

液体饱和蒸气压的测定

刘松瑞 2100011819 组号: 24 组内编号: 5 化学与分子工程学院

实验日期: 2023年11月16日

温度: 18.3°C 大气压强: 102.05 kPa

关键词: 饱和蒸气压 摩尔气化焓 摩尔气化熵 褚鲁统规则

摘要: 本实验在不同温度下,采用静态法测定四氯化碳的饱和蒸气压,计算得到四氯化碳的正常沸点为 (76.5 ± 0.9) °C,摩尔气化焓为 (31.43 ± 0.07) kJ/mol,摩尔气化熵为 (89.9 ± 0.3) J/(mol·K); 然后采用动态法测定水的饱和蒸气压,水的正常沸点为 (99 ± 2) °C,摩尔气化焓为 (41.3 ± 0.2) kJ/mol,摩尔气化熵为 (111.0 ± 0.8) J/(mol·K)。最后探究了温度计插入深度对动态法测量结果的影响,若插入过深会对测得的沸点温度造成显著误差,因此应当将温度计置于液面处。

1 引言

1.1 实验目的与原理

实验目的与原理详见预习报告图 1。[1]

图 1: 实验的目的与原理

1.2 实验方法

使用静态法与动态法测定 $\mathrm{CCl_4}$ 与 $\mathrm{H_2O}$ 的饱和蒸气压,得到工作曲线,并计算 $\Delta_g^l H_m$ 。

2 实验部分

2.1 实验步骤

2.1.1 静态法实验步骤

- 1. 向平衡管中加入适量四氯化碳,组装好实验装置,打开冷凝水,打开真空泵,打开真空泵连接储气罐的活塞,对体系减压约 50 kPa
- 2. 关闭阀门,记录关闭阀门三分钟前后压力值变化为 0.01 kPa,说明装置气密性良好。
- 3. 使体系与大气相通,将平衡管水浴加热至水浴温度达 80 ℃ 左右,保持加热数分钟,排除平衡管中空气与蒸气。

- 4. 停止加热,不断搅拌。温度下降至两管液面达到同一水平的瞬间,立即记下此时的温度和压力,得到对应压力下的沸点。重复测定三次。
- 5. 关闭通大气的活塞。打开通水泵的活塞减压约 5 kPa,冷却并不断搅拌。记录两管 液面达到同一水平的瞬间的温度和压力。继续实验,每次减压 5 kPa,直到内外相 差 50 kPa 时停止实验,此时再读一次大气压力。

2.1.2 动态法实验步骤

- 1. 组装测量系统并检查气密性:将两口圆底烧瓶加入约 200 mL 二次水,放入一个磁力搅拌子,适当搅拌防止暴沸。
- 2. 减压至 50 kPa, 记录关闭阀门三分钟前后压力值变化为 0.00 kPa, 说明装置气密性良好。
- 3. 调节外压,测量不同外压下的沸点,当烧瓶中水沸腾且温度不再上升时,记下温度压力数值,停止加热。
- 4. 开启缓冲罐通大气的活塞,至压力值升高 5 kPa 左右,关闭活塞,重新加热。
- 5. 最后一次使系统与大气完全相通,继续加热,记下沸腾时的温度。

2.2 仪器与药品

1. 试剂

四氯化碳,二次去离子水,1000 mL 烧杯,250 mL 两口圆底烧瓶。

2. 仪器

数字式温度-压力测定仪 (WXI-04型), 电加热器,循环水真空泵,带电热套的磁力搅拌装置,冷凝水循环系统,真空缓冲罐,直形冷凝管,搅拌磁子,真空脂。

3 实验现象与数据处理

3.1 静态法测四氯化碳的饱和蒸气压

3.1.1 常压下四氯化碳的沸点

排气后,测量常压下四氯化碳的沸点,如表 1 所示,由此可知:

 $\bar{T} = 101.92 \text{kPa}$ $\bar{p} = 76.68^{\circ}\text{C}$

表 1: 常压下四氯化碳的沸点

	T/°C	p/kPa
1	76.64	101.93
2	76.67	101.93
3	76.72	101.89

3.1.2 不同气压下四氯化碳的饱和蒸气压

测量不同气压下四氯化碳的沸点如表 2 ,对数据处理并线性回归得到图 2 ,可以得到 $\ln(\frac{p}{p^o})$ — $\frac{1}{T}$ 线性关系为

$$\ln(\frac{p}{p^o}) = (10.81 \pm 0.02) + (-3780 \pm 8) * \frac{1}{T} \quad R^2 = 0.99996$$

表 2: 不同气压下四氯化碳的沸点

p/kPa	T/° <i>C</i>	$\ln(p/p^o)$	T/K	T^{-1}/K^{-1}
101.92	76.68	0.0059	349.83	0.002859
91.97	73.41	-0.0969	346.56	0.002886
82.54	69.91	-0.2051	343.06	0.002915
78.12	68.21	-0.2601	341.36	0.002929
73.31	66.24	-0.3236	339.39	0.002946
68.26	64.11	-0.3950	337.26	0.002965
62.76	61.61	-0.4790	334.76	0.002987
57.40	59.02	-0.5683	332.17	0.003011
50.14	55.14	-0.7035	328.29	0.003046

数据测定结束后,测定大气压为 101.80 kPa, 室温为 20.4 ℃。

计算在标准压力下, 四氯化碳沸点为

$$T_b = \frac{A}{\ln(\frac{p}{p^o}) - B} = 349.7 \ K$$

$$\sigma_{T_b} = T_b \sqrt{(\frac{\sigma_A}{A})^2 + (\frac{\sigma_B}{\ln(\frac{p}{p^o}) - B})^2} = 0.9 \ K$$

有 $T_b = 349.7 \pm 0.9 K$,即 76.5 ± 0.9 °C

由于 Clapeyron-Clausius 方程可知

$$\ln(\frac{p}{p^o}) = \frac{\Delta_g^l H_m}{RT} + B$$

图 2: 四氯化碳的 $\ln(\frac{p}{p^o}) - \frac{1}{T}$ 图

可得

$$\Delta_g^l H_m = -A \cdot R = (3.143 \times 10^4 \pm 7 \times 10^1) \text{ J/mol} = (31.43 \pm 0.07) \text{ kJ/mol}$$

因此

$$\Delta_g^l S_m = \frac{\Delta_g^l H_m}{T_b} = 89.9 \text{ J/(mol} \cdot \text{K)}$$

$$\sigma_{\Delta_g^l S_m} = \Delta_g^l S_m \sqrt{\left(\frac{\sigma_{\Delta_g^l H_m}}{\Delta_g^l H_m}\right)^2 + \left(\frac{\sigma_{T_b}}{T_b}\right)^2} = 0.3 \text{ J/(mol} \cdot \text{K)}$$

有 $\Delta_g^l S_m = 89.9 \pm 0.3 \, \mathrm{J/(mol \cdot K)}$,这与褚鲁统规则基本一致。

3.2 动态法测水的饱和蒸气压

测量不同气压下水的沸点如表 3 ,对数据处理并线性回归得到图 3,可以得到 $\ln(\frac{p}{p^o})$ — $\frac{1}{T}$ 线性关系为

$$\ln(\frac{p}{p^o}) = (13.36 \pm 0.06) + (-4.97 \times 10^3 \pm 2 \times 10^1) * \frac{1}{T} \quad R^2 = 0.9992$$

数据测定结束后,测定大气压为 101.73 kPa,室温为 20.7 ℃。

计算在标准压力下, 水的沸点为

$$T_b = \frac{A}{\ln(\frac{p}{p^o}) - B} = 372 K$$

表 3: 不同气压下水的沸点

p/kPa	T/° <i>C</i>	$\ln(p/p^o)$	T/K	T^{-1}/K^{-1}
51.00	80.20	-0.6865	353.35	0.002830
56.75	83.07	-0.5797	356.22	0.002807
64.28	86.34	-0.4551	359.49	0.002782
77.04	90.93	-0.2740	364.08	0.002747
82.71	92.95	-0.2030	366.10	0.002731
84.17	93.46	-0.1855	366.61	0.002728
91.22	95.49	-0.1051	368.64	0.002713
95.59	96.81	-0.0583	369.96	0.002703
101.80	98.59	0.0047	371.74	0.002690

$$\sigma_{T_b} = T_b \sqrt{(\frac{\sigma_A}{A})^2 + (\frac{\sigma_B}{\ln(\frac{p}{p^o}) - B})^2} = 2 K$$

有 $T_b=372\pm2~K$,即 (99 ± 2) °C。

摩尔气化焓为

$$\Delta_g^l H_m = A \cdot R = (4.13 \times 10^4 \pm 2 \times 10^2) \text{ J/mol} = (41.3 \pm 0.2) \text{ kJ/mol}$$

因此摩尔气化熵为

$$\Delta_g^l S_m = \frac{\Delta_g^l H_m}{T_b} = 111.0 \text{ J/(mol} \cdot \text{K)}$$

$$\sigma_{\Delta_g^l S_m} = \Delta_g^l S_m \sqrt{(\frac{\sigma_{\Delta_g^l H_m}}{\Delta_g^l H_m})^2 + (\frac{\sigma_{T_b}}{T_b})^2} = 0.8 \text{ J/(mol} \cdot \text{K)}$$

有 $\Delta_g^l S_m = 111.0 \pm 0.8 \text{ J/(mol \cdot K)}$,这与褚鲁统规则相差较大。

4 实验结果与讨论

4.1 讨论

4.1.1 与标准值的比较与误差分析

查阅文献[2]可知,对四氯化碳有

$$T = 349.85 \text{ K}$$
 $\Delta_g^l H_m = 29.82 \text{ J/mol}$ $\Delta_g^l S_m = 85.24 \text{ J/(mol} \cdot \text{K)}$

图 3: 水的 $\ln(\frac{p}{p^o}) - \frac{1}{T}$ 图

可以以此计算测量误差

$$E_r(T) = \frac{349.7 - 349.85}{349.85} = 0.04\%$$

$$E_r(\Delta_g^l H_m) = \frac{31.43 - 29.82}{29.82} = 5.4\%$$

$$E_r(\Delta_g^l S_m) = \frac{89.9 - 85.24}{85.24} = 5.5\%$$

对水有

$$T = 373.15 \text{ K} \quad \Delta_g^l H_m = 40.65 \text{ kJ/mol} \quad \Delta_g^l S_m = 108.95 \text{ J/(mol} \cdot \text{K)}$$

$$E_r(T) = \frac{373 - 373.15}{373.15} = -0.3\%$$

$$E_r(\Delta_g^l H_m) = \frac{41.3 - 40.65}{40.65} = 1.6\%$$

$$E_r(\Delta_g^l S_m) = \frac{111.0 - 108.95}{108.95} = 1.9\%$$

由于两种液体在升温过程中摩尔气化焓和摩尔气化熵会发生变化,而我们使用的Clapeyron - Clausius 方程忽略了这一点,近似认为摩尔气化焓和摩尔气化熵不变,因此在于沸点时的真实值进行比较会有显著的误差。此外,在计算时近似认为气体为理想气体也会带来一定误差。

对于四氯化碳这样的非极性分子,分子间相互作用小,因此可以较好地符合褚鲁统规则。水分子间有氢键相互作用且为极性分子,与理想液体的偏离较大。因此水的摩尔气化熵显著偏离常数,不符合褚鲁统规则。

4.1.2 温度计插入深度对动态法测量的影响

对于正常情况,温度计应当放置在液面处,但是液体沸腾时存在一定的温度梯度,可能会造成一定的误差。因此,笔者探究温度计放置位置对测量结果的影响。在实验中,笔者将温度计伸入液面,进行动态法测量。同样地,得到不同气压下水的沸点如表4,对数据处理并线性回归得到图4,可以得到 $\ln(\frac{P}{P^o}) - \frac{1}{T}$ 线性关系为

$$\ln(\frac{p}{p^o}) = (13.37 \pm 0.05) + (-5.00 \times 10^3 \pm 2 \times 10^1) * \frac{1}{T} \quad R^2 = 0.9999$$

p/kPa	T/° <i>C</i>	$\ln(p/p^o)$	T/K	T^{-1}/K^{-1}
50.55	82.03	-0.6954	355.18	0.002815
54.75	84.22	-0.6156	357.37	0.002798
59.60	86.39	-0.5307	359.54	0.002781
65.18	88.77	-0.4412	361.92	0.002763
69.66	90.49	-0.3747	363.64	0.002750
74.73	92.40	-0.3045	365.55	0.002736
79.28	93.94	-0.2453	367.09	0.002724
84.80	95.74	-0.1780	368.89	0.002711
89.46	97.21	-0.1245	370.36	0.002700
94.42	98.67	-0.0706	371.82	0.002689
101.73	100.64	0.0040	373.79	0.002675

表 4: 不同气压下水的沸点

计算在标准压力下, 水的沸点为

$$T_b = \frac{A}{\ln(\frac{p}{p^o}) - B} = 374 K$$

$$\sigma_{T_b} = T_b \sqrt{(\frac{\sigma_A}{A})^2 + (\frac{\sigma_B}{\ln(\frac{p}{p^o}) - B})^2} = 2 K$$

有 $T_b = 374 \pm 2 K$,即 (101 ± 2) °C。

反应的摩尔气化焓为

$$\Delta_g^l H_m = A \cdot R = (4.13 \times 10^4 \pm 2 \times 10^2) \text{ J/mol} = (41.3 \pm 0.2) \text{ kJ/mol}$$

因此摩尔气化熵为

$$\Delta_g^l S_m = \frac{\Delta_g^l H_m}{T_b} = 110.4 \text{ J/(mol} \cdot \text{K)}$$

图 4: 水的 $\ln(\frac{p}{p^o}) - \frac{1}{T}$ 图

$$\sigma_{\Delta_g^l S_m} = \Delta_g^l S_m \sqrt{\left(\frac{\sigma_{\Delta_g^l H_m}}{\Delta_g^l H_m}\right)^2 + \left(\frac{\sigma_{T_b}}{T_b}\right)^2} = 0.7 \text{ J/(mol · K)}$$

得到 $\Delta_g^l S_m = 110.4 \pm 0.7 \text{ J/(mol} \cdot \text{K)}$ 。

与标准沸点相比较

$$E_r(T) = \frac{374 - 373.15}{373.15} = 0.2\%$$

对比两次试验结果,可以发现,将温度计插入较深会导致测得的沸点升高,因为此时温度计更接近热源,液体发生过热现象。而我们得到的摩尔气化熵与摩尔气化焓与之前的差异并不明显,仅摩尔气化熵略微增加。综上,我们在进行实验时为得到准确的蒸气温度,仍然应当将温度计置于液面处,若插入过深会对测得的沸点温度造成显著误差。

4.2 结论

本实验在不同温度下,采用静态法测定四氯化碳的饱和蒸气压,计算得到四氯化碳的正常沸点为(76.5 ± 0.9)°C ,摩尔气化焓 $\Delta_g^l H_m = (31.43 \pm 0.07)$ kJ/mol ,摩尔气化熔 $\Delta_g^l S_m = (89.9 \pm 0.3)$ J/(mol·K);然后采用动态法测定水的饱和蒸气压,水的正常沸点为(99 ± 2)°C ,摩尔气化焓 $\Delta_g^l H_m = (41.3 \pm 0.2)$ kJ/mol ,摩尔气化熔 $\Delta_g^l S_m = (111.0 \pm 0.8)$ J/(mol·K) 。最后探究了温度计插入深度对动态法测量结果的影响,若插入过深会对测得的沸点温度造成显著误差,因此应当将温度计置于液面处。

参考文献

- [1] 北京大学化学学院物理化学实验教学组. 物理化学实验[M]. 4 版. 北京: 北京大学出版社, 2002: 5.
- [2] WEAST, ROBERTC. Crc handbook of chemistry and physics[M]. CRC handbook of chemistry and physics, 1988.