Contents

1	Clas	sses	
	1.1	quad -	- <mark>虚二次体</mark>
		1.1.1	Reduced QuadraticForm – 簡約二次形式クラス
			1.1.1.1 inverse
			1.1.1.2 disc
		1.1.2	ClassGroup – 類群クラス
		1.1.3	class_formula
		1.1.4	class_number
			class_group
		1.1.6	class_number_bsgs
			class group hege

Chapter 1

Classes

1.1 quad - 虚二次体

- Classes
 - ReducedQuadraticForm
 - ClassGroup
- Functions
 - class_formula
 - class_number
 - class group
 - $\ class_number_bsgs$
 - class_group_bsgs

1.1.1 ReducedQuadraticForm – 簡約二次形式クラス

Initialize (Constructor)

 $ext{ReducedQuadraticForm}(ext{f: } \textit{list}, ext{ unit: } \textit{list})
ightarrow \textit{ReducedQuadraticForm}$

ReducedQuadraticForm オブジェクトを作成.

f, unit は 3 整数 [a, b, c] のリストでなければならず, 二次形式を $ax^2+bxy+cy^2$ と表記. unit は単元形式を表す.

Operations

operator	explanation
M * N	M と N の合成を返す.
M ** a	Mのa乗を返す.
M / N	二次形式の除算.
M == N	M と N が等しいかどうか返す.
M != N	M と N が等しくないかどうか返す.

Methods

1.1.1.1 inverse

 $inverse(\mathtt{self}) o extit{ReducedQuadraticForm}$

self の逆元を返す.

1.1.1.2 disc

 $ext{disc(self)}
ightarrow ext{\it ReducedQuadraticForm}$

self の判別式を返す.

1.1.2 ClassGroup - 類群クラス

Initialize (Constructor)

 $\begin{array}{ll} \textbf{ClassGroup}(\texttt{disc:}~integer,~\texttt{cl:}~integer,~\texttt{element:}~integer{=}\textbf{None}) \\ & \rightarrow \textit{ClassGroup} \end{array}$

ClassGroup オブジェクトを作成.

Methods

1.1.3 class formula

class formula(d: integer, uprbd: integer) o integer

類数公式を使い、判別式 a を持つ類数 h の近似値を返す.

類数公式
$$h = \frac{\sqrt{|\mathsf{d}|}}{\pi} \prod_p \left(1 - \left(\frac{\mathsf{d}}{p}\right) \frac{1}{p}\right)^{-1}.$$

入力する数 d は int 型, long 型 または Integer でなければならない.

1.1.4 class number

$$ext{class_number(d: } integer, ext{ limit_of_d: } integer = 1000000000) \ o integer$$

簡約形式の数を数えることにより判別式 a を持つ類数を返す.

d は基本判別式とは限らない.

入力する数 d は int 型, long 型 または Integer でなければならない.

1.1.5 class group

$$\begin{array}{c} {\tt class_group(d:} \ integer, \ \ {\tt limit_of_d:} \ integer {=} 1000000000) \\ \rightarrow \ integer \end{array}$$

簡約形式の数を数えることにより判別式 a を持つ類数と類群を返す.

d は基本判別式とは限らない.

入力する数 d は int 型, long 型 または Integer でなければならない.

1.1.6 class number bsgs

$$\textbf{class number bsgs(d:} \textit{integer}) \rightarrow \textit{integer}$$

Baby-step Giant-step アルゴリズムを使い、判別式 a を持つ類数を返す.

d は基本判別式とは限らない.

入力する数 d は int 型, long 型 または Integer でなければならない.

1.1.7 class group bsgs

```
	ext{class\_group\_bsgs(d: } integer, 	ext{ cl: } integer, 	ext{ qin: } list) \ 
ightarrow integer
```

判別式 disc を持つ位数 p^{exp} の類群の構造を返す. $ext{qin} = [p, exp]$ である.

入力する数 d, cl は int 型, long 型 または Integer でなければならない.

Examples

```
>>> quad.class_formula(-1200, 100000)
>>> quad.class_number(-1200)
12
>>> quad.class_group(-1200)
(12, [ReducedQuadraticForm(1, 0, 300), ReducedQuadraticForm(3, 0, 100),
ReducedQuadraticForm(4, 0, 75), ReducedQuadraticForm(12, 0, 25),
ReducedQuadraticForm(7, 2, 43), ReducedQuadraticForm(7, -2, 43),
ReducedQuadraticForm(16, 4, 19), ReducedQuadraticForm(16, -4, 19),
ReducedQuadraticForm(13, 10, 25), ReducedQuadraticForm(13, -10, 25),
ReducedQuadraticForm(16, 12, 21), ReducedQuadraticForm(16, -12, 21)])
>>> quad.class_number_bsgs(-1200)
12L
>>> quad.class_group_bsgs(-1200, 12, [3, 1])
([ReducedQuadraticForm(16, -12, 21)], [[3L]])
>>> quad.class_group_bsgs(-1200, 12, [2, 2])
([ReducedQuadraticForm(12, 0, 25), ReducedQuadraticForm(4, 0, 75)],
[[2L], [2L, 0]])
```

Bibliography