A Kernel Test for Three-Variable Interactions with Random Processes

Abstract

Explain what this is all about, and the main contributions:

- Applied Wild Bootstrap to Lancaster test statistic
- Main theoretical challenge was to show that the conditions required to apply WB are satisfied by Lancaster
- This was done in a novel way rather than using the Hoeffding decomposition, we come up with a new method which is simpler, (but requires an extra condition on the timeseries?)
- We also show that the power of the Lancaster test described in Arthur's original paper can be improved - we show that they used conservative p-values

1. Introduction

02.2

- Describe three variable interaction. It is particularly useful for cases in which any pairwise interaction is weak, but that the three variables interact strongly together.
- Test consists of two parts calculating the test statistic, and bootstrapping the statistic to sample from the null in order to calculate the p-value threshold.
- When using time series, the difficult part is the bootstrapping because shuffling the indices breaks the temporal dependence structure.
- In [Leucht], they give a method for bootstrapping a certain class of statistics.
- The main contributions of this paper are the following:
 - To show that the Lancaster test statistic is such a statistic

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

- This is done using a new style of technique which in particular gives a significantly simpler proof that HSIC is also such a statistic (and thus simplifies the proofs used in [HSIC+time series])
- To show that the multiple testing corrections used in [Lancaster] are too conservative, and therefore that we can improve test power by using a more relaxed correction.

This work combines the works of [HSIC + time series] and [Lancaster interaction] to give a non-parametric test for three variable interactions in which the samples are drawn from random processes.

2. Background

- Kernel mean embedding
- Lancaster
- Time series
 - τ -mixing
 - β -mixing
 - Lemma that sub-processes of β -mixing processes are β -mixing
- V-statistics
- Hilbert space valued random variable central limit theorem

3. Lancaster Interaction for Random Processes

- Statement of Wild Bootstrap theorem (maybe in background though?)
- Proof that Lancaster satisfies WB theorem hypothesis
- ...
- Multiple testing correction (maybe in next section though?)

Submission and Formatting Instructions for ICML 2015

4. p-values for Lancaster test	16 16
• In [Lancaster], they use the Holm-Bonferroni correc-	16
tion. Show here that this isn't actually necessary -	16
that the 'naive' correction works and is therefore more	16
powerful as we use $[\alpha, \alpha, \alpha]$ as the thresholds rather	17
than $[\alpha/3,\alpha/2,\alpha]$ or whatever.	17
	17
5. Experiments	17
5.1. Artificial data	17
	17
5.2. Real data	17 ⁻ 17 ⁻
Maybe check this out for some data? https://stat.	17-
duke.edu/~mw/ts_data_sets.html	17
	18
6. Proofs	18
	18
Acknowledgments	18.
cheers!	18
	18.
	18 18
	18
	18
	19
	19
	19
	19.
	19
	19.
	19 19
	19
	19
	20
	20
	20
	20
	20
	20
	20
	20 20
	20
	21
	21
	21
	21
	21
	21
	21
	21
	21