

8. \和 \不满足分配律。但有分配不等式:

$$a \lor (b \land c) \leq (a \lor b) \land (a \lor c).$$

 $(a \land b) \lor (a \land c) \leq a \land (b \lor c)$

$$d \lor (b \land e) = d \lor c = d, \quad (d \lor b) \land (d \lor e) = a \land e = e$$

$$d \leqslant e \quad p \quad d \lor (b \land e) \leqslant (d \lor b) \land (d \lor e)$$

证明: 由 $a \leq a$, $b \wedge c \leq b$ 得 $a \vee (b \wedge c) \leq a \vee b$ 由 $a \leq a$, $b \wedge c \leq c$ 得 $a \vee (b \wedge c) \leq a \vee c$ 从而得到 $a \vee (b \wedge c) \leq (a \vee b) \wedge (a \vee c)$ 由对偶原理得 $a \wedge (b \vee c) \geq (a \wedge b) \vee (a \wedge c)$ 即 $(a \wedge b) \vee (a \wedge c) \leq a \wedge (b \vee c)$ 。

9. $a \leq b \Leftrightarrow a \wedge b = a \Leftrightarrow a \vee b = b$

证明

(1) 先证 $a \leq b \Rightarrow a \land b = a$

由 $a \leq a$ 和 $a \leq b$ 可知a是 $\{a,b\}$ 的下界,故 $a \leq a \wedge b$,

显然有 $a \land b \leq a$, 由反对称性得 $a \land b = a$

(2) 再证 $a \land b = a \Rightarrow a \lor b = b$

根据吸收律有 $b = (a \land b) \lor b$

由 $a \wedge b = a$ 和上面的等式得 $a \vee b = b$,

(3) 最后证 $a \lor b = b \Rightarrow a \leq b$

由 $a \leq a \vee b$ 得 $a \leq a \vee b = b$

