Lecture 02 Set Theory and Topology

Ryan McWay[†]

† Applied Economics, University of Minnesota

Mathematics Review Course, Summer 2023 University of Minnesota August~8th,~2023

LAST LECTURE REVIEW

- ► Logic:
 - ► Logical statements
 - ► Necessary vs. sufficient
- ▶ Proofs:
 - ▶ Proof by Deduction/Construction (Direct Proofs)
 - ► Proof by Contrapositive
 - ▶ Proof by Contradiction
 - ▶ Proof by Induction

REVIEW ASSIGNMENT

- 1. Problem Set 01 solutions are available on Github.
- 2. Any issues or problems **You** would like to discuss?

DAILY ICEBREAKER

Lecture Review

- ► Attendance via prompt:
 - ► Name
 - ► Program and track
 - ▶ Daily Icebreaker: The zombie apocalypse is tomorrow. What is your strategy to survive?

Topic: Set Theory

5/45

- ► General background
 - ▶ How collections of mathematical objects are organized.
 - ▶ A foundation for all of math.
- ▶ Why do economists' care?
 - ▶ Need to have strong understanding of the basics.
 - ► How we categorize in economics.
- Application in this career
 - ► Rarely directly.
 - ► Sometimes useful when considering proofs.

- ► General background
 - ► How collections of mathematical objects are organized.
 - ▶ A foundation for all of math.
- ▶ Why do economists' care?
 - ▶ Need to have strong understanding of the basics.
 - ► How we categorize in economics.
- ► Application in this career
 - ► Rarely directly.
 - ► Sometimes useful when considering proofs.

- ► General background
 - ► How collections of mathematical objects are organized.
 - ▶ A foundation for all of math.
- ▶ Why do economists' care?
 - ▶ Need to have strong understanding of the basics.
 - ► How we categorize in economics.
- ► Application in this career
 - ► Rarely directly.
 - ► Sometimes useful when considering proofs.

OVERVIEW

- 1. Sets
- 2. Set Operators
- 3. Set Space
- 4. de Morgans' Law & Cartesian Product
- 5. Cardinality & Countability
- 6. Convex Sets
- 7. Open & Closed Sets
- 8. Bounded & Compact Sets

1. Sets

- ► Sets
 - ► A collection of objects (elements or members)
 - ▶ $S = \{s \in U : P\}$ for the universal set U such that is satisfies properties P.
- ► Elements
 - ► The components within a set.
 - ► An element can be a complex object; such as another set.
- ► Empty Set
 - ▶ $\emptyset = \{s \notin U\}$ contains nothing.
 - $\triangleright \emptyset \neq \{\emptyset\}$

1. Sets

Lecture Review

\mathbb{R}	Real Numbers: $\{x : -\infty \le x \le \infty\}$
$\mathbb{R} imes \mathbb{R}$	Cartesian Plane
\mathbb{N}	Natural Numbers
\mathbb{W}	Whole Numbers: $\mathbb{N} \wedge 0$
${\mathbb Z}$	Integers
\mathbb{Q}	Rational Numbers
\mathbb{P}	Irrational Numbers

THE NUMBER LINE

2. SET OPERATORS

- ightharpoonup Complement: $A^c \equiv \{x \in U : x \notin A\}$
- ▶ Intersection: $A \cap B \equiv \{x \in U : x \in A \land x \in B\}$
- ▶ Union: $A \cup B \equiv \{x \in U : x \in A \lor x \in B\}$
- ▶ Set Difference (Partition): $A \setminus B \equiv \{x \in U : x \in A \land x \notin B\}$
- ▶ Disjoint Set: $A \cap B = \emptyset$
- ▶ Subset: $B \subset A$ if $[x \in B] \implies [x \in A]$
- ▶ Proper (Strict) Subset: $B \subset A \land B \neq A$.
- ▶ Power Set (All subsets of a set): $\mathcal{P}(A) \equiv \{X : X \subseteq A\}$
- ▶ Indexed Set: A_1, A_2, \ldots, A_i

2. SET OPERATORS

Figure A1.1. Venn diagrams.

Source: Jehle & Reny (2011)

U

2. SET OPERATORS

Sets

DISJOINT SETS

► Set Product: A set of ordered pairs

$$S\times T\equiv\{(s,t)|s\in S,t\in T\}$$

► N-dimensional Euclidean Space

$$\mathbb{R}^n \equiv \mathbb{R} \times \mathbb{R} \times \cdots \mathbb{R} \equiv \{(x_1, \dots, x_n) | x_i \in \mathbb{R}, \forall i = 1, \dots, n\}$$

► Cartesian Plane

$$\mathbb{R}^2 \equiv \mathbb{R} \times \mathbb{R} \equiv \{(x_1, x_2) | x_1, x_2 \in \mathbb{R} \}$$

4. DE MORGAN'S LAW AND CARTESIAN PRODUCT

 \blacktriangleright de Morgan's Law: Assume A_i are subsets

$$\left[\bigcup_{i=1}^k A_i\right]^c = \bigcap_{i=1}^k A_i^c$$

ightharpoonup Cartesian Product: For 2 sets A and B, the Cartesian product is:

$$A \times B \equiv \{(a, b) : a \in A, b \in B\}$$

5. CARDINALITY AND COUNTABILITY

- ightharpoonup Cardinality: |A| is the number of elements in the set.
 - ► Types: Finite, countably infinite, and uncountable
- ► Countable (Finite) Set: Any infinite set that can be placed in a 1 to 1 correspondence with N.

6. CONVEX SETS

ightharpoonup Convex Set: $S \subset \mathbb{R}^n$ is a convex set $\forall x_1, x_2 \in S, \forall t \in (0,1),$ if we have $tx_1 + (1 - t)x_2 \in S$.

Figure A1.4. Some convex combinations in \mathbb{R}^2 . Source: Jehle & Reny (2011)

6. Convex Sets

▶ Convex Hull: For set $B \subset \mathbb{R}^N$, convex hull is:

$$CoB = \{ \sum_{j=1}^{J} \alpha_j x_j : x1, \dots, x_j \in B \forall j < J \land (\alpha_1, \dots, \alpha_J) \ge 0, \sum_{j=1}^{J} \alpha_j = 1 \}$$

APPLICATION: INPUT REQUIREMENT SET

DEMONSTRATION: CONVEX SETS

Question:

Let C = (3, 2). Show that the set $S = \{u \in \mathbb{R}^2 | u \cdot v \leq 9\}$ is a convex set.

Answer

The set S is convex if $u, w \in C : tu + (1 - t)w \in C \forall t \in [0, 1]$. Let $u, w \in S$ and $t \in [0, 1]$.

$$(tu + (1 - t)w) \cdot v$$

$$= (tu) \cdot v + (1 - t)w \cdot v$$

$$\leq t \times 9 + (1 - t) \times 9$$

$$= 9 \in S$$

DEMONSTRATION: CONVEX SETS

Question:

Let C = (3, 2). Show that the set $S = \{u \in \mathbb{R}^2 | u \cdot v \leq 9\}$ is a convex set.

Answer:

The set S is convex if $u, w \in C : tu + (1 - t)w \in C \forall t \in [0, 1]$. Let $u, w \in S$ and $t \in [0, 1]$.

$$(tu + (1 - t)w) \cdot v$$

$$= (tu) \cdot v + (1 - t)w \cdot v$$

$$\leq t \times 9 + (1 - t) \times 9$$

$$= 9 \in S$$

7. OPEN AND CLOSED SETS

- ▶ Metric Space (e.g., point distance): $d(x_1, x_2) = |x_1 x_2|$
- ▶ An open ε -ball with center x_0 and radius $\varepsilon > 0$ is a subset of points in \mathbb{R}^n :

$$B_{\varepsilon}(x_0) \equiv \{x \in \mathbb{R}^n | |x - x_0| < \varepsilon\}$$

▶ A closed ε -ball is similar, but includes the circumference (e.g., edge of the ball)

$$B_{\varepsilon}(x_0) \equiv \{x \in \mathbb{R}^n | |x - x_0| \le \varepsilon \}$$

7. OPEN AND CLOSED SETS

Figure A1. 10. Balls in \mathbb{R} and \mathbb{R}^2 .

Source: Jehle & Reny (2011)

8. BOUNDED AND COMPACT SETS

- ▶ Bounded: A set $S \subset \mathbb{R}^n$ is bounded if it is entirely contained within some ε -ball (either closed or open)
- ▶ Compact: A set $S \subset \mathbb{R}^n$ is compact if it is both closed and bounded.
- ▶ We like working with compact sets.

APPLICATION: BUDGET SET

1. Let $A = \{x : x \in \mathbb{N} \land x | 18\}$. Let $B = \{x : x \in \mathbb{N} \land x < 6\}$. Find $A \cap B$.

1. Let $A = \{x : x \in \mathbb{N} \land x | 18\}$. Let $B = \{x : x \in \mathbb{N} \land x < 6\}$. Find $A \cap B$.

Answer: Show Work

$$A \cap B = \{1, 2, 3\}$$

- 1. Let $A = \{x : x \in \mathbb{N} \land x | 18\}$. Let $B = \{x : x \in \mathbb{N} \land x < 6\}$. Find $A \cap B$.
- 2. Find the Cartesian product $A \times B \times C$ of $A = \{a_1, a_2\}, B = \{b_1, b_2\}$ and $C = \{c_1, c_2, c_3\}$.

- 1. Let $A = \{x : x \in \mathbb{N} \land x | 18\}$. Let $B = \{x : x \in \mathbb{N} \land x < 6\}$. Find $A \cap B$.
- 2. Find the Cartesian product $A \times B \times C$ of $A = \{a_1, a_2\}, B = \{b_1, b_2\}$ and $C = \{c_1, c_2, c_3\}$.

Answer: Show Work

$$A \times B \times C = \{(a_1, b_1, c_1), (a_1, b_1, c_2), (a_1, b_1, c_3) \\ (a_1, b_2, c_1), (a_1, b_2, c_2), (a_1, b_2, c_3) \\ (a_2, b_1, c_1), (a_2, b_1, c_2), (a_2, b_1, c_3) \\ (a_2, b_2, c_1), (a_2, b_2, c_2), (a_2, b_2, c_3)\}$$

- 1. Let $A = \{x : x \in \mathbb{N} \land x | 18\}$. Let $B = \{x : x \in \mathbb{N} \land x < 6\}$. Find $A \cap B$.
- 2. Find the Cartesian product $A \times B \times C$ of $A = \{a_1, a_2\}, B = \{b_1, b_2\}$ and $C = \{c_1, c_2, c_3\}$.
- 3. Show that given $K \subseteq \mathbb{N}$ & $L \subseteq \mathbb{N}$ the set $K + L = \{x + y : x \in K, y \in L\}$ is a convex set.

- 1. Let $A = \{x : x \in \mathbb{N} \land x | 18\}$. Let $B = \{x : x \in \mathbb{N} \land x < 6\}$. Find $A \cap B$.
- 2. Find the Cartesian product $A \times B \times C$ of $A = \{a_1, a_2\}, B = \{b_1, b_2\}$ and $C = \{c_1, c_2, c_3\}$.
- 3. Show that given $K \subseteq \mathbb{N}$ & $L \subseteq \mathbb{N}$ the set $K + L = \{x + y : x \in K, y \in L\}$ is a convex set.

Answer: Show Work

$$[tx_1 + (1-t)x_2] + [ty_1 + (1-t)y_2]$$

= $x + y \in K + L$

Review

Topic: Topology

Topology

- ► General background
 - ▶ Understanding of spatial relationships and how the parts are integrated into the whole.
- ▶ Why do economists' care?
 - ▶ Used in proofs.
 - ▶ Several theorems used as lemmas invoked in proofs.
- ► Application in this career
 - ► Welfare theorem
 - Consumer behavior
 - ► Macroeconomics and time series

MOTIVATION

- ► General background
 - ▶ Understanding of spatial relationships and how the parts are integrated into the whole.
- ▶ Why do economists' care?
 - ▶ Used in proofs.
 - ► Several theorems used as lemmas invoked in proofs.
- ► Application in this career
 - ► Welfare theorem
 - ► Consumer behavior
 - ► Macroeconomics and time series

MOTIVATION

- ► General background
 - ▶ Understanding of spatial relationships and how the parts are integrated into the whole.
- ▶ Why do economists' care?
 - ▶ Used in proofs.
 - ► Several theorems used as lemmas invoked in proofs.
- ► Application in this career
 - ▶ Welfare theorem
 - ► Consumer behavior
 - ► Macroeconomics and time series

- 1. Supremum & Infimum
- 2. Sequences and Limits
- 3. Separating Hyperplane Theorem

1. Supremum and Infimum

- ▶ Ordered Set: When elements have a defined order (<).
- ► To be ordered:
 - For $x, y \in A$, only one of the following statements can be true: (1) x < y, (2) x = y, or (3) x > y.
 - For $x, y, z \in A$, if $x < y \land y < z \implies x < z$.
- ightharpoonup A subset (A_1) of an ordered set may be bounded from above and below if:
 - ▶ Upper Bound: $\{\beta \in A : x \leq \beta \forall x \in A_1\}$
 - ▶ Lower Bound: $\{\beta \in A : x > \beta \forall x \in A_1\}$

► Supremum: Least upper bound (1 value)

$$\beta = \sup A_1 | \beta \in A : y < \beta \exists x \in A_1 : x > y$$

► Infimum: Greatest lower bound (1 value)

$$\alpha = \inf A_1 | \alpha \in A : \delta > \alpha \exists x \in A_1 : x < \delta$$

DEMONSTRATION: SUPREMUM & INFIMUM

Question:

Prove $\sup\{\frac{n}{n+1}|n\in\mathbb{N}\}=1$

Answer

1 is the upper bound by $n+1 \ge n \implies 1 \ge \frac{n}{n+1}$. Let $\varepsilon > 0$ be arbitrarily small. Then $\exists n : \frac{n}{n+1} > 1 - \varepsilon$.

$$\varepsilon > 1 - \frac{n}{n+1}$$

$$\varepsilon > \frac{1}{n+1}$$

$$n > \frac{1}{\varepsilon} - 1$$

Note we can go in reverse order to show

$$rac{n}{2}>1-arepsilon$$
Math Review 2023: Sets & Topology

DEMONSTRATION: SUPREMUM & INFIMUM

Question:

Prove $\sup\{\frac{n}{n+1}|n\in\mathbb{N}\}=1$

Answer:

1 is the upper bound by $n+1 \ge n \implies 1 \ge \frac{n}{n+1}$. Let $\varepsilon > 0$ be arbitrarily small. Then $\exists n : \frac{n}{n+1} > 1 - \varepsilon$.

$$\varepsilon > 1 - \frac{n}{n+1}$$

$$\varepsilon > \frac{1}{n+1}$$

$$n > \frac{1}{\varepsilon} - 1$$

Note we can go in reverse order to show

$$\frac{n}{n+1} > 1 - \varepsilon$$
Math Review 2023: Sets & Topology

•000000

- \blacktriangleright Sequence: Function $f(\cdot)$ defined on a set of natural numbers, N.
- ▶ Limit: A sequence $\{x_n\}$ converges to a limit, $x_n \to L$ or $\lim_{n\to\infty} x_n = L$, if given $\varepsilon > 0$ there is an element N such that whenever $n > N : |x_n - L| < \varepsilon$.
- ► A sequence diverges when it does not converge to a limit.

Theorem:

If the sequence $\{x_n\}$ converges, then the limit of $\{x_n\}$ is unique (e.g., single valued).

DIVERGENT SEQUENCES EXIST ...

DEMONSTRATION: LIMITS

Question:

Show $\lim \frac{1}{n} \to 0$.

Answer

Let $\varepsilon > 0$ which is arbitrarily small. Note that for some $a \in \mathbb{N} : \frac{1}{a} < \varepsilon$. So, if n > a, then:

$$\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \frac{1}{a} < \varepsilon$$

DEMONSTRATION: LIMITS

Question:

Show $\lim \frac{1}{n} \to 0$.

Answer:

Let $\varepsilon > 0$ which is arbitrarily small. Note that for some $a \in \mathbb{N} : \frac{1}{a} < \varepsilon$. So, if n > a, then:

$$\left|\frac{1}{n}-0\right|=\frac{1}{n}<\frac{1}{a}<\varepsilon$$

3. SEPARATING HYPERPLANE THEOREM

- ▶ There exists a line dividing an n-dimensional space.
- ▶ Given $p \in \mathbb{R}^n : p \neq 0$ and $c \in \mathbb{R}$, the hyperplane generated is the set $H_{p,c} = \{z \in \mathbb{R}^n | p \cdot z = c\}$.

PRACTICE: TOPOLOGY

1. What is the $\sup\{a+b: a \in (0,2), b \in (3,9)\}$?

PRACTICE: TOPOLOGY

1. What is the $\sup\{a+b: a \in (0,2), b \in (3,9)\}$?

Answer: Show Work

 $\sup = 11$

- 1. What is the $\sup\{a+b: a \in (0,2), b \in (3,9)\}$?
- 2. Solve $\lim_{n\to\infty} \frac{4n^3+3n}{n^3-6}$.

- 1. What is the $\sup\{a+b: a \in (0,2), b \in (3,9)\}$?
- 2. Solve $\lim_{n\to\infty} \frac{4n^3+3n}{n^3-6}$.

Answer: Show Work
$$\lim_{n\to\infty} \frac{4n^3+3n}{n^3-6} \to 4$$

PRACTICE: TOPOLOGY

- 1. What is the $\sup\{a+b: a \in (0,2), b \in (3,9)\}$?
- 2. Solve $\lim \frac{4n^3+3n}{n^3-6}$.
- 3. Let $x_n \geq 0$. Show that if the sequence $x_n \to 0$, then $\sqrt{x_n} \to 0$.

PRACTICE: TOPOLOGY

- 1. What is the $\sup\{a+b: a \in (0,2), b \in (3,9)\}$?
- 2. Solve $\lim_{n \to \infty} \frac{4n^3 + 3n}{6}$.
- 3. Let $x_n \geq 0$. Show that if the sequence $x_n \to 0$, then $\sqrt{x_n} \to 0$.

Answer: Show Work

We can re-write $\lim(x_n) = \lim(\sqrt{x_n}\sqrt{x_n})$. Use this fact to show $(\lim(\sqrt{x_n}))^2 = 0$ implying the answer.

Review

Lecture Review

REVIEW OF SETS

- 1. Sets are the foundation of organizing objects in math.
- 2. de Morgan's Law
- 3. Cartesian Product
- 4. Convex Sets
- 5. Bounded Sets
- 6. Compact Sets

REVIEW OF TOPOLOGY

- 1. Supremum and Infimum
- 2. Limits
- 3. Separating Hyperplane Theorem

ASSIGNMENT

- ► Readings on Derivatives before Lecture 03:
 - ► MWG Appendix M.A.
 - ▶ B&S Ch. 6
- ► Assignment:
 - ► Problem Set 02 (PS02)
 - ► Solution set will be available following end of Lecture 03
- ► Struggling?
 - 1. Read the 'Encouraged Reading'
 - 2. Review 'Supplementary material'
 - 3. Reach out directly

SETS QUESTION 1 ANSWER:

◆ QUESTION

$$A = \{1, 2, 3, 6, 9, 18\}$$
$$B = \{1, 2, 3, 4, 5\}$$
$$A \cap B = \{1, 2, 3\}$$

SETS QUESTION 2 ANSWER:

◆ QUESTION

► No extra work.

$$A \times B \times C =$$

$$\{(a_1, b_1, c_1), (a_1, b_1, c_2), (a_1, b_1, c_3)$$

$$(a_1, b_2, c_1), (a_1, b_2, c_2), (a_1, b_2, c_3)$$

$$(a_2, b_1, c_1), (a_2, b_1, c_2), (a_2, b_1, c_3)$$

$$(a_2, b_2, c_1), (a_2, b_2, c_2), (a_2, b_2, c_3)\}$$

SETS QUESTION 3 ANSWER:

◆ QUESTION

Let $u_1, u_2 \in K + L$ so that $x_1, x_2 \in K$ and $y_1, y_2 \in L$ and let $t \in [0, 1]$. Then:

$$tu_1 + (1 - t)u_2 = t(x_1 + y_1) + (1 - t)(x_2 + y_2)$$

= $[tx_1 + (1 - t)x_2] + [ty_1 + (1 - t)y_2]$
= $x + y \in K + L$

TOPOLOGY QUESTION 1 ANSWER:

◆ QUESTION

Note that the set is a + b. We can use the distributive property to show that $sup(a + b) = \sup a + \sup b$. Then we just need to know the least upper bound for a, b. Note these values are over an open interval (\cdot) rather than a closed interval $[\cdot]$. So $\sup a + \sup b = 2 + 9 = 11$

TOPOLOGY QUESTION 2 ANSWER:

◆ QUESTION

Multiply by $\frac{1}{n^3}$. Then distribute the limit and determine what happens at $n \to \infty$.

$$\lim \frac{1}{n^3} \cdot \frac{4n^3 + 3n}{n^3 - 6} = \lim \frac{\frac{4n^3}{n^3} + \frac{3n}{n^3}}{\frac{n^3}{n^3} - \frac{6}{n^3}} = \lim \frac{4 + \frac{3}{n^2}}{1 - \frac{6}{n^3}} = \frac{4 + \lim \frac{3}{n^2}}{1 - \lim \frac{6}{n^3}} \to \frac{4 + 0}{1 - 0} = 4$$

TOPOLOGY QUESTION 3 ANSWER:

◆ QUESTION

Note that $\lim(x_n) = 0$ is given. Let $\lim(x_n) = \lim(\sqrt{x_n}\sqrt{x_n}) = 0$. Again, note that for some convergent sequences a_n, b_n we have $\lim(a_n) = a$ and $\lim(b_n) = b$ implying that $\lim(a_nb_n) = ab$. Applied to this scenario, $\lim(\sqrt{x_n}\sqrt{x_n}) = \lim(\sqrt{x_n})\lim(\sqrt{x_n}) = (\lim(\sqrt{x_n}))^2 = 0 = 0 \cdot 0$. $\therefore \lim(\sqrt{x_n}) \to 0$.