Calcul Numeric – Tema #4

- **Ex. 1** Fie matricea $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$. Să se afle manual factorizarea QR prin metoda Givens. Să se rezolve sistemul Ax = b, unde $b = (1, 2, 5)^T$.
- Ex. 2 Să se implementeze algoritmul Metoda Givens și să se apeleze pentru datele de la Ex. 1.
- **Ex. 3** Fie matricea $A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$. Să se calculeze conform definiției valorile proprii ale matricei A.
- **Ex. 4** Să se implementeze în Matlab Metoda Jacobi de aproximare a valorilor proprii şi să se aplice pentru matricea de la Ex.3 şi $\varepsilon = 10^{-4}$.
- **Ex. 5** Să se demonstreze că $det(A) = \lambda_1 \cdot ... \cdot \lambda_n$, unde $\lambda_1, ..., \lambda_n$ sunt valorile proprii ale matricei $A \in \mathcal{M}_n(\mathbb{R})$. Indicație: Se vor folosi relațiile lui Viète pentru polinomul caracteristic $P_n(\lambda) = det(A \lambda I_n) = (-1)^n \lambda^n + c_{n-1} \lambda^{n-1} + ... + c_0$ și se va ține cont că $P_n(0) = det(A)$.
- **Ex. 6** Să se demonstreze că dacă $A \in \mathcal{M}_n(\mathbb{R})$ este nesingulară, atunci matricea A^TA este pozitiv definită. Indicație: Se va folosi definiția unei matrice pozitiv definite.
- **Ex.** 7 Fie λ valoare proprie pentru $A \in \mathcal{M}_n(\mathbb{R})$ şi $x \neq 0_n$ un vector propriu asocoat valorii proprii λ . Să se arate că:
 - a) λ este valoare proprie şi pentru A^T ;
 - b) λ^k este valoare proprie a matricei A^k cu vectorul propriu x.
 - c) Dacă A este nesingulară, atunci $\frac{1}{\lambda}$ este valoare proprie a matricei A^{-1} cu vectorul propriu x.