<u>d</u> p	$v_{txn,p}$ $v_{deg,p}$ p	(1)
dt	$= \frac{v_{\text{txn,p}}}{k_{\text{txn,p}} + (\mathbf{C1N} + \mathbf{C2N})^3} - \frac{v_{\text{deg,p}} \ \mathbf{p}}{k_{\text{deg,p}} + \mathbf{p}}$	(1)
<u>dc1</u> _	$= \frac{v_{\text{txn,c1}}}{k_{\text{txn,c}} + (\mathbf{C1N} + \mathbf{C2N})^3} - \frac{v_{\text{deg,c1}} \mathbf{c1}}{k_{\text{deg,c}} + \mathbf{c1}}$	(2)
dt	$k_{txn,c} + (C1N + C2N)^3$ $k_{deg,c} + c1$	(2)
dc2 _	$v_{txn,c2}$ $v_{deg,c2}$ $c2$	(3)
dt –	$= \frac{v_{\text{txn,c2}}}{k_{\text{txn,c}} + (C1N + C2N)^3} - \frac{v_{\text{deg,c2}} c2}{k_{\text{deg,c}} + c2}$	(3)
$\frac{d\mathbf{P}}{dt} =$	$= k_{\text{tln,p}} p - \frac{v_{\text{deg,P}} P}{k_{\text{deg,P}} + P} - v_{\text{a,CP}} P C1 + v_{\text{d,CP}} C1N$	(4)
at		(4)
	$-\mathrm{v}_{\mathrm{a,CP}}$ P C2 $+\mathrm{v}_{\mathrm{d,CP}}$ C2N	
$\frac{dC1}{dt} =$	$= c1 - \frac{v_{\text{deg,C1}} C1}{k_{\text{deg,C}} + C1} - v_{\text{a,CP}} P C1 + v_{\text{d,CP}} C1N$	(5)
$\frac{d\mathbf{C2}}{dt} =$	$=$ c2 $-\frac{\mathrm{v_{deg,C2}~C2}}{\mathrm{k_{deg,C}+C2}}$ $-\mathrm{v_{a,CP}~P~C2}$ + $\mathrm{v_{d,CP}~C2N}$	(6)
$\frac{d\mathbf{C1N}}{dt} =$	$= v_{a,CP} P C1 - v_{d,CP} C1N - \frac{(vdCn - u(t)) C1N}{k_{deg,Cn} + C1N + C2N}$	(7)
$\frac{d\mathbf{C2N}}{dt} =$	$= v_{a,CP} P C2 - v_{d,CP} C2N - \frac{((vdCn - u(t)) m_{C2N}) C2N}{k_{deg,Cn} + C2N + C1N}$	(8)