Data Sheet

do not submit

$\mathbf{Graph}\ K$

Union by Rank

The current state S of the union by rank representation of disjoint subsets of the set of vertices {A, B, C, D, E, F, G, H} is given by

Sequence of edges: union(B, C) union(F, G) union(A, H) union(A, F)

CIS	3223	HW	7

Name:

Dr Anthony Hughes

Temple ID (last 4 digits:

1 (20 pts) For the graph K construct a hash table, then sort the edges in each bucket using alphabetical ordering.

Edge List (Hash Table)

Sorted Edge List (Hash Table)

(a) Construct a minimum cost spanning tree by using the edges in each bucket moving from left to right starting with bucket with the lowest value:

 $\left(\mathbf{B}\right)$

(D)

F

 $\left(\mathbf{A}\right)$

(z)

(C)

 \mathbf{E}

 $\left(\mathbf{G}\right)$

Minimum Cost

(b) Construct a maximum cost spanning tree by using the edges in each bucket moving from left to right starting with bucket with the highest value:

В

 \bigcirc D

 $\widehat{\mathbf{F}}$

 \widehat{A}

(z)

 $\overline{\text{C}}$

E

 \bigcirc

Maximum Cost

2 (15 pts) (a) For the state S, draw the corresponding trees representing the sets.

(b) Consider the following **SEQUENCE** of operations. Draw the corresponding trees representing the sets after each of the operations (use alphabetical order.

Specify the current state of pi and rank after the sequence has been executed.

 $\texttt{union(B, C):} \quad (B,\,C) \xrightarrow{pi} (B,\,D) \xrightarrow{rank} (0,\,1) \quad \, Set \; pi(B) = D$

union(F, G)

рi

A	В	\mathbf{C}	D	E	\mathbf{F}	G	н	Ι

rank

A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	Н	Ι

3 Use induction to show that if a subtree T constructed in the rank by union procedure has rank m, then T contains at least 2^m nodes.

First verify this result using the trees drawn after the specified sequence specified in the previous question has been completed.

rank									
2^{rank}									
nodes									
Verified									
root	A	В	C	D	E	F	G	Н	Ι

Base case: m = 0:

T has one node

$$2^k = 2^0 = 1$$

So true in this case.

Inductive case: Assume true for for m = k. Show true for m = k + 1

[Hint: Trace back to when the rank of a subtree is increased?]

4 (a) Sort the following edge list of the undirected graph G given in s-t-w format (scan from left to right and place edges in buckets, then sort buckets alphabetically).

 \mathbf{E} D В \mathbf{C} D В \mathbf{E} G \mathbf{C} \mathbf{G} H \mathbf{C} \mathbf{E} \mathbf{E} 3 5 5 3 5] 4 4 5 3

Edge List (Hash Table)

		0	`		,	
3	AC	1		 		
4	BE		 	·	· 	г
5		 !	 	 !	 	 !

Buckets sorted alphabetically

(b) Implement the union by rank algorithm to process the edges of the sorted list.

[Delete a node and join to parent – redraw when joining two roots with non-zero rank]

рi

A	В	C	D	E	\mathbf{F}	H	G

rank

A	В	C	D	E	\mathbf{F}	Н	G

Which edges were discarded?