A Simple Commuting Model of Chicago

January 17, 2024

Connacher Murphy

Hog Butcher for the World,
Tool Maker, Stacker of Wheat,
Player with Railroads and the Nation's Freight Handler;
Stormy, husky, brawling,
City of the Big Shoulders...

Come and show me another city with lifted head singing so proud to be alive and coarse and strong and cunning.

Carl Sandburg

Abstract

This repo is intended to demonstrate the basics of conducting economics research with quantitative spatial models. I calibrate a simple quantitative spatial model of Chicago. I conduct various counterfactual exercises.

1. Introduction

2. Model

I begin with a simple model of commuting to demonstrate the basic mechanics of a common form of quantitative spatial model. I then extend this model to include other relevant features of the economy.

2.1. A Simple Model (Model A)

Chicago is comprised of discrete neighborhoods $i,n,k\in\mathcal{L}.$ Each location i has a mass of H_i of residents.

2.1.1. Workers

Each agent inelastically supplies one unit of labor. An agent ω residing in location i and working in location n receives indirect¹ utility \mathcal{U}_{ni} , where

$$\mathcal{U}_{in\omega} = \left[\frac{w_n}{\kappa_{in}}\right] \varepsilon_{in\omega}.\tag{1}$$

 w_n is the wage paid in location n. κ_{in} is a commuting cost of the iceberg form in the units of utility. $\varepsilon_{in\omega}$ is an idiosyncratic preference shock with a Fréchet distribution. The cumulative distribution function of $\varepsilon_{in\omega}$ is given by $F(\varepsilon_{in\omega}) = \exp(\varepsilon_{in\omega}^{-\theta})$. θ governs the dispersion of this preference shock.

A worker ω in location i chooses the workplace that maximizes their indirect utility:

$$n_{i\omega}^* \stackrel{\text{\tiny def}}{=} \arg\max_{n \in \mathcal{L}} \mathcal{U}_{in\omega}. \tag{2}$$

¹I omit the consumer's maximization problem for parsimony.

Since workers differ only in their draws of $\left\{ \varepsilon_{in\omega} \right\}_{i,n \in \mathcal{L}}$ of preference shocks, we can drop the ω subscript in what follows. The Fréchet distributed preference shock implies

$$\pi_{in} \stackrel{\text{\tiny def}}{=} \mathbb{P}\{n_i^* = n\} = \left[\frac{w_n}{\kappa_{in}}\right]^{\theta} \Phi_i^{-1},$$
 where $\Phi_i \stackrel{\text{\tiny def}}{=} \sum_{k \in \mathcal{L}} \left[\frac{w_k}{\kappa_{ik}}\right]^{\theta}.$ (3)

2.1.2. Firms

A unit mass of firms in each neighborhood produce a numeraire with the technology

$$Y_n = A_n L_n^{\alpha} \tag{4}$$

and pay workers their marginal product. Accordingly, the wage in neighborhood n is given by

$$w_n = \alpha A_n L_n^{\alpha - 1}. (5)$$

2.1.3. Commuting Equilibrium

For the commuting market to clear, labor demand in location n must equal labor supply to location n across all residential locations i:

$$L_n = \sum_{i \in \mathcal{L}} \pi_{in} H_i. \tag{6}$$

We can substitute Equation 3 and Equation 5 into this expression to obtain the equilibrium characterization:

$$\underbrace{\left[\frac{\alpha A_n}{w_n}\right]^{\frac{1}{1-\alpha}}}_{\text{Labor Demand}} = \underbrace{\sum_{i \in \mathcal{L}} \left[\frac{w_n}{\kappa_{in}}\right]^{\theta} \Phi_i^{-1} H_i}_{\text{Labor Supply}}. \tag{7}$$

2.1.4. Counterfactual Equilibria

We consider a baseline equilibrium $\{w^0, \pi^0\}$ for parameters $\{A^0, \kappa^0, H^0\}$ and a counterfactual equilibrium $\{w', \pi'\}$ for parameters $\{A', \kappa', H'\}$. We denote proportional changes with hats, e.g.,

$$\hat{w}_n = \frac{w'_n}{w_n^0} \Longrightarrow w_n^0 \hat{w}_n = w'_n. \tag{8}$$

We start by expressing the market clearing condition for the counterfactual equilibrium and then substitute in Equation 5:

$$L_n^0 \hat{L}_n = \left(\sum_{i \in \mathcal{L}} (\pi_{in}^0 H_i^0) \left(\hat{\pi}_{in} \widehat{H}_i \right) \right)$$

$$\Rightarrow \left[\frac{\alpha \hat{A}_n}{\hat{w}_n} \right]^{\frac{1}{1-\alpha}} = \frac{\sum_{i \in \mathcal{L}} (\pi_{in}^0 H_i^0) \left(\hat{\pi}_{in} \widehat{H}_i \right)}{L_n^0}.$$
(9)

²Again, I omit details of market structure for parsimony. I do not model trade in goods.

We can use Equation 3 to write

$$\hat{\pi}_{in} = \left[\frac{\hat{w}_n}{\hat{\kappa}_{in}}\right]^{\theta} \hat{\Phi}_i^{-1},$$
where
$$\hat{\Phi}_i = \sum_{k \in \mathcal{L}} \pi_{ik}^0 \left[\frac{\hat{w}_k}{\hat{\kappa}_{ik}}\right]^{\theta}.$$
(10)

The substantive piece of this expression is $\hat{\Phi}_i$. We derive it below:

$$\hat{\Phi}_{i} = \frac{\sum_{k \in \mathcal{L}} \left[\frac{w_{k}^{0}}{\kappa_{ik}^{0}}\right]^{\theta} \left[\frac{\hat{w}_{k}}{\hat{\kappa}_{ik}}\right]^{\theta}}{\sum_{l \in \mathcal{L}} \left[\frac{w_{l}^{0}}{\kappa_{il}^{0}}\right]^{\theta}} = \sum_{k \in \mathcal{L}} \pi_{ik}^{0} \left[\frac{\hat{w}_{k}}{\hat{\kappa}_{ik}}\right]^{\theta}, \tag{11}$$

where we have used Equation 3 to substitute in for π_{ik}^0 . We now combine Equation 9 and Equation 10 to obtain

$$\left[\frac{\alpha \hat{A}_n}{\hat{w}_n}\right]^{\frac{1}{1-\alpha}} = \left[\sum_{i \in \mathcal{L}} \frac{\pi_{in}^0 H_i^0 \widehat{H}_i \left[\frac{\hat{w}_n}{\hat{\kappa}_{in}}\right]^{\theta}}{\sum_{k \in \mathcal{L}} \pi_{ik}^0 \left[\frac{\hat{w}_k}{\hat{\kappa}_{ik}}\right]^{\theta}}\right] \frac{1}{L_n^0}.$$
(12)

What does this representation get us? If we express a counterfactual as a set of proportional changes to the parameter values $\{\widehat{A}, \widehat{\kappa}, \widehat{H}\}$, then we only need data on commuting probabilities π^0 , workplace population L^0 , and residential population H^0 in the initial equilibrium to solve for the proportional changes in wages \widehat{w} (using Equation 12) and commuting probabilities $\widehat{\pi}$ (using Equation 10).

Inspired by this representation, we define

$$\mathcal{Z}_{n}(\tilde{w}) \stackrel{\text{\tiny def}}{=} \left[\frac{\alpha \hat{A}_{n}}{\tilde{w}_{n}} \right]^{\frac{1}{1-\alpha}} - \left[\sum_{i \in \mathcal{L}} \frac{\pi_{in}^{0} H_{i}^{0} \widehat{H}_{i} \left[\frac{\tilde{w}_{n}}{\hat{\kappa}_{in}} \right]^{\theta}}{\sum_{k \in \mathcal{L}} \pi_{ik}^{0} \left[\frac{\tilde{w}_{k}}{\hat{\kappa}_{ik}} \right]^{\theta}} \right] \frac{1}{L_{n}^{0}}.$$
 (13)

2.2. A Richer Model (Model B)

In progress.

3. Data and Calibration

In progress.

4. Counterfactual Exercises

In progress.