

UNIVERSIDAD AUTÓNOMA DE AGUASCALIENTES.

Centro de Ciencias Básicas.

Departamento de Matemáticas y Física.

Licenciatura en Matemáticas Aplicadas.

Práctica 7.

Difracción.

Óptica. Prof. Mariana Alfaro Gómez.

Alumnos:

Carlos Francisco Guzmán Barba. Erick Ignacio Rodríguez Juárez. Manuel Alejandro Siller Landin.

Realización: 16/05/22.

Entrega: 23/05/22.

1 RESUMEN.

2 INTRODUCCIÓN.

Si el ángulo es pequeño, entonces el OPQ es semejante a $S_1S_1\delta$.

Figura 1: Experimento de la Doble Rendija de Young.

La interferencia es constructiva siempre que $r_1-r_2=m\lambda$, para algún $m\in\mathbb{Z}$. Es decir

$$d\sin\theta = m\lambda, \qquad m \in \mathbb{Z}. \tag{1}$$

donde se alcanzará un máximo cuando $m \in \mathbb{Z}$. Y si m = k/2, con k impar, entonces se alcanzará un mínimo. Además, el campo eléctrico E_i en el punto S_i está dado por

$$E_1 = E_0 \sin wt$$

$$E_2 = E_0 \sin(wt + \phi)$$
(2)

Y por el principio de superposición, tendremos que el campo eléctrico total es:

$$E = E_1 + E_2 = (2E_0 \cos \beta) \sin(wt + \beta). \tag{3}$$

donde $\beta=\phi/2$. Recordamos que $\beta=\frac{2\pi\sin\theta}{\lambda}$, y la intensidad para el ángulo θ está dada por

$$I(\theta) = 4I_0 \cos^2 \beta = 4I_0 \cos^2 \left(\frac{\pi d \sin \theta}{\lambda}\right).$$
 (4)

Los máximos son alcnazados cuando

$$W\sin\theta = n\lambda, \qquad n \in \mathbb{Z} \tag{5}$$

y análogamente al caso anterior, se tiene que

$$\theta = \arctan(y/L). \tag{6}$$

3 METODOLOGÍA.

- $3.1 \quad -$ Difracción de una Rendija Simple y Doble Rendija -
- 3.1.1 Rendija Simple.
- 3.1.2 Doble Rendija.

4 RESULTADOS.

- 4.1 Difracción de una Rendija Simple y Doble Rendija —
- 4.1.1 Rendija Simple.
- 4.1.2 Doble Rendija.

Tabla 1: Obtención de la longitud de onda mediante el emplleo de la difracción de una rendija simple.

Datos					Cálculos			
Color	n	\overline{W}	\overline{y}	L	$\theta = \arctan(y/L)$	$W\sin\theta = n\lambda$		
Rojo								
Verde								
Azul								

Tabla 2: Obtenció
jn del rango de la longitud de onda utiilizando una rejilla de difracción de 6000 rendi
jas /cm.

	Cálculos					
Color	A	L	y_1	y_2	λ_1	λ_2
Viloeta						
Azul						
Verde						
Amarillo						
Anaranjado)					
Rojo						

5 DISCUSIÓN DE RESULTADOS Y CONCLUSIONES.

6 APÉNDICE.