Maß 1, Übung 5

March 3, 2020

1 Aufgabe 2

Lemma 1. Wenn \mathfrak{S} eine Sigmaalgebra über Ω ist mit $\forall \omega \in \Omega : \{\omega\} \in \mathfrak{S}$ und μ ein endliches Ma β auf dem Messraum (Ω, \mathfrak{S}) , dann gibt es auf eben jenem Messraum ein diskretes Ma β μ_d und ein stetiges Ma β μ_c , die $\mu = \mu_d + \mu_c$ erfüllen.

Beweis. Für den Beweis definieren wir zuerst $D:=\{\omega\in\Omega\mid\mu(\{\omega\})>0\}$. Nun nehmen wir an es gelte $card(D)>\aleph_0$. Das bedeutet $\exists\epsilon>0: card(\{\omega\in\Omega\mid\mu(\{\omega\})>\epsilon\})=\aleph_0$. Das führt aber direkt zu einem Widerspruch zur Endlichkeit von μ , also muss $card(D)\leq\aleph_0$ gelten und damit natürlich auch $D\in\mathfrak{S}$.

Nun definieren wir $\mu_d: \mathfrak{S} \to \mathbb{R}: A \mapsto \mu(A \cap D)$ und $\mu_c: \mathfrak{S} \to \mathbb{R}: A \mapsto \mu(A \setminus D)$. Diese Maße erfüllen offensichtlich die gewünschten Eigenschaften. \square

2 Aufgabe 5

Lemma 2. Wenn die Ereignisse A, B und C unabhängig sind, dann auch A^C, B^C und C^C .

Beweis. Ausständig. \Box

3 Aufgabe 6

Lemma 3. Es gelten folgende Aussagen:

- (a) Wenn μ und ν zwei endliche Maße auf dem Messraum (Ω, \mathfrak{S}) sind, dann ist $\mathfrak{D} := \{A \in \mathfrak{S} \mid \mu(A) = \nu(A)\}$ ein Dynkin-System im weiteren Sinn.
- (b) Sind μ und ν sogar Wahrscheinlichkeitsmaße, dann ist $\mathfrak D$ ein Dynkin-System im engeren Sinn.

Beweis. Wir wählen $A, B \in \mathfrak{D}$ mit $B \subseteq A$ beliebig und erkennen, dass

$$\mu(A \setminus B) = \mu(A) - \mu(B) = \nu(A) - \nu(B) = \nu(A \setminus B)$$

gilt und damit $A \setminus B \in \mathfrak{D}$ ist.

Als nächstes wählen wir eine beiliebige Folge disjunkter Mengen A_n aus \mathfrak{D} . Wegen

$$\mu\left(\sum_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu(A_n) = \sum_{n\in\mathbb{N}}\nu(A_n) = \nu\left(\sum_{n\in\mathbb{N}}A_n\right)$$

ist auch $\sum_{n\in\mathbb{N}} A_n \in \mathfrak{D}$, womit auch schon Punkt (a) bewiesen ist.

Für Punkt (b) ist es ausreichend, dass zusätzlich $\mu(\Omega) = 1 = \nu(\Omega)$ und damit $\Omega \in \mathfrak{D}$ gilt.