Name:

Worksheet 1 – Week 3

3. Draw the slope field of $\frac{dy}{dt} = -y + 1$.

4. Write what it means for y(t) to be asymptotic to u(t).

5. Find a differential equation such that all solutions y(t) satisfy $y(t) \to 3$ as $t \to \infty$.

6. Find a differential equation such that all solutions y(t) are asymptotic to $t^3 + 2$.

7. Solve the initial value problem $\frac{dy}{dt} = 13y + 65$, y(0) = 2.

- 8. State the order of and either "linear" or "nonlinear" for $t \frac{d^3y}{dt^3} y + t^3y = \sinh(t^4 16)$.
- 9. State the order and linearity $y^2 \frac{\partial^3 z(x,y)}{\partial x^2 \partial y} + x^3 z(x,y) = \sinh(x^4 16)$.
- 10. Determine the values of r for which $t^2 \frac{d^2y}{dt^2} 4t \frac{dy}{dt} + 4y = 0$ has a solution of the form $y(t) = t^r$, t > 0.

11. Solve the initial value problem $\frac{dy}{dt} + \cot(t)y = 2e^t$, $y(\pi/2) = 5$, $t \in (0, \pi)$.

12. Determine whether the function $f(x,y) = 2x^2 - 3y^2 + 4xy$ is homogeneous. If so, state the order.

