Theoretical Machine Learning

Lectured by Zhihua Zhang

LATEXed by Chengxin Gong

February 21, 2024

Contents

1	简介	
2	· · · · · · · · · · · · · · · · · · ·	

1 简介

- 机器学习的主要任务: 生成、预测、决策. 生成: $X_1, \dots, X_n \sim F$, 推断分析 F, 无监督学习, GAN, GPT, \dots . 预测: 数据对 $(X^{(1)}, Y^{(1)}), \dots, (X^{(n)}, Y^{(n)}), X^{(i)} \in \mathbb{R}^d$ 输入变量, $f: \mathcal{X} \to \mathcal{Y}, x \in \mathcal{X}, y \in \mathcal{Y}$, 归因, 有监督学习. 决策: 强化学习, Agent←action, state, reward \to 环境.
- 求解问题的途径: 参数/非参数, 频率 (MLE)/贝叶斯.
- 误差模型:有监督: $X = (X_1, \dots, X_d)^T \in \mathbb{R}^d$, 回归: $Y \in \mathbb{R}$; 分类: $Y \in \{0, 1\}(\{-1, 1\}, \{1, \dots, M\}, \{0, 1\}^M)$; X 随机, Random design(生成模型), $Y = g(X) + \epsilon \stackrel{\text{or}}{=} g(X, Z), Y^{(i)} = g(X^{(i)}, Z^{(i)})$; X 固定 X = x, Fixed design(判别模型), $Y^{(i)} = g(x^{(i)}, Z^{(i)})$. 无监督: X = g(Z)(因子模型: $X = AZ + \epsilon, Z \in \mathcal{N}(0, 1), \epsilon \sim \mathcal{N}(0, \Sigma)$).

2 统计决策理论

- Consider a state space Ω , data space \mathcal{D} , model $\mathcal{P} = \{p(\theta, x)\}$, action space \mathscr{A} . Loss function: $\mathcal{L} : \Omega \times \mathscr{A} \to [-\infty, +\infty]$, measurable, nonnegative. A measurable function $\delta : \mathcal{D} \to \mathscr{A}$ is called a nonrandomized decision rule. Risk function is defined as $\mathcal{R}(\theta, \delta) = \int \mathcal{L}(\theta, \delta(x)) dP_{\theta}(x) = \mathbb{E}_{\theta} \mathcal{L}(\theta, \delta(X))$. Randomized decision: for each X = x, $\delta(x)$ is a probability distribution: $[A|X = x] \sim \delta_x$. Risk function for $\delta : \mathcal{R}(\theta, \delta) = \mathbb{E}_{\theta} \mathcal{L}(\theta, A) = \mathbb{E}_{\theta} \mathbb{E}_{a} \mathcal{L}(\theta, A|X) = \iint \mathcal{L}(\theta, a) d\delta_x(a) dP_{\theta}(x)$.
- Example [参数估计]: $\theta \in \Omega, \mathscr{A} = \Omega, \mathcal{L}(\theta, a) = \|\theta a\|_2^2 \stackrel{\text{or}}{=} \|\theta a\|_p^p (p \ge 1) \stackrel{\text{or}}{=} \int \log \frac{P_{\theta}(x)}{P_a(x)} P_{\theta}(x) dm(x) (KL).$ $\mathcal{R} = \text{Var}(a) + \text{bias}^2(a).$ Bregmass loss: $\phi : \mathbb{R}^d \to \mathbb{R}$ describe any strictly convex differentiable function. Then $\mathcal{L}_{\phi}(\theta, a) = \phi(a) \phi(\theta) (\phi a)^T \nabla \phi(a).$
- Example [Testing]: $\mathscr{A} = \{0,1\}$ with action "0" associated with accepting $H_0: \theta \in \Omega_0$ and "1": $H_1: \theta \in \Omega_1$. δ_x is a Bernolli distribution. $\mathcal{L}(\theta,a) = I\{a=1,\theta \in \Omega_0\} + I\{a=0,\theta \in \Omega_1\}$. Risk $\mathcal{R}(\theta,\delta) = \mathbb{P}_{\theta}(A=1)1_{\theta \in \Omega_0} + \mathbb{P}_{\theta}(A=0)1_{\theta \in \Omega_1}$.
- A decision rule δ is called inadmissible if a competing rule δ^* such that $\mathcal{R}(\theta, \delta^*) \leq \mathcal{R}(\theta, \delta)$ for all $\theta \in \Omega$ and $\mathcal{R}(\theta, \delta^*) < \mathcal{R}(\theta, \delta)$ for at least one $\theta \in \Omega$. Otherwise, δ is admissible.
- The maximum risk $\bar{\mathcal{R}}(\delta) = \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$ and the Bayes risk $r(\Lambda, \delta) = \int \mathcal{R}(\theta, \delta) d\Lambda(\theta)$ ($\Lambda(\theta)$ is a prior for θ). A decision rule that minimizes the Bayes risk is called a Bayes rule, that is, $\hat{\delta} : r(\Lambda, \hat{\delta}) = \inf_{\delta} r(\Lambda, \delta)$. Minimax rule $\delta^* : \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta^*) = \inf_{\delta} \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$.