# HOSPITAL RESOURCE OPTIMIZATION USING TIME SERIES ANALYSIS

Leveraging ARIMA and LSTM Models for Predictive Analytics



# INTRODUCTION

 Efficient management of hospital resources is critical for optimal patient care. This project utilizes predictive analytics to forecast hospital bed occupancy, enabling data-driven decision-making. ARIMA and LSTM models were developed and evaluated to achieve this goal.



# BACKGROUND AND DEMO DATA

• The dataset used is a generated demo dataset representing patient admissions and discharges. Data includes timestamps for patient flow analysis, calculated as daily occupancy. Demo data was used to avoid restrictions, ensuring scalability and reproducibility.



### **METHODOLOGY**

- 1. Data preprocessing and feature engineering for daily occupancy trends.
- 2. Developed ARIMA models to analyze linear trends and seasonal patterns.
- 3. Implemented LSTM models for capturing nonlinear patterns and temporal dependencies.
- 4. Evaluation metrics included MAE, RMSE, and MAPE to compare model performance.



# RESULTS AND COMPARISON

#### **Evaluation** metric

#### **ARIMA**:

• MAE: 19.69, RMSE: 24.07, MAPE: 8.72%

#### LSTM:

• MAE: 20.35, RMSE: 25.64, MAPE: 12.80%

Results: ARIMA outperformed LSTM in all evaluation metrics for this dataset.



# ACTUAL VS PREDICTED VISUALIZATIONS FOR ARIMA



# SUMMARY AND FUTURE PROSPECTS

#### Summary:

- ARIMA demonstrated superior performance for this dataset.
- Predictive analytics can support resource planning and hospital efficiency.

#### Future Prospects:

- Explore hybrid models combining ARIMA and LSTM for improved accuracy.
- Incorporate real-world datasets for validation and scalability.
- Extend analysis to other hospital resource metrics like staffing and equipment.

