Lead Score Case Study

To Build a Logistic Regression Model to predict whether a lead for Online Courses for an education company named X Education would be successfully converted or not.

GROUP MEMBERS:
ADITYA RANJAN BEHERA
ABHLIEET BEBARTA

Business Objectives

- ▶ To help X education to select the most promising leads (Hot Leads), i.e. the leads that are most likely to convert into paying customer.
- ► To build a logistic regression model to assign a lead score value between 0 to 100 each of the leads which can be used by the company to target potential leads.

The objective is thus classified into subgoals

Sub Goal-1

Create a logistic regression model to predict the lead conversion probabilities for each lead

Sub Goal-2

Decide on a probability threshold value above which a lead will be predicted as converted, whereas not converted if it is below it

Sub Goal-3

Multiply the lead conversion probability to arrive at the lead score value for each end

Problem Solving Methodology

The approach for this project has been to divide the entire case study into various checkpoints to meet each of the sub-goals. The checkpoints are represented in a sequential flow as below.

Understanding the data set and data preparation

Applying Recursive feature elimination to identify the best performing subset of features for building the model.

Building the model with features selected by RFE. Eliminate all features with high p-values and VIF values and finalize the model

Use the model for prediction on the test dataset and perform model evaluation for the test set.

Decide on the probability threshold value based on Optimal cutoff point and predict the dependent variable for the training data.

Perform model evaluation with various metrics like sensitivity, specificity, precision, recall, etc.

The following data preparation processes were applied to make the data dependable so that it can provide significant business value by improving Decision Making Process:

where a particular column has high missing values

Columns were identified and deleted as they cannot be responsible for predicting a successful lead case.

Removing of rows where a particular column has high missing values

Lead source is an important column for analysis. Hence all rows having null values were dropped.

Filling missing categorical values with random choice form that column

Assigning a unique category to fill the null values.

Outlier Treatment

The outliers present in the columns were removed based on interquartile range analysis.

Prospect ID and Last Notable Activity were dropped in order to proceed with analysis

Prospect ID: It had unique values, hence it is dropped.

Last Notable Activity: This column was similar to last activity.

Perfom binary map on columns having Boolean values.

Convert the boolean string values "Yes" and "No" to 1 and 0 by using binary map function

Create dummy
variables for
categorical columns
by using Label
encoder

The columns on which create dummy variables 'Do Not Email', 'Magazine', 'Newspaper', 'A free copy of Mastering The Interview'.

Correlation matrix is a symmetric matrix so represent the upper matrix with features having higher correlations and lower correlation.

Lead Source_Facebook	0.98
Lead Source_Reference	0.86
What is your current occupation_Working Professional	0.84
Page Views Per Visit	0.73
Last Activity_Email Bounced	0.62
A free copy of Mastering The Interview_1	0.56
Lead Source_Olark Chat	0.52
Lead Source_Olark Chat	0.52
Last Activity_SMS Sent	0.51
Lead Origin_Landing Page Submission	0.50
Tags_Will revert after reading the email	0.48
Lead Source_Olark Chat	0.47
Country_United States	0.47
Lead Source_Welingak Website	0.45
Country_Other_Country	0.45
	Lead Source_Reference What is your current occupation_Working Professional Page Views Per Visit Last Activity_Email Bounced A free copy of Mastering The Interview_1 Lead Source_Olark Chat Lead Source_Olark Chat Last Activity_SMS Sent Lead Origin_Landing Page Submission Tags_Will revert after reading the email Lead Source_Olark Chat Country_United States Lead Source_Welingak Website

otalVisits	Tags_Will revert after reading the email	0.0
pecialization_Business Administration	Tags_Not doing further education	0.0
That is your current occupation_Student	City_Other Cities	0.0
That is your current occupation_Unemployed	Country_United Kingdom	0.0
Country_Qatar	City_Other Cities of Maharashtra	0.0
pecialization_Supply Chain Management	City_Tier II Cities	0.0
otalVisits	Country_Bahrain	0.0
pecialization_E-Business	Tags_Not doing further education	0.0
.ead Source_Facebook	What is your current occupation_Student	0.0
.ead Source_Welingak Website	City_Other Metro Cities	0.0
	Specialization_Operations Management	0.0
.ast Activity_SMS Sent	Country_France	0.0
.ast Activity_Unreachable	Tags_Busy	0.0
.ead Source_Reference	Specialization_Hospitality Management	0.0
.ead Origin_Lead Import	Tags_Busy	0.0
Itype: float64		

Feature Elimination using RFE

Feature Elimation By Using Recursive Feature Elimination (RFE) Method

```
# Selecting features using RFE
log_model = LogisticRegression()

rfe = RFE(log_model, 15)
rfe = rfe.fit(X_train, y_train)

# Listing the columns
sorted(list(zip(rfe.ranking_,X_train.columns, rfe.support_)))
```

```
cols = X_train.columns[rfe.support_]
temp= X_train.columns[~rfe.support_]
```

Model Building

Build the first logistic regression model by using GLM(Generalised Linear Model)

```
X_train_sm = sm.add_constant(X_train[cols])
lg_model1 = sm.GLM(y_train, X_train_sm, family = sm.families.Binomial())
res1 = lg_model1.fit()
res1.summary()
```

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	6293
Model:	GLM	Df Residuals:	6277
Model Family:	Binomial	Df Model:	15
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-2045.3
Date:	Sun, 19 Apr 2020	Deviance:	4090.7
Time:	21:54:20	Pearson chi2:	6.47e+03
No. Iterations:	21		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	-2.9682	0.090	-33.156	0.000	-3.144	-2.793
Total Time Spent on Website	1.0689	0.046	23.289	0.000	0.979	1.159
Lead Origin_Lead Add Form	3.4339	0.275	12.495	0.000	2.895	3.973
Lead Source_Olark Chat	1.0310	0.118	8.724	0.000	0.799	1.263
Lead Source_Welingak Website	3.4100	1.059	3.219	0.001	1.334	5.486
Do Not Email_1	-1.6270	0.186	-8.754	0.000	-1.991	-1.263
Last Activity_Olark Chat Conversation	-1.5058	0.174	-8.661	0.000	-1.847	-1.165
Last Activity_Other_Activity	1.1949	0.505	2.368	0.018	0.206	2.184
Last Activity_SMS Sent	1.6515	0.091	18.151	0.000	1.473	1.830
What is your current occupation_Working Professional	0.9193	0.137	6.707	0.000	0.651	1.188
Country_Qatar	-22.1357	1.27e+04	-0.002	0.999	-2.49e+04	2.49e+04
Tags_Busy	1.7875	0.186	9.632	0.000	1.424	2.151
Tags_Closed by Horizzon	2.8630	0.175	16.353	0.000	2.520	3.206
Tags_Lost to EINS	3.5391	0.219	16.183	0.000	3.110	3.968
Tags_Will revert after reading the email	2.8170	0.094	30.056	0.000	2.633	3.001
Tags_switched off	-0.9227	0.283	-3.261	0.001	-1.477	-0.368

Model Building

Build the second
logistic regression
model by
using GLM(Generalise
d Linear Model) after
dropping the feature
having high p- value

Dropping column with High P-Value

```
X_train_sm.drop('Country_Qatar', axis = 1, inplace = True)
# building another model after dropping variable

lg_ml2 = sm.GLM(y_train, X_train_sm, family = sm.families.Binomial())
res2 = lg_ml2.fit()|
res2.summary()
```

Generalized Linear Model Regression Results

Dep. Variable:	Converted	No. Observations:	6293
Model:	GLM	Df Residuals:	6278
Model Family:	Binomial	Df Model:	14
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-2049.0
Date:	Mon, 20 Apr 2020	Deviance:	4098.0
Time:	06:45:31	Pearson chi2:	6.47e+03
No. Iterations:	8		
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
const	-2.9702	0.089	-33.199	0.000	-3.146	-2.795
Total Time Spent on Website	1.0672	0.046	23.304	0.000	0.977	1.157
Lead Origin_Lead Add Form	3.4356	0.275	12.504	0.000	2.897	3.974
Lead Source_Olark Chat	1.0326	0.118	8.741	0.000	0.801	1.264
Lead Source_Welingak Website	3.4089	1.059	3.218	0.001	1.333	5.48
Do Not Email_1	-1.6234	0.186	-8.740	0.000	-1.987	-1.25
Last Activity_Olark Chat Conversation	-1.5086	0.174	-8.680	0.000	-1.849	-1.16
Last Activity_Other_Activity	1.1972	0.505	2.373	0.018	0.208	2.18
Last Activity_SMS Sent	1.6486	0.091	18.143	0.000	1.471	1.827
$\label{lem:weights} \textbf{What is your current occupation_Working Professional}$	0.9231	0.137	6.738	0.000	0.655	1.192
Tags_Busy	1.7907	0.185	9.654	0.000	1.427	2.154
Tags_Closed by Horizzon	2.8642	0.175	16.365	0.000	2.521	3.207
Tags_Lost to EINS	3.5406	0.219	16.195	0.000	3.112	3.969
Tags_Will revert after reading the email	2.8140	0.094	30.060	0.000	2.631	2.998
Tags_switched off	-0.9196	0.283	-3.252	0.001	-1.474	-0.36

Model Prediction

Predict the train dataset

Predict The Model

```
y_train_pred = res2.predict(X_train_sm)

y_train_pred = y_train_pred.values.reshape(-1)

# Makeing a dataframe contains y_train, and prediction
y_train_pred_final = pd.DataFrame({"converted": y_train.values, "pred_prob": y_train_pred})
y_train_pred_final.head()
```

converted pred_prob 0 1 0.962016 1 0 0.009591 2 1 0.689834 3 1 0.829806 4 0 0.483910

```
y\_train\_pred\_final['predicted'] = y\_train\_pred\_final.pred\_prob.map(lambda \ x: \ 1 \ if \ x \ > 0.5 \ else \ 0)
```

```
y_train_pred_final
```

Building Confusion Matrix

Build the first confusion matrix from the prediction of train dataset.

Creating Confusion Matrix

```
CM1 = confusion_matrix(y_train_pred_final.converted, y_train_pred_final.predicted)
print(CM1)

[[3593 333]
      [ 522 1845]]

accu_score = accuracy_score(y_train_pred_final.predicted, y_train_pred_final.converted)

fig, ax = plot_confusion_matrix(conf_mat=CM1)
all_sample_title = 'Accuracy Score: {0}'.format(accu_score)
plt.title(all_sample_title, size = 12);
plt.tight_layout()
plt.show()
```

Accuracy Score: 0.8641347529000477

ROC curve

Calculate the accuracy, sensitivity and specificity.

Plot the ROC(Receiver Operating Characteristic curve.

Calculating Accuracy, Sensitivity and Specificity

```
sensitivity = tp/(tp+fn)
specificity = tn/(tn+fp)
Accuracy = (tn+tp)/(tn+tp+fp+fn)
print("sensitivity is ", sensitivity, ", specificity is", specificity
print("\n")
print("Accuracy is", Accuracy)
```

sensitivity is 0.779467680608365 , specificity is 0.9151808456444218

Accuracy is 0.8641347529000477

Plotting the ROC curve

```
# Function For Plotting ROC Curve
def draw_roc( actual, probs ):
    fpr, tpr, thresholds = roc curve( actual, probs,
                                             drop intermediate = False )
    auc_score = roc_auc_score( actual, probs )
   plt.figure(figsize=(5, 5))
   plt.plot( fpr, tpr, label='ROC curve (area = %0.2f)' % auc_score )
   plt.plot([0, 1], [0, 1], 'r--')
   plt.xlim([0.0, 1.0])
   plt.ylim([0.0, 1.05])
   plt.xlabel('False Positive Rate')
   plt.ylabel('True Positive Rate')
   plt.title('Receiver Operating Characteristic Curve')
   plt.legend(loc="lower right")
   plt.grid()
    plt.show()
    return None
```

fpr, tpr, thresholds = roc_curve(y_train_pred_final.converted, y_train_pred_final.pred_prob, drop_intermediate = False
draw_roc(y_train_pred_final.converted, y_train_pred_final.pred_prob)

Finding Optimal Cut-off Point

Finding the optimal cut off point by calculating Accuracy, Sensitivity, Specificity for the probability of (0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).

As we can the graph above, when the probability thresholds are very low, the sensitivity is very high.

Similarly for larger probability thresholds, the sensitivity values are very low but the speicificity

Values are very high. And at about 0.39m the three metrics seem to be almost equal with decent

values and hence we choose 0.39 as the optimal cut-off point.

Finding Optimal Cut-off Point

```
numbers = [float(x)/10 for x in range(10)]
for i in numbers:
    y_train_pred_final[i] = y_train_pred_final.pred_prob.map(lambda x: 1 if x > i else 0)
y_train_pred_final.head()
```

	cut_off	accuracy	sensitivity	specificity
0.00	0.00	0.38	1.00	0.00
0.10	0.10	0.73	0.96	0.59
0.20	0.20	0.82	0.92	0.75
0.30	0.30	0.84	0.88	0.81
0.40	0.40	0.85	0.84	0.86
0.50	0.50	0.86	0.78	0.92
0.60	0.60	0.86	0.74	0.93
0.70	0.70	0.85	0.67	0.95
0.80	0.80	0.83	0.58	0.97
0.90	0.90	0.77	0.41	0.99

Finding Optimal Cutoff Point

Find the optimal cutoff point from the graph is 0.4 and built the 2nd confusion matrix

From the above Analysis We can Consider the optimal cuttoff point is 0.4

```
y_train_pred_final['predicted_values'] = y_train_pred_final.pred_prob.map(lambda x: y_train_pred_final.head()
```

	converted	pred_prob	predicted	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	predicted_values
0	1	0.962016	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0.009591	0	1	0	0	0	0	0	0	0	0	0	0
2	1	0.689834	1	1	1	1	1	1	1	1	0	0	0	1
3	1	0.829806	1	1	1	1	1	1	1	1	1	1	0	1
4	0	0.483910	0	1	1	1	1	1	0	0	0	0	0	1

```
accu_score = accuracy_score(y_train_pred_final.converted, y_train_pred_final.predicted_values)
```

```
CM2 = confusion_matrix(y_train_pred_final.converted, y_train_pred_final.predicted_values)
CM2
```

```
array([[3385, 541],
[ 379, 1988]], dtype=int64)
```

Accuracy Score: 0.8538058159860162

Precision and recall tradeoff for calculating model accuracy

```
p, r, thresholds = precision_recall_curve(y_train_pred_final.converted, y_train_pred_final.predicted_values)

plt.plot(thresholds, p[:-1], "b-")
plt.plot(thresholds, r[:-1], "r-")
plt.grid()
plt.show()
```


Calculate The Model Accuracy

Predict The Model

Fit the trained predicted model on test data set. Then build the confusion matrix of predicted test data set.

Plot the ROC curve

Visualizing Confusion Matrix Of Test Data Set

```
fig, ax = plot_confusion_matrix(conf_mat=cm_test)
all_sample_title = 'Accuracy Score: {0}'.format(accu_score)
plt.title(all_sample_title, size = 12);
plt.tight_layout()
plt.show()
```

Accuracy Score: 0.8602668643439585

Classification Report

Calculate the accuracy, Precision, Recall and F1 score for the predicted model.

Classification Report

print(classification_report(y_pred_final.Converted, y_pred_final.final_predicted))

	precision	recall	f1-score	support
0 1	0.91 0.79	0.86 0.87	0.88 0.83	1666 1032
accuracy macro avg	0.85	0.86	0.86 0.85	2698 2698
weighted avg	0.86	0.86	0.86	2698

Visualizing Conversion Ratio

Visualize the difference between conversion ratio of actual data and predicted data.

From this visualization we can consider that the model is correctly predicted and accuracy having more than 80%.

For getting the more precise model we can increase the optimal threshold value.

Visualizing Dataset To visualizing distribution between Actual Data and Predicted Data

```
plt.figure(figsize = (10,5))
plt.subplot(1,2,1)
sns.countplot(lead_score_final["Converted"])
plt.subplot(1,2,2)
sns.countplot(lead_score_final["converted"])
plt.show()
```


Thank You