P. On note P_A , P_B et P_C les pressions partielles des gaz A, B et C.

On prend : $[B]_0 = 0$ et $[C]_0 = 0$ et on pose $P_{A0} = P_0$.

- 1. Exprimer la vitesse volumique de réaction r(t) en fonction de $\frac{dP}{dt}$.
- 2. Exprimer [A] en fonction de P₀, P(t), R et T.
 Pour étudier la cinétique on mesure, à différents instants t, la pression totale P dans le réacteur, à l'aide d'un manomètre. On cherche à déterminer l'ordre de la réaction.

Les résultats expérimentaux sont les suivants : (lire la suite avant de compléter le tableau)

t (min)	0,00	4,00	9,00	14,0	20	26,5	34,0	42,5	53,0
P (hPa)	283	297	312	326	340	354	368	382	397
$\frac{\mathrm{d}P}{\mathrm{d}t}$ (Pa.s ⁻¹)									N.A.
$2 P_0 - P \text{ (Pa)}$									

Méthode différentielle

3. Déterminer par une méthode graphique l'ordre de la réaction en traçant la courbe :

$$\ln(r) = f(\ln([A])$$

Pour cela on utilisera le tableau et on approximera la dérivée de p en fonction du temps par :

$$P'(t_1) = \left(\frac{dP}{dt}\right)_{(t=t_1)} \approx \frac{P(t_2) - P(t_1)}{t_2 - t_1}$$

4. Déduire également de l'étude précédente une valeur de la constante de vitesse k.

Méthode intégrale

- 5. Montrer par une **méthode graphique** que l'ordre de la réaction est bien celui déterminé grâce à la méthode précédente. On pourra prendre des barres d'erreur à ± 5 %.
- 6. Calculer le temps de demi réaction $\tau_{\frac{1}{3}}$.