Grade: 100

ME6406 HW1 Thanakorn Khamvilai Report

Problem 1: Pin-Hole Optics

Solution:

Figure 1.

Pin-hole area $\delta O = \pi R^2$

Consider the right triangle

The angle
$$\theta = \arccos \frac{s}{R}$$

and the area $A_1 = \frac{1}{2} s \sqrt{R^2 - s^2}$

Consider the Sector

The area

$$A_2 = \pi R^2 \cdot \frac{2\theta}{2\pi}$$

$$A_2 = \theta R^2$$

$$A_2 = \arccos \frac{s}{R} \cdot R^2$$

Then the overlap area $\delta A = A_2 - A_1$

$$\delta A = \arccos \frac{s}{R} \cdot R^2 - 2 \cdot \frac{1}{2} s \sqrt{R^2 - s^2}$$

$$\delta A = R^2 \left[\arccos \frac{s}{R} - \frac{s}{R} \sqrt{1 - \left(\frac{s}{R}\right)^2} \right]$$

Therefore,

$$\rho = \frac{\delta A}{\delta O} = \frac{R^2 \left[\arccos \frac{s}{R} - \frac{s}{R} \sqrt{1 - \left(\frac{s}{R}\right)^2} \right]}{\pi R^2}$$

$$\rho = \frac{1}{\pi} \left[\arccos \frac{s}{R} - \frac{s}{R} \sqrt{1 - \left(\frac{s}{R}\right)^2} \right]$$

Problem 2: Histogram Equalization

2a) Solution: The table below was done using MATLAB (HW1_2a.m)

Gray Level	# of pixels	cdf	Qk	round(q _k)
190	1	1	7.0833	7
191	5	6	42.5000	43
192	3	9	63.7500	64
193	5	14	99.1667	99
194	4	18	127.5000	128
195	7	25	177.0833	177
196	6	31	219.5833	220
197	2	33	233.7500	234
198	1	34	240.8333	241
199	1	35	247.9167	248
200	1	36	255.0000	255

<u>2b) Solution:</u> I. Read in and display the 'teeth.jpg' (HW1_2b.m)

II. Compare by displaying the original and processed images and their histograms. (HW1_2b.m) By using codes from 2a)

By using MATLAB built-in commands

There is a little difference in pixel intensity obtained from these two approaches even if both equalized images look pretty similar; thus, the plots of histogram equalization are difference.

Problem 3: Filtering Masks

3a) Solution:

$$H_{x} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}, H_{y} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, Z = \begin{bmatrix} 199 & 197 & 195 \\ 197 & 195 & 194 \\ 196 & 194 & 192 \end{bmatrix}$$

$$g_m = 196 + 2(194) + 192 - 199 - 2(197) - 195 = -12$$

$$g_n = 195 + 2(194) + 192 - 199 - 2(197) - 196 = -14$$

Magnitude

$$|g(m.n)| = \sqrt{g_m^2 + g_n^2} = \sqrt{(-12)^2 + (-14)^2} = 18.4391 \approx 18$$

Direction

$$\angle g(m,n) = tan^{-1} \frac{g_n}{g_m} = tan^{-1} \frac{-14}{-12} = 229.3987^{\circ}$$

3b) Solution: This problem was done using MATLAB (HW1_3b.m)

Original Image

Using the same calculation as 3a)

Using the MATLAB built-in command with the default threshold

Because of using the default threshold in built-in *edge* command, the results from these two approaches have some differences.

3c) Solution: This problem was done using MATLAB with 3Std Gaussian Filter i.e.7x7 for $\sigma = 1$ (3*1*2 + 1), 13x13 for $\sigma = 2$ (3*3*2 + 1), and 31x31 for $\sigma = 5$ (3*5*2 + 1) (HW1_3c.m)

Original Image

Analytical Implement

 $\sigma = 1$

MATLAB Built-In Command

Problem 4: Low-Level Information Processing

4a) Solution: This problem was done using MATLAB (HW1_4a.m)

Original Image

Over-Estimated Threshold

Grayscale Image

Under-Estimated Threshold

Appropriated Threshold

Histogram

The values of over-estimated threshold, under-estimate threshold, and appropriated threshold are chosen to be 127.5, 12.75, and 51, respectively; hence, the values 0.5 (127.5/255), 0.05 (12.75/255), and 0.2 (51/255) are used in im2bw function for over-estimated threshold, under-estimate threshold, and appropriated threshold, respectively.

4b) Solution: This problem was done using MATLAB (HW1_4b.m)

The directions of axes, the locations of centroids, and the areas of each nut are already labeled on the above figure.