Inclusive protocol

• 이 논문은 블록의 크기가 크거나 블록이 자주 생성될 때에 적 합한 블록체인 메커니즘을 연구한다.

• 비트코인의 경우 fork choice rule로 longest chain을 채택함.

• 이더리움의 경우 변형된 GHOST 프로토콜 사용.

• fork choice는 이중지불을 당할 수 있다.

 이전의 연구는 블록 생성률, 블록크기가 증가하면 블록생성시간 이 길어지고 이는 포크가 많이 발생함을 의미.

• 공격에 취약해지고 탈중앙성을 위태롭게함.

블록크기 증가, 블록 생성률 증가 문제

• 악성 공격에 대한 프로토콜의 보안적 문제가 생김

- 블록의 크기를 늘리는 것이 트랜잭션 처리량을 선형적으로 증가시켜주지는 않는다.
- 적은 수의 마이너들을 불리하게함. 보상이 적어지고 탈중앙성이 적어짐.

• 따라서, 이더리움의 변형된 GHOST프로토콜과 longest chain rule 에 추가적인 수정안을 제시한다.

• 이는 어떤 프로토콜과도 연동되어 잘 작동한다.

• 블록 DAG 및 inclusive 프로토콜을 통해 모든 트랜잭션을 로그에 담을 수 있도록 블록체인을 DAG 구조로 재구성할것임.

Inlcusive 프로토콜의 중요한 점은 블록이 메인체인의 일부가 아니어도 블록을 만든사람에게 수수료를 보상으로 준다는 것이다.

• 게임이론, 노드의 충돌을 최소화 ---

 비순환 구조의 블록 그래프를 통해 모든 블록의 내용을 로그에 통합함.

• 게임이론적 모델을 제공함.

• 게임 이론적 솔루션으로 프로토콜의 성능을 개선한다.

 이중지불에 대한 문제를 해결하면서 탈중앙화와 보안성을 잃지 않는것이 목표. • 블록은 포크가 발생하므로 DAG구조 가 형성됨.

• 블록을 타고가면서 해당 블록에 들어있는 트랜잭션이 T에 속하지 않으면 T에 포함시키는것을 반복.

Longest-chain과 비교 공격의 가능성

Table 1. The minimal double-spend (normalized by blocks' expected rewards, val) needed in order for an attack to be profitable in expectation, as a function of the number of confirmations and the attacker's computational power.

q	1	2	3	4	5	6	7	8	9	10
2%	0	0	$9.3 \cdot 10^{2}$	$1.2 \cdot 10^{5}$	$1.1 \cdot 10^{7}$	$8.3 \cdot 10^{8}$	$5.8 \cdot 10^{10}$	$3.8 \cdot 10^{12}$	$2.4 \cdot 10^{14}$	$1.3 \cdot 10^{16}$
6%	0	0	79	$3.1 \cdot 10^{3}$	$8.7 \cdot 10^4$	$2.1 \cdot 10^{6}$	$4.5 \cdot 10^{7}$	$9.1 \cdot 10^{8}$	$1.8 \cdot 10^{10}$	$2.9 \cdot 10^{11}$
10%	0	0	22	$4.8 \cdot 10^{2}$	$7.5 \cdot 10^{3}$	$9.9 \cdot 10^{4}$	$1.2 \cdot 10^{6}$	$1.4 \cdot 10^{7}$	$1.5 \cdot 10^{8}$	$1.4 \cdot 10^{9}$
14%	0	0	8.5	$1.3 \cdot 10^{2}$	$1.3 \cdot 10^{3}$	$1.2 \cdot 10^4$	$9.4 \cdot 10^{4}$	$7.1 \cdot 10^{5}$	$5.1 \cdot 10^{6}$	$3.2 \cdot 10^{7}$
18%	0	0	4.0	44	$3.3 \cdot 10^{2}$	$2.1 \cdot 10^{3}$	$1.2 \cdot 10^4$	$6.8 \cdot 10^{4}$	$3.6 \cdot 10^{5}$	$1.6 \cdot 10^{6}$
22%	0	0	2.0	18	$1.0 \cdot 10^{2}$	$5.1 \cdot 10^{2}$	$2.3 \cdot 10^{3}$	$9.7 \cdot 10^{3}$	$3.9 \cdot 10^{4}$	$1.4 \cdot 10^{5}$
26%	0	0	1.1	7.9	37	$1.5 \cdot 10^{2}$	$5.3 \cdot 10^{2}$	$1.8 \cdot 10^{3}$	$5.7 \cdot 10^3$	$1.6 \cdot 10^4$
30%	0	0	0.63	3.8	15	49	$1.4 \cdot 10^{2}$	$4.0 \cdot 10^{2}$	$1.0 \cdot 10^{3}$	$2.4 \cdot 10^{3}$
34%	0	0	0.36	1.9	6.4	18	45	$1.0 \cdot 10^{2}$	$2.3 \cdot 10^{2}$	$4.6 \cdot 10^{2}$
38%	0	0	0.20	0.92	2.8	6.9	15	30	58	$1.0 \cdot 10^{2}$
42%	0	0	0.10	0.43	1.2	2.6	5.2	9.3	16	25
46%	0	0	04	0.16	0.40	0.82	1.5	2.5	3.9	5.6
50%	0	0	0	0	0	0	0	0	0	0

Longest-chain과 비교 공격의 가능성

 서비스 지연 공격의 경우 만약 A라는 블록을 지연시키려면, A가 그래프에 포함되지 않는 블록을 생성해야함..

• 블록을 만들어야하므로 공격자의 비용이 크다.

• 따라서, 정직한 네트워크는 이러한 공격에 저항성이 있음.

Longest-chain과 비교 공격의 가능성

Fig. 1. The fraction of computational power an attacker needs to hold as a function of the increase in waiting time it aims to induce.

Fig. 2. The fraction of optimal throughput achieved in Inclusive and non-inclusive longest-chain protocols.