Piecewise Linear Regression Models:

- ▶ For the Reynolds data, as an alternative to a quadratic regression model:
 - ▶ Recognize that up to a certain point of Months Employed
 - ▶ the relationship between Months Employed and Sales appears to be positive and linear.
 - ▶ After this point,
 - ▶ the relationship between Months Employed and Sales appears to be negative and linear
- Piecewise linear regression model:
 - ▶ This model will allow us to fit these relationships as two linear regressions
 - joined at the value of Months where the relationship between Months Employed and Sales changes.

Modeling Nonlinear Relationships

Piecewise Linear Regression Models (cont.):

- ► Knot:
 - ▶ The value of the independent variable at which the relationship between dependent variable and independent variable changes;
 - also called breakpoint.

Figure 7.32: Possible Position of Knot $x^{(k)}$

Modeling Nonlinear Relationships

Piecewise Linear Regression Models (cont.):

▶ Define a dummy variable:

$$x_k = \begin{cases} 0 \text{ if } x_1 \le x^{(k)} \\ 1 \text{ if } x_1 > x^{(k)} \end{cases}$$

 $x_1 = Months.$

 $x^{(k)}$ = value of the knot (90 months for the Reynolds example).

 x_k = the knot dummy variable.

▶ Then fit the following estimated regression equation:

$$\hat{y} = b_0 + b_1 x_1 + b_2 (x_1 - x^{(k)}) x_k$$

Data and Excel Output for the Reynolds Piecewise Linear Regression Model

Piecewise Regression

 $\hat{y} = 87.2172 + 3.4094x_1 - 7.8726(x_1 - 90)x_k$

▶ When X1 < 90

 $\hat{y} = 87.2172 + 3.4094x_1$

▶ When X1 > 90

 $\hat{y} = 87.2172 + 3.4094x_1 - 7.8726(x_1 - 90)$ $= 87.2172 - 7.8726(-90) + (3.4094 - 7.8726)x_1 = 795.7512 - 4.4632x_1$

Modeling Nonlinear Relationships

Interaction Between Independent Variables:

- Interaction:
 - ▶ This occurs when the relationship between the dependent variable and one independent variable is different at various values of a second independent variable.
 - ▶ Capture whether the relationship between y and x1 changes because of another x2
- ▶ The estimated multiple linear regression equation is given as:

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_1 x_2$$

Figure 7.34: Mean Unit Sales (1,000s) as a Function of Selling Price and Advertising Expenditures

Y = Sales

X1 = price of shampoo

X2 = Advertising expenditure

Modeling Nonlinear Relationships

Excel Output for the Tyler Personal Care Linear Regression Model with Interaction

4	A	В	C	D	E	F	G	H	I
1	SUMMARY OUTPUT								
2									
3	Regression Stat	istics							
4	Multiple R	0.988993815							
5	R Square	0.978108766							
6	Adjusted R Square	0.974825081							
7	Standard Error	28.17386496							
8	Observations	24							
9									
0	ANOVA								
1		df	SS	MS	F	Significance F			
2	Regression	3	709316	236438.6667	297.8692	9.25881E-17			
3	Residual	20	15875	793.7666667					
4	Total	23	5191.3333						
5									
6		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 99.0%	Upper 99.0%
7	Intercept	-275.8333333	112.8421033	-2.444418575	0.023898351	-511.2178361	40.44883053	-596.9074508	45.24078413
8	Price	175	44.54679188	3.928453489	0.0008316	82.07702045	267.9229796	48.24924412	301.7507559
9	Advertising Expenditure (\$1,000s)	19.68	1.42735225	13.78776683	1.1263E-11	16.70259538	22.65740462	15.61869796	23.74130204
20	Price*Advertising	-6.08	0.563477299	-10.79014187	8.67721E-10	-7.255393049	-4.904606951	-7.683284335	-4.476715665

Sales after a \$1 increase in Price

The relationship between Price and Sales is different at various values of Advertising

```
\begin{split} \text{Sales} &= -275.8333 + 175 \text{ Price} + 19.68 \text{ Advertising} - 6.08 \text{ Price} * \text{Advertising} \\ \text{Sales} &= -275.8333 + 175(2) + 19.68(50) - 6.08(2)(50) = 450.1667, \text{ or } 450,167 \text{ units} \\ \text{Sales} &= -275.8333 + 175(3) + 19.68(50) - 6.08(3)(50) = 321.1667, \text{ or } 321,167 \text{ units} \\ \text{Sales} &= -275.8333 + 175(2) + 19.68(100) - 6.08(2)(100) = 826.1667, \text{ or } 826,167 \text{ units} \\ \text{Sales} &= -275.8333 + 175(3) + 19.68(100) - 6.08(3)(100) = 393.1667, \text{ or } 393,167 \text{ units} \end{split}
```

Sales after a \$1000 increase in Ads

The relationship between Advertising Expenditure and Sales is different at various values of Price

```
\begin{aligned} & \text{Sales After \$1K Advertising Increase} = -275.8333 + 175 \text{ Price} + 19.68 \text{ (Advertising} + 1) \\ & -6.08 \text{ Price} * \text{ (Advertising} + 1) \end{aligned} & -6.08 \text{ Price} * \text{ (Advertising Increase} = 19.68 \\ & -6.08 \text{ Price} \end{aligned} & -6.08 \text{ Price} & \text{Sales} = -275.8333 + 175(2) + 19.68(50) - 6.08(2)(50) = 450.1667, \text{ or } 450,167 \text{ units} \end{aligned} & \text{Sales} = -275.8333 + 175(2) + 19.68(100) - 6.08(2)(100) = 826.1667, \text{ or } 826,167 \text{ units}  & \text{Sales} = -275.8333 + 175(3) + 19.68(50) - 6.08(3)(50) = 321.1667, \text{ or } 321,167 \text{ units}  & \text{Sales} = -275.8333 + 175(3) + 19.68(100) - 6.08(3)(100) = 393.1667, \text{ or } 393,167 \text{ units}  & \text{Sales} = -275.8333 + 175(3) + 19.68(100) - 6.08(3)(100) = 393.1667, \text{ or } 393,167 \text{ units}
```

Variable Selection Procedures Overfitting

Model Fitting

Variable Selection Procedures:

- ► Special procedures are sometimes employed to select the independent variables to include in the regression model.
 - ▶ Iterative procedures: At each step of the procedure, a single independent variable is added or removed and the new model is evaluated. Iterative procedures include:
 - Backward elimination.
 - Forward selection.
 - ▶ Stepwise selection.
 - Best subsets procedure: Evaluates regression models involving different subsets of the independent variables.

Variable Selection Procedures (cont.):

- ▶ Backward elimination procedure:
 - Begins with the regression model that includes all of the independent variables under consideration.
 - At each step, backward elimination considers the removal of an independent variable according to some criterion (Significance)
 - Stops when all independent variables in the model are significant at a specified level of significance.

Model Fitting

Variable Selection Procedures (cont.):

- ▶ Forward selection procedure:
 - Begins with none of the independent variables under consideration included in the regression model
 - ▶ At each step, forward selection considers the addition of an independent variable according to some criterion (Significance).
 - Stops when there are no independent variables not currently in the model that meet the criterion for being added to the regression model.

Variable Selection Procedures (cont.):

- ▶ Stepwise selection procedure:
 - ▶ Begins with none of the independent variables under consideration included in the regression model.
 - ➤ The analyst establishes both a criterion for allowing independent variables to enter the model and a criterion for allowing independent variables to remain in the model.
 - ➤ To initiate the procedure, the most significant independent variable is added to the empty model if its level of significance satisfies the entering threshold.

Model Fitting

Variable Selection Procedures (cont.):

- ▶ Stepwise selection procedure (cont.):
 - ► Each subsequent step involves two intermediate steps:
 - ▶ First, the remaining independent variables not in the current model are evaluated, and the most significant one is added to the model.
 - ▶ Then the independent variables in the current model are evaluated, and the least significant one is removed.
 - Stops when no independent variables not currently in the model have a level of significance for remaining in the regression model.

Variable Selection Procedures (cont.):

- ▶ Best subsets procedure:
 - ▶ Estimate a regression for every combination of independent variables
 - ▶ Compare and evaluate the entire collection of regression models

Model Fitting

- Overfitting
 - ▶ Generally results from creating an overly complex model to explain idiosyncrasies in the sample data.
 - ▶ Typically includes independent variables that do not have meaningful relationships with the dependent variable.
- ▶ If a model is overfit to the sample data
 - ▶ it will perform better on the sample data used to fit the model than it will on other data from the population.
- ► An overfit model
 - ▶ can be misleading about its predictive capability and its interpretation.

- ▶ How does one avoid overfitting a model?
 - ▶ Use only independent variables that you expect to have real and meaningful relationships with the dependent variable.
 - ▶ Use complex models, such as quadratic models and piecewise linear regression models, only when reasonable
 - ▶ Do not let software dictate your model;
 - ▶ Use iterative modeling procedures, such as the stepwise and best-subsets procedures, only for guidance

Model Fitting

- ► How does one avoid overfitting a model? (cont.):
 - ► Cross-Validate
 - Assess your model on data other than the sample data (if you have it)
 - ▶ One possible ways to execute cross-validation is the holdout method.
 - ▶ Holdout method: The sample data are randomly divided into mutually exclusive and collectively exhaustive training and validation sets.
 - ► Training set:
 - $\,\blacktriangleright\,\,$ The data set used to build the candidate models that appear to make practical sense.
 - Validation set:
 - The set of data used to compare model performances and ultimately select a model for predicting values of the dependent variable.

Big Data and Regression

Inference and Very Large Samples Model Selection

Big Data and Regression

Inference and Very Large Samples:

- Virtually all relationships between independent variables and the dependent variable will be statistically significant if the sample is sufficiently large.
- ▶ That is, if the sample size is very large, there will be little difference in the
 - $\boldsymbol{b}_{\!\scriptscriptstyle j}$ values generated by different random samples.

Big Data and Regression

Figure 7.36: Excel Regression Output for Credit Card Company Example

Big Data and Regression

Table 7.4: Regression Parameter Estimates and the Corresponding *p* values for 10 Multiple Regression Models, Each Estimated on 50 Observations from the *LargeCredit* Data

Observations	b_0	p value	b_1	p value	b_2	p value	b ₃	p value
1–50	-805.152	0.7814	154.488	1.45E-06	234.664	0.5489	207.828	0.6721
5–100	894.407	0.6796	125.343	2.23E-07	822.675	0.0070	-355.585	0.3553
101–150	-2,191.590	0.4869	155.187	3.56E-07	674.961	0.0501	-25.309	0.9560
151–200	2,294.023	0.3445	114.734	1.26E-04	297.011	0.3700	-537.063	0.2205
201–250	8,994.040	0.0289	103.378	6.89E-04	-489.932	0.2270	-375.601	0.5261
251–300	7,265.471	0.0234	73.207	1.02E-02	-77.874	0.8409	-405.195	0.4060
301–350	2,147.906	0.5236	117.500	1.88E-04	390.447	0.3053	-374.799	0.4696
351-400	-504.532	0.8380	118.926	8.54E-07	798.499	0.0112	45.259	0.9209
401–450	1,587.067	0.5123	81.532	5.06E-04	1,267.041	0.0004	-891.118	0.0359
451–500	-315.945	0.9048	148.860	1.07E-05	1,000.243	0.0053	-974.791	0.0420
Mean	1,936.567		119.316		491.773		-368.637	

Big Data and Regression

Figure 7.37: Excel Regression Output for Credit Card Company Example after Adding Number of Hours per Week Spent Watching Television

Big Data and Regression

Model Selection:

- When dealing with large samples, it is often more difficult to discern the most appropriate model.
- ► For explanatory purposes, the practical significance of the estimated regression coefficients should be considered when interpreting the model and considering which variables to keep in the model.
- ► For future predictions, the independent variables included in the regression model should be based on the predictive accuracy on observations that have not been used to train the model.

Prediction with Regression

- ▶ In addition to the point estimate, there are two types of interval estimates associated with the regression equation:
 - ▶ A confidence interval is an interval estimate of the mean y value given values of the independent variables.

$$\hat{\mathbf{y}} \pm t_{\alpha/2} s_{\hat{\mathbf{y}}} \tag{7.23}$$

 A prediction interval is an interval estimate of an individual y value given values of the independent variables.

$$\hat{y} \pm t_{\alpha/2} \sqrt{s_{\hat{y}}^2 + \frac{SSE}{n - q - 1}}$$
 (7.24)

Prediction with Regression

Table 7.5: Predicted Values and 95% Confidence Intervals and Prediction Intervals for 10 New Butler Trucking Routes

Assignment	Miles	Deliveries	Predicted Value	95% Cl Half-Width(+/–)	95% PI Half-Width(+/–)
301	105	3	9.25	0.193	1.645
302	60	4	6.92	0.112	1.637
303	95	5	9.96	0.173	1.642
304	100	1	7.54	0.225	1.649
305	40	3	4.88	0.177	1.643
306	80	3	7.57	0.108	1.637
307	65	4	7.25	0.103	1.637
308	55	3	5.89	0.124	1.638
309	95	2	7.89	0.175	1.643
310	95	3	8.58	0.154	1.641