Examen 22 de junio de 2017. Prácticas. Problema 3.

En la *Tabla P.1* se muestra el repertorio de las 4 instrucciones del Computador Sencillo CS1. Para cada instrucción, se indican su nemotécnico en ensamblador, el resultado de su ejecución descrita a nivel de transferencia a registros (RT) y su formato en binario.

Ensamblador	Descripción RT	Formato de la Instrucción en binario		
(\$DirDato en hexadecimal)		со	Dirección del Dato en binario	
STOP	Fin ejecución	00	XXXXX	
ADD \$DirDato	AC ← AC + M(\$DirDato)	01	$A_5 A_4 A_3 A_2 A_1 A_0$	
SUB \$DirDato	AC ← AC - M(\$DirDato)	10	$A_5 A_4 A_3 A_2 A_1 A_0$	
STA \$DirDato	M(\$DirDato) ← AC	11	$A_5 A_4 A_3 A_2 A_1 A_0$	

Tabla P.1

Utilizando las instrucciones del computador CS1, realice un programa que almacene CUATRO veces el valor cero en las direcciones de memoria consecutivas M(\$3a), M(\$3B), M(\$3C) y M(\$3D).

- a) Especifique dicho programa en ensamblador en la segunda columna de la Tabla P.2.
- **b)** Complete las filas de la tabla, indicando la descripción RT del programa, las instrucciones en binario (con sus códigos de operación y de direcciones de los datos (operandos) en binario) y notación en hexadecimal del programa.

Nota: Al ejecutar el programa se supone que, en general, el registro acumulador (AC) tendrá un valor inicial distinto de cero.

DIRECCIÓN MEMORIA	PROGRAMA ENSAMBLADOR	DESCRIPCIÓN PROGRAMA	INSTRUCCIÓN BINARIO		INSTRUCCIÓN HEXADECIMAL	COMENTARIOS
(BIN-HEX)			CO (2 bits)	DIR DATO (6 bits)		
000000) ₂ = 00) ₁₆	STA \$28	M(\$28) ←AC	11	10 1000	E8	AC = ¿?
000001) ₂ = 01) ₁₆	SUB (\$28)	AC←AC-M(\$28)	10	10 1000	A8	AC = 00
000010) ₂ = 02) ₁₆	STA (\$3A)	M(\$3A) ←AC	11	11 1010	FA	M(\$3A) = 00
000011) ₂ = 03) ₁₆	STA (\$3B)	M(\$3B) ←AC	11	11 1011	FB	M(\$3B) = 00
000100) ₂ = 04) ₁₆	STA (\$3C)	M(\$3C) ←AC	11	11 1100	FC	M(\$3C) = 00
000101) ₂ = 05) ₁₆	STA (\$3D)	M(\$28) ←AC	11	11 1101	FD	M(\$3D) = 00
000110) ₂ = 06) ₁₆	STOP	PARAR	00	XX XXXX	00	PARAR

Tabla P.2.