- 1 import pandas as pd
- 2 import numpy as np
- 3 from google.colab import drive
- 4 drive.mount("/content/drive")

Mounted at /content/drive

1 df = pd.read_csv("/content/drive/MyDrive/Time series forecasting/Python+CC (1)
2 # header = 0 means our first row contain header
3 df.head(10)

	Customer ID	Customer Name	Segment	Age	Country	City	State	Postal Code	Regi
0	CG- 12520	Claire Gute	Consumer	67	United States	Henderson	Kentucky	42420	So
1	DV- 13045	Darrin Van Huff	Corporate	31	United States	Los Angeles	California	90036	W
2	SO- 20335	Sean O'Donnell	Consumer	65	United States	Fort Lauderdale	Florida	33311	So
3	BH-11710	Brosina Hoffman	Consumer	20	United States	Los Angeles	California	90032	W
4	AA- 10480	Andrew Allen	Consumer	50	United States	Concord	North Carolina	28027	So
5	IM-15070	Irene Maddox	Consumer	66	United States	Seattle	Washington	98103	W
4									•

	Customer Name	Segment	Age	Country	City	State	Postal Code	Region
Customer ID								
CG- 12520	Claire Gute	Consumer	67	United States	Henderson	Kentucky	42420	South
DV- 13045	Darrin Van Huff	Corporate	31	United States	Los Angeles	California	90036	West
SO- 20335	Sean O'Donnell	Consumer	65	United States	Fort Lauderdale	Florida	33311	South

1 ## if we want to see 1st row of our dataset 2 df.iloc[0]

Customer ID CG-12520 Customer Name Claire Gute Segment Consumer Age 67 United States Country Henderson City State Kentucky Postal Code 42420 South Region Name: 0, dtype: object

1 df.loc[0]

Customer ID CG-12520 Customer Name Claire Gute Segment Consumer Age 67 United States Country City Henderson State Kentucky Postal Code 42420 Region South Name: 0, dtype: object

1 df1.iloc[0:2]

	Customer Name	Segment	Age	Country	City	State	Postal Code	Region
Customer ID								
CG- 12520	Claire Gute	Consumer	67	United States	Henderson	Kentucky	42420	South

1

- Seaborn

- 1 import seaborn as sns
- 1 sns.distplot(df.Age)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarnin warnings.warn(msg, FutureWarning)

<matplotlib.axes. subplots.AxesSubplot at 0x7f3d93a59950>

1 sns.distplot(df.Age, kde = False, color = 'r')

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarnin warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3d910fc8d0>

1 help(sns.distplot)

.. plot::

:context: close-figs

- >>> import seaborn as sns, numpy as np
- >>> sns.set_theme(); np.random.seed(0)
- >>> x = np.random.randn(100)
- >>> ax = sns.distplot(x)

Use Pandas objects to get an informative axis label:

.. plot::

```
:context: close-figs
   >>> import pandas as pd
   >>> x = pd.Series(x, name="x variable")
   >>> ax = sns.distplot(x)
Plot the distribution with a kernel density estimate and rug plot:
.. plot::
   :context: close-figs
   >>> ax = sns.distplot(x, rug=True, hist=False)
Plot the distribution with a histogram and maximum likelihood gaussian
distribution fit:
.. plot::
   :context: close-figs
   >>> from scipy.stats import norm
   >>> ax = sns.distplot(x, fit=norm, kde=False)
Plot the distribution on the vertical axis:
.. plot::
    :context: close-figs
   >>> ax = sns.distplot(x, vertical=True)
Change the color of all the plot elements:
.. plot::
   :context: close-figs
   >>> sns.set color codes()
   >>> ax = sns.distplot(x, color="y")
Pass specific parameters to the underlying plot functions:
.. plot::
   :context: close-figs
   >>> ax = sns.distplot(x, rug=True, rug_kws={"color": "g"},
                          kde kws={"color": "k", "lw": 3, "label": "KDE"},
                          hist kws={"histtype": "step", "linewidth": 3,
                                     "alpha": 1, "color": "g"})
```

```
1 iris = sns.load_dataset("iris")
2 iris.head()
```

	sepal_length	sepal_width	petal_length	petal_width	species	10+
0	5.1	3.5	1.4	0.2	setosa	
1	4.9	3.0	1.4	0.2	setosa	
2	4.7	3.2	1.3	0.2	setosa	

1 sns.jointplot("sepal_length", "sepal_width", data = iris, color = 'r')

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: P FutureWarning

<seaborn.axisgrid.JointGrid at 0x7f3d910948d0>

1

Scatter plot for all the variables

1 sns.pairplot(data = iris)

✓ 5s completed at 12:37 AM

×