Natural Language Processing with Classification and Vector Spaces

Notes

Junru Lin

Contents

1	Log	istic Regression	3
	1.1	Learning Objectives	3
	1.2	Supervised ML (Training)	3
	1.3	Sentiment Analysis	4
	1.4	Vocabulary	4
		1.4.1 Vocabulary and Frequency	4
		1.4.2 Feature Extraction with Frequencies	5
	1.5	Preprocessing	6
	1.6	Putting it All Together	6
	1.7	Logistic Regression (LR) Overview	7
	1.8	LR: Training	7
	1.9	LR: Testing	7
	1.10	LR: Costing Function	8
2	Desail	habilitas and Davis Dula	9
2	Pro	bability and Bay's Rule	9
	2.1	Probability	9
	2.2	Bayes' Rule	9
	2.3	Naive Bayes Introduction	10
	2.4	Laplacian Smoothing	10

CONTENTS 3

	2.5	Log Likelihood	11
	2.6	Training Naive Bayes	12
	2.7	Testing Naive Bayes	12
	2.8	Application of Naive Bayes	12
	2.9	Naive Bayes Assumptions	12
	2.10	Error Analysis	13
3	Vec	tor Space Models	14
	3.1	Vector Space Models	14
	3.2	Word by Word and Word by Doc	14
	3.3	Euclidean Distance and Cosine Similarity	15
	3.4	Cosine Similarirty	15
	3.5	Manipulating Words in Vector Space	16
	3.6	Visualization and PCA	16
	3.7	PCA Algorithm	16
4 Machine Translation		chine Translation	17
	4.1	Transforming Word Vectors	17
	4.2	K-nearest Neighbors	18
	4.3	Hash Tables and Hash Functions	18
	4.4	Locality Sensitive Hashing	18
	4.5	Multiple Planes	19
	4.6	Approximate Nearest neighbors	19

Logistic Regression

1.1 Learning Objectives

- Sentiment analysis
- Logistic regression
- Data pre-processing
- Calculating word frequencies
- Feature extraction
- Vocabulary creation
- Supervised learning

1.2 Supervised ML (Training)

Figure 1.1: Flowchart of Supervised ML (Training)

1.3 Sentiment Analysis

Example

I am happy because I am learning NLP.

${\it Classification\ Label}$

- Positive 1
- Negative 0

Training

Use Logistic Regression

1.4 Vocabulary

1.4.1 Vocabulary and Frequency

Vocabulary

All unique words in a dataset.

For Each data

An array of 0's and 1's.

|v| = size of vocabulary (number of features)

Logistic Regression: $\theta = [\theta_0, \theta_1, \theta_2, \dots, \theta_n] \ (\theta_0 \leadsto b \ (y = ax + b), \quad n = |v|)$

Negative and Positive Frequencies

freqs: dictionary mapping from [word, class] to frequency

example: freqs[('I', 1)] = 2

Figure 1.2: Word Frequency Tree

Vocabulary	PosFreq(1)	NegFreq(0)
word(1)	P_1	N_1
:	:	:
word(n)	P_n	N_n

1.4.2 Feature Extraction with Frequencies

$$X_m = \left[1, \sum_{m} freqs(w, 1), \sum_{m} freqs(w, 0)\right]$$

• X_m : Feature of data m in the dataset

- 1: Bias
- $\sum_{m} freqs(w, 1)$: Sum of Pos. Freq
- $\sum_{m} freqs(w, 0)$: Sum of Neg. Freq

Example

I am sad.

I am not learning NLP.

 \hookrightarrow words (w): I, am, sad, not, learning, NLP

1.5 Preprocessing

Stop Words

and, is, a, at, has, for, of, \cdots

Punctuation

, . "! " ' ' . . .

Handles and URLs

@ · · ·

Stemming

tune, tuned, tuning \rightarrow tun

lowercasing

Great, GREAT \rightarrow great

1.6 Putting it All Together

$$X = \begin{bmatrix} 1 & X_1^{(1)} & X_2^{(1)} \\ 1 & X_1^{(2)} & X_2^{(2)} \\ \vdots & \vdots & \vdots \\ 1 & X_1^{(m)} & X_2^{(m)} \end{bmatrix}$$

where m is the sample size.

Example

$$[[1, 40, 20], [1, 20, 50], \dots, [1, 5, 35]]$$

1.7 Logistic Regression (LR) Overview

Sigmoid Function

$$h(x^{(i)}, \theta) = \frac{1}{1 + e^{-\theta^T x^{(i)}}} \in (0, 1)$$
$$\theta^T x^{(i)} \ge 0: \ h(x^{(i)}, \theta) \ge 0.5 \to 1$$
$$\theta^T x^{(i)} < 0: \ h(x^{(i)}, \theta) < 0.5 \to 0$$

1.8 LR: Training

Initialize parameters:
$$\theta$$

$$\downarrow$$
 Classify/Predict: $h = h(X, \theta) \leftarrow$
$$\downarrow$$
 Get gradient: $\nabla = \frac{1}{m} X^T (h - y)$
$$\downarrow$$
 Update: $\theta = \theta - \alpha \nabla$
$$\downarrow$$
 Get loss: $J(\theta)$

1.9 LR: Testing

• Validation set: X_{val} , Y_{val}

• After training: θ

• pred = $h(X_{val}, \theta) \ge 0.5$ (sigmoid function)

• Accuracy =
$$\sum_{i=1}^{m} \frac{pred^{(i)} == y_{val}^{(i)}}{m} = \frac{\sum_{i=1}^{m} (pred^{(i)} == y_{val}^{(i)})}{m}$$

• $X_{train}: X_{val}: X_{test} = 8:1:1$

Example

$$\begin{bmatrix} 0.3 \\ 0.8 \\ \vdots \\ h_m \end{bmatrix} \ge 0.5 = \begin{bmatrix} 0.3 \ge 0.5 \\ 0.7 \ge 0.5 \\ \vdots \\ hm \ge 0.5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ pred_m \end{bmatrix}$$

1.10 LR: Costing Function

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log h(x^{(i)}, \theta) + (i - y^{(i)}) \log(1 - h(x^{(i)}, \theta))]$$

 $\pmb{Want} \min_{\theta} J(\theta)$

Probability and Bay's Rule

2.1 Probability

 $A \rightarrow Positive tweet$

$$P(A) = P(Positive) = N_{pos}/N$$

 $P(Negative) = 1 - P(Positive)$

 $B \rightarrow tweet \ contains \ "happy"$

$$P(B) = P(happy) = N_{happy}/N$$

Probability of the intersection

$$P(A \cap B) = P(A, B)$$

2.2 Bayes' Rule

Conditional Probability

Probability of A, given B happened. $\rightarrow P(A|B)$

Bayes' Rule

$$\begin{cases} P(A|B) = \frac{P(A \cap B)}{P(B)} \\ P(B|A) = \frac{P(A \cap B)}{P(A)} \end{cases}$$
$$\Rightarrow P(A|B) = P(B|A) \cdot \frac{P(A)}{P(B)}$$

2.3 Naive Bayes Introduction

Assumption

 X_1, X_2, \ldots, X_m are independent

By Bayes' Rule

$$\begin{split} P(Positive|X) &= P(X|Positive) \cdot P(Positive) / P(X) \\ &= P(X_1|Positive) \cdot \cdot \cdot P(X_m|Positive) \cdot P(Positive) / P(X) \\ &= \frac{P(Positive)}{P(X)} \cdot \prod_{i=1}^{m} P(X_i|Positive) \\ P(Negative|X) &= \frac{P(Negative)}{P(X)} \cdot \prod_{i=1}^{m} P(X_i|Negative) \end{split}$$

Assumption

P(Positive) = P(Negative)

$$\Rightarrow \frac{P(Positive|X)}{P(Negative|X)} = \frac{\prod_{i=1}^{m} P(X_i|Positive)}{\prod_{i=1}^{m} P(X_i|Negative)}$$
$$= \prod_{i=1}^{m} \frac{P(X_i|Positive)}{P(X_i|Negative)}$$

Note

- In a positive words table, we will have the probability for each word, which is $P(X_i|Positive)$.
- Same for $P(X_i|Negative)$.

2.4 Laplacian Smoothing

To avoid $P(W_i|class) = 0$

- N_{class} = frequency of all words in class
- V = number of unique words in vocabulary
- class \in { Positive, Negative }
- $P(W_i|class) = \frac{freq(w_i|class)}{N_{class}}$

•
$$P(W_i|class) = \frac{freq(w_i|class) + 1}{N_{class} + V}$$

$$freq(w_i|class) + 1 \leadsto \text{ make it } \neq 0$$

$$N_{class} + V \leadsto \text{ make it add up to } 1$$

2.5 Log Likelihood

Ratio of probability

$$ratio(w_i) = \frac{P(w_i|Pos)}{P(w_i|Neg)} \approx \frac{ferq(w_i, 1) + 1}{freq(w_i, 0) + 1}$$

$$0(Negative) \longleftarrow 1(Neutral) \longrightarrow \infty(positive)$$

Naive Bayes, without assumption P(Pos) = P(Neg)

$$\frac{P(Pos|w)}{P(Neg|w)} = \frac{P(Pos)}{P(Neg)} \cdot \prod_{i=1}^{m} \frac{P(w_i|Pos)}{P(w_i|Neg)}$$

w: set of m words.

Log Likelihood

$$\log \left(\frac{P(Pos|w)}{P(Neg|w)} \right) = \log \frac{P(Pos)}{P(Neg)} + \sum_{i=1}^{m} \log \left(\frac{P(w_i|Pos)}{P(w_i|Neg)} \right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\log \text{ prior } \log \text{ likelihood}$$

Definition of $\lambda(w)$

$$\lambda(w) = \log \frac{P(pos)}{P(neg)} \quad \text{(stored in a table for reference)}$$

$$\log \prod_{i=1}^{m} ratio(w_i) = \sum_{i=1}^{m} \lambda(w_i)$$

$$-\infty(Negative) \longleftarrow 0(Neutral) \longrightarrow \infty(positive)$$

2.6 Training Naive Bayes

Steps (Example of tweets)

- 1. Get or annotate a dataset with positive and negative tweets
- 2. Preprocess the tweets
- 3. Compute freq(w, class)
- 4. Get P(w|pos), P(w|neg)
- 5. Get $\lambda(w)$
- 6. Compute $logprior = log \frac{P(pos)}{P(neg)}$

2.7 Testing Naive Bayes

- $X_{val}, Y_{val}, \lambda, log prior$
- $score = predict(X_{val}, \lambda, log prior)$
- pred = (score > 0)
- $Accuracy = \frac{1}{m} \sum_{i=1}^{m} (pred_i == Y_{val\ i})$

2.8 Application of Naive Bayes

- Sentiment analysis
- Author identification
- Spam filtering
- Information retrieval
- Word disambiguation

2.9 Naive Bayes Assumptions

- Independence
- Relative frequency in corpus

2.10 Error Analysis

- Removing punctuation
- Removing words
- ullet Words order
- Adversarial attacks

Vector Space Models

3.1 Vector Space Models

• Know a word by the company it keeps

Application

- Information Extraction
- Machine Translation
- Chatbots

3.2 Word by Word and Word by Doc

Word by Word Design

Number of times they occur together within a certain distance

Word by Document Design

Number of times a word occurs within a certain category

Vector Spaces

Similarity between words/documents

Figure 3.1: Vector Space

3.3 Euclidean Distance and Cosine Similarity

$$d(\vec{v}, \vec{w}) = \sqrt{\sum_{i=1}^{n} (v_i - w_i)^2}$$

3.4 Cosine Similaritty

• Use cosine similarity when corpora are different sizes

$$\cos \beta = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}$$

- $\beta = 90^{\circ} \rightarrow \cos \beta = 0 \rightarrow \text{dissimilar}$
- $\beta = 0^{\circ} \rightarrow \cos \beta = 1 \rightarrow \text{similar}$

3.5 Manipulating Words in Vector Space

Use Known Relationships to Make Prediction

3.6 Visualization and PCA

ullet Original Space \to Uncorrelated features \to Dimension reduction

3.7 PCA Algorithm

Eigenvector

Uncorrelated features for data gives the direction of uncorrelated features

Eigenvalue

The amount of information retained by each feature

Machine Translation

4.1 Transforming Word Vectors

Transformation (using a matrix)

$$XR \approx Y$$

$$\searrow \hspace{0.2cm} \swarrow$$
 subsets of the full vocabulary

Solving for R

- \bullet Initialize R
- In a loop,

$$Loss = ||XR - Y||_F$$

$$g = \frac{d}{dR}Loss \text{ (gradient)}$$

$$R = R - \alpha g \text{ (update)}$$

$$\downarrow$$

$$\text{learning rate}$$

For a matrix A,

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

4.2 K-nearest Neighbors

Translation

word
$$\xrightarrow{R}$$
 [transformed] $\xrightarrow{\text{find similar}}$ word'

4.3 Hash Tables and Hash Functions

Hash Function

A function that takes data of arbitrary sizes and maps it to a fixed value. The values returned are known as hash values or even hashes.

4.4 Locality Sensitive Hashing

To hash similar inputs into the same buckets with high probability

- $Pv_1^T > 0$
- $Pv_2^T = 0$

$$Pv_3^T < 0$$

4.5 Multiple Planes

Use multiple planes to get a single hash value

Example

- \vec{v} , planes $\vec{P_1}, \vec{P_2}, \vec{P_3}$
- $hash = 2^0 \cdot h_1 + 2^1 \cdot h_2 + 2^2 \cdot h_3$
- $h_i = \begin{cases} 1 & if \ \vec{P_i} \cdot \vec{v} > 0 \\ 0 & else \end{cases}$

4.6 Approximate Nearest neighbors

- Does not give the full nearest neighbors
- Trade off accuracy for efficiency