

Contents

_	Thé	Théorie de l'information		
	1.1	Probabilités	2	
	1.2	Theorie de l'information	3	

Chapter 1

Théorie de l'information

1.1 Probabilités

Definition 1.1.1 (L'univers). L'univers, Ω est un ensemble fini ou dénombrable non vide

Definition 1.1.2 (Une probabilité). Une probabilité sur Ω est une fonction, $P: \mathcal{P}(\Omega) \to \mathbb{R}^+$ telle que .

- $P(\Omega) = 1$
- $\forall (A_n)_{n\in\mathbb{N}} \in \mathcal{P}(\Omega)^{\mathbb{N}}$, 2 à 2 disjoints, $P(\bigsqcup_{n\in\mathbb{N}} A_n) = \sum_{n\in\mathbb{N}} P(A_n)$

Definition 1.1.3 (Variable aléatoire). Soit E un ensemble. Une variable aléatoire à valeurs dans E est : $X: \Omega \to E$

Notation. Pour $x \in E$, on note :

$$(X = x) = \{ \omega \in \Omega | X(\omega) = x \}$$

$$P(X = x) = P((X = x))$$

Definition 1.1.4 (Sommes de variable aléatoires). Soit X, Y deux variables aléatoires à valeurs dans E et F. X et Y sont... voir le cours du manuel de maths

Remark (Indépendances). Soit X_1, \ldots, X_{n+1} des variables aléatoires. Elles sont indépendantes ssi X_1, \ldots, X_n sont indépendantes et (X_1, \ldots, X_n) sont indépendantes

Definition 1.1.5 (Espérance). Soit X une variable aléatoire réelle positive. L'espérance de X est :

$$E(X) = \sum_{x \in \mathbb{R}} P(X = x) x \in [0, \inf]$$

Lemma 1.1.1 (Inégalité de Markov). Soit X une VAR positive d'espérance finie. Soit a > 0.

$$P(X \ge a) \le \frac{E(X)}{a}$$

Proof. Soit Y une variable aléatoire telle que : $Y(\omega) = \begin{cases} a \Leftrightarrow X(\omega) \geq a \\ 0 \text{ sinon} \end{cases}$

$$Y \leq X$$

$$E(Y) \leq E(X)$$

$$E(Y) = aP(X \geq a) + 0$$

$$aP(X \geq a) \leq E(X)$$

(*)

Lemma 1.1.2 (Inégalité de Bienaymé-Tchebychev). Soit X une VAR positive de variance finie. Soit $\varepsilon \in \mathbb{R}_+$. Alors :

$$P(|X - E(X) \ge \varepsilon|) \le \frac{V(X)}{\varepsilon^2}$$

Lemma 1.1.3 (Loi faibe des grands nombres). Soit $(X_n)_{n\in\mathbb{N}^*}$ des VAR positives de variance finies, indépendantes et de même loi. Alors, $\forall \varepsilon \gg 0$,

$$P(|\frac{1}{n}\sum_{i=1}^{n}X_{i} - E(X_{i})|) \to 0(n \to \inf)$$

Proof. Laissée en exercice au lecteur

*

Definition 1.1.6 (Convexité). Soit $I \subset \mathbb{R}$, $f: I \to \mathbb{R}$. f est convexe sur I ssi :

$$\forall (x,y) \in I^2, \forall \lambda \in [0,1], f(\lambda x + (1-\lambda y)) \le \lambda f(x) + (1-\lambda)f(y)$$

Theorem 1.1.1 (Inégalité de jensen). Soit I un intervalle, $f: I \to \mathbb{R}$ convexe, $x_1, \ldots, x_n \in I^n$, $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n_+$ t.q. $\sum \lambda_i = 1$ Alors:

$$f(\sum \lambda_i x_i) \le \sum \lambda_i f(x_i)$$

Proof. Laissée en exercice au lecteur.

*

Lemma 1.1.4 (Inégalité sur l'espérance). Soit X à valeurs dans I et $f: I \to \mathbb{R}$ convexe telles que X et f(X) sont d'espérance finie.

$$E(f(X)) \ge f(E(X))$$

Proof. Laissée en exercice au lecteur.

*

1.2 Theorie de l'information

1.2.1 Entropie

Definition 1.2.1 (Entropie). Soit \mathcal{X} fini telle que $|\mathcal{X}| \geq 2$, $p: X \to [0,1]$ une distribution probabiliste. L'entropie de p est :

$$H(p) = -\sum_{x \in \mathcal{X}} p(x) \log(p(x))$$

Theorem 1.2.1 (Inégalité de Gibbs). Soit $p, q: \mathcal{X} \to [0, 1]$ une distribution de probabilités.

$$H(p) \le -\sum_{x \in \mathcal{X}} p(x) \log((x))$$

avec égalité ssi p=q

Proof. Laissée en exercice au lecteur.

*

Lemma 1.2.1 (Proposition). Soit (X_1, \ldots, X_n) des VAR à valeurs dans \mathcal{X} Alors :

$$H(X_1,\ldots,X_n) \le \sum_{i=1} H(X_i)$$

avec égalité s
si les X_i sont indépendants

Proof. Laissée en exercice au lecteur.

*

Theorem 1.2.2 (1er théorème de Shannon). Soit $p:\Xi\to [0,1]$ une distribution de probabilités. On note $D=|\Xi|$. On note $\log=\log_D$. Soit $R\in [0,1]$. Si R

Proof. Laissée en exercice au lecteur.

*