Lecture 5

Routing Protocol

Network-layer functions

Recall: two network-layer functions:

- forwarding: move packets from router's input to appropriate router output
- data plane
- routing: determine route taken by packets from source to destination
- control plane

Per-router control plane

Individual routing algorithm components in each and every router interact with each other in control plane to compute forwarding tables

Routing protocols

Routing protocol goal: determine "good" paths (equivalently, routes), from sending hosts to receiving host, through network of routers

- path: sequence of routers packets will traverse in going from given initial source host to given final destination host
- "good": least "cost", "fastest", "least congested"
- routing: a "top-10" networking challenge!

Graph abstraction of the network

graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

aside: graph abstraction is useful in other network contexts, e.g., P2P, where *N* is set of peers and *E* is set of TCP connections

Graph abstraction: costs

$$c(x,x') = cost of link (x,x')$$

e.g., $c(w,z) = 5$

cost could for example be inversely related to bandwidth,

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z? routing algorithm: algorithm that finds that least cost path

Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms

decentralized:

- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Q: static or dynamic?

static:

routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

A link-state routing algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

notation:

- C(X,y): link cost from node x to y; = ∞ if not direct neighbors
- D(V): current value of cost of path from source to dest. v
- p(V): predecessor node along path from source to
- N': set of nodes whose least cost path definitively known

Dijsktra's algorithm

```
Initialization:
   N' = \{u\}
  for all nodes v
     if v adjacent to u
       then D(v) = c(u,v)
6
     else D(v) = \infty
   Loop
    find w not in N' such that D(w) is a minimum
10 add w to N'
    update D(v) for all v adjacent to w and not in N':
12
       D(v) = \min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Dijkstra's algorithm: example

		$D(\mathbf{v})$	$D(\mathbf{w})$	$D(\mathbf{x})$	D(y)	D(z)
Step	N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	(3,u)	5,u	∞	∞
1	uw	6,w		5,u) 11,W	∞
2	uwx	6,w			11,W	14,x
3	UWXV				10,V	14,X
4	uwxvy					12,y
5 ι	ıwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: another example

St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux ←	2,u	4,x		2,x	∞
	2	uxy <mark>←</mark>	2, u	3,y			4,y
	3	uxyv 🗸		3,y			4,y
	4	uxyvw ←					4,y
	5	uxyvwz 🗲					

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:

resulting forwarding table in u:

destination	link		
V	(u,v)		
X	(u,x)		
у	(u,x)		
W	(u,x)		
Z	(u,x)		

Dijkstra's algorithm, discussion

algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- more efficient implementations possible: O(nlogn)

Bellman-Ford equation (dynamic programming)

```
let
  d_{y}(y) := cost of least-cost path from x to y
then
  d_{x}(y) = \min \{c(x,v) + d_{v}(y)\}
                             cost from neighbor v to destination y
                    cost to neighbor v
            min taken over all neighbors v of x
```

Bellman-Ford example

clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

node achieving minimum is next hop in shortest path, used in forwarding table

- $D_x(y)$ = estimate of least cost from x to y
 - x maintains distance vector $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbb{N}]$
- node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors. For each neighbor v, x maintains

$$\mathbf{D}_{\mathsf{v}} = [\mathsf{D}_{\mathsf{v}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]$$

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$$D_{x}(y) \leftarrow \min_{v} \{c(x,v) + D_{v}(y)\}$$
 for each node $y \in N$

iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

each node:

 $D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$ = $\min\{2+1, 7+0\} = 3$

time

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

"good news travels fast"

 t_0 : y detects link-cost change, updates its DV, informs its neighbors.

 t_1 : z receives update from y, updates its table, computes new least cost to x, sends its neighbors its DV.

 t_2 : y receives z's update, updates its distance table. y's least costs do not change, so y does not send a message to z.

Comparison of LS and DV algorithms

message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

speed of convergence

- LS: O(n²) algorithm requires
 O(nE) msgs
 - may have oscillations
- DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network

Making routing scalable

our routing study thus far - idealized

- all routers identical
- network "flat"
- ... not true in practice

scale: with billions of destinations:

- can't store all destinations in routing tables!
- routing table exchange would swamp links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

Internet approach to scalable routing

aggregate routers into regions known as "autonomous systems" (AS) (a.k.a. "domains")

intra-AS routing

- routing among hosts, routers in same AS ("network")
- all routers in AS must run same intra-domain protocol
- routers in different AS can run different intra-domain routing protocol
- gateway router: at "edge" of its own AS, has link(s) to router(s) in other AS'es

inter-AS routing

- routing among AS'es
- gateways perform interdomain routing (as well as intra-domain routing)

Interconnected ASes

 forwarding table configured by both intraand inter-AS routing algorithm

- intra-AS routing determine entries for destinations within AS
- inter-AS & intra-AS determine entries for external destinations

Why different Intra-, Inter-AS routing?

policy:

- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed scale:
- hierarchical routing saves table size, reduced update traffic

performance:

- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance