Connecting reflection and β -models in second-order arithmetic

Leonardo Pacheco TU Wien (jww Keita Yokoyama)

December 7, 2023

Available at: leonardopacheco.xyz/slides/ctlm2023.pdf

REFLECTION PRINCIPLES

Let

- ightharpoonup Pr_T be a standard provability predicate for a theory T;
- ► Tr be a truth predicate for Π_n^1 -sentences.

 Π_n^1 -Ref(T) is the sentence

$$\forall \varphi \in \Pi_n^1.\Pr(\varphi) \to \Pr(\varphi).$$

STRONG DEPENDENT CHOICES

Definition

Strong Σ_i^1 -DC₀ is the schema containing

$$\forall Z \forall n \forall Y (\varphi(n,(Z)_{< n},Y) \rightarrow \varphi(n,(Z)_{< n},(Z)_n))$$

for all Σ_i^1 formula φ .

β -MODELS

▶ Any set $\mathcal{M} \subseteq \mathbb{N}$ can be seen as a model whose sets are

$$(\mathcal{M})_n = \{i \in \mathbb{N} \mid \langle n, i \rangle \in \mathcal{M}\}.$$

▶ $\mathcal{M} \subseteq \mathbb{N}$ is a coded β -model iff, for all Π_1^1 -sentence φ with parameters in \mathcal{M} ,

$$\varphi \iff \mathcal{M} \models \varphi.$$

Theorem (ACA₀)

Strong Σ_1^1 -DC₀ is equivalent to

for all $X \subseteq \mathbb{N}$ there is a coded β -model \mathcal{M} containing X.

β_k -MODELS

▶ $\mathcal{M} \subseteq \mathbb{N}$ is a coded β_k -model iff, for all Π_k^1 -sentence φ with parameters in \mathcal{M} ,

$$\varphi \iff \mathcal{M} \models \varphi.$$

Theorem (ACA₀)

Strong Σ_k^1 -DC₀ is equivalent to

for all $X \subseteq \mathbb{N}$ *there is a coded* β_k *-model* \mathcal{M} *containing* X.

SEQUENCES OF β_k -MODELS

 $\psi_{i,e}(n)$ states that, for all $X \subseteq \mathbb{N}$, there are Y_0, \dots, Y_n such that:

$$Y_0 \subseteq_{\beta_i} Y_1 \subseteq_{\beta_i} \cdots \subseteq_{\beta_i} Y_n \subseteq_{\beta_e} \mathcal{N}$$

$$X \in Y_0 \in Y_1 \in \cdots \in Y_n$$

Note that $\psi_{i,e}(n)$ is a Π^1_{e+2} -formula.

Theorem (ACA₀)

If $e \leq i$, then $\forall n. \psi_{i,e}(n)$ is equivalent to Π^1_{e+2} -Ref(Strong Σ^1_i -DC₀).

SOME DETERMINACY RESULTS

For all standard $n \ge 2$,

- ► ACA₀ is equivalent to $(\Sigma_1^0)_n$ -Det*;
- ▶ Π_1^1 -CA₀ is equivalent to $(\Sigma_1^0)_n$ -Det;
- ▶ Π_2^1 -CA₀ proves $(\Sigma_2^0)_n$ -Det; and
- ightharpoonup Z₂ proves $(\Sigma_3^0)_n$ -Det.

Consequences

Theorem

Over ACA_0 ,

- $\blacksquare \Pi_2^1\operatorname{\mathsf{-Ref}}(\mathsf{ACA}_0) \leftrightarrow \forall n. (\Sigma_1^0)_n\operatorname{\mathsf{-Det}}^*;$
- $ightharpoonup \Pi_3^1\operatorname{-Ref}(\Pi_1^1\operatorname{-CA}_0) \leftrightarrow \forall n.(\Sigma_1^0)_n\operatorname{-Det};$
- ▶ Π_3^1 -Ref $(\Pi_2^1$ -CA $_0) \leftrightarrow \forall n.(\Sigma_2^0)_n$ -Det; and
- ▶ Π_3^1 -Ref(\mathbb{Z}_2) $\leftrightarrow \forall n.(\Sigma_3^0)_n$ -Det.

OPEN PROBLEMS

Problem

Characterize Π_n^1 -Ref(T) for other theories T.¹

Problem

Study axioms stating the existence of transfinite sequences of models.

¹See also P., "Recent Results on Reflection Principles in Second-Order Arithmetic".

THANK YOU!

For more details see

▶ P., Yokoyama, "Determinacy and reflection principles in second-order arithmetic", arXiv:2209.04082.