測度論的確率論 2018 S1S2

Homework 7

経済学研究科現代経済コース修士 1 年 / 池上 慧 (29186009) / sybaster.x@gmail.com June 15, 2018

1 Theorem 7.2

まず $P(\epsilon_i=0)=P(\epsilon_i=1)=\frac{1}{2}$ を示す。 $\epsilon_i\in\{0,1\}$ なので、1 となる確率のみ求めれば良い。i=1 の時は、

$$P(\epsilon_1 = 1) = P\left(\omega \mid \omega \in \left[\frac{1}{2}, 1\right)\right) = \frac{1}{2}$$

より確かに成り立つ。i > 1 の時は、

$$P(\epsilon_i = 1) = 2^{i-1} \times \frac{1}{2^i} = \frac{1}{2}$$

ここで 2^{i-1} は $\{\epsilon_j\}_1^{i-1}$ が取りうる場合の数であり、 $\frac{1}{2^i}$ は実現した $\{\epsilon_j\}_1^{i-1}$ に対して $\{\epsilon_j\}_i^\infty$ を使って表現できる ω の集合の測度、すなわち $P\left(\omega\mid\omega\in\left[0,\frac{1}{2^i}\right)\right)$ である。よって確かに任意の i について $P(\epsilon_i=0)=P(\epsilon_i=1)=\frac{1}{2}$ が確かめられた。

次に独立性を示す。 $D_i \in \{0,1\}$ として、任意の $\{i_1,i_2,\cdots,i_m\} \subset \mathbb{N}$ に対して以下が成立することを示す。

$$P\left(\epsilon_{i_1}=D_1,\cdots,\epsilon_{i_m}=D_m\right)=P\left(\epsilon_{i_1}=D_1\right)\times\cdots\times P\left(\epsilon_{i_m}=D_1\right)$$

先の結果より、右辺は $\frac{1}{2^m}$ なので、左辺もこの値を取ることを示せばよい。先と同じように考えて以下をえる。

$$P(\epsilon_{i_1} = D_1, \dots, \epsilon_{i_m} = D_m) = 2^{i_m - m} \times \frac{1}{2^{i_m}} = \frac{1}{2^m}$$

ここで 2^{i_m-m} は少数第 i_m 位までに自由に動かせる桁を組み合わせた時の場合の数であり、 $\frac{1}{2^{i_m}}$ は各組み合わせに対して動かせる幅の測度である。よって題意は示された。

- $2 \quad \text{Ex } 7.1$
- $3 \quad \text{Ex } 7.3$
- 4 Ex 7.8
- 5 Durrett 2.1.10
- 6 Durrett 2.1.11