Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie

Département de Mathématiques

Concours d'accès à la formation 3^{ème} Cycle 2012/2013 : Mathématiques

Epreuve d'Analyse (durée : 1H30)

Exercice 1 (02 points)

Etudier la convergence de la série : $\sum_{n>1} \left(\frac{n}{n+1}\right)^n$.

Exercice 2 (06 points)

- 1) Soit C l'espace des fonctions continues réelles sur [0,1] muni de la métrique $d_1(f,g) = \int_0^1 |f(x) g(x)| dx$, puis de la métrique $d_{\infty}(f,g) = \sup_x |f(x) g(x)| dx$. Vérifier que l'application $f \to \int_0^1 |f(x)| dx$ de C dans \mathbb{R} est 1 lipschitzienne dans les deux cas.
- 2) Soit S l'espace des suites réelles convergentes, muni de la métrique $d(x,y) = \sup_n |x(n) y(n)|$. Si on désigne par $\ell(x)$ la limite de la suite x, montrer que ℓ est une application continue de S dans \mathbb{R} . En déduire que S_0 est fermé dans S.

Exercice 3 (06 points)

1) Montrer que si $a \ge 0$, $b \ge 0$ et $0 \le \lambda \le 1$, alors

$$a^{\lambda}b^{1-\lambda} < \lambda a + (1-\lambda)b.$$

2) Soit $p > 1, q < \infty$ tel que $p^{-1} + q^{-1} = 1$ et soit $x = \{\xi_i\}$ et $y = \{\eta_i\}$ dans l'espace ℓ_p et ℓ_q . Utiliser l'inégalité précidente pour démontrer que

$$\sum_{i=1}^{\infty} |\xi_i \eta_i| \le ||x||_p ||y||_q.$$

Exercice 4 (06 points)

Soient $f, f_n \in L^2(\mu)$, on dit que f_n converge vers f faiblement si

$$\lim_{n\to\infty} \int (f_n - f) g d\mu = 0 \quad \text{pour tout } g \in L^2(\mu) \text{ et sup } ||f_n||_2 < \infty.$$

- 1) Montrer que si $f_n \to f$ dans L^2 , alors $f_n \to f$ faiblement, mais que la réciproque est fausse.
- 2) Montrer que si X = [a, b] où a et b sont finis, alors $f_n \to f$ faiblement si et seulement si

$$\int_{a}^{x} f_{n} dt \to \int_{a}^{x} f dt, \quad \forall x \in [a, b] \quad \text{et} \quad \sup \|f_{n}\|_{2} < \infty.$$

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie

Département de Mathématiques

Concours d'accès à la formation 3^{ème} Cycle 2012/2013 : Mathématiques

Epreuve d'Analyse (durée : 1H30)

Exercice 1 (02 points)

Etudier la convergence de la série : $\sum_{n>1} \left(\frac{n}{n+1}\right)^n$.

Exercice 2 (06 points)

1) Soit $a, b \ge 0$ et soit $p, q \in (1, +\infty)$ tel que $p^{-1} + q^{-1} = 1$ (on dit que p et q sont conjugués au sens de Young). Montrer l'inégalité de Young :

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q.$$

On pourra considérer la fonction $\varphi : \mathbb{R}^+ \to \mathbb{R}$ définie par $\varphi(a) = \frac{1}{p}a^p + \frac{1}{q}b^q - ab$.

- 2) Soient p et q dans $[1, +\infty]$ (pas nécessirement conjugués). Montrer que si f appartient à $L^p \cap L^q$, alors f appartient à L^r pour tout r comprisentre p et q.
- 3) Montrer que si f appartient à L^p et g appartient à L^q avec $p^{-1} + q^{-1} = r^{-1}$, alors $f \cdot g$ appartient à L^r et

$$||f.g||_r \le ||f||_p ||g||_q$$
.

Exercice 3 (06 points)

On définit une suite de polynômes $(S_n)_{n\in\mathbb{N}}$ de $\mathbb{R}[X]$ par :

$$S_0 = 1$$
, $S_1 = 2X$ et pour tout $n \in \mathbb{N}$, $S_{n+2} = 2XS_{n+1} - S_n$.

- 1) Calculer S_2, S_3, S_4 .
- **2)** Dérerminer, pour tout $n \in \mathbb{N}$, les valeurs de $\alpha_n = S_n(0)$, de $\beta_n = S_n(1)$ et de $\gamma_n = S_n(-1)$.
- 3) Montrer que, pour tout $n \in \mathbb{N}$, S_n est de degré n, et déterminer une expression de d_n , le coefficient dominant de S_n .
- **4)** Prouver que, pour tout $n \in \mathbb{N}$: $\forall \theta \in \mathbb{R}$, $S_n(\cos(\theta))\sin(\theta) = \sin((n+1)\theta)$.
- **5)** Pour tout $n \in \mathbb{N}$, montrer que S_n est le seul polynôme $P \in \mathbb{R}[X]$ pour lequel :

$$\forall \theta \in \mathbb{R}, \ P(\cos(\theta))\sin(\theta) = \sin((n+1)\theta).$$

6) A l'aide de la relation obtenue en (4), retrouver les valeurs de α_n et de β_n .

Exercice 4 (06 points)

A partir du polynôme d'interpolation de degré 1 passant par les points $(x_0, f(x_0))$ et $(x_1, f(x_1))$.

- 1) Obtenir les formules aux differences avant et arrière pour le calcul de f'(x).
- 2) La dérivée de f(x) = exp(x) en x = 0 est égale à 1. Comparer ce résultat avec ceux que l'on obtient par les differentes formules aux différences (obtenues en 1) en prenant h = 0.1.

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie

Département de Mathématiques

Concours d'accès à la formation 3^{ème} Cycle 2012/2013 : Mathématiques

Epreuve d'Analyse (durée : 1H30)

Exercice 1 (02 points)

Etudier la convergence de la série : $\sum_{n>1} \left(\frac{n}{n+1}\right)^n$.

Exercice 2 (06 points)

On considère le problème :

$$\begin{cases}
-u''(x) + c(x)u(x) = f(x), & 0 < x < 1 \\
u(0) = a, & u(1) = b
\end{cases}$$
(1)

où $c \in C([0,1], R)$, et $(a, b) \in \mathbb{R}^2$.

- 1) Donner la discrétisation par différences finies pour le problème (1). On appelle U_h la solution approchée (c.à.d. $U_h = (u_1, \dots, u_N)^t$, où u_i est l'inconnue discrète en x_i (i.e., $u_i = u(x_i)$).
- 2) On suppose ici que c=0. Montrer que $u_i \geq min(a,b)$, pour tout $i=1,\cdots,N$

Exercice 3 (06 points)

Soient $p,q,r \in \mathbb{R}_+^*$ tels que $p^{-1}+q^{-1}=r^{-1}$. Soient

$$f \in L^{p}(\mathbb{R}) = L^{p}(\mathbb{R}, B(\mathbb{R}), \lambda) \text{ et } g \in L^{q}(\mathbb{R}).$$

Montrer que $fg \in L^r(\mathbb{R})$ et que

$$\left(\int_{\mathbb{R}} |fg|^r d\lambda\right)^{1/r} \le \left(\int_{\mathbb{R}} |f|^p d\lambda\right)^{1/p} \left(\int_{\mathbb{R}} |g|^q d\lambda\right)^{1/q}.$$

Exercice 4 (06 points)

Soit $f: I \to I$ continue tel que $I = [0,1] \subset \mathbb{R}$ et soit $G = \{(x,y) \in I \times I \mid x \leq y\}$

$$F: I \to I \times I$$

 $x \to F(x) = (x, f(x)).$

- 1) Montrer que F(I) est connexe dans $I \times I$.
- **2)** Montrer que si $C_G \cap F(I) \neq \phi \Longrightarrow \exists x \in I \text{ tel que } f(x) = x.$

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie

Département de Mathématiques

Concours d'accès à la formation 3^{ème} Cycle 2012/2013 : Mathématiques

Epreuve d'Analyse (Corrigé-type)

Exercice 1 (02 points)

Etudie de la convergence de la série : $S_n = \sum_{n \ge 1} U_n : U_n = \left(\frac{n}{n+1}\right)^n$.

D'après la règle de Cauchy : $\sqrt[n]{U_n} = \frac{n}{n+1} \to 1$ (quand $n \to \infty$). Or il suffit de remarquer que le terme générale de la série $U_n \to e^{-1} \neq 0$, en effet $U_n = \left(1 - \frac{1}{n+1}\right)^n \to e^{-1} \neq 0$, donc la série est divergente.

Exercice 2 (06 points)

On considère le problème :

$$\begin{cases}
-u''(x) + c(x)u(x) = f(x), & 0 < x < 1 \\
u(0) = a, & u(1) = b
\end{cases}$$
(2)

où $c \in C([0,1], R)$, et $(a, b) \in \mathbb{R}^2$.

- 1) Donner la discrétisation par différences finies pour le problème (1). On appelle U_h la solution approchée (c.à.d. $U_h = (u_1, \dots, u_N)^t$, où u_i est l'inconnue discrète en x_i (i.e., $u_i = u(x_i)$).
- 2) On suppose ici que c=0. Montrer que $u_i \geq min(a,b)$, pour tout $i=1,\cdots,N$

Exercice 3 (06 points)

Soient $p, q, r \in \mathbb{R}_+^*$ tels que $p^{-1} + q^{-1} = r^{-1}$. Soient

$$f \in L^{p}(\mathbb{R}) = L^{p}(\mathbb{R}, B(\mathbb{R}), \lambda) \text{ et } g \in L^{q}(\mathbb{R}).$$

Montrer que $fg \in L^r(\mathbb{R})$ et que

$$\left(\int_{\mathbb{R}} |fg|^r d\lambda\right)^{1/r} \le \left(\int_{\mathbb{R}} |f|^p d\lambda\right)^{1/p} \left(\int_{\mathbb{R}} |g|^q d\lambda\right)^{1/q}.$$

Exercice 4 (06 points)

Soit $f: I \to I$ continue tel que $I = [0,1] \subset \mathbb{R}$ et soit $G = \{(x,y) \in I \times I \mid x \leq y\}$

$$F: I \to I \times I$$

 $x \to F(x) = (x, f(x)).$

- 1) Montrer que F(I) est connexe dans $I \times I$.
- **2)** Montrer que si $C_G \cap F(I) \neq \phi \Longrightarrow \exists x \in I \text{ tel que } f(x) = x.$