

GST: A Brain-Inspired
Graph Signal Transmitter
for Biomedical Image
Segmentation

SUMÁRIO

INTRODUÇÃO

METODOLOGIA

CONFIGURAÇÕES

RESULTADOS

DISCUSSÃO

CONCLUSÃO

REFERÊNCIA

<u>INTRODUÇÃO</u>

- Apresenta uma nova técnica de segmentação de imagens biomédicas baseada em um modelo inspirado no cérebro humano
- Descreve o Graph Signal Transmitter (GST)
- A técnica proposta no artigo é capaz de segmentar imagens biomédicas com alta precisão e eficiência

construção de nós semânticos

- Extração de descritores de baixo nível da imagem
- Criação de características de baixo nível a partir desses descritores
- Agregação dessas características em clusters usando o algoritmo de agrupamento K-means.

construção do grafo

- Amostragem de patches sobrepostos da imagem de entrada
- Construção de amostras de pixels a partir dos patches
- Criação das relações de vizinhança entre as amostras de pixels.

propagação de sinais

Geração de sinais de entrada para o grafo, que são propagados pelos nós semânticos para gerar um sinal de saída.

segmentação

Aplicação de um limiar no sinal de saída gerado pela propagação de sinais para produzir a imagem segmentada final

50 | 51 | 52 | 53 | 54 | 55 | 56

57 | 58 | 59 | 60 | 61 | 62 | 63 | 64

49

CONFIGURAÇÕES

Descrição de dados e pré-processamentos

DATASET

- GlaS Challenge Contest
- possui 165 imagens de histologia coradas com H&E e rótulos de instância correspondentes

- → O dataset foi dividido em três subconjuntos: conjunto de treinamento, conjunto de teste A e conjunto de teste B
- → As imagens foram pré-processadas para normalização e redimensionamento para um tamanho uniforme

CONFIGURAÇÕES

Hiperparâmetros Experimentais e Estratégia de Treinamento

GPU	Otimizador	Taxa de aprendizado inicial Ir	BatchSize	Epoch	Função de perda	Estratégia de decaimento da taxa de aprendizado	Pacência	Fator
2080Ti	Adam	0,001	1	100	MSE e IoU	ReduceLR OnPlateau	3	0,8

RESULTADOS COMPARATIVOS

00

EXPERIMENTAIS

- Foram realizadas comparações entre o modelo GST e outros modelos SOTA (State-Of-The-Art)
- Métricas:
 - loU para avaliar o desempenho da segmentação semântica
 - o pontuação de nível de objeto Dice (Obj-Dice), que mede o coeficiente de segmentação de nível de instância
 - F1score (F1), que mede a precisão de detecção de instâncias de glândula
 - Hausdorff Distance (HD) no nível do objeto, que indica a semelhança entre o limite previsto da glândula e o do rótulo.

RESULTADOS COMPARATIVOS EXPERIMENTAIS

Models	IoU	Obj_Dice: Total/A/B			F1: Total/A/B			HD: Total/A/B			Params
GST	0.8721	0.8901	0.9084	0.8353	0.8718	0.8985	0.7916	29.41	22.60	49.84	17.29M
GAT	0.8498	0.8395	0.8503	0.8068	0.7764	0.8073	0.6837	45.89	38.05	69.41	17.31M
GNT	0.8524	0.8466	0.8610	0.8036	0.8003	0.8240	0.7294	42.18	35.11	63.41	17.32M
DeepLabV3	0.8091	0.7270	0.7336	0.7071	0.6434	0.6598	0.5944	82.82	75.43	104.9	15.34M
SwinUNet	0.8300	0.7529	0.7573	0.7399	0.6999	0.7171	0.6483	72.73	69.34	82.88	41.96M
UNet	0.8202	0.7881	0.7989	0.7558	0.7017	0.7355	0.6002	59.84	53.93	77.55	17.27M
UNet++	0.8235	0.8034	0.8216	0.7486	0.7233	0.7473	0.6515	58.72	49.41	86.66	47.18M
UNet3+	0.8325	0.8209	0.8376	0.7707	0.7446	0.7753	0.6526	50.01	40.91	77.31	26.98M
UTNet	0.8557	0.8288	0.8411	0.7920	0.7823	0.8038	0.7177	47.07	41.89	62.61	10.01M

ESTUDO DE ABLAÇÃO

- As ablações de GST incluem: (1) Remoção de GST; (2) Mantendo a arquitetura geral e substituindo GST por GCN e convoluções em profundidade de tamanho grande; (3) Substituindo o módulo Fold por upsampling e convolução transposta.
- Denotações: Encoder, GST, Fold e GCN serão representados por E, T, F, G, respectivamente; Convolução em profundidade de tamanho grande como L; Convolução transposta e upsampling como D e U.

ESTUDO DE ABLAÇÃO

Models	IoU	Obj_Dice: Total/A/B			F1: Total/A/B			HD: Total/A/B			Params
F(T(E(X)))	0.8721	0.8901	0.9084	0.8353	0.8718	0.8985	0.7916	29.41	22.60	49.84	17.29M
F(L(E(X)))	0.8485	0.8371	0.8486	0.8028	0.7836	0.8125	0.6969	45.63	38.71	66.41	13.91M
F(G(E(X)))	0.8462	0.8353	0.8465	0.8018	0.7817	0.8189	0.6701	46.16	39.90	64.93	11.27M
F(E(X))	0.8456	0.8334	0.8398	0.8144	0.7773	0.8002	0.7088	48.15	42.17	66.08	6.27M
D(E(X))	0.8362	0.7868	0.7934	0.7671	0.7258	0.7518	0.6474	60.64	55.23	76.88	6.24M
U(E(X))	0.8286	0.7844	0.7872	0.7759	0.7385	0.7519	0.6982	61.43	55.30	79.84	6.23M

- Comparado com F(E(X)), F(T(E(X))) tem uma melhora de 3,1% em IoU,
 6,8% em Obj_Dice, 12,2% na pontuação F1 e atinge um HD 18,7% menor.
- As últimas três linhas de resultados de ablação mostram a superioridade do módulo de dobra sobre a convolução transposta e o upsampling.

DISCUSSÃO

- Avaliação do desempenho do método proposto e na comparação com outros métodos de segmentação de imagens.
- O método proposto apresentou um desempenho superior em comparação com outros métodos de segmentação de imagens
- O artigo destaca a importância da construção precisa do grafo na segmentação de imagens. A estratégia de amostragem de patches sobrepostos, a construção de amostras de pixels e a criação das relações de vizinhança por meio do kernel ajudaram a construir um grafo preciso e robusto

CONCLUSÃO

- A metodologia proposta apresentou um desempenho superior em relação a outros métodos de segmentação de imagens.
- A metodologia proposta mostra potencial para aplicações em imagens biomédicas, como a segmentação de células e tecidos em imagens de microscopia.
- O artigo propõe uma abordagem inovadora e eficiente para a segmentação de imagens por meio da inspiração no funcionamento do cérebro.
- Os resultados experimentais mostram que a metodologia proposta é altamente competitiva em relação a outros métodos e pode ser aplicada com sucesso em aplicações biomédicas.

REFERÊNCIA

C. Jian, Y. Qin, L. Wang, H. Xia and Y. Zhu, "GST: A Brain-Inspired Graph Signal Transmitter for Biomedical Image Segmentation", 2022 16th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 2022, pp. 442-446, doi: 10.1109/ICSP56322.2022.9965289.