Lending Club Case Study

Vineet Kumar Sharma
Dev Kashyap

Problem Statement / Goal

 Given the data of existing customers who have either paid off or defaulted the loan, business wants to answer the question whenever a new application for loan is requested – "Will this applicant default in future?"

 If the question can be answered with a high accuracy using EDA the business grows by lending money to the genuine customers while saving potential losses by predicting and rejecting a defaulter applicant

Assumptions

- Grade is assumed to follow the order A>B>C i.e customer with grade A is less likely to default then grade B and so on.
- Subgrade is assumed to follow the order A1 > A2 > A3 and likewise

Approach -

- Understand the business domain and go through data dictionary.
- Based on understanding of domain think of the attributes that would affect the probability of an applicant to default.
- Drop all other columns from the data set. Keep only the attributes identified in last step.
- Clean the data so that aggregations and string operations can be performed by software. Remove or substitute the null values
- If a column has too many outliers then handle the outliers.

Approach - EDA

- First see basic pattern in data provided. It could tell how the data for a column is distributed. Is it good for identifying some trends?
- Find corelation if any between any pair of columns
- Most important is segmented univariate analysis where we will keep target variable as loan_status and try to identify trend.
- Example mean of loan amount for fully paid could be 5000\$ and for charged off mean of loan amount could be 10000\$. Means a higher loan amount increases chances of default

Imputing data by using IQR

These two columns were chosen after studying domain. Turns out the captured data does not have much variation. We dropped tax_liens column and substituted nulls with 0 for pub_rec_bankruptcies

Final data set after clean up

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 38577 entries, 0 to 39716
Data columns (total 18 columns):
    Column
                         Non-Null Count Dtype
                          -----
     loan amnt
                         38577 non-null int64
    term
                         38577 non-null int32
                         38577 non-null float64
    int rate
    grade
                         38577 non-null object
    sub grade
                         38577 non-null object
    emp length
                         38577 non-null int64
    home ownership
                         38577 non-null object
    annual inc
                          38577 non-null float64
                         38577 non-null object
    loan status
    purpose
                         38577 non-null object
 10 zip code
                         38577 non-null object
 11 dti
                         38577 non-null float64
 12 earliest cr line
                         38577 non-null object
 13 inq_last_6mths
                          38577 non-null int64
 14 pub rec
                         38577 non-null int64
 15 total acc
                         38577 non-null int64
 16 application type
                         38577 non-null object
17 pub rec bankruptcies 38577 non-null float64
dtypes: float64(4), int32(1), int64(5), object(8)
memory usage: 5.4+ MB
```

EDI Analysis - Graphs

Distribution of data by categories

EDA – Graphs Contd

Annual Income vs Loan amount for defaulted loans Annual Income vs Loan amount for Fully Paid loans

Pivot tables

Out[102]:

	loan	_amn	t											
loan_status	Charged Off							Fully Paid						
grade	Α	В	С	D	E	F	G	Α	В	С	D	E	F	G
term														
36	565	985	844	580	176	56	21	9085	8346	4905	2651	692	155	35
60	37	440	503	538	539	263	80	358	1904	1582	1316	1256	502	163

Conclusion 4 - For Charged off category 42% people go for 60 month tenure. For fully paid loans only 21% opt for 60 month loan. We can conclude that the lesser the loan tenure the better are chances of no default.

Out[96]:

loan_amnt										
loan_status		Charged Off	Fully Paid							
	grade									
	А	602	9443							
	В	1425	10250							
	С	1347	6487							
	D	1118	3967							
	E	715	1948							
	F	319	657							
	G	101	198							

Conclusions/Recommendations

- annual income is a very strong attribute to consider (especially for higher loan amounts)
- The riskiest of loan purpose is small_business followed by debt_consolidation and credit_card
- Grading system used by Loan Club is working almost accurately in real world.
- Lesser the loan tenure the better are chances of no default.
- DTI seems to have almost no effect on the loan paying capacity which is counterintuitive

Thank You