SU1087077

Publication Title:

PROCESS FOR PREPARING FROM PETROLEUM PROCESSING RESIDUES OF ALIPHATIC TYPE OF CARBONACEOUS MATERIAL FOR USE AS SINTERING COMPONENT IN PRODUCING COKE AND ALIPHATIC OIL

Abstract:

Abstract not available for SU1087077 Abstract of corresponding document: GB1391490

1391490 Making pitch KUREHA KAGAKU KOGYO KK 28 March 1972 [1 April 1971] 14561/72 Heading C5E A high aromatic pitch for binding with a weakly coking coal is made from a petroleum base residual oil containing alpihatic hydrocarbons by heating the oil to a temperature in the range 300 to 500 C. by direct contact with a non-oxidizing gas which is at 400 to 2000 C. and maintaining the temperature, optionally with the aid of external heating means for from 0A5 to 20 hours, to effect cracking, polycondensation and aromatization reactions. Suitable oils include vacuum residuals, catalyzed and non-catalyzed thermal residuals, duo-sol extracts residues, furfural extracts, propane extraction residues and hydroformer residuals, and' the pitch has a softening point in the range 130 to 300 C., fixed carbon content of from 40% to 80% b.w., and an H: C atomic ratio in the range 0A4 to 1A1. The non-oxidizing gas may be N 2 , A, steam, H 2, hydrocarbon gas or a totally combusted gas, and a preheating stage may be combined with this method, e.g. the oil being heated to 350 to 600 C. by external heating means for from 0A5 to 60 minutes at from 0 to 150 kg./cm.<SP>2</SP> gauge. Product H 2 or light oils from the second stage may be recycled to the preheating stage to inhibit coking there and reduce the sulphur content of the pitch product. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

3(5) C 10 B 57/04; C 10 G 9/36

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н ПАТЕНТУ

- (21) 1766761/23-26
- (22) 31.03.72
- (31) 19230
- (32) 01.04.71
- (33) Япония
- (46) 15.04.84. Bion. № 14
- (72) Рийоти Такахаси, Такудзи Хосои, Такааки Айба, Цутому Конно (Япония)
- (71) Куреха Кагаку Когно Кабусики Кайся, Сумикин Коук Компани, Лтд и Сумитомо метал индастриз, Лтд (Япония)
- (53) 66.092.1(088.8)
- (54)(57) СПОСОВ ПОЛУЧЕНИЯ ИЗ ОСТАТ-КОВ ОТ ПЕРЕРАБОТКИ НЕФТИ АЛИФАТИЧЕС-КОГО ТИПА УГЛЕРОДСОДЕРЖАЩЕГО МАТЕРИА-ЛА, ИСПОЛЬЗУЕМОГО В КАЧЕСТВЕ СПЕКАЮ-

ЩЕГОСЯ КОМПОНЕНТА В УГОЛЬНОЙ ШИХТЕ для получения кокса, и алифатическо-ГО МАСЛА, характеризующийся тем, что указанные нефтяные остатки нагревают до 350-600°С под давлением в пределах от нормального давления до 150 krc/cм² в течение 0,5-60 мин в трубчатой печи, затем их нагревают до 380-450 С путем контакта с неокисляющим газом, имеющим температуру 400-2000°С с получением углеродсодержащего материала, имеющего температуру размягчения 130-300°С, содержащего связанного углерода 40-80 вес. % и атомное соотношение Н/С 0,4-1,1, и алифатического масла с атомным соотношением Н/С более 1.55.

SU in 1087077

Изобретение относится к способу получения из остатков переработки нефти алифатического типа углерод-содержащего материала, используемого в качестве спекающегося компонента в угольной шихте для получения кокса и алифатического маспа.

В настоящее время в доменных и литейных печах используется кокс, который производится из угля, имеющего высокие коксующиеся свойства. Одиако вследствие все меньшей доступности источников сильнококсующего ся угля пытаются использовать слабококсующиеся угли в качестве исходного материала для производства кокса в комбинации со связкой. Известно использование пека на основе угля или твердого пека на основе нефти.

Однако пек на основе угля не может удовлетворить спрос промышленности на этот продукт из-за количественного сокращения такого источника. С другой стороны, нефтяной 25 твердый пек не может использоваться в качестве связки, так как он не подходит для смешивания с углем из-за своего химического состава, в котором основными компонентами являют— 30 ся алифатические углеводороды, в дополнение к его низкому выходу при карбонизации.

В результате исследований, направленных на изучение связок, пригодных для слабококсующихся углей в производстве кокса, используемого для доменных печей или в литейной промышленности, обнаружено, что углеродсодержащий материал (пек) на основе о 40 нефти, хорошо подходящий для использования в качестве связки описанного типа, может быть получен при термообработке кубового остатка на основе нефти, при этом обеспечивается эффек-45 тивное протекание реакций крекинга, поликонденсации и ароматизации, причем указанный кубовый остаток состоит главным образом из алифатических углеводородов.

Целью изобретения является создание материала, пригодного для использования в качестве связки, которая обеспечивает высокую коксуемость слабококсующихся углей и, кроме того,55 создание процесса, пригодного для производства такого материала на основе нефти.

Поставленная цель достигается согласно способу получения из остатков от переработки нефти алифатического типа углеродсодержащего материала, используемого в качестве спекающегося компонента в угольной шихте для получения кокса, и алифатического масла, карактеризующемуся тем. что указанные нефтяные остатки на-10 · гревают до 350-600°C под давлением в пределах от нормального давления до 150 кгс/см² в течение 0,5-60 мин в трубчатой печи, затем их нагревают до 380-450°С путем контакта с неокисляющим газом, имеющим температуру 400-2000 с получением углеродсодержащего материала, имеющего температуру размягчения 130-300°С, содержащего связанного углерода 40-80 вес. 7 и атомное соотношение Н/С 0,4-1,1, и алифатического масла с атомным соотношением Н/С выше 1.55.

Точку размятчения измеряют с помощью потокового испытателя типа кока, в котором 1 г образца загружают в цилиндр с внутренним диаметром 10 мм, имеющий сопло диаметром 1 мм на одном конце, и затем нагревают со скоростью 10°С в минуту под нагрузкой в 10 кг/мм² для определения температуры, при которой начинается вытекание через сопло. Количество связанного углерода определяют в соответствии с японским стандартом JIS-K-2421/1906/, а атомарное отношение Н/С получают в соответствии с элементарным аиализом.

Углеродсодержащий материал, карактеризующийся указанными свойствами, может быть получен при преобразовании химической структуры и состава исходного нефтяного кубового остатка с помощью термообработки и изобилует ароматическими составляющими, обеспечивая хорошее перемешивание с углем и высокий карбонизационный выход.

Следовательно, предлагаемый материал (пек) при использовании слабо-коксующихся углей обеспечивает улучшенные связующие силы и, кроме того, кокс на его основе обладает высокой прочностью, сравнимой с прочностью кокса, производимого из хорошо коксующегося угля.

Соотношение смешивания предлагаемого пека со слабококсующимся углем изменяется в зависимости от используемых углей. Например, смесь 50 вес.ч. слабококсующегося угля (Ньюделл) и 50 вес.ч. предлагаемого пека обеспечивает прочность кокса порядка 91,4, а смесь 40 вес.ч. коксующегося угля и Австралии, 40 вес.ч. слабококсующегося угля из Японии, 20 вес.ч. сильнококсующегося угля из США и 1 вес.ч. предлагаемого пека обеспечивает прочность кокса 91.5.

Кроме того, использование предлагаемого пека в комбинации с углем, который сам по себе обладает низкой прочностью кокса, дает кокс, жорошо сравнимый по качеству с коксом, получаемым из сильнококсующегося угля (битуминозный уголь).

При термообработке нефтяного кубового остатка согласно изобретению 20 протекают реакции крекинга и поликоиденсации, а также реакции ароматизации, причем указанный кубовый остаток содержит алифатические углеводороды.

Нефтяной кубовый остаток в соответствии с изобретением содержит кубовый остаток дистилляции при нормальном давлении, кубовый остаток вакуумной дистилляции, кубовый остаток термического крекинга, кубовый остаток каталитического термического крекинга, т.е. кубовые остатки, подобные тем, которые получаются в обычной нефтеочистительной промышленности, и различные сорта кубовых остатков, такие как экстракты Duosol, фурфурольные экстракты, остаток экстрагирования пропана, кубовые остатки каталитического дегидрирования и их смеси.

Одиаго с экономической точки эрения не предпочитаются кубовые остатки, содержащие свыше 30 вес.% фракции, имеющей точку кипеиия ие выше 350° C.

Таким образом, в качестве исходных материалов предпочитают кубовые остатки, существующие в твердом или полуттвердом состоянии при комнатной топературе, подобные кубовому остатку вакуумной дистилляции.

Такие нефтяные кубовые остатки находят применение как топливо или как материал для асфальтирования дорог. Однако большинство нефтяных кубовых 55 остатков имеют высокое содержание серы, так что они создают значительные проблемы, связанные с загрязнением окружающей среды, из-за образования двуокиси серы, возникающей при их использовании в качестве топлива. Поэтому использование таких кубовых остатков в качестве топлива должно быть строго ограничено.

Потребность в материалах для асфальтирования дорог в настоящее время непрерывно возрастает. Однако предложение и темпы производства кубовых остатков, связанные с увеличением производства нефтепродуктов или продуктов нефтехимии, значительно превышают потребность в кубовых остатках для таких целей, поэтому ожидается в будущем возникновение серьезной проблемы, которая будет мешать росту нефтеочистительной промышленности.

В силу значительной нехватки хорошо коксующихся углей для использования в доменных печах делались неоднократные попытки получения искусственного коксующегося угля из нефтяных кубовых остатков для производства заменителей угля, обладающих высокой
прочностью кокса. По эти продукты
создают множество препятствий в практическом использовании вследствие
излишнего содержания серы и высокой
стоимости.

Предлагаемый пек обладает значительными преимуществами в экономике и с точки эрения источников материалов, при этом его производят с помощью преобразования структуры или состава кубовых остатков, таких как нефтяной асфальт.

Преимущества предлагаемой связки заключаются в том, что кокс для использования в домениой печи, обладающий высоким качеством, может быть произведен с помощью добавления небольшого количества предлагаемого пека к обычной угольной смеси, испольэуемой в доменной печи. При этом ожидается значительная экономия в использовании корошо коксующегося угля, который является дорогостоящим и трудиодоступным вследствие исчерпания его источников, причем возможно получение высококачественного кокса. Кроме того, некоксующийся или слабококсующийся уголь может быть превращен в высококачественный уголь с высокими свойствами коксуемости за счет добавления предлагаемого пека.

Различные условия, требуемые для термообработки исходных материалов в соответствии с изобретением, выбираются таким образом, чтобы обеспечить производство пекопродукта, обладающего указанными свойствами.

Процесс термообработки для получения предлагаемого пека заключается в слепующем.

Кубовый остаток на основе нефти, содержащий алифатические углеводороды, нагревают до $350\text{-}600^{\circ}\mathrm{C}$ под давлением 0-150 кг/см 2 в течение 0,5-60 мин и затем приводят в непосредственный контакт с неокисляющим газом- 15 теплоносителем, нагретым до 400-2000 С. поддерживая остаток при температуре ниже, чем у газа-носителя, но не более чем на 500°С, с целью завершения термообработки.

Затем кубовый остаток на основе нефти, содержащий алифатические углеводороды, нагревают и выдерживают при температуре в интервале от 300 до 500°С под давлением от 0 до 150 кг/см2 в течение 0,5-20 ч с помощью нагрева извне.

Используемые для такой термической обработки аппараты относятся к системам с внутренним и внешним нагревом или же к системам с комбинированным нагревом, причем эти системы далее классифицируются как одностадийные и многостадийные.

В случае системы с внутренним нагревом в качестве теплоносителя используют азот, аргон, пар, водород, углеводородный газ или полностью выгорающий газ, такой как неокисляющий газ. Этот теплоноситель нагревают до температуры в интервале 400-0. 40 2000 С, а затем приводят в непосредственный контакт с исходным остатком.

В этом отношении для осуществления гладкого термического крекинга и реакций ароматизации и поликонденсации, а также для предотвращения покального перегрева теплоносителем требуется поддерживать исходиый остаток при температуре ниже температуры теплоносителя, но не более чем на 500°С, в большинстве случаев в интервале от 300 до 500°С, предпочтительно от 380 до 450°C. В альтернативе, однако, исходный остаток может быть временно нагрет до ~600°С на стадии предварительного нагрева и допускается частичный крекинг, если он проис-KOHHT.

Для процесса нет ограничений в отношении приведения газа-теплоносителя в непосредственный контакт с исходным остатком. Возможно введение газа-теплоносителя в исходный остаток или же использование струйного скруббера, обеспочивающего эффективное перемешивание газа и жидкости, и т.п. Указанная реакция может проводиться для отдельных партий и непрерывно.

Сущность такого процесса заключается в преобразовании остатка в лек с желаемыми свойствами с помощью следующих операций.

Требуемый термический крекинг осуществляют в течение короткого промежутка времени с помощью приведения газообразного теплоносителя при повышенной темлературе в непосредственный контакт с большим количеством исходного остатка. (Остальная масса исходного остатка служит для предотвращения локального перегрева).

часть исходного кубового остатка, которая нестабильна при повышенной температуре, отделяют или газифицируют для выделения из него.

Часть исходиого остатка, относительно стабильную по отношению к нагреву, поддерживают при температуре, которая является значительной, но не жесткой для остатка, в течение относительно длительного периода времени с тем, чтобы осуществить реакции поликонденсации и ароматизации.

Таким образом, для_получения наибольших преимуществ используют различие в термическом поведении материалов, содержащихся в исходном остатке, имеющем сложный химический состав и сложную структуру.

В соответствии с предлагаемым процессом исходный кубовый остаток с некоторым удельным весом может быть эфрективно обработан теплоносителем, имеющим меньшую термическую энергию по сравнению со случаем обычного термического крекинга в печи внутреннего нагрева, например термическую энергию, имеющую порядок одной десятой энергии, требуемой для такого обычного случая. Это происходит из-за того, что термическая экергия. вносимая теплоносителем в систему, вызывает термический крекинг исходного остатка, в то время как свободные радикалы служат в качестве инициатора реакций поликонденсации и

20

ароматизации молекул в жидкой фазе. Это дает возможность реакциям протекать гладко в жидкой фазе при температурах, которые не являются слишком жесткими для исходного остатка, и способствует в этилляции производимых масел.

Указаниые условия обиаружены в результате экспериментов, основанных на упомянутых исходных точках эрения. 10 Нижний предел температуры для газатеплоносителя или для исходного остатка предназначен для определения условий гладкого протекания указанных реакций, в то время как верхний предел для температуры газа-теплоносителя и исходного остатка приведен с целью предотвращения нежелательных явлений коксования.

Интенсивность потока газа-теплоносителя может быть выбрана произвольно как функция температурных условий. Если такие условия надлежашим образом регулировать, то дистиллированные масла и остаточный пек могут быть отрегулированы в отношении обеспечения определенной структуры и состава.

Давление в реагирующей системе выбирают вблизи нормального. Однако реакция может гладко проходить и при изменении указанного интервала давлений, например, от 15 кг/см², предпочтительно от 0,95 до 6 кг/см2 (избыточное).

С другой стороны, для предотврашения перегрева исходного остатка используется либо охлаждающее устройство дефлегмационного типа, либо охлаждающее устройство циркуляционного типа. И наоборот, внутренияя температура может поддерживаться в заданном интервале за счет дополнительного нагрева извне.

На чертеже показана схема установки для осуществления предлагаемого способа в промышленном масштабе∵

Установка содержит резервуар 1 для хранения исходного остатка, насос 2, крекинговую печь 3 предварительного нагрева, вентиль 4, реактор 5 и разделительную колонну б.

Установка работает следующим образом.

55

Исходный кубовый остаток из резервуара 1 исходного остатка подают с помощью насоса 2 в крекинговую

печь 3 для обеспечения предварительного нагрева и первичного крекнига. Это печь трубчатого типа, использующая обычную внешнюю систему нагрева. С целью предотвращения коксообразования в нагревательной трубе и для снижения содержания серы в пекопродуктах могут быть введены водород или легкие углеводороды, такие как входящие в часть легкого масла, производящегося в процессе в соответствии с изобретением. Условия для упомянутого термического крекинга изменяются в зависимости от присутст-15 звия или отсутствия вводимых газов, таких как водород, а также от стадии вторичных реакций. Однако используемая температура должна предпочтительно попадать в интервал от 350 до 600°C, давление в интервал от мормального давления до 150 кг/см², а время пребывания в интервал от 0,5 до 60 мни. Вентиль 4 служит для регулирования давления на стадии предварительного нагрева. Исходиый остаток, который подвергается первичному предварительному крекингу или нагреву, затем вводится в реактор 5, где происходит вторичный крекинг и отделение от пека более легких фракций (газ, масла), получающихся в ходе крекинга. Реактор 5 оборудован соппом 7, через которое вводят газ-теплоноситель при повышенной температуре в качестве источника нагрева, а также носителя для отдистиллированного вещества в момент выделения. Условия вторичного крекинга зависят от условий первичного крекинга во время предварительного нагрева. Однако используемая температура должна быть в интервале от 300 до 500°C, как упоминалось, предпочтительно в интервале от 380 до 450°С, давление в интервале от 0,98 до 15 кг/см² (избыточное), предпочтительно от 0,95 до 6 $\kappa r/cm^2$, а время пребывания в интервале от 0,5 до 20 ч, предпочтительно от 0,5 до 10 ч. Крекинговые газообразные и жидкие продукты, которые отделяют в процессе реакции, вводятся по линии 8 в охлаждающую разделительную колонну б. таким образом, чтобы разделялись и отбирались обычным образом газ 9, легкие масла 10 и кубовый остаток 11.

> Пек, который был произведен в реакторе 5, подается по линии 12 через

вентиль 13 на охлаждающую ленту 14 для отверждения и получается в виде пекопродуктов. Вентиль 13 предназначен для регулирования уровня жидкости (времени реакции) я реакторе 5. 5

Системы с внешним нагревом могут быть разделены на обработку на стадии предварительного нагрева и вторнчную термообработку для завершения реакции.

Использование трубчатого нагревателя, как это описано, является предпочтительным с точки зрения экономичности, а также для обеспечения приемлемых скоростей реакции. Несмотря на то, что необходимые реакции мотут проводиться только в процессе протекания через трубчатый нагреватель, реакция также осуществляется с использованием реакционного куба.

В этих случаях используются устройства типа замедленного коксования.

Газообразные или маслянистые побочные продукты, получаемые в ходе процесса, могут быть отделены с помощью различных методов дистипляции.

Свойства пека в соответствии с предлагаемым изобретением должны быть следующими: при атомарном отношении Н/С выше 1,1 наблюдается неудовлетворительная совместимость с углем, тогда как при меньшем отношении Н/С связующая сила снижается вследствие повышенного содержания компонента, имеющего более низкую плавность. Когда точка размягчения слишком низкая, то становится трудно измельчать пек и хранить его без появления блокообразования. И наоборот, слишком, высокая тока размягчения приводит к увеличенному содержанию составляющих, имеющих низкую плавкость, тем самым приводят к пониженной совместимости с углем. Если содержание связанного дглерода является слишком низким, то возникает повышенная испаряемость, препятствуя тем самым получению кокса, имеющего высокую плотность и прочность. Если содержание связанного углерода слишком высоко, то это приводит к понижению связующей силы из-за повышения количества составляющих, обладающих низкой плавкостью.

Таким образом, сущность изобретения заключается в создании процесса производства пека с помощью операций преобразования химической структуры и состава кубовых остатков,

производимых в качестве побочных продуктов в нефтехимической промыш-лениости, для улучшения тем самым способностей к смешению с углем и выхода, который подходит для использования в качестве связки в производстве кокса, используемого в литейной промышленности и в доменных печах.

Кроме того, предлагаемый пек 10 может найти и другие применення, например в качестве связки для производства графитовых изделий и огнеупоров.

Маслянистые вещества, производи15 мые во время получения предлагаемого пека, состоят по существу из
углеводородов парафинового ряда,
которые находят применение не только как смазочные масла, но также
20 являются ценными продуктами для использования в производстве газолина
или нефтехимических продуктов.

Эти маслянистые продукты корошо подходят для использования в качестве топлива или добавок к топливу из-за низкого содержания серы и являются, таким образом, предпочтительными с точки зрения требования окраны окружающей среды.

При термическом крекинге в том виде, как он проводится в предлагаемом процессе, основная часть серы, содержащейся в исходном кубовом остатке, отделяется и выводится в виде газа. С другой стороны, несмотря на то, что некоторое количество серы может содержаться в дистиплированном масле, такая сера может быть легко выделена и удалена с помощью обычного процесса десульфурирования. Таким образом, предлагаемый процесс является не только эффективным способом получения серы, но также обеспечивает улучшенное качество дистиллированных масел.

Пример 1.6 кг кубового остатка вакуумной дистипляции сырой нефти месторождения Хафджи загружатот в реакционный резервуар, снабженный мешалкой, нагревателем и колодильником. Затем газ-теплоноситель, предварительно изгретый до высокой температуры, вводят через сопло, имеющее внутренний диаметр 15 мм, в остаток и поддерживают при постоянной температуре в течение заданного периода времени.

Кубовый остаток вакуумной дистилляции сырой нефти месторождения

Хафджи характеризуется следующими
свойствами: удельный вес 1,032; свя-
занного углерода 12,8 вес.%; точка
размягчения 46°C; зольность
0,05 вес. %; точка кипения 450°C.
Данный кубов остаток содержит,
вес. 7: С 84,0; Н 10,41; N 0,66;
S 4,90; H/C 1,49.
В табл. 1 представлены условия
проведення процесса, а в табл. 2 -

Результаты этого испытания показывают, что достигается высокозффективное использование термической энергии. Свойства дистиллированного масла и полученного пека приведены в табл. 3 и 4 соответственно.

материальный баланс.

В табл. 5 приведены результаты испытания на спекание для определения коксующей способности пека для 20 доменной печи. Это испытание проводят на пеке, полученном в опыте 1. Испытание на спеканне состоит в следующем: в нефтяную бочку емкос-25 тью 18 л загружают образцы, имеющие такие же размеры гранул, как и в реальных условиях, и помещают вместе с другой загрузкой в коксовую печь промышленного масштаба с целью коксования, причем боковые стенки 30 бочки снабжены отверстиями. Результаты, приведенные в табл. 5, показывают, что предлагаемый пек обеспечивает превосходные свойства как связка. Проводят элементарный анализ 35 дистиллированных масел из опытов 1-3 и снимают ЯМР- и ИК-спектры. Эти испытания показывают, что в маслах содержится от 60 до 80% алифатических углеводородов. 40

Прочность смесей, содержащих пеки 2 и 3, смешанные в той же пропорции, что и для 3, равна 92 в любом случае.

П р и м е р 2. Кубовый остаток дистилияции при нормальном давлении при 350°С из арабской легкой сырой нефти, свойства которого приведены в таблице 6, загружают в устройство, использовавшееся в примере 1.

Свойства кубового остатка, полученного при дистилляции при нормальном давлении арабской легкой нефти, следующие:

Удельный вес	0,957
Остаточный углерод	10,2
Точка размягчения	Ниже комнатной
	температуры

	Зольность, вес.%	0,03
	Элементарный ана- лиз, вес.%	•*
5	Ċ	84,9
•	н	11,67
	N	0,14
	s ·	3,39
10	H/C	1,65

В результате работы при условиях, указанных ниже:

Газ-теплоноситель Азо	T.
Температура теп- поносителя, ^о С 700)
Интенсивность потока	
теплоносителя, м ³ /ч 5,0)
Температура исходного остатка, ^о С 430)
Продолжительность работы, мин 120	
получают следующий матернальный ланс, вес. %:	ба-

н ₂	0,04
CH _↑	2,0
C2H6+C2H4	1,8
C3H8+C3H6	Следы
С ₄ углеводороды	0 .
H ₂ S	0;7
Дистиллированное	-
масло	80,1
Пек	11,9
Потери	3,46

Свойства полученного таким образом пека следующие:

Удельный вес $\binom{15}{4}$	0,920
Точка вспышки	184

Дистилляционное испытание

50

55

Начальная температура дистилляции, °С	-	190
Отдистиллировано,	%	
	20	3 55
	50	410
	80	465

13	, • •
Точка размягчения, СС	159
Связанный углерод, вес.%	53,1
Зольность, вес.%	0,3
Элементарный анализ, вес.	7.
\mathbf{c}	85,9
Н	6,61
N	0,49
S	6,54
н/c	0,924
ستان جين مناه هند منان سان انجاز بيان سان منان سان سند منان سان سان سان سان ديد ويان ويم بيان هند سان سان سان	

Полученный пек подвергают испытанию на спекание, как это использовалось для производства кокса в тех же пропорциях, что и в опыте 3 в табл. 5. Прочность полученного кокса составляет 91.

Получают дистиплированное масло следующего состава, вес. %:

С	85,30
Н	12,44
N	0,20
S H/C	2,40 1,75
Нераствори- мые в бен- золе, вес. %	16,6
Нераствори- мые в хино-	
лине, вес.%	1,8

Пример 3. Кубовый остаток вакуумной дистилляции сырой нефти месторождения Хафджи, предварителько нагретый до 350°С, подвергают термообработке в трубчатом нагревателе при максимальной температуре 475°С в течение 13 мин. Затем обработанный таким образом кубовый остаток вводят в куб при нормальном давлении так, что около половины кубового остатка было отдистиллировано в виде жидкости с выходом 45 вес.% тяжелого пека.

 Свойства исходного тяжелого масла следующие:

Отношение Н/С	1,49.
Удельный вес	1,032
Точка размягчення, ОС	46
Зольность, вес.%	0,05

Начальная температура дистипляции при норт мальном давлении, °C

5 Свойства получаемого пекопродукта приведены ниже:

	Точка размягчения, ⁶ С	130
	Связанный углерод, вес.%	42
0	Нерастворнмое в бензоле вещество, вес.%	10
	Нерастворимое в хинолине вещество, вес.%	0
5	Отношение Н/С	1,0

Пек, полученный из тяжелого масла на основе нефти и состоящий по существу из алифатических углеводордов, проявляет свойства, подобные свойствам угольного асфальтового пека, состоящего главным образом из ароматических углеводородов. Полученный таким образом пек нэмельчают до порош-25 ка и смешивают с различными сортами углей, затем подвергают приготовленную смесь испытанию на спекание, как это используется в производстве кокса для доменных печей. В табл. б представлены результаты такого испытания, демонстрирующие превосходные свойства получаемого кокса.

II ример 4. Кубовый остаток 35 вакуумной дистилляции Иранской тяжелой серой нефтн, предварительно нагретый до 350°C, нагревают до 410-4200С в трубчатом нагревателе и затем вводят в реакциоиный куб и выдерживают в течение 12 ч. Во время этой операции куб поддерживают под давленнем 5 кг/см² (избыточное), а° эагруженный остаток выдерживают при 410-420°C. Затем пар при ~200°C вводят в куб для удалення из него фракции легких масел с результирующим выкодом 32% по весу тяжелого пека как остатка в расчете на вес исходного остатка. Проводят те же самые операции, что и в примере 3, в частности в тех же условнях, что и в условиях, указапных в графах 2, 4 н 5 в табл. 6 для иснытания, как это осуществляется в производстве кокса для 55 доменных печей. Прочность коксопродуктов равна 91,6, 89,2 и 91,4.

Ниже приведены свойства полученно: го пека: 15

10	1	U8/U
Точка размятчения, °С	85	
Связанного углерода, вес.%	55	
Нерастворимое в		5
бензоле вещество,		-
Bec.%	43	
Нерастворимое в		
хинолине вещество,		
вес: %	.9,4	10
Отношение Н/С	0,9	
Q () ()		

Пример 5. Пек, полученный аналогично примеру 3, помещают в куб для созревання, оборудованный мешалкой, на термообработку. Эту термообработку проводят при нормальном давлении при 400-410°С в течение 6 ч. Легкие масла, образовавшиеся в ходе термообработки, извлекают с помощью дистилляции, а тяжелый высокоароматизированный пек получают с выходом 59 вес. % (26,5 вес. % в расчете на вес исходного остатка).

Полученный пек характеризуется следующими свойствами: точка размягчения 225°С; нерастворимого в бензовещества 65%; нерастворимого в хинолине вещества 38%; отношение Н/С 0,76 и 60% связанного углерода.

Этот пек испытывают на коксующую способность в качестве коксующей связки в тех же условиях, что и в опытах 2, 4 и 5 в табл. 6, с хороши-ми результатами, дающими прочность зкокса 91,8, 81,1 и 92,3 соответствению.

Проводят испытания для пека в качестве связки следующего состава:

Слабококсующийся			40
уголь нэ Австралии (Ньюдалл), %	70	50	
Предлагаемый пак, %	30	50	
Прочность кокса	88,7	91,4	45

Оказалось, что смесь слабококсующегося угля из Австрални (Ньюделл) с предлагаемым пеком обеспечивает коксуемость, сравнимую с коксуемостьк50 сильнококсующихся углей.

Пример 6. При использовании в качестве исходного материала кубового остатка вакуумной дистилляции того же материала, что п в примере 1, проводят испытание в масштабе интенсивности потока исходного остатка около 100 кг/ч, причем применяют устройство, показаиное на чертеже.

Перегретый пар вводят в качестве нагретого теплоносителя при 620°С с интенсивностью потока 30,4 кг/ч. Условия испытания следующне: Т_г (температура на выходе печи предваритель. ного нагрева с крекингом) 480°С; Т_с.(температура внутри реакционного куба) 420°С; Ро (давление на входе печи предварительного крекингового нагрева 32 кг/см²(нэб); Р₁ (давлениє на выходе печи предварительного крекингового нагрева) 10 кг/см (изб.); Р2 (давление внутри реакционного куба) 0,1 кг/см² (нэб.); 0, (время пребывания в печи предварительного крекингового нагрева) 3,2 ч; 02 (время пребывания внутри реакционного куба) 3,5 ч.

Получают следующие продукты, вес. %: газ 4,6; легкое масло 11,3; тяжелое масло 48,4 и остаточный пек 25,5.

В табл. 7 показаны свойства полученных продуктов,

В табл. 8 представлены результаты испытания, рассмотренные в свете приведенных условий температуры и давления (Опыт 1 предлагаемый).

Вслед за этим пек, полученный в ходе каждого из таких испытаний, подвертают испытанию на коксование. Смесь, использовавшаяся в этом испытании, состоит из 80 вес.ч. угля ОС из СССР, который является некоксующимся углем, и 20 вес.ч. пека.

Таблица 8 показывает, что продукты, полученные в каждом случае, обестечивают качество, сравничое с качеством, получающимся в результате использования хорошо коксующегося угля.

T	a	б	Л	И	LĮ.	a	1

Условия	Опыт			
	1	2	3	
Газ-теплоноситель	Кислородно- водородное пламя	Пар	Азот	
Температура газа-теплоносителя, °C	1500	700 [°]	500	
Интенсивность потока газа- теплоносителя, м ³ /ч	3,2	5,0	4,2	
Температура исходного остатка, °С	350	430	450	
Продолжительность работы, мин	30	210	60	
		Та (5 лица 2 	
Выход, вес.%	Опыт			
	1	2	3	
н ₂	0,5	0,1	0,1	
CH ₄	5,2	4,8	3,3	
$C_2H_6 + C_2H_4$	8,8	4,4	1,2	
$C_{6}H_{8} + C_{8}H_{6}$	7,2	Следы	0	
С4 углеводород	5,0	0	0	
H ₂ S	2,0	2,1	1,9	
Дистиллированное масло	45,0	62,5	69,8	
. Пек	24,5	20,6	21,7	
Потери	1,5	5,5	2,0	

Таблица 3-

Свойства дистиллированного масла	Опыт			
	1	2	3 .	
Удельный вес	0,911	0,940	0,934	
Точка вспышки, СС	102	146	152	
Начало дистилляции, ^о С	132	211	200	
20% отдистиллированной массы	252	344	331	
50% отдистинлированной массы	348	474	460	
80% отдистиллированной массы	475	525	520	
Элементный анализ, вес.%	• •			
C	86,30	84,80	85,6	
Н	11,08	11,88	12,15	
N	0,52	0,43	0,36	
S	2,10	2,26	2,32	
H/C	1,55	1,68	1,71	

П р и м е ч а н и е. Приведенные температуры пересчитаны на точки кипения (°С) при нормальном давлении.

		Табли	нца 4			
Свойства пека	Опыт					
	1	2	3			
Точка размягчения, ОС	* 250	*280	* 263			
Связанный углерод, вес.%	62,3	75,1	67,2			
Зольность, %	0,7	0,5	0,2			
c, %	86,5	87,6	87,9			
Н, %	4,62	5,49	5,76			

22

	*	Продолжен	ие табл. 4			
Свойства пека	Опыт					
,	1	2 ·	3			
N, Z	1,90	1,76	1,56			
s, %	6,08	4,75	4,48			
H/C	0,650	0,752	0,786			
Нерастворимые в бензоле, вес.%	65,4	74,8	58,9			
Нерастворимые в хинолине, вес.%	32,0	40,3	27,2			

^{*} Эти цифры получены с помощью прибора для определения точек микроплавления, изготовленного фирмой Янагимото Мэнъюфэчуринг Компани, Киото, Япония.

Таблица 5

Компоненты смеси, %	Опыт				
	Для ср	Для сравнения			гаемый
	1	2	3 .	4	5
Сильнококсующийся уголь из США (летучего вещества 19-20%)	20	-	10	-	_
Коксующийся уголь из Австралии (летучего вещества 20-23%)	40	50	40	45	40
Слабококсующийся уголь из Японии (летучего вещества 35-40%)	40	50	45	45	45
Предлагаемый пек из опыта 1		-	5	10	15
Барабанный индекс	92	76	93	91	93

. 45- 43- 45- 63- 44- 45-	23		1087077		24 T a t	<u>лиц</u>	a 6	
K	омпоненты (смеси, %		On	ыт			
			1	2	3	4	5	
	сующнйся у вещества	голь нэ США 18-19%)	20	20	0	0	10	
		з Австралии 26-28 вес.%)	40	40	50	50	.45	
		оль из Японии 35-40 вес.%)	40	40	50	50	45	
Пек согла тению	сно предла	гаемому изобре-	0	1 .	0	5	5	
Прочность	кокса		91,2	91,5	82,2	88,3	90,8	
**************************************		~		ىك مىڭ مىڭ مىڭ مىڭ مەر چې <u>ر يىرىن</u>	_таб	лица	· 7	
Состав га	38	Cı	Свойства масла			Свойства пека		
		легкое	тяжелое					
H ₂	11,9	С	83,5	83,5	C		87,7	
H ₂	7,4	Н	14,6	11,4	Н		5,77	
СН	32,5		1,6	4,6			6,15	
C ₂ H ₄	2,7	Точка на- чала кипе- ния	38°C	212	н/с		0,78	
C2H6	15,6	20%	120	325	Связа	нный С	67,0	
C3H6	7,5	80%	196	505		твори- бензо-	58,3	
с ₃ н ₈	10,7	• -	-	-		твори - хино-	27,0	

11,6

Удельный вес, 20°C 1,25

Тa	б	Л	Н	Ц	а	8
----	---	---	---	---	---	---

	Опыт						
Показатели	1	2	3	4	5		
Количество подаваемого исходного остатка, кг/ч	101	100	102	100	103		
Количество теплоносителя, вводимого при повышенной температуре, кг/ч	.30,4	50,7	25,0	18,5	5,3		
Температура теплоносителя, вводимого при повышенной температуре, ${}^{\circ}$ С	620	620	850	850	1600		
Температура на выходе печи предва- рительного крекингового нагрева, °C	480	380	475	485	480		
Давление на выходе печи предварительного крекингового нагрева, кг/см ²	. 32	33	102	105	101		
Давление на входе печи предварительного крекингового нагрева, кг/см²	10	11	73	72	70		
Время пребывания в печи предвари- тельного крекингового нагрева, мин	3,2	25,0	8,5	8,5	8,5		
Температура жидкости в реакционном кубе, ${}^{\circ}\mathrm{C}$	420	380	410	385	365		
Давление жидкости в реакционном кубе (P_2) , кг/см 2 (изб.)	0,1	4,5	0,1	-0,75	-0,90		
Среднее время пребывания в реакци- онном кубе, ч	3,5	6,5	2,0	2,5	1,0		
Выход продуктов, вес.%	4,6	7,2	8,4	8,0	15,8		
Легкое масло	11,3	10,5	12,1	12,0	23,0		
Тяжелое масло	58,4	45,9	55,2	54,9	36,5		
Остаточный пек	25,5	36,2	24,7	25,1	24,7		
Свойс	ства пека	1					
Температура размягчения пека. ^о С Связанный углерод, вес.%	230 67,0	218 58,3	241 69,3	232 66,2	229 68,4		
H/C	0,78	0,82	0,77	0,78	0,71		
Нерастворимые в бензоле, %			59, 5				

Показатели 1 2 3 4 5 Свойства пека Нерастворимые в кинолине, % 27,0 14,0 29,1 26,1 30,3			4	Проде	лжение	табл. 8
1 2 3 4 5 Свойства пека				Опыт		
•	Показатели	1	,2	3	4	5
Нерастворимые в кинолине, % 27,0 14,0 29,1 26,1 30,3	. I was made that then then then then then then then the	Свойства	пека	1		
	Нерастворимые в хинолине, χ	27,0	14,0	29,1	26,1	30,3
Коксуемость (30)* 92,6 92,1 91,7 93,1 92,4	Коксуемость (30)*	92,6	92,1	91,7	93,1	92,4

 $^{^{*}}$ Коксуемость в случае только одного ОС угля равна 15,1.

Составитель Р. Горяинова
Редактор Т. Колб Техред В.Далекорей Корректор С. Шехмар
Заказ 2288/54 Тираж 489 Подписное
ВНИИПИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4