BALKAN OLYMPIAL
IN INFORMATICS

Udine, 27 September 2025

popswap • TR

PopSwap (popswap)

Verilen bir N tam sayısı için, S_N kümesi (0,...,N-1) sayılarının tüm permütasyonlarını içerir. Ayrıca, E_N kümesi, aşağıdaki koşulları sağlayan tüm sıralı (p,q) çiftlerini içerir:

- p ve q, S_N kümesinin elemanlarıdır;
- \bullet p ve q birbirlerinden iki komşu elemanın yerini değiştirerek elde edilebilir.

Unutmayın ki, eğer $(p,q) \in E_N$ ise, o zaman $(q,p) \in E_N$ de geçerlidir.

Amacınız, S_N 'in her elemanını $[0, 2^{60})$ aralığında benzersiz bir doğal sayı ile etiketlemek, yani S_N 'den 2^{60} 'tan küçük doğal sayılar kümesine giden birebir¹ bir $\mathcal L$ fonksiyonu (etiketleme olarak adlandırılır) üretmektir.

Bir etiketlemenin kalitesi, en aza indirilmesi gereken iki parametre ile ölçülür:

- Büyüklük $M(\mathcal{L})$, tüm p elemanları için $2^k > \mathcal{L}(p)$ koşulunu sağlayan en küçük doğal sayı k olarak tanımlanır.
- Yakınlık $C(\mathcal{L})$, şöyle tanımlanır:

$$C(\mathcal{L}) = \sum_{(u,v) \in E_N} \operatorname{popcount}(\mathcal{L}(u) \oplus \mathcal{L}(v)).$$

Burada \oplus bit düzeyinde özel veya (xor) işlemidir ve popcount(x) ise x'in ikili gösterimindeki kurulu (değeri 1 olan) bitlerin (set bits) sayısıdır.

Göreviniz, hem $M(\mathcal{L})$ hem de $C(\mathcal{L})$ için düşük değerler elde eden bir \mathcal{L} etiketlemesi bulmaktır. Optimal bir çözümün gerekmediğini unutmayın.

Implementasyon

Bu, sadece çıktı odaklı bir görevdir. Her girdi dosyası için ayrı bir çıktı dosyası göndermelisiniz. Girdi ve çıktı dosyaları aşağıdaki formatı takip etmelidir.

Girdi formatı

Girdi dosyaları, bir N tam sayısı ve girdinin G indeksini içeren tek bir satırdan oluşur.

Çıktı formatı

Çıktı dosyaları N! satırdan oluşmalıdır; bunların i'si, sözlükbilimsel olarak (yani sözlük sırasına göre) i-inci permütasyonun etiketini içermelidir.²

Puanlama

Bu görev tam olarak 2 test senaryosuna sahiptir: input000.txt ve input001.txt. Her ikisinde de N=10.

Çözümünüzün her test senaryosundaki puanı $S_M(\mathcal{L}) \times S_C(\mathcal{L})$ olarak belirlenir; burada $S_C(\mathcal{L})$ ve $S_M(\mathcal{L})$ çıktı etiketlemeniz \mathcal{L} 'nin fonksiyonlarıdır.

- Her girdi için $S_C(\mathcal{L}) = \left(\min(1, 36 \cdot 10^6/C(\mathcal{L}))\right)^2$.
- $S_M(\mathcal{L})$ her girdi için farklıdır ve aşağıdaki tablolara göre belirlenir. Tablolarda belirtilen değerler arasında, S_M doğrusal olarak değişir.

popswap Sayfa 1/2

¹Bir fonksiyon, farklı elemanları farklı elemanlara eşliyorsa birebir olarak adlandırılır.

 $^{^2}$ Biçimsel olarak, $p \neq q$ olmak üzere iki permütasyon verildiğinde, $p_k \neq q_k$ koşulunu sağlayan en küçük k indeksi için $p_k < q_k$ ise p'nin q'dan sözlükbilimsel olarak daha küçük olduğunu söyleriz.

Hatalı formatlanmış bir çıktı her zaman sıfır puan alır.

input(in	
$M(\mathcal{L})$	$S_M(\mathcal{L})$	\overline{M}
> 60	0	>
60	6	6
< 25	60	

_input(input001.txt		
$M(\mathcal{L})$	$S_M(\mathcal{L})$		
> 25	0		
25	0		
≤ 22	40		

Görevin toplam puanı, her test senaryosundaki puanların toplamıdır.

Örnekler

input	output
3 -1	32
	16
	8
	4
	2
	1

Açıklama

Unutmayın ki **ilk örnek durum** resmi bir test durumu değildir, çünkü $N \neq 10$ ve $G \notin \{0,1\}$. Örnek çıktı aşağıdaki etiketlemeyi temsil eder:

$$\mathcal{L}(p) = \begin{cases} 32 \text{ if } p = (0, 1, 2) \\ 16 \text{ if } p = (0, 2, 1) \\ 8 \text{ if } p = (1, 0, 2) \\ 4 \text{ if } p = (1, 2, 0) \\ 2 \text{ if } p = (2, 0, 1) \\ 1 \text{ if } p = (2, 1, 0) \end{cases}$$

 $2^5 \not > 32$ ama $2^6 > 32$ olduğu için, etiketlemenin büyüklüğü $M(\mathcal{L}) = 6$ 'dır. E_3 'te $3! \cdot (3-1) = 12$ eleman olduğu ve tüm $p,q \in S_N$ için popcount $(\mathcal{L}(p),\mathcal{L}(q)) = 2$ olduğundan, etiketlemenin yakınlığı $C(\mathcal{L}) = 12 \cdot 2 = 24$ 'tür.

Sayfa 2 / 2