Curs 7: Distribuția normală

1.1 Distribuţia Normala

Distribuţia normală este distribuţia de probabilitate cel mai mult folosită, ca model, în inteligenţa artificială, machine learning, data mining, analiza şi procesarea imaginilor, şi n statistică.

Definiția 1.1.1 O variabilă aleatoare continuă, X, ce are densitatea de probabilitate

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\frac{-(x-m)^2}{2\sigma^2}, \ \forall \ x \in \mathbb{R},$$
 (1)

se numește variabilă aleatoare normal distribuită, de parametri m, σ , unde $m \in \mathbb{R}$, iar $\sigma > 0$ (Fig.1). Notăm cu $N(m, \sigma)$ clasa variabilelor aleatoare ce au această distribuție.

Distribuția normală standard: Pentru o variabilă aleatoare normal distribuită, de parametri $m = 0, \sigma = 1$, densitatea de probabilitate (1) se notează:

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}, \ t \in \mathbb{R}. \tag{2}$$

Funcția φ este pară, adică $\varphi(-t)=\varphi(t), \ \forall t\in\mathbb{R}$ (Fig. 2) și graficul său se numește clopotul lui Gauss.

Propoziția 1.1.1 O variabilă aleatoare X, ce are densitatea de probabilitate φ , are valoarea medie 0, iar dispersia $\sigma^2 = 1$.

Demonstrație: Opțional. Valoarea medie a variabilei X este: $M(X) = \int_{-\infty}^{\infty} t\varphi(t) dt =$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t \, e^{-t^2/2} \, dt = \underbrace{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} t \, e^{-t^2/2} \, dt}_{I_1} + \underbrace{\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} t \, e^{-t^2/2} \, dt}_{I_2}. \text{ Pentru calculul integralei}$$

$$I_1$$
 efectuăm schimbarea de variabilă $t=-y$. Astfel $I_1=\frac{1}{\sqrt{2\pi}}\int\limits_{\infty}^{0}-ye^{-y^2/2}(-dy)=-I_2$ şi deci $M(X)=I_1+I_2=-I_2+I_2=0$.

Fig.1: Graficul densității de probabilitate pentru $X \sim N(m=2, \sigma=0.75)$.

Dispersia variabile
iXeste $\sigma^2(X)=M(X^2)-(M(X))^2=M(X^2)-0=M(X^2).$ Calculăm

$$M(X^2) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^2 e^{-t^2/2} dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t(t e^{-t^2/2}) dt.$$
 (3)

Ultimă integrală se calculează prin părți și obținem $M(X^2) = 1$.

End Optional.

- \bullet Notăm cu N(0,1) clasa variabilelor aleatoare ce au distribuția normală de medie 0 şi dispersie 1, numită şi distribuția normală standard.
- ullet Există convenția internațională de a nota prin Z o variabilă aleatoare ce are distribuția normală standard.
 - Funcția de repartiție a unei astfel de variabile aleatoare se notează cu Φ:

$$\Phi(x) = P(Z \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$
 (4)

Propoziția 1.1.2 Funcția de repartiție, Φ , a unei variabile aleatoare $Z \sim N(0,1)$ are proprietatea că:

$$\Phi(-x) = 1 - \Phi(x), \ \forall x \in \mathbb{R}$$
 (5)

Demonstrație: Opțional. $\Phi(-x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-x} e^{-t^2/2} dt$. Efectuând schimbarea de vari-

Fig.2: Densitatea de probabilitate a unei variabile aleatoare $Z \sim N(0,1)$.

abilă t = -u, avem:

$$\Phi(-x) = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^{2}/2} du = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-u^{2}/2} du
= \frac{1}{\sqrt{2\pi}} \left(\int_{x}^{\infty} e^{-u^{2}/2} du + \int_{-\infty}^{x} e^{-u^{2}/2} du - \int_{-\infty}^{x} e^{-u^{2}/2} du \right)
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-u^{2}/2} du - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^{2}/2} du = 1 - \Phi(x).$$
(6)

End Optional.

Valoarea funcției Φ într-un punct x se poate calcula doar prin metode aproximative, deoarece nu se poate determina analitic nici o primitivă a funcției $e^{-t^2/2}$. În general, cărțile de Teoria Probabilităților conțin tabele de valori ale lui Φ în argumente pozitive. Pentru x negativ valoarea se exprimă în prelabil prin $\Phi(x) = 1 - \Phi(-x)$. -x fiind pozitiv, $\Phi(-x)$ se caută în tabel.

α -cvantila distribuției normale standard.

Pentru o variabilă aleatoare, de distribuție de probabilitate arbitrară, ce are funcția de repartiție, $F: \mathbb{R} \to (0,1)$, strict crescătoare, inversa $F^{-1}: (0,1) \to \mathbb{R}$ se numește funcția cvantilă. α -cvantila, $\alpha \in (0,1)$, unei astfel de distribuții de probabilitate este unicul număr real $x_{\alpha} = F^{-1}(\alpha)$. Aplicând funcția F aceste egalități obținem $F(x_{\alpha}) = \alpha$, sau echivalent $P(X \leq x_{\alpha}) = \alpha$. α -cvantila unei variabile aleatoare având distribuția normală standard, $Z \sim N(0,1)$, se notează z_{α} .

Propoziția 1.1.3 Între cvantilele $z_{1-\alpha}$ și z_{α} ale unei variabile aleatoare $Z \sim N(0,1)$, există relația:

$$z_{1-\alpha} = -z_{\alpha}, \forall \ \alpha \in (0,1). \tag{7}$$

Demonstrație: Opțional. Fie Φ funcția de repartiție a variabilei aleatoare $Z \sim N(0,1)$ și $z_{1-\alpha}, z_{\alpha}$ cvantilele sale, adică

$$\Phi(z_{1-\alpha}) = 1 - \alpha \tag{8}$$

$$\Phi(z_{\alpha}) = \alpha. \tag{9}$$

Prin urmare putem scrie: $\Phi(z_{1-\alpha}) = 1 - \Phi(z_{\alpha})$. Ținând seama de (5), avem $1 - \Phi(z_{\alpha}) = \Phi(-z_{\alpha})$. Astfel $\Phi(z_{1-\alpha}) = \Phi(-z_{\alpha})$ și cum Φ este strict crescătoare, deci injectivă, rezultă că $z_{1-\alpha} = -z_{\alpha}$, $\forall \alpha \in (0,1)$.

End Optional.

 α –cvantilele distribuției normale standard se folosesc în statistică. Valorile α –cvantilelor se găsesc fie în tabele, fie apelând funcțiile adecvate, din pachetele software ce le pun la dispoziție. α –cvantilele distribuției normale standard, vor intervini în partea de Statistică a cursului.

Studiul variabilelor aleatoare ce au distribuție normală arbitrară, $N(m, \sigma)$, se realizează, stabilind o relație a acestora cu variabilele aleatoare normal distribuite, standard. Şi anume:

Fie variabila aleatoare $X \sim N(m, \sigma)$, având densitatea de probabilitate, f_X , definită în (1). Observăm că această densitate se poate exprima în funcție de densitatea φ , a distribuției normale standard, N(0, 1), astfel:

$$f_X(x) = \frac{1}{\sigma} \varphi_Z \left(\frac{x - m}{\sigma} \right) \tag{10}$$

Propoziția 1.1.4 Funcția de repartiție a variabilei $X \sim N(m, \sigma^2)$, F_X , se exprimă în funcție de repartiția normală standard prin:

$$F_X(x) = \Phi\left(\frac{x-m}{\sigma}\right) \tag{11}$$

Demonstrație: Într-adevăr, $F_X(x) = P(X \le x) = \int_{-\infty}^x \frac{1}{\sigma} \varphi\left(\frac{t-m}{\sigma}\right) dt$. Efectuând schimbarea de variabilă, $y = \frac{t-m}{\sigma}$, obținem:

$$F_X(x) = \int_{-\infty}^{(x-m)/\sigma} \varphi(y) \, dy = \Phi\left(\frac{x-m}{\sigma}\right)$$

Propoziția 1.1.5 Dacă variabila aleatoare X are distribuția normală, $X \sim N(m, \sigma)$, atunci variabila standardizată asociată, $Z = (X-m)/\sigma$, are distribuția N(0,1) și reciproc, dacă $Z \sim N(0,1)$, atunci oricare ar fi $m \in \mathbb{R}$ și $\sigma > 0$, variabila aleatoare $X = \sigma Z + m \sim N(m, \sigma^2)$.

Demonstrație: Vom arăta că funcția de repartiție a variabilei Z este Φ . $P(Z \le x) = P\left(\frac{X-m}{\sigma} \le x\right) = P(X \le m+\sigma x) = F_X(m+\sigma x) \stackrel{(11)}{=} \Phi(x)$. Reciproca este evidentă.

Ca și în cazul variabilelor aleatoare ce au distribuția normală standard, parametrii m și σ ai unei variabile aleatoare, $X \sim N(m, \sigma)$, au semnificație probabilistă, și anume m este media variabilei aleatoare, m = M(X), iar σ^2 este dispersia sa.

Pentru a demonstra aceste egalități asociem variabile
iX, variabila standardizată, $Z=\frac{X-m}{\sigma}\sim N(0,1).$ Astfel
 $X=m+\sigma Z$ și $M(X)=m+\sigma M(Z)=m.$ Pe de altă parte,
 $D^2(X)=0+\sigma^2D^2(Z)=\sigma^2$ (am folosit proprietatea $D^2(aZ)=a^2D^2(Z)$).

Așa cum se observă din definiția densității de probabilitate f, a unei variabile aleatoare $X \sim N(m, \sigma)$, graficul funcției f este simetric față de dreapta x = m. Cu cât σ este mai mic, cu atât probabilitatea ca valorile variabilei aleatoare să fie concentrate în jurul mediei m este mai mare (Fig.3).

Fig.3: Graficele a două densități normale, $N(m, \sigma)$, ce au aceeași medie m = 2, iar abaterile standard sunt respectiv $\sigma = 0.75$, $\sigma = 1.2$.

Calculul probabilităților normale.

Fie v.a $X \sim N(m, \sigma)$. Funcția sa de repartiție fiind continuă, avem:

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b) =$$

$$= F_X(b) - F_X(a) = \Phi\left(\frac{b - m}{\sigma}\right) - \Phi\left(\frac{a - m}{\sigma}\right)$$

Exemplul 1. Fie $X \sim N(1, 0.4^2)$. Să se calculeze:

- a) P(X > 0.8);
- b) P(0.75 < X < 1.3);
- c) Să se determine $x \in \mathbb{R}$ astfel încât $P(X \le x) = 0.95$

Rezolvare: a) $(X > 0.8) = \mathbb{C}(X \le 0.8)$. Astfel, $P(X > 0.8) = 1 - F_X(0.8)$. Dar $F_X(x) = \Phi((x-1)/0.4)$ și deci $F_X(0.8) = \Phi(-0.2/0.4) = \Phi(-0.5)$. Ținând seama că

- $\Phi(-z) = 1 \Phi(z)$, rezultă că $\Phi(-0.5) = 1 \Phi(0.5)$ și prin urmare $P(X > 0.8) = 1 (1 \Phi(0.5)) = \Phi(0.5)$.
- b) $P(0.75 < X \le 1.3) = F_X(1.3) F_X(0.75) = \Phi((1.3 1)/0.4) \Phi((0.75 1)/0.4)$ = $\Phi(0.75) - \Phi(-0.625) = \Phi(0.75) - 1 + \Phi(0.625)$.
- c) $P(X \le x) = F_X(x) = \Phi((x-1)/4) = 0.95$. Deci $(x-1)/0.4 = \Phi^{-1}(0.95) = z_{0.95}$. Din tabele se află că 0.95-cvantila distribuției normale standard este $z_{0.95} = 1.64$ și deci $x = 1 + 0.4 \cdot 1.64$.