# Deep Reinforcement Learning in OpenAI gym

Course: Pattern Recognition

Submitted by Aishwarya Anilkumar

### **Basic Idea**



Reinforcement Learning



Deep neural network

### **Reinforcement Learning**



|          | 4 Actions |      |       |      |
|----------|-----------|------|-------|------|
|          | UP        | DOWN | RIGHT | LEFT |
| tes      |           |      |       |      |
| 9 States | 172       |      |       |      |
| 6        |           |      |       |      |
|          |           |      |       |      |
|          |           |      |       |      |

# state 1

|          | 4 Actions |      |       |      |
|----------|-----------|------|-------|------|
|          | UP        | DOWN | RIGHT | LEFT |
| state 1  |           |      | +10   |      |
| 9 States | 17.       |      |       |      |
| Sta      | 12        |      |       |      |
| 6        |           |      |       |      |
|          |           |      |       |      |
|          |           |      |       |      |

### Dilemma for the Agent



|          | 4 Actions |      |       |      |
|----------|-----------|------|-------|------|
|          | UP        | DOWN | RIGHT | LEFT |
|          |           |      | -1    |      |
| tes      | 192       |      |       |      |
| 9 States | 12        |      |       |      |
| 6        |           |      |       |      |
|          |           |      |       |      |
|          |           |      |       |      |

### **Q** table

|          | 4 Actions |      |       |      |
|----------|-----------|------|-------|------|
|          | UP        | DOWN | RIGHT | LEFT |
|          |           |      | -1    |      |
| 9 States | 12        |      |       |      |
|          | 172       |      |       |      |
|          | 529       |      |       |      |
|          | -10       |      |       |      |
|          |           |      |       |      |

Discount = 1

|          | 4 Actions |      |       |      |
|----------|-----------|------|-------|------|
|          | UP        | DOWN | RIGHT | LEFT |
|          | -1        |      |       |      |
| tes      | 172       |      |       |      |
| 9 States | 192       |      |       |      |
| 6        |           |      |       |      |
|          | +1        |      |       |      |
|          |           |      |       |      |



|          | 4 Actions |      |       |      |
|----------|-----------|------|-------|------|
|          | UP        | DOWN | RIGHT | LEFT |
|          | -1        |      |       |      |
| les      | 19        | -10  |       |      |
| 9 States | 19.       |      |       |      |
| 6        |           |      | +1    |      |
|          | +1        |      |       |      |
|          |           |      |       |      |



|          | 4 Actions |      |       |      |
|----------|-----------|------|-------|------|
|          | UP        | DOWN | RIGHT | LEFT |
|          | -1        |      |       |      |
| 9 States | j.        |      |       |      |
|          | 12        |      | -1    |      |
|          | 0.00      |      | -1    |      |
|          | +1        |      |       |      |
|          |           | +10  |       |      |

### **Important concepts**

- Markov property: The reward from  $s_t$  to  $s_{t+1}$  will only depend on St and  $s_{t+1}$
- Q value update:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[ R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

- Policy: A strategy to navigate through the environment
- Target policy vs Running Policy

### **Architecture**

The architecture of this project involves two models:

- 1) **Q** DNN
- 2) **Q** hat DNN
- The DNN has total 2 fully connected linear layers:
- The final layer outputs "Action-values" (Being in a state  $s_t$ , if we make action  $a_t$  how much will be the total reward)

### **Algorithm**

```
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
        With probability \varepsilon select a random action a_t
        otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
        Execute action a_t in emulator and observe reward r_t and image x_{t+1}
        Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
        Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
        Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
       Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
        Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
        network parameters \theta
        Every C steps reset Q = Q
   End For
End For
```

### Result



| Episode | Score   |
|---------|---------|
| 100     | -586.05 |
| 200     | -368.12 |
| 300     | -255.17 |
| 400     | 223.26  |
| 500     | 255.14  |

Agent learning and improving

### Result



Reward vs Number of episodes plot

### **Disadvantages**

- Produces unsatisfactory results where data generation is expensive, since training the neural network requires huge amount of data
- Requires extensive iterations increasing the computational time cost
- Low reproducibility of same results for empirical observations

### **Conclusion**

- This paper presented a deep learning model for reinforcement learning
- Demonstrated ability to master control policies using few pixels
- Introduces replay buffer concept
- Practical applications such as self driving cars, general AI (agent mastering multiple tasks) such as research by Dr David Silver, and Dr Peter Abbiel