$12a_{1032} \ (K12a_{1032})$

Ideals for irreducible components² of X_{par}

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 87 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -5.13 \times 10^{22} u^{77} + 6.97 \times 10^{23} u^{76} + \dots + 1.39 \times 10^{24} b + 9.39 \times 10^{23}, \ 1.57 \times 10^{24} u^{77} + 2.54 \times 10^{24} u^{76} + \dots + 4.17 \times 10^{24} a - 1.02 \times 10^{25}, \ u^{78} + 2u^{77} + \dots - 3u - 3 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{9} + 4u^{7} + 5u^{5} + 2u^{3} + u \\ u^{11} + 5u^{9} + 8u^{7} + 3u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.376045u^{77} - 0.610088u^{76} + \dots + 1.32049u + 2.43481 \\ 0.0369526u^{77} - 0.501478u^{76} + \dots + 0.585143u - 0.675707 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1.26294u^{77} + 2.25066u^{76} + \dots - 2.84986u - 1.41015 \\ -0.307268u^{77} - 0.831343u^{76} + \dots + 3.63374u + 0.384719 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.259199u^{77} + 0.274703u^{76} + \dots + 2.57149u - 0.449948 \\ 0.0447472u^{77} + 0.572456u^{76} + \dots - 1.87435u + 0.827634 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.412998u^{77} - 0.108610u^{76} + \dots + 0.735348u + 3.11052 \\ 0.0369526u^{77} - 0.501478u^{76} + \dots + 0.585143u - 0.675707 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.454996u^{77} - 0.635848u^{76} + \dots + 0.58615u - 0.805065 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{78} - 16u^{77} + \dots - 227379u + 30627$
c_2, c_6, c_7	$u^{78} + 2u^{77} + \dots - 3u - 3$
c_3	$u^{78} - 2u^{77} + \dots - 1479u - 867$
c_4	$u^{78} - u^{77} + \dots + 4032u + 3112$
c_5, c_{10}, c_{11}	$u^{78} + u^{77} + \dots - 32u^2 + 8$
c_8, c_9, c_{12}	$u^{78} - 4u^{77} + \dots - 108u - 17$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{78} + 32y^{77} + \dots + 2934785691y + 938013129$
c_2, c_6, c_7	$y^{78} + 72y^{77} + \dots - 129y + 9$
<i>c</i> ₃	$y^{78} + 8y^{77} + \dots + 5081487y + 751689$
C_4	$y^{78} - 13y^{77} + \dots - 77550976y + 9684544$
c_5, c_{10}, c_{11}	$y^{78} + 71y^{77} + \dots - 512y + 64$
c_8, c_9, c_{12}	$y^{78} - 74y^{77} + \dots + 5540y + 289$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.192957 + 1.111600I		
a = 1.19779 + 2.02532I	-3.81969 - 3.89814I	0
b = -0.168435 + 1.396140I		
u = 0.192957 - 1.111600I		 -
a = 1.19779 - 2.02532I	-3.81969 + 3.89814I	0
b = -0.168435 - 1.396140I		
u = 0.320913 + 1.119940I		
a = -0.94949 - 2.09661I	1.05376 - 7.02286I	0
b = 0.262940 - 1.340440I		
u = 0.320913 - 1.119940I		
a = -0.94949 + 2.09661I	1.05376 + 7.02286I	0
b = 0.262940 + 1.340440I		
u = -0.473389 + 0.686908I		
a = 0.08281 - 1.56208I	2.38668 - 7.05623I	4.04957 + 2.76916I
b = 0.33298 - 1.38387I		
u = -0.473389 - 0.686908I		
a = 0.08281 + 1.56208I	2.38668 + 7.05623I	4.04957 - 2.76916I
b = 0.33298 + 1.38387I		
u = -0.079678 + 1.178770I		
a = 0.286269 - 0.635203I	1.71847 + 1.56145I	0
b = -0.475807 - 0.361911I		
u = -0.079678 - 1.178770I		
a = 0.286269 + 0.635203I	1.71847 - 1.56145I	0
b = -0.475807 + 0.361911I		
u = -0.747048 + 0.324353I		
a = 1.52805 - 2.73924I	1.11303 + 11.32630I	1.74011 - 7.84897I
b = -0.33672 - 1.41782I		
u = -0.747048 - 0.324353I		
a = 1.52805 + 2.73924I	1.11303 - 11.32630I	1.74011 + 7.84897I
b = -0.33672 + 1.41782I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.030969 + 1.197970I		
a = -1.68028 - 1.82896I	-1.033450 - 0.444387I	0
b = 0.12649 - 1.43914I		
u = 0.030969 - 1.197970I		
a = -1.68028 + 1.82896I	-1.033450 + 0.444387I	0
b = 0.12649 + 1.43914I		
u = 0.717522 + 0.354101I		
a = -0.151776 + 1.187950I	6.45672 - 7.14735I	6.13824 + 6.79892I
b = -0.818337 + 0.262522I		
u = 0.717522 - 0.354101I		
a = -0.151776 - 1.187950I	6.45672 + 7.14735I	6.13824 - 6.79892I
b = -0.818337 - 0.262522I		
u = 0.506406 + 0.609564I		
a = 0.129930 - 0.090005I	7.40344 + 2.95162I	8.38298 - 0.93021I
b = 0.805112 + 0.201005I		
u = 0.506406 - 0.609564I		
a = 0.129930 + 0.090005I	7.40344 - 2.95162I	8.38298 + 0.93021I
b = 0.805112 - 0.201005I		
u = 0.771376 + 0.082944I		
a = -0.44711 - 3.10641I	-2.11544 + 3.03018I	0.27772 - 2.58777I
b = -0.231533 - 1.297700I		
u = 0.771376 - 0.082944I		
a = -0.44711 + 3.10641I	-2.11544 - 3.03018I	0.27772 + 2.58777I
b = -0.231533 + 1.297700I		
u = -0.290042 + 1.206290I		
a = 0.139811 + 0.526105I	5.66191 + 3.76271I	0
b = 0.621955 + 0.111558I		
u = -0.290042 - 1.206290I		
a = 0.139811 - 0.526105I	5.66191 - 3.76271I	0
b = 0.621955 - 0.111558I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.655866 + 0.382150I		
a = -0.807968 + 0.893907I	4.52645 + 2.56217I	4.50484 - 2.46419I
b = -0.474927 + 0.866530I		
u = -0.655866 - 0.382150I		
a = -0.807968 - 0.893907I	4.52645 - 2.56217I	4.50484 + 2.46419I
b = -0.474927 - 0.866530I		
u = -0.693288 + 0.304422I		
a = -1.95436 + 2.45062I	-4.48416 + 7.09115I	-2.04061 - 7.55095I
b = 0.272595 + 1.371760I		
u = -0.693288 - 0.304422I		
a = -1.95436 - 2.45062I	-4.48416 - 7.09115I	-2.04061 + 7.55095I
b = 0.272595 - 1.371760I		
u = -0.550306 + 0.508147I		
a = -0.71523 + 1.43481I	5.00598 + 1.43831I	5.56279 - 3.99254I
b = 0.411750 + 0.974001I		
u = -0.550306 - 0.508147I		
a = -0.71523 - 1.43481I	5.00598 - 1.43831I	5.56279 + 3.99254I
b = 0.411750 - 0.974001I		
u = -0.742831		
a = -0.898304	1.96168	5.99100
b = -0.609293		
u = 0.088144 + 1.269300I		
a = -0.813357 + 0.841995I	4.80145 - 1.58760I	0
b = 0.443490 + 0.349624I		
u = 0.088144 - 1.269300I		
a = -0.813357 - 0.841995I	4.80145 + 1.58760I	0
b = 0.443490 - 0.349624I		
u = 0.625985 + 0.307354I		
a = -0.280689 - 1.134010I	0.48579 - 3.66760I	3.12377 + 7.79182I
b = 0.662399 - 0.196150I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.625985 - 0.307354I		
a = -0.280689 + 1.134010I	0.48579 + 3.66760I	3.12377 - 7.79182I
b = 0.662399 + 0.196150I		
u = -0.374022 + 0.584619I		
a = 0.281584 + 1.126590I	-3.29505 - 3.31684I	0.37580 + 2.22795I
b = -0.229914 + 1.337150I		
u = -0.374022 - 0.584619I		
a = 0.281584 - 1.126590I	-3.29505 + 3.31684I	0.37580 - 2.22795I
b = -0.229914 - 1.337150I		
u = 0.671062 + 0.114541I		
a = 0.46437 + 3.46215I	-6.76019 + 0.61306I	-7.17730 + 0.24747I
b = 0.109881 + 1.399800I		
u = 0.671062 - 0.114541I		
a = 0.46437 - 3.46215I	-6.76019 - 0.61306I	-7.17730 - 0.24747I
b = 0.109881 - 1.399800I		
u = -0.607811 + 0.306243I		
a = 2.18924 - 1.51724I	-2.60345 + 2.27614I	0.75235 - 3.81852I
b = -0.195606 - 1.287310I		
u = -0.607811 - 0.306243I		
a = 2.18924 + 1.51724I	-2.60345 - 2.27614I	0.75235 + 3.81852I
b = -0.195606 + 1.287310I		
u = 0.321608 + 1.293240I		
a = 0.86084 + 1.56808I	2.16962 - 0.91182I	0
b = 0.198523 + 1.256840I		
u = 0.321608 - 1.293240I		
a = 0.86084 - 1.56808I	2.16962 + 0.91182I	0
b = 0.198523 - 1.256840I		
u = 0.251582 + 1.328590I		
a = -0.98352 - 1.56576I	-2.23585 - 2.71517I	0
b = -0.07092 - 1.41475I		

Solutions to I_1^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.251582 - 1.328590I		
a = -0.98352 + 1.56576I	-2.23585 + 2.71517I	0
b = -0.07092 + 1.41475I		
u = -0.202356 + 1.364250I		
a = -0.368264 - 0.065956I	3.79199 + 3.49836I	0
b = -0.067803 + 0.563459I		
u = -0.202356 - 1.364250I		
a = -0.368264 + 0.065956I	3.79199 - 3.49836I	0
b = -0.067803 - 0.563459I		
u = 0.546679 + 0.273991I		
a = -1.04542 - 3.63991I	-3.36178 - 1.38887I	2.35610 + 5.10659I
b = -0.04558 - 1.51756I		
u = 0.546679 - 0.273991I		
a = -1.04542 + 3.63991I	-3.36178 + 1.38887I	2.35610 - 5.10659I
b = -0.04558 + 1.51756I		
u = -0.435351 + 0.389359I		
a = 0.491782 - 0.204328I	-2.01640 + 0.97897I	2.34600 - 4.48200I
b = 0.084335 - 1.208670I		
u = -0.435351 - 0.389359I		
a = 0.491782 + 0.204328I	-2.01640 - 0.97897I	2.34600 + 4.48200I
b = 0.084335 + 1.208670I		
u = -0.18432 + 1.40986I		
a = -0.225592 - 0.553357I	3.63556 + 3.32279I	0
b = -0.152154 + 1.055850I		
u = -0.18432 - 1.40986I		
a = -0.225592 + 0.553357I	3.63556 - 3.32279I	0
b = -0.152154 - 1.055850I		
u = 0.21945 + 1.40861I		
a = 0.96270 + 1.46545I	2.03927 - 4.24747I	0
b = 0.04850 + 1.56203I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.21945 - 1.40861I		
a = 0.96270 - 1.46545I	2.03927 + 4.24747I	0
b = 0.04850 - 1.56203I		
u = -0.548507 + 0.166008I		
a = 0.530033 - 0.629098I	-1.097180 + 0.763622I	-4.24671 - 2.11774I
b = 0.218693 - 0.435531I		
u = -0.548507 - 0.166008I		
a = 0.530033 + 0.629098I	-1.097180 - 0.763622I	-4.24671 + 2.11774I
b = 0.218693 + 0.435531I		
u = 0.18767 + 1.41646I		
a = -1.098180 - 0.416185I	6.83413 - 1.96589I	0
b = 0.692130 + 0.004260I		
u = 0.18767 - 1.41646I		
a = -1.098180 + 0.416185I	6.83413 + 1.96589I	0
b = 0.692130 - 0.004260I		
u = -0.13742 + 1.42992I		
a = -0.531214 + 0.250911I	2.91353 - 1.53997I	0
b = 0.273097 - 1.263130I		
u = -0.13742 - 1.42992I		
a = -0.531214 - 0.250911I	2.91353 + 1.53997I	0
b = 0.273097 + 1.263130I		
u = -0.23677 + 1.41753I		
a = -2.11985 + 0.25168I	2.91240 + 5.38467I	0
b = 0.258918 + 1.274390I		
u = -0.23677 - 1.41753I		
a = -2.11985 - 0.25168I	2.91240 - 5.38467I	0
b = 0.258918 - 1.274390I		
u = 0.24246 + 1.42058I		
a = 0.977967 + 0.877470I	6.02055 - 6.85421I	0
b = -0.728763 + 0.193605I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.24246 - 1.42058I		
a = 0.977967 - 0.877470I	6.02055 + 6.85421I	0
b = -0.728763 - 0.193605I		
u = 0.402539 + 0.377206I		
a = 0.601844 + 0.257905I	1.200540 + 0.389375I	7.11392 - 0.40347I
b = -0.569286 - 0.073408I		
u = 0.402539 - 0.377206I		
a = 0.601844 - 0.257905I	1.200540 - 0.389375I	7.11392 + 0.40347I
b = -0.569286 + 0.073408I		
u = -0.26934 + 1.42381I		
a = 2.25229 - 0.97254I	1.04570 + 10.59920I	0
b = -0.301520 - 1.376090I		
u = -0.26934 - 1.42381I		
a = 2.25229 + 0.97254I	1.04570 - 10.59920I	0
b = -0.301520 + 1.376090I		
u = -0.29110 + 1.43833I		
a = -2.01002 + 1.33863I	6.7579 + 15.1002I	0
b = 0.34949 + 1.43466I		
u = -0.29110 - 1.43833I		
a = -2.01002 - 1.33863I	6.7579 - 15.1002I	0
b = 0.34949 - 1.43466I		
u = -0.24762 + 1.44773I		
a = 0.282106 + 0.053557I	10.39850 + 5.86579I	0
b = 0.554115 - 0.871299I		
u = -0.24762 - 1.44773I		
a = 0.282106 - 0.053557I	10.39850 - 5.86579I	0
b = 0.554115 + 0.871299I		
u = 0.27412 + 1.44693I		
a = -0.699548 - 0.987234I	12.2378 - 10.7588I	0
b = 0.851132 - 0.286592I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.27412 - 1.44693I		
a = -0.699548 + 0.987234I	12.2378 + 10.7588I	0
b = 0.851132 + 0.286592I		
u = -0.18060 + 1.46824I		
a = 1.035470 - 0.448785I	11.37490 + 4.05500I	0
b = -0.483271 - 1.049450I		
u = -0.18060 - 1.46824I		
a = 1.035470 + 0.448785I	11.37490 - 4.05500I	0
b = -0.483271 + 1.049450I		
u = -0.11112 + 1.47836I		
a = 0.465603 + 0.258185I	9.34604 - 5.22928I	0
b = -0.381985 + 1.359540I		
u = -0.11112 - 1.47836I		
a = 0.465603 - 0.258185I	9.34604 + 5.22928I	0
b = -0.381985 - 1.359540I		
u = 0.14455 + 1.47753I		
a = 0.674222 + 0.188887I	14.11730 + 0.73561I	0
b = -0.870359 - 0.159641I		
u = 0.14455 - 1.47753I		
a = 0.674222 - 0.188887I	14.11730 - 0.73561I	0
b = -0.870359 + 0.159641I		
u = 0.342782		
a = 1.79263	1.06094	13.3970
b = -0.341913		

II.
$$I_2^u = \langle b, -u^2 + a - 1, u^3 + u^2 + 2u + 1 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{2} + u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} - 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} + 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{2} + 2 \\ u^{2} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-6u^2 4u 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^3 + u^2 - 1$
c_2	$u^3 - u^2 + 2u - 1$
c_4, c_5, c_{10} c_{11}	u^3
c_{6}, c_{7}	$u^3 + u^2 + 2u + 1$
c_{8}, c_{9}	$(u+1)^3$
c_{12}	$(u-1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{3}	$y^3 - y^2 + 2y - 1$
c_2, c_6, c_7	$y^3 + 3y^2 + 2y - 1$
c_4, c_5, c_{10} c_{11}	y^3
c_8, c_9, c_{12}	$(y-1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -0.662359 - 0.562280I	4.66906 + 2.82812I	6.83447 - 1.85489I
b = 0		
u = -0.215080 - 1.307140I		
a = -0.662359 + 0.562280I	4.66906 - 2.82812I	6.83447 + 1.85489I
b = 0		
u = -0.569840		
a = 1.32472	0.531480	-3.66890
b = 0		

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -\frac{1}{5}u^{2}a - \frac{3}{5}u^{2} + \dots + \frac{1}{5}a - \frac{2}{5} \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} -\frac{1}{5}u^{2}a - \frac{3}{5}u^{2} + \dots + \frac{4}{5}a - \frac{2}{5} \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -\frac{1}{5}u^{2}a - \frac{3}{5}u^{2} + \dots - \frac{4}{5}a - \frac{2}{5} \\ -2 \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} -\frac{1}{5}u^{2}a - \frac{3}{5}u^{2} + \dots - \frac{4}{5}a + \frac{2}{5} \\ -\frac{1}{5}u^{2}a - \frac{3}{5}u^{2} + \dots + \frac{4}{5}a + \frac{2}{5} \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} \frac{1}{5}u^{2}a + \frac{3}{5}u^{2} + \dots + \frac{4}{5}a + \frac{2}{5} \\ -\frac{1}{5}u^{2}a + \frac{8}{5}u^{2} + \dots + \frac{4}{5}a + \frac{7}{5} \\ -\frac{1}{5}u^{2}a + \frac{2}{5}u^{2} + \dots + \frac{4}{5}a + \frac{3}{5} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{5}u^{2}a + \frac{8}{5}u^{2} + \dots + \frac{4}{5}a + \frac{3}{5} \\ -\frac{1}{5}u^{2}a + \frac{2}{5}u^{2} + \dots + \frac{4}{5}a + \frac{3}{5} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 + 4u 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^3 + u^2 - 1)^2$
c_2	$(u^3 + u^2 + 2u + 1)^2$
c_3	$(u^3 - u^2 + 1)^2$
c_4, c_5, c_{10} c_{11}	$(u^2+2)^3$
c_{6}, c_{7}	$(u^3 - u^2 + 2u - 1)^2$
c_{8}, c_{9}	$(u-1)^6$
c_{12}	$(u+1)^6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3	$(y^3 - y^2 + 2y - 1)^2$
c_2, c_6, c_7	$(y^3 + 3y^2 + 2y - 1)^2$
c_4, c_5, c_{10} c_{11}	$(y+2)^6$
c_8, c_9, c_{12}	$(y-1)^6$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -1.71575 - 1.02526I	-0.26574 - 2.82812I	3.50976 + 2.97945I
b = -1.414210I		
u = 0.215080 + 1.307140I		
a = 0.39103 + 2.14982I	-0.26574 - 2.82812I	3.50976 + 2.97945I
b = 1.414210I		
u = 0.215080 - 1.307140I		
a = -1.71575 + 1.02526I	-0.26574 + 2.82812I	3.50976 - 2.97945I
b = 1.414210I		
u = 0.215080 - 1.307140I		
a = 0.39103 - 2.14982I	-0.26574 + 2.82812I	3.50976 - 2.97945I
b = -1.414210I		
u = 0.569840		
a = 1.32472 + 3.89599I	-4.40332	-3.01950
b = 1.414210I		
u = 0.569840		
a = 1.32472 - 3.89599I	-4.40332	-3.01950
b = -1.414210I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^3 + u^2 - 1)^3)(u^{78} - 16u^{77} + \dots - 227379u + 30627)$
c_2	$(u^3 - u^2 + 2u - 1)(u^3 + u^2 + 2u + 1)^2(u^{78} + 2u^{77} + \dots - 3u - 3)$
<i>c</i> ₃	$((u^3 - u^2 + 1)^2)(u^3 + u^2 - 1)(u^{78} - 2u^{77} + \dots - 1479u - 867)$
C4	$u^{3}(u^{2}+2)^{3}(u^{78}-u^{77}+\cdots+4032u+3112)$
c_5, c_{10}, c_{11}	$u^{3}(u^{2}+2)^{3}(u^{78}+u^{77}+\cdots-32u^{2}+8)$
c_{6}, c_{7}	$((u^3 - u^2 + 2u - 1)^2)(u^3 + u^2 + 2u + 1)(u^{78} + 2u^{77} + \dots - 3u - 3)$
c_{8}, c_{9}	$((u-1)^6)(u+1)^3(u^{78}-4u^{77}+\cdots-108u-17)$
c_{12}	$((u-1)^3)(u+1)^6(u^{78}-4u^{77}+\cdots-108u-17)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^3 - y^2 + 2y - 1)^3 \cdot (y^{78} + 32y^{77} + \dots + 2934785691y + 938013129)$
c_2, c_6, c_7	$((y^3 + 3y^2 + 2y - 1)^3)(y^{78} + 72y^{77} + \dots - 129y + 9)$
<i>c</i> ₃	$((y^3 - y^2 + 2y - 1)^3)(y^{78} + 8y^{77} + \dots + 5081487y + 751689)$
c_4	$y^3(y+2)^6(y^{78}-13y^{77}+\cdots-7.75510\times 10^7y+9684544)$
c_5, c_{10}, c_{11}	$y^{3}(y+2)^{6}(y^{78}+71y^{77}+\cdots-512y+64)$
c_8, c_9, c_{12}	$((y-1)^9)(y^{78} - 74y^{77} + \dots + 5540y + 289)$