WSPÓŁBIEŻNA, ROZPROSZONA GRA LIFE W ERLANGU

Michał Gajda Konrad Komnata Piotr Mitana Marcelina Pastuszczak Michał Urbanek

Kraków, styczeń 2014

I. OPIS TEORETYCZNY – REGUŁY GRY

Gra w życie jest grą opartą na planszy składającej się z kwadratowych komórek. Dla każdej komórki określa się sąsiedztwo oraz stan. Sąsiedztwem nazywamy komórki przylegające do niej bokami i rogami, co w sumie daje ośmiu sąsiadów (tzw. Moore'a). Stanem nazywamy jedną z dwóch opcji: "żywa" lub "martwa". Stany komórek zmieniają się w czasie jednocześnie dla wszystkich komórek i obliczane są na podstawie poprzednich stanów komórek. Stan komórki zależy od ilości "żywych" komórek wśród jej sąsiadów. Najpopularniejsze reguły gry ustalone zostały przez Conwaya:

Komórka martwa, która ma dokładnie 3 sąsiadów żywych staje się żywa.

Komórka żywa, która ma 2 lub 3 sąsiadów żywych zostaje żywa, w pozostałych przypadkach staje się martwa.

II. OPIS ROZWIĄZANIA

W przyjętym przez nas modelu zastosowaliśmy podział na procesy wyznaczające wartości stanów komórek dla pewnej liczby wierszy (rozmiar planszy / liczba procesów). Każdy z procesów otrzymuje informacje o numerze wiersza początkowego i końcowego oraz o stanach wierszy "skrajnych", tj. wiersza jednego wyżej niż wiersz początkowy oraz jednego niżej niż końcowy. Dla wierszy skrajnych (pierwszy i ostatni) wierszami "skrajnymi" są wiersze samych 0. Każdy z procesów dostaje taką informację od koordynatora, zarządzającego ogólnym przebiegiem całej gry. W każdej iteracji wczytuje on obecny stan planszy z pliku i odpowiednio dzieli ją i rozsyła zadania. Po wykonaniu działania przez procesy informacje zwrotne od nich również trafiają do koordynatora, który scala otrzymane tablice wynikowe i zapisuje do pliku, a następnie wykonuje kolejną iterację.

III. TESTY SKALOWALNOŚCI

Wykonaliśmy testy szybkości programu korzystając z 2, 6 i 10 węzłów n a planszach o rozmiarze 2^8 oraz 2^{10} . Zauważyliśmy znaczący wpływ ilości węzłów na szybkość programu. Większa liczba węzłów powoduje krótszy czas obliczeń.

Zakres – przedział od najmniejszego do największego czasu wykonywania jednej z pięciu iteracji programu

Mediana – środkowy czas jednej z pięciu iteracji programu

Srednia – średni czas wykonywania jednej programu

Obliczenia dla planszy o rozmiarze 2⁸:

obliczenia na 2 węzłach	
Zakres:	752649 - 765276 mics
Mediana:	753156 mics
Średnia:	755696 mics

obliczenia na 6 węzłach		
Zakres:	265066 - 273409 mics	
Mediana:	267053 mics	
Średnia:	267714 mics	

obliczenia na 10 węzłach	
Zakres:	167162 - 174206 mics
Mediana:	169133 mics
Średnia:	169839 mics

Obliczenia dla planszy o rozmiarze 2¹⁰:

obliczenia na 2 węzłach	
Zakres:	49240117 - 49399453 mics
Mediana:	49313095 mics
Średnia:	49309058 mics

obliczenia na 6 węzłach	
Zakres:	16183905 - 16733640 mics
Mediana:	16255351 mics
Średnia:	16354915 mics

obliczenia na 10 węzłach		
Zakres:	9352356 - 10525819 mics	
Mediana:	9753391 mics	
Średnia:	9913892 mics	