实验5报告

2016K8009907007 黄熠华

一、实验任务(10%)

虚拟 CPU 使用类 SRAM 接口,内存 SRAM 使用 AXI 接口。本次实验需要编写一个接口转换器将其联系起来,使得虚拟 CPU 能对内存进行正常的读写操作。

二、实验设计(30%)

读数据的握手信号转换流程:

- (1) 使用 reading 寄存器表明是否处于正在读数据,但未结束的状态。其受来自主设备的读请求 req 信号触发 至高电平,一直到 AXI 的读取相关信号握手完成才回复至低电平。在 reading 被触发至高电平的同时,读 地址和读大小同样被加载到两个寄存器中保存起来。
- (2) CPU 发出读请求,接口转换器进入读状态 (reading = 1) 后,在读地址信号并未握手成功时,拉高传递给从设备的 arvalid 信号,等待从设备拉高 arready 信号完成地址传输的握手。
- (3) 从设备拉高 arready 信号之后,地址传输握手完成(raddr_handshake = 1),此时 rready 信号提升到高电平,对从设备发出读数据请求,等待 rvalid 信号拉高完成握手。
- (4) 从设备拉高 rvalid 信号,数据读取的握手完成(rdata_handshake = 1),传递给 CPU 的数据传输完成信号 data ok 被拉高至高电平。
- (5) reading, raddr_handshake 受 rdata_handshake 触发回到低电平,读取过程结束.

写数据的握手信号转换流程:

- (1) 使用 writing 寄存器表明是否正处于写数据,但是未结束的状态。其受来自主设备的写请求 req 信号触发 至高电平,一直到 AXI 的写相关信号握手完成才回复至低电平。在 writing 被触发至高电平的同时,写地 址,写数据和写大小被加载到三个寄存器中保存起来。
- (2) CPU 发出写请求,接口转换器进入写状态(writing = 1)后,在写地址信号握手成功前,拉高 awvalid 和 wvalid 信号并传递给从设备,等待从设备拉高 awready 和 wready 信号完成地址和数据的信号握手。
- (3) 从设备拉高 awready 和 wready 信号后, 地址传输和数据传输握手完成(awdata_handshake = wdata_handshake = 1), 此时拉高 bready 信号, 对从设备发出写响应信号, 等待从设备拉高 bvalid 完成写数据握手。
- (4) 从设备拉高 bvalid 信号之后,数据写入的握手完成(written_handshake = 1), 传递给 CPU 的数据传输完成信号 data_ok 被拉高至高电平。

(5) writing, awdata handshake, wdata handshake 受 written handshake 信号触发回复至低电平。

下图以读数据流程为例,展示了相关信号的传递逻辑

Read Signal Schematic Diagram

copyright @ Yihua

三、实验过程(60%)

(一) 实验流水账

12.3 晚: 开始研究类 SRAM 和 AXI 的握手规则,写代码。

(二) 错误记录

1、错误1

(1) 错误现象

仿真开始后, 所有信号都不发生变化。

(2) 分析定位过程

经观察发现 reading 信号在初期拉高后很快回复至低电平,此时传输并未完成,但 reading 保持低电平不再变化。

(3) 错误原因

Reading 的复位逻辑有误。原始代码采用 req 的条件触发 reading 寄存器,但在下一个 req 到来而本次读写未结 東时, reading 被迫修改, 便发生了错误。

(4) 修正效果

修正 reading 的从高电平回复至低电平的逻辑。

(5) 归纳总结(可选)

WHEN THE SOUGHT HE WAS A STATE OF THE SOUTH 四、实验总结(可选)