

Invariants of Finite Groups Generated by Reflections

Author(s): Claude Chevalley

Source: American Journal of Mathematics, Vol. 77, No. 4 (Oct., 1955), pp. 778-782

Published by: The Johns Hopkins University Press Stable URL: http://www.jstor.org/stable/2372597

Accessed: 14-03-2017 14:34 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms

The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Mathematics

INVARIANTS OF FINITE GROUPS GENERATED BY REFLECTIONS.*

By CLAUDE CHEVALLEY.

- 1. An invertible linear transformation of a finite dimensional vector space V over a field K will be called a reflection if it is of order two and leaves a hyperplane pointwise fixed. A group G of linear transformations of V is a finite reflection group if it is a finite group generated by reflections. The operations of G extend to automorphisms of the symmetric algebra S of V by the rule $g(P)(x) = P(g^{-1}(x))$, $(P \in S, x \in V)$, and an element $P \in S$ such that g(P) = P for all $g \in G$ is said to be an invariant of G. Our main purpose in this note is to prove the theorem:
- (A) Let G be a finite reflection group in a n-dimensional vector-space V over a field K of characteristic zero. Then the K-algebra J of invariants of G is generated by n algebraically independent homogeneous elements (and the unit).

A vector space A is graded by subspaces A^i , (i positive integer), if it is the direct sum of the A^i . The degree d^0P of $P \in A$ is the smallest integer j such that $P \in \sum_{i \leq j} A^i$; the elements of A^i are the homogeneous elements of degree i. When the A^i are finite dimensional, the Poincaré series of A in the indeterminate t is defined as

$$P_t(A) = \sum_{i \geq 0} \dim A^{i} \cdot t^{i}.$$

In particular S is graded in the obvious way and $P_t(S) = (1-t)^{-n}$. Let F be the ideal generated by the homogeneous elements of strictly positive degrees in J. Then the grading of S induces a grading of the quotient space S/F. Since F is invariant under G, the operations of G in S induce automorphisms of S/F. We shall also prove:

(B) Let I_1, \dots, I_n be a minimal system of homogeneous generators of J and let m_i be the degree of I_i , $(1 \le i \le n)$. Then

$$P_t(S/F) = (1-t)^{-n} \cdot \prod_{i=1}^{i=n} (1-t^{m_i}).$$

^{*} Received June 9, 1955.

The product of the m_i is equal to the order of G and to the dimension of S/F. The natural representation of G in S/F is equivalent to the regular representation.

2. Two lemmas. In this paragraph, the characteristic p of the infinite groundfield K is allowed to be $\neq 0$ and G denotes a finite reflection group in V whose order N is prime to p. To any element $P \in S$ we can then associate its average over G:

$$M(P) = 1/N \sum_{g \in G} g(P).$$

Lemma 1. Let U_1, \dots, U_m be invariants of G such that U_1 does not belong to the ideal generated in J by U_2, \dots, U_m . Let P_i , $(1 \le i \le m)$, be homogeneous elements of S satisfying a relation $\sum_{i=1}^{m} P_i \cdot U_i = 0$. Then $P_1 \in F$.

If $d^{0}P_{1}=0$, then it follows from the assumption and from the relation

$$M(P_1) \cdot U_1 + \cdot \cdot \cdot + M(P_m) \cdot U_m = 0$$

that $P_1 = M(P_1) = 0$. Assume now $d^0P_1 > 0$ and the lemma to be true for all relations $\sum_{i=1}^{m} Q_i \cdot U_i = 0$ with homogeneous Q_i and $d^0Q_1 < d^0P_1$. Let s be a reflection of G leaving pointwise fixed a hyperplane with equation L = 0. Then $s(P_i) - P_i = L \cdot Q_i$, $(Q_i \in S, i = 1, \dots, m)$, and

$$Q_1 \cdot U_1 + \cdot \cdot \cdot + Q_m \cdot U_m = 0$$

whence, by induction, $Q_1 \, \varepsilon \, F$ or, otherwise said, $s(P_1) \equiv P_1 \, \text{mod.} \, F$; the group G being generated by reflections, we have then $g(P_1) \equiv P_1 \, \text{mod.} \, F$ for any $g \, \varepsilon \, G$, whence $P_1 \equiv M(P_1) \, \text{mod.} \, F$; since P_1 is homogeneous of strictly positive degree, the same is true for $M(P_1)$; therefore $M(P_1) \, \varepsilon \, F$ and $P_1 \, \varepsilon \, F$.

Lemma 2. Assume K to be a perfect field. Let I_i , $(1 \le i \le m)$, be homogeneous invariants which form an ideal basis of F_i with $m_i = d^0I_i$ prime to p for $i \le r$. Then I_1, \dots, I_r are algebraically independent.

Let us suppose the lemma to be false and let $H(I_1, \dots, I_r) = 0$ be a non trivial relation of minimal degree between I_1, \dots, I_r where $H(y_1, \dots, y_r)$

¹ In this paper, we are primarily interested in the case p=0, but Lemma 2 will be used in a forthcoming paper of A. Borel, to appear in Jour. Math. Pur. Appl.

² This always exists since by the classical theorem for invariants of a finite group, J is a finitely generated K-algebra.

is a polynomial in r letters y_i . We may assume that there exists an integer h such that for any monomial $y_1^{k_1} \cdot \cdot \cdot \cdot y_r^{k_r}$ of H we have

$$k_1 \cdot m_1 + \cdots + k_r \cdot m_r = h$$
.

The partial derivatives $\partial H/\partial y_i$ are not all zero, because otherwise (for $p \neq 0$, the only case for which it is not obvious), K being perfect, H would be the p-th power of a polynomial H^* , and $H^*(I_1, \dots, I_r) = 0$ would be a non trivial relation of strictly smaller degree. Set

$$H_i = \partial H/\partial y_i (I_1, \cdots, I_r), \qquad (1 \le i \le r);$$

then H_1, \dots, H_r are in J and not all zero; after a possible permutation of indices, we may assume that they belong to the ideal generated in J by the first s of them, but that none of H_1, \dots, H_s belongs to the ideal generated by the other ones in J. Set

$$H_{s+j} = \sum_{i=1}^{i=s} V_{j,i} H_i.$$

Let x_k , $(1 \le k \le n)$, be coordinates in V. Since

$$\int_{i=1}^{i=r} H_i \cdot (\partial I_i / \partial x_k) = 0, \qquad (1 \le k \le n),$$

we have by Lemma 1

$$\partial I_i/\partial x_k + \sum_{j=1}^{j=r-s} V_{j,i}(\partial I_{s+j}/\partial x_k) \in F, \qquad (1 \le i \le s; 1 \le k \le n)$$

(the left hand sides are homogeneous in the x_k by the above remark on the monomials of H). Multiplying this relation by x_k and adding the relations thus obtained, we get

$$m_{i}I_{i} + \sum_{i=1}^{j=r-s} V_{j,i}m_{s+j}I_{s+j} = \sum_{l=1}^{l=m} A_{i,l}I_{l},$$
 $(1 \le i \le s).$

where the $A_{i,l}$ are forms belonging to the ideal generated by x_1, \dots, x_n . For reasons of homogeneity, we have $A_{i,l} = 0$ if I_l is not of strictly lower degree than I_i ; m_i being prime to p for $i \leq r$, we see that I_i belongs to the ideal generated by the other I_j , which is a contradiction. Thus I_1, \dots, I_r are algebraically independent.

3. Proofs of Theorems (A) and (B). We assume again the ground-field to be of characteristic zero and denote as in Lemma 2 by I_1, \dots, I_m homogeneous invariants of G forming an ideal basis of F. By Lemma 2

they are algebraically independent, whence also $m \leq n$. Using averages over G, it is readily seen by induction on the degree that the unit and the I_i generate J and thus, to finish the proof of (A), there remains to show that $m \geq n$.

Let x_1, \dots, x_n be coordinates in V and let K(x) be the field of rational functions in the x_i . It is acted upon in a natural way by G and we denote by L the subfield of elements invariant under G. Then K(x) is a Galois extension of L, with Galois group G and L has also transcendence degree n over K. On the other hand, G being *finite*, every invariant in K(x) is classically the quotient of two invariant polynomials; thus L = K(J) is generated by the I_i , and $m \ge n$.

LEMMA 3. Let P_1, \dots, P_s be homogeneous elements of S whose residue classes mod F are linearly independent over K in S/F. Then P_1, \dots, P_s are linearly independent over K(J).

Let $V_1 \cdot P_1 + \cdots + V_s \cdot P_s = 0$ be a relation with $V_i \in K(J)$, $(1 \le i \le s)$. We have to prove that $V_i = 0$ for all i and it is enough to consider the case where the V_i are homogeneous elements of J such that $d^0V_i + d^0P_i$ is equal to a constant h independent of i.

By the degree of the monomial $I_1^{k_1} \cdots I_n^{k_n}$ we mean its degree as element of S, i.e. $k_1m_1 + \cdots + k_nm_n$. Let S_j , $(j = 1, 2, \cdots)$, be the different monomials in the I_i arranged by increasing degrees, with $S_1 = 1$. We have

$$V_i = \sum_{j \geq 0} k_{ij} S_j, \qquad (k_{ij} \in K, k_{ij} = 0 \text{ for } d^0 V_i \neq d^0 S_j, \ (1 \leq i \leq n)),$$

and our relation may be written

$$\sum_{j\geq 0} W_j \cdot S_j = 0, \qquad (W_j = \sum_{i=1}^{t=s} k_{ij} P_i),$$

where W_j is homogeneous, of degree equal to $h - d^0S_j$. Assume that $k_{ij} = 0$ for $1 \le i \le s$ and j < t. Since by Theorem A the monomial S_t does not belong to the ideal generated in J by the S_j with j > t, we have by Lemma 1 $W_t \in F$ and the hypothesis gives then $k_{it} = 0$ for $i = 1, \dots, s$. This proves by induction on j that $k_{ij} = 0$ for all i, j, and the lemma.

We now come to the proof of (B). The field K(x) being a normal extension of K(J) with Galois group G, has degree N over K(J), hence the dimension of S/F over K is finite. Let A_1, \dots, A_q be homogeneous polynomials whose residue classes mod F form a basis of S/F. By induction on the degree we see that every $P \in S$ may be expressed as linear combination

of the A_i with coefficients in J, and this expression is unique in view of Lemma 3. Hence

$$P_t(S) = P_t(S/F) \cdot P_t(J)$$
;

but $P_t(S) = (1-t)^{-n}$ and Theorem A gives $P_t(J) = \prod_{1}^{n} (1-t^{m_t})^{-1}$, whence the first assertion of (B). We may also write

$$P_t(S/F) = \prod_{i=1}^{i=n} (1 + t + t^2 + \cdots + t^{m_{i-1}})$$

and, setting t=1, we get dim. $S/F=m_1\cdots m_n$. Since every element of K(x) may be written as the quotient of a polynomial by an invariant polynomial, it also follows from the above and Lemma 3 that the A_i form a basis of K(x) over K(J), whence $N=\dim S/F$.

We have for $g \in G$

$$g(A_i) = \sum_{j=1}^{j=N} a_{ij}(g) A_j,$$
 $(i = 1, \dots, N),$

where the $a_{ij}(g)$ are homogeneous elements of J and where $a_{ii}(g) \in K$ by homogeneity. The matrices $(a_{ij}(g))$ describe the natural representation of G in K(x), considered as vector space over K(J). If we reduce the coefficients mod F we get the natural representation of G in S/F, considered as vector space over K; this reduction does not affect the diagonal coefficients, hence both representations have the same character and are equivalent. But G is the Galois group of the normal extension K(x) of K(J), so that the former representation is equivalent to the regular representation, which proves the last statement of (B).

COLUMBIA UNIVERSITY.