

Image Reconstruction: CT Denoising

Ismaël Gomes Almada Guillemin

MATH CSE Master

8 ECTS semester project

With the supervision of:

Prof. Andò

Dr. Kashani

RX Solutions

 École polytechnique fédérale de Lausanne

EPFL Center for Imaging

Brief overview : Computational Imaging Tomography

Determine volume absorption profile

- Project X-rays through object
- Record shadows from different angles

Popular method Filtered Back Projection (FBP)

Direct inversion method

- Use adjoint of forward operator
- Use deblurring filter (i.e Ramp filter)

Advantages:

- Fast
- Perform well qualitatively/quantitatively upon some constraints

Weakness

- Noise-sensitive
- Relies on a dense angular sampling

Low noise level

High noise level

Goal of the project

Goal: Explore strategies to enhance the quality of noisy images reconstructed via FBP

Potential solutions:

Pre-processed FBP : Denoise Sinograms with SP/ML methods → Apply FBP

Post-processed FBP : Apply FBP → Denoise output with SP/ML methods

 Model-based → Solve optimization problem via iterative methods with FBP as starting point

$$\hat{\mathbf{x}}_{\text{opt}} = \arg\min_{\mathbf{x}} \|R(\mathbf{x}) - \mathbf{y}\|_{2}^{2} + \lambda f(\mathbf{x})$$

Metrics

- Signal-to-Noise Ratio (SNR)
- Contrast-to-Noise Ratio (CNR)

$$CNR = \frac{|\mu_{\text{signal}} - \mu_{\text{background}}|}{\sigma_{\text{noise}}}$$

250

300

300

150

250

FBP

Low noise level

High noise level

250

300

High noise level

Model-based $\hat{\mathbf{x}}_{\text{opt}} = \arg\min_{\mathbf{x}} \|R(\mathbf{x}) - \mathbf{y}\|_2^2 + \lambda f(\mathbf{x})$

SNR [dB]

LS + CNC denoiser

LS with Support and R+ constraints + TV

High noise level

Conclusion

All methods improve noise/contrast upon FBP baseline

SP methods:

Robust but offer little noise suppression / low contrast in high noise case

• ML methods:

- Best contrast and better noise suppression in high noise case
- Model-based with CNC regularizer: → Great trade-off
 - Overall best contrast
 - Good noise reduction low/high noise cases
 - Fast runtime

To Go Further

- Model-based with CNC regularizer
 - Pretrained model for natural images
 - JAX conversion is still in progress.
 - → Finish implementation and retrain model in CT-specific dataset

•
$$\hat{\mathbf{x}}_{opt} = \arg\min_{\mathbf{x}} \left\{ \|\mathbf{x} - \mathbf{z}\|_{2}^{2} + Reg_{CNC}(\mathbf{x}) \right\}$$

Pre-process FBP with NN

- Despite pretrained for 2D images, improves contrast and SNR
- → Design a 1D-dedicated ML model for sinogram denoising

Self-Assessment & Acknowledgments

Project outcome:

 Goal partially achieved → FBP can be improved, but further research is needed.

Personal objective:

Deepen understanding of image processing and neural networks

Special thanks to Dr. Sepand Kashani:

References

Reference work

Sepand Kashani. Image Reconstruction 101: Computational Methods and Tools. Powerpoint. EPFL Center for Imaging, Apr. 2025.

Reference images

https://ru.photo-ac.com/photo/29401522/concrete-surface-with-exposed-aggregate-cross-section

https://fab.cba.mit.edu/classes/862.19/people/erik/project.html

Thank you for your attention

Questions/Remarks