Modellazione di un generatore sincrono e controllo della tensione in una rete elettrica di potenza multi-macchina

Introduzione

Motivazioni e obiettivi

- Si procederà con la modellazione della macchina sincrona in un contesto isolato per comprendere le leggi fisiche che ne permettono il funzionamento
- Si inserirà la macchina in una rete elettrica di potenza e se ne deriverà un modello adatto per la Small Signal Analysis
- Ci si concentrerà su un controllo della tensione effettuato attraverso un controllore classico

Prerequisiti matematici

La trasformata di Park

- Tre assi d,q,o che ruotano a velocità angolare omega
- Trasforma grandezze di un sistema trifase dipendenti dal tempo in valori costanti rispetto al nuovo riferimento

$$P = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \cos(\omega t) & \cos(\omega t - \frac{2}{3}\pi) & \cos(\omega t + \frac{2}{3}\pi) \\ \sin(\omega t) & \sin(\omega t - \frac{2}{3}\pi) & \sin(\omega t + \frac{2}{3}\pi) \end{bmatrix}$$

La parte rotante della macchina: il rotore

- Viene fatto ruotare dall' azione di una coppia motrice generata da una turbina
- Viene modellato elettricamente da due circuiti
- Un circuito di field (f) in diretta, uno di damping (Q) in quadratura

$$\begin{cases}
\Psi_{f} = L_{fa}I_{a} + L_{fb}I_{b} + L_{fc}I_{c} + L_{ff}I_{f} + L_{fQ}I_{Q} \\
\Psi_{Q} = L_{Qa}I_{a} + L_{Qb}I_{b} + L_{Qc}I_{c} + L_{Qf}I_{f} + L_{QQ}I_{Q}
\end{cases}
\longrightarrow
\begin{bmatrix}
\Psi_{f} \\
\Psi_{Q}
\end{bmatrix} =
\begin{bmatrix}
0 & kM_{f} & 0 & L_{f} & 0 \\
0 & 0 & kM_{Q} & 0 & L_{Q}
\end{bmatrix}
\begin{bmatrix}
I_{d} \\
I_{q} \\
I_{f} \\
I_{Q}
\end{bmatrix}$$

$$\begin{bmatrix} \Psi_f \\ \Psi_Q \end{bmatrix} = \begin{bmatrix} 0 & kM_f & 0 & L_f & 0 \\ 0 & 0 & kM_Q & 0 & L_Q \end{bmatrix} \begin{bmatrix} I_d \\ I_q \\ I_f \\ I_Q \end{bmatrix}$$

$$\begin{bmatrix} -V_f \\ 0 \end{bmatrix} = - \begin{bmatrix} r_f & 0 \\ 0 & r_Q \end{bmatrix} \begin{bmatrix} I_f \\ I_Q \end{bmatrix} - \begin{bmatrix} \dot{\Psi}_f \\ \dot{\Psi}_Q \end{bmatrix}$$

La parte fissa: lo statore

- Vengono alloggiati i circuiti in direzione longitudinale, a formare tre fasi sfasate di 120° fra loro
- Sono la sede delle forze elettromotrici che generano la corrente elettrica

$$\begin{cases} \Psi_{a} = L_{aa}I_{a} + L_{ab}I_{b} + L_{ac}I_{c} + L_{af}I_{f} + L_{aQ}I_{Q} \\ \Psi_{b} = L_{ba}I_{a} + L_{bb}I_{b} + L_{bc}I_{c} + L_{bf}I_{f} + L_{bQ}I_{Q} \\ \Psi_{c} = L_{ca}I_{a} + L_{cb}I_{b} + L_{cc}I_{c} + L_{cf}I_{f} + L_{cQ}I_{Q} \end{cases} \longrightarrow \begin{bmatrix} \Psi_{o} \\ \Psi_{d} \\ \Psi_{q} \end{bmatrix} = \begin{bmatrix} L_{o} & 0 & 0 \\ 0 & L_{d} & 0 \\ 0 & 0 & L_{q} \end{bmatrix} \begin{bmatrix} I_{o} \\ I_{d} \\ I_{q} \end{bmatrix}$$

$$\begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = - \begin{bmatrix} r_a & 0 & 0 \\ 0 & r_b & 0 \\ 0 & 0 & r_c \end{bmatrix} \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} - \begin{bmatrix} \dot{\Psi}_a \\ \dot{\Psi}_b \\ \dot{\Psi}_c \end{bmatrix} + V_n$$

$$\begin{bmatrix} V_c \end{bmatrix} & \begin{bmatrix} 0 & 0 & r_c \end{bmatrix} & \begin{bmatrix} I_c \end{bmatrix} & [\dot{\Psi}_c] \end{bmatrix}$$

$$V_n = -r_n \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} - L_n \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \dot{I}_a \\ \dot{I}_b \\ \dot{I}_c \end{bmatrix}$$

$$V_{odq} = r_{abc} I_{odq} - \dot{\Psi}_{odq} + \dot{P} P^{-1} \Psi_{odq} + P V_n$$

$$V_{odq} = r_{abc}I_{odq} - \dot{\Psi}_{odq} + \dot{P}P^{-1}\Psi_{odq} + PV_n$$

Titolo Presentazione Pagina 5 24/09/19

Derivazione del modello con lo spazio di stato Modello a due assi

- Vengono trascurati i fenomeni non lineari delle parti magnetiche (saturazioni, isteresi)
- Viene assunto che la macchina lavori su carico bilanciato
- Le variabili del sistema si intendono normalizzate rispetto a delle variabili di base
- Vengono trascurate le derivate dei flussi in diretta e quadratura

$$\begin{cases} \tau'_{q0} \dot{E}'_{d} = -E'_{d} - (x_{q} - x'_{q})I_{q} \\ \tau'_{d0} \dot{E}'_{q} = E_{FD} - E'_{q} + (x_{d} - x'_{d})I_{d} \\ \tau_{j} \dot{\omega} = C_{m} - D\omega - E'_{d}I_{d} + E'_{q}I_{q} - (x'_{q} - x'_{d})I_{q}I_{d} \\ \dot{\delta} = \omega - 1 \end{cases}$$

Inserimento nella rete WSCC-9

$\begin{bmatrix} I_{q1\Delta} \\ I_{d1\Delta} \\ I_{q2\Delta} \\ I_{d2\Delta} \\ I_{q3\Delta} \end{bmatrix} =$	$\begin{bmatrix} -1.1458 \\ 1.0288 \\ 0.4200 \\ -2.7239 \\ 0.0800 \\ 1.1059 \end{bmatrix}$	-1.0288 -1.1458 2.7239 0.4200 -1.1058	-0.8347 0.9216 0.3434 1.0541 0.2770	-0.9216 -0.8347 -1.0541 0.3434 2.3681	1.6062 0.1891 -1.1484 2.4914 0.8160	1.2642] 0.0265 0.5805 -0.9666 -1.4414	$\begin{bmatrix} E'_{q2\Delta} \\ E'_{d2\Delta} \\ E'_{q3\Delta} \\ E'_{d3\Delta} \\ \delta_{12\Delta} \end{bmatrix}$
$\lfloor I_{d3\Delta} \rfloor$	1.1058	0.0800	-2.3681	0.2770	-0.8305	1.9859	$\delta_{13\Delta}$

- La power flow analysis studia i flussi di potenza nei nodi quando la rete è a regime, al fine di soddisfare le domande di potenza dei carichi
- Serve a determinare quindi il punto di lavoro intorno al quale verrà linearizzato il sistema

$$\begin{cases} \tau'_{q0}\dot{E}'_{d} = -E'_{d} - (x_{q} - x'_{q})I_{q} \\ \tau'_{d0}\dot{E}'_{q} = E_{FD} - E'_{q} + (x_{d} - x'_{d})I_{d} \\ \tau_{j}\dot{\omega} = C_{m} - D\omega - I_{d0}E'_{d} - I_{q0}E'_{q} - E'_{d0}I_{d} - E'_{q0}I_{q} \\ \dot{\delta} = \omega \end{cases}$$

Modello con lo spazio di stato

- La macchina 1 è presa come slack, quindi come riferimento ed è rappresentata in maniera classica
- Gli sfasamenti dei load angle delle altre macchine sono riferiti ad essa

$$\begin{bmatrix} \dot{\omega}_1 \\ \dot{E'}_{q2} \\ \dot{E'}_{d2} \\ \dot{\omega}_2 \\ \dot{\omega}_2 \\ \dot{E'}_{d3} \\ \dot{E'}_{d3} \\ \dot{\omega}_3 \\ \dot{\delta}_{12} \\ \dot{\delta}_{13} \end{bmatrix} = 10^{-4} \begin{bmatrix} -0.5610 & 0.6793 & 0.6099 & 0 & 0.4948 & 0.5463 & 0 & -0.9520 & -0.7494 \\ 0 & -13.7658 & 1.4409 & 0 & 3.6163 & 1.1781 & 0 & 8.5472 & -3.3161 \\ 0 & -15.5076 & -150.1554 & 0 & -12.6793 & 38.9205 & 0 & 42.4023 & -21.4333 \\ 0 & -6.5352 & -1.1714 & -2.0723 & 0.9552 & 2.2156 & 0 & 5.4592 & -2.3385 \\ 0 & 5.6334 & 0.4076 & 0 & -16.5675 & 1.4111 & 0 & -4.2309 & 10.1170 \\ 0 & -3.8073 & 52.6270 & 0 & -13.1829 & -156.9117 & 0 & -38.8349 & 68.5987 \\ 0 & 2.9781 & 3.9766 & 0 & -10.6238 & -4.7247 & -4.4063 & -5.2010 & 10.7116 \\ \dot{\delta}_{12} \\ \dot{\delta}_{13} \end{bmatrix} = \begin{bmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_2 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \\ \dot{\omega}_3 \\ \dot{\delta}_{12} \\ \dot{\delta}_{13} \end{bmatrix} = \begin{bmatrix} \omega_1 \\ \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_2 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \\ \dot{\omega}_3 \\ \dot{\delta}_{12} \\ \dot{\delta}_{13} \end{bmatrix} = \begin{bmatrix} \omega_1 \\ \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \\ \dot{\omega}_3 \\ \dot{\delta}_{12} \\ \dot{\delta}_{13} \end{bmatrix} = \begin{bmatrix} \omega_1 \\ \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \\ \dot{\omega}_3 \\ \dot{\delta}_{12} \\ \dot{\delta}_{13} \end{bmatrix}$$

$$+10^{-4} \begin{bmatrix} 0.5610C_{m1} \\ 4.4210E_{FD2} \\ 0 \\ 2.0723C_{m2} \\ 4.5035E_{FD3} \\ 0 \\ 4.4063C_{m3} \\ 0 \\ 0 \end{bmatrix}$$

$$u = [C_{m1} \quad E_{fd2} \quad C_{m2} \quad E_{fd3} \quad C_{m3}]$$

Vettore di stato

$$x = [\omega_1 \quad E'_{q2} \quad E'_{d2} \quad \omega_2 \quad E'_{q3} \quad E'_{d3} \quad \omega_3 \quad \delta_{12} \quad \delta_{13}]$$

Individuazione del contesto di controllo

- In un power system vi sono molti livelli di controllo
- Differiscono a seconda della variabile che si vuole controllare e a seconda di dove viene effettuato il controllo
- Controllo di un sistema MIMO attraverso un approccio SISO
- Catena aperta composta da un blocco di compensazione
 (PID), da un amplificatore, il sistema d' eccitazione e il plant

Il sistema non controllato

	Macchina 2	Macchina3
Rise Time	3290.5 pu = 8.72 s	2061.7 pu = 5.47 s
Settling Time	21323 pu = 56.55 s	22836 pu = 60.57 s
Overshoot	16.31	43.88
Undershoot	0	0
Peak	0.0607	0.0441
Peak Time	8831.5 pu = 23.42 s	7229.5 pu = 19.18 s

- Diminuire il tempo d' assestamento
- Mantenere una sovraelongazione limitata
- Margine di fase maggiore di 40°

- Stima del processo e identificazione
- Viene stimato come un sistema con un polo e un ritardo
- Scelta del metodo di tuning migliore
- Il PID tarato con le regole di Cohen-Coon presenta un tempo d' assestamento minore

	Macchina 2	Macchina3
Rise Time	735.0136 pu = 1.94 s	569.5282 pu = 1.5 s
Settling Time	3703 pu = 9.82 s	4012.7 pu = 10.64 s
Overshoot	17.9591	31.4618
Undershoot	0	0
Peak	0.0826	0.0657
Peak Time	1775 pu = 4.7 s	1483 pu = 3.93 s

- Simulazione del sistema multimacchina dopo l' inserimento dei PID nel sistema di controllo delle macchine 2 e 3
- Sovraelongazione ancora elevata
- E' possibile una migliore disposizione dei poli?

Il sistema controllato

```
tuning_selezionaN.m × +
      function [] = tuning_selezionaN(theta,tau,k,P)
        s=tf("s");
        t=0:0.1:12000;
        lista_risultati={};
        [kp_z,Ti_z,Td_z]=ziegler_nichols(theta,tau,k);
        [kp_c,Ti_c,Td_c]=cohen(theta,tau,k);
        [kp_3,Ti_3,Td_3]=tre_C(theta,tau,k);
        cont=1;
10
        %voglio indagare sul migliore dei 3 per ogni N per il tempo d' assestamento
11 -
      for N=0.1:0.5:10.1
12 -
            PID_ziegler=kp_z*(1+1/Ti_z/s+Td_z*s/(1+Td_z/N*s));
13 -
            PID_cohen=kp_c*(1+1/Ti_c/s+Td_c*s/(1+Td_c/N*s));
14 -
            PID_3C=kp_3*(1+1/Ti_3/s+Td_3*s/(1+Td_3/N*s));
15 -
            Wz=PID_ziegler*P/(1+PID_ziegler*P);
16 -
            Wc=PID cohen*P/(1+PID cohen*P);
17 -
            W3=PID_3C*P/(1+PID_3C*P);
18 -
19 -
            yz=step(t,Wz);
            yc=step(t,Wc);
20 -
            y3=step(t,W3);
21 -
22 -
            info=[];
            infoz=stepinfo(yz,t);
23 -
            infoc=stepinfo(yc,t);
24 -
            info3=stepinfo(y3,t);
25 -
26 -
27 -
            info(1)=infoz.SettlingTime;
            info(2)=infoc.SettlingTime;
            info(3)=info3.SettlingTime;
28 -
29 -
30 -
31 -
32 -
33 -
34 -
35 -
36 -
            [minimum, indices]=min(info);
            if indices==1
                lista_risultati{cont}="N="+N+" ziegler"+" min="+info(1);
            if indices==2
                lista_risultati{cont}="N="+N+" cohen"+" min="+info(2);
            if indices==3
                 lista_risultati{cont}="N="+N+" 3C"+" min="+info(3);
37 -
38 -
            plotter=[yz,yc,y3];
39 -
40 -
41 -
            plottato=plot(t,plotter);
            plottato(1).LineWidth=2;
            plottato(2).LineWidth=2;
42 -
            plottato(3).LineWidth=2;
43 -
            lista{cont}="N="+N;
            cont=cont+1:
```


	Macchina 2	Macchina3		
Rise Time	819.9211 pu = 2.17 s	620.4016 pu = 1.6 s		
Settling Time	2650.9 pu = 7 s	2640 pu = 7 s		
Overshoot	7.5534	19.46		
Undershoot	0	0		
Peak	0.0753	0.0597		
Peak Time	1792.5 pu = 4.75 s	1485.5 pu = 3.9 s		

- Tempo d' assestamento diminuito di circa due secondi
- Sovraelongazione diminuita di circa il 10 percento

Conclusioni

- Il problema di un approccio di tipo SISO a un sistema MIMO
- L' effetto che hanno le variabili lasciate incontrollate sui tempi di assestamento