Milestone2

June 2, 2021

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

1 Wczytanie danych

```
[6]: #ramka danych ze słowawmi
df = pd.read_csv('data.csv')
df.head()
```

[6]:	foolishne	ess l	hath	wholesome	tak	feeling	anger	vaivaswa	ita ma	trix	\
0	(0.0	0.0	0.0	0.0	1.0	0.0	C	0.0	0.0	
1	(0.0	0.0	0.0	0.0	0.0	0.0	C	0.0	0.0	
2	(0.0	0.0	0.0	0.0	0.0	0.0	C	0.0	0.0	
3	(0.0	0.0	0.0	0.0	0.0	0.0	C	0.0	0.0	
4	(0.0	0.0	0.0	0.0	0.0	0.0	C	0.0	0.0	
	kindle o	convi	ct	lifeless	post	ponement	stout	taketh	kettle	\	
0	0.0	0	.0	0.0		0.0	0.0	0.0	0.0		
1	0.0	0.	.0	0.0		0.0	0.0	0.0	0.0		

0	0.0	0.0	•••	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0		0.0	0.0	0.0	0.0	0.0
2	0.0	0.0		0.0	0.0	0.0	0.0	0.0
3	0.0	0.0		0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	•••	0.0	0.0	0.0	0.0	0.0

	thinkest	sparingly	visual	thought	attire
0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0

[5 rows x 6111 columns]

1.1 Skalowanie ramki za pomocą TF IDF

```
[7]: cols = df.columns
     texts = [''] * len(df)
     for i in range(len(df)):
         t = texts[i]
         tmp_num = np.array(df.iloc[i])
         for j in range(len(tmp_num)):
             w = int(tmp num[j])
             for k in range(w): t = t + ' ' + cols[j]
         texts[i] = str(t)
         #print(texts[i])
[8]: from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
     tfidf_vectorizer = TfidfVectorizer(max_df=0.9, min_df=2, use_idf=True,_

stop_words='english', token_pattern=r"\b[^\d\W]+\b")
     tfidf = tfidf_vectorizer.fit_transform(texts)
     tfidf_feature_names = tfidf_vectorizer.get_feature_names()
     df_tfidf = pd.DataFrame(tfidf.toarray(), columns=list(tfidf_feature_names))
[9]: df_tfidf
[9]:
          aaron
                  abandon abasement abate
                                               abateth abhor abhorreth abide
     0
            0.0 0.000000
                                 0.0
                                              0.000000
                                                          0.0
                                                                      0.0
                                                                             0.0
                                         0.0
     1
            0.0 0.000000
                                                          0.0
                                                                      0.0
                                                                             0.0
                                 0.0
                                         0.0 0.000000
     2
                 0.000000
                                 0.0
                                         0.0
                                              0.000000
                                                          0.0
                                                                      0.0
                                                                             0.0
            0.0
     3
            0.0
                 0.085756
                                 0.0
                                         0.0
                                              0.000000
                                                          0.0
                                                                      0.0
                                                                             0.0
     4
            0.0
                 0.000000
                                 0.0
                                         0.0 0.000000
                                                          0.0
                                                                      0.0
                                                                             0.0
     . .
                                  •••
     585
            0.0 0.000000
                                 0.0
                                         0.0 0.000000
                                                          0.0
                                                                     0.0
                                                                             0.0
     586
            0.0 0.000000
                                 0.0
                                         0.0 0.054215
                                                          0.0
                                                                      0.0
                                                                             0.0
                                                          0.0
                                                                      0.0
                                                                             0.0
     587
            0.0 0.000000
                                 0.0
                                         0.0 0.000000
     588
            0.0 0.000000
                                 0.0
                                         0.0 0.000000
                                                          0.0
                                                                      0.0
                                                                             0.0
     589
            0.0 0.000000
                                 0.0
                                         0.0 0.000000
                                                          0.0
                                                                      0.0
                                                                             0.0
                                                                yield yieldeth
          abidingplace
                        ability
                                 •••
                                    yellow
                                             yes
                                                  yesterday
                                                        0.0 0.000000
     0
                   0.0
                            0.0
                                        0.0
                                             0.0
                                                                             0.0
                                 •••
     1
                   0.0
                            0.0 ...
                                        0.0 0.0
                                                        0.0
                                                             0.000000
                                                                             0.0
     2
                   0.0
                                                             0.00000
                                                                             0.0
                            0.0 ...
                                        0.0 0.0
                                                        0.0
     3
                   0.0
                            0.0 ...
                                        0.0 0.0
                                                        0.0
                                                             0.000000
                                                                             0.0
     4
                   0.0
                            0.0 ...
                                        0.0 0.0
                                                        0.0
                                                             0.00000
                                                                             0.0
                             ...
     585
                   0.0
                            0.0
                                        0.0 0.0
                                                        0.0 0.000000
                                                                             0.0
                            0.0
                                        0.0 0.0
                                                        0.0 0.000000
                                                                             0.0
     586
                   0.0
                                •••
```

```
0.0
587
              0.0
                        0.0 ...
                                   0.0 0.0
                                                    0.0 0.071308
588
              0.0
                        0.0 ...
                                   0.0 0.0
                                                    0.0 0.000000
                                                                         0.0
                                   0.0 0.0
                                                                         0.0
589
              0.0
                        0.0 ...
                                                    0.0
                                                         0.000000
     yoga yoke young youth
                                zeal
            0.0
                   0.0
0
      0.0
                           0.0
                                 0.0
1
      0.0
            0.0
                   0.0
                           0.0
                                 0.0
2
      0.0
            0.0
                   0.0
                           0.0
                                 0.0
3
      0.0
            0.0
                   0.0
                           0.0
                                 0.0
4
      0.0
            0.0
                   0.0
                           0.0
                                 0.0
. .
                    •••
585
      0.0
            0.0
                   0.0
                           0.0
                                 0.0
586
      0.0
            0.0
                   0.0
                           0.0
                                 0.0
                   0.0
                                 0.0
587
      0.0
            0.0
                           0.0
588
      0.0
            0.0
                   0.0
                           0.0
                                 0.0
589
      0.0
            0.0
                   0.0
                           0.0
                                 0.0
```

[590 rows x 3366 columns]

1.2 Wczytanie i standaryzacja statystyk tekstów

```
[2]: #ramka danych ze statystykami tesktów
stats = pd.read_csv('stats_df.csv')
stats = stats.drop(['Unnamed: 0', 'index', 'text'], axis = 1)
stats.head()
```

```
[2]:
        len words
                     avg_sen reading_ease grade
                                                   sentences
    0 3631
                   5.031561
                                     38.39
                                             16.0
               587
                                                          18
    1 1512
                                     80.01
               265 4.705660
                                              6.2
                                                          16
    2 2204
               370 4.877333
                                     71.34
                                              7.5
                                                          22
    3 1584
               267 4.823529
                                     62.98
                                              8.6
                                                          16
                                     56.76
    4
        216
                29 6.448276
                                              8.9
                                                           2
```

```
[10]: from sklearn.preprocessing import StandardScaler

    scaler = StandardScaler()
    scaler.fit(stats)
    stat_scale = scaler.transform(stats)

stats_scale = pd.DataFrame(stat_scale, columns = stats.columns)
    stats_scale.head(3)
```

```
[10]: len words avg_sen reading_ease grade sentences 0 1.832013 1.549162 0.749075 0.162432 -0.298802 0.775681 1 0.208099 0.189544 0.040772 0.928372 -0.808777 0.609403 2 0.738420 0.632898 0.413880 0.768816 -0.741128 1.108236
```

1.3 Stworzenie zbioru do klasteryzacji

```
[156]: | X = pd.merge(stats_scale.reset_index(), df_tfidf.reset_index(), on = 'index').
       \hookrightarrowdrop('index', axis = 1)
      X.head()
[156]:
              len
                      words
                               avg_sen reading_ease
                                                         grade
                                                                sentences
                                                                           aaron \
      0 1.832013 1.549162 0.749075
                                            0.162432 -0.298802
                                                                 0.775681
                                                                             0.0
                                            0.928372 -0.808777
      1 0.208099 0.189544 0.040772
                                                                             0.0
                                                                 0.609403
      2 0.738420 0.632898 0.413880
                                            0.768816 -0.741128
                                                                 1.108236
                                                                             0.0
      3 0.263277 0.197989 0.296945
                                            0.614966 -0.683885
                                                                 0.609403
                                                                             0.0
      4 -0.785101 -0.806946 3.828118
                                            0.500498 -0.668274 -0.554540
                                                                             0.0
          abandon abasement abate ... yellow yes
                                                     yesterday yield yieldeth \
      0.000000
                          0.0
                                 0.0
                                            0.0 0.0
                                                            0.0
                                                                   0.0
                                                                             0.0
      1 0.000000
                          0.0
                                 0.0 ...
                                            0.0 0.0
                                                            0.0
                                                                   0.0
                                                                             0.0
      2 0.000000
                          0.0
                                 0.0 ...
                                            0.0 0.0
                                                            0.0
                                                                   0.0
                                                                             0.0
                                 0.0 ...
      3 0.085756
                          0.0
                                            0.0 0.0
                                                            0.0
                                                                   0.0
                                                                             0.0
      4 0.000000
                          0.0
                                 0.0 ...
                                            0.0 0.0
                                                            0.0
                                                                   0.0
                                                                             0.0
         yoga yoke young youth zeal
          0.0
                0.0
                       0.0
                               0.0
      0
                                     0.0
          0.0
                 0.0
                        0.0
                               0.0
                                     0.0
      1
          0.0
                 0.0
                       0.0
                               0.0
                                     0.0
          0.0
                 0.0
                       0.0
                               0.0
                                     0.0
          0.0
                0.0
                       0.0
                               0.0
                                     0.0
```

[5 rows x 3372 columns]

1.4 Stworzenie ramki z odpowiedziami

```
[20]: Y = pd.read_csv('AllBooks_baseline_DTM_Labelled.csv')[['Unnamed: 0']]
Y['label'] = Y['Unnamed: 0'].apply(lambda x: x.split('_')[0])

def add_religion(label):
    if label == "Buddhism": return "Buddhism"
    elif label == "TaoTeChing": return "Taoism"
    elif (label == "Upanishad") | (label == "YogaSutra"): return "Hindusim"
    else: return "Old testament"

Y['rel'] = Y['label'].apply(lambda x : add_religion(x))
Y = Y.drop('Unnamed: 0', axis = 1)
Y
```

```
[20]:
                  label
                                   rel
               Buddhism
                              Buddhism
     0
      1
               Buddhism
                              Buddhism
      2
               Buddhism
                              Buddhism
      3
               Buddhism
                              Buddhism
               Buddhism
                              Buddhism
      585 BookOfWisdom Old testament
      586 BookOfWisdom Old testament
      587 BookOfWisdom Old testament
      588 BookOfWisdom Old testament
      589 BookOfWisdom Old testament
      [590 rows x 2 columns]
```

2 Klasteryzacja bez redukcji wymiarów

2.1 Wyznaczenie liczby klastrów

```
[30]: from sklearn.cluster import KMeans, AgglomerativeClustering
[44]: # metdoda łokcia dla KMeans
      def KMeansElbow(X, k_max):
          # WCSS = within-cluster sum of squares
          scores = []
          for k in range(1, k_max+1):
              model = KMeans(n_clusters=k, random_state=0)
              model.fit(X)
              wcss = model.score(X) * -1 # score returns -WCSS
              scores.append(wcss)
          x_ticks = list(range(1, len(scores) + 1))
          plt.plot(x_ticks, scores, 'bx-')
          plt.xlabel('k')
          plt.ylabel('Within-cluster sum of squares')
          plt.title('The Elbow Method showing the optimal k')
          plt.show()
```

```
[45]: KMeansElbow(X, 10)
```



```
[125]: from sklearn.metrics import silhouette_score, davies_bouldin_score, rand_score,
        →adjusted_mutual_info_score, mutual_info_score
[69]: #metoda silhouette
       def silhouetteClusterNum(X, cluster_num, score_fun):
           scores = []
           for k in range(2, cluster_num+1):
               model_instance = KMeans(n_clusters=k, random_state=0)
               labels = model_instance.fit_predict(X)
               wcss = score_fun(X, labels)
               scores.append(wcss)
           f = plt.figure(figsize=[8, 6])
           plt.plot(range(2, cluster_num+1), scores, 'bx-')
           plt.xlabel('k')
           plt.ylabel(f'{score_fun}')
           plt.show()
[70]: silhouetteClusterNum(X, 10, silhouette_score)
```

#im większy wynik tym lepiej

[72]: silhouetteClusterNum(X, 10, davies_bouldin_score)
#im mniejszy wybik tym lepiej

Biorąc pod uwagę wyniki różnych metryk sprawdzimy podział na 2, 3, 4 i 5 klastrów.

2.2 Stworzenie ramek z redukcją wymiarów

2.2.1 PCA

[73]: Text(0, 0.5, 'cumulative explained variance')

dla 3 zmiennych mamy 85% wariancji


```
[101]: import plotly.graph_objs as go
       from sklearn import preprocessing
       X_pca3 = PCA(n_components=3).fit_transform(X)
       le = preprocessing.LabelEncoder()
       Scene = dict(xaxis = dict(title = 'PC1'),yaxis = dict(title = 'PC2'),zaxis = __
       →dict(title = 'PC3'))
       labels = le.fit_transform(Y['label'])
       trace = go.Scatter3d(x=X_pca3[:,0], y=X_pca3[:,1], z=X_pca3[:,2],__
        →mode='markers', marker=dict(color = labels, size = 10, line = dict(color = ___
       \rightarrow'gray',width = 5)))
       layout = go.Layout(margin=dict(l=0,r=0),scene = Scene, height = 600,width = 600)
       data = [trace]
       fig = go.Figure(data = data, layout = layout)
       fig.show()
[102]: | Scene = dict(xaxis = dict(title = 'PC1'), yaxis = dict(title = 'PC2'), zaxis = ___

→dict(title = 'PC3'))
       labels = le.fit_transform(Y['rel'])
       trace = go.Scatter3d(x=X_pca3[:,0], y=X_pca3[:,1], z=X_pca3[:,2],
       →mode='markers', marker=dict(color = labels, size = 10, line = dict(color = __
        \rightarrow 'gray', width = 5)))
       layout = go.Layout(margin=dict(l=0,r=0),scene = Scene, height = 600,width = 600)
       data = [trace]
       fig = go.Figure(data = data, layout = layout)
       fig.show()
```

2.3 Klasteryzacja bez redukcji wymiarów, ale zwizualizowana na PCA

```
'silhouette_score':[silhouette_score(data,_
→y_kmeans)],
                                  'davies_bouldin_score':
→[davies_bouldin_score(data, y_kmeans)],
                                  'rand_score':[rand_score(actual_labels,_

y_kmeans)],
                                  'adjusted_mutual_info_score':
→[adjusted_mutual_info_score(actual_labels, y_kmeans)],
                                  'mutual_info_score':
→[mutual_info_score(actual_labels, y_kmeans)]})
       results = pd.concat([results, i_results])
       sns.scatterplot(data = reduction, x = 'x', y = 'y',
                       hue = y_kmeans, legend = False,
                       ax = axs[i-2])
       ax1.set_title(f'{i} clusters')
   plt.show()
   return results
```

[138]: KMeansClustering(X, X_pca2, Y['label'])


```
[138]:
         clusters silhouette_score davies_bouldin_score rand_score \
                2
                           0.435288
                                                  0.847755
                                                              0.530972
       0
                3
                           0.402285
                                                  0.940976
                                                              0.690133
       0
                4
                           0.350284
                                                              0.729878
                                                  1.078130
       0
                           0.309429
                                                  0.980741
                                                              0.736819
          adjusted_mutual_info_score mutual_info_score
       0
                            0.389753
                                                0.442232
                            0.475444
                                                0.643050
       0
       0
                            0.467164
                                                0.690380
       0
                            0.448753
                                                0.686280
```

```
[140]: def AggClustering(data, reduction, actual_labels):
          results = pd.DataFrame(columns = ['clusters', 'linkage', _
       'rand score',,,
       fig, axs = plt.subplots(3, 4, figsize = (18, 15))
          linkage = ['ward', 'complete', 'single']
          for j in range(3):
              for i in range(2, 6):
                 aggClus = AgglomerativeClustering(n_clusters = i, linkage = __ |
       →linkage[j])
                 y_aggClus = aggClus.fit_predict(data)
                 i_results = pd.DataFrame({'clusters':[i],
                                      'linkage':[linkage[j]],
                                      'silhouette_score':[silhouette_score(data,_
       →y_aggClus)],
                                      'davies_bouldin_score':
       →[davies_bouldin_score(data, y_aggClus)],
                                      'rand_score':[rand_score(actual_labels,_
       →y_aggClus)],
                                      'adjusted mutual info score':
       →[adjusted_mutual_info_score(actual_labels, y_aggClus)],
                                      'mutual_info_score':
       →[mutual_info_score(actual_labels, y_aggClus)]})
                 results = pd.concat([results, i results])
                 sns.scatterplot(data = reduction, x = 'x', y = 'y',
                                hue = y_aggClus, legend = False,
                                ax = axs[j, i-2])
                 axs[j, i-2].set_title(f'{i} clusters, {linkage[j]} linkage')
          plt.show()
          return results
```

```
[141]: AggClustering(X, X_pca2, Y['label'])
```


[141]:	clusters	linkage	silhouet	te_score	davies_bo	uldin_score	rand_score	\
() 2	ward		0.430679		0.838535	0.524284	
() 3	ward		0.376586		0.994408	0.703289	
() 4	ward		0.376948		0.922601	0.720256	
(5	ward		0.379742		0.758135	0.720894	
(2	complete		0.779682		0.152003	0.215867	
(3	complete		0.430162		0.594429	0.525867	
() 4	complete		0.185398		1.317981	0.665800	
(5	complete		0.180182		1.241147	0.684354	
(2	single		0.779682		0.152003	0.215867	
(3	single		0.243739		0.465091	0.218745	
() 4	single		0.172431		0.463161	0.221628	
(5	single		0.108968		0.556775	0.224517	
	adjusted	_mutual_in	fo_score	mutual_i	nfo_score			
()		0.423434		0.476915			
()		0.512000		0.698181			
()		0.516778		0.730515			

0	0.519257	0.737880
0	0.001569	0.004342
0	0.390862	0.445355
0	0.391383	0.554652
0	0.388643	0.585214
0	0.001569	0.004342
0	0.003166	0.008718
0	0.004791	0.013130
0	0.006446	0.017579

2.4 Klastrowanie po PCA

[144]: KMeansElbow(X_pca2[['x','y']], 10)

[146]: silhouetteClusterNum(X_pca2[['x','y']], 10, silhouette_score)

[147]: silhouetteClusterNum(X_pca2[['x','y']], 10, davies_bouldin_score)

Po PCA dalej wygląda na to, że będziemy szukac tej samej liczby klastrów

[148]:	clusters	silhouette_score	davies_bouldin_score	rand_score \
0	2	0.608793	0.553328	0.530839
0	3	0.638631	0.484705	0.690133
0	4	0.641498	0.377479	0.690731
0	5	0.571064	0.454516	0.718069

[149]: AggClustering(X_pca2[['x', 'y']], X_pca2, Y['label'])

[149]:	clusters	linkage	silhouette_score	davies_bouldin_score	rand_score	\
	0 2	ward	0.604723	0.510290	0.495445	
	0 3	ward	0.585826	0.553548	0.698478	
	0 4	ward	0.511152	0.607908	0.702564	
	0 5	ward	0.513673	0.495200	0.703105	
	0 2	complete	0.817598	0.126704	0.215867	
	0 3	complete	0.607592	0.380336	0.526477	
	0 4	complete	0.626451	0.360984	0.645380	
	0 5	complete	0.569905	0.473947	0.649501	

```
0
         2
              single
                               0.817598
                                                       0.126704
                                                                    0.215867
0
         3
              single
                                0.618018
                                                       0.204883
                                                                    0.218687
0
         4
              single
                                0.186662
                                                       0.480402
                                                                    0.221559
0
         5
              single
                                0.122767
                                                       0.467895
                                                                    0.224437
   adjusted_mutual_info_score mutual_info_score
0
                      0.332557
                                          0.371286
0
                      0.457913
                                          0.627631
0
                                          0.639887
                      0.436472
0
                                          0.645189
                      0.437556
0
                      0.001569
                                          0.004342
0
                      0.392522
                                          0.447676
0
                      0.441700
                                          0.584799
0
                      0.431711
                                          0.595184
0
                      0.001569
                                          0.004342
0
                      0.002960
                                          0.008538
0
                      0.004543
                                          0.012911
0
                      0.006154
                                          0.017320
```

3 T-SNE

```
[t-SNE] Computing 91 nearest neighbors...
```

[[]t-SNE] Indexed 590 samples in 0.010s...

[[]t-SNE] Computed neighbors for 590 samples in 0.182s...

[[]t-SNE] Computed conditional probabilities for sample 590 / 590

[[]t-SNE] Mean sigma: 0.446972

[[]t-SNE] KL divergence after 250 iterations with early exaggeration: 60.796814

[[]t-SNE] KL divergence after 1000 iterations: 0.550892

<Figure size 720x576 with 0 Axes>

3.1 Klasteryzacja bez redukcji wymiarów, wizualizacja na T-SNE

[151]: KMeansClustering(X, X_tsne, Y['label'])


```
[151]:
                   silhouette_score
                                       davies_bouldin_score rand_score
         clusters
       0
                2
                            0.435288
                                                    0.847755
                                                                0.530972
                3
                            0.402285
                                                   0.940976
                                                                0.690133
       0
                4
       0
                            0.350284
                                                    1.078130
                                                                0.729878
       0
                5
                            0.309429
                                                    0.980741
                                                                0.736819
          adjusted_mutual_info_score
                                       mutual_info_score
       0
                             0.389753
                                                 0.442232
                                                 0.643050
       0
                             0.475444
       0
                             0.467164
                                                 0.690380
       0
                             0.448753
                                                 0.686280
```

[152]: AggClustering(X, X_tsne, Y['label'])

[152]:	clusters	linkage	silhouett	ce_score	davies_bou	ldin_score	rand_score	\
0	2	ward	(.430679		0.838535	0.524284	
0	3	ward	(376586		0.994408	0.703289	
0	4	ward	(376948		0.922601	0.720256	
0	5	ward	(379742		0.758135	0.720894	
0	2	complete	(779682		0.152003	0.215867	
0	3	complete	(.430162		0.594429	0.525867	
0	4	complete	(.185398		1.317981	0.665800	
0	5	complete	(.180182		1.241147	0.684354	
0	2	single	(779682		0.152003	0.215867	
0	3	single	(.243739		0.465091	0.218745	
0	4	single	(.172431		0.463161	0.221628	
0	5	single	(0.108968		0.556775	0.224517	
		t	£	t				
•	adjusted	_mutual_in		mutual_1	nfo_score			
0			0.423434		0.476915			
0			0.512000		0.698181			
0			0.516778		0.730515			

```
0
                      0.519257
                                           0.737880
0
                      0.001569
                                           0.004342
0
                      0.390862
                                           0.445355
0
                      0.391383
                                           0.554652
0
                      0.388643
                                           0.585214
                      0.001569
                                           0.004342
0
                      0.003166
                                           0.008718
0
0
                      0.004791
                                           0.013130
0
                      0.006446
                                           0.017579
```

3.2 Klasteryzacja po T-SNE

[153]: KMeansClustering(X_tsne[['x', 'y']], X_tsne, Y['label'])


```
[153]:
                                       davies_bouldin_score rand_score
         clusters
                    silhouette_score
                            0.559706
                                                   0.536397
                                                                0.542154
       0
                3
                            0.542620
                                                   0.610013
                                                                0.715444
       0
                4
                            0.544692
                                                    0.656311
                                                                0.744865
       0
                5
                            0.537984
                                                    0.666933
                                                                0.755834
          adjusted_mutual_info_score
                                        mutual_info_score
       0
                             0.365356
                                                 0.420147
       0
                                                 0.693618
                             0.502009
       0
                             0.458577
                                                 0.722163
       0
                             0.449276
                                                 0.764575
```

[154]: AggClustering(X_tsne[['x', 'y']], X_tsne, Y['label'])

[154]:	clusters	linkage	silhouette_	score	davies_bou	ldin_score	rand_score	\
0	2	ward	0.5	578043		0.455887	0.517671	
0	3	ward	0.5	532381		0.563287	0.695520	
0	4	ward	0.5	519822		0.724215	0.737026	
0	5	ward	0.5	524075		0.633958	0.750908	
0	2	complete	0.5	578043		0.455887	0.517671	
0	3	complete	0.5	534083		0.644520	0.710080	
0	4	complete	0.5	542494		0.641761	0.743599	
0	5	complete	0.4	198207		0.662969	0.751581	
0	2	single	0.5	578043		0.455887	0.517671	
0	3	single	0.0	75305		0.820491	0.519927	
0	4	single	0.2	267056		0.800274	0.702086	
0	5	single	0.0	065983		1.154284	0.703122	
	adjusted	_mutual_in	fo_score mu	ıtual_i:	nfo_score			
0	-		0.407878		0.458127			
0			0.513918		0.695575			
0			0.450797		0.709817			

```
0.451712
0
                                           0.764074
0
                      0.407878
                                           0.458127
0
                      0.487483
                                           0.678167
                      0.455785
                                           0.716834
0
0
                      0.440178
                                           0.738361
                      0.407878
                                           0.458127
0
                                           0.462191
0
                      0.407724
0
                                           0.655111
                      0.465491
0
                      0.468494
                                           0.663281
```

4 Wyniki w porównaniu do religii a nie konkretnych ksiąg

```
[165]: #bez redukcji wymiarów
KMeansClustering(X, X_tsne, Y['rel'])
```



```
[165]:
         clusters
                   silhouette_score
                                       davies_bouldin_score
                                                              rand_score
       0
                            0.435288
                                                   0.847755
                                                                0.726552
       0
                3
                            0.402285
                                                   0.940976
                                                                0.807856
       0
                4
                            0.350284
                                                   1.078130
                                                                0.807798
       0
                            0.309429
                                                   0.980741
                                                                0.780070
          adjusted_mutual_info_score
                                       mutual_info_score
       0
                             0.534664
                                                 0.429196
       0
                             0.581368
                                                 0.591890
       0
                             0.561967
                                                 0.639466
                             0.536186
                                                 0.636204
```

```
[166]: #bez redukcji wymiarów
AggClustering(X, X_tsne, Y['rel'])
```


[166]:	clusters	linkage	silhouette_score	davies_bou	ldin_score	rand_score	\
0	2	ward	0.430679		0.838535	0.725182	
0	3	ward	0.376586		0.994408	0.800892	
0	4	ward	0.376948		0.922601	0.813600	
0	5	ward	0.379742		0.758135	0.814238	
0	2	complete	0.779682		0.152003	0.416765	
0	3	complete	0.430162		0.594429	0.722448	
0	4	complete	0.185398		1.317981	0.677166	
0	5	complete	0.180182		1.241147	0.688078	
0	2	single	0.779682		0.152003	0.416765	
0	3	single	0.243739		0.465091	0.419643	
0	4	single	0.172431		0.463161	0.422526	
0	5	single	0.108968		0.556775	0.425415	
	adjusted	_mutual_in	fo_score mutual_	info_score			
0			0.599808	0.476915			
0			0.632098	0.651302			
0			0.632121	0.680386			

```
0
                      0.635506
                                          0.687751
0
                      0.004490
                                          0.004342
0
                      0.540788
                                          0.435031
0
                      0.484847
                                          0.521898
                      0.470558
                                          0.544888
0
0
                      0.004490
                                          0.004342
                      0.008971
                                          0.008718
0
0
                      0.013445
                                          0.013130
0
                      0.017915
                                          0.017579
```

[167]: #po PCA KMeansClustering(X_pca[['x', 'y']], X_tsne, Y['rel'])


```
[167]:
         clusters
                   silhouette_score
                                     davies_bouldin_score rand_score
       0
                            0.608793
                                                   0.553328
                                                               0.724555
       0
                3
                            0.638631
                                                   0.484705
                                                               0.807856
       0
                4
                            0.641498
                                                   0.377479
                                                               0.808454
       0
                            0.571064
                                                   0.454516
                                                               0.791891
          adjusted_mutual_info_score
                                       mutual_info_score
       0
                             0.525175
                                                0.422229
       0
                             0.581368
                                                0.591890
       0
                                                0.596783
                             0.582629
       0
                             0.557389
                                                 0.632426
```

```
[168]: #po PCA
AggClustering(X_pca[['x', 'y']], X_tsne, Y['rel'])
```


[168]:	clusters	linkage	silhouett	e_score	davies_bou	ldin_score	rand_score	\
0	2	ward	C	.604723		0.510290	0.684429	
0	3	ward	C	.585826		0.553548	0.765636	
0	4	ward	C	.511152		0.607908	0.767949	
0	5	ward	C	.513673		0.495200	0.768490	
0	2	complete	C	.817598		0.126704	0.416765	
0	3	complete	C	.607592		0.380336	0.722057	
0	4	complete	C	.626451		0.360984	0.789025	
0	5	complete	C	.569905		0.473947	0.780334	
0	2	single	C	.817598		0.126704	0.416765	
0	3	single	C	.618018		0.204883	0.418871	
0	4	single	C	.186662		0.480402	0.421743	
0	5	single	C	.122767		0.467895	0.424621	
	adina+od	mutual in	fo georg	mu+ual i	nfo_score			
0	adjusted	_mutual_in	_	mutuai_i	_			
0			0.466152		0.364743			
0			0.552127		0.571848			
0			0.514313		0.578370			

```
0
                      0.516060
                                          0.583671
0
                      0.004490
                                          0.004342
0
                      0.539486
                                          0.434639
0
                      0.546445
                                          0.538681
                      0.521176
0
                                          0.539005
0
                      0.004490
                                          0.004342
                      0.006174
                                          0.007161
0
0
                      0.010602
                                          0.011535
0
                                          0.015944
                      0.015025
```

[169]: #po t-sne KMeansClustering(X_tsne[['x', 'y']], X_tsne, Y['rel'])


```
[169]:
         clusters silhouette_score davies_bouldin_score rand_score
       0
                           0.559706
                                                  0.536397
                                                               0.726546
       0
                3
                           0.542620
                                                  0.610013
                                                               0.780484
                4
       0
                           0.544692
                                                  0.656311
                                                               0.693511
       0
                           0.537984
                                                  0.666933
                                                               0.677857
          adjusted_mutual_info_score
                                       mutual_info_score
       0
                             0.490180
                                                0.400714
       0
                             0.598818
                                                0.627824
                                                0.641075
       0
                             0.518824
                             0.474097
                                                0.643958
```

```
[170]: #po t-sne
AggClustering(X_tsne[['x', 'y']], X_tsne, Y['rel'])
```


[170]:	clusters	linkage	silhouet	te_score	davies_bou	ldin_score	rand_score	\
0	2	ward		0.578043		0.455887	0.715116	
0	3	ward		0.532381		0.563287	0.801007	
0	4	ward		0.519822		0.724215	0.712365	
0	5	ward		0.524075		0.633958	0.688228	
0	2	complete		0.578043		0.455887	0.715116	
0	3	complete		0.534083		0.644520	0.749153	
0	4	complete		0.542494		0.641761	0.683647	
0	5	complete		0.498207		0.662969	0.687324	
0	2	single		0.578043		0.455887	0.715116	
0	3	single		0.075305		0.820491	0.717372	
0	4	single		0.267056		0.800274	0.735564	
0	5	single		0.065983		1.154284	0.736600	
	Ū	${\tt _mutual_in}$	_	mutual_i	nfo_score			
0			0.563513		0.446142			
0			0.627700		0.640471			
0			0.527938		0.651719			

0	0.490666	0.661175
0	0.563513	0.446142
0	0.582802	0.616275
0	0.512381	0.632030
0	0.483539	0.644171
0	0.563513	0.446142
0	0.563295	0.450206
0	0.569239	0.609460
0	0.573358	0.617630