Python 数据结构与算法分析(第五章 搜索和排序)

1. 搜索

1.1 顺序搜索

存储于列表等集合中的数据项彼此存在线性或顺序的关系,每个数据项的位置与其他数据项相关。在 Python 列表中,数据项的位置就是它的下标。因为下标是有序的,所以能够顺序访问,由此可以进行顺序搜索。对于顺序搜索,算法时间复杂度为O(n)。

1.2 二分搜索

对于有序列表,对列表进行二分搜索时,先查看中间的元素。如果目标元素小于中间的元素,就只需要对列表的左半部分进行二分搜索。同理,如果目标元素更大,则只需对右半部分进行二分搜索。

二分搜索是分治策略的经典案例,即将问题分解成小问题,以某种方式解决小问题,然后整合结果,以解决最初的问题。二分法的时间复杂度为O(logn)。

尽管二分搜索通常优于顺序搜索,但当n较小时,排序引起的额外开销可能并不划算。实际上应该始终考虑,为了提高搜索效率,额外排序是否值得。如果排序一次后能够搜索多次,那么排序的开销不值一提。然而,对于大型列表而言,只排序一次也会有昂贵的计算成本,因此从头进行顺序搜索可能是更好的选择。

1.3 散列

- 散列表: 元素集合, 其中的元素以一种便于查找的方式存储。散列表中的每个位置通常被称为槽, 其中可以存储一个元素。
- 散列函数:将散列表中的元素与其所属位置对应起来。对散列表中的任一元素,散列函数返回一个介于 0 和 m 1 之间的整数。
- 完美散列函数: 给定一个元素集合,能将每个元素映射到不同的槽,这种散列函数称作完美散列函数。
- 冲突: 散列函数会将两个元素都放入同一个槽,这种情况被称作冲突,也叫"碰撞"。
- **处理冲突**: 当两个元素被分到同一个槽中时,必须通过一种系统化方法在散列表中安置第二个元素。这个过程被称为处理冲突。
- 聚集: 如果一个槽发生太多冲突,线性探测会填满其附近的槽,而这会影响到后续插入的元素。
- 再散列: 再散列泛指在发生冲突后寻找另一个槽的过程。
- 载荷因子 λ : $\lambda = \frac{\overline{\Lambda}}{\overline{\Lambda}} \frac{\overline{\Lambda}}{\overline{\Lambda}} \frac{\overline{\Lambda}}{\overline{\Lambda}}$.

基于取余函数将数元素 54、26、93、17、77和31构成的集合,存储至大小为11的散列表(散列表大小一般建议为素数,以保证散列均匀)中,如下:

图 5-5 有 6 个元素的散列表

搜索目标元素时,仅需使用散列函数计算出该元素的槽编号,并查看对应的槽中是否有值。因为计算散列值并找到相应位置 所需的时间是固定的,所以搜索操作的时间复杂度是 O(1)。

构建完美散列函数的一个方法是增大散列表,使之能容纳每一个元素,这样就能保证每个元素都有属于自己的槽。当元素个数较少时,该方法可行。然而,如果元素是 9 位的社会保障号,这个方法需要大约10亿个槽,这将造成极大的内存空间浪费。

(1) 折叠法

折叠法先将元素切成等长的部分(最后一部分的长度可能不同),然后将这些部分相加,得到散列值。假设元素是电话号码 436-555-4601,以 2 位为一组进行切分,得到43、65、55、46和01。将这些数字相加得210。假设散列表有11个槽,则210除以11,并保留余数1。所以,电话号码436-555-4601被映射到散列表中的1号槽。有些折叠法更进一步,在加总前每隔一个数反转一次。就本例而言,反转后的结果是: 43+56+55+64+01=219, 219%11=10。

(2) 平方取中法

平方取中法先将元素取平方,然后提取中间几位数。如元素是44,则先计算44*44=1936,然后提取中间两位93,取余得5(93%11)。

对于字符串,可以首先将各个字符映射为数值,将字符串转化为数值串。然后使用加权折叠法获取其散列值,其中权值为字符的位置。

(3) 开放定址法

从冲突的散列值开始,顺序遍历散列表,直到找到一个空槽。由于是逐个访问槽,因此该方法又被称作线性探测。

考虑将整数集合(54, 26, 93, 17, 77, 31, 44, 55, 20)放入槽中,则44与77冲突,采用线性探测,依次检查每个槽,直到找到一个空槽,即1号槽。同理,55应该被放入0号槽,但是为了避免冲突,其被放入2号槽。20的散列值对应9号槽,冲突,开始线性探测,依次访问10号槽、0号槽、1号槽和2号槽,最后至3号空槽。如下:

图 5-8 采用线性探测处理冲突

利用开放定址法和线性探测构建出散列表,即可使用同样的方法来搜索元素。假设要查找元素93,它的散列值是5。查看5号槽,发现槽中的元素为93,因此返回True。查找20,20的散列值是9,而9号槽中的元素是31。考虑有冲突的可能,所以从10号槽开始进行顺序搜索,直到找到元素20或者遇到空槽。

(4) 再散列

线性探测法处理冲突问题将出现聚集现象,为避免元素聚集,考虑使用扩展线性探测,即不再依次顺序查找空槽,而是跳过一些槽,以使引起冲突的元素分布得更均匀。故

(5) 平方探测

平方探测是线性探测的一个变体,它不采用固定的跨步大小,而是通过再散列函数递增散列值。如果第一个散列值是h,后续的散列值就是h+1、h+4、h+9、h+16,等。

(6) 链接法

链接法允许散列表中的同一个位置上存在多个元素。发生冲突时,元素仍然被插入其散列值对应的槽中。

图 5-12 采用链接法处理冲突

2. 排序

排序是指将集合中的元素按某种顺序排列的过程。在衡量排序过程时,最常用的指标就是总的比较次数。其次,总的交换次数对于衡量排序算法的总体效率来说也很重要。

2.1 冒泡排序

冒泡排序多次遍历列表。它比较相邻的元素,将不合顺序的交换。每一轮遍历都将下一个最大值放到正确的位置上。

54	26	93	17	77	31	44	55	20	交换位置
26	54	93	17	77	31	44	55	20	无须交换位置
26	54	93	17	77	31	44	55	20	交换位置
26	54	17	93	77	31	44	55	20	交换位置
26	54	17	77	93	31	44	55	20	交换位置
26	54	17	77	31	93	44	55	20	交换位置
26	54	17	77	31	44	93	55	20	交换位置
26	54	17	77	31	44	55	93	20	交换位置
26	54	17	77	31	44	55	20	93	第一轮遍历结束后, 93位于正确的位置

图 5-13 冒泡排序的第一轮遍历过程

冒泡排序的时间复杂度为 $O(n^2)$ 。冒泡排序通常被认为是效率最低的排序算法,因为在确定最终的位置前必须交换元素。 "多余"的交换操作代价很大。不过,由于冒泡排序要遍历列表中未排序的部分,因此,如果在一轮遍历中没有发生元素交换,就可以确定列表已经有序。对于只需要遍历几次的列表,冒泡排序可能有优势,因为它能判断出有序列表并终止排序过程。

2.2 选择排序

选择排序每次遍历列表时只做一次交换,即在每次遍历时寻找最大值,并在遍历完之后将它放到正确位置上。若对n个元素排序,需要遍历n-1轮。

图 5-15 选择排序

选择排序算法和冒泡排序算法的比较次数相同,所以时间复杂度也是 $O(n^2)$ 。但是,由于减少了交换次数,因此选择排序算法通常更快。

2.3 插入排序

插入排序在列表较低的一端维护一个有序的子列表,并逐个将每个新元素"插入"这个子列表。

54	26	93	17	77	31	44	55	20	将54视作只含单个元 素的有序子列表
26	54	93	17	77	31	44	55	20	插入26
26	54	93	17	77	31	44	55	20	插入93
17	26	54	93	77	31	44	55	20	插入17
17	26	54	77	93	31	44	55	20	插入77
17	26	31	54	77	93	44	55	20	插入31
17	26	31	44	54	77	93	55	20	插入44
17	26	31	44	54	55	77	93	20	插入55
17	20	26	31	44	54	55	77	93	插入20

图 5-16 插入排序

在给n个元素排序时,插入排序算法需要遍历n—1轮,即算法的时间复杂度为 $O(n^2)$ 。循环从位置1开始,直到位置n—1结束,这些元素都需要被插入到有序子列表中。但移动操作和交换操作有一个重要的不同点。总体来说,交换操作的处理时间大约是移动操作的3倍,因为后者只需进行一次赋值。

2.4 希尔排序

希尔排序也称"递减增量排序",其将列表分成数个子列表,并对每一个子列表应用插入排序。希尔排序使用增量*i* (有时称作步长)切分列表,即选取所有间隔为*i*的元素组成子列表。

• **Step 1.**希尔排序

54	26	93	17	77	31	44	55	20	子列表1
54	26	93	17	77	31	44	55	20	子列表2
54	26	93	17	77	31	44	55	20	子列表3

图 5-18 增量为 3 的希尔排序

图 5-19 为每个子列表排序后的结果

如图5-18所示,该列表有9个元素。设增量为3,即有3个子列表,对每个子列表应用插入排序,结果如图5-19所示。对图5-19进行插入排序,获得最后结果。

• **Step 2.**插入排序

图 5-20 最终进行插入排序

希尔排序的时间复杂度大概介于O(n)和 $O(n^2)$ 之间,通过改变增量(切分方式),如采用 2^k-1 ,希尔排序的时间复杂度可达到 $O(n^{\frac{3}{2}})$ 。

2.5 归并排序

归并排序为分治策略改进排序算法,其主要包括拆分和归并两个步骤,

归并排序

首先,列表被一分为二,当列表的长度为n时,能切分logn次。第二个处理过程是归并。列表中的每个元素最终都得到处理,并被放到有序列表中。所以,得到长度为n的列表需要进行n次操作。由此可知,需要进行logn次拆分,每一次需要进行n次操作,所以一共是nlogn次操作,即归并排序算法的时间复杂度是O(nlogn)。

```
def merge(lefthalf, righthalf, alist):
    i = 0
    j = 0
   k = 0
    ## reorder alist via lefthalf and righthalf
   while i < len(lefthalf) and j < len(righthalf):</pre>
        if lefthalf[i] < righthalf[j]:</pre>
            alist[k] = lefthalf[i]
            i = i + 1
        else:
            alist[k] = righthalf[j]
        k = k + 1
    ## only one element for slice
   while i < len(lefthalf):</pre>
        alist[k] = lefthalf[i]
        i = i + 1
        k = k + 1
   while j < len(righthalf):</pre>
        alist[k] = righthalf[j]
        j = j + 1
        k = k + 1
    return lefthalf, righthalf, alist
def mergeSort(alist):
    print("Splitting ", alist)
    if len(alist) > 1:
        mid = len(alist) // 2
        lefthalf = alist[:mid]
        righthalf = alist[mid:]
        ## split
        mergeSort(lefthalf)
        mergeSort(righthalf)
        ## sort and merge
        lefthalf, righthalf, alist = merge(lefthalf, righthalf, alist)
    print("Merging ", alist)
 Splitting [54, 26, 93, 17, 77, 31, 44, 55, 20]
 Splitting [54, 26, 93, 17]
Splitting [54, 26]
 Splitting [54]
Merging [54]
Splitting [26]
 Merging [26]
Merging [26, 54]
 Splitting [93, 17]
 Splitting [93]
Merging [93]
 Splitting [17]
Merging [17]
Merging [17, 93]
 Merging [17, 26, 54, 93]
 Splitting [77, 31, 44, 55, 20]
 Splitting [77, 31]
 Splitting [77]
Merging [77]
 Splitting [31]
 Merging [31]
```

Merging [31, 77]

Splitting [44, 55, 20]

Splitting [44]

Merging [44]

Splitting [55, 20]

Splitting [55]

Merging [55]

Splitting [20]

Merging [20]

Merging [20, 55]

Merging [20, 44, 55]

Merging [20, 31, 44, 55, 77]

Merging [17, 20, 26, 31, 44, 54, 55, 77, 93]

2.5 快速排序

和归并排序一样,快速排序也采用分治策略,但不使用额外的存储空间。不过,算法的效率会有所下降。

• **Step 1.**确定分割点

快速排序算法首先选出一个基准值。基准值的作用是帮助切分列表。在最终的有序列表中,基准值的位置通常被称作分割点,算法在分割点切分列表,以进行对快速排序的子调用。如图5-24,选择54作为分割点。

• **Step 2.**分区

分区操作将列表中的其它元素分别放入分割点的两边。

图 5-24 为 54 寻找正确位置

如图5-24,首先加大leftmark,直到遇到一个大于基准值(54)的元素。然后减小rightmark,直到遇到一个小于基准值的元 素。这样一来,就找到两个与最终的分割点错序的元素。如93和20。互换这两个元素的位置,然后重复上述过程。

• Step 3.递归快速排序

当rightmark小于leftmark时,过程终止。此时,rightmark的位置就是分割点。将基准值与当前位于分割点的元素互换,即可 使基准值位于正确位置,如图 5-25 所示。分割点左边的所有元素都小于基准值,右边的所有元素都大于基准值。因此,可以在 分割点处将列表一分为二,并针对左右两部分递归调用快速排序函数。

77 55 93

针对左边的部分进行快速排序

针对右边的部分进行快速排序

图 5-25 基准值 54 就位

对于长度为n的列表,如果分区操作总是发生在列表的中部,就会切分logn次。为了找到分割点,n个元素都要与基准值比较。所以,时间复杂度是O(nlogn)。最坏情况下,分割点不在列表的中部,而是偏向某一端,这会导致切分不均匀。在这种情况下,含有n个元素的列表可能被分成一个不含元素的列表与一个含有n—1个元素的列表。然后,含有n—1个元素的列表可能会被分成不含元素的列表与一个含有n—2个元素的列表,依此类推。这会导致时间复杂度变为 $O(n^2)$,因为还要加上递归的开销。

为避免切分不均匀选择三数取中法,即在选择基准值时考虑列表的头元素、中间元素与尾元素,然后取三数中间值作为基准值。

```
def quickSort(alist):
    alist = quickSortHelper(alist, 0, len(alist)-1)
    return alist
def quickSortHelper(alist, first, last):
    if first < last:</pre>
        splitpoint = partition(alist, first, last)
        quickSortHelper(alist, first, splitpoint-1)
        quickSortHelper(alist, splitpoint+1, last)
    return alist
def partition(alist, first, last):
    pivotvalue = alist[first]
    leftmark = first + 1
    rightmark = last
    done = False
    while not done:
        while leftmark <= rightmark and alist[leftmark] <= pivotvalue:</pre>
            leftmark = leftmark + 1
        while alist[rightmark] >= pivotvalue and rightmark >= leftmark:
            rightmark = rightmark - 1
        if rightmark < leftmark:</pre>
            done = True
        else:
            temp = alist[leftmark]
            alist[leftmark] = alist[rightmark]
            alist[rightmark] = temp
    temp = alist[first]
    alist[first] = alist[rightmark]
    alist[rightmark] = temp
    return rightmark
print(quickSort(b))
[17, 20, 26, 31, 44, 54, 55, 77, 93]
```

3. 参考文献

Python数据结构与算法分析 (第2版)