



### **Model Development Phase Template**

| Date          | 10 July 2024                                                            |
|---------------|-------------------------------------------------------------------------|
| Team ID       | SWTID1720013031                                                         |
| Project Title | Prediction and Analysis of Liver Patient Data<br>Using Machine Learning |
| Maximum Marks | 4 Marks                                                                 |

### Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

#### **Initial Model Training Code:**

# Logistic Regression

```
# LogisticRegression
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(x_train, y_train)
y_pred_lr = lr.predict(x_test)
y_pred_lr
```

# **KNeighborsClassifier**

```
#KNeighborsClassifier
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
ypred_knn = knn.predict(x_test)
```





### **SVC**

```
#SVC()
from sklearn.svm import SVC
svm = SVC()
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
```

## RandomForestClassifier

```
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier()

rfc.fit(x_train, y_train)

ypred_rfc = rfc.predict(x_test)
```

### **Model Validation and Evaluation Report:**

| Model                     | Classification Report                                                                                                                                                                                         | Accuracy                                                                                 | Confusion Matrix                                                                      |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Logistic<br>Regression    | print(classification_report(y_test,y_pred))  precision recall f1-score support  1 0.75 0.91 0.83 128 2 0.45 0.19 0.27 47  accuracy 0.72 175 macro avg 0.60 0.55 0.55 175 weighted avg 0.67 0.72 0.68 175      | <pre>lr_acc = accuracy_score(y_pred, y_test) lr_acc 0.72</pre>                           | <pre>conmat=confusion_matrix(y_test,y_pred) print(commat)  [[117 11]   [ 38 9]]</pre> |
| K neighbors<br>Classifier | : print(classification_report(y_test,ypred_knn))  precision recall f1-score support  1 0.81 0.80 0.80 109 2 0.42 0.43 0.43 37  accuracy 0.41 146 macro avg 0.61 0.62 0.61 146 weighted avg 0.71 0.71 0.71 146 | <pre>knn_acc = accuracy_score(ypred_knn, y_test) print(knn_acc) 0.7054794520547946</pre> | <pre>confusion_matrix(y_test,ypred_knn) array([[87, 22],</pre>                        |





| Random Forest<br>Classifier | precision precis | report(y_test,ypred_rfc))  on recall f1-score support  80                                                                        | <pre>rfc_acc = accuracy_score(ypred_rfc, y_test) print(rfc_acc) 0.7264957264957265</pre> | <pre>confusion_matrix(y_test,ypred_rfc) array([[74, 13],</pre>                               |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| SVC                         | precis  1 6 2 6  accuracy macro avg 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | report(y_test,y_pred_svm)) on recall f1-score support 74 1.00 0.85 87 00 0.00 0.00 30 0.74 117 37 0.50 0.43 117 55 0.74 0.63 117 | accuracy_score(y_pred_svm, y_test) 0.7435897435897436                                    | <pre>confusion_matrix(y_test,y_pred_svm) array([[87, 0],        [30, 0]], dtype=int64)</pre> |