Correlation and Linear Regression

Why?

Comparing two variables, and finding the relationship between them useful for data storytelling and EDA

Typical visualizations associated with two variables

Typical visualizations associated with two variables

negative, non-linear relationship

Recall:

formula for a (linear) line:

$$y = mx + b$$

b is y intercept

m is slope $\Delta y / \Delta x$

if b and m are known, then any y can be calculated given any x

$$m = r * s_v/s_x$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y}$$

TABLE 4.1 Table of Data with Values for

the x and y Variabl	es
Data x	у
92	6.3
145	7.8
30	3.0
70	5.5
75	6.5
105	5.5
110	6.5
108	8.0
45	4.0
50	5.0
160	7.5
155	9.0
180	8.6
190	10.0
63	4.2
85	4.9
130	6
132	7

Example

	x_i	y_i	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \bar{x})(y_i - \bar{y})$
	92	6.3	-14.94	-0.11	1.64
	145	7.8	38.06	1.39	52.90
	30	3	-76.94	-3.41	262.37
What is r?	70	5.5	-36.94	-0.91	33.62
	75	6.5	-31.94	0.09	-2.87
What is the slope?	105	5.5	-1.94	-0.91	1.77
	110	6.5	3.06	0.09	0.28
	108	8	1.06	1.59	1.69
What is the y-intercept?	45	4	-61.94	-2.41	149.28
	50	5	-56.94	-1.41	80.04
	160	7.5	53.06	1.09	58.07
	155	9	48.06	2.59	124.68
	180	8.6	73.06	2.19	160.00
	190	10	83.06	3.59	298.19
	63	4.2	-43.94	-2.21	97.11
	85	4.9	-21.94	-1.51	33.13
	130	6	23.06	-0.41	-9.45
	132	7	25.06	0.59	14.79
	$\bar{x} = 106.94$	$\bar{y} = 6.41$			Sum = 1,357.06
	$s_x = 47.28$	$s_y = 1.86$			

Aside - is r significant?

If $abs(r) > abs(r_{crit})$, then r is significant

t it t_{crit} from t distribution with df = n-2

$$r_{\!\! ext{crit}}\!\!=\!rac{t}{\sqrt{t^2\!+\!n\!-\!2}}$$

Matplotlib

```
import matplotlib.pyplot as plt
  ? plt.scatter
plt.scatter(
   x: 'float | ArrayLike',
   y: 'float | ArrayLike',
   s: 'float | ArrayLike | None' = None,
   c: 'ArrayLike | Sequence[ColorType] | ColorType | None' = None,
   marker: 'MarkerType | None' = None,
   cmap: 'str | Colormap | None' = None,
   norm: 'str | Normalize | None' = None,
   vmin: 'float | None' = None,
   vmax: 'float | None' = None,
   alpha: 'float | None' = None,
   linewidths: 'float | Sequence[float] | None' = None,
   *,
   edgecolors: "Literal['face', 'none'] | ColorType | Sequence[ColorType] | None" = None,
   plotnonfinite: 'bool' = False,
   data=None,
   **kwargs,
) -> 'PathCollection'
```

Scatter plots and logical indexing!

live coding