Задание 2

Молекурялная динамика

Софиа Белен Лопес Висенс Группа Б02-903

Московский физико-технический институт

Содержание

1	Радиальная функция распределения	3
2	Автокорреляционная функция скорости	4
3	Коэффициента самодиффузии	4
4	Сравнение с первого задания	E

1 Радиальная функция распределения

Рис. 1: Радиальная функция распределения для жидкого Аргона при $\rho=0.0213\frac{atoms}{\mathring{\rm A}^3},$ $T=85^\circ K.$ Соответственные параметры в единицах Леннарда-Джонса $\rho=0.84,$ T=1.409.

2 Автокорреляционная функция скорости

Рис. 2: График автокорреляционной функции скорости в зависимости от времени при разных температурах.

3 Коэффициента самодиффузии

Maybe we are still in subdiffusive regime? But then shouldn't D be lower than expected, and not higher? That probably means we are still in ballictic regime.

Рис. 3: График зависимость среднего квадратичного смещения в зависимости от времени. Расчет коэффициента самодиффузии через формулы Эйнштейна-Смолуховского.

Таблица 1: Коэффициент самодиффузии полученный через формулы Эйнштейна-Смолуховского и Грина-Кубо при $\rho=0.7$.

Темература	Эйнштейна-Смолуховского	Грина-Кубо	Ожидаемое значение
1.0	0.258		0.105
1.5	0.366		0.156
2.0	0.384		0.217

4 Сравнение с первого задания

Вопрос: Как это $<\Delta r^2(t)>$ связано с значением из другого пункта?

Рис. 4: Усреднённые разбегания координат $<\Delta r^2(t)>$ и скоростей $<\Delta v^2(t)>$ на двух траекториях, рассчитанных из тождественных начальных условий с шагами $\Delta t_1=0.001$ и $\Delta t_2=0.0001$. При температуре T=1.0 и плотности $\rho=0.7$ получим коэффициент самодиффузии D=0.079. Он оказывается на порядок меньше значения полученного с помощью соотношения Эйнштейна-Смолуховского