1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Dibujo Asistido por Computadora

Carrera: Ingeniería Química, Ingeniería Bioquímica

Clave de la asignatura: AEO-1012

SATCA¹ 0 - 3 - 3

2.- PRESENTACIÓN

Caracterización de la asignatura.

Esta asignatura aporta al perfil del Ingeniero Químico e Ingeniero Bioquímico la capacidad de elaborar e interpretar diagramas y planos de equipos, procesos y plantas de proceso, utilizando herramientas de cómputo.

Puesto que esta materia se considera básica en la formación de habilidades del ingeniero; se inserta en la primera parte de la trayectoria escolar; antes de cursar las materias de: Balances de Materia y Energía, Procesos de Separación, Simulación de Procesos, Síntesis y Optimización de Procesos, Ingeniería de Proceso, Ingeniería de proyecto y Formulación y Evaluación de Proyectos.

Intención didáctica.

Se organiza el temario, en cuatro unidades, incluyendo en la primera unidad los conceptos básicos de dibujo técnico y el manejo de programas para dibujo; logrando diferenciar el dibujo a mano alzada y el asistido por computadora. En la segunda se aborda la simbología, normas y requerimientos técnicos necesarios para la elaboración de diagramas y planos. Se sugieren actividades grupales donde se discuta la simbología utilizada en los diferentes procesos de la Ingeniería Bioquímica y Química, así mismo se guie al alumno para que realice dibujos de equipos y procesos, favoreciendo con ello el desarrollo de habilidades.

En la siguiente unidad se interpretan diferentes tipos de diagramas y planos haciendo énfasis en la simbología para procesos químicos y bioquímicos; se fomenta el trabajo en equipo para analizar planos, considerando las normatividades vigentes y de colores a nivel nacional e internacional. Por último se aplican herramientas de cómputo para elaborar planos y diagramas de procesos.

En las actividades de aprendizaje sugeridas, generalmente se propone la formalización de los conceptos a partir de experiencias concretas; se busca que el alumno tenga el primer contacto con el concepto en forma concreta y sea a través de la observación, la reflexión y la discusión que se logre la formalización.

En el transcurso de las actividades programadas es muy importante que el estudiante aprenda a valorar las actividades que lleva a cabo y entienda que está construyendo su hacer futuro y en consecuencia actúe de una manera profesional; de igual manera, aprecie la importancia del conocimiento y los hábitos de trabajo; desarrolle la precisión y la curiosidad, la puntualidad, el entusiasmo y el interés, la tenacidad, la flexibilidad y la autonomía.

¹ Sistema de asignación y transferencia de créditos académicos

3.- COMPETENCIAS A DESARROLLAR

Competencias específicas:

 Interpretar, elaborar, y utilizar planos y diagramas de equipos y procesos de Ingeniería Química o Bioquímica apoyándose en el dibujo asistido por computadora.

Competencias genéricas: Competencias instrumentales:

- Capacidad de análisis y síntesis
- Capacidad de organizar y planificar
- Conocimientos básicos de dibujo
- Comunicación oral y escrita
- Habilidades básicas de manejo de las TIC'S
- Habilidad para buscar y analizar información proveniente de fuentes diversas
- Toma de decisiones.

Competencias interpersonales

- Capacidad crítica y autocrítica
- Trabajo en equipo
- Habilidades interpersonales

Competencias sistémicas

- Capacidad de aplicar los conocimientos en la práctica
- Capacidad de aprender
- Capacidad de generar nuevas ideas (creatividad)
- Habilidad para trabajar en forma autónoma
- Búsqueda del logro

4.- HISTORIA DEL PROGRAMA

Lugar y fecha de Bartisipantos Observaciones				
elaboración o revisión	Participantes	(cambios y justificación)		
Instituto Tecnológico de Villahermosa, Tabasco, del 07 al 11 de septiembre del 2009.	Representantes de los Institutos Tecnológicos de: Aguascalientes, Celaya, Centla, Chihuahua, Durango, La laguna, Lázaro Cárdenas, Matamoros, Mérida, Minatitlán, Orizaba, Pachuca, Parral, Tapachula, Tepic, Toluca, Veracruz, Villahermosa.	Reunión de Diseño curricular de la carrera de Ingeniería Química del Sistema Nacional de Educación Superior Tecnológica		
Instituto Tecnológico de Mérida, de 14 de septiembre 2009 a 05 febrero de 2010.	Representante de la Academia de Ingeniería Química	Análisis, enriquecimiento y elaboración del programa de estudio propuesto en la Reunión Nacional de Diseño Curricular de la carrera de Ingeniería Química.		
Instituto Tecnológico de Aguascalientes del 15 al 18 de junio de 2010	Representante de los Institutos Tecnológicos de Tuxtepec, Tijuana, Saltillo, Zacatecas, Mérida, Veracruz, Celaya, Aguascalientes, Orizaba, Superior de Poza Rica, Superior de Tamazula de Giordano, Superior de Tacámbaro, Superior de Irapuato, Superior de Coatzacoalcos y Superior de Venustiano Carranza	Reunión de fortalecimiento curricular de las asignaturas comunes por área de conocimiento para los planes de estudio actualizados del SNEST		

5.- OBJETIVO(S) GENERAL(ES) DEL CURSO (competencias específicas a desarrollar en el curso)

Interpretar, elaborar, y utilizar planos y diagramas de equipos y procesos de Ingeniería Bioquímica y Química, apoyándose en el dibujo asistido por computadora.

6.- COMPETENCIAS PREVIAS

- Habilidad en el manejo de equipo de cómputo
- Manejar las unidades de medición en los diferentes sistemas

7.- TEMARIO

Unidad	Temas	Subtemas
1	Introducción al dibujo	1.1 Nociones generales de dibujo
	para ingeniería	1.2 Dibujo a mano alzada
		1.3 Perspectivas y cortes
		1.4 Escalas y cotas
		1.5 Dibujo asistido por computadora
2	Dibujo de simbología y	2.1 Simbología
	diagramas	2.2 Esquemas y diagramas elaborados en
		computadora
		2.3 Normas para la elaboración de planos
3	Interpretación de planos	3.1 Generalidades
		3.2 Requerimientos de los planos
		3.3 Carta de colores y tuberías
		3.4 Interpretación de planos
4	Diagramación asistido	4.1 Elaboración de planos de procesos
	por computadora	químicos utilizando software comercial
		4.2 interpretación de planos de procesos químicos

8.- SUGERENCIAS DIDÁCTICAS

El profesor debe:

Dominar la disciplina que está bajo su responsabilidad, conocer su origen y desarrollo histórico para considerar este conocimiento al abordar los temas. Desarrollar la capacidad para coordinar y trabajar en equipo; orientar el trabajo del estudiante y potenciar en él la autonomía, el trabajo cooperativo y la toma de decisiones. Mostrar flexibilidad en el seguimiento del proceso formativo y propiciar la interacción entre los estudiantes. Tomar en cuenta el conocimiento de los estudiantes como punto de partida y como obstáculo para la construcción de nuevos conocimientos.

- Propiciar actividades de meta-cognición. Ante la ejecución de una actividad, señalar o identificar el tipo de proceso intelectual que se realizó: una identificación de patrones, un análisis, una síntesis, la creación de un heurístico, etc. Al principio lo hará el profesor, luego será el alumno quien lo identifique. Ejemplos: reconocer los distintos tipos de proyección utilizados en la elaboración de dibujos técnicos a partir de bosquejos: síntesis.
- Fomentar actividades grupales que propicien la comunicación, el intercambio y la argumentación de ideas, la reflexión, la integración y la colaboración de y entre los estudiantes.
- Relacionar los contenidos de esta asignatura con las demás del plan de estudios a las que ésta da soporte para desarrollar una visión interdisciplinaria en el estudiante.
- Facilitar el contacto directo con materiales e instrumentos, al llevar a cabo actividades prácticas, para contribuir a la formación de las competencias para el trabajo experimental como: manejo de instrumentos de dibujo, manejo de computadoras, interpretación de planos.
- Propiciar el desarrollo de actividades intelectuales de inducción-deducción-acción y análisis-síntesis-acción, que encaminen hacia la expresión de ideas.
- Desarrollar actividades de aprendizaje que propicien la aplicación de los conceptos, modelos, metodologías y habilidades que se van aprendiendo en el desarrollo de la competencia.
- Relacionar los contenidos de la asignatura con el cuidado del medio ambiente; utilizando hojas de reciclo para la elaboración de dibujos mano.
- Cuando los temas lo requieran, utilizar medios audiovisuales para una mejor comprensión del estudiante.
- Propiciar el uso de las nuevas tecnologías en el desarrollo de la asignatura.

9.- SUGERENCIAS DE EVALUACIÓN

- La evaluación debe ser continua y formativa por lo que se debe considerar el desempeño en cada una de las actividades de aprendizaje, haciendo especial énfasis en:
- Dibujos realizados en clase.
- Interpretación correcta y expresión adecuada de símbolos y diagramas.
- Descripción de otras experiencias concretas que podrían realizarse adicionalmente.
- Evaluación integradora que incluva el plano de un proceso completo.

10.- UNIDADES DE APRENDIZAJE

Unidad 1: Introducción al dibujo para ingeniería

Competencia específica a desarrollar	Actividades de Aprendizaje
 Elaborar dibujos, cortes y perspectivas de figuras geométricas utilizando dibujo a mano alzada y software comercial. 	 Investigar y discutir en sesión plenaria la evolución del dibujo técnico Identificar las diferentes perspectivas utilizadas en dibujo técnico Realizar dibujos de cortes, secciones y roturas con aplicaciones en Ingeniería Química y Bioquímica. Realizar dibujos en donde se resalte la importancia de la acotación para la interpretación de esquemas técnicos. Conocer y utilizar las funciones del software comercial

Unidad 2: Dibujo de simbología y diagramas

Competencia específica a desarrollar		Actividades de Aprendizaje	
•	Elaborar de planos utilizando la simbología reglamentaria en área de Ingeniería Química y Bioquímica.	 Investigar y analizar la simbología utilizada en accesorios, válvulas, tuberías y equipos en Ingeniería Química, o Bioquímica. Realizar dibujos utilizando la simbología reglamentaria Dibujar diferentes diagramas de equipos, de flujo de procesos y de instrumentación. 	

Unidad 3: Interpretación de planos

Competencia específica a desarrollar	Actividades de Aprendizaje	
 Analizar planos y diagramas identificando colores, simbología, etiquetas y leyendas establecidas de acuerdo a la norma 	 Analizar planos de equipo y proceso para identificar las partes que lo conforman Utilizar la carta de colores y tuberías para la creación de planos y diagramas. Elaborar un plano que cumpla con la normatividad 	

Unidad 4: Diagramación asistido por computadora

Competencia específica a desarrollar	Actividades de Aprendizaje
 Elaborar planos de procesos químicos utilizando software comercial con la simbología, etiquetas, colores y leyendas establecidas de acuerdo a las normas. 	 Elaborar diagramas de flujo de un equipo y de un proceso utilizando computadora Representar procesos integrales de Ingeniería Química y Bioquímica en planos realizados en computadora

11.- FUENTES DE INFORMACION

- 1. Dirección General de Normas. Normas Oficiales Mexicanas de Dibujo Técnico. Secretaría de Industria y Comercio.
- 2. Hernández Blanco, J.L. Dibujo Técnico. México, DF. Alfa Omega, 1996.
- 3. Jensen, R.S. y col. *Dibujo y diseño en Ingeniería*. México, DF. 6ª. Edición. McGraw Hill, 2002.
- 4. López Fernández, J. y Tajadura Zapirain, J.A. *AutoCad 2000 Avanzado*. Barcelona, España. 1ª. Edición. McGraw Hill, 1999.
- 5. Reyes Rodríguez. A.M. *AutoCad 2000*. Barcelona, España 1ª. Edición. Anaya Multimedia, 1999.
- 6. Spencer; H.C. y Dygdon, J.T. Dibujo Técnico Básico. México, DF. Alfa Omega, 1998.
- 7. Spencer; H.C.; Dygdon, J.T. y Novak. *Dibujo Técnico*. México, DF 7^a. Edición. Editorial Alfa Omega, 2003.
- 8. Viveros Rosas, Leopoldo. *Manual de Computación. Parte I y Parte II*. México, DF.1^a. Edición. 2004.
- 9. Warren J. Lizadder y Duff, J.M. Fundamentos de Dibujo en Ingeniería. México, DF.

12.- PRACTICAS PROPUESTAS

- Dibujar a mano alzada en diferentes vistas.
- Aplicar el dibujo técnico tradicional.
- Realizar dibujos de equipo y procesos químicos.
- Elaboración de dibujos en 2D y 3D con la ayuda de paquete computacional.
- Realizar un plano que incluya varios elementos como: equipos, instrumentos, tuberías, accesorios y válvulas, aplicando las normas específicas.