

Elektrotechnische Grundlagen der Informatik (LU 182.692)

Protokoll der 3. Laborübung: "Operationsverstärker" a) LTSPICE-Simulationen

Gruppennr.: 10 Datum der Laborübung: 01.06.2017

Matr. Nr.	Kennzahl	Name
1609418	033 535	GEISELBRECHTINGER Max
1625753	033 535	HAAR Martin

Kontrolle		
Nichtinvertierender OPV		
OPV und Grenzfrequenz		
Invertierender OPV		
Integrierer		
Schmitt-Trigger		

1 Nichtinvertierender Verstärker

Abbildung 1: Operationsverstärker beschaltet

Die Widerstände wurden im $k\Omega$ -Bereich gewählt, um die den Messfehler der Messgeräte möglichst gering zu halten. Die Verstärkung des Operationsverstärker setzt sich aus dem Verhältniss der beiden Widerstände zusammen, $V_u=1+\frac{47k\Omega}{1k\Omega}=48$, daraus ergeben sich folgende Messwerte.

U_e	0, 1V
U_a	4,79V
U_{R1}	0, 1V
$\overline{U_{in+}}$	0, 1V
$\overline{U_{in-}}$	0,99V
$\overline{I_{R1}}$	0,1mA
I_{R2}	0,1mA
$\overline{I_{in+}}$	0mA
I_{in-}	0mA

Abbildung 2: Simulierte Daten

Die Messdaten der Simulation zeigen die zuvor berechnete 48fache Verstärkung der Ausgangsspannung, sowie nahezu keinen Potentialunterschied zwischen den Steuereingängen. Daher ist auch die Spannung die am Widerstand R_1 abgfällt gleich der Eingangsspannung. Die Ströme an den Eingängen des Operationsverstärkers sind gleich 0mA, da er sehr hohen Innenwiderstände besitzt. Dadurch fließtauch über beide Widerstände der gleiche Strom.

Dies erlaubt es, die Ausgangsspannung über die Spannungsteilerregel zu berechnen.

$$\frac{U_a}{U_e} = \frac{R_1 + R_2}{R_1}$$
$$U_a = U_e \left(1 + \frac{R_2}{R_1} \right)$$

1.1 Frequenzverhalten

Abbildung 3: symmetrisches Rechtecksignal, $V_{PP}=0.2V, f=100Hz$

Abbildung 4: symmetrisches Rechtecksignal, $V_{PP}=0.2V, f=10kHz$

Der Operationsverstärker besitzt auf Grund seiner Bauweise ein Tiefpassfilter-Verhalten 1. Ordnung. Dies führt dazu, dass die Verstärkung ab einer Grenzfrequenz, von ca. 1kHz, mit 20db/DEK abnimmt. Bei einer Transitfrequenz von ca. 10MHz ist keine Verstärkung mehr vorhanden.

Dies kann man gut an den beiden Simulationen erkennen. In der zweiten Simulation kann man erkennen, wie der interne Kondensator bei hohen Frequenzen das Signal beeinflusst.

2 Invertierender Verstärker

2.1 Simulationsschaltung

Abbildung 5: Simulationsschaltung

Da es sich bei dieser Schlatung um einen invertierenden Verstärker handel, wird die Eingangsspannung am invertierendne Eingang des OPV geschaltet. Der Ausgang wird ebenfalls auf den invertierendne Eingang gegengekoppelt umd eine Brauchbare Verstärkung einstellen zu können. Ein Idealer OPV ohne Gegenkopplung würde die Differenzspannung zwischen invertierenen und nicht-invertierendne Eingang ∞ verstärken. Die Vertärkung wird mit den Beiden Widerständen R_1 und R_2 eingestellt. Die Beiden Spannungspquellen V_2 und V_3 stellen die Symetrische Versorgungsspannung von -15V bis +15V dar.

$$\frac{U_a}{U_e} = \frac{R_1}{R_2} \Rightarrow U_a = U_e * \frac{R_2}{R_1} \Rightarrow V = \frac{R_2}{R_1}$$

Da sich die Verstärkung V laut Angabe zwichen -40 und -60 befinden soll wurden für die Widerstände folgende Werte gewählt:

$$R_1 = 82kM\Omega$$

$$R_2 = 1,5k\Omega$$

3 Integrierer

Abbildung 6: Operationsverstärker als Integrator beschaltet

In dieser Beschaltung gibt die Ausgangsspannung das Integral der Eingangsspannung über die Zeit an. Der Widerstand R dient nur zur stabilisation der Schaltung und wird daher vernachlässigt, er sollte jedoch wesentlich größer als R_1 gewählt werden.

3.1 Übertragungsfunktion

Der invertierende Integrierer ist vom Aufbau ähnlich dem invertierenden Verstärker, jedoch wird die Ausgangsspannung hier durch die Spannung am Kondensator beschrieben.

$$U_C = \frac{1}{C} \int i_c(t) dt$$

$$i_c = I_{R1}$$

$$U_C = \frac{1}{RC} \int U_e(t) dt$$

$$U_a = -U_C$$

Aus dieser Berechnung ergibt sich für das Eingangssignal, in Form einer Rechteckspannung mit fallender Flanke, eine Dreiecksspannung mit steigender Flanke.

$$RC = 2, 2ms$$

$$U_e(t) = \begin{cases} -\frac{1}{10} & 0 \le t < 100ms \\ \frac{1}{10} & 100ms < t \le 200ms \end{cases} \quad U_a(t) = \begin{cases} \frac{t}{22} & 0 \le t < 100ms \\ -\frac{t}{22} & 100ms < t \le 200ms \end{cases}$$

Dieses Ergebnis kann man, nach dem Einschwingvorgang, auch in der Simulation beobachten.

Abbildung 7: U_e symmetrisches Recktecksignal, $V_{PP}=0.2V, f=5Hz$

3.2 Bode-Diagramm

Abbildung 8: Frequenzgang

Abbildung 9: Phasengang

Das Bode-Diagramm zeigt die Abnahme der Verstärkung bei steigender Frequenz, mit 20dB/DEK. Die Transitfrequenz liegt bei dieser OPV-Schaltung bei ca. 30Hz, danach wirkt er dämpfend.

4 Invertierender Schmitt-Trigger