

Ablauf (vorläufig)

05.04.2016	Aufbau der Kerne	CW
07.04.2016	keine Veranstaltung	
12.04.2016	Tröpchenmodell	CW
14.04.2016	alpha Zerfall	CW
19.04.2016	beta Zerfall	CW
21.04.2016	gamma Zerfall	CW
26.04.2016	Schalenmodell	CW
28.04.2016	Neutronen	CW
03.05.2016	Kernreaktionen und Fusion	CW
05.05.2016	Himmelfahrt	
10.05.2016	Molekülphysik 1	SO
12.05.2016	Molekülphysik 2	SO
17.05.2016	Pfingsten	
19.05.2016	Pfingsten	

Ablauf Fortsetzung

24.05.2016	Molekülphysik 3	SO
26.05.2016	Molekülphysik 4	SO
31.05.2016	Molekülphysik 5	SO
02.06.2016	Molekülphysik 6	SO
07.06.2016	Molekülphysik 7	SO
09.06.2016	Molekülphysik 8	SO
14.06.2016	Festkörperphysik 1	MÖ
16.06.2016	Festkörperphysik 2	MÖ
21.06.2016	Festkörperphysik 3	MÖ
23.06.2016	Festkörperphysik 4	MÖ
28.06.2016	Festkörperphysik 5	MÖ
30.06.2016	Festkörperphysik 6	MÖ
05.07.2016	Festkörperphysik 7	MÖ
07.07.2016	Festkörperphysik 8	MÖ

Fragen:

Anfahrt

Links

Login

Organisatorisch: iwannek@irs.uni-hannover.de

Fachlich: <u>walther@irs.uni-hannover.de</u>

Übungen: Georg Leuteritz Georg.Leuteritz@web.de

Anmeldung für Studierende

Veranstaltungen 🗈

Praktika

Die Vorbesprechung für das Praktikum findet am 12.10.2015 um 11:30 Uhr im Seminarraum des Institutes für Biophysik statt. (4134 - 101)

Zu meiner Kontrolle

War das Tempo letzte Woche

B. gerade richtig

C. zu langsam

SMART Response Question

Zu meiner Kontrolle

- Ist die Anzahl von Klickerfragen
- A. zu hoch
- B. gerade richtig
- C. zu niedrig

SMART Response Question

Zerfall der Mutter und Bildung der Tochter

Mutter - Tochter Verhältnisse

Radioaktive Zerfallskette:

$$\frac{dN_1}{dt} = -\lambda_1 \cdot N_1$$

$$\frac{dN_2}{dt} = \lambda_1 \cdot N_1 - \lambda_2 \cdot N_2$$

$$\frac{dN_3}{dt} = \lambda_2 \cdot N_2 - \lambda_3 \cdot N_3$$

Aber da gibt's noch mehr:

Siehe Übungsaufgaben

Natürlich vorkommende Transformationen

Spontanspaltung

$$Z, A \longrightarrow Z-2, A-4$$

$$Z \longrightarrow Z \pm 1$$
, $A = const.$

$$Z = const.$$
, $A = const.$

doppelter
$$\beta$$
-Zerfall

$$Z \longrightarrow Z \pm 2$$
, $A = const.$

Nur von angeregten Zuständen fern der Stabilität: n-Emission p-Emission

KARLSRUHER NUKLIDKARTE

CHART OF THE NUCLIDES, 6th Edition 1995, revised reprint 1998 TABLEAU DES NUCLIDES, 6th Edition 1995, réimpression révisée 1998 TABLA DE NUCLIDOS, 6th Edición 1995, reimpresión revisada 1998.

G. Pfennig, H. Klewe-Nebenius, W. Seelmann-Eggebert †
Institut für Instrumentelle Analytik (bis 1995 Institut für Radiochemie)

Forschungszentrum Karlsruhe GmbH

Alle Rechte vorbehalten – All rights reserved
Tous droits réservés – Todos los derechos están reservados

Li 6,941 σ _{abs} 71			Li 5	Li 6 7,5 o 0,039 on, a 940	Li 7 92,5 ₀ 0,045	Li 8 840,3 ms β-12,5 β2α-1,6	Li 9 178,3 ms β ⁻ 13,6 βn 0,7 βα	Li 10	Li 11 8,5 ms β=-18,5; 20,4 γ 3368*; 320 βn; β2n; β3n; βα; βt
He 4,002602		He 3 0,000137	He 4 99,999863	He 5	He 6 806,7 ms	He 7	He 8 119 ms β=9.7 γ 981; 478*	He 9	
σ _{abs} < 0,05 H 1,00794 σ 0,332	H 1 99,985 or 0,332	H 2 0,015	H 3 12,323 a	n	4	n	βn; βt	n	8
		n 1 10,25 m β ⁻ 0,8	2						

Neutronen → Isotop

Protonen → Element

3

Arrangement of Symbols and Data

Elements

symbol of the element standard atomic weight based on 12C = 12

absorption cross section for thermal neutrons (b)

Anordnung der Symbole und Daten

Elemente

Elementsymbol

Standard-Atomgewicht bezogen auf 12C = 12

Absorptionsquerschnitt für thermische Neutronen (b)

Stable Nuclides

symbol of the element, number of nucleons abundance in naturally occuring element (atom %)

(n, y)-cross sections for the formation of the metastable and the ground state of 127 Te by thermal neutrons (b)

Stabile Nuklide

Elementsymbol und Nukleonenzahl Häufigkeit im natürlichen Element (Atom %)

 (n, γ) -Querschnitt für die Bildung des metastabilen und des Grundzustandes des 127 Te mit thermischen Neutronen (b)

symbol of the element, number of nucleons left hand side: half-life of metastable state;

γ-energy (keV) of the isomeric transition

right hand side: abundance in the natural element (atom %) (n, y)-cross section for thermal neutrons (b)

Cd

112,41

Te 126

18,95

 σ 0,135+0,90

 $\sigma 2450$

Elementsymbol und Nukleonenzahl linke Spalte: Halbwertszeit des metastabilen Zustands; y-Energie des Isomerenübergangs (keV)

rechte Spalte: Häufigkeit im natürlichen Element (Atom %) (n. v)-Querschnitt für thermische Neutronen (b)

Unstable Nuclides

symbol of the element, number of nucleons half-life modes of decay, endpoint energy of β^- radiaton (MeV)

γ-energy (keV)

conversion electrons, (n, γ)-cross section (b)

Elementsymbol und Nukleonenzahl

Halbwertszeit

Halbwertszeit Zerfallsarten und Maximalenergie der β⁻-Strahlung (MeV)

γ-Energie (keV)

Konversionselektronen und (n, γ)-Querschnitt (b)

symbol of the element, number of nucleons half-lives both states decay by electron capture; the metastable state also to the ground state $5\% < l\gamma < 95\%$

Tm 170

128,6 d

1,0 . . .

y 84 . . .

e -; σ92

Elementsymbol und Nukleonenzahl

Halbwertszeiten

Beide Zustände zerfallen durch Elektroneneinfang; der metastabile auch in den Grundzustand $5\% < l\gamma < 95\%$

symbol of the element, number of nucleons left hand side: spontaneous fission isomer, T < 0,1 s right hand side: decay data of the ground state. "g" indicates that the daughter ^{240g}Pu is formed to at least 95%; a population of ^{240m}Pu up to 5% cannot be excluded.

Elementsymbol und Nukleonenzahl

linke Spalte: Spontanspaltendes Isomer, T < 0,1 s

rechte Spalte: Zerfallsdaten des Grundzustands. "g" bedeutet, daß die Tochter ^{240g}Pu mindestens zu 95% gebildet wird; eine Populierung des ^{240m}Pu bis zu 5% ist nicht ausgeschlossen.

Decay Modes: Colors and Symbols

Stable nuclides

Zerfallsarten: Farben und Symbole

Stabile Nuklide

Primordial radionuclides, i. e. those formed in the build-up of the terrestrial matter and still present today.

Primordiale Radionuklide, d. h. solche, die bei der Bildung der irdischen Materie entstanden und heute noch vorhanden sind.

- Positron decay
- Electron capture
- Negatron decay Alpha decay

- Positronen-Zerfall
- Elektronen-Einfang €: Negatronen-Zerfall
- Alpha-Zerfall α :
- Spontanspaltung
- p: Protonen-Zerfall C12: Cluster-Emission

The data given in the left part apply to the metastable state, those in the right part to the ground state. ly denotes y-quanta due to the decay to the groundstate of the same nuclide (isomeric decay).

Die Angaben in der linken Spalte gelten für den metastabilen, die in der rechten Spalte für den Grundzustand. In kennzeichnet y-Quanten, die beim Zerfall in den Grundzustand desselben Nuklids auftreten (Isomerenzerfall).

The assignment of decay properties to the metastable or ground state is uncertain.

Die Zuordnung der Zerfallsdaten zum metastabilen bzw. Grundzustand ist unsicher.

One or more shortlived states, for which only decay via spontaneous fission has been observed (spontaneously fissioning isomers) are indicated by a vertical green bar.

Ein oder mehrere kurzlebige Isomere, die ausschließlich durch Spontanspaltung zerfallen, sind durch einen senkrechten grünen Balken gekennzeichnet.

Ab welcher Masse wird alpha Zerfall wichtig?

- A immer
- B A>150
- C Z>47
- D A>210

SMART Response Question

Welche Zerfälle macht dieser Kern?

- **A** 50%α, 50% β+
- **B** 50%α, 50% ε
- **C** 50%-95%β+, 5% ε
- **D** 50%-95%α, 5-50% ε

SMART Response Question

Examples:

Beispiele:

$$\epsilon + \beta^{+} = 100\%$$

$$\epsilon + \beta^+ = 100\%$$

$$\%\,\beta^+ {>} \%\,\varepsilon$$

α≤5%

$$(\epsilon + \beta^{+}) \ge 95\%$$

 $\% \epsilon > \% \beta^{+}$

 $50\% \le \alpha < 95\%$

50% ≤ ε < 95%

ly≤5% $|\gamma < \gamma|$

Primordial radionuclides, i. e. those formed in the build-up of the terrestrial matter and still present today.

Primordiale Radionuklide, d. h. solche, die bei der Bildung der irdischen Materie entstanden und heute noch vorhan-

- β*: Positron decay
 ε: Electron capture
 β*: Negatron decay
- Alpha decay Spontaneous fission Proton decay p: Proton decayC12: Cluster emission

ground state is uncertain

Positronen-Zerfall Elektronen-Einfang Negatronen-Zerfall Alpha-Zerfall Spontanspaltung

The data given in the left part apply to the metastable state, those in the right part to the ground state. In denotes γ -quanta due to the decay to the groundstate of the same nuclide (isomeric decay). The assignment of decay properties to the metastable or

len, die in der rechten Spalte für den Grundzustand. Iy kenn-zeichnet y-Quanten, die beim Zerfall in den Grundzustand desselben Nuklids auftreten (Isomerenzerfall). Die Zuordnung der Zerfallsdaten zum metastabilen bzw. Grundzustand ist unsicher.

βxp; βxn βd; βt;

Ein oder mehrere kurzlebige Isomere, die ausschließlich durch Spontanspaltung zerfallen, sind durch einen senk-rechten grünen Balken gekennzeichnet.

the respective parent nuclide Emission of conversion electrons; the symbol is quoted only, if more conversion electrons than \u03c3-quanta are emit-

One or more shortlived states, for which only decay via spontaneous fission has been observed (spontaneously fissioning isomers) are indicated by a vertical green bar.

Emission of the specified particles or spontaneous fission from an excited level of the daughter nuclide, populated via β-decay ("β-delayed particle emission or fission").

Simultaneous emission of two $\beta\text{-particles}$ ("double $\beta\text{-decay}",~e.~g.~^{\text{100}}\text{Te} \rightarrow ~^{\text{100}}\text{Xe}).$

Emission of the specified particles from the ground state of a particle-unstable nuclide (white field without indication of the half-life, e.g. \mathbb{Q} . [. 'He). Simultaneous emission of two particles is indicated only, if one-particle-emission is excluded for energetical reasons (e.g. 'Be $\rightarrow 2\alpha$).

Abundance and Energy of the Emitted Radiation

The relative abundances of the decay modes and the emitted radiation are indicated by 3 different sizes of the colored sections and by the sequence of the symbols and energy values.

- Emission von γ-Quanten; sie sind stets beim jeweiligen Mutternuklid aufgeführt.
- Emission von Konversionselektronen; das Symbol ist nur aufgeführt, wenn mehr Konversionselektronen als γ -Quanten emittiert werden.

Emission der jeweils angeführten Teilichen oder Spontanspaltung aus einem angeregten Zustand des Tochternuklids, der durch β-Zerfall bevölkert wird ("β-verzögerte Teilichenemission oder Spaltung").

Gleichzeitige Emission zweier β -Teilchen ("doppelter β -Zerfall", z. B. $^{130}\text{Te} \rightarrow ^{130}\text{Xe}$).

Emission der jeweils angeführten Teilchen aus dem Grundzustand eines teilcheninstabilen Nukidids (weißes Feld ohne Angabe der Halbwertzeut; z. B. ⁴L. ⁴Ho). Die Emission von zwei Teilchen ist nur dann aufgelührt, wenn de Emission eines einzelhen Teilchens aus energelischen Gründen nicht möglich ist (z. B. ${}^{\circ}\text{Be} \to 2\alpha$).

Häufigkeit und Energie der Strahlungen

Die relative <u>Häufigkeit</u> der Zerfallsarten und Strahlungen ist durch 3 verschiedene Größen der Farbflächen sowie durch die Reihenfolge der Symbole und der Energiewerte

Examples:

€+β*=100% %€>%B"

 $\epsilon + \beta^* = 100\%$ β+ %B+>%€

ly≤5%

P	138							102	No	No 250 0,25 ms	No 251 0,75 s	No 252 2,3 s	No 253 1,7 m	No 254	No 255 3,1 m a 8.12; 8.08; 7.93	No 256 2,91 s	No 257 26 s	No 258 1,2 ms
				101	Md	Md 245 0,35 s 0,9 ms	Md 246 1,0 s	Md 247	Md 248 7 s	Md 249 24 s	Md 250 52 s	Md 251 4,0 m	Md 252 2,3 m	Md 253 ~ 6 m	Md 254	Md 255 27 m	Md 256 1,30 h	Md 257 5,52 h
		100	Fm	Fm 242 0,8 ms	Fm 243 0,18 s	Fm 244 3,0 ms	a 8.74; 8.56 ε: βsf ? Fm 245 4,2 s	Fm 246 1,1 s	# 8,32: 8,36 Fm 247 9,2 s 35 s	Fm 248 36 s	Fm 249 2,6 m	Fm 250	Fm 251 5,30 h	Fm 252 25,39 h	Fm 253 3,0 d	7,326 y 430 Fm 254 3,24 h	Fm 255 20,1 h a 7,022,6,963	α 7,074; 7.014 γ 371; 325 Fm 256 70 ns 2,63
		100	Es	Es 241	α 8,55 Es 242	Es 243	α 8,15 Es 244	Es 245	Es 246	a 7.87; 7.83 el Es 247	6 7,53 Es 248	Es 249	a 6.883; 6.782 y 881; 453 e Es 250	α 7,039; 6,996 st γ (96); e ⁻ Es 251	(r 6,943; 6,673, y 272; (145) Es 252	sf y (99; 43) e"; rr - 76 Es 253	sf γ (81; 58); e ⁻ σ 26; στ 3300 Es 254	Es 255 39,8 d
		99		8 s	16 s	20 s	37 S	1,1 m	7,7 m a 7.36 βat a → g	4,55 m 4,55 m 7,323; 7,275	27 m * 6,879; 6,907 βsf α → g	1,70 h 6,776; 6,716 380; 813; 375; a → g	2,22 h 8,6 h 4 7 5292 1032; 302 829 6"	33 h α 6,492; 6,462 γ 178; (153)	471,7 d α 6.631; 6.562. ε: γ 785; 139	20,47 d a 6,633; 6,591 af 7 (42, 389); e ⁻ a 180 + 5,8	39,3 h 275,7 d 6 0.5 a 6.429 a 6.394 a 7 0.49 a - 1.3 a 1800 a 7 200	39,8 d B 6,301; 6,267 st; y (33) r - 55
Cf	Cf 237 2,1 s	Cf 238 21 ms	Cf 239 - 39 s	Cf 240 1,06 m	Cf 241 3,78 m	Cf 242 3,68 m	Cf 243 10,7 m	Cf 244 19,4 m	Cf 245 43,6 m	Cf 246 35,7 h a 6,750; 6,708 af y (42; 96)	Cf 247 3,11 h 6 6,296; 6,238 7 (294; 448; 418); e	Cf 248 333,5 d 6,258; 6,217 ff y (43)	Cf 249 350,6 a a 5,812; 5,758	Cf 250 13,08 a (46,030; 5,989 sf (43); e ⁻	Cf 251 898 a a 5,679; 5,849; 6,012 y 177; 227	Cf 252 2,645 a a 6,118; 6,076	Cf 253 17,81 d β 0.3 α 5,980	Cf 254 60,5 d
Bk			Bk 238 144 s	al	Bk 240 5 m	£ ?	Bk 242 7 m	Bk 243 4,5 h	Bk 244 4,35 h	Bk 245 4,90 d	Bk 246 1,80 d	Bk 247 1380 a a 5,531; 5,710;	9 500; or 1700 Bk 248 23,7 h > 9 a	Bk 249 320 d	Bk 250 3,217 h	Bk 251 55,6 m	γ (46); e ⁻ σ 18; σ ₁ 1300	γ (43); 6 ⁻ α 4.5
Cm			e (Bast	Cm 238	isst Cm 239	Cm 240	Cm 241	6571: 6542 7750: 945 Cm 242	6.602.6.600 1862.218.962 Cm 243	4 5.886: 6,150 y 253; 381 g Cm 244	7 799; 1081; 834; 1124 e Cm 245	5,688 y 84; 265 g	Cm 247	β= 0.1; α 5.419; 5.391; sl γ(327; 308) α 700; α - 0.1 Cm 248	β= 0.7; 1.8 γ 989; 1032; 1029 σ ₁ 1000 Cm 249	β ⁻ - 0.9; 1,1 γ 178; 130; 153 Cm 250	Cm 251	
			s =	2,4 h	3 h. 7 188 9	27 d = 8.201; 6.248	32,8 d * 5,930, * 472, 431; 132.	162,94 d = 6,113,6,000 = 5,9 164,1,8 = 16 = 20 o ₁ = 5	29,1 a s 5.785; 5.742 s 35; 9 y 278; 229; 210; 67 w 130; v ₁ 626	18,10 a = 5,805; 5,762 = 15; 0; 1,1	8500 a = 8.361; 5.304 = 8.361; 5.304 = 175; 133 = 350; o ₇ 2100	4730 a α 5,386; 5,343 sf; g γ (45); e ⁻ σ 1,2; σ; 0,16	1,56 · 10 ⁷ a a 4,870; 5,267 y 402; 278 g c 60; cy 82	3,40 · 10 ⁵ a 0.5,076; 5,035 of 7,0 · 0 of 2,6; or 0,36	64,15 m β=0,9 γ 634; (560; 369); e= α=1,6	- 9700 a sf α 7; β ⁻ 7 σ - 60	16,8 m 8 ⁻¹ ,4 y 543; 530; 390; 438	
	Am 234 2,32 m	Am 235 15 m	Am 236 4,4 m	Am 237 73,0 m sf * 6,042 7,280; 438; 434, 509	Am 238 1,63 h sf 4,5,94 7,963,919,561; 605	Am 239 11,9 h	50,8 h st. *5.378. *7 900. 889.	Am 241 432,2 a st 0.5486.5.443 0.5486.5.443 0.5486.5.443	Am 242 141 a 16 h 157 (49) 6 7 8 8 8 8 9 1700 8	Am 243 7370 a st = 5,27% 5,203 at , 7% 44. e 75 + 5	Am 244 26 m 10,1 h 51 15 9 54 7344 111884 1688	Am 245 2,05 h st 2,05 h st 2,05 h	Am 246 25 m 39 m 51 51 12 51 22 1678 708 154 708 158	Am 247 22 m p- 1 285; 226		154		156
Pu 232 34,1 m	Pu 233 20,9 m	Pu 234 8,8 h	Pu 235 25,3 m sf - 5.85 - 48(.756:34)	Pu 236 2,858 a sf = 5,768, 5,721 at Mg 28	Pu 237 45,2 d	Pu 238 87,74 a st 15,490; 5,456	Pu 239 2,411 - 10 ⁴ a sf = 5,157, 5,144	Pu 240 6563 a sf	Pu 241 14,35 a sf pro.02:9 4,896 1140_1:4" 370; v; 1010	Pu 242 3,750 · 10 ⁵ a sf	Pu 243 4,956 h	Pu 244 8,00 · 10 ⁷ a si	Pu 245 10,5 h sf 0.0,1,2 1307,560, 308; g 150	Pu 246 10,85 d β 0.2: 0.3 γ 44: 224: 180	Pu 247 2,27 d			112
Np 231 48,8 m	α 6.31 γ 235; 535 Np 232 14,7 m	Np 233 36,2 m	Np 234 4,4 d	Np 235 396,1 d	# 5.334 y 60 # ry 2300 Np 236 22,5 h 1.54-10 ⁴ #	Np 237 2,144 · 10 ⁶ a	Np 238 2,117 d	Np 239 2,355 d	Np 240	Np 241 13,9 m	β ^{-0,8} γ 84 γ κ < 100, α ₂ 200 Np 242 2,2 m 5,5 m	Np 243 1,85 m	Np 244 2,29 m	152	β-			
u 6.28 y 371: 348: 264 U 230	y 327; 820; 867; 864; 282 6 U 231	α 5,54 γ(312; 299; 547) U 232	y 1559; 1528; 1602 or 900 U 233	U 234	(F 0.5. (F	a 4,790; 4,774 7,28; 87; 8" # 180; #1,0,020	β 1,2 γ 984; 1029; 1026; 924; e ⁻ g; σ ₁ 2100 U 237	β=0.4; 0.7 γ 106; 278; 228; e= g σ 32 + 19; σ; < 1 U 238	U 239	β ⁻ 1,3 γ 175; (133) g U 240	D Z/7 9 7 736; 7 786; 945; 1473 159 9 9	β ⁻ γ 288 g U 242	7 217; 681; 163; 111 9	152		267 ?	111	269
20,8 d a 5,886; 5,818 y (72; 154; 230); e	4,2 d c: a 5,456; 5,471; 5,404 y 26; 84; 102 e ⁻ ; a ₁ -250	68,9 a a 5,320; 5,262 Ne 24; y (58; 129); e ⁻ a 73; a; 74	1,592 - 10 ⁵ a a 4,824; 4,783 Ne 25; y (42; 97); e ⁻ a 47; a; 530	0,0055 2,455 · 10 ⁵ a # 4,77% 4,725 if Mg 28: Nec y (52): 127 # 1 # 96: vy < 0,006	0,7200 26 m 7,038-10 ⁴ 4,338, 10 ⁴ Nac-y 106.	120 ns 2,342-10 ⁷ a = 4,494 4,445 17, 27632 st 1,7462 113]	6,75 d β=0.2 γ 60; 208 e= σ=100; σ ₁ < 0.35	99,2745 270 no. 4,468-10 ⁹ a -4,196_19 97-198-198-198-198-198-198-198-198-198-198	23,5 m 8 ⁻ 1,2, 1,3 9 75; 44 9 22; 9) 15	14,1 h β=0,4 γ 44; (190) e ⁻ m		16,8 m µ- y 68; 58; 585; 573 m		110		?		170 μs α 11.11
Pa 229 1,50 d 4, 6, 5,580, 5,670, 5,615 y(119, 40, 146)	Pa 230 17,4 d 1,8° 0.5 1,5345; 5,326 1,962; 918; 455; 899; 444 or 1500	Pa 231 3,276 - 10 ⁴ a 6,014: 4,952; 6,028: Ne 24: F 227 77: 300; 303: e	Pa 232 1,31 d β=0,3,1,3; ε γ 969; 894; 150; e=	Pa 233 27,0 d β-0.3: 0.6 γ 312: 300: 341: e ⁻¹ σ 20+19: σγ< 0.1	Pa 234 1,17 m 6,70 h 6723	Pa 235 24,2 m β-1,4 γ 128 - 659	Pa 236 9,1 m β-2,0; 3,1 γ 642: 687; 1763: 9 βsf ?	Pa 237 8,7 m β ⁻ 1,4; 2,3 γ 854; 865; 529; 541	Pa 238 2,3 m 8-1,7: 2,9 y 1015; 635; 448; 680	148		150	109	Mt	-27	Mt 266 1,7 ms		Mt 268 70 ms
Th 228 1,913 a 5,423; 5,340 7,84; (216); e ⁻¹	Th 229 7880 a	Th 230 7.54 - 10 ⁴ a	Th 231 25,5 h	Th 232 100 1,405 · 10 ¹⁰ a	Th 233 22,3 m β-12 γ87, 29: 459, σ-	Th 234 24,10 d β-0.2 γ 63; 92: 93	Th 235 7,1 m	Th 236 37,5 m	Th 237 5,0 m			108	Hs	Hs 263 ?	Hs 264 0,45 ms	HS 265 0.8 ms 2,0 ms		Hs 267 59 ms
Ac 227 21,773 a	Ac 228 6,13 h	4,687; 4,621 y (68; 144); e ⁻ Ne 24; e 23,4 e ₁ < 0.0005 AC 229 62,7 m	Ac 230 122 s	Ac 231 7,5 m	γ.87, 28, 459; e ⁻ α 1500; α, 15 Ac 232 119 s	AC 233 145 s	β-1,4 γ 417; 727; 696 Ac 234 44 s	9 1.0 y 111; (647; 196)	в-	ı	Bh	Bh 260 ?	Bh 261 11.8 ms	Bh 262	o 10,43	8 10.57, 10.34; a 10.32, 10.52 10.37 Bh 264 ~ 440 ms		α 9,88; 9,83; 9,75
8 0,04 0 4,953; 4,941 0 (100; 84); e ⁻¹ 0 880; op < 0,029	β 1,2; 2,1 α 4,27 ? γ 911; 969; 338; 966	3 ⁻ 1,1 y 165; 569; 262, 146; 135	β* 2,7 × 455: 508:	β ⁻ γ 282; 307; 221; 186; 369	β ⁺ γ 665; 1899; 1959; 1948; 612	β ⁻ y 523; 540	β" γ 1847; 1912; 689; 1954	146		107		0	a 10,40; 10,10; 10,03	a,0 ms 102 ms = 10,37; 9,91; 10,24 9,74		α 9,48; 9,62		

Kernmodelle

 $1 u = 1.6605402 (10) \times 10^{-24} g = 931.49432 (28) MeV/c^{2}$

$$1 \text{ u} = 1.6605402 \text{ (10)} \times 10^{-24} \text{ g} = 931.49432 \text{ (28) MeV/c}^2$$

$$m_{\rm p} = 1.007276470 \ (12) \ {\rm u} = 938.27231 \ (28) \ {\rm MeV/c^2}$$
 $m_{\rm n} = 1.008664904 \ (14) \ {\rm u} = 939.56563 \ (28) \ {\rm MeV/c^2}$
 $m_{\rm n} - m_{\rm p} = (1.29332 \pm 0.00040) \ {\rm MeV/c^2}$
 $m_{\rm e} = 0.51099906 \ (15) \ {\rm MeV/c^2}$

$$1u = 1.6605402 (10) \times 10^{-24} g = 931.49432 (28) MeV/c^{2}$$

$$m_{\rm p} = 1.007276470 \ (12) \ {\rm u} = 938.27231 \ (28) \ {\rm MeV/c^2}$$
 $m_{\rm n} = 1.008664904 \ (14) \ {\rm u} = 939.56563 \ (28) \ {\rm MeV/c^2}$
 $m_{\rm n} - m_{\rm p} = (1.29332 \pm 0.00040) \ {\rm MeV/c^2}$
 $m_{\rm e} = 0.51099906 \ (15) \ {\rm MeV/c^2}$

 $m(Z,A) < Z \cdot m_H + (A-Z) \cdot m_D$

Experimentalphysik IV Clemens Walther Page 33

$$1u = 1.6605402 (10) \times 10^{-24} g = 931.49432 (28) MeV/c^{2}$$

$$m_{\rm p} = 1.007276470 \ (12) \ {\rm u} = 938.27231 \ (28) \ {\rm MeV/c^2}$$
 $m_{\rm n} = 1.008664904 \ (14) \ {\rm u} = 939.56563 \ (28) \ {\rm MeV/c^2}$
 $m_{\rm n} - m_{\rm p} = (1.29332 \pm 0.00040) \ {\rm MeV/c^2}$
 $m_{\rm e} = 0.51099906 \ (15) \ {\rm MeV/c^2}$
 $m(Z,A) < Z \cdot m_{\rm H} + (A-Z) \cdot m_{\rm p}$

Der Massendefekt δm : $\delta m = Z \cdot m_{H} + (A - Z) \cdot m_{D} - m(Z, A)$

Zur persönlichen Kontrolle

- Bei welcher Masse haben Kerne die höchste Bindungsenergie pro Nukleon?
- Zahl eingeben

SMART Response Question

Bindungsenergie pro Nukleon

Bindungsenergie der leichten Nuklide

Experimentalphysik IV Clemens Walther Page 38

Das Tröpfchenmodell des Atomkerns

 Konstante Dichte der Nukleonen (analog: inkompressible Flüssigkeit)

Nukleonen Dichte

Radii der Kerne

$$R = r_0 \cdot A^{1/3}$$

 $r_0 = (1.28 \pm 0.05) \text{ fm}$

Das Tröpfchenmodell des Atomkerns

- Konstante Dichte der Nukleonen
- Kurzreichweitige (starke) Kernkraft mit Sättigunscharakter

Nukleon-Nukleon Potential ohne Coulomb Wechselwirkung

Das Tröpfchenmodell des Atomkerns

- Konstante Dichte der Nukleonen
- Kurzreichweitige (starke) Kernkraft mit Sättigunscharakter
- Coulombwechselwirkung zwischen Protonen

Potentielle Energie der Nukleonen

Fig. 1.1
Variation of the potential energy of a proton and neutron as they approach the atomic nucleus

- Was ist der Isospin? 6
- **Unterscheidet Elektron von Positron**
- Wie Elektronenspin, aber für Protonen
- Wie Elektronenspin, aber für Neutronen
- **Unterscheidet Protonen** von Neutronen

SMART Response Question

To set the properties right click and select SMART Response Question Object->Properties...

Clemens Walther Experimentalphysik IV Page 46

Das Tröpfchenmodell des Atomkerns

- Konstante Dichte der Nukleonen
- Kurzreichweitige (starke) Kernkraft mit Sättigunscharakter

- Coulomb Wechselwirkung zwischen Protonen
- Fermi Gas der Nukleonen
- Protonen und Neutronen unterscheiden sich durch Isospin T

Das Tröpfchen Modell

Zur Erinnerung

Z atomic number (Kernladungszahl), proton number (Protonenanzahl)

N neutron number (Neutronenanzahl)

A Mass number (Massenzahl)

$$A = Z + N$$

Weizsäckers Massen Formel

(Tröpfchen Modell)

$$m(Z, A) = Z \cdot m_{\mathrm{H}} + (A - Z) \cdot m_{\mathrm{n}} - BE_{Kern} - BE_{Elektronen}$$

$$BE_{Kern} = a_{v} \cdot A - a_{s} \cdot A^{2/3} - a_{c} \cdot \frac{Z(Z-1)}{A^{1/3}} - a_{a} \cdot \frac{(A-2 \cdot Z)^{2}}{A} + \delta$$

Volumen Energie

 $a_{\rm V}$ A mit $a_{\rm V}=15.56{\rm MeV}$

Oberflächen Energie

 $a_{\rm s}A^{2/3}$ mit $a_{\rm s} = 17.23 {\rm MeV}$

Coulomb Energie

 $a_{\rm C} \frac{Z(Z-1)}{A^{1/3}}$ mit $a_{\rm C} = 0.7 {\rm MeV}$

AsymmetrieEnergie

 $a_{\rm a} = \frac{(A-2Z)^2}{A}$ mit $a_{\rm a} = 23.285$ MeV

Paarungs Energie $\delta = \begin{cases} +11/A^{1/2}MeV \text{ für gerade - gerade} & (gg / ee) \text{ Kerne} \\ \delta = \begin{cases} 0 & \text{für ungerade - gerade} & (ug / oe) \\ gerade - ungerade & (gu / eo) \end{cases} \text{ Kerne} \\ -11/A^{1/2}MeV \text{ für ungerade - ungerade (uu / oo) Kerne} \end{cases}$

Massendefekt und Bindungsenergie

Masse (Kern)

Summe der Nukleonenmassen

→ Massen Defekt

Bindungsenergie

Bindungsenergie=

Kondensationsenergie

- Oberflächen Energie
- Coulomb Energie
- Asymmetrie Energie (N-Z)
- + Paarungs Energie

(Kräfte zwischen benachbarten Nukleonen abhängig von gg, uu, ug,gu)

Tal der höchsten Stabilität

-> Übungsaufgabe

Das Tal der Stabilität

Isobaren, A = constant:

$$M(Z,A) = \alpha(A) \cdot Z^2 + \beta(A) \cdot Z + \gamma(A) + \delta$$

Definiere:
$$Q_{\beta} = [M(Z, A) - M(Z \pm 1, A)] \cdot c^2$$

Für β-Zerfall:

$$eta^-$$
, EC $Q_eta > 0$ eta^+ $Q_eta > 1,02~MeV = 2 \cdot m_{
m e} c^2$

Das Tal der Stabilität und β-Zerfall (Vorschau)

Einige weiter Randbedingungen

Die Energieerhaltung ist eine conditio sine qua non.

Aber es gibt weitere Erhaltungsgrößen.

Erhaltung von

- Impuls (momentum)
- Drehimpuls (angular momentum)
- Isospin (isospin)
- Leptonenzahl (lepton number)
- > Parität (parity)

Auch wichtig: Pauli Prinzip und Coulomb Barriere!

Kernreaktionen

Q-Wert: $Q = E_{ein} - E_{aus}$

Energetik von Kernreaktionen

Q-Wert
$$Q = E_{ein} - E_{aus}$$

Q < 0 endotherm

$$E_{kin} = 0, E^* = 0 \Rightarrow Q = \sum_{i} m_i \cdot c^2 - \sum_{j} m_j \cdot c^2$$

Bei Kernreaktionen unterscheiden wir:

- > mono-nukleare Reaktionen, e.g. Zerfall, Spontanspaltung
- > Binukleare Reaktion, e.g. 59 Co(n, γ) 60 Co, 14 N(n,p) 14 C, 235 U(n,f)
- ➤ Ternäre Reaktion,
 e.g. 3 × ⁴He → ¹²C*

Natürlich vorkommende Transformationen

α-Zerfall β-Zerfall γ-Zerfall

Z, A
$$\longrightarrow$$
 Z - 2, A - 4
Z \longrightarrow Z ± 1, A = const.
Z = const., A = const.

Spontanspaltung

seltene Zerfälle: doppelter β-Zerfall ¹²C Zerfall, ...

$$\overline{Z}$$
 $Z\pm 2$, $A=$ const.

Nur von angeregten Zuständen fern der Stabilität: n-Emission p-Emission

Q-Werte von Kernreaktionen

Kernreaktion: X(x, y)Y

$$Q = [m(X) + m(X) - m(Y) - m(y)] \cdot c^{2}$$

Q-Werte von Kernreaktionen

Kernreaktion: X(x, y)Y

$$Q = [m(X) + m(X) - m(Y) - m(y)] \cdot c^{2}$$

Zum Beispiel symmetrische Spaltung:

$$E_{f} = [m(Z, A) - 2 \cdot m(Z/2, A/2)] \cdot c^{2}$$

$$= a_{s} \cdot A^{2/3} (1 - 2^{1/3}) + a_{c} \cdot Z^{2} \cdot A^{1/3} (1 - 2^{-2/3})$$

$$= (-5.12 \cdot A^{2/3} + 0.284 \cdot Z^{2} \cdot A^{-1/3}) \text{ u}$$

Q-Werte von Kernreaktionen

Kernreaktion: X(x,y)Y

$$Q = [m(X) + m(X) - m(Y) - m(y)] \cdot c^{2}$$

Zum Beispiel symmetrische Spaltung:

$$E_{f} = [m(Z, A) - 2 \cdot m(Z/2, A/2)] \cdot c^{2}$$

$$= a_{s} \cdot A^{2/3} (1 - 2^{1/3}) + a_{c} \cdot Z^{2} \cdot A^{1/3} (1 - 2^{-2/3})$$

$$= (-5.12 \cdot A^{2/3} + 0.284 \cdot Z^{2} \cdot A^{-1/3}) \text{ u}$$

$$E_{\rm f} > 0: -5.12 + 0.284 \cdot \frac{Z^2}{A} > 0 \Rightarrow \frac{Z^2}{A} = \frac{5.12}{0.284} = 18 \Rightarrow Z \approx 40, A \approx 90$$

Stabilität gegen Spaltung

$$Q_f > 0$$
: $-5,12 \cdot A^{2/3} + 0,284 \cdot Z^2 \cdot A^{-1/3} > 0$
-5,12 + 0,284 · Z^2/A > 0

$$Z^2/A > 18$$

Aber...

Stabilität gegen Spaltung

Die Spaltprodukte müssen durch die Coulomb Barriere tunneln

$$\frac{Z^2}{A} = 37 \text{ i.e. } Z \approx 95, A \approx 245 \implies T_{1/2} = 10^{10} \text{ a}$$

Sofortige Spontanspaltung erst ab:

$$\frac{Z^2}{A} = 47$$

Der Spaltbarkeitsparameter

See also Radiochemistry and Nuclear Chemistry Rydberg, Liljenzin, Choppin

Was bedeutet Q > 0?

- A Kernreaktion läuft von selbst ab
- B Die Produkte haben einen größeren Massenüberschuss als die Ausgangskerne

- C Die Produkte haben einen kleineren Massenüberschuss als die Ausgangskerne
- D Die Kernreaktion kann nicht ohne Zusatzenergie ablaufen

SMART Response Question

To set the properties right click and select SMART Response Question Object->Properties...

Kernreaktionen

Ausgangszustand Eingangszustand $\sum_{i} m_{i} \cdot c^{2}$ Ruhemassen Kernreaktion $\sum_{i} E_{kin,i}$ **Kinetische Energien** $\sum_{i} E_{i}^{*}$ **Anregungsenergien** E_{initial} E_{final}

Q-Wert: $Q = E_{ein} - E_{aus}$

http://25.media.tumblr.com

Alpha Zerfall

Georg Gamow http://de.wikipedia.org

 α Zerfall in der Nebelkammer

http://chambrebrouillard.wifeo.com/alpha.php

Womit messen wir alpha Teilchen?

Messung Ionisierender Strahlung

Ionisationskammer

Auslösezählrohr – Geiger-Müller-Zähler

Charakteristik gasgefüllter Detektoren

Experimentalphysik IV Clemens Walther Page 85

Kann man mit jedem Geiger-Müller Zählrohr alpha Strahlen messen?

http://www.automess.de

SMART Response Question

To set the properties right click and select SMART Response Question Object->Properties...

Alpha Strahler: Americium

