数理统计 week 6

学业辅导中心

极大似然法的直观想法

为介绍极大似然法的想法, 我们可以考虑如下的例子:

离散分布

设 X 是从 $\{0,1,2\}$ 中根据 P_{θ} 取值的单一观测值, 其中 $\theta=\theta_0$ 或

			ш, / \ I	
		x = 0		
$\theta_1, P_{\theta_i}(\{i\})$ 的值由下表给出:	$\theta = \theta_0$	0.8	0.1	0.1
·	$\theta = \theta_1$	0.2	0.3	0.5

如果观测到 X=0, 那么它来自 P_{θ_0} 是非常合理的, 因为 $P_{\theta_0}(\{0\})$ 比 $P_{\theta_1}(\{0\})$ 大得多. 所以我们用 θ_0 估计 θ . 另一方面, 如果 X=1 或 2, 那么它来自 P_{θ_1} 是比较合理的, 尽管这种情况下概率之间的差别不像 X=0 的情况下那么大. 这就建议了下面这个 θ 的估计:

$$T(X) = \begin{cases} \theta_0, & X = 0 \\ \theta_1, & X \neq 0 \end{cases}$$

极大似然法的直观想法

上面的想法可以很容易地推广到 P_{θ} 是离散分布的情况, $\theta \in \Theta \subset \mathcal{R}^k$. 如果观测到 $X = x, \theta_1$ 比 θ_2 更合理当且仅当 $P_{\theta_1}(\{x\}) > P_{\theta_2}(\{x\})$. 我们就用 $\theta \in \Theta$ 上使得 $P_{\theta}(\{x\})$ 最大的 $\hat{\theta}$ 来估计 θ (如果这样的 $\hat{\theta}$ 存在). 用 "合理" 这个词而不是用 "可能" 是因为 θ 是看作非随机的, P_{θ} 并不是指 θ 的分布, 而是关于 θ 的分布.

若 $P_{\theta_1}(\{x\}) > P_{\theta_2}(\{x\})$, 在用 $\{\theta_1, \dots, \theta_m\}$ 上离散均匀分布作先验的 Bayes 方法下, $P_{\theta}(\{x\})$ 与后验概率成比例, 那我们可以说 θ_1 比 θ_2 更可能.

$$P_{\theta_1}(\lbrace x\rbrace) \propto P(\lbrace x\rbrace, \theta = \theta_1), \quad P_{\theta_2}(\lbrace x\rbrace) \propto P(\lbrace x\rbrace, \theta = \theta_2)$$

MLE

极大似然估计

设 $X \in \mathcal{X}$ 是来自关于 σ 有限测度 ν 的 p.d.f. f_{θ} 的一个样本, 其中 $\theta \in \Theta \subset \mathcal{R}^{k}$.

- **①** 对于每个 $x \in \mathcal{X}$, $f_{\theta}(x)$ 作为 θ 的函数称为似然函数, 并记作 $L(\theta)$.
- ② 设 $\bar{\Theta}$ 是 Θ 的闭包. 当 X=x 固定时, 满足 $L(\hat{\theta})=\max_{\theta\in\bar{\Theta}}L(\theta)$ 的 $\hat{\theta}\in\bar{\Theta}$ 称为 θ 的极大似然估计值 (MLE). 如果 $\hat{\theta}$ 是 X 的一个 Borel 函数 a.e. ν , 那么 $\hat{\theta}$ 称为 θ 的极大似然估计量 (MLE).
- ③ 设 g 是从 Θ 到 \mathcal{R}^p 的 Borel 函数, $p \le k$. 如果 $\hat{\theta}$ 是 θ 的一个 MLE, 那 么 $\hat{\theta} = g(\hat{\theta})$ 定义为 $\theta = g(\theta)$ 的一个 MLE.

关于上述定义的注记

为理解上述的定义, 我们省略过多繁琐的证明, 只为理解定义的内容:

• 为什么需要 σ 有限?

定义 $(\sigma$ 有限)

若存在一列 $\{A_i\}_{i=1}^{\infty} \subset \Omega$, 且满足

- $\nu(A_i) < \infty$
- $\bullet \mid A_i = \Omega$

则称 (Ω, \mathcal{F}) 上的测度 ν 是 σ 有限的.

- 概率测度是 σ 有限测度;
- Lebesgue 测度是 σ 有限测度;

Radon-Nikodym 定理

RN

设 ν 和 λ 是 (Ω, \mathcal{F}) 上的两个测度, ν 是 σ 有限的. 如果 $\lambda \ll \nu(\lambda$ 关于 ν 绝对连续), 即

$$\nu(A) = 0$$
能推出 $\lambda(A) = 0$.

则存在 Ω 上的一个非负 Borel 函数 f, 使得

$$\lambda(A) = \int_A f d\nu, \quad A \in \mathcal{F}$$

此外, f 是唯一的 a.e. ν , 即, 如果对于任意 $A \in \mathcal{F}$ 有 $\lambda(A) = \int_A g d\nu$, 那么 f = g a.e. ν .

上面的 f 被称为 RN 导数, 或者 λ 关于 ν 的密度. 对于 $f \ge 0$, 如果 $\int f d\nu = 1$ a.e. ν , 上述 λ 是一个概率测度, f 称为关于 ν 的概率密度函数 (p.d.f.).

MLE

极大似然估计

设 $X \in \mathcal{X}$ 是来自关于 σ 有限测度 ν 的 p.d.f. f_{θ} 的一个样本, 其中 $\theta \in \Theta \subset \mathcal{R}^{k}$.

- **①** 对于每个 $x \in \mathcal{X}$, $f_{\theta}(x)$ 作为 θ 的函数称为似然函数, 并记作 $L(\theta)$.
- ② 设 Θ 是 Θ 的闭包. 当 X = x 固定时, 满足 $L(\hat{\theta}) = \max_{\theta \in \Theta} L(\theta)$ 的 $\hat{\theta} \in \Theta$ 称为 θ 的极大似然估计值 (MLE). 如果 $\hat{\theta}$ 是 X 的一个 Borel 函数 a.e. ν , 那么 $\hat{\theta}$ 称为 θ 的极大似然估计量 (MLE).
- ③ 设 g 是从 Θ 到 \mathcal{R}^p 的 Borel 函数, $p \le k$. 如果 $\hat{\theta}$ 是 θ 的一个 MLE, 那 么 $\hat{\theta} = g(\hat{\theta})$ 定义为 $\theta = g(\theta)$ 的一个 MLE.

为什么取闭包

注意到, MLE 的定义是利用 Θ 而不是 Θ . 这是因为当 Θ 是开集时, $L(\theta)$ 的最大值可能不存在.

事实上,这样的例子非常丰富,

Bernoulli 分布

设 $X_1, ..., X_n$ 是 i.i.d. 的 0 – 1 随机变量, $P(X_1 = 1) = p \in \Theta = (0, 1)$. 当 观测到 $(X_1, ..., X_n) = (x_1, ..., x_n)$ 时, 似然函数是

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{n\bar{x}} (1-p)^{n(1-\bar{x})},$$

其中 $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$. 注意到 $\bar{\Theta} = [0,1], \Theta^{\circ} = \Theta$. 似然方程变成

$$\frac{n\bar{x}}{p}-\frac{n(1-\bar{x})}{1-p}=0.$$

8/30

为什么取闭包

Bernoulli 分布

如果 $0 < \bar{x} < 1$,那么这个方程有唯一解 $\bar{x} \cdot \log L(p)$ 的二阶导数是

$$-\frac{n\bar{x}}{p^2} - \frac{n(1-\bar{x})}{(1-p)^2},$$

它总是负的. 当 p 趋于 0 或 1(Θ 的边界) 时, $L(p) \rightarrow 0$. 因此, \bar{x} 是 p 唯一的 MLE.

根据上面的结论, 当 $\bar{x}=0$ 时, $L(p)=(1-p)^n$ 是 p 的严格递减函数, 因此它唯一的最大值点是 0 . 类似地, 当 $\bar{x}=1$ 时, MLE 是 1 . 与之前的结论相结合, 我们可知 p 的 MLE 是 \bar{x} .

但是, 当 $\bar{x} = 0$ 或 1 时, L(p) 的最大值在 $\Theta = (0,1)$ 上不存在, 尽管 sup L(p) = 1; MLE 在 Θ 外取值, 因此, 不是一个合理的估计. 然而, 如 $p \in (0,1)$

果 $p \in (0,1)$, 当 $n \to \infty$ 时, $\bar{x} = 0$ 或 1 的概率很快趋于 0.

MLE

极大似然估计

设 $X \in \mathcal{X}$ 是来自关于 σ 有限测度 ν 的 p.d.f. f_{θ} 的一个样本, 其中 $\theta \in \Theta \subset \mathcal{R}^{k}$.

- **①** 对于每个 $x \in \mathcal{X}$, $f_{\theta}(x)$ 作为 θ 的函数称为似然函数, 并记作 $L(\theta)$.
- ② 设 Θ 是 Θ 的闭包. 当 X = x 固定时, 满足 $L(\hat{\theta}) = \max_{\theta \in \overline{\Theta}} L(\theta)$ 的 $\hat{\theta} \in \overline{\Theta}$ 称为 θ 的极大似然估计值 (MLE). 如果 $\hat{\theta}$ 是 X 的一个 Borel 函数 a.e. ν , 那么 $\hat{\theta}$ 称为 θ 的极大似然估计量 (MLE).
- ③ 设 g 是从 Θ 到 \mathcal{R}^p 的 Borel 函数, $p \le k$. 如果 $\hat{\theta}$ 是 θ 的一个 MLE, 那 么 $\hat{\theta} = g(\hat{\theta})$ 定义为 $\theta = g(\theta)$ 的一个 MLE.

不变性性质

Invariance Property

设 $\{f_{\theta}: \theta \in \Theta\}$ 是关于 σ 有限测度的一族 p.d.f., 其中 $\Theta \subset \mathcal{R}^{k}$; h 是 Θ 到 $\Lambda \subset \mathcal{R}^{p}$ 的一个 Borel 函数, $1 \leq p \leq k$; 设 $\tilde{L}(\lambda) = \sup_{\theta: h(\theta) = \lambda} L(\theta)$ 是变换过的

参数 λ 的似然函数. 证明, 如果 $\hat{\theta} \in \Theta$ 是 θ 的 MLE, 那么 $\hat{\lambda} = h(\hat{\theta})$ 使 $\tilde{L}(\lambda)$ 达到最大.

证明.

$$\tilde{L}(\lambda) = \sup_{\theta: h(\theta) = \lambda} L(\theta) \le \sup_{\theta \in \Theta} L(\theta) = L(\hat{\theta}) \le \tilde{L}(\hat{\lambda})$$

对上述式子左边的 λ 取值 $\hat{\lambda}$, 于是 $\hat{\lambda} = h(\hat{\theta})$ 是 λ 的极大似然估计.

◆□▶◆圖▶◆臺▶ 臺 ∽Q♡

MLE 的具体求法

如果参数空间 Θ 包含有限多个点, 那么 $\bar{\Theta}=\Theta$ 且 MLE 总是可以通过比较有限多个值 $L(\theta), \theta \in \Theta$, 而得到. 如果 $L(\theta)$ 在 Θ 的内点集 Θ° 上可微, 那么 MLE 可能的 $\theta \in \Theta^\circ$ 值必需满足

$$\frac{\partial L(\theta)}{\partial \theta} = 0,$$

这称为似然方程. 注意到, 满足 (4.50) 的 θ 可能是局部或全局最小、局部或全局最大或者就是简单的稳定点. 另外, 极值可能出现在 Θ 的边界或者当 $\|\theta\| \to \infty$ 时. 此外, 如果 $L(\theta)$ 不总是可微的, 那么极值可能出现在 $L(\theta)$ 的不可微或不连续点上. 因此, 分析整个似然函数来找到其最大值是很重要的.

因为 $\log x$ 是严格递增的,且不失一般性可以假定 $L(\theta)$ 总是正的,故 $\hat{\theta}$ 是 MLE 当且仅当它使得对数似然函数 $\log L(\theta)$ 达到最大值. 通常,处理 $\log L(\theta)$ 以及与 (4.50) 类似的下式 (称为对数似然方程或简称似然方程) 更方便:

$$\frac{\partial \log L(\theta)}{\partial \theta} = 0$$

均匀分布长度的 MLE

例

设 X_1, \ldots, X_n i.i.d. 服从区间 I_{θ} 上的均匀分布, θ 未知. 考虑 $I_{\theta} = (0, \theta)$ 和 $\theta > 0$ 的情况.

似然函数是 $L(\theta) = \theta^{-n}I_{(x_{(n)},\infty)}(\theta)$,它并不总是可微的. 在这个情况下, $\Theta^{\circ} = \left(0,x_{(n)}\right) \cup \left(x_{(n)},\infty\right)$. 但是, 在 $\left(0,x_{(n)}\right)$ 上, $L \equiv 0$; 在 $\left(x_{(n)},\infty\right)$ 上, $L'(\theta) = -n\theta^{n-1} < 0$ 对于所有的 θ 成立. 因此, 似然方程的办法在这个问题不适用. 因为 $L(\theta)$ 在 $\left(x_{(n)},\infty\right)$ 上严格递减, 且在 $\left(0,x_{(n)}\right)$ 上为 0 ,所以 $L(\theta)$ 的唯一最大值点是 $x_{(n)}$,是 $L(\theta)$ 的不连续点. 这说明 θ 的 MLE 是最大次序统计量 $X_{(n)}$.

均匀分布中点的 MLE

例

设 X_1,\ldots,X_n i.i.d. 服从区间 I_{θ} 上的均匀分布, θ 未知. 考虑 $I_{\theta}=\left(\theta-\frac{1}{2},\theta+\frac{1}{2}\right)$ 的情况, $\theta\in\mathcal{R}$.

似然函数是 $L(\theta) = I_{\left(x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2}\right)}(\theta)$. 同样, 似然方程的方法不适用. 然而, 从定义可知, 任意满足 $x_{(n)} - \frac{1}{2} \le T(x) \le x_{(1)} + \frac{1}{2}$ 的统计量 T(X) 是 θ 的 MLE. 这个例子说明 MLE 可能不是唯一的, 也可能是不合理的.

例题

练习

令 $X = (X_1, \dots, X_n)$ 来源于密度 f_θ 的简单随机样本, 求下面 f_θ 中 θ 的极大似然估计.

- ② $f_{\theta}(x) = \theta^{x}(1-\theta)^{1-x}I_{\{0,1\}}(x), \theta \in \left[\frac{1}{2}, \frac{3}{4}\right].$
- **4** $f_{\theta}(x) = \begin{pmatrix} \theta \\ x \end{pmatrix} p^{x} (1-p)^{\theta-x} I_{\{0,1,...,\theta\}}(x), \theta = 1,2,...,$ 这里 p 是已知的.

第一题

似然函数,

$$L(\theta) = \theta^{n} \prod_{i=1}^{n} (1 - X_{i})^{\theta-1} I_{(0,1)}(X_{i})$$

以及

$$\frac{\partial \log L(\theta)}{\partial \theta} = \frac{n}{\theta} + \sum_{i=1}^{n} \log \left(1 - X_{i}\right) \quad , \quad \frac{\partial^{2} \log L(\theta)}{\partial \theta^{2}} = -\frac{n}{\theta^{2}} < 0$$

因此似然方程

$$\frac{\partial \log L(\theta)}{\partial \theta} = 0$$

有唯一解 $\hat{\theta} = -n/\sum_{i=1}^{n} \log (1 - X_i)$

当 $\hat{\theta} > 1$ 时, $\hat{\theta}$ 最大化似然函数, 当 $\hat{\theta} \le 1$ 时, $L(\theta)$ 在 (0,1) 上单调减. 综上 MLE 是 $\max\{1, \hat{\theta}\}$.

第二题

似然函数,

$$L(\theta) = \theta^{\sum_{i=1}^{n} X_i} (1 - \theta)^{n - \sum_{i=1}^{n} X_i} I_{(0,1)} (X_1, \dots, X_n)$$

以及

$$\frac{\partial \log L(\theta)}{\partial \theta} = \frac{n\bar{X}}{\theta} - \frac{n - n\bar{X}}{1 - \theta}$$

类似前面的讨论,

$$\hat{\theta} = \begin{cases} \frac{1}{2} & \text{if } \bar{X} \in \left[0, \frac{1}{2}\right) \\ \bar{X} & \text{if } \bar{X} \in \left[\frac{1}{2}, \frac{3}{4}\right) \\ \frac{3}{4} & \text{if } \bar{X} \in \left(\frac{3}{4}, 1\right) \end{cases}$$

第三题

适当做变换, 令 $Y_i = \log X_i$, 于是

$$L(\theta) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \mu)^2 - \sum_{i=1}^n Y_i\right\}$$

求解似然方程得到 μ 的极大似然估计,

$$\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$$

 σ^2 的极大似然估计 (要带入 $\mu = \bar{Y}$),

$$n^{-1}\sum_{i=1}^n \left(Y_i - \bar{Y}\right)^2$$

第四题

似然函数是

$$L(\theta) = \prod_{i=1}^n \binom{\theta}{X_i} p^T (1-p)^{n\theta-T} I_{\{X_{(n)},X_{(n)}+1,\ldots\}}(\theta).$$

其中 $T = \sum_{i=1}^{n} X_i$, 现在对上述的离散的似然函数考察

$$\frac{L(\theta+1)}{L(\theta)} = (1-p)^n \prod_{i=1}^n \frac{\theta+1}{\theta+1-X_i}$$

由于 $(\theta + 1)/(\theta + 1 - X_i)$ 关于 θ 是递减的, 于是 $\frac{L(\theta + 1)}{L(\theta)}$ 关于 θ 是递减的, 再根据

$$\lim_{\theta\to\infty} L(\theta+1)/L(\theta) = (1-p)^n < 1$$

因此,MLE 是

$$\max\left\{\theta:\theta\geq X_{(n)},L(\theta+1)/L(\theta)\geq 1,\theta\in\mathbb{N}\right\}$$

学业辅导中心 数理统计 week 6 19/30

MLE 的数值计算

在应用中,多数情形下 MLE 没有解析形式,不得不用一些数值方法来计算 MLE. 普遍运用的数值方法是 Newton-Raphson 迭代法,就是重复计算

$$\hat{\theta}^{(t+1)} = \hat{\theta}^{(t)} - \left[\left. \frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta^{\mathsf{T}}} \right|_{\theta = \hat{\theta}^{(t)}} \right]^{-1} \left. \frac{\partial \log L(\theta)}{\partial \theta} \right|_{\theta = \hat{\theta}^{(t)}},$$

 $t=0,1,\ldots$, 其中 $\hat{\theta}^{(0)}$ 是初始值, $\partial^2 \log L(\theta)/\partial\theta\partial\theta^{\mathsf{T}}$ 对于每个 $\theta\in\Theta$ 假定满秩. 在每次迭代中,如果我们用其期望值 $E\left[\partial^2 \log L(\theta)/\partial\theta\partial\theta^{\mathsf{T}}\right]$ 代替上式中的 $\partial^2 \log L(\theta)/\partial\theta\partial\theta^{\mathsf{T}}$, 其中期望是关于 P_θ 的,那么这个方法就是 Fisher-scoring (得分) 法. 如果迭代收玫,那么 $\hat{\theta}^{(\infty)}$ 或 t 充分大时的 $\hat{\theta}^{(t)}$ 是 似然方程解的数值近似.

比较两个迭代法

考察正态分布

$$\log L(\theta) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi).$$

梯度

$$\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0 \quad \text{ fil } \quad \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{\sigma^2} = 0.$$

Hessian

$$\frac{\partial^2 \log L(\theta)}{\partial \theta \partial \theta^{\top}} = - \left(\begin{array}{cc} \frac{n}{\sigma^2} & \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu) \\ \frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu) & \frac{1}{\sigma^6} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{2\sigma^4} \end{array} \right)$$

比较两个迭代法

EM 算法: 背景

EM 算法最初用于缺失数据模型参数估计,现在已经用在许多优化问题中。设模型中包含 \mathbf{X}_{obs} 和 \mathbf{X}_{mis} 两个随机成分,有联合密度函数或概率函数 $f(\mathbf{x}_{obs},\mathbf{x}_{mis}\mid\boldsymbol{\theta})$, $\boldsymbol{\theta}$ 为末知参数。称 $f(\mathbf{x}_{obs},\mathbf{x}_{mis}\mid\boldsymbol{\theta})$ 为完全数据的密度,一般具有简单的形式。实际上我们只有 \mathbf{X}_{obs} 的观测数据 $\mathbf{X}_{obs}=\mathbf{x}_{obs}\mathbf{X}_{mis}$ 不能观测得到,这一部分可能是缺失观测数据,也可能是潜在影响因素。所以实际的似然函数为

$$L(\theta) = f(\mathbf{x}_{\text{obs}} \mid \theta) = \int f(\mathbf{x}_{\text{obs}}, \mathbf{x}_{\text{mis}} \mid \theta) d\mathbf{x}_{\text{mis}},$$

这个似然函数通常比完全数据的似然函数复杂得多,所以很难直接从 $L(\theta)$ 求最大似然估计。

学业辅导中心 数理统计 week 6

EM 算法

EM 算法的想法是,已经有了参数的近似估计值 $\theta^{(t)}$ 后,假设 $(\mathbf{X}_{\text{obs}}, \mathbf{X}_{\text{mis}})$ 近似服从完全密度 $f(\mathbf{x}_{\text{obs}}, \mathbf{x}_{\text{mis}} | \theta^{(t)})$, 这里 $\mathbf{X}_{\text{obs}} = \mathbf{x}_{\text{obs}}$ 已知,所以认为 \mathbf{X}_{mis} 近似服从由 $f(\mathbf{x}_{\text{obs}}, \mathbf{x}_{\text{mis}} | \theta^{(t)})$ 导出的条件分布

$$f(\mathbf{x}_{\text{mis}} \mid \mathbf{x}_{\text{obs}}, \boldsymbol{\theta}^{(t)}) = \frac{f(\mathbf{x}_{\text{obs}}, \mathbf{x}_{\text{mis}} \mid \boldsymbol{\theta}^{(t)})}{f(\mathbf{x}_{\text{obs}} \mid \boldsymbol{\theta}^{(t)})},$$

其中 $f\left(\mathbf{x}_{\text{obs}} \mid \boldsymbol{\theta}^{(t)}\right)$ 是由 $f\left(\mathbf{x}_{\text{obs}}, \mathbf{x}_{\text{mis}} \mid \boldsymbol{\theta}^{(t)}\right)$ 决定的边缘密度。据此近似条件分布,在完全数据对数似然函数 $\log f\left(\mathbf{X}_{\text{obs}}, \mathbf{X}_{\text{mis}} \mid \boldsymbol{\theta}\right)$ 中,把 $\mathbf{X}_{\text{obs}} = \mathbf{x}_{\text{obs}}$ 看成已知,关于未知部分 \mathbf{X}_{mis} 按密度 $f\left(\mathbf{x}_{\text{mis}} \mid \mathbf{x}_{\text{obs}}, \boldsymbol{\theta}^{(t)}\right)$ 求期望,得到 $\boldsymbol{\theta}$ 的函数 $Q_t(\boldsymbol{\theta})$,再求 $Q_t(\boldsymbol{\theta})$ 的最大值点作为下一个 $\boldsymbol{\theta}^{(t+1)}$ 。

4□▶ 4₫▶ 4½▶ 4½▶ ½ 900

EM 算法

EM 算法每次迭代有如下的 E 步 (期望步) 和 M 步 (最大化步):

- E 步: 计算完全数据对数似然函数的期望 (Q 函数) $Q_t(\theta) = E\{\log f(\mathbf{x}_{obs}, \mathbf{X}_{mis} \mid \theta)\},$ 其中期望针对随机变量 \mathbf{X}_{mis} ,求期望时假定 \mathbf{X}_{mis} 服从条件密度 $f(\mathbf{x}_{mis} \mid \mathbf{x}_{obs}, \theta^{(t)})$ 决定的分布。
- M 步: 求 $Q_t(\theta)$ 的最大值点,记为 $\theta^{(t+1)}$,迭代进入下一步。

EM 算法的有效性

EM 算法得到的估计序列 $heta^{(t)}$ 使得似然函数值 $L\left(heta^{(t)}
ight)$ 单调不减。

EM 算法的注记

在适当正则性条件下,EM 算法的迭代序列 $\theta^{(t)}$ 依概率收敛到 $L(\theta)$ 的最大值点 $\hat{\theta}$ 。但是,上述定理仅保证 EM 算法最终能收敛,但不能保证 EM 算法会收敛到似然函数的全局最大值点,算法也可能收敛到局部极大值点或者鞍点。

在实际问题中,往往 E 步和 M 步都比较简单,有时 E 步和 M 步都有解析表达式,这时 EM 算法实现很简单。EM 算法优点是计算稳定,可以保持原有的参数约束,缺点是收敛可能很慢,尤其是接近最大值点时可能收敛更慢。如果似然函数不是凸函数,算法可能收敛不到全局最大值点,遇到这样的问题可以多取不同初值比较,用矩估计等合适的近似值作为初值。

混合分布

EM 算法可以用来估计混合分布的参数。设随机变量 $Y_1 \sim N(\mu_1, \delta_1)$, $Y_2 \sim N(\mu_2, \delta_2)$, Y_1 , Y_2 独立。记 $N(\mu, \delta)$ 的密度为 $f(x \mid \mu, \delta)$ 。设随机变量 $W \sim b(1, \lambda)$, $0 < \lambda < 1$, W 与 Y_1 , Y_2 独立,令

$$X=(1-W)Y_1+WY_2,$$

则 W = 0 条件下 $X \sim N(\mu_1, \delta_1)$, W = 1 条件下 $X \sim N(\mu_2, \delta_2)$, 但 X 的边缘密度为

$$f(x \mid \theta) = (1 - \lambda)f(x \mid \mu_1, \delta_1) + \lambda f(x \mid \mu_2, \delta_2),$$

其中 $\theta = (\mu_1, \delta_1, \mu_2, \delta_2, \lambda)$ 。

学业辅导中心

混合分布

设 X 有样本 $X = (X_1, ..., X_n)$,样本值为 X ,实际观测数据的似然函数为

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f(x_i \mid \boldsymbol{\theta})$$

这个函数是光滑函数但是形状很复杂,直接求极值很容易停留在局部极值点。用 EM 算法,以 $\mathbf{W} = (W_1, \dots, W_n)$ 为没有观测到的部分,完全数据的似然函数和对数似然函数为

$$\begin{split} \tilde{L}(\boldsymbol{\theta} \mid \boldsymbol{x}, \boldsymbol{W}) &= \prod_{W_i = 0} f(x_i \mid \mu_1, \delta_1) \prod_{W_i = 1} f(x_i \mid \mu_2, \delta_2) \lambda^{\sum_{i=1}^n W_i} (1 - \lambda)^{n - \sum_{i=1}^n W_i}, \\ \tilde{I}(\boldsymbol{\theta} \mid \boldsymbol{x}, \boldsymbol{W}) &= \sum_{i=1}^n \left[(1 - W_i) \log f(x_i \mid \mu_1, \delta_1) + W_i \log f(x_i \mid \mu_2, \delta_2) \right] \\ &+ \left(\sum_{i=1}^n W_i \right) \log \lambda + \left(n - \sum_{i=1}^n W_i \right) \log (1 - \lambda). \end{split}$$

混合分布:E step

在 E 步,设已有 θ 的近似值 $\theta^{(t)} = \left(\mu_1^{(t)}, \delta_1^{(t)}, \mu_2^{(t)}, \delta_2^{(t)}, \lambda^{(t)}\right)$,以 $\theta^{(t)}$ 为分布参数,在 $\mathbf{X} = \mathbf{x}$ 条件下, W_i 的条件分布为

$$\begin{split} \gamma_{i}^{(t)} &\triangleq P\left(W_{i} = 1 \mid \boldsymbol{x}, \boldsymbol{\theta}^{(t)}\right) = P\left(W_{i} = 1 \mid X_{i} = x_{i}, \boldsymbol{\theta}^{(t)}\right) \\ &= \frac{\lambda^{(t)} f\left(x_{i} \mid \mu_{2}^{(t)}, \delta_{2}^{(t)}\right)}{\left(1 - \lambda^{(t)}\right) f\left(x_{i} \mid \mu_{1}^{(t)}, \delta_{1}^{(t)}\right) + \lambda^{(t)} f\left(x_{i} \mid \mu_{2}^{(t)}, \delta_{2}^{(t)}\right)}. \end{split}$$

这里的推导类似于逆概率公式。利用 W_i 的条件分布求完全数据对数似然的期望,得

$$Q_t(\theta) = \sum_{i=1}^n \left[\left(1 - \gamma_i^{(t)} \right) \log f\left(x_i \mid \mu_1, \delta_1 \right) + \gamma_i^{(t)} \log f\left(x_i \mid \mu_2, \delta_2 \right) \right]$$

$$+ \left(\sum_{i=1}^n \gamma_i^{(t)} \right) \log \lambda + \left(n - \sum_{i=1}^n \gamma_i^{(t)} \right) \log (1 - \lambda)$$

令 $\nabla Q_t(\theta) = \mathbf{0}$, 求得 $Q_t(\theta)$ 的最大值点 $\theta^{(t+1)}$ 为

$$\begin{cases} \mu_1^{(t+1)} = \frac{\sum_{i=1}^n \left(1 - \gamma_i^{(t)}\right) x_i}{\sum_{i=1}^n \left(1 - \gamma_i^{(t)}\right)} \\ \delta_1^{(t+1)} = \frac{\sum_{i=1}^n \left(1 - \gamma_i^{(t)}\right) \left(x_i - \mu_1^{(t+1)}\right)^2}{\sum_{i=1}^n \left(1 - \gamma_i^{(t)}\right)} \\ \mu_2^{(t+1)} = \frac{\sum_{i=1}^n \gamma_i^{(t)} x_i}{\sum_{i=1}^n \gamma_i^{(t)}} \\ \delta_2^{(t+1)} = \frac{\sum_{i=1}^n \gamma_i^{(t)} \left(x_i - \mu_2^{(t+1)}\right)^2}{\sum_{i=1}^n \gamma_i^{(t)}} \\ \lambda^{(t+1)} = \frac{1}{n} \sum_{i=1}^n \gamma_i^{(t)} \end{cases}$$