Contents

1	New Interactions with Neutral Current NSI				
	1.1	NSI Lagrangian			
	1.2	Spin averaged Matrix elements $ \overline{\mathcal{M}} ^2$			
		1.2.1 $j=1$ (ϵ_L)			
		1.2.2 $j=3(\epsilon_R)$			
		1.2.3 $j=5$ (ϵ_S)			

Chapter 1

New Interactions with Neutral Current NSI

1.1 NSI Lagrangian

Let's take GNI operators and Lagrangian from https://arxiv.org/pdf/1905.08699.pdf GNI Lagrangians for NC and CC,

$$\mathcal{L}^{\text{NC}} = -\frac{G_F}{\sqrt{2}} \sum_{j=1}^{10} \left((\epsilon_{j,f})^{\alpha\beta\gamma\delta} \left(\bar{\nu}_{\alpha} \mathcal{O}_{j} \nu_{\beta} \right) \left(\bar{f}_{\gamma} \mathcal{O}_{j}' f_{\delta} \right)$$
(1.1)

$$\mathcal{L}^{\text{CC}} = -\frac{G_F V_{\gamma \delta}}{\sqrt{2}} \sum_{j=1}^{10} \left(\epsilon_{j,f} \right)^{\alpha \beta \gamma \delta} \left(\bar{e}_{\alpha} \mathcal{O}_j \nu_{\beta} \right) \left(\bar{u}_{\gamma} \mathcal{O}'_j d_{\delta} \right) + \text{h.c.}$$
(1.2)

where f = e, u, d, denoting charged leptons, up-type and down-type quarks, Greek indices run over flavour, V denotes the CKM matrix. Note that second fermionic bilinear of each line is in the mass basis. and ϵ_j , \mathcal{O}_j , and \mathcal{O}'_j are given in Table.1.1 The entries of the ϵ flavour-space matrices are dimensionless and encode the strength of an interaction type j with respect to the SM Fermi interaction. The index j runs from 1 to 10 because there are five Lorentz-invariant operators for general Dirac fermions, but ten for chiral fermions.

\int	$\epsilon_j^{(\sim)}$	\mathcal{O}_j	\mathcal{O}_j'
1	ϵ_L	$\gamma_{\mu} \left(1 - \gamma^5 \right)$	$\gamma^{\mu} \left(1 - \gamma^5 \right)$
$\parallel 2$	$\widetilde{\epsilon}_L$	$\gamma_{\mu} \left(1 + \gamma^5 \right)$	$\mid \gamma^{\mu} \left(\mathbb{1} - \gamma^5 \right) \mid$
3	ϵ_R	$\gamma_{\mu} \left(\mathbb{1} - \gamma^5 ight)$	$\gamma^{\mu} \left(\mathbb{1} + \gamma^5 \right)$
$\parallel 4$	$\widetilde{\epsilon}_R$	$\gamma_{\mu} \left(\mathbb{1} + \gamma^5 \right)$	$\gamma^{\mu} \left(\mathbb{1} + \gamma^5 \right) \mid$
$\parallel 5$	ϵ_S	$\left(1-\gamma^5 ight)$	1
6	$ ilde{\epsilon}_S$	$(1 + \gamma^5)$	1 1
7	$-\epsilon_P$	$\left(1-\gamma^5 ight)$	γ^5
8	$- ilde{\epsilon}_P$	$(1 + \gamma^5)$	γ^5
9	ϵ_T	$\sigma_{\mu u} \left(\mathbb{1} - \gamma^5 \right)$	$\sigma^{\mu\nu}\left(\mathbb{1}-\gamma^{5}\right)$
10	$\widetilde{\epsilon}_T$	$\sigma_{\mu\nu}\left(\mathbb{1}+\gamma^5\right)$	$\sigma^{\mu\nu} \left(\mathbb{1} + \gamma^5 \right)$

Table 1.1: Coupling constants and operators appearing in generic neutral-current and charged-current Lagrangians

Let's focus on neutral current interactions in NSI with active ν and electrons. ie, $f=e,\gamma,\delta=1,\,j=1,3,5$ in Eq. 1.1

1.2 Spin averaged Matrix elements $|\overline{\mathcal{M}}|^2$

For electrons, f = e and $\gamma, \delta = 1$,

$$\mathcal{L}_{j}^{\text{NC}} = -\frac{G_{F}}{\sqrt{2}} \left((\epsilon_{j,e})^{\alpha\beta 11} \left(\bar{\nu}_{\alpha} \mathcal{O}_{j} \nu_{\beta} \right) \left(\bar{e} \mathcal{O}_{j}' e \right) \right)$$

$$(1.3)$$

Figure 1.1: 4-point vertex in the NSI

for a process $\bar{\nu}_{\alpha} + \nu_{\beta} \to e + \bar{e}$

$$i\mathcal{M}_{j} = -i\frac{G_{F}}{\sqrt{2}} \left(\epsilon_{j,e}\right)^{\alpha\beta11} \left[\bar{v}_{\nu_{\alpha}}(p_{2})\mathcal{O}_{j}u_{\nu_{\beta}}(p_{1}) \right] \left[\bar{u}_{e}(p_{3})\mathcal{O}'_{j}v_{e}(p_{4}) \right]$$
(1.4)
$$\mathcal{M}_{j}^{\dagger} = -\frac{G_{F}}{\sqrt{2}} \left(\epsilon_{j,e}\right)^{\alpha\beta11} \left[\bar{v}_{e}(p_{4})\overline{\mathcal{O}'_{j}}u_{e}(p_{3}) \right] \left[\bar{u}_{\nu_{\beta}}(p_{1})\overline{\mathcal{O}_{j}}v_{\nu_{\alpha}}(p_{2}) \right]$$
(1.5)
$$v_{\beta}$$

where $\overline{\Gamma}=\gamma^0\Gamma^\dagger\gamma^0$ and u(v) represents particles (anti-particles).

After summing over spins and averaging,

$$|\mathcal{M}_j|^2 = \frac{1}{2} \sum_{\text{spins}} \mathcal{M}_j^{\dagger} \mathcal{M}_j \tag{1.6}$$

1.2.1 j=1 (ϵ_L)

$$\mathcal{O}_L = \gamma_\mu \left(\mathbb{1} - \gamma^5 \right)$$
 and $\mathcal{O}_L' = \gamma_\mu \left(\mathbb{1} - \gamma^5 \right)$

$$|\mathcal{M}_L|^2 = 64G_F^2 \left(\epsilon_{L,e}^{\alpha\beta 11}\right)^2 (p_1 \cdot p_4) (p_2 \cdot p_3)$$
 (1.7)

1.2.2 j=3 (ϵ_R)

$$\mathcal{O}_R = \gamma_\mu \left(\mathbb{1} - \gamma^5 \right)$$
 and $\mathcal{O}_R' = \gamma_\mu \left(\mathbb{1} + \gamma^5 \right)$

$$|\mathcal{M}_R|^2 = 64G_F^2 \left(\epsilon_{R,e}^{\alpha\beta 11}\right)^2 (p_1 \cdot p_3) (p_2 \cdot p_4)$$
 (1.8)

1.2.3 j=5 (ϵ_S)

 $\mathcal{O}_S = (\mathbb{1} + \gamma^5)$ and $\mathcal{O}_S' = \mathbb{1}$

$$|\mathcal{M}_S|^2 = 8G_F^2 \left(\epsilon_{S,e}^{\alpha\beta11}\right)^2 \left[(p_1 \cdot p_2) (p_3 \cdot p_4) - m_e^2 (p_1 \cdot p_2) \right]$$
(1.9)