Úvod

Hlavní využití počítačů

Počítače jsou výkonné nástroje využívané pro zpracování dat. Provádějí:

- načtení binárně kódovaných dat
- provedení požadovaného výpočtu
- zobrazení výsledku

Hlavní využití počítačů

Počítače jsou výkonné nástroje využívané pro zpracování dat. Provádějí:

- načtení binárně kódovaných dat
- provedení požadovaného výpočtu
- zobrazení výsledku

Z toho plyne rozdělení většiny úloh na:

- ukládání dat databáze
- výpočty simulace
- vizualizace
 - uložených dat
 - vypočtených výsledků

Von Neumannova architektura

http://en.wikipedia.org/wiki/Von_Neumann_architecture

PU = processing unit, RAM = random-acces memory,

I/O = vstupně/výstupní zařízení, Timer = časovač

Von Neumannova architektura

http://en.wikipedia.org/wiki/Von_Neumann_architecture

PU = processing unit, RAM = random-acces memory,

I/O = vstupně/výstupní zařízení, Timer = časovač

Paměť obsahuje instrukce i data.

Alternativy non Neumannovy architektury

- Harvardská architektura
 - http://cs.wikipedia.org/wiki/Harvardská_architektura
- Asynchronní počítače
- Analogové počítače
 - http://cs.wikipedia.org/wiki/Analogový_počítač

Nevýhody non Neumannovy architektury

- "není vhodná pro real-timové aplikace"
 - zpracování signálu
- pomalé spojení s pamětí
 - Von Neumann bottleneck
- nutnost synchronizace časovačem
 - celé zařízení pracuje ve stejném taktu
 - to komplikuje návrh hardwaru
- digitální zpracování čísel
 - výpočty nejsou zcela přesné

Hlavní problémy současných počítačů

Současné počítače

- jsou nepřesné
 - tento problém řeší zejména numerická matematika PNLA
- nemají dostatečný výkon pro velké úlohy
 - to řeší zejména paralelizace PAA

Původ výpočetně náročných úloh

- CFD computational fluid dynamics, modely turbulencí, modely hoření
- modelování globálních změn počasí
- supravodivost, jaderné a termojaderné reakce
- biologie, zpracování genomů, tzv. protein folding
- medicína, zpracování medicínských dat
- správa velkých databází
- obsloužení velkého počtu transakcí

Možnosti urychlení/provedení náročných výpočtů

Instrukce = provedení elementárního výpočtu nebo datového přenosu.

- provádět elementární instrukce rychleji
 - tzn. zvýšení taktu časovače
 - to ale naráží na fyzikální hranice dnešních technologií
 - vyžaduje to vývoj komplikovaných CPU
 - výkon jednotlivých CPU roste velmi pomalu
- provádět více elementárních instrukcí souběžně
 - ne každou úlohu lze ale řešit paralelně
 - výpočet dané úlohu nelze urychlit libovolně
 - "letadlem se nedostanu z Břehovky do Trojanky za 0.1 s"
 - paralelizace se hodí na velké úlohy
 - Ize dosáhnout mnohem většího urychlení, než s jedním CPU
 - vývoj paralelních programů bývá mnohem složitější

Paralelní architektura

Definice: Paralelní architektura je taková, která obsahuje více jednotek pro zpracování dat (PU).

Kde se paralelní architektury vyskytují I.

Domácí a kancelářské počítače

- běžné CPU prakticky každé dnešní CPU je tzv. implicitně paralelní
- speciální rozšíření CPU MMX, SSE, 3D Now
 - kodeky pro přehrávání hudby a filmů
 - zpracování fotografií apod.
- vícejádrové procesory tzv. symetrický multiprocesing
 - umožňují skutečně současný běh více procesů (aplikací) najednou - to umožňuje rychlejší odezvu na podněty uživatele
- dual channel paměťové řadiče
 - urychlují přístup do paměti tím, že umožňují číst z více paměťových modulů současně
- technologie RAID
 - urychluje přenos dat mezi pamětí a pevným diskem tím, že se současně čte/zapisuje z/na více disků

Kde se paralelní architektury vyskytují II.

Herní konzole

- Playstation 3 s procesorem Cell
 - http://www.cell-processor.net/news.php
 - http://en.wikipedia.org/wiki/Cell_(microprocessor)

Kde se paralelní architektury vyskytují III.

Pracovní stanice

- jsou jako běžná PC ale mají ...
 - více procesorů
 - rychlejší paměti
 - pokročilejší podporu tzv. vektorizace
 - často optimalizované pro vizualizace, např. pro OpenGL rozhraní
- jde například o stanice HP postavené na kombinaci HP-UX
 - + PARISC

Kde se paralelní architektury vyskytují IV.

Mainframe

- systémy mainframe silně využívají paralelizace, podporují
 - až 64 procesorů, 1.5 TB RAM (288 GB/s)
 - zváštní I/O řadič pro každý z 1024 I/O portů
 - hardwarovou podporu pro šifrování
 - tzv. Parallel Sysplex tj. cluster mainframů
- to umožňuje ...
 - vysokou úroveň zabezpečení uložených dat
 - prakticky nepřetržitou dostupnost systému
 - vysokou datovou propustnost, ta je nutná pro úspěšné zpracování velkého počtu transakcí současně
 - plynulý běh tisíců operačních systému současně, tzv. virtualizace

Kde se paralelní architektury vyskytují V.

Superpočítače

- narozdíl od mainframe je cílem soustředit maximální výpočetní výkon do jedné aplikace
- podle www.top500.org
 - IBM Roadrunner
 - clustr s 129600 jádry PowerXCell 8i 3200 MHz/Opteron DC 1.8 GHz
 - ▶ 1105000 GFlops = 1.1 PFlops
 - RAM řádově desítky TB (odhadem 60)
 - propojení pomocí Infiniband 12GB/s (http://en.wikipedia.org/wiki/Infiniband)

Kde se paralelní architektury vyskytují V.

Grid

- velké množství počítačů spojených do jedné sítě
- spojení je mnohem volnější, než u clusterů (superpočítače)
- uzly nemusí používat stejný operační systém
- uzly se mohou libovolně připojovat a zase odpojovat
- výkon je mnohem vyšší než u nejvýkonějších superpočítačů
- grid je téměř nepoužitelný na numerické simulace
- aplikace:
 - Folding@home http://folding.stanford.edu/ 4.28 PFlops (2008)
 - GIMPS http://www.mersenne.org/
 - SETI@home http://setiathome.ssl.berkeley.edu/