⑩ 日本国特許庁(JP)

⑪特許出願公開

@ 公 開 特 許 公 報 (A)

昭62-189057

@Int.Cl.4

識別記号 320

庁内整理番号

43公開 昭和62年(1987)8月18日

A 61 B G 01 N 10/00 24/06 33/22 G 01 R

-7437—4C 7621-2G Y-7621-2G

審査請求 有 発明の数 1 (全11頁)

◎発明の名称

磁界勾配による渦電流を補償する方法

頭 昭61-306674 印特

9出 願 昭61(1986)12月24日

優先権主張

@1986年1月3日93米国(US)9816074

⑫発 明 者

ガリイ・ハロルド・グ

アメリカ合衆国、ウイスコンシン州、デラフイールド、バ

ツク・ベイ・ロード、824番

⑫発 明 者 ノーバート・ジョセ

アメリカ合衆国、ウイスコンシン州、ワウワトサ、マウン

フ・ペルク

テン・アベニユー、1641番

ゼネラル・エレクトリ 印出 願 人

ツク・カンパニイ

アメリカ合衆国、12305、ニユーヨーク州、スケネクタデ

イ、リバーロード、1番

20代 理 人 弁理士 生招

/ 発明の名称

磁界勾配による渦電流を補償する方法

ユ 特許請求の範囲

磁外勾配による綺麗施を補償する方法に於 て、(a)NMR動作サンプルを MR 走査器のアイ ソセンタから離して位置ぎめし、(b)前記サンプ ルの少なくとも!つの次元の軸線に沿つて勾配パ ルスを印加し、 (c) 該勾配パルスを印加してから 予定の時間内に前記サンプルに RF 励振パルスを 照射して NMR 信号を発生させ、(d)前配勾配パ ルスを印加してからの合計時間の関数として前記 NMR 信号の位相を測定し、(e)測定された位相 を前記勾配のインパルス応答に対して関係づけ、 (1) 眩インパルス応答を用いて、磁界勾配による 恐ば流を推復する工程を含む方法。

ま 発明の詳細な説明

発明の背景

本発明は磁気共鳴(MR)技術に関する。 更に具体的に云えば、本発明は、好ましい態様で は、MR磁界勾配による渦電流の補償フィルタの 較正方法に関する。 本発明は磁気共鳴作像法に 用いることが出来るが、その場合に飼限されない。

一磁気共鳴現象は、従来、化学的な組成物の構 造を解析する為に、構造化学者によつて分解能の 為い磁気共鳴分光装置に利用されて来た。 解剖学的な部分の作像と、生体内の非侵入形の分 光解析を行なう用途を持つ様な医療用の診断モー ドの MR 技術が開発された。 現在ではよく知ら れているが、 MR 現象は、均質な分極磁界 B。の 中に配置された患者の様なサンプル物体をラーモ ア周波数の無線周波(RF)エネルギで照射すると とにより、この効体内に MR 現象を助振すること 医療用の診断の用途では、この為に が出来る。 検査すべき患者を、円筒形の RF コイルの場の中 に位置ぎめし、 RF 電力増幅器を用いて RF コイ ルを付勢するのが典型的である。 RF 励振が止 むと、同じコイル又は異なる RF コイルを用いて、 大抵はスピン・エコーの形で、 RF コイルの場の 中にある息者の容積から出る MR 信号を検出する。 完全な MR 走査の過程では、複数値の MR 信号を 観測するのが典型的である。 こういう信号を使 つて、検査する物体に関する MR 作像情報又は分 光情報を導き出す。

作像(イメージング)に磁気共鳴を用いるに は、NMR信号の中に空間情報を符号化する為に 磁界勾配を使わなければならない。 理想的な勾 配の挙動からのずれが、像の歪みを持ち込むと予 想される。 例えば、選択的な時間反転パルス順 序(即ち、180 時間反転 RF パルスを使うこと) の間、勾配が一定でない場合、核スピンの不完全・ な位相戻し(rephasing)並びにそれに伴う信号の 損失が起る。 この影響が、多重エコー(カー・ パーソル・メーブーム・ギル (Carr-Purcell-Meiboom-Gill)) 順序の後疣のスピン・エコー で倍加する。 更に、勾配磁界がゼロであるべき 時に(例えば前の勾配パルスからの残留波衣の為 に)ゼロでない場合、予期しなかつた位相分散に より、化学シフト作像(CSI)順序のスペクトル の歪み並びに多重エコー順序に於けるスピンース

ければならない。 測定方式を使つて、補正されていない残留勾配選界を摂本化し、そのデータの 解析から、ポテンショメータの設定値を計算する。 また、計算機によつて、所望の電流パルスの形を 発生するという様に、プリエンファシス形フィル タ以外の方式によつて、電流パルスを整形する様 なこの他の形式が考えられている。

従つて、本発明の目的は、補正されていない 磁界を測定し、この情報を使つて勾配の歪みを補 はする方法を提供することである。

本発明の別の目的は、勾配応答を測定するの に NMR を用い、感度を改善した改良された方法 を提供することである。

本発明の別の目的は、まとまつた勾配の経過 全体を反映する自由誘導被表(FID)信号を監視 することにより、勾配応答を測定する NMR 方法 を提供することである。

発明の要約

時間依存性を持つ摂似的な磁界勾配応答を特 様づけると共に、それに対して補償する方法を提 ピン緩和時間(T_2)の決定の不正確さを招くことがある。

こういう勾配の歪みは、在の恒温層(磁石が超導電型の場合)又はシム・コイル装置、 或いは勾配コイルをRFコイルから波結の知识を に使われる RF 遮蔽体内の損失性構造に勾配磁界 が結合される場合に起か得る。 探似的な応答に 分が、周囲の構造に電流を誘起すること、並びに ノスはシム・コイルにエネルギが失われることに よって起り、多重区画の緩和挙動となって現われ る。 例えば、勾配コイルに矩形電流パルスを印 加する間並びにその後、失々勾配磁界の大体指数 関数形の上昇及び波表が観測される。

/形式として、摂似勾配成分を減少する様に 勾配コイルに印加される電流を整形する為に、勾 配電源にアナログ・プリエンファシス形フィルタ を使う方式が提案されている。 このフィルタは 多数の(例えば2個の)指数関数形波表部品及び 調節自在のポテンショメータ(例えば4個)を持 つており、装置を較正する際にこれらを設定しな

供する。 この方法では、小さなサンプル物体を、 補償しようとする勾配がゼロでない装置アイソセンタから離して配置する。 磁界勾配パルスをサンプルに印加した後、可変の時間後、90° 無線 選波で(FID) 信号の位相を、勾配パルスの終りからの合計時間の関数として監視でする。 こうらい うデータを勾配パルスを答に関係づけ、回帰方法によって一組の指数関数(例えば2個又は3個) にはめ合せる。 この時、/実施例では、初期評価点を中心としたテーラー級数展開のょ自乗最小 化により、初期の評価を改善する。

本発明の新規と考えられる特徴は特許請求の 範囲に具体的に記載してあるが、本発明自体の構成、作用及びその他の目的並びに利点は、以下図 面について説明する所から最もよく理解されよう。

発明の詳しい説明

第/図には代表的な MR 装置の主な部品がプロック図で示されている。 然し、これは装置の/例であつて、実際には本発明が装置に依存しな

いことに注意されたい。 装置の全体的な制御が 主計算機 101 (例えばデータ・ゼネラル社MV 4000)を含む全体を100で示したホスト・コン ピュータ・システムによつて制御される。 計算 機にはインターフェース102 が付設されており、 これを介して複数個の計算機周辺装置及びその他 の MR 装置の部品が結合されている。 計算機周 辺装健の中には磁気テープ駆動装置104があり、 これは主計算機の指示の下に利用して、患者デー タ及び像をテープに記録することが出来る。 処 理済み患者データは像ディスク貯蔵装置110 にも 貯取することが出来る。 データの予備処理及び 像の構成の為に配列プロセッサ108を利用する。 **像プロセッサ108の根能は、拡大、像の比較及び** グレースケールの調節の様な対話形の像表示の操 作を行うことである。 コンピュータ・システム が、ディスク・データ貯蔵装置112を用いて生の 像データ(即ち像を再生する前のデータ)を貯蔵 する手段を備えている。 オペレータ・コンソー ル116 もインターフェース102 を介して計算機に

使われる RF 包絡酸波形を発生する。 勾配波形 が勾配増幅器装置128に印加される。 この装置 は全体的KG_x, G_y, G_z 増幅器 130、132、134 で 構成されていて、各々が全体を136 で示す勾配コ イル集成体の中の対応する勾配コイルを付勢する 為に用いられる。 とういう勾配コイルは主磁石 集成体148の一部分である。 付勢された時、勾 配コイルが、主磁界と同じ方向に、磁界の略一定 の磁界勾配 G_x , G_y , G_z を発生し、これらの勾配 はデカルト座標系の互いに直交するX.Y及び2 軸の方向である。 即ち、主磁石(図面に示して ない)によつて発生された磁界が2軸方向であつ て、これをBaと呼ぶことにし、2軸方向の合計 西界を B_z とすると、 $G_X = \partial B_z / \partial x$ 、 $G_Y = \partial B_z$ $/\partial y$, $G_2 = \partial B_2 / \partial z$ であり、任意の点(x. y. z) に於ける磁界はB(x. y. z)=B₀ + G_x $X + G_y Y + G_z Z$ で扱わされる。 G_x 勾配は x=0の平面に対して何の影響もない。 同様に、

 G_v 及び G_2 勾配は夫々平面y = O及びz = Oに対

して何の影響もない。 点 (0,0,0) を「アイ

結合されていて、患者の検査に関するデータ、並びに走査の開始及び終了という様な MR 装置の適正な動作に必要なこの他のデータを入力する手段をオペレータに提供する。 オペレータ・コンソールは、ディスク又は磁気テープに貯蔵された像を表示する為にも使うことが出来る。

コンピュータ・システムが、システム創御接性118及び勾配増収器装置128によつて、MR 接世に対して制御作用を加える。 計算後が当業者によく知られた形で、(イーサネット回線の様なか)ディジタル通信回級103を介してシステム制御装置がパルスティジタル通信回級103を介してシステム制御装置がパルスティジタル通信を対して、SMC)124及び部品を付勢するのに必要な全体を126で示した電源の様な母つかの装置を含んでいる。 PCMが計算根101によって発生された制御信号を利用して、ディジタルのタイミング信号、及び勾配コイルの付勢に使われる電流液形の様な制向信号、並びにRFパルスを変調する為にトランシーバで

ソセンタ」と呼ぶが、これはどの勾配も何の影響 もない空間内の点である。 アイソセンタは静磁 界の容積の略中心にあるのが普通である。

勾配磁界が、トランシーバ122、 RF 増幅器 123及び RF コイル138 によつて発生された無額 周波パルスと組合せて利用され、検査している息 者の領域から出る MR 信号に空間情報を符号化す る。 パルス制御モジュール120 によつて発生さ れる波形及び制御信号が、 RF 搬送被変調及び動 作モードの制御、即ち送信モードか受信モードか の制御の為に、トランシーバ122で利用される。 送信モードでは、送信機が制御信号に従つて変調 された無線周波搬送波波形を RF 電力増幅器 123 に供給し、この増幅器が主磁石集成体148の中に ある RF コイル138 を付勢する。. 励扱された原 子核によつて放射された NMR 信号を送信に使つ たのと同じ RF コイル又は異なる RF コイルによ つて感知する。 こういう信号をトランシーパの 受信根部分で検出、増幅、復調、炉放及びディジ タル化する。 処理済みの信号が、インターフェ

ース102 及びトランシーバ122 を結合する専用の 一方向高速ディジタル・リンク105 を介して、処理の為に主計算機に送られる。

PCM及びSCMは独立の装置であり、その何れも主計算機101、患者位置ぎめ装置152の様な周辺装置、並びに相互にもリンク103を介して連絡する。 PCM及びSCMは何れも /6 ピット・マイクロプロセッサ(例えばインテル8086)によつて構成され、主計算機からの指令を処理する。SCMが、患者揺台(図に示してない)の位置、及び可動の患者整合用扇形光ピーム(図に示してない)の位置に関する情報を収集する手段を含む。主計算機がこの情報を使つて、像の表示及び再生パラメータを停正する。 SCMは患者輸送及び整合装置の作動という機な機能をも開始する。

内配コイル集成体136及びRF送信/受信コイル138が、分極磁界を発生するのに使われる磁石の中孔の中に取付けられている。 この磁石は主磁石集成体の一部分であり、この集成体は、患者整合装置148、シム・コイル電源140及び主路

両方向波袞が典型的である。

第2A図には、Gx 勾配を発生する為に勾配コイル12を付勢する勾配増幅器130(第1図にも示されている)が示されている。 理想的な動作状態では、増福器130に印加された矩形電流パルス14が被形16で示す様に増幅されて、勾配コイルを付勢するために使われた時、その結果として、略矩形の勾配磁界パルス18が発生される。然し、前に述べた様に、損失性構造との結合な成分の為、実際には、得られる磁界勾配は20に示す様な有限の立上り時間及び22に示す様な有限の立分のあいたが、こういう勾被を招くことがある。

本発明の/実施例では、第28図に示す様に 電流パルス 14をプリエンファシス・フィルタ 24 に印加して、波形 26 で示す様に電流パルス を予め歪め、この結果勾配コイルに印加される増 幅された電流パルス 28 が所望の矩形の勾配パル

石電源142を含む。 シム・コイル電源は主磁石 に付設されたシム・コイルを付勢する為に利用さ シム・コイルは、分極磁界の非均質性を れる。 補正する為に使われる。 抵抗性磁石の場合、主 磁石電源142を用いて磁石を連続的に付勢する。 超導電型磁石の場合、この電源は磁石を適正な動 作磁界にする為に用いられ、その後切離される。 永久政石の場合、電源142を必要としない。 者整合装置148 が患者揺台及び輸送装置150 並び に患者位置ぎめ装置152と共に作用する。 からの干渉を最小限に抑える為に、主磁石集成体 146、勾配コイル集成体136、 RF 送信/受信コ イル138及び患者取扱装置(148,150,152)で 格成された MR 装置の部品は、全体を144 で示す RF 遮蔽室の中に入れられている。 この遮蔽は、 一般的に盆全体を取囲む鋼叉はアルミニウムの網 目によつて構成される。 この網目が装置によつ て発生された RF 信号が出て行かない様にすると 共に、室の外部で発生された RF 信号から装置を 遮蔽する。 動作周波数範囲では、約100 dbの

ス18を発生する様にすることにより、勾配の歪みを減少することが出来る。 典型的な MR の用途では、勾配パルスがデカルト座標系の少なくとも各々の軸で印加されるから、本発明を実施する為の MR 装置は、全ての軸に従つて補正を達成する為に、第2B 図に示すのと接範的に同様な手段を持つている。 然し、簡単の為、以下の説明ではノつの軸だけに沿つた補正について説明する。

第28図の電流パルス14をどの様に予め歪めるべきか、従つて所望の歪みを達成する為に、プリエンファシス・フィルタ24をどの様に製正すべきかを決定する為に、最初に除こうとする勾配の歪みの性質を測定して解析しなければならない。 MR 装置を用いてこういうことを達成するやり方を次に説明する。

第3A図は勾配がゼロでない様な、"O"と記した勾配の原点(即ちシステムのアイソセンタ)から距離"×"の所に配置されたMR作用を持つ物質、好便には約/cc の水を入れた小さなびんで構成されたサンブル30を示している。 サ

ンプル 30 は、餌 3 B 図に示すパルス順序を用いて勾配の歪みを調べる為に使われる NMR 信号の顔として作用する。 第 3 B 図は、例えば物体の×軸に沿つて印加された!他の勾配だけを示している。 前に述べた様に、以下説明する方法が実際には、補償を必要とする勾配を印加するこの他の軸に対しても蘇返される。

最初にこの発明の側定方法の根拠となる原理を直観的に説明しておくのが役立つと思われる。第3B図に示す様に、勾配パルスの後、90°RFパルスを印加し、これにより自由誘導減費(FID)信号を発生させる。 擬似的な勾配成分がなければ、サンプル物体は、FIDの時間全体の間、一定の磁界内にある。 その結果、FIDの時時間の関数として一定である。 然びは時間の関数として一定である。 然びは時間の関数として一定である。 然びは時間の関数として一定である。 然びは時間の関係で示す様に、勾配パルスの後に類似が下IDの間に変化し、従つて下ID信号の時時間波数も変化する。 第3B図には、90°RFパルスの直前に勾配パルスが印加されることを示

 T_s^o 被衷の結果として、第3B図に示す様な /回の実験では、 T_s^o に相当する時間に対する勾 配磁界しか特徴づけることが出来ない。 90° R F パルスが実質的に遅延なした勾配パルスに続き、 RF パルスに直ぐ続く時間 T_{AD} \leq T^o) の間、FID を測定すると仮定する。 この測 している。 この結果得られる自由誘導成務信号 は位相情報を含んでおり、時刻 L に於けるその瞬 時値は、 RF パルスを印加してからの勾配の時間 豫分に関係する。

/ 次元の密度分布 P(x) (即ち、y 及びz 方向に対して検分したもの)及びスピン - スピン 緩和時間 $T_{2}(x)$ を持つサンプルから得られた FI P 信号 S(t) は次の様になる。

$$S(t) = \int P(x) e^{-t} / T_2 e^{i\tau x} J_0^t G_X(t') dt' + i \int_0^t dx$$

とよでrは磁気回転比、 $G_x(t)$ は関心のある勾配 応答、 ω は一定の共鳴圏波数のオフセットであり、 これは後で詳しく説明する。 物体が小さければ (物体の寸法の影響は後で説明する)、信号S(t)の位相は次の様になる。

$$\phi(t) = r \times \int_0^1 G_{\mathbf{x}}(t') dt' + i \Delta \omega t$$
 (2)

FID 信号の位相が勾配応答Gx(1) に関する情報

定によつて、電流パルスが遮断された後の最初の TADミリ秒の間の勾配磁界が特徴づけられる。

次にRFパルスの印加を、勾配電流パルスが 遮断されてから T_s ミリ秒だけ遅延し、RFパル スの後の T_{AD} ミリ秒の間、FIDを標本化すると 仮定する。 T_s < T_{AD} であれば、この実験と前 の(T_s = O の場合の)実験からのデータを組合せ て、一層長い期間にわたつて勾配磁界を特徴づけ ることが出来る。 数似的な応答の全体を制定す ることが出来る様に、この過程を繰返すことが出来る。

連延時間の変化は8ミリ沙にした。 この場合 A/D₁、A/D₂ 等は、 投似勾配応答曲級を標本化する時の融合つた重なり合うセグメントを表わす。 この時位相曲級22全体が、 第4B図に示す別々の収集34、35、36を組合せることによつて得られる。

各々の収集からの位相データを解析する時、並びに種々の収集によつて得られたデータを組合せる過程で、 (() (式(2) 参照) が連続していることを利用する。 即ち、任意の!つの時点に於ける位相は基数を 2×としてしか計算することが出来ないが、測定された位相のアンラッピング(unwrapping)により、2×よりずつと大きな (()を測定することが出来る。 同様に、セグメントの境界で強制的に (()を連続的にすることにより、種々のセグメントが組合される。 境界でセグメントを更によく釣合せる為に、セグメントを受分オーバーラップさせることが有利である。

こうすることにより、 To よりずつと長い時間区分にわたつて o(1)を測定することが出来、こ

時間パラメータの定義として、次の式が得られる。 $G(t=0)=G_0\sum_{k=1}^{N}\alpha_k(/-e^{-\lambda_kT_0})\equiv G_0\sum_kG_k$ (4) 但し $\alpha_k=g_k/\lambda$ (5) は無次元の振幅係数である。 式(4)は、それより前の勾配の励扱から無限の時間が経過したという仮定の下に、勾配パルスの終りの直視の勾配の扱幅を扱わしている。 励扱が終了した後では、

$$G_{x}(t') = G_{a} \Sigma_{k} G_{k} e^{-\lambda_{k} t'}$$
(6)

式(6)を式(2)に代入すると

$$\phi(t) = rG_0 \times \mathcal{L}_k G_k \tau_k (/-e^{-\lambda}k^t) + \Delta\omega t$$
 (7)

と $_{\mathbf{k}}$ = $\lambda_{\mathbf{k}}^{-1}$ は 緩和時間である。 この為、サンプルの位置 \times (第 $_{\mathbf{j}}$ \mathbf{j} $\mathbf{j$

の時間区分は、摂似的な勾配の被変を完全化特徴づけるに十分な長さである。 その後、こういうデータの適当な解析により、例えば多重指数関数に分解するという形で所望の特徴づけが行なわれる。 以下の説明は、この分解を更に完全に行なう為に使われる理論と回帰解析を説明する。

勾配のインパルス応答を h(t)とする。 測定したパラメータを回路部品の数値に換算するのが容易である為、並びにそれがよい近似になることが判つた為、勾配装置のインパルス応答を有限の数の指数関数項の和で近似するのが便利である。この為 h(t) は次の様に定義する。

$$h(t) = \delta(t) + \sum_{k=1}^{K} g_k e^{-\lambda} k^{t}$$
 (3)

ことで $\delta(t)$ はディラックのデルタ関数であり、 S_k 及び I_k は k 番目の指数関数成分の振幅及び変化 本定数である。 このインパルス応答を励振関数 と 是込み積分することにより、 勾配の応答が得られる。 矩形の励振パルスに対し、 棋 s 図に示す

オフセット位相 $d\omega$ 1 は 周波数合成器のオフセット並びに/又は磁界の非为質性によつて生ずる。 この実施例では、餌よ図に示す様に、前の $G_{\mathbf{x}}^{+}(1)$ 勾配パルスに較べて、反転した勾配の符号 $G_{\mathbf{x}}^{-}(1)$ を用いた2回目の測定を行なうことにより、周波数 $d\omega$ を決定する。 この結果得られた信号 $\mathbf{x}^{+}(1)$ 及び $\mathbf{x}^{-}(1)$ は、 記号+及び-の読字で示す様に、反対の位相を持つている。 式(7)のオフセットによる位相は、勾配の符号を反転した時に符号を変えないので、2回の測定値を返算した時、オフセット周波数成分が消える。 これは、米国特許 \mathbf{x} 4 \mathbf{x} 4 \mathbf{x} 3 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 6 \mathbf{x} 6 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 7 \mathbf{y} 7 \mathbf{y} 7 \mathbf{y} 8 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 1 \mathbf{y} 1 \mathbf{y} 1 \mathbf{y} 2 \mathbf{y} 2 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 5 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 7 \mathbf{y} 7 \mathbf{y} 8 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 1 \mathbf{y} 1 \mathbf{y} 1 \mathbf{y} 2 \mathbf{y} 2 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 5 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 7 \mathbf{y} 7 \mathbf{y} 8 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 1 \mathbf{y} 1 \mathbf{y} 1 \mathbf{y} 2 \mathbf{y} 2 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 5 \mathbf{y} 5 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 7 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 1 \mathbf{y} 1 \mathbf{y} 2 \mathbf{y} 2 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 5 \mathbf{y} 6 \mathbf{y} 5 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 1 \mathbf{y} 9 \mathbf{y} 1 \mathbf{y} 1 \mathbf{y} 1 \mathbf{y} 2 \mathbf{y} 2 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 1 \mathbf{y} 1 \mathbf{y} 2 \mathbf{y} 2 \mathbf{y} 2 \mathbf{y} 2 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 5 \mathbf{y} 5 \mathbf{y} 5 \mathbf{y} 6 \mathbf{y} 5 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 6 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 9 \mathbf{y} 1 \mathbf{y} 2 \mathbf{y} 2 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 4 \mathbf{y} 3 \mathbf{y} 5 \mathbf{y} 5

次にサンプル 30 (第3A図)の位置×をM Rを用いて測定するやり方を説明する。 サンプルの位置は、第6図に示す様な、勾配を再集束したスピンエコーのスペクトルから決定される。

第 4 図のパルス順序は第 5 図と同様であるが、 ** * * を削定する為に使われる作像実験を含む点が異なる。 この実験は、最初に 90° RF 防提パルスを印加した後、スピンエコー信号を発生する 反対の極性の勾配パルス40.42を印加する。 勾配パルス42は例えば説取り勾配パルス(Gp = /20 kg/cm)である。 前に述べた様に、他の 軸(例えばy及びz)に沿つて勾配の権正を必要 とする場合、サンプルの位置(y及びz)を制定 する為には、これらの軸に沿つた同様な作像実験 が必要である。

おら凶で、Gpを就取り勾配の振幅とする。
その時、位置×に於けるサンプルの周波数は

 $\omega_0 = 7G_p x + 4\omega$ (8) こムで 4ω は一定のオフセットである。 半分の ピュー (vicw) の G_p を負にし、前に説明した様 に両半分の走査の周波数を減算することにより、 オフセット周波数を除く。 スペクトルの標準的 な閾値モーメント解析によって周波数が利る。

式(U)で、 arg(S(1))= ø(1)であるから、サンプルが有限であることによつて位相の御定値が歪まないことに注されたい。 任意の対称的な物体に対してこの関係が成立することを証明することが出来る。 この為、サンプルが無限小でなくても、対称的であれば、測定に誤差は生じない。

FID の間の勾配を一定とすることにより、 変調効果を評価することが出来る。 振幅の最初 のゼロは時刻で、で起る。 この時、

 $\alpha r G_0 \ a T_2^{\bullet} = \pi$ (1) c の為、FID の持続時間 T_2^{\bullet} を A/D の窓の持続 時間に等しく定めることにより、勾配 G_0 の上限 が初られる。 例えば、 $\alpha = 8\%$ 、 $T_2^{\bullet} \geq 10$ ミリ 秒を希望する場合、 $G_0 \leq 200$ メガガウス/cm である。

位相オフセットの補正及び、x を決定した 後の最終的なデータの決定は $M(t)=\frac{\phi(t)}{\omega_0}$ $\frac{G_p}{G_o}$ =

$$\Sigma_k \alpha_k (/-e^{-T_0 \lambda_k}) r_k (/-e^{-t \lambda_k})$$
 (2)

あるからである。 この為、"x"を計算するの に磁気共暖信号を使うことにより、 G_p の同じ調 差により、 G_0 (第6図)に誤差があつても、そ の誤差が補償される。 比 G_p/G_0 だけが重要で ある。

次に、有限の寸法を持つ物体を使う効果を説明する。 前に説明した様に、サンプルが無限小でない場合、擬似的な勾配応答により、サンプル30 の幅にわたつて位相外れ(dephasing)が起る。この影響は、FIDの持続時間を制限し、 ø(t)とS(i)の位相の間の関係を変えることがあるという点で、T。と同様である。

簡単の為、"×"を中心として概 32 を持つ 矩形サンプルを仮定する。 その時 FID は

$$S(t) = \frac{7}{2a} \int_{x-a}^{x+a} e^{i r x} \int_{x}^{x} G(t') dt' dx$$
 (9)

又は

$$S(t) = e^{i\phi(t)} \operatorname{sinc} \left(\phi(t) \frac{a}{x}\right)$$

即ち、S(t)が sinc 関数によつて抵傷変調される。

この為、次の展開式の係数Ak,でkを求める。

$$M(t_i) = \Sigma_k A_k \left(/ - e^{-t} i / r^k \right)$$
, $i = / \cdots N_m$ (3)
ことで時刻 t_i に N_m 回の御定がある。

$$A_k = \alpha_k \left(/ - e^{-T_0 / \tau_k} \right) \tau_k \tag{0}$$

或る作像装置では、2つ又は3つの指数函数がデータに非常によく合うことが刊つた。 他の用途では、必要とする指数函数成分がこれより少なく又は多いことがある。 例えば後で述べるベビントン(Bevington)の著書に記載されている様に、どれだけ多くの項目が必要かを決定する為に使われる方式は、公知である。

扱似的な勾配応答を特徴づける為に、係数人及びでk を計算しなければならない。 妥当な方式は、最小自乗のはめ合せ(又はェ自乗の最小化)を行なうことである。 式切から利る様に、合せるべき式は、とういう係数に対して直線的ではない。 非直線的なょ自乗最小化の方法も周知である。 ベビントンの著者にはその幾つかの方法

が記載されている。 次に特定の1つの作像装置からのデータにはめ合せる為に使われる方法を説明する。 2つ又は3つの指数関数項を合せることが出来る。

最初に、時定数が最も長い項に対する予値的なはめ合せを計算する。 この予備的なはめ合せでは、第ク人図に示す様に、後の方の時間に対するデータを使い、時定数が一層短い項を無視することが出来る様にする。 短い時定数より大きな時間にに対しては

M(t)~A₀-A_Ne^{-1/TN} (5) であつて、Nは時定数が一番長い指数関数項であ り、

$$A_0 = \sum_{k=1}^{N} A_k \qquad 06$$

普通の反復的な z 自乗最小化方法を用いて、Ao, An 及び Tn (式四)を計算する。 係数 An 及び Tn が、時定数が最も長い項に対する予備的なはめ合せとなる。 次に、この一番長い項を、測定されたデータから被算する。

利る様に、このはめ合せは振幅係数に対して直線 的であり、その為、簡単な線形最小自乗はめ合せ を用いN×N個の方程式の解を持つ。

役に立つことが判つた別の計算方法は、 /969年にニューヨーク州のマックグロー・ヒル ・ブック・カンパニから出版された P. R. ベビン トンの著書「物理化学に対するデータの縮小と誤 差の解析」、第232頁乃至235頁に記載されて いる様に、ノ次徴係数までの項だけを残して、初 期の推測点の周りのx自乗歯数のテーラー展開を 用い、マルカルト(Marquardt) の手度により、 はめ合せを改善することである。 初期の推測が 妥当に接近していれば、との方法はかなりうまく 行く。 2N×2N 側の方程式の疎形系が、標準 的な数値行列反転方法によつて解かれる。 ディ ジタル計算の精度は、2倍精度浮動小数点演算を 用いた時でも、はめ合せの係数の棺度を制限する ことがあることが判つた。 はめ合せの特度を改 善する為に、このマルカルトの手順によつて得ら れた時定数だけを残す。 擬幅係数は、前に述べ

 $M'(t) = M(t) - A_N (/-e^{-t/\tau_N}) \simeq \sum_{k=1}^{N-1} A_k (/-e^{-t/\tau_k})$

47)

この毎正データを使つて、時定数が2番目に長い頃に対する予備的なはめ合せを行なう。 この場合も、データの窓は、残りの項の影響を無視することが出来る様に選ばれる。 このことが第78 図にグラフで示されている。 上に述べたのと同様な手順を用いて、 A_{N-1} 及び τ_{N-1} を計算する。3つの時定数を考えている場合、第70回に示す様に、次に短い項に対して、予備的なはめ合せを放算して係数を計算する過程を繰返す。

こうして、係数に対する予備的な値を計算する。 更に処理を行なうことにより、特に全ての指数関数項に同時にはめ合せることにより、はめ合せを改善することが出来ることが判つた。 間単な/つの手順は、時定数(rk)を前の評価した値に固定しておいて、1自栄を最小にする孫な遊 (Ak)の値を計算することである。 犬切から

た級形はめ合せ手順を用いて計算する。

この為、完全なはめ合せ手順は、(a)前の予備的なはめ合せを被算して、データの部分集合だけを使うことにより、各々の指数関数項に対する予備的なはめ合せを行ない、(b)時定数係数 (τ_k) だけを残し、破形はめ合せ手順を用いて新しい振幅係数 (A_k) を計算し、(c)それまでのはめ合せの結果を中心としたテーラー級数を用いて、x 自栄式を展開し、x 自果を最小にする様に新しいはめ合せを計算し、(d)時定数係数 (τ_k) だけを残し、級形はめ合せ手順を用いて新しい振幅係数 (A_k) を計算することから成る。

x 自乗がもはや目立つて減少しなくなるまで、 工程に及び値を繰返す。

前に掲げた式(7)は、この順序を実施する時までに、それまでのパルス以降、勾配応答が完全に回復していると仮定している。 実際には、長い時定数 r k (即ち、勾配の間の隔たりの時間よりに比屑し得るか又はそれより長い r k) を持つ成分については、こういうことが成立せず、次に説

明する様化、補正をしなければならない。

k(t)を指数関数成分(N=3)のモデルで作り、第3成分(k=3)だけが現在の効果が作用する位に長い時定数を持つていると仮定する。前に述べた正の勾配 G**(1)及び魚の勾配 G**(1)を用いるから、第5図に示す根に、パルス順序には符号が交互に変わる2つの成分がある。 この順序では、動的な平衡が出来上つた後の正の勾配に硬く磁界は

$$G_{X}^{+}(t) = G_{0}(t) + G_{0}G_{5} \tau_{5} e^{-\lambda_{5}t}$$

$$\left(\sum_{n=0}^{\infty} e^{-\lambda_{5}(nT_{R} + T_{R})} - \sum_{n=0}^{\infty} e^{-\lambda_{5}(nT_{R} + T_{e})}\right)$$
(8)

と $_{\Delta}$ で $_{G_0}(t)$ は 擬似的な 成分のオーバーラップがない時の勾配($_{\Delta}$ $_{\Delta}$

味は、デコンポリューション・フィルタ k(t)=h(t)⁻¹を最初に励振に適用した場合、正味の応答が所望の励振に続くととである。 この為、プリエンファシス・フィルタはインパルス応答の逆として得られる。 これを計算する為、

$$h(t) = \delta(t) + \dot{\epsilon}(t)$$
 (2)

が誤差関数を ((i) を定義するものとする。 この時、 (h x k = ð(i))、 適当なフィルタが次の様になることを検証することが出来る。

$$k(t) = \delta(t) - \epsilon(t) + \epsilon * \epsilon(t) - \epsilon * \epsilon * \epsilon + \cdots$$
 (22)

常2図のプリエンファシス・フィルタ 24 の

比例するから、 長い成分だけによる合計の位相は (式間)から、

$$\phi_{3}(t) = \phi_{50} \frac{e^{-\lambda T_{R}} - \frac{1}{2} \left(e^{-\lambda_{3}T_{A}} + e^{-\lambda_{3}T_{B}}\right)}{1 - e^{-\lambda_{3}T_{R}}}$$
 (9)

こ $_{3}$ で ϕ_{30} は $_{8}$ に 対 し、式 (7) に $_{3}$ に で 表わされる 無限大の T_{R} 位 相である。 そで 証明する様に、 α_{3} が ϕ_{3} に 比例するから、 補正された α_{5} は 次の様になる。

$$a_3 = a_3 \text{ (meas)} \left(/ + \frac{e^{-\lambda_3 T_R} - \frac{/}{2} e^{-\lambda_3 T_A} + e^{-\lambda_5 T_B}}{/ - e^{-\lambda_3 T_R}} \right)$$
(20)

と $_{a_{s}}$ (meas) は補正されていない測定値である。

一旦上に述べた様にしてインパルス応答の係 数が決定されたら、次に説明する様に、デコンポ リューション(プリエンファシス)フィルタを決 定することが出来る。

式(3)によつて表わされるインパルス応答の意

様な!実施例のプリエンファシス・フィルタの回 路図が第8図に示されている。 フィルタは、資 賃増幅器 80 とフィルタ部品 82、83、84 で 構 成されている。 予め歪めた出力が、勾配コイル を付勢する為に、勾配増幅器 (例えば解2 B 図の 130) に印加される。 演算増幅器の入力が、入 力抵抗 RO 及びノつ又は更に多くの並列接続され た RC 回路 82 乃至 84 を介して、電流パルスに よつて付勢される。 RC回路の数は、勾配パル スの補償を達成する為に、電流入力 14 に加える べきプリエンファシスの所望の精度に関係する。 破線 86a, 86b は、必要に応じて別の RC 回路を 迫加してもよいことを示す。 各々の RC 回路は 入力のコンデンサ(例えば C1)を出力可変抵抗 (例えばR1)と直列に接続して構成される。 コンデンサと可変抵抗の間の共通点が第2の可変 抵抗(例えば R2)を介して大地に接続される。 第2図に示す回路は(3つの RC 回路があるから) 3指数関数による補正を行なう。 政る用途で は、2つの RC 回路によつて適切な補正(プリエ ンファシス)が行なわれることが判つた。

係数を計算した後、RC 回路の可変抵抗(例えば R1 乃至 R6)の抵抗値を設定することが出来る。 原則的には、フィルタ 24 の応答が回路の計算によつて完全にモデル化されていれば、測定された応答は完全に補償される。 勿論、実際には、コンデンサの部品の許容公差により、理想からの母分のずれが生ずることがある。 この場合、反復的な補正工程を使うことが出来る。 その時、補正後の測定された応答を、前の時定数にはめ合せ、その時、補正後の測定された応答を、前の時定数にはめ合せ、その時、相正なの成分に対して生じた誤差の短額を引の値に加算する。 この反復的な方法は繰返すことが判った。場合には、繰返しを全く必要としないことが判った。

指数関数形プリエンファシス・フィルタを用いるこの発明の/実施例を説明したが、当業者であれば、(能動形フィルタの設計の様な)この他のフィルタの形式を工夫することが出来ることが 理解されよう。 更に、波袞する摂似的な成分の

w(ik)からの計算により、実時間に近い形で実施することが出来る。

本発明を特定の実施例及び例について説明したが、以上の説明から、当業者にはこの他の変更が考えられよう。 従つて、特許請求の範囲内で、本発明はこ」に具体的に説明した以外の形で実施し得ることを承知されたい。

火 図面の簡単な説明

期/図はMR 装置の/例の主な部品を示すブロック図、第2A図は普通の勾配増編器及び切配コイルを詳しく示すブロック図、第2B図はオリコイルを詳しく示すブロック図、第2B図はプリアシス・フィルタを入れた、勾配増幅器の前にプリンファシス・フィルタを入れた、勾配増幅器の前にプリンファシス・フィルタを入れた、勾配増幅器の前にでいる。第3A図はプロック図、第3A図はプロックのでは、第3B図と同様な線図であるが、、辺似的な切印に答を測定するのに適した本発明のパルス順序を示す。

測定の後、プリエンファシス・フィルタの力を借 りずに、ソフトウエア方法を用いて、勾記コイル を付勢する信号のプリエンファシス(又は予め歪 めること)を達成することが出来る。

この様なソフトウエア方法では、例えば一旦 式222を用いて k(t)がみつかつたら、勾配放形を勾 配増保器に印加する前に、勾配放形を発生する為 に使われるデータにそれを数値量込み積分方法に よつて適用することが出来る。

即ち、w(t)k を特定の軸に沿つて印加すべき 勾配に対する所望の勾配板形とする。 その時、 補正すべき実際の応答に対して勾配増属器に印加 しなければならない補正済み波形は次の様になる。

$$w_{c}(t_{k}) = \sum_{j=1}^{N} w(t_{k-j}) \cdot k(t_{j})$$
 (23)

とよでxは標本化したフィルタの核kにある点の数を表わす。 この動作は、放形を読取メモリに 貯蔵する前に(第/図の計算機101の様な)計算 機によつて実施してもよいし、或いは貯蔵した波

を示す時間線図、第5図は第3B図と同様な線図であるが、正及び負の勾配パルスを示す時間線図、第6図はサンプルの位置を測定すると共化、ノつの軸に沿つた勾配パルスの類似的な成分を測定する為の好ましい実施例のパルス順序を示す時間線図、第7図は回帰解析を行なう為の種々のデータ曲線を示すグラフ、第8図はノ実施例のプリエンファシス・フィルタの回路図である。

お方出取人ゼネラル・エレタトリッタ・カンパニイ 代理人 (7630) 生 沼 佐 二

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
MAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.