Project1

Consider the given data on the trajectory of Michaelis-Menten nonlinear ODE system over the combination of phase-spaces in (X, P, V, S, E). Compute the most probable values of eta, kappa, and epsilon along the arclength in the respective phase-spaces for the given start and end times.

Note: scan be parameter in the range (0.1, 1.5) with an increment of 0.1

Project2

The goal of this project is to analyze the movement of proteins along a DNA strand and determine key interaction points, such as binding sites and first landing positions. The simulation uses **Euclidean distance calculations** to measure how proteins interact with DNA.

Reading DNA & Protein Coordinates:

- The readc() function reads the DNA.csv and PROTIEN.csv files, extracting the X, Y, Z coordinates.
- These coordinates represent the spatial positions of **DNA base pairs** and protein molecules in a simulated system.

Simulating Protein-DNA Interaction:

The solve() function calculates the **distances between proteins and DNA**.

It identifies sites where a protein comes within a threshold distance (t) of DNA.

It records:

- Total site visits (nv) How many times the protein gets close to DNA.
- First landing position (flp) The first DNA base where a protein binds.
- First landing step (fls) The step at which the first binding event occurs.
- Max range (mr) The spread of binding interactions over the DNA sequence.

Final Output & Insights:

 The script simulates protein motion and outputs critical information about DNA-protein interactions.

Project3

Comparing Two Molecular Structures (inda and indb)

- inda and indb are **two sets of 3D coordinates**, likely representing different conformations of a biomolecule.
- Each row in these arrays corresponds to a **point in 3D space** (e.g., atoms or residues in a protein structure).
- The goal is to find common spatial positions between inda and indb.

2. Identifying Types of Structural Contacts

We check if coordinates in inda exist in indb, and classify them as:

1. Correct contacts (cr)

- When the same residue and same segment exist in both structures.
- This means the structural alignment is **unchanged**.

2. Trapped contacts (tr)

- When the same residue but different segments are found.
- This suggests a **structural shift** has occurred.

3. Incorrect contacts (incr)

- When a coordinate match doesn't follow the above rules.
- This means significant structural reorganization has occurred.

3. Computing the Radius of Gyration (Rg)

• The Radius of Gyration (Rg) measures the compactness of the structure.

Project4

Understanding the Variables

- tau_t: A target response time dataset (likely experimental or theoretical).
- rin: A range of input signal levels (0.09 to 0.95 in steps of 0.01).
- dt = 1e-5: A small **time step** for numerical integration.
- Ps = 1: Steady-state probability (likely used in the model).
- errorbest = 1e5: A large initial error value to track optimization progress.
- vbest, hillbest, wbest, sigmabest, mubest: Best parameter values (to be optimized).
- value: Determines whether the calculation is based on P = 1 or M = 2 (used in responsetimeneg function).
- calc = 1: Control variable for computation.

2. Parameter Optimization Using Nested Loops

The **goal** is to find the best-fitting parameters (v, w, mu, sigma, hill) that minimize the error between **model predictions** (rt(:,2)) and experimental data (tau_t).

- The code systematically varies each parameter in a predefined range:
 - Hill coefficient (hill): Controls cooperativity (1 to 10).
 - **Degradation rate (mu)**: Affects stability (0.001 to 0.01).
 - Activation rate (v): Represents speed (0.0001 to 0.001).
 - Decay parameter (w): Regulates adaptation (0.1 to 1).
 - Sensitivity (sigma): Controls response steepness (1 to 10).
- For each parameter set, the responsetimeneg function is called to compute predicted response times (rt).
- The error is computed as the sum of squared differences: error=∑(model response time-target response time)2\text{error} = \sum (\text{model response time} \text{target response time})^2error=∑(model response time-target response time)2
- The **best parameters** are stored when a lower error is found.

3. Functions in the Code

- (a) psteadystate(mu, hillc, tol)
 - Finds the steady-state concentration (ps) of a regulatory molecule.
 - Uses an iterative method to solve: μ=ps(μ+pshillc)\mu = ps (\mu + ps^{\text{hillc}})μ=ps(μ+pshillc)
 - This equation is common in biochemical reaction models.
- (b) responsetimeneg(v, w, mu, sigma, hill, dt, tol, r, optmp)
 - Simulates the response time of a biochemical system.
 - Uses numerical integration to evolve state variables over time:
 - xtx txt (active state variable) → Changes based on v and mu.
 - o mtm tmt (intermediate state variable) → Modulated by w.
 - o ptp_tpt (output response) → Controlled by sigma and hill function.
 - Computes time (τ\tauτ) for p_t or m_t to reach a threshold.
 - Depending on optmp:
 - If optmp = 1: The system tracks p_t.
 - If optmp = 2: The system tracks m_t.

Project5

Curve-Fitting Model (lm_func)

- The function models the dataset using an exponential equation with multiple terms.
- It takes an independent variable t and parameters p, then returns the estimated values.

Jacobian Calculation (1m_FD_J)

- Computes the Jacobian matrix (partial derivatives) using finite differences.
- The Jacobian helps optimize the parameter updates.

Broyden's Rank-1 Update (1m_Broyden_J)

• If full Jacobian computation is expensive, this method updates it iteratively using the previous Jacobian.

Matrix Calculation for Optimization (lm_matx)

- Computes:
 - The Hessian matrix (second-order derivatives)

- The change in Chi-squared (error metric)
- o The updated function evaluation.

Levenberg-Marquardt Algorithm (1m)

- Iteratively optimizes the parameter values to minimize the error.
- Uses gradient descent and the Hessian matrix to update p.
- Tracks convergence, error reduction, and correlation between parameters.