NETWORK SCIENCE OF ONLINE INTERACTIONS

Chapter 5: Network Models

Joao Neto 19/May/2023

SUMMARY

- Lots of directed networks are heavy-tailed both in degree and weights
- Word embedding is a powerful tool to study content networks (e.g. social media)
- Diffusion models are very useful
 - Metrics that model diffusion can excel (PageRank)
 - Can be used to study spread of misinformation in social media

NETWORK MODELS

- Real-world networks tend to have certain properties
 - Short paths between nodes
 - Small-world property
 - Many triangles
 - High clustering coefficient
 - Heterogeneous distributions
 - Power-law degree distribution
- What simple mechanisms can create those properties?
 - "All models are wrong, some are useful"
- Iterative process: change/explore model until it tells you things you didn't know about the real system

Modeling flowchart

5.I RANDOM NETWORKS

- What is the simplest, most assumption-free network we can create?
- Useful as a comparison baseline
- Erdős-Rényi (ER) network
 - Each possible link exists with probability p
 - Average degree $\langle k \rangle = (N-1)p$
 - Binomial degree distribution

$$p_k \sim {N-1 \choose k} p^k (1-p)^{N-1-k}$$

•
$$CV = \frac{\sqrt{(N-1)p(1-p)}}{(N-1)p} = \sqrt{\frac{1-p}{(N-1)p}} = \sqrt{\frac{1}{\langle k \rangle} - \frac{1}{N-1}}$$

Random networks do not have heavy tails

5. I RANDOM NETWORKS

- Connectedness:
 - As $\langle k \rangle = (N-1)p$ increases, so does the size of the giant component
 - This is not smooth, and it is a phase transition

5.1 RANDOM NETWORKS

- Path length
 - (expected) max path length:
 - Assume $k_i = k$
 - Nodes 2 steps from i: k(k-1)
 - Nodes *l* steps from $i: k(k-1)^{l-1} \approx k^l$
 - $k^{l_{max}} = N :: l_{max} = \frac{\ln N}{\ln k}$
 - In reality [I]: $l_{max} = \frac{\ln N}{\ln k} + \text{smaller terms}$
 - Average path length [2]: $\langle l \rangle = \frac{\ln N \gamma}{\ln \langle k \rangle} + \frac{1}{2}, \gamma \approx 0.577$
 - Example:
 - N = 8 billion, $\langle k \rangle = 150$
 - $\langle l \rangle = 4.93, l_{max} = 4.1 + (\text{terms}) \approx 6$
 - Random networks have short path lengths

- Clustering coefficient
 - $p_{triangle} = p^3$
 - $C = C_i = p^3/p^2 = p$
 - In real-world networks p would be very small
 - $\langle k \rangle = (N-1)p$
 - Random networks have very low clustering coefficient
- Summary
 - Short paths
 - Low clustering
 - No heavy-tail
 - No hubs

```
#small networks
G = nx.erdos_renyi_graph(N, p)
#large & sparse networks
G = nx.fast_gnp_random_graph(N, p)
```

- [1] Riordan, O. & Wormald, Probability and Computing, 19(5-6), 835–926 (2010). https://doi.org/10.1017/s0963548310000325
- [2] Fronczak et al, Physical Review E 70, 056110 (2014): https://doi.org/10.1103/PhysRevE.70.056110

5.2 SMALL WORLDS

- Can we get a minimal model with high clustering?
- Watts-Strogatz (WS) model
 - I. Start from a high clustering ring network
 - 2. Rewrite nodes with probability p
- What are the new properties?
 - Short paths
 - High clustering
 - Nodes have mostly the same degree
 - No heavy-tails
 - No hubs

5.2 SMALL WORLDS

- Path length [I] $\langle l \rangle = (2k^2p)^{-1} \log 2Nkp$
 - Valid for $Nkp \gg 1$
- Clustering: $C(p) = \frac{3(K-2)}{4(K-1)}(1-p)^3$
- Small-world definition: $\langle l \rangle \sim \log N$
 - ER network: small-world with low clustering
 - WS network: small-world with high clustering

```
# Standard version
G = nx.watts_strogatz_graph(n,k,p)
# Only adds links
G = nx.newman_watts_strogatz_graph(n,k,p)
# Ensures connected network
G = nx.connected_watts_strogatz_graph(n,k,p)
```


5.3 CONFIGURATION MODEL

- What if we want an exact degree distribution?
- The idea: property of interest is encoded in the degree
- Configuration model
 - Nodes start with stubs
 - Stubs are randomly connected
- Operationalizing it
 - Measure metrics of a network
 - 2. Measure the same metrics of many configuration models with the same degree sequence
 - 3. If the metrics are the same, the properties are encoded in the degree sequence. If not, something else is needed

G = nx.configuration_model(degree_sequence)

- Networks grow
 - New node comes with some stubs
 - Connects to other nodes following some rule
- The idea: nodes prefer to connect to well-connected nodes
 - Node fitness is based on degree

- Barabasi-Albert (BA) network
 - 1. Starts from a (usually fully) connected core
 - 2. Adds new nodes one by one, with m links each
 - 3. The probability of connecting to j is $\sim k_j$: preferential attachment (PA)

$$\Pi(i \leftrightarrow j) = \frac{k_j}{\sum_l k_l}$$

- Results in a power-law degree-distribution
 - $p_k = 2m^2/k^3$

G = nx.barabasi_albert_graph(N,m)

- Ingredients: growth and linear PA
 - Are both necessary?
- Network with only growth
 - Nodes are added over time, but links are random
 - Maybe just "time in the game" is enough
- Result
 - Exponential degree distribution: $p_k \sim e^{-\beta k}$
 - Preferential attachment is needed

- Network with only PA
 - I. All nodes from the start
 - 2. Randomly select a node
 - 3. Link it to another with PA
 - VI: $\Pi \sim k_i$
 - $V2: \Pi \sim k_i + 1$
 - 4. Run until network as NK links
- Results
 - Power-law tail for VI, no power-law for V2
 - PA requires enough *imbalance* (temporal, fitness, etc)
 - Needs to justify stopping after NK links

- BA has linear preferential attachment ($\Pi \sim k_i$)
 - What if $\Pi \sim k_i^{\alpha}$?
- If $\alpha > 1$
 - Hubs hyper-concentrate the links
 - Hub-and-spoke structure
- If $\alpha < 1$
 - Effect of hubs is weakened
 - heavy-tail disappears as $\alpha \to 0$
- A natural model for heavy-tails includes
 - Growth
 - Linear preferential attachment

- BA model limitations
 - Fixed degree distribution $p_k \sim k^{-3}$
 - Hubs are always the oldest nodes (older gets richer)
 - Low clustering coefficients
 - No node deletion
 - Necessarily connected
 - Requires linear PA
- Plenty of modifications
 - Attractiveness model
 - Fitness model
 - Random Walk model
 - Copy model
 - Rank model

Attractiveness model

- Nodes have a baseline attractiveness A
- $\blacksquare \quad \Pi = \frac{A + k_j}{\sum_l (A + k_l)}$
- Degree distribution [1]
 - $p_k \sim k^{-3-A/m}$
 - Valid for A > -m
 - Exponents $-2 < \alpha < -3$
- Larger $A \rightarrow \text{larger } \alpha$
- Less statistical weight in the tail

Fitness model

- **Each node has an individual attractiveness (fitness)** η
- $\blacksquare \quad \Pi = \eta_j k_k / \sum_l \eta_l k_l$
- Drawn for $\eta \sim \rho(\eta)$
- Distribution will be heavy-tailed if $max(\rho)$ is finite
- Late nodes can still attract links
- Comparing distributions
 - Gaussian, Exponential, Lognormal
 - Same median $med\{X\} = 1$
 - Lognormal: heavy tail creates hyper-connected hubs, destroys distribution

- BA networks have low clustering
- Triadic closure:
 - neighbours of a node are more likely to be connected

Random Walk model

- I. Start with (fully-connected) core
- 2. Grow network adding a node with m links
 - The first of the m links chooses a random node j
 - The other m-1 links choose a neighbour of j with probability p, and a random node with probability 1-p
- Can produce heavy-tailed distributions for large-enough p
 - Implicit preferential attachment from hubs being well-connected
- Can produce both high clustering and community structure

Copy model

- I. Add a new node with m links
- 2. Select a target *j*
- 3. Either
 - link to j with probability p
 - Link to a neighbour of j with 1-p
- In many processes, new nodes copy the connections of older ones
 - Citation networks, websites, etc
- Properties:
 - No triadic closure
 - Hubs

- BA model requires an absolute metric of worth (degree)
- Perceived value can be based on the relative ranking instead

Rank model

- I. Nodes receive ranks R = 1,2,...
- 2. Add a node with m links
- 3. Connection probability $\Pi \sim R_i^{-\alpha}$
- 4. If *R* depends on e.g. degree, re-rank nodes
- Robustly creates heavy-tailed distributions
- For ranking by time: $p_k \sim 1/k^{1+1/\alpha}$

SUMMARY

- Many models focusing on emulating certain properties
 - Degree distribution, clustering, triadic closure, etc
- No single "best model"
- Preferential attachment is a key mechanism
 - Can create heavy-tailed distributions
 - If unbalanced, can create hyper-concentrated hubs
- Variations of PA models can create a variety of degree distributions

k (degree)

10