A Networked Software Audio Mixing Console

Jeffrey M. Clark

December 21, 2020

1 Introduction

This project describes a networked software audio mixing console (N-SAMC). Most mixing consoles for live audio are hardware-based, which ensures a high degree of stability within the system – often desirable for real-time audio processing. Software mixers are often used in conjunction with a digital audio workstation (DAW), and are characterized by their flexibility.

This project, prima facie, appears to take the worst of both world: the relative inflexibility of a hardware console with the instability of the software console. However, the this console is not specifically intended for live-audio work; but rather for testing and development of related systems which need a specifically-known basis. Additionally, the N-SAMC incorporates an OSC structure that is open, known, and documented. For development and testing, it is helpful to have a system that is completely known.

The N-SAMC is built in Max/MSP. While the Max/MSP ecosystem increases the computational overhead over a purpose-built system in C++, the flexibility and ease of use represented by Max/MSP yeilds a significant advantage for the N-SAMC as a development tool. Likewise, the N-SAMC has been built modularly – with each processing section developed as an abstraction. This allows for specific configurations to be quickly compiled

to suite specific needs.

Unfortunately, the Max/MSP design requires

2 Signal Flow

The N-SAMC emulates the traditional mixing structure of a console mixer. The base implimentation consists of a dynamics range processor, a multiband, parametric equalizer, a low-cut filter, a stereo panner, and a fader. The mixer also includes 6 auxillary sends, which are switchable pre or post fader.

2.1 Low-Cut Filter

The low-cut filter occurs first in the signal chain. It is built from a pair of cascaded biquad filters, emulating a fourth-order IIR filter topology.

2.2 Dynamic Range Processing

The dynamics range processing section consists of two processing units. Either unit can function as either a compressor or a gate. The position of the dynamics range processor is switchable to pre or post-EQ.

The settings follow the usual attack, release, and threshold values. The module also includes visual meters that monitor the input gain and the gain reduction values.

2.3 Equalizer

The equalizer section consists of a bank of four filters which are settable parametrically by the user throught the usual *frequency*, Q, and *gain* values. The current implimentation fixes the filters as peaking filters.

2.4 Fader

The fader section includes a fader. The fader occurs pre-panner in signal-flow, despite visually occurring below the panning controls. The fader applies a simple multiplier against the input signal.

2.5 Panner

The panning module is a simple stereo panner, operating on a sin-cos (-3dB at center) algorithm. The panner occurs post-fader. The N-SAMC is fixed to operate in two-channel stereo mode.

3 OSC

To fullfil the requirement of being networked every item within the N-SAMC is accessible through OSC. This includes all controls and outputs.

The OSC description is divided into two sections: input and output. The input section will outline how to externally control the mixer. The output section will outline how information