

Outline

Study of Components

- Multiplexor, Decoder
- Logic Implementation Using MUX & Decoder

Multiple-Output Circuits

- Many circuits have more than one output
- Can give each a separate circuit, or can share gates
- Ex: F = ab + c', G = ab + bc

Decoder

- Decoder: knows what to do with this: Decode
- N input: 2N output
- Memory Addressing
 - Address to a particular location
- Decoder: Popular combinational logic building block, in addition to logic gates
 - Converts input binary number to one high output
- 2-input decoder: four possible input binary numbers
 - So has four outputs, one for each possible input binary number

Decoder in Memory structures

Decoders and Multiplexers (Muxes)

- Internal design
- AND gate for each output to detect input combination
- Decoder with enable e
- Outputs all 0 if e=0, Regular behavior if e=1
- n-input decoder: 2n outputs

Decoder

4-to-16 Decoder using two 3-to-8 Decoders

Boolean Function Implementation using Decoders

- Using a n-to-2n decoder and OR gates any functions of n variables can be implemented.
- Example: $S(x,y,z) = \Sigma(1,2,4,7)$, $C(x,y,z) = \Sigma(3,5,6,7)$
- Functions S and C can be implemented using a
 3-to-8 decoder and two 4-input OR gates

Implementation of S and C

Any Function can be implemented

Function depend on Memory Elements, Direct correspondence to Truth Table

- Mux: Another popular combinational building block
- Routes one of its N data inputs to its one output, based on binary value of select inputs
- 4 input mux → needs 2 select inputs to indicate which input to route through
- 8 input mux \rightarrow 3 select inputs
- **N** inputs $\rightarrow Log_2$ (**N**) selects
- Like a rail yard switch

$$M ux 2 \times 1$$

$$Mux 4 \times 1$$

$$M u x 8 \times 1$$

$$M u x 2^{k} \times 1$$
 $k = 1, 2, 3,$

$$k = 1, 2, 3, \dots$$

Mux Internal Design

Mux Internal Design

- Ex: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
- 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can
 select between A or B

S	$\mathbf{y_0}$	$\mathbf{y_1}$
0	I	0
1	0	I

S ₁	S_0	\mathbf{Y}_3	Y ₂	Y ₁	$\mathbf{Y_0}$
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

S ₁	S_0	\mathbf{Y}_3	Y ₂	Y ₁	Y ₀
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

Multiplexer

Multiplexer (MUX)

$$M ux 2 \times 1$$

$$M ux 4 \times 1$$

$$M ux 8 \times 1$$

$$\vdots$$

$$k$$

$$M ux 2 \times 1$$

$$k = 1, 2, 3, \dots$$

Multiplexer

S	Y
0	I_0
1	I_1

$$Y = \overline{S}I_0 + SI_1$$

(De Multiplexer) DEMUX

S_1	S_0	Y
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

$$F = S0' S1' . I0 + S0 S1' . I1 + S0'S1 . I2 + S0 S1 . I3$$

F = S0' S1' . I0 + S0 S1' . I1 + S0'S1 . I2 + S0 S1 . I3

$$k = 1, 2, 3, \dots$$

S	Y ₀	Y ₁
0	0	Ι
1	I	0

$$Y0 = S'I$$

$$Y1 = SI$$

S ₁	S ₀	\mathbf{Y}_3	Y ₂	Y ₁	Y ₀
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

$$Y0 = S0' S1'.I$$

$$Y1 = S0 S1'.I$$

$$Y2 = S0' S1 . I$$

$$Y3 = S0 S1 .I$$

2 to 4 Decoder

The 2-to-4 Line Decoder/Demultiplexer

Decoder

$$D \ e \ c \ 1 \ \times \ 2$$
 $D \ e \ c \ 2 \ \times \ 4$
 $D \ e \ c \ 3 \ \times \ 8$
...
 $D \ e \ c \ n \ \times \ 2 \ n = 1, 2, 3, ...$

1-Input 2-Output Decoder

A	Y0	Y1
0	1	0
1	0	1

Decoder

В	A	Yo	Y 1	Y 2	Y 3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
0	0	0	0	0	1

$$Y0 = A' B'$$

$$Y1 = A B'$$

$$Y2 = A' B$$

$$Y3 = A B$$

A	Y ₀	Y ₁
0	I	0
1	0	Ι

$$Y_1 = A$$
 $Y_0 = \overline{A}$

A	Y ₀	Y ₁
0	I	0
1	0	Ι

$$Y_1 = \overline{A}\overline{B}$$
 $Y_0 = A\overline{B}$
 $Y_2 = \overline{A}B$
 $Y_3 = AB$

В	A	Y ₀	Y ₁	Y ₂	\mathbf{Y}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

C	В	A	$\mathbf{y_0}$	\mathbf{y}_1	$\mathbf{y_2}$	y_3	y_4	y ₅	y ₆	\mathbf{y}_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

С	
0	1
1	2

4-to-16 Decoder using 2-to-4 Decoders

MUX and **DEC** Design

E#1: 4-to-1 Multiplexer using 2-to-1 Multiplexers

E#2: 8-to-1 Multiplexer using 2-to-1 Multiplexers

E#3:16-to-1 Multiplexer using 2-to-1 Multiplexers

E#4:64-to-1 Multiplexer using 2-to-1 Multiplexers

E#5:16-to-1 Multiplexer using 4-to-1 Multiplexers

E#6:32-to-1 Multiplexer using 4-to-1 Multiplexers

E#6:3-to-8 Decoder using 2-to-4 Decoders with Enable

E#7:4-to-16 Decoder using 2-to-4 Decoders with Enable

Implementing logic Function using MUX

$$Y = \sum m(0,1,4,5,8,9,12,13,15) + d(3,10,11)$$

A'								
	I ₀	I ₁	I ₂	I_3	I_4	I ₅	I ₆	I ₇
В	0	0	0	0	1	1	1	1
С	0	0	1	1	0	0	1	1
D	0	1	0	1	0	1	0	1

В	0	1	0	1	0	1	0	1
D	0	0	1	1	0	0	1	1
A	0	0	0	0	1	1	1	1
	I ₀	I ₁	I_2	I_3	I ₄	I ₅	I ₆	I ₇
C'					I ₄			

В	0	1	0	1	0	1	0	1
D	0	0	1	1	0	0	1	1
A	0	0	0	0	1	1	1	1
								I ₇
C'	\bigcirc	$\overline{(4)}$	(1)	5	8	(12)	9	13 15

В	0	1	0	1	0	1	0	1
D	0	0	1	1	0	0	1	1
A	0	0	0	0	1	1	1	1
	I ₀	I ₁	I ₂	I_3	I ₄	I ₅	I ₆	I ₇
C'	I_0	I ₁ 4	1 ₂	$\overline{}$	I ₄		I ₆	I ₇

	$\mathbf{y_0}$	$\mathbf{y_1}$	\mathbf{y}_2	\mathbf{y}_3	\mathbf{y}_4	\mathbf{y}_{5}	\mathbf{y}_6	\mathbf{y}_7
A'	0	(1)	2	S	4	(5)	6	7
A	(8)	9	TR	THE	(12)	13	14	(15)

Thank You