1 Question 1:

$$\sum_{k=0}^{n-1} |\hat{f}(k)|^2 = \sum_{k=0}^{n-1} \hat{f}(k) \overline{\hat{f}(k)} = \sum_{k=0}^{n-1} \hat{f}(k) \overline{\sum_{j=0}^{n-1} f(j) \omega_n^{-kj}} = \sum_{k=0}^{n-1} \hat{f}(k) \sum_{j=0}^{n-1} \overline{f(j)} \omega_n^{kj} = \sum_{j=0}^{n-1} \overline{f(j)} \sum_{k=0}^{n-1} \hat{f}(k) \omega_n^{kj} = \sum_{j=0}^{n-1} \overline{f(j)} f(j) = n \sum_{j=0}^{n-1} |f(j)|^2$$

Notice that if V is as defined in the question, $f = \frac{1}{\sqrt{n}}V\hat{f}$. Therefore, given a vector $x \in \mathbb{C}^n$, let y be a vector such that $\hat{y} = x$. Then

$$\frac{1}{n} \|Vx\|^2 = \left\| \frac{1}{\sqrt{n}} V\hat{y} \right\|^2 = \|y\|^2 = \frac{1}{n} \|\hat{y}\|^2 = \frac{1}{n} \|x\|^2$$

Therefore,

$$||Vx|| = ||x||$$

2 Question 2:

We are given an $m \times n$ matrix A, m < n, and we wish to find a vector x that is a solution to Ax = b, with minimal l_2 norm. Let U, D, V be the SV decomposition of A, i.e. $A = UDV^T$. Then solving Ax = b is equivalent to solving UDVx = b. Denote y = Vx. Since V is an orthogonal matrix, for any vector $x = \|Vx\|_2 = \|x\|_2$. Therefore if we find a vector y which is a solution to UDy = b with minimal l_2 norm, then $x = V^{-1}y$ is a solution to UDVx = b, $\|x\|_2 = \|y\|_2$, and therefore x is also a solution with minimal l_2 norm.

U is orthogonal, therefore U^{-1} exists. Denote $b' = U^{-1}b$. We want to solve Dy = b'. D is an $m \times n$ matrix, therefore we want to solve the m following equations:

$$d_{11}y_1 = b'_1$$

 $d_{22}y_2 = b'_2$
 \vdots
 $d_{mm}y_m = b'_m$

Let $y_i = b_i'/d_{ii}$ for i = 1, ..., m, and choose any value for the variables $y_{m+1}, ..., y_n$. This is a solution to Dy = b'. The solution with minimal l_2 norm is obviously the vector with $y_{m+1} = \cdots = y_n = 0$. Now we can find the solution: $x = V^{-1}y$.