### Mouvement guidée par une surface

Lucas DIETRICH (www.ldietrich.fr)

### Glossaire et symboles :

| Symbol                      | Name                                                | Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|-----------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ω                           | Parametric position <i>DIM (2)</i>                  | $\boldsymbol{\omega}(t) = \begin{bmatrix} u(t) & v(t) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| ώ                           | Parametric speed <i>DIM (2)</i>                     | $\dot{\boldsymbol{\omega}} = \frac{d\boldsymbol{\omega}}{dt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| S                           | Position<br>DIM (3)                                 | $S = S(\omega) = \begin{bmatrix} x(\omega) \\ y(\omega) \\ z(\omega) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| v,V                         | Speed<br>DIM (3)                                    | $\boldsymbol{v} = \frac{d\boldsymbol{S}}{dt} = \boldsymbol{J}\boldsymbol{\omega} = \begin{bmatrix} v_{x}(\omega) \\ v_{x}(\omega) \\ v_{x}(\omega) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                               |  |  |
| F                           | Force<br>DIM (3)                                    | $m{F} = egin{bmatrix} F_{\mathcal{X}} \ F_{\mathcal{Y}} \ F_{\mathcal{Z}} \ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| J,J <sub>S</sub>            | Jacobian<br>DIM (3, 2)                              | $J = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial v} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial z} & \frac{\partial z}{\partial z} \end{bmatrix}$ $H_{S_X} = \begin{bmatrix} \frac{\partial^2 X}{\partial u^2} & \frac{\partial^2 X}{\partial u \partial v} \\ \frac{\partial^2 X}{\partial v \partial u} & \frac{\partial^2 X}{\partial v^2} \end{bmatrix}$ $H = \begin{bmatrix} u_x & u_x & \cdots & u_{n-1} \end{bmatrix}$ |  |  |
| $H_{S_X}, H_X$              | Hessian[ $X$ ]<br>$X \in (x, y, z)$<br>DIM = (2, 2) | $H_{S_X} = \begin{bmatrix} \frac{\partial^2 X}{\partial u^2} & \frac{\partial^2 X}{\partial u \partial v} \\ \frac{\partial^2 X}{\partial v \partial u} & \frac{\partial^2 X}{\partial v^2} \end{bmatrix}$                                                                                                                                                                                                                                                                                                      |  |  |
| U,V                         | U-space<br>V-space DIM (n)                          | $U = \begin{bmatrix} u_0 & u_1 & \cdots & u_{n-1} \end{bmatrix}$ $V = \begin{bmatrix} v_0 & v_1 & \cdots & v_{m-1} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| $\mathcal{M}$               | Mesh <i>DIM</i> (2, n)                              | $\mathcal{M} = (U, V)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $\mathcal{M}_{\mathcal{S}}$ | Surface Mesh DIM (n, 3)                             | $\mathcal{M}_S = \begin{bmatrix} S_0 \\ S_1 \\ \vdots \\ S_k \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

### A vérifier :

- Si un objet n'est pas soumis à aucune force, le solide suit des géodésiques.
- Caractériser les géodésiques
  - o Associer les géodésiques à du, dv et à la Hessienne
  - o Trouver une paramétrisation qui est constante sur une géodésique

### Contexte et hypothèse :

- On se passe dans un contexte théorique de mécanique classique, les objets étudiées sont des surfaces au sens physiques (continue,  $C_2$ , jacobienne et Hessienne, indéformables) et des masses ponctuelles (on ne considère donc pas l'inertie de rotation).
- La résolution numérique est basée sur le théorème fondamental de la dynamique (Loi de Newton) qui admet comme éléments centraux la force et la quantité de mouvement.

#### Introduction et notations :

Dans ce document on étudie le mouvement en fonction du temps  $\omega(t) = (u(t), v(t))$  (trajectoire et vitesse) d'un solide ponctuel se déplaçant sur une surface S (guide) et soumis à différentes forces :  $\vec{F}$ .

On considère une surface paramétrique :

$$\mathbf{S}(u,v) = \begin{bmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{bmatrix}$$

u et v sont des paramètres qui dépendent du temps t:

$$u: t \mapsto u(t)$$
  
 $v: t \mapsto v(t)$ 

On notera:

$$\boldsymbol{\omega} \colon \mathbb{R} \to \mathbb{R}^2$$
$$t \mapsto \begin{bmatrix} u(t) \\ v(t) \end{bmatrix}$$

On a ainsi, un objet A paramétré par  $\omega_A$  au temps  $t_1$  est repéré par sa positon :

$$S(\boldsymbol{\omega}_A(t_1))$$

### **Autres notations:**

- On notera en gras les vecteurs  $S, \omega, q$  et sans style les scalaires t, u(t), v(t).
- On omettra souvent les paramètres des fonctions
  - o u(t) devient u
  - o  $S(\omega(t))$  devient  $S(\omega)$  ou simplement S
- La dérivée partielle d'un scalaire  $rac{\partial f}{\partial u}$  se condensera avec l'écriture  $\partial_u f$
- Double dérivation  $\frac{\partial^2 f}{\partial u \partial v} = \partial_{u,v}^2 f$
- On note  $V = V_X]_{x,y,z}^X = \begin{bmatrix} V_x \\ V_y \\ V_z \end{bmatrix}$  le vecteur à 3 coordonnées (x,y,z)
  - On peut aussi appliquer cette notation aux matrices, par exemple la jacobienne s'exprime :

$$J_{S}(\boldsymbol{\omega}) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{bmatrix} = \frac{\partial X}{\partial u} \left[ \frac{\partial X}{\partial v} \right]_{x,y,z}^{X}$$

- $\circ$  Ainsi si on veut exprimer la somme des éléments du vecteur V on écrira :
- La dérivation par rapport au temps de la grandeur m se note avec un point :  $\frac{dm}{dt} = \dot{m}$

#### Vitesse:

La variation de position par rapport au temps peut se calculer :

$$\frac{\partial \mathbf{S}}{\partial t}(\boldsymbol{\omega}) = \frac{\partial \mathbf{S}}{\partial u} \frac{du}{dt} + \frac{\partial \mathbf{S}}{\partial v} \frac{dv}{dt} = \mathbf{J}_{\mathbf{S}}(\boldsymbol{\omega}) \frac{d\boldsymbol{\omega}}{dt}$$

Où  $J_{S}(\omega)$  est la jacobienne de S: https://fr.wikipedia.org/wiki/Matrice\_jacobienne

On a donc l'expression de la vitesse d'un point A:

$$v_A(t) = \frac{\partial S}{\partial t} (\omega_A(t)) = J_S(\omega) \dot{\omega}(t)$$

Expression complète:

$$\boldsymbol{v}_{A}(t) = \boldsymbol{J}_{S}(\boldsymbol{\omega})\dot{\boldsymbol{\omega}}(t) = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{bmatrix} \times \begin{bmatrix} \frac{du}{dt} \\ \frac{dv}{dt} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial u} \frac{du}{dt} + \frac{\partial x}{\partial v} \frac{dv}{dt} \\ \vdots_{y} \\ \vdots_{z} \end{bmatrix} = \frac{\partial X}{\partial u} \frac{du}{dt} + \frac{\partial X}{\partial v} \frac{dv}{dt} \end{bmatrix}_{x,y,z}^{X}$$

#### Accélération:

Dérivation naïve du vecteur vitesse :

$$\begin{aligned} & \boldsymbol{a}_{A}(t) = \frac{d\boldsymbol{v}_{A}}{dt} = \frac{d}{dt} \left( \frac{\partial X}{\partial u} \frac{du}{dt} + \frac{\partial X}{\partial v} \frac{dv}{dt} \right) \Big|_{x,y,z} = \frac{d}{dt} \left( \frac{\partial X}{\partial u} \frac{du}{dt} \right) + \frac{d}{dt} \left( \frac{\partial X}{\partial v} \frac{dv}{dt} \right) \Big|_{x,y,z}^{X} \\ & = \frac{d}{dt} \frac{\partial X}{\partial u} \frac{du}{dt} + \frac{\partial X}{\partial u} \frac{d}{dt} \frac{du}{dt} + \frac{d}{dt} \frac{\partial X}{\partial v} \frac{dv}{dt} + \frac{\partial X}{\partial v} \frac{d}{dt} \frac{dv}{dt} \Big|_{x,y,z}^{X} \\ & = \frac{d}{dt} \frac{\partial X}{\partial u} \dot{u} + \frac{\partial X}{\partial u} \ddot{u} + \frac{d}{dt} \frac{\partial X}{\partial v} \dot{v} + \frac{\partial X}{\partial v} \ddot{v} \Big|_{x,y,z}^{X} \end{aligned}$$

Comme  $\frac{\partial X}{\partial u}(\omega)$  et  $\frac{\partial X}{\partial v}(\omega)$  dépendent de u et v, on a :

$$\frac{d}{dt}\frac{\partial X}{\partial u} = \frac{\partial}{\partial u}\frac{\partial X}{\partial u}\frac{du}{dt} + \frac{\partial}{\partial v}\frac{\partial X}{\partial u}\frac{dv}{dt} = \frac{\partial^2 X}{\partial u^2}\dot{u} + \frac{\partial^2 X}{\partial v\partial u}\dot{v}$$
$$\frac{d}{dt}\frac{\partial X}{\partial v} = \frac{\partial}{\partial u}\frac{\partial X}{\partial v}\frac{du}{dt} + \frac{\partial}{\partial v}\frac{\partial X}{\partial v}\frac{dv}{dt} = \frac{\partial^2 X}{\partial u\partial v}\dot{u} + \frac{\partial^2 X}{\partial v^2}\dot{v}$$

Enfin on a:

$$\begin{aligned} & \boldsymbol{a}_{A}(t) = \frac{d\boldsymbol{v}_{A}}{dt} = \left[ \frac{\partial^{2}X}{\partial u^{2}} \dot{u} + \frac{\partial^{2}X}{\partial v \partial u} \dot{v} \right] \dot{u} + \frac{\partial X}{\partial u} \ddot{u} + \left[ \frac{\partial^{2}X}{\partial u \partial v} \dot{u} + \frac{\partial^{2}X}{\partial v^{2}} \dot{v} \right] \dot{v} + \frac{\partial X}{\partial v} \ddot{v} \bigg]_{x,y,z}^{X} \\ & = \frac{\partial^{2}X}{\partial u^{2}} \dot{u}^{2} + \frac{\partial X}{\partial u} \ddot{u} + 2 \frac{\partial^{2}X}{\partial v \partial u} \dot{u} \dot{v} + \frac{\partial^{2}X}{\partial v^{2}} \dot{v}^{2} + \frac{\partial X}{\partial v} \ddot{v} \bigg]_{x,y,z}^{X} \end{aligned}$$

En prenant l'expression matricielle on a :

$$a_A(t) = \frac{dv_A}{dt} = \frac{d}{dt} [J_S(\omega)\dot{\omega}(t)]$$

En dérivant le produit  $J_{S}(\boldsymbol{\omega})\dot{\boldsymbol{\omega}}(t)$  on obtient :

$$\mathbf{a}_{A}(t) = \frac{dJ_{S}(\boldsymbol{\omega})}{dt}\dot{\boldsymbol{\omega}} + J_{S}(\boldsymbol{\omega})\frac{d\dot{\boldsymbol{\omega}}}{dt}$$

On évalue la dérivée de la matrice jacobienne par rapport au temps :

$$\frac{dJ_{S}(\boldsymbol{\omega})}{dt} = \frac{d}{dt} \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{bmatrix} = \frac{d}{dt} \frac{\partial X}{\partial u} \quad \frac{d}{dt} \frac{\partial X}{\partial v} \Big|_{x,y,z}^{X}$$

Avec les calculs précédents on a donc immédiatement :

$$\frac{dJ_{S}(\boldsymbol{\omega})}{dt} = \frac{\partial^{2}X}{\partial u^{2}}\dot{u} + \frac{\partial^{2}X}{\partial v\partial u}\dot{v} \quad \frac{\partial^{2}X}{\partial u\partial v}\dot{u} + \frac{\partial^{2}X}{\partial v^{2}}\dot{v}\Big|_{x,v,z}^{X}$$

On peut exprimer cette ligne à l'aide de la matrice Hessienne :

$$H_{SX} = \begin{bmatrix} \frac{\partial^2 X}{\partial u^2} & \frac{\partial^2 X}{\partial u \partial v} \\ \frac{\partial^2 X}{\partial v \partial u} & \frac{\partial^2 X}{\partial v^2} \end{bmatrix}$$

On a donc:

$$\frac{dJ_{S}(\boldsymbol{\omega})}{dt} = \left(H_{SX}\dot{\boldsymbol{\omega}}\right)^{T}\Big|_{x,y,z} = \dot{\boldsymbol{\omega}}^{T}H_{SX}^{T}\Big|_{x,y,z}^{X}$$

Or comme  $H_{\mathcal{S}_{X}}$  est symétrique (<u>Théorème de Schwarz</u>) on a donc:

$$\frac{dJ_{S}(\boldsymbol{\omega})}{dt} = \dot{\boldsymbol{\omega}}^{T} H_{SX} \Big|_{x,y,z}^{X}$$

Où  $H_S$  est la Hessienne « vectorielle » de S.

Expression complète de l'accélération :

$$\boldsymbol{a}_{A}(t) = \frac{dJ_{S}(\boldsymbol{\omega})}{dt}\dot{\boldsymbol{\omega}} + \boldsymbol{J}_{S}(\boldsymbol{\omega})\ddot{\boldsymbol{\omega}} = \dot{\boldsymbol{\omega}}^{T}H_{SX}\big|_{x,y,z}^{X}\dot{\boldsymbol{\omega}} + \boldsymbol{J}_{S}(\boldsymbol{\omega})\ddot{\boldsymbol{\omega}}$$

On remarque que:

$$\dot{\boldsymbol{\omega}}^T H_{S_{\boldsymbol{X}}} \Big|_{x,y,z}^X \dot{\boldsymbol{\omega}} = \dot{\boldsymbol{\omega}}^T H_{S_{\boldsymbol{X}}} \dot{\boldsymbol{\omega}} \Big|_{x,y,z}^X$$

Ainsi on a la formulation finale:

$$\boldsymbol{a}_{A}(t) = \boldsymbol{H}_{S}\dot{\boldsymbol{\omega}}^{2} + \boldsymbol{J}_{S}(\boldsymbol{\omega})\ddot{\boldsymbol{\omega}} = \dot{\boldsymbol{\omega}}^{T}\boldsymbol{H}_{SX}\dot{\boldsymbol{\omega}}\big|_{x,y,z}^{X} + \boldsymbol{J}_{S}(\boldsymbol{\omega})\ddot{\boldsymbol{\omega}}$$

Formulation explicite:

$$\boldsymbol{a}_{A}(t) = \frac{\partial^{2} X}{\partial u^{2}} \dot{u}^{2} + \frac{\partial X}{\partial u} \ddot{u} + 2 \frac{\partial^{2} X}{\partial v \partial u} \dot{u} \dot{v} + \frac{\partial^{2} X}{\partial v^{2}} \dot{v}^{2} + \frac{\partial X}{\partial v} \ddot{v} \bigg|_{x,y,z}^{X}$$

### Théorème fondamental de la dynamique :

Inventaire des actions mécaniques :

- $ec{F}$  est une force quelconque s'appliquant sur le solide
- $\vec{R}$  est la réaction de la surface sur le solide,  $\vec{R}$  est perpendiculaire à l'élément de surface.

$$m \mathbf{a}_A(t) = \vec{F} + \vec{R}$$

Avec la définition - Normale à une surface :

https://fr.wikipedia.org/wiki/Normale %C3%A0 une surface#Vecteur normal en un point r%C3%A9gulier

On a donc:

$$\vec{R}(u,v) = \lambda(u,v) \times \frac{\partial S}{\partial u}(u,v) \wedge \frac{\partial S}{\partial v}(u,v)$$

Le vecteur  $\vec{R}$  est bien perpendiculaire à la surface sur deux directions :

- 
$$\vec{R} \cdot \frac{\partial S}{\partial u}(u, v) = 0$$
  
-  $\vec{R} \cdot \frac{\partial S}{\partial v}(u, v) = 0$ 

$$- \vec{R} \cdot \frac{\partial S}{\partial v}(u, v) = 0$$

En appliquant le produit scalaire à la relation fondamentale de la dynamique vers deux directions :

$$\begin{cases} m \ \mathbf{a}_{A}(t) \cdot \frac{\partial S}{\partial u}(u, v) = (\vec{F} + \vec{R}) \cdot \frac{\partial S}{\partial u}(u, v) \\ m \ \mathbf{a}_{A}(t) \cdot \frac{\partial S}{\partial v}(u, v) = (\vec{F} + \vec{R}) \cdot \frac{\partial S}{\partial v}(u, v) \end{cases}$$

On obtient ainsi deux équations : scalaires :

$$\begin{cases} m \, \mathbf{a}_{A}(t) \cdot \frac{\partial S}{\partial u}(u, v) = \vec{F} \cdot \frac{\partial S}{\partial u}(u, v) \\ m \, \mathbf{a}_{A}(t) \cdot \frac{\partial S}{\partial v}(u, v) = \vec{F} \cdot \frac{\partial S}{\partial v}(u, v) \end{cases}$$

Les deux équations deviennent pour  $\mu = u, v$ :

$$\left(\frac{\partial^2 X}{\partial u^2}\dot{u}^2 + \frac{\partial X}{\partial u}\ddot{u} + 2\frac{\partial^2 X}{\partial v\partial u}\dot{u}\dot{v} + \frac{\partial^2 X}{\partial v^2}\dot{v}^2 + \frac{\partial X}{\partial v}\ddot{v}\right) \times \left(\frac{\partial X}{\partial \mu}\right)\Big|_{\Sigma x, y, z}^X - \frac{1}{m}\vec{F} \cdot \frac{\partial S}{\partial \mu} = 0$$

En explicitant et réarrangeant les termes :

$$\begin{cases} E_{u} : \frac{\partial X}{\partial \mathbf{u}} \frac{\partial^{2} X}{\partial u^{2}} \dot{u}^{2} + \left(\frac{\partial X}{\partial u}\right)^{2} \ddot{u} + 2 \frac{\partial X}{\partial \mathbf{u}} \frac{\partial^{2} X}{\partial v \partial u} \dot{u} \dot{v} + \frac{\partial X}{\partial \mathbf{u}} \frac{\partial^{2} X}{\partial v^{2}} \dot{v}^{2} + \frac{\partial X}{\partial \mathbf{u}} \frac{\partial X}{\partial v} \ddot{v} \right]_{\sum x, y, z}^{X} - \frac{1}{m} \vec{F} \cdot \frac{\partial S}{\partial u} = 0 \\ E_{v} : \frac{\partial X}{\partial v} \frac{\partial^{2} X}{\partial v^{2}} \dot{v}^{2} + \left(\frac{\partial X}{\partial v}\right)^{2} \ddot{v} + 2 \frac{\partial X}{\partial v} \frac{\partial^{2} X}{\partial v \partial u} \dot{u} \dot{v} + \frac{\partial X}{\partial v} \frac{\partial^{2} X}{\partial u^{2}} \dot{u}^{2} + \frac{\partial X}{\partial u} \frac{\partial X}{\partial v} \ddot{u} \right]_{\sum x, y, z}^{X} - \frac{1}{m} \vec{F} \cdot \frac{\partial S}{\partial v} = 0 \end{cases}$$

On synthétise ces équations  ${E_u \brace E_v}$ , on pose :

$$\begin{cases} E_u: D_{uu}\ddot{u} + P_{uv}\ddot{v} + R_u = 0 \\ E_u: D_{vv}\ddot{v} + P_{uv}\ddot{u} + R_v = 0 \end{cases}$$

Avec:

- 
$$D_{uu} = \left(\frac{\partial X}{\partial u}\right)^{2} \Big|_{\sum x, y, z}^{X} = \left[D_{vv} = \left(\frac{\partial X}{\partial v}\right)^{2}\right]_{\sum x, y, z}^{X}$$
- 
$$P_{uv} = \frac{\partial X}{\partial u} \frac{\partial X}{\partial v} \Big|_{\sum x, y, z}^{X}$$
- 
$$R_{u} = \frac{\partial X}{\partial u} \left(\frac{\partial^{2} X}{\partial u^{2}} \dot{u}^{2} + 2 \frac{\partial^{2} X}{\partial v \partial u} \dot{u} \dot{v} + \frac{\partial^{2} X}{\partial v^{2}} \dot{v}^{2}\right) \Big|_{\sum x, y, z}^{X} - \frac{1}{m} \vec{F} \cdot \frac{\partial S}{\partial u} = 0$$

$$\circ \quad \Gamma = \dot{\boldsymbol{\omega}}^{T} H_{SX} \dot{\boldsymbol{\omega}} \Big|_{x, y, z}^{X} - \frac{1}{m} \vec{F}$$

$$\circ \quad \left[R_{u} = \Gamma \cdot \frac{\partial S}{\partial u}\right]$$
- 
$$R_{v} = \frac{\partial X}{\partial v} \left(\frac{\partial^{2} X}{\partial v^{2}} \dot{v}^{2} + 2 \frac{\partial^{2} X}{\partial v \partial u} \dot{u} \dot{v} + \frac{\partial^{2} X}{\partial u^{2}} \dot{u}^{2}\right) \Big|_{\sum x, y, z}^{X} - \frac{1}{m} \vec{F} \cdot \frac{\partial S}{\partial v} = 0$$

$$\circ \quad \left[R_{v} = \Gamma \cdot \frac{\partial S}{\partial v}\right]$$

Simplification,

On va transformer ce système en ODE de la forme :

$$\begin{bmatrix} \ddot{u} \\ \ddot{v} \end{bmatrix} = \begin{bmatrix} f_{ODE:u}(u, v, \dot{u}, \dot{v}, t) \\ f_{ODE:v}(u, v, \dot{u}, \dot{v}, t) \end{bmatrix}$$

En reprenant le système plus haut on a :

$$\begin{cases} E_u : \ddot{u} = -\frac{P_{uv}\ddot{v} + R_u}{D_{uu}} \\ E_u : \ddot{v} = -\frac{P_{uv}\ddot{u} + R_v}{D_{vv}} \end{cases}$$

En remplaçant  $\ddot{u}$  et  $\ddot{v}$  on a :

$$\begin{cases} E_u: D_{uu}\ddot{u} - P_{uv}\frac{P_{uv}\ddot{u} + R_v}{D_{vv}} + R_u = 0 \\ E_u: D_{vv}\ddot{v} - P_{uv}\frac{P_{uv}\ddot{v} + R_u}{D_{vv}} + R_v = 0 \end{cases}$$

Enfin on a:

$$\begin{cases} E_{u} : \left[ D_{uu} - \frac{P_{uv}^{2}}{D_{vv}} \right] \ddot{u} + R_{u} - R_{v} \frac{P_{uv}}{D_{vv}} = 0 \\ E_{u} : \left[ D_{vv} - \frac{P_{uv}^{2}}{D_{uu}} \right] \ddot{v} + R_{v} - R_{u} \frac{P_{uv}}{D_{uu}} = 0 \end{cases}$$

On a donc notre ODE:

$$\begin{cases} E_u : \ddot{u} = \frac{R_v P_{uv} - R_u D_{vv}}{D_{uu} D_{vv} - P_{uv}^2} \\ E_u : \ddot{v} = \frac{R_u P_{uv} - R_v D_{uu}}{D_{uu} D_{vv} - P_{uv}^2} \end{cases}$$

On pourra évaluer et interpréter les grandeurs plus tard ou en les exprimant :

- $\begin{array}{ll} & D = D_{uu}D_{vv} P_{uv}^2 \\ & R_uP_{uv} R_vD_{uu} \mbox{ et } R_vP_{uv} R_uD_{vv} \end{array}$

Méthode de résolution numérique

On Calcule les grandeurs principales:

| $X(u, v)$ $Y(u, v)$ $Z(u, v)$ $\frac{\partial_u X}{\partial_v X}$ $\frac{\partial_u Y}{\partial_v X}$                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Y(u,v)                                                                                                                                                                                                           |
| Z(u,v)                                                                                                                                                                                                           |
| $\partial_u X$                                                                                                                                                                                                   |
| $\partial_{v}X$                                                                                                                                                                                                  |
| $\partial_u Y$                                                                                                                                                                                                   |
| $\partial_{v}Y$                                                                                                                                                                                                  |
| $\partial_u Z$                                                                                                                                                                                                   |
| $\partial_v Z$                                                                                                                                                                                                   |
| $\partial_u^2 X$                                                                                                                                                                                                 |
| $\partial_{u,v}^2 X$                                                                                                                                                                                             |
| $\partial_{v}^{2}X$                                                                                                                                                                                              |
| $\partial_u^2 Y$                                                                                                                                                                                                 |
| $\partial_{u,v}^2 Y$                                                                                                                                                                                             |
| $\begin{array}{c} \partial_{v}Y \\ \partial_{u}Z \\ \partial_{v}Z \\ \partial_{u}^{2}X \\ \partial_{u,v}^{2}X \\ \partial_{v}^{2}X \\ \partial_{v}^{2}Y \\ \partial_{u,v}^{2}Y \\ \partial_{v}^{2}Y \end{array}$ |
| $\partial_u^2 Z$                                                                                                                                                                                                 |
| $\partial_{u,v}^2 Z$                                                                                                                                                                                             |
| $ \begin{array}{c} \partial_{u}^{2}Z \\ \partial_{u,v}^{2}Z \\ \partial_{v}^{2}Z \end{array} $                                                                                                                   |

On calcul les grandeurs intermédiaires :

- 
$$D_{uu} = \left(\frac{\partial X}{\partial u}\right)^2 \Big|_{\sum x, y, z}^X \text{ et } D_{vv} = \left(\frac{\partial X}{\partial v}\right)^2 \Big|_{\sum x, y, z}^X$$
-  $P_{uv} = \frac{\partial X}{\partial u} \frac{\partial X}{\partial v} \Big|_{\sum x, y, z}^X$ 

$$- P_{uv} = \frac{\partial X}{\partial u} \frac{\partial X}{\partial v} \Big|_{\sum x, y, z}^{X}$$

$$- \Gamma = \frac{\partial^2 X}{\partial u^2} \dot{u}^2 + 2 \frac{\partial^2 X}{\partial v \partial u} \dot{u} \dot{v} + \frac{\partial^2 X}{\partial v^2} \dot{v}^2 \Big|_{\sum x, y, z}^X - \frac{1}{m} \vec{F}$$

- 
$$R_u = \Gamma \cdot \frac{\partial X}{\partial u} = 0$$

- 
$$R_u = \Gamma \cdot \frac{\partial X}{\partial u} = 0$$
  
-  $R_v = \Gamma \cdot \frac{\partial X}{\partial v} = 0$   
-  $D = D_{uu}D_{vv} - P_{uv}^2$ 

$$- D = D_{uu}D_{vv} - P_{uv}^2$$

Notre vecteur d'état est :

$$s = \begin{bmatrix} u \\ \dot{u} \\ v \\ \dot{v} \end{bmatrix}$$

Dans notre résolution numérique, notre temps est discret et on note :

$$s_n = s(n\delta t)$$

On fait évoluer notre vecteur d'état s de la manière suivante :

$$s_{n+1} = s_n + \delta t \frac{ds_n}{dt}$$

La dérivée de noter état au temps  $t=n\delta t$  est :

$$\frac{ds(t)}{dt} = s_n = \frac{d}{dt} \begin{bmatrix} u \\ \dot{u} \\ v \\ \dot{v} \end{bmatrix} = \begin{bmatrix} \frac{\dot{u}}{R_v P_{uv} - R_u D_{vv}} \\ D \\ \dot{v} \\ R_u P_{uv} - R_v D_{uu} \\ D \end{bmatrix}$$

Si on considère une force de frottement en  $-\mu v_A$ , où  $\mu$  est une constante et  $v_A$  la vitesse du solide, on a donc :

$$\vec{F} = \overrightarrow{F'} - \mu \boldsymbol{v}_A$$

Ce qui donne :

$$\begin{cases} \vec{F} \cdot \frac{\partial X}{\partial u} = \vec{F'} \cdot \frac{\partial X}{\partial u} - \mu \mathbf{J}_{S}(\boldsymbol{\omega}) \dot{\boldsymbol{\omega}}(t) \cdot \frac{\partial X}{\partial u} \\ \vec{F} \cdot \frac{\partial X}{\partial v} = \vec{F'} \cdot \frac{\partial X}{\partial v} - \mu \mathbf{J}_{S}(\boldsymbol{\omega}) \dot{\boldsymbol{\omega}}(t) \cdot \frac{\partial X}{\partial v} \end{cases}$$

Il faut ainsi modifier les expressions de  ${\it R}_u$  et  ${\it R}_v$  pour prendre en compte le frottement

#### Todo:

- Lorsque X dépend de u mais ne dépend pas de v on retrouve l'équation du cas d'une courbe paramétrique

Expressions that will needed to evaluate the model :

| Vectoral<br>Symbol | Scalar Symbol                                   |                                |  |
|--------------------|-------------------------------------------------|--------------------------------|--|
| S(u,v)             | x(u,v)                                          |                                |  |
|                    | y(u,v)                                          |                                |  |
|                    | z(u,v)                                          |                                |  |
| $J_{S}(u,v)$       | $\partial_u S_x$                                | $\partial_{v}S_{x}$            |  |
|                    | $\partial_u S_y$                                | $\partial_{v}S_{y}$            |  |
|                    | $\partial_u S_z$                                | $\partial_{v} \mathcal{S}_{z}$ |  |
| $H_{S_x}(u,v)$     | $\partial_u^2 S_x$                              | •                              |  |
|                    | $\frac{\partial_{u,v}^2 S_x}{\partial_u^2 S_y}$ | $\partial_{v}^{2}S_{x}$        |  |
| $H_{S_y}(u,v)$     |                                                 |                                |  |
|                    | $\frac{\partial_{u,v}^2 S_y}{\partial_u^2 S_z}$ | $\partial_v^2 S_y$             |  |
| $H_{S_z}(u,v)$     |                                                 |                                |  |
|                    | $\partial_{u,v}^2 S_z$                          | $\partial_{v}^{2}S_{z}$        |  |

## Initialisation - Context : Tore r=0.25 et $\emph{R}=1.0$

- https://fr.wikipedia.org/wiki/Tore



| Symbol | Domain Min | Domain Max | n  | Δ |
|--------|------------|------------|----|---|
| и      | 0          | 2π         | 50 |   |
| v      | 0          | $2\pi$     | 50 |   |
| x(u,v) |            |            |    |   |
| y(u,v) |            |            |    |   |
| z(u,v) |            |            |    |   |

# **Expressions**

| Vectoral            | Scalar                                      | Expression                             | u = 0 |
|---------------------|---------------------------------------------|----------------------------------------|-------|
| Symbol              | Symbol                                      |                                        | v = 0 |
| S(u, v)             | X                                           | $(R + r \cos v) \cos u$                | R + r |
|                     | Y                                           | $(R + r \cos v) \sin u$                | 0     |
|                     | Z                                           | $r \sin v$                             | 0     |
| $J_{S}(u,v)$        | $\partial_u X$                              | -Y                                     | 0     |
|                     | $\partial_{v}X$                             | $-r\sin v\cos u$                       | 0     |
|                     | $\partial_u Y$                              | X                                      | R + r |
|                     | $\partial_{v}Y$                             | $-r\sin v\sin u$                       | 0     |
|                     | $\partial_u Z$                              | 0                                      | 0     |
|                     | $\partial_{v}Z$                             | $r\cos v$                              | r     |
| $H_{S_x}(u,v)$      | $\partial_u^2 X$                            | -X                                     | 0     |
| ~                   | $\frac{\partial_{u,v}^2 X}{\partial_v^2 X}$ | $r\sin v\sin u = -\partial_v Y$        | 0     |
|                     | $\partial_{v}^{2}X$                         | $-r\cos v\cos u = -\partial_v Z\cos u$ | -r    |
| $H_{S_{\nu}}(u,v)$  | $\partial_u^2 Y$                            | -Y                                     | 0     |
| y                   | $\partial_{u,v}^2 Y$                        | $-r\sin v\cos u = -\partial_v X$       | 0     |
|                     | $\frac{\partial^2_{u,v}Y}{\partial^2_v Y}$  | $-r\cos v\sin u = -\partial_v Z\sin u$ | 0     |
| $H_{S_{\tau}}(u,v)$ | $\partial_u^2 Z$                            | 0                                      | 0     |
| - 2 ,               | $\partial_{u,v}^2 Z$                        | 0                                      | 0     |
|                     | $\partial_v^2 Z$                            | -Z                                     | 0     |

# Intermediate symbols

| Symbol                   | Expression                              |   |
|--------------------------|-----------------------------------------|---|
| $D_{uu}$                 | -(X+Y)                                  | 0 |
| $D_{vv}$                 | $-\partial_{\nu}Z(\cos u + \sin u) - Z$ |   |
| $P_{uv}$                 | $(Y\cos u - X\sin u)r\sin v$            |   |
| $R_u(\dot{u},\dot{v})$   |                                         |   |
| $R_{v}(\dot{u},\dot{v})$ |                                         |   |

## Initialisation – Context

| Symbol | Domain Min | Domain Max | n | Δ |
|--------|------------|------------|---|---|
| и      |            |            |   |   |
| v      |            |            |   |   |
| x(u,v) |            |            |   |   |
| y(u,v) |            |            |   |   |
| z(u,v) |            |            |   |   |

## **Expressions**

| Vectoral           | Scalar                                                                                    | Expression | <i>u</i> = |
|--------------------|-------------------------------------------------------------------------------------------|------------|------------|
| Symbol             | Symbol                                                                                    |            | v =        |
| S(u, v)            | X                                                                                         |            |            |
|                    | Y                                                                                         |            |            |
|                    | Z                                                                                         |            |            |
| $J_{S}(u,v)$       | $\partial_u X$                                                                            |            |            |
|                    | $\partial_{v}X$                                                                           |            |            |
|                    | $\partial_u Y$                                                                            |            |            |
|                    | $\partial_{v}Y$                                                                           |            |            |
|                    | $\partial_u Z$                                                                            |            |            |
|                    | $\partial_v Z$                                                                            |            |            |
| $H_{S_x}(u,v)$     | $ \begin{array}{c c} \partial_u^2 X \\ \partial_{u,v}^2 X \\ \partial_v^2 X \end{array} $ |            |            |
| - 2                | $\partial_{u,v}^2 X$                                                                      |            |            |
|                    | $\partial_v^2 X$                                                                          |            |            |
| $H_{S_{\nu}}(u,v)$ | $ \begin{array}{c} \partial_u^2 Y \\ \partial_{u,v}^2 Y \\ \partial_v^2 Y \end{array} $   |            |            |
| - <b>y</b>         | $\partial_{u,v}^2 Y$                                                                      |            |            |
|                    | $\partial_{v}^{2}Y$                                                                       |            |            |
| $H_{S_z}(u,v)$     | $ \begin{array}{c} \partial_u^2 Z \\ \partial_{u,v}^2 Z \\ \partial_v^2 Z \end{array} $   |            |            |
| - Z ·              | $\partial_{u,v}^2 Z$                                                                      |            |            |
|                    | $\partial_{\nu}^{2}Z$                                                                     |            |            |

# Intermediate symbols

| Symbol                 | Expression |  |
|------------------------|------------|--|
| $D_{uu}$               |            |  |
| $D_{vv}$               |            |  |
| $P_{uv}$               |            |  |
| $R_u(\dot{u},\dot{v})$ |            |  |
| $R_v(\dot{u},\dot{v})$ |            |  |

### Calcul de surface :

Soit S la surface définie et paramétrisée par  $u, v \in U \times V$  où U et V sont des intervalles de R.



L'aire du parallélépipède infinitésimale est :

$$dS = ||f_u \wedge f_v|| \partial u \partial v$$

On a donc la surface totale de l'objet :

$$S = \int_{u,v \in U \times V} \|f_u \wedge f_v\| \partial u \partial v$$

Or on a que:

$$||f_u \wedge f_v||^2 = ||f_u||^2 ||f_v||^2 - (f_u \cdot f_v)^2$$

Si on pose:

$$E = ||f_u||^2 = \left\| \frac{\partial f}{\partial u} \right\|^2$$

$$F = ||f_v||^2 = \left\| \frac{\partial f}{\partial v} \right\|^2$$

$$G = \left( \frac{\partial f}{\partial u} \cdot \frac{\partial f}{\partial u} \right)^2$$

On a donc:

$$S = \int_{u,v \in U \times V} \sqrt{EF - G^2} \partial u \partial v$$

### Exemple du cylindre:

$$U = [0, 2\pi]$$

$$V = [0, 1]$$

$$S = \begin{bmatrix} \cos u \\ \sin u \\ v \end{bmatrix}$$

$$f_u = \begin{bmatrix} -\sin u \\ \cos u \\ 0 \end{bmatrix}$$

$$f_v = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

On a:

$$E = F = 1$$
$$G = 0$$

Donc

$$S = \int_{u,v \in U \times V} 1 \partial u \partial v = 2\pi$$

Définition discrète :

$$f_{u}(k,i) = \frac{\partial S}{\partial u}(k\Delta u, i\Delta v)$$
$$f_{v}(k,i) = \frac{\partial S}{\partial v}(k\Delta u, i\Delta v)$$

$$S = \sum_{k=0}^{n-1} \sum_{i=0}^{m-1} \sqrt{\|f_u\|^2 \|f_v\|^2 - (f_u \cdot f_v)^2}$$

### Calcul de distance :



$$\begin{aligned}
\overrightarrow{dl} &= \mathbf{S}(u + du, v + dv) - \mathbf{S}(u, v) \\
\overrightarrow{dl} &= \mathbf{S}(u + du, v + dv) - \mathbf{S}(u + du, v) + \mathbf{S}(u + du, v) - \mathbf{S}(u, v) \\
\overrightarrow{dl} &= \frac{\partial \mathbf{S}}{\partial u} \partial u + \frac{\partial \mathbf{S}}{\partial v} \partial v \\
dl &= \left\| \overrightarrow{dl} \right\| = \left\| \frac{\partial \mathbf{S}}{\partial u} \partial u + \frac{\partial \mathbf{S}}{\partial v} \partial v \right\| = \left\| \left( \frac{\partial \mathbf{S}}{\partial u} \partial u \right)^2 + 2 \left( \frac{\partial \mathbf{S}}{\partial u} \partial u \right) \left( \frac{\partial \mathbf{S}}{\partial v} \partial v \right) + \left( \frac{\partial \mathbf{S}}{\partial v} \partial v \right)^2 \right\|
\end{aligned}$$

Or  $\frac{\partial S}{\partial u} \perp \frac{\partial S}{\partial v}$ , on a donc :

$$dl = \sqrt{\left(\frac{\partial S}{\partial u}\partial u\right)^2 + \left(\frac{\partial S}{\partial v}\partial v\right)^2}$$

Longueur totale:

$$L = \int_{\omega_0}^{\omega_1} dl$$

To continue

Sur une surface : si deux géodésiques distinctes se croise deux fois exactement (qui se ferment ?), la surface paramétrée admet des singularité (ex sphère alors que tore non).

Caractérisations des surfaces par les géodésiques (cours de C Villani)