Amendments to the Claims:

'T}-

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (original) A stent comprising a coating based on a polymer of hyaluronic acid

characterized in that the said hyaluronic acid polymer is an ester derivative of hyaluronic acid.

2. (original) A stent according to claim 1 in which the said hyaluronic acid ester

derivative has all or some of the carboxyl groups of the hyaluronic acid esterified with

alcohols selected from those of the aliphatic, arylaliphatic, cycloaliphatic and heterocyclic

series.

3. (original) A stent according to claim 2, in which:

when the said alcohols are of the aliphatic series they are selected from straight or

branched saturated or unsaturated alcohols having from 2 to 12 carbon atoms, optionally

substituted with one or more groups selected from hydroxide, amine, aldehyde, mercaptan or

carboxyl groups or groups derived from these such as for example esters, ethers, acetals,

ketals, thioethers, thioesters, carbamides; in particular when the said alcohols are saturated

aliphatic alcohols they are selected from methyl, ethyl, propyl, isopropyl, normal butyl,

isobutyl, ter-butyl, amyl or pentyl alcohols; when the said alcohols are bivalent aliphatic

alcohols they are selected from the alcohols ethylene glycol, propylene glycol, butylene

glycol, and when the alcohol is a trivalent aliphatic alcohol it is preferably glycerine; when

the said alcohols are amino alcohols, they are selected from aminoethanol, aminopropanol,

aminobutanol and their dimethylene- or diethyleneamine derivatives, piperidine ethanol,

pyrrolidine ethanol or piperazine ethanol; when the said alcohols are carboxy alcohols, they

are selected from lactic, tartaric, maleic or glycolic acids; when the said alcohols are

unsaturated aliphatic alcohols they are preferably allyl alcohols,

when the said alcohols are of the arylaliphatic series they are selected from those

2

having a benzene optionally substituted with from 1 to 3 methyls or hydroxyls or halogen atoms, in particular fluorine, chlorine, bromine and iodine, and in which the aliphatic chain has from 1 to 4 carbon atoms and is optionally substituted by one or more groups selected from primary amine groups, mono- or dimethylated groups or from pyrrolidine or piperidine groups, in particular they are benzyl alcohol or phenylethyl alcohol,

when the said alcohols are of the cycloaliphatic series they are selected from those mono- or polycyclic alcohols containing from 3 to 34 carbon atoms and optionally containing from 1 to 3 hetero atoms selected from O, S, N and optionally substituted with one or more groups selected from hydroxyl, amine, aldehyde, mercaptan or carboxyl groups or groups derived from these such as for example esters, ethers, acetals, ketals, thioethers, thioesters, carbamides; in particular when the said cycloaliphatic alcohols are monocyclic they are selected from those containing from 5 to 7 carbon atoms, optionally substituted with one or more groups selected from hydroxyl, methyl, ethyl, propyl, isopropyl, and in particular they are cyclohexanol, cyclohexandiol, inositol or menthol.

- 4. (currently amended) A stent according any one of the preceding claims to claim 1, in which the degree of esterification of the said hyaluronic acid ester derivative varies from 50% to 100% of the carboxyl groups in the hyaluronic acid.
- 5. **(original)** A stent according to claim 4 in which the degree of esterification varies from 70% to 100% of the carboxyl groups in the hyaluronic acid.
- 6. (currently amended) A stent according to any one of claims from 1 to 5 claim 1, in which the alcohol is benzyl alcohol and the degree of esterification is equal to 100% of the carboxyl groups in the hyaluronic acid.
- 7. (currently amended) A stent according to any one of claims from 1 to 5 claim 1, in which the alcohol is benzyl alcohol and the degree of esterification is equal to 75% of the carboxyl groups in the hyaluronic acid.

Attorney Docket No. 82062-0169 Preliminary Amendment

- 8. (currently amended) A stent according to any one of the preceding claims claim 1, in which a pharmacologically active ingredient is associated with the said hyaluronic acid polymer coating.
- 9. **(original)** A stent according to claim 8 in which the said active ingredient associated with the said hyaluronic acid polymer coating is selected from active ingredients having an anti-inflammatory, antiproliferative or antimigratory action and/or immunosuppressants.
- 10. **(original)** A stent according to claim 8 in which the said active ingredient is 4[(4-methyl-1-piperazinyl)methyl]-N-[4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]phenyl]benzamide methane sulphonate.
- 11. (original) A stent according to claim 9, in which when the active ingredient is an active ingredient having an anti-inflammatory action it is associated with the hyaluronic acid polymer coating in a quantity of between 0.001 mg and 10 mg.
- 12. (original) A stent according to claim 9, in which when the active ingredient is an active ingredient having an anti-proliferative action it is associated with the hyaluronic acid polymer coating in a quantity of between 0.0001 mg and 10 mg.
- 13. (original) A stent according to claim 9, in which when the active ingredient is an active ingredient having an anti-migratory action it is associated with the hyaluronic acid polymer coating in a quantity of between 0.0001 mg and 10 mg.
- 14. (original) A stent according to claim 9, in which when the active ingredient is an immunosuppressant it is associated with the hyaluronic acid polymer coating in a quantity of between 0.0001 mg and 10 mg.
- 15. **(original)** A stent according to claim 10, in which when the active ingredient is 4-[(4-methyl-1-piperazinyl)methyl]-N-[4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-phenyl]benzamide methane sulphonate, this is associated with the hyaluronic acid polymer coating in a quantity of between 0.001 mg and 10 mg.

- 16. (currently amended) A stent according to any one of the preceding claims claim 1, in which the thickness of the hyaluronic acid polymer coating on the stent varies from 0.5 microns to 40 microns, preferably between 1 and 30 microns, even more preferably between 5 and 10 microns.
- 17. (currently amended) A stent according to any one of the preceding claims claim 1, in which the active ingredient and the hyaluronic acid are released from the hyaluronic acid polymer coating over a prolonged time.
- 18. (currently amended) A stent according to elaims 6-and 17 claim 6, in which the active ingredient and the hyaluronic acid are released from the hyaluronic acid polymer coating in a time exceeding one month.
- 19. (currently amended) A stent according to elaims 7 and 17 claim 7, in which the active ingredient and the hyaluronic acid are released from the hyaluronic acid polymer coating within two weeks.
- 20. (original) A stent comprising a layer of hyaluronic acid covalently bound to the surface of the stent itself and a coating of hyaluronic acid polymer as described in claim 1.
- 21. (currently amended) A stent according to any one of the preceding claims claim 1, further comprising a second coating of a polymer having a hydrophobic nature with which a pharmacologically active ingredient is associated.
- 22. **(original)** A stent according to claim 21 in which the said polymer coating having a hydrophobic nature is applied directly to the surface of the stent, beneath the said coating based on hyaluronic acid ester polymer.
- 23. (currently amended) A stent according to claim 21, or 22 in which the said polymer having a hydrophobic nature has a contact angle with water which is greater than 60°.
- 24. **(original)** A stent according to claim 23 in which the said polymer having a hydrophobic nature is selected from polymethyl methacrylate, polybutyl methacrylate,

Attorney Docket No. 82062-0169 Preliminary Amendment

polyisobutylmethacrylate, olefinic polymers, polybutadiene, polyisoprene, poly(acrylonitrile-butadiene-styrene) or polyvinyl acetate.

- 25. (original) A stent according to claim 23 in which the said polymer of a hydrophobic nature is polystyrene.
- 26. (currently amended) A stent according to any one of claims from 21-to 25 claim 21, in which the said active ingredient associated with the said polymer coating of a hydrophobic nature is selected from active ingredients having an anti-inflammatory, antiproliferative or antimigratory action and/or immunosuppressants.
- 27. (currently amended) A stent according to any one of claims from 21 to 26 claim 21, in which the said active ingredient associated with the said polymer coating of a hydrophobic nature is 4-[(4-methyl-1-piperazinyl)methyl]-N-[4-methyl-3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]-phenyl]benzamide methane sulphonate.
- 28. (currently amended) A stent according to any one of claims from 21 to 27 claim 21, in which the quantity of the said active ingredient associated with the said polymer coating of a hydrophobic nature is between 0.0001 mg and 10 mg.
- 29. (currently amended) A stent according to any one of claims from 21 to 28 claim 21, in which the thickness of the said polymer coating of a hydrophobic nature on the stent varies from 0.5 microns to 40 microns, preferably between 1 and 30 microns, even more preferably between 5 and 10 microns.
- 30. (currently amended) A stent according to any one of claims from 21 to 29 claim 21, in which the said active ingredient is released from the said polymer coating of a hydrophobic nature in a time of one month.
- 31. (currently amended) A stent according to any one of claims from 21 to 30 claim 21, in which the active ingredient and the quantity of active ingredient associated with the said two polymer coatings respectively is the same or different.
 - 32. (currently amended) A process-for-obtaining-a stent according to any one

Attorney Docket No. 82062-0169 Preliminary Amendment

of claims from 1 to 19 claim 21, which further includes a layer of hyaluronic acid covalently bound to the said polymer coating of a hydrophobic nature comprising the stages of:

- a) dissolving the hyaluronic acid ester and the active ingredient in the same organic solvent to obtain a solution,
 - b) immersing and then removing the stent in the said solution,
 - e) removing the solvent by evaporation.
- 33. (currently amended) A process according to claim 32 in which the said organic solvent is a dipolar aprotic solvent for obtaining a coated stent comprising the stages of:
 - a) dissolving the hyaluronic acid ester and the active ingredient in the same organic solvent to obtain a solution,
 - b) immersing and then removing the stent in the said solution,
 - c) removing the solvent by evaporation.
- 34. (currently amended) A process according to claim 33 in which the said organic solvent is <u>a dipolar aprotic solvent</u> selected from dimethyl sulphoxide, N-methylpyrrolidone, dimethylformamide or hexafluoroisopropanol.
- 35. (currently amended) A process according to <u>claim 34</u>, any one of claims from 32 to 34 for obtaining a stent according to claim 20 comprising a stage of pre-treatment of the surface of the stent to which a layer of covalently bound hyaluronic acid is applied in which the said organic solvent is selected from dimethyl sulphoxide, N-methylpyrrolidone, dimethylformamide or hexafluoroisopropanol.
- 36. (currently amended) A process according to claim 33, any one of claims from 32 to 34 in order to obtain a stent according to any one of claims from 21 to 30 in which the said stages a), b), c) are preceded by the following stages in order:
 - n1) dissolving the polymer of a hydrophobic nature and the active ingredient in

Attorney Docket No. 82062-0169 Preliminary Amendment

the same organic solvent to obtain solution or a suspension,

- b¹) immersing and then removing the stent in the said solution or suspension,
- e¹) removing the solvent by evaporation

comprising a stage of pre-treatment of the surface of the stent to which a layer of covalently bound hyaluronic acid is applied.

37. (currently amended) A process according to claim 33 36 in which the said organic solvent is a low-boiling point solvent have a boiling point at ambient pressure which is below 100°C, preferably below 80°C stages a), b), c) are preceded by the following stages in order:

a¹) dissolving the polymer of a hydrophobic nature and the active ingredient in
the same organic solvent to obtain a solution or a suspension,

- $\underline{b^1}$) immersing and then removing the stent in the said solution or suspension, $\underline{c^1}$) removing the solvent by evaporation.
- 38. (currently amended) A process according to claim 37 in which the said organic solvent selected from dichloromethane, methylene chloride, acctone, aliphatic hydrocarbons ro cyclohexan is a low-boiling-point solvent having a boiling point at ambient pressure which is below 100°C, preferably below 80°C.
- 39. (currently amended) A process according to claim 38 any one of claims from 36 to 38 in order to obtain a stent according to claim 31 comprising a further stage d¹) in which a layer of covalently bound hyaluronic acid is applied to the polymer coating of a hydrophobic nature in which the said organic solvent is selected from dichloromethane, methylene chloride, acetone, aliphatic hydrocarbons or cyclohexane.
- 40. (currently amended) A process according to claim 37 comprising a further stage d¹) in which a layer of covalently bound hyaluronic acid is applied to the polymer coating of a hydrophobic nature Use of a hyaluronic acid ester for the preparation of a coating for a stent for use in angiplasty.

Attorney Docket No. 82062-0169 Preliminary Amendment

- 41. (currently amended) Use of a hyaluronic acid ester for the preparation of a coating for a stent for use in angioplasty according to claim 40 in association with a pharmacologically active ingredient.
- 42. (New) Use according to claim 41 in association with a pharmacologically active ingredient.