ZHU JIN

email: zhujin0301@163.com|tel: +86 18851328992 |homepage: https://zhujin2002.github.io

EDUCATION

UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, China.

Sep 2023 - present

Master of Engineering in Mechanical Engineering

Thesis title: "Bacterial Locomotion in Swimming and Swarming Motilities" - Supervised by Zijie Qu

UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, China.

Sep 2019 - Aug 2023

Bachelor of Engineering in Mechanical Engineering

PUBLICATION

Zhu, J., Qiao, Y., Yan, L., Zeng, Y., Wu, Y., Bian, H., Huang, Y., Ye, Y., Huang, Y., Hii, C. Russell, Teng, Y., Guo, Y., Li, G, and Qu, Z., **Propulsion Contribution from Individual Filament in a Flagellar Bundle**. arXiv preprint arXiv:2407.16532. (Under Review)

ABSTRACTS AND PRESENTATIONS

The 13th Chinese Fluid Mechanics Academic Conference, Presenter.

2024

Qu, Z., **Zhu, J.**, Qiao, Y., Yan, L., Zeng, Y., Wu, Y., Study on Microbial Flagellar Bundling Process and Propulsive Force Generation Based on Macroscopic Experimental Model.

RESEARCH EXPERIENCE

Study on Enterobacter sp. SM3 swarming under Different Conditions

Jun 2024 - Present

- Verifying influences of gravity and solid boundary to bacterial swarming by monitoring the colony growth microscopically and microscopically, using self-developed imaging platform to record and quantitate and microscope
- Analyzing characteristic velocity, length, and time scales for bacterial motion in different areas of the swarming colonies (edge, near-edge, far-edge) by using particle image velocimetry (PIV) and optical flow methods
- (Expected) Building a theoretical model to explain the growth of swarming colony affected by gravitation force and under solid surface constrain based on experimental results and analysis

Experimental Study on Microbial Movement under Interface Constraint

Mar 2024 - Present

- Applying a 3D real-time tracking microscope to track the swimming microorganism for long time (> 15s)
- Measuring the swimming characteristics, including speed distribution, trajectory curvature, of smooth-swimming *E. coli* on near solid surfaces (glass slides) and semi-solid surfaces (non-nutrient agar of different concentration)
- (Expected) Building a theoretical model to explain the trends of "pusher" type cells' attraction to softer surfaces

A Macroscopic Model of Bacterial Flagella Interaction and Propulsion Generation

Aug 2022 - Jun 2024

- Designed and Developed a multi-functional macroscopic experimental platform to test model bacterial flagella interaction and propulsion generation under different parameters including separation distance and phase difference
- Observed the differences of individual contribution from each filament to total propulsion force when phase difference existed, and revealed hydrodynamic interactions reached maximum when phase difference equals to π and $-\pi$
- Proposed a bacterial swimming model to explain the "wobble" phenomenon in *E. coli* locomotion based on experimental results of unequal propulsion forces generated by individual filaments in a bundle

Microfluidic Robot Powered by Electroosmosis-based Electrode Arrays

Dec 2021 -Aug 2022

- Simulated liquid pumping with ac-voltages applied to asymmetric electrode pairs by COMSOL, and obtained optimal electrodes pair size ratio of 5:3 under $V_{pp}=8\mathrm{V}$ and 3 kHz frequency with experiment verification
- Simulated pumping force of 5 sets of 20-electrodes-array applying travelling-wave electroosmosis (TWEO) under $V_{pp}=3\mathrm{V}$ and 4 kHz frequency, achieved 3 μ m/s swimming speed of a 1.8 mm*1.3 mm chip in experiments

Multi-material Direct Ink Writing 3D Printer Construction

Aug 2021 - Dec 2021

- Designed the structure and electronic control of a easily-assembled DIW printing extruder to lower the cost by 30%
- Investigated the impact of different infill density, infill patterns and surface density, on material properties of 3D-printed objects by optimizing traditional 3D printer G-code generating logic to three different methods

WORK EXPERIENCE

Research Assistant, UM-SJTU Joint Institute, Bio-inspired Fluid Mechanics lab

Jan 2022 - Sep 2023

Teaching Assistant, UM-SJTU Joint Institute

2022 - Present

- VM312, Mechanical Behaviour of Biological Tissues
- VM250, Design and Manufacturing 1
- VG100, Introduction to Engineering

SKILLS

Programming: MATLAB, C, C++, Python

Softwares & Tools: SOLIDWORKS, LaTeX, COMSOL, Origin, Arduino, LabVIEW, Adobe Illustrator

Biorelated skills: Bacteria culturing

AWARD & APPOINTMENT

- Co-founder and co-leader of ASME branch in UM-SJTU Joint Institute	Sep 2022 - Present
- Outstanding Graduates of Shanghai (top 3% out of 350)	2023
- Capstone Project Gold Award at the UM-SJTU JI Design Expo (top 5% out of 50)	2023
- ChunTsung Scholar (top undergraduate research program in SJTU)	2023
- The John Wu & Jane Sun Merit Scholarship (top 3% out of 300)	2022
- First Prize of Shanghai Mechanical Engineering Innovation Competition	2021