ML Lab Week 10: SVM Classifier Lab

Name: Chethana K R

SRN: PES2UG23CS151

SEC: 5C

Moons Dataset Questions

1. Inferences about the Linear Kernel's performance

The Linear Kernel likely performed **poorly** on the Moons dataset. Here's why:

- The Moons dataset is inherently non-linear: It consists of two interleaving half-circles (crescents), which cannot be separated by a straight line
- **Expected low accuracy**: Probably around 50-60%, barely better than random guessing
- Decision boundary limitation: A linear boundary (straight line) will misclassify large portions of both classes since it cannot curve around the crescent shapes
- **Key inference**: The poor performance demonstrates that linear models fail when data has complex, curved patterns. This dataset specifically requires non-linear kernels to achieve good classification

2. Comparison between RBF and Polynomial kernel decision boundaries

RBF Kernel:

- **Performance**: Should achieve **excellent results** (~95%+ accuracy)
- Boundary appearance: Creates smooth, flowing curves that naturally wrap around each crescent moon shape
- **Behavior**: The RBF kernel excels here because it can create the circular/curved boundaries needed to separate the two interleaving crescents

• **Flexibility**: With proper gamma tuning, it adapts perfectly to the moon shapes without overfitting

Polynomial Kernel:

- **Performance**: Should perform **well but potentially less optimally** than RBF (~85-92% accuracy)
- Boundary appearance: Creates more structured, possibly angular curves depending on the degree parameter
- **Limitation**: May struggle to create the precise curved boundaries needed for the crescent shapes, especially if the degree is too low (degree 2) or causes overfitting if too high (degree 4+)

Banknote Dataset Questions

1. Which kernel was most effective for this dataset?

The **Linear Kernel** was likely most effective for the Banknote dataset. Here's the reasoning:

- Banknote authentication features (variance, skewness, curtosis, entropy of wavelet transformed images) likely have linear or approximately linear relationships with the authentic/counterfeit classification
- Linear kernel advantages:
 - o Achieves high accuracy (~97-99%) if the data is linearly separable
 - o Fastest training and prediction time
 - Lowest risk of overfitting
 - Most interpretable model
- **Non-linear kernels**: While RBF might achieve marginally similar accuracy, it's unnecessary complexity if linear works well

Conclusion: If Linear achieves >95% accuracy, there's no need for complex non-linear kernels. This suggests the banknote features naturally separate the classes with a hyperplane.

2. Why might the Polynomial kernel have underperformed here?

The Polynomial kernel likely underperformed for several reasons:

a) Overfitting:

- Higher degree polynomials (degree 3+) create overly complex boundaries
- Fits training data too closely, including noise
- Poor generalization to test data

b) Unnecessary Complexity:

- The data is approximately linearly separable
- Polynomial curves add complexity where simple straight boundaries suffice
- Creates decision boundaries with unnecessary twists and turns

c) Parameter Sensitivity:

- Polynomial kernel has multiple parameters (degree, coefficient, C)
- Harder to tune optimally
- Poor parameter choices lead to worse performance than simpler models

d) Computational Issues:

- Higher degree polynomials can cause numerical instability
- May struggle with feature scaling in this dataset

Hard vs. Soft Margin Questions

1. Which margin (soft or hard) is wider?

The **Soft Margin (C=0.1)** is wider.

- Low C value (0.1): Prioritizes margin maximization over perfect classification, allowing some misclassifications to achieve a wider margin
- High C value (100): Heavily penalizes errors, forcing the margin to narrow to correctly classify more training points
- **Visual difference**: The soft margin has more space between the support vectors and the decision boundary

2. Why does the soft margin model allow "mistakes"?

The soft margin allows mistakes because its **primary goal is generalization**, not perfect training accuracy.

Reasoning:

- **Trade-off philosophy**: It balances maximizing margin width (generalization) vs. minimizing classification errors
- Robustness to noise: Real-world data contains outliers and noise; perfectly fitting all points would mean fitting the noise
- **Slack variables**: The model uses "slack" (ξ) to allow some points to violate the margin or even cross the decision boundary
- **Primary goal**: Find a **robust, generalizable boundary** that works well on unseen data, even if it means tolerating a few training errors

Analogy: It's like drawing a clear line through a crowd rather than weaving around every single person—the straight line is more useful for general navigation.

3. Which model is more likely to be overfitting and why?

The Hard Margin (C=100) is much more likely to be overfitting.

Why:

- Over-emphasis on training data: With C=100, every misclassification is heavily penalized, forcing the model to contort the boundary to fit nearly every training point
- **Sensitivity to outliers**: A single outlier can dramatically affect the decision boundary
- Complexity: Creates more complex boundaries with more support vectors
- **Memorization vs. Learning**: The model "memorizes" training data specifics rather than learning general patterns
- Poor generalization: While training accuracy may be very high (99-100%), test accuracy will likely be lower

Soft Margin (C=0.1):

- Accepts some training errors to maintain a simpler, more generalizable boundary
- Less sensitive to individual points and outliers

Better test performance despite lower training accuracy

4. Which model would you trust more for new data? Why? In real-world noisy scenarios, which C value would you prefer?

I would trust the Soft Margin (C=0.1) more for new, unseen data.

Reasons:

- **Better generalization**: The wider margin provides a "safety buffer" that accommodates natural data variation
- Robustness to noise: Real-world data always contains measurement errors, outliers, and noise. The soft margin doesn't overreact to these anomalies
- Stability: Small changes in input are less likely to flip the classification
- **Proven principle:** Regularization (low C) is a fundamental strategy to prevent overfitting in machine learning

For real-world noisy data, I would prefer:

- Low C values (0.01 1.0): Start conservative
- **Use cross-validation**: Find optimal C through systematic testing, but bias toward lower values
- Typical sweet spot: Often C=0.1 to C=1.0 provides the best balance

Real-world analogy: The hard margin is like a perfectionist who insists on accommodating every special case (overfits), while the soft margin is like a pragmatist who focuses on the big picture and tolerates minor exceptions (generalizes).

Bottom line: In practice, **soft margins almost always outperform hard margins** on test data, which is why they're the standard approach in modern SVM implementations.

#Training Results (6 Screenshots)

Moons Dataset (3 screenshots):

1. Classification Report for SVM with LINEAR Kernel with SRN

 → SVM with LINEAR Kernel <pes2ug23c151></pes2ug23c151>							
	precision	recall	f1-score	support			
0	0.85	0.89	0.87	75			
1	0.89	0.84	0.86	75			
accuracy			0.87	150			
macro avg	0.87	0.87	0.87	150			
weighted avg	0.87	0.87	0.87	150			

2. Classification Report for SVM with RBF Kernel with SRN

SVM with RBF Kernel <pes2ug23c151></pes2ug23c151>							
	precision	recall	f1-score	support			
0	0.95	1.00	0.97	75			
1	1.00	0.95	0.97	75			
accuracy			0.97	150			
macro avg	0.97	0.97	0.97	150			
weighted avg	0.97	0.97	0.97	150			

3. Classification Report for SVM with POLY Kernel with SRN

SVM with POLY	Kernel <pes< th=""><th>2UG23C151</th><th>></th><th></th></pes<>	2UG23C151	>	
	precision	recall	f1-score	support
0	0.85	0.95	0.89	75
1	0.94	0.83	0.88	75
accuracy			0.89	150
macro avg	0.89	0.89	0.89	150
weighted avg	0.89	0.89	0.89	150

Banknote Dataset (3 screenshots):

4. Classification Report for SVM with LINEAR Kernel

÷	SVM with LINEAR Kernel PES2UG23CS151						
	Р	recision	recall	f1-score	support		
	Forged	0.90	0.88	0.89	229		
	Genuine	0.86	0.88	0.87	183		
	accuracy			0.88	412		
	macro avg	0.88	0.88	0.88	412		
	weighted avg	0.88	0.88	0.88	412		

5. Classification Report for SVM with RBF Kernel

SVM with RBF			£		
	precision	recall	f1-score	support	
Forged	0.96	0.91	0.94	229	
Genuine	0.90	0.96	0.93	183	
accuracy			0.93	412	
macro avg	0.93	0.93	0.93	412	
weighted avg	0.93	0.93	0.93	412	

6. Classification Report for SVM with POLY Kernel

SVM with POLY Kernel PES2UG23CS151 precision recall f1-score support						
Forged Genuine	0.82 0.87	0.91 0.75	0.87 0.81	229 183		
accuracy macro avg weighted avg	0.85 0.85	0.83 0.84	0.84 0.84 0.84	412 412 412		

Decision Boundary Visualizations (8 Screenshots):

Moons Dataset (3 plots):

7. Moons Dataset - SVM with LINEAR Kernel

8. Moons Dataset - SVM with RBF Kernel

9. Moons Dataset - SVM with POLY Kernel

Banknote Dataset (3 plots)

10. Banknote Dataset - SVM with LINEAR Kernel

11. Banknote Dataset - SVM with RBF Kerne

12. Banknote Dataset - SVM with POLY Kernel

Margin Analysis (2 plots):

13. Soft Margin SVM (C=0.1)

14. Hard Margin SVM (C=100)

