analyse séquentielle

1) Étudier la suite $(p_n)_{n\in\mathbb{N}}$ définie par:

$$p_n = \, \cos \, a \, . \, \cos \frac{a}{2} \, . \, \ldots . \, \cos \frac{a}{2^n} \quad (a \in \mathbb{R})$$

(hint: utiliser la relation $\sin 2\varphi = 2 \sin \varphi \cos \varphi$)

2) Étudier le couple de suites (u, v) défini par la donnée de u0, v0 réels et les rela-

$$\forall\,n\in\mathbb{N}\text{ , }u_{n+1}\!=\!\frac{1}{3}\left(2\,u_{n}\!+v_{n}\right)\text{ , }v_{n+1}\!=\!\frac{1}{3}\left(u_{n}\!+2\,v_{n}\right)$$

(hint: calculer $u_{n+1} + v_{n+1}$)

3) Montrer que pour tout x réel strictement positif on a:

$$x - \frac{x^2}{2} < \text{Log}(1+x) < x$$

En déduire

$$\lim_{n\to\infty} \left(\prod_{k=1}^{n} \left(1 + \frac{k}{n^2} \right) \right)$$

4) Soient deux nombres réels a et b strictement positifs tels que b < a. On définit deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ par $a_0=a$, $b_0=b$ et les relations de récurrence: $\forall n\in\mathbb{N}$, $a_{n+1}=\frac{a_n^2}{a_n+b_n}$, $b_{n+1}=\frac{b_n^2}{a_n+b_n}$

$$\forall n \in \mathbb{N}$$
, $a_{n+1} = \frac{a_n^2}{a_n + b_n}$, $b_{n+1} = \frac{b_n^2}{a_n + b_n}$

Montrer tout d'abord que ces suites sont bien définies et les étudier.

(hint: considérer $a_{n+1} - b_{n+1}$ et $\frac{b_{n+1}}{a}$)

- Suite de Fibonacci. On définit une suite u par la donnée de $u_1=2$, $u_2=3$ et la relation de récurrence: $\forall\,n\in\mathbb{N}$, $n\geqslant 3$, $u_n=u_{n-1}+u_{n-2}$. 5)
 - Montrer que l'on a: $\forall n \ge 2$, $u_n^2 u_{n+1}u_{n-1} = (-1)^{n+1}$.
 - Pour $n \ge 2$, on pose $v_n = \frac{u_n}{u_{n-1}}$. Étudier les suites extraites $(v_{2n})_{n \in \mathbb{N}^*}$ et
- **%** 6) Étudier les suites définies sur N ou N* par les relations respectives:

$$u_{n} = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{n} x}{1+x} dx \; ; \; v_{n} = \int_{0}^{\frac{\pi}{2}} \sqrt[n]{\sin x} dx \; ; \; w_{n} = \int_{1}^{1+\frac{1}{n}} \sqrt{1+x^{n}} dx$$

7) Soient a et b deux nombres réels tels que 0 < a < b. On définit deux suite $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ par $a_0=a$, $b_0=b$ et les relations de récurrence:

$$\forall\,n\in\mathbb{N}$$
 , $\,a_{n+1}\!=\!\sqrt{a_nb_n}$, $\,b_{n+1}\!=\!\frac{a_n+b_n}{2}$

Montrer que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes.

a suites a, b, c par la donnée de leurs premiers termes respectifs

sont définies et que les suites $(a_n)_{n\geqslant 2}$, $(c_n)_{n\geqslant 2}$ sont $(a_n)_{n\geqslant 2}$, $(c_n)_{n\geqslant 2}$ sont $(a_n)_{n\geqslant 2}$

une suite réelle telle que les suites $(u_n^2)_{n\in\mathbb{N}}$ et $(u_n^3)_{n\in\mathbb{N}}$ soient Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est également convergente.

- Moreover que l'on a: $\forall n \in \mathbb{N}^*$, $\frac{1}{n+1} < \text{Log}(n+1) \text{Log}(n < \frac{1}{n})$.
- The deduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=1+\frac{1}{2}+...+\frac{1}{n}-\text{Log }n$ est moment et bornée. Conclusion?
- Plus généralement, soit f une fonction définie sur $[1, +\infty[$ continue, positive et définie par:

$$u_n = f(1) + f(2) + ... + f(n) - \int_1^n f(t) dt$$

En particulier, trouver la nature de la suite

第110

$$n \mapsto \frac{1}{2 \text{ Log 2}} + \frac{1}{3 \text{ Log 3}} + ... + \frac{1}{n \text{ Log n}} - \text{Log (Log n)}$$
 (Oral E.S.C.P.)

Montrer que les suites $n \mapsto \cos n$ et $n \mapsto \sin n$ sont divergentes de deuxième espèce.

(hint: on pourra raisonner par l'absurde et transformer $\cos (n+1)$, $\sin (n+1)$)

On considère deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ convergentes de limites respectives ℓ et ℓ' . Pour tout n entier naturel on pose:

$$u_n = \frac{1}{n+1} \cdot \sum_{k=0}^{n} a_k b_{n-k}$$

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente de limite $\ell\ell'$.

- Soit z un nombre complexe non nul, calculer $\lim_{n\to\infty} (1+\frac{z}{n})^n$.
- On se donne une suite $(a_n)_{n\in\mathbb{N}^*}$ de nombres réels strictement positifs telle que $\lim_{n\to\infty} (a_1+a_2+...+a_n)=+\infty$ (c'est-à-dire que la série de terme général a_n est divergente). A toute suite $(u_n)_{n\in\mathbb{N}}$ on associe la suite $(v_n)_{n\in\mathbb{N}}$ définie par

$$v_n = \frac{a_1 u_1 + a_2 u_2 + ... + a_n u_n}{a_1 + a_2 + ... + a_n} .$$

- (i) Montrer: $\lim_{n\to\infty} u_n = \ell \implies \lim_{n\to\infty} v_n = \ell$. (Théorème de Cesaro généralisé).
- (ii) Montrer que le résultat est encore valable pour $~\ell = +\infty$ ou $~\ell = -\infty~$.
- (iii) Soient $(u_n)_{n\geqslant 1}$, $(v_n)_{n\geqslant 1}$ les termes généraux de deux séries. On suppose que, pour tout n, u_n est strictement positif et que $u_n\sim v_n$.

Montrer que si la série de terme général un est divergente, alors:

$$u_1 + u_2 + ... + u_n \sim v_1 + v_2 + ... + v_n$$

En déduire par exemple que $1+\frac{1}{2}+...+\frac{1}{n}\sim \text{Log } n$.