Phase 3 TFF: Simulation Data and Testing Guide for Advanced Analysis

This guide provides details on generating simulation data and testing the Phase 3 Federated Learning (FL) system for Advanced Behavioral Analysis and Dispute Resolution in your ChainFLIP project. It builds upon the Phase 3 design document and the TFF framework.

1. Recap of Phase 3 Goals

- · Detect Arbitrator Bias.
- · Predict High-Risk Disputes.
- · Identify Nodes Prone to Disputes.
- Advanced Anomaly Detection (e.g., time-series behavior).

2. Setting up for Phase 3 Simulation

As Phase 3 involves multiple distinct tasks, it's best to organize code into subdirectories within a main Phase 3 folder.

- 1. Inside ChainFLIP_FL_Dev/, create tff_advanced_analysis/.
- 2. Inside tff_advanced_analysis/, you might create further subdirectories like:
 - arbitrator_bias/
 - dispute_risk/
 - node behavior timeseries/
- 3. Each subdirectory would contain its own data_preparation_p3_task.py , model_definition_p3_task.py , and run_simulation_p3_task.py , adapted from the Phase 1/2 structure.

For this guide, we will provide conceptual data generation snippets that would go into these respective data_preparation_p3_task.py files.

3. Generating Synthetic Data for Phase 3 Tasks

A. Arbitrator Bias Detection

- File: ChainFLIP_FL_Dev/tff_advanced_analysis/arbitrator_bias/ data_preparation_p3_arbitrator.py
- Features (Example NUM_P3_ARB_FEATURES = 5):
 avg_vote_alignment_with_outcome, avg_vote_alignment_with_peers,
 disputes_participated, avg_value_disputes_favored_partyA,
 avg_value_disputes_favored_partyB.
- Label: 0 for unbiased, 1 for biased.

```
# In data_preparation_p3_arbitrator.py
import tensorflow as tf
import numpy as np
import random
NUM P3 ARB FEATURES = 5
ELEMENT_SPEC_P3_ARB = (
  tf.TensorSpec(shape=(NUM_P3_ARB_FEATURES,), dtype=tf.float32),
  tf.TensorSpec(shape=(1,), dtype=tf.int32)
)
SIM_ARBITRATORS = [f"arb_{i}" for i in range(20)]
ARBITRATOR_PROFILES = {}
for i, arb id in enumerate(SIM ARBITRATORS):
  ARBITRATOR_PROFILES[arb_id] = {
    "is_biased": True if i % 4 == 0 else False, # ~25% are biased
    "bias factor": random.uniform(0.6, 0.9) if (i \% 4 == 0) else random.uniform(0.4,
0.6)
  }
def simulate_arbitrator_performance(arbitrator_id, num_disputes_arbitrated=50):
  profile = ARBITRATOR PROFILES[arbitrator id]
  label = [1] if profile["is_biased"] else [0]
  # Simulate features based on bias
# Feature 0: vote_alignment_with_outcome (biased might be lower if they vote against
fair outcomes)
  f0 = random.uniform(0.3, 0.7) if profile["is_biased"] else random.uniform(0.6,
0.95)
  # Feature 1: vote_alignment_with_peers (biased might deviate more)
  f1 = random.uniform(0.4, 0.7) if profile["is_biased"] else random.uniform(0.7, 0.9)
  # Feature 2: disputes_participated
  f2 = float(num_disputes_arbitrated)
  # Feature 3 & 4: Simplified bias towards favoring one party in value (e.g. party A vs B)
  # Assume higher value for party A if biased towards A
```

```
favored_A_value = random.uniform(1000, 5000) * profile["bias_factor"]
  favored B value = random.uniform(1000, 5000) * (1.0 - profile["bias factor"])
  f3 = favored A value
  f4 = favored_B_value
  features = np.array([f0, f1, f2, f3, f4], dtype=np.float32)
  return features, np.array(label, dtype=np.int32)
def load_local_data_for_p3_arbitrator_client(client_id: str, assigned_arbitrators:
list[str]):
  client_features = []
  client_labels = []
  for arb_id in assigned_arbitrators:
    features, label = simulate_arbitrator_performance(arb_id,
num disputes arbitrated=random.randint(20,100))
    client_features.append(features)
    client_labels.append(label)
  if not client features: # Handle empty case
    return tf.data.Dataset.from_tensor_slices((
      np.zeros((0, NUM_P3_ARB_FEATURES), dtype=np.float32),
      np.zeros((0, 1), dtype=np.int32)
    ))
  return tf.data.Dataset.from tensor slices((np.array(client features),
np.array(client_labels)))
def make federated data p3 arbitrator(num fl clients=3):
  # Distribute arbitrators among FL clients
  random.shuffle(SIM_ARBITRATORS)
  arbitrators_per_fl_client = len(SIM_ARBITRATORS) // num_fl_clients
  client_datasets = []
  for i in range(num_fl_clients):
    start_idx = i * arbitrators_per_fl_client
    end_idx = (i+1) * arbitrators_per_fl_client if i < num_fl_clients -1 else
len(SIM_ARBITRATORS)
client_datasets.append(load_local_data_for_p3_arbitrator_client(f"fl_arb_client_{i}",
SIM_ARBITRATORS[start_idx:end_idx]))
  return client_datasets
# Add __main__ for testing this script independently
```

B. High-Risk Dispute Prediction

- File: ChainFLIP_FL_Dev/tff_advanced_analysis/dispute_risk/ data_preparation_p3_dispute.py
- Features (Example NUM_P3_DR_FEATURES = 6): dispute_value,
 num_parties_involved, avg_reputation_parties, reputation_diff_parties,
 num_evidence_items (simulated), prior_fl_risk_initiator.
- Label: 0 for normal-risk, 1 for high-risk.

```
# In data_preparation_p3_dispute.py
import tensorflow as tf
import numpy as np
import random
NUM P3 DR FEATURES = 6
ELEMENT SPEC P3 DR = (
  tf.TensorSpec(shape=(NUM_P3_DR_FEATURES,), dtype=tf.float32),
  tf.TensorSpec(shape=(1,), dtype=np.int32)
)
def simulate dispute characteristics(dispute id):
  is_high_risk = random.random() < 0.3 # ~30% are high-risk
  label = [1] if is_high_risk else [0]
  # Simulate features
  f0_value = random.uniform(100, 100000) * (1.5 if is_high_risk else 1.0) # Higher
value if high-risk
  f1_parties = random.randint(2,5)
  f2\_avg\_rep = random.uniform(10,100)
  f3_rep_diff = random.uniform(0, 50) * (1.2 if is_high_risk else 0.8)
  f4_evidence = random.randint(1,20) * (0.7 if is_high_risk else 1.3) # Less evidence
if high-risk (e.g. fraud)
  f5_prior_risk_initiator = random.uniform(0,1) * (1.8 if is_high_risk else 0.5)
  features = np.array([f0_value, f1_parties, f2_avg_rep, f3_rep_diff, f4_evidence,
f5_prior_risk_initiator], dtype=np.float32)
  return features, np.array(label, dtype=np.int32)
def load_local_data_for_p3_dispute_client(client_id: str,
num disputes to generate=100):
  # Each client might observe/report a set of disputes
  client_features = []
  client labels = []
  for i in range(num_disputes_to_generate):
    features, label = simulate_dispute_characteristics(f"dispute_{client_id}_{i}")
    client_features.append(features)
    client_labels.append(label)
  return tf.data.Dataset.from_tensor_slices((np.array(client_features),
np.array(client_labels)))
def make federated data p3 dispute(num_fl_clients=3, disputes_per_client=100):
  return [load local data for p3 dispute client(f"fl disp client {i}",
disputes_per_client) for i in range(num_fl_clients)]
# Add __main__ for testing this script independently
```

C. Time-Series Behavioral Anomaly Detection for Nodes

- File: ChainFLIP_FL_Dev/tff_advanced_analysis/node_behavior_timeseries/ data_preparation_p3_timeseries.py
- Features (Example NUM_P3_TS_FEATURES = 3 per timestep):
 tx_frequency_daily , avg_tx_value_daily , new_interactions_daily .
- Model Type: Often unsupervised (e.g., Autoencoder, LSTM-Autoencoder). Label might be reconstruction error or a binary anomaly flag if using supervised anomaly detection.
- Data Shape: (num_nodes, timesteps, features_per_timestep).

```
# In data preparation p3 timeseries.py
import tensorflow as tf
import numpy as np
import random
NUM_P3_TS_FEATURES = 3
TIMESTEPS = 30 # e.g., 30 days of data
# For an autoencoder, labels are the same as inputs, or use reconstruction error for
anomaly scoring
ELEMENT_SPEC_P3_TS = (
  tf.TensorSpec(shape=(TIMESTEPS, NUM_P3_TS_FEATURES), dtype=tf.float32), #
Input sequence
  tf.TensorSpec(shape=(TIMESTEPS, NUM_P3_TS_FEATURES), dtype=tf.float32) #
Output sequence (for autoencoder)
)
SIM_NODES_TS = [f"ts_node_{i}" for i in range(50)]
def generate_node_timeseries(node_id):
  # Normal behavior
  base_tx_freq = random.uniform(5, 20)
  base_tx_val = random.uniform(100, 500)
  base_new_interact = random.uniform(1, 5)
  sequence = []
  is_anomalous_node = random.random() < 0.2 # 20% of nodes exhibit anomaly at
some point
  anomaly_start_step = random.randint(TIMESTEPS // 2, TIMESTEPS - 5) if
is_anomalous_node else TIMESTEPS
  for step in range(TIMESTEPS):
    is anomaly now = is anomalous node and step >= anomaly start step
    factor = 3.0 if is_anomaly_now else 1.0 # Anomaly makes values spike
    noise = np.random.normal(0, 0.1, NUM_P3_TS_FEATURES)
    f0 = max(0, base_tx_freq * factor * (1 + noise[0]))
    f1 = max(0, base_tx_val * (factor if random.random() > 0.5 else 1/factor) * (1 +
```

```
noise[1])) # Value might spike or drop
    f2 = max(0, base_new_interact * factor * (1 + noise[2]))
    sequence.append([f0, f1, f2])
  seq_array = np.array(sequence, dtype=np.float32)
  return seq_array, seq_array # Input and target are same for autoencoder
def load_local_data_for_p3_timeseries_client(client_id: str, assigned_nodes:
list[str]):
  client input segs = []
  client_target_seqs = []
  for node_id in assigned_nodes:
    input_s, target_s = generate_node_timeseries(node_id)
    client_input_seqs.append(input_s)
    client target segs.append(target s)
  if not client_input_seqs: # Handle empty case
    return tf.data.Dataset.from_tensor_slices(())
      np.zeros((0, TIMESTEPS, NUM P3 TS FEATURES), dtype=np.float32),
      np.zeros((0, TIMESTEPS, NUM_P3_TS_FEATURES), dtype=np.float32)
    ))
  return tf.data.Dataset.from_tensor_slices((np.array(client_input_seqs),
np.array(client_target_seqs)))
def make federated data p3 timeseries(num fl clients=3):
  random.shuffle(SIM_NODES_TS)
  nodes per fl client = len(SIM NODES TS) // num fl clients
  client_datasets = []
  for i in range(num_fl_clients):
    start_idx = i * nodes_per_fl_client
    end_idx = (i+1) * nodes_per_fl_client if i < num_fl_clients -1 else
len(SIM_NODES_TS)
client_datasets.append(load_local_data_for_p3_timeseries_client(f"fl_ts_client_{i}",
SIM_NODES_TS[start_idx:end_idx]))
  return client_datasets
# Add __main__ for testing this script independently
```

4. Adapting TFF Scripts for Phase 3 Tasks

```
For each task (Arbitrator Bias, Dispute Risk, Time-Series Anomaly): 1.

model_definition_p3_task.py: * Define NUM_P3_TASK_FEATURES, TIMESTEPS (if applicable), and ELEMENT_SPEC_P3_TASK. * Create a Keras model suitable for the task: * Simple Dense network for Arbitrator Bias and Dispute Risk classification. * LSTM Autoencoder for Time-Series Anomaly Detection (input and output layers match (TIMESTEPS, NUM_P3_TS_FEATURES)). * Wrap it using tff_model_fn. 2.

federated_training_p3_task.py: * Likely similar to Phase 1/2, using
```

build_weighted_fed_avg . * For unsupervised autoencoders, the loss would be reconstruction loss (e.g., Mean Squared Error). 3. run_simulation_p3_task.py : * Import from the correct data_preparation_p3_task.py . * Use the corresponding make_federated_data_p3_task . * Batch client datasets appropriately (preprocess_client_dataset function). * Interpret metrics: Accuracy/AUC for classification tasks. For autoencoders, monitor reconstruction loss; lower is better. Anomalies are detected by high reconstruction error on individual samples post-training.

5. Running and Testing Phase 3 Simulations

- For each task, navigate to its subdirectory (e.g., ChainFLIP_FL_Dev/ tff_advanced_analysis/arbitrator_bias/).
- Run python run_simulation_p3_task.py.
- · Interpreting Results:
 - Arbitrator Bias/Dispute Risk: Look for the model to achieve good accuracy/ AUC in classifying biased arbitrators or high-risk disputes based on the simulated patterns.
 - Time-Series Anomaly: Monitor the reconstruction loss during training. After training, feed both normal and simulated anomalous sequences to the global autoencoder model. Anomalous sequences should have significantly higher reconstruction errors.

6. Next Steps for Phase 3

- **Deep Dive into Feature Engineering:** The simulated features here are illustrative. Real-world implementation requires careful selection and engineering of features from actual DisputeResolution.sol data and other sources.
- **Real Data Integration:** Plan how FL clients will programmatically access and process the necessary on-chain data.
- Admin Dashboard: Design how insights from these advanced models (e.g., arbitrator bias scores, dispute risk levels, node anomaly alerts) will be presented to and utilized by administrators.

This guide provides a foundation for simulating and testing the advanced FL capabilities envisioned for Phase 3. Each task is a mini-project in itself, requiring careful data handling and model selection.