\mathcal{A} -extreme points of generalized state spaces

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences email:jenca@mat.savba.sk

Draft.

1 Introduction

This work is inspired by the works [3, 4] on C*-extreme generalized states and motivated by the results in [5] on extreme process POVMs.

2 Preliminaries

Let \mathcal{B} be a unital C*-algebra and let $B(\mathcal{K})$ be the algebra of bounded linear operators on a finite dimensional Hilbert space \mathcal{K} . Let us denote by $S_{\mathcal{K}}(\mathcal{B})$ the generalized state space of \mathcal{B} , that is, the set of unital completely positive (ucp) maps $\mathcal{B} \to B(\mathcal{K})$, and let $\Phi \in S_{\mathcal{K}}(\mathcal{B})$.

Let $\Phi \in S_{\mathcal{K}}(\mathcal{B})$ and let $\Phi = V^*\pi V$ be a minimal Stinespring representation of Φ , that is, $\pi : \mathcal{B} \to B(\tilde{\mathcal{H}})$ is a representation of \mathcal{B} on some Hilbert space $\tilde{\mathcal{H}}$ and $V : \mathcal{K} \to \tilde{\mathcal{H}}$ is an isometry, $V^*V = I_{\mathcal{K}}$, such that $\tilde{\mathcal{H}} = [\pi(\mathcal{B})V\mathcal{K}]$. Moreover, we will denote the commutant $\pi(\mathcal{B})'$ in $B(\tilde{\mathcal{H}})$ by \mathcal{B}_0 , then \mathcal{B}_0 is a von Neumann subalgebra in $B(\tilde{\mathcal{H}})$. In the sequel, we will use the following three important theorems due to Arveson.

Theorem 1. [1, Theorem 1.4.2] Let $\Psi : \mathcal{B} \to B(\mathcal{K})$ be a completely positive map. Then $\Psi \leq \Phi$ (in the sense that $\Phi - \Psi$ is completely positive) if and only if there is a (unique) positive contraction $T \in \mathcal{B}_0$, such that $\Psi = \Phi_T := V^*\pi(\cdot)TV$.

Theorem 2. [1, Corollary 1.3.2] There is a canonical *-isomorphism between the von Neumann algebras $\Phi(\mathcal{B})' \subseteq B(\mathcal{K})$ and $\mathcal{B}_0 \cap \{VV^*\}'$. This isomorphism is given by the restriction of the map $\Phi^C : \mathcal{B}_0 \to B(\mathcal{K}), T \mapsto V^*TV$.

Theorem 3. [1, Theorem 1.4.6] The map Φ is an extreme point of $S_{\mathcal{K}}(\mathcal{B})$ if and only if the map Φ^{C} is injective.

Note that the uniqueness in Theorem 1 implies that the map Φ^C is faithful, that is, $\Phi^C(T) = 0$ for some $T \geq 0$ implies T = 0. The right multiplicative domain of Φ^C is defined as

$$\mathcal{M}_R := \{ T \in \mathcal{B}_0, \Phi^C(T^*T) = \Phi^C(T)^*\Phi^C(T) \}$$

Then \mathcal{M}_R is a subalgebra in \mathcal{B}_0 (not necessarily self-adjoint) and

$$\mathcal{M}_R = \{ T \in \mathcal{B}_0, \Phi^C(ST) = \Phi^C(S)\Phi^C(T), \ \forall S \in \mathcal{B}_0 \},$$

see e.g. [6]. Consequently, the restriction $\Phi^C|_{\mathcal{M}_R}$ is a homomorphism. In fact, since Φ^C is faithful, $\Phi^C|_{\mathcal{M}_R}$ is an isomorphism onto its range, so that \mathcal{M}_R is finite dimensional.

Lemma 1. Let $T \in \mathcal{B}_0$. The following are equivalent.

- (i) The subspace VK is invariant under T
- (ii) TV = VA for some $A \in B(\mathcal{K})$
- (iii) $T \in \mathcal{M}_R$

Proof. Suppose (i) and let $\xi \in \mathcal{K}$. Since $V\mathcal{K}$ is finite dimensional, there is some $\eta \in \mathcal{K}$ such that $TV\xi = V\eta$ and since V is an isometry, we must have $\eta = V^*TV\xi = \Phi^C(T)\xi$. Hence

$$TV\xi = V\eta = V\Phi^C(T)\xi.$$

Since this is true for all $\xi \in \mathcal{K}$, we have (ii), with $A = \Phi^{C}(T)$.

Suppose (ii), then we must have $A = \Phi^{C}(T)$ and

$$\Phi^C(T^*T) = V^*T^*TV = A^*V^*VA = A^*A = \Phi^C(T)^*\Phi^C(T),$$

so that $T \in \mathcal{M}_R$.

Finally, suppose (iii) and let $P_V = VV^*$ be the projection onto VK. From $\Phi^C(T^*T) = \Phi^C(T)^*\Phi^C(T)$, it is easy to see that $P_VT^*(I-P_V)TP_V = 0$, hence $TP_V = P_VTP_V$. This clearly implies (i).

The C*-subalgebra $\mathcal{M} := \mathcal{M}_R^* \cap \mathcal{M}_R \subseteq \mathcal{B}_0$ is called the *multiplicative* domain of Φ^C . Since the elements of \mathcal{M} are reduced by P_V , \mathcal{M} is exactly the set of operators in \mathcal{B}_0 that commute with P_V . Theorem 2 now becomes $\Phi(\mathcal{B})' = \Phi^C(\mathcal{M})$.

3 \mathcal{A} -convexity and \mathcal{A} -extreme maps

Let $\mathcal{A} \subseteq B(\mathcal{K})$ be a C*-subalgebra and let $\Phi, \Psi \in S_{\mathcal{K}}(\mathcal{B})$. Then Φ and Ψ are \mathcal{A} -equivalent, $\Phi \sim_{\mathcal{A}} \Psi$, if there is a unitary $U \in \mathcal{A}$ such that $\Phi = U^*\Psi U$. We say that Φ is \mathcal{A} -irreducible if the only projections in \mathcal{A} commuting with all operators in the range of Φ are 0 and I. If $\Phi_1, \ldots, \Phi_m \in S_{\mathcal{K}}(\mathcal{B})$, then Φ is an \mathcal{A} -convex combination of Φ_1, \ldots, Φ_m if there are some $X_1, \ldots, X_m \in \mathcal{A}$, such that $\sum_i X_i^* X_i = I$ and

$$\Phi(B) = \sum_{i} X_i^* \Phi_i(B) X_i, \quad \forall B \in \mathcal{B}.$$

An \mathcal{A} -convex combination is called *proper* if all the coefficients are invertible. The set $S_{\mathcal{K}}(\mathcal{B})$ is obviously \mathcal{A} -convex, in the sense that it contains all \mathcal{A} -convex combinations of its elements. Note that the notion of \mathcal{A} -convexity contains both the usual convexity when $\mathcal{A} = \mathbb{C}I$, and \mathbb{C}^* -convexity when $\mathcal{A} = B(\mathcal{K})$. The \mathcal{A} -extreme elements in $S_{\mathcal{K}}(\mathcal{B})$ are defined similarly as \mathbb{C}^* -extreme elements. Namely, whenever Φ is a proper \mathcal{A} -convex combination of Φ_1, \ldots, Φ_m , then we must have $\Phi \sim_{\mathcal{A}} \Phi_i$ for all i. Similarly to Theorem 3, we are going to characterize the \mathcal{A} -extreme points by some properties of the map Φ^C .

Let us denote
$$\mathcal{T}_{\mathcal{A}} := (\Phi^C)^{-1}(\mathcal{A}), \ \mathcal{T}_{\mathcal{A}}^+ = \mathcal{T}_{\mathcal{A}} \cap \mathcal{B}_0^+$$
 and let

$$\mathcal{M}_{R,A} := \mathcal{M}_R \cap \mathcal{T}_A.$$

Since the restriction of Φ^C to \mathcal{M}_R is a homomorphism and \mathcal{A} is a subalgebra, $\mathcal{M}_{R,\mathcal{A}}$ is a subalgebra in \mathcal{M}_R and $\mathcal{M}_{\mathcal{A}} = \mathcal{M}_{R,\mathcal{A}}^* \cap \mathcal{M}_{R,\mathcal{A}}$ is a C*-subalgebra in \mathcal{M} , such that

$$\Phi^{C}(\mathcal{M}_{\mathcal{A}}) = \Phi^{C}(\mathcal{M}) \cap \mathcal{A} = \Phi(\mathcal{B})' \cap \mathcal{A}.$$

The following is now immediate.

Corollary 1. Φ is A-irreducible if and only if $\mathcal{M}_A = \mathbb{C}I$.

Lemma 2. The map Φ^C restricted to $\mathcal{M}_{R,\mathcal{A}}$ is an isomorphism onto the subalgebra

$$\{L \in \mathcal{A}, \exists t \ge 0 : L^* \Phi L \le t \Phi\}$$

Proof. We already noted that Φ^C restricted to $\mathcal{M}_{R,\mathcal{A}}$ is an isomorphism. Let now $T \in \mathcal{M}_{R,\mathcal{A}}$ and $L = \Phi^C(T)$. Then by Lemma 1 (ii), TV = VL and we have

$$L^*\Phi(B)L = L^*V^*\pi(B)VL = V^*T^*T\pi(B)V \le ||T||^2\Phi(B).$$

Conversely, let $L \in \mathcal{A}$ and $t \geq 0$ be such that $L^*\Phi L \leq t\Phi$. By Theorem 1, there is some $0 \leq T \leq tI$ in \mathcal{B}_0 such that $L^*\Phi L = \Phi_T$. Let us define the map $U: \tilde{H} \to \tilde{H}$ by

$$U\pi(B)T^{1/2}V\xi = \pi(B)VL\xi, \quad B \in \mathcal{B}, \ \xi \in \mathcal{K}$$

and put $U\eta = 0$ for $\eta \in [T\tilde{H}]^{\perp}$. Then since

$$||U(\pi(B)T^{1/2}V\xi + \eta)||^2 = ||\pi(B)VL\xi||^2 = \langle \xi, L^*\Phi(B)L\xi \rangle = \langle \xi, \Phi_T(B)\xi \rangle$$
$$= ||\pi(B)T^{1/2}V\xi||^2 \le ||\pi(B)T^{1/2}V\xi + \eta||^2,$$

U extends to a partial isometry on \tilde{H} , with initial space the range of T. Moreover, let $s(T) \in \mathcal{B}_0$ be the range projection of T, then since we have

$$U\pi(B)[\pi(B')T^{1/2}V\xi] = \pi(B)U[\pi(B')T^{1/2}V\xi]$$

for all $B, B' \in \mathcal{B}$ and $\xi \in \mathcal{K}$, we obtain

$$U\pi(B) = Us(T)\pi(B) = U\pi(B)s(T) = \pi(B)Us(T) = \pi(B)U$$

for all $B \in \mathcal{B}$, so that $U \in \mathcal{B}_0$. Put now $T_0 = UT^{1/2}$, then $T_0 \in \mathcal{B}_0$ and we have

$$T_0V\xi = UT^{1/2}V\xi = VL\xi, \quad \xi \in \mathcal{K},$$

so that $T_0 \in \mathcal{M}_R$ and $\Phi^C(T_0) = V^*T_0V = L \in \mathcal{A}$.

We now obtain a first characterization of A-extreme generalized states (cf. [4, Corollary 3.3]).

Proposition 1. Φ is A-extreme if and only if any $T \in \mathcal{T}_A^+$ has the form $T = T_0^* T_0$ for some $T_0 \in \mathcal{M}_{R,A}$.

Proof. Suppose that Φ is \mathcal{A} -extreme. Note that then Φ is also extreme in the usual sense, this is proved exactly as [3, Proposition 1.1] in the C*-extreme case. By Theorem 3, Φ^C is injective and therefore \mathcal{B}_0 is finite dimensional.

Let $T \in \mathcal{T}_{\mathcal{A}}^+$, we may assume that $0 \leq T \leq I$. Let $\Phi^C(T) = K \in \mathcal{A}$ and suppose first that K is invertible. Then for any $\lambda \in (0,1)$, both λK and $I - \lambda K$ are positive and invertible. Let

$$\Phi_1 = (\lambda K)^{-1/2} \Phi_{\lambda T} (\lambda K)^{-1/2}, \quad \Phi_2 = (I - \lambda K)^{-1/2} \Phi_{I - \lambda T} (I - \lambda K)^{-1/2}$$

Then both Φ_1 , Φ_2 are ucp maps and

$$\Phi = (\lambda K)^{1/2} \Phi_1(\lambda K)^{1/2} + (I - \lambda K)^{1/2} \Phi_2(I - \lambda K)^{1/2}$$

is a proper A-convex combination. Hence there is a unitary $U \in A$ such that $\Phi_1 = U^*\Phi U$. It follows that

$$\Phi_{\lambda T} = (\lambda K)^{1/2} \Phi_1(\lambda K)^{1/2} = (\lambda K)^{1/2} U^* \Phi U(\lambda K)^{1/2} = L^* \Phi L,$$

where $L = U(\lambda K)^{1/2} \in \mathcal{A}$. By Lemma 2, there is some $S \in \mathcal{M}_{R,\mathcal{A}}$, such that $\Phi^{C}(S) = L$. Put $T_0 := \lambda^{-1/2}S$, then

$$\Phi_{T_0^*T_0} = \lambda^{-1}L^*\Phi L = \Phi_T$$

and the uniqueness part of Theorem 1 implies that $T_0^*T_0 = T$.

In the general case, for any $\epsilon > 0$, $K + \epsilon I$ is invertible, $T_{\epsilon} := T + \epsilon I \in \mathcal{T}_{\mathcal{A}}^+$ and $\Phi^C(T_{\epsilon}) = K + \epsilon I$. By the first part of the proof, there is some $T_{0,\epsilon} \in \mathcal{M}_{R,\mathcal{A}}$ such that $T_{0,\epsilon}^* T_{0,\epsilon} = T_{\epsilon}$. Since $||T_{0,\epsilon}||^2 = ||T_{\epsilon}|| \le 1 + \epsilon$ and \mathcal{B}_0 is finite dimensional, there is some sequence $\epsilon_n \to 0$ such that $T_{0,n} := T_{0,\epsilon_n}$ converges to some operator $T_0 \in \mathcal{M}_{R,\mathcal{A}}$ and

$$T = \lim_{n} T_{\epsilon_n} = \lim_{n} T_{0,n}^* T_{0,n} = T_0^* T_0.$$

For the converse, let $\Phi = \sum_i X_i^* \Phi_i X_i$ be a proper \mathcal{A} -convex combination of $\Phi_i \in S_{\mathcal{K}}(\mathcal{B})$. Fix any i, then $X_i^* \Phi_i X_i \leq \Phi$, so that by Theorem 1, there is some $T \in \mathcal{B}_0^+$ such that $\Phi_T = X_i^* \Phi_i X_i$. Since

$$\Phi^C(T) = \Phi_T(I) = X_i^* X_i \in \mathcal{A},$$

we have $T \in \mathcal{T}_{\mathcal{A}}^+$ and by the assumption, $T = T_0^* T_0$ for some $T_0 \in \mathcal{M}_{R,\mathcal{A}}$, so that

$$X_i^* \Phi_i X_i = \Phi_{T_0^* T_0} = L^* \Phi L,$$

where $L = \Phi^C(T_0)$. We have $L^*L = \Phi^C(T_0)^*\Phi^C(T_0) = \Phi^C(T) = X_i^*X_i$. It follows that $U_i := LX_i^{-1}$ is a unitary element in \mathcal{A} and $\Phi_i = U_i^*\Phi U_i$.

4 \mathcal{A} -extreme and \mathcal{A} -pure maps.

We will say that Φ is \mathcal{A} -pure if it is \mathcal{A} -extreme and \mathcal{A} -irreducible.

Proposition 2. Φ is A-pure if and only if $\mathcal{T}_A = \mathbb{C}I$.

Proof. Assume that Φ is \mathcal{A} -pure and let $T \in \mathcal{T}_{\mathcal{A}}$. Since $\mathcal{T}_{\mathcal{A}}$ is a self-adjoint subspace containing the unit, it is clear that we may suppose that $0 \leq T \leq I$. By Proposition 1, there are some $T_0, T_1 \in \mathcal{M}_{R,\mathcal{A}}$ such that $T_0^*T_0 = T$ and $T_1^*T_1 = I - T$. Let $L_i = \Phi^C(T_i)$, then $\Phi_{T_i^*T_i} = L_i^*\Phi L_i$ and therefore

$$\Phi = L_0^* \Phi L_0 + L_1^* \Phi L_1.$$

Let $\phi_L : B(\mathcal{K}) \to B(\mathcal{K})$ be defined by $A \mapsto L_0^*AL_0 + L_1^*AL_1$, then ϕ_L is a ucp map and $\Phi(\mathcal{B})$ is contained in the set \mathcal{F} of its fixed points. It is clear that $\mathcal{A}' \subseteq \mathcal{F}$, so that $\mathcal{F}' \subseteq \mathcal{A}$, but since Φ is \mathcal{A} -irreducible, this implies that $\mathcal{F}' = \mathbb{C}I$. Using [2] (see the proof of Theorem 2.1.1 and Remark 2), it can be shown that this implies $\phi_L = id$, so that there are some $z_i \in \mathbb{C}$, $|z_0|^2 + |z_1|^2 = 1$, and unitaries U_i such that $L_i = z_i U_i$. Hence $\Phi^C(T) = L_0^* L_0 = |z_0|^2 I$ and since Φ^C is injective, $T \in \mathbb{C}I$.

Conversely, if $\mathcal{T}_{\mathcal{A}} = \mathbb{C}I$, then Φ is \mathcal{A} -pure by Proposition 1 and Corollary 1.

We will now show that any \mathcal{A} -extreme map can be decomposed to a direct sum of \mathcal{A} -pure maps.

Lemma 3. Let Φ be A-extreme and let $T \in \mathcal{T}_{A}^{+}$ be such that $s(T) \leq P \in \mathcal{M}_{A}$. Then there is some $T_0 \in \mathcal{M}_{R,A} \cap P\mathcal{B}_0 P$, such that $T = T_0^*T_0$.

Proof. Since $T + P^{\perp} \in \mathcal{T}_{\mathcal{A}}^+$, there is some $S_0 \in \mathcal{M}_{R,\mathcal{A}}$ such that $S_0^* S_0 = T + P^{\perp}$. Let

$$S_0 = U(T + P^{\perp})^{1/2} = U(T^{1/2} + P^{\perp})$$

be the polar decomposition. Then $UT^{1/2} = S_0P$ and $UP^{\perp} = S_0P^{\perp}$ are in $\mathcal{M}_{R,\mathcal{A}}$.

Let $P' = \Phi^C(P)$, then P' is a projection in \mathcal{A} , that commutes with all operators in the range of Φ . Put $K := \Phi^C(T)$, then K is a positive element in \mathcal{A} with support $s(K) \leq P'$. We have $\Phi^C(S_0) = V(K^{1/2} + (P')^{\perp})$, with V a unitary element in \mathcal{A} . Then

$$\Phi^{C}(UP^{\perp}) = \Phi^{C}(S_{0}P^{\perp}) = \Phi^{C}(S_{0})(P')^{\perp} = V(P')^{\perp}$$

and similarly

$$\Phi^C(UT^{1/2}) = VK^{1/2}.$$

From

$$\Phi_T + \Phi_{P^{\perp}} = \Phi_{S_0^* S_0} = (K^{1/2} + (P')^{\perp}) V^* \Phi V (K^{1/2} + (P')^{\perp}),$$

it is easy to see that $(P')^{\perp}$ commutes with the range of $V^*\Phi V$, equivalently, $VP'V^*$ commutes with the range of Φ . Hence there is some projection $Q \in \mathcal{M}_{\mathcal{A}}$ such that $\Phi^C(Q) = VP'V^*$. Now observe that

$$\Phi^{C}(QUP^{\perp}) = \Phi^{C}(Q)\Phi^{C}(UP^{\perp}) = VP'V^{*}V(P')^{\perp} = 0,$$

and since Φ^C is injective, $QUP^{\perp}=0$. This implies $QUP^{\perp}U^*=0$, that is, $UP^{\perp}U^*\leq Q^{\perp}$. Using this and Schwarz inequality, we obtain

$$V(P')^{\perp}V^* = \Phi^C(Q^{\perp}) \ge \Phi^C(UP^{\perp}U^*) \ge \Phi^C(UP^{\perp})\Phi^C(UP^{\perp})^* = V^*(P')^{\perp}V$$

It follows that $UP^{\perp} \in \mathcal{M}_{\mathcal{A}}$, so that P^{\perp} and $UP^{\perp}U^*$ are equivalent projections in $\mathcal{M}_{\mathcal{A}}$. Since $\mathcal{M}_{\mathcal{A}}$ is finite dimensional, there is a unitary $U_0 \in \mathcal{M}_{\mathcal{A}}$, such that $U_0PU_0^* = UPU^*$. Putting $T_0 = U_0^*UT^{1/2}$ now gives the result.

The following result is now easy to prove.

Proposition 3. Let Φ be \mathcal{A} -extreme and let $P \in \mathcal{M}_{\mathcal{A}}$ be a projection. Then $\Phi_P : \mathcal{B} \to B(P'\mathcal{K})$ is $P'\mathcal{A}P'$ -extreme, where $P' = \Phi^C(P)$.

Proof. Notice that if $\tilde{\pi}: \mathcal{B} \to B(P\tilde{H})$, $\tilde{\pi}:=\pi P$, then $\Phi_P=(PV)^*\tilde{\pi}(PV)$ is a minimal Stinespring representation and $\Phi_P^C=\Phi^C(P\cdot P)=P'\Phi^CP'$. We have $\tilde{\pi}(\mathcal{B})'=P\mathcal{B}_0P$ and it is easy to see that for $T\in P\mathcal{B}_0P$, $\Phi_P^C(T)\in P'\mathcal{A}P'$ if and only if T=PSP for some $S\in \mathcal{T}_{\mathcal{A}}$ and that $\Phi_P^C(T^*T)=\Phi_P^C(T)^*\Phi_P^C(T)$ if and only if T=PSP with $S\in \mathcal{M}_R$. Consequently, the corresponding subsets for Φ_P^C are

$$\mathcal{T}_{P'\mathcal{A}P'} = P\mathcal{T}_{\mathcal{A}}P, \quad \mathcal{T}_{P'\mathcal{A}P'}^+ = P\mathcal{T}_{\mathcal{A}}^+P \quad \text{and} \quad \mathcal{M}_{R,P'\mathcal{A}P'} = P\mathcal{M}_{R,\mathcal{A}}P.$$

The statement now follows by Proposition 1 and Lemma 3.

Theorem 4. Let Φ be A-extreme, then there is a maximal orthogonal family of projections $P'_1, \ldots, P'_N \in A$ and $P'_iAP'_i$ -pure ucp maps $\Phi_i : \mathcal{B} \to B(P'_iK)$, such that

$$\Phi(B) = \bigoplus_i \Phi_i(B), \quad B \in \mathcal{B}.$$

Proof. Let P_1, \ldots, P_N be a maximal orthogonal family of minimal projections in $\mathcal{M}_{\mathcal{A}}$ and let $P'_i = \Phi^C(P_i)$, $\Phi_i = \Phi_{P_i}$. Then it is clear that Φ_i are ucp maps $\mathcal{B} \to B(P'_i\mathcal{K})$ and $\Phi = \bigoplus_i \Phi_i$. By Proposition 3, Φ_i is $P'_i\mathcal{A}P'_i$ -extreme and since P_i is a minimal projection, $\mathcal{M}_{P'_i\mathcal{A}P'_i} = P_i\mathcal{M}_{\mathcal{A}}P_i = \mathbb{C}P_i$. By Corollary 1, Φ_i is $P'_i\mathcal{A}P'_i$ -irreducible.

5 A characterization of A-extreme maps

In this section, we further investigate the structure of $\mathcal{M}_{R,\mathcal{A}}$, $\mathcal{M}_{\mathcal{A}}$ and $\mathcal{T}_{\mathcal{A}}$ for \mathcal{A} -extreme maps.

5.1 Some special cases

We first find a characterization of A-extreme maps for abelian A.

Lemma 4. Let Φ be A-extreme. Then $\mathcal{T}_{A} \cap \mathcal{M}'_{A} = \mathcal{Z}(\mathcal{M}_{A})$, where $\mathcal{Z}(\mathcal{M}_{A})$ is the center of \mathcal{M}_{A} .

Proof. Let $\{P_1, \ldots, P_N\}$ be a maximal orthogonal family of minimal projections in $\mathcal{M}_{\mathcal{A}}$ and let $P'_i = \Phi^C(P_i)$, $i = 1, \ldots, N$. Since Φ_{P_i} is $P'_i \mathcal{A} P'_i$ -pure, we have $P_i \mathcal{T}_{\mathcal{A}} P_i = \mathbb{C} P_i$. Hence if $T \in \mathcal{T}_{\mathcal{A}} \cap \mathcal{M}'_{\mathcal{A}}$, we have

$$T = \sum_{i} P_{i} T P_{i} = \sum_{i} z_{i} P_{i} \in \mathcal{M}_{\mathcal{A}}.$$

It follows that $\mathcal{T}_{\mathcal{A}} \cap \mathcal{M}'_{\mathcal{A}} \subseteq \mathcal{Z}(\mathcal{M}_{\mathcal{A}}) \subseteq \mathcal{T}_{\mathcal{A}} \cap \mathcal{M}'_{\mathcal{A}}$.

Lemma 5. Assume that Φ is extreme (in the usual sense) in $S_{\mathcal{K}}(\mathcal{B})$. Let \mathcal{A}' be the commutant of \mathcal{A} . Then $\mathcal{T}_{\mathcal{A}'} \subseteq \mathcal{M}'_{\mathcal{A}}$.

Proof. Let $T \in \mathcal{T}_{\mathcal{A}'}$, $S \in \mathcal{M}_{\mathcal{A}}$. Then

$$\Phi^C(TS) = \Phi^C(T)\Phi^C(S) = \Phi^C(S)\Phi^C(T) = \Phi^C(ST).$$

Since Φ is extreme, Φ^C is injective, so that ST = TS and $T \in \mathcal{M}'_{\mathcal{A}}$.

Proposition 4. Let $A \subseteq B(K)$ be abelian. Then Φ is A-extreme if and only if $\mathcal{T}_A = \mathcal{M}_A$.

Proof. Assume that Φ is \mathcal{A} -extreme. Since $\mathcal{A} \subseteq \mathcal{A}'$, we have $\mathcal{T}_{\mathcal{A}} \subseteq \mathcal{T}_{\mathcal{A}'}$ and by Lemma 5, $\mathcal{T}_{\mathcal{A}'} \subseteq \mathcal{M}'_{\mathcal{A}}$. Using Lemma 4, we obtain

$$\mathcal{M}_{\mathcal{A}} \subseteq \mathcal{T}_{\mathcal{A}} = \mathcal{T}_{\mathcal{A}} \cap \mathcal{M}'_{\mathcal{A}} = \mathcal{Z}(\mathcal{M}_{\mathcal{A}}) \subseteq \mathcal{M}_{\mathcal{A}}.$$

The converse is clear from Proposition 1.

Lemma 6. Let Φ be \mathcal{A} -extreme and let $T_0 \in \mathcal{M}_{R,\mathcal{A}}$. Then there are partial isometries $W_1, W_2 \in \mathcal{M}_{R,\mathcal{A}}$ such that $W_1W_1^* = \mathcal{R}(T_0)$, $W_2W_2^* = Ker(T_0)$ and $W_1^*W_1 = (W_2^*W_2)^{\perp} \in \mathcal{M}_{\mathcal{A}}$.

Proof. Let $T = T_0^*T_0$ and let $T_0 = UT^{1/2}$ be the polar decomposition. For any $\lambda \in (0,1)$, $(1-\lambda)T + \lambda I$ is an invertible element in $\mathcal{T}_{\mathcal{A}}^+$. By Proposition 1, there is some (invertible) $T_{\lambda} \in \mathcal{M}_{R,\mathcal{A}}$ such that $T_{\lambda}^*T_{\lambda} = (1-\lambda)T + \lambda I$. We have

$$\lambda^{1/2}T_{\lambda}^{-1}, (1-\lambda)^{1/2}T_0T_{\lambda}^{-1} \in \mathcal{M}_{R,\mathcal{A}}, \quad \forall \lambda \in (0,1).$$

Let $T_{\lambda} = U_{\lambda}[(1-\lambda)T + \lambda I]^{1/2}$ be the polar decomposition. Since \mathcal{B}_0 is finite dimensional, the set of all unitaries is compact and there is some subsequence $\lambda_n \to 0$ and a unitary U_0 such that $U_{\lambda_n} \to U_0$. Moreover,

$$\lim_{\lambda \to 0^+} (1 - \lambda)^{1/2} T^{1/2} \left[(1 - \lambda)T + \lambda I \right]^{-1/2} = Q^{\perp}$$

and

$$\lim_{\lambda \to 0^+} \lambda^{1/2} [(1 - \lambda)T + \lambda I]^{-1/2} = Q,$$

where $Q = Ker(T_0)$. Since $\mathcal{M}_{R,\mathcal{A}}$ is closed, this implies that $UQ^{\perp}U_0^*, QU_0^* \in \mathcal{M}_{R,\mathcal{A}}$. Therefore

$$\Phi^{C}(U_{0}QU_{0}^{*}) = \Phi^{C}(U_{0}Q)\Phi^{C}(QU_{0}^{*}).$$

Note that

$$\Phi^{C}(QU_{0}^{*}) = \lim_{n \to \infty} \Phi^{C}(\lambda_{n}^{1/2} T_{\lambda_{n}}^{-1}) = \lim_{n \to \infty} \lambda_{n}^{1/2} \Phi_{C}(T_{\lambda_{n}})^{-1}$$

Let now

$$\Phi^C(T_\lambda) = V_\lambda[(1-\lambda)\Phi^C(T) + \lambda I]^{1/2}$$

for some unitary $V_{\lambda} \in \mathcal{A}$ be the polar decomposition. Exactly as above, there is some subsequence n_k such that $V_{\lambda_{n_k}} \to V_0$ for a unitary operator $V_0 \in \mathcal{A}$. We obtain

$$\Phi^C(QU_0^*) = PV_0^*,$$

where $P = Ker(\Phi^C(T_0))$. It follows that $\Phi^C(U_0QU_0^*) = V_0PV_0^*$ is a projection and it is easy to see that then $U_0QU_0^* \in \mathcal{M}_A$. Putting $W_1 = UQ^{\perp}U_0^*$ and $W_2 = QU_0^*$, we obtain the result.

We now obtain a characterization of C*-extreme points of ucp maps between matrix algebras. Note that if $\mathcal{B} = B(\mathcal{H})$ for a finite dimensional Hilbert space, then we may assume that $\tilde{H} = \mathcal{H} \otimes \mathcal{H}_0$ for some finite dimensional Hilbert space \mathcal{H}_0 and the Stinespring representation has the form $\Phi(B) = V^*(B \otimes I)V$. The commutant \mathcal{B}_0 can be identified with the algebra $B(\mathcal{H}_0)$. The equivalence (i) \iff (ii) was already obtained in [3, 4].

Theorem 5. The following are equivalent.

(i) There are partial isometries $V_1, \ldots, V_k : \mathcal{K} \to \mathcal{H}$, such that $\sum_i V_i^* V_i = I$, $V_1 V_1^* \ge \cdots \ge V_k V_k^*$ and

$$\Phi(B) = \sum_{i=1}^{k} V_i^* B V_i, \qquad B \in B(\mathcal{H}).$$

- (ii) \mathcal{M}_R contains the subalgebra of upper triangular elements with respect to some ONB of \mathcal{H}_0 .
- (iii) Φ is C^* -extreme.

Proof. Let Φ be of the form as in (i) and let $|e_1\rangle, \ldots, |e_k\rangle$ be an ONB in \mathbb{C}^k . Let $\tilde{V} = \sum_i V_i \otimes |e_i\rangle$ be the operator $\mathcal{K} \to \mathcal{H} \otimes \mathbb{C}^k$ such that $\tilde{V}\xi = \sum_i V_i \xi \otimes |e_i\rangle$ for any $\xi \in \mathcal{K}$. It is the easy to see that $\Phi(B) = \tilde{V}^*(B \otimes I_k)\tilde{V}$ is a minimal Stinespring representation of Φ . It follows that there is a unitary $U: \mathbb{C}^k \to \mathcal{H}_0$ such that $(I \otimes U)\tilde{V} = V$, so that

$$V = \sum_{i=1}^{k} V_i \otimes |x_i\rangle, \qquad |x_i\rangle = U|e_i\rangle, \ i = 1, \dots, k.$$

For any $j = 1, \ldots, k$ and $\xi \in \mathcal{K}$,

$$(I \otimes |x_j\rangle\langle x_j|)V\xi = (I \otimes |x_j\rangle\langle e_j|)\tilde{V}\xi = V_j\xi \otimes |x_j\rangle = VR_j\xi,$$

where $R_j = V_j^* V_j$. It follows that $|x_j\rangle\langle x_j| \in \mathcal{M}$ and $\Phi^C(|x_j\rangle\langle x_j|) = R_j$. Moreover, it follows from the asymptions that $W_j := V_j^* V_{j+1}$ is a partial isometry and $V_k W_j = \delta_{kj} V_{j+1}$. Hence we have

$$VW_i = V_{i+1} \otimes |x_i\rangle = (I \otimes |x_i\rangle\langle x_{i+1}|)V,$$

so that $|x_j\rangle\langle x_{j+1}|\in\mathcal{M}_R$, for $j=1,\ldots,k-1$. Since \mathcal{M}_R is a subalgebra, (ii) follows.

Suppose (ii) is true and let $T \in B(\mathcal{H}_0)^+$. Then T can be written in the form $T = T_0^*T_0$, where T_0 is upper triangular with respect to the ONB $|x_i\rangle$ (the Cholesky decomposition of T). Thus $T_0 \in \mathcal{M}_R$ and Φ is C*-extreme by Proposition 1.

Finally, assume that Φ is C*-extreme and let $P \in B(\mathcal{H}_0)$ be any 1-dimensional projection. By Lemma 6, P is equivalent with a projection $Q \in \mathcal{M}$, which must be again 1-dimensional. Let x_1 be a corresponding unit vector in \mathcal{H}_0 , so that $Q = |x_1\rangle\langle x_1|$, and put $R_1 = \Phi^C(Q)$. Then $\Phi_{Q^{\perp}}$ is a ucp map $B(\mathcal{H}) \to B(R_1^{\perp}\mathcal{K})$, which is again C*-extreme, by Proposition 3. Repeating k times, we obtain an ONB $|x_1\rangle, \ldots, |x_k\rangle$, such that $|x_i\rangle\langle x_i| \in \mathcal{M}$ for all i. Put $R_i := \Phi^C(|x_i\rangle\langle x_i|)$, then R_i are projections in $B(\mathcal{K})$ and $\sum_i R_i = I$.

Let $V_i: \mathcal{K} \to \mathcal{H}$ be the linear operator given by

$$\langle \eta, V_i \xi \rangle = \langle \eta \otimes x_i, V \xi \rangle, \quad \eta \in \mathcal{H}, \ \xi \in \mathcal{K},$$

so that $V = \sum_i V_i \otimes |x_i\rangle$ and $\Phi(B) = \sum_i V_i^* B V_i$ is a minimal Kraus representation of Φ . Then we have for any $\xi \in \mathcal{K}$,

$$V_i \xi \otimes |x_i\rangle = |x_i\rangle\langle x_i|V\xi = VR_i\xi = \sum_j V_j R_i \xi \otimes |x_j\rangle,$$

hence $V_j R_i = \delta_{ij} V_i$. It follows that $V_i^* V_i \leq R_i$ and since $\sum_i V_i^* V_i = V^* V = I$, we must have $V_i^* V_i = R_i$ for all i, so that the Kraus operators are partial isometries.

Choose any pair of indices $i, j, i \neq j$, and let $P_{ij} = |x_i\rangle\langle x_i| + |x_j\rangle\langle x_j| \in \mathcal{M}$. By Lemma 3, any positive operator $T \in B(P_{ij}\mathcal{H}_0)^+$ has the form $T = T_0^*T_0$ for some $T_0 \in P_{ij}\mathcal{M}_R P_{ij} \subseteq \mathcal{M}_R$. Clearly, we may chose some T not commuting with $|x_i\rangle\langle x_i|$ and it is easy to see that then we must have $T_0 = \sum_{a,b\in\{i,j\}} t_{ab}|x_a\rangle\langle x_b|$, with at least one of t_{ij} or t_{ji} nonzero. Since \mathcal{M}_R is a subalgebra containing $|x_i\rangle\langle x_i|$ and $|x_j\rangle\langle x_j|$, it follows that it must contain

 $|x_i\rangle\langle x_j|$ or $|x_j\rangle\langle x_i|$ (or both). Assume $|x_i\rangle\langle x_j|\in\mathcal{M}_R$, then there is some $L_{ij}\in B(\mathcal{K})$ such that

$$|x_i\rangle\langle x_j|V=V_j\otimes |x_i\rangle=VL_{ij}=\sum_k V_kL_{ij}\otimes |x_k\rangle$$

This implies $V_k L_{ij} = \delta_{ik} V_i$ and

$$L_{ij} = \sum_{k} V_k^* V_k L_{ij} = V_i^* V_j,$$

so that

$$V_j V_j^* = V_i L_{ij} V_j^* = V_i V_i^* V_j V_j^*.$$

Hence we have proved that for any pair of indices i, j, we have either $V_i V_i^* \ge V_j V_j^*$ or $V_j V_j^* \ge V_i V_i^*$ (or both), in other words, the set of projections $\{V_1 V_1^*, \ldots, V_k V_k^*\}$ is linearly ordered. By permuting the operators V_1, \ldots, V_k if necessary, we obtain (i).

5.2 The general case

Let $P \in \mathcal{M}_{R,\mathcal{A}}$ be a projection. We will say that P is minimal in $\mathcal{M}_{R,\mathcal{A}}$ if $P\mathcal{M}_{R,\mathcal{A}}P = \mathbb{C}P$. The aim of this section is to prove the following characterization of \mathcal{A} -extreme maps.

Theorem 6. Let $\Phi \in S_{\mathcal{K}}(\mathcal{B})$ and let $\mathcal{A} \subseteq B(\mathcal{K})$ be a C^* -subalgebra. Then Φ is \mathcal{A} -extreme in $S_{\mathcal{K}}(\mathcal{B})$ if and only if

- (i) there is a family $\{P_1, \ldots, P_N\}$ of minimal projections in $\mathcal{M}_{R,\mathcal{A}}$ such that $\sum_i P_i = I$.
- (ii) $\mathcal{T}_{\mathcal{A}} = \mathcal{M}_{R,\mathcal{A}} + \mathcal{M}_{R,\mathcal{A}}^*$.

We divide the proof into several lemmas.

Lemma 7. Let Φ be A-extreme and let P_1, P_2 be minimal projections in \mathcal{M}_A . Then P_i are minimal in $\mathcal{M}_{R,A}$ and for all $0 \neq T \in P_1\mathcal{M}_{R,A}P_2$, we have T = zW for some $z \in \mathbb{C}$ and a partial isometry $W \in \mathcal{M}_{R,A}$, such that $W^*W = P_2$ and $WW^* \leq P_1$.

Proof. As it was shown in the proof of Lemma 4, $P_i \mathcal{T}_A P_i = \mathbb{C} P_i$, so that P_i are minimal in $\mathcal{M}_{R,\mathcal{A}}$, i=1,2. If $0 \neq T \in P_1 \mathcal{M}_{R,\mathcal{A}} P_2$, then $T^*T = P_2 T^*T P_2 \in P_2 \mathcal{T}_A P_2 = \mathbb{C} P_2$, so that there is some t>0 such that $T^*T = t P_2$. Put $W = t^{-1/2}T$, then $W \in \mathcal{M}_{R,\mathcal{A}}$, $W^*W = P_2$ and it is easy to see that $WW^* \leq P_1$.

Lemma 8. Let Φ be A-extreme, then (i) and (ii) of Theorem 6 hold.

Proof. Let $\{P_1, \ldots, P_N\}$ be a maximal orthogonal family of minimal projections in \mathcal{M}_A . By Lemma 7, each P_i is minimal in $\mathcal{M}_{R,A}$ and (i) holds.

To prove (ii), note that if N=1, then $\mathcal{M}_{\mathcal{A}}=\mathbb{C}I$ and by Corollary 1, Φ is \mathcal{A} -irreducible, hence \mathcal{A} -pure. By Proposition 2, $\mathcal{T}_{\mathcal{A}}=\mathcal{M}_{\mathcal{A}}=\mathcal{M}_{R,\mathcal{A}}=\mathbb{C}I$, so the equality trivially holds. So let N>1 and let $T\in\mathcal{T}_{\mathcal{A}}^+$. Let $i\neq j\in\{1,\ldots,N\}$ and put $P_{ij}:=P_i+P_j,\ P'_{ij}=\Phi^C(P_{ij})$. By Lemma 3, $\Phi_{P_{ij}}$ is $P'_{ij}\mathcal{A}P'_{ij}$ -extreme and $T_{ij}:=P_{ij}TP_{ij}\in\mathcal{T}_{P'_{ij}\mathcal{A}P'_{ij}}^+$. By Lemma 3, there is some $S_{ij}\in\mathcal{M}_{R,P'_{ij}\mathcal{A}P'_{ij}}=P_{ij}\mathcal{M}_{R,\mathcal{A}}P_{ij}$ such that $T_{ij}=S_{ij}^*S_{ij}$. We clearly have $P_iS_{ij}P_i=s_iP_i$ and similarly $P_jS_{ij}P_j=s_jP_j$ for some $s_i,s_j\in\mathbb{C}$. Lemma 7 now implies that

$$S_{ij} = s_i P_i + s_j P_j + s_{ij} W_{ij} + s_{ji} W_{ji},$$

where $s_{ij}, s_{ji} \in \mathbb{C}$ and whenever $s_{ij} \neq 0$, W_{ij} is a partial isometry in $\mathcal{M}_{R,\mathcal{A}}$ such that $W_{ij}^*W_{ij} = P_j$, $W_{ij}W_{ij}^* \leq P_i$, similarly for s_{ji} and W_{ji} . It follows that

$$T_{ij} = t_i P_i + t_j P_j + t_{ij} W_{ij} + \bar{t}_{ij} W_{ij}^* + t_{ji} W_{ji} + \bar{t}_{ji} W_{ji}^*.$$

This implies that for all $i \neq j$

$$P_i T P_j = P_i T_{ij} P_j = t_{ij} W_{ij} + \bar{t}_{ji} W_{ji}^*$$

and hence

$$T = \sum_{i} t_{i} P_{i} + \sum_{i \neq j} (t_{ij} W_{ij} + \bar{t}_{ji} W_{ji}^{*}),$$

which clearly implies (ii).

Let now $P, Q \in \mathcal{M}_{R,\mathcal{A}}$ be projections. We will write $P \leq Q$ if there exists a partial isometry $W \in \mathcal{M}_{R,\mathcal{A}}$ such that $W^*W = P$ and $WW^* \leq Q$. Note that P and Q necessarily belong to $\mathcal{M}_{\mathcal{A}}$, but is possible that $W \notin \mathcal{M}_{\mathcal{A}}$.

It is easy to see that \leq is a preorder on the set of projections in $\mathcal{M}_{\mathcal{A}}$. Let us denote by \sim the associated equivalence relation. Note that in general, this is not (?) the same as equivalence of projections with respect to $\mathcal{M}_{\mathcal{A}}$.

Lemma 9. Assume that the conditions in Theorem 6 are satisfied and let $\{P_1, \ldots, P_N\}$ be a family of projections as in (i). Then

- 1. $P_i \mathcal{T}_A P_i = \mathbb{C} P_i$, for all i.
- 2. $P_i \leq P_j$ if and only if $P_i \mathcal{M}_{R,\mathcal{A}} P_i \neq \{0\}$.
- 3. $P_i \sim P_j$ if and only if P_i and P_j are equivalent projections in \mathcal{M}_A . In this case, $P_i \mathcal{M}_{R,A} P_j = (P_i \mathcal{M}_{R,A} P_i)^* \subseteq \mathcal{M}_A$.

Proof. By the condition (ii), any element $T \in \mathcal{T}_{\mathcal{A}}$ has the form $T = T_1 + T_2^*$, with $T_1, T_2 \in \mathcal{M}_{R,\mathcal{A}}$. Using the condition (i), 1. follows. Next, let $P_i \leq P_j$ and let $W \in \mathcal{M}_{R,\mathcal{A}}$ be a corresponding partial isometry, then clearly $0 \neq W \in P_j \mathcal{M}_{R,\mathcal{A}} P_i$. Conversely, let us assume that T is a nonzero element in $P_j \mathcal{M}_{R,\mathcal{A}} P_i$, then $T^*T \in P_i \mathcal{T}_{\mathcal{A}} P_i = \mathbb{C} P_i$, so that $T^*T = tP_i$ for some t > 0. Put $W := t^{-1/2}T$, then $W \in \mathcal{M}_{R,\mathcal{A}}$, $W^*W = P_i$, $WW^* \leq P_j$, so that $P_i \leq P_j$. If $P_i \sim P_j$, then there are partial isometries $U, W \in \mathcal{M}_{R,\mathcal{A}}$ such that $W^*W = P_j \geq UU^*$ and $WW^* \leq P_i = U^*U$. Put Z = WU, then $Z \in \mathcal{M}_{\mathcal{A}} = \mathcal{M}_{\mathcal{A}}$.

$$U = P_j U = W^* W U = W^* Z = z W^* P_i = z W^*$$

 $P_i\mathcal{M}_{R,\mathcal{A}}P_i=\mathbb{C}P_i$, so that $Z=zP_i$ for some $z\in\mathbb{C}$. It follows that

and since $UU^* = |z|^2W^*W = |z|^2P_j$ is a projection, we have |z| = 1 and $UU^* = P_j$, similarly $WW^* = P_i$. This also implies that $W \in \mathcal{M}_{R,\mathcal{A}} \cap \mathcal{M}_{R,\mathcal{A}}^* = \mathcal{M}_{\mathcal{A}}$ and P_i and P_j are equivalent in $\mathcal{M}_{\mathcal{A}}$. By the first part of the proof, any nonzero element in $P_j\mathcal{M}_{R,\mathcal{A}}P_i$ is a multiple of such a partial isometry, this implies $P_i\mathcal{M}_{R,\mathcal{A}}P_j \subseteq \mathcal{M}_{\mathcal{A}}$.

Lemma 10. Let $P \in \mathcal{M}_{R,\mathcal{A}}$ be a projection such that $P\mathcal{T}_{\mathcal{A}}P = \mathbb{C}P$ and $P\mathcal{T}_{\mathcal{A}}P^{\perp} \subseteq \mathcal{M}_{R,\mathcal{A}}$. Then Φ is \mathcal{A} -extreme if and only if $\Phi_{P^{\perp}}$ is $Q^{\perp}\mathcal{A}Q^{\perp}$ -extreme, where $Q = \Phi^{C}(P)$.

П

Proof. The 'only if' part follows by Proposition 3. For the converse, assume that $\Phi_{P^{\perp}}$ is $Q^{\perp}\mathcal{A}Q^{\perp}$ -extreme and let $T \in \mathcal{T}_{\mathcal{A}}^{+}$ be any element. Then $S := P^{\perp}TP^{\perp} \in \mathcal{T}_{Q^{\perp}\mathcal{A}Q^{\perp}}^{+}$, so that there is some $S_0 \in \mathcal{M}_{R,Q^{\perp}\mathcal{A}Q^{\perp}} = P^{\perp}\mathcal{M}_{R,\mathcal{A}}P^{\perp}$

such that $S = S_0^* S_0$, by Proposition 1. By the assumptions on P, the operator-matrix decomposition of T with respect to P^{\perp} has the form

$$T = \left(\begin{array}{cc} S & X^* \\ X & tP \end{array}\right)$$

where $t \geq 0$ and $X \in \mathcal{M}_{R,\mathcal{A}}$. Since T is positive, t = 0 implies X = 0 and then $T = S = S_0^* S_0$, with $S_0 \in \mathcal{M}_{R,\mathcal{A}}$. So assume that t > 0, then $T \geq 0$ implies that $S - t^{-1} X^* X \geq 0$. Since $S - t^{-1} X^* X \in \mathcal{T}_{Q^{\perp} \mathcal{A} Q^{\perp}}^+$, there is some $S_1 \in P^{\perp} \mathcal{M}_{R,\mathcal{A}} P^{\perp}$ such that $S - t^{-1} X^* X = S_1^* S_1$. Put

$$T_0 := (S_1 + t^{1/2}P)(I + t^{-1}X).$$

Then $T_0 \in \mathcal{M}_{R,\mathcal{A}}$ and it is easy to check that $T = T_0^* T_0$. By Proposition 1, this implies that Φ is \mathcal{A} -extreme.

We are now ready to prove Theorem 6.

Proof of Theorem 6. We proceed by induction on N. So let N=1, then by the assumptions, $\mathcal{T}_{\mathcal{A}} = \mathcal{M}_{R,\mathcal{A}} = \mathbb{C}I$. By proposition 2, Φ is \mathcal{A} -pure and hence also \mathcal{A} -extreme.

Next, suppose that the statement holds whenever N = k - 1 and let N = k. We may assume that P_k is maximal in the set $\{P_1, \ldots, P_k\}$ with respect to the preorder \leq , that is, if $P_k \leq P_i$ for some i then $P_i \sim P_k$. This means that for all $j = 1, \ldots, k$, we either have $P_j \mathcal{M}_{R,\mathcal{A}} P_k = \{0\}$ or $P_j \mathcal{M}_{R,\mathcal{A}} P_k \subseteq \mathcal{M}_{\mathcal{A}}$.

Let $T \in \mathcal{T}_{\mathcal{A}}$ be any element, then $T = T_1 + T_2^*$ for some $T_1, T_2 \in \mathcal{M}_{R,\mathcal{A}}$. We have

$$P_k T P_k = P_k T_1 P_k + (P_k T_2 P_k)^* = z P_k$$

for some $z \in \mathbb{C}$, and

$$P_k T P_j = P_k T_1 P_j + (P_j T_2 P_k)^* \in \mathcal{M}_{R,\mathcal{A}}$$

for all j. Since $\Phi_{P_k^{\perp}}$ is $(P_k')^{\perp} \mathcal{A}(P_k')^{\perp}$ -extreme by the induction hypothesis, the assumptions of Lemma 10 are satisfied, so that Φ is \mathcal{A} -extreme.

References

- [1] W. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141224
- [2] W. Arveson, Subalgebras of C-algebras II, Acta Math 128 (1972), 271308
- [3] D. Farenick and P. Morenz, C*-extreme points in the generalized state space of a C*-algebra, Trans. Amer. Math. Soc. 349(1997), 1725-1748
- [4] D. Farenick and H. Zhou, The structure of C*-extreme points in spaces of completely positive linear maps on C*-algebras, Proc.Amer. Math. Soc.126 (1998), 1467-1477
- [5] A. Jenčová, On the convex structure of process POVMs, in preparation
- [6] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge University Press, 2002