Exercice N°7

- 1. Dans un repère orthonormé du plan, soient les points A(68,46), B(5,30) et C(20,10). Calculer l'angle \widehat{BAC} arrondi à l'unité en degré.
- 2. Soient (O, \vec{i}, \vec{j}) un repère cartésien du plan, E(4, 2), F(8, 11), et les vecteurs $\vec{u} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Justifier que (\vec{u}, \vec{v}) est une base pour l'ensemble des vecteurs, puis calculer les coordonnées de F dans le repère (E, \vec{u}, \vec{v}) .
- 3. Dans un repère orthonormé du plan, soient A(9,4), B(2,11) et C(11,8). Calculer les coordonnées du centre et le rayon du cercle \mathcal{C} circonscrit au triangle ABC.
- 4. Soit ABC un triangle. On définit les points D, M et N par :

$$\overrightarrow{AD} = \frac{3}{2}\overrightarrow{AB}, \quad \overrightarrow{BM} = \frac{1}{3}\overrightarrow{BC}, \quad \overrightarrow{AN} = \frac{3}{5}\overrightarrow{AC}.$$

Les points D, M et N sont-ils alignés? Justifier.

Exercice N°9

Soit un triangle ABC et P le milieu du segment [AB].

1. Construire les points Q et R tels que :

alignés ? Justifier. eu du segment
$$[AB]$$
. els que :
$$\overrightarrow{BQ} = -\frac{1}{3}\overrightarrow{BC}, \quad \overrightarrow{CR} = \frac{4}{5}\overrightarrow{CA}.$$
 \overrightarrow{R} sont alignés. On désigne par I,J et E les points définis par :

2. Montrer que les points P, Q et R sont alignés.

Exercice N°13

Soit ABCD un carré de centre O. On désigne par I, J et E les points définis par :

$$\overrightarrow{BI} = \frac{1}{4}\overrightarrow{BA}, \quad \overrightarrow{AJ} = \frac{3}{2}\overrightarrow{AD}, \quad \overrightarrow{BE} = -\frac{1}{2}\overrightarrow{BA}.$$

- 1. Faire une figure.
- 2. (a) Montrer que:

$$\overrightarrow{OI} = \frac{1}{4}\overrightarrow{BA} - \frac{1}{2}\overrightarrow{BC}, \quad \overrightarrow{OJ} = \frac{1}{2}\overrightarrow{BA} + \overrightarrow{BC}.$$

- (b) En déduire que les points O, I et J sont alignés.
- 3. (a) Justifier que la base $(\overrightarrow{AB}, \overrightarrow{AD})$ est orthonormée.
 - (b) Déterminer les composantes des vecteurs \overrightarrow{BD} et \overrightarrow{EJ} dans la base $(\overrightarrow{AB}, \overrightarrow{AD})$.
 - (c) En déduire que \overrightarrow{BD} et \overrightarrow{EJ} sont parallèles.
 - (d) Montrer que le quadrilatère OECJ est un losange.

Exercice N°17

Soit ABCD un parallélogramme. On note I le milieu de [AD] et E le centre de gravité du triangle ACD. On définit le point F par $\overrightarrow{BF} = \frac{1}{4}\overrightarrow{BC}$, et K désigne le milieu de [EB].

$$\overrightarrow{KA} + 3\overrightarrow{KB} + \overrightarrow{KC} + \overrightarrow{KD} = \vec{0}$$

- Démontrer que : \$\overline{KA} + 3\overline{KB} + \overline{KC} + \overline{KD} = \overline{0}\$.
 Démontrer que les points \$I\$, \$K\$ et \$F\$ sont alignés.
 Soit \$L\$ défini par \$\overline{AL} = \frac{3}{4}\overline{AB}\$, et \$M\$ le milieu de \$[CD]\$. Démontrer que les points \$L\$, \$K\$ et \$M\$ sont alignés.

Exercice N°18

On considère un trapèze ABCD tel que DC = 3AB.

1. Placer les points I et J définis par :

$$\overrightarrow{DI} = \frac{2}{3}\overrightarrow{DA}, \quad \overrightarrow{CJ} = \frac{2}{3}\overrightarrow{CB}.$$

- 2. (a) Vérifier que $2\overrightarrow{IA} + \overrightarrow{ID} = \overrightarrow{0}$ et que $2\overrightarrow{JB} + \overrightarrow{JC} = \overrightarrow{0}$.
 - (b) Montrer que $2\overrightarrow{AB} + \overrightarrow{DC} = 3\overrightarrow{IJ}$.
 - (c) En déduire que les vecteurs \overrightarrow{IJ} et \overrightarrow{AB} sont colinéaires.
- 3. (a) Placer le point C' tel que $\overrightarrow{AC'} = \frac{5}{2}\overrightarrow{AB}$.
- Devoiratna ©2 (b) Exprimer les vecteurs \overrightarrow{DJ} et $\overrightarrow{DC'}$ à l'aide des vecteurs \overrightarrow{DA} et \overrightarrow{AB} .
 - (c) En déduire que les points D, J et C' sont alignés.
- 4. Soit B' le symétrique de B par rapport à A. Montrer que

$$\overrightarrow{IB} + \overrightarrow{ID} + \overrightarrow{IB'} = \vec{0}.$$

5. Soit x un réel et M le point défini par :

$$\overrightarrow{MB} + \overrightarrow{MD} + \overrightarrow{MB'} = x\overrightarrow{AB}.$$

- (a) Montrer que $\overrightarrow{MB} + \overrightarrow{MD} + \overrightarrow{MB'} = 3\overrightarrow{MI}$.
- (b) Sur quelle ligne fixe se déplace M lorsque x varie?
- (c) Pour quelle valeur de x, M appartient-il à la droite (BC)?

Exercice N°19

Soit ABC un triangle, I le milieu de [AB] et J le point défini par :

$$\overrightarrow{JA} + \overrightarrow{JB} + 2\overrightarrow{JC} = \overrightarrow{0}.$$

1. Montrer que pour tout point M du plan :

$$\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = 4\overrightarrow{MJ}.$$

- 2. Montrer que $\overrightarrow{IJ} + \overrightarrow{JC} = \overrightarrow{0}$, puis construire le point J.
- 3. Exprimer \overrightarrow{AJ} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- 4. Soit K le point défini par :

$$\overrightarrow{BK} = \overrightarrow{BC} - \frac{1}{2}\overrightarrow{AB}.$$

Montrer que J est le milieu de [BK].

5. Soit L le point tel que :

$$\overrightarrow{LB} + 2\overrightarrow{LK} = \vec{0}.$$

- (a) Exprimer \overrightarrow{BL} en fonction de \overrightarrow{BK} .
- (b) Montrer que $\overrightarrow{LA} + 2\overrightarrow{LC} = \overrightarrow{0}$, puis déduire que les points L, A et C sont alignés. (c) Placer le point L.

Série d'exercices - Géométrie

Exercice 1 - Parallélogramme et vecteurs

Soit ABCD un parallélogramme de centre O. On donne les points I, J, E définis par :

$$\overrightarrow{BI} = \frac{1}{4}\overrightarrow{BA}, \quad \overrightarrow{AJ} = \frac{3}{2}\overrightarrow{AD}, \quad \overrightarrow{BE} = -\frac{1}{2}\overrightarrow{BA}$$

1. Faire une figure,

2. Montrer que :

$$\overrightarrow{OI} = -\frac{1}{4}\overrightarrow{BA} - \frac{1}{2}\overrightarrow{BC}$$

$$\overrightarrow{OJ} = \frac{1}{2}\overrightarrow{BA} + \overrightarrow{BC}$$

- 3. En déduire que les points O, I et J sont alignés.
- 4. Déterminer les composantes des vecteurs \overrightarrow{BD} et \overrightarrow{EJ} dans la base $(\overrightarrow{AB}, \overrightarrow{AD})$.
- 5. Montrer que les droites (BD) et (EJ) sont parallèles.

Devoiratna ©2025

Exercice 2

Devoiratna ©2025

On considère les points A(10;0) et B(0;5).

- 1. Montrer que le triangle OAB est rectangle.
- 2. Pour tout réel a, soit H(2a; -a + 5).
 - (a) Montrer que H appartient à la droite (AB).
 - (b) Déterminer a pour que la droite (OH) soit perpendiculaire à (AB).
- 3. Dans la suite, on pose H(2;4). Soient I et J les milieux respectifs de [AH] et [OH].
 - (a) Montrer que les droites (OI) et (BJ) sont perpendiculaires.

Devoiratna ©2025

Exercice 3 - Repère orthonormé

Le plan est muni d'un repère orthonormé (O, \vec{i}, \vec{j}) . On considère les points A(1,2), B(3,4) et C(-1,4).

- 1. Montrer que $(\overrightarrow{AB}, \overrightarrow{AC})$ forme une base.
- 2. (a) Montrer que \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux.
 - (b) Calculer AB et AC puis déterminer la nature du triangle ABC.
- 3. (a) Déterminer les coordonnées du point D vérifiant $\overrightarrow{AD} = 2\overrightarrow{BC}$.
 - (b) Donner les coordonnées de D dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$.

Devoiratna ©2025

Exercice 4 - Projection et centres de gravité

Le plan est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) . On donne les points A(0,4), B(8,0) et C(-2,0).

- 1. (a) Déterminer les composantes des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .
 - (b) Montrer que \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux.
 - (c) Calculer l'aire du triangle ABC.
- 2. Soit H le projeté orthogonal de O sur (AB).
 - (a) Montrer que $\overrightarrow{OH} = -\frac{4}{5}\overrightarrow{AC}$.
 - (b) Déterminer les coordonnées de H.
- 3. Soient G_1 et G_2 les centres de gravité des triangles OAC et OAB respectivement.
 - (a) Déterminer leurs coordonnées.
 - (b) Montrer que $\overrightarrow{G_1G_2}$ et \overrightarrow{BC} sont colinéaires.

Exercice 5 - Base orthonormée

Soit (\vec{i}, \vec{j}) une base orthonormée.

1. Soient:

$$\vec{u} = \frac{1}{2}\vec{j} + \frac{\sqrt{3}}{2}\vec{i}$$

$$\vec{v} = \frac{\sqrt{3}}{2}\vec{i} - \frac{1}{2}\vec{j}$$

Montrer que (\vec{u}, \vec{v}) est une base orthonormée.

2. Dans le repère (O, \vec{i}, \vec{j}) , on donne les points :

$$A(-2;1), B(3;-2), C(6;3), D(4;2.5)$$

- (a) Montrer que \overrightarrow{AB} et \overrightarrow{BC} sont orthogonaux.
- (b) Montrer que A, C et D sont alignés.
- (c) Calculer les distances AB et BC puis l'aire du triangle ABC.

Devoiratna ©2025

Devoiratha 2025

Devoiratha 6202