image: $f(E) = \{ f(x) : x \in E \}$ preimage: $f^{-1}(A) = \{ x \in X : f(x) \in A \}$

Math 104 Worksheet 12 UC Berkeley, Summer 2021 Thursday, July 22

Let X and Y be two sets, and let $f: X \to Y$, let $E \subseteq X$, and let $A, B \subseteq Y$.

Exercise 1. Prove the following assertions.

(a)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Proof. $x \in f^{-1}(A \cap B) \iff f(x) \in A \cap B \iff f(x) \in A \text{ and } f(x) \in B \iff x \in f^{-1}(A) \text{ and } x \in f^{-1}(B) \iff x \in f^{-1}(A) \cap f^{-1}(B).$

(b)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
.

$$x \in f^{-1}(A \cup B) \Leftrightarrow f(x) \in A \cup B \Leftrightarrow f(x) \in A \text{ or } f(x) \in B$$

 $(\Rightarrow x \in f^{-1}(A) \text{ or } x \in f^{-1}(B) \Leftrightarrow x \in f^{-1}(A) \cup f^{-1}(B).$

(c)
$$f^{-1}(A^c) = (f^{-1}(A))^c$$
.

$$x \in f^{-1}(A^c) \iff f(x) \in A^c \iff f(x) \not\in A$$

 $\Leftrightarrow x \not\in f^{-1}(A) \iff x \in (f^{-1}(A))^c$.

(d)
$$f^{-1}(A) \subseteq f^{-1}(B)$$
 if $A \subseteq B$.

$$x \in f^{-1}(A) \Leftrightarrow f(x) \in A \Rightarrow f(x) \in B \Leftrightarrow x \in f^{-1}(B)$$

(e)
$$E \subseteq f^{-1}(f(E))$$

 $\chi \in E \implies f(\chi) \in f(E) \iff \chi \in f^{-1}(f(E))$

(f) Find a counterexample to show that the statement $E = f^{-1}(f(E))$ is not always true.

$$f(x) = x^2$$
. $E = (0, \infty)$. $f(E) = (0, \infty)$
 $f^{-1}(f(E)) = \Re \{0\}$.

 $f(x) \in A \Leftrightarrow x \in f^{-1}(A)$

Let (X, d_X) and (Y, d_Y) be two metric spaces, and let $f: X \to Y$. The following are three definitions of continuity at a point $x_0 \in X$. $f(x) \in \mathcal{B}_{\mathfrak{S}}(f(x_0))$

1. $(\varepsilon - \delta \text{ definition})$ For any $\varepsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \varepsilon$ whenever $x \in X$ and $d_X(x, x_0) < \delta$. $\chi \in \mathcal{B}_{\Sigma}(\chi_{\varepsilon})$

 $x \in X$ and $d_X(x, x_0) < \delta$. $\chi \in \mathcal{B}_{\delta}(\chi_0)$. 2. (sequential definition) For any sequence (x_n) in X converging to x_0 , the sequence $f(x_n)$ converges to $f(x_0)$.

3. (topological definition) For any open set U in Y such that $f(x_0) \in U$, there exists an open set V in X such that $x_0 \in V \subseteq f^{-1}(U)$.

Theorem. The three definitions above are equivalent.

Exercise 2. Prove the preceding theorem.

(a) Prove $(2) \Rightarrow (1)$.

Skip

(b) Prove (1) \Rightarrow (3). Let U be an open set in Y, $f(x_0) \in U$. Since U is open, there exists $\epsilon > 0$ such that $B_{\epsilon}(f(x_0)) \subseteq U$. There exists $\delta > 0$ such that $\alpha \in B_{\delta}(x_0)$ implies $f(\alpha) \in B_{\epsilon}(f(x_0)) \subseteq U$.

(c) Prove (3) \Rightarrow (2). Then $\chi_0 \in B_\delta(\chi_0) \subseteq f^{-1}(U)$. Let $(\chi_0) \subseteq \chi$, $\chi_n \to \chi_0$. V. Let $\epsilon > 0$. Show there exists $N: n \ge N$ implies $f(\chi_n) \in B_\epsilon(f(\chi_0))$. There exists an open set $V \subseteq \chi$ such that $\chi_0 \in V \subseteq f^{-1}(U)$. U. There exists $\delta > 0$ such that $B_\delta(\chi_0) \subseteq V$. Since $\chi_n \to \chi_0$,

Exercise 3. Using the topological definition of continuity at a point, prove that f is continuous (on its domain) if and only if $f^{-1}(U)$ is open in X for every open set U in Y.

(A function is continuous if and only if the preimage of every open set is open.)

Is suppose topological def. holds at every $x \in X$. Since V is open, there Let $U \subseteq Y$ be open. Let $x \in f^{-1}(u)$. (exists r > 0 such that (Show x is an interior point of $f^{-1}(u)$), $f(x) \in U$. Br $(x) \subseteq V \subseteq f^{-1}(u)$. There exists open $V \subseteq X$ such that $x \in V \subseteq f^{-1}(u)$.

Then for n=N,

Such that n=N implies

that xn \in Bs(xo) \le V

Then for n=N,

f(xn) \in U = B\in (f(xo)).

Suppose f-(u) open (in X) whenever

u open (in Y). Let x \in X

let u \in Y open, f(x) \in U.

f-(u) is open. x \in f-(u).

Monday, July 26

Recall:

- uniform courtinuity
 - on closed and bounded intervals, uniform continuity = reg. continuity
 - continuous extension theorem

 uniformly court function of (a,b)

 can be extended to a

 continuous function on [a,b].

(X,dx), (Y,dx) metric spaces

Def: $f: X \rightarrow Y$ is uniformly continuous on $E \subseteq X$ if for any $\varepsilon > 0$ there exists $\delta > 0$ such that $x_1, x_2 \in E$ and $d_X(x_1, x_2) < \delta$ implies $d_Y(f(x_1), f(x_2)) < \varepsilon$.

Theorem: Let $f: X \to Y$ be continuous. Let $E \subseteq X$ be compact.

(i) f(E) is compact. (image of a compact set under cont. function is compact)

(ii) f is uniformly continuous on E. (recall cont. function on closed, bad intervals).

Proof:

(i) Let $\{Ua\}_{a\in A}$ be an open cover of f(E). Then $\{f'(Ua)\}_{a\in A}$ is an open cover of E.

Since E is compact, there exists a finite subcover f'(Ua), ..., f'(Uan), i.e. $E \subseteq \bigcup f'(Uai) = f'(\bigcup Uai) \implies f(E) \subseteq \bigcup Uai \in finite subcover of <math>\{Ua\}_{a\in A}$.

For each $x \in E$, there exists $\delta_x > 0$ such that $z \in E$, $d_x(x,z) < \delta_x \Rightarrow d_y(f(x),f(z)) < \underline{\varepsilon}$. For each $x \in E$, let $Ux = B_{\pm \delta_x}(x)$. $\{U_x\}_{x \in E}$ is an open cover of E. Since E is compact, there exists a finite subcover U_{x_1}, \dots, U_{x_n} . Let $\delta = \pm \min \{\delta_{x_1}, \dots, \delta_{x_n}\}$ Let x, z E E, dx(x,z) < 8 x = Ux: = B + s. (xi) for some i. Since $d_{X}(x,z) < \delta \leq \frac{1}{2} \delta_{X_i}$, $d_{X}(z,X_i) < \delta_{X_i}$. (and $d_{x}(x,x;) < S_{x}$) Then $d_{\gamma}(f(x), f(x)) < \frac{\varepsilon}{2}$. $d_{Y}(f(z),f(x))<\frac{\varepsilon}{2}$

Hence $d_{\gamma}(f(x), f(z)) \leq d_{\gamma}(f(x), f(x)) + d_{\gamma}(f(x), f(z)) < \varepsilon$.