Computational Genetics Spring 2011 Final Projects List

Eleazar Eskin
University of California, Los Angeles

Final Projects

As of Lecture 5. April 11th, 2011

Final Project 1: Relatedness Estimator

- Given the genotypes of several individuals, how are all of them related?
- Parents transmit 1 chromosome to each child. Siblings share approximately 50% of their DNA. 1st cousins share about 25% of their DNA.
- A challenge is that some individuals may share DNA by chance.

Final Project 1: Relatedness Estimator

- Consider a SNP with minor allele frequency of .1.
- What is the probability of having the allele on both chromosomes?
- If your brother has the allele on both chromosomes, what is your probability of having the allele on both your chromosomes?
 - ☐ Hint: It is much higher.
- What about minor allele frequency of .01 or .4?
- What allele frequencies are most informative?
 - Tradeoff between occurrence of alleles and information in sibling.

Final Project 1: Relatedness Estimator

- Easy Project: Construct a method for determining whether 2 individuals are siblings.
- Medium Project: Construct a method for estimating how related any 2 individuals are. Take into account LD.
- Hard Project: Measure risk to related siblings given genotypes (ethical issue). Handle finite sample size of HapMap. Reconstruct family histories.

Sequencing Technology

Sequencing Technology

Illumina / Solexa Genetic Analyzer 1G 1000 Mb/run, 35bp reads

- Next generation sequencing.
 - Cheap sequencing.
 - "Short Reads"

AGAGCAGTCGAC **AGGTATAGTCTA** CATGAGATCGAC

Short Read Sequencing

Full DNA Sequence

AGAGCAGTCGAC A**G**GTATAG**T**CTA CATGAGATCGAC ATGAGATC**G**GTA GAGCCGTGAGAT CGACATGATAGC CAGAGCAGTCGA GTAGAGCCGTGA

 Short read sequencers generate random short substrings from the DNA sequence of a certain length.

ATGAGATCGGTAGAGCCGTGAGAT
GAGCAGTCGACAGGTATAGTCTAC
AGAGCAGTCGACAGGTATAGTCTA
TGAGATCGACATGATAGCCAGAGC
TAGCCAGAGCAGTCGACAGGTATA
GATAGCCAGAGCAGTCGACAGGTA
GAGATCGACATGATAGCCAGAGCA
GCAGTCGACAGGTATAGTCTACAT
AGCAGTCGACAGGTATAGTCTACAT
TCGACATGAGATCGGTATAGTCTACAT
CAGTCGACAGGTATAGTCTACAT
CAGTCGACAGGTATAGTCTACAT
GAGATCGACAGGTATAGTCTACAT
GAGATCGACAGGTATAGTCTACAT
GAGATCGACAGGTATAGTCTACAT
GAGATCGACAGGTATAGCCAGAGCA
GTAGAGCCGTGAGATCGACATGAT

Short Reads Difficulties

ATGAGATCGGTAGAGCCGTGAGAT
GAGCAGTCGACAGGTATAGTCTAC
AGAGCAGTCGACAGGTATAGTCTA
TGAGATCGACATGATAGCCAGAGC
TAGCCAGAGCAGTCGACAGGTATA
GATAGCCAGAGCAGTCGACAGGTA
GAGATCGACATGATAGCCAGAGCA
GCAGTCGACAGGTATAGTCTACAT
AGCAGTCGACAGGTATAGTCTACAT
TCGACATGAGATCGGTATAGTCTACAT
CAGTCGACAGGTATAGTCTACAT
CAGTCGACAGGTATAGTCTACAT
GAGATCGACAGGTATAGTCTACATG
GAGATCGACATGATAGTCTACATG
GAGATCGACATGATAGCCAGAGCA
GTAGAGCCGTGAGATCGACATGAT

- We don't know where each read comes from!
- Can't identify where the mutations are!

What do we do?

Key Idea: "Re"-Sequencing

We know that my genome is very close to the Human genome.

My Genome:

TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC

A Sequence Read: TCGACATGAGATCGGTAGAGCCGT

The Human Genome:

TACATGAGATC CACATGAGATC TGTAGAGCT GTGAGATC TCGACATGAGATC GGTAGAGC CGT

Recovered Sequence:
TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC

"Re"-Sequencing Challenges (Why do we need Computer Science?)

- Sequences are long!
 - □ Human Genome is 3,000,000,000 long.
- Sequencers generate many reads!
 - □ A single run generates over 300,000,000 reads.
- We need efficient algorithms to "map" each read to its location in the genome.

There are other challenges which we are not mentioning.

Project 2: Mapping of reads

- Short reads need to be mapped to the genome for resequencing.
- Computer science problem:
 - □ Given a string of length L=30, find where it matches a substring within D=2 mismatches in a length N=3,000,000,000 sequence.
- Evaluate the quality based on:
 - □ The speed of the mapping algorithm.
 - The memory use of the mapping algorithm.
 - The accuracy of the mapping algorithm (for approximate approaches).

Project 2: Mapping of reads

- Easy: Build a small scale mapper that can map strings of length 30 to sequences of length 1,000,000.
- Medium: Build a mapper that can scale to sequences of length 3,000,000,000. It can be slow.
- Very Hard: Build a fast mapper.

Final Project 3: Ancestry Mapping

- For some populations, e.g. African Americans, each individual's genome comes from multiple populations.
- Goal of ancestry mapping is to identify which region originates from which population.
- Complications include:
 - □ Correlation between SNPs
 - □ Similarity between ancestral populations
 - Unknown ancestral populations (Nature Americans)

M

Final Project 3: Ancestry Mapping

- Four Versions of the Problem:
 - □ Local Ancestry vs Global Ancestry
 - □ Known Populations vs Unknown Populations
- Correlation Between SNPs
 - □ Haplotype Structure of Populations
 - □ SNPs are not independent.
- Evaluating Through Simulations
 - We can simulate data using the HapMap
 - We can run our method over the simulated data to measure method accuracy.

Final Project 3: Ancestry Mapping

- Easy: Global Ancestry Mapping with Known Populations
- Medium: Local Ancestry Mapping with Known Populations
- Hard: Global Ancestry Mapping with Unknown Populations
- Very Hard: Local Ancestry Mapping with Unknown Populations

Final Project 4: Disease Prediction

- Given the genome of an individual, can we predict how likely they are to get a disease?
- Key Ideas:
 - If we know which SNPs cause disease, we can use those SNPs to predict disease.
 - If we know which individuals have a disease, we can see how related an individual is to individuals that have the disease (Family History).

Final Project 4: Disease Prediction

- Easy: Assume a set of known disease SNPs. Create a method for predicting disease risk and evaluate how effective the method is depending on the relative risk and number of disease causing SNPs.
- Hard: Develop a disease prediction method given a set of genomes with known disease status, but unknown which SNPs cause the disease.

Project 5: SNP Detection from Sequencing

- Given mapped reads, we can identify SNPs between the reference and the sequenced genome.
- However, reads have errors.
- Not all mismatches are SNPs since some are errors.
- However, SNPs will occur in many reads, while errors will be in only one read.

More problems: Sequencing Errors

Each sequence read can have some random errors.

My Genome:

TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC

A Sequence Read: TCGACATGAGATCGGTAGAACCGT

The Human Genome:

TACATGAGATC CACATGAGATC TGTAGAGCTGTGAGATC TCGACATGAGATC GGTAGAACCGT

Recovered Sequence:

TACATGAGATCGACATGAGATCGGTAGAACCGTGAGATC

Sequencing Errors: Solution

Collect redundant data.

My Genome:

TACATGAGATCGACATGAGATCGGTAGAGCCGTGAGATC

Sequence Reads:

TCGACATGAGATCGGTAGAACCGT GACAAGAGATCGGTAGAGCCGTGA TGAGATCGGTAGAGCCGTGAGATC

The Human Genome:

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC
TCGACATGAGATCGGTAGAACCGT
GACAAGAGATCGGTAGAGCCGTGA
TGAGATCGGTAGAGCCGTGAGATC

Recovered Sequence:

TACATGAGATCGACATGAGATCGGTAGAACCGTGAGATC

W

How much coverage do we need?

- If error rate is *e*, and we are going to predict the consensus sequence, what is the error rate if the coverage is 3.
- We will make a prediction with an error if two out of our three reads have an error in the same place.

$$e^3 + \binom{3}{2}(1-e)e^2$$

■ This is approximately 3e².

Diploid Sequencing

- Humans have 2 chromosomes.
- Each chromosome may have a different SNP.
- Some reads come from 1 chromosome, some come from other chromsome.
- Why does consensus method not work?
- How do we address this problem?

Project 5: SNP Detection from Sequencing

- Easy: Write a simple SNP caller from sequence data.
- Medium: Estimate how much coverage you need to get accurate SNP coverage.
- Hard: SNP Detection in copy number regions.

Final Project 6: Meta-Analysis

- If two different case/control studies have M and N individuals, intuitively, we can put the studies together to get a M+N individual study.
- There are some issues such as:
 - Studies can be from different populations.
 - □ Studies can collect different SNPs.
 - □ Study phenotypes can be different.

Final Project 6: Meta-Analysis

- In meta-analysis, due to differences in the studies, want to combine the statistics from the studies.
- Questions include:
 - □ How do we combine the statistics of 2 studies?
 - What do we do if the markers are different?
 - What kinds of effects can create false positives?

Final Project 6: Meta-Analysis

- Easy: Apply simple meta-analysis statistic to simulated data. How does the power compare to grouping individuals together.
- Medium: Develop statistics for combining studies on different marker sets.
- Very Hard: Develop statistics that are optimal with respect to power. Develop statistics for combining studies with cases and controls on different marker sets.

Project 7: Genotype Calling

 Genotype are obtained using a microarray technology.

Project 7: Genotype Calling

- Easy: Make a simple genotype caller based on ratios of the probes.
- Medium: Identify clusters in the genotype plots and use the distance to the center of the cluster to make predictions. How does this compare to the other method?
- Hard: Make improvements to genotype calling including: Identify copy number variation from genotype calling. Identify outliers. Normalize across arrays.

Project 8: Haplotype Phylogeny

- Human history is very unique.
- We left Africa and spread around the world very quickly.
- Most variation predates us leaving Africa
- Variation after that time is very rare in the population.

Ance	estral Haplotypes	Num
A	CTTAAAGTTA	297
BN	CCTAAAAAT?	(387)
ВО	C?AGGCATCT	(298)
BP	?CAGGCATCT	(215)

Co	mmon Variants	Num
В	ССТАААААТА	227
C	CTAGGCATCT	217
D	CCTAAAAATT	140
E	ACAGGCATCT	135
F	CCAGGCATCT	72
G	ACTAAAAATA	67

Recent Variants		Num
H	ATAGGAAATT	51
I	CCTAAAGTTA	26
J	ACTAGAGTTA	26
K	ACAGGAAACT	16
L	CTTGGCATCT	15
M	CCTAGAGTTT	11

Project 8: Haplotype Phylogeny

- Easy: Implement a tool that takes in genotypes, applies a haplotype program and then visualizes the results using a haplotype phylogeny.
- Medium: Consider long haplotypes and recombination

"Re"-Sequencing: Insertions

My Genome:

TACATGAGATCCACATAGAGATCTGTAGAGCTGTGAGATC

A Sequence Read: CCACATAGAGATCTGTAGAGCTGT

The Human Genome:

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC CCACATAGAGATCTGTAGAGCTGT

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC CCACATAGAGATCTGTAGAGCTGT

How do we deal with this case?

"Re"-Sequencing: Insertions

My Genome:

TACATGAGATCCACATAGAGATCTGTAGAGCTGTGAGATC

A Sequence Read:

CCACATAGAGATCTGTAGAGCTGT

The Human Genome:

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC CCACATAGAGATCTGTAGAGCTGT

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC CCACATAGAGATCTGTAGAGCTGT

Solution: Add Insertion to the Human Genome

TACATGAGATCCACAT-GAGATCTGTAGAGCTGTGAGATC CCACATAGAGATCTGTAGAGCTGT

Difficulties for handling insertions

- Requires "Alignment" of reads to genome.
- Much more computational intensive
- Need to change assumptions for "sequence uniqueness" to use edit distance.

Project 9: Read Mapping with Insertions

- Medium: Develop a mapper than can map reads with up to 2 insertions in 1,000,000 length sequence.
- Hard: Handle 3,000,000,000 length sequences.
- Very Hard: Accurately identify insertions.

Project 9: Copy Number Variation

- Copy number variation between sequenced genome and target causes strange patterns of reads.
- If a sequenced genome has 2 copies of a region, both will generate reads and the coverage on the reference will appear 2x the coverage of the rest of the genome.
- If a sequence is deleted, there will be 0 coverage of a region.

Project 9: Copy Number Variation

- Easy: Find regions which have high copy number.
- Medium: Filter out repeated regions. Estimate the copy number.
- Very Hard: Find the boundaries of copy number variation.

Paired End Read

My Genome: TACATGAGATCCACATGAGTGTAGAGCTGTGAGATC

A Sequence Read: CCACATA----AGAGCTGT

The Human Genome:

TACATGAGATCCACATGAGATCTGTAGAGCTGTGAGATC CCACATA-----AGAGCTGT

What does the longer gap in the mapping mean?

Project 10: Inversions

- Regions of the chromosome may be inverted between individuals.
- "Paired end" sequencing gives information on structural variation.
 - Provides a pair of reads a fixed distance in the sequenced genome.
 - Differences in distance between mapped reads on the reference suggests some differences.
- Inversion leaves a distinct pattern of paired reads if the pair spans the inversion breakpoint.

Project 10: Inversions

- Medium: Identify potential inversions in mouse data.
- Hard: Design inversion detection method that allows for mapping problems.
- Very Hard: Recover inversion breakpoints.

Project 11: Haplotype Assembly

- Humans have 2 haplotypes while sequencing reads only contain information on one haplotype.
- Reads from the same region contain information on both haplotypes.
- Each read is coming from one haplotype, but we don't know which.
- By tiling reads together, we can reassemble into haplotypes.

Project 11: Haplotype Assembly

- Two related papers by Bafna group.
- Easy: Build a greedy algorithm for haplotype phasing from sequence reads.
- Very Hard: Find an optimal algorithm.

Project 12: Sequence Insertion Assembly

- Insertion of novel sequence into genomes is a type of structural variation.
- Reads from the sequence will not map to anywhere in the reference. However, one end of a paired end read mapping to the reference can give a clue to where the insertion is located.
- Overlapping unmapped reads can identify the sequence.

Project 12: Sequence Insertion Assembly

- Medium: Generate reads which simulate an insertion to the reference and identify the location of the insertion.
- Hard: Assume that the reference is nonrepetitive, there are no sequencing errors and all non-insertion reads map somewhere in the reference. Design an algorithm that assembles the inserted sequence.
- Very Hard: Drop the assumptions above design an algorithm for insertion assembly.

Project 13: Multiple Phenotypes

- We often collect multiple phenotypes for each individual.
- If we are interested in a disease, we often collect "intermediate phenotypes" which affects the disease
- For example, in heart disease, an intermediate phenotype is the cholesterol level.

Project 13: Multiple Phenotypes

- Medium: Develop a technique for association for intermediate phenotypes. Apply to simulated data and measure power with and without intermediate phenotypes.
- Hard: Define a model for an intermediate phenotype. Identify under what cases can using an intermediate phenotype can increase power of an association study. What assumptions are necessary?

Project 14: Sequence Assembly and Reassembly

- Most sequencing applications assume that there is a reference sequence and they map reads to the reference.
- Alternate strategy is to use overlapping reads to create longer sequences until you reach the full genome.
 - □ Difficult if there are repeats!
- "Assembly" assumes that there is no reference.
- "Reassembly" assumes that there is a reference.

Project 14: Sequence Assembly and Reassembly

- Easy: Build an assembler assuming no repeated sequence
- Medium: Build an assembler for small sequences assuming some repeated sequence and use graph algorithms.
- Hard: Build a real genome assembler.

Project 15: Virus Assembly

- Sequencing can be applied to a sample of viruses.
 - In the sample, there are many variants of the virus and each variant has a certain frequency and set of mutations.
 - □ Each read only covers a fraction of the virus.
 - By making some assumptions, we can predict the variants present in the sample and their frequency.
- Key assumptions:
 - Reads are uniformly distributed from the sample.
 - Small number of different variants in the sample.

Project 15: Virus Assembly

- Easy: Assume that you know the different strains of the virus present in the sample. Simulate reads from this sample and estimate the frequency of each strain.
- Hard: Assume that you do not know the strains and predict the variants present in the sample and estimate their frequency.

Project 16: Meta Genomics

- There are more bacteria cells in us then our own cells.
- Meta-Genomics Sequencing of Bacteria Samples from people
- We want to know what types of bacterias and how common they are in people.
- Problem: Sequence reads come from one bacteria and we don't know which bacterias are in the samples.

Project 16: Meta Genomics

- Two versions of Meta-Genomics problems
- Easier: Given a set of bacteria in a sample and given reads from each individual, figure out how common each bacteria occurs in the sample.
- Harder: Given a set of reads from a sample, and a large set of possible bacterias in the sample, figure out which are there and how common they are.
- Very Hard: Given a set of reads from many samples, figure out which unknown bacterias are in the sample and how common they are.

Project 17: Isoform Assembly

- Popular application of sequencing is RNA-Seq, where sequencing is applied to RNA samples to obtain activity levels of genes.
- Each RNA is a combination of "exons" in a gene. Each such combination is called an isoform. The isoforms present in the sample are unknown.
- Each read only spans a portion of the isoform.
- Goal of Isoform assembly is to predict the isoforms and estimate their frequency.

Project 17: Isoform Assembly

- Easy: Assume you know the isoforms which are present in the sample. Simulate reads and estimate the frequency of each isoform.
- Medium: Assume you have paired end reads and predict isoforms and estimate their frequency.
- Hard: Use the reference genome to help predict isoforms from reads.

Project 18: Lethal Interactions

- Mutations often have big effects when they interact.
- Biological systems usually have backup systems (robustness).
- A lethal interaction is one where the presence of 2 mutations has a big effect. Typically, this is when a mutation breaks a process and its backup system.

Project 18: Lethal Interactions

- Medium: Define a model for lethal interactions where the relative risk is only greater than 1 for individuals that have 2 SNPs. What is the power to detect such SNPs?
- Hard: Define a method to discover lethal interactions by considering all pairs of mutations.

Project 19: Multiplexing Sequence Pools

- Sequencing a single sample has 2 costs
 - □ 1. Sample Preparation
 - □ 2. Sequencing
- Sequencing costs are decreasing, but sample preparation costs are constant.
- Idea: Sequence multiple samples with a single sample preparation step.

Project 19: Multiplexing Sequencing Pools

Solution: Construct "pools" where samples are mixed together and entire sample is sequenced.

Project 19: Multiplexing Sequencing Pools

- Easy: Make scheme for saving factor of 5 assuming no errors and perfect sequencing for SNP occurring once in samples.
- Medium: Make a scheme for saving factor of 5 for SNPs that occur at frequency 2% assuming no errors and perfect sequencing.
- Hard: Make a scheme for saving factor of 10 allowing for errors.
- Very Hard: Make a scheme for saving factor of 10 for common and rare variants.