Raport 3

Eksploracja danych

Mikołaj Langner, Marcin Kostrzewa nr albumów: 255716, 255749

2021-04-19

Spis treści

1	W_{S1}	zéb	
2	Zad	lanie 1	
	2.1	Wczytanie danych i podział na zbiór uczący i testowy	
	2.2	Konstrukcja klasyfikatora i wyznaczenie prognoz	
	2.3	Ocena jakości klasyfikacji	
	2.4	Zastosowanie regresji liniowej do modelu o rozszerzonej ilości cech	
3	Zad	lanie 2	
	3.1	Wczytanie i krótka anliza danych	
	3.2	Metoda k-najbliższych sąsiadów	
	3.3	Drzewa klasyfikacyjne	
	3.4	Naiwny klasyfikator bayesowski	

1 Wstęp

Raport zawiera rozwiązania listy 3.

W zadaniu pierwszym budujemy klasyfikator na bazie metody regresji liniowej i oceniamy jego skuteczność i dokładność.

W zadaniu drugimPorównamy ze sobą rezultaty zastosowania:

- metoda k-najblizszych sasiadów (k-Nearest Neighbors),
- drzewa klasyfikacyjne (classification trees),
- naiwny klasyfikator bayesowski (naive Bayes classifier).

2 Zadanie 1

2.1 Wczytanie danych i podział na zbiór uczący i testowy

Wczytajmy dane o irysach i podzielmy je na zbiór uczący i testowy w proporcji 1 : 2.

```
data(iris)
n <- dim(iris)[1]

train.set.index <- sample(1:n, 2/3*n)
train.set <- iris %>% slice(train.set.index) %>% arrange(Species)
test.set <- iris %>% slice(-train.set.index) %>% arrange(Species)
```

2.2 Konstrukcja klasyfikatora i wyznaczenie prognoz

Stworzymy teraz macierze eksperymentu i wskaźnikową zarówno dla zbioru uczącego, jak i testowego. W tym celu wykorzystamy funckję dummyVars z pakietu Caret.

Wykorzystując metodę najmniejszych kwadratów, wyznaczamy przewidywane prognozy klas dla obu zbiorów.

```
Y.hat <- solve(t(train.X) %*% train.X) %*% t(train.X) %*% train.Y

train.proba <- train.X %*% Y.hat

test.proba <- test.X %*% Y.hat
```

Przedstawmy prognozy klas na wykresach.

Rysunek 1: Prognozy klas dla zbioru uczacego.

Rysunek 2: Prognozy klas dla zbioru testowego.

2.3 Ocena jakości klasyfikacji

Wyznaczmy teraz macierz pomyłek dla zbioru uczącego.

Tabela 1: Macierz pomylek dla zbioru uczacego.

	Species.setosa	Species.versicolor	Species.virginica
setosa	32	1	0
versicolor	0	21	10
virginica	0	3	33

Błąd klasyfikacji to 0.14.

Tabela 2: Macierz pomylek dla zbioru testowego.

	Species.setosa	Species.versicolor	Species.virginica
setosa	17	0	0
versicolor	0	11	8
virginica	0	2	12

Błąd klasyfikacji wynosi 0.2.

Wnioski i napomnienie o maskowaniu

2.4 Zastosowanie regresji liniowej do modelu o rozszerzonej ilości cech

Najpierw uzupełnijmy dane o irysach o składniki wielomianowe stopnia 2.

Podobnie jak poprzednio podzielimy dane na zbiory: uczący i testowy, a następnie utworzymy macierze: eksperymentu i indykatorów.

```
train.set.index <- sample(1:n, 2/3*n)
train.set <- iris %>% slice(train.set.index) %>% arrange(Species)
test.set <- iris %>% slice(-train.set.index) %>% arrange(Species)

dummies <- dummyVars(" ~ .", data=iris)
train.dummies <- predict(dummies, newdata = train.set)
train.X <- as.matrix(cbind(rep(1, nrow(train.dummies)), train.dummies[, -c(5:7)]))
train.Y <- train.dummies[, 5:7]
test.dummies <- predict(dummies, newdata = test.set)</pre>
```

```
test.X < - as.matrix(cbind(rep(1, nrow(test.dummies)), test.dummies[, -c(5:7)])) test.Y < - test.dummies[, 5:7]
```

Ponownie, wyznaczymy prognozy klas i zwizualizujemy to przypisanie na wykresach.

```
Y.hat <- solve(t(train.X) %*% train.X) %*% t(train.X) %*% train.Y

train.proba <- train.X %*% Y.hat

test.proba <- test.X %*% Y.hat
```


Rysunek 3: Prognozy klas dla zbioru uczacego o rozszerzonej liczbie cech.

Rysunek 4: Prognozy klas dla zbioru uczacego o rozszerzonej liczbie cech.

Wyznaczymy także macierze pomyłek i błędy klasyfikacji.

Tabela 3: Macierz pomylek dla zbioru uczacego dla przypadku o rozszerzonej liczbie cech.

	Species.setosa	Species.versicolor	Species.virginica
setosa	37	0	0
versicolor	0	31	1
virginica	0	0	31

Tabela 4: Macierz pomylek dla zbioru testowego dla przypadku o rozszerzonej liczbie cech.

	Species.setosa	Species.versicolor	Species.virginica
setosa	13	0	0
versicolor	0	18	0
virginica	0	3	16

Błąd klasyfkacji wynosi 0.01.

Błąd klasyfikacji wynosi 0.06.

Wnioski i napomnienie o maskowaniu

3 Zadanie 2

3.1 Wczytanie i krótka anliza danych

Wczytajmy i przygotujmy dane do dalszych analizy.

```
data("BreastCancer")
n <- dim(BreastCancer)[1]

BreastCancer <- BreastCancer %>% select(-Id)
BreastCancer <- drop_na(BreastCancer)
BreastCancer[, 1:9] <- data.frame(sapply(BreastCancer[, 1:9], as.numeric))

for (column in colnames(BreastCancer)) {
   if (is.factor(BreastCancer[, column]) & column != "Class") {
     BreastCancer[, column] <- ordered(BreastCancer[, column])
   }
}</pre>
```

Przyjrzyjmy się naszym danym na wykresach pudełkowych.

Możemy zauważyć, że zmiennymi, które dobrze ...

Podzielmy nasze dane na zbiór uczący i testowy.

```
set.seed(42)
train.index <- sample(n, n/7)
train.data <- BreastCancer %>% slice(train.index)
test.data <- BreastCancer %>% slice(-train.index)

train.subset <- train.data[, c(3, 6, 10)]
test.subset <- test.data[, c(3, 6, 10)]

train.etiquettes <- train.data$Class
test.etiquettes <- test.data$Class
subset.train.etiquettes <- train.subset$Class
subset.test.etiquettes <- test.subset$Class</pre>
cv <- trainControl(method="cv", number=5)
```

3.2 Metoda k-najbliższych sąsiadów

Coś tam, coś tam

3.3 Drzewa klasyfikacyjne

```
basic.tree.model <- rpart(Class ~ ., data = train.data)
fancyRpartPlot(basic.tree.model, sub="")</pre>
```


3.4 Naiwny klasyfikator bayesowski

```
basic.bayes.train.pred <- predict(bayes.model.basic, train.data)
basic.bayes.test.pred <- predict(bayes.model.basic, test.data)

test.confusion <- table(test.etiquettes, basic.bayes.test.pred)
train.confusion <- table(train.etiquettes, basic.bayes.train.pred)
test.matrix <- as.matrix(test.confusion)
train.matrix <- as.matrix(train.confusion)

test.confusion %>% kbl(caption="Macierz pomylek dla zbioru testowego.", format="latex",
```

Tabela 5: Macierz pomylek dla zbioru testowego.

bayes.model.basic <- naiveBayes(Class ~ ., data = train.data)</pre>

	benign	malignant
benign	357	23
malignant	2	207

test.matrix %>% kbl(caption="Macierz pomylek dla zbioru testowego.", format="latex", dig

Tabela 6: Macierz pomylek dla zbioru testowego.

	benign	malignant
benign	357	23
malignant	2	207

```
print(xtable(train.matrix), file="ta.tex", floating=FALSE)
print(xtable(test.matrix), file="tb.tex", floating=FALSE)
```

	benign	malignant	-	benign	malignant
benign	62	2	benign	357	23
malignant	0	30	malignant	2	207
(a)	Table :	x(a)	(b)	Table :	x(b)

Tabela 7: Caption about here

Błędy klasyfikacji to kolejno 0.0212766 i 0.0424448.

Powtórzmy teraz powyższe dla wybranego podzbioru naszych danych.

```
bayes.model.subset <- naiveBayes(Class ~ ., data = train.subset)
basic.bayes.train.pred <- predict(bayes.model.subset, train.subset)
basic.bayes.test.pred <- predict(bayes.model.subset, test.subset)</pre>
```

```
train.confusion <- table(subset.train.etiquettes, basic.bayes.train.pred)
test.matrix <- as.matrix(test.confusion)
train.matrix <- as.matrix(train.confusion)</pre>
```

train.matrix %>% kbl(caption="Macierz pomylek dla zbioru testowego.", format="latex", d

Tabela 8: Macierz pomylek dla zbioru testowego.

test.confusion <- table(subset.test.etiquettes, basic.bayes.test.pred)</pre>

	benign	malignant
benign	62	2
malignant	1	29

test.matrix %>% kbl(caption="Macierz pomylek dla zbioru testowego.", format="latex", dig

Tabela 9: Macierz pomylek dla zbioru testowego.

	benign	malignant
benign	360	20
malignant	7	202

```
print(xtable(train.matrix), file="tc.tex", floating=FALSE)
print(xtable(test.matrix), file="td.tex", floating=FALSE)
```

Błędy klasyfikacji to kolejno 0.0319149 i 0.0458404.

Model "stunigowany"

```
model <- train(Class ~ ., data = train.data, method = "naive_bayes", trControl = cv)
test.confusion <- table(test.data$Class, predict(model, test.data))
train.confusion <- table(train.data$Class, predict(model, train.data))</pre>
```

train.confusion %>% as.matrix %>% kbl(caption="Macierz pomylek dla zbioru testowego.",

Tabela 10: Macierz pomylek dla zbioru testowego.

	benign	malignant
benign	63	1
malignant	2	28

test.confusion %>% as.matrix %>% kbl(caption="Macierz pomylek dla zbioru testowego.", f

Błędy klasyfikacji w tym przypadku to kolejno 0.0319149 i 0.0288625.

```
model <- train(Class ~ ., data = train.data, method = "knn", trControl = cv)
confusion <- table(test.data$Class, predict(model, test.data))
confusion</pre>
```

Tabela 11: Macierz pomylek dla zbioru testowego.

	benign	malignant
benign	369	11
malignant	6	203

```
##
##
                benign malignant
##
     benign
                   369
                               11
                     9
                              200
##
     malignant
sum(diag(confusion)) / nrow(test.data)
## [1] 0.9660441
model <- train(Class ~ ., data = train.data, method = "rpart", trControl = cv)</pre>
confusion <- table(test.data$Class, predict(model, test.data))</pre>
confusion
##
##
                benign malignant
##
     benign
                   369
                               11
                    33
                              176
##
     malignant
sum(diag(confusion)) / nrow(test.data)
## [1] 0.9252971
# my.predict <- function(model, newdata)</pre>
# { predict(model, newdata=newdata) }
#
#
# cv <- trainControl(method="cv", number=5)</pre>
#
# my.naiveBayes <- function(formula, data)</pre>
# { train(formula, data = data, method = "naive_bayes", trControl = cv)}
#
# my.tree <- function(formula, data)</pre>
# { }
#
# my.knn <- function(formula, data)</pre>
# { }
#
```