

Report No. : EED32K00140001 Page 1 of 40

TEST REPORT

Product : Beyond Tablet Mini Edition

Trade mark : Beyond Screen

Model/Type reference : BYM002

Serial Number : N/A

Report Number : EED32K00140001 **FCC ID** : 2AK5X-BTM6362

Date of Issue : Jul. 03, 2018

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Beyond Screen Limited
Suite 603, Building 6, Fulltech Plaza, No. 33 North Guangshun Street,
Beijing, 100102, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested By:

Peter (Test Project)

Reviewed by:

Kevin yang (Reviewer)

ReJm

Date: Jul. 03, 2018

Tom-chen

Tom chen (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:1022500401

Page 2 of 40

2 Version

Version No.	Date	(Description)
00	Jul. 03, 2018		Original	
	(2)	100	- C	/05
		(42)	(872)	(6%)

Report No. : EED32K00140001 Page 3 of 40

3 Test Summary

Test Summary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

The Beyond Tablet Mini Edition has two color appearance, the electrical circuit design, layout, and operational principle were identical for two color appearance, only the color is different.

Report No.: EED32K00140001 Page 4 of 40

4 Content

1 COVER PAGE	•••••			
2 VERSION	•••••			
3 TEST SUMMARY	•••••	•••••		
4 CONTENT				4
5 TEST REQUIREMENT				
5.1.2 For Radiated E	test setup missions test setu Emissions test se	ıpetup		
6 GENERAL INFORMATION	ON			
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICATION 6.4 DESCRIPTION OF SUF 6.5 TEST LOCATION 6.6 DEVIATION FROM STATE 6.7 ABNORMALITIES FROM 6.8 OTHER INFORMATION 6.9 MEASUREMENT UNCE	ON OF EUT TION SUBJECTIVE TO PORT UNITS ANDARDS M STANDARD CONE I REQUESTED BY THE	O THIS STANDARD		
7 EQUIPMENT LIST	•••••		•••••	10
8 RADIO TECHNICAL RE	QUIREMENTS S	PECIFICATION	•••••	12
Appendix B): Conduct Appendix C): Band-e Appendix D): RF Con Appendix E): Power S Appendix F): Antenna Appendix G): AC Pow Appendix H): Restrict	eted Peak Output dge for RF Condu nducted Spurious Spectral Density a Requirement wer Line Conducte ted bands around	Power	y (Radiated)	
PHOTOGRAPHS OF TES				
PHOTOGRAPHS OF EUT	CONSTRUCTIO	NAL DETAILS		40

Report No. : EED32K00140001 Page 5 of 40

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(6)
Temperature:	26.4 °C		
Humidity:	60% RH	Table 2	
Atmospheric Pressure:	1010mbar		1

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel			
١	rest Mode	TX/KX	Low(L)	Middle(M)	High(H)	
1	05014	0.4001411 0.400.1411	Channel 1	Channel 20	Channel 40	
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
	TX mode:	The EUT transmitted the continuous signal at the specific channel(s).				

6 General Information

6.1 Client Information

Applicant:	Beyond Screen Limited
Address of Applicant:	Suite 603, Building 6, Fulltech Plaza, No. 33 North Guangshun Street, Beijing, 100102, China
Manufacturer:	Beyond Screen Limited
Address of Manufacturer:	Suite 603, Building 6, Fulltech Plaza, No. 33 North Guangshun Street, Beijing, 100102, China
Factory:	Shenzhen RuiYi Electronic Science and Technology Co., Ltd.
Address of Factory:	4th Floor, No.1, Area A, Tangtou Third Industrial Park, Shiyang Village, Baoan District, Shenzhen City, Guangdong Province, 518108, China

6.2 General Description of EUT

_		
Product Name:	Beyond Tablet Mini Edition	
Model No.(EUT):	BYM002	
Trade mark:	Beyond Screen	
EUT Supports Radios application:	Wi-Fi: 802.11 b/g/n(20M)/n(40M) , 2412MHz-2462MHz BT:4.0 BT Dual mode, 2402MHz to 2480MHz NFC :13.56MHz	0
Power Supply:	DC 12V and AC 120V/60Hz	
Sample Received Date:	Jun. 04, 2018	
Sample tested Date:	Jun. 04, 2018 to Jun. 29, 2018	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	~~
Bluetooth Version:	4.0	(2)
Modulation Technique:	DSSS	(0)
Modulation Type:	GFSK	
Number of Channel:	40	
Sample Type:	Portable production	
Test Power Grade:	N/A(manufacturer declare)	
Test Software of EUT:	SoFia RFTestTool V1.1(manufacturer declare)	
Hardware Version:	BY3.LRB_V1.0, BY3.TB_V0.3(manufacturer declare)	
Software version:	V1.0(manufacturer declare)	(3)
Antenna Type:	PCB Antenna	(6)
Antenna Gain:	1.5dBi	
Power Source:	Battery: 8.4V, 8000mAh	
Test Voltage:	DC 12V and AC 120V/60Hz	
USB cable:	100cm	

Page 8 of 40 Report No.: EED32K00140001

Operation F	_		_		/ <u>_</u>		/i_
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No.: EED32K00140001 Pag

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE novembre de de	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
	Dadieted Courieus essissies test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	One destination assistant	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No.: EED32K00140001 Page 10 of 40

7 Equipment List

	T		7 252		281
		RF tes	t system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4	(-1 1)	01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
power meter & power sensor	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	158060006	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2	<u></u>	03-13-2018	03-12-2019

Conducted disturbance Test						
Equipment Manufacturer Model No. Serial Cal. date Cal. Due (mm-dd-yyyy) (mm-dd-y						
Receiver	R&S	ESCI	100009	05-25-2018	05-24-2019	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019	
LISN	schwarzbeck	NNLK8121	8121-529	05-11-2018	05-10-2019	

	31	M Semi/full-ar	echoic Chamb	per			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy		
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019		
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-617	03-29-2018	03-28-2019		
Preamplifier	JS Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019		
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018		
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019		
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019		
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019		
Multi device Controller	maturo	NCD/070/107 11112)	05-02-2018	05-01-2019		
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019		
Femperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019		
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019		
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019		
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019		
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019		
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002)	01-10-2018	01-09-2019		

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Appendix A): 6dB Occupied Bandwidth

Test Result

1,100				1.10.00	
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.7459	1.0569	PASS	
BLE	MCH	0.7344	1.0699	PASS	Peak
BLE	НСН	0.7458	1.0603	PASS	detector

Report No.: EED32K00140001 Page 14 o

Test Graphs

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	0.787	PASS
BLE	MCH	1.381	PASS
BLE	НСН	2.295	PASS

Test Graphs

Report No.: EED32K00140001

Report No. : EED32K00140001 Page 17 of 40

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
1	BLE	LCH	-0.110	-58.069	-20.11	PASS
7	BLE	HCH	1.366	-54.983	-18.63	PASS

Test Graphs

Report No.: EED32K00140001

Report No. : EED32K00140001 Page 19 of 40

Appendix D): RF Conducted Spurious Emissions

Result Table

3,300 17									
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict					
BLE	LCH	-0.302	<limit< td=""><td>PASS</td></limit<>	PASS					
BLE	MCH	0.212	<limit< td=""><td>PASS</td></limit<>	PASS					
BLE	HCH	1.033	<limit< td=""><td>PASS</td></limit<>	PASS					

Report No.: EED32K00140001 Page 20 of 40

Test Graphs

Puw/BLE/MCH

Report No.: EED32K00140001

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-15.203	8	PASS
BLE	MCH	-13.976	8	PASS
BLE	НСН	-13.261	8	PASS

Report No.: EED32K00140001 Page 23 of 40

Test Graphs

Report No. : EED32K00140001 Page 24 of 40

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.5dBi.

Report No. : EED32K00140001 Page 25 of 40

Appendix G): AC Power Line Conducted Emission

Test Procedure: Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

	Limit (dBµV)						
Frequency range (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 26 of 40

GE0151U-050300

Live line:

No. Freq.		Reading_Level (dBuV)			Factor	IV	/leasurement (dBuV)		(dBuV)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1499	47.82	44.32	33.34	9.77	57.59	54.09	43.11	66.00	56.00	-11.91	-12.89	Р	
2	0.3820	39.37	36.89	25.11	9.76	49.13	46.65	34.87	58.23	48.23	-11.58	-13.36	Р	
3	0.5660	45.43	41.78	30.82	9.74	55.17	51.52	40.56	56.00	46.00	-4.48	-5.44	Р	
4	0.7060	43.30	38.42	28.31	9.75	53.05	48.17	38.06	56.00	46.00	-7.83	-7.94	Р	
5	3.8860	37.80	34.58	23.99	9.66	47.46	44.24	33.65	56.00	46.00	-11.76	-12.35	Р	
6	16.6980	49.10	42.85	33.74	10.03	59.13	52.88	43.77	60.00	50.00	-7.12	-6.23	Р	

-20 0.150

30.000

Report No.: EED32K00140001

0.5

No. Freq.				Correct Measurement Factor (dBuV)				Limit (dBu∀)		Margin (dB)				
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	46.57	43.68	30.80	9.77	56.34	53.45	40.57	65.99	55.99	-12.54	-15.42	Р	
2	0.2180	37.64	34.58	18.63	9.72	47.36	44.30	28.35	62.89	52.89	-18.59	-24.54	Р	
3	0.3780	35.45	32.56	19.52	9.76	45.21	42.32	29.28	58.32	48.32	-16.00	-19.04	Р	
4	0.6900	41.06	38.55	22.05	9.75	50.81	48.30	31.80	56.00	46.00	-7.70	-14.20	Р	
5	3.6500	34.28	31.59	17.52	9.66	43.94	41.25	27.18	56.00	46.00	-14.75	-18.82	Р	
6	15.7940	50.18	43.14	33.39	10.02	60.20	53.16	43.41	60.00	50.00	-6.84	-6.59	Р	

(MHz)

Report No.: EED32K00140001 Page 28 of 40

QC01

No.	Reading_Level o. Freq. (dBuV)		Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)					
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2020	47.46	44.26	34.75	9.71	57.17	53.97	44.46	63.52	53.52	-9.55	-9.06	Р	
2	0.2980	38.33	35.28	22.85	9.78	48.11	45.06	32.63	60.30	50.30	-15.24	-17.67	Р	
3	0.3980	39.49	36.47	25.39	9.75	49.24	46.22	35.14	57.89	47.89	-11.67	-12.75	Р	
4	0.4980	36.08	33.26	21.43	9.71	45.79	42.97	31.14	56.03	46.03	-13.06	-14.89	Р	
5	0.7100	38.39	35.78	22.62	9.75	48.14	45.53	32.37	56.00	46.00	-10.47	-13.63	Р	
6	2.0260	35.67	32.56	18.95	9.72	45.39	42.28	28.67	56.00	46.00	-13.72	-17.33	Р	

Neutral line:

		Read	ding_Le	vel	Correct	N	leasuren	nent	Lin	nit	Ma	rgin		
No.	Freq.	(dBu∀)		Factor		(dBu∀)		(dB	uV)	(0	dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	46.39	43.26	29.30	9.77	56.16	53.03	39.07	65.99	55.99	-12.96	-16.92	Р	
2	0.1980	47.80	44.58	32.06	9.71	57.51	54.29	41.77	63.69	53.69	-9.40	-11.92	Р	
3	0.3060	38.32	35.49	22.08	9.78	48.10	45.27	31.86	60.08	50.08	-14.81	-18.22	Р	
4	0.4060	39.08	35.69	21.52	9.75	48.83	45.44	31.27	57.73	47.73	-12.29	-16.46	Р	
5	0.7180	38.14	35.24	20.25	9.75	47.89	44.99	30.00	56.00	46.00	-11.01	-16.00	Р	
6	3.7140	29.26	26.48	15.02	9.66	38.92	36.14	24.68	56.00	46.00	-19.86	-21.32	Ρ	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)	(6)	1630	/		363 /	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	<
	About 4011-	Peak	1MHz	3MHz	Peak	10
	Above 1GHz	Peak	1MHz	10Hz	Average	(63
est Procedure:	Below 1GHz test procedu	re as below:	16			16
	 a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 meters was mounted on the toton. c. The antenna height is a determine the maximum polarizations of the antenna was tuned was turned from 0 degree. e. The test-receiver systematical at the antenna was turned from 0 degree. 	n the top of a ro hoic camber. The of the highest raters away from to p of a variable-horaried from one m value of the fire enna are set to inission, the EUT to heights from rees to 360 degr	ne table wand adiation. The interference interference meter to found the make the new as arran and meter to frees to find	ence-receinna tower. ur meters n. Both hor neasurement ged to its very 4 meters at	of the grade of th	to a, wh counce /ertice nd th able
	f. Place a marker at the effrequency to show combands. Save the spectrofor lowest and highest of	um Hold Mode. end of the restric pliance. Also mo um analyzer plo	easure any	emissions	s in the restri	icted
	f. Place a marker at the e frequency to show combands. Save the spectr	um Hold Mode. and of the restrict apliance. Also may be an analyzer plothannel are as below: are is the test site ber change form an meter and table awest channel, to ments are perford and tound the X ax	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 med the Highest rmed in X, kis positioni	remissions for each por from Semi- meter to 1 ter). channel Y, Z axis p ng which i	Anechoic Ch.5 meter(Ab	icted dulat namb ove
imit:	f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the following for fully Anechoic Chamman for the fully	um Hold Mode. and of the restrict apliance. Also may be an analyzer plothannel are as below: are is the test site ber change form an meter and table awest channel, to ments are perford and tound the X ax	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 med the Highest rmed in X, kis positioni uencies me	remissions for each por from Semi- meter to 1 ter). channel Y, Z axis p ng which in	Anechoic Ch.5 meter(Ab	icted dulat namb ove
imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the lowest in the radiation measured that the lowest interest is the lowest interest interes	um Hold Mode. end of the restrict apliance. Also may rum analyzer plot channel are as below: re is the test site ber change form 1 meter and table west channel, to ments are perform d found the X ax res until all frequence.	easure any of the control of the con	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i	Anechoic Ch.5 meter(Ab	icted dulat namb ove
imit:	f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of lowest and highest of the spectre for lowest and highest of lowest and highest of the stance is how to fully Anechoic Chamman 18GHz the distance is how the spectral from the lowest fill in the lowes	um Hold Mode. and of the restrict pliance. Also more rum analyzer plo channel are as below: re is the test site ber change forn 1 meter and table west channel, to ments are perfor d found the X ax res until all frequ Limit (dBµV/	easure any ot. Repeat f e, change fr n table 0.8 e is 1.5 met the Highest rmed in X, kis positioni uencies me /m @3m)	remissions for each portrom Semi-meter to 1 ter). channel Y, Z axis programming which it easured was reduced r	Anechoic Cr.5 meter(Ab	icted dulat namb ove
imit:	f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the following for fully Anechoic Chamman for the fully	um Hold Mode. end of the restrict pliance. Also may be a sum analyzer plother as below: re is the test site ber change form 1 meter and table west channel, the ments are performed found the X axing res until all frequency. Limit (dBµV/40.0)	easure any ot. Repeat for table 0.8 e is 1.5 met the Highest rmed in X, kis positioni uencies med/m @3m)	remissions for each portion Semi-meter to 1 ter). channel Y, Z axis programmed was red was red was red was red was red was red Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete.	icted dulat namb ove
imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of the spectre for lowest and highest of the spectre for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chammand 18GHz the distance is how to fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the fully Anechoic Chammand	um Hold Mode. end of the restrict pliance. Also me um analyzer plo channel are as below: re is the test site ber change forn 1 meter and table west channel, to ments are perford d found the X ax res until all freque Limit (dBµV/ 40.0	easure any of the control of the Highest red in X, kis positioni uencies me (/m @3m)	remissions for each portion Semi-meter to 1 ter). It channel Y, Z axis programmed was red was Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value	icted dulat namb ove
imit:	Bandwidth with Maximum f. Place a marker at the end frequency to show combands. Save the spectre for lowest and highest of lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamman 18GHz the distance is how to fully Anechoic Chamman 18GHz the distance is how the ful	um Hold Mode. end of the restrict upliance. Also me um analyzer plot channel ure as below: re is the test site ber change form 1 meter and table west channel, to ments are perfor d found the X ax res until all freque Limit (dBµV/ 40.0 43.5	easure any ot. Repeat for table 0.8 e is 1.5 met the Highest rmed in X, kis positioni uencies med (m @3m)	remissions for each por each por each por each por each por each por each each each each each each each each	Anechoic Ch.5 meter(Abecositioning for tis worse cast complete. mark eak Value eak Value	icted dulat namb ove

Page 31 of 40

Test plot as follows:

Worse case mode:	GFSK		(67)
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Freguency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

Fr		Cable Loss					Pol/Phase	Remark
M	Hz dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 2390.0 2 pp 2402.0							Horizontal Horizontal	_

Page 32 of 40

Worse case mode:	GFSK	(8.5)	(2)
Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	GFSK			
Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average	

Report No.: EED32K00140001 Page 33 of 40

Worse case mode:	GFSK		
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK	73	/10	
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Page 34 of 40

Worse case mode:	GFSK	(0.)	(0.)
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Report No. : EED32K00140001 Page 35 of 40

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
(cri)	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	- 11	n	١ı	t:
ш	-11	п	ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	/°-	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32K00140001 Page 36 of 40

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)			1
Test mode:	Transmitting	Vertical	

	Freq					Limit Line		Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 pp	48.163	14.47	0.10	22.01	36.58	40.00	-3.42	Vertical	QP
2	77.051	9.11	0.37	17.48	26.96	40.00	-13.04	Vertical	QP
3	149.486	8.83	0.61	13.66	23.10	43.50	-20.40	Vertical	QP
4	356.676	14.51	1.32	10.75	26.58	46.00	-19.42	Vertical	QP
5	597.223	18.65	1.81	8.46	28.92	46.00	-17.08	Vertical	QP

890.728

2.48

30.96 46.00 -15.04 Vertical

Page 37 of 40

Transmitter Emission above 1GHz

Worse case	mode:	GFSK	(N)	Test char	nnel:	Lowest	Remark: P		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1549.344	30.96	2.35	43.94	47.92	37.29	74.00	-36.71	Pass	Н
2097.507	31.92	2.90	43.64	49.35	40.53	74.00	-33.47	Pass	Н
4804.000	34.69	5.98	44.60	47.53	43.60	74.00	-30.40	Pass	Н
5865.832	35.80	7.31	44.51	48.69	47.29	74.00	-26.71	Pass	Н
7206.000	36.42	6.97	44.77	45.95	44.57	74.00	-29.43	Pass	Н
9608.000	37.88	6.98	45.58	46.27	45.55	74.00	-28.45	Pass	Н
1280.072	30.41	1.98	44.27	48.86	36.98	74.00	-37.02	Pass	V
2102.853	31.93	2.90	43.65	47.94	39.12	74.00	-34.88	Pass	V
3192.366	33.43	3.54	44.68	53.70	45.99	74.00	-28.01	Pass	V
4804.000	34.69	5.98	44.60	47.36	43.43	74.00	-30.57	Pass	V
7206.000	36.42	6.97	44.77	46.85	45.47	74.00	-28.53	Pass	V
9608.000	37.88	6.98	45.58	45.74	45.02	74.00	-28.98	Pass	V

Worse case	mode:	GFSK	411	Test channel:		Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
2024.074	31.76	2.86	43.54	48.06	39.14	74.00	-34.86	Pass	~H
3003.173	33.60	3.36	44.70	50.25	42.51	74.00	-31.49	Pass	(H)
4880.000	34.85	6.13	44.60	47.51	43.89	74.00	-30.11	Pass	H
5895.771	35.82	7.34	44.51	48.90	47.55	74.00	-26.45	Pass	Н
7320.000	36.43	6.85	44.87	47.41	45.82	74.00	-28.18	Pass	Н
9760.000	38.05	7.12	45.55	46.19	45.81	74.00	-28.19	Pass	Н
1786.719	31.37	2.62	43.70	48.03	38.32	74.00	-35.68	Pass	V
4880.000	34.85	6.13	44.60	47.16	43.54	74.00	-30.46	Pass	V
5504.170	35.52	6.93	44.55	48.89	46.79	74.00	-27.21	Pass	V
6078.644	35.94	7.42	44.51	48.49	47.34	74.00	-26.66	Pass	V
7320.000	36.43	6.85	44.87	47.25	45.66	74.00	-28.34	Pass	V
9760.000	38.05	7.12	45.55	46.75	46.37	74.00	-27.63	Pass	V

(FI)

Report No.: EED32K00140001 Page 39 of 40

Worse case	mode:	GFSK	(5)	Test chan	nel:	Highest	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
2086.856	31.90	2.89	43.63	48.22	39.38	74.00	-34.62	Pass	Н	
3112.129	33.50	3.47	44.69	50.18	42.46	74.00	-31.54	Pass	Н	
4960.000	35.02	6.29	44.60	47.35	44.06	74.00	-29.94	Pass	Н	
6267.190	36.04	7.37	44.53	48.79	47.67	74.00	-26.33	Pass	Н	
7440.000	36.45	6.73	44.97	46.98	45.19	74.00	-28.81	Pass	Н	
9920.000	38.22	7.26	45.52	46.79	46.75	74.00	-27.25	Pass	Н	
1818.842	31.43	2.66	43.66	48.39	38.82	74.00	-35.18	Pass	V	
3184.250	33.43	3.53	44.68	50.98	43.26	74.00	-30.74	Pass	V	
4960.000	35.02	6.29	44.60	47.41	44.12	74.00	-29.88	Pass	V	
6063.190	35.93	7.42	44.51	48.92	47.76	74.00	-26.24	Pass	V	
7440.000	36.45	6.73	44.97	46.42	44.63	74.00	-29.37	Pass	V	
9920.000	38.22	7.26	45.52	47.58	47.54	74.00	-26.46	Pass	V	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32K00140001 Page 40 of 40

PHOTOGRAPHS OF TEST SETUP

Refer to appendix for EUT Test setup-1.

PHOTOGRAPHS OF EUT Constructional Details

Refer to appendix for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

