Devoir surveillé n° 6 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Le théorème de Šarkovskii.

Dans tout le problème, I est un segment de \mathbb{R} non vide, non réduit à un point, et f est une fonction continue de I dans I.

Pour chaque $n \in \mathbb{N}^*$, on note la n^{e} itérée de f:

$$f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ fois}}.$$

On conviendra au besoin que $f^0 = \operatorname{Id}_I$.

Soit $n \ge 1$ un entier. Un point $x \in I$ est dit n-périodique si $f^n(x) = x$ et $f^p(x) \ne x$ pour tout entier p tel que $1 \le p < n$; l'entier n s'appelle la période de x. Un point $x \in I$ est périodique s'il est n-périodique pour un entier $n \ge 1$.

L'objectif de ce problème est de démontrer une version faible du Théorème de Šarkovskii (1964) :

Théorème : Soient I un segment de \mathbb{R} et $f: I \to I$ une fonction continue. S'il existe un point de période 3, alors il existe un point de période n pour tout $n \ge 1$.

- 1) Montrer que f admet un point fixe dans I.
- 2) Soit J un segment non vide inclus dans I. Soit K un segment non vide inclus dans f(J). On se propose de montrer qu'il existe un segment L inclus dans J tel que K = f(L).
 - a) On suppose K réduit à un point. Montrer l'existence de L.
 - b) On suppose désormais $K = [\alpha, \beta]$, avec $\alpha < \beta$. Montrer l'existence de a, b dans J tels que $f(a) = \alpha$ et $f(b) = \beta$. Par symétrie, on suppose a < b. Le lecteur consciencieux vérifiera chez lui que le raisonnement est équivalent si b < a.
 - c) Soit $A = \{x \in [a, b] \mid f(x) = \beta\}$. Justifier l'existence de $v = \min A$.

d) Soit $B = \{x \in [a, v] \mid f(x) = \alpha\}$. On montrerait de même l'existence de $u = \max B$.

En déduire l'existence de L.

3) Soit K un segment non vide inclus dans I tel que $K \subset f(K)$. Montrer que f admet un point fixe dans K.

Indication : on pourra étudier étudier $g: x \mapsto f(x) - x$ sur K.

Soient I_1, I_2 deux segments inclus dans I. On dit que I_1 f-recouvre I_2 et on note $I_1 \to I_2$ si $f(I_1) \supset I_2$. On note $I_1 \to I_2 \to I_3$ si $f(I_1) \supset I_2$ et $f(I_2) \supset I_3$, et ainsi de suite...

- 4) On suppose qu'il existe n+1 segments non vides I_0, I_1, \ldots, I_n inclus dans I tels que, pour tout $0 \le k \le n-1$, $I_k \to I_{k+1}$. Montrer qu'il existe une suite $(J_k)_{0 \le k \le n-1}$ de n segments non vides tels que :
 - pour tout entier k tel que $0 \le k \le n-2$, $J_k \subset I_k$ et $f(J_k) = J_{k+1}$;
 - $f(J_{n-1}) = I_n.$

Si $x_0 \in J_0$, que peut-on dire de $f^k(x_0)$ où $0 \le k \le n-1$?

5) On suppose qu'il existe un point 3-périodique x. On introduit les réels $x_0 = \min\{x, f(x), f^2(x)\}$, $x_1 = f(x_0)$ et $x_2 = f(x_1)$. À l'aide de x_0, x_1, x_2 , déterminer deux segments S_1 et S_2 inclus dans I ayant un seul point commun tels que $S_1 \to S_1$ et $S_1 \to S_2 \to S_1$. En déduire qu'il existe un point fixe et un point 2-périodique.

Indication: on pourra distinguer $x_1 < x_2$ et $x_2 < x_1$.

6) On suppose toujours que x est un point 3-périodique. Montrer qu'il existe un point n-périodique pour tout entier $n \ge 1$.

Indication: on cherchera une suite de la forme $S_1 \to S_2 \to S_2 \to \cdots \to S_2 \to S_1$.

7) Montrer que l'application $f:[0,1]\to [0,1]$ donnée par f(x)=4x(1-x) admet des points de période n pour tout $n\in\mathbb{N}^*$.

Indication: on pour utiliser les points particuliers 0, 1/2, 3/4, 1.

Pour conclure, énonçons le théorème de Šarkovskii : l'ordre de Šarkovskii sur \mathbb{N}^* est l'ordre total \succ défini comme suit :

$$3 \succ 5 \succ 7 \succ 9 \succ \cdots \succ 2 \times 3 \succ 2 \times 5 \succ 2 \times 7 \succ 2 \times 9 \succ \cdots$$

$$\cdots \succ 2^n \times 3 \succ 2^n \times 5 \succ \cdots \succ 2^{n+1} \times 3 \succ 2^{n+1} \times 5 \succ \cdots \succ 2^n \succ 2^{n-1} \succ \cdots 4 \succ 2 \succ 1.$$

Théorème : Soit I un segment et $f: I \to I$ une application continue ayant un point n-périodique. Alors il existe un point p-périodique pour tout entier p tel que $n \succ p$.

8) Écrire un programme ordre(a,b) en Python qui prend en argument deux entiers a, b $\in \mathbb{N}^*$ et qui renvoie le booléen True si $a \succ b$ et False sinon

II. Le critère d'irréductibilité d'Eisenstein.

On note $\mathbb{Z}[X]$ (resp. $\mathbb{Q}[X]$) l'ensemble des polynômes à coefficients dans \mathbb{Z} (resp. \mathbb{Q}).

Soit $A \in \mathbb{Z}[X]$, que l'on écrit $A = a_0 + a_1X + \cdots + a_nX^n$. On appelle contenu de A le PGCD de ses coefficients, noté c(A):

$$c(A) = a_0 \wedge a_1 \wedge \cdots \wedge a_n.$$

La polynôme A est dit primitif si c(A) = 1, i.e. si les coefficients de A sont premiers entre eux dans leur ensemble.

Soit $A \in \mathbb{Q}[X]$ non constant. A est dit réductible sur $\mathbb{Q}[X]$ s'il existe deux polynômes $B, C \in \mathbb{Q}[X]$ non constants vérifiant A = BC. Sinon, A est dit irréductible sur $\mathbb{Q}[X]$.

L'objectif de ce problème est de démontrer le critère d'irréductibilité d'Eisenstein, qui s'énonce comme suit. Soit $A \in \mathbb{Z}[X]$ de degré $n \in \mathbb{N}^*$, que l'on écrit :

$$A = a_0 + a_1 X + \dots + a_n X^n.$$

On suppose qu'il existe un nombre premier p vérifiant :

- si $0 \leq i \leq n-1$, $p \mid a_i$;
- $p \nmid a_n;$ $p^2 \nmid a_0.$

Alors, A est irréductible sur $\mathbb{Q}[X]$.

- a) Un polynôme $P \in \mathbb{Q}[X]$ irréductible sur $\mathbb{R}[X]$ est-il aussi irréductible sur 1) $\mathbb{Q}|X|$?
 - b) Donner (en le justifiant) un polynôme de degré 2 irréductible sur $\mathbb{Q}[X]$, mais pas sur $\mathbb{R}[X]$.
- 2) Soit $A, B \in \mathbb{Z}[X]$ non nuls, que l'on écrit sous formes développées-réduites A = $\sum_{k=0}^{+\infty} a_k X^k \text{ et } B = \sum_{k=0}^{+\infty} b_k X^k. \text{ On écrit aussi sous forme développée-réduite } AB = \sum_{k=0}^{+\infty} c_k X^k$
 - a) Soit p un nombre premier, on suppose que p ne divise pas tous les coefficients de A, ni tous les coefficients de B.
 - i) Montrer qu'il existe deux plus grands entiers naturels k et ℓ vérifiant $p \nmid a_k \text{ et } p \nmid b_\ell$.
 - ii) Déterminer alors un entier i vérifiant $p \nmid c_i$.
 - b) Montrer que si A et B sont primitifs, alors AB est primitif.
 - c) Montrer qu'il existe un polynôme primitif associé à A.
 - d) Déduire des questions précédentes que c(AB) = c(A)c(B).

- 3) Soit $A \in \mathbb{Z}[X]$ non nul, soit $B, C \in \mathbb{Q}[X]$ vérifiant A = BC. En utilisant les questions précédentes, construire deux polynômes $\tilde{B}, \tilde{C} \in \mathbb{Z}[X]$ de même degré que B et C vérifiant $A = \tilde{B}\tilde{C}$.
 - Indication: on pourra commencer par supposer A primitif, et considérer les PPCM des dénominateurs de coefficients de B et de C.
- 4) On montre maintenant le critère d'irréductibilité d'Eisenstein, en raisonnant par l'absurde. Soit donc un polynôme A vérifiant les hypothèses du critère (dont on reprend les notations), soit $B, C \in \mathbb{Z}[X]$ non constants vérifiant A = BC. On écrit sous formes développées-réduites : $B = \sum_{k=0}^{+\infty} b_k X^k$ et $C = \sum_{k=0}^{+\infty} c_k X^k$. Notons $d = \deg(B)$ et $d' = \deg(C)$.
 - a) Montrer que $p \mid b_0$ ou (exclusif) $p \mid c_0$. On suppose dorénavant que $p \mid b_0$ et $p \nmid c_0$.
 - **b)** Montrer que $p \nmid b_d$.
 - c) En considérant un coefficient de B que l'on choisira judicieusement, montrer que $p \mid c_0$ et conclure.
- 5) Montrer que pour tout $n \ge 1$, $\mathbb{Q}[X]$ contient au moins un polynôme de degré n irréductible sur $\mathbb{Q}[X]$.

