STATS 211 Homework 1

January 30, 2025

Samuel Molero samueljosemolero@tamu.edu

Section: 501

1. Q1?

(a) Construct the (t, y) and $(t, \log(y))$ scatter plot. Which scatter plot suggests a linear relationship?

(b) Construct a predictive equation for the bacteria count Y at time t.

Ans:

R code snippet
lm_fit <- lm(y_log~t)
summary(lm_fit)</pre>

Using the command above will provide both the intercept and slope for the linear regression equation using the log form values of Y. Which results in the following equation:

Samuel Molero Section: 501

$$log(\hat{y}) = 5.9732 - 0.2184t$$

Solving for the predictive model for bacteria count Y at time t results in: $y=e^{5.9732-0.2184t}$

2. Q2?

Ans:

(x,y)

(1/x,y)

(1/x,y)

(1/x,y)

(a) Scatter plot (1/x, y) suggest a linear relation.

(b) #lim_fit <-lm(output~speed2)
#summary(lim_fit)</pre>

Using the transformed data from the second graph and the commands above, the linear regression is the following: $\hat{y} = 2.9789 - 6.935/x$

(c) Using Wind Speed of 8: $\hat{y} = 2.9789 - 6.935/(8) = 2.1120$

Samuel Molero Section: 501

Page 3

Samuel Molero Section: 501

(e) The R^2 obtained equals 0.9800, meaning that 98% of the variation in wind speed's output is explained by linear regression.

 $\beta_1=[-7.514076-6.355019],$ there is 99% confidence that the true slope lies between the given values.

Given that the wind speedd is 3.2, there is 95% confidence that the true value lies within the interval [0.74911, 0.87451]

Given that the particular speed at a specific windmill is 9.05, the 95% prediction interval for the output lies within the interval [2.0105, 2.4147]