

Chapter Two

Understanding the Input/Output (I/O) Section

Objectives

- Describe the I/O section of a programmable controller
- Identify DIP switches
- Describe how basic AC and DC input and output modules work
- Define optical isolation and describe why it is used

Objectives (cont'd.)

- Describe the proper wiring connections for input and output devices and their corresponding modules
- Explain why a hard-wired emergency-stop function is desirable
- Define the term interposing

Objectives (cont'd.)

- Describe what I/O shielding does
- List environmental concerns when installing PLCs

I/O Section

- Changes voltage or current signal into a logic-level signal:
 - Compatible with the processor
- Input modules provide ON/OFF status of buttons, switches to the processor
- Signal sent to output device based on program logic

Fixed I/O

- Complete unit containing processor, I/O section, and power supply
- Add expansion units with various I/O configurations:
 - To provide more capability or different voltages

Figure 2-2 SLC 500 fixed I/O chassis with optional two-slot expansion

Modular I/O

- More flexible than fixed I/O units
- Various types of input and output modules
 - Housed in a rack or chassis
- Local I/O
 - I/O modules mounted with the processor
- Remote I/O
 - Processor is mounted remotely from I/O

Modular I/O (cont'd.)

- Jumpers or switches used to configure racks
 - DIP switches commonly used
- Device connections must have a distinct address
 - Used to communicate with the processor

Discrete I/O Modules

- Only accept digital or ON/OFF signals
- Discrete input module
 - Communicates status of real-world input device to the processor
 - Available in a wide range of voltages
 - Contains multiple input terminals

Discrete I/O Modules (cont'd.)

AC discrete input module

Figure 2-7 Simplified AC input module circuit with indicator light

Discrete I/O Modules (cont'd.)

DC discrete input module

Figure 2-13 Simplified circuit for DC input module with indicator light

- Fast-responding DC input modules
 - Used with high-speed or high volume applications
 - Examples: encoders, proximity switches to count product from high-speed machine
 - Delay in filtering circuit less than 1 millisecond

- Discrete output modules
 - Control current flow to real-world devices
 - Signals are digital
 - Classified as AC or DC
 - Sized by number of devices that can be connected

Discrete I/O Modules (cont'd.)

AC output module

Figure 2-15 Typical AC output module circuit

- Output fuses
 - Provide protection for overcurrent, shorts, or ground faults
- Status lights
 - Indicate that output point has been turned ON

- Module keying
 - Notches prevent wrong type of module from being installed
- DC output modules
 - Same operation as AC output modules
 - Use a power transistor to control output current

- Sourcing and sinking
 - If a device provides current, it is sourcing
 - If a device receives current, it is sinking
- Contact output modules
 - Electromechanical relay used to open or close a set of contacts

- Interposing relay
 - Used to control loads larger than the current rating of an individual output circuit
- Reed relay output module
 - Used when dry reed relays desirable
- Transistor-transistor logic I/O modules
 - Compatible with other solid-state controls

Analog I/O Modules

- Analog input modules
 - Used to convert analog signals to binary
 - For use by the PLC logic
- Analog output module
 - Changes binary into analog signals
 - Example of use: controlling variable speed controllers

Safety Circuit

- Hardwired emergency stop
 - Removes power to the output devices
 - Independent of the PLC program
 - Required by NEMA standard when operator is exposed to machinery
- Emergency stop relay (ESR) contact
 - Used for safe system restart

Rack Installation

- Factors to consider
 - Temperature
 - Dust
 - Vibration
 - Humidity
 - Wiring distances
 - Accessibility for troubleshooting

Electrical Noise (Surge Suppression)

- Electrical noise
 - Generated when inductive loads are operated by hard contacts
 - High transient voltages when inductive device switched OFF
- Methods to reduce or eliminate noise
 - Isolation

Grounding

- Helps eliminate effects of electromagnetic induction
- Equipment grounding conductor
 - Attached to metal frame of PLC

I/O Shielding

- Shielded cable reduces effect of electrical noise
- Shield should only be grounded at one end
- Shield should be terminated at the I/O rack

Summary

- I/O rack houses input and output modules
 - Modules connect to real-world devices
- I/O categories
 - Fixed or modular
 - Digital or analog
- Consider environmental conditions when installing PLC equipment

