Successioni monotone, limiti di successioni monotone #Analisi1

Definizione: una successione a_n si dice monotona

- Crescente se $a_n \le a_{n+1} \ \forall n \in \mathbb{N}$ (equivalentemente $a_n \le a_m$ se $n \le m$)
- Strettamente crescente se $a_n < a_{n+1} \ \forall n \in \mathbb{N}$ (equivalentemente $a_n < a_m \ se \ n < m$)
- Decrescente se $a_n \ge a_{n+1} \ \forall n \in \mathbb{N}$ (equivalentemente $a_n \ge a_m$ se $n \ge m$)
- Strettamente decrescente se $a_n > a_{n+1} \ \forall n \in \mathbb{N}$ (equivalentemente $a_n > a_m \ \text{se } n > m$)

Teorema (sul limite delle successioni monotone):

sia \mathbf{a}_n una successione monotona e limitata, allora esiste $\mathrm{Lim}_{n->\infty}$ $\mathbf{a}_n=\mathrm{Im}_{n->\infty}$

Inoltre se a_n crescente allora $\lim_{n\to\infty} a_n = I^-$, $I^- = \sup a_n$

Inoltre se a_n decrescente allora $\lim_{n\to\infty} a_n = I^+$, $I^+ = \inf a_n$

Osservazione:

- se a_n cresce, basta a_n limitata dal basso
- se a_n decresce, basta a_n limitata dall'alto

Osservazione: è sufficiente che a_n sia definitivamente monotona e limitata affinché a_n ammetta limite $I \in R$

Dimostrazione:

 $\begin{array}{l} a_n \text{ crescente e superiormente limitata } \exists l = \sup a_n \in \mathbb{R}^* \\ \text{ Poiché } a_n \text{ limitata dall'alto, } l \in \mathbb{R} \\ \text{ per definizione di estremo superiore, } \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \text{t.c. } l - \epsilon < a_{n0} \leq l \\ \text{ Essendo } a_n \text{ crescente, } a_{n0} \leq a_n => l - \epsilon < a_{n0} \leq a_n \ \forall n \geq n_0 \\ \text{ Essendo } l = \sup a_n, \ l - \epsilon < a_n \leq l \ \forall n \geq n_0 \\ \text{ Quindi } \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \text{t.c. } \text{ se } n \geq n_0 \ l - \epsilon < a_n \leq l \ \text{ per definizione Lim}_{n->\infty} \\ a_n = l^-, \ l = \sup a_n \quad a_n \leq l \end{array}$

La dimostrazione per a_n decrescente e inferiormente limitata è analoga Osservazione: questo teorema si poggia sull'assioma dell'estremo superiore che R soddisfa e Q no

Corollario (sul limite di successione monotone, limitate o illimitate):

sia a_n successione monotona, allora a_n ammette limite in $I \in R^*$ se a_n monotona crescente allora $\exists \text{Lim}_{n->\infty} \ a_n \in R \ U \ \{+\infty\}$ $I = \sup a_n$ se a_n monotona decrescente allora $\exists \text{Lim}_{n->\infty} \ a_n \in R \ U \ \{-\infty\}I = \inf a_n$

Osservazione: ogni successione monotona è regolare $\exists \text{Lim}_{n->\infty} a_n \in \mathbb{R}^*$

Dimostrazione: solo per il caso crescente

 $\exists I = \sup a_n \in R \cup \{+\infty\}$ ci sono due casi $I \in R$ o $I = \{+\infty\}$

se $I \in R$, $a_n \le I \ \forall n \in N$ e quindi limitata dall'alto, siamo nel caso del teorema

precedente, quindi $\exists \text{Lim}_{n->\infty} a_n = I^-$, $I = \sup a_n \in R$

la dimostrazione è conclusa se I ∈R

se I = sup $a_n = +\infty$ la successione non è limitata dall'alto e quindi $\forall M > 0$ $\exists n_0 \in N \ t.c. \ a_{n_0} > M$

Essendo a_n crescente $\forall n \ge n_0$ $a_n \ge a_{n0} > M$ per la definizione di limite $\lim_{n \to \infty} a_n = +\infty$

Poiché siamo nel caso l = sup $a_n = +\infty$ abbiamo la tesi, $\exists \text{Lim}_{n->\infty} a_n = +\infty$ = sup a_n

Osservazione: a_n monotona => $\exists Lim_{n->\infty} a_n \in \mathbb{R}^*$ (non è verificato il contrario)

Esempio: $a_n = (-1)^n/n$ Lim_{n->\infty} $a_n = 0$ a_n non monotona

Teorema: data una successione a_n , se $\exists \text{Lim}_{n->\infty}$ $a_n = I \in \mathbb{R}$, allora a_n limitato Osservazione: $\exists \text{Lim}_{n->\infty}$ $a_n = I \in \mathbb{R} \Rightarrow a_n$ limitata (non è verificato il contrario, a_n potrebbe essere irregolare e limitata)

Dimostrazione: fissiamo ϵ = 1 (per convenzione) per la definizione di limite $\exists n_1 \ \forall n \geq n_1 \ l-1 < a_n < l+1$

l+1)∈R allora $\forall n \in N$ $m \le a_n \le M$

Esempio: $q \in R$, $a_n = q^n \ n \in N$

Lim_{n-> ∞} a_n = - se q > 1 (crescente) + ∞ - se q = 1 1

- se 0 < q < 1 0

- se q = 0 0

- se q = 0 0 (non monotona) 0

se q = -1 (limitata) ∄se q < -1 (illimitata) ∄

Progressione geometrica di ragione q

Osservazione: $\lim_{n\to\infty} a_n = 1 \in \mathbb{R} <=> \lim_{n\to\infty} |a_n - 1| = 0$

se I = 0
$$\lim_{n\to\infty} a_n = 0 <=> \lim_{n\to\infty} |a_n| = 0$$