Freemcqs.com Helping Material, | 16-Dec-2017 | Freemcqs.com

Subject: Data Structures CS301
Test: Midterm past Paper questions

Total Questions: 91

Ques tion No.	Question Details	Total Mark s
1	ddd	1
	☑ ddd	
	□ dfdfdf	
	□ dfd	
	fdfdf	
2	Deleting a leaf node in binary search tree involves setting pointer/s of that node's	1
	parent as null.	
3	A node cannot be deleted, when the node to be deleted has both left and right subtrees.	1
	True	
	✓ False	
4	An array is a group of consecutive related memory locations.	1
	True	
	False	
5	Consider the following infix expression: $3 + 5 * 6 - 7 * (8 + 5)$ Which of the following is a	1
	correct equivalent expression(s) for the above?	
(☐ 365+*758+-*	
1	☐ 365758+*+-*	
	□ 356+*785+-* 356*+785+*-	
	<u> </u>	

6	The has	difference between a binary tree and a binary search tree is that ,a binary search tree	1
		two children per node whereas a binary tree can have none, one, or two children per node	
		in binary search tree nodes are inserted based on the values they contain	
		in binary tree nodes are inserted based on the values they contain	
		none of these	
7	We d	can add elements in QUEUE From	1
		Front	
	Y	Rear	
		From Both Rare and Front	
		None of these	
8	Whic	ch of the following abstract data types are NOT used by Integer Abstract Data type	1
	grou	p?	
		short	
		Int	
	Y	float	
		long	
9	Whic	ch one of the following statements is correct?	1
	Y	Array size is fixed once it is created	
		Link List size is fixed once it is created	
		Binary Search Tree size isfixed once it is created	
		AVL Tree size is fixed once it is created	
10	Linke	ed lists are collections of data items "lined up in a row", insertions and deletions can be	1
	mad	e only at the front and the back of a linked list.	
		True	
	M	False	
11	In a	program a reference variable, say x, can be declared as	1
		int &x ;	
		int *x;	
		int x ;	
		None of the given options	

12	Whi	ch one of the following statement is NOT correct .	1
	>	In linked list the elements are necessarily to be contiguous	
		In linked list the elements may locate at far positions in the memory	
		In linked list each element also has the address of the element next to it	
		In an array the elements are contiguous	
13	ls a	data structure that can grow easily dynamically at run time without having to copy	1
	exist	ting elements?	
		Array	
	$\mathbf{\Sigma}$	List	
		Both of these	
		None of these	
14	Que	ue follows	1
		Last in First out	
		First in Last out	
	Y	First in First out	
		None of these	
15	Para	ameters in function call are passed using,	1
	Y	Stack	
		Queue	
		Binary Search Tree	
		AVL Tree	
16	Whi	ch statement of the following statements is incorrect?	1
		Lists can be implemented by using arrays or linked lists	
		A list is a sequence of one or more data items	
1		Stack is a special kind of list in which all insertions and deletions take place at one end	
2	$oldsymbol{ olimits}$	Stacks are easier to implement than lists	
17	The	operation for removing an entry from a stack is traditionally called:	1
		delete	
		peek	
	Y	рор	
		remove	

18		Suppose a pointer has been declared in main but has not assigned any variable address then				
		That pointer points to First byte in main function				
		That pointer contains a NULL value				
	Y	That pointer points to any memory address				
		None of these				
19	A Co	ompound Data Structure is the data structure which can have multiple data items of same	1			
	type	or of different types. Which of the following can be considered compound data structure?				
		Arrays				
		LinkLists				
		Binary Search Trees				
		All of the given options				
20	The	tree data structure is a	1			
		Linear data structure				
		Non-linear data structure				
		Graphical data structure				
		Data structure like queue				
21	Whic	ch one of the following is a valid postfix expression?	1			
		ab+c*d-				
	Y	abc*+d-				
		abc+*d-				
		(abc*)+d-				
22	Whe	en an operator is used in between two operands this is which type of notation	1			
		Prefix				
		Postfix				
	7	Infix				
		None of the Above				
23	Wha	t will be the valid postfix notation of A+B*C-D	1			
		ABC+*D-				
		ABC*+D-				
		ABCD+-*				
		AB+D*C				

24	Tree	data structure is a	1
		Linear	
	>	Non Linear	
		Circular	
		None of Above	
25	Non	recursive calls are faster than the Recursive calls.	1
	>	True	
		False	
26	Follo	owing are the linear data structures:-	1
		Stacks	
		Queues	
	>	Both Stacks and Queues	
		None of the above	
27	High	est Operators Precedence is of the following operator:-	1
		Plus	
		Minus	
	Y	Multiply	
		Exponentiation	
28	Each	node in a BST has Pointers:-	1
		1	
	N	2	
		3	
		4	
29	After	creation of an array:-	1
		Size can be increase but can not be decreased.	
		Size can be decreased but can not be increased.	
	Y	Size can neither be increased nor be decreased.	
		Size can be increased and can also be decreased	

30			1
30	BST	is a Structure:-	I
		Linear	
	Y	Non Linear	
		Circular	
		None of Above	
31	Тос	heck the depth of an AVL tree following time will be taken:-	1
		1.66 Log2n	
	>	1.44 Log2n	
		Log2 (n+1)-1	
		1.66 Log2n (n+1)	
32	In ar	AVL tree to delete a parent with two childs in a straight line following rotations will be	1
	requ	ired	
		Single	
	Y	Double	
		Triple	
		None.of the given options	
		· · · · · · · · · · · · · · · · · · ·	
33	Whic	ch of the following is a non linear data structure?	1
33	Whic		1
33	Whic	ch of the following is a non linear data structure?	1
33	Whice	ch of the following is a non linear data structure? Linked List	1
33	Whice	ch of the following is a non linear data structure? Linked List Stack	1
33		ch of the following is a non linear data structure? Linked List Stack Queue	1
	Cons	ch of the following is a non linear data structure? Linked List Stack Queue Tree	
	Cons	ch of the following is a non linear data structure? Linked List Stack Queue Tree sider the following infix expression. 5 + 6/2 If one converts the above expression into	
	Cons	Linked List Stack Queue Tree sider the following infix expression. 5 + 6/2 If one converts the above expression into fix, what would be the resultant expression?	
	Cons	Linked List Stack Queue Tree sider the following infix expression. 5 + 6/2 If one converts the above expression into fix, what would be the resultant expression?	
	Cons	Linked List Stack Queue Tree sider the following infix expression. 5 + 6/2 If one converts the above expression into fix, what would be the resultant expression? 56/+2 562/+	
	Conspost	Ch of the following is a non linear data structure? Linked List Stack Queue Tree Sider the following infix expression. 5 + 6/2 If one converts the above expression into fix, what would be the resultant expression? 56/ + 2 5 6 2 / + /62 + 5	
34	Conspost	Linked List Stack Queue Tree sider the following infix expression. 5 + 6/2 If one converts the above expression into fix, what would be the resultant expression? 56/ + 2 5 6 2 / + /62 + 5 5 6 / 2 +	1
34	Conspost	Linked List Stack Queue Tree Sider the following infix expression. 5 + 6/2 If one converts the above expression into ix, what would be the resultant expression? 56/ + 2 5 6 2 / + /62 + 5 5 6 / 2 + e is/are case/s for rotation in an AVL tree,	1
34	Conspost	Linked List Stack Queue Tree sider the following infix expression. 5 + 6/2 If one converts the above expression into fix, what would be the resultant expression? 56/ + 2 5 6 2 / + /62 + 5 5 6 / 2 + e is/are case/s for rotation in an AVL tree,	1

36	Sear	ching an element in an AVL tree take maximum in AVL tree,	1
		Log2(n+1) time (where n is no. of nodes	
		Log2(n+1) -1	
	Y	1.44 Log2n	
		1.66 Log2n	
37	Whic	ch of the following is "TRUE" about arrays,	1
		We can increase the size of arrays after their creation.	
		We can decrease the size of arrays after their creation.	
		We can increase but can't decrease the size of arrays after their creation.	
	\mathbf{Y}	We can neither increase nor decrease the array size after their creation.	
38	Four	statements about trees are below. Three of them are correct. Which one is	1
	INC	DRRECT?	
		Trees are recursively defined multi-dimensional data structures tree	
		The order of a tree indicates a maximum number of children allowed at each node of the	
		A search tree is a special type of tree where all values (i.e. keys) are ordered	
	\	If Tree1's size is greater than Tree2's size, then the height of Tree1 must also be greater than Tree2's height.	
39	Whic	ch one of the following operators has higher priority than all of others?	1
	>	Multiplication operator	
		Minus operator	
		Plus operator	
		Exponentiation operator	
40	A qu	eue is a data structure, whereas a stack is adata structure.	1
	Y	FIFO, LIFO	
,		LIFO,FIFO	
1		both given options	
		None of these	

41	Suppose that th	ne class declaration of SomeClass includes the following function prototype.	1
		SomeClass anotherObject); Which of the following tests in the client code	
		ares two class objects alpha and beta?	_
	if (alpha <	beta)	
	if (alpha.L	essThan(beta))	-
	if (LessTh	an(alpha, beta))	
	if (LessTha	an(alpha).beta)	
42	Which one of th	e following statements is NOT correct?	1
	Array size	can be changed after its creation.	
	Link List s	ize can be changed after its creation	
	Binary Sea	arch Tree size can be changed after its creation	
	AVL Tree	size can be changed after its creation	
43	Which one of th	e following calling methods does not change the original value of the	1
	argument in the	calling function?	
	None of th	ne given options	
	Call by pa	ssing the value of the argument	
	Call by pa	ssing reference of the argument	
	Call by pa	ssing the address of the argument	
44	In an array list t	he current element is	1
	The first e	lement	
	The middle	e element	
	The last el	lement	-
	The eleme	ent where the current pointer points to	
45		can store data elements of different types.	1
	True		-
	False		-
46		oup of consecutive related memory locations.	1
	True	•	
	False		

47	the fi The queu	following are statements related to queues. (i) The last item to be added to a queue is irst item to be removed (ii) A queue is a structure in which both ends are not used (iii) last element hasn't to wait until all elements preceding it on the queue are removed (iv)A ie is said to be a last-in-first-out list or LIFO data structure. In of the above is/are related to normal queues? (iii) and (ii) only (i), (ii) and (iv) only	1
	Y	None of the given options	
48	Whic	ch of the following can be used to reverse a string value,	1
	Y	Stack	
		Queue	
		Both of these	
		None of these	
49		is the maximum number of nodes that you can have on a stack-linked list?	1
		Zero	
		2n (where n is the number of nodes in linked list)	
		Any Number	
		None of these	
50	Cons	sider the following sequence of push operations in a stack: stack.push('7');	1
		k.push('8'); stack.push('9'); stack.push('10'); stack.push('11'); stack.push('12');	
	V	7 8 9 10 11 12	
		9 8 11 10 7 12	
		9 10 8 11 12 7	
		9 10 8 12 7 11	
51		operation for removing an entry from a stack is traditionally called:	1
		delete	
		peek	
		pop	
		remove	

52	The	operation for adding an entry to a stack is traditionally called:	1
		add	
		append	
		insert	
		push	
53	In C	what is the operation that you can not do with primitive types?	1
		Assign a value to primitive type using a literal	
		Declare primitive types to be constant using the Const keyword	
	>	Create a new instance of primitive type with New keyword	
		None of these	
54	Supr	pose that the class declaration of SomeClass includes the following function prototype.	1
		LessThan(SomeClass anotherObject); Which of the following tests in the client code	
	corre	ectly compares two class objects alpha and beta?	
		if (alpha < beta)	
	>	if (alpha.LessThan(beta))	
		if (LessThan(alpha, beta))	
		if (LessThan(alpha).beta)	
55	Supp	pose currentNode refers to a node in a linked list (using the Node class with member	1
		bles called data and nextNode). What boolean expression will be true when cursor	
	refer	s to the tail node of the list?	
	lacksquare	(currentNode == null)	
		(currentNode->nextNode == null)	
		(nextNode.data == null)	
		(currentNode.data == 0.0)	
56	A tre	e is an AVL tree if	1
•		Any one node fulfills the AVL condition	
1		At least half of the nodes fulfill the AVL condition	
		All the nodes fulfill the AVL condition	
		None of the given options	

57	In w	nich of the traversal method, the recursive calls can be used to traverse a binary tree?	1
	>	In preorder traversal only	
		In inorder traversal only	
		In postorder traversal only	
		All of the given options	
58	Doul	ply Linked List always has one NULL pointer.	1
		True	
	>	False	
59	A su	bscript of an array may be an integer or an integer expression.	1
	>	True	
		False	
60	"+" is	s aoperator.	1
		Not an	
		Unary	
	>	Binary	
		Ternary	
61	"+" is	aoperator.	1
		Not an	
		Unary	
	N	Binary	
		Ternary	
62	A bir	pary search tree should have minimum of one node/s at each level,	1
		One	
	S	Two	
		Three	
		Four	
63	We a	access elements in AVL Tree in,	1
		Linear way only	
	Y	Non Linear way only	
		Both linear and non linear ways	
		None of the given options	

64	The nodes with no successor are called	1
	Root Nodes	
	Leaf Nodes	
	Both of these	
	None of these	
65	Consider the following tree.	1
	14 / \ 2 11 / \ / \ 1 3 10 30	
	7 40 How many of the nodes have at least one sibling?	
	\square 7	
	□ 5	
	6	
66	I have implemented the queue with a linked list, keeping track of a front pointer and a rear pointer. Which of these pointers will change during an insertion into an EMPTY queue?	1
	Neither changes	
	Only front pointer changes.	
	Only rear pointer changes.	
	Both change.	
67	Each node in doubly link list has,	1
	1 pointer	
	2 pointer	
	3 pointer	
	4 pointer	

68	Whic	ch one is a self- referential data type?	1
		Stack	
		Queue	
		Link list	
	>	All of these	
69	A qu	eue where the de-queue operation depends not on FIFO, is called a priority queue	1
		False	
	>	True	
70	Supp	pose currentNode refers to a node in a linked list (using the Node class with member	1
		bles called data and nextNode). What statement changes currentNode so that it refers	
	to the	e next node?	
		currentNode ++;	
		currentNode = nextNode;	
		currentNode += nextNode;	
71		currentNode = currentNode->nextNode;	1
, .	A tre	e is an AVL tree if	
		Any one node fulfills the AVL condition	
		At least half of the nodes fulfill the AVL condition	
		All the nodes fulfill the AVL condition (
70	Ш	None of the given options	
72		ch one of the following calling methods does not change the original value of the	1
	argu	ment in the calling function?	
		None of the given options	
	<u> </u>	Call by passing the value of the argument	
4		Call by passing reference of the argument	
73		Call by passing the address of the argument	1
	Each	operator in a postfix expression refers to the previous operand(s).	
		One	
		Two	
		Three	
		Four	

74	Which one of the following statement is NOT correct .	1
	In linked list the elements are necessarily to be contiguous	
	In linked list the elements may locate at far positions in the memory	
	In linked list each element also has the next to it	-
	In an array the elements are contiguous	
75	AVL Tree is,	1
	Mon Linear data structure	
	Linear data structure	-
	Hybrid data structure (Mixture of Linear and Non Linear)	-
76	None of the given options.	1
76	We access elements in AVL Tree in,	1
	Linear way only	-
	Non Linear way only	
	Both linear and non linear ways	-
77	None of the given options.	1
	Consider the following binary search tree (BST):	1
	If node A in the BST is deleted, which two nodes are the candidates to take its place?	
	☐ J and I	
	H and E	
	D and E	_
4	L and M	

78		is a binary tree where every node has a value, every node's left subtree contains	1
	_	values less than or equal to the node's value, and every node's right subtree contains	
	only	values that are greater then or equal?	_
		Strictly Binary Tree	
		Binary Search tree	
		AVL tree	
		All of these	
79	The	expression AB+C* is called?	1
		Prefix expression	
	\mathbf{M}	Postfix expression	
		Infix expression	
		None of these	
80	Supp	pose we have a circular array implementation of the queue class, with ten items in the	1
	-	ue stored at data[2] through data[11]. The CAPACITY is 42, i.e., the array has been	
		ared to be of size 42. Where does the push member function place the new entry in the	
	array		
		data[1]	
		data[2]	-
		data[11]	
0.4	\mathbf{M}	data[12]	
81		e linked list implementation of the stack class, where does the push member function	1
	place	es the new entry on the linked list?	
		At the head	
		At the tail	
		After all other entries that are smaller than the new entry.	
4		After all other entries that are greater than the new entry.	
82	Supp	pose n is the number of nodes in a complete Binary Tree then maximum steps required	1
	for a	search operation are,	
	\mathbf{M}	Log2 (n+1) -1	=
		Log2 (n+1)	
		Log2 (n) – 1	
		Log2 (n)	

83	Wha	t is the maximum depth of recursive calls a function may make?	1
		1	
		2	
		n (where n is the argument)	
	Y	There is no fixed maximum	
84	f); vo	e is the start of a C++ class declaration: class foo { public: void x(foo f); void y(const foo bid z(foo f) const; Which of the three member functions can alter the PRIVATE aber variables of the foo object that activates the function?	1
		Only x can alter the private member variables of the object that activates the function.	
		Only y can alter the private member variables of the object that activates the function.	
		Only z can alter the private member variables of the object that activates the function.	
		Two of the functions can alter the private member variables of the object that activates the function.	
85	Whe	n should you use a const reference parameter?	1
		Whenever the parameter has huge size.	
	Y	Whenever the parameter has huge size, the function changes the parameter within its body, and you do NOT want these changes to alter the actual argument.	
		Whenever the parameter has huge size, the function changes the parameter within its body, and you DO want these changes to alter the actual argument.	
		Whenever the parameter has huge size, and the function does not change the parameter within its body.	
86	The	tree data structure is a	1
		Linear data structure	
	Y	Non-linear data structure	
		Graphical data structure	
		Data structure like queue	
87	In th	e call by value methodology, a copy of the object is passed to the called function.	1
	M	True	
		False	

88	Consider the function X as under	1	
	int X (int& Value)		
	return Value;		
	\		
	Now a and b are integers in a calling function. Which one of the following is a valid call to the		
	above function		
	X.		
	a = X (b);		
	■ a = X (&b);		
	a = X (*b);		
	None of the given options		
89	The data of the problem is of 2GB and the hard disk is of 1GB capacity, to solve this problem	1	
	we should		
	Use better data structures		
	Increase the hard disk space		
	Use the better algorithm		
	Use as much data as we can store on the hard disk		
90	A queue where the de-queue operation depends not on FIFO, is called a priority queue	1	
	True		
	False		
91	No Question Found	1	
	No option found!		
	No option found!		

Signature:

Proprietary license by Freemcqs.com Inc. More Information at http://Freemcqs.com