Zhengdong Zhang

Homework - Week 3 Exercises

ID: 952091294

Term: Fall 2025

Due Date: Oct 22nd, 2025

Email: zhengz@uoregon.edu Course: MATH 616 - Real Analysis Instructor: Professor Weiyong He

Exercise 3.1

Let $f: X \to \mathbb{C}$ be a measurable function, then there exists a sequence of simple functions $\{\phi_n\}$ such that $|\phi_n|$ is nondecreasing with respect to n and $\phi_n \to f$ pointwise.

Solution: First we prove this is true for a real-valued function f. Define

$$f^+(x) := \max\{0, f(x)\}, \quad f^-(x) := -\min\{f(x), 0\}.$$

Then both f^+ and f^- are positive measurable functions on X, and $f = f^+ - f^-$ by definition. A theorem we proved in class tells us that there exists a positive nondecreasing sequence $\{s_n\}$ of simple functions such that $0 \le s_n \le f^+$ for all $n \ge 1$ and $\lim_{n\to\infty} s_n(x) = f^+(x)$. Similarly, there exists a positive nondecreasing sequence $\{t_n\}$ of simple functions such that $0 \le t_n \le f^-$ for all n and $\lim_{n\to\infty} t_n(x) = f^-(x)$. Note that by definition, for any $x \in X$, either $f^+(x) = 0$, or $f^-(x) = 0$. This implies that $s_n(x)t_n(x) = 0$ for all n and all $x \in X$. Consider a sequence $\{s_n - t_n\}$ of simple functions. For any n,

$$|s_n - t_n|^2 = s_n^2 + t_n^2 \le s_{n+1}^2 + t_{n+1}^2 = |s_{n+1} - t_{n+1}|^2$$
.

This implies that $|s_n - t_n|$ is nondecreasing and

$$\lim_{n \to \infty} (s_n(x) - t_n(x)) = f^+(x) - f^-(x) = f(x).$$

Now consider f = u + iv to be a complex-valued function, then apply the above construction to u and v separately, obtaining two nondecreasing sequence of simple functions $\{p_n\}$ and $\{q_n\}$, then let $\phi_n = p_n + iq_n$. Here $|\phi_n|$ is decreasing as

$$|\phi_n|^2 = p_n^2 + q_n^2 \le p_{n+1}^2 + q_{n+1}^2 = |\phi_{n+1}|^2$$

and

$$\lim_{n \to \infty} \phi_n(x) = \lim_{n \to \infty} p_n(x) + i \lim_{n \to \infty} q_n(x) = u(x) + iv(x) = f(x).$$

Exercise 3.2

Compute the limits and justify the computation:

$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx^2}{(1 + x^2)^n} dx, \quad \lim_{n \to \infty} \int_a^\infty \frac{n}{1 + n^2 x^2} dx$$

Solution:

(1) Define

$$f_n(x) = \frac{1 + nx^2}{(1 + x^2)^n} = \frac{1 + nx^2}{1 + nx^2 + \sum_{k=2}^n \binom{n}{k} x^{2k}}.$$

Write

$$g_n(x) := \frac{\sum_{k=2}^n \binom{n}{k} x^{2k}}{1 + nx^2}$$

and $f_n(x) = \frac{1}{1+g_n(x)}$. It is easy to see that $g_n(x) \to +\infty$ as $n \to \infty$ for all $x \in (0,1)$, so $f_n(x) \to 1$ as $n \to \infty$ for all $x \in (0,1)$. Moreover, $g_n(x) \ge 0$, so

$$|f(x)| = \frac{1}{1 + g_n(x)} \le 1.$$

And 1 is integrable on the interval (0,1), by Lebesgue dominated convergence theorem,

$$\lim_{n \to \infty} \int_0^1 \frac{1 + nx^2}{(1 + x^2)^n} dx = \int_0^1 \lim_{n \to \infty} \frac{1 + nx^2}{(1 + x^2)^n} dx = 1.$$

(2) Note that for all $n \geq 1$ and all $x \in \mathbb{R}$,

$$\frac{d}{dx}\arctan(nx) = \frac{n}{1 + n^2x^2}.$$

Thus, by the fundamental theorem of calculus, write

$$\begin{split} I &= \lim_{n \to \infty} \int_a^{+\infty} \frac{n}{1 + n^2 x^2} dx = \lim_{n \to \infty} \lim_{b \to +\infty} \int_a^b \frac{n}{1 + n^2 x^2} dx \\ &= \lim_{n \to \infty} \lim_{b \to +\infty} (\arctan(nb) - \arctan(na)) \\ &= \lim_{n \to \infty} (\frac{\pi}{2} - \arctan(na)) \\ &= \frac{\pi}{2} - \lim_{n \to \infty} \arctan(na). \end{split}$$

The result can be listed as follows

$$I = \begin{cases} 0, & \text{if } a > 0, \\ \frac{\pi}{2}, & \text{if } a = 0, \\ \pi, & \text{if } a < 0. \end{cases}$$

Exercise 1.7

Suppose $f_n: X \to [0, +\infty]$ is measurable for $n = 1, 2, \ldots$ $f_1 \ge f_2 \ge \cdots \ge 0$, $f_n(x) \to f(x)$ as $n \to \infty$ for every $x \in X$, and $f_1 \in L^1(\mu)$. Prove that

$$\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$$

and show that this conclusion does not follow if the condition " $f_1 \in L^1(\mu)$ " is omitted.

Solution: Both f_1 and $f = \lim_{n \to \infty} f_n$ are positive and measurable, and since for every $n, f_n \le f_1$, we have

$$|f(x)| = f(x) \le f_1(x)$$

for all $x \in X$. Here $f_1 \in L^1(\mu)$ is an integrable function. By Lebesgue dominated convergence theorem,

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu.$$

The condition $f_1 \in L^1(\mu)$ is essential. Consider the following function

$$f_n(x) = \chi_{[n,+\infty)}.$$

For all n, $[n+1,+\infty) \subseteq [n,+\infty)$, so f_n is positive and decreasing. It is not hard to see that

$$\lim_{n \to +\infty} f_n(x) = 0.$$

But on the other hand,

$$\lim_{n \to \infty} \int_X f_n d\mu = \lim_{n \to +\infty} m([n, +\infty)) = \lim_{n \to +\infty} +\infty = +\infty.$$

Exercise 1.8

Put $f_n = \chi_E$ if n is odd, and $f_n = 1 - \chi_E$ if n is even. What is the relevance of this example to Fatou's lemma.

Solution: This is an example where the inequality in Fatou's lemma can be strict. Indeed, let $E \subseteq X$ be measurable, and $m(E) < m(X) < +\infty$. On the one hand, for any $x \in X$, either $\chi_E(x) = 0$ if $x \notin E$, or $1 - \chi_E(x) = 0$ if $x \in E$. So

$$\liminf_{n \to \infty} f_n(x) = 0$$

for all $x \in X$. This implies that

$$\int_X \liminf_{n \to \infty} f_n d\mu = 0.$$

On the other hand, we have

$$\int_X f_n d\mu = \begin{cases} m(E), & \text{if } n \text{ is odd} \\ m(E^c), & \text{if } n \text{ is even.} \end{cases}$$

We know both m(E) and $m(E^c)$ is strictly positive by our assumption, so

$$\int_X \liminf_{n \to \infty} f_n d\mu < \liminf_{n \to \infty} \int_X f_n d\mu.$$

Exercise 1.10

Suppose $\mu(X) < \infty$, $\{f_n\}$ is a sequence of bounded complex measurable functions on X, and $f_n \to f$ uniformly on X. Prove that

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu,$$

and show that the hypothesis $\mu(X) < \infty$ cannot be omitted.

Solution:

Exercise 1.12

Suppose $f \in L^1(\mu)$. Prove that to each $\varepsilon > 0$ there exists a $\delta > 0$ such that $\int_E |f| d\mu < \varepsilon$ whenever $\mu(E) < \delta$.

Solution: Given any $\varepsilon > 0$, consider the sequence of simple functions $\{\phi_n\}$ we constructed in Exercise 1. They satisfy the condition $\lim_{n\to\infty} \phi_n(x) = f(x)$ for all $x\in E$ and

$$|\phi_n(x)| \le |f(x)|$$

where |f| is a real-valued integrable function since $f \in L^1(\mu)$. By Lebesgue dominated convergence theorem, there exists some N > 1 such that

$$\int_{E} |f - \phi_N| d\mu < \frac{\varepsilon}{2}.$$

where ϕ_N is some simple function on E. Suppose we can write

$$\phi_N = \sum_{i=1}^k \alpha_i \chi_{A_i}.$$

Then the integral

$$\int_{E} \phi_N d\mu = \sum_{i=1}^k \alpha_i \mu(A_i \cap E) \le \mu(E) (\sum_{i=1}^k \alpha_i).$$

If we choose $\delta < \frac{\varepsilon}{2\sum_{i=1}^k \alpha_i}$, then

$$\mu(E)(\sum_{i=1}^k \alpha_i) < \delta(\sum_{i=1}^k \alpha_i) < \frac{\varepsilon}{2}.$$

Thus, for any $m(E) < \delta$, the integral

$$\int_{E} |f| d\mu = \int_{E} |f - \phi_{N} + \phi_{N}| d\mu$$

$$\leq \int_{E} |f - \phi_{N}| d\mu + \int_{E} |\phi_{N}| d\mu$$

$$< \frac{\varepsilon}{2} + \mu(E) (\sum_{i=1}^{k} \alpha_{i})$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$