

Fundamentals of MEMS and Sensors Packaging

Venkatesh KP Rao

MEMS – Motivation

Technology Evolution

'ACT' in Today's R&D

Accurate,
Precise, within
detection
requirement

Dengue
detection /
Monitoring fuel
adulteration

Affordable, Value-of-money, Competitive pricing

> Electronic gadget / Biomedical

Ultrafast, Advance Diagnostics, Competitive

Solar / Electronic gadget

Micro-and-Nanotechnology has 'proven' answer

Macro to Micro to Atomic Scales

Normal or Logscale?

Microscale?

Miniaturization – Enabling Technology

A top-down approach

Initiated in 1947 with the invention of transistors, but the term "Micromachining" was coined in 1982

Miniature devices

(1 nm - 1 mm)

Nanotechnology (NT) (0.1 nm – 0. 1 µm)**

A bottom-up approach

Inspired by Richard Feynman in 1959, with active R&D began in around 1995

There is a long way to building nano devices!

Microscale Benefits?

- Better Surface to Volume Ratio
- Automation
- Very small size, mass, volume
- Very low power consumption
- Low cost
- Easy to integrate into systems or modify
- Small thermal constant
- Can be highly resistant to vibration, shock and radiation
- Batch fabricated in large arrays
- Improved thermal expansion tolerance
- Parallelism
- Mass-Scalable

http://www.eeherald.com/section/design -

guide/mems_application_introduction.ht ml

Miniaturization?

- Tend to move or stop more quickly due to low mechanical inertia. Ideal for precision movements and for rapid actuation.
- Encounter less thermal distortion and mechanical vibration due to low mass.
- Suited for biomedical and aerospace applications due to their minute sizes and weight.
- Small systems have higher dimensional stability at high temperature due to low thermal expansion.
- Less space requirements. This allows the packaging of more functional components in a single device.
- Less material requirements → low cost of production and transportation.
- Ready mass production in batches.

Surface-to-volume ratio

- Surface area of a sphere → 4πr²
- Volume of a sphere \rightarrow $4\pi r^3/3$
- Surface to volume ratio → 3/r
- SVR ∞ r⁻¹

Length 1/r (meters-1)

- 1 meter 1
- 1 mm 1,000
- 1 mm 1,000,000
- 1 nm 1,000,000,000

- Materials with high SVR react at much faster rates
- More surface is available to react
- Grain dust
 - Grain → nonflammable
 - Grain dust → explosive
- Finely ground salt
 - dissolves much more quickly than coarse salt

MEMS Stands for?

Micro

- Micro-fabricated structures

Electro

- Electrical signal /control (In / Out)

Mechanical - Mechanical functionality (In / Out)

• Systems - Structures, Devices, Systems

http://ase.tufts.edu/biology/labs/trimmer/news/developments.htm, http://www.buildbytes.com/assets/images/BLOG/3d_printing_carbon/4.jpg

MEMS: Features

- MEMS a technology with integrated miniaturized elements
 - electrical
 - mechanical and / or
 - electro-mechanical elements

- Elements (including devices, structures and data processing unit) are developed using Microfabrication techniques
- Dimensions
 - o components → 1-100 μm
 - o device \rightarrow 20-1000 µm

http://cdn.medgadget.com/img/524deb1.j

- One unique feature large surface area to volume ratio,
 - Surface effects such as electrostatics and wetting dominate over volume effects such as inertia or thermal mass.

MEMS: Diverse Applications

Automotive domain:

- Airbag Systems
- Vehicle Security Systems
- Intertial Brake Lights
- Headlight Leveling
- Rollover Detection
- Automatic Door Locks
- Active Suspension

Consumer domain:

- Appliances
- Sports Training Devices
- Computer Peripherals
- Car and Personal Navigation Devices
- Active Subwoofers

Industrial domain:

- Earthquake Detection and Gas Shutoff
- Machine Health
- Shock and Tilt Sensing

Military:

- Tanks
- Planes
- Equipment for Soldiers

Biotechnology:

- PCR
- Micromachined STM
- Biochips for chemical and biological agents
- High-throughput drug screening and selection
- Bio-MEMS biosensor & chemosensor.

http://www.eeherald.com/section/design-guide/mems_application_introduction.html

MEMS: Commercial Applications

- Inkjet printers
- Accelerometers
- Gyroscopes Pressure sensors
- Displays / micromirrors
- Optical switching technology
- Adaptive Optics for Ophthalmic Applications
- Disposable Medical Devices
 Micro-power sources and turbines
- Propulsion and attitude control
- Bio-reactors and Bio-sensors, Microfluidics
- Thermal control
- Atomic clocks

http://www.eeherald.com/section/design-guide/mems_application_introduction.html

An example: MEMS in Smartphone

http://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/6124/How-MEMS-Enable-Smartphone-Features.aspx

MEMS: Other Examples

Inertia Sensor for Automobile "Air Bag" Deployment System

Micro inertia sensor (accelerometer) in place:

(Courtesy of Analog Devices, Inc)

Historical evolution

MEMS: Vertical Components

- Acts as a switch / trigger to activate an external device
- Makes decisions on what to do based on this data
- Micrelectronics will tell the microactuator Brain of to activate this device

Micro-Microactuator sensors S Microelectronics

MEMS

- Arms, eyes, nose
- Constantly gather data (?)
 - Data?
 - Mechanical
 - Thermal
 - **Biological**
 - Chemical
 - **Optical**
 - Magnetic
- ✓ Receives
- microelectronics
- ✓ Process for processing

Pass to

Plays smartly / Makes Decision with data

MEMS: Horizontal Components

Design & Simulation

- Aim
 - UnderstandDependentParameters
 - Simulation to analyze practicality
 - Design finalization for fabrication and testing
- Tools: COMSOL, Matlab, CATIA

Fabrication

- Photolithography
 (Si / Glass)
- Direct laser writing (maskless)
- Soft-lithography (PDMS)
- Laser engraving (PMMA)
- Paper based
- 3D printing (various polymers)

Detection

- Optical (colorimetric / image)
- Luminescence (chemi / bio)
- Electrical (impedance / amperometric)
- Electrochemical
- Electrochemilumi nisence

Testing and Characterization

- Generate
 samples of
 various
 parameters
 ratios for Testing
- Analysis of flow characteristics
- Investigate possibility for other applications

MEMS: Process Value Chain

Process chain

Design

Fabrication

https://www.waferworld.com
Dicing

https://firstlevelinc.com/

Die attach and wire bonding

https://global.kyocera.com/

https://global.kyocera.com/

Hermetic sealing

Anatomy of MEMS Package

Fundamentals of MEMS Packaging

Protection

Electrical connection

Thermal Management

Mechanical stress

IC

Reliability

MEMS

Multiphysics
Environment interaction with sensors

Fabrication

Fabrication Techniques

Photolithography

Photolithography

A **positive** photoresist is weakened by radiation exposure, so the remaining pattern after being subject to a developer solution looks just like the opaque regions of the mask

A **negative** photoresist is strengthened by radiation exposure, so the remaining pattern after being subject to a developer solution appears as the inverse of the opaque regions of the mask.

Printing techniques

Deposition

- CVD
 - LPCVD
 - APCVD
 - PECVD
- PVD

Etching

- Wet chemical etching
 - Isotropic

Anisotropic

Dry etching

Surface Micromachining

(Analog Devices ADXL50 micro-accelerometer)

Examples

(a) (b)

Bulk micromachining

Fabrication of MEMS Microphone

Pressure sensor

Fabrication of MEMS accelerometer

MEMS Packaging Technologies

Materials

Metal

Plastic

Assembly process

Chip on board

Wire bonding

Flip-chip bonding

Die Stacking

(Courtesy of Chipworks)

Applications

Pressure Sensor

Accelerometer

Gyroscope

Thank You