Author: Pavel Kocourek

Problem Set 3

1. Consider the function $f(x) = 3 + 2x + x^2$. Which is true (use Taylor approximation, or the definition of the little–o and big–O to argue):

a.
$$f(x) = 3 + o(1)$$
 as $x \to 0$

b.
$$f(x) = 3 + o(x) \text{ as } x \to 0$$

c.
$$f(x) = 3 + O(x)$$
 as $x \to 0$

d.
$$f(x) = 3 + 2x + o(x)$$
 as $x \to 0$

e.
$$f(x) = 6 + o((x-1))$$
 as $x \to 1$

f.
$$f(x) = 6 + O((x-1))$$
 as $x \to 1$

g.
$$f(x) = 6 + 4(x - 1) + O((x - 1)^2)$$
 as $x \to 1$

i.
$$f(x) = 6 + 4(x - 1) + o((x - 1))$$
 as $x \to 1$

2. Consider the function $f(x) = 3 + 2x + |x|^{1.5}$. Which of the following statements are true:

a.
$$f(x) = 3 + o(1)$$
 as $x \to 0$

b.
$$f(x) = 3 + o(x) \text{ as } x \to 0$$

c.
$$f(x) = 3 + O(x)$$
 as $x \to 0$

d.
$$f(x) = 3 + 2x + o(x)$$
 as $x \to 0$

e.
$$f(x) = 6 + o((x-1))$$
 as $x \to 1$

f.
$$f(x) = 6 + O((x-1))$$
 as $x \to 1$

g.
$$f(x) = 6 + 3.5(x - 1) + O((x - 1)^2)$$
 as $x \to 1$

i.
$$f(x) = 6 + 3.5(x - 1) + o((x - 1))$$
 as $x \to 1$

- 3. Consider the functions $F(x, y) = 2x^2 2xy + y^2 2x + 2$ and g(x, y) = 2x:
 - a. Find the minimum of F in \mathbb{R}^2

- b. Find the minimum of F subject to the constraint g(x, y) = 4
- c. Find the minimum of F subject to the constraint $g(x,y) \geq 4$
- d. Find the minimum of F subject to the constraint $g(x, y) \leq 4$

> Solution

→ 2 cells hidden