

یادگیری تقویتی در کنترل

دکتر سعید شمقدری

دانشکده مهندسی برق گروه کنترل

نيمسال اول 1405-1404

Finite Markov Decision Processes

I MDPs

فرايندهاي تصميم ماركوف

وابستگی state در هر لحظه، فقط به state لحظه قبل و action اعمال شده

Definition

A state S_t is *Markov* if and only if

$$\mathbb{P}\left[S_{t+1} \mid S_{t}\right] = \mathbb{P}\left[S_{t+1} \mid S_{1}, ..., S_{t}\right]$$

RL and MDP?

محاسبه تراژکتوری state تاثیر action بر reward لحظه ای و آینده تابع Value:

Multi-armed bandit : $q_*(a)$

MDP in general : $q_*(s, a)$ or $V_*(s)$

MDPs

عامل و محیط؟ عامل؟ محیط؟

Agent and Environment

یادگیری تقویتی در ادبیات هوش مصنوعی

Agent and Environment

یادگیری تقویتی در ادبیات مهندسی

I Agent and Environment

در هر لحظه $t=0,1,2,3,\ldots$: $t=0,1,2,3,\ldots$ S_t و عریافت state عمیط توسط agent عمیط توسط دریافت state دریافت action مبتنی بر یک policy به صورت $A_t\in\mathcal{A}(s)$ به صورت $R_{t+1}\in\mathcal{R}\subset\mathbb{R}$ تغییر حالت محیط به S_{t+1} و دریافت پاداش $R_{t+1}\in\mathcal{R}$

A_t, S_t : random variables

ىك MDP

Definition

The function *p* defines the dynamics of the MDP:

$$p(s', r | s, a) \doteq \Pr\{S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a\}$$

Computing the probability of transitioning to s' as the next state and receiving reward r

$$s', s \in \mathcal{S}, r \in \mathcal{R}, \text{ and } a \in \mathcal{A}(s)$$

P: توصیف کامل دینامیک محیط

$$p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$$

$$\sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r | s, a) = 1, \text{ for all } s \in \mathcal{S}, a \in \mathcal{A}(s)$$

I Agent and Environment

تعیین توابع مختلف گذر حالت از تابع p:

$$p(s'|s,a) \doteq \Pr\{S_t = s' \mid S_{t-1} = s, A_{t-1} = a\} = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$

 $p: S \times S \times \mathcal{A} \to [0,1])$

تعیین expected reward برای (state-action):

$$r(s, a) \doteq \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r \mid s, a)$$

$$r: \mathbb{S} \times \mathcal{A} \to \mathbb{R}$$

تعیین توابع مختلف گذر حالت از تابع p:

تعیین expected reward برای (state-action-next state):

$$r(s, a, s') \doteq \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} r \frac{p(s', r \mid s, a)}{p(s' \mid s, a)}$$
$$r : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$$

اگر از روی تابع چگالی احتمال توام بخواهیم تابع چگالی احتمال یک متغیر را با دانستن متغیر دیگر بدست آوریم به آن تابع احتمال شرطی می گویند.

$$P(s',r \mid s,a)$$
 is known so $p(r \mid s,a,s') = \frac{P(s',r \mid s,a)}{P(s' \mid s,a)}$

حال اگر [Rt] را بخواهیم، حساب کنید:

$$E[R_t \mid s_{t-1} = s, R_{t-1} = a, s_t = s'] = \sum_{r \in R} rP(r \mid s, a, s')$$

Agent and Environment

تعیین Action و State

Action?

Low-level Control → High-level Control

ولتاژ موتور یک بازوی ربات حرکت ربات به چپ/راست

تصمیمی برای رسیدن به هدف

State?

Low-level State → High-level State (sensor output)

موقعیت بازوی ربات متحرک یا ثابت بودن ربات

نیازمند دانستن برای رسیدن به هدف

I Agent and Environment

ربات ا .

حيوان

محيط ← غير agent (توسط agent قابل تغيير نباشد)

اطلاعات agent از محیط؟

کامل کم(نحوه محاسبه پاداش، نحوه تغییر حالتها) هیچ

مرز بین محیط و agent؟ حد کنترل agent (قابل تغییر درمقاصد مختلف)

مدلسازی مسئله RL در فریمورک MDP

Action: agent سیگنال کنترل

State: agent تاثیر سیگنال

Reward: agent سیگنال نشان دهنده هدف

کارایی RL → انتخاب مناسب action و state

مثال

Bioreactor

States: Temperature, Concentrations

Action: (control valve) → set points (Temp. & steering rate)
Reward: chemical product rate

RL in Control | IUST

14

Effluent

Pick and Place

مثال

هدف: حرکت سریع و نرم! Action? State? Reward?

Reward ولتاژ موتور هر مفصل State زاویه و سرعت زاویه ای Reward هر حرکت مطلوب کامل $-\epsilon$ هر برخورد ضربه ای $-\epsilon$ هر سمپل تایم $-\epsilon$

مثال

Action در رانندگی؟؟

گشتاور چرخ (در دوجهت) ترمز، گاز، فرمان فرامین دست و پای راننده رانندگی در کدام مسیر

کدام را ترجیح می دهید؟

مثال

ربات جمع آوری زباله:

سنسورها.... عملگرها...

ناوبری و کنترل

باترى قابل شارژ

تعریف در سطح بالا:

State : سطح شارژ باتری : State

 $\{ - | نتظار \}$ یا $\{ - | نتظار \}$ یا $\{ - | نتظار \}$ یا $\{ - | نتظار \}$

مثال

دینامیک سیستم:

امیرود low اگر باتری high باشد، به احتمال α در high میماند و با high اسری search اگر باتری low باشد، به احتمال β در low میماند و با α خالی می شود اگر باتری low باشد، به احتمال الحتمال الحتما

Wait: مصرف باتری ندارد

Recharge: از low به high میرود

:Reward

 $+1*(r_{search}\ or\ r_{wait})$:باله در سبد باتری خالی شود: -3

مثال

دیاگرام دینامیک finite MDP برای ربات:

مثال تابع احتمال transition و reward برای finite MDP:

s	a	s'	p(s' s,a)	r(s,a,s')
high	search	high	α	rsearch
high	search	low	$1-\alpha$	rsearch
low	search	high	$1-\beta$	-3
low	search	low	β	rsearch
high	wait	high	1	$r_{ t wait}$
high	wait	low	0	_
low	wait	high	0	-
low	wait	low	1	$r_{\mathtt{wait}}$
low	recharge	high	1	0
low	recharge	low	0	-

Goals and Rewards

معرفي هدف براي عامل

سیگنال عددی reward که با max کردن امید ریاضی آن به هدف برسد (یا پاداش تجمعی)

محدوديت؟؟

تعریف یاداش

- معرف آنچه میخواهیم انجام شود (نه چگونه انجام شود) معرف آنچه میخواهیم انجام شود (value) یا عدم ارائه دانش اولیه با یاداش (مقداردهی اولیه policy) یا عدم ارائه دانش اولیه با یاداش (مقداردهی اولیه با یاداش ایراند ایر
 - 🗖 روشی برای ارتباط با ربات

اگر agent پاداش را max کند باید به هدف برسد

I Goals and Rewards

مثال

شطرنج

Maze

مثال

زباله : 1+ برخورد مانع : 1-

I Goals and Rewards

بازی Go (یکی از قدیمی ترین بازی ها و سخت ترین بازی ها)

عامل: بازیکن

مثال

محيط: حريف

حالت: آرایش برد بازی

عمل: قرار دادن مهره

پاداش:

+۱ برای برد

-۱ برای باخت

2016 Milestone: AlphaGo defeats world champion Lee Sedol (4-1).

Return and Episodes

فرموله کردن پاداش دراز مدت t بعد پاداش ها از t بعد

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

هدف : max کردن max

:Episode

تعاملی بین agent و محیط که پایانی دارد

دارایTerminal state

:Continuing Task

تعاملی بین agent و محیط که پایانی ندارد.

جمعبندي

Discounted Return

Definition

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

$$0 < \gamma < 1 \quad \rightarrow \quad G_t < \infty$$

$$\gamma \rightarrow 0$$
?

$$\gamma \rightarrow 1$$
?

پیاده سازی بازگشتی Return

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$$

$$= R_{t+1} + \gamma G_{t+1}$$

مثال

پاندول معکوس مقید

$$\theta_{min} < \theta < \theta_{max}$$

Episodic or Continuing?

:Episode

اجرای هر Task از شروع تا زمان افتادن Reward:

هر step که خطا رخ نداده: 1+

:Return

زمان شروع تا خطا

بالانس موفق:

Return → ∞

مثال

پاندول معكوس مقيد

$$\theta_{min} < \theta < \theta_{max}$$

Episodic or Continuing?

:Continuing

Taskهای پشت سرهم با شروع بعد از هر خطا از وسط Reward:

:Discounted Return

تا
$$\gamma^K$$
: زمان خطا)

نمایش یکسان Episodic و Continuing:

$$G_t \doteq \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$T = \infty$$
 or $\gamma = 1$ (but not both)

I Policies and Value Functions

مسائل Reinforcement Learning

Value: مقدار Value: مقدار Action: روشهای انتخاب Policy

Definition

A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

Policies and Value Functions

توابع ارزش

اگر وقتی در state : s هستیم و پالیسی π انتخاب شده باشد،

Definition

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right], \text{ for all } s \in \mathcal{S}$$

State-value function

توابع ارزش

Policies and Value Functions

توابع ارزش

اگر وقتی در state : s هستیم و action : a اعمال می شود و پس از آن پالیسی π انتخاب شده باشد،

Definition

The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t = a \right]$$

$$q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right]$$

Action-value function

توابع ارزش

Two types of Value-Based Methods **State Value Function: Action Value Function:** calculate the value of a state. calculate the value of state-action pair. -6 -5 -4 -7 -3 -3 -2 -8

جمعبندي

توابع ارزش

تخمین بازگشتی تابع value:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \Big[r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s'] \Big]$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \Big[r + \gamma v_{\pi}(s') \Big], \text{ for all } s \in \mathbb{S},$$

توابع ارزش

تخمین بازگشتی تابع value:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \Big[r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s'] \Big]$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \Big[r + \gamma v_{\pi}(s') \Big], \text{ for all } s \in \mathbb{S},$$

معادله بلمن

t+1 و t در state value بیان ارتباط بین تخمین تابع V_{π} : حل یکتای معادله بلمن

نوصيف معادله بلمن

State:

State - Action:

State:

Backup diagram for v_{π}

روش محاسبه تابع value از معادله بلمن

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s') \Big], \quad \text{for all } s \in \mathcal{S}$$

 $S \in S$ جلی همه $V_\pi(S)$ معادله N معادله N برای همه $V_\pi(S)$ برای همه $V_\pi(S)$ حل یکتای معادله بلمن: $V_\pi(S)$

مثال

State: cell

Action: up-down-left-right

Reward:

مثال

اگر فقط A برویم:

$$G_t = 10 + 10\gamma^5 + 10\gamma^{10} + \dots = \frac{10}{1 - \gamma^5}$$

اگر فقط B برویم:

$$G_t = 5 + 5\gamma^3 + 5\gamma^6 + \dots = \frac{5}{1 - \gamma^3}$$

$$\gamma = 0.9 \rightarrow G_t = ?$$

(state براي همه سلولهاي جدول (تعيين $V_{\pi}(s)$ براي همه سلولهاي جدول (تعيين $V_{\pi}(s)$

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

State-value function for the equiprobable random policy

 $V_{\pi}(s)$ تاثیر γ در p(s',r|s,a) تابع $\pi(a|s)$ ؟؟

(state براي همه سلولهاي جدول (تعيين $V_{\pi}(s)$ براي همه سلولهاي جدول (تعيين $V_{\pi}(s)$

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

State-value function for the equiprobable random policy

این اعداد حل معادله بلمن برای پالیسی رندوم با توزیع یکنواخت است. ردیفهای کنار بخاطر برخورد با دیواره و جریمه -1 منفی شده است. ارزش A کمتر از 1 است چون به سمت دیواره پرت می کند. ارزش B بیشتر از 0 است چون به سمت ارزش بیشتر از 0 پرت می کند.

مثال

State: Distance to the hole

Action: Driver – Putter

Reward:

1- برای هر ضربه توپ Value برای هر state: منفی تعداد ضربه ها تا حفره

فرض: نشانه گیری دقیق و قطعی ولی برد توپ محدود

Definition

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

سياست بهينه

$$\pi \ge \pi'$$

$$v_{\pi}(s) \ge v_{\pi'}(s)$$

$$:
u_*(s)$$
 بیان $q_*(s,a)$ بر حسب

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

مثال

فرض: شروع با درايور $q_*(s,driver)=?$

اکشن بهینه برای نقاط دور: دو درایور و یک پاتر

معادله بهینگی بلمن برای تابع State Value

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$

$$= \max_a \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$$

$$= \max_a \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a]$$

$$= \max_a \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_a \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_*(s')].$$

$$\leq \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_*(s')].$$

RL in Control I IUST

معادله بهینگی بلمن برای تابع Action Value

$$q_*(s, a) = \mathbb{E} \Big[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a \Big]$$
$$= \sum_{s', r} p(s', r | s, a) \Big[r + \gamma \max_{a'} q_*(s', a') \Big].$$

q_st و و v_st Backup Diagrams

Optimal State Value Function

تعیین پالیسی بهینه به سادگی از روی $V_*(s)$ بدست آمده (سرچ ساده) پالیسی بهینه : هر پالیسی که بر اساس $V_*(s)$ باشد. توجه: پالیسی با انتخاب Greedy در دراز مدت هم بهینه است.

Optimal Action Value Function

تعیین پالیسی بهینه از روی $q_*(s,a)$ بدست آمده: پالیسی که حداکثر $q_*(s,a)$ را دارد! (ساده تر از قبل)

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

Gridworld

 v_*

حل دستگاه معادلات بهینگی بلمن (optimal state- value) با ۲۵ معادله غیرخطی

Gridworld

Gridworld

$$v_*$$

$$:V_*(s)$$
 از روی $\pi_*(s)$ تعیین

$$\pi_*$$

 γ در جدول فوق

Recycling Robot

معادلات بهینگی بلمن؟

action گرفتن روی max با $V_*(s)$ محاسبه + Low + High های ممکن Action ها :

search & wait ← High search & wait & recharge ←Low

S=High:

Action	<i>S'</i>	p	r
Search	High	α	r_{s}
Search	Low	$1-\alpha$	r_{s}
Wait	High	1	r_w

S=High:

Recycling Robot

معادلات بهینگی بلمن؟

$$v_*(s) = \max_a \sum_{s'} p(s', r|s, a) [r + \gamma v_*(s')]$$

Action
$$S'$$
 p r SearchHigh α r_s SearchLow $1-\alpha$ r_s WaitHigh 1 r_w

$$\begin{array}{lll} v_*(\mathbf{h}) & = & \max \left\{ \begin{array}{l} p(\mathbf{h} | \mathbf{h}, \mathbf{s}) [r(\mathbf{h}, \mathbf{s}, \mathbf{h}) + \gamma v_*(\mathbf{h})] + p(\mathbf{1} | \mathbf{h}, \mathbf{s}) [r(\mathbf{h}, \mathbf{s}, \mathbf{1}) + \gamma v_*(\mathbf{1})], \\ p(\mathbf{h} | \mathbf{h}, \mathbf{w}) [r(\mathbf{h}, \mathbf{w}, \mathbf{h}) + \gamma v_*(\mathbf{h})] + p(\mathbf{1} | \mathbf{h}, \mathbf{w}) [r(\mathbf{h}, \mathbf{w}, \mathbf{1}) + \gamma v_*(\mathbf{1})], \\ \end{array} \right\} \\ & = & \max \left\{ \begin{array}{l} \alpha [r_{\mathbf{s}} + \gamma v_*(\mathbf{h})] + (1 - \alpha) [r_{\mathbf{s}} + \gamma v_*(\mathbf{1})], \\ 1 [r_{\mathbf{w}} + \gamma v_*(\mathbf{h})] + 0 [r_{\mathbf{w}} + \gamma v_*(\mathbf{1})], \\ \end{array} \right\} \\ & = & \max \left\{ \begin{array}{l} r_{\mathbf{s}} + \gamma [\alpha v_*(\mathbf{h}) + (1 - \alpha) v_*(\mathbf{1})], \\ r_{\mathbf{w}} + \gamma v_*(\mathbf{h}) \end{array} \right\}. \end{array}$$

For any choice of r_s , r_w , α , β , and γ , with $0 \le \gamma < 1$, $0 \le \alpha, \beta \le 1$ We can calculate $V_*(high)$

S=Low:

Recycling Robot

معادلات بهینگی بلمن؟

$$v_*(s) = \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')]$$

Action
$$S'$$
 p r SearchLow β r_s SearchHigh $1 - \beta$ r_s WaitLow 1 r_w RechargeHigh 1 0

$$v_*(\mathbf{1}) = \max \left\{ \begin{array}{l} \beta r_{\mathtt{s}} - 3(1-\beta) + \gamma[(1-\beta)v_*(\mathtt{h}) + \beta v_*(\mathtt{l})], \\ r_{\mathtt{w}} + \gamma v_*(\mathtt{l}), \\ \gamma v_*(\mathtt{h}) \end{array} \right\}$$

Examples

Golf

معادلات بهینگی بلمن؟

$$egin{aligned} v_*(s) &= \max_{a} \sum_{s',r} p(s',r|s,a) ig[r + \gamma v_*(s')ig] \ V_*(s) &= \max \left[\sum_{r,s'} P\left(s',-1\mid s, ext{ Putter}
ight) ig[-1 + \gamma V_*\left(s'
ight)ig] \ , \sum_{r,s'} P\left(s',-1\mid s, ext{ driver}
ight) ig[-1 + \gamma V_*\left(s'
ight)ig] \end{aligned}$$

جمع بندي ...

حل مسئله بهینگی بلمن 🛨 حل مسئله کا مسئله جهینگی جا حل مسئله جا حل مسئله علی الله ع

الزامات:

- p: دانستن دینامیک محیط
 - حجم محاسبات!
- خاصیت مارکوف داشتن مسئله

برای backgammon: V_* الت ا q_* محاسبه q_* الت ا

راه حل: Approximatin

Dynamic Programming •