CSCI-GA.1180:

Mathematical Techniques for Computer Science Applications New York University, Fall 2016

Instructor: Margaret Wright, mhw@cs.nyu.edu

Grader: Abhishek Nilesh Shah, ans556@nyu.edu

Homework Assignment 1

Assigned Monday, 19 September 2016; due Monday, 26 September 2016

Unless stated otherwise, A is assumed to be a real $m \times n$ matrix, where m may be different from n. If a matrix-vector product or matrix-matrix product is mentioned, assume that the dimensions are compatible.

Whenever calculations are needed to solve a problem, those calculations must be submitted as part of the homework assignment.

Homework must be submitted electronically, by 11:59pm on the due date. Unless express permission has been given in advance by the instructor for a late homework submission, a 30% percent penalty will be deducted for each late day (or part of a late day).

Homework grades are based on the quality and clarity of your explanations and proofs.

Exercise 1.1. In each part, give a specific numerical example of a 2×2 matrix such that every one of its elements is a nonzero integer, and such that the matrix satisfies the given conditions. Explain how you found each answer.

- (a) $A^2 = -I$, where I is the identity matrix;
- (b) $B^2 = 0$, where 0 is the zero matrix;
- (c) CD = -DC, with $CD \neq 0$.

Exercise 1.2. If A and B are nonsingular, prove that their product AB is nonsingular. (Do not use determinants.)

Exercise 1.3. Let

$$A = \left(\begin{array}{rrr} 1 & 8 & 7 \\ 2 & 10 & 8 \\ 3 & 12 & 9 \end{array}\right).$$

Confirm that the three columns of A (a_1 , a_2 , and a_3) are linearly dependent by expressing a_3 as a linear combination of a_1 and a_2 , i.e.,

$$a_3 = \lambda_1 a_1 + \lambda_2 a_2$$
, so that $a_3 - \lambda_1 a_1 - \lambda_2 a_2 = 0$,

where λ_1 and λ_2 are scalars. Give the numerical values of λ_1 and λ_2 and explain how you found them.

Exercise 1.4. Let A be an $n \times n$ real matrix. Prove that there is a unique n-vector x satisfying Ax = b for any nonzero n-vector b if and only if the only solution of Ay = 0 is y = 0. (Prove both the "if" and "only if" results.)

Exercise 1.5.

(a) If A has linearly independent columns and Ax = Ay for vectors x and y, show that x = y. (This result implies that we can "cancel" a matrix with linearly independent columns appearing on the left of both sides of an equation.)

(b) Give a specific numerical example where A has linearly independent rows and Ax = Ay, but $x \neq y$. (The contrast between parts (a) and (b) emphasizes the differing roles of rows and columns in matrix multiplication.)

Exercise 1.6. If A is $m \times n$ and has rank m, what does this imply about the relative sizes of m and n? Explain.

Exercise 1.7. Fredholm's alternative 1 is a famous result that can be expressed in the form of a theorem of the alternative as follows: given any matrix A and vector b of appropriate dimensions, precisely one of the following two relations is true:

- (1) there exists a vector x such that Ax = b, or
- (2) there exists a vector y such that $A^T y = 0$ and $y^T b \neq 0$.

Show that condition (1) and condition (2) are contradictory, i.e., they cannot both be true.

Exercise 1.8. For a given nonzero $m \times n$ matrix A and nonzero m-vector x, assume that x may be written as $x = x_R + x_N$, where x_R is a linear combination of the columns of A, i.e., x lies in the range of A, and $A^T x_N = 0$, i.e., x_N is in the null space of A^T . (The vector x_R is called the range-space portion of x [with respect to A], and x_N is called the null-space portion of x.)

- (a) Show that $x_R^T x_N = 0$.
- (b) Show that x_R and x_N are unique.
- (c) If x_R and x_N are both nonzero, show that they are linearly independent.

Exercise 1.9.

- (a) Let C be a given $m \times n$ matrix with full column rank, and let d be a given m-vector. If there is a solution x to the linear system Cx = d (i.e., if the system is compatible), show that x is unique.
- (b) Use part (a) and the uniqueness of the decomposition of b into its range- and null-space portions to show that if A is an $m \times n$ matrix with rank m, then the system Ax = b is compatible for every $b \in \mathbb{R}^m$. (Which means that every $b \in \mathbb{R}^m$ lies in the range of A.)
- (c) Construct a 2×4 matrix A and a 2×1 right-hand side vector b to show that the result of part (b) may not be true if the columns of A are linearly dependent.

Exercise 1.10.

- (a) Give a 2×5 matrix A such that (i) rank(A) = 2 and (ii) the 2×2 submatrix consisting of the first 2 columns of A has rank 1. Explain how you constructed A, and confirm numerically that properties (i) and (ii) hold.
- (b) Give a nonzero 2-vector b such that b lies in the range of A (i.e., b can be written as a linear combination of the columns of A), and explain how you constructed b.
- (c) Is it possible to find a 2-vector b that does not lie in the range of A? Explain your answer.
- (d) Find a vector c that does not lie in the range of A^T . Explain how you chose c.

 $^{^{1}\}mathrm{Erik}$ Ivar Fredholm, 1866–1927, from Sweden.