SOLUCIONES EXAMEN DE MATEMÁTICA DISCRETA 2

Ejercicio 1.

- **A.** (i) Tenemos que $(g^m)^k = g^{mk} = g^n = e$, la última igualdad usando que o(g) = n. Por otro lado, si $(g^m)^a = e \Rightarrow g^{ma} = e$, y como o(g) = n tenemos que $n \mid ma \Rightarrow mk \mid ma \Rightarrow k \mid a$. Por lo tanto $o(g^m) = k$.
 - (ii) Sea r = o(g) y s = o(h). Como gh = hg, para todo $m \in \mathbb{Z}$ se tiene que $(gh)^m = g^m h^m$. Así que $(gh)^{rs} = g^{rs}h^{rs} = (g^r)^s(h^s)^r = e^s e^r = e$. Resta probar que si $(gh)^m = e \Rightarrow rs|m$. Si $(gh)^m = e \Rightarrow g^m h^m = e \Rightarrow (g^m h^m)^r = e \Rightarrow (g^m)^r (h^m)^r = e \Rightarrow (g^r)^m h^{mr} = e \Rightarrow h^{mr} = e$; y como o(h) = s tenemos que s|mr, y al ser r y s coprimos, por el Lema de Euclides concluímos que s|m. Análogamente (elevando $(gh)^m$ a la s), se prueba que r|m. Como s y r son coprimos y ambos dividen a m concluímos que rs|m.
 - (iii) Lo anterior en general es falso si $gh \neq hg$, Por ejemplo en S_3 si tomamos $h = (1\,2)$ y $g = (1\,2\,3)$ tenemos que $gh \neq hg$, o(g) = 2 y o(h) = 3 y $o(hg) \neq 6$ (en S_3 no hay elementos de orden 6).
- **B.** (i) Como $b^{280} \equiv 400 \pmod{401} \equiv -1 \pmod{401} \Rightarrow b^{560} \equiv 1 \pmod{401}$ y por Fermat (como 401 es primo y 401 $\not|b$ pues $b \not\equiv 0 \pmod{401}$) sabemos que $b^{400} \equiv 1 \pmod{401}$. Así que $o(\bar{b})$ divide a 400 y a 560. Por lo tanto $o(\bar{b}) | \operatorname{mcd}(400, 560)$ y entonces $o(\bar{b}) | 80$. Además, como $b^{280} \equiv -1 \pmod{401}$ tenemos que $o(\bar{b})$ no divide a 280. Por lo tanto $o(\bar{b}) = 80$ o 16, y como $b^{16} \equiv 39 \pmod{401} \not\equiv 1 \pmod{401}$, tenemos que $o(\bar{b}) = 80$.
 - (iii) Para que 2^xb^y sea raíz primitiva módulo 401, necesitamos que $o(\overline{2^xb^y})=400=25\times 16$. Por la parte A (i) tenemos que $o(\overline{2}^8)=200/8=25$) y $o(\overline{b}^5)=80/5=16$, y como U(401) es abeliano, y $\operatorname{mcd}(16,25)=1$, por la parte A (ii) tenemos que $o(\overline{2^8b^5})=25\times 16=400$, así que 2^8b^5 es raíz primitiva módulo 401.

Ejercicio 2.

A. Sea $d = \operatorname{mcd}(a, b)$, b = db' y a = da'. Así que $\operatorname{mcd}(a', b') = 1$.

Como $ab = 21 \operatorname{mcd}(a, b) \Rightarrow a'b'd^2 = 21d$ así que a'b'd = 21. Además como $a \equiv d \pmod{b}$, tenemos que $a' \equiv 1 \pmod{b'}$.

Si d = 1 entonces a'b' = 21 y los que cumplen que $a' \equiv 1 \pmod{b'}$ son (a, b) = (a', b') = (7, 3) y (a, b) = (a', b') = (1, 21) y (a, b) = (a', b') = (21, 1).

Si d = 3 entonces a'b' = 7 y los que cumplen que $a' \equiv 1 \pmod{b'}$ son (a', b') = (1, 7) y (a', b') = (7, 1) así que (a, b) = (3, 21) y (a, b) = (21, 3)

Si d = 7 entonces a'b' = 3 y los que cumplen que $a' \equiv 1 \pmod{b'}$ son (a', b') = (1, 3) y (a', b') = (3, 1) así que (a, b) = (7, 21) y (a, b) = (21, 7).

Si d=21 entonces a'b'=1 y la solucion es (a',b')=(1,1) así que (a,b)=(21,21).

- **B.** (i) La ecuación $x \equiv 34 \pmod{49}$ implica que $x \equiv 34 \pmod{7}$, es decir $x \equiv 6 \pmod{7}$. La ecuación $x \equiv 11 \pmod{21}$ implica que $x \equiv 11 \pmod{7}$, es decir $x \equiv 4 \pmod{7}$. Y como $6 \not\equiv 4 \pmod{7}$ resulta que el sistema es incompatible.
 - (ii) La ecuación $x \equiv 20 \pmod{49}$ implica $x \equiv 20 \pmod{7}$, es decir $x \equiv 6 \pmod{7}$. La ecuación $x \equiv 7 \pmod{9}$ implica $x \equiv 7 \pmod{3}$, es decir $x \equiv 1 \pmod{3}$.

Por el Teo chino del resto la ecuación $x \equiv 13 \mod 21$ es equivalente al sistema

$$\begin{cases} x \equiv 13 \pmod{7} \\ x \equiv 13 \pmod{3} \end{cases} \Leftrightarrow \begin{cases} x \equiv 6 \pmod{7} \\ x \equiv 1 \pmod{3} \end{cases}$$

Pero estas dos ecuaciones ya son consecuencia de las otras dos del sistema original. Así que el sistema original es equivalente al sistema

$$\begin{cases} x \equiv 20 \pmod{49} \\ x \equiv 7 \pmod{9} \end{cases}$$

y este sistema, por el Teorema Chino del Resto, al ser 49 y 9 coprimos, tiene solución única módulo $49 \times 9 = 441$. Una forma de hallar una solución es tomar $x = 20 \times A \times 9 + 7 \times B \times 49$ de forma tal que $A \times 9 \equiv 1 \pmod{49}$ y $B \times 49 \equiv 1 \pmod{9}$; es decir $A9 \equiv 1 \pmod{49}$ y $B4 \equiv 1 \pmod{9}$. Entonces basta con tomar A = 11 y B = -2 y por lo tanto $x = 20 \times 11 \times 9 + 7(-2)49 = 1980 - 686 = 1294 \equiv 412 \pmod{441}$. Es decir, que todas las soluciones son x = 412 + 441k, con $k \in \mathbb{Z}$.

Ejercicio 3.

- **A.** Ver teórico (hay que probar que para todo $x \in \mathbb{Z}$, $x^{de} \equiv x \mod n$ y esto se prueba discutiendo según si $\operatorname{mcd}(x,n) = 1$, o si alguno de los primos $p \neq q$ (o ambos), divide a x).
- **B.** Sean p = 41 y q = 47 y n = pq.
 - (i) $\varphi(n) = \varphi(41 \times 47) = 40 \times 46 = 1840$. Utilizando el algoritmo de Euclides se obtiene que $115 \times 1840 461 \times 459 = 1$ así que $\operatorname{mcd}(1840, 459) = 1$ y además $459 \, (-461) \equiv 1 \, (\text{m\'od } 1840)$, así que $d \equiv (-461) \, (\text{m\'od } 1840) \equiv 1840 461 \, (\text{m\'od } 1840) \equiv 1379 \, (\text{m\'od } 1840)$. Entonces la función de desencriptado es $D : \mathbb{Z}_{1927} \to \mathbb{Z}_{1927}$ dada por $D(y) = y^{1379} \, (\text{m\'od } 1927)$ (pues $n = 41 \times 47 = 1927$).
 - (ii) Tenemos que $494 \equiv 2 \pmod{41}$ y por Fermat $2^{40} \equiv 1 \pmod{41}$. Como $459 = 40 \times 11 + 19$ tenemos que $E(494) = 494^{459} \pmod{41} \equiv 2^{459} \pmod{41} \equiv 2^{19} \pmod{41}$. Y las potencias de 2 módulo 41 son 2, 4, 8, 18, 32, 64= 23, 46= 5, 10, $2^9 \equiv 20$, $2^{10} \equiv 40 \equiv -1$; así que $2^{19} \equiv -20 \pmod{41} \equiv 21 \pmod{41}$. Entonces el resto de dividir 494^{459} entre 41 es 21.

Tenemos que $494 \equiv 24 \pmod{47}$ y por Fermat $24^{46} \equiv 1 \pmod{47}$. Como $459 = 46 \times 10 - 1$ tenemos que $E(494) = 494^{459} \pmod{47} \equiv 24^{459} \pmod{47} \equiv 24^{-1} \pmod{47}$. Y como $24 \times 2 = 48 \equiv 1 \pmod{47}$ tenemos que el inverso de 24 módulo 47 es 2, y por lo tanto $494^{259} \equiv 2 \pmod{47}$; así que el resto de dividir 494^{259} entre 47 es 2.

(iii) Para hallar E(494) hay que calcular 494^{259} (mód 1927), por la parte anterior (y el Teo Chino del Resto) basta con encontrar $x \in \{0, 1, 2, \dots, 1926\}$ tal que

$$\begin{cases} x \equiv 21 \pmod{41} \\ x \equiv 2 \pmod{47} \end{cases}$$

Entonces tenemos que $x \equiv 21 \times A \times 47 + 2 \times B \times 41 \pmod{1927}$ con A y B tales que $47A \equiv 1 \pmod{41}$ y $41B \equiv 1 \pmod{47}$; por el dato de la letra tenemos que A = 7 y B = -8 y por lo tanto $x \equiv 21 \times 7 \times 47 + 2 \times (-8) \times 41 \pmod{1927} \equiv 6253 \pmod{1927} \equiv 472 \pmod{1297}$