

# Délaminage de stratifiés composites

PROJET RECHERCHE - Aurore - Flavien - Gérald - Groupe SMRE

#### SOMMAIRE



### INTRODUCTION

#### **Contexte industriel**

#### Utilisation des matériaux composites dans la conception de l'A350



#### Pli unidirectionnel



#### Stratifié composite



#### **Contexte industriel**



Délaminage sur une éprouvette

- Origine du délaminage: flambement local, impact, contrainte entre plis
- Mécanique élastique linéaire de la rupture
- Taux de restitution de l'énergie critique G<sub>c</sub>
- Cadre de l'étude:
  - But : développer une approche de mécanique de la rupture pour estimer la tolérance aux dommages des matériaux composites
  - Chargement monotone DCB, MMF et MMB
  - Interface 0°/0°
  - Calcul de  $G_c$  par MEF (DCB et MMF) et comparaison avec l'expérience

#### Démarche

**Expérimental** 

MMB

MMF

DCB



DÉMARCHE APPLIQUÉE POUR CALCULER G(A) ET GC



### ESSAI DCB

#### Présentation de l'essai



Photo d'un essai DCB



Modèle de doubles poutres encastrées sollicitées en flexion



#### Approche théorique

#### Hypothèse:

La rupture du matériau est fragile:

- les non-linéarités matériau sont confinées dans une petite zone au voisinage du front de fissure;
- les énergies de dissipation mises en jeu sont négligeables devant l'énergie dissipée par le processus de création de la fissure.



#### Approche théorique

**Energie dissipée:** 

$$E = 2\gamma A$$

**Energie potentielle:** 

$$E_{potentielle} = (1/2) k x^2$$

Flèche  $y_a$ :

$$y_a = -\frac{Pa^3}{3EI}$$

Déplacement:

$$\delta = 2|y_a| = \frac{2Pa^3}{3EI}$$

Raideur apparente:

$$k(a) = \frac{P}{\delta} = \frac{3EI}{2a^3}$$

**Energie potentielle:** 

$$W_{elas}(a) = \frac{1}{2}k(a)\delta^2 = \frac{3EI}{4a^3}\delta^2$$



Schéma du modèle poutre pour l'essai DCB

#### Approche théorique

#### Critère d'énergie:

Taux de restitution d'énergie de fissuration:

$$G = \frac{9EI}{4ha^4} \delta^2$$



Taux de restitution de l'énergie en fonction de la longueur de fissure

### Approche par éléments finis: conditions aux limites



#### Approche par éléments finis: Maillage



Énergie de déformation en fonction du nombre d'éléments dans l'épaisseur

#### Approche par éléments finis: Résultats



Simulation numérique de la déformation de la poutre



Energie élastique en fonction de la longueur de fissure

#### Approche par éléments finis: Résultats



40
35
20
20
40 45 50 55 60 65 70 75 80 85 90 95 100

a (mm)

Ecart entre les modèles théorique et EF

## Approche par éléments finis: comparaison des résultats



Rigidité en fonction de la longueur de fissure



Taux de restitution de l'énergie critique en fonction de la longueur de fissure



#### **ESSAI MMF**

#### Présentation de l'essai





#### Approche par éléments finis



Modélisation d'une partie l'éprouvette



Conditions aux limites de l'éprouvette

#### Approche par éléments finis : Maillage



int d'application déplacement de la company de la company

Maillage utilisé

#### **Résultats: Simulations**

Visualisation de la contrainte sur le front de fissure





Visualisation de la contrainte de cisaillement sur l'éprouvette

#### Résultats : Evolution de l'énergie élastique



#### Confrontation des résultats : Rigidité



Comparaison de l'évolution de la rigidité obtenu expérimentalement et par la méthode des éléments finis

## Confrontation des résultats: Taux de restitution de l'énergie critique



Taux de restitution de l'énergie critique en fonction de la longueur de fissure pour le modèle éléments finis et les résultats expérimentaux (interpolation polynomiale de la rigidité)



Taux de restitution de l'énergie critique en fonction de la longueur de fissure pour le modèle éléments finis et les résultats expérimentaux (interpolation linéaire de la rigidité)

#### **ESSAI MMB**

#### Présentation de l'essai



Photo d'un essai MMB



Schéma de l'essai

## Confrontation des résultats expérimentaux: rigidité



Rigidité en fonction de la longueur de fissure (interpolation puissance)



Rigidité en fonction de la longueur de fissure (interpolation polynomiale)

## Confrontation des résultats expérimentaux: Gc







Taux de restitution de l'énergie critique en fonction de la longueur de fissure (interpolation polynomiale)

### CONFRONTATION

#### Approche numérique

#### Comparaison de la rigidité obtenue par éléments finis pour DCB et MMF



#### Comparaison de l'évolution de l'énergie élastique entre les essaies DCB et MMF par la méthode des éléments finis



#### Approche numérique



Comparaison des taux de restitution obtenus par éléments finis pour DCB et MMF



Comparaison des taux de restitution d'énergie critiques obtenus par éléments finis pour DCB et MMF

#### Approche expérimentale



Evolution expérimentale du taux d'énergie critique pour les trois essais

### CONCLUSION

#### Synthèse et perspectives

#### Synthèse:

- DCB: similarité modèle poutre et EF (approche simplifiée + théorie de Griffith)
- Gc pas constant:
  - DCB: augmente, se stabilise puis réaugmente légèrement
  - MMF: croît linéairement
  - MMB: globalement décroissant
- Influence de k(a) sur Gc

#### **Perspectives:**

- Établir un modèle éléments finis pour l'essai MMB
- Établir des modèles de zone cohésive pour les trois essais
- Refaire les calculs éléments finis en prenant les mêmes valeurs de déplacement que pour les résultats expérimentaux
- Étudier le mode 3 de rupture