# My title\*

### My subtitle if needed

First author

Another author

February 13, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

### 1 Introduction

The COVID-19 pandemic has profoundly disrupted education systems worldwide, compelling schools and districts across the United States to rapidly adapt their learning models. In 2020 and 2021, educational institutions faced unprecedented challenges, transitioning between inperson, hybrid, and virtual learning models in response to evolving public health guidelines and infection rates. This shift has brought into sharp focus the need to understand the implications of these various schooling models on educational outcomes.

This paper delves into a comprehensive analysis across 11 U.S. states, examining the relationship between different schooling models and their impact on student enrollment and staffing patterns. The unique dataset compiled for this study encompasses a variety of metrics, including total enrollment, in-person and virtual attendance, as well as staff count across different learning models. By analyzing data from kindergarten to 12th grade, this study provides a granular view of how the pandemic has reshaped the educational landscape across these states.

Our findings reveal significant variations in how states have navigated the challenges posed by the pandemic, with notable differences in the adoption of in-person, hybrid, and virtual learning models. We observe that these variations are not only reflective of public health policies but also indicate broader socio-economic and demographic influences. For instance, preliminary analysis suggests that shifts to virtual learning correlate with changes in student enrollment, raising questions about equity and access in education during these challenging times.

<sup>\*</sup>Code and data are available at: LINK.

The remainder of the paper is structured as follows: Section 2 provides a detailed overview of the data and methodology employed in this study. Section 3 presents an in-depth analysis of the schooling models across the 11 states, offering insights into the trends and patterns observed in the data. Section 4 discusses the key findings, exploring the implications of these schooling models on educational outcomes. Finally, Section 5 concludes with a reflection on the study's findings, limitations, and potential directions for future research in this critical area of educational policy.

The remainder of this paper is structured as follows. Section 2....

### 2 Data

### 2.1 Data Source and Collection

The data utilized in this study is obtained from the compilation of district-level schooling models and state standardized assessment data, originally featured in the paper "Pandemic Schooling Mode and Student Test Scores: Evidence from US School Districts" (Jack 2023) published in the American Economic Review: Insights in June 2023. (AEA 2022). The primary dataset encompasses schooling mode data from the 2020–2021 academic year across 11 U.S. states, integrating various educational approaches during the pandemic, including inperson, hybrid, and virtual learning environments. These datasets were sourced from COVID-19 School Data Hub (USA 2022), district-level state standardized assessment data from spring 2016–2019 and 2021, and additional data demographic statistics from the National Center for Education Statistics (NCES) to establish a comprehensive analytical framework. We also used additional year 2020 household data by Household Pulse Survey (Bureau 2020) from U.S. Census Bureau spanning weeks 1 to 12.

Our analyses incorporate three categories of data: district-level schooling modes, state standardized assessment results from the academic years 2016–2019 and 2021, and auxiliary that encompass district demographics and county-level variables. The following subsections detail the sources, collection methodologies, and data cleaning procedures undertaken to ensure the accuracy and reliability of the datasets for our analysis.

**State Score Data**: This dataset encompasses state-level academic performance statistics from 2016 to 2020. Variables include the proportion of in-person, virtual, and hybrid learning, participation rates, standardized test pass rates, COVID-19 case rates per 100,000 in school zip codes, peak monthly cases, total enrollment figures, and political voting shares by district.

Learning Model Data: This dataset details the learning models adopted by school districts in Colorado, Connecticut, Ohio, Virginia, West Virginia, Wyoming, Mississippi, Rhode Island, Minnesota, Massachusetts, and Wisconsin. Each state's data outlines the specific learning model (in-person, virtual, hybrid) employed over time, enrollment figures, and staffing counts.

### 2.2 Data Cleaning and Processing

We used R (R Core Team 2022) for data cleaning and processing, utilizing packages like tidyverse (Wickham et al. 2019) for data manipulation and janitor (Firke 2023) for cleaning column names. The cleaning process involved standardizing learning model categories, selecting columns of interest, and simplifying data for analysis. We integrated data from different states, and made sure that variations in reporting and measurement were addressed while combining them into one. For instance, some states categorized their schooling mode as "In-person," while others used "In-Person." To ensure they are equivalent, we standardized these terms. We also conducted a check for missing data values, and imputed or excluded them as appropriate based on the context. The variables were also renamed for clarity and consistency across different states' datasets. A sample of cleaned state score data can be seen in (tbl cleaned data?).

nare Virtual Share Hybrid Participation Pass Rate Covid cases rate per 100k

| State | Year | Share In-person | Share Virtual | Share Hybrid | Participation | Pass Rate | Covid cases rate per 100k | Total Enrollment |
|-------|------|-----------------|---------------|--------------|---------------|-----------|---------------------------|------------------|
| CO    | 2016 | 0.8586572       | 0.0600707     | 0.0812721    | 86.28333      | 0.3296667 | 29.04677                  | 1132             |
| CO    | 2016 | 0.9399293       | 0.0600707     | 0.0000000    | 91.75000      | 0.2460000 | 31.04686                  | 8723             |
| CO    | 2016 | 0.0000000       | 0.2756184     | 0.7243816    | 95.86667      | 0.2526667 | 31.53898                  | 18657            |
| CO    | 2016 | 0.0000000       | 0.5759717     | 0.4240283    | 98.58334      | 0.0950000 | 31.54341                  | 5725             |
| CO    | 2016 | 0.2155477       | 0.0600707     | 0.7243816    | 96.35000      | 0.3298333 | 29.81067                  | 1001             |
| CO    | 2016 | 0.2155477       | 0.4664311     | 0.3180212    | 97.26667      | 0.3730000 | 31.54496                  | 35817            |

Table 1: Sample of Cleaned State Score Data

### 2.3 Data Modifications

In this study, we developed a unique dataset by carefully selecting and combining data from the Household Pulse Survey, available from the U.S. Census Bureau for weeks 1 to 12. This process involved choosing key variables that were crucial for our research. We aimed to analyze the connection between economic changes, particularly the loss of employment income, and their impact on educational outcomes, focusing specifically on school passing rates. This helped us to understand the relationship between these economic factors and educational performance. To ensure consistency, we standardized terminologies and measurements, and aligned variables such as timeframes and demographic categories across the datasets. For example, we combined the state score data with the weekly household data, aligned variables relevant to our study. The merged data file was thereafter saved as a CSV file to study the trends later on.

Talk way more about it.

### 3 Model

The goal of our modelling strategy is twofold. Firstly,...

# Proportional Comparison of Learning Models in US States



Figure 1: Bills of penguins

# O.75 O.25 O.00 O.00

Figure 2: Bills of penguins

# Correlation between Passing Rate and COVID-19 Case Rate



Figure 3: Bills of penguins

# Box Plot of Passing Rates by COVID-19 Case Rate Categorie



Figure 4: Bills of penguins



Figure 5: Bills of penguins

| State | Avg. Share In-person | Avg. Share Virtual | Avg. Share Hybrid | Avg. Participation | Avg. Pass Rate |
|-------|----------------------|--------------------|-------------------|--------------------|----------------|
| СО    | 65.68918             | 10.285258          | 24.02556          | 95.11431           | 36.03400       |
| CT    | 55.21059             | 6.625613           | 31.45075          | 98.68581           | 59.33747       |
| MA    | 33.46283             | 9.333824           | 57.20335          | 100.00000          | 53.69718       |
| MN    | 35.23909             | 8.302583           | 56.45833          | 96.34993           | 56.35686       |
| MS    | 56.80734             | 17.653758          | 25.53891          | 100.00000          | 72.84675       |
| ОН    | 63.31093             | 9.349329           | 26.61283          | 99.66106           | 69.27725       |
| RI    | 54.77593             | 5.261545           | 34.39462          | 98.90301           | 41.80093       |
| VA    | 16.28958             | 27.904606          | 55.80582          | 99.35298           | 76.24432       |
| WI    | 68.34940             | 5.536344           | 17.69383          | 99.04141           | 44.81849       |
| WV    | 31.84275             | 16.216216          | 48.20639          | 94.10710           | 40.05973       |
| WY    | 85.46875             | 2.395833           | 5.62500           | 99.68056           | 55.27684       |

Figure 6: Relationship between wing length and width

| State               | Avg. Share In-person | Avg. Share Virtual | Avg. Share Hybrid | Avg. Participation | Avg. Pass Rate |
|---------------------|----------------------|--------------------|-------------------|--------------------|----------------|
| CO                  | 63.66436             | 10.832368          | 25.50328          | 81.01494           | 32.31432       |
| $\operatorname{CT}$ | 55.20204             | 6.625613           | 31.45931          | 93.31494           | 50.27606       |
| MA                  | 33.46283             | 9.333824           | 57.20335          | 95.58099           | 43.86268       |
| MN                  | 35.40717             | 8.277188           | 56.31564          | 87.20716           | 46.03220       |
| MS                  | 57.07332             | 17.624205          | 25.30248          | 97.04833           | 60.17785       |
| ОН                  | 63.30790             | 9.319841           | 26.64837          | 97.11603           | 58.88783       |
| RI                  | 54.77593             | 5.261545           | 34.39462          | 90.82130           | 34.79347       |
| VA                  | 16.28958             | 27.904606          | 55.80582          | 84.78617           | 54.15240       |
| WI                  | 68.34940             | 5.536344           | 17.69383          | 95.60902           | 38.69319       |
| WV                  | 31.84275             | 16.216216          | 48.20639          | 87.97907           | 32.07227       |
| WY                  | 85.46875             | 2.395833           | 5.62500           | 97.16042           | 51.90012       |

Figure 7: Relationship between wing length and width



Figure 8: Relationship between wing length and width



Figure 9: Relationship between wing length and width



Figure 10: Relationship between wing length and width



Figure 11: Relationship between wing length and width



Figure 12: Relationship between wing length and width



Figure 13: Relationship between wing length and width



Figure 14: Relationship between wing length and width

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

### 3.1 Model set-up

Define  $y_i$  as the number of seconds that the plane remained aloft. Then  $\beta_i$  is the wing width and  $\gamma_i$  is the wing length, both measured in millimeters.

$$y_i | \mu_i, \sigma \sim \text{Normal}(\mu_i, \sigma)$$
 (1)

$$\mu_i = \alpha + \beta_i + \gamma_i \tag{2}$$

$$\alpha \sim \text{Normal}(0, 2.5)$$
 (3)

$$\beta \sim \text{Normal}(0, 2.5)$$
 (4)

$$\gamma \sim \text{Normal}(0, 2.5)$$
 (5)

$$\sigma \sim \text{Exponential}(1)$$
 (6)

We run the model in R (R Core Team 2022) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

### 3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, instance  $\theta$ .

### 4 Results

Our results are summarized in ?@tbl-modelresults.

### 5 Discussion

### 5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

# 5.2 Second discussion point

# 5.3 Third discussion point

# 5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

# **Appendix**

# A Additional data details

# **B** Model details

## **B.1** Posterior predictive check

In **?@fig-ppcheckandposteriorvsprior-1** we implement a posterior predictive check. This shows...

In ?@fig-ppcheckandposteriorvsprior-2 we compare the posterior with the prior. This shows...

### References

- AEA. 2022. The American Economic Association Portal. The American Economic Association. https://www.aeaweb.org/.
- Bureau, United States Census. 2020. Household Pulse Survey. The American Economic Association. https://www.census.gov/data-tools/demo/hhp/#/?periodSelector=12&measures=JOBLOSS.
- Firke, Sam. 2023. Janitor: Simple Tools for Examining and Cleaning Dirty Data. https://CRAN.R-project.org/package=janitor.
- Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.
- Jack, Rebecca. 2023. "Pandemic Schooling Mode and Student Test Scores: Evidence from US School Districts." American Economic Review 5 (2): 173–90. https://doi.org/10.1257/aeri.20210748.
- R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- USA. 2022. COVID-19 School Data Hub. https://www.covidschooldatahub.com/.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.