計量経済 II: 宿題 7

村澤 康友

提出期限: 2023年11月13日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

問:gretl のサンプル・データ sw-ch14 は,アメリカの失業率と消費者物価指数の 1959 年第 1 四半期~1999 年第 4 四半期の季節調整済みデータである.失業率と消費者物価上昇率(対数階差)の 2 変量 VAR モデルで 両変数を予測したい.

- 1. 最大次数を 8 として VAR モデルの最適な次数を AIC で選択しなさい.
 - ※ gretlで VAR モデルのラグ次数を選択する手順は以下の通り.
 - (a) メニューから「モデル」→「多変量時系列」→「VAR ラグ選択」を選択.
 - (b)「内生変数」を選択.
 - (c)「外生変数」は選択しない.
 - (d)「最大ラグ」を入力(とりあえずデフォルト値のままでよい).
 - (e) その他は必要に応じて設定(とりあえずデフォルト値のままでよい).
 - (f) $\lceil OK \rfloor$ をクリック.
- 2. AIC で選択した次数の VAR モデルを推定しなさい.
 - ※ gretl で VAR モデルを OLS 推定する手順は以下の通り.
 - (a) メニューから「モデル」 \rightarrow 「多変量時系列」 \rightarrow 「ベクトル自己回帰モデル (VAR)」を選択.
 - (b)「内生変数」を選択.
 - (c)「外生変数」は選択しない.
 - (d)「ラグ次数」を入力.
 - (e) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
 - (f) $\lceil OK \rfloor$ property propert
- 3. VAR モデルの推定結果の画面のメニューから「分析」 \rightarrow 「予測」で各変数の予測値を計算できる。2000 年第 1 四半期~2002 年第 4 四半期(計 12 四半期)について,各変数の予測値を時系列グラフで示しなさい。

解答例

1. 次数選択

VAR モデル, 最大ラグ次数: 8

下記の表中のアスタリスク (*) は、それぞれの情報量規準の最良の値(つまり最小値) につけられている

ここで、AIC は赤池の情報量規準、BIC はシュワルツのベイジアン情報量規準、HQC は Hannan-Quinn 規準の略である.

lags	loglik	p(LR)	AIC	BIC	HQC
1	611.29056		-7.810201	-7.692391	-7.762349
2	655.98858	0.00000	-8.335337	-8.138987	-8.255584
3	679.57847	0.00000	-8.588109	-8.313219*	-8.476455*
4	680.98284	0.59032	-8.554617	-8.201187	-8.411062
5	689.42001	0.00204	-8.611871*	-8.179901	-8.436415
6	691.17589	0.47609	-8.582915	-8.072405	-8.375557
7	693.54556	0.31510	-8.561878	-7.972828	-8.322619
8	695.34702	0.46240	-8.533510	-7.865920	-8.262350

[※] AIC は VAR(5) を選択.

2. VAR(5) の推定結果

VAR モデル, ラグ次数: 5

最小二乗法 (OLS) 推定量, 観測: 1960:3-1999:4 (T=158)

Log-likelihood = 693.461

共分散行列の行列式の値 =5.28225e-007

AIC = -8.4995

 $\mathrm{BIC} = -8.0731$

HQC = -8.3263

かばん検定 (Portmanteau test): LB(39) = 150.134, df = 136 [0.1924]

方程式 1: LHUR

	係数	標準誤差	t-ratio	p 値
const	0.108474	0.0896301	1.210	0.2281
LHUR_{t-1}	1.59666	0.0814169	19.61	0.0000
LHUR_{t-2}	-0.667281	0.151362	-4.409	0.0000
$LHUR_{t-3}$	-0.0562438	0.162967	-0.3451	0.7305
$LHUR_{t-4}$	0.0387890	0.155540	0.2494	0.8034
$LHUR_{t-5}$	0.0458394	0.0815692	0.5620	0.5750
ld_PUNEW_1	14.2811	5.62944	2.537	0.0122
ld_PUNEW_2 -	-15.5554	6.73154	-2.311	0.0222
ld_PUNEW_3	8.17252	6.16961	1.325	0.1873
ld_PUNEW_4	5.88394	6.30944	0.9326	0.3526
ld_PUNEW_5	0.0870916	5.69716	0.01529	0.9878
Mean dependent va	r 6.019198	8 S.D. dep	endent var	1.502549
Sum squared resid	8.090726	6 回帰の標	準誤差	0.234604
R^2	0.977174	4 Adjusted	$1 R^2$	0.975621
F(10, 147)	629.3010	6 P-value	F)	2.8e-115
$\hat{ ho}$	-0.008533	3 Durbin—	Watson	2.010122

ゼロ制約のF検定

All lags of LHUR	F(5, 147) = 795.323	[0.0000]
All lags of ld_PUNEW	F(5, 147) = 5.99278	[0.0000]
All vars, lag 5	F(2, 147) = 0.170822	[0.8431]

方程式 2: ld_PUNEW

	係数	標準誤差	t-ratio	p 値
const	0.00280586	0.00128080	2.191	0.0300
$LHUR_{t-1}$	-0.00730650	0.00116343	-6.280	0.0000
$LHUR_{t-2}$	0.00968627	0.00216294	4.478	0.0000
$LHUR_{t-3}$	-0.00157914	0.00232877	-0.6781	0.4988
$LHUR_{t-4}$	-0.00477037	0.00222265	-2.146	0.0335
$LHUR_{t-5}$	0.00346240	0.00116561	2.970	0.0035
ld_PUNEW_1	0.601365	0.0804437	7.476	0.0000
ld_PUNEW_2	0.0965806	0.0961925	1.004	0.3170
ld_PUNEW_3	0.303994	0.0881626	3.448	0.0007
ld_PUNEW_4	-0.0958719	0.0901608	-1.063	0.2894
ld_PUNEW_5	0.117824	0.0814115	1.447	0.1500
Mean dependent	var 0.011014	4 S.D. depe	ndent var	0.007766
Sum squared resi	d 0.001655	2 回帰の標準	善誤差	0.003352
R^2	0.825513	3 Adjusted	R^2	0.813643
F(10, 147)	69.54679	9 P-value(F	7)	$1.21e{-50}$
$\hat{ ho}$	-0.006742	2 Durbin–V	Vatson	2.009009

ゼロ制約のF検定

All lags of LHUR	F(5,147) = 9.44076	[0.0000]
All lags of ld_PUNEW	F(5, 147) = 134.344	[0.0000]
All vars, lag 5	F(2, 147) = 4.5817	[0.0117]

連立方程式全体に関して —

帰無仮説: 最長のラグは 4 である 対立仮説: 最長のラグは 5 である 尤度比検定: $\chi_4^2=10.409~[0.0341]$

3. 失業率

消費者物価上昇率(対数階差)

