William Stallings Komunikasi Data dan Komputer Edisi ke 7

Bab 7
Protokol Data Link Control

Flow Control

- Memastikan pengiriman tidak overwhelm peniriman
 - Preventing buffer overflow
- Waktu pengiriman
 - Waktu yang diperlukan untuk memancarkan semua bit ke dalam media
- Waktu Propagation
 - Waktu untuk bit mentransfer link

Model Transmissi Frame

losses and errors

Stop dan Wait

- Sumber mengirimkan frame
- Penerimaan frame pada tujuan dan replies dengan acknowledgement
- Sumber menunggu ACK sebelum mengirimkan frame berikutnnya
- Tujuan dapat menghentikan aliran dengan mengirimkan ACK
- Baik bekerja untuk frame besar yang sedikit

Fragmentasi

- Block data yang besar dapat dibagi-bagi menjadi frame-frame kecil
 - Ukuran buffer yang terbatas
 - Pendeteksian error cepat (ketika frame diterima)
 - Saat error dibutuhkan pengiriman kembali frameframe yang kecil
 - Pencegahan satu stasiun menduduki media untuk waktu yang lama
- Stop dan wait menjadi tidak cukup

Penggunaan Link Stop dan Wait

Sliding Windows Flow Control

- Mengijinkan banyak frame menjadi transit
- Receiver memiliki buffer W long
- Transmitter dapat mengirimkan W frames tanpa ACK
- Tiap frame diberi nomor
- ACK termasuk nomor frame yang diharapkan selanjutnya
- Nomor Sequence diloncati tiap ukuran dalam field (k)
 - Frame dinomiri dengan modulo 2^k

Diagram Sliding Window

(a) Sender's perspective

(b) Receiver's perspective

Contoh Sliding Window

Sliding Window Enhancements

- Receiver dapat acknowledge frames tanpa ijin pengiriman lebih lanjut (Receive tidak siap)
- Harus dikirimkan acknowledge yang normal untuk resume
- Jika duplex, menggunakan piggybacking
 - Jika tidak ada data yang dikirimkan, menggunakan acknowledgement frame
 - Jika terdapat data tetap tidak acknowledgement untuk dikirimkan,mengirimkan acknowledgement terakhir lagi, atau memiliki ACK valid flag (TCP)

Deteksi Error

- Dibuat bit tambahan oleh transmitter untuk deteksi code error
- Parity
 - Hasil dari parity bit seperti karakter memiliki even (even parity) or odd (odd parity) number of ones
 - Even number dalam bit errors tidak terdeteksi

Cyclic Redundancy Check

- Untuk block pada transmitter k bit transmitter membangkitkan n bit sequence
- Transmit k+n bits yang tepat membagi menjadi beberapa angka
- Receiver membagi frame dengan angka
 - Jika tidak ada peringatan, diasumsikan tidak ada error
- Untuk materi, lihat Stallings bab 7

Error Control

- Deteksi dan koreksi error
- Frame hilang
- Frame rusak
- Permintaan ulang otomatis
 - Deteksi Error
 - Positive acknowledgment
 - Pengiriman kembali setelah waktu habis
 - Negative acknowledgement pengiriman kembali

Automatic Repeat Request (ARQ)

- Stop and wait
- Go Back N
- Selective reject (selective retransmission)

Stop dan Wait

- Sumber mengirim single frame
- Menunggu ACK
- Jika frame yang diterima rusak, discard Transmitter has timeout
 - Jika tidak ada ACK setelah waktu habis, dikirim kembali
- Jika ACK rusak,transmitter tidak akan mengakuinya
 - Transmitter akan mengirim kembali
 - Receive mendapat dua copy frame
 - Digunakan ACK0 dan ACK1

Diagram Stop dan Wait -

Stop dan Wait - Pros dan Cons

- Simple
- Inefficient

Go Back N (1)

- Based on sliding window
- Jika tidak ada error, ACK selalu disertai frame yang diharapkan
- menggunakan window untuk mengintrol number of outstanding frames
- Jika error, mengulang dengan rejection
 - Membuang frame dan semua frame yang akan datang sampai dikirimkan frame koreksi
 - Transmitter harus kembalidan mengirim kembali frame dan semua subsequent frames

Go Back N – Frame Rusak

- Receiver mendeteksi error dalam frame i
- Receiver mengirimkan rejection-i
- Transmitter mendapatkan rejection-i
- Transmitter mengirim kembali frame i dan semua subsequent

Go Back N – Frame Hilang (1)

- Frame i hilang
- Transmitter mengirim i+1
- Receiver mendapatkan frame i+1 out of sequence
- Receiver mengirimkan reject i
- Transmitter kembali ke frame i dan mengirim kembali

Go Back N – Frame Hilang (2)

- Frame i hilang dan tidak ada frame pengganti yang dikirimkan
- Receiver tidak mendaptkan apa-apadan kembali tidak ada acknowledgement atau rejection
- Transmitter terlambat dan mengirimkan frame acknowledgement dengan P bit set ke 1
- Receiver menerjemahkan command ini selama acknowledges dengan nomor frame yang diharapkan berikutnya (frame i)
- Transmitter kemudian mengirim kembali frame i

Go Back N – Acknowledgement Rusak

- Receiver mendapatkan frame i mengirim acknowledgement (i+1) selama hilang
- Acknowledgements bertumpuk, jadi acknowledgement berikurnya (i+n) mungkin datang setelah transmitter kehabisan waktu terhadap frame i
- Jika transmitter kehabisan waktu, dikirimkan acknowledgement sebelum bit P bit
- Ini dapat mengembalikan nomor sebelum dihasilkan reset adlah diinialisasi

Go Back N – Rejection Rusak

Seperti kehilangan frame (2)

Diagram Go Back N

Selective Reject

- Disebut juga pengiriman ulang yang selektif
- Hanya frame yang direjectyang dikirim ulang
- Subsequent frames disetujui oleh receiver dan dibuffer
- Meminimalisasi pengiriman ulang
- Receiver harus menjaga buffer yang besar
- More complex login dalam pengiriman ulang

Diagram -Selective Reject

High Level Data Link Control

- HDLC
- ISO 33009, ISO 4335

Tipe HDLC Station

- Primary station
 - Mengontrol operasi pada link
 - Hasil Frames disebut commands
 - Memelihara separate logical link untuk tiap secondary station
- Secondary station
 - Dibawah control pada primary station
 - Hasil Frames disebut responses
- Combined station
 - Dimungkinkan hasil command dan responses

Konfigurasi HDLC Link

Unbalanced

- Satu primary dan satu atau lebih secondary stations
- Mendukung full duplex dan half duplex

Balanced

- Mengombinasikan dua stasiun
- Mendukung full duplex dan half duplex

Mode HDLC Transfer (1)

- Normal Response Mode (NRM)
 - Unbalanced configuration
 - Primary memulai transfer untuk secondary
 - Secondary mungkin hanya mengirim data
 dalam response untuk command dari primary
 - digunakan multi-drop lines
 - Host computer as primary
 - Terminals as secondary

Mode HDLC Transfer (2)

- Asynchronous Balanced Mode (ABM)
 - Konfigurasi dibalance
 - Tiap station mungkin memulai pengiriman tanpa menerima ijin
 - Digunakan Most widely No polling overhead

Mode HDLC Transfer (3)

- Asynchronous Response Mode (ARM)
 - Unbalanced configuration
 - Secondary mungkin memulai pengiriman tanpa menerima ijin
 - Primary merespon line
 - Digunakan rarely

Struktur Frame

- Pengiriman Synchronous
- Semua pengiriman dalam frame
- Single frame di format untuk semua data dan mengontrol sentral

Struktur Frame

(a) Frame format

Flag Fields

- Delimit frame at both ends
- 01111110
- Mungkin menutup satu frame dan membuka yang lain
- Receiver mencari flag sequence untuk synchronize
- Bit stuffing digunakan untuk menghindari confusion dengan data containing 01111110
 - 0 dimasukkan setelah semua sequence pada five 1s
 - Jika receiver mendeteksi five 1s it checks next bit
 - Jika 0, ini dihapus
 - Jika 1 dan tujuh bit adalah 0, flag disetujui
 - Jaka sixth dan seventh bits 1, pengirim mengindikasikan abort

Bit Stuffing

Original Pattern:

11111111111110111111011111110

After bit-stuffing

111110111110110111111010111111010

(a) Example

(b) An inverted bit splits a frame in two

(c) An inverted bit merges two frames

Address Field

- Identifikasi secondary stationyang mengirim atau menerima frame
- Selalu panjangnya 8 bits
- Mungkin extended untuk multiples pada7 bits
 - LSB pada tiap octet diindikasikan bahwa octet terkhir adalah octet (1) atau not (0)
- Semua ones (11111111) adalah broadcast

Control Field

- Beda untuk tipe frame berbeda
 - Informasi data akan dikirimkan untuk (layer up selanjutnya)
 - Flow dan error control piggybacked dalam frame-frame informasi
 - Supervisory ARQ ketika piggyback tidak digunakan
 - Unnumbered supplementary link control
- Pertama satu atau dua bit dari control filed mengidentifikasi tipe frame
- Sisa bits dijelaskan selanjutnya

Diagram Control Field

N(S) = Send sequence number N(R) = Receive sequence number S = Supervisory function bits M = Unnumbered function bits P/F = Poll/final bit

(c) 8-bit control field format

(d) 16-bit control field format

Poll/Final Bit

- Digunakan mengandalkan dalam context
- Command frame
 - -P bit
 - 1 to solicit (poll) response from peer
- Response frame
 - -F bit
 - 1 indicates response to soliciting command

Informasi Field

- Hanya informasi dan beberapa frame yang tidak bernomor
- Harus contain integral number pada octets
- Variable length

Frame Check Sequence Field

- FCS
- Deteksi error
- 16 bit CRC
- Optional 32 bit CRC

Operasi HDLC

- Sentral pada informasi supervisory dan frame-frame tidak bernomor
- Tiga fase
 - Inisialisasi
 - Data transfer
 - Disconnect

Contoh Operation (1)

ontoh Operation (2)

Bacaan yang dibutuhkan

- Stallings bab 7
- Web sites HDLC