

By
Dr.Trilok Nath Pandey
SCOPE,VIT,Chennai

WHAT IS DATA ANALYTICS?

Analytics is the use of:

data,

information technology,

statistical analysis,

quantitative methods, and

mathematical or computer-based models

to help managers gain improved insight about their business operations and make better, fact-based decisions.

Business Analytics (BI) is a subset of Data Analytics

WHAT IS BUSINESS ANALYTICS?

- A field that drives practical, data-driven changes in a business
- A practical application of statistical analysis that focuses on providing actionable recommendations
- What would the Analyst do with the results?
 - Focus on how to apply the insights they derive from data
 - To draw concrete conclusions about a business by answering specific questions about
 - why things happened
 - what will happen and
 - what should be done.

BUSINESS ANALYTICS APPLICATIONS

Business Analytics Applications

- Management of customer relationships
- Financial and marketing activities
- Supply chain management
- Human resource planning
- Pricing decisions
- Sport team game strategies

WHAT IS BUSINESS ANALYTICS?

<u>Importance of Business Analytics</u>

- ▶ There is a strong relationship of BA with:
 - profitability of businesses
 - revenue of businesses
 - shareholder returns
- ▶ BA enhances understanding of data
- ▶ BA is vital for businesses to remain competitive
- ▶ BA enables creation of informative reports

SCOPE OF BUSINESS ANALYTICS

- Descriptive analytics
 - uses data to understand past and present
- Predictive analytics
 - analyzes past performance and predict future effects
- Prescriptive analytics
 - uses optimization techniques
 - action plans

SCOPE OF BUSINESS ANALYTICS

Retail Markdown Decisions

- Most department stores clear seasonal inventory by reducing prices.
- The question is:
 When to reduce the price and by how much?
- **Descriptive analytics**: examine historical data for similar products (prices, units sold, advertising, ...)
- Predictive analytics: predict sales based on price
- Prescriptive analytics: find the best sets of pricing and advertising to maximize sales revenue

- ▶ DATA
 - collected facts and figures
- DATABASE
 - collection of computer files containing data
- INFORMATION
 - comes from analyzing data

- Metrics are used to quantify performance.
- Measures are numerical values of metrics.
- Discrete metrics involve counting
 - on time or not on time
 - number or proportion of on time deliveries
- ▶ Continuous metrics are measured on a continuum
 - delivery time
 - package weight
 - purchase price

A Sales Transaction Database File

TYPES OF DATA

- When collecting or gathering data we collect data from individuals cases on particular variables.
- A *variable* is a unit of data collection whose value can vary.
- Variables can be defined into *types* according to the level of mathematical scaling that can be carried out on the data.
- There are four types of data or levels of measurement:

1. Categorical (Nominal)	2. Ordinal
3. Interval	4. Ratio

Categorical (Nominal) data

- **Nominal or categorical** data is data that comprises of categories that *cannot* be rank ordered each category is just different.
- The categories available cannot be placed in any order and no judgement can be made about the relative size or distance from one category to another.
 - ▶ Categories bear no quantitative relationship to one another
- Examples:
 - customer's location (America, Europe, Asia)
 - employee classification (manager, supervisor, associate)
- What does this mean? No mathematical operations can be performed on the data relative to each other.
- •Therefore, nominal data reflect **qualitative differences** rather than quantitative ones.

Nominal data

Examples:

What is your gender? (please tick)

Male
Female

Did you enjoy the film? (please tick)

Yes
No

Nominal data

- •Systems for measuring nominal data must ensure that each category is **mutually exclusive** and the system of measurement needs to be **exhaustive**.
- Variables that have only two responses i.e. Yes or No, are known as *dichotomies*.

Ordinal data

- Ordinal data is data that **comprises of categories that** <u>cαn</u> be rank ordered.
- Similarly with nominal data the distance between each category cannot be calculated but the categories can be ranked above or below each other.
 - No fixed units of measurement
 - Examples:
 - college football rankings
 - survey responses(poor, average, good, very good, excellent)
- What does this mean? Can **make statistical judgements** and perform limited maths.

Ordinal data

Example:

How satisfied are you with the level of service you have received? (please tick)

Very satisfied

Somewhat satisfied

Neutral

Somewhat dissatisfied

Very dissatisfied

Interval and ratio data

- Both interval and ratio data are examples of scale data.
- Scale data:
 - data is in numeric format (\$50, \$100, \$150)
 - •data that can be measured on a continuous scale
 - the distance between each can be observed and as a result measured
 - the data can be **placed in rank order**.

Interval data

- Ordinal data but with constant differences between observations
- Ratios are not meaningful
- Examples:
 - •**Time** moves along a continuous measure or seconds, minutes and so on and is without a zero point of time.
 - **Temperature** moves along a continuous measure of degrees and is without a true zero.

Ratio data

- Ratio data measured on a *continuous* scale and *does* have a natural zero point.
 - Ratios are meaningful
 - Examples:
 - monthly sales
 - delivery times
 - Weight
 - Height
 - Age

Classifying Data Elements in a Purchasing Database

- 4	А	В	С	D	Е	F	G	Н	1	J
1	Purchase Orders									
2										
3	Supplier	Order No	Item No.	Item Description	Item Cost	Quantity	Cost per order	A/P Terms (Month	Order Date	Arrival Date
4	Spacetime Technologies	A0111	6489	O-Ring	\$ 3.00	900	\$ 2,700.00	25	10/10/11	10/18/11
5	Steelpin Inc.	A0115	5319	Shielded Cable/ft.	\$ 1.10	17,500	\$ 19,250.00	30	08/20/11	08/31/11
6	Steelpin Inc.	A0123	4312	Bolt-nut package	\$ 3.75	4,250	\$ 15,937.50	30	08/25/11	09/01/11
7	Steelpin Inc.	A0204	5319	Shielded Cable/ft.	\$ 1.10	16,500	\$ 18,150.00	30	09/15/11	10/05/11
8	Steelpin Inc.	A0205	5677	Side Panel	\$195.00	120	\$ 23,400.00	30	11/02/11	11/13/11
9	Steelpin Inc.	A0207	4312	Bolt-nut package	\$ 3.75	4,200	\$ 15,750.00	30	09/01/11	09/10/11
10	Alum Sheeting	A0223	4224	Bolt-nut package	\$ 3.95	4,500	\$ 17,775.00	30	10/15/11	10/20/11
11	Alum Sheeting	A0433	5417	Control Panel	\$255.00	500	\$ 127,500.00	30	10/20/11	10/27/11
12	Alum Sheeting	A0443	1243	Airframe fasteners	\$ 4.25	10,000	\$ 42,500.00	30	08/08/11	08/14/11
13	Alum Sheeting	A0446	5417	Control Panel	\$255.00	406	\$ 103,530.00	30	09/01/11	09/10/11
14	Spacetime Technologies	A0533	9752	Gasket	\$ 4.05	1,500	\$ 6,075.00	25	09/20/11	09/25/11
15	Spacetime Technologies	A0555	6489	O-Ring	\$ 3.00	1,100	\$ 3,300.00	25	10/05/11	10/10/11

Figure 1.2

(continued)

Classifying Data Elements in a Purchasing Database

TYPES OF ANALYTICS

Model:

- ▶ An abstraction or representation of a real system, idea, or object
- Captures the most important features
- Can be a written or verbal description, a visual display, a mathematical formula, or a spreadsheet representation

Figure 1.3

- ▶ A <u>decision model</u> is a model used to understand, analyze, or facilitate decision making.
- ▶ Types of model <u>input</u>
 - data
 - uncontrollable variables
 - decision variables (controllable)

Descriptive Decision Models

- Simply tell "what is" and describe relationships
- Do not tell managers what to do

An Influence Diagram for Total Cost

Descriptive Analytics

- Descriptive analytics, such as reporting/OLAP, dashboards, and data visualization, have been widely used for some time.
- They are the core of traditional BI.

and the second second	Audio D	ivisiun	Video Division		
Line Items	Budget	Actual	Budget	Actual	
Cost of Goods Sold	\$6,851,006.49	\$7,132,961.38	\$4,322,514.74	\$4,526,954.71	
Harketing Expense	\$750,179.20	\$756,596.17	\$455,048.05	\$462,815.40	
Research and Development Expense	\$538,243.39	\$538,014.73	\$329,890.95	\$336,808.13	
Selling Expense	\$1,632,921.64	\$1,579,790.18	\$986,887.49	\$927,970.90	
Taxors	\$314,659.05	\$319,390.19	\$202,636.67	\$200,205.01	
Year 2001					
	Audio Division		Video 9	vision	
Line Items	Budget	Actual	Budget	Actual	
Cost of Boods Sold	\$2,554,556.31	\$2,700,773.16	\$1,726,031,16	\$1,773,448.08	
Marketing Expense	\$294,766.22	\$290,696.70	\$187,757.29	\$176,778.55	
Research and Development Expense	\$200,719.90	\$193,236.83	\$134,270.95	\$125,725,88	
Selling Expense	\$620,427.30	\$611,649.47	\$405,092.93	\$400,181.91	
Taxes	\$130,926.70	\$122,526.31	\$82,450.78	\$80,671.87	

What has occurred?

Descriptive analytics, such as data visualization, is important in helping users interpret the output from predictive analytics.

- **Predictive Decision** Models often incorporate uncertainty to help managers analyzerisk.
- Aim to predict what will happen in the future.
- <u>Uncertainty</u> is imperfect knowledge of what will happen in the future.
- Risk is associated with the consequences of what actually happens.

Predictive Analytics

- Algorithms for predictive analytics, such as regression analysis, machine learning, and neural networks, have also been around for some time.
- Prescriptive analytics are often referred to as advanced analytics.

What will occur?

- Marketing is the target for many predictive analytics applications.
- Descriptive analytics, such as data visualization, is important in helping users interpret the output from predictive and prescriptive analytics.

A Linear Demand Prediction Model

As price increases, demand falls.

A Nonlinear Demand Prediction Model

Assumes price elasticity (constant ratio of % change in demand to % change in price)

Figure 1.9

Prescriptive Decision Models help decision makers identify the best solution.

- Optimization finding values of decision variables that minimize (or maximize) something such as cost (or profit).
- Objective function the equation that minimizes (or maximizes) the quantity of interest.
- Constraints limitations or restrictions.
- Optimal solution values of the decision variables at the minimum (or maximum) point.

ORGANIZATIONAL TRANSFORMATION

- Brought about by opportunity or necessity
- The firm adopts a new business model enabled by analytics
- Analytics are a competitive requirement

CONDITIONS THAT LEAD TO ANALYTICS-BASED ORGANIZATIONS

- The nature of the industry
- Seizing an opportunity
- Responding to a problem

THE NATURE OF THE INDUSTRY: ONLINE RETAILERS

BI Applications

- Analysis of clickstream data
- Customer profitability analysis
- Customer segmentation analysis
- Product recommendations
- Campaign management
- Pricing
- Forecasting
- Dashboards

THE NATURE OF THE INDUSTRY

- Online retailers like Amazon.com and Overstock.com are high volume operations who rely on analytics to compete.
- When you enter their sites a cookie is placed on your PC and all
 overstock.com*
- Based on your clicks and any search terms, recommendation engines decide what products to display.
- After you purchase an item, they have additional information that is used in marketing campaigns.
- Customer segmentation analysis is used in deciding what promotions to send you.
- How profitable you are, influences how the customer care center treats you.
- A pricing team helps set prices and decides what prices are needed to clear out merchandise.
- Forecasting models are used to decide how many items to order for inventory.
- Dashboards monitor all aspects of organizational performance

amazon.com

#