LexOS Production Security Checklist

← Comprehensive Security Hardening for H100 GPU Infrastructure

This checklist ensures that your LexOS production deployment meets enterprise-grade security standards.

Pre-Deployment Security

1. Infrastructure Security

- [] Kubernetes Cluster Hardening
- [] RBAC enabled and configured with least privilege
- [] Pod Security Standards enforced (restricted profile)
- [] Network policies implemented
- [] Admission controllers configured (OPA Gatekeeper recommended)
- [] etcd encryption at rest enabled
- [] API server audit logging enabled
- [] Kubelet security configuration hardened
- [] Node Security
- [] OS hardening applied (CIS benchmarks)
- [] Unnecessary services disabled
- [] SSH access restricted and key-based only
- [] Firewall rules configured (iptables/ufw)
- [] Intrusion detection system deployed
- [] Regular security updates scheduled

• [] GPU Node Specific

- [] NVIDIA driver security updates applied
- [] GPU access restricted to authorized containers only
- [] MIG (Multi-Instance GPU) configured if needed
- [] GPU memory isolation verified

2. Container Security

- [] Image Security
- [] Base images from trusted sources only
- [] Container images scanned for vulnerabilities (Trivy, Snyk)
- [] No secrets embedded in images
- [] Images signed and verified
- [] Minimal base images used (distroless preferred)
- [] Regular image updates scheduled

• [] Runtime Security

- [] Containers run as non-root user
- [] Read-only root filesystem where possible
- [] Security contexts properly configured
- [] Capabilities dropped (ALL) and only required ones added
- [] seccomp profiles applied
- [] AppArmor/SELinux policies configured

3. Network Security

- [] Network Segmentation
- [] Network policies implemented for all namespaces
- [] Ingress traffic properly filtered
- [] East-west traffic encryption (service mesh)
- [] DNS policies configured
- [] Private container registry access only

• [] TLS/SSL Configuration

- [] Valid SSL certificates installed
- [] TLS 1.2+ enforced (TLS 1.3 preferred)
- [] Strong cipher suites configured
- [] Certificate rotation automated
- [] HSTS headers enabled
- [] Certificate transparency monitoring

Application Security

1. Authentication & Authorization

- [] Identity Management
- [] Strong password policies enforced
- [] Multi-factor authentication (MFA) enabled
- [] JWT tokens with proper expiration
- [] Refresh token rotation implemented
- [] Session management secure
- [] Account lockout policies configured

• [] API Security

- [] API rate limiting implemented
- [] Input validation on all endpoints
- [] SQL injection protection
- [] XSS protection headers
- [] CSRF protection enabled
- [] API versioning strategy implemented

2. Data Protection

• [] Encryption

- [] Data at rest encryption (database, storage)
- [] Data in transit encryption (TLS)
- [] Encryption key management (KMS)
- [] Database connection encryption
- [] Backup encryption enabled

• [] Data Privacy

- [] PII data identification and protection
- [] Data retention policies implemented
- [] GDPR compliance measures
- [] Data anonymization for non-prod environments
- [] Audit trails for data access

3. Secrets Management

- [] Kubernetes Secrets
- [] All secrets stored in Kubernetes secrets (not ConfigMaps)
- [] Secrets encrypted at rest in etcd
- [] External secrets operator configured (if applicable)
- [] Secret rotation policies implemented
- [] No hardcoded secrets in code or configs
- [] External Secrets
- [] HashiCorp Vault or similar KMS integrated
- [] API keys rotated regularly
- [] Database credentials managed externally
- [] SSL certificates managed via cert-manager
- [] Service account keys rotated

Monitoring & Logging Security

1. Security Monitoring

- [] Threat Detection
- [] Runtime security monitoring (Falco)
- [] Anomaly detection configured
- [] Intrusion detection system active
- [] Vulnerability scanning automated
- [] Security event correlation
- [] Compliance Monitoring
- [] CIS benchmark compliance monitoring
- [] Policy violations alerting
- [] Configuration drift detection
- [] Compliance reporting automated

2. Audit Logging

- [] Comprehensive Logging
- [] Kubernetes audit logs enabled
- [] Application security logs captured
- [] Authentication events logged
- [] API access logs maintained
- [] Database access logs enabled
- [] Log Security
- [] Log integrity protection
- [] Centralized log management
- [] Log retention policies
- [] Log access controls
- [] Log encryption in transit and at rest

Mobile App Security

1. Application Security

- [] Code Protection
- [] Code obfuscation enabled
- [] Anti-tampering measures implemented
- [] Root/jailbreak detection
- [] Debug detection and prevention
- [] Certificate pinning implemented
- [] Data Protection
- [] Local data encryption
- [] Secure storage for sensitive data
- [] Biometric authentication support
- [] Session timeout configured
- [] Screen recording prevention

2. Communication Security

- [] API Communication
- [] Certificate pinning for API calls
- [] Request/response encryption
- [] API key protection
- [] Token-based authentication
- [] Secure WebSocket connections

Operational Security

1. Access Control

- [] Administrative Access
- [] Privileged access management (PAM)

- [] Just-in-time access for sensitive operations
- [] Administrative actions logged and monitored
- [] Separation of duties implemented
- [] Regular access reviews conducted
- [] Service Accounts
- [] Minimal permissions for service accounts
- [] Service account token rotation
- [] Unused service accounts removed
- [] Service account activity monitored

2. Incident Response

- [] Preparation
- [] Incident response plan documented
- [] Security team contact information updated
- [] Escalation procedures defined
- [] Communication templates prepared
- [] Recovery procedures tested
- [] Detection & Response
- [] Security monitoring alerts configured
- [] Automated response procedures
- [] Forensic capabilities available
- [] Backup and recovery procedures tested
- [] Post-incident review process defined

Compliance & Governance

1. Regulatory Compliance

- [] Data Protection Regulations
- [] GDPR compliance implemented
- [] CCPA compliance measures
- [] Data processing agreements in place
- [] Privacy policy updated
- [] Consent management implemented
- [] Industry Standards
- [] SOC 2 Type II compliance (if applicable)
- [] ISO 27001 alignment
- [] NIST Cybersecurity Framework adoption
- [] Industry-specific regulations addressed

2. Security Governance

- [] Policies & Procedures
- [] Information security policy

- [] Acceptable use policy
- [] Data classification policy
- [] Incident response procedures
- [] Business continuity plan
- [] Training & Awareness
- [] Security awareness training for all staff
- [] Phishing simulation exercises
- [] Secure coding training for developers
- [] Regular security updates communicated

Continuous Security

1. Regular Assessments

- [] Security Testing
- [] Penetration testing (quarterly)
- [] Vulnerability assessments (monthly)
- [] Code security reviews
- [] Configuration audits
- [] Third-party security assessments
- [] Monitoring & Metrics
- [] Security KPIs defined and tracked
- [] Security dashboard implemented
- [] Regular security reports generated
- [] Trend analysis performed
- [] Continuous improvement process

2. Updates & Maintenance

- [] Patch Management
- [] Regular security updates applied
- [] Patch testing procedures
- [] Emergency patching procedures
- [] Patch compliance monitoring
- [] Rollback procedures tested
- [] Security Reviews
- [] Monthly security reviews scheduled
- [] Quarterly security assessments
- [] Annual security audits
- [] Continuous threat modeling
- [] Security architecture reviews

H100 GPU Specific Security

1. GPU Security

- [] Hardware Security
- [] GPU firmware updated
- [] Secure boot enabled (if supported)
- [] Hardware attestation configured
- [] Physical security measures
- [] GPU access logging
- [] Workload Isolation
- [] MIG partitioning configured securely
- [] GPU memory isolation verified
- [] Compute isolation between workloads
- [] GPU resource quotas enforced
- [] Cross-tenant isolation verified

2. AI/ML Security

- [] Model Security
- [] Model integrity verification
- [] Model access controls
- [] Training data protection
- [] Inference request validation
- [] Model versioning and rollback
- [] Data Pipeline Security
- [] Training data encryption
- [] Data lineage tracking
- [] Feature store security
- [] Model registry security
- [] Experiment tracking security

Security Validation

1. Automated Testing

```
# Run security scan
kubectl run security-scan --rm -i --restart=Never \
    --image=aquasec/trivy:latest -- \
    trivy k8s --report summary cluster

# Check pod security standards
kubectl run pss-check --rm -i --restart=Never \
    --image=kubesec/kubesec:latest -- \
    kubesec scan /dev/stdin < k8s/lexos-deployment.yaml

# Network policy validation
kubectl run netpol-test --rm -i --restart=Never \
    --image=nicolaka/netshoot -- \
    nc -zv lexos-api-service.lexos.svc.cluster.local 8000</pre>
```

2. Manual Verification

```
# Check RBAC configuration
kubectl auth can-i --list --as=system:serviceaccount:lexos:lexos-api

# Verify secrets are not in plain text
kubectl get secrets -n lexos -o yaml | grep -v "data:"

# Check security contexts
kubectl get pods -n lexos -o jsonpath='{.items[*].spec.securityContext}'

# Verify network policies
kubectl get networkpolicies -n lexos

# Check for privileged containers
kubectl get pods -n lexos -o jsonpath='{.items[*].spec.containers[*].securityContext.pr
ivileged}'
```

Security Incident Response

1. Immediate Response

```
# Isolate compromised pod
kubectl patch deployment lexos-api -n lexos -p '{"spec":{"replicas":0}}'
# Collect forensic data
kubectl logs -n lexos -l app=lexos-api --previous > incident-logs.txt
kubectl get events -n lexos --sort-by='.lastTimestamp' > incident-events.txt
# Block suspicious traffic
kubectl apply -f - <<EOF</pre>
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: emergency-isolation
 namespace: lexos
 podSelector:
   matchLabels:
     app: lexos-api
 policyTypes:
  - Ingress
  - Egress
```

2. Recovery Procedures

```
# Restore from clean backup
velero restore create incident-recovery-$(date +%Y%m%d) \
    --from-backup lexos-daily-clean-backup

# Rotate all secrets
kubectl delete secret lexos-secrets -n lexos
kubectl apply -f k8s/secrets-rotated.yaml

# Update all container images
kubectl set image deployment/lexos-api lexos-api=ghcr.io/lexhelios/lexworking:secure-$
(date +%Y%m%d) -n lexos
```

Checklist Completion

Sign-off Requirements

```
[ ] Security Team Approval
Security Officer: __ Date: _____
DevOps Lead: __ Date: _____
Platform Owner: __ Date: _____
[ ] Compliance Verification
Legal Review: __ Date: _____
Compliance Officer: __ Date: _____
Risk Assessment: __ Date: _____
```

Documentation

- [] Security assessment report completed
- [] Risk register updated
- [] Incident response plan tested
- [] Security runbooks updated
- [] Compliance documentation filed

♠ Security is not a destination, but a continuous journey. Regular reviews and updates of this checklist are essential for maintaining a strong security posture.

Last Updated: August 2025

Version: 2.0.0

Classification: Internal Use Only