Lista 1 de Complexidade de Algoritmos - 2022/3

Data de entrega: 10/10/2022

Observação. A resolução de cada questão deve ser iniciada em uma nova folha de papel. Além disso, antes do início de cada questão, deve-se incluir o número da questão e o nome completo do aluno.

- 1. Para cada uma das relações de recorrência abaixo, caso seja possível, aplique o teorema mestre; caso contrário, explique o porquê da impossibilidade.
- (i) $T(n) = 3T(n/2) + n^2$ (ii) $T(n) = 2T(n/2) + n \log n$ (iii) $T(n) = 4T(n/2) + \frac{n}{\log n}$
- **2.** Verdadeiro ou falso: para todo k > 0, $\log^k n = \mathcal{O}(\sqrt{n})$, onde $\log^k n = (\log n)^k$? Justifique devidamente sua resposta.
- **3.** Utilizando o método de Dividir e Conquistar, resolva o problema de encontrar um par de pontos mais próximos no plano \mathbb{R}^2 . Determine e justifique a complexidade do algoritmo utilizado.
- **4.** O problema da mochila tem a seguinte formulação: Dado um número real W e um conjunto C_n de n itens, representados por $C_n = \{1, 2, ..., n\}$, em que cada $i \in C_n$ tem um peso p_i e um valor v_i ($p_i > 0$ e $v_i > 0$), determine um subconjunto $S \subseteq C_n$ tal que a soma dos pesos dos elementos de S seja menor ou igual a W e a soma dos valores seja máxima.
 - Proponha um algoritmo guloso para resolver esse problema. Indique um contraexemplo para o qual o seu algoritmo não funciona e explique o porquê.
 - Descreva um algoritmo para resolver esse problema utilizando a técnica da programação dinâmica. O seu algoritmo deve determinar quais objetos pertencem ao subconjunto viável de valor máximo.