BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI K. K. BIRLA Goa Campus Second Semester 2012-2013 IS F242 Computer Organization

Instructions

- 1. The project weightage is 6% (18 marks) and the deadline is 23rd April 2013.
- 2. This is a team project and the list of team members is available in course page.
- 3. You are not allowed to take help in terms of suggestions and code from other teams.
- 4. You are not allowed to use somebody else's code which includes code from internet.
- 5. If found copied, all members of the team will get -18 marks (will subtract 18 marks from their lab marks). Please see section 4.2 and 4.3 of your course handout for further details.
- 6. This project will be evaluated according to the following criteria
 - Completeness
 - Correctness
 - Efficiency
 - Programming style
 - Demonstration and
 - Viva

STEPS TO FOLLOW FOR GETTING A PROJECT ASSIGNED

- 1. Each team should decide the preference order (you are suppose to give all the 12 preferences).
- 2. One person from the team should consolidate the preferences and send the same to my e-mail (biju@goa.bits-pilani.ac.in) at the earliest. [make sure you are sending your preferences to me before Monday 5 P.M]. [Please make sure only one person from a team is sending e-mail to me].
- 3. Allocation of project is on First Come First Serve basis. No default project allocation is available i.e. if you are not sending e-mail before Monday 5 P.M, you are not going to do the project.

K. K. BIRLA Goa Campus, Second Semester 2012-2013

IS F242 Computer Organization, Project, Deadline: 23rd April 2013

Question #1

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Single cycle implementation**.

R - tvpe

4 bits	3 bits	3 bits	3 bits	3 bits
Opcode	Shftamt	Rd	Rt	Rs

I - type

4 bits	6 bits	3 bits	3 bits
Opcode	Immediate	Rt/Rd	Rs

J-tvpe

4 bits	12 bits	
Opcode	Immediate	

Instructions:

ADD Example: $Reg[R1] \leftarrow Reg[R2] + Reg[R3] \rightarrow 0001 XXX 001 011 010$

Example: $Reg[R1] \leftarrow Reg[R2] - Reg[R3] \rightarrow 0010 XXX 001 011 010$ SUB

DIVU Example: Hi, Lo \leftarrow Reg[R2] / Reg[R3] \rightarrow 0011 XXX XXX 011 010

MFHI Example: $Reg[R1] \leftarrow Hi \rightarrow 0100 XXX 001 XXX XXX$

MFLO Example: $Reg[R1] \leftarrow Lo \rightarrow 0101 XXX 001 XXX XXX$

MTLH (Move to Hi and Lo)

Example: Hi \leftarrow Reg[R2], Lo \leftarrow Reg[R3] \rightarrow 0110 XXX XXX 011 010

SLL Example: $Reg[R1] \leftarrow Reg[R2] << Shftamt (101) \rightarrow 0111 101 001 XXX 010$

SRL Example: $Reg[R1] \leftarrow Reg[R2] >> Shftamt (101) \rightarrow 1000 101 001 XXX 010$

SRA Example: $Reg[R1] \leftarrow Reg[R2] >> Shftamt (101) \rightarrow 1001 101 001 XXX 010$

LW Example: $Reg[R1] \leftarrow Memory[Reg[R2] + Sext(6 bits)] \rightarrow 1010 000011 001 010$

SW Example: Memory[Reg[R2] + Sext(6 bits)] \leftarrow Reg[R1] \rightarrow 1011 000011 001 010

BNE Example: NZ flag=1 if Reg[R2] \neq Reg[R1], else NZ flag=0 \Rightarrow 1100 000111 001 010

 $PC \leftarrow (PC+2) + Sext(6bits << 1)$

Example: Reg[R3] \leftarrow 8 bit immediate: 8'd0 \rightarrow 1101 001100 011 X11 LUI

8 bit immediate value is IR[6:11]:IR[1:0]

ORI Example: $Reg[R1] \leftarrow Reg[R2] OR Zext(6 bits) \rightarrow 1110 000011 001 010$

J Example: PC← 3 bits MSB [(PC+2)]: Sext(12 bits<<1) →1111 000000000011

JALR Example: $PC \leftarrow Reg[R2]$, $Reg[R3] \leftarrow PC+2 \rightarrow 0000 XXX 011 XXX 010$

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI K. K. BIRLA Goa Campus, Second Semester 2012-2013

IS F242 Computer Organization, Project, Deadline: 23rd April 2013

Question #2

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Multi cycle implementation**.

R - type

4 bits	3 bits	3 bits	3 bits	3 bits
Opcode	Shftamt	Rd	Rt	Rs

I-type

4 bits	6 bits	3 bits	3 bits
Opcode	Immediate	Rt/Rd	Rs

J-type

4 bits	12 bits
Opcode	Immediate

Instructions:

ADD Example: $Reg[R1] \leftarrow Reg[R2] + Reg[R3] \rightarrow 0001 XXX 001 011 010$

SUB Example: $Reg[R1] \leftarrow Reg[R2] - Reg[R3] \rightarrow 0010 XXX 001 011 010$

DIVU Example: Hi, Lo \leftarrow Reg[R2] / Reg[R3] \rightarrow 0011 XXX XXX 011 010

MFHI Example: $Reg[R1] \leftarrow Hi \rightarrow 0100 XXX 001 XXX XXX$

MFLO Example: $Reg[R1] \leftarrow Lo \rightarrow 0101 XXX 001 XXX XXX$

MTLH (Move to Hi and Lo)

Example: Hi \leftarrow Reg[R2], Lo \leftarrow Reg[R3] \rightarrow 0110 XXX XXX 011 010

SLL Example: $Reg[R1] \leftarrow Reg[R2] \ll Shftamt (101) \rightarrow 0111 101 001 XXX 010$

SRL Example: $Reg[R1] \leftarrow Reg[R2] >> Shftamt (101) \rightarrow 1000 101 001 XXX 010$

SRA Example: $Reg[R1] \leftarrow Reg[R2] >> Shftamt (101) \rightarrow 1001 101 001 XXX 010$

LW Example: $Reg[R1] \leftarrow Memory[Reg[R2] + Sext(6 bits)] \rightarrow 1010 000011 001 010$

SW Example: Memory[Reg[R2] + Sext(6 bits)] \leftarrow Reg[R1] \rightarrow 1011 000011 001 010

BNE Example: NZ flag=1 if Reg[R2] \neq Reg[R1], else NZ flag=0 \Rightarrow 1100 000111 001 010

PC ← (PC+2) + Sext(6bits<<1)

LUI Example: Reg[R3] \leftarrow 8 bit immediate: 8'd0 \rightarrow 1101 001100 011 X11

8 bit immediate value is IR[6:11]:IR[1:0]

ORI Example: $Reg[R1] \leftarrow Reg[R2]$ OR $Zext(6 bits) \rightarrow 1110 000011 001 010$

J Example: PC← 3 bits MSB [(PC+2)]: Sext(12 bits<<1) →1111 000000000011

JALR Example: PC \leftarrow Reg[R2], Reg[R3] \leftarrow PC+2 \rightarrow 0000 XXX 011 XXX 010

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI K. K. BIRLA Goa Campus, Second Semester 2012-2013

IS F242 Computer Organization, Project, Deadline: 23rd April 2013

Question #3

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Pipelined implementation**. Assume that there is no dependency between instructions in pipeline.

R - type

4 bits	3 bits	3 bits	3 bits	3 bits
Opcode	Shftamt	Rd	Rt	Rs

I - type

4 bits	6 bits	3 bits	3 bits
Opcode	Immediate	Rt/Rd	Rs

J – type

4 bits	12 bits
Opcode	Immediate

Instructions:

ADD Example: $Reg[R1] \leftarrow Reg[R2] + Reg[R3] \rightarrow 0001 XXX 001 011 010$

SUB Example: $Reg[R1] \leftarrow Reg[R2] - Reg[R3] \rightarrow 0010 XXX 001 011 010$

DIVU Example: Hi, Lo \leftarrow Reg[R2] / Reg[R3] \rightarrow 0011 XXX XXX 011 010

SLL Example: $Reg[R1] \leftarrow Reg[R2] \ll Shftamt (101) \rightarrow 0100 101 001 XXX 010$

SRL Example: $Reg[R1] \leftarrow Reg[R2] >> Shftamt (101) \rightarrow 0101 101 001 XXX 010$

LW Example: $Reg[R1] \leftarrow Memory[Reg[R2] + Sext(6 bits)] \rightarrow 0110 000011 001 010$

SW Example: Memory[Reg[R2] + Sext(6 bits)] \leftarrow Reg[R1] \rightarrow 0111 000011 001 010

BNE Example:NZ flag=1 if Reg[R2] ≠Reg[R1],else NZ flag=0→1000 000111 001 010

PC ← (PC+2) + Sext(6bits<<1)

ORI Example: $Reg[R1] \leftarrow Reg[R2]$ OR $Zext(6 bits) \rightarrow 1001 000011 001 010$

J Example: $PC \leftarrow 3$ bits MSB [(PC+2)]: Sext(12 bits << 1) \rightarrow 1010 000000000011

JALR Example: $PC \leftarrow Reg[R2]$, $Reg[R3] \leftarrow PC+2 \rightarrow 1011 XXX 011 XXX 010$

K. K. BIRLA Goa Campus, Second Semester 2012-2013

IS F242 Computer Organization, Project, Deadline: 23rd April 2013 **Ouestion #4**

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Single cycle implementation**.

R	_	tr	ne
1/	_	ιν	บต

4 bits	4 bits	4 bits	4 bits
Function field	Rt	Rs and Rd	Opcode

I-type

8 bits	4 bits	4 bits
Immediate	Rs and Rd	Opcode

J-type

12 bits	4 bits
Immediate	Opcode

Instructions:

ADD Example: $Reg[R2] \leftarrow Reg[R2] + Reg[R3] \rightarrow 0001\ 0011\ 0010\ 0000$

SUB Example: $Reg[R2] \leftarrow Reg[R2] - Reg[R3] \rightarrow 0010\ 0011\ 0010\ 0000$

DIVU Example: Hi, Lo \leftarrow Reg[R2] / Reg[R3] \rightarrow 0011 0011 0010 0000

MFHI Example: Reg[R2] ← Hi →XXXX XXXX 0010 0001

MFLO Example: Reg[R2] ← Lo → XXXX XXXX 0010 0010

MTLH (Move to Hi and Lo)

Example: Hi ← Reg[R2], Lo← Reg[R3] → XXXX 0011 0010 0011

SLLV Example: $Reg[R2] \leftarrow Reg[R2] << Reg[R3] \rightarrow XXXX 0011 0010 0100$

SRLV Example: $Reg[R2] \leftarrow Reg[R2] >> Reg[R3] \rightarrow XXXX 0011 0010 0101$

SRAV Example: $Reg[R2] \leftarrow Reg[R2] >> Reg[R3] \rightarrow XXXX 0011 0010 0110$

LW Example: $Reg[R2] \leftarrow Memory[Reg[R2] + Sext(8 bits)] \rightarrow 00000100 0010 0111$

SW Example: Memory[Reg[R2] + Sext(8 bits)] \leftarrow Reg[R2] \rightarrow 00000100 0010 1000

BEQ Example: Z flag=1 if Reg[R2] = Reg[R2+1], else Z flag=0 \rightarrow 00000100 0010 1001

LUI Example: $Reg[R3] \leftarrow 8$ bit immediate: 8'd0 \rightarrow 10000111 0011 1010

8 bit immediate value is IR[15:8]

ORI Example: $Reg[R2] \leftarrow Reg[R2]$ OR $Zext(8 bits) \rightarrow 11010000 0010 1011$

JR Example: $PC \leftarrow Reg[R2] + Sext(8 bits) \rightarrow 00000111 0010 1100$

JAL Example: PC \leftarrow 3 bits MSB [(PC+2)]: Sext(12 bits <<1), Reg[R15] \leftarrow PC+2

→ 00000000101 1101

K. K. BIRLA Goa Campus, Second Semester 2012-2013 IS F242 Computer Organization, Project, Deadline: 23rd April 2013

Question #5

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Multi cycle implementation**.

R-type

4 bits	4 bits	4 bits	4 bits
Function field	Rt	Rs and Rd	Opcode

I - type

8 bits	4 bits	4 bits
Immediate	Rs and Rd	Opcode

J – type

12 bits	4 bits
Immediate	Opcode

Instructions:

ADD Example: $Reg[R2] \leftarrow Reg[R2] + Reg[R3] \rightarrow 0001\ 0011\ 0010\ 0000$

SUB Example: $Reg[R2] \leftarrow Reg[R2] - Reg[R3] \rightarrow 0010\ 0011\ 0010\ 0000$

DIVU Example: Hi, Lo \leftarrow Reg[R2] / Reg[R3] \rightarrow 0011 0011 0010 0000

MFHI Example: $Reg[R2] \leftarrow Hi \rightarrow XXXX XXXX 0010 0001$

MFLO Example: Reg[R2] ← Lo → XXXX XXXX 0010 0010

MTLH (Move to Hi and Lo)

Example: Hi ← Reg[R2], Lo← Reg[R3] → XXXX 0011 0010 0011

SLLV Example: $Reg[R2] \leftarrow Reg[R2] << Reg[R3] \rightarrow XXXX 0011 0010 0100$

SRLV Example: $Reg[R2] \leftarrow Reg[R2] >> Reg[R3] \rightarrow XXXX 0011 0010 0101$

SRAV Example: $Reg[R2] \leftarrow Reg[R2] >> Reg[R3] \rightarrow XXXX 0011 0010 0110$

LW Example: $Reg[R2] \leftarrow Memory[Reg[R2] + Sext(8 bits)] \rightarrow 00000100 0010 0111$

SW Example: Memory[Reg[R2] + Sext(8 bits)] \leftarrow Reg[R2] \rightarrow 00000100 0010 1000

BEQ Example: Z flag=1 if Reg[R2] = Reg[R2+1], else Z flag=0 \rightarrow 00000100 0010 1001

 $PC \leftarrow (PC+2) + Sext(8 bits << 1)$

LUI Example: $Reg[R3] \leftarrow 8$ bit immediate: 8'd0 \rightarrow 10000111 0011 1010

8 bit immediate value is IR[15:8]

ORI Example: $Reg[R2] \leftarrow Reg[R2]$ OR $Zext(8 bits) \rightarrow 11010000 0010 1011$

JR Example: $PC \leftarrow Reg[R2] + Sext(8 bits) \rightarrow 00000111 0010 1100$

JAL Example: PC \leftarrow 3 bits MSB [(PC+2)]: Sext(12 bits <<1), Reg[R15] \leftarrow PC+2

→ 00000000101 1101

K. K. BIRLA Goa Campus, Second Semester 2012-2013

IS F242 Computer Organization, Project, Deadline: 23rd April 2013

Question #6

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Pipelined implementation**.

R - tvpe

4 bits	4 bits	4 bits	4 bits
Function field	Rt	Rs and Rd	Opcode

I - type

8 bits	4 bits	4 bits
Immediate	Rs and Rd	Opcode

J-tvpe

12 bits	4 bits
Immediate	Opcode

Instructions:

ADD Example: $Reg[R2] \leftarrow Reg[R2] + Reg[R3] \rightarrow 0001\ 0011\ 0010\ 0000$

Example: $Reg[R2] \leftarrow Reg[R2] - Reg[R3] \rightarrow 0010\ 0011\ 0010\ 0000$ SUB

DIVU Example: Hi, Lo \leftarrow Reg[R2] / Reg[R3] \rightarrow 0011 0011 0010 0000

Example: $Reg[R2] \leftarrow Reg[R2] << Reg[R3] \rightarrow XXXX 0011 0010 0001$ SLLV

Example: $Reg[R2] \leftarrow Reg[R2] >> Reg[R3] \rightarrow XXXX 0011 0010 0010$ SRLV

LW Example: $Reg[R2] \leftarrow Memory[Reg[R2] + Sext(8 bits)] \rightarrow 00000100 0010 0011$

Example: Memory[Reg[R2] + Sext(8 bits)] \leftarrow Reg[R2] \rightarrow 00000100 0010 0100 SW

BEQ Example: Z flag=1 if Reg[R2] = Reg[R2+1], else Z flag=0 \rightarrow 00000100 0010 0101

 $PC \leftarrow (PC+2) + Sext(8 bits << 1)$

ORI Example: $Reg[R2] \leftarrow Reg[R2] OR Zext(8 bits) \rightarrow 11010000 0010 0110$

JR Example: $PC \leftarrow Reg[R2] + Sext(8 bits) \rightarrow 00000111 0010 0111$

JAL Example: $PC \leftarrow 3$ bits MSB [(PC+2)]: Sext(12 bits<<1), Reg[R15] \leftarrow PC+2

→ 000000000101 1000

K. K. BIRLA Goa Campus, Second Semester 2012-2013 IS F242 Computer Organization, Project, Deadline: 23rd April 2013

Ouestion #7

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Single cycle implementation**.

R-type

3 bits	3 bits	3 bits	3 bits	4 bits
Shftamt	Function field	Rt	Rs and Rd	Opcode

I - type

6 bits	3 bits	3 bits	4 bits
Immediate	Rt	Rd/Rs	Opcode

J – type

9 bits	3 bits	4 bits
Immediate	Rd	Opcode

Instructions:

ADD Example: $Reg[R2] \leftarrow Reg[R2] + Reg[R3] \rightarrow XXX 001 011 010 0000$

SUB Example: $Reg[R2] \leftarrow Reg[R2] - Reg[R3] \rightarrow XXX 010 011 010 0000$

DIVU Example: Hi, Lo \leftarrow Reg[R2] / Reg[R3] \rightarrow XXX 011 011 010 0000

MFHI Example: $Reg[R2] \leftarrow Hi \rightarrow XXX XXX XXX 010 0001$

MFLO Example: $Reg[R2] \leftarrow Lo \rightarrow XXX XXX XXX 010 0010$

MTLH (Move to Hi and Lo)

Example: Hi \leftarrow Reg[R2], Lo \leftarrow Reg[R3] \rightarrow XXX XXX 011 010 0011

SLL Example: $Reg[R2] \leftarrow Reg[R3] << IR[3:0] \rightarrow 0100 XX 011 010 0100$

SRL Example: $Reg[R2] \leftarrow Reg[R2] >> IR[3:0] \rightarrow 0100 XX 011 010 0101$

SRA Example: $Reg[R2] \leftarrow Reg[R2] >> IR[3:0] \rightarrow 0100 XX 011 010 0110$

LW Example: $Reg[R2] \leftarrow Memory[Reg[R3] + Sext(6 bits)] \rightarrow 000001 011 010 0111$

SW Example: Memory[Reg[R3] + Sext(6 bits)] \leftarrow Reg[R2] \rightarrow 000001 011 010 1000

BNE Example:NZ flag=1 if Reg[R2] \neq Reg[R3],else NZ flag=0 \Rightarrow 000001 011 010 1001

PC ← (PC+2) + Sext(6 bits<<1)

LUI Example: Reg[R3] \leftarrow 8 bit immediate: 8'd0 \rightarrow 10000111 X 011 1010

8 bit immediate value is IR[15:8]

ORI Example: $Reg[R2] \leftarrow Reg[R3]$ OR $Zext(6 bits) \rightarrow 110100 011 010 1011$

JR Example: $PC \leftarrow Reg[R2] + Sext(9 \text{ bits}) \rightarrow 000000111 010 1100$

JAL Example: $PC \leftarrow 6$ bits MSB [(PC+2)]: Sext(9 bits <<1), $Reg[R2] \leftarrow PC+2$

→ 000000111 010 1101

K. K. BIRLA Goa Campus, Second Semester 2012-2013 IS F242 Computer Organization, Project, Deadline: 23rd April 2013

Question #8

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Multi cycle implementation**.

R	_	tv	ne
1/		ιν	\sim

3 bits	3 bits	3 bits	3 bits	4 bits
Shftamt	Function field	Rt	Rs and Rd	Opcode

I-type

6 bits	3 bits	3 bits	4 bits
Immediate	Rt	Rd/Rs	Opcode

J-type

9 bits	3 bits	4 bits
Immediate	Rd	Opcode

Instructions:

ADD Example: $Reg[R2] \leftarrow Reg[R2] + Reg[R3] \rightarrow XXX 001 011 010 0000$

SUB Example: $Reg[R2] \leftarrow Reg[R2] - Reg[R3] \rightarrow XXX 010 011 010 0000$

DIVU Example: Hi, Lo \leftarrow Reg[R2] / Reg[R3] \rightarrow XXX 011 011 010 0000

MFHI Example: $Reg[R2] \leftarrow Hi \rightarrow XXX XXX XXX 010 0001$

MFLO Example: $Reg[R2] \leftarrow Lo \rightarrow XXX XXX XXX 010 0010$

MTLH (Move to Hi and Lo)

Example: Hi \leftarrow Reg[R2], Lo \leftarrow Reg[R3] \rightarrow XXX XXX 011 010 0011

SLL Example: $Reg[R2] \leftarrow Reg[R3] << IR[3:0] \rightarrow 0100 XX 011 010 0100$

SRL Example: $Reg[R2] \leftarrow Reg[R2] >> IR[3:0] \rightarrow 0100 XX 011 010 0101$

SRA Example: $Reg[R2] \leftarrow Reg[R2] >> IR[3:0] \rightarrow 0100 XX 011 010 0110$

LW Example: $Reg[R2] \leftarrow Memory[Reg[R3] + Sext(6 bits)] \rightarrow 000001 011 010 0111$

SW Example: Memory[Reg[R3] + Sext(6 bits)] \leftarrow Reg[R2] \rightarrow 000001 011 010 1000

BNE Example: NZ flag=1 if Reg[R2] \neq Reg[R3], else NZ flag=0 \Rightarrow 000001 011 010 1001

PC ← (PC+2) + Sext(6 bits<<1)

LUI Example: Reg[R3] \leftarrow 8 bit immediate:8'd0 \rightarrow 10000111 X 011 1010

8 bit immediate value is IR[15:8]

ORI Example: $Reg[R2] \leftarrow Reg[R3]$ OR $Zext(6 bits) \rightarrow 110100 011 010 1011$

JR Example: $PC \leftarrow Reg[R2] + Sext(9 \text{ bits}) \rightarrow 000000111 010 1100$

JAL Example: $PC \leftarrow 6$ bits MSB [(PC+2)]: Sext(9 bits <<1), $Reg[R2] \leftarrow PC+2$

→ 000000111 010 1101

K. K. BIRLA Goa Campus, Second Semester 2012-2013

IS F242 Computer Organization, Project, Deadline: 23rd April 2013

Question #9

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Pipelined implementation**.

R - type

3 bits	3 bits	3 bits	3 bits	4 bits
Shftamt	Function field	Rt	Rs and Rd	Opcode

I - type

6 bits	3 bits	3 bits	4 bits
Immediate	Rt	Rd/Rs	Opcode

J – type

9 bits	3 bits	4 bits
Immediate	Rd	Opcode

Instructions:

ADD Example: $Reg[R2] \leftarrow Reg[R2] + Reg[R3] \rightarrow XXX 001 011 010 0000$

SUB Example: $Reg[R2] \leftarrow Reg[R2] - Reg[R3] \rightarrow XXX 010 011 010 0000$

DIVU Example: Hi, Lo \leftarrow Reg[R2] / Reg[R3] \rightarrow XXX 011 011 010 0000

SLL Example: $Reg[R2] \leftarrow Reg[R3] << IR[3:0] \rightarrow 0100 XX 011 010 0001$

SRL Example: $Reg[R2] \leftarrow Reg[R2] >> IR[3:0] \rightarrow 0100 XX 011 010 0010$

LW Example: $Reg[R2] \leftarrow Memory[Reg[R3] + Sext(6 bits)] \rightarrow 000001 011 010 0011$

SW Example: Memory[Reg[R3] + Sext(6 bits)] \leftarrow Reg[R2] \rightarrow 000001 011 010 0100

BNE Example:NZ flag=1 if Reg[R2] \neq Reg[R3],else NZ flag=0 \Rightarrow 000001 011 010 0101

 $PC \leftarrow (PC+2) + Sext(6 bits << 1)$

ORI Example: $Reg[R2] \leftarrow Reg[R3]$ OR $Zext(6 bits) \rightarrow 110100 011 010 0110$

JR Example: $PC \leftarrow Reg[R2] + Sext(9 \text{ bits}) \rightarrow 000000111 010 0111$

JAL Example: $PC \leftarrow 6$ bits MSB [(PC+2)]: Sext(9 bits<<1), Reg[R2] \leftarrow PC+2

→ 000000111 010 1000

K. K. BIRLA Goa Campus, Second Semester 2012-2013 IS F242 Computer Organization, Project, Deadline: 23rd April 2013

Ouestion #10

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Single cycle implementation**.

R - tvpe

4 bits	3 bits	3 bits	3 bits	3 bits
Opcode	Rd	Rt	Rs1	Rs2

I - type

4 bits	3 bits	3 bits	6 bits
Opcode	Rd/Rt	Rs	Immediate

J-type

4 bits	12 bits
Opcode	Immediate

Instructions:

ADDD Example: $Reg[R2] \leftarrow Reg[R1] + Reg[R3] + Reg[R4] \rightarrow 0000\ 010\ 100\ 001\ 011$

SUBB Example: $Reg[R2] \leftarrow Reg[R1] - Reg[R3] - Reg[R4] \rightarrow 0001 \ 010 \ 100 \ 001 \ 011$

ADSUB Example: $Reg[R2] \leftarrow Reg[R1] + Reg[R3] - Reg[R4] \rightarrow 0010\ 010\ 100\ 001\ 011$

DIVU Example: $Reg[R2], Reg[R4] \leftarrow Reg[R1] / Reg[R3] \rightarrow 0011 010 100 001 011$

ADDI Example: $Reg[R2] \leftarrow Reg[R1] + Reg[R4] + Sext(3 bits) \rightarrow 0100 010 100 001 011$

SLL Example: $Reg[R2] \leftarrow Reg[R3] << 6 \text{ bits Imm} \rightarrow 0101 \ 010 \ 011 \ 000111$

SRL Example: $Reg[R2] \leftarrow Reg[R3] >> 6$ bits Imm $\rightarrow 0110 \ 010 \ 011 \ 000111$

SRA Example: $Reg[R2] \leftarrow Reg[R3] >> 6$ bits Imm $\rightarrow 0111 \ 010 \ 011 \ 000111$

LW Example: $Reg[R2] \leftarrow Memory[Reg[R3] + Sext(6 bits)] \rightarrow 1000 010 011 000001$

SW Example: Memory[Reg[R3] + Sext(6 bits)] \leftarrow Reg[R2] \rightarrow 1001 010 011 000001

BNE Example:NZ flag=1 if Reg[R2] \neq Reg[R3],else NZ flag=0 \Rightarrow 1010 011 010 000011

 $PC \leftarrow (PC+2) + Sext(6 bits << 1)$

ORI Example: $Reg[R2] \leftarrow Reg[R3]$ OR $Zext(6 bits) \rightarrow 1011 010 011 110100$

J Example: PC← 3 bits MSB [(PC+2)]: Sext(12 bits<<1) →1100 000000111010

JALR Example: $PC \leftarrow Reg[R2] + Reg[R3]$, $Reg[R4] \leftarrow PC + 2 \rightarrow 1101 100 XXX 010 011$

K. K. BIRLA Goa Campus, Second Semester 2012-2013 IS F242 Computer Organization, Project, Deadline: 23rd April 2013

Question #11

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Multi cycle implementation**.

R - tvpe

4 bits	3 bits	3 bits	3 bits	3 bits
Opcode	Rd	Rt	Rs1	Rs2

I-type

4 bits	3 bits	3 bits	6 bits
Opcode	Rd/Rt	Rs	Immediate

J-type

4 bits	12 bits
Opcode	Immediate

Instructions:

ADDD Example: $Reg[R2] \leftarrow Reg[R1] + Reg[R3] + Reg[R4] \rightarrow 0000\ 010\ 100\ 001\ 011$

SUBB Example: $Reg[R2] \leftarrow Reg[R1] - Reg[R3] - Reg[R4] \rightarrow 0001 \ 010 \ 100 \ 001 \ 011$

ADSUB Example: $Reg[R2] \leftarrow Reg[R1] + Reg[R3] - Reg[R4] \rightarrow 0010\ 010\ 100\ 001\ 011$

DIVU Example: $Reg[R2], Reg[R4] \leftarrow Reg[R1] / Reg[R3] \rightarrow 0011 \ 010 \ 100 \ 001 \ 011$

ADDI Example: $Reg[R2] \leftarrow Reg[R1] + Reg[R4] + Sext(3 bits) \rightarrow 0100 010 100 001 011$

SLL Example: $Reg[R2] \leftarrow Reg[R3] << 6 \text{ bits Imm} \rightarrow 0101 \ 010 \ 011 \ 000111$

SRL Example: $Reg[R2] \leftarrow Reg[R3] >> 6$ bits Imm $\rightarrow 0110 \ 010 \ 011 \ 000111$

SRA Example: $Reg[R2] \leftarrow Reg[R3] >> 6$ bits Imm $\rightarrow 0111 \ 010 \ 011 \ 000111$

LW Example: $Reg[R2] \leftarrow Memory[Reg[R3] + Sext(6 bits)] \rightarrow 1000 010 011 000001$

SW Example: Memory[Reg[R3] + Sext(6 bits)] \leftarrow Reg[R2] \rightarrow 1001 010 011 000001

BNE Example:NZ flag=1 if Reg[R2] \neq Reg[R3],else NZ flag=0 \Rightarrow 1010 011 010 000011

PC ← (PC+2) + Sext(6 bits<<1)

ORI Example: $Reg[R2] \leftarrow Reg[R3]$ OR $Zext(6 bits) \rightarrow 1011 010 011 110100$

J Example: PC← 3 bits MSB [(PC+2)]: Sext(12 bits<<1) →1100 000000111010

JALR Example: $PC \leftarrow Reg[R2] + Reg[R3]$, $Reg[R4] \leftarrow PC + 2 \rightarrow 1101 100 XXX 010 011$

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI K. K. BIRLA Coo Compus. Second Semester 2012, 2013

K. K. BIRLA Goa Campus, Second Semester 2012-2013 IS F242 Computer Organization, Project, Deadline: 23rd April 2013

Question #12

Design an optimized datapath for the architecture with following instruction formats and instructions. Implement the same as a **Pipelined implementation**.

R - tvpe

4 bits	3 bits	3 bits	3 bits	3 bits
Opcode	Rd	Rt	Rs1	Rs2

I - type

4 bits	3 bits	3 bits	6 bits
Opcode	Rd/Rt	Rs	Immediate

J – type

4 bits	12 bits
Opcode	Immediate

Instructions:

ADDD Example: $Reg[R2] \leftarrow Reg[R1] + Reg[R3] + Reg[R4] \rightarrow 0000\ 010\ 100\ 001\ 011$

SUBB Example: $Reg[R2] \leftarrow Reg[R1] - Reg[R3] - Reg[R4] \rightarrow 0001 \ 010 \ 100 \ 001 \ 011$

ADSUB Example: $Reg[R2] \leftarrow Reg[R1] + Reg[R3] - Reg[R4] \rightarrow 0010\ 010\ 100\ 001\ 011$

ADDI Example: $Reg[R2] \leftarrow Reg[R1] + Reg[R4] + Sext(3 bits) \rightarrow 0011 010 100 001 011$

SLL Example: $Reg[R2] \leftarrow Reg[R3] \ll 6$ bits Imm $\rightarrow 0100\ 010\ 011\ 000111$

SRL Example: $Reg[R2] \leftarrow Reg[R3] >> 6$ bits Imm \rightarrow 0101 010 011 000111

LW Example: $Reg[R2] \leftarrow Memory[Reg[R3] + Sext(6 bits)] \rightarrow 0110 010 011 000001$

SW Example: Memory[Reg[R3] + Sext(6 bits)] \leftarrow Reg[R2] \rightarrow 0111 010 011 000001

BNE Example:NZ flag=1 if Reg[R2] \neq Reg[R3],else NZ flag=0 \Rightarrow 1000 011 010 000011

PC ← (PC+2) + Sext(6 bits<<1)

J Example: $PC \leftarrow 3$ bits MSB [(PC+2)]: Sext(12 bits<<1) \rightarrow 1001 000000111010

JALR Example: $PC \leftarrow Reg[R2] + Reg[R3]$, $Reg[R4] \leftarrow PC + 2 \rightarrow 1010 \ 100 \ XXX \ 010 \ 011$