Course contents

Design with Hardware Description Language: Structural and behavioural Verilog

Combinational logic circuits

Encoder, decoder, multiplexer

Sequential logic circuits

Counter, register, finite state machine

Digital circuits				Flip-flops	
Number systems and codes	Logic gates	Boolean algebra	Digita arithme		Boolean expression simplification

Summary on

Introduction, Number systems & Codes

Key concepts

- 1. Digital vs Analog
- 2. Serial vs Parallel
- 3. Number bases: 2, 8, 10, 16
- 4. Codes: BCD, ASCII, Gray
- 5. Parity method for error detection

Analog / digital

http://www.technodabbler.com/analog-music-in-a-digital-world/

Digital vs Analog – an illustration

https://www.youtube.com/watch?v=XCu6L4kQF3k

Digital vs Analog (cont)

Contrast with purely analog

https://www.youtube.com/watch?v=XCu6L4kQF3k

Serial vs Parallel data transmission

https://www.youtube.com/watch?v=cBZUckBCy-U

Parallel data interface example

Traditional Printer port

By Duncan Lithgow - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=807306

By AndrewBuck - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=2565019

FO - 8

Serial data interface examples

RS232

Firewire

Ethernet

USB

By Simon Eugster – Simon / ?! 19:02, 7 January 2008 (UTC) - Own painting/graphic, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=3353998

FO - 9

Which number below has the largest value?

A. 24₈

B. 20₁₆

C. 22₁₀

Number Bases: 2, 8, 16

Binary: 10101011000111

Octal: ? 010 101 011 000 111

2 5 3 0 7

Group 3 bits starting from LSB Pad MSB with 0's if necessary

Verify with http://coderstoolbox.net/number/

Number Bases: 2, 8, 16

Binary: 10101011000111

Hexadecimal: ?

0010 1010 1100 0111

2 A C 7

Group 4 bits starting from LSB Pad MSB with 0's if necessary

Number conversion examples

- Convert from base N to decimal
- Multiply by weights and Add

e.g.
$$1001.0011$$
 (base 2)
 $1001_2 = 1(2^3) + 1(2^0) = 8 + 1 = 9_{10}$

$$0.0011_2 = 1(2^{-3}) + 1(2^{-4}) = 0.1875_{10}$$

Thus
$$1001.0011_2 = 9.1875_{10}$$

Convert from base N to decimal

Number conversion examples

- Convert from decimal to base N
- Repeat division by N
- > Examples:

```
Convert decimal 32536 to base 8 32536/8 = 4067 \text{ r } 0 4067/8 = 508 \text{ r } 3 508/8 = 63 \text{ r } 4 63/8 = 7 \text{ r } 7 Thus 32536_{10} = 77430_8
```

Convert from decimal to base 2

Convert decimal 898 to base 2

$$898/2 = 449 \text{ r } 0$$
 $449/2 = 224 \text{ r } 1$
 $224/2 = 112 \text{ r } 0$
 $112/2 = 56 \text{ r } 0$
..... etc.

Tedious!

Thus
$$898_{10} = 11\ 1000\ 0010_{2}$$

Base-16 as short form for base-2

- Alternatively, convert to base 16 first
- e.g. 898₁₀ to base 2
- 898/**16** = 56 r **2**
- 56/**16** = **3** r <u>8</u>

```
2 (hex) = 0010 (bin)
8 (hex) = 1000 (bin)
3 (hex) = 0011 (bin)
```

```
Thus 898_{10} = 3x16^2 + 8x16 + 2 (dec)
= 3 8 2 (hex)
= 0011 1000 0010 2
```

Worked example

What is X? Given that

$$\frac{3EA_{16} - 156_7}{X_8} = 49_{12}$$

Codes: BCD, ASCII, Gray

BCD: replaces <u>each</u> decimal digit (0 to 9 only) with 4 bits


```
e.g.
105 -> 0001 0000 0101
Not 110 1001
```

Not to be confused with straight binary

http://www.miniwebtool.com/decimal-to-bcd-converter/

ASCII

ASCII: 7 bits to represent each alphanumeric character

(a-z, A-Z, 0-9, punctuation marks etc.)

http://www.binaryhexconverter.com/ascii-text-to-binaryconverter

Gray code

1 bit change at a time when moving through the code words in sequence

Example:

Decimal	Binary	Gray
7	0 1 1 1	0100
8	1000	1 1 0 0
9	1001	1 1 0 1

http://www.miniwebtool.com/binary-to-gray-code-converter/

Is this a sequence of Gray codes? 010 -> 110 -> 100 -> 000 and repeats

A. Yes

B. No

C. Not sure

Odd and even parity

Example, ASCII code for character "A" is 1 0 0 0 0 0 1

odd parity: transmit

1000001

even parity: transmit

Limitation: Can only detect 1 bit error

http://www.electronicshub.org/parity-generator-and-parity-check/#parity generator and checker

End of summary on Introduction, Number systems & Codes