Санкт-Петербургский Политехнический Университет Петра Великого Институт Компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа 9 Задание 2

Предмет: «Проектирование реконфигурируемых гибридных вычислительных систем» Тема: «Оптимизация работы с массивами»

Студент: Ерниязов Т.Е. Гр. № 3540901/81502

Преподаватель: Антонов А.П.

Оглавление

1. Задание	7
2. Часть 1	16
2.1. Исходный код	16
2.2. Моделирование	17
2.3. Решение 1а	17
2.3.1. Директивы	17
2.3.2. Синтез	17
2.3.3. Использование ресурсов	18
2.3.4. Анализ решения	20
2.4. Решение а2	20
2.4.1. Директивы	20
2.4.2. Синтез	20
2.4.3. Использование ресурсов	21
2.4.4. Анализ решения	22
2.5. Решение а3	22
2.5.1. Директивы	22
2.5.2. Синтез	23
2.5.3. Использование ресурсов	23
2.5.4. Анализ решения	25
2.6. Решение а4	25
2.6.1. Директивы	25
2.6.2. Синтез	25
2.6.3. Использование ресурсов	26
2.6.4. Анализ решения	27

2.7. Решение а5	27
2.7.1. Директивы	27
2.7.2. Синтез	28
2.7.3. Использование ресурсов	28
2.7.4. Анализ решения	30
2.8. Решение а6	30
2.8.1. Директивы	30
2.8.2. Синтез	30
2.8.3. Использование ресурсов	31
2.8.4. Анализ решения	33
2.9. Решение а7	33
2.9.1. Директивы	33
2.9.2. Синтез	33
2.9.3. Использование ресурсов	34
2.9.4. Анализ решения	35
2.10. Выводы	36
3. Часть 2	37
3.1. Исходный код	37
3.2. Моделирование	38
3.3. Решение 1b	38
3.3.1. Директивы	38
3.3.2. Синтез	38
3.3.3. Использование ресурсов	39
3.3.4. Анализ решения	40
3.4. Решение 2b	41

3.4.1. Директивы	41
3.4.2. Синтез	41
3.4.3. Использование ресурсов	41
3.4.4. Анализ решения	43
3.5. Решение 3b	44
3.5.1. Директивы	44
3.5.2. Синтез	44
3.5.3. Использование ресурсов	44
3.5.4. Анализ решения	46
3.6. Решение 4b	47
3.6.1. Директивы	47
3.6.2. Синтез	47
3.6.3. Использование ресурсов	47
3.6.4. Анализ решения	50
3.7. Решение 5b	50
3.7.1. Директивы	50
3.7.2. Синтез	50
3.7.3. Использование ресурсов	50
3.7.4. Анализ решения	53
3.8. Решение 6b	53
3.8.1. Директивы	53
3.8.2. Синтез	53
3.8.3. Использование ресурсов	54
3.8.4. Анализ решения	56
3.9. Решение 7b	56

3.9.1.	Директивы	56
3.9.2.	Синтез	56
3.9.3	. Использование ресурсов	57
3.9.4.	Анализ решения	59
3.10.	Решение 8b	60
3.10.1.	Директивы	60
3.10.2.	Синтез	60
3.10.	3. Использование ресурсов	60
3.10.4.	Анализ решения	62
3.11.	Выводы	63

- 1. Задание
- Создать проект lab9_2
- Микросхема: xa7a12tcsg325-1q
 ЧАСТЬ 1
- Создать функцию

```
foo\_a: входной массив short d\_in[N]; выходной массив short d\_out[N/4]. for (short i=0; i< N/4; i++){ d\_out[i] = d\_in[i]*d\_in[i+8] + d\_in[i+4]*d\_in[i+12]; } N=16
```

- Создать тест lab9_2_test.c для проверки функции. Осуществить моделирование (с выводом результатов в консоль)
- Исследование:
- Solution 1a
 - о задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию bram; RAM_1P_BRAM для входного (и выходного) массива
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Solution 2a
 - задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию ap_memory; RAM_1P для входного (и выходного) массива
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile

- Resource profile
- scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сравнить два решения (solution_1a и solution_2a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution 3a
 - о задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию ap_memory; RAM_2P для входного массива
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сравнить два решения (solution_2a и solution_3a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution_4a
 - задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию ap_memory; RAM_1P для входного массива
 - о установить array_partition; block; factor =2 для входного массива
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile

- scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сравнить два решения (solution_3a и solution_4a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution 5a
 - о задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ар_memory; RAM_1P для входного и выходного массивов
 - о установить array_partition; block; factor =4 для входного массива
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сравнить два решения (solution_4a и solution_5a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution_6a
 - задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ар_memory; RAM_2P для входного и выходного массивов
 - о установить array_partition; block; factor =2 для входного массива
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)

•

- utilization estimates=>summary
- performance Profile
- Resource profile
- scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval

•

- Сравнить два решения (solution_5a и solution_6a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution 7a
 - о задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию ap_memory; RAM_2P для входного и выходного массивов
 - о установить array_partition; block; factor =4 для входного массива
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сравнить два решения (solution_6a и solution_7a) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...

Сделать сводную таблицу ($S_x/Latency/II - номер решения/Latency/II$)

RAM_1P

RAM 2P

Без block

S_x/Latency/II

block; factor =2

ЧАСТЬ 2

• Создать функцию

```
foo\_b: входной массив short d\_in[N]; выходной массив short d\_out[N]. for (short i=0; i< N/4; i++) \{ d\_out[i] = d\_in[i]*d\_in[i+4]; d\_out[i+1]= d\_in[i+8]*d\_in[i+12]; d\_out[i+2]= d\_in[i]*d\_in[i+12]; d\_out[i+3]= d\_in[i+4]*d\_in[i+8]; \} N=16
```

- Solution_1b
 - о задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ар_memory; RAM_1P для входного и выходного массивов
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Solution_2b
 - о задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ар_memory; RAM_1P для входного и выходного массивов
 - о установить array_partition; block; factor =4 для входного массива
 - о осуществить синтез для:
 - привести в отчете:

- performance estimates=>summary (timing, latency)
- utilization estimates=>summary
- performance Profile
- Resource profile
- scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сравнить два решения (solution_1b и solution_2b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution_3b
 - о задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ар_memory; RAM_1P для входного и выходного массивов
 - о установить array_partition; block; factor =4 для входного массива
 - о установить array_partition; cyclic; factor =2 для выходного массива
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сравнить два решения (solution_2b и solution_3b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution 4b
 - о задать: clock period 10; clock_uncertainty 0.1

- о установить реализацию ap_memory; RAM_1P для входного и выходного массивов
- о установить array_partition; block; factor =4 для входного массива
- о установить array_partition; cyclic; factor =4 для выходного массива
- о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сравнить два решения (solution_3b и solution_4b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...
- Solution_5b
 - задать: clock period 10; clock_uncertainty 0.1
 - о установить реализацию ap_memory; RAM_1P для входного и RAM_2P для выходного массивов
 - о установить array_partition; block; factor =4 для входного массива
 - о установить array_partition; cyclic; factor =1 для выходного массива
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval

• Сравнить два решения (solution_3b и solution_5b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...

• Solution_6b

- о задать: clock period 10; clock_uncertainty 0.1
- о установить реализацию ap_memory; RAM_1P для входного и RAM_2P для выходного массивов
- о установить array_partition; block; factor =4 для входного массива
- о установить array_partition; cyclic; factor = 2 для выходного массива
- о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сравнить два решения (solution_5b и solution_6b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...

• Solution_7b

- о задать: clock period 10; clock_uncertainty 0.1
- установить реализацию ар_memory; RAM_1P для входного и RAM_2P для выходного массивов
- о установить array_partition; block; factor =4 для входного массива
- о установить array_partition; cyclic; factor =4 для выходного массива
- о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency

- о На скриншоте показать Initiation Interval
- resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сравнить два решения (solution_6b и solution_7b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...

Сделать сводную таблицу ($S_x/Latency/II - номер решения/Latency/II$)

 RAM_1P

RAM_2P

Без cyclic

S_x/Latency/II

cyclic; factor =2

cyclic; factor =4

- Solution_8b
 - о задать: clock period 10; clock_uncertainty 0.1
 - установить реализацию ар_memory; RAM_1P для входного и выходного массивов
 - о установить array_partition; block; factor =4 для входного массива
 - о установить array_partition; complete для выходного массива
 - о осуществить синтез для:
 - привести в отчете:
 - performance estimates=>summary (timing, latency)
 - utilization estimates=>summary
 - performance Profile
 - Resource profile
 - scheduler viewer (выполнить Zoom to Fit)
 - На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сравнить два решения (solution_2b и solution_8b) и сделать выводы: зависимость от типа интерфейса; объяснить количество использованных умножителей; объяснить (посчитать) число циклов Latency, II...

2. Часть 1.

2.1.Исходный код

Исходный код функции:

```
#define N 16

void foo(short d_in[N], short d_out[N / 4]) {
    for (short i = 0; i < N / 4; i++) {
        d_out[i] = d_in[i] * d_in[i+8] + d_in[i+4] * d_in[i+12];
}

}
</pre>
```

Рис. 2.1.1. source code

Исходный код теста:

Рис. 2.1.2 test code

2.2. Моделирование

По результатам моделирование, приведённым ниже, видно, что устройство проходит тесты.

Рис. 2.2. Modeling results

2.3. Решение 1а

2.3.1. Директивы

Рис. 2.3.1. Directives

2.3.2. Синтез

На изображении видно, что полученная задержка НЕ укладывается в заданное значение.

Рис. 2.3.2. Performance estimates

2.3.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 2 блока DSP48E, 111 LUT и 67 триггеров.

Рис. 2.3.3.1. Utilization estimates

Рис. 2.3.3.2. Performance profile

Рис. 2.3.3.3. Resource profile

Рис. 2.3.3.4. Interfaces

Ниже, на рисунке видны блоки, которые не укладываются во временной интервал.

Рис. 2.3.3.5. Schedule viewer

Рис. 2.3.3.5. Resource viewer

2.3.4. Анализ решения

На каждой итерации для двух операций умножения в устройстве используется 2 умножителя. 25 тактов задержки — это 1 начальный такт инициализации и 4 итерации цикла, каждый из которых занимает 6 тактов. II совпадает с задержкой, так как устройство не конвейеризировано и работает последовательно. Устройство не уложилось в заданные 10 нс периода тактовой частоты.

2.4. Решение а2

2.4.1. Директивы

Рис.2.4.1. Directives

2.4.2. Синтез

На изображении видно, что полученная задержка укладывается в заданное значение.

Рис. 2.4.2. Performance estimates

2.4.3. Использование ресурсов

Рис. 2.4.3.1. Utilization estimates

Оценка использования ресурсов показывает, что будут использованы 2 блока DSP48E, 102 LUT и 67 триггеров.

Рис. 2.4.3.2. Performance profile

Рис. 2.4.3.3. Resource profile

Рис. 2.4.3.4. Interfaces

Рис. 2.4.3.5. Schedule viewer

Рис. 2.4.3.6. Resource viewer

2.4.4. Анализ решения

Данное решение укладывается во установленный временной интервал. Это связано с другими используемыми элементами памяти.

2.5. Решение а3

2.5.1. Директивы

Рис. 2.5.1. Directives

2.5.2. Синтез

Ниже приведены оценки производительности. По ним видно, что устройство соответствует заданным критериям.

Рис. 2.5.2. Performance estimates

2.5.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 2 блока DSP48E, 97 LUT и 46 триггеров.

Рис. 2.5.3.1. Utilization estimates

Рис. 2.5.3.2. Performance profile

Рис. 2.5.3.3. Resource profile

Рис. 2.5.3.4. Interfaces

Рис. 2.5.3.5. Schedule viewer

Рис. 2.5.3.6. Resource viewer

2.5.4. Анализ решения

Данное решение быстрее и экономичнее относительно предыдущего. В нём также используется 2 умножителя, но благодаря двухпортовой памяти можно производить по 2 чтения из входного массива, что сокращает выполнение 1 итерации с 6 до 4 тактов. Следовательно, latency и II меньше на 8 тактов (-2 такта на 4х итерациях).

2.6. Решение а4

2.6.1. Директивы

Рис. 2.6.1. Directives

2.6.2. Синтез

Ниже приведены оценки производительности. По ним видно, что устройство соответствует заданным критериям.

Рис. 2.6.2. Performance estimates

2.6.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 2 блока DSP48E, 97 LUT и 62 триггера.

Рис. 2.6.3.1. Utilization estimates

Puc. 2.6.3.2. Performance profile

Рис. 2.6.3.3. Resource profile

Рис. 2.6.3.4. Interfaces

Рис. 2.6.3.5. Schedule viewer

Рис. 2.6.3.6. Schedule viewer

2.6.4. Анализ решения

В данном решение отсутствует двухпортовая память и используется 2 экземпляра однопортовой памяти. На результирующие характеристики устройства это не повлияло.

2.7. Решение а5

2.7.1. Директивы

Рис. 2.7.1. Directives

2.7.2. Синтез

Ниже приведены оценки производительности. По ним видно, что устройство соответствует заданным критериям.

Рис. 2.7.2. Performance estimates

2.7.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 2 блока DSP48E, 57 LUT и 61 триггер.

Рис. 2.7.3.1. Utilization estimates

Рис. 2.7.3.2. Performance profile

Рис. 2.7.3.3. Resource profile

Рис. 2.7.3.4. Interfaces

Рис. 2.7.3.5. Schedule viewer

Рис. 2.7.3.6. Schedule viewer

2.7.4. Анализ решения

В данном решение latency и II сократились на 4 такта. Это можно объяснить, что используется 4 экземпляра однопортовой памяти и все 4 операции чтения проходят одновременно. Это сокращает выполнение одной итерации на 1, что и создает улучшение в задержке на 4 такта.

2.8. Решение аб

2.8.1. Директивы

Рис. 2.8.1. Directives

2.8.2. Синтез

Ниже приведены оценки производительности. По ним видно, что устройство соответствует заданным критериям.

Рис. 2.8.2. Performance estimates

2.8.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 2 блока DSP48E, 61 LUT и 61 триггер.

Рис. 2.8.3.1. Utilization estimates

Рис. 2.8.3.2. Performance profile

Рис. 2.8.3.3. Resource profile

Рис. 2.8.3.4. Interfaces

Рис. 2.8.3.5. Schedule viewer

Рис. 2.8.3.6. Schedule viewer

2.8.4. Анализ решения

В данном решение latency и II оказались одинаковыми. Использовать 4 однопортовых памяти или 2 двухпортовых оказалось практически одинаковыми. Разницу можно заметить только в том, что в решении ба есть ещё одна небольшая операция получения новых индексов для чтения из памяти. Однако, это операция очень быстрая, и все 4 чтения происходят практически одновременно.

2.9. Решение а7

2.9.1. Директивы

Рис. 2.9.1. Directives

2.9.2. Синтез

Ниже приведены оценки производительности. По ним видно, что устройство соответствует заданным критериям.

Рис. 2.9.2. Performance estimates

2.9.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 2 блока DSP48E, 57 LUT и 61 триггер.

Рис. 2.9.3.1. Utilization estimates

Рис. 2.9.3.2. Performance profile

Рис. 2.9.3.3. Resource profile

Рис. 2.9.3.4. Interfaces

Рис. 2.9.3.5. Schedule viewer

Рис. 2.9.3.6. Schedule viewer

2.9.4. Анализ решения

Видно, что задержки остались прежними. Данное решение аналогично решению 5а по всем параметрам. Это означает, что для данного устройства нет необходимости

иметь 4 двухпортовых памяти, и программа автоматически создала 4 однопортовых, как более экономичное решение.

2.10. Выводы

Ниже представлена таблица сравнения всех решений первой части.

Clock		solution1		solution2		solution3		solution4		solut	solution5 solu		ion6	solut	ion7
ap_clk	Target	10.00 ns 10.00 ed 10.437 ns 9.332		0.00 ns 10.00		10.00	10.00 ns		10.00 ns 10.00 i 9.332 ns 9.332 i		10.00 ns		ns	10.00	ns
	Estimated			ns 9.332 ns		ns	9.332	ns			9.332 ns		9.332 ns		
Latency (cycles)		min	25		25		17	7 17			13		13		13
Latency (cycles)		min		tion1	solution2 25					tion4			solution6		solution7
		max	25	25			17		17 13		13	13			13
Latency (absolute)		min	0.26	1 us	us 0.250 u		0.170 us		0.170 us		0.130 us		0.130 us		0.130 us
		max	0.261 us		0.250 us		0.170 us		0.170 us		0.130 us		0.130 us		0.130 us
Interval (cycles)	min	25		25		17		17 1		13		13		13	
Interval	(Cycles)														

Наименьшие задержки получили те решения, где есть возможность осуществлять более 4 чтений массива памяти. Решение, которые имеет больше 4 чтений (7а), реализуется, как решение (5а), так как оно избыточно, ведь в устройстве на каждой итерации всего 4 операции чтения. Такая избыточность может понадобиться только, если использовать конвейеризацию, а пока 4 итерации проходят последовательно, этого не требуется.

3. Часть 2

3.1. Исходный код

Исходный код функции:

Рис. 3.1.1. source code

Исходный код теста:

Рис. 3.1.2 test code

3.2. Моделирование

По результатам моделирование, приведённым ниже, видно, что устройство проходит тесты.

```
🗐 Console 🛭 💜 Errors 🐧 Warnings
                                                                     Vivado HLS Console
INFO: [HLS 200-10] In directory 'C:/Users/Misha/Desktop/university/__maga/3sem/antonov/lab9/
INFO: [APCC 202-3] Tmp directory is apcc db
INFO: [APCC 202-1] APCC is done.
  Compiling(apcc) ../../../source_part2.c in debug mode
INFO: [HLS 200-10] Running 'C:/Xilinx/Vivado/2019.2/bin/unwrapped/win64.o/apcc.exe'
INFO: [HLS 200-10] For user 'Misha' on host 'mikhail' (Windows NT amd64 version 6.2) on Sat
INFO: [HLS 200-10] In directory 'C:/Users/Misha/Desktop/university/_maga/3sem/antonov/lab9/
INFO: [APCC 202-3] Tmp directory is apcc_db
INFO: [APCC 202-1] APCC is done.
  Generating csim.exe
     Pass!
\overline{\text{INFO: }} [SIM \overline{\text{211-1}} CSim done with 0 errors.
INFO: [SIM 211-3] **************** CSIM finish *************
Finished C simulation.
```

Рис. 3.2. Modeling results

3.3. Решение 1b

3.3.1. Директивы

Рис. 3.3.1. Directives

3.3.2. Синтез

На изображении видно, что полученная задержка укладывается в заданное значение.

Рис. 3.3.2. Performance estimates

3.3.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 4 блока DSP48E, 183 LUT и 116 триггеров.

Рис. 3.3.3.1. Utilization estimates

Рис. 3.3.3.2. Performance profile

Рис. 3.3.3.3. Resource profile

Рис. 3.3.3.4. Interfaces

Рис. 3.3.3.5. Schedule viewer

Рис. 3.3.3.5. Resource viewer

3.3.4. Анализ решения

Устройство использует 4 умножителя и имеет большие задержки, потому что 4 чтения выполняются последовательно.

3.4. Решение 2b

3.4.1. Директивы

Рис. 3.4.1. Directives

3.4.2. Синтез

На изображении видно, что полученная задержка укладывается в заданное значение.

Рис. 3.4.2. Performance estimates

3.4.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 4 блока DSP48E, 149 LUT и 112 триггеров.

Рис. 3.4.3.1. Utilization estimates

Рис. 3.4.3.2. Performance profile

Рис. 3.4.3.3. Resource profile

Рис. 3.4.3.4. Interfaces

Рис. 3.4.3.5. Schedule viewer

Рис. 3.4.3.5. Resource viewer

3.4.4. Анализ решения

В данном решении используется такое же количество умножителей, как и в предыдущем, однако за счёт возможности двух параллельных чтений сократились задержки (цикл за 6 тактов, а на за 7).

3.5. Решение 3b

3.5.1. Директивы

Рис. 3.5.1. Directives

3.5.2. Синтез

На изображении видно, что полученная задержка укладывается в заданное значение.

Рис. 3.5.2. Performance estimates

3.5.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 4 блока DSP48E, 214 LUT и 159 триггеров.

Рис. 3.5.3.1. Utilization estimates

Рис. 3.5.3.2. Performance profile

Рис. 3.5.3.3. Resource profile

Рис. 3.5.3.4. Interfaces

Рис. 3.5.3.5. Schedule viewer

Рис. 3.5.3.5. Resource viewer

3.5.4. Анализ решения

В данном решении 4 чтения выполняются одновременно, однако итерация всё равно выполняется 6 тактов. Это связано с тем, что устройство не может одновременно писать 4 значения в выходной массив.

3.6. Репление 4b

3.6.1. Директивы

Рис. 3.6.1. Directives

3.6.2. Синтез

На изображении видно, что полученная задержка укладывается в заданное значение.

Рис. 3.6.2. Performance estimates

3.6.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 4 блока DSP48E, 225 LUT и 161 триггер.

Рис. 3.6.3.1. Utilization estimates

Рис. 3.6.3.2. Performance profile

Рис. 3.6.3.3. Resource profile

Рис. 3.6.3.4. Interfaces

d_out_0_ce0	out	1	ap_memory	d_out_0	array
d_out_0_we0	out	1	ap_memory	d_out_0	array
d_out_0_d0	out	16	ap_memory	d_out_0	array
d_out_1_address0	out	1	ap_memory	d_out_1	array
d_out_1_ce0	out	1	ap_memory	d_out_1	array
d_out_1_we0	out	1	ap_memory	d_out_1	array
d_out_1_d0	out	16	ap_memory	d_out_1	array
d_out_2_address0	out	1	ap_memory	d_out_2	array
d_out_2_ce0	out	1	ap_memory	d_out_2	array
d_out_2_we0	out	1	ap_memory	d_out_2	array
d_out_2_d0	out	16	ap_memory	d_out_2	array
d_out_3_address0	out	1	ap_memory	d_out_3	array
d_out_3_ce0	out	1	ap_memory	d_out_3	array
d_out_3_we0	out	1	ap_memory	d_out_3	array
d_out_3_d0	out	16	ap_memory	d_out_3	array

Рис. 3.6.3.5. Interfaces continue

Рис. 3.6.3.6. Schedule viewer

Рис. 3.6.3.7. Resource viewer

3.6.4. Анализ решения

В данном решении всё стало хуже, при возможности на запись 4 памяти. В устройстве используется очень много перезаписей в регистры, а не сразу в выходные линии, что не дает ни делать 4 чтения, ни записывать 4 значения на выходы.

3.7.Решение 5b

3.7.1. Директивы

Рис. 3.7.1. Directives

3.7.2. Синтез

На изображении видно, что полученная задержка укладывается в заданное значение.

Рис. 3.7.2. Performance estimates

3.7.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 4 блока DSP48E, 149 LUT и 112 триггер.

Рис. 3.7.3.1. Utilization estimates

Рис. 3.7.3.2. Performance profile

Рис. 3.7.3.3. Resource profile

Interface

■ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	foo_part2	return value
ap_rst	in	1	ap_ctrl_hs	foo_part2	return value
ap_start	in	1	ap_ctrl_hs	foo_part2	return value
ap_done	out	1	ap_ctrl_hs	foo_part2	return value
ap_idle	out	1	ap_ctrl_hs	foo_part2	return value
ap_ready	out	1	ap_ctrl_hs	foo_part2	return value
d_in_0_address0	out	2	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in	16	ap_memory	d_in_0	array
d_in_1_address0	out	2	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in	16	ap_memory	d_in_1	array
d_in_2_address0	out	2	ap_memory	d_in_2	array
d_in_2_ce0	out	1	ap_memory	d_in_2	array
d_in_2_q0	in	16	ap_memory	d_in_2	array
d_in_3_address0	out	2	ap_memory	d_in_3	array
d_in_3_ce0	out	1	ap_memory	d_in_3	array
d_in_3_q0	in	16	ap_memory	d_in_3	array
d_out_address1	out	3	ap_memory	d_out	array
d_out_ce1	out	1	ap_memory	d_out	array
d_out_we1	out	1	ap_memory	d_out	array
d_out_d1	out	16	ap_memory	d_out	array

Рис. 3.7.3.4. Interfaces

Рис. 3.7.3.5. Schedule viewer

Рис. 3.7.3.6. Resource viewer

3.7.4. Анализ решения

В данном решении была использована одна двух портовая память, и это вышло эффективнее, чем 4 одно-портовых. Но одновременно 2 записи всё также не производятся.

3.8. Решение 6b

3.8.1. Директивы

Рис. 3.8.1. Directives

3.8.2. Синтез

На изображении видно, что полученная задержка укладывается в заданное значение.

Рис. 3.8.2. Performance estimates

3.8.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 4 блока DSP48E, 206 LUT и 164 триггер.

Рис. 3.8.3.1. Utilization estimates

Рис. 3.8.3.2. Performance profile

Рис. 3.8.3.3. Resource profile

Interface Summary RTL Ports Dir Bits Protocol Source Object С Туре in 1 ap_ctrl_hs foo_part2 return value ap_clk 1 return value ap_rst in ap_ctrl_hs foo_part2 in 1 ap_ctrl_hs foo_part2 return value ap_start out 1 ap_ctrl_hs foo_part2 return value ap_done return value ap_idle out 1 ap_ctrl_hs foo_part2 ap_ready out 1 ap_ctrl_hs foo_part2 return value d_in_0_address0 d_in_0 out ap_memory array d_in_0_ce0 1 d_in_0 out ap_memory array d_in_0_q0 16 ap_memory d_in_0 in array d_in_1_address0 out 2 ap_memory d_in_1 array d_in_1_ce0 out 1 ap_memory d_in_1 array d_in_1_q0 16 d_in_1 ap_memory array in 2 d_in_2_address0 d_in_2 out ap_memory array d_in_2_ce0 out 1 ap_memory d_in_2 array d_in_2_q0 in 16 ap_memory d_in_2 array d_in_3_address0 2 d_in_3 ap_memory out array d_in_3_ce0 1 d_in_3 out ap_memory array d_in_3_q0 16 d_in_3 in ap_memory array d_out_0_address1 out 2 ap_memory d_out_0 array d_out_0_ce1 d_out_0 out 1 ap_memory array d_out_0_we1 out 1 ap_memory d_out_0 array d_out_0_d1 d_out_0 out ap_memory array d_out_1_address1 2 d_out_1 out ap_memory array d_out_1_ce1 d_out_1 out ap_memory array d_out_1_we1 out ap_memory d_out_1 array d_out_1_d1 out 16 ap_memory d_out_1 array

Рис. 3.8.3.4. Interfaces

Рис. 3.8.3.5. Schedule viewer

Рис. 3.8.3.6. Resource viewer

3.8.4. Анализ решения

В данном решении 4 чтения выполняются одновременно, а также присутствует одновременная запись в выходной массив, но задержки остались такими же.

3.9.Решение 7b

3.9.1. Директивы

Рис. 3.9.1. Directives

3.9.2. Синтез

На изображении видно, что полученная задержка укладывается в заданное значение.

Рис. 3.9.2. Performance estimates

3.9.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 4 блока DSP48E, 297 LUT и 89 триггер.

Рис. 3.9.3.1. Utilization estimates

Рис. 3.9.3.2. Performance profile

Рис. 3.9.3.3. Resource profile

Interface ■ Summary RTL Ports Dir Bits Protocol Source Object C Type in ap_ctrl_hs foo_part2 return value in 1 ap_ctrl_hs foo_part2 return value ap_rst ap_start foo_part2 return value in ap_ctrl_hs ap_done out ap_ctrl_hs foo_part2 return value foo_part2 return value ap_idle out ap_ctrl_hs ap_ready ap_ctrl_hs out foo_part2 return value d_in_0_address0 out 2 ap_memory d_in_0 array d_in_0_ce0 1 out ap_memory d_in_0 array d_in_0_q0 in 16 d_in_0 array ap_memory d_in_1_address0 out ap_memory d_in_1 array d_in_1_ce0 out ap_memory d_in_1 array d_in_1_q0 ap_memory d_in_1 array in 16 d_in_2_address0 ap_memory d_in_2 out array d_in_2_ce0 out 1 ap_memory d_in_2 array d_in_2_q0 in 16 ap_memory d_in_2 array d_in_3_address0 2 d_in_3 array out ap_memory d_in_3_ce0 out 1 ap_memory d_in_3 array d_in_3_q0 d_{in_3} in 16 ap_memory array d_out_0_address1 d_out_0 out ap_memory array d_out_0_ce1 1 ap_memory d_out_0 array d_out_0_we1 out ap_memory d out 0 array d_out_0_d1 out 16 ap_memory d_out_0 array d_out_1_address1 out ap_memory d_out_1 array d_out_1_ce1 d_out_1 out ap_memory array

Рис. 3.9.3.4. Interfaces

out	1	ap_memory	d_out_1	array
out	1	ap_memory	d_out_1	array
out	16	ap_memory	d_out_1	array
out	1	ap_memory	d_out_2	array
out	1	ap_memory	d_out_2	array
out	1	ap_memory	d_out_2	array
out	16	ap_memory	d_out_2	array
out	1	ap_memory	d_out_3	array
out	1	ap_memory	d_out_3	array
out	1	ap_memory	d_out_3	array
out	16	ap_memory	d_out_3	array
	out	out 1 out 16 out 1 out 1 out 1 out 1 out 16 out 1 out 16 out 1 out 1 out 1	out 1 ap_memory out 16 ap_memory out 1 ap_memory out 1 ap_memory out 1 ap_memory out 1 ap_memory out 16 ap_memory out 1 ap_memory	out 1 ap_memory d_out_1 out 16 ap_memory d_out_1 out 1 ap_memory d_out_2 out 1 ap_memory d_out_2 out 1 ap_memory d_out_2 out 16 ap_memory d_out_2 out 1 ap_memory d_out_3 out 1 ap_memory d_out_3 out 1 ap_memory d_out_3

Рис. 3.9.3.5. Interfaces continue

Рис. 3.9.3.6. Schedule viewer

Рис. 3.9.3.7. Resource viewer

3.9.4. Анализ решения

Данное решение аналогично с RAM_1 хуже, чем предыдущее (c factor = 2).

3.10. Решение 8b

3.10.1. Директивы

Рис. 3.10.1. Directives

3.10.2. Синтез

На изображении видно, что полученная задержка укладывается в заданное значение.

Рис. 3.10.2. Performance estimates

3.10.3. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 4 блока DSP48E, 149 LUT и 112 триггер.

Рис. 3.10.3.1. Utilization estimates

Рис. 3.10.3.2. Performance profile

Рис. 3.10.3.3. Resource profile

Interface

Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	foo_part2	return value
ap_rst	in	1	ap_ctrl_hs	foo_part2	return value
ap_start	in	1	ap_ctrl_hs	foo_part2	return value
ap_done	out	1	ap_ctrl_hs	foo_part2	return value
ap_idle	out	1	ap_ctrl_hs	foo_part2	return value
ap_ready	out	1	ap_ctrl_hs	foo_part2	return value
d_in_0_address0	out	2	ap_memory	d_in_0	array
d_in_0_ce0	out	1	ap_memory	d_in_0	array
d_in_0_q0	in	16	ap_memory	d_in_0	array
d_in_1_address0	out	2	ap_memory	d_in_1	array
d_in_1_ce0	out	1	ap_memory	d_in_1	array
d_in_1_q0	in	16	ap_memory	d_in_1	array
d_in_2_address0	out	2	ap_memory	d_in_2	array
d_in_2_ce0	out	1	ap_memory	d_in_2	array
d_in_2_q0	in	16	ap_memory	d_in_2	array
d_in_3_address0	out	2	ap_memory	d_in_3	array
d_in_3_ce0	out	1	ap_memory	d_in_3	array
d_in_3_q0	in	16	ap_memory	d_in_3	array
d_out_address1	out	3	ap_memory	d_out	array
d_out_ce1	out	1	ap_memory	d_out	array
d_out_we1	out	1	ap_memory	d_out	array
d_out_d1	out	16	ap_memory	d_out	array

Рис. 3.10.3.4. Interfaces

Рис. 3.10.3.5. Schedule viewer

Рис. 3.10.3.6. Resource viewer

3.10.4. Анализ решения

В данном решении было проигнорировано разбиение выходного массива. Возможно, это связано с особенностью устройства, в общем случае это должно дать наивысшую скорость записи выходных данных.

3.11. Выводы

Ниже представлена таблица сравнения всех решений второй части.

Performance Estimates Timing Clock solution1 solution2 solution3 solution4 solution5 solution6 solution7 solution8 10.00 ns ap_clk Target Estimated 9.332 ns Latency solution1 solution2 solution3 solution4 solution5 solution6 solution7 solution8 29 25 25 29 25 29 13 25 Latency (cycles) min 25 25 29 25 29 13 25 29 max 0.250 us 0.290 us 0.250 us 0.250 us 0.290 us 0.250 us 0.290 us 0.130 us Latency (absolute) min 0.250 us 0.250 us 0.250 us 0.290 us 0.130 us 0.250 us 0.290 us 0.290 us max 29 13 Interval (cycles) 29 25 25 25 25 min 29 25 25 29 25 29 13 25 max

По разбиению выходной памяти не всегда получается ожидаемый прирост производительности, а часто даже ухудшение. Согласно временным диаграммам, запись в выходную память почти никогда не производится параллельно для нескольких ячеек. Вероятно, это связано с особенностью устройства, где на выход подаются различные комбинации одних и тех же входов.