Multiple Indicator, Multiple Causes (MIMIC Models) Adam Garber

Norwegian University of Science and Technology - A Course in MplusAutomation

May 30, 2021

Chapter 8 outline

- a. Prepare, wrangle, and explore data
- b. Run an unconditional CFA baseline model
- c. Specify a MIMIC model with a single binary covariate
- d. Specify a MIMIC model and probe for DIF
- e. Specify a MIMIC model with a DIF parameter
- f. Specify a MIMIC model with two binary covariates & an interaction
- g. Specify a MIMIC model with three continuous covariates
- h. Experiment with path diagram notation & formatting
- i. We will keep close track of parameters and their status throughout exercise

loading packages:

```
library(knitr)
library(tidyverse)
library(here)
library(semPlot)
library(DiagrammeR)
library(MplusAutomation)
library(texreg)
library(stargazer)
library(gtsummary)
library(gt)
library(glue)
```

Change starting location to folder 08-MIMIC

```
source("rep_functions.R")
change_here(glue("{project_location}/08-MIMIC"))
here()
```

DATA SOURCE: This lab exercise utilizes the NCES public-use dataset: Education Longitudinal Study of 2002 (Lauff & Ingels, 2014) See website: nces.ed.gov

Begin

read in data

```
lab_data <- read_csv("https://garberadamc.github.io/project-site/data/els_sub5_data.csv")</pre>
```

take a look at the EFA data (same indicators used for lab 4)

```
stargazer(as.data.frame(lab_data), type="text", digits=1)
```

##								
	=======							====
	Statistic	N	Mean	St. Dev.	Min	Pct1(25)	Pct1(75)	Max
##								
	bysex			0.5	1.0	1.0	2.0	2.0
	bystlang			0.4	0.0	1.0	1.0	1.0
	3	794		2.5	1	8	11	13
	stu_exp		5.3	1.4	1.0	5.0	6.0	7.0
		794		1.3	2	5	6	7
	$\mathtt{mth}\mathtt{_read}$			10.0	25.1	44.3	57.6	79.9
##	mth_test	785	51.1	10.1	24.4	44.6	57.5	84.8
##	rd_test	785	50.6	10.0	22.6	43.4	57.2	78.8
##	freelnch	726	3.0	1.9	1.0	1.0	5.0	7.0
##	stu_tch	718	2.2	0.6	1.0	2.0	2.0	4.0
##	putdownt	715	3.1	0.7	1.0	3.0	4.0	4.0
##	safe	711	3.3	0.7	1.0	3.0	4.0	4.0
##	disrupt	713	2.6	0.9	1.0	2.0	3.0	4.0
##	gangs	705	3.0	0.9	1.0	3.0	4.0	4.0
##	rac_fght	716	3.0	0.8	1.0	3.0	4.0	4.0
##	fair	708	2.5	0.8	1.0	2.0	3.0	4.0
##	strict	714	2.3	0.7	1.0	2.0	3.0	4.0
##	stolen	718	1.5	0.6	1.0	1.0	2.0	3.0
##	drugs	717	1.3	0.6	1.0	1.0	1.0	3.0
##	t_hurt	714	1.3	0.6	1.0	1.0	1.0	3.0
##	p_fight	715	1.2	0.4	1.0	1.0	1.0	3.0
##	hit	711	1.3	0.6	1.0	1.0	1.0	3.0
##	damaged	716	1.2	0.4	1.0	1.0	1.0	3.0
##	bullied	713	1.3	0.6	1.0	1.0	1.0	3.0
##	late	719	2.3	1.2	1.0	1.0	3.0	5.0
##	skipped	715	1.5	0.9	1.0	1.0	2.0	5.0
##								

alternative way to make summary tables using package {gtsummary}

Characteristic	N	0, N = 117	1, N = 632	p-value
byincome	749	8.00 (6.00, 10.00)	10.00 (8.00, 11.00)	< 0.001
mth_test	749	48 (41, 55)	52 (45, 58)	< 0.001
rd_test	749	46 (40, 52)	51 (44, 58)	< 0.001
$\mathbf{freelnch}$	685			< 0.001
1		23 (23%)	222 (38%)	
2		9 (8.9%)	67 (11%)	
3		14 (14%)	82 (14%)	
4		9 (8.9%)	72 (12%)	
5		15 (15%)	89 (15%)	
6		18 (18%)	30 (5.1%)	
7		13 (13%)	22 (3.8%)	

prepare dataframe for analysis (select & reorder columns)

Estimate the Unconditional Confirmatory Factor Analysis (CFA) model

```
Lab exercise: How many parameters are there in this model? (no cheating - i.e., jumping ahead)
```

Number of parameters for the Unconditional CFA model:

- ?? item loadings
- ?? intercepts
- ?? residual variances
- ?? factor variances
- ?? factor co-variance

Make a simple CFA path diagram using package {DiagrammeR}

```
# starting simple...
grViz(" digraph CFA_basic {
    node [shape=box]
    Y1; Y2; Y3; Y4; Y5;
    node [shape=circle, width = 0.9]
    F1;
    edge []
    F1->{Y1 Y2 Y3 Y4 Y5}
}")
```



```
cfa_m0 <- mplusObject(
  TITLE = "CFA model0 - LAB 8 mimic models",
  VARIABLE =
    "usevar = stolen-rac_fght;",

ANALYSIS =
    "estimator = mlr;",

MODEL =
    "FACTOR_1 by stolen t_hurt p_fight hit damaged bullied;</pre>
```


comment out the arguments "intercepts" & "fixedStyle" to make all parameters explicit

Lab exercise: Count model parameters from the path diagram

(i.e., count number of arrows)

MIMIC model 1 - single bivariate covariate Number of parameters for the MIMIC model 1 = 33

- 8 item loadings (10 items 2 fixed loadings)
- 10 intercepts
- 10 residual variances
- 2 factor variances
- 1 factor co-variance
- 1 covariate mean
- 1 covariate variance

grViz(" digraph mimic_path_diagram { graph [overlap = true, fontsize = 10, # this is the 'graph' statement fontname = Times, label= 'Figure 1: MIMIC model with single covariate.'] # this is the 'node' statement node [shape = box] A; B; C; D; E; node [shape = box, label = 'Covariate'] Х; node [shape = circle, fixedsize = true, width = 0.9, label = 'Factor 1'] F; edge [color = black] # this is the 'edge' statement F->{A B C D E} X->F }")

Figure 1: MIMIC model with single covariate.

```
mimic_m1 <- mplusObject(</pre>
  TITLE = "MIMIC model1 ",
  VARIABLE =
    "usevar = freelnch stolen-rac_fght;",
  ANALYSIS =
    "estimator = mlr;",
    "FACTOR_1 by stolen t_hurt p_fight hit damaged bullied;
     FACTOR_2 by safe disrupt gangs rac_fght;
     FACTOR_1 on freelnch;
     FACTOR_2 on freelnch;" ,
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
  usevariables = colnames(mimic_data),
  rdata = mimic_data)
mimic_m1_fit <- mplusModeler(mimic_m1,</pre>
                dataout=here("mimic_mplus", "mimic_data.dat"),
```

```
modelout=here("mimic_mplus", "mimic_model1.inp"),
check=TRUE, run = TRUE, hashfilename = FALSE)
```

MIMIC model 2 - probe for covariate -> indicator DIFF


```
mimic_m2 <- mplusObject(
   TITLE = "MIMIC model2",
   VARIABLE =
      "usevar = freeInch stolen-rac_fght;",

ANALYSIS =
      "estimator = mlr;",

MODEL =
      "FACTOR_1 by stolen t_hurt p_fight hit damaged bullied;

      FACTOR_2 by safe disrupt gangs rac_fght;

FACTOR_1 on freeInch;</pre>
```


MIMIC model 3 - specify covariate -> indicator DIFF

Number of parameters for MIMIC model 3 = 34

• 8 indicator loadings (10 items - 2 fixed loadings)

- 10 intercepts
- 10 residual variances
- 2 factor variances
- 1 factor co-variance
- 1 covariate mean
- 1 covariate variance
- 1 DIF (covariate -> indicator)

```
grViz(" digraph mimic_mode_3 {
  graph [overlap = true, fontsize = 12, fontname = Times]
  node [shape = box]
  stolen; t_hurt; p_fight; hit; damaged; bullied; safe; disrupt; gangs; rac_fght;
  node [shape = box, label = 'Percent Free Lunch']
  X;
  node [shape = circle, fixedsize = true, width = 0.9, label = 'Factor 1']
  F1;
  node [shape = circle, fixedsize = true, width = 0.9, label = 'Factor 2']
  F2;
  edge [color = black]
  F1->{stolen t_hurt p_fight hit damaged bullied}
  F2->{safe disrupt gangs rac_fght}
  X->F1 X->F2 X->bullied
}")
```



```
mimic_m3 <- mplusObject(
  TITLE = "MIMIC model3",
  VARIABLE =
    "usevar = freelnch stolen-rac_fght;",</pre>
```

MIMIC model 4 - two covariates & an interaction term


```
mimic_m4 <- mplusObject(</pre>
  TITLE = "MIMIC model4",
  VARIABLE =
    "usevar = freelnch stolen-rac_fght eng_2nd int;",
    "estimator = mlr;",
  DEFINE =
  "if bystlang == 1 THEN eng_2nd=0;
  if bystlang == 0 THEN eng_2nd=1;
  int = eng_2nd*freelnch;",
  MODEL =
    "FACTOR_1 by stolen t_hurt p_fight hit damaged bullied;
     FACTOR_2 by safe disrupt gangs rac_fght;
     FACTOR_1 FACTOR_2 on freelnch eng_2nd int; ",
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
  usevariables = colnames(mimic_data),
 rdata = mimic data)
mimic_m4_fit <- mplusModeler(mimic_m4,</pre>
                dataout=here("mimic_mplus", "mimic_data.dat"),
                modelout=here("mimic_mplus", "mimic_model4.inp"),
                check=TRUE, run = TRUE, hashfilename = FALSE)
```

create a path diagram of MIMIC model 4

MIMIC model 5 - three continuous covariates


```
mimic_m5 <- mplusObject(</pre>
  TITLE = "MIMIC model5",
  VARIABLE =
    "usevar = byincome mth_test rd_test stolen-rac_fght;",
    "estimator = mlr;",
  MODEL =
    "FACTOR_1 by stolen t_hurt p_fight hit damaged bullied;
     FACTOR_2 by safe disrupt gangs rac_fght;
     FACTOR_1 FACTOR_2 on byincome mth_test rd_test; ",
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
  usevariables = colnames(mimic_data),
  rdata = mimic_data)
mimic_m5_fit <- mplusModeler(mimic_m5,</pre>
                dataout=here("mimic_mplus", "mimic_data.dat"),
                modelout=here("mimic_mplus", "mimic_model5.inp"),
                check=TRUE, run = TRUE, hashfilename = FALSE)
```

create a path diagram of MIMIC model 5

 $\textit{\# ** Lab exercise: comment out the "intercepts" \& "fixedStyle" arguments and then count model parameter arguments are sufficiently as a sufficient of the sufficient of t$

practice some formatting with semPlot::semPaths()

read all models and create table

```
all_models <- readModels(here("mimic_mplus"), quiet = TRUE)</pre>
table <- LatexSummaryTable(all_models,</pre>
                            keepCols=c(
                            "Filename", "Parameters", "ChiSqM_Value",
                            "CFI", "TLI", "SRMR", "RMSEA_Estimate",
                            "RMSEA_90CI_LB", "RMSEA_90CI_UB"),
                      sortBy = "Filename")
table %>%
  mutate(Filename = str_remove(Filename, ".out")) %>%
  gt() %>%
  cols_label(
    Filename = "Model",
    Parameters = "Par",
    ChiSqM_Value = "ChiSq",
    CFI = "CFI", TLI = "TLI", SRMR = "SRMR",
    RMSEA_Estimate = "RMSEA",
    RMSEA_90CI_LB = "Lower CI",
    RMSEA_90CI_UB = "Upper CI")
```

Model	Par	ChiSq	CFI	TLI	SRMR	RMSEA	Lower CI	Upper CI
cfa_model0	31	121.460	0.898	0.865	0.043	0.060	0.048	0.071
$mimic_model1$	33	133.455	0.894	0.862	0.044	0.057	0.047	0.069
$mimic_model2$	33	133.455	0.894	0.862	0.044	0.057	0.047	0.069
$mimic_model3$	34	130.058	0.897	0.862	0.043	0.057	0.046	0.069
$mimic_model4$	37	153.527	0.899	0.869	0.041	0.050	0.040	0.060
$mimic_model5$	37	169.116	0.894	0.863	0.042	0.052	0.043	0.061

End

References

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Horst, A. (2020). Course & Workshop Materials. GitHub Repositories, https://https://allisonhorst.github.io/

Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User's Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Wickham et al., (2019). Welcome to the tidy verse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686