Statistical Learning: Project Presentation

G. Dunlavey, W. Ren, A. Taqi

Research Question

The MLB's "luxury tax," implemented in the 2003 Collective Bargaining Agreement, is a rule penalizing franchises whose team payroll for a given year exceeds an agreed threshold. This project attempts to test the tax's effect on quality of play by studying the number of above-rookie retirees (referred to here as "couldabeens") as a share of total retirements.

Why does the luxury tax matter?

Although originally pitched as a way to "even the playing field," the luxury tax has increasingly functioned as a salary cap. Existing literature has established a continuing decline in labor share in the MLB since the 2003 CBA (Bradbury, 2019).

$$\textit{Labor Share} = \frac{\textit{Total MLB Revenue}}{\textit{Total MLB Player Payroll}}$$

Theory

How might the "luxury tax" increase the number of above-rookie retirees?

- Players don't gain free agency until six years of MLB service time, making rookies cheaper than veterans.
- Farm teams not counted towards salary threshold, guaranteeing reserve pool of rookies.
- Teams direct limited budget towards retaining a handful of elite veterans, filling out roster with rookies.
- Hypothesis: Good-but-not-Mike-Trout veterans replaced with marginally inferior rookies to stay below salary threshold.

Methods: The Data

We got our data from https://stathead.com/baseball/ and divided it into four data sets:

- Rookie pitchers
- Rookie position players
- Retired pitchers
- Retired position players

Methods: WAR

Wins Above Replacement, or WAR, is a baseball statistic which seeks to measure a player's total contribution to his team. A WAR of 0.3 means the player's team will win 0.3 more games per season than if he had been substituted for a replacement-level player.

We define the WAR statistic for position players and pitchers differently, as follows. . .

Position WAR

Position WAR:

$$WAR = \frac{(Player \ Runs - Avg \ Runs) + (Avg \ Runs - Replacement \ Runs)}{Game \ Runs \ to \ Wins \ Estimator}$$

where

$$Player\ Runs = Batting\ Runs + Baserunning\ Runs + Double\ Play\ Runs +$$
 $Fielding\ Runs + Positional\ Adjustment$

Pitcher WAR

Pitcher WAR:

Abrev.	Meaning				
AARA	Adjusted Avg Runs Allowed				
APRA	Adjusted Player Runs Allowed				
ARRA	Adjusted Replacement Runs Allowed				

Table 1: Key

$$WAR = \frac{(AARA - APRA) + (ARRA - AARA)}{Game Runs to Wins Estimator}$$

However, the "replacement-level player" used in WAR is an estimate for the average *midseason* replacement. Being better than a midseason replacement does not necessarily make you better than the generation of rookies *actually* replacing you.

Methods: The Couldabeen Classifier

We want to calculate whether a given retiring player is better than the average rookie replacing him. For a given year Y, we first compute the mean rookie's WAR, call it $Rookie_Y$. Then, we construct the corresponding classifier for "couldabeen" status C of a given retired player p (from the year Y) to be as follows:

$$C(p) = \begin{cases} \textit{True}, \, \mathsf{WAR}_p \geq \textit{Rookie}_Y \\ \textit{False}, \, \mathsf{WAR}_p < \textit{Rookie}_Y \end{cases}$$

Visualization: Couldabeen Classification

Methods: Modeling

Linear Model: After classifying all retired players, get proportion of "couldbaeen" retirees and call this prop.

- As such, we now have 50 data points (for each year), so we run a linear model fitting Year ~ prop.
- Because there will always be "couldabeens", we do not expect a large effect size and hence a very significant result.
- If our research hypothesis is correct (that there is an effect), we expect to see a positive coefficient for β_{Year} .

Linear Model: Year

A Confounding Variable: *Moneyball* and the Sabermetric Revolution

"Sabermetrics is the search for objective knowledge about baseball through analysis of the statistical record." - from the Society for American Baseball Research, or SABR

A Confounding Variable: *Moneyball* and the Sabermetric Revolution

Timeline:

1977: Bill James, inventor of term "sabermetrics," publishes first "book": 1977 Baseball Abstract. It sells 75 copies.

1997: Billy Beane promoted to general manager of Oakland Athletics. He's ready every *Baseball Abstract* ever published.

(October 2002): Athletics finish season with MLB's best record and second-lowest budget.

(November 2002): Beane declines \$12.5 million offer from Boston Red Sox. Boston hires Bill James instead.

(June 2003): Michael Lewis publishes *Moneyball: The Art of Winning an Unfair Game*.

A Confounding Variable: *Moneyball* and the Sabermetric Revolution

(October 2004): Boston wins their first World Series since 1918.

(2006): Time lists Bill James among "100 Most Influential People in the World." Nearly every MLB franchise employs a sabermetrics team.

"[Presidential politics] reminded me of baseball, when you see the same recycled clichés and conventional wisdoms over and over again, some of which isn't very wise." - Former *Baseball Prospectus* partner Nate Silver, on why he founded *538*

Hypothesis Test: Why Split the Data?

Since the release of Moneyball in 2003 seems to be an important **confounding variable**, we perform a hypothesis test on the postMoneyball classifier of a year Y, defined as follows:

$$\mathsf{postMoneyball}(Y) = \begin{cases} \mathit{True}, \, Y > 2003 \\ \mathit{False}, \, Y \leq 2003 \end{cases}$$

• We fit a model Year ~ postMoneyball and perform LSS.

term	estimate	$\operatorname{std}\operatorname{_error}$	statistic	p_value	lower_ci	upper_ci
intercept	0.161	0.011	15.334	0.000	0.140	0.182
postMoneyball	-0.039	0.019	-2.054	0.045	-0.078	-0.001

Linear Model on Year (Post-Moneyball)

Linear Model: After partitioning the dataset, we classify the retirees and get proportion of "couldbaeen" retirees that year, we call this prop.

• We run a linear model fitting Year ~ prop.

Linear Model on Year

Post-Moneyball era

- $\beta_{Year} = 0.002034$.
- $\beta_{Year} > 0$ supports the hypothesis that there is an increasing rate of couldabeens since the luxury tax.
- β_{Year} is not statistically with a high p-value of 0.398.

Pre-Moneyball era

- $\beta_{Y_{ext}} = 0.004174$.
- β_{Year} is statistically significant with a high p-value of $p \approx 0$.
- Since the pre-Moneyball era had more data points, this may explain the lower *p*-value.

Simpson's Paradox

- Partitioning and fitting linear model with Year ~ prop yields $\beta_{Year} > 0$ in both partitions.
- However, if we do not make the partition, we find that $\beta_{Year} \approx 0$.
- This is in fact Simpson's Paradox.

What next?

So far, we have fit some linear models seeing the effect sizes of Year on the response prop. But Year is no mighty predictor...

- We know that we must partition the dataset into pre-Moneyball and post-Moneyball due to the confounding variable.
- From the linear model on the pre-Moneyball era, we find that $\beta_{Year} > 0$, suggesting that it is *certainly possible* that the rule had an effect on the game.
- Nonetheless, p = 0.3 is statistically insignificant...
- Resample, or bring in new data.

A New Approach: Labor Share

Since our couldabeen proportions are sorted by year, we needed year-sorted data. So, we used the Total Revenue and Total Payroll.

$$laborShare(Y) = \frac{totalPayroll(Y)}{totalRevenue(Y)}$$

$$0.6 - \frac{1990}{1990}$$

$$0.4 - \frac{1990}{2000}$$

$$0.10$$

$$0.2020$$

$$0.2020$$

Linear Model: Labor Share

- In fact, study by [Bradbury] shows labor share is decreasing due to the rule. . .
- So how is laborShare affecting prop? We fit prop ~ laborShare:

Results: Linear Model (Labor Share)

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept labShare	0.502 -0.867	$0.204 \\ 0.464$	2.464 -1.868	$0.028 \\ 0.084$	0.062 -1.870	0.941 0.136

- Alas, we find $\beta_{LabShare} = -0.867$ with a *p*-value of p = 0.084.
- Labor share is indeed negatively correlated to proportion of couldabeens.
- Research paper by [Bradbury] conveys that labor share is indeed diminshing due to the *luxury tax*.

Conclusion

To summarize:

- No correlation between year and proportion of couldabeens across entire 50-year span. ($\beta_{Year} \approx 0$)
- Positive but non-significant relationship between year and proportion of couldabeens when partitioned into pre- and post-Moneyball eras.
- (Hypothesis Test) Strongly significant negative relationship between publication of *Moneyball* and proportion of couldabeens. (p = 0.045)
- Somewhat significant relationship between labor share and proportion of couldabeens in post-Moneyball era. (p = 0.084)

References

- https://stathead.com/baseball/
- Bradbury, John Charles. "What Explains Labor's Declining Share of Revenue in Major League Baseball?" (2019).
- https://blogs.fangraphs.com/mlbs-evolving-luxury-tax/