

Phase-2 Submission Template

Register Number: 410723104044

Institution: Dhanalakshmi College Of Engineering

Department: Computer Science And Engineering

Date of Submission: 07.05.2025

Github Repository Link:

https://github.com/Mathesh03/maddy0311.git

1. Problem Statement

<u>Cracking the market code with AI-driven stock price prediction using</u> <u>time series analysis</u>

2. Project Objectives

- Build machine learning models for **predicting stock prices** using historical time-series data.
- Compare traditional models like ARIMA with AI models like LSTM, Prophet, or XGBoost.
- Evaluate model performance based on RMSE, MAE, and R² Score.
- Ensure **real-world applicability** by testing models on recent data.

3. Flowchart of the Project Workflow

Cracking the Market Code with Al-Driven Stock Price Prediction Using Time Series Analysis

4. Data Description

• Dataset Source: Yahoo Finance / Alpha Vantage / Kaggle

• Data Type: Structured, Time-series

• Features: Date, Open, High, Low, Close, Volume

• Target Variable: Closing Price

• Dynamic Dataset: Yes

5. Data Preprocessing

- Filled missing values via forward-fill.
- Removed duplicates.
- Handled outliers via IQR or z-score methods.
- Normalized numerical features (MinMax or StandardScaler).
- Converted date columns into datetime objects and extracted features (day, month, etc.).

```
numeric_cols = ["Open", "High", "Low", "Close", "Adj Close", "Volume"]

df[numeric_cols] = df[numeric_cols].apply(pd.to_numeric, errors='coerce')
```

6. Exploratory Data Analysis (EDA)

- Univariate plots for price trends.
- Rolling average and volatility visualizations.
- Correlation heatmaps.
- Trend & seasonality decomposition (via statsmodels or Prophet).

Summary of Insights:

- Distributions: Price and volume variables are slightly skewed.
- *Outliers*: Treated, but still visible in raw distributions (Volume especially).
- Correlations: Open, High, Low, and Adj Close show high correlation with Close.
- Time Trend: Close price exhibits a general upward trend across years.
- Volume: Less correlated with price features; may still be useful for volatility or demand modeling.
- histogram

```
df[numerical_cols].hist(bins=30, figsize=(12, 8))
plt.suptitle("Histograms of Numerical Features")
plt.show()
```

7. Feature Engineering

- Generated lag features (e.g., previous 5-day closing prices).
- Extracted technical indicators (e.g., RSI, MACD, EMA).
- Included volume
- df["Date"] = pd.to_datetime(df["Date"], errors="coerce")
- cols = ["Open", "High", "Low", "Close", "Adj Close", "Volume"]
- df[cols] = df[cols].apply(pd.to_numeric, errors="coerce")
- df.dropna(inplace=True)

Feature	Reason
Year, Month, Weekday	Capture seasonality and calendar effects
Daily_Return	Important for risk/volatility modeling
High_Low_Range, Open_Close_Range	Intraday movement indicators
Rolling_Mean_7, Rolling_Mean_30	Trend detection
Volume_Price_Ratio	Momentum or market activity proxy
Close_Squared	Enables modeling non-linear price dynamics

8. Model Building

1. Target Creation

We'll shift the Close column by -1 to make the target Next_Close.

2. Model Choices & Justification

Model Reason

A strong baseline for regression problems, interpretable and

fast.

Random Forest Captures non-linearities and interactions without requiring

Regressor scaling. Handles overfitting better than decision trees.

3. Performance Metrics

- MAE (Mean Absolute Error)
- RMSE (Root Mean Squared Error)
- R² Score (Coefficient of Determination

```
df = pd.read_csv("/mnt/data/AMZN.csv")
df.columns = df.iloc[0]
df = df[1:].copy()
df.columns.name = None
df.rename(columns={"Price": "Date"}, inplace=True)
df["Date"] = pd.to_datetime(df["Date"], errors="coerce")
cols = ["Open", "High", "Low", "Close", "Adj Close", "Volume"]
df[cols] = df[cols].apply(pd.to_numeric, errors="coerce")
df.dropna(inplace=True)
```

9. Visualization of Results & Model Insights

1. Residual Plots

- What it shows: Difference between predicted and actual values.
- Why it matters: Helps detect bias, patterns, or heteroscedasticity in the model errors.
- **How to interpret**: A good model should show residuals scattered randomly around zero.

2. Feature Importance Plot (for Random Forest)

- What it shows: Relative importance of each input feature.
- Why it matters: Helps understand what drives the model predictions.

• **How to interpret**: The higher the bar, the more influence that feature has on predictions.

3. Predicted vs Actual Comparison

- What it shows: Line plots of actual vs predicted closing prices over time.
- Why it matters: Visual performance comparison between models (e.g., Linear Regression vs Random Forest).
- **How to interpret**: The closer the prediction line tracks the actual values, the better the model.

Feature	Importance Interpretation	
Close_Squared	High	Captures non-linear growth patterns in stock price.
Open	High	Strongly correlates with the following day's close.
Daily_Return	Moderate	Indicates recent price momentum.
High_Low_Range	Moderate	Reflects daily volatility.
Volume_Price_Ratio Lower		May signal unusual trading activity, though less predictive on its own.

Summary

- **Random Forest** performed better due to its ability to model non-linear relationships and interactions.
- **Linear Regression** is easier to interpret but underperforms on volatile financial time series data.
- **Key Drivers** of the next-day price include today's open price, squared close (non-linear effect), and daily return.

10. Tools and Technologies Used

Programming Language

Python

Used for data cleaning, analysis, feature engineering, model building, and evaluation.

IDE / Notebook

• **Jupyter Notebook** (recommended for this workflow)
Interactive environment for combining code, plots, and markdown documentation.

Libraries Used

Library Purpose

pandas Data loading, cleaning, and manipulationnumpy Numerical operations and transformations

seaborn Statistical data visualization (residuals, feature plots)

matplotlib Core plotting library for charts

scikit-learn Model training (Linear Regression, Random Forest), evaluation

(MAE, RMSE, R2), feature importance

(Optional) Advanced boosting model (can be added for further

XGBoost improvement)

Visualization Tools

Tool Usage

matplotlib / seaborn

Used for in-notebook residuals, feature importance,

and predictions comparison

(Optional) Plotly / Power

BI / Tableau

For interactive dashboards or final reports

11. Team Members and Contributions

S.NO	NAME	ROLES
1	Mathesh S	Documentation
		and reporting
2	Dhanajayan S	Exploratory data
		analysis
3	Manoj C	Model
		development
4	Emaya bharath	Feature
		engineering
5	Jayanth R	Data preprocessing