Sheet Title

Question Bank

NOTE: Any questions where you get a decimal or fraction as an answer can be rounded to 2 decimal places or left as an exact value.

1. For each of the following equations, fill out the corresponding table of values, plot the points on a Cartesian plane, and draw a graph of the curve. Does the graph converge on a value as $x \to \infty$ or $x \to -\infty$?

a) $y = 2^x$

x	-3	-2	-1	0	1	2	3
y							

b) $y = 2^{-x}$

$\frac{x}{x}$	-3	-2	-1	0	1	2	3
y							

c) $y = 2^{x-1}$

$x \mid$	-3	-2	-1	0	1	2	3
y							
	$\begin{bmatrix} x \\ y \end{bmatrix}$	$\begin{bmatrix} x & -3 \\ y & \end{bmatrix}$	$\begin{bmatrix} x & -3 & -2 \\ y & & \end{bmatrix}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

d) $y = 2^{\frac{x}{2}}$

J							
x	-6	-4	-2	0	2	4	6
y							

2. For each of the following equations create a table of values and use them to graph the curves on a Cartesian plane.

a)
$$y = \left(\frac{1}{2}\right)^x$$

c)
$$y = 2^{x+4}$$

b)
$$y = -3^x$$

d)
$$y = 3^x - 3$$

- 3. The graphs from question 1. b) and 2. a) should look the same. Based on their equations, $y=2^{-x}$ and $y=\left(\frac{1}{2}\right)^x$ why do you think this could be the case?
- 4. For each of the following equations, plot a graph using a method you feel comfortable with. On the same plane plot the line of the horizontal asymptote (the value the curve converges upon) and state its equation.

1

a)
$$y = 2^x - 2$$

c)
$$y = 3(3^{x-2} - 1)$$

b)
$$y = -2^x + 2$$

d)
$$y = \frac{2^{-x+2} + 6}{3}$$

Answers

1. a)

x	-3	-2	-1	0	1	2	3
y	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8

As $x \to -\infty$ the curve converges toward 0.

1

 $\frac{-}{8}$

As $x \to \infty$ the curve converges toward 0.

c) $\begin{vmatrix} x & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ y & \frac{1}{16} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 1 & 2 & 4 \\ \end{vmatrix}$

As $x \to -\infty$ the curve converges toward 0.

 $\overline{\text{As }x} \to -\infty$ the curve converges toward 0.

 $2. \quad a) \ y = \left(\frac{1}{2}\right)^x$

b) $y = -3^x$

c) $y = 2^{x+4}$

d) $y = 3^x - 3$

3. You can use index laws to show that

$$y = \left(\frac{1}{2}\right)^x,$$

$$= \frac{1^x}{2^x},$$

$$= \frac{1}{2^x},$$

$$= 2^{-x}.$$

a) $y = 2^x - 2$ has an asymptote at y = -2

b)
$$y = -2^x + 2$$

c)
$$y = 3(3^{x-2} - 1)$$

c)
$$y = 3(3^{x-2} - 1)$$

d) $y = \frac{2^{-x+2} + 6}{3}$