# Risk Concepts and Management Managerial Economics

Natalia Ordaz Reynoso

Fall 2019



#### Introduction

Up until now we have assumed that decision makers face no uncertainty

- They know prices with certainty
- They know about all input and output relationships with certainty

We will now allow for the possibility of uncertainty in specific ways, still imposing some structure on the uncertainty

 $\rightarrow$  What does this mean?



#### Overview

- Describing Outcome Distributions
- Risk Attitudes and Choice Criteria
- Probabilistic Budgeting
- Managing Risk

What is uncertainty?

What is uncertainty?

Uncertainty: There are many possible states of the world in the future, and we are not sure exactly which one will occur.

What is uncertainty?

Uncertainty: There are many possible states of the world in the future, and we are not sure exactly which one will occur.

What is risk?

What is uncertainty?

Uncertainty: There are many possible states of the world in the future, and we are not sure exactly which one will occur.

What is risk?

Risk: uncertainty about deviation from expected earnings or expected outcome

## Describing Outcome Distributions

- We will allow for uncertainty: we do not know exactly what the payoff of specific actions will be
- However, we will assume that we know the distribution of possible outcomes (what are outcomes?)
- In other words: we know all the possibilities and how likely each one of them is
- Analogy: throwing dice (board)

## Payoff Matrices

A payoff matrix is a way of describing the distribution of outcomes for a risky choice

- Alternative Actions
- Probabilities for each state of nature

- States of nature
- Payoffs for each alternative in each state

| State of Nature | Job A  | Job B  | Job C  | Probability |
|-----------------|--------|--------|--------|-------------|
| 1               | 33,000 | 29,000 | 20,000 | 1/6         |
| 2               | 33,000 | 32,000 | 27,000 | 1/6         |
| 3               | 33,000 | 33,000 | 33,000 | 1/6         |
| 4               | 33,000 | 34,000 | 40,000 | 1/6         |
| 5               | 33,000 | 35,000 | 43,000 | 1/6         |
| 6               | 33,000 | 38,000 | 47,000 | 1/6         |

Q: Can we describe all distributions with a payoff matrix?

## Payoff Matrices

A payoff matrix is a way of describing the distribution of outcomes for a risky choice

- Alternative Actions
- Probabilities for each state of nature

- States of nature
- Payoffs for each alternative in each state

| State of Nature | Job A  | Job B  | Job C  | Probability |
|-----------------|--------|--------|--------|-------------|
| 1               | 33,000 | 29,000 | 20,000 | 1/6         |
| 2               | 33,000 | 32,000 | 27,000 | 1/6         |
| 3               | 33,000 | 33,000 | 33,000 | 1/6         |
| 4               | 33,000 | 34,000 | 40,000 | 1/6         |
| 5               | 33,000 | 35,000 | 43,000 | 1/6         |
| 6               | 33,000 | 38,000 | 47,000 | 1/6         |

Q: Can we describe all distributions with a payoff matrix? Hint: discrete v continuous outcomes

## **Describing Outcomes**

There are other ways of describing a distribution of outcomes.

• Mean (or expected value): measuring central tendency

$$E(\pi) = \sum_{i=1}^n p_i \pi_i$$

• Variance or standard deviation: measuring dispersion

$$V(\pi) = \sum_{i=1}^{n} p_i(\pi_i - E(\pi))^2$$
  $S(\pi) = \sqrt{V(\pi)}$ 

• Coefficient of variation: measuring dispersion relative to the mean

$$CV(\pi) = \frac{S(\pi)}{E(\pi)}$$

We can calculate these for discrete or continuous outcomes



#### Risk Attitudes and Choice Criteria

- Even with the same information and beliefs about the outcome distribution for alternative actions, people can make different choices.
- We attribute this to "risk attitudes or preferences": not everybody sees risk in the same way
- One way of doing this is using a utility function that represents utility of different outcomes
- And then computing expected utility as:

$$EU = \sum_{i=1}^{n} p_i U(\pi_i)$$

The expected utility agent maximizes this function



### Risk Aversion

• What is risk aversion?

#### Risk Aversion

- What is risk aversion?
- Example definition (from Investopedia)
   The term risk-averse refers to investors who, when faced with two investments with a similar expected return, prefer the lower-risk option.
- Agents lose expected utility in the face of uncertainty
- Risk averse agents are willing to forego expected benefits in order to avoid risk

## Expected Utility example

- Take the following utility function:  $u(x) = \sqrt{x}$
- A person with this utility function exhibits risk aversion.
- Example: Two possible states of the world, equally likely: getting zero or 9 dollars. What is this agent's expected utility?

## Expected Utility example

- Take the following utility function:  $u(x) = \sqrt{x}$
- A person with this utility function exhibits risk aversion.
- Example: Two possible states of the world, equally likely: getting zero or 9 dollars. What is this agent's expected utility?
- How much would this agent be willing to take in order to eliminate the uncertainty?
- is that over the expected value of the outcome?

## Expected Utility example

- What if another agent has a utility function of the form u(x) = x
- We call this agent a risk neutral agent
- Calculate the expected utility for this agent.
- How much would this agent be willing to take in order to eliminate uncertainty?
- is that over the expected value of the outcome?



## **Expected Utility Alternatives**

- Expected utility maximization requires us to know (or assume) a utility function, and probability distribution of outcomes
- Game theoretic rules do not require full information on probability distributions
- Maximin: select the alternative with the best outcome on is worst-case scenario
- Maximax: select the alternative with the best outcome on is best-case scenario
- Minimax Regret: select the alternative with the smallest maximum regret. (Q: what is regret?)

## Example

| Payoff Matrix |        |        | Regret Matrix |       |        |  |
|---------------|--------|--------|---------------|-------|--------|--|
| Job A         | Job B  | Job C  | Job A         | Job B | Job C  |  |
| 33,000        | 29,000 | 20,000 | 0             | 4,000 | 13,000 |  |
| 33,000        | 32,000 | 27,000 | 0             | 1,000 | 6,000  |  |
| 33,000        | 33,000 | 33,000 | 0             | 0     | 0      |  |
| 33,000        | 34,000 | 40,000 | 7,000         | 6,000 | 0      |  |
| 33,000        | 35,000 | 43,000 | 10,000        | 8,000 | 0      |  |
| 33,000        | 38,000 | 47,000 | 14,000        | 9,000 | 0      |  |

Q: What would maximin, maximax, minimax regret do? What do we need to maximize expected utility?

## Probabilistic Budgeting

- We have assumed we knew outcome distributions
- Some times we don't even know that!
- Stochastic simulation (or probabilistic budgeting) is a method for estimating outcome distributions
- Develop a budget formula for calculating performance measure
- ② Divide variables in formula into three groups:
  - Budget parameters known with certainty
  - Externally determined random factors
  - Choice variables

Q: what are examples of each of these?

- Oetermine states of nature defined by levels of uncertain variables
- For each alternative, calculate performance measure for each state of nature

## A Simple Example: outcome distributions for three loan portfolios

- Two tipes of loans:
  - Loan A has low but stable return:  $E(R_A) = 0.02$ ,  $S(R_A) = 0.0066$
  - Loan B has higher but more variable return:  $E(R_B) = 0.025$ ,  $S(R_B) = 0.017$
- **1** Budget formula:  $\pi = R_A Loan_A + R_B Loan_B 20,000$
- Classify variables:
  - budget parameter: FC=20,000
  - 2 random factors:  $R_A$  and  $R_B$
  - s choice variables: Loan<sub>A</sub>, Loan<sub>B</sub>
- 3 States of nature (table next)
- Calculate performance measure for each state of nature (table next)



## Example: Table

|                    |       |       |                                            | Strategy  |                    |           |  |
|--------------------|-------|-------|--------------------------------------------|-----------|--------------------|-----------|--|
|                    |       |       |                                            | 1         | II                 | III       |  |
| State of<br>Nature |       |       | Loan <sub>A</sub> :<br>Loan <sub>B</sub> : | 1,000,000 | 500,000<br>500,000 | 1,000,000 |  |
|                    |       |       |                                            |           |                    |           |  |
| 1                  | 1.00% | 5.00% |                                            | -\$10,000 | \$10,000           | \$30,000  |  |
| 2                  | 1.50% | 4.00% |                                            | -\$5,000  | \$7,500            | \$20,000  |  |
| 3                  | 1.80% | 3.00% |                                            | -\$2,000  | \$4,000            | \$10,000  |  |
| 4                  | 2.20% | 2.00% |                                            | \$2,000   | \$1,000            | \$0       |  |
| 5                  | 2.50% | 1.00% |                                            | \$5,000   | -\$2,500           | -\$10,000 |  |
| 6                  | 3.00% | 0.00% |                                            | \$10,000  | -\$5,000           | -\$20,000 |  |
| Mean               | 2.00% | 2.50% |                                            | \$0       | \$2,500            | \$5,000   |  |
| Std Dev            | 0.66% | 1.71% |                                            | \$6,557   | \$5,276            | \$17,078  |  |

## Managing Risk

#### There are several strategies to manage risk

- *Diversification*: using resources for two or more enterprises with different risk-return characteristics
  - Works best when returns are negatively correlated (why?)
  - may require some sacrifice of expected return (why?)
  - It could increase expected utility (when?)
- Insurance allows a firm to pay a premium to transfer a portion of the risk to another firm
  - may reduce expected return (why?)

## Managing Risk

- Contracting is an agreement in advance on price or quantity of a transaction
  - May have other benefits
  - limits exposure to loss and opportunity for gain (how?)
- Hedging is a risk management strategy that involves taking offsetting positions in the ownership of an asset (can you construct an example?)
- Gathering Information can reduce uncertainty by gaining more knowledge.
  - may increase expected return and reduce risk
  - increased expenditure: only valuable if new information changes actions

