Math 2710

Sep 2-6

Some catch-up from prior classes

Two notes

Definitions

Although I never said this explicitly, a **definition** is an 'if and only if' statment. When I write:

Definition: An integer x is "5-ish" if there is an integer n so that x = 5n

I am actually saying that "x is 5-ish IF AND ONLY IF there is an integer n so that x = 5n.

Negation of implication

The easiest way to express NOT (A implies B) is as (A and NOT B). Check the truth tables.

1.4 Variable statements and quantifiers

First examples

Compare the following three statements

- Helen is a UConn student who has watched every minute of Game of Thrones.
- There is a UConn student who has watched every minute of Game of Thrones.
- Every UConn student has watched every minute of Game of Thrones.

All make assertions about the set U of UConn students

- ► The first asserts that a *particular* named element of *U* has a certain property (...has watched every minute of GoT)
- ► The second asserts that *There exists* an element of *U* with that property.
- ▶ The third asserts that *Every* element of *U* has that property.

Universal quantifier (For all, for every, for each)

A statement that includes a universal quantifier makes a claim about ALL objects of a particular type.

- For all x in the real numbers, $(x^2 1) = (x + 1)(x 1)$.
- Every declared democratic presidential candidate will appear in the next official television debate.
- ► Each midterm exam in this course counts as 25% of your final grade.

Symbolic Form

- ▶ For all X, P(X)
- $\blacktriangleright \forall x, P(X).$

Existential quantifier (There is, there exists, for some)

- ▶ There is a real number y so that $y^2 = 11$.
- ► There exists a car for sale in the United States that gets 50 mpg.
- ▶ There are some dogs that you should be afraid of.

Symbolic Form

- ▶ There exists X such that P(X)
- $ightharpoonup \exists x \text{ such that } P(x).$

Relation between universal and existential quantifiers

To show that the statement *Every UConn student has watched every minute of Game of Thrones* is FALSE, you must produce an example of a UConn student who has NOT watched every minute. So the negation of this claim is:

Some UConn student has not watched every minute of Game of Thrones or There is a UConn student who has not watched every minute of Game of Thrones

To show that the statement *There is a UConn student who has watched every minute of Game of Thrones* is FALSE, you must show that: No student has watched every minute of Game of Thrones or All students at UConn have NOT watched every minute of Game of Thrones.

Symbolic Form (page 11 of the text)

- ▶ NOT($\forall x, P(x)$) $\leftrightarrow \exists x, \text{NOT } P(x)$
- ▶ NOT($\exists x, P(x)$) $\leftrightarrow \forall x, \text{NOT } P(x)$

Second order statements

Second order statements have two quantifiers.

- ► For all x, there exists y, so that....
- There exists x, so that for all y, ...

For all x, there exists y.

- For every even integer x, there exists an integer y so that x = 2y.
- For every real positive number x, there exists a real number y so that $x = y^2$.
- For every real $\epsilon > 0$, there exists a real $\delta > 0$ so that if $|x| < \delta$ then $x^2 < \epsilon$.

There exists y, so that for all x

▶ There exists an integer x so that, for all integers y, xy = 0.

An example

Definition: Given two integers n and d, we say that

-n is divisible by d

or

-n is a multiple of d

or

-d divides n

if there exists an integer m so that n = dm.