Lista 1

Geometria simplética

Problem 1: Let V be a symplectic vector space (dim V = 2n), and $\Omega \in \Lambda^2 V^*$ be a skew-symmetric bilinear form. Show that Ω is nondegenerate iff $\Omega^n \neq 0$.

Solution. I first tried to show that Ω is degenerate iff $\Omega^n = 0$. Suppose there is a vector v_0 such that $\Omega(v_0, w) = 0$ for all $w \in V$ and complete to a basis. Then for any $v_1, v_2, v_3, v_4 \in V$ we have

$$(\Omega \wedge \Omega)(\nu_1,\nu_2,\nu_3,\nu_4) = \sum_{\sigma \in S_4} sgn(\sigma) \Omega(\nu_{\sigma(1)},\nu_{\sigma(2)}) \Omega(\nu_{\sigma(3)},\nu_{\sigma(4)}).$$

Problem 2: Let (V, Ω) be a symplectic vector space, and let $W \subseteq V$ be any linear subspace.

a. Show that $V_W = \frac{W}{W \cap W^{\Omega}}$ inherits a natural symplectic structure Ω_W uniquely determined by the condition $\pi^*\Omega_W = \Omega|_W$ (here $\pi: W \to W/(W \cap W^{\Omega})$ is the quotient projection).

(The space (V_W, Ω_W) is called the **reduced space**.)

b. Suppose that W is coisotropic, and let $L \subset V$ be lagrangian. Show that the image of $L \cap W$ via $\pi : W \to V_W$ is lagrangian in the reduced space.

Solution.

a. Define

$$\Omega_W([w_1], [w_2]) := \Omega(w_1, w_2)$$

for any equivalence classes $[w_1]$, $[w_2] \in V_W$. Let's check that this is well defined. Suppose $w_1' \in [w_1]$. Then $w_1 - w_1' \in W \cap W^{\Omega}$ so $\Omega(w_1 - w_1', w_2) = 0$ since $w_2 \in W$ and $w_1 - w_1'$ is, in particular, in W^{Ω} . So $\Omega(w_1, w_2) = \Omega(w_1', w_2)$. Why not quotient only by W^{Ω} ? Looks like I didn't use the W part...

Recall that $\pi^*\Omega_W(w_1,w_2) = \Omega_W([w_1],[w_2])$. It is straightforward to check that Ω_W is the only symplectic form on V_W satisfying $\pi^*\Omega_W = \Omega|_W$: if Ω_W' is another such form, then $\Omega_W([w_1],[w_2]) = \Omega|_W(w_1',w_2') = \Omega_W'([w_1],[w_2])$ for any $w_1' \in [w_1]$ and $w_2' \in [w_2]$.

b. Let's first check what is $(\pi(L \cap W))^{\Omega_W}$. We have

$$(\pi(\mathsf{L} \cap W))^{\Omega_W} = \{ [v] \in V_W : \Omega_W([v], [w]) = 0 \ \forall [w] \in \pi(\mathsf{L} \cap W) \}$$
$$= \{ [v] \in V_W : \Omega(v', w) = 0 \ \forall v' \in [v] \ \text{and} \ \forall w \ \text{s.t.} \ [w] \in \pi(\mathsf{L} \cap W) \}$$

In words, this is the set of classes whose representatives are Ω -orthogonal to representatives of $\pi(L \cap W)$.

so let $[\nu] \in \pi(L \cap W)^{\Omega_W}$. Let's check that $[\nu]$ is also in $\pi(L \cap W)$, ie. that $\nu \in L \cap W$. Well,

If $\nu' \in L$, then $\Omega(\nu, \nu') = 0$ since $[\nu'] \in \pi(L \cap W)^{\Omega}$...but what if $\nu' \in L \setminus W$?.

Let w be such that $[w] \in \pi(L \cap W)$. Then

$$\Omega_W([v], [w]) = 0$$

$$\implies \Omega(v, w) = 0$$

so $\nu \in$

Problem 3: We saw in class that any symplectomorphism $T: V_1 \to V_2$ defines a lagrangian subspace by its graph: $\Gamma_T := \{(Tu,u) : u \in V_1\} \subset V_2 \oplus \overline{V}_1$. (Recall that if (V,Ω) is a svs, \overline{V} denotes $(V,-\Omega)$.) So we think lagrangian subspaces of $V_2 \oplus \overline{V}_1$ a generalizations of symplectomorphisms. We now see how to generalize their composition.

Consider symplectic vector spaces V_1, V_2, V_3 and $E = V_3 \oplus \overline{V}_2 \oplus V_2 \oplus \overline{V}_1$.

- a. Show that $\Delta := \{(\nu_3, \nu_2, \nu_2, \nu_1) \in E\}$ is coisotropic in E and its reduction E_Δ can be identified with $V_3 \oplus \overline{V}_1$.
- b. Given lagrangian subspaces $L_1 \subset V_2 \oplus \overline{V}_1$ and $L_2 \subset V_3 \oplus \overline{V}_2$, define the *composition* of L_2 and L_1 by

$$L_2 \circ L_1 := \{(\nu_3, \nu_1) | \exists \nu_2 \in V \text{ s.t. } (\nu_3, \nu_2) \in L_2, (\nu_2, \nu_1) \in L_1 \}.$$

Show that $L_2 \circ L_1$ is a lagrangian subspace of $V_3 \oplus \overline{V}_1$. (Hint: show that the composition can be identified with the reduction of $L_2 \times L_1 \subset E$ with respect to Δ).

c. Let $T_1: V_1 \to V_2$ and $T_2: V_2 \to V_3$ be symplectomorphisms. Show that $\Gamma_{T_2 \circ T_1} = \Gamma_{T_2} \circ \Gamma_{T_1}$.

Problem 4: Let (V, J) be a complex vector space, let Ω be a sympletic structure on V. Show that J and Ω are compatible iff there exists a hermitian inner product $h: V \times V \to \mathbb{C}$ such that Ω is its imaginary part. Show that any (complex) orthonormal basis of (V, h) can be extended to a symplectic basis of (V, Ω) .

Solution. First suppose that J and Ω are compatible, ie., $g(u,v) := \Omega(u,Jv)$ is an inner product. Define $h(u,v) = g(u,v) + i\Omega(u,v)$. Then h is the required hermitian inner product. Indeed:

- 1. The properties $h(u_1 + u_2, v) = h(u_1, v) + h(u_1, v)$ and $h(u, v_1 + v_2) = h(u, v_1) + h(u, v_2)$ follows easily from linearity of g and Ω .
- 2. $h(\lambda u, v) = \lambda h(u, v)$ follows again from linearity of g and Ω .

3. The property $h(u, \lambda v) = \bar{\lambda}h(u, v)$ follows easily from 2. and 4. since

$$\begin{split} h(u,\lambda\nu) &= \overline{h(\lambda\nu,u)} \\ &= \bar{\lambda}\overline{h(\nu,u)} \\ &= \bar{\lambda}h(u,\nu) \end{split}$$

4. $h(u, v) = \overline{h(v, u)}$ is clear by anti-symmetry of Ω:

$$\begin{split} h(u,v) &= g(u,v) + i\Omega(u,v) \\ &= g(v,u) - i\Omega(v,u) \\ &= \overline{h(v,u)} \end{split}$$

For the converse suppose that h is an hermitian inner product such that Ω is its imaginary part. Then $g(u,v) := \Omega(u,Jv)$ is an inner product:

- 1. Linearity of g is immediate from linearity of Ω and J.
- 2. Symmetry follows from

$$\begin{split} g(u,v) &= \Omega(u,Jv) \\ &= \Omega(-J^2u,Jv) \\ &= -\Omega(J^2u,Jv) \\ &= \Omega(Jv,J^2u) \\ &= \Omega(\\ &= \Omega(-v,g(v,u) \\ &= -\Omega(Ju,v) \end{split}$$

3. For positive-definiteness let $u \neq 0$. Then

$$g(u, u) = \Omega(u, Ju)$$

Problem 5: Consider the symplectic vector space $(\mathbb{R}^{2n},\Omega_0)$, where $\Omega_0(\mathfrak{u},\nu)=-\mathfrak{u}^TJ_0\nu$. Check that its group of linear symplectomorphisms is given by $Sp(2n)=\{A\in GL(2n):A^TJ_0A=J_0\}$. Show that Sp(2n) is a smooth submanifold of GL(2n) and that its tangent space at the identity $I\in GL$ is given by $T_ISp(2n)=\{A:\mathbb{R}^{2n}\to\mathbb{R}^{2n}|A^TJ_0+J_0A=0\}$. Conclude that Sp(2n) has dimension $2n^2+n$. Verify also that Sp(2n) is not compact.

Problem 6: Consider the standard compatible triple (Ω_0,J_0,g_0) on \mathbb{R}^{2n} . Let O(2n) be the linear orthogonal group of \mathbb{R}^{2n} (i.e., linear transformations preserving the canonical inner product g_0), and let Sp(2n) be the symplectic linear group. Through the identification $\mathbb{R}^{2n} \cong \mathbb{C}^n$ (as complex vector spaces), we may se e somente se $GL(n,\mathbb{C})$ (the group of linear automorphisms of \mathbb{C}^n as a subgroup of $GL(2n,\mathbb{R})$: a complex matrix A+iB is identified with the real $2n \times 2n$ matrix

$$\begin{pmatrix} A & -B \\ B & A \end{pmatrix}$$

Let now $U(n) \subset GL(n,\mathbb{C})$ be the group of linear transformation preserving the natural hermitian inner product of \mathbb{C}^n . Show that the intersection of any two of the groups

$$Sp(2n), O(2n), GL(n, \mathbb{C}) \subset GL(2n, \mathbb{R})$$

is U(n).

Problem 7: Let (V, Ω) be a symplectic vector space, let $W \subseteq V$. Let J be a Ω-compatible complex structure and g the corresponding inner product. Verify that $J(W^{\Omega}) = W^{\perp_g}$.

- a. Use this fact to show that any coisotropic subspace of V has an isotropic complement. In particular, any lagrangian subspace $L \subset V$ has a lagrangian complement $L', V = L \oplus L'$.
- b. Show that there is a natural identification $L' \cong L^*$, that induces a symplectomorphism $V \cong L \oplus L^*$ (where $L \oplus L^*$ has the natural symplectic structure $((ell, \alpha), (\ell', \alpha')) \mapsto \alpha(\ell') \alpha'(\ell)$.

Solution. First let's check that $J(W^{\Omega}) = W^{\perp_g}$. Indeed,

$$\begin{split} J(W^{\Omega}) &= \{Jv : v \in W^{\Omega}\} \\ &= \{Jv : \Omega(v, w) = 0 \ \forall w \in W\} \\ &= \{Jv : -\Omega(w, v) \ \forall w \in W\} \\ &= \{Jv : \Omega(w, -v) \ \forall w \in W\} \\ &= \{Jv : \Omega(w, J^2v) \ \forall w \in W\} \end{split}$$

re-write $Jv := \tilde{v}$ using that J is bijective:

$$\begin{split} J(W^{\Omega)} &= \{ \tilde{\mathbf{v}} \in \mathbf{V} : \Omega(w, \mathbf{J} \tilde{\mathbf{v}}) = 0 \ \forall w \in \mathbf{W} \} \\ &= \{ \tilde{\mathbf{v}} \in \mathbf{V} : g(\tilde{\mathbf{v}}, w) = 0 \ \forall w \in \mathbf{W} \} \\ &= \mathbf{W}^{\perp_g} \end{split}$$

Bonus problem: