COMPUTACIÓN NUMÉRICA

Boletín III. Resolución numérica de ecuaciones no lineales

- 1. Sea la ecuación $2^x = 3$.
 - (a) Comprueba que tiene una única raíz real.
 - (b) Aproxima la raíz de la ecuación utilizando el valor de x_5 obtenido mediante el método de regula falsi a partir del intervalo [1, 2].
- 2. Justifica la existencia de una solución en [1,2] de la ecuación:

$$e^x + 2^{-x} + 2\cos x = 6.$$

Calcula mediante dicotomía una aproximación con un error inferior a 10^{-5} .

3. Dos partículas α_1 y α_2 se mueven en el plano XY con trayectorias respectivas definidas por los valores positivos de x de la siguiente forma:

$$y_1(x) = x^2 - 1$$
 $y_2(x) = \sin x$.

Se pretende aproximar el punto de corte $(c, y_1(c)) = (c, y_2(c))$ de las trayectorias.

- (a) Encuentra un intervalo de longitud unidad que contenga a c.
- (b) Estudia la convergencia del método de iteración funcional en dicho intervalo.
- (c) Acota el error cometido al aproximar c mediante x_4 en el apartado anterior partiendo de $x_0 = 1.5$.
- (d) Calcula el número de iteraciones necesario para aproximar c con un error inferior a 10^{-4} .
- 4. Se considera la ecuación: $\ln(1+x)^x = 1-2x$.
 - (a) Mediante el algoritmo de iteración funcional, construye una sucesión que partiendo de $x_0 \in [0, 1]$ converja a la raíz de la ecuación.
 - (b) Partiendo de $x_0 = 0$, aproxima la raíz con un error inferior a 10^{-4} .
- 5. Sea $g:(0,+\infty)\longrightarrow \mathbb{R}$ la función definida por $g(x)=4-x+\ln x$.
 - (a) Indica una función f cuyos ceros sean puntos fijos de g.
 - (b) Garantiza la existencia de un único punto fijo de g en I=[2,3], y la convergencia del método de iteración funcional simple.
 - (c) Dado $x_0 = e$, acota el error cometido al aproximar el punto fijo de g mediante x_n .
- 6. (a) Dado c > 0, aproxima \sqrt{c} mediante el método de Newton–Raphson. Obtén condiciones sobre a y b para la convergencia global del método en [a, b]. Calcula tres iteraciones para aproximar $\sqrt{2}$ tomando $x_0 = 1$.
 - (b) Realiza tres iteraciones para aproximar $3^{\frac{1}{3}}$ partiendo de $x_0 = 1$.

- 7. Aproxima la solución de $x^3 x 1 = 0$ en [1.3, 1.4] mediante los métodos de:
 - (a) dicotomía, con un error menor que 10^{-5}
 - (b) regula falsi, con un test de error relativo menor que 0.001
 - (c) iteración funcional, con un error inferior a 10^{-5} y $x_0 = 1.3$
 - (d) Newton–Raphson, partiendo de $x_0=1$ y realizando tres iteraciones. ¿Converge el algoritmo en [1,2]?
- 8. Aproximamos, mediante el método de iteración funcional, el punto fijo de $g(x) = \sqrt{3+x}$.
 - (a) Verifica las condiciones de convergencia global en $[0, \infty)$. Acota el error y aproxima el punto fijo con un error inferior a 10^{-4} , partiendo de $x_0 = 20$.
 - (b) Halla x_2 y x_4 , partiendo de $x_0 = 0$. Acota el error en cada caso.
 - (c) Indica cómo se utiliza el método para aproximar el número:

$$\beta = \sqrt{3 + \sqrt{3 + \sqrt{3 + \dots}}}$$

Halla el valor de β y verifica que se cumplen las estimaciones de error obtenidas para x_2 y x_4 .

- 9. (**SEP01**) Sean las funciones f y g dadas por $f(x) = x^3 + 2x^2 + 10x 20$ $y g(x) = 2x^3 + x 2$.
 - (a) Estudia, para la ecuación f(x) = 0, la convergencia del método de Newton-Raphson en [0,3]. Realiza dos iteraciones a partir de $x_0 = 1$.
 - (b) Para la ecuación g(x) = 0, realiza dos iteraciones del algoritmo de regula falsi a partir de $\{a_0 = 0, b_0 = 1\}$. ¿Converge la sucesión constuida?
- 10. Sea $h(x) = \frac{1}{2} \sqrt{1-x}$, $x \in I = [0, 15/16]$.
 - (a) Demuestra que h(x) = 0 tiene una raíz separada en I.
 - (b) Dada $\ell(x) = x \frac{h(x)}{h'(15/16)}$, y utilizando $h'(0) \le h'(x) \le h'(15/16)$, comprueba que existe $k \in (0,1)$ tal que $0 \le \ell'(x) \le k$.
 - (c) Sabiendo que $\ell(I) \subset I$, estudia la convergencia global del método iterativo:

$$x^{i+1} = x^i - \frac{h(x^i)}{h'(15/16)}.$$

- 11. Sea $f:(0,\infty)\longrightarrow \mathbb{R}$ definida por $f(x)=x^2+2x-5+\ln x$.
 - (a) Demuestra que existe, a lo sumo, un valor $\alpha \in \mathbb{R}$ tal que $f(\alpha) = 0$.
 - (b) Localiza un intervalo de la forma [n, n+1], con n natural, que contenga a α .
 - (c) Para aproximar α se plantea el algoritmo:

$$\begin{cases} x_0 \in [n, n+1] \\ x_{k+1} = x_k - \beta f(x_k), & k = 0, 1, \dots \end{cases}$$

Estudia la convergencia del algoritmo en dicho intervalo para $\beta = 1$ y $\beta = 0.2$. Para $\beta = 0.2$, ¿es convergente la sucesión generada a partir de $x_0 = 1.5$? Calcula x_1 y estima el error que se comete al aproximar α mediante x_2 .

- 12. (**DIC99**) Observamos que más de la mitad de una esfera de pino de radio 10 cm se sumerge en el agua debido a su peso. La distancia d > 0 entre el polo sur de la esfera y la línea de flotación verifica la ecuación: $d^3 30d^2 + 2552 = 0$.
 - (a) Separa en un intervalo de la forma [a, a+1], $a \in \mathbb{Z}$, la única raíz d de la ecuación que es solución del problema planteado.
 - (b) Para aproximar d se utiliza el método del punto fijo o iteración funcional simple, iterando mediante:

$$g(x) = \sqrt{\frac{x^3 + 2552}{30}}$$

Razona si el punto fijo de g en [a, a+1] verifica o no la ecuación. Justifica la convergencia del método hacia d en [a, a+1]. Calcula x_3 y estima el error que se comete al aproximar d por el valor de x_3 , partiendo de $x_0 = a$.

- 13. (SEP00) Se desea aproximar el punto de abscisa $\alpha \in [-1,0]$ en el que $f(x) = e^x$ y $g(x) = \lambda x^2$ $(\lambda \in \mathbb{R})$ tienen la misma pendiente.
 - (a) Prueba que $e^x = -2x$ tiene una única raíz $\alpha \in [-1, 0]$.
 - (b) A partir de $x_0 = 0$, aproxima α con un error inferior a 10^{-3} mediante el método de punto fijo (o iteración funcional simple), garantizando previamente la convergencia del método en [-1,0].
- 14. (JUN01) En 1225, Leonardo de Pisa estudió la siguiente ecuación:

$$f(x) = x^3 + 2x^2 + 10x - 20 = 0.$$

Para aproximar su raíz α en [0,2], planteamos el siguiente método iterativo:

$$\begin{cases} x_0 \in [0, 2] \\ x_{k+1} = g(x_k) \end{cases}$$
 con $g(x) = \frac{20 + 10x - 2x^2 - x^3}{20}$

- (a) Estudia la convergencia del algoritmo en [0, 2].
- (b) A partir de $x_0 = 1$, calcula el número de iteraciones necesarias para aproximar la solución con un error absoluto inferior a 10^{-3} . Calcula las dos primeras iteraciones, y acota el error cometido. Justifica si la sucesión $\{x_k\}$ converge a alguna de las raíces de la ecuación.
- 15. (**DIC01**) Se sabe que la función $F(x) = \frac{1}{4}x^2 \ln x$ tiene un mínimo relativo, x_{\min} , en (1,3).
 - (a) ¿Es posible aproximarlo utilizando un algoritmo de iteración funcional para $g(x) = \frac{x}{2} + \frac{1}{x}$, $x \in [1,3]$? Justifica tu respuesta. Si la respuesta anterior es afirmativa, aplica el método para aproximar x_{\min} con un error menor que $\frac{1}{7}$ partiendo de $x_0 = 2$.
 - (b) Utiliza el algoritmo de dicotomía, partiendo de $x_0 = 1$ y $x_1 = 3$, para aproximar x_{\min} con un error menor que $\frac{1}{7}$.

16. (**SEP02**)

- (a) Demuestra que la ecuación $f(x) = x^4 4x^3 1 = 0$ tiene una única raíz, α , en el intervalo [4,5].
- (b) Plantea el método de Newton–Raphson y estudiar su convergencia en [4,5]. Para $x_0=4$, obtén la aproximación x_1 . ¿Es convergente el método para $x_0=6$? En caso afirmativo, indica el orden de convergencia.

(c) Determina si el algoritmo:

$$x_0 \in [4, 5], \qquad x_{k+1} = 4 + \frac{1}{x_k^3}$$

es convergente a la raíz α . Calcula x_2 a partir de $x_0 = 4$ y acota $|x_2 - \alpha|$.

- 17. (**DIC02**) Para determinar las horas de tiempo de cálculo que invierte un ordenador en realizar cierta simulación numérica es preciso resolver la ecuación: $t(e^t + 1) = 1$. Para aproximar la solución,
 - (a) Plantea el método de iteración funcional aplicado a la función $g(t) = (e^t + 1)^{-1}$. Estudia su convergencia en el intervalo [0,1]. Con $t_0 = 0$, obtén el valor de t_2 y estima el error cometido al aproximar la solución con t_2 . ¿Cuál es el orden de convergencia de la sucesión obtenida?
 - (b) Plantea el método de Newton–Raphson para la ecuación $f(t) = t (e^t + 1) 1$. Estudia su convergencia en el intervalo [0, 1/2]. Para $t_0 = 0$, obtén el valor de t_2 . ¿Cuál es el orden del método?
- 18. (**JUN03**) Queremos aproximar las soluciones de la ecuación: $(5-x)e^x = 5$.
 - (a) Prueba que existe una única solución, α , en el intervalo [1,5]. Aproxímala calculando x_3 mediante el método de regula falsi, partiendo de $x_0 = 1$ y $x_1 = 5$. Deja indicado, si fuera necesario, el último cálculo.
 - (b) ¿Es posible aproximar α aplicando un método de iteración funcional simple sobre la función $g_1(x) = \ln\left(\frac{5+xe^x}{5}\right)$ en I = [1,5]? Justifica tu respuesta.
 - (c) ¿Es posible aproximar α aplicando un método de iteración funcional simple sobre la función $g_2(x) = 5 5e^{-x}$ en I = [1, 5]? Justifica tu respuesta.
 - (d) Sabiendo que $g_2(2) > 2$, ¿podemos aproximar α con el método de iteración funcional simple sobre g_2 en I = [2, 5]? Justifica tu respuesta.
- 19. (**DIC03**) Consideramos la ecuación: $xe^{-x} = e^{-3}$.
 - (a) Comprueba que tiene exactamente dos soluciones en IR.
 - (b) Describe un método de iteración funcional simple para aproximar la raíz en el intervalo [0,1]. Tomando $x_0 = 0$, calcula x_2 con ese método y estima el error cometido.
 - (c) Estudia la convergencia del método de Newton-Raphson en el intervalo [0, 1].
 - (d) Estudia la convergencia del método de Newton-Raphson en el intervalo [2, 5]. Calcula x_2 a partir de $x_0 = 2$.
- 20. (**JUN04**) Una empresa del sector informático se plantea invertir 100000 euros en un proyecto tecnológico a tres años, con la previsión de ingresar 10000 euros al final del primer año, 25000 al final del segundo y 94000 al final del tercero. La tasa interna de rendimiento de la inversión, $y \in [0, 1]$, es solución de la ecuación:

$$\frac{10000}{(1+y)} + \frac{25000}{(1+y)^2} + \frac{94000}{(1+y)^3} = 100000.$$

Para aproximar el valor de y se plantea el algoritmo de Newton:

$$y_0 \in [0,1], \ y_{k+1} = y_k - \frac{10(1+y_k)^2 + 25(1+y_k) + 94 - 100(1+y_k)^3}{20(1+y_k) + 25 - 300(1+y_k)^2}.$$

Estudia la convergencia del algoritmo a la tasa interna de rendimiento. En caso de convergencia, indica razonadamente el orden de convergencia. Deduce si existe una única tasa interna de rendimiento.

- 21. (**SEP04**) El tiempo de cálculo de dos algoritmos numéricos viene dado por $c_1(x) = e^x$ y $c_2(x) = 3x$, siendo $x \in [0, 1]$ un parámetro común a ambos algoritmos.
 - (a) Demuestra que existe un único parámetro, $x \in [0, 1]$, para el cual ambos algoritmos conllevan el mismo tiempo de cálculo.
 - (b) Determina cuáles de las siguientes funciones tienen un único punto fijo en [0,1], que coincide con el valor del parámetro que iguala los tiempos de cálculo:

$$g_1(x) = e^{x/3}$$
, $g_2(x) = \frac{e^x - x}{2}$, $g_3(x) = \ln(3x)$.

- (c) Estudia la convergencia global del método de iteración funcional en [0,1] para las funciones anteriores. En los casos convergentes, obtén x_2 a partir de $x_0 = 0$ y estima el error de truncamiento.
- (d) Estudia la convergencia global del método de Newton–Raphson en [0,1] para la función f, dada por $f(x) = c_1(x) c_2(x)$. Calcula x_2 a partir de $x_0 = 0$.
- 22. (DIC04) Sea A > 1. Para aproximar $\alpha = 1/A$ se considera que α es raíz de la ecuación:

$$-Ax^2 + (3A+1)x - 3 = 0.$$

- (a) Estudia la convergencia global del método de Newton-Raphson en [0,1] y en [-1,1]. Para aproximar $\alpha = 1/6$, plantea la sucesión del método con $x_0 = 1/2$, obtén el valor de x_1 e indica si la sucesión (x_k) es convergente.
- (b) Estudia la convergencia a α de la sucesión:

$$x_{k+1} = \frac{3}{3A+1-x_k}, \quad x_0 \in [0,1]$$

23. (**JUN05**) Tras el análisis de inversiones de cierta operación empresarial, se deduce que el rendimiento de la inversión óptima es:

$$f(t) = \ln(1+t) - 3t + 1$$
, $t \ge 0$

donde t es el tiempo en años. El banco que concede el crédito pretende estimar el instante o instantes τ en que el rendimiento de la inversión se anula.

- (a) Determina si la función anterior tiene algún cero real y, si fuera posible, cuántos ceros reales tiene.
- (b) Plantea un método de punto fijo que converja al instante τ .
- (c) Determina el número de iteraciones necesario para aproximar τ , partiendo de $t_0 = 0$, con un error inferior a $\varepsilon = 1/486$.
- 24. (SEP05) Cuando se compra un objeto que al contado vale P euros en n cuotas anuales de A euros cada una, la ecuación que debemos resolver para conocer la tasa de interés $i_* > 0$ es

$$A = P \frac{i_* (1 + i_*)^n}{(1 + i_*)^n - 1}.$$

Compramos un coche que al contado vale 20000 EUR pagando 4000 EUR al año durante 6 años.

(a) ¿Es posible aproximar i_* aplicando el método de punto fijo a la función g, siendo

$$g(i) = \frac{(1+i)^6 - 1}{5(1+i)^6},$$

en el intervalo [0, 1]? Justifica tu respuesta.

(b) Aproxima i_* realizando un paso de Newton–Raphson sobre la función f con

$$f(i) = g(i) - i$$
, $\forall i \in [0, 1]$

partiendo de $i_0 = 1$.

- 25. (**DIC05**) Para la función h dada por $h(x) = \frac{x-2}{e^{x-1}}$ se desea obtener la abscisa, $x = \alpha$, del punto en el que la recta tangente a la gráfica de h es paralela a la bisectriz del primer cuadrante.
 - (a) Demuestra que α es raíz de la ecuación $f(x) = e^{x-1} + x 3 = 0$.
 - (b) Demuestra que α es raíz separada de la ecuación anterior en el intervalo I = [0, 2].
 - (c) Justifica la convergencia global del método de Newton–Raphson en I. Obtén una aproximación de α en I, realizando una iteración del método de Newton–Raphson para f(x) = 0 partiendo de $x_0 = 0$.
 - (d) Indica el orden de convergencia del método anterior, justificándolo.
 - (e) Estudia la convergencia del método de iteración funcional simple para aproximar α en el intervalo I mediante la función de iteración dada por $g(x) = 1 + \ln(3 x)$.
- 26. (**JUN06**) Se desea calcular el punto de corte α ($\alpha > 1$) de la bisectriz del primer cuadrante y la curva dada por $g(x) = x \ln(x^2 + 1)$.
 - (a) Demuestra que α es solución de la ecuación f(x) = 0, con $f(x) = \ln(x^2 + 1) 1$.
 - (b) Para aproximar el valor de α , plantea un algoritmo de Newton–Raphson para f en el intervalo [1,2], justificando previamente su convergencia, y calcula x_1 a partir de $x_0 = 1$.

 Nota: Si lo necesitas, utiliza como valores de $\ln(2)$ y $\ln(5)$, respectivamente, las aproximaciones 0.7 y 1.6.
 - (c) Dada la función f del apartado (a), obtén la expresión del polinomio de Lagrange, mediante diferencias divididas, que interpola a f en los extremos del intervalo [1,2]. Utiliza la información que proporciona la tabla de diferencias divididas para hallar un valor aproximado de α .
- 27. (**SEP06**) Sea la ecuación $f(x) = x^3 6x + 1 = 0$.
 - (a) Comprueba que tiene una raíz separada en [0, 1/2] y otra raíz separada en [2, 3].
 - (b) Estudia la convergencia global del método de Newton–Raphson en [0,1/2]. Calcula x_2 a partir de $x_0=0$. ¿Es convergente la sucesión x_k ? En caso afirmativo, indica razonadamente el orden de convergencia del método.
 - (c) Estudia la convergencia del algoritmo de iteración funcional simple:

$$x_{k+1} = \frac{1 + x_k^3}{6}, \quad x_0 \in [0, 1/2].$$

Calcula x_2 a partir de $x_0 = 0$. ¿Es convergente la sucesión x_k ? ¿Converge a la solución de f(x) = 0? En caso afirmativo, acota el error entre x_2 y la solución de f(x) = 0, y justifica cuál es el orden de convergencia del método.

(d) Estudia la convergencia global del algoritmo del apartado anterior en el intervalo [2, 3].

- 28. (**DIC06**) Sea $F \in C^2([a, b])$ tal que F(a) < 0, F(b) > 0 y $0 < k_1 < F'(x) < k_2$, $\forall x \in [a, b]$, siendo k_1 y k_2 constantes.
 - (a) Prueba que F tiene una raíz separada en el intervalo [a,b].
 - (b) Sabiendo que F'' > 0 en [a, b], obtén una condición sobre k_1 para que el algoritmo de Newton sea convergente.
 - (c) Construimos la sucesión x_n dada por:

$$\begin{cases} x_0 \in [a, b] \\ x_{n+1} = g(x_n) \end{cases}$$

donde g(x) = x + MF(x), con M < 0.

- i. Prueba que los puntos fijos de la función g son raíces de la función F y recíprocamente.
- ii. Demuestra que si $\frac{-1}{k_2} < M$, entonces g es creciente en [a, b].
- iii. Prueba que si se verifica la condición $\frac{-1}{k_2} < M$, el algoritmo es convergente.