Модульная арифметика

Определение.

 $\mathbf{X} \stackrel{\equiv}{\mathbf{m}} \mathbf{Y}$ или « \mathbf{X} сравнимо с \mathbf{Y} по модулю \mathbf{m} », если ($\mathbf{X} - \mathbf{Y}$) \vdots \mathbf{m} .

Утверждение.

Если $\mathbf{X} \stackrel{\equiv}{\mathbf{m}} \mathbf{Y}$, то тогда $\mathbf{X} \bmod \mathbf{m} = \mathbf{Y} \bmod \mathbf{m}$

Доказательство:

(X - Y): m, следовательно X - Y = km, следовательно X = Y + km.

Делим \mathbf{Y} с остатком на \mathbf{m} : $\mathbf{Y} = \mathbf{q}\mathbf{m} + \mathbf{r}$

Тогда $\mathbf{X} = \mathbf{qm} + \mathbf{r} + \mathbf{km} = (\mathbf{q} + \mathbf{k})\mathbf{m} + \mathbf{r}$, и, так как $0 \le \mathbf{r} < \mathbf{m}$, то $\mathbf{r} = \mathbf{X} \mod \mathbf{m}$, а это значит, что $\mathbf{X} \mod \mathbf{m} = \mathbf{Y} \mod \mathbf{m}$, что и требовалось доказать.

Свойства:

- 1) $Peфлективность. \mathbf{X} \stackrel{\equiv}{\mathbf{m}} \mathbf{X}$ Доказательство: $\mathbf{X} \mathbf{X} = \mathbf{0}$: \mathbf{m} .
- 2) Симметричность. Если $X \ \overline{\overline{m}} \ Y$, то и $Y \ \overline{\overline{m}} \ X$. Доказательство: X Y : m, X Y = -(Y X), тогда -(Y X) : m, а это означает, что Y X : m, т.е. $Y \ \overline{\overline{m}} \ X$.
- 3) *Транзитивность*. Если **X** $\overline{\overline{\overline{m}}}$ **Y** и **Y** $\overline{\overline{\overline{m}}}$ **Z**, то тогда **X** $\overline{\overline{\overline{m}}}$ **Z**. Доказательство:

$$\left\{ egin{aligned} \mathbf{X}-\mathbf{Y}& \vdots & \mathbf{m} \\ \mathbf{Y}-\mathbf{Z}& \vdots & \mathbf{m} \end{aligned}
ight.$$
 тогда $\mathbf{X}-\mathbf{Z}=(\mathbf{X}-\mathbf{Y})+(\mathbf{Y}-\mathbf{Z})$, следовательно, $\mathbf{X}-\mathbf{Z} \vdots \mathbf{m}$

4) *Сравнимость с нулём.* Если $\mathbf{X} \stackrel{\overline{\overline{\mathbf{m}}}}{\mathbf{m}} \mathbf{0}$, то $\mathbf{X} : \mathbf{m}$. Доказательство: $\mathbf{X} - \mathbf{0} : \mathbf{m}$, следовательно $\mathbf{X} : \mathbf{m}$.

Пример:

 $3\overline{\overline{4}}$ 15

 $3 \, \overline{\overline{4}} \, 3, 7, 11, 15, 19 \dots$

<u>Утверждение</u>. Всё множество \mathbb{Z} разбивается на \mathbf{m} «классов эквивалентности». «Класс эквивалентности» - множество $\mathbf{A}: \forall \ \mathbf{X}, \ \mathbf{Y} \in \mathbf{A} \ \mathbf{X} \ \overline{\mathbf{m}} \ \mathbf{Y}$

При этом, если A и B – два разных класса эквивалентности, то \forall $X \in A$, \forall $Y \in B$ $X \stackrel{\not\equiv}{m} Y$.

Доказательство:

Рассмотрим остатки по модулю т:

$$X \mod m = 0, 1, ..., m-1$$

$$\mathbf{A_0} = \{ \mathbf{X} \stackrel{\equiv}{\mathbf{m}} 0 \mid \mathbf{X} \in \mathbb{Z} \}$$

$$\mathbf{A_1} = \{ \mathbf{X} \stackrel{\equiv}{\mathbf{m}} 1 \mid \mathbf{X} \in \mathbb{Z} \}$$

•••

$$A_{m-1} = \{ \ X \ \overline{\overline{m}} \ m - 1 \mid X \in \mathbb{Z} \ \}$$

Пример mod 4:

$$\mathbf{A_0} = \{0, 4, 8, 12 \dots\}$$

$$A_1 = \{1, 5, 9, 13 \dots\}$$

$$A_2 = \{ 2, 6, 10, 14 \dots \}$$

$$A_3 = \{3, 7, 11, 15 \dots\}$$

Проверка:

1) $\forall X \in \mathbb{Z} \quad X \in A_0$ или A_1 $X \in A_{x \bmod 4}$

2) Если $\mathbf{A}_i \cap \mathbf{A}_j$, то $\exists \ \mathbf{X}: \mathbf{X} \in \mathbf{A}_i \Rightarrow \mathbf{X} \bmod \mathbf{m} = \mathbf{i}$, что является противоречием. $\mathbf{X} \in \mathbf{A}_i \Rightarrow \mathbf{X} \bmod \mathbf{m} = \mathbf{j}$

 ${f 1}\,$ и ${f 2}$ пункты вместе демонстрируют, что множество ${f A}_i$ – разложение ${f Z}$

3) \forall **X**, **Y** \in **A**_{*i*} надо проверить, что **X** $\overline{\overline{\overline{\overline{m}}}}$ **Y**

 $\mathbf{X} \mod \mathbf{m} = \mathbf{i}$

 $\mathbf{Y} \mod \mathbf{m} = \mathbf{i}$

Следовательно, $\mathbf{X} \stackrel{\equiv}{\mathbf{m}} \mathbf{Y}$

Арифметические свойства сравнимости:

Пусть $\mathbf{a} \ \overline{\overline{\mathbf{m}}} \ \mathbf{b}$ и $\mathbf{c} \ \overline{\overline{\mathbf{m}}} \ \mathbf{d}$. Тогда:

- 1) $\mathbf{a} + \mathbf{c} \stackrel{\equiv}{\mathbf{m}} \mathbf{b} + \mathbf{d}$ Доказательство: т.к. $\mathbf{a} \mathbf{b} : \mathbf{m}$ и $\mathbf{c} \mathbf{d} : \mathbf{m}$, то тогда $\mathbf{a} \mathbf{b} + \mathbf{c} \mathbf{d} = \left((\mathbf{a} + \mathbf{c}) (\mathbf{b} + \mathbf{d}) \right) : \mathbf{m}$
- 2) $\mathbf{a} \mathbf{c} \stackrel{\equiv}{\mathbf{m}} \mathbf{b} \mathbf{d}$ Доказательство аналогично п.1.
- 3) $\mathbf{a} * \mathbf{c} \stackrel{\equiv}{\mathbf{m}} \mathbf{b} * \mathbf{d}$

Доказательство:

$$\mathbf{a} * \mathbf{c} \stackrel{\equiv}{\mathbf{m}} \mathbf{b} * \mathbf{c}$$
 (т.к. $(\mathbf{a} - \mathbf{b}) * \mathbf{c} : \mathbf{m}$) и

 $\mathbf{b} * \mathbf{c} \stackrel{\equiv}{\mathbf{m}} \mathbf{b} * \mathbf{d}$ (т.к. $(\mathbf{c} - \mathbf{d}) * \mathbf{b} \vdots \mathbf{m}$), следовательно $\mathbf{a} * \mathbf{c} \stackrel{\equiv}{\mathbf{m}} \mathbf{b} * \mathbf{d}$

4) Если $\mathbf{a} * \mathbf{c} \stackrel{\overline{\overline{\mathbf{m}}}}{\overline{\mathbf{m}}} \mathbf{b} * \mathbf{d}$, то $\mathbf{a} \frac{\overline{\overline{\mathbf{m}}}}{(\mathbf{m}, \mathbf{c})} \mathbf{b}$

Доказательство:

$$\begin{aligned} a*c-b*c &: m \Rightarrow (a-b)*c &: m \Rightarrow (a-b)*c = k*m \Rightarrow \\ \Rightarrow (a-b)*\frac{c}{(m,c)} &= k*\frac{m}{(m,c)} \end{aligned}$$

Так как $\frac{c}{(m,c)}$ и $\frac{m}{(m,c)}$ взаимопросты, то a-b : $\frac{m}{(m,c)} \Rightarrow a \frac{\overline{\overline{m}}}{(m,c)}$ b

- 4') Если $\mathbf{a} * \mathbf{c} \ \overline{\overline{\mathbf{m}}} \ \mathbf{b} * \mathbf{c}$ и НОД(\mathbf{m}, \mathbf{c}) = 1 (т.е. если \mathbf{m} и \mathbf{c} взаимопросты), то $\mathbf{a} \ \overline{\overline{\mathbf{m}}} \ \mathbf{b}$
 - 4'') Если $\mathbf{a} * \mathbf{c} \stackrel{\overline{\overline{\mathbf{m}}}}{\mathbf{m}} \mathbf{b} * \mathbf{d}$ и $\mathbf{c} \stackrel{\overline{\overline{\mathbf{m}}}}{\mathbf{m}} \mathbf{d}$, то $\mathbf{a} \stackrel{\overline{\overline{\mathbf{m}}}}{\overline{\mathbf{m}}} \mathbf{b}$

Арифметические действия с классами эквивалентности

<u>Определение.</u> $A_i \pm A_j$, $A_i * A_j$ — класс, содержащий $\mathbf{x} \pm \mathbf{y}$, $\mathbf{x} * \mathbf{y}$, где $\mathbf{x} \in A_i$, $\mathbf{y} \in A_j$ <u>Корректность определения.</u>

Независимо от выбора \mathbf{x}, \mathbf{y} получается один класс $\mathbf{x_1} \pm \mathbf{y_1} \stackrel{\equiv}{\mathbf{m}} \mathbf{x_2} \pm \mathbf{y_2},$

$$\mathbf{x_1} * \mathbf{y_1} \stackrel{\equiv}{\mathbf{m}} \mathbf{x_2} * \mathbf{y_2}$$
 – т.е. $\mathbf{x_1} \pm \mathbf{y_1}$, $\mathbf{x_1} * \mathbf{y_1}$ и $\mathbf{x_2} \, \pm \, \mathbf{y_2}$, $\mathbf{x_2} * \, \mathbf{y_2}$ – один класс.

3

0

2

Переобозначим классы более красиво:

$\mathbf{A}_0 = 0 \qquad \qquad 0$	1	2
$\mathbf{A}_1 = 1$ $\mathbf{A}_2 = 2$	2	3
$\mathbf{A}_2 = 2$ $\mathbf{A}_3 = 3$	3	0
(для mod 4) 3 3	0	1

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1