Chapitre 10

Fonctions linéaires et affines

I. Fonction linéaire

1) Expression algébrique

Définition:

La fonction qui, à un nombre x fait correspondre le nombre ax (où a est un nombre fixé) est appelée **fonction linéaire**.

On la note $f: x \mapsto ax$

L'**image** de x par la fonction f est le nombre ax.

On a donc f(x)=ax

Exemple:

La fonction qui, à un nombre x, fait correspondre son triple est une fonction linéaire.

x	-2
3x	-6

On la note
$$f: x \mapsto 3x$$

 $f(-2)=3\times(-2)=-6$

L'image de -2 par f est -6.

Un a**ntécédent** de -6 par f est -2.

2) <u>Tableau de proportionnalité</u>

Un **tableau de valeurs** associé à une fonction linéaire f(x)=ax est un tableau de **proportionnalité** car on multiplie la 1^{ère} ligne par un nombre, toujours le même : le coefficient a.

Exemple:

En utilisant la fonction $f: x \mapsto 3x$

x	2	8	10
<i>3x</i>	$f(2)=3\times 2=6$	$f(8) = f(4 \times 2) = 4 \times f(2) = 4 \times 6 = 24$	f(10)=f(2+8)=f(2)+f(8)=6+24=30

Propriété:

Soit f une fonction linéaire :

pour tout nombre x_1, x_2, k .

$$f(k \times x_1) = k \times f(x_1)$$
 et $f(x_1 + x_2) = f(x_1) + f(x_2)$

3) Représentation graphique

La **représentation graphique** d'une fonction linéaire $f: x \mapsto ax$ est une **droite** passant par l'**origine** du repère.

• a s'appelle le **coefficient directeur** de la droite.

II. Fonction affine

1) Expression algébrique

Définition:

La fonction qui, à un nombre x, fait correspondre le nombre ax+b (où a et b sont des nombres fixés) est appelée **fonction affine**.

On la note $f: x \mapsto ax + b$

L'**image** de x par la fonction f est le nombre ax+bOn a donc f(x)=ax+b.

On a done J(x) - ax + b

Exemple:

La fonction qui, à un nombre x, associe son triple augmenté de 5 est une fonction affine.

x	4
3x	12
3 <i>x</i> +5	17

On la note
$$f: x \mapsto 3x+5$$

 $f(4)=3\times 4+5=17$

L'**image** de 4 par *f* est 17.

Un **antécédent** de 17 par f est 4.

Remarque:

Une fonction linéaire $f: x \mapsto ax$ est une fonction affine particulière pour laquelle b = 0.

2) Proportionnalité des accroissements

Propriété:

Soit *f* une fonction affine définie par f(x)=ax+b.

Il y a **proportionnalité entre les accroissements** de f(x) et les accroissements de x.

$$f(x_2) - f(x_1) = a \times (x_2 - x_1)$$

Exemple:

En utilisant la fonction $f: x \mapsto 3x+5$

	+	+ 6		4	
x	2	8	3	12	
3 <i>x</i> +5	11	29		29+12=41	
	+ 1	+ 18		$\frac{4\times18}{6} = +12$	

On a:

$$a = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$
 avec $x_2 \neq x_1$

Exemple:

Soit une fonction affine f telle que f(3)=9 et f(5)=13

On a donc:

$$a = \frac{f(3) - f(5)}{3 - 5} = \frac{9 - 13}{3 - 5} = \frac{-4}{-2} = 2 \quad \text{donc} \quad f(x) = 2x + b$$

$$f(3) = 9 = 2 \times 3 + b \quad \text{donc} \quad b = 9 - 6 = 3$$

et f(3)=9= Ainsi on obtient :

$$f(x) = 2x + 3$$

3) Représentation graphique

La représentation graphique d'une fonction affine $f: x \mapsto ax+b$ est une **droit**e.

- a s'appelle le **coefficient directeur** de la droite.
- b s'appelle l'ordonnée à l'origine de la droite.

