使用专业、班级

愿数	=	Ξ.		总分			
得 分			1	2	3	4	

一、选择题《每小题 2 分, 共计 30 分》

- 1. 一个质点在做圆周运动时,则有
- (A) 切向加速度一定改变, 法向加速度也改变
- (B) 切向加速度可能不变, 法向加速度一定改变
- (C) 切向加速度可能不变, 法向加速度不变
- (D) 切向加速度一定改变, 法向加速度
- 2. 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为 4 和 B。用 L 和 Ex 分别表示卫星对地心的角动量及其动能的瞬时值,则应有
- (A) $L_A > L_B$, $E_{KA} > E_{KB}$ (B) $L_A < L_B$, $E_{KA} < E_{KB}$
- (C) $L_A = L_B$, $E_{KA} < E_{KB}$ (D) $L_A = L_B$, $E_{KA} > E_{KB}$
- 3. 已知一定量的某种理想气体, 在温度为 Ti与 Ti时的分子最概然速率分别为 wi和
- Up2, 分子速率分布函数的最大值分别为f(Up1)和f(Up2). 若 T1>T2, 则
- (A) $v_{p1} > v_{p2}$. $f(v_{p1}) > f(v_{p2})$ (B) $v_{p1} > v_{p2}$. $f(v_{p1}) < f(v_{p2})$
- (C) $v_{p1} < v_{p2}$, $f(v_{p1}) > f(v_{p2})$ (D) $v_{p1} < v_{p2}$, $f(v_{p1}) < f(v_{p2})$
- 4. 一定量的理想气体贮于某一容器中,温度为T,气体分子质量为m。根据理想气体
- 分子的分子模型和统计假设、分子速度在x方向的分量平方的平均值为

- (A) $\overline{v_r^2} = \sqrt{\frac{3kT}{m}}$ (B) $\overline{v_r^2} = \frac{1}{3}\sqrt{\frac{3kT}{m}}$ (C) $\overline{v_x^2} = \frac{3kT}{m}$ (D) $\overline{v_r^2} = \frac{kT}{m}$

- 5 "理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功。"对此 说法, 有如下几种评论, 哪种是正确的?
- (A) 不违反热力学第一定律, 但违反热力学第二定律
- (B) 不违反热力学第二定律, 但违反热力学第一定律
- (C) 不违反热力学第一定律, 也不违反热力学第二定律
- (D) 违反热力学第一定律, 也违反热力学第二定律
- 6 直空中有一边长为 a 的正方形平面, 在平面中心垂直距离 a/2 处, 有一电荷为 a 的 正占电荷,则通过该平面的电场强度通量为
- (A) $\frac{q}{4\epsilon_0}$ (B) $\frac{q}{4\pi\epsilon_0}$ (C) $\frac{q}{6\epsilon_0}$ (D) $\frac{q}{6\pi\epsilon_0}$
- 7 静电场中某点电势的数值等于
- (A) 试验电荷 qa置于该点时具有的电势能
- (B) 单位试验电荷置于该点时具有的电势能
- (C) 单位正电荷置于该点时具有的电势能
- (D) 把单位正电荷从该点移到电势零点外力所作的功
- 8. 一半径为 R 带有电荷 Q 的均匀带电球面 Q, 若规定无穷远处电势为零,则球心处 的电势等于
- (B) $\frac{Q}{4\pi\varepsilon_{c}R^{2}}$ (C) 0 (D) ∞
- 9. 通有电流 I 的无限长直导线有如图三种形状,则 P, O, O 各点磁感强度的大小 B_p 、 B_o 、 B_o 间的关系为
- (A) $B_P > B_O > B_O$ (B) $B_P < B_O < B_O$
- (C) $B_0 > B_p > B_0$
- (D) $B_0 < B_p < B_0$

1.5 λ (B) 1.5 λ/n (C) 1.5 n λ (D) 3 λ . 一束波长为λ的单色光由空气垂直入射到折射率为 n 的透明薄膜上,透明薄膜放在控气中,要使反射光得到干涉加强,则薄膜最小的厚度为 A) λ/4 (B) λ/(4n) (C) λ/2 (D) λ/(2n) 12. 自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光(B) 平行于入射面的振动占优势的部分偏振光(C) 垂直于入射面积振动的完全线偏振光(D) 垂直于入射面积振动占优势的部分偏振光(D) 垂直于入射面积振动占优势的部分偏振光 13. 被激发到 n = 3 的状态的氢原子气体发出的辐射中,可见光谱线和非可见光谱线条数分别为(A) 1. 2 (B) 2. 1 (C) 1. 3 (D) 3. 1 14. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的(A) 能量相同 (B) 动能相同 (C) 速率相同 (D) 动量大小相同 15. 称为康普顿散射的光波长相较散射前的入射光波长	在静电场中的 A、B 两点间距离为 d,某点电荷 q 从 A 点经两条不同路径到 B 点,是场力作功(填相同或不同)。 5. 两根直导线 ab 和 cd 沿径向方向被接到一个截面处处相等的匀质导体圆环上,现通稳恒电流 I 从 a 端流入而从 d 端流出,则磁场强度 F 沿图中闭合路径 L 的环流积分为 Φ _H·dI =
(A) 不变 (B) 变长 (C) 变短 (D) 无法确定 本题	10. 钨的红限波长是 230 nm, 用波长为 180 nm 的紫外光照射时, 从表面逸出的电子的

S. P. S. S.

三、计算题 (每题 10分, 共 40分)

木題

得分 1. (本题 10分)

质量为 m 的质点在 Oxp 平面上运动,其位置矢量为: $\vec{r} = a\cos\omega t \vec{i} + b\sin\omega t \vec{j}$ (SI),式中 a、b、 ω 是正值常量,且 a > b 。求:

- (1) 质点在 A 点(a, 0)时和 B 点(0, b)时的动能;
- (2) 质点所受的合外力 F 以及当质点从 A 点运动到 B 点的过程中分力 F_* 和 F_* 分别作的 功。

本題得分

b. (本题 10分)

如图所示,两条平行长直导线和一个矩形导线框共面。且导线框的一个边与长直导线平行,他到两长直导线的距离分别为 r_1 、 r_2 。已知两导线中电流都为 $I=I_0\sin(nx)$,其中 I_0 和av为常数,I为时间。导线框长为I0 宽为I0 ,求导线框中的感应电动势。

本題

b. (本版 10 分)

一定量的某种理想气体进行如下图所示的循环过程。已知气体在状态 A 的温度为 T_A = 300 K, 求: (1) 气体在状态 B、C 的温度; (2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和)。

本题

J. (本题 10分)

在单缝失琅禾费衍射实验中,垂直入射有两种波长光 λ =400 nm 和 λ =760nm 。 己知单 缝宽度 α =1.0×10 2 cm,透镜焦距 β =50 cm。求:

- (1) 两种光第一级衍射明纹中心之间的距离:
- (2) 若用光栅常数 $d=1.0\times10^3$ cm 的光栅替换单缝,其他条件不变,求两种光第一级主极大之间的距离。

《大学物理 II》2023A

题号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
答案	В	D	В	D	C	C	C	A	В	A	В	C	A	D	В

本题 二、填空题

题号	1	2	3	4	5
答案	$x = (y-3)^2$	18	5kT / 2	3.2%	相同
题号	6	7	8	9	10
答案	21/3	$n(r_2-r_1)$	$I_0/4$	hc/λ	1.5

本题 三、计算题

解: (1)
$$v_x = \frac{dx}{dt} = -a\omega\sin\omega t, v_y = \frac{dy}{dt} = b\omega\cos\omega t,$$
 ------2分

在 A 点(a, 0),
$$v_x = 0, v_y = b\omega, E_{KA} = \frac{1}{2}mv_y^2 = \frac{1}{2}mb^2\omega^2$$
 ------2 分

同理 B 点(0, b), $v_x = -a\omega$, $v_y = 0$,

$$E_{KB} = \frac{1}{2}mv_x^2 = \frac{1}{2}ma^2\omega^2$$
 -----2 \(\frac{1}{2}\)

(2)
$$F_x = ma_x = -ma\omega^2 \cos \omega t$$
, $F_y = ma_y = -mb\omega^2 \sin \omega t$, $\vec{F} = F_x \vec{i} + F_y \vec{j}$ -----2 \dot{m}

$$W_y = \int_0^b F_y dy = -\frac{1}{2} m v_y^2 = -\frac{1}{2} m b^2 \omega^2 - \dots$$
 1 \(\frac{1}{2}\)

本题 得分

四、计算题

解: $p_A=300 \text{ Pa}$, $p_B=p_C=100 \text{ Pa}$; $V_A=V_C=1 \text{ m}^3$, $V_B=3 \text{ m}^3$ 。

- (1) $C \rightarrow A$ 为等体过程,据方程 $p_A/T_A = p_C/T_C$ 得: $T_C = T_A p_C/p_A = 100$ K------2 分 $B \rightarrow C$ 为等压过程,据方程 $V_B/T_B = V_C/T_C$ 得: $T_B = T_C V_B/V_C = 300$ K------2 分
- (2) 各过程中气体所作的功分别为: $A \rightarrow B$: $W_1 = \frac{1}{2}(p_A + p_B)(V_B V_C) = 400 \text{ J}$

 $B \rightarrow C$: $W_2 = p_B (V_C - V_B) = -200 \text{ J}$

 $C \rightarrow A$: $W_3 = 0$ -----3 分

(3) 整个循环过程中气体所作总功为: $W=W_1+W_2+W_3=200 \text{ J}$, 循环过程气体内能增量为 $\Delta U=0$,因此该循环中气体净吸热: $O=W+\Delta U=200 \text{ J}$ ------3 分

本题 得分

五、计算题

解: 在图示坐标系中, 两导线在 x 处所产生垂直纸面向里的磁感强度大小

$$B = \frac{\mu_0 I}{2\pi} \left(\frac{1}{x} + \frac{1}{x - r_1 + r_2} \right) - - 3 \, \text{f}$$

选顺时针方向为回路正方向,则磁通量

$$\Phi_m = \int BdS = \frac{\mu_0 Ia}{2\pi} \int_{r_1}^{r_1+b} \left(\frac{1}{x} + \frac{1}{x - r_1 + r_2}\right) dx = \frac{\mu_0 Ia}{2\pi} \ln\left[\frac{(r_1 + b)(r_2 + b)}{r_1 r_2}\right] - \dots - 4$$

由法拉第电磁感应定律, 感应电动势

$$\xi = -\frac{d\Phi_m}{dt} = -\frac{\mu_0 a}{2\pi} \ln\left[\frac{(r_1 + b)(r_2 + b)}{r_1 r_2}\right] \frac{dI}{dt} = -\frac{\mu_0 a I_0 \omega}{2\pi} \ln\left[\frac{(r_1 + b)(r_2 + b)}{r_1 r_2}\right] \cos \omega t - - 3$$

本题得分

六、计算题

解: (1) 由单缝衍射一级明纹满足 $a\sin\varphi_1 = \frac{3}{2}\lambda_1$, $a\sin\varphi_2 = \frac{3}{2}\lambda_2$ ------2 分

利用 $\sin \varphi_i \approx \tan \varphi_i = \frac{x_i}{f}$ 可得 $x_1 = \frac{3}{2} f \lambda_1 / a$, $x_2 = \frac{3}{2} f \lambda_2 / a$ ------3 分

则两个第一级明纹之间距为: $\Delta x = x_2 - x_1 = \frac{3f}{2a}(\lambda_2 - \lambda_1) = 0.27$ cm------1 分

(2) 光栅衍射主极大满足: $d\sin\varphi_i = k\lambda_i$ ------2 分

同理可得 $\Delta x = x_2 - x_1 = \frac{f}{d}(\lambda_2 - \lambda_1) = 1.8$ cm-----1 分