OBSERVACIONES DE LA PRACTICA

María Alejandra Estrada García Cod. 202021060

Santiago Martínez Novoa Cod. 202112020

Ambientes de pruebas

	Máquina 1	Máquina 2	
Procesadores	Intel(R) Core(TM) i5-	Intel(R) Core(TM) i3-	
	8265U CPU @	8145U CPU @ 2.10GHz	
	1.60GHz 1.80 GHz	2.30 GHz	
Memoria RAM (GB)	8.00 GB (7.82 GB	8,00 GB (7,89 GB	
	utilizable)	utilizable)	
Sistema Operativo	Windows 10 64-bit	Windows 10 64 bits,	
	x64-based processor	procesador x64	

Tabla 1. Especificaciones de las máquinas para ejecutar las pruebas de rendimiento.

Maquina 1

Resultados

Porcentaje de la muestra [pct]	Tamaño de la muestra (ARRAYLIST)	Insertion Sort [ms]	Shell Sort [ms]	Quick Sort [ms]	Merge Sort [ms]
0.50%	-small(768)	31.25	41,67	36,45	26,04
10.00%	-10pct(15008)	390.62	932.3	2432,3	486.38

Tabla 2. Comparación de tiempos de ejecución para los ordenamientos en la representación arreglo.

Porcentaje de la muestra [pct]	Tamaño de la muestra (LINKED_LIST)	Insertion Sort [ms]	Shell Sort [ms]	Quick Sort [ms]	Merge Sort [ms]
0.50%	-small(768)	916,67	1010,42	994.8	161.46
10.00%	-10pct(15008)	344234.38	866421.88	1772062.5	36281.25

Tabla 3. Comparación de tiempos de ejecución para los ordenamientos en la representación lista enlazada.

Algoritmo	Arreglo (ARRAYLIST) Lista enlazada (LINKED_LIST)	
Insertion Sort	El primero más eficiente	El segundo más eficiente
Shell Sort	El tercer más eficiente	El tercero más eficiente
Merge Sort	El segundo más eficiente	El primero más eficiente
Quick Sort	El cuarto más eficiente	El cuarto más eficiente

Tabla 4. Comparación de eficiencia de acuerdo con los <u>algoritmos</u> de ordenamientos y estructuras de datos utilizadas.

Maquina 2

Resultados

Porcentaje de la muestra [pct]	Tamaño de la muestra (ARRAYLIST)	Insertion Sort [ms]	Shell Sort [ms]	Quick Sort [ms]	Merge Sort [ms]
0.50%	-small(768)	25.0	23.44	34.38	27.34
10.00%	-10pct(15008)	463.54	1393.84	3874.75	645.84

Tabla 2. Comparación de tiempos de ejecución para los ordenamientos en la representación arreglo.

Porcentaje de la muestra [pct]	Tamaño de la muestra (LINKED_LIST)	Insertion Sort [ms]	Shell Sort [ms]	Quick Sort [ms]	Merge Sort [ms]
0.50%	-smal(768)	1244.79	1463.55	1380.21	177.09
10.00%	-10pct(15008)	299328.13	1767703.13	3842760.13	76140.63

Tabla 3. Comparación de tiempos de ejecución para los ordenamientos en la representación lista enlazada.

Algoritmo	Arregio (ARRAYLIST)	Lista enlazada (LINKED_LIST)
Insertion Sort	El primero más eficiente	El segundo más eficiente
Shell Sort	El tercer más eficiente	El tercero más eficiente
Merge Sort	El segundo más eficiente	El primero más eficiente
Quick Sort	El cuarto más eficiente	El cuarto más eficiente

Tabla 4. Comparación de eficiencia de acuerdo con los algoritmos de ordenamientos y estructuras de datos utilizadas.

Preguntas de análisis

1. ¿El comportamiento de los algoritmos es acorde a lo enunciado teóricamente?

R// Como se explicó en la clase, cada tipo de ordenamiento es diferente, en la forma de ordenar los datos con los distintos algoritmos. Se pudo demostrar que el 'ARRAY_LIST' es más rápido que el 'LINKED_LIST', por lo que cambiará el orden de crecimiento temporal de las operaciones. Sin embargo, funcionan diferentes pues en el single_linked_list es más eficiente con el merge sort, pero en la maquina 1 y 2, el insertion sort fue más eficiente en tiempo al usar "Array_list", al comparar con las dos TAD listas.

2. ¿Existe alguna diferencia entre los resultados obtenidos al ejecutar las pruebas en diferentes máquinas?

R// Si, se presentaron diferentes tiempos de procesamientos. Es decir, en el rendimiento de los algoritmos, debido a la diferencia de los procesadores en cada máquina. La máquina 1 tiene un procesador Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz, mientras que la máquina 2 tiene un procesador Intel(R) Core(TM) i3-8145U CPU @ 2.10GHz 2.30 GHz.

3. De existir diferencias, ¿a qué creen que se deben?

R// Como se puede observar por medio de las tablas de comparación (de tiempos de ejecución de los diferentes algoritmos) y los ordenamientos, es el tiempo en que toma las dos máquinas en

ejecutarlos. Se muestra que en la máquina 2 dura menos tiempo cuando se utilizan menor cantidad de datos con 'ARRAY_LIST', sin embargo, cuando se utiliza una mayor cantidad de datos la máquina 1 tiene mejor tiempo de rendimiento, en especial al utilizar el TAD lista 'LINKED_LIST'. Las principales diferencias de las características de los procesadores se encuentran en el número de núcleos e hilos de proceso y su velocidad (máquina 1: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz, máquina 2: Intel(R) Core(TM) i3-8145U CPU @ 2.10GHz 2.30 GHz). Las velocidades (GHz) de los procesadores fueron distintas, siendo la mayor diferencia. Es decir, que la máquina 2 tiene mayor frecuencia de funcionamiento, en comparación a la 1. Por otro lado, máquina 2 tiene un Intel(R) Core de menor nivel. Por otro lado, la máquina 1 tiene menor memoria RAM utilizable, en comparación con la segunda. Al realizar las pruebas de rendimiento se encontró que, aunque en los primeros intentos la maquina 2 tuvo en algunos casos mejor rendimiento que la maquina 1, luego del promedio la máquina 1 fue siempre superior. Esto puede ser causa de la consistencia en el procesamiento del i5 frente a los rendimientos inesperados del i3.

4. ¿Cuál Estructura de Datos funciona mejor si solo se tiene en cuenta los tiempos de ejecución de los algoritmos?

R// El 'ARRAY_LIST' funciona más rápido en ambas computadoras debido a que en los arreglos almacenan elementos en ubicaciones de memoria contiguas, lo que permite un acceso más rápido a un elemento en un índice específico. Por otro lado, debido a que, en la lista enlazada, los elementos no se almacenan en ubicaciones contiguas, por lo que deben almacenarse con etiquetas adicionales que den una referencia al siguiente elemento, y toma más tiempo.

5. Teniendo en cuenta las pruebas de tiempo de ejecución por todos los algoritmos de ordenamiento estudiados (iterativos y recursivos), proponga un ranking de los mismo de mayor eficiencia a menor eficiencia en tiempo para ordenar la mayor cantidad de obras de arte.

R// Teniendo en cuenta las pruebas realizadas con las diferentes máquinas con el tiempo de ejecución de los algoritmos de ordenamientos –iterativos y recursivos- el ranking de menor a mayor eficiencia de tiempo (teniendo en cuenta los dos tipos de TAD Listas) es el siguiente:

- 1. Insertion sort
- 2. Merge sort
- 3. Shell sort
- 4. Quick sort