Теория вероятностей

Данил Заблоцкий

14 февраля 2024 г.

Оглавление

Лекция 1: Начало

от 14 фев 8:45

Введение

Примечание. *Массовое явление* – явление, для которого можно неоднозначно повторить исходные условия.

Случайное событие – результат эксперимента.

Определение 1 (Благоприятное событие, подмножество с подмножеством всех благоприятных исходов). Пусть A – случайное событие, $\omega \in \Omega$ – благоприятное событие для A, если ω влечет A.

Тогда A – nodмножество Ω с nodмножеством всех благоприятных для A ucxodos.

Пример. A и B – случайные события $(A, B \subset \Omega)$,

не
$$A=\overline{A}=\Omega\smallsetminus A$$
 A и $B=A\cdot B=A\cap B$ A или $B=A+B=A\cup B$

Определение 2 (Алгебра, сигма-алгебра). F – семейство подмножеств Ω . F называется *алгерой*, если:

- 1. $\Omega \in F \ (\emptyset \in F)$.
- 2. $A \in F \Rightarrow \overline{A} \in F$.
- 3. $A, B \in F \Rightarrow AB \in F, A + B \in F$.

Если, кроме этого, верно $\forall \{A_{\alpha}\} \subset F \cap_{\alpha} A_{\alpha} \in F$, то F называется сигма-алгеброй (σ -алгеброй).

Замечание. Случайные события должны образовывать σ -алгебру.

Замечание. Очевидно, что $\overline{\Sigma_{\alpha}A_{\alpha}}=\Pi_{\alpha}\overline{A_{\alpha}}, \ \overline{\Pi_{\alpha}A_{\alpha}}=\Sigma_{\alpha}\overline{A_{\alpha}}.$

Замечание. $A \Rightarrow B$ тождественно $A \subseteq B$.

 $A \Leftrightarrow B$ тождественно A = B.

Определение 3 (Мера на сигма-алгебре). Вероятностное пространство (Ω, F, P) .

 Ω – м
ножество элементов исходов, F – σ -ал
гебра, P – мера на F, то есть
 $P:F\longrightarrow R$:

 $(\mathbf{A1}) \quad \forall A \in F \quad P(A) \geqslant 0.$

(A2) $P(\Omega) = 1$ (условие нормировки), мера конечна.

$$(A3)$$
 $\forall A, B \in F$ $AB = \emptyset \Rightarrow P(A+B) = P(A) + P(B).$

 $\{A_n\} \subset F, \ A_{n+1} \subseteq A_n \quad \bigcap_n A_n = \emptyset, \ \lim_{n \to \infty} P(A_n) = 0 \ (\text{непрерыв-}$ ность меры).

Теорема 1 (Свойство вероятностей). (Ω, F, P) – вероятностное пространство.

1.
$$A \in F \Rightarrow P(\overline{A}) = 1 - P(A)$$
.

2.
$$A \subseteq B \Rightarrow P(A) \leqslant P(B)$$
.

3.
$$A_1, \ldots, A_n \in F$$
 $A_i A_j = \emptyset \ (i \neq j)$.

4.
$$A_1, \ldots, A_n \in F$$
 $P(A_1 + \ldots + A_n) \leq \sum_{k=1}^n P(A_k)$.

5.
$$P(A \cup B) = P(A) + P(B) - P(AB)$$
.

Доказательство.

$$1. \quad \begin{array}{ll} B=\overline{A}, \ AB=\varnothing, \ A+B=\Omega \\ 1=P(\Omega)=P(A+\overline{A})=P(A)+P(\overline{A}) \end{array} \Rightarrow P(\varnothing)=0.$$

2.
$$C = B \setminus A = B \cup \overline{A} \in F$$
, $B = A + C$, $AC = \emptyset$ $\Rightarrow \forall A \in F$ $\emptyset \subseteq A \subseteq \Omega$

$$0 \le P(A) \le 1$$
.

3. Индукция по n.

4.
$$B_k = A_k \setminus \left(\sum_{i=1}^{k-1} A_i\right), \ \sum_{k=1}^n A_k = \sum_{k=1}^n B_k \\ P(\sum A_k) = P(\sum B_k) = \sum P(B_k) \leqslant \sum P(A_k) \Rightarrow B_k \subseteq A_k.$$

5.
$$C = A \setminus B$$
. $P(A) = P(C + AB) = P(C) + P(AB)$.
 $P(C) = P(A) - P(AB)$. $P(A \cup B) = P(B + C) = P(B) + P(C) = P(B) + P(A) - P(AB)$.

Примечание (σ -аддитивность). $\stackrel{\frown}{(A3^*)}$

$$\{A_n\} \subset F \quad A_i A_j = \varnothing \Rightarrow P\left(\sum_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n).$$

Теорема 2.

$$(A1)$$
, $(A2)$, $(A3)$ и $(A4) \Leftrightarrow (A1)$, $(A2)$, $(A3^*)$

Доказательство. Покажем, что
$$\overbrace{(A3)}$$
 и $\overbrace{(A4)}\Rightarrow \overbrace{(A3^*)}$. $\{A_n\} \subset F$ $A_iA_j = \varnothing$. $B = \sum_{k=n+1}^{\infty}, \ A = \sum_{k=1}^{\infty} A_k,$

$$A = A_1 + \ldots + A_n + B_n,$$

$$P(A) = P(A_1) + ... + P(A_n) + P(B_n).$$

$$B_{n+1} \subseteq B_n, \ \bigcap_n B_n = \varnothing \Rightarrow B_n \longrightarrow 0, \ P(B_n) \underset{n \to \infty}{\longrightarrow} 0,$$

$$P(A) = \sum_{k=1}^{n} P(A_k) + P(B_n) \longrightarrow \sum_{n=1}^{\infty} P(A_n) + 0.$$

Пусть выполняется $(A3^*)$.

 A_1,\ldots,A_n , ? последовательность $A_1,\ldots,A_n,\varnothing,\ldots,\varnothing,\ldots,$

$$\begin{split} \{A_n\} &\subset F, \ A_n \supseteq A_{n+1} \ \text{if} \ \bigcap A_n = \varnothing. \\ B_{n+1} &= A_n \smallsetminus A_{n+1}, \quad B?B = \varnothing, \ \bigcup B_n = \bigcup A_n. \end{split}$$

$$B_1 = A_1$$
.

$$P\left(\sum_{n=1}^{\infty} A_n\right) = P\left(\sum_{n=1}^{\infty} P(B_n)\right)$$
 – сходится.

$$A_n = \sum_{k=n+1}^{\infty} B_k \Rightarrow P(A_n) = \sum_{k=n+1}^{\infty} P(B_k) \to 0 \Rightarrow \boxed{A4}.$$

Пример. $\Omega = \{B, H\}, F = \{\emptyset, \Omega, \{B\}, \{H\}\}.$