Week 1 Supervised Learning and Regression

Week 1.1 Models and Parameters

Supervised Learning

x: inputs y: outputs

Training data:

$$(x = 1, y = 1)$$

$$(x = 2, y = 4)$$

$$(x = 3, y = 9)$$

Test data:

$$(x = 4, y = ?)$$

estimate de relationship.

Supervised Learning

input and output

$$(x = 0)$$
, $y = 'cat'$

Test Data:

Models

In ML, a Model is a function that <u>relates some inputs</u> (x) to <u>some</u> outputs (y)

Most models have parameters (θ), which allows them to represent whole classes of functions.

$$\hat{y} = ax^2 + bx + c \qquad \qquad \hat{y} = a\log(x) + b \qquad \dots$$

Linear regression

Fitting a Model

- 1. Define the model: Choose the "class" of functions that relates the inputs (x) to the output (y)
- 2. Define your training loss
- 3. Find the function in your class/form that gives the smallest training loss

what's a good Juncaion/purameter?

Week 1.2 Loss functions

Fitting a Model

1. Define the model: Choose the "class" of functions that relates the inputs (x) to the output (y)

Applying the Model to Data

% in povery -> $\hat{y} = b_0 + b_1 x^2$ % HS Grad.

which one is the best?
We need a standard

Training loss function

- A training loss function measures the deviation of the model fits from the observed data
- A large loss indicates a poor fit to the training data
- Different loss functions penalize different deviations differently
- We find the <u>parameters</u> that <u>minimize</u> our loss function given the <u>training data</u>

Residuals

Residuals are the errors from the model fit: Data = Fit + Residual

A criterion for the best line

- We want a line that has small residuals
 - Option 1: Minimize the sum of magnitudes (absolute values) of residuals: The L₁-norm

$$L(\theta) = \sum_{i=1}^{n} |y_i - \hat{y}_i| = \sum_{i=1}^{n} |r_i| = \|\mathbf{r}\|_1$$
 LAD: Least Absolute Deviation (Median regression)

2. Option 2: Minimize the sum of squared residuals: The squared L₂-norm

$$L(\theta) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} r_i^2 = ||\mathbf{r}||_2^2$$
 OLS: Ordinary Least Squares

- The most commonly used is least squares
 - 1. Motivated by normal distribution of errors
 - 2. Solutions can be easily computed
 - 3. Big errors count relatively more than small errors

Week 1.3 Optimization Finding the best model fit

Optimization

- Finding the best function is the same problem as finding the best parameters.
- Parameter estimation is the process of minimizing the training loss by trying different values of the parameters
- The setting of parameters that gives you the smallest loss is the best estimate of the parameters, and the best function in your class

Optimization

parameters, making the

loss-function a surface

Using the derivative of the loss

By providing the derivative of the loss function in respect to the parameters, optimization can be sped up.

Fit:
$$\hat{y}_i = b_0 + b_1 x_i$$

Residual:
$$r_i = y_i - \hat{y}_i$$

$$\frac{\partial \sum f_i(\theta)}{\partial \theta} = \sum \frac{\partial f_i(\theta)}{\partial \theta}$$

Loss:
$$L = \sum_{i=1}^{N} (y_i - b_0 - b_1 x_i)^2$$

$$\int \frac{\partial f(g(\theta))}{\partial \theta} = \frac{\partial f(g)}{\partial g} \frac{\partial g(\theta)}{\partial \theta}$$

Derivative
$$b_0$$
:
$$\frac{\partial L}{\partial b_0} = -2\sum_{i=1}^n \left(y_i - b_0 - b_1 x_i\right) = -2\sum_{i=1}^n r_i > \text{residual are positive,}$$
where $\sum_{i=1}^n \left(y_i - b_0 - b_1 x_i\right) = -2\sum_{i=1}^n r_i > \text{residual are positive,}$
where $\sum_{i=1}^n \left(y_i - b_0 - b_1 x_i\right) = -2\sum_{i=1}^n r_i > \text{residual are positive,}$
is now ton:

Derivative
$$b_1$$
:
$$\frac{\partial L}{\partial b_1} = -2\sum_{i=1}^n \left(y_i - b_0 - b_1 x_i\right) x_i = -2\sum_{i=1}^n r_i x_i \text{ herefor value of residual would}$$

Using the derivative of the loss

The vector of partial derivatives is called a gradient or Jacobian.

Derivatives of the loss

- Remember: Derivative = slope
- Also remember: want to make loss small

. If
$$\frac{\partial L}{\partial \theta}$$
 is positive, should I increase or decrease θ ?

. If $\frac{\partial L}{\partial \theta}$ is negative, should I increase or decrease θ ?

Linear regression in matrix notation

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{b}$$

For each point in the dataset, we get a fit/estimate/prediction from the model. Next, we'll compare those to the actual data.

Using the derivative (vector notation)

By providing the derivative of the loss function in respect to the parameters, optimization can be sped up.

Prediction:
$$\hat{y} = Xb$$

$$\begin{vmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{vmatrix} = \begin{vmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{vmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

Residual:
$$\mathbf{r} = \mathbf{y} - \hat{\mathbf{y}}$$

Loss:

$$L = (\mathbf{y} - \mathbf{X}\mathbf{b})^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\mathbf{b})$$

$$= \mathbf{y}^{\mathsf{T}}\mathbf{y} - 2\mathbf{y}^{\mathsf{T}}\mathbf{X}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{b}$$

Gradient:
$$\nabla_b J = -2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \mathbf{b} = -2\mathbf{X}^T \mathbf{r}$$

Week 1.4 Implementing OLS regression through minimization of L2 loss

Step 1: Write the model function

Write a function that returns the

```
First input is parameter

list or np.array

peram)

def linearModelPredict(b,X):

# Get Model prediction

predY =

# return Model prediction

return predY
```

Step 2: Write a loss function

```
We are modifying the loss function to also return
the gradient
                 First input is parameter
                                         Explanatory and
                                  _response variable
                    list or np.array
 def linearModelLossRSS(b,X,y):
      # Get Model prediction
      predY = linearModelPredict(b,X)
      # Get the vector of residuals
      res =
      # Get the residuals sums of squares
      rss =
      # Get the gradient
      gradient = pereint derine of the loss with given

# return rss and gradient param; it should
has same dimension
      return (rss,gradient)
```

Step 3: Call the optimizer

def linearModelLossRSS(b,X,y):

```
import scipy.optimize as so
# Set some starting values
bstart=[0,0]; if your Junctions are novrect, starting value does not
# Call the optimization function affect the result, but the processing tip
RESULT=so.minimize(linearModelLossRSS, bstart, args=(X, y), jac=True)
                                      Starting
                        Loss
                                                 Additional
                                                               Use
                                       value
                       function
                                                 arguments gradient
   Remember our definition:
```

Step 4: Check the results

```
RESULT

should be wose minimal was value found.

fun: 14.25 vo pero. # Final loss function value
hess_inv: array([[0.33,-0.07],[-0.07,0.01]])
jac: array([1.19-06, -1.90-06]) best Fitting parameter.
message: 'Optimization terminated successfully.'
                             # Number of evaluations
nfev: 24
                             # Number of iterations
nit: 3
njev: 6
status: 0
success: True
x: array([65,-0.6]) # Parameter estimates
```

- Check if successful
- Get parameter estimates
- Maybe check the loss

Step 5: Visualize the results

```
b=RESULT.x  # Get the parameters

x_grid = np.linspace(y.min(), y.max(),10) # get grid

Xn = np.c_[np.ones(x_grid.size), x_grid] # Make Design

yp=linearModelPredict(b,X) # get prediction

ax.plot(x_grid, yp, color = 'red')
```

% $\widehat{in\ poverty} = 64.68 - 0.62$ % HS grad

Week 1.5 Evaluating model fit - R²

Evaluating the fit with R²

- The quality of the fit of a linear regression model is most commonly evaluated using R² the coefficient of determination.
- R² is calculated from the ratio of residual sum of squares total sum of squares.

$$R^2 = 1 - \frac{\text{RSS}}{\text{TSS}} = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$
 Residual sum of squares (RSS) Total sum of squares (TSS) and the perfectly fier as model as incompressed.

- It tells us what percent of variability in the response variable is explained by the model. (0=no fit, 1=perfect fit)
- The remainder of the variability is explained by variables not included in the model or by inherent randomness in the data.
- Because OLS is miming the RSS, it will always have the highest R² value possible for that class of models.

Summary

Models can be written in general as:

The training loss function tells how bad a fit is:

Example: squared error
$$L = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Model fitting involves selecting the parameters that minimizes the loss function: Parameter estimation
- In linear regression, the proportion of the explained variance in the response variable is expressed by the coefficient of determination (R²)

Week 1.6 L1-loss and median regression Robust techniques

The Impact of the Loss Function

Example of best running speeds for a 3km Strava segment.

What do you notice?

Are these old guys for real?

Maybe these data points have other explanations:

- old guys on bikes
- young runners lying about their age
- really good doping

- ...

The Impact of the Loss Function

Excluding these "outliers" changes the predicted running speed for 80-year olds

Answers that change a lot with exclusion of a few data points are called **non-robust**.

It is not the most desired try.

So are we sure that this one is cheater as well?

Robust statistics

Robust statistics seek to provide methods that emulate popular statistical methods, but which are not unduly affected by outliers or other small departures from model assumptions.

- Mean is a measure of central tendency that is sensitive to outliers so exmene some of affected by
- Median is a measure of central tendency that is robust against outliers

Robust regression

To develop a robust regression technique, we can think how to change the loss function.

b0 is our parameter

Say we have these 4 data points

If we find the point that minimizes the sum of squared error

$$L = \sum_{i=1}^{n} (y_i - b_0)^2$$

$$\frac{\partial L}{\partial b_0} = \sum_{i=1}^{n} -2(y_i - b_0)$$

$$\frac{\partial L}{\partial b_0} = 0 \implies b_0 = \frac{\sum_{i=1}^{n} y_i}{n}$$

The minimum is reached at the mean

Robust regression

To develop a robust regression technique, we can think how to change the cost function.

the minimal here is not only one where but a range

Say we have these 4 data points

If we find the point that minimize the sum of **absolute** errors

$$L = \sum_{i=1}^{n} |y_i - b_0|$$

$$L = \sum_{i=1}^{n} \begin{cases} (y_i - b_0) & \text{if } y_i > b_0 \\ -(y_i - b_0) & \text{if } y_i \le b_0 \end{cases}$$

$$\frac{\partial L}{\partial b_0} = \sum_{i=1}^n \begin{cases} -1 & \text{if } y_i > b_0 \\ 1 & \text{if } y_i \le b_0 \end{cases}$$

The minimum is reached at the **median**

Outliers and robustness

Median regression leads to results in a regression line that is closer to the one that excludes the outlier.

Median regression is a robust regression technique

Week 1.7 Implementing Median regression through minimization of L1 loss

Implementing median regression

```
yp = linearModelPredict(b,x)
   # Computes Prediction
                                 calls
linearModelLossRSS(b,x,y)
                                     linearModelLossLAD(b,x,y)
   # Computes RSS
                                         # Computes summed
   # for linear fit
                                           absolute deviation
so.minimize(lossfcn,b0,args=(x,y))
   # Estimates b to
   # minimize lossfcn
                                        Handing a loss function to your linear
                                        regression lets you do normal linear
LinearModelFit(x,y,lossfcn)
                                        regression (lossfcn = rss) and median
                                        regression (lossfcn = lad) with the
```

same code

Using the derivative

Again, by providing the derivative of the training loss with respect to the parameters, we can make the fit faster.

Prediction:
$$\hat{y}_i = b_0 + b_1 x_i$$

Residual:
$$r_i = y_i - \hat{y}_i$$

Loss:
$$L = \sum_{i=1}^{n} |y_i - (b_0 + b_1 x_i)|^{2}$$

Derivative
$$b_0$$
:
$$\frac{\partial L}{\partial b_0} = -\sum_{i=1}^n \operatorname{sgn}(y_i - (b_0 + b_1 x_i)) = -\sum_{i=1}^n \operatorname{sgn}(r_i)$$

Derivative
$$b_1$$
:
$$\frac{\partial L}{\partial b_0} = -\sum_{i=1}^n \operatorname{sgn}(y_i - (b_0 + b_1 x_i)) \cdot x_i = -\sum_{i=1}^n \operatorname{sgn}(r_i) \cdot x_i$$

Parameter estimation

- "Parameter estimation" is the process of minimizing the loss function by trying different values of the parameters
- The Gradient can <u>speed up optimization a lot!</u> (But you can get by without it.)
- For nearly every problem there is a more specialized solution that is faster, for example Sklearn-methods usually have a fit (estimation) and predict (prediction) function built in.
- But using general minimization algorithms, such as scipy.optimize.minimize, is an incredibly useful and universal tool.

Summary

 We can fit mathematical models to capture the relationship between x and y

be/smooth une/ecc.

- 1. Select a function class form
 2. Select a loss function SISTLAD.

 - 3. Estimation/ fitting: Find the function that minimizes the loss
 - "supervised learning" is a cornerstone of statistics, machine learning, and data science.