UTKU KAYA -2019556039

CEN481 – INTRODUCTION TO DATA MINING

DECISION TREE

```
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
```

```
data = pd.read_csv("/content/drive/MyDrive/Acoustic_Features.csv")
data.head()
data.info()
```

#	Column	Non-Null Count	Dtype
9	Class	400 non-null	
1		400 non-null	object float64
2	_RMSenergy_Mean	400 non-null	float64
3	_Lowenergy_Mean Fluctuation Mean	400 non-null	float64
4	riuctuation_mean Tempo Mean	400 non-null	float64
5	Tempo_nean MFCC Mean 1	400 non-null	float64
6	MFCC Mean 2	400 non-null	float64
7	MFCC Mean 3	400 non-null	float64
8	MFCC Mean 4	400 non-null	float64
9	MFCC Mean 5	400 non-null	float64
10	MFCC Mean 6	400 non-null	float64
11	MFCC Mean 7	400 non-null	float64
12	MFCC Mean 8	400 non-null	float64
13	MFCC Mean 9	400 non-null	float64
14	MFCC Mean 10	400 non-null	float64
15	MFCC Mean 11	400 non-null	float64
16	MFCC Mean 12	400 non-null	float64
17	_MFCC_Mean_13	400 non-null	float64
18	Roughness Mean	400 non-null	float64
19	_Roughness_Slope	400 non-null	float64
20	Zero-crossingrate Mean	400 non-null	float64
21	AttackTime Mean	400 non-null	float64
22	AttackTime Slope	400 non-null	float64
23	_Rolloff_Mean	400 non-null	float64
24	Eventdensity_Mean	400 non-null	float64
25	_Pulseclarity_Mean	400 non-null	float64
26	_Brightness_Mean	400 non-null	float64
27	_Spectralcentroid_Mean	400 non-null	float64
28	_Spectralspread_Mean	400 non-null	float64
29	_Spectralskewness_Mean	400 non-null	float64
30	_Spectralkurtosis_Mean	400 non-null	float64
31	_Spectralflatness_Mean	400 non-null	float64
32	_EntropyofSpectrum_Mean	400 non-null	float64
33	_Chromagram_Mean_1	400 non-null	float64
34	_Chromagram_Mean_2	400 non-null	float64
35	_Chromagram_Mean_3	400 non-null	float64
36	_Chromagram_Mean_4	400 non-null	float64
37	_Chromagram_Mean_5	400 non-null	float64
38	_Chromagram_Mean_6	400 non-null	float64
39	_Chromagram_Mean_7	400 non-null	float64
40	_Chromagram_Mean_8	400 non-null	float64
41	_Chromagram_Mean_9	400 non-null	float64
42	_Chromagram_Mean_10	400 non-null	float64
43	_Chromagram_Mean_11	400 non-null	float64
44 45	_Chromagram_Mean_12	400 non-null 400 non-null	float64 float64
45	_HarmonicChangeDetectionFunction_Mean		float64
46 47	_HarmonicChangeDetectionFunction_Std	400 non-null 400 non-null	float64
47	_HarmonicChangeDetectionFunction_Slope HarmonicChangeDetectionFunction PeriodFreq	400 non-null	float64
48	HarmonicChangeDetectionFunction_PeriodFreq HarmonicChangeDetectionFunction PeriodAmp	400 non-null	float64
49 50	HarmonicChangeDetectionFunction_PeriodAmp HarmonicChangeDetectionFunction PeriodEntropy	400 non-null	float64
שכ	nan moniteenangebeteeetionruneetion_periodentropy	400 HOH-HUII	1104104

```
data.Class.value_counts(normalize=True)
relax
           0.25
          0.25
happy
          0.25
          0.25
angry
Name: Class, dtype: float64
data.isnull().any().sum()
song_types=data["Class"].value_counts()
song_types_df=pd.DataFrame(song_types)
song_types_df=song_types.reset_index(level=0)
song_types_df
    index Class
 1 happy
               100
 3 angry
```



```
y = data['Class']
X = data.drop(columns=['Class'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1334)
le=LabelEncoder()
y_train=le.fit_transform(y_train)
y_test=le.fit_transform(y_test)
clf = DecisionTreeClassifier(max_depth=15)
# Çapraz doğrulama ile modelin performansını değerlendirme
cv_scores = cross_val_score(clf, X_train, y_train, cv=5)
print("Cross-validation Scores:")
print(cv_scores)
print("Mean Cross-validation Score:", cv_scores.mean())
Cross-validation Scores:
[0.640625 0.671875 0.609375 0.765625 0.6875 ]
Mean Cross-validation Score: 0.675
clf.fit(X_train, y_train)
test_predictions = clf.predict(X_test)
test_acc = accuracy_score(y_test, test_predictions)
print("\nTest Accuracy:", test_acc)
Test Accuracy: 0.7125
```

```
cm = confusion_matrix(y_test, test_predictions)
print("\nConfusion Matrix:")
print(cm)
plt.figure(figsize=(8, 6))
sns.heatmap(cm,xticklabels=le.classes_,yticklabels=le.classes_,annot=True,cmap="winter")
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
Confusion Matrix:
[[18  0  3  2]
[ 1  18  2  4]
[ 0  1  15  2]
[ 3  2  3  6]]
                                           Confusion Matrix
                                                                                                                 18
                                                                                                                - 16
                    18
                                           0
                                                                                                                - 14
                                                                                                                - 12
     happy
                                           18
                                                                                                                - 10
 Actual
                                                                                                                - 8
    relax
                                                                  15
                                                                                                                - 6
                                                                                                                - 4
     sad
                                                                                                                - 2
                                        happy
                                                                relax
                                                                                        sad
                  angry
                                                  Predicted
```

```
# Etiketler ve degerler
labels = ['Validation Accuracy', 'Model Accuracy']
values = [(cv_scores.mean()),(test_acc)]
# Bar grafik oluşturma
plt.figure(figsize=(6, 8))
plt.bar(labels, values, color=['blue', 'green'])
# Degerleri gösterme
for i, value in enumerate(values):
   plt.text(i, value + 0.01, f"{value:.4f}", ha='center', va='bottom', fontsize=12)
# Eksenler ve başlık
plt.xlabel('Metrics')
plt.ylabel('Accuracy')
plt.title('Validation Accuracy vs Model Accuracy')
plt.show()
                           Validation Accuracy vs Model Accuracy
                                                                              0.7125
                              0.6750
      0.7 -
      0.6
      0.5
  Accuracy
P.O.
      0.3
      0.2
      0.1
      0.0
                      Validation Accuracy
                                                                         Model Accuracy
                                                       Metrics
```