Uifelean Aurora Sofia

ETTI, anul I, Seria A

1. Convertire

347	43	5	0
3	3	5	

$$347_8 = 533$$

2755	172	10	0
3	12	10	

$$2755_{16} = AC3$$

20	10	5	2	1	0
0	0	1	0	1	

2. Convertire in baza 10

$$1000101 = 1*26 + 0*25 + 0*24 + 0*23 + 1*22 + 0*21 + 1*20$$
$$= 64 + 4 + 1 = 69$$

$$357 = 3*8^2 + 5*8^1 + 7*8^0$$

= $3*64 + 40 + 7 = 192 + 47 = 239$

$$C7A = 12*16^{2} + 7*16^{1} + 10*16^{0}$$
$$= 12*256 + 112 + 10$$
$$= 3072 + 122 = 3194$$

3. Operatii

$$FA_{16} = 15*16^{1} + 10*16^{0}$$
$$= 240 + 10 = 250$$
$$23_{16} = 2*16^{1} + 3*16^{0}$$
$$= 32 + 3 = 35$$

$$250 + 35 = 285$$

285	17	1	0
13	1	1	

1101 0010

1110 1101

-----+

1.1011 1111

$$C1(723) = 054_8$$

$$C2(723) = 055_8 = -723_8$$

4. Convertire din baza 2 in baza 8 si 16

a)

$$(10101010.110010)_2 = (1 \times 2^7) + (0 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) + (1 \times 2^{-1}) + (1 \times 2^{-2}) + (0 \times 2^{-3}) + (0 \times 2^{-4}) + (1 \times 2^{-5}) + (0 \times 2^{-6}) = 128 + 32 + 8 + 2 + \frac{1}{2} + \frac{1}{4} + \frac{1}{32} = 170.78125$$

170.78125 × baza la puterea numarul de cifre dupa virgula

$170.78125 \times 8^5 = 5596160$

5596160	699520	87440	10930	1366	170	21	2	0
0	0	0	2	6	2	5	2	

 $(10101010.110010)_2 = (252.62)_8$

$170.78125 \times 16^5 = 179077120$

179077120	11192320	699520	43720	2732	170	10	0
0	0	0	8	12	10	10	

 $(10101010.110010)_2 = (AA.C8)_{16}$

b)
$$(1100010.11101)_2 = (1 \times 2^6) + (1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) + (1 \times 2^{-1}) + (1 \times 2^{-2}) + (1 \times 2^{-3}) + (0 \times 2^{-4}) + (1 \times 2^{-5}) = 64 + 32 + 2 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{32} = 98 + 0.5 + 0.25 + 0.125 + 0.03125 = 98.90625$$

$98.90625 \times 8^5 = 3240960$

3240960	405120	50640	6330	791	98	12	1	0
0	0	0	2	7	2	4	1	

 $(1100010.11101)_2 = (142.72)_8$

$98.90625 \times 16^5 = 103710720$

103710720	6481920	405120	25320	1582	98	6	0
0	0	0	8	14	2	6	

 $(1100010.11101)_2 = (62.E8)_{16}$

5. Convertire din baza 10 in baza 4

$175.1285 \times 4^5 = 179331.584$

179331.584	44832	11208	2802	700	175	43	10	2	0
4	0	0	2	0	3	3	2	2	

```
(175.1285)_{10} = (2233.02004)
(nu stiu exact cum sa fac aici)
    6. Algoritmi in pseudocod
Sortare prin metoda bulelor
n, aux, numere naturale
a[101], sir de numere naturale
k, variabila de tip intrerupator
se citeste n si un sir de numere a[101] de n elemente
executa
{
        k < -1;
        pentru i <- 0 , i < n - 1, i <- i + 1 executa
                 daca a[i] > a[i+1]
                         {
                                  k < -0
                                  aux <- a[i]
                                  a[i] <- a[i+1]
                                  a[i+1] <- aux
                 Sfarsit daca
        Sfarsit pentru
}
cat timp ≠ k
se afiseaza sirul a
    7. Algoritmul lui Euclid (CMMDC)
n, m numere naturale
se citesc n si m
cat timp n ≠ m
        daca n > m
                 n <- n - m;
        sfarsit daca
        altfel
                 m \leftarrow m - n;
        sfarsit altfel
se afiseaza n
```

8.

Descompunerea unui număr în factori primi

Citim un numar n. Parcurgem cu o structura repetitiva cu test initial (for) de la I = 2 pana la n inclusiv (cu cea de a doua conditie ca n sa fie diferit de 1) si parcugem din 1 in 1. Daca in urma impartirii lui I la n nu avem rest, atunci cu un while se imparte I la n si se numara de cate ori se face aceasta impartire intr-un p, dupa care (in acest daca) se afiseaza i-ul (factorul prim) si p-ul (puterea factorului prim).

Determinarea tuturor numerelor prime până la un n citi

Prima data scriem o functie prim, cu ajutorul careia putem determina daca un numar este prim sau nu, aceasta functie returneaza 0 daca numarul nu este prim si respectiv 1 daca numarul este prim. In functia prim: daca numarul este mai mic decat 2 atunci se returneaza 0; altfel daca numarul este divizibil cu 2 si este diferit de 2 se returneaza 0; altfel se parcurge cu un for de la d = 3 pana la radical din numarul pe care vrem sa il testam daca este prim si parcurgerea este din 2 in 2; daca d se imparte la numarul nostru si nu avem rest, atunci se returneaza 0; in final, daca niciuna dintre conditii nu a fost indeplinita, atunci se returneaza 1, adica numarul nostru este prim.

In programul principal citim un numar n si parcurgem cu un for de la d = 3 pana la n inclusiv si din 2 in 2. Daca apelam functia prim de d si ne returneaza 1 inseamna ca d este un numar prim si se afiseaza.

```
9.
    numar_cifre(n)
    n, k numere naturale
    {
             k <- 0
             cat timp n \neq 0
             {
                      K < -k + 1
                      n <- n / 10
             }
             returneaza k
    }
    Program principal
             a, b, cifa, cifb, aux, i, j, nr, t, k = 0 numere naturale
             s[20] = {0} sir
             se citesc a, b
             t <- numar_cifre(a) + numar_cifre(b)
             aux <- b
             cat timp a \neq 0
                      cifa <- a % 10
                      a <- a / 10
                      b <- aux
                      k < -k + 1
                      i <- k, j <- k + 1
                      cat timp b \neq 0
                      {
                               cifb <- b % 10
                               b <- b / 10
                               nr <- cifa * cifb
                              s[i] <- s[i] + nr % 10, nr <- nr / 10
```

```
s[j] <- s[j] + nr % 10
                  i <- j
                  j < -j + 1
         Sfarsit cat timp
Sfarsit cat timp
pentru i <- 1, i <= t, I <- I + 1
         afiseaza s[i] " "
Sfarsit pentru
Afiseaza linie noua
z <- 0 numar natural
pentru i <- 1, i <= t, I <- I + 1
{
         Daca s[i] >= 10
         {
                  s[i + 1] \leftarrow (s[i] / 10) \% 10 + s[i + 1]
                  daca s[i + 1] = 0
                           z < -z + 1
                  Sfarsit daca
                  alfel
                           z <- 0
                  Sfarsit altfel
                  s[i] <- s[i] % 10
         }
Sfarsit pentru
daca s[i + 1] = 0
        z < -z + 1
Sfarsit daca
alfel
{
         z <- 0
Sfarsit altfel
t <- t - z
```

```
pentru i <- t, i >= 1, I <- I - 1
        {
                 afiseaza s[i]
        Sfarsit pentru
}
Pun algoritmul si in c++ daca vreti sa il testati:
#include<iostream>
using namespace std;
int numar_cifre(int n)
        int k = 0;
        while (n)
                 k++;
                 n = n / 10;
        return k;
}
int main()
{
        int a, b, cifa, cifb, aux, i, j, nr, t, k = 0;
        int s[20] = \{ 0 \};
        cin >> a >> b;
        t = numar_cifre(a) + numar_cifre(b);
        aux = b;
        while (a)
        {
                 cifa = a % 10;
                 a = a / 10;
                 b = aux;
                 k++;
                 i = k; j = k + 1;
                 while (b)
                 {
                          cifb = b % 10;
                          b = b / 10;
                          nr = cifa * cifb;
                          s[i] = s[i] + nr % 10; nr = nr / 10;
                          s[j] = s[j] + nr \% 10;
```

```
j++;
                  }
         }
         for (int i = 1; i <= t; i++)
                  cout << s[i] << " ";
         }
         cout << endl;
         int z = 0;
         for (int i = 1; i <= t; i++)
         {
                  if (s[i] >= 10)
                           s[i + 1] = (s[i] / 10) \% 10 + s[i + 1];
                           if (s[i + 1] == 0)
                                     z++;
                           }
                           else
                           {
                                     z = 0;
                           s[i] = s[i] \% 10;
                  }
         }
         if (s[i + 1] == 0)
         {
                  z++;
         }
         else
         {
                  z = 0;
         t = t - z;
         for (int i = t; i >= 1; i--)
                  cout << s[i];
         }
}
```

i = j;