Mathematical Notations and Analyses

LI-PING ZHANG

Department of Mathematical Sciences

Tsinghua University, Beijing 100084

Office: New Science Building #A302, Tel: 62798531

E-mail: lipingzhang@tsinghua.edu.cn

- Euclidean Space
- Convex Set, Separating Hyperplane Theorems
- Convex Function
- Farkas' Lemma

Euclidean Space

- \mathcal{R} : real numbers; \mathcal{R}^n : n-dimensional Euclidean space
- Column vector: $\mathbf{x} = (x_1; x_2; \dots; x_n)$
- Row vector: $\mathbf{x} = (x_1, x_2, \dots, x_n)$
- Transpose operation: ^T
- $\mathbf{x} \geq \mathbf{y}$ means $x_j \geq y_j$ for j = 1, 2, ..., n
- 0: vector of all zeros; e: vector of all ones

Metric of an Euclidean Space

• Inner-product of two vectors:

$$\mathbf{x} \bullet \mathbf{y} := \mathbf{x}^T \mathbf{y} = \sum_{j=1}^n x_j y_j$$

• Euclidean norm: $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}}$,
Infinity-norm: $\|\mathbf{x}\|_{\infty} = \max\{|x_1|, |x_2|, ..., |x_n|\}$, p-norm: $\|\mathbf{x}\|_p = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}$

Basis of an Euclidean Space

• A set of vectors $\mathbf{a}_1,...,\mathbf{a}_m$ is said to be linearly dependent if there are scalars $\lambda_1,...,\lambda_m$, not all zero, such that the linear combination

$$\sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}$$

ullet A linearly independent set of vectors that span \mathbb{R}^n is a basis.

Plane and Half-Spaces and Polyhedron

$$H = \{ \mathbf{x} : \mathbf{a}\mathbf{x} = \sum_{j=1}^{n} a_j x_j = b \}$$

$$H^+ = \{ \mathbf{x} : \mathbf{ax} = \sum_{j=1}^n a_j x_j \le b \}$$

$$H^- = \{ \mathbf{x} : \mathbf{ax} = \sum_{j=1}^n a_j x_j \ge b \}$$

Polyhedron: intersection of finite many closed halfspaces

Figure 1: Plane and Half-Spaces and Polyhedron

Matrices

- Matrix: $A \in \mathbb{R}^{m \times n}$, ith row: $A_{i,j}$, jth column: $A_{i,j}$, ijth element: $a_{i,j}$
- A_I denotes the submatrix of A whose rows belong to index set I, A_J denotes the submatrix whose columns belong to index set J, A_{IJ} denotes the submatrix whose rows belong to index set I and columns belong to index set J.
- All-zero matrix: 0, and identity matrix: I

Matrices

- Diagonal matrix: $X = \operatorname{diag}(\mathbf{x})$
- $\bullet \ \, \text{Symmetric matrix: } Q = Q^T$
- ullet Positive Definite: $Q \succ 0$ iff $\mathbf{x}^T Q \mathbf{x} > 0$, for all $\mathbf{x} \neq \mathbf{0}$
- ullet Positive Semidefinite: $Q\succeq 0$ iff $\mathbf{x}^TQ\mathbf{x}\geq 0$, for all \mathbf{x}

Line and Convex Combination

When ${\bf x}$ and ${\bf y}$ are two distinct points in R^n and lpha runs over R ,

$$\{\mathbf{z} : \mathbf{z} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y}\}\$$

is the line determined by x and y.

When $0 \le \alpha \le 1$, it is called the convex combination of x and y and it is the line segment between x and y.

Face of a Polyhedron

Let P be a polyhedron in \mathbb{R}^n . F is a face of P if and only if there is a vector \mathbf{b} for which F is the set of points attaining $\max\{\mathbf{b}^T\mathbf{y}: \mathbf{y} \in P\}$ provided this maximum is finite.

That is, if
$$P \subset \{\mathbf{x} : \mathbf{px} \leq \beta\}$$
, then $F = \{\mathbf{x} \in P : \mathbf{px} = \beta\}$.

Remark: A polyhedron has only finite many faces; each face is a non-empty polyhedron.

Extreme Point of a Polyhedron

- P: a polyhedron in \mathbb{R}^n
- ullet A vector $\mathbf{y} \in P$ is an extreme point or a vertex of P if \mathbf{y} is not a convex combination of more than one distinct points.

顶点,不能表示为p中 任意其他两点的凸组 合

Convex Set

- Ω is said to be a convex set if for every $\mathbf{x}^1, \mathbf{x}^2 \in \Omega$ and every real number $\alpha \in [0,1]$, the point $\alpha \mathbf{x}^1 + (1-\alpha)\mathbf{x}^2 \in \Omega$.
- ullet The convex hull of a set Ω is the intersection of all convex sets containing Ω
- 凸包

- Intersection of convex sets is convex
- \clubsuit Let $K \subset \mathcal{R}^n$ be a convex set. Then, $a \in K$ is an extreme point iff $K \setminus \{a\}$ is convex.

任意n个点的凸包可以写为至多n+1 个点的凸组合表示

Proof of Convex Set

- All solutions to the system of linear equations, $\{x: Ax = b\}$, form a convex set.
- All solutions to the system of linear inequalities, $\{x: Ax \leq b\}$, form a convex set (polyhedron).

Proof of Convex Set

- All solutions to the system of linear equations and inequalities, $\{x: Ax = b, x \geq 0\}$, form a convex set.
- Every polyhedron is a closed convex set.

Convex Cones

- \bullet A set C is a cone if $\mathbf{x} \in C$ implies $\alpha \mathbf{x} \in C$ for all $\alpha > 0$
- A convex cone is cone plus convex-set.

Dual Cone and Polar

Dual cone:

$$C^* := \{ \mathbf{y} : \mathbf{y} \bullet \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \in C \}$$
 对偶锥

- Self-Dual cone: $C^* = C$
- The polar of C:

$$C^P := \{ \mathbf{y} : \mathbf{y} \bullet \mathbf{x} \le 0 \text{ for all } \mathbf{x} \in C \}$$

Cone Examples

- The n-dimensional nonnegative orthant, $\mathcal{R}^n_+ = \{\mathbf{x} \in \mathcal{R}^n : \mathbf{x} \geq 0\}$, is a convex cone.
- The set $\{(t; \mathbf{x}) \in \mathcal{R}^{n+1} : t \ge ||\mathbf{x}|| \}$ is a convex cone in \mathcal{R}^{n+1} , called the second-order cone. 二阶锥都是自对偶的
- Show that second-order cone is a self-dual cone.

Polyhedral Convex Cones

ullet A cone C is (convex) polyhedral if C can be represented by

$$C = \{ \mathbf{x} : A\mathbf{x} \le 0 \}$$

for some matrix A.

Figure 2: Polyhedral and non-polyhedral cones.

• The nonnegative orthant is a polyhedral cone but the second-order cone is not polyhedral.

Separating Hyperplane

- **Definition** Let $H = \{\mathbf{x} : \mathbf{p}^T \mathbf{x} = \alpha\}$ be a hyperplane in \mathcal{R}^n (hence $\mathbf{p} \neq \mathbf{0}$). Let S_1 and S_2 be two nonempty subsets of \mathcal{R}^n . Then H separates S_1 and S_2 if $\mathbf{p}^T \mathbf{x} \geq \alpha$ for all $\mathbf{x} \in S_1$ and $\mathbf{p}^T \mathbf{x} \leq \alpha$ for all $\mathbf{x} \in S_2$.
- Proper separation requires that $S_1 \cup S_2 \not\subset H$ (there exists $\mathbf{x} \in S_1 \cup S_2$ such that $\mathbf{p}^T \mathbf{x} \neq \alpha$).

Separating Hyperplane

- The sets S_1 and S_2 are strictly separated by H if $\mathbf{p}^T \mathbf{x} > \alpha$ for all $\mathbf{x} \in S_1$ and $\mathbf{p}^T \mathbf{x} < \alpha$ for all $\mathbf{x} \in S_2$. 严格分离
- The sets S_1 and S_2 are strongly separated by H if there exists a number $\varepsilon > 0$ such that $\mathbf{p}^T \mathbf{x} > \alpha + \varepsilon$ for all $\mathbf{x} \in S_1$ and $\mathbf{p}^T \mathbf{x} < \alpha \varepsilon$ for all $\mathbf{x} \in S_2$.

Examples in \mathcal{R}^2

Let $H = \{x \in \mathbb{R}^2 : x_2 = 0\}.$

- 1. $X=[0,2]\times\{0\}$ and $Y=[1,3]\times\{0\}$ are separated by H but are not properly separated by H.
- 2. $X=[0,2]\times\{0\}$ and $Y=[1,3]\times[0,1]$ are properly separated by H but are not strictly separated by H.
- 3. $X=[0,2]\times[-1,0)$ and $Y=[1,3]\times(0,1]$ are strictly separated by H but are not strongly separated by H.
- 4. $X=[0,2]\times[-1,-\varepsilon)$ and $Y=[1,3]\times(\varepsilon,1]$ are strongly separated by H.

Separating Hyperplane Theorem

The most important theorem about the convex set is the following separating hyperplane theorem (Figure 3).

Theorem 1 (Separating hyperplane theorem) Let $C \subset \mathbb{R}^n$ be a closed convex set, and let $\mathbf{b} \notin C$. Then there is a vector $\mathbf{a} \neq \mathbf{0}$ such that

$$\mathbf{a} \bullet \mathbf{b} > \sup_{\mathbf{x} \in C} \mathbf{a} \bullet \mathbf{x}$$

where a is the norm direction of the hyperplane.

Figure 3: Illustration of the separating hyperplane theorem; an exterior point $\mathbf b$ is separated by a hyperplane from a convex set C.

ullet We first show that there exists a unique point $ar{\mathbf{x}} \in C$ such that

$$\|\mathbf{b} - \bar{\mathbf{x}}\| = \inf_{\mathbf{x} \in C} \|\mathbf{b} - \mathbf{x}\|.$$

Furthermore, $\bar{\mathbf{x}}$ is the point of C closest to \mathbf{b} if and only if

$$(\mathbf{b} - \bar{\mathbf{x}})^T (\mathbf{x} - \bar{\mathbf{x}}) \le 0$$

for all $\mathbf{x} \in C$.

Let $\gamma = \inf_{\mathbf{x} \in C} \|\mathbf{b} - \mathbf{x}\| > 0$. Then, there exists a sequence $\{\mathbf{x}_k\} \in C$ such that $\|\mathbf{b} - \mathbf{x}_k\| \to \gamma$.

Since

$$\|\mathbf{x}_{k} - \mathbf{x}_{m}\|^{2} = 2\|\mathbf{x}_{k} - \mathbf{b}\|^{2} + 2\|\mathbf{x}_{m} - \mathbf{b}\|^{2} - \|\mathbf{x}_{k} + \mathbf{x}_{m} - 2\mathbf{b}\|^{2}$$

$$= 2\|\mathbf{x}_{k} - \mathbf{b}\|^{2} + 2\|\mathbf{x}_{m} - \mathbf{b}\|^{2} - 4\|\frac{\mathbf{x}_{k} + \mathbf{x}_{m}}{2} - \mathbf{b}\|^{2}$$

$$\leq 2\|\mathbf{x}_{k} - \mathbf{b}\|^{2} + 2\|\mathbf{x}_{m} - \mathbf{b}\|^{2} - 4\gamma^{2} \to 0,$$

thus there exists a point $\bar{\mathbf{x}} \in C$ such that $\gamma = \|\mathbf{b} - \bar{\mathbf{x}}\|$.

Since C is convex, $\bar{\mathbf{x}}$ is unique.

Suppose that $\mathbf{x} \in C$, $(\mathbf{b} - \bar{\mathbf{x}})^T (\mathbf{x} - \bar{\mathbf{x}}) \leq 0$. Since

$$\|\mathbf{b} - \mathbf{x}\|^2 = \|\mathbf{b} - \bar{\mathbf{x}} + \bar{\mathbf{x}} - \mathbf{x}\|^2$$

$$= \|\mathbf{b} - \bar{\mathbf{x}}\|^2 + \|\mathbf{x} - \bar{\mathbf{x}}\|^2 - 2(\mathbf{b} - \bar{\mathbf{x}})^T(\mathbf{x} - \bar{\mathbf{x}})$$

$$\geq \|\mathbf{b} - \bar{\mathbf{x}}\|^2,$$

then $\bar{\mathbf{x}}$ is the point of C closest to \mathbf{b} .

Conversely, it follows from $\|\mathbf{b} - \bar{\mathbf{x}}\| = \inf_{\mathbf{x} \in C} \|\mathbf{b} - \mathbf{x}\|$ that for sufficiently small number $\lambda > 0$,

$$\|\mathbf{b} - \bar{\mathbf{x}} - \lambda(\mathbf{x} - \bar{\mathbf{x}})\|^2 \ge \|\mathbf{b} - \bar{\mathbf{x}}\|^2.$$

Thus,

$$0 \leq \|\mathbf{b} - \bar{\mathbf{x}} - \lambda(\mathbf{x} - \bar{\mathbf{x}})\|^2 - \|\mathbf{b} - \bar{\mathbf{x}}\|^2$$
$$= \lambda^2 \|\mathbf{x} - \bar{\mathbf{x}}\|^2 - 2\lambda(\mathbf{b} - \bar{\mathbf{x}})^T(\mathbf{x} - \bar{\mathbf{x}}).$$

Hence, $(\mathbf{b} - \bar{\mathbf{x}})^T (\mathbf{x} - \bar{\mathbf{x}}) \leq 0$ for all $\mathbf{x} \in C$.

ullet We next show that there exists a vector ${f a}
eq {f 0}$ such that

$$\mathbf{a} \bullet \mathbf{b} > \sup_{\mathbf{x} \in C} \mathbf{a} \bullet \mathbf{x}.$$

There is a point $ar{\mathbf{x}} \in C$ such that

$$(\mathbf{b} - \bar{\mathbf{x}})^T (\mathbf{x} - \bar{\mathbf{x}}) \le 0, \quad \forall \mathbf{x} \in C.$$

Let $\mathbf{a} = \mathbf{b} - \bar{\mathbf{x}}$. Then $\mathbf{a} \neq \mathbf{0}$ and for all $\mathbf{x} \in C$,

$$\mathbf{a}^{T}(\mathbf{b} - \mathbf{x}) = \mathbf{a}^{T}(\mathbf{b} - \bar{\mathbf{x}}) + \mathbf{a}^{T}(\bar{\mathbf{x}} - \mathbf{x})$$

 $\geq \|\mathbf{a}\|^{2} > 0.$

 \clubsuit Let C be a nonempty cone in \mathbb{R}^n . Then the polar of its polar iff C is closed and convex.

Proof: The polar of C is $C^P = \{y: y^Tx \leq 0, \forall x \in C\}$. To show that $C = (C^P)^P$ if C is closed and convex.

Take any $x \in C$, we have

$$y^T x \le 0 \quad \forall y \in C^P$$

which implies $x \in (C^P)^P$. So, $C \subseteq (C^P)^P$.

Let $b \in (C^P)^P$, $b \notin C$. Since C is closed and convex, by the separating hyperplane theorem, there exists $\bar{x} \in C$ such that

$$(b-\bar{x})^T(x-\bar{x}) \le 0 \quad \forall x \in C.$$

Let $a=b-\bar{x}$. We have

$$b^T a > a^T \bar{x}, \quad a^T x \le a^T \bar{x} \quad \forall x \in C.$$

Since C is a cone, $a^T \bar{x} = 0$. Hence,

$$b^T a > 0, \quad a^T x \le 0 \ \forall x \in C.$$

The second inequality implies $a \in C^P$. Since $b \in (C^P)^P$, we have $b^T a \leq 0$. This contradicts with the first inequality. So, $(C^P)^P \subseteq C$.

Interior and Boundary

• Let $B_{\delta}(\bar{\mathbf{x}})$ denote the open ball of radius δ centered at the point $\bar{\mathbf{x}}$, i.e.,

$$B_{\delta}(\bar{\mathbf{x}}) = {\mathbf{x} : \|\mathbf{x} - \bar{\mathbf{x}}\| < \delta}.$$

 \bullet The **interior** of a set S is the set

$$int(S) = \{ \mathbf{x} \in S : B_{\delta}(\mathbf{x}) \subset S \text{ for some } \delta > 0 \}.$$

• A point $\bar{\mathbf{x}}$ belongs to the **boundary** ∂S of S if every open ball centered at $\bar{\mathbf{x}}$ meets both S and its complement.

Theorem 2 Let $C \subset \mathbb{R}^n$ be a convex set. Then both int(C) and cl(C) are convex.

Proof. We first prove for any $\lambda \in (0,1)$

$$\mathbf{x} \in int(C), \mathbf{y} \in cl(C) \implies \mathbf{u} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in int(C).$$

Since $\mathbf{x} \in int(C)$, there exists $\delta > 0$ such that $B_{\delta}(\mathbf{x}) \subset C$.

Let

$$\mathcal{Y} = \frac{1}{1-\lambda} (\mathbf{u} - \lambda B_{\delta}(\mathbf{x})).$$

Then $\mathcal{Y} \cap C \neq \emptyset$. Take

$$\mathbf{v} = \frac{1}{1-\lambda}(\mathbf{u} - \lambda \bar{\mathbf{x}}) \in \mathcal{Y} \cap C$$

where $\bar{\mathbf{x}} \in B_{\delta}(\mathbf{x})$. Thus, $\mathbf{u} = (1 - \lambda)\mathbf{v} + \lambda\bar{\mathbf{x}} \in C$. Let

$$\mathcal{U} = \lambda B_{\delta}(\mathbf{x}) + (1 - \lambda)\mathbf{v}.$$

 $\mathcal{U}\subset C$ is a neighborhood of \mathbf{u} . Hence $\mathbf{u}\in int(C)$. Clearly, int(C) is convex.

Other Separating Hyperplane Theorems

Theorem 3 Let $S \in \mathbb{R}^n$ be a nonempty convex set and $\bar{\mathbf{x}} \in \partial S$. Then there exists a vector $\mathbf{a} \neq \mathbf{0}$ such that $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \bar{\mathbf{x}}$ for each $\mathbf{x} \in cl(S)$.

Proof: Since $\bar{\mathbf{x}} \in \partial S$, there exists a sequence $\{\mathbf{y}^k\}$ not in cl(S) such that $\mathbf{y}^k \to \bar{\mathbf{x}}$. By the separating hyperplane theorem, corresponding to each \mathbf{y}^k there exists a vector \mathbf{a}^k with $\|\mathbf{a}^k\| = 1$ such that $(\mathbf{a}^k)^T(\mathbf{y}^k - \mathbf{x}) > 0$ for all $\mathbf{x} \in cl(S)$. Since $\{\mathbf{a}^k\}$ is bounded, it has a convergent subsequence $\{\mathbf{a}^k\}_{\mathcal{K}} \to \mathbf{a}$ with $\|\mathbf{a}\| = 1$. Thus, we have $\mathbf{a}^T\mathbf{x} \leq \mathbf{a}^T\bar{\mathbf{x}}$ for each $\mathbf{x} \in cl(S)$.

Corollary of Separating Hyperplane Theorem

- Corollary 1 Let $S \in \mathcal{R}^n$ be a nonempty convex set and $\bar{\mathbf{x}} \notin int(S)$. Then there exists a vector $\mathbf{a} \neq \mathbf{0}$ such that $\mathbf{a}^T\mathbf{x} \leq \mathbf{a}^T\bar{\mathbf{x}}$ for each $\mathbf{x} \in cl(S)$.
- Corollary 2 Let $S \in \mathbb{R}^n$ be a nonempty convex set and $\bar{\mathbf{x}} \notin S$. Then there exists a vector $\mathbf{a} \neq \mathbf{0}$ such that $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \bar{\mathbf{x}}$ for each $\mathbf{x} \in cl(S)$.

Separating Hyperplane Theorems for Two Convex Sets

• Theorem 4 If S_1 and S_2 are two nonempty <u>closed convex</u> subsets of \mathcal{R}^n , $S_1 \cap S_2 = \emptyset$, S_1 is <u>bounded</u>, then there exists a vector $\mathbf{a} \neq \mathbf{0}$ and $\varepsilon > 0$ such that

$$\inf\{\mathbf{a}^T\mathbf{x}:\,\mathbf{x}\in S_1\}\geq \varepsilon+\sup\{\mathbf{a}^T\mathbf{x}:\,\mathbf{x}\in S_2\}.$$

• Theorem 5 If S_1 and S_2 are two <u>nonempty convex</u> subsets of \mathbb{R}^n , $S_1 \cap S_2 = \emptyset$, then there exists a vector $\mathbf{a} \neq \mathbf{0}$ such that

$$\inf\{\mathbf{a}^T\mathbf{x}:\,\mathbf{x}\in S_1\}\geq \sup\{\mathbf{a}^T\mathbf{x}:\,\mathbf{x}\in S_2\}.$$

Proof of Separating Hyperplane Theorems for Two Convex Sets

Let $\mathcal{A}=S_2-S_1$. Then \mathcal{A} is a nonempty closed convex set and $\mathbf{0}\notin\mathcal{A}$. Obviously, \mathcal{A} is nonempty and convex. We now show that \mathcal{A} is closed. Let $z^k\in\mathcal{A}$ and tend to z. Then we have

$$z^k = y^k - x^k, \quad y^k \in S_2, \quad x^k \in S_1$$

Since S_1 is bounded, then the sequence $\{x^k\}$ has a convergent subsequence. WLOG, assume $x^k \to x$. Thus, y^k has a limit point x+z. Let y=x+z. we have $y \in S_2$ due to S_2 is closed. So, $z=y-x \in \mathcal{A}$. This implies that \mathcal{A} is closed. Hence, there exists a nonzero vector \mathbf{a} such that

$$\sup\{\mathbf{a}^T\mathbf{x}:\,\mathbf{x}\in\mathcal{A}\}<0.$$

We complete the proof.

Real Functions

- Continuous functions *C*
- The gradient vector C^1 :

$$\nabla f(\mathbf{x}) = \{\partial f/\partial x_i\}, \text{ for } i = 1, ..., n.$$

• The Hessian matrix C^2 :

$$\nabla^2 f(\mathbf{x}) = \left\{ \frac{\partial^2 f}{\partial x_i \partial x_j} \right\} \quad \text{for} \quad i = 1, ..., n; \ j = 1, ..., n.$$

Figure 4: Derivative and slope

Real Functions

- Weierstrass theorem: a continuous function $f(\mathbf{x})$ defined on a compact set (bounded and closed) $\Omega \subset \mathcal{R}^n$ has a minimizer in Ω .
- ullet The least upper bound or supremum of f over Ω

$$\sup\{f(\mathbf{x}):\ \mathbf{x}\in\Omega\}$$

and the greatest lower bound or infimum of f over Ω

$$\inf\{f(\mathbf{x}): \mathbf{x} \in \Omega\}$$

Real Functions

- Vector function: $\mathbf{f} = (f_1; f_2; ...; f_m)$
- The Jacobian matrix of f is

$$abla \mathbf{f}(\mathbf{x}) = \left(egin{array}{c}
abla f_1(\mathbf{x}) \\
abla f_2(\mathbf{x}) \\
abla f_m(\mathbf{x})
abla ...
abla f_m(\mathbf{x})
abla f_$$

Convex Function

• f convex function iff for $0 \le \alpha \le 1$,

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$

If strict inequality holds whenever $\mathbf{x} \neq \mathbf{y}$, then f is said to be strictly convex.

ullet The level set of convex function f

$$L(z) = \{ \mathbf{x} : f(\mathbf{x}) \le z \}$$

is a convex set. The converse is not true; e.g., $f(x) = x^3$.

称这样的函数为拟凸函数

quasi-convex

R上的所有单调函数均拟凸函数

Figure 5: Properties of convex function

Examples

- Linear functions are both convex and concave. 线性函数
- Positive semidefinite quadratic forms are convex. 半正定二次型
- Positively-weighted sums of convex functions are convex.

 凸函数的正权的平均

Jensen's Inequality

Theorem 6 If $f:C\to \mathcal{R}$ is convex, then

$$f(\lambda_1 \mathbf{x}^1 + \ldots + \lambda_m \mathbf{x}^m) \le \lambda_1 f(\mathbf{x}^1) + \ldots + \lambda_m f(\mathbf{x}^m)$$

for any $\mathbf{x}^1,\ldots,\mathbf{x}^m\in C$ and any $\lambda_1\geq 0,\ldots,\lambda_m\geq 0$ such that $\lambda_1+\ldots+\lambda_m=1.$

Proof of Jensen's Inequality

Proof. For m=2 the inequality is just the definition of convexity. Arguing inductively, we now assume m>2 and that the inequality holds for m-1 points. For m points we have

$$\lambda_1 \mathbf{x}^1 + \ldots + \lambda_m \mathbf{x}^m = \lambda_1 \mathbf{x}^1 + (1 - \lambda_1) \left[\frac{\lambda_2}{1 - \lambda_1} \mathbf{x}^2 + \ldots + \frac{\lambda_m}{1 - \lambda_1} \mathbf{x}^m \right],$$

and then the rest of the proof is obtained by using the convexity of f together with the inductive hypothesis.

Theorems on Functions

Taylor's theorem or the mean-value theorem:

Theorem 7 Let $f \in C^1$ be in a region containing the line segment $[\mathbf{x}, \mathbf{y}]$. Then there is a α , $0 \le \alpha \le 1$, such that

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})(\mathbf{y} - \mathbf{x}).$$

Furthermore, if $f \in C^2$ then there is a α , $0 \le \alpha \le 1$, such that

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})(\mathbf{y} - \mathbf{x}) + (1/2)(\mathbf{y} - \mathbf{x})^T \nabla^2 f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})(\mathbf{y} - \mathbf{x}).$$

Taylor's Theorem for Multivariate Functions

Theorem 8 Suppose $X \subseteq \mathcal{R}^n$ is open, $x \in X$, and $f: X \to \mathcal{R}$ is differentiable. Then

$$f(x+h) = f(x) + \nabla f(x)h + o(\|h\|) \text{ as } h \to 0.$$

If $f \in C^2$, then

$$f(x+h) = f(x) + \nabla f(x)h + \frac{1}{2}h^T\nabla^2 f(x)h + o(\|h\|^2) \text{ as } h \rightarrow 0.$$

Theorems on Convex Functions

Theorem 9 Let $f \in C^1$. Then f is convex over a convex set Ω if and only if the gradient inequality holds, i.e.,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})(\mathbf{y} - \mathbf{x})$$

for all $\mathbf{x}, \mathbf{y} \in \Omega$.

Theorem 10 Let $f \in C^2$. Then f is convex over a open convex set Ω if and only if the Hessian matrix of f is positive semi-definite throughout Ω .

Example $f(x_1, x_2) = x_1^2 - 2x_1x_2 + x_2^2 + x_1 + x_2$ is convex.

Remarks

Remark 1 Let f be differentiable on the convex set Ω . Then f is strictly convex on Ω iff strict inequality holds in the gradient inequality for all pairs of distinct points $\mathbf{x},\ \mathbf{y}\in\Omega$.

Example This result can be used to prove that the univariate function $f(x) = \frac{1}{x}$ is strictly convex when Ω is the positive real line.

Remark 2 If the Hessian matrix of f is positive definite throughout Ω , then f is strictly convex on Ω . But the converse is false, as shown by the function $f(x) = x^4$ with domain $\Omega = \mathcal{R}$.

• A convex function need not be differentiable. As a matter of fact, it is not even necessary for a convex function to be continuous.

$$f(x) = |x|, \qquad g(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } 0 < x < 1 \\ 1 & \text{if } x = 1 \end{cases}$$

It should be noticed, however, that the function $g:[0,1]\to\mathcal{R}$ is continuous on the interior of its domain. This is a consequence of a general result. Every convex function is continuous on the relative interior of its domain.

Known Inequalities

- Cauchy-Schwarz: given $\mathbf{x}, \mathbf{y} \in \mathcal{R}^n$, $\mathbf{x}^T \mathbf{y} \leq ||\mathbf{x}|| ||\mathbf{y}||$.
- Arithmetic-geometric mean: given x > 0,

$$\frac{\sum x_j}{n} \ge \left(\prod x_j\right)^{1/n}.$$

• Harmonic: given x > 0,

$$\left(\sum x_j\right)\left(\sum 1/x_j\right) \ge n^2.$$

System of Linear Equations

Solve for $\mathbf{x} \in \mathcal{R}^n$ from:

$$\mathbf{a}_{1}\mathbf{x} = b_{1}$$

$$\mathbf{a}_{2}\mathbf{x} = b_{2}$$

$$\cdots \cdot \cdot \cdot$$

$$\mathbf{a}_{m}\mathbf{x} = b_{m}$$

$$\Rightarrow A\mathbf{x} = \mathbf{b}$$

Basic solution: select m columns from A to form a square matrix A_B such that

$$A_B \mathbf{x}_B = \mathbf{b}$$
, the rest of $\mathbf{x}_N = \mathbf{0}$

where B is the index set of selected m columns.

Figure 6: System of Linear Equations

Fundamental Theorem of Linear Equations

Theorem 11 Let $A \in \mathcal{R}^{m \times n}$ and $\mathbf{b} \in \mathcal{R}^m$. The system $\{\mathbf{x}: A\mathbf{x} = \mathbf{b}\}$ has a solution if and only if that $A^T\mathbf{y} = \mathbf{0}$ and $\mathbf{b}^T\mathbf{y} \neq 0$ has no solution. 择一系统

Proof: We assume that there exists a vector **y** such that

$$A^T \mathbf{y} = \mathbf{0}, \quad \mathbf{b}^T \mathbf{y} \neq 0.$$

Let $\bar{\mathbf{x}}$ be a solution of the system $\{\mathbf{x}: A\mathbf{x} = \mathbf{b}\}$. Then

$$0 \neq \mathbf{b}^T \mathbf{y} = \bar{\mathbf{x}}^T A^T \mathbf{y} = 0,$$

which is a contradiction.

Proof of Fundamental Theorem of Linear Equations

Conversely, suppose that $\mathbf{b} \not\in \{A\mathbf{x} : \mathbf{x} \in \mathcal{R}^n\}$. Define

$$C := \{ A\mathbf{x} : \mathbf{x} \in \mathcal{R}^n \}.$$

Then C is a non-empty, closed and convex set (Why?). From the separating hyperplane theorem, there exists a vector $\mathbf{a} \neq \mathbf{0}$ such that

$$\mathbf{b}^T \mathbf{a} > \sup_{\mathbf{x} \in \mathcal{R}^n} \mathbf{x}^T (A^T \mathbf{a}).$$

Making an arbitrary choice of \mathbf{x} , we have $A^T\mathbf{a} = \mathbf{0}, \mathbf{b}^T\mathbf{a} \neq 0$.

Another Way of Proof

Suppose the system $\{\mathbf{x}: A\mathbf{x} = \mathbf{b}\}$ has no solution. From the fact that the space \mathcal{R}^m can be expressed as the range of A plus the nullspace of A^T . Then there exist vectors \mathbf{x} and \mathbf{u} such that

$$b = A\mathbf{x} + Z^T\mathbf{u}$$

where \boldsymbol{Z}^T is a basis for the nullspace of \boldsymbol{A}^T .

Take $\mathbf{a}:=Z^T\mathbf{u}\neq\mathbf{0}$ (otherwise the first system has a solution). Thus, we have $A^T\mathbf{a}=\mathbf{0}$ and

$$\mathbf{b}^T \mathbf{a} = \mathbf{x}^T A^T Z^T \mathbf{u} + \mathbf{u}^T Z Z^T \mathbf{u} = 0 + \mathbf{a}^T \mathbf{a} > 0,$$

which is to say that the second system has a solution.

System of Linear Inequalities

Solve for $\mathbf{x} \in \mathcal{R}^n$ from:

$$\mathbf{a}_{1}\mathbf{x} \leq b_{1}$$

$$\mathbf{a}_{2}\mathbf{x} \leq b_{2}$$

$$\cdots$$

$$\mathbf{a}_{m}\mathbf{x} \leq b_{m}$$

$$\Rightarrow A\mathbf{x} \leq \mathbf{b}$$

Figure 7: System of Linear Inequalities

Fundamental Theorem of Linear Inequalities

Theorem 12 (Farkas' Lemma) Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^n$. The system $\{\mathbf{x}: A\mathbf{x} \leq \mathbf{0}, \mathbf{c}^T\mathbf{x} > 0\}$ has a solution if and only if that $A^T\mathbf{y} = \mathbf{c}$ and $\mathbf{y} \geq \mathbf{0}$ has no solution.

Proof: Suppose, reasoning by contradiction, that the system

$$\{\mathbf{y}: A^T\mathbf{y} = \mathbf{c}, \ \mathbf{y} \ge \mathbf{0}\}$$

has a solution $\bar{\mathbf{y}}$. Let $\bar{\mathbf{x}} \in \{\mathbf{x}: A\mathbf{x} \leq \mathbf{0}, \ \mathbf{c}^T\mathbf{x} > 0\}$. Then

$$0 < \mathbf{c}^T \bar{\mathbf{x}} = \bar{\mathbf{x}}^T (A^T \bar{\mathbf{y}}) = (A\bar{\mathbf{x}})^T \bar{\mathbf{y}} \le 0,$$

which is a contradiction.

Proof of Farkas' Lemma

闭凸集

Conversely, consider convex cone $C := \{A^T y : y \ge 0\}$. We must have $c \notin C$. From the separating hyperplane theorem, there is a vector $\mathbf{x} \ne \mathbf{0}$ such that

$$\mathbf{c}^T \mathbf{x} > \sup_{\mathbf{y} > \mathbf{0}} \mathbf{y}^T (A \mathbf{x}).$$

We must have (i) $\mathbf{c}^T\mathbf{x}>0$ since $\mathbf{y}=\mathbf{0}$ makes $\mathbf{y}^T(A\mathbf{x})=0$. (ii) $A\mathbf{x}\leq\mathbf{0}$ since, otherwise, say the first element of $A\mathbf{x}$ is positive, we can choose $\mathbf{y}=(\beta;0;\cdots;0)$ and let $\beta\to+\infty$. Then, $\mathbf{y}^T(A\mathbf{x})\to+\infty$ which is a contradiction to that $\mathbf{y}^T(A\mathbf{x})$ is bounded above for any $\mathbf{y}\geq\mathbf{0}$.

Alternative System

Given matrix $A \in \mathcal{R}^{m \times n}$ and vector $\mathbf{b} \in \mathcal{R}^m$, exactly one of the following two systems is feasible:

$$A\mathbf{x} \leq \mathbf{b}$$
,

or

$$A^T \mathbf{y} = \mathbf{0}, \ \mathbf{y} \ge \mathbf{0}, \ \mathbf{b}^T \mathbf{y} < 0.$$

Proof of the Alternative Theorem

The following system

$$A\mathbf{x} \leq \mathbf{b}$$

can be reformulated as

$$A(\mathbf{u} - \mathbf{v}) + \mathbf{s} = \mathbf{b}, \quad \mathbf{u}, \mathbf{v}, \mathbf{s} \ge \mathbf{0}.$$

By Farkas' Lemma, its alternative system is

$$(A - A I_m)^T \mathbf{w} \le \mathbf{0}, \quad \mathbf{b}^T \mathbf{w} > 0.$$

Let y = -w, the equivalent formulation of the alternative system is

$$A^T \mathbf{y} = \mathbf{0}, \ \mathbf{y} \ge \mathbf{0}, \ \mathbf{b}^T \mathbf{y} < 0.$$

Alternative System Continued

Gordan Theorem Given matrix $A \in \mathcal{R}^{m \times n}$, exactly one of the following two systems is feasible:

$$A\mathbf{x}<\mathbf{0},$$

or

$$\mathbf{y} \ge \mathbf{0}, \ \mathbf{y} \ne \mathbf{0}, \ A^T \mathbf{y} = \mathbf{0}.$$

Proof of Gordan Theorem

We rewrite the system $A\mathbf{x}<\mathbf{0}$ as

(I)
$$A\mathbf{x} + \alpha \mathbf{e} \leq \mathbf{0}$$
, $\alpha > 0$.

By Farkas' Lemma, the alternative system of (I) is

$$(A \quad \mathbf{e})^T \mathbf{y} = (\mathbf{0} \quad 1)^T, \quad \mathbf{y} \ge \mathbf{0},$$

i.e.,

$$A^T \mathbf{y} = \mathbf{0}, \ \mathbf{y} \ge \mathbf{0}, \ \mathbf{y} \ne \mathbf{0}.$$

Economic Applications of Farkas' Lemma

Example: Suppose a stock's current price is 10. Its price tomorrow can be either 0 or 15. What is the probability that it is 15 tomorrow (Ignore discounting)?

Assume that today's price is the expected price tomorrow. Hence,

$$10 = Prob(p_{tomorrow} = 0) \times 0 + Prob(p_{tomorrow} = 15) \times 15$$

which gives

$$Prob(p_{tomorrow} = 15) = \frac{10}{15} = 67\%.$$

Two Stocks Case

Suppose now there are two stocks, X and Y, and two possible states tomorrow: G and B.

The price of X today is 10, and its prices tomorrow are 0 when the state is bad, and 15 when the state is good, that is, $p_{X_0} = 10$, $p_{X_B} = 0$, and $p_{X_G} = 15$.

The price of Y today is 15, and its prices tomorrow are 0 when the state is bad, and 20 when the state is good, that is, $p_{Y_0}=15$, $p_{Y_B}=0$, and $p_{Y_G}=20$.

Then what is the probability that tomorrow is good?

Two Stocks Case Continued

• Using the data of X, this probability should be 67%. But if we use the data of Y, this probability should be 75%. What goes wrong here?

The problem is that these assets are not priced right. If we (long) buy today four shares of X (paying 40) and (short) sell three shares of Y (receiving 45), we net a profit 5 today.

When tomorrow is bad, we can buy back Y and sell X without any cost. When tomorrow is good, we can swap our four shares of X for three shares of Y. So our portfolio will not have a negative value no matter which state obtains tomorrow! Of course, this is impossible since any well-run market should not allow any investor to have such arbitrage opportunities.

No Arbitrage Condition and Asset Pricing

Suppose there are n stocks. The i-th stock's current price S_i . There are m possible states tomorrow. In state j, the i-th stock's price will be T_{ij} . Under what conditions can we find interest rate R and probability number Prob(j) for every state j such that, every stock's current price S_i is the discounted expected value of its prices tomorrow:

(EV)
$$S_i = \frac{1}{1+R} \sum_{j=1}^{m} Prob(j) T_{ij}$$
?

When (EV) hold, the number R is called the market-implied interest rate and Prob(j) the market-implied probability.

n Stocks Case

Solution: A portfolio of stocks can be represented by a vector $p \in \mathbb{R}^n$. For example, the vector $(3, -4, \cdots, 1)$ is a portfolio that consist of long 3 shares of stock 1, short 4 shares of stock 2,..., and long 1 share of stock n. The cost basis of a portfolio p today is p^TS (S is the vector with S_i as coordinates). When state j realizes tomorrow, the value of the portfolio will be p^TT_j (T_j is the column vector of the matrix T_i).

We say there is an arbitrage opportunity if one can find a portfolio p that has a negative cost basis today and has a non-negative value tomorrow no matter which state obtains. Obviously, a well-run market will not allow such opportunities at equilibrium.

No Arbitrage Theorem

Theorem 13 Given the market price data S and S_i , (EV) holds for some interest rate R and (subjective) probability Prob(j) if and only if there is no arbitrage opportunity, that is, $p^TS \geq 0$ for any portfolio p with $p^TT_j \geq 0$ $(j=1,\cdots,m)$.

Linear Least-Squares Problem

Given $A \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^n$,

$$(LS) \quad \text{minimize} \quad \|A^T\mathbf{y} - \mathbf{c}\|^2$$
 subject to $\quad \mathbf{y} \in \mathcal{R}^m.$

$$AA^T\mathbf{y} = A\mathbf{c}$$
 or $\mathbf{y} = (AA^T)^{-1}A\mathbf{c}$

with the projection:

$$A^T \mathbf{y} = A^T (AA^T)^{-1} A\mathbf{c}$$

Projection matrix: $P = A^T (AA^T)^{-1} A$ or $P = I - A^T (AA^T)^{-1} A$

Figure 8: Projection of **c** onto a subspace

System of Nonlinear Equations

Given $\mathbf{f}(\mathbf{x}): \mathcal{R}^n \to \mathcal{R}^n$, the problem is to solve n equations for n unknowns:

$$\mathbf{f}(\mathbf{x}) = \mathbf{0}.$$

Given a point \mathbf{x}^k , Newton's Method sets

$$f(\mathbf{x}) \simeq f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)(\mathbf{x} - \mathbf{x}^k) = \mathbf{0}.$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k - (\nabla f(\mathbf{x}^k))^{-1} f(\mathbf{x}^k)$$

or solve for direction vector \mathbf{d}_x :

$$\nabla f(\mathbf{x}^k)\mathbf{d}_x = -f(\mathbf{x}^k)$$
 and $\mathbf{x}^{k+1} = \mathbf{x}^k + \mathbf{d}_x$.

Figure 9: Newton's method for root finding