LIKELION DATA ANALYSIS SCHOOL

데이터분석 5기 Final Project

9조

강민경, 강창휘, 조민지, 한지연

목차

01

프로젝트 소개

배경 및 목적목표 및 기대효과

02

데이터 탐색 및 시각화

03

피처 선택 전략

04

모델링 및 예측

05

결론

1.프로젝트 소개

프로젝트 배경 및 목적

1. 고객 특성에 따른 맟춤 전략 수립을 위한 세그먼트 예측

- 고객의 소비성향, 금융활동, 채널 이용 패턴을 파악해 고객 특성별 서비스와 마케팅 전략 수립
- 고객군별 니즈에 최적화된 혜택 제공으로 이탈 방지 및 충성도 강화

2. 복잡한 고객 데이터를 정량적으로 분석하여 운영 효율성 확보

- 고객을 사전에 분류함으로써 리스크 관리, 마케팅 비용 절감, 전략 집중화 가능
- 고객 특성별 대응 전략 자동화 및 운영 효율성 향상

프로젝트 목표 및 기대효과

목표

고객 세그먼트 예측 모델 고도화

기대효과

- 1. 맞춤형 마케팅 전략 수립 가능
- 2. 고객 이탈 방지 및 유지율 개선
- 3. 데이터 기반 의사결정 강화

2.데이터 탐색 및 시각화

가입 경과 개월 수에 따른 세그먼트 분포 분석

Segment 그룹별 입회경과개월수_신용 분포

고객의 가입 개월 수에 따라 세그먼트 간 서열이 뚜렷하게 나타나며, 장기 가입자는 주로 A, B에 분포함

세그먼트별 카드 이용한도 금액 분포 분석

Segment 그룹별 카드이용한도금액 분포

세그먼트 간 차이가 명확히 나타나며, A에는 고한도 고객이 집중되어 상위등급의 정체성이 뚜렷하게 드러남

고객 세그먼트별 청구금액/포인트 적립 특성

청구금액/포인트 적립액 모두 A, B, C가 활발하게 나타나는 반면, E는 소비와 혜택 활용면에서 모두 비활성적임

세그먼트별 대출 성향 및 카드론 잔액 추이 비교

B는 다양한 대출 항목에서 높은 수치를 보이며, C~E는 상대적으로 낮은 수준을 유지하고 있음

세그먼트별 이메일 마케팅 반응 분석

B는 높은 EM반응도와 이메일 수신률로 이메일 마케팅 운영에 최적화된 타겟임

EM 반응이 높은 B의 주요 타겟층 분석

B 세그먼트 EM R6M 노출 고객의 연령대별 생애주기 분포

B의 EM반응 고객은 30~50대 "자녀성장기" 중심으로, 가족 맞춤형 혜택 제안에 효과적인 타겟임

세그먼트별 업종 고객 비율 및 소비 성향

Segment A는 다양한 업종에서 가장 활발한 소비 행태, Segment E는 비활성화 경향

세그먼트 및 고객 등급별 신용카드 승인 금액 분포

우량 고객 등급과 A가 가장 높은 중앙값을 기록, 고객 등급과 세그먼트 모두 승인 실적에 유의미함

세그먼트별 유휴징후, 위험등급, 경과월 매출 특성 분석

E는 유휴 징후 중앙값과 상위범위가 높아, 고위험 고객 등급 비율 두드러짐 경과월 구간이 길어질 수록, 승인매출 규모가 감소함

3.피처 선택 전략

데이터 정제 및 통합 전처리 프로세스

1.시트별 결측치 처리

- 결측치 비율 높은 컬럼 제거
- 1개의 데이터만 가지는 컬럼 제거

2.데이터 형식 정제

- 날짜, 범주형 → 수치형으로 변환

3. 데이터 병합 및 최종 데이터셋 구성

- ID, 기준년월을 기준으로 병합
- 병합 시 중복된 Segment 컬럼 하나만 유지
- 약 800여개 컬럼 → PCA 및 중요도 기반 정제 예정

기준년 월	ID	남녀구 분코드	면 명	Segment	회원여부 _이용가 능	회원여부_이 용가능_CA
2018- 12	TRAIN_000000	2	2	D	1	1
2018- 12	TRAIN_000001	1	1	E	1	1
2018- 12	TRAIN_000002	1	1	С	1	1
2018- 12	TRAIN_000003	2	2	D	1	1
2018- 12	TRAIN_000004	2	2	E	1	1

피처 선택 전략

전처리 및 병합 단계

- 결측치 처리 및 전처리 수행
- 전처리 완료된 데이터 병합 후 통합 데이터셋 구성

중요도 기반 변수 선택(XGBoost + 엘보우 방식 + VIF)

- XGBoost로 누적 상대 중요도 기준 피처 선택
- 곡선의 기울기 완만해지는 지점(엘보우) 기준으로 205개 변수 선택
- 불필요한 중복 정보 제거 및 모델안정성 확보를 위해 VIF계수 확인

차원 축소(PCA)

- 주요 정보는 보존하고 불필요한 변수 제거를 통해 모델 성능 및 해석력 향상

중요도 기반 변수 선택

XGBoost 중요도 기반으로 엘보우 방식을 통해 그래프가 완만해지는 지점에서 205개의 핵심 변수를 선별

PCA 기반 차원 축소 결과

데이터의 주요 정보를 앞쪽 주성분이 설명함에 따라 121개의 주성분만으로 효율적인 차원 축소를 수행

4.모델링 및 예측

모델링 전략 및 진행과정

세그먼트 불균형에 따른 예측 한계

세그먼트 A, B \rightarrow 샘플 수 적고 오분류된 비율이 높아 데이터 불균형 가능성 세그먼트 E \rightarrow 샘플 수 가장 많고 대부분 정확히 예측 세그먼트 C, D \rightarrow D/E와의 경계가 불명확하여 오분류

CatBoost

Accuracy

0.86

LightGBM

	Precision	Recal	F1-score
Α	0.17	0.23	0.20
В	0.0	0.0	0.0
С	0.69	0.48	0.57
D	0.61	0.55	0.58
E	0.92	0.96	0.94

Accuracy

0.87

XGBoost

Accuracy

0.88

5.결론

결론

목표

고객 세그먼트 예측 모델 개발 🔷 Accuracy 0.88 달성

효과1

맞춤형 마케팅 전략 수립 가능

→ 일부 세그먼트 한정 구분 가능

효과2

고객 이탈 방지 및 유지율 개선

→ 고위험(E) 고객은 높은 정확도로 예측 가능

효과3

데이터 기반 의사결정 강화

→ 전체 흐름 파악 가능, A/B는 정확도 낮아 한계가 있음

문제점 및 개선방안

문제점1

전처리 및 방향성 오류

- 전처리와 방향성 재정립으로 인해 전체 흐름이 지연되고 혼선이 발생

문제점2

모델링 시간 부족

- 모델링 이전 단계에서 과도한 시간 소모하여 성능 향상을 위한 튜닝 여력 부족

개선방안

- 1. 초기 전처리 로드맵 및 피처 설계 기준 수립
- 2. 전략 고정 및 유연한 실험 계획 수립
- 3. 모델링 단계에 충분한 리소스 확보

LIKELION DATA ANALYSIS SCHOOL

감사합니다

Thank you