Worked Trample 10 CPE38	of PA29 Instaults & Rahul Bhadani
1) what is the magnitude of the following signal	
ylt= 3+2sin(2	by +8 cos (30t)
at foquency 10 unit	. 2
y 49 = X 0 + 2 \(\in \cos \)	KS2+) + duSin (KS2+)
Fundamental time p	rowind of Sin (20t) 521 = 20
	$T_{(}=\frac{2\pi}{20}=\frac{11}{10}$
L.C.M. & (a, c)	0 cos (30 t) $T_2 = \frac{2\pi}{30} = \frac{17}{15}$ $2 = \frac{30}{15}$
$= \operatorname{Lcm}(a, c)$ $= \operatorname{Lcm}(a, c)$ $= \operatorname{Lcm}(a, c)$ $= \operatorname{Lcm}(a, c)$	
GCD = Greatest common din	If T_0 and T_0 is T_0 as $T_0 \times 2 = T_0$ is or
GCD 7 10, 15 is	II 7/3 = TT 15 7/3 = TT
Division of 15, = 1, 3, 5	D) 5 is is greatest in both taken tyches.
SO 1.C.M & IT	7 TT 1'S JT 5
So	D= 2T-27 x5=10
Now, looking a	t 1 = 3+251h (20+) + 8(cos 30+)
	ve see that none I the compinent
120010	has SZ=10 itude of the Fourier sonies at
mence, the magn	Those of the formal soules at

2=10 is 2000.

What is the magnitude of the Fourier Series at Geguency 30?

Composing 21th= 3+ 2sin(20t)+8cos(30t)

with 71th= Xo +2 25 Ch cos(K20t)

k=1 + dhe sin(k20t)

 $2d_k = 8$ when $k \Omega_0 = 30$

Hence dr = 4

thus for magnitude is 4.

 $\begin{array}{c|c}
\hline
3 \\
\hline
-2 \\
\hline
-2
\end{array}$ $\begin{array}{c}
\uparrow \\
\hline
-2
\end{array}$ Find $\int_{-20}^{0} [x \, lt]^{2} dt$

Using dynmetry:

According to parseval's theorem,

 $\int_{-\infty}^{+\infty} \frac{1}{2} |x|^2 dx = \frac{1}{2} \int_{-\infty}^{\infty} |x|(2)|^2 dx$

 $\frac{1}{2\pi} \int [X(Q)]^2 dQ$

 $\frac{1}{2\pi} \int_{0}^{\pi} (-\Omega + 2)^{2} d\Omega = \int_{0}^{\pi} \int_{0}^{2\pi} (4+\Omega^{2} - 4\pi) d\Omega$

 $=\frac{1}{11}452+52^3-452$

$$= \frac{1}{3}\left(\frac{1}{1}\left(\frac{2}{1}\right) - 0\right)$$

$$= \frac{1}{3}\left[\frac{3}{1}\left(\frac{2}{1}\right) - 0\right]$$

$$= \frac{3}{1}\left[\frac{3}{1}\left(\frac{2}{1}\right) - 0\right]$$