ГЛАВА З ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1 Исследование геометрических и технологических характеристик древесного наполнителя

Одним из важнейших этапов в производстве древесных композиционных листовых материалов является анализ геометрических и технологических характеристик древесного наполнителя. Следовательно, первая часть работы была посвящена геометрическим и технологическим характеристикам древесного наполнителя. Геометрические характеристики включают в себя: размер и форма частиц, плотность, пористость. Технологические характеристики: угол естественного обрушения, угол естественного откоса, таблетируемость и текучесть.

Для определения наилучших фракций для изготовления древесностружечных плит использовали 10 образцов стружки разного измельчения. Данные образцы оправляли на фракционирование, разделяли на фракции, определили массу каждой фракции и её процентную долю от всей массы образца. По полученным результатам были построены диаграммы, представленные на рисунке 3.1.

Γ В

Рисунок 3.1 – Диаграммы фракционирования древесной стружки: а – образец 1; б – образец 2; в – образец 3; г – образец 4; д – образец 5; е – образец 6; ж – образец 7; з – образец 8; и – образец 9; к – образец 10

К

И

Проанализировав полученные диаграммы, можно сделать вывод, что наилучшими фракциями для изготовления ДСтП являются фракции 3,15/2,0; 2,0/1,0 и

1,0/0,5. Далее на примере этих фракций определяли характеристики древесного наполнителя (стружки).

В таблице 3.1 представлены основные технологические характеристики древесного наполнителя (стружки) в зависимости от геометрических размеров дискретных частиц.

Таблица 3.1 – Характеристика древесного наполнителя

Параметр	Значения		
Параметр	3,15/2,0	2,0/1,0	1,0/0,5
Насыпная плотность,кг/м ³	164	185,9	188,3
Сыпучесть:			
Угол естественного откоса, град	48	47	55
Угол естественного обрушения, град	90	90	90
Таблетируемость:			
– диаметр, см	5	5	5
– толщина, см	0,38	0,35	0,3
$-$ плотнотсь, r/cm^3	0,67	0,72	0,78
Текучесть (диаметр после прессования образца), мм	0,25	0,26	0,27

Таким образом, исходя из таблицы, фракция 3,15/2,0 используется для внутреннего слоя плиты из-за ее способности обеспечить необходимые прочностные характеристики, в то время как фракции 2,0/1,0 и 1,0/0,5 предпочтительны для наружного слоя изделия. Этот выбор обусловлен важностью внешних характеристик ДСтП для отделки, где эстетические и финишные особенности становятся ключевыми.

3.2. Разработка клеевых составов и исследование их свойств для получения ДКМ

Разработка клеевых составов и исследование их свойств также играют важную роль в процессе получения ДКМ. Так как от правильного клеевого состава, также, как и от правильного наполнителя, зависят следующие характеристик готовых плит: прочность и долговечность, устойчивость к влаге и условиям окружающей среды, экологичность. Использование эффективного клеевого состава и изучение его свойств позволяют создавать материалы с оптимальными физико-механическими и эксплуатационными свойствами. В качестве связующего использовали КФС. Главными достоинствами КФС являются стабильность продукта при хранении, хорошая растворимость в воде, высокая скорость отверждения, хорошие адгезионные свойства.

Для ускорения процесса поликонденсации связующего, улучшения механических свойств и повышения термостойкости ДКМ при их изготовлении используются отвердители. В качестве отвердителей использовали хлорид аммония (сульфат аммония), лимонную кислоту, карбамидо-аммиачную селитру (КАС) (30%), аммоний фосфорнокислый однозамещенный и двузамещенный. На рисунке 3.2 приведены результаты испытаний клеевых составов на показатель, характеризующий время их отверждения при 100°С, а в таблице 3.2 приведены результаты испытаний на адгезионную прочность клеевого шва, которые определяют физико-механические характеристики ДКМ.

Рисунок 3.2 – Результаты испытаний клеевых составов на время желатинизации при 100° С: а – лимонная кислота; б – KAC (30%); в – сульфат аммония; г – аммоний фосфорнокислый однозамещенный; д – аммоний фосфорнокислый двузамещенный

Таблица 3.2 – Результаты испытаний на адгезионную прочность клеевого шва

Вид отвер-	Расход, %	Адгезионная прочность		Адгезионная прочность	
дителя		клеевого шва (в сухом со-		клеевого шва (после ки-	
		стоянии)		пячения)	
		Х, МПа	E, %	Х, МПа	E, %
Сульфат	1	2,5	8,8	1,46	5,3
аммония	3	2,5	9,6	1,45	5,3
	5	2,6	10,0	1,37	6,5
Лимонная	1	2,91	14,1	1,79	5,0
кислота	3	2,8	18,21	2,9	19,3
	5	2,68	4,1	1,55	9,03
Двузаме-	1	1,4	6,5	_	_
щенная	3	1,0	28,0	1,49	8,7
фосфорная	5	1,1	18,1	_	_
кислота					
Однозаме-	1	1,1	13,6	0,69	9,3
щенная	3	1,2	16,6	3,7	9,7
фосфорная	5	1,0	5,6	1,3	48,5
кислота					
KAC (30%)	1	2,5	9,6	1,50	7,8
	3	2,6	10,1	1,51	8,0
	5	2,6	10,5	1,55	9,03

Анализ клеевых составов показал, что отвердитель КАС (30%) с расходом 1%, 3% и 5% от а. с. смолы имеет наилучшие характеристики: время желатинизации при 100° С для расхода отвердителя 1%-69; 3%-60; 5%-51, адгезионная прочность клеевого шва для расхода отвердителя 1%-2.5 МПа; 3%-2.6 МПа; 5%-2.6 МПа.

3.3. Изготовление ДКМ с применением синтетических и углеродных волокон

3.3.1 Изготовление ДСтП с применением синтетических и углеродных волокон

Следующим этапом эксперимента было непосредственно само изготовление ДСтП. Эти плиты изготавливали с применением синтетических и углеродных волокон. После изготовления, плиты испытывались на физико-механические и эксплуатационные свойства.

На рисунках 3.3 а, б представлена схема и изображение трёхслойной ДСтП с добавлением вторичных углеродных волокон соответственно.

Рисунок 3.3 — Трёхслойная ДСтП, содержащая углеродные волокна во внутреннем слое: а — схема трёхслойной ДСтП с применением вторичных углеродных волокон: 1 — наружный слой (стружка); 2 — внутренний слой (стружка и вторичные углеродные волокна); б — лабораторный образец трёхслойной ДСтП, содержащая вторичные углеродные волокна

В таблице 3.3 представлены результаты испытаний лабораторного образца трёхслойной ДСтП с добавлением вторичных углеродных волокон.

Таблица 3.3 — Физико-механические свойства лабораторного образца ДСтП с добавлением углеродного волокна

	ДСтП (отвердитель	ДСтП + углеродные	
Наименование показателя	сульфат аммония) –	волокна (отвердитель	
	контрольный образец	КАС (30%)), расход – 3%	
Влажность, %	4,51	4,31	
Плотность, $\kappa \Gamma/M^3$	550	550	
Линейное разбухание N, %	3,4	1,5	
Водопоглащение, %	1,94	1,4	
Предел прочности при изгибе,	7.5	0.7	
МПа	7,5	9,7	

Из таблицы 3.3 можно сделать вывод, что использование углеродного волокна и отвердителя КАС (30%) с расходом 3% положительно сказывается на физико-механических свойствах древесной плиты. В модифицированной ДСтП, такие показатели, как влажность, линейное разбухание, водопоглащение и предел прочности при изгибе имеют более лучшие результаты, чем результаты этих же показателей в контрольном образце. Следовательно, древесные плиты, имеющие в своем составе углеродное волокно и отвердитель КАС (30%) имеют место быть в производственном процессе. Эти плиты могут быть использованы в строительстве зданий, мебели, упаковочной индустрии и других областях, где требуется сочетание прочности, эстетики и устойчивости к внешним воздействиям.

На рисунке 3.4 показана ДСтП с применением синтетических волокон.

Рисунок 3.4 — Трёхслойная ДСтП, содержащая синтетические волокна (лавсан)

В таблице 3.4 представлены результаты испытаний лабораторного образца трёхслойной ДСтП с добавлением синтетических волокон (лавсан).

	ДСтП (отвердитель	ДСтП+	
	сульфат аммония) –	лавсан	
Наименование показателя	контрольный	(отвердитель КАС	
	образец	(30%)),	
		расход – 3%	
Влажность, %	4,51	3,93	
Плотность, $\kappa \Gamma/M^3$	550	550	
Линейное разбухание N, %	3,4	1,4	
Водопоглащение, %	1,94	0,9	
Предел прочности при изгибе, МПа	7,5	8,5	

Из таблицы 3.4 можно сделать вывод, что изготовление ДСтП с использованием волокна лавсан и отвердителя КАС (30%) с расходом 3% положительно сказывается на физико-механических свойствах ДСтП. Показатели влажности, линей-

ного разбухания, водопоглащения и предела прочности при изгибе в модифицированном образце лучше, чем в контроле, особенно выделились значения линейного разбухания и водопоглащения. Таким образом, использование таких модифицированных ДСтП в производственном процессе является обоснованным, и такие плиты могут быть эффективно применены в условиях, требующих высокой прочности и долговечности.

3.3.2 Изготовление ДВП с применением синтетических и углеродных волокон

После изготовления плит ДСтП, были изготовлены плиты ДВП. Эти плиты изготавливали с применением синтетических и углеродных волокон. После изготовления, плиты ДВП, также, как и ДСтП, испытывались на физико-механические и эксплуатационные свойства.

На рисунке 3.5 изображена ДВП с добавлением вторичных углеродных волокон.

Рисунок 3.5 – ДВП, содержащая в своём составе углеродные волокна

В таблице 3.5 представлены результаты испытаний лабораторного образца ДВП с добавлением вторичных углеродных волокон.

Наименование показателя	ДВП (отвердитель	ДВП + углерод-
	сульфат аммония)	ные волокна
	– контрольный	(отвердитель КАС
	образец	(30%))
Влажность, %	5,5	5,3
Плотность, $\kappa \Gamma/M^3$	200	200
Линейное разбухание N, %	10,0	8,5
Предел прочности при изгибе, МПа	0,9	3,1

Из таблицы 3.5 можно сделать вывод, что изготовление ДВП с использованием углеродного волокна и отвердителя КАС (30%) с расходом 3% положительно

сказывается на физико-механических свойствах ДВП. Показатели влажности, линейного разбухания и предела прочности при изгибе в модифицированном образце превышают контрольные значения, особенно выделяется показатель предела прочности при изгибе, который указывает на повышенную устойчивость материала к механическим нагрузкам. Это свидетельствует о том, что применение углеродного волокна и КАС (30%) в производстве ДВП может значительно улучшить эксплуатационные характеристики изделия, что делает их подходящими для использования в конструкциях, требующих высокой прочности и надежности.

На рисунке 3.6 изображена ДВП с добавлением синтетических волокон (лавсан).

Рисунок 3.6 – ДВП, содержащая в своём составе синтетические волокна (лавсан)

В таблице 3.6 представлены результаты испытаний лабораторного образца ДВП с добавлением синтетических волокон (лавсан).

Наименование показателя	ДВП (отверди-	ДВП +лавсан
	тель сульфат	(отвердитель
	аммония) —	аммоний
	контрольный	фосфорнокис-
	образец	лый однозаме-
		щенный)
Влажность, %	5,5	5,4
Плотность, $\kappa \Gamma / M^3$	200	200
Линейное разбухание N, %	10,0	8,0
Предел прочности при изгибе, МПа	0,9	2,9

Из таблицы 3.6 можно сделать вывод, что изготовление древесноволокнистых плит (ДВП) с использованием волокна лавсан и отвердителя КАС (30%) в количе-

стве 3% положительно сказывается на физико-механических свойствах плит. Показатели влажности, линейного разбухания и предела прочности при изгибе в модифицированном образце превышают контрольные значения, особенно выделяется показатель предела прочности при изгибе, что указывает на повышенную устойчивость материала к механическим нагрузкам.

Это, как и в случае с углеродными волокнами, свидетельствует о том, что применение синтетического волокна лавсан и КАС (30%) в производстве ДВП может значительно улучшить эксплуатационные характеристики изделия. Такие плиты становятся особенно подходящими для использования в конструкциях, требующих высокой прочности и надежности, что открывает новые возможности для их применения в строительстве и производстве мебели. Улучшенные свойства также могут способствовать расширению рынка и увеличению конкурентоспособности продукции.

Выводы по главе 3

- 1. Наилучшими фракциями для изготовления ДСтП являются фракции 3,15/2,0; 2,0/1,0 и 1,0/0,5.
- 2. Фракция 3,15/2,0 подходит для внутреннего слоя плиты из-за ее способности обеспечить необходимые прочностные характеристики, в то время как фракции 2,0/1,0 и 1,0/0,5 предпочтительны для наружного слоя изделия.
- 3. Отвердитель КАС (30%) с расходом 1%, 3% и 5% от а. с. смолы имеет наилучшие характеристики: время желатинизации при 100° С для расхода отвердителя 1% 69; 3% 60; 5% 51, адгезионная прочность клеевого шва для расхода отвердителя 1% 2.5 МПа; 3% 2.6 МПа; 5% 2.6 МПа.
- 4. Изготовление древесно-композитных материалов (ДКМ) с применением синтетических и углеродных волокон, а также с использованием карбамид-аммиачной селитры (КАС) (30%) в качестве отвердителя, положительно сказывается на физико-механических свойствах готовых изделий. Особенно это заметно в случае древесноволокнистых плит (ДВП), где значительно увеличивается показатель прочности при изгибе.

Данное улучшение свидетельствует о повышенной устойчивости плит к механическим нагрузкам, что делает их более надежными и долговечными в эксплуатации. Кроме того, использование таких компонентов позволяет снизить влагопоглощение и улучшить другие эксплуатационные характеристики, что расширяет области применения ДКМ. В результате, изделия из ДВП и ДСтП, модифицированные синтетическими и углеродными волокнами, могут найти свое место в строительстве, мебельном производстве и других отраслях, где высокие требования к прочности и долговечности являются критически важными. Это открывает новые перспективы для разработки инновационных и конкурентоспособных продуктов на рынке.