Exercícios sobre Cálculo Lambda

- 1) Faça a definição de uma expressão-λ ou termo-λ
- 2) Determine as expressões válidas. Utilize os termos (F A) e λx M para identificar as partes das expressões de acordo com a definição de termo- λ .
 - a) λxx
 - b) $(\lambda xx(yz))$
 - c) $\lambda x \lambda y(xy)$
 - d) $(\lambda xx \lambda xx)$
 - e) $(\lambda x(xx)y)$
 - f) λxx
 - g) λy
 - h) λx λyx
 - i) λx λ
 - j) λx λy
 - k) $(x \lambda x \lambda y(xy))$
- 3) Efetue as reduções sempre que possível
 - a) $(\lambda xx(yz))$
 - b) (λxxλxx)
 - c) $((\lambda x \lambda y(xy) \lambda xx)x)$
 - d) $(\lambda x(xx) \lambda x(xx))$
 - e) (λxyz)
 - f) $(\lambda z(\lambda yzx)(xx))$
 - g) $(\lambda yy(\lambda kkk))$
 - h) $(\lambda x(xx) \lambda yy(xx))$
- 4) Verifique se a expressão está na forma normal e caso não esteja efetue a redução até a FN.

- a) λyy(xx)
- b) $(\lambda x(xx) \lambda x(xx)$
- c) $(\lambda xx(yz))$
- d) $(\lambda x(xx)(\lambda yz\lambda xx))$
- e) λkk
- 5) O que quer dizer o teorema de Church-Rosser
- 6) Sabendo que True (T), False (F), not(negação) dados abaixo, avalie o que se pede:

Τ ≡λχλγχ

F≣λxλyy

not ≡λx((xF)T)

Demonstre passo a passo que:

- b)((Fa)b) ≡a
- c) (not F) ≡T
- d) (not T) ≡F