The Lie algebra $\mathfrak{sl}_n(\mathbb{C})$ and its eigenvalues

Quin Darcy

March, 5 2021

1 Definition and remarks

The Lie algebra $\mathfrak{sl}_n(\mathbb{C})$ is defined to be the set of all $n \times n$ matrices with trace 0 and whose entries are complex numbers. As the title of this paper suggests, this set is apparently a "Lie algebra". Before continuing any further, we will first define what this is, and prove that, indeed, $\mathfrak{sl}_n(\mathbb{C})$ is a Lie algebra.

Definition 1.1. A Lie algebra is a vector space L over some field F equipped with a binary operation $[\cdot,\cdot]:L\times L\to L$ such that for all $x,y,z\in L$, the following conditions hold:

- (i) $[\cdot, \cdot]$ is a bilinear map.
- (ii) [x, x] = 0
- ${\rm (iii)}\ [x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0.$

With the above definition in hand, we claim that defining [X,Y] = XY - YX for all $X,Y \in \mathfrak{sl}_n(\mathbb{C})$, then this will satisfy the above three conditions.