# Introdução

## Prólogo

- Duas idéias mudaram o mundo
  - 1) Livros
  - 2) Algoritmos



Johann Gutenberg 1398–1468

© Corbis

### **Fibonacci**

- Mais famosa sequência de números
  - Biologia, demografia, arte, arquitetura, música, etc...

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots,$$

$$F_n = \begin{cases} F_{n-1} + F_{n-2} & \text{if } n > 1 \\ 1 & \text{if } n = 1 \\ 0 & \text{if } n = 0. \end{cases}$$





Leonardo of Pisa (Fibonacci) 1170-1250

© Corbis

Pseudocódigo

```
function fib1(n)

if n = 0: return 0

if n = 1: return 1

return fib1(n-1) + fib1(n-2)
```

- É correto?
- Quanto tempo demora?
- Podemos fazer melhor?

T(n)  $\longrightarrow$  Passos computacionais

$$T(n) \ge F_n$$
  
 $T(200) \ge F_{200} \ge 2^{138}$ 

Processador de 10GHz

• 2<sup>10</sup> ~= 10<sup>3</sup> → 2<sup>138</sup> ~= 10<sup>41,4</sup> → 10<sup>31</sup>s → 3 milênios

|                    | 10              | 100             | 10 <sup>3</sup> | 10 <sup>4</sup>  | 10 <sup>5</sup>  | 10 <sup>6</sup>  |
|--------------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|
| log <sub>2</sub> n | 3               | 6               | 9               | 13               | 16               | 19               |
| n                  | 10              | 100             | 1000            | 104              | 10 <sup>5</sup>  | 10 <sup>6</sup>  |
| n log₂n            | 30              | 664             | 9965            | 105              | 10 <sup>6</sup>  | 107              |
| n <sup>2</sup>     | 100             | 10 <sup>4</sup> | 10 <sup>6</sup> | 108              | 10 <sup>10</sup> | 10 <sup>12</sup> |
| n <sup>3</sup>     | 10 <sup>3</sup> | 10 <sup>6</sup> | 10 <sup>9</sup> | 10 <sup>12</sup> | 10 <sup>15</sup> | 10 <sup>18</sup> |
| 2 <sup>n</sup>     | 10 <sup>3</sup> | 1030            | 10300           | 10300            | 103000           | 10300000         |

1 ano = 
$$365 \times 24 \times 60 \times 60 \approx 3 \times 10^7$$
 segundos  
1 século  $\approx 3 \times 10^9$  segundos  
1 milénio  $\approx 3 \times 10^{10}$  segundos

Por quê?



Pseudocódigo

```
Loop executado (n-1) vezes \frac{\text{function fib2}(n)}{\text{if } n=0\text{: return 0}}
\text{create an array } f[0...n]
f[0] = 0, \ f[1] = 1
\text{for } i=2...n\text{:}
f[i] = f[i-1] + f[i-2]
\text{return } f[n]
```

Podemos fazer melhor?

O Algoritmo certo faz toda a diferença!

#### Notação O

- O define um limite superior para a função, por um fator constante.
- -g(n) = O(f(n))
- Lê-se:
  - g(n) é de ordem no máximo f(n)
  - f(n) domina assintoticamente g(n)
  - (f(n) é um limite assintótico superior para g(n))
- Formalmente:
  - $g(n) = O(f(n)), c > 0 e n0 | 0 \le g(n) \le c.f(n), \forall n >= n0$

#### Exemplo:

$$f_1(n) = n^2$$
  
 $f_2(n) = 2n + 20$ 

$$f_2 = O(f_1),$$

$$\frac{f_2(n)}{f_1(n)} = \frac{2n+20}{n^2} \le 22$$



#### Notação Ω

- Ω define um limite inferior para a função, por um fator constante.
- $-g(n) = \Omega(f(n))$

- Formalmente:
  - $g(n) = \Omega(f(n)), c > 0 e n0 | 0 \le c.f(n) \le g(n), \forall n >= n0$

#### Notação Θ

- A notação Θ limita a função por fatores constantes
- g(n) = Θ(f(n)) se existirem constantes positivas c1 e c2 e n0 tais que para n >= n0, o valor de g(n) está sempre entre c1.f(n) e c2.f(n) inclusive.
- Formalmente:

$$g(n) = \Theta(f(n)), c1 > 0 e c2 > 0 e n0 |$$
  
0 <= c1.f(n) <= g(n) <= c2.f(n),  $\forall$  n >= n0

### **Exercícios**

• Indique se f(n) = O(g(n)), ou se  $f(n) = \Omega(g(n))$ , ou se  $f(n) = \Theta(g(n))$ 

```
f(n)
                        g(n)
       n - 100 n - 200
(a)
      n^{1/2}
                       n^{2/3}
(b)
       100n + \log n n + (\log n)^2
(c)
(d)
                       10n \log 10n
       nlogn
                        log3n
(e)
       log 2n
(f)
       10 \log n
                        \log(n^2)
       n^{1.01}
                       n \log^2 n
(g)
(h)
     n^2/\log n
                        n(\log n)^2
       n^{0.1}
                        (\log n)^{10}
(i)
                                                                      f = \Omega(g) means g = O(f)
      (\log n)^{\log n}
(j)
                        n/\log n
                                                            f = \Theta(g) means f = O(g) and f = \Omega(g).
(k)
       \sqrt{n}
                        (\log n)^3
       n^{1/2}
                        5^{\log_2 n}
(1)
       n2^n
                        3^n
(m)
```