GAATTCCCAA AGACAAAatg gattttcaag tgcagatttt cagcttcctg ctaatcagtg cctcagtcat aatatccaga ggacaaattg ttctcaccca 101 gtctccagca atcatgtctg catctccagg ggagaaggtc accatgacct gcagtgccag ctcaagtgta agttacatga actggtacca gcagaagtca 201 ggcacctccc ccaaaagatg gatttatgac acatccaaac tggcttctgg 251 agtecetget caetteaggg geagtgggte tgggaeetet taetetetea 301 caatcagcgg catggaggct gaagatgctg ccacttatta ctgccagcag 351 tggagtagta acccattcac gttcggctcg gggacaaagt tggaaataaa 401 ccgggctgat actgcaccaa ctgtatccat cttcccacca tccagtgagc 451 agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa 501 551 tggcgtcctg aacagttgga ctgatcagga cagcaaagac agcacctaca 601 gcatgagcag caccctcacg ttgaccaagg acgagtatga acgacataac 651 agctatacct gtgaggccac tcacaagaca tcaacttcac ccattgtcaa 701 gagcttcaac aggaatgagt gtTAGAGACA AAGGTCCTGA GACGCCACCA 751 CCAGCTCCCA GCTCCATCCT ATCTTCCCTT CTAAGGTCTT GGAGGCTTCC CCACAAGCGC tTACCACTGT TGCGGTGCTC tAAACCTCCT CCCACCTCCT 801 TCTCCTCCTC CTCCCTTTCC TTGGCTTTTA TCATGCTAAT ATTTGCAGAA 851 901 Fig. 1(a)

- 1 MDFOVOIFSF LLISASVIIS RGQIVLTQSP AIMSASPGEK VTMTCSASSS
- 51 VSYMNWYQQK SGTSPKRWIY DTSKLASGVP AHFRGSGSGT SYSLTISGME
- 101 AEDAATYYCQ QWSSNPFTFG SGTKLEINRA DTAPTVSIFP PSSEQLTSGG
- 151 ASVVCFLNNF YPKDINVKWK IDGSERQNGV LNSWTDQDSK DSTYSMSSTL
- 201 TLTKDEYERH NSYTCEATHK TSTSPIVKSF NRNEC*

Fig. 1(b)

1 GAATTCCCCT CTCCACAGAC ACTGAAAACT CTGACTCAAC ATGGAAAGGC 51 ACTGGATCTT TCTACTCCTG TTGTCAGTAA CTGCAGGTGT CCACTCCCAG 101 GTCCAGCTGC AGCAGTCTGG GGCTGAACTG GCAAGACCTG GGGCCTCAGT 151 GAAGATGTCC TGCAAGGCTT CTGGCTACAC CTTTACTAGG TACACGATGC 201 ACTGGGTAAA ACAGAGGCCT GGACAGGGTC TGGAATGGAT TGGATACATT 251 AATCCTAGCC GTGGTTATAC TAATTACAAT CAGAAGTTCA AGGACAAGGC 301 CACATTGACT ACAGACAAAT CCTCCAGCAC AGCCTACATG CAACTGAGCA 351 GCCTGACATC TGAGGACTCT GCAGTCTATT ACTGTGCAAG ATATTATGAT 401 GATCATTACT GCCTTGACTA CTGGGGCCAA GGCACCACTC TCACAGTCTC 451 CTCAGCCAAA ACAACAGCCC CATCGGTCTA TCCACTGGCC CCTGTGTGTG 501 GAGATACAAC TGGCTCCTCG GTGACTCTAG GATGCCTGGT CAAGGGTTAT 551 TTCCCTGAGC CAGTGACCTT GACCTGGAAC TCTGGATCCC TGTCCAGTGG 601 TGTGCACACC TTCCCAGCTG TCCTGCAGTC TGACCTCTAC ACCCTCAGCA 651 GCTCAGTGAC TGTAACCTCG AGCACCTGGC CCAGCCAGTC CATCACCTGC 701 AATGTGGCCC ACCCGGCAAG CAGCACCAAG GTGGACAAGA AAATTGAGCC 751 CAGAGGGCCC ACAATCAAGC CCTGTCCTCC ATGCAAATGC CCAGCACCTA 801 ACCTCTTGGG TGGACCATCC GTCTTCATCT TCCCTCCAAA GATCAAGGAT 851 GTACTCATGA TCTCCCTGAG CCCCATAGTC ACATGTGTGG TGGTGGATGT 901 GAGCGAGGAT GACCCAGATG TCCAGATCAG CTGGTTTGTG AACAACGTGG 951 AAGTACACAC AGCTCAGACA CAAACCCATA GAGAGGATTA CAACAGTACT 1001 CTCCGGGTGG TCAGTGCCCT CCCCATCCAG CACCAGGACT GGATGAGTGG 1051 CAAGGAGTTC AAATGCAAGG TCAACAACAA AGACCTCCCA GCGCCCATCG 1101 AGAGAACCAT CTCAAAACCC AAAGGGTCAG TAAGAGCTCC ACAGGTATAT 1151 GTCTTGCCTC CACCAGAAGA AGAGATGACT AAGAAACAGG TCACTCTGAC 1201 CTGCATGGTC ACAGACTTCA TGCCTGAAGA CATTTACGTG GAGTGGACCA 1251 ACAACGGGAA AACAGAGCTA AACTACAAGA ACACTGAACC AGTCCTGGAC 1301 TCTGATGGTT CTTACTTCAT GTACAGCAAG CTGAGAGTGG AAAAGAAGAA 1351 CTGGGTGGAA AGAAATAGCT ACTCCTGTTC AGTGGTCCAC GAGGGTCTGC 1401 ACAATCACCA CACGACTAAG AGCTTCTCCC GGACTCCGGG TAAATGAGCT 1451 CAGCACCCAC AAAACTCTCA GGTCCAAAGA GACACCCACA CTCATCTCCA 1501 TGCTTCCCTT GTATAAATAA AGCACCCAGC AATGCCTGGG ACCATGTAAA 1551 AAAAAAAAA AAAGGAATTC

Fig. 2(a)

OKT 3 HEAVY CHAIN PROTEIN SEQUENCE DEDUCED FROM DNA SEQUENCE

```
MERHWIFLLL LSVTAGVHSQ VQLQQSGAEL ARPGASVKMS CKASGYTFTR
    YTMHWVKQRP GQGLEWIGYI NPSRGYTNYN QKFKDKATLT TDKSSSTAYM
 51
101 QLSSLTSEDS AVYYCARYYD DHYCLDYWGQ GTTLTVSSAK TTAPSVYPLA
151 PVCGDTTGSS VTLGCLVKGY FPEPVTLTWN SGSLSSGVHT FPAVLOSDLY
201
    TLSSSVTVTS STWPSQSITC NVAHPASSTK VDKKIEPRGP TIKPCPPCKC
251 PAPNLLGGPS VFIFPPKIKD VLMISLSPIV TCVVVDVSED DPDVQISWFV
301 NNVEVHTAQT QTHREDYNST LRVVSALPIQ HQDWMSGKEF KCKVNNKDLP
351
    APIERTISKP KGSVRAPOVY VLPPPEEEMT KKOVTLTCMV TDFMPEDIYV
401
     EWTNNGKTEL NYKNTEPVLD SDGSYFMYSK LRVEKKNWVE RNSYSCSVVH
     EGLHNHHTTK SFSRTPGK*
451
                                  Fig. 2(b)
            1
                                 23
                                                      42
           NN
                    N
                                   N
                                             N
                                                  N
RES TYPE
           SBspSPESssBSbSsSssPSPSPsPssse*s*p*Pi^ISsSe
Okt3v1
           QIVLTQSPAIMSASPGEKVTMTCSASS.SVSYMNWYQQKSGT
REI
           DIQMTQSPSSLSASVGDRVTITCQASQDIIKYLNWYQQTPGK
           ? ?
              CDR1
                     (LOOP)
              CDR1
                     (KABAT)
                       56
                                                     85
             NN
          N
RES TYPE
         *IsiPpIeesesssSBEsePsPSBSSEsPspsPsseesSPePb
Okt3v1
          SPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAAT
REI
          APKLLIYEASNLQAGVPSRFSGSGSGTDYTFTISSLQPEDIAT
             ??
                          CDR2 (LOOP/KABAT)
                         102
                               108
RES TYPE
          PiPIPies**iPIIsPPSPSPSS
                                             Fig. 3
Okt3v1
          YYCQQWSSNPFTFG8GTKLEINR
REIVI
          YYCQQYQSLPYTFGQGTK<u>LQ</u>I<u>T</u>R
```

?

CDR3 (LOOP)
CRD3 (KABAT)

SUBSTITUTE SHEET

NN N

4/15

SESPs SBssS sSSsSpSpSPsPSEbSBssBePiPIpiesss RES TYPE QVQLQQ8GAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQ Okt3h QVQLVESGGGVVQPGRSLRLSC88SGFIFSSYAMYWVRQAPGK KOL ?? ? CDR1 (LOOP) *** CDR1 (KABAT) 52a 60 65 N N RES TYPE IIeIppp assssss ps pssbspsessesp pspssbsse epb GLEWIGYINPSRGYTNTNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAV Okt3vh GLEWVAIIWDDGSDQHYADSVKGRFTISRDNSKNTLFLQMDSLRPEDTGV KOL ???? ?? ? CDR2 (LOOP) CDR2 (KABAT)

23 26

107

113

32 35 N39

92 N PiPIEissssiiisssbibi*EIPIP*spSBSS RES TYPE Okt3vh YYCARYYDDHY.....CLDYWGQGTTLTVSS KOL YFCARDGGHGFCSSASCFGPDYWGQGTPVTVSS ****** CRD3 (KABAT/LOOP)

Fig. 4

OKT 3 HEAVY CHAIN CDR GRAFTS

1. gh341 and derivatives

	1	26	35	39	43	
Okt3vh	QVQLQQSGAELARPGASVKMS	CKASGYTFTR	YTMHW	VKQR	PGQ	
gH341	QVQLVESGGGVVQPGRSLRLS	CSS <u>SGYTFTR</u>	YTMHWY	VRQA	PGK	JA178
gH341A	QVQLV <u>Q</u> SGGGVVQPGRSLRLS	C <u>KA</u> SGYTFTR	YTMHW	VRQA	PGK	JA185
gH341E	QVQLV <u>Q</u> SGGGVVQPGRSLRLS	C <u>KA</u> SGYTFTR	YTMHW	VRQA.	PGK	JA198
gH341*	QVQLV <u>O</u> SGGGVVQPGRSLRLS	C <u>KA</u> SGYTFTR	YTMHW\	/RQA	PGK	JA207
gH341*	QVQLV <u>Q</u> SGGGVVQPGRSLRLS	C <u>KA</u> SGYTFTR	YTMHW\	/RQA	PGK	JA209
gH341D	QVQLV <u>Q</u> SGGGVVQPGRSLRLS	C <u>KA</u> SGYTFTR	YTMHW\	/RQA	PGK	JA197
gH341*	QVQLV <u>Q</u> SGGGVVQPGRSLRLS	C <u>KA</u> SGYTFTR	YTMHW\	/RQA	PGK	JA199
gH341C	QVQLVQSGGGVVQPGRSLRLS	C <u>KA</u> SGYTFTR	YTMHW\	/RQA	PGK	JA184
gH341*	QVQLVQSGGGVVQPGRSLRLS	S <u>ASGYTFTR</u>	VWH <u>MTY</u>	RQAF	PGK	JA203
gH341*	QVQLVESGGGVVQPGRSLRLS	S <u>ASGYTFTR</u>	VWH <u>MTY</u>	RQAF	PGK	JA205
gH341B	QVQLVESGGGVVQPGRSLRLS	SS <u>SGYTFTR</u>	VWHMT)	RQAF	PGK	JA183
gH341*	QVQLVQSGGGVVQPGRSLRLSC	S <u>ASGYTFTR</u>	VWH <u>MTY</u>	RQAF	PGK	JA204
gH341*	QVQLVESGGGVVQPGRSLRLS	S <u>ASGYTFTR</u>	VWH <u>MT</u> Y	RQAF	PGK	JA206
gH341*	QVQLVQSGGGVVQPGRSLRLSG	S <u>ASGYTFTR</u>	<u>(TM</u> HWV	RQAF	PGK	JA208
KOL	QVQLVESGGGVVQPGRSLRLS	CSSSGFIFSS	/WYMAY	/RQAI	PGK	•

Fig. 5(i)

	44	50		65		83	
Okt3vh	GLI	EWIGYINP	SRGYTNYNQKI	KDKATLTTI	OKSSSTAYM	QLSSLT	
gH341	GL:	EWVA <u>YIN</u> F	SRGYTNYNOK	<u>FKD</u> RFTISRI	DNSKNTLFL	QMDSLR	JA178
gH341A	GL:	ew <u>igyinf</u>	SRGYTNYNOK	V <u>KD</u> RĘTIS <u>T</u> I	d <u>k</u> sk <u>s</u> t <u>a</u> fl	QMDSLR	JA185
gH341E	GLE	WIGYINP	<u>SRGYTNYNOK</u> V	<u>KD</u> RFTIS <u>T</u> D	KSK <u>S</u> TAFL	OMDSLR	JA198
gH341*	GLÉ	WIGYINP	<u>SRGYTNYNOK</u> V	<u>KD</u> RFTIS <u>T</u> C	<u>K</u> SKNT <u>A</u> FL	OMDSLR	JA207
gH341*	GLE	WIGYINP	<u>SRGYTNYNOK</u> V	<u>KD</u> RFTISRE	NSKNT <u>a</u> FL(OMDSLR	JA209
gH341D	GLE	WIGYINP	<u>SRGYTNYNOK</u> V	<u>KD</u> RFTIS <u>T</u> C	<u>K</u> SKNTLFL	OMDSLR	JA197
gH341*	GLE	WIGYINP	<u>SRGYTNYNOK</u> V	<u>KD</u> RFTISRD	NSKNTLFL	OMDSLR	JA199
gH341C	GLE	WVA <u>YINP</u>	<u>SRGYTNYNOKF</u>	<u>KD</u> RFTISRD	NSKNTLFL	OMDSLR	JA184
gH341*	GLE	W <u>IGYINP</u>	<u>SRGYTNYNOK</u> V	<u>KD</u> RFTIS <u>T</u> C	KSKSTAFLO	OMDSLR	JA207
gH341*	GLE	W <u>IGYINP</u>	<u>SRGYTNYNOK</u> V	<u>KD</u> RFTIS <u>T</u> D	KSKSTAFLO	OMDSLR	JA20 5
3H341B	GLE	W <u>IGYINP</u>	<u>SRGYTNYNOK</u> V	<u>KD</u> RFTIS <u>T</u> D	KSKSTAFLO	OMDSLR.	JA18 3
gH341*	GLE	WIGYINP	<u>SRGYTNYNOK</u> V	<u>KD</u> RFTIS <u>T</u> D	KSK <u>S</u> TAFLO	OMDSLR	JA204
gH341*	GLE	WIGYINP	<u>SRGYTNYNOK</u> V	<u>KD</u> RFTIS <u>T</u> D	KSK <u>S</u> TAFLO	OMDSLR	JA206
gH341*	GLE	WIGYINP	<u>SRGYTNYNOK</u> V	<u>KD</u> RFTIS <u>T</u> D	<u>K</u> SKNT <u>A</u> FL	OMDSLR	JA208
KOL	GLI	EWVAIIWD	DGSDQHYADSV	KGRFTISRD	NSKNTLFL(QMDSLR	

Fig. 5(ii)

	84	. 95	102	113	
Okt3vh	SEDSA	AVYYCARYYDDHY	CLDYWGQG	TTLTVSS	
gH341	PEDTO	VYFCAR <u>YYDDHY</u>	CLDYWGQG	TTLTVSS	JA178
gH341A	PEDT	VYYCARYYDDHY	CLDYWGQG	TTLTVSS	JA185
			٠		
gH341E	PEDTO	SVYFCAR <u>YYDDHY</u>	CLDYWGQG	TTLTVSS	JA198
gH341*	PEDTO	GVYFCAR <u>YYDDHY</u>	CLDYWGQG	TTLTVSS	JA207
gH341D	PEDTO	GVYFCAR <u>YYDDHY</u>	CLDYWGQG	TTLTVSS	JA197
gH341*	PEDTO	VYFCAR <u>YYDDHY.</u>	CLDYWGQG	TTLTVSS	JA209
gH341*	PEDTO	VYFCAR <u>YYDDHY</u>	CLDYWGQG	TTLTVSS	JA199
gH341C	PEDTO	VYFCAR <u>YYDDHY</u>	CLDYWGQG	TTLTVSS	JA184
gH341*	PEDT	YYYYCARYYDDHY	CLDYWGQG	TTLTVSS	JA203
gH341*	PEDT	VYYCARYYDDHY	CLDYWGQG	TTLTVSS	JA205
gH341B	PEDT <u>A</u>	VYYCARYYDDHY	CLDYWGQG	TTLTVSS	JA183
gH341*	PEDTO	VYFCAR <u>YYDDHY</u>	CLDYWGQG	TTLTVSS	JA204
gH341*	PEDTO	VYFCAR <u>YYDDHY</u>	CLDYWGQG	TTLTVSS	JA206
gH341*	PEDTO	VYFCAR <u>YYDDHY</u>	CLDYWGQG	TTLTVSS	JA208
KOL	PEDTO	VYFCARDGGHGFCS	SASCFGPDYWGQG'	TPVTVSS	

Fig. 5(iii)

OKT3 LIGHT CHAIN CDR GRAFTING

1. gL221 and derivatives

	1					24		34	42	
Okt3vl	QIV	LTQSI	PAIMS	ASPGE	KVIMI	CSASS	. SVSY	MNWYQ	OKSGT	•
gL221	DIQ	MTQSI	PSSLS	ASVGI	RVTI	CSASS	.svsy	MNMA O	YTPGK	
gL221A	<u>o</u> I <u>v</u>	MTQSI	PSSLS	ASVG	RVTI	C <u>SASS</u>	. SVSY	<u>МИ</u> МХО(TPGK	
gL221B	<u>o</u> I <u>v</u>	MTQSI	PSSLS	ASVGI	RVTI	CSASS	.svsy	WWWYQ(TPGK	
gL221C	DIQ	MTQSI	PSSLS	ASVGI	RVTI	rc <u>sass</u>	.svsy	<u>ww</u> wyQ(TPGK	
REI	DIQ	MTQSI	PSSLS	ASVGI	RVTI	CQASQI	DIIKY	LNWYQ	TPGK	
	43		50	56					85	,
Okt3v1	SPK	RWIYI	OTSKL	ASGVI	PAHFRO	SSGSGT	SYSLT	ISGME	AEDAAT	
gL221	APK	LLIY	TSKL	<u>AS</u> GVI	PSRFS	SSGSGT	OYTFT:	ISSLQI	PEDIAT	
gL221A	APK	<u>RW</u> IY	TSKL	<u>As</u> gvi	PSRFS	SSGSGTI	OYTFT:	ISSLQI	PEDIAT	
gL221B	APK	<u>RW</u> IYI	OTSKI	<u>AS</u> GVI	PSRFS	SSGSGT	OYTFT:	ISSLQI	PEDIAT	
gL221C	APK	<u>RW</u> IYI	OTSKI	<u>AS</u> GVI	PSRFS	SSGSGTI	OYTFT:	ISSLQI	PEDIAT	
REI	APK	LLIYI	EASNL	Q AGVI	PERFS	SSGSGT	OYTFT:	ISSLQI	PEDIAT	
	86	91	96		10	80				
Okt3vl	YYCQ	QWSS	NPFTF	GSGT	KLEINI	₹				
gL221	YYCQ	OWSSI	<u> </u>	GQGTI	TIQLD	₹				
gL221A	YYCQ	OWSSI	<u> VPF</u> TF	GQGT	KLQITI	२		•		
gL221B	YYCQ	OWSS1	<u> YPF</u> TF	GQGT	KLQITI	₹.				
gL221C	YYCO	OWSSI	<u> VPF</u> TF	GQGTI	CLQITI	₹				
REI	YYCO	OYOSI	LPYTF	GQGTI	(LQITI	3				

CDR'S ARE UNDERLINED

FRAMEWORK RESIDUES INCLUDED IN THE GENE ARE DOUBLE UNDERLINED

Fig. 6

SUBSTITUTE SHEET

SUBSTITUTE SHEET

Fig. 9

SUBSTITUTE SHEET

	(183)	,48,49,71,73,76,78,88,91,
		_,,24,48,49,71,73,76,78,88,91,
──	(184)	6. 23, 24,,,,,,,
	(206)	_,,24,48,49,71,73,76,78,,_,
		6,,24,48,49,71,73,76,78,88,91,
	(185)	6,23,24,48,49,71,73,76,78,88,91,
-	(198)	6.23.24.48.49.71.73,76.78,

SUBSTITUTE SHEET

