CS 155 Miniproject 2: JustTryIt Team Report

Kangchen Bai, Pengchuan Zhang, Yerong Li

1 Overview

2 Data Manipulation

The basic strategy in our model training is to train multiple models for different part of the poem. Therefore, we have the following pre-processing data manipulation.

Grouping Shakespear's sonnets enjoy the clear rhyme scheme *abab cdcd efef gg*. Moreover, lines with different rhymes have quite different sentence structure. For example, the first and third lines *aa* have quite different sentence structure from the last two lines *gg*. Based on this obersevation, we decide to train 6 models for these 6 parts, namely *a*, *b*, *c*, *d*, *e*, *f*, *g*. Therefore, we first group all the lines in the same part of the poems and get six corpuses, namely groupA, groupB, groupC, groupD, groupE, groupF, groupG.

Punctuations Shakespear's sonnets contain various punctuations (e.g., ",", "'", "-"). We delete all punctuations except "-", and thus the words "Feed'st" and "'This" become "Feedst" and "This". For words with hyphen "-", we manually delete it or replace it with empty space "". There are in total 83 hyphens in Shakespear.txt and it is very easy to deal with hyphens manually. After this stage, we have six corpuses and every corpus contains hundreds of lines without any punctuations.

Tokenization We tokenize the words as features and use the method text.CountVectorizer from sklearn.feature_extraction to preprocess every corpus. In simple, CountVectorizer lower-cases all the words and builds a dictionary between the words and the natural numbers N. The output of this tokenization step is six corpuses with sequences of natural numbers. These six corpuses will be the input of our model-training algorithms, e.g., HHM and 2nd-order Markov model.

To achieve better poem-generating performance, we generate each line in the reverse direction with presampled rhyming ending words. We keep generating lines until we get a line with exactly 10 syllables. In order to achieve these additional goals, we have the following pre-processing data manipulation.

Generating rhyming dictionary We use the *NLTK* package and the RhymeBrain website http://rhymebrain.com/en to build a dictionary for rhyming words. For more details, see Section 6.

Counting syllables in each word We use the *NLTK* package, the *PyHyphen* package and our own-written function <code>count_syllables()</code> to count the number of syllables in each word. These three methods have their own advantages and disadvantages, and we combine them to get the most accurate syllables-counting. For more details, see Section ??.

3 Unsupervised Learning

We worked on Hidden Markov Model and Markov Model in this project.

Hidden Markov Model

In training HMM, we tried on several number of hidden state in our model and chose the numjber of state with the highest emission probabilities as the favorate model in the project. To be specific, we tried on models with 5, 10, 20, 40, 80, 100, 500, 1000. We are working on model with 1000 hidden states because there are around 3000 words in Shakespeare's poetry set.

Here is a figure illustrating the performance of HMM with different state. Here the vertical axis is ... NEED SOME TEXT

Markov Model

1st order Markov Chain Model

The relationship between HMM and original Markov Chain Model We see in history that Hidden Markov Model is necessary when the number of observation states (number of words in Shakespeare's Sonnets, in this case) is unavoidable large. Besides this, we need Hidden Markov Model because we are supposed to get some intuitions in the grouping of words and hidden states are bringing us information. But in the case that the number of different words is affordably large (there are around 3000 words in this case), Markov Chain proves a more sophisticated model.

With this consideration and with the purpose of generating more reasonable verse set, we also worked on **Markov Chain model** in this project. In the basic (1st) Markov Chain Model the joint probability is given by

$$p(x_{1:M}) = p(x_1)p(x_2|x_1)p(x_3|x_2)...p(x_M|x_{M-1}) = p(x_1)\prod_{m=2}^{M} p(x_i|x_{i-1})$$
(1)

But when we first get our trial on this **first order Markov Chain Model**, it does not give us perspective result, because this is extremely similar to what we have done in our **(1st order) Hidden Markov Model**, as what we have stated above, instead of tokenized the words into phrases, we tried the second order model instead, for the simple reason that this will do the tokenization automatically and is much more subjective in tokenization.

2nd order Markov Chain Model

In the **second order Markov Chain Model**, the assumption on the transition probability is:

$$p(x_m|x_{1:m-1}) = p(x_m|x_{m-1}, x_{m-1})$$
(2)

So, different from the first order model, the joint probability in the 2nd order Markov Model gives:

$$p(x_{1:M}) = p(x_1, x_2)p(x_3|x_2, x_1)p(x_4|x_3, x_2)...p(x_M|x_{M-1}, x_{M-2}) = p(x_1, x_2)\prod_{m=3}^{M}p(x_m|x_{m-1}, x_{m-2}))$$
(3)

What should be mentioned is that we do counting and normalilization for computing the piror probabilities $p(x_1x_2)$ and trains on the transition probabilities $p(x_m|x_{m-1})$. Since we have around three thousand words

in Shakespear's Sonnet, we the number of parameters (for $p(x_1x_2)$ and $p(x_m|x_{m-1})$) is not substantially large, so the running time for 2nd order Markov Chain Model in affordable.

Notes on some trials and improvements

Here are some of the trials we have worked on in data manipulation and training:

NEED SOME TEXT

4 Visualization and Interpretation for HMM

5 Poetry Generation

We present results from the models we worked on in this project. As stated above, we do counting in the poetry generation to make sure that each line in our poem consists of 10 syallables. That is to say, we actually generation our poetry line by line, at each position of line, we repeated generate lines until we get a 10-syllable line: we only took our pick of lines with 10 syllables. In counting the syllables, we use dictionary from *NLTK* and package *PyHyphen* to break words into syllables, we did not truncate lines during the counting, so each line is supposed to end up in the *END* state (this is the same for both Hidden Markov Model and Hidden Markov Model). We only took our pick at sentence level.

1st Hidden Markov Model 2nd order Markov Chain Model

6 Additional researches that we have worked on

Rhyme

The naive approach to generate poems does not honor the rhyme pattern in the Shakespear's sonnets. However, it is actually not difficult to introduce rhyme in our group-based poem generating algorithms. There are two steps to generate poems with rhymes: first, build a rhyming dictionary; second, seed the end of the line with words that rhyme, and then do HMM generation in the reverse direction.

To build a rhyming dictionary, we pick out the last words of pair of rhyming lines. If these two words rhyme, we add it to the rhyming dictionary. For example, "increase" and "decease" rhyme with the same phonetic "IY-S" (cmudict phonetic form), and thus we generate an phonetic item "IY-S" in the rhyming dictionary with two words "increase" and "decease". In Sonnet 11, we find another pair "increase" and "cease" also rhyme with "IY-S". Then, we add "cease" into the item "IY-S". Sometimes, the last words of pair of rhyming lines do not rhyme, like "die" and "memory". In this case, we only check these two words separately whether they can be added into some existing phonetic item. For example, "die" can be added into the phonetic item "AY" and "memory" can be added into the phonetic item "IY". After traversing all the rhyming lines twice, we build a rhyming dictionary for each corpus.

We combine the *NLTK* package and the RhymeBrain website http://rhymebrain.com/en to identify whether two words rhyme or not and the phonetic they rhyme. For the word which exists in cmudict (in *NLTK*), we use *NLTK* to get its phonetics. For example,

```
>>> phondict = nltk.corpus.cmudict.dict()
>>> phondict['increase']
[[u'IH0', u'N', u'K', u'R', u'IY1', u'S'], [u'IH1', u'N', u'K', u'R', u'IY2', u'S']]
```

If either of the pronunciation rhymes with other word, like "cease", we think that these two words rhyme. For the word which does not exists in <code>cmudict</code>, our script automatically picks an auxiliary word which rhyme with this word from the RhymeBrain website http://rhymebrain.com/en, and use the phonetics of the auxiliary word to analyze the rhyme. For example, "fulfil" does not exists in <code>cmudict</code>. Our script will go to the RhymeBrain website and pick the word "foothill". Then we use

```
>>> phondict['foothill']
[[u'F', u'UH1', u'T', u'HH', u'IH2', u'L']]
```

to analyze whether "fulfil" and "will" rhyme, and the answer is yes!

In this case, we train the HMM or 2rd-order Markov model in the reverse direction. To do this, we only need to reverse every line in the input corpus. To generate a poem, we first seed the end of the line with words that rhyme, and then generate lines with the reverse-direction-trained model. The following are several rhyming lines generated by trained HMM for groupG with number of hidden state 80.

```
as with proves replete in thee writ

even see shall accessary used must find and herself enfeebled mine it

she this and thee praise

then love away night seat is one days

this even had in lived their young part

yet subjects knife what right winter thee heart

and thou feelst find bear wretched your store line

that other not may it of shows this mine in writ mine

pity mayst be you made to praise best

the thee be him and length time thou am still breast
```

We can see that the lines alway rhyme, but the number of syllables varies a lot.

Controlling the total number of syllables in a line

There are several ways to control the total number of syllables in each line and ideally to make it exactly 10. We take a very simple approach to do this: repeatedly generating lines until the total number of syllables is 10. Sometimes, it takes a long time to get a line with exactly 10 syllables. Therefore, we randomly generate at most 50 lines, and keep the line whose total number of syllables is closest to 10.

To count the total number of syllables in each line, we need to count the number of syllables in each word. We combine the *NLTK* package, the *PyHyphen* package and our own-written function <code>count_syllables()</code> to count the number of syllables in each word as accurate as possible. If a word is in <code>cmudict</code>, the *NLTK* gives us the right answer. For examples, "increase" has 2 syllables according to <code>cmudict</code>. If a word is not in <code>cmudict</code>, we use *PyHyphen* to count the syllables. For example,

```
In[4]: from hyphen import Hyphenator
In[5]: h_en = Hyphenator('en_US')
In[6]: len(h_en.syllables(unicode('fulfil')))
Out[6]: 2
In[7]: len(h_en.syllables(unicode('air')))
Out[7]: 0
```

We can see that the *PyHyphen* package is not so accurate to identify the number of syllables in a word. Therefore, we also write our own function <code>count_syllables()</code> (see file <code>countvowel.py</code>) to correct possible mistakes made by the *PyHyphen* package.

With this approach to control the total number of syllables in a line, we get rhyming lines all of which have total number of syllables nearly 10. The following are several rhyming lines generated by trained 2rd-order Markov model for groupG.

```
which die for goodness who have lived for crime but were some child of yours alive that time to give back again and straight grow sad this told joy but then no longer glad lo thus by day my limbs by night my mind for thee and for my name thy love and am blind think all but one and me most wretched make till then not show my head where thou mayst take so till the judgment that your self arise so long lives this and dwell in lovers eyes
```

We can see that the lines alway rhyme, and the total number of syllables in each line is nearly 10.

Incorporating additional texts

Our framework enables us to train our models with additional texts. We include all 139 of Spenser?s sonnets in our training datasets. With the same process, i.e., pre-processing, rhyme dictionary learning, model training (for both HMM and 2rd-order Markov model), we can easy get models which have a larger dictionary. The training time nearly get doubled because we have nearly double sized training data. The following is one poem from our trained 2rd-order Markov model, with rhyming and controlling-the-total-number-of-syllables.

7 A reference for our document

8 Conclusion