Prelucrarea semnalelor

Capitolul 3: Eşantionare

Bogdan Dumitrescu

Facultatea de Automatică și Calculatoare Universitatea Politehnica București

Cuprins

- Eşantionare (conversie analog-numeric)
- Conversie numeric-analogic
- Schimbarea frecvenţei de eşantionare
 - Decimare
 - Interpolare
 - Schimbarea frecvenţei de eşantionare cu un factor raţional

Eşantionare—generalităţi

- Un semnal în timp continuu este o funcție $x_a:\mathbb{R}\to\mathbb{R}$
- $x_a(t)$ este valoarea semnalului în momentul $t \in \mathbb{R}$. Notăm $x_a(t)$ și întreg semnalul
- Numim x_a semnal analogic sau semnal continuu (chiar dacă funcția x_a nu este continuă)
- Eşantionarea este transformarea unui semnal analogic într-unul discret, prin alegerea unei mulţimi numărabile de valori ale semnalului
- ullet Suportul semnalului se reduce de la ${\mathbb R}$ la ${\mathbb Z}$

Eşantionare—definiţie

- Fie $x_a(t)$ un semnal analogic şi $\{t_n\}_{n\in\mathbb{Z}}$ o mulţime numărabilă de valori reale distincte ordonate, i.e. $t_n < t_m$ dacă n < m
- Eşantionarea este transformarea semnalului $x_a(t)$ în semnalul discret x[n] definit prin

$$x[n] = x_a(t_n)$$

• Dacă $t_n = nT$, unde T > 0 este perioada de eşantionare, atunci eşantionarea este *uniformă*:

$$x[n] = x_a(nT)$$

Ne ocupăm doar de eşantionare uniformă

Eşantionare uniformă și neuniformă

Spectrul unui semnal analogic

• Spectrul unui semnal analogic $x_a(t)$ este transformata Fourier a semnalului

$$X_a(\Omega) = \int_{-\infty}^{\infty} x_a(t)e^{-j\Omega t}dt, \ \Omega \in \mathbb{R}$$

- Notăm pe scurt $X_a(\Omega) = TF(x_a(t))$
- Folosim şi notaţia $X_a(j\Omega)$ cu aceeaşi semnificaţie ca $X_a(\Omega)$
- În general, $X_a(\Omega)$ nu este o funcție periodică
- Transformata Fourier inversă:

$$x_a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(\Omega) e^{j\Omega t} d\Omega$$

• Dacă semnalul $x_a(t)$ are energie finită, transformata sa Fourier există (aproape peste tot)

Eşantionarea şi spectrul

Spectrul semnalului eşantionat este transformata Fourier

$$X(\omega) = \sum_{n = -\infty}^{\infty} x[n]e^{-j\omega n}$$

- Întrebări naturale:
 - o Care este relaţia între $X_a(\Omega)$ şi $X(\omega)$?
 - Ce (din spectrul semnalului analogic) se pierde prin eşantionare ?
 - Când nu se pierde nimic ? (Este posibil acest caz ?)

Transformarea spectrului la eşantionare

- Fie $x_a(t)$ un semnal analogic cu energie finită
- x[n] este semnalul discret obţinut din x_a prin eşantionare cu perioada T
- Între spectrele celor două semnale are loc relaţia

$$X(\omega) = \frac{1}{T} \sum_{\ell=-\infty}^{\infty} X_a \left(\frac{\omega + 2\ell\pi}{T} \right), \quad \omega \in [-\pi, \pi]$$

• Pentru o frecvenţă ω fixată, spectrul $X(\omega)$ al semnalului eşantionat este o sumă infinită de valori $X_a(\Omega_\ell)$, cu $\Omega_\ell \in [(2\ell-1)\pi/T, (2\ell+1)\pi/T], \ell \in \mathbb{Z}$

Demonstrație (1)

Folosind expresia transformatei Fourier inverse, putem scrie

$$x[n] = x_a(nT) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(\Omega) e^{j\Omega nT} d\Omega$$
$$= \frac{1}{2\pi} \sum_{\ell=-\infty}^{\infty} \int_{(2\ell-1)\pi/T}^{(2\ell+1)\pi/T} X_a(\Omega) e^{j\Omega nT} d\Omega$$

• În fiecare interval $[(2\ell-1)\pi/T,(2\ell+1)\pi/T]$, substituim $\Omega\leftarrow\Omega+2\ell\pi/T$

$$x[n] = \frac{1}{2\pi} \sum_{\ell=-\infty}^{\infty} \int_{-\pi/T}^{\pi/T} X_a(\Omega + 2\ell\pi/T) e^{j\Omega nT} d\Omega$$

Demonstrație (2)

Substituim acum

$$\Omega = \omega/T$$

Obţinem

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{T} \sum_{\ell=-\infty}^{\infty} X_a \left(\frac{\omega + 2\ell\pi}{T}\right) e^{j\omega n} d\omega$$

Comparăm relaţia de mai sus cu TF inversă

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

Prin identificare rezultă

$$X(\omega) = \frac{1}{T} \sum_{\ell=-\infty}^{\infty} X_a \left(\frac{\omega + 2\ell\pi}{T} \right), \quad \omega \in [-\pi, \pi]$$

Eşantionare corectă

- Notăm $\Omega_N = \pi/T$
- Presupunem că semnalul analogic are spectrul limitat la banda $[-\Omega_N,\Omega_N]$, deci $X_a(\Omega)=0$, pentru $|\Omega|>\Omega_N$
- Spectrul semnalului eşantionat este

$$X(\omega) = \frac{1}{T} X_a(\omega/T), \quad \omega \in [-\pi, \pi]$$

- Concluzie: spectrul semnalului eşantionat este esenţialmente egal cu cel al semnalului analogic
- Frecvenţa Ω_N , egală cu jumătatea frecvenţei de eşantionare $\Omega_e=2\pi/T$, se numeşte frecvenţă Nyquist

Eşantionare corectă—exemplu

Aliere

- Dacă spectrul semnalului analogic se întinde dincolo de frecvenţa Nyquist, atunci spectrul semnalului eşantionat nu mai este egal cu cel al semnalului analogic
- Spectrul discret este obţinut din suma unor porţiuni ale spectrului analogic
- Fenomenul se numeşte aliere

Aliere—exemplu

Conversia analog-numeric

Schema practică de eşantionare

- Filtrul anti-aliere este un filtru analogic trece-jos, cu frecvenţa de tăiere egală cu frecvenţa Nyquist $\Omega_N=\Omega_e/2$
- Frecvenţa de eşantionare este aleasă astfel încât spectrul semnalului analogic util $x_a(t)$ să fie practic nul deasupra frecvenţei Nyquist; filtrul anti-aliere este folosit pentru a preveni alierea în cazul alterării semnalului util cu zgomot de înaltă frecvenţă
- Convertorul analog-numeric face de regulă şi cuantizarea semnalului eşantionat—i.e. reprezentarea fiecărui eşantion pe un număr fixat de biţi

Conversia numeric-analogic

- CNA este operaţia de transformare a unui semnal discret x[n] într-un semnal analogic $x_a(t)$
- Perioada de eşantionare T este cunoscută
- Problema fundamentală: dacă semnalul discret a fost obţinut prin eşantionare, i.e. $x[n] = x_a(nT)$, putem reface semnalul analogic doar din semnalul discret ?
- Răspuns: DA, dacă eşantionarea a fost corectă (dacă spectrul semnalului analogic este nul în afara intervalului $[-\pi/T,\pi/T]$)
- În acest caz spectrele semnalelor discret şi analogic sunt identice (modulo scalări)
- Deci, intuitiv, semnalele discret şi analogic conţin aceeaşi informaţie şi se pot transforma unul într-altul

Refacerea semnalului analogic

- Fie $x_a(t)$ un semnal analogic şi $x[n]=x_a(nT)$, $n\in\mathbb{Z}$, semnalul discret obţinut din $x_a(t)$ prin eşantionare uniformă cu perioada T
- Presupunem că semnalul analogic are spectrul de bandă limitată, i.e. $X_a(\Omega)=0$ pentru $|\Omega|>\Omega_N$, unde $\Omega_N=\pi/T$ este frecvenţa Nyquist
- Atunci are loc egalitatea (Whittaker 1935, Shannon 1949)

$$x_a(t) = \sum_{n = -\infty}^{\infty} x[n] \frac{\sin(\pi(t - nT)/T)}{\pi(t - nT)/T} \tag{1}$$

Nucleul sinc

Funcţiile sinc analogice (cu argument deplasat)

$$s_n(t) = \frac{\sin(\pi(t - nT)/T)}{\pi(t - nT)/T} = s_0(t - nT)$$

Funcţiile sinc sunt ortogonale

$$\int_{-\infty}^{\infty} s_n(t)s_m(t)dt = T\delta[n-m]$$

- Egalitatea (1) poate fi scrisă $x_a(t) = \sum_{n=-\infty}^{\infty} x[n]s_n(t)$
- Orice semnal analogic cu spectru limitat poate fi reprezentat în baza ortogonală (numărabilă !) formată de funcţiile sinc (numită şi nucleu sinc), pentru un T convenabil ales

Demonstrație (1)

Spectrul semnalului analogic fiind limitat, TF este

$$x_a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(\Omega) e^{j\Omega t} d\Omega$$
$$= \frac{1}{2\pi} \int_{-\pi/T}^{\pi/T} X_a(\Omega) e^{j\Omega t} d\Omega$$

• Cu schimbarea $\Omega = \omega/T$ rezultă

$$x_a(t) = \frac{1}{2\pi T} \int_{-\pi}^{\pi} X_a(\omega/T) e^{j\omega t/T} d\omega$$

• Folosind relaţia dintre spectre $X(\omega) = \frac{1}{T}X_a(\omega/T)$

$$x_a(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega t/T} d\omega$$

Demonstrație (2)

• Înlocuind cu definiția TF (în timp discret)

$$x_{a}(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \right) e^{j\omega t/T} d\omega$$
$$= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} x[n] \int_{-\pi}^{\pi} e^{j\omega(t-nT)/T} d\omega$$

Ţinând seama că

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\omega\tau} d\omega = \frac{\sin(\pi\tau)}{\pi\tau}$$

rezultă identitatea dorită
$$x_a(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin(\pi(t-nT)/T)}{\pi(t-nT)/T}$$

Convertorul numeric-analogic ideal (1)

Egalitatea (1) poate fi interpretată prin schema

- CNA ideal nu poate fi implementat în practică (filtrul ideal e necauzal şi are suport infinit)
- De altfel, din (1) rezultă că pentru fiecare moment de timp t, valoarea $x_a(t)$ depinde de *toate* eşantioanele semnalului discret

Convertorul numeric-analogic ideal (2)

• Formatorul de impulsuri transformă semnalul discret x[n] în semnalul analogic

$$x_i(t) = \sum_{n = -\infty}^{\infty} x[n]\delta(t - nT)$$

Convertorul numeric-analogic ideal (3)

• Filtrul analogic $H_{tj}(\Omega)$ este un filtru trece-jos ideal cu banda de trecere $[0,\Omega_N]$, i.e.

$$H_{tj}(\Omega) = \begin{cases} T, & \text{pentru } |\Omega| \leq \Omega_N \\ 0, & \text{pentru } |\Omega| > \Omega_N \end{cases}$$

- Răspunsul său la impuls este $h_{tj}(t) = \frac{\sin(\pi t/T)}{\pi t/T}$
- Schema CNA ideal spune că

$$x_a(t) = \int_{-\infty}^{\infty} x_i(\tau) h_{tj}(t-\tau) d\tau = \sum_{n=-\infty}^{\infty} x[n] h_{tj}(t-nT)$$

adică exact (1)

Interpolare de ordinul zero

 Semnalul analogic este constant pe durate egale cu perioada de eşantionare T:

$$x_0(t) = x[\lfloor t/T \rfloor]$$

Filtru de interpolare de ordinul zero (1)

- În schema CNA ideal, înlocuim filtrul ideal $H_{tj}(\Omega)$, cu un filtru $H_0(\Omega)$, astfel încât la ieşire să se obţină semnalul $x_0(t)$
- Notând $h_0(t)$ răspunsul la impuls al filtrului $H_0(\Omega)$, ieşirea interpolatorului de ordinul zero este

$$x_0(t) = \sum_{n=-\infty}^{\infty} x[n]h_0(t - nT)$$

• Pentru a obţine $x_0(t) = x[\lfloor t/T \rfloor]$, răspunsul la impuls trebuie să fie

$$h_0(t) = \begin{cases} 1, & \text{pentru } t \in [0, T) \\ 0, & \text{altfel} \end{cases}$$

Filtru de interpolare de ordinul zero (2)

Răspunsul în frecvenţă este

$$H_0(\Omega) = \int_0^T e^{-j\Omega t} dt = \frac{2\sin(\Omega T/2)}{\Omega} e^{-j\Omega T/2}$$

 Filtrul este trece-jos, dar aproximează grosier răspunsul ideal

Interpolare de ordinul unu

 Semnalul analogic este obţinut prin unirea eşantioanelor semnalului discret prin segmente de dreapta:

$$x_1(t) = \frac{(t - nT)x[n+1] + ((n+1)T - t)x[n]}{T}, \ t \in [nT, (n+1)T)$$

Filtru de interpolare de ordinul unu (1)

- În CNA ideal, filtrul ideal $H_{tj}(\Omega) \longrightarrow H_1(\Omega)$
- $h_1(t)$ este răspunsul la impuls al filtrului $H_1(\Omega)$
- Identificăm $x_1(t) = \sum_{n=-\infty}^{\infty} x[n]h_1(t-nT)$ cu

$$x_1(t) = \frac{t - (n+1)T + T}{T}x[n+1] + \frac{-t + nT + T}{T}x[n]$$

Rezultă răspunsul la impuls

$$h_1(t) = egin{cases} 1 - |t|/T, & \text{pentru } |t| \leq T \\ 0, & \text{altfel} \end{cases}$$

• Filtrul este necauzal. Devine cauzal introducând o întârziere egală cu ${\cal T}$

Filtru de interpolare de ordinul unu (2)

Răspunsul în frecvenţă este

$$H_1(\Omega) = \int_{-T}^{T} (1 - |t|/T)e^{-j\Omega t} dt$$

$$= \frac{e^{-j\Omega t}}{-j\Omega} \Big|_{-T}^{T} - \frac{1}{T} \int_{0}^{T} t(e^{-j\Omega t} + e^{-j\Omega t}) dt$$

$$= \frac{2\sin(\Omega T)}{\Omega} - \frac{2}{T} \int_{0}^{T} t\cos(\Omega t) dt$$

Un calcul elementar arată că

$$\int_0^T t \cos(\Omega t) dt = \frac{T \sin(\Omega T)}{\Omega} - \frac{2 \sin^2(\Omega T/2)}{\Omega^2}$$

Filtru de interpolare de ordinul unu (3)

Obţinem răspunsul în frecvenţă

$$H_1(\Omega) = \frac{4\sin^2(\Omega T/2)}{T\Omega^2} = \frac{1}{T}|H_0(\Omega)|^2$$

Schimbarea frecvenței de eşantionare (1)

- Problema: schimbarea frecvenţei de eşantionare a unui semnal analogic $x_a(t)$, dispunând *numai* de un semnal discret x[n], obţinut printr-o eşantionare anterioară din semnalul $x_a(t)$
- Notăm T perioada primei eşantionări (deci $x[n] = x_a(nT)$)
- Fie T_1 noua perioadă de eşantionare
- Căutăm semnalul discret y[n] astfel încât

$$y[n] = x_a(nT_1)$$

- Numim x[n] semnalul *iniţial*, y[n] semnalul *reeşantionat*
- Obţinerea egalităţii este în general imposibilă
- Dorim ca măcar spectrele $X(\omega)$ și $Y(\omega)$ să fie apropiate

Schimbarea frecvenței de eşantionare (2)

- Soluţii bune se obţin atunci când raportul T/T_1 este un număr raţional, ai cărui numărător şi numitor au valori relativ mici
- Cazurile cele mai simple:
 - $\circ T_1/T$ întreg: decimare
 - \circ T/T_1 întreg: *interpolare*
- Aplicaţii:
 - Conversii de format (de exemplu, se creşte frecvenţa de eşantionare a unor înregistrări vechi, pentru adaptarea la noi standarde)
 - Transfer de date între sisteme care utilizează rate diferite de eşantionare
 - Redimensionarea imaginilor

Decimare

- Când $T_1/T=M\in\mathbb{N}$, frecvenţa de eşantionare se reduce de M ori
- Relaţia dintre semnalul reeşantionat şi cel iniţial este

$$y[n] = x[Mn]$$

• Sistemul care realizează această operație se numește decimator cu factorul M

Funcţionarea în timp a decimatorului

• Un decimator cu factorul ${\cal M}=2$ elimină fiecare al doilea eşantion al intrării

Transformarea spectrului la decimare

- Fie x[n] un semnal discret cu energie finită şi y[n] = x[Mn] semnalul discret obţinut prin decimare cu factorul M
- Între spectrele celor două semnale are loc relaţia

$$Y(\omega) = \frac{1}{M} \sum_{\ell=0}^{M-1} X\left(\frac{\omega + 2\ell\pi}{M}\right) \tag{2}$$

• Pentru o frecvenţă ω fixată, spectrul $Y(\omega)$ al semnalului decimat este o suma a M valori ale spectrului semnalului iniţial (compară cu transformarea spectrelor la eşantionare!)

Demonstrație (1)

ullet Relaţie elementară între rădăcinile de ordinul M ale unităţii

$$\sum_{\ell=0}^{M-1} e^{-j2\pi\ell n/M} = \begin{cases} M, & \text{dacă } n \bmod M = 0 \\ 0, & \text{altfel} \end{cases}$$
 (3)

- Dacă $n \mod M = 0$, atunci toţi termenii din (3) sunt 1
- Altfel

$$\sum_{\ell=0}^{M-1} e^{-j2\pi\ell n/M} = \frac{1 - e^{-j2\pi n}}{1 - e^{-j2\pi n/M}} = 0$$

Demonstrație (2)

Termenul drept din (2) poate fi scris

$$\frac{1}{M} \sum_{\ell=0}^{M-1} X \left(\frac{\omega + 2\ell\pi}{M} \right) = \frac{1}{M} \sum_{\ell=0}^{M-1} \sum_{n=-\infty}^{\infty} x[n] e^{-j(\omega + 2\ell\pi)n/M}$$

$$= \frac{1}{M} \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n/M} \sum_{\ell=0}^{M-1} e^{-j2\pi\ell n/M}$$

$$\stackrel{\text{(3)}}{=} \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n/M} \delta[n \text{ mod } M]$$

$$\stackrel{n \leftarrow Mn}{=} \sum_{n=-\infty}^{\infty} x[Mn] e^{-j\omega n}$$

$$= Y(\omega)$$

Decimare corectă

- Presupunem că semnalul iniţial are spectrul limitat la banda $[-\pi/M,\pi/M]$, deci $X(\omega)=0$ pentru $\pi/M<|\omega|\leq\pi]$
- Spectrul semnalului decimat este

$$Y(\omega) = \frac{1}{M}X(\omega/M), \ \omega \in [-\pi, \pi]$$

- Spectrul semnalului decimat are aceeaşi formă ca spectrul semnalului iniţial, dar expandată pe întreg intervalul $[-\pi,\pi]$
- Spectrele celor două semnale discrete corespund *aceluiași* spectru al semnalului analogic! (evident, cu condiția ca frecvența de eșantionare inițială Ω_e să fi fost de cel puțin 2M ori mai mare decât banda de frecvență a semnalului analogic)

Decimare corectă—exemplu

Aliere

- Dacă spectrul semnalului iniţial se întinde dincolo de frecvenţa π/M , atunci spectrul semnalului decimat nu mai are aceeaşi formă ca spectrul semnalului iniţial
- Spectrul semnalului decimat este suma unor porţiuni (expandate) ale spectrului iniţial
- Apare fenomenul de aliere

Aliere—exemplu

Schema practică de decimare

- Pentru a evita alierea (dar afectând spectrul iniţial), se utilizează un filtru trece-jos care taie frecvenţele superioare lui π/M
- Schema practică de reducere a frecvenţei de eşantionare

Interpolare (discretă)

- Studiem cazul $T/T_1=M\in\mathbb{N}$, când frecvenţa de eşantionare creşte de M ori
- Între fiecare două eşantioane ale semnalului x[n] apar M-1 eşantioane noi
- Interpolatorul (discret) este sistemul care atribuie valoarea zero eşantioanelor noi, deci funcţionează după regula

$$y[n] = \begin{cases} x[n/M], & \text{dacă} \ n \bmod M = 0 \\ 0, & \text{altfel} \end{cases}$$

Notaţie uzuală

Funcţionarea în timp a interpolatorului

• Un interpolator cu factorul M=2 introduce câte un eşantion nul între fiecare două eşantioane ale semnalului de intrare

Transformarea spectrului la interpolare

- Fie x[n] un semnal discret cu energie finită şi y[n] semnalul discret obţinut prin interpolare cu factorul M
- Între spectrele celor două semnale are loc relaţia

$$Y(\omega) = X(M\omega)$$

Demonstraţie:

$$Y(\omega) \stackrel{\text{def}}{=} \sum_{n=-\infty}^{\infty} y[n]e^{-j\omega n} = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega Mk} = X(M\omega)$$

- Pe intervalul $[-\pi,\pi]$, spectrul semnalului interpolat este obţinut prin alăturarea a M copii (fiecare comprimată de M ori) ale unei perioade a spectrului semnalului iniţial
- Fenomenul este numit replicare (engl. replication, imaging)

Schema practică de interpolare

- Pentru a păstra forma spectrului iniţial, se utilizează un filtru trece-jos care taie frecvenţele superioare lui π/M (elimină replicile identice cu cea din banda de bază $[-\pi/M,\pi/M]$)
- Deoarece filtrarea elimină cele M-1 replici ale spectrului din afara benzii de bază, filtrul trebuie să aibă o amplificare egală cu M, pentru a conserva energia semnalului
- Denumire: filtru anti-replicare sau de interpolare
- Schema practică de creştere a frecvenţei de eşantionare cu factorul ${\cal M}$ este

Transformarea spectrului la interpolare—exemplu

• Pentru M=3:

Filtru Nyquist

Pentru interpolare se folosesc în special filtre Nyquist:

$$H(z) = \sum_{k=-K}^{K} h[k]z^{-k}, \quad h[Mk] = \delta[k]$$

- Notăm $v = x \uparrow M$ semnalul de la intrarea filtrului
- leşirea filtrului este

$$y[n] = \sum_{k=n-K}^{n+K} v[k]h[n-k]$$

- Se observă că y[nM] = v[nM] = x[n]
- Eşantioanele semnalului iniţial x[n] se regăsesc printre cele ale semnalului reeşantionat

Funcţionarea unui interpolator cu filtru Nyquist

Schimbarea frecvenței cu un factor rațional

- Cazul general: $T_1/T = M/N$, cu $M, N \in \mathbb{N}$
- Frecvenţa de eşantionare creşte de N/M ori (mai precis, creşte atunci când N>M şi scade când N< M)
- Reeşantionarea se realizează prin interpolarea semnalului iniţial x[n] cu factorul N, urmată de decimarea cu factorul M a semnalului interpolat
- Schema practică de reeşantionare:

