Ejercicios de Repaso	Johan Posada	
Conceptos Básicos 1. Defina qué es una serie de potencias y proporcione tres ejemplos.		
Una serie quede definirse informalmente como una sama infinita.	Una serie de potencias es una suma infinita	de términos con variable x, entonces
Se godnia definir como un polinomia infinita.		
Forma de una Serie de fotencias:	donde: x es la var/able	
$\sum_{n=0}^{\infty} C_n \chi^n = C_0 + C_1 \chi + C_2 \chi^2 +,$	Y los coeficientes Cn son Constantes.	
Elemplos: Serie Geométrica: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ Función 6	Aponencial: $\frac{x^n}{n!} = e^x$ Ben(x).	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \int_{e_{11}} (x)$
$h=0$ — 2. Determine el radio de convergencia de la serie $\sum_{n=0}^{\infty}$	h=0 ·	n±0
Criterio del Cociente: Lim ant 21	n∈ N → Inl=n	
N = 0	$ X \lim_{n \to \infty} \frac{n_{11}}{n+2} X \lim_{n \to \infty} 1 < 1$	
3. Encuentre los primeros cuatro términos del desarrollo en ser $\frac{x^n}{n \cdot 0} = C$	x+α) ⁿ	
Dangstragión wando Seric de Mchausin: $C_n = \frac{f^{(n)}(0)}{n!}$		
	enie:	
	$+ x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots, = \sum_{n=0}^{\infty} \frac{x^n}{n!} =$	z ec
1 $e^0 = 1$ $\frac{1}{1!}$ $\frac{1}{1!} \cdot x^1$		
2 $e^{0}=1$ $\frac{1}{2!}$ $\frac{1}{2!}$ x^{2}		
3 $e^0 = 1$ $\frac{1}{3!}$ $\frac{1}{3!} \cdot x^3$		
4 e°=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Ejercicios de Rutina Radio y Dominio de Convergencia 1. Calcule el radio de convergencia de la serie $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ $\frac{Q_{m+1}}{Q_n} = \frac{\chi^{n+1}}{\frac{(n+1)^2}{n^2}} = \frac{n^2 \chi^{n+1}}{(n+1)^2 \chi^n} = \frac{n^2 \chi}{(n+1)^2}$ Q=0 → IX/<R $|X| = \frac{n^2}{(n+1)^2} < 1 \qquad |X| = \frac{n^2}{n^{2+2n+1}} \qquad |X| = \frac{n^2}{n^{2+2n+1}} \qquad |X| = 1 \qquad |X| = 1$ Analizando los extremos: •X=1 na. (Criterio de Leibniz o criterio de la serie alternante on $\frac{1}{n-1}$. Una successión an es decreciente si: $f(n) \ge f(n+1)$ $\frac{1}{n-2}$ $\frac{1}{(n+1)^2}$ $\frac{1}{(n+$ https://blog.nekomath.com/calculo-diferencial-e-integral-ii-series-alternantes-y-el-criterio-de-leibniz Intervalo de convenyencia [-1,1] 2. Determine para qué valores de x converge la serie $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ $\frac{0}{N_{-0}} \frac{\chi^{h}}{N!} \frac{a_{n+1}}{a_{n}} = \frac{\chi^{h+1} h!}{(n+1)! \Lambda^{n}} = \frac{\chi^{n} \cdot \chi \cdot \chi_{1}!}{\lambda^{n} \cdot (h+1) \cdot h!} = \frac{\chi^{n}}{h+1}$ 3. Pruebe que la serie de Maclaurin de $\frac{1}{1-x}$ converge para |x|<1Jeric Geométrica $\sum_{n=0}^{\infty} a_n \cdot r^n = \frac{a_n}{1-r} \quad \text{(on we se: } |r| \leq 1$ $\sum_{n=0}^{\infty} X^n = \frac{1}{1-X}$ Chiterio de la Naiz: $\lim_{n\to\infty} \sqrt{|\chi|^n} \angle 1 = \lim_{n\to\infty} |\chi| \angle 1 = |\chi| \angle 1$ Ejercicios No Rutinarios Anteriormante se demostro: $\frac{2}{n_1} = e^x$ y converge en $x = [-\infty, \infty] - R = \infty$

2. Analice el comportamiento de la serie $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ en el intervalo [-1,1].

$$\frac{2}{n-1} \frac{1}{n} \frac{1}{n} \frac{1}{n} = \frac{1}{n-1} \frac{1}{n-1} \frac{1}{n} = \frac{1}{n-1} \frac{1}{n-1$$

Intervalo de con vergencia: x=(-1,1)

Ejercicios de Aplicación en Ingeniería

 En mecánica cuántica, las soluciones de la ecuación de Schrödinger pueden expresarse en términos de series de potencias. Describa cómo se aplica este concepto.

En mecánica cuántica, las soluciones de la ecuación de Schrödinger a veces no se pueden obtener con funciones conocidas. Por eso, se busca una solución como una serie de potencias, del tipo:

$$\psi(x) = \sum_{n=0}^{\infty} a_n x^n$$

Esto permite resolver ecuaciones difíciles de manera aproximada o construir soluciones paso a paso. Además, al usar series de potencias, se pueden encontrar condiciones que deben cumplir los coeficientes para que la solución tenga sentido físico (por ejemplo, que no se haga infinita).

2. En circuitos eléctricos, la función de respuesta de un filtro puede aproximarse por una serie de potencias. Explique un caso práctico.

$$H(jw) = \frac{1}{1+jwR} = \frac{1}{1-l-jwR(l)} = \sum_{n=0}^{\infty} (-jwR(l)^n = \sum_{n=0}^{\infty} (-iwR(l)^n = \sum_{$$

Análisis Numérico usando Python

- 1. Escriba un código en Python para calcular la suma parcial de la serie $\sum_{n=0}^{50} \frac{x^n}{n!}$ para diferentes valores de x.
- 2. Compare la convergencia de las series $\sum_{n=1}^{50} \frac{x^n}{n}$ y $\sum_{n=1}^{50} \frac{x^n}{n^2}$ mediante programación en Python.

```
import math
def serie_exponencial(x):
    suma_parcial = 0
    for n in range(0, 50 + 1):
    | suma_parcial += (x**n)/(math.factorial(n))
    return suma_parcial

x = float(input("Inserte el valor de x para e^x: "))

suma_parcial = serie_exponencial(x)
    exponencial_math = math.exp(x)

print(f"\nAproximación con series de potencias para e^{x}:\n Suma_parcial: {suma_parcial}\n Valor real con math.exp():
    {exponencial_math}")

> 2.8s

Aproximación con series de potencias para e^20.0:
Suma_parcial: 485165193.0670548
Valor real con math.exp(): 485165195.4097903
```

