

Sydney Girls High School 2014

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time 5 minutes
- Working time 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11 14, show relevant mathematical reasoning and/or calculations

Total marks - 70

Section I

Pages 3 – 6

10 Marks

- Attempt Questions 1 10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II

Pages 7 - 13

60 Marks

- Attempt Questions 11 14
- Answer on the blank paper provided
- Begin a new page for each question
- Allow about 1 hour and 45 minutes for this section

Name:	THIS IS A TRIAL PAPER ONLY
Teacher:	It does not necessarily reflect the format or the content of the 2014 HSC Examination Paper in this subject.

Section I

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- (1) What are the values of p such that $\frac{p+1}{p} \le 1$?
 - (A) p > 0
 - (B) p < 0
 - (C) $p \le 0$
 - (D) $-1 \le p \le 0$
- (2) The expression $\tan\left(\frac{\pi}{4} + x\right)$ can also be expressed as:
 - (A) $\frac{\cos x + \sin x}{\cos x \sin x}$
 - (B) $\frac{\cos x \sin x}{\cos x + \sin x}$
 - (C) $\frac{\sec^2 x}{1-\tan^2 x}$
 - (D) $\frac{\sin x + \cos x}{\sin x \cos x}$
- (3) The acute angle (to the nearest degree) between the lines x y = 2 and 2x + y = 1 is:
 - (A) 18°
 - (B) 27°
 - (C) 45°
 - (D) 72°

- (4) Two of the roots of the polynomial $4x^3 + 8x^2 + kx 18 = 0$ are equal in magnitude but opposite in sign. Find the value of k.
 - (A) k = -2
 - (B) k = 2
 - (C) k = -9
 - (D) k = 9
- (5) y = f(x) is a linear function with slope $\frac{1}{3}$, find the slope of $y = f^{-1}(x)$.
 - (A) 3
 - (B) $\frac{1}{3}$
 - (C) -3
 - (D) $-\frac{1}{3}$
- (6) In the diagram, AC is a tangent to the circle at the point N, AB is a tangent to the circle at the point M and BC is a tangent to the circle at the point L.

Find the exact length of AM if CL = 6 cm and BL = 2 cm.

- (A) 3 cm
- (B) 4 cm
- (C) 5 cm
- (D) 6 cm

- (7) Find $\int \frac{dx}{1+4x^2}$
 - (A) $\frac{1}{2} \tan^{-1} 2x + C$
 - (B) $2 \tan^{-1} 2x + C$
 - (C) $2 \tan^{-1} \frac{x}{2} + C$
 - (D) $\frac{1}{2} \tan^{-1} \frac{x}{2} + C$
- (8) Evaluate $\lim_{x\to 0} \frac{5x\cos 2x}{\sin x}$.
 - (A) -10
 - (B) -5
 - (C) 5
 - (D) 10
- **(9)** Using $u = x^2 + 1$, the value that is equal to $\int_0^1 3x(x^2 + 1)^5 dx$ is:
 - (A) $\frac{1}{4}$
 - (B) $\frac{16}{3}$
 - (C) $\frac{63}{4}$
 - (D) 32

(10) The displacement, x metres, from the origin of a particle moving in a straight line at any time (t seconds) is shown in the graph.

When was the particle at rest?

- (A) t = 4.5 and t = 11.5
- (B) t = 0
- (C) t = 2, t = 8 and t = 14
- (D) t = 8

Section II

60 marks

Attempt Questions 11 - 14

Allow about 1 hour and 45 minutes for this section

Answer on the blank paper provided. Begin a new page for each question In Questions 11 – 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks)

- (a) Evaluate $\int_0^{\frac{\pi}{6}} \sec 2x \tan 2x \ dx.$ [2]
- (b) A(-3,7) and B(4,-2) are two points. Find the coordinates of the point [2] P(x,y) which divides the interval AB internally in the ratio 3:2.
- (c) The equation $2x^3 6x + 1 = 0$ has roots α , β and γ . Evaluate:

i)
$$\alpha + \beta + \gamma$$
. [1]

ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
. [2]

- (d) i) Find the domain and range of the function $f(x) = 2\cos^{-1}(1-x)$. [2]
 - ii) Sketch the graph of the curve $y = 2\cos^{-1}(1-x)$ showing clearly the coordinates of the endpoints. [2]

Question 11 continues on the next page

Question 11 (Continued)

(e)

Two circles intersect at A and B. P is a point on the first circle and Q is a point on the second circle such that PAQ is a straight line. C is a point on the second circle. The line QC produced and the tangent to the first circle at P meet at D.

i) Copy the diagram.

ii) Give a reason why
$$\angle DPA = \angle PBA$$
. [1]

iii) Give a reason why
$$\angle CQA = \angle CBA$$
. [1]

iv) Hence show that *BCDP* is a cyclic quadrilateral. [2]

End of Question 11

Question 12 (Begin a New Page)

(15 Marks)

(a) Use the method of Mathematical Induction to show that $5^n + 12n - 1$ is divisible by 16, for all positive integers $n \ge 1$.

(b)

 $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ are two points which move on the parabola $x^2 = 4ay$ such that $\angle POQ = 90^\circ$, where O is the origin.

 $M = \left(a(p+q), \frac{1}{2}a(p^2+q^2)\right)$ is the midpoint of PQ. R is the point such that OPRQ is a rectangle.

i) Show that
$$pq = -4$$
. [1]

ii) Show that R has coordinates
$$(2a(p+q), a(p^2+q^2))$$
. [1]

iii) Find the equation of the locus of R. [2]

Question 12 continues on the next page

Question 12 (Continued)

(c)

- i) Show that the equation $e^x + x = 0$ has a real root α such that $-1 < \alpha < 0$. [2]
- ii) If a is taken as an initial approximation to this real root α , use Newton's [2] method to show that the next approximation a_1 is given by $a_1 = \frac{(a-1)e^a}{e^a+1}$. Hence if the initial approximation is taken as a = -0.5, find the next approximation for α correct to two decimal places.

(d)

The chord AB of a circle of radius 10 cm subtends an angle θ radians at the centre O of the circle.

- i) Show that the perimeter P cm of the minor segment cut off by the chord AB is given by $P = 10\theta + 20\sin\frac{\theta}{2}$.
- ii) If θ is increasing at a rate of 0.02 radians per second, find the rate at which *P* is increasing when $\theta = \frac{2\pi}{3}$.

End of Question 12

(a) Evaluate
$$\int_{1}^{49} \frac{1}{4(x+\sqrt{x})} dx$$
 using the substitution $u^2 = x$, $u > 0$. [4]

Give the answer in simplest exact form.

- (b) Newton's Law of Cooling states that the rate of change in the temperature, T, of a body is proportional to the difference between the temperature of the body and the surrounding temperature, P.
 - i) If A and k are constants, show that the equation $T = P + Ae^{kt}$ satisfies [2] Newton's Law of Cooling.
 - ii) A cup of tea with temperature of 100°C is too hot to drink. Two minutes [2] later, the temperature has dropped to 93°C. If the surrounding temperature is 23°C, calculate the value of *A* and *k* (correct to 3 significant figures).
 - iii) The tea will be drinkable when the temperature has dropped to 80°C. [1] How long in minutes will this take?
- (c) A particle's motion is defined by the equation $v^2 = 12 + 4x x^2$, where x is its displacement from the origin in metres and v its velocity in ms⁻¹. Initially, the particle is 6 metres to the right of the origin.
 - i) Show that the particle is moving in Simple Harmonic Motion. [1]
 - ii) Find the centre, the period and the amplitude of the motion. [3]
 - iii) The displacement of the particle at any time t is given by the equation [2] $x = a \sin(nt + \theta) + b$. Find the values of θ and b, given $0 \le \theta \le 2\pi$.

End of Question 13

(a)

A footpath on horizontal ground has two parallel edges. CD is a vertical flagpole of height h metres which stands with its base C on one edge of the footpath. A and B are two points on the other edge of the footpath such that AB = 7 m and $\angle ACB = 60^{\circ}$. From A and B the angles of elevation of the top D of the flagpole are 30° and 60° respectively.

- i) Find the exact height of the flagpole. [3]
- ii) Find the exact width of the footpath. [2]

Question 14 continues on the next page

Question 14 (Continued)

(b)

O and A are two points d metres apart on horizontal ground. A rocket is projected from O with speed V ms⁻¹ at an angle θ above the horizontal where $0 < \theta < \frac{\pi}{2}$. At the same instant, another rocket is projected vertically from A with speed U ms⁻¹.

The two rockets move in the same vertical plane under gravity where the acceleration due to gravity is $g \text{ ms}^{-2}$.

After time t seconds, the rocket from O has horizontal and vertical displacements x metres and y metres respectively from O, while the rocket from A has vertical displacement Y metres from A. The two rockets collide after T seconds.

i) Derive the expressions for
$$x$$
, y and Y in terms of V , θ , U , t and g . [3]

ii) Show that
$$d = VT \cos \theta$$
 and $U = V \sin \theta$. [2]

iii) Show that
$$V > U$$
. [1]

iv) Show that the two rockets are the same distance above ground level at all times [1]

v) Show that
$$T = \frac{d}{\sqrt{V^2 - U^2}}$$
. [2]

vi) If the two rockets collide at the highest points of their flights, show that
$$d = \frac{U\sqrt{V^2 - U^2}}{g}.$$

End of Exam

Cx+1.

Sydney Girls High School

Mathematics Faculty

Multiple Choice Answer Sheet Mathematics

2014 EXT1 THSC

Completely fill the response oval representing the most correct answer.

1.	$A \bigcirc$	В	CO	D
2.	A 🌑	ВО	$C\bigcirc$	D
3.	A 🔿	ВО	$C \bigcirc$	D
4.	A 🔾	В	C 🔷	D
5.	A 🗨	ВО	$C \bigcirc$	DO
6.	A 🔾	В	CO	D
7.	A 🍣	ВО	$C\bigcirc$	D
8.	A 🔾	В	C	D
9.	A O	В	C 😂	DO

 $C\bigcirc$

 $D\bigcirc$

10.

Multiple Choice.

$$= tan \left(\frac{\pi}{4} + \pi\right)$$

$$= tan \frac{\pi}{4} + tan x$$

$$= tan \frac{\pi}{4} + tan x$$

$$= \frac{1 + \frac{\sin x}{\cos x}}{1 - \frac{\sin x}{\cos x}}$$

multiple choice.

(3)
$$x-y=2 \Rightarrow y=x-2 \dots m,=1$$

$$tom \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$$

$$= \frac{\left| 1 - \left(-2\right) \right|}{\left| 1 + \left(1\right)\left(-2\right) \right|}$$

(4)
$$4x^3 + 8x^2 + kx - 18 = 0$$

$$\alpha + (-\alpha) + \beta = -\frac{8}{4} = -2$$

$$d(-d)\beta = 18$$

$$-\chi^{2}(-2) = \frac{9}{2}$$

$$\lambda^2 = \frac{9}{4}$$

$$\alpha(-\alpha) + \alpha\beta + (-\alpha\beta) = \frac{k}{4}$$

Multiple choice.

$$3n = y+3b$$

$$y = 3n-3b$$

$$A$$

$$(\pi t^2)^2 + 8^2 = (\pi + 6)^2$$

$$\pi^2 + 4\pi + 4 + 64 = \pi^2 + 12\pi + 36$$

$$x = 4$$

$$= \int \frac{dx}{4\left(\frac{1}{4} + x^2\right)}$$

$$=\frac{1}{4}\cdot\frac{1}{2}\tan^{-1}\frac{\pi}{2}$$

Muttiple Choice.

8 lim
$$\frac{5 \times \cos 2 \times}{\sin 2}$$

= $\lim_{n \to 0} \frac{5 n (1 - 2 \sin^2 x)}{\sin x}$

= $\lim_{n \to 0} \frac{5 \times}{\sin x} - 10 \times \sin x$.

= $\lim_{n \to 0} \frac{5 \times}{\sin x} - 10 \times \sin x$.

= $\lim_{n \to 0} \frac{5 \times}{x} - 10 \times \cos x$.

$$\int_0^1 3n \left(x^2 + 1 \right)^5 dx$$

$$= \frac{3}{2xb} \left[u^{\circ} \right]^{-1}$$

Question 11 - 15 marks - ExtI Mathematics - 2014 - Trials

a)
$$\int_{0}^{\pi/6}$$
 sec $2x + \tan 2x \, dx = \frac{1}{2} \sec 2x \int_{0}^{\pi/6}$ — Overall this question was done poorly.

$$= \frac{1}{2} \sec^{\pi/3} - \frac{1}{2} \sec 0$$

$$= 1 - \frac{1}{2}$$

$$= \frac{1}{2} (2 \text{ marks})$$
Substitution

b)
$$m: N$$
 $3: 2$
 $m+n$
 $m+n$
 $m+n$
 $m+n$

A $(-3,7)$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3: 2$
 $3:$

c)
$$2x^3 + 0x^2 - 6x + 1 = 0$$

i) $x + \beta + \gamma = -\frac{b}{a}$

= 0

 $x + \beta + \gamma = -\frac{b}{a}$

= 0

 $x + \beta + \gamma = -\frac{b}{a}$

= $x + \beta + \gamma = \frac{\beta}{\alpha + \alpha} + \alpha \beta$

= $x + \beta + \gamma = \frac{\beta}{\alpha + \alpha} + \alpha \beta$

= $x + \beta + \gamma = \frac{\beta}{\alpha + \alpha} + \alpha \beta$

= $x + \beta + \gamma = \frac{\beta}{\alpha + \alpha} + \alpha \beta$

= $x + \beta + \gamma = -\frac{d}{\alpha}$

= $x + \beta + \gamma = -\frac{d}{$

overall domain & range was

found very well.

Sketches of
the graph varied

Most sketched

correctly.

Parts ii) ii iii) were completed extremely well.

IV) Most completed question well, some proved it by the exterior & equals interior opposite & of cyclic quad.

- ii) LDPA = KPBA (angle in the alternate segment)=x
- iii) < CQA = < CBA (angles standing on the same arc) = y°
- 1) LD = 180-(x+y) (angle sum of ΔΡΟΘ)
 -: LD + LPBC = 180-(x+y) + x+y
 = 180°

are supplementary, hence,
BCDP is a cyclic quadrilateral.

<u>(i)</u>
(i) a(p+2), <u>La(p²+2²)</u> , <u>x+0</u> 5+0
$\frac{x}{2} = \frac{a(p+q)}{2} + \frac{y}{2} = \frac{1}{2} (p^2 + 2^2)$
x=2a(p+2), y-a(p2+22)
Many students did more
This a payed working for
a one mark question
b(jji)
b(jii) x = 2a(p+q)
y = a (p2+ q2)
·
P+2 = x
•
y = 2 (p+q) 2 2pq]
- 1/2 2 87
$= 2\left[\frac{2}{2a}^{2} + 8\right]$
y= x2 + 8a
$x^2 = 4a (y - 8a)$
2 - · · · · · · · · · · · · · · · · · ·
*
This avestion was done
This question was dence better than part i) and ii)

c)i)	d)i)
f(x)=ex+x	10 0
\$(0) = e + 0	12
<u>-e 70</u>	A M B
·	Sin & MB
f(-1) = e -1	
= _0.63 <0	$MB = 10 5.5 \frac{6}{2}$ $AB = 2 MB$
510ce f(0) 70 ma	AB = 2MB
f(-1) (0 : There is a	AB = 20 sin &
root -12x10	
X 1	P=r0+20sin=
The setting out for this	1 = 100 + 20 sin B
part was very poor.	
$\frac{11)}{f} x_1 = x - \frac{f(n)}{f'(n)}$	his was the simplest way
1 $ 1 $	of doing this greation.
a ₁ = a = e ⁹ + a	some students used a
	harder method and and ort
= a(e +1) - e - a	show the working properly.
_	ii) 10 = 0.02
= ae +a e a	dt
	ap ap do
= e(a-1)	de de de
= ea+1	= (10 + 20x1x cps &)x0.02
*Please venember for	= (10 + 10 cos 0) 0.62
a "show" question you	= 15 x 0.02
need to show all the	= 0.3 cm/,
steps.	* some students did o't get
	The cor & correctly

Question 13 Nauton's Law is dt = K(T-P) V If T=P+Aekt then dT = K x Aekt : dT = K (T-P) ii) When T=100, 1=23, t=0: : A = 77 When t=2, T=93° 93 = 23 + 77 e kx2 70 = 77e2k A Rounding-off correct $70 = e^{2k}$ to 3. sig. figs needs 77 V to be REVISED by $\therefore k = 1 \ln \frac{70}{77} = -0.0477$ Most students. 80 = 23 + 77 e 0.0477xt t = 6.31106047 min or t = 7 min & Rounding to 6 min is incorrect (without previous work / approximation).

$$V^2 = 12 + 4\pi - \pi^2$$

$$i) \quad a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$$

$$= \frac{d}{dx} \left(6 + 2x - x^2 \right)$$

$$= 2-\pi$$

$$= -1(\pi-2) = -n^2(\pi-b)$$
: particle moves in SHM.

$$\frac{12 + 4x - x^2 = 0}{(6 - x)(2 + x) = 0}$$

$$\therefore x = -2$$
 and $x = 6$
 \therefore amplitude of motion is $4.$

$$\ddot{u}$$
 a=4, n=1, b=2

$$6 = 4\sin\theta + 2$$

$$\therefore x = 4\sin\left(t + \frac{\pi}{2}\right) + 2$$

Question 14:

$$: BC = \frac{h}{\tan 60^{\circ}} = \frac{h \cot 60^{\circ} - h}{\sqrt{3}}.$$

Using the cosine rule in DABC:

$$7^{2} = \frac{h^{2} + 3h^{2} - 2 \times h \times \sqrt{3} h \times 1}{\sqrt{3}}$$

$$49 = h^2 \left(\frac{1}{3} + 3 - 1 \right)$$

$$49 = \frac{7h^2}{3}$$

$$h^2 = 3 \times 49$$

1600

Let the width of the footpath be & motres.

Area DABC = = absinc

1x7x7 = 1xBCxACxsin60°

 $7x = \frac{h}{\sqrt{3}} \times \sqrt{3} \, h \times \frac{\sqrt{3}}{2}$

 $x = \sqrt{3} h^2$

 $x = 21\sqrt{3}$

 $x = \frac{3\sqrt{3}}{2} m$

* Many students thought that BABC is right-angled. This was awarded ZERO marks. The problem was over-simplified.

Question 14:

b) i) Rocket from point 0:

horizontal motion:

x=0

when t=0, x=Vcoso

:. x = V coso

 $x = V\cos\theta t + C,$

when t=0, V=0

: x=Vcosot

Vertical motion:

 $\ddot{y} = -g$

y=-gt+c when t=0, y=Vsin0

when t=0, V=0: G=0

: y= Vsin0t-2gt2

\$ students who did not DERIVE the equations lost one mark.

Question 14:

bi) Rocket from point A:

$$Y = Ut - gt^2 + C,$$

- ii) When the rockets collide at time T,
 - they must be vertically above A with the same height.

$$x = V + \cos \theta$$

y=Vtsin0-1gt2

auestion 14

(b) iii) U=Vsin0

$$iv) Y = Ut - \frac{1}{2}gt^{2}$$

$$= (Vsin\theta)t - \frac{1}{2}gt^{2} \checkmark$$

Hence the rockets are always at the same height above ground level

$$V$$
) $V\cos\theta = \frac{d}{T}$ (from ii)

$$V^2 = d^2 + U^2$$

$$V^2 - V^2 = d^2$$

$$T^2 = \frac{d^2}{V^2 - V^2}$$

$$: T = \underbrace{d}_{\sqrt{V^2 - V^2}}, (770)$$

* alternate solutions accepted.

anestion 14.
(b) vi) At the highest point of flight of the rocket from A:
ŷ=0
V-g t = 0
U=qt
<u> </u>
$t = \frac{U}{a}$
9
Rockets collide at highest point if T=V
Then $d = T\sqrt{V^2 - V^2}$
$d = VV^2 - V^2, \text{ as required. } V$
9