- Shin's Lab -

Python for Data Visualization

Python for Data Visualization

-Chapter.4 Bar Plot -

- 4-00. Intro to Bar Plot
- 4-01. Bar Plot Basics
- 4-02. Multiple Bar Plots
- 4-03. Rect Objects
- 4-04. Horizontal Bar Plots
- 4-05. Exercises

Python for Data Visualization

-Chapter.4 Bar Plot -

4-01. Bar Plot Basics

- 1. ax.bar Basics
- 2. Color and Hatch Customizing
- 3. Tick and Ticklabels
- 4. Bar Plot with Sorting
- 5. Bar Plot with OCED Data

1. ax.bar Basics

matplotlib.pyplot.bar

matplotlib.pyplot.bar(x, height, width=0.8, bottom=None, *, align='center', data=None, **kwargs)

[source]

Make a bar plot.

The bars are positioned at x with the given alignment. Their dimensions are given by height and width. The vertical baseline is bottom (default 0).

Many parameters can take either a single value applying to all bars or a sequence of values, one for each bar.

Parameters:

x: float or array-like

The x coordinates of the bars. See also align for the alignment of the bars to the coordinates.

height: float or array-like

The height(s) of the bars.

width: float or array-like, default: 0.8

The width(s) of the bars.

bottom: float or array-like, default: 0

The y coordinate(s) of the bars bases.

align: {'center', 'edge'}, default: 'center'

Alignment of the bars to the *x* coordinates:

- 'center': Center the base on the x positions.
- 'edge': Align the left edges of the bars with the x positions.

To align the bars on the right edge pass a negative width and align='edge'.

1. ax.bar Basics

```
import matplotlib.pyplot as plt
import numpy as np

np.random.seed(0)

n_data = 10
data = np.random.uniform(10, 100, (n_data,))
data_idx = np.arange(n_data)

fig, ax = plt.subplots(figsize=(10, 7))
ax.tick_params(labelsize=15)

ax.bar(data_idx, data)
```


1. ax.bar Basics

```
import matplotlib.pyplot as plt
import numpy as np

np.random.seed(0)

data = np.random.uniform(10, 100, (10,))
data_idx = [0, 2, 4, 5, 7, 9, 10, 11, 12, 13]

fig, ax = plt.subplots(figsize=(10, 7))
ax.tick_params(labelsize=15)

ax.bar(data_idx, data)
```


2. Color and Hatch Customizing

2. Color and Hatch Customizing

```
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)
n data = 10
data = np.random.uniform(10, 100, (n_data,))
background = 100*np.ones(n data)
data_idx = np.arange(n_data)
fig, ax = plt.subplots(figsize=(10, 7))
ax.tick_params(labelsize=15)
ax.bar(data_idx, background,
       facecolor='whitesmoke',
      hatch='/',
       edgecolor='silver')
ax.bar(data_idx, data,
       facecolor='cornflowerblue')
```


3. Tick and Ticklabels

Python for Data Visualization

3. Tick and Ticklabels

3. Tick and Ticklabels

```
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)
n data = 10
data = np.random.uniform(10, 100, (n_data,))
data_idx = np.arange(n_data)
fig, ax = plt.subplots(figsize=(10, 7))
ax.tick_params(labelsize=15)
data_labels = ['class' + str(i) for i in range(n_data)]
ax.bar(data_idx, data)
ax.set_xticks(data_idx)
ax.set_xticklabels(data_labels,
                   rotation=-30,
                   ha='left')
```


3. Tick and Ticklabels

```
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)
n data = 10
data = np.random.uniform(10, 100, (n_data,))
data_idx = np.arange(n_data)
fig, ax = plt.subplots(figsize=(10, 7))
ax.tick params(labelsize=15)
data_labels = ['class ' + str(i) for i in range(n_data)]
ax.bar(data_idx, data)
ax.set xticks(data idx)
ax.set xticklabels(data labels,
               rotation=-30,
               ha='left')
major yticks = np.arange(0, 101, 20)
major_yticklabels = [str(p) + '%' for p in major_yticks]
minor yticks = np.arange(0, 101, 5)
ax.set yticks(major yticks)
ax.set_yticklabels(major_yticklabels)
ax.set_yticks(minor_yticks,
                 minor=True)
ax.grid(axis='y',
         which='major')
ax.grid(axis='y',
          which='minor',
          linestyle=':')
```

Shin's Lab

Python for Data Visualization

4. Bar Plot with Sorting

```
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)
n data = 10
data = np.random.uniform(0, 10, n data)
data_idx = np.arange(n_data)
data_labels = np.array(['class ' + str(i+1) for i in range(n_data)])
sort idx = np.argsort(data)
data sort = data[sort idx]
data_labels_sort = data_labels[sort_idx]
fig, axes = plt.subplots(2, 1, figsize=(10, 12))
axes[0].bar(data idx, data,
            tick label=data labels)
axes[1].bar(data_idx, data_sort, # not "sort_idx"
            tick_label=data_labels_sort)
```


4. Bar Plot with Sorting

```
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)
n_data = 10
data = np.random.uniform(0, 10, n_data)
data_idx = np.arange(n_data)
data_labels = np.array(['class' + str(i+1) for i in range(n_data)])
sort_idx = np.argsort(data)[::-1]
data_sort = data[sort_idx]
data_labels_sort = data_labels[sort_idx]
fig, axes = plt.subplots(2, 1, figsize=(10, 12))
axes[0].bar(data_idx, data,
           tick_label=data_labels)
axes[1].bar(data_idx, data_sort, # not "sort_idx"
           tick_label=data_labels_sort)
```


5. Bar Plot with OCED Data

Figure 2.20. Gross Domestic Product (GDP) per capita, 2013

	Gross domestic product			
-	Total	Per capita		
-	Billion USD 2013	1 000 USD	% change	% change
-		2013	1990-2013	2000-13
Australia	895	38.7	54.2	21.4
Austria	317	37.4	42.1	14.4
Belgium	376	33.6	31.7	8.4
Canada	1 325	37.5	34.4	12.3
Chile	288	16.4	148.7	53.0
Czech Republic	258	24.5	42.1	34.1
Denmark	185	33.2	28.5	2.5
Estonia	25	19.3	77.9	67.3
Finland	175	32.1	35.6	12.3
France	2 048	3 2.0	26.2	6.8
Germany	2 933	36.2	35.6	15.5
Greece	225	19.8	11.2	-6.3
Hungary	176	17.8	33.0	28.3
Iceland	12	37.7	43.1	22.0
Ireland	173	37.7	98.4	8.0
Israel	237	29.4	59.6	20.2
Italy	1 628	26.6	8.3	-7.7
Japan	4 071	32.0	20.6	10.7
Korea	1 558	31.0	170.5	57.6
Luxembourg	36	67.9	58.0	10.4
Mexico	1 588	13.4	36.3	12.3
Netherlands	647	38.4	38.0	7.5
New Zealand	121	27.0	42.6	19.6
Norway	245	48.2	46.2	7.9
Poland	719	18.9	128.6	59.8
Portugal	224	20.9	24.7	-3.3
Slovak Republic	118	21.8	77.4	68.9
Slovenia	50	24.2	44.6	20.2
Spain	1 233	26.8	33.0	4.7
Sweden	348	36.2	40.5	17.9
Switzerland	341	42.5	19.0	13.0
Turkey	1 057	13.9	78.8	49.8
United Kingdom	2 228	35.6	43.1	16.2
United States	14 452	45.7	38.5	11.6
OECD	40 311	32.1	38.2	13.8
OECD America	17 653	36.2	37.4	11.4
OECD Asia-Oceania	6 881	32.3	42.3	20.6
OECD Europe	15 777	28.4	34.9	12.6
World	99 447	14.0	58.7	37.0

Source: OECD (2015), OECD Historical Population Data and Projections (database); OECD (2015), OECD National Account

5. Bar Plot with OCED Data

```
import matplotlib.pyplot as plt
                                                                                   fig, ax = plt.subplots(figsize=(20, 7))
import numpy as np
                                                                                   ax.bar(gdp idx, gdp sort,
                                                                                           color='cornflowerblue',
countries = np.array(['Australia', 'Austria', 'Belgium', 'Canada', 'Chile',
                    'Czech Republic', 'Denmark', 'Estonia', 'Finland', 'France',
                                                                                           label='2013 or lastest available year')
                    'Germany', 'Greece', 'Hungary', 'Iceland', 'Ireland',
                                                                                   ax.legend(loc='lower center',
                    'Israel', 'Italy', 'Japan', 'Korea', 'Luxembourg',
                                                                                              bbox to anchor=(0.5, 1),
                    'Mexico', 'Netherlands', 'New Zealand', 'Norway', 'Poland',
                    'Portuagl', 'Slovak Republic', 'Slovenia', 'Spain', 'Sweden',
                                                                                               fontsize=20)
                    'Switzerland', 'Turkey', 'United Kingdom', 'United States'])
gdp = np.array([38.7, 37.4, 33.6, 37.5, 16.4,
                                                                                   yticks = np.arange(-10, 81, 10)
              24.5, 33.2, 19.3, 32.1, 32.0,
                                                                                   ax.set xticks(gdp idx)
              36.2, 19.8, 17.8, 37.7, 37.7,
                                                                                   ax.set xticklabels(countries sort,
              29.4, 26.6, 32.0, 31.0, 67.9,
              13.4, 38.4, 27.0, 48.2, 18.9,
                                                                                                         rotation=60,
              20.9, 21.8, 24.2, 26.8, 36.2,
                                                                                                         ha='right')
              42.5, 13.9, 35.6, 45.7])
                                                                                   ax.set yticks(yticks)
gdp_p = np.array([21.4, 14.4, 8.4, 12.3, 53.0,
                34.1, 2.5, 67.3, 12.3, 6.8,
                                                                                   ax.tick params(labelsize=20)
                15.5, -6.3, 28.3, 22.0, 8.0,
                20.2, -7.7, 10.7, 57.6, 10.4,
                12.3, 7.5, 19.6, 7.9, 59.8,
                                                                                   ax.set_xlim([-0.5, 33.5])
                -3.3, 68.9, 20.2, 4.7, 17.9,
                                                                                   ax.set ylim([-10, 80])
                13.0, 49.8, 16.2, 11.6])
                                                                                   ax.axhline(y=0,
                                                                                                color='black')
gdp idx = np.arange(len(gdp))
                                                                                   ax.set ylabel('1 000 USD/capita',
idx sort = np.argsort(gdp)
                                                                                                   fontsize=30)
                                                                                   ax.grid(axis='y')
gdp sort = gdp[idx sort]
countries sort = countries[idx sort]
Shin's Lab
```

Python for Data Visualization

5. Bar Plot with OCED Data

5. Bar Plot with OCED Data

```
Percentage change since 2000
ax2 = ax.twinx()
                                                                                                      2013 or lastest available year
ax2.scatter(gdp_idx, gdp_p_sort,
             marker='D',
                                                      70
                                                                     \Diamond
             s=200,
                                                  USD/capita
                                                      60
                                                                                            \Diamond
             edgecolor='black',
                                                          -♦-♦
                                                      50
             facecolor='None',
             linewidth=3)
                                                      40
                                                                                \Diamond
ax2.set_yticks(yticks)
                                                      30
ax2.tick_params(labelsize=20)
                                                  000
                                                      20
ax2.set_ylabel('% change',
                 fontsize=30)
                                                  1
ax.scatter([], [],
                                                                                                                (Snada
1(ce/and
                                                                                                           Germany
Austria
             marker='D',
              s=200,
              edgecolor='black',
             facecolor='None',
             linewidth=3,
              label='Percentage change since 2000')
ax.legend(loc='lower center',
           bbox_to_anchor=(0.5, 1),
           fontsize=20,
```

ncol=2)

Python for Data Visualization

-Chapter.4 Bar Plot -

4-01. Bar Plot Basics

- 1. ax.bar Basics
- 2. Color and Hatch Customizing
- 3. Tick and Ticklabels
- 4. Bar Plot with Sorting
- 5. Bar Plot with OCED Data