Proximal Policy Optimization (PPO)

default reinforcement learning algorithm at OpenAl

DeepMind

OpenAl

https://blog.openai.com/openai-baselines-ppo/

Policy Gradient (Review)

Basic Components

Policy of Actor

- Policy π is a network with parameter θ
 - Input: the observation of machine represented as a vector or a matrix
 - Output: each action corresponds to a neuron in output layer

Example: Playing Video Game

Example: Playing Video Game

Start with observation s_1

Observation s_2

Observation s_3

After many turns

Game Over (spaceship destroyed)

Obtain reward r_T

Action a_T

This is an episode.

Total reward:

$$R = \sum_{t=1}^{T} r_t$$

We want the total reward be maximized.

Actor, Environment, Reward

Trajectory
$$\tau = \{s_1, a_1, s_2, a_2, \dots, s_T, a_T\}$$

$$p_{\theta}(\tau)$$

$$= p(s_1)p_{\theta}(a_1|s_1)p(s_2|s_1,a_1)p_{\theta}(a_2|s_2)p(s_3|s_2,a_2)\cdots$$

$$= p(s_1) \prod_{t=1}^{I} p_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

Actor, Environment, Reward

Policy Gradient
$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) p_{\theta}(\tau) \quad \nabla \bar{R}_{\theta} = ?$$

$$\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau) \nabla p_{\theta}(\tau) = \sum_{\tau} R(\tau) p_{\theta}(\tau) \frac{\nabla p_{\theta}(\tau)}{p_{\theta}(\tau)}$$

 $R(\tau)$ do not have to be differentiable It can even be a black box.

$$= \sum_{\tau} R(\tau) p_{\theta}(\tau) \nabla log p_{\theta}(\tau)$$

$$\nabla f(x) = f(x)\nabla log f(x)$$

$$= E_{\tau \sim p_{\theta}(\tau)}[R(\tau)\nabla log p_{\theta}(\tau)] \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n})\nabla log p_{\theta}(\tau^{n})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{N} R(\tau^n) \nabla log p_{\theta}(a_t^n | s_t^n)$$

$$\nabla \bar{R}_{\theta} = E_{\tau \sim p_{\theta}(\tau)}[R(\tau)\nabla log p_{\theta}(\tau)]$$

Policy Gradient

Given policy π_{θ}

$$\tau^{1}$$
: (s_{1}^{1}, a_{1}^{1}) $R(\tau^{1})$ (s_{2}^{1}, a_{2}^{1}) $R(\tau^{1})$ \vdots \vdots τ^{2} : (s_{1}^{2}, a_{1}^{2}) $R(\tau^{2})$

$$(s_2^2, a_2^2)$$
 $R(\tau^2)$ \vdots

Update Model

$$\theta \leftarrow \theta + \eta \nabla \bar{R}_{\theta}$$

$$\nabla \bar{R}_{\theta} =$$

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p_{\theta}(a_t^n | s_t^n)$$

Data Collection

only used once

$$\theta \leftarrow \theta + \eta \nabla \bar{R}_{\theta}$$

Implementation

$$\nabla \bar{R}_{\theta} = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p_{\theta}(a_t^n | s_t^n)$$

Consider as classification problem

 $s_t^n a_t^n R(\tau^n)$

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} log p_{\theta}(a_t^n | s_t^n)$$

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \nabla log p_{\theta}(a_t^n | s_t^n)$$
TF, pyTorch ...
$$\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \nabla log p_{\theta}(a_t^n | s_t^n)$$

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{I_n} \underline{R(\tau^n)} log p_{\theta}(a_t^n | s_t^n) \longrightarrow \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{I_n} \underline{R(\tau^n)} \nabla log p_{\theta}(a_t^n | s_t^n)$$

Tip 1: Add a Baseline

$$\theta \leftarrow \theta + \eta \nabla \bar{R}_{\theta}$$
 It is possible that $R(\tau^n)$ is always positive.

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - \underline{b}) \nabla log p_{\theta}(a_t^n | s_t^n) \qquad b \approx E[R(\tau)]$$

Tip 2: Assign Suitable Credit

$$\times 3$$
 $\times -2$ $\times -2$ $\times -2$ $\times -7$ $\times -2$ \times

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (\mathbf{R}(t^n) - b) \nabla \log p_{\theta}(a_t^n | s_t^n)$$

$$\sum_{t'=t}^{T_n} r_{t'}^n$$

Tip 2: Assign Suitable Credit

Advantage $A^{\theta}(s_t, a_t)$ **Function**

How good it is if we take a_t other than other actions at s_t .

Estimated by "critic" (later)

Can be state-dependent

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \frac{P(t^n) - b}{T_n} \nabla \log p_{\theta}(a_t^n | s_t^n)$$

$$\sum_{t'=t}^{T_n} r_{t'}^n \longrightarrow \sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n$$
Add discount factor $\gamma < 1$

$$\gamma < 1$$

From on-policy to off-policy

Using the experience more than once

On-policy v.s. Off-policy

- On-policy: The agent learned and the agent interacting with the environment is the same.
- Off-policy: The agent learned and the agent interacting with the environment is different.

阿光下棋

佐為下棋、阿光在旁邊看

On-policy → Off-policy

$$\nabla \bar{R}_{\theta} = E_{\underline{\tau} \sim p_{\theta}(\underline{\tau})} [R(\tau) \nabla log p_{\theta}(\underline{\tau})]$$

- Use π_{θ} to collect data. When θ is updated, we have to sample training data again.
- Goal: Using the sample from $\pi_{\theta'}$ to train θ . θ' is \mathfrak{T} fixed, so we can re-use the sample data.

Importance Sampling

$$E_{x \sim p}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} \left(x^{i}\right)$$

 x^i is sampled from p(x)

We only have x^i sampled from q(x)

$$= \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx = E_{x\sim q}[f(x)\frac{p(x)}{q(x)}]$$

$$= \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx = E_{x\sim q}[f(x)\frac{p(x)}{q(x)}]$$
Importance weight

Issue of Importance Sampling

$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x)\frac{p(x)}{q(x)}]$$

$$Var_{x \sim p}[f(x)] \quad Var_{x \sim q}[f(x)\frac{p(x)}{q(x)}]$$

$$Var_{x \sim p}[f(x)] \quad Var_{x \sim p}[f(x)] = E_{x \sim p}[f(x)^{2}] - \left(E_{x \sim p}[f(x)]\right)^{2} \quad \text{for } x \sim p[f(x)] = E_{x \sim p}[f(x)^{2}] - \left(E_{x \sim p}[f(x)]\right)^{2} \quad \text{for } x \sim p[f(x)] = E_{x \sim p}[f(x)\frac{p(x)}{q(x)}] = E_{x \sim p}[f(x)\frac{p(x)}{q(x)}]^{2} - \left(E_{x \sim p}[f(x)]\right)^{2} = \int \frac{1}{2} \frac{1}$$

Issue of Importance Sampling

$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x)\frac{p(x)}{q(x)}]$$

On-policy → Off-policy

$$\nabla \bar{R}_{\theta} = E_{\underline{\tau} \sim p_{\theta}(\underline{\tau})} [R(\tau) \nabla log p_{\theta}(\underline{\tau})]$$

- Use π_{θ} to collect data. When θ is updated, we have to sample training data again.
- Goal: Using the sample from $\pi_{\theta'}$ to train θ . θ' is fixed, so we can re-use the sample data.

$$\nabla \bar{R}_{\theta} = E_{\underline{\tau \sim p_{\theta'}(\tau)}} \left[\frac{p_{\theta}(\tau)}{p_{\theta'}(\tau)} R(\tau) \nabla log p_{\theta}(\tau) \right]$$

- Sample the data from θ' .
- Use the data to train θ many times.

$$E_{x \sim p}[f(x)] = E_{x \sim q}[f(x)\frac{p(x)}{q(x)}]$$

On-policy → Off-policy

Gradient for update

$$\nabla f(x) = f(x)\nabla log f(x)$$

$$\begin{split} &= E_{(s_t,a_t) \sim \pi_{\theta}}[A^{\theta}(s_t,a_t) \nabla log p_{\theta}(a_t^n | s_t^n)] \\ &= E_{(s_t,a_t) \sim \pi_{\theta'}}[A^{\theta}(s_t,a_t) & \text{This term is from sampled data.} \\ &= E_{(s_t,a_t) \sim \pi_{\theta'}}[\frac{P_{\theta}(s_t,a_t)}{P_{\theta'}(s_t,a_t)} & A^{\theta}(s_t,a_t) \nabla log p_{\theta}(a_t^n | s_t^n)] \\ &= E_{(s_t,a_t) \sim \pi_{\theta'}}[\frac{p_{\theta}(a_t | s_t)}{p_{\theta'}(a_t | s_t)} & P_{\theta'}(s_t) \\ &= P_{\theta'}(s_t,a_t) \nabla log p_{\theta}(a_t^n | s_t^n)] \end{split}$$

$$J^{\theta'}(\theta) = E_{(s_t, a_t) \sim \pi_{\theta'}} \left[\frac{p_{\theta}(a_t | s_t)}{p_{\theta'}(a_t | s_t)} A^{\theta'}(s_t, a_t) \right]$$
 When to stop?

Add Constraint

穩紮穩打, 步步為營

PPO / TRPO

heta cannot be very different from heta'Constraint on behavior not parameters

Proximal Policy Optimization (PPO)

$$J_{PPO}^{\theta'}(\theta) = J^{\theta'}(\theta) - \beta KL(\theta, \theta')$$

$$J^{\theta'}(\theta) = E_{(s_t, a_t) \sim \pi_{\theta'}} \left[\frac{p_{\theta}(a_t | s_t)}{p_{\theta'}(a_t | s_t)} A^{\theta'}(s_t, a_t) \right]$$

TRPO (Trust Region Policy Optimization)

$$J_{TRPO}^{\theta'}(\theta) = E_{(s_t, a_t) \sim \pi_{\theta'}} \left[\frac{p_{\theta}(a_t | s_t)}{p_{\theta'}(a_t | s_t)} A^{\theta'}(s_t, a_t) \right]$$

$$KL(\theta, \theta') < \delta$$

PPO algorithm

 $J^{\theta^k}(\theta) \approx$ $\sum_{(s_t, a_t)} \frac{p_{\theta}(a_t|s_t)}{p_{\theta^k}(a_t|s_t)} A^{\theta^k}(s_t, a_t)$

- Initial policy parameters θ^0
- In each iteration
 - Using θ^k to interact with the environment to collect $\{s_t, a_t\}$ and compute advantage $A^{\theta^k}(s_t, a_t)$
 - Find θ optimizing $I_{PPO}(\theta)$

$$J_{PPO}^{\theta^{k}}(\theta) = J^{\theta^{k}}(\theta) - \beta KL(\theta, \theta^{k})$$

Update parameters several times

- If $KL(\theta, \theta^k) > KL_{max}$, increase β If $KL(\theta, \theta^k) < KL_{min}$, decrease β

Adaptive **KL Penalty**

PPO algorithm

$$J_{PPO}^{\theta^{k}}(\theta) = J^{\theta^{k}}(\theta) - \beta KL(\theta, \theta^{k})$$

PPO2 algorithm

$$J^{\theta^k}(\theta) \approx \sum_{(s_t, a_t)} \frac{p_{\theta}(a_t|s_t)}{p_{\theta^k}(a_t|s_t)} A^{\theta^k}(s_t, a_t)$$

$$J_{PPO2}^{\theta^{k}}(\theta) \approx \sum_{(s_{t}, a_{t})} \gamma \text{Min} \left(\frac{P_{\theta} \left(\Delta t \mid s_{t} \right)}{P_{\theta^{k}} \left(\Delta t \mid s_{t} \right)} A^{\theta^{k}} \left(s_{t}, a_{t} \right) \right)$$

$$clip \left(\frac{p_{\theta} \left(a_{t} \mid s_{t} \right)}{p_{\theta^{k}} \left(a_{t} \mid s_{t} \right)}, 1 - \varepsilon, 1 + \varepsilon \right) A^{\theta^{k}} \left(s_{t}, a_{t} \right)$$

PPO algorithm

$$J_{PPO}^{\theta^{k}}(\theta) = J^{\theta^{k}}(\theta) - \beta KL(\theta, \theta^{k})$$

PPO2 algorithm

$$J^{\theta^k}(\theta) \approx \sum_{(s_t, a_t)} \frac{p_{\theta}(a_t|s_t)}{p_{\theta^k}(a_t|s_t)} A^{\theta^k}(s_t, a_t)$$

$$J_{PPO2}^{\theta^{k}}(\theta) \approx \sum_{(s_{t}, a_{t})} \min \left(\frac{p_{\theta}(a_{t}|s_{t})}{p_{\theta^{k}}(a_{t}|s_{t})} A^{\theta^{k}}(s_{t}, a_{t}), \right)$$

$$clip \left(\frac{p_{\theta}(a_{t}|s_{t})}{p_{\theta^{k}}(a_{t}|s_{t})}, 1 - \varepsilon, 1 + \varepsilon \right) A^{\theta^{k}}(s_{t}, a_{t}) \right)$$

$$1 + \varepsilon$$

$$1$$

$$1 - \varepsilon$$

$$1 - \varepsilon$$

Experimental Results

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million timesteps.