Financial derivatives

Lecture 6: Binomial option pricing model

Douglas Chung

Primer of option pricing

Option payoffs

Similar to pricing of forwards, we have to **price options through payoffs replication**. However, there are a few salient differences:

- Some options may **not be exercised** before their **expiration**.
- Some options may offer flexibility in the timing of exercise.
- Payoffs of some options can be path-dependent.

Therefore, we cannot replicate all the outcomes of an option without modeling the underlying price over the contract life.

Option payoffs

Non-path-dependent options:

European options:

- can only be exercised at maturity;
- suffice to model terminal underlying prices.

Path-dependent options:

American options:

- can be exercised anytime during their lifetimes;
- need to know the entire underlying price path.

Asian options:

- payoffs depend on lifetime averages of underlying prices;
- need to know the entire underlying price path.

Binomial model

How can we model underlying price movements?

Using the **binomial model**, the underlying price follows:

$$S_{t+1} = \begin{cases} uS_t, & \text{with probability } p \\ dS_t, & \text{with probability } 1 - p \end{cases}$$

In particular:

- p is the physical probability of being in the up-state;
- *u* is the multiplier of an **up move**;
- \blacksquare *d* is the multiplier of a **down move**.

From time t to t+1, the **underlying price** only goes **up** or **down**:

Restriction on u and d

The following **restriction must hold** for the binomial model:

$$u > 1 + r > d$$

If 1 + r > u:

- the risk-free asset dominates the underlying asset;
- arbitrage by buying the risk-free asset and short selling the underlying asset.

If d > 1 + r:

- the underlying asset **dominates** the risk-free asset;
- arbitrage by buying the underlying asset and borrowing at the risk-free rate.

Pricing by replication

Underlying price movements

Suppose the price movements of a stock is given by a **one-period binomial model** with the following assumptions:

- u = 1.25; d = 0.8;
- p = 0.5; r = 2.4%; and $S_0 = 30 .

We want to **replicate a call option** with K = \$33. For instance:

- $C_u = \max[\$37.5 \$33, 0] = \$5.35;$
- $C_d = \max[\$24 \$33, 0] = \$0.$

To replicate the payoffs at t = 1, we form a portfolio consisting of:

- △ units of the underlying asset;
- B dollars of the risk-free asset with return r.

In particular, we want the following two equations to hold:

$$\Delta uS_0 + (1+r)B = C_u$$
$$\Delta dS_0 + (1+r)B = C_d$$

After solving them:

$$\Delta = \frac{C_u - C_d}{S_0(u - d)}$$

$$B = \frac{1}{(1+r)} \left[\frac{uC_d - dC_u}{u - d} \right]$$

Table: Replicating a call option

Investment	Cash flows at		
	t = 0	$T = 1: S_T < K$	$T=1:S_T\geq K$
Buy ∆ underlying	$-\Delta S_t$	ΔS_T	ΔS_T
Invest B at r	-B	B(1+r)	B(1+r)
Net cash flows	$-(\Delta S_t + B)$	$\Delta dS_t + (1+r)B$	$\Delta uS_t + (1+r)B$

Therefore, the **call option value** at t = 0 is:

$$C = \Delta S_0 + B$$

$$= \frac{C_u - C_d}{S_0(u - d)} S_0 + \frac{1}{(1+r)} \left[\frac{uC_d - dC_u}{u - d} \right]$$

By plugging in the numbers:

$$C = \frac{\$4.5}{\$30(1.25 - 0.8)}(\$30) + \frac{1}{(1.024)} \left[\frac{-0.8(\$4.5)}{1.25 - 0.8} \right]$$
$$= \frac{1}{3}(\$30) - \$7.8125$$
$$= \$2.1875$$

In other words, we replicate a call option by:

- buying $\Delta = \frac{1}{3}$ units of the underlying asset;
- borrowing B = -\$7.8125 from the risk-free rate.

Option delta Δ

The call option value is given by:

$$C = \Delta S + B$$

- **Delta** \triangle is the number of shares of an **underlying asset** required to **replicate the option**.
- One share of option **embeds** \triangle shares of the underlying asset.
- \triangle also measures the **sensitivity** of the **option price** C with respect to a **change in the underlying asset price** S.

If we **differentiate** the option value against *S*:

$$\frac{\partial C}{\partial S} = \Delta$$

Arbitrage from an under/overvalued call option

Suppose the same call option is trading at \$2.25 (overvalued), we earn an arbitrage profit by:

- selling the call option at \$2.25;
- buying the replicating portfolio at \$2.1875.

If its price is \$2 (undervalued), we make an arbitrage profit by:

- buying the call option at \$2;
- selling the replicating portfolio at \$2.1875.

So far, the general formula for pricing a call option is:

$$C = \Delta S + B$$

$$= \frac{C_u - C_d}{(u - d)} + \frac{1}{(1 + r)} \left[\frac{uC_d - dC_u}{u - d} \right]$$

$$= \frac{(1 + r)C_u - dC_u}{(1 + r)(u - d)} + \frac{uC_d - (1 + r)C_d}{(1 + r)(u - d)}$$

$$= \frac{1}{1 + r} \left[\frac{(1 + r) - d}{u - d} C_u + \frac{u - (1 + r)}{u - d} C_d \right]$$

By defining the risk-neutral probability as:

$$q = \frac{(1+r)-d}{u-d}$$
 and $1-q = \frac{u-(1+r)}{u-d}$

When u > 1 + r > d, q behaves just like probability as:

$$1 > q > 0$$
 and $q + (1 - q) = 1$

As we replicate the option future payoffs perfectly state by state:

- we can use the **risk-free rate** to discount the **risk-neutral expectation** of C_u and C_d ;
- we can replace the physical probability measure \mathbb{P} with the equivalent martingale measure \mathbb{Q} in pricing derivatives.

Therefore, we have:

$$S_t = \frac{1}{1+r} \mathbb{E}^{\mathbb{Q}}[S_T] = \frac{1}{1+r+\lambda} \mathbb{E}^{\mathbb{P}}[S_T]$$

In a risk-neutral world:

- **Risk premium** λ is always zero.
- **Expected returns** of all assets are always the risk-free rate.

Under the <u>risk-neutral measure</u> \mathbb{Q} , we can show that the <u>price</u> of the <u>underlying asset</u> is expected to grow at the <u>risk-free rate</u>:

$$\mathbb{E}^{\mathbb{Q}}[S_T] = quS_t + (1 - q)dS_t$$

$$= \frac{(1+r) - d}{u - d}uS_t + \frac{u - (1+r)}{u - d}dS_t$$

$$= \frac{(1+r)(u - d)S_t}{u - d}$$

$$= (1+r)S_t$$

Hence, we have the **risk-neutral pricing formula** for call options:

$$C = \frac{1}{1+r} [qC_u + (1-q)C_d]$$

If we generalize the model further by defining:

- *T*: **time to maturity** of an option;
- h = T/n: time step used in the binomial model;
- r: continuously compounded risk-free rate;
- **δ**: continuously dividend rate;
- *S*: **current price** of the underlying asset.

The formula becomes:

$$C = e^{-rh} \left[qC_u + (1-q)C_d \right]$$

where:

$$q = \frac{e^{(r-\delta)h} - d}{d}.$$

Table: Replicating a call option

Investment	Cash flows at		
	t	$T: S_T < K$	$T:S_T\geq K$
Buy ∆ underlying	$-\Delta S_t$	$\Delta dS_t e^{\delta h}$	$\Delta u S_t e^{\delta h}$
Invest B at r	-B	Be ^{rh}	Be^{rh}
Net cash flows	$-(\Delta S_t + B)$	$\Delta dS_t e^{\delta h} + Be^{rh}$	$\Delta u S_t e^{\delta h} + B e^{rh}$

We need to solve the following two equations:

$$\Delta u S_t e^{\delta h} + B e^{rh} = C_u$$
$$\Delta d S_t e^{\delta h} + B e^{rh} = C_d$$

Similarly, the risk-neutral pricing formula for put options is:

$$P = \frac{1}{1+r} [qP_u + (1-q)P_d]$$

or:

$$P = e^{-rh} \left[qP_u + (1-q)P_d \right]$$

The binomial tree is given by:

Binomial tree

Cox-Ross-Rubinstein (CRR) tree

Following the **CRR** approach, we can form a n-period binomial tree with maturity of T by:

$$u = e^{\sigma\sqrt{T/n}} = e^{\sigma\sqrt{h}}$$
$$d = \frac{1}{u} = e^{-\sigma\sqrt{h}}$$
$$q = \frac{e^{rh} - d}{u - d}$$

The ratio of u/d reflects the **volatility** of the underlying asset:

$$\sigma = \left[\frac{1}{2\sqrt{h}}\right] \ln \left[\frac{u}{d}\right]$$

One-period binomial tree

Suppose
$$S = \$10$$
, $T = 0.5$, $n = 1$, and $\sigma = 0.2$:

$$S_u = \$10e^{0.2\sqrt{0.5}} = \$11.05$$

$$S_d = \$10e^{-0.2\sqrt{0.5}} = \$9.05$$

Two-period binomial tree

Suppose S = \$5, T = 2, n = 2, and $\sigma = 0.25$: $S_{uu} = \$8.24$ $S_u = \$6.42$ S = \$5 $S_{ud} = 5 $S_d = \$3.89$ $S_{dd} = \$3.03$ t = 2t=1

Binomial tree and option pricing

Using the values on the *n*-period binomial tree, we can use the **risk-neutral pricing formula** to price options through **backward induction**:

- **1.** Determine the n+1 terminal payoffs of an option at T.
- **2.** Calculate the **risk-neutral probability** *q*.
- **3.** Compute the T h period option value from the payoffs.
- **4.** Check for **early exercise** in **American options** by comparing the **exercise value** with the **European option value**.
- **5. Repeat** the same process until t = 0.

European options

To price a European call option with K = \$40, we compute the **risk-neutral probability** as:

$$u = e^{(30\%)\sqrt{0.5}} = 1.236$$

$$d = e^{-(30\%)\sqrt{0.5}} = 0.809$$

$$q = \frac{e^{0.5(8\%)} - 0.809}{1.236 - 0.809} = 0.543$$

The terminal payoffs are:

$$C_{uu} = \$61.14 - \$40 = \$21.139$$

 $C_{ud} = C_{du} = \$0$
 $C_{dd} = \$0$

The intermediate option prices are:

$$C_u = e^{-0.5(8\%)}[0.543(\$21.139)] = \$11.021$$

 $C_d = \$0$

The current option price is:

$$C = e^{-0.5(8\%)}[0.543(\$11.021)] = \$5.746$$

Lastly, the pricing tree of the European call option is:

European put options

To price a European put option with K = \$41, we determine its **terminal payoffs** to be:

$$P_{uu} = \$0$$

 $P_{ud} = P_{du} = \$1$
 $P_{dd} = \$14.830$

The intermediate option prices are:

$$P_u = e^{-0.5(8\%)}[0.457(\$1)] = \$0.439$$

 $P_d = e^{-0.5(8\%)}[0.543(\$1) + 0.457(\$14.830)] = \7.038

The current option price is:

$$P = e^{-0.5(8\%)}[0.543(\$0.439) + 0.457(\$7.038)] = \$3.322$$

European put options

Finally, the pricing tree of the European put option is:

American options

American options

For American options, we need to check for early exercise at each node. Specifically, we compare the immediate exercise value with the associated European option value:

For call options:

$$C_{A,\tau} = \max[S_{\tau} - K, C_{E,\tau}]$$

For put options:

$$P_{A,\tau} = \max[K - S_{\tau}, P_{E,\tau}]$$

Given that S = \$100, 1 + r = 1.02, u = 1.1, d = 0.9, $\delta = 0.05$, T = 2, and n = 2, we first construct the binomial tree:

To price an American call option with K = 100, we compute the risk-neutral probability as:

$$q = \frac{1.02(1 - 0.05) - 0.9}{1.1 - 0.9} = 0.345$$

The terminal payoffs are:

$$C_{A,uu} = \$121 - \$100 = \$21$$
 $C_{A,ud} = C_{A,du} = \$0$
 $C_{A,dd} = \$0$

The **intermediate European call prices** are:

$$C_{E,u} = \frac{1}{1.02} [0.345(\$21)] = \$7.103$$

 $C_{E,d} = \$0$

So it is **optimal to early exercise the American call** in the up-state:

$$C_{A,u} = \max[\$110 - \$100, \$7.103] = \$10$$

 $C_{A,d} = \$0$

The current American call price is:

$$C_A = \frac{1}{1.02}[0.345(\$10)] = \$3.38 > C_E = \$2.403$$

As a result, the pricing tree of the American call option is:

Given that S = \$100, r = 0.05, $\sigma = 0.2$, T = 2, and n = 2, we first construct the binomial tree: $S_{uu} = 149.18

To price an **American put option** with K = \$101, we compute the **risk-neutral probability** as:

$$q = \frac{e^{0.05} - 0.8187}{1.2214 - 0.8187} = 0.5775$$

Its terminal payoffs are:

$$P_{A,uu} = \$0$$

 $P_{A,ud} = P_{A,du} = \$1$
 $P_{A,dd} = \$33.968$

The intermediate European put prices are:

$$P_{E,u} = e^{-0.05}[0.4225(\$1)] = \$0.4019$$

 $P_{E,d} = e^{-0.05}[0.5775(\$1) + 0.4225(\$33.968)] = \14.2009

Again, it is **optimal to early exercise the American put** in the down-state:

$$P_{A,u} = \$0.4019$$

 $P_{A,d} = \max[\$101 - \$81.8731, \$14.2009] = \19.1269

The current American put price is:

$$P_A = e^{-0.05}[0.5775(\$0.4019) + 0.4225(\$19.1269)]$$

= $\$7.9079 > P_E = \5.9282

Ultimately, the pricing tree of the American put option is:

