Licence 1 – Algèbre linéaire

R. Abdellatif

TD 1 – Applications linéaires, éléments caractéristiques

I) Généralités sur les applications linéaires : noyau, image et rang

Exercice 1. —

Dans chacun des cas suivants, déterminer si f est une application \mathbb{K} -linéaire.

- 1. $\mathbb{K} = \mathbb{C}$ et $f: (x,y) \in \mathbb{C}^2 \mapsto (xy, y) \in \mathbb{C}^2$;
- 2. $\mathbb{K} = \mathbb{R}$ et $f: (x, y, z) \in \mathbb{R}^3 \mapsto (x + y, y + z, z + x) \in \mathbb{R}^3$;
- 3. $\mathbb{K} = \mathbb{R} \text{ et } f: (x, y) \in \mathbb{R}^2 \mapsto (2x + 1, x y) \in \mathbb{R}^2;$
- 4. $\mathbb{K} = \mathbb{R} \text{ et } f: (x, y) \in \mathbb{R}^2 \mapsto (|x|, y, 0) \in \mathbb{R}^3;$
- 5. $\mathbb{K} = \mathbb{R}$ et $f : \phi \in \mathcal{C}^1 \mapsto \phi' \in \mathcal{C}^0$, où \mathcal{C}^1 (resp. \mathcal{C}^0) est le \mathbb{R} -espace vectoriel des fonctions réelles et continuement dérivables (resp. continues);
- 6. $\mathbb{K} = \mathbb{R}$ et $f : \phi \in \mathcal{C}^0([-1,1],\mathbb{R}) \mapsto \int_{-1}^1 \phi(t) dt \in \mathbb{R}$, où $\mathcal{C}^0([-1,1],\mathbb{R})$ est le \mathbb{R} -espace vectoriel des fonctions réelles définies et continues sur [-1,1].

Exercice 2. —

Déterminer une base de l'image et une base du noyau des applications R-linéaires suivantes :

- 1. $f:(x,y) \in \mathbb{R}^2 \mapsto (x-y,y-x,0) \in \mathbb{R}^3$;
- 2. $g:(x,y,z) \in \mathbb{R}^3 \mapsto (x-y,y-z,z-x) \in \mathbb{R}^3$;
- 3. $h: P(X) \in \mathbb{R}_3[X] \mapsto P(X) (X+1)P'(X) \in \mathbb{R}_3[X]$.

(On rappelle que $\mathbb{R}_3[X]$ désigne le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3.)

Exercice 3. —

Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'application \mathbb{R} -linéaire définie par :

$$f(1,0,0) = (1,0), f(0,1,0) = (1,1) \text{ et } f(0,0,1) = (0,1).$$

- 1. Déterminer la valeur de f(x, y, z) pour tout $(x, y, z) \in \mathbb{R}^3$.
- 2. Déterminer une famille génératrice de Im(f).
- 3. En déduire la dimension de Im(f), puis celle de Ker(f).

Exercice 4. —

On considere l'application $f: P(X) \in \mathbb{R}_3[X] \mapsto (P(0), P(1)) \in \mathbb{R}^2$.

- 1. Vérifier que f est une application \mathbb{R} -linéaire.
- 2. Déterminer Ker(f). L'application f est-elle injective?
- 3. Déterminer le rang de f. L'application f est-elle surjective?
- 4. Montrer que l'on a une décomposition en somme directe de la forme

$$\mathbb{R}_3[X] = \operatorname{Ker}(f) \oplus \mathbb{R}_1[X]$$
.

Licence 1 – Algèbre linéaire

R. Abdellatif

TD 1 – Applications linéaires, éléments caractéristiques

II) Un cas particulier important : les endomorphismes d'un espace vectoriel

Exercice 5. —

Etant donné un paramètre réel m, on définit l'application $f_m: \mathbb{R}^3 \to \mathbb{R}^3$ par :

$$\forall (x, y, z) \in \mathbb{R}^3, f_m((x, y, z)) = (x + y + z, mx + y + (m - 1)z, x + my + z) .$$

- 1. Vérifier que f_m est une application \mathbb{R} -linéaire.
- 2. Déterminer, selon la valeur de m, le noyau et l'image de f_m .
- 3. Pour quelles valeurs de m l'application f_m est-elle un isomorphisme?
- 4. Notons (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . Déterminer les valeurs de m pour lesquelles $(f_m(e_1), f_m(e_2), f_m(e_3))$ est une base de \mathbb{R}^3 .

Exercice 6. —

Soit E un \mathbb{R} -espace vectoriel de dimension 4 dont on fixe une base (e_1, e_2, e_3, e_4) . Soit $u \in \mathcal{L}(E)$ l'endomorphisme de E défini par

$$\begin{cases} u(e_1) = -e_2 + e_3 - e_4 \\ u(e_2) = e_1 - e_2 + e_3 \\ u(e_3) = e_1 + e_4 \\ u(e_4) = e_2 - e_3 + e_4 \end{cases}$$

- 1. Que vaut l'endomorphisme $u^2 := u \circ u$?
- 2. En déduire que Im(u) est un sous-espace vectoriel de Ker(u).
- 3. Déterminer Ker(u), puis en déduire que Im(u) = Ker(u).

Exercice 7. —

Donner un exemple d'endomorphisme $u \in \mathcal{L}(\mathbb{R}^3)$ vérifiant les deux conditions suivantes :

- $\star \text{ Im}(u)$ est engendré par $v_1 = (1, 2, 0)$ et $v_2 = (1, 1, -1)$;
- * Ker(u) est engendré par $v_3 = (1, -1, 0)$.

Exercice 8. —

Soient E un \mathbb{R} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et u un endomorphisme de E. Pour tout entier $k \geq 1$, on définit u^k par

$$u^k = u \circ u \circ \dots \circ u \ (k \text{ fois}) \ .$$

On suppose que u est nilpotent d'ordre p, i.e. que p est le plus petit entier naturel tel que $u^p = 0$.

- 1. Montrer qu'il existe $x \in E$ tel que la famille $\{u^k(x), 0 \le k \le p-1\}$ est une famille libre.
- 2. En déduire que l'on a forcément $p \leq n$, i.e. que l'on a $u^n = 0$.

Licence 1 – Algèbre linéaire

R. Abdellatif

TD 1 – Applications linéaires, éléments caractéristiques

Exercice 9. —

Soient E un espace vectoriel et $f \in (E)$ un endomorphisme de E.

Démontrer que Ker(f), $Ker(f - Id_E)$ et $Ker(f + Id_E)$ sont tous trois en somme directe.

Exercice 10. —

Soit E un espace vectoriel réel de dimension 3 dont on fixe une base $\{e_1, e_2, e_3\}$. Soit $f \in \mathcal{L}(E)$ l'endomorphisme de E défini par

$$f(e_1) = e_2, \ f(e_2) = e_3 \ \text{et} \ f(e_3) = e_1.$$

- 1. Calculer f(x) pour tout élément x de E.
- 2. Vérifier que l'on a $f^3 = \mathrm{Id}_E$.
- 3. On pose $V = \text{Ker}(f \text{Id}_E)$ et $W = \text{Ker}(f^2 + f + \text{Id}_E)$.
 - (a) Déterminer une base de V et une base de W.
 - (b) Démontrer que l'on a $E = V \oplus W$.
 - (c) Démontrer que l'on a f(V) = V et f(W) = W.

III) Compléments sur les applications linéaires en général

Exercice 11. —

Soient E, F et G des espaces vectoriels sur \mathbb{K} .

Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$ des applications linéaires.

1. Montrer que $g \circ f = 0$ ssi Im(f) est un sous-espace de Ker(g).

On suppose maintenant que E = F = G.

- 2. Démontrer que si f et g commutent (i.e. si $f \circ g = g \circ f$), alors on a $f(\operatorname{Ker}(g)) \subset \operatorname{Ker}(g)$ et $f(\operatorname{Im}(g)) \subset \operatorname{Im}(g)$.
- 3. Montrer que l'assertion réciproque est vraie si g est un projecteur.

Exercice 12. —

Soit E un espace vectoriel de dimension finie sur \mathbb{K} . Etant donné $f \in \mathcal{L}(E)$, démontrer l'équivalence des assertions suivantes.

- (a) $\operatorname{Ker}(f) = \operatorname{Ker}(f^2)$;
- (b) $\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0_E\};$
- (c) $\operatorname{Im}(f) \oplus \operatorname{Ker}(f) = E$;
- (d) $\operatorname{Im}(f) = \operatorname{Im}(f^2)$.