

Московский государственный университет имени М.В. Ломоносова Факультет Вычислительной математики и кибернетики Кафедра Системного программирования

Здание по курсу

«Суперкомпьютерноемоделирование и технологии»

Численный метод решения дифференциальной задачи
Вариант 1

Выполнил:

студент 627 группы Герасимов Денис Юрьевич

Математическая постановка дифференциальной задачи

В трехмерной замкнутой области

$$\Omega = [0 \leqslant x \leqslant L_x] \times [0 \leqslant y \leqslant L_y] \times [0 \leqslant z \leqslant L_z]$$

для $(0 < t \le T]$ требуется найти решение u(x, y, z, t) уравнения в частных производных

$$\frac{\partial^2 u}{\partial t^2} = \Delta u \tag{1}$$

с начальными условиями

$$u|_{t=0} = \varphi(x, y, z), \tag{2}$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = 0,\tag{3}$$

при условии, что на границах области заданы однородные граничные условия первого рода

$$u(0, y, z, t) = 0,$$
 $u(L_x, y, z, t) = 0,$ (4)

$$u(x, 0, z, t) = 0,$$
 $u(x, L_u, z, t) = 0,$ (5)

$$u(x, y, 0, t) = 0,$$
 $u(x, y, L_z, t) = 0,$ (6)

Численный метод решения задачи

Для численного решения задачивведем на Ω сетку $\omega_{h\tau} = \bar{\omega}_h \times \omega_{\tau}$, где

$$T = T_0,$$

 $L_x = L_{x_0}, L_y = L_{y_0}, L_z = L_{z_0}$
 $\bar{\omega}_h = \{(x_i = ih_x, y_j = jh_y, z_k = kh_z), i, j, k = 0, 1, \dots, N, h_x N = L_x, h_y N = L_y, h_z N = L_z\},$
 $\omega_\tau = \{t_n = n\tau, n = 0, 1, \dots, K, \tau K = T\}.$

Через ω_h обозначим множество внутренних, а через γ_h — множество граничных узлов сетки $\bar{\omega}_h$.

Для аппроксимации исходного уравнения (1) с однородными граничными условиями (4)–(6) и начальными условиями (2)–(3) воспользуемся следующей системой уравнений:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = \Delta_h u^n, \quad (x_i, y_j, z_k) \in \omega_h, \quad n = 1, 2, \dots, K - 1,$$

Здесь Δ_h — семиточечный разностный аналог оператора Лапласа:

$$\Delta_h u^n = \frac{u^n_{i-1,j,k} - 2u^n_{i,j,k} + u^n_{i+1,j,k}}{h^2} + \frac{u^n_{i,j-1,k} - 2u^n_{i,j,k} + u^n_{i,j+1,k}}{h^2} + \frac{u^n_{i,j,k-1} - 2u^n_{i,j,k} + u^n_{i,j,k+1}}{h^2}.$$

Приведенная выше разностная схема является явной — значения u_{ijk}^{n+1} на (n+1)-м шаге можно явным образом выразить через значения на предыдущих слоях.

Для начала счета (т.е. для нахождения u_{ijk}^2) должны быть заданы значения $u_{ijk}^0, u_{ijk}^1, (x_i, y_j, z_k) \in \omega_h$. Из условия (2) имеем

$$u_{ijk}^{0} = \varphi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in \omega_h. \tag{10}$$

Простейшая замена начального условия (3) уравнением $(u_{ijk}^1-u_{ijk}^0)/\tau=0$ имеет лишь первый порядок аппроксимации по τ . Аппроксимацию второго порядка по τ и h дает разностное уравнение

$$\frac{u_{ijk}^1 - u_{ijk}^0}{\tau} = \frac{\tau}{2} \Delta_h \varphi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in \omega_h. \tag{11}$$

$$u_{ijk}^1 = u_{ijk}^0 + \frac{\tau^2}{2} \Delta_h \varphi(x_i, y_j, z_k)$$
(12)

Для вычисления значений $u^0, u^1 \in \gamma_h$ допускается использование аналитического значения u, которое задается в программе еще для вычисления погрешности решения задачи.

Краткое описание проделанной работы по созданию гибридной реализации MPI/OpenMP

Инициируем разбиение сетки, вычисляем всю необходимую информацию о локальных данных и размерах локальной сетки и информацию о соседях.

Каждый процесс выполняет описанный выше алгоритм численного решения уравнения в своей области, при этом пересылки сообщений между процессами выполняются средствами MPI в сле- дующих случаях:

- 1. Обмен граничными областями между соседними прощессами. Данный тип обмена необходим для вычисления оператора Лапласса внутри всех узлов решетки ω_h , принадлежащей процессу.
- 2. Вычисление метрик для оценки качества работы программы. Директивы ОрепМР использова- лись в программе для распараллеливания циклов, так как значения на различных итерациях внутри циклов вычисляются независимо.

Необходимые графики

Сетка при $N = 32^5$, 20 шагов по времени tau = 0,005

График аналитической функции

График посчитанной функции

График разности в каждой точке посчитанной на последнем слое времени

Результаты расчётов

Procs	N	Time	SpeedUp	Error
1	128	9,08333	1	0,000001
4	128	0,93984	9,664762	0,000001
8	128	1,21193	7,49493	0,000001
16	128	0,22744	39,93726	0,000001
1	256	67,61476	1	0
4	256	7,35779	9,189547	0
8	256	9,60725	7,037889	0
16	256	1,69976	39,779	0
1	512	604,2974	1	0
4	512	157,8204	3,829019	0
8	512	27,52476	21,95468	0
16	512	30,8028	19,61826	0

L = 1

Procs	N	Time	SpeedUp	Error
1	128	8,95314	1	1,00E-07
4	128	0,93331	9,59289	1,00E-07
8	128	1,26836	7,058832	1,00E-07
16	128	0,29402	30,45079	1,00E-07
1	256	65,58322	1	0
4	256	19,99085	3,280662	0
8	256	3,58864	18,27523	0
16	256	1,73574	37,78401	0
1	512	599,2628	1	0
4	512	155,5737	3,851955	0
8	512	27,64557	21,67663	0
16	512	38,0433	15,75212	0

 $\mathbf{L}=\pi$

Procs	Thread	N	Time	SpeedUp
1	4	128	6,81098	1
4	4	128	3,66111	1,860359
8	4	128	9,4583	0,720106
16	4	128	18,17719	0,374699
1	4	256	50,89094	1
4	4	256	5,26018	9,674753
8	4	256	10,46341	4,863705
16	4	256	21,21117	2,399252
1	4	512	326,5062	1
4	4	512	36,89769	8,848959
8	4	512	62,61475	5,214525
16	4	512	93,28646	3,500038

L = 1

Procs	Thread	N	Time	SpeedUp
1	4	128	6,88289	1
4	4	128	3,46815	1,9846
8	4	128	9,2508	0,744032
16	4	128	18,6167	0,369716
1	4	256	54,15837	1
4	4	256	4,88128	11,09512
8	4	256	13,12916	4,125045
16	4	256	21,1317	2,562897
1	4	512	301,5025	1
4	4	512	125,154	2,409052
8	4	512	58,99885	5,110311
16	4	512	172,5705	1,747126

 $\mathbf{L}=\pi$

Выводы

Судя по таблице время работы программы во многом зависит от погоды, давления и расположения звёзд.

Из адекватных соображений: при увеличении числа процессов можно наблюдать сверхлинейное ускорение, которое скорее всего связано с более оптимальной работой с памятью и локальностью распределенных данных. При этом при дальнейшем увеличении можно видеть и обратный эффект, когда кластер захлёбывается коммуникациями между процессами.

При включении OpenMP зачастую при большом числе процессов и потоков связанных с ним мы видим значительное ухудшение, которое объясняется скорее неоптимальным распределением процессов и потоков по NUMA узлам кластера.

Кроме того в силу загруженности кластера замеры следовало бы проводить СОТНИ раз для установления адекватных цифр. Что, к сожалению, невозможно и растратно.

Комментарий по вычисляемой ошибке:

При большом размере сетки, действительно, ошибка была близкой к нулю (при форматном выводе имеем 0.0000000)