# Project Euler #58: Spiral primes



#### **Problem Statement**

This problem is a programming version of Problem 58 from projecteuler.net

Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed.

| <b>37</b>  | 36        | 35       | 34 | 33 | 32        | <b>31</b> |
|------------|-----------|----------|----|----|-----------|-----------|
| <b>3</b> 8 | <b>17</b> | 16       | 15 | 14 | <b>13</b> | 30        |
| <b>3</b> 9 | 18        | <b>5</b> | 4  | 3  | 12        | 29        |
| 40         | 19        | 6        | 1  | 2  | 11        | 28        |
| 41         | 20        | 7        | 8  | 9  | 10        | 27        |
| 42         | 21        | 22       | 23 | 24 | 25        | 26        |
| <b>43</b>  | 44        | 45       | 46 | 47 | 48        | 49        |

It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of  $8/13 \approx 62\%$ .

If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both diagonals first falls below N%?

## **Input Format**

Input contains an integer N

## **Output Format**

Print the answer corresponding to the test case.

#### **Constraints**

 $8 \le N \le 60$ 

#### Sample Input

60

## **Sample Output**

5