Adopted Levels, Gammas

		m		History	G! !	
		Туре		thor	Citation	Literature Cutoff Date
	Fu	ll Evaluation	S. Lalkovski, J. T	imar and Z. Elekes N	NDS 161, 1 (2019	9) 1-Apr-2019
$Q(\beta^{-})=-1347$	5; S(n)=	-7094.1 7; S(₁	p)= $-8748 \ 3; \ Q(\alpha)=$	-2884.7 <i>12</i> 2017W a	a10	
				¹⁰⁵ Pd Levels		
				Tu Levels		
				Cross Reference (XREI	F) Flags	
			decay (35.3 h)	\mathbf{F} 104 $\mathbf{Pd}(\mathbf{d},\mathbf{p})$	K 104R	$u(\alpha,3n\gamma)$
		B 105 Ag ε	decay (41.29 d) decay (7.23 min)	G 106Pd(d,t)	L ⁹⁶ Zr	$(^{13}\text{C}, 4\text{n}\gamma), ^{96}\text{Zr}(^{12}\text{C}, 3\text{n}\gamma)$ $(^{48}\text{Ca}, \alpha 3\text{n}\gamma)$
			decay (7.23 min) C decay (35.5 μ s)	H Coulomb excitat I 105 Pd(n,n' γ)	tion M ⁶⁴ Ni	$({}^{\circ}\text{Ca}, \alpha \text{sn}\gamma)$
		E 106Pd(p,		$J = 104 Pd(n,\gamma) E = th$	ı	
E(level) [†]	J^{π}	T _{1/2}	XREF		Cor	nments
0.0‡	5/2+	stable	ABCDEFGHIJKLM	μ =-0.642 3 (2014St)		
				$Q=+0.660 \ 11 \ (2016S)$ I^{π} · L=2 in 106 Pd(p d	St14) 1) (1975An06): A	lso: L=2 in ¹⁰⁶ Pd(d,t) 1980Sc23.
				$\langle r^2 \rangle = 4.5128 \text{ fm}^2 25$	5 (2004An14).	13(4,6) 1,0000000
280.62 20	3/2+	47 ps 5	ABC EF HIJK	μ =-0.074 <i>13</i> (1981A XREF: J(281).	A119)	
					d) (1975An06); 29	80.54γ M1+E2 to 5/2 ⁺ ; 64.072γ
				M1(+E2) from 1/2		D/E2\4/280 54-\-0 0005 5 in
						om B(E2) \uparrow (280.54 γ)=0.0095 5 in \prime)=0.0238 4, and 67 ps 17 from
				$\gamma\gamma$ (t) in $^{105}{ m Ag}\;arepsilon$ d	lecay (41.29 d) (1	
306.41 [#] 21	7/2+	71 ps 8	ABCDE HIJKLM	μ : from IPAC in 198		06.30γ M1+E2 to 5/2 ⁺ .
300.41 21	1/2	71 ps o	ABCDE HIJKEH			11 in Coulomb excitation, and
319.38 22	5/2+	33 ps 5	ABC E GHIJ L	$\alpha(306.30\gamma)=0.018$ $\mu=+0.95\ 20\ (1981A1$		
319.38 22	3/2	33 ps 3	ABC E GHIJ E	XREF: G(321).		
						8.77 γ M1(+E2) to 3/2 ⁺ , and
				319.24 γ M1+E2 to $T_{1/2}$: weighted avera		1962Me07, 48 ps 7 in 1971Sh21, 40
				ps 10 from β - γ (t)	in 105 Rh β^- deca	y (1974Be71), 20 ps 3 from
				B(E2)↑(319.24 γ)= μ : from IPAC in 198		lomb excitation.
344.9 <i>4</i>	1/2+	0.91 ns 5	BC EF HIJ	XREF: F(340).		
				J^{π} : L=0 in 106 Pd(p,d	d) (1975An06); 34	44.61 γ E2 to 5/2 ⁺ . From 618-344 γ (t) and 22X-344 γ (t)
				in 105 Ag ε decay ((41.29 d) (1970S	c10), 0.88 ns 5 from $\gamma \gamma(t)$ in
				105 Ag ε decay (41	1.29 d) (1974Be7	1), 801 ps 64 in 105 Ag ε decay
				in Coulomb excita		24 from B(E2) \uparrow (344.61 γ)=0.0022 5
442.53 [‡] 21	$(7/2)^+$	1.2 ps 6	ABC E GHIJKL	XREF: E(447)G(441		
						42.25γ M1+E2 to 5/2 ⁺ . in Coulomb excitation, and
				$\alpha(442.25\gamma)=0.007$	56 11; Others: 3.	71 ps 9 from DSAM in 1972SiZP;
				3.8 ps <i>10</i> from DS 1971SiYQ.	SAM in 1971SiY	G, and 3.81 ps 14 from RDDS in
489.1 [@] 3	11/2-	35.5 μs 5	B DEFG IJKLM	XREF: D(495)F(486	6)G(486).	
	•	•				

105Pd Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				J ^π : L=5 in 106 Pd(p,d) (1975An06); 182.92 γ M2 to $7/2^+$. T _{1/2} : weighted average of 36.1 μ s 4 from 155.39 γ -182.85 γ (t) in 1970BlZT, 34.2 μ s 6 in 1965Mc03, 33 μ s 6 in 1956Ve03, and 36 μ s 3 in 1958Du80.
535 560.50 <i>19</i>	3/2+	1.9 ps 5	E BC EF HIJK	XREF: E(561)F(565)J(558). J^{π} : L=(2) in 104 Pd(d,p) (1963Cu02); 560.79 γ M1+E2 to 5/2 ⁺ ; 6534.0 γ from the (1/2 ⁺) resonance. $T_{1/2}$: from DSA (1974Er05); Others:<35 ps from
644.7 5	7/2-	126 ps 2	в ІЈ	B(E2) \uparrow (560.79 γ)=0.0095 9 in Coulomb excitation. μ =-1.49 9 (1981A119) J $^{\pi}$: 155.38 γ E2 to 11/2 $^{-}$, 325.43 γ E1 to 5/2 $^{+}$, and 644.63 γ E1+M2 to 5/2 $^{+}$.
650.9 4	(3/2)+	<7 ps	B EFGHI	T _{1/2} : from $\gamma\gamma$ (t) in ¹⁰⁵ Ag ε decay (41.29 d). μ: from IPAC in 1981A119. XREF: E(650)G(652). J ^π : L=2 in (p,d) (1975An06); 331.58γ M1+E2 to 5/2 ⁺ , and 370.28γ M1+E2 to 3/2 ⁺ .
673.2 4	1/2+	5.0 ps 5	в е ні	$T_{1/2}$: from B(E2)↑(650.78)=0.0078 6 in Coulomb excitation. XREF: E(674). J ^π : L=0 in (p,d) (1975An06); 392.73γ M1+E2 to 3/2 ⁺ , and 673.24γ E2 to 5/2 ⁺ .
696.66 19	(7/2+)	<11 ps	GH K	T _{1/2} : from B(E2)(673.24γ)=0.0082 <i>9</i> in Coulomb excitation; Others:>2 ps from DSA (1974Er05). XREF: G(692). J ^π : 415.8γ to 3/2 ⁺ , and 254.3γ to (7/2) ⁺ . T _{1/2} : from B(E2)(697.1γ)=0.0020 <i>10</i> in Coulomb excitation.
727.5 5	5/2+	<7 ps	B EFGHI	XREF: F(724)G(721). J ^π : L=2 in 106 Pd(p,d) (1975An06); 421.03γ M1(+E2) to $^{7/2^+}$, and 446.8γ M1+E2 to $^{3/2^+}$. T _{1/2} : from B(E2)↑(727.28)=0.0057 25 in Coulomb excitation.
781.99 [‡] 22	9/2+	1.58 ps <i>14</i>	C E HI KL	XREF: E(784). J ^π : L=4 in 106 Pd(p,d) (1975An06); 781.3 γ E2 to $^{5/2}$ +, 339.4 γ M1(+E2) to (7/2)+; band member. T _{1/2} : weighted average of 1.7 ps 4 from DSAM in 1971SiYG, 1.11 ps 28 in 1974Er05, 1.80 ps 28 from RDDS in 1971SiYQ, 1.4 ps 1 in 1970GeZY, and 1.94 ps 13 from B(E2)↑(781.3)=0.101 7 in Coulomb excitation; Other: 2.9 ps
785.0 <i>10</i>	$(1/2^+ \text{ to } 9/2^+)$		FGH	3 from DSAM in 1972SiZX. XREF: F(787). J^{π} : 785 γ to 5/2 ⁺ . B(E2) \uparrow : 0.05 1 in Coulomb excitation.
808 902.12 22 921.3 6 929.6 5	9/2 ⁺ (1/2 ⁺ to 5/2 ⁺) (5/2 ⁺)		E L B C E I	J ^π : 582.74 γ E2 to 5/2 ⁺ , 595.73 γ M1+E2 to 7/2 ⁺ . J ^π : 576.7 γ to 1/2 ⁺ , 921.2 γ to 5/2 ⁺ . J ^π : L=2 in ¹⁰⁶ Pd(p,d) (1975An06); 486.8 γ to (7/2) ⁺ , 370 γ to 3/2 ⁺ .
945.0 10			GH	J^{π} : 945 γ to 5/2 ⁺ .
962.4 4	(1/2,3/2)+	<0.2 ps	B E HI	B(E2)↑: 0.020 <i>5</i> in Coulomb excitation. XREF: E(964)I(961.4). J ^π : L=0 in ¹⁰⁶ Pd(p,d) (1975An06); 401.75γ to 3/2 ⁺ , 962.45γ to 5/2 ⁺ .
970.0 [@] 3 970	15/2 ⁻ (1/2 ⁺ to 7/2 ⁺)		I KLM EFG	$T_{1/2}$: from B(E2)↑(962.45γ)=0.008 <i>5</i> in Coulomb excitation. J^{π} : 480.8γ E2 to 11/2 ⁻ ; band member. XREF: E(972)G(979). J^{π} : L=(2) in ¹⁰⁴ Pd(d,p) (1963Cu02).
			Continued on nex	t page (footnotes at end of table)

105Pd Levels (continued)

$E(level)^{\dagger}$ J^{π}	XREF	Comments
1011.47 [#] 24 (11/2 ⁺)	I KLM	J ^{π} : 228.9 γ M1+E2 to 9/2 ⁺ , 705.2 γ E2 to 7/2 ⁺ , 523.6 γ to 11/2 ⁻ .
1072.2 8 (5/2+,7/2+,9/2+)	C G	XREF: G(1068). J^{π} : 629.7γ to (7/2) ⁺ , 1072.2γ to 5/2 ⁺ ; log ft = 6.84 10 in ¹⁰⁵ Ag ε decay
		(7.23 min).
$1074.6 \ 4 \qquad (3/2^+)$	FI	XREF: F(1075).
1088.2 4 3/2-	В І	J^{π} : L=(0) in 104 Pd(d,p) (1963Cu02); 768.4 γ to 7/2 ⁺ , 793.8 γ to 3/2 ⁺ . J^{π} : L=(0) in 104 Pd(d,p) (1963Cu02); 360.72 γ E1 to 5/2 ⁺ , 414.85 γ (E1) to
		$1/2^+$, 807.57γ E1(+M2) to $3/2^+$.
1098.1 5 $(5/2^+, 7/2^+, 9/2^+)$	CEI	J^{π} : 818γ to 3/2+, 656.5γ to (7/2)+; log ft =5.94 10 in ¹⁰⁵ Ag ε decay (7.23 min).
1102.3 5 $(1/2^+ \text{ to } 5/2^+)$	FG I	XREF: F(1103)G(1105).
1125.1 6 (1/2 ⁺ to 7/2 ⁺)	В	J ^π : L=2 in ¹⁰⁴ Pd(d,p) (1963Cu02); 821.7 <i>γ</i> to 3/2 ⁺ . J ^π : 844.6 <i>γ</i> to 3/2 ⁺ , 1125.2 <i>γ</i> to 5/2 ⁺ .
1123.10 $(1/2 + 10 + 1/2 + 1)$ $1142.34 17$ $(1/2^+, 3/2^+)$	FG I	XREF: F(1141)G(1155).
		J^{π} : L=(0) in ¹⁰⁴ Pd(d,p) (1963Cu02); 582.1 γ to 3/2 ⁺ , 1142.2 γ to 5/2 ⁺ .
$1177.7 \ 3 \qquad (1/2^+, 3/2^+)$	IJ	J^{π} : 1177.7 γ to 5/2 ⁺ ; 5918 γ primary from 7094.1-keV level in 104 Pd(n, γ) E=th.
1201.7 4 (1/2+,3/2+)	FI	J^{π} : L=(2) 104 Pd(d,p) (1963Cu02); 640.8 γ to 3/2 ⁺ .
$1259.22 \ 22 \ (3/2^+)$	FG I	XREF: $F(1263)G(1242)$. J^{π} : L=(0) in $^{104}Pd(d,p)$ (1963Cu02); 952.6 γ to $7/2^{+}$, 979.0 γ to $3/2^{+}$.
1271.41 [‡] 24 (11/2) ⁺	G KL	XREF: G(1288).
	C AL	J^{π} : 489.5 γ M1+E2 to 9/2+, 829.1 γ E2 to (7/2)+.
$1324.2 \ 3 \qquad (11/2^+) 1357.0^b \ 8 \qquad (13/2^-)$	K	J^{π} : 312.6 γ to (11/2 ⁺), 881.3 γ (E2) to (7/2) ⁺ .
1357.0 ⁶ 8 (13/2 ⁻) 1405.2 3 (3/2 ⁺ ,5/2 ⁺)	F I	J^{π} : 387 γ to 15/2 ⁻ , 868 γ to 11/2 ⁻ . XREF: F(1402).
		J^{π} : 263.3 γ to (1/2+,3/2), 1098.5 γ to 7/2+, 1405.5 γ to 5/2+.
$1410.9 \ 3 \qquad (13/2^+)$	G K	XREF: G(1417). J^{π} : L=5 in ¹⁰⁶ Pd(d,t) (1980Sc23); 140.0 γ to (11/2) ⁺ , 399.9 γ to (11/2 ⁺),
		628.1 γ to 9/2 ⁺ ; assumed near-yrast level.
1520.8 5 $(3/2^+ \text{ to } 7/2^+)$	FI	XREF: $F(1522)$. J^{π} : 1078.0 γ to $(7/2)^+$, 1240.8 γ to $3/2^+$.
1601.3 5 $(1/2^+ \text{ to } 5/2^+)$	FI	XREF: F(1602).
1650 6 5 (7/2-)	г т	J^{π} : L=(2) in 104 Pd(d,p) (1963Cu02), 459.0 γ to (1/2+,3/2), 1600.4 γ to 5/2+.
1650.6 5 (7/2 ⁻)	FΙ	XREF: $F(1652)$. J^{π} : 1162.1 γ to 11/2 $^{-}$, 1208.7 γ to (7/2) $^{+}$, 1305.5 γ to 1/2 $^{+}$.
$1671.14^{\ddagger} 24 (13/2)^{+}$	L	J^{π} : 399.76 γ E2+M1 to (11/2) ⁺ , 889.24 γ E2 to 9/2 ⁺ ; band member.
1701.0 8 $(1/2^+ \text{ to } 9/2^+)$	FI	XREF: $F(1702)$. J^{π} : 973.3 γ to $5/2^{+}$.
1741.8 [@] 3 19/2 ⁻	KLM	J^{π} : 973.3 γ to 3/2 $^{\circ}$. J^{π} : 771.83 γ E2 to 15/2 $^{\circ}$; band member.
$1749.6 \ 3 \qquad (13/2)^+$	L	J^{π} : 847.6 γ E2 to 9/2+; near-yrast state assumed.
1763.2 <i>3</i> (15/2) ⁻	L	J^{π} : 793.17 γ M1+E2 to 15/2 $^{-}$, 1274.15 γ to 11/2 $^{-}$; near yrast state.
$1774.7 6 (1/2^+ \text{ to } 9/2^+)$	FI	XREF: $F(1772)$. J^{π} : 1455.3 γ to 5/2 ⁺ .
1854.1 <i>3</i> (13/2 ⁺)	K	J^{π} : 530.3 γ to $3/2$. J^{π} : 530.3 γ to $(11/2^{+})$, 442 γ to $(13/2^{+})$; assumed near-yrast.
1865.6 4 $(1/2^+ \text{ to } 7/2^+)$	FI	XREF: $F(1867)$. J^{π} : 1305.5 γ to 3/2 ⁺ .
1873.9 3 (15/2+)	K	J^{π} : 1305.5 γ to 3/2°. J^{π} : 602.7 γ to (11/2)+; 862.7 γ to (11/2+) assumed to be (E2) in
"		104 Ru(α ,3n γ) (1977Gr22).
$1901.8^{\#} 3 \qquad (15/2)^{+}$	KLM	XREF: K(1900.8)L(1902.17)M(1903).
1922.9 <i>5</i> (1/2 ⁺ ,3/2 ⁺)	FI	J^{π} : 889.8 γ E2 to (11/2 ⁺); band member. XREF: F(1923).
		J^{π} : L=(0) in 104 Pd(d,p) (1963Cu02); 1360.7 γ to 3/2 ⁺ .
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	L F I	J^{π} : 991.38 γ M1+E2 to 15/2 $^{-}$; 814.22 γ (E2) from (21/2 $^{-}$). XREF: F(1990).
1988.9 5 (1/2,3/2,5/2)+	г 1	AKEI ⁻ . I'(1790).

105Pd Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
2064.7 7	$(1/2^+,3/2^+)$	F I	J^{π} : 1026.7 γ to $(1/2,3/2)^{+}$; L=(2) from 104 Pd(d,p) (1963Cu02). XREF: F(2062).
2101.5 7	$(7/2^-,9/2,11/2^+)$	F I	J^{π} : L=(2) in 104 Pd(d,p) (1963Cu02); 1745.2 γ to 5/2 ⁺ , 1784.3 γ to 3/2 ⁺ . XREF: F(2102).
*********	(4.7/2) ±	_	J^{π} : 1611.8 γ to 11/2 ⁻ , 1660.0 γ to (7/2) ⁺ .
2197.1 [‡] <i>3</i> 2280.6 <i>4</i>	$(15/2)^+$ $(15/2,17/2)^-$	L L	J^{π} : 925.8 γ E2 to (11/2) ⁺ ; near yrast state. J^{π} : 1310.6 γ M1+E2 to 15/2 ⁻ .
2344.6 3	(19/2,17/2) $(19/2)^{-}$	L	J^{π} : 581.45 γ E2 to (15/2) ⁻ , 602.78 γ M1+E2 to 19/2 ⁻ .
2420		F	
2490.9 4	(19/2 ⁻)	L	J^{π} : 749.1 γ to 19/2 ⁻ , 1520.9 γ (E2) to 15/2 ⁻ .
2552.0 [‡] 3	$(17/2)^+$	L	J^{π} : 881.0 γ E2 to $(13/2)^+$, 649.9 γ to $(15/2)^+$, 1582.0 γ to $15/2^-$; band member.
2565.01 <i>24</i> 2613 <i>8</i>	$(17/2)^+$	L F	J^{π} : 367.9 γ to (15/2) ⁺ , 815.4 γ E2 to (13/2) ⁺ , 893.88 γ (E2) to (13/2) ⁺ .
2700.2 [@] 3	23/2-	KLM	XREF: K(2698.9).
2700.2 3	23/2	KLII	J^{π} : 958.42 γ to E2 to 19/2 ⁻ ; band member.
2703.9 <i>3</i>	(19/2)	L	J^{π} : 962.10 γ M1+E2 to 19/2 $^{-}$.
2755.9 [#] 3	19/2+	KLM	XREF: K(2754.5)M(2757).
Ь			J^{π} : 854.02 γ E2 to (15/2) ⁺ , 1014.3 γ E1+M2 to 19/2 ⁻ ; band member.
2775.6^{b} 3	$(21/2^{-})$	L	J^{π} : 1033.7 γ M1+E2 to 19/2 $^{-}$; near-yrast state assumed.
2806.5 ^c 3 2900.7 ^{&} 3	$(19/2)^+$	L	J^{π} : 254.53 γ M1+E2 to $(17/2)^{+}$, 904.7 γ E2 to $(15/2)^{+}$.
2900.74 3 3072.8 ^a 3	$(21/2)^{-}$ $(21/2)^{+}$	L L	J^{π} : 1158.94 γ M1+E2 to 19/2 $^-$, 939.4 γ to (17/2) $^-$. J^{π} : 372.6 γ E1+M2 to 23/2 $^-$, 508.0 γ E2 to (17/2) $^+$, 1331.0 γ E1+M2 to 19/2 $^-$;
3072.0 3	(21/2)		band member.
3119.2 ^c 3	$(21/2)^+$	L	J^{π} : 312.67 γ M1+E2 to (19/2) ⁺ , 1377.3 γ to 19/2 ⁻ ; band member.
3153.3 3	(23/2)	KL	J ^π : 452.98 γ M1(+E2) to 23/2 ⁻ , 808.8 γ E2 to (19/2) ⁻ ; J ^π =(27/2) ⁻ in ¹⁰⁴ Ru(α ,3n γ).
3294.7 [#] <i>3</i>	23/2+	KLM	J^{π} : 538.83 γ E2 to 19/2 ⁺ ; band member.
3320	(22/2)+	F	III 240 20 M1 F2 (21/0)+
3468.6 ^c 3 3527.6 ^a 3	$(23/2)^+$ $(25/2)^+$	L L	J^{π} : 349.38 γ M1+E2 to (21/2) ⁺ ; near-yrast state assumed. J^{π} : 232.8 γ M1+E2 to 23/2 ⁺ ; 454.82 γ E2 to (21/2) ⁺ ; band member.
3570	(23/2)	F	3 . 232.67 WITH 22 to 23/2 , 13 1.62 / 22 to (21/2) , build infolioci.
3690		F	
3694.4 <i>4</i>	$(25/2^{-})$	L	J^{π} : 918.8 γ E2 to (21/2 ⁻), 994.12 γ M1+E2 to 23/2 ⁻ .
3800.5 [@] 3	$(27/2^{-})$	KLM	XREF: K(3797.7).
3859.4 <mark>&</mark> 6	(25/2-)	T	J^{π} : 1100.24 γ (E2) to 23/2 $^{-}$; band member.
3873.0 [#] 3	(25/2 ⁻) 27/2 ⁺	L KLM	J^{π} : 1084 γ to (21/2 ⁻), 1159 γ to 23/2 ⁻ ; band member. XREF: K(3871.3)M(3874).
3673.0 3	21/2	KLII	J^{π} : 578.27 γ E2 to 23/2+; band member.
4000		F	· · · · · · · · · · · · · · · · · · ·
4110		F	
4254.4 ^a 4 4510	$(29/2)^+$	L	J^{π} : 726.8 γ E2 to (25/2) ⁺ ; band member.
4510 4668.2 [#] 4	$(31/2^+)$	F LM	XREF: M(4669).
4008.2 4	(31/2)	LII	J^{π} : 795.23 γ (E2) to 27/2 ⁺ ; band member.
4690		F	
4783.4 <mark>b</mark> 7	$(29/2^{-})$	L	J^{π} : 1089 γ (E2) to 25/2 ⁻ ; band member.
4840		F	
4953.1 [@] 4	$(31/2^{-})$	LM	J^{π} : 1152.64 γ (E2) to (27/2 ⁻); band member.
4955.9 8	(29/2 ⁻)	L	J^{π} : 1261 γ to 25/2 $^{-}$; band member.
5255.3 ^a 5 5682.2 [#] 11	$(33/2^+)$	L	J^{π} : 1000.9 γ (E2) to (29/2) ⁺ ; band member.
5682.2" 11	$(35/2^+)$	M	J^{π} : 1014 γ to (31/2 ⁺); assumed near-yrast state.

¹⁰⁵Pd Levels (continued)

E(level) [†]	${ m J}^{\pi}$	T _{1/2}	XREF	Comments
5847.4 ^b 12	$(33/2^{-})$		L	J^{π} : 1064 γ (E2) to (29/2 ⁻); band member.
6073.1 [@] 11	$(35/2^{-})$		LM	J^{π} : 1120 γ to (31/2 ⁻); band member.
6860.3 [#] <i>15</i>	$(39/2^+)$		M	J^{π} : 1178 γ to (35/2 ⁺); band member.
6995.4 ^b 16	$(37/2^{-})$		L	
(7094.5 7)		5.1 fs 8	J	J^{π} : assumed s-wave neutron capture.
7193.1 [@] <i>15</i>	$(39/2^{-})$		LM	J^{π} : 1120 γ to (35/2 ⁻); band member.
8127.3 [#] <i>18</i>	$(43/2^+)$		M	J^{π} : 1267 γ to (39/2 ⁺); band member.
8297.4 ^b 19	$(41/2^{-})$		L	J^{π} : 1302 γ to (37/2 ⁻); band member.
8410.1 [@] 18	$(43/2^{-})$		LM	J^{π} : 1217 γ to (39/2 ⁻); band member.
9440.3 [#] 21	$(47/2^+)$		M	J^{π} : 1313 γ to (43/2 ⁺); band member.
10875.3 [#] 23	$(51/2^+)$		M	J^{π} : 1435 γ to (47/2 ⁺); band member.
\mathbf{x}^{d}	$[43/2^+]$		M	Additional information 1.
				J^{π} : from systematics.
x+1209.0 ^d 10	$[47/2^+]$		M	J^{π} : 1209 γ to [43/2 ⁺]; band member.
x+2491.0 ^d 15	$[51/2^+]$		M	J^{π} : 1282 γ to [47/2 ⁺]; band member.
x+3870.0 ^d 18	$[55/2^+]$		M	J^{π} : 1379 γ to [51/2 ⁺]; band member.
$x+5358.0^{d}$ 20	$[59/2^+]$		M	J^{π} : 1488 γ to [55/2 ⁺]; band member.
x+6955.0 ^d 23	$[63/2^+]$		M	J^{π} : 1597 γ to [59/2 ⁺]; band member.
x+8675.1 ^d 25	$[67/2^+]$		M	J^{π} : 1720 γ to [63/2 ⁺]; band member.
$x+10521^{d}$ 3	$[71/2^+]$		M	J^{π} : 1846 γ to [67/2 ⁺]; band member.
$x+12528^{d}$ 3	$[75/2^+]$		M	J^{π} : 2007 γ to [71/2 ⁺]; band member.
x+14669 ^d 3	$[79/2^{+}]$		M	J^{π} : 2141 γ to [75/2 ⁺]; band member.

[†] From a least-squares fit to Eγ. ‡ Band(A): $\Delta J=1$ band built on $J^{\pi}=5/2^{+}$. # Band(B): $\Delta J=2$ band built on $J^{\pi}=7/2^{+}$. @ Band(C): $\Delta J=2$ band built on $J^{\pi}=11/2^{-}$.

[&]amp; Band(D): $\Delta J=2$ signature partner of $J^{\pi}=11/2^{-}$ band.

^a Band(E): $\Delta J=2$ band built on $J^{\pi}=(21/2^+)$. ^b Band(F): $\Delta J=2$ wobbling band on $J^{\pi}=(13/2^-)$.

^c Band(G): $\Delta J=1$ band, built on $J^{\pi}=(17/2^{+})$.

^d Band(H): $\Delta J=2$ superdeformed band.

$\gamma(^{105}\text{Pd})$

							γ (103Pd)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f \mathbf{J}^2	Mult.	δ	α^{\dagger}	Comments
280.62	3/2+	280.54	100	0.0 5/2	M1+E2	+0.143 7	0.0238	$\alpha(K)=0.0207\ 3;\ \alpha(L)=0.00249\ 4;\ \alpha(M)=0.000469\ 7;$ $\alpha(N+)=7.89\times10^{-5}\ 12$ $\alpha(N)=7.89\times10^{-5}\ 12$ $\alpha(M)=0.0203\ 22;\ B(E2)(W.u.)=4.6\ 7$ Mult.: $A_{22}=0.156\ 8,\ A_{44}=0.031\ 9$ in 105 Ag ε decay (41.29 d) (1983Si08); Also $A_{22}=-0.048\ 10,\ A_{44}=0.015\ 10\ (1977Ri05)$ and
								(1963Si06), Also A_{22} =-0.048 7 0, A_{44} =-0.013 7 10 (1977Ri03) and R_{DCO} =2.19 6 (1977Ri05) in 96 Zr(12 C,3n γ). Mult.: α (K)exp=0.0209 1 3 in 105 Ag ε decay (41.29 d) (1970Ka13), 0.020 4 (1965Pi01). δ : weighted average of 0.178 14 (1983Si08) and +0.132 8 (1977Wi10); Others: 0.01 1 (1977Ri05), +0.07 7 (1976Ba39),
306.41	7/2+	306.30	100	0.0 5/2	2+ M1+E2	+0.055 2	0.0188	+0.013 3 (1972Be67), +0.035 22 (1962Bh03), +0.11 3 (1958Ra01). $\alpha(K)$ =0.01640 23; $\alpha(L)$ =0.00196 3; $\alpha(M)$ =0.000368 6; $\alpha(N+)$ =6.20×10 ⁻⁵ 9 $\alpha(N)$ =6.20×10 ⁻⁵ 9
								B(M1)(W.u.)=0.0106 12 ; B(E2)(W.u.)=0.30 4 Mult.: A ₂₂ =-0.048 10 , A ₄₄ =0.015 10 (1977Ri05); R _{DCO} =2.19 6 (1977Ri05). Mult.: α (K)exp=0.0209 13 (1970Ka13); 0.016 2 (1964Ka23).
								δ: from 1976Ba39; Other: 0.06 1 (1977Wi10), 0.01 1 (1977Ri05), +0.02 4 (1977Ri05).
319.38	5/2+	38.77 17	0.14	280.62 3/2	2 ⁺ M1(+E2)		24 18	$\alpha(K)=12.7$; $\alpha(L)=10$ 10; $\alpha(M)=1.9$ 18; $\alpha(N+)=0.3$ 3 $\alpha(N)=0.3$ 3
		319.24	100.0	0.0 5/2	2 ⁺ M1+E2	+0.103 8	0.01697	Mult.: $\alpha(K)\exp=5.8 \ 6 \text{ in }^{105}\text{Rh }\beta^{-} \text{ decay } (35.3 \text{ h}) \ (1965\text{Pi}01).$ $\alpha(K)=0.01481 \ 2I; \ \alpha(L)=0.001769 \ 25; \ \alpha(M)=0.000332 \ 5;$ $\alpha(N+)=5.60\times10^{-5} \ 8$
								$\alpha(N)=5.60\times10^{-5}~8$ B(M1)(W.u.)=0.019 3; B(E2)(W.u.)=1.8 4 Mult.: A ₂₂ =0.21 4, A ₄₄ =0.01 5 (1977Ri05); R _{DCO} =1.08 19 (1977Ri05) in $^{96}\text{Zr}(^{12}\text{C},3n\gamma)$; Also, $\alpha(K)\exp=0.013$ (1964Ka23) in $^{105}\text{Rh}~\beta^-$ decay (35.3 h) and 0.014 9 (1970Ka13) in $^{105}\text{Ag}~\varepsilon$ decay (41.29 d).
344.9	1/2+	64.072	26.8	280.62 3/2	2+ M1(+E2)	-0.025 30	1.354 23	δ: weighted average of +0.137 9 (1981Al19), +0.11 I (1977Wi10) and +0.091 $I3$ (1976Ba39); $\alpha(K)$ =1.175 $I9$; $\alpha(L)$ =0.147 5; $\alpha(M)$ =0.0276 9; $\alpha(N+)$ =0.00463 $I4$ $\alpha(N)$ =0.00463 $I4$
		344.61	100.0	0.0 5/2	2+ E2		0.0188	B(M1)(W.u.)=0.0149 +20-21; B(E2)(W.u.)=2.0 +91-16 Mult.: α (K)exp=1.17 7 (1970Ka13) in 105 Ag ε decay (41.29 d). δ: from (1981Al19) in 105 Ag ε decay (41.29 d). α (K)=0.01611 23; α (L)=0.00219 3; α (M)=0.000413 6; α (N+)=6.80×10 ⁻⁵ 10

$\gamma(^{105}\text{Pd})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
442.53	(7/2)+	442.25	100	0.0	5/2+	M1+E2	-0.23 6	0.00756 11	α (N)=6.80×10 ⁻⁵ 10 B(E2)(W.u.)=2.64 15 Mult.: α (K)exp=0.0163 10 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d). B(M1)(W.u.)=0.20 +17-7; B(E2)(W.u.)=47 +55-24 α =0.00756 11; α (K)=0.00661 10; α (L)=0.000784 13; α (M)=0.0001471 23; α (N+)=2.48×10 ⁻⁵ α (N)=2.48×10 ⁻⁵ 4
489.1	11/2-	182.92	100	306.41	7/2+	M2		0.453	Mult.: A_{22} =-0.610 21, A_{44} =0.031 24 (1977Ri05); R_{DCO} =4.1 7 (1977Ri05) in 96 Zr(12 C,3n γ). δ : weighted average of -0.33 13 or -0.20 7 (1977Ri05) in 96 Zr(12 C,3n γ); Also: -0.2 or -0.3 (1977Wi10) and -0.8 +7-4 (1976Ba39) in 105 Rh β ⁻ decay (35.3 h). α (K)=0.383 δ ; α (L)=0.0567 δ ; α (M)=0.01087 1 δ ; α (N+)=0.00182 3 B(M2)(W.u.)=0.132 4 Mult.: A_{22} =0.03 4, A_{44} =0.00 4 (1977Ri05) in 96 Zr(12 C,3n γ); Also
560.50	3/2+	216.1	2.44	344.9	1/2+				$\alpha(K)$ exp=0.40 5 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d).
	-,	560.79	100	0.0	5/2+	M1+E2		0.00427 7	α =0.00427 7; α (K)=0.00372 6; α (L)=0.000451 18; α (M)=8.5×10 ⁻⁵ 4; α (N+)=1.42×10 ⁻⁵ 5 α (N)=1.42×10 ⁻⁵ 5
644.7	7/2-	155.38	4.05	489.1	11/2-	E2		0.289	Mult.: $\alpha(K)\exp=0.0038\ 4\ (1970Ka13)$ in 105 Ag ε decay (41.29 d). $\alpha(K)=0.238\ 4$; $\alpha(L)=0.0423\ 6$; $\alpha(M)=0.00808\ 12$; $\alpha(N+)=0.001290\ 16\ \alpha(N)=0.001290\ 18$ B(E2)(W.u.)=63.5 23 Mult.: $\alpha(K)\exp=0.235\ 21\ (1970Ka13)$.
		202.21 325.43	0.29 1.98	442.53 319.38		E1		0.00559 8	α =0.00559 8; α (K)=0.00489 7; α (L)=0.000571 8; α (M)=0.0001067 15: α (N+)=1.79×10 ⁻⁵ 3 α (N)=1.79×10 ⁻⁵ 3
		644.63	100	0.0	5/2+	E1+M2	-0.016 4	0.001061 15	B(E1)(W.u.)= $1.289 \times 10^{-6} 24$ Mult.: α (K)exp= $0.0043 8 (1970 \text{Ka} 13)$. α = $0.001061 15$; α (K)= $0.000930 13$; α (L)= $0.0001070 15$;
									$\alpha(\text{M}) = 2.00 \times 10^{-5} \ 3$; $\alpha(\text{N}+) = 3.37 \times 10^{-6} \ \alpha(\text{N}) = 3.37 \times 10^{-6} \ 5$ $B(\text{E1})(\text{W.u.}) = 8.38 \times 10^{-6} \ 14$; $B(\text{M2})(\text{W.u.}) = 0.024 \ 12$ Mult.: $A_{22} = -0.170 \ 5$, $0.001 \ 1$ (1977Ba32); Also, $\alpha(\text{K}) \exp = 0.00090 \ 6$ (1970Ka13) in $^{105} \text{Ag } \varepsilon \text{ decay } (41.29 \ \text{d})$. δ : weighted average of $-0.020 + 5 - 6$ (1977Ba32) and $-0.012 \ 4$ (1981Al19) in $^{105} \text{Ag } \varepsilon \text{ decay } (41.29 \ \text{d})$.
650.9	$(3/2)^+$	90.01 331.58	0.81 100	560.50 319.38		M1+E2	-0.084 7	0.01539	B(M1)(W.u.)>0.047; B(E2)(W.u.)>2.2

γ (105Pd) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
									$\alpha(K)$ =0.01343 19; $\alpha(L)$ =0.001602 23; $\alpha(M)$ =0.000301 5; $\alpha(N+)$ =5.07×10 ⁻⁵ 8 $\alpha(N)$ =5.07×10 ⁻⁵ 8 Mult.: A ₂₂ =-0.104 11, A ₄₄ =-0.10 10 (1977Ba32) in ¹⁰⁵ Ag ε decay (41.29 d); Also $\alpha(K)$ exp=0.0122 8 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d). δ : -0.084 7 (1983Si08), and -0.062 9 (1981Al19) in ¹⁰⁵ Ag ε decay
650.9	(3/2)+	370.28	17.85	280.62	3/2+	M1+E2	0.11 3	0.01167	(41.29 d). B(M1)(W.u.)>0.0059; B(E2)(W.u.)>0.21 α (K)=0.01020 15 ; α (L)=0.001212 18 ; α (M)=0.000228 4 ; α (N+)=3.84×10 ⁻⁵ 6 α (N)=3.84×10 ⁻⁵ 6
									Mult.: A_{22} =-0.072 12, A_{44} =-0.001 16 (1983Si08) and A_{22} =-0.098 16, A_{44} =-0.030 45 (1977Ba32) in 105 Ag ε decay (41.29 d); Also α (K)exp=0.0094 8 (1970Ka13) in 105 Ag ε decay (41.29 d). δ: from 1983Si08 in 105 Ag ε decay (41.29 d), based on γ - γ (θ); Other: 0.000 3 (1977Ba32) in 105 Ag ε decay (41.29 d).
		650.78	60.85	0.0	5/2+	M1+E2		0.00293 7	α =0.00293 7; α (K)=0.00256 7; α (L)=0.000306 5; α (M)=5.74×10 ⁻⁵ 9; α (N+)=9.64×10 ⁻⁶ 14 α (N)=9.64×10 ⁻⁶ 14 Mult.: α (K)exp=0.00264 18 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d).
673.2	1/2+	112.51 328.61	1.76 10.25	560.50 344.9		(M1)		0.01570	$\alpha(K)$ =0.01371 20; $\alpha(L)$ =0.001632 23; $\alpha(M)$ =0.000307 5; $\alpha(N+)$ =5.17×10 ⁻⁵ 8 $\alpha(N)$ =5.17×10 ⁻⁵ 8 B(M1)(W.u.)=0.0078 8 Mult.: $\alpha(K)$ exp=0.0084 9 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d).
		353.8 392.73	0.42 100	319.38 280.62		M1+E2	+0.06 3	0.01006 15	B(M1)(W.u.)=0.045 +6-5; B(E2)(W.u.)=0.9 +12-7 α (K)=0.00879 13; α (L)=0.001042 15; α (M)=0.000196 3; α (N+)=3.30×10 ⁻⁵ 5 α (N)=3.30×10 ⁻⁵ 5 Mult.: A ₂₂ =0.182 17, A ₄₄ =0.020 25 (1983Si08) and 0.149 13, -0.014 20
		673.24	48.74	0.0	5/2+	E2		0.00263 4	(1977Ba32) in 105 Ag ε decay (41.29 d); Also α (K)exp=0.0083 δ (1970Ka13) in 105 Ag ε decay (41.29 d). δ : weighted average of 0.05 δ (1983Si08) and +0.10 δ (1981A119) in 105 Ag ε decay (41.29 d); Other: $-0.84 + 3 - 17$ (1977Ba32). B(E2)(W.u.)=8.4 9 α =0.00263 δ ; α (K)=0.00229 δ ; α (L)=0.000280 δ ; α (M)=5.26×10 ⁻⁵ δ ; α (N)=8.79×10 ⁻⁶ δ 13 Mult.: α (K)exp=0.00224 δ 19 (1970Ka13) in δ 105 Ag δ 2 decay (41.29 d).

$\gamma(\frac{105}{\text{Pd}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J	π f Mult.	δ	α^{\dagger}	Comments
696.66	(7/2+)	135.8 [#] 3 254.3 [#] 3 415.8 [#] 3 697.1 [#] 3	22 [#] 5 92 [#] 27 38 [#] 11 100 [#]	560.50 3/2 442.53 (7/2 280.62 3/2 0.0 5/2	2) ⁺ +			
727.5	5/2+	284.8	65.71	442.53 (7/			0.0226	$\alpha(K)$ =0.0197 3; $\alpha(L)$ =0.00236 4; $\alpha(M)$ =0.000443 7; $\alpha(N+)$ =7.47×10 ⁻⁵ 11 $\alpha(N)$ =7.47×10 ⁻⁵ 11 B(M1)(W.u.)>0.025 Mult.: $\alpha(K)$ exp=0.0162 23 (1970Ka13) in 105 Ag ε decay
		408.08	28.57	319.38 5/2	+ M1(+E2)		0.0101 10	(41.29 d). $\alpha(K)=0.0087 \ 8$; $\alpha(L)=0.00109 \ 15$; $\alpha(M)=0.00021 \ 3$; $\alpha(N+)=3.4\times10^{-5} \ 5$ $\alpha(N)=3.4\times10^{-5} \ 5$ Mult.: $\alpha(K)=0.0070 \ 25 \ (1970 \ Kal3)$ in $^{105} \ Ag \ \varepsilon$ decay
		421.03	82.86	306.41 7/2	+ M1(+E2)		0.0092 8	(41.29 d). α =0.0092 8; α (K)=0.0080 7; α (L)=0.00100 13; α (M)=0.000188 25; α (N+)=3.1×10 ⁻⁵ 4 α (N)=3.1×10 ⁻⁵ 4 Mult.: α (K)exp=0.0069 17 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d).
		446.8	68.57	280.62 3/2	+ M1+E2	0.9 +9-5	0.0078 4	B(M1)(W.u.)>0.00040 α =0.0078 4; α (K)=0.0068 3; α (L)=0.00083 6; α (M)=0.000157 11; α (N+)=2.62×10 ⁻⁵ 17 α (N)=2.62×10 ⁻⁵ 17 Mult.: A ₂₂ =0.043 (32); A ₄₄ =0.053 (47) (1983Si08) in ¹⁰⁵ Ag ε decay (41.29 d).
		727.28	100	0.0 5/2	+ M1(+E2)		0.00223 9	δ: from 1983Si08 in 105 Ag ε decay (41.29 d), based on $\gamma\gamma(\theta)$. α =0.00223 9; α (K)=0.00195 8; α (L)=0.000231 5; α (M)=4.34×10 ⁻⁵ 9; α (N+)=7.30×10 ⁻⁶ 18 α (N)=7.30×10 ⁻⁶ 18 Mult.: α (K)exp=0.0028 9 (1970Ka13) in 105 Ag ε decay (41.29 d).
781.99	9/2+	339.4# 1	#	442.53 (7/	2) ⁺ M1(+E2)	-0.04 4	0.01448	$\alpha(K)$ =0.01264 18; $\alpha(L)$ =0.001505 22; $\alpha(M)$ =0.000283 4; $\alpha(N+)$ =4.76×10 ⁻⁵ 7 $\alpha(N)$ =4.76×10 ⁻⁵ 7 Mult.: A_{22} =-0.29 5, A_{4} =0.03 8 (1977Ri05); R_{DCO} =2.5 5 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from 1977Ri05 in 96 Zr(12 C,3n γ), based on $\gamma(\theta)$. δ : Also: -0.08 8 (1977Ri05) in 96 Zr(12 C,3n γ).
		475.1 [@]	100 [@]	306.41 7/2	+			v. 7150. 0.00 0 (1777100) iii 21(C,511y).

$\gamma(^{105}\text{Pd})$ (continued)

E_i (level)	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
781.99	9/2+	781.3 [@]	54 [@]	0.0 5/2+	E2		0.00180 3	B(E2)(W.u.)=14.7 <i>13</i> α =0.00180 <i>3</i> ; α (K)=0.001571 <i>22</i> ; α (L)=0.000189 <i>3</i> ; α (M)=3.55×10 ⁻⁵ <i>5</i> ; α (N+)=5.95×10 ⁻⁶ <i>9</i> α (N)=5.95×10 ⁻⁶ <i>9</i> Mult.: A ₂₂ =0.33 <i>3</i> , A ₄₄ =-0.05 <i>4</i> (1977Ri05); R _{DCO} =1.01 <i>18</i> (1977Ri05) in ⁹⁶ Zr(¹² C,3n γ).
785.0	$(1/2^+ \text{ to } 9/2^+)$	785 ^d		$0.0 5/2^+$				
902.12	9/2+	459.6 ^{&} 3	41& 7	442.53 (7/2)+	M1+E2	+0.24 9	0.00688 11	α =0.00688 11; α (K)=0.00601 9; α (L)=0.000712 12; α (M)=0.0001337 23; α (N+)=2.25×10 ⁻⁵ 4 α (N)=2.25×10 ⁻⁵ 4 Mult.: A ₂₂ =0.10 11, A ₄₄ =-0.07 4 (1977Ri05) in 96 Zr(12 C,3nγ). δ: from γ (θ) in 1977Ri05.
		582.74 ^{&} 25	66 ^{&} 7	319.38 5/2+	E2		0.00387 6	α =0.00387 6; α (K)=0.00336 5; α (L)=0.000418 6; α (M)=7.87×10 ⁻⁵ 11; α (N+)=1.312×10 ⁻⁵ 19 α (N)=1.312×10 ⁻⁵ 19 Mult.: A ₂₂ =0.46 5, A ₄₄ =-0.11 7 (1977Ri05), and R _{DCO} =0.92 16 (1977Ri05) in 96 Zr(12 C,3n γ).
		595.73 ^{&} 15	100 & 7	306.41 7/2+	M1+E2	+0.16 3	0.00367 6	α =0.00367 6; α (K)=0.00321 5; α (L)=0.000376 6; α (M)=7.06×10 ⁻⁵ 10; α (N+)=1.191×10 ⁻⁵ 17 α (N)=1.191×10 ⁻⁵ 17 Mult.: A ₂₂ =-0.01 3, A ₄₄ =0.02 4 (1977Ri05) and R _{DCO} =2.4 5 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from γ (θ) in 96 Zr(12 C,3n γ) (1977Ri05); Also there: -0.04 8 (1977Ri05).
921.3	$(1/2^+ \text{ to } 5/2^+)$	270.5 576.7 640.5 921.2	4.29 85.71 100 57	650.9 (3/2) ⁺ 344.9 1/2 ⁺ 280.62 3/2 ⁺ 0.0 5/2 ⁺				0.01 0 (1577Kl03).
929.6	(5/2+)	285.0 [@] f	@	644.7 7/2-				E_{γ} : observed only in (n,n' γ), where BRs are different from the two ¹⁰⁵ Ag ε decay data sets.
945.0		370 ^a 486.8 610.0 649.2 ^a 929.1 945 ^d	20 ^a 33 60.61 3 27.59 ^a 100	560.50 3/2 ⁺ 442.53 (7/2) ⁺ 319.38 5/2 ⁺ 280.62 3/2 ⁺ 0.0 5/2 ⁺ 0.0 5/2 ⁺				nom me two Ag & decay data sets.
943.0 962.4	(1/2,3/2)+	289.37	10.14	673.2 1/2 ⁺	M1		0.0217	B(M1)(W.u.)>0.31 α (K)=0.0189 3; α (L)=0.00226 4; α (M)=0.000425 6; α (N+)=7.17×10 ⁻⁵ 10

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{\ddagger}$	\mathbf{E}_f	\mathbf{J}^π_f	Mult.	δ	$lpha^\dagger$	Comments
962.4	(1/2,3/2)+	311.74	6.64	650.9	(3/2)+	M1		0.0179	$\alpha(N)=7.17\times10^{-5}\ 10$ Mult.: $\alpha(K)\exp=0.0147\ 17\ (1970Ka13)$ in 105 Ag ε decay (41.29 d). B(M1)(W.u.)>0.16 $\alpha(K)=0.01566\ 22;\ \alpha(L)=0.00187\ 3;\ \alpha(M)=0.000351\ 5;$ $\alpha(N+)=5.92\times10^{-5}\ 9$ $\alpha(N)=5.92\times10^{-5}\ 9$
		401.75	16.08	560.50	3/2+	M1		0.00950 14	Mult.: $\alpha(K)\exp=0.0096\ 14\ (1970Ka13)$ in $^{105}Ag\ \varepsilon$ decay (41.29 d). B(M1)(W.u.)>0.18 $\alpha=0.00950\ 14;\ \alpha(K)=0.00831\ 12;\ \alpha(L)=0.000983\ 14;$ $\alpha(M)=0.000185\ 3;\ \alpha(N+)=3.11\times10^{-5}\ 5$ $\alpha(N)=3.11\times10^{-5}\ 5$
		617.90	100	344.9	1/2+	M1(+E2)		0.00334 6	Mult.: $\alpha(K)\exp=0.0065\ 10\ (1970Ka13)$ in 105 Ag ε decay (41.29 d). $\alpha=0.00334\ 6$; $\alpha(K)=0.00291\ 6$; $\alpha(L)=0.000350\ 7$; $\alpha(M)=6.56\times10^{-5}\ 14$; $\alpha(N+)=1.101\times10^{-5}\ 19$ $\alpha(N)=1.101\times10^{-5}\ 19$
		681.94	6.29	280.62	3/2+	M1(+E2)		0.00261 8	Mult.: $\alpha(K)\exp=0.00306\ 25\ (1970Ka13)$ in 105 Ag ε decay (41.29 d). $\alpha=0.00261\ 8;\ \alpha(K)=0.00228\ 8;\ \alpha(L)=0.000272\ 4;$ $\alpha(M)=5.10\times10^{-5}\ 8;\ \alpha(N+)=8.57\times10^{-6}\ 15$ $\alpha(N)=8.57\times10^{-6}\ 15$
		962.45	9.44	0.0	5/2+	M1(+E2)		0.00116 7	Mult.: $\alpha(K)\exp=0.0034\ 8\ (1970Ka13)$ in $^{105}Ag\ \varepsilon$ decay (41.29 d). $\alpha=0.00116\ 7$; $\alpha(K)=0.00102\ 6$; $\alpha(L)=0.000119\ 6$; $\alpha(M)=2.23\times10^{-5}\ 11$; $\alpha(N+)=3.75\times10^{-6}\ 19$ $\alpha(N)=3.75\times10^{-6}\ 19$ Mult.: $\alpha(K)\exp=0.00119\ 23\ (1970Ka13)$ in $^{105}Ag\ \varepsilon$ decay
970.0	15/2-	480.8 [@] 2	100 [@]	489.1	11/2-	E2		0.00670 10	(41.29 d). α =0.00670 10 ; α (K)=0.00580 9 ; α (L)=0.000741 11 ; α (M)=0.0001395 20 ; α (N+)=2.32×10 ⁻⁵ 4 α (N)=2.32×10 ⁻⁵ 4 Mult.: A ₂₂ =0.334 9 , A ₄₄ =-0.084 9 (1977Ri05); R _{DCO} =0.99 2
1011.47	(11/2+)	228.9 [@]	64.29 [@]	781.99	9/2+	M1+E2	-0.05 9	0.0399 8	(1977Ri05) in 96 Zr(12 C,3n γ). α (K)=0.0348 7; α (L)=0.00420 11; α (M)=0.000789 21; α (N+)=0.000133 4 α (N)=0.000133 4 Mult.: A ₂₂ =-0.33 15, A ₄₄ =0.21 19 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from 1977Ri05 in 96 Zr(12 C,3n γ), based on $\gamma(\theta)$.

E_i (level)	J_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult.	α^{\dagger}	Comments
1011.47	$(11/2^+)$	523.6 [@] 7	32 [@] 6	489.1				
		705.2 [@] 2	100 [@] 7	306.41	7/2+	E2	0.00233 4	α =0.00233 4; α (K)=0.00203 3; α (L)=0.000247 4; α (M)=4.64×10 ⁻⁵ 7; α (N+)=7.76×10 ⁻⁶ 11 α (N)=7.76×10 ⁻⁶ 11 Mult.: A ₂₂ =0.346 17, A ₄₄ =-0.102 24 (1977Ri05); R _{DCO} =0.99 4 (1977Ri05) in 96 Zr(12 C,3n γ).
1072.2	$(5/2^+, 7/2^+, 9/2^+)$	629.7 ^a 1072.2 ^a	50 ^a 100 ^a		$(7/2)^+$ $5/2^+$			
1074.6	$(3/2^+)$	768.4 [@] 5 793.8 [@] 5	40 [@] 20 100 [@] 20	306.41				
1088.2	3/2-	159.0	0.29	280.62 929.6				
1000.2	<i>5,2</i>	360.72	4.36	727.5		E1	0.00427 6	α =0.00427 6; α (K)=0.00374 6; α (L)=0.000436 6; α (M)=8.15×10 ⁻⁵ 12; α (N+)=1.365×10 ⁻⁵ 20 α (N)=1.365×10 ⁻⁵ 20 Mult.: α (K)exp=0.0039 4 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d).
		414.85	2.78	673.2	1/2+	(E1)	0.00299 5	α =0.00299 5; α (K)=0.00262 4; α (L)=0.000305 5; α (M)=5.69×10 ⁻⁵ 8; α (N+)=9.55×10 ⁻⁶ 14 α (N)=9.55×10 ⁻⁶ 14
		437.30	2.66	650.9	(3/2)+	E1	0.00263 4	Mult.: $\alpha(K)\exp=0.0040 \ 8 \ (1970Ka13)$ in 105 Ag ε decay (41.29 d). $\alpha=0.00263 \ 4$; $\alpha(K)=0.00230 \ 4$; $\alpha(L)=0.000267 \ 4$; $\alpha(M)=4.99\times10^{-5} \ 7$; $\alpha(N+)=8.37\times10^{-6} \ 12$ $\alpha(N)=8.37\times10^{-6} \ 12$
		443.44	100	644.7	7/2-	E2	0.00853 12	Mult.: $\alpha(K)\exp=0.0029\ 6\ (1970Ka13)$ in $^{105}Ag\ \varepsilon$ decay (41.29 d). $\alpha=0.00853\ 12$; $\alpha(K)=0.00737\ 11$; $\alpha(L)=0.000954\ 14$; $\alpha(M)=0.000180\ 3$; $\alpha(N+)=2.98\times10^{-5}\ 5$ $\alpha(N)=2.98\times10^{-5}\ 5$
		527.34	1.00	560.50	3/2+	E1	0.001673 24	Mult.: $\alpha(K)\exp=0.0075\ 5\ (1970Ka13)$ in 105 Ag ε decay (41.29 d). $\alpha=0.001673\ 24$; $\alpha(K)=0.001466\ 21$; $\alpha(L)=0.0001694\ 24$; $\alpha(M)=3.17\times10^{-5}\ 5$; $\alpha(N+)=5.32\times10^{-6}$ $\alpha(N)=5.32\times10^{-6}\ 8$
		(46.00	0.62	112.52	(7/0)+			Mult.: $\alpha(K)$ exp=0.0015 4 (1970Ka13) in 105 Ag ε decay (41.29 d).
		646.00 743.45	0.62 4.9	442.53 344.9	1/2+	E1	0.000778 11	α =0.000778 11; α (K)=0.000683 10; α (L)=7.83×10 ⁻⁵ 11; α (M)=1.463×10 ⁻⁵ 21; α (N+)=2.46×10 ⁻⁶ α (N)=2.46×10 ⁻⁶ 4
		768.9	0.09	319.38	5/2+			Mult.: $\alpha(K)$ exp=0.00070 11 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d).

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.	δ	$lpha^\dagger$	Comments
1088.2	3/2-	807.57	10.62	280.62	3/2+	E1(+M2)	0.03 +4-3	0.000659 19	α =0.000659 19; α (K)=0.000579 17; α (L)=6.62×10 ⁻⁵ 20; α (M)=1.24×10 ⁻⁵ 4; α (N+)=2.08×10 ⁻⁶ 7 α (N)=2.08×10 ⁻⁶ 7 Mult.: A ₂₂ =-0.108 15; A ₄₄ =-0.2 2 (1983Si08) in ¹⁰⁵ Ag ε decay (41.29 d); Also: α (K)exp=0.00061 7 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d). δ: 0.03 +4-3 (1983Si08) in ¹⁰⁵ Ag ε decay (41.29 d), based on $\gamma\gamma$ (θ).
		1088.05	33.20		5/2+				Mult.: $\alpha(K)$ exp=0.000299 22 (1970Ka13) in 105 Ag ε decay (41.29 d).
1098.1	(5/2+,7/2+,9/2+)	656.5 ^a 818 ^a 1098.39 ^a	12 ^a 6.06 ^a 100 ^a	442.53 280.62 0.0	$3/2^{+}$				
1102.3 1125.1	$(1/2^+ \text{ to } 5/2^+)$ $(1/2^+ \text{ to } 7/2^+)$	821.7 [@] 4 564.4 844.6 1125.2	100 [@] 22 100 45	280.62 560.50 280.62 0.0	3/2 ⁺ 3/2 ⁺				
1142.34	$(1/2^+, 3/2^+)$	491.2 [@] 5 582.1 [@] 2 1142.2 [@] 2	58 [@] 4 100 [@] 62 [@] 5		(3/2) ⁺ 3/2 ⁺				
1177.7	$(1/2^+,3/2^+)$	1177.7 [@] 3	100@	0.0	-				
1201.7	$(1/2^+,3/2^+)$	640.8 [@] 5 921.3 [@] 4	100 [@] 6 46 [@] 6	560.50 280.62	3/2+				
1259.22	(3/2+)	952.6 [@] 3 979.0 [@] 4 1259.2 [@] 3	100 [@] 8 49 [@] 8 85 [@] 8	306.41 280.62 0.0	3/2+				
1271.41	$(11/2)^+$	260.0 [#] 3 489.5 [#] 3	28 [#] 9 93 [#] 28	1011.47 781.99		M1+E2	-0.13 6	0.00588 9	α =0.00588 9; α (K)=0.00514 8; α (L)=0.000605
									9; $\alpha(M)=0.0001136$ 17; $\alpha(N+)=1.92\times10^{-5}$ 3 $\alpha(N)=1.92\times10^{-5}$ 3 Mult.: A ₂₂ =-0.46 5, A ₄₄ =0.04 6 (1977Ri05) and R _{DCO} =3.1 10 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from 1977Ri05 in 96 Zr(12 C,3n γ), but also -0.05 8 (1977Ri05).
		829.1# 3	100#	442.53	(7/2)+	E2		0.001558 22	α =0.001558 22; α (K)=0.001359 19; α (L)=0.0001628 23; α (M)=3.05×10 ⁻⁵ 5; α (N+)=5.12×10 ⁻⁶

γ (105Pd) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\clip{t}}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}^{π}_f	Mult.	δ	$lpha^\dagger$	Comments
	<u> </u>								$\alpha(N)=5.12\times10^{-6}~8$ Mult.: $A_{22}=0.20~5$, $A_{44}=-0.09~7~(1977Ri05)$ and $R_{DCO}=1.2~4~(1977Ri05)$ in $^{96}Zr(^{12}C,3n\gamma)$.
1324.2	$(11/2^+)$	312.6 [#] <i>3</i> 834.9 [#] <i>3</i>	53 [#] 16 ≤44 [#]	1011.47 489.1	$(11/2^+)$				
		881.3 [#]	100#	442.53	•	(E2)		0.001347 19	α =0.001347 19; α (K)=0.001176 17; α (L)=0.0001401 20; α (M)=2.63×10 ⁻⁵ 4; α (N+)=4.41×10 ⁻⁶ α (N)=4.41×10 ⁻⁶ 7
1357.0	(13/2 ⁻)	387 ^e 868 ^e		970.0 489.1	15/2 ⁻ 11/2 ⁻				. ,
1405.2	$(3/2^+,5/2^+)$	263.3 [@] 5 1098.5 [@] 3 1405.5 [@] 7	25 [@] 5 100 [@] 13 [@] 3	1142.34 306.41	$(1/2^+,3/2^+)$				
1410.9	(13/2+)	140.0 [#] 3 399.9 [#] 3 628.1 [#] 3	40 [#] 10 100 [#] 30 50 [#] 15	1271.41 1011.47 781.99	$(11/2)^+$ $(11/2^+)$				
1520.8	$(3/2^+ \text{ to } 7/2^+)$	1078.0 [@] 5 1240.8 [@] 7	100 [@] 21 62 [@] 15	442.53 280.62	$(7/2)^+$				
1601.3	$(1/2^+ \text{ to } 5/2^+)$	459.0 [@] 5 1600.4 [@] 16	100 [@] 10 13 [@] 7		$(1/2^+, 3/2^+)$ $5/2^+$				
1650.6	(7/2 ⁻)	1162.1 [@] 8	31@ 8	489.1	•	[E2]		0.000727 11	α =0.000727 11; α (K)=0.000633 9; α (L)=7.40×10 ⁻⁵ 11; α (M)=1.385×10 ⁻⁵ 20 α (N+)=5.67×10 ⁻⁶ 1 α (N)=2.33×10 ⁻⁶ 4; α (IPF)=3.34×10 ⁻⁶ 8
		1208.7 [@] 8	34 [@] 9	442.53	(7/2)+	[E1+M2]		0.0010 7	$\alpha(N)=2.53\times10^{-4}$; $\alpha(IPF)=5.54\times10^{-6}$ $\alpha=0.0010$ 7; $\alpha(K)=0.0009$ 6; $\alpha(L)=0.00010$ 8; $\alpha(M)=1.9\times10^{-5}$ 14; $\alpha(N+)=2.5\times10^{-5}$ 18 $\alpha(N)=3.2\times10^{-6}$ 23; $\alpha(IPF)=2.2\times10^{-5}$ 21
		1305.5 [@] 4	100 [@] 14	344.9	1/2+	[E3]		0.001091 16	α =0.001091 16; α (K)=0.000944 14; α (L)=0.0001143 16; α (M)=2.15×10 ⁻⁵ 3; α (N+)=1.123×10 ⁻⁵ α (N)=3.61×10 ⁻⁶ 5; α (IPF)=7.62×10 ⁻⁶ 12
1671.14	(13/2)+	399.76 ^{&} 10	35.1 ^{&} 21	1271.41	(11/2)+	E2+M1	-0.08 4	0.00964 14	α =0.00964 14; α (K)=0.00842 12; α (L)=0.000997 15; α (M)=0.000187 3; α (N+)=3.16×10 ⁻⁵ 5 α (N)=3.16×10 ⁻⁵ 5

Adopted	Levels,	Gammas	(continued)

γ (105Pd) (continued)

E_i (level)	\mathbf{J}^{π}_{i}	$\mathrm{E_{\nu}}^{\ddagger}$	$_{\mathrm{I}_{\gamma}^{\ddagger}}$	E_f	${\rm J}_{_f}^\pi$	Mult.	δ	$lpha^\dagger$	Comments
		,			J				Mult.: A_{22} =-0.38 4, A_{44} =-0.05 5 (1977Ri05) and R_{DCO} =3.9 11 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from 1977Ri05 in 96 Zr(12 C,3n γ), but also -0.19 11 (1977Ri05).
1671.14	(13/2)+	889.24 ^{&} 25	100 ^{&}	781.99 9)/2 ⁺	E2		0.001318 19	α =0.001318 19; α (K)=0.001151 17; α (L)=0.0001371 20; α (M)=2.57×10 ⁻⁵ 4; α (N+)=4.31×10 ⁻⁶ α (N)=4.31×10 ⁻⁶ 6 Mult.: A ₂₂ =0.329 16, A ₄₄ =-0.06 21 (1977Ri05) and R _{DCO} =1.15 20 (1977Ri05) in 96 Zr(12 C,3n γ).
1701.0	$(1/2^+ \text{ to } 9/2^+)$	973.3 [@] 8 1382.4 [@] 16	100 [@] 25 54 [@] 29	727.5 5 319.38 5	•				
1741.8	19/2-	771.83 ^{&} 5	100 ^{&}	970.0 1	.5/2-	E2		0.00186 3	α =0.00186 3; α (K)=0.001618 23; α (L)=0.000195 3; α (M)=3.66×10 ⁻⁵ 6; α (N+)=6.13×10 ⁻⁶ 9 α (N)=6.13×10 ⁻⁶ 9 Mult.: A ₂₂ =0.353 10, A ₄₄ =-0.104 11 (1977Ri05); R _{DCO} =0.96 2 (1977Ri05) in 96 Zr(12 C,3n γ).
1749.6	(13/2)+	847.6 ^{&} 3	100 &	902.12 9	0/2+	E2		0.001477 21	α =0.001477 21; α (K)=0.001290 18; α (L)=0.0001541 22; α (M)=2.89×10 ⁻⁵ 4; α (N+)=4.85×10 ⁻⁶ α (N)=4.85×10 ⁻⁶ 7 Mult.: R _{DCO} =1.12 21 (1977Ri05) in 96 Zr(12 C,3n γ).
1763.2	(15/2)	793.17 ^{&} 25	100 ^{&} 11	970.0 1	.5/2-	M1+E2	+1.0 5	0.00181 6	α =0.00181 6; α (K)=0.00159 5; α (L)=0.000187 5; α (M)=3.51×10 ⁻⁵ 8; α (N+)=5.91×10 ⁻⁶ 14 α (N)=5.91×10 ⁻⁶ 14 Mult.: A ₂₂ =0.28 4, A ₄₄ , -0.08 6 (1977Ri05) and R _{DCO} =1.2 3 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 1977Ri05; Also: 1.0 (1977Ri05) in 96 Zr(12 C,3n γ).
		1274.15 ^{&} 15	41 ^{&} 5	489.1 1	1/2-				Mult.: A_{22} =0.27 12, A_{44} =0.02 18 (1977Ri05) in 96 Zr(12 C,3n γ).
1774.7 1854.1	(1/2 ⁺ to 9/2 ⁺) (13/2 ⁺)	1455.3 [@] 5 442 [#] 3 530.3 [#] 3 582.0 [#] 3	100 [@] # 53 [#] 15 100 [#]	319.38 5 1410.9 (1324.2 (1271.41 (13/2 ⁺) 11/2 ⁺)				
1865.6	(1/2 ⁺ to 7/2 ⁺)	843.0 [#] 3 1305.5 [@] 4 1583.9 [@] 6	70 [#] 20 100 [@] 49 [@] 13	1011.47 (560.50 3 280.62 3	11/2 ⁺)				
1873.9	(15/2+)	463.1# 3	13# 4	1410.9 (

$\gamma(105 \text{Pd})$ (continued)

E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}^{\ddagger}	I_{γ}^{\sharp}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
1873.9	(15/2+)	549.1 [#] 3	7.3 [#] 18	1324.2	(11/2+)				
		602.7 [#] 3	100 [#]	1271.41	$(11/2)^+$				
		862.7 [#] <i>3</i>	24 [#] 7	1011.47	$(11/2^+)$				
1901.8	$(15/2)^+$	578.0 [#]	31 [#] 9		$(11/2^+)$				
		889.8# 3	100#		(11/2+)	E2		0.001317 19	$\begin{array}{l} \alpha \! = \! 0.001317 \ 19; \ \alpha(K) \! = \! 0.001150 \ 17; \\ \alpha(L) \! = \! 0.0001369 \ 20; \ \alpha(M) \! = \! 2.57 \! \times \! 10^{-5} \ 4; \\ \alpha(N+) \! = \! 4.31 \! \times \! 10^{-6} \\ \alpha(N) \! = \! 4.31 \! \times \! 10^{-6} \ 6 \\ \text{Mult.:} \ A_{22} \! = \! 0.329 \ 16, \ A_{44} \! = \! -0.096 \ 21 \\ (1977 Ri05) \ \text{and} \ R_{DCO} \! = \! 0.96 \ 4 \\ (1977 Ri05) \ \text{in} \ ^{96} \text{Zr} (^{12}\text{C}, 3n\gamma). \end{array}$
1922.9	$(1/2^+,3/2^+)$	825.1 [@] 3 1360.7 [@] 8	100 [@] 17 42 [@] 11	1098.1 560.50	$(5/2^+,7/2^+,9/2^+)$				
1961.3	$(17/2)^{-}$	604 ^e	42 11		$(13/2^{-})$				
	(,-)	991.38 & 5	100 ^{&}	970.0	15/2	M1+E2	1.8 5	0.001055 23	α =0.001055 23; α (K)=0.000923 20; α (L)=0.0001083 21; α (M)=2.03×10 ⁻⁵ 4;
									α (N+)=3.42×10 ⁻⁶ α (N)=3.42×10 ⁻⁶ 7 Mult.: A ₂₂ =0.436 25, A ₄₄ =0.01 3 (1977Ri05) and R _{DCO} =0.58 8
									(1977Ri05) and RDCO=0.36 δ (1977Ri05) in ⁹⁶ Zr(¹² C,3nγ). δ: from DCO and linear pol. in 2019Ti02; Also: +0.46 10 or 1.3 7 from DCO measurements in 1977Ri05.
1988.9	$(1/2,3/2,5/2)^+$	890.7 [@] 4 1026.7 [@] 4	100 [@] 63 [@] 11		$(5/2^+, 7/2^+, 9/2^+)$ $(1/2, 3/2)^+$				
2064.7	$(1/2^+, 3/2^+)$	1745.2 [@] 7 1784.3 [@] 16	100 [@] 27 [@] 13	319.38 280.62	5/2+				
2101.5	$(7/2^-, 9/2, 11/2^+)$	1611.8 [@] 8	100@	489.1					
		1660.0 [@] 10	40 [@] 14		$(7/2)^+$				
2197.1	(15/2)+	925.8 ^{&} 3	100 ^{&}		(11/2)+	E2		0.001200 17	α =0.001200 <i>17</i> ; α (K)=0.001048 <i>15</i> ; α (L)=0.0001244 <i>18</i> ; α (M)=2.33×10 ⁻⁵ <i>4</i> ; α (N+)=3.92×10 ⁻⁶
									α (N)=3.92×10 ⁻⁶ 6 Mult.: R _{DCO} =0.7 3 (1977Ri05) in 96 Zr(12 C,3n γ).
2280.6	(15/2,17/2)	1310.6 ^{&} 2	100 ^{&}	970.0	15/2-	M1+E2	+1.3 7	0.000612 25	α =0.000612 25; α (K)=0.000515 23; α (L)=5.94×10 ⁻⁵ 24; α (M)=1.11×10 ⁻⁵ 5; α (N+)=2.73×10 ⁻⁵ 15

Adopted Levels,	Gammas	(continued)
-----------------	--------	-------------

γ (105Pd) (continued)

Mul R δ: f: π e:	Comments N)=1.88×10 ⁻⁶ 8; α (IPF)=2.54×10 ⁻⁵ 15 Ilt.: A ₂₂ =1.4 7, A ₄₄ =-0.4 8 (1977Ri05) and R _{DCO} =0.8 3 (1977Ri05) in 96 Zr(12 C,3n γ). from 96 Zr(12 C,3n γ) (1977Ri05), based on DCO measurements, but also 4 4 (1977Ri05) can not be
α(N Mul R δ: fi m	ilt.: $A_{22}=1.4$ 7, $A_{44}=-0.4$ 8 (1977Ri05) and $R_{DCO}=0.8$ 3 (1977Ri05) in $^{96}Zr(^{12}C,3n\gamma)$. from $^{96}Zr(^{12}C,3n\gamma)$ (1977Ri05), based on DCO
2244.6 $(10/0)$ $=$ $501.45 %$ 25 $20 %$ 0 $17(2.2)$ $(15/0)$ $=$ 12	excluded.
lpha $lpha$ (N	0.00390 6; $\alpha(K)=0.00338$ 5; $\alpha(L)=0.000421$ 6; $\alpha(M)=7.92\times10^{-5}$ 12; $\alpha(N+)=1.320\times10^{-5}$ 19 N)=1.320×10 ⁻⁵ 19 ldt.: $A_{22}=0.46$ 5, $A_{44}=-0.11$ 7 (1977Ri05) and $R_{DCO}=0.9$ 5 (1977Ri05) in $^{96}Zr(^{12}C,3n\gamma)$.
602.78 ^{&} 15 100 ^{&} 1741.8 19/2 M1+E2 -0.01 60 0.00357 6 α=0 α (N Mul R δ: fi	$0.00357 \ 6; \ \alpha(K)=0.00313 \ 5; \ \alpha(L)=0.000366 \ 7;$ $\alpha(M)=6.86\times 10^{-5} \ 13; \ \alpha(N+)=1.157\times 10^{-5} \ 19$ $\alpha(M)=0.86\times 10^{-5} \ 19$ $\alpha(M)=0.86\times 10^{-5} \ 19$ $\alpha(M)=0.00366 \ 7;$ $\alpha(M)=0.00366 \ 7;$ $\alpha(M)=0$
2490.9 (19/2 ⁻) 749.1 ^{&} 4 73 ^{&} 12 1741.8 19/2 ⁻ 1520.9 ^{&} 3 100 ^{&} 19 970.0 15/2 ⁻ (E2) 0.000507 7 $\alpha = 0$ α	0.000507 7; $\alpha(K)$ =0.000366 6; $\alpha(L)$ =4.21×10 ⁻⁵ 6; $\alpha(M)$ =7.87×10 ⁻⁶ 11; $\alpha(N+)$ =9.13×10 ⁻⁵ 13 N)=1.327×10 ⁻⁶ 19; $\alpha(IPF)$ =9.00×10 ⁻⁵ 13 alt.: R_{DCO} =0.75 21 (1977Ri05) in 96 Zr(12 C,3n γ).
2552.0 $(17/2)^+$ 649.9 3 26 7 1901.8 $(15/2)^+$ 881.0 2 100 1671.14 $(13/2)^+$ E2 0.001348 19 α =0 α (N Mul	0.001348 19; $\alpha(K)$ =0.001177 17; $\alpha(L)$ =0.0001402 20; $\alpha(M)$ =2.63×10 ⁻⁵ 4; $\alpha(N+)$ =4.41×10 ⁻⁶ N)=4.41×10 ⁻⁶ 7 alt.: A ₂₂ =0.376 24, A ₄₄ =-0.18 3 (1977Ri05) and R _{DCO} =1.0 3 (1977Ri05) in 96 Zr(12 C,3n γ).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
lpha $lpha$ (N Mul	0.001622 23; $\alpha(K)$ =0.001415 20; $\alpha(L)$ =0.0001697 24; $\alpha(M)$ =3.18×10 ⁻⁵ 5; $\alpha(N+)$ =5.34×10 ⁻⁶ N)=5.34×10 ⁻⁶ 8 alt.: A_{22} =0.27 8, A_{44} =-0.01 11 (1977Ri05) and R_{DCO} =1.07 23 (1977Ri05) in 96 Zr(12 C,3n γ).
893.88 $\frac{\&}{10}$ 100 $\frac{\&}{100}$ 1671.14 (13/2) ⁺ (E2) 0.001302 19 $\alpha = 0$	0.001302 19; $\alpha(K)$ =0.001137 16; $\alpha(L)$ =0.0001353 19; $\alpha(M)$ =2.54×10 ⁻⁵ 4; $\alpha(N+)$ =4.26×10 ⁻⁶ N)=4.26×10 ⁻⁶ 6

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
									Mult.: A_{22} =0.37 5, A_{44} =-0.11 7 (1977Ri05) and R_{DCO} =0.81 14 in 96 Zr(12 C,3n γ).
2700.2	23/2-	958.42 ^{&} 5	100 ^{&}	1741.8	19/2-	E2		0.001108 <i>16</i>	α =0.001108 16 ; α (K)=0.000968 14 ; α (L)=0.0001146 16 ; α (M)=2.15×10 ⁻⁵ 3 ; α (N+)=3.61×10 ⁻⁶ α (N)=3.61×10 ⁻⁶ 5 Mult.: A ₂₂ =0.283 19 , A ₄₄ =-0.075 24 (1977Ri05) and R _{DCO} =1.12 4 (1977Ri05) in 96 Zr(12 C,3n γ).
2703.9	(19/2)	962.10 ^{&} 15	100&	1741.8	19/2-	M1+E2	+0.2 4	0.00122 4	$\alpha_{\text{DCO}}=1.12\ 4\ (1977\text{Rio5})\ \text{in}\ ^{12}\text{Cr}(^{-1}\text{C},3n\gamma).$ $\alpha=0.00122\ 4;\ \alpha(\text{K})=0.00107\ 3;\ \alpha(\text{L})=0.000124\ 3;$ $\alpha(\text{M})=2.32\times10^{-5}\ 6;\ \alpha(\text{N}+)=3.92\times10^{-6}\ 10$ $\alpha(\text{N})=3.92\times10^{-6}\ 10$ Mult.: $A_{22}=0.42\ 4,\ A_{44}=-0.08\ 5\ (1977\text{Rio5})\ \text{and}$ $R_{\text{DCO}}=0.93\ 24\ (1977\text{Rio5})\ \text{in}\ ^{96}\text{Zr}(^{12}\text{C},3n\gamma).$ δ : from DCO measurements in 1977Rio5; Alternatively: $0.2\ 6\ (1977\text{Rio5})\ \text{in}\ ^{96}\text{Zr}(^{12}\text{C},3n\gamma).$
2755.9	19/2+	854.02 ^{&} 5	100&	1901.8	(15/2)+	E2		0.001451 21	α =0.001451 21; α (K)=0.001267 18; α (L)=0.0001513 22; α (M)=2.84×10 ⁻⁵ 4; α (N+)=4.76×10 ⁻⁶ α (N)=4.76×10 ⁻⁶ 7 Mult.: A ₂₂ =0.326 25, A ₄₄ =-0.08 4 (1977Ri05)and R _{DCO} =1.02 5 (1977Ri05) in 96 Zr(12 C,3n γ).
		881.3 [#]	65 [#] 20	1873.9	$(15/2^+)$				RDC0=1.02 3 (1777R03) iii 21(C,3117).
		1014.3 ^{&} 3	19 ^{&} 3	1741.8	19/2-	E1+M2	-0.25 25	0.0005 4	α =0.0005 4; α (K)=0.0005 3; α (L)=6.E-5 4; α (M)=1.0×10 ⁻⁵ 7; α (N+)=1.7×10 ⁻⁶ 11 α (N)=1.7×10 ⁻⁶ 11 Mult.: A ₂₂ =0.28 8, A ₄₄ =-0.05 11 (1977Ri05)and R _{DCO} =1.0 3 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 96 Zr(12 C,3n γ) (1977Ri05), but also 0.08 8 (1977Ri05) can not be excluded.
2775.6	(21/2-)	814.22 ^{&} 20	50 ^{&} 10	1961.3	(17/2)	(E2)		0.001628 23	α =0.001628 23; α (K)=0.001420 20; α (L)=0.0001704 24; α (M)=3.20×10 ⁻⁵ 5; α (N+)=5.36×10 ⁻⁶ α (N)=5.36×10 ⁻⁶ 8 Mult.: A ₂₂ =0.27 8, A ₄₄ =-0.01 11 (1977Ri05) and R _{DCO} =0.7 3 (1977Ri05) in 96 Zr(12 C,3n γ).
		1033.77 & 10	100&	1741.8	19/2-	M1+E2	2.3 3	0.000952 15	α =0.000952 <i>15</i> ; α (K)=0.000833 <i>13</i> ; α (L)=9.77×10 ⁻⁵ <i>15</i> ; α (M)=1.83×10 ⁻⁵ <i>3</i> ; α (N+)=3.08×10 ⁻⁶ <i>5</i> α (N)=3.08×10 ⁻⁶ <i>5</i> Mult.: A ₂₂ =0.57 <i>6</i> , A ₄₄ =0.14 <i>8</i> (1977Ri05) and R _{DCO} =0.62 <i>14</i> (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO and linear pol. in 2019Ti02; Also: +0.62 <i>18</i> or 0.8 <i>3</i> from DCO measurements in 1977Ri05.

$\gamma(^{105}\text{Pd})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
2806.5	(19/2)+	241.6 ^{&} 2 254.53 ^{&} 10	6.5 ^{&} 22 100.0 ^{&} 22	2565.01 2552.0	(17/2) ⁺ (17/2) ⁺	M1+E2	+0.09 1	0.0304	$\alpha(K)$ =0.0265 4; $\alpha(L)$ =0.00319 5; $\alpha(M)$ =0.000599 9; $\alpha(N+)$ =0.0001009 15 $\alpha(N)$ =0.0001009 15 Mult.: A_{22} =-0.11 3, A_{44} =0.04 4 (1977Ri05) and R_{DCO} =1.64 18 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 96 Zr(12 C,3n γ) (1977Ri05), but also 0.13 4 can not be excluded
		904.7 ^{&} 1	26 ^{&} 4	1901.8	(15/2)+	E2		0.001266 18	(1977Ri05). α =0.001266 18; α (K)=0.001106 16; α (L)=0.0001315 19; α (M)=2.47×10 ⁻⁵ 4; α (N+)=4.14×10 ⁻⁶ α (N)=4.14×10 ⁻⁶ 6 Mult.: A ₂₂ =0.37 19, A ₄₄ =-0.3 3 (1977Ri05) and R _{DCO} =1.0 4 (1977Ri05) in 96 Zr(12 C,3n γ).
2900.7	(21/2)	939.4 ^{&} 3 1158.94 ^{&} 10	46 ^{&} 13 100 ^{&}	1961.3 1741.8	(17/2) ⁻ 19/2 ⁻	M1+E2	+1.3 9	0.00076 5	α =0.00076 5; α (K)=0.00067 4; α (L)=7.7×10 ⁻⁵ 5; α (M)=1.45×10 ⁻⁵ 8; α (N+)=5.34×10 ⁻⁶ 16 α (N)=2.44×10 ⁻⁶ 14; α (IPF)=2.9×10 ⁻⁶ 3 Mult.: A ₂₂ =0.65 8, A ₄₄ =-0.03 12 (1977Ri05) and R _{DCO} =0.58 16 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 96 Zr(12 C,3n γ) (1977Ri05), but also 1.6 11 (1977Ri05) can not be excluded.
3072.8	(21/2)+	372.6 ^{&} 2	8.0 ^{&} 20	2700.2	23/2-	E1+M2	-0.20 13	0.0055 24	α =0.0055 24; α (K)=0.0048 21; α (L)=0.0006 3; α (M)=0.00011 6; α (N+)=1.8×10 ⁻⁵ 9 α (N)=1.8×10 ⁻⁵ 9 Mult.: A ₂₂ =0.13 20, A ₄₄ =-0.0 3 in 96 Zr(12 C,3n γ) (1977Ri05). δ : from 96 Zr(12 C,3n γ) (1977Ri05).
		508.0 & 3	100&	2565.01	(17/2)+	E2		0.00571 8	α =0.00571 8; α (K)=0.00494 7; α (L)=0.000627 9; α (M)=0.0001179 17; α (N+)=1.96×10 ⁻⁵ 3 α (N)=1.96×10 ⁻⁵ 3 Mult.: A ₂₂ =0.263 23, A ₄₄ =-0.10 3 (1977Ri05) and R _{DCO} =0.91 9 (1977Ri05) in ⁹⁶ Zr(¹² C,3nγ).
		1331.0 ^{&} 2	48 ^{&} 6	1741.8	19/2-	E1+M2	+0.8 8	0.0008 4	α =0.0008 4; α (K)=0.0006 4; α (L)=7.E-5 5; α (M)=1.3×10 ⁻⁵ 9; α (N+)=8.E-5 4 α (N)=2.2×10 ⁻⁶ 14; α (IPF)=7.E-5 5 δ : R _{DCO} =1.8 5 (1977Ri05) in 96 Zr(12 C,3n γ).
3119.2	(21/2)+	312.67 ^{&} 10	100&	2806.5	(19/2)+	M1+E2	+0.12 3	0.0179	α (K)=0.01564 23; α (L)=0.00187 3; α (M)=0.000352 6; α (N+)=5.92×10 ⁻⁵ 9

$\gamma(^{105}\text{Pd})$ (continued)

						<u></u>			
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
2110.2	(21/2)+	1377.3 ^{&} 3	38& 9	1741.8	10/2-				$\alpha(N)=5.92\times10^{-5}$ 9 Mult.: $A_{22}=-0.05$ 3, $A_{44}=-0.01$ 4 (1977Ri05) and $R_{DCO}=1.60$ 17 (1977Ri05) in $^{96}Zr(^{12}C,3n\gamma)$. δ : from DCO measurements in $^{96}Zr(^{12}C,3n\gamma)$ (1977Ri05), but also 0.11 4 (1977Ri05) can not be excluded.
3119.2 3153.3	$(21/2)^{-}$ $(23/2)^{-}$	452.98 ^{&} 20	58& 6			M1(+E2)	0.0.6	0.0071.2	a=0.0071 2; a/V)=0.00610 21; a/L)=0.00072 5;
3133.3	(23/2)			2700.2 2	23/2	M1(+E2)	0.0 6	0.0071 3	α =0.0071 3; α (K)=0.00619 21; α (L)=0.00073 5; α (M)=0.000137 9; α (N+)=2.31×10 ⁻⁵ 13 α (N)=2.31×10 ⁻⁵ 13 Mult.: A ₂₂ =0.42 5, A ₄₄ =-0.13 8 (1977Ri05) and R _{DCO} =0.8 3 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 96 Zr(12 C,3n γ) (1977Ri05), but also 0.0 7 (1977Ri05) can not be excluded.
		808.8 ^{&} 2	100 ^{&}	2344.6 ((19/2)	E2		0.001655 24	α =0.001655 24; α (K)=0.001443 21; α (L)=0.0001732 25; α (M)=3.25×10 ⁻⁵ 5; α (N+)=5.45×10 ⁻⁶ α (N)=5.45×10 ⁻⁶ 8 Mult.: A ₂₂ =0.28 5, A ₄₄ =-0.07 8 (1977Ri05) and R _{DCO} =1.0 3 (1977Ri05) in 96 Zr(12 C,3n γ).
3294.7	23/2+	538.83 ^{&} 15	100 ^{&}	2755.9	19/2+	E2		0.00482 7	α =0.00482 7; α (K)=0.00418 6; α (L)=0.000526 8; α (M)=9.89×10 ⁻⁵ 14; α (N+)=1.646×10 ⁻⁵ 23 α (N)=1.646×10 ⁻⁵ 23 Mult.: A ₂₂ =0.358 19, A ₄₄ -0.08 3 (1977Ri05) and R _{DCO} =1.02 5 (1977Ri05) in 96 Zr(12 C,3n γ).
3468.6	(23/2)+	349.38 ^{&} 15	100&	3119.2 ((21/2)+	M1+E2	+0.14 2	0.01354 20	$\alpha(K)$ =0.01182 17; $\alpha(L)$ =0.001410 21; $\alpha(M)$ =0.000265 4; $\alpha(N+)$ =4.46×10 ⁻⁵ 7 $\alpha(N)$ =4.46×10 ⁻⁵ 7 Mult.: A ₂₂ =-0.02 3, A ₄₄ =0.01 5 (1977Ri05) and R _{DCO} =1.6 3 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 96 Zr(12 C,3n γ) (1977Ri05), but also 0.11 6 (1977Ri05)can not be excluded.
3527.6	(25/2)+	232.8& 3	5.3& 13	3294.7 2	23/2+	M1+E2	-0.27 7	0.0403 13	$\alpha(K)$ =0.0350 11; $\alpha(L)$ =0.00433 19; $\alpha(M)$ =0.00082 4; $\alpha(N+)$ =0.000137 6 $\alpha(N)$ =0.000137 6 Mult.: A ₂₂ =-0.69 10, A ₄₄ =0.14 13 (1977Ri05) in 96 Zr(12 C,3n γ).
		454.82 ^{&} 10	100 &	3072.8 ((21/2)+	E2		0.00791 11	α =0.00791 11; α (K)=0.00683 10; α (L)=0.000880 13; α (M)=0.0001659 24; α (N+)=2.75×10 ⁻⁵

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
3694.4	(25/2-)	918.8 ^{&} 3	100 ^{&}	2775.6	(21/2 ⁻)	E2		0.001221 18	$\alpha(N)=2.75\times10^{-5}$ 4 Mult.: $A_{22}=0.36$ 3, $A_{44}=-0.07$ 4 (1977Ri05) and $R_{DCO}=1.19$ 12 (1977Ri05) in $^{96}Zr(^{12}C,3n\gamma)$. $\alpha=0.001221$ 18; $\alpha(K)=0.001067$ 15; $\alpha(L)=0.0001267$ 18; $\alpha(M)=2.38\times10^{-5}$ 4; $\alpha(N+)=3.99\times10^{-6}$ $\alpha(N)=3.99\times10^{-6}$ 6
		994.12 ^{&} 20	89 ^{&} 17	2700.2	23/2-	M1+E2	2.7 6	0.001035 17	Mult.: $R_{DCO}=1.0 \ 4 \text{ in } ^{96}Zr(^{12}C,3n\gamma) \ (1977Ri05).$ $\alpha=0.001035 \ 17; \ \alpha(K)=0.000905 \ 15; \ \alpha(L)=0.0001064 \ 17;$ $\alpha(M)=1.99\times10^{-5} \ 3; \ \alpha(N+)=3.35\times10^{-6}$ $\alpha(N)=3.35\times10^{-6} \ 6$
									Mult.: A_{22} =0.8 3, A_{44} =-0.2 4 in 96 Zr(12 C,3n γ) (1977Ri05). δ : from DCO and linear pol. in 2019Ti02; Also: +1.5 10 in 1977Ri05.
3800.5	(27/2-)	1100.24 ^{&} 10	100&	2700.2	23/2-	(E2)		0.000815 12	α =0.000815 12; α (K)=0.000713 10; α (L)=8.35×10 ⁻⁵ 12; α (M)=1.564×10 ⁻⁵ 22; α (N+)=3.17×10 ⁻⁶ α (N)=2.63×10 ⁻⁶ 4; α (IPF)=5.44×10 ⁻⁷ 8 Mult.: A ₂₂ =0.14 4, A ₄₄ =-0.08 5 (1977Ri05) and R _{DCO} =1.54 16 (1977Ri05) in 96 Zr(12 C,3n γ).
3859.4	(25/2-)	959 ^e 1084 ^e 1159 ^e			(21/2) ⁻ (21/2 ⁻) 23/2 ⁻				Ng(0 13 13 (17)/1405) iii 2i (5,511).
3873.0	27/2+	578.27 ^{&} 5	100&	3294.7	23/2+	E2		0.00396 6	α =0.00396 6; α (K)=0.00344 5; α (L)=0.000428 6; α (M)=8.04×10 ⁻⁵ 12; α (N+)=1.341×10 ⁻⁵ 19 α (N)=1.341×10 ⁻⁵ 19 Mult.: A ₂₂ =0.44 3, A ₄₄ =-0.11 4 (1977Ri05) and R _{DCO} =1.04 6 (1977Ri05) in 96 Zr(12 C,3n γ).
4254.4	(29/2)+	726.8 ^{&} 2	100 ^{&}	3527.6	(25/2)+	E2		0.00216 3	α =0.00216 3; α (K)=0.00188 3; α (L)=0.000228 4; α (M)=4.28×10 ⁻⁵ 6; α (N+)=7.17×10 ⁻⁶ 10 α (N)=7.17×10 ⁻⁶ 10 Mult.: A ₂₂ =0.26 3, A ₄₄ =-0.02 4 (1977Ri05) and R _{DCO} =0.91 16 (1977Ri05) in 96 Zr(12 C,3n γ).
4668.2	(31/2+)	795.23 ^{&} 25	100 ^{&}	3873.0	27/2+	(E2)		0.001724 25	α =0.001724 25; α (K)=0.001504 21; α (L)=0.000181 3; α (M)=3.39×10 ⁻⁵ 5; α (N+)=5.69×10 ⁻⁶ 8 α (N)=5.69×10 ⁻⁶ 8 Mult.: A ₂₂ =0.28 4, A ₄₄ =-0.08 6 (1977Ri05) and R _{DCO} =1.21 18 (1977Ri05) in 96 Zr(12 C,3n γ).
4783.4	(29/2-)	924 ^e 983 ^e 1089 ^e		3800.5	(25/2 ⁻) (27/2 ⁻) (25/2 ⁻)	(E2)		0.000833 12	α =0.000833 12; α (K)=0.000729 11; α (L)=8.54×10 ⁻⁵ 12;

γ (105Pd) (continued)

						γ (103)	d) (continued)	
$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{ \ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
		0.	0.					$\alpha({\rm M})$ =1.600×10 ⁻⁵ 23; $\alpha({\rm N}+)$ =2.69×10 ⁻⁶ $\alpha({\rm N})$ =2.69×10 ⁻⁶ 4 Mult.: from DCO and γ polarization measurements in $^{96}{\rm Zr}(^{13}{\rm C},4{\rm n}\gamma)$ (2019Ti02).
4953.1	(31/2-)	1152.64 ^{&} 20	100&	3800.5	(27/2-)	(E2)	0.000739 11	α =0.000739 11; α (K)=0.000645 9; α (L)=7.53×10 ⁻⁵ 11; α (M)=1.410×10 ⁻⁵ 20; α (N+)=5.02×10 ⁻⁶ 8 α (N)=2.37×10 ⁻⁶ 4; α (IPF)=2.65×10 ⁻⁶ 4 Mult.: A ₂₂ =0.19 8, A ₄₄ =-0.11 2 (1977Ri05) and R _{DCO} =0.43 23 (1977Ri05) in 96 Zr(12 C,3n γ).
4955.9	(29/2-)	1097 ^e 1261 ^e		3859.4 3694.4	(25/2 ⁻) (25/2 ⁻)			
5255.3	(33/2+)	1000.9 ^{&} 3	100 ^{&}	4254.4	(29/2)+	(E2)	0.001004 14	$\alpha = 0.001004 \ 14; \ \alpha(K) = 0.000878 \ 13; \ \alpha(L) = 0.0001035 \ 15; \\ \alpha(M) = 1.94 \times 10^{-5} \ 3; \ \alpha(N+) = 3.26 \times 10^{-6} \\ \alpha(N) = 3.26 \times 10^{-6} \ 5 \\ \text{Mult.: A}_{22} = 0.02 \ 9, \ A_{44} = 0.04 \ 14 \ (1977\text{Ri}05) \ \text{and R}_{DCO} = 0.9 \ 3 \\ (1977\text{Ri}05) \ \text{in} \ ^{96}\text{Zr}(^{12}\text{C}, 3n\gamma).$
5682.2	$(35/2^+)$	1014 <mark>b</mark>	100 <mark>b</mark>	4668.2	$(31/2^+)$			· · · · · · · · · · · · · · · · · · ·
5847.4	(33/2 ⁻)	1064 ^e		4783.4	(29/2-)	(E2)	0.000876 13	α =0.000876 13; α (K)=0.000767 11; α (L)=9.00×10 ⁻⁵ 13; α (M)=1.687×10 ⁻⁵ 24; α (N+)=2.84×10 ⁻⁶ α (N)=2.84×10 ⁻⁶ 4 Mult.: from DCO and γ polarization measurements in 2019Ti02.
6073.1	$(35/2^{-})$	1120 ^b	100 <mark>b</mark>	4953.1	$(31/2^{-})$, .
6860.3	$(39/2^+)$	1178 ^b	100 <mark>b</mark>	5682.2	$(35/2^+)$			
6995.4	$(37/2^{-})$	1148 ^e		5847.4	$(33/2^{-})$			
(7094.5)		5918 ^c 3 6534.0 ^c 10		1177.7	$(1/2^+,3/2^+)$			
		6652 ^c 8		560.50 442.53	$(7/2)^+$			
		6749.4 ^c 10		344.9	1/2+			
		6812.9 ^c 14	1	280.62				
7193.1	$(39/2^{-})$	1120^{b}_{b}	100^{b}_{b}	6073.1	$(35/2^{-})$			E_{γ} : 1119 in ${}^{96}Zr({}^{13}C,4n\gamma)$ (2019Ti02).
8127.3	$(43/2^+)$	1267 ^b	100 ^b	6860.3	$(39/2^+)$			
8297.4 8410.1	$(41/2^{-})$ $(43/2^{-})$	1302 ^e 1217 ^b	100 <mark>b</mark>	6995.4 7193.1	(37/2 ⁻) (39/2 ⁻)			E_{v} : 1215 in ${}^{96}Zr({}^{13}C,4n\gamma)$ (2019Ti02).
9440.3	$(43/2^{+})$	1313^{b}	100^{b}	8127.3	$(39/2)$ $(43/2^+)$			L_{γ} . 1213 III $L_{1}(-C, +II\gamma)$ (20171102).
10875.3	$(51/2^+)$	1435 ^b	100^{b}	9440.3	$(43/2^{+})$			
x+1209.0	$[47/2^+]$	1209 ^b	100 b	х	$[43/2^+]$			
x+2491.0	$[51/2^+]$	1282 ^b	100 ^b	x+1209.0	[47/2+]			
x+3870.0	[55/2+]	1379 ^b	100 <mark>b</mark>	x+2491.0	[51/2+]			
x+5358.0	$[59/2^{+}]$	1488 ^b	100 ^b	x+3870.0	$[55/2^+]$			

γ (105Pd) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
x+6955.0	[63/2+]	1597 <mark>b</mark>	100 <mark>b</mark>	x+5358.0	[59/2+]
x+8675.1	$[67/2^{+}]$	1720 ^b	100 <mark>b</mark>	x+6955.0	$[63/2^+]$
x+10521	$[71/2^+]$	1846 <mark>b</mark>	100 <mark>b</mark>	x+8675.1	$[67/2^+]$
x+12528	$[75/2^+]$	2007 ^b	100 ^b	x+10521	$[71/2^+]$
x+14669	$[79/2^{+}]$	2141 ^b	100 <mark>b</mark>	x+12528	$[75/2^{+}]$

- [†] Additional information 2. [‡] From 105 Ag ε decay (41.29 d), unless otherwise noted. ΔE =1 keV assumed by the evaluators for all transitions where ΔE not explicitely given by the authors. [#] From 104 Ru(α ,3n γ).

- [#] From 105 Ru(α,3nγ). [@] From 105 Pd(n,n'γ). [&] From 96 Zr(12 C,3nγ) (1977Ri05). ^a From 105 Ag ε decay (7.23 min). ^b From 64 Ni(48 Ca,α3n). ^c From 104 Pd(n,γ) E=th.

- ^d From Coulomb excitation. ^e From ⁹⁶Zr(¹³C,4nγ) (2019Ti02).
- f Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

$\begin{array}{ccc} & & & & \\ \underline{Level\ Scheme} & & & & & \\ \underline{Intensities:\ Type\ not\ specified} & & & & & \\ & & & & & & \\ Intensities:\ Type\ not\ specified & & & & \\ & & & & & \\ \underline{I}_{\gamma} < \ 10\% \times I_{\gamma}^{max} \\ & & & & \\ & & & & \\ & & & & \\ I_{\gamma} > \ 10\% \times I_{\gamma}^{max} \end{array}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Type not specified

Legend

Adopted Levels, Gammas Legend Level Scheme (continued) $\begin{array}{ll} & \mathbf{I}_{\gamma} < 2\% \times \mathbf{I}_{\gamma}^{max} \\ & \mathbf{I}_{\gamma} < 10\% \times \mathbf{I}_{\gamma}^{max} \\ & \mathbf{I}_{\gamma} > 10\% \times \mathbf{I}_{\gamma}^{max} \end{array}$ Intensities: Type not specified $(21/2)^{+}$ 3119.2 $(21/2)^{+}$ 3072.8 001 34 W | 100 $(21/2)^{-}$ 2900.7 $(19/2)^{+}$ 2806.5 $(21/2^{-})$ 2775.6 2755.9 19/2+ (19/2) 2703.9 23/2⁻ (17/2)⁺ 2700.2 2565.01 $\overline{(17/2)^{+}}$ 2552.0 $(19/2^{-})$ 2490.9 $(19/2)^{-}$ 2344.6 $(15/2,17/2)^{-}$ -85. -8-2280.6 $(15/2)^+$ 2197.1 $(7/2^-, 9/2, 11/2^+)$ 2101.5 $\frac{(1/2^+,3/2^+)}{(1/2,3/2,5/2)^-}$ 2064.7 1988.9 (17/2) 1961.3 $\overline{(1/2^+,3/2^+)}$ 1922.9 $(15/2)^{+}$ 1901.8 $(15/2^+)$ 1873.9 $(15/2)^{-}$ 1763.2 $(13/2)^{+}$ 1749.6 19/2-(13/2) 1741.8 1671.14 $(13/2^+)$ 1410.9 $(13/2^{-})$ 1357.0 (11/2+) 1324.2 $(11/2)^{+}$ 1271.41 $(5/2^+, 7/2^+, 9/2^+)$ 1098.1 $(11/2^+)$ 1011.47 970.0 <0.2 ps (1/2,3/2) 962.4 3/2+ 560.50 1.9 ps 5 35.5 μs 5 11/2 489.1 $(7/2)^{-1}$ 442.53 1.2 ps 6 5/2+ 319.38 33 ps 5 $3/2^{+}$ 280.62 47 ps 5 5/2+ 0.0 stable

 $^{105}_{46}\mathrm{Pd}_{59}$

Adopted Levels, Gammas

Adopted Levels, Gammas

Band(H): $\Delta J=2$ superdeformed band

Band(G): $\Delta J=1$ band, built on $J^{\pi}=(17/2^{+})$

(23/2)+	3468.6
(21/2)+ 349	3119.2
$(19/2)^+$ 313	2806.5

105 Rh β^- decay (35.3 h) 2010Kr05,1965Pi01

History

Type Author Citation Literature Cutoff Date
Full Evaluation S. Lalkovski, J. Timar and Z. Elekes NDS 161, 1 (2019) 1-Apr-2019

Parent: 105 Rh: E=0.0; J^{π} =7/2+; $T_{1/2}$ =35.341 h 19; $Q(\beta^{-})$ =566.7 24; % β^{-} decay=100.0

- 105 Rh- $T_{1/2}$: weighted average of 35.357 h 37 and 35.319 h 24, from γ (t) measurements performed respectively at room temperature and at T=19 K in 2009Go29, 35.47 h 8 in 1967ko?? and 35.4 h 1 1965Pi01; Others: 35.88 h 2 (1962Br15);
- 2010Kr05: Facility: Oregon State University TRIGA reactor; Source: from a natural 5-20 mg Ru (¹⁰⁴Ru abundance is 18.6%) metal and RuO₂ powder samples, irradiated with thermal and epithermal neutrons; Detectors: flux monitors, one HPGe detector; Measured: *γ*, E*γ*, I*γ*.
- 2005Mo07: Facility: Kyoto University Research Reactor Institute; Source: chemically separated from irradiated 0.1mg Ru sample enriched to 99.21% in 104 Ru; Detectors: $4\pi\beta$, one HPGe detector; Measured: β - γ coinc., $I\beta$, $I\gamma$, $E\gamma$; Deduced: 105 Ru level scheme, $I\gamma$ normalization.
- 1967Sc01: Facility: McMaster nuclear reactor; Source: chemically separated from irradiated 100 μ g ¹⁰⁴Ru target; Detectors: two NaI(Tl), several Ge(Li), magnetic spectrometer ($\Delta p/p=0.5\%$) and a lens spectrometer ($\Delta p/p\approx3\%$); Measured: γ , β , β - γ and γ - γ coinc., E γ , I γ , E β , I β , I(ce).
- 1965Pi01: Facility: Univ. Michigan Ford Nuclear Reactor; Source: chemically separated from irradiated 105 Rh sample, enriched to 99.8% in 105 Rh; Detectors: NaI(Tl), Ge(Li), proportional counters, magnets and Pilot β scintillator; Measured: β , ce, γ , β - β , β - γ and γ - γ coinc.; Deduced: 105 Pd level scheme, α (K)exp.
- 1962Me07: Facility: Oak Ridge National Lab. Research Reactor; Source: mass-separated from 5-10 mg thick target eneriched to 98.16% in 104 Ru and exposed in a slow neutron flux 2.5×10^{14} n/cm².s; Detectors: ultracentrifuge, Pd and Ag scatterers, two PMT's and a mirror, one NaI shielded by Pb in front; Measured: γ , $\gamma(\theta)$, E γ ; Deduced: δ , $T_{1/2}$.
- Others: 2009Go29, 1977Wi10, 1976Ba39, 1974Be71, 1969Od01, 1964Ka23, 1962Br15, and 1967ko?? for Kobayashi in J.Inorg.Nucl.Chem.29 (1967) 1374.

105Pd Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	Comments
0.0	5/2+	stable	
280.522 10	$3/2^{+}$		
306.311 <i>10</i>	$7/2^{+}$		
319.233 <i>10</i>	$5/2^{+}$	40 ps 10	$T_{1/2}$: from $250\beta^{-}315\gamma(t)$ in 1974Be71; Others: 51 ps 3 in 1962Me07.
442.418 <i>10</i>	$(7/2)^+$	-	

[†] From a least-squares fit to $E\gamma$.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(124.3 24)	442.418	0.0355 8	6.91 <i>3</i>	av Eβ=33.04 68
(247.5 24)	319.233	17.8 6	5.152 20	av E β =69.72 75
(260.4 24)	306.311	4.75 10	5.797 16	av E β =73.79 76
$(286.2^{\ddagger} 24)$	280.522	< 0.01	>8.6	av E β =81.99 78
(566.7 24)	0.0	77.9 5	5.710 7	av E β =179.31 89

[†] Absolute intensity per 100 decays.

[‡] From the Adopted Levels.

[‡] Existence of this branch is questionable.

¹⁰⁵Rh β⁻ decay (35.3 h) **2010Kr05,1965Pi01** (continued)

γ (105Pd)

Iy normalization: from the intensity balance to the 306-keV level; $I\beta$ =4.76 5 in 2005Mo07 and $I(\gamma$ +ce)_{306y}.

$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ} ‡@	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	α^{\dagger}	Comments
38.77 7	0.135 2	319.233	5/2+	280.522	3/2+	M1(+E2)		24 18	$\alpha(K)=12\ 7;\ \alpha(L)=10\ 10;$ $\alpha(M)=1.9\ 18;\ \alpha(N+)=0.3$
280.523 10	0.905 9	280.522	3/2+	0.0	5/2+	M1+E2	+0.143 7	0.0238	$\alpha(N)$ =0.3 3 $\alpha(N)$ =0.0200 3 (1965Pi01) E_{γ} : 38.72 3 in 1972De67; I_{γ} : from intensity balance to the 280-keV level. $\alpha(K)$ exp: 5.8 6 (1965Pi01). $\alpha(K)$ =0.0207 3; $\alpha(L)$ =0.00249 4; $\alpha(M)$ =0.000469 7; $\alpha(N+)$ =7.89×10 ⁻⁵ 12 $\alpha(N)$ =7.89×10 ⁻⁵ 12 $\alpha(N)$ =7.81×10 ⁻⁵ 11
									δ: +0.132 8 (1977Wi10), +0.07 7 (1976Ba39). α(K)exp=0.020 4 (1965Pi01).
306.311 10	27.6 3	306.311	7/2+	0.0	5/2+	M1+E2	+0.055 2	0.0188	$\alpha(K)$ =0.01640 23; $\alpha(L)$ =0.00196 3; $\alpha(M)$ =0.000368 6; $\alpha(N+)$ =6.20×10 ⁻⁵ 9 $\alpha(N)$ =6.20×10 ⁻⁵ 9
319.231 10	100.0 10	319.233	5/2+	0.0	5/2+	M1+E2	+0.103 8	0.01697	δ: Other: +0.055 2 (1976Ba39) and 0.06 I (1977Wi10). α (K)exp: 0.016 2 from Ice/I γ and comparison with low energy I β (1964Ka23). α (K)exp=0.013 2; K/L=8 I α (K)=0.01481 2 I ; α (L)=0.001769 25; α (M)=0.000332 5; α (N+)=5.60×10 ⁻⁵ 8 α (N)=5.60×10 ⁻⁵ 8 δ: from the adopted
442.417 10	0.210 2	442.418	(7/2)+	0.0	5/2+	M1+E2	-0.23 6	0.00756 11	gammas; Others: +0.11 I (1977Wi10), +0.091 $I3$ or +1.35 3 (1976Ba39), -0.11 (1962Me07). α (K)exp: From Ice/I γ and comparison with low-energy I β (1964Ka23). α =0.00756 $I1$; α (K)=0.00660 $I0$; α (L)=0.000783 $I2$; α (M)=0.0001470 23 ; α (N+)=2.48×10 ⁻⁵ α (N)=2.48×10 ⁻⁵ 4 δ : From the adopted

$^{105}{\rm Rh}\,\beta^-$ decay (35.3 h) **2010Kr05,1965Pi01** (continued)

γ (105Pd) (continued)

 $E_i(level)$ Comments

gammas; Others: -0.8 +7-4 (1976Ba39), -0.2 or -0.3 (1977Wi10).

[†] Additional information 1. ‡ From 2010Kr05, unless otherwise noted. # From the adopted gammas. @ For absolute intensity per 100 decays, multiply by 0.169 3.

105 Rh β^- decay (35.3 h) 2010Kr05,1965Pi01

Decay Scheme

¹⁰⁵Pd IT decay (35.5 μ s) 1965Mc03,1958Du80,1956Ve03

Type Author Citation Literature Cutoff Date
Full Evaluation S. Lalkovski, J. Timar and Z. Elekes NDS 161, 1 (2019) 1-Apr-2019

Parent: 105 Pd: E=489.2 *15*; J^{π} =11/2 $^{-}$; $T_{1/2}$ =35.5 μ s *5*; %IT decay=100.0

1965Mc03: Facility: Univ.Pittsburg cyclotron; Beam: E(d)=15 MeV, pulsed; Detectors: one NaI(Tl); Measured: E γ , γ (t); Deduced: $T_{1/2}$.

1956Ve03, 1958Du80: Facility: Univ. Illinois betatron; Beam: bremsstrahlung from $E(\beta)=22$ MeV; Detectors: one NaI, shielded with Pb; Measured: $\gamma(t)$, $E\gamma$, $I\gamma(t)$; Deduced: $T_{1/2}$.

¹⁰⁵Pd Levels

 $\frac{\text{E(level)}^{\dagger}}{0.0} \quad \frac{\text{J}^{\pi \ddagger}}{5/2^{+}} \quad \frac{\text{T}_{1/2}^{\ddagger}}{71 \text{ ps } 8} \\
489.2 \quad 15 \quad 11/2^{-} \quad 35.5 \text{ } \mu \text{s} \quad 5$

γ (105Pd)

Iy normalization: from $I(\gamma+ce)$ (to g.s.)=100%.

E_{γ}^{\sharp}	$I_{\gamma}^{\#}$	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	$lpha^\dagger$	$I_{(\gamma+ce)}^{\#}$	Comments
182.92	68.8 3	489.2	11/2-	306.3 7/2+	M2		0.453	100	$\alpha(K)$ =0.383 6; $\alpha(L)$ =0.0567 8; $\alpha(M)$ =0.01087 16; $\alpha(N+)$ =0.00182 3 $\alpha(N)$ =0.00182 3
306.30	98.15 <i>3</i>	306.3	7/2+	0.0 5/2+	M1+E2	+0.055 2	0.0188	100	$\alpha(K)=0.01640 \ 23; \ \alpha(L)=0.00196$ $3; \ \alpha(M)=0.000368 \ 6;$ $\alpha(N+)=6.20\times10^{-5} \ 9$ $\alpha(N)=6.20\times10^{-5} \ 9$

[†] Additional information 1.

[†] From a least-squares fit to Ey. Δ Ey=1 assumed by the evaluators.

[‡] From the Adopted Levels.

[‡] From the Adopted Levels.

[#] Absolute intensity per 100 decays.

$^{105}{\rm Pd}$ IT decay (35.5 $\mu{\rm s}$) 1965Mc03,1958Du80,1956Ve03

¹⁰⁵Ag ε decay (41.29 d) 1996Me17,1970Ka13

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, J. Timar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019

Parent: 105 Ag: E=0.0; $J^{\pi}=1/2^-$; $T_{1/2}=41.29$ d 7; $Q(\varepsilon)=1347.5$; $\%\varepsilon+\%\beta^+$ decay=100.0

1996Me17: Facility: LNL ICT accelerator; Source: from (n,γ) reactions on 50-100 mg thick target enriched to 82.09% in 106 Cd. Neutron flux= $6x10^{12}$ n/sec in 4π from 2 H(3 H, 4 He)n reaction; Detectors: one large Ge(Li) and one small Ge(Li) x-ray detector; Measured: γ , E γ , I γ ; Deduced: 105 Pd level scheme, log ft, J.

1983Si08: Facility: AERE, Harawell Tandem Accelerator; Source: from 103 Rh(α ,2n), E(α)=28 MeV; Detectors: one Ge(Li), one NaI(Tl); Measured: γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, E γ , I γ ; Deduced: δ , Mult., 105 Pd level scheme.

1970Ka13: Facility: Tokyio Institute of Technology cyclotron; Source: 105 Ag, chemically separated from nat Pd(p,2n) and 106 Pd(p,2n) and mounted on 10 μ m Pt and 2 μ m Ni foils; Detectors: β -spectrometer with σ =0.013% for 662-keV line, one proportional gas counter, and one Si(Li) detector; Measured: γ , β , Ice, I γ , E $_{\beta}$, E γ ; Deduced: level scheme, δ .

1981Al19: Facility: KFZ Karlsruhe cyclotron; Soruce: chemically separated from (α,2n) on natural Rh and (d,2n) on enriched in ¹⁰⁵Pd target and beam energies E(α)=50 MeV, E(d)=15 MeV. Measurements taken 6 weeks after irradiation to eliminate contribution from ^{105m}Ag; Detectors: three large-volume plannar Ge detectors, two cooled pure NaI detectors; Measured: γ, γγ, γγ(θ), Εγ, Ιγ; Deduced: level scheme, g-factors, T_{1/2}.

1977Ba32: Source: from 105 Pd(p,n) reaction with E(p)=6.7 MeV and target enriched to 94% in 105 Pd; Detectors: one Ge(Li), one NaI(Tl); Measured: γ , $\gamma\gamma(\theta)$, E γ , I γ ; Deduced: δ , 105 Pd level scheme.

1970Sc10: Facility: ISOLDE synchro-cyclotron; Beam: E(p)=600 MeV; Target: Sn; Source: mass-separated ¹⁰⁵Cd. Measurements performed few days after irradiation; Detectors: on-line separator, one planar Ge(Li), one plastic (Pilot β) and one NaI(Tl); Measured: γ, γ(t), Eγ, Iγ; Deduced: T_{1/2}.

Others: 1984BeZQ, 1979Be66, 1979BeYM, 1978Ve04, 1976BaYL, 1976JaZU, 1975BeYC, 1974ArZY, 1973Se20, 1973ThZL, 1972Be67, 1972Bf01, 1971BeWF, 1971BeWG, 1971RiZH, 1970BIZT, 1969Ho36, 1969Ka02, 1969McZY, 1968An14, 1968Ri10.

¹⁰⁵Pd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	5/2+	·	
280.5 4	3/2+#		$g=-0.049$ 12 from IPAC in 1981Al19, assuming $T_{1/2}=67$ ps 12.
306.3 7	7/2+		
319.2 5	5/2 ^{+#}		$g=+38 \ 8$ from IPAC in 1981A119, assuming $T_{1/2}=38 \ 2$ ps.
344.6 5	1/2+	1.01 ns 5	$T_{1/2}$: from 618 γ -344 γ (t) and 22X-344 γ (t) in 1970Sc10; Others: 0.88 ns 5 in 1974Be71, 0.801 ns 64 in 1969Ka02.
442.3 6	$(7/2)^{+}$		
489.2 9	11/2-		
560.7 <i>5</i>	3/2+		
644.6 6	7/2-	126 ps 2	$T_{1/2}$: 443-645 γ (t) with cooled NaI detectors (1981Al19). g=-0.427 25 from IPAC in 1981Al19. configuration: $2^+ \otimes \nu h_{11/2}$.
650.8 5	$(3/2)^+$		2 11/2
673.2 5	1/2+#		
727.3 5	5/2+		
921.2 6	$(1/2^+ \text{ to } 5/2^+)$		
929.1 6	$(5/2^+)$		
	$(1/2,3/2)^+$		
1088.1 <i>4</i> 1125.2 <i>7</i>	$3/2^-$ (1/2+ to 7/2+)		
1143.4 /	(1/2 10 //2)		

[†] From a least-squares fit to Ey. Δ Ey=1 keV adopted by the evaluators.

[‡] From the Adopted Levels.

[#] Possible member of the $2^+ \otimes vd_{5/2}$ multiplet.

$^{105}\mathrm{Ag}\;\varepsilon$ decay (41.29 d) 1996Me17,1970Ka13 (continued)

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}arepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(222 5)	1125.2	0.042 5	8.84 6	0.042 5	ε K=0.8420 7; ε L=0.1266 6; ε M+=0.03144 16
$(259\ 5)$	1088.1	17.5 <i>17</i>	6.36 5	17.5 <i>17</i>	ε K=0.8461 5; ε L=0.1234 4; ε M+=0.03053 11
(385 5)	962.5	1.79 <i>17</i>	7.72 5	1.79 <i>17</i>	ε K=0.8536 2; ε L=0.11752 16; ε M+=0.02886 5
$(426\ 5)$	921.2	0.073 7	9.21 5	0.073 7	ε K=0.8551 2; ε L=0.11640 13; ε M+=0.02854 4
(620 5)	727.3	0.036 4	$9.99^{1u} 5$	0.036 4	εK=0.8458 3; εL=0.12361 18; εM+=0.03064 6
(674 5)	673.2	2.9 3	8.02 5	2.9 3	ε K=0.8598; ε L=0.11270 5; ε M+=0.02749 2
$(696\ 5)$	650.8	7.2 7	7.66 5	7.2 7	ε K=0.8601; ε L=0.11250 5; ε M+=0.02744 2
$(702^{\ddagger} 5)$	644.6	0.053 7	10.30^{2u} 6	0.053 7	εK=0.8323 4; εL=0.1340 3; εM+=0.03370 9
$(786\ 5)$	560.7	0.14 4	9.83 ¹ <i>u</i> 13	0.14 4	ε K=0.8514 2; ε L=0.1192 1; ε M+=0.02938 3
$(905\ 5)$	442.3	0.27 3	9.32 5	0.27 3	ε K=0.8618; ε L=0.11113 3; ε M+=0.027051 8
$(1002\ 5)$	344.6	67 <i>7</i>	7.01 5	67 <i>7</i>	ε K=0.8624; ε L=0.11069 2; ε M+=0.026927 6
$(1028^{\ddagger} 5)$	319.2	0.19 10	$10.17^{1u} \ 23$	0.19 10	ε K=0.8558; ε L=0.11579 6; ε M+=0.02838 2
(1041 [‡] <i>5</i>)	306.3	0.136 14	9.74 5	0.136 14	ε K=0.8626; ε L=0.11054 2; ε M+=0.026885 6
$(1067\ 5)$	280.5	1.2 4	8.82 15	1.2 4	ε K=0.8627; ε L=0.11045 2; ε M+=0.026859 5
1347 5	0.0	≈1	$\approx 9.9^{1u}$	≈1	ε K=0.8586; ε L=0.11331 4; ε M+=0.027677 9

 $^{^{\}dagger}$ Absolute intensity per 100 decays. ‡ Existence of this branch is questionable.

 ω

E_{γ}^{\ddagger}	I_{γ} ^{‡@}	E_i (level)	J_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\!\#}$	$lpha^\dagger$	Comments
38.77	0.13	319.2	5/2+	280.5 3/2+	M1(+E2)		24 18	$\alpha(K)=12\ 7;\ \alpha(L)=10\ 10;\ \alpha(M)=1.9\ 18;\ \alpha(N+)=0.3\ 3$ $\alpha(N)=0.3\ 3$
64.072	268	344.6	1/2+	280.5 3/2+	M1(+E2)	-0.025 30	1.354 23	$\alpha(K) \exp = 1.17 \ 7 \ (1970 \text{Ka} 13)$ $\alpha(K) = 1.175 \ 19; \ \alpha(L) = 0.147 \ 5; \ \alpha(M) = 0.0276 \ 9;$ $\alpha(N+) = 0.00463 \ 14$ $\alpha(N) = 0.00463 \ 14$ δ : from $\gamma\gamma(\theta)$ in 1981 Al 19.
90.01	0.8	650.8	$(3/2)^+$	560.7 3/2+	[M1+E2]		1.3 8	$\alpha(K)=1.0 \ 6; \ \alpha(L)=0.23 \ 18; \ \alpha(M)=0.04 \ 4; \ \alpha(N+)=0.007 \ 6$ $\alpha(N)=0.007 \ 6$
112.51	0.84	673.2	1/2+	560.7 3/2+	[M1+E2]		0.6 4	$\alpha(K)$ =0.48 25; $\alpha(L)$ =0.09 7; $\alpha(M)$ =0.018 13; $\alpha(N+)$ =0.0029 20 $\alpha(N)$ =0.0029 20
155.38	9.8	644.6	7/2 ⁻	489.2 11/2	E2		0.289	$\alpha(K)\exp[0.235\ 2I\ (1970Ka13)]$ $\alpha(K)=0.238\ 4;\ \alpha(L)=0.0423\ 6;\ \alpha(M)=0.00808\ I2;$ $\alpha(N+)=0.001290\ I8$ $\alpha(N)=0.001290\ I8$
159.0	0.75	1088.1	3/2-	929.1 (5/2+)	[E1]		0.0405	$\alpha(K)$ =0.0354 5; $\alpha(L)$ =0.00420 6; $\alpha(M)$ =0.000783 11; $\alpha(N+)$ =0.0001301 19 $\alpha(N)$ =0.0001301 19
182.92	8.6	489.2	11/2-	306.3 7/2+	M2		0.453	$\alpha(K)$ 6.50=0.40 5 (1970Ka13) $\alpha(K)$ = 0.383 6; $\alpha(L)$ = 0.0567 8; $\alpha(M)$ = 0.01087 16; $\alpha(N+)$ = 0.00182 3 $\alpha(N)$ = 0.00182 3
202.21	0.7	644.6	7/2-	442.3 (7/2)+	[E1+M2]		0.17 15	$\alpha(K) = 0.05162 \ \alpha(K) = 0.1513; \ \alpha(L) = 0.02119; \ \alpha(M) = 0.0044; \ \alpha(N+) = 0.00076 \ \alpha(N) = 0.00076$
216.1	0.33	560.7	3/2+	344.6 1/2+	[M1+E2]		0.068 23	$\alpha(K)$ =0.058 18; $\alpha(L)$ =0.008 4; $\alpha(M)$ =0.0016 7; $\alpha(N+)$ =0.00026 11 $\alpha(N)$ =0.00026 11
270.5 280.54	0.03 744	921.2 280.5	(1/2 ⁺ to 5/2 ⁺) 3/2 ⁺	650.8 (3/2) ⁺ 0.0 5/2 ⁺	M1+E2	+0.143 7	0.0238	$\alpha(K)$ =0.00020 17 $\alpha(K)$ =0.00020 17 $\alpha(K)$ =0.000249 4; $\alpha(M)$ =0.000469 7; $\alpha(N+)$ =7.89×10 ⁻⁵ 12 $\alpha(N)$ =7.89×10 ⁻⁵ 12 Mult.: A ₂₂ =0.156 8, A ₄₄ =0.031 9 (1983Si08). δ : 0.178 14 in 1983Si08. $\alpha(K)$ exp=0.0209 13 (1970Ka13).
284.8	2.3	727.3	5/2+	442.3 (7/2)+	M1		0.0226	$\alpha(K)$ exp=0.0162 23 (1970Ka13) $\alpha(K)$ =0.0197 3; $\alpha(L)$ =0.00236 4; $\alpha(M)$ =0.000443 7;

105 Ag ε decay (41.29 d) 1996Me17,1970Ka13 (continued)

E_{γ}^{\ddagger}	I_{γ} ‡@	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
289.37	2.9	962.5	(1/2,3/2)+	673.2	1/2+	M1		0.0217	$\alpha(N+)=7.47\times10^{-5} \ 11$ $\alpha(N)=7.47\times10^{-5} \ 11$ $\alpha(K)=0.0147 \ 17 \ (1970Ka13)$ $\alpha(K)=0.0189 \ 3; \ \alpha(L)=0.00226 \ 4; \ \alpha(M)=0.000425 \ 6;$ $\alpha(N+)=7.17\times10^{-5} \ 10$
306.30	18.3	306.3	7/2+	0.0	5/2+	M1+E2	+0.055 2	0.0188	$\alpha(N)=7.17\times10^{-5}\ I0$ $\alpha(K)=0.01640\ 23;\ \alpha(L)=0.00196\ 3;\ \alpha(M)=0.000368\ 6;$ $\alpha(N+)=6.20\times10^{-5}\ 9$ $\alpha(N)=6.20\times10^{-5}\ 9$ Mult.: $A_{22}=-0.064\ 17,\ A_{44}=-0.081\ 24\ (1983Si08);\ Other:$ $A_{22}=-0.200\ 33,\ A_{44}=0.043\ 71\ (1977Ba32).$ Mult.: $\alpha(K)\exp=0.0142\ 14\ (1970Ka13).$
311.74	1.9	962.5	(1/2,3/2)+	650.8	(3/2)+	M1		0.0179	δ: 0.02 4 (1983Si08), -0.39 +13-6 from $\gamma\gamma(\theta)$ in 1977Ba32. $\alpha(K)$ exp=0.0096 14 (1970Ka13) $\alpha(K)$ =0.01566 22; $\alpha(L)$ =0.00187 3; $\alpha(M)$ =0.000351 5; $\alpha(N+)$ =5.92×10 ⁻⁵ 9
319.24	106	319.2	5/2+	0.0	5/2+	M1+E2	+0.103 8	0.01697	$\alpha(N)=5.92\times10^{-5}$ 9 $\alpha(K)\exp=0.014$ 9 (1970Ka13) $\alpha(K)=0.01481$ 21; $\alpha(L)=0.001769$ 25; $\alpha(M)=0.000332$ 5; $\alpha(N+)=5.60\times10^{-5}$ 8 $\alpha(N)=5.60\times10^{-5}$ 8 Mult.: $A_{22}=-0.157$ 8; $A_{44}=0.026$ 11 (1983Si08). δ : Also, -0.007 20 (1983Si08), -0.16 3 from $\gamma\gamma(\theta)$ in 1977Ba32; $+0.137$ (9) from $\gamma\gamma(\theta)$ in 1981Al19;
325.43	4.8	644.6	7/2-	319.2	5/2+	E1		0.00559 8	$\alpha(K) \exp=0.0043 \ 8 \ (1970 \text{Ka} 13)$ $\alpha=0.00559 \ 8; \ \alpha(K)=0.00489 \ 7; \ \alpha(L)=0.000571 \ 8; \ \alpha(M)=0.0001067$ $15; \ \alpha(N+)=1.79\times10^{-5} \ 3$ $\alpha(N)=1.79\times10^{-5} \ 3$
328.61	4.9	673.2	1/2+	344.6	1/2+	(M1)		0.01570	$\alpha(K)$ exp=0.0084 9 (1970Ka13) $\alpha(K)$ =0.01371 20; $\alpha(L)$ =0.001632 23; $\alpha(M)$ =0.000307 5; $\alpha(N+)$ =5.17×10 ⁻⁵ 8 $\alpha(N)$ =5.17×10 ⁻⁵ 8
331.58	98.6	650.8	(3/2)+	319.2		M1+E2	-0.084 7	0.01539	$\alpha(N)=3.17 \times 10^{-6}$ $\alpha(K)=0.01343$ 19; $\alpha(L)=0.001602$ 23; $\alpha(M)=0.000301$ 5; $\alpha(N+)=5.07 \times 10^{-5}$ 8 $\alpha(N)=5.07 \times 10^{-5}$ 8 Mult.: $A_{22}=-0.104$ 11, $A_{44}=-0.10$ 10 (1977Ba32); Also $\alpha(K)\exp(0.0122)$ 8 (1970Ka13). δ : -0.084 7 from γ - $\gamma(\theta)$ in 1983Si08, and -0.062 9 from γ - $\gamma(\theta)$ in 1981A119.
344.51 ^{&} 344.61	1000	650.8 344.6	$(3/2)^+$ $1/2^+$	306.3		E2		0.0188	$\alpha(K)$ exp=0.0163 10 (1970Ka13) $\alpha(K)$ =0.01611 23; $\alpha(L)$ =0.00219 3; $\alpha(M)$ =0.000413 6;

From ENSDF

E_{γ}^{\ddagger}	Ι _γ ‡@	$E_i(level)$	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.#	δ#	$lpha^\dagger$	Comments
353.8	0.2	673.2	1/2+	319.2		[E2]		0.01725	$\alpha(N+)=6.80\times10^{-5}\ 10$ $\alpha(N)=6.80\times10^{-5}\ 10$ $\alpha(K)=0.01482\ 21;\ \alpha(L)=0.00200\ 3;\ \alpha(M)=0.000377\ 6;$ $\alpha(N+)=6.22\times10^{-5}\ 9$
360.72	11.3	1088.1	3/2-	727.3	5/2+	E1		0.00427 6	$\alpha(N)=6.22\times10^{-5}$ 9 $\alpha(K)\exp=0.0039$ 4 (1970Ka13) $\alpha=0.00427$ 6; $\alpha(K)=0.00374$ 6; $\alpha(L)=0.000436$ 6; $\alpha(M)=8.15\times10^{-5}$ 12; $\alpha(N+)=1.365\times10^{-5}$ 20
370.28	17.6	650.8	(3/2)+	280.5	3/2+	M1+E2	0.11 3	0.01167	$\alpha(N)=1.365\times10^{-5} \ 20$ $\alpha(K)=0.01020 \ 15; \ \alpha(L)=0.001212 \ 18; \ \alpha(M)=0.000228 \ 4;$ $\alpha(N+)=3.84\times10^{-5} \ 6$ $\alpha(N)=3.84\times10^{-5} \ 6$
392.73	47.8	673.2	1/2+	280.5	3/2+	M1+E2	+0.06 3	0.01006 <i>15</i>	Mult.: A_{22} =-0.072 12, A_{44} =-0.001 16 (1983Si08); Other: A_{22} =-0.098 16 A_{44} =-0.030 45 (1977Ba32); Also α (K)exp=0.0094 8 (1970Ka13). δ : Also: 0.000 3 (1977Ba32). α (K)=0.00879 13; α (L)=0.001042 15; α (M)=0.000196 3; α (N+)=3.30×10 ⁻⁵ 5 α (N)=3.30×10 ⁻⁵ 5 Mult.: A_{22} =0.182 17, A_{44} =0.020 25 (1983Si08); Other: 0.149 13,
401.75	4.6	962.5	(1/2,3/2)+	560.7	3/2+	M1		0.00950 14	$-0.014\ 20\ (1977\text{Ba}32)$; Also $\alpha(\text{K})\exp=0.0083\ 6\ (1970\text{Ka}13)$. δ : 0.05 4 in 1983Si08 from γ - $\gamma(\theta)$, $-0.84\ +3$ - 17 from $\gamma\gamma(\theta)$ in 1977Ba32; and $+0.10\ 7$ from γ - $\gamma(\theta)$ in 1981Al19. $\alpha(\text{K})\exp=0.0065\ 10\ (1970\text{Ka}13)$ α =0.00950 14 ; $\alpha(\text{K})=0.00831\ 12$; $\alpha(\text{L})=0.000983\ 14$; $\alpha(\text{M})=0.000185\ 3$; $\alpha(\text{N}+)=3.11\times10^{-5}\ 5$
408.08	1.0	727.3	5/2+	319.2	5/2+	M1(+E2)		0.0101 10	$\alpha(N)=3.11\times10^{-5}$ 5 $\alpha(K)\exp=0.0070$ 25 (1970Ka13) $\alpha(K)=0.0087$ 8; $\alpha(L)=0.00109$ 15; $\alpha(M)=0.00021$ 3; $\alpha(N+)=3.4\times10^{-5}$ 5
414.85	7.2	1088.1	3/2-	673.2	1/2+	(E1)		0.00299 5	$\alpha(N+)=3.4\times10^{-5}$ 5 $\alpha(N)=3.4\times10^{-5}$ 5 $\alpha(K)\exp=0.0040$ 8 (1970Ka13) $\alpha=0.00299$ 5; $\alpha(K)=0.00262$ 4; $\alpha(L)=0.000305$ 5; $\alpha(M)=5.69\times10^{-5}$ 8; $\alpha(N+)=9.55\times10^{-6}$ 14
421.03	2.9	727.3	5/2+	306.3	7/2+	M1(+E2)		0.0092 8	$\alpha(N)=9.55\times10^{-6}\ 14$ $\alpha(K)\exp=0.0069\ 17\ (1970Ka13)$ $\alpha=0.0092\ 8;\ \alpha(K)=0.0080\ 7;\ \alpha(L)=0.00100\ 13;\ \alpha(M)=0.000188\ 25;$ $\alpha(N+)=3.1\times10^{-5}\ 4$
437.30	6.9	1088.1	3/2-	650.8	(3/2)+	E1		0.00263 4	$\alpha(N+)=3.1\times10^{-5}$ 4 $\alpha(N)=3.1\times10^{-5}$ 4 $\alpha(K)\exp=0.0029$ 6 (1970Ka13) $\alpha=0.00263$ 4; $\alpha(K)=0.00230$ 4; $\alpha(L)=0.000267$ 4; $\alpha(M)=4.99\times10^{-5}$ 7;

S

105 Ag ε decay (41.29 d) 1996Me17,1970Ka13 (continued)

γ (105Pd) (continued)

E_{γ}^{\ddagger}	Ι _γ ‡@	E_i (level)	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	δ#	α^{\dagger}	Comments
									α (N+)=8.37×10 ⁻⁶ 12 α (N)=8.37×10 ⁻⁶ 12
442.2	11.4	442.3	(7/2)+	0.0	5/2+	M1+E2	-0.23 6	0.00756 11	α =0.00756 11; α (K)=0.00661 10; α (L)=0.000784 13; α (M)=0.0001472 23; α (N+)=2.48×10 ⁻⁵ α (N)=2.48×10 ⁻⁵ 4
									E_{γ} : 422.2 γ in 1996Me17 assumed by the evaluators to be a typo.
443.44	259	1088.1	3/2-	644.6	7/2-	E2		0.00853 12	$\alpha(K) \exp=0.0075 \ 5 \ (1970 \text{Ka} 13)$ $\alpha=0.00853 \ 12; \ \alpha(K)=0.00737 \ 11; \ \alpha(L)=0.000954 \ 14;$ $\alpha(M)=0.000180 \ 3; \ \alpha(N+)=2.98\times10^{-5} \ 5$ $\alpha(N)=2.98\times10^{-5} \ 5$
446.8	2.4	727.3	5/2+	280.5	3/2+	M1+E2	0.9 +9-5	0.0078 4	$\alpha(N)=2.98\times10^{-5}$ S $\alpha=0.0078$ 4; $\alpha(K)=0.0068$ 3; $\alpha(L)=0.00083$ 6; $\alpha(M)=0.000157$ 11; $\alpha(N+)=2.62\times10^{-5}$ 17 $\alpha(N)=2.62\times10^{-5}$ 17
486.8	0.11	929.1	(5/2+)	442.3	(7/2)+	[M1+E2]		0.0062 3	Mult.: A_{22} =0.043 32; A_{44} =0.053 47 (1983Si08). α =0.0062 3; α (K)=0.00540 21; α (L)=0.00066 6; α (M)=0.000125 10; α (N+)=2.08×10 ⁻⁵ 15
527.34	2.6	1088.1	3/2-	560.7	3/2+	E1		0.001673 24	α =0.001673 24; α (K)=0.001466 21; α (L)=0.0001694 24; α (M)=3.17×10 ⁻⁵ 5; α (N+)=5.32×10 ⁻⁶
560.79	13.5	560.7	3/2+	0.0	5/2+	M1+E2		0.00427 7	$\alpha(N)=5.32\times10^{-6}~8$ $\alpha(K)=0.0038~4~(1970Ka13)$ $\alpha=0.00427~7;~\alpha(K)=0.00372~6;~\alpha(L)=0.000451~18;$ $\alpha(M)=8.5\times10^{-5}~4;~\alpha(N+)=1.42\times10^{-5}~5$ $\alpha(N)=1.42\times10^{-5}~5$
564.4	0.13 4	1125.2	$(1/2^+ \text{ to } 7/2^+)$	560.7					
576.7 610.0	0.6 0.2	921.2 929.1	$(1/2^+ \text{ to } 5/2^+)$ $(5/2^+)$	344.6 319.2		[M1+E2]		0.00345 6	α =0.00345 6; α (K)=0.00301 6; α (L)=0.000361 8; α (M)=6.79×10 ⁻⁵ 16; α (N+)=1.139×10 ⁻⁵ 22 α (N)=1.139×10 ⁻⁵ 22
617.90	28.6 3	962.5	(1/2,3/2)+	344.6	1/2+	M1(+E2)		0.00334 6	$\alpha(N)=1.139 \times 10^{-5} 22$ $\alpha(K) \exp = 0.00306 \ 25 \ (1970 \text{Ka} 13)$ $\alpha = 0.00334 \ 6; \ \alpha(K) = 0.00291 \ 6; \ \alpha(L) = 0.000350 \ 7;$ $\alpha(M)=6.56 \times 10^{-5} \ 14; \ \alpha(N+)=1.101 \times 10^{-5} \ 19$ $\alpha(N)=1.101 \times 10^{-5} \ 19$
640.5	0.7	921.2	$(1/2^+ \text{ to } 5/2^+)$	280.5	,				
644.63	242	644.6	7/2-	0.0	5/2+	E1+M2	-0.016 4	0.001061 <i>15</i>	$\alpha(K)\exp{0.00090} \ 6 \ (1970Ka13)$ $\alpha=0.001061 \ 15; \ \alpha(K)=0.000930 \ 13; \ \alpha(L)=0.0001070 \ 15;$ $\alpha(M)=2.00\times10^{-5} \ 3; \ \alpha(N+)=3.37\times10^{-6}$ $\alpha(N)=3.37\times10^{-6} \ 5$ δ : $-0.020 \ +5-6 \ from \gamma\gamma(\theta) in 1977Ba32; Other: -0.012$

6

105 Ag ε decay (41.29 d) 1996Me17,1970Ka13 (continued)

E_{γ}^{\ddagger}	Ι _γ ‡@	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
646.00	1.6	1088.1	3/2-	442.3	(7/2)+	[M2]		0.00876 13	from $\gamma\gamma(\theta)$ in 1981A119. Mult.: A_{22} =-0.170 5, 0.001 I (1977Ba32). α =0.00876 $I3$; α (K)=0.00762 II ; α (L)=0.000940 $I4$; α (M)=0.0001774 25 ; α (N+)=2.99×10 ⁻⁵
650.78	60.0	650.8	(3/2)+	0.0	5/2+	M1+E2		0.00293 7	$\alpha(N)=2.99\times10^{-5} 5$ $\alpha(K)\exp=0.00264 \ 18 \ (1970Ka13)$ $\alpha=0.00293 \ 7; \ \alpha(K)=0.00256 \ 7; \ \alpha(L)=0.000306 \ 5;$ $\alpha(M)=5.74\times10^{-5} \ 9; \ \alpha(N+)=9.64\times10^{-6} \ 14$
673.24	23.3	673.2	1/2+	0.0	5/2+	E2		0.00263 4	$\alpha(N)=9.64\times10^{-6}$ 14 $\alpha(K)\exp=0.00224$ 19 (1970Ka13) $\alpha=0.00263$ 4; $\alpha(K)=0.00229$ 4; $\alpha(L)=0.000280$ 4; $\alpha(M)=5.26\times10^{-5}$ 8; $\alpha(N+)=8.79\times10^{-6}$ 13
681.94	1.8	962.5	(1/2,3/2)+	280.5	3/2+	M1(+E2)		0.00261 8	$\alpha(N)=8.79\times10^{-6}$ 13 $\alpha(K)\exp=0.0034$ 8 (1970Ka13) $\alpha=0.00261$ 8; $\alpha(K)=0.00228$ 8; $\alpha(L)=0.000272$ 4; $\alpha(M)=5.10\times10^{-5}$ 8; $\alpha(N+)=8.57\times10^{-6}$ 15
727.28	3.5	727.3	5/2+	0.0	5/2+	M1(+E2)		0.00223 9	$\alpha(N)=8.57\times10^{-6}$ 15 $\alpha(K)\exp=0.0028$ 9 (1970Ka13) $\alpha=0.00223$ 9; $\alpha(K)=0.00195$ 8; $\alpha(L)=0.000231$ 5; $\alpha(M)=4.34\times10^{-5}$ 9; $\alpha(N+)=7.30\times10^{-6}$ 18
743.45	12.7	1088.1	3/2-	344.6	1/2+	E1		0.000778 11	$\alpha(N)=7.30\times10^{-6}$ 18 $\alpha(K)=0.00070$ 11 (1970Ka13) $\alpha=0.000778$ 11; $\alpha(K)=0.000683$ 10; $\alpha(L)=7.83\times10^{-5}$ 11; $\alpha(M)=1.463\times10^{-5}$ 21; $\alpha(N+)=2.46\times10^{-6}$
768.9	0.24	1088.1	3/2-	319.2	5/2+	[E1+M2]		0.0031 24	$\alpha(N)=2.46\times10^{-6} 4$ $\alpha=0.0031 \ 24; \ \alpha(K)=0.0027 \ 21; \ \alpha(L)=0.0003 \ 3;$ $\alpha(M)=6.E-5 \ 5; \ \alpha(N+)=1.0\times10^{-5} \ 8$
807.57	27.5 17	1088.1	3/2-	280.5	3/2+	E1(+M2)	0.03 +4-3	0.000659 19	$\alpha(N)=1.0\times10^{-5}~8$ $\alpha(K)\exp=0.00061~7~(1970Ka13)$ $\alpha=0.000659~19;~\alpha(K)=0.000579~17;~\alpha(L)=6.62\times10^{-5}~20;$ $\alpha(M)=1.24\times10^{-5}~4;~\alpha(N+)=2.08\times10^{-6}~7$ $\alpha(N)=2.08\times10^{-6}~7$ Mult.: $A_{22}=-0.108~15;~A_{44}=-0.2~2~(1983Si08)$. $\delta:~0.03~44-3~\text{in}~1983Si08,~\text{based on}~\gamma\gamma(\theta)$.
844.6 921.2	0.6 0.4	1125.2 921.2	$(1/2^+ \text{ to } 7/2^+)$ $(1/2^+ \text{ to } 5/2^+)$	280.5 0.0	3/2 ⁺ 5/2 ⁺				θ . 0.03 τ 4-3 III 19033100, υανέα ΟΙΙ $\gamma\gamma(\theta)$.
929.1	0.33	929.1	(5/2+)		5/2+	[M1+E2]		0.00126 7	α =0.00126 7; α (K)=0.00110 7; α (L)=0.000129 6; α (M)=2.42×10 ⁻⁵ 11; α (N+)=4.07×10 ⁻⁶ 20 α (N)=4.07×10 ⁻⁶ 20
962.45	2.7	962.5	(1/2,3/2)+	0.0	5/2+	M1(+E2)		0.00116 7	$\alpha(K)=4.07\times10^{-5}20$ $\alpha(K)\exp=0.00119\ 23\ (1970Ka13)$ $\alpha=0.00116\ 7;\ \alpha(K)=0.00102\ 6;\ \alpha(L)=0.000119\ 6;$

E_{γ}^{\ddagger}	I_{γ} ‡ @	E_i (level)	${\tt J}_i^\pi$	$E_f J_f^{\pi}$	Mult.#	α^{\dagger}	Comments
1088.05	86.	1088.1	3/2-	0.0 5/2+	E1	0.000366 6	$\alpha(M)=2.23\times10^{-5}\ 1I;\ \alpha(N+)=3.75\times10^{-6}\ I9$ $\alpha(N)=3.75\times10^{-6}\ I9$ $\alpha(K)\exp=0.000299\ 22\ (1970Ka13)$ $\alpha=0.000366\ 6;\ \alpha(K)=0.000322\ 5;\ \alpha(L)=3.66\times10^{-5}\ 6;\ \alpha(M)=6.83\times10^{-6}\ I0;$ $\alpha(N+)=1.152\times10^{-6}\ I7$ $\alpha(N)=1.152\times10^{-6}\ I7$
1125.2	0.27	1125.2	$(1/2^+ \text{ to } 7/2^+)$	$0.0 \ 5/2^{+}$			

[†] Additional information 1. [‡] From 1996Me17. [#] Unless otherwise noted from 1983Si08, based on $\gamma\gamma(\theta)$ from DCO measurments. [@] For absolute intensity per 100 decays, multiply by 0.042 4. [&] Placement of transition in the level scheme is uncertain.

¹⁰⁵Ag ε decay (7.23 min) 1996Me17,1972Kr28

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, J. Timar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019

Parent: 105 Ag: E=25.468 16 ; J^{π} =7/2+; $T_{1/2}$ =7.23 min 16 ; $Q(\varepsilon)$ =1347 5; $\%\varepsilon+\%\beta^+$ decay=0.34 7

1996Me17: Facility: LNL ICT accelerator; Source: from (n,γ) reactions on 50-100 mg thick target enriched to 82.09% in 106 Cd. Neutron flux= $6x10^{12}$ n/sec in 4π from 2 H(3 H, 4 He)n reaction; Detectors: one large Ge(Li) and one small Ge(Li) x-ray detector; Measured: γ , E γ , I γ ; Deduced: 105 Pd level scheme, log ft, J.

1972Kr28: Facility: Princeton cyclotron; Source: from ^{nat}Ag(p,xn)¹⁰⁵Cd reaction. Chemically separated ^{105m}Ag; Detectors: one Ge(Li) and one NaI(Tl) x-ray detector; Measured: γ, X rays; Εγ, Ιγ.

Others: 1978Ve04.

105Pd Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡
0.0	5/2+	344.5 7	1/2+	929.6 6	$(5/2^+)$
280.5 5	$3/2^{+}$	442.3 6	$(7/2)^+$	1072.1 8	$(5/2^+,7/2^+,9/2^+)$
306.3 9	$7/2^{+}$	560.3 7	$3/2^{+}$	1098.6 <i>7</i>	$(5/2^+,7/2^+,9/2^+)$
319.3.5	5/2+	781.3 9	9/2+		

[†] From a least-squares fit to Ey, where Δ Ey=1 keV assumed by the evaluators.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ^{+ ‡}	$\mathrm{I}arepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(274 5)	1098.6		0.0064 14	5.94 10	0.0064 14	εK=0.8474 5; εL=0.1224 4; εM+=0.03024 10
(300 5)	1072.1		0.00098 21	6.84 10	0.00098 21	εK=0.8493 4; εL=0.1208 3; εM+=0.02981 8
(443 5)	929.6		0.021 5	5.87 11	0.021 5	ε K=0.8556 2; ε L=0.1160 2; ε M+=0.02843 4
(591 5)	781.3		0.0013 <i>3</i>	7.34 10	0.0013 3	ε K=0.8587; ε L=0.11357 7; ε M+=0.02774 2
(812 5)	560.3		0.0049 10	7.05 9	0.0049 10	ε K=0.8612; ε L=0.11165 4; ε M+=0.027197 9
(930 5)	442.3		0.0086 18	6.92 10	0.0086 18	ε K=0.8620; ε L=0.11101 3; ε M+=0.027016 7
(1053 5)	319.3		0.15 4	5.79 12	0.15 4	ε K=0.8626; ε L=0.11050 2; ε M+=0.026872 6
$(1066\ 5)$	306.3		0.030 7	6.50 11	0.030 7	ε K=0.8627; ε L=0.11045 2; ε M+=0.026859 6
(1092 [#] 5)	280.5		≤0.002	≥7.7	≤0.002	ε K=0.8628; ε L=0.11036 2; ε M+=0.026834 5
(1372 5)	0.0	0.00049 11	0.117 25	6.14 10	0.117 25	av E β =162.3 22; ε K=0.8602 2; ε L=0.10915 4;
						$\varepsilon M + = 0.02651 I$

 $^{^{\}dagger}$ Note that uncertainties only reflect the uncertainty on the normalization factor, as I γ values are reported without uncertainties.

[‡] From the Adopted Levels.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

Ε _γ ‡	I_{γ} ‡@	$E_i(level)$	\mathtt{J}_i^{π}	\mathbb{E}_f	J_f^π	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
38.77 [#] 17	0.11#	319.3	5/2+	280.5	3/2+	M1(+E2)		24 18	$\alpha(K)=12\ 7;\ \alpha(L)=10\ 10;\ \alpha(M)=1.9\ 18;\ \alpha(N+)=0.3\ 3$ $\alpha(N)=0.3\ 3$
64.072 [#]	0.004#	344.5	1/2+	280.5	3/2+	M1(+E2)	-0.025 30	1.7 10	$\alpha(K)$ =1.4 6; $\alpha(L)$ =0.2 3; $\alpha(M)$ =0.05 6; $\alpha(N+)$ =0.008 9 $\alpha(N)$ =0.008 9
216.1#	0.02#	560.3	3/2+	344.5	1/2+	[M1+E2]		0.068 23	$\alpha(K)$ =0.058 18; $\alpha(L)$ =0.008 4; $\alpha(M)$ =0.0016 7; $\alpha(N+)$ =0.00026 11 $\alpha(N)$ =0.00026 11
280.53	3.5	280.5	3/2+	0.0	5/2+	M1+E2	+0.143 7	0.0238	$\alpha(K)$ =0.0207 3; $\alpha(L)$ =0.00249 4; $\alpha(M)$ =0.000469 7; $\alpha(N+)$ =7.89×10 ⁻⁵ 12 $\alpha(N)$ =7.89×10 ⁻⁵ 12 δ : +0.11 3 in 1958Ra01, +0.035 22 in 1962Bh03, +0.013 3 in
306.29	18.5	306.3	7/2+	0.0	5/2+	M1+E2	+0.055 2	0.0188	1972Be67 and +0.07 7 in 1976Ba39. $\alpha(K)$ =0.01640 23; $\alpha(L)$ =0.00196 3; $\alpha(M)$ =0.000368 6; $\alpha(N+)$ =6.20×10 ⁻⁵ 9 $\alpha(N)$ =6.20×10 ⁻⁵ 9
319.23	90	319.3	5/2+	0.0	5/2+	M1+E2	+0.103 8	0.01697	$\alpha(N)=6.20 \times 10^{-5} \text{ 9}$ $\alpha(K)=0.01481 \ 21; \ \alpha(L)=0.001769 \ 25; \ \alpha(M)=0.000332 \ 5;$ $\alpha(N+)=5.60 \times 10^{-5} \ 8$ $\alpha(N)=5.60 \times 10^{-5} \ 8$
344.61 [#]	0.016 [#]	344.5	1/2+	0.0	5/2+	E2		0.0188	$\alpha(K)$ =0.01611 23; $\alpha(L)$ =0.00219 3; $\alpha(M)$ =0.000413 6; $\alpha(N+)$ =6.80×10 ⁻⁵ 10 $\alpha(N)$ =6.80×10 ⁻⁵ 10
370	1.2	929.6	(5/2+)	560.3	3/2+	[M1+E2]		0.0133 17	$\alpha(N)=0.80 \times 10^{-5}$ $\alpha(K)=0.0115$ 14; $\alpha(L)=0.0015$ 3; $\alpha(M)=0.00028$ 5; $\alpha(N+)=4.6 \times 10^{-5}$ 8 $\alpha(N)=4.6 \times 10^{-5}$ 8
442.25	8.5	442.3	$(7/2)^+$	0.0	5/2+	M1+E2	-0.23 6	0.00756 11	α =0.00756 11; α (K)=0.00661 10; α (L)=0.000784 13; α (M)=0.0001471 23; α (N+)=2.48×10 ⁻⁵
475.1	0.5	781.3	9/2+	306.3	7/2+	[M1+E2]		0.0066 4	$\alpha(N)=2.48\times10^{-5}$ 4 $\alpha=0.0066$ 4; $\alpha(K)=0.0058$ 3; $\alpha(L)=0.00071$ 6; $\alpha(M)=0.000133$ 12; $\alpha(N+)=2.23\times10^{-5}$ 18
487.1	2.6	929.6	(5/2+)	442.3	(7/2)+	[M1+E2]		0.0062 3	$\alpha(N)=2.23\times10^{-5}$ 18 $\alpha=0.0062$ 3; $\alpha(K)=0.00539$ 21; $\alpha(L)=0.00066$ 6; $\alpha(M)=0.000124$ 10; $\alpha(N+)=2.08\times10^{-5}$ 15
560.79	4.2	560.3	3/2+	0.0	5/2+	M1+E2		0.00427 7	$\alpha(N)=2.08\times10^{-5}$ 15 $\alpha=0.00427$ 7; $\alpha(K)=0.00372$ 6; $\alpha(L)=0.000451$ 18; $\alpha(M)=8.5\times10^{-5}$ 4; $\alpha(N+)=1.42\times10^{-5}$ 5
610.1	1.9	929.6	(5/2+)	319.3	5/2+	[M1+E2]		0.00345 6	$\alpha(N)=1.42\times10^{-5}$ 5 $\alpha=0.00345$ 6; $\alpha(K)=0.00300$ 6; $\alpha(L)=0.000361$ 8;

From ENSDF

Ε _γ ‡	I_{γ} ^{‡@}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
								$\alpha(M)=6.78\times10^{-5}\ 16;\ \alpha(N+)=1.138\times10^{-5}\ 22$ $\alpha(N)=1.138\times10^{-5}\ 22$
629.7	0.2	1072.1	$(5/2^+,7/2^+,9/2^+)$	442.3 ($(7/2)^+$			
649.2	1.6	929.6	(5/2+)	280.5	3/2+	[M1+E2]	0.00295 7	α =0.00295 7; α (K)=0.00257 7; α (L)=0.000308 5; α (M)=5.78×10 ⁻⁵ 9; α (N+)=9.70×10 ⁻⁶ 14 α (N)=9.70×10 ⁻⁶ 14
656.5	0.4	1098.6	$(5/2^+,7/2^+,9/2^+)$	442.3 ($(7/2)^+$			
781.3	0.27	781.3	9/2+	0.0 5	5/2+	E2	0.00180 3	α =0.00180 3; α (K)=0.001571 22; α (L)=0.000189 3; α (M)=3.55×10 ⁻⁵ 5; α (N+)=5.95×10 ⁻⁶ 9 α (N)=5.95×10 ⁻⁶ 9
818	0.2	1098.6	$(5/2^+, 7/2^+, 9/2^+)$	280.5	3/2+			$u(N)=3.93\times10^{-6}$
929.3	5.8	929.6	$(5/2^+,7/2^-,5/2^-)$	0.0 5	,	[M1+E2]	0.00126 7	α =0.00126 7; α (K)=0.00110 7; α (L)=0.000129 6; α (M)=2.41×10 ⁻⁵ 11;
929.3	5.0	929.0	(3/2)	0.0 .	5/2	[WHT+L2]	0.00120 /	$\alpha(N+)=4.07\times10^{-6}$ 20 $\alpha(N)=4.07\times10^{-6}$ 20
1072.2	0.4	1072.1	$(5/2^+,7/2^+,9/2^+)$	0.0	5/2+			
1098.39	3.3	1098.6	$(5/2^+,7/2^+,9/2^+)$	0.0	5/2+			

 $^{^{\}dagger}$ Additional information 1. ‡ From $^{105} \text{Ag } \varepsilon$ decay (7.23 min) (1996Me17), unless otherwise noted. # From the adopted gammas. @ For absolute intensity per 100 decays, multiply by 0.0016 3.

Decay Scheme

Intensities: I_{γ} per 100 parent decays Legend $\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ 25.468 7.23 min 16 Q+=1347 5 $\%\varepsilon + \%\beta^{+}$ =0.34 $^{105}_{47}\mathrm{Ag}_{58}$ 109,39 \$18 0.0054 \$55.00033 \$2.000085 10-- $\underline{I\beta^+}$ $\mathrm{Log}\,ft$ <u>Ιε</u> (5/2+,7/2+,9/2+) 1098.6 0.0064 5.94 $(5/2^+, 7/2^+, 9/2^+)$ 0.00098 6.84 - 30,3 E0004 - 43,1 E0004 - 104-12,10004 $(5/2^+)$ 929.6 0.021 5.87 $9/2^{+}$ 781.3 0.0013 7.34 - 5675 MH2 9086 - 26,1 MH2 9086 3/2+ 560.3 0.0049 7.05 (7/2)+ | 30,9 | 30,10 | - 30,000 | 1 442.3 0.0086 6.92 1/2+ 344.5 5/2⁺ 7/2⁺ 3/2⁺ 319.3 5.79 0.15 306.3 0.030 6.50 280.5 \le 0.002 ≥7.7 5/2+ 0.0 0.00049 0.117 6.14 $^{105}_{46}\mathrm{Pd}_{59}$

⁶⁴Ni(⁴⁸Ca, α 3n γ) 1988Ma38

Type Author Citation Literature Cutoff Date

Full Evaluation S. Lalkovski, J. Timar and Z. Elekes NDS 161, 1 (2019)

1-Apr-2019

1988Ma38: Facility: LBL 88-inch cyclotron; Beam: E(⁴⁸Ca)=200 MeV; Target: two stacked 0.50 mg/cm² thick, self supporting ⁶⁴Ni foils; Detectors: HERA, comprising 20 Compton-suppressed Ge detectors; Measured: *γ-γ-γ* coinc., E*γ*, I*γ*; Deduced: ¹⁰⁵Ru level scheme: Also from the same collaboration: 1988BeZG, 1988MaZJ.

¹⁰⁵Pd Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡	E(level) [†]	$J^{\pi \ddagger}$
0	5/2+	3296 <mark>&</mark>	$(23/2)^+$	8128&	$(43/2^+)$	x+6955#	[63/2+]
306 <mark>&</mark>	7/2+	3800 [@]	$(27/2^{-})$	8410 [@]	$(43/2^{-})$	x+8675#	$[67/2^{+}]$
489 [@]	$11/2^{-}$	3874 <mark>&</mark>	$(27/2)^+$	9441 <mark>&</mark>	$(47/2^+)$	x+10521#	$[71/2^+]$
970 [@]	$(15/2^{-})$	4669 <mark>&</mark>	$(31/2^+)$	10876 <mark>&</mark>	$(51/2^+)$	x+12528#	$[75/2^{+}]$
1012 <mark>&</mark>	$(11/2^+)$	4953 [@]	$(31/2^{-})$	x#	$[43/2^{+}]$	x+14669 [#]	$[79/2^{+}]$
1742 [@]	$(19/2)^{-}$	5683 <mark>&</mark>	$(35/2^+)$	x+1209#	$[47/2^{+}]$	x+16909?#	$[83/2^{+}]$
1903 <mark>&</mark>	$(15/2)^+$	6073 [@]	$(35/2^{-})$	x+2491#	$[51/2^+]$		
2700 [@]	$(23/2)^{-}$	6861 <mark>&</mark>	$(39/2^+)$	x+3870#	$[55/2^{+}]$		
2757 <mark>&</mark>	$(19/2)^+$	7193 [@]	$(39/2^{-})$	x+5358#	$[59/2^{+}]$		

[†] From Eγ.

$\gamma(^{105}\text{Pd})$

E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
183		489	11/2-	306	7/2+	1178	24 10	6861	$(39/2^+)$	5683	(35/2+)
306	50 10	306	$7/2^{+}$	0	5/2+	1209	51 10	x+1209	$[47/2^{+}]$	X	$[43/2^{+}]$
481	50 10	970	$(15/2^{-})$	489	$11/2^{-}$	1217		8410	$(43/2^{-})$	7193	$(39/2^{-})$
539	41 10	3296	$(23/2)^{+}$	2757	$(19/2)^{+}$	1267		8128	$(43/2^+)$	6861	$(39/2^+)$
578	41 10	3874	$(27/2)^+$	3296	$(23/2)^+$	1282	47 10	x + 2491	$[51/2^+]$	x+1209	$[47/2^{+}]$
706	50 10	1012	$(11/2^+)$	306	7/2+	1313		9441	$(47/2^+)$	8128	$(43/2^+)$
772	52 10	1742	$(19/2)^{-}$	970	$(15/2^{-})$	1379	96 10	x + 3870	$[55/2^{+}]$	x + 2491	$[51/2^{+}]$
795	35 10	4669	$(31/2^+)$	3874	$(27/2)^{+}$	1435		10876	$(51/2^+)$	9441	$(47/2^+)$
854	45 10	2757	$(19/2)^+$	1903	$(15/2)^+$	1488	105 10	x+5358	$[59/2^{+}]$	x + 3870	$[55/2^{+}]$
891	51 10	1903	$(15/2)^+$	1012	$(11/2^+)$	1597	110 <i>10</i>	x+6955	$[63/2^{+}]$	x+5358	[59/2+]
958	53 10	2700	$(23/2)^{-}$	1742	$(19/2)^{-}$	1720	100 10	x+8675	$[67/2^{+}]$	x+6955	$[63/2^{+}]$
1014	35 10	5683	$(35/2^+)$	4669	$(31/2^+)$	1846	60 10	x+10521	$[71/2^{+}]$	x + 8675	$[67/2^{+}]$
1100		3800	$(27/2^{-})$	2700	$(23/2)^{-}$	2007	55 10	x+12528	$[75/2^{+}]$	x+10521	$[71/2^{+}]$
1120		6073	$(35/2^{-})$	4953	$(31/2^{-})$	2141	30 10	x+14669	$[79/2^{+}]$	x+12528	$[75/2^{+}]$
1120		7193	$(39/2^{-})$	6073	$(35/2^{-})$	2240 [‡]	12 10	x+16909?	$[83/2^{+}]$	x+14669	$[79/2^{+}]$
1153		4953	$(31/2^{-})$	3800	$(27/2^{-})$						

[†] From 1988Ma38.

From 1988Ma38, based on the observed band structure; SD band head J^{π} is based on the observed feeding to the $(39/2^{+})$ level.

 $^{^{\#}}$ Band(A): Probable member of a $\Delta J=2$ Superdeformed band.

[@] Band(B): Member of a $\Delta J=2$ band on $11/2^-$ level.

[&]amp; Band(C): Member of a $\Delta J=2$ band on $7/2^+$ level.

[‡] Placement of transition in the level scheme is uncertain.

 $^{105}_{\ 46}\mathrm{Pd}_{59}$

⁶⁴Ni(⁴⁸Ca, α 3n γ) 1988Ma38

Level Scheme (continued)

Intensities: Type not specified

Legend

⁶⁴Ni(⁴⁸Ca,α3nγ) <u>1988Ma38</u>

 $\begin{array}{c} Band(A)\text{: Probable member} \\ of \ a \ \Delta J{=}2 \\ Superdeformed \ band \end{array}$

Band(C): Member of a ΔJ =2 band on 7/2⁺ level

$$^{105}_{46}\mathrm{Pd}_{59}$$

96 **Zr**(13 **C**,4**n** γ), 96 **Zr**(12 **C**,3**n** γ) 2019Ti02,1977Ri05

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, J. Timar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019

2019Ti02: Facility: IReS Vivitron accelerator lab; Beam: ¹³C; Target: two self-supporting≈0.6 mg/cm² thick targets enriched to 86% in 96Zr; Detectors: EUROBALL IV, comprising 24 Clover and 15 Cluster HPGe and DIAMANT charged-particle detector, comprising 88 CsI crystals; Measured: $\gamma - \gamma - \gamma$ coinc., $\gamma - \gamma(\theta)$, γ -ray linear polarization, Ey; Deduced: γ -ray Mult., δ , J^{π} , ¹⁰⁵Pd

1977Ri05: Facility: Purdue Univ. Van de Graaf accelerator; Beam: E(12C)=45 MeV; Target: 2 mg/cm² thick enriched to 85% in 96 Zr; Detectors: three Ge(Li) detectors; Measured: exc. function, γ , γ - γ coinc., γ - $\gamma(\theta)$, E γ , I γ ; Deduced: γ -ray Mult., J^{π} , ¹⁰⁵Pd level scheme, band structure.

Others: 2014RaZR, 1977GrZU, 1974RiYS, 1974SmZV, 1973Ri10.

105Pd Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	5/2 ⁺ @	2197.22 19	$(15/2)^{+}$ @	3527.87 17	$(25/2)^{+}$
306.28 5	7/2+ <mark>&</mark>	2280.81 22	$(17/2)^{-}$	3694.62 19	$(25/2^{-})^{d}$
319.28 10	5/2+	2344.78 15	$(19/2)^{-}$	3800.71 <i>15</i>	$(27/2^{-})^{a}$
442.40 <i>4</i>	7/2 ⁺ @	2491.1 <i>3</i>	$(19/2^{-})$	3859.6 <i>5</i>	$(25/2^{-})^{\text{#}c}$
489.20 7	$11/2^{-a}$	2552.24 <i>14</i>	$(17/2)^{+}$ @	3873.31 <i>19</i>	$(27/2)^{+}$
781.95 <i>4</i>	9/2+@	2565.11 <i>12</i>	$(17/2)^+$	4254.7 <i>3</i>	$(29/2)^{+b}$
902.02 12	$(5/2,7/2,9/2)^+$	2700.46 10	$(23/2)^{-a}$	4668.5 <i>4</i>	$(31/2^+)^{\&}$
970.20 8	$(15/2)^{-a}$	2704.14 <i>18</i>	$(19/2^{-})$	4783.6 <i>7</i>	$(29/2^{-})^{d}$
1011.78 <i>7</i>	$(11/2)^{+}$	2756.19 <i>14</i>	$(19/2)^{+}$	4953.35 25	$(31/2^{-})^{a}$
1271.43 8	$(11/2)^{+}$ @	2775.81 <i>13</i>	$(21/2^{-})^{d}$	4956.1 8	$(29/2^{-})^{\text{#}c}$
1357.3 6	$(13/2^{-})^{\text{#}d}$	2806.80 <i>13</i>	$(19/2)^{+}$ @	5255.6 <i>4</i>	$(33/2^+)^{b}$
1671.21 <i>10</i>	$(13/2)^{+}$ @	2900.97 <i>13</i>	$(21/2^{-})^{c}$	5847.7 12	$(33/2^{-})^{d}$
1742.03 9	$(19/2)^{-a}$	3073.06 <i>15</i>	$(21/2)^{+b}$	6072.4 11	$(35/2^-)^{\text{#}a}$
1749.68 <i>19</i>	$(13/2)^+$	3119.46 <i>16</i>	$(21/2)^{+}$ @	6995.7 <i>16</i>	$(37/2^{-})^{\text{#}d}$
1763.35 <i>14</i>	$(15/2)^{-}$	3153.51 <i>18</i>	$(23/2)^{-}$	7191.4 <i>15</i>	$(39/2^{-})^{\text{#}a}$
1902.17 <i>14</i>	$(15/2)^{+}$	3295.03 19	$(23/2)^{+}$	8297.7 19	$(41/2^-)^{\#d}$
1961.58 <i>10</i>	$(17/2)^{-d}$	3468.84 22	$(23/2)^{+}$ @	8406.4 18	$(43/2^{-})^{\text{#}a}$

[†] From a least-squares fit to Eγ.

[‡] From 96 Zr(12 C,3n γ) (1977Ri05), based on γ -ray multipolarity, except where noted. # From 96 Zr(13 C,4n γ) (2019Ti02), based on γ -ray Mult.

[@] Member of $\Delta J=2$ band built on $J^{\pi}=5/2^+$; configuration= $\nu 2d_{5/2}$.

[&]amp; Member of $\Delta J=2$ band built on $J^{\pi}=7/2^+$; configuration= $\nu 1g_{7/2}$.

^a Member of $\Delta J=2$ band built on $J^{\pi}=11/2^-$; configuration= $v1h_{11/2}$; upband configuration= $v1h_{11/2}^3$.

^b Member of $\Delta J=2$ band built on $J^{\pi}=(21/2)^+$; configuration= $v1h_{11/2}^{-2}d_{5/2}$.

^c Member of $\Delta J=2$ wobbling band, based on $(13/2^{-})$.

^d Memebr of $\Delta J=2$ wobbling band signature partner, based on $(21/2^-)$.

${}^{96}Zr({}^{13}C,4n\gamma), {}^{96}Zr({}^{12}C,3n\gamma) \qquad \textbf{2019Ti02,1977Ri05} \ (continued)$

						γ (105Pd)		
$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}^{π}_f	Mult.‡	δ^{\ddagger}	Comments
182.91 5	52.1 11	489.20	11/2-	306.28	7/2+	[M2]		Mult.: A ₂₂ =0.03 4, A ₄₄ =0.00 4 (1977Ri05).
229.82 20	0.6 1	1011.78	$(11/2)^+$	781.95	9/2+	M1+E2	-0.05 9	Mult.: A ₂₂ =-0.33 15, A ₄₄ =0.21 19 (1977Ri05).
232.8 3	0.4 1	3527.87	$(25/2)^+$	3295.03	(23/2)+	M1+E2	-0.27 7	Mult.: A ₂₂ =-0.69 10, A ₄₄ =0.14 13 (1977Ri05).
241.6 2 254.53 <i>10</i>	0.3 <i>I</i> 4.6 <i>I</i>	2806.80 2806.80	(19/2) ⁺ (19/2) ⁺	2565.11 2552.24	. , ,	M1+E2	+0.09 1	Mult.: A ₂₂ =-0.11 3, A ₄₄ =0.04 4 (1977Ri05); R _{DCO} =1.64 18 (1977Ri05).
306.29 5	100	306.28	7/2+	0.0	5/2+	M1(+E2)	+0.02 4	δ: Also: 0.13 4 from DCO measurements in 1977Ri05. Mult.: A ₂₂ =-0.048 10, A ₄₄ =0.015 10 (1977Ri05); R _{DCO} =2.19 6 (1977Ri05). δ: Also: 0.01 1 from DCO
312.67 10	3.4 2	3119.46	(21/2)+	2806.80	(19/2)+	M1+E2	+0.12 3	measurements in 1977Ri05. Mult.: A ₂₂ =-0.05 3, A ₄₄ =-0.01 4 (1977Ri05); R _{DCO} =1.60 17 (1977Ri05). δ: Also: 0.11 4 from DCO
319.28 10	2.9 2	319.28	5/2+	0.0	5/2+	M1+E2	-0.07 10	measurements in 1977Ri05. Mult.: A ₂₂ =0.21 4, A ₄₄ =0.01 5 (1977Ri05); R _{DCO} =1.08 19 (1977Ri05).
339.55 5	5.4 2	781.95	9/2+	442.40	7/2+	M1(+E2)	-0.04 4	δ: other: 1.9 7 (1977Ri05); Also: -0.05 17 from DCO measurements in 1977Ri05. Mult.: A ₂₂ =-0.29 5, A ₄ =0.03 8 (1977Ri05); R _{DCO} =2.5 5 (1977Ri05). δ: Also: -0.08 8 from DCO
349.38 <i>15</i>	2.3 2	3468.84	(23/2)+	3119.46	(21/2)+	M1+E2	+0.14 2	measurements in 1977Ri05. Mult.: A ₂₂ =-0.02 3, A ₄₄ =0.01 5 (1977Ri05); R _{DCO} =1.6 3 (1977Ri05). δ: Also: 0.11 6 from DCO measurements in 1977Ri05.
367.9 2 372.6 2	0.5 <i>1</i> 0.4 <i>1</i>	2565.11 3073.06	$(17/2)^+$ $(21/2)^+$	2197.22 2700.46		E1+M2	-0.20 13	Mult.: A ₂₂ =0.13 20, A ₄₄ =-0.0 3 (1977Ri05).
387 [#] 399.76 <i>10</i>	3.3 2	1357.3 1671.21	(13/2 ⁻) (13/2) ⁺	970.20 1271.43		M1+E2	-0.08 4	Mult.: A ₂₂ =-0.38 4, A ₄₄ =-0.05 5 (1977Ri05); R _{DCO} =3.9 11 (1977Ri05). δ: Also: -0.19 11 from DCO
442.39 5	10.2 3	442.40	7/2+	0.0	5/2+	M1+E2	-0.33 13	measurements in 1977Ri05. Mult.: A ₂₂ =-0.610 21, A ₄₄ =0.031 24 (1977Ri05); R _{DCO} =4.1 7 (1977Ri05). δ: Also, -0.20 7 from DCO in 1977Ri05
452.98 20	1.9 2	3153.51	(23/2)	2700.46	(23/2)-	M1(+E2)	0.0 6	and -0.37 8 from DCO in 2019Ti02. Mult.: A ₂₂ =0.42 5, A ₄₄ =-0.13 8 (1977Ri05); R _{DCO} =0.8 3 (1977Ri05). δ: Also: 0.0 7 from DCO measurements in 1977Ri05.
454.82 10	7.6 3	3527.87	(25/2)+	3073.06	(21/2)+	E2		Mult.: A ₂₂ =0.36 3, A ₄₄ =-0.07 4 (1977Ri05); R _{DCO} =1.19 12 (1977Ri05).

$\frac{96}{2} r(^{13}C,4n\gamma), ^{96}Zr(^{12}C,3n\gamma) \qquad \textbf{2019Ti02,1977Ri05} \ (continued)$

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
459.6 <i>3</i>	1.2 2	902.02	(5/2,7/2,9/2)+	442.40	7/2+	M1+E2	+0.24 9	Mult.: A ₂₂ =0.10 11, A ₄₄ =-0.07 4 (1977Ri05).
481.00 5	66.4 14	970.20	(15/2)	489.20	11/2-	E2		Mult.: A ₂₂ =0.334 9, A ₄₄ =-0.084 9 (1977Ri05); R _{DCO} =0.99 2 (1977Ri05).
489.49 10	2.8 2	1271.43	(11/2)+	781.95	9/2+	M1+E2	-0.13 6	Mult.: A ₂₂ =-0.46 5, A ₄₄ =0.04 6 (1977Ri05); R _{DCO} =3.1 10 (1977Ri05). δ: Also: -0.05 8 from DCO
508.0 3	5.0 4	3073.06	$(21/2)^+$	2565.11	(17/2)+	E2		measurements in 1977Ri05. Mult.: A ₂₂ =0.263 23, A ₄₄ =-0.10 3 (1977Ri05); R _{DCO} =0.91 9 (1977Ri05).
538.83 15	7.7 3	3295.03	(23/2)+	2756.19	(19/2)+	E2		Mult.: A ₂₂ =0.358 <i>19</i> , A ₄₄ -0.08 <i>3</i> (1977Ri05); R _{DCO} =1.02 <i>5</i> (1977Ri05).
578.27 5	5.6 2	3873.31	(27/2)+	3295.03	(23/2)+	E2		Mult.: A ₂₂ =0.44 3, A ₄₄ =-0.11 4 (1977Ri05); R _{DCO} =1.04 6 (1977Ri05).
581.45 25	1.5 3	2344.78	(19/2)	1763.35		E2		Mult.: A ₂₂ =0.46 5, A ₄₄ =-0.11 7 (1977Ri05); R _{DCO} =0.9 5 (1977Ri05).
582.74 25	1.9 2	902.02	(5/2,7/2,9/2)+	319.28		E2		Mult.: A ₂₂ =0.46 5, A ₄₄ =-0.11 7 (1977Ri05); R _{DCO} =0.92 16 (1977Ri05).
595.73 15	2.9 2	902.02	(5/2,7/2,9/2)+	306.28	7/2+	M1+E2	+0.16 3	Mult.: A ₂₂ =-0.01 3, A ₄₄ =0.02 4 (1977Ri05); R _{DCO} =2.4 5 (1977Ri05). δ: Also: -0.04 8 from DCO measurements in 1977Ri05.
602.78 <i>15</i>	3.8 3	2344.78	(19/2)	1742.03	(19/2)	M1+E2	-0.01 60	Mult.: A ₂₂ =0.42 3, A ₄₄ =-0.04 5 (1977Ri05); R _{DCO} =0.86 13 (1977Ri05). δ: Also: 0.0 5 from DCO measurements in 1977Ri05.
604 [#]	1 1 2	1961.58	$(17/2)^{-}$	1357.3	$(13/2^{-})$			
649.9 <i>3</i> 705.50 <i>5</i>	1.1 <i>3</i> 14.8 <i>4</i>	2552.24 1011.78	(17/2) ⁺ (11/2) ⁺	1902.17 306.28		E2		Mult.: A ₂₂ =0.346 17, A ₄₄ =-0.102 24 (1977Ri05); R _{DCO} =0.99 4 (1977Ri05).
726.8 2	4.2 3	4254.7	(29/2)+	3527.87	(25/2)+	E2		Mult.: A ₂₂ =0.26 3, A ₄₄ =-0.02 4 (1977Ri05); R _{DCO} =0.91 16 (1977Ri05).
749.1 <i>4</i> 771.83 <i>5</i>	1.9 <i>3</i> 47.9 <i>11</i>	2491.1 1742.03	(19/2 ⁻) (19/2) ⁻	1742.03 970.20	(19/2) ⁻ (15/2) ⁻	E2		Mult.: A ₂₂ =0.353 <i>10</i> , A ₄₄ =-0.104 <i>11</i> (1977Ri05); R _{DCO} =0.96 <i>2</i> (1977Ri05).
781.94 <i>5</i>	6.9 2	781.95	9/2+	0.0	5/2+	E2		Mult.: A ₂₂ =0.33 3, A ₄₄ =-0.05 4 (1977Ri05); R _{DCO} =1.01 18 (1977Ri05).
793.17 25	3.7 4	1763.35	(15/2)	970.20	(15/2)	M1+E2	+1.0 5	Mult.: A ₂₂ =0.28 4, A ₄₄ , -0.08 6 (1977Ri05); R _{DCO} =1.2 3 (1977Ri05). δ: Also: 1.0 5 from DCO measurements in 1977Ri05.
794 [#]		3694.62	(25/2-)	2900.97	(21/2-)			

96 Zr(13 C,4n γ), 96 Zr(12 C,3n γ) **2019Ti02,1977Ri05** (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}^π_f	Mult.‡	δ^{\ddagger}	Comments
795.23 25	2.3 2	4668.5	(31/2+)	3873.31	(27/2)+	(E2)		Mult.: A ₂₂ =0.28 4, A ₄₄ =-0.08 6 (1977Ri05); R _{DCO} =1.21 18 (1977Ri05).
808.8 2	3.3 4	3153.51	(23/2)-	2344.78	(19/2)-	E2		Mult.: A_{22} =0.28 5, A_{44} =-0.07 8 (1977Ri05); R_{DCO} =1.0 3 (1977Ri05).
814.22 20	1.5 3	2775.81	(21/2-)	1961.58	(17/2)-	(E2)		Mult.: A_{22} =0.27 8, A_{44} =-0.01 11 (1977Ri05); R_{DCO} =0.7 3 (1977Ri05).
815.4 2	1.6 2	2565.11	$(17/2)^+$	1749.68	$(13/2)^+$	E2		Mult.: A_{22} =0.27 8, A_{44} =-0.01 11 (1977Ri05); R_{DCO} =1.07 23 (1977Ri05).
829.02 10	4.0 2	1271.43	$(11/2)^+$	442.40	7/2+	E2		Mult.: A ₂₂ =0.20 5, A ₄₄ =-0.09 7 (1977Ri05); R _{DCO} =1.2 4 (1977Ri05).
847.6 <i>3</i> 854.02 <i>5</i>	2.9 <i>3</i> 10.2 <i>3</i>	1749.68 2756.19	(13/2) ⁺ (19/2) ⁺		(5/2,7/2,9/2) ⁺ (15/2) ⁺	E2 E2		Mult.: R_{DCO} =1.12 21 (1977Ri05). Mult.: A_{22} =0.326 25, A_{44} =-0.08 4 (1977Ri05); R_{DCO} =1.02 5 (1977Ri05).
868 [#] 881.00 <i>20</i>	4.3 5	1357.3 2552.24	$(13/2^{-})$ $(17/2)^{+}$	489.20 1671.21	11/2 ⁻ (13/2) ⁺	E2		Mult.: A ₂₂ =0.376 24, A ₄₄ =-0.18 3 (1977Ri05); R _{DCO} =1.0 3 (1977Ri05).
889.24 25	9.4 7	1671.21	(13/2)+	781.95	9/2+	E2		Mult.: A_{22} =0.329 16, A_{44} =-0.06 21 (1977Ri05); R_{DCO} =1.15 20 (1977Ri05).
890.55 25	13.7 7	1902.17	$(15/2)^+$	1011.78	$(11/2)^+$	E2		Mult.: A ₂₂ =0.329 <i>16</i> , A ₄₄ =-0.096 <i>21</i> (1977Ri05); R _{DCO} =0.96 <i>4</i> (1977Ri05).
893.88 10	4.0 2	2565.11	$(17/2)^+$	1671.21	$(13/2)^+$	(E2)		Mult.: A ₂₂ =0.37 5, A ₄₄ =-0.11 7 (1977Ri05); R _{DCO} =0.81 14.
904.7 1	1.2 2	2806.80	$(19/2)^+$	1902.17	$(15/2)^+$	E2		Mult.: A ₂₂ =0.37 <i>19</i> , A ₄₄ =-0.3 <i>3</i> (1977Ri05); R _{DCO} =1.0 <i>4</i> (1977Ri05).
918.8 <i>3</i> 924 [#]	1.8 3	3694.62 4783.6	$(25/2^{-})$ $(29/2^{-})$	2775.81 3859.6	(21/2 ⁻) (25/2 ⁻)	E2		Mult.: R _{DCO} =1.0 4 (1977Ri05).
925.8 <i>3</i> 939.4 <i>3</i>	1.8 <i>5</i> 1.1 <i>3</i>	2197.22 2900.97	$(15/2)^+$ $(21/2^-)$	1271.43 1961.58	$(11/2)^{+}$	E2		Mult.: R _{DCO} =0.7 3 (1977Ri05).
958.42 5	20.2 5	2700.46	$(23/2)^{-}$	1742.03		E2		Mult.: A ₂₂ =0.283 <i>19</i> , A ₄₄ =-0.075 <i>24</i> (1977Ri05); R _{DCO} =1.12 <i>4</i> (1977Ri05).
959 [#]		3859.6	$(25/2^{-})$	2900.97	\ / /		0.0.4	3.5.1
962.10 <i>15</i>	3.0 3	2704.14	(19/2 ⁻)	1742.03	(19/2)	M1+E2	+0.2 4	Mult.: A ₂₂ =0.42 4, A ₄₄ =-0.08 5 (1977Ri05); R _{DCO} =0.93 24 (1977Ri05).
,,								δ: Also: 0.2 6 from DCO measurements in 1977Ri05.
983 [#] 991.38 <i>5</i>	7.7 4	4783.6 1961.58	(29/2 ⁻) (17/2) ⁻	3800.71 970.20	(27/2 ⁻) (15/2) ⁻	M1+E2	1.8 5	Mult.: A ₂₂ =0.436 25, A ₄₄ =0.01 3 (1977Ri05); R _{DCO} =0.58 8 (1977Ri05).
								δ: from DCO and linear pol. in 2019Ti02; Also: +0.46 <i>10</i> or 1.3 7 from DCO measurements in 1977Ri05.
994.12 20	1.6 3	3694.62	(25/2-)	2700.46	(23/2)	M1+E2	2.7 6	Mult.: A ₂₂ =0.8 <i>3</i> , A ₄₄ =-0.2 <i>4</i> (1977Ri05). δ: from DCO and linear pol. in 2019Ti02; Also: +1.5 <i>10</i> in 1977Ri05.

96 **Zr**(13 **C,4n** γ), 96 **Zr**(12 **C,3n** γ) **2019Ti02,1977Ri05** (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_{i}^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
1000.9 3	0.9 2	5255.6	$(33/2^+)$	4254.7 (29/2)+	E2		Mult.: A ₂₂ =0.02 9, A ₄₄ =0.04 14 (1977Ri05); R _{DCO} =0.9 3 (1977Ri05).
1014.3 3	1.9 3	2756.19	(19/2)+	1742.03 (19/2)	E1+M2	-0.25 25	Mult.: A ₂₂ =0.28 8, A ₄₄ =-0.05 11 (1977Ri05); R _{DCO} 1.0 3 (1977Ri05). δ: Also: 0.08 8 from DCO measurements in 1977Ri05.
1033.77 10	3.0 2	2775.81	(21/2-)	1742.03 (19/2)	M1+E2	2.3 3	Mult.: A ₂₂ =0.57 6, A ₄₄ =0.14 8 (1977Ri05); R _{DCO} =0.62 14 (1977Ri05). δ: from DCO and linear pol. in 2019Ti02; Also: +0.62 18 or 0.8 3 from DCO measurements in 1977Ri05.
1064#		5847.7	(33/2 ⁻)	4783.6 (29/2 ⁻)	(E2)		Mult.: from DCO and γ polarization measurements in 2019Ti02.
1084 <mark>#</mark>		3859.6	$(25/2^{-})$	2775.81 (21/2 ⁻)			
1089 [#]		4783.6	(29/2-)	3694.62 (25/2 ⁻)	(E2)		Mult.: from DCO and γ polarization measurements in 2019Ti02.
1097 [#] 1100.24 <i>10</i>	5.1 2	4956.1 3800.71	$(29/2^{-})$ $(27/2^{-})$	3859.6 (25/2 ⁻) 2700.46 (23/2) ⁻	(E2)		Mult.: A ₂₂ =0.14 4, A ₄₄ =-0.08 5 (1977Ri05); R _{DCO} =1.54 16 (1977Ri05).
1119 [#]		6072.4	$(35/2^{-})$	4953.35 (31/2 ⁻)			
1119 [#]		7191.4	$(39/2^{-})$	6072.4 (35/2-)			
1148 [#]		6995.7	$(37/2^{-})$	5847.7 (33/2-)			
1152.64 20	1.6 <i>3</i>	4953.35	$(31/2^{-})$	3800.71 (27/2 ⁻)	(E2)		Mult.: A ₂₂ =0.19 8, A ₄₄ =-0.11 2 (1977Ri05); R _{DCO} =0.43 23 (1977Ri05).
1158.94 <i>10</i>	2.4 2	2900.97	(21/2 ⁻)	1742.03 (19/2)	M1+E2	+1.3 9	Mult.: A ₂₂ =0.65 8, A ₄₄ =-0.03 12 (1977Ri05); R _{DCO} =0.58 16 (1977Ri05). δ: Also: 1.6 11 from DCO measurements in 1977Ri05.
1159 [#]		3859.6	$(25/2^{-})$	2700.46 (23/2)			
1215 [#]		8406.4	$(43/2^{-})$	7191.4 (39/2 ⁻)			
1261 [#]		4956.1	$(29/2^{-})$	3694.62 (25/2-)			
1274.15 <i>15</i>	1.5 2	1763.35	(15/2)	489.20 11/2			Mult.: A ₂₂ =0.27 <i>12</i> , A ₄₄ =0.02 <i>18</i> (1977Ri05).
1302 [#]		8297.7	$(41/2^{-})$	6995.7 (37/2 ⁻)			
1310.6 2	1.0 3	2280.81	(17/2)	970.20 (15/2)	M1+E2	+1.3 7	Mult.: A ₂₂ =1.4 7, A ₄₄ =-0.4 8 (1977Ri05); R _{DCO} =0.8 3. δ: Also: 4 4 from DCO measurements in 1977Ri05.
1331.0 2	2.4 3	3073.06	$(21/2)^+$	1742.03 (19/2)-	E1+M2	+0.8 8	δ: R _{DCO} =1.8 5 (1977Ri05).
1377.3 3	1.3 3	3119.46	$(21/2)^+$	1742.03 (19/2)			
1520.9 <i>3</i> 1582.0 <i>3</i>	2.6 5 1.0 3	2491.1 2552.24	$(19/2^{-})$ $(17/2)^{+}$	970.20 (15/2) ⁻ 970.20 (15/2) ⁻	(E2)		Mult.: R _{DCO} =0.75 21 (1977Ri05).

 $^{^{\}dagger}$ From 1977Ri05, unless otherwise noted. ‡ Unless otherwise noted, from 1977Ri05 based on $\gamma(\theta)$ and DCO measurements. $^{\#}$ From 2019Ti02.

$^{96}{\rm Zr}(^{13}{\rm C},4{\rm n}\gamma),^{96}{\rm Zr}(^{12}{\rm C},3{\rm n}\gamma)$ 2019Ti02,1977Ri05

Level Scheme

Intensities: Type not specified

Legend

96 **Zr**(13 **C**,4**n** γ), 96 **Zr**(12 **C**,3**n** γ) 2019Ti02,1977Ri05

Legend

319.28 306.28

0.0

 $^{105}_{\ 46}\mathrm{Pd}_{59}$

5/2+

104 Ru(α ,3n γ) 1977Gr22,1969Iv02

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, J. Timar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019

1977Gr22: Facility: Stockholm cyclotron; Beam: $E(\alpha)$ =32 MeV; Target: enriched to 104 Ru; Detectors: two Ge(Li); Measured: γ , γ - γ coinc., $\gamma(\theta)$, $E\gamma$, $I\gamma$, excitation function; Deduced: 105 Ru level scheme, J^{π} ; Also, from the same collaboration: 1972Gr33, 1971GrZV.

1969Iv02: Facility: Institute-of-Physics' (Bucharest) 120-cm cyclotron; Beam: $E(\alpha)$ =24 MeV; Target: natural Ru; Detectors: one NaI(Tl); Measured: γ , E γ , γ (t); Deduced: T_{1/2}.

Others: 1973Ri10, 1973RiZZ.

¹⁰⁵Pd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	5/2+		configuration: $\nu(2d_{5/2})^{+1}$.
280.50 ^{&} 24	3/2+		2 3/2
306.03 [@] 23	7/2+		configuration: $v(1g_{7/2})^{+1}$.
442.39 <mark>&</mark> 19	$(7/2)^{+}$		6 (01/2)
488.8 [#] 3	11/2-	36 μs 7	$T_{1/2}$: from 182.7 γ (t) and 306.2 γ (t) in 1969Iv02. configuration: ν (1h _{11/2}) ⁺¹ .
560.50 24	5/2+		comiguration. $\gamma(m_{\Pi/2})$
696.60 19	$(7/2^+)$		
781.99 <mark>&</mark> <i>20</i>	9/2+		
969.8 [#] 4	$(15/2)^{-}$		
1010.93 [@] 23	$(11/2)^+$		
1271.18 23	$(11/2)^+$		
1323.7 3	$(11/2^+)$		
1410.63 25 1741.2 [#] 5	$(13/2^+)$		
1741.2" 5 1853.7 <i>3</i>	$(19/2)^-$ $(13/2^+)$		
1873.5 <i>3</i>	$(15/2^+)$		
1900.8 [@] 4	$(15/2)^+$		
2698.9 [#] 6	$(23/2)^{-}$		
2754.5 [@] 5	$(19/2)^+$		
3153.4 [#] 7	$(27/2)^{-}$		
3293.3 [@] 6	$(23/2)^+$		
3797.7 [#] 7	$(27/2^{-})$		
3871.3 [@] 12	$(27/2)^+$		

[†] From a least-squares fit to E γ .

[†] From 1977Gr22. # Member of the ΔJ =2 negative-parity band; configuration= $\nu(1h_{11/2})^{+1}$. @ Member of a ΔJ =2 positive-parity band; configuration= $\nu(1g_{7/2})^{+1}$.

[&]amp; Member of the $2^+ \otimes \nu (2d_{5/2})^{+1}$ multiplet.

104 Ru(α ,3n γ) 1977Gr22,1969Iv02 (continued)

γ (105Pd)

$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]
^x 95.2 3	1.0 3					
^x 105.2 3	2.1 6					
^x 110.7 3	5.5 6					
^x 121.9 3	0.4 1					
135.8 <i>3</i>	0.8 2	696.60	$(7/2^+)$	560.50	5/2+	
140.0 <i>3</i>	0.8 2	1410.63	$(13/2^+)$	1271.18	$(11/2)^+$	
^x 178.9 <i>3</i>	0.7 2					
182.7 <i>3</i>	51 5	488.8	$11/2^{-}$	306.03	$7/2^{+}$	
^x 210.7 3	2.3 7					
228.7 3	0.3 1	1010.93	$(11/2)^+$	781.99	9/2+	
254.3 <i>3</i>	3.4 10	696.60	$(7/2^+)$	442.39		
260.0 3	1.2 4	1271.18	$(11/2)^+$	1010.93	$(11/2)^+$	
280.2 3	2.4 7	280.50	3/2+	0.0	5/2+	
^x 284.6 3	0.4 1	206.02	7.10+	0.0	5 /o+	
306.2 3	100	306.03	7/2+	0.0	5/2+	
312.6 <i>3</i>	2.3 7	1323.7	$(11/2^+)$	1010.93	$(11/2)^+$	
x319.3 3 x333.2 3	5.4 5					
	0.6 2 5.0 5	791.00	0/2+	442.39	(7/2)+	
339.4 <i>3 x</i> 344.6 <i>3</i>	0.6 2	781.99	9/2+	442.39	(1/2)	
^x 349.3 3	1.6 5					
399.9 <i>3</i>	2.0 6	1410.63	$(13/2^+)$	1010.93	$(11/2)^+$	
415.8 3	1.4 4	696.60	$(7/2^+)$	280.50	3/2+	(E2)
442 3	1.4 7	1853.7	$(13/2^+)$	1410.63	$(13/2^+)$	(L2)
442.6 3	12.0 12	442.39	$(7/2)^+$	0.0	5/2+	
^x 451.8 3	1.1 3	112.57	(1/2)	0.0	5/2	
454.5 <i>3</i>	4.0 12	3153.4	$(27/2)^{-}$	2698.9	$(23/2)^{-}$	(E2)
463.1 3	0.7 2	1873.5	$(15/2^+)$	1410.63	$(13/2^+)$	()
481.0 <i>3</i>	69 7	969.8	$(15/2)^{-}$	488.8	11/2-	(E2)
489.5 <i>3</i>	4.0 12	1271.18	$(11/2)^{+}$	781.99	9/2+	. ,
522.2 <i>3</i>	0.4	1010.93	$(11/2)^+$	488.8	11/2-	
530.3 <i>3</i>	2.1 6	1853.7	$(13/2^+)$	1323.7	$(11/2^+)$	
^x 535.7 3	0.8 2					
538.8 <i>3</i>	5.3 5	3293.3	$(23/2)^+$	2754.5	$(19/2)^+$	(E2)
549.1 <i>3</i>	0.4 1	1873.5	$(15/2^+)$	1323.7	$(11/2^+)$	
560.2 <i>3</i>	1.4 4	560.50	5/2+	0.0	5/2+	(E2)
^x 566.8 3	1.3 4					
578.0 [‡]	3.1 [‡] 9	1900.8	$(15/2)^+$	1323.7	$(11/2^+)$	(E2)
578.0 [‡]	3.1 [‡] 4	3871.3	$(27/2)^+$	3293.3	$(23/2)^+$	(E2)
582.0 <i>3</i>	4.0 12	1853.7	$(13/2^+)$	1271.18	$(11/2)^{+}$,
^x 595.7 3	≤4.3		` ' '		` ' /	
^x 599.0 3	1.8 5					
602.7 <i>3</i>	5.5 6	1873.5	$(15/2^+)$	1271.18	$(11/2)^+$	
^x 609.5 3	1.5 5					
628.1 <i>3</i>	1.0 3	1410.63	$(13/2^+)$	781.99	9/2+	(E2)
^x 644.7 3	4.1 12					
^x 646.4 3	1.5 5					
^x 669.0 3	2.4 7					
^x 681.5 3	1.8 5					
x692.9 3	≤4	(0) ()	(F 10 ±)		5 /O.	
697.1 <i>3</i>	3.7 11	696.60	$(7/2^+)$	0.0	5/2+	
x700.0 3	1.5 5	1010.02	(11/0)+	207.02	7/0+	(E2)
705.1 <i>3</i>	14.7 15	1010.93	$(11/2)^+$	306.03	7/2+	(E2)
^x 748.9 <i>3</i> 771.4 <i>3</i>	2.3 <i>7</i> 42 <i>4</i>	1741.2	(10/2)=	060.0	(15/2)-	(E2)
//1.4 3	42 4	1741.2	$(19/2)^{-}$	969.8	$(15/2)^{-}$	(E2)

104 Ru(α ,3n γ) 1977Gr22,1969Iv02 (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.†
781.7 <i>3</i>	8.8 9	781.99	9/2+	0.0	5/2+	(E2)
^x 792.9 3	4.6 14		,		,	(E2)
x804.1 3	≈2					` ′
^x 808.4 3	2.7 8					
^x 814.9 <i>3</i>	2.5 8					(E2)
x825.1 3	1.2 4					
829.1 <i>3</i>	4.3 13	1271.18	$(11/2)^+$	442.39	$(7/2)^+$	(E2)
834.9 <i>3</i>	≤1.9	1323.7	$(11/2^+)$	488.8	$11/2^{-}$	
843.0 <i>3</i>	2.8 8	1853.7	$(13/2^+)$	1010.93	$(11/2)^+$	
853.6 <i>3</i>	6.6 7	2754.5	$(19/2)^+$	1900.8	$(15/2)^+$	(E2)
862.7 <i>3</i>	1.3 4	1873.5	$(15/2^+)$	1010.93	$(11/2)^+$	(E2)
881.3 [‡]	4.3 [‡] <i>13</i>	1323.7	$(11/2^+)$	442.39	$(7/2)^+$	(E2)
881.3 [‡]	4.3 [‡] <i>13</i>	2754.5	$(19/2)^+$	1873.5	$(15/2^+)$	(E2)
889.8 <i>3</i>	10 <i>I</i>	1900.8	$(15/2)^+$	1010.93	$(11/2)^+$	
x893.9 <i>3</i>	≤2.9					
^x 911.8 <i>3</i>	1.2 4					
^x 918.5 3	1.9 6					
^x 952.3 3	2.6 8					
957.7 <i>3</i>	15 2	2698.9	$(23/2)^{-}$	1741.2	$(19/2)^{-}$	(E2)
^x 961.8 3	1.3 4					
^x 990.6 3	7.7 8					(E2)
^x 1013.7 3	≤1.8					
^x 1058.2 3	1.2 4					
^x 1077.5 3	1.0 3					
^x 1095.8 3	0.8 2	2505.5	(27/2-)	2600.0	(22 (2) -	(E2)
1098.8 3	4.3 13	3797.7	$(27/2^{-})$	2698.9	$(23/2)^{-}$	(E2)
^x 1151.6 3	1.7 5					(E2)
^x 1273.6 3	2.3 7					
^x 1521.2 3	3 1					

[†] From 1977Gr22. [‡] Multiply placed with undivided intensity. ^x γ ray not placed in level scheme.

104 Ru(α ,3n γ) 1977Gr22,1969Iv02

Legend Level Scheme $\begin{array}{ll} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Type not specified & Multiply placed: undivided intensity given $(27/2)^{+}$ 3871.3 $(27/2^{-})$ 3797.7 $(23/2)^{+}$ 3293.3 (27/2) 3153.4 $(19/2)^{+}$ 2754.5 (23/2) 2698.9 1900.8 $(15/2)^+$ $(15/2^+)$ 1873.5 $(13/2^+)$ 1853.7 (19/2) 1741.2 $(13/2^+)$ 1410.63 1323.7 1271.18 $(11/2^+)$ (11/2) $(11/2)^{-1}$ 1010.93 (15/2) 969.8 9/2⁺ (7/2⁺) 781.99 696.60 5/2⁺ 11/2⁻ 560.50 488.8 36 µs 7 $(7/2)^{+}$ 442.39 7/2⁺ 3/2⁺ 306.03 280.50 5/2+ 0.0

104 Pd(n, γ) E=th 1970Bo29,1975BaZR

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, J. Timar and Z. Elekes	NDS 161, 1 (2019)	1-Apr-2019

2008Kr05: Facility: Budapest Reactor; Target: natural Pd; Detectors: one Compton-suppressed n-type HPGe detector; Measured E γ , I γ .

1970Bo29: Facility: Argonne National Lab. Reactor; Target: nat. Pd; Detectors: one Ge(Li), one annular NaI(Tl), split into four optically independent quadrants; Measured: E γ , I γ .

1975BaZR: Facility: Ukrainian ssr reactor; Flux: $6.5x10^7$ n/(cm².s); Target: 7.6% ¹⁰⁴Pd; Measured: E γ , I γ .

Others: 1982StZQ, 1979Ma34, 1971Sh21, 1965Gr30.

¹⁰⁵Pd Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	5/2+		
280.65 6	3/2+		
306.3 2	7/2+		
319.3 10	5/2 ⁺	48 ps 7	$T_{1/2}$: from 1971Sh21.
344.12 <i>11</i>	1/2+	-	,
442.13 <i>21</i>	$(7/2)^+$		
489.4 10	$11/2^{-}$		
560.61 20	3/2+		
644.76 <i>13</i>	$7/2^{-}$		
1175 <i>3</i>	$(1/2^+,3/2^+)$		
1568?			
1909?			
(7093.6 4)		5.1 fs 8	$T_{1/2}$: from 1970Bo29.

[†] From a least squares fit to $E\gamma$; $\Delta E_{\gamma}=1$ keV assumed by the evaluators for the least-squares fit procedure, where no uncertainties are given by the authors.

$\gamma(^{105}\text{Pd})$

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}
64.072 [‡]		344.12	1/2+	280.65	3/2+
155.38 [‡]		644.76	$7/2^{-}$	489.4	11/2-
182.92 [‡]		489.4	$11/2^{-}$	306.3	7/2+
202.21 [‡]		644.76	7/2-	442.13	$(7/2)^+$
216.1 [‡]		560.61	$3/2^{+}$	344.12	1/2+
280.65 6		280.65	$3/2^{+}$	0	5/2+
306.26 <i>1</i>	8	306.3	$7/2^{+}$	0	5/2+
325.43		644.76	$7/2^{-}$	319.3	5/2+
344.11 <i>11</i>		344.12	$1/2^{+}$	0	5/2+
442.11 <i>21</i>		442.13	$(7/2)^+$	0	5/2+
560.67 20		560.61	$3/2^{+}$	0	5/2+
644.76 <i>13</i>		644.76	$7/2^{-}$	0	5/2+
5184.7 [@] & 15	89 [@] 11	(7093.6)		1909?	
5918 [@] 3	45 [@] 9	(7093.6)		1175	$(1/2^+, 3/2^+)$
6534.0 [#] <i>10</i>		(7093.6)		560.61	3/2+
6615 [@] & 5	100 [@] 25	(7093.6)		489.4	11/2-
6652 [@] 8	77 [@] 20	(7093.6)		442.13	$(7/2)^+$

Continued on next page (footnotes at end of table)

[‡] From the Adopted Levels.

104 Pd(n, γ) E=th 1970Bo29,1975BaZR (continued)

 $^{^{\}dagger}$ From 2008Kr05, unless otherwise noted. ‡ From the adopted gammas. $^{\#}$ From 1970Bo29. $^{@}$ From 1975BaZR; Iy normalised with respect to Iy(6615)=100. Note that the 6615y final level is not within 2σ .

[&]amp; Placement of transition in the level scheme is uncertain.

¹⁰⁴Pd(d,p) **1963Cu02,1968Ne07**

Type Author Citation Literature Cutoff Date

Full Evaluation S. Lalkovski, J. Timar and Z. Elekes NDS 161, 1 (2019) 1-Apr-2019

1963Cu02: Facility: Pittsburgh cyclotron; Beam: E(d)=15 MeV; Target: ≈ 3 mg/cm² thick, enriched to $\approx 90\%$ in 104 Pd; Detectors: magnetic spectrograph, photographic plates; Measured: $d\sigma/d\Omega(\theta)$ and compared to DWBA. $\Delta E(p)=30$ keV; The statistical uncertainty is 8 keV.

1968Ne07: Beam: E(d)=6.5 MeV from cyclotron; Target: 3.0 mg/cm², enriched to 79.4% in 104 Pd; Detectors: magnetic spectrograph, FWHM≈150 keV; Measured: E, $d\sigma/d\Omega(\theta)$; Deduced: DWBA.

Others: 1973RiZL, 1968Ne07.

105Pd Levels

E(level) [†]	L#	Comments
0	(2)	
280 8	(2)	
340 8	(0)	
486 8	(5)	
565 8	(2)	
651 8	(2)	
724 8	(2)	
787 <i>8</i>	(0)	
970 8	(2)	
1075 8	(0)	
1103 8	(2)	
1141 8	(0)	
1201 8	(2)	
1263 8	(0)	
1402 8	(2+0+5)	L: Unresolved multiplet.
1522 8	(2)	
1602 8	(2)	
1652 8		
1702 8		
1772 8	(2)	
1867 8	(2)	
1923 8 1990 8	(0)	
2062 8	(2) (2)	
2102 8	(2)	
2420 [‡]		
2613 8		
2015 0		
3320‡		
3570 [‡]		
3690 [‡]		
4000 [‡]		
4110 [‡]		
4510 [‡]		
4690 [‡]		
4090		
4840 [‡]		

[†] From 1963Cu02, unless noted otherwise.

[‡] From 1968Ne07. $\Delta E \approx 150$ keV.

[#] From $d\sigma/d\Omega(\theta)$ in 1963Cu02 and DWBA. L assignments are considered by the evaluators to be tentative, given that the proton spectra are taken at 10°, 20°, 33° only,

¹⁰⁵Pd($n,n'\gamma$) **1975GoYY,1976Av07**

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	S. Lalkovski, I. Timar and Z. Elekes	NDS 161 1 (2019)	1-Apr-2019

1975GoYY: Beam: fast neutrons; Detectors: one Ge(Li); Measured: E γ , I γ ; Also from the same group: 1976Av07.

$^{105}\mathrm{Pd}$ Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	5/2 ⁺	928.91 22	$(5/2^+)$	1477.6? 8	
280.38 9	$3/2^{+}$	961.4 <i>4</i>	$(1/2,3/2)^+$	1520.5 5	$(3/2^+ \text{ to } 7/2^+)$
306.25 9	$7/2^{+}$	969.84 <i>23</i>	15/2-	1601.3 5	$(1/2^+ \text{ to } 5/2^+)$
319.29 9	$5/2^{+}$	1011.50 <i>21</i>	$(11/2^+)$	1650.4 <i>4</i>	$(7/2^{-})$
344.52 10	$1/2^{+}$	1074.4? <i>4</i>	$(3/2^+)$	1700.6 8	$(1/2^+ \text{ to } 9/2^+)$
442.15 9	$(7/2)^+$	1088.3 <i>4</i>	$3/2^{-}$	1774.6? 5	$(1/2^+ \text{ to } 9/2^+)$
489.04 12	$11/2^{-}$	1098.1? <i>3</i>	$(5/2^+,7/2^+,9/2^+)$	1865.5 <i>4</i>	$(1/2^+ \text{ to } 7/2^+)$
560.56 9	$3/2^{+}$	1102.1 <i>4</i>	$(1/2^+ \text{ to } 5/2^+)$	1922.9? <i>4</i>	$(1/2^+,3/2^+)$
644.69 10	7/2-	1142.35 <i>14</i>	$(1/2^+,3/2^+)$	1988.4 <i>4</i>	$(1/2,3/2,5/2)^+$
650.76 12	$(3/2)^+$	1177.7 <i>3</i>	$(1/2^+,3/2^+)$	2064.5 7	$(1/2^+,3/2^+)$
672.78 <i>17</i>	$1/2^{+}$	1201.6 <i>4</i>	$(1/2^+,3/2^+)$	2101.4? 7	$(7/2^-, 9/2, 11/2^+)$
726.97 <i>14</i>	$5/2^{+}$	1259.11 20	$(3/2^+)$		
781.53 <i>11</i>	$9/2^{+}$	1405.05 25	$(3/2^+,5/2^+)$		

[†] From a least-squares fit to E γ .

$\gamma(^{105}\text{Pd})$

E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$E_i(level)$	\mathtt{J}_i^{π}	E_f	$\mathbf{J}^{\boldsymbol{\pi}}_f$
155.6 2	1.4 2	644.69	7/2-	489.04	11/2-
182.8 <i>1</i>	27 3	489.04	11/2-	306.25	7/2+
216.3 4	0.87 15	560.56	3/2+	344.52	1/2+
228.9 [‡]	0.9	1011.50	$(11/2^+)$	781.53	9/2+
263.3 5	0.58 12	1405.05	$(3/2^+,5/2^+)$	1142.35	$(1/2^+,3/2^+)$
280.4 1	68 2	280.38	3/2+	0.0	5/2+
285.0 [‡]	2.2	928.91	$(5/2^+)$	644.69	7/2-
306.2 1	100	306.25	7/2+	0.0	5/2+
319.2 <i>1</i>	6 2	319.29	5/2+	0.0	5/2+
326.5 [#]	1.30 [#] <i>10</i>	644.69	7/2-	319.29	5/2+
326.5 ^{‡#}	1.30 [#] <i>10</i>	672.78	1/2+	344.52	1/2+
331.5 <i>I</i>	6.3 <i>3</i>	650.76	$(3/2)^+$	319.29	5/2+
339.4 <i>1</i>	9.7 <i>3</i>	781.53	9/2+	442.15	$(7/2)^+$
344.5 <i>1</i>	10.0 <i>3</i>	344.52	1/2+	0.0	5/2+
353.1 6	0.80 10	672.78	1/2+	319.29	5/2+
370.3 <i>3</i>	2.00 12	650.76	$(3/2)^+$	280.38	3/2+
392.5 2	3.40 16	672.78	1/2+	280.38	3/2+
400.4 4	1.50 10	961.4	$(1/2,3/2)^+$	560.56	3/2+
406.9 <i>3</i>	2.10 12	726.97	5/2 ⁺	319.29	5/2+
420.8 2	4.1 2	726.97	5/2+	306.25	7/2+
442.2 <i>1</i>	57 2	442.15	$(7/2)^+$	0.0	5/2+
446.74 [‡]		726.97	5/2+	280.38	3/2+
459.0 <i>5</i>	1.10 10	1601.3	$(1/2^+ \text{ to } 5/2^+)$	1142.35	$(1/2^+,3/2^+)$
475.0 <i>4</i>	1.30 10	781.53	9/2+	306.25	7/2+

[‡] From the Adopted Levels.

105 Pd(n,n' γ) 1975GoYY,1976Av07 (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathtt{J}_{i}^{π}	E_f	\mathbf{J}_f^{π}
480.8 2	3.50 16	969.84	15/2-	489.04	11/2-
487.7 5	1.40 10	928.91	$(5/2^+)$	442.15	
491.2 5	1.40 10	1142.35	$(1/2^+,3/2^+)$	650.76	
523.6 7	0.45 8	1011.50	$(11/2^+)$	489.04	11/2-
^x 539.1 7	0.48 8				
560.6 <i>1</i>	13.1 4	560.56	3/2+	0.0	5/2+
^x 576.7 3	0.74 10				
582.1 2	2.40 12	1142.35	$(1/2^+,3/2^+)$	560.56	3/2+
608.9 <i>4</i>	0.60 10	928.91	$(5/2^+)$	319.29	5/2+
^x 627.0 4	0.55 10				
640.8 <i>5</i>	1.70 11	1201.6	$(1/2^+,3/2^+)$	560.56	3/2+
644.7 <i>1</i>	18.5 6	644.69	7/2-	0.0	5/2+
650.4 <i>3</i>	4.8 2	650.76	$(3/2)^+$	0.0	5/2+
^x 658.0 3	0.94 10				
^x 666.3 2	1.60 10		1		
672.8 3	0.70 10	672.78	1/2+	0.0	5/2+
680.0 [@] 6	0.25 6	961.4	$(1/2,3/2)^+$	280.38	3/2+
705.2 2	1.40 10	1011.50	$(11/2^+)$	306.25	7/2+
727.2 2	2.40 12	726.97	5/2+	0.0	5/2+
768.4 <i>5</i>	0.12 6	1074.4?	$(3/2^+)$	306.25	7/2+
781.5 2	7.5 2	781.53	9/2+	0.0	5/2+
793.8 <i>5</i>	0.30 6	1074.4?	$(3/2^+)$	280.38	3/2+
808.2 5	0.78 10	1088.3	3/2-	280.38	3/2+
821.7 4	1.20 10	1102.1	$(1/2^+ \text{ to } 5/2^+)$	280.38	3/2+
825.1 <i>3</i>	0.57 10	1922.9?	$(1/2^+,3/2^+)$	1098.1?	$(5/2^+,7/2^+,9/2^+)$
^x 829.3 3	1.30 10				
^x 853.8 4	0.53 8	1000 1	(1/2 2/2 7/2) +	1000 10	(FIGT FIGT 0 (GT)
890.7 <i>4</i>	0.91 10	1988.4	$(1/2,3/2,5/2)^+$	1098.1?	$(5/2^+,7/2^+,9/2^+)$
x912.5 4	0.76 10	1001	(1/0+ 2/0+)	200.20	2 /2+
921.3 <i>4</i>	0.78 10	1201.6	$(1/2^+,3/2^+)$	280.38	3/21
x925.3 3	1.10 10	020.01	(F/0+)	0.0	5/0+
928.9 3	1.70 11	928.91	$(5/2^+)$	0.0	5/2+
x945.9 4	0.67 10	1050 11	(2/0+)	206.25	7/2+
952.6 3	1.30 10	1259.11	$(3/2^+)$	306.25	7/2 ⁺
961.6 8	0.30 6	961.4	$(1/2,3/2)^+$	0.0	5/2 ⁺
973.3 <i>8</i> 979.0 <i>4</i>	0.24 <i>6</i> 0.64 <i>10</i>	1700.6 1259.11	$(1/2^+ \text{ to } 9/2^+)$ $(3/2^+)$	726.97 280.38	
			(3/2)		3/2+
988.6 [@] 7	0.67 10	1477.6?	(1/0.2/0.5/0)+	489.04	11/2-
1026.7 4	0.57 10	1988.4	$(1/2,3/2,5/2)^+$	961.4	$(1/2,3/2)^+$
^x 1054.1 4	0.83 10	1520.5	(2/0+ / 7/0+)	440.15	(7/0) +
1078.0 <i>5</i> x 1084.0 <i>8</i>	0.47 10	1520.5	$(3/2^+ \text{ to } 7/2^+)$	442.15	$(7/2)^+$
	0.30 7	1000 2	2/2-	0.0	5/2+
1088.1 4	0.61 10	1088.3	3/2	0.0	5/2+
1098.5 [#] 3	2.30 [#] 12	1098.1?	$(5/2^+,7/2^+,9/2^+)$	0.0	5/2+
1098.5 [#] <i>3</i>	2.30 [#] <i>12</i>	1405.05	$(3/2^+,5/2^+)$	306.25	7/2+
1142.2 2	1.50 11	1142.35	$(1/2^+,3/2^+)$	0.0	5/2 ⁺
1162.1 8	0.25 6	1650.4	$(7/2^{-})$		
1177.7 3	1.10 10	1177.7	$(1/2^+,3/2^+)$	0.0	5/2+
1208.7 8	0.27 7	1650.4	$(7/2^{-})$	442.15	$(7/2)^+$
^x 1230.4 7	0.46 10	1500 5	(2.12)	200.2-	2/2+
1240.8 7	0.29 7	1520.5	$(3/2^+ \text{ to } 7/2^+)$	280.38	,
1259.2 3	1.10 10	1259.11	$(3/2^+)$	0.0	5/2+
^x 1273.0 4	0.78 11				
1305.5 [#] 4	0.80 [#] 11	1650.4	$(7/2^{-})$	344.52	1/2+

105 Pd(n,n' γ) 1975GoYY,1976Av07 (continued)

$\gamma(^{105}\text{Pd})$ (continued)

E_{γ}^{\dagger}	$_{\rm I_{\gamma}}^{\dagger}$	$E_i(level)$	J_i^π	\mathbb{E}_f	\mathbf{J}_f^{π}
1305.5# 4	0.80# 11	1865.5	$(1/2^+ \text{ to } 7/2^+)$	560.56	3/2+
1360.7 8	0.24 6	1922.9?	$(1/2^+,3/2^+)$	560.56	3/2+
1382.4 <i>16</i>	0.13 7	1700.6	$(1/2^+ \text{ to } 9/2^+)$	319.29	5/2+
1405.5 7	0.31 8	1405.05	$(3/2^+,5/2^+)$	0.0	5/2+
^x 1436.4 <i>16</i>	0.17 7				
^x 1449.4 7	0.33 8				
1455.3 5	0.57 11	1774.6?	$(1/2^+ \text{ to } 9/2^+)$	319.29	5/2+
^x 1461.9 5	0.63 11				
x1499.2 4	1.00 11				
^x 1514.7 8	0.46 11				
1583.9 <i>6</i>	0.39 10	1865.5	$(1/2^+ \text{ to } 7/2^+)$	280.38	$3/2^{+}$
1600.4 <i>16</i>	0.14 7	1601.3	$(1/2^+ \text{ to } 5/2^+)$	0.0	5/2+
1611.8 8	0.50 11	2101.4?	$(7/2^-, 9/2, 11/2^+)$	489.04	$11/2^{-}$
^x 1633.0 <i>14</i>	0.19 7				
^x 1641.2 20	0.12 16				
1660.0 <i>10</i>	0.20 7	2101.4?	$(7/2^-, 9/2, 11/2^+)$	442.15	$(7/2)^+$
^x 1697.5 <i>15</i>	0.16 7				
1745.2 <i>7</i>	0.56 11	2064.5	$(1/2^+,3/2^+)$	319.29	
1784.3 <i>16</i>	0.15 7	2064.5	$(1/2^+,3/2^+)$	280.38	$3/2^{+}$
^x 1935.0 <i>16</i>	0.16 7				

 $^{^{\}dagger}$ From 1975GoYY, unless otherwise noted. ‡ From 1976Av07. $^{\#}$ Multiply placed with undivided intensity. $^{@}$ Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme.

105 Pd(n,n' γ) 1975GoYY,1976Av07

Level Scheme

Intensities: Type not specified & Multiply placed: undivided intensity given

Legend

105 Pd(n,n' γ) 1975GoYY,1976Av07

Level Scheme (continued)

Intensities: Type not specified & Multiply placed: undivided intensity given

Legend

Coulomb excitation 1985Ta19,1981Ch42,1971Bo08

Type Author Citation Literature Cutoff Date Full Evaluation S. Lalkovski, J. Timar and Z. Elekes NDS 161, 1 (2019) 1-Apr-2019

- 1985Ta19: Facility: Panjab University cyclotron; Beam: E(p)=2-4 MeV; Target: enriched to 91.4% in ¹⁰⁵Pd; Detectors: one Ge(Li); Measured: γ, Eγ, Iγ; Deduced: B(E2) and T_{1/2}.
- 1981Ch42 Facility: Saha Institute of Nuclear Physics (Calcutta) cyclotron; Beam: E(p)=3.2 MeV; Target: ^{nat}Pd (22.2%); Detectors: Ge(Li); Measured: Measured: γ , $E\gamma$, $I\gamma$; Deduced: B(E2) and $T_{1/2}$.
- 1974Er05: Facility FTI, USSR; Beam (12 C)=35 MeV; Target: enriched in 105 Pd; Detectors: one Ge(Li); Measured: γ , γ (t), E γ ; Deduced: $T_{1/2}$ from DSAM.
- 1974Er05: Facility FTI, USSR; Beam (12 C)=35 MeV; Target: enriched in 105 Pd; Detectors: one Ge(Li); Measured: γ , γ (t), E γ ; Deduced: $T_{1/2}$ from DSAM.
- 1971Bo08: Facility: Argonne National Lab tandem Van de Graaf accelerator; Beam: E(α)=4.4-8.0 MeV; Target: two 65 mg/cm² self-supported, enrhiched to 77.2% in ¹⁰⁵Pd and ^{nat.}Pd; Detectors: Ge(Li); Measured: excit. function, Eγ, Iγ; Deduced: level scheme, matrix elements.
- 1971SiYQ: Beam: $E(^{35}Cl)=100$ MeV; Target: enriched in ^{105}Pd 350 $\mu g/cm$ thick and 0.45 mg/cm² Ni backing foil; Detectors: one co-axial Ge(Li); Measured: γ , γ (t) E γ , I γ ; Deduced: $T_{1/2}$ from RDDS; Also from the colaboration: 1971SiYG.
- 1970GeZQ: Facility: Yale university; Beam: $E(\alpha)=10$ MeV; Target: enriched to 77.2% in 105 Pd; Detectors: two Ge(Li); Measured: γ , γ - γ coinc. E γ , I γ ; Deduced: B(E2), level scheme; Also, from the same collaboration 1970GeZY.
- 1968Ga22: Facility: FTI cyclotron; Beam: $E(^{14}N)$ =46.1 MeV; Target: ^{105}Pd enriched to 86.8%; Detector: one Ge(Li); Measured: γ , E γ , I γ ; Deduced: B(E2) and T $_{1/2}$.

Others: 1972SiZP, 1970GeZY, 1966Gu10, 1964Al27, 1964Al28, 1962Va20, 1956Te26, 1955Ma37, 1955Mc02.

¹⁰⁵Pd Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	5/2+	
280.38 6	3/2+	B(E2)↑: 0.0095 5.
		B(E2) \uparrow : weighted average of 0.0085 7 (1985Ta19), 0.0073 16 (1981Ch42), 0.0110 10 (1971Bo08); 0.0097 16 (1970GeZQ); Other: 0.002 1 (1968Ga22), \leq 0.013 (1962Va20).
306.25 8	$7/2^{+}$	B(E2)↑: 0.00117 11.
240.00.5	~ /o l	B(E2)†: weighted average of 0.0012 <i>I</i> (1985Ta19), 0.0012 <i>2</i> (1971Bo08), 0.0011 <i>I</i> (1970GeZQ), 0.004 <i>I</i> (1968Ga22); Other: 0.0011 <i>2</i> (1970GeZQ).
319.08 5	5/2+	B(E2)↑: 0.0082 4.
		B(E2)†: weighted average of 0.0073 8 (1985Ta19), 0.0095 20 (1981Ch42), 0.0081 10 (1971Bo08), 0.0088 7 (1970GeZQ), 0.008 2 (1968Ga22).
344.55 10	$1/2^{+}$	B(E2)↑: 0.0022 5.
		B(E2)↑: weighted average 0.0023 3 (1985Ta19), 0.0015 3 (1971Bo08), 0.0027 3 (1970GeZQ), 0.020 4 (1968Ga22) Other: 0.0028 3 (1970GeZQ),≤0.026 (1962Va20).
442.27 8	$(7/2)^+$	$T_{1/2}$: 3.8 ps 10 from DSAM in 1971SiYG, 3.81 ps 14 from RDDS in 1971SiYQ.
		B(E2)↑: 0.185 7.
		B(E2)↑: weighted average of 0.190 <i>16</i> (1985Ta19), 0.162 <i>27</i> (1981Ch42), 0.165 <i>13</i> (1971Bo08), 0.197 <i>10</i> (1970GeZQ); Others: 0.18 <i>4</i> (1968Ga22), 0.19 <i>1</i> (1970GeZY), 0.21 (1962Va20).
560.75 19	$3/2^{+}$	$T_{1/2}$: 1.9 ps 5 (1974Er05).
		B(E2)↑: 0.0095 9.
		B(E2)†: weighted average of 0.0092 <i>14</i> (1985Ta19), 0.0111 <i>38</i> (1981Ch42), 0.0075 <i>10</i> (1971Bo08), 0.0110 <i>7</i> (1970GeZQ), 0.006 <i>2</i> (1968Ga22).
650.58 <i>10</i>	$(3/2)^+$	B(E2)†: 0.0078 6.
		B(E2)†: weighted average of 0.0086 17 (1985Ta19), 0.0066 13 (1971Bo08), 0.0079 7 (1970GeZQ), 0.017 5 (1968Ga22).
672.96 <i>11</i>	$1/2^{+}$	$T_{1/2}$: >2 ps (1974Er05).
		B(E2)↑: 0.0082 9.
		B(E2)†: weighted average of 0.0089 16 (1985Ta19), 0.0057 11 (1971Bo08), 0.0092 7 (1970GeZQ), 0.005 3 (1968Ga22).
696.4 6	$(7/2^+)$	B(E2)↑: 0.0020 10 (1985Ta19).

Coulomb excitation 1985Ta19,1981Ch42,1971Bo08 (continued)

¹⁰⁵Pd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
727.53 19	5/2+	B(E2)↑: 0.0057 25.
		B(E2)↑: weighted average of 0.0043 9 (1985Ta19), 0.0024 6 (1971Bo08), 0.0123 8 (1970GeZQ), 0.010 3 (1968Ga22).
781.77 9	9/2+	T _{1/2} : 1.7 ps 4 from DSAM in 1971SiYG, 1.80 ps 28 from RDDS in 1971SiYQ, 1.11 ps 28 (1974Er05).
		B(E2)↑: 0.101 7.
		B(E2)\u00e7: weighted average of 0.0966 80 (1985Ta19), 0.119 30 (1981Ch42), 0.0827 83 (1971Bo08);
		0.113 6 (1970GeZQ); Other: 0.059 (1962Va20).
785.0 <i>10</i>	$(1/2^+ \text{ to } 9/2^+)$	B(E2)↑: 0.05 1 (1968Ga22).
945.0 10		B(E2)↑: 0.020 5 (1968Ga22).
961.5 5	$(1/2,3/2)^+$	B(E2)↑: 0.008 5.
		B(E2)↑: weighted average of 0.016 3(1985Ta19), 0.005 2 (1968Ga22).

 $^{^{\}dagger}$ From a least-squares fit to Ey. ‡ From Adopted Levels.

$\gamma(^{105}\text{Pd})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	J_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	$\delta^{ extbf{@}}$	α &	$\mathrm{I}_{(\gamma+ce)}$
64.2 [#]		344.55	1/2+	280.38 3/2+	M1(+E2)	-0.025 30		
90 [#] a		650.58	$(3/2)^+$	560.75 3/2+				
112.6 <mark>#</mark> a		672.96	1/2+	560.75 3/2+				
123 [#] a		442.27	$(7/2)^+$	319.08 5/2+				
136 [#] a		442.27	$(7/2)^+$	306.25 7/2 ⁺				
136 <mark>#</mark>		696.4	$(7/2^+)$	560.75 3/2+				
216 [#]		560.75	3/2+	344.55 1/2 ⁺				
254 [#]		696.4	$(7/2^+)$	442.27 (7/2)+				
280 [#] a		560.75	3/2+	280.38 3/2+				
280.37 6	128	280.38	3/2+	0.0 5/2+	M1+E2	+0.143 7		
285 [#] <i>a</i>		727.53	5/2+	442.27 (7/2)+				
288 [#]		961.5	$(1/2,3/2)^+$	672.96 1/2+	M1			
306 ^{#a} 306.25 8	12.0	650.58 306.25	$(3/2)^+$ $7/2^+$	344.55 1/2 ⁺ 0.0 5/2 ⁺	M1+E2	+0.055 2	0.01894	100
311#	12.0	961.5	$(1/2,3/2)^+$	$650.58 (3/2)^+$	M1+E2	+0.033 2	0.01694	100
319.08 5	78.3	319.08	$5/2^+$	$0.0 5/2^+$	M1+E2	+0.103 8	0.01710	99.2
328.6 [#]		672.96	1/2+	344.55 1/2 ⁺	(M1)			
331.48 <i>10</i>	6.68	650.58	$(3/2)^+$	319.08 5/2+	M1+E2	-0.084 7	0.01550	58
339.49 6	31.8	781.77	9/2+	442.27 (7/2)+	M1(+E2)	-0.04 4	0.01000	(2)
344.55 <i>10</i> 353.8 [#] <i>a</i>	8.71	344.55	1/2+	$0.0 5/2^+$	E2		0.01889	63
370.0 5	1.2	672.96 650.58	$1/2^+$ $(3/2)^+$	319.08 5/2 ⁺ 280.38 3/2 ⁺	M1+E2	0.11 3		
392.56 10	6.80	672.96	1/2+	280.38 3/2+	M1+E2	+0.06 3		
400 [#]		961.5	$(1/2,3/2)^+$	560.75 3/2+	M1			
408.1 [#]		727.53	5/2+	319.08 5/2+	M1(+E2)			
415.8 [#] a		696.4	$(7/2^+)$	280.38 3/2+				
421 [#] <i>a</i>		727.53	5/2+	306.25 7/2+	M1(+E2)			
442.24 8	892	442.27	$(7/2)^+$	$0.0 5/2^+$	M1+E2	-0.23 6		100
447 [#] a		727.53	5/2+	280.38 3/2+	M1+E2	0.9 + 9 - 5		
475.6 [#]		781.77	9/2+	306.25 7/2+				

1985Ta19,1981Ch42,1971Bo08 (continued) Coulomb excitation

$\gamma(^{105}\text{Pd})$ (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$E_i(level)$	J_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. @	${\rm I}_{(\gamma+ce)}$
560.74 20	23.1	560.75	3/2+	0.0	5/2+	M1+E2	95.9
617 [#]		961.5	$(1/2,3/2)^+$	344.55	$1/2^{+}$	M1(+E2)	
650.65 20	3.74	650.58	$(3/2)^+$	0.0	5/2+	M1+E2	32
673.1 <i>3</i>	3.73	672.96	1/2+	0.0	$5/2^{+}$	E2	33
682 [#]		961.5	$(1/2,3/2)^+$	280.38	$3/2^{+}$	M1(+E2)	
696.2 [#]		696.4	$(7/2^+)$	0.0	$5/2^{+}$		
727.54 19	3.10	727.53	5/2+	0.0	5/2+	M1(+E2)	25
781.90 <i>19</i>	48.0	781.77	9/2+	0.0	$5/2^{+}$	E2	54
785 [‡]		785.0	$(1/2^+ \text{ to } 9/2^+)$	0.0	5/2+		
945 [‡]		945.0		0.0	$5/2^{+}$		
962 [#]		961.5	$(1/2,3/2)^+$	0.0	5/2+	M1	

[†] From 1971Bo08, unless noted otherwise. Iy per 1×10^{10} incident α particles at $E\alpha$ =7.2 MeV.

[‡] From 1968Ga22. # From 1985Ta19.

[@] From the adopted gammas.

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

Coulomb excitation Level Scheme 1985Ta19,1981Ch42,1971Bo08 Legend

Intensities: Type not specified

4

$^{106}Pd(p,d)$ 1975An06,1983Ao01

Type Author Citation Literature Cutoff Date
Full Evaluation S. Lalkovski, J. Timar and Z. Elekes NDS 161, 1 (2019) 1-Apr-2019

1983Ao01: Facility: University of Tsukuba 12 UD Pelletron; Beam: E(pol p)=22.0 MeV; Target: 2.4 mg/cm² enriched in 106 Pd to 96.66% Detectors: magnetic spectrograph with a Si position sensitive detector or single-wire proportional chamber, placed in its focal plane; Measured: $d\sigma/d\Omega(\theta, E)$, $A(\theta)$; Deduced: L from DWBA.

1975An06: Facility: Univ. Colorado 132-cm AVF cyclotron; Beam: E(p)=22.9 MeV; Target: $\approx 200~\mu g/cm^2$ enriched to 82.3% in 106 Pd; Contaminants: 105 Pd (11.25%) and 108 Pd (4.56); Detectors: QQD beam swinger and QQQQ magnetic spectrograph, proportional chamber and one plastic scintillator in coinc., Faraday cup; Measured: E, $d\sigma/d\Omega(\theta, E)$.

Other: 1973Is09, 1973PEZK, 1972ISZW.

105Pd Levels

E(level) [†]	<u>L</u> ‡	S#@	Comments
0	2	1.78	S: other: 2.0 (1983Ao01). configuration: <i>y</i> 2d _{5/2} .
280	2	0.44	
306	4	2.52	configuration: v1g _{7/2} .
319	2	0.36	
344	0	0.31	
447	2	0.04	S: given for $J^{\pi}=5/2^+$.
489	5	0.85	configuration: v1h _{11/2} .
535			
561			
650	2	0.61	
674	0	0.05	
727	2	0.47	
784	4	0.54	
808			
929	2	0.14	
964	0	0.09	
972			
1098			

[†] From 1975An06.

 $^{^{\}ddagger}$ From dσ/dΩ(θ , E) and DWBA analysis in 1975An06; Poor description of the L=2 states at θ =2.5 and 5.0°.

[#] Label=C²S

[@] From C²S=(2J+1) $\sigma_{\text{exp}}/\sigma_{\text{dw}}$ 1/N, where N=22.9.

$^{106}Pd(d,t)$ 1963Cu02,1980Sc23

History

Type Author Citation Literature Cutoff Date
Full Evaluation S. Lalkovski, J. Timar and Z. Elekes NDS 161, 1 (2019) 1-Apr-2019

1963Cu02: Facility: Pittsburgh cyclotron; Beam: E(d)=15 MeV; Target: ≈ 3 mg/cm² thick, enriched to $\approx 90\%$ in 106 Pd; Detectors: magnetic spectrograph, photographic plates; Measured: $d\sigma/d\Omega(\theta)$ and compared to DWBA. $\Delta E(t)=50$ keV; The statistical uncertainty is 8 keV.

1980Sc23: Facility: KVI cyclotron; Beam: E(d)= 50 MeV; Target: 500 μ g/cm² self-supporting Pd metallic foil; Detectors: ΔE-E solid-state detector telescope; Measured: d σ /d Ω (θ , E); Deduced: level energies, L from DWBA analysis.

Others: 1973RiZL.

105Pd Levels

E(level) [†]	L [‡]	S#@	Comments
0.8	2	2.05	
321 8	2+4	0.56	S: for L=2; Otherwise 4.54 for L=4.
441 8			
486 8			
652 8			
692 8			
721 8			
785 8			
939 8			
979 8			
1068 8			
1105 8			
1155 8			
1242 8			
1288 8	_	0.00	
1417 8	5	0.90	

[†] From 1963Cu02.

[‡] From 1980Sc23, based on DWBA analysis with DWUCK.

[#] Label=C²S.

[@] From $((2j+1)/N)(d\sigma/d\Omega)_{exp}/(d\sigma/d\Omega)_{DWUCK}$ and N=3.33 in 1980Sc23.