On ohis lecture

Galors theory = shely of single polynomial egn in one variable over a field

(Prinitive Element Theorem: L/K finite field extre.

Thon 3 fektil s.K. L ~ K(T)/g).)

Commutative algebra = study of system of polynomial egus in several variable n/ general coefficients

Historical orights 1) Geometry

To,..., To variables, formetry E [[To,..., To] equations.

Can counide of the may $A = C[T_1, ..., T_n]/(J_1, ..., f_m)$ the solution set $X = \{(f_1, ..., f_n) \in C^n \mid f_i(t) = 0\}$ for i=1,...,m.

Then properties of A and X match. Examples:

= C-dimension of X Dinewsian of A

As regular (ie. a manifold)

Only identified to X is connected.

are 0 and 1

2) Mubes theory Instead of $aft \frac{1}{g}$, where ted 2[T]/(f), $f \in Z[T]$. E.g. 2[i] (Gaussian number), Z[53] (Eizenstein numbers) \subseteq \bigcirc . This leabure Commutative rings & modules + Examples from 1) & Z). Follow up: Alg. Geometry, Alg. Number Theory, Algebra I. relations w/: Alg. Topology, Rep. Theory. Prerequisites Enfihrung en dit Algebra: Basic knowledge of commutative maps. (Mont things mill be recalled shough.) Main Reference Atiyah-Mac Ronald Indroduction to comm. algebra.

lufamation math. uni-bonn. de/people/ja/commalg.

ja = Johannes Anschutz (assistent, tutorial organization)

§1 Rings and Ideals

Ring (in this lecture) = commutative ring w/mt element 1.

Def 1) Ideal in ring A = abelian subgroup $\sigma \in A$ s. th. $\forall \alpha \in A, x \in \sigma \mid aho \alpha : x \in \sigma \mid$.

2) $S \subseteq A$ a subset. <u>Ideal generated by S</u> \overline{dg} $(S) = \bigcap_{S \subseteq OI} G \qquad (smaller tideal containing <math>S$) $S \subseteq OI \subseteq A$

 $\underset{S \in S}{\text{Lem 1}} (S) = \begin{cases} \sum_{s \in S} a_s \cdot s \mid a_s \in A, \text{ all but furnary} \\ = 0 \end{cases}$

Proof Denote RHS by b. Suce $-\sum a_s \cdot s = \sum (-a_s) \cdot s$ & $\sum a_s \cdot s + \sum b_s \cdot s = \sum (a_s + b_s) \cdot s$, by subgrp.

Since $a \cdot \sum a_s \cdot s = \sum (aa_s) \cdot s$, by an ideal.

b contains S since YSES, 1.5E b. Thus (S) & b.

Conversely, if $\sigma \in A$ is an ideal $\pi / S \in \sigma$, then $\sigma \in Contains$ all elements a : s, $a \in A$, $s \in S$ (ideal property), hence all finite sums $\sum a_s s$. So $b \in (s)$ and equality is shown. \square

How to construct rhap? (Generators and relations principle.)

1) Have known map Z, Q, R, C, Fp etc...

2) Form polynomial mas: A any mag, T vaniable (= a symbol)

 $\frac{1}{A \prod_{i=0}^{n}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ i=0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ i=0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace{\begin{cases} \sum_{i=0}^{n} a_i T^i \\ a_n \neq 0 \end{cases}} = \underbrace$

 $\sum_{i=0}^{n} a_i T^i = \sum_{i=0}^{m} b_i T^i \iff n=m \quad \left(\begin{array}{c} assume \\ a_n, b_m \neq 0 \end{array} \right)$ and $a_i = b_i \quad \forall i = 0, ..., n$

If Tr, -, Tr several variables, can define iteratively

 $A[T_1, T_n] := A[T_1, T_n]$

If I any set, $(T_i, i \in I)$ variables sudexed by I, can define

> $A[T_i, i \in I] := \bigcup A[T_j, j \in J]$ JeI fuite subset

3) Pass to quotient mg: A mg, $\sigma \in A$ ideal.

Alor := quotient abelian group w/ multiplication $(a + \sigma_1) \cdot (b + \sigma_1) := ab + \sigma_2$

This is nell-defined: Let $x, y \in \sigma$. Then $(a + x + \delta \tau)(b + y + \sigma \tau) = ab + ay + bx + \sigma \tau$ $\in \sigma \tau \text{ by ideal property}$ $= ab + \sigma \tau. \quad \square$

Then A/or is again a ring.

Common Notation: a, b E A, on = A rideal

- $a \equiv b \mod \sigma \iff a b \in \sigma$
- ·) ā, b ∈ A (or := residue claves a+07, b+07

Some further notions Let A, B be rings.

1) $\varphi: A \longrightarrow B$ map $= \begin{cases} & \varphi(a) + \varphi(b) \\ & \varphi(ab) = \varphi(a) \varphi(b) \\ & \varphi(ab) = 1 \end{cases}$

2) Then $\Upsilon(X)$ is a subribg of \mathbb{R} and $\ker(\Upsilon) \subset A$ an ideal.

Moreover, $A/\ker(\Upsilon) \stackrel{\sim}{\longrightarrow} \Upsilon(A)$.

3) Universal property of the polynomial ring:

A ring, I set, 4: A - B ring map.

For every I - B, i - bi, there is a rinique ring map $Y_{(b_i)}: A[T_i, i \in I] \longrightarrow B$ S.th. $A \ni a \longmapsto Y(a)$, $T_i \longmapsto b_i$.

It is called evaluating the Ti of the bi.

4) Universal property of the quotient ring:

9: A-B ring map, or c ker (9) an ideal. Then 3!

factorization A - B B a - 9 ((a))

1 = 3!

A/or a+or

§ 2 Examples

1) K a field, K[T] polynomial mg, $f = \sum_{i=0}^{n} a_i T^i \in K[T]$, $n \neq 0$.

Then for m > n, me have

 $T^{m} = a_{n}^{-1} T^{m-n} \cdot f - a_{n}^{-1} \sum_{i=0}^{n-1} a_{i} T^{m-n+i}$ $\in (f)$

i.e. $T^{m} = -a_{n}^{-1} \left(a_{n-1} T^{m-1} + a_{n-2} T^{m-2} + \cdots + a_{0} T^{m-n} \right)$

Apply iteratively mid (f).

Every residue clan in K[T]/p has a representative g+(f) $n\omega/deg(g) \leq n-1$.

Exercise This "minimal" seprenentative g is unique. Write f := T = T + (f) in following.

The above shows that $A = \frac{KTI}{f}$ is an n-dimensional K-vsp with basis $f(f) = \frac{1}{f}$ in f(f) is an f(f) is an f(f) in f(f) is an f(f) in f(f)

Multiplication of this may:

This can be done for any base my assuming that an is invertible:

A nhg, $f = \sum_{i=0}^{n} a_i T^i$ $w / a_n \in A^{\times}$.

 $f := T + (f) \in A[T]/(f)$ as before.

Then $A[T]/\{g\} \cong \bigoplus_{i=0}^{n-1} A \cdot i^{i}$ on abelian group

nith multiplication as before.

2) Couside
$$Z[X,Y]$$
 and it ideal (XY)

Note that $(XY) = \begin{cases} 1 \in Z[X,Y] \mid XY| f \end{cases}$

Every $f \in Z[X,Y]$ can be nither as

 $f = C + \sum_{i=1}^{N} a_i X^2 + \sum_{j=1}^{M} b_j Y^j + \underbrace{g. XY}_{\in (XY)}$

w/ might C , a_i , b_i , g . In other words,

every claim in $Z[X,Y]/(XY)$ has a might representative of the form

 $C + \sum_{j=1}^{N} a_j X^j + \sum_{j=1}^{M} b_j Y^j$

Put $X := X + (XY)$, $Y := Y + (XY)$.

This shows

 $Z[X,Y]/(XY) \stackrel{\sim}{=} Z \oplus \bigoplus_{j=1}^{M} (Z.x^j \oplus Z.y^j)$

i=1(as abelian group)

nidh multiplication $x^{i}x^{j} = x^{2+j}$, $y^{i} \cdot y^{j} = y^{2+j}$ xy = 0.

§ 3 Basic properties

Defu Let A be a mg.

1) $x \in A$ nilpotent $= x^n = 0$ for some $n \ge 0$

A reduced of 0 & the only introduct element

2) $x \in A$ zero divisor II $\exists \circ \neq y \in A$ s.H. $x \cdot y = O$.

A integral domain or domain = $A \neq 0$ and def0 vo die only zero divoor.

XEA regular = X not zero divisor.

3) $\times \in A$ mit = $\exists y \in A \text{ s.th. } \times y = 1.$

X = mits of Å. Form group undes multiplication.

Equivalent charactenitation Consider d: A - A a - x.a

Then of not rejective (x zero divisor

of rhjective (=> x regular

& sujective => & bijective => x & A ×

Note: $Im(\phi) = A \cdot x = (x)$ is ideal generated by x.

Example Let $n \in \mathbb{Z}$, put $A_n = \mathbb{Z}[T]/(T^2-n)$ Put $t = T + (T^2-n)$ on before.

·) If n = 0, $t^2 = 0$ in this ring. But $t \neq 0$, so it is a supposed element. \longrightarrow As not reduced.

·) If $n = m^2$ is a square, then

·) If $n = m^2$ is a square, then $(m+t)(m-t) = m^2 - t^2 = n-n = 0.$

So (m+t), (m-t) are zero divisors.

Exercise: Show ZfT]/T=n reduced if n≠0.

_ Am2 reduced, but not subgral domain.

.) If n not a square, $A_n \cong 2[f_n] \subset Q(f_n)$ $+ \longmapsto f_n$

can be embedded as subring of held G(In). In phic,
An is an integral domain

Prop 2 Consider a polynomial rug $B = A[T_i, i \in I]$. If A is a domain (resp. reduced), then B is so as nell. Proof First assume I is fruk. Suce Altn., Tr] = Aftn, -Th. 7ftn], we can proceed by induction and annual B = Aft]. Then we can look at leading coefficient: Let $f = a_n T^n + \dots + a_0, \quad g = b_m T^m + \dots + b_0, \quad a_n, b_m = 0.$ Then f.g = an.bmTn+M + lover terms ft = an Trin + lower terms A down on an bom 70 on fig 70 A reduced = an +0 Hr => f +0. Hr II I huite. In general, given fresp. fand g, there is a finite

subset $J \subseteq I$ s.th. $J, g \in A[T_j, j \in J] \subseteq B$ Then me may show $J, g \neq 0$ or $J, g \neq 0$ or $J, g \neq 0$ or $J, g \in I$ there because $A[T_j, j \in J] \subset A[T_i, j \in I]$ $v \in I$ injective.

- 2) The quotient $\overline{A} = A/nd(A)$ is reduced.
- 3) If B is reduced, then any map $4: A \longrightarrow B$ factors uniquely through \overline{A} .
- Pool 1) If $x^n = 0$, then $(ax)^n = a^n x^n = 0$ if $a \in A$. Thus $x \in \mathcal{N} := \operatorname{rnl}(A) \implies ax \in \mathcal{N}$.
 - If $x^n = y^m = 0$, then $(x+y)^{n+m-1} = \sum_{i=0}^{n+m-1} \binom{n+m-1}{i} x^{n+m-1-i} y^i = 0$ because always $(n+m-1-i) \ge n$ or $i \ge m$) Thus V is an ideal.
 - 2) Let $\overline{x} \in \overline{A}$ be mage of $x \in A$ and assume $\overline{x}^n = 0$. This means $x^n \in \mathcal{N}$, i.e. $(x^n)^k = x^{nk} = 0$ for $k \gg 0$. Thus $x \in \mathcal{N}$, hence $\overline{x} = 0$.
- 3) If $x^n = 0$, then $\ell(x)^n = \ell(x^n) = 0$. Then $\ell(x) = 0$ since B is reduced. This means $N \subseteq \ker \ell$, hence the factorisation Γ .

 Exercise Compute units and nitradical of the map $\ell(x) = 0$. $\ell(x) = 0$.

 Exercise Compute units and nitradical of the map $\ell(x) = 0$.