

Künstliche Intelligenz (Sommersemester 2024)

Kapitel 02: Machine Learning - Grundlagen

Prof. Dr. Adrian Ulges

1

Verblüffung...

"Machine intelligence is the last invention that humanity will ever need to make."

(Nick Bostrom, "Superintelligence")

2

Maschinelles Lernen (ML): Bereiche aktueller Erfolge image: [4]

dialog systems

medical diagnosis

image recognition

ML: Anwendungsfelder

'Klassische' Anwendungsfelder

- ▶ Computer Vision: Handschrifterkennung, Objekterkennung, ...
- ▶ Nutzermodellierung: Suchmaschinen, Empfehlungssysteme, Targeting, ...
- ▶ NLP: Informationsentnahme, Stimmungsanalyse, Spam, ...

Sonstige Anwendungsfelder ...

- Restaurant-Umsatzprognose
 Vorhersage des Jahresumsatzes von zu eröffnenden Restaurants
- ► Fahrertelematik-Analyse (AXA) anhand von GPS-Routen den Fahrer eines Autos identifizieren
- Wal-Erkennung
 Walgesänge in Audio erkennen, Kollisionen mit Schiffsverkehr verhindern
- ...

ML: Misserfolge image: [4]

- ► ML kommt zunehmend in sicherheitskritischen Anwendungen zum Einsatz: selbstfahrende Fahrzeuge, Gesundheit, Pharmazie, Aktienhandel ...
- ▶ Die regulatorischen Auswirkungen sind enorm (Die Genauigkeit ist begrenzt)!
- ► ML-Modelle <u>sollten</u> sicher, fair, transparent, ressourceneffizient, datenschutzgerecht sein.

Maschinelles Lernen: Definition

"The field of study that gives computers the ability to learn without being explicitly programmed."

(Arthur Samuel (1959))

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with Experience E."

(Tom Mitchell (1998))

Eine ML Beispielanwendung images: [1] [2]

"Jedes If-Statement ist eine potenzielle Anwendung für maschinelles Lernen"

(Thomas M. Breuel (2004))

- Ein Computersystem soll eine nicht-triviale
 Entscheidung treffen, z.B. Spam-Filterung.
- Warum nicht die Entscheidungslogik hart codieren?

Probleme

- ► Hoher initialer Verständnisaufwand.
- Schwierig, das bestmögliche Programm zu erreichen.
- Überprüfung der Optimalität ist schwierig.
- ► Code ist extrem schwierig zu updaten/warten.
- Das Verfolgen von Datendrift ist schwierig, wenn z.B. Spammer ihre Strategien ändern.
- Es gibt keine Möglichkeit, das Feedback der Benutzer zu berücksichtigen.

ML Hello World?

- ► Ziel: Vorhersage des Gewichts einer Person in der Zukunft!
- ▶ **Gegeben**: Stichprobe $x_1, ..., x_n$ (Zeitpunkte) mit sogenannten "Labels" $y_1, ..., y_n$ (dem jeweiligen Gewicht der Person).
- ► Vorgehensweise (lineare Regression):
 - Wir fitten eine Linie f_{θ} auf die Punkte.
 - Gegeben einen Zeitpunkt x, verwenden wir $\hat{y} := f_{\theta}(x)$ als Prognose des Gewichts.
- ▶ Ist dies maschinelles Lernen?

ML Hello World!

• Wir definieren unsere Linie als eine Funktion f mit Parametern $\theta = (a, b)$

$$f_{\theta}(x) = a \cdot x + b$$

• Wir messen die Qualität einer bestimmten Linie f_{θ} mit einer Zielfunktion \mathcal{L} :

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \left(f_{\theta}(x_i) - y_i \right)^2$$

▶ Die beste Linie ist diejenige, die £ minimiert:

$$\theta^* = \arg\min_{\theta \in \mathbb{R}^2} \ \mathcal{L}(\theta)$$

▶ Wir setzen die partiellen Ableitungen $(\partial \mathcal{L}/\partial a, \partial \mathcal{L}/\partial b)$ gleich null. Es ergibt sich:

$$a^* = \left(\sum_i y_i x_i - \bar{y} \sum_i x_i\right) / \left(\sum_i x_i^2 - \bar{x} \sum_i x_i\right)$$
$$b^* = \frac{1}{n} \sum_i y_i - a^* \cdot \frac{1}{n} \sum_i x_i$$

ML Hello World

schlechte Lösung θ : Die Fehler $\epsilon_1^2, ..., \epsilon_n^2$ sind hoch.

gute Lösung θ : Die Fehler $\epsilon_1^2, ..., \epsilon_n^2$ sind niedrig.

ML: Terminologie

- ▶ Wir nennen die Punkte $(x_1, y_1), ..., (x_n, y_n)$ die Trainingsdaten.
- ▶ Die "wahren" Werte y_i werden auch als die Labels, Targets oder Grundwahrheit (engl. "ground truth") bezeichnet.
- Wir nennen unsere Linie $f_{\theta}(x) = a \cdot x + b$ das Modell.
- Wir bezeichnen den Prozess der Schätzung der Modellparameter $\theta = (a, b)$ als Training oder Fitting.
- ► Eine typische Trainingsstrategie besteht darin, eine Zielfunktion (engl. "objective function" oder "loss") £ zu optimieren, oft der Form:

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i} \ell(f_{\theta}(x_{i}), y_{i})$$

Anmerkungen

- ▶ Praktische Modelle haben deutlich mehr Parameter (GPT-3.5: $\#\theta = 175$ Mrd.).
- ▶ Im obigen Beispiel haben wir die Lösung manuell abgeleiten können (wir sagen: es gibt eine *analytische* Lösung). In der Praxis ist £ meist schwieriger zu optimieren, und die Optimierung wird per lokaler Suche durchgeführt.

ML ist multi-variat! image: [3]

- ▶ ML soll also Prognosen y über Eingabeobjekte x treffen.
- ▶ In der Praxis sind x und y keine Skalare, sondern Vektoren x und y!

- ▶ Unser Modell wird zu einer multivariaten Funktion $f_{\theta}: \mathcal{X} \to \mathcal{Y}$, wobei $\mathcal{X} \subseteq \mathbb{R}^d$ und $\mathcal{Y} \subseteq \mathbb{R}^{d'}$.
- ▶ Wir bezeichnen die Einträge des Merkmalsvektors x, z.B. Geschlecht, Alter ..., als Merkmale (engl. "features"), und nennen X den Merkmalsraum (engl. "feature space").

ML ist multi-variat (cont'd)

Anmerkungen

- Im Allgemeinen können viele Merkmale für das Zielproblem irrelevant sein. Während des Trainings müssen ML-Modelle die relevanten auswählen.
- ► Ein Merkmal kann auch erst in Kombination mit anderen Merkmalen nützlich sein.

ML: Der Merkmalsraum ("Feature Space")

- lacktriangle Merkmalsvektoren f x können als f Punkte im Merkmalsraum ${\cal X}$ interpretiert werden.
- ▶ Wir können uns ein Modell $f_{\theta}: \mathcal{X} \to \mathbb{R}$ als einen Farbverlauf vorstellen, der jedem Punkt \mathbf{x} einen Wert $f_{\theta}(\mathbf{x})$ zuweist.
- ▶ Im obigen Beispiel schätzt das Modell f_{θ} die Klassenzugehörigkeit eines Objekts \mathbf{x} , d.h. $f_{\theta}(\mathbf{x}) \approx P(Y=1|X=\mathbf{x})$.

References I

- Brizzle born and Bread. https://www.flickr.com/photos/brizzlebornandbred/5292576151/ (retrieved: Oct 2016).
- [2] Spam (Monty Python). https://en.wikipedia.org/wiki/Spam_(Monty_Python) (retrieved: Oct 2016).
- [3] 'Untergang der Titanic' Illustration von Willy Stöwer für die Zeitschrift Die Gartenlaube. https://de.wikipedia.org/wiki/RMS_Titanic (retrieved: Oct 2016).
- [4] Damian Borth. Machine Learning (M.Sc. Course), University St. Gallen, summer term 2022. (retrieved: Aug 2022).