Package 'saas'

December 6, 2016

Title An implementation of the Search All, Asses Subset strategy for FDR estimation shotgun proteomics.
Version 0.0.0.9000
Description An implementation of the Search All, Asses Subset strategy for FDR estimation in shot-gun proteomics.
Depends R (>= 3.3.0)
License Apache License, Version 2.0
<pre>URL https://github.com/compomics/search-all-assess-subset</pre>
BugReports https://github.com/compomics/search-all-assess-subset/issues
Encoding UTF-8
LazyData true
Imports tidyverse (>= 1.0.0), cowplot (>= 0.7.0), markdown (>= 0.7.0)
Suggests mzR ($\geq 2.8.0$)
RoxygenNote 5.0.1
R topics documented:

dpi0								 								
id_is_present																
parse_msgf_m																
pi0plot																
plot_diag								 								
plot_theo_dist																
PPplot																
preprocess																
rpi0																
saas_gui																
simulate_subse	et.															

2 dpi0

calculate_fdr

Calculate qualues on the subset PSMs.

Description

Calculate qualues on the subset PSMs.

Usage

```
calculate_fdr(df, score_higher = TRUE)
```

Arguments

df dataframe with at least 3 columns:

score score assigned to the peptide to spectrum match (PSM).

subset TRUE or 1 if PSM belongs to the subset in interest, FALSE or 0 other-

wise.

decoy TRUE or 1 if decoy PSM, FALSE or 0 otherwise.

Additional columns are allowed but ignored. Target and decoy PSMs are as-

sumbed to be from a competitive target decoy database search.

score_higher TRUE if a higher score means a better PSM.

Value

A data frame containing all columns in "df". Following columns are added:

pi_0_cons conservative estimation of π_0 .

FDR estimated subset PSM qvalues calculated according the competitive target decoy approach.

FDR_BH estimated subset PSM qvalues calculated according the Benjamini Hochbergh procedure. When provided, non-subset decoy PSMs are used to stabilize estimates in small subsets

FDR_stable estimated subset PSM qvalues calculated with "pi_0_cons". When provided, non-subset decoy PSMs are used to stabilize estimates in small subsets

dpi0

Density function for the pi0 distribution

Description

Density function for the pi0 distribution

Usage

```
dpi0(pi0, n_targets, n_decoys)
```

Arguments

pi0 vector of quantiles.

n_targets vector of observed target PSMs.n_decoys vector of observed decoy PSMs.

id_is_present 3

Value

vector of densities. The length is the maximum length of the numerical arguments. Returns 'NaN' for 'pi0 < 0' and 'pi > 1'.

id_is_present

Checks if protein id appears in the headers of a fasta file.

Description

Checks if protein id appears in the headers of a fasta file.

Usage

```
id_is_present(protein_id, fastapath)
```

Arguments

protein_id Vector of protein ids.

fastapath Location of the fasta file.

Value

Logical vector, TRUE if protein id is present in provided fasta file, FALSE otherwise.

parse_msgf_mzid

Parses a mzID file generated by MS-GF+.

Description

See https://omics.pnl.gov/software/ms-gf for more info on how to perform a database search on MSMS dataset with MS-GF+ and how to generate a mzID file. Note that most functions in these package require data from a competitive target decoy search.

Usage

```
parse_msgf_mzid(mzid_path)
```

Arguments

mzid_path Location of the mzID file.

plot_diag

Value

A data frame containing the following 7 columns:

spec_id Id of the spectrum from the searched dataset file.

sequence Amino acid sequence matching the spectra.

protein_id Id of the sequence from the database file.

score score assigned to the peptide to spectrum match (PSM).

database Name of the database file used to search the spectra.

decoy TRUE if decoy PSM, FALSE otherwise.

database_size Number of sequences in the database file.

pi0plot

Creates density plot of the pi0 distribution

Description

Creates density plot of the pi0 distribution

Usage

```
pi0plot(n_targets, n_decoys)
```

Arguments

n_targets vector of observed target PSMs.n_decoys vector of observed decoy PSMs.

Value

ggplot object.

plot_diag

Plot diagnostic plots to evaluate assumptions from the search all, search subset strategy.

Description

Plot diagnostic plots to evaluate assumptions from the search all, search subset strategy.

Usage

```
plot_diag(df)
```

plot_theo_dist 5

Arguments

df dataframe with at least 3 columns:

score score assigned to the peptide to spectrum match (PSM).

subset TRUE or 1 if PSM belongs to the subset in interest, FALSE or 0 otherwise.

decoy TRUE or 1 if decoy PSM, FALSE or 0 otherwise.

Additional columns are allowed but ignored. Target and decoy PSMs are as-

sumbed to be from a competitive target decoy database search.

plot_theo_dist

plots the theoretical distribution of all components in the PSM distribution

Description

plots the theoretical distribution of all components in the PSM distribution

Usage

```
plot_theo_dist(H0_mean = 2.75, H1_mean = 3.31, H0_sd = 0.13,
  H1_sd = 0.28, decoy_mean = H0_mean, decoy_sd = H0_sd,
  decoy_extra_mean = H0_mean, decoy_extra_sd = H0_sd)
```

PPplot

Creates PP plot of two empirical distributions

Description

Creates PP plot of two empirical distributions

Usage

```
PPplot(score, label, pi0 = 0, title = "PP plot of target PSMs",
    xlab = "Decoy percentile", ylab = "Target\npercentile")
```

Arguments

score	vector of quantiles of distribution 1 and 2
label	vector of logical values. TRUE if score belongs to distribution 1
pi0	mixture coefficient of distribution 1 in distribution 2
title	main title.
xlab	label on x-axis.
ylab	label on y-axis.

Value

ggplot object

6 rpi0

preprocess

Preprocess data from a MS-GF mzID file.

Description

The parsed data frame from saas::parse_msgf_mzid function contains sometimes multiple entries for a spectrum. (eg. if sequence can be assigned to multiple protein ids). This function takes care of this by default.

Usage

```
preprocess(dat, remove_target_decoy_PSM = TRUE,
    remove_multiple_proteins_PSM = FALSE)
```

Arguments

```
dat Dataframe generated by the saas::parse_msgf_mzid function.
```

remove_target_decoy_PSM

TRUE to remove PSMs that match both a target and decoy sequence.

remove_multiple_proteins_PSM

TRUE to remove PSMs that can be assigned to multiple protein ids.

Value

Data frame with the same columns as "dat" and 1 column is added:

non_subset TRUE if sequence can be assigned to a non subset protein id

Every spectrum haves only 1 row in the data frame.

rpi0

Random generation for the pi0 distribution

Description

Random generation for the pi0 distribution

Usage

```
rpi0(n, n_targets, n_decoys)
```

Arguments

n number of observations.

n_targetsn_decoysnumber of observed target PSMs.number of observed decoy PSMs.

Value

vector of random deviates. The length equals 'n'.

saas_gui 7

saas_gui

Launches the GUI version of saas.

Description

To easily launch the GUI outside an R session (eg. on a server), you can run R -e "library(saas); saas_gui()" from the terminal (on linux/mac).

Usage

```
saas_gui(options = list(port = 3320, host = "0.0.0.0"))
```

Arguments

options

See help of shiny::shinyApp for more details on available options

simulate_subset

Random generation of a dataset after TDA.

Description

Random generation of number of decoy, correct target and incorrect target PSMs target PSMs after a competitive target-decoy search.

Usage

```
simulate_subset(n, pi0, sims = 1)
```

Arguments

n number of total PSMs.

pi0 theoretical π_0 .

sims number of observations.

Value

A data frame with "sims" rows and 6 rows:

n number of PSMs.

pi0 theoretical π_0 .

decoy_n number of decoy PSMs.

target_n number of target PSMs.

H0_n number of incorrect target PSMs.

H1_n number of correct target PSMs.

Index

```
calculate_fdr, 2
dpi0, 2
id_is_present, 3

parse_msgf_mzid, 3
pi0plot, 4
plot_diag, 4
plot_theo_dist, 5
PPplot, 5
preprocess, 6

rpi0, 6

saas_gui, 7
simulate_subset, 7
```