Escaping the Sandbox on Windows

Chrome & Adobe Pdf Reader

Q4n

R4nger

Dr. Zhiniang Peng

Whoami

Zhiniang Peng @edwardzpeng

Principal Architect at Sangfor

PhD in Cryptography, interested in all areas of Computer Science

Work in Defensive & Offensive security

Published many research in both Industry & Academia

More about me: https://sites.google.com/site/zhiniangpeng

some of my bugs

CVE-2018-20694.CVE-2018-20746.CVE-2018-20693.CVE-2018-20692.CVE-2018-20696.CVE-2018-20689.CVE-2018-20690.CVE-2018-10812.CVE-2019-6184.CVE-2019-6186,CVE-2019-6487,CVE-2019-1253,CVE-2019-1292,CVE-2019-1317,CVE-2019-1340,CVE-2019-1342,CVE-2019-1374,CVE-2019-8162,CVE-2019-1474,CVE-2019-3808.CVE-2020-0747.CVE-2020-0753.CVE-2020-0754.CVE-2020-0777.CVE-2020-0780.CVE-2020-0785.CVE-2020-0786.CVE-2020-0789.CVE-2020-0794.CVE-2020-0794.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE-2020-0780.CVE 0797.CVE-2020-0800.CVE-2020-0805.CVE-2020-0808.CVE-2020-0819.CVE-2020-0822.CVE-2020-0835.CVE-2020-0841.CVE-2020-0844.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE-2020-0849.CVE 0854,CVE-2020-0858,CVE-2020-0863,CVE-2020-0864,CVE-2020-0865,CVE-2020-0868,CVE-2020-0871,CVE-2020-0896,CVE-2020-0897,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-0899,CVE-2020-08 0900,CVE-2020-0934,CVE-2020-0935,CVE-2020-0936,CVE-2020-0942,CVE-2020-0944,CVE-2020-0983,CVE-2020-0985,CVE-2020-0989,CVE-2020-1000,CVE-2020-0944,CVE-2020-0985,CVE-2020-0989,CVE-2020-1000,CVE-2020-0944,CVE-2020-0985,CVE-2020-0989,CVE-2020-1000,CVE-2020-0944,CVE-2020-0985,CVE-2020-0985,CVE-2020-0989,CVE-2020-1000,CVE-2020-0944,CVE-2020-0985,CVE-2020-0985,CVE-2020-0989,CVE-2020-1000,CVE-2020-0985,CVE-2020-0989,CVE-2020-1000,CVE-2020-0944,CVE-2020-0985,CVE-2020-0985,CVE-2020-0989,CVE-2020-1000,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-0985,CVE-2020-09 1002,CVE-2020-1010,CVE-2020-1011,CVE-2020-1029,CVE-2020-1068,CVE-2020-1077,CVE-2020-1084,CVE-2020-1086,CVE-2020-1090,CVE-2020-1094,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-1090,CVE-2020-10 1109,CVE-2020-1120,CVE-2020-1121,CVE-2020-1123,CVE-2020-1124,CVE-2020-1125,CVE-2020-1131.CVE-2020-1134.CVE-2020-1137.CVE-2020-1139.CVE-2020-1144.CVE-2020-1146.CVE-2020-1151.CVE-2020-1155.CVE-2020-1156.CVE-2020-1157.CVE-2020-1158.CVE-2020-1163.CVE-2020-1164.CVE-2020-1165.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1159.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE-2020-1169.CVE 1166,CVE-2020-1184,CVE-2020-1185,CVE-2020-1186,CVE-2020-1187,CVE-2020-1188,CVE-2020-1189,CVE-2020-1190,CVE-2020-1191,CVE-2020-1196,CVE-2020-1186,CVE-2020-1186,CVE-2020-1188,CVE-2020-1189,CVE-2020-1190,CVE-2020-1191,CVE-2020-1196,CVE-2020-1189,CVE-2020-1189,CVE-2020-1190,CVE-2020-1191,CVE-2020-1196,CVE-2020-1189,CVE-2020-1189,CVE-2020-1190,CVE-2020-1191,CVE-2020-1196,CVE-2020-1189,CVE-2020-1189,CVE-2020-1191,CVE-2020-1196,CVE-2020-1189,CVE-2020-1189,CVE-2020-1190,CVE-2020-1191,CVE-2020-1196,CVE-2020-1189,CVE-2020-1189,CVE-2020-1190,CVE-2020-1191,CVE-2020-1190,CVE-2020-1191,CVE-2020-1190,CVE-2020-1191,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE-2020-1190,CVE 1199.CVE-2020-1201.CVE-2020-1204.CVE-2020-1209.CVE-2020-1211.CVE-2020-1217.CVE-2020-1222.CVE-2020-1231.CVE-2020-1233.CVE-2020-1235.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE-2020-1201.CVE 1244.CVE-2020-1257.CVE-2020-1264.CVE-2020-1269.CVE-2020-1270.CVE-2020-1273.CVE-2020-1274.CVE-2020-1276.CVE-2020-1277.CVE-2020-1278.CVE-2020-1282,CVE-2020-1283,CVE-2020-1304,CVE-2020-1305,CVE-2020-1306,CVE-2020-1307,CVE-2020-1309,CVE-2020-1312,CVE-2020-1317,CVE-2020-1337,CVE-2020-1309,CVE-2020-1312,CVE-2020-1317,CVE-2020-1337,CVE-2020-1309,CVE-2020-1312,CVE-2020-1317,CVE-2020-1307,CVE-2020-1309,CVE-2020-1312,CVE-2020-1317,CVE-2020-1307,CVE-2020-1309,CVE-2020-1312,CVE-2020-1317,CVE-2020-1307,CVE-2020-1309,CVE-2020-1312,CVE-2020-1317,CVE-2020-1307,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1309,CVE-2020-1300,CVE-2020-1300,CVE-2020-1300,CVE-2020-1300,CVE-2020-1300,CVE-2020-1300,CVE 1344.CVE-2020-1346.CVE-2020-1347.CVE-2020-1352.CVE-2020-1356.CVE-2020-1357.CVE-2020-1360.CVE-2020-1361.CVE-2020-1362.CVE-2020-1364.CVE-2020-5957.CVE-2020-1366.CVE-2020-1372.CVE-2020-1373.CVE-2020-1375.CVE-2020-1385.CVE-2020-1392.CVE-2020-1393.CVE-2020-1394.CVE-2020-1366.CVE-2020-1366.CVE-2020-1372.CVE-2020-1373.CVE-2020-1375.CVE-2020-1385.CVE-2020-1392.CVE-2020-1393.CVE-2020-1394.CVE-2020-1375.CVE-2020-1385.CVE-2020-1392.CVE-2020-1393.CVE-2020-1394.CVE-2020-1375.CVE-2020-1385.CVE-2020-1392.CVE-2020-1393.CVE-2020-1394.CVE-2020-1375.CVE-2020-1385.CVE-2020-1392.CVE-2020-1393.CVE-2020-1394.CVE-2020-1375.CVE-2020-1385.CVE-2020-1392.CVE-2020-1393.CVE-2020-1394.CVE-2020-1375.CVE-2020-1385.CVE-2020-1392.CVE-2020-1393.CVE-2020-1394.CVE-2020-1393.CVE-2020-1393.CVE-2020-1393.CVE-2020-1393.CVE-2020-1393.CVE-2020-1393.CVE-2020-1393.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE-2020-1394.CVE 1399,CVE-2020-1404,CVE-2020-1405,CVE-2020-1424,CVE-2020-1427,CVE-2020-1441,CVE-2020-0518,CVE-2020-1461,CVE-2020-1465,CVE-2020-1472,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE-2020-1401,CVE 1474,CVE-2020-1475,CVE-2020-1484,CVE-2020-1485,CVE-2020-1511,CVE-2020-1512,CVE-2020-0516,CVE-2020-1516,CVE-2020-1517,CVE-2020-1518,CVE-2020-1512,CVE-2020-0516,CVE-2020-1516,CVE-2020-1517,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-1518,CVE-2020-15 1519.CVE-2020-1521.CVE-2020-1522.CVE-2020-1524.CVE-2020-1528.CVE-2020-1538.CVE-2020-8741.CVE-2020-1548.CVE-2020-1549.CVE-2020-1550.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE-2020-1520.CVE 1552,CVE-2020-1590,CVE-2020-1130,CVE-2020-16851,CVE-2020-16852,CVE-2020-1122,CVE-2020-1038,CVE-2020-17089,CVE-2020-16853,CVE-2020-16879,CVE-2020-1590,CVE-2020-17089,CVE-2020-16853,CVE-2020-16879,CVE-2020-16852,CVE-2020-10852,CVE-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-1088-2020-10 16900.CVE-2020-16980.CVE-2020-17014.CVE-2020-17070.CVE-2020-17073.CVE-2020-17074.CVE-2020-17075.CVE-2020-17076.CVE-2020-17077.CVE-2020-17092.CVE-2020-17097.CVE-2020-17120.CVE-2021-1649.CVE-2021-1650.CVE-2021-1651.CVE-2021-1659.CVE-2021-1680.CVE-2021-1681.CVE-2021-1686.CVE-2021-1687.CVE-2021-1688.CVE-2021-1689.CVE-2021-1690.CVE-2021-1718.CVE-2021-1722.CVE-2021-24072.CVE-2021-24077.CVE-2021-3750.CVE-2021-24088.CVE-2021-26869.CVE-2021-26870,CVE-2021-26871,CVE-2021-26885,CVE-2021-28347,CVE-2021-28351,CVE-2021-28436,CVE-2021-28450,CVE-2021-31966,CVE-2021-34527,CVE-2021-26870,CVE-2021-26870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-36870,CVE-2021-3 42321,CVE-2021-36970,CVE-2021-38657,CVE-2021-40485,CVE-2021-41366,CVE-2021-42294,CVE-2021-42297,CVE-2021-43216,CVE-2021-43223,CVE-2021-43248,CVE-2022-21835,CVE-2022-21837,CVE-2022-21878,CVE-2022-21881,CVE-2022-21888,CVE-2022-21971,CVE-2022-21974,CVE-2022-21992,CVE-2022-23285,CVE-2022-21888,CVE-2022-21971,CVE-2022-21974,CVE-2022-21992,CVE-2022-23285,CVE-2022-21888,CVE-2022-21971,CVE-2022-21974,CVE-2022-21992,CVE-2022-23285,CVE-2022-21888,CVE-2022-21971,CVE-2022-21974,CVE-2022-21992,CVE-2022-23285,CVE-2022-21888,CVE-2022-21971,CVE-2022-21974,CVE-2022-21992,CVE-2022-23285,CVE-2022-21888,CVE-2022-21971,CVE-2022-21974,CVE-2022-21992,CVE-2022-23285,CVE-2022-21888,CVE-2022-21971,CVE-2022-21974,CVE-2022-21992,CVE-2022-23285,CVE-2022-21888,CVE-2022-21971,CVE-2022-21974,CVE-2022-21992,CVE-2022-23285,CVE-2022-21974,CVE-2022-21974,CVE-2022-21974,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-23285,CVE-2022-2 23290.CVE-2022-24454.CVE-2022-29108.CVE-2022-24547.CVE-2022-23270.CVE-2022-26930.CVE-2022-29103.CVE-2022-29113.CVE-2022-38036.CVE-2022-35793.CVE-30157.CVE-2022-29108.CVE-2022-21999.CVE-2023-21683.CVE-2023-21684.CVE-2023-21693.CVE-2023-21801.CVE-2023-23403.CVE-2023-23406.CVE-2023-23413.CVE-2023-24856,CVE-2023-24857,CVE-2023-24858,CVE-2023-24863,CVE-2023-24865,CVE-2023-24866,CVE-2023-24867,CVE-2023-24907,CVE-2023-24868,CVE-2023-24865,CVE-2023-24866,CVE-2023-24867,CVE-2023-24907,CVE-2023-24868,CVE-2023-24865,CVE-2023-24866,CVE-2023-24867,CVE-2023-24907,CVE-2023-24868,CVE-2023-24866,CVE-2023-24867,CVE-2023-24907,CVE-2023-24868,CVE-2023-24866,CVE-2023-24867,CVE-2023-24907,CVE-2023-24868,CVE-2023-24868,CVE-2023-24868,CVE-2023-24868,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-24866,CVE-2023-2 24909,CVE-2023-24870,CVE-2023-24872,CVE-2023-24913,CVE-2023-24876,CVE-2023-24924,CVE-2023-24883,CVE-2023-24925,CVE-2023-24884,CVE-2023-24926,CVE-2023-24924,CVE-2023-24870,CVE-2023-24872,CVE-2023-24913,CVE-2023-24876,CVE-2023-24924,CVE-2023-24883,CVE-2023-24925,CVE-2023-24884,CVE-2023-24926,CVE-2023-24924,CVE-2023-24876,CVE-2023-24924,CVE-2023-24883,CVE-2023-24925,CVE-2023-24884,CVE-2023-24926,CVE-2023-24924,CVE-2023-24924,CVE-2023-24925,CVE-2023-24884,CVE-2023-24924,CVE-2023-24884,CVE-2023-24884,CVE-2023-24924,CVE-2023-24876,CVE-2023-24876,CVE-2023-24884,CVE-2023-24924,CVE-2023-24883,CVE-2023-24925,CVE-2023-24884,CVE-2023-24924,CVE-2023-24884,CVE-2023-24884,CVE-2023-24924,CVE-2023-24884,CVE-2023-24884,CVE-2023-24924,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884,CVE-2023-24884, 2023-24885.CVE-2023-24927.CVE-2023-24886.CVE-2023-24928.CVE-2023-24887.CVE-2023-24929.CVE-2023-28243.CVE-2023-28296.CVE-2023-29366.CVE-2023-24887.CVE-2023-24929.CVE-2023-28243.CVE-2023-28296.CVE-2023-29366.CVE-2023-24887.CVE-2023-24929.CVE-2023-28243.CVE-2023-28296.CVE-2023-29366.CVE-2023-24929.CVE-2023-24929.CVE-2023-28296.CVE-2023-29366.CVE-2023-24929.CVE-2023-24929.CVE-2023-28296.CVE-2023-29366.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-28296.CVE-2023-29366.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-24929.CVE-2023-2 29367.CVE-2023-32017.CVE-2023-32039.CVE-2023-32040.CVE-2023-32041.CVE-2023-32042.CVE-2023-32085.CVE-2023-35296.CVE-2023-35302.CVE-2023-35306.CVE-2023-35313,CVE-2023-35323,CVE-2023-35324,CVE-2023-36898,CVE-2023-36792,CVE-2023-36704,CVE-2023-36418,CVE-2023-36395,CVE-2023-36393,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-36395,CVE-2023-2025,CVE-2023-2025,CVE-2023-2025,CVE-2023-2025,CVE-2023-2025,CVE-2025,CVE-2023-2025,CVE-2023-2025,CVE-2023-2025,CVE-2023-2025,CVE-2023-2 35624,CVE-2023-21683,CVE-2023-29366,CVE-2023-46138,CVE-2023-42820,CVE-2023-42819,CVE-2024-21426,CVE-2024-29156,CVE-2024-26198,CVE-2024-21435,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,CVE-2024-2016,C 2024-21329,CVE-2024-21384,CVE-2024-20691,CVE-2024-21433,CVE-2024-20694,CVE-2024-0087,CVE-2024-0088,CVE-2024-30060,CVE-2024-29989

Whoami

Q4n

Q4n is a security researcher, his research focus on binary exploitation and artificial intelligence.

Whoami

R4nger

R4nger is a security researcher, his research focus on reverse engineering and artificial intelligence.

Agenda

- ➤ Introduction
- > Attack Surface of Different Sandboxes on Windows
- > Exploiting the Chrome GPU Process
- > Exploiting a Windows Kernel Vulnerability
- ➤ Summary

Introduction

Background

- > Modern desktop application become more secure
 - o SDLC, Mitigations, Security Architecture,
- > Chrome and Adobe pdf Reader are still the main targets
 - o Oday exploitation still in the wild.
 - o Commercial Surveillance Vendors and Governments.

Motivation

- > Offensive research drive defense
 - o Defense and detection
 - o Attack simulation (BAS)
- > Build a full chain exploit for Chrome and Adobe pdf Reader
 - o No Experience on Chrome and Adobe before
 - o On PC (Windows)
 - o Sandbox escape is the main obstacle
 - o In this talk: our journey of research on sandbox escape

Attack Surface of Different Sandboxes

Chrome Process Architecture

- ➤ Multi-process architecture.
- > Different kind of process for different features.
- > Talk to each other using Inter Process Communication (IPC).
- > Sandbox restrict processes.

How Sandbox Restrict Process on Windows

- > Restricted Token, Job Level.
 - o Restricted privileges, protecting securable resources.
- ➤ Integrity Levels.
 - o Enforce mandatory access control.
- ➤ Mitigations.
 - o Setup various security enforcing policies.
- ➤ Alternate Desktop.
 - o Restrict sandbox to interact with user desktop.

TokenLevel LOCKDOWN LIMITED INTERACTIVE RESTRICTED_NON_ADMIN RESTRICTED_SAME_ACCESS UNPROTECTED

Mitigation Policies

-ASLR
-CFG
-Child process creation disabled
-DEP
-Extension points disabled
-Images restricted
-Indirect branch prediction
-Non-system fonts disabled
-SMT-thread branch target isolation
-Win32k system calls disabled
-Signatures restricted(Microsoft only)

Restricted Token

Restricting sids enforce limits on sandbox process for accessing resources which depends on sid.

Job Level

A job can enforce limits on sandbox process for operating on global resources.

Integrity Level

Integrity level enforce mandatory
access control

Mitigation Policies

- > Security enforcing policies to sandbox.
 - o Most can be applied via SetProcessMitigationPolicy.

Mitigation Policies

- -ASLR
- -CFG
- -Child process creation disabled
- -DEP
- -Extension points disabled
- -Images restricted
- -Indirect branch prediction
- -Non-system fonts disabled
- -SMT-thread branch target isolation
- -Win32k system calls disabled
- -Signatures restricted(Microsoft only)

Chrome Sandbox Startup Flow on Windows

Chrome Sandbox Architecture

➤ chrome://sandbox

Sandbox Status

Process	Туре	Name	Sandbox	Lockdown	Integrity	Mitigations	Component Filter	Lowbox/AppContainer
20840	GPU	GPU	GPU	Limited	S-1-16-4096 Low	HEAP_TERMINATE BOTTOM_UP_ASLR EXTENSION_POINT_DISABLE BLOCK_NON_MICROSOFT_BINARIES FONT_DISABLE IMAGE_LOAD_NO_REMOTE IMAGE_LOAD_NO_LOW_LABEL RESTRICT_INDIRECT_BRANCH_PREDICTION FSCTL_SYSTEM_CALL_DISABLE	00000001	
20852	Utility	Network Service	Not Sandboxed					
20944	Utility	Storage Service	Service	Lockdown	S-1-16-0 Untrusted	— 0111101110011000010000000000000000000	00000001	
23356	Utility	Audio Service	Audio	Restricted Non Admin	S-1-16-4096 Low	— 0111101100011000010000000000000000000	0000001	
8464	Renderer		Renderer	Lockdown	S-1-16-0 Untrusted	- 0111100110011000010000020010000	00000001	

Adobe Process Architecture

Sandbox Escape Methodology

- > Resources accessible inside the sandbox.
 - o Configuration Issues may lead to direct sandbox escape.
 - o Policy auditing.
- > Code that can interactive inside the sandbox.
 - o Vulnerability in these code might cause a sandbox escape.
 - o The more resources you can access, the more code you can interact with.

Resources Accessible inside Sandbox

Depends on three factors:

Token/Job/Mitigations: Chrome uses Mitigation Policy, Token, Job, Desktop to restrict the behavior of sandbox on Windows

Pre-opened Objects: Sandboxed process has pre-opened objects which are necessary for the sandbox to run normally

Policy Rules: Chrome provides the Policy Rule to allow the sandbox to access extra system resources

Accessible Resources by Token/Job

Get Writable Directories

Get-AccessibleFile -Win32Path "C:\" -Recurse -ProcessIds 1234 -DirectoryAccessRights AddFile -CheckMode DirectoriesOnly -FormatWin32Path | Select-Object Name

Get Accessible ALPC Port

Get-AccessibleAlpcPort -ProcessIds 1234

Get Accessible Device Object

Get-AccessibleDevice \Device -ProcessIds 1234

Install-Module -Name NtObjectManager

Pre-opened object in Renderer

Get pre-opened object by System Informer

File	\Device\CNG	Read data, Synchronize
File	\Device\KsecDD	Read data, Write data, S
File	C:\Program Files\Google\Chrome\Application\122.0.6261.112\icudtl.dat	Read
File	C:\Windows\apppatch\DirectXApps.sdb	Read
File	\Device\DeviceApi	Read
File	\Device\NamedPipe\mojo.3032.3852.4128734811961643837	Write, Read, Write owner
File	\Device\NamedPipe\mojo.3032.3852.5633591254788134162	Write, Read, Write owner
File	\Device\NamedPipe\mojo.3032.3852.3066321487145621440	Write, Read, Write owner
File	\Device\NamedPipe\mojo.3032.11440.9905790863115651483	Write, Read
Key	HKLM\SYSTEM\ControlSet001\Control\Nls\Sorting\Versions	Read
Key	HKLM	Read
Key	HKLM\SYSTEM\ControlSet001\Control\Session Manager	Query values
Key	HKLM\SYSTEM\ControlSet001\Control\Nls\Sorting\Ids	Read
Key	HKLM	Read
Key	HKLM\SOFTWARE\Microsoft\Ole	Read
Key	HKCU\Software\Classes\Local Settings\Software\Microsoft	Read
Key	HKCU\Software\Classes\Local Settings	Read

IPC based on named pipe

Extra Resources

- > Ask broker process for the extra resources
 - o Crosscall answers are rule-based.
 - o Get policy rules from chrome://sandbox.

```
"policyRules": {
    "GdiDllInitialize": [
    " -> fakeSuccess"
],
    "GetStockObject": [
    " -> fakeSuccess"
],
    "NtCreateSection": [
        "exact(p[0], '\\Device\\HarddiskVolume3\\Program Files\\Google\\Chrome\\Application\\122.0.6261.128\\chrome.dll') -> askBroker",
        "exact(p[0], '\\Device\\HarddiskVolume3\\Program Files\\Google\\Chrome\\Application\\122.0.6261.128\\chrome_elf.dll') -> askBroker"
],
    "RegisterClassW": [
        " -> fakeSuccess"
],
```

Code You Can Interact With (Attack Surface)

Every attack surface listed here has vulnerabilities exploited in the wild before.

Attack Surface of Chrome GPU Process

Comparing with renderer:

having the same syscall in NT kernel, but you can interact with more code. Easier to escape.

Attack Surface of Adobe Sandboxed Process

Comparison

Chrome GPU / Adobe Sandbox Chrome Renderer NT Kernel Function NT Kernel Function Win32k Kernel Based on Device SD: Pre-open device: **\Device\NamedPipe \Device\CNG** Device Drivers **\Device\Afd \Device\Srv2 ALPC Service** Alpc Service: **RPC Service** System Services **CSRSS COM Service** User Applications Mojo Legacy IPC Mojo **IPC** Legacy IPC

In-the-wild Exploits

Chrome Renderer

CVE-2018-8611 CVE-2021-33771 CVE-2021-31979 CVE-2023-21674

CVE-2020-17087 CVE-2021-31956

CVE-2020-1027

CVE-2020-6572 CVE-2020-16010 CVE-2020-16017 CVE-2021-21193 CVE-2021-21206 CVE-2021-37976 CVE-2021-37973 CVE-2021-30633 CVE-2022-3075 Chrome GPU / Adobe Sandbox

Kernel

Device Drivers

System Services

User Applications

Listed in the captured attack scenarios Some bugs can works on both side

CVE-2018-8453 CVE-2018-8589 CVE-2019-0797 CVE-2019-0859

CVE-2023-21768

CVE-2022-22047

Chrome GPU

CVE-2021-30554 CVE-2022-4135 CVE-2023-2136

CVE-2023-6345

Adobe Sandbox

CVE-2021-31199 CVE-2021-31201

Exploiting the Chrome GPU Process

Introduction to WebGL

- > Web standard for a low-level 3D graphics API.
- ➤ Browser-compatible JavaScript API.
- > WebGL stays very close to the related OpenGL ES specification.

> ...

History of WebGL

- > WebGL 1.0 was released in 2011.
 - o Based on OpenGL ES 2.0(2007).
- > WebGL 2.0 was released in 2017.
 - o Based on OpenGL ES 3.0(2012).

WebGL Demo

> Simple webgl2 code drawing a triangle

```
const vertices = new Float32Array([
   0.0, 0.5, // Vertex 1 (top)
   -0.5, -0.5, // Vertex 2 (bottom-left)
   0.5, -0.5 // Vertex 3 (bottom-right)
const positionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.STATIC_DRAW);
const vsSource = `
    attribute vec2 a_position;
   void main() {
        gl Position = vec4(a position, 0.0, 1.0);
const fsSource = '
    void main() {
        gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0); // Red color
const program = createProgram(gl, compileShader(gl, vsSource, gl.VERTEX_SHADER),
    compileShader(gl, fsSource, gl.FRAGMENT_SHADER));
const positionLoc = gl.getAttribLocation(program, 'a position');
gl.enableVertexAttribArray(positionLoc);
gl.vertexAttribPointer(positionLoc, 2, gl.FLOAT, false, 0, 0);
gl.useProgram(program);
gl.drawArrays(gl.TRIANGLES, 0, 3);
```

Chrome GPU Architecture on Windows

- ➤ Using Hardware Acceleration.
- ➤ ANGLE calls the D3D API directly.

Chrome GPU Architecture on Windows

- >> With SwiftShader enabled.
 - o Pure software implementation.
 - o Running on devices that do not support hardware acceleration.
 - o Cross-platform features.

What does swiftshader bring us?

> Attack surface from render to GPU process.

Project Zero

News and updates from the Project Zero team at Google

Wednesday, October 24, 2018

Heap Feng Shader: Exploiting SwiftShader in Chrome

Posted by Mark Brand, Google Project Zero

Check swiftshader exists

```
const canvas = document.createElement('canvas');
const gl = canvas.getContext('webgl2');
const debugInfo = gl.getExtension("WEBGL_debug_renderer_info");
const renderer = gl.getParameter(debugInfo.UNMASKED_RENDERER_WEBGL);
console.log(renderer);
```

```
> ANGLE (Intel, Intel(R) UHD Graphics 630 (0x00003E92) Direct3D11
vs_5_0 ps_5_0, D3D11)
// without swiftshader

> ANGLE (Google, Vulkan 1.3.0 (SwiftShader Device (Subzero)
(0x0000C0DE)), SwiftShader driver)
// with swiftshader
```

How to Enable Swiftshader

- > Adding --disable-gpu to the chrome startup command line.
 - o Not the default.
- > Or turning off 3D acceleration in virtual machines.
 - Common in cloud platform, but not universal for physical machines.
- > In other cases, the swiftshader backend is disabled.

So how can we enable swiftshader by default in stable chrome?

Enable Swiftshader

It turns out that if you have a supported GPU, it's still relatively straightforward for an attacker to force your browser to use SwiftShader for accelerated graphics - if the GPU process crashes more than 4 times, Chrome will fallback to this software rendering path instead of disabling acceleration. In my testing it's quite simple to cause the GPU process to crash or hit an out-of-memory condition from WebGL - this is left as an

- ➤ Crash the gpu process more than 4 times.
 - o However, it didn't work...

```
for (let i = 0; i < 4; i++)
{
    gpuKiller(gl);
}</pre>
```


Crash GPU Process 4 times

0: gpuKiller() -> Crashed

```
:ERROR:gpu_process_host.cc(967)] GPU process exited unexpectedly: exit_code=34
:WARNING:gpu_process_host.cc(1273)] The GPU process has crashed 1 time(s)
:INFO:CONSOLE(0)] "WebGL: CONTEXT_LOST_WEBGL: loseContext: context lost", source
:WARNING:gpu_process_host.cc(995)] Reinitialized the GPU process after a crash.
```

- 1: gpuKiller() -> Failed
- 2: gpuKiller() -> Failed
- 3: gpuKiller() -> Failed

```
canvas.addEventListener("webglcontextcreationerror",
  (event) => {console.log(`${event.statusMessage}`);});
```

js> Web page caused context loss and was
blocked
js> Failed to create a WebGL2 context.

GPU Fallback

```
void GpuProcessHost::RecordProcessCrash() {
if (recent crash count >= GetFallbackCrashLimit() && !disable crash limit) {
  base::UmaHistogramEnumeration(kFallbackEventCause,
                               GPUFallbackEventCauseType::kCrashLimit);
  GpuDataManagerImpl::GetInstance()->FallBackToNextGpuMode();
https://source.chromium.org/chromium/chromium/src/+/c7c5bedfc6c313826cb8cfa884dc3a3b20831311:content/browser/gpu/gpu process host.cc
:l=1452:bpv=0:bpt=0
 > The GetFallbackCrashLimit() function returns constant 3 on windows.
     o If gpu process crashes more than 3 times, it tries to fallback to the
        next GPU mode.
     o After gpu mode switched, recent_crash_count_ will be reset.
 > There are 2 gpu fallbacks on windows.
     o gpu::GpuMode::SWIFTSHADER
     o gpu::GpuMode::DISPLAY_COMPOSITOR
```

IsWebGLBlocked

```
js> Web page caused context loss and was blocked
js> Failed to create a WebGL2 context.
WebGLRenderingContextBase::CreateWebGraphicsContext3DProvider(
                                                                     bool HTMLCanvasElement::IsWebGLBlocked() const {
                                                                      bool blocked = false:
   if (!host->IsWebGLBlocked())
      return provider;
                                                                     gpu data manager
    host->SetContextCreationWasBlocked();
                                                                          ->Are3DAPIsBlockedForUrl(document.Url(),
    host->HostDispatchEvent(WebGLContextEvent::Create(
                                                                     &blocked);
        event type names::kWebglcontextcreationerror,
                                                                      return blocked;
        "Web page caused context loss and was blocked"));
    return nullptr;
```

https://source.chromium.org/chromium/chromium/src/+/main:third par tv/blink/renderer/modules/webgl/webgl rendering context base.cc;l= 688;drc=79fd5d71c46d0e6ecd842867bc1c787fae68e218;bpv=1;bpt=1

https://source.chromium.org/chromium/chromium/src/+/mai n:third party/blink/renderer/core/html/canvas/html canv as element.cc;l=579;drc=79fd5d71c46d0e6ecd842867bc1c787 fae68e218;bpv=1;bpt=1?q=iswebglblock&ss=chromium%2Fchro mium%2Fsrc

Are3DAPIsBlockedAtTime

```
GpuDataManagerImplPrivate::Are3DAPIsBlockedAtTime
...
std::string domain = GetDomainFromURL(url);
size_t losses_for_domain = base::ranges::count(
    blocked_domains_, domain,
    [](const auto& entry) { return entry.second.domain; });
if (losses_for_domain > 1)
    return DomainBlockStatus::kBlocked;
...
```

https://source.chromium.org/chromium/chromium/src/+/main:content/browser/gpu/gpu_data_manager_impl_private.cc;l=1608;drc=b5b5329172a1607685db895653aa928560848ed3

```
GpuHostImpl::DidLoseContex
```

```
void GpuDataManagerImplPrivate::BlockDomainsFrom3DAPIsAtTime(
...
for (const auto& domain : domains) {
   blocked_domains_.insert({at_time, {domain, guilt}});
}
```

https://source.chromium.org/chromium/chromium/src/+/main:content/browser/gpu/gpu_data_manager_impl_private.cc;l=1567;drc=b5b5329172a1607685db895653aa928560848ed3;bpv=1;bpt=1

3 Domains to Enable Swiftshader

- ➤ Attacker need more than 3 different domains to deploy exploits.
 - o Noisy and not OPSEC.
 - o Inconvenient in the restricted scenarios.

Patch the Renderer

WebGLRenderingContextBase::CreateWebGraphicsContext3DProvider(

```
if (!host->IsWebGLBlocked())
  return provider;
host->SetContextCreationWasBlocked();
host->HostDispatchEvent(WebGLContextEvent::Create(
   event type names::kWebglcontextcreationerror,
   "Web page caused context loss and was blocked"));
return nullptr;
> IsWebGLBlocked() simply returns true or false.
> No side effect in browser process.
====> 1 assembly instruction patch to renderer process to
bypass Webgl block checking.
```

CVE-2023-3598: Out of Bounds Read and Write in ANGLE

- > CVE-2023-3598 was discovered and exploited in hxpCTF
- > Organizers caught the traffic and reported it to vender

[\$10000][1443401] **High** CVE-2023-2930: Use after free in Extensions. *Reported by asnine on* 2023-05-08

[\$10000][1427865] High CVE-2023-3598: Out of bounds read and write in ANGLE.

Discovered by a member of Apple Security Engineering and Architecture (SEAR) and reported by sisu from CTF team HXP on 2023-03-26

[\$9000][1444238] **High** CVE-2023-2931: Use after free in PDF. Reported by Huyna at Viettel Cyber Security on 2023-05-10

Analysis of CVE-2023-3598

- > Vulnerability
 - o Implement of merging allocas in SUBZERO JIT
 - Alloca
 - An instruction to allocate memory on stack.
 - Storing local variables and temporary data.
 - Integer overflow in Cfg::sortAndCombineAllocas.
 - Causes arbitrary code execution in GPU process.

- ➤ More details
 - o https://issues.chromium.org/issues/40065276

Patch Analysis of CVE-2023-3598

```
third_party/subzero/src/lceCfg.cpp
                                                                                                                                                                                                                                             -0, 1, +17
 Commit: 151fa79
                                                                                                                                     Commit 4e40142
       uint32_t Alignment = std::max(Alloca->getAlignInBytes(), 1u);
                                                                                                                                            uint32_t Alignment = std::max(Alloca->getAlignInBytes(), 1u);
        auto *ConstSize =
839
      11vm::dyn_cast<ConstantInteger32>(Alloca->getSizeInBytes());
                                                                                                                                                llvm::dyn_cast<ConstantInteger32>(Alloca->getSizeInBytes());
        uint32_t Size = Utils::applyAlignment(ConstSize->getValue(), Alignment);
                                                                                                                                            const wint32_t Size =
                                                                                                                                                Utils::applyAlignment(ConstSize->getValue(), Alignment);
                                                                                                                                            if (Size > StackSizeLimit) {
                                                                                                                                             llvm::report_fatal_error("Local variable exceeds stack size limit");
                                                                                                                                            if (BaseVariableType == BVT_FramePointer) {
        if (BaseVariableType == BVT_FramePointer) {
                                                                                                                                              // adding the size of the alloca, because it grows downwards from the
          // adding the size of the alloca, because it grows downwards from the
         Offsets.push_back(CurrentOffset + OutArgsOffsetOrZero);
                                                                                                                                              Offsets.push_back(CurrentOffset + OutArgsOffsetOrZero);
                                                                                                                                            if (CurrentOffset + Size > StackSizeLimit) (
                                                                                                                                             llvm::report_fatal_error("Local variable exceeds stack size limit");
        // Update the running offset of the fused alloca region.
                                                                                                                                            // Update the running offset of the fused alloca region.
        CurrentOffset += Size:
                                                                                                                                            CurrentOffset += Size:
```

https://source.chromium.org/chromium/_/swiftshader/SwiftShader/+/4e401427f8dd799b17ac6c805391e2da1e017672

Exploitation of CVE-2023-3598 on Windows

- > Exploit on macOS does not work on windows.
- ➤ But primitives work :)
 - o bufAccess
 - oobAccess
 - oobRead
 - oobWrite
- > Extremely reduced development time.

Steps of Exploitation

- 1.Leak chrome.dll and vk_swiftshader.dll and setup ROP gadgets.
 - a. Based on oobRead primitive.
- 1.Place shellcode at a known address in the GPU process memory.
 - a. Create Uniform Buffer Objects(UBOs).
 - b. Setup data with shellcode.
 - c.Leak heap address based on oobRead.
- 1. Use oobWrite to execute the ROP chain.
 - a. Use vk_swiftshader!rr::protectMemoryPages to modify shellcode permissions to PAGE_EXECUTE_READWRITE.
 - b. Jump to shellcode.

Exploitation of CVE-2023-3598 on Windows

Review Full Exploit Chain

- 1.Get renderer RCE.
 a.Bypass WebGL blocking
- 1.Using gpuKiller to enable the swiftshader backend.
- 1. Leaking addresses and building gadgets.
- 1. Trigger ROP to execute next stage shellcode.

Exploitation Statistics

> Affected stable versions. o [99.0.4844.51-112.0.5615.87]

- ➤ Success rate: 100%
 - o 1000 times benchmark.
 - o No heap feng shui.
 - o Just OOB on stack.

Exploiting a Windows Kernel Vulnerability

Escape Chrome GPU/Adobe Sandboxed Process

Find a target -> Afd.sys

- > Several bugs in the past few years
- ➤ Exploited in the Pwn2Own 2014
- > Can be accessed from Chrome GPU/Adobe Sandboxed Process
- \triangleright CVE-2023-35632 (fixed in 2023.12)

Basic of afd.sys

- Winsock function driver
- Create socket == Open \Device\Afd\Endpoint

User Mode API:

```
socket(...)
connect(...)
listen(...)
send(...)
recv(...)
```

Kernel Mode implementation:

CVE-2023-35632 Patch Analysis

Bindiff results

```
0.97 ----- 00000001C007F... AfdSanPollUpdate
                                                                                     0000001C007F... AfdSanPollUpdate
1.00
                                                                                                                                                          Name Hash
1.00
        0.97 ----- 00000001C0081... WskTdiEHError
                                                                                     00000001C0081... WskTdiEHError
                                                                                                                                                          Name Hash
1.00
        0.97 ----- 00000001C0081... WskTdiTLRequestIoControl
                                                                                     0000001C0081... WskTdiTLRequestIoControl
                                                                                                                                                          Name Hash
1.00
        0.96 ----- 00000001C0070... AfdFreeConnectDataBuffers
                                                                                     0000001C0070... AfdFreeConnectDataBuffers
                                                                                                                                                          Name Hash
1.00
             ----- 00000001C005C... AfdFreeBuffer
                                                                                     0000001C005B... AfdFreeBuffer
                                                                                                                                                          Name Hash
1.00
             ----- 00000001C0012... WskProIRPListen
                                                                                     0000001C0012... WskProIRPListen
                                                                                                                                                          Name Hash
        0.93 GI-J--C 00000001C004C... AfdFastDatagramSend
                                                                                     0000001C004C... AfdFastDatagramSend
                                                                                                                                                          Name Hash
```

Before Patching

```
AlignedBufferSize = (SendBufferSize + 7) & 0xFFFFFFF8;
v82 = AlignedBufferSize;
```

After Patching

Call Stack Analysis

Pseudo Code Snippet

```
DWORD AlignedBufSize = (SendBufSize + 7) & 0xFFFFFFF8;
if (AlignedBufSize > 0x8000){
    LocalBuf = AfdGetBufferSlow(AlignedBufSize, ...);
}else{
                                                          always hit here
    LocalBuf = AfdGetBufferFast(AlignedBufSize, ...);
*/
try{
    if (ExGetPreviousMode() != KernelMode)
         ProbeForRead( UserBuf, SendBufSize, sizeof(UCHAR));
    memmove(LocalBuf, UserBuf, SendBufSize);
} except (EXCEPTION_EXECUTE_HANDLER) {
    return GetExceptionCode();
```

if SendBufSize == 0xffffffff9, AlignedBufSize will be 0

Limitations

Issues we meet:

- 1. The OOBW size (0xfffffff9) is too large for exploiting
- 1. Vuln pool is got from AFD Lookaside List but not directly from system

Bad News

The OOBW size is too large for exploiting

```
try{
    if (ExGetPreviousMode() != KernelMode)
        ProbeForRead( UserBuf, 0xffffffff9, sizeof(UCHAR));
    memmove(LocalBuf, UserBuf, 0xfffffff9)
} except (EXCEPTION_EXECUTE_HANDLER) {
    return GetExceptionCode();
}

    Can we abuse this?
```

Make OOBW size controllable

VirtualAllocEx -> Mapped Memory

Mapped Memory Unmapped Memory

Put UserBuf in the tail

Bad News

Vuln pool is got from AFD Lookaside List but not directly from system

```
LocalBuf = AfdGetBufferFast(AlignedBufSize, ...);
```

```
AfdGetBufferFast(
    DWORD BufferDataSize,
){
    if ( BufferDataSize <= AfdSmallBufferSize ) {</pre>
        lookasideList = &AfdLookasideLists->SmallBufferList; always hit here
    } else if ( BufferDataSize <= AfdMediumBufferSize ) {</pre>
        lookasideList = &AfdLookasideLists->MediumBufferList;
    } else {
        lookasideList = &AfdLookasideLists->LargeBufferList;
    buffer = ExAllocateFromNPagedLookasideList( lookasideList );
    return buffer
```

What is Lookaside List?

Lookaside lists are single linked lists containing pool allocations of a fixed size. They are used by drivers for caching memory allocations instead of always requesting them from the memory manager.

https://windows-internals.com/lookaside-list-forensics/

Allow drivers to manage the 'freed' pool, Speed up the process of pool allocation

```
ExAllocateFromNPagedLookasideList(
                                                                           get from LookasideList as default
   PNPAGED_LOOKASIDE_LIST Lookaside
   ){
   PVOID Entry = InterlockedPopEntrySList(&Lookaside->L.ListHead);
   if (Entry == NULL) {
                                                            get from system if LookasideList is empty
       Entry = (Lookaside->L.Allocate)(Lookaside->L.Type,
                                        Lookaside->L.Size, /* 0x2e0 */
                                        Lookaside->L.Tag);
                                               AfdAllocateBuffer (
   return Entry;
                                                  IN POOL TYPE PoolType,
                                                  IN SIZE_T NumberOfBytes,
                                                  IN ULONG Tag
                                                  ){
                                                  PVOID buffer = ExAllocatePoolWithTagPriority(PoolType,
                                               NumberOfBytes, Tag, LowPoolPriority);
```

Pool Fengshui

Exhausting Cached Pool in Lookaside List

A new pool is created only when the Lookaside List is empty!

```
if (Entry == NULL) {
        Entry = (Lookaside->L.Allocate)(Lookaside->L.Type,
                                        Lookaside->L.Size,
                                        Lookaside->L.Tag);
```


Lookaside List **Empty**

Several AFD function can help us to do that since lookaside list is used everywhere

Fill Lookaside List with Freed Hole

What We Have Now:

- > vuln pool is got from system memory manager
- ➤ vuln pool size is 0x2e0
- > vuln pool type is nonpaged pool
- > Out-of-Bound Writes arbitrary size

Why Do Pool Fengshui with Named Pipe?

- ➤ Can be accessed from both Adobe sandboxed process/Chrome GPU sandbox
- > Vuln pool is nonpaged pool
- > Well-known technology and documented in github

Spray Named Pipe

```
struct DATA_QUEUE_ENTRY {
    LIST_ENTRY NextEntry;
    _IRP* Irp;
    _SECURITY_CLIENT_CONTEXT* SecurityContext;
    uint32_t EntryType;
    uint32_t QuotaInEntry;
    uint32_t DataSize;
    uint32_t x;
    char Data[];
}
```


Spray Named Pipe

EntryType = 0 (Buffered Entries)

Variable-sized objects are suitable for pool spraying.

IRP always be NULL

EntryType = 1 (Unbuffered Entries)

Spray Named Pipe

```
Create named pipe
                                                                \\.\pipe\LOCAL\exploit
CreateNamedPipe(...)
Create Buffered DATA QUEUE ENTRY
                                                                   For spraying DATA_QUEUE_ENTRY objects
WriteFile(...)
Create unbuffered DATA_QUEUE_ENTRY
//create the pipe/file in FILE_FLAG_OVERLAPPED mode (blocking mode)
NtFsControlFile(pipe handle, 0, 0, 0, &isb, 0x119FF8, buf, sz, 0, 0);
Read data from DATA_QUEUE_ENTRY then free it
ReadFile(...)
                                                                 For creating holes in DATA_QUEUE_ENTRY objects
Read data from DATA_QUEUE_ENTRY
PeekNamedPipe(...)
```

From OOBW to OOBR (Info Leak)

From OOBW to Arbitrary Read

From OOBW to Arbitrary Write

```
ReadFile(hPile, buf, ARBITRARY_WRITE_SIZE, &res, 0)

nt!IofCompleteRequest(IRP)

memcpy(IRP->UserBuffer, IRP->SystemBuffer, ARBITRARY_WRITE_SIZE )
```

- If we can control IRP, we can easily get arbitrary write
- But it's hard to construct a legal fake IRP in user mode, since nt!IofCompleteRequest will perform several complex checks
- We need a real IRP object (and put in kernel space)!

Construct Fake IRP object

Abusing our Info Leak and Arbitrary Read primitive:

- Create a real unbuffered DATA_QUEUE_ENTRY
- Leak the content of IRP

- Modify the UserBuffer and SystemBuffer field fake IRP to prepare for Arbitrary Write
- Create a real buffered DATA_QUEUE_ENTRY
- Put Fake IRP in the user data field of the entry (kernel space)
- Trigger IofCompleteRequest to get Arbitrary Write

Real DATA_QUEUE_ENTRY (Unbuffered Entries)

FLINK		BLINK	
IRP		SecurityClientContext	
EntryType = 1	Quota	DataSize	х

Real DATA_QUEUE_ENTRY (Buffered Entries)

FLINK		BLINK	
IRP		SecurityClientContext	
Quota	DataSize	Х	
_	Quota	SecurityClie	

User Data (Fake IRP contents)

Replace Our Token with SYSTEM Token

Abusing our Arbitrary Read/Write primitive:

- Parsing Leaked IRP:
 - o Get sandbox process token kernel address
 - o Get system process token kernel address
- replace sandbox process token with system token
- Inject shellcode into winlogon.exe to spawn a new process
 (Directly spawn new process in sandbox is not allowed, because of the job limitation)

Wrapped Up

- Spray several named pipe objects
- Free some objects to create holes
- Exhaust the AFD lookaside List
- Put UserBuf in the proper position to make the OOBW size controllable
- Trigger the vul to overwrite the DATA_QUEUE_ENTRY
- Abuse the Modified DATA_QUEUE_ENTRY object to get Arbitrary Read/Write
- Replace sandboxed process token with SYSTEM token
- Inject winlogon.exe to spawn a new process.

Demo for Chrome

Demo for Adobe PDF Reader

Summary

Review

- >> Sandbox Internal
- > Sandbox Escape Methodology
- ➤ Attack Surface Comparison
 - o Chrome Renderer
 - o Chrome GPU Process
 - o Adobe Sandboxed Process
- ➤ Build Fullchain 1-Day Exploit
 - o Chrome Renderer
 - o Adobe Sandboxed Process

Takeaway

- > Chrome Renderer SBX is Hard but Doable
 - o GPU process is a good stairway: both in Android and Windows
- > SBX for Chrome GPU and Adobe Sandboxed Process is
 - Relatively Easier
 - o More restricts need
- ➤ Exploitation Tricks
 - o Chrome and Windows Kernel

THANK YOU

Reference

```
[1] Chromium Docs. "Sandbox". [Online]
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/design/sandbox.md
[2] Mariko Kosaka. "Inside look at modern web browser (part 1)". [Online]
https://developer.chrome.com/blog/inside-browser-part1
[3] Chromium Code Search. [Online]
https://source.chromium.org/chromium/chromium/src/+/main:sandbox/win/src/security level.h
[4] Google Project Zero. "0-days In-the-Wild". [Online]
https://googleprojectzero.github.io/0days-in-the-wild/
[5] Wikipedia contributors. "WebGL". [Online]
https://en.wikipedia.org/wiki/WebGL
[6] Intel Web Graphics Team. "WebGPU, The Next Generation Graphics API on the Web". [Online]
https://www.youtube.com/watch?v=y2dZYG5YTRU
[7] Google Inc. SwiftShader. [Online]
https://swiftshader.googlesource.com/SwiftShader
[8] Apple Security Engineering and Architecture. "Security: Out-of-bounds reads/writes on stack in GPU process
reachable from any WebGL shader". [Online]
https://issues.chromium.org/issues/40065276
[9] Nicolas Capens. "SwiftShader Reference Implementation and Fallback".[Online]
https://www.khronos.org/assets/uploads/developers/library/2018-vulkan-devday/08-SwiftShader.pdf
[10] Mark Brand. "Heap Feng Shader: Exploiting SwiftShader in Chrome".[Online]
https://googleprojectzero.blogspot.com/2018/10/heap-feng-shader-exploiting-swiftshader.html
```

Reference

```
[11] Google Chrome team. May 30, 2023. "Stable Channel Update for Desktop". [Online]
https://chromereleases.googleblog.com/2023/05/stable-channel-update-for-desktop 30.html
[12] "[subzero] Fix integer overflows during alloca coalescing". [Online]
https://source.chromium.org/chromium//swiftshader/SwiftShader/+/4e401427f8dd799b17ac6c805391e2da1e017672
[13] National Vulnerability Database. CVE-2023-3598. [Online]
https://nvd.nist.gov/vuln/detail/CVE-2023-3598
[14] Windows Ancillary Function Driver for WinSock Elevation of Privilege Vulnerability. [Online]
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-35632
[15] "Move aside, signature scanning!" Better kernel data discovery through lookaside lists. [Online]
https://windows-internals.com/lookaside-list-forensics
[16] Windows Non Paged Pool Overflow Exploitation. [Online]
https://github.com/vp777/Windows-Non-Paged-Pool-Overflow-Exploitation
[17] sandbox-attacksurface-analysis-tools. [Online]
https://github.com/googleprojectzero/sandbox-attacksurface-analysis-tools
```