

Hands-on PCB Design and Electronic Prototyping with Autodesk Fusion

SUMMER ENRICHMENT- LYLES COLLEGE OF ENGINEERING

REVISION 1.0

Day 3 Review

- Advanced Schematic Techniques
 - Complex Schematics
 - Creating custom symbols and parts
 - Hierarchical and modular schematic designs
 - Schematic Validation
 - Error checking and electrical rule checking (ERC)
 - Hands-on Activity
 - Creating a schematic for a Raspberry Pi Expansion Card

Day 4: PCB Layout Essentials (Part 1)

- Transitioning from Schematic to PCB
 - Generating PCB from schematic
 - Understanding PCB workspace and tools
- Component Placement
 - Placement strategies (signal integrity, EMI/EMC, thermal considerations)
 - Floor-planning
- Hands-on Activity
 - Component placement for a simple project PCB

Some PCB Layout Resources

- Application Notes
 - https://www.nxp.com/docs/en/application-note/AN3962.pdf
- Linear Design Handbook
 - https://www.analog.com/en/resources/technical-books/linear-circuit-design-handbook.html
- Engineering Standards
 - IPC-2221 (Generic Standard on Printed Board Design)- Published by: IPC (Association Connecting Electronics Industries)
 - Use: The most widely accepted standard for calculating PCB trace widths.
 - IPC-2152 (Standard for Determining Current-Carrying Capacity in Printed Board Design)
 - Use: Supersedes some parts of IPC-2221 with more accurate data based on empirical testing.
- GitHub
 - https://github.com/RogerMoore2/

PCB Partitioning

- Definition:
 - The logical grouping and electrical separation of different circuit sections based on functionality
- Examples of partitioning blocks:
 - power supply
 - Analog
 - Digital
 - RF
- Purpose:
 - Improve signal integrity
 - Reduce electromagnetic interference (EMI)
 - Prevent crosstalk between sensitive and noisy signals
 - Simplify design troubleshooting.

PCB Partitioning (continuted)

- Key Characteristics:
 - Focuses on functional separation
 - Often uses ground islands or planes to isolate blocks
 - Dictates placement constraints for floor planning
 - Heavily influences routing strategies
- Analogy:
 - Like zoning in city planning separating industrial, residential, and commercial areas to avoid conflict and ensure safety.

PCB Partitioning- Best Practices

- •The following practices will help you design cleaner, more reliable boards.
 - Divide by Function
 - Group circuits by functionality: digital, analog, power, RF, high-speed, etc.
 - Keep noisy sections (e.g., switching regulators, microcontrollers) away from sensitive analog or RF areas.
 - Use silkscreen labels or bounding boxes to visually separate functional zones.
 - Isolate High-Speed & High-Current Paths
 - Keep high-frequency and high-current paths isolated to reduce EMI.
 - Avoid routing them through analog or control regions.
 - Separate Ground & Power Planes
 - Use separate ground planes or islands for analog and digital circuits (AGND vs. DGND).
 - Connect grounds at a single point (star grounding) to prevent ground loops and noise coupling.
 - Isolate power domains for analog, digital, and high-power components.

PCB Partitioning- Best Practices (continued)

- Define Clear Signal Flow
 - Arrange partitions to follow logical signal flow (e.g., sensor \rightarrow ADC \rightarrow MCU \rightarrow output).
 - Avoid crisscrossing traces between zones.
 - Keep data direction intuitive to simplify debugging and EMI mitigation.
- Add Physical Separation
 - Use spacing between partitions to:
 - Prevent crosstalk
 - Allow for copper keepouts
 - Enable thermal management
 - Use keepout zones to enforce electrical and mechanical barriers.
- Use Shielding and Guard Traces
 - For analog/RF sections, add guard traces, shielding, or ground fences to isolate from digital noise.
 - Avoid shared return paths with noisy circuits.

PCB Partitioning- Best Practices (continued)

- Minimize Trace Crossings Between Partitions
 - Reduce the number of traces that cross partitions.
 - If needed, route over controlled impedance layers with proper reference planes.
- Plan for Debugging & Testability
 - · Leave test points within each partition.
 - Use headers or jumpers between partitions to allow isolation during testing.
- Thermal Isolation
 - Separate heat-generating components (e.g., power regulators, MOSFETs) from temperature-sensitive analog ICs.
 - Use copper pours and thermal reliefs as thermal boundaries.
- Optional:
 - Use Hierarchical Schematic Design
 - Create one schematic sheet per partition. This improves readability, maintenance, and layout partitioning in CAD tools like Autodesk Fusion.

PCB Floor Planning

Definition:

• The physical arrangement of all components on a PCB considering electrical, mechanical, thermal, and manufacturability constraints.

Purpose:

- Optimize signal flow
- Minimize trace lengths
- Ensure thermal efficiency
- Plan for mechanical fit and mounting
- Allocate space for routing and vias

PCB Floor Planning (continued)

Key Characteristics:

- Happens early in the layout phase
- Considers component orientation and placement
- Involves power, ground, signal paths, connectors, and test points
- Influenced by enclosure/mechanical design

Analogy:

• Like interior design — arranging furniture (components) in rooms (PCB) for best use of space and function.

PCB Floor Planning- Best Practices

- Group Components by Functional Blocks
 - Best Practice: Arrange components according to their function (e.g., power regulation, microcontroller, sensors).
 - Why: Easier to debug, reduces signal routing complexity, and enhances clarity in layout.
- Place Connectors and I/O Strategically
 - Best Practice: Locate connectors on edges or where access is logical based on mechanical constraints.
 - Why: Prevents awkward wiring or mechanical interference; helps with enclosure integration.
- Prioritize Power and Ground Routing
 - Best Practice: Route power and ground early. Use wide traces or planes. Keep return paths short.
 - Why: Minimizes noise, voltage drop, and ensures signal integrity and safety.

PCB Floor Planning- Best Practices

- Keep Traces Short and Direct
 - Best Practice: Short, direct traces reduce EMI and signal delay.
 - Why: Critical for high-speed or sensitive analog signals.
- Use Ground Planes Liberally
 - Best Practice: Fill unused areas with copper connected to ground.
 - Why: Reduces EMI, improves return path quality, and enhances thermal dissipation.
- Consider Routing Layers Early
 - Best Practice: Plan which layers carry which types of signals (e.g., top = signal, bottom = ground).
 - Why: Avoids conflicts and simplifies layer management in Fusion.

PCB Floor Planning- Best Practices

- Separate Analog and Digital Sections
 - Best Practice: Keep analog and digital components and grounds separated where possible.
 - Why: Prevents digital noise from corrupting sensitive analog signals.
- Plan for Decoupling Capacitors
 - Best Practice: Place bypass capacitors close to power pins of ICs.
 - Why: Filters power supply noise, improves IC stability.
- Reserve Mechanical and Keepout Areas
 - Best Practice: Add mechanical outlines and keepout zones early in the design.
 - Why: Prevents layout conflicts and ensures mechanical compatibility.
- Leave Space for Debugging
 - Best Practice: Leave test points and pads for key signals.
 - Why: Essential for testing and troubleshooting prototypes.

Partitioning vs. Floor Planning

- Relationship Between Partitioning and Floor Planning:
 - Partitioning comes first (logical grouping), then floor planning implements the partitioned blocks physically.
 - Partitioning defines what should be separated, and floor planning defines where and how to separate it on the board.

Al Minute

- Please type the following prompts into the AI Tool of your choice, Chat GPT, Gemini, Grok, Copilot, etc...
 - On a PCB, what are keepout zones and why are they used?
 - For PCB Floor Panning, create a methodical procedure to determine where to place various components on a PCB.

The Fusion PCB Layout Environment

PCB Layout Tool Navigation

PCB Autorouting

- Create a new Fusion Electrical Project
- Link the Amplifier schematic
 - Remember to click the "Copy" box so you don't change the original schematic
- Save and name project, e.g. "Amplifier_AutoRoute"
- Switch to PCB View and place components on the PCB
- Select the AutoRoute Command
- Disable viewing of Values layer to make the silkscreen less cluttered

Al Minute

- Please type the following prompts into the AI Tool of your choice, Chat GPT, Gemini, Grok, Copilot, etc...
 - In AutoDesk Fusion Electrical, can you describe all of the options for the "direction" of the pin under pin properties? What direction would you use for a 5v power supply? What direction would you use for ground? Some of the directions include nc, io, sup, pwr.

Raspberry Pi Pinout- Create Library Component- PCB Footprint

- Component Creation
 - Create Schematic Symbol
 - Create PCB Footprint
 - Combine Footprint and Symbol into a Component
- Create a new project
- Place the newly created Raspberry Pi I/O connector component on the schematic and run ERC
- •Switch to PCB and place the component on the PCB
- Adjust the PCB outline to be a more appropriate size for the connector

CAD Library Elements

- Libraries
 - Libraries contain components
- Components
 - Components include:
 - A Schematic Symbol
 - A PCB Footprint
 - A 3D Model

Questions?

