Numerical bootstrap

Jinyuan Wu

Department of Physics, Fudan University

2021

Introduction

What's bootstrap

- A quantum theory = expectations of all Hermitian operators;
 Hamiltonian/Lagrangian ⇔ "probability distribution"
- Constraint on the system \Rightarrow relation between different $\langle O \rangle$'s ("data"); independent $\langle O \rangle$'s \Leftrightarrow parameters in the model
- Inequality constraint (e.g. positivity of $\langle O^{\dagger}O\rangle$) \Rightarrow allowed range of $\langle O\rangle$'s
- Solving a class of problems without mentioning explicitly the wave function/path integral: hence the name bootstrap

Why we need it

• Because it doesn't fail with strong non-perturbative effects. ¹

¹arXiv 2108.11416

Example: conformal bootstrap

- The most famous example: conformal bootstrap
- Constraints: (spinless) two-point function

$$\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = \frac{1}{|x-y|^{2\Delta_{\mathcal{O}}}},$$
 (1)

three-point function

$$\langle \mathcal{A}(x)\mathcal{B}(y)\mathcal{C}(z)\rangle = \frac{f_{\mathcal{A}\mathcal{B}\mathcal{C}}}{|x-y|^{\Delta\mathcal{A}+\Delta_{\mathcal{B}}-\Delta_{\mathcal{C}}}|y-z|^{\Delta_{\mathcal{B}}+\Delta_{\mathcal{C}}-\Delta\mathcal{A}}|z-x|^{\Delta_{\mathcal{C}}+\Delta_{\mathcal{A}}-\Delta_{\mathcal{B}}}}$$
(2)

Higher order correlation functions: OPEs.

- Independent parameters: $\{\Delta_{\mathcal{O}}, I_{\mathcal{O}}, f_{\mathcal{ABC}}\}$
- Inequality constraints (self-consistent conditions): determining the range of parameters

Example: conformal bootstrap

- Example of conformal bootstrap: verify whether the critical point of 3D Ising model is a CFT and its position in the allowed region ²
- \bullet Physical picture tells us there are two degrees of freedom: energy density $\epsilon,$ spin field σ
- Below is Fig. 3 in the paper: comparing critical exponents of 3D Ising model, and the allowed range from conformal bootstrap

²arXiv 1203.6064

Bootstrap for generic systems

How to perform bootstrap for a generic system?

• Correlation functions cannot be determined by countably infinite parameters: no $\{\Delta_{\mathcal{O}}, I_{\mathcal{O}}, f_{\mathcal{ABC}}\}$.

Solution Store $\langle O_1(x_1)O_2(x_2)\cdots O_n(x_n)\rangle$ separately. Symmetries reduce the size of data: Suppose C is a symmetry,

$$\langle OC \rangle = \langle CO \rangle \,. \tag{3}$$

Derivation similar to below.

Hard to get OPE

Solution Suppose we are working on a state whose density matrix is determined solely by H, then we have

$$\langle OH \rangle = \operatorname{tr}(\rho(H)OH) = \operatorname{tr}(H\rho(H)O) = \operatorname{tr}(\rho(H)HO) = \langle HO \rangle$$
 (4)

for all operators O. If we are working on energy eigenstates (i.e with definite E), we have

$$\langle OH \rangle = E \langle O \rangle, \quad E = \langle H \rangle.$$
 (5)

Bootstrap for generic systems

The equality constraints used together with the positivity constraint

$$\langle O^{\dagger}O\rangle \geq 0$$
 (6)

for every O defines an allowed region - the feasible domain for the following optimization.

- To get ground state information, minimize $\langle H \rangle$ globally.
- To get information about excited states, find local minima of $\langle H \rangle$.

Bootstrap for generic systems

The procedure of numerical bootstrap

• Determine a set of operators

Example: x^4 nonlinear oscillator

$$H = x^2 + p^2 + gx^4. (7)$$

• Symmetry: $x \to -x \Rightarrow \langle x^n \rangle = 0$ with odd n

•