UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DEPARTAMENTO DE INFORMÁTICA E MATEMÁTICA APLICADA

Introdução às Técnicas de Programação — DIM0118 ⊲ Exercícios - parte 11 ⊳

1. Um campo agrícola possui setores organizados de forma matricial, onde alguns são de terras férteis e outros inférteis. Irrigadores ocupam um setor por completo, **nunca** estão localizados na borda da matriz e irrigam cada um dos 4 setores vizinhos (norte, sul, leste, oeste). Implemente um programa que leia um inteiro \mathbf{M} , um inteiro \mathbf{N} ($M \le 10$, $N \le 10$), seguidos de $M \times N$ inteiros. Depois o programa deve escrever quantos **setores férteis** estão cobertos por pelo menos um irrigador e quantos não estão. Um 0 representa um setor infértil, 1 um setor fértil e 2 um setor ocupado por um irrigador. O setor onde está localizado o próprio irrigador não deve ser contabilizado.

Exemplo de Entrada	Exemplo de Saída
$\begin{array}{c} 4\ 6 \\ 0\ 0\ 0\ 1\ 1\ 0 \\ 0\ 2\ 2\ 1\ 1\ 0 \\ 1\ 0\ 2\ 1\ 2\ 0 \\ 1\ 1\ 1\ 0\ 0\ 0 \end{array}$	4 5

2. Um muro possui ${\bf N}$ colunas, cada uma com um cano de onde sai um fluxo de água. No muro há canaletas que desviam a água para a coluna da esquerda ou da direita, conforme ilustra imagem ao lado. O fluxo de água percorre ${\bf M}$ linhas até ser escoado no ralo de uma das colunas. O muro é especificado por uma matriz $M\times N$, onde um 0 representa um espaço livre, 1 representa uma canaleta que desvia a água para a coluna da esquerda e 2 representa uma canaleta que desvia a água para a coluna da direita. Implemente em ${\bf C}$ um programa que leia um inteiro ${\bf M}$, um inteiro ${\bf N}$ ($M\le 10$, $N\le 10$), seguidos de $M\times N$ inteiros com a especificação do muro e um inteiro ${\bf x}$ que representa a origem do fluxo. A saída consiste na coluna do ralo onde a água que sai do cano da coluna ${\bf x}$ escoa ou a string "ops" caso o fluxo de água saia dos limites do muro. Assuma que o muro é tal que não há uma canaleta imediatamente do lado da outra.

3. Você foi contratado para ajudar na implementação de uma rede social que conta com *M* usuários cadastrados. Um recurso que você quer implementar é a sugestão de amigos. Um usuário B deverá ser sugerido para A se eles não forem amigos, mas ambos possuirem pelo menos um amigo em comum.

As amizades estão armazenadas em uma matriz $M \times M$ de inteiros, onde o valor a_{ij} é igual a 1 se o usuário \mathbf{i} ($0 \le i < M$) for amigo do usuário \mathbf{j} ($0 \le j < M$) e 0 caso contrário. Assuma que a matriz sempre é simétrica, então $a_{ij} = a_{ji}$. Além disso não é possível ser amigo de si, então $a_{ii} = 0$.

Implemente um programa que leia um inteiro \mathbf{M} ($M \leq 100$), seguidos de $M \times M$ inteiros e um inteiro \mathbf{x} . O programa deve escrever todas as sugestões de amizades para o usuário \mathbf{x} em ordem numérica crescente.

4. Um campeonato de futebol conta com M times, numerados de 0 a M-1. Cada time enfrenta cada um dos outros times uma única vez. Os resultados são armazenados em uma matriz, onde o elemento a_{ij} $(0 \le i, j \le M-1)$ representa quantos gols o time i fez contra o time j. Portanto, o resultado da partida $i \times j$ (ou $j \times i$, tanto faz pois é uma única partida) é a_{ij} gols para i e a_{ji} gols para j. No exemplo abaixo, o resultado do time 3 contra o time 0 foi a_{30} para o time 3 e a_{03} para o time 0, ou seja, 3×1 .

Implemente um programa que leia um inteiro \mathbf{M} ($M \leq 20$), seguidos de $M \times M$ inteiros. Como um time não enfrenta ele próprio, assuma que os elementos da diagonal são sempre 0. O programa deve escrever **quantas** partidas terminaram **empatadas**.

Exemplo de Entrada	Exemplo de Saída
6	3
0 2 2 1 3 2	
0 0 3 3 5 2	
3 2 0 1 3 1	
3 2 2 0 0 6	
3 6 0 0 0 2	
3 3 3 0 2 0	

5. Um quadrado metade-mágico é uma matriz quadrada $n \times n$ em que a soma de cada **coluna** resulta no mesmo valor. Escreva um programa em C que leia o valor de **n** (assuma 0 < n < 10), seguido de $n \times n$ inteiros, **todos maiores que 0**. Depois o programa deve escrever "sim" caso a matriz represente um quadrado metade-mágico e "não" caso contrário.

	3
	271
Exemplo:	9 3 6
	458
	\sin