

Nick Grunloh

14 March 2022

Outline

- 1 Introduction
- 2 Simulation
- 3 Results
 - Low Contrast
 - High Contrast
- 4 Proposals
 - Growth & Productivity
 - Catch Interpolation
- End

Table of Contents

Introduction •0000

- 1 Introduction
- 2 Simulation
- 3 Results
 - Low Contrast
 - High Contrast
- 4 Proposals
 - Growth & Productivity
 - Catch Interpolation
- 5 End

$$I_t = qB_te^{\epsilon}$$
 $\epsilon \sim N(0, \sigma^2)$

$$\frac{dB(t)}{dt} = P(B(t); \theta) - C(t)$$

Introduction 00000

Schaefer Model

Introduction 00000

$$P_{\theta}(B) = rB\left(1 - \frac{B}{K}\right)$$

 $\theta = (r, K)$

Logistic Production and Related Quantities

Schaefer Reference Points

$$F^* = \frac{r}{2}$$

$$\frac{B^*}{B_0} = \frac{1}{2}$$

$$MSY = \frac{rK}{4}$$

Logistic Production and Related Quantities

Introduction

Conceptually:

Introduction 00000

$$F^*\in\mathbb{R}^+\quad rac{B^*}{ar{B}(0)}\in(0,1)$$

Mangel et al. 2013, CJFAS:

■ BH Model:

$$F^* \in \mathbb{R}^+$$
 $\frac{B^*}{\overline{B}(0)} = \frac{1}{F^*/M+2}$

 Similar Constraint for Ricker and other 2 Parameter Curves

Conceptually:

Introduction

00000

$$F^* \in \mathbb{R}^+ \quad rac{B^*}{ar{B}(0)} \in (0,1)$$

Mangel et al. 2013, CJFAS:

BH Model:

$$F^* \in \mathbb{R}^+$$
 $\frac{B^*}{\bar{B}(0)} = \frac{1}{F^*/M+2}$

 Similar Constraint for Ricker and other 2 Parameter Curves

Schaefer Model:

$$F^* \in \mathbb{R}^+ \quad \frac{B^*}{\bar{B}(0)} = \frac{1}{2}$$

- 1 Introduction
- 2 Simulation
- 3 Results
 - Low Contrast
 - High Contrast
- 4 Proposals
 - Growth & Productivity
 - Catch Interpolation
- 5 End

$$I(t) \sim LN(qB(t), \sigma^2)$$

 $\frac{dB(t)}{dt} = P_{\theta}(B(t)) - F(t)B(t)$

$$P_{\theta}(B) = \frac{rB}{\gamma - 1} \left(1 - \frac{B}{K} \right)^{\gamma - 1}$$
$$\theta = (r, K, \gamma)$$

$$\gamma = 2 \Rightarrow \mathsf{Schaefer} \; \mathsf{Model}$$

Catch

$$C(t) = F(t)B(t)$$

$$= F^* \left(\frac{F(t)}{F^*}\right)B(t)$$

Catch

$$\theta = \left[r = F^* \left(\frac{1 - \frac{B^*}{\bar{B}(0)}}{\frac{B^*}{\bar{B}(0)}} \right) \left(1 - \frac{B^*}{\bar{B}(0)} \right)^{\left(\frac{B^*}{\bar{B}(0)} - 1 \right)}, \ K = 10000, \ \gamma = \frac{1}{\frac{B^*}{\bar{B}(0)}} \right]$$

Reference Point Space

$$\boldsymbol{\theta} = \left[r = F^* \left(\frac{1 - \frac{B^*}{\overline{B}(0)}}{\frac{B^*}{\overline{B}(0)}} \right) \left(1 - \frac{B^*}{\overline{B}(0)} \right)^{\left(\frac{B^*}{\overline{B}(0)} - 1 \right)}, \ K = 10000, \ \gamma = \frac{1}{\frac{B^*}{\overline{B}(0)}} \right]$$

Reference Point Space

Metamodel

$$\underbrace{\left(F^*, \frac{B^*}{\bar{B}(0)}\right)}_{\mathsf{PT\ Truth}} \overset{\mathsf{GP}}{\mapsto} \underbrace{\left(\hat{F}^*, \frac{\hat{B}^*}{\bar{B}(0)}\right)}_{\mathsf{Shaefer\ Estimate}}$$

- GP interpolates over degrees of RP model misspecification.
- Propogation of estimate uncertainty smooths bias estimation.
- Explicitely highlights trade-offs induced in RPs.

Results

Outline

- 1 Introduction
- 2 Simulation
- 3 Results
 - Low Contrast
 - High Contrast
- 4 Proposals
 - Growth & Productivity
 - Catch Interpolation
- 5 End

Low Contrast

Bias Direction for (F*, B*/B0) Jointly

Results

Results

Components of Bias

Low Contrast

Results 0000•000 Proposals 00000000

Results

Outline

- 1 Introduction
- 2 Simulation
- 3 Results
 - Low Contrast
 - High Contrast
- 4 Proposals
 - Growth & Productivity
 - Catch Interpolation
- 5 End

Summary

- Given unbias estimation (i.e. MLE), model misspecification is a necessary but not sufficient condition for inducing bias.
- Different data informs different parts of the production function differently
- In the overconstrained setting we pay for our modeling mistakes in bias In practice, when the true model is not known and the Schaefer model is unlikely to be correctly specified, one should at best expect to only estimate either B^* or F^* correctly depending on the particular degree of model misspecification. The observed contrast then serves to distribute the available information among B^* and F^* .
- F* bias is strongly contrast dependent
 - ⇒ Bias depends on how similar the modeled and true production functions can be at the observed biomasses

Outline

- - Low Contrast
 - High Contrast
- 4 Proposals
 - Growth & Productivity
 - Catch Interpolation

Growth & Productivity

Productivity Extension

$$\frac{dB}{dt} = P(B; \theta) - (M + F)B$$

$$P(B; [\alpha, \beta, \gamma]) = \alpha B(1 - \beta \gamma B)^{\frac{1}{\gamma}}$$

$$\gamma = -1 \Rightarrow$$
 Beverton-Holt $\gamma = 1 \Rightarrow$ Logistic $\gamma \to 0 \Rightarrow$ Ricker

Growth & Productivity

Productivity Extension

$$P_{\mathsf{BH}}(B; [\alpha, \beta, -1]) = \frac{\alpha B}{(1 + \beta B)}$$

$$\frac{B^*}{\bar{B}(0)} = \frac{1}{\frac{F^*}{M} + 2}$$

Growth Extension

$$\frac{dB}{dt} = \underbrace{w(a_0)R(B;\theta)}_{\text{Net Growth}} + \underbrace{\kappa\left[w_{\infty}N - B\right]}_{\text{Net Growth}} - \underbrace{(M+F)B}_{\text{Mortality}}$$

$$\frac{dN}{dt} = R(B;\theta) - (M+F)N$$

$$R(B; [\alpha, \beta, \gamma]) = \alpha B(t - a_0) (1 - \beta \gamma B(t - a_0))^{\frac{1}{\gamma}}$$

$$w(a) = w_{\infty} (1 - e^{-\kappa a})$$

bullets of primary points of individual growth and maturity

Outline

- - Low Contrast
 - High Contrast
- 4 Proposals
 - Growth & Productivity
 - Catch Interpolation

Catch Interpolation

$$t \in \mathbb{R}^+$$
 $au = \lceil t
ceil - 1$

$$\mathbb{E}[y(t)] = \int_{\tau}^{t} x(t^*) dt^*$$

$$x(t) = \beta_0 + \sum_{j=1}^{T-1} \beta_j (t - \tau_j) \mathbb{1}_{t > \tau_j}$$

$$y(\tau_i) = \beta_0 + \sum_{j=1}^{i-1} \beta_j \left[\left(\frac{\tau_i^2}{2} - \tau_j \tau_i \right) \mathbb{1}_{\tau_i > \tau_j} - \left(\frac{\tau_{i-1}^2}{2} - \tau_j \tau_{i-1} \right) \mathbb{1}_{\tau_{i-1} > \tau_j} \right] + \epsilon_i$$
$$\beta_j \sim N(0, \phi) \qquad \phi \sim \mathsf{Half-Cauchy}(0, 1) \qquad \epsilon_i \sim N(0, \sigma_i^2)$$

Observed Catch with Predictive Interpolations

Interpolated Instantaneous Catch

$$egin{aligned} rac{dB}{dt} &= P_{ heta}(B(t)) - C(t) \ B(au+1) &pprox B(au) + P_{ heta}(B(au)) - C(au) \end{aligned}$$

Observed Catch with Predictive Interpolations

Interpolated Instantaneous Catch

Timeline

Thanks and Acknowldgements NOAA, Sea Grant Ecetra

$$\hat{\mu} = \widehat{\log(r)} - or - \hat{\mu} = \widehat{\log(K)}$$

$$\mathbf{x} = \left(F^*, \frac{B^*}{\bar{B}(0)}\right)$$

$$\hat{\mu} = \beta_0 + \beta' \mathbf{x} + f(\mathbf{x}) + \epsilon$$
$$f(\mathbf{x}) \sim \mathsf{GP}(0, \tau^2 R(\mathbf{x}, \mathbf{x'}))$$
$$\epsilon_i \sim \mathsf{N}(0, \hat{\omega}_i).$$

$$R(\boldsymbol{x}, \boldsymbol{x'}) = \exp\left(\sum_{j=1}^{2} \frac{-(x_j - x_j')^2}{2\ell_j^2}\right)$$

Cross-Covariogram

F*

$$\frac{B^*}{\bar{B}(0)} = \frac{\left(\frac{\alpha}{M+F^*}\right)^{\frac{1}{\gamma}} - 1}{\left(\frac{\alpha}{M}\right)^{\frac{1}{\gamma}} - 1}$$

$$\alpha = (M+F^*) \left[1 - \frac{1}{\gamma} \left(\frac{F^*}{M+F^*}\right)\right]^{-\gamma}$$

$$\beta = \frac{1}{\gamma \bar{B}(0)} \left(1 - \left(\frac{\alpha}{M}\right)^{\frac{1}{\gamma}}\right)$$

Results

$$\frac{dB}{dt} = P_{\theta}(B(t)) - C(t)$$

$$B(\tau+1) pprox B(au) + P_{ heta}(B(au)) - C(au)$$

