A Quick Guide to Geometric Phase: Theory and Experimental Observation

Huan Q. Bui

DEPARTMENT OF PHYSICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

April 28, 2022

Contents

1	Adiabatic theorem	2
2	Berry phase	2
3	Example: Two-level system	2
4	Aharonov-Bohm Effect	2
5	Aharonov-Casher Effect	3
6	Observation of a Gravitational Aharonov-Bohm effect 6.1 Experimental Techniques	

1 Adiabatic theorem

Let a quantum system be described by a Hamiltonian $\mathcal{H} = \mathcal{H}(\mathbf{R}(t))$ where \mathbf{R} is a family of slowly-varying parameters and t denotes time. Let the system be in the n^{th} eigenstate of $\mathcal{H}(\mathbf{R}(0))$. Then at time t the system will be in the n^{th} instantaneous eigenstate of $\mathcal{H}(\mathbf{R}(t))$. cite Shankar here.

2 Berry phase

Consider the Hamiltonian described in the adiabatic theorem. Let $|\psi(0)\rangle = |n(\mathbf{R}(0))\rangle$ where $|n(\mathbf{R}(0))\rangle$ is the n^{th} eigenstate of $\mathcal{H}(\mathbf{R}(0))$. In view of the adiabatic theorem, $|\psi(t)\rangle$ must be $|n(\mathbf{R}(t))\rangle$, the n^{th} instantaneous eigenstate of $\mathcal{H}(t)$, up to a phase factor:

$$|\psi(t)\rangle = \exp\left(-\frac{i}{\hbar}\int_0^t E_n(\mathbf{R}(t')) dt'\right) \exp(i\gamma_n(t)) |n(\mathbf{R}(t))\rangle,$$

where $\gamma_n(t)$ is a function of time and is called the **Berry phase** or **geometric phase**. Since $|\psi(t)\rangle$ solves the Schrödinger equation $\mathcal{H}(\mathbf{R}(t))|\psi(t)\rangle = i\hbar(d/dt)|\psi(t)\rangle$, we have by the chain rule in calculus:

$$\dot{\gamma}_n(t) = i \langle n(\mathbf{R}(t)) | \nabla_{\mathbf{R}} | n(\mathbf{R}(t)) \rangle \cdot \dot{\mathbf{R}}(t).$$

In particular, we find that at some final time t_f , the Berry phase is given by

$$\gamma_n(t_f) = \int_0^{t_f} \dot{\gamma}_n(t') dt' = \int_{\mathbf{R}_i}^{\mathbf{R}_f} i \langle n(\mathbf{R}) | \nabla_{\mathbf{R}} | n(\mathbf{R}) \rangle \cdot d\mathbf{R},$$

which depends only on the path in parameter space over which the evolution takes place. Define the **Berry connection**,

$$A_n(\mathbf{R}) = i \langle n(\mathbf{R}) | \nabla_{\mathbf{R}} | n(\mathbf{R}) \rangle$$

and consider gauge transformation in parameter phase of instantaneous eigenstates. The Berry connection is also known as the Berry potential since it transforms like the electromagnetic vector potential:

$$|n(R)\rangle \to |\widetilde{n}(R)\rangle = e^{-i\beta(R)}\,|n(R)\rangle \implies A_n(R) \to \widetilde{A_n}(R) = A_n(R) + \nabla_R\beta(R).$$

Meanwhile the Berry phase transforms as

$$\widetilde{\gamma_n}(\mathbf{R}) = \int_{\mathbf{R}_i}^{\mathbf{R}_f} \widetilde{A_n}(\mathbf{R}) \cdot d\mathbf{R} = \gamma_n(\mathbf{R}_f) + \beta(\mathbf{R}_f) - \beta(\mathbf{R}_i)$$

which is gauge-invariant exactly when the Hamiltonian evolution is cyclical in parameter space, i.e., $\mathbf{R}(t_f) = \mathbf{R}(0)$. A remarkable consequence of cyclic evolutions is that the Berry phase is well-defined and is a measurable quantity. To see this, consider the overlap integral between the initial and final state of the system $\langle \psi(0)|\psi(t_f)\rangle \sim e^{i\gamma_n(t_f)}$. We see that this relative phase can be observed via interferometry.

3 Example: Two-level system

Consider a spinor in a magnetic field. The (parametric) Hamiltonian is given by

4 Aharonov-Bohm Effect

Consider a charged particle in a magnetic field... The (parametric) Hamiltonian is given by

what is the parameter of the Hamiltonian? What is the closed loop here? Answer these questions.

5 Aharonov-Casher Effect

A dual to the Aharonov-Bohm effect. This is more of a sideline. I will mention only in passing.

6 Observation of a Gravitational Aharonov-Bohm effect

- 6.1 Experimental Techniques
- 6.1.1 Atom interferometry: The Mach-Zehnder Interferometer for Atoms
- 6.1.2 Bragg transition