Tasca S8.01. Visualitzacions en Python

Descripció

Aquesta pràctica permetrà explorar com es poden utilitzar eines de visualització avançades en Python per a interpretar i presentar dades de manera efectiva, proporcionant una oportunitat valuosa per a millorar les habilitats analítiques i tècniques.

Nivell 1

Realitza la connexió en Python amb el MySQL Workbench per a carregar tota la informació que tens en les taules.

Realitzaràs una visualització per a cada exercici. Comenta el que et crida l'atenció de graficar aquesta variable, justifica l'elecció del gràfic i interpreta els resultats en funció de les teves dades.

SQL ALCHEMY

Importar pandas i establir connexió

In [96]:

```
import pandas as pd
import sqlalchemy
from sqlalchemy import create_engine, inspect
engine = create_engine("mysql+pymysql://root@localhost/ecommerce")
cnx = engine.connect()
```

Generar Dataframes

In [98]:

```
inspector = inspect(engine)
nombre_tablas = inspector.get_table_names()

for table in nombre_tablas:
    query = f"select * from {table}"
    globals ()[f"df_{table}"] = pd.read_sql(query, cnx)
```

Mostrar taules

In [100]:

```
#print(nombre_tablas)
nombre_tablas
#df_products[df_products["weight"] == 0.5]
df_companies
```

Out[100]:

	id	company_name	phone	email	country	website
0	b-2 222	Ac Fermentum Incorporated	06 85 56 52 33	donec.porttitor.tellus @yahoo.net	Germany	https://instagram.co m/site
1	b-2 226	Magna A Neque Industries	04 14 44 64 62	risus.donec.nibh@icl oud.org	Australia	https://whatsapp.co m/group/9
2	b-2 230	Fusce Corp.	08 14 97 58 85	risus@protonmail.ed u	United States	https://pinterest.co m/sub/cars
3	b-2 234	Convallis In Incorporated	06 66 57 29 50	mauris.ut@aol.couk	Germany	https://cnn.com/use r/110
4	b-2 238	Ante laculis Nec Foundation	08 23 04 99 53	sed.dictum.proin@o utlook.ca	New Zealand	https://netflix.com/s ettings
9 5	b-2 602	Placerat LLP	05 43 67 24 41	tellus.suspendisse@ hotmail.org	Netherlan ds	https://zoom.us/sub
9	b-2 606	Sed Est Corp.	04 58 02 37 91	tempor.bibendum@g oogle.couk	Canada	https://instagram.co m/sub/cars
9 7	b-2 610	Egestas Nunc Sed Limited	06 01 02 70 47	vitae@hotmail.edu	Italy	https://walmart.com /one
9	b-2 614	Rutrum Non Inc.	02 66 31 61 09	neque@protonmail.n et	Germany	https://netflix.com/si te
9	b-2 618	Non Institute	06 77 15 31 14	amet.metus@proton mail.couk	United Kingdom	https://guardian.co. uk/settings

Importar Ilibreries

In [102]:

import matplotlib.pyplot **as** plt #genera gràfics a partir de continguts en llistes, vector amb py i amb l'extensió NumPy

import seaborn **as** sns #llibreria especialitzada en visualització de dades per py desenvolupada amb matplotlib i ofereix interficie d'alt nivell

#import squarify

#import plotly.express as px

import numpy as np

import warnings

Exercici 1

Una variable numèrica.

In [34]:

sns.set_theme(style="darkgrid", context="talk")
sns.histplot(df_transactions["amount"])
plt.title("Histograma del total de l'Import")
plt.ylabel("Quantitat de registres")
plt.xlabel("Import")
plt.show()

Estem veient que el major nombre d'amounts són els que van de 0 a 50€ aproximadament. I les que tenen menys, estan entre 50 i 100€.

Exercici 2

Dues variables numèrique.

In [37]:

sns.set_theme(style="darkgrid", context="talk")
sns.swarmplot(df_products, y="precio", x="weight")
plt.title("Diagrama de dispersió de preu i pes")
plt.ylabel("Preu")
plt.xlabel("Pes")
plt.show()

En la visualització, podem veure que no hi ha diferència relativa entre pes i preu. És a dir, el fet que un producte sigui major pes, no vol dir que sigui més car.

Exercici 3

Una variable categòrica.

In [39]:

sns.set_theme(style="darkgrid", context="talk") sns.countplot(df_companies, x="country") plt.title("Gràfic de barres per país")

plt.ylabel("Quantitat") plt.xlabel("País") plt.xticks(rotation=90) plt.show()

La variable categòrica escollida és country per companies; i a la visualització podem veure que els països que tenen major nombre de companies són Suècia i Països Baixos; i les que menys Espanya i Xina.

Exercici 4

Una variable categòrica i una numèrica.

In [112]:

sns.set_theme(style="darkgrid", context="talk")
#fem un merge

```
df_companies_transactions = df_companies.merge(df_transactions, how = "inner", left_on="id",
right_on="company_id")
plt.figure(figsize=(9,7))
sns.barplot(df_companies_transactions, x="country", y="amount")
plt.title("Gràfic d'estimació d'import per país")
plt.ylabel("Import")
plt.xlabel("País")
plt.xticks(rotation=90)
plt.show()
#df_companies_transactions
```


Hem triat una visualització de barplot per fer una variable categòrica de pais i una variable númerica amount. La conclusió que podem treure és que el promig més alt seria el que té Estats Units, i Espanya està en darrer lloc.

A més, també podem veure les líneas amb l'interval de confiança de cada país, que ens mostra el valor més provable d'entrada del proper registre per cada país.

Exercici 5 i 6

Dues variables categòriques Tres variables.

In [110]:

```
sns.set_theme(style="darkgrid", context="talk")
plt.figure(figsize=(9,7))
sns.violinplot(df_companies_transactions, x="country", y="amount", hue="declined", split = True)
plt.title("Gràfic d'estimació d'import per país i operacions acceptades i declinades")
plt.ylabel("Import")
plt.xlabel("País")
plt.xticks(rotation=90)
plt.show()
```

Gràfic d'estimació d'import per país i operacions acceptades i declinades

En aquest cas, hem optat per ajuntar els exercicis 5 i 6, i per tant, tenim 2 variables categòriques (declined i country) i una tercera variable que és l'amount. Hem utilitzat violinplot, que fa el promig d'amount agrupant per país i declined. En aquest sentit, podem veure d'una manera molt clara que en la majoria de països, el valor promig de les transaccions declinades és major que el promig de les transaccions acceptades.

Exercici 7

self._figure.tight_layout(*args, **kwargs)

sns.set_theme(style="darkgrid", context="talk")

al segon merge, el join left és la taula intermitja, és a dir en aquest cas, product_transaction

df_transactions_products_tr = df_transactions.merge(df_product_transaction, how = "inner",

left_on="id", right_on="order_id").merge(df_products, how = "inner", left_on = "product_id", right_on =

"id")

df_transactions_products_tr

#El pairplot només treballa amb variables númeriques, ja que compara variables númeriques.

sns.pairplot(df_transactions_products_tr, vars= ["precio", "weight", "amount"])

plt.show()

C:\ProgramData\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight

Tal i com podem veure amb la utilització del pairplot, aquest funciona amb varialbes numèriques, i per això hem triat com a variables, amount de la taula transactions, i precio i weight de la taula products.

El pairplot ens mostra gràfics d'histograma i gràfics de dispersió; en aquests, podem observar que a la distribució entre amount i precio hi ha una relació entre preu i total de l'amount, i que aquest per tant, no té perquè ser major si el preu del producte és més elevat o més baix.

En canvi, en la realació weith i precio, veiem que tenim molts productes a la venda que pesen 1 i 3kg, mentre que hi ha procs productes que pesin 2kg. A més, també observem que la distribució ens els productes de 2 kgs el preu o és molt car o molt baix, i que per tant, segurament faltaria que tinguéssim productes de 2 kgs amb un preu intermig.

Tancar connexió

In [118]:

cnx.close()

Comprovar que la connexió estigui tancada (resposta TRUE) In [120]: cnx.closed Out[120]: True Desactivar engine In [122]:

engine.dispose()