

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Programação III AP1 1º semestre de 2012.

Nome -

Assinatura –

Observações:

- 1. Prova sem consulta e sem uso de máquina de calcular.
- 2. Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- 3. Você pode usar lápis para responder as questões.
- 4. Ao final da prova devolva as folhas de questões e as de respostas.
- 5. Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Questão 1) (4.0 pontos)

Escreva um programa que, inúmeras vezes, leia um número inteiro N, seguida de uma sequência de N números inteiros, e determine o comprimento máximo de um segmento crescente destes N números. Exemplos:

- Na sequência 5, 2, 4, 7, 9, 8, 5 o comprimento do segmento crescente máximo é 4.
- Na sequência 10, 8, 7, 5, 2 o comprimento de um segmento crescente máximo é 1.
- Na sequência 8, 7, 5, 2, 3 o comprimento de um segmento crescente máximo é 2.

Seu programa deve parar SOMENTE quando N for menor ou igual a zero.

RESPOSTA:

```
import java.util.Scanner;

public class Q1_2012_1{
  public static void main (String [] args){
    Scanner sc = new Scanner(System.in);
    int n = Integer.parseInt(sc.nextLine());

  while(n > 0){
    int maior = 1, aux = 1, ant, prox, i;
    ant = Integer.parseInt(sc.nextLine());
}
```

```
for(i = 2; i <= n; i++){
    prox = Integer.parseInt(sc.nextLine());
    if(prox > ant) aux++;
    else{
        if(aux > maior) maior = aux;
        aux = 1;
    }
    ant = prox;
}

if(aux > maior) maior = aux;
System.out.println ("A maior sequencia e " + maior);
    n = Integer.parseInt(sc.nextLine());
}
sc.close();
}
```

Questão 2) (3.0 pontos)

Suponha que você foi contratado por uma empresa que fabrica diferentes tipos de ar condicionados (de parede, split – normalmente instalado no teto – e automotivos) e um sistema para controle de estoque precisa ser implementado. O sistema precisa manter informações como o número de série do aparelho, a capacidade do motor (em BTU's) e se possui ar quente. Aparelhos de parede e split, chamados também de residenciais, possuem também uma cor predominante, a voltagem do aparelho (110 ou 220V) e se possui controle remoto. Baseado nestas informações, faça:

- a) Defina as classes deste sistema (nome das classe, relação de herança e atributos que esta possui)
- b) Para cada classe, defina um construtor que inicialize todos os atributos
- c) No método main(), instancie objetos para os aparelhos listados na tabela abaixo

Série	BTU	Ar Quente	Cor	Voltagem	Controle Remoto
1	7500	Não	-	-	-
2	15000	Sim	-	-	-
3	5000	Não	Branca	110	Não
4	10000	Não	Preta	220	Nã0

RESPOSTA:

```
class ArCond {
       int numSerie;
       int capacidade;
       boolean possuiArQuente:
       public ArCond(int numSerie, int capacidade, boolean possuiArQuente) {
               this.numSerie = numSerie;
               this.capacidade = capacidade;
               this.possuiArQuente = possuiArQuente;
       }
}
class Residencial extends ArCond {
       String cor;
       int voltagem;
       boolean possuiControleRemoto;
       public Residencial(int numSerie, int capacidade, boolean possuiArQuente,
                      String cor, int voltagem, boolean possuiControleRemoto) {
               super(numSerie, capacidade, possuiArQuente);
               this.cor = cor;
               this.voltagem = voltagem;
               this.possuiControleRemoto = possuiControleRemoto;
       }
}
// Classe de teste para a classe Telefone acima
public class AP1_2012_1_Q2 {
       public static void main(String[] args) {
               ArCond ar1 = new ArCond(1, 7500, false);
               ArCond ar2 = new ArCond(2, 15000, true);
               Residencial ar3 = new Residencial(3, 5000, false, "branca", 110, false);
               Residencial ar4 = new Residencial(4, 10000, false, "preta", 220, false);
       }
}
```

Questão 3) (3.0 pontos)

Na Matemática, um intervalo é um conjunto de números reais limitados por 2 números. Por exemplo, [-3, 7.5) representa o intervalo que compreende os valores de -3 a 7.5, incluindo o -3 e excluindo o 7.5. Intervalos são elementos fundamentais na matemática intervalar, uma técnica de computação numérica que garante resultados, mesmo na presença de incertezas e/ou aproximações.

Suponha a definição da classe Limite, que representa 1 limite de um intervalo, assim como da classe IntervaloSimples abaixo, as quais representam o conceito de intervalo fornecido:

```
class Limite {
    private float valor;
    private boolean aberto;

public Limite(float li, boolean a) {
        valor = li;
        aberto = a;
    }

public float getValor() {
        return valor;
    }

public boolean isAberto() {
```

```
return aberto;
}

public boolean equals(Limite l) {
    return (this.valor == l.valor && this.aberto == l.aberto);
}

class IntervaloSimples {
    private Limite limiteInf;
    private Limite limiteSup;

public IntervaloSimples(float linf, boolean abertolinf, float lsup, boolean abertolsup) {
    limiteInf = new Limite(linf, abertolinf);
    limiteSup = new Limite(lsup, abertolsup);
}
```

- a) Implemente na classe *IntervaloSimples* o método *boolean contem(int v)*, o qual indica se o valor *v* pertence a um intervalo
- b) Implemente na classe *InvervaloSimples* o método *float media()*, o qual retorna o valor médio entre os limites do intervalo
- c) Implemente na classe *InvervaloSimples* o método *String toString()*, o qual retorna uma string com formato dado no enunciado: "[-3, 7.5)"

RESPOSTA:

```
class IntervaloSimples {
       private Limite limiteInf;
       private Limite limiteSup;
       public IntervaloSimples(float linf, boolean abertolinf, float lsup, boolean
abertolsup) {
               limiteInf = new Limite(linf, abertolinf);
               limiteSup = new Limite(lsup, abertolsup);
       }
       public boolean contem (float v) {
               return ((v > limiteInf.getValor() && v < limiteSup.getValor()) ||</pre>
                      (!limiteInf.isAberto() && v == limiteInf.getValor()) ||
                      (!limiteSup.isAberto() && v == limiteSup.getValor()));
       }
       public float media () {
               return ((limiteInf.getValor() + limiteSup.getValor()) / 2);
       }
       public void exibe () {
               System.out.println("Intervalo: " + this);
       }
       public String toString() {
               String abre = "[", fecha = "]";
               if (limiteInf.isAberto())
                      abre = "(";
               if (limiteSup.isAberto())
                      fecha = ")";
               return abre + limiteInf.getValor() + "," + limiteSup.getValor() + fecha;
       }
}
```