7.강 Deep Q-learning

Contents

- Neural Network
- Pytorch
- Deep SARSA
- Code Exercise

Neural Network

Function approximators

Function approximators

- How do we observe the value function?
 - The agent learns based on experience.
 - The functions v*(s) and q*(s,a) are not know in advance

Neural Networks

- Computing system inspired by the biological neural networks that constitute our brain
- They server multiple purposes, including function approximation: $\hat{y} = f(x|w)$
- Mathematical function typically consisting of a weighted sum of inputs and a activation/transfer function Output = $\varphi(\sum_{i=1}^{n} w_i x_i + b)$

Neural networks

• Input vector x = [x1, x2, x3]

• Connection matrix:
$$w11 \ w12 \ w13 \ w14$$
 $w1 = \begin{bmatrix} w11 \ w12 \ w21 \ w22 \ w23 \ w34 \end{bmatrix}$

By changing its parameters W1, we can modify it to approximate the function we are interested in

Output vector:

$$H = [\varphi(\sum_{i=1}^{n} w_i x_i + b), ..., \varphi(\sum_{i=1}^{n} w_i x_i + b)]$$

Neural Networks

- Networks that do not have cycles are known as feedforward NN. Signals always propagate forward
- The neuron receives inputs, process & aggregate those inputs, and either inhibits or amplifies before passing the signal to the next layer

Neural networks

Activation functions

Gradient Descent

- Given some loss function: $L(\vec{x}, \vec{y}) = ||2\vec{x} + 2\vec{y}||$
- Update rules for the parameters: $w_{t+1} = w_t \alpha \nabla \hat{L}(w)$
- Gradient vector: $\nabla \hat{L}(w) = \left[\frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2}, \dots, \frac{\partial L}{\partial w_n}\right]$
- Computed using the backpropagation algorithm
- $\nabla \hat{L}(w)$ points to the direction of maximum growth of $\nabla \hat{L}(w)$
- α is the size of the step we take in the opposite direction to $\nabla \hat{L}(w)$

Backpropagation

- Computed using the backpropagation algorithm
- We want to evaluate partial derivative: $\frac{\partial L}{\partial \vec{x}}$ and $\frac{\partial L}{\partial \vec{y}}$

torch::autograd::AccumulateGrad

Cost function

Mean squared error:

$$L(w) = \frac{1}{N} \sum_{i=0}^{N} [y - \hat{y}]^2$$

 For our neural network to estimate q(s, a) as well as possible, we will minimize the observed squared errors

$$\hat{L}(w) = \frac{1}{N} \sum_{i=0}^{N} [R_{t+1} + \gamma \hat{q}(S_{t+1} A_{t+1} | w) - \hat{q}(S_{t} A_{t} | w)]^{2}$$

Target value:

$$R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}|w)$$

Estimated value:

$$\hat{y} = \hat{q}(S_t, A_t|w)$$

Neural network optimization

 For our neural network to estimate q(s, a) as well as possible, we will minimize the observed squared errors

$$\widehat{L}(\theta) = \frac{1}{N} \sum_{i=0}^{N} [R_i + \gamma \widehat{q}(S_i', A_i' | \theta_{targ}) - \widehat{q}(S_i, A_i | \theta)]^2$$

Target value: a value towards which we want to push the estimates

$$R_i + \gamma \hat{q}(S_i' A_i' | \theta_{targ})$$

• Estimate of the q-value of a state-action pair $\hat{q}(S_i, A_i | \theta)$

Pytorch

Pictures from Stanford's CS231n Pictures from Berkeley CS285

Numpy & PyTorch

- Fast CPU implementations
- CPU-only
- No autodiff
- Imperative

- Fast CPU implementations
- Allows GPU
- Supports autodiff
- Imperative

Other features include:

- · Datasets and dataloading
- Common neural network operations
- Built-in optimizers (Adam, SGD, ...)

Multidimensional Indexing

Shape Operations


```
A = np.random.normal(size=(10, 15))
# Indexing with newaxis/None
# adds an axis with size 1
A[np.newaxis] # -> shape (1, 10, 15)
# Squeeze removes a axis with size 1
A[np.newaxis].squeeze(0) \# -> shape (10, 15)
# Transpose switches out axes.
A.transpose((1, 0)) # -> shape (15, 10)
# !!! BE CAREFUL WITH RESHAPE !!!
A.reshape(15, 10) # -> shape (15, 10)
A.reshape(3, 25, -1) # -> shape (3, 25, 2)
```

O PyTorch

```
A = torch.randn((10, 15))
# Indexing with None
# adds an axis with size 1
A[None] # \rightarrow shape (1, 10, 15)
# Squeeze removes a axis with size 1
A[None].squeeze(0) \# -> shape (10, 15)
# Permute switches out axes.
A.permute((1, 0)) # -> shape (15, 10)
# !!! BE CAREFUL WITH VIEW !!!
A.view(15, 10) \# ->  shape (15, 10)
A. view(3, 25, -1) \# -> shape(3, 25, 2)
```

Device Management

- Numpy: all arrays live on the CPU's RAM
- Torch: tensors can either live on CPU or GPU memory
 - Move to GPU with .to("cuda")/.cuda()
 - Move to CPU with .to("cpu")/.cpu()

YOU CANNOT PERFORM OPERATIONS BETWEEN TENSORS ON DIFFERENT DEVICES!

Computing Gradients

```
P = torch.randn((1024, 1024))
print(P.requires_grad) # -> False
P = torch.randn((1024, 1024), requires_grad=True)
b = torch.randn((1024,), requires_grad=True)
print(P.grad) # -> None

x = torch.randn((32, 1024))
y = torch.nn.relu(x @ P + b)

target = 3
loss = torch.mean((y - target) ** 2 .detach()
```


Training Loop

REMEMBER THIS!

```
net = (...).to("cuda")
dataset = ...
dataloader = ..
optimizer = ...
loss_fn = ...
for epoch in range(num_epochs):
 # Training..
 net.train()
 for data, target in dataloader:
    data = torch.from_numpy(data).float().cuda()
    target = torch.from_numpy(data).float().cuda()
    prediction = net(data)
    loss = loss_fn(prediction, target)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
 net.eval()
 # Do evaluation...
```

Converting Numpy / PyTorch

```
Numpy -> PyTorch:
         torch.from_numpy(numpy_array).float()
PyTorch -> Numpy:
• (If requires_grad) Get a copy without graph with .detach()
• (If on GPU) Move to CPU with .to("cpu")/.cpu()

    Convert to numpy with .numpy

All together:
          torch tensor.detach().cpu().numpy()
```

Custom networks

```
import torch.nn as nn
class SingleLaverNetwork(nn.Module):
  def __init__(self, in_dim: int, out_dim: int, hidden_dim: int):
    super(). init_() # <- Don't forget this!
    self.net = nn.Sequential(
      nn.Module(in_dim, hidden_dim),
      nn.ReLU(),
      nn.Module(hidden dim, out dim),
  def forward(self, x: torch.Tensor) -> torch.Tensor
    return self.net(x)
batch size = 256
my_net = SingleLayerNetwork(2, 32, 1).to("cuda")
output = my_net(torch.randn(size=(batch_size, 2)).cuda())
```

- nn.Module represents the building blocks of a computation graph.
 - For example, in typical pytorch code, each convolution block is its own module, each fully connected block is a module, and the whole network itself is also a module.
- Modules can contain modules within them. All the classes inside of `torch.nn` are instances `nn.Modules`.

Custom networks

```
import torch.nn as nn
class SingleLaverNetwork(nn.Module):
  def __init__(self, in_dim: int, out_dim: int, hidden_dim: int):
    super(). init () # <- Don't forget this!</pre>
    self.net = nn.Sequential(
      nn.Module(in_dim, hidden_dim),
      nn.ReLU(),
      nn.Module(hidden dim, out dim),
  def forward(self, x: torch.Tensor) -> torch.Tensor:
    return self.net(x)
batch_size = 256
my_net = SingleLayerNetwork(2, 32, 1).to("cuda")
output = my_net(torch.randn(size=(batch_size, 2)).cuda())
```

- Prefer net() over net.forward()
- Everything (network and its inputs) on the same device!!!

Torch Best Practices

When in doubt, assert is your friend

```
assert x.shape == (B, N), \
   f"Expected shape ({B, N}) but got {x.shape}"
```

- Be extra careful with .reshape/.view
 - If you use it, assert before and after
 - Only use it to collapse/expand a single dim
 - In Torch, prefer .flatten()/.permute()/.unflatten()
- •If you do some complicated operation, test it!
 - Compare to a pure Python implementation

Torch Best Practices

- Don't mix numpy and Torch code
 - Understand the boundaries between the two
 - Make sure to cast 64-bit numpy arrays to 32 bits
 - torch.Tensor only in nn.Module!
- Training loop will always look the same
 - Load batch, compute loss
 - .zero_grad(), .backward(), .step()

Neural network optimization

Mean squared error:

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} [y_i - \hat{y}_i]^2$$

 We want to minimize the square of the errors of the neural network estimates

Neural network optimization

• We calculate the gradient vector of the cost function with respect to the θ parameters:

$$\nabla \mathsf{L}(\theta) = \left[\frac{\partial L}{\partial \theta_1}, \frac{\partial L}{\partial \theta_2}, \dots, \frac{\partial L}{\partial \theta_n} \right]$$

• With the gradient vector, we will make a SGD step:

$$\theta \leftarrow \theta - \alpha \nabla \widehat{\mathbf{L}}(\theta)$$

Neural Net. Architecture for V, Q

- St vector input → NN → V scalar output
- St, At vector input → NN → Q scalar output
 - Continuous case
- St vector input → Q vector output
 - Discrete action space only
 - Output size is |A|

Neural Net. Architecture for policy, π

- St input → NN → vector output
 - Discrete action space case
 - Output size is |A|
 - SOFTMAX turns the output into prob. (sum of prob. is 1)
- St input \rightarrow NN $\rightarrow \mu_{\theta}(S_t), \delta_{\theta}(S_t)$ output
 - Continuous action space case
 - Represented with Gaussian Distribution

Deep SARSA

Neural network optimization

$$L(\theta) = \frac{1}{|K|} \sum_{i=0}^{|K|} [R_i + \gamma \hat{q}(S'_i, A'_i | \theta_{targ}) - \hat{q}(S_i, A_i | \theta)]^2$$

Target is the value towards which we want to push the estimates.

$$R_i + \gamma \hat{q}(S_i', A_i'|\theta_{targ})$$

• Estimate is the estimate of the q-value of a state-action pair $\hat{\mathbf{q}}(\mathbf{S}_i,\mathbf{A}_i|\theta)$

Target network

Bootstrapping

Function approximator

$$y_i = R_i + \gamma \hat{q}(S'_i, A'_i | \theta_{targ})$$

Target network

- When a value is changed, nearby values will also be affected.
- By modifying a $\hat{q}(S_i, Ai|\theta)$ estimate we also modify its $\hat{q}(S_i', A_i'|\theta_{targ})$ target
- For the learning process to be stable, the target must also be stable
- power of neural networks

Target network

 We make a copy of the neural network to calculate the targets.

$$\theta_{targ} \leftarrow \theta$$

- This neural network does not change with SGD. Its θ parameters remain the same
- The estimated value of S_i' , A_i' is calculated with the target network:

$$L(\theta) = \frac{1}{N} \sum_{i=0}^{N} [R_i + \gamma \hat{q}(S_i' A_i' | \theta_{targ}) - \hat{q}(S_i, A_i | \theta)]^2$$

Neural network optimization

Algorithm 1 Deep SARSA

```
    Input: α learning rate, ε random action probability,
    γ discount factor,
    Initialize q-value parameters θ and target parameters θ<sub>targ</sub> ← θ
    π ← ε-greedy policy w.r.t q̂(s, a|θ)
    Initialize replay buffer B
    for episode ∈ 1..N do
```

7: Restart environment and observe the initial state
$$S_0$$

8: **for**
$$t \in 0..T - 1$$
 do

9: Select action
$$A_t \sim \pi(S_t)$$

10: Execute action
$$A_t$$
 and observe S_{t+1}, R_{t+1}

11: Insert transition
$$(S_t, A_t, R_{t+1}, S_{t+1})$$
 into the buffer B

12:
$$K = (S, A, R, S') \sim B$$

13: Select actions
$$A' \sim \pi(S')$$

14: Compute loss function over the batch of experiences:

$$L(\theta) = \frac{1}{|K|} \sum_{i=1}^{|K|} \left[R_i + \gamma \hat{q}(S_i', A_i' | \theta_{targ}) - \hat{q}(S_i, A_i | \theta) \right]^2$$
 (1)

- 15: end for
- 16: Every k episodes synchronize $\theta_{targ} \leftarrow \theta$
- 17: end for
- 18: **Output:** Near optimal policy π and q-value approximations $\hat{q}(s, a|\theta)$

Experience Replay

- Memory that stores the state transition that the agent experiences
- The memory has a limited size and when it fills up, it replaces old transitions with new ones

Experience Replay

 To update the neural network, we randomly chose a batch of transitions from the memory

- The batch of transitions obtained from the memory is used to calculate the cost function and update the θ parameters
- $L(\theta) = \frac{1}{|K|} \sum_{i=0}^{|K|} [R_i + \gamma \hat{q}(S_i', A_i' | \theta_{targ}) \hat{q}(S_i, A_i | \theta)]^2$

Neural network optimization

Algorithm 1 Deep SARSA

```
1: Input: \alpha learning rate, \epsilon random action probability,
         \gamma discount factor,
 3: Initialize q-value parameters \theta and target parameters \theta_{targ} \leftarrow \theta
 4: \pi \leftarrow \epsilon-greedy policy w.r.t \hat{q}(s, a|\theta)
 5: Initialize replay buffer B
 6: for episode \in 1...N do
         Restart environment and observe the initial state S_0
         for t \in 0...T - 1 do
              Select action A_t \sim \pi(S_t)
 9:
              Execute action A_t and observe S_{t+1}, R_{t+1}
10:
             Insert transition (S_t, A_t, R_{t+1}, S_{t+1}) into the buffer B
11:
             K = (S, A, R, S') \sim B
12:
              Select actions A' \sim \pi(S')
13:
             Compute loss function over the batch of experiences:
14:
                   L(\theta) = \frac{1}{|K|} \sum_{i=1}^{|K|} [R_i + \gamma \hat{q}(S_i', A_i' | \theta_{targ}) - \hat{q}(S_i, A_i | \theta)]^2
                                                                                                   (1)
```

- 15: end for
- 16: Every k episodes synchronize $\theta_{targ} \leftarrow \theta$
- 17: end for
- 18: **Output:** Near optimal policy π and q-value approximations $\hat{q}(s, a|\theta)$

Code Ex.

• MountainCar: Reach the goal from the bottom of the valley

The state

The observation space consists of the car position $\in [-1.2, 0.6]$ and car velocity $\in [-0.07, 0.07]$

The actions available

The actions available three:

- 0 Accelerate to the left.
- 1 Don't accelerate.
- 2 Accelerate to the right.

Code Ex.

deep_sarsa_colab.ipynb