SequênciasMatemática Discreta

Prof. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

6 de agosto de 2020

Roteiro

Prévia

Sequências

Definição e Notação Progressões Aritméticas Progressões Geométricas

Outros Tipos de Sequências

Outros Exemplos Relações de Recorrência Algumas Sequências Importantes

Prévia

Requisitos

- Conceitos de Funções
 - domínio, contradomínio, imagem, composição e inversão
- Propriedades de operações aritméticas

Esta apresentação...

- discute o conceito de sequência e alguns tipos especiais
- inclui sequências comumente utilizadas para composição
- inclui exemplos com relações de recorrência

Sequências

Intuitivamente, sequências são listas ordenadas de objetos

- Importantíssimas em matemática discreta, estruturas de dados e na especificação de diversos algoritmos
- Nosso objetivo é verificar maneiras de especificar sequências e encontrar seus termos

IMPORTANTE:

Sequências são FUNÇÕES! A ordem dos elementos importa!

Roteiro

Prévia

Sequências

Definição e Notação

Progressões Aritméticas Progressões Geométricas

Outros Tipos de Sequências

Outros Exemplos Relações de Recorrência Algumas Sequências Importantes

Sequência - Definição

Definição (Sequência)

Uma **sequência** é uma **função** de um subconjunto dos inteiros para um conjunto qualquer.

Dada uma sequência...

- Seu domínio é um subconjunto dos inteiros
 - Comumentente usa-se $I = \{0, 1, 2, ...\}$ ou $I = \{1, 2, 3, ...\}$
 - o O domínio de uma sequência também é chamado de índice
- Seu contradomínio pode ser qualquer conjunto

Sequência - Definição

Definição (Sequência)

Uma **sequência** é uma **função** de um subconjunto dos inteiros para um conjunto qualquer.

Dada uma sequência...

- Seu domínio é um subconjunto dos inteiros
 - Comumentente usa-se $I = \{0, 1, 2, ...\}$ ou $I = \{1, 2, 3, ...\}$
 - o O domínio de uma sequência também é chamado de índice
- Seu contradomínio pode ser qualquer conjunto

Constatação: Todo $f: I \to S$ tal que $I \subseteq \mathbb{Z}$ é uma sequência.

Sequência - Definição/Exemplo

Definição (Sequência)

Uma **sequência** é uma **função** de um subconjunto dos inteiros para um conjunto qualquer.

Exemplo

A função $f(n) = 2^n$ com domínio restrito aos naturais

Neste caso, temos $f: \mathbb{N} \to \mathbb{N}$, com $f(n) = 2^n$.

$$f(0) = 1, f(1) = 2, f(2) = 4, f(3) = 8, f(4) = 16,$$

 $f(5) = 32, f(6) = 64, f(7) = 128, f(8) = 256, \dots$

Sequência - Definição/Exemplo

Exemplo

A função $f(n) = 2^n$ com domínio restrito aos naturais

Neste caso, temos $f: \mathbb{N} \to \mathbb{N}$, com $f(n) = 2^n$.

$$f(0) = 1, f(1) = 2, f(2) = 4, f(3) = 8, f(4) = 16,$$

 $f(5) = 32, f(6) = 64, f(7) = 128, f(8) = 256, \dots$

Em algumas situações, falaremos simpleste da sequência

$$1, 2, 4, 8, 16, 32, 64, 128, 256, \dots$$

Sequência - Notação/Exemplo

Definição (Sequência)

Uma **sequência** é uma **função** de um subconjunto dos inteiros para um conjunto qualquer.

Exemplo

A função $f(n) = 2^n$ com domínio restrito aos naturais

Notação (Opções)

- "f(n) = 2" com domínio ..."
- "a sequência 1, 2, 4, 8, 16, 32, 64, 128, 256, . . . "
- " $\{f_n\} = 2^n$ "

Sequência - Notação/Exemplo

Definição (Sequência)

Uma **sequência** é uma **função** de um subconjunto dos inteiros para um conjunto qualquer.

Exemplo

A função $f(n) = 2^n$ com domínio restrito aos naturais

Notação (Opções)

- "f(n) = 2ⁿ com domínio ..."
- "a sequência 1, 2, 4, 8, 16, 32, 64, 128, 256, . . ."
- " $\{f_n\} = 2^n$ " (assume domínio em \mathbb{N})
- ! usar variável de "índice" (ocorre em Laços e Somatórios)

Sequência - Notação/Exemplo

Definição (Sequência)

Uma **sequência** é uma **função** de um subconjunto dos inteiros para um conjunto qualquer.

Notação

"A sequência $\{a_n\}$, onde $a_n = 2^n$ "

- refere-se ao conjunto de imagens dos valores assumidos por n
- assume domínio nos naturais
- pode ser reescrita como "a(n) = 2ⁿ com domínio nos naturais"
- notação mais concisa para sequências com índice nos naturais

Sequência - Discussão

Definição (Sequência)

Uma **sequência** é uma **função** de um subconjunto dos inteiros para um conjunto qualquer.

Discussão

```
\label{eq:fat} \begin{split} &\text{fat} = 1;\\ &\text{for}(i = 1;\, i <= n;\, i++)\\ &\{\\ &\text{fat} = \text{fat*i};\\ &\text{imprima}(\text{``Fatorial de"}\, i = \text{fat});\\ &\} \end{split}
```

Se executarmos com n = 5,

- Fatorial de 1 = 1
- Fatorial de 2 = 2
- Fatorial de 3 = 6
- o Fatorial de 4 = 24
- Fatorial de 5 = 120

Sequência - Discussão

Definição (Sequência)

Uma **sequência** é uma **função** de um subconjunto dos inteiros para um conjunto qualquer.

Discussão

```
\label{eq:fat} \begin{split} &\text{fat} = 1; \\ &\text{for}(i = 1; i <= n; i++) \\ &\{ \\ &\text{fat} = \text{fat*i}; \\ &\text{imprima}(\text{``Fatorial de"}\ i = \text{fat}); \\ &\} \end{split}
```

Além disso...

- o i assume valores inteiros
- o Resultados em função de i
- Chamamos i de índice

Sequências - Exemplo (Destaque)

Exemplo

Considere a sequência $\{a_n\}$, onde $a_n = \frac{1}{n}$.

Quem são os termos de $\{a_n\}$?

• ou seja... quem são a₁, a₂, a₃, a₄, ... (*)?

R:
$$a_1 = 1$$
, $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3}$, $a_4 = \frac{1}{4}$, ...

Alternativamente, a sequência é $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$

- * A função $\frac{1}{n}$ não existe para n=0
- + É nosso trabalho avaliar para quais naturais a função existe

Roteiro

Prévia

Sequências

Definição e Notação

Progressões Aritméticas

Progressões Geométricas

Outros Tipos de Sequências

Outros Exemplos Relações de Recorrência Algumas Sequências Importantes

Definição (Progressão Aritmética)

Uma progressão aritmética (PA) é uma sequência da forma

$$a_0, a_0 + d, a_0 + 2d, a_0 + 3d, ..., a_0 + nd, ...,$$

onde a₀ e d são números reais.

Dada uma PA...

- a₀ é o seu termo inicial
- d é sua razão aritmética ou diferença comum

Definição (Progressão Aritmética)

Uma progressão aritmética (PA) é uma sequência da forma

$$a_0, a_0 + d, a_0 + 2d, a_0 + 3d, ..., a_0 + nd, ...,$$

onde a_0 e d são números reais.

REPARE

- Os termos de uma sequência comum seriam $a_0, a_1, a_2, a_3, \dots$
- Os termos descritos na PA são $a_0, a_0+d, a_0+2d, a_0+3d, \dots$

$$a_0, \quad a_0 + d, \quad a_0 + 2d, \quad a_0 + 3d, \quad \dots, \quad a_0 + nd, \quad \dots$$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \dots$
 $a_0, \quad a_1, \qquad a_2, \qquad a_3, \qquad \dots, \quad a+n, \qquad \dots$

REPARE

- Os termos de uma sequência comum seriam a₀, a₁, a₂, a₃...
- Os termos descritos na PA são a_0 , $a_0 + d$, $a_0 + 2d$, $a_0 + 3d$...

$$a_0 + 0d$$
, $a_0 + 1d$, $a_0 + 2d$, $a_0 + 3d$, ..., $a_0 + nd$, ...
 \vdots \vdots \vdots \vdots ... \vdots ...
 a_0 , a_1 , a_2 , a_3 , ..., a_n , ...

Constatação:

Cada PA é caracterizada por uma função da forma $f(x) = a_0 + dx$, onde a_0 e d são números reais, mas com domínio restrito a um subconjunto dos inteiros.

Dizemos ainda que a PA a_0 , a_0+d , a_0+2d , a_0+3d , ..., a_0+nd , ... é a **análoga discreta** de $f(x)=a_0+dx$.

Exemplo

A sequência $\{s_n\}$ com $s_n = -1 + 4n$ é uma progressão aritmética.

- Qual o primeiro termo da lista?
- Qual a razão aritmética da PA?
- Quem são os primeiros cinco termos?

Exemplo

A sequência $\{s_n\}$ com $s_n = -1 + 4n$ é uma progressão aritmética.

$$s_0 = -1 + 4.0 = -1$$

$$d = 4$$

$$-1, 3, 7, 11, 15, \dots$$

Exemplo

A sequência $\{s_n\}$ com $s_n = -1 + 4n$ é uma progressão aritmética.

PERGUNTAS:

$$s_0 = -1 + 4.0 = -1$$

$$d = 4$$

Obs.: Dizemos que esta sequência é infinita e crescente.

Exemplo

A sequência $\{t_n\}$ com $t_n = -3n + 7$ é uma progressão aritmética.

- Qual o primeiro termo da lista?
- Qual a razão aritmética da PA?
- Quem são os primeiros cinco termos?

Exemplo

A sequência $\{t_n\}$ com $t_n = -3n + 7$ é uma progressão aritmética.

$$t_0 = -3.0 + 7 = 7$$

$$d=-3$$

$$7, 4, 1, -2, -5...$$

Exemplo

A sequência $\{t_n\}$ com $t_n = -3n + 7$ é uma progressão aritmética.

PERGUNTAS:

• Qual o primeiro termo da lista?
$$t_0 = -3.0 + 7 = 7$$

• Qual a razão aritmética da PA?
$$d = -3$$

Obs.: Dizemos que esta sequência é infinita e decrescente.

Roteiro

Prévia

Sequências

Definição e Notação Progressões Aritméticas

Progressões Geométricas

Outros Tipos de Sequências

Outros Exemplos Relações de Recorrência Algumas Sequências Importantes

Definição (Progressão Geométrica)

Uma progressão geométrica (PG) é uma sequência da forma

$$a_0, a_0r, a_0r^2, a_0r^3, ..., a_0r^n, ...,$$

onde a₀ e r são números reais.

Dada uma PG...

- a₀ é o seu termo inicial
- r é sua razão geomética ou razão comum

Definição (Progressão Geométrica)

Uma progressão aritmética (PG) é uma sequência da forma

$$a_0, a_0r, a_0r^2, a_0r^3, ..., a_0r^n, ...,$$

onde a₀ e r são números reais.

REPARE

- Os termos de uma sequência comum seriam a₀, a₁, a₂, a₃,...
- Os termos descritos na PG são $a_0, a_0 r, a_0 r^2, a_0 r^3, \dots$

$$a_0, a_0r, a_0r^2, a_0r^3, \dots, a_0r^n, \dots$$

 $\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$
 $a_0, a_1, a_2, a_3, \dots, a_n, \dots$

REPARE

- Os termos de uma sequência comum seriam $a_0, a_1, a_2, a_3 \dots$
- Os termos descritos na PG são $a_0, a_0 r, a_0 r^2, a_0 r^3, \dots$

$$a_0r^0$$
, a_0r^1 , a_0r^2 , a_0r^3 , ..., a_0r^n , ...
 \vdots \vdots \vdots \vdots ... \vdots ...
 a_0 , a_1 , a_2 , a_3 , ..., a_n , ...

Constatação:

Cada PG é caracterizada por uma função da forma $f(x) = a_0 r^x$, onde a_0 e r são números reais, mas com domínio restrito a um subconjunto dos inteiros.

Dizemos ainda que a PG a_0 , a_0r , a_0r^2 , a_0r^3 , ..., a_0r^n , ... é a **análoga discreta** de $f(x) = a_0r^x$.

Exemplo

A sequência $\{c_n\}$ com $c_n = 2.5^n$ é uma progressão geomética.

- Qual o primeiro termo da lista?
- Qual a razão geométrica da PG?
- Quem são os primeiros cinco termos?

Exemplo

A sequência $\{c_n\}$ com $c_n = 2.5^n$ é uma progressão aritmética.

$$c_0 = 2.5^0 = 2.1 = 2$$

$$d = 5$$

Exemplo

A sequência $\{c_n\}$ com $c_n = 2.5^n$ é uma progressão aritmética.

PERGUNTAS:

• Qual o primeiro termo da lista?
$$c_0 = 2.5^0 = 2.1 = 2$$

Obs.: Dizemos que esta sequência é infinita e crescente.

Exemplo

A sequência $\{d_n\}$ com $d_n = 6 \cdot (\frac{1}{3})^n$ é uma progressão geomética.

- Qual o primeiro termo da lista?
- Qual a razão geométrica da PG?
- Quem são os primeiros cinco termos?

Exemplo

A sequência $\{d_n\}$ com $d_n = 6 \cdot (\frac{1}{3})^n$ é uma progressão aritmética.

PERGUNTAS:

$$r = \frac{1}{2}$$

$$6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots$$

 $d_0 = 6.(\frac{1}{3})^0 = 6.1 = 6$

Exemplo

A sequência $\{d_n\}$ com $d_n = 6 \cdot (\frac{1}{3})^n$ é uma progressão aritmética.

PERGUNTAS:

$$d_0 = 6.(\frac{1}{3})^0 = 6.1 = 6$$

$$r=\frac{1}{3}$$

$$6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots$$

Obs.: Dizemos que esta sequência é infinita e decrescente.

Exemplo

A sequência $\{e_n\}$ com $e_n = (-1)^n$ é uma progressão geomética.

- Qual o primeiro termo da lista?
- Qual a razão geométrica da PG?
- Quem são os primeiros cinco termos?

Progressões Geométricas

Exemplo

A sequência $\{e_n\}$ com $e_n = (-1)^n$ é uma progressão aritmética.

$$e_0 = (-1)^0 = 1$$

$$r = -1$$

$$1, -1, 1, -1, 1, \dots$$

Progressões Geométricas

Exemplo

A sequência $\{e_n\}$ com $e_n = (-1)^n$ é uma progressão aritmética.

PERGUNTAS:

• Quem são os primeiros cinco termos? 1,-1,1,-1,1,...

Obs.: Dizemos que esta sequência é infinita e não monótona.

Roteiro

Prévia

Sequências

Definição e Notação Progressões Aritméticas Progressões Geométricas

Outros Tipos de Sequências

Outros Exemplos

Relações de Recorrência Algumas Sequências Importantes

Exemplo

O que dizer da sequência $\{f_n\}$ com $f_n = n^2$?

- Quem é o primeiro termo?
- Seria {f_n} uma PA?
- Seria {f_n} uma PG?
- Quem são os cinco primeiros termos?
- {f_n} é crescente, decrescente ou não monótona?

Exemplo

O que dizer da sequência $\{f_n\}$ com $f_n = n^2$?

PERGUNTAS:

$$f_0 = 0^2 = 0$$

não

$$0, 1, 4, 9, 16, \dots$$

crescente

Exemplo

O que dizer da sequência $\{g_n\}$ com $g_n = 1$?

- Quem é o primeiro termo?
- Seria {f_n} uma PA?
- Seria {f_n} uma PG?
- Quem são os cinco primeiros termos?
- {f_n} é crescente, decrescente ou n\u00e3o mon\u00f3tona?

Exemplo

O que dizer da sequência $\{g_n\}$ com $g_n = 1$?

PERGUNTAS:

• Quem é o primeiro termo? $g_0 = 1$

• Seria {f_n} uma PA? SIM!

• Seria {f_n} uma PG? SIM!

Quem são os cinco primeiros termos?
 1,1,1,1,1,...

• {*f*_n} é crescente, decrescente, não monótona, ...?

é monótona, apenas

Exemplo

Por que $\{g_n\}$ com $g_n = 1$ é uma PA?

- Existem g_0 , d reais tais que $g(n) = g_0 + dn$?
 - \circ calculamos $g_0 = 1$
 - \circ calculamos $g_1 = 1$
 - \circ calculamos $d = g_1 g_0 = 0$
- Concluímos com isso que g(n) = 1 + 0.n, que seria uma PA;
- Simplificando, temos que g(n) = 1, que é a expressão original.

OBS.: O cálculo que fizemos acima para *d* pode ser feito em qualquer sequência, mas isso não significa que ela será uma PA. É necessário que a expressão completa que calcularmos seja equivalente à original.

Exemplo

Por que $\{g_n\}$ com $g_n = 1$ é uma PG?

- Existem g_0 , r reals tals que $g(n) = g_0 r^n$?
 - \circ calculamos $g_0 = 1$
 - \circ calculamos $g_1 = 1$
 - *calculamos* $r = g_1/g_0 = 1/1 = 1$
- Concluímos com isso que $g(n) = 1.1^n$, que seria uma PG;
- Simplificando, temos que g(n) = 1, que é a expressão original.

OBS.: O cálculo que fizemos acima para *d* pode ser feito em qualquer sequência, mas isso não significa que ela será uma PG. É necessário que a expressão completa que calcularmos seja equivalente à original.

Roteiro

Prévia

Sequências

Definição e Notação Progressões Aritméticas Progressões Geométricas

Outros Tipos de Sequências

Outros Exemplos

Relações de Recorrência

Algumas Sequências Importantes

Exemplo

Considere a sequência

$$3, 5, 2, -3, -5, -2, \dots$$

- Qual será o próximo termo da sequência?
- E o termo depois deste?
- Qual seria sua fórmula fechada?

Exemplo

Considere a sequência

$$3, 5, 2, -3, -5, -2, \dots$$

PERGUNTAS:

• Qual seria o próximo termo da sequência?
$$-2 - -5 = 3$$

• Qual seria o termo seguinte?
$$3 - -2 = 5$$

Qual seria sua fórmula fechada?

Constatação:

Parece difícil definir a sequência com uma fórmula fechada.

Definição (Relação de Recorrência)

Uma relação de recorrência para a sequência $\{a_n\}$ é uma equação que expressa cada a_n em função de um ou mais termos que o antecedem.

Uma relação de recorrência para $\{a_n\}$...

- tem (um ou mais) casos de base e (um ou mais) casos gerais
- define a_n em termos de $a_0, a_1, ..., a_{n-1}$ (pelo menos um destes)
- Dizemos que uma sequência resolve uma relação de recorrência se seus termos satisfazem a relação de recorrência.

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., e suponha que $a_0 = 2$.

PERGUNTAS:

Quais são os termos a₁, a₂, a₃?

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., e suponha que $a_0 = 2$.

- Quais são os termos a₁, a₂, a₃?
 - $a_1 = a_0 + 3 = 2 + 3 = 5$
 - $a_2 = a_1 + 3 = 5 + 3 = 8$
 - $a_3 = a_2 + 3 = 8 + 3 = 11$

Exemplo

Seja $\{a_n\}$ a sequência que satisfaz a relação de recorrência $a_n = a_{n-1} + 3$ para n = 1, 2, 3, ..., e suponha que $a_0 = 2$.

PERGUNTAS:

- Quais são os termos a₁, a₂, a₃?
 - $a_1 = a_0 + 3 = 2 + 3 = 5$
 - $a_2 = a_1 + 3 = 5 + 3 = 8$
 - $a_3 = a_2 + 3 = 8 + 3 = 11$

Constatação:

Foi necessário calcular algum termo novo antes de cada an.

Exemplo

Suponha que $\{a_n\}$ satisfaz a relação de recorrência $a_n = a_{n-1} - a_{n-2}$ para n = 2, 3, 4, ..., em que $a_0 = 3$ e $a_1 = 5$.

PERGUNTAS:

Quais são os termos a₂, a₃, a₄?

Exemplo

Suponha que $\{a_n\}$ satisfaz a relação de recorrência $a_n = a_{n-1} - a_{n-2}$ para n = 2, 3, 4, ..., em que $a_0 = 3$ e $a_1 = 5$.

PERGUNTAS:

Quais são os termos a₂, a₃, a₄?

$$\circ \ a_2 = a_1 - a_0 = 5 - 3 = 2$$

$$\circ \ a_3 = a_2 - a_1 = 2 - 5 = -3$$

$$\circ \ a_4 = a_3 - a_2 = -3 - 2 = -5$$

Exemplo

Suponha que $\{a_n\}$ satisfaz a relação de recorrência $a_n = a_{n-1} - a_{n-2}$ para n = 2, 3, 4, ..., em que $a_0 = 3$ e $a_1 = 5$.

PERGUNTAS:

- Quais são os termos a2, a3, a4?
 - $\circ \ a_2 = a_1 a_0 = 5 3 = 2$
 - $a_3 = a_2 a_1 = 2 5 = -3$
 - $a_4 = a_3 a_2 = -3 2 = -5$

Constatação:

É a sequência 3, 5, 2, -3, -5, -2, 3, 5, ... (exemplo inicial).

Sequência de Fibonacci

Definição (Sequência de Fibonacci)

A sequência de Fibonacci f_0 , f_1 , f_2 , ... é definida pela relação de recorrência com condições iniciais $f_0 = 0$, $f_1 = 1$ e caso geral $f_n = f_{n-1} + f_{n-2}$ para n = 2, 3, 4, ...

PERGUNTAS:

Quais são os números f₂, f₃, f₄, f₅, f₆ de Fibonacci?

Sequência de Fibonacci

Definição (Sequência de Fibonacci)

A sequência de Fibonacci f_0 , f_1 , f_2 , ... é definida pela relação de recorrência com condições iniciais $f_0 = 0$, $f_1 = 1$ e caso geral $f_n = f_{n-1} + f_{n-2}$ para n = 2, 3, 4, ...

- Quais são os números f₂, f₃, f₄, f₅, f₆ de Fibonacci?
 - $\circ \ f_2 = f_1 + f_0 = 1 + 0 = 1$
 - $\circ f_3 = f_2 + f_1 = 1 + 1 = 2$
 - $o f_4 = f_3 + f_2 = 2 + 1 = 3$
 - $f_5 = f_4 + f_3 = 3 + 2 = 5$
 - $o f_6 = f_5 + f_4 = 5 + 3 = 8$

Roteiro

Prévia

Sequências

Definição e Notação Progressões Aritméticas Progressões Geométricas

Outros Tipos de Sequências

Outros Exemplos Relações de Recorrência

Algumas Sequências Importantes

Sequências Importantes

nº termo	primeiros 10 termos
n ²	1, 4, 9, 16, 35, 36, 49, 64, 81, 100,
n ³	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000
n ⁴	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,
2 ⁿ	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
3 ⁿ	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Tabela: Algumas sequências importantes.