Foundations of Data Science

DS 3001

Data Science Program

Department of Computer Science

Worcester Polytechnic Institute

Instructor: Prof. Kyumin Lee

Project Teams

- 1. Clay Oshiro-Leavitt, Hunter Caouette, Nick Alescio
- 2. Danielle Angelini, Elijah Ellis, Ryan Candy, Rob Wondolowski
- 3. Eva (Yingbing) Lu, Manasi Danke, Erica Lee, Jonathan Dang
- 4. Arianna Kan, Yihan Lin, Margaret Goodwin, Ken Snoddy
- 5. Yang Gao, Jose Li, Sarah Burns, Daniel McDonough
- 6. Noah Puchovsky, Katherine Handy, Alex Tavares, Angelica Puchovsky
- 7. Armando Zubillaga, Gabriel Rodrigues, Humberto Leon, Joao Omena de Lucena
- 8. Edward Carlson, Samuel Goldman, Nick Krichevsky, Christopher Myers
- 9. Jessie White, Lindsay MacInnis, Bao Huynh, Ziqian Zeng
- 10. Suverino Frith, Nicholas Odell, Fay Whittall, Johvanni Perez
- 11. Alp Piskin, Robert Scalfani, Jake Barefoot, Mark Bernardo
- 12. Amanda Chan, Nugzar Chkhaidze, Luke Gebler
- 13. Daniel Pelaez, Nathan Savard, Kate Sincaglia
- So far, 49 students expressed their preferences

Forms of Data Preprocessing

Data Integration

Data Integration

Data integration:

- Combines data from multiple sources into a coherent store
- Handling Redundancy in Data Integration
 - Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
 - Redundant attributes may be able to be detected by correlation analysis and covariance analysis
- How to find redundant attributes or almost duplicate attributes?

Correlation Analysis (Nominal Data)

X² (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- Expected frequency of (A_i, B_j), which can be calculated as

$$e_{ij} = \frac{count(A = a_i) \times count(B = b_j)}{n},$$

- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

 X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

It shows that two attributes are correlated in the group

Correlation Analysis (Numeric Data)

 Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\overline{A}\overline{B}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, \overline{A} and \overline{B} are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the sum of the AB cross-product.

- If $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher the value, the stronger the correlation.
- $r_{A,B} = 0$: independent; $r_{AB} < 0$: negatively correlated

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Data Reduction

Data Reduction

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? A database/data warehouse may store petabytes of data.
 Complex data analysis may take a very long time to run on the complete data set.

Dimensionality Reduction

Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- The possible combinations of subspaces will grow exponentially

Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Data Reduction

- Dimensionality reduction, e.g., remove unimportant attributes
 - Principal Components Analysis (PCA)
 - Feature selection (i.e., Attribute subset selection), attribute creation
- Numerosity reduction
 - data is replaced or estimated by alternative, smaller data representations
 - Parametric
 - Regression and Log-Linear Models
 - Non-parametric
 - Histograms, clustering, sampling

Data Transformation and Data Discretization

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values so that each old value can be identified with one of the new values
- Why conduct data transformation?
 - The resulting mining process may be more efficient, the patterns found may be easier to understand
- Data Transformation Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - · normalization by decimal scaling
 - Discretization: raw values of numeric attributes (e.g., age) replaced by interval labels (e.g., 0-10, 11-20, etc.) or conceptual labels (e.g., youth, adult, senior)

Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,600 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- Z-score normalization (μ: mean, σ: standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then $\frac{73,600 54,000}{16,000} = 1.225$
- Normalization by decimal scaling

$$v' = \frac{v}{10^j}$$
 Where j is the smallest integer such that Max(|v'|) < 1

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values, outliers
- Data integration from multiple sources:
 - Entity identification problem
 - Remove redundancies
 - Detect inconsistencies

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation
- Read section 3 in Data Mining Concepts and Techniques

Data Science: The Context

Mining and Analytics: Linear Regression

Regression

- In regression the output is continuous
 - Function Approximation
 - Also a supervised learning
 - Given the "right answer" for each example in the data.
- Many models could be used Simplest is linear regression
 - Fit data with the best hyper-plane which "goes through" the points

Linear Regression with one Variable

Housing Prices (Portland, OR)

Price (in 1000s of dollars)

Size (feet²)

Regression Problem

Predict real-valued output

Any applications?

- advertising and sales
- consumption and income
- etc

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)		
housing prices	2104	460		
.	1416	232		
	1534	315		
	852	178		
Notation:		Training Set		
n = Number of training examples				
x's = "input" variables / features		Learning Algorithm		
y's = "output" variable / "target" variable Size of Estimated				

house

Question: How to describe *h*?

Linear Regression

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d = \sum_{j=0}^d \theta_j x_j$$
 Assume $x_0 = 1$

Fit model by minimizing sum of squared errors

Least Squares Linear Regression

Cost Function

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

• Fit by solving $\min_{\theta} J(\theta)$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$x \in \mathbb{R} \text{ so } \theta = [\theta_0, \theta_1] \quad o \quad \theta_0 = 0$$

$$I(\theta)$$

(function of the parameter θ_1)

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$

http://mathworld.wolfram.com/ConvexFunction.html https://www.desmos.com/calculator/kreo2ssqj8

Intuition Behind Cost Function (3-D surface plot)

 $J(\theta_0,\theta_1)$ (function of the parameter θ_0,θ_1)

 $J(\theta_0,\theta_1)$ (function of the parameter θ_0,θ_1)

 $J(\theta_0,\theta_1)$ (function of the parameter θ_0,θ_1)

Basic Search Procedure

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for θ to reduce $J(\theta)$

