General eg-n of 2nd order curve -> canonical eq-n. $0 \times x^2 + a_{12} \times y + a_{22} y^2 + a_{11} \times a_{22} y + a_{0} = 0$ general eg-n. Step 1: elininate xy term by potation at an angle &. $(x', y') / x = x' \cos x - y' \sin x$ $| y = x' \sin x + y' \cos x$ a 11 (x cos 2 - y'sind)2 + a 12 (x'cos 2 - y'sind) (x'sind + y'cosd) + + a22 (x sin x + y cos x) + ... = 0 $\chi^{(2)}$ ($a_{11} \cos^2 d + a_{12} \cos d \sin d + a_{12} \sin^2 d$) + + 412 (a, sin2d - an asd sind + an cos2d) + + x'y (-2 a, cosa sind + a12 cosad - a12 sin2 + 2 a22 csa sind)

 $a_{12} (cos^{2}z - sin^{2}z) - 2(a_{11} - a_{22})(cos z \cdot sin z) = 0$ sin 2z9,2 Cos 22 - (a,, - 022) sin 22 =0 9,2 +0 A11-022 - 51022 Cos 22 = $a_{11} - a_{22}$ 2= - arccto (an- azz) Cty 22 = 0,2 a, x, 2 + a, x, y, + a, y, 2 + a, x, + a, y, + a, = 0 $Q_{11} = A_{11} \cos^2 2 + A_{12} \cos 2 \sin^2 2 + A_{22} \sin^2 2$ $|a_{12}| = \dots = (a_{22} - a_{11}) \sin 2\lambda + a_{12} \cos 2\lambda = 0$ $a_{12} = a_{11} s_{11}^{2} a_{12} + a_{12} cos s_{12} s_{12} a_{12} cos^{2} d_{12}$ $a_1' = a_1 \cos d + a_2 \sin d$ $a_1' = -a_1 \sin d + a_2 \cos d$

$$a'_{11} \times^{12} + a'_{22} y'^{2} + a_{1} \times^{1} + a_{1} y' + a'_{0} = 0$$

$$\begin{cases}
\text{Step 2}: & \text{eliminate} & \text{linear tenus} \\
y' = y'' + b \\
a'_{11} (x'' + a)^{2} + a'_{12} (y'' + b)^{2} + a_{1} (x'' + a) + a_{2} (y' + b) + a'_{0} = 0
\end{cases}$$

$$a'_{11} \times^{12} + a'_{12} y''^{2} + (a'_{11} + 2a'_{11} a) \times^{11} + (a'_{11} + 2a'_{12} b) y'' + (a'_$$

Cononical	form
Dischi	minant of a 2nd ORDER curve
Quadratic D	$y + a_{12}y^2 + a_1x + a_2y + a_0 = 0$
Nan et.	$= a_{12}^2 - 4a_{11}a_{22}$
D=9,12-	$4a_{11}a_{22}^{1} =$
after Robetic	
Disc	riminant is inverient under Rotefion
	· under Shift
DEllipse:	
2) Pave lola:	D=0
3 Hyperbolu:	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$: $D = 0 - 4 \frac{1}{b^2} \left(-\frac{1}{b^2} \right) = \frac{4}{a^2 b^2} > 0$

