	Table of Contents
2	Block Diagram
3	Notes - Warning, I2C, Build Option
4	Notes - Boot Config & PCB ID
5	Main PWR
6	PMIC
7	iMX6 Power
8	iMX6 Control, Pwr-On Rst, JTAG
9	DDR3 DRAM, Low-Voltage
10	NOR Flash, Boot Select
11	NAND Flash, SD-MMC, MLB, CAN, WDOG
12	USB
13	HDMI, SATA
14	Mini PCIE
15	Ethernet
16	LVDS Displays
17	Parallel Display, MIPI
18	I2C I/O Expanders
19	Steering logic
20	Debug UART, LED, Test Points
21	AVB
22	Card Edge Fingers
23	AVB Clock Distribution BD
24	Notes and Rev History
25	PMIC Information

MX6 Quad Plus SABRE AI CPU3 Card with AVB

Qualcomm (Atheros)
Ethernet PHY Card - RGMII

Schematic SCH-27953
Part No. IMXAI2ETH-ATH

Broadcom
Ethernet PHY Card - RGMII

Schematic SCH-27954
Part No. IMXAI2ETH-BRC

MX6 Quad CPU2 Card

Schematic SCH-27925 Part No. MCIMX6QAICPU2

MX6 DualLite CPU2 Card

Schematic SCH-28605 Part No. MCIMX6DLAICPU2

MX6 QuadPlus CPU3 Card

Schematic SCH-28615
Part No. MCIMX6QPAICPU3

Automotive Base Board

Schematic SCH-26662 Part No. MCIMXABASEV1

This board was designed for maximum flexibility in software development and demonstrates multiple functions possible with i.MX processors. Although best design practices have been applied, some areas may not be suitable for a mass production design. For an added resource, refer to Hardware Development Guide document number IMX6DQ6SDLHDG.

Consumer devices were utilized in this design when lead time for equivalent automotive-grade devices conflicted with production schedules. Freescale suggests consulting component suppliers for equivalent automotive-grade device information.

Block Diagram

I2C2 - 50 kbps Max Bus Speed
I2C2_SDA = KEY_ROW3
I2C2_SCL = EIM_EB2

Peripheral	Location	Speed (kbps)	8-Bit W rite Addresses	Default W rite Address
PMIC	CPU Card	400	0x10 to 0x1E	0 x 1 0
I2C Module	Base Board	5 0	0 x 2 0	0 x 2 0
Terrestrial Radio A M - F M	Base Board	400	0 x C 0 , 0 x C 2 , 0 x C 4 , 0 x C 6	0 x C 6
ESAI Audio CODEC	Base Board	100	0x90,0x92, 0x94,0x96	0 x 9 0
LVDSO Capacitive Touch	CPU Card	100	0 x 8 2	0 x 8 2
HDMIEDID	CPU Card option	100	0 x A 0	Option not installed
M IP I A D I Video Card	CPU Card	400	0x40,0x42	0 x 4 2
Ethernet Card ID "ROM"*	Daughter Card	400	16 com bin ation s	0 x D 0
CS2000 (Cirrus Device)	CPU Card	100	0x9C, 0x9E	0 x 9 C

I2C3 - 400 kbps Max Bus Speed
I2C3_SDA = EIM_D18
I2C3_SCL = GPIO_3

Peripheral	Location	Speed (kbps)	8-Bit Write Addresses	Default Write Address
MOST (MLB)	Base B oard	400	0x40	0x40
Port Expander A	CPU Card	400	56 combinations	0x60
Port Expander B	CPU Card	400	56 combinations	0x64
Port Expander C	CPU Card	400	56 combinations	0x68
Analog In via Video ADC	Base Board	400	0x40, 0x42	0x42
Ambient Light Sensor	Base Board	400	0x88	0x88
Compass	Base Board	400	0x1C	0x1C
Accelerometer	Base Board	400	0x3A, 0x38	0x38
RGB LCD Resistive Touch	CPU Card option	3400	0x90	Option not installed

* Ethernet Daughter Card Identification

0000 = Atheros (Qualcomm) PHY - RGMII

0001 = Broadcom PHY - RGMII

0010 = Broadcom PHY - MII (not compatible with MX6 CPU2 or CPU3)

0011 = reserved

0100 = SMSC PHY - RMII (not compatible with MX6 CPU2 or CPU3)

--- WARNING---

This CPU Card must be plugged into the Base Board and cannot be run standalone under heavy conditions such as simultaneous requirements of:

- Intense graphics
- ARM heavy load
- Heavy DRAM activity
- OTG = host supplying 500 mA
- 2 displays active
- Broadcom Switch Daughter Card plugged into J21

Standalone CPU3 operation is restricted to functional testing and light-to-medium running.

The reason is that the 5 V brick commonly used (25 W) and 5-V jack J8 are rated up to 5A.

Boot Config	NAND Flash 64Gb	NAND Flash 16Gb	Parallel NOR Flash	SD on CPU	M M C on CPU	SATA HDD	Serial NOR
				Card	Card	_	Flash
S 2 - 1	*	*	0	*	*	0	1
S 2 - 2	0	0	0	0	1	1	1
S 2 - 3	X	Х	0	1	1	0	0
S 2 - 4	1	1	0	0	0	0	0
S1-1	0	0	X	*	*	*	X
S1-2	0	0	X	1	*	*	X
S1-3	0	0	Х	X	*	*	X
S 1 - 4	1	1	X	0	0	*	X
S1-5	0	0	X	1	1	*	X
S1-6	X	Х	1	*	*	X	X
S1-7	X	Х	0	*	*	X	X
S1-8	0	0	X	*	X	X	Х
S1-9	0	0	Х	*	X	X	X
S1-10	0	0	0	*	*	X	X

Notes:

1 = High Level.

0 = Low Level.

X = Don't Care.

* = Switch needs to be configured for high or low depending on the application needs. Please check reference manual for boot configuration options.

Default boot configuration = SD on CPU Card

See switch interconnection on sheet 10. See the two Boot Mode switches on sheet 8.

CPU Card Identification for Software

MX6 fuses OCOTP_GP1[15:8] = 0xB1 for SABRE-AI CPU3 rev A

Controlling document = Agile DOC-01878

SD Speed Selection					
S1-10	S1-9	S2-1	Data Rate		
0 0 1 1	0 1 0 1	0 0 0 0	SDR12 SDR25 SDR50 SDR104	-	

NAND FLASH, MLB, SD-MMC, CAN, WDOG i.MX6Q ESAI_TX5_RX0(ENET_MDC) Sh22 ESAI_SCKR(ENET_MDIO) Sh22 ESAI_SCKT(ENET_CRS_DIV) Sh22 TP510 Spare GPIO See Note 1 **NAND Flash Socket** USB_OTG_ID(ENET_RX_ER) Sh12,21 AVB Signal, sh 21 SESAL_TX3_RX2(ENET_TX_EN) Sh22 (TSOP48) SD2_CMD SD2_CLK SD2_DAT0 SD2_DAT1 SD2_DAT2 SD2_DAT3 SDa_WP(SD2_DAT2_GPIO1_13) P3V3 DELAYED I2C2 Data (Associated clk on sheet 10) R738 DNP 0 →('\) |2C2 SDA | Sh6.13.15.16.17.18.21.22 NANDF_CS2_B R755_DNP_0 CAN2_TXCAN(KEY_COL4) Sh22 CAN2_RXCAN(KEY_ROW4) Sh22 NANDF_CE1_B R729 DNP 0 Sh20 SDa RST B(SD3 RST) << I2C3 Clock R727 DNP 0 Reset is active low. NANDF_NC25 R724 0 R762 10.0K (Associated data on sheet 19) MLB_CP MLB_CN TP509 Spare GPIO See note 1 ESAI_TX0(GPIO_17) Sh22 SDa_VSELECT(SD3_VSEL_GPIO_18) Sh7 980020-48-P2 → GPIO_19 Sh21 AVB Signal, sh 21 Compatible 64 Gb NAND Flash: MT29F64G08AFAAAWP. Freescale suggests consulting supplier for R680 0 SDa_CD_B(GPIO6_15) automotive grade device information and/or NANDF_CS2_B NANDF_CE3_B lower density memory. NAND FLASH is not included with shipped boards. NANDF V LCD or WDOG1 B Rb ESAI FSR into processor or Wired-OR USB OTG OC B(SD4 DAT0 GPIO2 8) Sh12 LVDSO PARADISP PWM(SD4 DAT1) Sh16,17 LVDSI PWM(SD4 DAT2) Sh22 CAN2 NERR B(SD4 DAT3 GPIO2 11) Sh22 PROG (SD4 DAT4 GPIO2 12) Sh22 UART2 RTS(SD4 DAT5) Sh22 VOL+_(SD4_DAT7_GPIO2_15) Sh22 VOL+_(SD4_DAT7_GPIO2_15) Sh22 Sh22 ESAI_FSR(GPIO_9) > R32 RC 0 —≫ MX POR B Sh8 - WDOG1 ZERO-OHM OPTIONS TO BE INSTALLED BY USER ---MCIMX6QP6AVT1AA Install Ra, remove Rb, install Rc System with audio; no parallel LCD bit 8 Reserved for WDOG Experiment Remove Ra, install Rb, remove Rc System with parallel LCD, parallel NOR flash; no audio SYSTEM POWER CYCLE VSS Install Rd, remove Re (default) STM6315RDW13F RESET PROCESSOR Remove Rd, install Re SD Slot ${ m C780}$ is utilized as a blocking capacitor. Pin Order SD UHS-1 & MMC Experiment: Remove R840 and R841. Wire R840 and R841 pad 2 to SH500 which is P3V15_BACKUP. and WP pull-up voltage. Pull-ups should be on the same supply rail as the associated i.MX inputs, P3V3 DELAYED U100 is for different WDOG experiment. in this case NVCC NANDF and NVCC SD2. SD, SDXC - Remove CMD pull-up resistor (default) MMC, eMMC - Install CMD pull-up resistor CONN CRD 19 MCIMX6QPAICPU3 Use of GPIO_16 as a ENET reference clock source is not required with MX6QR2. SDXC = 800 mA maxNAND FLASH, SD-MMC, MLB, WDOG The 125 MHz reference is routed on-chip. SCH-28615 PDF: SPF-28615

USB OTG and Host

HDMI

HDMI for demonstration and prototyping; not used in vehicle. Connecting I2C to DDC conflicts with audio.

SATA

NO

SCH-28615 PDF: SPF-28615

MCIMX6QPAICPU3

HDMI, SATA

PCIE Connector

Facilitates both Mini and Half-Mini Form Factor

PCIe provided to support USB3.0. See application note AN4784 for TX conformance test results.

Circuit board not tested for Reference Clock compliance. See application note AN5158 for reference clock design.

If a mini PCIe extender is needed, adopters might consider M-Factors Storage JB-E0F0-8KNH or equivalent.

Ethernet

LVDS Displays

The MCIMX-LVDS1 is not an automotive-grade display. For an

automotive system, most likely the display with be placed in sleep and awakened through the I2C port. Adopters should

consider their preferred display's requirements.

MCIMX6QPAICPU3

SCH-28615 PDF: SPF-28615

LVDS Displays

I2C I/O Expanders

Port Expander A

Port Expander B

Port Expander C

Steering Logic

SATELLITE AND TERRESTRIAL
TUNER AUDIO DATA STEERING

P3V3_DELAYED

C746

O.22UF
10V

Sh22 AUD5_SAT_RXD

Satellite

P3V3_DELAYED

U512A

F74LCX125

F74LCX125

U512C

SN2 AUD5_TUNER_RXD

Terrestrial

SN2 AUD5_TUNER_RXD

Terrestrial

Steering logic required due to accommodating a superset of peripherals. For a more robust implementation, Freescale recommends adopters eliminate steering logic especially on the fast signals, since a subset of peripherals will be used in an actual application.

Debug

Debug LED and SDXC Power Control Inverter

Capacitors as Mechanical Spacers

Place on bottom of board

Ground Test Points

CARD EDGE FINGERS BOARD-TO-BOARD CONNECTION

Mating connector on Base Board

Plated and Grounded Mounting Holes (130mil hole - 256mil pad) Label = \mbox{GND}

NOTES:

- 1 If not Android, can be used as GPIO on Base Board. Base Board schematic cross-reference table does not apply to MX6.
- 2 Could be used as spare GPIO if SPI NOR is not needed.
- 3 Could be used as spare open-drain GPIO if not needed for local CAN PHY wake up.

12/09/ 14 Sheet 6 - Corrected U524 to U11. Kept as rev A because Agile not signed off yet. 12/10 File name appended with Dec10. Sheets 1, 3 - Updated build option note; moved to sh 1.

Sheet 6 - Updated U11 to F9 version.
Changed net names to facilitate Verilog:
SW1, SW2, SW3, SW4 to SW1_IND, etc.

A1 Sheet 1 - Removed prototype build socket note.

Sheet 2 - Fixed block diagram by deleting MLB150.

Sheet 5 - Increased R505 to 93.1k to increase voltage to 3.2 V. Provides additional margin to allow for U500 and PMIC tolerances, and PMIC drop out per latest data sheet.

Sheet 6 - Changed L3, L4, L6, L7 to automotive; these are all same part now. Added note on VGEN1 net due to possible PMIC change. Added power table and note on PMIC_STBY_REQ.

Sheet 7 - Upper right note updated.

Sheet 8 - Clarified SPI NOR note on S3.

Sheet 10 - Modified SPI NOR flash note.

Sheet 11 - Changed R838 to DNP to avoid reboot with OBDS.

WDOG is now option; updated note.

Sheet 25 - Added PMIC info sheet.

A3

1/29 A2 /16
Throughout doc - Changed title blocks to NXP.
Changed classification to "Public Information".
Changed U1 placeholder Quad with QuadPlus.
Sheet 1 - Removed "Preliminary", BCM Switch Card, and SX CPU Card.
Sheet 12 - Removed VDDUSB_CAP clamp-diode note.
Sheet 12 - Added backfeed note. Sheet 12 - Hemoved VDDUSB_CAP clamp-diode note.

Sheet 13 - Added backfeed note.

Sheet 14 - Updated PCIe note at top of sheet.

Sheet 16 - Updated LVDS connector part number.

Sheet 25 - Updated PMIC info (BOOST is ON but not used)

Sheets 7, 15, 21 - Re-sync'd 16 capacitor /16 footprints with legacy layout: 0201_CC_012SM_NSP.

- 1. Unless Otherwise Specified: All resistors are in ohms, 5%.
 All voltages are DC.
 All polarized capacitors are aluminum electrolytic.
- Interrupted lines coded with the same letter or letter combinations are electrically connected.
- 3. Device type number is for reference only. The number varies with the manufacturer.
- 4. Special signal usage:
 __B Denotes Active-Low Signal
 <> or [] Denotes Vectored Signals
 Green text Denotes Extra Notes to be considered.
- Interpret diagram in accordance with American National Standards Institute specifications, current revision, with the exception of logic block symbology.

AVB SIGNAL ASSIGNMENT

Ref	AVB Associated Name	MX6Q Ball & ALT Mode	Comment
TP43	ENET_1588_EVENT0_IN	ENET_TXD1 (ALT4)	Legacy system function = MLB CLK
TP40	ENET_1588_EVENT0_OUT	GPIO_19 (ALT1)	Legacy system function = ENET INT_B
TP41	ENET_1588_EVENT2_OUT	ENET_RX_ER (ALT4)	Legacy system function = USB_OTG_ID
TP43	SDMA Event 0	DISPO_DAT16 (ALT4)	Legacy system function = RGB Disp (cluster), AM-FM Aud Clk
TP40	SDMA Event 1	DISPO_DAT17(ALT4)	Legacy system function = RGB Disp (cluster)
TP42	MCLK, 24.576 MHz	CLK2_P/N config'd as input	Audio master clock
	Program mable Divider SPISS_B	(Port_Exp_A5 for bit bang)	Legacy system function = MLB_RST_B from I2C port exp.
	Program mable Divider SPI SCLK	GPIO_6 (ALT5) for bit bang	Legacy system function = MLBSIG
	Program m able Divider SPI M O SI	GPIO_2 (ALT 5) for bit bang	Legacy system function = MLBDAT

v2

NXP						
	assification:	CP:	IUO:	PUBI:	x_	
Drawing		IMX6QF	PAICPU3			
Page Ti		s and Rev	ision Histo	ry		
Size C	Document Nu		28615 PDF: SF	F-28615		Rev A3
Date:	Monday, Febr	ruary 29, 2016	She	et 24	of	25

Customized Programming Information

Bulk

Orderable part number

SMPF0100F9AZES

SMPF0100F9AZESR2 Tape and reel

Automotive AEC100-Grade 3

SMPF0100 MPU - ONLY

I2C address: 0x08

SWDVS_CLK: 25mV step each 4us

PWRON_CNF: Standard (High-ON, Low-Off)

PWRGD_EN: Standard RESETBMCU

SEQ_CLK_SPEED: 0.5ms SWx_FREQ: 2MHz

PMIC Regulator	Voltage	Load
VSNVS	3.0	i.MX SNVS, pwr
		control, rst chips
SW1	1.375	i.MX SoC core
SW2	1.375	i.MX ARM core
SW3	1.35	DRAM
SW4	1.825	MIPI, VGEN1/2
SWBST	0	
VGEN1	0	
VGEN2	1.5	PCIe
VGEN3	1.8	i.MX SD3 I/O
VGEN4	3.0	i.MX VDDHIGH
VGEN5	2.5	Pwr LED,
		Gate 5 V delay
VGEN6	2.8	MIPI,
		Gate 3.3 V delay
VREFDDR	0.675	DRAM Vref

^{*} Sequence 0 indicates regulator is off