## Kernel machines

#### Nathanaël Carraz Rakotonirina

Mathématiques Informatique et Statistique Appliquées (MISA) Université d'Antananarivo

## **Motivations**

- ▶ We want to use features that are more appropriate (instead of just the raw inputs) for a given problem.
- Instead of operating on the inputs x, we operate on features  $\phi(x)$  (using the feature mapping  $\phi$ ) which can result in non-linear models with more capacity.
- ▶ We want to use these features efficiently in our models.

## Kernel trick

Given a feature mapping  $\phi$ , we define the corresponding **kernel** to be

$$\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$$
$$(\mathbf{x}, \mathbf{x}') \mapsto \mathcal{K}(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^\top \phi(\mathbf{x}')$$

The **kernel trick** is about replacing the dot products  $\mathbf{x}^{\top}\mathbf{x}'$  in our model with the kernel function  $\mathcal{K}(\mathbf{x}, \mathbf{x}')$ . By doing so

- ightharpoonup The model would now be learning using the features  $\phi$ .
- There is a way to efficiently calculate  $\mathcal{K}(\mathbf{x}, \mathbf{x}')$  without having to explicitly find and compute the feature vectors  $\phi(\mathbf{x})$  (which can be very expensive).

How to find a kernel that is valid or corresponds to some feature mapping  $\phi$ ?



## Mercer kernel

A Mercer kernel or positive definite kernel is a function  $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$  such that:

- ▶ It is symmetric  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \mathcal{K}(\mathbf{x}', \mathbf{x})$
- For any set of (unique) points  $\{x_i\}_{i=1}^N$ , and any numbers  $c_i \in \mathbb{R}$

$$\sum_{i=1}^{N}\sum_{j=1}^{N}\mathcal{K}(\pmb{x}_i,\pmb{x}_j)c_ic_j\geq 0$$

There is another way to define it. Given a set of N points, the **Gram matrix** K is an  $N \times N$  symmetric matrix with entries  $K_{i,j} = \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j)$ .  $\mathcal{K}$  is a Mercer kernel iff the Gram matrix K is positive definite for any set of (distinct) points  $\{\mathbf{x}_i\}_{i=1}^N$ .

#### Mercer theorem

A kernel  $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$  can be computed by an inner product of some feature vectors iff for any set of poins  $\{x_i\}_{i=1}^N$ , it is postive definite.



# Example of Mercer kernels

- ightharpoonup Linear :  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} \mathbf{x}'$
- ightharpoonup Quadratic :  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\top} \mathbf{x}' + b)^2$
- Polynomial:  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\top} \mathbf{x}' + b)^p$
- ► Gaussian (RBF)  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{||\mathbf{x} \mathbf{x}'||^2}{2\sigma^2}\right)$
- ▶ Laplacian :  $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{|\mathbf{x} \mathbf{x}'|}{\sigma}\right)$

Some kernels may contain hyperparameters that needs to be tuned using cross-validation.

# Making new kernels

Given valid kernels  $\mathcal{K}_1(\mathbf{x}, \mathbf{x}')$  and  $\mathcal{K}_2(\mathbf{x}, \mathbf{x}')$ , we can create a new kernel using:

- $\mathcal{K}(\mathbf{x},\mathbf{x}') = \mathcal{K}_1(\mathbf{x},\mathbf{x}') + \mathcal{K}_2(\mathbf{x},\mathbf{x}')$
- $ightharpoonup \mathcal{K}(\pmb{x},\pmb{x}') = c\mathcal{K}_1(\pmb{x},\pmb{x}')$  for any constant c>0
- $ightharpoonup \mathcal{K}(\mathbf{x},\mathbf{x}') = f(\mathbf{x})\mathcal{K}_1(\mathbf{x},\mathbf{x}')f(\mathbf{x}')$  for any function f
- $\mathcal{K}(\mathbf{x}, \mathbf{x}') = q(\mathcal{K}_1(\mathbf{x}, \mathbf{x}'))$  for any function polynomial q with non-negative coefficients
- $\qquad \qquad \mathcal{K}(\boldsymbol{x},\boldsymbol{x}') = \exp(\mathcal{K}_1(\boldsymbol{x},\boldsymbol{x}'))$
- $ightharpoonup \mathcal{K}(\pmb{x},\pmb{x}') = \pmb{x}^{ op} \pmb{A} \pmb{x}'$  for any positive semi-definite matrix  $\pmb{A}$



## More

## Explore further

- Other examples of kernels
- ► Kernels for structured inputs (strings, time series, graphs, images)
- Kernel PCA
- Kernel ridge regression
- Automatically Choosing a Kernel