Análise de Dados Longitudinais Aula 15.10.2018

José Luiz Padilha da Silva - UFPR www.docs.ufpr.br/~jlpadilha

Sumário

Respostas Longitudinal Não-Gaussiana

Revisão: Modelos Lineares Generalizados

Respostas Longitudinal Não-Gaussiana

- Y_{ij} , i = 1, ..., N; $j = 1, ..., n_i$: binária, contagem, etc.
- Modelos Estatísticos:
 - Modelos Lineares Generalizados Mistos.
 - Modelos Marginais: GEE

Exemplos

- Mecanismo Evacuatório de Récem-Nascidos
- 2 Fatores de Risco Coronariano: MCRF, (FLW, pag. 364)

Mecanismo Evacuatório de Récem-Nascidos

- 151 recém-nascidos acompanhados nos primeiros 12 meses de vida no Hospital das Clínicas da UFMG em 2010 e 2011.
- Acompanhamento mensal totalizando 1751 medidas (61 perdas)
- Respostas:
 - Binárias: Dificuldade para evacuar; esforço evacuatório; dor ao evacuar.
 - Contagem: Frequência evacuatória/semana.

Mecanismo Evacuatório de Récem-Nascidos

- Variável temporal: idade (em dias ou meses).
- Covariáveis:
 - Fixa: sexo.
 - ② Dependentes do tempo: aleitamento materno; dieta (0/1): cereais; frutas; vegetais, carnes, etc.
- Objetivo: avaliar o comportamento temporal das respostas e seus respectivos indicadores.

Resposta: Dificuldade e Esforço para Evacuar

Obs.: idade foi arrendondada para mês (um único dígito).

"Muscatine Coronary Risk Factor Study"

- Estudo longitudinal de crianças em idade escolar realizado em Muscatine, Iowa, Estados Unidos na década de 80.
- Cinco coortes de crianças, inicialmente com idades em 5-7, 7-9, 9-11, 11-13 e 13-15 foram acompanhadas bianualmente de 1977 a 1981 (3 medidas).
- Respostas binária: obesidade.
- Variável temporal: idade (em dias ou meses).
- Covariável: sexo.
- Objetivo: avaliar (1) se o risco de obesidade aumenta com a idade e (2) se os padrões são os mesmos para meninos e meninas.

"Muscatine Coronary Risk Factor Study"

		Obesidade (%)		
Gênero	Coorte Idade	1977	1979	1981
Meninos				
	5-7	7.9	15.4	21.2
	7-9	18.8	20.5	23.7
	9-11	21.2	22.7	22.5
	11-13	24.3	21.8	19.4
	13-15	19.2	21.1	18.2
Meninas				
	5-7	14.0	17.2	25.1
	7-9	16.5	24.0	24.9
	9-11	25.4	26.2	22.2
	11-13	23.8	22.1	19.9
	13-15	22.9	25.8	20.9

Revisão: Modelos Lineares Generalizados

Modelos Lineares Generalizados (MLG) é uma classe unificada de modelos de regressão.

- 1 Considere Y_1, \ldots, Y_N uma amostra aleatória de respostas univariadas (desenho transversal).
- 2 Um vetor de p-covariáveis associados a cada resposta Y_i. Ou seja

$$X_i = \left(egin{array}{c} X_{i0} \ X_{i1} \ dots \ X_{ip} \end{array}
ight)$$

em que $X_{i0} = 1$.

Modelos Lineares Generalizados (MLG)

- 3 O MLG é definido por três componentes:
 - Distribuição de Y_i.
 - Componente Sistemático (preditor linear).

$$\eta_i = X_i'\beta = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip}$$

Função de Ligação.

MLG - Família Exponencial

A distribuição de Y_i pertence à família exponencial que inclui os principais modelos estatísticos: normal, binomial, poisson, exponencial, etc.

Ou seja, Y_i tem densidade $f(Y_i|\theta,\phi)$ pertencente à família exponencial.

$$f(\mathbf{y}_i|\theta_i,\phi) = \exp\{\phi^{-1}(\mathbf{y}_i\theta_i - \psi(\theta_i)) + \mathbf{c}(\mathbf{y}_i,\phi)\}\$$

em que θ_i é parâmetro natural, ϕ é o de escala e específicas funções $\psi(.)$ e c(.).

Modelos Lineares Generalizados

- $\psi(.)$ é a função geradora de momentos
 - $\mu = E(Y) = \psi'(\theta)$ e
 - $Var(Y) = \phi \psi''(\theta)$
- Em geral, média e variância são relacionadas.

$$Var(Y) = \phi \psi^{"} \ (\psi'^{-1}(\mu) = \phi \nu(\mu))$$

- A função $\nu(\mu)$ é chamada de função de variância.
- ψ'^{-1} que relaciona θ com μ é chamada de função de ligação.

Exemplos

- **1** Modelo Normal (μ, σ^2)
 - $\theta = \mu$
 - $\phi = \sigma^2$
 - $\psi(\theta) = \theta^2/2$
 - Média: $\mu = \theta$ e $\nu(\mu) = 1$
 - Observe que no modelo normal, média e variância não são relacionadas

$$\phi\nu(\mu) = \sigma^2$$

• Função de ligação natural: $\theta = \mu$.

Exemplos

2 Modelo Bernoulli (π)

- $\theta = \log(\pi/(1-\pi))$
- \bullet $\phi = 1$
- $\psi(\theta) = -\log(1 \pi) = \log(1 + \exp(\theta))$
- Média: $\mu=\pi=\frac{\exp(\theta)}{1+\exp(\theta)}$ e $\nu(\mu)=\pi(1-\pi)=\frac{\exp(\theta)}{(1+\exp(\theta))^2}$
- Observe que no modelo bernoulli, média e variância são relacionadas

$$\phi\nu(\mu) = \mu(1-\mu)$$

• Função de ligação natural: $\theta = \log(\mu/(1-\mu))$.

Função de Ligação Natural ou Canônica

$$g(\mu_i) = \eta_i = X_i'\beta = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_p X_{ip}$$

- Gaussiano: $g(\mu_i) = \eta_i$ (identidade)
- Bernoulli: $g(\mu_i) = logit(\eta_i)$.
- Poisson: $g(\mu_i) = \log(\eta_i)$

Inferência por MV

• Função de log-verossimilhança logL(.) = I(.)

$$L(\beta) = \prod_{i=1}^{N} f(y_i | \theta_i, \phi) = \prod_{i=1}^{N} \exp\{\phi^{-1}(y_i \theta_i - \psi(\theta_i)) + c(y_i, \phi)\}$$

- Equações escore: derivada de I(.).
- Inferência baseada na teoria assintótica de MV.

Exemplo - Regressão Binária

- Uma amostra de 100 indivíduos acompanhados por um período de cinco anos.
- Resposta: ocorrência de doença coronariana.
- Resposta para cada indivíduo foi sim (1) ou não (0).
- Covariável de interesse: 8 faixas etárias (idade): 20-29, ..., 60-69.
- Aconteceram 43 ocorrências de doença coronariana.

Ref: Giolo (2010) pg. 98- Introdução à Análise de Dados Categóricos.

Tabela Resumo

Doença coronária						
$\mathrm{Idade}\;(X=x)$	Não $(Y = 0)$	Sim (Y = 1)	Totais	$E(Y \mid x)$		
20-29	9	1	10	0,10		
30-34	13	2	15	0,13		
35-39	9	3	12	$0,\!25$		
40-44	10	5	15	0,33		
45-49	7	6	13	0,46		
50-54	3	5	8	0,63		
55-59	4	13	17	0,76		
60-69	2	8	10	0,80		
Totais	57	43	100	0,43		

Descrição Gráfica por Faixa Etária

MLG

$$logit(idade_i) = log\{\mu_i/(1-\mu_i)\} = \beta_0 + \beta_1 idade_i$$

е

$$E(Y_i|idade_i) = P(Y_i = 1|idade_i)$$

O modelo logístico pode ser escrito como:

$$P(Y_i = 1 | idade_i) = \frac{\exp(\beta_0 + \beta_1 idade_i)}{1 + \exp(\beta_0 + \beta_1 idade_i)}$$

Resultados do Ajuste MV

```
> summary(ajust1)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
  (Intercept) -5.12300 1.11111 -4.611 4.01e-06 ***
  idade 0.10578 0.02337 4.527 5.99e-06 ***
Number of Fisher Scoring iterations: 4
> anova(ajust1,test="Chisq")
Terms added sequentially (first to last)
      Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL
                         7 28.7015
idade 1 28.118
                         6 0.5838 1.142e-07 ***
```

Resultados do Ajuste

Y: presença ou não de doença coronariana;

X: idade (em anos);

n = 100.

Variável	Estimativa	E.P.	Wald
Idade	0,106	0,023	4,53 (<i>p</i> < 0,001)
Constante	-5,123	1,11	$-4,61 \ (p < 0,001)$

$$\widehat{\pi}(x) = \frac{\exp(-5, 12 + 0, 106 \text{ idade})}{1 + \exp(-5, 12 + 0, 106 \text{ idade})}$$

$$\widehat{logit}(x) = -5, 12 + 0, 106 \text{ idade}$$

$$\log(\text{verossimilhança}) = \log L(\widehat{\beta}_0, \widehat{\beta}_1) = -10,86$$

Sob
$$H_0: \beta_1 = 0, logL(\widehat{\beta}_0) = -24, 92.$$

$$TRV = 2(-10, 86 + 24, 92) = Null Deviance - Residual Deviance = 28, 118.$$

Modelo Estimado

Interpretação dos Coeficientes

Interpretação: Razão de chances = $\exp(0, 1058) = 1,11 (1,06;1,16)$.

Isto significa que para o aumento de um ano na idade a chance de doença coronariana aumenta em 11%.

Outros MLG

- Y tem uma Bernoulli.
- Outras funções de ligação:
 - $\pi(x) = \Phi(x)$ (probit)
 - $\pi(x) = \exp\{-\exp(x)\}$ (complemento log-log)
 - etc (qualquer função de distribuição)

Modelos para Resposta Gaussiana Longitudinal

Modelo Marginal

$$Y_{ij} = X'_{ij}\beta + \varepsilon_{ij}$$

е

$$E(Y_{ij}|X_{ij})=X'_{ij}\beta.$$

Modelo Condicional

$$Y_{ij} = X'_{ij}\beta + Z'_{ij}b_i + \varepsilon_{ij}$$

em que:

 $(\beta)_{p\times 1}$: efeitos fixos;

 $(b_i)_{\alpha \times 1}$: efeitos aletaórios.

e,

$$b_i \sim N_{\alpha}(0, \Sigma) e \varepsilon_{ii} \sim N(0, \sigma^2)$$

Sendo b_i e ε_{ii} independentes.

Modelos para Resposta Gaussiana

Média Condicional ou Específica por Indivíduo

$$E(Y_{ij}|b_i,X_{ij})=X'_{ij}\beta+Z'_{ij}b_i.$$

e a Covariância Marginal

$$Var(Y_i) = Z_i \Sigma Z'_i + \sigma^2 I_{n_i}$$
.

Modelos para Resposta Não-Gaussiana

- $\mu_{ij} = E(Y_{ij}|X_{ij})$ (modelo marginal) $\mu_{ij} = E(Y_{ij}|b_i,X_{ij})$ (modelo condicional).
- Modelo Bernoulli
 - *Y_{ij}* : 0/1 (Bernoulli)
 - função de ligação: logit (mais comum)

$$logit(\mu_{ij}) = X'_{ij}\beta$$
 Modelo Marginal

$$logit(\mu_{ij}) = X'_{ij}\beta + Z'_{ij}b_i$$
 Modelo Condicional

Modelos para Resposta Não-Gaussiana

3 Modelo Poisson

- Yii :contagem (Poisson)
- função de ligação: logarítmica (mais comum)

$$\log(\mu_{ij}) = X'_{ij}eta$$
 Modelo Marginal $\log(\mu_{ij}) = X'_{ij}eta + Z'_{ij}b_i$ Modelo Condicional