Géométrie avancée

Champs de vecteurs

Question 1/6

$$\Gamma(U, \mathrm{T}U)$$

Réponse 1/6

Ensemble des champs de vecteurs lisses sur UEnsemble des sections lisses $s: U \to TU$

Question 2/6

Dérivation sur $U \subseteq M$ un ouvert dans une vériété différentielle

Réponse 2/6

Application linéaire
$$\delta: \mathcal{C}^{\infty}(U, \mathbb{R}) \to \mathcal{C}^{\infty}(U, \mathbb{R})$$

qui vérifie la règle de Leibniz :
$$\delta(fg) = \delta(f)g + f\delta(g)$$

On note $\mathrm{Der}(U)$ les dérivations sur U

Question 3/6

Restriction d'une dérivation

Réponse 3/6

Si $U \subseteq V \subseteq M$ sont ouverts alors on dispose d'une application canonique de restriction $\rho: \operatorname{Der}(V) \to \operatorname{Der}(U)$ définie par $\rho(\delta)(f) = \delta_{|U}(f)$

Question 4/6

Lien entre $\Gamma(U, TU)$ et $Der(U), U \subseteq \mathbb{R}^n$ ouvert

Réponse 4/6

L'application

 $X = (X_1, \dots, X_n) \mapsto L_X = \sum_{i=1}^n X_i \frac{\partial}{\partial x_i} \text{ est un}$ isomorphisme d'espaces vectoriels sur \mathbb{R}

Question 5/6

Lien entre $\Gamma(M, TM)$ et $\mathrm{Der}(M), M$ variété différentielle

Réponse 5/6

L'application $X \mapsto L_X = x \mapsto d_x f(X(x))$ est un isomorphisme d'espaces vectoriels sur \mathbb{R}

Question 6/6

Construction de dérivations sur M

Réponse 6/6

Si (U_i) est un recouvrement d'ouverts de M et $\delta_i \in \operatorname{Der}(U_i)$ sont des dérivations telles que $\delta_{i|U_i \cap U_j} = \delta_{j|U_i \cap U_j}$ alors il existe une unique dérivation $\delta \in \operatorname{Der}(M)$ telle que $\delta_{|U_i} = \delta_i$