

Bullet Constraints Builder

Building description of a Multi- Family House

Laurea University of Applied Sciences Kai Kostack, Dipl. Arch. ETH Oliver Walter 22.03.2018

General description of structure

The building that we are going to simulate is a Multi Family House with four storeys. The dimensions of its footprint are 18.50 x 17.00 m, the building has a height of 14.00 m over ground. The standard floor height is 3.5 m. All loadbearing structural members are made of reinforced concrete. Wall and columns stabilise the structure against horizontal forces and transfer the loads between the storeys. Non-structural components, like windows or light separating walls are not taken into consideration in the 3D model. A special feature of this building is its cantilever extension supported by girders in the first floor.

Compound Ceilings

The ceiling slabs of the Multi Family House are 0.22 m thick with the exception of the basement ceiling which is 0.28 m thick. They consist of concrete C30/37 and have S 500 as steel reinforcements, Figure 2 and Figure 3 show their cross sections and their position in the building. Table 1 contains the ceiling element information that is read out from the sections and that needs to be inserted in the BCB Formula Assistant.

Figure 2- Slabs 22cm, section with reinforcement and location of these slabs in the building

Figure 3- Slab 28cm, section with reinforcement and location of this slab in the building

Level	Member	Member	Bars ø	Bar Distance	Bar Amount	Concrete	Strengths
	Thickness	Width(part)			2*(width/Dist)	Cover	Fs/Fc
[-]	[mm]	[mm]	[mm]	[mm]	[-]	[mm]	N/mm ²
2,3,4	220	1500	8	150	20	30	500/30
1	280	1500	10	100	30	30	500/30

Table 1- Slabs specifications to be inserted in the BCB Formula Assistant

Precast - Rectangular Beam

The building's cantilever extension is supported by girders at the ground level which absorb the forces from above and transfer them to columns and walls in the ground floor. The girder consist of concrete C40/50 and have S 500 as steel reinforcements, Figure 4 shows the girders cross section and their position in the building. Table 2 contains the girder element information that is read out from the cross section and that needs to be inserted in the BCB Formula Assistant.

Figure 4- Girders, section with reinforcement and their location in the building

Member	Member	Lower longitu-	Lower longitudi-	Stirrup ø	Stirrup	Concrete	Strengths
Width	Height	dinal Bars, ø	nal Bars, Amount		Distance	Cover	Fs/Fc
[mm]	[mm]	[mm]	[-]	[mm]	[mm]	[mm]	N/mm ²
250	650	200	5	14	150	30	500/40

Table 2- Beam specifications to be inserted in the BCB Formula Assistant

Basic Walls

The main supporting structure of this Multi Family House are the façades and some inner walls that have also the task to stabilise the building against horizontal forces. All walls are 25 cm thick. The reinforced concrete walls consist of concrete C30/37, Figure 5 shows the walls cross section and their position in the building. Table 3 contains the wall element information that is read out from the cross section and that needs to be inserted in the BCB Formula Assistant.

Figure 5- Walls, section with reinforcement and their location in the building

Member	Member	Bars ø	Bar Distance	Bar Amount	Concrete	Strengths
Thickness	Width(part)			(width/Dist)	Cover	Fs/Fc
[mm]	[mm]	[mm]	[mm]	[-]	[mm]	N/mm ²
250	1500	10	150	10	125	500/30

Table 3- Wall specifications to be inserted in the BCB Formula Assistant

Columns

Beside the walls there are columns to carry the vertical loads, the columns allow more open spaces in the apartments. They consist of concrete C30/37 and have S 500 as steel reinforcement, Figure 6 shows the column cross section and their position in the building. Table 4 contains the column element information that is read out from the cross section and that needs to be inserted in the BCB Formula Assistant.

Figure 6- Columns, section with reinforcement and their location in the building

Member	Member	Longitudinal	Longitud. Bar	Stirrup ø	Stirrup	Concrete	Strengths
Width	Length	Bars ø	Amount		Distance	Cover	Fs/Fc
[mm]	[mm]	[mm]	[-]	[mm]	[mm]	[mm]	N/mm²
250	250	12	16	8	150	30	500/30

Table 4- Column specifications to be inserted in the BCB Formula Assistant

Cast-In-Place Stair

The stairs are non-structural elements that don't contribute to the general stability of the building. They most likely don't influence the outcome of the simulation, however, they are still included in the 3D model for sake of completeness. They consist of concrete C30/37 and have S 500 as steel reinforcement, Figure 7 shows the stair cross section and their position in the building. Table 5Table 4 contains the stair element information that is read out from the section and that needs to be inserted in the BCB Formula Assistant.

Figure 7- Stairs, section with reinforcement and their location in the building

Member	Member	Bars ø	Bar Distance	Bar Amount	Concrete	Strengths
Thickness	Width(part)			2*(width/Dist)	Cover	Fs/Fc
[cm]	[cm]	[mm]	[cm]	[-]	[cm]	N/mm ²
15	150	10	15	20	3	500/30

Table 5- Stair specifications to be inserted in the BCB Formula Assistant