Particle spectrograph

Wave operator and propagator

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_2^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}$ †	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	t_2

Source constraints					
SO(3) irreps	Fundamental fields	Multiplicities			
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1			
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\ \alpha}$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3			
$\tau_{1^{+}}^{\#1\alpha\beta} + i k \sigma_{1^{+}}^{\#2\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3			
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$				
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$				
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$				
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5				
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$				
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$				
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$				
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{ \delta} -$				
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$				
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$				
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$				
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$				
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$				
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi} -$				
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$				
Total constraints/gauge generators: 16					

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}lphaeta}^{\#2}$	$f_{1+\alpha\beta}^{\#1}$	$\omega_{1-\alpha}^{\#1}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1-\alpha}^{\#1}$	$f_{1\alpha}^{2}$
$\omega_{1}^{\sharp 1}\dagger^{lphaeta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2t_2)}{3 \sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	<u>t₁+t₂</u> 3	$\frac{1}{3}ik(t_1+t_2)$	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$-\frac{1}{3}ik(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_{1}^{\sharp 1}\dagger^{lpha}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	- Ī k t ₁	0	0	0

_	3 V2	3	3						_	_ ₆	<i>t</i> 4	t 7 7 7	9
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$-\frac{1}{3} i k (t_1 + t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0		Quadratic (free) action S==	3	, 2		
$\omega_{1}^{#1}\dagger^{lpha}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁		ree)	3			
$\omega_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0		tic (f	$\int \int \int \int \int (e^{\frac{\pi}{\alpha}} e^{\alpha}) e^{\alpha}$			
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0		ladra ::)[[[
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	- Ī k t 1	0	0	0		Qua S==	7			
	$\sigma_{1^{+}lphaeta}^{\sharp1}$		$\sigma_{1^{+}\alpha\beta}^{\#2}$			$\tau_{1^{+}\alpha\beta}^{\#1}$			$\sigma_{1-lpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$ au_{1}^{\#1}$ α	$\tau_{1}^{\#2}{}_{\alpha}$	
$\sigma_{1}^{\#1} \dagger^{\alpha \mu}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2r_5(t_1+t_2)}$	$\frac{1}{(1+k^2)(3)}$	$\frac{\sqrt{2} (t_1-2t_2)}{1+k^2) (3t_1t_2+2k^2r_5(t_1+t_2))}$		$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$		t ₂))	0	0	0	0		
$\sigma_{1}^{\#2} \dagger^{\alpha \mu}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1))}$	$(1+t_2)$) $(1+k^2)^2$	$\frac{6k^2r_5+t_1+4t_2}{)^2(3t_1t_2+2k^2r_5(t_1+t_2))}$		ik (6 k ² -k ²) ² (3 t ₁	$\frac{r_5 + t_1}{t_2 + 2k}$	+4 <i>t</i> ₂) ² r ₅ (<i>t</i> ₁ +	-t ₂))	0	0	0	0	
$\tau_{1}^{\#1} \dagger^{\alpha \mu}$	$\frac{i \sqrt{2} k (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5)(t_1 + k^2)}$	$\frac{1}{1+t_2)} - \frac{ik}{(1+k^2)^2}$	$\frac{(6 k^2 r_5 + t_1 + 4 t_2)}{(3 t_1 t_2 + 2 k^2 r_5)(t_1)}$	+t ₂)) (1+	$k^2 (6k^2 - k^2)^2 (3t_1$	$\frac{r_5 + t_1}{t_2 + 2k}$	+4 <i>t</i> ₂) ² r ₅ (<i>t</i> ₁ +	-t ₂))	0	0	0	0	
$\sigma_1^{\#1} \dagger^{\alpha}$	0		0			0			0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$	
$\sigma_1^{#2} \dagger^{c}$	0		0		0			$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2k^2r_5 + t_1}{(t_1 + 2k^2t_1)^2}$	0	$-\frac{i\sqrt{2} k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$		
$\tau_1^{\#1} + ^{\alpha}$	0		0		0			0	0	0	0		
$\tau_1^{#2} + ^{\circ}$	0		0			0			$\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_5\text{-}t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 r_5 + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$	

0	0	$\frac{t_1}{2}$
$-\frac{\sqrt{2}}{\sqrt{2}}$	$k^2 t_1$	0
<u>7</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0

 $6\,r_5\,\partial_i\omega_{\theta_{\kappa}}^{\kappa}\,\partial^{\theta}\omega^{\alpha_i}_{\alpha}-6\,r_5\,\partial_{\theta}\omega_{i_{\kappa}}^{\kappa}\,\partial^{\theta}\omega^{\alpha_i}_{\alpha}-6\,r_5\,\partial_{\alpha}\omega^{\alpha_i\theta}$

 $12r_5 \partial^{\theta} \omega^{\alpha\prime}_{\alpha} \partial_{\kappa} \omega^{\kappa}_{\theta}))[t, x, y, z] dz dy dx dt$

 $t_2 \partial_{\theta} f_{,\alpha} \partial^{\theta} f^{\alpha\prime} + 2 (t_1 + t_2) \omega_{\alpha\prime\theta} (\omega^{\alpha\prime\theta} + 2 \partial^{\theta} f^{\alpha\prime}) +$

 $2 \omega_{\alpha\theta_{1}} ((t_{1}-2t_{2}) \omega^{\alpha\prime\theta} + 2(2t_{1}-t_{2}) \partial^{\theta}f^{\alpha\prime}) +$

 $4t_1\partial_\theta f_{\alpha_l}\partial^\theta f^{\alpha_l} + t_2\partial_\theta f_{\alpha_l}\partial^\theta f^{\alpha_l} + 2t_1\partial_\theta f_{l\alpha}\partial^\theta f^{\alpha_l}$

 $4\,t_1\,\partial_\alpha f_{\,\,\prime\theta}\,\partial^\theta f^{\alpha\prime} + 2\,t_2\,\partial_\alpha f_{\,\,\prime\theta}\,\partial^\theta f^{\alpha\prime} - 4\,t_1\,\partial_\alpha f_{\,\,\theta\prime}\,\partial^\theta f^{\alpha\prime}$

 $t_2 \, \partial_\alpha f_{\theta_1} \, \partial^\theta f^{\alpha\prime} + 2 \, t_1 \, \partial_{\prime} f_{\alpha \theta} \, \partial^\theta f^{\alpha\prime} - t_2 \, \partial_{\prime} f_{\alpha \theta} \, \partial^\theta f^{\alpha\prime} +$

Massive and massless spectra

	Massive particle			
,	Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$		
	Polarisations:	3		
	Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$		
	Spin:	1		
	Parity:	Even		

(No massless particles)

Unitarity conditions

 $r_5 > 0 \&\& (t_1 < 0 \&\& (t_2 < 0 || t_2 > -t_1)) || (t_1 > 0 \&\& -t_1 < t_2 < 0)$