

Joanna G. Escalon, MD Lilin Wang, MENG Gray R. Lyons, MD,PhD Roger J. Bartolotta, MD Apostolos J. Tsiouris, MD George L. Shih, MD, MS

PRONTO

Open Source Webapp for Management of Imaging Protocols and Protocol Updates

Protocol management and standardization are crucial in radiology practices of all sizes.

Goals:

- Ensure patient safety
- Minimize radiation dose (CT)
- Sustain highest quality imaging parameters
- Maintain throughput
- Promote timely and universal updates
- Enable routine quality assurance

Implementing revised and/or new protocols can be cumbersome.

While some 3rd party vendor tools are available, many practices use standard documents or spreadsheets for management

Every step relies on a chain of communication that is hard to track and can break down.

Decision to change a protocol may be made, but implementation may fail or is not confirmed.

1. Problem Identified
2. Conference Held & Decision made
3. Decision Communicated
4. Tech or Physicist Changes Scanner Settings

- How do you know the change was made?
- Do you have a way to confirm the change with the lead technologist or modality chief?
- Did all of the people who need to know about the change get notified?
- Were all steps achieved in a timely manner?

Without a way to confirm a protocol change, the problem will only be noticed when you see a suboptimal study.

This doesn't look right!

Problem is re-assessed and changes are finally made

That's better!

By introducing an automated system like **PRONTO** for tracking protocol changes, we can improve this process.

What is PRONTO?

- PRONTO is an open-source Protocol management web-app via which a Radiology Department can collect, modify and view protocols
- It provides a free convenient web-based way to distribute protocols to physicians and technologists
- It manages the process of protocol updates with email notifications to the appropriate individuals
- It uses the LAMP stack (Linux, Apache, MySQL, PHP)

How does PRONTO work?

A decision is made to change a protocol parameter

П

The division head or other radiologist assigned to managing that protocol downloads the protocol from PRONTO (in the form of an Excel spreadsheet), updates the spreadsheet and re-uploads it to PRONTO (CSV upload)

П

This spreadsheet replaces the prior spreadsheet and differences are registered by PRONTO

Ш

PRONTO sends email notifications to all assigned parties

П

Technologists and/or physicists reply with confirmation when scanner settings are changed

Step 1: Review Protocol & Decide on Change

Example Protocol: Pediatric CT Abdomen Pelvis with Contrast

Detailed Protocol

WITH IV

Scanner

All

Orientation

Supine

Intravenous Contrast

1.5mL/kg Omnipaque300 at 1-2mL/sec followed by 10mL saline flush at 1-2mL/sec

Oral Contrast

AGE-BASED ORAL CONTRAST DOSING:

- 0 5 months = 4mL Gastrografin in 116mL water for total 120mL
- 6 11.9 months = 6mL Gastrografin in 174mL water for total 180mL
- 1 1.9 years = 8mL Gastrografin in 232mL water for total 240mL
- 2 3.9 years = 12mL Gastrografin in 348mL water for total 360mL
- 4 5.9 years = 14mL Gastrografin in 406mL water for total 420mL
- 6 8.9 years = 16mL Gastrografin in 464mL water for total 480mL
- 9 10.9 years = 20mL Gastrografin in 580mL water for total 600mL
- 11 13.9 years = 25mL Gastrografin in 725mL water for total 750mL
- 14 years and older = 30mL Gastrografin in 870mL water for total 900mL

Scout

WEIGHT-BASED (Groups 1 through 12): (1-3) 0-25 lb: GE = 0 + 90 degrees, S0-I150, 80kVp, 10mA; Siemens=# (4) 26-31 lb: GE = 0 + 90 degrees, S0-I180, 100 kVp, 10mA; Siemens=# (5-7) 32-65 lb: GE = 0 + 90 degrees, S0-I200, 100 kVp, 10mA; Siemens=# (8) 66-80 lb: GE = 0 + 90 degrees, S0-I250, 100 kVp, 10mA; Siemens=# (9-12) 81+ lb: GE = 0 + 90 degrees, S0-I300, 120 kVp, 10mA; Siemens=#

Scanning Mode

GE=Helical; Siemens=Spiral

Range/Direction

Dome of diaphragm to symphysis pubis

Gantry Angle

0

Algorithm

Standard

Beam Collimation / Detector Configuration

WEIGHT-BASED (Groups 1 through 12): (1-5) 0-40 lb: 20 mm (6-12) 41+ lb: 40 mm

Additional included parameters (most of which are weight-based):

- Slice Thickness
- Interval
- Pitch
- kVp
- mA
- Noise Index
- Noise Reduction
- Rotation Time
- Scan FOV
- Display FOV
- Scan Delay
- Post Processing
- Transfer Images
- CTDI maximums

Example Protocol: Adult Chest CT - Pulmonary Embolism

WITH IV

Scanner

All

Orientation

Supine

Intravenous Contrast

1.5mL/kg (max 150mL) Omnipaque300 at 4mL/sec then 50mL saline at 4mL/sec

Oral Contrast

None

Scout

0 + 90 degrees

Scanning Mode

Helical

Range/Direction

Inferior neck to left mid-kidney

Gantry Angle

0

Algorithm

Standard

Beam Collimation / Detector Configuration

40 mm

Slice Thickness

1.25 mm

Interval

1.25 mm

Table Speed (mm/rotation)

39.375

Pitch

0.984:1

kVp

SIZE-BASED (DIAMETER):

Small (0-30 cm): 80;

Medium (31-40 cm): 100;

Large (41-50 cm): 100;

XL (51+ cm): 120

mA

SIZE-BASED (DIAMETER):

Small (0-30 cm): Auto 75-200;

Medium (31-40 cm): Auto 75-300;

Large (41-50 cm): Auto 75-400;

XL (51+ cm): Auto 75-400

Noise Index

SIZE-BASED (DIAMETER):

Small (0-30 cm): 55.0;

Medium (31-40 cm): 50.0;

Large (41-50 cm): 60.0;

XL (51+ cm): 60.0

Noise Reduction

ASiR 0%

Rotation Time

0.5 sec

Scan FOV

Large Body

Display FOV

36 cm

Scan Delay

Smart-Prep @150HU

Post Processing

Create:

(A) 2.5 x 2.5 mm STANDARD algorithm,

(B) 2.5 x 2.5 mm LUNG algorithm,

(C-D) Use 0.625 x 0.625 mm STANDARD algorithm (do not send to

PACS) to make 2 x 2 mm CORONAL (C) and SAGITTAL (D) reformats,

(E) Use 0.625 x 0.625 mm LUNG algorithm (do not send to PACS) to

make 5 x 2.5 mm AXIAL MIP

Transfer Images

Send to PACS:

(S) 1.25 x 1.25 mm AXIAL STANDARD algorithm,

(A) 2.5 x 2.5 mm AXIAL STANDARD algorithm,

(B) 2.5 x 2.5 mm AXIAL LUNG algorithm,

(C) 2 x 2 mm CORONAL STANDARD reformats,

(D) 2 x 2 mm SAGITTAL STANDARD reformats,

(E) 5 x 2.5 mm AXIAL MIP

Notes

Image during respiratory INSPIRATION

CTDI

Max 21 mGy (ACR DRL)

Step 2: Download Excel and Update

-1	A	B C D E F				G	Н І І				
1	Protocol ID	Protocol Name	Indications	Orientation	Scout (Series 1)	Series	Intravenous Contrast	Oral Contrast	Scanning Mode	Range/Direction	
2	CTChestAdult01	CT Chest Adult 1: Chest Without Contrast		Supine	AP and Lateral	Series 2: Without Contrast	None	None	Helical	Inferior neck to left mid- kidney	
3	CTChestAdult02	CT Chest Adult 2: Chest With Contrast		Supine	AP and Lateral	Series 2: With Contrast	75 cc Omni 300 + 30 cc saline flush at 3 cc/sec	None	Helical	Inferior neck to left mid- kidney	
4	CTChestAdult03	CT Chest Adult 3: Chest Without + Inspiration/Expiration (ILD Protocol / Airway)		Supine	AP and Lateral	Series 2: Without Contrast	None	None	Helical	Inferior neck to left mid- kidney	
5	CTChestAdult03	CT Chest Adult 3: Chest Without + Inspiration/Expiration (ILD Protocol / Airway)		Supine	Already obtained in Series 1	Series 3: Supine Expiration	None	None	Helical	Inferior neck to left mid- kidney	
6	CTChestAdult03	CT Chest Adult 3: Chest Without + Inspiration/Expiration (ILD Protocol / Airway)		Prone	Series 4 Scout: Prone and Lateral	PA Series 5: Prone Inspiration	None	None	Helical	Inferior neck to left mid- kidney	
					K	M	N	O P		Q R	

 Each column is a protocol parameter

	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y
	Gantry Angle	Algorithm	Beam Collimation	Slice Thickness	Interval	Table Speed (mm/rotation)	Pitch	kVp	mA	Noise Reduction	Rotation Time	Scan FOV	Display FOV	Detector Configuration	Scan Delay
	0	Standard	n/a	2.5 mm	2.5 mm	39.37	0.984:1	120	80 (pt < 200 lbs), 160 (pt > 200 lbs)	ASiR 70%	0.5 sec	Chest	n/a	n/a	n/a
	0	Standard	n/a	2.5 mm	2.5 mm	39.37	0.984:1	120	80 (pt < 200 lbs), 160 (pt > 200 lbs)	ASiR 70%	0.5 sec	Chest	n/a	n/a	30 sec
	0	Standard	n/a	2.5 mm	2.5 mm	39.37	0.984:1	120	80 (pt < 200 lbs), 160 (pt > 200 lbs)	ASiR 70%	0.5 sec	Chest	n/a	n/a	n/a
r	0	Lung	n/a	1.25 mm	10 mm	39.37	0.984:1	120	80 (pt < 200 lbs), 160 (pt > 200 lbs)	ASiR 70%	0.5 sec	Chest	n/a	n/a	n/a
	0	Lung	n/a	1.25 mm	10 mm	39.37	0.984:1	120	80 (pt < 200 lbs), 160 (pt > 200 lbs)	ASiR 70%	0.5 sec	Chest	n/a	n/a	n/a

Step 3: Re-upload Excel as a CSV file

Step 4: Notify Others of Change

Step 5: Notification Emailed & Recipients Confirm Change

o Radigal: [New] Ticket 26232 - George Shih

https://outlook.office365.com/owa/#viewmodel=ReadMessageItem&ItemID=AAMkAGIyNDQ2ZjBjLTc3NzY

Radigal: [New] Ticket 26232

donotreply@radigal.nyp.org

Wed 9/9/2015 9:19 AM

To:George Shih <ges9006@med.cornell.edu>; Kurt Teichman <kut2002@med.cornell.edu>; pronto@radigal.nyp.org cornell.edu>; pronto@radigal.nyp.org

To: set([u'ges9006@med.cornell.edu', u'kut2002@med.cornell.edu', u'pronto@radigal.nyp.org'])

ID: 26232

Issuer: pronto pronto

Email: pronto@radigal.nyp.org

Accession:

MRN:

Location:

Modality: Issue: CT protocol added or modified

Comments:

changed, which series, and who made the change

Email indicates which protocol was

- New or Modified: modified
- Protocol ID, Name: CTBody115, CT Enterography W/WO IV
- 3. Series ID: Series 2: Without Contrast
- PRONTO user that uploaded and date / time stamp: george, 1441804774

Link to ticket: http://radigal.nyp.org/2.0/app/#/ticket/edit/26232

Other Advantages of PRONTO

- ✓ A search box allows protocols to be located by name and/or indication, which may be helpful for residents and technologists during the protocoling process
- Each protocol also has a unique URL that can be easily shared
- ✔ Protocols can be easily exported and backed up with a single click

Example Search: "Mesenteric Ischemia"

Adult

Peds

Head

Our Experience So Far & Future Plans

- We have already uploaded our CT protocols for all subspecialties (total of 162 protocols)
- We are in the process of uploading our MR protocols
- PRONTO lists all protocol parameters, which will allow us to better perform more comprehensive quality assurance
 - By crosschecking the protocol parameters with DICOM information and data from our ordering system, we can ensure that the correct study was performed with the correct protocol

Conclusion

- PRONTO is a free open source web-based protocol management system
- It provides a practical way to manage, update, and search imaging protocols, allowing a radiology practice to efficiently ensure high quality imaging
- Source Code: http://src.pronto.trove.nyc