Devansh Jain, 190100044

April 10, 2021

Contents

uestion 1	1
a	1
b	1
C	2
d	2
uestion 2	3
a	3
b	4
uestion 3	5
a	5
b	5
C	6
uestion 4	7
a	7
b	7
C	8
ppendix 1	9
ppendix 2	0

Question 1

a.

For default parameters (dataRate = 10.0Mbps),

Throughput for Flow 1 (Node n1 \rightarrow Node n0): 9.7141 Mbps (RTS/CTS disabled), 10.1113 Mbps (RTS/CTS enabled)

Throughput for Flow 2 (Node $n2 \rightarrow Node n0$): 9.3780 Mbps (RTS/CTS disabled), 10.0960 Mbps (RTS/CTS enabled)

Total Channel Throughput: 19.0921 Mbps (RTS/CTS disabled), 20.2073 Mbps (RTS/CTS enabled)

b.Channel data rate is 54 Mbps.

Total Data Data Offanad	dataRate	Total Throughput		
Total Data Rate Offered	datakate	RTS/CTS disabled	RTS/CTS enabled	
10% of channel date rate	2.7Mbps	5.4541 Mbps	5.4541 Mbps	
20% of channel date rate	5.4Mbps	10.8344 Mbps	10.9108 Mbps	
30% of channel date rate	8.1Mbps	16.3675 Mbps	16.3675 Mbps	
40% of channel date rate	10.8Mbps	19.6522 Mbps	21.4805 Mbps	
50% of channel date rate	13.5Mbps	19.8636 Mbps	22.0457 Mbps	
60% of channel date rate	16.2Mbps	19.8890 Mbps	22.0967 Mbps	
70% of channel date rate	18.9Mbps	19.8330 Mbps	22.1450 Mbps	
80% of channel date rate	21.6Mbps	20.0087 Mbps	22.2520 Mbps	
90% of channel date rate	24.3Mbps	20.0495 Mbps	22.2444 Mbps	
100% of channel date rate	27.0Mbps	20.1284 Mbps	22.2138 Mbps	

We can see that Total throughput increases with Offered Load and almost flattens to a constant value by the end.

We also see that RTS/CTS disabled network has less maximum throughput than RTS/CTS enabled network.

c.

Only Flow 1 (Node n1 \rightarrow Node n0)

RTS/CTS disabled: Total throughput saturates at 25.6182 Mbps for dataRate = 35 Mbps. RTS/CTS enabled: Total throughput saturates at 22.6696 Mbps for dataRate = 24 Mbps.

We can see that Total throughput increases with Offered Load and almost flattens to a constant value by the end.

We also see that RTS/CTS disabled network has more maximum throughput than RTS/CTS enabled network.

d.

- Total throughput is less than total data rate offered in all cases.
- We can see that Total throughput increases with Offered Load and almost flattens to a constant value by the end, both for two source and one source
- We also see that RTS/CTS disabled network has less maximum throughput than RTS/CTS enabled network when we have two sources but has more maximum throughput when we have only one source.
- We reach saturation for both cases when total data rate offered is about 40% of channel data rate.

Question 2

a. Channel data rate is 54 Mbps.

Total Data Rate Offered	dataRate	Total Throughput		
Total Data Rate Offered	datanate	RTS/CTS disabled	RTS/CTS enabled	
10% of channel date rate	2.7Mbps	5.4541 Mbps	5.4541 Mbps	
20% of channel date rate	5.4Mbps	10.9108 Mbps	10.9108 Mbps	
30% of channel date rate	8.1Mbps	16.3675 Mbps	16.3675 Mbps	
40% of channel date rate	$10.8 \mathrm{Mbps}$	21.8242 Mbps	21.8242 Mbps	
50% of channel date rate	$13.5 \mathrm{Mbps}$	27.1943 Mbps	25.4145 Mbps	
60% of channel date rate	16.2Mbps	28.2281 Mbps	25.3305 Mbps	
70% of channel date rate	$18.9 \mathrm{Mbps}$	28.0193 Mbps	25.2744 Mbps	
80% of channel date rate	$21.6 \mathrm{Mbps}$	28.1874 Mbps	25.4603 Mbps	
90% of channel date rate	24.3Mbps	28.2078 Mbps	25.3483 Mbps	
100% of channel date rate	27.0Mbps	28.1110 Mbps	25.5163 Mbps	

We can see that Total throughput increases with Offered Load and almost flattens by the end. We also see that RTS/CTS disabled network has more maximum throughput than RTS/CTS enabled network.

b.

- Total throughput is less than total data rate offered in all cases.
- We can see that Total throughput increases with Offered Load and almost flattens to a constant value by the end, both for two source and one source
- We also see that RTS/CTS disabled network has more maximum throughput than RTS/CTS enabled network.
- We reach saturation for both cases when total data rate offered is about 50% of channel data rate.
- The saturation level as compared to Question 1 (where a hidden terminal pair was present) is more for both cases.

Question 3

a.

For default parameters (dataRate = 10.0Mbps),

Throughput for Flow 1 (Node A1 \rightarrow Node A2): 10.1088 Mbps (RTS/CTS enabled) Throughput for Flow 2 (Node B1 \rightarrow Node B2): 9.5536 Mbps (RTS/CTS enabled) Throughput for Flow 3 (Node C1 \rightarrow Node C2): 10.0782 Mbps (RTS/CTS enabled)

Total Channel Throughput: 29.7406 Mbps (RTS/CTS enabled)

b.Channel data rate is 54 Mbps.

Total Data Rate Offered	dataRate	Flow 1	Flow 2	Flow 3	Total Throughput
10% of channel date rate	1.8Mbps	1.8180 Mbps	$1.8155 \; \mathrm{Mbps}$	1.8130 Mbps	5.4465 Mbps
20% of channel date rate	3.6Mbps	$3.6386 \; \mathrm{Mbps}$	$3.6335~\mathrm{Mbps}$	3.6285 Mbps	10.9006 Mbps
30% of channel date rate	5.4Mbps	5.4592 Mbps	5.4516 Mbps	5.4440 Mbps	16.3548 Mbps
40% of channel date rate	7.2Mbps	7.2798 Mbps	7.2671 Mbps	7.2595 Mbps	21.8064 Mbps
50% of channel date rate	9.0Mbps	9.1004 Mbps	$9.0852~\mathrm{Mbps}$	9.0724 Mbps	27.2580 Mbps
60% of channel date rate	10.8Mbps	10.9185 Mbps	$9.5486 \; \mathrm{Mbps}$	10.8879 Mbps	31.3550 Mbps
70% of channel date rate	12.6Mbps	12.7391 Mbps	$7.7050~\mathrm{Mbps}$	12.7034 Mbps	33.1475 Mbps
80% of channel date rate	14.4Mbps	14.5597 Mbps	$5.6044~\mathrm{Mbps}$	14.5189 Mbps	34.6830 Mbps
90% of channel date rate	16.2Mbps	16.3803 Mbps	$4.0282~\mathrm{Mbps}$	16.3344 Mbps	36.7429 Mbps
100% of channel date rate	18.0Mbps	18.2009 Mbps	$0.0076~\mathrm{Mbps}$	18.1474 Mbps	36.3559 Mbps

We can see that Throughputs of Flow 1 and Flow 3 are coincident straight lines increasing proportionally with Offered Load.

We can see that Throughput of Flow 3 increases till 50% and then decreases to almost zero.

We can see that Total throughput increases with Offered Load and almost flattens to a constant value by the end.

c.

- Total throughput is less than total data rate offered.
- We can see that Total throughput increases with Offered Load and almost flattens to a constant value by the end.
- We reach saturation when total data rate offered is about 90% of channel data rate.
- Comparing between the flows, we can see that Throughputs of Flow 1 and Flow 3 are almost equal.
- Throughputs of Flow 1 and Flow 3 are more than Flow 2.
- For around till 50%, we see that the collisions are negligible and all the flows are almost at peak (the linear growth).
- After that, we see a dip in Flow 2. This is due to collisions, Flow and 3 over-powering Flow 2.
- Flow 1 and 3 are non-overlapping, so both of them rise linearly till the end, however, we see dip in Flow 2 as the collisions increase (as dataRate is increased).
- This scenario was also part of CS 224 Homework Assignment 2. Theoretically, I had shown that Flow $1 \approx$ Flow 3 > Flow 2. See Appendix 1.

Question 4

a.

For default parameters (dataRate = 10.0Mbps),

Throughput for Flow 1 (Node A \rightarrow Node B): 7.7993 Mbps (RTS/CTS enabled) Throughput for Flow 2 (Node C \rightarrow Node D): 10.0960 Mbps (RTS/CTS enabled)

Total Channel Throughput: 17.8953 Mbps (RTS/CTS enabled)

b.

Channel data rate is 54 Mbps.

Total Data Rate Offered	dataRate	Flow 1	Flow 2	Total Throughput
10% of channel date rate	2.7Mbps	2.7296 Mbps	2.7245 Mbps	5.4541 Mbps
20% of channel date rate	5.4Mbps	5.4592 Mbps	5.4516 Mbps	10.9108 Mbps
30% of channel date rate	8.1Mbps	8.1888 Mbps	8.1787 Mbps	16.3675 Mbps
40% of channel date rate	10.8Mbps	7.0430 Mbps	10.9032 Mbps	17.9462 Mbps
50% of channel date rate	13.5Mbps	$3.8856 \; \mathrm{Mbps}$	13.6303 Mbps	17.5159 Mbps
60% of channel date rate	16.2Mbps	1.7824 Mbps	16.3573 Mbps	18.1397 Mbps
70% of channel date rate	18.9Mbps	$0.6977~\mathrm{Mbps}$	19.0844 Mbps	19.7821 Mbps
80% of channel date rate	21.6Mbps	0.1884 Mbps	21.8090 Mbps	21.9974 Mbps
90% of channel date rate	24.3Mbps	$0.0331~\mathrm{Mbps}$	22.4710 Mbps	22.5041 Mbps
100% of channel date rate	27.0Mbps	$0.0255 \; \mathrm{Mbps}$	22.5219 Mbps	22.5474 Mbps

We can see that Total throughput increases with Offered Load and almost flattens to a constant value by the end with a minor dip in middle.

c.

- Total throughput is less than total data rate offered.
- We can see that Total throughput increases with Offered Load and almost flattens to a constant value by the end with a minor dip in middle.
- We reach saturation when total data rate offered is about 80% of channel data rate.
- The minor dip in the middle is due to more decrease in Flow 1 than increase in Flow 2.
- Throughputs of Flow 2 is more than Flow 1.
- For around till 30%, we see that the collisions are negligible and all the flows are almost at peak (the linear growth).
- After that, we see a dip in Flow 1. This is due to increase in collisions (as dataRate is increased), Flow 2 over-powering Flow 1.
- This scenario was also part of CS 224 Midsem. Theoretically, I had shown that Flow 1 < Flow 2. See Appendix 2.

Appendix 1

```
2.
                                c,, c, are hidden from A, A2
                                AnA2 are hidden from Cis Co
    By symmetry, TA=Tc
   . We need to compare TB with TA(=Tc).
  CASE 1: B, transmite before A, and C,
          B, -> B2, A1, A2, C1, C2
             => A1, C1 carrier sense and waits for NAV(RTS)
  CASE 2: A, (or C,) transmits before B, and C, (or A,)
          AI -> Az BisBz
              => C, carlt hear and so may send RTS to C2.
              ⇒ B, carrier senses and waits for NAV (RTS)
           C, -> C2. B1, B2
               ⇒ Ais signal is not affected.
  CASE 3: A, (or (,) and B, transmit simultaneously
           A, -> A2, B2, B2; B1 -> B2, A1, A2, C1, C2
           collision at A2, B2 and both don't send CTS.
   All other cases are similar and would result in collision.
    P (CASE 1) = 2 x P(CASE 2)
                                     NAV(RTS) is same for all as
                     ABC CBA
                                          Data length is equal.
      CAB
     .. TB < TARTC
```

Appendix 2

```
190100044
                              A is hidden from C.D.
                               B is hidden from D
                              C is hidden from A
                               D is hidden from B,A
 CASE 1: A transmits before C
      A -> B (RTS)
      B -> A,C (CTS) => C carrier senses and wents for NAV(CTS)
 CASE 2: C transmits before A
      C→B,D (RTS) ⇒ A can't hear, so may send RTS.

A→B (RTS) ⇒ B waits for NAV(RTS) before sending CTS to A.
                                       rof c7
 CASE 3 & A and C transmit simultaneously
     C→B,D; A→B ⇒ Collision at B, doesn't send CTS to A.

(has re-transmit RTS)
      (RTS) => No collision at D, returns CTS to C.
  We know that as the data size is same
              NAV (CTS) < NAV(RTS)
   In case 1, " C > D" has to wait for NAV(CTE).
   In case 2, "A+B" has to wait for NAV(RTE).
   In case 3, "A-8" has to retransmit RTS.
           .. TAKTC
```