

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

® Offenlegungsschrift

DE 199 07 492 A 1

199 07 492.5 (21) Aktenzeichen: 22. 2.99 (2) Anmeldetag:

(3) Offenlegungstag: 26. 8.99 (5) Int. Cl. 6: F 04 B 37/10 F 04 B 39/02 F 25 B 31/00

(3) Unionspriorität:

10-42386

24.02.98

(7) Anmelder:

Denso Corp., Kariya, Aichi, JP

(7) Vertreter:

Zumstein & Klingseisen, 80331 München

(72) 'Erfinder:

Kato, Hiroyasu, Nishio, Aichi, JP; Nakashima, Masafumi, Nishio, Aichi, JP; Sakai, Takeshi, Nishio, Aichi, JP; Uchida, Kazuhide, Nishio, Aichi, JP

Die folgenden Angaben sind den von Anmelder eingereichten Unterlagen entnommen

(54) CO₂-Kompressor

Es wird ein CO2-Kompressor zum Unterdrucksetzen und Transportieren eines Schmiermittels unter einem Abgabedruck offenbart. Wenn der Ölweg in seiner Größe verkleinert wird oder ein druckreduzierendes Teil eingesetzt wird, um den großen Differenzdruck, der zwischen dem Abgabedruck und dem Einlaßdruck bewirkt wird, zu handhaben, unterliegt der Ölweg der Gefahr, daß er durch Fremdmaterial leicht verstopft wird. In Hinblick hierauf ist eine intermittierende Ölzuführungseinrichtung in dem Ölweg unter Verwendung des Gleitkontaktbereiches zwischen einem festgelegten Element des Kompressorkörpers und einem bewegbaren Element ausgebildet. Auf diese Weise wird die wesentliche Schmierzeitperiode verkürzt und wird die Menge des zugeführten Öls beschränkt.

Beschreibung

Die Erfindung betrifft einen CO₂-Kompressor zum Komprimieren des CO₂-Kühl- bzw. Kältemittels (des Kohlenstoffdioxid-Kühl- bzw. Kältemittels), das in einem Klimatisierungssystem verwendet wird, oder insbesondere eine Schmiermittelzuführungseinheit für den CO₂-Kompressor.

Bei einem Klimatisierungssystem, das ein Fluorid, beispielsweise HFC134, als ein Kühl- bzw. Kältemittel verwendet, wie es im Stand der Technik weit verbreitet verwen- 10 det worden ist, wird eine Schmiermittelzuführungseinheit benutzt, in der ein Schmiermittel, beispielsweise ein Kühlmaschinenöl, das zuvor mit dem Kühl- bzw. Kältemittel vermischt worden ist, aus dem komprimierten Kühl- bzw. Kältemittel abgeschieden und vorübergehend in der Abgabekammer des Kühl- bzw. Kältemittelkompressors gehalten wird, und wird das so abgeschiedene Schmiermittel durch den Differenzdruck zwischen dem Abgabedruck und dem Einlaßdruck des Kompressors selbst oder durch den Differenzdruck zwischen dem Abgabedruck oder dem Einlaßdruck und dem Druck zwischen den beiden Drücken ohne Verwendung einer Schmiermittelpumpe oder dergleichen: die eine Antriebsleistung erforderlich macht, transportiert, wodurch das Schmiermittel zu den Gleitteilen oder dergleichen des Kühl- bzw. Kältemittelkompressors geführt wird, 25 der eine Schmierung zum zwangsweisen Schmieren dieser Teile erforderlich macht.

Wenn bei der obenbeschriebenen Schmiermittelzuführungseinheit der Differenzdruck zwischen dem Abgabedruck und dem Einlaßdruck, der für den Transport des 30 Schmiermittels verwendet wird, mit der Drehzahl des Kompressors ansteigt, nimmt die Strömungsgeschwindigkeit des Schmiermittels gelegentlich mehr als notwendig zu. Daher ist, wie beispielsweise in der ungeprüften japanischen Gebrauchsmuster-Veröffentlichung (Kokai) Nr. 59-119 992 beschrieben ist, ein Druckreduzierungsteil, beispielsweise ein dünnes Einschnürungselement oder ein poröses Material in einen Ölweg eingesetzt, oder ist der Ölweg des Schmiermittels eng und lang ausgebildet, um seinen Widerstand zu vergrößern, wodurch die Strömungsgeschwindigkeit des 40 Schmiermittels unterdrückt bzw. herabgesetzt wird.

Bei einem Klimatisierungssystem, das CO₂ als ein Kühlbzw. Kältemittel verwendet, ist der Differenzdruck zwischen dem Einlaßdruck und dem Abgabedruck etwa 5 mal größer als derjenige für ein Klimatisierungssystem, das ein 45 übliches Kälte- bzw. Kühlmittel, beispielsweise HFC134, verwendet. Zur Zwangsschmierung durch den Transport des Schmiermittels unter dem Differenzdruck zwischen dem Abgabedruck und dem Einlaßdruck des Kühl- bzw. Kältemittelkompressors, der CO₂ als ein Kühl- bzw. Kältemittelkompressors, der CO₂ als ein Kühl- bzw. Kältemittel verwendet, ist es notwendig, die Strömungsgeschwindigkeit des Schmiermittels viel stärker herabzusetzen als dann, wenn ein übliches Kühl- bzw. Kältemittel verwendet wird. Somit muß ein Einschnürungselement oder ein ähnliches Druckreduzierungselement, das in dem Ölweg angeordnet 55 ist, sehr dünn und lang sein.

Das Herstellen eines dünnen, langen Druckreduzierungsteils zur Verwendung in dem Schmiermittelweg erfordert Arbeit für die maschinelle Verarbeitung, was zu hohen Kosten führt. Nicht nur dies; Fremdmaterial, beispielsweise 60 Metallstäub, der zu der Zeit der maschinellen Verarbeitung erzeugt worden ist und gelegentlich an den einen Kühlzyklus bildenden Teilen haften bleibt, oder Fremdmaterial oder ein hoch viskoser Klumpen, der erzeugt wird, wenn ein kondensierendes Material, das obwohl selten in dem Kühl-65 bzw. Kältemittel oder dem Schmiermittel beigemischt ist, kondensiert, können die druckreduzierenden Teile, beispielsweise ein dünnes Einschnürungselement, das in der

Schmiermittelzuführungseinheit ausgebildet ist, verstopfen, und verhindert eine stabile Schmierung. Dies kann die Leistung und Zuverlässigkeit des Kompressors und damit des Klimatisierungssystems herabsetzen.

Die Aufgabe der Erfindung ist es, sich mit den obenangegebenen Problemen der herkömmlichen Schmiermittelzuführungseinheit, die für den CO₂-Kompressor verwendet wird, zu befassen und die Probleme mit neuen Mitteln zu überwinden, wodurch verhindert wird, daß der Ölweg der Schmiermittelzuführungseinheit des CO₂-Kompressors mit Fremdmaterial verstopft wird, um so die stabile Zuführung einer geeigneten Schmiermittelmenge sicherzustellen, während gleichzeitig die Herstellungskosten der mit der Schmiermittelzuführungseinheit des CO₂-Kompressors verbundenen Teile herabgesetzt werden.

Erfindungsgemäß ist als ein Mittel zur Lösung der obenbeschriebenen Probleme ein CO₂-Kompressor vorgesehen, der in jedem der beigefügten Ansprüche beschrieben ist.

Bei einem CO2-Kompressor gemäß dieser Erfindung wird das in einem Ölbehälter gespeicherte Schmiermittel mittels des Differenzdrucks zwischen dem auslaßseitigen Druck und dem einlaßseitigen Druck unter Druck gesetzt und unter Druck den eine Schmierung benötigenden Teilen zugeführt. Daher ist die Schmiermittelzuführungseinheit, die Strom verbraucht, wie beispielsweise eine Schmiermittelpumpe, nicht erforderlich. Auch wird trotz des sehr großen Differenzdrucks zwischen dem Abgabedruck und dem Einlaßdruck, der ein Problem einzig für einen Kühl- bzw. Kältemittelkompressor eines Klimatisierungssystems ist, das das CO₂-Kühl- bzw. Kältemittel verwendet, das Schmiermittel den eine Schmierung benötigenden Teilen durch Einstellen der Schmiermittelströmungsgeschwindigkeit ohne Verwendung von irgendwelchen Druckreduzierungsteilen zum Verkleinern der Größe des Schmiermittelströmungsweges zugeführt. Daher ist im Vergleich zu dem Fall der Verwendung eines druckreduzierenden Teils, beispielsweise eines sehr dünnen Einschnürungselementes, um dem großen Differenzdruck zu entsprechen, die Wahrscheinlichkeit, daß die Druckreduzierungsteile mit Fremdmaterial verstopft werden, überwunden, und kann eine stabile, zuverlässige Schmiermittelzuführungseinheit realisiert werden. Des weiteren werden durch das Fehlen des Vorgangs der Bearbeitung der druckreduzierenden Teile die Herstellungskosten herabgesetzt.

Insbesondere umfaßt der CO2-Kompressor gemäß der vorliegenden Erfindung etwas, was als eine intermittierende Schmiereinrichtung bezeichnet wird, die mindestens in einem Teil des Ölwegs zum intermittierenden Zuführen von Öl angeordnet ist. Daher kann die Menge (Strömungsgeschwindigkeit) der Schmiermittelzuführung frei eingestellt und verändert werden, indem die Länge der Schmierungszeit mit der intermittierenden Schmiereinrichtung ohne irgendwelche druckreduzierenden Teile in dem Ölweg eingestellt wird. Demzufolge gibt es kein Problem, daß der Olweg mit Fremdmaterial verstopft wird, was andererseits in den druckreduzierenden Teilen verursacht werden könnte, die in dem Ölweg verwendet werden. Somit kann eine stabile und zuverlässige Schmiermittelzuführungseinheit realisiert werden. Gleichzeitig kann die überwundene Notwendigkeit der Bearbeitung der druckreduzierenden Teile die Herstellungskosten senken.

In dem Fall, bei dem der CO₂-Kompressor der vorliegenden Erfindung aus einem CO₂-Kompressor des Spiraltyps gebildet ist, kann die intermittierende Schmiereinrichtung, die in dem Ölweg angeordnet ist, aus einer End- bzw. Stimplatte der bewegbaren Spirale des Spiralkompressors und einem dieser gegenüberliegenden festgelegten Teil konfiguriert sein. Da der Ölweg durch die Umlaufbewegung der

End- bzw. Stimplatte automatisch geöffnet und geschlossen wird, ist es nicht notwendig, die intermittierende Schmiereinrichtung mit einem speziellen Ventil und einem Antriebsmittel für dieses oder dergleichen auszustatten. In diesem Fall kann die intermittierende Schmiereinrichtung zwischen der Rückseite der Stirn- bzw. Endplatte der bewegbaren Spirale und der Fläche des dieser gegenüberliegenden festgelegten Elementes oder zwischen der Vorderseite der Stirnbzw. Endplatte der bewegbaren Spirale und der Fläche des dieser gegenüberliegenden festgelegten Elementes gebildet 10

In dem Fall, daß der CO2-Kompressor dieser Erfindung aus einem Kompressor des Kolbentyps insbesondere mit einem hin- und hergehenden Kolben gebildet ist, kann andererseits die intermittierende Schmiereinrichtung, die in dem 15 Olweg angeordnet ist, zwischen dem Kolben und der Zylinderbohrung ausgebildet sein, in die der Kolben verschiebbar eingesetzt ist. In diesem Fall wird die Öffnung des Ölweges zu der Zylinderbohrung durch die hin- und hergehende Bewegung des Kolbens geöffnet oder geschlossen. Der Ölweg 20 wird durch den Kolben automatisch geöffnet oder geschlossen, und daher ist es nicht notwendig, eine besondere Ventileinrichtung für die intermittierende Schmiereinrichtung vorzusehen. Auch kann in dem Fall, daß ein Kolbenring für den Kolben vorgesehen ist, die intermittierende Schmiereinrich-, 25 tung zwischen dem Kolbenring und der Zylinderbohrung ausgebildet sein, in die der Kolben verschiebbar eingesetzt ist. In diesem Fall kann die gesamte Bauweise vereinfacht. Bei der ersten Ausführungsform ist ein Einlaßanschluß 16 werden, indem ein Teil des Ölweges mit einer Kolbenringnut gestaltet wird.

Nachfolgend wird die Erfindung ausschließlich beispiel haft weiter ins einzelne gehend unter Bezugnahme auf die Zeichnungen erläutert, in denen zeigen:

Fig. 1 eine vordere Längs-Schnittansicht mit der Darstellung einer ersten Ausführungsform der Erfindung;

Fig. 2 vier seitliche Querschnittansichten (a) bis (d) entlang der Linie II-II in Fig. 1 unter Darstellung der bewegbaren Spirale, die jeweils um 90° gedreht ist;

Fig. 3 eine vordere Längsschnittansicht mit der Darstellung einer zweiten Ausführungsform der Erfindung:

Fig. 1 zeigt einen mittels eines Elektromotors angetriebenen CO2-Kompressor des Spiraltyps, der einen CO2-Kom-, pressor einer ersten Ausführungsform der Erfindung bildet. Ein größerer rechter Teil des Innenraums eines Hauptgehäuses 1 ist von einem Motor 2 eingenommen, der eine Antriebseinheit bildet. Insbesondere ist ein Feldkern 3 entlang der Innenfläche des Gehäuses 1 befestigt, und ist ein Anker 4 mit einer Vielzahl von Permanentmagneten einstückig mittels einer Welle 5 darin gelagert, wodurch ein Wechselstrommotor 2 gebildet ist. Der Anker 4 ist axial mit Hilfe ei- 50 nes vorderen und eines hinteren Lagers 6a, 6b zum Abstützen der Welle 5 abgestützt und geeignet, sich gegenüber dem Feldkern 3 frei zu drehen.

Ein Ende der Welle 5 erstreckt sich in ein Kompressorgehäuse 7, das durch Verschrauben einstückig mit dem Ge- 55 häuse 1 verbunden ist und hierdurch eine gegenüber dem axialen Zentrum der Welle 5 exzentrische Kurbel 5a bildet. Die Kurbel 5a stützt drehbar einen Ansatz 9c am Zentrum einer bewegbaren Spirale 9 über ein Lager 8 ab. Obwohl nicht dargestellt ist eine Stirn- bzw. Endplatte 9d der bewegbaren Spirale 9 mit einer drehfesten Einrichtung ausgestattet, um eine Drehung zu verhindern, während sie eine umlaufende Bewegung der bewegbaren Spirale 9 zuläßt.

Eine Gleiteinheit 22 ist in gleitender Berührung mit der Rückfläche 9g der Stirn- bzw. Endplatte 9d der bewegbaren Spirale und der linken Stirnfläche 7e in Fig. 1 des Kompressorgehäuses 7 als Schubaufnahmeflächen ausgebildet. Auf diese Weise ist eine Schubabstützeinrichtung ausgebildet, in

der das Fluid in der Arbeitskammer, die zwischen Volutenschaufeln 9f, 11f der beiden Spiralen 9, 11 gebildet ist, komprimiert wird; und die sich ergebende Kompressions-Reaktionskraft, die hierdurch erzeugt wird, drückt die bewegbare Spirale 9 in der Zeichnung nach rechts, während gleichzeitig die bewegbare Spirale 9 axial abgestützt wird. Während die Kompressions-Reaktionskraft in der Arbeitskammer an den Schubaufnahmeflächen 9g, 7e der Gleiteinheit 22 wirkt, wird somit ein Schub erzeugt um die bewegbare Spirale 9 in Richtung zu der festgelegten Spirale 11 zurückzudrücken.

Die zentrale Arbeitskammer 12, die zwischen den Volutenschaufeln 9f, 11f der beiden Spiralen 9, 11 gebildet ist, die kämmend miteinander kombiniert sind, ist dazu geeignet, eine Verbindung mit einer Auslaßkammer 14 herzustellen, die als ein Raum außerhalb der Stirn- bzw. Endplatte 11d der festgelegten Spirale 11 gebildet ist, wenn das Abgabeventil 13, das ein Rückschlagventil des bei konstantem Druck offenen Typs bildet, öffnet. Die Auslaßkammer 14, die mittels eines Deckels 15 verschlossen ist, steht mit dem Inneren des Hauptgehäuses 1 über einen nicht dargestellten Weg in Verbindung und stellt weiter über die Spalten des Feldkerns 3 und der Spule 19 des Motors 2 eine Verbindung mit einem Auslaßanschluß 23 her. Der Auslaßanschluß 23 ist mit dem Kühl- bzw. Kältezyklus des Klimatisierungssystems verbunden, das von CO2 als Kühl- bzw. Kältemittel Gebrauch macht.

an dem oberen Teil der Stirn-bzw. Endplatte 11 d der festge-30 legten Spirale 11 angeordnet. Wenn die äußerste Arbeitskammer einer Vielzahl von sichelförmigen Arbeitskammern 17, die zwischen den Volutenschaufeln 9f, 11f in der Nähe des äußeren Umfangs vom Zentrum der beiden Spiralen 9, 11 ausgebildet ist, in Richtung zu dem äußeren Umfang hin geöffnet ist, stellt die besondere Arbeitskammer 17 eine Verbindung mit dem Einlaßanschluß 16 her, so daß das CO₂, das zu komprimieren ist, in den Einlaßanschluß 16 eintreten

Der mittels eines Elektromotors angetriebene CO2-Kompressor des Spiraltyps gemäß dieser Ausführungsform besitzt die obenbeschriebene Konfiguration. Wenn die Spule 19 des Motors 2 mit Wechselstrom versorgt wird, werden daher der Anker 4 und die Welle 5, die mit dem Anker 4 einstückig verbunden ist, in Umlaufrichtung angetrieben, und wird wie bei dem gewöhnlichen Kompressor des Spiraltyps die bewegbare Spirale 9 in Umlaufrichtung mittels der Kurbel 5a mit einer exzentrischen Welle angetrieben. In Hinblick auf die Tatsache, daß die bewegbare Spirale 9 umlaufen kann, sich jedoch infolge der Drehsperreinrichtung, nicht dargestellt, nicht drehen kann, lassen jedoch die sichelförmigen Arbeitskammern 17, die zwischen den Volutenschaufeln 9f, 11f der beiden Spiralen 9, 11 gebildet sind, das dort befindliche CO2-Gas von dem Einlaßanschluß 16 ausströmen, wenn der äußere Umfangsbereich der Arbeitskammern 17 offen ist. Nachdem der gleiche äußere Umfangsbereich verschlossen ist, bewegt sich das CO2-Gas allmählich radial in Richtung nach innen, wobei sein Volumen verkleinert wird. Auf diese Weise wird das CO2-Gas zu einem hohen Druck komprimiert. Das komprimierte CO2-Gas wird in die zentrale Arbeitskammer 17 abgegeben, wenn die sichelförmigen Arbeitskammern 17 in Richtung zu der zentralen Arbeitskammer 12 hin offen sind. Wenn der Druck der Arbeitskammer 12 den Öffnungsdruck des Auslaßventils 13 überschreitet, öffnet sich weiterhin das Auslaßventil 13, so daß das komprimierte CO2 in die Auslaßkammer 14 abgegeben wird.

Das komprimierte CO2-Gas in der Auslaßkammer 14 strömt in das Hauptgehäuse 1 ein und in Richtung zu dem Auslaßanschluß 23 über einen nicht dargestellten Weg, wie mittels eines Pfeils angegeben ist. In der Zwischenzeit wird das Schmiermittel, wie das Kältemaschinenöl, das mit CO2 vermischt ist, als Kühl- bzw. Kältemittel abgeschieden, und verbleibt es in dem Ölbehälter 21 an dem Boden des Gehäuses 1. Im Laufe des Vorgangs schmiert das Schmiermittel selbstverständlich die inneren Gleitteile wie die Lager des Motors 2. Der Druck des komprimierten CO₂, d. h. der Abgabedruck, wird an dem in dem Hauptgehäuse 1 und somit in dem Ölbehälter 21, der an dessen Boden ausgebildet ist, gehaltenen Schmiermittel ausgeübt. Das komprimierte CO2-Gas, das durch die Spalten der inneren Bauteile des Motors 2 in dem Gehäuse 1 einströmt, wirkt auch in Hinblick darauf, die Teile, die die Spule 19 des Motor 2 etc. umfassen, zu

Das Merkmal der ersten Ausführungsform besteht darin, daß ein Ölweg 20 eine Verbindung zwischen dem Kompressorgehäuse 7 herstellt. Der Ölweg 20 stellt eine Verbindung zwischen dem Ölbehälter 21, der in dem unteren Teil des Hauptgehäuses 1 zum Speichern des aus dem CO2-Kühl- 20 schluß 20a an der Gleiteinheit 22 zwischen der Rückfläche bzw. Kältemittel abgeschiedenen Schmiermittels ausgebildet ist, und dem Auslaßanschluß 20a, der sich an der durch die Umlaufbewegung der End- bzw. Stirnplatte 9d der bewegbaren Spirale bewirkten Position öffnet, an der Stirnbzw. Endfläche 7e des Gehäuses 1 her, das die Gleiteinheit 25 22 in gleitender Berührung mit der Rückfläche 9g der Stirnbzw. Endplatte 9d der bewegbaren Spirale 9 bildet.

Fig. 2 ist eine Seitenansicht entlang der Linie II-II von Fig. 1, und die vier Übersichten (a), (b), (c) und (d) derselben zeigen den Zustand der bewegbaren Spirale 9, die sich 30 zunehmend um 90° von dem Zustand (a) aus bewegt hat. In (a) von Fig. 2 ist der Auslaßanschluß 20a des Ölwegs nicht durch die Stirn- bzw. Endplatte 9d der bewegbaren Spirale 9 abgedeckt, sondern ist in Richtung zu der Einlaßkammer 24 hin offen. Daher bewirkt der Innendruck des Ölbehälters 21, 35 d. h. der Différenzdruck zwischen dem Abgabedruck des CO2-Kompressors und dem Einlaßdruck der Einlaßkammer 24, daß das Schmiermittel in dem Ölbehälter 21 unter dem Druck zu dem Abgabeanschluß 20a hin bewegt wird, der in der Gleiteinheit 22 ausgebildet ist, und zwar über dem Öl- 40 weg 20. Demzufolge wird das Schmiermittel den Gleitberührungsbereichen der Volutenschaufeln 9f, 11f der beiden Spiralen 9, 11, die die Arbeitskammern 17 und die Arbeitskammer 12 bilden, zugeführt, und schmiert es diese ausrei-

Bei dem in (b) bis (d) von Fig. 2 dargestelltem Zustand, bei dem die bewegbare Spirale 9 in Umlauf bewegt wird und der Abgabeanschluß 20a durch die Rückseite 9g der Stirnbzw. Endplatte 9d abgedeckt ist, ist die Strömung des durch den Ölweg 20 hindurchtretenden Schmiermittels unterbro- 50 chen bzw. abgeschaltet. Im Laufe der Arbeit wird die Rückfläche 9g der Stirn- bzw. Endplatte 9d gegen die Stirn- bzw. Endfläche 7e des Kompressorgehäuses 7 durch die Kompressions-Reaktionskraft gedrückt, die in den Arbeitskammern 12, 17 ausgeübt wird. Der Abgabeanschluß 20a ist so- 55 mit definitiv verschlossen. Folglich wird das Schmiermittel intermittierend von dem Auslaßanschluß 20a aus zugeführt, und ist die zeitliche Dauer der Zuführung des Schmiermittels wesentlich verkürzt. Dies macht es seinerseits möglich, die Menge des über den Auslaßanschluß 20a während einer gegebenen Zeit zugeführten Schmiermittels zu vergrößern, wenn der Auslaßanschluß 20a offen ist. Daher sind keine druckreduzierenden Teile, wie beispielsweise das Einschnürungselement zum Begrenzen der Strömungsgeschwindigkeit des Schmiermittels, in dem Ölweg 20 erforderlich. Demzufolge sind die Probleme des Verstopfens der druckreduzierenden Teile durch Fremdmaterial und der zusätzlichen Kosten der maschinellen Bearbeitung vermieden. So-

mit kann das Schmiermittel stabil und definitiv zugeführt werden, während gleichzeitig die Kosten herabgesetzt und die Leistung und Zuverlässigkeit des Kompressors verbessert werden.

Bei dem obenbeschriebenen Fall können die wesentliche zeitliche Dauer der Zuführung des Schmiermittels und der Menge des zugeführten Schmiermittels verändert werden, indem die Öffnungsstellung des Auslaßanschlusses 20a des Ölwegs 20 an der Stirnfläche 7e des Kompressorgehäuses 7 verändert wird. Die Menge des zugeführten Schmiermittels kann somit leicht entsprechend der Art des Kompressors verändert werden. Die gleiche Funktion wird erreicht, indem ein Verbindungsloch eine Rückhalteeinrichtung oder dergleichen, die mit dem Auslaßanschluß 20a fluchtet, geöffnet wird, welche Rückhalteeinrichtung oder dergleichen als ein Gleitelement in die Stirnfläche 7e des Gehäuses 7, das die Gleiteinheit 22 bildet, eingesetzt ist.

Bei der dargestellten ersten Ausführungsform ist die intermittierende Ölzuführungseinrichtung mit dem Auslaßan-9g der Stirn- bzw. Endplatte 9d der bewegbaren Spirale 9 und der Stirnfläche 7e des Kompressorgehäuses 7 ausgebildei. Als eine Alternative kann die intermittierende Ölzuführungseinrichtung zwischen der anderen Fläche, d. h. der Vorderfläche 9i der Stirn-bzw. Endplatte 9d der bewegbaren Spirale 9, und einem vorstehenden Bereich ausgebildet sein, der nicht dargestellt ist und so ausgebildet ist, daß er sich der Stirn- bzw. Endplatte 11d der festgelegten Spirale 11 in entgegengesetzter Beziehung zu der Vorderfläche 9i erstreckt. Auch ist das Merkmal der ersten Ausführungsform nicht auf den mittels eines Elektromotors angetriebenen Kompressor des Spiraltyps, der in seiner Gesamtheit gemäß Darstellung umschlossen ist, beschränkt, sondern auch bei einem offenen CO2-Kompressor des Spiraltyps anwendbar.

Fig. 3 ist eine vordere Längs-Schnittansicht durch einen CO2-Kompressor des Taumelscheibentyps, der als ein offener Typ konfiguriert ist, dies gemäß einer zweiten Ausführungsform der Erfindung. In Fig. 3 bezeichnet das Bezugszeichen 31 ein vorderes Gehäuse, bezeichnet das Bezugszeichen 32 eine an einer Welle 33 angebrachte Taumelscheibe, bezeichnet das Bezugszeichen 34 einen Zylinderblock, bezeichnet das Bezugszeichen 34a eine Vielzahl von in dem : Zylinderblock 34 parallel zu der Welle 33 ausgebildeten Zylinderbohrungen, bezeichnet das Bezugszeichen 35 einen in eine Zylinderbohrung 34a verschiebbar eingesetzten Kolben, bezeichnet das Bezugszeichen 36 einen Schuh, der an demienigen Bereich des Kolbens 35 angeordnet ist, wo er verschiebbar mit der Taumelscheibe 32 verbunden ist, bezeichnen die Bezugszeichen 37a, 37b Radiallager zum axialen Abstützen der Welle 33, bezeichnen die Bezugszeichen 38a, 38b Schublager, und bezeichnet das Bezugszeichen 39 eine Ventilplatte.

Das Bezugszeichen 40 bezeichnet ein hinteres Gehäuse, das an einem Ende des Zylinderblocks 34 mit der Ventilplatte 39 in dazwischen liegender Anordnung angebracht ist. Das hintere Gehäuse 40 besitzt eine darin ausgebildete Einlaßkammer 40a. Ein Einlaßanschluß 40b zur Aufnahme des CO2-Gases, das zu komprimieren ist, ist in der Einlaßkammer 40a angeordnet. Des weiteren ist ein Ölabscheider 41 an dem rückwärtigen Teil des hinteren Gehäuses 40 angebracht. Diese Bauteile sind einstückig über eine durchgehende Schraube oder dergleichen, die nicht dargestellt ist, miteinander befestigt. Der Ölabscheider 41 besitzt einen darin ausgebildeten Raum zum Abscheiden des Schmiermittels aus dem CO2-Kühl- bzw. Kältemittel unter Druck. Der untere Teil des Ölabscheiders 41 bildet einen Olbehälter 41a, und sein oberer Teil bildet eine Auslaßkammer 41b. Ein Auslaßanschluß 41c, der mit dem Kühlzyklus des Klimati-

8

Patentansprüche

sierungssystems, das nicht dargestellt ist, in Verbindung steht, ist in dem oberen Teil des Ölabscheiders 41 ausgebildet. Das Bezugszeichen 42 bezeichnet eine Dichtung, das Bezugszeichen 43 bezeichnet ein Einlaßventil, und das Bezugszeichen 44 bezeichnet ein Auslaßventil.

Das Merkmal der zweiten Ausführungsform besteht darin, daß ein Ölweg 45a, der zu der Wandfläche der Zylinderbohrung 34a hin offen ist, durch den Ölbehälter 41a des Ölabscheiders 41, das rückwärtige Gehäuse 40, die Dichtung 42 und den Zylinderblock 34 in dieser Reihenfolge hindurch ausgebildet ist. Der Kolben 35 ist mit einem Ölweg 45b in radialer Richtung in einer solchen Position ausgebildet, das er mit dem Ölweg 45a in Verbindung steht, wenn sich der Kolben 35 etwa an dem unteren Totpunktzentrum befindet: Des weiteren ist die Welle 33 mit einem Ölweg 45c ausgebildet, der mit den eine Schmierung erfordernden Teilen einschließlich der Radiallager 37a, 37b, der Schublager 38a, 38b und einer Wellendichtung 46 in Verbindung steht. Wenn die Ölwege 45a, 45b, die oben beschrieben worden sind, miteinander in Verbindung stehen, kommt der Ölweg 20 45c dazu, eine Verbindung mit diesen Ölwegen über einen Olweg 45d, der in dem Zylinderblock 34 ausgebildet ist, herzustellen, um dadurch das Schmiermittel aufzunehmen.

Das Bezugszeichen 45e bezeichnet einen Ölweg, der von dem Ölweg 45b abzweigt, zum Zuführen des Schmiermit- 25 tels zu den Gleitkontaktflächen der Taumelscheibe 32 und des Schuhs 36. Der Ölweg 45a, der in dem oberen Teil des Zylinderblocks 34 ausgebildet ist, stellt auch eine Verbindung mit dem unteren Ölweg 45a her, um das Schmiermittel von dem Ölbehälter 41a über einen Ölweg, beispielsweise 30 eine Ölnut, die nicht dargestellt ist, aufzunehmen, die entlang der Fläche ausgebildet ist, an der die Dichtung 42 der Ventilplatte 39 angebracht ist.

Solange die Taumelscheibenkammer 47, die die Taumelscheibe 42 enthält weiterhin die Verbindung mit der Einlaßkammer 40a in dem rückwärtigen Gehäuse 40 über einen Weg, der nicht dargestellt ist, aufrechthält, steht die Taumelscheibenkammer 47 unter dem Einlaßdruck während der Arbeit. Beim Fehlen eines solchen Ölweges nimmt jedoch die Taumelscheibenkammer 47 natürlicherweise einen mitt-, 40 leren Druck zwischen dem Abgabedruck der Auslaßkammer 41b und dem Einlaßdruck der Einlaßkammer 40a an. Daher ist der Druck der Taumelscheibenkammer 47 niedriger als der Abgabedruck. Folglich wird bei dem in Fig. 3 dargestellten Beispiel das in dem Ölbehälter 41a gespeicherte 45 Schmiermittel unter Druck an die eine Schmierung erfordernden Teile infolge des Differenzdrucks abgegeben, der oben beschrieben worden ist, dies nur dann, wenn einer der Kolben 35 die Nachbarschaft des unteren Druckpunktzentrums erreicht und die Ölwege 45a, 45d des Zylinderblocks 50 34 mit dem Ölweg 45b des Kolbens 35 in Verbindung stehen. Folglich wird das Schmiermittel intermittierend zugeführt, und wird die Menge des zugeführten Schmiermittels ordnungsgemäß eingestellt ohne irgendwelche druckreduzierenden Teile, wie beispielsweise ein Einschnürungsele- 55 ment, in den Ölwegen, wodurch im wesentlichen die gleiche Wirkung wie bei der ersten Ausführungsform erreicht wird.

Obwohl nicht dargestellt, kann bei einem CO₂-Kompressor mit einem Kolbenring, der an dessen Kolben angeordnet ist, als eine Modifikation der zweiten Ausführungsform eine intermittierende Ölzuführungseinrichtung aus einer Öffnung des Ölweges, der in der Zylinderbohrung ausgebildet ist, aus der zylindrischen Fläche des Kolbens und der Gleitfläche des Kolben rings unter Verwendung der Kolbenringnut als einem Teil der Ölwegs konfiguriert sein. Auch kann wie bei der ersten und bei der zweiten Ausführungsform ein von dem Elektromotor angetriebener umschlossener Kompressor des Kolbentyps vorgesehen sein.

CO₂-Kompressor zum Komprimieren des CO₂-Gases, das in dem Kühlzyklus eines Klimatisierungssystems verwendet wird, das CO₂ als Kühl- bzw. Kältemittel verwendet, umfassend:

ein Gehäuse (1) zum Abdecken mindestens der Haupt-

teile;

ein festgelegtes Element (11), das mit dem Gehäuse (1) einstückig ausgebildet ist und stationär verbleibt; ein bewegbares Element (9), das gegenüber dem festgelegten Element (11) verschiebbar ist, zur Ausbildung mindestens einer Arbeitskammer als einem Raum mit dem festgelegten Element (11) zum Komprimieren des Kühl- bzw. Kältemittels, wobei das bewegbare Element (9) zum Vergrößem oder Komprimieren der Arbeitskammer angetrieben ist;

ein Abscheidungsmittel, das zum Abscheiden des mit dem Kühl- bzw. Kältemittel vermischten Schmiermittels aus dem abgegebenen Kühl- bzw. Kältemittel aus-

gebildet ist;

einen Schmiermittelbehälter (21), der mit dem Abscheidungsmittel zur Aufnahme des abgeschiedenen Schmiermittels unter Druck verbunden ist;

mindestens einen Ölweg, der sich von dem Ölbehälter (21) aus in Richtung zu den Teilen, die eine Schmierung erforderlich machen, hin erstreckt zur Führung des Schmiermittels, das den Druck des Kühl- bzw. Kältemittels auf der Abgabeseite unter Druck gesetzt ist, von dem Ölbehälter aus zu den Teilen hin;

einer intermittierende Ölzuführungseinrichtung, in der ein Teil des Ölweges, der zu der Fläche des festgelegten Elementes (11) offen ist, durch das bewegbare Element (9) geöffnet oder geschlossen wird, um dadurch zu ermöglichen, das das Schmiermittel intermittierend unter Druck zu den eine Schmierung erfordernden Teil von dem Ölbehälter (21) aus hindurchtreten kann.

2. CO₂-Kompressor nach Anspruch 1, der einen CO₂-

Kompressor des Spiraltyps bildet,

wobei die intermittierende Ölzuführungseinrichtung zwischen einer Stim- bzw. Endplatte einer bewegbaren Spirale (9), die das bewegbare Element (9) bildet, und einem Teil des Gehäuses (1) konfiguriert ist, das das festgelegte Element (11) in gegenüberliegender Beziehung zu der Stirn- bzw. Endplatte bildet, und

wobei die Öffnung des Ölweges, die an der Fläche des Teils des Gehäuses geöffnet ist, durch die umlaufende Stirn- bzw. Endplatte geöffnet oder geschlossen wird.

3. CO₂-Kompressor nach Anspruch 2, wobei sich die Fläche des genannten Teils des Gehäuses (1) in einer gegenüberliegender Beziehung zu der Rückseite der Stirn- bzw. Endplatte der bewegbaren Spirale (9) zur Bildung der intermittierenden Ölzuführungseinrichtung befindet.

4. CO₂-Kompressor nach Anspruch 2, wobei sich die Fläche des genannten Teils des Gehäuses (1) in einer gegenüberliegender Beziehung zu der Vorderseite der Stirn- bzw. Endplatte der bewegbaren Spirale (9) zur Bildung der intermittierenden Ölzuführungseinrichtung befindet.

5. CO₂-Kompressor nach Anspruch 1, der einen CO₂-Kompressor des Kolbentyps mit mindestens einem Kolben bildet, der hin- und herbewegbar ist, wobei die intermittierende Ölzuführungseinrichtung zwischen dem das bewegbare Element (9) bildenden Kolben (35) und einer Zylinderbohrung (34a) konfiguriert ist, und die das festgelegte Element (11) bildet, in die der Kolben (35) verschiebbar eingesetzt ist, und der Ölweg

durch die hin- und hergehende Tätigkeit des Kolbens (35) geöffnet und geschlossen wird.

6. CO₂-Kompressor nach Anspruch 1, der einen CO₂-Kompressor des Kolbentyps mit mindestens einem Kolben (35) bildet, der hin- und herbewegbar ist, wobei die intermittierende Ölzuführungseinrichtung zwischen einem Kolbenring, der das bewegbare Element (9) bildet und an dem Kolben (35) angeordnet ist, und eine Zylinderbohrung (34a), die das festgelegte Element (9) bildet und in die der Kolben (35) verschiebbar 10 eingesetzt ist, konfiguriert ist und der Ölweg durch die hin- und hergehende Tätigkeit des Kolbens (35) geöffnet und geschlossen wird.

7. CO₂-Kompressor nach Anspruch 6, wobei ein Teil des Ölwegs aus einer Kolbenringnut, die in dem Kol- 15 ben (35) ausgebildet ist und an der der Kolbenring angebracht ist, konfiguriert ist.

Hierzu 3 Seite(n) Zeichnungen

60

BNSDOCID: <DE__19907492A1_I_>

- Leerseite -

Nummer: Int. Cl.⁶: Offenlegungstag:

DE 199 07 492 A1 F 04 B 37/10 26. August 1999

DE 199 07 492 A1 F 04 B 37/10 26. August 1999

Fig.2

DE 199 07 492 A1 F 04 B 37/10 26. August 1999

Fig.3

