Apellido y Nombre:		
Carrera:	DNI:	
[Llenar con letra mayúscula de imprenta GRANDE]		

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. Examen Final. [6 de Mayo de 2004]

Ej. 1.- [primi (20 puntos)] Escribir las funciones del TAD LISTA con celdas simplemente enlazadas por punteros ó cursores. INSERTA(x,p,L), LOCALIZA(x,L), RECUPERA(p,L), SUPRIME(p,L), SIGUIENTE(p,L), ANULA(L), PRIMERO(L), y FIN(L). Escribir todos los tipos, definiciones, funciones y procedimientos auxiliares necesarios.

Ej. 2.- [Programacion (total 80 puntos)]

a) [junta (40 puntos)] Escribir un procedimiento procedure JUNTA(var L: lista; n:integer); que dada una lista L, agrupa de a m elementos dejando su suma (ver figura). Usar las siguientes primitivas del TAD LISTA: INSERTA(x,p,L), RECUPERA(p,L), SUPRIME(p,L), SIGUIENTE(p,L), ANULA(L), PRIMERO(L), y FIN(L). No usar ninguna estructura auxiliar. Prestar atención a no usar posiciones inválidas después de una supresión. El algoritmo debe tener un tiempo de ejecución O(n), donde n es el número de elementos en la lista original.

b) [maximo-par (20 puntos)] Escribir una función function MAXIMO_PAR(n:nodo; A:arbol):integer; que retorna el máximo de las etiquetas pares de un árbol binario. En el caso del árbol de la figura debe retornar 12. Usar las primitivas del TAD ARBOL BINARIO: HIJO_IZQUIERDO(n,A), HIJO_DERECHO(n,A) y ETIQUETA(n,A),

c) [elimina-valor (20 puntos)] Escribir un procedimiento procedure ELIMINA_VALOR(var C:cola; n: integer); que elimina todos las ocurrencias del valor n en la cola C. Por ejemplo, si C = {1,3,5,4,2,3,7,3,5}, después de ELIMINA_VALOR(C,3) debe quedar C = {1,5,4,2,7,5}. Sugerencia: Usar una estructura auxiliar lista o cola. Utilizar las primitivas del TAD COLA: ANULA(C), PONE_EN_COLA(x,C), QUITA_DE_COLA(C), VACIA(C), y FRENTE_DE_COLA(C). El algoritmo debe tener un tiempo de ejecución O(n), donde n es el número de elementos en la cola original.

Ej. 3.- [LIBRES] Ejercicios operativos (total 80 puntos):

a) [arboles (30 puntos) Dibujar el árbol ordenado orientado cuyos nodos, listados en orden previo y posterior son

Examen Final. [6 de Mayo de 2004]

Apellido y Nombre:			Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática	
Carrei [Llenar		DNI: mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos	
	1)	■ ORD_PRE = $\{Q, T, R, S, V, W, Y, M, N\}$, ■ ORD_POST = $\{T, S, M, N, Y, W, V, R, Q\}$.		
	b)	contruir el código binario y encodar la pal	eres siguientes con sus correspondientes probabilidades, labra TRANSVERSAL $P(T)=0.4, P(R)=0.2, P(A)=P(E)=0.05, P(L)=0.05$ Calcular la longitud promedio	
Ej. 4	BIN	[abb (20 ptos)] Dados los enteros $\{4, 8, 11, 6, 5, 13, 23\}$ insertarlos, en ese orden, en un TAD ARBO BINARIO DE BUSQUEDA. Mostrar las operaciones necesarias para eliminar los elementos 8, 11 y 6, en es orden.		
Ej. 5	Es d	BRES] [preguntas (total 20ptos, 5 ptos o	c/una)] [Responder según el sistema "multiple choice", lo. Atención: Algunas respuestas son intencionalmente	
	a)	dispersión es lo suficientemente buena como las cubetas, el costo medio de inserción de un	cubetas y n elementos. Asumiendo que la función de para distribuir los elementos en forma uniforme entre n nuevo elemento es	
		$O(n^2/B)$		
		$ O((n/B)^2) $ $ O(n+B) $		
		O(n+B)		
	b)	Dadas las funciones $T_1(n) = 3n^3 + 7n!,$ $T_2(n) = 2n^2 + 0.5\sqrt{n},$ $T_3(n) = 7n^3 + 8! \text{ y}$ $T_4(n) = 4^3 + 7^n$		
		decir cuál de los siguientes ordenamientos es	el correcto	
	c)		azada por punteros o cursores. Despues de hacer	
		<pre>p = PRIMERO(L); p = SIGUIENTE(p,L); p = SIGUIENTE(p,L); SUPRIME(p,L); p = SIGUIENTE(p,L);</pre>		
		¿Que retorna RECUPERA(p,L) ?		
		retorna 1 produce un error retorna 7 retorna 3		
	d)	¿Cuál es el criterio para elegir una buena fur	nción de dispersión?	
		Debe tratar de concentrar los elementos	en pocas cubetas.	
		Debe tratar de concentrar los elementos	en una sóla cubeta.	
		Debe tratar de concentrar los elementos	en la primera cubeta.	
		Debe distribuir los elementos en la forma	a más uniforme posible entre las cubetas.	

2

Examen Final. [6 de Mayo de 2004]