SARASWATI

Department of Computer Engineering

College of Engineering

Experiment 1

Aim: Identify the case study and detail statement of problem.

Design an Entity-Relationship (ER) / Extended Entity-Relationship (EER) Model

Hardware and Software Requirement: P-IV and above

Theory:

The entity-relationship E-R model is very useful in mapping the meanings and interactions of real-world enterprises onto a conceptual schema. Because of this usefulness, many database-design tools draw on concepts from the E-R model. The E-R data model employs three basic concepts: entity sets, relationship sets, and attributes. The E-R model also has an associated diagrammatic representation, the ER diagram, which can express the overall logical structure of a database graphically.

An entity is an object that exists and is distinguishable from other objects.

Example: specific person, company, event, plant

An entity set is a set of entities of the same type that share the same properties.

Example: set of all persons, companies, trees, holidays

An entity is represented by a set of attributes; i.e., descriptive properties possessed by all members of an entity set.

Example:

```
instructor = (ID, name, street, city, salary )
course= (course_id, title, credits)
```

A subset of the attributes form a primary key of the entity set; i.e., uniquely identifying each member of the set.

Attribute types:

- Simple and composite attributes.
- Single-valued and multivalued attributes
 - Example: multivalued attribute: phone_numbers
- Derived attributes
 - an be computed from other attributes

SARASWATI

Department of Computer Engineering

College of Engineering

Domain – the set of permitted values for each attribute

Express the number of entities to which another entity can be associated via a relationship set.

Most useful in describing binary relationship sets.

For a binary relationship set the mapping cardinality must be one of the following types:

One to one

One to many

Many to one

Many to many

Symbols Used in E-R Notation

Е	antity aat	Е	
E	entity set	A1	attributes:
		A2	simple (A1),
		A2.1	composite (A2) and
$\langle R \rangle$	relationship set	A2.2	multivalued (A3)
		{A3}	derived (A4)
^		A40	
	identifying		1
$\langle\!\langle R \rangle\!\rangle$	relationship set	Е	nuim aux leav
	for weak entity set	_A1_	primary key
RE	total participation of entity set in relationship	E A1	discriminating attribute of weak entity set

SARASWATI

Department of Computer Engineering

College of Engineering

Conclusion: We have Successfully design ER model for Ecommerce website.

User-Customer Model:

Customer-Order Model:

Customer-Shipping Model:

Product-OrderItem Model:

Order-OrderItem Model: (aste_ordered) complete (transaction_id) (get_cart_total) (get_cart_items) (ld) (name) (price (description) (stock) (astegories) (amazon) (and (description) (de

Ordered-Customer-Address-Order Model:

