Math 108B Homework 4

Rad Mallari

March 4, 2022

For all problems:

- V is a vector space over \mathbb{C}
- $\dim V = n$
- $x, y \in V$
- $V, T, S, N \in \mathcal{L}(V)$
- $N \in \mathcal{L}(V)$ is nilpotent if $N^k = 0$ for some k > 0.

1 Problem 1

Prove that if $T^{m-1}x \neq 0$, $T^mx = 0$, then the set $\{x, Tx, ..., T^{m-1}x\}$ is linearly independent.

Proof. Taking $a_0, a_1, ..., a_{m-1} \in F$, where

$$a_0x + a_1Tx + a_2T^2v + \dots + a_{m-1}T^{m-1}x = 0$$
 (1)

Due to our assumption that $T^{m-1} \neq 0$ we can apply it to both sides of (1). This gives us a $T^m x$ for all the terms except for the first and by the second assumption that we are left with:

$$T^{m-1}a_0x = 0$$

Again, since $T^{m-1}x \neq 0$, we can deduce that $a_0 = 0$ which allows us to rewrite (1) as:

$$a_1 T x + a_2 T^2 x + \dots + a_{m-1} T^{m-1} x = 0 (2)$$

Similarly, applying T^{m-2} leaves a T^m for every term except for the first giving us

$$T^{m-1}a_1x = 0$$

Therefore, $a_1 \neq 0$ by the same argument as before. We can repeat this process until the last term allowing us to conclude that $a_0 = a_1 = a_2 = ... = a_{m-1} = 0$. Since we only have the trivial solution, we know that the set $\{x, Tx, T^2x, ..., T^{m-1}x\}$ is linearly independent.

2 Problem 2

Prove that if ST is nilpotent, then TS is nilpotent.

Proof. We begin with our assumption that ST is nilpotent, there must be some k > 0 such that $(ST)^n 0$. Now letting $(TS)^{n+1} = (TS)(TS)...(TS) = T(ST)(ST)...(ST)S = T(ST)^n S$ Then we see that the multiplier in the center is 0 by our assumption and we're left with

$$(TS)^{n+1} = T(0)S = 0$$

Therefore, TS is nilpotent as well.

3 Problem 3

Prove that if N is nilpotent, then 0 is the only eigenvalue of N.

Proof. Suppose that λ is an eigenvalue of N, then by definition, we have a nonzero vector $x \in V$ such that $\lambda x = Nx$. Applying N until k where k > 0, we have that $\lambda^k x = N^k x$. Since we assumed that N is nilpotent, then with $\lambda^k x = 0$. Furthermore, we know $x \neq 0$ so we conclude that $\lambda = 0$.

Prove that if null $N^{n-1} \neq \text{null } N^n$, then N is nilpotent.

Proof. Proposition 8.5 in the book tells us that if n is a nonnegative integer such that null $T^n = \text{null } T^{n+1}$, then

$$\operatorname{null} \, T^0 \subset \operatorname{null} \, T^1 \subset \ldots \subset \operatorname{null} \, T^m = \operatorname{null} \, T^{n+1} = \operatorname{null} \, T^{n+2} = \ldots$$

Therefore by our assumption that null $N^{n-1} \neq \text{null } N^n$, we can infer that null $N^{n-1} \neq \text{null } N^n$ for $0 \leq n \leq \dim V$. Therefore, $\{0\} = \text{null } N^0 \subsetneq \text{null } N^1 \subsetneq \dots \subsetneq \text{null } N^{n-1} \subsetneq \text{null } N^n$. By **Proposition 8.6** n must increment by 1, in other words letting some $n = \dim V$ yields dim null $N^n = n$. We can conclude that null $N^n = V$ which implies that $N^n = 0$, and finally N is nilpotent.

5 Problem 5

Prove that if null $N^{n-2} \neq \text{null } N^{n-1}$, then N has at most two distinct eigenvalues

Proof. Similar to (4) by **Proposition 8.6** dim null $T^n > \dim \operatorname{null} T^{n-1}$ by at least 1 for n = 1, ..., n-1. From this we know that dim null $n^{-1} \ge n-1$ which implies that 0 is an eigenvalue of T with multiplicity of at least n-1. Since V is a complex vector space and $T \in \mathcal{L}(V)$, then the sum of multiplicities of all eigenvalues of $T = \dim V$ by Proposition 8.18. Therefore, we can conclude that T can have at most one extra eigenvalue.

Prove that for any T,

null
$$T^n \cap \text{range } T^n = \{0\}$$

Proof. We begin by choosing some $v \in \text{null } T^n \cap \text{range } T^n$. Then for some $a \in T$, $T^n a = v$. Now by **Proposition 8.6** we know that:

$$\operatorname{null}\, T^n = \operatorname{null}\, T^{n+1} = \operatorname{null}\, T^{n+2} = \dots$$

and similarly, by Proposition 8.9,

range
$$T^n = \text{range } T^{n+1} = \text{range } T^{n+2} = \dots$$

which implies that $T^{n+1}a = T^na = 0$ since $v \in \dim \text{null } T$. We know that $a \in \text{null } T^2$, and since $T^{n+1} = T^n$ by **8.6**, we deduce $T^na = v = 0$ from which we can conclude that null $T^n \cap \text{range } T^n = \{0\}$.

Find a 3×3 matrix whose minimal polynomial is z^2 .

Proof. Since $V \in \mathbb{C}$, we take $T \in \mathcal{L}(\mathbb{C}^3)$ such that $T(z_1, z_2, z_3) = (0, 0, z_2)$. We consider,

$$T^2(z_1, z_2, z_3) = T(0, 0, z_2)$$

which, in matrix form is:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

For brevity, we use the operator notation, and applying this to our matrix T to our minimal polynomial $p(z) = z^2$ yields:

$$p(T) = T^{2}(z_{1}, z_{2}, z_{3}, z_{4}) = T(0, 0, 0, z_{2}) = (0, 0, 0, 0)$$

Satisfying our condition of a matrix with minimal polynomial of z^2 . But by **Theorem 8.34** we must consider the monic polynomials $1, z, z^2$. And so applying our candidates to the matrix T shows us that:

$$p(1) = 1 \neq 0$$

$$p(z) = z \implies p(T) = T \neq 0$$

$$p(z) = z^2 \implies p(T) = T^2 = 0 \text{ (as above)}$$

Since z^2 is the least monic polynomial satisfying p(T)=0, it must be the case that z^2 is the minimal polynomial of our matrix.

Find a 4×4 matrix whose minimimal polynomial is $z(z-1)^2$. **Proof.** Similar to **Problem 7**, we want a matrix T such that $p(T) = T(T-1)^2 = 0$, where $p(z) = z(z-1)^2$. Therefore, we consider

$$T(z_1, z_2, z_3, z_4) = (z_1, z_1 + z_2, 0, z_4)$$

Which in matrix form is:

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Subtracting $I(z_1, z_2, z_3, z_4)$ to both sides yields:

$$T(z_1, z_2, z_3, z_4) - I(z_1, z_2, z_3, z_4) = (z_1, z_1 + z_2, 0, z_4) - (z_1, z_2, z_3, z_4)$$
$$(T - I)(z_1, z_2, z_3, z_4) = (0, z_1, -z_3, 0)$$

Applying this again we have that

$$(T-I)^2(z_1, z_2, z_3, z_4) = (T-I)(0, z_1, -z_3, 0) = (0, 0, z_3, 0)$$

And finally, applying T results in:

$$T(T-I)^2 = T(0,0,z_3,0) = (0,0,0,0)$$

This matrix implies that when the minimal polynomial $p(z) = z(z-1)^2$ is applied, we have p(T) = 0. Furthermore, the only other monic polynomial that have same roots as our minimal polynomial are z(z-1) and itself. Applying T to the former candidate, we have $T(T-1) = T(-z_1, z_4, 0, 0) = (0, z_4, 0, 0) \neq 0$, therefore it must be the case that $z(z-1)^2$ is the only minimal polynomial satisfying our matrix.

Suppose T is invertible. Prove that there is a polynomial p such that $T^{-1} = p(T)$.

Proof. Letting $a_0 + a_1 z + ... + a_{m-1} z^{z-1} + z^m$ be the minimal polynomial of T, then

$$a_0I + a_1T + \dots + a_{m-1}T^{m-1} + T^m = 0$$

We know that $a_0 \neq 0$ since if it is, we can multiply both sides by T^{-1} and get

$$a_1I + a_2T + \dots + a_{m-1}T^{m-2} + T^{m-1} = 0$$

which suggests that we have a monic polynomial that has a smaller degree contradicting the definition of minimal polynomial. This allows us to solve for the identity operator which is given by:

$$I = -\frac{a_1}{a_0}T - \dots - \frac{a_{m-1}}{a_0}T^{m-1} - \frac{1}{a_0}T^m$$

Multiplying both sides by T^{-1} yields

$$T^{-1} = -\frac{a_1}{a_0}I - \dots - \frac{a_{m-1}}{a_0}T^{m-2} - \frac{1}{a_0}T^{m-1}$$

So our polynomial is

$$p(z) = -\frac{a_1}{a_0} - \dots - \frac{a_{m-1}}{a_0} z^{m-2} - \frac{1}{a_0} z^{m-1}$$

From which we can conclude that $T^{-1} = P(T)$.

Prove that V has a basis consisting of eigenvectors of T if and only if the minimal polynomial of T has no repeated roots.

Proof. For one direction, we begin with that we have a basis $(v_1, ..., v_n)$ of V consisting of T, where $\lambda_1, ..., \lambda_k$ are distinct eigenvalues. Then by our assumptions, using **Theorem 8.36**, we can construct a minimal polynomial where $p(z) = (z - \lambda_1)...(z - \lambda_k)$. Since our $\lambda_1, ..., \lambda_k$ are distinct eigenvalues, p(z) must have distinct, i.e. non-repeating roots, thereby proving this direction.

On the other hand, we begin with the assumption that we have we minimal polynomial with distinct roots where our polynomial is defined as:

$$p(z) = (z - \lambda_1)...(z - \lambda_k)$$

Furthermore, we can let $\lambda_1...\lambda_k$ be the distinct eigenvalues of T. Then by definition of minimal polynomial, we have the following:

$$(T - \lambda_1 I)...(T - \lambda_k I)) = 0$$

Letting U_k be the corresponding subspaces of generalized eigenvectors for each λ_k , we can take a $v \in U_k$ where $u = (T - \lambda_k I)v \implies u \in U_k$. Furthermore, by definition, we know

$$(T \mid_{U_m} -\lambda_1 I)...(T \mid_{U_m} -\lambda_{m-1} I)u = (T - \lambda_1 I)...(T - \lambda_m I)v$$

$$= 0$$
(3)

By **Theorem 8.23(c)**, $(T - \lambda_m I)|_{U_m}$ is nilpotent, and it's eigenvalue is only 0. Therefore, $T|_{U_m} - \lambda_k I$ is invertible in U_m for k = 1, ..., m - 1, and (3) implies that u = 0. We can then conclude that v is an eigenvector T. Since v is some eigenvector of T with eigenvalue of λ_m is an eigenvector of T, we know that generalized v's of T is an eigenvector of T. Therefore, we have a basis of generalized eigenvectors of T which implies that there is a of V consisting of generalized eigenvectors of T by **Corollary 8.25**. This is the result proves the other direction of proof.

Suppose $x \neq 0$. Let p be the monic polynomial of the smallest degree such that p(T)x = 0. Prove that p divides the minimal polynomial of T.

Proof. Letting q be the minimal polynomial of T, then there exists $s, r \in \mathcal{P}(F)$, where q = sp + r and the degree of r is less than degree of p. Then we have that

$$q(T)x = s(T)p(T)v + r(T)x$$

By definition of minimal polynomial q(T) = 0 and p(T)x = 0 by our assumption. This results in $r(T)x = 0 \implies r = 0$, so the equation q = sp + r becomes

$$q = sp$$

Here it's clear that $p \mid q$, which is the minimal polynomial of T.