TD5. Estimation ponctuelle.

Exercice 1. On considère une variable aléatoire X dont la loi dépend de deux paramètres p_1 et p_2 de la manière suivante :

$$\mathbb{P}(X=0) = 1 - p_1 - p_2$$
, $\mathbb{P}(X=1) = p_1$, $\mathbb{P}(X=2) = p_2$.

- a) Indiquer les conditions que doivent vérifier p_1 et p_2 pour que le support de la loi probabilité précédente soit égal à $\{0,1,2\}$. Calculer $\mathbb{E}(X)$, $\mathbb{E}(X^2)$ et $\mathrm{Var}(X)$.
- b) Soit $X_1, ..., X_n$ un échantillon i.i.d. comme X. Déterminer les estimateurs L_1 et L_2 de p_1 et p_2 par la méthode des moments. Montrer que ces estimateurs sont sans biais et convergents en probabilité.
- c) Pour tout j = 0, 1, 2, on désigne par n_j le nombre de X_i égaux à j. Écrire la vraisemblance de l'échantillon en fonction de p_1 , p_2 , n_0 , n_1 et n_2 . Déterminer les estimateurs Z_1 et Z_2 de Z_2 de Z_2 de Z_2 par la méthode du maximum de vraisemblance.
- d) Montrer que $L_1 = Z_1$ et $L_2 = Z_2$.
- e) Un échantillon de taille n = 100 de X a donné les observations suivantes $n_0 = 20$, $n_1 = 50$ et $n_2 = 30$. A quelles estimations de p_1 et p_2 conduisent les estimateurs L_1 et L_2 .

Exercice 2. On considere le modèle uniforme $\mathcal{P} = \{\mathcal{U}([0, \theta]), \theta > 0\}$ et les estimateurs de θ suivantes= $T_1 = 2\overline{X}_n$ et $T_2 = ((n+1)/n)\max_{1 \le i \le n} X_i$.

- a) Montrer qu'ils sont sans biais.
- b) Montrer que T_2 est plus efficace que T_1 .

Exercice 3. Soit $(X_1, ..., X_n)$ un *n*-uplet de variables aléatoires i.i.d. tel que $X_k := \mu + U_k$, où U_k suit une loi uniforme sur $[-\nu, \nu]$.

- a) On suppose ν connu et μ inconnu, déterminer un estimateur de μ par la méthode des moments,
- b) On suppose ν et μ inconnus, montrer que $(\inf_{i\leq n} X_i, \sup_{i\leq n} X_i)$ est une statistique exhaustive.

Exercice 4. Soit $X_1, ..., X_n$ un échantillon i.i.d. comme X. Déterminer les estimateurs du maximum de vraisemblance dans les cas suivants :

- a) X suit une loi de Bernoulli de paramètre p.
- b) X suit une loi normale de moyenne μ et de variance σ^2 .
- c) X suit une loi exponentielle de paramètre λ .

Exercice 5. Soit $X_1, ..., X_n$ un échantillon i.i.d. comme X de densité :

$$f_X(x) = (1+\theta) x^{\theta} 1_{[0,1]}(x).$$

a) Quelles sont les valeurs possibles de θ ? Trouver une statistique exhaustive pour le paramètre θ .

b) Déterminer l'estimateur Z_n de θ par la méthode du maximum de vraisemblance.

Exercice 6. Le responsable d'une exposition s'intéresse au rythme d'arrivée des groupes de visiteurs à partir des observations faites au cours des premières journées. Il constate que le temps séparant l'arrivée de deux groupes successifs peut être assimilé à une variable aléatoire X de loi uniforme sur [0, r] et que les temps inter-arrivées sont des variables aléatoires indépendantes. Pour l'organisation ultérieure des caisses réservées aux entrée des groupes, il souhaite estimer avec précision le paramètre θ , ayant à sa disposition un échantillon de taille n de ces variables inter-arrivées.

- a) Calculer l'espérance mathématique et la variance de X.
- b) Déterminer l'estimateur L_n de r par la méthode des moments. Montrer que L_n est sans biais et convergent en probabilité.
- c) Déterminer l'estimateur Z_n de r par la méthode du maximum de vraisemblance.
- d) À partir de la statistique \mathbb{Z}_n , proposer un estimateur \mathbb{W}_n non biaisé de r.
- e) Montrer que W_n est convergent en probabilité.
- f) Comparer L_n et W_n .

Exercice 7. Soit X une variable aléatoire suivant une loi de Poisson de paramètre λ ($\lambda > 0$) et $X_1, ..., X_n$ un échantillon i.i.d. comme X.

- a) Déterminer une statistique exhaustive pour le paramètre $\lambda.$
- b) Déterminer l'estimateur L_n de λ par la méthode des moments.
- c) Déterminer l'estimateur Z_n de λ par la méthode du maximum de vraisemblance.

Exercice 8. Soit (X_1, X_2) un échantillon de deux variables aléatoires i.i.d admettant pour densité:

$$f(x) = \frac{3x^2}{\theta^3} \mathbb{I}_{[0,\theta]}(x) ,$$

où θ est un paramètre strictement positif.

a) Montrez que les estimateurs de θ suivants sont sans biais :

$$\hat{\theta}_1 = \frac{2}{3}(X_1 + X_2) \text{ et } \hat{\theta}_2 = \frac{7}{6}\max(X_1, X_2).$$

- b) Calculez $R_i := \mathbb{E}\left[(\theta \hat{\theta_i})^2\right]$ pour i = 1, 2.
- c) Entre $\hat{\theta}_1$ et $\hat{\theta}_2$, quel estimateur choisiriez-vous? (justifiez votre choix).

Exercice 9. Soit $(X_n)_{n\geqslant 1}$ un échantillon de la loi géométrique de paramètre θ strictement positif.

- a) Calculez $\mathbb{E}[X_1]$ et $\mathbb{E}[1/X_1]$.
- b) Déduire un estimateur convergent de θ .
- c) Calculez l'estimateur de maximum de vraisemblance de θ .
- d) Cet estimateur est-il sans biais? (Considérez un échantillon de taille 1).

Exercice 10. Soit $(X_1, ..., X_n)$ un échantillon de taille n de loi de Bernoulli de paramètre p. On considère l'estimateur $T_n = \bar{X}_n(1 - \bar{X}_n)$ pour le paramètre $\theta = p(1 - p)$. Ici $\bar{X}_n : = \frac{1}{n} \sum_{i=1}^n X_i$.

- a) Montrez que T_n est un estimateur qui converge en loi.
- b) Montrez que T_n est biaisé. Proposez un estimateur sans biais de θ .