A confidence interval (CI) gives a plausible range for a population parameter p by using outcomes from a sample

- $(1-\alpha)100\%$ two-sided CI finds LB and UB such that $P(LB \le p \le UB) = 1 \alpha$ and the CI is denoted by (LB, UB)
- $(1-\alpha)100\%$ one-sided lower bound CI finds LB such that $P(LB \le p) = 1 \alpha$ and the CI is denoted by (LB, ∞)
- $(1-\alpha)100\%$ one-sided upper bound CI finds LB such that $P(p \le UB) = 1 \alpha$ and the CI is denoted by $(-\infty, UB)$

Given: $X_1, X_2, ..., X_n$ are random samples i.e. they are **independent and identically distributed**

Assumption	X_i 's are from a normal distribution with unknown mean and known variance	X_i 's are from any distribution with unknown mean and unknown variance and n>40	X_i 's are from normal distribution with unknown mean and unknown variance and n<40
Population parameter to be estimated	Mean	Mean	Mean
(1-lpha)100% twosided confidence interval	$\left(\bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$	$\left(\bar{x} - z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{x} + z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right)$	$\left(\bar{x} - t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}, \bar{x} + t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}\right)$
Sample size for CI of width w	$\left(\frac{2z_{\alpha/2}\sigma}{w}\right)^2$	$\left(\frac{2z_{\alpha/2}s}{w}\right)^2$	NA
(1-lpha)100% onesided upper bound CI	$\left(-\infty, \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right)$	$\left(-\infty, \bar{x} + z_{\alpha} \frac{s}{\sqrt{n}}\right)$	$\left(-\infty, \bar{x} + t_{\alpha, n-1} \frac{s}{\sqrt{n}}\right)$
(1-lpha)100% onesided lower bound CI	$\left(\bar{x}-z_{\alpha}\frac{\sigma}{\sqrt{n}},\infty\right)$	$\left(\bar{x}-z_{\alpha}\frac{s}{\sqrt{n}},\infty\right)$	$\left(ar{x}-t_{lpha,n-1}rac{s}{\sqrt{n}}$, $\infty ight)$