Elementos de Estatística Bayesiana

Marcus L. Nascimento

21 de outubro de 2025

1. Introdução

2. Princípios da Aprendizagem Bayesiana

3. Inferência Bayesiana

4. Monte Carlo via Cadeias de Markov (MCMC)

Introdução

Introdução

- O arcabouço moderno acerca da teoria de probabilidade foi desenvolvido por Andrey Kolmogorov (1903-1987) quando o mesmo estabeleceu probabilidade em termos de teoria dos conjuntos/teoria da medida (Kolmogorov, 2018).
 - Estrutura matemática coerente para se trabalhar com probabilidades;
 - Não há o desenvolvimento de uma interpretação de probabilidade.
- Em estatística, há duas interpretações majoritárias de probabilidade: Frequentista e Bayesiana.
 - Ambas interpretações tomam como base a teoria desenvolvida por Kolmogorov.

Interpretação Frequentista

- Interpretação frequentista:
 - Probabilidade = Frequência (sequência de experimentos idênticos repetidos inúmeras vezes);
 - Visão ontológica (probabilidade "existe" e é idêntica a algo que pode ser observado);
 - Restritiva no sentido de que n\u00e3o \u00e9 aplic\u00e1vel para descrever eventos que ocorrem apenas uma vez.
 - Aplicada assintoticamente (grandes amostras).

Interpretação Bayesiana

- Interpretação Bayesiana:
 - "Probability does not exist- Bruno de Finetti (1906–1985).
 - Probabilidade é atribuída e mutável, não uma propriedade inerente a um objeto.
 - Probabilidade é interpretada como a descrição do conhecimento e de incerteza.
 - Interpretação válida independentemente do tamanho da amostra ou do número de repetições de um experimento.

Observação:

 Note que a diferença entre as duas interpretações não está no uso do Teorema de Bayes, mas na contraposição entre uma visão ontológica (frequentista) e uma visão epistemiológica (bayesiana) de probabilidade.

Princípios da Aprendizagem Bayesiana

Da Priori a Distribuição a Posteriori

Teorema de Bayes:

A probabilidade de um evento A dado o evento B é

$$P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A^c)P(B|A^c)}.$$

- O aprendizado estatístico bayesiano aplica o teorema de Bayes para atualizar o estado de conhecimento acerca de um parâmetro a luz de um conjunto de dados.
- Ingredientes:
 - θ parâmetro(s) de interesse;
 - Distribuição a priori com densidade $p(\theta)$ descrevendo a incerteza sobre θ ;
 - Processo gerador dos dados $p(x|\theta)$.

Da Priori a Distribuição a Posteriori

 Como tanto a distribuição a priori sobre os parâmetros quanto o processo gerador dos dados devem ser especificador, o modelo subjacente à abordagem bayesiana consiste na distribuição conjunta

$$p(\theta, x) = p(\theta)p(x|\theta).$$

• Como a incerteza sobre θ é atualizada a luz de uma nova informação (nova observação x)?

Através da aplicação do Teorema de Bayes a densidade da priori é atualizada para uma densidade a posteriori.

$$\underbrace{p(\theta|x)}_{\text{posteriori}} = \underbrace{p(\theta)}_{\text{priori}} \times \frac{p(x|\theta)}{p(x)}.$$

Da Priori a Distribuição a Posteriori

Note que no denominador da fórmula de Bayes é necessário computar p(x), onde

$$p(x) = \int_{\Theta} p(x,\theta) d\theta$$
$$= \int_{\Theta} p(\theta) p(x|\theta) d\theta,$$

ou seja, a marginalização de θ da distribuição conjunta de x e θ .

A depender do contexto p(x) é denominada

- Constante de normalização já que garante que o valor da integral da densidade a posteriori $p(\theta|x)$ seja 1;
- Densidade preditiva a priori da observação x dado o modelo M antes que algum dado seja visto. Para enfatizar o condicionamento implícito no modelo, é possível escrever p(x|M).

Verossimilhança e Atualização Bayesiana

Considerando um conjunto de observações independentes e identicamentes distribuídas $D = \{x_1, x_2, \dots, x_n\}$ tenha sido observado, a posteriori é descrita da seguinte forma:

$$\underbrace{p(\theta|D)}_{posteriori} = \underbrace{p(\theta)}_{priori} \times \frac{\mathcal{L}(\theta|D)}{p(D)},$$

onde $\mathcal{L}(\theta|D) = \prod_{i=1}^n p(x_i|\theta)$ é a verossimilhança e $p(D) = \int_{\Theta} p(\theta)p(x_1,\ldots,x_n|\theta)d\theta$.

Comparando a verossimilhança com o procedimento bayesiano:

- Conduzir uma análise estatística bayesiano requer a solução de uma integral a fim de encontrar a constante normalizadora;
- Conduzir uma análise via verossimilhança requer resolver um problema de otimização a fim de encontrar a máxima verossimilhança.

Atualização Sequencial

- O procedimento de atualização bayesiano pode ser repetidamente: a posteriori pode ser utilizada como uma nova priori e, então, atualizada com um novo conjunto de dados.
- É possível atualizar a densidade a posteriori sequencialmente com os dados x_1, x_2, \dots, x_n sendo observados um após o outro.

$$p(\theta|x_{1}) = p(\theta) \times \frac{p(x_{1}|\theta)}{p(x_{1})}$$

$$p(\theta|x_{1}, x_{2}) = p(\theta|x_{1}) \times \frac{p(x_{2}|\theta, x_{1})}{p(x_{2}|x_{1})} = p(\theta|x_{1}) \times \frac{p(x_{2}|\theta)}{p(x_{2}|x_{1})} = p(\theta) \times \frac{p(x_{1}|\theta)p(x_{2}|\theta)}{p(x_{1})p(x_{2}|x_{1})}$$

$$\vdots$$

$$p(\theta|x_{1}, ..., x_{n}) = p(\theta) \times \frac{\prod_{i=1}^{n} p(x_{i}|\theta)}{p(D)}.$$
(1)

Atualização Sequencial

Na equação (1), p(D) é dado por:

$$p(D) = \prod_{i=1}^n p(x_i|x_{< i}), \text{ onde } p(x_i|x_{< i}) = \int_{\Theta} p(x_i|\theta)p(\theta|x_{< i})d\theta.$$

- $p(x_i|x_{< i})$ é a densidade preditiva a posteriori de uma nova observação x_i após serem observados x_1, \ldots, x_{i-1} ;
- Como a incerteza associada ao parâmetro θ depende da quantidade de dados já observados, a probabilidade de uma nova observação x_i depende dos dados observados previamente.
 - Apenas nos casos em que o parâmetro é completamente conhecido e não há incerteza associada ao mesmo, as observações x_i são independentes.

Inferência Bayesiana

Estimadores de Bayes

- Sob a perspectiva bayesiana, há uma uma forte ligação entre estimação e a Teoria da Decisão.
 - Sendo δ o estimador de Bayes, busca-se minimizar o risco a posteriori sob uma função perda $L(\theta,\delta(x))$;
 - Um bom estimador de Bayes é aquele para o qual, com alta probabilidade, o erro $\delta(x) \theta$ é o menor possível.
- Definiremos risco a posteriori como

$$r(\delta|x) = E_{\theta|x}[L(\theta,\delta(x))] = \int_{\Theta} L(\theta,\delta(x))d\mu(\theta|x).$$

 As principais funções perda consideradas são perda quadrática, perda absoluta e perda 0-1.

Estimadores de Bayes (Perda Quadrática)

Considerando o risco a posteriori com relação a função perda quadrática, $L(\theta, \delta(x)) = (\theta - \delta)^2$, temos:

$$r(\delta|x) = E_{\theta|x} [L(\theta, \delta(x))]$$

$$= E_{\theta|x} [(\theta - \delta)^{2}]$$

$$= E_{\theta|x} [\theta^{2} - 2\delta\theta + \delta^{2}]$$

$$= E_{\theta|x} (\theta^{2}) - 2\delta E_{\theta|x}(\theta) + \delta^{2}.$$
(2)

Minimizando (2) com relação a δ , obtemos:

$$\frac{dr(\delta|x)}{d\delta} = 0 - 2E_{\theta|x}(\theta) + 2\delta = 0 \Rightarrow \delta = E_{\theta|x}(\theta) \text{ Média a posteriori)}.$$

Como $\frac{d^2r(\delta|x)}{d\delta^2}=2>0$, $E_{\theta|x}(\theta)$ é ponto de mínimo.

Estimadores de Bayes (Perda Absoluta)

Considerando o risco a posteriori com relação a função perda absoluta, $L(\theta, \delta(x)) = |\theta - \delta|$, temos:

$$r(\delta|x) = \int_{a}^{b} |\theta - \delta| d\mu(\theta|x)$$
$$= \int_{a}^{\delta} (\delta - \theta) d\mu(\theta|x) + \int_{\delta}^{b} (\theta - \delta) d\mu(\theta|x). \tag{3}$$

Para derivar com respeito a δ , aplicaremos a regra de Leibniz, isto é,

$$\frac{d}{dx}\left(\int_{a(x)}^{b(x)} f(x,t)dt\right) = \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t)dt + f(x,b(x))\frac{d}{dx}b(x) - f(x,a(x))\frac{d}{dx}a(x).$$

Estimadores de Bayes (Perda Absoluta)

Minimizando (3) com relação a δ , obtemos:

$$\frac{dr(\delta|x)}{d\delta} = \int_{a}^{\delta} 1 \ d\mu(\theta|x) + (\delta - \delta) \times 1 - (\delta - a) \times 0$$

$$- \int_{\delta}^{b} 1 \ d\mu(\theta|x) + (b - \delta) \times 0 - (\delta - \delta) \times 1$$

$$= \int_{a}^{\delta} 1 \ d\mu(\theta|x) - \int_{\delta}^{b} 1 \ d\mu(\theta|x)$$

$$= 0$$

$$\Rightarrow \int_{a}^{\delta} 1 \ d\mu(\theta|x) = \int_{\delta}^{b} 1 \ d\mu(\theta|x).$$
(4)

Estimadores de Bayes (Perda Absoluta)

A igualdade em (4) é obtida quando δ é igual à mediana. Aplicando novamente a regra de Leibniz para verificar se é ponto de mínimo, temos

$$\frac{d^2r(\delta|x)}{d\delta^2} = \int_a^b 0 \ d\mu(\theta|x) + 1 \times \frac{d}{d\delta}\delta - 1 \times \frac{d}{d\delta}a$$

$$- \left(\int_\delta^b 0 \ d\mu(\theta|x) + 1 \times \frac{d}{d\delta}b - 1 \times \frac{d}{d\delta}\delta\right)$$

$$= 0 + 1 \times 1 - 1 \times 0 - (0 + 1 \times 0 - 1 \times 1) = 2 > 0$$

Logo, a mediana a posteriori minimiza $r(\delta|x)$.

Estimadores de Bayes (Perda 0-1)

A função perda 0-1 é definida como

$$L(\theta, \delta(x)) = 1 - \Delta(\theta - \delta),$$

onde $\Delta(\theta - \delta) = 1$ quando $\theta = \delta(x)$ e $\Delta(\theta - \delta) = 0$ caso contrário.

Considerando o risco a posteriori com relação a função perda absoluta, temos:

$$r(\delta|x) = \int_{\Theta} (1 - \Delta(\theta - \delta)) d\mu(\theta|x)$$
$$= 1 - \int_{\Theta} \Delta(\theta - \delta) d\mu(\theta|x)$$
$$= 1 - d\mu(\delta|x).$$

O risco bayesiano é mínimo quando a densidade a posteriori $d\mu(\delta|x)$ é máxima e este máximo é atingido quando δ é a moda.

Estimação intervalar

• O conjunto $C \in \tau$ é dito ser um conjunto de credibilidade α se

$$\mathbb{P}(\theta \in C|X=x) \geq 1-\alpha.$$

- Existem diversos conjuntos com a mesma probabilidade e a definição de um critério para a escolha entre os diferentes conjuntos é necessária.
- Minimização do volume entre as diferentes regiões de credibilidade α .
 - Um conjunto $C \in \tau$ é denominado região HPD (*Highest Posterior Density*) de credibilidade α se $C = \{\theta : d\mu_{\Theta|X}(\theta|x) \ge k\}$, onde k é o maior valor tal que

$$\mathbb{P}(\Theta \in C|X=x) \geq 1-\alpha.$$

• k pode ser interpretado como uma linha horizontal posicionada sobre a densidade a posteriori cujas interseções definem uma região com probabilidade $1-\alpha$.

Monte Carlo via Cadeias de Markov (MCMC)

Motivação

- Métodos de Monte Carlo fornecem uma abordagem numérica para a solução de funções complicadas.
 - Em vez de resolver analisticamente, aproxima-se a solução tomando amostras das distribuições.
- Não raramente, não é possível amostrar diretamente de uma distribuição.
 - Suponha que desejamos amostrar de p(z), onde

$$p(z)=\frac{f(z)}{K}.$$

• Em casos nos quais f(z) é conhecida, porém K é difícil de estimar, não conheceremos p(z) e, consequentemente, não conseguiremos amostrar diretamente da distribuição de interesse.

Motivação

- Algoritmos de Monte Carlo via Cadeias de Markov (MCMC) trata tais casos permitindo que a estimação a partir de p(z) seja realizada considerando uma função f(z) proporcional a p(z)
 - O algoritmo constrói uma cadeia de Markov com valores de z tais que a distribuição estacionária da cadeia $\pi(z)$ seja igual a p(z).
- Em inferência bayesiana, a distribuição de interesse consiste na distribuição a posteriori que, por sua vez, é função da constante de normalização p(D).
 - Recordando que $p(D) = \int_{\Theta} p(\theta) p(x_1, \dots, x_n | \theta) d\theta$, não é difícil observar que tal integral não raramente tal integral não poderá ser resolvida analiticamente;
 - Como a posteriori é proporcional ao produto entre a priori e a verossimilhança, algortimos MCMC são amplamente utilizados.

Algoritmos de Metropolis-Hastings

- Suponha q(y|z) uma densidade condicional e p(z) a densidade objetivo, o algoritmo de Metropolis-Hasting constrói uma cadeia de Markov (Z_n) através dos passos abaixo:
 - 1. Inicialize x_k :
 - 2. Gere x^{prop} com distribuição $q(\cdot|x_k)$;
 - 3. Tome

$$x_{k+1} = egin{cases} x^{\mathsf{prop}}, \ \mathsf{com} \ \mathsf{probabilidade} \ lpha \ x_k, \ \mathsf{com} \ \mathsf{probabilidade} \ 1-lpha, \end{cases}$$

onde

$$lpha = \min \left\{ 1, rac{p(x^{\mathsf{prop}})q(x_k|x^{\mathsf{prop}})}{p(x_k)q(x^{\mathsf{prop}}|x_k)}
ight\}.$$

• A densidade q é conhecida como densidade proposta e α , como probabilidade de aceitação.

Algoritmos de Metropolis-Hastings

- A escolha da densidade proposta é essencial para a implementeção do algoritmo.
 - Passeio aleatório;
 - Propostas independentes.
- No caso passeio aleatório, a ideia é explorar a vizinhança no em torno do valor atual da cadeia. Podemos considerar, por exemplo:

$$x^{\mathsf{prop}} = x_k + \varepsilon,$$

onde onde ε é uma perturbação aleatória simétrica em torno de 0.

- $q(x^{\text{prop}}|x_k) = g(|x^{\text{prop}} x_k|)$, ou seja, g é simétrica em torno de x_k ;
- $q(x^{\text{prop}}|x_k) = g(|x^{\text{prop}} x_k|)$ implica que $q(x^{\text{prop}}|x_k) = q(x_k|x^{\text{prop}})$.

Algoritmos de Metropolis-Hastings

- Na prática, a distribuição normal é bastante aplicada para a perturbação aleatória ε e, neste caso, é necessário ajustar a variância da distribuição:
 - Variância pequena implica em uma maior aceitação, porém o domínio dos parâmetros é mais lentamente explorado;
 - Variância pequena implica em uma menor aceitação, porém visitamos mais rapidamente o domínio de interesse.
- No caso passeio aleatório, a proposta não depende do valor da cadeia no passo anterior, $q(x|x_k) = g(x)$.
 - Como a probabilidade de aceitação depende do passo anterior, ainda temos uma cadeia de Markov.

$$\alpha = \min \left\{ 1, \frac{p(x^{\mathsf{prop}})g(x_k)}{p(x_k)g(x^{\mathsf{prop}})} \right\}$$

Amostrador de Gibbs

• Algoritmo MCMC onde a densidade proposta é a distribuição condicional completa.

- Resultados teóricos garantem que podemos recuperar a distribuição conjunta a partir de distribuições condicionais;
- Em vez de gerarmos valores de uma distribuição conjunta, podemos gerar valores da condicionais.

• No Amostrador de Gibbs, as propostas são sempre aceitas.

Amostrador de Gibbs

- O algoritmo consiste dos seguintes passos:
 - 1. Inicialize $\theta^{(0)} = (\theta_1^{(0)}, \theta_2^{(0)}, \dots, \theta_p^{(0)}).$
 - 2. Amostre de cada condicional completa iterativamente.
 - $\theta_1^{(j)}$ com densidade $\pi(\theta_1|\theta_2^{(j-1)},\theta_3^{(j-1)},\ldots,\theta_p^{(j-1)},y);$
 - $\theta_2^{(j)}$ com densidade $\pi(\theta_2|\theta_1^{(j)},\theta_3^{(j-1)},\ldots,\theta_\rho^{(j-1)},y)$;
 - $\theta_3^{(j)}$ com densidade $\pi(\theta_3|\theta_1^{(j)},\theta_2^{(j)},\ldots,\theta_p^{(j-1)},y)$;

:

• $\theta_p^{(j)}$ com densidade $\pi(\theta_p|\theta_1^{(j)},\theta_2^{(j)},\ldots,\theta_{p-1}^{(j)},y)$;

Referências

Kolmogorov, Andrey Nikolaevich. 2018. Foundations of the Theory of Probability. 2nd ed. New York: Dover.