CLAIMS

What is claimed is:

4	4		
1		A method	comprising:
1	1.	7 I moutou	comprising.

- depositing a no-flow underfill material in a component mounting area of a
- 3 substrate, the component mounting area comprising a plurality of pads;
- 4 placing a component on the component mounting area, such that terminals of
- 5 the component are aligned with corresponding pads and substantially enveloped in
- 6 the underfill material;
- 7 applying suitable pressure to cause the terminals to physically contact the
- 8 pads; and
- 9 applying suitable heat to harden the underfill material.
- 1 2. The method recited in claim 1, wherein, in depositing, the underfill material
- 2 is deposited over the pads.
- 1 3. The method recited in claim 1, wherein, in depositing, the underfill material
- 2 comprises a filler material to reduce the coefficient of thermal expansion.
- 1 4. The method recited in claim 1, wherein, in depositing, the underfill material
- 2 comprises a filler material to increase the modulus of elasticity.
- 1 5. The method recited in claim 1, wherein, in depositing, the underfill material
- 2 comprises a filler material to increase the viscosity.
- 1 6. The method recited in claim 1, wherein, in depositing, the underfill material
- 2 comprises a filler material selected from the group comprising silica, silicon oxide,
- 3 silicon dioxide, silicon nitride, aluminum oxide, and aluminum nitride.

- 1 7. The method recited in claim 6, wherein, in depositing, the filler material is in
- 2 the range of 0% to 80%, by weight, of the underfill material.
- 1 8. The method recited in claim 1, wherein, in depositing, the underfill material
- 2 comprises filler particles having a size in the range of 0.05 microns to 40 microns.
- 1 9. The method recited in claim 8, wherein, in depositing, the filler particles are
- 2 substantially spherical.
- 1 10. The method recited in claim 1, wherein, in depositing, the underfill material
- 2 comprises a resin selected from the group comprising an epoxy resin, a siloxirane
- 3 resin, a superoxirane resin, a polybenzoxazine resin, a benzocyclobutane resin, or a
- 4 mixture thereof.
- 1 11. The method recited in claim 1, wherein, in depositing, the underfill material
- 2 comprises a fluxing agent.
- 1 12. The method recited in claim 11, wherein, in depositing, the fluxing agent is
- 2 selected from the group comprising an organic carboxylic acid, a polymeric fluxing
- 3 agent that has one or more carboxylic acid groups, an organic compound that
- 4 contains one or more hydroxyl groups, or a mixture thereof.
- 1 13. The method recited in claim 1, wherein the pads are pre-coated with solder,
- and wherein, in applying suitable heat, the terminals become attached to the pads
- 3 through the solder.
- 1 14. The method recited in claim 1, wherein the terminals are pre-coated with
- 2 solder, and wherein, in applying suitable heat, the terminals become attached to the
- 3 pads through the solder.

- 1 15. The method recited in claim 1, wherein the terminals and the pads are pre-
- 2 coated with solder, and wherein, in applying suitable heat, the terminals become
- attached to the pads through the solder.
- 1 16. The method recited in claim 1, wherein the operations of applying suitable
- 2 pressure and suitable heat are performed substantially concurrently.
- 1 17. The method recited in claim 16, wherein the operations of applying suitable
- 2 pressure and suitable heat are performed by apparatus from the group comprising a
- 3 thermocompression bonder and an ultrasonic bonder.
- 1 18. The method recited in claim 1, wherein the operation of applying suitable
- 2 pressure is performed by a die placement tool.
- 1 19. The method recited in claim 18, wherein the pads are pre-coated with solder,
- 2 and wherein the method further comprises:
- 3 pre-attaching the terminals to the pads by applying suitable heat using the
- 4 die placement tool.
- 1 20. The method recited in claim 18, wherein the terminals are pre-coated with
- 2 solder, and wherein the method further comprises:
- 3 pre-attaching the terminals to the pads by applying suitable heat using the
- 4 die placement tool.
- 1 21. The method recited in claim 18, wherein the operation of applying suitable
- 2 heat is performed by solder reflow apparatus.
- 1 22. A component package fabricated by:
- depositing a no-flow underfill material in a component mounting area of a
- 3 substrate, the component mounting area comprising a plurality of pads;

- 4 placing a component on the component mounting area, such that terminals of
- 5 the component are aligned with corresponding pads and substantially enveloped in
- 6 the underfill material;
- 7 applying suitable pressure to cause the terminals to physically contact the
- 8 pads; and
- 9 applying suitable heat to harden the underfill material.
- 1 23. The component package recited in claim 22 and fabricated such that the
- 2 operations of applying suitable pressure and suitable heat are performed
- 3 substantially concurrently by apparatus from the group comprising a
- 4 thermocompression bonder, an ultrasonic bonder, and a component placement tool.
- 1 24. The component package recited in claim 22 and fabricated such that the pads
- 2 are pre-coated with solder, and wherein, in applying suitable heat, the terminals
- 3 become attached to the pads through the solder.
- 1 25. The component package recited in claim 22 and fabricated such that the
- 2 terminals are pre-coated with solder, and wherein, in applying suitable heat, the
- 3 terminals become attached to the pads through the solder.
- 1 26. The component package recited in claim 22, wherein the underfill material
- 2 comprises a filler material selected from the group comprising silica, silicon oxide,
- 3 silicon dioxide, silicon nitride, aluminum oxide, and aluminum nitride.
- 1 27. An electronic assembly comprising at least one integrated circuit (IC)
- 2 package fabricated by:
- depositing a no-flow underfill material in an IC mounting area of a substrate,
- 4 the IC mounting area comprising a plurality of pads;

5	placing an IC on the IC mounting area, such that terminals of the IC are			
6	aligned with corresponding pads and substantially enveloped in the underfill			
7	material;			
8	applying suitable pressure to cause the terminals to physically contact the			
9 .	pads; and			
10	applying suitable heat to harden the underfill material.			
1	20 The electronic assemble resited in alain, 27 and februarded much that the			
1	28. The electronic assembly recited in claim 27 and fabricated such that the			
2	operations of applying suitable pressure and suitable heat are performed			
3	substantially concurrently by apparatus from the group comprising a			
4	thermocompression bonder, an ultrasonic bonder, and a component placement tool.			
1	29. The electronic assembly recited in claim 27, wherein the underfill material			
2	comprises a filler material selected from the group comprising silica, silicon oxide,			
3	silicon dioxide, silicon nitride, aluminum oxide, and aluminum nitride.			
1	30. An electronic system comprising:			
2	a bus coupling components in the electronic system;			
3	a display coupled to the bus;			
4	external memory coupled to the bus; and			
5	a processor coupled to the bus and having an electronic assembly including			
6	at least one integrated circuit (IC) package fabricated by:			
7	depositing a no-flow underfill material in an integrated circuit (IC)			
8	mounting area of a substrate, the IC mounting area comprising a plurality of			
9	pads;			
10	placing an IC on the IC mounting area, such that terminals of the IC			
l 1	are aligned with corresponding pads and substantially enveloped in the			
12	underfill material;			
13	applying suitable pressure to cause the terminals to physically			
14	contact the pads; and			

- 1 31. The electronic system recited in claim 30 and fabricated such that the
- 2 operations of applying suitable pressure and suitable heat are performed
- 3 substantially concurrently by apparatus from the group comprising a
- 4 thermocompression bonder, an ultrasonic bonder, and a component placement tool.
- 1 32. The electronic system recited in claim 30, wherein the underfill material
- 2 comprises a filler material selected from the group comprising silica, silicon oxide,
- 3 silicon dioxide, silicon nitride, aluminum oxide, and aluminum nitride.