Atskliaudimai

Simonas, Mantas

April 2020

Gražus paveikslėlis

Štai gražus paveikslėlis, parodantis lygybę

$$(1 + x + x^2 + x^3 + x^4 + x^5)(1 + x + x^2 + x^3 + x^4 + x^5) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^7 + 5x^8 + 4x^7 + 3x^8 + 2x^9 + x^{10} + 2x^7 + 3x^8 + 2x^8 + 2$$

Instrukcijos

Šiame skyriuje duodu pasireikšti Mantui mokantis redaktūros su L^AT_EX. Namų darbo užduotyje reikės klaustukus pakeisti į tokius reiškinius, kad sprendimas būtų teisingas.

Pavyzdys 1

Komanda

Duoda lentelę:

Pavyzdys 2

Komanda

$$x^2(x+x^{10})$$

Duoda reiškinį: $x^2(x+x^{10})$

Sintaksės paaiškinimai

\$...\$ - matematinės formulės įterpimas

\begin{array}{c||c|c} \end{array}

- lentelė su trimis stulpeliais (centrinė teksto lygiuotė, tarp pirmo ir antro stulpelio dvigubas atskyrimas)

\hline - naujos eilutės atskyrimas brūkšneliu

.. & ... & ... \\ - eilutės langelių atskyrimas ir eilutės pabaiga.

Laipsniai rašomi su apversta varnele

Namų darbas

Reikėjo atlikti keletą dauginimo veiksmų lentelių pagalba.

Pataisymai

Mokiniui atlikus uždavinius pasimatė daug klaidų, kurias po to daviau ištaisyti (pilka spalva atitinka mokinio variantą, o žalia - kaip teisingai turėtų būti).

1.
$$(-b) \times (-b) = (-b)^2 = b^2$$

2.
$$b \times (-ab) = -a(b)^2 = -ab^2$$

3.
$$a \times b^2 = a(b)^2 = ab^2$$

4.
$$a^2 \times (-b) = (a^2)(-b) = -a^2b$$

5.
$$ab \times (-b) = a(-b^2) = -ab^2$$

6.
$$a \times ab = \cancel{a} = a^2b$$

7.
$$-1 \times x^3 = -1(x^3) = -x^3$$

8.
$$-1 \times x^2 = -1(x^2) = -x^2$$

9.
$$-1 \times x = -1x = -x$$

10.
$$2x \times x^2 = 2x(x^2) = 2x^3$$

11.
$$-2x \times (-2x) = (-2x)^2 = 4x^2$$

12.
$$2 \times (-2x) = 4x^2 = -4x$$

13.
$$a \times (-ab) = (-a^2)b = -a^2b$$

14.
$$a \times (-ca) = (-c(a^2) = -a^2c$$

15.
$$b \times (-ca) = (-cab) = -abc$$

16.
$$c \times b^2 = (c(b^2) = b^2c$$

17.
$$c \times (-bc) = (-b(c^2) = -bc^2)$$

18.
$$c \times (-ca) = ((-c^2)a = -ac^2)$$

19.
$$\sqrt{2} \times \sqrt{3} = \sqrt{2}\sqrt{3} = -\sqrt{6}$$
 (pagal 8 klasės programą)

Patikslinimai

Atsižvelgiant į mokinio sunkumus, reikėtų įvardysiu dauginimo atlikimo taisykles, kuriomis remiantis turėtų išnykti klaidos

Vienanaris - reiškinys, kurį sudaro tik dauginamieji, iš kurių kiekvienas yra skaičius, kintamasis arba kintamojo laipsnis.

• Kai dauginame keletą vienanarių, turėtume gauti taip pat vienanarį. Tai yra, tokį reiškinį, kuriame aiškiai matosi skaitinė ir raidinė dalys. Keletas pavyzdžių:

$$2x \times (-3y) = -6xy$$

(-x) \times (-x) = (-1) \times x \times (-1) \times x = (-1) \times (-1) \times x \times x = x^2

Pirmoje lygybėje skaitinė dalis yra -6, o raidinė xy. Antroje lygybėje skaitinė dalis nerašoma, tačiau lygi 1, o raidinė dalis yra x^2 . Jei skaitinė dalis būtų -1, ji taip pat būtų nerašoma.

- Nei skaitinėje, nei raidinėje dalyje tarp dauginamųjų nereikia skliaustų: $-3x \times y^2 = 3x(y^2) 3xy^2$
- Rezultate neturi likti tų pačių kintamųjų: $ab \times ab = abat a^2b^2$
- Norint, kad aiškiau matytųsi panašieji nariai, patartina raidines dalis rašyti alfabetiškai: $matematika = \overrightarrow{m^2a^3t^2eik}\ a^3eikm^2t^2$

Kaip atrodo teisingai atlikti veiksmai?

3.
$$(x - \sqrt{3})(x + \sqrt{3}) = \frac{ \begin{vmatrix} x & -\sqrt{3} \\ \hline x & x^2 & -x\sqrt{3} \end{vmatrix}}{\sqrt{3} & x\sqrt{3} & -3} = x^2 - 3$$

5.
$$(a-b)(a-b) =$$
$$\begin{array}{c|cccc}
 & a & -b \\
\hline
 & a & a^2 & -ab \\
\hline
 & -b & -ab & b^2
\end{array}$$

6.
$$(a+b)(a-b) = \frac{\begin{array}{c|cccc} & a & b \\ \hline a & a^2 & ab \\ \hline -b & -ab & -b^2 \end{array}} = a^2 - b^2$$

7.
$$(a+b)(a+b) =$$
$$\begin{array}{c|cccc}
 & a & b \\
\hline
 & a & a^2 & ab \\
\hline
 & b & ab & b^2
\end{array}
= a^2 + 2ab + b^2$$

8.
$$(a+b)(a^2-ab+b^2) = \frac{\begin{array}{c|cccc} a & b \\ \hline a^2 & a^3 & a^2b \\ \hline -ab & -a^2b & -ab^2 \\ \hline b^2 & ab^2 & b^3 \end{array} = a^3+b^3$$

9.
$$(a-b)(a^2+ab+b^2) = \frac{\begin{vmatrix} a & -b \\ a^2 & a^3 & -a^2b \\ ab & a^2b & -ab^2 \\ b^2 & ab^2 & -b^3 \end{vmatrix} = a^3 - b^3$$

10.
$$(x-1)(x^3+x^2+x+1) = \frac{\begin{array}{c|cccc} & x & -1 \\ \hline x^3 & x^4 & -x^3 \\ \hline x^2 & x^3 & -x^2 \\ \hline x & x^2 & -x \\ \hline 1 & x & -1 \end{array}}{x-1} = x^4 - 1$$

$$12. \ (a^2+b^2+c^2-ab-bc-ca)(a+b+c) = \frac{ \begin{vmatrix} a^2 & b^2 & c^2 & -ab & -bc & -ca \\ \hline a & a^3 & ab^2 & ac^2 & -a^2b & -abc & -a^2c \\ \hline b & a^2b & b^3 & c^2b & -ab^2 & -ab^2 & -abc \\ \hline c & a^2c & b^2c & c^3 & -abc & -bc^2 & -ac^2 \\ \end{vmatrix} = a^3+b^3+c^3-3abc$$

Papildomos subtilybės

1.
$$(a-b)(a+b)(a^2+b^2) =$$

$$b \qquad a^3b \qquad a^3b \qquad a^3b^3 \qquad b^4$$

$$= a^4 - b^4$$