卷積神經網路基礎

2025/06/28

PRESENTED BY AI Foundation

目錄

- 1. 傳統電腦視覺與深度學習方法比較
- 2. 卷積神經網路介紹
- 3. 程式實作

傳統電腦視覺與深度學習方法比較

如何認識一張圖片

傳統電腦視覺

特徵萃取是電腦判斷圖片的關鍵

• 先前在電腦視覺分類作業的進展皆在於找到關鍵的 特徵

顏色資訊的萃取

圖片在視覺上可以直接以顏色作出區分,如何能用量化描述一張圖片的顏色呢?

Less Similar More Similar

色調較相近, 皆為暖色調, 右圖則為冷色調。

透過描述顏色的特徵向量,明顯可以看出左二兩張圖的

視覺外型的資訊萃取

· 圖的構成: 線條→圖案(pattern)→物件→場景

視覺外型的資訊萃取

Kernel = Filter

Input image

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

透過設計特別的運算,得以取得圖像當中的外型資訊。

原圖	3	x 3 filter	S	卷積後結果	結果
	0 0 0	0 1 0	0 0 0		原圖不變
	1 1 1	1 -7 1	1 1 1		銳利化
	-1 -1 -1	-1 8 -1	-1 -1 -1		邊緣強化
	-1 0 1	-2 0 2	-1 0 1		找水平特徵
	-1 -2 -1	0 0 0	1 2 1		找垂直特徵

傳統電腦視覺的重點流程放在「hand crafted features」,設計不同用途的過濾器。

傳統電腦視覺方法

•訓練階段

特徵萃取是電腦判斷圖片的關鍵

先前在電腦視覺分類作業的進展皆在於找到關鍵的 特徵,但過去的做法可能有一些問題

- 。 人為設計的特徵真的是最佳特徵嗎?
- 。最佳特徵可能因作業不同而有所不同

深度學習方法

DNN

將DNN應用到圖片的問題

• 將原始圖片以全連接層連結

。參數量將急遽增加

。未考慮圖片資料特性

如何認識一張圖片

傳統電腦視覺與深度學習方法(CNN)比較

- 傳統電腦視覺
 - Fixed/engineered features + trainable classifier

- 深度學習方法
 - Trainable features + trainable classifier

CNN on ILSVRC

卷積神經網路介紹

Feature Extraction, Stride, Padding

卷積神經網路架構

卷積神經網路架構

卷積層(Convolutional Layer)

·在CNN中,卷積層的用途 在於提取特徵

- 每一組Filter內的數字即 為神經網路中的權重 (將透過訓練資料做改變)

圖片來源: https://datascience.stackexchange.com/questions/23183/why-convolutions-always-use-odd-numbers-as-filter-size

卷積層(Convolutional Layer)

Image

Filter

Feature Map

Layer 1

*

1	0	0
0	1	0
0	0	1

1	2	2
1	2	3
3	1	(3)

這個步驟有那些地方是可以變化的呢?

Layer 2

1	2	2
1	2	3
3	1	3

*

1	0	0
0	1	0
0	0	1

_

6

Filter Size

• 3x3 filter

Image

0	0	0	0	0
0	0	1	1	0
1	1	1	1	1
0	1	0	1	1
0	0	1	0	1

Filter

Feature Map

1	2	2
1	2	3
3	1	3

Filter Size

5x5 filter

Image

0	0	0	0	0
0	0	1	1	0
1	1	1	1	1
0	1	0	1	1
0	0	1	0	1

Filter

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

3

Stride

• 使得卷積層的輸出大小降低

• 例:設定 stride 為 2

Image

0	0	0	0	0
0	0	1	1	0
1	1	1	1	1
0	1	0	1	1
0	0	1	0	1

Filter

Feature Map

1	2
3	3

遺失哪部分的資訊

Image

0	0	0	0	0
0	0	1	1	0
1	1	1	1	1
0	1	0	1	1
0	0	1	0	1

Filter

1	0	0
0	1	0
0	0	1

Feature map

1	2	2
1	2	3
3	1	3

Filter 觸及的次數

1	2	3	2	1
2		6	4	2
3	6	9	6	3
2	4			2
1	2	3	2	1

*

Zero-padding

若是邊界有較多資訊的圖片,使用 padding 會有比較好的效果

Image

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	1	0	0
0	1	1	1	1	1	0
0	0	1	0	1	1	0
0	0	0	1	0	1	0
0	0	0	0	0	0	0

Filter

1	0	0
0	1	0
0	0	1

Feature Map

0	1	1	0	0
1	1	2	2	0
2	1	2	3	2
0	3	1	3	2
0	0	2	0	2

Zero-padding 可以維持 輸出與輸入的大小一致

Zero-padding

• Padding 要加的層數是取決於 Filter 的大小 Image

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0
0	0	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0
0	0	0	0	1	0	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Filter

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Feature map

1	2	2	0	0
1	2	3	2	0
3	1	3	3	2
0	3	1	3	3
0	0	3	1	3

卷積層的共享權重

Convolution layer shared weights

Share the same filter in a sliding

Parameters : (3*3*3+1)*1

卷積演算法設計

- 因應圖片特性
 - 。相同權重的filter可 應用在不同位置上

減少大卷積核的參數量

- 3x3 convolutional kernels less parameters
 - Stacked convolutional layers have large receptive fields
 - More non-linearity
 - Less parameters to learn
 - More numbers of channels

Parameters : (5*5*1+1)*1 = 26

Parameters: (3*3*1+1)*1+(3*3*1+1)*1=20

針對RGB影像進行卷積

Filter數量與輸出維度的關聯

New image

動動腦時間:請問圖片中的?是多少

Filter sets

New images 3x3xn m 4×4×17

New images 2

Activation Layer

在卷積神經網路中由於層數較多,需考量梯度消失與梯度爆炸問題,因此通常會使用ReLU類型的激活函數(Activation function)

圖片來源:https://www.researchgate.net/figure/Various-forms-of-non-linear-activation-functions-Figure-adopted-from-Caffe-Tutorial_fig3_315667264

Activation Layer

Feature map

0	0	4	-8	0
2	0	1	1	0
1	1	1	1	1
-3	1	0	1	1
-1	0	1	-2	1

σ: Activation function

σ(features map)

Feature map after ReLU

卷積神經網路架構

池化層(Pooling Layer)

- 池化層(Pooling Layer)作用
 - 減少模型參數
 - 防止模型過擬合(overfitting)
- Max pooling
 - 以區域內最大的數值作為代表

1	2	2	0
1	2	3	2
3	1	3	2
0	2	0	2

	_	_	O
1	2	3	2
3	1	3	2
0	2	0	2

- Average pooling
 - 將區域內數值取平均

Average pooling

在池化層中無參數需要學習

池化層(Pooling Layer)

Pool size

1	2	2	2	1	0
2	3	3	0	2	1
1	1	2	2	1	2
1	0	1	3	2	2
0	2	2	2	1	1
0	1	2	0	0	2

3	2
2	3

Pool size =
$$(3, 3)$$

1	2	2	2	1	0
2	3	3	0	2	1
1	1	2	2	1	2
1	0	1	3	2	2
0	2	2	2	1	1
0	1	2	0	0	2

Pool size =
$$(2, 2)$$

3	3	2
1	3	2
2	2	2

Max Pooling & Average Pooling

Max pooling

Average pooling

小結

在卷積神經網路中主要使用卷積層與池化層作為特 徵擷取的方式

卷積神經網路架構

攤平(Flatten)

- 擔任在卷積層到全連接層之間的橋樑
- 將多維的輸入, 攤平成一維輸出進行維度的轉換
- 過程中不需添加任何參數

Global Average Pooling, GAP

攤平(Flatten)的方式同樣可能造成參數量較大, 因此後續研究者提出以全局池化的方式將二維輸入 轉成一維。

全局池化會針對每張特徵圖總結出一個數值,並且同樣不需額外參數

- Global Max Pooling
- Global Average Pooling

卷積神經網路架構

全連接層(Fully Connected Layer)

因輸入維度已為一維,可直接以全連接層作為隱藏 層或輸出層

程式實作練習

CIFAR-10 Dataset

 60,000 (50,000 training + 10,000 testing) samples, 32x32 color images in 10 classes

- 10 classes
 - airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

- Official website
 - https://www.cs.toronto.edu/~kriz/cifar.html

CIFAR-10 Dataset

練習時間

- 請使用 Cifar-10 資料集
- 建立 DNN 與 CNN 的模型
- 比較兩個模型的差異

LENET-5

• 請以下面的LENET-5模型架構,建立一個與此相 同的模型架構

VGG Net

- Research and Development (R&D) team
 - University of Oxford

- Architecture overview
 - Effect of CNN depths on accuracy
 - VGG16 and VGG19
 - Deeper than AlexNet
 - More accurate than AlexNet

資料來源: https://neurohive.io/en/popular-networks/vgg16/

Thank you