See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/7226444

Comment on "Theoretical Investigation of the Formation Mechanism of Metallofullerene Y@C 82"

ARTICLE IN THE JOURNAL OF PHYSICAL CHEMISTRY A · APRIL 2006	
Impact Factor: 2.69 · DOI: 10.1021/jp053586q · Source: PubMed	

CITATION

1

READS 11

1 AUTHOR:

Douglas L. Strout Alabama State University

54 PUBLICATIONS **1,391** CITATIONS

SEE PROFILE

J Phys Chem A. Author manuscript; available in PMC 2008 December 8.

Published in final edited form as:

J Phys Chem A. 2006 March 30; 110(12): 4285–4286. doi:10.1021/jp053586q.

Comment on "Theoretical Investigation of the Formation Mechanism of Metallofullerene Y@C₈₂"

Douglas L. Strout

Department of Physical Sciences, Alabama State University, Montgomery, AL 36101

A recent study 1 by Gan and Wang characterized a formation mechanism for the metallofullerene $Y @ C_{82}$, and the energetically favorable path was determined to be a reaction $C_{76} + YC_6 \rightarrow Y @ C_{82}$. The YC_6 reactant was portrayed as a six-membered ring of carbon coordinated to an yttrium atom in η^6 fashion, with C_{6v} or near- C_{6v} point group symmetry. However, what is the stability of this proposed reactant relative to other YC_6 isomers? Will the YC_6 exist in the proposed form with a sufficient lifetime to perform its proposed role in the mechanism? Using the B3LYP/LANL2DZ method 2,3 of the previous study, this isomer of YC_6 is compared to two other YC_6 isomers from a previous study 4 by Strout and Hall. These two other isomers are shown in Figures 1 and 2. Figure 1 shows a planar isomer in which the yttrium atom is coordinated to a six-membered carbon ring in η^2 fashion. Figure 2 shows the so-called "fan isomer" is which the yttrium atom is coordinated to a linear chain of six carbons in such a way as to have Y-C bonding distances with all six carbon atoms.

The first major result is that the geometry optimization of a C_{6v} isomer was unsuccessful due to gradients that suggest that the six Y-C distances should be non-identical. The stationary point most similar to the previous authors' C_{6v} isomer was found in C_{2v} symmetry and is shown in Figure 3. Even this structure is not quite a local minimum, having a single imaginary frequency of 135i. The molecules in Figures 1 and 2 are local minima at the B3LYP/LANL2DZ level of theory. Table 1 shows the relative energies of these three stationary points. The fan isomer is the lowest in energy, followed by the planar η^2 ring isomer, with the nonplanar isomer lying much higher in energy. Given this energy ordering of the isomers, it is plausible to envision a reaction path whereby the yttrium atom of the nonplanar isomer slides down to its position on the planar ring, followed by insertion of the yttrium into the ring to form a fan isomer. If the barrier between nonplanar ring isomer and planar ring isomer is a high one, then the nonplanar ring isomer may be stable enough to perform its proposed role in the formation of Y@C82. However, that would have to be demonstrated to be the case in order for the nonplanar YC6 to be a plausible reactant in a Y@C82 reaction mechanism.

Acknowledgements

The Alabama Supercomputer Authority is gratefully acknowledged for a grant of computer time on the SGI Altix operated in Huntsville, AL. This work is also supported by the National Institutes of Health (NIH/NCMHD grant 1P20MD000547-01). The taxpayers of the state of Alabama in particular and the United States in general are also gratefully acknowledged.

References

- 1. Gan LH, Wang CR. J Phys Chem A 2005;109:3980. [PubMed: 16833719]
- 2. Becke AD. J Chem Phys 1993;98:5648.Lee C, Yang W, Parr RG. Phys Rev B 1988;37:785.
- 3. Hay PJ, Wadt WR. J Chem Phys 1985;82:299.
- 4. Strout DL, Hall MB. J Phys Chem 1996;100:18007.

Figure 1. Fan isomer of YC $_{6}$ (C $_{2v}$ point group symmetry).

Figure 2. Planar ring isomer of YC $_{\!6}$ (C $_{\!2v}$ point group symmetry).

 $\label{eq:continuous} \textbf{Figure 3.} \\ \textbf{Nonplanar ring isomer of YC}_6 \ (C_{2v} \ point \ group \ symmetry). This structure resulted from unsuccessful attempts to optimize the structure with C_{6v} symmetry.}$

TABLE 1

Relative energies of three isomers of YC_6 (calculated with B3LYP/LANL2DZ method, energies in kcal/mol).

Isomer	Energy
Fan isomer (Figure 1)	0.0
Planar ring isomer (Figure 2)	+19.3
Nonplanar ring isomer (Figure 3)	+63.1