MAT 125A HW 6

Hardy Jones 999397426 Professor Slivken Spring 2015

6.2 11 (a) Let $h_n = f_n + g_n$

Proof. For any $\epsilon > 0$, since f_n, g_n are uniformly convergent, we know that there exists some $M, N \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$, with $m \geq M, n \geq N$, we have $|f_m(x) - f(x)| < \frac{\epsilon}{2}, |g_n(x) - g(x)| < \frac{\epsilon}{2}$ Choose P = max(M, N).

Then we have for all $p \geq P \in \mathbb{N}$.

$$|h_{p}(x) - h(x)| = |(f_{p} + g_{p})(x) - (f + g)(x)|$$

$$= |f_{p}(x) + g_{p}(x) - f(x) - g(x)|$$

$$= |f_{p}(x) - f(x) + g_{p}(x) - g(x)|$$

$$\leq |f_{p}(x) - f(x)| + |g_{p}(x) - g(x)|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

So h_n is uniformly convergent.

(b) Proof. Let $f_n(x) = x, g_n(x) = \frac{1}{n}$. So $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x = x$, and $\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{1}{n} = 0$. Then, for any $\epsilon > 0$, choose M = 1, then for all $m > 1 \in \mathbb{N}$

$$|f_m(x) - f(x)| = |x - x| = 0 < \epsilon$$

Also, for any $\epsilon > 0$, choose N = 1, then for all $n > 1 \in \mathbb{N}$

$$|g_n(x) - f(x)| = |x - x| = 0 < \epsilon$$

(c)

15 (a)

(b)

16 (a)

(b)

- (c)
- 2 (a) 6.3
 - (b)
 - 5
- 1 (a) 6.4
 - (b)
 - 2 (a)
 - (b)
 - (c)
 - (d)

 - 5 6
 - 7 (a) (b)