PROJECT REPORT

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION

Submitted by PNT2022TMID20756

Jagadish Dhanraj Tidke - 412419104039 Sriram A - 412419104125

Abimannan D - 412419104002

Jagath Guru C - 412419104040

Kambala Sreeharsha - 412419104048

TABLE OF CONTENTS

1 INTRODUCTION	1
1.1 PROJECT OVERVIEW	1
1.2 PURPOSE	1
2 LITERATURE SURVEY	2
2.1 EXISTING PROBLEM	2
2.2 REFERENCES	2
2.3 PROBLEM STATEMENT DEFINITION	5
3. IDEATION AND PROPOSED SOLUTION	6
3.1 EMPATHY MAP CANVAS	6
3.2 IDEATION AND BRAINSTROMING	7
3.3 PROPOSED SOLUTION	8
3.4 PROBLEM SOLUTION FIT	9
4. REQUIREMENT ANALYSIS	10
4.1 FUNCTIONAL REQUIREMENTS	10
4.2 NON-FUNCTIONAL REQUIREMENTS	11
5. PROJECT DESIGN	12
5.1 DATA FLOW DIAGRAM	12
5.2 SOLUTION AND TECHNICAL ARCHITECTURE	13
5.3 USER STORIES	15
6. PROJECT PLANNING AND SCHEDULING	16
6.1 SPRINT PLANNING AND ESTIMATION	16
6.2 SPRINT DELIVERY SCHEDLILE	17

7.CODING AND SOLUTIONING	18
8.TESTING	20
8.1 TEST CASES	20
8.2 USER ACCEPTANCE TESTING	22
8.2.1 DEFECT ANALYSIS	22
8.2.2 TEST CASE ANALYSIS	22
9. RESULTS	23
9.1 PERFORMANCE METRICS	23
10. ADVANTAGES AND DISADVANTAGES	25
10.1 ADVANTAGES	25
10.2 DISADVANTAGES	25
11 CONCLUSION	26
12 FUTURE SCOPE	27
13 APPENDIX	28
SOURCE CODE GITHUB	28 37
PROJECT DEMO	37

CHAPTER 1 INTRODUCTION

1.1 PROJECT OVERVIEW

Machine learning and deep learning play an important role in computer technology and artificial intelligence. With the use of deep learning and machine learning, human effort can be reduced in recognizing, learning, predictions and inmany more areas.

Handwritten Digit Recognition is the ability of computer systems to recognise handwritten digits from varioussources, such as images, documents, and so on. This projectaims to let users take advantage of machine learning to reduce manual tasks in recognizing digits.

1.2 PURPOSE

Digit recognition systems are capableof recognizing the digits from different sources like emails, bank cheque, papers, images, etc. and in different real-world scenarios for online handwriting recognition on computer tablets or system, recognize number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on.

CHAPTER 2 LITERATURE SURVEY

2.1 EXISTING PROBLEM

The fundamental problem with handwritten digit recognition is that handwritten digits do not alwayshave the same size, width, orientation, and marginssince they vary from person to person. Additionally, there would be issues with identifying the numbers because of similarities betweennumerals like 1 and 7, 5 and 6, 3 and 8, 2 and 5, 2 and 7, etc. Finally, the individuality and variation of each individual's handwriting influence the structure and appearance of the digits.

2.2 REFERENCES

Improved Handwritten Digit Recognition Using Convolutional Neural Networks(CNN)(2020)

Ahlawat, Savita and Choudhary, Amit and Nayyar, Anand and Singh, Saurabh and Yoon, Byungun

This paper's primary goal was to enhance handwritten digit recognition ability. To avoid difficult pre-processing, expensive feature extraction, and a complex ensemble (classifier combination) method of a standard recognition system, they examined different convolutional neural network variations. Their current work makes suggestions on the function of several hyper-parameters through thorough evaluation utilizing an MNIST dataset. They also confirmed that optimizing hyper-parameters is crucial for enhancing CNN architecture performance. With the Adam optimizer for the MNIST database, they were able to surpassmany previously published results with a recognition rate of 99.89%. Through the trials, it is made abundantly evident how the performance of handwritten digit recognition is affected by the number of convolutional layers in CNN architecture. According to the paper, evolutionary algorithms can be explored for optimizing convolutional filterkernel sizes, CNN learning parameters, and the quantity of layers and learning rates.

An Efficient And Improved Scheme For Handwritten Digit Recognition
Based OnConvolutional Neural Network (2019)

Mahmood, Tariq and others

This study uses rectified linear units (ReLU) activation and a convolutional neuralnetwork (CNN) that incorporates the Deeplearning4j (DL4J) architecture to recognize handwritten digits. The proposed CNN framework has all the necessary parameters for a high level of MNIST digit classification accuracy. The system's training takes into account the time factor as well. The system is also tested by altering the number of CNN layers for additional accuracy verification. It is important to note that the CNN architecture consists of two convolutional layers, the first with 32 filters and a 5x5 window size and the second with 64 filters and a 7x7 window size. In comparison to earlier proposed systems, the experimental findings show that the proposed CNN architecture for the MNIST dataset demonstrates great performance in terms of time and accuracy. As a result, handwritten numbers are detected with a recognition rate of 99.89% and high precision (99.21%) in a short amount of time.

Improved Handwritten Digit Recognition Using Quantum K-Nearest NeighborAlgorithm (2019)

Wang, Yuxiang and Wang, Ruijin and Li, Dongfen and Adu-Gyamfi, Daniel and Tian, Kaibin and Zhu, Yixin

The KNN classical machine learning technique is used in this research to enable quantum parallel computing and superposition. They used the KNN algorithm with quantum acceleration to enhance handwritten digit recognition. When dealing with more complicated and sizable handwritten digital data sets, their suggestedmethodconsiderably lowered the computational time complexity of the traditional KNN algorithm. The paper offered a theoretical investigation of how quantum concepts can be applied to machine learning. Finally, they established a fundamental operational concept and procedure for machinelearning with quantum acceleration.

Handwritten Digit Recognition Using Machine And Deep LearningAlgorithms (2021) Pashine, Samay and Dixit, Ritik and Kushwah, Rishika

In this study, they developed three deep and machine learning-based models for handwritten digit recognition using MNIST datasets. To determine which model was the most accurate, they compared them based on their individual properties.

Support vector machines are among the simplest classifiers, making them faster than other algorithms and providing the highest training accuracy rate in this situation. However, due to their simplicity, SVMs cannot categorize complicated and ambiguous images as accurately as MLP and CNN algorithms can. In their research, they discovered that CNN producedthe most precise outcomes for handwritten digit recognition. This led them to the conclusion that CNN is the most effective solution for all types of prediction issues, including those using picturedata. Next, by comparing the execution times of the algorithms, they determined that increasing the number of epochs without changing the configuration of the algorithm is pointlessdue to the limitation of a certainmodel, and they discoveredthat beyond a certain number of epochs, the model begins overfitting the datasetand providesbiased predictions.

2.3 PROBLEM STATEMENT DEFINITION

as a result.

For years, the traffic department has been combatingtraffic law violators. These offenders endanger not only their own lives, but also the lives of other individuals. Punishing these offenders is critical to ensuring that others do not become like them. Identification of these offenders is next to impossible because it is impossible for the average individual to write down the licenseplate of a recklessdriver. Therefore, the goal of this project is to help the traffic department identify these offenders and reduce traffic violations

CHAPTER 3 IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION

S.N 0	PARAMETER	DESCRIPTION						
1	Problem Statement	To create an application that recognizes handwritten digits						
2	Idea/Solution Description	The application takes an imageas the input and accurately detects the digits in it.						
3	Novelty/Uniqueness	Instead of recognizing every text, the application accuratelyrecognizes only the digits						
4	Social Impact / CustomerSatisfaction	This application reduces the manual tasks that need to beperformed. This improves productivity in the workplace.						
5	Business Model	The application can be integrated with traffic surveillance cameras to recognize vehicle number plates The application can be integrated with Postal systemsto recognize the pin codes effectively						
6	Scalability of the Solution	The application can easily be scaled to accept multiple inputsand process them parallelly to further increaseefficiency						

3.4 PROBLEM SOLUTION FIT

CHAPTER 4 REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR.NO	FUNCTIONAL REQUIREMENTS	SUB REQUIREMENTS	
		Get access the MNIST dataset	
		Analyze the dataset	
FR-1	Model Creation	Define a CNN model	
		Train and Testthe Model	
		Create a website to let the user recognize handwritten digits.	
FR-2	Application Development	Create a home page to uploadimages	
		Create a result page to displaythe results	
		Host the website to let the usersuseit from anywhere	
		Let usersupload images ofvarious formats.	
		Let usersupload images ofvarious size	
FR-3		Prevent usersfrom uploading unsupported image formats	
		Pre-Process the image to use iton the model	

		Create a database to store allthe input images
		Display the result from the model
		Display input image
FR-4	Display Results	Display accuracy the result
		Display other possible predictions with their respectiveaccuracy

4.2 NON FUNCTIONAL REQUIREMENTS

NFR	NON-FUNCTIONAL REQUIREMENTS	DESCRIPTION
NFR-1	Usability	The application must be usablein all devices
NFR-2	NFR-2 Security The application must protectu uploaded image	
NFR-3	Reliability	The application must give anaccurate result as much as possible
NFR-4	NFR-4 Performance The application must be fastandqu	
NFR-5	Availability	The application must be available to use all the time
NFR-6	Scalability	Theapplication must scalealongwith the userbase

CHAPTER 5 PROJECT DESIGN

5.2 SOLUTION & TECHNICAL ARCHITECTURE

5.3 USER STORIES

User Type	Functional Requirements	User Story Number	User Story / Task	User Story / Task Acceptance Criteria		Release
	Accessing the Application	USN-1	As a user, I should beable to access the application fromanywhere and use onany devices	User can access the application using the browser on any device	High	Sprint-4
Customer	Uploading Image	USN-2	As a user, I should be ableto upload imagesto predict thedigits	User can upload image s	High	Sprint-3
	Viewing theResult s	USN-3	As a user, I should beable to view the results	The result of the prediction is displayed	High	Sprint-3
	Viewing Other Prediction	USN-4	As a user, I should beable to see other closeprediction s	The accuracy of othervalues must be displayed	Mediu m	Sprint-4
	Usage Instruction	USN-5	As a user, I should have a usage instruction to knowhow to use the application	The usage instruction is displayed on the home page	Mediu m	Sprint-4

CHAPTER 6 PROJECT PLANNINGAND SCHEDULING

6.1 PLANNING AND SPRINTESTIMATION

	STORYPOINTS PRIORITY		TEAM MEMBERS	
Getthe dataset	3	High	Jagadish	
Explore the data	2	Medium	Abimannan D Sriram A	
Data Pre-Processing	3	High	Sriram A Jagadish	
Prepare raining andtesting lata	3	High	Jagadish Jagath Guru	
Create the model	3	High	Abimannan D	
Train the model	3	High	Sriram A	
Test the model	3	High	Jagath guru	
Improve the model	2	Medium	Jagath Guru Sree Harsha	
Save the model	3	High	Sree Harsha	
Build the Home Page	3	High	Sree Harsha Sriram A	
Setup a database to store input images	2	Medium	Abimannan D Jagadish	
r	Explore the data Data Pre-Processing repare raining andtesting ata Create the model Train the model Test the model Improve the model Save the model Build the Home Page Setup a database to	Explore the data 2 Data Pre-Processing 3 repare 3 raining andtesting ata	Explore the data 2 Medium Data Pre-Processing 3 High repare 3 High Training andtesting 3 High Train the model 3 High Test the model 3 High Improve the model 2 Medium Save the model 3 High Setup a database to 3 Medium Medium	

	Integrate the model with the application	3	High	Abimannan D Jagadish
	Test the application	3	High	Sree Harsha Sriram A

6.2 SPRINT DELIVERYSCHEDULE

SPRINT	TOTAL STORY POINTS		SPRINT START DATE	SPRINT END DATE (PLANNED)	STORY POINTS COMPLETED (AS ON PLANNED DATE)	SPRINT RELEASE DATE (ACTUAL)
Sprint - I	11	6 Days	24 Oct 2022	29 Oct 2022	11	290ct 2022
Sprint - II	9	6 Days	31 Oct 2022	05 Nov 2022	9	05 Nov 2022
Sprint - III	10	6 Days	07 Oct 2022	12 Nov 2022	10	12 Nov 2022
Sprint - IV	9	6 Days	14 Nov 2022	19 Nov 2022	9	19 Nov 2022

CHAPTER 7 CODING & SOLUTIONING

```
# Import necessary packages
import os
import random
import string
from pathlib import Path
import numpy as np
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps
```

```
def random_name_generator(n: int) -> str:
    """
    Generates a random file name.

Args:
    n (int): Length the of the file name.

Returns:
    str: The file name.

"""
    return ''.join(random.choices(string.ascii_uppercase + string.digits, k=n))
```

```
def recognize(image: bytes) -> tuple:
   img = Image.open(image).convert("L")
   img_name = random_name_generator(10) + '.jpg'
   img.save(Path(f"./static/data/{img_name}"))
   img = ImageOps.grayscale(img)
   img = ImageOps.invert(img)
   img = img.resize((28, 28))
   img2arr = np.array(img)
   img2arr = img2arr / 255.0
   img2arr = img2arr.reshape(1, 28, 28, 1)
   results = model.predict(img2arr)
   best = np.argmax(results,axis = 1)[0]
   pred = list(map(lambda x: round(x*100, 2), results[0]))
   best = others.pop(best)
   return best, others, img_name
```

CHAPTER 8 TESTING

8.1 TEST CASES

-						
Test caseID	Feature Type	Component	Test Scenario	Expected Result	Actual Result	Status
HP_TC_001	UI	Home Page	Verify UI elements in the Home Page	The Home page must be displayed properly	Working as expected	PASS
HP_TC_002	UI	Home Page	Check if the UI elements are displayed properly in different screen sizes	The Home page must be displayed properly in all sizes	The UI is not displayed properly in screen size 2560 x 1801 and 768 x 630	FAIL
HP_TC_003	Functional	Home Page	Check if user can upload their file	The input imageshould be uploaded to theapplication successfully	Working as expected	PASS
HP_TC_004	Functional	Home Page	Check if user cannot upload unsupported files	The application should not allowuser to select a non image file	User is able to uploadany file	FAIL
HP_TC_005	Functional	Home Page	Check if the page redirectsto the result page once theinputis given	The page shouldredirect to theresults page	Working as expected	PASS

BE_TC_001	Functional	Backend	Check if all theroutes are working properly	All the routes should properly work	Working as expected	PASS
M_TC_001	Functional	Model	Check if the model can handle various image sizes	The model shouldrescale the imageand predict the results	Working as expected	PASS
M_TC_002	Functional	Model	Check if the model predicts thedigit	The model shouldpredict the number	Working as expected	PASS
M_TC_003	Functional	Model	Check if the model can handle complex inputimage	The model shouldpredict the number in the complex image	The model fails to identify the digit since the model is not built to handle such data	FAIL
RP_TC_001	UI	Result Page	Verify UI elements in the Result Page	The Result page must be displayed properly	Working as expected	PASS
RP_TC_002	UI	Result Page	Check if the input image is displayed properly	The input image should be displayed properly	The size of theinput image exceeds the display container	FAIL
RP_TC_003	UI	Result Page	Check if the result is displayed properly	The result shouldbe displayed properly	Working as expected	PASS

8.2 USER ACCEPTANCE TESTING 8.2.1 DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2
Total	6	1	4	3	14

8.2.2 TEST CASE ANALYSIS

Section	Total Cases	Not Tested	Fail	Pass
Client Application	10	0	3	7
Security	2	0	1	1
Performance	3	0	1	2
Exception Reporting	2	0	0	2

CHAPTER 9 CHAPTER 10 ADVANTAGES & DISADVANTAGES

ADVANTAGES

- Reduces manualwork
- More accurate than average human
- Capable of handling a lot of data
- Can be used anywherefrom any device

DISADVANTAGES

- Cannot handlecomplex data
- All the data must be in digital format
- Requires a high performance server for fasterpredictions
- Prone to occasional errors

CHAPTER 11 CONCLUSION

This project demonstrated a web application that uses machine learning to recognise handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposedproject is scalableand can easilyhandle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in real-world scenarios such as recognizing numberplates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on. There is so much room for improvement, which can be implemented in subsequent versions.

CHAPTER 12

FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement. Some of the improvements that can be made to this projectare as follows:

- ➤ Add supportto detect from digits multipleimages and save the results
- ➤ Add support to detectmultiple digits
- ➤ Improve modelto detect digitsfrom complex images
- ➤ Add supportto different languagesto help users from all over the world

This project has endless potentialand can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

١

APPENDIX

SOURCECODE MODEL CREATION

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.utils import np_utils
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Dense, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 28, 28, 1).astype('float32')
X_test = X_test.reshape(10000, 28, 28, 1).astype('float32')
number_of_classes = 10
Y_train = np_utils.to_categorical(y_train, number_of_classes)
Y_test = np_utils.to_categorical(y_test, number_of_classes)
```

```
# Create the model
model = Sequential()
model.add(Conv2D(64, (3, 3), input_shape=(28, 28, 1), activation="relu"))
model.add(Conv2D(32, (3, 3), activation="relu"))
model.add(FLatten())
model.add(Dense(number_of_classes, activation="softmax"))

model.compile(Loss='categorical_crossentropy', optimizer="Adam", metrics=["accuracy"])

# Train the model
model.fit(X_train, Y_train, batch_size=32, epochs=5, validation_data=(X_test,Y_test))

# Evaluate the model
metrics = model.evaluate(X_test, Y_test, verbose=0)
print("Metrics (Test Loss & Test Accuracy): ")
print(metrics)

# Save the model
model.save("model.h5")
```

```
# Test the saved model
model=load_model("model.h5")

img = Image.open("sample.png").convert("L")
img = img.resize((28, 28))
img2arr = np.array(img)
img2arr = img2arr.reshape(1, 28, 28, 1)
results = model.predict(img2arr)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label")
print(results)
```

FLASK APP

```
from flask import Flask,render_template,request
from recognizer import recognize

app=Flask(__name__)

@app.route('/')
def main():
    return render_template("home.html")

@app.route('/predict',methods=['POST'])
def predict():
    if request.method=='POST':
        image = request.files.get('photo', '')
        best, others, img_name = recognize(image)
        return render_template("predict.html", best=best, others=others, img_name=img_name)

if __name__ == "__main__":
    app.run()
```

RECOGNIZER

```
# Import necessary packages
import os
import random
import string
from pathlib import Path
import numpy as np
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps
```

```
def random_name_generator(n: int) -> str:
    """
    Generates a random file name.

Args:
    n (int): Length the of the file name.

Returns:
    str: The file name.

"""
    return ''.join(random.choices(string.ascii_uppercase + string.digits, k=n))
```

```
model=load_model(Path("./model/model.h5"))
img = Image.open(image).convert("L")
img_name = random_name_generator(10) + '.jpg'
img.save(Path(f"./static/data/{img_name}"))
img = ImageOps.grayscale(img)
img = ImageOps.invert(img)
img = img.resize((28, 28))
img2arr = np.array(img)
img2arr = img2arr / 255.0
img2arr = img2arr.reshape(1, 28, 28, 1)
results = model.predict(img2arr)
best = np.argmax(results,axis = 1)[0]
pred = List(map(Lambda x: round(x*100, 2), results[0]))
best = others.pop(best)
return best, others, img_name
```

HOME PAGE (HTML)

```
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Handwritten Digit Recognition</title>
<link rel="icon" type="image/svg" sizes="32x32" href="{{url_for('static',filename='images/icon.svg')}}"</pre>
<link rel="stylesheet" href="{{url_for('static',filename='css/main.css')}}" />
<script src="https://unpkg.com/feather-icons"></script>
<script defer src="{{url_for('static',filename='js/script.js')}}"></script>
<div class="container">
    <div class="heading">
        <h1 class="heading_main">Handwritten Digit Recognizer</h1>
        <h2 class="heading_sub">Easily analyze and detect handwritten digits</h2>
    <div class="upload-container">
        <div class="form-wrapper">
            <form class="upload" action="/predict" method="post" enctype="multipart/form-data">
                <label id="label" for="upload-image"><i data-feather="file-plus"></i>Select File</label>
                <input type="file" name="photo" id="upload-image" hidden />
                <button type="submit" id="up_btn"></button>
            <img id="loading" src="{{url_for('static',filename='images/loading.gif')}}">
```

HOME PAGE (CSS)

```
@import url("https://fonts.googleapis.com/css2?family=Overpass:wght@200;300;400;500;600;700;900&display=swap");

* {
    padding: 0;
    margin: 0;
}

body {
    color: black;
    font-family: "Overpass", sans-serif;
}
```

```
width: 100%;
   height: 100%;
   background-color: white;
.heading {
   margin-top: -2rem;
   padding-bottom: 2rem;
   width: fit-content;
.heading .heading__main {
   font-size: 3rem;
.heading .heading_sub {
   font-size: 1rem;
   color: rgb(90, 88, 88);
.upload-container {
   box-shadow: 0 0 20px rgb(172, 170, 170);
   width: 40rem;
   height: 25rem;
   padding: 1.5rem;
.form-wrapper {
   background-color: rgba(190, 190, 190, 0.5);
   width: 100%;
   height: 100%;
   border: 1px dashed black;
   align-items: center;
.form-wrapper #loading {
```

```
.form-wrapper .upload {
   align-items: center;
   width: 8rem;
    height: fit-content;
   background-color: rgb(114, 96, 182);
   box-shadow: 0 5px 10px rgb(146, 135, 247);
.form-wrapper .upload #up_btn {
.form-wrapper .upload label {
   font-size: 1rem;
   height: 100%;
   padding: 10px;
.form-wrapper .upload svg {
   height: 15px;
   padding-right: 8px;
@media screen and (max-width: 700px) {
   .upload-container {
       height: 20rem;
       width: 18rem;
       margin-top: 3.5rem;
       margin-bottom: -8rem;
   .heading .heading__main {
      margin-top: -6rem;
       font-size: 2rem;
       padding-bottom: 1rem;
```

HOME PAGE (JS)

```
feather.replace(); // Load feather icons

form = document.querySelector('.upLoad')
loading = document.querySelector("#Loading")
select = document.querySelector("#upLoad-image");

select.addEventListener("change", (e) => {
    e.preventDefault();

   form.submit()
   form.style.visibility = "hidden";
   loading.style.display = 'flex';
});
```

PREDICT PAGE (HTML)

```
<title>Prediction | Handwritten Digit Recognition</title>
<link rel="stylesheet" href="{{url_for('static',filename='css/predict.css')}}" />
k rel="icon" type="image/svg" sizes="32x32" href="{{url_for('static',filename='images/icon.svg')}}"
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<div class="container">
    <h1>Prediction</h1>
    <div class="result-wrapper">
       <div class="input-image-container">
           <img src="{{url_for('static',filename='data/')}}{{img_name}}" />
        <div class="result-container">
           <div class="value">{{best.0}}</div>
            <div class="accuracy">{{best.1}}%</div>
    <h1>Other Predictions</h1>
    <div class="other_predictions">
       {% for x in others %}
        <div class="value">
            <h2>{{x.0}}</h2>
            <div class="accuracy">{{x.1}}%</div>
```

```
@import url("https://fonts.googleapis.com/css2?family=Overpass:wght@200;300;400;500;600;700;900&display=swap");
   color: black;
   font-family: "Overpass", sans-serif;
   padding-top: 2rem;
.result-wrapper {
   width: -moz-fit-content;
   box-shadow: 0 0 10px rgb(126, 125, 125);
   padding: 1.5rem;
   -moz-column-gap: 1rem;
   column-gap: 1rem;
.result-wrapper .input-image-container,
.result-wrapper .result-container {
   width: 15rem;
   height: 15rem;
   flex-direction: column;
   background-color: rgb(209, 206, 206);
```

```
.result-wrapper .input-image-container img {
   background-size: contain;
.result-wrapper .result-container .value {
   font-size: 6rem;
.result-wrapper .result-container .accuracy {
   margin-top: -1rem;
.other_predictions {
   justify-content: center;
   flex-wrap: wrap;
   column-gap: 1rem;
   row-gap: 1rem;
.other_predictions .value {
   width: 5rem;
   height: 5rem;
   box-shadow: 0 0 7px rgb(158, 157, 157);
.other_predictions .value div {
   margin-top: -1.2rem;
@media screen and (max-width: 700px) {
       font-size: 2.3rem;
   .result-wrapper .input-image-container,
   .result-wrapper .result-container {
       width: 7rem;
       height: 7rem;
   .result-wrapper .result-container .value {
       font-size: 4rem;
```


https://github.com/IBM-EPBL/IBM-Project-19100-1659693254

https://www.dropbox.com/s/7yifd92lvqrrum2/Project%20Demo.mp4?dl=0