# 高等数学 AI 习题课讲义

## 龚诚欣

gongchengxin@pku.edu.cn

2022年11月3日

## 目录

| 1 | 第 1 次习题课: 函数, 序列极限        | 3  |
|---|---------------------------|----|
|   | 1.1 问题                    | 3  |
|   | 1.2 解答                    | 3  |
|   | 1.3 补充 (不要求掌握!)           | 4  |
| 2 | 第 2 次习题课: 序列极限, 函数极限      | 4  |
|   | 2.1 问题                    | 4  |
|   | 2.2 解答                    | 4  |
|   | 2.3 补充 (不要求掌握!)           | 5  |
| 3 | 第 3 次习题课: 闭区间上的连续函数       | 5  |
|   | 3.1 问题                    | 5  |
|   | 3.2 解答                    | 6  |
|   | 3.3 补充 (不要求掌握!)           | 7  |
| 4 | 第 4 次习题课: 导数, 高阶导数        | 7  |
|   | 4.1 问题                    | 7  |
|   | 4.2 解答                    | 8  |
|   | 4.3 补充 (不要求掌握!)           | 9  |
| 5 | 第 5 次习题课: 隐函数求导, 微分, 不定积分 | 9  |
|   | 5.1 问题                    | 9  |
|   | 5.2 解答                    | 10 |
|   | 5.3 补充 (不要求掌握!)           | 11 |
| 6 | 第 6 次习题课:不定积分,变上限积分,定积分   | 11 |
|   | 6.1 问题                    | 11 |
|   | 6.2 解答                    | 11 |
|   | 6.3 补充 (不要求掌握!)           | 13 |
| 7 | 第7次习题课: 定积分及其应用           | 13 |
|   | 7.1 问题                    | 13 |
|   | 7.2 解答                    | 14 |
|   | 7.3 补充 (不要求掌握!)           | 15 |

| 8  | 第 8 次习题课: 微分中值定理, 洛必达法则 | 16 |
|----|-------------------------|----|
|    | 8.1 问题                  | 16 |
|    | 8.2 解答                  | 16 |
|    | 8.3 补充 (不要求掌握!)         | 17 |
|    | 第 9 次习题课: 泰勒公式, 函数的凹凸性  | 17 |
|    | 9.1 问题                  | 17 |
|    | 9.2 解答                  | 18 |
|    | 9.3 补充 (不要求掌握!)         | 20 |
| 10 | )致谢                     | 20 |

### 第 1 次习题课: 函数, 序列极限

#### 1.1 问题

- 1.  $f(x) = |x \sin^3 x| e^{\cos x}$ . 判断函数 f(x) 的有界性、单调性和奇偶性.
- 2. 证明 f(x) = x [x] 是有界周期函数.

3. 
$$f(x) = \begin{cases} x^2 & x \le 0 \\ \cos x + \sin x & x > 0 \end{cases}$$
 if  $f(-x)$ .

- 4.  $f(x) = e^{x^2}$ ,  $f \circ \phi = 1 3x$  并且  $\phi(x) \ge 0$ , 求解  $\phi(x)$  及其定义域.

- 5. 证明  $\lim_{n \to +\infty} \frac{4n^2}{n^2 n} = 4$ . 6. 设  $q > 1, k \in \mathbb{N}_+$ , 证明  $\lim_{n \to +\infty} \frac{n^k}{q^n} = 0$ . 7. 计算  $\lim_{n \to +\infty} \frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \dots + \frac{n}{n^2 + n + n}$ .
- 8. 令  $x_1 > 0$  并且  $x_{n+1} = \frac{3(1+x_n)}{3+x_n}$ . 计算  $\lim_{n \to +\infty} x_n$ .
- 9. 证明  $\lim_{n\to+\infty} n^{1/n} = 1$ . 10. 计算  $\lim_{n\to+\infty} \sqrt[n]{2^n+3^n}$ .
- 11. 证明  $\lim_{n \to +\infty} \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \exists$ .
- 12.  $\sum_{n=1}^{\infty} b_n = \infty, \frac{a_n}{b_n} \to 0, a_n, b_n > 0, \text{ if } \emptyset$   $\sum_{n=1}^{\infty} \frac{a_n}{b_n} = 0.$
- 13. (Stolz)  $0 < b_n \uparrow +\infty, a_n > 0$ , 如果  $(a_n a_{n-1})/(b_n b_{n-1}) \to L$ , 则  $a_n/b_n \to L$ .

- 1. 注意到  $f(2k\pi + \frac{\pi}{4}) = \frac{\sqrt{2}}{4}(2k\pi + \frac{\pi}{4})e^{\frac{1}{\sqrt{2}}} \to \infty$ , 所以 f(x) 无界. 又因为  $f(k\pi) \equiv 0$  且对于  $x \neq k\pi$  成立  $f(x) \neq 0$ , 所 以 f(x) 不单调. 由定义知 f(x) 是偶函数.
- 2. 容易看出 f(x) 有周期 1 且  $|f(x)| \le 1$  对于所有  $x \in \mathbb{R}$  成立.
- 3. 代入验证即可.  $f(-x) = \begin{cases} x^2 & x \ge 0\\ \cos x \sin x & x < 0 \end{cases}$ .

- 4.  $f(\phi) = e^{\phi^2} = 1 3x \Rightarrow \phi = \sqrt{\log(1 3x)}$ .  $\phi(x)$  的定义域是  $\log(1 3x) \ge 0 \Leftrightarrow x \le 0$ . 5.  $\left| \frac{4n^2}{n^2 n} 4 \right| = \frac{4}{n 1}$ . 所以当  $n \ge \frac{4}{\epsilon} + 1$  时, $\frac{4n^2}{n^2 n}$  与 4 相差不超过  $\epsilon$ . 6. 注意到  $q^n = (1 + q 1)_n^n \ge C_n^{k+1} (q 1)^{k+1} = a_{k+1} n_n^{k+1} + a_k n^k + \dots + a_0$  是  $n^k$  的高阶无穷大量.
- 7. 使用夹逼定理. (\*)  $\geq \frac{\sum\limits_{i=1}^{n}i}{(n+1)^2} = \frac{n(n+1)}{2(n+1)^2} \to \frac{1}{2}$ , (\*)  $\leq \frac{\sum\limits_{i=1}^{n}i}{n^2+n} = \frac{n(n+1)}{2(n+n)} \to \frac{1}{2}$ .
- 8. 在这类问题中,  $\{x_n\}$  一定会是单调有界的. 首先凑答案, 假设极限存在, 令递推公式两边  $n \to +\infty$ , 我们有 a = $\frac{3(1+a)}{3+a} \Rightarrow a = \sqrt{3}$ . 然后使用递推公式, 利用数学归纳法, 容易证明如果  $0 < x_1 < \sqrt{3}$  则  $0 < x_n < x_{n+1} < \sqrt{3}$ ; 如果  $x_1 > \sqrt{3}$  则  $x_n > x_{n+1} > \sqrt{3}$ . 这意味着极限  $\lim x_n$  存在.
- 9.  $n^{1/n} > (n+1)^{1/(n+1)} \Leftrightarrow n > (1+1/n)^n$  对于  $n \ge 3$  成立, 这意味着  $n^{1/n}$  是单调递减的. 注意到我们作业中已经证 明了对于任意  $\epsilon > 0$ , 成立  $n^{1/n} < 1 + \epsilon \Leftrightarrow n < (1 + \epsilon)^n$  对于足够大的 n. 然后使用极限定义的  $N - \epsilon$  语言.
- 10.  $3 < \sqrt[n]{2^n + 3^n} < \sqrt[n]{2 \times 3^n} \to 3$ .
- 11. 单调上升性显然. 由于  $\frac{1}{n^2} < \frac{1}{(n-1)n}$ , 从而  $\sum_{n} \frac{1}{n^2} < \sum_{n} \frac{1}{(n-1)n}$ , 有上界 2.
- 12. 使用截断.  $\forall \epsilon > 0, \exists N, \forall n > N, |a_n/b_n| < \epsilon/2$ . 从而  $\sum a_n / \sum b_n = \sum\limits_{i=1}^N a_i / \sum\limits_{i=1}^n b_i + \sum\limits_{i=N+1}^n a_i / \sum\limits_{i=1}^n b_i := I_1 + I_2$ . 当 n足够大时,  $I_1 < \epsilon/2$ (因为  $\sum b_n \to +\infty$ ); 而  $I_2 < \epsilon/2$  对于所有的  $n \ge N$  成立. 因此当 n 足够大时, 可以让  $I_1 + I_2 < \epsilon$ .
- 13. 用定义.  $\forall \epsilon > 0, \exists N,$  使得对于  $\forall n > N,$  成立  $(L \epsilon)(b_n b_{n-1}) \leq (a_n a_{n-1}) \leq (L + \epsilon)(b_n b_{n-1})$ . 然后用 累加  $\Rightarrow$   $(L-\epsilon)(b_n-b_N) \leq a_n-a_N \leq (L+\epsilon)(b_n-b_N) \Rightarrow L-\epsilon < \frac{a_n-a_N}{b_n-b_N} < L+\epsilon$ . 然后估计误差  $|\frac{a_n-a_N}{b_n-b_N}-\frac{a_n}{b_n}|=|\frac{(a_n-a_N)b_N}{(b_n-b_N)b_n}+\frac{a_Nb_N}{(b_n-b_N)b_n}+\frac{a_Nb_N}{(b_n-b_N)b_n}+\frac{a_Nb_N}{(b_n-b_N)b_n}+\frac{a_Nb_N}{(b_n-b_N)b_n}+\frac{a_N}{b_n-b_N}<\epsilon$  (这三项都是趋于 0 的, 所以你总可以找一个足够 大的 n 使得上式成立).

作为一个已经学习数学这么多年的北京大学练习生,我相信你一定关心过下面这个问题:可导函数和连续函数之间差多少?事实上,我们有以下定义和结论:

- (1) 开集: 我们称集合  $A \subset \mathbb{R}$  是开的, 当且仅当  $\forall x \in A$ , 存在  $\delta_x > 0$ , 使得  $(x \delta_x, x + \delta_x) \subset A$ .
- (2) 闭集: 我们称集合  $B \subset \mathbb{R}$  是闭的, 当且仅当它的补集是开的.
- (3) 定义  $f^{-1}(A) = \{x : f(x) \in A\}$ , 这里 f 是一个函数.
- (4) 你可以证明一个函数 f 是连续的当且仅当任意开集  $A \subset \mathbb{R}$ ,  $f^{-1}(A)$  是开集.
- (5) 内点: 我们称  $x \in A$  是集合 A 的内点当且仅当  $\exists \delta_x > 0$ , 使得  $(x \delta_x, x + \delta_x) \subset A$ .
- (6) 可数/可列: 我们称集合 A 是可数的当且仅当存在一个从 A 到自然数集  $\mathbb N$  的一一映射或者  $|A|<\infty$ , 这里 |A| 是集合 A 中元素的个数.
- (7) 极限点: 我们称 x 是集合 A 的极限点, 当且仅当存在一个序列  $\{x_i\}_{i=1}^\infty \subset A$  使得  $x_i \to x$ . 我们用记号 A' 来表示 A 所有极限点构成的集合.
- (8) 闭包: 我们称集合  $\bar{A} = A \cup A'$  是集合 A 的闭包.
- (9) 那么,对于所有 [a,b] 上的连续函数,至少存在一点可导的函数构成的集合是无处稠密集的可列并 (第一纲集). 这里,无处稠密集是指其闭包不存在内点的集合,并且连续函数之间的度量定义为  $\rho_{[a,b]}(f,g) = \max_{x \in [a,b]} |f-g|$ .
- (10) Baire 纲集定理: 闭集  $B_n$  无内点, 则  $\cup_{n=1}^{\infty} B_n$  也无内点. 由此容易知道第一纲集是没有内点的.

### 2 第 2 次习题课: 序列极限, 函数极限

#### 2.1 问题

- 1. 证明  $\lim_{x\to 2} \frac{1}{x-1} = 1$ .
- 2. 计算  $\lim_{x \to 0} x^2 \sin \frac{1}{x}$ .
- 3. 计算  $\lim_{h\to 0} \frac{(x+h)^3-x^3}{h}$ .
- 4. 计算  $\lim_{x \to +\infty} x(\sqrt{x^2 + 1} x)$ .
- 5. 计算  $\lim_{x \to +\infty} \cos \sqrt{x+1} \cos \sqrt{x}$ .
- 6. 计算  $\lim_{x\to 0} \frac{\cos x \cos 3x}{x^2}$ .
- 7. 计算  $\lim_{x \to +\infty} (\frac{x^2+1}{x^2-2})^{x^2}$ .
- 8. 设数列  $a_n \to 0$  并且  $\lim_{n \to +\infty} |a_{n+1}/a_n| = a$ . 证明  $a \le 1$ .
- 9.  $\Leftrightarrow a_n = \sum_{\substack{k=1 \\ \frac{n}{n}}}^n (\sqrt{1 + \frac{k}{n^2}} 1), \text{ if } \lim_{n \to +\infty} a_n.$
- 10.  $\lim_{n \to +\infty} \frac{\sum_{i=1}^{n} a_i}{n} \exists$ , 证明  $\frac{a_n}{n} \to 0$ .
- 11. 证明  $\lim_{n \to +\infty} (n!)^{1/n^2} = 1$ .
- 12.  $a_1 = b, a_2 = c, a_n = \frac{a_{n-1} + a_{n-2}}{2}$ , 计算  $\lim_{n \to +\infty} a_n$ .
- 13. 计算  $\lim_{x \to +\infty} (\frac{1}{x} \frac{a^x 1}{a 1})^{\frac{1}{x}}$ . 其中 a > 0 且  $a \neq 1$ .
- 14.  $f(x) = a_1 \sin x + a_2 \sin 2x + \dots + a_n \sin nx$ , 且  $|f(x)| \le \sin x$ . 证明  $|a_1 + 2a_2 + \dots + na_n| \le 1$ .
- 15. 设  $\delta > 0$ , 且 f(x) 在区间内  $(-\delta, \delta)$  有界.  $\exists a > 1, b > 1$  使得 f(ax) = bf(x). 证明当  $x \to 0$  时  $f(x) \to 0$ .
- 16.  $a_n$  收敛到 a 当且仅当  $a_n$  的任意子列都收敛到 a.

- 1. 注意到  $\left| \frac{1}{x-1} 1 \right| = \left| \frac{x-2}{x-1} \right|$ ,  $\mathbb{R}$   $\delta = \min(\frac{1}{2}, \frac{1}{2}\epsilon)$ .
- 2. 注意到  $|x^2 \sin \frac{1}{x}| \le |x^2| \to 0$ , 取  $\delta = \sqrt{\epsilon}$ .
- 3.  $\frac{(x+h)^3 x^3}{h} = \frac{3x^2h + 3xh^3 + h^3}{h} \to 3x^2$ .
- 4.  $\lim_{x \to +\infty} x(\sqrt{x^2 + 1} x) = \lim_{x \to +\infty} \frac{x}{x + \sqrt{x^2 + 1}} = \lim_{x \to +\infty} \frac{1}{1 + \sqrt{1 + \frac{1}{-2}}} \to \frac{1}{2}.$

- 5.  $|\cos\sqrt{x+1} \cos\sqrt{x}| = |2\sin\frac{\sqrt{x+1} + \sqrt{x}}{2}\sin\frac{\sqrt{x+1} \sqrt{x}}{2}| \le |\sin\frac{\sqrt{x+1} \sqrt{x}}{2}| \le \frac{\sqrt{x+1} \sqrt{x}}{2} \to 0.$
- 6.  $\frac{\cos x \cos 3x}{x^2} = \frac{2\sin 2x \sin x}{x^2} \sim \frac{2 \times 2x \times x}{x^2} = 4$ .
- 7. 这种形如  $(1+0)^{\infty}$  的极限问题一定是去试图凑 e. 原式 =  $[(1+\frac{3}{r^2-2})^{\frac{x^2-2}{3}}]^{\frac{3x^2}{x^2-2}} \to e^3$ .
- 8. 如果 a>1, 那么  $\exists N$  使得  $\forall n>N, |a_{n+1}/a_n|>(1+a)/2$ , 则  $|a_n|>|a_N|(\frac{1+a}{2})^{n-N}\Rightarrow |a_n|\to\infty$ .
- 9.  $\sum_{k=1}^{n} \left( \sqrt{1 + \frac{k}{n^2}} 1 \right) = \sum_{k=1}^{n} \frac{k}{n^2} \left( \frac{1}{1 + \sqrt{1 + \frac{k}{n^2}}} \right). \ (*) \le \sum_{k=1}^{n} \frac{k}{n^2} \times \frac{1}{2} \to \frac{1}{4}. \ (*) \ge \sum_{k=1}^{n} \frac{k}{n^2} \times \frac{1}{1 + \sqrt{1 + \frac{1}{n}}} \to \frac{1}{4}.$
- 10.  $a_n/n = \sum a_n/n \frac{n-1}{n} \sum a_{n-1}/(n-1) \to 0 1 \times 0 \to 0.$
- 11. 使用夹逼定理知  $1 \leq (n!)^{1/n^2} \leq n^{1/n} \to 1$ . (PLUS: Stirling:  $n! \sim (\frac{n}{e})^n \sqrt{2\pi n}$ ).
- 12.  $a_n a_{n-1} = (-\frac{1}{2})(a_{n-1} a_{n-2}) = (-\frac{1}{2})^2(a_{n-2} a_{n-3}) = \dots = (-\frac{1}{2})^{n-1}(a_1 a_0), \ \text{Mffi} \ a_n a_0 = (a_1 a_0)[1 + (-\frac{1}{2}) + \dots + (-\frac{1}{2})^{n-1}] \rightarrow \frac{2}{3}(a_1 a_0) \Rightarrow a_n \rightarrow \frac{1}{3}a_0 + \frac{2}{3}a_1.$
- 13. 我们已经证明了  $(a-1)^{1/x} \to 1$ ,  $(1/x)^{1/x} \to 1$ , 所以原极限值等于  $\lim_{x \to +\infty} (a^x-1)^{1/x}$ . 从而: 如果 a>1,  $\lim =a$ ; 如果 0<a<1,  $\lim =1$ .
- 14. 注意到  $|f(x)/\sin x| \le 1$ . 令  $x \to 0$  即可.
- 15.  $x \in (-\delta, \delta), |f(x)| < M \Rightarrow x \in (-\delta/a, \delta/a), |f(x)| = \frac{1}{b}|f(ax)| \le \frac{M}{b} \Rightarrow x \in (-\delta/a^n, \delta/a^n), |f(x)| \le \frac{M}{b^n} \Rightarrow f(x) \to 0$   $\exists x \to 0 \exists t$ .
- 16. ⇒ 是显然的. ←. 反证法, 如果结论不对, 则  $\exists \epsilon_0 > 0, \forall N, \exists n_k > N$  使得  $|a_{n_k} a| > \epsilon_0$ . 取子列  $\{a_{n_k}\}$  即可.

闭区间套定理:  $a_n \uparrow, b_n \downarrow, 0 < b_n - a_n \to 0$ , 那么  $\exists$  唯一一个点  $x \in \cap_n [a_n, b_n]$ .

证明: 令  $x = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n$  即可.

有限覆盖定理:  $\{I_{\lambda}\}_{\lambda\in\Lambda}$  是一族开集 (可能不可数). 如果  $[a,b]\subset\cup_{\lambda\in\Lambda}I_{\lambda}$ , 则  $\exists I_{1},\cdots,I_{m}\in\{I_{\lambda}\}$  使得  $[a,b]\subset\cup_{i=1}^{m}I_{i}$ . 证明. 如果结论不对, 即不存在可数子覆盖, 那么对于区间 [a,(a+b)/2] 和 [(a+b)/2,b], 至少有一个区间不存在有限子覆盖, 这样一直切半, 由闭区间套, 必然夹出一个点 x. 由于这是开覆盖, 因此存在开集  $O_{x}$  使得  $x\in O_{x}$ . 从而由极限知这个开区间迟早会覆盖前面的从某项开始的闭区间列, 这与假设 (不存在有限覆盖) 矛盾.

**聚点原理**:  $|a_n| < M$ , 那么  $\exists \{n_k\}_{k=1}^{\infty} \subset \mathbb{N}$ , 使得  $a_{n_k} \to a$  当  $k \to \infty$  时. (有界序列必有收敛子列) 我们给出几种证明方法:

- (1) 取 M 使得  $\forall n, |x_n| \leq M$ ,取  $a_1 = -M, b_1 = M$ . 对  $[a_n, b_n]$  多次迭代,每次找到  $\frac{a_n + b_n}{2}$ ,这个点将当前区间划分为两个子区间。两个子区间中必然至少有一个含有无穷项。任取其中一个含有无穷项的区间作为  $[a_{n+1}, b_{n+1}]$ . 由闭区间套定理,最终  $a_n, b_n$  有相同的极限 x,同时  $x_n$  中有无穷项与 x 任意接近. 选取  $x_{n_k} \in [a_i, b_i]$ ,则  $x_{n_k} \to x$ .
- (2) 如果不存在这样的子列, 那么  $\forall x \in [a,b]$ ,  $\exists \delta > 0$  使得  $|(x-\delta,x+\delta) \cap \{x_i\}_{i=1}^n| \le 1$ . 这样构造出的开区间集合覆盖了 [a,b], 由有限覆盖定理, 必然存在有限个开区间覆盖整个区间. 而由假设, 对于取出的每个开区间中至多只有原序列中的一个点, 由于开区间的数量为有限个, 可以得出原序列长度也是有限的, 这显然不成立.

**柯西收敛**:  $\forall \epsilon > 0, \exists N, \forall n, m > N, |a_n - a_m| < \epsilon$ . 这与之前的极限定义是等价的,但优点是不需要提前知道"无理数". 证明. ⇒: 取  $\epsilon = 1$  以及满足条件的 N, 那么  $1 + \max_{i=1,2,\cdots,N} |x_i|$  给出了整个序列  $\{x_n\}$  的界. 取它的一个收敛子列  $x_{n_k}$ , 并记这个极限为 x. 从而  $|x_n - x| \leq |x_{n_k} - x| + |x_n - x_{n_k}| \to 0$ .  $\Leftarrow$ :  $|a_n - a_m| \leq |a_n - a| + |a_m - a| \to 0$ .

### 3 第 3 次习题课: 闭区间上的连续函数

#### 3.1 问题

- 1. 计算  $\lim_{n \to +\infty} \frac{(2n-1)!!}{(2n)!!}$ .
- 2.  $\{x_n\}$  收敛且  $\{y_n\}$  收敛, 证明  $\{x_n + y_n\}$  收敛.  $\{x_n\}$  且  $\{y_n\}$  发散, 是否有  $\{x_n + y_n\}$  或者  $\{x_n y_n\}$  一定发散? 如果  $\{x_n y_n\}$  是无穷小量, 是否有  $\{x_n\}$  或者  $\{y_n\}$  一定是无穷小?
- 3. 求极限.  $\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \cdots$ .
- 4 (不要求掌握).  $0 \le x_{n+m} \le x_n + x_m$ . 证明  $\lim_{n \to +\infty} \frac{x_n}{n} \exists$ . (这个引理在大偏差理论中很有用).

- 5.  $\lim_{n \to +\infty} a_n = a$ .  $\Re \mathbb{H} \lim_{n \to +\infty} \frac{\sum\limits_{i=1}^n p_i a_{n+1-i}}{\sum\limits_{i=1}^n p_i} = a$ .  $\mathbb{H} \stackrel{p}{\leftarrow} p_k > 0 \stackrel{\square}{\to} \lim_{n \to +\infty} \frac{p_n}{\sum\limits_{i=1}^n p_i} = 0$ .
- 6. 求极限.  $\lim_{x\to 0} \frac{e^{ax} e^{bx}}{x}$ ,  $\lim_{x\to \infty} \sqrt{x + \sqrt{x} + \sqrt{x}} \sqrt{x}$ ,  $\lim_{x\to \infty} (\sin\frac{1}{x} + \cos\frac{1}{x})^x$ . 7. 证明  $\lim_{x\to 0} f(x)$   $\Rightarrow \lim_{x\to 0} f(x^3)$   $\Rightarrow \lim_{x\to 0} f(x)$   $\Rightarrow \lim_{x\to 0} f(x^2)$ . 8. 举例说明存在 f(x) 在  $\mathbb{R}$  上处处不连续,但 |f(x)| 处处连续.

- 9.  $a_1, a_2, \cdots, a_p > 0$ ,计算  $\lim_{x \to 0+0} \left(\frac{\sum\limits_{i=1}^p a_i^x}{p}\right)^{\frac{1}{x}}$ .
  10. 求极限.  $\lim_{x \to 0+0} \frac{x \log(1+3x)}{(1-\cos 2\sqrt{x})^2}, \lim_{x \to 0} \frac{2^x 3^x}{3^x 4^x}$ .
- 11 (不要求掌握). 举例说明存在一个函数处处不连续, 其定义域是 [0,1] 但是值域为区间.
- 12.  $f(x) \in C[a,b]$ , |f(x)| 单调. 证明 f(x) 单调.
- 13 (不要求掌握).  $|f(x) f(y)| \le k|x y|$ . 0 < k < 1. 证明 kx f(x) 单调上升并且  $\exists c, f(c) = c$ .
- 14.  $f(x) \in C[a,b], \forall x, \exists y,$  使得  $|f(y)| \leq \frac{1}{2}|f(x)|$ . 证明  $\exists \xi,$  使得  $f(\xi) = 0$ .
- 15 (不要求掌握). f(x) 在 [a,b] 上只有第一类间断点, 证明 f(x) 有界.
- 16.  $\forall f(x) \in C[a,b], f(a)f(b) < 0.$  证明  $\forall n = 1, 2, \dots, \exists \{\xi_i\}_{i=1}^n \subset [a,b], \xi_i \neq \xi_j$  使得  $\sum_{i=1}^n e^{f(\xi_i)} = n$ .
- 17. 非负函数  $f \in C[0,1], f(0) = f(1) = 0$ . 证明  $\forall a \in (0,1), \exists x_0 \in [0,1]$  使得  $x_0 + a \in [0,1]$  且  $f(x_0) = f(x_0 + a)$ . 如 果去掉非负条件还对吗?
- 18.  $f_n(x) = x^n + x$ . (1) 证明:  $\forall n, f_n(x) = 1$  在  $\left[\frac{1}{2}, 1\right]$  中有且仅有一个根  $c_n$ ; (2) 计算  $\lim_{n \to \infty} c_n$ .
- 19. 不等于常数的连续周期函数一定有最小正周期. 如果把连续性去掉结论如何?
- 20 (不要求掌握). f 在 [a,b] 内处处有极限. 证明: (1)  $\forall \epsilon > 0$ , 在 [a,b] 中使得  $|\lim_{t \to 0} f(t) f(x)| > \epsilon$  的点至多有有限个.
- (2) f(x) 至多有可列个间断点.

- 1.  $\frac{(2n-1)!!}{(2n)!!} < \frac{(2n)!!}{(2n+1)!!}$  (使用不等式  $\frac{i}{i+1} < \frac{i+1}{i+2}$ ), 那么  $x_n^2 < \frac{1}{2n+1}$ , 这意味着  $x_n \to 0$ .
- 2. 如果  $\{x_n\}$  和  $\{x_n+y_n\}$  都收敛, 那么  $\{x_n+y_n-x_n=y_n\}$  也会收敛. 构造  $x_n=(-1)^{n-1}, y_n=(-1)^n,$  那么  $\{x_n\}$ 和  $\{y_n\}$  发散但是  $\{x_n+y_n\}$ ,  $\{x_ny_n\}$  都收敛. 再构造  $x_{2n-1}=\frac{1}{2n-1}, x_{2n}=1, y_{2n-1}=1, y_{2n}=\frac{1}{2n}$ .  $\{x_n\}$  和  $\{y_n\}$  都不 是无穷小量但是  $\{x_ny_n\}$  是无穷小量。
- 3.  $\lim_{n \to +\infty} x_n = \sqrt{2 \lim_{n \to +\infty} x_{n-1}} \Rightarrow \lim_{n \to +\infty} x_n = 2.$ 4. 考虑  $\left\{\frac{x_n}{n}\right\}$  的下确界  $\alpha$ . 那么  $\exists n$  使得  $x_n/n < a + \epsilon$ . 设  $\max_{i=1,2,\cdots,n} x_i = M$ . 那么  $\frac{x_m}{m} \leq \frac{x_n}{m} + \frac{x_{m-n}}{n} \leq \frac{2x_n}{m} + \frac{x_{m-2n}}{m}$
- (假设 m = kn + b)  $\leq \cdots \leq \frac{kx_n}{m} + \frac{x_b}{m} \leq \frac{kx_n}{kn + b} + \frac{M}{m} \leq \frac{x_n}{n} + \frac{M}{m}$ . 选择足够大的 m 使得  $\frac{M}{m} < \epsilon$ . 从而  $a \leq \frac{x_m}{m} < a + 2\epsilon$ . 5. WLOG 令 a = 0. 设  $\sup_n \{a_n\} = M$ .  $\forall \epsilon > 0, \exists N_1, \forall n \geq N_1$ , 使得  $|a_n| < \epsilon$ ;  $\exists N_2, \forall n \geq N_2$ , 使得  $p_n / \sum_n p_n < \epsilon / N_1$ . 令

$$n > N_1 + N_2, \, \mathbb{M} \mid \sum_{i=1}^n a_i p_{n+1-i} / \sum_{i=1}^n p_i \mid \leq \mid \sum_{i=1}^{n-N_1} p_i a_{n+1-i} / \sum_{i=1}^n p_i \mid + \mid \sum_{i=n-N_1+1}^n p_i a_{n+1-i} / \sum_{i=1}^n p_i \mid < \epsilon + \frac{\epsilon}{N_1} \times N_1 \times M = (M+1)\epsilon.$$

$$6. \, (e^{ax} - e^{bx}) / x = a \cdot \frac{e^{ax} - 1}{ax} + b \cdot \frac{1 - e^{bx}}{b} \to a - b, \, \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} = \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}} = \frac{\sqrt{1 + \sqrt{1/x}}}{\sqrt{1 + \sqrt{1/x + \sqrt{1/x^3}}} + 1} \to \frac{1}{2}$$

6. 
$$(e^{ax} - e^{bx})/x = a \cdot \frac{e^{ax} - 1}{ax} + b \cdot \frac{1 - e^{bx}}{b} \rightarrow a - b, \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} = \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}} = \frac{\sqrt{1 + \sqrt{1/x}}}{\sqrt{1 + \sqrt{1/x + \sqrt{1/x^3}}} + 1} \rightarrow \frac{1}{2}$$

 $(\sin 1/x + \cos 1/x)^x = \left[ (1 + \cos 1/x + \sin 1/x - 1)^{\frac{1}{\cos 1/x + \sin 1/x - 1}} \right]^{x \cos 1/x + \sin 1/x - 1} = (1/x = t) = e^{(\cos t + \sin t - 1)/t} = e^{1/x + \sin t - 1/t}$ 

- 7.  $x \to 0 \Leftrightarrow x^3 \to 0$ , 但是  $x^2 \to 0 \Leftrightarrow x \to 0 + 0$ .
- 8.  $f(x) = 1_{\mathbb{Q}} 1_{\mathbb{R} \setminus \mathbb{Q}}$ .

$$9. \left(\frac{\sum\limits_{i=1}^{p}a_{i}^{x}}{p}\right)^{1/x} = \left[1 + \sum\limits_{i=1}^{\frac{p}{(a_{i}^{x}-1)}}p\right]^{1/x} = \left\{\left[1 + \sum\limits_{i=1}^{\frac{p}{(a_{i}^{x}-1)}}p\right]^{\frac{p}{\sum\limits_{i=1}^{p}(a_{i}^{x}-1)}}\right\}^{\frac{p}{\sum\limits_{i=1}^{p}(a_{i}^{x}-1)}} \frac{\sum\limits_{i=1}^{p}(a_{i}^{x}-1)}px}{px} \rightarrow e^{\frac{\sum\limits_{i=1}^{p}\log a_{i}}p} = (a_{1}a_{2}\cdots a_{p})^{1/p}.$$

$$10. \lim_{x\to 0+0} \frac{x\log(1+3x)}{(1-\cos 2\sqrt{x})^{2}} \sim \frac{x\cdot 3x}{(2x)^{2}} = \frac{3}{4}, \lim_{x\to 0} \frac{2^{x}-3^{x}}{3^{x}-4^{x}} = \frac{(2/3)^{x}-1}{1-(4/3)^{x}} \sim \frac{x\log(2/3)}{-x\log(4/3)} = \frac{\log 3 - \log 2}{\log 4 - \log 3}.$$

- 11.  $f(x) = \begin{cases} x & x \in \mathbb{Q} \\ x + \frac{1}{2} & x \in [0, \frac{1}{2}] \& x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$
- 12. 不妨设 |f(x)| 单调递增. 只需注意到如果  $f(x_0) = 0$ , 那么对于所有的  $x \in [a, x_0]$ , f(x) = 0.

- 13. 第一问是定义, 第二问用柯西收敛准则, 重复利用已知不等式来证明  $x, f(x), f(f(x)), \cdots$  是柯西列.
- 14. 如果不存在  $\xi$  使得  $f(\xi) = 0$ . 那么 f(x) 始终保号, 不妨设 f(x) > 0. 设  $x_0 = \arg\min f(x)$ . 这样就不存在 y 使得  $|f(y)| \leq \frac{1}{2}f(x)$ , 矛盾.
- 15. 第一类间断点 ⇒ 每一点都有一个邻域有界 ⇒ 所有邻域构成开覆盖, 必有有限子覆盖, 有限个有界总能找到最大界.
- 16.  $\exists \eta > 0$ , 使得  $f([a,b]) \supset [-\eta,\eta]$ , 这意味着  $e^{f([a,b])} \supset [e^{-\eta},e^{\eta}] \supset [1-\epsilon,1+\epsilon]$ ( $\exists$  一个足够小的  $\epsilon > 0$ ). 从而如果 n 是奇数, 选择  $e^{f(\xi_1)} = 1$ ,  $e^{f(\xi_2)} = 1 \epsilon/2$ ,  $e^{f(\xi_3)} = 1 + \epsilon/2$ ,  $e^{f(\xi_4)} = 1 \epsilon/3$ ,  $e^{f(\xi_5)} = 1 + \epsilon/3$ ,  $\cdots$ ; 如果 n 是偶数, 选择  $e^{f(\xi_1)} = 1 \epsilon/2$ ,  $e^{f(\xi_2)} = 1 + \epsilon/2$ ,  $e^{f(\xi_3)} = 1 \epsilon/3$ ,  $e^{f(\xi_4)} = 1 + \epsilon/3$ ,  $\cdots$ .
- 17. 令 g(x) = f(x+a) f(x).  $g(0) \ge 0$ ,  $g(1-a) \le 0$ , 用介值定理. 去掉非负条件不对, 比如说  $f(x) = \sin(2\pi x)$ , a = 0.7.
- 18. (1) 注意到  $f_n \uparrow \in [\frac{1}{2}, 1]$  且  $f(\frac{1}{2}) < 1$ , f(1) > 1, 使用介值定理. (2) 由于  $\forall \epsilon, \exists N$ , 使得  $\forall n > N, (1 \epsilon)^n + 1 \epsilon < 1$ . 由于  $f(1 \epsilon) < 1 = f(c_n)$  且  $f_n \uparrow \Rightarrow c_n > 1 \epsilon$ . 由极限定义知  $c_n \to 1$ .
- 19. 反证法. 如果  $f(a) \neq f(b)$ , 考虑正周期序列  $T_n \to 0$ , 则由带余除法,  $(b-a) \div T_n = S_n \cdots m_n$ , 其中  $0 \le m_n < T_n \to 0$ . 所以  $a + S_n T_n \to b$ ,  $f(a) = f(a + S_n T_n) \to f(b)$  (连续性)  $\Rightarrow f(a) = f(b)$ , 矛盾. 把连续性去掉则结论不对, 比如说 Dirichlet 函数.
- 20. (1) 如果集合有无穷多个元素那一定有聚点 (有界序列必有收敛子列). 从而  $x_n \to x$ . 考虑  $y_n$  使得  $|y_n x_n| < 1/n$ , 且  $|f(y_n) f(x_n)| > \epsilon$ (这是集合的定义, 函数极限差  $> \epsilon$  那么必然存在一个比较近的点使得函数差  $> \epsilon$ ). 从而  $y_n \to x$ , f 在 x 的极限何在?(极限存在当且仅当任意趋于其的数列极限均相等, 而这里  $\lim_{n \to +\infty} f(y_n)$  显然与  $\lim_{n \to +\infty} f(x_n)$  不同). (2) 记 (1) 中集合为  $A_{\epsilon}$ . 注意到间断点集合可以写成  $\bigcup_n A_{1/n}$ . 可列个有限元素集合的并元素一定是可列个的.

有界性定理:  $f(x) \in C[a,b]$ , 则 f(x) 有界.

证明. 如果无界, 则选择  $x_n$  使得  $f(x_n) \to \infty$ , 那么存在一个子列  $\{x_{n_k}\} \subset \{x_n\}$  收敛到某个 x(聚点原理). 由连续性知  $f(x) = \infty$ , 矛盾.

最值定理:  $f(x) \in C[a,b]$ , 那么  $\arg \max f(x) \exists$ .

证明. 找一个数列  $\{x_n\}$  使得  $f(x_n) \to \max f(x)$ . 利用有界数列必有收敛子列和 f(x) 的连续性.

介值定理:  $f(x_1) > 0$ ,  $f(x_2) < 0$ ,  $f(x) \in C[x_1, x_2]$ ,  $\exists x_0$  使得  $f(x_0) = 0$ .

证明. 使用 Lebesgue 方法. 令  $x_0 = \sup\{x: f(x) > 0\}$ . 利用连续性知如果  $f(x_0) > 0$  则  $x_0$  不是上界 (因为根据连续性会有  $x_0$  的一个邻域都满足 f(x) > 0),如果  $f(x_0) < 0$  则有更好的上确界 (同样根据连续性会有  $x_0$  的一个邻域满足 f(x) < 0).

### 4 第 4 次习题课: 导数, 高阶导数

#### 4.1 问题

- 1.  $f(x) \in C(\mathbb{R})$ ,  $\lim f(x) = +\infty$ . 证明  $\arg \min_{x \in \mathbb{R}} f(x) \exists$ .
- 2. 证明  $\cos x = \frac{1}{x}$  有无穷多个正实数根.
- 3.  $f(x) \in C[a,b], x_1, x_2, \cdots, x_n \in [a,b]$ . 证明  $\exists \xi \in [a,b]$  使得  $f(\xi) = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$ .
- 4.  $f(x) = |x|^{1/4} + |x|^{1/2} \frac{1}{2}\cos x$ . 问 f(x) 在  $\mathbb{R}$  中有多少个根?
- 5.  $f(x) \in C[0,2], f(0) = f(2)$ , 证明  $\exists x_1, x_2 \in [0,2]$  使得  $|x_1 x_2| = 1$  并且  $f(x_1) = f(x_2)$ .
- 6.  $f(x) = \lim_{n \to +\infty} \frac{x^{n+2} x^{-n}}{x^n + x^{-n-1}}$ . 讨论连续性.
- 7.  $f(x) \in C(\mathbb{R}), f(x+y) = f(x) + f(y)$ .  $\Re M(x) = f(x)$ .
- 8. f(x) 连续, 问 |f(x)| 连续否?
- 9.  $f(x) \in C[0,1], 0 \le f(x) \le 1$ , 证明  $\exists t \in [0,1]$  使得 f(t) = t.
- 10 (不要求掌握). f(x) 在 [0,1] 上单调递增,  $0 \le f(x) \le 1$ , 证明  $\exists t \in [0,1]$  使得 f(t) = t.
- 11. f(x) 在 x = 3 连续,  $\lim_{x \to 3} \frac{f(x)}{x-3} = 2$ . 求 f'(3).
- 12. f(x) 在  $x_0$  处可导, 计算  $\lim_{x\to 0} \frac{f(x_0+x)-f(x_0-x)}{x}$ .

- 13. 证明奇函数导数是偶函数, 偶函数导数是奇函数.
- 14. 求导数.  $y = \sqrt[3]{2 + 3x^3}$ ,  $y = \arcsin \frac{1}{x^2}$ ,  $y = \log(\arctan 5x) + \log(1 x)$ ,  $y = e^{\sin^2 x} + \sqrt{\cos x} 2^{\sqrt{\cos x}}$
- 16.  $f(x), x \in [-1, 1], x \le f(x) \le x^2 + x$ , 证明 f'(0) = 1.
- 17. 求导数.  $e^{xy} = 3x^2y$ ,  $\arctan y/x = \log \sqrt{x^2 + y^2}$ .
- 18. 求导数.  $f(x)^{g(x)}, x^{x^x}$ .
- 19. 求  $\frac{x^n}{1-x}$ ,  $\sin^4 x + \cos^4 x$  的 n 阶导数.
- 20. 求  $\arcsin^2 x$  在 0 处的 n 阶导数.
- 21. 求极限.  $\lim_{x \to +\infty} \sqrt{x^2 + x + 1} x$ ,  $\lim_{n \to +\infty} n(\sqrt[n^2]{n} 1)$ ,  $\lim_{x \to 0} (1 + 2x)^{\frac{(x+1)^2}{x}}$ . 22.  $f([a,b]) \subset [a,b]$ ,  $|f(x) f(y)| \le |x y|$ ,  $|x_{n+1}| = \frac{1}{2}(x_n + f(x_n))$ , 证明  $\forall x_1 \in [a,b]$ , 都有  $x_n$  收敛.

- 1. 由极限定义知  $\exists X > 0, \forall |x| > X, f(x) > f(0)$ . 那么  $\arg\min_{x \in [-X,X]} f(x) = \arg\min_{x \in \mathbb{R}} f(x)$ , 由最值定理知存在性.
- 2. 设  $f(x) = \cos x 1/x$ , 那么  $f(2k\pi) > 0$ ,  $f(2k\pi + \frac{\pi}{2}) < 0$ , 由介值定理立得.
- 3. 注意到  $\min f(x) \leq \frac{1}{n} \sum_{i=1}^{n} f(x_i) \leq \max f(x)$ . 使用介值定理.
- 4. 注意到 f(x) 是偶函数. 由于  $\forall x > 1$ , f(x) > 0, 且 f(x) 在 [0,1] 区间上单调递增, 则 f(0) < 0,  $f(1) > 0 \Rightarrow$  有且仅 有一个正实数根. 从而在 ℝ 上有两个根.
- 5. 令 g(x) = f(x+1) f(x). 那么  $g(0)g(1) \le 0 \Rightarrow \exists x \in [0,1]$  使得 g(x) = 0. 6.  $f(x) = \begin{cases} x^2 & |x| > 1 \end{cases}$ .
- 6.  $f(x) = \begin{cases} x^2 & |x| > 1 \\ -x & 0 < |x| < 1 \end{cases}$
- 7. 先证有理数点.  $f(n) = f(1) + f(n-1) = 2f(1) + f(n-2) = \cdots = nf(1), f(1) = f(1/n) + f((n-1)/n) = f(n)$  $2f(2/n) + f((n-2)/n) = \cdots = nf(1/n) \Rightarrow f(m/n) = mf(1/n) = m/n \times f(1)$ . 有理数点满足 f(x) = xf(1), 无理数 点用有理数逼近用连续性就可以了.
- 8. 注意到  $||f(x)| |f(y)|| \le |f(x) f(y)|$ . 因此连续.
- 9. 令 g(t) = f(t) t,  $g(0) \ge 0$ ,  $g(1) \le 1$ , 利用介值定理.
- 10. 使用 Lebesgue 方法. 令  $x_0 = \sup_x \{f(x) > x\}$ , 往证  $f(x_0) = x_0$ . 如果  $f(x_0) > x_0$ , 那么  $\forall x_1, x_0 < x_1 < f(x_0)$ , 都 有  $f(x_1) \ge f(x_0) > x_1$ . 这意味着  $x_0$  不是上界. 如果  $f(x_0) < x_0$ , 那么  $\forall x_1, f(x_0) < x_1 < x_0$ , 都有  $f(x_1) \le f(x_0) < x_1$ . 这意味着  $x_0$  不是上确界, 因为有更好的上界. 因此  $f(x_0) = x_0$ .

- 这意味着  $x_0$  个是上佣乔,因为有更好的上乔。因此  $J(x_0) = x_0$ .

  11. 当  $x \to 3$  时, $f(3) = \lim_{\substack{x \to 3 \ x \to 3}} f(x)/(x-3) \times (x-3) \sim 2 \times (x-3) = 0$ . 从而  $f'(3) = \lim_{\substack{x \to 3 \ x \to 3}} \frac{f(x)-f(3)}{x-3} = 2$ .

  12.  $\frac{f(x_0+x)-f(x_0-x)}{x} = \frac{f(x_0+x)-f(x_0)}{x} + \frac{f(x_0)-f(x_0-x)}{x} \to 2f'(x_0)$ .

  13. 奇函数导数是偶函数:  $f'(x_0) = \lim_{\substack{x \to x_0 \ x \to x_0}} \frac{f(x)-f(x_0)}{x-x_0} = \lim_{\substack{x \to x_0 \ (-x)-(-x_0) \ (-x)-(-x_0)}} \frac{f'(-x_0)}{(-x)-(-x_0)} = f'(-x_0)$ . 同理偶函数导数是奇函数.

  14.  $y' = \frac{3x^2\sqrt[3]{2+3x^3}}{2+3x^3}, y' = \frac{-2}{x\sqrt{x^4-1}}, y' = \frac{5}{\arctan 5x \times (1+25x^2)} + \frac{1}{x-1}, y' = e^{\sin^2 x} \sin 2x \frac{\sin x}{2\sqrt{\cos x}} 2^{\sqrt{\cos x}} (1+\sqrt{\cos x} \log 2)$ .

  15. 直接计算即可,注意验证分段点左右导数是否相等.  $f'(x) = \begin{cases} 3x^2 4x & x < 0 \text{ or } x > 2 \\ 4x 3x^2 & 0 \le x < 2 \end{cases}$ .
- 16. 注意到 f(0) = 0. 从而当  $x \to 0$  时,  $1 \leftarrow \frac{x}{x} \le \frac{f(x) f(0)}{x 0} \le \frac{x^2 + x}{x} \to 1$ .

  17. 两边同时对 x 求导数, 计算可知  $y' = \frac{y(2 xy)}{x(xy 1)}, y' = \frac{x + y}{x y}$ .

  18. 方法都是写成指数函数,  $e^{g \log f}$ ,  $e^{e^{x \log x} \log x}$ . 结果是  $f^g(g' \log f + \frac{f}{g}f')$ ,  $x^{x^x}(x^x(1 + \log x) \log x + x^{x 1})$ .

- 19.  $\frac{x^n}{1-x} = \frac{x^n x^{n-1} + x^{n-1} x^{n-2} + \dots + x 1 + 1}{1-x} = -(x^{n-1} + \dots + x + 1) + \frac{1}{1-x}$ ,因此 n 阶导数是  $\frac{n!}{(1-x)^{n+1}}$ . 第二个用倍角公式 写出来是  $1 \frac{1}{2}\sin^2 2x$ .  $y' = -\sin 4x$ . 由课上已知关于三角函数高阶导数的结论,知  $y^{(n)} = -4^{n-1}\sin(4x + \frac{n-1}{2}\pi)$ .
- 20.  $f'(x) = 2\arcsin(x)/\sqrt{1-x^2}$ , 从而  $(1-x^2)f'(x)^2 = 4f(x)$ . 两边求导  $-2xf'(x)^2 + 2(1-x^2)f'(x)f''(x) = 4f'(x) \Rightarrow$  $-xf'(x)+(1-x^2)f''(x)=2$ . 两边求 n-2 次导数, 并代入 x=0, 利用 Leibniz 公式知道  $f^{(n)}(0)=(n-2)^2f^{(n-2)}(0)$ . 然后再把 f'(0), f''(0) 算出来用递推就可以了.

21. (1) 
$$\sqrt{x^2 + x + 1} - x = \frac{x+1}{\sqrt{x^2 + x + 1} + x} = \frac{1 + 1/x}{\sqrt{1 + 1/x + 1/x^2} + 1} \rightarrow \frac{1}{2}$$
. (2)  $n(\sqrt[n^2]{n} - 1) = n(e^{\log n/n^2} - 1) \sim n \log n/n^2 \rightarrow 0$ .

(3) 
$$(1+2x)^{\frac{(x+1)^2}{x}} = [(1+2x)^{1/(2x)}]^{2(x+1)^2} \to e^2$$

22. 回忆: 这种题一定是单调数列. 容易验证数列是良定义的, 即不会跑出区间 [a,b] 外. 如果  $x_n \ge x_{n-1}$ , 有  $x_{n+1} =$  $\frac{1}{2}(f(x_n)+x_n)$  (利用  $f(x_n)-f(x_{n-1})\geq x_{n-1}-x_n$ )  $\geq \frac{1}{2}(f(x_{n-1})+x_{n-1})=x_n$ . 从而如果  $x_2\geq x_1$ , 则这成为单调上升 有界数列, 必收敛. 同理若  $x_{n-1} \ge x_n$  也可以推出  $x_n \ge x_{n+1}$ .

#### 补充 (不要求掌握!)

参考 https://wqgcx.github.io/courses/analysis1.pdf.

### 第 5 次习题课: 隐函数求导, 微分, 不定积分

#### 5.1 问题

- 1. 求出闭区间 [-1,1] 上的一元函数  $f(x) = x^{\frac{2}{3}} (x^2 1)^{\frac{1}{3}}$  达到最小值的所有 [-1,1] 上的点.
- 2. 考虑函数  $f(x) = \begin{cases} x^m \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$ , 其中 m 为正整数. 在  $x \neq 0$  处, 求 f'(x) 和 f''(x). 求 m 满足的条件, 使得

f(x) 有连续的二阶导函数.

3. 设 
$$f(x) = \begin{cases} \frac{\log(1+x)}{x} + \frac{x}{2} & x > 0 \\ a & x = 0 \text{ 在 } x = 0 \text{ 处可导, 确定常数 } a, b, c, \text{ 的值 (需要用洛必达法则).} \\ \frac{\sin bx}{x} + cx & x < 0 \end{cases}$$

- 4.  $y = e^{-x^2}$ ,  $\Re y^{(4)}|_{x=0}$ .
- 5.  $y = \frac{x}{2}\sqrt{a^2 x^2} + \arccos\frac{x}{a}$ ,  $\Re\frac{dy}{dx}$
- 6.  $y^2 \tan(x+y) \sin(x-y) = 0$ ,  $\vec{x} \frac{dy}{dx}$
- 7.  $y = x^{a^a} + a^{x^a} + a^{a^x}$ ,  $\Re \frac{dy}{dx}$ .
- 8. 求函数  $f(x) = x^{\arcsin x} (0 < x < 1)$  的导函数 f'(x).
- 9. 求函数  $f(x) = \arctan x$  在 x = 0 点的 3 阶导数 f'''(0).
- 11. 求方程  $y^2 + 2 \log y = x^4$  所确定的函数 y = f(x) 的二阶导数.
- 12. 判断下列结论是否正确.
- (1) 设 f(x) 在  $x_0$  处可导, 且  $f'(x_0) > 0$ , 那么: (1.1) f(x) 在  $x_0$  点一定连续. (1.2) f(x) 在  $x_0$  点的某个邻域内一定连
- 续. (1.3) f(x) 在  $x_0$  点的某个邻域内一定单调上升.
- (2) f(x) 在  $x_0$  点二阶可导, 那么: (2.1) f(x) 在  $x_0$  点一定连续. (2.2) f(x) 在  $x_0$  的某个邻域内一定连续.
- 13.  $\c y f(x) = e^{x(x-1)\cdots(x-2021)}, \c x f'(2021).$

- (1) 当把 t 作为自变量时, 函数 y = f(g(t)) 的二阶微分记为  $d_t^2 y$ , 函数 x = g(t) 的一阶微分记为  $d_t x$ . 计算出: 当  $t=1, \Delta t=0.1$  时, 函数 y=f(g(t)) 的二阶微分  $d_t^2 y|_{t=1,\Delta t=0.1}$  和函数 x=g(t) 的一阶微分  $d_t x|_{t=1,\Delta t=0.1}$ .
- (2) 当把 x 作为自变量时, 函数 y = f(x) 的二阶微分记为  $d_x^2 y$ , x(看作 x 的函数) 的一阶微分记为  $d_x x$ . 计算出: 当  $x = 1, \Delta x = 0.21$  时, 函数 y = f(x) 的二阶微分  $d_x^2 y|_{x=1,\Delta x=0.21}$  和函数 x(看作 x 的函数) 的一阶微分  $d_x x|_{x=1,\Delta x=0.21}$ .
- (3)  $\frac{d_t^2 y}{(d_t x)^2}|_{t=1,\Delta t=0.1}$  与  $\frac{d_x^2 y}{(d_x x)^2}|_{x=1,\Delta x=0.21}$  相等吗?
- 18. 求极限.  $\lim_{x \to 0+0} x^x$ ,  $\lim_{x \to 0} \frac{\sqrt[3]{1+x}-1}{x+\tan x}$ ,  $\lim_{n \to +\infty} \cos \frac{a}{2} \cos \frac{a}{2^2} \cdots \cos \frac{a}{2^n}$   $(a \in (0,1))$ ,  $\lim_{x \to +\infty} \left(\frac{\sqrt{1+x^2}}{x}\right)^{x^2}$ ,  $\lim_{n \to +\infty} \sqrt{n} (\sqrt[n]{n}-1)$ . 19. 设  $\lim_{n \to +\infty} (x_n x_{n-2}) = 0$ , 证明  $\lim_{n \to +\infty} \frac{x_n}{n} = 0$ .

- 20. 设  $f(x) \in C[0,1]$ , 如果极限  $\lim_{x \to +\infty} \frac{f(0) + f(1/n) + f(2/n) + \dots + f(1)}{n} = M$ , 其中  $M = \max_{x \in [0,1]} f(x)$ , 则  $f(x) \equiv M$ .
- 21 (Riemann-Lebesgue 引理).  $f \in R[a,b], g \in R[0,T], g(x+T) = g(x)$ , 则  $\int_a^b f(x)g(nx)dx \to \int_a^b f(x)dx \cdot \frac{1}{T} \int_0^T g(x)dx$ .

- 1.  $f(1) = f(-1) = 1, f'(x) = \frac{2}{3x^{1/3}} \frac{2x}{3(x^2 1)^{2/3}} = \frac{2[(x^2 1)^{2/3} x^{4/3}]}{3x^{1/3}(x^2 1)^{2/3}} \ge 0 \Rightarrow 0 < x \le \frac{\sqrt{2}}{2}$  或者  $-1 < x \le -\frac{\sqrt{2}}{2}$ . 注意到 f(0) = 1. 从而达到最小值的点是 -1,0,1.
- 2.  $f'(x) = -x^{m-2} \cos \frac{1}{x} + mx^{m-1} \sin \frac{1}{x}, f''(x) = -x^{m-4} \sin \frac{1}{x} (m-2)x^{m-3} \cos \frac{1}{x} mx^{m-3} \cos \frac{1}{x} m(m-1)x^{m-2} \sin \frac{1}{x}.$  要使得 f''(0) 存在需要 f'(0)∃,  $f'(x) \to f'(0)$  且  $\lim_{x \to 0} \frac{f'(x) f'(0)}{x}$ ∃ ⇒  $m \ge 4$ , 二阶导函数连续性意味着  $f''(x) \to f''(0)$  ⇒  $m \geq 5$ .
- 3. 连续性:  $f(0+0) = a \Rightarrow a = 1, b = 1$ .  $f'_{+}(0) = 0, f'_{-}(0) = 0 \Rightarrow c = 0$  (需要用洛必达).
- $4. \ \ y'=-2xe^{-x^2}, \\ y''=4x^2e^{-x^2}-2e^{-x^2}, \\ y'''=-2x(4x^2-2)e^{-x^2}+8xe^{-x^2}, \\ y''''=(-24x^2+12)e^{-x^2}+(16x^4-24x^2)e^{-x^2}.$ 从而 y''''(0) = 12.
- 5.  $\frac{dy}{dx} = \frac{\sqrt{a^2 x^2}}{2} \frac{x^2}{2\sqrt{a^2 x^2}} \frac{1}{\sqrt{a^2 x^2}}$ .
- 6. 两边求导,  $2yy'\tan(x+y) + \frac{y^2}{\cos^2(x+y)}(y'+1) + (y'-1)\cos(x-y) = 0 \Rightarrow y' = \frac{\cos^2(x+y)\cos(x-y) y^2}{\cos^2(x+y)\cos(x-y) + y^2 + 2y\sin(x+y)\cos(x+y)}$ .
- 7.  $y' = a^a x^{a^a 1} + a^{x^a + 1} x^{a 1} \log a + a^{a^x + x} (\log a)^2$ .

- 8.  $f(x) = e^{\arcsin x \log x}$ ,  $f'(x) = x^{\arcsin x} (\frac{\log x}{\sqrt{1-x^2}} + \frac{\arcsin x}{x})$ . 9.  $f'(x) = \frac{1}{1+x^2}$ ,  $f''(x) = -\frac{2x}{(1+x^2)^2}$ ,  $f'''(x) = -\frac{2(1+x^2)^2 8x^2(1+x^2)}{(1+x^2)^4} \Rightarrow f'''(0) = -2$ . 10.  $\frac{1}{x^2-4} = \frac{1}{(x-2)(x+2)} = \frac{1}{4}(\frac{1}{x-2} \frac{1}{x+2}) \Rightarrow f^{(n)}(x) = \frac{(-1)^n n!}{4}(\frac{1}{(x-2)^{n+1}} \frac{1}{(x+2)^{n+1}})$ . 11. 两边求导,  $2yy' + 2\frac{y'}{y} = 4x^3 \Rightarrow y^2y' + y' = 2x^3y$ , 再求一次,  $2y(y')^2 + y^2y'' + y'' = 6x^2y + 2x^3y'$ , 利用  $y' = \frac{2x^3y}{y^2+1}$ , 得 到  $y'' = \frac{6x^2y}{y^2+1} + \frac{4x^6y}{(y^2+1)^2} - \frac{8x^6y^3}{(y^2+1)^3}$ .
- 12. (1.1) 可导一定连续. (1.2)(1.3) 不一定, 比如说  $f(x) = \begin{cases} x & x \in \mathbb{Q} \\ x + x^2 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ . (2.1) (2.2) 都是对的.
- 13.  $f'(x) = e^{x(x-1)\cdots(x-2021)}[x(x-1)\cdots(x-2021)]'$ ,  $\forall \vec{m} \ f'(2021) = 2021!$
- 14.  $\frac{dx}{dt} = \frac{1}{1+t^2}, \frac{dy}{dt} = \frac{1}{1+t^2} \operatorname{sgn}(t)$ , 注意到 t, x 同号, 因此  $\frac{dy}{dx} = \operatorname{sgn}(x)$ .
- 15. 直接计算, 小心化简.  $y'(x) = \frac{1}{x^4+1}$ .
- 16. (1)  $\frac{4x^3+2x^2+3x+1}{x(x+1)(x^2+1)} = \frac{2}{x+1} + \frac{1}{x} + \frac{x}{(x^2+1)}$ , 因此积分后是  $2\log|x+1| + \log|x| + \frac{1}{2}\log(x^2+1) + C$ . (2)  $\frac{2x^2+x+5}{x^4-x^2-6} = \frac{11}{10\sqrt{3}} \frac{1}{x-\sqrt{3}} \frac{11}{10\sqrt{3}} \frac{1}{x+\sqrt{3}} \frac{1}{5\sqrt{2}} \frac{\sqrt{2}}{x^2+2} + \frac{1}{5} \frac{x}{x^2-3} \frac{1}{5} \frac{x}{x^2+2}$ , 因此积分后是  $\frac{11}{10\sqrt{3}}\log|x-\sqrt{3}| \frac{11}{10\sqrt{3}}\log|x+\sqrt{3}| \frac{1}{5\sqrt{2}} \arctan(\frac{x}{\sqrt{2}}) + \frac{1}{10}\log|x^2-3| \frac{1}{10}\log(x^2+2) + C$ .
- $\frac{\cos^3 x dx}{\sin x + \cos x} = \frac{d \tan x}{(\tan x + 1)(\tan^2 x + 1)^2},$  后面用有理式展开积分. 结果是  $\frac{1}{4} \log |\sin x + \cos x| + \frac{1}{2}x + \frac{1}{4} \sin x \cos x + \frac{1}{4} \cos^x + C.$
- (注: 本题也可以用对偶积分,考虑  $\int \frac{\sin^3 x}{\sin x + \cos x} dx$ ). (4)  $\frac{3+5x}{\sqrt{(2x-1)^2+4}} = \frac{5(x-\frac{1}{2})}{2\sqrt{(x-\frac{1}{2})^2+1}} + \frac{11}{4\sqrt{(x-\frac{1}{2})^2+1}}$ , 因此积分后是  $\frac{5}{2}\sqrt{(x-\frac{1}{2})^2+1} + \frac{11}{4}\log|x-\frac{1}{2}+\sqrt{(x-\frac{1}{2})^2+1}| + C$ .
- 17. (1)  $d_t^2 y|_{t=1,\Delta t=0.1} = 30t^4 (\Delta t)^2|_{t=1,\Delta t=0.01} = 0.3, d_t x|_{t=1,\Delta t=0.1} = 2t\Delta t|_{t=1,\Delta t=0.1} = 0.2.$
- (2)  $d_x^2 y|_{x=1,\Delta x=0.21} = 6x(\Delta x)^2 = 0.2646, d_x x|_{x=1,\Delta x=0.21} = 1\Delta_x|_{x=1,\Delta x=0.21} = 0.21.$
- $(3) \ (d_t x)^2|_{t=1,\Delta t=0.1} = 0.2^2 = 0.04, (d_x x)^2|_{x=1,\Delta x=0.21} = 0.21^2 = 0.0441, \frac{d_t^2 y}{(d_t x)^2}|_{t=1,\Delta t=0.1} = \frac{0.3}{0.04} = 7.5 \neq 6 = \frac{0.2646}{0.0441} = 0.21^2 = 0.0441, \frac{d_t^2 y}{(d_t x)^2}|_{t=1,\Delta t=0.1} = \frac{0.3}{0.04} = 7.5 \neq 6 = \frac{0.2646}{0.0441} = \frac{0.21}{0.04} = \frac{0.21}$  $\frac{d_x^2 y}{(d_x x)^2}|_{x=1,\Delta x=0.21}$ , 因此不相等.
- 18. (1)  $x^x = e^{x \log x} \to e^0 = 1$ .
- (2)  $\sqrt[3]{1+x}-1\sim \frac{1}{3}x, x+\tan x\sim 2x$ , 因此极限值为  $\frac{1}{6}$ .
- (3)  $\cos \frac{a}{2} \cdots \cos \frac{a}{2^n} \sin \frac{a}{2^n} = \frac{\sin a}{2^n}$  (不断利用  $\sin 2x = 2 \sin x \cos x$ ), 因此极限值为  $\frac{\sin a}{a}$ .

  (4)  $(1 + \frac{\sqrt{1+x^2}-x}{x})^{\frac{x}{\sqrt{1+x^2}-x}} x(\sqrt{1+x^2}-x)$ , 由于  $x(\sqrt{1+x^2}-x) = \frac{x}{\sqrt{1+x^2}+x} = \frac{1}{1+\sqrt{1+\frac{1}{x^2}}} \to \frac{1}{2}$ , 因此原极限为  $\sqrt{e}$ .
- (5)  $\sqrt{n}(\sqrt[n]{n} 1) \sim \sqrt{n}(e^{(\log n)/n} 1) \sim \sqrt{n}(\log n)/n = \log n/\sqrt{n} \to 0.$
- 19. 分奇偶讨论. 使用  $a_n \to a$  则  $\sum a_n/n \to a$  这个结论.
- 20. 如果结论不对, 则存在一个长度为  $\delta$  的区间, 在这个区间上  $f(x) \leq M \epsilon$ , 则至少有  $[\delta/n] 1$  个 f(i/n) 落在这个 区间里, 这样一来极限值就会小于等于  $M(1-\delta) + (M-\epsilon)\delta$ , 矛盾.
- 21. WLOG 设  $\int_0^T g(x)dx = 0$ , 否则考虑  $h(x) = g(x) \frac{1}{T} \int_0^T g(x)dx$ .

由 Riemann 积分定义,
$$\forall \epsilon > 0$$
,存在阶梯函数  $s_{\epsilon}(x) = \begin{cases} C_1 & a = x_0 \leq x < x_1 \\ C_2 & x_1 \leq x < x_2 \\ \dots \\ C_m & x_{m-1} \leq x \leq b \end{cases}$  使得  $\int_a^b |f(x) - s_{\epsilon}(x)| dx < \epsilon$ . 设

 $( \ \, \cup_m \ \, x_{m-1} \leq x \leq b )$   $M = \sup_{x \in [0,T]} |g(x)|. \ \, \bigcup_{a} |\int_{a}^{b} f(x)g(nx)dx| = |\int_{a}^{b} (f(x) - s_{\epsilon}(x))g(nx)dx + \int_{a}^{b} s_{\epsilon}(x)g(nx)dx| \leq \int_{a}^{b} |f(x) - s_{\epsilon}(x)|g(nx)dx + |\int_{a}^{b} s_{\epsilon}(x)g(nx)dx| \leq \int_{a}^{b} |f(x) - s_{\epsilon}(x)|g(nx)dx + |\int_{a}^{b} c_{i} \int_{x_{i-1}}^{x_{i}} g(nx)dx < M\epsilon + \frac{1}{n} \sum_{i=1}^{m} C_{i} \int_{nx_{i-1}}^{nx_{i}} g(x)dx \leq M\epsilon + \frac{1}{n} \sum_{i=1}^{m} C_{i}MT. \ \, \\ \text{其中最后一个等式利用了} \int_{0}^{T} g(x)dx = 0, \text{ 这意}$  味着  $\int_{c}^{d} g(x)dx = \int_{c}^{c+T} g(x)dx + \int_{c+T}^{c+2T} g(x)dx + \dots + \int_{c+kT}^{d} g(x)dx \text{ (} \ \, \bigcup_{i=1}^{m} c_{i} \int_{x_{i-1}}^{x_{i}} g(x)dx \leq MT.$  洗择一个足敏大的 x 結果 x 結果 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x 是 x选择一个足够大的 n, 使得  $\frac{1}{n}\sum_{i=1}^{m}C_{i}MT<\epsilon$ . 从而  $|\int_{a}^{b}f(x)g(nx)dx|\leq (M+1)\epsilon$ .

### 5.3 补充 (不要求掌握!)

参考 https://wqgcx.github.io/courses/analysis2.pdf, 初步了解可积性理论.

### 第 6 次习题课: 不定积分, 变上限积分, 定积分

#### 6.1 问题

- 1. 求极限.  $\lim_{n \to +\infty} \frac{1}{n} \left( \sqrt{1 + \frac{1}{n}} + \dots + \sqrt{1 + \frac{n}{n}} \right)$ ,  $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2}$ ,  $\lim_{n \to +\infty} \sum_{i=1}^{n} \left( 1 + \frac{i}{n} \right) \sin \frac{i\pi}{n^2}$ ,  $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{n + k}$ .
- 2. 求导数.  $\int_{x^3+1}^{2^x} \frac{\sin t}{t^4+2} dt$ ,  $\int_e^{e^x} \frac{dt}{1+\log t} (x>1)$ ,  $(\int_a^x f(t) dt)^2$ .
- 3. 求积分.  $\int \frac{dx}{\sqrt{a^2-x^2}}, \int \frac{dx}{\sqrt{x^2+a^2}}, \int \frac{dx}{\sqrt{x^2-a^2}}, \int \sqrt{a^2-x^2} dx, \int \sqrt{x^2+a^2} dx, \int \sqrt{x^2-a^2} dx, \int \frac{dx}{\sqrt{x^2-a^2}}, \int \sqrt{\tan x} dx, \int \frac{e^x(2-x^2)}{(1-x)\sqrt{1-x^2}} dx, \int x^2\sqrt{x^2+1} dx, \int \frac{dx}{x(x^3+2)}, \int x^2 \arctan x dx, \int \frac{1}{\cos^3 x} dx, \int \frac{1}{x\sqrt{1-x^2}} dx.$
- 5. 函数 f(x) 在 [0,1] 上有连续的导函数. 证明: 对于任意  $x \in [0,1]$ , 有  $|f(x)| \leq \int_0^1 |f(t)| dt + \int_0^1 |f'(t)| dt$ , 并写出取等 号条件.
- 6.  $x_1 > 0$ , 对于每个正整数 n, 有  $x_{n+1} = \frac{1}{2}(x_n + \frac{1}{x_n})$ . 证明  $\lim_{n \to +\infty} x_n$  存在并求之.
- 7. 设 x > 0, 定义  $p(x) = \int_0^x \frac{dt}{\sqrt{t^3 + 2021}}$ , 证明方程  $p(x+1) = p(x) + \sin x$  有无穷个互不相等的正实数解.
- 8. 设  $f(x) \in R[a,b], \int_a^b f(x)dx > 0$ , 证明  $\exists [\alpha,\beta] \subset [a,b]$  使得  $f(x) > 0, x \in [\alpha,\beta]$ .
- 9 (不要求掌握).  $f(x) \in R[a,b]$ , 是否有 [f(x)] 可积? 其中 [·] 表示向下取整.
- 10. 设  $f(x) \in C[0,\pi]$  满足  $\int_0^\pi f(x) \cos x dx = \int_0^\pi f(x) \sin x dx = 0$ , 证明  $\exists \alpha, \beta \in (0,\pi), \alpha \neq \beta$ , 使得  $f(\alpha) = f(\beta) = 0$ .
- 11. 证明柯西不等式  $[\int_a^b f(x)g(x)dx]^2 \le \int_a^b f^2(x)dx \cdot \int_a^b g^2(x)dx$ , 并说明取等号条件.

  12 (不要求掌握). 证明 Holder 不等式  $[\int_a^b f(x)g(x)dx \le [\int_a^b f^p(x)dx]^{\frac{1}{p}}[\int_a^b g^q(x)dx]^{\frac{1}{q}}$ , 其中  $p,q > 1, \frac{1}{p} + \frac{1}{q} = 1, f,g \ge 0$ .

  13 (不要求掌握). 证明 Minkowski 不等式  $[\int_a^b [f(x) + g(x)]^p dx]^{\frac{1}{p}} \le [\int_a^b f^p(x)dx]^{\frac{1}{p}} + [\int_a^b g^p(x)dx]^{\frac{1}{p}}$ , 其中  $p \ge 1, f,g \ge 0$ .

  14. 设  $f(x) \in C[a,b]$  满足  $\forall \phi(x) \in C[a,b]$ , 只要  $\int_a^b \phi(x)dx = 0$ , 就有  $\int_a^b f(x)\phi(x)dx = 0$ . 证明  $f(x) \equiv C$ .

- 15.  $a_n/n^{\alpha} \to 1, \alpha > 0, \ \ \ \ \lim_{n \to +\infty} \frac{1}{n^{1+\alpha}} (a_1 + a_2 + \dots + a_n).$
- 16. f(x) 在 [a,b] 上可导, f'(a) = m, f'(b) = n, 证明存在  $c \in [a,b]$  使得  $f'(c) = \xi$ , 其中  $\xi$  是 [m,n] 或 [n,m] 中的任意 一个数. 本题说明导函数虽然不一定连续, 但具有介值性质.
- 17. f(x) 在 [a,b] 上可导, 证明存在  $c \in [a,b]$  使得  $f'(c) = \frac{f(b)-f(a)}{b-a}$ .
- 18. 记  $f_n(x) = n^2 x e^{-nx}, x \in [0,1]$ , 求  $\int_0^1 \lim_{n \to +\infty} f_n(x) dx$  和  $\lim_{n \to +\infty} \int_0^1 f_n(x) dx$ . 本题说明积分极限不一定可交换.
- 19. 记  $f_n(x) = \frac{\sin nx}{n}$ , 求  $\lim_{n \to +\infty} f'_n(x)$  和  $(\lim_{n \to +\infty} f_n(x))'$ . 本题说明求导极限不一定可交换.

- 1. 利用定积分定义. (1)  $\int_0^1 \sqrt{1+x} dx = \frac{2}{3}(1+x)^{3/2}|_0^1 = \frac{4}{3}\sqrt{2} \frac{2}{3}$ .
- (2)  $\sum_{k=1}^{n} \frac{n}{n^2 + k^2} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + (k/n)^2} \to \int_0^1 \frac{1}{1 + x^2} dx = \frac{\pi}{4}.$
- $(3) \frac{i\pi}{n^2} \epsilon \frac{i\pi}{n^2} \le \sin \frac{i\pi}{n^2} \le \frac{i\pi}{n^2}, \sum_{i=1}^n (1 + \frac{i}{n}) \frac{i\pi}{n^2} = \frac{1}{n} \sum_{i=1}^n (1 + \frac{i}{n}) \frac{i\pi}{n} \to \int_0^1 (1 + x) \pi x dx = \frac{5\pi}{6},$  同理左边  $\ge (1 \epsilon) \frac{5\pi}{6},$  由  $\epsilon$ -N 语言.

- (4)  $\sum_{k=1}^{n} \frac{1}{k+n} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+k/n} \to \int_{0}^{1} \frac{1}{1+x} dx = \log 2.$
- 2. 利用变上限积分导数结论.  $f' = \frac{\sin 2^x}{16^x + 2} 2^x \log 2 \frac{\sin(x^3 + 1)}{(x^3 + 1)^4 + 2} 3x^2$ .  $f' = \frac{e^x}{1 + x}$ .  $f' = 2f(x) \int_a^x f(t) dt$ .
- $3. \ \arcsin \frac{x}{a} + C, \log |x + \sqrt{x^2 + a^2}| + C, \log |x + \sqrt{x^2 a^2}| + C, \frac{1}{2}(x\sqrt{a^2 x^2} + a^2\arcsin(x/a)) + C, \frac{1}{2}(x\sqrt{x^2 + a^2} + a^2\log|x + a^2|) + C, \frac{1}{2}(x\sqrt{a^2 x^2} + a^2) + C, \frac{1}{2}(x\sqrt{a^2 x$  $\sqrt{x^2+a^2}|)+C, \frac{1}{2}(x\sqrt{x^2-a^2}-a^2\log|x+\sqrt{x^2-a^2}|)+C, 0$ (注意是奇函数). 都是利用换元或者分部积分.
- $4.(1) \, \diamondsuit \, u = x + \sqrt{x^2 + x + 1}, x = \frac{u^2 1}{2u + 1} \Rightarrow 2 \int \frac{u^2 + u + 1}{u(2u + 1)^2} du = 2 \int \frac{1}{u} \frac{3(u + 1)}{(2u + 1)^2} du = 2 \log|u| 3 \int \frac{du}{2u + 1} 3 \int \frac{du}{(2u + 1)^2} + C = \frac{u^2 1}{2u + 1} \Rightarrow 2 \int \frac{u^2 + u + 1}{u(2u + 1)^2} du = 2 \int \frac{1}{u} \frac{3(u + 1)}{(2u + 1)^2} du = 2 \log|u| 3 \int \frac{du}{2u + 1} 3 \int \frac{du}{(2u + 1)^2} + C = \frac{u^2 1}{u(2u + 1)^2} + \frac{u^2 1}{u(2u + 1)^2}$  $2\log u - \frac{3}{2}\log|2u+1| + \frac{3}{2}\frac{1}{2u+1} + C.$
- (2) 令  $u = \sqrt{\tan x}, x = \arctan u^2 \Rightarrow$  原积分 =  $2 \int \frac{u^2}{1+u^4} du$ . 使用对偶积分. 记  $I = \int \frac{u^2}{1+u^4} du, J = \int \frac{1}{1+u^4} du, I + J = \int \frac{u^2}{1+u^4} du$  $\frac{1}{2\sqrt{2}}\arctan\left(\frac{\tan x - 1}{\sqrt{2}\tan x}\right) + \frac{1}{4\sqrt{2}}\log\left|\frac{\tan x - \sqrt{2}\tan x + 1}{\tan x + \sqrt{2}\tan x + 1}\right| + C.$   $(3) = \int \frac{e^x(1 - x^2) + e^x}{(1 - x)\sqrt{1 - x^2}}dx = \int \sqrt{\frac{1 + x}{1 - x}}de^x + \int \frac{e^x}{(1 - x)\sqrt{1 - x^2}}dx \xrightarrow{\text{from All } f} e^x \sqrt{\frac{1 + x}{1 - x}} - \int e^x d\sqrt{\frac{1 + x}{1 - x}} + \int \frac{e^x}{(1 - x)\sqrt{1 - x^2}}dx + C = e^x\sqrt{\frac{1 + x}{1 - x}} + C.$
- $(4) = \frac{1}{2} \int \sqrt{x^4 + x^2} dx^2 = \frac{1}{2} \int \sqrt{(x^2 + \frac{1}{2})^2 \frac{1}{4}} d(x^2 + \frac{1}{2}) = \frac{1}{4} (x^2 + \frac{1}{2}) \sqrt{x^4 + x^2} \frac{1}{16} \log|x^2 + \frac{1}{2} + \sqrt{x^4 + x^2}| + C.$
- $(5) = \frac{1}{3} \int \frac{dx^3}{x^3(x^3+2)} = \frac{1}{6} \int \frac{dx^3}{x^3} \frac{dx^3}{x^3+2} = \frac{1}{6} \log \left| \frac{x^3}{x^3+2} \right| + C.$   $(6) = \frac{1}{3} \int \arctan x dx^3 = \frac{1}{3} x^3 \arctan x + C \frac{1}{3} \int \frac{x^3}{1+x^2} dx = \frac{1}{3} x^3 \arctan x + C \frac{1}{6} \int \frac{x^2 dx^2}{1+x^2} = \frac{1}{3} x^3 \arctan x + C \frac{1}{6} x^2 + C.$
- $(7) = \int \frac{1}{(1-\sin^2 x)^2} d\sin x = \frac{1}{4} \log |\frac{1+\sin x}{1-\sin x}| + \frac{\sin x}{2(1-\sin^2 x)} + C.$  最后一个等号是积分  $\int \frac{1}{(1-t^2)^2} dt,$  注意到  $\int \frac{1}{1-t^2} dt = \frac{t}{1-t^2} \int t d\frac{1}{1-t^2} + C = \frac{t}{1-t^2} \int \frac{2t^2}{(1-t^2)^2} dt + C = \frac{t}{1-t^2} + \int \frac{2}{1-t^2} dt \int \frac{2}{(1-t^2)^2} dt + C \Rightarrow \int \frac{1}{(1-t^2)^2} dt = \frac{1}{2} \int \frac{1}{1-t^2} dt + \frac{t}{2(1-t^2)} + C = \frac{t}{1-t^2} + C = \frac{t}{1 \frac{1}{4}\log\left|\frac{1+t}{1-t}\right| + \frac{t}{2(1-t^2)} + C.$
- $(8) \ x = \sin t \Rightarrow dx = \cos t dt, \int \frac{1}{x\sqrt{1-x^2}} dx = \int \frac{1}{\sin t} dt = -\int \frac{d\cos t}{\sin^2 t} = -\int \frac{d\cos t}{1-\cos^2 t} = \frac{1}{2} \log \left| \frac{1-\cos t}{1+\cos t} \right| + C = \frac{1}{2} \log \left| \frac{1-\sqrt{1-x^2}}{1+\sqrt{1-x^2}} \right| + C = \frac{1}{2} \log \left| \frac{(1-x)+(1+x)-2\sqrt{1-x}\sqrt{1+x}}{(1-x)+(1+x)+2\sqrt{1-x}\sqrt{1+x}} \right| + C = \log \left| \frac{\sqrt{1-x}-\sqrt{1+x}}{\sqrt{1-x}+\sqrt{1+x}} \right| + C.$ 5. 由连续性和积分中值定理知  $\exists \xi \in [0,1],$  使得  $|f(\xi)| = \int_0^1 |f(t)| dt.$  从而  $\int_0^1 |f(t)| dt + \int_0^1 |f'(t)| dt \geq |f(\xi)| + C$
- $\int_{\xi}^{x} |f'(t)|dt \ge |f(\xi)| + |\int_{\xi}^{x} f'(t)dt| = |f(\xi)| + |f(x) f(\xi)| \ge |f(x)|$ . 等号处处成立意味着 f'(x) = 0, 这也意味着  $f(x) \equiv C$ .
- 6. 重复这种题很多次了. 首先  $x_{n+1} = \frac{1}{2}(x_n + 1/x_n) \ge 1$ . 其次如果  $x_n \ge 1$ , 则  $x_{n+1} x_n = \frac{1}{2}(1/x_n x_n) \le 0$ . 说明单 调递减有下界, 两边求极限知答案是 1.
- 7.  $p(x+1) p(x) = \int_x^{x+1} \frac{dt}{\sqrt{t^3 + 2021}} \in \left[\frac{1}{\sqrt{(x+1)^3 + 2021}}, \frac{1}{\sqrt{x^3 + 2021}}\right]. \Leftrightarrow g(x) = p(x+1) p(x) \sin x, g(2k\pi) > 0, g(2k\pi + 1) g(x) = \int_x^{x+1} \frac{dt}{\sqrt{t^3 + 2021}} dt = \left[\frac{1}{\sqrt{(x+1)^3 + 2021}}, \frac{1}{\sqrt{x^3 + 2021}}\right]. \Leftrightarrow g(x) = p(x+1) p(x) \sin x, g(2k\pi) > 0, g(2k\pi + 1) g(x) \sin x, g(2k\pi) > 0, g(2k\pi + 1) g(x) \sin x, g(2k\pi) > 0, g(2k\pi + 1) g(x) \sin x, g(2k\pi) > 0, g(2k\pi + 1) g(x) \sin x, g(2k\pi) > 0, g(2k\pi + 1) g(x) g(2k\pi + 1) g(2k$  $\pi/2$ ) < 0, 用介值定理.
- 8. 反证法, 如果任意区间都有点  $f(x) \le 0$ , 那么 Riemann 和的极限怎么可能 > 0?(我就偏偏取那个  $\le 0$  的点)
- 9. 负的 Riemann 函数可积, 但取整后变成不可积的 Dirichlet 函数.
- 10. 由于  $\int_0^\pi f(x) \sin x dx = 0$ , 从而存在零点  $\alpha \in (0,\pi)$ . 再考虑  $\int f(x) \sin(x-\alpha) dx = 0$ , 知如果只有一个零点, 那么这 个积分不可能为 0 (注意到  $f(x)\sin(x-\alpha)$  在只有一个零点  $x=\alpha$  时是始终同号的).
- 11.  $\int_a^b (f(x) tg(x))^2 dx \ge 0$  对于  $\forall t \in \mathbb{R}$  恒成立. 若  $\int_a^b g^2(x) dx = 0$  则不等式左右两边都是 0. 对于其余情况, 这是关 于 t 的一元二次不等式, 因此  $\Delta \leq 0 \Rightarrow 4[\int_a^b f(x)g(x)dx]^2 - 4\int_a^b f^2(x)dx\int_a^b g^2(x)dx \leq 0$ . 取等号条件是 f(x) = Cg(x).
- 12. 不妨设  $\int f^p(x) dx = \int g^q(x) dx = 1$ . 注意到  $\frac{1}{p} \log(a^p) + \frac{1}{q} \log(b^q) \le \log(\frac{a^p}{p} + \frac{b^q}{q}) \Leftrightarrow ab \le \frac{a^p}{p} + \frac{b^q}{q}$ . 从而
- $\int f(x)g(x)dx = \leq \int \frac{f^p(x)}{p}dx + \int \frac{g^q(x)}{q}dx = \frac{1}{p} + \frac{1}{q} = 1.$   $13. \int_a^b (f+g)^p dx = \int_a^b (f+g)^{p-1} f dx + \int_a^b (f+g)^{p-1} g dx$  利用上一问结论  $\leq [\int_a^b (f+g)^p dx]^{(p-1)/p} [\int_a^b f^p dx]^{1/p} + [\int_a^b (f+g)^p dx]^{1/p} + [\int_a^b (f+g)^p$  $g)^{p}dx]^{(p-1)/p} \left[ \int_{a}^{b} g^{p}dx \right]^{1/p} \Rightarrow \left[ \int_{a}^{b} (f+g)^{p}dx \right]^{1/p} \leq \left[ \int_{a}^{b} f^{p}dx \right]^{1/p} + \left[ \int_{a}^{b} g^{p}dx \right]^{1/p}.$
- 14. 考虑  $\phi(x) = f(x) \frac{1}{b-a} \int_a^b f(t)dt$ . 从而  $\int_a^b f^2(x)dx = \frac{1}{b-a} [\int_a^b f(t)dt]^2 \Rightarrow \int_a^b f^2(t)dt \int_a^b 1dt = [\int_a^b f(t)dt]^2$ . 由 Cauchy 不等式取等条件知  $f(x) \equiv C$ .
- 15. 这个题提醒大家很多时候感觉虽然可靠, 但要严格说明依然应该使用  $N-\epsilon$  语言.  $\forall \epsilon > 0, \exists N, \forall n > N, n^{\alpha}(1-\epsilon) < \infty$  $a_n < n^{\alpha}(1+\epsilon)$ . 从而存在足够大的 n, 使得  $\frac{1}{n^{1+\alpha}}(1^{\alpha}+2^{\alpha}+\cdots+N^{\alpha}) < \epsilon, \frac{1}{n^{1+\alpha}}(a_1+a_2+\cdots+a_N) < \epsilon, |\frac{1}{n^{1+\alpha}}[(a_{N+1}-a_{N+1})]$  $(N+1)^{\alpha}) + \dots + (a_n - n^{\alpha})]| \leq \frac{1}{n^{1+\alpha}} \epsilon [(N+1)^{\alpha} + \dots + n^{\alpha}] \leq \frac{1}{n^{1+\alpha}} \epsilon [1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}] = \epsilon \frac{1}{n} \sum_{i=1}^{n} (\frac{i}{n})^{\alpha} \to \epsilon \int_0^1 x^{\alpha} dx = \frac{\epsilon}{\alpha+1}.$
- 这意味着当 n 足够大时,  $\frac{1}{n^{1+\alpha}}(\sum_{i=1}^n a_i)$  和  $\frac{1}{n^{1+\alpha}}(\sum_{i=1}^n i^\alpha)$  差不多. 因此原极限是  $\frac{1}{\alpha+1}$ .

- 16. 通过平移只需证明 f'(a) > 0, f'(b) < 0, 证明存在 f'(c) = 0. f'(a) > 0 说明一定有数 x > a 使得 f(x) > f(a), f'(b) < 0 说明一定有数 x < b 使得 f(x) > f(b). 闭区间上的连续函数必有最大值, 从而最大值点的导数一定为 0 (利 用左导数  $\geq 0$ , 右导数  $\leq 0$ ). 这就是 f'(c) = 0.
- 17. 构造  $g(x) = f(x) \frac{f(b) f(a)}{b a}(x a)$ . g(a) = g(b) = f(a), 从而考虑 [a, b] 区间上 g(x) 的最大值点, 其必有  $g'(x_0) = 0$ , 此即  $f(x_0) = \frac{f(b)-f(a)}{b-a}$ .
- 18. 这个题告诉我们求导和极限未必可交换.  $f_n(x) \to 0$  对于所有  $x \in [0,1]$  从而  $\int_0^1 \lim f_n(x) dx = 0$ . 而  $\int_0^1 f_n(x) dx = 0$  $1 - e^{-n} - ne^{-n} \to 1.$
- 19.  $f'_n(x) = \cos(nx), f'_n(0) \to 1$ , 而对于  $x \neq 0$  其极限不存在.  $f_n(x) \to 0$  对于所有  $x \in \mathbb{R}$ , 从而  $[\lim f_n(x)]' = 0$ .

#### 补充 (不要求掌握!)

测度: 我们把满足以下性质的非负集函数 (定义域是集合, 且函数值非负) 叫做测度:  $m(\emptyset) = 0$ , 并且对于任意不交的集 合  $A_1,A_2,\cdots,\sum\limits_{i=1}^\infty m(A_i)=m(\cup_{i=1}^\infty A_i)$ . 外测度: 把上述不交条件去掉, 并把 = 改成  $\geq$ .  $\pi$  系: 一族集合构成的集合  $\mathscr{P}$ , 且满足  $\forall A,B\in\mathscr{P}\Rightarrow A\cap B\in\mathscr{P}$ .

半环:  $\mathscr{P}$  是  $\pi$  系, 若  $A, B \in \mathscr{P}, A \supset B$ , 则存在有限个两两不交的集合  $C_1, C_2, \cdots, C_k$  使得  $A \setminus B = \cup_k C_k$ .

 $\sigma$ -域: 如果  $\emptyset, \Omega \in \mathscr{P}; A \in \mathscr{P} \Rightarrow A^c \in \mathscr{P}; A_1, A_2, \dots \in \mathscr{P} \Rightarrow \cup_i A_i \in \mathscr{P}, 则称 \mathscr{P} \in \sigma$ -域

容易验证所有形如  $(a,b],a,b \in \mathbb{R}$  的区间构成的集合是半环, 定义 m((a,b]) = b - a, 这是半环上的外测度. 由测度扩张 定理, 这个外测度可以扩张到  $\sigma(\{(a,b]\})$  上. 利用 Caratheodory 条件可以完备化. 这个测度成为 Lebesgue 测度.

更多关于 Lebesgue 测度的知识: Cantor 集, 胖 Cantor 集, Cantor-Lebesgue 函数, 等等.

Lebesgue 定理:  $f(x) \in R[a,b]$  当且仅当  $m(\{x: f(x) \in x \notin ax \notin b\}) = 0$ , 其中  $m \in b$  Lebesgue 测度.

证明. "⇒"对于区域 [a,b] 的任何分割  $a=x_0 < x_1 < x_2 < \cdots < x_n = b$ , 定义  $\omega_i = \sup\{|f(x)-f(y)|, x,y \in a\}$  $[x_{i-1},x_i]$ ,  $\Delta_i=|x_i-x_{i-1}|$ ,  $\Delta=\max\{\Delta_i\}$ . 因而 f 是 Riemann 可积等价于  $\lim_{\Delta\to 0}\sum\omega_i\Delta_i=0$ . 再定义  $\omega_\epsilon(f)=\{x:$ 

 $\lim_{\delta \to 0} \sup_{y \in [x - \delta, x + \delta]} |f(y) - f(x)| \ge \epsilon \}.$  先假设如果 f 的不连续点集测度为正, 那么存在  $\epsilon_0$  使得  $\omega_{\epsilon_0}(f) > 0$ . 对任意分割, 我们有  $\sum_i \omega \Delta_i \ge \sum_{[x_{i-1}, x_i] \cap \omega_{\epsilon_0}(f) \ne \emptyset} \omega_i \Delta_i \ge \epsilon_0 \sum_{[x_{i-1}, x_i] \cap \omega_{\epsilon_0}(f) \ne \emptyset} (x_i - x_{i-1}) \ge \epsilon_0 m(\omega_{\epsilon}(f))$ . 这表明 f 不是 Riemann 可积的.

因此如果 f 是 Riemann 可积的, 那么不连续点集必定是零测集.

"←"现在我们假设  $\omega_{\epsilon}(f)$  是零测集, 我们证明 f 是 Riemann 可积的. 对任意  $\epsilon > 0$ , 存在闭集  $A_{\epsilon} \subset [a,b]$  使得 f 在  $A_{\epsilon}$  上连续. 对  $x_0 \in A_{\epsilon}$ , 存在  $\delta > 0$  使得  $|f(x) - f(y)| < \epsilon, \forall x, y \in (x_0 - \delta, x_0 + \delta)$ . 由于  $A_{\epsilon}$  是有界闭集, 因此存在 有限个开区间  $(x_l - \frac{1}{2}\delta_l, x_l + \frac{1}{2}\delta_l)$  覆盖住  $A_{\epsilon}$ . 取  $\delta = \min\{\frac{1}{3}\delta_l\}$ . 这表明对于任意  $x_0 \in A_{\epsilon}$ , 必定有某个  $x_l \in A_{\epsilon}$ , 使得  $x_0 \in (x_l - \frac{1}{2}\delta_l, x_l + \frac{1}{2}\delta_l)$ . 这表明  $[x_0 - \delta, x_0 + \delta] \subset (x_l - \delta_l, x_l + \delta_l)$ , 因而有  $|f(x) - f(y)| < \epsilon, \forall x, y \in [x_0 - \delta, x_0 + \delta]$ . 取 [a, b]分割使得  $\Delta < \frac{1}{2}\delta$ . 现在我们来考虑  $\sum \omega_i \Delta_i$ . 如果区间  $[x_{i-1},x_i]$  与  $A_\epsilon$  的交集非空, 含有某个点  $y_0 \in [x_{i-1},x_i] \cap A_\epsilon$ , 那 么对于任意  $x,y \in [y_0 - \delta, y_0 + \delta]$  都有  $|f(x) - f(y)| < \epsilon$ . 注意到  $[x_{i-1}, x_i] \subset [y_0 - \delta, y_0 + \delta]$ , 故而  $\omega_i < \epsilon$ . 这样我们可以 估计  $\sum_i \omega_i \Delta_i = \sum_{[x_{i-1},x_i] \cap A_\epsilon \neq \emptyset} \omega_i \Delta_i + \sum_{[x_{i-1},x_i] \cap A_\epsilon = \emptyset} \omega_i \Delta_i \leq \epsilon(b-a) + 2Mm([a,b] \setminus A_\epsilon)$ . 这里 M 为 f 在 [a,b] 上的上界.

这就表明如果 f 的不连续点零测且 f 有界, 则 f 在 [a,b] 上 Riemann 可积.

极限和积分可交换的三大定理 (Lebesgue 可积意义下, 但是我们有定理保证 Riemann 可积一定是 Lebesgue 可积):

Fatou 引理: 如果  $f_n \ge 0$ , 那么  $\liminf \int f_n dx \ge \int \liminf f_n dx$ .

单调收敛定理: 如果  $f_n \ge 0$  且  $f_n \uparrow f$ , 那么  $\int f_n dx \uparrow \int f dx$ .

**控制收敛定理**: 如果  $f_n \to f$  几乎处处成立,  $|f_n| \le g$  对于所有 n 成立, 并且 g 可积, 那么  $\int f_n dx \to \int f dx$ .

### 7 第7次习题课: 定积分及其应用

#### 问题 7.1

1. 判断对错. 设 f(x) 和 g(x) 是两个给定的函数, 记  $f_1(x) = f(x) + g(x), f_2(x) = f(x)g(x), f_3(x) = |f(x)|, f_4(x) = f(x)$  $\max\{f(x),g(x)\}$ . (1) 假如 f(x) 和 g(x) 均在点  $x=x_0$  处可导. 问  $f_1,f_2,f_3,f_4$  中哪些函数在  $x_0$  处一定可导, 哪些不 一定? (2) 假如 f(x) 和 g(x) 均在区间 [a,b] 可积, 问  $f_1, f_2, f_3, f_4$  中哪些函数在区间 [a,b] 一定可积, 哪些不一定?

- 2. 判断对错.  $f_1, f_3 \in C[0,1], f_1(x) \leq f_2(x) \leq f_3(x), \forall x \in [0,1], 且 \int_0^1 f_1(x) dx = \int_0^1 f_3(x).$  则  $f_1(x) \equiv f_2(x) \equiv f_3(x).$
- 3. 是否存在  $f: \mathbb{R} \to \mathbb{R}$  使得 f 在所有点上局部无界?
- 4. 证明  $x^n + x^{n-1} + \dots + x = 1$  在  $(\frac{1}{2}, 1)$  内有且仅有一个根  $x_n$ , 并计算  $\lim_{n \to +\infty} x_n$ .
- 5. 求积分.  $\int_{-1}^{1} \frac{x^2(1+\arcsin x)}{1+x^2} dx, \int_{0}^{2} |x^2-1|e^{-|x-1|} dx, \int_{0}^{2\pi} \sqrt{1-\sin 2x} dx, \int_{-1}^{1} (x^4+2x^2+1)\sin^3 x dx, \int_{0}^{1} \log(x+\sqrt{x^2+1}) dx, \int_{0}^{\frac{1}{2}} \frac{x^2}{\sqrt{1-x^2}} dx, \int_{0}^{1} x^4 \sqrt{1-x^2} dx, \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1+\sin^2 x} dx.$
- 6. 设函数  $f(x) \in C[0,1]$ , 且  $\int_0^1 f(x)dx = \int_0^1 x \cdot f(x)dx = 0$ . 证明 f(x) 在 [0,1] 中至少有两个零点.
- 7. 设  $0 < \lambda < 1$ ,  $\lim_{n \to +\infty} a_n = a$ , 证明  $\lim_{n \to +\infty} (a_n + \lambda a_{n-1} + \lambda^2 a_{n-2} + \dots + \lambda^n a_0) = \frac{a}{1-\lambda}$ . 8. 求直角坐标 (x,y) 给出的抛物线  $y = \frac{1}{2}x^2$  上从点 (0,0) 到点  $(1,\frac{1}{2})$  的弧长.
- 9. 设奇数  $n \ge 3$ , 求极坐标  $(r, \theta)$  给出的 n 叶玫瑰线  $r = \sin(n\theta), 0 \le \theta \le 2\pi$  所围的有界图形的面积.
- 10. 证明不等式. (1)  $\frac{2}{3} < \int_0^1 \frac{dx}{\sqrt{2+x-x^2}} < \frac{1}{\sqrt{2}}$ . (2)  $\frac{1}{10\sqrt{2}} < \int_0^1 \frac{x^9}{\sqrt{1+x}} dx < \frac{1}{10}$ . 11.  $f(x) \in C[-1,1]$ , 证明  $\lim_{n \to +\infty} \frac{\int_{-1}^1 (1-x^2)^n f(x) dx}{\int_{-1}^1 (1-x^2)^n dx} \to f(0)$ .
- 12.  $f(x) \in C[-1,1]$ , 证明  $\lim_{h \to 0+0} \int_{-1}^{1} \frac{h}{x^2 + h^2} f(x) dx \to \pi f(0)$ .
- 13. 推导重力场中粒子数量密度的分布率  $n(z) = n(0)e^{-\frac{mgz}{k_BT}}$ , 其中 T 是温度,  $k_B$  是玻尔兹曼常量.

- 1. (1)  $f_1, f_2$  一定可导, 依据导数四则运算.  $f_3$  不一定可导, f(x) = x.  $f_4$  不一定可导, f(x) = x, g(x) = -x. (2) 均可积.
- 2. 正确. 用反证法, 如果  $f_3(x_0) > f_1(x_0)$ , 由连续性存在  $\epsilon > 0$  和  $x_0$  的某个邻域  $(x_0 \delta, x_0 + \delta)$  使得  $f_3(x) > f_1(x) + \epsilon$ .
- 3. 存在. 考虑  $f(x) = \begin{cases} p, & x = \frac{q}{p} \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ .
- 4. 设  $f_n(x) = x^n + x^{n-1} + \dots + x$ .  $f_n(\frac{1}{2}) = 1 \frac{1}{2^n} < 1$ , f(1) = n > 1, 再由  $f_n(x)$  单调递增和连续性知有且仅有一个根. 由于  $f_n(\frac{1}{2} + \epsilon) = (\frac{1}{2} + \epsilon) \frac{1 (\frac{1}{2} + \epsilon)^n}{\frac{1}{2} \epsilon} \rightarrow \frac{1 + 2\epsilon}{1 2\epsilon} > 1$ , 因此当 n 足够大时  $f_n(x_n) = 1 < f_n(\frac{1}{2} + \epsilon) \Rightarrow x_n < \frac{1}{2} + \epsilon$ , 再根据极 限的 N- $\epsilon$  定义.
- 5. (1) 注意到  $\frac{x^2 \arcsin x}{1+x^2}$   $\Rightarrow \int_{-1}^1 \frac{x^2 \arcsin x}{1+x^2} dx = 0$ . 从而原积分  $= \int_{-1}^1 \frac{x^2}{1+x^2} dx = 2 \int_{-1}^1 \frac{1}{1+x^2} dx = 2 (\arctan x)|_{-1}^1 = 2 \frac{\pi}{2}$ .
- $(2) = \int_0^1 (1 x^2) e^{x 1} dx + \int_1^2 (x^2 1) e^{1 x} dx = (-x^2 + 2x 1) e^{x 1} \Big|_0^1 + (-x^2 2x 1) e^{1 x} \Big|_1^2 = 4 \frac{8}{e}.$
- $(3) = 2\int_0^{\pi} \sqrt{1 \sin 2x} dx = 2\int_0^{\pi} \sqrt{\sin^2 x + \cos^2 x 2\sin x \cos x} dx = 2(\int_0^{\frac{\pi}{4}} \cos x \sin x dx + \int_{\frac{\pi}{4}}^{\pi} \sin x \cos x dx) = 4\sqrt{2}.$
- (4) 这是奇函数, 积分自然为 0.
- $(5) = x \log(x + \sqrt{x^2 + 1})|_0^1 \int_0^1 x d\log(x + \sqrt{x^2 + 1}) = \log(1 + \sqrt{2}) \int_0^1 \frac{x}{\sqrt{x^2 + 1}} dx = \log(1 + \sqrt{2}) (\sqrt{x^2 + 1})|_0^1 = \log(1 + \sqrt{2})|_0^1 =$  $\log(1 + \sqrt{2}) - \sqrt{2} + 1.$
- $(6) = \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} \sqrt{1-x^2} dx = (\arcsin x \frac{x\sqrt{1-x^2} + \arcsin x}{2})|_0^{\frac{1}{2}} = \frac{\pi}{12} \frac{\sqrt{3}}{8}.$   $(7) \diamondsuit x = \sin t, 则原积分 = \int_0^{\frac{\pi}{2}} \sin^4 t \cos t d \sin t = \int_0^{\frac{\pi}{2}} \sin^4 t \sin^6 t dt. \int_0^{\frac{\pi}{2}} \sin^6 t dt = -\int_0^{\frac{\pi}{2}} \sin^5 t d \cos t =$ 分部积分  $= \int_0^{\frac{\pi}{2}} 5 \sin^4 t \cos^2 t dt = 5 \int_0^{\frac{\pi}{2}} \sin^4 t - \sin^6 t dt \Rightarrow \int_0^{\frac{\pi}{2}} \sin^6 t dt = \frac{5}{6} \int_0^{\frac{\pi}{2}} \sin^4 t dt.$  从而原积分 =  $\frac{1}{6} \int_0^{\frac{\pi}{2}} \sin^4 t dt =$ 分部积分  $= \frac{1}{8} \int_0^{\frac{\pi}{2}} \sin^2 t dt = \frac{\pi}{32}.$
- $(8) = \int_0^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin^2 x} d\sin x = \int_0^1 \frac{t}{1 + t^2} dt = \frac{1}{2} \log(1 + t^2) |_0^1 = \frac{\log 2}{2}.$   $6. \int_0^1 f(x) dx = 0 \Rightarrow \uparrow$  零点  $\alpha. \int_0^1 (x \alpha) f(x) dx = 0 \Rightarrow \beta \uparrow$  零点  $\beta.$  (若不存在则  $(x \alpha) f(x)$  保号).
- 7. WLOG 令 a=0. 由定义  $\forall \epsilon>0, \exists N, \forall n>N, |a_n|<\epsilon; \exists M, \forall n>M, |\lambda^n|<\epsilon.$  设  $\max_n |a_n|=A$ (极限存在蕴含有 界). 选择 n>N+M. 从而  $|a_n+\lambda a_{n-1}+\cdots+a_N\lambda^{n-N}|<\epsilon|1+\lambda+\cdots+\lambda^{n-N}|<\frac{\epsilon}{1-\lambda},$  且  $|a_{N-1}\lambda^{n-N+1}+\cdots+a_0\lambda^n|<\epsilon|1+\lambda+\cdots+\lambda^{n-N}|$  $A\lambda^{n-N+1}rac{1-\lambda^N}{1-\lambda}<rac{A}{1-\lambda}\epsilon$ . 从而整个求和  $<rac{A+1}{1-\lambda}\epsilon$ .
- 8.  $\int_0^1 \sqrt{dx^2 + dy^2} = \int_0^1 \sqrt{1 + y'^2} dx = \int_0^1 \sqrt{1 + x^2} dx = \left[ \frac{1}{2} x \sqrt{1 + x^2} + \frac{1}{2} \log(x + \sqrt{1 + x^2}) \right] \Big|_0^1 = \frac{\sqrt{2}}{2} + \frac{1}{2} \log(1 + \sqrt{2}).$
- 9.  $S = n \times \frac{1}{2} \int_0^{\frac{\pi}{n}} \sin^2 n\theta d\theta = (t = n\theta) = \frac{1}{2} \int_0^{\pi} \sin^2 t dt = \int_0^{\frac{\pi}{2}} \sin^2 t dt = \frac{1}{2} (t \frac{1}{2} \sin 2t)|_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$
- 10. (1) 在区间 [0,1] 上成立  $\sqrt{2} \le \sqrt{2+x-x^2} = \sqrt{\frac{9}{4}-(x-\frac{1}{2})^2} \le \frac{3}{2}$ . (2) 注意到  $\frac{1}{\sqrt{2}} \le \frac{1}{\sqrt{1+x}} \le 1$ , 从而  $\frac{1}{10\sqrt{2}} = \frac{1}{\sqrt{1+x}} \le 1$
- $\frac{1}{\sqrt{2}} \int_{0}^{1} x^{9} dx < \int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} dx < \int_{0}^{1} x^{9} dx = \frac{1}{10}.$ 11. 往证  $\frac{\int_{-1}^{1} (1-x^{2})^{n} [f(x)-f(0)] dx}{\int_{-1}^{1} (1-x^{2})^{n} dx} \to 0.$  使用  $N-\epsilon$  语言.  $\forall \epsilon > 0, \exists \delta > 0, \forall x \in (-\delta, \delta), |f(x)-f(0)| < \epsilon.$  设  $\max |f(x)| = M.$  从而原式  $=\frac{\int_{-\delta}^{\delta} (1-x^{2})^{n} [f(x)-f(0)] dx}{\int_{-1}^{1} (1-x^{2})^{n} dx} + \frac{\int_{-1}^{-\delta} (1-x^{2})^{n} [f(x)-f(0)] dx}{\int_{-1}^{1} (1-x^{2})^{n} dx} = I_{1} + I_{2} + I_{3}.$   $|I_{1}| \leq \frac{\int_{-\delta}^{\delta} (1-x^{2})^{n} \epsilon dx}{\int_{-1}^{1} (1-x^{2})^{n} dx} \leq \epsilon.$

 $|I_2| \leq 2M \frac{\int_{-1}^{-\delta} (1-x^2)^n \epsilon dx}{\int_{-1}^{1} (1-x^2)^n dx} \leq 2M \frac{(1-\delta)(1-\delta^2)^n}{\int_{-\frac{\delta}{2}}^{\frac{\delta}{2}} (1-x^2)^n dx} \leq 2M (1-\delta) \frac{(1-\delta^2)^n}{\delta (1-\frac{\delta^2}{4})^n} = 2M \frac{1-\delta}{\delta} (\frac{4-4\delta^2}{4-\delta^2})^n.$  注意到  $\frac{4-4\delta^2}{4-\delta^2} < 1$ ,从而可以取足

够大的 n 使得  $|I_2| < \epsilon$ . 类似地成缩  $I_3$ , 从而  $|I_1 + I_2 + I_3| < 3\epsilon$ .

12. 只需证明  $\int_{-1}^{1} \frac{h}{x^2+h^2} [f(x)-f(0)] dx \to 0$ .  $\forall \epsilon > 0, \exists \delta > 0, \forall x \in (-\delta,\delta), |f(x)-f(0)| < \epsilon$ . 设  $\max |f(x)| = M$ . 从而原式  $= \int_{-\delta}^{\delta} \frac{h}{x^2+h^2} [f(x)-f(0)] dx + \int_{-1}^{-\delta} \frac{h}{x^2+h^2} [f(x)-f(0)] dx + \int_{\delta}^{1} \frac{h}{x^2+h^2} [f(x)-f(0)] dx := I_1 + I_2 + I_3$ . 类似的有  $|I_1| \le \epsilon \int_{-\delta}^{\delta} \frac{h}{x^2+h^2} dx < \epsilon \int_{-1}^{1} \frac{h}{x^2+h^2} dx = \epsilon (\arctan \frac{x}{h})|_{-1}^{1} < \pi \epsilon.$   $|I_2| \le 2M \int_{-1}^{-\delta} \frac{h}{x^2+h^2} \le 2M(1-\delta) \frac{h}{\delta^2+h^2} < 2M \frac{1-\delta}{\delta^2} h < \epsilon$  要 h 足够接近 0. 同理  $|I_3| < \epsilon$ . 从而  $|I_1 + I_2 + I_3| < 3\epsilon$ .

13. 由基本力学知识, 重力场中的压力差 dF 托起了单位体积内的粒子重力 dG. 从而  $dF + dG = 0 \Rightarrow Sdp + \rho gSdz = 0 \Rightarrow dp + nmgdz = 0$ . 由  $p = nk_BT$  知  $dp = k_BTdn \Rightarrow \frac{dn}{n} = -\frac{mg}{k_BT}dz$ . 两边积分知  $\log n(z) - \log n(0) = \frac{-mgz}{k_BT} \Rightarrow n(z) = n(0)e^{-\frac{mgz}{k_BT}}$ .

### 7.3 补充 (不要求掌握!)

计算极限  $\lim_{n\to +\infty} \int_0^n e^{-x^2} dx$ . (也写成  $\int_0^\infty e^{-x^2} dx = \frac{1}{2} \int_{-\infty}^\infty e^{-x^2} dx = \frac{1}{2} \int_{\mathbb{R}}^\infty e^{-x^2} dx$ ). 这和正态分布的归一化因子有关.

证法 1: 使用二元积分.  $(\int_{\mathbb{R}} e^{-x^2} dx)^2 = \int_{\mathbb{R}} e^{-x^2} dx \int_{\mathbb{R}} e^{-y^2} dy = \int_{\mathbb{R}^2} e^{-x^2-y^2} dx dy = 二元积分换元公式,改写成极坐标 = \int_{\mathbb{R}^2} e^{-r^2} r dr d\theta = \int_0^{2\pi} d\theta \int_0^\infty r e^{-r^2} dr = 2\pi \times (-\frac{1}{2}e^{-r^2})|_0^\infty = \pi$ . 从而  $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi} \Rightarrow \int_{\mathbb{R}} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi}$ . 我们回顾标准正态分布  $\mathcal{N}(0,1)$  的密度函数是  $p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ ,这意味着  $\int_{\mathbb{R}} p(x) dx = 1$ (概率的归一化!).

证法 2: 使用极限逼近. 我们来证明:  $\forall x \in [-A,A], (1+\frac{x^2}{n})^{-n} \Rightarrow e^{-x^2}$ . 其中,  $\Rightarrow$  表示极限的一致性 (一致收敛). 我们都知道  $(1+\frac{x^2}{n})^{-n} \to e^{-x^2}$ , 但是不同的 x 可能会有不同的收敛速度. 对于某个  $x_1$ , 可能从第  $N_1$  项开始有  $|f_n(x_1) - f(x_1)| < \epsilon$ , 而对于某个  $x_2$ , 可能从第  $N_2$  项开始有  $|f_n(x_2) - f(x_2)| < \epsilon$ ,  $\cdots$ . 在给出一致收敛的正式定义前, 我们先看几个例子. 例 1:  $f_n(x) \equiv \frac{1}{n}, f(x) \equiv 0$ . 容易看出来  $f_n \to f$ , 且对于不同的 x, 他们的收敛步调一致: 因为只要  $n > \frac{1}{\epsilon}$ , 不管 x 的值都有  $|f_n(x) - f(x)| < \epsilon$ .

例 2:  $f_n(x) = x^n, x \in [0,1], f(x) = \begin{cases} 0 & x \in [0,1) \\ 1 & x = 1 \end{cases}$ . 容易看出来  $f_n \to f$ , 但对于不同的 x, 他们的收敛步调并不

一致: 距离 1 更近的 x 收敛速度更慢! 当  $x < \frac{1}{2}$  时, 只要  $n > \log_2(\frac{1}{\epsilon})$  就有  $x^n < \epsilon$ ; 但是当  $x = 1 - \frac{1}{\log_2(\frac{1}{\epsilon})}$  时,  $x^n \approx (1 - \frac{1}{\log_2(\frac{1}{\epsilon})})^{\log_2(\frac{1}{\epsilon})} \approx \frac{1}{\epsilon}$  距离  $\epsilon$  还远着呢, 更有  $\lim_{x \to 1-0} x^{\log_2(\frac{1}{\epsilon})} \to 1 \Rightarrow \exists \delta, \forall x \in (1-\delta,1), x^{\log_2(\frac{1}{\epsilon})} > 1-\epsilon$ . 前面的  $f_n(x)$  已经很小于  $\epsilon$  了, 而后面的一些  $f_n(x)$  甚至还在原地打转  $(>1-\epsilon)!$  下面我们给出定义.

一致收敛: 我们说在区间 [a,b] 上  $f_n(x)$  一致收敛到 f(x)(记作  $f_n(x) \Rightarrow f(x)$ ), 意味着  $\forall \epsilon > 0, \exists N$ , 使得  $\forall n > N, \forall x \in [a,b], |f_n(x) - f(x)| < \epsilon$ .

如果在有限区间上收敛具有一致性,那么积分和极限顺序可交换。因为  $|\int_a^b f_n(x) - f(x) dx| \le \int_a^b |f_n(x) - f(x)| dx < \epsilon(b-a) \to 0 \Rightarrow \int_a^b f_n(x) dx \to \int_a^b f(x) dx$ ,即是  $\lim \int_a^b f_n(x) dx = \int_a^b \lim f_n(x) dx$ .

 $\begin{array}{l} \epsilon(b-a) \to 0 \Rightarrow \int_{a} \int_{n}(x)dx \to \int_{a} \int_{n}(x)dx, \text{ spec } \lim_{J_{a}} \int_{n}(x)dx = \int_{a} \lim_{J_{n}(x)}dx = \int_{a} \lim_{J_{n}(x)}dx \\ = \int_{a} \lim_{J_{n}(x)}dx + \int_{n}(x)dx \\ = \int_{n}(x)dx + \int_{n}(x)dx + \int_{n}(x)dx \\ = \int_{n}(x)dx \\ = \int_{n}(x)dx + \int_{n}(x)dx \\ = \int_{n}(x)dx \\ = \int_{n}(x)dx + \int_{n}(x)dx \\ = \int_{n}(x)dx + \int_{n}(x)dx \\ = \int_{n}(x)dx + \int_{n}(x)dx \\ = \int$ 

### 第 8 次习题课: 微分中值定理, 洛必达法则

#### 8.1 问题

- 1.  $f(x) \in D[a, b], f(a) = f(b) = 0$ , 证明  $\forall \lambda \in \mathbb{R}, \exists \xi \in (a, b)$  使得  $f'(\xi) = \lambda f(\xi)$ .
- 2.  $f(x) \in D[0,1], f(1) = 0$ , 证明  $\forall k > 0, \exists \xi \in (0,1)$  使得  $kf(\xi) + \xi f'(\xi) = 0$ .
- 3. f(x) 在 [a,b] 上二阶可微, f(a) = f(b) = 0, 证明  $\forall x \in (a,b)$ ,  $\exists \xi \in (a,b)$  使得  $f(x) = \frac{f''(\xi)}{2}(x-a)(x-b)$ .
- 4. 设 f(x) 在  $[0,\infty)$  上二阶可导, f(0) = 0, 证明  $\forall x > 0, \exists \xi \in (0,x)$  使得  $f'(x) \frac{f(x)}{x} = \xi f''(\xi)$ .
- 5. 设  $P_n(x)$  为 n 次多项式, 证明  $e^x = P_n(x)$  至多有 n+1 个解.
- 6. f(x) 在 [a,b] 上三阶可导,且 f(a) = f'(a) = f(b) = f'(b) = 0. 证明存在  $\xi \in (a,b)$  使得  $f'''(\xi) = 0$ .
- 7.  $f(x) > 0, x \in [a, b], f''(x)$  ∃,且 f'(a) = f'(b) = 0. 证明 ∃ $\xi \in (a, b)$  使得  $f(\xi)f''(\xi) 2[f'(\xi)]^2 = 0$ .
- 8. 设 f(x) 是定义在  $(0,\infty)$  上的二阶可导函数, $\lim_{x\to +\infty} f(x)$  存在有限,且 f''(x) 有界. 证明  $\lim_{x\to +\infty} f'(x) = 0$ .
- 9. 非常值函数  $f(x) \in C[-1,1]$ , 在 (-1,1) 上二阶可导, f'(0) = 0. 证明存在  $\xi \in (-1,1)$  使得  $|f''(\xi)| > |f(1) f(-1)|$ .
- 10. 证明等式  $\arctan x = \arcsin \frac{x}{\sqrt{1+x^2}}, x \in \mathbb{R}$ .
- 11. 设 0 < b < a, 证明  $\frac{a-b}{a} < \log \frac{a}{b} < \frac{a-b}{b}$ .
- 13. 设 f(x) 在 [0,2] 上二阶可导, 且 f(0) = 1, f(1) = 0, f(2) = 3, 证明存在  $c \in (0,2)$  使得 f''(c) = 4.
- 14. 证明: 当  $x \ge 0$  时, 等式  $\sqrt{x+1} \sqrt{x} = \frac{1}{2\sqrt{x+\theta(x)}}$  中的  $\theta(x)$  满足  $\frac{1}{4} \le \theta(x) \le \frac{1}{2}$ , 且  $\lim_{x \to 0} \theta(x) = \frac{1}{4}$ ,  $\lim_{x \to +\infty} \theta(x) = \frac{1}{2}$ .
- 15.  $f(x) \in D(\mathbb{R})$ ,  $\lim_{x \to \infty} f(x)$ ∃, 证明存在 c 使得 f'(c) = 0.
- 16. 计算极限  $\lim_{x\to 0+0} x^{x^x-1}$ ,  $\lim_{x\to 0} \frac{x \tan x \sin^2 x}{x^4}$ ,  $\lim_{x\to 0} (\frac{1}{x} \frac{1}{\tan x})$ ,  $\lim_{x\to 0} (\frac{1}{x^3} \frac{1}{\sin x^3})$ . 17.  $m, n, k \in \mathbb{N}_+$ , 计算极限  $\lim_{n\to +\infty} n^2 \left( (1 + \frac{m}{n})^k (1 + \frac{k}{n})^m \right)$ .
- 18. 设 f(x) 在  $(0,\infty)$  上二阶可微,且  $\lim_{x\to +\infty}[f(x)+2f'(x)+f''(x)]=l$ ,则必有  $\lim_{x\to +\infty}f(x)=l$ .
- 19. 设 f(x) 在  $(0,\infty)$  上 n 阶可微, 且  $\lim_{x\to +\infty} f(x) = A$ ,  $\lim_{x\to +\infty} f^{(n)}(x) = B$ , 证明 B=0.
- 20. 证明  $\lim_{x \to +\infty} \frac{\sin x}{x} = 0$ ,  $\lim_{x \to +\infty} \frac{x}{\sqrt{1+x^2}} = 1$ ,  $\lim_{x \to +\infty} \frac{x + \sin x}{x \sin x} = 1$ .
- 21.  $x_0 \in (0,1), x_n = \sin(x_{n-1}), \text{ if } \text{if } \lim_{n \to +\infty} \sqrt{n}x_n = \sqrt{3}.$

- $f'(\xi) = \lambda f(\xi).$
- 2. 令  $g(x) = x^k f(x)$ , 则 g(0) = g(1) = 0, 由 Rolle 微分中值定理,  $\exists \xi \in (0,1)$  使得  $g'(\xi) = 0 = \xi^k f'(\xi) = k \xi^{k-1} f(\xi) \Rightarrow$  $kf(\xi) + \xi f'(\xi) = 0.$
- 3. 设  $m = \frac{2f(x)}{(x-a)(x-b)}$ ,并设  $g(t) = f(t) \frac{m}{2}(t-a)(t-b)$ . 往证存在  $\xi \in (a,b)$  使得  $m = f''(\xi)$ . 易知 g(a) = 0, g(b) = 0 $0, g(x) = 0 \Rightarrow \exists \xi \in (a, b) \notin \emptyset$   $f''(\xi) = 0 = f''(\xi) - m \Rightarrow f''(\xi) = m.$
- 4. 由 Lagrange 微分中值定理,  $\exists \xi \in (0,x)$  使得  $\frac{xf'(x)-f(x)}{x} = \frac{[xf'(x)-f(x)]-[0f'(0)-f(0)]}{x-0} = \xi f''(\xi)$ .
- 5. 令  $g(x) = e^x P_n(x)$ , 则  $g(x) \in C^{\infty}(\mathbb{R})$ . 由于  $g^{(n+1)}(x) = e^x > 0$ , 从而  $g^{(n)}(x)$  至多有 1 个零点 (否则由 Rolle 微 分中值矛盾),  $g^{(n-1)}(x)$  至多有 2 个零点, ..., g(x) 至多有 n+1 个零点.
- 6.  $f(a) = f(b) = 0 \Rightarrow \exists x_1 \in (a, b)$  使得  $f'(x_1) = 0$ . 又因为 f'(a) = f'(b) = 0, 从而存在  $x_2 \in (a, x_1), x_3 \in (x_1, b)$  使得  $f''(x_2) = f''(x_3) = 0$ . 从而存在  $\xi \in (x_2, x_3) \subset (a, b)$  使得  $f'''(\xi) = 0$ .
- 7. 令  $g(x) = \frac{f'(x)}{f^2(x)}$ . 则 g(a) = 0, g(b) = 0, 从而  $\exists \xi \in (a,b)$  使得  $g'(\xi) = 0 = \frac{f^2(\xi)f''(\xi) 2f(\xi)f'(\xi)^2}{f^4(\xi)} \Rightarrow f(\xi)f''(\xi) 2f(\xi)f''(\xi) = 0$  $2[f'(\xi)]^2 = 0.$
- 8. 反证法. 若结论不对, 则存在  $\epsilon_0 > 0$  使得  $\forall K \in (1, +\infty)$ , 存在 x > K 满足  $|f'(x)| > \epsilon_0$ . 设  $|f''(x)| \le M$ ,  $\lim_{x \to +\infty} f(x) = 0$
- a. 取  $\delta_0 = \min\{1, \frac{\epsilon_0}{2M}\}$ , 则对  $\epsilon_0 \delta_0 > 0$ , 存在  $K_0 \in (0, \infty)$ , 使得  $\forall x > K_0$ , 有  $|f(x) a| < \frac{\epsilon_0 \delta_0}{2}$ . 从而  $\forall x_1, x_2 > K_0$ , 有  $|f(x_1) - f(x_2)| < \epsilon_0 \delta_0$ . 对  $K_0$ , 存在  $x_0 > K_0$  使得  $|f'(x_0)| > \epsilon$ . 不妨设  $f'(x_0) > \epsilon$ , 则对  $x \in (x_0 - \delta_0, x_0 + \delta_0)$ , 由微分 中值定理, 存在介于 x 和  $x_0$  之间的  $\xi_x$  使得  $|f'(x) - f'(x_0)| = |f''(\xi_x)(x - x_0)| \le M \cdot \frac{\epsilon}{2M} \le \frac{\epsilon_0}{2}$ . 从而  $f'(x) > \frac{\epsilon_0}{2}$ . 再由 微分中值定理, 存在  $\xi_2 \in (x_0 - \delta_0, x_0 + \delta_0)$  使得  $f(x_0 + \delta_0) - f(x_0 - \delta_0) = f'(\xi_2) \cdot 2\delta_0 > \frac{\epsilon_2}{2} \cdot 2\delta_0 = \epsilon_0 \delta_0$ , 矛盾.

- 9. 不妨设  $f(1) \ge f(-1)$ . 采用反证法, 设 k = f(1) f(-1), 且  $|f''(x)| \le k, \forall x \in (-1,1)$ . 从而根据微分中值定理,  $\forall x \in (0,1), f'(x) \leq kx$ , 积分得到  $f(x) - f(0) \leq \int_0^x f'(t)dt \leq \int_0^x ktdt = \frac{kx^2}{2}$ . 令  $x \to 1$ , 则  $f(1) - f(0) \leq \frac{k}{2}$ . 类似 有  $f(0) - f(-1) \le \frac{k}{2}$ . 由于 k = f(1) - f(-1), 从而  $f(1) - f(0) = f(0) - f(-1) = \frac{k}{2}$ . 容易证明如果  $\exists x_0 \in [0,1)$  使 得  $f'(x_0) < kx_0$ , 那么  $f(1) - f(0) < \frac{k}{2}$ , 矛盾. 从而  $f'(x) \equiv kx, \forall x \in [0,1)$ . 同理  $f'(x) \equiv -kx, \forall x \in (-1,0]$ . 从而 f''(0) = k = -k, 这意味着 k = 0, f(x) 是常值函数, 矛盾.
- 10. 首先两边求导验证导数相等, 然后 arctan 0 = arcsin 0(意味着不相差常数).
- 11. 原命题转化证明  $\frac{1}{a} < \frac{\log a \log b}{a b} < \frac{1}{b}$ , 令  $f(x) = \log x$ , 利用 Lagrange 微分中值定理.
- 12. 设  $f(x) = (1+x)\log(1+x)$ , 利用 Lagrange 微分中值定理知  $\frac{(1+a+b)\log(1+a+b)-(1+b)\log(1+b)}{(a+b)-b} = 1 + \log(1+c)$ , 其中  $c \in (b, a+b)$ . 注意到  $\log(1+c) > \log(1+a)$  和  $a > \log(1+a)$ , 从而  $(1+a+b)\log(1+a+b) - (1+b)\log(1+b) = 0$  $a + a \log(1+c) > \log(1+a) + a \log(1+a) = (1+a) \log(1+a).$
- 13. 构造  $\phi(x) = f(x) 2x^2 + 3x 1$ . 则  $\phi(0) = \phi(1) = \phi(2) = 0$ , 由 Rolle 微分中值定理, 存在  $c \in (0,2)$  使得  $\phi''(c) = 0 \Rightarrow f''(c) = 4.$
- 14. 可以解出  $\theta(x) = \frac{1}{4}(1+2\sqrt{x(x+1)}-2x)$ . 当  $x \ge 0$  时  $\sqrt{x(x+1)} > x$  从而  $\theta(x) \ge \frac{1}{4}$ , 再利用均值不等式  $\sqrt{x(x+1)} \le \frac{x+(x+1)}{2}$  知  $\theta(x) \le \frac{1}{2}$ . 然后对 x 求极限.
- 15. 不妨设  $\lim_{x \to \infty} f(x) = l$  且 f(x) 不为常数. 不妨设  $\exists x_0$  使得  $f(x_0) > l$ . 任取  $l < \eta < f(x_0)$ . 由连续函数的介值性知  $\exists \xi_1 \in (-\infty, x_0), \xi_2 \in (x_0, +\infty)$  使得  $f(\xi_1) = f(\xi_2) = \eta$ . 然后利用 Rolle 微分中值定理.
- 16. (1)  $\lim_{x \to 0+0} x^{x^x-1} = \exp(\lim_{x \to 0+0} (x^x-1)\log x) = \exp(\lim_{x \to 0+0} (e^{x\log x}-1)\log x) \stackrel{\text{$\ \ $\% \times \% \times \% \times \% \times \% \times \% \times \% \times \%}{=}}{\exp(\lim_{x \to 0+0} x\log^2 x)} \exp(\lim_{x \to 0+0} x\log^2 x) \stackrel{\text{$\ \ $\% \times \% \times \% \times \% \times \%}{=}}{\exp(\lim_{x \to 0+0} x\log^2 x)} \exp(\lim_{x \to 0+0} x\log^2 x)$  $\exp(\lim_{x \to 0+0} \frac{\log^2 x}{x}) \stackrel{\text{L'Hospital}}{=} \exp(\lim_{x \to 0+0} \frac{2\log x}{x}) = \exp(\lim_{x \to 0+0} \frac{2\log x}{x}) \stackrel{\text{L'Hospital}}{=} \exp(\lim_{x \to 0+0} \frac{2\log x}{x}) = \exp(\lim_{x \to 0+0} \frac{2\log x}{x}) \stackrel{\text{L'Hospital}}{=} \exp(\lim_{x \to 0+0} \frac{2\log x}{x}) \stackrel{\text{L'Hospital}}{=} \exp(\lim_{x \to 0+0} \frac{2\log x}{x}) = \exp(\lim_{x \to 0+$

- $(4) = \lim_{x \to 0} \frac{\sin x^3 x^3}{x^3 \sin x^3} = \lim_{x \to 0} \frac{\sin x^3 x^3}{x^6} \stackrel{\text{L'Hospital}}{=} \frac{3x^2 \cos x^3 3x^2}{6x^5} = \lim_{x \to 0} \frac{\cos x^3 1}{2x^3} \stackrel{\text{等价无穷小:}}{=} \cos x^{-1} \sim -\frac{x^2}{2}}{\lim_{x \to 0} \frac{-x^6}{4x^3}} = 0.$   $17. \lim_{n \to +\infty} n^2 \left( \left( 1 + \frac{m}{n} \right)^k \left( 1 + \frac{k}{n} \right)^m \right) = \lim_{x \to 0+0} \frac{(1 + mx)^k (1 + kx)^m}{x^2} \stackrel{\text{L'Hospital}}{=} \lim_{x \to 0+0} \frac{km(1 + mx)^{k-1} km(1 + kx)^{m-1}}{2x} \stackrel{\text{L'Hospital}}{=} \frac{km}{2}.$   $\frac{km}{2} \lim_{x \to 0+0} \frac{m(k-1)(1 + mx)^{k-2} k(m-1)(1 + kx)^{m-2}}{1} = \frac{km(k-m)}{2}.$
- 18.  $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^x f(x)}{e^x} \stackrel{\text{L'Hospital}}{=} \lim_{x \to +\infty} \frac{e^x [f(x) + f'(x)]}{e^x} \stackrel{\text{L'Hospital}}{=} \lim_{x \to +\infty} \frac{e^x [f(x) + 2f'(x) + f''(x)]}{e^x} = l.$ 19.  $0 = \lim_{x \to +\infty} \frac{f(x)}{x^n} \stackrel{n \not \leftarrow \text{L'Hospital}}{=} \lim_{x \to +\infty} \frac{f^{(n)}(x)}{n!} = \frac{B}{n!}. \text{ 由极限的唯一性}.$
- 20. 这几个极限都是显然的, 只是用来告诉大家有时候会洛不出来或者洛错. 应用洛必达法则时必须验证条件, 比如说 分子分母是否满足  $\frac{0}{0}$  或者  $\frac{*}{\infty}$ , 求导后极限是否存在等等.
- 21. 我们来证明  $\lim_{n \to +\infty} n x_n^2 = 3$ . 显然数列有下界 0, 且  $x_n = \sin x_{n-1} < x_{n-1}$  意味着单调递减, 从而  $\lim_{n \to +\infty} x_n \exists$ , 两边 求极限知  $x_n \to 0$ . 从而  $\lim_{n \to +\infty} nx_n^2 = \lim_{n \to +\infty} \frac{n}{\frac{1}{x_n^2}} \stackrel{\text{Stolz}}{=} \frac{n+1-n}{\frac{1}{x_{n+1}^2} - \frac{1}{x_n^2}} = \lim_{n \to +\infty} \frac{1}{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2}} = \lim_{x \to 0+0} \frac{1}{\frac{1}{\sin^2 x_n} - \frac{1}{x_n^2}} =$ 综上所述  $\lim_{n\to+\infty} nx_n^2 = 3$ .

参考 https://wqgcx.github.io/courses/analysis1.pdf.

### 9 第 9 次习题课: 泰勒公式, 函数的凹凸性

#### 9.1 问题

- 1. 在 x = 0 处做 n 阶带 Peano 余项的泰勒展开.  $\frac{1}{1+x}$ ,  $\log(1+x)$ ,  $(1+x)^{\alpha}$  ( $\alpha \neq -1$ ),  $\arctan x$ ,  $\arcsin x$ ,  $\sin^2(1+x^2)$ ,  $\frac{1-x+x^2}{1+x+x^2}$ . 我们有了这些函数在 0 点处的泰勒展开式后, 便可以计算该点的 n 阶导数值 (只能计算该点, 不能得到通式!).
- 2. 计算极限.  $\lim_{x\to 0} \frac{2\cos x 2 + x^2}{x^4}$ ,  $\lim_{x\to +\infty} (\sqrt[3]{x^3 + x} \sqrt{x^2 2x})$ ,  $\lim_{n\to +\infty} n^2 (1 n\sin\frac{1}{n})$ ,  $\lim_{x\to 0} \frac{1 x^2 e^{-x^2}}{x\sin^3 2x}$ ,  $\lim_{x\to 0} (\frac{1}{x} \frac{\cos x}{\sin x}) \frac{1}{x}$ .

- 3. 确定下列无穷小量是 x 的几阶无穷小量.  $e^x 1 x \frac{1}{2}x\sin x$ ,  $\cos x e^{-x^2/2}$ ,  $\cos x \frac{1+ax^2}{1+bx^2}$ .
- 4. 设 f(x) 在 (-1,1) 上有二阶导数,且有  $\lim_{x\to 0} \left[\frac{\sin 3x}{x^3} + \frac{f(x)}{x^2}\right] = 0$ ,求 f(0), f'(0), f''(0).
- 5. 设函数 f(x) 在  $\mathbb{R}$  上有三阶导数, 并且存在常数  $M_0, M_3 > 0$ , 使得  $\forall x \in \mathbb{R}$  成立  $|f(x)| \leq M_0, |f'''(x)| \leq M_3$ . 证明对 任意  $x \in \mathbb{R}$  成立  $|f'(x)| \le 4M_0^{\frac{2}{3}}M_3^{\frac{1}{3}}, |f''(x)| \le 4M_0^{\frac{1}{3}}M_3^{\frac{2}{3}}.$
- 6. 设 f(x) 在 [0,1] 上二次可导, f(0) = f(1) = 0,  $\max_{0 \le x \le 1} f(x) = 2$ , 证明  $\min_{0 \le x \le 1} f''(x) \le -16$ .
- 7.  $P_n(x)$  是一个 n 次多项式,  $P_n(a) > 0$ ,  $P_n^{(k)}(a) \ge 0$ ,  $k = 1, 2, \cdots, n$ . 证明  $P_n(x)$  的所有实根都不超过 a.
- 8. 设  $y = \log \frac{\sqrt{1+x} \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}$ . 试求出该函数的定义域、极值点、单调区间、凹凸区间、拐点以及渐近线.
- 9. 设  $\mathbb{R}$  上的连续函数 f(x) 满足  $f(\frac{x_1+x_2}{2}) \leq \frac{1}{2}(f(x_1)+f(x_2))$ . 证明: 对于  $\forall t_1, \dots, t_n > 0$  只要满足  $t_1 + \dots + t_n = 1$ , 就有  $f(t_1x_1 + \dots + t_nx_n) \le t_1f(x_1) + \dots + t_nf(x_n)$ .
- 10. 设  $\mathbb{R}$  上的函数 f(x) 满足  $f(\lambda x_1 + (1 \lambda)x_2) \le \lambda f(x_1) + (1 \lambda)f(x_2), \forall 0 < \lambda < 1$ . 证明 f(x) 在每个点处左右导 数均存在 (但不一定相等), 从而连续.
- 11. 证明积分版本的 Jensen 不等式, 即: f(x),g(x),p(x) 是连续函数, f(x) 凸,  $\int_a^b p(x)dx=1$ , 则  $\int_a^b p(x)f(g(x))dx\geq 1$  $f(\int_a^b p(x)g(x)dx).$
- 12. 证明 KL 散度非负, 即  $\int p(x) \log \frac{p(x)}{q(x)} dx \ge 0$ , 其中 p(x), q(x) 连续且  $\int p(x) dx = \int q(x) dx = 1$ .
- 13. 设  $f(x) \in D[0,1]$ , 且  $f(1) = 5 \int_0^{\frac{1}{5}} e^{x-1} f(x) dx$ . 证明存在  $\xi \in (0,1)$  使得  $f(\xi) + f'(\xi) = 0$ .
- 14. 设 f(x) 在 (-1,1) 内二阶可导,且 f(0) = f'(0) = 0,  $|f''(x)| \le |f(x)| + |f'(x)|$ ,  $x \in (-1,1)$ .证明:  $\exists \delta > 0$  使得  $f(x) \equiv 0, \forall x \in (-\delta, \delta).$
- 15. 设非线性函数  $f(x) \in C[a,b], D(a,b)$ , 证明:  $\exists \xi \in (a,b)$  使得  $f'(\xi) > \frac{f(b) f(a)}{b a}$ .
- 16. 设  $f(x) \in D(a,b)$ , 且  $\lim_{x \to b-0} f(x) = +\infty$ , 证明  $\forall M > 0, \forall \delta > 0, \exists \xi \in (b-\delta,b)$  使得  $f'(\xi) > M$ .
- 17. 设 P(x) 是定义在  $\mathbb{R}$  上的多项式, 证明: (1) 若  $P(x) + P'(x) \ge 0$  恒成立, 则  $P(x) \ge 0$ ; (2) 若  $P(x) P'(x) \ge 0$  恒 成立, 则  $P(x) \ge 0$ ; (3) 若  $P'''(x) - P''(x) - P'(x) + P(x) \ge 0$  恒成立, 则  $P(x) \ge 0$ .

1. (1) 
$$\frac{1}{x+1} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n)$$
. (2)  $\log(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + o(x^n)$ . (3)  $(1+x)^{\alpha} = \sum_{k=0}^{n} C_{\alpha}^k x^k + o(x^n)$ .

$$1. \ (1) \ \frac{1}{x+1} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n). \ (2) \ \log(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + o(x^n). \ (3) \ (1+x)^\alpha = \sum_{k=0}^{n} C_\alpha^k x^k + o(x^n).$$
 
$$(4) \arctan x = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} x^{2k+1} + o(x^{2n+1}). \ (5) \arcsin x = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} C_{-\frac{1}{2}}^k x^{2k+1} + o(x^{2n+1}) = \sum_{k=0}^{n} \frac{1}{2k+1} \frac{(2k-1)!!}{(2k)!!} x^{2k+1} + o(x^{2n+1}).$$

$$(6) \sin^2(1+x^2) = \frac{1}{2} - \frac{\cos 2}{2} \cos(2x^2) + \frac{\sin 2}{2} \sin(2x^2). \sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + o(x^{2n+1}), \cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + o(x^{2n}) \Rightarrow 0$$

$$\sin 2x^{2} = \sum_{k=0}^{n} \frac{(-1)^{k} 2^{2k+1}}{(2k+1)!} x^{4k+2} + o(x^{4n+2}), \cos 2x^{2} = \sum_{k=0}^{n} \frac{(-1)^{k} 4^{k}}{(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \sin^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{4n}) \Rightarrow \cos^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k} \cos 2}{2(2k)!} x^{4k} + o(x^{2n}) \Rightarrow \cos^{2}(1+x^{2}) = \frac{1}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1} 4^{k}$$

$$\sum_{k=0}^{n} \frac{(-1)^k 4^k \sin 2}{(2k+1)!} x^{4k+2} + o(x^{4n})$$

$$(7) \frac{1-x+x^2}{1+x+x^2} = 1 - \frac{2x}{1+x+x^2} = 1 - \frac{2x(1-x)}{1-x^3} = 1 - (2x-2x^2) \left[ \sum_{k=0}^{n} x^{3k} + o(x^{3n}) \right] = 1 - 2 \sum_{k=0}^{n} x^{3k+1} + 2 \sum_{k=0}^{n} x^{3k+2} + o(x^{3n+1}).$$

2. (1) 
$$\stackrel{\text{L'Hospital}}{=} \lim_{x \to 0} \frac{-2\sin x + 2x}{4x^3} \stackrel{\text{L'Hospital}}{=} \lim_{x \to 0} \frac{2 - 2\cos x}{12x^2} \stackrel{\text{L'Hospital}}{=} \lim_{x \to 0} \frac{2\sin x}{24x} = \frac{1}{12}$$
.

2. (1) 
$$\lim_{x \to 0} \frac{-2\sin x + 2x}{4x^3} = \lim_{x \to 0} \frac{-2\cos x}{12x^2} = \lim_{x \to 0} \frac{2\sin x}{24x} = \frac{1}{12}$$
.  
(2)  $\lim_{x \to 0} \frac{-2\sin x + 2x}{4x^3} = \lim_{x \to 0} \frac{2-2\cos x}{12x^2} = \lim_{x \to 0} \frac{2\sin x}{24x} = \frac{1}{12}$ .  
(2)  $\lim_{x \to 0} \frac{(1+3x^2)^{\frac{1}{3}} - (1-2x)^{\frac{1}{2}}}{x} = \lim_{x \to 0} \frac{[1+\frac{1}{3} \cdot 3x^2 + o(x^2)] - [1-\frac{1}{2} \cdot 2x + o(x)]}{x} = \lim_{x \to 0} \frac{x + o(x)}{x} = 1$ .

$$(3) \stackrel{\text{$\pi \to \mp \pm \infty}}{=} \lim_{n \to +\infty} n^2 \left\{ 1 - n \left[ \frac{1}{n} + \frac{1}{6} \left( \frac{1}{n} \right)^3 + o \left( \frac{1}{n^3} \right) \right] \right\} = \lim_{n \to +\infty} n^3 \left\{ \frac{1}{6} \frac{1}{n^3} + o \left( \frac{1}{n^3} \right) \right\} = \frac{1}{6}.$$

(4) 
$$\stackrel{\text{$\mathfrak{S}$} \text{$\mathfrak{M}$}}{=} \lim_{x \to 0} \frac{1 - x^2 - e^{-x^2}}{8x^4} \stackrel{\text{$\mathfrak{R}$} \text{$\mathfrak{M}$}}{=} \lim_{x \to 0} \frac{1 - x^2 - [1 - x^2 + \frac{1}{2}x^4 + o(x^4)]}{8x^4} = -\frac{1}{16}.$$

$$(3) \stackrel{\bar{x} \to 0}{=} \lim_{n \to +\infty} n^2 \left\{ 1 - n \left[ \frac{1}{n} + \frac{1}{6} \left( \frac{1}{n} \right)^3 + o \left( \frac{1}{n^3} \right) \right] \right\} = \lim_{n \to +\infty} n^3 \left\{ \frac{1}{6} \frac{1}{n^3} + o \left( \frac{1}{n^3} \right) \right\} = \frac{1}{6}.$$

$$(4) \stackrel{\text{$\% \times \%}}{=} \lim_{x \to 0} \frac{1 - x^2 - e^{-x^2}}{8x^4} \stackrel{\bar{x} \to 0}{=} \lim_{x \to 0} \frac{1 - x^2 - \left[ 1 - x^2 + \frac{1}{2}x^4 + o(x^4) \right]}{8x^4} = -\frac{1}{16}.$$

$$(5) = \lim_{x \to 0} \frac{\sin x - x \cos x}{x^2 \sin x} \stackrel{\text{$\% \times \%}}{=} \lim_{x \to 0} \frac{\sin x - x \cos x}{x^3} \stackrel{\bar{x} \to 0}{=} \lim_{x \to 0} \frac{\left[ x - \frac{1}{6}x^3 + o(x^3) \right] - x \left[ 1 - \frac{1}{2}x^2 + o(x^2) \right]}{x^3} = \frac{1}{3}.$$

3. (1) 
$$e^x - 1 - x - \frac{1}{2}x\sin x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3) - 1 - x - \frac{1}{2}x(x - \frac{x^3}{6} + o(x^4)) = \frac{1}{6}x^3 + o(x^3)$$
, 因此是 3 阶无穷小.

$$(2)\cos x = 1 - \frac{x^2}{2} + \frac{1}{24}x^4 + o(x^4), e^{-x^2/2} = 1 - \frac{1}{2}x^2 + \frac{x^4}{8} + o(x^4) \Rightarrow \cos x - e^{-x^2/2} = -\frac{1}{12}x^4 + o(x^4),$$
 因此是 4 阶无穷小. 
$$(3) = \cos x - 1 - \frac{(a-b)x^2}{1+bx^2} = -\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + o(x^6) + (b-a)x^2(1-bx^2+b^2x^4+o(x^4)).$$
 从而当  $b-a = \frac{1}{2}$  且  $(b-a)b = \frac{1}{24}$  (即

$$(3) = \cos x - 1 - \frac{(a-b)x^2}{1+bx^2} = -\frac{x}{2} + \frac{x}{24} - \frac{x}{720} + o(x^b) + (b-a)x^2(1-bx^2+b^2x^4+o(x^4))$$
. 从而当  $b-a = \frac{1}{2}$  且  $(b-a)b = \frac{1}{24}$ (即  $a = -\frac{5}{12}, b = \frac{1}{12}$ ) 时,是 6 阶无穷小;当  $b-a = \frac{1}{2}$  且  $(b-a)b \neq \frac{1}{24}$  时,是 4 阶无穷小;当  $b-a \neq \frac{1}{2}$  时,是 2 阶无穷小

$$a = -\frac{5}{12}, b = \frac{1}{12}$$
) 时,是 6 阶无穷小;当  $b - a = \frac{1}{2}$  且  $(b - a)b \neq \frac{1}{24}$  时,是 4 阶无穷小;当  $b - a \neq \frac{1}{2}$  时,是 2 阶无穷小.  
4.  $= \frac{\sin 3x + xf(x)}{x^3} \stackrel{\${}^{\scriptsize{$\overline{3}}}{\tiny{$\overline{8}$}}}{\stackrel{;}{\tiny{$\overline{1}}}} \frac{1}{x^3} \{3x - \frac{(3x)^3}{3!} + o(x^3) + x[f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + o(x^2)]\} = \frac{1}{x^3} \{[3 + f(0)]x + f'(0)x^2 + [\frac{f''(0)}{2} - \frac{1}{2}x^3 + o(x^3)]\} = 0$  当  $x \to 0$  时,从而  $f(0) = -3, f'(0) = 0, f''(0) = 9$ .

- 5. 利用带 Lagrange 余项的 Taylor 展开.  $f(x+h) = f(x) + f'(x)h + \frac{f'''(x)}{2}h^2 + \frac{f'''(\xi_1)}{6}h^3$ ,  $f(x-h) = f(x) f'(x)h + \frac{f''(x)}{6}h^3$  $\frac{f''(x)}{2}h^2 - \frac{f'''(\xi_2)}{6}h^3$ . 从而  $f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{f'''(\xi_1) + f'''(\xi_2)}{12}h^2 \Rightarrow |f'(x)| \le \frac{2M_0}{2h} + \frac{2M_3}{12}h^2 = \frac{M_0}{h} + \frac{M_3h^2}{2h}$ . 注意到这对 于任意的 h>0 都成立, 从而考虑不等式右边取最小值的时候, 此时  $h=\sqrt[3]{\frac{3M_0}{M_3}}$ , 从而  $|f'(x)|\leq \frac{\sqrt[3]{9}}{2}M_0^{\frac{2}{3}}M_3^{\frac{1}{3}}\leq 4M_0^{\frac{2}{3}}M_3^{\frac{1}{3}}$ . 同理  $f''(x) = \frac{f(x+h)-2f(x)+f(x-h)}{h^2} + \frac{-f'''(\xi_1)+f'''(\xi_2)}{6}h \Rightarrow |f''(x)| \leq \frac{4M_0}{h^2} + \frac{2M_3}{6}h = \frac{4M_0}{h^2} + \frac{M_3}{3}h$ . 类似地取  $h = \sqrt[3]{\frac{24M_0}{M_3}}$ ,从  $|f''(x)| \leq \sqrt[3]{3}M_0^{\frac{1}{3}}M_3^{\frac{2}{3}} \leq 4M_0^{\frac{1}{3}}M_3^{\frac{1}{3}}.$
- 6. 设  $x_0 = \arg\max f(x)$  (若有多个则随便取一个). 在  $x = x_0$  处做带 Lagrange 余项的 Taylor 展开, 估计 x = 0 和 x = 1
- 处, 知  $f(0) = f(x_0) + f'(x_0)(0 x_0) + \frac{f''(\xi_1)}{2}(0 x_0)^2$ ,  $f(1) = f(x_0) + f'(x_0)(1 x_0) + \frac{f''(\xi_2)}{2}(1 x_0)^2 \Rightarrow 0 = 2 + \frac{f''(\xi_1)}{2}x_0^2$ ,  $0 = 2 + \frac{f''(\xi_1)}{$  $2 + \frac{f''(\xi_2)}{2}(1 - x_0)^2 \Rightarrow f''(\xi_1) = \frac{-4}{x_0^2}, f''(\xi_2) = \frac{-4}{(1 - x_0)^2}. \ \ \text{if } \ \ \text{max}\{\frac{1}{x_0^2}, \frac{1}{(1 - x_0)^2}\} \ge 4, \ \text{Min } \ \min\{f''(\xi_1), f''(\xi_2)\} \le -16.$
- 7. 注意到 n 次多项式的 n+1 阶导数恒为 0. 从而在 x=a 处做带 Lagrange 余项的 Taylor 展开, 得到  $P_n(x)=$  $P_n(a) + P'_n(a)(x-a) + \cdots + \frac{1}{n!}P_n^{(n)}(a)(x-a)^n$ . 从而对于任意 x > a, 成立  $P_n(x) \ge P_n(a) > 0$ , 从而 x 不可能是  $P_n(x) = 0$  的根.
- 8. (1) 定义域. 应成立  $1 + x \ge 0, 1 x \ge 0, \sqrt{1 + x} > \sqrt{1 x} \Rightarrow 0 < x \le 1$ .
- (2) 极值点.  $f'(x) = \frac{1}{x\sqrt{1-x^2}}$ . 由于对于  $x \in (0,1)$  总有 f'(x) > 0, 这意味着 f(x) 没有极值点.
- (3) 单调区间. 由于 f'(x) > 0, 这意味着 f(x) 在 (0,1] 上单调递增.
- (4) 凹凸区间与拐点.  $f''(x) = \frac{2x^2-1}{x^2(1-x^2)\sqrt{1-x^2}}$ . 从而当  $0 < x < \frac{\sqrt{2}}{2}$  时  $f''(x) < 0 \Rightarrow f''(x)$  凹; 当  $\frac{\sqrt{2}}{2} < x < 1$  时  $f''(x) > 0 \Rightarrow f''(x)$  凸.  $x = \frac{\sqrt{2}}{2}$  是拐点.
- (5) 渐近线.  $\lim_{x\to 0+0} f(x) = -\infty$ , 从而 x = 0 是 f(x) 的垂直渐近线.
- 9. 首先利用向前-向后数学归纳法来证明  $f(\frac{x_1+\cdots+x_m}{m}) \leq \frac{f(x_1)+\cdots+f(x_m)}{m}$ . 向前: 利用数学归纳法证明  $f(\frac{x_1}{2^k}+\cdots+\frac{x_{2^k}}{2^k}) \leq \frac{f(x_1)+\cdots+f(x_m)}{m}$  $\frac{1}{2^k}f(x_1)+\cdots+\frac{1}{2^k}f(x_{2^k})$  对于  $k=1,2,\cdots$  成立. 假设对于  $k=1,2,\cdots,n-1$  成立. 则  $f(\frac{x_1}{2^n}+\cdots+\frac{x_{2^n}}{2^n})=f(\frac{1}{2^{n-1}}\frac{x_1+x_2}{2^n}+\cdots+\frac{x_{2^n}}{2^n})$ 明对于 k=n 也成立, 由数学归纳法知原命题对于  $m=2,4,8,16,\cdots$  都成立. 向后: 如果  $f(\frac{x_1+\dots+x_n}{n})\leq \frac{f(x_1)+\dots+f(x_n)}{n}$ ,  $\frac{f(x_1)+\cdots+f(x_{n-1})}{n-1}$ . 从而原命题成立. 那么对于  $t_1,\cdots,t_n\in\mathbb{Q}$  的情况也成立, 因为这些有理数总可以通分写成一个个同 分母的分数求和. 最后再由连续性知对于无理数也成立.
- 10. 只需注意到对于 x < y < z, 成立  $\frac{f(z) f(y)}{z y} \ge \frac{f(y) f(x)}{y x} \Leftrightarrow \frac{z y}{z x} f(x) + \frac{y x}{z x} f(z) \ge f(y) = f(\frac{z y}{z x} x + \frac{y x}{z x} z)$ (这是已 知条件). 同理  $\frac{f(z)-f(x)}{z-x} \geq \frac{f(y)-f(x)}{y-x}$ . 从而固定 y,关于 z 的函数  $g(z) = \frac{f(z)-f(y)}{z-y}$  随着  $z \to y+0$  单调递减有下界  $\frac{f(y)-f(x)}{y-x}$  ⇒ 极限 (右导数) 存在. 同理左导数存在. 左右导数可能不相等的例子: f(x)=|x|.
- 11. 写成 Riemann 和, 然后利用离散版本的 Jensen 不等式.
- 12.  $\int p(x) \log \frac{p(x)}{q(x)} dx = -\int p(x) \log \frac{q(x)}{p(x)} dx$   $\overset{\text{Jensen } T \Leftrightarrow \exists}{\geq} -\log \int p(x) \cdot \frac{q(x)}{p(x)} dx = 0.$  13. 由积分中值定理知存在  $t \in (0, \frac{1}{5})$  使得  $f(1) = 5 \times \frac{1}{5} e^{t-1} f(t) \Rightarrow e^1 f(1) = e^t f(t)$ . 从而对函数  $g(x) = e^x f(x)$  应用 Rolle 微分中值定理即可.
- 14. 在闭区间  $[-\frac{1}{2}, \frac{1}{2}]$  上 f'(x), f(x) 都是有界函数, 从而 f''(x) 也有界, 可设  $|f''(x)| \leq M$ . 从而对于任意  $x \in [-\frac{1}{2}, \frac{1}{2}]$ , 成 立  $|f'(x)| = |\int_0^x f''(t)dt| \le \int_0^x |f'(t)|dt \le M|x| \le \frac{M}{2}$ , 同理  $|f(x)| \le \frac{Mx^2}{2} \le \frac{M}{8} \Rightarrow |f''(x)| \le |f(x)| + |f'(x)| \le \frac{5}{8}M$ . 如此 迭代下去, 反复上述过程, 可得  $|f''(x)| \leq (\frac{5}{8})^n M \to 0$ . 从而对于  $x \in [-\frac{1}{2}, \frac{1}{2}], f''(x) = 0 \Rightarrow f'(x) = C \Rightarrow f(x) = Cx + D$ . 由 f(0) = 0, f'(0) = 0 知 C = 0, D = 0, 即  $f(x) \equiv 0$ .
- 15. 显然  $\exists x_0 \in (a,b)$  使得  $f(x_0) \neq \frac{f(b)-f(a)}{b-a}(x_0-a)+f(a)$ , 否则 f(x) 是线性函数. 若  $f(x_0) > \frac{f(b)-f(a)}{b-a}(x_0-a)+f(a)$ , 则由 Lagrange 微分中值定理,  $\exists \xi \in (a, x_0)$  使得  $f'(\xi) = \frac{f(x_0) - f(a)}{x_0 - a} > \frac{f(b) - f(a)}{b - a}$ . 若  $f(x_0) < \frac{f(b) - f(a)}{b - a}(x_0 - a) + f(a)$ , 则由 Lagrange 微分中值定理,  $\exists \xi \in (x_0, b)$  使得  $f'(\xi) = \frac{f(b) - f(x_0)}{b - x_0} > \frac{f(b) - f(a)}{b - a}$ .
- 16. 反证法, 如果存在  $\delta$ , M 使得  $\forall x \in (b-\delta,b), f'(x) < M$ , 则由 Lagrange 微分中值定理,  $\forall x \in (b-\delta,b), f(x) =$  $f(b-\delta)+f'(\xi)(x-(b-\delta)) \le f(b-\delta)+M\delta$ , 这与  $\lim_{x\to b-0} f(x)=+\infty$  矛盾.
- 17. (1) 记  $f(x) = e^x P(x)$ . 则  $f'(x) = e^x (P(x) + P'(x)) \ge 0$ , 且  $f(-\infty) = 0 \Rightarrow f(x) \ge f(-\infty) = 0$  恒成立  $\Rightarrow P(x) \ge 0$ .
- (2) 记  $f(x) = e^{-x}P(x)$ . 则  $f'(x) = e^{-x}(P'(x) P(x)) \le 0$ , 且  $f(+\infty) = 0 \Rightarrow f(x) \ge f(+\infty) = 0$  恒成立  $\Rightarrow P(x) \ge 0$ .
- (3)  $\exists P_1(x) = P(x) P''(x)$ ,  $\forall P_1(x) = P(x) P'_1(x) \ge 0 \Rightarrow P_1(x) \ge 0$ .  $\exists P_2(x) = P(x) P'(x)$ ,  $\forall P_2(x) = P(x) P'(x)$ ,  $\forall P_2(x) = P(x) P'(x)$  $P_1(x) \ge 0 \Rightarrow P_2(x) \ge 0 \Rightarrow P(x) - P'(x) \ge 0 \Rightarrow P(x) \ge 0.$

等周问题: 长为 L 的曲线何时围成区域面积最大? 答案: 圆 (一年级小学生皆可猜出)

证明: 不妨设 D 为凸区域 (D 内任意两点连线位于 D 内). 设  $\Gamma$  :  $\begin{cases} x = x(s) \\ y = y(s) \end{cases} \in C^1[0,L],$  此处选择  $\Gamma$  的弧长为参数,则  $x'(s)^2 + y'(s)^2 = 1$ ,且 D 的面积为  $A = \int_0^L x dy = \int_0^L x(s)y'(s) ds$ .

设  $C: \begin{cases} x = \phi(s) = x(s) \\ y = \psi(s) \end{cases}$  是以 O 为中心, R 为半径的圆, 此处选择  $\Gamma$  的弧长为参数, 则 C 的面积为  $\pi R^2 = -\int_0^L y dx = -\int_0^L \psi(s) x'(s) ds$ . 从而  $A + \pi R^2 = \int_0^L (x(s)y'(s) - \psi(s)x'(s)) ds \le \int_0^L \sqrt{(x(s)y'(s) - \psi(s)x'(s))^2} ds \le \int_0^L \sqrt{(x'(s)^2 + y'(s)^2)(x(s)^2 + \psi(s)^2)} ds = RL$ . 因此我们成立  $2\sqrt{A}\sqrt{\pi R^2} \le A + \pi R^2 \le RL \Rightarrow A \le \frac{L^2}{4\pi}$ . 其中等号成立当且仅当以上每步相等,尤其是  $(x(s)y'(s) - \psi(s)x'(s))^2 = (x'(s)^2 + y'(s)^2)(x(s)^2 + \psi(s)^2)$ . 用右边减去左边得到  $(x(s)x'(s) + \psi(s)^2)$ 



 $\psi(s)y'(s))^2 = 0$ . 由于  $x(s)^2 + \psi(s)^2 = R^2$ , 两边求导得  $x(s)x'(s) + \psi(s)\psi'(s) = 0 \Rightarrow \psi'(s) = y'(s), \psi(s) = y(s) + y_0$ , 即 Γ 方程为  $x^2 + (y - y_0)^2 = R^2$ , 圆也!

泰勒公式在物理中的一些引用可参考 https://www.zhihu.com/question/302968510/answer/577451859.

#### 致谢 10

感谢北京大学数学科学学院的王冠香教授和刘培东教授,他们教会了笔者数学分析的基本知识. 感谢北京大学元培学院 21 级本科生徐奕辰同学和另一位不愿意透露姓名的同学, 他们提供了大量精彩的题目. 感谢选修 2022 秋高等数学 A I 习题课 12 班的全体同学, 他们提供了很多有意思的做法和反馈.