Stereo Matching

Stereo Vision [1]

Triangulate on two images of the same point to recover depth.

- Feature matching across views
- Calibrated cameras

Matching correlation windows across scan lines

Reduction of Searching by Epipolar Constraint [1]

- Epipolar Constraint
 - Matching points lie along corresponding epipolar lines
 - Reduces correspondence problem to 1D search along conjugate epipolar lines
 - Greatly reduces cost and ambiguity of matching

Photometric Constraint [1]

Same world point has same intensity in both images.

- True for Lambertian surfaces
 - A Lambertian surface has a brightness that is independent of viewing angle
- Violations:
 - Noise
 - Specularity
 - Non-Lambertian materials
 - Pixels that contain multiple surfaces

Photometric Constraint [1]

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

This leaves too much ambiguity, so:

Improvement: match windows

Correspondence Using Correlation [1]

Sum of Squared Difference (SSD) [1]

 w_L and w_R are corresponding m by m windows of pixels.

We define the window function:

$$W_m(x, y) = \{u, v \mid x - \frac{m}{2} \le u \le x + \frac{m}{2}, y - \frac{m}{2} \le v \le y + \frac{m}{2}\}$$

The SSD cost measures the intensity difference as a function of disparity:

$$C_r(x, y, d) = \sum_{(u,v) \in W_m(x,y)} [I_L(u,v) - I_R(u-d,v)]^2$$

Image Normalization [1]

- Even when the cameras are identical models, there can be differences in gain and sensitivity.
- For these reason and more, it is a good idea to normalize the pixels in each window:

$$\bar{I} = \frac{1}{|W_m(x,y)|} \sum_{(u,v) \in W_m(x,y)} I(u,v)$$

$$\|I\|_{W_m(x,y)} = \sqrt{\sum_{(u,v) \in W_m(x,y)}} [I(u,v)]^2$$
Window magnitude
$$\hat{I}(x,y) = \frac{I(x,y) - \bar{I}}{\|I - \bar{I}\|_{W_m(x,y)}}$$
Normalized pixel

Images as Vectors [1]

Image Metrics [1]

(Normalized) Sum of Squared Differences

$$\begin{split} C_{\text{SSD}}(d) &= \sum_{(u,v) \in W_m(x,y)} [\hat{I}_L(u,v) - \hat{I}_R(u-d,v)]^2 \\ &= \left\| w_L - w_R(d) \right\|^2 \end{split}$$

Normalized Correlation

$$C_{\text{NC}}(d) = \sum_{(u,v) \in W_m(x,y)} \hat{I}_R(u-d,v)$$
$$= w_I \cdot w_R(d) = \cos \theta$$

$$d^* = \arg\min_{d} \|w_L - w_R(d)\|^2 = \arg\max_{d} w_L \cdot w_R(d)$$

Stereo Result [1]

Left

Disparity Map

Images courtesy of Point Grey Research

Window Size [1]

W = 3

W = 20

- Effect of window size
- Some approaches have been developed to use an adaptive window size (try multiple sizes and select best match)

Better results with adaptive window

- T. Kanade and M. Okutomi, <u>A Stereo Matching Algorithm with an Adaptive Window:</u>
 <u>Theory and Experiment</u>, Proc. International Conference on Robotics and Automation,
 1991.
- D. Scharstein and R. Szeliski. <u>Stereo matching with nonlinear diffusion</u>. International Journal of Computer Vision, 28(2):155-174, July 1998.

Ordering Constraint [3]

 If an object a is left on an object b in the left image then object a will also appear to the left of object b in the right image

Ordering constraint...

...and its failure

Smooth Surface Problem [3]

Correspondence fail for smooth surfaces

There is currently no good solution to the correspondence problem

Occlusion [1]

Search over Correspondence [1]

Three cases:

- Sequential add cost of match (small if intensities agree)
- Occluded add cost of no match (large cost)
- -Disoccluded add cost of no match (large cost)

Stereo Matching with Dynamic Programming [1]

Efficient algorithm for solving sequential decision (optimal path) problems.

How many paths through this trellis? 3^T

Suppose cost can be decomposed into stages:

 Π_{ij} = Cost of going from state *i* to state *j*

Principle of Optimality for an n-stage assignment problem:

$$C_t(j) = \min_{i} (\Pi_{ij} + C_{t-1}(i))$$

$$i = 1$$
 1 1 1 1 1 1 $i = 2$ 2 $j = 2$ 2 $j = 2$ 2 $i = 3$ 3 3 3 C_{t-1} C_t C_t C_{t+1} $C_t(j) = \min_i (\Pi_{ij} + C_{t-1}(i))$ $C_t(j) = \arg\min_i (\Pi_{ij} + C_{t-1}(i))$

Scan across grid computing optimal cost for each node given its upper-left neighbors. Backtrack from the terminal to get the optimal path.

For each (i,j), look for what is Optimal to get to: would it be From (i-1,j-1), or (i,j-1), or (i-1,j-1)? Assign large values for left occlusion and right occlusion.

Terminal

```
for(i=1; i \leq N; i++)
   for(j=1; j \leq M; j++){
      \min 1 = C(i-1, j-1) + c(z_{1,i}, z_{2,i});
      min2 = C(i-1,j)+Occlusion;
      min3 = C(i,j-1)+0cclusion;
      C(i,j) = cmin = min(min1,min2,min3);
      if(min1==cmin) M(i,j) = 1;
      if(min2==cmin) M(i,j) = 2;
      if(min3==cmin) M(i,j) = 3;
```

Pseudo-code describing how to calculate the optimal match


```
p=N;
q=M;
while(p!=0 \&\& q!=0){
   switch(M(p,q)){
      case 1:
          p matches q
          p--;q--;
          break;
      case 2:
          p is unmatched
          p--;
          break;
      case 3:
          q is unmatched
          q--;
          break;
   }}
```

Pseudo-code describing how to reconstruct the optimal path

Local errors may be propagated along a scan-line and no inter scan-line consistency is enforced.

Correspondence by Feature [3]

 Search in the right image... the disparity (dx, dy) is the displacement when the similarity measure is maximum

Assumption

- Depth discontinuity tend to correlate well with color edges
- Disparity variation within a segment is small
- Approximating the scene with piece-wise planar surfaces

- Plane equation is fitted in each segment based on initial disparity estimation obtained SSD or Correlation
- Global matching criteria: if a depth map is good, warping the reference image to the other view according to this depth will render an image that matches the real view
- Optimization by iterative neighborhood depth hypothesizing

Hai Tao and Harpreet W. Sawhney

Network of Constraints [2]

Network of Constraints [2]

Potential function: contains a sensor-model term and a surface prior

$$\Psi = \sum_{i} (x_{i} - x_{0i})^{T} \Omega_{i} (x_{i} - x_{0i}) + \sum_{j} \psi_{j} (1 - n_{1} \cdot n_{2})$$

- The edge potential is important!
- Minimize Ψ by conjugate gradient
 - Optimize systems with tens of thousands of parameters in just a couple seconds
 - Time to converge is O(N), between 0.7 sec (25,000 nodes in the MRF) and 25 sec (900,000 nodes)

Smoothing by MRF [2]

Smoothing by MRF [4]

(a) Raw low-res depth map

(b) Raw low-res 3D model

(c) Image mapped onto 3D model

Smoothing by MRF [4]

(d) MRF high-res depth map

(e) MRF high-res 3D model

(f) Image mapped onto 3D model

Smoothing by MRF [4]

Figure 5: 3D model of a larger indoor environment, after applying our MRF.

D. Scharstein and R. Szeliski. "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms," *International Journal of Computer Vision*, 47 (2002), pp. 7-42.

Scene

Ground truth

11 - GC + occlusions

20 - Layered stereo

10 - Graph cuts

*4 - Graph cuts

13 - Genetic algorithm

6 - Max flow

12 - Compact windows

9 - Cooperative alg.

15 - Stochastic diffusion

*2 - Dynamic progr.

14 - Realtime SAD

*3 - Scanline opt.

7 - Pixel-to-pixel stereo

*1 - SSD+MF

Window-based matching (best window size)

Ground truth

State of the art method

Boykov et al., <u>Fast Approximate Energy</u>
<u>Minimization via Graph Cuts</u>, International
Conference on Computer Vision, September 1999.

Ground truth

Intermediate View Reconstruction [1]

R.I.g.ftstpltanaidsgee

Intermediate View Reconstruction [1]

Summary of Different Stereo Methods

Constraints:

- Geometry, epipolar constraint.
- Photometric: Brightness constancy, only partly true.
- Ordering: only partly true.
- Smoothness of objects: only partly true.

Algorithms:

– What you compare: points, regions, features?

How you optimize:

- Local greedy matches.
- 1D search.
- 2D search.

References

- 1. David Lowe, "Stereo," UBC(Univ. of British Columbia) Lecture Material of Computer Vision (CPSC 425), Spring 2007.
- 2. Sebastian Thrun, Rick Szeliski, Hendrik Dahlkamp and Dan Morris, "Stereo 2," Stanford Lecture Material of Computer Vision (CS 223B), Winter 2005.
- 3. Chandra Kambhamettu, "Multiple Views1" and "Multiple View2," Univ. of Delawave Lecture Material of Computer Vision (CISC 4/689), Spring 2007.
- 4. J. Diebel and S. Thrun, "An Application of Markov Random Fields to Range Sensing," Proc. Neural Information Processing Systems (NIPS), Cmbridge, MA, 2005. MIT Press.

