

Algorithms for Data Science

Feature Engineering, Outliers, and Feature Selection

Feature Engineering

 Creating new features from the existing ones, selecting only those features that are most informative, or transforming features to a more suitable form.

Handling Outliers

- Outliers are data points in a dataset that differ significantly from other observations.
- May have a substantial impact on statistical analyses and machine learning models.

Causes of Outliers:

- Mistakes in data entry can cause the formation of false outliers.
- Inaccurate readings can be caused by malfunctioning measurement devices or techniques.
 Mistakes in measurement can occur.
- In certain cases, outliers may be indicative of genuine and anticipated variations in the data.

Identifying Outliers

- Scatter plots, histograms, and box plots can be used to visually detect outliers
- Z-scores, Tukey's fences, and the Mahalanobis distance are all popular statistical techniques used to identify outliers.
- Algorithms such as Isolation Forest and One-Class SVM can be utilized to identify anomalies, particularly in data with a high number of dimensions.

$$D_i = \left((x_i - \mu)\Sigma^{-1}(x_i - \mu)^T
ight)^{1/2}.$$

Feature Ranking and Selection

Steps for Feature Ranking and Selection:

- 1. Features should be ranked in the space that the classifier will be used.
- 2. Features should be ranked individually with a metric that gives a value on how well the feature classifies the observations.
- 3. Iterative add features to identify how well the top *n* features perform.
- 4. Continue until the classification accuracy falls or reaches a steady state.

$$m{FDR} = rac{\left(\mu_1 - \mu_2
ight)^2}{\sigma_1^2 + \sigma_2^2}$$

