Field Theory and Galois Theory.

Alec Zabel-Mena

 $March\ 20,\ 2023$

Contents

1	\mathbf{Fiel}	ds.	
	1.1	Field Extensions.	
	1.2	Algebraic Extensions	
	1.3	Splitting Fields	
	1.4	Algebraic Closures	
	1.5	Seperability	
	1.6	Cyclotomic Polynomials	
2	Galois Theory		
	2.1	Definitions and Examples	
	2.2	The Fundamental Theorem of Galois Theory	
		Finite Fields	

4 CONTENTS

Chapter 1

Fields.

1.1 Field Extensions.

Definition. We define the **characteristic** of a field F to be the smallest positive integer p, such that $p \cdot 1 = 0$, where 1 is the identity of F. We write char F = p, and if no such p exists, then we write char F = 0.

Lemma 1.1.1. Let F be a field, then char F is either 0, or a prime integer.

Proof. Let $\Gamma F = p$. If p = 0, then we are done. Now suppose that p = mn, with $m, n \in \mathbb{Z}^+$. Then $p \cdot 1 = (mn)1 = (n \cdot 1)(m \cdot 1) = mn = 0$, which makes m and n 0 divisors. Since F is a field, and hence an integral domain, this is impossible, and hence p must be prime.

Corollary. If char
$$F = p$$
, then for all $a \in F$, $pa = \underbrace{a + \cdots + a}_{p \text{ times}}$.

Proof. We have $pa = p(a \cdot 1) = (p \cdot 1)a$.

Example 1.1. (1) Both \mathbb{Q} and \mathbb{R} have char = 0. Similarly, char $\mathbb{Z} = 0$, even though \mathbb{Z} is just an integral domain.

(2) char $\mathbb{Z}_{p\mathbb{Z}} = p$ and char $\mathbb{Z}_{p\mathbb{Z}}[x] = p$ for any prime p.

Definition. We define the **prime subfield** of a field F to be the subfield of F generated by 1.

Example 1.2. (1) The prime subfields of \mathbb{Q} and \mathbb{R} is \mathbb{Q} .

(2) Let $\mathbb{Z}_{p\mathbb{Z}}(x)$ the field of rational functions over $\mathbb{Z}_{p\mathbb{Z}}$. Then the prime subfield of $\mathbb{Z}_{p\mathbb{Z}}(x)$ is $\mathbb{Z}_{p\mathbb{Z}}$. Similarly, the prime subfield for $\mathbb{Z}_{p\mathbb{Z}}[x]$ is also $\mathbb{Z}_{p\mathbb{Z}}$.

Definition. If K is a field containing a field F, then we call K field extension over F, and write $K/_F$ (not the quotient field!) or denote it by the diagram

Lemma 1.1.2. Every field is a field extension of its prime subfield.

Lemma 1.1.3. Let K an extension over a field F. Then K is a vector space over F.

Definition. Let K_{F} a field extension. We define the **degree** of K over F, [K:F] to be the dimension of K_{F} as a vector space.

Definition. Let F be a field, and $f \in F[x]$ a polynomial. We call am element $\alpha \in R$ a **root** (or **zero**) of f if $f(\alpha) = 0$.

Lemma 1.1.4. Let $\phi: F \to L$ a field homomorphism. Then either $\phi = 0$, or ϕ is 1–1.

Lemma 1.1.5. Let F be a field, and $p \in F[x]$ an irreducible polynomial. Then there exists a field K containing an embedding of F, such that p has a root in K.

Proof. Consider $K = F[x]_{(p)}$. Since p is irreducible in a principle ideal domain, (p) is a maximal idea, and hence K is a field. Now consider the canonical map $\pi: F[x] \to K$ taking $f \to f \mod(p)$ and let $\phi = \pi|_F$. Then $\phi \neq 0$, since $\pi: 1 \to 1$. Then ϕ is 1–1. And so $\phi(F) \simeq F$.

Now, consider F as a subfield of K. Then $p(x \mod (p)) \equiv p(x) \mod (p) \equiv 0 \mod (p)$, so that $x \mod (p)$ is a root of p in K.

Corollary. There exists a field extension of F containing a root of p.

Theorem 1.1.6. Let F be a field, and let $p \in F[x]$ an irreducible polynomial of degree n, and let K = F[x]/(p), and $\theta = x \mod (p)$. Then $\{1, \theta, \dots, \theta^{n-1}\}$ forms a basis for K as a vector space over F and [K : F] = n.

Proof. Let $a \in F[x]$, since F[x] is Euclidean domain, there exist $q, r \in F[x], q \neq 0$ for which

$$a(x) = q(x)p(x) + r(x)$$
 where $\deg r < n$

Now, since $pq \in (p)$, $a(x) \equiv r(x) \mod (p)$, and every element of K is a polynomial of degree less than n. Then the elements $\{1, \theta, \dots, \theta^{n-1}\}$ span K.

Now, suppose that there are $b_0, \ldots, b_{n-1} \in F$ not all 0 for which

$$b_0 + b_1 \theta + \dots + b_{n-1} \theta^{n-1} = 0$$

Then

$$b_0 + b_1 \theta + \dots + b_{n-1} \theta^{n-1} \equiv 0 \mod (p)$$

so that $p|(b_0+b_1\theta+\cdots+b_{n-1}\theta^{n-1})$ in F. But deg p=n and p divides a polynomial of degree n-1, which is a contradiction. Therefore we are left with $b_0=\cdots=b_{n-1}=0$.

Corollary.
$$K = \{ \alpha_0 + a_1 \theta + \dots + a_{n-1} \theta^{n-1} : a_i \in F \text{ for all } 1 \le i \le n-1 \}$$

Corollary. If $a(\theta), b(\theta) \in K$, are elements of degree less than n, and the operations of polynomial addition, and polynomial multiplication mod (p) are defined, then K forms a field.

Example 1.3. (1) Consider the polynomial $x^2 + 1$ over \mathbb{R} . Then one has the field

$$\mathbb{C} = \mathbb{R}[x]/(x^2 + 1)$$

an extension of \mathbb{R} of degree $[\mathbb{C} : \mathbb{R}] = 2$. Let i be a root of $x^2 + 1$ in this field, then $i^2 = -1$, and the elements of \mathbb{C} are of the form a + ib where $a, b \in \mathbb{R}$. Then we have described the field of complex numbers, and the addition and multiplication (mod $x^2 + 1$) of these elements are the addition and multiplication of complex numbers.

One might also construct $\mathbb C$ differently by defining the isomorphism

$$\mathbb{R}[x]/(x^2+1) \to \mathbb{C}$$
 taking $a+xb \to a+ib$

(2) Consider again $x^2 + 1$ over \mathbb{Q} . Then we get the field

$$\mathbb{Q}(i) = \mathbb{Q}[x]/(x^2 + 1)$$

of degree $[\mathbb{Q}(i):\mathbb{Q}]=2$, and where i is a root of x^2+1 , so that $i^2=-1$. Then the elements of $\mathbb{Q}(i)$ are of the form a+ib where $a,b\in\mathbb{Q}$, i.e. it is isomorphic to the set of all complex numbers with rational components.

(2) Consider $x^2 - 2$ over \mathbb{Q} . by Eisenstein's criterion for p = 2, $x^2 - 2$ is irreducible over \mathbb{Q} . Let α a root of $x^2 - 2$, so that $\alpha^2 = 2$. Then we have the field

$$\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[x]/(x^2 - 2)$$

of degree $[Q(\sqrt{2}):\mathbb{Q}]=2$, and whose elements are of the form $a+b\sqrt{2}$. One can define an isomorphism between $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{2})$ by taking $\sqrt{2} \to i$.

(3) The polynomial $x^3 - 2$ over \mathbb{Q} gives us the field

$$\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}[x]/(x^3 - 2)$$

of degree $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$ over 2. Here the elements are of the form $a+b\xi+c\xi^2$ where $\xi^3=2$.

(4) Denote \mathbb{F}_2 to be a finite field of 2 elements. Consider the polynomial $x^2 + x + 1$ over \mathbb{F}_2 which is irreducible. Then the field

$$\mathbb{F}_2(\alpha) = \mathbb{F}_2[x]/(x^2 + x + 1)$$

is a field of degree 2 over \mathbb{F}_2 , whose elements are of the form $a + b\alpha$, where $\alpha^2 = \alpha + 1$. In fact, one can generate this field using the fact that $\alpha^2 = \alpha + 1$.

(5) Let F = K(t) the field of rational functions in t over a field K. Let $p(x) = x^2 - t \in F[x]$, then by Eisenstien's criterion with the ideal (t), p is irreducible over F[x]. Let θ be a root for p, that is $\theta = \sqrt{t}$, then we get the field $K(t, \sqrt{t})$ of degree $[K(t, \sqrt{t}) : K] = 2$, whose elements are of the form $a(t) + b(t)\sqrt{t}$.

Lemma 1.1.7. Let F be a subfield of a field K, and let $\alpha \in K$. Then there exists a unique minimal subfield of K containing F and α ; more preciesly, it is the intersection of all subfields of K containing F and α .

Definition. Let K be any extension of a field F, and let $\alpha, \beta, \dots \in K$. Then we define the subfield **generated** by α, β, \dots over F to be the unique minimal subfield containing all α, β, \dots and F and we denote it $F(\alpha, \beta, \dots)$. Moreover, we call K a **simple extension** of F if $K = F(\alpha, \beta, \dots)$. If $K = (F\alpha_1, \dots, a_n)$ for $\alpha_1, \dots, \alpha_n \in K$, then it is a **finitely generated** simple extension.

Theorem 1.1.8. Let F be a field, and $p \in F[x]$ irreducible, and let K an extension of F containing a root α of p. Then

$$F(\alpha) \simeq F[x]_{(p)}$$

Proof. Consider the homomorphism $F[x] \to F(\alpha)$ taking $a(x) \to a(\alpha)$. Since $p(\alpha) = 0$, p is in the kernel of this homomorphism, and we get an induced homomorphism from $F[x]/(p) \to F(\alpha)$. Now, since p is irreducible, F[x]/(p) is a field, and since the homomorphism takes $1 \to 1$, it is 1–1. Then by the first isomorphism theorem for ring homomorphisms these two fields are isomorphic.

Corollary. If deg p = n, then $F(\alpha) = \{a_0 + a_1 \alpha + \dots a_{n-1} \alpha^{n-1} : a_i \in F \text{ for all } 1 \leq i \leq n-1\}$ and $[F(\alpha) : F] = n$.

- **Example 1.4.** (1) The polynomial $x^2 2$ over \mathbb{Q} also has the root $-\sqrt{2}$ in \mathbb{R} , so that $\mathbb{Q}(-\sqrt{2})$ is of degree 2 over \mathbb{Q} with elements of the form $a b\sqrt{2}$. Notice however that $\mathbb{Q}(-\sqrt{2}) \simeq \mathbb{Q}(\sqrt{2})$ by taking $a b\sqrt{2} \to a + b\sqrt{2}$.
 - (2) The polynomial $x^3 2$ only has the solution $\xi = \sqrt[3]{2}$ in \mathbb{R} . However, in \mathbb{Q} it has the solutions given by

$$\sqrt[3]{2}(\frac{-1 \pm i\sqrt{3}}{2})$$

So that the subfields generated by either of these three elements (over \mathbb{C}) are isomorphic.

Theorem 1.1.9. Let $\phi: F \to L$ a field isomorphism and $p \in F[x]$, $q \in L[x]$ irreducible polynomials, where q is obtained by applying ϕ to the coefficients of p. Let α a root of p, and β a root of q. Then there exists an isomorphism $F(\alpha) \to L(\beta)$ taking $\alpha \to \beta$ and extending ϕ . That is, we have the following diagram

$$F(\alpha) \longrightarrow L(\beta)$$

$$\downarrow \qquad \qquad \downarrow$$

$$F \longrightarrow_{\phi} E$$

Proof. Notice that ϕ induces a ring homomorphism between F[x] and L[x], so that (p) is maximal. Since q is obtained from p, (q) is also maximal, so that F[x]/(p) and L[x]/(q) are fields. Then we have an isomorphism

$$F[x]_{(p)} \simeq L[x]_{(q)}$$

Then, if α is a root of p, and β a root of q, we obtain the isomorphism

$$F(\alpha) \simeq L(\beta)$$

moreover, this isomorphism takes $\alpha \to \beta$.

1.2 Algebraic Extensions.

Definition. Let K_F be a field extension. We say that an element $\alpha \in K$ is algebraic over F, provided there exists a polynomial over F having α as a root. Otherwise we call α transcendental. If every $\alpha \in K$ is algebraic, we call K algebraic and K_F an algebraic extension.

Lemma 1.2.1. Let α be algebraic over a field F. Then there exist a unique monic irreducible polynomial $m \in F[x]$ having α as a root. Moreover, if $f \in F[x]$ is a polynomial, then f has α as a root if, and only if m|f.

Proof. Let m a polynomial of minimal degree having α as a root. Suppose, also that , is monic. Now, if m were reducible, then m(x) = a(x)b(x) for some $a, b \in F[x]$ polynomials both of degree less than deg m. Then we also have that $a(\alpha) = b(\alpha) = 0$, which contradicts that m is the polynomial of minimal degree satisfying that condition. Hence, m is irreducible.

Now, let $f \in F[x]$ have α as a root, then by the divison theorem, there exist $q, r \in F[x]$, with $q \neq 0$ for which

$$f(x) = q(x)m(x) + r(x)$$
 where $\deg r < \deg m$

Now, since $f(\alpha) = q(\alpha)m(\alpha) + r(\alpha) = 0$, then r(x) = 0 for all x lest we contradict the minimality of m. Hence m|f. Conversely, if m|f, then f has α as a root.

Now, let g a polynomial of minimal degree for which $g(\alpha) = 0$. Then by above, we have that deg $g = \deg m$, and that moreover, m|g and g|m. therefore g = m and uniqueness is established.

Corollary. Let $L_{/F}$ be an extension, and α algebraic over F. Let $m_{\alpha,F}$ the unique monic irreducible polynomial over F having α as root, and $m_{\alpha,L}$ the unique monic irreducible polynomial over L having α as root. Then $m_{\alpha,L}|m_{\alpha,F}$ in L[x].

Definition. Let F be a field, and α algebraic over F. We define the **minimal polynomial** $m_{\alpha,F}$, to be the polynomial over F of minimal degree having α as a root. If the field is clear, we instead write m_{α} , or even just m when the root itself is also clear. We define the **degree** of α to be deg $\alpha = \deg m_{\alpha}$.

Lemma 1.2.2. Let α algebraic over F. Then

$$F(\alpha) \simeq F[x]/(m_{\alpha,F})$$

Corollary. $[F(\alpha):F]=\deg m_{\alpha}=\deg \alpha$.

Example 1.5.

- (1) The minimal polynomial for $\sqrt{2}$ over \mathbb{Q} is $x^2 2$.
- (3) The minimal polynomial for $\sqrt[3]{2}$ over \mathbb{Q} is $x^3 2$.
- (3) Let n > 1, then by the Eisenstein-Schömann criterion, $x^n 2$ is irreducible over \mathbb{Q} . Moreover, $x^n 2$ has as root in \mathbb{R} $\sqrt[n]{2}$. Then $\mathbb{Q}(\sqrt[n]{2})$ is a field of degree $[\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}] = 2$. Moreover $x^n 2$ is the minimal polynomial of $\sqrt[n]{2}$. Notice, that over \mathbb{R} , deg [n]2 = 1, and that $m_{\sqrt[n]{2},\mathbb{R}}(x) = x \sqrt[n]{2}$.
- (4) Consider $p(x) = x^3 3x 1$ over \mathbb{Q} . Notice that p is irreducible over \mathbb{Q} and let α a root of p. Then $[\mathbb{Q}(\alpha):\mathbb{Q}]=3$.

Lemma 1.2.3. An element α is algebraic over a field F if, and only if the simple extension $F(\alpha)/_F$ is finite.

Proof. If α is algebraic over F then $[F(\alpha):F]=\deg \alpha \leq n$ if α satisfies a polynomial of degree n. Conversely, if α is an element of the finite extenson K/F, of degree n, then the set $\{1,\alpha,\ldots,\alpha^n\}$ is linearly dependent over F. Hence there exist $b_0,\ldots,b_n\in F$ not all 0 for which

$$b_0 + b_1 \alpha + \dots + a_n \alpha^n = 0$$

making α a root of a nonzero polynomial over F of degree deg $\leq n$.

Corollary. If an extension K_F is finite, then it is algebraic.

Proof. If $\alpha \in K$ is algebraic, then $K_{/F}$ implies that $F(\alpha)_{/F}$ is finite, since $F(\alpha) \subseteq K$.

Example 1.6. Let F a field of char $F \neq 2$, and let K an extension field of F of degree [K:F]=2. Let $\alpha \in K$ not in F, then α satisfies an polynomial of at most degree 2 over F. Now, since $\alpha \notin F$, this polynomial must have degree greater than 1. Hence it satisfies a polynomial of degree 2. Then the minimal polynomial of α is a quadratic

$$m_{\alpha}(x) = x^2 + bx + c$$
 with $b, c \in F$

Since $F \subseteq F(\alpha) \subseteq K$, and $F(\alpha)$ is a vector space over F of dimension 2, then we must have $K = F(\alpha)$; that is K/F is simple.

Now, the roots of m_{α} are

$$\alpha = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

Since $\alpha \notin F$, $b^2 - 4c$ is not a square in F, and $\sqrt{b^2 - 4c}$ is a root of the equation $x^2 - (b^2 - 4c) = 0$ in K.

Conversely, $\sqrt{b^2 - 4c} = \pm (b + 2\alpha)$ which puts $\sqrt{b^2 - 4c} \in F(\alpha)$. That is $F(\sqrt{b^2 - 4c}) = \mathbb{F}(\alpha)$. Moreover, $x^2 - (b^2 - 4c)$ does not have solutions in K.

We call field extensions K_{f} of degree 2 quadratic field extension, where $K = F(\sqrt{D})$, and D is a squarefree element of F.

Theorem 1.2.4. Let $F \subseteq K \subseteq L$. Then [L:F] = [L:K][K:F].

Proof. Let [L:K] = m and [K:F] = n. Let $\{\alpha_1, \ldots, \alpha_m\}$ and $\{\beta_1, \ldots, \beta_n\}$ be bases for the extensions L_K and K_F . Now, the elements of L over K are of the form

$$a_1\alpha_1 + \cdots + a_m\alpha_m$$
 where $a_i \in K$ for all $1 \le i \le m$

Since each $a_i \in K$, which is an extension over F, they have the form

$$a_i = b_{i1}\beta_{i1} + \cdots + b_{in}\beta_{in}$$
 where $b_{ij} \in F$ for all $1 \le j \le n$

That is, every element of L, as a vector space over F are of the form

$$\sum b_{ij}\alpha_i\beta_j$$

So the set $\{\alpha_1\beta_1, \dots \alpha_m\beta_n\}$ spans L. It remains to show that this set is linearly in dependent. Suppose that

$$\sum b_{ij}\alpha_i\beta_j=0$$

for some $b_{ij} \in F$. Since $\{\alpha_1, \ldots, \alpha_m\}$ are linearly independent in L over K, we have that the coefficients $a_1 = \cdots = a_n = 0$ which makes

$$a_i = b_{i1}\beta_{i1} + \cdots + b_{in}\beta_{in} = 0$$

Now, since $\{\beta_1, \ldots, \beta_n\}$ is linearly independent in K over F, this implies that $b_{i1} = \cdots = b_{in} = 0$ which makes the collection $\{\alpha_1\beta_1, \ldots, \alpha_m\beta_n\}$ linearly independent, and hence, a basis. Moreover, notice that this basis has size mn.

Example 1.7. (1) The element $\sqrt{2} \notin \mathbb{Q}(\alpha)$, where α is the root of $x^3 - 3x - 1$; since $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$, and $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$.

(2) We have $[\mathbb{Q}(\sqrt[6]{2}):\mathbb{Q}] = 6$, and since $(\sqrt[6]{2})^3 = \sqrt{2}$, we observe that $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[6]{2})$. Moreover, notice that by theorem 1.2.4 $[\mathbb{Q}(\sqrt[6]{2}):Q(\sqrt{2})] = 3$. Then we have the following tower of fields for

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[6]{2})$$

$$\mathbb{Q}(\sqrt[6]{2})$$

$$\mathbb{Q}(\sqrt{2})$$

$$\mathbb{Q}(\sqrt{2})$$

Lemma 1.2.5. Let α, β be algebraic over a field F. Then $F(\alpha, \beta) = (F(\alpha))(\beta)$.

Proof. By definition, $F(\alpha, \beta)$ contains F, and α , and hence contains $F(\alpha)$. It also contains β so that $(F(\alpha))(\beta) \subseteq F(\alpha, \beta)$. By the same argument, $(F(\alpha))(\beta)$ contains F, α and β so that $F(\alpha, \beta) \subseteq (F(\alpha))(b)$.

Corollary. The elements of $F(\alpha, \beta)$ are of the form $\sum a_{ij}\alpha^i b^j$, where $1 \leq i \leq \deg \alpha$ and $1 \leq j \leq \deg \beta$.

Example 1.8. Consider $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ generated by $\sqrt{2}$ and $\sqrt{3}$. Notice that deg $\sqrt{3}=2$ over \mathbb{Q} so that $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})] \leq 2$. Now $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})] = 2$ if, and only if the polynomial $x^2 - 3$ is irreducible over $\mathbb{Q}(\sqrt{2})$. Then it is irreducible if, and only if $\sqrt{2} \in \mathbb{Q}(\sqrt{3})$. It can be shown that this is not the case by trying to find $a, b \in \mathbb{Q}$ for which $\sqrt{3} = a + b\sqrt{2}$. Moreover we have

$$[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]=4$$

Theorem 1.2.6. An extension field $K_{/F}$ is finite if, and only if it is generated by finitely many algebraic elements over F.

Proof. Let K_{F} finite of degree n, and $\{\alpha_1, \ldots, \alpha_n\}$ a basis. Then by theorem 1.2.4, $[F(\alpha_i): F]|[K:F]$ for all $1 \leq i \leq n$. So each α_i is algebraic over F. Then K is generated by finitely many algebraic elements.

Conversely, let $K = F(\alpha_1, \ldots, \alpha_k) = (F(\alpha_1, \ldots, a_{k-1}))(\alpha_k)$ We obtain K by taking the extensions F_{i+1}/F_i iteratively, where $F_{i+1} = F_i(\alpha_{i+1})$, and obtain the sequence

$$F = F_0 \subseteq \cdots \subseteq F_k = K$$

Now, if the elements $\alpha_1, \ldots, \alpha_k$ are algebraic over F, each of $\deg \alpha_i = n_i$ for $1 \le i \le k$, then the extension F_{i+1}/F_i is a simple extension, and $[F_{i+1}:F_i] = \deg m_{\alpha_{i+1}} \le \deg \alpha_{i+1} = n_{i+1}$. Then we have

$$[K:F] = [F_k:F_{k-1}]\dots[F_1,F] \le n_1\dots n_k$$

which makes $K_{/F}$ a finite extension.

Corollary. If α, β are algebraic over F, then so are $\alpha \pm \beta$, $\alpha\beta$, and $\alpha\beta^{-1}$ (for $\beta \neq 0$).

Corollary. If $L_{/F}$ is an extension, then the collection of elements of L which are algebraic over F forms a subfield of L.

- **Example 1.9.** (1) Consider the extension $\mathbb{C}_{\mathbb{Q}}$, and let $\operatorname{cl} \mathbb{Q}$ the subfield of all elements of \mathbb{C} which are algebraic over \mathbb{Q} . Then $\sqrt[n]{2} \in \operatorname{cl} Q$ for all $n \geq 1$, so that $[\operatorname{cl} \mathbb{Q} : \mathbb{Q}] \geq n$. This makes $\operatorname{cl} \mathbb{Q}$ an infinite algebraic extension, and we call $\operatorname{cl} \mathbb{Q}$ the **field of algebraic numbers**.
 - (2) Consider $\operatorname{cl} \mathbb{Q} \cap \mathbb{R}$ as a subfield of \mathbb{R} (i.e. the subfield of all algebraic elements of \mathbb{Q}). Since \mathbb{Q} is countable, so is the field $\mathbb{Q}[x]$, and each polynomial in $\mathbb{Q}[x]$ has at most n roots in \mathbb{R} , hence the number of all algebraic elements of \mathbb{R} over \mathbb{Q} is also countable. This means that $\operatorname{cl} \mathbb{Q}$ must also be countable. Now, since \mathbb{R} is uncountable, then there exist uncountably transcendental numbers of \mathbb{R} over \mathbb{Q} . Most notably the irrational numbers π and e are transcendental.

Theorem 1.2.7. If K is algebraic over F, and L algebraic over K, then L is algebraic over F.

Proof. Let $\alpha \in L$, since L is algebraic over K, there exists a $p \in K[x]$ having α as root. Let $p(x) = a_0 + a_1x + \cdots + a_nx^n$. Consider then $F(\alpha, a_0, \ldots, a_n)$. Since K_f is algebraic, a_0, \ldots, a_n are algebraic over F, and so $F(\alpha, a_0, \ldots, a_n)$ is a finite extension over F. Then α generates an extension field of degree less than n, and we get

$$[F(\alpha, a_0, \dots, a_n) : F] = [F(\alpha, a_0, \dots, a_n) : F(a_0, \dots, a_n)][F(a_0, \dots, a_n) : F]$$

is finite, and $F(\alpha, a_0, \dots, a_n)$ is algebraic over F. That is, α is algebraic over F, and so L is algebraic over F.

Definition. Let K_1 and K_2 subfields of a field K. The **composite field** K_1K_2 is the smallest subfield of K containing both K_1 and K_2 .

Example 1.10. The composite field of $\mathbb{Q}(\sqrt[3]{2})$ and $\mathbb{Q}(\sqrt{2})$ is $\mathbb{Q}(\sqrt[6]{2})$.

Lemma 1.2.8. Let K_1 and K_2 be extensions of a field F contained in a field K. Then $[K_1K_2:F] \leq [K_1:F][K_2:F]$ with equality holding if, and only if a basis of F in the other field is linearly independent. Moreover if $\{\alpha_1,\ldots,\alpha_m\}$ and $\{\beta_1,\ldots,\beta_n\}$ are bases for K_1 and K_2 , then $\{\alpha_1,\beta_1,\ldots,\alpha_m\beta_n\}$ span K_1 and K_2 .

Corollary. If $[K_1 : F] = m$, and $[K_2 : F] = n$ with m and n coprime, then $[K_1K_2 : F] = [K_1 : F][K_2 : F]$.

Proof. We have that $m, n|[K_1K_2:F]$ and since $K_1, K_2 \subseteq K_1K_2$ are subfields of K_1K_2 , we get the least common multiple $[m, n]|[K_1K_2:F]$. Now, since (m, n) = 1, we get [m, n] = mn so that $mn \leq [K_1K_2:F]$.

1.3 Splitting Fields

Definition. Let K be an extension of a field F. We say a polynomial f over F splits completely over K if f factors into linear factors over K. If f splits completely over K, and in no other proper subfield, then we say K is the splitting field of f over F.

Theorem 1.3.1. If f is a polynomial over a field F, then there exists a splitting field K of f over F.

Proof. Let E an extension of F with [E:F]=n. By induction on n, for n=1, we take E=F and we are done. Now, for $n\geq 1$, suppose the irreducible factors of f are of deg = 1. Then f has all its roots in F, and hence splits completely over F. Then take E=F. On

the other hand, if f has at least one irreducible factor of $\deg \geq 2$, then there is an extension E_1 of F for which f has the factor $(x - \alpha)$ for some root α . Then $f(x) = (x - \alpha)f_1(x)$ where $\deg f_1 = n - 1$. Therefore by the induction hypothesis, there is an extension E of E_1 containing all the roots of f_1 . Hence, it contains all the roots of f and f splits completely over E.

Now, let K be the intersection of all subfields of E for which f splite; i.e. all subfields containing the roots of f. Then by definition, K is the splitting field of f over F.

Definition. We call an extension K over a field F **normal**, if for any irreducible polynomial f over F with atleast one root in K, f splits completely in K over F. That is to say, K contains the splitting field of f over F.

- **Example 1.11.** (1) The splitting field of $x^2 2$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{2})$, since $x^2 2 = (x + \sqrt{2})(x \sqrt{2})$ and $\pm \sqrt{2} \in \mathbb{Q}(\sqrt{2})$ and $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$, so there is no other subfield in between.
 - (2) The splitting field for $(x^2-2)(x^2-3)=(x+\sqrt{2})(x-\sqrt{2})(x+\sqrt{3})(x-\sqrt{3})$ is $\mathbb{Q}(\sqrt{2},\sqrt{3})$. Now, $[\mathbb{Q}(\sqrt{2},\sqrt{3}):Q]=4$ and the lattice of fields is

(3) Let $\xi = i\frac{\sqrt{3}}{2}$. Notice that $x^3 - 2$ factors into $x^3 - 2 = (x - \sqrt[3]{2})(x + \sqrt[3]{2}(-1 + \xi))(x + \sqrt[3]{2}(-1 - \xi))$. Now, $-1 + \xi, -1 - \xi \notin \mathbb{Q}(\sqrt[3]{2})$, so $\mathbb{Q}(\sqrt[3]{2})$ is not the splitting field for $x^3 - 2$. Let K be the splitting field of $x^3 - 2$. Then K conmtains $-1 \pm \xi$, so that $i\sqrt{3} \in K$. Thus

$$K = \mathbb{O}(\sqrt[3]{2}, i\sqrt{3})$$

Moreover, $[\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}(\sqrt[3]{2})] \geq 2$ and since $\mathbb{Q}(\sqrt[3]{2})$ is not the splitting field, $[\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}(\sqrt[3]{2})] = 2$. Hence $[\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3}) : \mathbb{Q}] = 6$. We have the following lattice.

15

(4) Notice that $x^4+4=(x^2+2x+2)(x^2-2x+2)$ over \mathbb{Q} which is irreducible by Eisenstein's criterion. Using the quadratic formula, we get ± 1 and $\pm i$ as the roots, moreover, notice that $\pm 1, \pm i \in \mathbb{Q}(i)$ and since $[\mathbb{Q}(i):\mathbb{Q}]=2$ there are no subfields between \mathbb{Q} and $\mathbb{Q}(i)$ so that $\mathbb{Q}(i)$ is the splitting field of x^4+4 over \mathbb{Q} .

Lemma 1.3.2. A splitting field of a polynomial of degree n over a field F is of degree at most n! over F.

Proof. Let $f \in F[x]$ a polynomial of deg f = n. Adjoining one root of f to F, we have an extension F_1/F of degree $[F_1 : F] = n$. Now, f over F_1 has at leas one linear factor, and so any root of f satisfies a polynomial of degree n-1. Hence proceeding inductively gives the result.

Example 1.12. Consider the polynomial $x^n - 1$ over \mathbb{Q} . Then the roots of $x^n - 1$ are of the form ξ where $\xi^n = 1$. Notice, that in \mathbb{C} , $\xi = e^{\frac{2i\pi}{n}}$, so that \mathbb{C} contains a splitting field of $x^n - 1$. Hence $\mathbb{Q}(\xi) \subseteq \mathbb{C}$ is a splitting field of $x^n - 1$ over \mathbb{Q} . Notice that the set of all roots ξ of $x^n - 1$ forms a cyclic group generated by ξ .

Definition. Consider a field F and the polynomial $x^n - 1$ over F. We call the roots ξ of $x^n - 1$, where $\xi^n = 1$ the **primitive** n-th roots of unity over F. We call $F(\xi)$ the cyclotomic field over F.

Example 1.13. Let p be a prime, and consider the splitting field $x^p - 2$ over \mathbb{Q} . If α is a root, then $\alpha^p = 2$ so that $(\xi \alpha)^p = 2$ where ξ is a primitive p-th root of unity over \mathbb{Q} . So the roots of $x^2 - 2$ are

$$\sqrt[p]{2}$$
 and $\xi\sqrt[p]{2}$

Notice that $\frac{\xi\sqrt[p]{2}}{\sqrt[p]{2}} = \xi$ so the splitting field contains $\mathbb{Q}(\xi, \sqrt[p]{2})$, Moreover, $\mathbb{Q}(\xi, \sqrt[p]{2})$ contains all the roots of $x^p - 2$ so that $\mathbb{Q}(\xi, \sqrt[p]{2})$ is the splitting field of $x^p - 2$ over \mathbb{Q} .

Notice, that $\mathbb{Q}(\xi) \subseteq \mathbb{Q}(\xi, \sqrt[p]{2})$ so that $[\mathbb{Q}(\xi, \sqrt[p]{2}) : \mathbb{Q}(\xi)] \leq p$. not, since $\mathbb{Q}(\sqrt[p]{2})$ is also a subfield, we get $[\mathbb{Q}(\xi, \sqrt[p]{2}) : Q] \leq p(p-1)$. Since (p, p-1) = 1 (i.e. they are coprime), we have $p(p-1)|[\mathbb{Q}(\xi, \sqrt[p]{2}) : \mathbb{Q}]$ so that $[p]2) : \mathbb{Q}] = p(p-1)$. We have the following lattice.

Theorem 1.3.3. Let $\phi: F \to F'$ a field isomorphism. Let f and f' polynomials over F and F', where f' is obtained by applying ϕ to the coefficients of f. Let E and E' be splitting fields of f and f' over F and F', respectively. Then ϕ extends to an isomorphism between E and E'; i.e. $E \simeq E'$.

$$E \longrightarrow E'$$

$$\downarrow \qquad \qquad \downarrow$$

$$F \stackrel{\phi}{\longrightarrow} F'$$

Proof. Let deg f = n. By induction on n. If f has all its roots in F, f splits completely over F, and f' over F'. Then take E = F and E' = F' and we are done for n = 1.

Now, for $n \geq 1$, suppose the theorem is true. Let p an irreducible factor of f, and p' an irreducible factor of f'. If α and α' are roots of p and p', respectively, then extend ϕ to $F(\alpha)$ and $F'(\alpha')$. Then $f(x) = (x-\alpha)f_1(x)$ and $f'(x) = (x-\alpha')f'_1(x)$; with deg $f_1 = \deg f'_1 = n-1$. Then let E the splitting field of f_1 over $F(\alpha)$, and E' the splitting field of f'_1 over $F'(\alpha')$

The the roots of f_1 and f'_1 are in E and E', respectively, and hence so are the roots of f and f'. Then by the induction hypothesis, we can extend ϕ to E and E' so that $E \simeq E'$.

Corollary. Any two splitting fields of a given polynomial over a field are isomorphic.

Proof. Take ϕ to be the identity map.

1.4 Algebraic Closures.

Definition. We define the **algebraic closure** of a field F to be the algebraic extension, $\operatorname{cl} F$, over F for which every polynomial over F splits. We call a field K **algebraically closed** if every polynomial over K has at least one root in K.

Lemma 1.4.1. A field K is algebraically closed if, and only if every polynomial over K has all of its roots in K.

Proof. Certainly, if a polynomial f over K contains all of its roots in K, then K is algebraically closed, by definition.

Now, suppose that K is algebraically closed, and let f a polynomial over K. Then f contains at least one root in K. Hence $f(x) = (x - \alpha)f_1(x)$ for some root α of f, and where $f_1 \in K[x]$. But then by definition again, f_1 contains at least one root in K. Hence, we proceed until we exhaust all the roots of f, and obtain that every root of f lies in K.

Corollary. K is algebraically closed if, and only if cl K = K.

Lemma 1.4.2. Let F be a field, and $\operatorname{cl} F$ its algebraic closure. Then $\operatorname{cl} F$ is algebraically closed; i.e. $\operatorname{cl}(\operatorname{cl} F) = \operatorname{cl} F$.

Proof. Let $f \in \operatorname{cl} F[x]$, and α a root of f. Then α generates all of $\operatorname{cl} F(\alpha)$, making $\operatorname{cl} F$ algebraic over F. Hence α is algebraic over F, but $\alpha \in \operatorname{cl} F$, so that $\operatorname{cl} (\operatorname{cl} F) = \operatorname{cl} F$.

Lemma 1.4.3. For every field F, there exists an algebraically closed set containing F.

1.5. SEPERABILITY. 17

Proof. Consider the polynomial ring $F[\ldots, x_n, \ldots]$ where $f(x_n)$ is a nonconstant polynomial over f. Consider the ideal (f). Then, if (f) = (1), then

$$g_1 f_1(x_1) + \dots + g_n f_n(x_n) = 1$$

where $g_i \in F[x_i]$. Then we get

$$g_1(x_1,\ldots,x_m)f_1(x_1)+\cdots+g_n(x_1,\ldots,x_m)f_n(x_n)=1$$

Now, let F' an extension of F containing a root α_i of f_i . Then we observe that 0 = 1 in the above equation which is a blatant contradiction. So (f) must be a proper ideal.

Now, by Zorn's lemma, there exists a maximal ideal M containing I. Then the quotient

$$K_1 = F[\ldots, x_n, \ldots]/M$$

is a field containing an imbedding of F. Moreover, f has a root in K_1 , so that $f(x_n) \in (f) \subseteq M$. Then K_1 is a field in which every polynomial over F has a root. Proceeding as before with K_1 , we obtain K_2 in which every polynomial over K_1 has a root. Hence, proceeding recursively, we obtain the sequence

$$F = K_0 \subseteq K_1 \subseteq K_n \subseteq \dots$$

in which everypolynomial over K_n has all its roots in K_{n+1} . Now, let

$$K = \bigcup K_n$$

Then $F \subseteq K$, and every polynomial over K has a root in K_N , for N large enough; but $K_N \subseteq K$, so that K is algebraically closed.

Lemma 1.4.4. Let K be algebraically closed, and let $F \subseteq K$. Then the collection of elements of the algebraic closure $\operatorname{cl} F$ of K that are algebraic over F is an algebraic closure of F.

Proof. By definition, ${}^{\operatorname{cl} F}/_F$ is algebraic. Then every polynomial f over F splits over K into linear factors $(x-\alpha)$, where α is a root of f. So α is algebraic over F, and hence $\alpha \in \operatorname{cl} F$. then all linear factors have a coefficient in $\operatorname{cl} F$, so that f splits completely over $\operatorname{cl} F$.

Corollary. Algebraic closures are unique up to isomorphism.

Theorem 1.4.5 (The Fundamental Theorem of Algebra). \mathbb{C} is algebraically closed.

Corollary. \mathbb{C} contains the an algebraic closuder of any of its subfields.

1.5 Seperability.

Definition. Let f be a polynomial over a field F with factorization

$$f(x) = a_n(x - \alpha_1)^{n_1} \dots (x - \alpha_k)^{n_k}$$

where $\alpha_1, \ldots, \alpha_k$ are roots of f, and a_n is the leading coefficient of f. If $n_i > 1$, we call α_i a **multiple root** of f, and if $n_i = 1$, we call α_i a **simple root**. We call n_i the **multiplicity** of α_i .

Definition. A polynomial over a field F is said to be **seperable** if it has only simple roots. Otherwise, we say it is **inseperable**.

Lemma 1.5.1. Separable polynomials have all their roots distinct.

Definition. We say a field F is a **finite field** if it has a finite number of elements. If |F| = n, then we denote F as \mathbb{F}_n .

Lemma 1.5.2. Every finite field has finite characteristic. Moreover, that characteristic is a prime integer.

Proof. Recall that the characteristic is just the additive order of the element 1 in the field. Lemma 1.1.1 reiterates that any field of nonzero characteristic must have prime characteristic.

Example 1.14. (1) $x^2 - 2 = (x + \sqrt{2})(x - \sqrt{2})$ is separable over \mathbb{Q} . However $(x^2 - 1)^n$ is inseparable.

(2) Consider $x^2 - t$ over the field $\mathbb{F}_2(t)$ of rational functions over t. $x^2 - t$ is irreducible, but inseperable. Let \sqrt{t} a root, then $(x - \sqrt{t})^2 = x^2 - t$ since char $\mathbb{F}_2 = 2$.

Definition. The **derivative** of a polynomial $f(x) = a_0 + a_1x + \cdots + a_nx^n$ over a field F is the polynomial

$$Df(x) = a_1 + 2a_2x + \dots + na_nx^{n-1}$$

over F.

Lemma 1.5.3. For any two polynomials f and g over a field, the following are true.

- (1) D(f+g) = Df + D(g).
- (2) D(fq) = fDq + qDf.

Lemma 1.5.4. A polynomial f has a multiple root α if, and only if α is a root of Df. Moreover, the minimal polynomial of α , m_{α} divides (f, Df).

Proof. Let α a multiple root of f. Then $f(x) = (x - \alpha)^n g(x)$ for some polynomial g. Hence

$$Df(x) = n(x - \alpha)^{n-1}g(x) + (x - \alpha)^n Dg(x)$$

so that α is a root of Df.

Conversly, suppose that α is a root of both f and Df. Then $f(x) = (x - \alpha)g(x)$ for some polynomial g, and $Df(x) = g(x) + (x - \alpha)Dg(x)$. Now, since $Df(\alpha) = 0$, we get $h(\alpha) = 0$, so that h has a linear factor $(x - \alpha)$. This makes α a multiple root of f.

Corollary. f is separable if and only if (f, Df) = 1.

Corollary. Every irreducible polynomial in a field F of char F = 0 is separable. Moreover, a polynomial over such a field is irreducible if, and only if it is the product of distinct irreducible factors.

Proof. Let p an irreducible polynomial over F of $\deg p = n$. Then $\deg Dp = n - 1$. Up to constant factors, the factors of p are 1 and itself, so that (p, Dp) = 1. This makes p separable. Therefore every irreducible polynomial over F is separable, and the rest follows.

- **Example 1.15.** (1) Let p prime and $f(x) = x^{p^n} x$ over the finite field \mathbb{F}_p , of char $\mathbb{F}_p = p$. Then $Df(x) = p^n x^{p^n 1} 1 \equiv -1 \mod p$. Then Df has no roots, which makes f seperable.
 - (2) $D(x^n 1) = nx^{n-1}$ for any field of char coprime to p. Then $D(x^n 1)$ has a root 0 of multiplicity n > 1, but 0 is not a root of $x^n 1$ so that $x^n 1$ is separable. That is, $x^n 1$ has n distinct roots of unity ξ .
 - (3) Let F a field of char F = p, where p|n. Then there are fewew than n distinct n-th roots of unity over F, since $n \equiv 0 \mod p$. Then $D(x^n 1) = 0$, and every root of $x^n 1$ is a multiple root.

Lemma 1.5.5. If f is a polynomial over a field F whose derivative is 0, then there exist a polynomial g for which $f(x) = g(x^p)$ where char F = p.

Proof. Let $f(x) = a_0 + a_1x + \cdots + a_nx^n$. Then $Df(x) = a_1 + \cdots + na_nx^{n-1} = 0$, so that every exponent $i \equiv 0 \mod p$. That is, $f(x) = a_0 + a_1x^p + \cdots + a_mx^{mp}$. Then let

$$g(x) = a_0 + a_1 x + \dots + a_m x^m$$

then $f(x) = g(x^p)$.

Lemma 1.5.6. Let F a field of char F = p. The for every $a, b \in F$, $(a + b)^p = a^p + b^p$ and $(ab^p) = a^p b^p$.

Proof. The binomial theorem gives

$$(a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \dots + \binom{p}{p-1}ab^{p-1} + b^p$$

Now, since $\binom{p}{i} \in \mathbb{Z}$ for any $1 \le i \le p-1$, and p is prime (the charateristic of a field has to be prime), then $p|\binom{p}{i}$. Hence $\binom{p}{i} \equiv 0 \mod p$, so that the binomial exapnsion above reduces to

$$(a+b)^p \equiv a^p + b^p \mod p$$

Now, let $\phi: a \to a^p$, then ϕ is an automorphism of fields taking $(ab)^p = a^p b^p$.

Corollary. Let F be a finite field of char F = p. Then every element of F is a p^{th} powerin F.

Definition. Let F be a field. We call the automorphism $F \to F$ defined by $a \to a^p$ where $p \in \mathbb{Z}$ the **Forbenius automorphism**.

Lemma 1.5.7. Every irreducible polynomial in a finite field F is seperable.

Proof. Suppose otherwise. Since F has finite characteristic, there is a polynomial q over F for which $p(x) = q(x^l)$, where p is the irreducible polynomial in question, and char F = l. Let

$$q(x) = a_0 + a_1 x + \dots + a_n x^n$$

then $a_i = b_i^p$ for some $b_i \in F$, and

$$p(x) = q(x^{l})$$

$$= a_{0} + a_{1}x^{p} + \dots + a_{n}x^{pn}$$

$$= b_{0}^{p} + b_{1}^{p}x^{p} + \dots + b_{n}^{p}x^{np}$$

$$= (b_{0} + b_{1}x + \dots + b_{n}x^{n})^{p}$$

which is a contradiction.

Definition. A field K of characteristic char K = p is called **perfect** if for every $a \in K$, there exists a $b \in K$ for which $a = b^p$, or p = 0.

Example 1.16. Let n > 0 and consider the splitting field of the polynomial $x^{p^n} - x$ over the finite field \mathbb{F}_p . Then $x^{p^n} - x$ has precisely p^n roots.

Let α, β be roots. Then $\alpha^{p^n} = \alpha$, and $\beta^{p^n} = \beta$. Then $(\alpha\beta)^{p^n} = \alpha\beta$ and $(\alpha^{-1})^{p^n} = \alpha^{-1}$. Moreover, $(\alpha + \beta)^{p^n} = \alpha + \beta$. So the set of p^n disctinct roots of $x^{p^n} - x$ is closed under addition, multiplication, and inverses in its splitting field. Let F be that splitting field. Notice that $F \subseteq E$, moreover, $[F : \mathbb{F}_p] = n$ so that $|F| = p^n$. We also have that $\mathcal{U}(F)$ is a cyclic group of order $p^n - 1$, so that $E \subseteq F$, since $\alpha^{p^n-1} = 1$. Therefore E is the splitting field of $x^{p^n} - x$ over \mathbb{F}_p , and so contains all the roots of $x^{p^n} - x$. Hence finite fields of order p^n exist and are unique up to isomorphism.

Lemma 1.5.8. Let f an irreducible polynomial over a field F of char F = p. Then there exists a unique integer $k \ge 0$ and a unique separable polynomial s such that $f(x) = s(x^{p^k})$.

Proof. We have that since char F = p, there exists a polynomial f_1 over F for which $f(x) = f_1(x^p)$. Now, if f_1 is seperable, take k = 1 and we are done. Otherwise, there is a polynomial f_2 over F for which $f_2(x) = f_2(x^p)$, so that $f(x) = f_1(x^p) = f_2(x^{p^2})$. Then proceeding in this fashion, we obtain a seperable polynomial s for which $f(x) = s(x^{p^k})$ where $k \ge 0$.

Definition. Let f an irreducible polynomial over a field of characteristic p, a prime. Let f_s the polynomial for which $f(x) = f_s(x^{p^k})$ for some unique integer $k \ge 0$. Then we call the degree of f_s the **seperable degree** of f and write $\deg_s f = \deg f_s$. We call the integer p^k the **inseperable degree** and write $\deg_i f = p^k$. We call f_s the **seperable part** of f.

Lemma 1.5.9. A polynomial f is separable if, and only if $\deg_i f = 1$ and $\deg_s f = \deg f$. Moreover,

$$\deg f = \deg_s f \cdot \deg_i f$$

Example 1.17. (1) $x^p - t$ over $\mathbb{F}_p(t)$ is irreducible with derivative D = 0. Hence $x^p - t$ is inseperable. We call $x^p - t$ a **purely inseperable polynomial**. Notice that $x^p - t$ has seperable part (x - t).

- (2) $x^{p^n} t$ over $\mathbb{F}_p(t)$ is irreducible with separable part (x t), and $\deg_i = p^n$.
- (3) Let $f(x) = (x^{p^n} t)(x^p t)$ over $\mathbb{F}_p(t)$. Then p has two inseperable irreducible factors, and so is inseperable.

Definition. If K is an extension over a field F, we call an element $\alpha \in K$ seperable if its minimal polynomial is seperable, otherwise we call it inseperable. We call K/F seperable if every $\alpha \in K$ is seperable; otherwise we say that K/F is inseperable.

Lemma 1.5.10. Every fnite extension of a perfect field is seperable.

Corollary. Finite extension fields of \mathbb{Q} and \mathbb{F}_p are separable.

1.6 Cyclotomic Polynomials.

Definition. We define **Euler's totient** to be the map $\phi : \mathbb{Z} \to \mathbb{Z}$ defined by the rule $\phi(n) = |\{a \in \mathbb{Z} : (a,n) = 1\}|$. That is, ϕ of n is the number of all integers less than n, coprime to n.

Definition. We define Ξ_n to be the **group of all primitive** n**-th roots of unity**, ξ for which $\xi^n = 1$.

Lemma 1.6.1. $\Xi_n \simeq \mathbb{Z}/_{n\mathbb{Z}}$

Proof. The map $a \to \xi^a$ defines the required isomorphism.

Corollary. ord $\Xi_n = \phi(n)$ where ϕ is Euler's totient.

Proof. Since $\xi^n \equiv \xi^{0 \mod n} \equiv 1$, we have every non identity power of ξ has exponent coprime to n. That is there are $\phi(n)$ such distinct powers of ξ .

Corollary. If d|n, then $\Xi_d \leq \Xi_n$.

Proof. Notice that if d|n, then d=mn for some $m \in \mathbb{Z}^+$. Then $\xi^d=1$ implies $(\xi^d)=\xi^{dm}=\xi^n=1$.

Definition. We define the *n*-th cyclotomic polynomial to be the polynomial

$$\Phi_n(x) = \prod x - \xi$$

having as roots all *n*-primitive roots of unity.

Lemma 1.6.2. The n-th cyclotomic polynomial Φ_n has degree $\deg \Phi_n = \phi(n)$, where ϕ is Euler's totient.

Proof. Recall that ord $\Xi_n = \phi(n)$, and since the elements of Ξ_n are the roots of Φ_n , there are $\phi(n)$ such roots. This puts deg $\Phi_n = \phi(n)$.

Example 1.18 (Computing Cyclotomic Polynomials). Recall that the polynomial $x^n - 1$ has as roots precisely all n-th roots of unity ξ , that is $\xi^n = 1$. If $x^n - 1 \in F[x]$, F a field, the the splitting field of $x^n - 1$ is $F(\xi)$. Then we have

$$x^n - 1 = \prod_{\xi \in \Xi_n} (x - \xi)$$

Now, grouping those factors where $\xi^d = 1$ for some d|n, then we have

$$x^{n} - 1 = \prod_{\xi \in \Xi_{d}} (x - \xi) \prod_{\xi \in \Xi_{n}} (x - \xi) = \prod_{\xi \in \Xi_{n}} d | n \prod_{\xi \in \Xi_{n}} (x - \xi) = \prod_{d \mid n} \Phi_{n}(x)$$

that is,

$$x^n - 1 = \prod_{d|n} \Phi_d(x)$$

which gives a method for computing Φ_n recursively.

We have $\Phi_1(x) = x - 1$ and $\Phi_2(x) = x + 1$. Now, $\Phi_3(x) = \Phi_1(x)\Phi_3(x) = (x - 1)\Phi_3(x)$, so that

$$Phi_n(x) = x^2 + x + 1$$

We have $\Phi_4(x) = \Phi_1(x)\Phi_2(x)\Phi_4(x) = (x-1)(x+1)\Phi_4(x) = (x^2-1)\Phi_4(x)$. So

$$\Phi_4(x) = x^2 + 1$$

Similarly,

$$\Phi_{5}(x) = x^{4} + x^{3} + x + 1
\Phi_{6}(x) = x^{2} - x + 1
\Phi_{7}(x) = x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1
\Phi_{8}(x) = x^{4} + 1
\Phi_{9}(x) = x^{6} + x^{x} + 1
\Phi_{10}(x) = x^{4} - x^{3} + x^{2} - x + 1
\Phi_{11}(x) = x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1
\Phi_{12}(x) = x^{4} - x^{2} + 1$$

Also observe that if p is prime, then

$$\Phi_p(x) = \sum_{i=0}^{p-1} x^i = x^{p-1} + x^p + \dots + x + 1$$

Lemma 1.6.3. $\Phi_n(x)$ is monic over \mathbb{Z} .

Proof. Notice that since $x^n - 1 = \prod \Phi_d(x)$, is monic, then each Φ_d must also be monic for all d|n.

Now, by induction on n, for n=1, it is clear that x-1 has coefficiencts in \mathbb{Z} (if $x^n-1\in\mathbb{Z}[x]$ we are done, if not, just take $1_F\to 1_{\mathbb{Z}}$, whre F is the underlying field of x^n-1). Now, suppose that $\Phi_d(x)\in\mathbb{Z}[x]$ for all $1\leq d< n$, and d|n. Then $x^n-1=f(x)\Phi_n(x)$, where $f(x)=\prod\Phi_d(x)$ is monic over \mathbb{Z} . Moreover, $f|x^n-1$, in the splitting field $\mathbb{Q}(\xi)$ (since we take $1_F\to F_{\mathbb{Z}}$), where $\xi^n=1$. Then $f|x^n-1$ over \mathbb{Q} by the division theorem, and by Gauss' lemma, $f|x^n-1$ in \mathbb{Z} . So $\Phi_n\in\mathbb{Z}[x]$.

Theorem 1.6.4. Φ_n is irreducible over \mathbb{Z} .

Proof. Again, if $x^n - 1 \in F[x]$ for some field F, take $1_F \to 1_{\mathbb{Z}}$ so that $x^n - 1 \in \mathbb{Z}[x]$. Suppose then that $\Phi_n(x) = f(x)g(x)$ where f and g are monic, and f is irreducible. Let $\xi^n = 1$, a primitive n-th root, so that ξ is a root of f. Then f is the minimal polynomial for ξ over \mathbb{Q} . Now, let p a prime such that $p \nmid n$. Then ξ^p is a n-th root, of f or g. If $f(\xi^p) = 0$, then for all g with g where g is a root of g. Moreover, g where each g is prime. That means the g is a root of g are all roots of g making g and we are done.

Suppose then that $g(\xi^p) = 0$. Then ξ is root of $g(x^p)$, and since f is minimal, $f|g(x^p)$ in $\mathbb{Z}[x]$. Then we have $g(x^p) = f(x)h(x)$ for $f, h \in \mathbb{Z}[x]$. reducing mod p, we get $g(x^p) \equiv f(x)h(x) \mod p$ in $\mathbb{F}_p[x]$; but $g(x^p) \equiv (g(x))^p \mod p$. Since $\mathbb{F}_p[x]$ is a unique factorization domain, we get that $f \mod p$ and $g \mod p$ have a common factor. Then $\Phi_n(x) \equiv f(x)g(x) \mod p$ has a multiple root in $\mathbb{F}_p[x]$; implying that $x^p - 1$ has a multiple root, which is impossible; since $x^p - 1$ has p distinct roots. Therefore ξ^p is a root of f.

Corollary. $[\mathbb{Q}(\xi):\mathbb{Q}] = \phi(n)$.

Proof. We have by above that Φ_n is the minimal polynomial for ξ over \mathbb{Q} .

Example 1.19. Let $\xi^8 = 1$ an 8-th root of unity. Then $[\mathbb{Q}(\xi) : \mathbb{Q}] = 4$ and $\mathbb{Q}(\xi)$ has minimal polynomial $\Phi_8(x) = x^4 + 1$. Moreover, $\mathbb{Q}(\xi)$ contains a primitive 4-th root of unity $i^4 = 1$ (over \mathbb{C} , $i^2 = -1$). So that $\mathbb{Q}(i) \subseteq \mathbb{Q}(\xi)$. We als get that $\xi + \xi^7 = \sqrt{2}$ (since $\xi = e^{\frac{2i\pi}{8}}$ over \mathbb{C}), and $\mathbb{Q}(\xi) = \mathbb{Q}(i,\sqrt{2})$.

Chapter 2

Galois Theory

2.1 Definitions and Examples.

Definition. An isomorphism of a field K onto itself is called an **automorphism**. We denote the set of all automorphisms of K Aut K, and for $\sigma \in \operatorname{Aut} K$, we write $\sigma \alpha$ to mean $\sigma(\alpha)$. We say an automorphism σ of K fixes an element $\alpha \in K$ if $\sigma \alpha = \alpha$. We say σ fixes a subset $F \subseteq K$ if $\sigma \alpha = \alpha$ for all $\alpha \in F$. We denote $\operatorname{Aut} K/_F$ to be the set of all automorphisms of K that fix F, where $K/_F$ is a field extension.

Lemma 2.1.1. Let K be a field. Then $\operatorname{Aut} K$ is a group. Moreover, if K is an extension of a field F, then $\operatorname{Aut} K/_F \leq \operatorname{Aut} K$.

Lemma 2.1.2. Let K be an extension of F, and let $\alpha \in K$ algebraic over F. Then for every $\sigma \in \operatorname{Aut}^{K}/_{F}$, $\sigma \alpha$ is a root of the minimal polynomial of α over F; that is, $\operatorname{Aut}^{K}/_{F}$ permutes the roots of irreducible polynomials.

Proof. Suppose that $a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1} + \alpha^n = 0$, where $a_i \in F$ for all $1 \le i \le n$, and $a_n = 1$. Notice that if σ is an automorphism of K, then it is a homomorphism, moreover, since σ fixes F, and $a_i \in F$, we get $\sigma(a_i\alpha^i) = a_i\sigma\alpha^i$. Therefore,

$$\sigma(a_0 + a_1\alpha + \dots + a_{n-1}\alpha^{n-1} + \alpha^n) = \sigma 0 = 0$$

$$\sigma(a_0) + \sigma(a_1\alpha) + \dots + \sigma(a_{n-1}\alpha^{n-1}) + \sigma(\alpha^n) = 0$$

$$a_0 + a_1\sigma\alpha + \dots + a_{n-1}\sigma\alpha^{n-1} + \sigma\alpha^n = 0$$

which makes $\sigma \alpha$ a root.

Example 2.1. (1) The identity map is an automorphism called the **trivial automorphsim**, and just maps elements of a field onto themselves. We denote this automorphism by ι . Notice additionally, that if σ is an automorphism of a field, then $\sigma: 1 \to 1$ and $\sigma: 0 \to 0$, so that $\sigma a = a$ for any element a in the prime subfield. That is, the automorphism group of a field fixes its prime subfield. In particular, notice that \mathbb{Q} and \mathbb{F}_p have only the trivial automorphism, so that Aut $\mathbb{Q} = \langle \iota \rangle$ and Aut $\mathbb{F}_p = \langle \iota \rangle$.

(2) If $\tau \in \operatorname{Aut} \mathbb{Q}(\sqrt{2}) = \operatorname{Aut} \mathbb{Q}(\sqrt{2})$, then $\tau \sqrt{2} = \pm \sqrt{2}$. Then τ fixes \mathbb{Q} , and we have that it sends elements $\tau : a + b\sqrt{2} \to a \pm b\sqrt{2}$. In the case of addition, we have that $\tau = \iota$ the identity. The latter case of subtraction gives $\tau = a + b\sqrt{2} \to a - b\sqrt{2}$, so that $\operatorname{Aut} \mathbb{Q}(\sqrt{2}) = \langle \tau \rangle$ a cyclic group of order 2 generated by τ .

Lemma 2.1.3. Let $H \leq \text{Aut } K$ for some field K. Then the collection F of elements of K fixed by H is a subfield of K.

Proof. LEt $h \in H$, and $a, b \in F$. Then ha = a, hb = b, so that $h(a \pm b) = a \pm b$, and h(ab) = ab, and $h(a^{-1}) = (ha)^{-1} = a^{-1}$.

Definition. Let K be a field. If $H \leq \operatorname{Aut} K$, we define the **fixed field** of H to be the subfield of K fixed by H, and we denote it $\mathcal{F}(H)$.

Lemma 2.1.4. If $F_1 \subseteq F_2 \subseteq K$ are subfields of a field K, then $\operatorname{Aut} K/_{F_2} \subseteq \operatorname{Aut} K/_{F_1}$. Moreover, if $H_1 \leq H_2 \leq \operatorname{Aut} K$, then $\mathcal{F}(H_2) \subseteq \mathcal{F}(H_1)$.

Example 2.2. (1) The fixed field of Aut $\mathbb{Q}(\sqrt{2})$ is the field

$$F = \{a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2}) : \sigma(a + b\sqrt{2}) = a + b\sqrt{2}\}$$

by definition. Then $a - b\sqrt{2} = a + b\sqrt{2}$ so that b = 0. Therefore $F = \mathbb{Q}$ and \mathbb{Q} is the fixed field.

(2) Consider Aut $\mathbb{Q}(\sqrt[3]{2}) = \langle \iota \rangle$. Then the fixed field of Aut $\mathbb{Q}(\sqrt[3]{2})_{\mathbb{Q}}$ is $\mathbb{Q}(\sqrt[3]{2})$.

Lemma 2.1.5. Let E be the splitting field over a field F of a polynomial f(x) over F. Then

$$\operatorname{ord}\operatorname{Aut} {}^E\!\!/_F \leq [E:F]$$

Proof. By induction on [E:F]. If [E:F]=1, then E=F, and we are done. Now, for $[E:F]\geq 1$, f(x) has at least one irreducible factor p(x) of degree $\deg p>1$. Now, let F' be the corresponding field to F with splitting field E', corresponding to E. Let f'(x) be the polynomial over F' the polynomial corresponding to F over F, with irreducible factor F'(x) corresponding to the irreducible factor F. Now, let F'(x) be a root of F is an extension of an isomorphism F'(x) onto a subfield of F'(x). Since F'(x) generates F(x), F'(x) is completely determined by its action on F'(x), so that F'(x) is a root of F'(x). We then get the following diagram:

$$E \xrightarrow{\sigma} E'$$

$$\downarrow$$

$$F(\alpha) \xrightarrow{\tau} F'(\tau \alpha)$$

$$\downarrow$$

$$\downarrow$$

$$F \xrightarrow{\phi} F'$$

COnversly, let β be a root of p'. Then there exist extensions τ and σ of the isomorphism ϕ giving the above diagram (replace $\tau \alpha$ with β). Now, the number of extensions of ϕ to τ is

equal to the number of distinct roots of p'. Since $\deg p = \deg p' = [F(\alpha) : F]$, the number of extensions to τ is at most $[F(\alpha) : F]$.

Now, notice that $[E:F(\alpha)] < [E:F]$. Therefore, by the induction hypothesis, the number of extensions of τ to σ is at most $[E:F(\alpha)]$. Therefore, the number of extensions of ϕ to σ is at most $[E:F(\alpha)][F(\alpha):F] = [E:F]$.

Finally, if F = F', we have f = f' (and p = p'), and so ϕ is the identity map and E = E'. This makes σ an automorphism of E which fixes F. The proof is complete.

Corollary. If K is the splitting field of a seperable polynomial f(x) over a field F, then ord Aut $K/_F = [K : F]$.

Definition. We call a finite field extension K_F a Galois extension if ord Aut $K_F = [K: F]$. We call Aut K_F the Galois group of K_F , and write Gal K_F .

Lemma 2.1.6. An extension K over a field F is Galois over if and only if it is normal and seperable.

Proof. If K is Galois over F, the result follows by definition. Now, let K be normal and seperable. Let $\alpha \in K$. Then the minimal polynomial m of α over F is seperable. Moreover, α is a root of K, and since K is normal, m splits completely over K. Thus K contains the splitting field of m, but since m is minimal and irreducible, that makes K the splitting field of some polynomial f over F, having m as a factor. By the above corollary, this makes K Galois over F.

Example 2.3. (1) $\mathbb{Q}(\sqrt{2})_{\mathbb{Q}}$ is Galois, and Gal $\mathbb{Q}(\sqrt{2})_{\mathbb{Q}} = \langle \sigma \rangle \simeq \mathbb{Z}_{2\mathbb{Z}}$, where $\sigma : a + b\sqrt{2} \to a - b\sqrt{2}$.

- (2) Any quadratic extension field K over F is Galois over F, provided char $F \neq 2$. Then any quadratic extension K of F, of degree [K:F]=2 is of the form $F(\sqrt{D})$, where $D \in \mathbb{Z}^+$ is squarefree. Hence $K=F(\sqrt{D})$ is the splitting field of the polynomial x^2-D .
- (3) $\mathbb{Q}(\sqrt[3]{2})$ is not Galois over \mathbb{Q} , since ord Aut $\mathbb{Q}(\sqrt[3]{2})$ $\mathbb{Q} = 1$, but $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$.
- (4) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is the splitting field of the seperable polynomial $(x^2 2)(x^2 3)$ over \mathbb{Q} . Hence $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is Galois over \mathbb{Q} , and has Galois group $\operatorname{Gal}^{\mathbb{Q}(\sqrt{2}, \sqrt{3})}/\mathbb{Q}$ of order 6. Moreover, since the automorphisms of this group are completely determined by the roots $\sqrt{2}$ and $\sqrt{3}$, we get the possible automorphisms are given by the maps

$$\begin{array}{ccc} \sqrt{2} \rightarrow \sqrt{2} & \sqrt{3} \rightarrow -\sqrt{3} \\ \sqrt{2} \rightarrow -\sqrt{2} & \sqrt{3} \rightarrow \sqrt{3} \\ \sqrt{2} \rightarrow \sqrt{2} & \sqrt{3} \rightarrow -\sqrt{3} \\ \sqrt{2} \rightarrow -\sqrt{2} & \sqrt{3} \rightarrow -\sqrt{3} \end{array}$$

Now, let $\sigma: \sqrt{2} \to -\sqrt{2}, \sqrt{3} \to \sqrt{3}$ and $\tau: \sqrt{2} \to \sqrt{2}, \sqrt{3} \to -\sqrt{3}$. Then $\sigma\tau: \sqrt{2} \to -\sqrt{2}, \sqrt{3} \to -\sqrt{3}$. Therefore we have

$$\operatorname{Gal}^{\mathbb{Q}(\sqrt{2},\sqrt{3})}/_{\mathbb{Q}} = \langle \sigma, \tau \rangle \simeq V_4$$

where V_4 is the Klein 4-group.

We can also determine the fixed fields correspongiding to each subgroup of $\langle \sigma \tau \rangle$. That is, $\mathcal{F}(\langle \sigma \tau \rangle)$ is the set of all elements fixed by $\sigma \tau$ and has elements of the form $a+b\sqrt{6}$. So $\mathcal{F}(\langle \sigma \tau \rangle) = \mathbb{Q}(\sqrt{6})$. The table below lists the fixed fields of the Galois group considered.

subgroup	fixed field
$\langle\iota\rangle$	$\mathbb{Q}(\sqrt{2},\sqrt{3})$
$\langle \sigma \rangle$	$\mathbb{Q}(\sqrt{3})$
$\langle \sigma \tau \rangle$	$\mathbb{Q}(\sqrt{6})$
$\langle \tau \rangle$	$\mathbb{Q}(\sqrt{2})$
$\langle \sigma, \tau \rangle$	\mathbb{Q}

(5) The roots of $x^3 - 2$ over \mathbb{Q} are given by

$$\sqrt[3]{2}$$
 $\xi\sqrt[3]{2}$ $\xi^2\sqrt[3]{2}$

where $\xi^3 = 1$ is the 3-rd root of unity. Additionally, the splitting field of $x^3 - 2$ over \mathbb{Q} is $\mathbb{Q}(\sqrt[3]{2}, \xi\sqrt[3]{2})$ of degree 6. Now, $x^3 - 2$ is irreducible over \mathbb{Q} , and hence separable over \mathbb{Q} . This makes $\mathbb{Q}(\sqrt[3]{2}, \xi\sqrt[3]{2})$ Galois over \mathbb{Q} , of order 6.

Consider now the set of generators $\sqrt[3]{2}$ and ξ . Then an automorphism σ takes $\sqrt[3]{2} \to \sqrt[3]{2}$, $\xi\sqrt[3]{2}$, or $\xi^2\sqrt[3]{2}$, and takes $\xi \to \xi$ or ξ^2 . Since these are the roots of the cyclotomic polynomial $\Phi_3(x) = x^2 + x + 12 + x + 1$, σ is completely determined by the actions on $\sqrt[3]{2}$ and ξ . Hence there are 6 possible automorphisms.

Let

$$\begin{array}{ll} \sigma: \sqrt[3]{2} \to \xi \sqrt[3]{2} & \quad \xi \to \xi \\ \tau: \sqrt[3]{2} \to \sqrt[3]{2} & \quad \xi \to \xi^2 \end{array}$$

We obtain then the elements

$$\tau \sigma^2 \qquad \qquad \tau \sigma^2 = \sigma \tau$$

and we get the additional relations

$$\sigma^2 = \tau^2 = \iota$$

so that

$$\operatorname{Gal}^{\mathbb{Q}(\sqrt[3]{2},\xi\sqrt[3]{2})}/\mathbb{Q} = \langle \sigma, \tau \rangle \simeq S_3$$

The fixed field of $\langle \sigma^2 \rangle$ is $\mathbb{Q}(\xi)$.

(6) $\mathbb{Q}(\sqrt[4]{2})$ is not Galois over \mathbb{Q} . We have $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}]=4$ but that any automorphism takes $\sqrt[4]{2}$ onto $\pm \sqrt[4]{2}$, or $\pm i\sqrt[4]{2}$. But $\pm i\sqrt[4]{2} \notin \mathbb{Q}(\sqrt[4]{2})$. Notice however that $\mathbb{Q}(\sqrt[4]{2})$ is Galois over $\mathbb{Q}(\sqrt{2})$, and $\mathbb{Q}(\sqrt{2})$ is Galois over \mathbb{Q} .

(7) The extension field \mathbb{F}_{p^n} is Galois over \mathbb{F}_p . Recall that \mathbb{F}_{p^n} is the splitting field of the seperable polynomial $x^{p^n} - x$ over \mathbb{F}_p . Then ord $\operatorname{Gal}^{\mathbb{F}_{p^n}}/\mathbb{F}_p = n$ and the Frobenius automorphism given by

$$\sigma: \alpha \to \alpha^p$$

generates the Galois group, making it $\langle \sigma \rangle$, a cyclic group of order n.

(8) The extension $\mathbb{F}_2(x)$ is not Galois over $\mathbb{F}_2(t)$, since $x^2 - t$ is not seperable. Moreover, any automorphism of Aut $\mathbb{F}_2(x)$ / $\mathbb{F}_2(t)$ sends x to the only root of $x^2 - t$, making it the trivial group.

2.2 The Fundamental Theorem of Galois Theory.

Definition. A linear character of a group G with values in a field L is a homomorphism $\chi : G \to \mathcal{U}(L)$. We say that distinct linear characters χ_1, \ldots, χ_n of G are linearly independent over L if they are linearly independent, as functions, over G.

Theorem 2.2.1. If χ_1, \ldots, χ_n are distinct linear characters of a group G with values in a field L, then they are linearly independent over L.

Proof. Suppose that χ_1, \ldots, χ_n are linearly dependent, and choose a dependence relation with minimum of m nonzero coefficients $a_1, \ldots, a_m \in L$, so that

$$a_1\chi_1 + \dots + a_n\chi_m = 0$$

Then for any $g \in G$, we have

$$a_1 \chi_1(q) + \cdots + a_n \chi_m(q) = 0$$

Now, let $g_0 \in G$, with $\chi_1(g_0) \neq \chi_m(g_0)$. Then

$$a_1\chi_1(g_0g) + \dots + a_n\chi_n(g_0g) = a_1\chi(g_0)\chi(g) + \dots + a_m\chi_m(g_0)\chi_m(g) = 0$$

multiplying the preceding equation with the above by $\chi_m(g_0)$ and subtracting from the above equation, we get

$$a_1(\chi_1(g_0) - \chi_m(g_0))\chi_1(g) + \dots + a_m(\chi_1(g_0) - \chi_m(g_0))\chi_m(g) = 0$$

which gives a linear dependence relation with fewer than m nonzero coefficients; which contradicts our choice of m. Therefore χ_1, \ldots, χ_n must be linearly independent.

Corollary. If $\sigma_1, \ldots, \sigma_n$ are distinct embeddings of a field K into a field L, then they are linearly yindependent as functions.

Theorem 2.2.2. Let $G = \{\sigma_1, \ldots, s_n\}$ where $\sigma_1 = \iota$ a subgroup of automorphisms of a field K, and let F be the corresponding fixed field. Then

$$[K:F]=\operatorname{ord} G=n$$

Proof. Suppose that n > [K : F], and consider the basis $\{\omega_1, \ldots, \omega_m\}$ of K_F as a vector space so that [K : F] = m. Then the matrix equation

$$\begin{pmatrix} \sigma_1 \omega_1 & \dots & \sigma_n \omega_m \\ \vdots & \ddots & \vdots \\ \sigma_n \omega_1 & \dots & \sigma_n \omega_m \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = 0$$
 (2.1)

has nontrivial solution $\begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$. Let $a_1, \dots, a_m \in F$, so that $\sigma_i \alpha_j = \alpha_j$ for each $1 \leq i \leq n$ and

 $1 \leq j \leq m$. Multyplying by $\begin{pmatrix} \sigma_1 a_1 \\ \vdots \\ \sigma_m a_1 \end{pmatrix}$, we obtain

$$\begin{pmatrix} a_1 \sigma_1 \omega_1 & \dots & a_1 \sigma_1 \omega_1 \\ \vdots & \ddots & \vdots \\ a_m \sigma_m \omega_1 & \dots & a_m \sigma_n \omega_m \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ b_n \end{pmatrix} = 0$$

so that we can obtain the equation

$$\sigma_1(a_1\omega_1 + \dots + a_m\omega_m)\beta_1 + \dots + \sigma_n(a_1\omega_1 + \dots + a_m\omega_m)\beta_n = 0$$

Where β_1, \ldots, β_n are not all 0. Now, since $\{\omega_1, \ldots, \omega_m\}$ is an *F*-basis for *K*, for all $\alpha \in K$, we get that $\alpha = a_1\omega_1 + \cdots + a_m\omega_m$. So we have from the above equation

$$(\sigma_1 \alpha)\beta_1 + \dots (\sigma_n \alpha)\beta_n = 0$$

so that $\{\sigma_1, \ldots, \sigma_n\}$ are linearly dependent over K; which contradicts the above corollary. No $n \leq [K:F]$.

Now, suppose that n < [K : F], and thet tere are more than n F-linearly independent elements $\alpha_1, \ldots, \alpha_{n+1} \in K$. Then

$$\begin{pmatrix} \sigma_1 \alpha_1 & \dots & \sigma_1 \alpha_{n+1} \\ \vdots & \ddots & \vdots \\ \sigma_n \alpha_1 & \dots & \sigma_n \alpha_{n+1} \end{pmatrix} \begin{pmatrix} x_1 \\ \dots \\ x_{n+1} \end{pmatrix} = 0$$

has nontrivial solution with entries $\beta_1, \ldots, \beta_{n+1} \in K$. Now, if $\beta_i \in F$ for all $1 \le i \le n+1$, we get an immediate contradiction of the linear independence of $\{\alpha_1, \ldots, \alpha_{n+1}\}$ over F. So at least one $\beta_i \notin F$.

Now, choose a nontrivial solution with minimum of r nonzero entries β_i . Suppose also that $\beta_r = 1$, then at least one $\beta_i \notin F$, for $1 \le i \le r - 1$, and so r > 1. Suppose then that $\beta_1 \notin F$. Then the matrix equation

$$\begin{pmatrix} \sigma_1 \alpha_1 & \dots & \sigma_1 \alpha_{r-1} & \sigma_1 \alpha_r \\ \vdots & \ddots & \vdots & \\ \sigma_n \alpha_n & \dots & \sigma_n \alpha_{r-1} & \sigma_n \alpha_r \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_{r-1} \\ 1 \end{pmatrix} = 0$$

Now, since $\beta_1 \notin F$, there exists an automorphsim σ_{k_0} of K with $\sigma_{k_0}\beta_1 \neq \beta_1$ for $1 \leq k_0 \leq n$. Applying σ_{k_0} to each row of the above equation yields a row of the form

$$\sigma_{k_0}(\sigma_j\alpha_1)(\sigma_{k_0}\beta_1) + \dots + \sigma_{k_0}(\sigma_j\alpha_{r-1})(\sigma_{k_0}\beta_{r-1}) + \sigma_j\alpha_r = 0$$

However, since G is a group, $\sigma_{k_0}\sigma_j=\sigma_i$ for $1\leq i,j\leq n$, so we get

$$(\sigma_i \alpha_1)(\sigma_{k_0} \beta_1) + \dots + (\sigma_i \alpha_{r-1})(\sigma_{k_0} \beta_{r-1}) + \sigma_i \alpha_r = 0$$

Subtracting this equation from the one preceeding it, we obtain

$$(\sigma_i \alpha_1)(\beta_1 - \sigma_{k_0} \beta_1) + \dots + (\sigma_i \alpha_{r-1})(\beta_{r-1} - \sigma_{k_0} \beta_{r-1}) = 0$$

with $x_1 = \beta_1 - \sigma_{k_0}\beta_1 \neq 0$. This choice of k_0 gives fewer than r nonzero coefficients of a nontrivial solutions, which contradicts the choice of r. Therefore n = [K : F].

Corollary. If K is a finite extension over a field F, then

ord Aut
$$K/_F \leq [K:F]$$

with equality holding if, and only if F is the fixed field of Aut $K_{/F}$.

Proof. Let F_1 be the fixed field of Aut $K_{/F}$, so that $F \subseteq F_1 \subseteq K$. TYhen $[K : F_1] = \text{ord Aut } K_{/F}$, hence

$$[K:F] = (\operatorname{ord} \operatorname{Aut} {K_{/F}})[F_1:F]$$

Corollary. If G is a finite subgroup of automorphisms of a field K, and F is its fixed field, then $\operatorname{Aut}^{K}/_{F} = G$ so that K is Galois over F with Galois group G.

Proof. By definition, we have that since G fixes the elements of F, then $G \leq \operatorname{Aut} K/_F$. Then ord G = [K : F] and by the above corollary, we get

ord Aut
$$K_{/F} \leq [K:F]$$

so that

$$[K:F] = \operatorname{ord} G \leq \operatorname{ord} \operatorname{Aut} K/_F \leq [K:F]$$

and equality holds.

Corollary. If G and H are distinct finite subgroups of $\operatorname{Aut} K$, then their fixed fields are also distinct.

Proof. Let F_G the fixed field of G, and F_H the fixed field of H. If $F_G = F_H$, then we have that H fixes F_G , and since any automorphism fixing F_G is in G, we have $H \leq G$. By similar reasoning, we get $G \leq H$ so that G = H.

Theorem 2.2.3. The extension K over a field F is Galois if, and only if K is the splitting field of some seperable polynomial in F. Moreover, every irreducible polynomial over F having at least one root in K splits over K.

Proof. By lemma 2.1.5, the splitting field of a seperable polynomial over a field is Galois. Now, suppose that K is Galois over F, and let $p(x) \in F[x]$ an irreducible polynomial with a root $\alpha \in K$. Consider, for each $\sigma_i \in \operatorname{Gal}^K/_F$ the elements

 $\alpha \qquad \qquad \sigma_2 \alpha \qquad \qquad \dots \qquad \qquad \sigma_n \alpha$

where $\sigma_1 = \iota$, and let

 α ... α_n

be the distinct elements taken on by these permutations (in no particular order). If $\tau \in \operatorname{Gal} K/_F$, by the group law, we get $\tau \sigma_i = \sigma_j$ for all $1 \leq i, j \leq n$. APplying τ to α_i we het permutations of the elements $\alpha, \alpha_2, \ldots, \alpha_n$. Then the polynomial $f(x) = (x - \alpha)(x - \alpha_2) \ldots (x - \alpha_n)$ has coefficients fixed by the elements of $\operatorname{Gal} K/_F$. That is, the coefficients lie in the fixed field F. Hence $f \in F[x]$.

Now, since p is irreducible with root α , it is the minimal polynomial for α over F, and hence p|f. Moreover, we can poserve that f|p, so that p(x) = f(x), which makes p(x) separable with all its roots in K.

Now, let $\{\omega_1, \ldots, \omega_n\}$ be a basis for K/F as a vector space, and let $p_i(x)$ the minimal polynomial for ω_i over F for all $1 \leq i \leq n$. Then p_i is separable, with roots in K. Let $g(x) = p_1(x) \ldots p_n(x)$ (where this product is squarefree). Then if E is the splitting field of g over F, then $\omega_i \in E$ for all $1 \leq i \leq n$, so that $K \subseteq E$. On the other and, since g splits over K, we get $E \subseteq K$, and so K = E is the splitting field of g over F.

Definition. Let K be an extension of a field F. If $\alpha \in K$, and $\sigma \in \operatorname{Gal}^K/_F$, we call the permutations $\sigma \alpha$ Galois conjugates (or simply conjugates) of α over F. If E is a sbufield of K containing F, then we call σE the conjugate field of E over F.

Theorem 2.2.4 (The Fundamental Theorem of Galois Theory). Let K be Galois over a field F with Galois group G, and let E be an intermidiate field of K over F which is fixed by some subgroup $H \leq G$. Then the following are true.

- (1) There is a 1-1 correspondence between the subgroups of G onto the fixed fields of K_F ; that is, \mathcal{F} , treated as a map, is 1-1 and onto.
- (2) If $\sigma \in G$, then σE is fixed by $\sigma H \sigma^{-1}$; that is, $\sigma E = \mathcal{F}(\sigma H \sigma^{-1})$.
- (3) K is Galois over E, and E is normal over F if, and only if H is normal in G.
- (4) If H is normal in G, then

$$\operatorname{Gal}^{E}/_{F} \simeq {}^{G}/_{H}$$

(5) Independntly of whether or not E is normal over F, we have that

$$[E:F] = [G:H]$$

Proof. Let $\mathcal{G}(E) = \operatorname{Aut} K_{/E}$, that is, as a map, \mathcal{G} sends a intermidiate field of $K_{/F}$ to that group of E-automorphisms of K; i.e. all automorphisms that fix the elements of E. Now, consider the mapping

$$H \to \mathcal{F}(H) \to \mathcal{GF}(H)$$

and take $\sigma \in H$. Then, by definition, σ fixes the field $\mathcal{F}(H)$, so that $\sigma \in \mathcal{G}(\mathcal{F}(H)) = \mathcal{GF}(H)$. Then $H \leq \mathcal{GF}(H)$. Now, we have that the fixed field $\mathcal{F}(H)$ contains the fixed field of $\mathcal{GF}(H)$, i.e. $\mathcal{F}(\mathcal{GF}(H))$, which is H. That is, $\mathcal{GF}(H) \leq H$. Therefore, we have $\mathcal{GF}(H) = H$. Conversely, consider the mapping

$$E \to \mathcal{G}(E) \to \mathcal{F}\mathcal{G}(E)$$

Observe that \mathcal{F}) is the fixed field of $\mathcal{G}(E) = \operatorname{Aut} K_{E}$, by definition, $\mathcal{FG}(K) = K$. This establishes the 1–1 correspondence of the subgroups of G onto the fixed fields of K_{E} .

Now, since $E = \mathcal{F}(H)$, observe that $\mathcal{F}(\sigma H s^{-1})$ consists of all elements of K which are fixed by $\sigma \tau \sigma^{-1}$ for all $\tau \in H$; that is, all $\alpha \in K$ for which $\sigma \tau \sigma^{-1}(\alpha) = \alpha$. Observe, then that $\tau \sigma^{-1}(\alpha) = \tau(\sigma^{-1}\alpha) = \sigma^{-1}\alpha$, so that τ fixes $\sigma^{-1}\alpha$. Then $\sigma^{-1}\alpha \in \mathcal{F}(H)$. That is, $\alpha \in \sigma \mathcal{F}(H) = \sigma E$, therefore $\mathcal{F}(\sigma H \sigma^{-1}) = \sigma E$.

For the third statement, notice that since K is Galois over F, then it is normal and seperable. This makes E normal and seperable over F, so that by lemma 2.1.6, $E/_F$ is Galois. Now, let σ be a 1–1 F-homomorphism which is from $K \to E$. Then σ can be extended to a 1–1 F-homomorphism from $K \to K$, by lemma 1.2.5. If $E/_F$ is normal, then for every $\sigma \in G$, σ fixes E, and E is fixed by a normal subgroup of G by the previous statement.

Consider now, the homomorphism from $G \to \operatorname{Gal}^E/_F$ given by $\sigma \to \sigma|_E$. This map is onto, with kernel consisting of all automorphisms which fix K. Then $\operatorname{Gal}^E/_F = H$, moreover, since $K/_F$ is normal, we get $H \subseteq G$. Therefore by the first isomorphism theorem (for groups), we get

$$\operatorname{Gal}^{E}/_{F} \simeq {}^{G}/_{H}$$

where G_H is understood to be the quotient group. Finally, we also have that [K:F] = [K:E][E:F]. Since both K_F and E_F are Galois, this makes

$$\operatorname{ord} G = [E : F] \operatorname{ord} H$$

which makes [E:F] = [G:H] by the definition of the index of a subgroup.

Example 2.4. (1) The lattices of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $\mathbb{Q}(\sqrt[3]{2}, \xi)$ (where $\xi^3 = 1$) indicate all of the subfields of these fields. We have that the lattice of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is isomorphic to the lattice of the Klein 4-group V_4 , which has all its subgroups normal. Thus we get every subfield of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is Galoix over \mathbb{Q} .

On the other hand, the lattice for $\mathbb{Q}(\sqrt[3]{2},\xi)$ is isomorphic to the lattice of S^3 where the only normal subgroup is the nontrivial subgroup of order 3; moreover, only $\mathbb{Q}(\xi)$ is Galois over \mathbb{Q} with $\mathrm{Gal}^{\mathbb{Q}(\xi)}/\mathbb{Q} \simeq S_3/\langle \sigma \rangle$, where $\langle \sigma \rangle$ is the cyclic subgroup of order 2.

Figure 2.1: The lattice of subfields of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ and the lattice of subgroups of $\mathbb{Q}(\sqrt{2},\sqrt{3})$.

(2) Consider $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. If m(x) is the minimal polynomial of $\sqrt{2} + \sqrt{3}$, then observe that is has as roots the distinct conjugates

$$\pm\sqrt{2}\pm\sqrt{3}$$

so that

$$m(x) = (x + (\sqrt{2} + \sqrt{3}))(x - (\sqrt{2} + \sqrt{3}))(x + (\sqrt{2} - \sqrt{3}))(x - (\sqrt{2} - \sqrt{3})) = x^4 + 10x + 10$$

Moreover, $x^4 + 10x + 1$ is irreducible. Then only the automorphism ι of $\{\iota, \sigma, \tau, \sigma\tau\}$ fixes $\sqrt{2} + \sqrt{3}$ so that the fixing group of $\mathbb{Q}(\sqrt{2} + \sqrt{3})$ is preciesly that of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. So $\mathbb{Q}(\sqrt{1} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

(3) Consider the splitting field of x^8+1 over \mathbb{Q} , generated by the elements $\sqrt[8]{2}$ and ξ , where $\xi^8=1$ (i.e. a primitive 8-th root of unity). Let $\zeta=\sqrt[8]{2}$, and notice that $\zeta^4=\sqrt{2}$, and the splitting field of x^8-2 over \mathbb{Q} is $\mathbb{Q}(\sqrt[8]{2},i)$ of degree $[\mathbb{Q}(\sqrt[8]{2},i):\mathbb{Q}]=16=4^2$. Consider then all possible maps on ζ and i given by $\zeta \to \xi^a \zeta, i \to \pm i$. Define then the automorphisms

$$\sigma:\zeta\to\xi\zeta, i\to i$$
 and $\tau:\zeta\to\zeta, i\to -i$

Since $\xi = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} = \frac{1+i}{2}\zeta^4$, we compute that $\sigma: \xi \to \xi^5$, and $\tau: \xi \to \xi^7$. We can then compute the Galois group by noting that $\sigma^8 = \tau^2 = \iota$, and $\sigma\tau = \tau\sigma^3$, so that

Gal
$$\mathbb{Q}(\sqrt[8]{2}, i)$$
 $= \langle \sigma, \tau : \sigma^8 = \tau^2 = \iota \text{ and } \sigma\tau = \tau\sigma^3 \rangle$

which describes the quasidihedral group of order 16.

2.3 Finite Fields

We reiterate some previous results about finite fields.

Lemma 2.3.1. Let E be a finite field over \mathbb{F}_p . Then E is an extension of finite degree $[E:\mathbb{F}_p]=n$. Moreover, if $|E|=p^n$, and E is the splitting field of the polynomial $x^{p^n}-x$ over \mathbb{F}_p .

2.3. FINITE FIELDS 35

Proof. Suppose that E is a finite field, but that the extension $E_{/\mathbb{F}_p}$ is infinite. The E, as a vector space over \mathbb{F}_p , has an infinite basis $\{\alpha_1, \alpha_2, \dots\}$. Moreover, since every element of E is a linear comination of this basis, we obtain a contradiction as there are infinite such combinations, but E is finite. Therefore $[E : \mathbb{F}_p] = n$, for some $n \in \mathbb{Z}^+$.

Let α, β be roots. Then $\alpha^{p^n} = \alpha$, and $\beta^{p^n} = \beta$. Then $(\alpha\beta)^{p^n} = \alpha\beta$ and $(\alpha^{-1})^{p^n} = \alpha^{-1}$. Moreover, $(\alpha + \beta)^{p^n} = \alpha + \beta$. So the set of p^n disctinct roots of $x^{p^n} - x$ is closed under addition, multiplication, and inverses in its splitting field. Let F be that splitting field. Notice that $F \subseteq E$, moreover, $[F : \mathbb{F}_p] = n$ so that $|F| = p^n$. We also have that $\mathcal{U}(F)$ is a cyclic group of order $p^n - 1$, so that $E \subseteq F$, since $\alpha^{p^n-1} = 1$. Therefore E is the splitting field of $x^{p^n} - x$ over \mathbb{F}_p , and so contains all the roots of $x^{p^n} - x$. Notice that since E is a splitting field, it is unique up to isomorphism.

Remark. Since the splitting fields of $x^{p^n} - x$ over \mathbb{F}_p are unique up to isomorphism, we denote them by \mathbb{F}_p from now on.

Corollary. \mathbb{F}_{p^n} is Galois over \mathbb{F}_p with Galois group isomorphic to $\mathbb{Z}/_{n\mathbb{Z}}$.

Proof. Notice that \mathbb{F}_{p^n} is normal and seperable over \mathbb{F}_p . Morever, that the Frobenius automorphism generates the Galois group of order n.

Corollary. All subfields of \mathbb{F}_{p^n} are Galois over \mathbb{F}_p , and in 1–1 with the divisors of n. Moreover, they are of the form \mathbb{F}_{p^d} for all d|n.

Proof. We have that

$$\operatorname{Gal}^{\mathbb{F}_{p^n}}/_{\mathbb{F}_p} = \langle \sigma \rangle \simeq \mathbb{Z}/_{n\mathbb{Z}}$$

where $\sigma: \alpha \to \alpha^p$ is the Frobenius automorphism. By the fundamental theorem of Galois theory, each subfield of \mathbb{F}_{p^n} corresponds to a subgroup of $\mathbb{Z}/_{n\mathbb{Z}}$, which are defined by the divisors of n. Hence, there is precisely one field \mathbb{F}_{p^d} for each d|n, with $[\mathbb{F}_{p^d}:\mathbb{F}_p]=d$. Now, since $\mathbb{Z}/_{n\mathbb{Z}}$ is Abelian, every subgroup is normal, and so each \mathbb{F}_{p^d} is normal over \mathbb{F}_p . Since they are also separable, the are Galois over \mathbb{F}_p .

Corollary. The fields \mathbb{F}_{p^d} are precisely those fixed by σ^d ; that is, $\mathcal{F}(\langle \sigma^d \rangle) = \mathbb{F}_{p^d}$ for all d|n.

Example 2.5. The irreducible polynomial $x^4 + 1$ over \mathbb{Z} is reducible $\mod p$, by p a prime integer. Consider $x^4 + 1 \in \mathbb{F}_p[x]$, if p = 2, then $x^4 + 1 = (x+1)^4$ and we are done, since $\Gamma \mathbb{F}_2 = 2$. Now, if p is an odd prime, notice that $p \equiv 1, 3, 5, 7 \mod 8$ so that $p^2 \equiv 1 \mod 8$. That is, $8|p^2 - 1$. Then the polynomial $x^8 - 1|x^{p^2-1} - 1$. We have then that $x^4 + 1|x^8 - 1|x^{p^2-1} - 1|x^{p^2} - x$; so that the roots of $x^4 + 1 \mod p$ are also the roots of $x^{p^2} - x \mod p$, and equivalently, are fixed by the automorphism σ^2 , σ being the Frobenius automorphism. Since \mathbb{F}_{p^2} is the splitting field of $x^{p^2} - x$, and hence consists of exactly the roots of \mathbb{F}_{p^2} , we get that if α is a root of $x^{p^2} - x$, then $[\mathbb{F}_p(\alpha) : \mathbb{F}_p] \leq 2$ so that $x^4 + 1$ is not irreducible over \mathbb{F}_p .

Lemma 2.3.2. The finite field \mathbb{F}_{p^n} is simple.

Proof. We have that $\mathcal{U}(\mathbb{F}_p)$ is a multiplicative group of finite order; moreover, it is the finite subgroup of the multiplicative group of a field. Therefore $\mathcal{U}(\mathbb{F}_p)$ is cyclic. Then if α is a generator of $\mathcal{U}(\mathbb{F}_p)$, then $\mathbb{F}_{p^n} = \mathbb{F}_p(\alpha)$ and there exists an irreducible polynomial of degree n over \mathbb{F}_p .

Lemma 2.3.3. $x^{p^n} - x$ is precisely the product of all irreducible polynomials of degree deg = d, d|n over \mathbb{F}_p .

Proof. Consider \mathbb{F}_{p^r} as the quotient ring $\mathbb{F}_p[x]/(m)$, where m(x) os the minimal polynomial of a root α of $x^{p^n} - x$. Then it follows that $m(x)|x^{p^n} - x$ and $\deg m = n$.

COnversely, if p(x) is an irreducible polynomial of degree $\deg p = d$, with $p|x^{p^n} - x$, if α is a root of p, then $\mathbb{F}_p(\alpha) \subseteq \mathbb{F}_{p^n}$; and $[\mathbb{F}_p(\alpha) : \mathbb{F}_p] = d$. That makes d|n, and $\mathbb{F}_p(\alpha)$ is Galois over \mathbb{F}_p . Now, since \mathbb{F}_{p^n} consists precisely of the roots of $x^{p^n} - x$, grouping together the factores $x - \alpha$ according to the degre d, we obtain the result.

Definition. We define the Möbius function of an integer $n \in \mathbb{Z}^+$ to be

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } n \text{ has a square factor} \\ (-1)^r, & \text{if } n \text{ has } r \text{ distinct prime factors} \end{cases}$$

Theorem 2.3.4. The number of irreducible polynomials of degree n over \mathbb{F}_p is

$$\psi(n) = \frac{1}{n} \sum_{d|n} \mu(d) p^{\frac{n}{d}}$$

Proof. Let $\psi(n)$ the number of irreducible polynomials of degree deg = n over \mathbb{F}_p . By the above lemma, we get that $p^n = \sum_{d|n} d\psi(d)$. Using the Möbius inversion formula for $n\psi(n)$, we get that $n\psi(n) = \sum_{d|n} \mu(d) p^{\frac{n}{d}}$.

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.