

05 – Memory-Mapped I/O

CS1022 - Introduction to Computing II

Dr Jonathan Dukes / jdukes@scss.tcd.ie School of Computer Science and Statistics

NXP LPC2468

LPC2468 Development Board

On-Chip Flash (Read-Only) Memory (512KB)

On-Chip RAM (64KB + 16KB for Ethernet + 16KB = 96KB)

Off-Chip RAM (32MB)

4GB address space (32 bit addresses)

Each memory device is mapped into a region of the address space

Memory accesses (loads/stores) are directed to the device that is mapped into the address being accessed

address	memory					
0xfffffff	• • •					
0xA1FFFFFF	External SDRAM 32MB					
0xA000000	• • •					
0x81FFFFFF	External NAND Flash I 28MB					
0x81000000						
0x80FFFFF	External NOR Flash 4MB					
0x80000000	• • •					
0x7FE03FFF	Internal SRAM Ethernet					
0x7FE00000	(16KB)					
0x7FD03FFF	Internal SRAM USB					
0x7FD00000	(I6KB)					
	• • •					
0x4000FFFF	Internal SRAM					
0x4000000	(64KB)					
	• • •					
0x0007FFFF	Internal					
	Flash					
	Memory					
	·					
0x0000000	(512KB)					

512KB Internal Flash Memory

512KB = 524288 bytes = 2^{19} bytes

Address range: $0 \dots 524287_{10} = 0x000000 \dots 0x7FFFF$

Device required 19-bit addresses

Choose address 0x00000000 as device base address

Mapped into processor address space 0x00000000 ... 0x0007FFFF

Similarly for Internal SRAM, External SDRAM, ...

64KB Internal SRAM

 $64KB = 65536 \text{ bytes} = 2^{16} \text{ bytes}$

Address range: $0 \dots 65535_{10} = 0x0000 \dots 0xFFFF$

Device requires 16-bit addresses

Choose address 0x40000000 as device base address

Mapped into processor address space 0x40000000 ... 0x4000FFFF

How do we communicate with non-memory *devices* external to the microprocessor?

Consider a *fictional* timer device that can measure elapsed time

Fictional timer has two internal registers

Control Register, 32-bits

bit 0: start/stop

bit 1: reset

bits 2-31: unused

Counter Register, 32-bits, stores elapsed time in ms

Map device registers into the memory space (just like other "regular" memory devices!!)

Choose a base address for our fictional timer peripheral

e.g. 0xE0004004

Map device registers to memory locations beginning at base address

control register: 0xE0004004

counter register: 0xE0004008

e.g. to reset timer

address memory 0xffffffff 12345 0xE0004008 counter control 0xE0004004 0×000000000

Design and write an ARM Assembly Language program that will cause an LED to blink on and off repeatedly

Interrupt (P2.10) key

LPC2468 OEM Base Board Schematic

Many external LPC2468 pins have multiple uses

Functionality of a pin is configured ...

by software, at runtime

using the *Pin Connect Block* **PINSELx** memory mapped register

PINSELx defines pin function

Each 32-bit register controls 16 pins (2 bits to select one of $2^2 = 4$ possible functions for each physical pin)

Table 135. LPC2420/60/68/70/78 pin function select register 4 (PINSEL4 - address 0xE002 C010) bit description

PINSEL4	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value
					- L J	
21:20	P2[10]	GPIO Port 2.10	EINT0	Reserved	Reserved	00
00.00	D0[44]	ODIO Dart 0 11	FINITA/	NACIDATA	IDOTY OLV	$\cap \cap$

LPC2468 User Manual Chapter 9: LPC24xx Pin Connect

Table 135. LPC2420/60/68/70/78 pin function select register 4 (PINSEL4 - address 0xE002 C010) bit description

UXEUUZ CUTU) bit description									
PINSEL4	Pin name	Function when 00	Function when 01	Function when 10	Function when 11	Reset value			
1:0	P2[0]	GPIO Port 2.0	PWM1[1]	TXD1	TRACECLK[1]/ LCDPWR	00			
3:2	P2[1]	GPIO Port 2.1	PWM1[2]	RXD1	PIPESTAT0[1]/ LCDLE	00			
5:4	P2[2]	GPIO Port 2.2	PWM1[3]	CTS1	PIPESTAT1[1]/ LCDDCLK	00			
7:6	P2[3]	GPIO Port 2.3	PWM1[4]	DCD1	PIPESTAT2[1]/ LCDFP	00			
9:8	P2[4]	GPIO Port 2.4	PWM1[5]	DSR1	TRACESYNC[1]/ LCDENAB/ LCDM	00			
11:10	P2[5]	GPIO Port 2.5	PWM1[6]	DTR1	TRACEPKT0[1]/ LCDLP	00			
13:12	P2[6]	GPIO Port 2.6	PCAP1[0]	RI1	TRACEPKT1[1]/ LCDVD[0]/ LCDVD[4]	00			
15:14	P2[7]	GPIO Port 2.7	RD2	RTS1	TRACEPKT2 ^[1] / LCDVD[1]/ LCDVD[5]	00			
17:16	P2[8]	GPIO Port 2.8	TD2	TXD2	TRACEPKT3 ^[1] / LCDVD[2]/ LCDVD[6]	00			
19:18	P2[9]	GPIO Port 2.9	USB CONN	RXD2	EXTIN0[1]/	00			
			ECT1		LCDVD[7]				
21:20	P2[10]	GPIO Port 2.10	EINT0	Reserved	Reserved	00			
۷۷.	P2[11]	GPIO Port 2.11	EINT1/	MCIDAT1	I2STX_CLK				
25:24	P2[12]	GPIO Port 2.12	EINT2/ LCDVD[4]/ LCDVD[3]/ LCDVD[8]/ LCDVD[18]	MCIDAT2	I2STX_WS	00			
27:26	P2[13]	GPIO Port 2.13	EINT3/ LCDVD[5]/ LCDVD[9]/ LCDVD[19]	MCIDAT3	I2STX_SDA	00			
29:28	P2[14]	GPIO Port 2.14	CS2	CAP2[0]	SDA1	00			
31:30	P2[15]	GPIO Port 2.15	CS3	CAP2[1]	SCL1	00			

Pin P2.10 possible functions

GPIO port P2.10

External interrupt source EINTO

Configured using bits 21:20 of PINSEL4

Set bits 21:20 to 00₂ for GPIO function

REMEMBER! Need to leave the other bits (0 ... 19 and 22 ... 31) of PINSEL4 unmodified

PINSEL4 address – 0xE002C010 (from LPC2468 User Manual)

Read-Modify-Write operation to set register value

```
; Enable P2.10 for GPIO

LDR R5, =PINSEL4 ; 0xE002C010

LDR R6, [R5] ; Read current PINSEL4 value

BIC R6, #(0x3 << 20) ; Modify to clear bits 21:20

STR R6, [R5] ; Write new PINSEL4 value
```

GPIO pins can be either inputs or outputs

Controlling LED = output

Direction (I/O) set using FIOxDIRy register

Use FIO2DIR1 for P2.10

Set bit 2 of FIO2DIR1 to 1 for output

Refer to LPC2468 User Manual

```
; Set P2.10 for output

LDR R5, =FIO2DIR1

LDRB R6, [R5] ; Read FIO2DIR1

ORR R6, #(0x1 << 2) ; Set bit 2 to value 1 to configure output

STRB R6, [R5] ; Write FIO2DIR1
```

Set output value (0/1) using bit 2 of FIO2PIN1 register

Must not change other bits of FIO2PIN1

Read, Modify, Write again

test if LED is on or off [READ]

if it is off then turn it on, if it is on then turn it off [MODIFY]

output new value [WRITE]

Naïve delay implemented using a counting loop

```
; while (forever) {
repeat
      R4, =0x04; setup bit mask for bit 2 of FIO2 (P2.10)
 LDR
       R5, =FIO2PIN1
  LDR
  LDRB
       R6, [R5] ; read FIO2PIN1
       R7, R6, R4; only want to test bit 2 — mask other bits
  AND
       R7, #0
                         if (LED on)
  CMP
      elseoff
  BNE
      R6, R6, R4; clear bit 2 (turn LED off)
  BIC
 В
       endif
                       ; else if 1, turn LED off {
elseoff
                       ; set bit 2 (turn LED on)
  ORR R6, R6, R4
endif
  STRB R4, [R5] ; write FIO2PIN1
  ; delay
  LDR R4, =0x400000; count =0x400000
whDelay
                          while (count > 0)
      R4, #0
  CMP
  BEQ eWhDelay
       R4, R4, #1
  SUB
                       ; count = count - 1
       whDelay
  В
eWhDelay
  В
       repeat
                       ; }
```