MAT140B WINTER 2024: PROBLEM SET 6

Due: S 02/25/2023, by midnight

Directions: You can collaborate, but must write up the solutions independently and in a good handwriting. Consulting solutions to problem sets of previous semesters or internet solutions is not allowed.

Problem 1. Recall that C([0,1]) is a complete metric space with metric $d(f,g) = \sup_{x \in [0,1]} |f(x) - f(x)|$ g(x)|. For any $0 < \alpha \le 1$ and $M \ge 0$ define

$$C_M^{\alpha}([0,1]) = \{ f : [0,1] \to \mathbb{R} | |f(x) - f(y)| \le M|x - y|^{\alpha} \ \forall \ x, y \in [0,1] \}$$

 $C_M^\alpha([0,1])=\{f:[0,1]\to\mathbb{R}\Big||f(x)-f(y)|\leq M|x-y|^\alpha\ \forall\ x,y\in[0,1]\}.$ Note that $C_M^\alpha([0,1])\subset C([0,1]).$ Prove that bounded subsets of $C_M^\alpha([0,1])$ are compact in C([0,1]).

Problem 2. Chapter 7: 20, 25 (This problem shows one reason why Arzela-Ascoli theorem is useful).

Reading. Read the sections on Exponential and Trigonometric functions in Chapter 8 of Rudin, and use their properties freely in the next exercise. We will justify them in class.

Problem 3. Chapter 8: 1, 4, 5

Problem 4. Chapter 8: 6 (only part (a)), 7