Quiz: Linear Models

General questions:

- 1) For any deterministic $\mu \in \mathbb{R}^p$ and any random variable $X \in \mathbb{R}^p$ express $Cov(X + \mu)$.
- 2) What is the orthogonal projection of a vector $\mathbf{y} \in \mathbb{R}^n$ over $\text{Vect}(1_n)$, where $1_n = (1, \dots, 1)^\top \in \mathbb{R}^n$?
- 3) For any matrix $A \in \mathbb{R}^{m \times p}$ and any random vector $X \in \mathbb{R}^p$, express Cov(AX).
- 4) Let $V_n = \frac{1}{n} \sum_{i=1}^n (y_i \overline{y}_n)^2$ (\overline{y}_n is the empirical mean). Compute $\mathbb{E}(V_n) \sigma^2$ when the y_i 's are i.i.d centered Gaussian variables with variance σ^2 ?
- 5) Let y_1, \ldots, y_n be random Gaussian variables i.i.d., centered with variance σ^2 . What is the quadratic risk of $\frac{1}{n} \sum_{i=1}^{n} (y_i \overline{y}_n)^2$ as an estimator of σ^2 (\overline{y}_n is the empirical mean)?
- 6) What are the vectors $\mathbf{y} \in \mathbb{R}^n$ such that $\operatorname{var}_n(\mathbf{y}) = 0$, where $\operatorname{var}_n(\mathbf{y}) = \frac{1}{n} \sum_{i=1}^n (y_i \overline{y}_n)^2$ is the empirical variance?
- 7) What is the solution of $\begin{cases} \max_{u \in \mathbb{R}^n, v \in \mathbb{R}^p} u^\top X v \\ \text{s.c. } ||u||_2^2 = 1 \text{ et } ||v||_2^2 = 1 \end{cases}$?

Ordinary Least-squares: we write $\mathbf{y} = (y_1, \dots, y_n)^{\top} \in \mathbb{R}^n$ and $X \in \mathbb{R}^{n \times p}$, and

$$\hat{\boldsymbol{\theta}}_n \in \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 . \tag{1}$$

8) Let y_1, \ldots, y_n and x_1, \ldots, x_n be real numbers. Is the following function convex or concave?

$$\mathbb{R}^2 \to \mathbb{R}$$

$$(\theta_0, \theta_1) \mapsto \frac{1}{2} \sum_{i=1}^n (y_i + 3\theta_0 - \theta_1 x_i)^2$$
.

- 9) Write a pseudo-code to perform the gradient descent algorithm for solving the least squares problem given in Eq. (1) (with input X, \mathbf{y} and α being the step size).
- 10) For any $X \in \mathbb{R}^{n \times p}$ express $\text{Ker}(X^{\top}X)$ in terms of Ker(X).
- 11) Let $X \in \mathbb{R}^{n \times n}$ satisfies $X^{\top}X = \mathrm{Id}_n$ (Id_n being the identity matrix). Can you provide a closed-form solution for the least squares and show it is unique?

- 12) Let $X \in \mathbb{R}^{n \times p}$ be a full (column) rank matrix. What is the covariance (matrix) of the least squares estimator (assuming that the noise model is as follows: $\varepsilon = \mathbf{y} X\boldsymbol{\theta}^{\star}$ is a centered random vector with covariance matrix $\sigma^2 \mathrm{Id}_n$).
- 13) Express the pseudo inverse of X thanks to its SVD : $X = \sum_{i=1}^{r} s_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$, with $r = \operatorname{rg}(X)$ and $s_1 \ge \cdots \ge s_r > 0$.
- 14) Give an explicit solution of the following problem:

$$\arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{2} (\mathbf{y} - X\boldsymbol{\theta})^{\top} \Omega(\mathbf{y} - X\boldsymbol{\theta}) ,$$

for positive-definite matrix $\Omega = \operatorname{diag}(w_1, \ldots, w_n)$, in the case where X is full (column) rank.

Tests and CI:

- 15) For X_1, \ldots, X_n i.i.d. with values in $\{0,1\}$, propose a procedure to test the hypothesis $p = P(X_1 = 1) = 1/2$.
- 16) In the regression model, assuming that X is deterministic and that $\varepsilon = \mathbf{y} X\boldsymbol{\theta}^*$ is a Gaussian, centered, with covariance matrix $\sigma^2 \mathrm{Id}_n$ where σ^2 is known, what is the distribution of $\hat{\boldsymbol{\theta}}_n$ (one could assume that X is full column rank here). Based on this, provide a confidence interval for $(1,\ldots,1)\hat{\boldsymbol{\theta}}_n$.
- 17) Let X_1, \ldots, X_n be i.i.d Gaussian variables with (unknown) mean μ and known variance σ^2 , i.e., for all $i = 1, \ldots, n$, $X_i \sim \mathcal{N}(\mu, \sigma^2)$. Propose a way to test the hypothesis $\mu = 1$.

Ridge: For any $\lambda > 0$,

$$\hat{\boldsymbol{\theta}}^{\text{Ridge},\lambda} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{2n} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2.$$

- 18) Give a closed-form solution for the ridge estimator $\hat{\boldsymbol{\theta}}^{\text{Ridge},\lambda}$ w.r.t. X, \mathbf{y} and λ .
- 19) Give a closed-form solution for the ridge estimator $\hat{\boldsymbol{\theta}}^{\text{Ridge},\lambda}$ w.r.t. \mathbf{y} and λ when $X = \text{Id}_n$ (here n = p).
- 20) Assuming that the noise model is as follows: $\varepsilon = \mathbf{y} X\boldsymbol{\theta}^{\star}$ is a centered random vector with covariance matrix $\sigma^2 \mathrm{Id}_n$. What is the covariance matrix of the Ridge estimator $\hat{\boldsymbol{\theta}}^{\mathrm{Ridge},\lambda}$?

21) For any matrix $D \in \mathbb{R}^{q \times p}$ satisfying $Ker(D) = \{0\}$, give a closed-form solution of the following problem

$$\hat{\boldsymbol{\theta}}^{D,\lambda} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda \|D\boldsymbol{\theta}\|_2^2 \ .$$

LASSO:

- 22) Give a closed-form solution of $\eta_{\lambda,n}(z) = \arg\min_{x \in \mathbb{R}} x \mapsto \frac{1}{2n} (z-x)^2 + \lambda |x|$ w.r.t. z, $\operatorname{sign}(z)$ and the positive part function $(\cdot)_+$.
- 23) What is the sub-differential of the real function $x \mapsto \max(-2x, 0)$?
- 24) For a fixed $y \in \mathbb{R}$, and $\lambda, \alpha > 0$ provide a close form solution for solving the 1D Elastic Net problem :

$$\hat{\theta}^{\text{ENET},\lambda,\alpha} = \arg\min_{\theta \in \mathbb{R}} \left[\frac{1}{2} (y-\theta)^2 + \lambda \left(\alpha |\theta| + (1-\alpha) \frac{\theta^2}{2} \right) \right] \ .$$

25) Let us assume one has a Lasso solver Lasso (X, \mathbf{y}, λ) that solves the following problem

$$\hat{\boldsymbol{\theta}}^{\text{Lasso},\lambda} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{2n} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda \|\boldsymbol{\theta}\|_1.$$

What transformation on X can you perform to solve the following problem with positive w_1, \ldots, w_p :

$$\hat{\boldsymbol{\theta}}^{\text{Lasson},\lambda} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda \sum_{j=1}^p w_j |\theta_j| .$$