Condensé de la MPSI Physique

> Ewen Le Bihan MPSI – Daudet

Contents

1	\mathbf{App}	proche cinématique du mouvement d'un point
	1.1	Travail d'une force
	1.2	Puissance d'une force
	1.3	Énergie cinétique
		1.3.1 Théorème de l'énergie cinétique
		1.3.2 Pendule
	1.4	<u>'</u>
		1.4.1 Stabilité d'un équilibre
	1.5	Force conservative
	1.6	Énergie mécanique
		1.6.1 Interprétations
2	Dyı	namique
	2.1	Force gravitationelle
	2.2	Force de rappel d'un ressort
	2.3	Tension d'un fil \overrightarrow{T}
		2.3.1 Pendule
	2.4	Frottements solides \overrightarrow{R}
	2.5	Frottements fluides
	2.6	Lois de Newton

1 Approche cinématique du mouvement d'un point

1.1 Travail d'une force

$$\delta W = \overrightarrow{\text{la force}} \cdot d\overrightarrow{OM}$$

$$d\overrightarrow{OM} = \overrightarrow{v} \cdot dt$$

$$\delta W>0 \implies$$
travail moteur

$$\delta W < 0 \implies$$
travail résistant

$$W_{AB}(\overrightarrow{F}) = \int_{A}^{B} \delta W \, \mathrm{d} \, t = \int_{A}^{B} \overrightarrow{F} \cdot \mathrm{d} \, \overrightarrow{OM}$$

$$\overrightarrow{F} = \overrightarrow{0} \implies W_{AB}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{AB}$$

$$W(\overrightarrow{R_n}) = 0$$

1.2 Puissance d'une force

$$\mathcal{P}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{v}$$

1.3 Énergie cinétique

$$E_c(M/\mathcal{R}) = \frac{1}{2} m v(M/\mathcal{R})^2$$

1.3.1 Théorème de l'énergie cinétique

- \mathcal{R} galiléen $\Longrightarrow \dot{E}_c(M/\mathcal{R})$
- $\Delta_{i \to f} E_c = W_{i \to f}(\overrightarrow{F})$

1.3.2 Pendule

$$\ddot{\theta} + \frac{g}{l}\sin\theta = 0$$

1.4 Énergie potentielle

$$\Delta E_p := -\underset{A \to B}{W}(\overrightarrow{F})$$

 $E_{p_p} = mgz + {\rm const}$ si (Oz) vertical ascendant

$$E_{p_e} = \frac{1}{2}k(x - l_0)^2 + \text{const}$$

1.4.1 Stabilité d'un équilibre

 $x_e := \operatorname{extremum}(E_p, x)$ (i.e. x_e est une position d'équilibre)

$$-(x - x_e) \frac{\mathrm{d}^2 E_p}{\mathrm{d} x^2} (x_e) \quad \begin{cases} > 0 & \Longrightarrow \text{ stable} \\ < 0 & \Longrightarrow \text{ instable} \end{cases}$$

1.5 Force conservative

$$\overrightarrow{F} \text{ conservative} \iff \begin{cases} \overrightarrow{W}(\overrightarrow{F}) & \text{ indépendante du chemin suivi} \\ \overrightarrow{F} & = F(x) \operatorname{d} x \\ \exists E_p & / \begin{cases} W(\overrightarrow{F}) & = -\Delta E_p \\ \delta W & = -\operatorname{d} E_p \end{cases} \end{cases}$$

Contraire: force dissipative ou non-conservative

1.6 Énergie mécanique

En référentiel Galiléen

$$\Delta E_m = W(\overrightarrow{F_{\text{dissipative}}})$$

1.6.1 Interprétations

$$\Delta E_m = 0$$
 $\iff E_m = \text{const}$
 $\iff E_m \text{ se conserve}$
 $\iff M \text{ est conservatif}$

$$\Delta E_m = W(\overrightarrow{F_{ ext{dissipative}}}) < 0$$
 $\implies E_m \text{ décroissante}$
 $\implies \text{Il y a dissipation de l'énergie}$

2 Dynamique

2.1 Force gravitationelle

$$\overrightarrow{F_{M \to M'}} = -G \frac{mm'}{r^2} \overrightarrow{u}$$

2.2 Force de rappel d'un ressort

$$\overrightarrow{F} = -k(l(t) - l_0)\overrightarrow{u_{\text{etirement}}}$$

2.3 Tension d'un fil \overrightarrow{T}

Aucune formule caractéristique :/

2.3.1 Pendule

En repère cylindrique

$$\overrightarrow{T} = -T\overrightarrow{u_r}$$

2.4 Frottements solides \overrightarrow{R}

$$\overrightarrow{R_n} / \begin{cases} \operatorname{sens} \overrightarrow{R_n} &= -\operatorname{sens} \overrightarrow{P} \\ \left| \left| \overrightarrow{R_n} \right| \right| &= \left| \left| \overrightarrow{P} \right| \right| \end{cases}$$

$$\overrightarrow{R_t} / \begin{cases} \overrightarrow{R_t} & \perp \overrightarrow{R_n} \\ \operatorname{sens} \overrightarrow{R_t} &= -\operatorname{sens} \overrightarrow{v} \end{cases}$$

$$\overrightarrow{R} := \overrightarrow{R_t} + \overrightarrow{R_n}$$

• Sans frot
tements solides
$$\overrightarrow{R_t} = \overrightarrow{0} \iff \overrightarrow{R} = \overrightarrow{R_n}$$

• Avec frot
tements solides
$$\overrightarrow{R}_t \neq \overrightarrow{0}$$

$$\overrightarrow{R_n} + \overrightarrow{R_t} + \overrightarrow{P} = \overrightarrow{0}$$

$$R_t/R_n < f$$

$$\overrightarrow{R_n} + \overrightarrow{R_t} + \overrightarrow{P} \neq \overrightarrow{0}$$

$$R_t/R_n > f$$

2.5 Frottements fluides

$$\overrightarrow{f} = -\lambda \overrightarrow{v}$$

$$\overrightarrow{f} = -\alpha v^2 \frac{\overrightarrow{v}}{||\overrightarrow{v}||}$$

2.6 Lois de Newton

1. Il existe des référentiels dits "Galiléens" dans lesquels une particule pseudo-isolée ou isolée a un MRU. Si la particule est initialement au repos, elle le reste.

4

2.
$$\overrightarrow{F} = m \dot{\overrightarrow{p}} = m \frac{\mathrm{d}}{\mathrm{d}t} (m \overrightarrow{v})$$

3.
$$\overrightarrow{F}_{A \to B} = -\overrightarrow{F}_{A \to B}$$