Folha 1 - Matrizes

- 1. Dê exemplo de uma matriz real:
 - (a) quadrada de ordem 3,
 - (b) rectangular de ordem 4×2 ,
 - (c) linha de ordem 1×6 ,
 - (d) coluna de ordem 4×1 ,
 - (e) triangular de ordem 5,
 - (f) diagonal de ordem 4.
- 2. (a) Escreva por extenso a matriz de ordem $m \times n$ definida por:

i.
$$A = (a_{ij})$$
 e $a_{ij} = i + j$, $(m = 5, n = 4)$,

ii. $B = (b_{ij})$ e $b_{ij} = \begin{cases} 2 & \text{, se } i = j \\ -1 & \text{, se } |i - j| = 1, \\ 0 & \text{, caso contrário} \end{cases}$

iii. $C = (c_{ij})$ e $c_{ij} = \begin{cases} 2i & \text{, se } i > j \\ i + j & \text{, se } i = j, \\ 2j & \text{, se } i < j \end{cases}$

iv. $D = (d_{ij})$ e $D = A + 2B$

v. $E = (e_{ij})$ e $e_{ij} = (-1)^{i+j}$, $(m, n = 3)$

- (b) Para cada uma das matrizes determinadas na alínea anterior indique os elementos que constituem a sua diagonal principal.
- 3. Considere as matrizes A, B, C e D de ordens respectivamente iguais a 4×3 , 4×3 , 3×4 e 4×2 . Diga quais das seguintes expressões identificam matrizes, e nesses casos indique a ordem da matriz resultado.
 - (a) A+2B (b) AB (c) AC+D (d) (A+B)C (e) ACD (f) 2ACA+B
- 4. Considere as matrizes:

$$A = \begin{pmatrix} 2 & 1 & 3 \\ -2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 1 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$

e calcule:

(a)
$$2B$$
 (b) $A+B$ (c) $3A-2B$ (d) $3A^T-2B^T$ (e) AB (f) BA (g) A^2

5. Considere as matrizes:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

$$u = \begin{pmatrix} 2/3 \\ -1/3 \end{pmatrix}, \quad v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad x = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix},$$

Calcule:

- (a) A+D,
- (b) 3u 2v,
- (c) BC,
- (d) CA,
- (e) $AD \in DA$, (Obs. Note que D comuta com A.)
- (f) Bu, (Obs. Note que u é solução do sistema Bu = v.)
- (g) Cx, (Obs. Note que se tem Cx = 0 sem que C = O ou x = 0.)

6. Sejam A e B as matrizes

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \qquad \text{e} \qquad B = \begin{pmatrix} -3 & 0 & 2 \\ 1 & 1 & -1 \\ 2 & -1 & 1 \end{pmatrix}$$

- (a) Determine a primeira linha da matriz A + B.
- (b) Determine a segunda coluna da matriz BA.
- (c) Determine a matriz Ae_2 , onde e_2 designa a segunda coluna da matriz identidade (neste caso, de ordem 3).
- (d) Determine a matriz $e_2^T A$ onde e_2 é a matriz referida na alínea anterior.

7. Considere a matriz

$$A = \left(\begin{array}{ccc} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{array}\right).$$

Verifique que:

(a)
$$A^2 - 3A + 2I_3 = O_{3\times 3}$$

(b)
$$AI_3 = A = I_3A$$

(c)
$$AO_{3\times 3} = O_{3\times 3}$$

(d)
$$2A - 3A = -A$$

8. Considere as matrizes

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad \text{e} \qquad B = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}.$$

Calcule:

- (a) $(A+B)^2$
- (b) $A^2 + 2AB + B^2$
- (c) $A^2 + AB + BA + B^2$
- 9. Seja A uma matriz de ordem $m \times (m+5)$ e B uma matriz de ordem $n \times (11-n)$. Determine os possíveis valores para m e n sabendo que estão definidos os produtos AB e BA.
- 10. Determine a matriz X tal que

$$A + 3X = B$$

onde
$$A = [2i - 3j]_{\substack{i = 1, \dots, 4 \ j = 1, 2}}$$
 e $B = [i + j]_{\substack{i = 1, \dots, 4 \ j = 1, 2}}$.

- 11. Considere as matrizes apresentadas no exercício 5. Calcule:
 - (a) AC^T ,
 - (b) $C^T B$,
 - (c) uv^T ,
 - (d) $v^T u$,
 - (e) $u^T B u$.
- 12. Dada a equação matricial $((A^{-1})^T)X)^{-1} = I$,
 - (a) resolva-a em ordem a X,
 - (b) calcule a matrix X sabendo que $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- 13. Considere as matrizes:

$$A = \begin{pmatrix} -2 & 3 \\ 2 & -3 \end{pmatrix} \ , \ B = \begin{pmatrix} 3 & 6 \\ 2 & 4 \end{pmatrix} \ , \ C = \begin{pmatrix} -21 & 3 \\ 2 & 0 \end{pmatrix} \ \mathbf{e} \ D = \begin{pmatrix} -4 & -3 \\ 0 & -4 \end{pmatrix}.$$

Verifique e comente os seguintes resultados:

- (a) $AB = O_2$,
- (b) AC = AD.
- 14. (a) Determine todas as matrizes X que comutam com a matriz $A=\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
 - (b) Determine uma matriz B tal que $AB = O_2$.
- 15. Seja A uma matriz simétrica de ordem n. Se P é uma matriz real da mesma ordem prove que P^TAP é simétrica.
- 16. Sejam A e B duas matrizes simétricas de ordem n. Prove que a matriz AB é uma matriz simétrica se e só se AB = BA.

3

- 17. Uma matriz real A, quadrada de ordem n, diz-se anti-simétrica se $A^T=-A$.
 - (a) Mostre que A é anti-simétrica se e só se $a_{ij}=-a_{ji}$, para todo o i,j.

- (b) Seja P uma matriz real de ordem n. Prove que a matriz $P-P^T$ é uma matriz anti-simétrica.
- 18. (a) Prove que o produto de duas matrizes ortogonais é ainda uma matriz ortogonal.
 - (b) Prove que a transposta de uma matriz ortogonal é ainda uma matriz ortogonal.

19. Verifique que a inversa da matriz
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 é a matriz $B = \begin{pmatrix} 1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & 1/2 \\ -1/2 & 1/2 & 1/2 \end{pmatrix}$.

20. Considere
$$A = \begin{pmatrix} 0 & 2 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
.

- (a) Calcule A^2 e A^3 .
- (b) Verifique que a matriz $I_3 + A + A^2$ é a inversa de $I_3 A$.
- 21. Calcule a inversa das seguintes matrizes:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 3 \\ 1 & 2 & 1 & 4 \end{pmatrix}.$$

- 22. (a) Seja A uma matriz ortogonal. Prove que a inversa da matriz A é a matriz A^T .
 - (b) Considere a matriz

$$A = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \end{pmatrix}$$

- i. Prove que ${\cal A}$ é uma matriz ortogonal.
- ii. Calcule a inversa da matriz A.
- 23. Sejam A,B e C matrizes invertíveis de ordem n.
 - (a) Qual a matriz inversa de $AB^{-1}C$?
 - (b) Se A e B verificam $(AB)^T = A^TB^T$ prove que $(AB)^{-1} = A^{-1}B^{-1}$.
- 24. Prove que se A é uma matriz invertível então:

(a)
$$AB = O \Rightarrow B = O$$

(b)
$$AX = AY \Rightarrow X = Y$$

- 25. Mostre que:
 - (a) a soma de duas matrizes diagonais é uma matriz diagonal;
 - (b) o produto de duas matrizes diagonais é uma matriz diagonal;
 - (c) duas matrizes diagonais são comutáveis.