Decision Tree Classifier

import pandas as pd from sklearn.model selection import train test split from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.preprocessing import LabelEncoder # Load the Iris dataset data = pd.read_csv('/content/iris.csv', skiprows=1) # Skip the header row # Manually specify feature names feature_names = ["sepal_length", "sepal_width", "petal_length", "petal_width", "class"] # Separate features and target variable # Encode the categorical labels # Split the dataset into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train the decision tree classifier # Plot the decision tree plot_tree(classifier, feature_names=feature_names, class_names=label_encoder.classes_, filled=True) # Perform classification on a new sample new_sample = [[5.1, 3.5, 1.4, 0.2, 0]] # Example new sample with a class label # Print the decision tree rules def print_decision_rules(tree, feature_names, node=0): if tree.feature[node] != -2: rule = f"If {feature_names[feature_index]} <= {threshold} then {class_label}"

print_decision_rules(classifier.tree_, feature_names[:-1]) # Exclude the "class" feature