## **Model selection**

## **Knowing Your Task and Knowing Your Data**

Quite possibly the most important part in the machine learning process is understanding the data you are working with and how it relates to the task you want to solve. It will not be effective to randomly choose an algorithm and throw your data at it. It is necessary to understand what is going on in your dataset before you begin building a model. Each algorithm is different in terms of what kind of data and what problem setting it works best for. While you are building a machine learning solution, you should answer, or at least keep in mind, the following questions:

What question(s) am I trying to answer? Do I think the data collected can answer that question?

- What is the best way to phrase my question(s) as a machine learning problem?
- Have I collected enough data to represent the problem I want to solve?
- What features of the data did I extract, and will these enable the right predictions?
- How will I measure success in my application?
- How will the machine learning solution interact with other parts of my research or business product?

In a larger context, the algorithms and methods in machine learning are only one part of a greater process to solve a particular problem, and it is good to keep the big picture in mind at all times. Many people spend a lot of time building complex machine learning solutions, only to find out they don't solve the right problem.

When going deep into the technical aspects of machine learning (as we will in this book), it is easy to lose sight of the ultimate goals. While we will not discuss the questions listed here in detail, we still encourage you to keep in mind all the assumptions that you might be making, explicitly or implicitly, when you start building machine learning models.

For example, suppose you want to know if money makes people happy, so you download the *Better Life Index* data from the OECD's website as well as stats about GDP per capita from the IMF's website. Then you join the tables and sort by GDP per capita. Table 1-1 shows an excerpt of what you get.

Table 1-1. Does money make people happier?

| Country              | GDP per capita (USD) | Life satisfaction |
|----------------------|----------------------|-------------------|
| Hungary              | 12,240               | 4.9               |
| Korea                | 27,195               | 5.8               |
| France               | 37,675               | 6.5               |
| Australia            | 50,962               | 7.3               |
| <b>United States</b> | 55,805               | 7.2               |

Let's plot the data for a few random countries (Figure 1-17).



Figure 1-17. Do you see a trend here?

There does seem to be a trend here! Although the data is noisy (i.e., partly random), it looks like life satisfaction goes up more or less linearly as the country's GDP per capita increases. So you decide to model life satisfaction as a linear function of GDP per capita. This step is called **model selection**: you selected a linear model of life satisfaction with just one attribute, GDP per capita (Equation 1-1).

Equation 1-1. A simple linear model  $life\_satisfaction = \theta_0 + \theta_1 \times GDP\_per\_capita$ 

This model has two model parameters,  $\theta 0$  and  $\theta 1$ . By tweaking these parameters, you can make your model represent any linear function, as shown in Figure 1-18.



Figure 1-18. A few possible linear models

Before you can use your model, you need to define the parameter values  $\theta 0$  and  $\theta 1$ . How can you know which values will make your model perform best? To answer this question, you need to specify a performance measure. You can either define a utility function (or fitness function) that measures how good your model is, or you can define a cost function that measures how bad it is. For linear regression problems, people typically use a cost function that measures the distance between the linear model's predictions and the training examples; the objective is to minimize this distance.

This is where the Linear Regression algorithm comes in: you feed it your training examples and it finds the parameters that make the linear model fit best to your data. This is called training the model. In our case the algorithm finds that the optimal parameter values are  $\theta 0 = 4.85$  and  $\theta 1 = 4.91 \times 10-5$ .

Now the model fits the training data as closely as possible (for a linear model), as you can see in Figure 1-19.



Figure 1-19. The linear model that fits the training data best

You are finally ready to run the model to make predictions. For example, say you want to know how happy Cypriots are, and the OECD data does not have the answer. Fortunately, you can use your model to make a good prediction: you look up Cyprus's GDP per capita, find \$22,587, and then apply your model and find that life satisfaction is likely to be somewhere around  $4.85 + 22,587 \times 4.91 \times 10-5 = 5.96$ .

If all went well, your model will make good predictions. If not, you may need to use more attributes (employment rate, health, air pollution, etc.), get more or better quality training data, or perhaps select a more powerful model (e.g., a Polynomial Regression model).

## In summary:

- You studied the data.
- You selected a model.
- You trained it on the training data (i.e., the learning algorithm searched for the model parameter values that minimize a cost function).
- Finally, you applied the model to make predictions on new cases (this is called inference), hoping that this model will generalize well.