$\pi ext{-Day}$ Polar Form & De Moivre's Theorem

Quick Facts

- z = a + bi is a complex number. This form of z is called the *rectangular form/representation*.
- |z| is the absolute value or modulus of z. Furthermore, $|z| = \sqrt{a^2 + b^2}$ and is the distance from the 'point' z to the origin. [Draw a right triangle!]
- The polar form/representation of z is $r(\cos\theta + i\sin\theta)$, where r = |z| and θ is the 'angle plotting z makes.'
- We find the polar form of z by finding r, finding θ , and then writing out the polar form.
- De Moivre's (duh-mwah-vwurr) Theorem: $z^n = r^n (\cos(n\theta) + i\sin(n\theta))$.
- We use De Moivre's Theorem to compute powers of z by finding the polar form of z, writing out the expression above, and then simplifying the expression.
- We use the following to compute roots of complex numbers:

$$\underbrace{\sqrt[n]{z}}_{\text{Or }z^{1/n}} = \sqrt[n]{r} \left(\cos \left(\frac{\theta + 2\pi k}{n} \right) + i \sin \left(\frac{\theta + 2\pi k}{n} \right) \right)$$
 (radians)

$$\underbrace{\sqrt[n]{z}}_{\text{Or }z^{1/n}} = \sqrt[n]{r} \left(\cos \left(\frac{\theta + 360^{\circ}k}{n} \right) + i \sin \left(\frac{\theta + 360^{\circ}k}{n} \right) \right) \qquad \text{(degrees)}$$

where $k=0,1,\ldots,n-1$. These roots are equally spaced points (separated by an angle $\frac{360^{\circ}}{n}$, starting at angle $\frac{\theta}{n}$) on the circle at the origin with radius $\sqrt[n]{r}$.

• To find roots of complex numbers, we find the polar form of z, use the above expression (writing it out for each of $k = 1, 2, \ldots, n-1$, and then simplify each expression.