Disciplinas: ALGA001 e GAN0001 Prof. Bruno Terêncio do Vale

Quarta Lista de Exercícios Tópico: Seções Cônicas

- 1. Estabelecer a equação de cada uma das parábolas, sabendo que:
 - (a) Vértice V(0,0); diretriz d: y = -2
 - (b) Vértice V(0,0); foco F(0,-3)
 - (c) Vértice V(-2,3); foco F(-2,1)
 - (d) Vértice V(2,-1); foco F(5,-1)
 - (e) Vértice V(1,3); eixo paralelo ao eixo dos x, passando pelo ponto P(-1,-1)
 - (f) Eixo de simetria paralelo ao eixo dos y e passa pelos pontos $P_{1}\left(0,1\right),\,P_{2}\left(1,0\right)$ e $P_{3}\left(2,0\right)$
- 2. Determinar o vértice, o foco, uma equação para a diretriz e uma equação para o eixo da parábola de cada uma das equações dadas. Esboçar o gráfico.
 - (a) $x^2 = -12y$
 - (b) $y^2 = -100x$
 - (c) $x^2 2x 20y 39 = 0$
 - (d) $y^2 + 4y + 16x 44 = 0$
- 3. Calcular o valor de k para que a parábola $x=ky^2$ tenha foco no ponto (3,0).
- 4. Determine a equação da parábola $y=x^2+bx+c$ que passa pelo ponto $P\left(1,3\right)$ e tem abcissa do foco igual a 2. Represente-a geometricamente.
- 5. Determine a equação da parábola que passa pelos pontos P(-2,3), Q(-5,-3) e R(0,-1).
- 6. Determinar o centro, os vértices A_1 e A_2 , os focos e a excentricidade das elipses dadas. Esboçar o gráfico.
 - (a) $x^2 + 25y^2 = 25$
 - (b) $9x^2 + 5y^2 45 = 0$
 - (c) $25x^2 + 16y^2 + 50x + 64y 311 = 0$
 - (d) $4x^2 + 9y^2 8x 36y + 4 = 0$
- 7. Estabelecer a equação da elipse que satisfaz as condições dadas.
 - (a) Centro $C\left(0,0\right)$; um foco $F\left(\frac{3}{4},0\right)$ e um vértice $A\left(1,0\right)$.
 - (b) Centro $C\left(0,0\right)$; um foco $F\left(0,-\sqrt{5}\right)$ e eixo menor mede 4.
 - (c) Centro C(2,4); um foco F(5,4) e excentricidade $e=\frac{3}{4}$.
 - (d) Centro C(-3,4); semi-eixos de comprimento 4 e 3 e eixo maior paralelo ao eixo dos x.

- (e) Vértices $A_1(1, -4)$ e $A_2(1, 8)$, excentricidade $e = \frac{2}{3}$.
- 8. Determine a equação da circunferência cujo centro está sobre a reta 4x + 7y + 5 = 0 e que passa pelos pontos (-1, -4) e (2, -1).
- 9. A excentricidade de uma elipse é definida como a razão $\frac{\sqrt{a^2-b^2}}{a}$. Se a permanece fixo e b varia, descreva a forma geral da elipse quando a excentricidade tende a 1 e quando tende a zero.
- 10. Determinar o centro, os vértices, os focos e a excentricidade das hipérboles dadas. Esboçar o gráfico.
 - (a) $4x^2 5y^2 + 20 = 0$
 - (b) $3x^2 y^2 + 3 = 0$
 - (c) $x^2 4y^2 + 6x + 24y 31 = 0$
 - (d) $16x^2 9y^2 64x 18y + 199 = 0$
- 11. Estabelecer a equação da hipérbole que satisfaz as condições dadas.
 - (a) Centro C(0,0); eixo real sobre Oy, b=8 e excentricidade $e=\frac{5}{3}$.
 - (b) Vértices $A(\pm 3,0)$; equações das assíntotas $y=\pm 2x$.
 - (c) Centro C(5,1); um foco em (9,1) e eixo imaginário mede $4\sqrt{2}$.
 - (d) Focos $F_1(-1, -5)$ e $F_2(5, -5)$, hipérbole equilátera (a = b).
- 12. Determine as equações das retas assíntotas das hipérboles abaixo.
 - (a) $y^2 x^2 + 4y + 4x 1 = 0$
 - (b) $5x^2 4y^2 30x 16y + 9 = 0$
- 13. As retas r: 2x + y = 3 e s: 2x y = 1 são as assíntotas de uma hipérbole que passa pelo ponto (6,2). Determine sua equação.
- 14. Sabendo que a curva $y = \frac{1}{x}$ é uma hipérbole com eixo real sobre a reta y = x, determine seus focos. Essa hipérbole é equilátera?
- 15. A elipse $2x^2 + 3y^2 = 24$ e a hipérbole $x^2 y^2 = 5$ interceptam-se em quatro pontos A, B, C e D. Determine a área e o perímetro do retângulo ABCD.
- 16. Esboce a região do plano dada pela inequação $4x^2 + 9y^2 40x 54y + 145 < 0$.
- 17. Determinar a equação padrão e representar geometricamente o conjunto de pontos P(x,y):
 - (a) que são equidistantes da reta y = 3 e do ponto F(0,0).
 - (b) cuja soma das distâncias a $F_1(1,0)$ e a $F_2(3,0)$ é igual a 5.
 - (c) cujo módulo da diferença das distâncias a $F_1(-1, -5)$ e a $F_2(5, -5)$ é igual a $3\sqrt{2}$.
- 18. Obter a equação reduzida resultante de uma translação de eixos, classificar, dar os elementos e representar graficamente as equações:
 - (a) $x^2 + 4y^2 4x 24y + 36 = 0$
 - (b) $x^2 y^2 8x 4y + 11 = 0$
 - (c) $y^2 8x + 6y + 17 = 0$
 - (d) $3x^2 + 2y^2 12x + 8y + 19 = 0$
 - (e) $x^2 + 2x + 8y 15 = 0$
 - (f) $9x^2 4y^2 54x + 45 = 0$
 - (g) $9y^2 25x^2 90y 50x = 25$

- 19. Descreva e represente geometricamente as curvas a seguir.
 - (a) $x = 3 \sqrt{3 y^2 2y}$

 - (b) $x = 4 \sqrt{y}$ (c) $y = -1 \sqrt{2x + 4}$ (d) $y = -2 \frac{3}{2}\sqrt{-x^2 + 2x + 3}$ (e) $x = 2\sqrt{y^2 1}$

 - (f) $x = -4 \frac{1}{2}\sqrt{2 + y^2 2y}$

Respostas dos Exercícios

1. (a)
$$x^2 = 8y$$

(b)
$$x^2 = -12y$$

(c)
$$x^2 + 4x + 8y - 20 = 0$$

(d)
$$y^2 + 2y - 12x + 25 = 0$$

(e)
$$(y-3)^2 = -8(x-1)$$

(f)
$$y = \frac{1}{2}x^2 - \frac{3}{2}x + 1$$

2. (a)
$$V(0,0)$$
, $F(0,-3)$, $y=3$, $x=0$

(b)
$$V(0,0)$$
, $F(-25,0)$, $x = 25$, $y = 0$

(c)
$$V(1,-2)$$
, $F(1,3)$, $y=-7$, $x=1$

(d)
$$V(3,-2)$$
, $F(-1,-2)$, $x=7$, $y=-2$

3.
$$k = \frac{1}{12}$$

4.
$$y = x^2 - 4x + 6$$

5.
$$y^2 + 2x - y - 2 = 0$$
 ou $5y + 4x^2 + 18x + 5 = 0$

6. (a)
$$C(0,0)$$
, $A(\pm 5,0)$, $F(\pm 2\sqrt{6},0)$, $e=\frac{2\sqrt{6}}{5}$

(b)
$$C(0,0)$$
, $A(0,\pm 3)$, $F(0,\pm 2)$, $e=\frac{2}{3}$

(c)
$$C(-1,-2)$$
, $A_1(-1,-7)$, $A_2(-1,3)$, $F_1(-1,-5)$, $F_2(-1,1)$, $e=\frac{3}{5}$

(d)
$$C(1,2)$$
, $A_1(-2,2)$, $A_2(4,2)$, $F(1 \pm \sqrt{5},2)$, $e = \frac{\sqrt{5}}{3}$

7. (a)
$$7x^2 + 16y^2 = 7$$

(b)
$$9x^2 + 4y^2 - 36 = 0$$

(c)
$$7x^2 + 16y^2 - 28x - 128y + 172 = 0$$

(d)
$$9x^2 + 16y^2 + 54x - 128y + 193 = 0$$

(e)
$$9x^2 + 5y^2 - 18x - 20y - 151 = 0$$

8.
$$(x+3)^2 + (y-1)^2 = 29$$

9. Se a excentricidade tende a 1, b tende a zero. Neste caso, a elipse fica cada vez mais achatada, tendendo a um segmento de reta. Se a excentricidade tende a zero, b tende a a. Neste caso, a elipse se aproxima cada vez mais do formato de uma circunferência.

10. (a)
$$C(0,0)$$
, $A(0,\pm 2)$, $F(0,\pm 3)$, $e=\frac{3}{2}$

(b)
$$C(0,0)$$
, $A(0,\pm\sqrt{3})$, $F(0,\pm2)$, $e=\frac{2\sqrt{3}}{3}$

(c)
$$C(-3,3)$$
, $A_1(-5,3)$, $A_2(-1,3)$, $F(-3 \pm \sqrt{5},3)$, $e = \frac{\sqrt{5}}{2}$

(d)
$$C(2,-1)$$
, $A_1(2,-5)$, $A_2(2,3)$, $F_1(2,-6)$, $F_1(2,4)$, $e=\frac{5}{4}$

11. (a)
$$16y^2 - 9x^2 - 576 = 0$$

(b)
$$\frac{x^2}{9} - \frac{y^2}{36} = 1$$

(c)
$$x^2 - y^2 - 10x + 2y + 16 = 0$$

(d)
$$2x^2 - 2y^2 - 8x - 20y - 51 = 0$$

12. (a)
$$y = -x e y = x - 4$$

(b)
$$y = \frac{\sqrt{5}(x-3)}{2} - 2 e y = -\frac{\sqrt{5}(x-3)}{2} - 2$$

13.
$$4(x-1)^2 - (y-1)^2 = 99$$

14.
$$F_1(\sqrt{2}, \sqrt{2})$$
 e $F_2(-\sqrt{2}, -\sqrt{2})$. Sim, a hipérbole é equilátera.

15.
$$A = \frac{4\sqrt{546}}{5}$$
 u.a. $e P = \frac{4(\sqrt{14} + \sqrt{39})}{\sqrt{5}}$ u.c.

16.
$$\frac{(x-5)^2}{9} + \frac{(y-3)^2}{4} < 1$$
 (pontos do interior da elipse)

17. (a)
$$x^2 = 6\left(y - \frac{3}{2}\right)$$

(b)
$$\frac{(x-2)^2}{\frac{25}{4}} + \frac{y^2}{\frac{21}{4}} = 1.$$

(c)
$$\frac{(x-2)^2}{\frac{9}{2}} - \frac{(y+5)^2}{\frac{9}{2}} = 1$$

18. (a)
$$\frac{x'^2}{4} + y'^2 = 1$$
, elipse, eixo maior 4, eixo menor 2, focos $F\left(2 \pm \sqrt{3}, 3\right)$

(b)
$$x'^2 - y'^2 = 1$$
, hipérbole, eixo real 2, eixo imaginário 2, focos $F\left(4 \pm \sqrt{2}, -2\right)$

(c)
$$y'^2 = 8x'$$
, parábola, $p = 4$, diretriz: $x = -1$, foco $F(3, -3)$

(d)
$$3x'^2 + 2y'^2 = 1$$
, elipse, eixo maior $\sqrt{2}$, eixo menor $\frac{2\sqrt{3}}{3}$, focos $F\left(2, -2 \pm \frac{\sqrt{6}}{6}\right)$

(e)
$$x'^2=-8y',$$
 parábola, $p=-4,$ diretriz: $y=4,$ foco $F\left(-1,0\right)$

(f)
$$\frac{x'^2}{4} - \frac{y'^2}{9} = 1$$
, hipérbole, eixo real 4, eixo imaginário 6, focos $F\left(3 \pm \sqrt{13}, 0\right)$

(g)
$$\frac{y'^2}{25} - \frac{x'^2}{9} = 1$$
, hipérbole, eixo real 10, eixo imaginário 6, focos $F\left(-1, 5 \pm \sqrt{34}\right)$

19. (a) Ramo da circunferência
$$(x-3)^2 + (y+1)^2 = 4 \text{ com } x \le 3.$$

(b) Ramo da parábola
$$y = (x-4)^2$$
 com $x \le 4$.

(c) Ramo da parábola
$$(y+1)^2 = 2(x+2)$$
 com $y \le -1$.

(d) Ramo da elipse
$$\frac{(x-1)^2}{4} + \frac{(y+2)^2}{9} = 1 \text{ com } y \le -2.$$

(e) Ramo da hipérbole
$$-\frac{x^2}{4} + y^2 = 1$$
 com $x \ge 0$.

(f) Ramo da hipérbole
$$4(x+4)^2 - (y-1)^2 = 1 \text{ com } x \le -4.$$