Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра теоретической и прикладной информатики Расчётно-графическое задание по дисциплине «Методы принятия оптимальных решений»

Факультет: ПМИ

Группа: ПМИ-12

Вариант: 24

Студент: Швадченко Артём

Преподаватель: Лемешко Борис Юрьевич

Новосибирск 2024

Вариант 24:

Вариант 24

1	Данные QQQ Критерии Андерсона-Дарлинга, Z _A и Z _C Жанга				
	простые гипотезы о согласии с законами: нормальным с параметрами (µ = 28, σ = 5.4);				
	Лапласа $(\theta_0 = 27, \theta_1 = 4.6)$; обобщённым нормальным (двусторонним				
	экспоненциальным) с параметрам	и $\theta_0 = 28$, $\theta_1 = 6.2$, $\theta_2 = 1.37$; логистическим при			
	$\theta_0 = 28 \; , \; \theta_1 = 3.14 \; .$				
2	Нормальное распределение при μ	=0 и σ=0.5.			
3	Инсоляция в декабре				
5	Мощность солнечной панели в дек	абре			

Третий алгоритм Гомори.

Задание 1.1.:

Используя заданные вариантом непараметрические критерии согласия, набор данных классического эксперимента проверить простые гипотезы о принадлежности выборок потенциально подходящим законам распределения (в соответствии с вариантом задания). Для применяемых критериев в сформированной таблице зафиксировать значения статистик критериев и достигнутые уровни значимости p-value.

Критерий	Критерий	Критерий Za	Критерий Zc
Распр.	Андерсона-		
	Дарлинга		
Нормальное	S = 0.305	S = 3.315	S = 7.994
	P= 0.933	P= 0.872	P= 0.742
	Не отвергается	Не отвергается	Не отвергается
Лапласа	S = 1.147	S = 3.454	S = 23.194
	P= 0.2883	P= 0.059	P= 0.091
	Не отвергается	Не отвергается	Не отвергается
Двустороннее	S = 0.4334	S = 3.360	S = 13.574
экспоненциальное	P= 0.8151	P= 0.413	P= 0.371
	Не отвергается	Не отвергается	Не отвергается
Логистическое	S = 0.3835	S = 3.344	S = 11.765
	P= 0.8649	P= 0.567	P= 0.477
	Не отвергается	Не отвергается	Не отвергается

Задание 1.2.:

Применяя те же критерии проверить сложные гипотезы о согласии с теми же законами при использовании оценок максимального правдоподобия.

Зафиксировать в той же таблице значения статистик критериев и достигнутые уровни

значимости p-value . Сравнить последние с достигнутыми уровнями значимости при проверке

простых гипотез. Дать объяснение результатам.

По итогам проверки сложной гипотезы, полученные параметры отличаются от данных в варианте. Разницу хорошо видно и по графикам. При проверке сложной гипотезы, гипотеза о виде распределения не отвергается.

Задание 1.3.:

Используя различные модели законов распределения, из встроенных в ISW, проверить, найдутся ли среди них законы (хотя бы один), относительно которых не будет отвергаться сложная проверяемая гипотеза о «согласии» с данным законом при заданном уровне значимости α =0,5?

Сделать вывод о наиболее подходящей модели, для описания данной выборки.

	Статистика	p-value
Критерий Андерсон	а–Да∏ 0.272677	0.957
Критерий Za	3.330554	0.729000
Критерий Zc	7.436725	0.787000

Задание 2.:

В соответствии с вариантом смоделировать выборку по заданному закону при n=500. Используя критерий x^2 -Пирсона проверить простую гипотезу о принадлежности выборки моделируемому закону, например, при числе интервалов k=7 и k=10 и использовании различных *вариантов группирования*, фиксируя в сформированной таблице значения статистик и достигаемые уровни значимости.

Рассмотреть следующие варианты группирования: равномерное; равновероятное; асимптотически оптимальное.

Проанализировать результаты. Пояснить, что собой представляет асимптотически оптимальное группирование (АОГ). Вставить в отчет рисунок с плотностью и гистограммой для случая использования $AO\Gamma$.

Проверяем простую гипотезу с использованием различных вариантов группирования:

Асимптотически оптимальное группирование:

10 интервалов:

Уровень значимости (вероятность ошибки первого рода) a= 0.1 Достигаемый уровень значимости (вероятность согласия) P=1-G(S|H0)= 0.4140358780748895 P>a: гипотеза о согласии НЕ ОТВЕРГАЕТСЯ

Результаты проверки согласия: k=10, r=0 *Хи-квадрат Пирсона S=9.255451694997964 P=0.4140358780748895

7 интервалов:

Уровень значимости (вероятность ошибки первого рода) a= 0.1 Достигаемый уровень значимости (вероятность согласия) P=1-G(S|H0)= 0.2824665202436457 P>a: гипотеза о согласии НЕ ОТВЕРГАЕТСЯ

Результаты проверки согласия: k=7, r=0 * Хи-квадрат Пирсона S=7.435201582591482 P=0.2824665202436457

Вывод:

При асимптотически оптимальном группировании гипотеза о виде распределения не отвергается.

Асимптотически оптимальное группирование(АОГ) обеспечивает максимальную мощность критериев согласия. Асимптотически нормальное группирование наблюдений обеспечивает при близких альтернативах максимальную мощность критериев согласия Хи-квадрат Пирсона и отношения правдоподобия.

Равномерное группирование:

10 интервалов:

Уровень значимости (вероятность ошибки первого рода) а= 0.1 Достигаемый уровень значимости (вероятность согласия) P=1-G(S|H0)= 0.1884308707030129 Р>а: гипотеза о согласии НЕ ОТВЕРГАЕТСЯ

Результаты проверки согласия: k=10, r=0

* Хи-квадрат Пирсона S=12.46332768166913 P=0.1884308707030129

7 интервалов:

Уровень значимости (вероятность ошибки первого рода) а= 0.1 Достигаемый уровень значимости (вероятность согласия) P=1-G(S|H0)= 0.1838267539356658 P>a: гипотеза о согласии НЕ ОТВЕРГАЕТСЯ

Результаты проверки согласия: k=7, r=0

* Хи-квадрат Пирсона S=8.82220583150777 P=0.1838267539356658

Вывод:

При равномерном группировании гипотеза о виде распределения не отвергается.

Равновероятное группирование:

10 интервалов:

Уровень значимости (вероятность ошибки первого рода) а= 0.1 Достигаемый уровень значимости (вероятность согласия) P=1-G(S|H0)= 0.3041258162740363 P>a: гипотеза о согласии НЕ ОТВЕРГАЕТСЯ

Результаты проверки согласия: k=10, r=0

* Хи-квадрат Пирсона S=10.60000000197201 P=0.3041258162740363

7 интервалов:

Уровень значимости (вероятность ошибки первого рода) а= 0.1 Достигаемый уровень значимости (вероятность согласия) Р=1-G(S|H0)= 0.3041258162740363 Р>а: гипотеза о согласии НЕ ОТВЕРГАЕТСЯ

Результаты проверки согласия: k=10, r=0

* Хи-квадрат Пирсона S=10.60000000197201 P=0.3041258162740363

Вывод:

При равновероятном группировании гипотеза о виде распределения не отвергается.

Таким образом, применяя критерии согласия Хи-квадрат, можно по-разному разбивать область определения случайной величины на интервалы (равной длины, равных вероятностей или асимптотически оптимальные).

Задание 3:

3.1.Для выборки результатов измерения скорости ветра (или инсоляции, солнечной радиации в вт/м 2) в конкретном месяце (в соответствии с вариантом задания)

идентифицировать модель закона (подобрать), который в наибольшей степени согласуется с этой выборкой. Следует рассматривать только некоторые из законов, перечень которых загружается с файлом «стандартные.dst».

Для данного задания используем выборку: 12-Инсоляция_декабрь.dat

Анализируя графики и проверяя гипотезы, ищем подходящее распределение.

В ходе исследований было выделено 2 вероятно подходящих закона: Логарифмически нормальное и SI-Джонсона.

3.2.Постарайтесь построить модель в виде смеси законов.

Для работы необходимо отсортировать выборку по возрастанию, а затем по виду эмпирического распределения разбить ее на части (подвыборки), которые необходимо описать отдельными моделями.

Получим следующие участки:

Для каждого интервала будем выбирать отдельную модель.

1 интервал:

1-й интервал был лучше описан Равномерным распределением.

Shift(Scale(D0(),62.067186599999992320?),1.798652013300000130?)

2 интервал:

2-й интервал лучше описывает Логарифмически нормальное распределение. Ln(Shift(Scale(D9(),0.245265256199686005?),4.662537829816017166?))

3 интервал:

3-й интервал лучше описывает Нормальное распределение.

Shift(Scale(D9(),24.221121764220850280?),205.102168202447131800?)

4 интервал:

4-й интервал лучше описывает Равномерное распределение.

Shift(Scale(D0(),509.329425599999979100?),266.644053532800001000?)

Смесь:

Mixt(Mixt(Shift(Scale(D0(),62.067186599999992320?),1.798652013300000130?),Ln(Shift(Scale(D9(),0.245265256199686005?),4.662537829816017166?)),0.4797),Shift(Scale(D9(),24.221121764220850280?),205.102168202447131800?),0.8),Shift(Scale(D0(),509.32942559999979100?),266.644053532800001000?),0.7142)

График, соответствующий полученной смеси:

• {0.71x{0.80x{0.48xPag(1.7987,62.0672)},{0.52xЛогарифмически(ln) N(4.6625,0.2453)}},{0.20xN(205.1022,24.2211)}},{0.29xPag(266.6441,509.

Проверка простой гипотезы относительно полной выборки:

	Статистика	p-value
Критерий Колмогорова	□ 0.489046	0.971
Критерий Купера	0.886219	0.934
Критерий Крамера-Мизе	0.032292	0.968

Вывод:

Результаты проверки простой гипотезы относительно полной выборки свидетельствуют об адекватности построенной модели в виде смеси законов.

Задание 4:

4.1. Проверьте гипотезу об однородности законов, выборки рассмотренной в п.3, с выборками соседних месяцев с использованием 2-х выборочных критериев однородности Смирнова, Лемана—Розенблатта, Андерсона—Дарлинга—Петита и Хи-квадрат.

Отразите результаты в отчёте, включая значения статистик критериев и достигнутого уровня значимости p_{value} .

□ Инсоляция_январь	263
✓ Ноябрь	270
✓ Инсоляция_декабрь	259

Критерий	Гипотеза	Статистика	p-value
Критерий однородности Хи-квадрат	отклоняется	23.0907	0
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	3.3676	0.016
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0.576306	0.024
Критерий Смирнова	ОТКЛОНЯЕТСЯ	1.81596	0.003

Инсоляция_январь	263
□ Ноябрь	270
✓ Инсоляция_декабрь	259

Критерий	Гипотеза	Статистика	p-value
Критерий однородности Хи-квадрат	НЕ ОТКЛОНЯЕТСЯ	3.38648	0.764
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	1.39012	0.209
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0.158389	0.38
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	0.860476	0.43

На графике видно, что значения января ближе к значениям декабря, чем значения ноября, что подтверждает проведенная проверка.

4.2. Проверьте гипотезу об однородности результатов измерений в 3-х соседних месяцах, включая Ваш вариант, с использованием k-выборочных критериев: Хи-квадрат, Андерсона—Дарлинга и 3-х критериев Жанга. Последние 3 критерия

потребуют интерактивного моделирования распределений статистик для формирования выводов о результатах проверки.

Отразите результаты в отчёте, включая значения статистик критериев и соответствующие значения достигнутого уровня значимости $p_{\it value}$.

Критерий	Гипотеза	Статистика	p-value
Критерий однородности Хи-квадрат	ОТКЛОНЯЕТСЯ	33.6134	0.002
К-выборочный критерий Андерсона-Дарлинга	НЕ ОТКЛОНЯЕТСЯ	3.23327	0.019
Критерий Жанга Za (К выборок)	отклоняется	3,22464	0
Критерий Жанга Zc (К выборок)	ОТКЛОНЯЕТСЯ	3.2096	0
Критерий Жанга Zk (К выборок)	ОТКЛОНЯЕТСЯ	40,4393	0

4.3.Используя 2-хвыборочные критерии однородности Смирнова, Лемана— Розенблатта и Андерсона—Дарлинга—Петита найдите месяц, выборка с результатами измерений для которого наиболее близка к результатам измерений «Вашего» месяца.

Отразите результаты в отчёте.

Декабрь-Январь:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	1.39012	0.209
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0.158389	0.38
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	0.860476	0.43

Декабрь-Февраль:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	31.07	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	5.85386	0
Критерий Смирнова	отклоняется	3.30407	0

Декабрь-Март:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	34.7788	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	6.68339	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	3.73869	0

Декабрь-Апрель:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	45.5008	0
Критерий Лемана-Розенблатта	отклоняется	9.02868	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	4.26491	0

Декабрь-Май:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	32.1388	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	6.29589	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	4.00776	0

Декабрь-Июнь:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	43.1327	0
Критерий Лемана-Розенблатта	отклоняется	8.64668	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	4.67277	0

Декабрь-Июль:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	ОТКЛОНЯЕТСЯ	42.7043	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	8.46934	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	4.28823	0

Декабрь-Август:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	72.9369	0
Критерий Лемана-Розенблатта	отклоняется	15.072	0
Критерий Смирнова	отклоняется	5.6876	0

Декабрь-Сентябрь:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	73.8592	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	14.7928	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	5.4098	0

Декабрь-Октябрь:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	26.0412	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	4.89818	0
Критерий Смирнова	отклоняется	3.46221	0

Декабрь-Ноябрь:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	3.3676	0.016
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0.576306	0.024
Критерий Смирнова	отклоняется	1.81596	0.003

Вывод:

Значения января ближе к значениям декабря чем у остальных месяцев.

Задание 5:

Для варианта выборки с измерениями мощности ветроэнергетической установки (ВЭУ) или с мощностью солнечной панели, используя критерии однородности законов, однородности средних и однородности дисперсий (через раздел в ISW «Проверка на тренд критериями однородности»), проверьте гипотезу об отсутствии тренда в Вашем ряду измерений. Для этого, разбивая выборку на последовательные части, можно использовать соответствующие критерии. Проверьте подозрительные части выборки на однородность законов (критериями однородности Смирнова, Лемана—Розенблатта и Андерсона—Дарлинга—Петита), на однородность средних (критерием сравнения 2-х выборок при неизвестных и неравных дисперсиях, Н-критерием Краскела-Уаллиса) и на однородность дисперсий (критерием Бартлетта, считая, что предположения о нормальности выполняются, и нормированным критерием Муда).

Отразите результаты в отчёте.

График (временной ряд):

Разобьем выборку на 10 выборок и проверим тренд критериями однородности.

Однородность законов:

1 и 2:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	10,6141	0
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	2,1339	0
Критерий Смирнова	ОТКЛОНЯЕТСЯ	2,4441	0

2и3:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	4,68229	0,005
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	0,922856	0,005
Критерий Смирнова	отклоняется	1,75206	0,005

3 и 4:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	1,26546	0,266
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,230639	0,243
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	0,895253	0,351

4 и 5:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	3,41304	0,016
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,624062	0,02
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	1,20832	0,071

5 и 6:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	отклоняется	5,26685	0,002
Критерий Лемана-Розенблатта	ОТКЛОНЯЕТСЯ	1,11154	0,001
Критерий Смирнова	ОТКЛОНЯЕТСЯ	1,88388	0,001

6 и 7:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	2,3918	0,06
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,495314	0,043
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	1,19733	0,086

7 и 8:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	3,89572	0,01
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,695706	0,014
Критерий Смирнова	отклоняется	1,78501	0,001

8 и 9:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	1,8721	0,108
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,259749	0,192
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	1,23578	0,059

9 и 10:

Критерий	Гипотеза	Статистика	p-value
Критерий Андерсона-Дарлинга-Петита	НЕ ОТКЛОНЯЕТСЯ	0,734332	0,544
Критерий Лемана-Розенблатта	НЕ ОТКЛОНЯЕТСЯ	0,111212	0,54
Критерий Смирнова	НЕ ОТКЛОНЯЕТСЯ	0,735975	0,584

Однородность средних:

1 и 2:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	отклоняется	-5,33693	0
Н-критерий Краскела-Уаллиса	отклоняется	20,1103	0

2 и 3:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	НЕ ОТКЛОНЯЕТСЯ	2,4568	0,026
Н-критерий Краскела-Уаллиса	ОТКЛОНЯЕТСЯ	8,41988	0,004

3 и 4:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	НЕ ОТКЛОНЯЕТСЯ	-0,781408	0,47
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	1,6903	0,218

4и5:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	отклоняется	-2,67903	0,008
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	6,28012	0,012

5 и 6:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	отклоняется	2,90168	0,002
Н-критерий Краскела-Уаллиса	ОТКЛОНЯЕТСЯ	9,43278	0,002

6 и 7:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	НЕ ОТКЛОНЯЕТСЯ	-1,08762	0,312
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	3,07065	0,091

7 и 8:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	отклоняется	3,3629	0
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	5,28426	0,023

8 и 9:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	НЕ ОТКЛОНЯЕТСЯ	-2,26221	0,026
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	1,36473	0,252

9 и 10:

Критерий	Гипотеза	Статистика	p-value
При неизв. и неравных дисперсиях	НЕ ОТКЛОНЯЕТСЯ	0,961871	0,336
Н-критерий Краскела-Уаллиса	НЕ ОТКЛОНЯЕТСЯ	0,751243	0,402

Однородность дисперсий:

1 и 2:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	отклоняется	42,9515	0
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	0,890463	0,386

2 и 3:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	0,109692	0,740496
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	-1,12865	0,259045

3 и 4:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	0,250752	0,609
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	-0,772085	0,442

4 и 5:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	1,25704	0,27
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	-0,439862	0,656

5 и 6:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	0,180817	0,665
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	0,748695	0,468

6 и 7:

Критерий		Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	0,698822	0,404
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	1,26708	0,236

7 и 8:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	отклоняется	23,6235	0
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	-2,34871	0,03

8 и 9:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	отклоняется	21,6897	0
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	-2,14823	0,018

9 и 10:

Критерий	Гипотеза	Статистика	p-value
Критерий Бартлетта	НЕ ОТКЛОНЯЕТСЯ	1,25309	0,273
Критерий Муда (Нормир.)	НЕ ОТКЛОНЯЕТСЯ	0,122913	0,902

Задание 6:

В этих же целях для выборки, рассмотренной в п.5, проверьте гипотезу об отсутствии тренда, используя 3-4 критерия из включенных в раздел в ISW «Проверка на отсутствие тренда» (Дюффа-Роя, Фостера-Стюарта, инверсий, Вальда-Вольфовица).

Отразите результаты в отчёте.

Критерий	Гипотеза	Статистика	p-value
Критерий Дюффа-Роя	отклоняется	11,5206	0
Критерий Фостера-Стюарта для проверки тренда в дисперс	НЕ ОТКЛОНЯЕТСЯ	0,99852	0,38
Критерий инверсий	НЕ ОТКЛОНЯЕТСЯ	15665	0,452
Критерий Вальда-Вольфовитца	отклоняется	11,5458	0

Задание 7:

Сгенерируйте задачу дискретного линейного программирования небольшой размерности (с числом переменных $n \le 3$ и числом линейных ограничений $m \le 4$), имеющую в отсутствие требования целочисленности оптимальное нецелочисленное решение. Приведите подробное решение полностью целочисленной задачи указанным в варианте алгоритмом Гомори.

Необходимо решить задачу третьим алгоритмом Гомори.

Решить задачу:

$$x_0 = 2x_1 + 2x_2 \rightarrow max$$

при ограничениях:

$$\begin{cases} x_1 + 4x_2 \le 7 \\ 4x_1 + x_2 \le 12 \\ x_i \ge 0 \\ x_i - \text{целые} \end{cases}$$

0	1	-x1	-x2
x0	0	-2	-2
x1	0	-1	0
x2	0	0	-1
x3	7	1	4
x4	12	4	1

 $\overline{M=3}$

0	1	-x1	-x2
x0	0	-2	-2
x1	0	-1	0
x2	0	0	-1
x3	7	1	4
x4	12	4	1
x5	3	1	1

0	1	-x1	-x2
x0	6	2	0
x1	3	1	1
x2	0	0	-1
x3	4	-1	3
x4	0	-4	-3
x5	0	-1	0
x6	0	-1	-1

0	1	-x1	-x2
x0	6	2	0
x1	3	0	1
x2	0	1	-1
x3	4	-4	3
x4	0	-1	-3
x5	0	-1	0

Задание 8:

Сгенерируйте произвольную матричную игру (с числом стратегий 1-го игрока $m \ge 4$ и числом стратегий 2-го игрока $n \ge 5$).

- Запишите игру в виде задач линейного программирования с позиций 1-го и 2-го игроков.
- Проверьте, имеет ли Ваша игра решение в чистых стратегиях?
- При возможности, сократите игру, удалив доминируемые строки и столбцы.

Допустим, матричная игра будет выглядеть следующим образом:

Игроки	B1	B2	B3	B4	B5
A1	5	2	5	1	2
A2	1	2	3	4	5
A3	5	4	3	2	1
A4	2	4	3	5	4

В данной матрице нет элемента, который одновременно был бы минимальным в своей строке и максимальным в своем столбце, поэтому игра не имеет решения в чистых стратегиях.

В этой игре нет доминируемых строк или столбцов, поэтому сократить её нельзя.

Запишем игру в виде задач линейного программирования.

Для первого игрока:

$$v \to min$$

$$\begin{cases} 5x_1 + x_2 + 5x_3 + 2x_4 + v \le 0\\ 2x_1 + 2x_2 + 4x_3 + 4x_4 + v \le 0\\ 5x_1 + 3x_2 + 3x_3 + 3x_4 + v \le 0\\ x_1 + 4x_2 + 2x_3 + 5x_4 + v \le 0\\ 2x_1 + 5x_2 + x_3 + 4x_4 + v \le 0 \end{cases}$$

$$x_i \ge 0; \sum_{i=1}^4 x_i = 1$$

Решение задачи дает оптимальную смешанную стратегию для первого игрока: (2/5; 0; 0; 3/5)

Для второго игрока:

$$v \to max$$

$$\begin{cases} 5y_1 + 2y_2 + 5y_3 + y_4 + 2y_5 + v \ge 0\\ y_1 + 2y_2 + 3y_3 + 4y_4 + 5y_5 + v \ge 0\\ 5y_1 + 4y_2 + 3y_3 + 2y_4 + y_5 + v \ge 0\\ 2y_1 + 4y_2 + 3y_3 + 5y_4 + 4y_5 + v \ge 0 \end{cases}$$

$$y_i \ge 0; \sum_{j=1}^{5} y_j = 1$$

Решение задачи дает оптимальную смешанную стратегию для второго игрока: (2/5; 1/15; 0; 0; 8/15)

В результате значение игры: v = 16/5