

Advanced CV methods Long-Term tracking

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme, Fakulteta za računalništvo in informatiko, Univerza v Ljubljani

Long-term tracking (LTT)

- Regardless of how well the visual model is designed, any short-term tracker will eventually fail
- Disappears from the field of view, gets fully occluded, etc.

Long-term tracking (LTT)

- The general LT tracking properties:
 - Determine when the target has been lost (or disappeared)
 - Re-detect the target after losing the target
 - Update the visual model very carefully to minimize drifting

Taxonomy: Short-term/long-term spectrum^[1]

	Position reported	Tracking failure detection	Target re-detection
ST ₀ : Basic ST	each frame	no	no
ST ₁ : Basic ST with conservative updating	each frame	not explicitly, selective update of visual model	ono no
LT ₀ : Pseudo LT	only when visible	<u>·</u> yes	no
LT ₁ : Re-detecting LT	only when visible	yes	ignorphic yes

- ST₀ (e.g., vanilla DCF, MS); ST₁ (e.g., MDNet) -> easily converted to LT₀
- LT₁ most sophisticated, typical composition:
 - Short-term tracker (ST) for frame-to-frame localization
 - Detector for target re-detection
 - Algorithm for interaction between ST and detector

LT1 trackers origin

- Most of the LT_1 originate from two main paradigms introduced by TLD^1 (aka Predator) and $Alien^2$
- In the following we will overview the TLD

¹Kalal, Mikolajczyk, Matas, Tracking-Learning-Detection, TPAMI2010

²Pernici, F. and Del Bimbo, A., Object Tracking by Oversampling Local Features, TPAMI2013

Advanced computer vision methods

TRACKING BY TRACKING, LEARNING, DETECTION (PREDATOR)

7

Tracking learning detection: TLD aka Predator¹

- Detector is the main component
- It's all about robust detector updating
- Run Detector and ST tracker in parallel
- Use the ST and Detector output to construct training samples for Detector

Short-term:

Detector:

Fast-forward... "TLD in action"

Kalal, Mikolajczyk, Matas, Tracking-Learning-Detection, TPAMI2010

The short-term tracker

- A "cell" grid of Lucas-Kanade trackers
- Each LK tracker has a reliability estimate
- Robustly estimates motion from 50% of most reliable displacements
 - (could also use a robust estimator, e.g., RANSAC)
- 2 layers of Pyramidal LK tracker with 10×10 pixels patches.
- Fairly robust frame-to-frame localization in absence of severe occlusion
- Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-Backward Error: Automatic Detection of Tracking Failures. ICPR, 2010 Improved version:
- T. Vojir and J. Matas. Robustifying the flock of trackers. CVWW2011

The detector visual model

- Appearance model: a grayscale patch
- Bounding box with fixed aspect (only scale changes, proportions constant)
- Patch resampled into 15x15 size
- Object model is a collection of multiple positive and negative patches!
- Forget patches (randomly) to keep the number of patches low enough (memory and speed efficiency)

Model:

The detector application

- A scanning window
- Compare patches using a normalized cross correlation (NCC)
- A nearest-neighbor classifier using the NCC score
- Problem: A brute force would require comparing all locations with all patches in the model!
- Solution: Apply cascaded approach that quickly rejects many potential image locations by using simple and fast features.
 Fast classifiers with low FP/FN, high TP

The ST-Detector interaction algorithm

PN learning: Responsible for training the Detector

- PN (semi-supervised) learning assumptions:
 - Two classes of labelling processes are available: P and N
 - "P" proposes positive, the "N" proposes negative examples only.
 - Both processes are noisy and can make mistakes
 - By carefully addressing the conflicts between the two labelling processes, a long-term stability is achieved.

Interaction algorithm P-event: "Loop"

- Guideline: Do not trust the learning examples until you are absolutely sure about their labels!
- Exploits temporal structure
- Assumption: If an adaptive tracker fails, it is unlikely to recover.
- Rule: Patches from a track starting and ending in the current model (red), i.e. are validated by the detector, are added to the model.

Interaction algorithm N-event: "Uniqueness"

- Exploits spatial structure
- Assumption:
 Object is unique in a single frame
 (no other object looks alike)

- Rule: If the tracked patch is in the model, all other detections within the current frame (red) are assumed wrong
 - → are pruned from the model

Interaction algorithm: Model learning

Defined by:

- P-events, N-events, detector learning method
- P and N events are defined in terms of tracker and detector outputs

TLD tracking-learning example

0.5 -150 -100 -50 0 50 100 150 200

Detector templates (positives)

TLD tracking example

TLD summary

- PN Learning trains a robust detector by observing the object of interest (no a priori labelled training data, no constraints on the video)
- Detector improves over time (experimentally validated)
- A stable semi-supervised learning algorithm
- Matlab/C++ implementation runs at > 20 fps (back in 2010)

Code is available online:

http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/

Kalal, Mikolajczyk, Matas, Tracking-Learning-Detection, TPAMI2010

Long-Term Architecture Implementation Issues

Tracker	Short-term tracker	Detector	Interaction
Alien [6]	Keypoints (SIFT)	Keypoints (SIFT)	F-B, Ransac
TLD [1]	Optical flow	Random forest	P-N learning
MUSTER [2]	Correlation filter	Keypoints (SIFT)	F-B, Ransac
LCT [3]	Correlation filter	Random fern	K-NN, response thresh.
CMT [4]	Keypoints (flow)	Keypoints (static)	F-B, clustering
PTAV [5]	Correlation filter	CNN (Siam. Net.)	CNN confidence score

Approaches from different methodologies

- Prohibits tight interaction e.g., feature/model sharing
- Leads to complicated implementation

^[1] Kalal et al., Tracking-Learning-detection, TPAMI 2010

^[2] Ma et al., Long-Term Correlation Tracking, CVPR 2015

^[3] Hong et al., MUlti-Store Tracker (MUSTer): a Cognitive Psychology Inspired Approach to Object Tracking, CVPR 2015

^[4] Nebehay et al., Clustering of Static-Adaptive Correspondences for Deformable Object Tracking, CVPR 2015

^[5] Fan et al., Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking, ICCV 2017

^[6] Pernici, F. and Del Bimbo, A., Object Tracking by Oversampling Local Features, TPAMI2013

Long-Term Architecture Implementation Issues

Tracker	Short-term tracker	Detector	Interaction
Alien [6]	Keypoints (SIFT)	Keypoints (SIFT)	F-B, Ransac
TLD [1]	Optical flow	Random forest	P-N learning
MUSTER [2]	Correlation filter	Keypoints (SIFT)	F-B, Ransac
LCT [3]	Correlation filter	Random fern	K-NN, response thresh.
CMT [4]	Keypoints (flow)	Keypoints (static)	F-B, clustering
PTAV [5]	Correlation filter	CNN (Siam. Net.)	CNN confidence score
FCLT [7]	Correlation filter	Correlation filter	Correlation uncertainty

Shared target representation: tight interaction, efficient implementation

- Short-term tracker and a detector within a single methodology
- A single DCF learner, two interacting models

[7] Lukežič, Čehovin, Vojir, Matas, Kristan, FuCoLoT -- A Fully-Correlational Long-Term Tracker, ACCV 2018

<u>Fully Correlational Long-term Tracker (FCLT)</u>

- Discriminative correlation filter in two separate components.
- Detector activated when ST not confident.
- Motion model used with detector.

Short-term:

correlation filter

Detector:

¹Lukežič et al., Discriminative Correlation Filter Tracker with Channel and Spatial Reliability, IJCV 2018

FCLT: ST and Detector learning

- Short-term (ST) model is a CSRDCF¹ with standard update
- Detector:
 - Standard DCF cannot be used for image-wide detection
 - Utilize constrained learning from CSRDCF¹ from a wider region
 - Several object models updated at various time scales

¹Lukežič, Vojir, Čehovin Zajc, Matas and Kristan, Discriminative Correlation Filter Tracker with Channel and Spatial Reliability, IJCV 2018

FCLT: Detector application

FCLT: ST tracking failure detecton

• Reliability score q_t on correlation response R_t^{ST}

$$q_t = MAX(R_t^{ST}) \times PSR(R_t^{ST})$$

$$*H_t^{ST} = R_t^{ST}$$

- Threshold on the ratio: $\frac{\overline{q_t}}{q_t}$ $\overline{q_t}$ is mean over past frames
- When failure detected:
 - Activate detector
 - Stop updating visual model

Example: Tracking with FCLT

Short-term tracker

Detector

Tracking uncertainty

Lukežič, Čehovin, Vojir, Matas, Kristan, FuCoLoT -- A Fully-Correlational Long-Term Tracker, ACCV 2018

Redetection capability (LT₀ vs LT₁)

FCLT¹

Re-detects after target re-appears

MDNet²

Never recovers after drift

- [1] Lukežič, Čehovin, Vojir, Matas, Kristan, FuCoLoT -- A Fully-Correlational Long-Term Tracker, ACCV2018
- [2] Nam, Han, Learning, Multi-Domain Convolutional Neural Networks for Visual Tracking, CVPR2016

Extension of D3S to LT setup

• Similar to FCLT, only using DCF from GEM for global re-detection (and few additional upgrades, such as MDNet verifier)

Džubur et al., A Long-Term Discriminative Single Shot Segmentation Tracker, ERK2022

A 2D Object Assumption in Standard Trackers

- Existing tracking methods treat a tracked object as a 2D structure
- Problem: Cannot distinguish between pose change and (self)occlusion

Extension to RGBD tracking

Extend FCLT by 3D reconstruction to improve occlusion detection

Object tracking by reconstruction (OTR)

• Top performance among all RGBD trackers on PTB [Song et al., ICCV2013] and STC [Xiao et al.] benchmarks.

Kart, Lukezic, Kristan, Kämäräinen, Matas, Object Tracking by Reconstruction with View-Specific Discriminative Correlation Filters CVPR2019

Recent deep LT developments (2018)

https://github.com/xiaobai1217/MBMD

- Region proposal network akin to SSD¹ and SiamRPN²
- Verification network, essentially MDNet³
- Interaction akin to FCLT

¹Liu et al., SSD: Single shot multibox detector, ECCV2016

²Li et al., High Performance Visual Tracking with Siamese Region Proposal Network, CVPR2018

³Nam et al., Learning multi-domain convolutional neural networks for visual tracking, CVPR2016

MBMD deep long-term tracker

 Modern state-of-theart trackers are based on transformers (e.g., STARK-like) with a large localization range + a discriminator like Dimp

Zhang et al., Learning regression and verification networks for long-term visual tracking, ArXiv 2018

https://github.com/xiaobai1217/MBMD

References

• TLD:

- Kalal, Z., Mikolajczyk, K. and Matas, J., Tracking-Learning-Detection, IEEE TPAMI2010
- Page + code: http://personal.ee.surrey.ac.uk/Personal/Z.Kalal/

• FCLT:

• Lukežič, Čehovin, Vojir, Matas, Kristan, *FuCoLoT -- A Fully-Correlational Long-Term Tracker*, ACCV 2018

Acknowledgment

• Thanks to Jiri Matas for kindly sharing some of their slides that I used in preparation of this lecture.