《计算空气动力学》 大作业

SX1501021 仓宇 2016年6月29日

目录

1	问题描述																2														
2		可题分析 .1 基本方程																2													
	2.2	空间离散																													2
		时间离散																													
	2.4	人工耗散																													2
3	编程实现													2																	
4	1 结果分析															2															
5	总结	Ī																													2

1 问题描述 2

1 问题描述

求解无粘条件下NACA0012翼型的2维平面流场。流场网格是由三角形单元组成的非结构网格,使用有限体积方法求解流场的2维Euler方程。网格文件为data文件夹下的naca0012.grd文件。全流场的网格如下左图所示,右图是翼型周围的网格:

图 1: 用于NACA0012翼型的非结构网格

2 问题分析

本文采用Jameson中心格式来求解二维Euler方程。在空间离散上采用的是有限体积法,时间上采用的是四步显式Runge-Kutta迭代求得最后的定常解。人工耗散项为守恒变量的二阶和四阶差分项。边界条件采用的是无反射边界条件,并采用当地时间步长进行加速收敛。

- 2.1 基本方程
- 2.2 空间离散
- 2.3 时间离散
- 2.4 人工耗散

- 3 编程实现
- 4 结果分析
 - 5 总结