LA NEUROPSICOLOGÍA EN LA SOCIEDAD: AVANCES E INNOVACIÓN

INFLUENCIA DE LA OBESIDAD EN LA FUNCIÓN EJECUTIVA EN PERSONAS CON SÍNDROME POST-COVID

Maite Garolera^{1,2,*}, M. Angels Jurado^{3,4}, Neus Cano^{1,5}, Mar Ariza^{1,6}, Barbara Segura^{6,4,7}, Carme Junqué^{6,4,7}, Johnatan Ottino-Gonzalez^{3,4}, Anna Prunell^{3,4}, Javier Bejar⁸, Cristian Barrué⁸, NAUTILUS Project Collaborative Group.

¹Grupo de Investigación Cerebro, Cognición y Conducta (C3-CST), Consorci Sanitari de Terrassa (CST). ²Unitat de Neuropsicologia, CST. ³Departament de Psicologia Clínica i Psicobiologia. Universitat de Barcelona (UB). ⁴Institut de Neurociències. UB. ⁵Departament de Ciències Bàsiques. Universitat Internacional de Catalunya (UIC). 6Unitat de Psicologia médica, Departament de Medicina, UB. 7Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS).8Facultat d'Informàtica de Barcelona (FIB), Universitat politécnica de Catalunya (UPC).

Introducción y objetivo

La obesidad está asociada con la inflamación crónica y la disfunción inmunitaria (Ellulu et al., 2017) y es un factor de riesgo para desarrollar síndrome post-COVID (PCC) (Menezes et al., 2023). Las personas obesas tienden a rendir peor en pruebas de función ejecutiva en comparación con las personas con normopeso (Ariza et al., 2012).

El **objetivo** fue valorar la influencia de la obesidad en el rendimiento en funciones ejecutivas y velocidad de procesamiento en personas con PCC.

Metodología

formada muestra estuvo 330 por participantes: 189 sujetos con PCC reclutados para el Proyecto NAUTILUS (ClinicalTrials.gov: NCT05307549 y NCT05307575) de las Unidades de Neuropsicología y COVID-19 de 16 hospitales de Cataluña, Madrid y Andorra, coordinados por el Consorci Sanitari de Terrassa (CST), y 141 personas reclutadas en tres centros de primaria del CST. Se formaron cuatro grupos: 89 personas con PCC y obesidad (O-PCC), 100 personas con PCC sin obesidad (PCC), 62 personas con obesidad, (O) y 79 controles (sin PCC ni obesidad) (HC).

Se valoró la función ejecutiva y la velocidad de procesamiento de la información mediante el test de palabras y colores de Stroop y Trail Making Test.

Los datos se analizaron mediante un ANCOVA factorial (PCC x OBESIDAD). El nivel alfa se fijó en p=0.05. Los análisis estadísticos se realizaron en IBM SPSS Statistics 27.

Resultados

Los grupos mostraron diferencias en edad, sexo y escolaridad, y estas variables se controlaron en los análisis.

	O-PCC	PCC	0	HC		
	N= 88	N= 100	N= 63	N= 79	χ^2	р
Sexo (mujer)	44 (50%)	76 (76%)	39 (61.9%)	60 (75.9%)	18.529	.0001
Hospitalización	57 (64.7)	29 (29%)			312.823	.0001
	M (DE)	M (DE)	M (DE)	M (DE)	F	р
Edad	50.95 (7.85)	49.62 (6.91)	39.65 (8.93)	44.94 (7.15)	33.145	.0001
Educación	13.41 (3.48)	14.41 (3.30)	13.83 (3.00)	14.99 (2.96)	3.772	.011

	O-PCC	PCC	Ο	HC		
	MA (EE)	MA (EE)	MA (EE)	MA (EE)	F	η2
STROOP	87.85	95.06	109.12	105.18	COVID= 50.23*	.135
Р	(2.32)	(2.10)	(2.79	(2.36)	OBESIDAD= 0.997	
					Interacción= 5.00*	.015
STROOP	62.74	63.63	72.97	72.22	COVID= 54.344*	.144
С	(1.46)	(1.32)	(1.76)	(1.48)	OBESIDAD= 0.097	
					Interacción= 0.530	
STROOP	37.07	39.27	45.83	39.26	COVID= 69.135*	.176
P-C	(1.12)	(1.01)	(1.35)	(1.14)	OBESIDAD= 0.969	
					Interacción= 2.196	
TMT-A	42.04	36.96	30.27	32.18	COVID= 16.853	.049
	(2.28)	(2.06)	(2.75)	(2.31)	OBESIDAD= 0.467	
					Interacción= 2.156	
TMT-B	102.87	79.25	72.34	67.46	COVID= 20.033*	.058
	(5.90)	(5.37)	(7.11)	(5.95)	OBESIDAD= 6.399*	.019
					Interacción= 2.696	

O-PCC= Obesos PCC; O= Obesos sin COVID; HC= controles; MA= media ajustada por edad, sexo y educación.

Se encontró un efecto principal significativo del factor "PCC" en Stroop-P, Stroop-C y Stroop P-C, TMT-A y TMT-B. Las personas con PCC rindieron significativamente peor que las que no habían tenido COVID-19. También se encontró un efecto principal significativo del factor "obesidad", mostrando los obesos signifiativamente peor ejecución en TMT-B. Finalmente, se encontró un efecto de interacción "obesidad" x "PCC" en Stroop-P, rindiendo los PCC obesos peor que los PCC sin obesidad

Conclusiones

- Las personas con COVID persistente presentan afectación de la función ejecutiva y la velocidad de procesamiento comparadas con las no PCC.
- Las personas obesas rinden peor en función ejecutiva que las normopeso (TMT-B).
- Las personas con COVID persistente obesas tienen menor velocidad de procesamiento que las personas con COVID persistente no obesas.

Ariza, M., Garolera, M., Jurado, M. A., Garcia-Garcia, I., Hernan, I., Sánchez-Garre, C., Vernet-Vernet, M., Sender-Palacios, M. J., Marques-Iturria, I., Pueyo, R., Segura, B., & Narberhaus, A. (2012). Dopamine genes (DRD2/ANKK1-TaqA1 and DRD4-7R) and executive function: their interaction with obesity. PloS One, 7(7), e41482. https://doi.org/10.1371/journal.pone.0041482

Ellulu, M. S., Patimah, I., Khaza'ai, H., Rahmat, A., & Abed, Y. (2017). Obesity and inflammation: the linking mechanism and the complications. Archives of Medical Science: AMS, 13(4), 851. https://doi.org/10.5114/AOMS.2016.58928

Menezes, D. C. de, Lima, P. D. L. de, Lima, I. C. de, Uesugi, J. H. E., Vasconcelos, P. F. da C., Quaresma, J. A. S., & Falcão, L. F. M. (2023). Metabolic Profile of Patients with Long COVID: A Cross-Sectional Study. Nutrients, 15(5), 1-11. https://doi.org/10.3390/nu15051197

Economia, Industria y Competitividad (PSI2017-86536-C2)

^{*}mgarolera@sct.cat

^{*} p<.005