CE802 Machine Learning & Data Mining

Report on Assignment: Design and Application of a Machine Learning System for a Practical Problem

Submitted By

Omkar R Kharkar

2205233

Submitted To:

Dr. Vito De Feo

Abstract

The assignment asked to perform a comparative study of different machine learning algorithms and test the algorithm with the test data provided. Learning outcomes of this assignment are: a] to learn to identify machine learning techniques appropriate for particular practical problems; and b] to undertake a comparative evaluation of several machine learning procedures when applied to specific problems. After performing the required tasks on the given datasets, herein lies my final report.

Comparative Study

A. Explorative Data Analysis:

```
F1
          F2
                    F3
                             F4
                                       F5
                                           F6
                                                   F7
                                                            F8
                                                                    F9
 1.6430
           0 -4894.24 -13.0281 -4.793400
                                            0
                                               5.1270 -17.1100 -63.340
           0 -5085.44 -16.2210 -3.991776
                                               4.6256 -4.5800 -10.314
  0.5310
                                            0
  0.2640
           0 -7021.44 -11.7591 -6.161700
                                               4.3628 -14.7118
                                                                -6.806
                                            0
  0.3196
           1 -4648.76 -11.8110 -4.217700
                                               8.9380
                                                      -7.5360
                                                                -4.670
  4.0800
           0 -4877.20 -11.2635 -8.061000
                                               6.2800 -14.5805 -45.920
                      F13
       F10
                                F14
                                          F15
                                               F16
                                                          F17
                                                                  F18 \
  3.61690
                5.783440 -11315.46
                                     22912.53 -0.4
                                                    103811.34
                                                               5.4380
  3.64880
                8.180000 -12852.96
                                    25696.44 -0.4
                                                    103884.02
                                                               5.0960
                5.760312 -11012.16
                                     20232.84 -1.4 103987.08
  3.62830
                                                               2.3652
3
  3.01503
                6.437100 -10297.86 23592.84 -1.4 103842.08
                                                               4.4080
                6.393200 -11527.38
                                     24778.74 -1.4 103842.48
  3.60030
                                                               3.1334
                             Class
        F19
                 F20
                        F21
  1747.920 -4879.68 -41.58
                            False
  1496.080 -4186.38 -45.96
                              True
  1523.412 -4067.28
                        NaN
                             False
  1506.810 1352.52
                        NaN
                              True
  1581.790 -5095.88 -45.93
                              True
```

Fig 1. Dataset

- In this dataset, we have 22 Features and 1000 Instances.
- In Feature F21, we have 500 null values, as shown in the graph.
- To fill these null values, I counted how many True & False values are present in the F21
 Column. There were 187 True values & 179 False values. Using a box plot, I found the 50percentile value of True & False in the F21 column. After that, I filled the values in place of
 null values.

Fig 2. Null Values in F21

0

Class

dtype: int64

Fig 4. Showing the percentile values of Class w.r.t F21

B. Feature Engineering:

- After cleaning the data, I found the correlation between Dependent Features vs independent features as well as independent vs independent features.
- Here, Basically I have used the Person correlation in which -1,0,1 represent s negative correlation, zero correlation & positive correlation. When two features are highly correlated, we can drop off that feature.
- Furthermore, I went to investigate the skewness of the features like which features have positive skewness & negative skewness.
- Skewness is a crucial statistical method that aids in identifying the frequency distribution's asymmetrical behaviour, or more specifically, the absence of symmetry in the tails to the left and right of the frequency curve.
- F1, F6, F7, F10, F13, F15, F17, F18, F21 are Positive skew whereas, F2, F3, F4, F5, F9, F12, F19 are negative skew. So, we will apply different types of statistical methods to remove right & left skew.
- If the feature is skewed towards the positive side, then we apply Logarithm, Square-root, Cube-root, and Reciprocal to get them into symmetry whereas if the feature is skewed towards the negative, we apply Square and cube to get them into symmetry.
- After all, this we try different types of scaling like Standardization, Normalization and Robust Scaler.
- Standardization uses Z-score transformation to bring the data within a scale and Normalization use Min-Max to bring the data within the range of 0 and 1. In Robust, it removes the median and scales the data according to the quantile range (defaults to IQR: Interquartile Range). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile).

Fig 5. Right / Positive Skew

Fig 6. Left / Negative Skew

Fig 7. Correlation Heatmap

C. Splitting the Datasets:

- A model validation technique called "train test split" enables you to mimic how a model would perform on brand-new or untested data It is very common to split the train test datasets in:
 - I. 70:30 ratio
 - II. 80:20 ratio
 - III. 75:25 ratio
- So, we are going to split our data as shown in the table.

Train	80%
Test	20%

D. Machine Learning Model:

- For predicting we use the Machine Learning technique because machine learning is the best technique to provide a proper decision-making strategy. There are several machine learning algorithms like Decision Trees, Random Forest, Naïve Bayes, K-Nearest Neighbours (kNN), Support Vector Machines, Linear Regression and Logistic Regression.
- In Sklearn there are a total of 34 classification Libraries which you can use for classification tasks.
- Below table shows the accuracy of the Models that we used.

	MLA Name	MLA Train Accuracy	MLA Test Accuracy	MLA Precission	MLA Recall	MLA AUC
0	RandomForestClassifier	1.0000	0.905	0.890244	0.879518	0.901297
1	AdaBoostClassifier	0.9512	0.900	0.879518	0.879518	0.897024
2	GradientBoostingClassifier	0.9975	0.890	0.867470	0.867470	0.886726
3	ExtraTreesClassifier	1.0000	0.885	0.875000	0.843373	0.878952
4	DecisionTreeClassifier	1.0000	0.875	0.862500	0.831325	0.868654
5	LogisticRegressionCV	0.8600	0.865	0.850000	0.819277	0.858357
6	LinearSVC	0.8588	0.865	0.841463	0.831325	0.860107
7	BaggingClassifier	0.9912	0.860	0.857143	0.795181	0.850582
8	SVC	0.9200	0.855	0.821429	0.831325	0.851560
9	OneVsOneClassifier	0.9200	0.855	0.821429	0.831325	0.851560
10	OneVsRestClassifier	0.9200	0.855	0.821429	0.831325	0.851560
11	RidgeClassifierCV	0.8538	0.850	0.804598	0.843373	0.849037
12	NuSVC	0.9200	0.845	0.802326	0.831325	0.843013
13	Perceptron	0.7575	0.780	0.774648	0.662651	0.762949
14	SGDClassifier	0.7775	0.770	0.698925	0.783133	0.771908
15	KNeighborsClassifier	0.8500	0.745	0.686047	0.710843	0.740037
16	PassiveAggressiveClassifier	0.7138	0.695	0.610000	0.734940	0.700803
17	OutputCodeClassifier	0.4712	0.585	0.000000	0.000000	0.500000

E. Test Data:

F3	F4	F5	F6	F7	F8	F9	F10	 F13	F14	F15	F16	F17	F18	F19	F20	F21	Class
22.64	-10.7841	-6.70380	1	5.4270	-9.679	-18.5660	5.86600	 5.761109	-11347.230	22929.33	-0.4	103741.46	4.0760	1466.0700	-4266.40	NaN	False
93.64	-12.6885	-7.98300	0	4.5008	-11.561	-25.9200	3.18100	 6.797000	-11289.360	25723.74	-1.4	103858.01	2.6546	1607.6600	-4802.48	-44.91	True
16.46	-11.9391	-5.11320	1	5.3808	-13.281	-20.2400	3.04817	 6.922000	-11133.060	23138.58	-0.4	105361.06	5.6300	1543.2200	-4220.46	-45.66	True
05.44	-10.9737	-6.95640	1	6.5020	-12.101	-13.6260	3.28770	 9.260000	-11773.530	23100.78	-0.4	103835.75	2.3680	1532.0397	-4612.88	-43.26	False
63.44	-15.9780	-10.24200	1	4.2970	-11.596	-14.6240	3.55760	 5.997600	-11937.060	27299.64	-1.4	103877.64	2.6908	1084.3200	-4557.08	-44.82	False
38.64	-15.7710	-4.16595	0	7.3160	-19.894	-73.3600	5.45900	 5.778300	-10418.160	23734.14	-1.4	103839.18	2.9136	1518.3900	-4146.08	NaN	False
21.32	-13.9560	-8.34000	0	4.7972	-7.204	-79.4200	3.37930	 7.407000	-15800.760	25006.44	-0.4	103840.60	10.8800	1520.1000	-4665.08	-45.93	False
77.82	-11.5935	-4.02435	1	8.0940	-12.809	-1.9182	3.06420	 5.960300	-4070.760	23033.76	-0.4	103993.70	9.6960	1493.1800	552.52	-43.92	False
93.36	-20.8680	-4.89450	1	5.1574	-18.655	-6.2880	3.91770	 6.199500	-11618.257	22637.34	-0.4	103845.43	3.4610	1483.6500	-4203.62	-44.46	False
90.64	-11.3592	-4.27329	1	5.1350	-21.093	-15.7460	3.05270	 5.768134	-11306.760	24056.04	-1.4	103801.56	3.4336	1617.3200	-6953.48	NaN	True

Additional Comparative Study

A. Explorative Data Analysis:

```
F5
      F1
               F2
                      F3
                             F4
                                            F6
                                                             F8
                                                                       F9
                                                     F7
0 -190.11
           193.53
                    2.32 -21.84
                                                        638.55
                                11289.72
                                            UK 5730.72
                                                                Very high
1 -257.94
          1934.85 24.36 -22.06
                                 2712.12
                                            UK
                                                3509.94
                                                         389.53
                                                                     High
2 -426.06
          1071.87
                    0.10 -21.80
                                7469.01
                                           USA
                                                4633.20
                                                         -28.63
                                                                   Medium
3 -204.48
          1533.96
                    7.42 -17.94
                                4261.77 Rest
                                                         335.36 Very high
                                                3516.06
4 -232.08
          1334.88 29.48 -19.88
                                 2941.02 Rest
                                                3592.04
                                                         -46.68
     F10
                  F28
                            F29
                                   F30 F31
                                                F32
                                                       F33
                                                                    F35
  467.97
          ... 174.81
                      23994.54 261.69
                                          5 -177.15 17.60 -1437.20
                                                                      4
  393.42
          ... 265.44
                      11554.06 205.14
                                          4 -377.55 16.32 -1840.92
                                                                      7
  226.62
               542.94
                      28254.56 363.93
                                          5 -293.67 17.64 -1207.92
  912.63
               527.10
                      21449.30
                                 23.31
                                         4 -295.80 20.44 -139.58
                                                                      6
  601.41
               390.48 18060.98 248.79
                                          3 -222.12 19.39 -2130.02
           Target
     F36
          1306.29
  178.20
   83.53
          -118.07
  218.54
          -708.14
  154.74 2918.75
  178.77 1113.09
[5 rows x 37 columns]
```

Fig no.1 Dataset

- In this dataset, we have 37 Features and 1500 Instances.
- In Feature F6 & F9, we have Categorical values.

Fig no.2. Converting Categorical Values to numerical

B. Feature Engineering:

- After converting the data from categorical to numerical, I found the correlation between Dependent Features vs independent features as well as independent vs independent features.
- Here, Basically I have used the Person correlation in which -1,0,1 represent s negative correlation, zero correlation & positive correlation. When two features are highly correlated, we can drop off that feature.
- Furthermore, I went to investigate the skewness of the features like which features have positive skewness & negative skewness.
- Skewness is a crucial statistical method that aids in identifying the frequency distribution's asymmetrical behaviour, or more specifically, the absence of symmetry in the tails to the left and right of the frequency curve.
- F3 & F23 are Positive skew whereas, F4 are negative skew. So, we will apply different types of statistical methods to remove right & left skew.
- If the feature is skewed towards the positive side, then we apply Logarithm, Square-root, Cube-root, and Reciprocal to get them into symmetry whereas if the feature is skewed towards the negative, we apply Square and cube to get them into symmetry.
- After this, I have created a baseline model which will give me the importance of the feature means it will tell us that this feature has more importance than others.
- 'F1','F5','F7','F10','F11','F13','F14','F15','F16','F17','F18','F19','F20','F21','F22','F23','F24','F26','F28','F29','F30','F32','F33','F34' these features were not much important w.r.t model.
- After all, this we try different types of scaling like Standardization, Normalization and Robust Scaler.
- Standardization uses Z-score transformation to bring the data within a scale
 and Normalization use Min-Max to bring the data within the range of 0 and
 1. In Robust, it removes the median and scales the data according to the
 quantile range (defaults to IQR: Interquartile Range). The IQR is the range
 between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile).

		_	
	Features Name		
34	F35		0.177070
8	F9		0.163126
3	F4		0.144781
5	F6		0.120610
2	F3		0.113393
24	F25		0.053162
1	F2		0.050727
30	F31		0.029184
15	F16		0.013321
33	F34		0.010234
10	F11		0.008336
18	F19		0.008060
20	F21		0.007540
23	F24		0.007164
13	F14		0.006632
26	F27		0.006494
27	F28		0.006436
4	F5		0.005763
12	F13		0.005528
35	F36		0.005460
7	F8		0.005057
31	F32		0.004750
16	F17		0.004595
32	F33		0.004426
6	F7		0.004230
17	F18		0.004155
14	F15		0.004022
21	F22		0.003752
28	F29		0.003746
19	F20		0.003705
22	F23		0.003566
11	F12		0.002558
9	F10		0.002511
25	F26		0.002134
29	F30		0.002044
0	F1		0.001728

Fig no.3. Important Feature

C. Splitting the Datasets:

- A model validation technique called "train test split" enables you to mimic how a model would perform on brand-new or untested data It is very common to split the train test datasets in:
 - I. 70:30 ratio
 - II. 80:20 ratio
 - III. 75:25 ratio
- So, we are going to split our data as shown in the table.

Train	80%
Test	20%

D. Machine Learning Model:

- For predicting we use the Machine Learning technique because machine learning is the best technique to provide a proper decision-making strategy. There are several machine learning algorithms like Decision Trees, Random Forest, Naïve Bayes, K-Nearest Neighbours (kNN), Support Vector Machines, Linear Regression and Logistic Regression.
- In Sklearn there are a total of 34 classification Libraries which you can use for classification tasks.
- Below table shows the accuracy of the Models that we used.

I. Baseline Model:

➤ I have created a baseline model using XGBRegressor.

```
1 model_lr = XGBRegressor()
2 model_lr.fit(x_train,y_train)
3 y_pred_lr = model_lr.predict(x_test)
4 model_lr.score(x_test,y_test)
5
6
0.75648374723381
```

Fig no.4. Baseline Model

II. Comparing Model:

	MLA Name	MLA Train MSE	MLA Test MSE	MLA MAE	MLA RMSE	MLA R2square
0	GradientBoostingRegressor	2.482965e+02	402.993010	402.993010	519.931957	0.809240
1	ExtraTreesRegressor	1.278522e-12	441.911579	441.911579	571.855646	0.769236
2	RandomForestRegressor	1.673100e+02	458.124968	458.124968	595.482776	0.749774
3	BaggingRegressor	2.025056e+02	488.568670	488.568670	633.299991	0.716982
4	LinearRegression	5.152491e+02	535.228853	535.228853	680.855108	0.672882
5	Lasso	5.151773e+02	535.376582	535.376582	680.959114	0.672783
6	BayesianRidge	5.150884e+02	535.330126	535.330126	680.962327	0.672779
7	HuberRegressor	5.058973e+02	527.754236	527.754236	695.740270	0.658423
8	PassiveAggressiveRegressor	5.053822e+02	531.422493	531.422493	699.951311	0.654276
9	AdaBoostRegressor	6.196575e+02	664.612873	664.612873	761.546365	0.590752
10	ElasticNet	5.832108e+02	587.135319	587.135319	763.015289	0.589171
11	DecisionTreeRegressor	0.000000e+00	706.632967	706.632967	975.838435	0.328029

E. Test Data:

F2	F3	F4	F5	F6	F7	F8	F9	F10	 F28	F29	F30	F31	F32	F33	F34	F35	F36	Target
995.49	0.60	-21.64	-13656.54	2	4748.60	40.72	1	686.04	 364.17	16829.40	119.46	2	-244.62	17.19	-1171.32	4	252.58	1753.450118
2337.36	2.02	-17.90	12620.40	1	3211.32	-140.38	3	447.63	 279.09	7122.78	274.47	3	-440.55	16.79	-2247.80	2	132.25	543.453678
2830.77	0.04	-35.14	-102.93	0	3602.00	387.18	4	379.98	 122.79	21703.32	258.99	5	-269.04	13.77	-1335.86	5	138.75	1895.707928
1331.07	7.36	-15.38	-1616.13	0	3375.24	126.93	4	467.16	 216.78	33672.72	253.86	4	-312.69	11.74	-2744.98	4	182.63	-293.797013
1511.70	3518.00	-29.04	4321.44	1	5541.96	34.98	3	510.45	 348.81	15039.12	119.85	5	-415.77	16.55	-408.02	5	165.61	1231.815088
2996.94	0.10	-18.56	4109.49	0	3201.72	-157.34	2	488.10	 201.03	18926.82	174.06	4	-336.81	22.63	-1786.56	3	174.04	1447.151324
1908.57	0.24	-20.78	4844.52	2	3507.28	226.12	1	451.86	 226.74	24845.00	219.75	2	-366.21	25.27	-1621.60	6	114.27	1815.640317
2215.83	3.56	-14.30	-1954.86	3	4490.90	500.26	0	421.89	 236.61	23839.86	254.19	5	-183.87	12.09	-890.46	4	223.96	441.445043
598.17	0.96	-16.08	5670.54	2	3295.42	364.05	4	560.52	 617.01	22592.04	271.26	2	-254.28	20.52	-2383.38	1	176.55	971.048989
818.76	224929.74	-24.02	25689.90	0	3843.04	18.85	3	162.18	 327.00	12815.08	108.15	4	-190.02	16.74	-2001.94	2	178.09	1987.442009

-