(1) GENERAL INFORMATION:

(A) NAME: Yeda Research and Development Co. Ltd.

(B) STREET: Weizmann Institute of Science

(C) CITY: P.O.B. 95

(E) COUNTRY: Israel

(F) POSTAL CODE (ZIP): 76100

(G) TELEPHONE: +972-8-9344093

(H) TELEFAX: +972-8-9470739

(C) CITY: Re∤ovot

(E) COUNTRY: \srael

(F) POSTAL CODE (ZIP): 76406

(A) NAME: Nikolai Malinin

(B) STREET: Bei∜ Clore, Weizmann Institute of Science

(C) CITY: Rehovo

(E) COUNTRY: Israel

(F) POSTAL CODE (%IP): 76100

(A) NAME: Mark Boldin

(B) STREET: Beit Cl ϕ re, Weizmann Institute of Science

(C) CITY: Rehovot

(E) COUNTRY: Israel

(F) POSTAL CODE (ZIP) ₹ 76100

. (A) NAME: Andrei Kovalenko

(B) STREET: Beit Clore, Weizmann Institute of Science

(C) CITY: Rehovot

(E) COUNTRY: Israel

(F) POSTAL CODE (ZIP): 76100

(A) NAME: Igor Mett

(B) STREET: 60 Levin Epstein Street

(C) CITY: Rehovot

(E) COUNTRY: Israel

(F) POSTAL CODE (ZIP): 76462

(ii) TITLE OF INVENTION: Modulators of TNF Receptor Associated Factor (TRAF), their Preparation and Use

(iii) NUMBER OF SEQUENCES: 11

(iv) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC compatible

(C) OPERATING SYSTEM: PC-DOS/MS-DOS

(D) SOFTWARE: PatentIn Release #1.0,\Version #1.30 (EPO)

(v) CURRENT APPLICATION DATA:

APPLICATION NUMBER: PCT/IL97/00117

(vi) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: IL 117800

(B) FILING DATE: 02-APR-1996

ŧij.].A M (]" 51 ļ:fz

(vi) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: IL 119133

(B) FILING DATE: 26-AUG-1996

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1906 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CATTGGGTCA	CGCGGTGGCG	GCGCTCTAGA	ATAGTGGATC	CCCCGGGCTG	CAGGAATTCG	60
ATTCGAGGCC	ACGAAGGCCG	GCGGCGCGGC	GCANGCACCG	GCCCGGGGAN	AGGCNCCATG	120
AGCGGATCNC	NGAACNATGA	CAAAAGACAA	TTTCTGCTGG	AGCGACTGCT	GGATGCAGTG	180
AAACAGTGCC	AGATCCGCTT	TNGAGGGAGA	AAGGAGATTG	CCTCGGATTC	CGACAGCAGG	240
GTCACCTGTC	TGTGTGCCCA	GTTTGAAGCC	GTCCTGCAGC	ATGGCTTGAA	GAGGAGTCGA	300
GGATTGGCAC	TCACAGCGGC	AGCGATCAAG	CAGGCAGCGG	GCTTTGCCAG	CAAAACCGAA	360
ACAGAGCCCG	TGTTCTGGTA	CTACGTGAAG	GAGGTCCTCA	ACAAGCACGA	GCTGCAGCGC	420
TTCTACTCCC	TGCGCCACAT	CGCCTCAGAC	GTGGGCCGGG	GTCGCGCCTG	GCTGCGCTGT	480
GCCCTCAACG	AACACTCCCT	GGAGCGCTAC	CTGCACATGC	TCCTGGCCGA	CCGCTGCAGG	540
CTGAGCACTT	TTTATGAAGA	CTGGTCTTTT	GTGATGGATG	AAGAAAGGTC	CAGTATGCTT	600
CCTACCATGG	CAGCAGGTCT	GAACTCCATA	CTCTTTGCGA	TTAACATCGA	CAACAAGGAT	660
TTGAACGGGC	AGAGTAAGTT	TGCTCCCACC	GTTTCAGACC	TCTTAAAGGA	GTCAACGCAG	720
AACGTGACCT	CCTTGCTGAA	GGAGTCCACG	CAAGGAGTGA	GCAGCCTGTT	CAGGGAGATC	780
ACAGCCTCCT	CTGCCGTCTC	CATCCTCATC	AAACCTGAAC	AGGAGACCGA	CCCTTGCCTG	840
TCGTGTCCAG	GAATGTCAGT	GCTGATGCCA	AATGCAAAAA	GGAGCGGAAG	AAGAAAAAGA	900
AAGTGACCAA	CATAATCTCA	TTTGATGATG	AGGAAGATGA	GCAGAACTCT	GGGGACGTGT	960
TTAAAAAGAC	ACCTGGGGCA	GGGGAGAGCT	CAGAGGACAA	CTCCGACCGC	TCCTCTGTCA	1020
ATATCATGTC	CGCCTTTGAA	AGCCCCTTCG	GGCCTAACTC	CAATGGAATC	AGAGCAGCAA	1080
CTCATGGAAA	ATTGATTCCC	TGTCTTTGAA	CGGGGAGTTT	GGGTACCAGA	AGCTTGATGT	1140
GAAAAGCATC	GATGATGAAG	ATGTGGATGA	AAACGAAGAT	GACGTGTATG	GAAACTCATC	1200

AGGAAGGAAG	CACAGGGGCC	ACTCGGAGTC	GCCCGAGAAG	CCACTGGAAG	GGÁACACCTG	1260
CCTCTCCCAG	ATGCACAGCT	GGGCTCCGCT	GAAGGTGCTG	CACAATGACT	CCGACATCCT	1320
CTTCCCTGTC	AGTGGCGTGG	GCTCCTACAG	CCCAGCAGAT	GCCCCCTCG	GAAGCCTGGA	1380
GAACGGGACA	GGACCAGAGG	ACCACGTTCT	CCCGGATCCT	GGACTTCGGT	ACAGTGTGGA	1440
AGCCAGCTCT	CCAGGCCACG	GAAGTCCTCT	GAGCAGCCTG	TTACTTCTGC	CTCAGTGCCA	1500
GAGTCCATGA	CAATTAGTGA	ACTGCGCCAG	GCCACTGTGG	CCATGATGAA	CAGGAAGGAT	1560
GAGCTGGAGG	AGGAGAACAG	ATCACTGCGA	AACCTGCTCG	ACGGTGAGAT	GGAGCACTCA	1620
GCCGCGCTCC	GGCAAGAGGT	GGACACCTTG	AAAAGGAAGG	TGGCTGAACA	GGAGGAGCGG	1680
CAGGGCATGA	AGGTCCAGGC	GCTGGCCAGC	TATCTTTGCT	ATTTTGTGAG	GAGATTCTAA	1740
CCCCACGTGA	GAACCATGTG	GTGGAGAAAT	GGAGGGAGAG	AGAAATCCAA	CAGTTCCTGA	1800
TAGTCTCATT	TGAGCTCCTG	GATCCAGTCT	TTCCTGAAGC	TGTGTTTCCT	CTGGACTTTT	1860
CATGTATGTG	AGCCAATAAA	TTGCTTTCAT	TCCTTGAAAA	AAAAA		1906

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 604 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Xaa Thr Gly Pro Gly Xaa Gly Xaa Met Ser Gly Ser Xaa Asn Xaa Asp 1 5 10 15

Lys Arg Gln Phe Leu Leu Glu Arg Leu Leu Asp Ala Val Lys Gln Cys 20 25 30

Gln Ile Arg Phe Xaa Gly Arg Lys Glu Ile Ala Ser Asp Ser Asp Ser 35 40 45

Arg Val Thr Cys Leu Cys Ala Gln Phe Glu Ala Val Leu Gln His Gly 50 55 60

Leu Lys Arg Ser Arg Gly Leu Ala Leu Thr Ala Ala Ala Ile Lys Gln 65 70 75 80

Ala Ala Gly Phe Ala Ser Lys Thr Glu Thr Glu Pro Val Phe Trp Tyr 85 90 95

Tyr Val Lys Glu Val Leu Asn Lys His Glu Leu Gln Arg Phe Tyr Ser 100 105 110

Leu Arg His Ile Ala Ser Asp Val Gly Arg Gly Arg Ala Trp Leu Arg

Cys	Ala 130	Leu	Asn	Glu	His	Ser 135	Leu	Glu	Arg	Tyr	Leu 140	His	Met	Leu	Leu
Ala 145	Asp	Arg	Cys	Arg	Leu 150	Ser	Thr	Phe	Tyr	Glu 155	Asp	Trp	Ser	Phe	Val 160
Met	Asp	Glu	Glu	Arg 165	Ser	Ser	Met	Leu	Pro 170	Thr	Met	Ala	Ala	Gly 175	Leu
Asn	Ser	Ile	Leu 180	Phe	Ala	Ile	Aşn	Ile 185	Asp	Asn	Lys	Asp	Leu 190	Asn	Gly
Gln	Ser	Lys 195	Phe	Ala	Pro	Thr	Val 200	Ser	Asp	Leu	Leu	Lys 205	Glu	Ser	Thr
Gln	Asn 210	Val	Thr	Ser	Leu	Leu 215	Lys	Glu	Ser	Thr	Gln 220	Gly	Val	Ser	Ser
Leu 225	Phe	Arg	Glu	Ile	Thr 230	Ala	Ser	Ser	Ala	Val 235	Ser	Ile	Leu	Ile	Lys 240
Pro	Glu	Gln	Glu	Thr 245	Asp	Pro	Cys	Leu	Ser 250	Cys	Pro	Gly	Met	Ser 255	Val
Leu	Met	Pro	Asn 260	Ala	Lys	Arg	Ser	Gly 265	Arg	Arg	Lys	Arg	Lys 270	Xaa	Pro
Thr	Xaa	Ser 275	His	Leu	Met	Met	Arg 280	Lys	Met	Ser	Arg	Thr 285	Leu	Gly	Thr
Cys	Leu 290	Lys	Arg	His	Leu	Gly 295	Gln	Gly	Arg	Ala	Gln 300	Arg	Thr	Thr	Pro
Thr 305	Ala	Pro	Leu	Ser	Ile 310	Ser	Cys	Pro	Pro	Leu 315	Lys	Ala	Pro	Ser	Gly 320
Leu	Thr	Pro	Met	Glu 325	Ser	Glu	Gľn	Gln	Leu 330	Met	Glu	Asn	Xaa	Phe 335	Pro
Val	Phe	Glu	Arg 340	Gly	Val	Trp	Val	Pro 345	Glu	Ala	Xaa	Cys	Glu 350	Lys	His
Arg	Xaa	Xaa 355	Arg	Cys	Gly	Xaa	Lys 360	Arg	Arg	Xaa	Arg	Val 365	Trp	Lys	Leu
Ile	Arg 370	Lys	Glu	Ala	Gln	Gly 375	Pro	Leu	Gly	Val	Ala 380	Arg	Glu	Ala	Thr
Gly 385	Arg	Glu	His	Leu	Pro 390	Leu	Pro	Asp	Ala	Gln 395	Leu	Gly	Ser	Ala	Glu 400
Gly	Ala	Ala	Gln	Xaa 405	Leu	Arg	His	Pro	Leu 410	Pro	Cys	Gln	Trp	Arg 415	Gly
Leu	Leu	Gln	Pro 420		Arg	Cys	Pro	Pro 425	Arg	Lys	Pro	Gly	Glu 430	Arg	Asp
Arg	Thr	Arg 435		Pro	Arg	Ser	Pro 440	Gly	Ser	Trp	Thr	Ser 445	Val	Gln	Cys

Gly Ser Gln Leu Ser Arg Pro Arg Lys Ser Ser Glu Gln Pro Val Thr 455 450 Ser Ala Ser Val Pro Glu Ser Met Thr Ile Ser Glu Leu Arg Gln Ala 475 470 Thr Val Ala Met Met Asn Arg Lys Asp Glu Leu Glu Glu Glu Asn Arg 490 485 Ser Leu Arg Asn Leu Leu Asp Gly Glu Met Glu His Ser Ala Ala Leu 505 Arg Gln Glu Val Asp Thr Leu Lys Arg Lys Val Ala Glu Gln Glu Glu Arg Gln Gly Met Lys Val Gln Ala Leu Ala Ser Tyr Leu Cys Tyr Phe 535 Val Arg Arg Phe Xaa Pro His Val Arg Thr Met Trp Trp Arg Asn Gly 555 Gly Arg Glu Lys Ser Asn Ser Ser Xaa Xaa Ser His Leu Ser Ser Trp 570 Ile Gln Ser Phe Leu Lys Leu Cys Phe Leu Trp Thr Phe His Val Cys 585 Glu Pro Ile Asn Cys Phe His Ser Leu Lys Lys 595

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2631 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

60	CACCGCGTGT	AGAGCCCATC	GGCTGAGGAA	ATCCAAGAGG	AGCCCAGGCC	CCCCTCTCAC
120	GGTCTGAAGA	GCAAGTGGGA	GGGCACTACA	AAGGTGAACC	GCTGGGAGGG	CTGCAGCGGA
180	GCCAATTACC	GCCAAATCAA	GACATCCACC	AAAGAACCAA	GGGAGAATAT	GCCCTTGGAG
240	CCCCGGCCAG	GGCCCCAGGG	TTTCGCCAAG	CCGAGAGAGC	CCATGCCCAG	ACCAGACCCT
300	GAGCCCCCAG	TCTCCCACCA	TCCAGCCTCC	GCCCTAAGC	AACAGGCAGA	CTGAGGAGAC
360	TGGGAACCCT	GTCTGGGATG	GCAAGGAGGA	TTGACTTTGA	GTCTCCTCCC	ÄGCCAAACAA
420	GAGCGGAAAG	CAGCTCACCA	CCAGAAACCC	CCAGCCCCTG	CTCCCTGGAG	TACCTCTGTC
480	AACAGCCTGT	ATTATTCCTC	TGGAAATAGA	CTGCAGCAGC	GGAGCAGGAA	CAACCGTCCC

CCCAGCCATT	TTCTCTGGAG	GAGCAGGAGC	AAATTCTCTC	GTGCCTCAGC	ATCGACAGCC	540
TCTCCCTGTC	GGATGACAGT	GAGAAGAACC	CATCAAAGGC	CTCTCAAAGC	TCGCGGGACA	600
CCCTGAGCTC	AGGCGTACAC	TCCTGGAGCA	GCCAGGCCGA	GGCTCGAAGC	TCCAGCTGGA	660
ACATGGTGCT	GGCCCGGGGG	CGGCCCACCG	ACACCCCAAG	CTATTTCAAT	GGTGTGAAAG	720
TCCAAATACA	GTCTCTTAAT	GGTGAACACC	TGCACATCCG	GGAGTTCCAC	CGGGTCAAAG	780
TGGGAGACAT	CGCCACTGGC	ATCAGCAGCC	AGATCCCAGC	TGCAGCCTTC	AGCTTGGTCA	840
CCAAAGACGĞ	GCAGCCTGTT	CGCTACGACA	TGGAGGTGCC	AGACTCGGGC	ATCGACCTGC	900
AGTGCACACT	GGCCCCTGAT	GGCAGCTTCG	CCTGGAGCTG	GAGGGTCAAG	CATGGCCAGC	960
TGGAGAACAG	GCCCTAACCC	TGCCCTCCAC	CGCCGGCTCC	ACACTGCCGG	AAAGCAGCCT	1020
TCCTGCTCGG	TGCACGATGC	TGCCCTGAAA	ACACAGGCTC	AGCCGTTCCC	AGGGGATYTG	1080
NCCAGCCCCC	CGGCTCARCA	GNTGGGAACC	AGGGCCTCGN	CAGCNAGCNA	AGGTNGGGGG	1140
CAAGCNAGAA	TGCCTCCCAG	GATTTCACAN	CCTGAGCCCN	TGCCCCANCC	CTGCTGAADA	1200
AAACAYTNCC	GCCACGTGAA	GAGACAGAAG	GAGGATGGNC	AGGAGTTNNA	CCTYGGGGAA	1260
ACAAAACAGG	GATCTTTNTT	CTGCCCCTGC	TCCAGTNCGA	GTTGGCCTGN	ACCCGCTTGG	1320
ANTCAGTGAC	CATTTGTTGG	CAGANCAGGG	GAGAGCAGCT	TCCAGCCTGG	GTCAGAAGGG	1380
GTGGGCGAGC	CCTTCGGCCC	CTCACCCTNC	CAGGCTGCTG	TGNAGAGTGT	CAAGTGTGTA	1440
AGGGNCCCAA	ANCTCAGGNT	TCAGTGCAGA	ACCAGGTNCA	GCAGGTATGC	CCGCCCGNTA	1500
GGTTAANNGG	GGGCCCTCTN	AAACCCCTTG	CCTNGGCCTN	CACCINGGCC	AGCTCANCCC	1560
CTTTTGGGTG	TAGGGGAAAA	GAATGCCTGA	CCCTGGGAAG	GCTWCCCTGG	TAGAATACAC	1620
CACACTTTTC	AGGTTGTTGC	AACACAGGTC	CTGAGTTGAC	CTCTGGTTCA	GCCAAGGACC	1680
AAAGAAGGTG	TGTAAGTGAA	GTGGTTCTCA	GTNCCCCAGA	CATGTGCCCC	TTTGCTGCTG	1740
GCTACCACTC	TTCCCCAGAG	CAGCAGGCCC	CGAGCCCCTT	CAGGCCCAGC	ACTGCCCCAG	1800
ACTCGCTGGC	ACTCAGTTCC	CTCATCTGTA	AAGGTGAAGG	GTGATGCAGG	ATATGCCTGA	1860
CAGGAACAGT	CTGTGGATGG	ACATGATCAG	TGCTNAAGGN	AAAGCAGCAG	AGAGAGACGY	1920
TCCGGCGCCC	CAGNCCCCAC	TNATCAGTGT	NCCAGCGTGC	TNGGTTNCCC	CAGNAGCACA	1980
GCTNCAGNCA	TCANCACTGA	CACTNCACCC	TNGCCCTGCC	CCTNGGCCAN	GAGGGTACTG	2040
CCGNACGGCA	CTTTGCACNT	CTGATGNACC	TCAAAGCACT	TTCATGGCTN	GCCCTCTNNG	2100
GCAGGGNCAG	GGNCAGGGNC	AGTGACANCT	GTAGGNAGCA	TANGCAANGC	CAGGAGATGG	2160
GGTGNAAGGG	ANCACAGTCT	TGAGCTGTCC	ANCATGCATG	TGACTNCCTC	AAACCTCTTN	2220
NCCAGNATTT	CTCTAAGAAT	AGCANCCCCC	TTNCCCCATT	GCCCCAGCTT	AGCCTCTTCT	2280

į	=	:	
į	Heart	:	
101	c	į	
:	,	:	
į	H 1	=	2
į	7	=	
į	=,	=	****
	7	=	
i			
	=	:	•
		Ι	į
-	2	i	
.45764. 4474414	2 2 2		
11 ,45704, 177014	Abres 19 19 15		
oft? 11 ,47704, 572414	2 2 2	*************	

CCCAGGGGAG	CTANCTCAGG	ACTCACGTAG	CATTAAATCA	GCTGTGNAAT	CGTCAGGGGG	2340
TGTCTGCTAG	CCTCAACCTC	CTGGGGCAGG	GGACGCCGAG	ACTCCGTGGG	AGAAGCTCAT	2400
TCCCACATCT	TGCCAAGACA	GCCTTTNGTC	CAGCTGTCCA	CATTGAGTCA	GACTGCTCCC	2460
GGGGAGAGAG	ccccgcccc	CAGCACATAA	AGAACTGCAG	CCTTGGTACT	GCAGAGTCTG	2520
GGTTGTAGAG	AACTCTTTGT	AAGCAATAAA	GTTTGGGGTG	ATGACAAATG	TTAAAAAAAG	2580
GCCTTCGTGG	CCTCGAATCA	AGCTTATCGA	TACCGTCGAC	CTCGAGGGGG	G	2631

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1253 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

CATTGGAGTC	ACGCGGTGGC	GGCGCTCTAG	AATAGTGGAT	CCCCGGGCTG	CANGGAATTC	60
GATTCGAGCC	CACGAAGGCC	CCTTCTTCTG	TGGTCGCGGC	ACGTTTACAG	CCGCAAGCAC	120
CCAGCGGCAG	CTGAAGGAGG	CTTTTGAGAG	GCTCCTGCCC	CAGGTGGAGG	CGGCCCGCAA	180
GGCCATCCGC	GCCGCTCAGG	TGGAGCGCTA	TGTGCCCGAA	CACGAGCGAT	GCTGCTGGTG	240
CCTGTGCTGC	GGCTGTGAGG	TGCGGGAACA	CCTGAGCCAT	GGAAACCTGA	CGGTGCTGTA	300
CGGGGGGCTG	CTGGAGCATC	TGGCCAGCCC	AGAGCACAAG	AAAGCAACCA	ACAAATTCTG	360
GTGGGAGAAC	AAAGCTGAGG	TCCAGATGAA	AGAGAAGTTT	CTGGTCACTC	CCCAGGATTA	420
TGCGCGATTC	AAGAAATCCA	TGGTGAAAGG	TTTGGATTCC	TATGAAGAAA	AGGAGGATAA	480
AGTGATCAAG	GAGATGGCAG	CTCAGATCCG	TGAGGTGGAG	CAGAGCCGAC	AGGAGGTGGT	540
TCGGTCTGTC	TTAGAGCCTC	AGGCAGTGCC	AGACCCAGAA	GAGGGCTCTT	CAGCACCTAG	600
AAGCTGGAAA	GGGATGAACA	GCCAAGTAGC	TTCCAGCTTA	CAGCAGCCCT	CAAATTTGGA	660
CCTGCCACCA	GCTCCAGAGC	TTGACTGGAT	GGAGACAGGA	CCATCTCTGA	CATTCATTGG	720
CCATCAGGAT	ATACCAGGAG	TTGGTAACAT	CCACTCAGGT	GCCACACCTC	CCTGGATGAT	780
CCAAGATGAA	GAATACATTG	CTGGGAACCA	AGAAATAGGA	CCATCCTATG	AAGAATTTCT	840
TAAAGAAAAG	GAAAAACAGA	AGTŢGAAAAA	ACTCCCCCA	GACCGAGTTG	GGGCCAACTT	900
TGATCACAGC	TCCAGGACCA	GTGCAGGCTG	GCTGCCCTCT	TTTGGGCCGC	GTCTGGAATA	960
ATGGACGCCG	CTGGCAGTCC	AGACATCAAC	TCCAAAACTG	AAGCTGCAGC	AATGAAGAAG	1020

CAGTCACATA CAGAAAAAAG CTAATCATGC TCTCTACCAA CTACCATGAG GCTAAAAGCC 1080

AAAGTCAACC AAACCCCTAT TATACCTTCC ACCCAAATTC TTTATCATTG TCTTTCTTAG 1140

GAAACAGACA TACTCATTCA TTTGATTTAA TAAAGTTTTA TTTTTCGGCC TTCGTGGCCT 1200

CGAATCAAGC TTATCGATAC CGTCGACCTC GAGGGGGGC CGTACCCACT TTT 1253

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 417 amino acids
 - (B) TYPE: amino acid
 - `(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
- Ile Gly Val Thr Arg Trp Arg Arg Ser Arg Ile Val Asp Pro Arg Ala
- Ala Xaa Asn Ser Ile Arg Ala His Glu Gly Pro Phe Phe Cys Gly Arg
- Gly Thr Phe Thr Ala Ala Ser Thr Gln Arg Gln Leu Lys Glu Ala Phe 35 40 45
- Glu Arg Leu Leu Pro Gln Val Glu Ala Ala Arg Lys Ala Ile Arg Ala 50 55 60
- Ala Gln Val Glu Arg Tyr Val Pro Glu His Glu Arg Cys Cys Trp Cys 65 70 75 80
- Leu Cys Cys Gly Cys Glu Val Arg Glu His Leu Ser His Gly Asn Leu 85 90 95
- Thr Val Leu Tyr Gly Gly Leu Leu Glu His Leu Ala Ser Pro Glu His 100 105 110
- Lys Lys Ala Thr Asn Lys Phe Trp Trp Glu Asn Lys Ala Glu Val Gln 115 120 125
- Met Lys Glu Lys Phe Leu Val Thr Pro Gln Asp Tyr Ala Arg Phe Lys 130 135 140
- Lys Ser Met Val Lys Gly Leu Asp Ser Tyr Glu Glu Lys Glu Asp Lys
- Val Ile Lys Glu Met Ala Ala Gln Ile Arg Glu Val Glu Gln Ser Arg 165 170 175
- Gln Glu Val Val Arg Ser Val Leu Glu Pro Gln Ala Val Pro Asp Pro 180 185 190
- Glu Glu Gly Ser Ser Ala Pro Arg Ser Trp Lys Gly Met Asn Ser Gln 195 200 205

Val Ala Ser Ser Leu Gln Gln Pro Ser Asn Leu Asp Leu Pro Pro Ala 220 215 Pro Glu Leu Asp Trp Met Glu Thr Gly Pro Ser Leu Thr Phe Ile Gly 235 230 His Gln Asp Ile Pro Gly Val Gly Asn Ile His Ser Gly Ala Thr Pro Pro Trp Met Ile Gln Asp Glu Glu Tyr Ile Ala Gly Asn Gln Glu Ile 265 Gly Pro Ser Tyr Glu Glu Phe Leu Lys Glu Lys Glu Lys Gln Lys Leu 280 Lys Lys Leu Pro Pro Asp Arg Val Gly Ala Asn Phe Asp His Ser Ser 295 Arg Thr Ser Ala Gly Trp Leu Pro Ser Phe Gly Pro Arg Leu Glu Xaa 310 315 Trp Thr Pro Leu Ala Val Gln Thr Ser Thr Pro Lys Leu Lys Leu Gln 330 325 Gln Xaa Arg Ser Ser His Ile Gln Lys Lys Ala Asn His Ala Leu Tyr 345 Gln Leu Pro Xaa Gly Xaa Lys Pro Lys Ser Thr Lys Pro Leu Leu Tyr Leu Pro Pro Lys Phe Phe Ile Ile Val Phe Leu Arg Lys Gln Thr Tyr 375 380 Ser Phe Ile Xaa Phe Asn Lys Val Leu Phe Phe Gly Leu Arg Gly Leu 395 385 Glu Ser Ser Leu Ser Ile Pro Ser Thr Ser Arg Gly Gly Arg Thr His 405 Phe

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4596 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

 AGCGGGGGGA CTGTGCCGTG TGGAACGTGT AGCTGTTGAA GGTGGACTCT GTTACCATTG

 AGGATGTTTG GAGGATGAGT ATGTGTGGCA GAGGCACACA TAAACAGGCA GAGACCCTTT

 120

GCCCTGCCT	TTCTCCCCCA	ACCCAAGGCT	GACCTGTGTT	CTCCCAGGTC	TGGGATTCTA	180
AGTGACCTGC	TCTGTGTTTG	GTCTCTCTCA	GGATGAGCAC	AAGCCTGGGA	GATGGCAGTG	240
ATGGAAATGG	CCTGCCCAGG	TGCCCCTGGC	TCAGCAGTGG	GGCAGCAGAA	GGAACTCCCC	300
AAGCCAAAGG	AGAAGACGCC	GCCACTGGGG	AAGAAACAGA	GCTCCGTCTA	CAAGCTTGAG	360
GCCGTGGAGA	AGAGCCCTGT	GTTCTGCGGA	AAGTGGGAGA	TCCTGAATGA	CGTGATTACC	420
AAGGGCACAG	CCAAGGAAGG	CTCCGAGGCA	GGGCCAGCTG	CCATCTCTAT	CATCGCCCAG	480
GCTGAGTGTG	AGAATAGCCA	AGAGTTCAGC	CCCACCTTTT	CAGAACGCAT	TTTCATCGCT	540
GGGTCCAAAC	AGTACAGCCA	GTCCGAGAGT	CTTGATCAGA	TCCCCAACAA	TGTGGCCCAT	600
GCTACAGAGG	GCAAAATGGC	CCGTGTGTGT	TGGAAGGGAA	AGCGTCGCAG	CAAAGCCCGG	660
AAGAAACGGA	AGAAGAAGAG	CTCAAAGTCC	CTGGCTCATG	CAGGAGTGGC	CTTGGCCAAA	720
CCCCTCCCCA	GGACCCCTGA	GCAGGAGAGC	TGCACCATCC	CAGTGCAGGA	GGATGAGTCT	780
CCACTCGGCG	CCCCATATGT	TAGAAACACC	CCGCAGTTCA	CCAAGCCTCT	GAAGGAACCA	840
GGCCTTGGGC	AACTCTGTTT	TAAGCAGCTT	GGCGAGGGCC	TACGGCCGGC	TCTGCCTCGA	900
TCAGAACTCC	ACAAACTGAT	CAGCCCCTTG	CAATGTCTGA	ACCACGTGTG	GAAACTGCAC	960
CACCCCCAGG	ACGGAGGCCC	CCTGCCCCTG	CCCACGCACC	CCTTCCCCTA	TAGCAGACTG	1020
CCTCATCCCT	TCCCATTCCA	CCCTCTCCAG	CCCTGGAAAC	CTCACCCTCT	GGAGTCCTTC	1080
CTGGGCAAAC	TGGCCTGTGT	AGACAGCCAG	AAACCCTTGC	CTGACCCACA	CCTGAGCAAA	1140
CTGGCCTGTG	TAGACAGTCC	AAAGCCCCTG	CCTGGCCCAC	ACCTGGAGCC	CAGCTGCCTG	1200
TCTCGTGGTG	CCCATGAGAA	GTTTTCTGTG	GAGGAATACC	TAGTGCATGC	TCTGCAAGGC	1260
AGCGTGAGCT	CAAGCCAGGC	CCACAGCCTG	ACCAGCCTGG	CCAAGACCTG	GGCAGCACGG	1320
GGCTCCAGAT	CCCGGGAGCC	CAGCCCCAAA	ACTGAGGACA	ACGAGGGTGT	CCTGCTCACT	1380
GAGAAACTCA	AGCCAGTGGA	TTATGAGTAC	CGAGAAGAAG	TCCACTGGGC	CACGCACCAG	1440
CTCCGCCTGG	GCAGAGGCTC	CTTCGGAGAG	GTGCACAGGA	TGGAGGACAA	GCAGACTGGC	1500
TTCCAGTGCG	CTGTCAAAAA	GGTGCGCCTG	GAAGTATTTC	GGGCAGAGGA	GCTGATGGCA	1560
TGTGCAGGAT	TGACCTCACC	CAGAATTGTC	CCTTTGTATG	GAGCTGTGAG	AGAAGGGCCT	1620
TGGGTCAACA	TCTTCATGGA	GCTGCTGGAA	GGTGGCTCCC	TGGGCCAGCT	GGTCAAGGAG	1680
CAGGGCTGTC	TCCCAGAGGA	CCGGGCCCTG	TACTACCTGG	GCCAGGCCCT	GGAGGGTCTG	1740
GAATACCTCC	ACTCACGAAG	GATTCTGCAT	GGGGACGTCA	AAGCTGACAA	CGTGCTCCTG	1800
TCCAGCGATG	GGAGCCACGC	AGCCCTCTGT	GACTTTGGCC	ATGCTGTGTG	TCTTCAACCT	1860
GATGGCCTGG	GAAAGTCCTT	GCTCACAGGG	GACTACATCC	CTGGCACAGA	GACCCACATG	1920

GCTCCGGAGG	TGGTGCTGGG	CALGAGCTGC	GACGCCAAGG	TGGATGTCTG	GAGCAGCTGC	1980
TGTATGATGC	TGCACATGCT	CAACGGCTGC	CACCCCTGGA	CTCAGTTCTT	CCGAGGGCCG	2040
CTCTGCCTCA	AGATTGCCAG	CGAGCCTCCG	CCTGTGAGGG	AGATCCCACC	CTCCTGCGCC	2100
CCTCTCACAG	CCCAGGCCAT	CCAAGAGGGG	CTGAGGAAAG	AGCCCATCCA	CCGCGTGTCT	2160
GCAGCGGAGC	TGGGAGGGAA	GGTGAACCGG	GCACTACAGC	AAGTGGGAGG	TCTGAAGAGC	2220
CCTTGGAGGG	GAGAATATAA	AGAACCAAGA	CATCCACCGC	CAAATCAAGC	CAATTACCAC	2280
CAGACCCTCC	ATGCCCAGCC	GAGAGAGCTT	TCGCCAAGGG	CCCCAGGGCC	CCGGCCAGCT	2340
GAGGAGACAA	CAGGCAGAGC	CCCTAAGCTC	CAGCCTCCTC	TCCCACCAGA	GCCCCAGAG	2400
CCAAACAAGT	CTCCTCCCTT	GACTTTGAGC	AAGGAGGAGT	CTGGGATGTG	GGAACCCTTA	2460
CCTCTGTCCT	CCCTGGAGCC	AGCCCCTGCC	AGAAACCCCA	GCTCACCAGA	GCGGAAAGCA	2520
ACCGTCCCGG	AGCAGGAACT	GCAGCAGCTG	GAAATAGAAT	TATTCCTCAA	CAGCCTGTCC	2580
CAGCCATTTT	CTCTGGAGGA	GCAGGAGCAA	ATTCTCTCGT	GCCTCAGCAT	CGACAGCCTC	2640
TCCCTGTCGG	ATGACAGTGA	GAAGAACCCA	TCAAAGGCCT	CTCAAAGCTC	GCGGGACACC	2700
CTGAGCTCAG.	GCGTACACTC	CTGGAGCAGC	CAGGCCGAGG	CTCGAAGCTC	CAGCTGGAAC	2760
ATGGTGCTGG	cccggggcg	GCCCACCGAC	ACCCCAAGCT	ATTTCAATGG	TGTGAAAGTC	2820
CAAATACAGT	CTCTTAATGG	TGAACACCTG	CACATCCGGG	AGTTCCACCG	GGTCAAAGTG	2880
GGAGACATCG	CCACTGGCAT	CAGCAGCCAG	ATCCCAGCTG	CAGCCTTCAG	CTTGGTCACC	2940
AAAGACGGGC	AGCCTGTTCG	CTACGACATG	GAGGTGCCAG	ACTCGGGCAT	CGACCTGCAG	3000
TGCACACTGG	CCCCTGATGG	CAGCTTCGCC	TGGAGCTGGA	GGGTCAAGCA	TGGCCAGCTG	3060
GAGAACAGGC	CCTAACCCTG	CCCTCCACCG	CCGGCTCCAC	ACTGCCGGAA	AGCAGCCTTC	3120
CTGCTCGGTG	CACGATGCTG	CCCTGAAAAC	ACAGGCTCAG	CCGTTCCCAG	GGGATTGCCA	3180
GCCCCCGGC	TCACAGTGGG	AACCAGGGCC	TCGCAGCAGC	AAGGTGGGGG	CAAGCAGAAT	3240
GCCTCCCAGG	ATTTCACACC	TGAGCCCTGC	CCCACCCTGC	TGAAAAAACA	TCCGCCACGT	3300
GAAGAGACAG	AAGGAGGATG	GCAGGAGTTA	CCTGGGGAAA	CAAAACAGGG	ATCTTTTTCT	3360
GCCCTGCTC	CAGTCGAGTT	GGCCTGACCC	GCTTGGATCA	GTGACCATTT	GTTGGCAGAC	3420
AGGGGAGAGC	AGCTTCCAGC	CTGGGTCAGA	AGGGGTGGGC	GAGCCCTTCG	GCCCCTCACC	3480
CTCCAGGCTG	CTGTGAGAGT	GTCAAGTGTG	TAAGGGCCCA	AACTCAGGTT	CAGTGCAGAA	3540
CCAGGTCAGC	AGGTATGCCC	GCCCGTAGGT	TAAGGGGGCC	CTCTAAACCC	CTTGCCTGGC	3600
CTCACCTGGC	CAGCTCACCC	CTTTTGGGTG	TAGGGGAAAA	GAATGCCTGA	CCCTGGGAAG	3660
GCTCCCTGGT	AGAATACACC	ACACTTTTCA	GGTTGTTGCA	ACACAGGTCC	TGAGTTGACC	3720
TCTGGTTCAG	CCAAGGACCA	AAGAAGGTGT	GTAAGTGAAG	TGGTTCTCAG	TCCCCAGACA	3780

TGTGCCCCTT TGCTGCTGGC TACCACTCTT CCCCAGAGCA GCAGGCCCCG AGCCCCTTCA 3840 GGCCCAGCAC TGCCCCAGAC TCGCTGGCAC TCAGTTCCCT CATCTGTAAA GGTGAAGGGT 3900 GATGCAGGAT ATGCCTGACA GGAACAGTCT GTGGATGGAC ATGATCAGTG CTAAGGAAAG 3960 CAGCAGAGAG AGACGTCCGG CGCCCCAGCC CCACTATCAG TGTCCAGCGT GCTGGTTCCC 4020 CAGAGCACAG CTCAGCATCA CACTGACACT CACCCTGCCC TGCCCCTGGC CAGAGGGTAC 4080 TGCCGACGGC ACTTTGCACT CTGATGACCT CAAAGCACTT TCATGGCTGC CCTCTGGCAG 4140 GGCAGGGCAG GGCAGTGACA CTGTAGGAGC ATAGCAAGCC AGGAGATGGG GTGAAGGGAC 4200 ACAGTCTTGA GCTGTCCACA TGCATGTGAC TCCTCAAACC TCTTCCAGAT TTCTCTAAGA 4260 ATAGCACCCC CTTCCCCATT GCCCCAGCTT AGCCTCTTCT CCCAGGGGAG CTACTCAGGA 4320 CTCACGTAGC ATTAAATCAG CTGTGAATCG TCAGGGGGTG TCTGCTAGCC TCAACCTCCT 4380 GGGGCAGGGG ACGCCGAGAC TCCGTGGGAG AAGCTCATTC CCACATCTTG CCAAGACAGC 4440 CTTTGTCCAG CTGTCCACAT TGAGTCAGAC TGCTCCCGGG GAGAGAGCCC CGGCCCCCAG 4500 CACATAAAGA ACTGCAGCCT TGGTACTGCA GAGTCTGGGT TGTAGAGAAC TCTTTGTAAG 4560 4596 CAATAAAGTT TGGGGTGATG ACAAATGTTA AAAAAA

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 947 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:
 - Met Ala Val Met Glu Met Ala Cys Pro Gly Ala Pro Gly Ser Ala Val 1 5 10 15
 - Gly Gln Gln Lys Glu Leu Pro Lys Pro Lys Glu Lys Thr Pro Pro Leu 20 25 30
 - Gly Lys Lys Gln Ser Ser Val Tyr Lys Leu Glu Ala Val Glu Lys Ser 35 40 45
 - Pro Val Phe Cys Gly Lys Trp Glu Ile Leu Asn Asp Val Ile Thr Lys 50 55 60
 - Gly Thr Ala Lys Glu Gly Ser Glu Ala Gly Pro Ala Ala Ile Ser Ile 65 70 75 80
 - Ile Ala Gln Ala Glu Cys Glu Asn Ser Gln Glu Phe Ser Pro Thr Phe 85 90 95

4 ... in 15 ...

Ser Glu Arg Ile Phe Ile Ala Gly Ser Lys Gln Tyr Ser Gln Ser Glu 105 Ser Leu Asp Gln Ile Pro Asn Asn Val Ala His Ala Thr Glu Gly Lys 120 Met Ala Arg Val Cys Trp Lys Gly Lys Arg Arg Ser Lys Ala Arg Lys Lys Arg Lys Lys Ser Ser Lys Ser Leu Ala His Ala Gly Val Ala 155 Leu Ala Lys Pro Leu Pro Arg Thr Pro Glu Gln Glu Ser Cys Thr Ile Pro Val Gln Glu Asp Glu Ser Pro Leu Gly Ala Pro Tyr Val Arg Asn 185 Thr Pro Gln Phe Thr Lys Pro Leu Lys Glu Pro Gly Leu Gly Gln Leu Cys Phe Lys Gln Leu Gly Glu Gly Leu Arg Pro Ala Leu Pro Arg Ser 215 Glu Leu His Lys Leu Ile Ser Pro Leu Gln Cys Leu Asn His Val Trp 235 230 Lvs Leu His His Pro Gln Asp Gly Gly Pro Leu Pro Leu Pro Thr His Pro Phe Pro Tyr Ser Arg Leu Pro His Pro Phe Pro Phe His Pro Leu 265 Gln Pro Trp Lys Pro His Pro Leu Glu Ser Phe Leu Gly Lys Leu Ala Cys Val Asp Ser Gln Lys Pro Leu Pro Asp Pro His Leu Ser Lys Leu 300 295 Ala Cys Val Asp Ser Pro Lys Pro Leu Pro Gly Pro His Leu Glu Pro Ser Cys Leu Ser Arg Gly Ala His Glu Lys Phe Ser Val Glu Glu Tyr Leu Val His Ala Leu Gln Gly Ser Val Ser Ser Ser Gln Ala His Ser Leu Thr Ser Leu Ala Lys Thr Trp Ala Ala Arg Gly Ser Arg Ser Arg Glu Pro Ser Pro Lys Thr Glu Asp Asn Glu Gly Val Leu Leu Thr Glu Lys Leu Lys Pro Val Asp Tyr Glu Tyr Arg Glu Glu Val His Trp Ala 390 Thr His Gln Leu Arg Leu Gly Arg Gly Ser Phe Gly Glu Val His Arg Met Glu Asp Lys Glm hr Gly Phe Gln Cys Ala Val Lys Lys Val Arg 425 Leu Glu Val Phe Arg Ala Glu Glu Leu Met Ala Cys Ala Gly Leu Thr Ser Pro Arg Ile Val Pro Leu Tyr Gly Ala Val Arg Glu Gly Pro Trp Val Asn Ile Phe Met Glu Leu Leu Glu Gly Gly Ser Leu Gly Gln Leu Val Lys Glu Gln Gly Cys Leu Pro Glu Asp Arg Ala Leu Tyr Tyr Leu Gly Gln Ala Leu Glu Gly Leu Glu Tyr Leu His Ser Arg Arg Ile Leu 505 His Gly Asp Val Lys Ala Asp Asn Val Leu Leu Ser Ser Asp Gly Ser His Ala Ala Leu Cys Asp Phe Gly His Ala Val Cys Leu Gln Pro Asp 535 Gly Leu Gly Lys Ser Leu Leu Thr Gly Asp Tyr Ile Pro Gly Thr Glu 555 550 Thr His Met Ala Pro Glu Val Val Leu Gly Arg Ser Cys Asp Ala Lys 570 Val Asp Val Trp Ser Ser Cys Cys Met Met Leu His Met Leu Asn Gly 585 Cys His Pro Trp Thr Gln Phe Phe Arg Gly Pro Leu Cys Leu Lys Ile 600 Ala Ser Glu Pro Pro Pro Val Arg Glu Ile Pro Pro Ser Cys Ala Pro Leu Thr Ala Gln Ala Ile Gln Glu Gly Leu Arg Lys Glu Pro Ile His 630 635 Arg Val Ser Ala Ala Glu Leu Gly Gly Lys Val Asn Arg Ala Leu Gln Gln Val Gly Gly Leu Lys Ser Pro Trp Arg Gly Glu Tyr Lys Glu Pro Arg His Prc Pro Pro Asn Gln Ala Asn Tyr His Gln Thr Leu His Ala Gln Pro Arg Glu Leu Ser Pro Arg Ala Pro Gly Pro Arg Pro Ala Glu 695 Glu Thr Thr Gly Arg Ala Pro Lys Leu Gln Pro Pro Leu Pro Pro Glu 710 Pro Pro Glu Pro Asn Lys Ser Pro Pro Leu Thr Leu Ser Lys Glu Glu 730 Ser Gly Met Trp Glu Pro Leu Pro Leu Ser Ser Leu Glu Pro Ala Pro

745

Ala Arg Asn Pro Ser Ser Pro Glu Arg Lys Ala Thr Val Pro Glu Gln 760

Glu Leu Gln Gln Leu Glu Ile Glu Leu Phe Leu Asn Ser Leu Ser Gln 780 775

Pro Phe Ser Leu Glu Glu Gln Glu Gln Ile Leu Ser Cys Leu Ser Ile 795

Asp Ser Leu Ser Leu Ser Asp Asp Ser Glu Lys Asn Pro Ser Lys Ala

Ser Gln Ser Ser Arg Asp Thr Leu Ser Ser Gly Val His Ser Trp Ser 825

Ser Gln Ala Glu Ala Arg Ser Ser Ser Trp Asn Met Val Leu Ala Arg

Gly Arg Pro Thr Asp Thr Pro Ser Tyr Phe Asn Gly Val Lys Val Gln

Ile Gln Ser Leu Asn Gly Glu His Leu His Ile Arg Glu Phe His Arg 875

Val Lys Val Gly Asp Ile Ala Thr Gly Ile Ser Ser Gln Ile Pro Ala 890 885

Ala Ala Phe Ser Leu Val Thr Lys Asp Gly Gln Pro Val Arg Tyr Asp 905

Met Glu Val Pro Asp Ser Gly Ile Asp Leu Gln Cys Thr Leu Ala Pro 920

Asp Gly Ser Phe Ala Trp Ser Trp Arg Val Lys His Gly Gln Leu Glu 935

Asn Arg Pro 945

J.

a lie

ľ U

(["

٠, Ü

į=fz (=:) (=:)

ıIJ

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "oligonucleotide PCR primer"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

CAGGATCCTC ATGGCTGCAG CTAGCGTGAC

(2) INFORMATION FOR SEQ ID NO: 9:

	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide PCR"	
	primer		
	(v.i.)	SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
			32
		TA GAGCCCTGTC AGGTCCACAA TG	32
	(2) INFO	RMATION FOR SEQ ID NO: 10:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide probe"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
<u></u>	GATGCCAT	TG GGGATTTCCT CTTT	24
	(2) INFO	RMATION FOR SEQ ID NO: 11:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide probe"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
	CAGTAAAG	AG GAAATCCCCA ATGG	24