Mikro II - HO2

Jeppe Vanderhaegen

March 2, 2022

1 Take Home 1

Udbudsfunktionen er givet ved $S(p) = \bar{x} + (p - \bar{p})$, mens efterspørgselsfunktionen er givet ved $D(p) = \bar{x} - a(p - \bar{p})$

1.a

Først findes de inverse funktioner.

$$S(p) = \bar{x} + p - \bar{p} \Leftrightarrow P_s(x) = x - \bar{x} + \bar{p}$$

$$D(p) = \bar{x} - a(p - \bar{p}) \Leftrightarrow P_d(x) = (\bar{x} + a\bar{p} - x) * \frac{1}{a}$$

Her findes ligevægtsprisen ved at sætte udbud lig efterspørgsel og isolere for x.

$$P_d = P_s \Leftrightarrow$$

$$\frac{\bar{x} + a\bar{p} - x}{a} = x - \bar{x} + \bar{p} \Leftrightarrow$$

$$\bar{x} + a\bar{p} - x = ax - a\bar{x} + a\bar{p} \Leftrightarrow$$

$$(1+a)\bar{x} = (1+a)x \Leftrightarrow$$

$$\bar{x} = x$$

Dette indsættes i udbudsfunktionen, hvorved den optimale pris findes.

$$P_s(x^*) = \bar{x} - \bar{x} + \bar{p} \Leftrightarrow$$

 $P_s(x^*) = \bar{p}$

. Herved er den optimale pris og mængde uden en skat: $p=\bar{p}$ og $x=\bar{x}$ Nu indføres skatten. Herved opskrives ligningen: $P_d=P_s+t$ For at finde ligevægten sættes dette lig hinanden.

$$\frac{\bar{x} + a\bar{p} - x}{a} = x - \bar{x} + \bar{p} + t$$

For at finde den efficiente mængde med skatten isoleres der for x.

$$\frac{\bar{x} + a\bar{p} - x}{a} = x - \bar{x} + \bar{p} + t$$

$$\bar{x} + a\bar{p} - x = ax - a\bar{x} + a\bar{p} + at$$

$$\bar{x} + a\bar{x} - at = (1+a)x$$

$$(1+a)\bar{x} - at = (1+a)x$$

$$\bar{x} - \frac{at}{1+a} = x$$

Hermed er den optimale mængde ved indførelse af skatten fundet. Det vides, at t=1. Herved påvirkes mængden negativt med $\frac{a}{1+a}$ Dette kan indsættes i udbudsfunktionen for at finde optimal pris.

$$P_d(x^*) = \frac{\bar{x} + a\bar{p} - (\bar{x} - \frac{a}{1+a})}{a} \Leftrightarrow$$

$$P_d(x^*) = \frac{a\bar{p} + \frac{a}{1+a}}{a} \Leftrightarrow$$

$$P_d(x^*) = \bar{p} + \frac{\frac{a}{1+a}}{\frac{a}{1}} \Leftrightarrow$$

$$P_d(x^*) = \bar{p} + \frac{a}{(1+a)*a} \Leftrightarrow$$

$$P_d(x^*) = \bar{p} + \frac{1}{1+a}$$

Checker ved at sætte optimal x^* ind i P_s

$$P_s(x^*) = (\bar{x} - \frac{a}{1+a}) - \bar{x} + \bar{p} \Leftrightarrow$$

$$P_s(x^*) = \bar{x} - \frac{a}{1+a} - \bar{x} + \bar{p} \Leftrightarrow$$

$$P_s(x^*) = \bar{p} - \frac{a}{1+a}$$

Det kan fra ovenstående udledes, at størrelsen af a afgør, hvem der betaler den største del af skatten.

1.b

Som set i 1.a afgør faktoren a, hvem, der berøres mest af indførelsen af skatten. Jo højere a er, jo mindre betaler forbrugerne, og vice versa. Jo højere a er, jo mere betaler virksomhederne, og vice versa. Matematisk kan det opstilles.

- \bullet a > 1 Betaler producenterne størstedelen af skatten
- \bullet a < 1 Betaler forbrugerne størstedelen af skatten
- a = 1 Betales skatten ligeligt af begge sider.

1.c

Dødvægtstabet regnes ved $DWL = \frac{1}{2}*(x^{\star} - x_t)*t.$ Værdierne indsættes:

$$DWL = \frac{1}{2} * (\bar{x} - (\bar{x} - \frac{at}{1+a}) \Leftrightarrow$$

$$DWL = \frac{1}{2} * \frac{at}{1+a} * t \Leftrightarrow$$

$$DWL = \frac{1}{2} * \frac{at^2}{1+a} \Leftrightarrow$$

$$DWL = \frac{a}{2(1+a)}$$

Dette er givet, da vi ved t=1. Det kan udledes, at størrelsen a afgør størrelsen af dødvægtstabet.

Take Home 2

2.1

Det er givet, at:

Player
$$B$$

$$L \qquad R$$
Player $A \quad U \quad (1,-2) \quad (-4,2)$

$$D \quad (-1,3) \quad (3,-5)$$

Ud fra ovenstående, kan det udledes, der ikke er noget Nash-Equilerium, da der ingen udfald, hvor i begge spillere stilles bedre/tilfredstilles. For alle udfald for begge spillere, vil modspilleren kunne stilles bedre ved at foretage et andet valg.

2.2

Ved at tage de numeriske værdier fåes følgende:

	Player B		
		L	R
Player A	U	(<u>1</u> , <u>2</u>)	(<u>4</u> , <u>2</u>)
	D	(<u>1</u> ,3)	(3, <u>5</u>)

Vælger spiller B L, så er A indifferent mellem U og D. Samtidig er spiller B indifferent mellem L og R, når spiller A vælger U. Men vælger spiller A strategi D, så vil spiller B vælge strategi R. Herved kan Nash-Equilerium udledes til NE = [(U,L);(U,r)]