Devoir surveillé de mathématiques

Janvier 2025

Partie I

Énoncés

1. Exercice 1

1.1. Question 1

Montrer que $3^{126} + 5^{126}$ est divisible par 13.

1.2. Question 2

Quel est le reste de la division euclidienne de 1357^{2020} par 5 ?

1.3. Question 3

Montrer que la somme de 3 cubes consécutifs est divisible par 9.

1.4. Question 4

Résoudre les équations suivantes :

$$x^2 - 2x + 16 \equiv 0 \pmod{5}$$
 et $7x \equiv 8 \pmod{9}$.

2. Exercice 2

Le plan complexe est muni d'un repère orthonormal $(O; \vec{u}, \vec{v})$ d'unité graphique 1 cm (ou 1 grand carreau).

2.1. Question 1

On considère les deux nombres complexes z_A de module 4 et d'argument $\frac{\pi}{3}$ et $z_B = 2 - 2i\sqrt{3}$.

- a) Déterminer la forme algébrique du nombre z_A .
- b) Déterminer la forme trigonométrique du nombre z_B .
- c) Placer dans le plan les points A et B d'affixes respectives z_A et z_B .

2.2. Question 2

- a) Calculer le module et un argument de chacun de ces deux nombres complexes.
- b) Placer dans le plan complexe les points C et D d'affixes respectives z_C et z_D .

2.3. Question 3

Démontrer que le triangle BDA est rectangle.

2.4. Question 4

Démontrer que le triangle ABC est équilatéral.

3. Exercice 3

Soient les matrices suivantes :

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad \text{et} \quad B = \begin{bmatrix} 2 & 4 \\ -3 & 6 \\ 1 & 7 \\ 8 & 9 \end{bmatrix}.$$

3.1. Question 1

Donner la dimension de ces deux matrices.

3.2. Question 2

Calculer, s'ils existent, les produits suivants : $AB,\,BA,\,A^2,\,B^2.$

Partie II

Corrections

1. Exercice 1

1.1. Question 1

L'astuce est de déterminer une valeur a (pas trop grande) telle que $3^a \equiv 1[13]$ et une valeur b telle que $5^b \equiv 1[13]$ car cela va nous permettre de simplifier. Pour ce faire, on peut utiliser la calculatrice. En partant de 0, on trouve:

On peut s'arrêter et constater que $3^3 \equiv 1[13]$ et $5^4 \equiv 1[13]$. On sait que $126 = 42 \times 3 + 0$ et $126 = 31 \times 4 + 2$. Dès lors:

$$3^{126} + 5^{126} \equiv 3^{42 \times 3} + 5^{31 \times 4} + 2 \equiv (3^3)^{42} + (5^4)^{31} \times 5^2 \equiv 1^{42} + 1^{31} \times 5^2 \equiv 25 + 1 \equiv 0 [13]$$

ce qu'il fallait démontrer.

Remarque: Il est inutile d'utiliser le fait que $3^0 \equiv 1[13]$ ou $5^0 \equiv 1[13]$ (dans le tableau) car $126 = 0 \times \text{(n'importe quel nombre)} + 126$ donc on reviendrait à la même chose.

1.2. Question 2

En appliquant la même méthode qu'à la question 1, on peut trouver que $1357^4 \equiv 1[5]$. On alors que, puisque $2020 = 505 \times 4$:

$$1357^{2020} \equiv (1357^4)^{505} \equiv 1^{505} \equiv 1[5]$$

Donc le reste de la division euclidienne de 1357²⁰²⁰ par 5 est 1.

Remarque: La phrase de conclusion est toujours importante lorsqu'on a un exercice de ce genre. Par exemple, si on trouve à la fin $3 \equiv -1[2]$, il ne faut pas dire que le reste est -1 mais bien 1 car le reste ne peut pas être négatif.

1.3. Question 3

Posons n un entier relatif. Nous devons montrer que $N=(n-1)^3+n^3+(n+1)^3\equiv 0$ [9]. Nous allons procéder par disjonction de cas en faisant prendre à n toutes ses valeurs modulo 9:

Détaillons le calcul pour $n \equiv 1[9]$:

$$N \equiv (1-1)^3 + 1^3 + (1+1)^3 \equiv 1 + 8 \equiv 9 \equiv 0$$
[9]

Puisque dans tous les cas, $N \equiv 0$ [9], nous avons bien montré que la somme de trois cubes est toujours divisible par 9.

Remarque: Ici, on aurait aussi pu poser $N = n^3 + (n+1)^3 + (n+2)^3$. Cependant, bien que dans notre cas c'était simplie, il vaut mieux tenter de simplifier au maximum pour faciliter les calculs.

1.4. Question 4

Pour résoudre les équations, procédons avec des tableaux par disjonction des cas pour chaque équation.

- Résolution de $x^2 - 2x + 16 \equiv 0 \pmod{5}^{**}$

La seule solution est donc $x \equiv 1 \pmod{5}$. L'ensemble solution est $x \in \{n, n = 5k+1, k \in \mathbb{Z}\}$.

- Résolution de $7x \equiv 8 \pmod{9}^{**}$

Ainsi, la seule solution est $x \equiv 5 \pmod{9}$. L'ensemble solution est $x \in \{n, n = 9k + 5, k \in \mathbb{Z}\}$.

3. Exercice 3

3.1. Question 1

La matrice A est de dimension 2×3 , car elle a 2 lignes et 3 colonnes.

La matrice B est de dimension 4×2 , car elle a 4 lignes et 2 colonnes.

3.2. Question 2

- a) Le produit AB n'est pas défini, car le nombre de colonnes de A (3) ne correspond pas au nombre de lignes de B (4).
- b) Le produit BA est possible car B a le même nombre de colonnes que A a de lignes.
- c) La matrice A^2 n'est pas définie car A n'a pas le même nombre de colonnes que de lignes
- d) La matrice B^2 n'est pas définie car B n'a pas le même nombre de colonnes que de lignes

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad \text{et} \quad B = \begin{bmatrix} 2 & 4 \\ -3 & 6 \\ 1 & 7 \\ 8 & 9 \end{bmatrix}.$$

Calculons donc BA:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 \\ -3 & 6 \\ 1 & 7 \\ 8 & 9 \end{bmatrix} \begin{bmatrix} 18 & 24 & 30 \\ 21 & 24 & 27 \\ 29 & 37 & 45 \\ 44 & 61 & 78 \end{bmatrix}$$