# Aparajita Sahoo

CONTACT Information REDX Innovation Lab, Mumbai Rethinking Engineering Design eXecution

Welingkar Building, Lakhamsi Nappu Road Matunga (East), Mumbai, India 400 019

Phone: (+91) 907 621 1711

E-Mail: aparajitasahoois@gmail.com

aparajita.redx@gmail.com Webpage: aparajitasahoo.github.io

RESEARCH INTERESTS I am passionate about creating a social impact by working at the intersection of health technologies, data science, design and social innovation that will impact the lives of the people globally. I am also interested in enhancing user experiences by combining the power of computing, mobile technologies and effective design. I have also worked on electronics prototyping of low cost healthcare devices that can be deployed in rural areas that dont have access to medical facilities.

EDUCATION

Univ. of Mumbai, Fr. Conceicao Rodrigues Inst. of Technology, Mumbai 2011 – 2015 Bachelor of Engineering, Electronics and Telecommunication Engineering, First Class

**Atomic Energy Junior College**, Anushaktinagar, Mumbai 2008 – 2010 Intermediate Degree, Science with Vocational Training in Electrical Maintenance, 88%

Atomic Energy Central School, Anushaktinagar, Mumbai Matriculation, 93.8%, All India Topper in Mathematics

1998 - 2008

RESEARCH EXPERIENCE AND PROJECTS REDX Innovation Lab, under Emerging Worlds Special Interest Group, MIT Media Lab Innovation Engineer, focusing on healthcare technologies for rural areas

**Project: Dermato** || Guide: Dr. Anshuman J. Das || October 2015 – Present A project aiming to solve important problems faced by dermatologists in diagnosis in rural areas

The first part is a study aimed at reducing the subjectivity in visual examination of skin diseases, especially in depigmented conditions. Here, it is difficult to diagnose similar looking diseases without an intravenous procedure like biopsy. We have developed a non-intravenous method to identify the condition which is much faster, cheaper and less painful than existing methods. The device is a fluorescence spectroscopy test that can be done with the help of a mobile phone. I have been involved in collaborating with doctors to design and implement this study at the K. J. Somaiya Hospital, Mumbai. I have been actively helping doctors to collect data using our device, from around 200 skin patients over a period of 5 months. I have been working on analyzing this data and improving the design and user interface based on feedback from doctors. We plan to publish the results of this study at a prominent healthcare conference.

The second part of the project is a portable mobile clip-on that can be used by dermatologists in visual examination of the skin. This affordable app-based device provides magnified, high quality and polarized images of skin lesions and allows one to annotate, store and access them along with patient data. I was involved in giving inputs for its design and usability. I was involved in a pilot study that included doctors from K. J. Somaiya hospital to test the device on their patients and give us critical feedback of its design and app interface. Its success led us to mass-manufacture the clip-on, to be distributed to about 500 dermatologists in and around Mumbai.

**Project: StethoCG** || Guide: Guy Satat || October 2015 – Present A project aiming to provide better detection of cardiovascular disorders in rural areas

Cardiovascular diseases, among all reasons, cause the maximum number ( $\sim 1.4$  million) of deaths per year in India. Rural areas are especially affected due to a lack of doctors specializing in diagnosis of these disorders. We aimed to solve this problem with a screening device that helps in detecting heart murmurs in patients leading to possible further diagnosis and treatment. The device combines a digital stethoscope and an ECG to identify irregularities in heartbeat. I had developed the hardware prototype which led to better data collection. The user interface of the device designed to be simple for use by a health worker and its form factor was reduced to make it portable. This was used to collect data samples from various patients and the preliminary data was analyzed to detect similarities in their pattern.

This project was presented to Ratan Tata and it got positive feedback.

Winter 2014

## Super-Resolution with Fourier Ptychographic Microscopy

The maximum number of independent samples that an imaging setup can extract from the imaged scene is dictated by the limits set by Fourier optics: if the imaged scene is wide-field, there are limits on how much one can zoom in. However, wide-field, high-resolution images are generally desirable in microscopy, pathology and eye imaging. Traditional methods to achieve this, ptychography, for instance, involve mechanical adjustment and require precise control and actuation. Fourier Ptychographic Microscopy was introduced in 2013 as a computational tool to work around this. The idea is to shift, in the Fourier domain, high-frequency information to low frequencies (where the system's optics do not filter it), sense it, and shift it back while reconstructing. We worked on understanding and implementing this method for microscopy slides, and analyzed possible extensions to imaging reflective surfaces like the eye. Code here.

RESEARCH PROJECTS

## A Bayesian Framework for Laparoscopic Image Dehazing and Denoising

Guide: Prof. Suyash Awate, CSE, IITB

January 2015 - Present

Laparoscopic images in minimally invasive surgery get corrupted by surgical smoke and noise. This degrades the quality of the surgery and the results of further processing for, say, segmentation and tracking. Algorithms for desmoking and denoising laparoscopic images seem to be missing in the medical vision literature. We formulated the problem of joint desmoking and denoising of laparoscopic images as a Bayesian inference problem. This formulation relies on a novel probabilistic graphical model of images, which includes a Markov Random Field (MRF) formulation for color-contrast and another MRF for smoothness on the uncorrupted color image as well as the transmission-map image that indicates color attenuation due to smoke. We resort to a mode approximation (using gradient descent) to the Bayesian posterior to estimate the underlying scene. The results on simulated and real-world laparoscopic images, with clinical expert evaluation, shows the advantages of our method over the state of the art. We now extend this framework to include speckle removal, with better optimization techniques like Variational Bayes-based Expectation Maximization. Code here.

Optimizing Sensing Matrices for Compressed Sampling Recovery

Master's Thesis

Guide: Prof. Ajit Rajwade, CSE & Prof. V. Rajbabu, EE, IITB

December 2015 - Present

Recent efforts to apply the principles of compressed sensing to video data involve combining frames into coded snapshots while sensing and separating them with an over–complete dictionary. This works well, but needs a dictionary at the same frame–rate and time–smoothness as the video. We try relaxing this constraint using a source–separation approach to this problem where precise error bounds on recovery have been derived. We designed practically–realizable positive patch–wise sensing matrices that have low mutual coherence in all circular permutations, which facilitates accurate overlapping patchwise recovery. We currently aim to design general sensing matrices with quantities that yield tighter error bounds than the coherence. We thus explore bounds (like the  $l_1$ –CSMV and  $l_\infty$ –based bounds) which 'soften' the sparsity criterion for  $l_1$  recovery, resulting in quantities verifiable in polynomial time, as opposed to the RIC bound which is combinatorial and therefore difficult to optimize. Code here.

#### The IITB Mars Rover Project

May 2013 - Present

The IITB Mars Rover project is a student initiative at IIT Bombay to build a prototype Mars rover capable of extra-terrestrial robotics and to participate in the University Rover Challenge at the Mars Society's Mars Desert Research Station, Utah. The mechanical subsystem designed and developed a rover with a rocker-bogie suspension and novel air-filled beach tires. The electrical and software team designed power, logic and communication circuits for on-board control. Currently, localization and autonomous navigation are being developed. The role of machine vision for automating rover operations is being explored. One of the design goals for the future is to develop the capability to help astronauts on space missions. We participated in a simulated Martian expedition and tested Rover capabilities in the harsh conditions of the Australian outback, at the Arkaroola Mars Robot Challenge. We participated in a series of exercises in Mars Operations Research, involving test extra-vehicular activities in space-suits (a sample collection task and a rover guidance task) conducted by Saber Astronautics. Details and pictures here.

Course **PROJECTS** 

# Improved Methods for Compressed Sensing Recovery

Guide: Prof. Ganesh Ramakrishnan, CSE, IITB

Autumn 2015-16

CS709: Convex Optimization

Using convex approximations to the compressed sensing recovery problem, we reconstructed nearexact versions of images at extremely low compressions, with proofs of correctness. Code here.

## Hidden Markov Model Part-of-Speech Tagging

Guide: Prof. Navin Khaneja, EE, IITB

EE638: Estimation and Identification Autumn 2015-16

We implemented part-of-speech tagging with support for unknown words. An error rate of around 5% and capabilities of the system to discern context were observed. Code here.

Laparoscopic Image Dehazing with Dark Channel Prior CS736: Medical Image Processing Guide: Prof. Suyash Awate, CSE, IITB Spring 2014-15

We applied the Dark Channel Prior method for landscape image dehazing to surgical smokeaffected laparoscopic images, accelerated it in time and got good results. Code here.

# Stereo Odometry via Point Cloud Registration

CS763: Computer Vision

Guide: Prof. Ajit Rajwade, CSE, IITB

Spring 2014-15

Maximizing kernel density correlation with gradient-ascent and coherent point drift, we registered pointclouds and observed good convergence behavior for small transformations. Code here.

## Gravitational Lens Separation with PCA

CS663: Digital Image Processing

Autumn 2014-15

Guide: Prof. Suyash Awate & Prof. Ajit Rajwade, CSE, IITB Gravitationally lensed images of galaxies have rare arc-like artifacts that can be used to calculate the mass of the lens. We used Anscombe denoising followed by PCA to build a basis for galaxy images and used the top few eigengalaxies to subtract sources and detect arcs. Code here.

#### Processor Design

EE309: Microprocessors

Guide: Prof. Virendra Singh, EE, IITB

Autumn 2014-15

We designed, simulated and implemented a multi-cycle RISC processor following the LC-3b ISA. Also, we designed and simulated a pipelined RISC processor using the Little Computer ISA.

ASTROPHYSICS Projects

## Detecting Short $\gamma$ -ray Bursts in Astrosat CZTI Data

PH426: Astrophysics Spring 2015-16

Guide: Prof. Vikram Rentala, PH, IITB and Prof. A. R. Rao, TIFR, Mumbai We did a literature survey on  $\gamma$ -ray bursts, including open problems in the field. We tackle detecting short  $\gamma$ -ray bursts from data acquired by the CZTI X-Ray Imager on-board Astrosat.

## Variability Analysis for Globular Cluster NGC2419

NIUS, Astronomy

Guide: Prof. Priya Hasan, MANUU, Hyderabad

December 2015

We analyzed raw data for the globular cluster NGC2419 taken at the HCT, post-processed it to correct for detector bias and flat-fielding, inverted the effect of atmospheric mass and extracted the variation of magnitudes of stars in the cluster on the scale of a day. Code here.

## An X-ray Study of Black Hole Candidate X Norma X-1

NIUS, Astronomy

Guide: Prof. Manojendu Choudhury, Center for Basic Sciences

December 2013

We analyzed data from the RXTE for a low-mass X-Ray Binary. Fitting 3-30 keV spectra with a model accounting for blackbody & non-thermal radiation, and interstellar extinction, we obtained values of system parameters like internal radius and temperature. Report here.

## Estimation of Photometric Redshifts with Machine Learning

Guide: Prof. Ninan Sajeeth Philip, IUCAA, Pune

NIUS, Astronomy December 2012

Here, we trained a neural network for photometric redshifts, given data for sources whose spectra and redshifts have been measured. We predicted spectra for these objects viewed at various other values of redshifts. Using this expanded dataset, we achieved good predictions for test data.

ACHIEVEMENTS AND AWARDS

- Represented India at the 6<sup>th</sup> International Olympiad on Astronomy and Astrophysics, Brazil, 2012. Won a Gold Medal with International Rank 4 and a special prize for Best Data Analysis
- Represented India at the 5<sup>th</sup> International Earth Sciences Olympiad, Italy, 2011. Won a Bronze Medal and prizes for best performance in the Hydrosphere section and the team presentation
- Secured all-India rank 105 in the IIT-JEE 2012 amongst half a million candidates
- Awarded KVPY Scholarship 2011 by Dept. of Science and Technology, Govt. of India
- Awarded NTSE Scholarship 2008 by NCERT, Govt. of India

KEY TALKS AND SEMINARS Coded Source Separation for Compressed Video Recovery

 $Master's\ Thesis\ Talk$ 

Department of Electrical Engineering, Indian Institute of Technology Bombay

May 2016

Here, I presented results from the first stage of my dual degree thesis. Presentation here.

Template-Based Stereo Odometry

Invited Talk

The AIR Lab, Carnegie Mellon University

July 2015

I presented results of summer internship at CMU. The talk included a detailed description of the method used, comparisons with ground-truth and stress-tests on the method. Presentation here.

The Cosmic Distance Ladder

Invited Talk

Krittika - The Astronomy Club, IIT Bombay

September 2014, February 2016, August 2016

This talk climbs the Cosmic Distance Ladder, a sequence of steps, each building on previous steps' results, for calculating distances in the universe. We begin with solar system distances, and end at enormous distances where the only option is using indirect methods. Presentation here.

MENTORING EXPERIENCE Teaching Assistant for IITB Courses

CS663: Digital Image Processing Prof. S. Awate & Prof. A. Rajwade Autumn 2015-16
CS736: Medical Image Processing Prof. S. Awate Spring 2015-16
EE638: Estimation and Identification Prof. N. Khaneja Autumn 2016-17

Resource Person, Indian Astronomy Olympiad Programme

May 2013, May 2014

Selected twice as a resource person for Indian Astronomy Olympiad Camps, to mentor students for their selection to the International Astronomy Olympiads. Involved in mentoring 100-odd high school students in astronomy, and in setting up challenging questions and evaluating them.

Key Coursework

## Computer Sciences and Engineering

Computer Vision, Digital & Medical Image Processing, Machine Learning, Convex Optimization, Graphics, Networks, Data Structures, Design & Analysis of Algorithms, Discrete Mathematics

# **Electrical Engineering**

Estimation & Identification, Adaptive & Digital Signal Processing, Speech Processing, Matrix Computations, Information Theory, Advanced Probability, Communication Networks

#### Physics and Mathematics

Astrophysics, General Theory of Relativity, Electromagnetic Waves, Electricity & Magnetism, Classical Mechanics, Differential Equations, Linear Algebra, Complex Analysis, Calculus

TECHNICAL SKILLS Software Packages ROS/Gazebo, OpenCV, The Point Cloud Library

Science Software Python packages: NumPy, SciPy and Matplotlib, GNUPlot, Scikit-learn

Hardware Microprocessors: 8051, 8085, AVR and PIC, CPLDs and FPGAs,

Embedded Platforms: Arduino, Raspberry Pi, NVIDIA Jetson TK1

OTHER INTERESTS OTHER than my academic interests, I like biking, long walks, trekking, climbing whatever can be climbed, swimming, table tennis, socializing, cooking good food and eating it. I especially enjoy classic rock music & people who enjoy my interests. And finally, I love Origami, the art of paper folding, and building complex, realistic models with Lego blocks.

References

Guy Satat, Camera Culture Prof. Ajit Rajwade, CSE MIT Media Lab | E-Mail | Webpage IITB | E-Mail | Webpage

**Dr. Sebastian Scherer**, Robotics Institute
CMU | E-Mail | Webpage

LVPEI |

Prof. Mayank Vahia, Astrophysics

TIFR | E-Mail | Webpage

Prof. Rajbabu Velmurugan, EE

IITB | E-Mail | Webpage

**Ashutosh Richhariya**, Ophthalmic Biophysics LVPEI | E-Mail | Webpage

**Dr. Aniket Sule**, Astronomy HBCSE-TIFR | E-Mail | Webpage

Dr. Manojendu Choudhury, Astrophysics

UM-DAE CBS | E-Mail | Webpage