Data Science with Linear Programming

Nantia Makrynioti, Nikolaos Vasiloglou, Emir Pasalic and Vasilis Vassalos LogicBlox, Athens University of Economics and Business

DeLBP 2017, Melbourne, Australia

Problem Motivation

- Most of the data are still stored in relational databases.
- Typical data science loop:
 - Prepare features inside database
 - Export data as a denormalized data frame
 - Apply machine learning algorithms
- Tedious process of exporting / importing data
- Loss of domain knowledge embedded in the relational representation

Our approach

- Use of linear programming to model machine learning algorithms inside a relational database:
 - Define machine learning algorithms as Linear Programs (LP) in a declarative language
 - Automatic computation of the solution by the system
 - Seamless integration of constraints to express domain knowledge
 - Unification of data processing and machine learning tasks
- Implementation on the LogicBlox database

LogiQL and SolverBlox

- LogiQL: a declarative language derived from Datalog used in the LogicBlox database
- SolverBlox: a framework for expressing Linear and Mixed Integer Programs in LogiQL
 - Objective function and constraints expressed in LogiQL
 - Transformation of the LP in LogiQL to a matrix format consumed by an external solver, e.g. Gurobi
 - Solution of the LP stored back to the database and accessed via the typical LogicBlox commands / queries.

SolverBlox and Grounding

- Highly benefited by the LogiQL evaluation engine
- Incremental Maintenance when updating data inside database

 $\begin{array}{c} 1 \\ maximize \\ c^T x \\ subject \\ to \\ Ax < b \end{array}$

LogiQL program P' with A lnput data matrix and c, b vectors¹ .lp file (solver's format) Solver Solution of LP

Machine Learning in SolverBlox

Linear Regression

- Objective function: Mean Absolute Error
- Retail domain: implementation of Linear Regression on the stock keeping unit (SKU) demand problem
 - Historical sales of a number of SKUs
 - Predict future demand for each SKU, at each store, on each day of the forecast horizon

observables(sku,str,day) -> sku(sku), store(str), day(day). EDB predicate: values imported to the database

prediction[sku, str, day] = v -> sku(sku), store(str), day(day), IDB predicate: values defined by rules

```
lang:solver:variable(`sku coeff).
lang:solver:variable(`brand coeff).
sku coeffF[sku]=v <- unique skus(sku), sku coeff[sku]=v.
```

brand coeffF[sku]=v <- brand coeff[br]=v, unique skus(sku), brand[sku]=br. sum of sku features[sku]=v <- unique_skus(sku), sku_coeffF[sku]=v1, brand_coeffF[sku]=v2,

v=v1+v2.

prediction[sku, str, day] = v < - observables(sku, str, day), sum of sku features[sku]=v.

//IDB predicate of error between prediction and actual value error[sku, str, day] += prediction[sku, str, day] - total sales[sku, str, day].

totalError[] += abserror[sku, str, day] <- observables(sku, str, day).lang:solver:minimal(`totalError).

observables(sku, str, day), abserror[sku, str, day]=v1, error[sku, str, day]=v2 -> v1>=v2. observables(sku, str, day), abserror[sku, str, day]=v1, error[sku, str, day]=v2, w=0.0f-v2 -> v1>=w.

```
lang:solver:variable(`sku_coeff).
lang:solver:variable(`brand_coeff).
```

sku_coeffF[sku]=v <- unique_skus(sku), sku_coeff[sku]=v.
brand_coeffF[sku]=v <- brand_coeff[br]=v, unique_skus(sku),
brand[sku]=br.

LP variables

sum_of_sku_features[sku]=v <- unique_skus(sku),
sku_coeffF[sku]=v1, brand_coeffF[sku]=v2, v=v1+v2.</pre>

prediction[sku, str, day] = v <- observables(sku,str,day),
sum_of_sku_features[sku]=v.</pre>

```
//IDB predicate of error between prediction and actual value
error[sku, str, day] += prediction[sku, str, day] -
total sales[sku, str, day].
```

totalError[] += abserror[sku, str, day] <- observables(sku, str, day). Linear objective

lang:solver:minimal(`totalError).

observables(sku, str, day), abserror[sku, str, day]=v1, error[sku, str. day]=v2 -> v1>=v2.

function

observables(sku, str, day), abserror[sku, str, day]=v1, error[sku, str, dav]=v2, w=0.0f-v2 -> v1>=w.

```
//IDB predicate of error between prediction and actual value error[sku, str, day] += prediction[sku, str, day] - total_sales[sku, str, day].
```

totalError[] += abserror[sku, str, day] <- observables(sku, str, day).

lang:solver:minimal(`totalError).

observables(sku, str, day), abserror[sku, str, day]=v1, error[sku, str, day]=v2 -> v1>=v2.

Linear

constraints

observables(sku, str, day), abserror[sku, str, day]=v1, error[sku, str, day]=v2, w=0.0f-v2 -> v1>=w.

Factorization Machines

Original algorithm:

$$y = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{m} \langle v_i, v_j \rangle x_i x_j$$

$$\langle v_i, v_j \rangle = \sum_{f=1}^k v_i, f \cdot v_j, f$$

$$w_0 \in R, w \in R^n, V \in R^{n \times k}$$

Linear approximation:

- Each interaction is placed to a bucket
- Find coefficients for buckets

$$y = w_0 + \sum_{i=1}^{n} w_i x_i + \sum_{l=1}^{k} \sum_{i=1}^{n} \sum_{j=i+1}^{m} bc_l[i,j] \cdot x_i x_j$$

FM in SolverBlox

- Back to our retail problem:
 - Adding interactions between SKUs and months
 - Useful interaction for seasonal products

Determines buckets using a hash function

```
sku_monthOfYear_bucket[sku, moy] = v <- observables(sku,_,day), monthOfYear[day]=moy, sku_id[sku]=n1, month_id[moy]=n2, n=n1+n2, string:hash[n]=z, int:mod[z, 100]=v.
```

sku_monthOfYear_interaction[sku, day]=v <- observables(sku,_,day), monthOfYear[day]=moy, sku_monthOfYear_bucket[sku, moy]=z3, bucket_coeff[z3]=v.

Interactive Data Science

Defining Models Step by Step

- Machine learning algorithms as LPs:
 - Gradually improving our models by adding constraints
- Integrating LPs to the database:
 - Easy filtering of training and test data by applying database processing operators

- Starting by defining a Linear Regression model
 - Training and testing on 5 SKUs
 - Weighted Average Percent Error (WAPE):

$$WAPE = \frac{\sum |actual - forecast|}{\sum actual} \cdot 100$$

o Bias:

$$Bias = \frac{\sum actual - forecast}{\sum actual} \cdot 100$$

SKU id	3	6	8	9	26
WAPE on training	99.99	99.97	99.99	93.43	99.99
Bias on training	-99.99	-99.97	-99.99	-93.43	-99.99
WAPE on test	99.62	97.86	99.99	88.16	99.99
Bias on test	-80.68	-84.45	-99.99	-88.16	-99.99

> Adding L1 regularization and a constraint forcing bias per SKU to zero:

SKU id	3	6	8	9	26
WAPE on training	67.73	62.77	95.7	36.26	102.6
Bias on training	0	0	0	0	0
WAPE on test	111.26	106.9	67.07	49.78	86.46
Bias on test	90.33	68.68	-36.54	-1.6	3.47

- Turning bias constraint to a soft constraint and adding a domain specific constraint:
 - Sales predictions must be >=0

	WAPE on training		Bias on training		WAPE on test		Bias on test	
SKU id	Step 2	Step 3	Step 2	Step 3	Step 2	Step 3	Step 2	Step 3
3	67.73	63.74	0	0	111.26	75.33	90.33	5.99
6	62.77	59.99	0	0	106.9	73.29	68.68	0.97
9	36.26	34.44	0	0	49.78	50.89	-1.6	-0.5

Aggregated Forecasting

- > So far we generated predictions at SKU, store, day level:
 - prediction[sku, str, day] = v <- observables(sku,str,day), sum_of_sku_features[sku]=v.
- > By modeling ML algorithms as Linear Programs it's very easy to predict sales at higher levels, e.g. at SKU, day level:
 - prediction_aggregated[sku, day]=v <- observables(sku,_,day), sum_of_sku_features[sku]=v.
- An effective technique when dealing with large datasets

Aggregated Forecasting - Data Fitting

- Factorization Machines model on 2033354 observations
- Generated 60346 predictions at subfamily - store - day level

Discussion

- Blending Machine Learning and relational databases accelerates and improves data science tasks
- > As future work:
 - Explore techniques to speed up grounding by harnessing functional dependencies and compressing the LP matrix
 - Extension of SolverBlox to support more classes of convex optimization problems, such as Quadratic Programming

Thank you! Questions?