Program Structure and Algorithms

Sid Nath

Lecture 9

Agenda

- Administrative
 - Midterm review

- Greedy
- Dijkstra
- Huffman's prefix tree

Midterm Solutions

Greedy Algorithms

- A greedy algorithm always makes the choice that looks best at the moment
- Put another way: Greed makes a *locally* optimal choice in the hope that this choice will lead to a *globally* optimal solution
- Greedy algorithms do not always yield optimal solutions, but for some problems they do
 - We'll study some problems where they do

Greedy Algorithms

- When do we use greedy algorithms?
 - When we need a heuristic for a hard problem
 - When the problem itself is "greedy"
- Examples of "Greedy" problems:
 - Minimum Spanning Tree
 - Prim's and Kruskal's algorithms follow from "cut property" and "cycle property", which we'll see next time
 - Minimum Weight Prefix Codes (Huffman coding)
 - Activity selection
 - Interval scheduling

Properties of Greedy Problems

- Greedy-choice property: A globally optimal solution can be arrived at by making a locally optimal (greedy) choice
 - Difficulty is in proving this...
- Optimal substructure property: An optimal solution to the problem contains within it optimal solutions to subproblems
 - Key ingredient of both DP and Greed

Examples of Greedy Approaches

Traveling Salesperson Problem

 What is a greedy approach? Start somewhere, always go to the nearest unvisited city

**Knapsack Problem

 What is a greedy approach? Use as much as possible of the highest value/weight ratio item (optimal for fractional knapsack problem*)

**Coin Changing Problem

 What is a greedy approach? Use as much as possible of the largest denominations first (optimal for US currency*)

Graph Coloring, Vertex Cover, K-Center

- Min #colors needed so that no edge has same-color endpoints. Use lowest unused color
- Min #vertices to have at least one endpoint of each edge. Add highestdegree vertex
- Pick k "centers" out of n points to minimize max point-to-center distance.
 Add new center that is farthest from all existing centers

Shortest Path Problem Types

- Given a graph G=(V,E) and w: E → R
 - (1 to 2) "s-t": Find a shortest path from s to t
 - (1 to all) "single-source" or "SSSP": Find a shortest path from a source s to every other vertex v ∈ V
 - (All to all) "all-pairs" or "APSP": Find a shortest path from every vertex to every other vertex
- The weight or cost of path v_i , ..., $v_k = \sum l(v_i, v_i + 1)$
 - Sometimes: no negative edges. Examples of "negative edges": travel cost incentives, exothermic chemical reactions, unprofitable transactions in arbitrage, ...
 - Bellman-Ford for SP with negative edge weights
 - Always: no negative cycles. Otherwise, the shortest-path problem isn't well-defined

Extending BFS

- Suppose graph G has positive, integral edge lengths
- Simple trick: add dummy nodes to make G' with unit-length edges

- For 'real nodes', distance in G = distances in G'
- We know how to run BFS on G'
- But BFS on G' could waste a lot of time

"Alarm Clocks"

- Idea
 - Snooze through visits to dummy nodes
 - 'Alarm' should wake us up whenever something interesting is happening, i.e., when BFS encounters a real node
- Alarm for each <u>real</u> node = estimated time of arrival based on edges currently being traversed
 - T = 0: set alarms for A (100), B (200); snooze
 - T = 100: wake up, BFS is at A; set alarm for B (150); snooze
 - T = 150: wake up; done.

"Alarm Clock" Algorithm

- Set an alarm for node s at time T = 0
- If the next alarm goes off at time T, for node u, then:
 - The shortest path distance to u is T
 - For each edge (u,w) ∈ E
 - If no alarm has been set for w, then set an alarm at time T + l(u, w)
 - If an alarm has been set, but at a time later than T
 + l(u,w), then move it to this earlier time
- (1) Exactly simulates BFS on G'
- (2) This is also known as Dijkstra's algorithm
- (3) What data structure helps implementation?

Priority Queue

A <u>Priority Queue</u> is a data structure that stores elements sorted by a <u>key</u> value.

Operations:

- Insert adds a new element to the PQ.
- DecreaseKey Changes the key of an element of the PQ to a specified *smaller* value.
- DeleteMin Finds the element with the smallest key and removes it from the PQ.
- For n elements, after each of the above operations, O(log n) time to heapify / sort

Dijkstra's Algorithm

```
Dijkstra(G,s, l)
                                        Runtime:
  Initialize Priority Queue Q
                                        O(|V|) Inserts +
  For v \in V
                                        O(|V|) DeleteMins +
     dist(v) \leftarrow \infty
                        O(|V|) times
                                        O(|E|) DecreaseKeys
     Q.Insert(v)
  dist(s) \leftarrow 0
  While (Q not empty)
     v ← Q.DeleteMin()
     For (v, w) \in E
       If dist(v) + \ell(v, w) < dist(w)
          dist(w) \leftarrow dist(v) + \ell(v, w)
                                                O(|E|) times
          Q.DecreaseKey(w)
```

Example

0+5=5

Why does this work?

Claim: Whenever the algorithm assigns a distance to a vertex v that is the length of the shortest path from s to v.

Proof by Induction:

- dist(s) = 0 [the empty path has length 0]
- When assigning distance to w, assume that all previously assigned distances are correct.

Code Demo

Iter	PQ (non-inf) nodes	d (0)	d(1)	d(2)	d(3)	d(4)	d (5)	d (6)	d (7)	d (8)
0	[0]	0	_∞	8	8	∞	∞	∞	8	∞
1	[1, 7]	0	4	8	8	8	∞	8	8	∞
2	[7, 2]	0	4	12	8	8	∞	8	8	∞
3	[6, 2, 8]	0	4	12	8	8	∞	9	8	15
4	[5, 2, 8]	0	4	12	8	8	11	9	8	15
5	[2, 8, 4, 3]	0	4	12	25	21	11	9	8	15
6	[8, 3, 4]	0	4	12	19	21	11	9	8	14
7	[3, 4]	0	4	12	19	21	11	9	8	14
8	[4]	0	4	12	19	21	11	9	8	14
9	[]	0	4	12	19	21	11	9	8	14

Problem: Huffman Codes

- Given a file of characters from a character set $S = \{a_1, a_2, ..., a_n\}$ together with the frequencies $\{f_1, f_2, ..., f_n\}$ compress the file to optimal size:
 - Fixed-length bit-code
 - Variable-length bit-code
- Fixed-length bit-code is easier but achieves low compression ratio
- Variable-length may achieve higher compression ratio
 - Assign shortest bit-code to character with the highest frequency
 - Need to design scheme to avoid ambiguity

Huffman Codes

- How to transmit English text using binary code?
- 26 letters + space = alphabet has 27 characters
 - 5 bits per character suffices
- Observation #1: Not all characters occur with same frequency
 - Sherlock Holmes, "The Adventure of the Dancing Men": ETAOIN SHRDLU
 - Suggests variable-length encoding
- Observation #2: Variable-length code should have prefix property
 - One code word per input symbol
 - No code word is a prefix of any other code word
 - Simplifies decoding process

Huffman Codes

- Prefix codes
 - An optimal code using full tree:
 - Assign bit 0 to left branch
 - Assign bit 1 to right branch
 - No ambiguity
 - Simplify encoding / decoding

Huffman Coding: Greedy Algorithm

- Huffman coding is based on probability with which symbols appear in a message
 - Goal is to minimize the expected code message length

How it works

- Create a tree root node for each nonzero symbol frequency,
 with the frequency as the value of the node
- REPEAT
 - Find two root nodes with smallest value
 - Create a new root node with these two nodes as children, and value equal to the sum of the values of the two children
 - (Until there is only one root node remaining)

Example:

```
Symbol: A E G I M N O R S T U V Y Blank Frequency: 1 3 2 2 1 2 2 2 2 1 1 1 3
```

(Generic Implementation)

- Place the elements into a min heap (by frequency)
- Remove the first two elements from the heap
- Combine these two elements into one
- Insert the new element back into the heap

Symbol: AEGIMNORSTUVY Blank

Frequency: 1 3 2 2 1 2 2 2 2 1 1 1 1 3

Step 1:

Step 2:

Step 3:

Step 4:

Symbol: AEGIMNORSTUVY Blank

Frequency: 1 3 2 2 1 2 2 2 2 1 1 1 1 3

Symbol: A E G I M N O R S T U V Y Blank

Frequency: 1 3 2 2 1 2 2 2 2 1 1 1 1 3

Symbol: AEGIMNORSTUVY Blank

Step 9

Frequency: 1 3 2 2 1 2 2 2 2 1 1 1 1 3

E.g., code word for "Y" is "10101"

Sum of internal node values = total weighted pathlength of tree = Σ W_i · L_i = 4+5+9+2+2+4+7+2+4+4+8+15+24 = 90 (vs. Σ W_i · L_i = 120 in naïve 5 bit per symbol code)

PseudoCode

```
_Huffman's Algorithm
huffman(C, prob) {
                                          // C = chars, prob = probabilities
    for each (x in C) {
        add x to Q sorted by prob[x]
                                         // add all to priority queue
                                          // repeat until only 1 item in queue
    for (i = 1 \text{ to } |C| - 1) {
        z = new internal tree node
        left[z] = x = extract-min from Q // extract min probabilities
        right[z] = y = extract-min from Q
        prob[z] = prob[x] + prob[y] // z's probability is their sum
        insert z into Q
                                          // z replaces x and y
    return the last element left in Q as the root
}
```

- Time complexity: $\theta(n \log n) // n$ is |C|
 - Loop of n-1 iterations
 - Heap operations: $\theta(\log n)$ // heapify

Lecture 9 summary

- Greedy
 - P1: Dijkstra's shortest path
 - P2: Huffman's min weight prefix tree