ZAD 1.

$$\lfloor an \rfloor + \lfloor (1-a)n \rfloor = n-1$$

Niech $\mathbb{Z} \ni m = |an|$, wtedy

$$\begin{split} &m \leq an < m+1 \\ &m-n \leq an-n < m-n+1 \\ &n-m \geq n-an > n-m-1 \end{split}$$

Poniewaz n $\notin \mathbb{Q}$, to n-an $\notin \mathbb{Z}$, wiec

$$|n - an| = n - |an| - 1$$

a z tego

$$[an] + [n(1-a)] = n-1$$

$$[an] + [n - an] = n + 1$$

ZAD 2.

$$\lfloor \frac{\mathbf{x}}{\mathbf{m}} \rfloor + \lfloor \frac{\mathbf{x}+\mathbf{1}}{\mathbf{m}} \rfloor + \ldots + \lfloor \frac{\mathbf{x}+\mathbf{m}-\mathbf{1}}{\mathbf{m}} \rfloor = \sum_{i=0}^{m-1} \lfloor \frac{\mathbf{x}+i}{\mathbf{m}} \rfloor \quad ()$$

Po pierwsze pokazemy, ze dla dowolnych n,m\in \mathbb{Z} oraz $x\in\mathbb{R}$ zachodzi

$$\left\lfloor \frac{\mathbf{x} + \mathbf{n}}{\mathbf{m}} \right\rfloor = \left\lfloor \frac{\left\lfloor \mathbf{x} \right\rfloor + \mathbf{n}}{\mathbf{m}} \right\rfloor \quad (\clubsuit)$$

Niech p = $\left| \frac{\lfloor x \rfloor + n}{m} \right|$, wtedy

$$\begin{split} p &\leq \frac{\left \lfloor x \right \rfloor + n}{m}$$

Czyli pokazalismy (🖐).

Po drugie, zauwazmy, ze dla dowolnego n i dla kazdego m $\in \mathbb{Z}$, n \geq m > 1 zachodzi

$$n = \sum_{i=0}^{m-1} \left\lfloor \frac{n+i}{m} \right\rfloor$$

Zauwazmy, ze jest to ilosc elementow w kazdej grupie przy podziale n elementow na m grup. We wszystkich kolumnach umiescimy co najmniej $\left\lfloor \frac{n}{m} \right\rfloor$ obiektow, ale w ostatnich n mod m kolumnach bedzie ich o 1 wiecej, co jest uzyskiwane przez zwiekszanie o 1 licznika po kazdej kolumnie.

Wracajac do (❤), mozemy powiedziec, ze

$$\sum_{i=0}^{m-1} \left\lfloor \frac{x+i}{m} \right\rfloor = \sum_{i=0}^{m-1} \left\lfloor \frac{\lfloor x \rfloor + i}{m} \right\rfloor = \lfloor x \rfloor$$

ZAD 3.

- a) potrzebujemy a_0 , a_1 , natomiast a_2 mozemy juz obliczyc za pomoca a_0
- b) potrzebne jest a_0 , a_1 oraz a_2 , bo wyraz a_3 to juz suma wyrazow poprzednich
- c) potrzebny jest tylko wyraz a_0 jest on potrzebny dla a_1 , dla a_2 potrzebne jest a_1 i tak dalej zawsze przy odpowiedniej ilosci podzielen na 2 otrzymujemy a_0

ZAD 4.

a) $f_n = f_{n-1} + 3^n$ dla n > 1 i $f_1 = 3$.

To jest suma geometric sequence:

$$f_n = \sum_{i=1}^n 3^i = 3 \cdot \frac{3^n - 1}{3 - 1} = \frac{3^{n+1} - 3}{2}$$

b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$

$$h_n = -\lfloor \frac{n}{2} \rfloor + (n - 2 \lfloor \frac{n}{2} \rfloor) n$$

c) $l_n = l_{n-1}l_{n-2}$ dla n > 2 i $l_1 = l_2 = 2$

$$1_3 = 4 = 2^2$$
 $1_4 = 8 = 2^3$
 $1_5 = 32 = 2^5$
 $1_6 = 256 = 2^8$

 l_n wyraz to 2^k , gdzie k to n-ty wyraz ciagu fibonacciego. Takze zostaje mi nic innego jak znalezc jawny wzor na ciag fibonacciego, f_n :)

Lecimy funkcja tworzaca, cuz why not. Niech

$$F(x) = \sum_{i=1}^{n} f_{i}x^{n}$$

wtedy

$$\begin{split} &\mathsf{F}(x) = \sum_{i=0}^{} f_i x^i \\ &\mathsf{F}(x) = x + \sum_{i=2}^{} (f_{i-1} + f_{i-2}) x^i \\ &\mathsf{F}(x) = x + x \sum_{i=2}^{} f_{i-1} x^{i-1} + x^2 \sum_{i=2}^{} f_{i-2} x^{i-2} \\ &\mathsf{F}(x) = x + x \sum_{i=1}^{} f_i x^i + x^2 \sum_{i=0}^{} f_i x^i \end{split}$$

Zauwazmy, ze poniewaz $f_0 = 0$, to $\sum_{i=0}^{\infty} f_i x^i = \sum_{i=1}^{\infty} f_i x^i$

$$F(x) = x + (x + x^{2}) \sum_{i=0} f_{i} x^{i}$$

$$F(x) = x + (x + x^{2})F(x)$$

$$F(x)(1 - x - x^{2}) = x$$

$$F(x) = \frac{x}{1 - x - x^{2}}$$

Zauwazamy, ze

$$1 - x - x^2 = 0 \iff x = \frac{-1 \pm \sqrt{1 + 4}}{2}$$

Czyli mamy

$$F(x) = \frac{x}{(x + \frac{1 + \sqrt{5}}{2})(x + \frac{1 - \sqrt{5}}{2})}$$

Rozbicie tego na dwa dodawane ulamki zostawiam czytelnikowi oraz wikipedii. Tak samo jak dokonczenie tego rozwiazania.

Zalozmy, ze czytelnik byl mniej leniwy niz autorka i wyliczyl jawny wzor na n-ty wyraz ciagu fibonaciego, ktory wg wikipedii wyglada mniej wiecej tak:

$$f_n = \frac{1}{\sqrt{5}} \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n}$$

Otrzymujemy wiec:

$$1_n = 2^{f_n} = 2^{f_{n-1}} \cdot 2^{f_{n-2}}$$

ZAD 5.

a) $a_n = \frac{2}{a_{n-1}}$ dla $a_0 = 1$

$$a_n = \begin{cases} 1 & n \mid 2 \\ 2 & \end{cases}$$

0,1 - dziala. Zalozmy, ze dziala tez dla wszystkich wyrazow mniejszych niz n. Rozwazamy dwa przypadki:

2|n, wtedy 2|n-1 i mamy $a_{n-1}=2$

$$a_n = \frac{2}{2} = 1$$

czyli tak jak jest we wzorze.

 $2 \nmid n$, wtedy $a_{n-1} = 1$ i

$$a_n = \frac{2}{1} = 2$$
.

b)
$$b_n = \frac{1}{1+b_{n-1}} b_0 = 0$$

Oznaczmy jako f_n n-ty wyraz ciagu fibbonacciego, czyli $f_n = f_{n-1} + f_{n-2}$, gdzie $f_0 = \emptyset$, $f_1 = 1$. Wtedy

$$b_n = \frac{f_n}{f_{n+1}}.$$

Dla n = 0,1 mamy $b_0 = \frac{0}{1} = 0$ oraz $b_1 = \frac{1}{1} = 1$. Zalozmy, ze dla wszystkich wyrazow do b_n wzor dziala. Wtedy

$$\begin{aligned} b_{n+1} &= \frac{1}{1+b_n} = \frac{1}{1+\frac{f_n}{f_{n+1}}} = \\ &= \frac{1}{\frac{f_{n+}f_{n+1}}{f_{n+1}}} \frac{f_{n+1}}{f_n + f_{n+1}} = \frac{f_{n+1}}{f_{n+2}} \end{aligned}$$

c)
$$c_n = \sum_{i=0}^{n-1} c_i \ c_0 = 1$$

Dla $n \neq 0$ zachodzi

$$c_n = 2^{n-1}$$

natomiast dla n = 0 mamy $c_0 = 1$.

Dla n = 1, 2 jest $c_1 = 2^0 = 1$, $c_2 = 2^2 = 2$. Zalozmy, ze dla kazdego n wzor jest prawdziwy, wtedy

$$c_{n+1} = \sum_{i=0}^{n} c_i = \sum_{i=0}^{n-1} c_i + c_n =$$

= $c_n + c_n = 2 \cdot 2^{n-1} = 2^n$

d)
$$d_n = \frac{d_{n-1}^2}{d_{n-2}} d_0 = 1 d_1 = 2$$

Dla n = 0,1 mamy $d_0 = 2^0 = 1$, $d_1 = 2^1 = 2$. Zalozmy, ze dla wszystkich n wzor jest prawdziwy, wowczas

$$d_{n+1} = \frac{d_n^2}{d_{n-1}} = \frac{(2^n)^2}{2^{n-1}} = 2^{2n-(n-1)} = 2^{n+1}$$

ZAD 6.

a)
$$y_0 = y_1 = 1$$
, $y_n = \frac{y_{n-1}^2 + y_{n-2}}{y_{n-1} + y_{n-2}}$

$$y_n = 1$$

Dla n=2 $y_2=1$. Zalozmy, ze dla pierwszych n wyrazow wzor jest prawdziwy, wowczas

$$y_{n+1} = \frac{y_{n-1}^2 + y_{n-2}}{y_{n-1} + y_{n-2}} = \frac{1^2 + 1}{1 + 1} = \frac{2}{2} = 1$$

b)
$$z_0 = 1$$
, $z_1 = 2$, $z_n = \frac{z_{n-1}^2 - 1}{z_{n-2}}$

$$z_n = n + 1$$

Dla $z_2 = 3$, wiec zalozmy, ze dla wszystkich n wzor zachodzi, wowczas

$$z_{n+1} = \frac{z_n^2 - 1}{z_{n-2}} = \frac{(n+1)^2 - 1}{n} = \frac{n^2 + 2n}{n} = n + 2 = (n+1) + 1$$

c)
$$t_0 = 0$$
, $t_1 = 1$, $t_n = \frac{(t_{n-1} - t_{n-2} + 3)^2}{4}$

$$a_n = n^2$$

Dla n = 2 smiga, zalozmy, ze smiga tez dla wszystkich n. Wowczas

$$\begin{split} t_{n+1} &= \frac{(t_n - t_{n-1} + 3)^2}{4} = \frac{(n^2 - (n-1)^2 + 3)^2}{4} = \\ &= \frac{(n^2 - n^2 + 2n - 1 + 3)^2}{4} = \frac{(2n+2)^2}{4} = \\ &= \left(\frac{2n+2}{2}\right)^2 = (n+1)^2 \end{split}$$

ZAD 7.

a) $a_{n+1} = (n+1)a_n + 1$ dla $a_0 = 1$

$$a_n = n! + \sum_{i=1}^n \frac{n!}{i!} = \sum_{i=0}^n \frac{n!}{i!}$$

Dla n = 1, 2 dziala. Zalozmy, ze dziala tez dla wszystkich n, wtedy

$$a_{n+1} = (n+1)a_n + 1 = (n+1)\sum_{i=0}^n \frac{n!}{i!} + \frac{(n+1)!}{(n+1)!} = \sum_{i=0}^n \frac{(n+1)!}{i!} + \frac{(n+1)!}{(n+1)!} = \sum_{i=0}^{n+1} \frac{(n+1)!}{i!}$$

b) $b_0 = \frac{1}{2}$, $nb_n = (n-2)b_{n-1} + 1$ czyli dla n > 0 mamy $b_n = \frac{(n-2)b_{n-1} + 1}{n}$

$$b_n = \frac{1}{2}$$

Dla n = 1, 2 dziala, zalozmy ze dziala tez dla wszystkich n, wtedy

$$b_{n+1} = \frac{(n-1)b_n + 1}{n+1} = \frac{\frac{1}{2}(n-1) + 1}{n+1} = \frac{n-1+2}{2(n+1)} = \frac{n+1}{2(n+1)} = \frac{1}{2}$$

c) $c_0 = 0$, $nc_n = (n+2)c_{n-1} + n + 2$, $dla \ n > 0 \ c_n = \frac{(n+2)c_{n-1} + n + 2}{n}$

$$c_n = \sum_{i=1}^{n} (2i + 1) = \sum_{i=1}^{n} 2i + n = 2\sum_{i=1}^{n} i + n = n(n+1) + n$$

Dla n = 1, 2 dziala, zalozmy, ze jest zgodny dla wszystkich n, wtedy

$$\begin{split} c_{n+1} &= \frac{(n+3)c_n + n + 3}{n+1} = \frac{(n+3)(n(n+1)+n) + n + 3}{n+1} = \\ &= \frac{(n+3)(n(n+1)+n+1)}{n+1} = \frac{(n+3)(n+1)(n+1)}{n+1} = \\ &= (n+3)(n+1) = (n+1)(n+2) + (n+1) \end{split}$$

d)
$$d_0 = 1$$
, $d_1 = 2$, $nd_n = (n-2)!d_{n-1}d_{n-2}$, $czyli$ d;a $n > 0$ $d_n = \frac{(n-2)!d_{n-1}d_{n-2}}{n}$

$$d_{0} = 1$$

$$d_{1} = 2$$

$$d_{2} = 1$$

$$d_{3} = \frac{2}{3}$$

$$d_{4} = \frac{1}{3}$$

$$d_{5} = \frac{4}{15}$$