

PENALARAN PADA SISTEM PAKAR

#pertemuan9
M. Miftahudin

MODEL SISTEM PAKAR

ALGORITMA

- Algoritma adalah urutan langkah-langkah logis penyelesaian masalah yang disusun secara sistematis.
- Struktur Dasar Algoritma:
 - ✓ Runtunan (sequence)
 - ✓ Pemilihan (selection)
 - ✓ Pengulangan (repetition)

ALGORITMA DALAM SISTEM PAKAR

- Inti dari sistem pakar
- Diperlukan suatu mekanisme inferensi

suatu algoritma yang tidak bergantung pada suatu masalah tertentu yang digunakan untuk menentukan kesimpulan-kesimpulan atau menjalankan tindakan-tindakan menggunakan knowledge base

Mekanisme inferensi bertujuan mencari jawaban dari beberapa kriteria

ALGORITMA FORWARD CHAINING DAN BACKWARD CHAINING

Proses algoritma forward chaining: data-driven

Proses algoritma backward chaining: goal-driven Pencarian dengan kriteria tertentu

ALGORITMA FORWARD CHAINING

- Algoritma forward-chaining: reasoning (pemikiran) ketika menggunakan inference engine (mesin pengambil keputusan) dan bisa secara logis dideskripsikan sebagai aplikasi pengulangan dari modus ponens (satu set aturan inferensi dan argumen yang valid).
- Dimulai dengan data yang tersedia dan menggunakan aturanaturan inferensi untuk mendapatkan data yang lain sampai sasaran atau kesimpulan didapatkan.
- Dalil hipotesa atau klausa IF THEN
- Digunakan untuk perancanaan, pemantauan, kendali dan aplikasi interpretasi

ALGORITMA FORWARD CHAINING

ALGORITMA FORWARD CHAINING

Contoh algoritma forward chaining:

- Jika hotspot muncul di areal hutan gambut kering, maka hotspot tersebut menjadi indikator kebakaran areal hutan.
- Jika areal hutan gambut rendah kandungan bahan organiknya, maka areal hutan gambut kering.
- Dengan forward chaining:

Areal hutan gambut rendah kandungan bahan organiknya,

karena itu areal hutan gambut kering,

karena hotspot muncul di areal hutan gambut menjadi indikator kebakaran areal hutan.

Reasoning:

- Ada masalah dengan munculnya hotspot.
- Maka uji areal hutan gambutnya.
- Terbukti bahwa areal hutan gambut rendah kandungan bahan organiknya
- Jika itu masalahnya, hotspot yang muncul pada areal hutan gambut tersebut akan menjadi indikator kebakaran areal hutan.
- Karena itu masalahnya adalah hotspot menjadi indikator kebakaran areal hutan. dikarenakan rendahnya kandungan bahan organik pada areal hutan gambut.

ALGORITMA BACKWARD CHAINING

- Backward-chaining: bentuk penalaran yang dikendalikan oleh tujuan atau goal
- Bekerja mundur dari query-nya dan melakukan query untuk fakta baru
- Algoritma diarahkan oleh tujuannya, jadi rule-rule bisa diterapkan yang dibutuhkan untuk meraih goal
- Digunakan untuk klasifikasi dan diagnosa

ALGORITMA BACKWARD CHAINING

ALGORITMA BACKWARD CHAINING

Contoh algoritma backward chaining:

- Jika hotspot muncul di areal hutan gambut kering, maka hotspot tersebut menjadi indikator kebakaran areal hutan.
- Jika areal hutan gambut rendah kandungan bahan organiknya, maka areal hutan gambut kering.
- Dengan backward chaining:

Hotspot menjadi indikator kebakaran areal hutan,

karena itu hotspot ini pasti muncul di areal hutan gambut kering,

karena itu pasti areal hutan gambut rendah kandungan bahan organiknya.

Reasoning:

- Ada masalah dengan munculnya hotspot.
- Mungkin hotspot ini menjadi indikator kebakaran areal hutan.
- Jika iya, maka hotspot ini pasti di areal hutan gambut kering.
- Jika iya, pasti areal hutan gambutnya rendah kandungan bahan organic
- Maka uji kandungan bahan organik pada areal hutan gambut, maka kita akan tahu apakah benar masalahnya yaitu indikator kebakaran areal hutan adalah hotspot.

Contoh: Ada 10 aturan yang tersimpan dalam basis pengetahuan. Fakta awal yang diberikan hanya: A & E (artinya: A dan E bernilai benar). Ingin dibuktikan apakah K bernilai benar (hipotesis: K)?

No.	Aturan
R-1	IF A & B THEN C
R-2	IF C THEN D
R-3	IF A & E THEN F
R-4	IF A THEN G
R-5	IF F & G THEN D
R-6	IF G & E THEN H
R-7	IF C & H THEN I
R-8	IF I & A THEN J
R-9	IF G THEN J
R-10	IF J THEN K

Forward Chaining

– Munculnya fakta baru pada saat inferensi:

Aturan	Fakta Baru
R-3	F
R-4	G
R-5	D
R-6	Н
R-9	J
R-10	K

• FORWARD CHAINING:

BACKWARD CHAINING

(a) Pertama: Gagal

(b) Kedua: Sukses

BACKWARD ATAU FORWARD

?

Contoh 1.

Anda ingin terbang dari Denver ke Tokyo dan tidak ada penerbangan langsung antara kedua kota tersebut. Jadi, anda harus menemukan connecting flight dari Denver yang berakhir di Tokyo.

Contoh 2

Mobil anda mogok dan anda ingin mencari tahu mengapa mobil tersebut mogok ?

e smart, be a professional, and b

o universitas.binaniaga | www.unb

THANK YOU

- Muhamad Miftahudin
- 0813 80453975
- m.miftahudin@unbin.ac.id