Complete Project Astra System Deployment Guide

System Architecture

- Windows UGV-Server (AWS EC2): Dashboard server and data receiver
- **Ubuntu Rover (rover-PC)**: Sensor data collection and transmission
- **Network**: ZeroTier rovernet (4753CF475F287023)

Phase 1: Windows UGV-Server Setup

MACHINE: Windows UGV-Server (AWS EC2)

Start Dashboard Server

powershell

Navigate to project directory

cd C:\Users\Administrator\Documents\GitHub\AstraBackup\Harry\masterscriptsv4

Start the dashboard server

python dashboard_server_rovernet.py

Expected Output:

Project Astra NZ Rovernet Dashboard Server

Network: rovernet (4753CF475F287023)

Server IP: 172.25.77.186:8080

Waiting for rover data...

INFO: Uvicorn running on http://0.0.0.0:8080

Verify Dashboard Access

powershell

Test dashboard locally on Windows server

Invoke-WebRequest -Uri "http://172.25.77.186:8080"

Dashboard URL: <u>http://172.25.77.186:8080</u>

Phase 2: Ubuntu Rover Network Setup

MACHINE: Ubuntu Rover (rover-PC)

Join ZeroTier Network

bash

Leave any existing wrong network

sudo zerotier-cli leave 41d49af6c276269e

Join the correct rovernet

sudo zerotier-cli join 4753CF475F287023

Verify network status

sudo zerotier-cli listnetworks

Authorize Rover in ZeroTier Central

BROWSER ACTION (any machine):

- 1. Go to ZeroTier Central: https://my.zerotier.com
- 2. Navigate to network: (4753CF475F287023)
- 3. Refresh the page
- 4. Find the new rover device
- 5. Check the "Auth" checkbox
- 6. Note the IP address assigned to rover

Test Network Connection

bash

Test connection to Windows server

ping 172.25.77.186

Test HTTP connectivity (Linux curl syntax)

curl -X GET http://172.25.77.186:8080/api/status

Phase 3: Ubuntu Rover Camera Preparation

MACHINE: Ubuntu Rover (rover-PC)

Stop Conflicting Processes

```
# Kill any competing RealSense processes
sudo pkill -f realsense
sudo pkill -f rs-
sudo pkill -f python3

# Wait for processes to fully stop
sleep 3
```

Verify Camera Hardware

```
bash

# Check if RealSense is detected

Isusb | grep Intel

# Expected output:

# Bus 001 Device 003: Intel Corp. Intel(R) RealSense(TM) Depth Camera 435i
```

Test Camera Access

```
bash

# Navigate to project directory

cd ~/harry/AstraBackup/Harry/masterscriptsv4/

# Activate the correct virtual environment

source ~/rover_venv/bin/activate

# Test RealSense library

python3 -c "import pyrealsense2 as rs; print('RealSense version:', rs.__version__)"
```

Phase 4: Ubuntu Rover System Startup

Terminal 1: Hardware Validation

```
# Navigate to project directory

cd ~/harry/AstraBackup/Harry/masterscriptsv4/

# Activate virtual environment

source ~/rover_venv/bin/activate

# Run hardware check

python3 hardware_check_v4.py
```

Expected Output:

RPLidar: Connected

RealSense Camera: Connected

Pixhawk: Connected

All sensors initialized successfully

Terminal 2: Proximity System

bash

Open new terminal

cd ~/harry/AstraBackup/Harry/masterscriptsv4/

Activate virtual environment

source ~/rover_venv/bin/activate

Start proximity system

python3 combo_proximity_bridge_fixed_v4.py

Expected Output:

RPLidar + RealSense + Pixhawk data flowing Mission Planner connection available on UDP:14550 8-sector proximity data active

Terminal 3: Data Relay to Dashboard

```
# Open new terminal

cd ~/harry/AstraBackup/Harry/masterscriptsv4/

# Activate virtual environment

source ~/rover_venv/bin/activate

# Start data relay

python3 rover_data_relay.py
```

Expected Output:

Connecting to dashboard server: 172.25.77.186:8080

- Dashboard connection established
- Transmitting sensor data...
- **&** Camera feed active
- 📊 Telemetry data flowing

Phase 5: System Verification

MACHINE: Windows UGV-Server - Dashboard Check

powershell

Verify dashboard is receiving data

Invoke-WebRequest -Uri "http://172.25.77.186:8080/api/status"

Browser Verification:

- Open: http://172.25.77.186:8080
- Should show:
 - Live LiDAR radar display
 - RealSense camera feed
 - **I** Telemetry data updates
 - Real-time sensor status

MACHINE: Ubuntu Rover - Mission Planner (Optional)

- # Mission Planner connection available at:
- # UDP: [rover-ip]:14550
- # Enable proximity display: $Ctrl+F \rightarrow Proximity$

Troubleshooting Guide

UBUNTU ROVER - Camera Issues

If No Camera Feed on Dashboard:

```
bash
# Check RealSense detailed status
cd ~/harry/AstraBackup/Harry/masterscriptsv4/
source ~/rover_venv/bin/activate
python3 -c "
import pyrealsense2 as rs
try:
  ctx = rs.context()
  devices = ctx.query_devices()
  print(f'Found {len(devices)} RealSense devices')
  for i, dev in enumerate(devices):
     print(f'Device {i}: {dev.get_info(rs.camera_info.name)}')
     print(f'Serial: {dev.get_info(rs.camera_info.serial_number)}')
except Exception as e:
  print(f'RealSense error: {e}')
```

Camera Reset Procedure:

```
bash
# Emergency camera reset
sudo modprobe -r uvcvideo
sudo modprobe uvcvideo
sleep 5
# Restart camera processes
sudo pkill -f python3
cd ~/harry/AstraBackup/Harry/masterscriptsv4/
source ~/rover_venv/bin/activate
python3 hardware_check_v4.py
```

WINDOWS SERVER - Network Issues

Test Dashboard Server:

Check if server is running netstat -an | findstr:8080 # Test local access curl http://localhost:8080/api/status # Test external access curl http://172.25.77.186:8080/api/status

BOTH MACHINES - ZeroTier Issues

Check ZeroTier Status:

bash # Ubuntu Rover sudo zerotier-cli info sudo zerotier-cli listnetworks # Check IP assignment

powershell # Windows Server zerotier-cli info zerotier-cli listnetworks # Check IP assignment ipconfig | findstr "172.25"

ip addr show zt[tab]

Quick Start Commands Summary

Windows UGV-Server:

powershell

cd C:\Users\Administrator\Documents\GitHub\AstraBackup\Harry\masterscriptsv4 python dashboard_server_rovernet.py

🗐 Ubuntu Rover (3 terminals):

```
# Terminal 1 - Hardware Check
cd ~/harry/AstraBackup/Harry/masterscriptsv4/
source ~/rover_venv/bin/activate
python3 hardware_check_v4.py

# Terminal 2 - Proximity System
cd ~/harry/AstraBackup/Harry/masterscriptsv4/
source ~/rover_venv/bin/activate
python3 combo_proximity_bridge_fixed_v4.py

# Terminal 3 - Data Relay
cd ~/harry/AstraBackup/Harry/masterscriptsv4/
source ~/rover_venv/bin/activate
python3 rover_data_relay.py
```

Startup Sequence Checklist

Step 1: Start Windows dashboard server
Step 2: Authorize rover in ZeroTier Central
Step 3: Test network connectivity (ping both directions)
Step 4: Kill competing processes on Ubuntu rover
Step 5: Run hardware check on Ubuntu rover
Step 6: Start proximity system on Ubuntu rover
Step 7: Start data relay on Ubuntu rover
Step 8: Verify dashboard shows all data including camera feed

Success Criteria: Dashboard at http://172.25.77.186:8080 shows live camera feed, LiDAR data, and telemetry updates.