Probability 2

Exercise sheet nb. 6

Raul Penaguiao - Mailbox in J floor

Due until: 29th October at 5 p.m.

Exercises marked with * should be easier after attending the lecture on Thursday.

Exercise 1 (2 points). The goal of the exercise is to give a martingale-based proof of Kolmogorov's 0-1 law. Let $(Y_i)_{i\geq 1}$ be a sequence of independent random variables. We set

$$\mathcal{F}_n = \sigma(Y_1, \dots, Y_n), \qquad \mathcal{F}_\infty = \sigma\left(\bigcup_{n \ge 1} \mathcal{F}_n\right),$$

$$\mathcal{G}_n = \sigma(Y_n, Y_{n+1}, \dots), \qquad \mathcal{G}_\infty = \bigcap_{n \ge 1} \mathcal{G}_n.$$

Consider $A \in \mathcal{G}_{\infty}$.

- 1. Show that $X_n := \mathbb{E}[1_A | \mathcal{F}_n]$ is a martingale that converges a.s. and in L^1 . Compute X_n (Hint: $A \in \mathcal{G}_{n+1}$). Conclude that $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.
- 2. Suppose that Z is a real \mathcal{G}_{∞} -measurable random variable. Show that Z = a a.s. for some constant a.

Exercise 2 (4 points). Let $\{Y_n\}_{n\geq 1}$ be a sequence of independent positive random variables such that for all $n\geq 1$ we have that $\mathbb{E}[Y_n]=1$, and consider $X_n=\prod_{k=1}^n Y_k$. We use the filtration $\mathcal{F}_n=\sigma(Y_1,\ldots,Y_n)$.

- 1. Show that $\{X_n\}_{n\geq 0}$ is a martingale. and that $\{Z_n\}_{n\geq 0}$ defined as $Z_n = \sqrt{X_n}$ is a supermartingale. Show that both converge a.s.
- 2. Suppose that $\prod_{k=1}^{\infty} \mathbb{E}[\sqrt{Y_k}] = 0$. Compute the a.s. limit of Z_n and X_n . Show that $\{X_n\}_{n\geq 0}$ is not u.i. (Hint: Use Fatou's Lemma on $\mathbb{E}[Z_n]$)
- 3. Suppose that $\prod_{k=1}^{\infty} \mathbb{E}[\sqrt{Y_k}] > 0$. Show that $\{Z_n\}_{n \geq 0}$ is a Cauchy sequence in \mathcal{L}^2 . Show that $||X_n X_m||_1 \leq 2||Z_n Z_m||_2$ and show that X_n is a closed martingale.

(Hint: Write $||X_n - X_m||_1 = \mathbb{E}[|(Z_n - Z_m)(Z_n + Z_m)|]$ and use Cauchy-Schwarz inequality in \mathcal{L}^2 , recall that \mathcal{L}^1 is a complete metric space)

Exercise 3 (3 points *). Let $(X_n)_{n\geq 1}$ be a sequence of random variables such that for some $a\in [0,1],\, X_0=a$ a.s. and, for each $n\geq 0$,

$$\mathbb{P}(X_{n+1} = \frac{X_n}{2} | \mathcal{F}_n) = 1 - X_n, \quad \mathbb{P}(X_{n+1} = \frac{1+X_n}{2} | \mathcal{F}_n) = X_n,$$

where $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$, and $\mathbb{P}(A|\mathcal{F}) = \mathbb{E}[\mathbb{1}_A|\mathcal{F}]$.

- 1. Show that $(X_n)_{n\geq 0}$ is a martingale that converges a.s. and in L^2 to some random variable X_{∞} . Compute $\mathbb{E}(X_{\infty})$.
- 2. Prove that $\mathbb{E}[(X_{n+1}-X_n)^2]=\frac{1}{4}\mathbb{E}[X_n(1-X_n)].$
- 3. Compute $\mathbb{E}[X_{\infty}(1-X_{\infty})]$. What is the distribution of X_{∞} ?