

LIBRARY OF THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

510.84 IlGr no.541-546 cop.2

Digitized by the Internet Archive in 2013

510.84 ILLIN

UIUCDCS-R-72-543

math

A STUDY OF THE EFFECT OF ADDITIONAL INEQUALITIES IN INTEGER PROGRAMMING FOR LOGICAL DESIGN

by

Jose Joaquin Mora-Tovar

October, 1972

THE LIBRARY OF THE

NOV 2 9 1972

UNIVERSITY OF ILLINOIS

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN · URBANA; ILLINOIS

UIUCDCS-R-72-543

A STUDY OF THE EFFECT OF ADDITIONAL INEQUALITIES IN INTEGER PROGRAMMING FOR LOGICAL DESIGN

Ъу

JOSE JOAQUIN MORA-TOVAR

October, 1972

Department of Computer Science University of Illinois Urbana, Illinois 61801

This work was submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science in the Graduate College of the University of Illinois, October, 1972, and supported partially by the National Science Foundation under Grant No. NSF GJ-503A #1.

ACKNOWLEDGEMENT

The author would like to thank Professor Saburo Muroga and his logical design group at the University of Illinois. Special thanks should be expressed to those whose ideas, comments and indispensable help made this work possible: Tso-kai Liu, Keith R. Hohulin and Jay N. Culliney.

The author is also grateful to Mrs. Margaret L. Gidel for her help with the English grammar and for typing this paper.

This work is dedicated to my wife and son.

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
2.	PROBLEM STATEMENT	2
3.	COMPUTATIONAL RESULTS AND CONCLUSIONS	15
	3.1 NOR design	15
	3.2 NOR-AND design with all-interconnection formulation	32
	3.3 NOR-NAND design with all-interconnection formulation	36
	3.4 AND-OR design with all-interconnection formulation	38
	3.5 Overall Conclusion	41
LIST	T OF REFERENCES	43
APPI	ENDIX A	45
APPE	ENDIX B	82

1. INTRODUCTION

Logical design by integer programming has proved to be an efficient approach to finding optimal networks [10, 11, 12]. Several computer programs for the logical design of optimal networks by integer programming techniques have been prepared at the University of Illinois.

This work is concerned with computer programs based on the implicit enumeration method, and inequalities added to the integer programming problem, in order to speed-up the execution time. These additional inequalities, based on intrinsic properties of the networks, are incorporated in the inequalities for the integer programming logical design.

The objective of the present work is to establish how effective these additional inequalities are in reducing the execution time of the mentioned programs for several cases of network design.

2. PROBLEM STATEMENT

It is assumed that the reader is familiar with integer linear programming or that he can easily refer to available publications in that field [10, 11, 12, 13].

Integer linear programming techniques have been implemented by computer programs to solve the optimal design problem for logical networks. The implicit enumeration method based on inequalities is used at the University of Illinois after computational experiences with logical design. Description of the algorithm used is available in the literature [1, 6, 11, 12, 13].

As previously stated, the inclusion of additional inequalities based on some features of gates and networks is found to speed-up the execution time of the computer programs [1, 10, 11].

In what follows, it will be determined to what extent each type of additional inequality effects the computation time for the following cases of logical design:

- (i) Networks with three input variables and five NOR gates.
- (ii) Networks with three input variables and six NOR gates.
- (iii) Networks with three input variables and seven NOR gates.
 - (iv) Networks with four input variables and five NOR gates.
 - (v) Networks with four input variables and six NOR gates.
 - (vi) Networks with four input variables and seven NOR gates.
- (vii) Networks with three input variables and five NOR or NAND gates(i.e., each network consists of a mixture of NOR and NAND gates).
- (viii) Networks with four input variables and five AND or OR gates(i.e., each network consists of a mixture of AND or OR gates).

(ix) - One-bit adder networks with three input variables and eight NOR gates.
For all cases the all-interconnection formulation was used. In addition,
the feed-forward formulation was used for cases (i) and (ii) under several
combinations of types of additional inequalities.

The following assumptions are made in the present work:

- (1) Complemented input variables are not available, i.e., the so-called "single rail logic" is assumed for NOR, NOR-AND and NOR-NAND design cases. But both complemented and non-complemented input variables are available in the AND-OR design case.
- (2) No fan-in or fan-out restrictions are considered (although they can be included in the programs used).
- (3) The number of levels for the implementation of the networks is not restricted (though the programs permit this restriction to be included).
- (4) Except for the one-bit adder design case, the number of outputs of the networks is limited to one (although the programs, again, permit multiple outputs).

Let us show the additional inequalities for the logical design cases of interest in this paper.

First we need some notation conventions in order to understand the formulas which appear below.

Variables are needed to represent: a) the external variables which are inputs to the network gate; b) whether or not an external variable connects to a gate (G); c) whether or not a gate (G) connects to another gate (G), and

d) the type of the gate when more than one type is involved.

In the given order, these variables are:

a) x_1, x_2, \ldots, x_n represent n uncomplemented variables (or simply variables) which can be external input variables. Also, $\overline{x}_1, \overline{x}_2, \ldots, \overline{x}_n$ represent the corresponding complemented variables.

b) v_{ij} is a <u>connection</u> from the i-th external variable, x_i , to the j-th gate, G_i ; v_{ij} can take on the values given by:

$$v_{\mbox{ij}} = \begin{cases} \mbox{l if the connection exists} \\ \mbox{0 if the connection does not exist.} \end{cases}$$

v will represent in similar way connections from complemented variables to gates.

c) α_{ij} represents the <u>interconnection</u> from gate G_i to gate G_j , and its value will be:

$$\alpha_{ij} = \begin{cases} 1 & \text{if the interconnection exists} \\ 0 & \text{if the interconnection does not exist.} \end{cases}$$

- d) As we are concerned with at most two different types of gates in the logical design of networks with a mixture of types of gates, λ_j will represent the type of gate j. λ_j will take values as given by:
 - i in the case of networks with a mixture of NOR and NAND gates

$$\lambda_{j} = \begin{cases} 1 & \text{if the gate is NOR} \\ 0 & \text{if the gate is NAND} \end{cases}$$

ii - in the case of networks with a mixture of OR and AND gates

$$\lambda_{j} = \begin{cases} 1 \text{ if the gate is OR} \\ 0 \text{ if the gate is AND} \end{cases}$$
 and

iii - in the case of a network with a mixture or NOR and AND gates

$$\lambda_{j} = \begin{cases} 1 & \text{if the gate is NOR} \\ 0 & \text{if the gate is AND} \end{cases}$$

In what follows, formulas are given without deduction, which can be found elsewhere [1, 12, 13].

For logical networks using NOR gates we can establish five types of additional inequalities (from now on let us refer to them simply as "inequalities"):

Type 1 - Each gate must have at least two input* interconnections or at least one input connection. This condition can be expressed by the inequalities:

$$\sum_{i=1}^{j-1} \alpha_{i,j} + 2\sum_{i=1}^{n} v_{i,j} \ge 2$$
 j = 1,2,..., R-1 for f.f.f.**

and $\sum_{\substack{i=1\\i\neq j}}^{R}\alpha_{ij}+2\sum_{i=1}^{L}v_{ij}\geq 2 \quad j=1,2,\ldots, \text{ R-l for a.i.f.}$

Type 2 - Every gate (except for the output gate) must have at least one output interconnection to another gate in the network. This is an obvious condition in order to have the gate within the network, and can be expressed by the inequalities:

R
$$\Sigma$$
 $\alpha_{i,j} \geq 1$ i = 1,2,..., R-1 for f.f.f.

^{*} For the sake of simplicity, let an input be defined as a connection from an external variable to a gate or an interconnection from one gate to another; the words connection or interconnection will be added, as qualifiers, to the word input when the distinction between the two types inputs is necessary.

For the formulas about inequalities, f.f.f. stands for feed-forward formulation and a.i.f. for all-interconnection formulation. The gates are numbered from 1 to R; G being the output gate. For details about f.f.f. and a.i.f. see [1, 10]. As a convention, summations Σ are assumed to be set to zero, if the upper limit takes values less than the lower limit.

Type 3 - A gate which is interconnected to the output gate is not interconnected to any other gate. The corresponding inequalities are:

$$\text{U (1 -} \alpha_{iR}) \geq \sum_{j=i+1}^{R-1} \alpha_{ij} \quad \text{i = 1,2,..., R-2 for f.f.}$$

and U
$$(1 - \alpha_{iR}) \ge \sum_{\substack{j=1 \ j \neq i}}^{R-1} \alpha_{ij}$$
 i = 1,2,..., R-1 for a.i.f.

where U is a positive number, large enough so that the inequalities become non-restrictive if α_{iR} = 0.

Type $^{l_{4}}$ - For the structure shown in fig. 1 the network is not optimal if $\alpha_{ij}=\alpha_{ik}=\alpha_{jk}=1$, and if gate G_{j} has no other output interconnection. This condition, usually referred to as the <u>triangular condition</u>, is expressed by:

$$\sum_{\ell=j+1}^{R} \alpha_{\ell} + 2 \ge \alpha_{ij} + \alpha_{ik} + \alpha_{jk} \quad i = 1,2,..., R-2
j = i + 1, 2,..., R-1
k = j + 1, 2,..., R
for f.f.$$

Type 5 - This inequality type is the triangular condition with gate G_i in fig. 1, replaced by an external variable x_i . Then we have:

All inequalities described in the following refer to the all interconnection formulation only.

For the NOR-AND design case the following inequalities apply:

Type 6 - This inequality is a replacement for inequality type 1 of the NOR design case, and it takes into account the two different types of gates we now have. The inequality establishes the condition that every AND gate must have at least two inputs, while a NOR gate must have at least one.

Then:

$$\sum_{\substack{i=1\\i\neq j}}^{n} v_{i,j} + \sum_{\substack{i=1\\i\neq j}}^{R} \alpha_{i,j} \geq 2 - \lambda_{j}$$

$$j = 1,2,..., R$$

where
$$\lambda_{j} = \begin{cases} 1 & \text{for a NOR gate} \\ 0 & \text{for an AND gate} \end{cases}$$

The NOR-AND design case includes two more sets of triangular conditions similar to those for inequalities types 4 and 5 of the NOR design case; these inequalities are:

Type 7 - If either gate G_j or gate G_k in the triangular condition (see fig. 1) is an AND gate, the triangular condition still holds, even if G_j interconnects to other gates different from G_k . In terms of inequalities:

$$\lambda_k + 2 \geq \alpha_{ij} + \alpha_{ik} + \alpha_{jk} \qquad i = 1, 2, \dots, R^*$$

$$j = 1, 2, \dots, R$$
 and
$$\lambda_j + 2 \geq \alpha_{ij} + \alpha_{ik} + \alpha_{jk} \qquad k = 1, 2, \dots, R$$

for $i \neq j \neq k$ and λ as previously defined.

Type 8 - In inequality type 7 gate G_i can be replaced by a connection from an external variable and the triangular condition still holds; the inequalities expressing this are:

$$\lambda_{k} + 2 \ge v_{ij} + v_{ik} + \alpha_{jk}$$
 $j = 1, 2, ..., R^{**}$

$$k = 1, 2, ..., R$$

$$\lambda_{j} + 2 \ge v_{ij} + v_{ik} + \alpha_{jk}$$
 $i = 1, 2, ..., n$

$$j \ne k$$

Besides inequality types 6, 7 and 8, for NOR-AND design case inequality types 2 through 5 of the NOR design case still hold. The same is true for the NOR-NAND design case but the presence of a new type of gate, NAND, brings in the following four new types of inequalities:

Type 9 - Each gate has at least one input connection or interconnection. The corresponding inequality is:

$$\sum_{i=1}^{\Sigma} v_{i,j} + \sum_{\substack{i=1\\i\neq j}}^{\Sigma} \alpha_{i,j} \ge 1 \qquad j = 1,2,..., R$$

^{*} See Appendix B for programming details.

^{**} See Appendix B.

There is another type of triangular condition for NOR-NAND design case as follows:

Type 10 - This inequality implies that if gates G_j and G_k in the triangular condition are of different type, then the triangular condition (see fig. 1) holds even if gate G_j interconnects to gates other than G_k , i.e. :

$$2 + (1 - \lambda_{j}) + \lambda_{k} \geq \alpha_{ij} + \alpha_{ik} + \alpha_{jk} \qquad i = 1, 2, \dots, R$$

$$j = 1, 2, \dots, R$$

$$2 + (1 - \lambda_{k}) + \lambda_{j} \geq \alpha_{ij} + \alpha_{ik} + \alpha_{jk} \qquad k = 1, 2, \dots, R$$

$$i \neq j \neq k$$

$$\text{now } \lambda_{i} = \begin{cases} 1 \text{ for a NOR gate} \\ 0 \text{ for a NAND gate} \end{cases}$$

Type 11 - In inequality type 10 gate G can be replaced by an external input.

Then:

$$2 + (1 - \lambda_{j}) + \lambda_{k} \ge v_{ij} + v_{ik} + \alpha_{jk} \qquad j = 1, 2, ..., R^{**}$$

$$k = 1, 2, ..., R$$

$$2 + (1 - \lambda_{k}) + \lambda_{j} \ge v_{ij} + v_{ik} + \alpha_{jk} \qquad i = 1, 2, ..., n$$

$$j \neq k$$

Type 12 - If a gate has only one input, it can be set to a NOR gate:

$$\lambda_{j} + \sum_{\substack{i=1\\i\neq j}}^{R} \alpha_{ij} + \sum_{\substack{i=1\\i=1}}^{n} v_{ij} \geq 2$$
 $j = 1,2,..., R$

^{*} See Appendix B.

^{**} See Appendix B.

In the case of AND-OR design, inequality types 2 and 3 about input and cutput conditions for NOR design are still valid, but the other conditions modify to the five following new types of inequalities:

Type 13 - This is again a modification to inequality type 1 according to the types of gates, AND and OR. It states that each gate must have at least two inputs. In terms of inequalities:

$$\sum_{i=1}^{n} v_{ij} + \sum_{i=1}^{R} \alpha_{ij} + \sum_{i=1}^{n} \overline{v}_{ij} \ge 2 \qquad j = 1, 2, ..., R (13)$$

where \overline{v}_{ij} stands for the connection from a complemented variable \overline{x}_i to the gate G_j , as previously defined. This is necessary in AND-OR design since we need a complete set of logical functions to realize a general boolean function [13].

Type 14 - The triangular condition holds even if gate G_j interconnects to one or more gates different from G_k . This is formalized with the expression:

Type 15 - In the triangular condition of inequality type 14 gate G_i can be replaced by an external variable input, complemented or not, then:

$$2 \geq v_{ij} + v_{ik} + \alpha_{jk}$$

$$j = 1,2,..., R$$

$$k = 1,2,..., R$$

$$i = 1,2,..., R$$

$$i = 1,2,..., n$$

$$j \neq k$$

Type 16 - If gate G_{i} interconnects to gate G_{j} and the gates are of the same type(both are AND gates or OR gates), then G_{i} must have at least one more output interconnection:

For AND-OR design
$$\lambda_i = \begin{cases} 1 \text{ for an OR gate} \\ 0 \text{ for an AND gate} \end{cases}$$

Type 17 - In the network there must be at least one AND gate and at least one OR gate:

$$\begin{array}{ccc}
R \\
\Sigma \\
i=1
\end{array}$$

and
$$R-1 \geq \sum_{i=1}^{R} \lambda_i$$

The above types of inequalities, type 1 to type 17, are not the only ones that can be established for the logical design cases since some kinds of geometrical symetries and ordering between the gates can be exploited, in order to preclude certain network configurations from being generated during computation. However, only those seventeen types were used in the logical design by integer programming, in order to limit the number of additional inequalities to a reasonable size [1, 7, 8]. See table 1 for the inequalities tested in each design case in this work.

17				×
91				×
15				0
174				×
13				×
टा			×	
11			×	
10			×	
6			×	
8		X		
7		×		
9		×		
5	×	×	×	
7,	×	×	×	
ε,	×	X	×	0
2	×	×	×	×
Н	×			
inequality type design	* NOR	NOR-AND	NOR-NAND	AND-OR

Additional inequalities which apply and were checked for the logical design case. Table 1.

x signifies that the inequality type was checked.
O signifies that the inequality type applies but was not checked.
A blank signifies that the inequality does not apply to the design case.
* includes the case of the one-bit adder design.

For computational purposes two different programs were used: ILLIP (standing for ILLinois Integer Program) for the feed-forward formulation and ILLODIE-AIF (standing for ILlinois LOgical Design Implicit Enumeration using the All-interconnection Inequality Formulation) for the all interconnection formulation. Descriptions of the programs and programming manuals for them are available [5,9], and we will not discuss these programs here.

Computation was arranged in such a way that for every design case and almost all tested functions, the programs were run first with all additional inequalities included, and then with some types of additional inequalities removed. The types of inequalities which were eliminated varied with the different design cases. For some cases (see tables 8 and 9), additional inequalities were all removed for one of the runs, then the different types of inequalities were included individually or in different combinations on subsequent runs. This was done in those cases in which the results removing inequalities were not very conclusive and an additional test appeared to be necessary.

3. COMPUTATIONAL RESULTS AND CONCLUSIONS

For the following design cases we used functions taken from the literature as indicated in Appendix A. The number of functions used in each case was determined from the consideration of computer time cost, though the greater number of functions the more reliable the statistics would be.

- 3.1 NOR design
- 3.1.1 NOR design with all-interconnection formulation
 - A 14. in Appendix A shows the average computation times for five functions in each of the three tested design cases: with five, six, and seven NOR gates. The all-interconnection program was run first with all additional inequalities included, and then all combinations of additional inequalities were removed, one-by-one and in pairs.

The main purpose of these runs was to determine for the NOR design case if the effect of the additional inequalities when removed in pairs is additive or not.

As can be seen in table 2, the effect of removing inequalities is not additive; it can be observed, however, that
the effect of a specific type of inequality when removed alone
is in the same direction as when it is removed in combination
with some other type of inequality. For example, inequality
types 1 and 3 produce the largest execution time figures when
individually removed and then, when they are both simultaneously

case	5 gates				6 gates		7 gates		
Case	t	Ī	FO	t	Ī	FO	t	Ī	FO
All inequalities included	1.12	29	14	4.61	132	14	:34.60	869	122
All except type 1	1.29	40	16	4.77	128	14	37•72	982	119
All except type 2	1.12	29	14	4.37	132	14	33•94	869	122
All except type 3	1.25	36	19	5,20	163	15	41.50	1120	149
All except type 4	1.11	29	14	4.52	148	14	30.28	1081	122
All except type 5	1.06	29	14	4.24	132	14	32.60	869	122
All except types 1,2	1.39	40	16	4.75	128	14	37.69	982	119
All except types 1,3	1.54	47	19	5.42	172	15	44.45	1204	152
All except types 1,4	1.22	40	16	4.70	170	14	39•23	1214	119
All except types 1,5	1.22	40	16	4.41	128	14	34.69	982	119

Table 2. Three variable NOR design.

(All-interconnection formulation).

(Summary of Tables A 12., A 13., A 14. in Appendix A).

(continued)

case	5 gates			6 gates			7 gates		
	Ŧ	Ī	FO	ŧ	Ī	FO	t	Ī	FO
All except types 2,3	1.27	36	19	5.13	163	15	41.01	1120	149
All except types 2,4	1.10	29	14	4.32	148	14	36.28	1081	122
All except types 2,5	1.08	29	14	4.22	132	14	32.55	869	122
All except types 3,4	1.20	37	19	5.10	181	15	41.88	1376	150
All except types 3,5	1.22	37	19	4.93	163	15	38.49	1122	149
All except types 4,5	0.98	29	14	3 .9 7	148	14	32.25	1081	122
Maximum of the Averages	1.54	47	19	5.42	181	15	44.45	1376	152
Minimum of the Averages	0.98	29	14	3.97	128	14	32.25	869	119
Number of Functions Tested	5			5			5		

(continued from the previous page)

Table 2. Three variable NOR design.

(All-interconnection formulation).

(Summary of Tables A 12., A 13., A 14. in Appendix A).

removed, they produce the largest execution time of all tested combinations.

In a similar analysis, it can be observed that inequality types 4 and 5 show the smallest figures for
execution time in table 2, when they are individually
removed, and again their combination, when removed, produces
the smallest of all execution times, even smaller than that
of the case in which all inequality types were included.

b) Table 3., which is a summary of tables A 1., A 2., A 3. in Appendix A, shows the average computation time for almost all possible functions with three input variables in NOR designs with five gates, and for all the functions with three input variables in NOR design with six and seven gates.

After the non-additivity of the effect of the removal of different inequality types on the computation time was established, as shown in part a), only the removal of individual types of inequalities was considered.

In table 3., it is observed that the largest figures for the average of the execution time in the cases of five, six seven gates are given by the removal of inequality types 1, 3 and 3 respectively. The second to the largest time is produced by the removal of inequality types 3, 1 and 1, corresponding to the five, six and seven NOR gates design.

This implies that inequality types 1 and 3 are very effective in reducing execution time when they are present in the program.

	5 gates			6	gates		7 gates		
case	ŧ	Ī	FO	ŧ	Ī	FO	ŧ	Ī	FO
All inequalities included	0.97	29	12	5.30	157	32	32.92	821	100
All except type l	1.20	39	14	5.96	182	41	35.52	920	106
All except type 2	0.98	29	12	5.12	157	32	32.14	821	100
All except type 3	1.05	33	14	6.24	199	42	39.22	1052	131
All except type 4	0.93	29	12	5.20	179	35	34.52	1027	100
All except type 5	0.96	30	13	4.96	158	32	30.93	821	100
Maximum of the Averages	1.20	39	14	6.24	199	42	39.22	1052	131
Minimum of the Averages	0.93	29	12	4.96	157	32	30.93	821	100 .
Number of Functions Tested	Functions 22		15			6			

 \overline{t} : average computation time in seconds. \overline{I} : average of total number of Iterations for the solution.

average of number of iterations to obtain First Optimal solution.

Table 3. Three variable NOR design. (All-interconnection formulation). (summary of Tables Al., A2., and A3.).

It is also noticed in table 3 that both inequality types 1 and 3 appear to be more effective when the number of gates increases since the differences from the figures for the run in which all inequality types are included become larger as the number of gates is increased.

Inequality types 4 and 5 when removed from the program produce execution time figures which are the smallest for the 5 gate case while inequality type 2 produces almost no effect in computation time. It is observed, however, that when the number of gates increases inequality type 4 becomes more effective in reducing execution time, inequality type 5 instead produces an adverse effect when the number of gates increases but inequality type 2 remains ineffective.

These analyses lead us to conclude that inequality types 1 and 3 should always be included in the program if we want to obtain the minimum execution time. Inequality type 4 should be included for designs with more than 6 gates and inequality types 2 and 5 should be removed since they do not affect execution time (type 2) or affect the execution time adversely (type 5).

Let us check the NOR design with four input variables.

In observing table 4 it is noticed that inequality type 3

produces the largest time figures for all number of gates;

inequality type 1 is now less effective in reducing execution

time than in the case of three variables; and inequality types

2 and 5 have almost no affect on execution time especially for

	5	gates		6 gates			7 gates		
case	t	Ī	FO	ŧ	Ī	FO	t	I	FO
All inequalities included	2,22	42	13	31.32	636	42	117.17	2071	448
All except type l	2.66	54	16	39.88	814	42	119.42	2091	456
All except type 2	2.39	42	13	32.95	636	42	119.49	2071	448
All except type 3	2.68	53	16	44.5	972	81	159.38	2932	684
All except type 4	2.17	42	13	34.16	734	42	133.16	2587	448
All except type 5	2.28	42	13	29.66	636	42	120.70	2327	488
Maximum of the Averages	2.68	54	16	44.5	972	81	159.38	2587	684
Minimum of the Averages	2.17	42	13	29.66	636	42	117.17	2071	448
Number of Functions Tested		10			5			1	

 $\overline{\underline{t}}$: average computation time in seconds. $\overline{\underline{I}}$: average of total number of Iteration for the solution.

FO: average number of iterations to obtain First Optimal solution.

Table 4. Four variable NOR design. (All-interconnection formulation). (Summary of Tables A4., A 5., A 6.).

the case of seven gates. Inequality type 4 shows a similar behavior to the three variable design.

It should be noticed that for seven gates all inequality types are effective in reducing execution time. This tendency appears to show that when the number of gates and the number of variables increases the additional inequalities become more effective regarding execution time.

It can be concluded that inequality types 3 and 4 should always be included in the program if we want to obtain the minimum execution time, and inequality type 5 should be removed from the NOR design case with five and six gates, but probably should be included for designs with more than six gates. Unfortunately, fund limitations for computation time impeded testing of designs with eight or more gates (see [2]) to obtain reliable statistics to confirm the last assertion. Further research in this direction is desirable.

In table 5, results are shown for the design of a one-bit full adder with eight NOR gates. It can be observed here that removal of any type of additional inequalities decreases execution time with respect to the case in which all inequality types are included. This appears to show that additional inequalities, in this case, can be removed without increasing execution time. In fact, the name table shows the execution time drastically reduced for the case in which all additional inequalities were removed, in comparison to the case in which all the additional inequalities were included. In addition,

case	t	I	FO
All inequalities included	55.74	1029	16
All except type l	52.59	1049	16
All except type 2	51.76	1029	16
All except type 3	53.67	1029	16
All except type 4	41.58	1073	16
All except type 5	47.40	1029	16
All inequalities removed	36.64	1081	16
With type l onlv	37.20	1073	16
With type 2 only	35.65	1081	16
With type 3 only	36.16	1081	16
With type 4 only	49.31	1049	16
With type 5 only	40.32	1081	16
Maximum values	55.74	1081	16
Minimum values	35.65	1029	16

 $\frac{\overline{t}}{\underline{t}}$: time in seconds $\underline{\underline{t}}$: total number of iterations to obtain all solutions FO: number of iterations to obtain First Optimal Solution it should be noticed that when inequality types 1, 2, and 3 were individually added to the program, the difference with the case of all inequalities removed is very small (addition of inequality type 2 slightly reduces time but judging from the number of iterations, it could be due to timing accuracy of the computer), and that inequality types 4 and 5 produce the worst effect in execution time when included in the program.

- 3.1.1.1 Summary of conclusions for the NOR design with all interconnection formulation
 - the previous section, that the inequality type which has the best effect in reducing execution time for single output NOR networks with the all-interconnection formulation is type 3, in both three and four variables cases. It would also be desirable to include types 1 and 4, though they are not always as effective as type 3.
 - (ii) Inequality types 2 and 5 could be left out of the program, since they have adverse effect or marginal speed improvement. They might be, however, effective for five or more variables, or for eight or more gates.

Inequalities related to the triangular condition (i.e., types 4 and 5) probably because of the great number of additional inequalities generated, actually increase execution time in some cases. Then additional inequality types 4 and 5 should be removed for the case of five or less NOR gate design but apparently they should be included for cases

of six or more NOR gate designs according to the numerical results discussed above.

Table 6 summarizes the effect of additional inequalities for the NOR design with the all-interconnection formulation program.

	case	most effective types	marginally effective types	adversely effective types
е	5 gates	1,3	2	4,5
variable	6 gates	3,1	2	4,5
m	7 gates	3,1,4	2	5
Ψ.	5 gates	3,1,2	5	4
variable	6 gates	3,1,4	2	5
4	7 gates	3,4	1,2,5	
	one-bit ll adder			4,5,1,3,2

Table 6. Comparison of the effect of additional inequalities on NOR design with all-interconnection formulation.

3.1.2 NOR design with feed-forward formulation

- a) In the case of using the feed-forward formulation program for the NOR design case, table 7, which is a summary of tables A7. and A8. in Appendix A, shows that inequality types 5 and 1 in this order produce the largest execution times when removed from the program, while inequality types 3, 4 and 2, again in the given order, produce the smallest execution times when removed from the design program for five NOR gates. Similarly, in designs with 6 gates, inequality types 1 and 3 give the largest execution times and inequality types 4, 5 and 2 give the smallest ones. Unlike the NOR case with the all-interconnection formulations, all types are effective.
- b) In order to compare the effect on execution time from a different angle, a separate test for ten functions and five gate NOR design, with the feed-forward formulation program, was run (table A 9.). For this test, all additional inequalities were initially removed and then each inequality type was added. Results for this test, (see table 8), which is a summary of table A9. in Appendix A, proved the reduction of execution time given by inequality type 1, followed by inequality types 2, 5 and 3, decreasing in this order. Inequality type 4 appears to have little effect on the computation time.
- c) The results above were confirmed by an additional test, made on two of the functions, one for five NOR gates and one for six NOR gates, as shown in table 9. For this test, the

case	5 gates			6 gates		
Case	ŧ	Ī	FO	-t	Ī	FO
All inequalities included	4.26	118	35	62.16	1813	157
All except type l	5.16	168	53	122.20	4274	293
All except type 2	4.58	137	38	77.42	2158	191
All except type 3	4.48	131	41	78.96	2397	261
All except type 4	4.56	137	37	70.07	2007	222
All except type 5	5.80	171	44	73.04	1992	69
Maximum of the Averages	5.80	171	53	122.20	4274	293
Minimum of the Averages	4.26	118	35	62.16	1813	69
Number of functions tested		22			5	

 $\overline{\underline{t}}$: average computation time in seconds. $\overline{\underline{I}}$: average Total number of iterations for the solution.

FO: average of number of iterations to obtain First Optimal Solution.

Table 7. Three variable NOR design. (Feed-forward formulation). (Summary of Tables A.7. and A.8.)

case	 ŧ	Ī	FO
All inequalities removed	14.24	439	67
With type 1 only	7.44	249	49
With type 2 only	11.28	397	58
With type 3 only	13.69	457	113
With type 4 only	14.62	484	69
With type 5 only	11.61	399	154
Maximum of the Averages	14.62	484	154
Minimum of the Averages	7.44	249	58

Table 8. Three variable, five NOR gate design.
(Feed-forward formulation).
Adding inequalities one-by-one(Summary of Table A 9.)

case	5 gate NOR fun. 37[4]	6 gate NOR fun. 60[4]
All inequalities removed	14.73	219.84
With type 4 only	14.48	348.75
With types 4,1 only	7.83	-
With types 4,1,2 only	7.18	-
With types 4,1,2,3 only	5.80	-
With type l only	8.39	102.16
All inequalities included	3•72	54.67
Maximum time	14.73	348.75
Minimum time	3•72	54.67

- : case not tested.

Table 9. Three variable, NOR design. (Test cases for feed-forward formulation).

program was run with all additional inequalities removed first, then adding the other additional inequalities one-by-one in successive runs. In the case of the function for five gates, the weak effect of inequality type 4 on the execution time, and the strong effect of inequality type 4 when added to the program, can be observed. Notice that all inequalities proved to be effective in reducing execution time for that particular function.

For the six-gate function, in the same table (8) it can be observed that inequality type 4 had an adverse effect in execution time (more than 58% time increase). While inequality type 1 showed an improvement slightly above 53% in execution time over the case of all inequality types removed from the program.

Observing table A9., in Appendix A, it can be noticed, however, that inequality type 4 showed a weak effect on the computation time for all the functions tested. Inequality type 5, instead, produced a greater effect on the execution time, but this effect appears to depend mainly on the particular function tested. For most of the functions, however, the tendency was to decrease execution time.

We can conclude then, that for the NOR design using the feed-forward formulation all inequalities, except the triangular condition (type 4) appear to have an effect in reducing execution time. Since inequality type 4 showed a weak effect most of the time, and in some instances a strongly

adverse effect we are tempted to conclude that this inequality type should be removed from the feed-forward formulation program but again further research, especially for designs with more than five gates, is desirable to establish firmer conclusions in this respect.

Table 10 shows the effect the different inequality types have on execution time for the feed-forward formulation.

case	most effective	marginally effective	adversely effective
5 gates removing inequalities	5,1	2,4,3	
6 gates removing inequalities	1,3,2	5,4	
5 gates adding inequalities	1,2,5,3	14	
6 gates adding * inequalities	1		1,

^{*} This was incompletely tested and only one function was used.

Table 10. Comparison of the effect of additional inequalities on the NOR design with feed-forward formulation for three variable functions.

In observing Tables 6 and 10 for the NOR design with the all-interconnection and the feed-forward formulations, respectively, it is observed that inequality types 2 and 3 are always effective in reducing execution time, inequality type 4 has weak or adverse influence, in general, for both formulations, and, in contrast, inequality types 2, and 5 which showed almost no effect and a slightly adverse effect, respectively, for the all-interconnection formulation become more effective in the case of the feed-forward formulation. Then, and as a general rule, for NOR designs with allinterconnection formulation inequality types 1 and 3 should always appear in the program, inequality type 2 may or may not be removed without affecting execution time while inequality types 4 and 5 should be removed in designs with five or six gates but should probably be included in designs with seven or more gates.

For the feed-forward formulation, instead, all inequality types should be included in the program but more attention should be given to the inclusion of inequality types 4 and 5 in designs with more than five gates since their influence appears to be determined to a great extent by the individual functions.

3.2 NOR-AND design with all-interconnection formulation

For this design case, results shown in table 11, which is a summary of tables A 15 and A 16, demonstrated that removal of additional inequalities from the program does not produce additive effects on

		5 gates		6 gates			
case	ŧ	Ī	FO	t	Ī	FO	
All inequalities included	8.4	171	46	45.62	847	195	
All except type 6*	14.48	353	86	77.92	1530	270	
All except type 2	8.05	171	46	44.55	847	195	
All except type 3	10.02	202	52	57.80	1034	217	
All except type 4	7•83	172	46	45.58	886	196	
All except type 5	7•59	172	46	41.64	853	197	
All except type 7 **	7.73	177	48	42.98	897	210	
All except type 8 **	8.06	177	48	44.70	870	201	
All except types 2,6	14.05	353	86	77.52	1530	270	
All except types 3,6	15.74	383	97	90.40	1712	311	
All except types 4,6	13.66	355	86	75.90	1604	271	

Table 11. Three variable, NOR-AND design.

(All-interconnection formulation).

(Summary of Tables A 15. and A 16.)

(continued)

		5 gates		6 gates		
case	t	Ī	FO	t	Ī	FO
All except types 5,6	13.51	354	86	74.52	1550	272
All except types 7,6	13.76	357	87	76.60	1571	275
All except types 8,6	13.56	355	87	73.78	1550	271
All except types 2,3	10.80	202	52	58.8	1034	217
All except types 2,4	7.60	172	46	42.48	886	196
All except types 2,5	7.55	172	46	41.56	853	197
All except types 2,7	7•77	177	48	43.12	897	210
All except types 2,8	8.04	177	48	42.84	870	201
All except types 3,4	9.74	205	52	55.52	1085	219
All except types 3,5	9.63	203	52	56.68	1043	220
All except types 3,7	9.85	219	60	57.92	1152	250

(continued from previous page)

Table 11. Three variable, NOR-AND design.

(All-interconnection formulation).

(Summary of Tables A 15. and A 16.)

(continued)

		5 gates			6 gates	
case	t	Ī	FO	t	Ī	FO
All except types 3,8	9.76	210	54	54.82	1072	223
All except types 4,5	7•57	173	46	43.30	892	198
All except types 4,7	8.03	190	53	43.95	1000	221
All except types 4,8	7.66	178	48	42.22	909	202
All except types 5,7	7.50	177	48	41.54	903	212
All except types 5,8	7.58	179	48	40.96	882	204
All except types 7,8	7.50	183	51	41.58	934	221
Maximum of the Averages	15.74	383	97	90.40	1712	311
Minimum of the Averages	7.50	171	46	41.54	847	195
Number of Functions Tested		5			14	

(continued from the previous page)

* corresponds to type 1 in NOR design

** other triangular conditions

t : average computation time in seconds.

I : average of total number of Iterations for the solution.

FO: average of number of iterations to obtain First Optimal solution.

Table 11. Three variable, NOR-AND design. (All-interconnection formulation). (Summary of Tables A 15. and A 16.)

the execution time, but the effect of removing inequality types in pairs reinforces the results of removing inequality types individually in the same sense as in the NOR case.

It can be observed in table 11 that inequalities type 6 and type 3 produced the largest execution times when individually removed from the program, and that inequality types 5, 7 and 8 reduce the execution times when removed individually.

Conclusions for this case follow the same tendency as in the NOR design case with all-interconnection formulation, i.e. additional inequalities which restrict in some way the number of inputs or outputs to the gates (inequalities type 6 and type 3), have the greatest effect in reducing execution time when included in the program to solve the optimal design problem. Also additional inequalities related to the triangular condition (inequality types 5 and 7) produce the effect of increasing execution time when included in the program. Then inequality type 6 and 3 should always be included in the program and inequality types 5 and 7 should be removed from the program without an adverse effect in execution time. As inequality types 2, 4, and 8 do not produce a significant effect on executions time, they may or may not be removed from the program, without affecting the execution time in a significant way.

3.3 NOR-NAND design with all-interconnection formulation

For the ten functions tested in the NOR-NAND design case we observe
in table 12 (see table A 10 for details), that the largest figure
for average computation time is given by inequality type 12 followed
by those figures given by inequality types 3 and 4. Adverse effects

case	-t	Ī	FO	
All inequalities included	7•38	168	62	
All except type 9 *	7.15	168	62	
All except type 2	7.26	168	62	
All except type 3	10.00	228	88	
All except type 4	. 7•96	183	76	
All except type 5	7.20	169	66	
All except type 10 **	7.12	168	62	
All except type 11 **	6.86	168	62	
All except type 12 ***	12.68	292	125	
Maximum of the Averages	12.68	292	125	
Minimum of the Averages	6.86	168	62	
Number of Functions Tested	10			

corresponds to type 1 of NOR design.

other type of triangular condition.

*** unique for NOR-NAND design.

 $\overline{t}\,$: average computation time in seconds. $\overline{I}\,$: average of total number of iterations for the solution.

FO: average of number of iterations to obtain First Optimal Solution.

are produced by inequalities type 11, type 10 and type 9, while inequalities type 2 and type 5 have little effect on the computation time.

We can conclude that inequalities type 12, type 3 and type 4 should not be removed from the program while inequalities type 11, type 10 and type 9 should be removed from the program if speed-up in execution time is desired. The rest of the additional inequalities, inequality types 2 and 5 may be left in or taken out from the program without affecting the execution time.

3.4 AND-OR design with all-interconnection formulation

As it was shown in table 1 for this design case inequality types 3 and 15 were not tested and actually they were not included in the program at any time since storage requirements were too large to be justified at the moment the program was written and tested. addition, the authors of the program thought that these two types of inequalities were not very effective in reducing execution time. In all tested cases inequalities type 3 and type 15 are removed from the program. It should be noticed, observing table 13, that what happened in the NOR design case with the all-interconnection formulation appears to be reversed in the present case since now the elimination of the additional inequality related to the triangular condition, inequality type 14, produces the largest figure in execution This inequality, in turn, is followed by the execution time figures produced when inequalities type 16 and type 13 are removed. Almost no effect is produced when inequalities type 17 and type 2 are removed from the program.

case	ŧ	Ī	FO	
All inequalities included	37•90	589	57	
All except type 13*	57•77	893	62	
All except type 2	37•58	5,91	57	
All except type 14**	85.80	1663	108	
All except type 16***	61.89	1091	78	
All except type 17***	38.02	589	57	
Maximum of the Averages	85.80	1663	108	
Mi nimum of the Averages	37.58	589	57	
Number of Functions Tested	10			

^{*} corresponds to type 1.

 $\overline{\underline{t}}$: average computation time in seconds.

 $\overline{\overline{1}}$: average of total number of iterations for the solution. $\overline{F0}$: average of number of iterations to obtain First Optimal

solution.

Table 13. Four variable, five AND-OR gate design.

(All-interconnection formulation)

(Summary of table All.)

^{**} another triangular condition.

^{***} unique for AND-OR design.

All of this implies that inequality types 14, 16 and 13 should be included in the program in order to obtain the shortest execution times, and inequality types 2 and 17 may mor may not be removed from the program without significantly affecting the execution time for the design of five AND or OR gate networks with the all-interconnection formulation program.

Since, in this case, and the NOR-NAND case, only five gate functions were used, it is suggested that more research should be done using functions which are implemented with a larger number of gates to obtain enough information that would permit more general and fundamented conclusions.

Table 14. shows the effect of additional inequalities for the last three design cases discussed.

case	most effective	marginally effective	adversely effective
NOR-AND	6,3	2,4,8	5,7
NOR-NAND	12,3,4	2,5	11,10,9
AND-OR	14,16,13	17,2	

Table 14. Comparison of the effect of additional inequalities on NOR-AND, NOR-NAND, and AND-OR, designs with the all-interconnection formulation for three variable functions.

3.5 Overall Conclusion

Tables 6, 10 and 14 show the effects of additional inequalities on the execution time for the design cases of interest in this paper.

Observation of those tables lead us to conclude that in general: 1) The most effective types of inequalities in terms of reduction of execution time are:

- a) those which are concerned with the number of connections and interconnections permitted to the gates, such as type 1 for NOR design and its corresponding types in other design cases: type 6 for NOR-AND design, type 13 for AND-OR (but notice the exception of type 9 for NOR_NAND design), and
- b) those inequalities which prohibit certain types of output interconnections as inequality type 3 in the cases in which this type was tested. In this group can also be classified inequality type 12, applicable to the NOR-NAND design.
- 2) Inequalities which consistently show weak or almost negligible effect on the computation time are those corresponding to type 2 with the exception of the feed-forward formulation for NOR design;
- by inequalities related to the triangular condition
 with the exceptions of some cases in the feed-forward
 formulation for NOR design and for the AND-OR design
 with the all-interconnection formulation.

These conclusions show only the apparent tendency of the effect of the inequality types on the computation time for different cases of logical design. In a specific case it is recommended to refer to tables 6, 10 or 14, whichever corresponds, and to the adjoining conclusions to establish in a more proper way which inequality types should be included, or which should be excluded from the programs to obtain improvement of execution time.

LIST OF REFERENCES

- [1] Baugh, C. R., T. Ibaraki, T. K. Liu, and S. Muroga, "Optimum Network Design Using NOR and NOR-AND Gates by Integer Programming," Report No. 293, Department of Computer Science, University of Illinois, January, 1969.
- [2] Culliney, J. N., "On the Synthesis by Integer Programming of Optimal NOR Gate Networks for Four Variable Switching Functions," Report No. 480, Department of Computer Science, University of Illinois, September, 1971.
- [3] Culliney, J. N., personal communication.
- [4] Hellerman, L., "A Catalog of Three-Variable OR-Invert and AND-Invert Logical Circuits," IEEETEC, Vol. EC-12, No. 3, pp. 198-223, June, 1963.
- [5] Hohulin, K., "A Code for Solving Network Synthesis Problems by Implicit Enumeration Using the All-Interconnection Inequality Formulation,"

 Master Thesis, to be published as a report of the Department of Computer Science, University of Illinois.
- [6] Ibaraki, T., T. K. Liu, C. R. Baugh, and S. Muroga, "Implicit Enumeration Program for Zero-One Integer Programming," Report No. 305, Department of Computer Science, University of Illinois, January, 1969. Also in International Journal of Computer and Information Sciences, March, 1972, pp. 75-92.
- [7] Ibaraki, T., T. K. Liu, D. Djachan, and S. Muroga, "Optimal Networks by NOR-NAND Gates," Department of Computer Science, University of Illinois, Report No. 427, January, 1971.
- [8] Liu, T. K., K. Hohulin, L. E. Shiau, S. Muroga, "Optimal One-bit Full Adders with Different Types of Gates," to be published in IEEETC.
- [9] Liu, T. K., "A Code for Zero-One Integer Linear Programming by Implicit Enumeration," Master Thesis, Department of Computer Science, University of Illinois, 1968. Printed as report, No. 302, Department of Computer Science, University of Illinois, December, 1968.
- [10] Muroga, S., "Logical Design of Optimal Digital Networks by Integer Programming," in Advances in Information Systems Science, Vol. 3, J. T. Tou, Ed. Plenum Press, New York, 1970, pp. 283-348.
- [11] Muroga, S. and T. Ibaraki, "Design of Optimal Switching Networks by Integer Programming," <u>IEEETC</u>, June, 1972, pp. 573-582.
- [12] Muroga, S. and T. Ibaraki, "Logical Design of an Optimum Network by Integer Linear Programming, Part I," Report No. 264, Department of Computer Science, University of Illinois, July, 1968.

- [13] Muroga, S. and T. Ibaraki, "Logical Design of an Optimum Network by Integer Programming, Part II, "Report No. 289, Department of Computer Science, University of Illinois, December, 1968.
- [14] Muroga, S., CS 391 Course Notes. University of Illinois, Fall, 1970.
- [15] Muroga, S., Threshold Logic and its Applications, John Wiley and Sons, 1971.

APPENDIX A

TABLES OF DETAILED COMPUTATIONAL RESULTS

The following tables show the results for each function used in the different design cases, the tables include: an identification number for the function, taken from the literature as given below; execution time in seconds (t), total number of iterations to exhaust all possible optimal networks (I), and the number of iterations until the first optimal solution is generated (FO), for each of the computer runs made.

At the end of each table the averages for the three numerical values for each run are presented, but for the number of iterations (I and FO) we took the smallest integer greater or equal to the corresponding average.

The functions were taken from the literature as follows:

For NOR design, three variable case from [4],

For NOR-NAND design from [7],

For AND-OR design case and four variable NOR design case from [2 and 3]

For NOR-AND design from [1] ,and

For the one-bit full adder design case from [8].

pt	FO	9	75	17	검	15	16	11	0	0	19	17	7
1 except type 5	Н	18	70	89	77	32	36	77	32	33	30	56	18
A11 t,	4	0.73	1.23	1.93	0.59	1.01	0.99	0.61	16.0	96.0	1.03	0.88	69.0
except e 4	FO	9	12	17	12	15	16	7	6	6	19	17	
	H	18	36	68	14	32	. 36	17†	32	33	30	26	18
A11	42	69.0	1.03	1.89	0.59	96.0	1.03	0.56	0.89	1.04	0.99	0.81	0.63
except e 3	FO	10	7,7	17	1,4	18	17	13	6	0	22	17	7
] 2	Н	54	04	89	22	37	37	18	32	37	34	56	18
A11 t;	4	0.79	1.24	1.89	92.0	1.13	1.14	179.0	0.99	1.18	1.14	0.89	0.83
ept -	P.O	V	12	17	12	15	16	11	6	6	19	17	7
l except type 2	Н	18	36	89	174	SK.	36	17	32	33	30	26	18
A11 t ₁	ct.	0.73	1.13	1.84	0.68	1.08	1.04	0.59	1.11	1.06	1.04	0.89	0.73
ept 1	FO	6	12	17	12	15	91	11	6	0,	33	39	7
exc be	I	34	48	70	14	33	43	14	50	33	44	84	20
All	t	1.06	1.28	2.02	0.71	1.16	1.29	0.68	1.43	1.21	1.51	1.39	0.71
മ	FO	9	12	17	12	15	16	11	0	6	19	17	7
All inequalities included	I	18	36	89	174	32	36	14	32	33	30	26	18
	t	47.0	1.11	1.91	99.0	1.03	1.04	0.61	96.0	1.06	1.09	0.88	99.0
FUnctions numbered	after[4]	36	22	27	29	30	31	28	33	50	710	147	48

(All-interconnection formulation). Three variable, five NOR gate design. Table Al.

											,	
ept 5	FO	7	10	ω	ω	1	8	8	25	∞	19	13
l except type 5	Ι	26	20	36	28	54	22	28	30	23	Ľή	30
A:1 ty	4	0.79	47.0	1.09	0.83	0.73	0.81	1.14	1.03	98.0	1.44	96.0
ept 4	FO	2	10	∞	ω	11	8	8	25	80	19	21
ехс	H	56	20	30	28	24	22	28	30	23	147	29
A11 t,	4	0.81	0.69	0.89	0.81	0.68	0.83	1.27	1.03	0.91	1.51	0.93
except e 3	FO	7	10	8	8	11	ω	8	147	8	28	14
	H	56	54	30	28	28	22	28	148	27	55	33
A11 t _i	, ,	47.0	0.78	1.11	0.91	0.73	0.88	1.16	1.58	96.0	1.69	1.05
except e 2	FO	7	10	8	8	11	œ	∞	25	œ	19	건
욹	Н	26	20	30	28	24	22	28	30	23	41	29
All	t,	0.88	0.73	0.93	0.88	0.78	0.79	1.21	1.06	0.88	1.68	0.98
ept L	FO	7	10	8	8	11	80	8	35	8	19	174
l except type l	Т	746	20	64	740	54	710	33	50	23	51	39
A1.1 t;	t)	1.46	0.69	1.66	1.09	0.73	1.19	1.24	1.39	0.88	1.76	1.20
i des	FO	7	10	8	ω	11	8	8	25	8	19	टा
All inequalities included	Н	56	20	30	28	54	22	28	30	23	41	59
	4	0.83	0.73	0.93	0.89	0.73	0.89	1.28	1.09	0.86	1.48	0.97
Functions	after[4]	34	77.71	35	12D	51	37	56	75	64	39	averages

Table Al. Three variable, five NOR gate design. (All-interconnection formulation).

(continued from previous page)

ept	10	0.H	30	20	6	32	35	17	56	711	52	
- except	type 5	Н	253	160	173	143	218	57	103	202	222	
All	+	t)	7.08	5.02	5.40	4.32	7.20	2.14	3.29	6.82	6.90	
ot.		FO	30	20	6	32	35	17	26	151	52	
All except	type 4	Н	297	168	185	157	292	57	107	282	248	
A11	tz	4	7.60	4.92	5.44	45.4	7.40	2.06	3.31	8.13	7.13	
ot		FO	30	29	김	η1	38	17	56	183	29	
All except	type 3	Н	293	258	215	197	268	29	107	276	262	
All	ٔ بُ	τħ	8.65	7.55	7.18	5.80	8.65	2.46	3.56	8.75	8.25	
pt		FO	30	20	6	32	35	17	56	711	52	
except	type 2	Ι	253	160	173	143	218	57	103	202	222	
All	ţ		7.22	5.35	59.5	4.37	7.27	2.31	3.42	6.87	7.10	
)t		FO	30	20	10	32	38	17	56	195	83	
All except	type 1	Ι	261	170	189	199	260	63	111	284	268	
All	ty	ψ.	7.38	7.37	5.99	6.15	8.17	2.47	3.69	9.35	8.55	
ŭ d	מ	FO	30	20	6	32	35	17	56	711	52	
A11	included	}1	253	160	173	143	218	57	103	202	222	
	inc	حب	7.33	5.32	5.70	4.50	7.73	2.44	3.59	6.98	7.10	
Functions	numbered	after[4]	58	59	61	. 55	09	49	54	89	56	

Table A2. Three variable, six NOR gate design. (All-interconnection formulation.)

(continued)

pt 5	FO	74	11	11	11	П	22	32
All except type 5	Н	178	85	216	63	184	109	158
A1.	-t-	5.00	2.71	6.32	2.82	5.76	3.61	96.4
ept 4	FO	74	11	11	11	11	22	35
All except type 4	Н	172	85	254	63	526	109	179
Al	ф.	5.25	2.75	6.87	2.64	6.80	3.54	5.20
ept 3	FO	104	11	11	11	11	28	742
All except type 3	Н	220	89	259	71	236	157	199
Al	பு	6.80	2.91	7.82	2.96	7.22	5.09	6.24
pt	FO	74	11	11	11	11	22	32
l except type 2	Н	158	85	216	63	184	109	157
A11	-t2	5.40	2.85	6.48	2.75	5.98	3.79	5.12
)t	FO	98	11	11	11	11	22	41
l except type l	H	190	95	241	77	208	117	182
All	t)	6.53	3.24	6.97	3.07	6.47	4.11	5.96
ies d	FO	74	11	11	11	Ħ	22	32
All inequalities included	⊢	158	85	216	63	184	109	157
	+2	5.77	3.09	6.93	2.77	6.25	4.02	5.30
Functions	after[4]	69	53	57	67	99	63	averages

Table A2. Three variable, six NOR gate design. (All-interconnection formulation.)

(continued from the previous page

				,		,		
Functions numbered after [4]		76	72	77	73	80	79	averages
All	t	19.56	42.38	34.24	36.35	40.51	24.46	32.92
inequalities	Ī	473	1 065	869	953	983	582	821
included	FO	274	17	182	51	33	38	100
All	t	19.43	46.64	39.02	37·3 ⁴	46.16	24.57	35.52
except	I	495	1215	1015	1017	1167	608	920
type 1	FO	288	17	202	55	33	38	106
All	t	19.00	42.18	34.14	35.04	39-33	23.14	32.14
except	I	473	1065	869	953	983	582	821
type 2	FO	274	17	182	51	33	38	100
All	t	25.48	52.58	38.30	40.20	50.96	27.77	39.22
except	I	668	1400	1042	1100	1388	712	1052
type 3	FO	421	23	208	53	37	43	131
All	t	17.73	42.36	36.19	38.30	46.82	25.77	34.52
except	I	501	1235	1087	1237	1345	754	1027
type 4	FO	274	17	182	51	33	38	100
All	t	17.92	40.80	33.13	33.01	38.15	22.57	30.93
except	I	473	1065	869	953	983	582	821
type 5	FO	274	17	182	51	33	38	100

Table A3. Three variable, seven NOR gate design. (All-interconnection formulation).

		•										
pt	FO	21	7	8	32	17	6	7	9	10	6	13
l except type 5	I	38	टर्भ	54	179	38	25	36	₹8	04	ተተ	갱
All	4	21.2	1.89	2.69	3.06	2.54	1.51	1.93	2.29	2.31	2,41	2.28
pt	FO	21	11	8	32	17	6	L	9	10	6	13
l except	Н	38	742	54	49	38	25	36	34	710	44	742
All	4	2.06	1.89	2.66	2.96	2.32	1.41	1.88	1.94	2.06	2.56	2.17
pt	FO	27	75	6	32	19	10	감	6	18	72	16
l except type 3	П	50	44	56	49	84	35	91	50	99	62	53
A11 t;	44	2.59	2.44	3.07	3.47	2.66	1.93	2.37	2.27	2.92	3.05	2.68
ept.	FO	21	디	8	32	17	6	7	9	10	6	13
l except type 2	Н	38	142	54	64	38	25	36	34	70	44	775
A11 ty	ct.	2.11	2.17	2.84	3.06	2.59	1.56	2.36	2.22	2.36	2.66	2.39
ot	FO	43	11	8	36	17	6	7	6.	10	6	16
l except type l	I	60	99	58	68	38	25	7,2	94	68	62	54
All	ct.	2.91	2.94	2.76	3.11	2.41	1.49	2.10	2.29	3.31	3.26	2.66
i d	FO	21	11	80	32	17	6	7	9	10	6	13
All inequalities included	, H	38	742	54	64	38	25	36	34	740	44	742
	4	2.06	2.03	2.66	3.04	2.39	1.46	1.96	1.93	2.19	2.56	2.22
Functions	after[3]	28AF	SAEA	2000	6AAA	8183	889F	008B	OOEF	OLAF	08BF	averages

Table A4. Four variable, five NOR gate design. (all-interconnection formulation).

Functions numbered after [3]		OllF	0255	OBD1	OFFL	бвгг	averages
All	t	37.04	37.98	20.10	22.13	39•38	31.32
inequalities	I	658	757	385	454	926	636
included	FO	13	136	14	12	34	42
All	t	56.32	53.23	22.09	25.09	42.68	39.88
except	I	1014	1077	447	520	1008	814
type 1	FO	13	136	14	12	34	42
All	t	40.35	40.68	20.43	23.07	40.23	32.95
except	I	658	757	385	454	926	636
type 2	FO	13	136	14	12	34	42
All	t	64.48	57.15	22.46	25.00	53.43	44.50
except	I	1412	1181	453	528	1282	972
type 3	FO	15	318	18	12	38	81
All	t	40.01	40.81	20.81	24.96	44.24	34.16
except	I	718	881	433	540	1094	734
type 4	FO	13	136	14	12	34	42
All	t	37.05	36.02	17.85	20.93	36.47	29.66
except	I	658	757	385	454	926	636
type 5	FO	13	136	14	12	34	42

Table A5. Four variable, six NOR gate design. (All-interconnection (formulation).

Function numbered after [3]	8228
All	t	117.17
inequalities	I	2071
included	FO	448
All	t	119.42
except	I	2091
type l	FO	456
All	t	119.49
except	I	2071
type 2	FO	448
All	t	159.38
except	I	2932
type 3	FO	684
All	t	133.16
except	I	2587
type 4	FO	448
All	t	120.70
except	I	2327
type 5	FO	488

Table A6. Four variable, seven NOR gate design. (All-interconnection formulation).

pt		FO	23	41	15	5	11	65	39	27	54	87	23	148
exc	cype 5	I	147	7.1	93	61	197	319	145	131	115	95	111	111
A31	Þ	4	5.85	2.68	4.13	2.78	6.93	10.59	η,68	5.10	4.18	4.35	4.28	4.15
pt		FO	16	43	10	7	6	25	07	91	901	18	18	128
All except	ເype 4	Н	107	157	76	93	117	139	167	107	131	105	111	157
Al	ي ک	ψ	4.08	4.68	3.82	3.63	5.51	5.03	4.%	3.87	4.45	3.60	3.80	4.78
pt		F)	18	61	13	7	11	38	68	20	88	23	22	88
e xc	C adra	H	103	133	7.6	76	119	147	129	103	109	107	115	113
A11	3	4	4.15	3.61	3.82	3.50	5.38	5.46	4.28	4.08	4.18	4.05	3,92	4.33
pt		FO	15	29	=======================================	9	10	28	70	15	74	17	17	78
All except	- 1	Н	91	131	83	71	133	157	133	87	93	91	95.	76
A.		υ	3.63	3.97	3.60	3.03	5.65	5.18	94.4	3.23	3.73	3.30	3,30	3.80
ept	1	FO	18	167	72	7	11	29	128	18	118	20	20	176
All except		Ι	131	207	119	167	143	195	175	127	137	133	135	203
A		t	4.75	5.83	4.26	5.16	5.76	6.26	5.40	4.80	799.4	4.73	4.78	5.61
اء ت		FO	14	61	11	7	10	21	66	14	82	16	16	98
All inequalities	included	Н	91	133	89	93	109	121	127	89	103	93	101	111
	in	4	3.78	3.73	3.98	3.80	5.11	4.71	4.66	3.73	4.00	3.67	3.75	4.23
Function		after[4]	37	56	42	641	39	32	27	36	29	30	31	28

Table A7. Three variable, five NOR gate design. (Feed-forward formulation).

									·			
) t	FO	25	10	70	됐	ω	135	64	22.1	45	11	∄
All except type 5	(m)	119	68	281	137	81	343	169	619	113	207	171
LAII	42	4.75	2.97	8.52	4.28	3.10	10.82	6.18	16.91	4.41	90.9	5.80
)t	FO	18	검	127	50	37	31	21	31	18	13	37
All except type 4	Н	115	7117	131	107	139	207	145	287	121	151	137
All ty	ф	3.73	3.65	00.9	3.37	4.48	5.95	4.%	7.58	3.97	4.63	4.56
ot	F0	20	임	136	1 79	04	70	148	36	25	12	147
Alllexcept type 3	I	113	721	149	107	119	221	143	243	139	137	131
All t ₃	4	3.90	3.87	6.53	3.22	3.71	6.33	4.61	6.73	4.50	4.33	4.48
4	FO	17	11	119	72	52	91	19	44	17	75	38
All except type 2	H	66	95	147	107	131	253	149	163	95	201	137
A11 ty	t	3.35	3.27	6.38	3.45	3.98	60.7	5.13	11.97	3.28	6.10	4.58
pt	P 0	20	16	116	7.1	57	35	39	35	20	12	53
£ 11 except type 1	Н	137	195	131	131	215	211	171	311	139	147	168
B	t,	4.53	5.40	5.60	3.87	5.30	5.40	4.95	7.44	4.63	4.41	5.16
S	균0	16	12	112	56	710	28	1414	28	16	12	35
All inequalities included	I	101	121	125	66	119	181	133	213	115	127	118
inequi	t)	3.80	3.95	6.21	3.28	3.82	5.30	4.53	5.90	3.72	3.98	1.26
Functions numbered	after[4]	33	50	70	74	84	34	44	35	12D	51	everages

(continued from previous page)

Table A7. Three variable, five NOR gate design. (Feed-forwaed formulation).

Functions numbered after	r[4]	58	59	61	55	60	averages
All	t	63.17	66.60	63.23	63.12	54.67	62.16
inequalities	I	1847	1783	1951	1823	1661	1813
included	FO	99	162	152	208	162	157
All	t	99.16	113.91	165.84	122.43	109.70	122.20
except	Ι	3285	3671	6403	4261	3749	4274
type 1	FO	199	265	351	446	304	293
All	t	76.80	75.48	77.45	91.31	66.10	77.42
except	I	2269	1939	2101	2569	1911	2158
type 2	FO	105	168	265	241	172	191
A11	t	71.44	84.95	95•95	70.86	71.62	78.96
except	I	2121	2425	3017	2141	2281	2397
type 3	FO	126	339	230	267	339	261
All	t	74.80	72.34	69•53	69•36	64.34	70.07
except	I	2247	1937	2055	1885	1907	2007
type 4	FO	61	196	170	472	210	222
All	t	97•25	83.42	64.55	43.15	76.83	73.04
except	I	2777	2267	1517	1205	2193	1992
type 5	FO	43	46	44	51	160	69

Table A8. Three variable , six NOR gate design. (Feed-forward formulation).

Functions numbered after	·[4]	48	43	47	40	28
All	t	14.33	10.42	14.32	25.90	13.40
inequalities	I	479	349	499	1015	441
removed	FO	12	14	21	1 65	158
With	t	4.31	5.41	6.93	17.99	4.85
type 1	I	123	155	249	735	137
only	FO	12	14	17	159	62
With	t	10.24	8.32	10.90	21.19	9•99
type 2	I	345	269	389	875	321
only	FO	12	14	21	114	134
With	t	14.02	10.65	14.37	21.89	13.20
type 3	I	475	345	493	779	441
only	FO	8	10	19	87	158
With	t	13.92	11.57	14.15	29.03	12.75
type 4	I	473	341	477	1151	411
only	FO	8	10	19	217	150
With	t	16.41	10.95	7.11	11.00	15.31
type 5	I	669	403	265	327	555
only	FO	176	43	93	279	349

Table A9. Three variable five NOR gate design.
(Feed-forward formulation).
(Adding inequalities one-by-one).
(continued)

Functions numbered after		29	27	39	42	37	averages
All.	t	10.06	10.31	17.74	11.05	14.90	14.24
inequalities	I	317	345	609	339	491	489
removed	FO	125	95	11.	24	45	67
With	t	5.18	5.28	10.24	5.85	8.39	7.44
type 1	I	151	169	151	161	255	249
only	FO	76	45	11	19	33	49
With	t	8.14	8.19	14.30	9.01	12.50	11.28
type 2	I	261	273	497	275	413	397
only	FO	117	87	11	24	45	58
With	t	9•57	10.22	17.03	10.97	15.01	13.69
type 3	I	309	341	569	333	483	457
only	FO	119	95	10	20	39	113
With	t	9.69	10.37	18.29	11.74	14.70	14.62
type 4	I	297	319	561	333	469	484
only	FO	115	96	11	20	37	69
With	t	11.67	17.14	8.99	8.61	8.91	11.61
type 5	I	399	555	291	249	2 69	399
only	FO	227	286	17	35	35	154

Table A9. Three variable, five NOR gate design.

(Feed-forward formulation).

(Adding inequalities one-by-one).

pt	FO	23	8	53	37	15	ננו	35	143	09	56	99
1 except	н	343	134	139	156	135	144	91	162	211	170	169
All	4	12.48	5.95	6.43	92.9	6.74	6.46	5.08	7.16	8.06	96.9	7.20
pt	FO	23	114	53	59	15	133	35	167	80	92	92
1 except	Ι	359	158	139	182	135	166	91	186	229	184	183
LLA t3	ct.	13.57	6.93	42.9	8.03	7.39	7.46	5.16	8.23	8.56	7.54	<i>7.9</i> €
pt	FO	23	147	67	143	17	147	78	210	83	83	83
l except	I	417	199	195	207	191	189	141	235	290	215	228
All	44	16.08	8.84	8.81	9.40	9.06	8.77	6.64	10.65	11.90	9.85	10.00
يه	FO	23	96	53	37	15	109	35	141	60	56	62
l except type 2	н	341	134	139	156	135	142	91	160	209	164	158
ALL	ىد	12.87	6.06	6.46	7.33	6.89	44.9	4.88	7.23	7.81	99.9	7.26
pt	FO	23	96	53	37	15	109	35	141	60	56	62
Ll except type 9	Н	341	134	139	156	135	142	91	160	209	164	168
All	t)	12.87	9.9	6.36	6.91	6.78	6.34	4.81	7.04	7.58	6.74	7.15
ites	FO	23	S	53	37	15	109	35	141	99	56	62
All inequalities included	Н	341	134	139	156	135	11/12	17	160	20)	164	168
ine	t)	12.95	6.18	6.53	6.99	6.93	6.78	5.10	7.48	7.95	46.9	7.38
Functions	after[7]	56	32	30	31	27	40	28	34	38	54	averages

Table AlO, Three variable, five NOR-NAMD gate design. (All-interconnection formulation). (continued)

									,					7
pt		FO	25	213	101	101	35	961	29	575	21.2	ħΖΙ	125	
except	type 12	Ι	541	269	245	285	259	245	173	303	321	273	292	
A11	tì	t	21.15	11.55	11.74	12.47	12.50	11.24	8.77	13.38	12.48	11.55	12.68	
pt		F0	23	96	53	37	15	109	35	141	09	56	62	
L except	type 11	I	341	134	139	156	135	142	91	160	209	164	168	
TTV	+	t	12.70	91.9	6.26	6.51	1 41•9	5.91	4,51	6.58	դ շ •Հ	6.29	98.9	nage)
pt		면	23	90	53	37	15	109	35	141	ò 9	95	62	previous.
- except	type 10	Н	341	134	139	156	135	142	91	160	209	164	158	the pre
A11	Ŧ	ىد	13.02	6.10	64.9	6.89	6.54	91.9	4.73	6.99	1.64	6.61	7.12	from t
Functions	numbered	after 7	56	32	30	31	27	04	28	34	38	24	averages	(continued

(continued from the previous page)

Table AlO. Three variable, five NOR-NAND gate design.

(All-interconnection formulation).

Functions numbered afte	r 2	42	41	40	39	38
All	t	37.40	34.73	36.78	35.11	31.16
inequalities	I	583	573	573	519	507
included	FO	49	36	24	1 5	12
All	t	56.83	55•57	51.76	52.67	47.41
except	I	843	879	793	807	733
type 13	FO	49	36	24	1 5	12
All	t	37.51	36 .0 6	35•38	32.55	32.69
except	I	583	573	573	519	507
type 2	FO	49	36	24	1 5	12
All	t	86.15	79•78	84.22	74.10	75.43
except	I	1671	1569	1619	1 459	1 453
type 14	FO	71	40	32	17	14
All	t	60.61	57.61	61.36	58.20	56.58
except	I	1091	1065	1 075	1007	1019
type 16	FO	57	38	28	17	14
All	t	38.04	36.25	36.56	33.80	32.67
except	I	583	573	573	519	507
type 17	FO	49	3 6	24	1 5	12

Table All. Four variable, five AND-OR gate design. (All-interconnection formulation).

(continued)

Functions numbered afte		36	29	24	23	17	averages
All	t	37.93	39•99	57•13	41.75	26.98	37.90
inequalities	I	591	627	891	629	395	589
included	FO	40	80	89	8	216	57
All	t	58.64	60.74	94.99	69.96	29.17	57.77
except	I	917	947	1463	1099	441	893
type 13	FO	40	82	91	8	262	62
All	t	38.84	38.68	56.40	39.28	28.39	37.58
except	I	591	627	897	635	399	591
type 2	FO	40	80	89	8	216	57
All	t	82.82	88.56	131.29	99.18	56.50	85.80
except	I	1611	1771	2605	1935	935	1663
type 14	FO	56	180	153	10	507	108
All	t	61.97	62.21	83.52	64.93	51.94	61.89
except	I	1071	1113	1479	1087	895	1091
type 16	FO	46	98	97	10	371	78
All	t	37•33	38.96	59•14	40.31	27.19	38.02
except	I	591	627	891	629	395	589
type 17	FO	40	80	89	8	216	57

Table All. Four variable, five AND-OR gate design. (All-interconnection formulation).

Functions numbered after	[4]	37	26	142	49	39	averages
All	t	0.89	1.28	1.09	0.86	1.48	1.12
inequalities	I	22	28	30	23	41	29
included	FO	8	8	25	8	19	1.7+
All	t	1.19	1.24	1.39	0.88	1.76	1.29
except	I	40	33	50	23	51	40
type l	FO	8	8	35	8	19	16
All	t	0.79	1.21	1.06	0.88	1.68	1.12
except	I	22	28	30	23	41	29
type 2	FO	8	8	25	8	19	14
All	t	0.88	1.16	1.58	0.98	1.69	1.20
except	I	22	28	48	27	55	3·;
type 3	FO	8	8	41	8	28	19
All	t	0.83	1.27	1.03	0.91	1.51	1.11
except	Ι	22	28	30	23	41	29
type 4	FO	8	8	25	8	19	14
All	t	0.81	1.14	1.03	0.86	1.44	1.06
except	I	22	28	3C	23	41	29
type 5	FO	8	8	25	8	19	14

Table Al?. Three variable, five NOR gate design.

(All-interconnection formulation.)

'continued)

Functions numbered after	·[4]	37	26	42	49	39	averages
All	t	1.29	1.38	1.46	1.03	1.79	1.39
except	I	40	33	50	23	51	40
types 1,2	FO	8	8	35	8	19	16
A11	t	1.36	1.31	1.98	1.06	2.01	1.54
except	I	40	33	62	31	69	47
types 1,3	FO	8	8	41	8	28	19
All	t	1.11	1.19	1.31	0.88	1.63	1.22
except	I	40	33	50	23	51	40
types 1,4	FO	8	8	35	8	19	16
All	t	1.09	1.18	1.31	0.88	1.66	1.22
except	I	40	33	50	23	51	40
types 1,5	FO	8	8	35	8	19	16
All	t	0.86	1.19	1.63	0.96	1.73	1.27
except	I	22	28	48	27	55	36
types 2,3	FO	8	8	41	8	28	19
411	t	0.87	1.19	1.11	0.88	1.49	1.10
except	I	22	28	30	23	41	29
types 2,4	FO	8	8	25	8	19	14

Table Al2. Three variable, five NOR gate design.

(All-interconnection formulation.)

(continued)

Functions numbered after	-[4]	37	26	42	49	39	averages
All	t	0.82	1.18	1.01	0.84	1.53	1.08
except	I	22	28	30	23	41	29
types 2,5	FO	8	8	25	8	19	14
All	t	0.78	1.16	1.54	0.96	1.56	1.20
except	I	22	28	50	29	55	37
types 3,4	FO	8	8	41	8	28	19
All	t	0.83	1.11	1.59	0.88	1.71	1.22
except	I	22	28	48	27	57	37
types 3,5	FO	8	8	41	8	28	19
All	t	0.78	1.04	0.94	0.81	1.33	0.98
except	I	22	28	30	23	41	29
types 4,5	FO	8	8	25	8	19	14

Table Al2. Three variable, five NOR gate design.

(All-interconnection formulation.)

Functions numbered after	r[4]	53	57	67	66	63	averages
All	t	3.09	6.93	2.77	6.25	4.02	4.61
inequalities	I	85	216	63	184	109	132
included	FO	11	11	11	11.	22	14
All	t	3.24	6.97	3.07	6.47	4.11	4.77
except	I	95	241	77	208	117	128
type 1	FO	11	11	11	11	22	14
All	t	2.85	6.48	2.75	5.98	3•79	4.37
except	I	85	216	63	184	109	132
type 2	FO	11	11	11	11	2 2	14
All	t	2.91	7.82	2.96	7.22	5.09	5.20
except	I	89	259	71	236	157	163
type 3	FO	11.	11	11	11	28	15
All	t	2.75	6.87	2.64	6.80	3.54	4.52
except	Ι	85	254	63	226	109	148
type 4	FO	11	11	11	11.	22	14
All	t	2.71	6.32	2.82	5•76	3.61	4.24
except	Ι	85	216	63	184	109	132
type 5	FO	11	11	11	11	22	14

Table Al3. Three variable, six NOR gate design.

(All-interconnection formulation.)

(continued)

Functions numbered afte	r[4]	53	57	67	66	63	averages
All	t	3.29	7.00	3.04	6.33	4.11	4.75
except	I	95	241	77	208	117	128
types 1,2	FO	11	11	11	11	22	14
All	t	3.40	8.00	3.42	7.27	5.04	5.42
except	I	97	. 273	85	238	165	172
types 1,3	FO	11	11	11	11	28	15
All	t	3.42	6.90	2.76	6.67·	3.76	4.70
except	I	117	279	77	250	123	170
types 1,4	FO	11	11	11	11	22	14
All	t	3.02	6.38	2.89	5•99	3•77	4.41
except	I	95	241	77	208	117	128
types 1,5	FO	11	11	11	11	22	14
All	t	2.94	7.72	2.91	7.27	4.80	5.12
except	I	89	259	71	236	157	163
types 2,3	FO	וו	11	11	11	28	15
All	t	2.74	6.52	2.48	6.38	3.49	4.32
except	I	85	254	63	226	109	148
types 2,4	FO	11	11	11	11	22	14

Table Al3. Three variable six MOR gate design.

(All-interconnection formulation.)

(continued)

Functions numbered after	r[4]	53	57	67	66	63	averages
All	t	2.89	6.14	2.64	5.76	3.69	4.22
except	I	85	216	63	184	109	132
types 2,5	FO	11	11	11	11	22	14
All	t	2.86	7.50	2.84	7.67	4.64	5.10
except	I	91	299	79	278	1 57	181
types 3,4	FO	11	11	11	11	28	15
All	t	2.76	7.05	2.84	6.95	5.05	4.93
except	I	89	259	71	236	1 59	163
types 3,5	FO	11	11	11	11	28	15
All	t	2.64	5.80	2.34	5.84	3.24	3.97
except	I	85	254	63	226	109	148
types 4,5	FO	11	11	11	11	22	14

Table Al3. Three variable, six NOR gate design.

Functions numbered after	· [4]	76	72	77	73	80	averages
All	t	19.56	42.38	34.24	36.35	40.51	34.60
inequalities	I	473	1065	869	953	983	869
included	FO	274	17	182	51	33	122
All	t	19.43	46.64	39.02	37.34	46.16	37.72
except	I	495	1215	1015	1017	1167	982
t pe 1	FO	288	17	202	55	33	119
All	t	19.00	42.18	34.14	35.04	39-33	33.94
except	I	473	1065	869	953	983	869
type 2	FO	274	17	182	51	33	122
All	t	25.48	52.58	38.30	40.20	50.96	41.50
except	Ι	668	1400	1042	1100	1388	1120
type 3	FO	421	23	208	53	37	149
All	t	17.73	42.36	36.19	38.30	46.82	36.28
except	I	501	1235	1087	1237	1345	1081
type 4	FO	274	17	182	51	33	122
All	t	17.92	40.80	33.13	33.01	38.15	32.60
except	I	473	1065	869	953	983	869
type 5	FO	274	17	182	51	33	122

Table Al4. Three variable, seven NOR gate design.

(All-interconnection formulation.)

(continued)

Functions numbered after	r[4]	76	72	77	73	80	averages
All	t	19.36	46.70	39.09	37.19	46.12	37.69
except	I	4.95	1215	1015	1017	1167	982
types 1,2	FO	288	17	202	55	33	119
All	t	25.44	58.45	40.06	40.08	58.20	44.44
except	I	678	1526	1092	1120	1600	1204
types 1,3	FO	427	23	216	57	37	152
All	t	17.45	45.76	39-91	39•38	53.66	39-23
except	I	523	1399	1239	1301	1605	1214
types 1,4	FO	288	17	202	55	33	119
All	t	17.72	43.69	36.24	33.94	41.86	34.69
except	I	495	1215	1015	1017	1167	982
types 1,5	FO	288	17	202	55	33	119
All	t	25.36	52.03	38.02	39.76	49.88	41.01
except	I	668	1400	1042	1100	1388	1120
types 2,3	FO	421	23	208	53	37	149
All	t	17.93	42.79	36.15	38.05	46.46	36.28
except	I	501	1235	1087	1237	1345	1081
types 2,4	FO	274	17	182	51	33	122

Table Al4. Three variable.seven NOR gate design.

(All-interconnection formulation.)

(continued)

Functions numbered after	r[4]	76	72	77	73	80	averages
All	t	18.08	40.10	32.43	34.17	37.97	32.55
except	I	473	1065	869	953	983	869
types 2,5	FO	274	17	182	51	33	122
All	t	22.88	50.08	39.00	41.63	55.81	41.88
except	I	718	1608	1286	1418	1836	1376
types 3,4	FO	425	23	208	53	37	150
All	. t	24.64	49;87	34.92	3 6 . 95	46.07	38.49
except	I	678	1400	1042	1102	1388	1122
types 3,5	FO	421	33	208	53	37	149
All	t	15.55	37.88	32.09	33.91	41.81	32.24
except	I	501	1235	1087	1237	1345	1081
types 4,5	FO	274	17	18	5 1	33	122

Table A14. Three variable, seven NOR gate design.

Functions numbered afte		68	70	79	80	73	averages
All	t	5•77	7.77	4.82	13.07	10.58	8.40
inequalities	I	121	155	93	261	225	171
included	FO	24	39	11	54	101	46
All	t	13.22	16.87	7.10	21.51	13.72	14.48
except	I	291	423	149	587	315	353
type 6	FO	48	83	13	112	173	86
All	t	6.00	7•77	4.61	11.38	10.51	8.05
exc#pt	I	121	155	93	261	225	171
type 2	FO	24	3 9	11	54	101	46
All	t	7 • 53	9+53	5.32	14.49	13.26	10.02
except	I	143	183	107	313	263	202
type 3	FO	24	3 9	11	58	126	52
All	t	5.60	7.48	4.49	11.38	10.20	7.83
except	I	121	155	93	261	229	172
type 4	FO	24	3 9	11	54	101	46
All	;t	5.44	7 .2 8	4.32	11.03	9.88	7.59
except	I	121	155	93	263	225	172
type 5	FO	24	39	11	54	101	46

Table Al5. Three variable, five NOR-AND gate design.

(All-interconnection formulation.)

(continued)

Functions numbered after		68	70	79	80	73	averages
All	t	5.65	7•38	4.30	11.16	10.16	7.73
except	I	125	163	93	273	227	177
type 7	FO	26	43	11	58	101	48
All	t	5.72	7.65	4.50	11.58	10.83	8.06
except	I	131	163	95	269	225	177
type 8	FO	26	39	11	60	101	48
All	t	12.46	16.47	7.00	20.99	13.34	14.05
except	I	291	423	149	587	315	353
types 2,6	FO	48	83	13	112	173	86
All	t	13.30	18.02	7.72	23.69	15.95	15.74
except	I	305	445	161	625	381	393
types 3,6	FO	48	87	13	120	214	97
All	t	11.98	15.77	6.75	20.60	13.19	13.66
except	I	291	4.23	153	587	319	355
types 4,6	FO	48	83	13	112	173	86
All	t	11.71	15.67	6.70	20.53	12.94	13.51
except	I	291	423	149	589	315	354
types 5,6	FO	48	83	13	112	173	86

Table Al5. Three variable five NOR-AND gate design.

(All-interconnection formulation.)

(continued)

Function numbered afte		68	70	79	80	73	averages
All	t	11.73	16.04	6.92	20.76	13.39	13.76
except	I	293	429	149	591	319	357
types 6,7	FO	48	87	13	112	173	87
All	t	11.86	15.77	6.95	20.25	13.01	13.56
except	I	295	423	149	591	31 5	355
types 6,8	FO	48	83	13	114	173	87
All	t	8.22	10.54	6.20	15.92	13.14	10.80
except	I	143	183	107	313	263	202
types 2,3	FO	24	3 9	יו	58	126	52
All	t	5.45	7•37	4.32	10.89	9•95	7.60
except	I	121	155	93	261	229	172
types 2,4	FO	24	39	11	54	101	46
All	t	5.47	7.27	4.34	10.78	9.90	7•55
except	I	121	155	93	263	225	172
types 2,5	FO	24	3 9	11	54	101	46
All	t	5.49	7•33	4.40	10.94	10.69	7.77
except	I	125	163	93	273	227	177
types 2,7	FO	26	43	11	58	101	48

Table Al5. Three variable.five NOR-AND gate design.

(All-interconnection formulation.)

(continued)

			1				
Functions numbered after		68	70	79	80	73	averages
All	t	5•97	7.82	4.67	11.63	10.13	8.04
except	I	131	163	95	269	225	177
types 2,8	FO	26	39	11	60	101	48
All	t	7.87	9.25	5.09	14.29	12.23	9.74
except	I	143	183	109	313	275	205
types 3,4	FO	24	39	12	58	127	52
All	t	7.27	9.43	5.10	13.85	12.51	9.63
except	I	143	183	107	315	263	203
types 3,5	FO	24	39	11	58	126	52
All	t	7.65	10.05	5.30	14.27	11.98	9.85
except	I	155	213	113	341	269	219
types 3,7	FO	28	59	13	70	128	60
All	t	8.15	9.71	5.15	13.89	11.93	9.76
except	I	1 55	191	111	327	265	210
types 3,8	FO	26	39	11	66	126	54
All	t	5•47	7 • 52	4.20	10.78	9.88	7 • 57
except	I	121	1 55	93	263	229	173
types 4,5	FO	24	39	11	54	101	46

Table Al5. Three variable, five NOR-AND gate design.

(All-interconnection formulation)

(continued)

Functions numbered after	r [1]	68	70	79	80	73	averages
All	t	6.02	7•55	4.84	11.53	10.21	8.03
except	I	135	173	105	283	253	190
types 4,7	FO	32	49	11	64	107	53
All	t	5•99	7.43	4.24	10.91	9.71	7.66
except	I	131	163	95	269	229	178
types 4,8	FO	26	3 9	11	60	101	48
All	t	5•37	7.13	4.30	10.83	9.90	7.50
except	I	125	163	93	275	227	177
types 5,7	FO	26	43	11	58	101	48
All	t	5•50	7.22	4.32	10.93	9.91	7.58
except	I	131	163	97	271	229	179
types 5,8	FO	26	39	11	60	101	48
All	t	5•57	7.20	4.14	10.71	9.88	7.50
except	I	135	171	99	281	229	183
types 7,8	FO	28	43	13	64	1 0 3	51

Table Al5. Three variable, five NOR-AND gate design.

(All-interconnection formulation.)

Functions numbered afte	r[1]	101	100	105	99	averages
All	t	29.28	61.63	45.39	46.19	45.62
inequalities	I	5 1 7	1189	827	855	847
included	FO	26	520	193	41	195
All	t	49.13	108.70	82.20	71.66	77.92
except	I	947	2123	1589	1461	1530
type 6	FO	28	740	267	43	270
All.	t	28.17	60.08	43.24	46.72	44.55
except	I	517	1189	827	855	847
type 2	FO	2 6	520	193	41	195
All	t	35.84	79•97	56.65	58.72	57.80
except	I	615	1513	999	1009	1034
type 3	FO	26	604	1 95	43	217
All	t	28.50	63.75	45.62	44.44	45.58
except	I	5 1 7	1241	921	863	886
type 4	FO	26	520	193	71,74	196
All	t	26.49	56.34	40.80	42.93	41.64
except	I	5 1 7	1199	841	855	853
type 5	FO	26	524	1 97	41	197

Table Al6. Three variable.six NOR-AND gate design.

(All-interconnection formulation)

(continued)

		,		,	,	, , , , , , , , , , , , , , , , , , , ,
Functions numbered after		101	100	105	99	averages
All	t	26.94	59.18	42.11	43.72	42.98
except	I	543	1279	863	903	897
type 7	FO	26	578	195	41	210
All.	t	28.92	60.12	43.14	46.65	44.70
except	I	523	1215	837	905	870
type 8	FO	26	538	195	43	201
All	t	47.67	106.09	83.59	72.71	77.52
except	I	947	2123	1589	1461	1530
types 2,6	FO	28	740	267	43	270
All	t	56.45	129.05	94.26	81.86	90.40
except	I	1059	2475	1749	1563	1712
types 3,6	FO	30	884	285	43	311
All	t	46.24	106.61	82.21	68.55	75.90
except	I	951	2233	1747	1483	1604
types 4,6	FO	28	742	267	46	271
All	t	45.74	102.14	79.60	70.60	74.52
except	I	947	2149	1643	1461	1550
types 5,6	FO	28	744	271	43	272

Table Al6. Three variable.six NOR-AND gate design.

(All-interconnection formulation.)

(continued)

Functions numbered after	.[1]	101	100	105	99	averages
All	t	46.26	107.19	81.63	71.35	76.60
except	I	973	2179	1617	1513	1571
types 6,7	FO	28	760	2 69	43	275
All	t	46.04	103.78	78.25	67.05	73.78
except	I	951	2159	1593	1495	1550
types 6,8	FO	10	762	267	45	271
All	t	37.98	84.69	55.91	56.64	58.80
except	I	615	1513	999	1009	1034
types 2,3	FO	26	604	195	43	217
All	t	26.22	57.25	43.59	42.84	42.48
except	I	517	1241	921	863	886
types 2,4	FO	26	520	193	71,71	196
All	t	26.02	56.17	41.05	43.03	41.56
except	I	517	1199	841	855	853
types 2,5	FO	26	524	197	41	197
All	t	26.97	60.02	41.73	43.76	43.12
except	I	543	1279	863	903	897
types 2,7	FO	26	578	195	41	210

Table Al6. Three variable, six NOR-AND gate design.

(All-interconnection formulation.)

(continued)

Functions numbered after	[1]	101	100	105	99	averages
All	t	27.13	57.19	42,29	44.74	42.84
except	I	5 2 3	1215	837	905	870
types 2,8	FO	26	538	195	43	201
All	t	34.14	77.52	56.42	53.99	55.52
except	I	619	1599	1095	1027	1085
types 3,4	FO	26	609	195	46	219
All	t	35•75	80.88	55•99	54.09	56.68
except	I	619	1523	1015	1013	1043
types 3,5	FO	26	610	199	43	220
All	t	35.90	83.21	56.54	56.04	57.92
except	I	693	1699	1117	1099	1152
types 3,7	FO	28	714	215	43	250
All	t	34.92	77.04	52.98	54.31	54.82
except	I	637	1559	1027	1063	1072
types 3,8	FO	28	622	197	45	223
All	t	25.54	56.84	46.84	43.97	43.30
except	I	517	1251	935	863	892
types 4,5	FO	26	524	197	44	198

Table A16. Three variable.six NOR-AND gate design.

(All-interconnection formulation.)

(continued)

Functions numbered after[1]		101	100	105	99	averages
All	t	26.65	60.25	45.02	43.89	43.95
except	I	587	1399	1021	993	1000
types 4,7	FO	26	602	209	46	221
All	t	26.24	56.94	42.61	43.08	42.22
except	I	523	1267	931	913	909
types 4,8	FO	26	538	195	46	202
All	t	26.14	57•39	40.28	42.36	41.54
except	I	543	1289	877	903	903
types 5,7	FO	26	582	199	41	212
All	t	26.62	55.07	39.71	42.44	40.96
except	I	533	1231	853	911	882
types 5,8	FO	26	544	199	45	204
All	t	26.02	58.15	39.98	42.19	41.58
except	Ī	567	1329	885	953	934
types 7,8	FO	28	610	199	45	221

Table A16. Three variable.six NOR-AND gate design.

(All-interconnection formulation.)

APPENDIX B

VARIATION OF SUBSCRIPTS IN ACTUAL

IMPLEMENTATION OF THE TRIANGULAR INEQUALITIES

In the all-interconnection program, ILLODIE-AIF, when used for NOR-AND and NOR-NAND design cases, the actual range of the subscripts is as follows:

$$i = 1, 2, ..., R-1$$

$$k = 1, 2, ..., R$$

while for the NOR and AND-OR designs they are

$$i = 1, 2, ..., R$$

$$j = 1, 2, ..., R$$

$$k = 1, 2, ..., R$$

The reasons for choosing different ranges for the NOR-AND and NOR-NAND designs is that only single output networks have been considered for these designs and the additional inequalities generated for the cases where $G_{\bf i}$ or $G_{\bf j}$ is the output gate were assumed to be not too effective in reducing the execution time.

IBLIOGRAPHIC DATA	1. Report No. UIUCDCS-R-72-543	2.	3. Recipient's Accession No.	
Title and Subtitle A STUDY OF	F THE EFFECT OF ADDITIONATEGER PROGRAMMING FOR LOG	5. Report Date October, 1972 6.		
Author(s) Jose Joaqu	ıin Mora-Tovar	8. Performing Organization Rept.		
Performing Organization			10. Project/Task/Work Unit No.	
University	t of Computer Science y of Illinois llinois 61801	11. Contract/Grant No. NSF GJ-503A #1		
Sponsoring Organization National S	Name and Address		13. Type of Report & Period Covered Master Thesis	
Washingtor	n, D.C.		14.	
. Supplementary Notes				
. Abstracts		· · · · · · · · · · · · · · · · · · ·		
_	L design of optimal netwo			

In logical design of optimal networks by integer programming, additional inequalities are added in order to speed-up the computations time. The effects of different types of these additional inequalities for several logical design cases is studied.

. Key Words and Document Analysis. 170. Descriptors

Integer Programming, Implicit Enumeration Method, Additional Inequalities, All-interconnection formulation, Feed-forward formulation, NOR, NOR-AND, NOR-NAND and AND-OR designs.

b. Identifiers/Open-Ended Terms

COSATI Field/Group

Availability Statement	19. Security Class (This	21. No. of Pages
	Report)	82
Release unlimited	UNCLASSIFIED	02
	20. Security Class (This	22. Price
	Page	
Face	UNCLASSIFIED	

