

Rec'd PCT/PTO 14 JUL 2005

<110> Maillard, Michel
John, Varghese

<120> Methods of Treating Alzheimer's Disease Using Aromatically Substituted w-Amino-Alkanoic Acid Amides and Alkanoic Acid Diamides

<130> 02-415-A1

<140> 10/517,981
<141> 2003-06-11

<150> 60/387,756
<151> 2002-06-11

<160> 9

<170> PatentIn version 3.3

<210> 1
<211> 13
<212> PRT
<213> Artificial sequence

<220>
<223> synthetic peptide

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> N-terminal biotin

<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> covalent attachment of oregon green

<400> 1

Ser Glu Val Asn Leu Asp Ala Glu Phe Arg Cys Lys Lys
1 5 10

<210> 2
<211> 13
<212> PRT
<213> Artificial sequence

<220>
<223> synthetic peptide

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> N-terminal biotin

<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> covalent attachment of oregon green

<400> 2

Ser Glu Val Lys Met Asp Ala Glu Phe Arg Cys Lys Lys
1 5 10

<210> 3
<211> 22
<212> PRT
<213> Artificial sequence

<220>
<223> synthetic peptide

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> N-terminal biotin

<220>
<221> MISC_FEATURE
<222> (20)..(20)
<223> covalent attachment of oregon green

<400> 3

Gly Leu Asn Ile Lys Thr Glu Glu Ile Ser Glu Ile Ser Tyr Glu Val
1 5 10 15

Glu Phe Arg Cys Lys Lys
20

<210> 4
<211> 34
<212> PRT
<213> Artificial sequence

<220>
<223> synthetic peptide

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> N-terminal biotin

<220>
<221> MISC_FEATURE
<222> (32)..(32)
<223> covalent attachment of oregon green

<400> 4

Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile
1 5 10 15

Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Asp Ala Glu Phe Arg Cys
20 25 30

Lys Lys

<210> 5
<211> 33
<212> PRT
<213> Artificial sequence

<220>
<223> synthetic peptide

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> N-terminal biotin

<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> oxidized cysteine

<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> oxidized cysteine

<220>
<221> MISC_FEATURE
<222> (31)..(31)
<223> covalent attachment of oregon green

<400> 5

Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val Glu Ala Leu Tyr
1 5 10 15

Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Ala Cys Lys
20 25 30

Lys

<210> 6
<211> 33
<212> PRT
<213> Artificial sequence

<220>
<223> synthetic peptide

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> N-terminal biotin

<400> 6

Cys Gly Gly Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu
1 5 10 15

Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Asp Ala Glu
20 25 30

Phe

<210> 7
<211> 29
<212> PRT
<213> Artificial sequence

<220>
<223> synthetic peptide

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> N-terminal biotin

<400> 7

Cys Gly Gly Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu
1 5 10 15

Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Asn Leu
20 25

<210> 8
<211> 9
<212> PRT
<213> Artificial sequence

<220>
<223> synthetic peptide

<400> 8

Ser Glu Val Asn Leu Asp Ala Glu Phe
1 5

<210> 9
<211> 30
<212> PRT
<213> Artificial sequence

<220>
<223> synthetic peptide

<400> 9

Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile
1 5 10 15

Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Asp Ala Glu Phe
20 25 30