

Mise en service du Moteur à courant continu [Matlab] — 30 minutes

S		D1-01 : Mettre en œuvre un système en suivant un protocole D2-01 : Choisir le protocole en fonction de l'objectif visé.
Objectifs		D2-02 : Choisir les configurations matérielles et logicielles du système en fonction de l'objectif visé par l'expérimentation.
90	<u> </u>	D2-03 : Choisir les réglages du système en fonction de l'objectif visé par l'expérimentation.

Expérimenter el analyser

Activité 1

- ☐ Prendre connaissance du document ressource Moteur CC, Fiche 1 (Présentation générale).
- ☐ Ouvrir le fichier CommandePWM_Mesure.slx (fichier Matlab) et l'exécuter.
- Lors de l'exécution, vérifier que, en faisant varier le « slider gain » de -255 à 255, le moteur va dans un sens, puis dans l'autre.
- ☐ S'il y a un problème de sens vérifier la configuration des jumper avec votre prof.

Expérimenter e analyser

Activité 2

- ☐ Visualiser la courbe de position. Commenter.
- ☐ Modifier le programme pour afficher la courbe en degrés.
- Modifier le programme pour afficher la courbe de vitesse théorique de sortie du motoréducteur en tr/min.

ynthèse

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Expliquer brièvement le fonctionnement du système de laboratoire.
- Réaliser une synthèse des activités 1 et 2.

Chaine fonctionnelle - 90 minutes

Objectifs	A3-01	Associer les fonctions aux constituants.
	A3-02	Justifier le choix des constituants dédiés aux fonctions d'un système.
	A3-03	Identifier et décrire les chaines fonctionnelles du système.
	A3-04	Identifier et décrire les liens entre les chaines fonctionnelles.
	A3-05	Caractériser un constituant de la chaine de puissance.
	A3-06	Caractériser un constituant de la chaine d'information.
	D1-02	Repérer les constituants réalisant les principales fonctions des chaines fonctionnelles.
	D1-03	Identifier les grandeurs physiques d'effort et de flux.

Expérimenter analyser

Activité 1

Etablir les chaînes d'énergie et d'information du sous-système étudié. On précisera les grandeurs d'effort et de flux ainsi que les liens entre les blocs.

Activité 2 - Etude du codeur incrémental

☐ Expliquer en détail le fonctionnement d'un codeur incrémental. On s'appuiera en particulier sur des **Expérimenter et analyser** schémas expliquant la structure du capteur et des graphes permettant d'observer les signaux mesurés. ☐ Que signifie « codeur 12 impulsions, 2 voies, mesure en quadrature » ? Quelle serait l'utilité d'une 3ème ☐ Donner la résolution angulaire en sortie du moteur et en sortie du réducteur. ☐ En utilisant la fiche 2 – Description structurelle et technologique – visualiser les signaux des codeurs à l'aide d'un oscilloscope. ☐ Expliquer comment est obtenue une mesure de capteur. Comment est mesuré un changement de sens du moteur?

☐ Cette mesure est-elle en accord avec les caractéristiques du moteur à courant continu ?

Expérimenter analyser

Activité 3 - Analyse du hacheur

- Expliquer en détail le fonctionnement d'un hacheur. On pourra s'appuyer sur des schémas (schéma électrique, signal de commande).
- ☐ En utilisant la fiche 2 Description structurelle et technologique visualiser le signal en PWM.
- ☐ Quelle est la fréquence de hachage ?

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Présenter la chaîne fonctionnelle sous forme de blocs.
- Préciser la nature des flux transitant entre les blocs.
- Préciser les liens entre chaine d'information et chaine d'énergie.

☐ Déterminer la vitesse du moteur lorsque la commande est à 100% (255).

Lors de la présentation à l'examinateur, désigner les constituants sur le système.

Pour XENS – CCINP – Centrale :

garder des copies d'écran dans PowerPoint ou Word

Pour CCMP:

Rédiger les éléments de synthèse sur feuille, imprimer et annoter les courbes nécessaires.

Modélisation du Moteur à Courant continu – 90 minutes

	s
	a)
	Š
S	_
4	ਠ
•=	.=
-	0
ซ	O,
ďυ	0
w	
•=	0
_0	
=	8
0	_
_	ਰ
	·Φ
	0

- ☐ B2-06 Établir un modèle de comportement à partir d'une réponse temporelle ou fréquentielle.
- ☐ B2-07 Modéliser un système par schéma-blocs.

Objectif

En vue de pouvoir corriger le comportement, du système, il est nécessaire de disposer d'un modèle de comportement du système.

xpériment

Activité 1

- ☐ Vérifier que vous le ficher CommandePWM_Mesure est fonctionnel.
- Adapter le fichier pour avoir une commande du système en tension [V] et un affichage de la position en sortie du réducteur [rad].

périmente

Activité 2

- ☐ Faire la transformation sur le schéma bloc pour réaliser un asservissement en position du moteur à courant continu. Vous pourrez utiliser un correcteur proportionnel avec un « Slider Gain » pour moduler la commande.
 - Vous pourrez aussi ajouter un des interrupteurs pour réaliser échelons en entrée.

Modéliser & Expérimente

Activité 3

- Réaliser un modèle de comportement du système en boucle fermé.
- ☐ Réaliser un modèle de comportement du système en boucle ouverte.

Modéliser & Expérimenter

Activité 4

- ☐ Réaliser le diagramme de Bode du système en Boucle Ouverte.
- ☐ Proposer un modèle de comportement du système.

Synthèse

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Réaliser une (ou des) comparaisons pertinentes de tous les modèles réalisés. On rappelle qu'ont été vus :
 - Modèle de connaissance « schéma-blocs » (BO) ;
 - Modèle de connaissance multiphysique (BO);
 - Modèle de comportement Boucle fermée ;
 - Modèle de comportement BO (en temporel);
 - Modèle de comportement BO en fréquentiel.

Pour XENS – CCINP – Centrale :

- Donner l'objectif des activités.
- Présenter les points clés de la modélisation.
- Présenter le protocole expérimental.
- Présenter la courbe illustrant les résultats expérimentaux et ceux de la résolution.
- Analyser les écarts.

Pour CCMP:

- Synthétiser les points précédents sur un compte rendu.
- Imprimer le graphe où les courbes sont superposées.

Modélisation du Moteur à Courant continu – 90 minutes

Objectifs pédagogiques

- ☐ B2-06 Établir un modèle de comportement à partir d'une réponse temporelle ou fréquentielle.
- ☐ B2-07 Modéliser un système par schéma-blocs.

Objectif

En vue de pouvoir corriger le comportement, du système, il est nécessaire de disposer d'un modèle de comportement du système.

Modèle de connaissance

Activité 1

- ☐ Etablir les équations du moteur à courant continu.
- ☐ En utilisant Matlab, réaliser le schéma-bloc du moteur à courant continu.

Modèle de connaissance

Activité 2

☐ En utilisant Matlab et le module Simscape, réaliser le modèle multiphysique du moteur à courant continu.

Modèle de connaissance

Activité 3

- ☐ Comparer les résultats pour chacune des simulations.
- ☐ Conserver votre fichier MATLAB.

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Présenter les points clés des deux modèles.
- Comparer les résultats des deux simulations.
- Conclure.

Synthèse

Pour XENS – CCINP – Centrale :

- Donner l'objectif des activités.
- Présenter les points clés de la modélisation.
- Présenter les points clés de la résolution utilisant Capytale.
- Présenter le protocole expérimental.
- Présenter la courbe illustrant les résultats expérimentaux et ceux de la résolution.
- Analyser les écarts.

Pour CCMP:

- Synthétiser les points précédents sur un compte rendu.
- Imprimer le graphe o ù les courbes sont superposées.