Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and image data

Jan Kieseler¹ (jan.kieseler@cern.ch)

Object Condensation

GSS 1-26-2024

Hypothetical (A)

Given... A Pixel grid (100x100x3) ...write code from scratch that...

Predicts... The <u>number</u> of unique objects and their <u>color</u>

Hypothetical (A)

Given... A Pixel grid (100x100x3) ...write code from scratch that...

Predicts... The <u>number</u> of unique objects and their <u>color</u>

Challenges:

- Object may be only partially visible within the volume
- Program must work for an arbitrary # of visible objects
- How to/Should we deal with empty cells?
- Regions of overlap
- Noise?

Hypothetical (B)

Given... A Pixel grid (100x100x3) **Guarantee...** No overlap, only 1 "bright" pixel per object **Predicts...** The <u>number</u> of unique objects and their <u>color</u>

Hypothetical (B)

Given... A Pixel grid (100x100x3) **Guarantee...** No overlap, only 1 "bright" pixel per object **Predicts...** The <u>number</u> of unique objects and their <u>color</u>

Solution becomes much simpler to picture...

... threshold away dim pixels (β < 0.5) ...

... count number of remaining bright pixels ...

... read off their colors ...

★Object Condensation★ Foreshadowing

Neural Network, CNN, GNN, etc...

Given

8 quiz grades

Predict

- 1. Midterm grade
- 2. Physics Major?

Task: Image Classification

Given... An isolated 'grid' of inputs

Output... A list of prediction scores for each trained category

★Training★ is straightforward. ImageNet has ~14 million labeled images with more than 22,000 categories.

Image within Image Classification

Given... An isolated 'grid' of inputs

Output... A potentially arbitrary number of objects, each classified

★Training is more difficult!★

- Cannot easily train for datasets with all possible category combinations
- How would one deal with situations where objects overlap?
- The ★Approach★ must be changed (can't do simple CNN)

Some Object Detection Approaches

- Deformable Parts Models (DPM): https://ieeexplore.ieee.org/document/5255236
 - Scan a trained single image classifier over intervals within the main image (slow and inefficient)
- Region Based CNN (R-CNN): https://arxiv.org/abs/1311.2524

- 1. Propose bounding boxes
- 2. Classify each bounding box
- 3. Postprocess to eliminate duplicates & refine boxes → reclassify to see improvements
- You Only Look Once (YOLO): https://arxiv.org/pdf/1506.02640.pdf
 - Reduce the object detection into a fast, biologically similar one-stage approach
 - Entire image is used when training → full context allows for reduction of backgrounds
 - The "Probability that we should have a bounding box here" is weighted by the bounding box class

Obligatory Funny Slide at Al4EIC

The N-to-K Problem

Raw Inputs

N "sparse" hits in a detector

- x
- y
- Z
- timing
- edep

Object Clustering

Grouping of hits into more general objects (ex: jets)

Physics

Process K clusters info to yield

- Centroid
- Total energy
- Spread/width
- Particle ID

Raw Inputs

Grid of N pixels

- . х
- . ,
- RGB

Object Clustering

Classify

1 person 5 sheep 1 dog

The N-to-K Problem

Raw Inputs

N "sparse" hits in a detector

- x
- y
- Z
- timing
- edep

Object Clustering

Grouping of hits into more general objects (jets)

Physics

Process K clusters info to yield

- Centroid
- Total energy
- Spread/width
- Particle ID

Because... The structure of particle physics data is ** non-trivial (sparse) **

Then... The <u>Object Clustering</u> and <u>Physics Predictions</u> stages are separate analyses (MLs)

The N-to-K Problem

N "sparse" hits in a detector

- x
- y

Particle Shower

- Z
- timing
- edep

Object Clustering

Grouping of hits into more general objects (jets)

Physics

Process K clusters info to yield

- Centroid
- Total energy
- Spread/width
- Particle ID

Because... The structure of particle physics data is ** non-trivial (sparse) **

Then... The <u>Object Clustering</u> and <u>Physics Predictions</u> stages are separate analyses (MLs)

★Object Condensation★ is an approach to train a machine learning model to both <u>cluster</u> and <u>predict physical properties</u> of a sparse data set

Input Space → Point Cloud

- A point cloud is a discrete set of (N) data points with (d) components
- ex: (x,y,z,t,E)

Output Space → Another Point Cloud

- End result will be a discrete set of (N) data points with (d' + 2 + 1) components
- d' \rightarrow Number of properties to predict (ex: \mathbf{p}_{x} , \mathbf{p}_{y} , \mathbf{p}_{z} , pid, ...)
- +2 → Latent space coordinates (*explained later*)
- +1 → Confidence beta value (explained later)

In essence, object condensation lays the groundwork for how the +2 and +1 variables are to be 'predicted' such that clustering is automatically performed

Input Space → Point Cloud

- A point cloud is a discrete set of (N) data points with (d) components
- ex: (x,y,z,t,E)

Output Space → Another Point Cloud

- End result will be a discrete set of (N) data points with (d' + 2 + 1) components
- d' \rightarrow Number of properties to predict (ex: \mathbf{p}_{x} , \mathbf{p}_{y} , \mathbf{p}_{z} , pid, ...)
- +2 → Latent space coordinates (*explained later*)
- +1 → Confidence beta value (*explained later*)

In essence, object condensation lays the groundwork for how the +2 and +1 variables are to be 'predicted' such that clustering is automatically performed

Much more complicated "task" to formulate

I want my ML model to tell me how many clusters, and their centroids (x_c, y_c)

Lets see what a **well-trained** model does, then discuss how we even **train** it to perform the task at hand (clustering!)

Latent Space

Object Condensation Basics

Object Condensation Basics

High β implies the model thinks this point is very important!

Object Condensation Basics

Object Condensation Basics

Solution becomes much simpler to picture...

... threshold away dim pixels (β < 0.8) ...

... count the # pixels remaining ...

 \dots read off their predicted x_c and y_c \dots

What is going on under the hood?

What we understand so far:

Object Condensation requires a frontend architecture (ex: CNN) to predict for each point a β, a set of latent space coords, and the object's features

What we demand that frontend to produce:

- 1. Points corresponding to the same object *group together* in the **latent space**
- Only a single point per object has a large β
- 3. During clustering, the points with larger β possess the most accurate predictions of the **object's features**

What we understand so far:

Object Condensation requires a frontend architecture (ex: CNN) to predict for each point a β, a set of latent space coords, and the object's features

What we demand that frontend to produce:

- 1. Points corresponding to the same object *group together* in the **latent space**
- 2. Only a single point per object has a large **\beta**
- 3. During clustering, the points with larger β possess the most accurate predictions of the **object's features**

Each of the three demands can be written as their own *Loss Function* which penalizes the frontend for not doing its job

These unique training requirements create a learning environment that gives us what we want (clear clustering of objects w/ feature predictions)

During training, we know these points (i,j) come from the same object...

...we want them to attract to one another in the latent space...

Before training, X & Y are random

charge $k\rightarrow$ unique id of the object [0,1,2,3,4] $x \rightarrow$ latent space coordinates

$$\breve{V}_k(x) = ||x - x_\alpha||^2 q_{\alpha k},$$

charge k→unique id or ... x → latent space coordina.

$$L_{V} = \frac{1}{N} \sum_{j=1}^{N} q_{j} \sum_{k=1}^{K} \left(M_{jk} \breve{V}_{k}(x_{j}) \right)$$

In words... for each pixel (j) we calculate its potential w.r.t each object (k). If that pixel (j) is in object (k), punish (increase the **Loss**) if (j) is far away ... $M_{ik} = 1$ if (j) is in object (k), else (j)

$$L_{V} = \frac{1}{N} \sum_{j=1}^{N} q_{j} \sum_{k=1}^{K} \left(M_{jk} \breve{V}_{k}(x_{j}) \right)$$

potential w.r.t each o.g.
object (k), punish (increase a
away ... M_{ik} = 1 if (j) is in object (k), e.e.

(Right) The total potential V experienced by the blue square as it navigates past 3 unaffiliated objects (peaked condensation points) towards its clustering home (the bottom of the well, another condensation point)

Demand B: Only one big beta per object

Recall... each pixel (j) learns a $0 < \beta_i < 1$ value

Need... Clustering to realize one pixel with a significantly larger beta than the rest

Why... Threshold the beta \rightarrow get the predicted features

Demand B: Only one big beta per object

Recall... each pixel (j) learns a $0 < \beta_i < 1$ value

Need... Clustering to realize one pixel with a significantly larger beta than the rest **Why...** Threshold the beta \rightarrow get the predicted features

$$L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i,$$

Punish the model if the largest β per object (k) is small

Punish the model if background pixels even \underline{think} about forming a condensation point (high mean β of the background)

 $n_i \rightarrow 1$ if point is background, else 0

Recall... For each object (k) we will determine the features by reading them off of the pixel with the highest β

Recall... For each object (k) we will determine the features by reading them off of the pixel with the highest β

Let...

```
\begin{array}{ll} t_i^{} \rightarrow \text{True value for pixel (i)} & n_i^{} \rightarrow 1 \text{ if pixel (i) is background, else 0} \\ p_i^{} \rightarrow \text{Predicted value for pixel (i)} & \end{array}
```

 $L(t_i, p_i) \rightarrow \star User \star defined custom loss function (ex: MSE for regression tasks)$

Recall... For each object (k) we will determine the features by reading them off of the pixel with the highest β

Let...

 $\begin{array}{ll} t_i \to \text{True value for pixel (i)} & n_i \to 1 \text{ if pixel (i) is background, else 0} \\ p_i \to \text{Predicted value for pixel (i)} & \end{array}$

 $L(t_i, p_i) \rightarrow \text{User} \star \text{ defined custom loss function (ex: MSE for regression tasks)}$

$$L_p = \frac{1}{\sum_{i=1}^{N} \xi_i} \cdot \sum_{i=1}^{N} L_i(t_i, p_i) \, \xi_i$$
, with

$$\xi_i = (1 - n_i) \operatorname{arctanh}^2 \beta_i$$
.

Recall... For each object (k) we will determine the features by reading them off of the pixel with the highest β

Let...

$$t_i \rightarrow \text{True value for pixel (i)} \qquad \qquad n_i \rightarrow 1 \text{ if pixel (i) is background, else 0} \\ p_i \rightarrow \text{Predicted value for pixel (i)} \qquad \qquad n_i \rightarrow 1 \text{ if pixel (i) is background, else 0}$$

 $L(t_i, p_i) \rightarrow \star User \star$ defined custom loss function (ex: MSE for regression tasks)

$$L_p = \frac{1}{\sum_{i=1}^{N} \xi_i} \cdot \sum_{i=1}^{N} \underline{L_i(t_i, p_i)} \, \xi_i, \text{ with}$$
$$\xi_i = (1 - n_i) \operatorname{arctanh}^2 \beta_i.$$

Punish the model for the loss of each non-background pixel

Recall... For each object (k) we will determine the features by reading them off of the pixel with the highest β

Let...

$$t_i \rightarrow \text{True value for pixel (i)} \qquad \qquad n_i \rightarrow 1 \text{ if pixel (i) is background, else 0} \\ p_i \rightarrow \text{Predicted value for pixel (i)} \qquad \qquad n_i \rightarrow 1 \text{ if pixel (i) is background, else 0}$$

 $L(t_i, p_i) \rightarrow \star User \star$ defined custom loss function (ex: MSE for regression tasks)

$$L_p = \frac{1}{\sum_{i=1}^{N} \xi_i} \cdot \sum_{i=1}^{N} L_i(t_i, p_i) \xi_i$$
, with

$$\xi_i = (1 - n_i) \operatorname{arctanh}^2 \beta_i$$
.

Punish the model for the loss of each non-background pixel

Punish it more when the pixel has a large β (high ξ)

Distinct Clusters

$$L_V = \frac{1}{N} \sum_{j=1}^{N} q_j \sum_{k=1}^{K} \left(M_{jk} \breve{V}_k(x_j) + (1 - M_{jk}) \hat{V}_k(x_j) \right).$$

Only one representative

$$L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i,$$

Rep. carries features

$$L_p = \frac{1}{\sum_{i=1}^{N} \xi_i} \cdot \sum_{i=1}^{N} L_i(t_i, p_i) \, \xi_i,$$

$$L = L_p + s_c(L_\beta + L_V).$$

Inference

How does the paper recommend we extract the features for each object?

- Pass your input through the frontend ML architecture
 - a. Get $(\underline{X},\underline{Y},\beta,p)$ for each point in our point cloud
- 2. Label all points with $\beta > t_{\beta}$ as condensation points $(t_{\beta} \approx 0.1)$
- 3. Assign all vertices within $t_d \approx [0.1, 1]$ in the latent space to the condensation point
- 4. Take the features *p* of the condensation points

Interesting Example

Interesting Example

(Left Figure) The standout red green blue pixels are the condensation points for each object (largest β).

We can infer that the model learns that an edge, or when visible, a corner pixel of an object will carry the object's features most effectively

Summary

★Object Condensation★ provides a framework that, when attached to a frontend ML architecture, can assist simultaneously with <u>clustering</u> and <u>feature predicting</u> multiple objects in sparse datasets (point clouds)

The ML architecture learns to...

- Cluster points of like-objects with one another in a new latent space
- Assign one representative per object by giving it a large β value
- Focus on having points with large β give the best object feature predictions (centroid of a calorimeter cluster, momentum of a particle through a tracking system, etc.)

Greg's General Idea

Posed Problem:

We have any number of discrete clusters of people (3 currently)

We want to predict how much space each cluster is currently taking up in the room (total energy deposited in calorimeter?)

Employee

Boss

Gingerbread Man

Greg's General Idea

Employee

Gingerbread Man

Object Condensation learns a $0 < \beta_i < 1$ value for *each* vertex

 $\beta_i \rightarrow A$ measure of how likely point i is a condensation point

A condensation point, we can imagine, is the most archetypal representative of the distinct object

Ex: The Most Bossiest Boss in the room will have a condensation point near 1, and the other bosses will learn smaller β 's

Greg's General Idea

Employee

Boss

Gingerbread Man

Object Condensation also maps the input features to a latent space to help distinguish between different objects

Weight

Object Condensation (Training)

Given... N_F "hot" pixels (x,y,E) and N_B bkg

Predict... Which pixels should be clustered together and what is the total energy and centroid of the showering particle

Object Condensation (Training)

Given... N_F "hot" pixels (x,y,E) and N_B bkg

Predict... Which pixels should be clustered together and what is the total energy (E) and centroid (x,y) of the showering particle

This is a point cloud with N=225. Each vertex has an input dimension of 3.

Object Condensation (Training)

Given... N_F "hot" pixels (x,y,E) and N_B bkg

Predict... Which pixels should be clustered together and what is the total energy (E) and centroid (x,y) of the showering particle

This is a point cloud with N=225. Each vertex has an input dimension of 3.

The final output space will be 225 vertices. Each with dimension (d'=3) + 2 + 1 = 6