Работа 4.7.1 Двойное лучепреломление

Валеев Рауф Раушанович группа 825

Теория

Плоские волны в кристаллах

$$\operatorname{rot} \vec{H} = \frac{1}{c} \frac{\partial \vec{D}}{\partial t}, \operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$
 (1)

Если среды прозрачны и однородны то в них распорстраняются волны:

$$\vec{E} = \vec{E}_0 e^{i(\omega t - \vec{k}\vec{r})}, \vec{H} = \vec{H}_0 e^{i(\omega t - \vec{k}\vec{r})}$$
(2)

Введем единичный вектор нормали к скорости распространения волны \vec{N} и направим его вдоль скорости, тогда

 $\vec{D} = -\frac{c}{v} \left[\vec{N}, \vec{H} \right], \vec{B} = \frac{c}{v} \left[\vec{N}, \vec{E} \right]$ (3)

Оптические одноосные кристаллы

Введем тензор диэлектрической проницаемости ε ($\vec{D}=\varepsilon\vec{E}$). Все его значения описываются эллипсоидом инерции.

В кристаллах этот эллипсоид — эллипсоид вращения. В них оптическая ось — ось вращения эллипсоида. В них принято обозначать $\varepsilon_{\parallel}=\varepsilon_{z}, \varepsilon_{\perp}=\varepsilon_{x}=\varepsilon_{y}$

$$\vec{D}_{\parallel} = \varepsilon_{\parallel} \vec{E}_{\parallel}, \vec{D}_{\perp} = \varepsilon_{\perp} \vec{E}_{\perp} \tag{4}$$

Можно показать, что угол θ между волновой нормалью и осью вращения эллипсоида при разделении \vec{D} на \vec{D}_e — лежащая в главном сечении и \vec{D}_o — нормальная составляющая такой, что

$$\sin \theta = \frac{D_{e\parallel}}{D_e}, \cos \theta = \frac{D_{e\perp}}{D_e} \tag{5}$$

$$n = \frac{1}{\sin A} \sqrt{\sin^2 \phi_1 + \sin^2 \phi_2 + 2\sin \phi_1 \sin \phi_2 \cos A}$$
 (6)

Из этого, если $n_o - n_e \ll n_o$ и n_e , то

$$n(\theta) \approx n_e + (n_o - n_e) \cos^2 \theta \tag{7}$$

Двойное лучепреломление в призме исландского шпата

При таком ходе луча и расположении призмы у нас повторяется ситуация из предыдущего параграфа теории. Тогда, можно посчитать показатель преломления изотропной среды по формуле

$$n = \frac{\sin\left(\frac{\psi_m + A}{2}\right)}{\sin\left(\frac{A}{2}\right)} \tag{8}$$

Здесь ψ_m — минимальный угол, на который призма преломляет луч. Если призма неизотропна, то этой формулой, строго говоря, можно воспользоваться только для обыкновенной

Рис. 1: Ход луча в призме

волны, которая, как это было показано ранее, распространяется так же, как и в изотропной среде.

Экспериментальная установка

Рис. 2: Экспериментальная установка

$$\phi_2 = A + \psi - \phi_1 \tag{9}$$

Длина волны источника (Na-Ne): $\lambda_{Na-Ne} = 0,63$ мкм.

Ход работы

- 1. Отъюстируем систему, то есть сделаем так, что луч проходит через 0 и 180.
- 2. Определим угол A, для этого добьемся, чтобы отраженный луч шел ровно назад для меньшего катета (θ_1) и гипотенузы (θ_2) . По формуле

$$A = 180^{\circ} - (\theta_1 - \theta_2)$$

Найдем А

$$\theta_1 = (297 \pm 2)^{\circ}$$

$$\theta_2 = (154 \pm 2)^{\circ}$$

$$A = (37 \pm 2)^{\circ}$$

- 3. Определим разрешенное направление поляризатора. Для этого направив его на видимый свет, установим его в положение наименьшего пропускания.
- 4. Получаем изображение на лимбе как на рис. 5.
- 5. Вращая столик, снимем зависимость углов отклонения волн от угла падения, запишем данные в таблицу 1.
- 6. Далее с помощью программы рассчитаем все данные, необходимые для работы и построим график.

				_																	\Box
δ_{n_e}	n_e	δ_{n_o}	n_o	$\delta_{\cos^2 \theta_e}$	$\cos^2 \theta_e$	$\delta_{\cos^2 \theta_o}$	$\cos^2 \theta_o$	$\delta_{ heta_e},^{\circ}$	$ heta_e,^\circ$	$\delta_{ heta_o}, ^\circ$	$\theta_o,^{\circ}$	$\delta_{\phi_{2e}},^{\circ}$	$\phi_{2e},^{\circ}$	$\delta_{\phi_{2o}},^{\circ}$	$\phi_{2o},^\circ$	$\delta_{\psi_e},^\circ$	$\psi_e,^\circ$	$\delta_{\psi_o}, ^\circ$	$\psi_0, °$	$\delta_{\phi_1}, ^\circ$	$\phi_1,^\circ$
0,10	1,48	0,11	1,65	0,0009	0,0139	0,0007	0,0111	6	83	6	84	6	48	6	58	2	21	2	31	2	10
0,09	1,50	$0,\!10$	1,67	0,0016	0,0298	0,0014	0,0239	4	80	5	81	6	43	6	52	2	21	2	30	2	15
0,08	1,49	0,09	1,66	0,003	0,052	0,002	0,042	4	77	4	78	6	37	6	45	2	20	2	28	2	20
0,08	1,50	0,09	1,66	0,004	0,079	0,004	0,065	4	74	4	75	6	32	6	39	2	20	2	27	2	25
0,08	$1,\!50$	0,09	$1,\!65$	0,006	0,111	0,005	0,092	4	71	4	72	6	27	6	33	2	20	2	26	2	30
0,08	1,50	0,09	1,65	0,008	0,147	700,0	$0,\!122$	4	67	4	70	6	22	6	28	2	20	2	26	2	35
0,08	1,51	0,09	1,66	0,010	0,181	800,0	$0,\!150$	4	65	4	67	6	18	6	24	2	21	2	27	2	40
0,08	1,52	0,09	1,64	0,012	0,218	0,010	0,186	3	62	3	64	6	14	6	19	2	22	2	27	2	45
0,08	1,51	0,09	1,66	0,014	$0,\!256$	110,0	0,212	3	60	3	63	6	10	6	16	2	23	2	29	2	50
0,08	$1,\!53$	0,09	$1,\!65$	0,016	$0,\!287$	0,013	$0,\!246$	3	58	3	60	6	7	6	12	2	25	2	30	2	55
0,08	1,53	0,09	1,65	0,017	0,319		$0,\!274$			3	58	6	4	6	9	2	27	2	32	2	60
0,08	1,53	0,09	1,65	0,019	0,351	0,016	0,302	သ	54	3	57	6	1	6	6	2	29	2	34	2	65
0,08	1,54	0,09	1,66	0,02	$0,\!37$	0,017	0,322	သ	52	3	55	6	-1	6	4	2	32	2	37	2	70

Таблица 1: Измеренные и все полученные данные в ходе эксперимента

7. Из графика мы получаем, что главные значения показателей преломления

$$n_o = 1,66 \pm 0,11$$

$$n_e = 1,49 \pm 0,09$$

8. Теперь из серии измерений мы получаем, что

$$\psi_{mo} = (26 \pm 1, 5)^{\circ}$$

$$\psi_{me} = (20 \pm 1, 5)^{\circ}$$

Отсюда, из формулы (8) получаем, что

$$n_o = 1,65 \pm 0,09$$

$$n_e = 1,50 \pm 0,09$$

9. Определим углы, соответствующие полному внутреннему отражению

$$\phi_{1o} = (-0, 5 \pm 1)^{\circ}$$

$$\phi_{1e} = (-7, 5 \pm 1)^{\circ}$$

Из этого, принимая, так как полное внтуреннее отражение, $\phi_2 = 90^\circ$ из формулы (6) получаем, что

$$n_o = 1, 6 \pm 0, 2$$

$$n_e = 1, 5 \pm 0, 2$$

Вывод

В итоге, мы подтвердили, что показатели преломления соответствующих волн соответствуют уже известным. Так же мы установили, что самый точный метод расчета показателей преломления — по наклону графика n от $\cos^2 \theta$.