CS481: Bioinformatics Algorithms

Can Alkan

EA224

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

DNA MAPPING

Molecular Scissors

Recognition Sites of Restriction Enzymes

Enzyme	Source Microorganism	Recognition Site*	Ends Produced
Baml II	Bacillus anryloliquefaciens	↓ -G-G-A-T-C-C- -C-C-T-A-G-G-	Sticky
EcoRI	Escherichia coli	↓ G-A-A-T-T-C- C-T-T-A-A-G	Sticky
HindIII	Haemophilus influenzae	↓ -A-A-G-C-T-T- -T-T-C-G-A-A-	Sticky
КряІ	Klebsiella pneumonia	-G-G-T-A-C-C- -C-C-A-T-G-G- ↑	Stricky

Uses of Restriction Enzymes

Recombinant DNA technology

Cloning

cDNA/genomic library construction

DNA mapping

Restriction Maps

- A map showing positions of restriction sites in a DNA sequence
- If DNA sequence is known then construction of restriction map is a trivial exercise
- In early days of molecular biology DNA sequences were often unknown
- Biologists had to solve the problem of constructing restriction maps without knowing DNA sequences

Full Restriction Digest

 Cutting DNA at each restriction site creates multiple restriction fragments:

 Is it possible to reconstruct the order of the fragments from the sizes of the fragments {3,5,5,9}?

Full Restriction Digest: Multiple Solutions

Alternative ordering of restriction fragments:

VS

Measuring Length of Restriction Fragments

Restriction enzymes break DNA into restriction fragments.

 Gel electrophoresis is a process for separating DNA by size and measuring sizes of restriction fragments

 Can separate DNA fragments that differ in length in only 1 nucleotide for fragments up to 500 nucleotides long

Gel Electrophoresis

- DNA fragments are injected into a gel positioned in an electric field
- DNA are negatively charged near neutral pH
 - The ribose phosphate backbone of each nucleotide is acidic; DNA has an overall negative charge
- DNA molecules move towards the positive electrode

Gel Electrophoresis (cont'd)

- DNA fragments of different lengths are separated according to size
 - Smaller molecules move through the gel matrix more readily than larger molecules
- The gel matrix restricts random diffusion so molecules of different lengths separate into different bands

Gel Electrophoresis: Example

Partial Restriction Digest

- The sample of DNA is exposed to the restriction enzyme for only a limited amount of time to prevent it from being cut at all restriction sites
- This experiment generates the set of all possible restriction fragments between every two (not necessarily consecutive) cuts
- This set of fragment sizes is used to determine the positions of the restriction sites in the DNA sequence

Partial Digest Example

Partial Digest results in the following 10 restriction fragments:

Multiset of Restriction Fragments

We assume that multiplicity of a fragment can be detected, i.e., the number of restriction fragments of the same length can be determined (e.g., by observing twice as much fluorescence intensity for a double fragment than for a single fragment)

Multiset: {3, 5, 5, 8, 9, 14, 14, 17, 19, 22}

Partial Digest Fundamentals

X: the set of n integers representing the location of all cuts in the restriction map, including the start and end

n: the total number of cuts

∆X: the multiset of integers representing lengths of each of the C(n, 2) fragments produced from a partial digest

One More Partial Digest Example

X	0	2	4	7	10
0		2	4	7	10
2			2	5	8
4				3	6
7					3

Representation of $\overset{10}{\Delta} | \mathbf{X} = \{2, 2, 3, 3, 4, 5, 6, 7, 8, 10\}$ as a two dimensional table, with elements of

$$X = \{0, 2, 4, 7, 10\}$$

along both the top and left side. The elements at (i, j) in the table is $x_i - x_j$ for $1 \le i < j \le n$.

Partial Digest Problem: Formulation

Goal: Given_all pairwise distances between points on a line, reconstruct the positions of those points

- Input: The multiset of pairwise distances L, containing n(n-1)/2 integers
- Output: A set X, of n integers, such that $\Delta X = L$

Partial Digest: Multiple Solutions

- It is not always possible to uniquely reconstruct a set X based only on \(\Delta \) X.
- For example, the set

$$X = \{0, 2, 5\}$$

and

$$(X + 10) = \{10, 12, 15\}$$

both produce $\Delta X = \{2, 3, 5\}$ as their partial digest set.

■ The sets {0,1,2,5,7,9,12} and {0,1,5,7,8,10,12} present a less trivial example of non-uniqueness. They both digest into:

```
{1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 10, 11, 12}
```

Homometric Sets

	0	1	2	5	7	9	12
0		1	2	5	7	9	12
1			1	4	6	8	11
2				3	5	7	10
5					2	4	7
7						2	5
9							3
12							

	0	1	5	7	8	10	12
0		1	5	7	8	10	12
1			4	6	7	9	11
5				2	3	5	7
7					1	3	5
8						2	4
10							2
12							

Brute Force Algorithms

 Also known as exhaustive search algorithms; examine every possible variant to find a solution

Efficient in rare cases; usually impractical

Partial Digest: Brute Force

- Find the restriction fragment of maximum length
 M. M is the length of the DNA sequence.
- 2. For every possible set

$$X=\{0, x_2, \dots, x_{n-1}, M\}$$

compute the corresponding ΔX

5. If ΔX is equal to the experimental partial digest L, then X is the correct restriction map

BruteForcePDP

1. BruteForcePDP(L, n):

2. M <- maximum element in L3. for every set of n-2 integers $0 < x_2 < ... x_{n-1} < M$ 4. X <- $\{0,x_2,...,x_{n-1},M\}$ 5. Form ΔX from X6. if $\Delta X = L$ 7. return X8. output "no solution"

Efficiency of BruteForcePDP

BruteForcePDP takes O(M n-2) time since it must examine all possible sets of positions.

One way to improve the algorithm is to limit the values of x_i to only those values which occur in L.

AnotherBruteForcePDP

```
    AnotherBruteForcePDP(L, n)
    M <- maximum element in L</li>
    for every set of n - 2 integers 0 < x<sub>2</sub> < ... x<sub>n-1</sub> < M</li>
    X <- { 0,x<sub>2</sub>,...,x<sub>n-1</sub>,M }
    Form \( \Delta \times \text{from } X \)
    if \( \Delta X = L \)
    return X
    output "no solution"
```

AnotherBruteForcePDP

```
    AnotherBruteForcePDP(L, n)
    M <- maximum element in L
    for every set of n – 2 integers 0 < x<sub>2</sub> < ... x<sub>n-1</sub> < M from L
    X <- { 0,x<sub>2</sub>,...,x<sub>n-1</sub>,M }
    Form Δ X from X
    if Δ X = L
    return X
    output "no solution"
```

Efficiency of AnotherBruteForcePDP

- It's more efficient, but still slow
- If L = {2, 998, 1000} (n = 3, M = 1000), BruteForcePDP will be extremely slow, but AnotherBruteForcePDP will be quite fast
- Fewer sets are examined, but runtime is still exponential: O(n²ⁿ⁻⁴)

Branch and bound algorithm for PDP

- By Steven Skiena (Stony Brook Univ.)
- We first define ∆(y, X) as the multiset of all distances between point y and all other points in the set X

$$\Delta(y, X) = \{|y - x_1|, |y - x_2|, ..., |y - x_n|\}$$
for $X = \{x_1, x_2, ..., x_n\}$

PartialDigest Algorithm

```
PartialDigest(L):

width <- Maximum element in L
DELETE(width, L)

X <- {0, width}
PLACE(L, X)
```

PartialDigest Algorithm (cont'd)

- 1. PLACE(L, X)
- 2. if *L* is empty
- 3. output X
- 4. return
- 5. y <- maximum element in L
- 6. Delete(*y*,*L*)
- 7. if $\Delta(y, X)$ if L
- 8. Add y to X and remove lengths $\Delta(y, X)$ from L
- 9. PLACE(L,X)
- 10. Remove y from X and add lengths $\Delta(y, X)$ to L
- **11.** if $\Delta(width-y, X)$ $\int L$
- 12. Add width-y to X and remove lengths $\Delta(width-y, X)$ from L
- 13. PLACE(L,X)
- 14. Remove width-y from X and add lengths $\Delta(width-y, X)$ to L
- 15. return

```
L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}
X = \{ 0 \}
```

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0 \}$

Remove 10 from **L** and insert it into **X**. We know this must be the length of the DNA sequence because it is the largest fragment.

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 10 \}$

0_______10

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 10 \}$

Take 8 from \boldsymbol{L} and make $\boldsymbol{y}=2$ or 8. But since the two cases are symmetric, we can assume $\boldsymbol{y}=2$.

0_______10

```
L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}
X = \{ 0, 10 \}
```

We find that the distances from y=2 to other elements in X are $\Delta(y, X) = \{8, 2\}$, so we remove $\{8, 2\}$ from L and add 2 to X.

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 2, 10 \}$


```
L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}
X = \{ 0, 2, 10 \}
```

Take 7 from **L** and make y = 7 or y = 10 - 7 = 3. We will explore y = 7 first, so $\Delta(y, X) = \{7, 5, 3\}$.

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 2, 10 \}$

For y = 7 first, $\Delta(y, X) = \{7, 5, 3\}$. Therefore we remove $\{7, 5, 3\}$ from **L** and add 7 to **X**.

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 2, 7, 10 \}$

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 2, 7, 10 \}$

Next: take 6 from \boldsymbol{L} and make y = 6 or y = 10 - 6 = 4.

 $\Delta(y, X) = \{6, 4, 1, 4\}$, which is NOT a subset of **L** so we will NOT explore this branch

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 2, 7, 10 \}$

This time make y = 4. $\Delta(y, X) = \{4, 2, 3, 6\}$, which is a subset of \boldsymbol{L} so we will explore this branch. We remove $\{4, 2, 3, 6\}$ from \boldsymbol{L} and add 4 to \boldsymbol{X} .

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 2, 4, 7, 10 \}$

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 2, 4, 7, 10 \}$

L is now empty, so we have a solution, which is X.

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 2, 7, 10 \}$

To find other solutions, we backtrack.

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 2, 10 \}$

More backtrack.


```
L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}
X = \{ 0, 2, 10 \}
```

This time we will explore y = 3. $\Delta(y, X) = \{3, 1, 7\}$, which is not a subset of L, so we won't explore this branch.

$$L = \{ 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 \}$$

 $X = \{ 0, 10 \}$

We backtracked back to the root. Therefore we have found all the solutions.

0______10

Analyzing PartialDigest Algorithm

- Still exponential in worst case, but is very fast on average
- Informally, let T(n) be time PartialDigest takes to place n cuts
 - □ No branching case: T(n) < T(n-1) + O(n)
 - Quadratic
 - □ Branching case: T(n) < 2T(n-1) + O(n)
 - Exponential

Double Digest Mapping

- Double Digest is yet another experimentally method to construct restriction maps
 - Use two restriction enzymes; three full digests:
 - One with only first enzyme
 - One with only second enzyme
 - One with both enzymes
- Computationally, Double Digest problem is more complex than Partial Digest problem

Double Digest: Example

Physical map

(restriction enzymes A and B)

Double Digest: Example

Without the information about X (i.e. A+B), it is impossible to solve the double digest problem as this diagram illustrates

Double Digest Problem

- Input: **dA** fragment lengths from the digest with enzyme **A**.
 - dB fragment lengths from the digest with enzyme B.
 - dX fragment lengths from the digest with both A and B.

- Output: **A** location of the cuts in the restriction map for the enzyme **A**.
 - B location of the cuts in the restriction map for the enzyme B.

Double Digest: Multiple Solutions

MOTIFS

Random Sample

at gaccgggatactgataccgtatttggcctaggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccgtgagtatccctgggatgacttttgggaacactatagtgctctcccgatttttgaatatgtaggatcattcgccagggtccga gctgagaattggatgaccttgtaagtgttttccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatggcccacttagtccacttatag gtcaatcatgttcttgtgaatggatttttaactgagggcatagaccgcttggcgcacccaaattcagtgtgggcgagcgcaa aacttgagttggtttcgaaaatgctctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatttcaacgtatgccgaaccgaaagggaag ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttctgggtactgatagca

Where is the Implanted Motif?

atgaccgggatactgataaaaaaaggggggggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg tgagtatccctgggatgacttaaaaaaagggggggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga gctgagaattggatgaaaaaaaggggggtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaataaaaaaagggggggcttatag aacttgagttaaaaaaagggggggctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

Implanting Motif **AAAAAAGGGGGGG** with Four Mutations

Where is the Motif???

atgaccgggatactgatagaagaaaggttgggggggtacacattagataaacgtatgaagtacgttagactcggcgccgccg acccctattttttgagcagatttagtgacctggaaaaaaatttgagtacaaaacttttccgaatacaataaaacggcggga tgagtatccctgggatgacttaaaataatggagtggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga gctgagaattggatgcaaaaaagggattgtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga gtcaatcatgttcttgtgaatggatttaacaataagggctgggaccgcttggcgcacccaaattcagtgtgggcgagcgcaa aacttgagttaaaaaatagggagccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatactaaaaaggagcggaccgaaagggaag ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttactaaaaaggagcgga

Finding (15,4) Motif

Challenge Problem

- Find a motif in a sample of
 - 20 "random" sequences (e.g. 600 nt long)
 - each sequence containing an implanted pattern of length 15,
 - each pattern appearing with 4 mismatches as (15,4)-motif.

Combinatorial Gene Regulation

 An experiment showed that when gene X is knocked out, 20 other genes are not expressed

How can one gene have such drastic effects?

Regulatory Proteins

- Gene X encodes regulatory protein, a.k.a. a transcription factor (TF)
- The 20 unexpressed genes rely on gene X's TF to induce transcription
- A single TF may regulate multiple genes

Regulatory Regions

- Every gene contains a regulatory region (RR) typically stretching 100-1000 bp upstream of the transcriptional start site
- Located within the RR are the Transcription Factor
 Binding Sites (TFBS), also known as motifs, specific
 for a given transcription factor
- TFs influence gene expression by binding to a specific location in the respective gene's regulatory region -TFBS

Transcription Factor Binding Sites

 A TFBS can be located anywhere within the Regulatory Region.

 TFBS may vary slightly across different regulatory regions since non-essential bases could mutate

Motifs and Transcriptional Start Sites

Motif Logo

- Motifs can mutate on non important bases
- The five motifs in five different genes have mutations in position 3 and 5
- Representations called motif logos illustrate the conserved and variable regions of a motif

TGGGGGA TGAGAGA TGGGGGA TGAGAGA TGAGGGA

Identifying Motifs

- Genes are turned on or off by regulatory proteins
- These proteins bind to upstream regulatory regions of genes to either attract or block an RNA polymerase
- Regulatory protein (TF) binds to a short DNA sequence called a motif (TFBS)
- So finding the same motif in multiple genes' regulatory regions suggests a regulatory relationship amongst those genes

Identifying Motifs: Complications

- We do not know the motif sequence
- We do not know where it is located relative to the genes start
- Motifs can differ slightly from one gene to the next

How to discern it from "random" motifs?

The Motif Finding Problem

Given a random sample of DNA sequences:

 Find the pattern that is implanted in each of the individual sequences, namely, the motif

The Motif Finding Problem (cont'd)

Additional information:

The hidden sequence is of length 8

 The pattern is not exactly the same in each array because random point mutations may occur in the sequences

The Motif Finding Problem (cont'd)

The patterns revealed with no mutations:

`acgtacgt

Consensus String

The Motif Finding Problem (cont'd)

The patterns with 2 point mutations:

 $cctgatagacgctatctggctatcc \\ \underline{aGgtacTt} \\ \underline{aggtcctctgtgcgaatctatgcgtttccaaccat} \\ agtactggtgtacatttgat \\ \underline{CcAtacgt} \\ \underline{acccggcaacctgaaaccaaacgctcagaaccagaagtgc} \\ aa\underline{acgtTAgt} \\ \underline{gcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt} \\ \underline{agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatctt} \\ \underline{acgtCcAt} \\ \underline$

The Motif Finding Problem (cont'd)

The patterns with 2 point mutations:

Can we still find the motif, now that we have 2 mutations?

Defining Motifs

- To define a motif, lets say we know where the motif starts in the sequence
- The motif start positions in their sequences can be represented as $\mathbf{s} = (s_1, s_2, s_3, ..., s_t)$

Motifs: Profiles and Consensus

a G g t a c T t
C c A t a c g t
Alignment a c g t T A g t
a c g t C c A t
C c g t a c g G

 Line up the patterns by their start indexes

$$\mathbf{s} = (s_1, s_2, ..., s_t)$$

 Construct matrix profile with frequencies of each nucleotide in columns

Consensus ACGTACGT

 Consensus nucleotide in each position has the highest score in column

Consensus

 Think of consensus as an "ancestor" motif, from which mutated motifs emerged

 The distance between a real motif and the consensus sequence is generally less than that for two real motifs

Consensus (cont'd)

Evaluating Motifs

We have a guess about the consensus sequence, but how "good" is this consensus?

Need to introduce a scoring function to compare different guesses and choose the "best" one.

Defining Some Terms

- t number of sample DNA sequences
- n length of each DNA sequence
- DNA sample of DNA sequences (t x n array)

- length of the motif (*l*-mer)
- \mathbf{s}_i starting position of an ℓ -mer in sequence i
- = $\mathbf{s}=(s_1, s_2, ... s_t)$ array of motif's starting positions

Parameters

Scoring Motifs

• Given $\mathbf{s} = (s_1, \dots s_t)$ and **DNA**:

$$Score(s,DNA) = \sum_{i=1}^{l} \max_{k \in \{A,T,C,G\}} count(k,i)$$

```
a G g t a c T t
C c A t a c g t
a c g t T A g t
a c g t C c A t
C c g t a c g G
```

```
A 3 0 1 0 3 1 1 0
C 2 4 0 0 1 4 0 0
G 0 1 4 0 0 0 3 1
T 0 0 0 5 1 0 1 4
```

```
Consensus acgtacgt
```

The Motif Finding Problem

If starting positions $s=(s_1, s_2, ..., s_t)$ are given, finding consensus is easy even with mutations in the sequences because we can simply construct the profile to find the motif (consensus)

But... the starting positions s are usually not given. How can we find the "best" profile matrix?

The Motif Finding Problem: Formulation

- Goal: Given a set of DNA sequences, find a set of *E* mers, one from each sequence, that maximizes the consensus score
- Input: A t x n matrix of DNA, and L, the length of the pattern to find
- Output: An array of t starting positions $s = (s_1, s_2, ... s_t)$ maximizing Score(s, DNA)

The Motif Finding Problem: Brute Force Solution

- Compute the scores for each possible combination of starting positions s
- The best score will determine the best profile and the consensus pattern in DNA
- The goal is to maximize Score(s, DNA) by varying the starting positions s_i, where:

$$s_i = [1, ..., n-l+1]$$

 $i = [1, ..., t]$

BruteForceMotifSearch

1. BruteForceMotifSearch(DNA, t, n, l) 2. bestScore $\leftarrow 0$ 3. for each $\mathbf{s} = (s_1, s_2, \dots, s_t)$ from $(1, 1, \dots, 1)$ to $(n-l+1, \dots, n-l+1)$ 4. if $(Score(\mathbf{s}, DNA) > bestScore)$ 5. bestScore $\leftarrow score(\mathbf{s}, DNA)$ 6. bestMotif $\leftarrow (s_1, s_2, \dots, s_t)$ 7. return bestMotif

Running Time of BruteForceMotifSearch

- Varying (n l + 1) positions in each of t sequences, we're looking at (n - l + 1)^t sets of starting positions
- For each set of starting positions, the scoring function makes ℓ operations, so complexity is $\ell(n \ell + 1)^t = O(\ell n^t)$
- That means that for t = 8, n = 1000, l = 10 we must perform approximately 10²⁰ computations it will take billions of years

The Median String Problem

 Given a set of t DNA sequences find a pattern that appears in all t sequences with the minimum number of mutations

This pattern will be the motif

Hamming Distance

- Hamming distance:
 - d_H(v,w) is the number of nucleotide pairs that do not match when v and w are aligned. For example:

$$d_H(AAAAAA,ACAAAC) = 2$$

Total Distance: An Example

Given v = "acgtacgt" and s

v is the sequence in red, x is the sequence in blue

TotalDistance(v,DNA) = 0

Total Distance: Example

Given v = "acgtacgt" and s

v is the sequence in red, x is the sequence in blue

• TotalDistance(v,DNA) = 1+0+2+0+1 = 4

Total Distance: Definition

- □ For each DNA sequence i, compute all $d_H(v, x)$, where x is an ℓ -mer with starting position s_i $(1 \le s_i \le n \ell + 1)$
- □ Find minimum of $d_H(\mathbf{v}, \mathbf{x})$ among all ℓ -mers in sequence \mathbf{i}
- TotalDistance(v,DNA) is the sum of the minimum Hamming distances for each DNA sequence i
- □ $TotalDistance(\mathbf{v}, \mathbf{DNA}) = min_{\mathbf{s}} d_{H}(\mathbf{v}, \mathbf{s})$, where \mathbf{s} is the set of starting positions $s_1, s_2, ..., s_t$

The Median String Problem: Formulation

- Goal: Given a set of DNA sequences, find a median string
- Input: A t x n matrix DNA, and L, the length of the pattern to find
- Output: A string v of lnucleotides that minimizes TotalDistance(v,DNA) over all strings of that length

Median String Search Algorithm

- MedianStringSearch (DNA, t, n, l)
- bestWord ← AAA...A
- 3. bestDistance ← ∞
- for each *l*-mer s from AAA...A to TTT...T if TotalDistance(s,DNA) < bestDistance</p>
- bestDistance←TotalDistance(s,DNA)
- 6. bestWord ← s
- 7. return bestWord

Motif Finding Problem == Median String Problem

- The Motif Finding is a maximization problem while Median String is a minimization problem
- However, the Motif Finding problem and Median String problem are computationally equivalent
- Need to show that minimizing TotalDistance is equivalent to maximizing Score

We are looking for the same thing

```
a G q t a c T
           CcAtacgt
Alignment
           acgtTAgt
           acqtCcAt
           CcqtacqG
Profile
               0 5 1 0 1 4
Consensus
           acqtacqt
           3+4+4+5+3+4+3+4
Score
TotalDistance 2+1+1+0+2+1+2+1
Sum
```

- At any column i Score; + TotalDistance; = t
- Because there are \(\ell\) columns
 Score + TotalDistance = \(\ell\) * \(t \)
- Rearranging: Score = [* t - TotalDistance
- l*t is constant the minimization of the right side is equivalent to the maximization of the left side

Motif Finding Problem vs. Median String Problem

- Why bother reformulating the Motif Finding problem into the Median String problem?
 - □ The Motif Finding Problem needs to examine all the combinations for s. That is (n - l + 1)^t combinations!!!
 - The Median String Problem needs to examine all 4^f combinations for v. This number is relatively smaller

Motif Finding: Improving the Running Time

Recall the BruteForceMotifSearch:

```
1. BruteForceMotifSearch(DNA, t, n, l)
2. bestScore \leftarrow 0
3. for each \mathbf{s} = (s_1, s_2, \dots, s_t) from (1, 1, \dots, 1) to (n - l + 1, \dots, n - l + 1)
4. if (Score(\mathbf{s}, DNA) > bestScore)
5. bestMotif \leftarrow (s_1, s_2, \dots, s_t)
7. return bestMotif
```

Structuring the Search

How can we perform the line

```
for each s = (s_1, s_2, \ldots, s_t) from (1, 1, \ldots, 1) to (n - l + 1, \ldots, n - l + 1)?
```

- We need a method for efficiently structuring and navigating the many possible motifs
- This is not very different than exploring all tdigit numbers

Median String: Improving the Running Time

- MedianStringSearch (DNA, t, n, l)
- bestWord ← AAA...A
- 3. bestDistance ← ∞
- for each *E*-mer s from AAA...A to TTT...T if TotalDistance(s,DNA) < bestDistance</p>
- bestDistance←TotalDistance(s,DNA)
- 6. bestWord ← s
- 7. return bestWord

Structuring the Search

□ For the Median String Problem we need to consider all 4^ℓ possible *ℓ*-mers:

```
aa... aa aa... ac aa... ag aa... at ... tt... tt
```

How to organize this search?

Alternative Representation of the Search Space

- Let **A** = 1, **C** = 2, **G** = 3, **T** = 4
- Then the sequences from AA...A to TT...T become:

```
11...11
11...12
11...13
11...14
•
•
```

 Notice that the sequences above simply list all numbers as if we were counting on base 4 without using 0 as a digit

Linked List

Suppose l = 2

 Need to visit all the predecessors of a sequence before visiting the sequence itself

Linked List (cont'd)

- Linked list is not the most efficient data structure for motif finding
- Let's try grouping the sequences by their prefixes

Search Tree

Analyzing Search Trees

- Characteristics of the search trees:
 - The sequences are contained in its leaves
 - The parent of a node is the prefix of its children
- How can we move through the tree?

Moving through the Search Trees

- Four common moves in a search tree that we are about to explore:
 - Move to the next leaf
 - Visit all the leaves
 - Visit the next node
 - Bypass the children of a node

Visit the Next Leaf

Given a current leaf a, we need to compute the "next" leaf:

NextLeaf (cont'd)

- The algorithm is common addition in radix k:
- Increment the least significant digit
- "Carry the one" to the next digit position when the digit is at maximal value

NextLeaf: Example

Moving to the next leaf:

NextLeaf: Example (cont'd)

Moving to the next leaf:

Visit All Leaves

Printing all permutations in ascending order:

```
AllLeaves(L,k) // L: length of the sequence a \leftarrow (1,...,1) // k: max digit value while forever // a: array of digits output a a \leftarrow NextLeaf(a,L,k) if a = (1,...,1) return
```

Visit All Leaves: Example

Moving through all the leaves in order:

Depth First Search

- So we can search leaves
- How about searching all vertices of the tree?
- We can do this with a depth first search

Visit the Next Vertex

```
NextVertex(a, i, L, k)
                           // a : the array of digits
    if i < L
                            // i : prefix length
                    // L: max length
    a_{i+1} \leftarrow 1
      return (a, i+1) // k: max digit value
    else
  for j \leftarrow l to 1
        if a_i < k
         a_i \leftarrow a_i + 1
         return(a,j)
    return(a,0)
10.
```

Example

Moving to the next vertex:

Example

Moving to the next vertices:

Bypass Move

 Given a prefix (internal vertex), find next vertex after skipping all its children

```
1. <u>Bypass(a, i, L, k)</u> // a: array of digits

2. for j \leftarrow i to l // i: prefix length

3. if a_j < k // L: maximum length

4. a_j \leftarrow a_j + l // k: max digit value

5. return(a, j)

6. return(a,0)
```

Bypass Move: Example

Bypassing the descendants of "2-":

Example

Bypassing the descendants of "2-":

Brute Force Search Again

```
BruteForceMotifSearchAgain (DNA, t, n, l)
1.
       s \leftarrow (1,1,...,1)
2.
       bestScore ← Score(s, DNA)
3.
       while forever
4.
              s \leftarrow \text{NextLeaf}(s, t, n-l+1)
5.
              if (Score(s, DNA) > bestScore)
6.
                      bestScore \leftarrow Score(s, DNA)
7.
                      bestMotif \leftarrow (s_1, s_2, \ldots, s_t)
8.
       return bestMotif
9.
```

Can We Do Better?

- Sets of $s=(s_1, s_2, ..., s_t)$ may have a weak profile for the first i positions $(s_1, s_2, ..., s_i)$
- Every row of alignment may add at most \(\ell \) to Score
- Optimism: if all subsequent (t-i) positions $(s_{i+1}, ...s_t)$ add

```
(t-i) * l to Score(s, i, DNA)
```

- If Score(s,i,DNA) + (t − i) * ℓ < BestScore, it makes no sense to search in vertices of the current subtree
 - Use ByPass()

Branch and Bound Algorithm for Motif Search

- Since each level of the tree goes deeper into search, discarding a prefix discards all following branches
- This saves us from looking at (n − l+1)^{t-i} leaves
 - Use NextVertex() andByPass() to navigate the tree

Pseudocode for Branch and Bound Motif Search

```
BranchAndBoundMotifSearch(DNA,t,n,Q)
1.
      s \leftarrow (1,...,1)
2.
      bestScore \leftarrow 0
      i \leftarrow 1
      while i > 0
           if i < t
6.
                      optimisticScore \leftarrow Score(s, i, DNA) +(t - i) * l
7.
                      if optimisticScore < bestScore
8.
                        (s, i) \leftarrow Bypass(s, i, n-l+1)
9.
                      else
10.
                        (s, i) \leftarrow NextVertex(s, i, n-l+1)
11.
          else
12
                      if Score(s, DNA) > bestScore
13.
                         bestScore ← Score(s)
14.
                         bestMotif \leftarrow (s_1, s_2, s_3, ..., s_t)
15.
                      (s,i) \leftarrow \text{NextVertex}(s,i,t,n-l+1)
16.
      return bestMotif
17.
```

Median String Search Improvements

- Recall the computational differences between motif search and median string search
 - □ The Motif Finding Problem needs to examine all $(n-l+1)^t$ combinations for s.
 - □ The Median String Problem needs to examine 4^{ℓ} combinations of v. This number is relatively small
- We want to use median string algorithm with the Branch and Bound trick!

Branch and Bound Applied to Median String Search

Note that if the total distance for a prefix is greater than that for the best word so far:

TotalDistance (*prefix*, *DNA*) > *BestDistance*

there is no use exploring the remaining part of the word

 We can eliminate that branch and BYPASS exploring that branch further

Bounded Median String Search

```
BranchAndBoundMedianStringSearch(DNA, t, n, l)
1.
      s \leftarrow (1,...,1)
2.
      bestDistance ← ∞
3.
      i \leftarrow 1
      while i > 0
        if i < \ell
            prefix \leftarrow string corresponding to the first i nucleotides of s
7.
            optimisticDistance ← TotalDistance(prefix,DNA)
8.
             if optimisticDistance > bestDistance
9.
                           (\mathbf{s}, i) \leftarrow \text{Bypass}(\mathbf{s}, i, l, 4)
10.
             else
11.
                          (s, i) \leftarrow \text{NextVertex}(s, i, l, 4)
12.
        else
13.
             word \leftarrow nucleotide string corresponding to s
14.
             if TotalDistance(s, DNA) < bestDistance
15.
                           bestDistance ← TotalDistance(word, DNA)
16.
                           bestWord ← word
17.
             (s,i) \leftarrow \text{NextVertex}(s,i,l,4)
18.
      return bestWord
19.
```

Improving the Bounds

- Given an *E*-mer w, divided into two parts at point i
 - \square **u**: prefix W_1, \ldots, W_i
 - ullet **v**: suffix $W_{i+1}, ..., W_{\ell}$
- Find minimum distance for *u* in a sequence
- No instances of u in the sequence have distance less than the minimum distance
- Note this doesn't tell us anything about whether u is part of any motif. We only get a minimum distance for prefix u

Improving the Bounds (cont'd)

Repeating the process for the suffix v gives us a minimum distance for v

Since u and v are two substrings of w, and included in motif w, we can assume that the minimum distance of u plus minimum distance of v can only be less than the minimum distance for w

Better Bounds

Searching for prefix VWe may find many instances of prefix V with a minimum distance q

Likewise for U

$$\min_{\min} d(u) = z$$
 $\min_{\min} d(u) = z$

But for U and V combined, U is not at its minimum distance location, neither is V

$$\min d(q+1 z+2)$$

But at least we know w (prefix u suffix v) cannot have distance less than $\min_{min} d(v) + \min_{min} d(u)$

Better Bounds (cont'd)

If d(prefix) + d(suffix) ≥ bestDistance:

 Motif w (prefix.suffix) cannot give a better (lower) score than d(prefix) + d(suffix)

□ In this case, we can **ByPass()**

Better Bounded Median String Search

```
ImprovedBranchAndBoundMedianString(DNA, t, n, l)
1.
        s = (1, 1, ..., 1)
2.
        bestdistance = ∞
3.
        i = 1
        while i > 0
5.
             if i < l
6.
               prefix = nucleotide string corresponding to (s_1, s_2, s_3, ..., s_i)
7.
               optimisticPrefixDistance = TotalDistance (prefix, DNA)
8.
                  if (optimisticPrefixDistance < bestsubstring[ i ])
9
                     bestsubstring[ i ] = optimisticPrefixDistance
10.
                     if (l - i < i)
11.
                       optimisticSufxDistance = bestsubstring[[-i]]
12.
                     else
13.
                       optimisticSufxDistance = 0;
14.
                     if optimisticPrefixDistance + optimisticSufxDistance > bestDistance
15.
                        (\mathbf{s}, i) = \text{Bypass}(\mathbf{s}, i, l, 4)
16.
                     else
17.
                        (\mathbf{s}, i) = \text{NextVertex}(\mathbf{s}, i, l, 4)
18.
              else
19.
                word = nucleotide string corresponding to (s_1, s_2, s_3, ..., s_t)
20.
                if TotalDistance( word, DNA) < bestDistance
21.
                 bestDistance = TotalDistance(word, DNA)
22.
                 bestWord = word
23.
                 (\mathbf{s}, i) = \text{NextVertex}(\mathbf{s}, i, l, 4)
24.
       return bestWord
25.
```