

Assesment Report

on

"Market Analysis"

submitted as partial fulfillment for the award of

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

By

Shreya Mittal (202401100300240)

Under the supervision of

"Mr. Abhishek Shukla Sir"

KIET Group of Institutions, Ghaziabad

Affiliated to

Dr. A.P.J. Abdul Kalam Technical University, Lucknow (Formerly UPTU)

April, 2025

Introduction

Market Basket Analysis (MBA) is a data mining technique used to uncover relationships between items frequently purchased together. It plays a vital role in understanding customer purchasing behavior and supporting business strategies such as product placement, bundling, and targeted marketing.

In this project, we simulate customer transactions based on real-world retail data and apply the Apriori algorithm to discover frequent itemsets and generate association rules. Additionally, we classify customers into high and low spenders using a logistic regression model and perform clustering to segment customers based on their shopping patterns. These insights help in making data-driven decisions to improve customer engagement and sales.

Methodology

The project follows a structured approach to perform Market Basket Analysis using simulated transaction data and machine learning techniques:

1. Data Preparation

We begin by uploading a real-world dataset and randomly selecting a subset of aisle names. Using these, we simulate 500 customer transactions with varying item counts. Customers purchasing more than 4 items are labeled as high spenders, while others are labeled as low spenders.

2. Association Rule Mining

The transaction data is one-hot encoded using TransactionEncoder. The **Apriori algorithm** is applied to identify frequent itemsets with a minimum support of 0.05. From these, **association rules** are generated using a confidence threshold of 0.3, helping us uncover meaningful item relationships.

3. Customer Classification

We use the number of items in a transaction as a feature to train a **logistic regression** model that predicts whether a customer is a high or low spender. The model's performance is evaluated using accuracy, precision, recall, and a confusion matrix.

4. Customer Segmentation

To understand different customer profiles, we apply **K-Means clustering** on the one-hot encoded transaction data. **PCA (Principal Component Analysis)** is used to reduce dimensions and visualize customer clusters based on their purchase behavior.

CODE

```
# STEP 1: Load and Simulate Transaction Data
import pandas as pd
import numpy as np
import random
import seaborn as sns
import matplotlib.pyplot as plt
from google.colab import files
uploaded = files.upload() # Upload your "10. Market Basket Analysis.csv"
df aisles = pd.read csv("10. Market Basket Analysis.csv")
aisles = df aisles['aisle'].sample(20, random state=42).tolist()
transactions = []
customer labels = []
np.random.seed(42)
for _ in range(500):
  num items = np.random.randint(1, 8)
  items = random.sample(aisles, num items)
  transactions.append(items)
  customer labels.append(1 if num items > 4 else 0) # High spender if more than 4 items
```

```
# STEP 2: Association Rule Mining (Apriori)
!pip install mlxtend
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent patterns import apriori, association rules
te = TransactionEncoder()
te array = te.fit(transactions).transform(transactions)
df trans = pd.DataFrame(te array, columns=te.columns)
frequent itemsets = apriori(df trans, min support=0.05, use colnames=True)
rules = association rules(frequent itemsets, metric="confidence", min threshold=0.3)
print("Top 5 Association Rules:")
display(rules.sort values(by='confidence', ascending=False).head())
# STEP 3: Classification (High vs. Low Spender)
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
from sklearn.metrics import confusion matrix, accuracy score, precision score, recall score
X = np.array([len(t) for t in transactions]).reshape(-1, 1)
y = np.array(customer labels)
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
acc = accuracy score(y test, y pred)
prec = precision score(y test, y pred)
rec = recall score(y test, y pred)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=["Low", "High"],
yticklabels=["Low", "High"])
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()
print(f"Accuracy: {acc:.2f}")
print(f"Precision: {prec:.2f}")
print(f"Recall: {rec:.2f}")
```

STEP 4: Clustering and Customer Segmentation from sklearn.cluster import KMeans from sklearn.decomposition import PCA item_df = pd.DataFrame(te_array.astype(int), columns=te.columns_) kmeans = KMeans(n_clusters=3, random_state=42) clusters = kmeans.fit_predict(item_df) reduced = PCA(n_components=2).fit_transform(item_df) plt.figure(figsize=(8, 6)) sns.scatterplot(x=reduced[:, 0], y=reduced[:, 1], hue=clusters, palette="Set2") plt.title("Customer Segmentation Based on Aisle Preferences") plt.xlabel("PCA 1")

plt.ylabel("PCA 2")

plt.show()

OUTPUT

÷	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	representativity	leverage	conviction	zhangs_metric	jaccard	certainty	kulczynski
8	(pickled goods olives)	(dish detergents)	0.170	0.266	0.062	0.364706	1.371075	1.0	0.016780	1.155370	0.326079	0.165775	0.134477	0.298894
6	(juice nectars)	(dish detergents)	0.222	0.266	0.080	0.360360	1.354738	1.0	0.020948	1.147521	0.336568	0.196078	0.128556	0.330556
3	(cookies cakes)	(dish detergents)	0.172	0.266	0.060	0.348837	1.311418	1.0	0.014248	1.127214	0.286795	0.158730	0.112857	0.287201
1	(cookies cakes)	(buns rolls)	0.172	0.200	0.056	0.325581	1.627907	1.0	0.021600	1.186207	0.465839	0.177215	0.156977	0.302791
2	(buns rolls)	(dish detergents)	0.200	0.266	0.064	0.320000	1.203008	1.0	0.010800	1.079412	0.210937	0.159204	0.073569	0.280301

Accuracy: 1.00 Precision: 1.00 Recall: 1.00

References/Credits

- Mlxtend Documentation
- Scikit-learn Documentation
- Dataset: Market Basket Analysis
- Google Colab