Convex Optimization

Lab 2: Newton's Method-I and Newton's Method-II

Lecturer: Dr. Wan-Lei Zhao

Autumn Semester 2025

The **Newton's method**-I procedure

2 Repeat

a
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

b
$$x_n = x_{n+1}$$

3 Until $f(x_n)$ close to 0

Practice with **Newton's method-I** (1)

• Solve $e^x - x^2 + 3x + 4 = 0$

- $f'(x) = e^x 2x + 3$
- Notice that f(x) is defined by ourselves

Practice with Newton's method (2)

Try to solve following equations by Newton's method-I

$$e^{x} - x^{2} + 3x + 4 = 0$$

 $6sin(x) + 5x - 2 = 0$
 $5x + lnx = 10000$

The Newton's method-II procedure

- 1 $x_k = x_0$
- 2 Repeat

a.
$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

b
$$x_k = x_{k+1}$$

3 Until $| f(x_k) - f(x_{k+1}) |$ is close to 0

Practice with Newton's method (1)

- **1** Implementation of Newton's method-II in Section **??**, Algorithm **??**, try to implement Newton's method-II by MATLAB. Find the mininum for function $z = 4 * x^2 + y^2 + 5$, $x, y \in [-4, 4]$. The initial point the iteration is x = 3, y = 4.
- 2 Try to find the local minimal for function $z = x * y + y^2$, $x, y \in [-6, 6]$ by Newton's method-II. The initial point the iteration is x = 2, y = 2. See what happens

Wan-Lei Zhao Convex Optimization October 13, 2025 6 / 6