情報理論

第11回 講義 非等長情報源系列の符号化

> 2015. 7. 1 植松 芳彦

前回分かったこと(1/2)

- n 個の情報源記号を纏めて符号化するブロック符号化に より、より符号化効率が高められる.
- nを十分に大きくとることで、平均符号長はエントロピーで 与えられる最小値に近づく.

平均符号長

前回分かったこと(2/2)

- エントロピーは各記号の発生確率,発生の傾向(記憶あり/なしや同じ記号の連続しやすさ)により大きく異なる.
- 効率のよい符号化則を作るための「目安」.

記憶ない2元情報源のエントロピー

本日の講義内容

- 1. ブロック符号化の課題 ブロック化単位nと平均符号長, 回路規模
- 2. 非等長情報源系列の符号化 符号化の条件 符号化の例と効果

ハフマンブロック符号化(改めて)

- ハフマンブロック符号化:n個づつ纏めた情報源記号(n次の拡大情報源)をハフマン符号化する符号化
- ブロック化単位nを充分大きくとることで、平均符号長を短縮可能.

情報源S

- ・記憶のない2元情報源
- 各情報源記号の発生確率

発生確率
0.8
0.2

1情報源記号あたりの平均符号長 = 0.728

ハフマンブロック符号化

- 情報源符号化回路内には情報源記号と符号語の対応表 を持つ必要がある
- 対応表のサイズ(行数)はブロック化単位 n の増加に伴い 巨大化.

対応表

情報源記号	符号語
AAA	0
AAB	100
ABA	101
BAA	110
ABB	11100
BAB	11101
BBA	11110
BBB	11111
BBB	11111

対応表サイズ (行数)= 2³

情報源系列 A, B, A, A, B••

情報源符号化

符号系列 0, 1, 1, 0, 1•••

ブロック化単位 *n* = 3 の場合の対応表の例 (3記号づつ纏めて符号化)

ハフマンブロック符号化

- nの増加に伴い平均符号長はおよそ1/nの速度で減少
- 一方で情報源系列ー符号語の対応表は2nの速度で巨大化
 - M元情報源の場合Mⁿの速度で巨大化
- 対応表のサイズ(行数)の巨大化を抑制できないか?

非等長情報源系列の符号化

情報源記号(発生確率)

- ハフマンブロック符号化では全てのブロックが等長のため テーブルサイズが巨大化している.
- ブロックを非等長にすることで、平均符号長の短縮と対応表 サイズの縮小を両立できないか?

符号語

全ての情報源記号の発生 パターンをカバーするため

全て等長

 2^n 行必要

	חון כי ניו	
AAA (0.512)	0	
AAB (0.128)	100	
ABA (0.128)	101	
BAA (0.128)	110	
ABB (0.032)	11100	
BAB (0.032)	11101	
BBA (0.032)	11110	確率が高い情報源記号列に
BBB(0.008)	11111	短い符号語を割り当てることで 平均符号長を短縮
	$\overline{}$	

非等長情報源系列の符号化の条件(1)

行数の少ない対応表で、任意の情報源系列の入力パターンを一意に符号化できる

等長情報源系列の符号化 (3記号づつ纏め)

全ての発生パターンが対応表にある 「一」「一」「一」「一」「 情報源系列 ABBAAAABA・・・・

非等長情報源系列の符号化イメージ

全ての発生パターンが対応表にある

情報源系列 ABBAAAABA · · ·

情報源符号化

符号系列 •••

非等長情報源系列の符号化の条件(2)

長い記号列ほど発生確率を高めにし、短い符号語を割当てることで、平均符号長を短縮

情報源記号(発生確率)	符号語	情報源	記号(発生確率)	符号語
AAA (0.512)	0		????(0.6)	0
AAB(0.128)	100	少ない記号列数で	??? (0.2)	10
ABA (0.128)	101	全ての発生パタン カバー	?? (0.15)	110
BAA(0.128)	110	\ \	? (0.05)	111
ABB(0.032)	11100			
BAB (0.032)	11101		い記号列 ビ確率高め	確率高い情報源記号列に
BBA(0.032)	11110		上作件同の	短い符号語を割り当てる ことで平均符号長を短縮
BBB(0.008)	11111	V		

非等長情報源系列の符号化の例

教科書の【例4.7】では、発生確率が高い記号ほど節点数が多い符号の木を作ることで、長い記号列ほど発生確率が高い情報源記号列を作成

情報源S

- ・記憶のない2元情報源
- 各情報源記号の発生確率

情報源記号	発生確率
A	0.8
В	0.2

極力Aが連続する記号列を作ることで、 発生確率が高い&長い記号列を作る

図 4.12 情報源系列の木

【演習1】非等長情報源系列の符号化

図4.12(c)で作成した4つの情報源記号列を対応表に乗せた時,任意の入力情報源系列に対して一意符号化可能か検証

入力情報源系列1) A B B A A A A B A A B · · ·

入力情報源系列2) A A B B A A A B B A B · · ·

【演習2】非等長情報源系列の符号化

- 図4.12(c)で作成した4つの情報源記号列を符号化する時,本 当に平均符号長は短くなるか検証.
- まずハフマン符号により符号化してみよう。

【演習2】非等長情報源系列の符号化

- 1情報源記号あたりの平均符号長を求める.
- 平均符号長の求め方はこれまでと同様.
- 情報源記号長は非等長なため、平均値を求める必要がある

平均 情報源 記号長

$$\overline{n} = n_{AAA} \cdot p_{AAA} + n_{AAB} \cdot p_{AAB} + n_{AB} \cdot p_{AB} + n_{B} \cdot p_{B}$$

パラメータの例

n_{AAA}:AAAの情報源記号数

平均 $L_n = l_{AAA} \cdot p_{AAA}$ 符号長 $+ l_{AAB} \cdot p_{AAB}$ $+ l_{AB} \cdot p_{AB}$ $+ l_{B} \cdot p_{B}$

パラメータの例

 l_{AAA} :AAAを符号化した時の符号語の長さ

1情報源記号あたり の平均符号長

$$\frac{L\overline{n}}{\overline{n}} =$$

非等長情報源系列の符号化

 図4.12(b)で作成した4つの情報源記号列を符号化する時,本 当に平均符号長は短くなるか検証.

平均情報源記号長

$$\overline{n} = n_{AA} \cdot p_{AA}
+ n_{AB} \cdot p_{AB}
+ n_{B} \cdot p_{B}
= 1.8$$

平均符号長

$$Ln = l_{AA} \cdot p_{AA}$$

$$+ l_{AB} \cdot p_{AB}$$

$$+ l_{B} \cdot p_{B}$$

$$= 1.36$$

1情報源記号あたり の平均符号長

$$\frac{L\overline{n}}{\overline{n}} = 0.756$$

【演習3】符号化の効果のまとめ

非等長情報源系列を符号化した時の平均符号長、対応表サイズを、 グラフにプロットしてみよう(〇は等長ハフマンブロック符号化の場合).

対応表サイズ(行数)

図4.12(b)の非等長符号化

$$\frac{1}{n} = 1.8 \quad \frac{Ln}{n} = 0.756$$

対応表は3行

図4.12(c)の非等長符号化

$$\frac{1}{n} = 2.44$$
 $\frac{Ln}{n} = 0.728$

対応表は4行

本日のまとめ

- 等長のブロック符号化における,ブロック化単位 の増大に伴う回路規模の増大傾向を分析
- 非等長情報源系列の符号化の例, 平均符号長の 短縮や回路規模の削減効果を分析
- 実際には、効果は各記号の発生確率や傾向に大きく依存(次回分析)