Séance 6

Xpath

Localisation dans le document XML

Structure en arbre

Maîtriser la hiérarchie XML

Sélectionner des nœuds

Le langage Xpath fournit une syntaxe pour sélectionner un nœud ou un ensemble de nœud au sein d'un document XML.

Tester son Xpath

XPathTester permet de voir ce qui est sélectionné dans un document XML par un chemin Xpath donné.

Il est nécessaire de **supprimer** le **prologue**, **déclarations liminaires** et **xmlns** de l'élément racine TEI pour que l'outil fonctionne

Tester son Xpath

Oxygen permet également de surligner les nœuds sélectionnés par un chemin avec la **barre Xpath** + **Entrée**

Qu'est-ce que le Xpath?

Les principes du langage

Principes Xpath

W3C

Xpath 2.0 est publié par le World Wide Web Consortium comme <u>standard</u> XML

Requêtage

Xpath est un langage de requêtes qui permet de parcourir un arbre XML

Intégré

Xpath a été conçu comme un **langage intégré**, et non pas un langage autonome

Syntaxe chemin

node/childNode

Une expression de chemin correspond à une **séquence d'étapes** séparées par l'opérateur /.

Sans indication particulière la relation se fait d'un élément parent vers un élément enfant.

Chaque étape devient le nœud courant (nœud de contexte) pour l'étape suivante.

Absolu / relatif

Un chemin de localisation **absolu** commence au nœud document : il commence par un une barre oblique /

Les chemins de localisation **relatifs** commencent à un nœud de l'arborescence. Ils sont utilisés notamment au sein d'un autre chemin Xpath.

Désignation d'une localisation

Une expression XPath est un chemin de localisation, constitué de pas de localisation ("étapes du chemin") séparés par le caractère / . Les pas sont définis par :

Axe

Sens dans lequel l'arbre doit être parcouru parcouru (parent, descendant)

Test de nœud

Nom d'un nœud ou **type** de nœud situé dans la direction de l'axe dans l'arborescence

Prédicat

Indiqué entre [...] pour préciser une caractéristique du noeud (sorte de **filtre**)

Syntaxe pas de localisation

axe::nœud[predicat1][predicat2]...

Syntaxe Xpath

Les différents éléments manipulés en Xpath

Les nœuds

Les documents XML sont traités comme des **arbres de nœuds**. Les noeuds désignent des composants et contenus du document XML.

L'ordre des nœuds est déterminé par la séquence du document et par l'imbrication des éléments XML.

Types de nœuds courants

/	document	Désigne l'élément abstrait comprenant l'ensemble du document
elementName	élément	Désigne un élément (balises et contenu) Ne concerne pas les déclarations (? et)
attributeName	attribut	Désigne les attribut d'un élément XML
text()	texte	Désigne le contenu textuel directement contenu dans un élément (non inclus dans une balise)
comment()	commentaire	Désigne le contenu d'un commentaire (pas son balisage)

Un élément et son contenu

/TEI/teiHeader/titleStmt/title

L'élément title et son contenu

Le texte d'un élément

/TEI/teiHeader/titleStmt/title/text()

La chaîne de caractère contenu dans l'élément title

Exercice

Sélectionner les nœuds

Consigne

Trouver les chemins Xpath dans l'encodage TEI d'un sonnet:

```
Les vers de quatrain
Le paragraphe de provenance
Les tercets
Le titre du poème
```

```
/TEI/text/body/lg/lg/l
/TEI/teiHeader/fileDesc/sourceDesc/p
/TEI/text/body/lg/lg/lg
/TEI/text/body/lg/head
```

Abréviations pour les nœuds

Remplace n'importe quel nœud

Pour combiner deux ensembles de nœuds

N'importe quel contenu

/TEI/teiHeader/*

Tout ce qui est contenu dans le teiHeader

Concaténation de chemins

/TEI/teiHeader /TEI/text/body

Le teiHeader et le body

Axes Xpath

Indique la **direction** dans laquelle se déplacer dans l'arbre XML, relativement au nœud courant ou depuis la racine. Quand l'axe n'est pas précisé, il s'agit implicitement de l'axe des enfants (child::).

Axes courants

self

ancestor	Sélectionne tous les ancêtres du nœud courant
ancestor-or-self	Sélectionne tous les ancêtres du nœud courant ainsi que le nœud lui-même
attribute	Sélectionne tous les attributs du nœud courant
child	Sélectionne tous les enfants du nœud courant
descendant	Sélectionne tous les descendants du nœud courant
descendant-or-self	Sélectionne tous les descendants du nœud courant ainsi que le nœud lui-même
following	Sélectionne tous les nœuds du document après la balise fermante du nœud courant
following-sibling	Sélectionne tous les nœuds suivants qui sont au même niveau que le nœud courant
parent	Sélectionne les nœud parent du nœud courant
preceding-sibling	Sélectionne tous les nœuds précédents qui sont au même niveau que le nœud courant

Sélectionne le nœud courant

Syntaxe axe attribut

//p/attribute::n

La valeur de l'attribut n des éléments p contenus dans le document

Syntaxe axe

```
//lg/sibling::*
```

Les éléments au même niveau que les 1g du document

Syntaxe axe

```
//p/parent::*
```

Les éléments pour contiennent directement un p

Les abréviations d'axe

vide	child::	Axe par défaut
@	attribute::	Sélectionne la valeur d'un attribut
//	/descendant-or-self::node()/	Sélectionne le nœud document et tous les descendants
• •	parent::node()	Sélectionne le nœud parent du nœud courant
•	self::node()	Sélectionne le nœud courant

Optimisation

Il est préférable d'éviter d'utiliser // en début de chemin pour des questions de performance et de non ambiguïté

/TEI//p

N'importe où dans l'arborescence

//p

Tous les éléments p peu importe leur endroit dans l'arborescence

Sélection d'attribut

//p/@n

La valeur des attributs n des éléments p

Parmi les descendants

//div//p

Tous les éléments p descendant d'un élément div dans le document

Parmi les descendants

.//p

Tous les éléments p descendant du nœud courant

Noeud parent

Les éléments contenant un élément p

Contenu textuel

//lg//text()

Les contenus textuels contenus dans les descendants des éléments 1g du document

Exercice

Traduire les expressions

Traduire les expressions suivantes

```
//figure
//*/*
//book/title
chapter//footnote
.//footnote
```

N'importe quels éléments figure dans le XML
N'importe quel nœud contenu dans un autre
Tous les title contenu directement dans book
Toutes les footnote contenu dans un chapter
Toutes les footnote contenu dans le nœud courant

Prédicats

Les prédicats sont utilisés pour **filtrer** les nœuds sélectionnés par l'axe et le test de nœud. Les prédicats sont écrits entre crochets. Si le prédicat est évalué à vrai, tous les nœuds correspondants sont sélectionnés.

Noeud qui contient...

```
//title[.="Sonnet d'automne"]
```

Les éléments title qui ont pour contenu "Sonnet d'automne"

```
Cette syntaxe abrégée est l'équivalent de : [text()="Sonnet d'automne"]
```

Noeud qui a un enfant qui...

```
//titleStmt[title="Sonnet d'automne"]
```

Les éléments titleStmt dont l'enfant title a pour contenu "Sonnet d'automne"

Noeud qui a un enfant qui...

//titleStmt[title="Sonnet d'automne"]/author

L'élément(s) author contenu dans l'élément titleStmt dont l'enfant title a pour contenu "Sonnet d'automne"

Noeud qui a un descendant qui...

```
//div[.//persName="Cendrillon"]
```

Les éléments div qui contiennent un élément pers Name a pour contenu "Cendrillon"

Test d'existence

//titleStmt[title]

Les éléments titleStmt qui contiennent un élément title

Élément qui a pour attribut...

lg[@type="quatrain"]

Les éléments 1g qui ont un attribut type ayant pour valeur quatrain

Élément qui a pour attribut...

lg[@type]

Les éléments 1g qui ont un attribut type

Prédicat numérique

Le deuxième élément 1g qui a un attribut type ayant pour valeur quatrain

Abréviation de lg[position()=2]

1 Contrairement aux autres langages de programmation, l'énumération XPath commence avec 1

Exercice

Filtrer les nœuds

Traduire ces expressions en xpath

```
Le second p de la première div du body
    //body/div[1]/p[2]
Les p au sein du text qui contiennent des pers Name
    //text//p[persName]
Les placeName dont la valeur est Paris
    //placeName[.="Paris"]
La troisième mention du pers Name "Gringoire"
    //persName["Gringoire"][3]
La deuxième div contenue directement ou non dans la quatrième div
    //div[4]//div[2]
```

Opérateurs Xpath

Les tests formulés dans les prédicats sont définis à l'aide d'opérateurs. Il en existe de trois types : les opérateurs **arithmétiques**, les opérateurs **logiques** et les opérateurs de **comparaison**.

Opérateurs courants

+	-	*	div	mod	Pour	effectuer	des	opérations	arithmétiques	,

= != Pour tester l'égalité ou l'inégalité

Strictement plus grand / plus petit que (&1t; et > en XSLT)

<= >= Inférieur / supérieur ou égal

and or Pour accoler plusieurs expressions booléennes

Comparer des valeurs

Les éléments 1 dont la valeur de l'attribut n est strictement supérieure à 2

Combiner des expressions

```
lg[@type != "tercet" and @n < 2]</pre>
```

Les éléments 1g dont la valeur de l'attribut n est strictement inférieure à 2 et dont l'attribut type n'est pas "tercet"

```
Équivalent à lg[@type != "tercet"][@n < 2]</pre>
```

Fonctions Xpath

Les fonctions Xpath, utilisées dans les prédicats, permettent de manipuler les données à tester. Elles peuvent s'appliquer à des données **textuelles**, **numériques** et **booléennes**. Elles peuvent également s'appliquer à des **ensembles de nœuds** (qui seront exprimés sous forme de chemin Xpath)

Fonctions courantes

<pre>count(node-set)</pre>	Compte le nombre d'occurrences dans un ensemble de nœud
<pre>sum(node-set)</pre>	Somme des valeurs de type nombre dans un ensemble de nœud (qui ne contient que des valeurs numériques)
<pre>true(), false(), not(bool)</pre>	Vrai / Faux / Valeur inverse du booléen
<pre>string(val), number(val)</pre>	Pour changer le type d'une valeur
<pre>concat(str, str)</pre>	Concaténation de plusieurs chaînes de caractère
<pre>start-with(str1, str2)</pre>	Renvoie vrai si str1 commence par str2
<pre>contains(str1, str2)</pre>	Renvoie vrai si str1 contient str2
string-length(str)	Renvoie la longueur d'une chaîne de caractère
normalize-space(str)	Retire les espaces en début et fin de chaîne, ainsi que les doubles espaces
last()	Dernier nœud du document correspondant au prédicat
<pre>position()</pre>	Nombre désignant la position d'un élément

Node-set

Une variable de type node-set est définie par un chemin absolu ou relatif par rapport au noeud courant

```
/TEI//lg[@n = count(l)]
  Les l contenus dans lg
/TEI//lg[@n = count(/TEI//l)]
  Tous les l du document
```

Filtrer la position

```
//lg[position() != 1]
```

Les éléments 1g qui ne sont pas le premier dans l'axe du document

Additionner des valeurs numériques

```
//div[@price = sum(item)]
```

Les éléments div dont la valeur d'attribut price correspond à l'addition des valeurs numériques contenues dans les éléments item directement contenus dans div

Additionner des valeurs numériques

```
//div[@price = sum(//item)]
```

Les éléments div dont la valeur d'attribut price correspond à l'addition des valeurs numériques contenues dans les éléments item du document XML

Additionner des valeurs numériques

```
//div[@price = sum(.//item)]
```

Les éléments div dont la valeur d'attribut price correspond à l'addition des valeurs numériques contenues dans les éléments item descendant dudit élément div

Histoire de vous embrouiller...

```
//div[sum(//@n)] \Rightarrow //div[6]
```

L'élément div qui a pour position dans le document le même nombre que la somme de toutes les valeurs d'attribut n du document

```
//div[string(sum(//@n))] \Rightarrow //div["6"]
```

L'élément div qui a pour contenu text le même nombre correspondant à la somme de toutes les valeurs d'attribut n du document

Exercice

Manipuler les données

Traduire les formules suivantes

```
//lq[@n = count(1)]
Les 1g dont le n° est égal au nombre de vers qu'ils contiennent directement
    //l[last()]
Le dernier vers du document
    //persName["Trucmuche"]
Les pers Name dont la valeur est "Trucmuche"
    //persName[contains(., "Truc")]
Les pers Name dont la valeur textuelle contient la chaîne "Truc"
    //listPerson[person[contains(., "Truc")]]
Les listPerson qui ont pour enfant une person qui contiennent la chaîne "Truc"
```

Exercice

Parcourir les encodages

Donner les chemins les plus courts

Sonnet d'automne

De la racine vers les vers d'un quatrain

De la racine vers le titre

Le Misanthrope

De la racine vers les vers d'une scène

De la racine vers la déclaration d'un personnage

De la racine vers la dernière déclaration de personnage dans

la liste de la préface

Exercice

Aller plus loin

Traduire en Xpath les expressions suivantes

Tous les attributs du dernier élément div du body

Tous les nœuds contenant un élément persName dont le contenu est "Molière"

Le parent du dernier persName du teiHeader

L'avant dernier title qui contient la chaîne de caractère "Paris"

Les div parmi les ancêtres des éléments ayant un attribut type

Les div qui contiennent la chaîne de caractère "coucou" quelque part dans leurs descendants

Tous les attributs du dernier élément div du body

```
TEI//body//div[last()]/attribute::*
```

Tous les nœuds contenant un élément persName dont le contenu est "Molière"

```
//*/persName[.="Molière"]
```

Le parent du dernier persName du teiHeader

TEI/teiHeader//persname[last()]/parent::*

L'avant dernier title qui contient la chaîne de caractère "Paris"

```
TEI//title[last()-1][.="Paris"]
```

Les div parmi les ancêtres des éléments ayant un attribut type

```
TEI//*[@type]//ancestor::div
```

Les div qui contiennent la chaîne de caractère "coucou" quelque part dans leurs descendants

```
TEI//div[text()[contains(., "coucou")]]

TEI//div[contains(.//text(), "coucou")]
```