

Information Technology

FIT3176 Advanced Database Design

Topic 1: Review of Entity Relationship (ER) Modelling

algorithm distributed systems database systems computation knowledge madesign e-business model data mining inteributed systems database software computation knowledge management and systems.

FIT3176 Staff Involved

- Lecturers
 - David Taniar (Chief Examiner)
 - Email: david.taniar@monash.edu
 - Minh Le
 - Email: minh.le@monash.edu
- Tutors
 - Minh Le
 - Studio: 3, 5
 - Email: minh.le@monash.edu
 - Huashun Li
 - Studio: 1, 2, 4
 - Email: huashun.li@monash.edu

MONASH University

FIT3176 Advanced Database Design

Unit Structure

Week	Activities	Assessment
0	Please check the Moodle site	No formal assessment or activities are undertaken in week 0
1	Entity Relationship Model Review	
2	Advanced Data Modelling	
3	SQL Review and Transactions	
4	PL/SQL and Triggers	
5	PL/SQL Procedures and Functions	
6	PL/SQL Packages	
7	XML Documents	
8	XML Schemas	Assignment 1 EERM and PL/SQL due in Week 8 (25%)
9	XML Database	
10	Introduction to Big Data and JSON	
11	JSON Database	
12	Revision	Assignment 2 XML and JSON due in Week 12 (15%)
	SWOT VAC	No formal assessment is undertaken in SWOT VAC
	Examination period	LINK to Assessment Policy:http://policy.monash.edu. au /policy-bank/academic/education/assessment/ assessment-in-coursework-policy.html

MONASH University

FIT3176 Advanced Database Design

3

Assessment Breakdown

- Please READ the FIT3176 study guide carefully
- Non-exam assessment (40%)
 - Assignment 1 Extended Entity Relationship Modelling Design and PL/SQL (25%)
 - Designing a database using advanced data modelling approach
 - Triggers, Procedures, Functions and Package
 - Due Friday of week 8 Individual Task
 - Assignment 2 XML and JSON (15%)
 - Due Friday of week 12 Individual Task
- Exam assessment (60%)
 - Exam will be 2 hours (closed book).
 - Exam will cover all learning outcomes stated in our unit guide.

MONASH University

FIT3176 Advanced Database Design

The prerequisite for FIT3176 is FIT1004 or equivalent. My previous database study was:

- a. Monash FIT1004 completed last year
- Monash FIT1004 completed more than a year ago
- c. I received credit for FIT1004 based on other database studies completed last year
- d. I received credit for FIT1004 based on other database studies completed more than a year ago

FIT3176 Advanced Database Design

.

Learning Objectives and References

Learning Objectives:

- Describe the purpose of Entity–Relationship (ER) modelling in database design as both:
 - a design tool, and
 - a communication tool
- Apply standard representations for the following objects in an ER model:
 - entity
 - attributes
 - bridge/associative/composite entity
 - relationship participation (mandatory and optional)
 - relationship strength (strong and weak)
 - weak entity
 - · connectivity and cardinality
- Be able to model a given scenario through conceptual, logical and physical stages to produce an appropriate schema (manually and using a CASE tool)
- Be able to manage models within SVN (to be presented in week 2 studio)

MONASH University

FIT3176 Advanced Database Design

Learning Objectives and References

References:

- Coronel & Morris, Database Systems: Design, Implementation & Management, 12th Edition 2016, Thomson Course Technology. Chapter 4, Chapter 7 (7.1 – 7.2), Chapter 9 (9.6)
- Coronel, Morris, & Rob, Database Systems: Design, Implementation & Management, 11th Edition 2015, Thomson Course Technology. Chapter 4, Chapter 7 (7.1 – 7.2), Chapter 9 (9.6)

The slides for this week are based on the material presented in FIT1004 Data Management

FIT3176 Advanced Database Design

(

Stage 1: Conceptual Model

Expressed via Entity
Relationship Diagram (ERD)

Sometimes non-key attributes are also shown

Representation:

generalised, non implementation model specific (eg. NO FK's) and non DBMS specific

MONASH University

FIT3176 Advanced Database Design

Basic Building blocks

Entities

- Each entity refers to the entity set and not to a single entity occurrence (instance) e.g., the 'set' of all students
- Each entity corresponds to a table and not to a row in the relational environment
- In both the Chen and Crow's Foot models, an entity is represented by a rectangle containing the entity's name
- Entity name, a noun, is usually written in capital letters and in singular form e.g., STUDENT not STUDENTS

Attributes

- Characteristics of entities
- Domain is the set of all possible values
- Primary keys underlined

FIT3176 Advanced Database Design

13

Summary of Terminologies at Different Levels

Conceptual	Logical	Physical
Entity	Relation	Table
Attribute	Attribute	Column
Instance	Tuple	Row
Identifier	Primary Key	Primary Key
Relationship		
	Foreign Key	Foreign Key

MONASH University

FIT3176 Advanced Database Design

Types of Attributes

- Simple
 - Cannot be subdivided
 - Age, sex, marital status
- Composite
 - Can be subdivided into additional attributes
 - Address into street, city, zip
- Single-valued
 - Can have only a single value
 - Person has one social security number

- Multi-valued
 - Can have many values
 - Person may have several college degrees
- Derived
 - Can be derived with algorithm
 - Age can be derived from date of birth

MONASH University

FIT3176 Advanced Database Design

Resolving Multivalued Attribute Problems

- Although the conceptual model can depict multivalued attributes, you cannot implement them directly in the relational model. Instead we can:
 - Within original entity, create several new attributes, one for each component of the original multivalued attribute.
 - · Can lead to major structural problems in the table
 - Or better, create a new entity composed of original multivalued attribute's components

Relationships

- Association between entities
- Connected entities are called participants
- Relationships between entities always operate in both directions
- Connectivity
 - describes relationship classification
 - 1:1
 - 1:M
 - M:N
- Cardinality
 - expresses number of entity occurrences associated with one occurrence of related entity
- Connectivities and Cardinalities are usually based on business rules.

MONASH University

FIT3176 Advanced Database Design

Q3. Assume a1 and a2 are instances of entity A; b1, b2, b3 and b4 are instances of entity B. According to the real situation that we want to describe in an ER diagram the following statements are true:

a1 supports b1, b2 and b4 a2 support b3

What would be the connectivity type of the "supports" relationship of A to B according to the above statements?

- A. 1 to many
- B. 1 to 1
- C. Many to many

FIT3176 Advanced Database Design

2:

Q4. Assume that a rule states that an instance of A supports zero to many instances of B.

How would the above rule be depicted on the following ER diagram?

- A. As mandatory participation.
- B. As optional participation.
- C. Not possible.

FIT3176 Advanced Database Design

Existence Dependence

- Existence dependence
 - An entity exists in a database only when it is associated with another related entity occurrence
 - · e.g. CUSTOMER places ORDER
- Existence independence
 - Entity can exist apart from one or more related entities
 - Sometimes refers to such an entity as strong or regular entity.
- Many (most) entities on ER diagrams are existence dependant.

MONASH University

FIT3176 Advanced Database Design

Relationship Strength

- Weak (non-identifying) relationships
 - Exists if PK of related entity does not contain PK component of parent entity
 - Use a broken line on the model
- Strong (Identifying) Relationships
 - Exists when PK of related entity contains PK component of parent entity
 - Use a solid line on the model

MONASH University

FIT3176 Advanced Database Design

Weak Entities

- A weak entity meets two conditions
 - Existence-dependent
 - Cannot exist without entity with which it has a relationship
 - Strong Relationship exists between entity and parent
 - Child (weak entity) has primary key that is partially or totally derived from parent entity in relationship
- Database designer usually determines whether an entity can be described as weak based on business rules
 - customer pays monthly account
 - PK payment no, or
 - · PK cust_no, date_paid

MONASH University

FIT3176 Advanced Database Design

Relationship Participation

- Optional:
 - One entity occurrence does not require a corresponding entity occurrence in a particular relationship
- Mandatory:
 - One entity occurrence requires a corresponding entity occurrence in a particular relationship

FIT3176 Advanced Database Design

33

34

Crow's Foot Participation

In some variations of Crows Foot symbols (1,1) is shown as a single crossing line to represent *one and only one*, where possible show both lines

Relationship Degree Indicates number of associated entities or participants Unary relationship Association is maintained within a single entity Binary relationship Two entities are associated Ternary relationship Three entities are associated

FIT3176 Advanced Database Design

MONASH University

COMPOSITE or ASSOCIATIVE Entity

- Original CHEN ER model did not contain attributes on relationships
 - e.g. ORDERS --- are_for --- PRODUCT M:N need quantity ordered
 - · where should this be placed
 - ORDERS, PRODUCT or?
- Introduce bridging entity composed of keys of the two related entities, known as a COMPOSITE or ASSOCIATIVE or BRIDGING ENTITY
 - Note: associative entity is existence-dependent
- M:N relationship is equivalent to two 1:M relationships
 - An associative entity is identified as a strong (identifying) relationship, as indicated by the solid relationship lines, between parents and the associative entity.

FIT3176 Advanced Database Design

Conceptual ERD to Logical Model

BINARY RELATIONSHIPS:

- 1:1 relationship
 - Place primary key attributes/s of one entity into the other as foreign key (FK)
 - · two entities on the logical model
 - Special case: 1:1 total relationship (mandatory participation on both sides)
 - consolidate
 - one entity on the logical model
- 1:N relationship
 - place primary key attribute/s of one end into many end as foreign key (FK)
 - · two entities on the logical model
- N:M relationship
 - create an intersection record, based on a composite entity
 - three entities on the logical model

FIT3176 Advanced Database Design

Ternary Relationships – model as binary relationships?

- Ternary represents more information than three binary relationships
- For example Supplier 1 supplies Project 2 with Part 3 -
 - ternary
 - instance (supplier 1, project 2, part 3) exists
 - binaries
 - · instances
 - (supplier1, project 2) (project 2, part 3) (supplier 1, part 3)
 - BUT does not imply (supplier 1, project 2, part 3)
- Model relationship via a composite weak entity relating all three entities together

FIT3176 Advanced Database Design

49

Referential Integrity Rules

- Delete rule
 - applies to deleting tuples from the parent (referenced) relation, that is the relation with the primary key
 - for example, deleting a department from the DEPARTMENT relation with matching foreign keys in the EMPLOYEE relation would cause an integrity violation
 - the delete can be restricted, cascaded, nullified or set to a default value
 - Delete Restrict
 - The delete operation is restricted or not allowed if a referenced tuple with foreign keys is the target of the delete. For example, deleting a department from the DEPARTMENT relation would be restricted if there were matching foreign keys in the EMPLOYEE relation.
 - Default in Oracle

MONASH University

FIT3176 Advanced Database Design

Referential Integrity Rules

- Delete Cascade
 - The delete of a referenced tuple cascades to delete all the matching foreign key tuples. For example, deleting a department from the DEPARTMENT relation would cascade to delete all matching foreign keys tuples in the EMPLOYEE relation
- Delete Set Null
 - When a referenced tuple is deleted, then all the matching foreign key values are set to null. For example, deleting a department from the DEPARTMENT relation would result in all matching foreign key values in the EMPLOYEE relation being set to null
 - · can only apply to foreign keys that can accept nulls
- Delete Set Default
 - When a referenced tuple is deleted, then all the matching foreign key values are set to a default value. For example, deleting a department from the DEPARTMENT relation would result in all matching foreign key values in the EMPLOYEE relation being set to a default value

FIT3176 Advanced Database Design

51

Referential Integrity Rules

- Update rule
 - applies to updating the Primary Key in the parent (referenced) relation
 - for example, updating the department number attribute in the DEPARTMENT relation with matching foreign keys in the EMPLOYEE relation would cause an integrity violation
 - Update Restrict
 - the update operation is restricted if a referenced tuple exists with a foreign key value equal to a primary key value in the referenced relation. For example, updating the department number in the DEPARTMENT relation would be restricted if there were matching department numbers in the EMPLOYEE relation
 - Default in Oracle

MONASH University

FIT3176 Advanced Database Design

Referential Integrity Rules

- Update Cascade
 - the update of a primary key value cascades to update matching foreign key values in dependent relations
 - for example, updating the dept_no in the DEPARTMENT relation would cascade to update all matching dept_nos in the EMPLOYEE relation.
- Update Set Null
 - when a primary key is updated, matching foreign key values in dependent relations are set to null
 - · can only apply to foreign keys that can accept nulls
 - for example, updating the dept_no in the DEPARTMENT relation would result in all matching dept_nos in the EMPLOYEE relation being set to null.
- Update Set Default
 - when a primary key is updated, matching foreign key values in dependent relations are set to a default value
 - for example, updating the dept_no in the DEPARTMENT relation would result in all matching dept_nos in the EMPLOYEE relation being set to a default value.

FIT3176 Advanced Database Design

53

CREATE TABLE

• The format of a simple CREATE TABLE statement:

CREATE TABLE [schema.]tablename (column1 datatype [PRIMARY KEY],

column2 datatype [NOT NULL],

column3 datatype [DEFAULT expr],

column4 datatype [UNIQUE],

column5 datatype [CHECK expr],

column6 datatype [REFERENCES parent_table(PK attribute)]);

- You must specify the tablename, column name, column datatype and size
- Each column specification starts with a column name, followed by a datatype
- You can specify a number of constraints for a column
- The schema is the same as the database user who created the table.
 - If a table does not belong to the user, the owner's name must be prefixed to the table.

MONASH University

FIT3176 Advanced Database Design

CREATE TABLE Example

CREATE TABLE department

(deptno NUMBER(2) CONSTRAINT d_PK PRIMARY KEY, dname VARCHAR2(10) CONSTRAINT d_name_NN NOT NULL CONSTRAINT d_dname_UN UNIQUE

CONSTRAINT d_dname_CHK

CHECK (dname = upper(dname)),

location VARCHAR2(8) CONSTRAINT d_loc_NN NOT NULL

CONSTRAINT d_loc_CHK

CHECK (location = upper(location)),

NUMBER(4) CONSTRAINT d_mgr_FK REFERENCES employee);

- Oracle Naming Conventions
 - Must begin with a letter
 - Can be 1-30 characters long
 - Must contain only A-Z, a-z, 0-9, , \$, and #
 - Must not duplicate the name of another object owned by the same user
 - Must not be an Oracle Server reserved word

MONASH University

FIT3176 Advanced Database Design

55

Oracle Data Types

CHAR(size)	Fixed length character string (min 1, max 2000)
VARCHAR2(size)	Variable length character string (min 1, max 4000)
VARCHAR(size)	Currently synonymous with varchar2 datatype
NUMBER(p,s)	Number having precision <i>p</i> and scale <i>s</i> . The precision <i>p</i> can range from 1 to 38. The scale <i>s</i> can range from -84 to 127.
DATE	Date and time values. Stores century, year, month, date, hou minute, and second
LONG	Variable-length character strings containing up to 2 gigabytes
CLOB	A character large object containing single-byte or multibyte characters up to 4 gigabytes
RAW and LONG RAW	Raw binary data
BLOB	A binary large object up to 4 gigabytes
BFILE	Contains a locator to a large binary file stored outside the database. Enables byte stream I/O access to external LOBs residing on the database server. Maximum size is 4 gigabytes.
MONASH University	FIT3176 Advanced Database Design

Table Constraints

- SQL CONSTRAINTS:
 - PRIMARY KEY
 - enforces both entity integrity and uniqueness
 - NOT NULL
 - · ensures the column cannot contain NULL values
 - UNIQUE
 - · ensures all values in the column are unique
 - CHECK
 - validates the values in the column to ensure they meet a specified condition
 - REFERENCES
 - ensures that non-NULL foreign key values match primary key values in the referenced (parent) table

FIT3176 Advanced Database Design

57

Table Constraints

- Constraints can be defined at one of two levels:
 - Column level

column [CONSTRAINT constraint name] constraint type,

- references a single column, and is defined within a specification for the owning column
- · can define any type of constraint
- E.g. CUS_BALANCE NUMBER(9,2) DEFAULT 0.0
- Table level

column,

[CONSTRAINT constraint name] constraint type (column, ...),

- references one or more columns, and is defined separately from the definitions of the columns in the table
- · can define any type of constraint except NOT NULL
- must be used for the definition of PRIMARY and FOREIGN KEYS that contain more than one attribute
- E.g., CONSTRAINT CUS_UNQ UNIQUE (CUS_LNAME, CUS_FNAME)

MONASH University

FIT3176 Advanced Database Design

Summary

- Discussed the purpose of Entity-Relationship (ER) modelling
 - A database design tool and a communication tool
- Reviewed data modeling concepts of
 - entities, attributes, bridge/associative/composite entities
 - mandatory and optional relationship participation
 - strong and weak relationships
 - strong and weak entities
 - connectivity (i.e., describing the relationship classification 1-1, 1-N, M-N)
 - cardinality (i.e., showing min and max number of entity occurrences associated with one occurrence of the related entity.)
 - referential integrity rules for delete and update operations.
- Reviewed Oracle create table statements, Oracle data types, table constraints (columns vs tables level constraints).
- Next, our studio activities will make use of several tools (e.g. SQL Developer, Oracle Data Modeler, and Lucidchart) to review and apply these data modelling concepts to design and implement a small database.

FIT3176 Advanced Database Design