Calculus for Engineers Inverse Laplace Transforms

kobriendublin.wordpress.com

Youtube: StatsLabDublin

Convolution

The convolution of e^t with e^-t (also denoted $e^t * e^{-t}$)

- 1 Determine the Laplace transforms of both terms (find $G_1(s)$ and $G_2(s)$).
- 2 Multiply these terms (find $G_1(s) \times G_2(s)$.
- 3 Determine the inverse Laplace transform of that product (\mathcal{L}^{-1} ($G_1(s) \times G_2(s)$).

Determine the Laplace transform of e^t (using tables)

$$G_1(s) = \mathcal{L}[e^t] = \frac{1}{s+1}$$

Determine the Laplace transform of e^t (using tables)

$$G_1(s) = \mathcal{L}[e^{-t}] = \frac{1}{s-1}$$

(Note: see Formula sheet entry 6)

Multiply the terms $G_1(s)$ and $G_2(s)$

$$G_1(s)\cdot G_2(s)=rac{1}{s+1} imesrac{1}{s-1}$$

$$G_1(s)\cdot G_2(s)=rac{1}{s^2-1}$$

(Note: see next slide for workings)

Convolution: Step 2 (Workings)

Using the cross-multiplication technique

$$\frac{1}{s+1} \times \frac{1}{s-1} = \frac{1}{s+1} \times \frac{1}{s-1}$$

Find the inverse laplace transform of $G_1(s) \times G_2(s)$

$$e^t * e^{-t} = \sinh(t)$$