电气精品教材丛书 "十三五"江苏省高等学校重点教材 工业和信息化部"十四五"规划教材

电力电子技术 • Power Electronics

第5章 隔离型直流变换器

2023/12/5

- **★ 5.1 正激变换器**
- **★ 5.2 反激变换器**
- ★ 5.3 推挽变换器
 - 5.4 半桥变换器
 - 5.5 全桥变换器
 - 5.6 Buck类变换器的输出整流电路
 - 5.7 隔离型Buck类变换器的比较

★ 5.1 正激变换器

- 5.1.1 正激变换器电路拓扑的推演
- 5.1.2 正激变换器的工作原理
- 5.1.3 正激变换器的基本关系
- 5.1.4 双管正激变换器

正激变换器电路拓扑的推演

■*Q*导通时

 $u_{\rm p}=U_{\rm in}$, 变压器被磁化, 励磁磁通线性增加

■ ②截止时

电感电流通过 D_{FW} 续流,变压器副边绕组被短路,

 $u_{\rm s} = u_{\rm p} = 0$,励磁磁通保持不变。一个开关周期内,

励磁磁通净增加,变压器趋向饱和

正激变换器电路拓扑的推演

为了防止变压器饱和,开关周期结束 前使变压器励磁磁通减小到零。所以 需要加入磁复位电路:

在Q截止时,使原边绕组得到负电压。 此时, u_s <0, D_{FW} 导通,副边绕组短路,因此需要串入二极管 D_R

正激变换器电路拓扑的推演

- 复位绕组N_r与复位二极管D_r组成磁 复位电路
- 开关管与变压器原边绕组换位 即得到单管正激(Forward)变换器

- 变压器起到电气隔离和变压作用
- 整流二极管*D*₁ 和续流二极管*D*₂ 构成 半波整流电路

2023/12/5

★ 5.1 正激变换器

- 5.1.1 正激变换器电路拓扑的推演
- 5.1.2 正激变换器的工作原理
- 5.1.3 正激变换器的基本关系
- 5.1.4 双管正激变换器

在一个开关周期内,正激变换 器存在三种开关模态

(c) Q关断,磁复位完成

(a) Q导通

1. 开关模态1 [0, T_{on}]

Q导通,原边绕组电压: $u_p = N_p \frac{d\phi}{dt} = U_{in}$

磁通增长: $\Delta \phi_{(+)} = \frac{U_{\text{in}}}{N_{\text{p}}} D_{\text{y}} T_{\text{s}}$ 占空比: $D_{\text{y}} = T_{\text{on}} / T_{\text{s}}$

 $T_{\rm on}$ 为导通时间, $T_{\rm s}$ 为开关周期

1. 开关模态1 [0, T_{on}]

变压器励磁电流: $i_{\rm M} = \frac{U_{\rm in}}{L_{\rm M}} t$

副边绕组电压: $u_{\rm s} = \frac{N_{\rm s}}{N} U_{\rm in}$

原边电流: $i_{p} = \frac{N_{s}}{N_{p}} i_{Lf} + i_{M}$

1. 开关模态1 [0, T_{on}]

电感电流增量:

$$\Delta I_{Lf} = \frac{u_s - U_o}{L_f} T_{\text{on}} = \frac{\frac{N_s}{N_p} U_{in} - U_o}{L_f} T_{\text{on}}$$

2. 开关模态2 $[T_{on}, T_{on}+T_{r}]$

在 $t=T_{on}$ 时,复位绕组 N_r 中出现感应电压且

极性为 "*" 端为 "负" ,二极管 D_r 导通

复位绕组初始电流: $I_{Nr_{-}0} = \frac{N_p}{N_r} \frac{U_{in}}{L_M} D_y T_s$ 复位绕组电压: $u_{Nr} = N_r \frac{d\phi}{dt} = -U_{in}$

2. 开关模态2 $[T_{on}, T_{on}+T_{r}]$

磁通减小量:
$$\Delta \phi_{(-)} = \frac{U_{\rm in}}{N_{\rm r}} T_{\rm r} = \frac{U_{\rm in}}{N_{\rm r}} D_{\rm reset} T_{\rm s}$$

$$T_{\rm r}$$
 为磁通减小到零的时间: $D_{\rm reset}^{\rm r} = T_{\rm r}/T_{\rm s}$

在
$$t=T_{on}+T_{r}$$
时, $i_{Nr}=0$, $i_{M}=0$,变压器磁复位

原/副边绕组电压:
$$u_p = -\frac{N_p}{N_r}U_{in}$$
 $u_s = -\frac{N_s}{N_r}U_{in}$

3. 开关模态3 $[T_{on}+T_{r}, T_{s}]$

在此开关模态中,变压器所有绕组电压和电流均为零。滤波电感电流 i_{Lf} 继续经过续流二极管 D_2 续流,并且线性下降。加在开关管Q上的电压为: $u_O=U_{in}$

2023/12/5

3. 开关模态2和3 $[T_{on}, T_{s}]$

电感电流减量:

$$\Delta I_{Lf} = \frac{U_o}{L_f} (T_s - T_{on}) = \frac{U_o}{L_f} (1 - D_y) T_s$$

★ 5.1 正激变换器

- 5.1.1 正激变换器电路拓扑的推演
- 5.1.2 正激变换器的工作原理
- 5.1.3 正激变换器的基本关系
- 5.1.4 双管正激变换器

正激变换器的基本关系

1. 输出电压与输入电压的关系式

正激变换器实际上是一个隔离型的Buck变换器,其输出电压与输入电压之间的关系为:

$$U_{\rm o} = D_{\rm y} \frac{N_{\rm s}}{N_{\rm p}} U_{\rm in}$$

其中占空比: $D_y = T_{on}/T_s$

正激变换器的基本关系

2. 功率器件承受的电压应力和流过的电流

➢ 开关管Q截止,变压器磁芯去磁

开关管*Q*上电压:
$$U_Q = U_{in} + \frac{N_p}{N_r} U_{in} = \left(1 + \frac{N_p}{N_r}\right) U_{in}$$
 整流二极管 D_1 上电压: $U_{D1} = \frac{N_s}{N_r} U_{in}$

▶ 开关管 ②导通,变压器磁芯增磁

续流二极管 D_2 上电压: $U_{D2} = \frac{N_s}{N_p} U_{in}$ 整流二极管 D_r 上电压: $U_{Dr} = \left(1 + \frac{N_r}{N_p}\right) U_{in}$

2. 功率器件承受的电压应力和流过的电流

电感电流 i_{Lf} 的最大值为:

$$I_{\text{Lfmax}} = I_{\text{o}} + \frac{1}{2}\Delta I_{\text{Lf}} = I_{\text{o}} + \frac{1}{2L_{\text{f}}} \left(\frac{N_{\text{s}}}{N_{\text{p}}} U_{\text{in}} - U_{\text{o}} \right) D_{\text{y}} T_{\text{s}}$$

二极管 D_1 、 D_2 导通时电流均为 i_{Lf}

即 D_1 、 D_2 上最大电流均等于 I_{Lfmax}

开关管电流 i_0 最大值为:

$$I_{\text{Qmax}} = \frac{N_{\text{s}}}{N_{\text{p}}} I_{\text{Lfmax}} + I_{\text{Mmax}} = \frac{N_{\text{s}}}{N_{\text{p}}} I_{\text{Lfmax}} + \frac{U_{\text{in}}}{L_{\text{M}}} D_{\text{y}} T_{\text{s}}$$

3. 复位绕组匝数的选取

为了保证变压器磁芯的磁复位, 防止磁芯饱和

损坏, 磁芯磁通的增加量应等于减小量:

$$\Delta \phi_{(+)} = \frac{U_{\text{in}}}{N_{\text{p}}} D_{\text{y}} T_{\text{s}} = \Delta \phi_{(-)} = \frac{U_{\text{in}}}{N_{\text{r}}} T_{\text{r}} = \frac{U_{\text{in}}}{N_{\text{r}}} D_{\text{reset}} T_{\text{s}}$$

可以得到:
$$D_{\text{reset}} = \frac{N_{\text{r}}}{N_{\text{p}}} D_{\text{y}}$$

为保证变压器磁芯可靠复位: $D_{\text{rest}} < 1 - D_{\text{y}}$

最大占空比
$$D_{ymax}$$
满足: $D_{ymax} \leq \frac{N_p/N_r}{1+N_p/N_r}$

3. 复位绕组匝数的选取

变压器的引入,不仅实现了输入和输出侧的电气隔离,也使正激变换器的输出电压可以高于输入电压,或低于输入电压,还可实现多输出

$$U_{\rm o} = D_{\rm y} \frac{N_{\rm s}}{N_{\rm p}} U_{\rm in} \qquad U_{\rm Q} = U_{\rm in} + \frac{N_{\rm p}}{N_{\rm r}} U_{\rm in} = \left(1 + \frac{N_{\rm p}}{N_{\rm r}}\right) U_{\rm in} \qquad D_{\rm ymax} \le \frac{N_{\rm p}/N_{\rm r}}{1 + N_{\rm p}/N_{\rm r}}$$

- $N_p \ge N_r$, $D_{ymax} > 0.5$, $U_Q > 2U_{in}$, N_p/N_r 越大, D_{ymax} 可以越大, 而 U_Q 则越高
- $\blacksquare N_p \le N_r$, $D_{ymax} < 0.5$, $U_Q < 2U_{in}$, N_p / N_r 越小, D_{ymax} 可以越小, 而 U_Q 则越低
- 为了充分提高 D_y , 而又减小 U_Q , 一般选择 $N_r = N_p$, 此时 $D_{ymax} = 0.5$, 而 $U_Q = 2U_{in}$

4. 滤波电感量与滤波电容量

(1) 开关模态1 [0, T_{on}]

电感电流增量:

$$\Delta I_{Lf} = \frac{u_s - U_o}{L_f} T_{\text{on}} = \frac{\frac{N_s}{N_p} U_{in} - U_o}{L_f} T_{\text{on}}$$

(2) 开关模态2和3 $[T_{on}, T_{s}]$

电感电流减量:

$$\Delta I_{Lf} = \frac{U_o}{L_f} (T_s - T_{on}) = \frac{U_o}{L_f} (1 - D_y) T_s$$

4. 滤波电感量与滤波电容量

正激变换器本质上是一个隔离型的Buck变换器,其滤波电感量与滤波电容量的 计算与Buck变换器类似,只是将加在滤波器上的电压的幅值改为 $U_{in}N_{s}/N_{p}$ 即可

滤波电感量:

$$L_{\rm f} = \frac{U_{\rm o}}{\Delta I_{\rm Lfmax_permit}} \left(1 - \frac{N_p U_{\rm o}}{N_s U_{\rm inmax}} \right) T_{\rm s}$$

$$U_{\rm o}$$
不变

滤波电容量:
$$C_{\rm f} = \frac{(1-D_{\rm y})U_{\rm o}}{8L_{\rm f}f_{\rm s}^2\Delta U_{\rm o}}$$

源波里感量:
$$L_{\rm f} = \frac{U_{\rm o}}{\Delta I_{\rm Lfmax_permit}} \left(1 - \frac{N_p U_{\rm o}}{N_s U_{\rm inmax}}\right) T_{\rm s} \qquad L_{\rm f} = \begin{cases} \frac{N_s U_{\rm in}}{N_p \Delta I_{\rm Lfmax_permit}} \left(1 - D_{\rm ymax}\right) D_{\rm ymax} T_{\rm s} & \left(D_{\rm y} \le 0.5\right) \\ \frac{N_s U_{\rm in}}{N_p \Delta I_{\rm Lfmax_permit}} \left(1 - D_{\rm ymin}\right) D_{\rm ymin} T_{\rm s} & \left(D_{\rm y} \ge 0.5\right) \\ \frac{N_s U_{\rm in}}{4 N_p \Delta I_{\rm Lfmax_permit}} T_{\rm s} & \left(D_{\rm ymin} \le 0.5 \le D_{\rm ymax}\right) \end{cases}$$

 $U_{\rm in}$ 不变

4. 滤波电感量与滤波电容量

正激变换器本质上是一个隔离型的Buck变换器,其 滤波电感量与滤波电容量的计算与Buck变换器类似, 只是将加在滤波器上的电压的幅值改为 $U_{in}N_{s}/N_{p}$ 即可

滤波电容量:

$$Q = \frac{1}{2} \frac{T_{\rm s}}{2} \frac{\Delta I_{\rm Lf}}{2} \quad E$$

源波电容量:
$$Q = \frac{1}{2} \frac{T_{\rm s}}{2} \frac{\Delta I_{\rm Lf}}{2}$$
 其中
$$\begin{cases} \Delta I_{\rm Lf} = \frac{u_{\rm s} - U_{\rm o}}{L_{\rm f}} T_{\rm on} = \frac{\frac{N_{\rm s}}{N_{\rm p}} U_{\rm in} - U_{\rm o}}{L_{\rm f}} \\ \Delta I_{\rm Lf} = \frac{U_{\rm o}}{L_{\rm f}} (T_{\rm s} - T_{\rm on}) = \frac{U_{\rm o}}{L_{\rm f}} (1 - D_{\rm y}) T_{\rm s} \end{cases}$$
4 # 即

结果

$$\Delta U_o = \frac{Q}{C_f} = \frac{(1 - D_y)U_o}{8L_f f_s^2 C_f} \qquad \qquad C_f = \frac{(1 - D_y)U_o}{8L_f f_s^2 \Delta U_o}$$

$$C_{\rm f} = \frac{(1 - D_{\rm y})U_{\rm o}}{8L_{\rm f} f_{\rm s}^2 \Delta U_{\rm o}}$$

★ 5.2 反激变换器

- 5.2.1 反激变换器电路拓扑的推演
- 5.2.2 反激变换器的工作模式和开关模态
- 5.2.3 电流连续时反激变换器的工作原理与基本关系

反激变换器电路拓扑的推演

根据伏秒面积平衡原理,加在电感 L_c 上的电压是一个纯交流电压,因此,可以将变压器并联在 L_c 上;同时,电感 L_c 可以用变压器的励磁电感代替,因此它可以集成到变压器中

副边电路镜像翻转

反激变换器电路拓扑的推演

将二极管D移到副边电路的上面,同时将开关管Q和变压器原边绕组交换位置,即可得到反激(Flyback)变换器:

- 电路拓扑简洁
- 使用元器件数量少

注: 反激变换器的变压器本质上是一个耦合电

感, 其磁芯必须留有气隙, 以避免饱和

★ 5.2 反激变换器

- 5.2.1 反激变换器电路拓扑的推演
- 5.2.2 反激变换器的工作模式和开关模态
- 5.2.3 电流连续时反激变换器的工作原理与基本关系

反激变换器的工作模式和开关模态

1. 反激变换器的工作模式

和Buck-Boost变换器一样,反激变换器也有电流连续和断续两种工作方式,但其含义不同:

- 电流连续是指变压器两个绕组的<mark>合成安</mark>匝 在一个开关周期中不为零
- 而电流断续是指合成安匝在*Q*截止期间有一段时间为零

反激变换器的工作模式和开关模态

2. 反激变换器的开关模态

- 电流连续时,有(a)和(b)两种开关模态
- 电流断续时,有(a)、(b)、(c)三种开关模态

(a) Q导通

反激变换器电路拓扑的推演

3. 反激变换器的主要波形

2023/12/5

★ 5.2 反激变换器

- 5.2.1 反激变换器电路拓扑的推演
- 5.2.2 反激变换器的工作模式和开关模态
- 5.2.3 电流连续时反激变换器的工作原理与基本关系

1. 工作原理

1). 开关模态1 [0, T_{on}]

在t=0时,开关管Q导通,输入电压 $U_{\rm in}$ 加在变压器原边

绕组N_p上,此时副边绕组N_s的感应电压为:

$$u_{\rm s} = -\frac{N_{\rm s}}{N_{\rm p}} U_{\rm in}$$

其极性为 "*" 端为 "正",二极管D截止,负载电流由滤波电容 C_f 提供。此时,变压器的副边绕组开路,只有原边绕组工作,**相当于电感量为L_n的一个电感**

Q导通

The same of the sa

1. 工作原理

1). 开关模态1 [0, T_{on}]

原边电压:
$$u_p = L_p \frac{di_p}{dt} = U_{in}$$

原边电流 i_p 从其最小值 I_{pmin} 开始线性增加,在 $t = T_{on}$

时,
$$i_{\rm p}$$
达到最大值 $I_{\rm pmax}$: $I_{\rm pmax} = I_{\rm pmin} + \frac{U_{\rm in}}{L_{\rm p}} D_{\rm y} T_{\rm s}$

磁芯磁通增加量:
$$\Delta \phi_{\scriptscriptstyle (+)} = rac{U_{\rm in}}{N_{
m p}} D_{
m y} T_{
m s}$$

1. 工作原理

2). 开关模态2 $[T_{on}, T_{s}]$

在 $t=T_{\text{on}}$ 时,开关管Q截止,原边绕组开路,**副边绕组的感应电势反向**,其极性为"*"端为"负",二极管D导通,储存在变压器磁场中的能量通过D释放,一方面给滤波电容 C_{f} 充电,另一方面向负载供电。此时,变压器只有副边绕组工作,**相当于电感量为** L_{s} 的一个电感,副边绕组上的电压为: $u_{\text{s}}=U_{\text{o}}$

1. 工作原理

2). 开关模态2 $[T_{on}, T_{s}]$

副边电压:
$$u_{\rm s} = L_{\rm s} \frac{di_{\rm s}}{dt} = U_{\rm o}$$

副边电流 i_s 从其最大值 I_{smax} 开始线性下降。在 $t = T_s$

时,
$$i_{\rm s}$$
 达到最小值 $I_{\rm smin}$: $I_{\rm smin} = I_{\rm smax} - \frac{U_{\rm o}}{L_{\rm s}} (1 - D_{\rm y}) T_{\rm s}$

磁芯磁通减小量:
$$\Delta \phi_{\scriptscriptstyle (-)} = \frac{U_{\rm o}}{N_{\rm s}} (1 - D_{\rm y}) T_{\rm s}$$

$V_{\rm in}$ $V_{\rm p}$ $V_{\rm s}$ $V_{$

2. 基本关系

稳态工作时,磁芯磁通增长量等于减小量:

$$\Delta \phi_{(+)} = \frac{U_{\text{in}}}{N_{\text{p}}} D_{\text{y}} T_{\text{s}} = \Delta \phi_{(-)} = \frac{U_{\text{o}}}{N_{\text{s}}} (1 - D_{\text{y}}) T_{\text{s}}$$

得到:
$$\frac{U_{\rm o}}{U_{\rm in}} = \frac{N_{\rm s}}{N_{\rm p}} \frac{D_{\rm y}}{1 - D_{\rm y}}$$

Buck-Boost变换器的完全一样

2. 基本关系

输出电流I。就是流过二极管D的电流平均值,亦

即副边电流i。的平均值:

$$I_{o} = \frac{1}{2} \left(I_{\text{smin}} + I_{\text{smax}} \right) \left(1 - D_{y} \right)$$

$$\frac{I_{\text{smin}} + I_{\text{smax}}}{2} = \frac{I_{\text{o}}}{1 - D_{\text{v}}}$$

$$\int I_{\text{smax}} = \frac{I_{\text{o}}}{1 - D_{\text{y}}} + \frac{U_{\text{o}}}{2L_{\text{s}}} (1 - D_{\text{y}}) T_{\text{s}}$$

$$I_{\text{smin}} = \frac{I_{\text{o}}}{1 - D_{\text{y}}} - \frac{U_{\text{o}}}{2L_{\text{s}}} (1 - D_{\text{y}}) T_{\text{s}}$$

2. 基本关系

根据变压器的工作原理,存在以下关系式:

$$\begin{cases} N_{p}I_{pmin} = N_{s}I_{smin} & L_{p} = \left(\frac{N_{p}}{N_{s}}\right)^{2} \\ N_{p}I_{pmax} = N_{s}I_{smax} & L_{s} = \left(\frac{N_{p}}{N_{s}}\right)^{2} \end{cases}$$

$$\frac{L_{\rm p}}{L_{\rm s}} = \left(\frac{N_{\rm p}}{N_{\rm s}}\right)^2$$

$$I_{\text{pmax}} = \frac{N_{\text{s}}}{N_{\text{p}}} \frac{I_{\text{o}}}{1 - D_{\text{y}}} + \frac{N_{\text{s}}}{N_{\text{p}}} \frac{U_{\text{o}}}{2L_{\text{s}}} (1 - D_{\text{y}}) T_{\text{s}} = \frac{N_{\text{s}}}{N_{\text{p}}} \frac{I_{\text{o}}}{1 - D_{\text{y}}} + \frac{U_{\text{in}}}{2L_{\text{p}}} D_{\text{y}} T_{\text{s}}$$

$$I_{\text{pmax}} = \frac{N_s}{N_p} I_{s \text{ max}} = \frac{N_s}{N_p} \left[\frac{I_o}{1 - D_y} + \frac{U_o}{2L_s} (1 - D_y) T_s \right] \qquad \frac{U_o}{U_{\text{in}}} = \frac{N_s}{N_p} \frac{D_y}{1 - D_y}$$

$$\frac{U_{\rm o}}{U_{\rm in}} = \frac{N_{\rm s}}{N_{\rm p}} \frac{D_{\rm y}}{1 - D_{\rm y}}$$

2. 基本关系

根据变压器的工作原理,存在以下关系式:

$$\begin{cases} N_{p}I_{pmin} = N_{s}I_{smin} & L_{p} = \left(\frac{N_{p}}{N_{s}}\right)^{2} \\ N_{p}I_{pmax} = N_{s}I_{smax} & L_{s} = \left(\frac{N_{p}}{N_{s}}\right)^{2} \end{cases}$$

$$\frac{L_{\rm p}}{L_{\rm s}} = \left(\frac{N_{\rm p}}{N_{\rm s}}\right)^2$$

$$I_{\text{pmin}} = \frac{N_{\text{s}}}{N_{\text{p}}} \frac{I_{\text{o}}}{1 - D_{\text{y}}} - \frac{N_{\text{s}}}{N_{\text{p}}} \frac{U_{\text{o}}}{2L_{\text{s}}} \left(1 - D_{\text{y}}\right) T_{\text{s}} = \frac{N_{\text{s}}}{N_{\text{p}}} \frac{I_{\text{o}}}{1 - D_{\text{y}}} - \frac{U_{\text{in}}}{2L_{\text{p}}} D_{\text{y}} T_{\text{s}}$$

$$I_{\text{pmin}} = \frac{N_s}{N_p} I_{s \text{ min}} = \frac{N_s}{N_p} \left[\frac{I_o}{1 - D_y} - \frac{U_o}{2L_s} (1 - D_y) T_s \right] \qquad \frac{U_o}{U_{\text{in}}} = \frac{N_s}{N_p} \frac{D_y}{1 - D_y}$$

$$\frac{U_{\rm o}}{U_{\rm in}} = \frac{N_{\rm s}}{N_{\rm p}} \frac{D_{\rm y}}{1 - D_{\rm y}}$$

2. 基本关系

根据变压器的工作原理,存在以下关系式:

$$\begin{cases} N_{p}I_{pmin} = N_{s}I_{smin} & L_{p} = \left(\frac{N_{p}}{N_{s}}\right)^{2} \\ N_{p}I_{pmax} = N_{s}I_{smax} & L_{s} = \left(\frac{N_{p}}{N_{s}}\right)^{2} \end{cases}$$

$$\frac{L_{\rm p}}{L_{\rm s}} = \left(\frac{N_{\rm p}}{N_{\rm s}}\right)^2$$

$$\begin{cases} I_{\text{pmax}} = \frac{N_{\text{s}}}{N_{\text{p}}} \frac{I_{\text{o}}}{1 - D_{\text{y}}} + \frac{N_{\text{s}}}{N_{\text{p}}} \frac{U_{\text{o}}}{2L_{\text{s}}} (1 - D_{\text{y}}) T_{\text{s}} = \frac{N_{\text{s}}}{N_{\text{p}}} \frac{I_{\text{o}}}{1 - D_{\text{y}}} + \frac{U_{\text{in}}}{2L_{\text{p}}} D_{\text{y}} T_{\text{s}} \\ I_{\text{pmin}} = \frac{N_{\text{s}}}{N_{\text{p}}} \frac{I_{\text{o}}}{1 - D_{\text{y}}} - \frac{N_{\text{s}}}{N_{\text{p}}} \frac{U_{\text{o}}}{2L_{\text{s}}} (1 - D_{\text{y}}) T_{\text{s}} = \frac{N_{\text{s}}}{N_{\text{p}}} \frac{I_{\text{o}}}{1 - D_{\text{y}}} - \frac{U_{\text{in}}}{2L_{\text{p}}} D_{\text{y}} T_{\text{s}} \end{cases}$$

5.5 全桥变换器

- 5.5.1 全桥变换器电路拓扑的推演
- 5.5.2 全桥变换器的工作原理
- 5.5.3 全桥变换器的基本关系

全桥变换器电路拓扑的推演

两种拓扑双管正激 变换器在输入侧并 联,在变压器副边 整流后并联,共用 输出滤波器和负载

全桥变换中器电路拓扑的推演

将两个变压器共用一副磁芯,并且其原边同名端相反:

- Q_1 、 Q_4 导通时,磁芯被正向磁化
- Q₂、Q₃导通时,磁芯被反向磁化

变压器磁芯的磁通在每个开关周期内不存在净增

加量

两个变压器共用一副磁芯

全桥变换中器电路拓扑的推演

- 将 Q_1 和 D_3 构成的桥臂和 Q_3 和 D_1 构成的桥臂合并
- 将 Q_4 和 D_2 构成的桥臂和 Q_2 和 D_4 构成的桥臂合并
- 将并联的变压器的两个原边绕组整合为一个 即可得到全桥(Full-Bridge)变换器

全桥变换器的变压器也是双向磁化的,其原边绕组交流电压的幅值为输入电压 $U_{\rm in}$,与推挽变换器的一样,是半桥变换器的2倍。开关管的电压应力与双管正激变换器的一样,也为 $U_{\rm in}$

全桥变换器

★ 5.5 全桥变换器

- 5.5.1 全桥变换器电路拓扑的推演
- 5.5.2 全桥变换器的工作原理
- 5.5.3 全桥变换器的基本关系

在一个开关周期内,半桥变换器有四种开关模态

(a) 开关模态1

(b) 开关模态2

2023/12/5

在一个开关周期内,半桥变换器有四种开关模态

(c) 开关模态3

(d) 开关模态4

2023/12/5

1. 开关模态1 [0, T_{on}]

在t=0时,开关管 Q_1 和 Q_4 导通,输入电压 $U_{\rm in}$ 加在变压器原边绕组 $N_{\rm p}$ 上,变压器磁芯被磁化,其励磁电流 $i_{\rm M}$ 从负的最大值 $I_{\rm Mmax}$ 开始线性增加,即:

L_M 为原边绕组的励磁电感

$$i_{\rm M} = -I_{\rm Mmax} + \frac{U_{\rm in}}{L_{\rm M}}t$$

1. 开关模态1 [0, T_{on}]

变压器原边绕组 N_p 上的电压: $u_p = U_{in}$

变压器副边绕组 $N_{\rm s1}$ 上的电压: $u_{\rm s1} = U_{\rm in}/K$

式中, $K=N_p/N_s$,为原副边绕组匝比

1. 开关模态1 [0, T_{on}]

整流二极管 D_{R1} 导通,整流二极管 D_{R2} 和续流二极管

 D_{FW} 均截止,整流后的电压 u_{rect} 等于 U_{in}/K

滤波电感 $L_{\rm f}$ 上的电压为 $U_{\rm in}/K$ - $U_{\rm o}$,其电流 $i_{\rm Lf}$ 线性增

加

1. 开关模态1 [0, T_{on}]

原边绕组 N_p 的电流 i_p 为折算到原边的副边电流和励磁电流之和,即: $i_p = \frac{i_{\rm Lf}}{K} + i_{\rm M}$ 在 $t=T_{\rm on}$ 时,开关模态结束,滤波电感电流 $i_{\rm Lf}$ 达到其最大值 $I_{\rm Lfmax}$,而励磁电流 $i_{\rm M}$ 达到其最大值 $I_{\rm Mmax}$

2. 开关模态2 [T_{on}, T_s/2]

在 $t=T_{\rm on}$ 时,开关管 Q_1 和 Q_4 截止,变压器各绕组瞬时出现感应电压,其极性为"*"端为"负", $D_{\rm R2}$ 导通, $D_{\rm R1}$ 截止。电流 $i_{\rm Lf}$ 经由 $D_{\rm FW}$ 流通,加在滤波电感上的电压为- $U_{\rm o}$,滤波电感电流 $i_{\rm Lf}$ 线性下降

2023/12/5

2. 开关模态2 [T_{on}, T_s/2]

在此开关模态中,整流二极管 D_{R2} 的电流 i_{DR2} 等

于折算过来的励磁电流,即: $i_{DR2}=K\cdot I_{Mmax}$

续流二极管 D_{FW} 的电流: $i_{\text{DFW}} = i_{\text{Lf}} - K \cdot I_{\text{Mmax}}$

3. 开关模态 $3[T_s/2, T_s/2+T_{on}]$ 和开关模态 $4[T_s/2+T_{on}, T_s]$

- 在开关模态3中,开关管 Q_2 和 Q_3 导通,工作情况与开关模态1类似
- 在开关模态4中,开关管Q2和Q3截止,工作情况与开关模态2类似

2023/12/5

4. 去掉续流二极管 D_{FW} 的工作原理

以上的分析都是基于存在续流二极管 D_{FW} 的情况,与推挽变换器和半桥变换器类似,续流二极管是可以去掉的

在去掉续流二极管后,开关模态2和4的工作情况有所不同,此时两只整流二极管同时导通

去掉续流二极管后两只开关管均 关断时的等效电路

2023/12/5

4. 去掉续流二极管 D_{FW} 的工作原理

在去掉续流二极管后,两只整流二极管的电流为:

$$\begin{cases} i_{\text{DR1}} = \frac{1}{2} \left(i_{\text{Lf}} - K I_{\text{Mmax}} \right) \\ i_{\text{DR2}} = \frac{1}{2} \left(i_{\text{Lf}} + K I_{\text{Mmax}} \right) \end{cases}$$

两只整流二极管的电流如右图最下面的波形所示如果忽略励磁电流,那么两只整流二极管均分滤波电感电流,即 $i_{DR1}=i_{DR2}=i_{Lf}/2$

★ 5.5 全桥变换器

- 5.5.1 全桥变换器电路拓扑的推演
- 5.5.2 全桥变换器的工作原理
- 5.5.3 全桥变换器的基本关系

1. 输出电压与输入电压的关系式

全桥变换器实际上也是一个隔离型的Buck变换

器,其输出电压与输入电压之间的关系为:

$$U_{\rm o} = D_{\rm y} U_{\rm in} / K$$

注:与推挽变换器一样,这里的 D_y 指的是副边整流电压 u_{rect} 的占空比,它是开关管占空比的2倍,最大可达1

输出输入电压关系推导

1. 开关模态1 [0, T_{on}]

电感电流:

$$\Delta I_{Lf} = \frac{\frac{U_{in}}{K} - U_o}{L_f} \cdot \frac{D_y T_s}{2}$$

输出输入电压关系推导

2. 开关模态2 $[T_{on}, T_{s}/2]$

电感电流:

$$\Delta I_{Lf} = \frac{U_o}{L_f} \cdot \frac{(1 - D_y)T_s}{2}$$

输出输入电压关系推导

1. 开关模态1 [0, T_{on}]

2. 开关模态2 $[T_{on}, T_{s}/2]$

电感电流:

$$\Delta I_{Lf} = \frac{\frac{U_{in}}{K} - U_o}{L_f} \cdot \frac{D_y T_s}{2}$$

$$\Delta I_{Lf} = \frac{U_o}{L_f} \cdot \frac{(1 - D_y)T_s}{2}$$

$$U_{\rm o} = D_{\rm y} U_{\rm in}/K$$

2. 变压器原副边匝比

一般来说,输入电压都有一定的变化范围,因

此变压器原副边匝比的选择应保证在输入电压

最低时能够得到所需要的输出电压

根据 $U_{\rm o} = D_{\rm v} U_{\rm in} / K$

可以得到: $K = D_{\text{ymax}} U_{\text{inmin}} / U_{\text{o}}$

式中, U_{inmin} 为最低输入电压, D_{ymax} 为最大占

空比,一般可选为0.9

3. 开关管承受的电压应力和流过的电流

在各工作模态中: 当任一只开关管导通时, 同一桥臂的另一只开关管承受的电压为 U_{in} 。因此, 四只开关管的电压应力为:

$$U_{\text{O}i} = U_{\text{in}} \quad (j = 1, 2, 3, 4)$$

在开关模态1时,开关管 Q_1 和 Q_4 导通,其电流等于折算到原边的滤波电感电流与励磁电流之和。忽略励磁电流,则开关管电流的最大值为:

$$I_{\text{Oimax}} = I_{\text{Lfmax}} / K$$
 $(j = 1, 2, 3, 4)$

式中, I。为输出电流

3. 开关管承受的电压应力和流过的电流

在各工作模态中: 当任一只开关管导通时, 同一桥臂的另一只开关管承受的电压为 U_{in} 。因此, 四只开关管的电压应力为:

$$U_{\text{O}i} = U_{\text{in}} \quad (j = 1, 2, 3, 4)$$

在开关模态1时,开关管 Q_1 和 Q_4 导通,其电流等于折算到原边的滤波电感电流与励磁电流之

和。忽略励磁电流,则开关管电流的平均值为:

$$I_{Qj} = \frac{I_o}{K} \frac{D_y}{2}$$
 $(j = 1, 2, 3, 4)$

式中, I。为输出电流

4. 整流二极管和续流二极管承受的电压应力和流过的电流

当开关管 Q_1 导通时,两个副边绕组上的感应

电压均为 $U_{\rm in}/K$,其电压之和加在整流二极管

D_{R2}上, 因此整流二极管的电压应力为:

$$U_{\rm DR1} = U_{\rm DR2} = 2U_{\rm in}/K$$

同时,加在续流二极管 D_{FW} 上的电压为 U_{in}/K ,

那么续流二极管的电压应力为: $U_{\mathrm{DFW}} = U_{\mathrm{in}}/K$

4. 整流二极管和续流二极管承受的电压应力

和流过的电流

整流二极管的电流最大值为滤波电感电流,即有:

$$I_{\mathrm{DR1max}} = I_{\mathrm{DR2max}} = I_{\mathrm{Lfmax}}$$

如果忽略励磁电流,那么整流二极管的电流平均

值为:
$$I_{DR1} = I_{DR2} = I_o D_v / 2$$

续流二极管电流的最大值和平均值分别为:

$$I_{\mathrm{DFWmax}} = I_{\mathrm{Lfmax}}$$
 $I_{\mathrm{DFW}} = I_{\mathrm{o}} \left(1 - D_{\mathrm{y}} \right)$

去掉续流二极管时,两只整流二极管的平均电流

均为输出电流的一半,即: $I_{DR1} = I_{DR2} = I_0/2$

5. 滤波电感量和滤波电容量

由于全桥变换器本质上也是一个隔离型的 Buck变换器,其滤波电感量和滤波电容量 的**计算与Buck变换器的类似**

注:在全桥变换器中,整流后电压 u_{rect} 的幅值为 U_{in}/K ,脉动频率为开关频率的两倍

