Definition

- State $s \in S$
- Action $a \in A$
- reward $r \in \mathbb{R}$
- Transition model $Pr(s_{t+1}|s_t, a_t)$
- Reward model $Pr(r|s_{t+1}, s_t, a_t)$
- Discount Factor $\gamma \in [0, 1]$
- \bullet Horizon T

Goal is to find a policy $\pi(a|s)$ that maximises the expectation of discounted return.

How RL differs from MDP solutions

- No Transition Model
- No Reward Model

$$J(\pi) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{T} \gamma^{t} r_{t} \right]$$

However, we still solve the MDP problem using RL by interacting with the environment by learning the transition and reward models or directly learning the policy.

Types of RL algorithms

- Model Based- if we try to learn the transition and reward models
- Model Free here, we don't learn any model dynamics. No transition and reward models. Below are the types of model free RL algorithms
- Value Based- if we try to learn the value function V(s) of the state or value function of state-action pair Q(s, a).
- Policy Based- if we try to learn the policy $\pi(a|s) \pi(s,a)$ directly.
- Policy Gradient- if we try to learn the policy $\pi(a|s) \pi(s,a)$ directly using gradient ascent.
- Actor Critic contains both policy $\pi(a|s) \pi(s,a)$ and value function V(s) Q(s,a).