ESE Regressione Lineare ai Minimi Quadrati

Dobbiamo stimare i parametri n_D e I_S di un diodo a semiconduttore polarizzato in diretta.

Come **equazione caratteristica** del diodo utilizziamo la seguente espressione:

$$I = I_S e^{\frac{V}{n_D V_T}}$$

dove V_T è detta tensione termica e vale 25 mV a temperatura ambiente (circa 300 K).

Allo scopo eseguiamo in laboratorio 5 misure della corrente del diodo *I* al variare della tensione applicata *V*, ottenendo i seguenti risultati:

V [V]	<i>I</i> [mA]
0.4	0.0002
0.5	0.0048
0.6	0.1
0.7	2.2
0.8	49

Calcolare, <u>tramite la regressione lineare</u>, il valore di n_D e I_S .

$$y = mx + b$$

$$m = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$b = \bar{y} - m\bar{x}$$

Nel nostro caso abbiamo che y = I e x = V e la relazione che lega y e x è esponenziale, non lineare!! Come possiamo procedere?

x = V [V]	y = I [mA]
0.4	0.0002
0.5	0.0048
0.6	0.1
0.7	2.2
0.8	49

$$I = I_{S}e^{\frac{V}{n_{D}V_{T}}}$$

Dobbiamo trasformare almeno una delle due variabili in modo da linearizzare il problema...

Consideriamo il logaritmo della corrente *I*:

$$\ln I = \ln I_S e^{\frac{V}{n_D V_T}} = \ln I_S + \frac{V}{n_D V_T} = mV + b$$

$$m = \frac{1}{n_D V_T}$$

$$b = \ln I_S$$

Abbiamo linearizzato il problema.

Per eseguire correttamente la trasformazione dei valori di *I*, dobbiamo ricordarci che l'argomento di un logaritmo deve essere un numero puro.

Prima di calcolare il $\ln I$ dobbiamo quindi eseguire una normalizzazione dei valori di corrente ad una corrente di riferimento I_0 .

Il testo fornisce i dati in mA, normalizziamo quindi rispetto a I_0 =1mA:

$$y_i' = \ln\left(\frac{I}{1\text{mA}}\right)$$

x = V [V]	$y' = \ln(I/_{1\text{mA}})$
0.4	-8.52
0.5	-5.34
0.6	-2.30
0.7	0.79
0.8	3.89

Possiamo ora utilizzare le formule per *m* e per *b*:

$$m = \frac{n\sum x_i y_i' - \sum x_i \sum y_i'}{n\sum x_i^2 - (\sum x_i)^2} = 30.94 \text{ V}^{-1}$$

$$b = \bar{y'} - m\bar{x} = -20.86$$

Ed ecco i valori cercati:

$$n_D = \frac{1}{mV_T} = 1.29$$

$$I_S = e^b = 8.7 \cdot 10^{-10} \text{ mA}$$

Dobbiamo stimare la massa M e l'altezza di caduta h di un grave, osservando l'energia cinetica finale $E_{c,FIN}$ all'impatto al suolo. L'esperimento viene condotto nel vuoto, e l'equazione che lo descrive è la seguente:

$$E_{c,FIN} = E_{c,INI} + E_{p,INI} = \frac{1}{2}Mv_0^2 + Mgh$$

dove $g = 9.8 \text{ m/}_{\text{s}^2}$ è l'accelerazione di gravità.

Allo scopo eseguiamo 5 misure al variare della velocità iniziale v_0 (già verso il basso) alla quota di partenza, ottenendo i seguenti risultati:

$E_{c,FIN}$ [J]	v_0 [m/s]
110.25	0
111.75	2
119.625	5
147.75	10
260.25	20

Calcolare, <u>tramite la regressione lineare</u>, il valore di *M* e *h*.

Nel nostro caso abbiamo che $y = E_{c,FIN}$ e $x = v_0$ e la relazione che lega y e x è quadratica, non lineare!! Come possiamo procedere?

Dobbiamo quindi linearizzare il problema...

$$y = E_{c,FIN} = \frac{1}{2}Mx^2 + Mgh$$

Per risolvere il problema dobbiamo considerare una nuova variabile $x' = v_0^2$:

$$y = E_{c,FIN} = \frac{1}{2}Mx' + Mgh = mx' + b$$

$$m=\frac{1}{2}M$$

$$b = Mgh$$

$y = E_{c,FIN}$ [J]	$x'=v_0^2 \ [\mathbf{m}^2/\mathbf{s}^2]$
110.25	0
111.75	4
119.625	25
147.75	100
260.25	400

Possiamo ora utilizzare le formule per *m* e per *b*:

$$m = \frac{n\sum x_i' y_i - \sum x_i' \sum y_i}{n\sum (x_i')^2 - (\sum x_i')^2} = 0.375 \text{ kg}$$

$$b = \bar{y} - m\bar{x'} = 110.25 \text{ N} \cdot \text{m}$$

Ed ecco i valori cercati:

$$M = 2m = 0.75 \text{ kg}$$

$$h = \frac{b}{Mg} = 15 \text{ m}$$

Per rilevare la velocità di scrittura di un HDD a SSD, un esperto informatico esegue prove di scrittura di file con diverse dimensioni D_i e registra i tempi di scrittura t_i corrispondenti:

x = D [MB]	y = t [s]
1020	15
1780	25
3800	50
8000	105
11500	140

Dobbiamo riportare i dati in un diagramma cartesiano quantitativo:

Dobbiamo ora ricavare i parametri *m* e *b* (con unità di misura!) utilizzando la regressione lineare ai minimi quadrati sui dati a disposizione:

$$y = mx + b \rightarrow t = mD + b$$

$$m = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2} = 0.0121 \frac{s}{MB}$$

$$b = \bar{y} - m\bar{x} = 3.88 \text{ s}$$

Riportiamo la retta di regressione sul grafico cartesiano con i dati sperimentali

Calcoliamo infine la velocità di scrittura v in $\frac{MB}{s}$:

$$v = m^{-1} = 82.7 \frac{\text{MB}}{\text{s}}$$

Cosa rappresenta il termine b?

Il termine noto *b* rappresenta il tempo fisso richiesto per la scrittura di un file indipendentemente dalla dimensione del file.

Può essere la somma del tempo di accesso al disco, a inizio scrittura, più il tempo per la chiusura del processo di scrittura, a fine scrittura.