

# Domotique

Projet de programmation OO

Groupe 9
Vassili Cruchet
Jordan Metz



# Cahier des charges

- Simulation simple de gestion de phénomènes:
  - température d'une pièce
  - pH d'un milieu
- Enregistrement des données et post-traitement graphique avec gnuplot



# Architecture de l'application





#### Architecture de classes





# Organisation des processus



new Serveur

new Processus

Processus->init()

Simulateur->set\_process()

Serveur ajouté à la fin

Vecteur de processus

Phénomène

Control

Etat

• • •

Serveur



# Création des processus

```
XML:
           3 <!-- Description du paysage de simulation -->
           4⊖ <application >
                 <paysage >
                     <zone nom="Chambre" ID="0">
                        <phenomene nom="temperature_externe" mode="sinus" >
           7⊖
                            <parametres offset="10" amplitude="5" phase = "0" period="1440"/>
                        </phenomene>
                        <control nom="ctrl_temp" mode="on_off" >[]
         10⊕
                        <etat nom="etat_chambre" etat_initial="20" Iphen="0.1" Ictrl="0.05" />
         13
         14
                     </zone>
                        <zone nom="Aquarium" ID="1">[]
         15⊕
                 </paysage>
         24
                 <simulation nb_tic="2880"/>
         25
         26 </application>
Parser.cpp:
         if(strcmp(phenomene->Attribute("mode"),"sinus")==0) {
            TiXmlElement* parametres = phenomene->FirstChild("parametres")->ToElement();
            double offset =
                              get attr dbl(parametres, "offset", false, 0);
            double ampl =
                              get attr dbl(parametres, "amplitude", true);
                             get attr dbl(parametres, "sat max", false, std::numeric limits<double>::infinity());
            double sat max =
                              get attr dbl(parametres, "sat min", false, -std::numeric limits<double>::infinity());
            double sat min =
                              get attr int(parametres,"phase", false, 0);
            long int phase =
                              get_attr_int(parametres,"period", true);
            long int period =
            phen = new Phenomene_sinus(nom_phen, ampl, period, sat_max, sat_min, offset, phase);
            simulateur->set process(phen);
         phen->init(etat)
```

**(Pfl** 

### Simulation





### Serveur et résultats



#### Fichier data\_serveur.dat

| # Ordre: tic |         | VALPHEN VALCTRL |        | ETAT COURANT |       |       |
|--------------|---------|-----------------|--------|--------------|-------|-------|
| 0            | 0.161   | 5               | 20     | 1.0163       | 7     | 7     |
| 1            | 2.406   | 40              | 16.516 | 0.6862       | 9.393 | 6.401 |
| 2            | 4.805   | 40              | 17.453 | 0.7816       | 9.286 | 6.428 |
| 3            | 7.075   | 40              | 18.443 | 6.9326       | 9.258 | 6.435 |
|              |         |                 |        |              |       |       |
|              |         |                 |        |              |       |       |
|              | Chambre |                 |        | Aquarium     |       |       |



#### Post-traitement





#### Bilan

- Avantages de la POO
- Egit / Github
- Gnuplot / Doxygene
- Phase n°1 re-conceptualisée
- Bonne coopération