# - Bézout's Identity



#### Theorem:

GCD of 2 ints x,  $y = 1 \Leftrightarrow \exists a, b \text{ s.t. } ax + by = 1.$ 

A pair of Bézout coefficients of 10, 3 are 1, -3 because  $1 \times 10 + -3 \times 3 = 1$ 

a and b are called the Bézout coefficients of x and y.

Bézout coefficients are not unique. -2, 7 work too:  $-2 \times 10 + 7 \times 3 = 1$ 

Since ax + by = 1 we could multiply both sides of this equation by any arbitrary integer n to get:

$$(na)x + (nb)y = n$$
 (note that na, nb are also integers)

That means a pair of integers with no common factors (i.e. GCD=1) can be used to construct *any* integers with some integer multiples of them.

| - 🍘 | - Coin Problem                                                                                                     | 10x→<br>3x ↓ | -2  | -1  | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8   |
|-----|--------------------------------------------------------------------------------------------------------------------|--------------|-----|-----|----|----|----|----|----|----|----|----|-----|
|     | For coins, however, we are not supposed to have -ve multiples of them!  Therefore some smaller sums are impossible | -3           | -29 | -19 | -9 | 1  | 11 | 21 | 31 | 41 | 51 | 61 | 71  |
|     |                                                                                                                    | -2           | -26 | -16 | -6 | 4  | 14 | 24 | 34 | 44 | 54 | 64 | 74  |
|     |                                                                                                                    | -1           | -23 | -13 | -3 | 7  | 17 | 27 | 37 | 47 | 57 | 67 | 77  |
|     |                                                                                                                    | 0            | -20 | -10 | 0  | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80  |
|     |                                                                                                                    | 1            | -17 | -7  | 3  | 13 | 23 | 33 | 43 | 53 | 63 | 73 | 83  |
|     |                                                                                                                    | 2            | -14 | -4  | 6  | 16 | 26 | 36 | 46 | 56 | 66 | 76 | 86  |
|     |                                                                                                                    | 3            | -11 | -1  | 9  | 19 | 29 | 39 | 49 | 59 | 69 | 79 | 89  |
|     |                                                                                                                    | 4            | -8  | 2   | 12 | 22 | 32 | 42 | 52 | 62 | 72 | 82 | 92  |
|     |                                                                                                                    | 5            | -5  | 5   | 15 | 25 | 35 | 45 | 55 | 65 | 75 | 85 | 95  |
|     |                                                                                                                    | 6            | -2  | 8   | 18 | 28 | 38 | 48 | 58 | 68 | 78 | 88 | 98  |
|     |                                                                                                                    | 7            | 1   | 11  | 21 | 31 | 41 | 51 | 61 | 71 | 81 | 91 | 101 |
|     |                                                                                                                    | 8            | 4   | 14  | 24 | 34 | 44 | 54 | 64 | 74 | 84 | 94 | 104 |



# Solution

Theorem: With enough coins, any sum  $\geq (x-1)(y-1)$  can be made.

Enumerate smaller possible sums:

3, 6, 9, 10, 12, 13, 15, 16

I.e., a total 9 impossible sums: 1, 2, 4, 5, 7, 8, 11, 14, 17

However, with a limit of 10 coins each, impossible sums towards the maximum sum also have to be discounted – cannot take away an impossible sum from the maximum sum (130).

 $\therefore$  Total # of possible sums = 130 - 9 - 9 = 112



# ? Coin Problem

## ×

### Proof of the 2-coin theorem

GCD
$$(x, y) = 1$$
  
 $ax + by = c$  for some int  $c$  ( $a$ ,  $b$  are multiples of Bézout coeffs)  
 $b = kx + r$  for some  $k$ ,  $r$ ,  $0 \le r < x$   
 $\Rightarrow c = ax + (kx + r)y$   
 $= x(a + ky) + ry$   
 $= nx + ry$  for some  $n$   
 $r$ ,  $x$ ,  $y \ge 0$ .  $k$ ,  $a$  can be  $< 0$   
 $\therefore$  For an invalid sum,  $n$  must be  $< 0$ .  
Largest  $c$  for an invalid sum:  $n = -1$ ,  $r = x - 1$  (maximise  $r$ -value)  
 $c = -x + (x - 1)y$   
 $= -x + xy - y$ 

= (x-1)(y-1)-1

 $\therefore$  any sum  $\ge (x-1)(y-1)$  is always possible