CS2102 Second Midterm Exam

10:10-11:50am, Thursday, November 26, 2009

Department of Computer Science National Tsing Hua University

Note: Maximal Score = 110分

1. (15pts) Derive a truth table for the following circuit. What is its function?

- 2. (15 pts) Given two 4-to-2 priority encoders. Design a 8-to-3 priority encoder by adding to them some circuits. Name the encoder's valid flag V, outputs X_2 , X_1 , X_0 and inputs A_7 , A_6 , ..., A_0 with A_7 having the highest priority. For example, when $A = 0010\ 0110$, X should equals 101 and V = 1, while when $A = 0000\ 0000$, V should equals 0.
 - (10 pts) Represent -149.375₁₀ in 14-bit (9 bits before and 5 bits after radix

point)

- A. Signed-magnitude Binary format
- B. One's Complement Binary Format
- C. Two's Complement Binary Format

- 10
- 4. (10pts) Given a 8-to-1 multiplexer. Design a 4-input-1-output combinational function that output 1 when the input has equal number of 1s and 0s, and output 0 otherwise.
 - 5. (20 pts) Analyze the following circuit:
- A. Derive the state table
 - B. Derive the state transition diagram
 - C. Simplify your diagram by merging equivalent states if possible.

(15 pts) Design a circuit implementing the following state transition diagram.
 Use one positive edge-triggered D-type flip-flop.

25

7. (10 pts) Given a D-type flip-flop. Add some circuit to it to make a JK flip-flop.

30

8. (15 pts) Design a string recognizer with input X and output Y for the pattern 11011. For example,

$$X = 1001 1011 0110 1111 0110 0...$$

 $Y = 0000 0001 0010 0100 0010 0...$

Just draw a **Mealy** style state transition diagram. Note that a Mealy machine's output depends on both state and input.

9. (15 pts) Design a sequential machine that has two binary inputs X and Y, and one output Z such that Z is 1 if two or more consecutive identical inputs, or two or more consecutive different inputs have been observed, and 0 otherwise. You don't have to complete the whole design process. Just draw a **Moore** style state transition diagram. Below is a sample input and output sequences of the machine.

$$X = 0111 | 1000 | 0001 | 1...$$

 $Y = 1100 | 1011 | 0000 | 0...$
 $Z = 0000 | 1010 | 1011 | 0...$