#### **Medical Informatics**

Lecture 4: The Relational Model

Dr Areti Manataki



Nanjing Medical University

## In the previous lecture

- Refining the ER model
- Constraints:
  - key constraints
  - participation constraints



### In the previous lecture

- Refining the ER model
- Constraints:
  - key constraints
  - participation constraints
- Weak entity sets



# In the previous lecture

- Refining the ER model
- Constraints:
  - key constraints
  - participation constraint
- Weak entity sets
- Entity hierarchies



#### In this lecture

- Introduction to the relational model
- Creating tables with DDL
- Specifying integrity constraints

#### Introduction to the relational model

- Database: a collection of relations
- A relation consists of:
  - Relation schema: describes the format of a table, consisting of:
    - Relation's name
    - Name of each field (column)
    - Domain of each field
  - Relation instance: the content of a table
    - A set of tuples (records)

#### Introduction to the relational model



- Arity (also called degree): number of fields
- Cardinality: number of rows

#### Introduction to the relational model

 Database: a set of tables with rows and columns, and links between them

#### Student

| ĺ | mn       | name   | email        | age |
|---|----------|--------|--------------|-----|
| l | s0785212 | Andrew | andrew@maths | 19  |
| ŀ | s1253477 | Jenny  | jenny@inf    | 23  |
| l | s1456381 | Rhona  | rhona@inf    | 18  |
| l | s1489673 | Stuart | stuart@law   | 34  |
| l | s1473612 | Alan   | alan@law     | 20  |

#### **Takes**

| mn       | cid  |
|----------|------|
| s0785212 | lalg |
| s1253477 | dbs  |
| s1253477 | inf1 |
| s1489673 | sls  |

#### Course

| cid  | title                 | credits |
|------|-----------------------|---------|
| dbs  | Database Systems      | 20      |
| inf1 | Informatics 1         | 10      |
| sls  | Scottish Legal System | 10      |
| lalg | Linear Algebra        | 10      |

### Creating relations with DDL

- Structured Query Language (SQL): standard language for creating, manipulating and querying data in relational database management systems
- Data Definition Language (DDL): subset of SQL that allows us to create, delete and modify tables
- CREATE TABLE declaration: define a new relation (called 'table' in SQL) with a particular schema

### Creating relations with DDL

```
CREATE TABLE Student (
    mn CHAR(8),
    name VARCHAR(20),
    email VARCHAR(25),
    age INTEGER )
```

#### Student

| mn       | name   | email        | age |
|----------|--------|--------------|-----|
| s0785212 | Andrew | andrew@maths | 19  |
| s1253477 | Jenny  | jenny@inf    | 23  |
| s1456381 | Rhona  | rhona@inf    | 18  |
| s1489673 | Stuart | stuart@law   | 34  |
| s1473612 | Alan   | alan@law     | 20  |

 Domain constraint: for each row in this table, the values in each column must be drawn from the appropriate domain

### Creating relations with DDL

General form:

- Integrity constraints:
  - Key constraints
  - Foreign key constraints

### Primary key constraints in DDL

```
CREATE TABLE Student (
    mn CHAR(8),
    name VARCHAR(20),
    email VARCHAR(25),
    age INTEGER,
    PRIMARY KEY (mn)
```

#### Student

| mn       | name   | email        | age |
|----------|--------|--------------|-----|
| s0785212 | Andrew | andrew@maths | 19  |
| s1253477 | Jenny  | jenny@inf    | 23  |
| s1456381 | Rhona  | rhona@inf    | 18  |
| s1489673 | Stuart | stuart@law   | 34  |
| s1473612 | Alan   | alan@law     | 20  |

- The primary key uniquely identifies a tuple.
- No two rows in the Student table have the same mn.

 Foreign key constraints specify links between tables.

#### Student

|   | mn       | name   | email        | age |
|---|----------|--------|--------------|-----|
|   | s0785212 | Andrew | andrew@maths | 19  |
| ► | s1253477 | Jenny  | jenny@inf    | 23  |
|   | s1456381 | Rhona  | rhona@inf    | 18  |
|   | s1489673 | Stuart | stuart@law   | 34  |
|   | s1473612 | Alan   | alan@law     | 20  |

#### Takes

| mn       | cid  |
|----------|------|
| s0785212 | lalg |
| s1253477 | dbs  |
| s1253477 | inf1 |
| s1489673 | sls  |

#### Course

| cid  | title                 | credits |
|------|-----------------------|---------|
| dbs  | Database Systems      | 20      |
| inf1 | Informatics 1         | 10      |
| sls  | Scottish Legal System | 10      |
| lalg | Linear Algebra        | 10      |

Foreign key constraints specify links between tables.

```
CREATE TABLE Takes (
    mn CHAR(8),
    cid CHAR(20),
    mark INTEGER,
    PRIMARY KEY (mn, cid),
    FOREIGN KEY (mn) REFERENCES Student,
    FOREIGN KEY (cid) REFERENCES Course
)
```

 This specifies that mn will always take a value that appears in the Student table.

Foreign key constraints specify links between tables.

```
CREATE TABLE Takes (
    mn CHAR(8),
    cid CHAR(20),
    mark INTEGER,
    PRIMARY KEY (mn, cid),
    FOREIGN KEY (mn) REFERENCES Student,
    FOREIGN KEY (cid) REFERENCES Course
)
```

 This specifies that cid will always take a value that appears in the Course table.

```
CREATE TABLE Takes (
    mn CHAR(8),
    cid CHAR(20),
    mark INTEGER,
    PRIMARY KEY (mn, cid),
    FOREIGN KEY (mn) REFERENCES Student,
    FOREIGN KEY (cid) REFERENCES Course
)
```

- The foreign key in a referencing relation must match the primary key of the reference relation.
- Same number of columns and same domains.

- What should happen if a row in Student is deleted?
  - 1<sup>st</sup> approach: All rows in Takes that refer to it should be deleted.

- What should happen if a row in Student is deleted?
  - 2<sup>nd</sup> approach: For each row in Takes that refers to it, set its mn value to some pre-specified default value.

- What should happen if a row in Student is deleted?
  - 3<sup>rd</sup> approach: For each row in Takes that refers to it, set its mn value to null.

#### Conclusions

- The fundamental idea of the relational model is a relation.
- DDL allows us to specify:
  - the schema of our relations
  - primary and foreign keys
- In the next lecture we'll see how we can systematically translate an ER model into a relational one.
- Home exercise: How would you translate an entity set?
   And how a relationship set? Take a wild guess!

### Acknowledgements

The content of these slides was originally created for the Medical Informatics course from The University of Edinburgh, which is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

These lecture slides are also licensed under a CC BY-SA 4.0 license.

