ANALYZING AND INTERPRETING COURSE GRADES AND ASSESSMENT DATA

Session 3: Using Data to Make Decisions

April 13, 2016

Aaron Baggett, Ph.D., and Trent Terrell, Ph.D.

University of Mary Hardin-Baylor **Department of Psychology**

OVERVIEW

OVERVIEW

Session 1: Preparing Data for Analyses

Session 2: Summarizing and Visualizing Data

Session 3: Using Data to Make Decisions

OBJECTIVES

- At the conclusion of this presentation, you should be able to:
 - 1. Identify which tests of inferential statistics are most appropriate given the question(s) and nature of the data.
 - 2. Implement tests of inferential statistics.
 - 3. Interpret inferential test results.
- Slides for today are available here: http://bit.ly/celt_3

DATA IMPORT

DATA IMPORT

- We've created a dummy data set for this session
- You can download it here: http://bit.ly/quiz_scores_3
- We'll import our quiz_scores.csv file into SPSS

DATA IMPORT

- Let's import our grades data into SPSS
 - 1. File >> Open >> Data
 - 2. Navigate to your grades data
 - 2.1 Be sure to select Text (*.txt, *.dat, *.csv, *.tab) under Files of type:
 - 3. Open
 - 4. Continue
 - 5. Select Yes under Are variable names included at the top of your file?
 - 6. Continue to Step 6 of 6 and select Done

- By now we have a clean data set ready for analysis
- We've calculated some descriptive statistics and created some figures
- We're ready to test some hypotheses

- What hypotheses should we test?
- Recall:
 - gender: Student's gender
 - quiz: Quiz number (i.e., 1-5)
 - o score: Score on each of 5 quizzes
 - o class: Student's classification

- What hypotheses should we test?
 - 1. Does gender affect quiz scores?
 - 2. Does classification affect quiz scores?
 - 3. Do gender and classification interact?

• These questions are all answerable simultaneously by running a 2×4 factorial ANOVA

	Freshman	Sophomore	Junior	Senior
Female	20	15	0	15
Male	15	5	20	10

- Factorial ANOVAs allow us to compare the variances between or within multiple groups
- We assume a single dependent variable and at least two independent variables with at least two levels
- Factorial ANOVAs also allow us to compare main and interaction effects between levels of the IVs

- We should first obtain some descriptive statistics since we've added a new variable, class
 - 1. Analyze >> Reports >> Case Summaries
 - 2. Move score into the Variables field
 - 3. Move gender and class into the Grouping Variable(s) field
 - 4. Deselect Display cases
 - 5. Select Statistics and add the following statistics to the list
 - 5.1 Number of cases
 - 5.2 Minimum
 - 5.3 Mean
 - 5.4 Maximum
 - 5.5 Standard deviation
 - 6. Select Continue then OK

- Now let's visualize these scores by both gender and class
 - 1. Graphs >> Legacy Dialogs >> Bar...
 - 2. Select Clustered then Define
 - 3. Under Bars Represent select Other Statistics (e.g., Mean)
 - 4. Move score to the Variable field
 - 5. Move class to the Category Axis field
 - 6. Move gender to the Define Clusters by field
 - 7. Select OK

- Now we're ready to run our factorial ANOVA
 - 1. Analyze >> General Linear Model >> Univariate
- Why should we select Univariate over Multivariate?

- Now we're ready to run our factorial ANOVA
 - 1. Analyze >> General Linear Model >> Univariate
- Why should we select Univariate over Multivariate?
 - Because we have a single dependent variable, or variate
 - Multivariate ANOVAs are used when we have multiple dependent variables

- Now we're ready to run our factorial ANOVA
 - 1. Analyze >> General Linear Model >> Univariate
 - 2. Move score to the Dependent Variable field
 - 3. Move gender and class to the Fixed Factor(s) field
 - 4. Select Plots and move gender to the Horizontal Axis field and move class to the Separate Lines field and select Add
 - 5. Click Continue
 - 6. Under Post Hoc move class to the Post Hoc Tests For field and select Tukey
 - 7. Click Continue
 - 8. Under Options, select Estimates of effect size
 - 9. Click Continue then OK

FACTORIAL ANOVA INTERPRETATION

• A 2 × 4 factorial ANOVA was implemented to test the hypothesis that gender and class affect quiz scores. No interaction effect between students' gender and class was observed, F(3, 93) = 0.391, p > .05. However, a main effect for gender was observed, F(1, 93) = 4.34, p < .05, $\omega^2 = .03$.

THANKS!

- Thank you all for attending
- Thank you to Dr. Eaton for scheduling this CELT series
- Feel free to contact either me or Trent if you have any questions

