High Level Idea

For an interval $P=(a_i,b_i)$, we denote access to the element of a_i as $P[\emptyset]$, and b_i as P[1]. Also, if we have a, b. and we want to construct P=(a,b), we denote that as P=(a,b)

We define for every two intervals $P=(a_i,b_i)$ and $Q=(a_j,b_j)$. If we have $a_i \leq a_j$ and $b_j \leq b_i$ we say that Q is **contained** in P.

This definition will be useful for the explanation. We define a utility function called IsContained(ai, bi, aj, bj) to check if $Q=(a_i,b_i)$ is **contained** in $P=(a_i,b_i)$:

```
IsContained(P, Q): \\ return \ (P[0] \leqslant Q[0]) \ and \ (Q[1] \leqslant P[1])
```

We also have the auxiliary function OverlapLength(P, Q) that calculate the overlap length of interval P and Q:

```
OverlapLength(P, Q):
return max(0, min(P[1], Q[1]) - max(P[0], Q[0]))
```

Before we begin, first check if the condition $n \ge 2$ is true, if we are given 0 or 1 interval, it doesn't make any sense to find the maximum overlap length. In this case, we could just end our program, and possibly give / throw a exception.

We begin by sorting the array A[1..n] and permuting the array B[1..n] to maintain correspondence between endpoints, in $O(n \log n)$ time (MergeSort).

We iterate through these sorted A[1..n] (with associated B[1..n]). We keep a global variable maximumLength to track the maximum overlap length between intervals we have seen so far. This sub-process is:

Time Complexity Analysis

We see that the the initial sorting of ${\Bbb A}$ takes $O(n\log n)$ times, and then the ${\tt IterateThroughIntervals} \ {\tt takes} \ O(n) \ ({\tt since} \ {\tt it} \ {\tt has} \ {\tt one} \ {\tt for} \ {\tt loop} \ {\tt that} \ {\tt loop} \ {\tt through} \ {\tt all} \ {\tt intervals} \ {\tt of} \ {\tt size} \ n).$ So, the total time complexity is dominated by the initial sorting, which is $O(n\log n)$