Congruent angles are angles that have equal measures. Since $\angle R$ and $\angle S$ both have measure 40, you can write

$$m \angle R = m \angle S$$
 or $\angle R \cong / S$.

The definition of congruent angles tells us that these two statements are equivalent. We will use them interchangeably.

Adjacent angles (adj. 🔊) are two angles in a plane that have a common vertex and a common side but no common interior points.

 $\angle 1$ and $\angle 2$ are adjacent angles.

 $\angle 3$ and $\angle 4$ are not adjacent angles.

3 4

The bisector of an angle is the ray that divides the angle into two congruent adjacent angles. In the diagram,

$$m \angle XYW = m \angle WYZ$$
,
 $\angle XYW \cong \angle WYZ$,
 \overrightarrow{YW} bisects $\angle XYZ$.

and

There are certain things that you can conclude from a diagram and others that you can't. The following are things you can conclude from the diagram shown below.

All points shown are coplanar. \overrightarrow{AB} , \overrightarrow{BD} , and \overrightarrow{BE} intersect at B. A, B, and C are collinear. B is between A and C. $\angle ABC$ is a straight angle. D is in the interior of $\angle ABE$. $\angle ABD$ and $\angle DBE$ are adjacent angles.

The diagram above does *not* tell you that $\overline{AB} \cong \overline{BC}$, that $\angle ABD \cong \angle DBE$, or that $\angle CBE$ is a right angle. These three new pieces of information can be indicated in a diagram by using marks as shown at the right. Note that a small square is used to indicate a right angle (rt. \angle).

