概述

FD6288 是一款集成了三个独立的半桥栅极驱动集成电路芯片,专为高压、高速驱动MOSFET 和 IGBT 设计,可在高达+250V 电压下工作。

FD6288 内置 VCC/VBS 欠压(UVL0)保护功能,防止功率管在过低的电压下工作。

FD6288 内置直通防止和死区时间,防止被驱动的高低侧 MOSFET 或 IGBT 直通,有效保护功率器件。

FD6288 内置输入信号滤波,防止输入噪声干扰。

产品特点

- 悬浮绝对电压+250V
- 电源电压工作范围: 5.0[~]20V
- 集成三个独立的半桥驱动
- 输出电流+1.5A/-1.8A
- 3.3V/5V输入逻辑兼容
- VCC/VBS欠压保护(UVL0)
- 内置直通防止功能
- 内置200ns死区时间
- 内置输入滤波功能
- 高低端通道匹配
- 输出与输入同相

封装

QFN24

应用

三相直流无刷电机驱动

订购信息

产品名称	封装形式	订货型号
FD6288T	TSS0P20	FD6288T
FD6288Q	QFN24	FD6288Q

1.绝对最大额定值(除非特殊说明,所有管脚均以 COM 作为参考点)

电压超过绝对最大额定值,可能会损坏芯片。芯片长久地工作在推荐的工作条件之上,可能会影响 其可靠性。不建议芯片在推荐的工作条件之上长期工作。

参数		符号	范围	单位
高侧浮动绝对电压		V _{B1,2,3}	- 0.3∼275	V
高侧浮动偏移电压		V _{S1,2,3}	$V_{B1,2,3}$ -25 \sim $V_{B1,2,3}$ +0.3	V
高侧输出电压		V _{HO1,2,3}	V _{S1,2,3} -0.3~V _{B1,2,3} +0.3	V
低侧供电电压		V_{CC}	-0.3~25	V
低侧输出电压		$V_{LO1,2,3}$	-0.3∼V _{CC} +0.3	V
逻辑输入电压(HIN, LII	逻辑输入电压(HIN, LIN)		-0.3∼V _{CC} +0.3	V
偏移电压压摆率范围	偏移电压压摆率范围		≤50	V/ns
TSSOP20		P_{D}	≤1.25	W
功率耗散 @T_A≤25°C	QFN24	P_{D}	≤3.0	W
TSSOP-20		R_{thJA}	≤100	°C/W
结对环境的热阻 QFN24		R_{thJA}	≪42	°C/W
结温范围		T _i	≤150	°C
储存温度范围		T _{stq}	-55∼150	°C

注意: 在任何情况下, 不要超过 P_D。

2. 推荐工作条件(所有电压均以 COM 为参考点)

建议不超过推荐的工作条件,或将绝对最大额定值设计为工作条件。

参数	符号	最小值	最大值	单位
高侧浮动绝对电压	V _{B1,2,3}	V _{S1,2,3} +5.0	V _{S1,2,3} +20	V
静态高侧浮动偏移电压	V _{S1,2,3}	COM-2(注 1)	250	V
动态高侧浮动偏移电压	V _{S1,2,3}	-50(注 2)	250	V
高侧输出电压	V _{HO1,2,3}	V _{S1,2,3}	$V_{B1,2,3}$	V
低侧供电电压	V _{CC}	5.0	20	V
低侧输出电压	V _{LO1,2,3}	0	V _{CC}	V
逻辑输入电压(HIN, LIN)	V _{IN}	0	V _{CC}	V
环境温度	T _A	-40	125	°C

注 1: $V_{S1,2,3}$ 为(COM-2V)到 250V 时,HO 正常工作。 $V_{S1,2,3}$ 为(COM-2V)到(COM- V_{BS})时,HO 逻辑状态保持。

注 2: V_{S1,2,3}为 (COM-50V), 宽 50ns 的瞬态负电压时, HO 正常工作。

3. 静态电气参数(除非特别注明,否则 T_A =25°C,V_{CC}=V_{BS1,2,3}=15V,V_S=COM)

参数	符号	测试条件	最小值	典型值	最大值	单位
高电平输入阈值电压	V _{IH}		2.7	-		V
低电平输入阈值电压	V_{IL}				0.8	V
V _{cc} 欠压保护跳闸电压	$V_{\text{CCUV+}}$		4.2	4.6	5.0	V
V _{cc} 欠压保护复位电压	V _{CCUV-}		3.9	4.3	4.7	V
V _{cc} 欠压保护迟滞电压	V_{CCUVH}		0.2	0.3		V
V _{BS} 欠压保护跳闸电压	V_{BSUV+}		4.2	4.6	5.0	V
V _{BS} 欠压保护复位电压	V_{BSUV-}		3.9	4.3	4.7	V
V _{BS} 欠压保护迟滞电压	V_{BSUVH}		0.2	0.3		V
悬浮电源漏电流	I_{LK}	V _{B1,2,3} =V _{S1,2,3} =250V		0.1	5.0	μΑ
V _{BS} 静态电流	I_{QBS}	V _{IN} =0V 或 5V		180	270	μΑ
V _{BS} 动态电流	I _{PBS}	f _{HIN1,2,3} =20kHz		180	270	μΑ
V _{CC} 静态电流	I _{QCC}	V _{IN} =0V 或 5V		330	500	uA
V _{CC} 动态电流	I _{PCC}	f _{LIN1,2,3} =20kHz		330	500	uA
LIN 高电平输入偏置电流	I _{LIN+}	V _{LIN} =5V		25	40	μΑ
LIN 低电平输入偏置电流	I _{LIN-}	V _{LIN} =0V			1	μΑ
HIN 高电平输入偏置电流	I _{HIN+}	V _{HIN} =5V		25	40	μΑ
HIN 低电平输入偏置电流	I _{HIN-}	V _{HIN} =0V			1	μΑ
输入下拉电阻	R _{IN}		140	200	260	ΚΩ
高电平输出电压	V_{OH}	I _O =100mA		0.6	0.9	V
低电平输出电压	V_{OL}	I _O =100mA		0.3	0.45	V
高电平输出短路脉冲电流	I _{OH}	V _O =0V, V _{IN} =5V, PWD≤10μs	1.1	1.5	1.9	Α
低电平输出短路脉冲电流	I _{OL}	V _O =15V, V _{IN} =0V, PWD≤10μs	1.3	1.8	2.3	Α
Vs静态负压	V_{SN}			-6.0		٧

4. 动态电气参数(除非特别注明,否则 T_A =25°C, V_{CC} = $V_{BS1,2,3}$ =15V, V_S =COM)

参数	符号	测试条件	最小值	典型值	最大值	单位
输出上升沿传输时间	t _{on}			300	450	ns
输出下降沿传输时间	t _{off}			100	160	ns
输出上升时间	t _r	C _L =1000pF		12	25	ns
输出下降时间	t _f	C _L =1000pF		12	25	ns
高低侧延时匹配	MT			-	30	ns
死区时间	DT		100	200	300	ns

5. 电路框图

6. 芯片引脚配置

6.1 TSSOP20

图 6-1 封装管脚图

表 6-1 管脚说明

管脚号	管脚名称	管脚描述
1,2,3	HIN1,HIN2,HIN3	高侧输入
4,5,6	LIN1,LIN2,LIN3	低侧输入
7	VCC	低侧供电电压
8	СОМ	接地
9,10,11	LO3,LO2,LO1	低侧输出
12,15,18	VS3,VS2,VS1	高侧浮动偏移电压
13,16,19	HO3,HO2,HO1	高侧输出
14,17,20	VB3,VB2,VB1	高侧浮动绝对电压

6.2 QFN24

图 6-2 封装管脚图

表 6-2 管脚说明

管脚号	管脚名称	管脚描述
22,23,24	HIN1,HIN2,HIN3	高侧输入
1,2,3	LIN1,LIN2,LIN3	低侧输入
4	VCC	低侧供电电压
6	COM	接地
9,10,11	LO3,LO2,LO1	低侧输出
12,15,18	VS3,VS2,VS1	高侧浮动偏移电压
13,16,19	HO3,HO2,HO1	高侧输出
14,17,20	VB3,VB2,VB1	高侧浮动绝对电压
5,7,8,21	NC	空脚

7. 开关时间测试标准

8. 传输时间匹配测试标准

9. 直通防止功能

芯片内部设计专门用于防止功率管直通的保护电路,能有效地防止高侧和低侧输入信号受到干 扰时造成的功率管直通损坏。下图表示了直通防止电路如何保护功率管。

10. 死区功能

芯片内部设置了固定的死区时间保护电路。在死区时间内,高侧和低侧输出均被设置为低电平。 所设置的死区时间必须确保一个功率管关断后,再开启另外一个功率管,有效防止产生上下功率管 直通现象。如果逻辑输入设置的外部死区时间大于芯片内部设置的死区时间,则以逻辑输入设置的 外部死区时间为芯片输出死区时间;如果逻辑输入设置的外部死区时间小于芯片内部设置的死区时 间,则芯片输出的死区时间为芯片内部设置的死区时间。下图描述了死区时间、输入信号和驱动器 输出信号的时序关系。

11. 瞬态负电压安全工作区

Fortior 采用瞬态负电压安全工作区(NTSOA)来表征栅极驱动器处理瞬态负电压的能力。在幅值和脉宽处于下图所示蓝色线上方区域内的任何负脉冲,栅极驱动器都可以正常工作。幅值过大的脉冲(位于蓝色线下方区域)可能导致栅极驱动器工作不正常。

快速恢复二极管

US1A-M Trr=50/75 RS1A-M Trr=150/250/500

12. 典型应用电路

C1: 电源滤波电容,根据电路情况可选择 $0.1\mu \text{ F}^{\sim}10\mu \text{ F}$ 。

R: 栅极驱动电阻, 阻值根据被驱动器件及死区时间而定。

Dbs: 自举二极管,应选择高反向击穿电压(>250V)、恢复时间尽量短的二极管。

Cbs: 自举电容,应选择陶瓷电容或钽电容,最小容值可按以下式子计算:

 $Cbs \ge 15 \cdot \frac{2 \cdot [2 \cdot Q_g + Q_{period} + \frac{I_{bs(static)}}{f} + \frac{I_{bs(leak)}}{f}]}{Vcc - V_F - V_{ds(L)}}$

其中: Q₅为高侧功率器件的栅极电荷;

Qperiod 为每个周期中电平转换电路的电荷要求,约为10nC;

Ibs(static)为高侧驱动电路的静态电流;

Ibs(leak)为自举电容的漏电流;

f 为电路工作频率;

Vcc 为低侧供电电压:

REV_Preliminary

V_F为自举二极管的正向导通压降:

Vds(L)为低侧功率器件的导通压降。

注: 以上线路及参数仅供参考,实际的应用电路根据实测结果设定参数。

075523737641

10

13. 封装尺寸

13.1 TSSOP20

13.2 QFN24

Top Vlew

Bottom Vlew

Side View

Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
A	0.700/0.800	0.800/0.900	0.028/0.031	0.0031/0.0035
A1	0.000	0.050	0.000	0.002
A3	0.203REF		0.008REF	
D	3.924	4.076	0.154	0.160
E	3.924	4.076	0.154	0.160
D1	2.600	2.800	0.102	0.110
E1	2.600	2.800	0.102	0.110
K	0.200MN		0.00	8MN
В	0.200	0.300	0.008	0.012
E	0.500TYP		0.020	0TYP
L	0.324	0.476	0.013	0.019

14. 顶层丝印形式图

14.1 TSSOP20 封装

14.2 QFN24 封装

REV_Preliminary 14 075523737641