

Big Data Analytics

Session 1a **Big Data and Data Analytics**

Contact details

Teacher: Tingting Han

- Email: tingting@dcs.bbk.ac.uk

- Room: MAL155

Office hours: By appointment

Teaching Assistant: Muawya Eldaw

Moodle

- Course materials
- Coursework submission dropboxes
- Announcements
- Discussions

To pass module

- Coursework (20%)
 - 4 coursework with 5% each
 - Deadlines see next slides
 - Don't wait till the last minute
- In-class test (80%)
 - In term 3
 - 3 hours
- Pass mark: 50%

Tentative Schedule

Session	Content	Coursework	
1 (29/9)	Introduction	1st CW due: 25/10 Sunday 9pm	
2 (6/10)	Basic Statistics + linear Regression	Getting to know R Basic Statistics Linear Regression	
3 (13/10)	Linear Regression	Linear Regression	
4 (20/10)	Logistic Regression		
5 (27/10)	Cross Validation	2 nd CW due: 15/11 Sunday 9pm	
6 (3/11)	Decision Trees	Logistic Regression Cross Validation	
7 (10/11)	Ensemble Methods	3 rd CW due: 6/12 Sunday 9pm	
8 (17/11)	SVM	Decision trees Ensemble Methods	
9 (24/11)	Clustering	4 th CW due: 3/1 Sunday 9pm	
10 (1/12)	Dimension Reduction	SVM Clustering	
11 (8/12)	Applications	Model Evaluation	

Textbook

• An Introduction to Statistical Learning: with Applications in R

- Available at http://www-bcf.usc.edu/~gareth/ISL/
 - Book, datasets and R code
- A previous more advanced book:
 - The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition)

Outline

- Big Data
 - Big
 - Data
- Data Analytics

Outline

- Big Data
 - Big
 - Data
- Data Analytics

Big Data Everywhere!

• The world is creating ever more data, and it's a mainstream problem.

Where does the data come from?

Big Data Everywhere!

- The world is creating ever more data, and it's a mainstream problem.
 - Science
 - Databases from astronomy, genomics, environmental data, transportation data, ...
 - Humanities and Social Sciences
 - Scanned books, historical documents, social interactions data, new technology like GPS, ...
 - Business & Commerce
 - Corporate sales, stock market transactions, airline traffic, amazon, ebay...
 - Entertainment
 - Internet images, Hollywood movies, MP3 files, ...
 - Medicine
 - MRI & CT scans, patient records, ...

• US drone aircraft sent back 24 years worth of video footage in 2009

- CERN's Large Hadron Collider (LHC) generates 40 terabytes/second
 - CERN: The European Organization for Nuclear Research (Switzerland)
 - LHC: World's largest and most powerful particle accelerator
 - Terabytes (TB): all the catalogued books in America's library of Congress total 15TB

- Bin Laden's death: 5106 tweets/second
 - That's the highest rate of "sustained" tweeting ever, Twitter says.

Tweets Per Second: Evening of May 1, 2011

- Around 30 billion RFID tags produced per year
 - RFID: radio frequency identification

- Our world has 1 billion transistors per person
 - 7.125 billion population in 2013
 - 7.125*10¹⁸ transistors

A Quick Primer on Data Sizes

Data inflation		
Unit	Size	What it means
Bit (b)	1 or 0	Short for "binary digit", after the binary code (1 or 0) computers use to store and process data
Byte (B)	8 bits	Enough information to create an English letter or number in computer code. It is the basic unit of computing
Kilobyte (KB)	1,000, or 2 ¹⁰ , bytes	From "thousand" in Greek. One page of typed text is 2KB
Megabyte (MB)	1,000KB; 2 ²⁰ bytes	From "large" in Greek. The complete works of Shakespeare total 5MB. A typical pop song is about 4MB
Gigabyte (GB)	1,000MB; 2 ³⁰ bytes	From "giant" in Greek. A two-hour film can be compressed into 1-2GB
Terabyte (TB)	1,000GB; 2 ⁴⁰ bytes	From "monster" in Greek. All the catalogued books in America's Library of Congress total 15TB
Petabyte (PB)	1,000TB; 2 ⁵⁰ bytes	All letters delivered by America's postal service this year will amount to around 5PB. Google processes around 1PB every hour
Exabyte (EB)	1,000PB; 2 ⁶⁰ bytes	Equivalent to 10 billion copies of The Economist
Zettabyte (ZB)	1,000EB; 2 ⁷⁰ bytes	The total amount of information in existence this year is forecast to be around 1.2ZB
Yottabyte (YB)	1,000ZB; 2 ⁸⁰ bytes	Currently too big to imagine

The prefixes are set by an intergovernmental group, the International Bureau of Weights and Measures. Yotta and Zetta were added in 1991; terms for larger amounts have yet to be established.

Characteristics of Big Data

- Big data spans four dimensions:
 - Volume, Velocity,Variety, and Veracity
- The first 3 Vs definition is widely used in much of the industry.
- The new V 'Veracity' is introduced by some organisations

Volume

Volume:

"Data size."

- Enormous volumes of data
- The volume of data is not as much the problem as other V's.

Velocity

Velocity:

"Speed of change."

- The flow of data is massive and continuous.
- There are time-sensitive processes such as
 - Stock trading
 - Fraud catching
- Make valuable real-time decision if you are able to handle the velocity.
- Sampling data can help deal with velocity

Variety

Variety:

"Different forms of data sources"

Big data is any type of data – structured,
 semi-structured and unstructured data
 such as

- Relational Data
 - Tables/Transaction/Legacy Data
- Text Data (Web)
- Semi-structured Data (XML)
- Graph Data
 - Social Network
 - Semantic Web (RDF)
 - ...
- Streaming Data
 - You can only scan the data once

Veracity

Veracity:

"Uncertainty of data"

- -Refers to the biases, noise, uncertainty, incompleteness and abnormality in data.
- —Is the data that is being stored, and mined meaningful to the problem being analysed?
- -The biggest challenge in data analysis: to keep data clean

Outline

- Big Data
 - Big
 - Data

Data Analytics

Data

- Application Databases
- Wireless Sensor Data, Seismic, Astronomy Data
- Text Data
 - Webpages, Wikipedia, Emails, Enterprise Documents
- Social Media Data
 - Twitter, Blogs, Social Networks

Data is getting larger and more diverse

- Software Log Data
 - Server, API, Database Logs, Click Streams
- Images, Videos, Music
- Scientific Data, Medical, Microarray, Genome Data

Goal of Data Science

Turn data into data products

Data Products -- Twitter

- Text Analysis Spam Filter/Similarity Search
- User Sentiment/Satisfaction/Feedback
- News Breakout
- Trend and Topics

200 million users as of 2011, generating over 200 million tweets and handling over 1.6 billion search queries per day

Data Product -- Netflix

- Personalised movie ratings
- Movie recommendations
- Similar movies

- Movie categories
 - e.g., 80's movie with a strong female lead, Kung Fu movies

BlockBuster is out of the business ...

Data Products - LinkedIn/Facebook

- People you may know
- Applications you may like
- Jobs/Events you might be interested
- Classifier for bad users and bad content
- With high accuracy, Facebook can guess whether you are single or married

Who does not have LinkedIn or Facebook Account?

Data Products -- Google

- Web search
- News recommendation engine
- Google map
- Google Ads
- Google Analytics

Still the hottest IT company to work for now – Microsoft of the 90's, IBM of the 70's

The Sexiest Job of the Century? Birkbeck

Data Scientist!

But...

• This job title has almost as much ambiguity as the term "big data".

The Life of Data

But...

- This job title has almost as much ambiguity as the term "big data".
- In job descriptions, a "data scientist" might do
 - Statistical analysis
 - Query and reporting
 - Database administration
 - Data warehouse management
 - Data integration
- The kind of tools a "data scientist" might need to know:
 - Hadoop, Pig, Hive, Python (typical big data manipulation tools);
 - SAS, SPSS, R (typical statistical analysis tools);
 - SQL, Business Objects, Cognos (typical query and reporting tools);
 - Excel (capable of a lot, but typically used for small-scale reporting & financial analysis);
 - Teradata, Informatica (data warehouse and loading tools).

The Life of Data

But...

- This job title has almost as much ambiguity as the term "big data".
- In a job description, a "data scientist" might do
 - Statistical analysis
 - Query and reporting
 - Database administration
 - Data warehouse management
 - Data integration
- The kind of tools the "data scientist" might need to know:
 - Hadoop, Pig, Hive, Python (typical big data manipulation tools);
 - SAS, SPSS, R (typical statistical analysis tools);
 - SQL, Business Objects, Cognos (typical query and reporting tools)
 - Excel (capable of a lot, but typically used for small-scale reporting & financial analysis)
 - Teradata, Informatica (data warehouse and loading tools).

Techniques in Data Analysis

- Statistics and Machine Learning
 - Data modeling
 - Inference
 - Prediction
 - Pattern recognition
 - **—** ...
- In this module, we will focus on statistical learning.

Outline

- Big Data
 - Big
 - Data
- Data Analytics
 - Statistical learning

Outline

- What is Statistical Learning?
 - Why estimate *f*?
 - How do we estimate *f*?
 - The trade-off between prediction accuracy and model interpretability
 - Supervised vs. unsupervised learning
 - Regression vs. classification problems

Advertising vs. Sales

- Is there an association between advertising and sales so that the company can adjust advertising budgets to increase sales?
 - Dataset:
 - sales in 200 markets
 - advertising budgets for 3 media in each market

What is Statistical Learning?

- Input variables $\mathbf{X} = (X_1, X_2, ..., X_p)$
 - Examples: TV budget, radio budget, newspaper budget
 - Predictors, independent variables, features, variables
- Output variable Y
 - Example: Sales
 - Response, dependent variables
- We believe there is a relationship between Y and at least one of the X's.
- We can model the relationship as

$$Y = f(\mathbf{X}) + \varepsilon$$

where f is an unknown function, and

 ε is a random error that cannot be measured and is independent of **X**.

Irreducible error: no matter how well we estimate f, we cannot reduce the error introduced by ε .

A Simple Example

Green dots:

Observed values of x and y

Red curve:

True underlying relationship between x and y

A Simple Example

Green dots:

Observed values of x and y

Red curve:

True underlying relationship between x and y

Black line:

The error ε associated with each observation

ε has a mean 0!

Different Standard Deviations

• Standard deviation measures the amount of variation from the average.

• The difficulty of estimating f will depend on the standard deviation of the ε 's.

Different Estimates For f

Green dots: Observed values of x and y

Red curve:

True underlying relationship between x and y

Blue curve: Estimated relation

Estimated relationship between x and y

Income, Education, Seniority

- Y: Income
- X: Year of Education, Seniority
- #observations: 30 (red points)
- f: the blue surface
- ε : the vertical lines

Why Do We Estimate f?

- Statistical learning is all about how to estimate *f*.
 - The term refers to using the data to "learn" f.
- Why do we care about estimating *f*?
 - There are 2 reasons for estimating *f*
 - Prediction
 - Inference

Prediction

- If we can produce a good estimate for f (and the variance of ε is not too large) we can make accurate predictions for the response, Y, based on a new value of X.
- Example: Direct Mailing Prediction
 - Interested in predicting how much money an individual will donate when receiving a mailing based on observations from 90,000 people on which we have recorded over 400 different characteristics.
 - Don't care too much about each individual characteristic.
 - Just want to know: For a given individual should I send out a mailing?

Inference

- Alternatively, we may also be interested in the type of relationship between *Y* and the *X*'s.
 - Which particular predictors actually affect the response?
 - Is the relationship positive or negative?
 - Is the relationship a simple linear one or is it more complicated etc.?
- Example: Housing inference
 - Wish to predict median house price based on 14 variables.
 - Probably want to understand which factors have the biggest effect on the response and how big the effect is.
 - For example how much impact does a river view have on the house value etc.

How Do We Estimate f?

• We will assume we have observed a set of training data

$$\{(\mathbf{X}_1, Y_1), (\mathbf{X}_2, Y_2), \dots, (\mathbf{X}_n, Y_n)\}$$

- We must then use the training data and a statistical learning method to estimate *f*.
- Statistical Learning Methods:
 - Parametric Methods
 - Non-parametric Methods

Parametric Methods

- It reduces the problem of estimating f down to one of estimating a set of parameters.
- They involve a two-step model based approach
 - <u>STEP 1:</u>

Make some assumption about the functional form of f, i.e. come up with a model. The most common example is a linear model i.e.

$$f(\mathbf{X}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

where $\beta_0, \beta_1, ..., \beta_p$ are parameters to be fitted.

– <u>STEP 2:</u>

Use the training data to fit the model i.e. estimate f or equivalently the unknown parameters such as $\beta_0, \beta_1, \beta_2, ..., \beta_p$.

Example: A Linear Regression Estimate

• Even if the standard deviation is low we will still get a bad answer if we use the wrong model.

Non-parametric Methods

• They do not make explicit assumptions about the functional form of *f*.

Advantages:

- They accurately fit a wider range of possible shapes of f.

• <u>Disadvantages:</u>

A very large number of observations is required to obtain an accurate estimate of f.

Example: A Thin-Plate Spline Estimate

 Non-linear regression methods are more flexible and can potentially provide more accurate estimates.

Prediction Accuracy vs. Model Interpretability

- Why not just use a more flexible method if it is more realistic?
- There are two reasons
 - Reason 1: (interpretability)
 - A simple method such as linear regression produces a model which is much easier to interpret (the Inference part is better).
 - Reason 2: (overfitting)
 - Even if you are only interested in prediction, so the first reason is not relevant, it is often possible to get more accurate predictions with a simple, instead of a complicated, model.
 - This seems counter intuitive but has to do with the potential for overfitting in highly flexible methods.

A Poor Estimate

• Non-linear regression methods can also be too flexible and produce poor estimates for *f*.

Supervised vs. Unsupervised Learning

- We can divide all learning problems into Supervised and Unsupervised situations
 - Supervised Learning:
 - Supervised Learning is where both the predictors, **X**, and the response, *Y*, are observed.
 - Example: linear regression, logistic regression, boosting, SVM
 - Unsupervised Learning:
 - In this situation only the X's are observed.
 - We lack a response variable that can supervise our analysis. We need to use the **X**'s to guess what *Y* would have been and build a model from there.
 - Example: Clustering

A Simple Clustering Example

• 150 observations, 2 variables: X_1, X_2 , 3 distinct groups

Regression vs. Classification

- Supervised learning problems can be further divided into regression and classification problems.
- Regression covers situations where Y is continuous/numerical.
 - Examples
 - Predicting the value of the Dow in 6 months.
 - Predicting the value of a given house based on various inputs.
- Classification covers situations where Y is categorical
 - Examples
 - Will the Dow Jones index be up (U) or down (D) in 6 months?
 - Is this email a SPAM or not?

Course Syllabus Overview

Choosing the best methods for a given application: Cross-validation