Package 'stlnpp'

August 6, 2019

Title Spatio-temporal analysis of point patterns on linear networks

Maintainer Mehdi Moradi <m2.moradi@yahoo.com>

Type Package

Description Statistical analysis of spatio-temporal point processes on linear networks. This packages provides tools to visualise and analyse spatio-temporal point patterns on linear networks using first- and second-order summary statistics.	s-
Depends spatstat, stats	
Suggests plot3D, lattice, graphics	
License GPL (>= 2)	
Encoding UTF-8	
LazyData true	
RoxygenNote 6.1.1	
Author Mehdi Moradi [aut, cre]	
R topics documented:	,
as.stlpp	2
as.stlpp.tpp	4
density.stlpp	4
density.tpp	5
Eastbourne	6
easynet	7
Medellin	7
methods.tpp	8
plot.stlpp	8
plot.stlppint	9
plot.sumstlpp	9 10
print.stlpp	
print.sumstlpp	
rpoistlpp	
rthin.stlpp	
STLg	

2 as.stlpp

STLk																					15
STLkinhom																					16
stlpp																					17
tpp																					17
unique.stlpp																					18
																					20

as.stlpp

Index

Convert data to a space-time point pattern on a linear network

Description

Convert data to a space-time point pattern on a linear network

Usage

```
as.stlpp(x,y,t,L)
```

Arguments

Vectors of cartesian coordinates and time occurance. Alternatively, x can be of classes data.frame, ppp and lpp.

L Linear network (object of class linnet) on which the points lie.

Details

This function converts data to an object of class stlpp.

Data can be of formats:

- x is of class class data. frame with three columns. Then columns are considered as cartesian coordinates (i.e. x,y,t) and they will be converted to a spatio-temporal point pattern on the linear network L.
- x is a planar point pattern (class ppp). Then x will be converted to a spatio-temporal point pattern on the linear network L and with coresponding time vector t.
- x is a linear point pattern (class 1pp). Then x will be converted to a spatio-temporal point pattern on the linear network L and with coresponding time vector t.
- x,y,t are vectors of same length where x,y are living on the corresponding network L.

Value

A spatio-temporal point pattern on a linear network. An object of class stlpp.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

See Also

```
as.stlpp.lpp, runifpointOnLines, as.lpp
```

as.stlpp.lpp 3

Examples

```
data(easynet)
x = runifpointOnLines(40, easynet)
t1 = sample(1:10,40,replace=TRUE)
Y = as.stlpp(x,t=t1,L=easynet)

Z = as.stlpp.lpp(Y)
t2 = sample(1:10,40,replace=TRUE)
W = as.stlpp(Z,t=t2)
```

as.stlpp.lpp

Methods for space-time point patterns on a linear network.

Description

This function projects an object of class stlpp to a linear network.

Usage

```
as.stlpp.lpp(x)
```

Arguments

х

an object of class stlpp

Details

This function projects the space-time point pattern x into the linear network L.

Value

```
an object of class 1pp.
```

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

See Also

```
as.stlpp, lpp, as.lpp
```

```
data(easynet)
x = runifpointOnLines(40, easynet)
t1 = sample(1:10,40,replace=TRUE)
Y = as.stlpp(x,t=t1,L=easynet)
as.stlpp.lpp(Y)
```

4 density.stlpp

as.stlpp.tpp

Methods for space-time point patterns on a linear network.

Description

This function converts an object of class stlpp to class tpp.

Usage

```
as.stlpp.tpp(X)
```

Arguments

Χ

an object of class stlpp

Details

This function projects the space-time point pattern X on L \times T into the time interval T.

Value

```
an object of class tpp.
```

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

See Also

```
as.stlpp, lpp, as.lpp
```

density.stlpp

Kernel estimation of intensity of space-time point patterns on a linear network

Description

Kernel density estimation of a spatio-temporal point pattern on a linear network.

Usage

```
## S3 method for class stlpp
density(X,lbw,tbw,...)
```

Arguments

Χ	an object of class stlpp
1bw	netwrok smoothing bandwidth
tbw	time smoothing bandwidth
• • •	arguments passed to density.lpp

density.tpp 5

Details

Kernel smoothing is applied to the spatio-temporal point pattern X using methods in Moradi et al (2019). If lbw and tbw are not given, then they will be selected using bw.nrd0 and bw.scott.iso respectively.

Value

a vector of intensity values at the data points of X. check the attributes for more accommodated outputs.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

References

Moradi, M.M. and Mateu, J. (2019). First and second-order characteristics of spatio-temporal point processes on linear networks.

See Also

```
density, density.lpp, bw.nrd0, bw.scott.iso
```

Examples

```
X = rpoistlpp(.2,a=0,b=5,L=easynet)
density(X)
```

density.tpp

Kernel estimation of intensity of temporal point patterns

Description

Kernel estimation of intensity of temporal point patterns

Usage

```
## S3 method for class tpp
density(x)
```

Arguments

Χ

a temporal point pattern (of class tpp)

Value

a vector of intensity values at the data points of X. check the attributes for more accommodated outputs.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

6 Eastbourne

References

Moradi, M.M. and Mateu, J. (2019). First and second-order characteristics of spatio-temporal point processes on linear networks.

See Also

density, bw.nrd0

Eastbourne

Eastbourne traffic accident data

Description

This dataset represents the spatio-temporal locations of traffic accidents in the down-town of East-bourne (UK) in the period of 2005-2010. The network was provided by "OS OpenData" at www.ordnancesurvey.co.uk and is usable under the terms of the OS OpenData license. The traffic locations were collected by the UK Department for Transport at www.data.gov.uk and obtained through kaggle at www.kaggle.com.

The dataset Eastbourne is an object of class stlpp.

Usage

data(Eastbourne)

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

Source

Usability: The network of Eastbourne was provided by OS OpenData and contains OS data © Crown copyright and database right (2018). The traffic accident locations in Eastbourne were collected by the UK Department for Transport and were provided by kaggle.

This data is a part of enitre data which is selected and converted to this format by Mehdi Moradi.

References

Moradi, M.M. and Mateu, J. (2019). First and second-order characteristics of spatio-temporal point processes on linear networks.

See Also

stlpp

```
data(Eastbourne)
plot(Eastbourne)
```

easynet 7

easynet

simple linear network

Description

A simple and not real network.

Usage

```
data(easynet)
```

Source

Created by Mehdi Moradi

Medellin

Medellin traffic accident data

Description

This dataset represents the spatio-temporal locations of traffic accidents in an area near the pontifical bolivarian university in Medell\'in (Colombia) during 2016. The entire data were published in the OpenData portal of Medell\'in Town Hall at https://www.medellin.gov.co/geomedellin/index.hyg.

The dataset Medellin is an object of class stlpp.

Usage

```
data(Medellin)
```

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

Source

This data is a part of enitre data which is selected and converted to this format by Mehdi Moradi.

References

Moradi, M.M. and Mateu, J. (2019). First and second-order characteristics of spatio-temporal point processes on linear networks.

See Also

stlpp

```
data(Medellin)
plot(Medellin)
```

plot.stlpp

methods.tpp

Methods for temporal point patterns.

Description

Methods for temporal point patterns.

Usage

```
## S3 method for class tpp
plot(x)
## S3 method for class tpp
print(x)
## S3 method for class tppint
plot(x)
## S3 method for class tppint
print(x)
```

Arguments

Х

an object of class tpp or tppint.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

Examples

```
X <- tpp(sample(c(1:24),200,replace = T))
plot(X)
plot(density(X))</pre>
```

plot.stlpp

Methods for space-time point patterns on a linear network.

Description

```
plot objecs of class stlpp.
```

Usage

```
plot(X,...)
```

Arguments

```
X an object of classes stlpp.... arguments passed to plot
```

plot.stlppint 9

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

See Also

```
as.stlpp
```

Examples

```
X = rpoistlpp(.2,a=0,b=5,L=easynet)
plot(X)
```

plot.stlppint

Methods for space-time point patterns on a linear network.

Description

plot an estimated intensity function of a space-time point patterns on a linear network.

Usage

```
plot.stlppint(X)
```

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

See Also

```
as.stlpp, density.stlpp
```

Examples

```
X = rpoistlpp(.2,a=0,b=5,L=easynet)
d = density(X)
plot(d)
```

plot.sumstlpp

Methods for space-time point patterns on a linear network.

Usage

```
plot(X,style=c("level","contour","perspective"), theta = 35, phi = 10,
facets = FALSE, ticktype = "detailed", resfac = 5,
xlab="r = distance",ylab="t = time",...)
```

Arguments

```
X an object of class sumstlpp.style type of plot to be exhibited.... arguments passed to levelplot,contour or persp3D.
```

10 print.stlppint

Details

This function plots K-function and pair correlation function for spatio-temporal point patterns on linear networks using different styles.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

See Also

```
levelplot, contour, persp3D
```

print.stlpp

Methods for space-time point patterns on a linear network.

Description

Methods to print an object of class stlpp.

Usage

```
print.stlpp(x)
```

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

See Also

```
as.stlpp
```

Examples

```
X = rpoistlpp(.2,a=0,b=5,L=easynet)
x
```

print.stlppint

Methods for space-time point patterns on a linear network.

Description

Methods to print an object of class stlppint.

Usage

```
print.stlppint(x)
```

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

print.sumstlpp 11

See Also

```
as.stlpp, density.stlpp
```

Examples

```
X = rpoistlpp(.2,a=0,b=5,L=easynet)
density(X)
```

print.sumstlpp

Methods for space-time point patterns on a linear network.

Description

Methods to print an object of class stlpp.

Usage

```
print.sumstlpp(x)
```

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

See Also

```
STLg, STLK, STLginhom, STLKinhom
```

Examples

```
X = rpoistlpp(.2,a=0,b=5,L=easynet)
STLK(X)
STLg(X)
```

rpoistlpp

simulating spatio-temporal poisson point processes on a linear network

Description

simulating a realisation of a spatio-temporal poisson point process on a linear network.

Usage

```
rpoistlpp(lambda,a,b,L,check=FALSE,lmax=NULL,nsim=1)\\
```

12 rthin.stlpp

Arguments

lambda	intensity of the point process. It can be either a number or a function of location and time.
а	lower bound of time period.
b	upper bound of time period.
L	a linear network.
check	Logical value indicating whether to check that all the (x,y) points lie inside the specified window. see ppp.
lmax	upper bound for the values of labmda. This is optinal.
nsim	number of simulated patterns to generate.

Details

This function generates a realisation of a spatio-temporal poisson point process on a linear network based on intensity function lambda and lower/upper bounds a and b.

Value

an object of class stlpp if nsim=1, otherwise a list of objects of class stlpp.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

References

Moradi, M.M. and Mateu, J. (2019). First and second-order characteristics of spatio-temporal point processes on linear networks.

See Also

```
density
```

Examples

```
X = rpoistlpp(.2,a=0,b=5,L=easynet)
X
```

rthin.stlpp

Random thinning

Description

Applies independent random thinning to a spatio-temporal point pattern on a linear network.

Usage

```
## S3 method for class stlpp
rthin(X, P = P, nsim = 1)
```

STLg 13

Arguments

X a spatio-temporal point pattern of class stlpp

P retention probability

nsim number of simulated realisations to be generated

Details

```
see rthin
```

Value

An object of the same kind as X if nsim=1, or a list of such objects if nsim > 1.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

See Also

```
stlpp, rthin
```

Examples

```
data(Medellin)
rthin(Medellin,P=.5)
```

STLg

spatio-temporal pair correlation function for point processes on linear networks

Description

spatio-temporal pair correlation function for point processes on linear networks.

Usage

```
STLg(X,seqr=NULL,seqt=NULL)
```

Arguments

X a realisation of a spatio-temporal point processes on a linear networks.

seqr values of argument r where pair correlation function will be evaluated. optional. seqt values of argument t where pair correlation function will be evaluated. optional.

Details

This function calculates the pair correlation function for a homogeneous spatio-temporal point processes on a linear network.

Value

```
an object of class sumstlpp.
```

14 STLginhom

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

References

Moradi, M.M. and Mateu, J. (2019). First and second-order characteristics of spatio-temporal point processes on linear networks.

See Also

```
pcf, STLK
```

Examples

```
X = rpoistlpp(.2,a=0,b=5,L=easynet)
STLg(X)
```

STLginhom

spatio-temporal inhomogeneous pair correlation function for point processes on linear networks

Description

spatio-temporal inhomogeneous pair correlation function for point processes on linear networks.

Usage

```
STLginhom(X,lambda,normalize=FALSE,seqr=NULL,seqt=NULL)
```

Arguments

X a realisation of a spatio-temporal point processes on a linear networks.

lambda values of estimated intensity.

normalize normalization factor to be considered.

values of argument r where pair correlation function will be evaluated. optional. seqt values of argument t where pair correlation function will be evaluated. optional.

Details

This function calculates the inhomogeneous pair correlation function for a spatio-temporal point processes on a linear network.

Value

an object of class sumstlpp.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

STLk 15

References

Moradi, M.M. and Mateu, J. (2019). First and second-order characteristics of spatio-temporal point processes on linear networks.

See Also

```
STLg, STLK, STLKinhom
```

Examples

```
X = rpoistlpp(.2,a=0,b=5,L=easynet)
d = density(X)
STLginhom(X,lambda=d)
```

STLk

spatio-temporal K-function for point processes on linear networks

Description

spatio-temporal K-function for point processes on linear networks.

Usage

```
STLk(X,seqr=NULL,seqt=NULL)
```

Arguments

X a realisation of a spatio-temporal point processes on a linear networks.

seqr values of argument r where pair correlation function will be evaluated. optional.

seqt values of argument t where pair correlation function will be evaluated. optional.

Details

This function calculates the K-function for a homogeneous spatio-temporal point processes on a linear network.

Value

an object of class sumstlpp.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

References

Moradi, M.M. and Mateu, J. (2019). First and second-order characteristics of spatio-temporal point processes on linear networks.

See Also

```
Kest, STLg
```

16 STLkinhom

Examples

```
X = rpoistlpp(.2,a=0,b=5,L=easynet)
STLK(X)
```

STLkinhom

spatio-temporal inhomogeneous K-function for point processes on linear networks

Description

spatio-temporal inhomogeneous K-function for point processes on linear networks

Usage

```
STLkinhom(X,lambda=lambda,normaliz=FALSE,seqr=NULL,seqt=NULL)
```

Arguments

X a realisation of a spatio-temporal point processes on a linear networks.

lambda values of estimated intensity.

normalize normalization factor to be considered.

seqr values of argument r where pair correlation function will be evaluated. optional. seqt values of argument t where pair correlation function will be evaluated. optional.

Details

This function calculates the inhomogeneous K-function for a spatio-temporal point processes on a linear network.

Value

an object of class sumstlpp.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

References

Moradi, M.M. and Mateu, J. (2019). First and second-order characteristics of spatio-temporal point processes on linear networks.

See Also

```
STLg, STLK, STLginhom
```

```
X = rpoistlpp(.2,a=0,b=5,L=easynet)
lambda = density(X)
STLKinhom(X,lambda=lambda)
```

stlpp 17

stlpp

Create spatio-temporal point pattern on linear network

Usage

```
stlpp(X, L, T, ...)
```

Arguments

Χ	Locations of the points. A matrix or data frame of coordinates, or a point pattern
	object (of class "ppp") or other data acceptable to as.ppp or lpp
L	linear network (object of class "linnet")

T time vector ignored

Details

This function creates an object of class stlpp. For details about X see lpp. T represents the time occurrence of data points.

Value

an object of class stlpp.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

See Also

```
as.stlpp,lpp
```

tpp

Create a temporal point pattern.

Description

Create an object of class tpp that represents a temporal point pattern.

Usage

tpp(X)

Arguments

X an object of class numeric, integer or vector

Details

Create a temporal point pattern.

18 unique.stlpp

Value

an object of class tpp.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

See Also

stlpp

unique.stlpp

extract unique points from a spatio-temporal point pattern on a linear network

Usage

```
## S3 method for class stlpp
unique(X,...)
```

Arguments

X a realisation of a spatio-temporal point processes on a linear networks.

... arguments for unique.

Details

This function calculates the inhomogeneous pair correlation function for a spatio-temporal point processes on a linear network.

Value

a spatio-temporal point pattern on a linear network with no duplicated point.

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com>

References

Moradi, M.M. and Mateu, J. (2019). First and second-order characteristics of spatio-temporal point processes on linear networks.

See Also

unique

unique.stlpp 19

```
X = rpoistlpp(0.1,0,5,L=easynet)
df = as.data.frame(X)
df_dup = df[sample(nrow(df), 20,replace = T), ]
Y = as.stlpp(df_dup,L=easynet)
npoints(Y)
npoints(unique(Y))
```

Index

```
as.lpp, 2-4
                                                    {\tt rpoistlpp}, {\color{red} 11}
as.ppp, 17
                                                    rthin, 13
as.stlpp, 2, 3, 4, 9-11, 17
                                                    rthin.stlpp, 12
as.stlpp.lpp, 2, 3
                                                    runifpointOnLines, 2
as.stlpp.tpp,4
                                                    STLg, 11, 13, 15, 16
bw.nrd0, 5, 6
                                                    STLginhom, 11, 14, 16
bw.scott.iso, 5
                                                    STLK, 11, 14-16
                                                    STLk, 15
contour, 9, 10
                                                    STLKinhom, 11, 15
                                                    STLkinhom, 16
data.frame, 2
                                                    stlpp, 2-4, 6-8, 10-13, 17, 18
density, 5, 6, 12
                                                    stlppint, 10
density.lpp, 4, 5
                                                    sumstlpp, 13-16
density.stlpp, 4, 9, 11
density.tpp, 5
                                                    tpp, 4, 5, 17, 17
                                                    unique, 18
Eastbourne, 6, 6
                                                    unique.stlpp, 18
easynet, 7
                                                    vector, 17
integer, 17
Kest, 15
levelplot, 9, 10
linnet, 2
lpp, 2-4, 17
Medellin, 7, 7
methods.tpp, 8
numeric, 17
pcf, 14
persp3D, 9, 10
plot, 8
plot.stlpp, 8
plot.stlppint, 9
plot.sumstlpp, 9
plot.tpp (methods.tpp), 8
ppp, 2, 12
print.stlpp, 10
print.stlppint, 10
print.sumstlpp, 11
print.tpp (methods.tpp), 8
```