Uskarphet til partikkel

Henrik Storesund^a, Fredrik Knapskog^a, Eirik Viksmo-Slettan^a

^a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-7491 Trondheim, Norge.

Oppsummering

Denne øvingen handler om hvordan uskarpheten i posisjon og impuls hos en partikkel varierer over tid, og hvordan produktet av disse forholder seg til uskarphetsrelasjonen.

1. Fri partikkel

I første oppgaven skal kun uskarpheten i posisjonen beregnes som funksjon av tid. Det gjøres både analytisk og numerisk for et fritt elektron. I fra øving 3 [] oppgave 11.c er absoluttkvadratet av Ψ oppgitt

$$|\Psi(x,t)|^2 = \left[2\pi(\sigma^2 + \frac{\hbar^2 t^2}{4m^2\sigma^2})\right]^{-\frac{1}{2}} \exp\left(\frac{(x - p_0/t)^2}{2(\sigma^2 + \hbar^2 t^2/4m^2\sigma^2)}\right). \tag{1}$$

Der m er elektronmassen, t er tiden, σ er den romlige utstrekningen, \hbar er Plancks konstant delt på to pi, p_0 er startimpulsen og x er posisjon langs x-aksen. Fra (1) utledes forventningsverdiene til x og x^2

$$< x> = \int_{-\infty}^{\infty} x |\Psi(x,t)|^2 dx = \frac{p_0 t}{m},$$

$$< x^2> = \int_{-\infty}^{\infty} x^2 |\Psi(x,t)|^2 dx = \sigma^2 + \frac{\hbar^2 t^2}{4m^2 \sigma^2} + (\frac{p_0 t}{m})^2.$$

Uskarpheten i posisjonen kan da beregnes analytisk

$$\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sigma \sqrt{1 + (\frac{t}{\tau})^2}, \, \det \tau = \frac{2m\sigma^2}{\hbar}.$$
 (2)

Numerisk lages en grid med punkter på x-aksen med tilhørende potensialverdier. I dette tilfellet er potensialet null i alle punktene ettersom det er en fri partikkel. Steglengden mellom punktene på x-aksen settes til én Å og videre lages en tridiagonal Hamiltonmatrise. Fra denne lages det like mange ortonormerte egenfunksjoner, ψ_n , som det er punkter i griden. $\Psi(x,0)$ lages som en array der x-verdiene fra griden settes inn i

$$\Psi(x,0) = (2\pi\sigma^2)^{-\frac{1}{4}} e^{ik_0 x} e^{-(x-x_0)^2/4\sigma^2}, \text{ der } k_0 = p_0/\hbar$$
(3)

med startposisjon x_0 lik 50 nm. Dermed kan egenverdiene til egenfunksjonene beregnes som indreproduktet

$$c_j = \int \psi_j^*(x)\Psi(x,0)dx$$

Bølgepakken kan da utvikles som en lineærkombinasjon av alle de stasjonære tilstandene ved summen

$$\Psi(x,t) = \sum_{n=0}^{Ntot-1} c_n \psi_n(x) \exp(-\frac{iE_n t}{\hbar}). \tag{4}$$

Videre kan indreproduktet mellom absoluttkvadratet av summen fra (4) og griden x brukes til å finne forventningsverdien til x, og det samme med x^2 .

(a) Tidsrom fra 0 sekund til 200 femtosekunder. (b) Tidsrom fra 0 sekunder til 20 femtosekunder. der.

Figur 1: Den blå grafen presenterer uskarpheten i posisjon hos en partikkel over tid løst numerisk, mens den røde presenterer det analytisk. Energien til det frie elektronet er satt til 1 eV og den romlige utstrekningen er satt til 2 nm.

Figur 1 viser at i starten er den numeriske løsningen tilnærmet helt lik den analytiske, men så gjør den dupper hver gang elektronet treffer veggen. Den analytiske uskarpheten stiger også raskere enn den numeriske.

2. Partikkel ved potensial

I andre oppgaven skal det innføres et potensial. Potensialet er to platåer som er V_0 store. I midten er potensialet proporsjonalt med kvadratet av posisjonen slik som figur 2 viser.

Beregningen av uskarpheten i posisjon gjøres akkurat som i første oppgaven bare at potensialet legges inn i Hamiltonmatrisen. For å beregne den midlere impulsen benyttes indreproduktet

$$< p^n > = Re(\int \Psi^* (\frac{\hbar}{i} \frac{\partial}{\partial x})^n \Psi dx)$$

Figur 2: Plottet viser potensialet som funksjon av posisjon. På hver side er det to platåer V_0 store med et harmonisk potensiale i midten proporsjonalt med avstanden fra midten.

som utføres ved hjelp av innebygde funksjoner for derivasjon, komplekskonjugering og å finne realdelen av et komplekst tall. Uskarpheten i impuls beregnes som for posisjon i (2). Til slutt deles uskarpheten i impuls på steglengden.

Uskarphet hos partikkel i potensial

Figur 3: Figuren til venstre viser uskarpheten i posisjon hos et elektron i et potensial som funksjon av tid, mens figuren til høyre viser uskarpheten i impuls. V_0 i potensialet er satt til 50 eV og tidsintervallet er i fra 0 sekunder til 0.2 picosekunder.

Figur 3 viser at begge uskarphetene oppfører seg som dempede svingninger. Uskarpheten i posisjon er mye mye større enn i impulsen.

Til slutt plottes uskarphetsproduktet opp mot uskarphetsrelasjonen i figur 4.

$$\Delta x \Delta p \ge \frac{\hbar}{2}.$$

Figur 4: Den blå grafen presenterer uskarphetsproduktet mellom impuls og posisjon, mens den røde grafen viser $\frac{\hbar}{2}$.

Figur 4 viser som forventet at uskarphetsproduktet er større enn $\hbar/2$ og oppfyller uskarphetsrelasjonen for alle t.

Oppgave 2 gjentas for en starttilstand forskjellig fra den forrige som gir ulike kvalitative egenskaper. Dette oppnåes ved å sette x_0 lik 20 nm istedenfor 50 nm.

Uskarphet hos partikkel i potensial

Figur 5: Figuren til venstre viser uskarpheten i posisjon hos et elektron i et potensial som funksjon av tid, mens figuren til høyre viser uskarpheten i impuls. V_0 i potensialet er satt til 50 eV og tidsintervallet er i fra 0 sekunder til 0.2 picosekunder.

Figur 5 og 6 viser veldig annerledes fra figur 3 og 4. Uskarpheten i posisjon minner om uskarpheten i figur 1 der potensialet var lik null. Bunnpunktene til uskarpheten i posisjon henger sammen med toppunktene i uskarpheten til impuls. Det kommer av at når elektronet treffer potensialbarrieren på hver side av griden er endringen i posisjon mindre mens endringen i impuls er større. Startposisjonen har altså mye å si for hvor-

Figur 6: Den blå grafen presenterer uskarphetsproduktet mellom impuls og posisjon, mens den røde grafen viser $\frac{\hbar}{2}$.

dan usikkerheten utvikler seg over tid. Figur 6 viser at i store deler av intervallet er usikkerhetsproduktet omtrent så lite som det kan bli. Dermed blir det en mer nøyaktig beregning enn for startposisjon lik 50 nm.

3. Bibliography

Øving 3
Øving 3I. Øverbø. Øving i emnet TFY4215 Innføring i kvantefysikk, NTNU.