Pollack's Rule

Justification for Heterogeneous Computing

Pollack's rule

 The performance of a processing core is proportional to the square root of its area

Pollack's rule

 The performance of a processing core is proportional to the square root of its area

If a single core is replaced by 4 cores, each ¼ as large, what is the expected peak performance of the entire system? (i.e. the performance assuming all 4 could be kept perfectly busy)

- A. Half as much as before
- B. The same as before
- C. Twice as much as before
- D. Four times as much as before
- E. None of the above

Pollack's rule

 The performance of a processing core is proportional to the square root of its area

If a single core is replaced by 4 cores, each ¼ as large, what is the expected peak performance of the entire system? (i.e. the performance assuming all 4 could be kept perfectly busy)

- A. Half as much as before
- B. The same as before
- C. Twice as much as before
- D. Four times as much as before
- E. None of the above

How does the running time change when a single core is replaced with 4 cores if only half the program can be parallelized?

Parallel part:

½ the work / 2 the performance = ¼

How does the running time change when a single core is replaced with 4 cores if only half the program can be parallelized?

Parallel part:

½ the work / 2 the performance = ¼

Serial part:

½ the work / ½ the performance = 1

Total time: 1.25 times as long

Recall: Amdahl's Law

$$T_{p} = \frac{T_{1}(1-B)}{p} + T_{1}B$$
Time for Time for serial part

 T_p = processing time on p processors

 T_1 = processing time on 1 processor

B = fraction of program that can run in paralllel

By what factor does the running time of a program that can be 75% parallelized change on 4 equal-sized cores?

- A. 0.6
- B. 0.875
- C. 1
- D. 1.35
- E. None of the above

By what factor does the running time of a program that can be 75% parallelized change on 4 equal-sized cores?

- A. 0.6
- B. 0.875 (0.75/2 + 0.25/0.5)
- C. 1
- D. 1.35
- E. None of the above

By what factor does the running time of a program that can be 90% parallelized change on 4 equal-sized cores?

- A. 0.45
- B. 0.65
- C. 0.765
- D. 1
- E. None of the above

By what factor does the running time of a program that can be 90% parallelized change on 4 equal-sized cores?

- A. 0.45
- B. 0.65 (0.9/2 + 0.1/0.5)
- C. 0.765
- D. 1
- E. None of the above

Factor by which running time changes for different programs

% of program that is parallelizable	75%	90%	95%
1 core	1	1	1
4 cores	0.875	0.65	0.575
9 cores	1	0.6	0.467
16 cores	1.1875	0.625	0.438
25 cores	1.4	0.68	0.44
36 cores	1.625	0.75	0.458

As the number of cores increases, highly parallelizable programs have improved performance, but less parallelizable programs suffer

By what factor does the peak performance of this system differ from a single core?

- A. ≈0.707
- B. ≈1.207
- C. ≈1.707
- D. ≈2.121
- E. None of the above

By what factor does the peak performance of this system differ from a single core?

- A. ≈0.707
- B. ≈1.207
- C. <u>≈1.707</u>
- D. ≈2.121
- E. None of the above

By what factor does the running time of a program that can be 75% parallelized change?

- A. ≈0.793
- B. ≈0.854
- C. ≈0.939
- D. ≈1
- E. None of the above

By what factor does the running time of a program that can be 75% parallelized change?

- A. ≈ 0.793 (0.75/1.707 + 0.25/0.707)
- B. ≈0.854
- C. ≈0.939
- D. ≈1
- E. None of the above

By what factor does the running time of a program that cannot be parallelized change?

A. ≈0.707

B. ≈1

C. ≈1.207

D. ≈1.414

E. None of the above

By what factor does the running time of a program that cannot be parallelized change?

- A. ≈0.707
- B. ≈1
- C. ≈1.207
- D. ≈ 1.414 (1/0.707)
- E. None of the above

Factor by which running time changes for different programs

% of program that is parallelizable	50%	75%	90%
4 equal cores	1.25	0.88	0.65
Half-sized + 2 quarter-sized cores	1.00	0.79	0.66

Having different sized cores improves performance on less parallelizable programs at small cost on more highly parallelizable ones

Heterogeneity on a cell phone

8 cores, 2 levels of performance

CPU Benchmark measures the performance of CPUs at performing everyday tasks using tests designed to simulate real-world applications. This benchmark takes from 2 to 20 minutes to complete.

RUN CPU BENCHMARK