西安电子科技大学

2020年硕士研究生招生考试初试试题

考试科目代码及名称 811 信号与系统、电路 考试时间 2019 年 12 月 22 日下午 (3 小时)

答题要求: 所有答案(填空题按照标号写)必须写在答题纸上,写在试题上一律作废,准考证号写在指定位置!

第一部分:信号与系统(总分75分)

一. 填空题(共8小题,每小题4分,共32分)

解答本大题中各小题不要求写解答过程,只将算得的正确答案填写在答题纸上。

例如,一填空题: 1._., 2._., ...

- 1. 描述某系统的微分方程为y(k)+(k-1)y(k-1)=f(k),其中f(k)为激励,
- y(k)为全响应,那么该系统是____(线性/非线性)____(时变/时不变)系统。

2. 积分
$$\int_{-\infty}^{t} (2-3x) \left[\delta \left(1 - \frac{x}{2} \right) + \delta'(x) \right] dx = \underline{\qquad}.$$

3. 信号 $f_1(t)$ 和 $f_2(t)$ 如图 1-3 所示, $f(t) = f_1(1-t) * f_2(\frac{t}{2})$, $f(1) = \underline{\hspace{1cm}}$ 。

图 1-3

4. 有限频带信号 f(t) 的最高频率为 f_m Hz, 若对 $f_1(t) = f^2(t-1)$ 进行时域采样,

使频谱不发生混叠的奈奎斯特频率是。

- 5. 描述某 LTI 系统的微分方程为 y''(t)+3y'(t)+2y(t)=f'(t)+f(t),已知输入信号 $f(t)=e^{-t}\varepsilon(t)$, $y(0_+)=2$, $y'(0_+)=3$,求: $y'(0_-)=$ _____。
- 6. 已知频谱密度函数 $F(j\omega) = \left[\epsilon(\omega) \epsilon(\omega-2)\right] e^{-j2\omega}$,式中 $\epsilon(\omega)$ 为频域里单位阶跃函数,则原函数 f(t)等于_____。
 - 7. 象函数 $F(s) = \frac{e^{-s}}{s(s^2+1)}$ 的单边拉普拉斯逆变换为: ______。

8. 序列和
$$\sum_{i=-\infty}^{k} cos\left(\frac{i\pi}{4}\right)\delta(i-3) = \underline{\qquad}$$

二. 计算题(共4小题,共43分)

解答本大题中各小题,请书写在答题纸上并写清楚关键性步骤,只有答案得 0 分,非通用符号请注明含义。

1. (11分)如图 2-1 (a) 所示为二次抑制载波振幅调制接收系统。

图 2-1

已知输入信号 $f(t) = \frac{\sin(t)}{\pi t}$, $-\infty < t < \infty$, 调制信 $s(t) = \cos(1000t)$, $-\infty < t < \infty$.

低通滤波器的传输函数如图 2-1 (b) 所示, 其相位特性为 $\phi(\omega)=0$, 试:

- (1) 画出 $f_a(t)$ 和 $f_b(t)$ 的频谱图;
- (2) 求系统的输出 y(t)。

811 信号与系统、电路 试题 共 7 页 第 2 页

2. (10分)已知系统函数和初态如下:

$$H(s) = \frac{s+1}{s^2+5s+6}, y(0_{-}) = y'(0_{-}) = 1$$

- (1) 求系统的零输入响应 $y_{zi}(t)$;
- (2) 输入信号 $f(t) = 5cost\varepsilon(t)$, 求系统的零状态响应 $y_{zs}(t)$ 和稳态响应。
- 3. (11 分)如图 2-3 所示为离散 LTI 因果系统的信号流图,求
 - (1) 系统函数H(z);
 - (2) 列写输入输出差分方程;
 - (3) 判断系统是否稳定,并给出理由;
 - (4) 当输入为 $(0.5)^k \varepsilon(k)$ 时系统的零状态响应。

图 2-3

4.(11 分)如图 2-4 所示为某连续系统的信号流图,写出以 x_1 和 x_2 为状态变量的状态方程和输出方程。

第二部分: 电路(总分75分)

一. 填空题(共9小题,每小题5分,共45分)

1. 电路如图 1 所示, 求电流 I 的值是 。

解答本大题中各小题不要求写解答过程,只将算得的正确答案填写在答题纸上。

- 例如,一填空题: 1._., 2._., ...
- 2. 电路如图 2 所示, 求 10V 电压源发出的功率是

3. 电路如图 3 所示,已知 $u_s(t) = 9e^{-t}V$, $i_s(t) = 6\cos 2tA$, 求 $i(t) = ______$ 。

811 信号与系统、电路 试题 共 7 页 第 4 页

- 4. 电路如图 4 所示,已知 $\omega = 10^3 \, rad \, / \, s$, 电流 $\dot{I} = 4 \angle 0^\circ \, A$, 电压 $\dot{U} = 80 + j200V$, 求电容 $\mathbb C$ 的值是_____。
- 5. 电路如图 5 所示,已知 $R=10^4\Omega$,电压源 $U_s=100 \angle 0^{\circ}V$,则 n 等于_____时负载 R_L 的功率达到最大。

- 6. 电路如图 6 所示,已知 $U_{ab} = 4\angle 0^{\circ}V$,则该电路的性质是_____ (容性,感性)。
- 7. 电路如图 7 所示,若以 u_c 为输出,则该电路是____(低通,高通,带通)电路。

811 信号与系统、电路 试题 共 7 页 第 5 页

- 8. 电路如图 8 所示为一电容抽头的并联谐振电路,已知谐振频率为 62.8 MHz, C_1 =400pF, C_2 =100pF,求电路中的电感 L=____。
- 9. 电路如图 9 所示的二端口网络,则该网络的 Z 参数矩阵为____。

二. 计算题(共4小题,共30分)

解答本大题中各小题,请书写在答题纸上并写清楚关键性步骤,只有答案得 0 分,非通用符号请注明含义。

1. (8分) 电路如图 10 所示, 试用节点法求图中受控源的电压 Ux。

2. (9分) 电路如图 11 所示,t<0 时,开关 S1 处于闭合状态,开关 S2 处于断开状态,电路已经处于稳定状态;当 t=0 时,断开开关 S1; t=0.1s 时,闭合开关 S2,求 t \geqslant 0 时 $u_c(t)$ 和 $i_c(t)$ 。(注: e=2.72)

811 信号与系统、电路 试题 共 7 页 第 6 页

3. (5 分)电路如图 12 所示,已知 L=10mH,输入电压 u 的频率可变,当 u(t)频率为 $\omega_1 = 10^3 \, rad \, / \, s$ 时,i(t)的值最大;当 u(t)的频率为 $\omega_2 = 10^4 \, rad \, / \, s$ 时,i(t)的值为 0。 求电路中两个电容的值是多少?

图 12

4. $(8\,
m eta)$ 电路如图 13 所示,已知 N 为不含独立源的线性电阻网络,已知输出电压 $u=0.5u_s$; 若输出端接上 $5\,
m \Omega$ 的电阻,则输出电压 $u=0.1u_s$ 。问在输出端接上 $20\,
m \Omega$ 的电阻时,输出电压与激励 u_s 的关系是什么?

