

Processamento Digital de Sinal

1ª Avaliação Complementar – 19_01_2008 Duração 2H00

PARTE I

1. Determine se o sistema de invariante à translação.	scrito pela equação $T\{x[$	[n] = $ax[n] + b$ é estável, cau	ıs al , linea r e
Enuncie em que condiçõe DFT? Justifique.			
23. A parte real da transfor Determine a parte imagin	rmada de Fourier de u nária dessa mesma <u>trans</u>	im sinal <u>causal</u> é: $X_R(e^{j^n})$ formada.	$= 1 + \cos(w).$
n su3=	(ne [u])+ (20 [n) nesu3= 254	- 1 + 2 - 4) PREJECT
		10 Su] =	- 1 029
4. Suponha o sistema discreto	o com resposta impulsion	nal	

Determine:

- a) a sua resposta em frequência $H(e^{jw})$.
- b) graficamente **H(e**^{jw}): **módulo** e **fase**.
- c) um sinal discreto que aplicado à entrada do sistema dado produza uma saída constante igual a zero (saída nula). Justifique.

 $h[n] = \delta[n-2] - \delta[n+2].$

999

Processamento Digital de Sinal

1ª Avaliação Complementar – 19_01_2008 Duração 2H00

PARTE II

5. Defina "fft" e explique a necessidade de fazer o "zeros padding" quando aproximam a transformada discreta de Fourier de um sinal, DFT.			
6. A	dmita que $X(z)$ é a transformada Z de um sinal discreto $x[n]$. Demonstre qual ansformada de Z de $a^n.x[n]$.		
√ 7. N F	lo projecto de filtros digitais quando se deve optar por um solução baseada em filtro IR ou IIR?. Justifique.		
8. C	Considere o sistema discreto causal definido pela equação às diferenças		
	y[n] = 2x[n] + 0.7y[n-1] - 0.1y[n-2] (1).		
\sqrt{a}	Determine a sua função de transferência, H(z).		
√b)	Apresente o diagrama de pólos e zeros bem como a região de convergência, ROC. O		
	sistema é estável?		
$\mathcal{U}_{c)}$	Represente graficamente, de um modo aproximado, o módulo de $H(e^{jw})$.		
d)	Determine que efeito teria em $\mathbf{H}(\mathbf{e}^{\mathrm{i}w})$ a substituição de $x[n]$ por $x[n-1]$ na equação (1).		
e)	Calcule a sua resposta impulsional, $b[n]$, do sistema descrito pela equação às diferenças		
	(1).		
f)	Apresente uma estrutura de realização do filtro digital que a seguir se apresenta na		
	forma que minimiza os atrasos,		
	y[n] = 2x[n-1] + 0.7y[n-1] - 0.1y[n-2].		

EXAMES (1) 19/01/2008

Détermine ne o notema descrito pole eque des Thu(m) = ax(m) +5 e estavel, causal, limear e invariante.

· Estárel: Não Recursoro | x(m) < 00 -> | a x(m) + 5 | < 00

[T42(m)4] = [a 2(m)+5] < [a] M +5.

é estável pare ralors finitos de a e 5, sendo x(n) limitele pare um ralor M.

· Causalidade t'eauxal pois a suide não prode a enhade, ou seja, o sistema vão atilize valor fateurs de x(n)

· Linearidade

T gx, x, (n) + xz xz (n) h = x, T fx, (n) + xz T fxz(n)h a /x, x,(m) + x2 22(m)+ b +ax, 1x,(m)+ ax2 1x2(m)+ x, b + x2 5 .. O sesture não é Cerrear.

· Invaviancia à transleção y(m) = a 2(m) + 5

T | x(m-d) | = a x(m-d) + b = y(m-d).. O pistere é invavant à translição Enuncie em que condições existi abasing us buinos do tempos quando

N ux a DFT. Justifique.

Aliaging é a obserpion quo entre octensões puiódoes e o aspecho. Aparece, quando
x whilige a DFT e uso x tem om atenção o minero de pontos no senal
que a quen amortan e x enable para a DFT um número imperor Deportor
ao tamanho de requêncio que x quer amortado.

Pare a with est clareng o aumero de partor de amortagementem
que a minero espada o minero de parto do senal atroshão Monas
que a mo minero espada o minero de parto do senal atroshão Monas
que em mo minero espada o minero de um mul amorte :

Xe (eou) = 1 + ao (w) - Ditenesso a parto imperior do monas
fransferiada.

Define FFT" e explique a necesside de la fazor izon-pedding "quando apostranos a transformede discrete de foursiles de um smal, DFT.

FFT ou fast fouvier Transform à un eficiente algorithme par computer à Transformede Discrete le fouvier (DFT) e a ona inverse. Existem variodissions algorithme FFT, cade un adeptede a meanideste especifices.

No uso de FFT pure computar a invocuse DFT só pode representan o dominios de Empos completo quando a enhada for períodica (infinite). Per inso se dez que a DFT e a transferrada para anális de sourier de penços descretos de dominios de tempo finito.

Sendo S[x] = \sum_{N=1}^{N-1} s[n] e \frac{1}{N}^{n} O tananho N pode ser movier que a porço de \frac{1}{N}^{n} o tananho N pode ser movier que a porço de

Não-jus de D[n], por isso o zero-padding é fage o "enchimento" de D[n] com jeur pour quanta masor foi N milhor seré a aproximações feite.

6 Admik que X(z) é a transformade de 2 de um sinal discreto a [n]. Demonstre quel é a housformade de 2 de ard x[n]

$$a[n] \xrightarrow{T.z} X(z)$$

$$a^{m} x[n] \xrightarrow{T.z} Z$$

$$X(z) = \sum_{n=-\infty}^{+\infty} a^n \times \mathbb{Z}_n = \sum_{n=-\infty}^{+\infty} (a z^{-1})^n \times [n] = Admitund \times [n] = u [n]$$

$$= \sum_{m=0}^{+\infty} (az^{-1})^m = (az^{-1})^{-1} \frac{1 - (az^{-1})^{-1}}{1 - az^{-1}} = \frac{1}{1 - \frac{a}{z}} = \frac{1}{z - a} = \frac{2}{z - a}$$

laz"/<1 => |a| < |z| => [121>|a|]

Devade em filhos FIR ou BIR? Justifique.

No projecto de filhos degitars devenos opter pelo IIR (Infante Impulsional Response)

quando año for parásel sustentar os elevados aisto computacionars e por soso opte-se
por se composito a cottalidade do notarse em ordem atu eusto mais baixos.

por se comprometer a estabilidade do soture em ordem ater custo mais baixos.

O FIR é para sestemas um que podendo sustentar os custos compreheioraes, é vibel asequen a l'eskhilidade em 100%, das equazos.

B Consider o sisteme discreto consul definido pele equedão às diferences y[m] = 2 x[m] + 0,7 y[m-1] - 0,1 y[m-2]

a) Define a função de transference H(z)

$$f(\xi) = \frac{\chi(\xi)}{\chi(\xi)} = ?$$

(=)
$$H(z) = \frac{2}{1 - 0.7z^{-1} + 0.1z^{-2}} = \frac{2z^{2}}{z^{2} - 0.7z^{2} + 0.1}$$

(b) Aprimité à disparre de prês e give sem como a répais de convergée à Roce O sostème é estável?

1ª Andregas 19/01/2008 (2)

Pare o sisteme ser causel (como enunação); a Roc está para forc do ponto mais exterior. Jogo o sisteme vai ser estatel pors e Ruc îndri a ramferèncie de rais emitario.

(e) Represent gréficament de, un modo a proximedo o modulo de H(ein)

$$H(z) = \frac{z}{1 - 0.17 z^{-1} + 0.1z^{-2}}$$
 como é estável $H(e^{iw}) = H(z)$
 $z = e^{iw}$.

$$\left|H\left(e^{i\omega}\right)\right| = \left|\frac{Z}{1-0,7(cor(w)-jscu(w))+0,1(cor(-2w)-jscu(w))}\right| =$$

$$= \frac{2}{1 - 0_{1} + con(\omega) + 0_{1} + con(2\omega) + 0_{1}$$

$$|H(e^{j\omega})| = \frac{2}{\sqrt{(1-0)7\omega(i\omega)+0.10\omega(2\omega))^2+j(0.78\omega\omega-0.18\omega(2\omega))^2}}$$