This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

THIS S'A QE BUANKUES POOPY

(19) RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11) N° d publication :

2 692 594

(à n'utiliser que pour les commandes de reproduction)

(21) N° d' nregistrement nati nal :

92 07571

(51) Int CI⁵ : C 12 P 21/02

DEMANDE DE BREVET D'INVENTION

A1

- 22) Date de dépôt : 22.06.92.
- (30) Priorité :

(71) Demandeur(s) : PEREZ Jean-Claude — FR.

(72**) Inventeur(s) :** PEREZ Jean-Claude.

- 43 Date de la mise à disposition du public de la demande : 24.12.93 Bulletin 93/51
- 56 Liste des documents cités dans le rapport de recherche préliminaire : Ce demier n'a pas été établi à la date de publication de la demande.
- 60 Références à d'autres documents nationaux apparentés :
- (73) Titulaire(s) :
- (74) Mandataire :

Le Langage Global de l'Expression des gènes: Applications à l'analyse, au contrôle et à l'optimisati n des interactions globales entre Régions non codantes et codantes de divers gènes.

(57) La présente invention s'appuie sur le brevet "PRO-CEDE D'ANALYSE DE L'ORDRE GLOBAL DES SEQUENCES D'ADN/ARN" déposé ce même jour. L'invention s'applique à deux domaines distincts:

- La localisation, l'identification et l'optimisation des zones fonctionnelles (promoteurs, régulations, etc...) dans les régions non traduites des gènes (régions précurseurs et terminales qui encadrent, de part et d'autres le gène dans la séquence d'ARNm).

 L'optimisation des codons dans le gène sans altérer la séquence polypeptidique des acides aminés correspondants.

L'invention, qui s'articule en divers points successifs s'illustre pour chacun de ces points par des exemples et preuves choisis dans les régions codantes et non codantes de divers gènes (TGF beta1, bétaglobine, interleukine etc...).

On prouvera en particulier la nature globale des fonctions de promotion et de régulation basée sur une intéraction à longue distance entre régions non codantes (précurseur) et codantes (gène). La figure 3 démontre l'existence de cette intéraction. Les principales revendications concernent l'optimisation de gènes en biotechnologie par contrôle global des régions non codantes et/ou codantes. Le résultat industriel est un meilleur rendement dans la production de protéines par génie génétique. Le résultat scientifique est un nouvel outil pour comprendre et localiser les méca-

nismes globaux: UN LANGAGE GLOBAL DE L'EXPRESSION DES GENES.

DESCRIPTION

1

Certains des concepts et procédés de base auxquels il est fait référence ci-dessous sont décrits dans un autre brevet déposé simultanément et intitulé "PROCEDE D'ANALYSE DE L'ORDRE GLOBAL DES SEQUENCES D'ADN/ARN".

- La présente description s'articule en SEPT parties, chacune de ces parties s'appuie sur des exemples résultant, le plus souvent, d'expériences in-vitro publiées. dans chacune de ces sept parties, nous progressons successivement de la mise en évidence d'intéractions globales entre régions non codantes et codantes jusqu'à la caractérisation fine des indicateurs de notre procédé permettant de contrôler, réguler et optimiser l'expression des protéines considérées. Dans tous les cas la direction des régulations ou optimisations issues de notre procédé est coréllée et va dans la même direction que les résultats observés in-vitro.
- 15 Ces sept parties seront les suivantes:

- 1 Preuve de l'existence d'un ordre global reliant les régions non exprimées et le gène effectif.
- 2 Evaluation prédictive de combinatoires entre régions codantes et non codantes.
- 20 3 Mise en évidence de l'effet à longue distance des sites promoteurs usuels (boite TATA, etc...).
 - 4 Eléments de contrôle et de régulation macroscopiques.
 - 5 Eléments de contrôle et de régulation fins.
 - 6 "Langage global de contrôle et de régulation de l'expression des gènes".
 - 7 Optimisation globale de la partie codante du gène.

PARTIE I:

5

10

15

20

25

PREUVES DE L'EXISTENCE D'UN ORDRE GLOBAL reliant les régions non traduites (précurseur 5' et terminal 3') et le gène (partie traduite. On considère l'ARNm complet du TGFbetal (figure 1). Pour simplifier: bien qu'il s'agisse d'ARNm, nous utilisons la lettre T (base T) alors que, normalement, s'agissant d'ARNm, nous aurions du utiliser la lettre U (base U). On va bâtir des sous-ensembles à partir de tout ou partie des 3 tronçons de séquences suivantes constituant l'ARNm: - Le précurseur 5'.

- Le gène codant.
- Le terminal 3'.
- On va perturber cet enchainement naturel constituant le témoin.
- On va comparer les mesures d'ordre global entre le témoin et les situations dégénérées.

Parmi les dizaines d'expériences effectuées, toutes vont dans le même sens: TOUTES LES DEGRADATIONS DE SEQUENCES EXPLOREES

DEGRADENT EGALEMENT LE NOMBRE ET LE VOLUME DES RESONANCES.

Voici quatre de ces expériences les plus significatives.

La figure 2 schématise les combinatoires de tronçons relatives à chacune de ces 4 expériences.

Première PREUVE: perturbation par retournement (antisens) du tronçon précurseur - figure 2 (1) -

La totalité des résonances se divise en deux catégories: les résonances internes è chaque tronçon et les résonances à cheval entre deux tronçons. Les résonances étant pratiquement symétriques, à la nuance près que l'on ne recherche que le tiers des résonances partant des frontières de codons. Ainsi, du fait de cette quasi-symétrie, la perturbation ci-dessus va pratiquement

conserver toutes les résonances internes aux tronçons. Les résultats focaliseront donc les résonances sur les relations inter-tronçons, résonances auxquelles nous nous intéresserons désormais. On les détecte aisi: il s'agit de résonances dont la base d'origine et la base d'extrémité se situent dans deux tronçons distincts.

La figure 3 présente les distributions des ces résonances pour le témoin - figure 3 (1) - et pour le cas perturbé (précurseur retourné) - figure 3 (2) - il s'agit, rappellons-le, de résonances situées "à-cheval" entre le précurseur et le gène.

On remarque que:

5

- le nombre des résonances est réduit dans un rapport de 3.
- Le volume des résonances (somme des longueurs) est réduit dans un rapport supérieur à 14.
- 15 les très longues résonances (>1597) sont au nombre de 19 pour le témoin et inexistentes pour le perturbé (rappellons que le nombre réel de résonances est environ 3 fois supérieur et que ces longueurs couvrent plus de la moitié de la séquence, longue de 3378 bases).
- la plus longue résonance pour le cas perturbé est de 377, elle est donc précédée de 86 résonances de longueurs supérieures chez le témoin figure 3 (3) et (4) -
- Enfin, la matrice de distribution des résonances par type et par base est plus consistente dans le cas du témoin et disparate dans le cas dégénéré figure 3 (5) et (6) seconde PREUVE: perturbation par modification des pseudo-codons du précurseur tout en respectant les contraintes du code génétique: Nous avons recherché un moyen moins brutal de perturbation du tronçon précurseur. Aussi, bien que les codons du précurseur

ne soient pas traduits selon la table du code génétique, une altération relativement légère consisterait à modifier au hasard ces codons en s'assurant que chacun d'entre eux continue de correspondre au même acide aminé après altération qu'avant altération. En clair, le précurseur réel et le précurseur perturbé produiraient, s'ils étaient traduits, strictement la même séquence polypeptidique d'acides aminés.

La figure 4 représente, de la même façon que ci-dessus, l'écart évident des nombres et volumes de résonances entre le témoin et la séquence relative au précurseur perturbé.

- le nombre des résonances est réduit dans un rapport de 27%.

- le volume des résonances est réduit dans un rapport de 3.4.
- les très longues résonances (>1597) sont au nombre de 19 pour le témoin et inexistentes pour la séquence perturbée.
- de manière générale, bien que franches, les différences 15 sont plus atténuées que dans le cas de la perturbation première. Troisième PREUVE: région terminale remplacée par une seconde copie du gène - figure 2 (4) - Désormais, après nous être limités au couple précurseur-gène, nous allons étendre l'étude au triplet précurseur-gène-terminal. Remplacer la région terminale par une 20 perturbation, fût-elle la recopie du gène lui-même, constitue une perturbation forte. La figure 5 détaille ces résultats. Comme nous le montrons dans le brevet "PROCEDE D'ANALYSE DE L'ORDRE GLOBAL DES SEQUENCES D'ADN", le fait de dupliquer la région codante du gène renforce les résonances de type FFF et LLL 25 tandis que le résonances LFF (dont nous allons démontrer le rôle majeur de contrôle et de régulation) disparaissent dès que l'on supprime la région terminale.

Quatrième PREUVE: substitutions réciproques des tronçons précurseurs et terminales - figure 2 (5) - Nous remplaçons la séquence précurseur-gène-terminal par la séquence perturbée terminal-gène-précurseur. En d'autres termes, le nouveau promoteur devient le terminal originel tandis que le nouveau terminal devient le promoteur originel. La figure 6 détaille ces résultats. La perturbation a pour effêt de réduire les très grandes résonances (LUCAS en particulier).

En conclusion:

5

LES INTERACTIONS ENTRE REGIONS CODANTES ET NON CODANTES SONT
DETRUITES DES QUE L'ON PERTURBE LES TRONCONS DE GENES
CORRESPONDANTS.

LES OPERATEURS D'ANALYSE DE L'ORDRE GLOBAL DES GENES MESURENT LE SENS ET LA DIRECTION DE CETTE PERTURBATION. PARTIE II: EVALUATION PREDICTIVE DE COMBINAISONS ENTRE REGIONS
CODANTES ET NON CODANTES:

LE PROCEDE ILLUSTRE ICI SERA: il est possible de simuler l'impact qui résulterait de différentes combinaisons entre diverses régions précurseur, diverses régions codantes et diverses régions terminales. Cela permet d'évaluer, avant d'effectuer les travaux in-vitro correspondants, quel serait l'impact de ces combinaisons. Nous illustrerons cette combinatoire à partir de la BETAGLOBINE. Nous disposons (figure 7) des TROIS tronçons respectifs des:

- précurseur.
- gène (région traduite).
- terminal.

correspondant aux DEUX bétaglobines respectives:

10

20

25

- de l'homme.
- du lapin.
- On remarque (figure 8) les différences importantes entre ces deux gènes, en particulier (*) dans la région terminale il y a, chez l'homme une longue insersion de séquence, inexistente chez le lapin. Nous avons simulé l'impact de QUATRE parmi les HUIT (2**3) combinaisons possibles:
 - précurseur HOMME + gène HOMME + terminal HOMME (fig 10-1).
 - précurseur LAPIN + gène LAPIN + terminal LAPIN (fig 10-1).
 - précurseur HOMME + gène LAPIN + terminal HOMME (fig 10-1).
 - précurseur LAPIN + gène HOMME + terminal LAPIN (fig 10-2).

Les résultats considèrent toutes les résonances à cheval entre le précurseur et le gène (dont l'origine est dans le précurseur et l'extrémité dans le gène ou dans le terminal) dans la figure 10, et celles à cheval entre gène et terminal dans la figure 11. Contrairement à la partie I, les combinaisons semblent ici VIABLES.

PARTIE III: MISE EN EVIDENCE DE L'EFFET A LONGUE DISTANCE DE PROMOTEURS USUELS ("boites TATA, CAAT" etc...).

5

10

15

20

25

LE PROCEDE ILLUSTRE ICI SERA: Contrairement à l'état de l'art, où l'on ne considère ces promoteurs (figure 12) que sur un plan ANALYTIQUE et LOCAL, nous démontrons que ces promoteurs ont un impact TRES SENSIBLE et A LONGUE DISTANCE dans les relations entre régions codantes et non codantes. Ils controlent L'EXPRESSION DES GENES non à des niveaux locaux et positionnels mais à des niveaux plus globaux et flous (le terme flou signifie ici que la position -25 à -30 par exemple pour TATA n'est pas une règle stricte). Du reste, certains gènes ne possèdent pas des promoteurs si explicites. Nous savons MESURER l'impact global de tels promoteurs.

Pour cela, nous étudierons les 2 gènes GMCSF chez l'HOMME et chez la SOURIS (figure 13). Nous ALTERONS la boite TATA par différentes mutations dont nous mesurons l'effet au niveau de l'ordre global des gènes (ces mutations identiques à celles de la partie VI). La figure 14 montre comment la suppression de la boite TATA altère fortement les résonances, mais, exclusivement celles de type LFF. Nous montrerons plus loin que c'est précisément ce type de résonances LFF qui contrôle l'expression.

La figure 14 (14-2 et 14-3) continue de démontrer l'extrême sensibilité pour de petites mutations de la boite TATA.

L'analyse fine des figures 14 et 15) met en évidence:

- L'hyper-sensibilté des résonances aux altérations de cette région TATA.
- L'invariance de certains types de résonances malgré ces altérations.
- Le début de mise en évidence d'éléments de LANGAGE de CONTROLE de l'expression des gènes.

PARTIE IV: ELEMENTS DE CONTROLE ET DE REGULATION MACROSCOPIQUES:

LE PROCEDE ILLUSTRE ICI SERA: Nous savons MESURER et CONTROLER,
en termes de résonance, l'impact global des régions PROMOTEUR et
de REGULATION POSITIVES ET NEGATIVES. Ces résultats sont CORELLES

3 avec les expériences in-vitro de mutagénèse de ces régions
conduites préalablement, et indépendamment de notre découverte.
Quand on sait que ces régions de régulation controlent directement
les RENDEMENTS dans L'EXPRESSION DES PROTEINES, la maitrise
informationnelle de ces paramètres permet donc d'industrialiser

10 ce procédé au niveu opérationnel de la production BIOTECHNOLOGIQUE.
Nous expérimenterons à partir d'un gène très riche sous ces
aspects de régulation: le TGF BETA1 (références THE JOURNAL OF
BIOLOGICAL CHEMISTERY vol 264 numeros 1, 12 et 22:
"Characterization of the promoter region of human TGF BETA1 gene".

"Promoter sequence of the human TGF BETA1 gene responsive to

TGF BETA1 autoinduction".

15

"Activation of the second promoter of the TGF BETA1 gene by

TGF BETA1 and Phorbol Ester occurs through the same target
sequences".

Dans ces articles, les biologistes ont (grossièrement) localisés "l'enhancer" (activateur), deux régions de régulation négatives, et une région de régulation positive (voir leur localisation dans la figure 16). Pour cela, ils ont assemblé un gène chimère expérimental composé des 1373 premières bases du promoteur (qui en comporte 2202) suivies du "vecteur d'expression" CAT ("chloramphenicol acetyltransferase").

La séquence complète du TGF BETA1 (figure 16) est accessible dans la banque de données de gènes GENBANK sous les points d'accès J04431 et HUMTGFB.TGFB. Bien que les expériences des biologistes

15

25

n'aient été faites qu'avec ce vecteur CAT et non avec le gène complet du TGF, nous avons, pour notre part, validé les influences des différentes régions de contrôle ala fois sur le TGF BETA1 complet (les résultats ci-dessous) et sur le gène chimère "précurseur TGF tronqué" + CAT. Les résultats sont assez bien corellés entre eux mais, surtout, les "sens" de régulation positive ou négative sont décelés par notre procédé). Enfin, et surtout, ces résultats sont corellés avec ceux des expériences invitro des biologistes ayant consisté à supprimer certaines régions.

La figure 17 détaille une partie des résultats (résonances traversant la jonction précurseur-gène pur la séquence complète du TGF (précurseur + gène + terminal).

terminal). On notera la grande sensibilité des résonances LFF sur la base G (repérées par les types 3 4). Nous verrons dans la partie partie VI le rôle de contrôle du sens de la régulation (+/-) joué par cette résonance 3 4.

La figure 18 mesure les résonances traversant la jonction gène-

La figure 19, qui recense TOUTES les résonances met en évidence sur le type 3 4 le sens de la régulation:

- 20 passage de 92126 à 91690 si régulation N1- supprimée (fig 19-1).
 - passage de 92126 à 85131 si "enhancer" supprimé (fig 19-1 19-2).
 - passage de 92126 à 80829 si régulation N2- supprimée (fig 19-2).
 - passage de 92126 à 101383 si régulation P+ supprimée (fig 19-3).

 Paradoxalement, donc, une réduction de la séquence de 129 bases

 de la région P+ (soit 3 %) provoque une augmentation des

 volumes de résonance 3 4 (LFF G) de 10%.

Des analyses plus fines ont de plus permis de localiser dans la séquence les positions de ces longues résonances de régulation.

Nous noterons cependant l'aspect assez grossier de ces régions.

PARTIE 5: ELEMENTS DE CONTROLE ET DE REGULATION FINS:

LE PROCEDE ILLUSTRE ICI SERA: le même que précédemment mais nous agirons maintenant sur un autre gène (bétaglobine) dont la localisation des régions de régulation est connue de manière plus FINE que dans la partie IV. Ici encore, nos résultats seront corellés:

- avec les résultats des biologistes.

25

- avec les résultats établis dans la partie IV.

La séquence complète de la bétaglobine a déja été présentée dans

la partie II (figure 7). La figure 21 localise avec précision CINQ

régions de régulation négative (N1 à N5) et UNE région de

régulation positive (P). Différentes mutations ayant été

expérimentées pour chacune de ces régions c'est au total QUINZE

gènes que nous allons étudier: le gène témoin, le gène à région

P+ mutée, le gène où les cinq régions négatives sont mutées

(noté N1 dans les figures de simulations), onze mutations

élémentaires négatives: notées Nij (exp N11) avec i le niveau de

mutation ponctuelle (figure 21) et j le numéro de la mutation

(1 à 5). Enfin, nous rajouterons un gène mutant hybride d'autres

bétaglobines non humaines.

Dans la figure 22, nous étudions les résonances à cheval sur la région CCAAT. L'analyse fine des résonances 3 4 (LFF G) mais aussi 3 3 (LFF A) respecte assez bien l'ordre positif - témoin - négatif. La mutation de la région de régulation P+ (une seule base mutée) conduit à la plus forte valeur: 2489 (parmi 14 cas étudiés) en 3 4 (LFF G) et à la plus faible valeur: 984 en 3 3 (LFF A). Voir repère fig 22-2. Fig 22-5, le gène "étranger" se remarque. La figure 23 détaille les résonances traversant la jonction précurseur-gène (base 150) pour trois cas: les 5 régions N1-

mutées, le gène témoin, et la région p+ mutée: on y constate (fig 23-1) la hiérarchisation, dès le début du précurseur entre les grandes résonances 3 4 (LFF G) de longueurs 199 et 123, hiérarchisation très prononcée selon l'ordre P+ > témoin > N1-.

Dans la figure 24 nous avons trié les résonance par ordre décroissant, ce qui illustre encore la même hiérarchisation entre les trois cas.

Dans la figure 25, nous étudions la sensibilité à un décalage de la région P+ plus loin dans le précurseur (en base 107, soit

AU-DELA du site "CAP" (voir figure 21). D'après notre évaluation des mécanismes de régulation, nous pensions ainsi conserver et maintenir la régulation positive; c'est effectivement ce qui se produit (gène noté GLOFULP3 dans la figure 25). La figure 26 détaille et compare la mutation P+, le témoin, et la nouvelle mutation positive (déplacée) "GLOFULP3".

PARTIE VI: "LANGAGE GLOBAL DE CONTROLE ET DE REGULATION DE L'EXPRESSION DES GENES":

LE PROCEDE ILLUSTRE ICI SERA: Un message de type binaire apparaît
20 en particulier pour les résonances 3 1 (LFF T), l'absence, ou la
présence, alternées de telles résonances autour de l'ensemble TATA
délimite à un niveau plus élevé que TATA les notions de précurseur.
En effet, si (figure 27), on montre cote-à-cote l'ensemble des
résonances 3 1 (LFF T) pour la BETAGLOBINE (à gauche) et pour le
25 TGF BETA1 (avec vecteur CAT) à droite: on observe des séquences
successives et très nettes de régions contigues riches en 3 1 ou,
au contraire, totalement dépourvues de 3 1.
Précisément, dans la BETAGLOBINE, la région TATA-CAP est riche en

3 1 (promoteur) tandis qu'elle est bordée, en amont et en aval, de

régions dépourvues de 3 1. Rappelons, pour le TGF BETA1 que la mutation relative à l'enhancer a été très grossière. On peut suggérer d'y rechercher l'enhancer réel plutot en début de la grande région enhancer (de 400 bases) approximativement localisée par les biologistes.

PARTIE VII: OPTIMISATION GLOBALE DE LA PARTIE CODANTE D'UN GENE:

LE PROCEDE ILLUSTRE ICI SERA: L'ordre global des gènes permet

D'OPTIMISER l'expression d'un gène en altérant les codons du gène

de manière à conserver les mêmes acides aminés et à accroitre

l'ordre global observé par nos opérateurs.

Le procédé fin est le suivant:

- 1) Observer l'ordre global du gène réel (avec ou sans ses régions précurseur et terminales.
- 2) Fabriquer de nombreux gènes "synonimes" (une centaine ou des milliers) en altérant au hasard (ou suivant le "codon usage") chaque codon en l'obligeant à produire le même acide aminé. On obtient donc, par exemple 100 gènes qui conduisent TOUS à la même séquence polypeptidique d'acides aminés.
- 20 3) De ces multiples simulations, on obtient un profil moyen des résonances (tables 4 x 8 donnant nombres et volumes de résonances par types et par bases).
 - 4) Parmi tous ces gènes on retiendra celui ou ceux:
 - qui entrent dans le profil moyen.
- dont la matrice 4x4 est la plus "saillante" et contrastée (valeurs soit très fortes soit très faibles). On a établi en effet que cette propriété caractérise les gènes réels vis-à-vis de gènes bruités selon le procédé ci dessus (voir J,C PEREZ "Chaos, DNA and Neuro-computers: a golden

link" in SPECULATIONS IN SCIENCE AND TECHNOLOGY October 1991 U.K).

 qui, si l'on considère les intéractions gène/précurseur et gène/terminal, maximisent les paramètres de régulation et d'activation étudiés ci-dessus.

Ce procédé permet donc de contrôler et optimiser l'expression des gènes en agissant indépendamment ou simultanément sur les parties codantes et non codantes.

5

Nous avons expérimenté la méthode sur de nombreux gènes

(Interférons, facteur nécrosant des tumeurs etc...). Nous
démontrerons l'efficacité de la méthode sur les 2 gènes
d'expression de l'INTERLEUKINE-6: les gènes PT911 et PT13SNCO
(figures 28 et 29). Précisément, la figure 28 s'appuie sur un
article qui a vérifié que le type d'altération que nous

préconisons n'altérait pas (dans l'absolu) l'expression de la protéine (nous pensons qu'il altère très certainement le rendement).

PT911 est donc le vrai gène de référence (réel).
PT13SNCO est le gène dégradé selon le code génétique.

La figure 30 démontre que cette dégradation aveugle faite par le biologiste a BRISE l'ordre à grande distance qui controlait tant le gène seul que le gène dans son environement (régions non codantes).

Par exemple (fig 30-1), la mutation divise le nombre des
résonances par 3.3 et le volume des résonances par 5.3 (au niveau des résonances à cheval entre précurseur et gène).
D'autres combinaisons entre précurseurs et parties codantes

respectives des deux gènes vont dans la même direction (fig 30-3 et fig 30-5). Le repère 30-7 analyse et détaille la totalité des

résonances.

10

Soit, le gène réel est très supérieur au gène dégradé...

Saurons-nous optimiser ce gène réel et proposer un gène plus optimal, conduisant donc, très probablement, à une EXPRESSION ACCRUE DE LA PROTEINE ?

C'est l'objet de la figure 31, qui ne repose que sur 100 simulations de gènes chimères synonimes. Nous proposons un gène optimal (fig 31-2). Sa distribution de résonances apparaît très supérieure à celle de PT911. La figure 32 compare les résonances entre les trois gènes:

- le gène dégénéré PT13SNCO (à gauche).
- Le gène réel PT911 (au centre).
- Le gène optimisé OPTI1 (à droite).

La force de cette dernière figure servira de conclusion à ce brevet.

			15 n
FIGURES	REPÈRE	NUHEROS DE PAGE	LIBELLE
1	11,12	1 2	TGFBeta1 - Détail des Séquences
2		3	TGF Beta 1 - Soldma des 4 pertirbations
3	3-1, 3-2, 3-3,	4 5 6	TGF Beta 1 - Perturbation par inversión du Précurseur
4	4-1, 4-2, 4-3-	789	TGF Beta 1: perturbation du Précurseur par flor du Gode génétique
5	·	10	TGF Beta 1 Perturbation du Terminal par duplication du giène
6	1,1	11	TGF Beta 1 Perturbation du gina par substitution récipoque entre les Régions 31 et 51
7		12	Béta-globine humaine: séquences.
8		12	Béla-globine du Lapin : séquences.
9		13	de la Béla Globine humaine et celle du Lapin
10	10-2.	14 15	Béta Globine: Homme versus Lapin. Analyse Emparative - Cumuls _
11	11-1,	15 16	Réta-globine: Homme Versus Lapin: Amalyse Comparative des ponts gène/Terminal
12		17	Héranisme de fonctionnement des promoteurs (la après l'état de l'artactuel
<u>/13</u>	·	18	Gènes GMSF Homme ? Séquences GMSF Souris) Séquences
	14-1 14-2 14-3, 14-4 14-5, 14-6	19 20 21-22 23-24	gines GMSF. Influence globales des mutations sur la "Boite TATA" (Touction Bécurseur/gène_).

			16
FIGURES	REPER	NUMEROS	LIBELLE
		PAGE	
15	15-1-15-6		gères GNCSF: Influence globale de mulations son la "Borte TATA"
	15-5,15-1		mulations sur la l'Borte TATA" (jointion gine / Terminol) —
16	16-1	29	TGF Bela 1 géne Complet
17	17-1	30	
	17.2	31	TGF Beta 1 : Ponts Précurseur gine
	17-5/6/4/8/	i 34-35-36-37-32	3
18	1812 1811		TGF Bela 1: Pouts gine/terminal
19.	191,2,3	53,54,55	TGF Beta 1: Tontes Résonmances
20		55	TGF Beta 1: Tontes Résonnances Synthèse des Mutations Bétaglobure Séquences Détail
21		56	11 Mulation : Délail
22	22-1/2/3/4/5	57à 61	// Ponts & Rossonnances autour de la "Boîte CCAAT
23	23/1/23/2	62-63	11 Influence Mulations dans Régions de Régulation
24	24-1,242	64 - 65	id_
25	÷-	66	Beta Globine: Déplacement Régionde Régulation positive
26	26-1,26,2	67-68	11 comparaison Régulations
27	274/2/3	69-70-71	TGF Beta et TGF Cat: Comparais on
28		72±73	PT 13 SNco : Séquence
29		74	PT 911 : Séquence
30	30-1み - 30-12	pages 74 a 85	PT 13 SNCOFUL / PT 911 FUL:
, 31	31-1 +31-2	86+87	Recharche gene "optimum"
32	32.1ā32.6	88 à 93	Comparaisons PT 13 SNCOFUL à PT911 et au "gine Optimal"

REVENDICATIONS

17

- 1) La revendication principale concerne toute utilisation scientifique, industrielle, thérapeutique, des éléments du procédé d'optimisation de L'EXPRESSION DES GENES par action sur les régions codantes ou non codantes.
- 5 Les revendications secondaires concernent:

- 2) Toute utilisation du procédé visant à améliorer non l'expression des gènes (rendements) mais les FONCTIONALITES des protéines (ne serait-ce, paradoxalement, que par des mutations de codons synonimes sur la seule partie traduite du gène, tel que cela est décrit dans la partie VII de la description.
- 3) Toute utilisation qui reposerait sur une méthode dérivée de l'ordre global des gènes (dans l'esprit des revendications du brevet "PROCEDE D'ANALYSE DE L'ORDRE GLOBAL DES SEAUENCES D'ADN ET D'ARN".
- 15 4) Toute utilisation des applications précises décrites à des fins industrielles (sang artificiel, gènes chimères, bio-matériaux), ou thétapies géniques (cancer, SIDA, maladies génétiques, etc...).

 5) Toute utilisation de l'optimisation du titre "d'amorce de genes" (sondes nucleiques).

TGFBETA	1 REGION PRE		OZ BASES)	•	
	GGATCCTTAG	CAGGGGAGTA	ACATGGATTT	GGAAAGATCA	CTTTGGCTGC
1		TAGATAAGAC	GGTGGGAGCC	TAGAAAGGAG	GCTGGGTTGG
51	TGTGTGGGGA		AGAGAGGAAA	AGACTGGGCC	TGGGGTCTCC
101	AAACTCTGGG	ACAGAAACCC	GAATCAGCAG	GAGTCTGGTC	CCCACCCATC
151	AGTGAGTATC	AGGGAGTGGG		GGCTGGCCCC	GGCTCCATTT
201	CCTCCTTTCC	CCTCTCTCTC	CTTTCCTGCA		GCAGGCTATG
251	CCAGGTGTGG	TCCCAGGACA	GCTTTGGCCG	CTGCCAGCTT	GGCCTGCCCC
301	GATTTTGCCA	TGTGCCCAGT	AGCCCGGGCA		
351	ACGTGGCGGC	CCCTGGGCAG	TTGGCGAGAA		GGGCTTTCGT
	GGGTGGTGGG	CCGCAGCTGC	TGCATGGGGA	CACCATCTAC	AGTGGGGCCG
401		CCTGCACACA	GCTGCTGGTG	GCACCGTGCA	CCTGGAGATC
451	ACCGCTATCG	TCCGCAACTT	CGACCGCTAC	GGCGTGGAGT	GCTGAGGGAC
501	GGCCTGCTGC		CATCCACACC	CCGGACACCC	AGTGATGGGG
551	TCTGCCTCCA	ACGTCACCAC		TCTAGAGACT	GTCAGAGCTG
601	GAGGATGGCA	CAGTGGTCAA	GAGCACAGAC	CCTTTCTAGG	ACCTCGGGGT
651	ACCCCAGCTA	AGGCATGGCA	CCGCTTCTGT		TAAATGTATG
701	CCCTCTGGGC	CCAGTTTCCC	TATCTGTAAA	TTGGGGACAG	ATGGGAGGTG
751	GGGTCGCAGG	GTGTTGAGTG	ACAGGAGGCT	GCTTAGCCAC	
801	CTCAGTAAAG	GAGAGCAATT	CTTACAGGTG	TCTGCCTCCT	GACCCTTCCA
	TCCCTCAGGT	GTCCTGTTGC	CCCCTCCTCC	CACTGACACC	CTCCGGAGGC
851			CTTCTCCTAC	CTTGTTTCCC	
901	CCCCATGTTG	CTGGGTCCCC	CTCCTCTGGT	CGGCTCCCCT	GTGTCTCATC
951	TCCTTCCGTT		GCCTGGTCCT		TGACCCACAC
1001	CCCCGGATTA		ATCTGGATCA		
1051	CGCCCGCAAA	GCCACAGCGC	•••		
1101	CCGCCAGGAG		GTTTGCGGGG		
1151	CCTTTCCCCC	AGGGCTGAAG	GGACCCCCCT	CGGAGCCCGC	CCACGCGACI

frz 1-2

Fig 1-3

TGFBETA1 REGION GENE TRADUITE...

1	ATGCCGCCCT	CCGGGCTGCG	GCTGCTGCCG	CTGCTGCTAC	CGCTGCTGTG
51	GCTACTGGTG	CTGACGCCTG	GCCCGCCGGC	CGCGGGACTA	TCCACCTGCA
101	AGACTATCGA	CATGGAGCTG	GTGAAGCGGA	AGCGCATCGA	GGCCATCCGC
151	GGCCAGATCC	TGTCCAAGCT	GCGGCTCGCC	AGCCCCCGA	GCCAGGGGGA
201	GGTGCCGCCC	GGCCCGCTGC	CCGAGGCCGT	GCTCGCCCTG	TÁCAACAGCA
251	CCCGCGACCG	GGTGGCCGGG	GAGAGTGCAG	AACCGGAGCC	CGAGCCTGAG
301	GCCGACTACT	ACGCCAAGGA	GGTCACCCGC	GTGCTAATGG	TGGAAACCCA
351	CAACGAAATC	TATGACAAGT	TCAAGCAGAG	TACACACAGC	ATATATATGT
401	TCTTCAACAC	ATCAGAGCTC	CGAGAAGCGG	TACCTGAACC	CGTGTTGCTC
451	TCCCGGGCAG	AGCTGCGTCT	GCTGAGGAGG	CTCAAGTTAA	AAGTGGAGCA
501	GCACGTGGAG	CTGTACCAGA	AATACAGCAA	CAATTCCTGG	CGATACCTCA
551	GCAACCGGCT	GCTGGCACCC	AGCGACTCGC	CAGAGTGGTT	ATCTTTTGAT
601	GTCACCGGAG	TTGTGCGGCA	GTGGTTGAGC	CGTGGAGGGG	AAATTGAGGG
651	CTTTCGCCTT	AGCGCCCACT	GCTCCTGTGA	CAGCAGGGAT	AACACACTGC
701	AAGTGGACAT	CAACGGGTTC	ACTACCGGCC	GCCGAGGTGA	CCTGGCCACC
751	ATTCATGGCA	TGAACCGGCC	TTTCCTGCTT	CTCATGGCCA	CCCCGCTGGA
801	GAGGGCCCAG	CATCTGCAAA	GCTCCCGGCA	CCGCCGAGCC	CTGGACACCA
851	ACTATTGCTT	CAGCTCCACG	GAGAAGAACT	GCTGCGTGCG	GCAGCTGTAC
901	ATTGACTTCC	GCAAGGACCT	CGGCTGGAAG	TGGATCCACG	AGCCCAAGGG
951	CTACCATGCC	AACTTCTGCC	TCGGGCCCTG	CCCCTACATT	TGGAGCCTGG
1001	ACACGCAGTA	CAGCAAGGTC	CTGGCCCTGT	ACAACCAGCA	TAACCCGGGC
1051	GCCTCGGCGG	CGCCGTGCTG	CGTGCCGCAG	GCGCTGGAGC	CGCTGCCCAT
1101	CGTGTACTAC	GTGGGCCGCA	AGCCCAAGGT	GGAGCAGCTG	TCCAACATGA
1151	TCGTGCGCTC	CTGCAAGTGC	AGCTGA		
1201					

TGFBETA1 REGION TERMINALE...

_							
_	1	Ī	GGTCCCGCCC	GCCCGCCCC	GCCCCGGCAG	GCCCGGCCCC	ACCCCGCCC
	51	İ	GCCCCCGCTG	CCTTGCCCAT	GGGGGCTGTA	TTTAAFFACA	CCGTGCCCCA
	101	i	AGCCCACCTG	GGGCCCCATT	AAAGATGGAG	AGAGGACTGC	GGATCTCTGT
	151	İ	GTCATTGGGC	GCCTGCCTGG	GGTCTCCATC	CCTGACGTTC	CCCCACTCCC
	201	i.	ACTCCCTCTC	TCTCCCTCTC	TGCCTCCTCC	TGCCTGTCTG	CACTATTCCT
	251	Ì	TTGCCCGGCA	TCAAGGCACA	GGGGACCAGT	GGGGAACACT	ACTGTAGTTA
	301	i	GATCTATTTA	TTGAGCACCT	TGGGCACTGT	TGAAGTGCCT	TACATTAATG
	351	i.	AACTCATTCA	GTCACCATAG	CAACACTCTG	AGATGGCAGG	GACTCTGATA
•	401	ĺ	ACACCCATTT	TAAAGGTTGA	GGAAACAAGC	CCAGAGAGGT	TAAGGGAGGA
	451	į.	GTTCCTGCCC	ACCAGGAACC	TGCTTTAGTG	GGGGATAGTG	AAGAAGACAA
	501	į	TAAAAGATAG	TAGTTCAGGC	CAGGCGGGGT	GCTCACGCCT	GTAATCCTAG
	551	İ	CACTTTTGGG	AGGCAGAGAT	GGGAGGATAC	TTGAATCCAG	GCATTTGAGA
	601	i	CCAGCCTGGG	TAACATAGTG	AGACCCTATC	TCTACAAAAC	ACTTTTAAAA
	651	i	AATGTACACC	TGTGGTCCCA	GCTACTCTGG	AGGCTAAGGT	GGGAGGATCA
	701	İ	CTTGATCCTG	GGAGGTCAAG	GCTGCAG		
	751	İ					

Figure 2

Schéma des 4 perturbations entre régions précurseur / gine / terminale de TGF BETA1

CAS TEMOIN L	précurseur	ATG	Geno	Terminal
Perturbé 1	précurseur retourné	ATG	Gene	
PERTURBÉ L	précurseur pervurbé code Lénévique	IATE	Cene	_1
Z PERTURBE 3	pre con seur	ATG	Gene	Gène dufliqué
PERTURBE 4	Termina	l 1976	. Gene	Pré cur seur

VISUALISE LES PONTS A CHEVAL SUR BASE 2203 (JOINT PRECURSEUR/GENE COMPARE (PRECURSEUR REEL + GENE REEL) ET (PRECURSEUR INVERSE + GENE) _ GENE REEL BILBOUTFBETA1

```
BILAN NB RESONANCES PAR LONGUEURS
FIBONACCI...
55 89 144 233 377 610 987 1597
                       33
47 76 199 322 521 843 1364 2207
                5
                    9
                          8
       4
          13
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
                0 11844
0 20 0
                             0
                                  55
          11
         0 18507
                      0 23167
                                   0
38 0 25
   0
       0 31
                0
                      0
                             0 22913
0
                0 34270
0 25
       0
          4
                             0
                                 188
```

```
__ GENE PRECURSEUR INVERSE
```

```
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144 233 377
  4
LUCAS. .
47 76 123 199 322
```

SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 0 233 602 0 576 3 8 0 1974 288 1063 O 0 1 10 2 0 47 2254 170 0 170 0 785 0 3 0 7

```
DETAIL RESONANCES PONTS
            55 2149 2 2
2149 2 1
                          55
2152 2 1
            55
               2176 2 3
                          55
2155
     2 1
            55
               2179
                          55
2164 2
        1
            55
               2188 1 2
                          55
2170 2
       1
            55
               2197
                    1 2
                          55
                          55
2173 1
            55
               2200 1 2
               2119 2 2
            55
                          89
2179 2
       1
2182 2 1
            55
               2191 1 2
                          89
            89 2200 1 2
2140 2 1
                          89
2143 2 1
            89 2200 1 4
                          89
2146 2 1
            89 2059 2 2 144
2086 2 1
           144 2092 1 4 144
2092 2 1
           144 2158 2 3 144
2101 2 1
           144 2170 2 3 144
2107 2 1
           144 2173 2 3 144
2113 2 1
           144 2176 2 3 144
2182 1 2
           144 2179 2 3 144
2185 1 2
           144 2182 2 3 233
               2197
2188 1 2
           144
                    2 1 233
2191 1
        2
           144
               2200 2 1 233
2110 2
       1
           233
               2203 1 2
2113
           233
               2155
                      1 377
```

233

233

2164 2 1 377 2167 2 1 377

233 2170 2 1 377

2173 2 1

2179 2 1

1

2188 2191 2194 2200 2200 2203 2083 2146 2158 1600 1879 1882 1978 1984 1987 2014 2017 2020 2023 1267	22212122122221111111122	1112121323333222222211	233 233 233 233 233 233 377 377 610 610 610 610 610 610 610 610 610	2158 2164 2176 2176 2182 2185 2191 2194 2161 2200 2083 2104 2107 2149 2029 2032 2122 2140 1954 1960 1975 1981	333444443434434433333333	13244422223442442222222	47 47 47 47 47 47 47 76 123 123 123 123 123 123 123 123 123 123	
1267 1279 1282 1306 1309 1351 1357 1360 1366 1366 1366 1369 1375 1387	2222222222222	11113313131313	987 987 987 987 987 987 987 987 987 987	2071 0 0 0 0 0 0 0 0 0 0	30000000000000	2 0 0 0 0 0 0 0 0 0 0 0 0 0	322 0 0 0 0 0 0 0 0 0 0 0 0	
1405 1408 1411 1414 1417 1420 1423 1426 1429 1432 1441 1444 1447 1762 1765	2222222222211	3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2	987 987 987 987 987 987 987 987 987 987	000000000000000000000000000000000000000	00000000000000	000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1771 1774 955 958 982 1195 1222 2173	11222214	222113124	987 987 1597 1597 1597 1597 1597	0000000	000000000	000000000	0 0 0 0 0 0	

fig 3-3	5
---------	----------

2176	4	4	47	0	0	0	0
2179	4	4	47	0	0	0	0
2182 2194	4	4	47 47	0	0	0	0
2140	3	4	76	ŏ	Ö	Ö	Ö
2143	3	4	76	0	0	0	0
2047	3	4	199	0	0	0	0
2149 2152	4 4	2	199	0	0	0	0
2158	4	2	199 19 9	ŏ	0	Ö	Ö
1966	3	4	322	0	0	0	0
1969	3	4	322 322 322	0	0	0	0
1972 1975	3	4 4	322	0	0	0	0
1984	3	4	322	0	ŏ	0	ŏ
1996	3	4	322	0	0	0	0
2167	4 4	2	322 322 322	0	0	0	0 0
2170 2173	4	2	322	0	0	ŏ	ŏ
2179 2182	4	2	322 322	. 0	0	0	0
2182	4	2	322	0	0	0	0
2185 2197	4 4	2	322 322	0	0	0	0
1909' 1927	3	4	521 521	0	0	ŏ	0
1927	3	4	521	. 0	0	0	0
1930 1933	3 3	4 4	521 521	0	.0 0	0	0 0
2059	4	2	521	ő	0	ŏ	0
1600	3	4	843	0	0	0	0
1615 1618	3 3	4 4	843 843	0	0	0	0 0
1675	3	4	843	ő	ŏ	Ö	ő
1891	3	4	843	0	0	0	0
1894 1900	3 3	4 4	843 843	0	0	0	0
1906	3	4	843	0	0	ő	ŏ
1909	3 ₋	4	843	0	0	0.	0
1768 1786	3	4	1364 1364	0	0	0	0
1798	3	4	1364	0	Ö	0	. 0
1834	3	4	1364	0	0	0	.0
1837 1846	3	4 4	1364 1364	0	0	0	0 0
1,852	3	4	1364	.0	Ö	0.	. 0
1882	3	4	1364	0	0	0	0
145 148	4 4	2	2207 2207	0	0	0	0 0
154	4	2	2207	0	0	0	ŏ
352	4	2	2207	0	0	0	0
358	4	2	2207	0	0	0	0
385 406	4 4	2 2 2 2 2 2 2	2207 2207	0	0	0	0 0
415	4	2	2207	0	0	0	0
418	4	2	2207	0	0	0	0
439 457	4 4	2	2207 2207	0	0	0	`0 0
460	4	2	2207	0	0	0	0
814	4	2	2207	0	0	0	0
817	4	2	2207	0	0	0	0

2692594 fig 4-1

2176 2 1

2188 2 1

233 2167 1 2

233 2173 1 2

2179 2 1 233 2170 1 2

144

144

2191	2	1	233	2191	2	3	144
2194 2200	2	1 2	233 233	2194 2017	2	3	144 233
2200 2203 2083	2	1 2	233 233 377	2047	1	2	233 233
2146 2158	2 2 1	1 3 2	377 377	2065 2080 2116	1 1 2	2 2 3	233 233 233
1600 1879	2	3	610 610	2182 2185	2	1	233 233 233
1882 1888	2	3 3	610 610	2188 2188	1 2	2 1	233 233 233
1975 1978	1	2	610 610	2191 2194	2	1	233 233
1984 1987 2014	1 1 1	2 2 2	610 610 610	2200 2200 2203	1 2 1	2 1 2	233 233 233
2017	1	2 2 2	610 610	2041	2	3	233 377 377
2023 1264	1 2	2 1	610 987	2113 2116	2 2	3	377 377
1267 1279 1282	2 2 2	1 1 1	987 987 987	2119 2122 2125	2 2 .	3 3 3	377 377 377
1306 1309	2	1	987 987	2123 2131 2134	2	3	377 377
1351 1357	2	3	987 987	2137 2146	2 2	3 1	377 377
1360 1363 1366	2 2 2	3	987 987	2149 2152	2 2 2	1	377 377 377
1366 1369	2 2	1 3 1	987 987 987	2155 2158 2167	2 2	1 3 1	377 377 377
1369 1375	2	3	987 987	2158 2161	3 3	1	47 47
1387 1405	2	3	987 987 987	2164	3 4 3	4 2 4	47 47
1408 1411 1414	2 2	3 3	987 987 987	2194 2134 2146	3	444	47 76 76
1417 1420	2	3	987 987	2155 2158	4 4	2	76 76
1423	2 2 2	3	9.87 987	2164 2185	4	2	76 76
1429 1432 1441	2 2 2	3 3	987 987 987	2116 2119 2140	4 4 4	2 2 2	123 123 123
1444 1447	2	3	987 987	2146 2149	4	2	123 123 123
1762 1765	1	3 2 2	987 987	2152 2164	4	2 2 2 2 2 2 2 2	123 123 123
1771 1774 955	1 1 2	2 2 1	987 987 1597	2170 2026 2032	4 4 4	2	123 · 199 199
958 982	2 2 2	1 3	1597 1597	2035 2038	4	2 2 2	199 199
1195	2	1 2	1597 1597	2041 2053	4 4	2	199 199
2173 2176	4 4	4	47 47	2056 2080	3	2 4	199 199

lig 4-2

Z

2179 2182 2194 2140 2143	4 4 3 3 3	4 4 4 4	47 47 47 76 76	2194 2053 2056 2137 1957	4 3 4 3	2 4 4 2 4	199 322 322 322 521	fig 4-3
2047 2149	3	4 2	199 199	1582 1594	3	4	843 843	
2152 2158	4 4	2	199 199	1630 1636	3 3	4 4	843 .843	
1966	3	4 4	322 322	1645 1648	3	4 4	843 843	
1969 1972	3	4	322	1651	3	4	843	
1975	3	4	322	1972	3	4	843	
1984	3	4	322 322	1633 1636	3	4 4	1364 1364	
1996 2167	ے 4	4 2	322	1639	3	4	1364	
2170	4	2	322	1900	3	4	1364	
2173	4	2	322 322	1903 1906	3	4 4	1364 1364	
2179 2182	4 4	2	322	0	0	0	0	
2185	4	2	322	0	0	0	0	
2197	4 3	2 4	322 521	. 0	0	0	0	
1909 1927	3	4	521	0	0	0	0	
1930	3	4	521	0	0	0	0	
1933 2059	3	4	521 521	0	0	0	. 0	
1600	3	2 4	843	0	0	0	. 0	
1615	3	4	843	. 0	0	0	0	
1618	3	4	843	0	0	0	0	
1675 1891	3	4 4	843 843	0	0	0	0	
1894	3	4	843	ŏ	Ō	ō	ō	
1900	3	4	843	0	0	0	0	•
1906 1909	3	4 4	843 843	0	0	0	0	
1768	3	4	1364	ő	Ö	ŏ	Ö	
1786	3	4	1364	0	0	0	0	
1798 1834	3	4 4	1364 1364	0	0	0	0	
1837	3	4	1364	ŏ	0	0	. 0	
1846	3	4	1364	0	0	0	0	
1852 1882	3	4 4	1364 1364	0	0	0	0	
145	4	2	2207	0	ŏ	Ö	Ô	
148	4	2	2207	0	0	0	. 0	
154	4	2	2207	0	0	0	0	
352 358	4	2	2207, 2207	. 0	0	Ö	ŏ	
385	4	2	2207	0	0	0.	0	
406	4	2	2207	0	0	0	. 0	
415 418	4	2	2207 2207	0	0	0	0	
439	4	2	2207	ō	0	0	Ō	
457	4		2207	0	0	0	0	
460 814	4	2	2207 2207	0	0	0	0	
817	4	2	2207	0	0	0	0	
00001	301	ן כו ב	ומממממני	اموووو] [] [ומכ	00000	000000000000000000000000000000000000000

Figure 5

IMPACT DU REMPLACEMENT DE LA REGION TERMINALE PAR UNE DUPLICATION DU GENE... RESONANCES A CHEVAL ENTRE GENE ET TERMINAL CAS REEL (GENE+TERMINAL) BILAN NB RESONANCES PAR LONGUEURS... FIBO... 55 89 144 233 377 610 2584 6 3 15 13 24 3 LUCAS 47 76 123 199 322 521 843 1364 2207 8 8 5 8 4 9 7 SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 0 29 0 0 0 11954 0 0 23 0 13 0 5299 0 1995 0 2 0 35 0 15420 5825 0 0 CAS PERTURBE (GENE+GENE) BILAN NB RESONANCES PAR LONGUEURS... Disparation des FIBO... 55 89 144 233 377 610 987 1597 3 10 8 7 18 13 11 LUCAS 76 123 199 322 521 1364 4 10 3 5 14 SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 0 18 0 13 0 7964 0 3482 12 0 38 0 9205 0 3 0 0 <u>1 0</u> 0 26327 0 28 0 10 0 15373 0 1961

Figure 6

```
TGF BETAL Complet
 55 89 144 233 377 610 987 1597 2584
                            16 1
                       50
464 286 146 86
              83 36
 47 76 123 199 322 521 843 1364
                            36
               81
                   48
                       29
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
                          1126 12015
  1 222
        18 116
                  55 51545
                     2799 92102
           45 60316
    36 394
336
161 186 144 402 14503 19531 13523 92126
       16 145
                 188 77044
                            839 11616
  4 273
&&&&&&&&&&&&&&&&&&&&&&
PRINTANALYSE BENEVIL35TGFBETA1
BILAN NB RESONANCES PAR LONGUEURS.
FIBO...
 55 89 144 233 377 610 987 1597
                       .17
                           LI
           70
               59
                   21
457 287 131
LUCAS
 47 76 123 199 322 521 843 1364
487 296 227 133
               71
                   47
                        26
                                                              résonau c
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
                  55 28734
                           1126 12214
  1 178 18 119
            45 38196 3574 68537
281 43 368
161 227 153 348 14503 38001 15162 57762
```

839 12658

188 37043

4 234

lique 7

BETAGLOBINE HOMME. PRECURSEUR... 1 | ACATTTGCTT CTGACACAC TGTGTTCACT AGCAACCTCA AACAGACACC 51 101 |

51 CAAGGTGAAC GTGGATGAAG TTGGTGGTGA GGCCCTGGGC AGGC 101 TGGTCTACCC TTGGACCCAG AGGTTCTTTG AGTCCTTTGG GGAT 151 ACTCCTGATG CAGTTATGGG CAACCCTAAG GTGAAGGCTC ATGG 201 AGTGCTCGGT GCCTTTAGTG ATGGCCTGGC TCACCTGGAC AACC 251 GCACCTTTGC CACACTGAGT GAGCTGCACT GTGACAAGCT GCAC 301 CCTGAGAACT TCAGGCTCCT GGGCAACGTG CTGGTCTGTG TGCT 351 TCACTTTGGC AAAGAATTCA CCCCACCAGT GCAGGCTGCC TATC 401 TGGTGGCTGG TGTGGCTAAT GCCCTGGCCC ACAAGTATCA CTAA	CTGTCC SCAAGAA CTCAAGG CGTGGAT CGGCCCA CAGAAAG
--	---

BETAGLOBINE HOMME. TERMINAL... 1 | GCTCGCTTTC TTGCTGTCCA ATTTCTATTA AAGGTTCCTT TGTTCCCTAA GTCCAACTAC TAAACTGGGG GATATTATGA AGGGCCTTGA GCATCTGGAT TCTGCCTAAT AAAAAACATT TATTTTCATT GC 101

Figure 8

BETAGLOBINE LAPIN. PRECURSEUR..

1 | ACACTTGCTT TTGACACAAC TGTGTTTACT TGCAATCCCC CAAAACAGAC 51 | AGA

101 |

BETAGLOBINE LAPIN. GENE... 1 | ATGGTGCATC TGTCCAGTGA GGAGAAGTCT GCGGTCACTG CCCTGTGGGG 51 | CAAGGTGAAT GTGGATGAAG TTGGTGGTGA GGCCCTGGGC AGGCTGCTGG 101 | TTGTCTACCC ATGGACCCAG AGGTTCTTAG AGTCCTTTGG GGACCTGTCC 151 | TCTGCAAATG CTGTTATGAA CAATCCTAAG GTGAAGGCTC ATGGCAAGAA 201 | GGTGCTGGCT GCCTTCAGTG AGGGTCTGAG TCACCTGGAC AACCTCAAAG 251 | GCACCTTTGC TAAGCTGAGT GAACTGCACT GTGACAAGCT GCACGTGGAT 301 | CCTGAGAACT TCAGGCTCCT GGGCAACGTG CTGGTTATTG TGCTGTCTCA 351 | TCATTTTGGC AAAGAATTCA CTCCTCAGGT GCAGGCTGCC TATCAGAAGG 401 | TGGTGGCTGG TGTGGCCAAT GCCCTGGCTC ACAAATACCA CTGA 451 |

BETAGLOE	SINE LAPIN.	TERMINAL			
1 1	GATCTTTTTC	CCTCTGCCAA	AAATTATGGG	GACATCATGA	AGCCCCTTGA
51 İ	GCATCTGACT	TCTGGCTAAT	AAAGGAAATT	TATTTTCATT	GC

Figure 9
5620 Evolution: Kafatos et al.

HOTTE/CATTA pricurteur 13 globne.
Proc. Natl. Acad. Sci. USA 74 (1977)

- () G t G C A VIC t G IN C G IN A G IC A G IA A G IC C G IC C G IA C G IC C G IC C G IC C G IA A G IA

- 61) A V ĈĮC C ŘÍC V ŘÍC C ČÍV V ČÍ<u>V V ČÍC R ČÍC R ČÍC R ČÍC R ČÍR R ČÍR V ČÍČ R ČÍR V ČÍČ R ČÍC V ČÍČ R ČÍR V ČÍ (80)</u>

 540

 540
- (310) 6 Y É Y Y É R C É C R É C R É C R É C É C R Y É C R É
- (2) G A ÁU U ÇIA C ŬIC C ŬIC A ĜIO U ÇIC A ĞIO C ŬIO C
- (41) Ç U Ç | C A Ç | C A Ç | C A Ç | C A C | C A C A A A A U U A U G G G A C A U C A U G A U C A U C A U G A U C A U C A U G A C A U C A U G A U C A U G A U C A U G A U C A U G A U C A U G A C A U C A U G A U C A U G A U C A U G A U C A U G A U C A U G A C A A A A A U U A U G G G G A C A U C A U G A U C A U G A U C A U G A U C A U G A A A A A U U A U G G G G A C A U C A U G A U C A U G A U G A U C A U G A U G A U C A U G A U G A U C A U G A U G A U C A U G A

490 500 530 520 530 A A G C C C C U U G A C U U C U C G C U A A U A A A G G A A A U U U A U U U C A U U C C -poly A G G A A C

GCUCGCUNUCUUGCUGUCCAAUUUCIAUUAAAGGUUCCUUUGUUCCCUAAGUCCAACUACUAAACUG

FIG. 1. Differences between the sequences of rabbit (upper line) and human (lower line) β -globin mRNAs. Circled numbers on the left right indicate the amino acid positions. The nucleotides of the rabbit sequence are numbered from the first position following the initiator Al (6). The initiation and termination codons are boxed. Triplets of the translated region are separated by vertical lines. Nucleotide substitute leading to amino acid replacements are shadowed, and all other differences are indicated by bold face. The region immediately following termination codon is very divergent, and the longer human sequence (\star) is shown separately. Unidentified residues are shown by ?s, and deletion by -s. Dots indicate the silent substitution sites in the coding region. Overlining indicates the codons of the functionally most important an acid residues (19). Data are from refs. 6, 7, and 8.

Figure 10

fig 10-1

ΔΔΔΔ ENSEMBLE DES RESONANCES BETAGLOBINE ΔΔΔΔΔ ΔΔΔΔ PONT ENTRE PRECURSEUR ET GENE VERSION USA HOMME/LAPIN ΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔΔ
BILAN NB RESONANCES PAR LONGUEURS FIBONACCI 55 89 1 3 LUCAS Homme Homme 47 76 123 25 19 3
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 0 0 0 3 0 0 0 267 0 0 0 1 0 0 0 55 0 14 20 12 0 890 1230 745 0 0 0 1 0 0 0 123 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
BILAN NB RESONANCES PAR LONGUEURS FIBONACCI 55 89 144 1 3 1 LUCAS 47 76 123 22 8 9
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 0 0 0 3 0 0 0 322 0 1 0 1 0 89 0 55 3 14 7 5 141 687 416 416 0 0 0 10 0 0 0 1089
BILAN NB RESONANCES PAR LONGUEURS FIBONACCI 89 4 LUCAS 47 76 123 19 31 1

```
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
  0 0 4 0
              0 356
           0
 0 0 0 0
           0
               0 0
0 21 21 6 0 1393 1277 427
0 0 0 3 0 0
               0 275
MUTANT LHL GLOUSAMUTLHL
PONT 1 ENTRE PRECURSEUR ET GENE
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144
 3 4 1
             « Capin Homme Capin
LUCAS...
47 76 123
18 22 8
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
 0 0 5 0 0 0 500
 0 0 1 110
           0 0 55
1 29 4 6 47 1769 275 474
 0 0 8
       0
         0 0 937
Figure 11
                                             lig 11-1
AAAA ENSEMBLE DES RESONANCES BETAGLOBINE AAAAA
AAAA PONT ENTRE GENE ET TERMINAL VERSION USA HOMME/LAPIN
PUR GLOUSAH
PONT 2 ENTRE GENE ET TERMINAL
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
17 2
LUCAS...
47 76 123 199 322 521
15 26 20 41 20 1
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
 1 0 0 0 55 0 0 0
 0 0 0 18
          0
                 0 1058
               0
23 63 3 31 2565 12135 217 5145
 3 0 0 0 199
               0
                  0
                      O
PUR LAPIN GLOUSAL
PONT 2 ENTRE GENE ET TERMINAL
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55
7
LUCAS...
47 76 123 199 322
41 63 26 22 9
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
          0
              0 0 0
```

0

0

fig 11-2

0 1 0 0 0 47 0 0
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
PONT 2 ENTRE GENE ET TERMINAL
BILAN NB RESONANCES PAR LONGUEURS FIBONACCI
55 89
21 2
LUCAS 47 76 123 199 322 521
23 39 23 11 22 6
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 2 0 0 0 110 0 0 0
0 0 1 20 0 0 55 1168
38 46 2 34 6570 3669 94 8752
4 0 0 0 188 0 0 0 ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
MUTANT LHL GLOUSAMUTLHL
PONT 2 ENTRE GENE ET TERMINAL
BILAN NB RESONANCES PAR LONGUEURS
FIBONACCI
55 10
LUCAS
47 76 123 199 322
19 63 24 37 17
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 10 0 0 0 550 43 72 27 18 3875 13101 2077 2417
000000000
≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈

Figure 12-

LE GÉNOME DES EUCARYOTES : LE STOCKAGE DE L'INFORMATION 35

Figure 2-17 Schéma d'un gène codant pour une protéine (gène de classe il)

Figure 13-

GENE GMCSF HOMME

					
1	CAGGATGGGG			CACGCCCCAC	CCCAGCCATT
51	CCAGGCCAGG	AAGTCCAAAC	TGTGCCCCTC		
101	GGCCCATTCA	GACTGCCCAG	GGAGGGCTGG		
151	TGGGTGGGCT	GTCGGTTCTT			
201	CTGACCACCT				11000012100
251	CCAGGAGATT			***********	
301	GGTCACCATT			222221	0001111101
351	AGCCCAGCTA			TAAGAGCTCT	
401	:			TTCTCTGGAG	GATGTGGCTG
	CAGAGCCTGC			TGCAGCATCT	CTGCACCCGC
451	CCGCTCGCCC			GCAGCATGTG	
501	AGGAGGCCCG	GCGTCTCCTG	AACCTGAGTA	GAGACACTGC	TGCTGAGATG
551	GAGCCGACCT	GCCTACAGAC	CCGCCTGGAG	CTGTACAAGC	AGGGCCTGCG
601	GGGCAGCCTC	ACCAAGCTCA	AGGGCCCCTT	GACCATGGCC	
651	AGCAGCACTG		CCGGAAACTT		AGCCACTACA
701	ACCTTTGAAA	GTTTCAAAGA	GAACCTGAAG	CCTGTGCAAC	CCAGATTATC
751	CTTTGACTGC	TGGGAGCCAG		GACTTTCTGC	TTGTCATCCC
801	GCCAAGCCGG		TCCAGGAGTG	AGACCGGCCA	GATGAGGCTG
851		GGAGCTGCTC	TCTCATGAAA	CAAGAGCTAG	AAACTCAGGA
901	TGGTCATCTT	GGAGGGACCA	AGGGGTGGGC	CACAGCCATG	GTGGGAGTGG
	CCTGGACCTG	CCCTGGGCAC	ACTGACCCTG	ATACAGGCAT	GGCAGAAGAA
951	TGGGAATATT	TTATACTGAC	AGAAATCAGT	AATATTTATA	TATTTATATT
1001	TTTAAAATAT	TTATTTATTT	ATTTATTTAA	GTTCATATTC	CATATTTATT
1051	CAAGATGTTT	TACCGTAATA	ATTATTATTA	AAAATATGCT	
1101	CAGTGTTCTA	GTTTGTTTTT	AACCATGAGC		TCTACTTGTC
1151			MUCCAIGAGC	AAATGCCA	
	•				

GENE GMCSF SOURIS

	•				
1	GGGCTGGAAT	GAGCCACCAG	AGTAGGTAGA	COMMOGGGS	
51	GAACAGCAGG				
101	CCGCCCCAGC				
151	CAAAAAGGAG	AGGCTAGCCA			
201	GGAAAGGCCT	TTAATCAGCCA		CAGACTGCCC	
251	TTATTAATGA				
301	CCCCATGTAT				
351	CCCCGCCCCC	AGCTGATAAG		TTCCACAACT	
401		CTGGAGTTCT	GTGGTCACCA	TTAATCATTT	CCTCTAACTG
451	TGTATATAAG	AGCTCTTTTG	CAGTGAGCCC	AGTACTCAGA	GAGAAAGGCT
501	AAGGTCCTGA		GCTGCAGAAT	TTACTTTTCC	TGGGCATTGT
551	GGTCTACAGC	CTCTCAGCAC	CCACCCGCTC	ACCCATCACT	GTCACCCGGC
	CTTGGAAGCA	TGTAGAGGCC	ATCAAAGAAG	CCCTGAACCT	CCTGGATGAC
601	ATGCCTGTCA	CGTTGAATGA	AGAGGTAGAA	GTCGTCTCTA	ACGAGTTCTC
651	CTTCAAGAAG	CTAACATGTG	TGCAGACCCG.	CCTGAAGATA	TTCGAGCAGG
701	GTCTACGGGG	CAATTTCACC	AAACTCAAGG	GCGCCTTGAA	
751	AGCTACTACC	AGACATACTG	CCCCCCAACT	CCGGAAACGG	ACTGTGAAAC
801	ACAAGTTACC	ACCTATGCGG	ATTTCATAGA	CAGCCTTAAA	ACCTTTCTGA
851	CTGATATCCC	CTTTGAATGC	AAAAAACCAA	GCCAAAAATG	AGGAAGCCCA
901	GGCCAGCTCT	GAATCCAGCT	TCTCAGACTG	CTGCTTTTGT	GCCTGCGTAA
951		ACTTGGAATT	TCTGCCTTAA	AGGGACCAAG	AGATGTGGCA
1001	CAGCCACAGT	TGGAAGGCAG	TATAGCCCTC	TGAAAACGCT	GACTCAGCTT
1051	GGACAGCGGA	AGACAAACGA	GAGATATTTT	CTACTGATAG	GGACCATTAT
1101	ATTTATTTAT	ATATTTATAT	TTTTTAAATA	TTTATTTATT	TATTTATTTA
1151	TTTTTGCAAC	TCTATTTATT	GAGAATGTCT	TACCAGAATA	ATAAATTATT
1201		TTTGTATAGT	TATCTGGTTT	ATTTTGAAAG	
1251		TGGAGTGGGG	GAGCTATTGG	GATATGGTAT	GGGAAAAATT
1301	~~~~	A		GAIAIGGIAI	TGATGAGAGT

Figure 14

fig 14-1

00000000000000000000000000 ETUDE HOMME 00000000000000000 000000000 GM CSF ETUDE EFFET GLOBAL TATAA 00000000000000 VISUALISE LES PONTS A CHEVAL SUR BASE 391 (JOINT PRECURSEUR/GENE) 000000000 MUTATIONS TATAA BOX ETUDE EFFETS GLOBAUX COMPARE (PRECURSEUR + GENE + TERMINAL) ET (TATAA BOX SUPPRIMEE) GENE REEL BILHOMMEFUL BILAN NB RESONANCES PAR LONGUEURS... FIBONACCI... 55 89 144 5 6 LUCAS... 47 76 123 199 322 521 843 21 15 12 23 25 6 10 SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 0 5 0 0 0 445 0 0 0 0 10 0 0 0 940 33 13 8 47 4327 4233 550 17902 0 4 0 7 0 445 0 329 GENE BILDTATAHOMMEFUL BILAN NB RESONANCES PAR LONGUEURS... FIBONACCI... 55 89 144 e suppression THTA 5 6 4 LUCAS... 47 76 123 199 322 521 843 21 6 27 16 24 9 10 SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 0 5 0 0 0 445 0

Fig 14-3

```
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144
5 6
LUCAS. .
47 76 123 199 322 521 843
21 6 19 8 25 6 10
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 5 0 0 0 445 0 0
0 0 10 0 0 0 940 0
21 13 3 47 1899 4233 170 17902
0 4 0 7 0 445 0 329
DETAIL RESONANCES PONTS
COMPARE (PRECURSEUR +GENE + TERMINAL) ET (BOX TATAA - TAAAA)
____ GENE MUTANT BILM3TATAHOMMEFUL _
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144
5 6 4
LUCAS...
47 76 123 199 322 521 843
  15 12 23 25 6 10
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 5 0 0 0 445 0 0
0 0 10 0
          0 0 940
33 13 8 47 4327 4233 550 17902
0 4 0 7 0 445 0 329
____ GENE MUTANT BILM3TATAHOMMEFUL ____
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
LUCAS...
521 843
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 0 0 0 0 0 0 0 0 0
0 3 6 0 0 1885 4736 0
0 0 0 0 0 0 0
```


0000000000000000000 ETUDE HOMME 000000000 VISUALISE LES PONTS A CHEVAL SUR BASE 781 (JOINT GENE/TERMINAL) ODDOODOO MUTATIONS TATAA BOX ETUDE EFFETS GLOBAUX 0000000 COMPARE (PRECURSEUR + GENE + TERMINAL) ET (TATAA BOX SUPPRIMEE) GENE REEL BILHOMMEFUL

tig. 14-4

BILAN NB RESONANCES PAR LONGUEURS... FIBONACCI... 55 89 144

23 0 3 0 1914

DEMATT. RECOMPTIONS --

0 0 0 7

3 41 46 57 890 6751 16672 21994 0 0

25 6 12 LUCAS... 47 76 123 199 322 521 843 23 28 5 3 52 30 10 SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 0 1558 0 0 0 0 0 17 165 0 23 0 3 0 1914 3 40 46 55 890 5908 16672 21274 0 0 0 7 0 0 0 481 GENE BILDTATAHOMMEFUL BILAN NB RESONANCES PAR LONGUEURS... FIBONACCI... 55 89 144 25 6 12 LUCAS... 47 76 123 199 322 521 843 23 28 5 3 52 33 10 SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 0 0 0 17 0 0 0 1558 23 0 3 0 1914 0 165 0

0

481

0 0 0 7

0 -

0

. 0

```
2692594
DETAIL RESONANCES PONTS
                                               Fig 14-6
COMPARE (PRECURSEUR +GENE + TERMINAL) ET (BOX TATAA → TACAA)
  ___ GENE REEL BILHOMMEFUL
BILAN NB RESONANCES PAR LONGUEURS.
FIBONACCI...
55 89 144
25 6 12
LUCAS...
47 76 123 199 322 521 843
23 28 5 3 52 30 10
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
              0
 0 0 0 17
          0
                 0 1558
     3 0 1914
               0
                  165
23
 3 40 46 55 890 5908 16672 21274
0 0 0 7 0 0 0 481
GENE MUTANT BILM2TATAHOMMEFUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144
25 6 12
LUCAS...
47 76 123 199 322 521 843
23 28 5 3 52 30 10
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 17 0 0 0 1558
23 0 3 0 1914 0 165 0
23 0 3 0 1914
 3 40 46 55 890 5908 16672 21274
 0 0 0 7 0 0 0
                      481
DETAIL RESONANCES PONTS
COMPARE (PRECURSEUR +GENE + TERMINAL) ET (BOX TATAA + TAAAA)
GENE REEL BILHOMMEFUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144
25 6 12
LUCAS...
47 76 123 199 322 521 843
     5 3 52 30 10
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 17 0 0 0 1558
23 0 3 0 1914 0 165 0
3 40 46 55 890 5908 16672 21274
0 0 0 7
          Ω
                 0 481
              0
__GENE MUTANT BILM3TATAHOMMEFUL ____
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
    3200
LUCAS...
521 843
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 0 0 . 0 0 0
         0
              0.0
0 0 0 0 0
0 3 6 0 0 1885 4736 0
0 0 0 0 0 0 0
             0 0
```

```
GENE
    999999999 GM CSF ETUDE EFFET GLOBAL TATAA
   VISUALISE LES PONTS A CHEVAL SUR BASE 465 (JOINT PRODUCTIONS TATAA BOX ETUDE EFFETS GLOBAUX
                                                                                                                   TERMINAL
    COMPARE (PRECURSEUR + GENE + TERMINAL) ET (TATAA BOX SUPPRIMEE)
          _ GENE REEL BILSOURISFUL _
   BILAN NB RESONANCES PAR LONGUEURS...
    FIBO...
   55
   LUCAS
    47 76 123 199 322 521 843
     4 13 5 14 13 7 19
   SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
     0 0 0 0 0 0 0 0 0
1 3 0 0 55 165 0 0
   23 27 16 7 7797 8658 10514 1364
0 0 0 2 0 0 0 94
    ୍ରତିକ ପରିକ ପରିକ ବ୍ୟବ୍ୟ ପ୍ରତ୍ୟ କଳାନ୍ତ୍ର ଓ ଅଟନ୍ତି ଅଟେ ଓ ହିନ୍ଦିର ଅଟେ ଓଡ଼ିଆ କଳାକ୍ତର ହେଉଛି । ଏହି ବ୍ୟବ୍ୟ ସ
        __ GENE BILDTATASOURISFUL _
   and a second control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control 
   BILAN NB RESONANCES PAR LONGUEURS...
  55
    2
  LUCAS
   47 76 123 199 322 521 843
    3 12 6 14 8 19 17
   SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
    16 33 19 11 3828 13177 12370 2008
                                                      0 0
        0 0 0
                                            0
   <u>ูงร้างเมืองเลือง รู้งาอการร้างการต้อยผลตลีตองจาตีกอยต่องเสตกายตลตลก เกลดากตลด</u>ายสอด
  олок звалоникая тесковаясокая двигостобиванов двиг
  COMPARE (PRECURSEUR +GENE + TERMINAL) ET (BOX TATAA *
  GENE REEL BILSOURISFUL
 BILAN NB RESONANCES PAR LONGUEURS...
 FIBO...
 55
   4
 LUCAS
 47 76 123 199 322 521 843
   4 13 5 14 13 7 19
 SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
  0 0 0 0 0 0 0 0 0
1 3 0 0 55 165 0 0
 23 27 16 7 7797 8658 10514 1364
  0 0 0 2 0 0 0 94
 GENE MUTANT BILM1TATASOURISFUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55
LUCAS
47 76 123 199 322 521 843
4 11 10 13 10 8 11
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 0 0 0 0 0 0
1 3 0 0 55 165 0 0
18 27 9 11 5362 8658 5380 2008
      0 0
                                               0 94
                 2
                           0
                                    0
DETAIL RESONANCES PONTS
- ձնուննարդար արևան երեր արևան արևան արևան արևան արևան արևան արևան արևան արևան արևան արևան արևան արևան արևան ա
COMPARE (PRECURSEUR +GENE + TERMINAL) ET (BOX TATAA - TACAA)
GENE REEL BILSOURISFUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55
```

```
LUCAS
47 76 123 199 322 521 843
4 13 5 14 13 7 19
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
1 3 0 0
23 27 16 7 7797 8658 10514 1364
0 0 0 2
        0 0 0 94
GENE MUTANT BILM2TATASOURISFUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55
4
LUCAS
47 76 123 199 322 521 843
4 12 5 11 13 8 11
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 0 0 0 0 0 0
1 3 0 0. 55 165 0 0
18 27 10 7 5514 8658 5901 1364
0 0 0 2 0 0 0 94
DETAIL RESONANCES PONTS
COMPARE (PRECURSEUR +GENE + TERMINAL) ET (BOX TATAA + TAAAA)
____ GENE REEL BILSOURISFUL ___
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55
4
LUCAS
47 76 123 199 322 521 843
4 13 5 14 13 7 19
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 0 0 0 0
1 3 0 0 55 165 0 0
23 27 16 7 7797 8658 10514 1364
0 0 0 2 0 0 0 94
GENE MUTANT BILM3TATASOURISFUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55
4
LUCAS
47 76 123 199 322 521 843
4 12 5 11 13 8 11
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 0 0 0 0 0 0
1 3 0 0 55 165 0 0
18 27 10 7 5514 8658 5901 1364
0 0 0 2 0 0 0 94
```

```
VISUALISE LES PONTS A CHEVAL SUR BASE 891 (JOINT GENE/TERMINAL)
UUUUUUUUU MUTATIONS TATAA BOX ETUDE EFFETS GLOBAUX UUUUUUU
COMPARE (PRECURSEUR + GENE + TERMINAL) ET (TATAA BOX SUPPRIMEE)
   _ GENE REEL BILSOURISFUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55 89
10
   1
LUCAS
47 76 123 199 322 521 843
 4 12 12 1 26 6 19
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
  0 4 0
         0
              0
                220
                     0
    0 2
        275
              0
                  0 144
8 45 22 2 6223 10995 12645 199
  0 3 0
                 228
          0
              0
                     0
GENE BILDTATASOURISFUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55
8
LUCAS
47 76 123 199 322 521 843
4 12 13 3 23 13 17
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 3 0 0
            0
                165
                    0
 0 0.1
             0
       220
                 0
                    55
5 50 25 2 3571 13705 14132 199
 0 3 0
         0
             0
                199
                    0
DETAIL RESONANCES PONTS
COMPARE (PRECURSEUR +GENE + TERMINAL) ET (BOX TATAA > AGGGG)
____ GENE REEL BILSOURISFUL _
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55 89
10 1
LUCAS
47 76 123 199 322 521 843
4 12 12 1 26 6 19
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
         0
             0
                220
   0 2 275
              0
                  0 144
8 45 22 2 6223 10995 12645 199
 0 3 0
         0
             0
               228
                    0
GENE MUTANT BILM1TATASOURISFUL
```

BILAN NB RESONANCES PAR LONGUEURS...

L

DETAIL RESONANCES PONTS

OF

TGF BETA1 GENE COMPLET (NON CODANT ET CODANT)

201 CCTCCTTTCC CCTCCTCTCTC CTTTCTGCA GAGTTGGTCC CGACCATE 221 CCAGGTGTG TCCAGGACA GCTTTGGCCG CTGCCAGCTT GCAGGCTATG 221 CCAGGTGTG TCCCAGGACA GCTTTGGCCG CTGCCAGCTT GCAGGCTATG 301 GATTTTGCCAC TGTGCCCGAT GACCCGGGGA CCACCAGACT GGGCTTCCCT 301 ACCTGGCGGC CCCTGGGCGT TGGCGGGAA CAGTTGGCAC 301 ACCTGGCGGC CCCTGGACACA GCTGTGGGA CACTCTACA AGTGGGCCG 401 GGCTGCTCCT CCGCAGACAC GCTGCTGGGA CACTGGAGATG 401 GGCTGCTCT CCGCGACACT GGACGCTAC GCGCGGACACC AGTGAGGAG 401 GAGGATGGC CACTCTACACACA GCTGTGGGT GCACCGTGAA CAGTGAGGAC 401 GAGGATGGC AAGTCACACA GCGCTTCTGT GCACCGTGAACACC 401 GAGGATGGC ACGTGTCAA GAGCACACAC CCGGACACCC AGTGAGGAG 401 GAGGATGGC ACGTGTCAA GAGCACACAC CTCGAGACAC 401 GAGGATGGC ACGTGTCAA GAGCACAGAC TCTTAAGACACT GCACCAGCC 401 ACCCCGAGCTA AGGCATGCAA GAGCAGAC TCTTAAGACACT CTCAGAGACT 401 CCCTCTGGGC CAGTTTCC CACTCTAAA TTGGGACAGT TAAAATGTAAC 401 CCCTCTGGGC CCAGTTTCC CACTGAACACC CTCCGGAGGC 401 CCCCCAACACAC TCTTACAGGGG CTCCTCCTCTC CACTGACACC CTCCGGAGGC 401 CCCCCAACACAC TCTTACAGGGG CTCCCCT CTCCTCCTCC CACTGACACC CTCCGGAGGC 401 CCCCCAACACAC TCTTACAGGGG CCCCCATGACACC CTCCGGAGGC 401 CCCCCAACACAC GCACCACCCC CTCCTCTCC CACTGACACC CTCCGGAGGC 401 CCCCCAACACAC GCACCAGCCC CCCCATGCGCC CCCCATGACACC CTCCGGAGCC 401 CCCCCAACACAC AGCCCCCC CCCCATGCCCC CCCCATGACACAC CTCCGGAGAC 401 CCCCCAACACAC CTCCCTCTCCC CCCTCTCCTCC CTCTCTCCTCC TGCCCTCCTCC 401 CCCCCAACACAC CCCCCCCC CCCCATGCCCCC CCCACCACCCCC 402 CCCCCACCCCCC CCCCATGCCCCCC CCCATGCCCCCC CCCACCACCCCCC 403 CCCCCACCACCCCC CCCCATGCCCCCCCCCCCCCCCCC		COMPLET (NON CODANT ET CODANT)	•
1911 AAACTCTGGG ACAGAAACCC AGAGACCAACCCC TGGGGTTCC 1911 CCTCCTTTCC CCTCTCTCTC CTTTCCTGCT TGGGTCTCC 2011 CCTCCTTTCC CCTCTCTCTC CTTTCCTGCT TGGGTCTCC 2011 CCCCCTTTCC CCTCTCTCTC CTTTCCTGCT TGGTCTCTCTC		GGATCCTTAG CAGGGGAGTA ACATGGATTT GGAAACATCA	
AGREGATION AGENCIATION OF STREET, AGENCIAGED CONTINUED AGENCIAGED CONTINUED AGENCIAGED A	5	TGTGTGGGGA TAGATAAGAC GGTGGGAGCC TAGALAGGAC CCTTGGCTGC	••
CCTICTTTCC CONTINUES CONTINUES GARTCASTT			LKEALL
2511 CARGOTGGG TECCNOCADA CETTERS SCANCECCE GATCATAT 301 ACTTGGCCAT TOTGCCCATA ACCCCGGGCA CECCACTATO 301 ACTTGGCCAT TOTGCCCATA ACCCCGGGCA CECCACTATO 401 ACGTGGGGG CCCGGCACTC TCATGGGGA ACCCCGGGACACACACACACACACACACACACAC			- 11291.00
301 GATTTEGCA TOTOCCAGO ACCCUSAGES 301 GATTTEGCA ACCCUSAGES 301 GATTTEGCA TOTOCCAGO ACCCUSAGES 301 GATTGEGGA TOTOCCAGO ACCCUTAGES 301 GAGTGATGG CCCCAGCAGA TOTOCCAGO GACCATAGA GAGTTAGA 301 GAGTGATGG CCCCAGACTA TOCAGGA ACCCUTAGA 301 GAGTGATGG CCCCAGACTA TOCAGCAGA CACCATATAGA 302 GAGCACTAGA CACTACACAC ACTACACAC ACCCAGAGAGA 303 TOTOCCAGO ACCTACACAC ACTACACACAC 304 TOTOCCAGO ACCTACACACA GAGCAGAGA GACATATAGAGAT 305 TOTOCCAGO ACCTACACACA GACAGAGAGA GACAGAGAGA 306 TOTOCCAGAGA GAGTGATGAGA GACAGAGAGA GACAGAGAGAGAGAGAGAGAGAGA			$\lambda f A$
351 ACGTGGGGG CCCCGGGGGG TYGGGGGGGGGGGGGGGGGG			2 14 1
491 GGGTGTTGGG CCCCAGCTGC TROMPOSED CACCATTCG AGTGGGGCGG 491 GGCTGTGCACAC CCTGCACACT CACCACTTCA AGTGGGGCGG 591 GGCTGTGCAC AGTGCACACT CGACCGGTAC CACCACTAC AGTGGGGCGG 591 GGCTGTGCAC AGTGCACAC CGTCCACAC CGGGGACACT CGTGGGGCG 591 GGCTGGGAC AGTGCACAC CGTCCACAC CGGGGACACT CGTGGGGCG 591 CCTCTCGGGC CAGTTCCC TATCTTAAA TTGGGACAG TATATCTAG 791 CCCTCTGGGG CAGTTTCCC TATCTTAAA TTGGGACAG TATATCTAG 791 CCCTCTGGGG GAGACAATT CTTACAGGT GTTTGCAC ATGGGAGGT 793 CCCTCAGGT GAGACAATT CTTACAGGT TGTTGCACC ATGGGAGGT 794 CCCTCAGGT GAGACAATT CTTACAGGT TGTTGCCAC ATGGGAGGT 795 TCCCTCAGGT GAGACAATT CTTACAGGT TGTTGCCAC ATGGGAGGT 796 CCCCAGGT GAGACAATT CTTACAGGT TGTTGCCAC ATGGGAGGT 797 CCCCCAGGT GAGACAATT CTTACAGGT TGTTGCCAC ATGGCAGGC CTCCGAGGC 798 TCCCTCAGGT AGCACACCC TTTCGGGGG CAACCCTCCAGGCC 798 TCCCTCAGGT AGCACACCC TTTCGCGGG CGAGCCGCC 799 CCCCAGGT AGCACACCC TTTCGCGGG CGAGCCGG CAACCCACAC 799 CCCCAGGAG GCACACCCC TTTCGCGGG CGAGCCGG CAACCCACAC 799 CCCCAGGAG GCACACCCC TTTCGCGGG CGAGCCGG CAACCCACAC 799 CCCCAGGAG GCACACCCC TTTCGCGGG CGAGCCGG CAACCCACAC 799 CCCCAGGAG GCACACCCC TTTCGCGGG CCGACACGC CACCCACAC 799 CCCCAGGAG GCACACCCC TTTCGCGGG CCGACCCCC CCCCACACAC 799 CCCCAGGAG GCCCACACCC CCCCACACCC CCCCACACAC 799 CCCCAGGAG GCCCACACCC CCCCACACACC CCCCCCACACAC 799 CCCCACAGGA GCACACACCC CCCCACACACC CCCCCCACACAC 799 CCCCACAGAG CCCCACACACCC CCCCCACACACC CCCCCCCC	301	GATTTTGCCA TGTGCCCAGT AGCCGGGGA CCCAGCTT GCAGGCTATG	_
451 ACCCCTATGG CCTGCACAGA GCTGCTCCTGG 551 TCTSCCTCCA ACGTCACCAC CATCACACA 551 TCTSCCTCCA ACGTCACCAC CATCACACAC 551 TCTSCCTCCA ACGTCACCAC CATCACACAC 551 AGGGARGGCA CAGTGGTCAA GAGCACACAC 551 AGGGARGGCA CAGTGGTCAA GAGCACACAC 551 AGGCACACAC 551 AGGCACACACAC 551 AGGCACACAC 551 AGGCACACAC 551 AGGCACACAC 551 AGCCCAGACAC 551 AGCCCAGACAC 551 AGCCCAGACAC 551 AGCCCAGACAC 551 AGCCCAGACAC 551 AGCCCAGACAC 551 AGCCCAGACACAC 551 AGCCCAGACAC 551 AGCCCAGACACAC 551 AGCCCAGACACAC 551 AGCCCAGACACAC 551 AGCCCAGACACAC 551 AGCCCAGACACACACACACACACACACACACACACACAC			7
551 GGCCTGCTGC TCCGCAACTT CCAACCTTSCACE GGCCGGCAC CTGGGGGCGC 551 GGGGTGGGA CACTGCCCCC CATCGACCC CACGGACACC 551 GAGGATGGCA CACTGCCCCC CATCGACCC AGGGGGAC 551 GAGGATGGCA CACTGCCCCCCCCCCCCCCCCCCCCCCC			/ 0 :-
SOIL GAGGATGCA CAGTIGTICAN GAGCAGNAC TETACAGACT CITICAGACT SOIL CACCECAGETA AGCATGGCA COGSTITET CETTITICAG ACCTOGGGT 701 CCCTCTGGG CAGTITTCCC TATCTANA TIGGGACGA TANATATAT 713 GSGTCCCAGG GTGTTGGATG ACAGGAGGGT GTTTAGCAC ATGGGAGGT 801 CTCAGTANAG GAGACCATC TATCAGGT TATCCCTCCT GACCTTCCA 801 CTCAGTANAG GAGACCATC CTTTACAGGT TATCCCTCCT GACCTTCCA 801 CTCAGTANAG GAGACCATC CTTTACAGGT TATCCCTCCT GACCTTCCA 801 CCCCAGACTA ACCTTCCCC CCCCTCCTCC CACTGACAC CTCCGGAGGC 801 CCCCAGACTA ACCTTCCCC CTTCTCCTAG CTTTTTCCTAG 801 CCCCAGACTA ACCTTCCCC CTTCTCCTAG CTTTTCTCTAG 801 CCCCAGACTA ACCTTCCCC CTTTCCCTAG CTTTTCTCTAG 801 CCCCCGGATA ACCTTCCCC CTTTCCCTAG CTTTCTCTTG 801 CCCCCGGATA ACCTTCCCC CTTTCCCTAG CTTCTCCTAG 801 CCCCCAGACTA GCCCAGCGCT CTTTCCCAGC GACCCCCC 802 CCCCATAGCC CCCCATAGCC CTTTCCCAGC GACCCCCCC 803 CCCCCCCCC CCCCCCCCC CCCCATAGCC CTCCCCCCCCC 804 CCCCCACCCGT CCCCCCCCC CCCCATAGCC CACCCCGTC CCCCCCCCCC			> 14910~
SOIL GAGGATGCA CAGTIGTICAN GAGCAGNAC TETACAGACT CITICAGACT SOIL CACCECAGETA AGCATGGCA COGSTITET CETTITICAG ACCTOGGGT 701 CCCTCTGGG CAGTITTCCC TATCTANA TIGGGACGA TANATATAT 713 GSGTCCCAGG GTGTTGGATG ACAGGAGGGT GTTTAGCAC ATGGGAGGT 801 CTCAGTANAG GAGACCATC TATCAGGT TATCCCTCCT GACCTTCCA 801 CTCAGTANAG GAGACCATC CTTTACAGGT TATCCCTCCT GACCTTCCA 801 CTCAGTANAG GAGACCATC CTTTACAGGT TATCCCTCCT GACCTTCCA 801 CCCCAGACTA ACCTTCCCC CCCCTCCTCC CACTGACAC CTCCGGAGGC 801 CCCCAGACTA ACCTTCCCC CTTCTCCTAG CTTTTTCCTAG 801 CCCCAGACTA ACCTTCCCC CTTCTCCTAG CTTTTCTCTAG 801 CCCCAGACTA ACCTTCCCC CTTTCCCTAG CTTTTCTCTAG 801 CCCCCGGATA ACCTTCCCC CTTTCCCTAG CTTTCTCTTG 801 CCCCCGGATA ACCTTCCCC CTTTCCCTAG CTTCTCCTAG 801 CCCCCAGACTA GCCCAGCGCT CTTTCCCAGC GACCCCCC 802 CCCCATAGCC CCCCATAGCC CTTTCCCAGC GACCCCCCC 803 CCCCCCCCC CCCCCCCCC CCCCATAGCC CTCCCCCCCCC 804 CCCCCACCCGT CCCCCCCCC CCCCATAGCC CACCCCGTC CCCCCCCCCC			Sugion Sugion
SOIL GAGGATGCA CAGTIGTICAN GAGCAGNAC TETACAGACT CITICAGACT SOIL CACCECAGETA AGCATGGCA COGSTITET CETTITICAG ACCTOGGGT 701 CCCTCTGGG CAGTITTCCC TATCTANA TIGGGACGA TANATATAT 713 GSGTCCCAGG GTGTTGGATG ACAGGAGGGT GTTTAGCAC ATGGGAGGT 801 CTCAGTANAG GAGACCATC TATCAGGT TATCCCTCCT GACCTTCCA 801 CTCAGTANAG GAGACCATC CTTTACAGGT TATCCCTCCT GACCTTCCA 801 CTCAGTANAG GAGACCATC CTTTACAGGT TATCCCTCCT GACCTTCCA 801 CCCCAGACTA ACCTTCCCC CCCCTCCTCC CACTGACAC CTCCGGAGGC 801 CCCCAGACTA ACCTTCCCC CTTCTCCTAG CTTTTTCCTAG 801 CCCCAGACTA ACCTTCCCC CTTCTCCTAG CTTTTCTCTAG 801 CCCCAGACTA ACCTTCCCC CTTTCCCTAG CTTTTCTCTAG 801 CCCCCGGATA ACCTTCCCC CTTTCCCTAG CTTTCTCTTG 801 CCCCCGGATA ACCTTCCCC CTTTCCCTAG CTTCTCCTAG 801 CCCCCAGACTA GCCCAGCGCT CTTTCCCAGC GACCCCCC 802 CCCCATAGCC CCCCATAGCC CTTTCCCAGC GACCCCCCC 803 CCCCCCCCC CCCCCCCCC CCCCATAGCC CTCCCCCCCCC 804 CCCCCACCCGT CCCCCCCCC CCCCATAGCC CACCCCGTC CCCCCCCCCC) Enhancer
701 CCCCTGGGGC CCAGTTTCCC TANCTONNY TOTAL ACTORGGGT TOTAL GGGTGCAGA GGGTGTGAGAC GTGTGAGACA CAGGAGAGA TAAGTATATG ACGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA			
751 GGGTGGAGG 801 TCCCTCAGGT 801 TCCCTCAGGT 801 TCCCTCAGGT 801 TCCCTCAGGT 801 TCCCTCAGGT 801 TCCCTCAGGT 801 TCCCTCAGGT 801 TCCCTCAGGT 801 TCCCTCAGGT 801 TCCCTCAGGT 801 TCCCTCAGGT 801 TCCTTCGGT 801 TCCTTCGGT 801 TCCTTCGGT 801 TCCTTCGGT 801 TCCTTCGGT 801 TCCTTCGGT 802 TCCTTCGGT 803 TCCTTCGGT 804 TCCTTCGGT 805 TCCTTCGGT 806 TCCTTCGGT 807 TCCTTCGGT 808 TCCTTCGGT 809 TCCTTCGGT 809 TCCTTCGGT 800 TCCTTCGGT 800 TCCTTCGGT 800 TCCTTCGGT 801 TCCTTCGGT 801 TCCTTCGGT 802 TCCTTCGGT 802 TCCTTCGGT 803 TCCTTCGGT 804 TCCTTCGGT 805 TCCTTCGGT 806 TCCGGGGGGG 806 TCCGGGGGGG 806 TCCGGGGGGG 806 TCCGGGGGGG 806 TCCGGGGGGG 806 TCGGGGGGG 806 TCGGGGGGG 807 TCGGGGGGG 807 TCGGGGGGG 808 TCGGGGGGGG 808 TCGGGGGGGG 809 TCGGGGGGGG 800			1
851 CTCASTANAS GAGAGCHATT CTARGAGCT GETTAGCAC ATGGAGGT GETTAGCTCT GACCTTCCT AGCCTTCCT AGCCTTCCT CACTOCATOR OF TECTTOTIC CACT			10
851 TECCTCAGGT STECTOTTCC CACAGGT CTTCTCTCT ACCCTCAGA 951 TECTTCAGGT CAGGTCCT CTTCTCTCT CACAGACC CTCCGAGGC 951 TECTTCCGT CAGGTCCC CTCTTCTCTCT CTTCTCTCT ACCCTGATTCTTCTCT 951 TECTTCCGT CTGGTCCCC CTCTTCTCTCT CTTCTCTCT ACCCTGATTCTTCTCT 1011 CCCCGGATAA ACCCTCCTC CGCTCGTTCTCTCTCT TTTCTCCTC AGCCTGATTCTTCTCTCT 1051 CGCCGGAGA GCCACAGGCC ATTTGGATCA CTCTCTCTCT CTCCCCC GAGCCCCCC 1251 GCCCGGAGA GCCACAGGCC ATTTGGATCA CTCTCTCTCTC GAGCCTGCC 1251 CTTTCCCC AGGCTGAAG GGACCCCCT CGGAGCCCC 1251 GCCCGCGCC CGTGCGCTTC CTGGGTGGGG CGGAGCCCCC GAGCCGACC 1251 GCCCCCGCC CGTGCGCTTC CTGGGTGGGG CGGAGCCCCC GAGCCCGAC 1251 CCTTCCCCC CACCCTCCCT CGGGAGGCG CGCCCATCTC GCCCCAGGC 1251 CACCCCCGGG CCCCATCCCT CGGGAGGCG CCCCATCCTC GCCCCAGGC 1251 CACCCCCGGG CCCCATCCCT CCGCGGAGGC CCCCATCCCT 1251 CACCCCCGGG GCCCGCATCC GCCCCGGGGGG CCCCCCCCC GCCTCTGACC 1251 CACCCCCGGG GCCCGACCC GCCCCCTTC GCCCCAGGA 1251 CACCCCCGGG GCCCGACCC GCCCCCTTCG GAGCCCCAG 1251 CACCCCCGGG GCCCGACCC GCCCCCTTCG GAGCCCAG 1251 CACCCCCAGA GCCCCGAGCC GCCCCCCCC GCCCCCTTCGAC 1251 CACCCCCCGGGCTCCG GCCCCGAGGG GAGCCACCC CCCCCCCCCC			Region N2
931 CCCCAGGATTA AGACCETC CTTUTCTAGE CRETTERIOR 1031 CCCCGGATTA AGCCTTCTC GCCTGGTGT GGGTCCCCCT GGGTCTCATC 1031 CCCCGGATTA AGCCTTCTC GCCTGGTGT CGGTCCCCT GGGTCTCATC 1031 CGCCGGATTA AGCCTTGTGG GCGTGTGT CTTTTCTGGT TGGGTCCCTTG TGGGCGTGTG 1031 CGCCGGATTA AGCCTTGTGGG GCGGGCGC GCGGCGTTG CAGGCCTGG GGGGGGGG GCGCGCCT GGGGCGCCC CAGGGCGGG GGGGCGCC CAGGGCGGGGGGGG	801	CTCAGTAAAG GAGAGCAATT CTTACAGGTG TCTGCCTCCT GACCCTTCCA	1 113
951 TCCTTCCGTT CTGGGTCCCC CTCTCTCTCT CGCTCGTCTCT GGTCTCATC 1001 CCCCGGATA AGCCTTCTC GCTCGTCTCTCT CGCTCGTCTCT 1011 CGCCGGGAA GCCACAGGCC ATTGGGTCAC 1101 CGCCGGGAA GCCACAGGCC ATTGGGTCAC 1101 CGCCGGGAA GCCACAGGCC ATTGGGTCAC 1101 CGCCGGGAGG GCGACAGCCCC GTTTGGGTGGG 1101 CGCCGGGGGG GCGACAGCCCC GTGTGGGGGC 1101 CGCCGGGGGG GCGACAGCCCC GTGGGGGGG 1101 CGCCGCGGGGCG CCCATCGCT CGGAGCCGC 1101 CGCCGCGGGG CCCACAGGGGC CGCCATCGC CCCCACAGGGGGG 1101 CGCCGCGGGG CCCACAGGGGC CGCCATCGC CCCCACAGGGGGG 1101 CGCCCCCGGG GGGGGGGG CCCATCGCC CGCCCACAGGGGGG 1101 CGCCCCCGGG GGCGCGCCCC GGGCCCCC GGGCCCCC 1101 CGCCCCCGGG GCCCCATCGC GCCCCATCGC GGCCCCAGGGGGG 1101 CGCCCCCGGG GGCCCATCG GCCCCGGGGGG 1101 CGCCCCCGGG GCCCCATCG GCCCCGGGGGG 1101 CGCCCCCGGGGGGG GCCCAGAGGG 1101 CGCCCCCGGGGGGG GCCCAGAGGG 1101 CGCCCCCGGGGGGG GCCCAGAGGG 1101 CGCCCCCGGGGGGGG GCCCAGAGGG 1101 CGCCCCCAGAG 1101 CGCCCCCCAGAG 1101 CGCCCCCCAGAG 1101 CGCCCCCCAGAG 1101 CGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			1 12
1001 CCCCGGATTA AGCCTTCTCC GCCTGATGCT CTTTCTCTCT GTACCACACA 1001 CGCCGGATTA AGCCTCTCTCC GCCGGATTCTC TTTCTCTCTCT GTACCACCACACACACACACACACACACACACACACACAC	951	CCCCATGTTG ACAGACCCTC CTTCTCCTAC CTTGTTTCCC AGCCTGACTC	7
1011 CGCCCGGAAA GCCACAGGGC ATTGGATCA CCCGCTTTG 1101 CCGCCAGGAA GCACACCCC TGTTTGGGGG CGACCCGG AGCCCGCC 11201 TAGGAAGGT GGCCAGCCCCCCCTGGAGCCGG CCACCGGACA 1201 TAGGAAGGT GGCCAGCCC CCCATGCCC CCCCCTGGG GGCCCCCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCTCCCGCC 1231 GCCGCGCCC 1231 GCCGCGCCC 1231 GCCCCGCGCC 1231 GCCCCGCGCC 1331 GCCCCGAGCC 1331 GCCCCCAGCC 1331 GCCCCCAGCC 1331 GCCCCCAGCC 1331 GCCCCCAGCC 1331 GCCCCCAGCC 1331 GCCCCCAGCC 1331 GCCCCCAGCC 1331 GCCCCCAGCC 1331 GCCCCCAGCC 1331 GCCCCCAGCC 1331 GCCCCAGCCC 1331 GCCCCACCC 1331 GCCCCAGCCC 1331 GCCCCAGCCC 1331 GCCCCAGCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCC 1331 GCCCCACCCCC 1331 GCCCCACCCCC 1331 GCCCCACCCCC 1331 GCCCCACCCCC 1331 GCCCCACCCCC 1331 GCCCCACCCCC 1331 GCCCCACCCCC 1331 GCCCCACCCCC 1331 GCCCCCCCC 1331 GCCCCACCCCC 1331 GCCCCCCCCCCCCCCCCCCCCCCCCCC			& Kógian P
1101 CGGCAGGAG GENECACCT TATGGGGG GEAGCGGGC CAGGGGGAG CTTTTGG TGCTTTTGGC AGGGGTGAG GAGCCGCCC CAGGGGGAG AGGGCGGCC CAGGGGAGA CAGGGGGGCGC CAGGGGAGA CAGGGGGGCGC CAGGGGAGA CAGGGGGGCGC CAGGGGAGA CAGGGGGGCGC CAGGGGAGAG CAGGGGGGCGC CAGGGGAGAG CAGGGGGGCGC CAGGGGGGCGC CAGGGGAGAG CAGGGGGGGG	1051	CGCCGGAAA AGCCTTCTCC GCCTGGTCCT CTTTCTCTGG TGACCCACAC	1 1
1151 CCTTTCCCC AGGCTGANG GRACCECCT CEGAGCCGG GACCCGCGAN 1201 TAGGACAGGT GGCCCAGCCC CCCATGCCT CCGAGCCGGAN 1301 CCTTCCGCC CGTGGCTT 1311 CCTTCCCGC CGTGGCTT 1312 CCTGCCGAC CCAGCCCC CCCCATGCC CGCCCTCGC 1313 CATCTCCCT CCACCTCCT 1314 CCCGGGGGA CCAGCCGCGT 1315 CATCTCCCT CCACCTCCT 1316 CCCGGGGGA CGAGCCGCGT 1317 CCCGGGGGA GGGGGGAGG CCCGTGCGC GGCCCCCC 1317 CCCCGGGGG GCCGGCCTG GCCGGGAGA 1318 CCCCGGGGG GCCGGCCTG GCCGGGAGA 1319 CCCCGGGGG GCCGGCTG GCCGGGAGA 1311 CCCCGGGGG GCCGGGAGA 1311 CCCCGGGGGA GCCGCAGAGA 1311 CCCCGGGGAGA GGGGGAGAG 1311 GCGCGGAGGA GGGGGAGAG GCCGCGCGG 1311 GCGCGGAGGA GGGGGAGGA GCCGGCGGG 1311 GCGCGAGGA GGGGGAGGA GGGGGAGAG 1311 GCGCGAGGA GGGGGAGGA GGGGGAGAG 1311 GCGCGAGGA GGGGAGGAG GGGCGCGGA 1311 GCCCCAGAC CGCTCCCTT GCCGCGGGG GAGCAGCGCC 1311 GCCCCAGAC GCGCCCCCT TTCCGCGGG GAGCAGCCCC 1311 GCCCCAGAC CGGCCTCCT GCGCGCCCC GGAGGAGAG GAGCCGGAG 1311 GCCCCAGAC CGGCCTCCCT GCGGCCCCC GAGAGACT GCCCCAGAC 1311 GCCCCAGAC CCGCCTTCAT CCCCGGCCT TTCCCGAAC CCCCTGCGA 1311 GCCCCAGAC CCGCCTTCAT CCCCGGCCT TTCCCTCAGA CCCCTGCGA 1311 GCCCCAGAC CCGCCTTCAT CCCCGGCCT TTCCCTCCAAC CTCCGGCAC 1311 ACCCCTAT CAAAACCAC CACCTTCTG GAGCCCCCA CCCGGCCT 1311 CCCTTAGCGC CTTCCCCTC GAGAGCCTC GAGGCCCCC GAGCCCTCC 1311 CCCTTAGGCC CTTCCCCTC GAGAGCCTC GAGGCCCCC GAGCCCTCC GAGGCCCCC CTTCCCCTC GAGAGCCTC GAGGCCCTC GAGGCCCCC GAGCCCTCC CACCCCCCC GAGCCCTCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCCC CACCCCCCCC			
1251 GCTCCCGCC COTTCCGCTCC 1301 CCCTGCCGCC CCCCCCCCCCCC 1351 CATCTCCCT CCACCTCCT CCGCGCCCC CGCCCTTCG CGCCCTGCGC 1451 CATCTCCCT CCACCTCCT CCGCGCCCC CGCCCTTCG CGCCCTGCGC 1451 CCCCGGGGG GCCCCCCCC CGCCCCCCC GGCCCTGCCGC 1451 CGCCCGGGG GCCCCCCC CGCCCCCCC GGCCCGCCG 1451 CGCCCGGGG GCCCCCCC CGCCCGCCGC GCCCCCCCC			
1301 CCCTGCCGAC CAACCCGGTC CCCGCCGCCCCCCCCCC			
1351 CATCTCCTC CAACTTCCTC CCGCGAGCAC CCGCCCCGG GAGGCCCCG GAGGCCCCG 1451 CGCCGCGGGA GAGGGCCCGC CCGTCCGGG GCCCCCGGGGCCCG GAGGGCCCGCG GAGGGCCCGCG GAGGGCCCGCG GAGGGCCCGCG GAGGGCCCGCG GAGGGCCGCGCGCG	1251	GCTCCGCCC CGTGCGCTTC CTGCGTTGCCC TCCCCCTGGG GGCCGCCCC	
1491 GCCGGGGGC GGGGGGCCCG CCCGTCCGGG GCACCCCCC GGCTCTAGC 1491 GCAGCCTAGG GCCCCAGACT CCCGGGGGGG GCACCCCCC GCGCCACT 1501 GCAGCCTAGG GCCCAGACT CTAGAGCGG GCAGCCCCCC CCCGGCCACT 1501 AGAGGAANA AGCTTTTCG TAGAGCGG AGGGAGGAG TGGCCGAGGG 1601 AAGAGGANA AACTTTTCG TAGAGCGGG GAGGCGGCGC CCCGGCCACT 1701 GACCCCCAGC CCTTGGCGGG AGGGGGGG AGGGAGGAGC AGACTTGGG 1701 GACCCCCAGC CCCTTCCT GGCGGCGGG AGGGCTGGCC GGCGCAGG 1801 CCCCTACAC CCCTCCTT TGCCGGCGG GAGGCTGCCC GGCAGGAGG AGACTTGGG 1801 CCCCTACAC CGCTCCTCT GGCGCGCGG AGGCTTGCC CCTCCCTGC 1801 CCCCTGCAC CGCCTCCTC GAGAGCACC CGCCCCCC GGCAGAGAGC AGACTTGGG 1801 CCTCAGACC CGCCTCCTC GAAGACACT TCCCCAGACC TCCCCGGCAC 1801 CCTCAGACCAC CGCCTTCAT CCCGGGCCT TCTCCTGAG CCCCCCGCAC 1801 ACCCCTACT TCCCCCCC GAAAGACTT TCCCCAGACC TCCGGCCAC 1801 ACCCCTACT TCTCCTCCA GGGAGCAGGAT TTCTCCTGAG CCCCCCCCCC	1301	CCCTGCCGAC CCAGCCGGTC CCCGCGGGG CCGGGGGGG CTTCAAAACC	
1451 CGCCCCGCGG GCCCCCAGAGC 1551 GGCGGGAGA GCCCCAGAGC CTGAGAGCAG GCGCCCCCC GCCGCCACT 1551 GGCGGGAGA GCCCAGAGC CTGAGAGCAG CCGCCGCCCC CCCGCCACT 1561 AGAGGANA AAACTITICA GACTITICCG TIGCCGCTGG GAGCCGCGCGC 1791 GACCCAGAC CTCTTGAGGA GACCTGCCC GCGGAGAGGAGGAG GAGCCGGCGCGC 1791 CGCCCAGAC GCGCCCCCT TGCCGCCGG GAGCGTGACC CCCCCCCTCT 1791 CGCCCAGAC GCGCCCCCT TGCCGCCGG GAGCGTGACC CCCCCCCTGGAC 1891 CCCCCACAC GCGCTCCCTT TGCCGCCGG GAGCGTGTC CCCTCCCTGC 1891 CCCCTGCACG GCCTCCCTT TCCCGCCGG GACCGCCCC TTCCGGACCA 1891 CCCCTGCACG CCCCCTTCTC CCCCGGCCTT TCCTCGAGCA CCCCCCGCCA 1991 CCCTGCACG CCCCCTTCTC CCCGGCCTT TCCTCTGAGCA CCCCCCCACAC 1991 CCCTGCACG CCCCCTTCTCCC GAGAGCGCT TCCTCTGAGC CCCCCCCACAC 1991 CCCTGCACG CCCCCTTCTCCC GAGAGCGCT TCCTCTGAGC CCCCCCCCCC			
1501 GCAGCCTGAG GCCCCAGAGT 1501 AGAGGANA GCGGAGAGA 1501 AAGAGGANA AAACTTTCA GACTTTTCC 1501 AAGAGGANA AAACTTTCA GACTTTTCC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1701 GACCCCAGAC 1801 GTCGCGACC 1801 GTCGCGACC 1801 GTCGCGACC 1801 GTCGCAGACC 1801 GTCGCAGAC 1801 GTCGCAGAC 1801 GTCGCAGAC 1801 ATCCCTATT 1801 CCTACACCC 1801 ATCCCCTATT 1801 CTCACACCC 1801 ATCCCTATT 1801 CTCACACCC 1801 CT			
1551 GCGGGGAGGA 1601 AAGAGGAAAA AAACTITICA GACTITICCG TITGCGGCGGG CCCGGCAGGAG 1611 GACGCGAGAC CTTTGGGGG AGGGCGGAGG AGGACTITGGG 1701 GACCCCAGAC GCCTCCCTT TGCGGCGGGG AGGACTTGGG 1711 GCCCTCACACG GCCTCCCTT TGCGGCGGGG AGGACTTGGG 1811 GCCCGCACACG GCCTCCCTA GGGGCCCCA TTCCGGACCA GCCTCCGGGA 1891 GCCGCGCACG GGGCTCCCG GAAGACTTT TCCCGAGACA GCCTTGGGA 1891 CCCCTGACACG CGGCCTCCTA GGGCGCCCA TTCCGGACCA GCCTTGGGACA 1891 CCCCTGACACG CGGCCTCTAT TCCCGGCCTG TTCCGGACCA GCCTCGGGAA 1891 CCCCTGACACG CGGCCTTCAT CCCCGGGCTT TTCCCGACAC CCCCGGGCAT 1891 CCCTGACACG CGGCCTTCAT CCCCGGGCTT TTCCCCACACG CCCCGGCAT 1891 CCCTGACACG CGCCCTTTCTGCTAA GCCCCACAGACC 1891 ATCCCCTATT CAAGACCAC CACCTTCTGG TACCAACTC CGCCCACAC 2001 GGTTATTTCC GGGAGACCC CACTTTGGG TACCAACTC GAGGCCTCA 2011 TACCTTTTGC GGGAGACCC CCAGCCCTG CAGGGGCGGG GCCTCCCCAC 2101 TACCTTTTGC GGGAGACCC CAGGCCCTG GAGGGCGGG GCCTCCCCCC 2201 CACACCAGAC CTTTCCGGG TTTGGGATT GCGGGGGGG GCCTCCCCCC 2201 CACACCAGAC CTTCTCGGG TTTCGGGACT GCGGGGGGG GCCTCCCCCC 2201 CACACCAGAC CTGTTCGGG TTGGGATT CCGGGGGGG GCCTCCCCCC 2201 CACACCAGAC CTGTTCCAAG CTGCCGGGGGGAC CCCCCCCCC GAGCCCCC 2301 CACACCAGAC CCGGGCTGCC GGCCGGGGGGACTC CCACCCCC GAGCCCCC 2401 GAGGTGCGC CGGGCGCGCG GCCCGAGGCCC GAGCCCCCC GAGCCCCC 2401 GAGGTCGCG CGGGCTGCCG GGGGAGTCC CCACCCCC GAGCCAGCC 2401 GAGGTCCGC CGGCCCGCC GCCGGGGGGAGTCC CCACCCCC GAGCCAGCCC 2401 GAGGCCAACA CTATGCCAAG GAGGTCACCAA GAACCACAC GCACCCCC 2501 CACAACCAAA CTATGACAA GTTCAACACA GAGACC GTGCCTCACC CTGTAAAACAC 2501 CACAACCAAA ACTAACAAA GTTCAACACA GAACCTGCCC GTGCCCAAGCCC 2501 CACAACCAAA ACTAACAAA GTTCAACAACA GAAACCTGC GTGCCCAACCCC CTGTACAAACAACCT CTGCACAACC AGAACCAACAACC GTGCCCAACCCCC CTGTCAAACACACC CCACCACCCCCC GCCCCAACCCCCC GCCCCAACCCCCACCCCCCCC	1451	CGCCCGCGGG GCCGGCCTCG GCCCGGAGCG GAGGAAGGAG TCGCCGACCA	
1611 AAGAGGANA ANCTITUGA GACTUTTOGA GAGGGGGG GAGGGAGG GAGGGAGG COCAGGGGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGG COCAGGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG			•
1651 CGCGGGGACC TCTTGGGGG AGGCTGCCC GGGAGGAGG AGGCGTAGGG 1751 GACCCCAGAC GGCCTCCCTT TGCGGCGGG GAGGCTTGGT CCCTCCCTGC 1751 CCCCTACAGG GCGTCCCTCA GGGCGCCCCA TTCCGGACCA GCCCTCGGGA 1801 GTCGCGACC CGGCCTCCTT TGCCGGCGGG TTCCGGACCA GCCCTCGGGA 1801 CCCGTGCAGC CGGCCTTCAT CCCGGGCTG TTCCGGACCA GCCTCGGGA 1801 CCCAGGCGC CGGCTTCAT CCCGGGCTG TTCCGGACCA GCCTGCGACA 1801 CCCAGGCGC CGGCCTTCAT CCCGGGCTG TTCCGGACCA CCTGCCACAG 1801 CCTAGACCCT TTCTCTCCA GGAGACGGAT CTTCTCCCA CCTGCCACAG 1801 CCTAGACCCT TTCTCCTCA GGAGACGGAT CTTCTCCCACAGC CCCCGCCCAT 2001 GGTTATTTCC GTGGGATACT GAGACACCC CGGTCCACAG CTCCCCCCAC 2101 TACCTTTTGC CGGGAGACCC CCAGCCCCT CAGGGGGGGG GCCTCCCCAC 2101 TACCTTTTGC CGGGAGACCC CCAGCCCCTG CAGGGGGGGG GCCTCCCCAC 2101 TACCTTTTGC CGGGAGACCC CCAGCCCCTG CAGGGGGGGG GCCTCCCCAC 2101 TACCTTTGC GTGGAGCG CTCCGGGGC CGGCGGGGGCC TCCGCGCCCCC 2101 CACACCAGCC CTGTTCGGGC TCTCGGAGT GCCGGGGGGC CCCCCCCCCC	1551	GCGGGGAGGA GGGGGAGGAG AGGGACGAGC TGGTCGGGAC	
1701 GACCCCAGAC CGCTCCTT TGCCGCCGG GGGAGAGGC AGACTTGGG 1801 GCCCTACACG GGCTCCCTC GGGAGCCCCCA TTCCCGACCA GCCTCGCGCC 1801 GTCGCCGACC GGGCTCCCTCA GGGGCCCCCA TTCCCGACCA GCCTCGGGCA 1851 CCCCTGCACG GGGCTCCCCC GAAGACTTTCTCCCCAGACCA GCCTCGGGCAC 1851 CCCTGCACG CGCCTTCCAT GCCCGGCCT TTCTCCTCAGCAC CTGCGCACCA 1851 ATCCCTGACAC GCCCTCCCC GAAGACGAT CTCTCTCCCCA GCAGCCACC 1851 ATCCCCTATT GAGACCACC CACCTTCTGG TACCACATG CCCCCACCAC 1851 CCCTGCACG CAAGACCACC CACCTTCTGG TACCACATG CTCCCCCACA 1851 ATCCCTTTC GTGGGATACT GAGACCACC CGGTCCAACC CTCCCCCCCAC 1851 CCCTGCGCC CTTCTCCCTG AGAGCCCCTC GCGTCCAACC CTCCCCCCCAC 1851 CCCCTGCCCC CTCTCTCCCTG AGAGCCCCTC GAGGGCCGGG CTCCCCCCAC 1851 CCCCTGCCCCC CTCCGGCCCTC AGACCCCCC GAGGCCCCTC 1851 CCCACCCCCC CTCCGGCCCT CCCCCCCCC GAGGCCCCCC 1851 CCCACCCCCC CTCCGGCCTG CGCTCCCCCCC 1851 CCCACCCCCC CTCCGGCCTG CGCCCCCCC GAGGCCACCC 1851 CCCACCCCCC CTCCGCCCCTC GCCCCCCCC CGCCCCCCC 1851 CGCCCCACCC CTCCGCCCCC CCCCCCCCCCCC 1851 CCCACCCCCC CCCCCCCCCCC CCCCCCCCCCC 1851 CCCACCCCCC CCCCCCCCCCC CCCCCCCCCCC 1851 CCCACCCCCC CCCCCCCCCCC CCCCCCCCCCCCC	1651	AAGAGGAAAA AAACTTTTGA GACTTTTCCG TTGCCGCTGG GAGCCGGAGG	
1801 GCGCTAGAGG 1801 GTGGCCGAGC 1801 GTGGCCGAGC 1801 CCCTGCAGC 1801 CCCCTGCAGC 1801 ATCCCCTATT 1801 CCACTGCAGC 1801 ATCCCCTATT 1801 CCACTGCAGC 1801 ATCCCCTATT 1801 CCACTGCAGC 1801 ATCCCCTATT 1801 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGC 1801 TACCTTTTGC 1802 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGC 1801 CACTGCAGCC 1801 CAC			
1891 CCCCTGACC 1891 CCCCTGACC 1891 CCCCTGACC 1891 CCCCTGACC 1891 CCCCTGACC 1891 CCCCTGACC 1891 CCCCTGACC 1891 CCCCTGACC 1891 CCCCTGACC 1891 ATCCCCTATT 1891 CCCCTGACC 1891 ATCCCCTATT 1891 CCCCTGACC 1891 ATCCCCTATT 1891 ATCCCCTATT 1891 ATCCCCTATT 1891 ATCCCCTATT 1891 ATCCCCTATT 1891 CCACTGACC 1891 CCACTGACC 1891 CCACTGACC 1891 CCCCTGACC 1891 CCCCCCCCC 1891 CCCCCCCCC 1891 CCCCCCCCC 1891 CCCCCCCCC 1891 CCCCCCCCC 1891 CCCCCCCCC 1891 CCCCCCCCC 1891 CCCCCCCCC 1891 CCCCCCCCC 1891 CCCCCCCCC 1891 CCCCCCCCCC 891 CCCCCCCCCC 1891 CCCCCCCCCC 1891 CCCCCCCCCCC 1891 CCCCCCCCCCC 1891 CCCCCCCCCCC 1891 CCCCCCCCCCC 1891 CCCCCCCCCCC 1891 CCCCCCCCCC 1891 CCCCCCCCCCC 1891 CCCCCCCCCCC 1891 CCCCCCCCCCC 1891 CCCCCCCCCCC 1891 CCCCCCCCCCC 1891 CCCCCCCCCCCCC 1891 CCCCCCCCCCCC 1891 CCCCCCCCCCC 1891 CCCCCCCCCCCCC 1891	1751	CCCCTACACE CGCCTCCCTT TGCCGCCGGG GACGCTTGCT CCCTCCCTGC	
1851 CCCCTGCAG 1901 CCTAGACCT TTCTCCTCCA GGAGACGAT TTCTCCTCCA GGAGACCAC CCCGGGCAT 1951 ATCCCCTATT CAAGACCAC CACCTTCTGG TCTCCTCAG CCCGGCGAT 1951 ATCCCCTATT CAAGACCAC CACCTTCTGG TACCAGATG GCCCCACCACA 2001 GGTTATTCC GGAGACACC CACCTTCTGG TACCAGATG GCCCCACCTCTA 2001 CACTTGCGC CTTCTCCTG AGAGACCCC CGGTCCAACC 2101 TACCTTTTGC CGGAGACCC CAGCCCCTG CAGGGCGTC GAGGCCTTC 2101 TACGTTTTGC CGGAGACCC CCAGCCCCTG CAGGGCGGAG GCCTCCCCAC 2101 CAAGACTATC GCGGAGACCC CTGCGCACT TCTCGGCATT ACCAGTGC AGGCCTTCCC 2201 CAAGACTATC GACAGCGC CTGCGGCGC GCGCGGGAG ATCCACCTC 2311 CAGGCCACT TCCGGGCTG CGGCCGCGCG GCCGCGGGAC TATCCACTG 2311 GGGCCCAGAT CCCGGCCGC GGCCGCGGGAC TATCCACTG 2401 CAAGACTATC GACATGGAC CTGCGCGCC GCGCGGGAC TATCCACTG 2401 CAAGACTATC GACATGGAC CCGGCCCGC GGAGACGCACC CAGGCCCCC 2451 CACCCGCGAC CGGGTGCCC GGGAGAGTCC CAGGCCCCC TTTCCACAC 2451 CACCCGCGAC CGGGTGCCC GGGAGAGTCC CAGGCCCCC TTTCCACAC 2451 CACCACGGAC CCGGCCCGT GCCGAGGCC TTTCCACAC 2451 CACCACGGAC CCGGCCCCAAGCCCGT GTCCTGCCC TTTCCACAC 2451 CACCACGGAC CAGGCCCCA GGGAGAACC CTCGAGACC 2451 CTTCTCCACAC CACTACACA CATCAGACA CTCCGAGACC CGGTGCTACAC 2451 CACCACGGAC ACAATCACA CACTCAGAC CTCCGAGAACC GCGTGCTACAC 2451 CACCACGGAC GAGGTCACCA GAGACCCACA GACAATCCTC 2451 CAGCAACCGG AGATTACCA GAAATACAC ACATTATAT 2451 CAGCAACCGG AGATTACCA GAAATACACA CCCGGGCTTC 2451 CAGCAACTGG AGATTACCA GAAATACACA CCCGGCTTTCCCCAC CCGGGACT 2451 CAGCAACTGG AGATTACCA GAAATACACA CCCGGCGTGAACCCC 2451 CAGCAACCGG CTTTACCA GAAATACACA GAAATACCAC 2451 CAGCAACTGG AGATTACCA GAAATACACA CCCGGCGCCCC CTGCCCCCCCCCC			
1951 ATCCCCTATT CAAGACCACC CACCTTCTGG TACCAGATG GCGCCATCTA 2001 GGTTATTTCC GTGGGATACT GAGACACCCC CGGTCCAAGC GCTCCCCCCA 2001 CACTGCGCC CTTCTCCCTA GAGACACCCC CGGTCCAAGC GCCCCTCCA 2101 TACCTTTTGC GGGGATACCC CCAGCCCCTC CAGGGGCGG GCCTCCCCAC 2101 CACACCACCC CTGTTGGCGC TCTCGGCAT GCCGGGGGGG GCCTCCCCAC 2201 CACACCACCC CTGTTGGCGC TCTCGGCAT GCCGGGGGGG GCCTCCCCAC 2201 CACACCACCC CTGTTGGCGC TGTGGAAGC GCGCGGGGG GCCCCCCCC 2201 CACACCACCC GGCTTGCGGC TGGCCGCGCG 2201 CACACCACCC GGCTTCCAAG CTGCCCCCC GCGGGGGGAC TATCCACCTG 2201 CACACCACCAC CACATGGACC TGGCCGCGCG GAAGCCCCC GAGCCACCGC 2301 CACACCACCAC CCGGTGCCCG GGGAGAGCG GCGCGGGGAC TATCCACCTG 2451 GCGGCCAGAT CCTGTCCAAG CTGCGCGCTC CAGCCCCCC GAGCCACCCC 2451 CACACCACAA TCTATGACAA GTTCAACCAA GAACCGGAG CCCGAGCCCC 2551 CACAACCAAA TCTATGACAA GTTCAACCAA GAACCGGAG CCCGAGCCCC 2551 CACAACCAAA TCTATGACAA GTTCAACACA GAACCGGAG CCCGAGCCCC 2551 CACAACCAAA TCTATGACAA GTTCAACACA GAATATATAT GTTCATCACCACA ACATCACACA ACATCACACA CAATATATAT	1851	CCCCTGCACG CCGCCTTCAT CCCCCAGACC TCGGGCGCAC	
2001 GGTTATTTCC GTGGGATACT GAGACCCC CGGTCCAAGC CTCCCCTCA 2051 CCACTGCGCC CTTCTCCCTG AGGACCCCC CGGTCCAAGC CTCCCCTCCA 2151 CACACCAGCC CTTCTTCCCTG AGGACCCCC CGGTCCCCCAC 2151 CACACCAGCC CTGTTTGGGG TCTCGGCGTG CAGGGGGGGG GCCTCCCCAC 2151 CACACCAGCC CTGTTTGGGG TCTCGGCGTG CGCGGGGGGG GCCTCCCCCAC 2151 CACACCAGCC CTGTTCGCGC TCTCGGCGTG CGCGGGGGG CGCCCCCCCAC 2251 TGGCTACTGG TGCTGACGCC TGGCCGCGCG GCCGCGGAC CACCCCCTG 2251 GCGGCCAGAT CCTGTCCAAG CTGCGGCTG CAGGCCCTC GAGGGCATC CAACCCGGG 2351 GCGGCCAGAT CCTGTCCAAG CTGCGGCTG CAGGCCCCC GAGGCCATC CACCCCCCG CGGCGCGCG CGGGGGCCGCG CGGGGGCCGCG CGGGCGCGCG CGGGCGCGCG CGGGCCGCG CGGGCCGCG CGGGGGCCGCG CGGGCGCGCG CGGGCCGCGC CGGCCCGCG CGGGCCGCGC CGGCCCGCG CGGGGCCGCG CGGGCCGCGC CGGCCGCGC CGGCCGCGC CGGCCGCGC CGGCCGCGC CGGCCCGC CGGCCCGCG CGGGGCCGCGC CGGCCGCGCG CGGGGCCGCGC CGGCCGCGCG CGGGGCCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG			
2051 CACTGCGCC CTTCTCCCTG AGGAGCCTCA GCTTCCCCCA 2101 TACCTTTTGC CGGGAGACCC CCAGCCCTG CAGGGCGGG GCTCCCCAC 2101 CACACAGCC CTGTTCGGCG TTCGGCGTT GCGGGGGGG GCTCCCCAC 2101 CAGACCAGCC CTGTTCGGCG TTCGGCGCTT GCGGGGGGG GCTCCCCAC 2101 CAGACTATC GACATGGAGC TGGCCGCGCG GCCGCTCCC 2101 CAGACTATC GACATGGAGC TGGCCGCGCG GCCGCGCCCCC 2101 CAGACTATC GACATGGAGC TGGCCGCGCG GCCGCCCCC GAGCCCCC GACCCCCC 2101 CAGACTATC GACATGGAGC TGGCGGGGGG GCAGCCCCC GAGCCCCC GAGCCACCC 2101 GAGGCGAAT CCTGTCCAAG CTGCGCGCGC GCAGCCCCC GAGCCACCC GAGCCACCC 2101 GAGCCGACA CCTGTCCAAG CTGCGCGCCC GAGCCCCC GAGCCACCC GAGCCACCC 2101 GACCCGCAC CCGGCCCCGT GCCCGAGGCC GAGCCACCC GAGCCACCC 2101 GAGCCGACA CTACGCCAAG GAGGTCACC GCGTGCTAAT GTGGAAACC 2101 CACACACAAA TCTATGACAA GTTCAAGCA GCTACACACA GCATATATAT 2101 CAGCACGACA CATACAGAGC TCCCGAGAACC GCGTGCTAAT GTGGAAACC 2101 CAGCAACGGC CTGCTGGCA CACACGACCCC 2101 CAGCAACGGC CTGCTGGCA CACACGACCC 2101 CAGCAACGG AGACTGCG CTGCTCAGAA ACAATTCCT GGCGATACCT 2101 CAGCAACGG CTGCTGGCA CACAGGACT GCCAGGAGT GACAGCAGA GAAATTAAG 2101 CAGCAACTGC AGATACACA GAAATACACC GCCAGGAGT TACACCACA GAAATTAAG 2101 CAACTATTCC TTAGGCCCA CTGCTCCTCT GCCAGGAGG GAAAATCAACCT 2101 GAGAAGGGCC AGCATCTCCA AGCTCCCGC CCGCCGAGG GAAATTCACCG 2101 GAAATTGCC CAGCAAACGG TTCTCCAC CCGCCAGGG GAAATTCACCG 2101 GAACTATTCC TCAGCCCC CCGTTTCCTCC CCGCCAGGG GAAATTCACCG 2101 GAACTATTCC TCAGCTCCA CCGCCAGGAC CCCCCCCCCC	1951	ATCCCCTATT CAAGACCACC CACCTTTTCC	E • •
2101 TACCTTTTGC CGGGAGACCC CCAGCCCCTG CAGGGGGGG GCCTCCCCCCCCCC			Ta 1
2551 CACAACGAAA TCTATGACAA 2601 GTTCTTCAAC ACATCAGAGC TCCGAGAAGC GGTACACACA GCATATATATAT 1 TCTCCCGGGC AGAGCTGCGT TCCGAGAAGC GGTACCTGAA 2701 CAGCACCGG AGACTCACCA GCATATATATAT 2701 CAGCACCGG AGCTGACCA CCAGCGACAGC GCATATCTCT 2701 CAGCACCGG AGCTGACCA CCAGCGACTC GCAGAGCTG AACAATTCTCT 2701 CAGCACCGG CTGCTGGCAC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCCG AGTTGTGCGC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCCG AGTTGTGCGC CTGCTCGTG ACACATTCTCT GACACACTCT 2901 GCAAGTGGAC ATCAACGGG CTGCTCGTT GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAACGGG CTGCTCCTGT GACAGCAGGG ATACACACT 2901 GCAAGTGGAC ATCAACGGG CTGCTCCTGT GACACGCCGAG CACCCCGCTG 2901 GAACTATTGC CTATGACCAC CCGAGAAAAATTCAG CACCCCGCTG 2901 ACACTTATCG CTATGACAC CCGAGAAAAAATTCAG CACCCCGCTG 2901 GAACATTGC CCGCAAGAAA CTGCTCCGG CACCCCGCTG CACCCCGCTG 2901 ACACTTATCG CCGCAAGAAA CTGCTCCGG CACCCCCGCTG CACCCCCGCTG CACCCCCGCT CCCGCAAGAAAAAATCACCACT TCCGCCAAGAA CTCCGGCAAGAA CTCCGGCAAGAAAAATCAAC CCAACCACAAGAAAAAAAAAA			A Dro's upon
2551 CACAACGAAA TCTATGACAA 2601 GTTCTTCAAC ACATCAGAGC TCCGAGAAGC GGTACACCA GCATATATATAT 2701 CAGCACGGG AGAGCTGCGT TCCGAGAAGC GGTACCTGAA 2701 CAGCACCGG AGCTGTACCA GAAATACACA GCATATATATAT 2701 CAGCACCGG AGCTGTACCA GAAATACACA GCATATATATAT 2701 CAGCACCGG AGCTGCACC CCAGCGACTC GCAGAAGC GGCATACCT 2701 CAGCACCGG CTGCTGGCAC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCGG AGTTGTGCGC CTGCTGGCAC CCAGCGACTG GCCAGAGTGG TTATCTTTTG 2801 GCAAGTGGAC ATCAAACGGG CTGCTCGTTG GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAAACGGG CTGCTCCGT GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAAACGGG CCTGCCCGGT GACACCACCGC 2901 GCAAGTGGAC ATCAAACGGG CCTGCCCGGT GACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCACCGCAG CCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCT CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCAGG CCCCCCCCGCTG CACCCCCAGG CCCCCCCACC CCCCCCCCC CCCCCCCC			A Pacanisa
2551 CACAACGAAA TCTATGACAA 2601 GTTCTTCAAC ACATCAGAGC TCCGAGAAGC GGTACACCA GCATATATATAT 2701 CAGCACGGG AGAGCTGCGT TCCGAGAAGC GGTACCTGAA 2701 CAGCACCGG AGCTGTACCA GAAATACACA GCATATATATAT 2701 CAGCACCGG AGCTGTACCA GAAATACACA GCATATATATAT 2701 CAGCACCGG AGCTGCACC CCAGCGACTC GCAGAAGC GGCATACCT 2701 CAGCACCGG CTGCTGGCAC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCGG AGTTGTGCGC CTGCTGGCAC CCAGCGACTG GCCAGAGTGG TTATCTTTTG 2801 GCAAGTGGAC ATCAAACGGG CTGCTCGTTG GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAAACGGG CTGCTCCGT GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAAACGGG CCTGCCCGGT GACACCACCGC 2901 GCAAGTGGAC ATCAAACGGG CCTGCCCGGT GACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCACCGCAG CCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCT CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCAGG CCCCCCCCGCTG CACCCCCAGG CCCCCCCACC CCCCCCCCC CCCCCCCC			1
2551 CACAACGAAA TCTATGACAA 2601 GTTCTTCAAC ACATCAGAGC TCCGAGAAGC GGTACACCA GCATATATATAT 2701 CAGCACGGG AGAGCTGCGT TCCGAGAAGC GGTACCTGAA 2701 CAGCACCGG AGCTGTACCA GAAATACACA GCATATATATAT 2701 CAGCACCGG AGCTGTACCA GAAATACACA GCATATATATAT 2701 CAGCACCGG AGCTGCACC CCAGCGACTC GCAGAAGC GGCATACCT 2701 CAGCACCGG CTGCTGGCAC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCGG AGTTGTGCGC CTGCTGGCAC CCAGCGACTG GCCAGAGTGG TTATCTTTTG 2801 GCAAGTGGAC ATCAAACGGG CTGCTCGTTG GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAAACGGG CTGCTCCGT GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAAACGGG CCTGCCCGGT GACACCACCGC 2901 GCAAGTGGAC ATCAAACGGG CCTGCCCGGT GACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCACCGCAG CCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCT CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCAGG CCCCCCCCGCTG CACCCCCAGG CCCCCCCACC CCCCCCCCC CCCCCCCC			1 0
2551 CACAACGAAA TCTATGACAA 2601 GTTCTTCAAC ACATCAGAGC TCCGAGAAGC GGTACACACA GCATATATATAT 1 TCTCCCGGGC AGAGCTGCGT TCCGAGAAGC GGTACCTGAA 2701 CAGCACCGG AGACTCACCA GCATATATATAT 2701 CAGCACCGG AGCTGACCA CCAGCGACAGC GCATATCTCT 2701 CAGCACCGG AGCTGACCA CCAGCGACTC GCAGAGCTG AACAATTCTCT 2701 CAGCACCGG CTGCTGGCAC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCCG AGTTGTGCGC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCCG AGTTGTGCGC CTGCTCGTG ACACATTCTCT GACACACTCT 2901 GCAAGTGGAC ATCAACGGG CTGCTCGTT GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAACGGG CTGCTCCTGT GACAGCAGGG ATACACACT 2901 GCAAGTGGAC ATCAACGGG CTGCTCCTGT GACACGCCGAG CACCCCGCTG 2901 GAACTATTGC CTATGACCAC CCGAGAAAAATTCAG CACCCCGCTG 2901 ACACTTATCG CTATGACAC CCGAGAAAAAATTCAG CACCCCGCTG 2901 GAACATTGC CCGCAAGAAA CTGCTCCGG CACCCCGCTG CACCCCGCTG 2901 ACACTTATCG CCGCAAGAAA CTGCTCCGG CACCCCCGCTG CACCCCCGCTG CACCCCCGCT CCCGCAAGAAAAAATCACCACT TCCGCCAAGAA CTCCGGCAAGAA CTCCGGCAAGAAAAATCAAC CCAACCACAAGAAAAAAAAAA			DOKK
2551 CACAACGAAA TCTATGACAA 2601 GTTCTTCAAC ACATCAGAGC TCCGAGAAGC GGTACACACA GCATATATATAT 1 TCTCCCGGGC AGAGCTGCGT TCCGAGAAGC GGTACCTGAA 2701 CAGCACCGG AGACTCACCA GCATATATATAT 2701 CAGCACCGG AGCTGACCA CCAGCGACAGC GCATATCTCT 2701 CAGCACCGG AGCTGACCA CCAGCGACTC GCAGAGCTG AACAATTCTCT 2701 CAGCACCGG CTGCTGGCAC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCCG AGTTGTGCGC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCCG AGTTGTGCGC CTGCTCGTG ACACATTCTCT GACACACTCT 2901 GCAAGTGGAC ATCAACGGG CTGCTCGTT GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAACGGG CTGCTCCTGT GACAGCAGGG ATACACACT 2901 GCAAGTGGAC ATCAACGGG CTGCTCCTGT GACACGCCGAG CACCCCGCTG 2901 GAACTATTGC CTATGACCAC CCGAGAAAAATTCAG CACCCCGCTG 2901 ACACTTATCG CTATGACAC CCGAGAAAAAATTCAG CACCCCGCTG 2901 GAACATTGC CCGCAAGAAA CTGCTCCGG CACCCCGCTG CACCCCGCTG 2901 ACACTTATCG CCGCAAGAAA CTGCTCCGG CACCCCCGCTG CACCCCCGCTG CACCCCCGCT CCCGCAAGAAAAAATCACCACT TCCGCCAAGAA CTCCGGCAAGAA CTCCGGCAAGAAAAATCAAC CCAACCACAAGAAAAAAAAAA			A DEM.
2551 CACAACGAAA TCTATGACAA 2601 GTTCTTCAAC ACATCAGAGC TCCGAGAAGC GGTACACCA GCATATATATAT 2701 CAGCACGGG AGAGCTGCGT TCCGAGAAGC GGTACCTGAA 2701 CAGCACCGG AGCTGTACCA GAAATACACA GCATATATATAT 2701 CAGCACCGG AGCTGTACCA GAAATACACA GCATATATATAT 2701 CAGCACCGG AGCTGCACC CCAGCGACTC GCAGAAGC GGCATACCT 2701 CAGCACCGG CTGCTGGCAC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCGG AGTTGTGCGC CTGCTGGCAC CCAGCGACTG GCCAGAGTGG TTATCTTTTG 2801 GCAAGTGGAC ATCAAACGGG CTGCTCGTTG GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAAACGGG CTGCTCCGT GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAAACGGG CCTGCCCGGT GACACCACCGC 2901 GCAAGTGGAC ATCAAACGGG CCTGCCCGGT GACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCACCGCAG CCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCGCT CACCCCCGCTG CACCCCCGCTG CACCCCCGCTG CACCCCCAGG CCCCCCCCGCTG CACCCCCAGG CCCCCCCACC CCCCCCCCC CCCCCCCC			. gene
2551 CACAACGAAA TCTATGACAA 2601 GTTCTTCAAC ACATCAGAGC TCCGAGAAGC GGTACACACA GCATATATATAT 1 TCTCCCGGGC AGAGCTGCGT TCCGAGAAGC GGTACCTGAA 2701 CAGCACCGG AGACTCACCA GCATATATATAT 2701 CAGCACCGG AGCTGACCA CCAGCGACAGC GCATATCTCT 2701 CAGCACCGG AGCTGACCA CCAGCGACTC GCAGAGCTG AACAATTCTCT 2701 CAGCACCGG CTGCTGGCAC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCCG AGTTGTGCGC CCAGCGACTC GCCAGAGTGG TTATCTTTTG 2801 ATGTCACCCG AGTTGTGCGC CTGCTCGTG ACACATTCTCT GACACACTCT 2901 GCAAGTGGAC ATCAACGGG CTGCTCGTT GACAGCAGGG ATTACCACT 2901 GCAAGTGGAC ATCAACGGG CTGCTCCTGT GACAGCAGGG ATACACACT 2901 GCAAGTGGAC ATCAACGGG CTGCTCCTGT GACACGCCGAG CACCCCGCTG 2901 GAACTATTGC CTATGACCAC CCGAGAAAAATTCAG CACCCCGCTG 2901 ACACTTATCG CTATGACAC CCGAGAAAAAATTCAG CACCCCGCTG 2901 GAACATTGC CCGCAAGAAA CTGCTCCGG CACCCCGCTG CACCCCGCTG 2901 ACACTTATCG CCGCAAGAAA CTGCTCCGG CACCCCCGCTG CACCCCCGCTG CACCCCCGCT CCCGCAAGAAAAAATCACCACT TCCGCCAAGAA CTCCGGCAAGAA CTCCGGCAAGAAAAATCAAC CCAACCACAAGAAAAAAAAAA			To dil
2601 GTTCTTCAAC ACATCAGAGC TCCGAGAAGC GGTACCTCAA CCCGTTTGC ACACTCAGAGC AGAGCTGGT CAGCACGTGG AGCTGTACCA GAAATACAGC AACAATTCCT GGCGATACCT GAAATACAGC AACAATTCCT GGCGATACCT GAAATACAGC AACAATTCCT GGCGATACCT GAAATACAGC AACAATTCCT GGCGATACCT GAAATACAGC AACAATTCCT GGCGATACCT GAAATACAGC AACAATTCCT GGCGATACCT GAAATACAGC AACAATTCCT GGCGATACCT TTAGCGCCCA CTGCTCCTGT GACAGCAGGG GGAAATTGAG GGAAATTGAG GAAATACACT GACAGCAGGG GGAAATTGAG GAAATACACT GACAGCAGGG GGAAATTGAG GAAATACACT GACAGCAGGG GACATCTGC AGCATCTGC CCCGCGGGG CCCTGGACAC CCCGCAAGGAC CCCGCAAGGAC CTCGGCCGC CCCGCCGGC CCCGCCAAG CCCGCAAGGAC CTCGGCCGG CCCGCCCGC CCCGCCCGC CCCGCCCG	2501	AGGCCGACTA CTACGCCAAG GAGGCGTGAGGC GGGGGGGGGCCTG	Vlagati
TCTCCCGGGC AGAGCTGCGT CTGCTGAGGA GCTCAAGTT AAAAGTGGAG TTGTTACCAGGT GAGATCCGG CTGCTGCAC CCAGCAGTT GGCCAAGTT AAAAGTGGAG ATTTCACCGG AGTTGTGCAC CCAGCGACTC GCCAGAGTG TTATCTTTTG GCGATCCGC ATTTGTGCGC CTGCTTGCTGCAC CCAGCGACTC GCCAGAGTG TTATCTTTTG GCGATCCGC ATTTGTGCGC CTGCTTGCTGCAC CCAGCGACTC GCCAGAGTG TATCTTTTG GCAACCGG ATTTCACCGG AGTTGTGCGC CTGCTCTGT GACAGCAGGG GGAAATTGAG GCGATCCACCCCCAC CTGCTCTGT GACAGCAGGG GGAAATTGAG GCAAGTGGAC ATCAACGGT TCACTACCGG CCGCCGAGGT GACCTGGCCA CACCCCCCTG GCAAGTGGAC ATCAACGGT TCACTACCGG CCGCCGCGAGC CCCCCGCCGC GCACGCCCAGC CCCCCCCAC CACCCCCCTG GCAACTATTGC CCACCACAGAGAC CTCCGGCCGA AGTTGAGCCAG GCAACATTTGC CCGCAAGGAC CTCGGCCCA AGTTGAGCCAG GCAACACTCGC CCCCCCAGCCCCAC CCGCCCCAGC GCACGCCCAGG GCAACACCAG TACAGCAAGA CTCTGGCCCT GTACAACCAG CATAACCCGG GGAACACGAG TACAGCAAG TCCTGGCCCT GTACAACCAG CATAACCCGG GGAACACGAG TACAGCAAG TCCTGGCCCC AGGCCCCAC CCCGCCCCGC			Japan See
2701 CAGCACGTG AGCTGTACCA GAAATACAGC AACAATTCCT GGCGATACCT 2751 CAGCAACCGG CTGCTGGCAC CCAGCGACTC GCCAGAGTG TTATCTTTTG 2801 ATGTCACCGA AGTTGTGCG CAGTGGTTGA GCCGTGAGG GGAAATTCAG 2851 GGCTTTCGCC TTAGCGCCCA CTGCTCCTGT GACAGCAGG ATAACACACT 2901 GCAAGTGGAC ATCAACCGG TTACTCCTGC CACCCGAGGT GACACCACT 2901 GCAAGTGGAC ATCAACCGG TTACTCCTGC CACCCGCCGAG 3001 GAGAGGGCC AGCATCTGCA AAGCTCCCGG CACCCGCCGAG 3001 GAGAGGGCC AGCATCTCCA CGGAGAAGAA CTGCTGCCTG CCCCCGAGC 3051 CAACTATGC TTCAGCTCCA CGGAGAAGAA CTGCTGGCCCA CCCCGCCAG 3101 ACATTGACTT CCGCAAGGAC CTCGGCTGA AGTGGATCCA CGAGCCCAAG 3101 ACATTGACTT CCGCAAGGAC CTCGGCCGA AGTGGATCCA CGAGCCCAAG 3101 GGCACCCAG TACAGCAAGG TCCTGGCCC GTGACACCCAGC CCCACCCCAGG 3201 GGCCTCGGC GGCCCGTGC TGCGTCGCA GCCCGCCGCAGC CCATAACCCGG GCCCCTGCCCAGG GCCCCTGCCCAGG GCCCCTGCCCCAGGACCAAG TACAGCAAGA TCCTGGCCCC AGGCCCTAGA GCCCCTGCCCCAGGACCAAG TACAGCAAGA TCCTGGCCCC GCCCCCCCCCC			***
2751 CAGCAACCGG			
2801 ATGTCACCGG			
2851 GGCTTTCGCC TTAGCGCCCA CTGCTCCTGT GACAGCAGG GGAAATTGAG 2901 GCAAGTGGAC ATCAACGGGT TCACTACCGG CCGCCGAGGT GACCCGGCCA 3001 GAGAGGGCCC AGCATCTGCA AAGCTCCGG CACCCCGGCTG 3051 CAACTATTGC TTCAGCTCCA CAGGAGAGA CTGCTGCTGGTG 3101 ACATTGACTT CCGCAAGGAC CTCGGCTGGA AGGCTCGGG CACCCCGCTG 3101 ACATTGACTT CCGCAAGGAC CTCGGCTGA AGGCTCCAG CCGCGGAGAC 3151 GGCTACCATG CCAACTTCTG CTCGGCCC TGCCCCTACA TTTGGAGCCT 3201 GGACACGCAG TACAGCAAGG TCCTGGCCC TGCCCCTACA TTTGGAGCCT 3201 GGACCACGAG TACAGCAAGG TCCTGGCCC TGACACACAG CATAACCCGG 3251 GCGCTTCGCC GGCCCCTG CAGGCCCAAG GCCGCTGCC 3301 ATCGTTACT ACGTGGCCC CAAGCCCAAG GTGGACCAAC TTTCCCCCGG 3301 ATCGTGTACT ACGTGGGCC CAAGCCCAAG GTGGACCACC TGCCCCACC 3301 CCCGGCAGGC CCGGCCCCAC CCCGCCCGC CCCGCCCCGC 3401 CCCGGCAGGC CCCGGCCCCAC CCCGCCCGC CCCGCCCCGC 3401 CCCGGCAGGC CCGGCCCCAC CCCGCCCGC CCCGCCCCGC 3401 CCCGGCAGGC CCGGCCCCAC CCCGCCCCGC CCCCCCCC			
2901 GCAAGTGGAC ATCAACGGGT TCACTACCGG CCGCCGAGGT GACCTGGCCA 2951 CCATTCATGG CATGAACGG CCTTTCCTGC TTCTCATGGC CACCCCGCTG 3001 GAGAGGGCCC AGCATCTGCA AAGCTCCCGG CACCGCGAGGT CACCCCCGTG 3051 CAACTATTGC TTCAGCTCCA CAGCTCCGG CACCGCGGAG CCCTGGACAC 3101 ACATTGACTT CCGCAAGGAC CTCGGCTGGA AGTGGATCCA 3101 ACATTGACTT CCGCAAGGAC CTCGGCTGGA AGTGGATCCA 3151 GGCTACCATG CCAACTTCTG CCTCGGCCCT GTACAACCAG CATAACCCGG 3201 GGACACGCAG TACAGCAAGG TCCTGGCCCT GTACAACCAG CATAACCCGG 3251 GCGCTCGGC GGCGCCGTGC TGCGTGCCC AGGCGCTGCA GTGCACCAAG 3351 GATCGTGCC TCCTGCAAGT GCAGCCCAAG GTGGAGCAGC TGTCCAACAT 3351 GATCGTGCGC TCCTGCAAGT GCAGCCCAAG GTGGAGCAGC TGTCCCAACAT 3401 CCCGGCAGGC CCGGCCCCAC CCCGCCCCGC CCCGCCCCGC 3451 GGGCTGATT TAAFFACACC GTGCCCCAAG CCCACCTGGG GCCCCATTAA 3501 AGATGGAAGGA AGGACTGCGG ATCTCTTGT CATTGGGCGC CTGCCTGGG 3451 GGCACTTCC TGACGTTCCC CCACTCCCAC TCCCTCTCTT TCCCCTTCTG 3601 CCTCCTCCT CCTGTCTGCA CTATTCCTTT GCCCGGCATC AAGGCACAGG 3651 GGACCATGGG GGAACACAC TGTAGTTAGA CTCATTCATT TATTTATT TATTATTATT GAGCACCTTG 3601 CCTCCTCTG AAGTGCCATA AGGGAGGAT TCCTGCCCAC CACCATAGCA 3701 GGCACTGTTG AAGTGCCATA AGGGAGGAT TCCTTCCTTCT CACCCACTTGGAGACCTTG GAGACCATG ATGGCAGGAA CTCATTCAGT CACCATTAGCA 3751 ACACTTCAGA ATGGCAGGA CTCTGATAAC ACCCATTTAA 3761 AAACAAGCCC AGAGAGGTA AGGGAGGAT TCCTGCCCAC CACCACTAGCA 3851 CTTTAGTGG GGATAGTGA AGGAGACATA AAAGATAGTA GTTCAGGCCA 3851 CTTTAGTGG GGATAGTGA AGGAGACATA AAAGATAGTA GTTCAGGCCA 3851 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGAG GCAGAACTG 3851 GAGGATACTT GAATCCAGGC ATTTGAGAC AGCCTTGGAACCTG 3851 GAGGATACTT GAATCCAGGC ATTTGAGAC AGCCTGGTA ACCCATTGAGA 3851 CTTTAGTGGG GAATGTGAA GAAGACATA AAAGATAGTA GTTCAGGCCA 3851 GAGGATACTT TGAACCAGGC ATTTGAGAC AGCCTGGGAACCTG 3851 GAGGATACTT TGAACACAC TTTTAAAAAA TGTACCCTG TGGTCCCAGC 401 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACCCTG TGGTCCCAGC 4051 TACTCTGGAG GCTAAGGTGG AATCCTAGGA AGGCACTGGAACCTG 4051 TACTCTGGAG GCTAAGGTGG AATCCTAGGA AGGCACAGGACTTG 4051 TACTCTGGAG GCTAAGGTGG AATCCTAGGAC AGCCTGGGAACCTG 4051 TACTCTGGAG GCTAAGGTGG AAT			
2951 CCATTCATGG CATGAACCGG CCTTTCCTGC TTCTCATGGC CACCCCGTG 3001 GAGAGGGCCC AGCATCTGCA AAGCTCCCGG TTCTCATGGC CACCCCGTG 3051 CAACTATTGC TTCAGCTCCA CGGAGAAGAA CTGCTGCGTG CGGCAAGC 3101 ACATTGACTT CCGCAAGGAC CTCGGCTGGA AGTGGATCCA CGGCAGAG 3101 ACATTGACTT CCGCAAGGAC CTCGGCTGGA AGTGGATCCA CGGCAAGC 3151 GGCTACCATG CCAACTTCTG CCTCGGCCC TGCCCCTACA TTTGGAGCCT 3201 GGACACGCAG TACAGCAAGG TCCTGGCCCT GTACAACCAG CATAACCCGG 3251 GCGCCTCGGC GGCGCTGC TGCGTCGCC AGGCGCTGGA GCCGCTGCC 3301 ATCGTGTACT ACGTGGGCCC CAAGCCCAAG GTGGAGCAGC CTGCCCCGC 3301 ATCGTGTACT ACGTGGGCC CCAAGCCCAAG GTGGAGCAGC CCCCCCGCCCC 3301 GGCTGTATT TAAFFACACC GTGCCCCAAG GCCCCCGC CCCCCCCGC 3401 CCCGGCAGG CCGGCCCCAC CCCGCCCCC CCCCCCCGC 3401 AGATGGAGAG AGGACTGCG ATCTCTTGTT CATTGGGCGC CTGCCCTAGG 3501 ACACTCCCC TGACGTTCCC CCACTCCCAC TCCCTCTCC TCCCCTCTGG 3601 CCTCCTCCTG CCTGTCTGCA CTATTCCTTT CACTTGGCGC CTGCCTCTGGG 3601 CCTCCTCCTG CCTGTCTGCA CTATTCCTTT CACCGGCACT CACCACAGG 3601 CCTCCTCCTG CCTGTCTGCA CTATTCCTTT CACCGCCCTT CACCACCTTGG 3701 GGCACTGTG AAGTGCCTTA CATTAATGAA CTCATTTATT GAGCACCATGG 3701 GGCACTGTG AAGTGCCTTA CATTAATGAA CTCATTCAGT CACCATAGCA 3701 GGCACTGTG AAGTGCCTTA CATTAATGAA CCCATTTTA AAGGTTCAGG 3801 AAACAAGCC AGGAGGTTA AGGGAGATTA CACCATTTAA CACCATTAGCA 3801 AAACAAGCC AGGAGGTTA AGGGAGATTA AAGATAGTA GTTCAGGCCA 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAACCTG 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAACCTG 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAACCTG 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAACCTG 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTTGGAG GCAGAACCTG 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTTGGAG GCAGAACCTG 3901 GGCGCGGTGC TCACCCTGT TACAAAAAAA TAGAAAAAAA TAGAAAAAAA TAGAAAAAAA TAGAAAAAAA TAGAAAAAAAA	2901	GCTTTCGCC TTAGCGCCCA CTGCTCCTGT GACAGCAGGG ATAACACACT	
3001 GAGAGGGCCC AGCATCTGCA AAGCTCCCGG CACCGCCGGG CACCGCCGGGGGGGGGG			
3051 CAACTATTGC TTCAGCTCCA CGGAGAGAA CTGCTGCGGG CCCTGGACAC CGGCAAGGAC CTCGGCTGGAA ACTGCTGCTGGTG CGGCCCAAG CCGCCAAGGAC CTCGGCTGGA AGTGGATCCA CGGAGCCCAAG CCGCCAAGGAC CTCGGCTGGA AGTGGATCCA CGGAGCCCAAG CCGCCAAGGAC CTCGGCTGGA AGTGGATCCA CGAGCCCAAG TACAGCAAGGA TCCTGGCCCT GTACAACCAG CATAACCCGG ACCGCCGGC GGCGCCGTGC TGCGCCCT GTACAACCAG CATAACCCGG ACCGCCGGC CAGGCCCAAG GTGAGACAAC AGCCCAAG GTGAGCCAAC TGTCCAACAT GAGCCCAAG GTGAGCCAG TGTCCAACAT GAGCCCAAG TGCGCCGCC CCCGCCCGC CCCGCCCGC CCCGCCCG	3001	GAGAGGGCC AGGAGCGG CCTTTCCTGC TTCTCATGGC CACCCCGCTG	
3151 GGCTACCATG CCAACTTCTG CCTCGGGCCC TGCCCTACA TTTGGAGCCT 3201 GGACACGCAG TACAGCAAGG TCCTGGCCCT GTACAACCAG CATAACCCGG 3251 GCGCCTCGGC GGCGCGTGC TGCGTGCCC AGGCGCTGGA GCCGCTGCC 3301 ATCGTGTACT ACGTGGGCCG CAAGCCCAAG GTGGAGCAG GCCGCTGCC 3301 ATCGTGTACT ACGTGGGCCC CAAGCCCAAG GTGGAGCAGC CTGCCCCGC 3401 CCCGGCAGC CCCGCCCCAC CCCGCCCCCC CCCGCCCCGC 3401 CGCGGCAGC CCGGCCCAC CCCGCCCCCC CCCGCCCCGC 3401 AGATGGAGAG AGGACTGCGG ATCTCTGTT CATTGGGCG CTGCCCATGG 3501 AGATGGAGAG AGGACTGCG ATCTCCTTT CCCTCTCTC TCCCTCTCG 3601 CCTCCTCCT CCTGTCTGCA CTATTCCTTT GCCCGGCATC AAGGCACAGG 3601 CCTCCTCCTG CCTGTCTGCA CTATTCCTTT GCCCGGCATC AAGGCACAGG 3601 GGCACTGTG GAACACTAC TGTAGTTAGA TCTATTTATT GACGCACAGG 3701 GGCACTGTG AAGTGCCTTA CATTAATCAA CCCATTTAA AAGGTTCAGG 3701 GGCACTGTG AAGTGCCTTA CATTAATCAA CCCATTTAA AAGGTTCAGG 3801 AAACAAGCC AGAGAGGTA AGGAGCAATA AAGATAGTA GTTCAGGCCA 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAACCTG 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAACTG 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAACTG 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAACTG 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAACTG 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAACTG 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGAG GCAGAACTG 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAACTG 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGAG GCAGAACTG 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGAG GCAGAACTG 3901 TTACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCACCTG TGGTCCCAGC 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4101 TGCAG	3051	CAACTATTGC TTCAGCTCCA AGCTCCCGG CACCGCCGAG CCCTGGACAC	•
3151 GGCTACCATG CCAACTTCTG CCTCGGGCCC TGCCCCTACA TTTGGAGCCT 3201 GGACACGCAG TACAGCAAGG TCCTGGCCCT GTACAACCAG CATAACCCGG 3251 GCGCTTGGC GGCGCCGTGC TGCGTGCCC AGGCGTGCCC AGGCGTGCCC CAGGCCTACA TTTGGAGCCT 3301 ATCGTGTACT ACGTGGGCCG CAAGCCCAAG GTGGAGCAGC TGTCCAACAT 3351 GATCGTGAGC TCCTGCAAGT GCAGCCCAAG GTGGAGCAGC TGTCCCAACAT 3401 CCCGGCAGGC CCGGCCCCAC CCCGCCCGC CCCGCCCG	3101	ACATTGACTT CCGCAAGGAC CTCCGCTGCA ACTGCTGCGTG CGGCAGCTGT	
3301 ATCGTGTACT ACGTGGGCCG CAAGCCCAAG GTGGAGCAGC TGTCCAACAT 3351 GATCGTGCGC TCCTGCAAGT GCAGCTCAGG TCCCGCCCGC CCCGCCCGC 3401 CCCGGCAGGC CCGGCCCAC CCCGCCCCGC CCCGCTGCC TTGCCCATGG 3451 GGGTTATT TAAFFACACC GTGCCCCAAG CCCACCTGGG GCCCATTAA 3501 AGATGGAGAG AGGACTGCGG ATCTCTGTT CATTGGCGC CCGCCTGGG 3551 TCTCCATCCC TGACGTTCCC CCACTCCCAC TCCCTCTCTC TCCCTCTCTG 3601 CCTCTCTCT CCTGTCTGCA CTATTCCTTT GCCCGCATC AAGGCACAGG 3651 GGACCAGTGG GGAACACTAC TGTAGTTAGA TCTATTTATT GAGCACCTTG 3701 GGCACTGTG AAGTGCCTTA CATTAATGAA CTCATTCAGT CACCATAGCA 3751 ACACTCTGAG ATGGCAGGAA CTCTGATAAC ACCCATTTAA AAGGTTAAGG 3851 CTTTAGTGGG GGATAGTGAA AGGGAGCAT TCCTCCCCCC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA AGGAGCAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATGG 3951 GAGGATACTT GAATCCAGGC ATTTGAGACC AGCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4051 TACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCCTGGG AGGTCAAGGC 4101 TGCAG		STEEDGELGGA AGTGGATCCA CGAGCCCAAG	
3301 ATCGTGTACT ACGTGGGCCG CAAGCCCAAG GTGGAGCAGC TGTCCAACAT 3351 GATCGTGCGC TCCTGCAAGT GCAGCTCAGG TCCCGCCCGC CCCGCCCGC 3401 CCCGGCAGGC CCGGCCCAC CCCGCCCCGC CCCGCTGCC TTGCCCATGG 3451 GGGTTATT TAAFFACACC GTGCCCCAAG CCCACCTGGG GCCCATTAA 3501 AGATGGAGAG AGGACTGCGG ATCTCTGTT CATTGGCGC CCGCCTGGG 3551 TCTCCATCCC TGACGTTCCC CCACTCCCAC TCCCTCTCTC TCCCTCTCTG 3601 CCTCTCTCT CCTGTCTGCA CTATTCCTTT GCCCGCATC AAGGCACAGG 3651 GGACCAGTGG GGAACACTAC TGTAGTTAGA TCTATTTATT GAGCACCTTG 3701 GGCACTGTG AAGTGCCTTA CATTAATGAA CTCATTCAGT CACCATAGCA 3751 ACACTCTGAG ATGGCAGGAA CTCTGATAAC ACCCATTTAA AAGGTTAAGG 3851 CTTTAGTGGG GGATAGTGAA AGGGAGCAT TCCTCCCCCC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA AGGAGCAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATGG 3951 GAGGATACTT GAATCCAGGC ATTTGAGACC AGCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4051 TACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCCTGGG AGGTCAAGGC 4101 TGCAG	3151 I	GGCTACCATG CCAACTTCTG CCTCGGGCCC TGCCCCTACA TTTGGAGCCT	Tin seno.
3301 ATCGTGTACT ACGTGGGCCG CAAGCCCAAG GTGGAGCAGC TGTCCAACAT 3351 GATCGTGCGC TCCTGCAAGT GCAGCTCAGG TCCCGCCCGC CCCGCCCGC 3401 CCCGGCAGGC CCGGCCCAC CCCGCCCCGC CCCGCTGCC TTGCCCATGG 3451 GGGTTATT TAAFFACACC GTGCCCCAAG CCCACCTGGG GCCCATTAA 3501 AGATGGAGAG AGGACTGCGG ATCTCTGTT CATTGGCGC CCGCCTGGG 3551 TCTCCATCCC TGACGTTCCC CCACTCCCAC TCCCTCTCTC TCCCTCTCTG 3601 CCTCTCTCT CCTGTCTGCA CTATTCCTTT GCCCGCATC AAGGCACAGG 3651 GGACCAGTGG GGAACACTAC TGTAGTTAGA TCTATTTATT GAGCACCTTG 3701 GGCACTGTG AAGTGCCTTA CATTAATGAA CTCATTCAGT CACCATAGCA 3751 ACACTCTGAG ATGGCAGGAA CTCTGATAAC ACCCATTTAA AAGGTTAAGG 3851 CTTTAGTGGG GGATAGTGAA AGGGAGCAT TCCTCCCCCC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA AGGAGCAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATGG 3951 GAGGATACTT GAATCCAGGC ATTTGAGACC AGCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4051 TACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCCTGGG AGGTCAAGGC 4101 TGCAG	3201 l	GGACACGCAG TACAGCAAGG TCCTGGCCCT GTACAACCAG CATAACCCGG	I in gene
3301 ATCGTGTACT ACGTGGGCCG CAAGCCCAAG GTGGAGCAGC TGTCCAACAT 3351 GATCGTGCGC TCCTGCAAGT GCAGCTCAGG TCCCGCCCGC CCCGCCCGC 3401 CCCGGCAGGC CCGGCCCAC CCCGCCCCGC CCCGCTGCC TTGCCCATGG 3451 GGGTTATT TAAFFACACC GTGCCCCAAG CCCACCTGGG GCCCATTAA 3501 AGATGGAGAG AGGACTGCGG ATCTCTGTT CATTGGCGC CCGCCTGGG 3551 TCTCCATCCC TGACGTTCCC CCACTCCCAC TCCCTCTCTC TCCCTCTCTG 3601 CCTCTCTCT CCTGTCTGCA CTATTCCTTT GCCCGCATC AAGGCACAGG 3651 GGACCAGTGG GGAACACTAC TGTAGTTAGA TCTATTTATT GAGCACCTTG 3701 GGCACTGTG AAGTGCCTTA CATTAATGAA CTCATTCAGT CACCATAGCA 3751 ACACTCTGAG ATGGCAGGAA CTCTGATAAC ACCCATTTAA AAGGTTAAGG 3851 CTTTAGTGGG GGATAGTGAA AGGGAGCAT TCCTCCCCCC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA AGGAGCAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATGG 3951 GAGGATACTT GAATCCAGGC ATTTGAGACC AGCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4051 TACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCCTGGG AGGTCAAGGC 4101 TGCAG	3251	GCGCCTCGGC GGCGCCGTGC TGCGTGCCGC AGGCGCTGGA GCCGCTGCCC	V/
3351 GATCGTGCGC TCCTGCAAGT GCAGCTGAGG TCCCGCCCGC CCCGCCCGC 3401 CCCGGCAGGC CCGGCCCCAC CCCGCCCCGC CCCCGCTGCC TTGCCCATGG 3451 GGGCTGTATT TAAFFACACC GTGCCCCAAG CCCACCTGGG GCCCCATTAA 3501 AGATGGAGAG AGGACTGCGG ATCTCTGTGT CATTGGGCGC CTGCCTGGGG 3551 TCTCCATCCC TGACGTTCCC CCACTCCCAC TCCCTCTCT TCCCTCTCTG 3601 CCTCCTCCTG CCTGTCTGCA CTATTCCTTT GCCCGGCATC AAGGCACCATG 3651 GGACCAGTGG GGAACACTAC TGTAGGTTAGA TCTATTTATT GAGGCACCTTG 3701 GGCACTGTG AAGTGCCTTA CATTAATGAA CTCATTCAGT CACCATAGCA 3751 ACACTCTGAG ATGGCAGGGA CTCTGATAAC ACCCATTTTA AAGGTTCAGG 3801 AAACAAGCCC AGAGAGGTTA AGGGAGGATT TCCTGCCCAC CAGGAACCTG 3801 CTTTAGTGGG GGATAGTGAA GAAGACAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATGG 3951 GAGGATACTT GAATCCAGGC ATTTGAGACC AGCCTGGGTA ACATACTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4101 TGCAG	3301 I	ATCGTGTACT ACGTGGGCCG CAAGCCCAAG GTGGAGCAGC TGTCCAACAT	<u>Y</u>
3751 ACACTCTGAG ATGGCAGGGA CTCTGATAAC ACCCATTTA AAGGTTGAGG 3801 AAACAAGCCC AGAGAGGTTA AGGGAGGAT TCCTGCCCAC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA GAAGACAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATAGG 3951 GAGGATACTT GAATCCAGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4101 TGCAG	3351 📙	GATCGTGCGC TCCTGCAAGT GCAGCTGAGG TCCCGCCCGC CCCGCCCCGC	V 250 V
3751 ACACTCTGAG ATGGCAGGGA CTCTGATAAC ACCCATTTA AAGGTTGAGG 3801 AAACAAGCCC AGAGAGGTTA AGGGAGGAT TCCTGCCCAC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA GAAGACAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATAGG 3951 GAGGATACTT GAATCCAGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4101 TGCAG	3401	CCCGCAGGC CCGGCCCAC CCCGCCCGC CCCCGCTGCC TTGCCCATGG	'l' zecur
3751 ACACTCTGAG ATGGCAGGGA CTCTGATAAC ACCCATTTA AAGGTTGAGG 3801 AAACAAGCCC AGAGAGGTTA AGGGAGGAT TCCTGCCCAC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA GAAGACAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATAGG 3951 GAGGATACTT GAATCCAGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4101 TGCAG	3451 [GGGCTGTATT TAAFFACACC GTGCCCCAAG CCCACCTGGG GCCCCATTAA	l Dain
3751 ACACTCTGAG ATGGCAGGGA CTCTGATAAC ACCCATTTA AAGGTTGAGG 3801 AAACAAGCCC AGAGAGGTTA AGGGAGGAT TCCTGCCCAC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA GAAGACAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATAGG 3951 GAGGATACTT GAATCCAGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4101 TGCAG	3501	AGATGGAGAG AGGACTGCGG ATCTCTGTGT CATTGGGCGC CTGCCTGGGG	Vadion
3751 ACACTCTGAG ATGGCAGGGA CTCTGATAAC ACCCATTTA AAGGTTGAGG 3801 AAACAAGCCC AGAGAGGTTA AGGGAGGAT TCCTGCCCAC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA GAAGACAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATAGG 3951 GAGGATACTT GAATCCAGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4101 TGCAG	3551	TCTCCATCCC TGACGTTCCC CCACTCCCAC TCCCTCTCTC TCCCTCTCTC	- 1 P.
3751 ACACTCTGAG ATGGCAGGGA CTCTGATAAC ACCCATTTA AAGGTTGAGG 3801 AAACAAGCCC AGAGAGGTTA AGGGAGGAT TCCTGCCCAC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA GAAGACAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATAGG 3951 GAGGATACTT GAATCCAGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4101 TGCAG	3601	CCTCCTCTG CCTGTCTGCA CTATTCCTTT GCCCGGCATC AAGGCACAGG	1 erminal
3751 ACACTCTGAG ATGGCAGGGA CTCTGATAAC ACCCATTTA AAGGTTGAGG 3801 AAACAAGCCC AGAGAGGTTA AGGGAGGAT TCCTGCCCAC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA GAAGACAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATAGG 3951 GAGGATACTT GAATCCAGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4101 TGCAG	3701	COCACHORDO ABORDOCTAL TOTAGITAGA ICIATITATI GAGCACCIIG	
3801 AACAAGCCC AGAGAGGTTA AGGGAGGAGT TCCTGCCCAC CAGGAACCTG 3851 CTTTAGTGGG GGATAGTGAA GAAGACAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGTGC TCACGCCTGT AATCCTAGGA CTTTTGGGAG GCAGAGATGG 3951 GAGGATACTT GAATCCAGGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4051 TACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCCTGGG AGGTCAAGGC 4101 TGCAG	3751 I	ACACTOTOR ATGGCAGGGA CTCTGATAAC ACCCATTTA AAGGTTGAGG	
3851 CTTTAGTGGG GGATAGTGAA GAAGACAATA AAAGATAGTA GTTCAGGCCA 3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATGG 3951 GAGGATACTT GAATCCAGGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4051 TACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCCTGGG AGGTCAAGGC 4101 TGCAG	3801	ANACAGCCC AGAGAGGTTA AGGGAGGAGT TCCTGCCCAC CAGGAACCTG	
3901 GGCGGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATGG 3951 GAGGATACTT GAATCCAGGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG 4001 ACCCTATCT TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4051 TACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCCTGGG AGGTCAAGGC 4101 TGCAG	3851	CTTTAGTGGG GGATAGTGAA GAAGACAATA AAAGATAGTA GTTCAGGCCA	
3951 GAGGATACTT GAATCCAGGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG 4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4051 TACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCCTGGG AGGTCAAGGC 4101 TGCAG	3901 L	GCCGGGTGC TCACGCCTGT AATCCTAGCA CTTTTGGGAG GCAGAGATGG	•
4001 ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC 4051 TACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCCTGGG AGGTCAAGGC 4101 TGCAG	3951 İ	GAGGATACTT GAATCCAGGC ATTTGAGACC AGCCTGGGTA ACATAGTGAG	
4051 TACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCCTGGG AGGTCAAGGC 4101 TGCAG	4001	ACCCTATCTC TACAAAACAC TTTTAAAAAA TGTACACCTG TGGTCCCAGC	
	4051	TACTCTGGAG GCTAAGGTGG GAGGATCACT TGATCCTGGG AGGTCAAGGC	
4151 [TGCAG	
	4151		

Figure 17.

PONTS RESONANCES ENTRE PRECURSEUR ET

lig 17-1

VISUALISE PONTS A CHEVAL BASES 2203 (JOINTS PRECURSEUR/GENE)

```
LE RESTE (GENE OU TERMINAL)
VISUALISE PONTS A CHEVAL BASES 2203 (JOINTS PRECURSEUR/GENE)
          SUPPRESSION REGIONS COMPLETES DE REGULATION 0000000
0000000000
COMPARE (PRECURSEUR + GENE + TERMINAL) ET (REGULATION N1- SUPPRIMEE)
    GENE REEL BILFULTFBETA1
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144 233 377 610 987 1597 2584
      9 11
             3 12
                   33
LUCAS...
47 76 199 322 521 843 1364 2207
               _ 9
5 2 4 13 5
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
             0 14428
                        0
                            55
0 21
     0
        1
                    23167
                             n
        0 18507
                   0
38
  0 25
                        0 25120
   0
      0 32
             0
                   0
                           188
             0 34270
                        0
0 25
      0
_ GENE REGUL N1- SUPPRIMEE
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144 233 377 610 987 1597 2584
  3
       6 12
               10 30
                         1
7
LUCAS..
47 76 123 199 322 521 843 1364 2207
      1 6 18 3 11 10 14
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
                        0
0 17 0 3
             0 11179
                           165
  0 26
        0 13784
                   0 21714
                             0
31
                        0 29335
                   0
 0
   0
      0 36
             0
                            94
        2
              0 33351
                        0
 0 30
      0
DETAIL RESONANCES PONTS
                     55
2149 2 1
         55 1921 2 1
         55 1924 2 1
                     55
2152
    2 1
         55 1933 2 1
                     55
2155
    2 1
2164 2 1
         55 1942 1 4
                     55
2170 2 1
         55 1945 1 4
                     55
         55 1948 1 4
                     55
2173 1 4
         55 1954 2 1
2179 2 1
2182 2 1
         55 1909 2 1
                      89
2140 2 1
         89 1912 2 1
                     89
         89 1915 2 1
                      89
2143 2 1
                     144
2146 2 1
         89 1855 2 1
         144 1858. 2 1
                     144
2086 2 1
                     144
2092 2 1
         144 1861 2 1
         144 1876 2 1
                     144
2101 2 1
         144 1882 2 1
                     144
2107 2 1
         144 1957 1 2
                     144
2113 2 1
2182 1 2
         144 1879 2 1
                     233
         144 1882 2 1
                     233
2185 1 2
```

144 1921 1 2

144 1939 1 2

2188 1 2

2191 1 2

233

	22222222222222222222222222222222222222	33503 2121221222211111111222222222222222222	222222222222222222222222222222222222222		2222222222377777700100000000000000000000	194 194 195 196 197 197 197 197 197 197 197 197 197 197	148703695881179914076362565818169958840670392581036858L	2 2 1 1	121111113232323333322222211111131331333333	23 23 23 23 23 23 23 23 23 23 23 23 23 2
111111111111111111111111111111111111111	1432 1441 1444		3	1	987 987 987	1228 1529 1528	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 1 1 1 1	3 2 2	987 987 987

fiz 17-2

0.57			1505			í	
958							
982							
1195				1969			123
1222				1816		4	199
835				1918			199
2173				1921			199
2176				1924	4	2	199
2179			47	1927	4	2	199
2182	4	4		1969		2	199
2194	3	4	47	1738	3	4	199 322
2140	3	4	76	1741	3	4	322
2143		4	76	1744	3	4	322
2047			199	1747	3	4	322
2149		2	199	1753	3	4	322
2152			199	1759	3	4	322
2158		2	199	1765	3	4	322
1966	3	4	199 322	1930	4	2	322
1969		4	322	1933		2	322
1972		4	322	1935	4		322 322
1975			322		4	2	322
		4	322	1939	4	2	322 322
1984		4	322	1942	4	2	322
1996	3	4	322	1945	4	2	322
2167	4	2	322 322	1948	4	2	322
2170	4	2	322	1951	4	2	322 322 322
2173	4	2	322	1954	4	2	322
2179	4	2	322	1963	4	2	322
2182	4	2	322	1966	4	2	322
2185	4	2	322	1678	3	4	521
2197	4	2	322	1699	3	4	521
1909	3	4	521	1702	3	4	521
1927		4	521	1372	3	4	843
1930	3	4	521	1387	3	4	843
1933	3	4	521	1441	3	4	843
2059	4	2	521	1444	3	4	843
1600	3	4	843	1447	3	4	843
1615	3	4	843	1636	3	4	843
1618	3	4	843	1660	3	4	843
1675	3	4	843	1663	3	4	843
1891	3	4	843	1669	3	4	843
1894	.3.	4	843	1675	3	4	843
1900	3	4	843	1678	3	4	843
1906	3	4	843	1543	3	4	1364
1909	3	4	843	1549	3	4	1364
1768	3	4	1364	1555	3	4	1364
1786	3	4	1364	1603	3	4	1364
1798	3	4	1364	1606	3	4	1364
1834	3	4	1364	1621	3.	4	1364
1837	3	4	1364	1624	3	4	1364
1846	3	4	1364	1630	3	4	1364
1852	3	4	1364	1651	3	4	1364
1882	3	4	1364	1654	3	4	1364
145	4	2	2207	124	4	2	2207
148	4	2	2207	127	4	2	2207
154	4	2	2207	157	4	2	2207
352	4	2	2207	175	4	2	2207
358	4	2	2207	181	4	2	2207
385	4	2	2207	187	4	2	2207
406	4	2	2207	202	4	2	2207
415	4	2	2207	205	4	2	2207
418	4	2	2207	208	4	2	2207

fig 17-3

```
439 4 2 2207
           214 4 2 2207
                                 fig 17-4
 457 4 2 2207
           226 4 2 2207
           229 4 2 2207
 460 4 2 2207
 814 4 2 2207 583 4 2 2207
 817 4 2 2207 1399 3 4 2207
1579 3 4 2207
           0 0 0
                  Ω
COMPARE (PRECURSEUR +GENE + TERMINAL) ET (PRECURSEUR ENHANCER SUPPRIME)
GENE REEL BILFULTFBETA1
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144 233 377 610 987 1597 2584
8 3 9 11 3 12 33 5
LUCAS...
47 76 199 322 521 843 1364 2207
5 2 4 13 5 9 8 15
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 21 0 1 0 14428 0 55
38 0 25 0 18507 0 23167
0 0 0 32 0
                0 0 25120
 0 25 0 4
            0 34270
                     0 188
GENE PRECURSEUR ENHANCER SUPPRIME
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144 233 377 610 987 1597 2584
7 3 6 12 7 10 30 1 1
LUCAS...
47 76 123 199 322 521 843 1364 2207
3 2 1 6 18 3 11 10 3
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 17 0 3 0 11179 0 165
31 0 26 0 13784 0 21714
0 0 0 36 0
0 19 0 2 0
            0 0 0 29335
0 9074 0 94
DETAIL RESONANCES PONTS
2149 2 1 55 1750 2 1
        55 1753 2 1
2152 2 1
                   55
2155 2 1
       55 1762 2 1
                   55
2164 2 1
        55 1771 1 4
                   55
2170 2 1
        55 1774 1 4
                   55
       55 1777 1 4
2173 1 4
                   55
2179 2 1
       55 1783 2 1
                   55
2182 2 1
       55 1738 2 1
                   89
2140 2 1
       89 1741 2 1
                   89
2143 2 1
       89 1744 2 1
                   89
2146 2 1
       89 1684 2 1 144
2086 2 1 144 1687 2 1 144
2092 2 1 144 1690 2 1 144
2101 2 1 144 1705 2 1 144
2107 2 1 144 1711 2 1 144
2113 2 1 144 1786 1 2 144
       144 1708 2 1 233
2182 1 2
2185 1 2
       144 1711 2 1
                  233
2188 1 2 144 1750 1 2
```

fig	17-	5

2191 2110	1		144 233	1768 1774		2	
2113	2	1	233	1777	1	2	233
2173 2176	2	1 1	233 233	1777 1786	2	1 1	233
2179 2188	2	1	233 233	1789 1792	2	1 1	233 233
2191 2194	2	1	233	1795	2	1	233
2200	2 1	1 2	233 233	1798 1744	2 2	1 3	233 377
2200 2203	2 1	1 2	233 233	1747 1747	1 2	2 3	377 377
2083	2	1	377 377	1750	1	2	377
2146 2158	1	3 2	377	1750 1756	2 1	3 2	377 377
1600 1879	2	3	610 610	1768 1198	2	3	377 610
1882 1888	2	3	610	1480	2	3	610
1975	2 1	2	610 610	·1483	2	3	610 610
1978 1984	1	2	610 610	1576 1585	1	2	610 610
1987 2014	1	. 2	610 610	1612	1	2	610
2017	1	2	610	1615 1621	1	2	610 610
2020 2023	1 1	2	610 610	1624 865	1 2	2	610 987
1264 1267	2	1	987 987	874 877	2	1	987 987
1279	2	1	987	880	2	1	987
1282 1306	2	1 1	987 987	907 910	2	1 1	987 987
1309	2	1 3	987 987	955 958	2	3 1	987 987
1351 1357	2	3	987	958	2	3	987
1360 1363	2	1 3	987 987	964 967	2	3	987 987
1366 1366	2	1	987 987	967 973	2	3	987 987
1369	2	1	987	979	2	3	987
1369 1375	2	3 1	987 987	985 1006	2	3	987 987
1387 1405	2	3 3	987 987	1009 1012	2	3	987 987
1408 1411	2	3	987 987	1018	2 2	3	987
1414	2	3	.987	1021 1024	2	3	987 987
1417 1420	2 2 2	3	987 987	1027 1030	2	3	987 987
1423 1426	2	3 3	9 87 9 87	1039 1042	2	3 3	987 987
1429	2	3	987	1045	2	3	987
1432 1441	2	3 3 3	987 987	1057 1354	2 1	3 2	987 987
1444 1447	2	3 3	987 98 7	1357 1360	1 1	2	987 987
1762	1	2	987	556	2	1	1597
1765 1771	1	2 2 2	987 987	475 1774	1 4	2 4	2584 47
1774	1	2	987	1777	4	4	47

955 2 1 1597 1795 3 4 76 982 2 3 1597 1741 3 4 76 1195 2 1 1597 1798 4 2 123 1222 1 2 1597 1798 4 2 199 2173 4 4 47 1750 4 2 199 2176 4 4 47 1753 4 2 199 2176 4 4 47 1756 4 2 199 2182 4 47 1756 4 2 199 2194 3 4 76 1570 3 4 322 2149 3 4 76 1573 3 4 322 2149 4 2 199 1582 3 4 322 2149 3 2 <			,					-
958 2 1 1597 1738 3 4 76 1982 2 3 1597 1741 3 4 76 1195 2 1597 1645 3 4 199 2173 4 4 47 1750 4 2 199 2176 4 4 47 1753 4 2 199 2176 4 4 47 1753 4 2 199 2176 4 4 47 1753 4 2 199 2182 4 47 1756 4 2 199 2194 3 4 76 1573 3 4 322 2149 4 2 199 1582 3 4 322 2149 4 2 199 1584 3 4 322 2158 4 2 199	955	2	1	1597	1795	3	4	47
1195 2 1 1597 1798 4 2 123 1222 1 2 1597 1645 3 4 199 2173 4 4 47 1750 4 2 199 2176 4 4 47 1756 4 2 199 2182 4 4 47 1567 3 4 322 2194 3 4 47 1567 3 4 322 2143 3 4 76 1573 3 4 322 2143 3 4 76 1573 3 4 322 2149 4 2 199 1588 3 4 322 2149 4 2 199 1588 3 4 322 2152 4 2 199 1588 3 4 322 2156 3				1597	1738			
1222 1 2 1597 1645 3 4 199 2173 4 4 47 1750 4 2 199 2176 4 4 47 1753 4 2 199 2179 4 4 47 1756 4 2 199 2182 4 4 47 1756 4 2 199 2194 3 4 76 1573 3 4 322 2140 3 4 76 1573 3 4 322 2149 4 2 199 1582 3 4 322 2149 4 2 199 1588 3 4 322 2158 4 2 199 1588 3 4 322 2158 4 2 199 1588 3 4 322 1972 3 4 322 1759 4 2 322 1972 3 4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
835 1 2 2584 1747 4 2 199 2173 4 4 47 1750 4 2 199 2176 4 4 47 1756 4 2 199 2179 4 4 47 1756 4 2 199 2182 4 47 1756 4 2 199 2149 3 4 47 1567 3 4 322 2149 3 4 76 1573 3 4 322 2149 4 199 1582 3 4 322 2149 4 2 199 1588 3 4 322 2152 4 2 199 1588 3 4 322 2158 4 2 199 1588 3 4 322 2176 3 4 322 1765 4 2 322 1975 3 4 322 17								123
2173 4 4 47 1750 4 2 199 2176 4 4 47 1753 4 2 199 2179 4 4 47 1756 4 2 199 2194 3 4 47 1756 3 4 322 2140 3 4 76 1573 3 4 322 2149 4 2 199 1582 3 4 322 2149 4 2 199 1582 3 4 322 2149 4 2 199 1582 3 4 322 2152 4 2 199 1582 3 4 322 2156 4 2 199 1588 3 4 322 2158 4 3 322 1759 4 2 322 1969 3 4 322 1762 4 2 322 1975 3 4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
2176 4 4 47 1753 4 2 199 2179 4 4 47 1756 4 2 199 2182 4 4 7 1766 4 2 199 2140 3 4 47 1567 3 4 322 2143 3 4 76 1570 3 4 322 2149 4 2 199 1576 3 4 322 2152 4 2 199 1588 3 4 322 2158 4 2 199 1588 3 4 322 2166 3 4 322 1765 4 2 322 1975 3 4 322 1765 4 2 322 1975 3 4 322 1771 4 2 322 1975 3 4 322 1777 4 2 322 1976 4 2 <td></td> <td></td> <td></td> <td>2384 47</td> <td></td> <td></td> <td>2</td> <td></td>				2384 47			2	
2179 4 4 47 1756 4 2 199 2182 4 47 1798 4 2 199 2194 3 4 76 1570 3 4 322 2143 3 4 76 1573 3 4 322 2149 4 2 199 1576 3 4 322 2149 4 2 199 1582 3 4 322 2158 4 2 199 1588 3 4 322 2166 3 4 322 1759 4 2 322 1975 3 4 322 1762 4 2 322 1975 3 4 322 1774 4 2 322 1975 3 4 322 1774 4 2 322 1976 4 2 322 1774 4 2 322 1976 4 2 32								
2182 4 4 47 1798 4 2 199 2194 3 4 47 1567 3 4 322 2140 3 4 76 1570 3 4 322 2047 3 4 199 1576 3 4 322 2047 3 4 199 1576 3 4 322 2149 4 2 199 1588 3 4 322 2152 4 2 199 1588 3 4 322 2158 4 2 199 1588 3 4 322 1966 3 4 322 1765 4 2 322 1975 3 4 322 1765 4 2 322 1975 3 4 322 1768 4 2 322 1986 3 4 322 1771 4 2 322 1986 3 4 322 1777 4 2 322 1975 3 4 322 1777 4 2 322 2170 4 2 322 1770 4 2 322 2170 4 2 322 1770 4 2 322 2170 4 2 322 1770 4 2 322 2170 4 2 322 1792 4 2 322 2179 4 2 322 1792 4 2 322 2185 4 2 322 1793 4 2 322 2170 4 2 322 1792 4 2 322 2170 4 2 322 1793 4 2 322 2185 4 2 322 1793 4 2 322 2185 4 2 322 1793 4 2 322 2179 4 2 322 1793 4 2 322 2185 3 4 521 1201 3 4 843 1930 3 4 521 1270 3 4 843 1930 3 4 521 1270 3 4 843 1930 3 4 521 1270 3 4 843 1605 3 4 843 1465 3 4 843 1618 3 4 843 1465 3 4 843 1618 3 4 843 1498 3 4 843 1607 3 4 843 1378 3 4 1364							2	199
2140 3 4 76 1570 3 4 322 2143 3 4 199 1576 3 4 322 2149 4 2 199 1582 3 4 322 2152 4 2 199 1588 3 4 322 1966 3 4 322 1759 4 2 322 1972 3 4 322 1765 4 2 322 1975 3 4 322 1768 4 2 322 1975 3 4 322 1771 4 2 322 1976 4 2 322 1774 4 2 322 1976 3 4 322 1771 4 2 322 1977 4 2 322 1774 4 2 322 2177 4 2 322 1775 4 2 322 2179 4 <td< td=""><td>2182</td><td>4</td><td>4</td><td>47</td><td>1798</td><td>4</td><td>2</td><td>199</td></td<>	2182	4	4	47	1798	4	2	199
2143 3 4 199 1576 3 4 322 2149 4 2 199 1582 3 4 322 2152 4 2 199 1588 3 4 322 2158 4 2 199 1594 3 4 322 1966 3 4 322 1759 4 2 322 1966 3 4 322 1762 4 2 322 1975 3 4 322 1765 4 2 322 1975 3 4 322 1771 4 2 322 1976 3 4 322 1777 4 2 322 1975 3 4 322 1777 4 2 322 1976 4 2 322 1777 4 2 322 2177 4 2 322 1783 4 2 322 2179 4 <t< td=""><td>2194</td><td></td><td></td><td></td><td></td><td></td><td></td><td>322</td></t<>	2194							322
2149 4 2 199 1582 3 4 322 2152 4 2 199 1588 3 4 322 1966 3 4 322 1759 4 2 322 1969 3 4 322 1765 4 2 322 1975 3 4 322 1768 4 2 322 1975 3 4 322 1768 4 2 322 1976 3 4 322 1771 4 2 322 1984 3 4 322 1774 4 2 322 1996 3 4 322 1777 4 2 322 2170 4 2 322 1780 4 2 322 2173 4 2 322 1783 4 2 322 2179 4 2 322 1795 4 2 322 2182 4 2 322 1795 4 2 322 2183 4 2 322 1795 4 2 322 2185 4 2 322 1795 4 2 322 2185 4 2 322 1507 3 4 521 1909 3 4 521 1531 3 4 521 1909 3 4 521 1201 3 4 843 1933 3 4 521 1201 3 4 843 1933 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1909 3 4 843 1465 3 4 843 1909 3 4 843 1492 3 4 843 1615 3 4 843 1469 3 4 843 1675 3 4 843 1492 3 4 843 1891 3 4 843 1499 3 4 843 1891 3 4 843 1498 3 4 1364 1894 3 4 1364 1435 3 4 1364 1786 3 4 1364 1435 3 4 1364 1786 3 4 1364 1435 3 4 1364 1882 3 4 1364 1489 3 4 1364 1882 3 4 1364 1489 3 4 1364 1882 3 4	2140							322
2149 4 2 199 1582 3 4 322 2152 4 2 199 1588 3 4 322 1966 3 4 322 1759 4 2 322 1969 3 4 322 1765 4 2 322 1975 3 4 322 1768 4 2 322 1975 3 4 322 1768 4 2 322 1976 3 4 322 1771 4 2 322 1984 3 4 322 1774 4 2 322 1996 3 4 322 1777 4 2 322 2170 4 2 322 1780 4 2 322 2173 4 2 322 1783 4 2 322 2179 4 2 322 1795 4 2 322 2182 4 2 322 1795 4 2 322 2183 4 2 322 1795 4 2 322 2185 4 2 322 1795 4 2 322 2185 4 2 322 1507 3 4 521 1909 3 4 521 1531 3 4 521 1909 3 4 521 1201 3 4 843 1933 3 4 521 1201 3 4 843 1933 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1909 3 4 843 1465 3 4 843 1909 3 4 843 1492 3 4 843 1615 3 4 843 1469 3 4 843 1675 3 4 843 1492 3 4 843 1891 3 4 843 1499 3 4 843 1891 3 4 843 1498 3 4 1364 1894 3 4 1364 1435 3 4 1364 1786 3 4 1364 1435 3 4 1364 1786 3 4 1364 1435 3 4 1364 1882 3 4 1364 1489 3 4 1364 1882 3 4 1364 1489 3 4 1364 1882 3 4								322
2152 4 2 199 1588 3 4 322 1966 3 4 322 1759 4 2 322 1969 3 4 322 1762 4 2 322 1977 3 4 322 1765 4 2 322 1975 3 4 322 1776 4 2 322 1984 3 4 322 1777 4 2 322 1996 3 4 322 1777 4 2 322 2170 4 2 322 1780 4 2 322 2173 4 2 322 1792 4 2 322 2179 4 2 322 1795 4 2 322 2182 4 2 322 1507 3 4 521 2197 4 2 322 1528 3 4 521 2197 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>322</td></t<>								322
1966 3 4 322 1759 4 2 322 1972 3 4 322 1765 4 2 322 1975 3 4 322 1768 4 2 322 1984 3 4 322 1771 4 2 322 1996 3 4 322 1777 4 2 322 2170 4 2 322 1777 4 2 322 2170 4 2 322 1780 4 2 322 2173 4 2 322 1783 4 2 322 2173 4 2 322 1795 4 2 322 2179 4 2 322 1795 4 2 322 2185 4 2 322 1507 3 4 521 1909 3 4 521 1216 3 4 843 1909 3 <t< td=""><td></td><td></td><td>2</td><td>199</td><td></td><td></td><td></td><td>322</td></t<>			2	199				322
1966 3 4 322 1759 4 2 322 1972 3 4 322 1765 4 2 322 1975 3 4 322 1768 4 2 322 1984 3 4 322 1771 4 2 322 1996 3 4 322 1777 4 2 322 2170 4 2 322 1777 4 2 322 2170 4 2 322 1780 4 2 322 2173 4 2 322 1783 4 2 322 2173 4 2 322 1795 4 2 322 2179 4 2 322 1795 4 2 322 2185 4 2 322 1507 3 4 521 1909 3 4 521 1216 3 4 843 1909 3 <t< td=""><td>2158</td><td>4</td><td>2</td><td>199</td><td>1594</td><td>3</td><td></td><td>322</td></t<>	2158	4	2	199	1594	3		322
1984 3 4 322 1771 4 2 322 1996 3 4 322 1774 4 2 322 2167 4 2 322 1777 4 2 322 2170 4 2 322 1780 4 2 322 2173 4 2 322 1792 4 2 322 2179 4 2 322 1795 4 2 322 2182 4 2 322 1507 3 4 521 2197 4 2 322 1528 3 4 521 1909 3 4 521 1201 3 4 843 1933 3 4 521 1270 3 4 843 1933 3 4 521 1273 3 4 843 1933 3 4 521 1273 3 4 843 1933 3 <t< td=""><td></td><td></td><td></td><td>322</td><td></td><td></td><td>2</td><td>322</td></t<>				322			2	322
1984 3 4 322 1771 4 2 322 1996 3 4 322 1774 4 2 322 2167 4 2 322 1777 4 2 322 2170 4 2 322 1780 4 2 322 2173 4 2 322 1792 4 2 322 2179 4 2 322 1795 4 2 322 2182 4 2 322 1507 3 4 521 2197 4 2 322 1528 3 4 521 1909 3 4 521 1201 3 4 843 1933 3 4 521 1270 3 4 843 1933 3 4 521 1273 3 4 843 1933 3 4 521 1273 3 4 843 1933 3 <t< td=""><td>1969</td><td></td><td></td><td>322</td><td></td><td></td><td>2</td><td>322</td></t<>	1969			322			2	322
1984 3 4 322 1771 4 2 322 1996 3 4 322 1774 4 2 322 2167 4 2 322 1777 4 2 322 2170 4 2 322 1780 4 2 322 2173 4 2 322 1792 4 2 322 2179 4 2 322 1795 4 2 322 2182 4 2 322 1507 3 4 521 2197 4 2 322 1528 3 4 521 1909 3 4 521 1201 3 4 843 1933 3 4 521 1270 3 4 843 1933 3 4 521 1273 3 4 843 1933 3 4 521 1273 3 4 843 1933 3 <t< td=""><td></td><td>3</td><td></td><td>322</td><td></td><td></td><td>2</td><td>322</td></t<>		3		322			2	322
2173 4 2 322 1783 4 2 322 2179 4 2 322 1795 4 2 322 2185 4 2 322 1507 3 4 521 2197 4 2 322 1528 3 4 521 1909 3 4 521 1531 3 4 521 1927 3 4 521 1201 3 4 843 1930 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1492 3 4 843 1891 3 4 843 1498 3 4 843 1891 3 <t< td=""><td>1984</td><td></td><td></td><td>322</td><td></td><td></td><td></td><td>322</td></t<>	1984			322				322
2173 4 2 322 1783 4 2 322 2179 4 2 322 1795 4 2 322 2185 4 2 322 1507 3 4 521 2197 4 2 322 1528 3 4 521 1909 3 4 521 1531 3 4 521 1927 3 4 521 1201 3 4 843 1930 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1492 3 4 843 1891 3 4 843 1498 3 4 843 1891 3 <t< td=""><td></td><td></td><td></td><td>322</td><td></td><td></td><td>2</td><td>322</td></t<>				322			2	322
2173 4 2 322 1783 4 2 322 2179 4 2 322 1795 4 2 322 2185 4 2 322 1507 3 4 521 2197 4 2 322 1528 3 4 521 1909 3 4 521 1531 3 4 521 1927 3 4 521 1201 3 4 843 1930 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1492 3 4 843 1891 3 4 843 1498 3 4 843 1891 3 <t< td=""><td>2167</td><td></td><td></td><td>322</td><td>1777</td><td></td><td>2</td><td>322</td></t<>	2167			322	1777		2	322
2173 4 2 322 1783 4 2 322 2179 4 2 322 1795 4 2 322 2185 4 2 322 1507 3 4 521 2197 4 2 322 1528 3 4 521 1909 3 4 521 1531 3 4 521 1927 3 4 521 1201 3 4 843 1930 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1492 3 4 843 1891 3 4 843 1498 3 4 843 1891 3 <t< td=""><td></td><td></td><td></td><td>322</td><td>1780</td><td></td><td>2</td><td>322</td></t<>				322	1780		2	322
2185 4 2 322 1507 3 4 521 2197 4 2 322 1528 3 4 521 1909 3 4 521 1531 3 4 521 1927 3 4 521 1201 3 4 843 1930 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1489 3 4 843 1618 3 4 843 1492 3 4 843 1618 3 4 843 1492 3 4 843 1619 3 4 843 1498 3 4 843 1891 3 <t< td=""><td>2173</td><td></td><td>2</td><td>322</td><td>1783</td><td></td><td>2</td><td>322</td></t<>	2173		2	322	1783		2	322
2185 4 2 322 1507 3 4 521 2197 4 2 322 1528 3 4 521 1909 3 4 521 1531 3 4 521 1927 3 4 521 1201 3 4 843 1930 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1489 3 4 843 1618 3 4 843 1492 3 4 843 1618 3 4 843 1492 3 4 843 1619 3 4 843 1498 3 4 843 1891 3 <t< td=""><td>2179</td><td></td><td></td><td>322</td><td></td><td></td><td></td><td>322</td></t<>	2179			322				322
2197 4 2 322 1528 3 4 521 1909 3 4 521 1531 3 4 521 1927 3 4 521 1201 3 4 843 1930 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1489 3 4 843 1618 3 4 843 1492 3 4 843 1618 3 4 843 1492 3 4 843 1618 3 4 843 1492 3 4 843 1619 3 4 843 1504 3 4 843 1891 3 <t< td=""><td></td><td></td><td>2</td><td>322</td><td></td><td></td><td></td><td>521</td></t<>			2	322				521
1909 3 4 521 1531 3 4 843 1930 3 4 521 1201 3 4 843 1933 3 4 521 1270 3 4 843 1933 3 4 521 1270 3 4 843 1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1489 3 4 843 1618 3 4 843 1492 3 4 843 1618 3 4 843 1492 3 4 843 1618 3 4 843 1492 3 4 843 1618 3 4 843 1492 3 4 843 1891 3 4 843 1504 3 4 843 1900 3 <t< td=""><td></td><td></td><td>2</td><td>322</td><td></td><td></td><td></td><td>521</td></t<>			2	322				521
1930 3 4 521 1216 3 4 843 1933 3 4 521 1270 3 4 843 2059 4 2 521 1273 3 4 843 1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1489 3 4 843 1675 3 4 843 1492 3 4 843 1891 3 4 843 1498 3 4 843 1891 3 4 843 1504 3 4 843 1900 3 4 843 1507 3 4 843 1909 3 4 843 1372 3 4 1364 1768 3 4 1364 1432 3 4 1364 1786 3	1909	3	4	521	1531	3	4	521
1933 3 4 521 1270 3 4 843 2059 4 2 521 1273 3 4 843 1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1489 3 4 843 1675 3 4 843 1492 3 4 843 1891 3 4 843 1498 3 4 843 1891 3 4 843 1504 3 4 843 1900 3 4 843 1507 3 4 843 1900 3 4 843 1372 3 4 1364 1909 3 4 843 1378 3 4 1364 1768 3 4 1364 1432 3 4 1364 1783 3		3						
2059 4 2 521 1273 3 4 843 1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1489 3 4 843 1675 3 4 843 1492 3 4 843 1891 3 4 843 1498 3 4 843 1894 3 4 843 1504 3 4 843 1900 3 4 843 1507 3 4 843 1900 3 4 843 1372 3 4 1364 1909 3 4 843 1378 3 4 1364 1768 3 4 1364 1432 3 4 1364 1786 3 4 1364 1435 3 4 1364 1837 3	1930			521	1216	3		
1600 3 4 843 1276 3 4 843 1615 3 4 843 1465 3 4 843 1618 3 4 843 1489 3 4 843 1675 3 4 843 1492 3 4 843 1891 3 4 843 1504 3 4 843 1900 3 4 843 1507 3 4 843 1900 3 4 843 1507 3 4 843 1900 3 4 843 1507 3 4 843 1900 3 4 843 1372 3 4 1364 1909 3 4 843 1378 3 4 1364 1768 3 4 1364 1432 3 4 1364 1786 3 4 1364 1435 3 4 1364 1837 3	2059			521	1273			
1615 3 4 843 1465 3 4 843 1618 3 4 843 1489 3 4 843 1675 3 4 843 1492 3 4 843 1891 3 4 843 1504 3 4 843 1900 3 4 843 1507 3 4 843 1906 3 4 843 1372 3 4 1364 1909 3 4 843 1378 3 4 1364 1909 3 4 843 1378 3 4 1364 1909 3 4 1364 1384 3 4 1364 1768 3 4 1364 1432 3 4 1364 1786 3 4 1364 1435 3 4 1364 1834 3 4 1364 1450 3 4 1364 1837 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1675 3 4 843 1492 3 4 843 1891 3 4 843 1498 3 4 843 1894 3 4 843 1504 3 4 843 1900 3 4 843 1507 3 4 843 1909 3 4 843 1372 3 4 1364 1768 3 4 1364 1384 3 4 1364 1786 3 4 1364 1432 3 4 1364 1798 3 4 1364 1435 3 4 1364 1834 3 4 1364 1450 3 4 1364 1837 3 4 1364 1453 3 4 1364 1846 3 4 1364 1453 3 4 1364 1846 3 4 1364 1453 3 4 1364 1852		3						
1891 3 4 843 1498 3 4 843 1894 3 4 843 1504 3 4 843 1900 3 4 843 1507 3 4 843 1906 3 4 843 1372 3 4 1364 1909 3 4 843 1378 3 4 1364 1768 3 4 1364 1384 3 4 1364 1786 3 4 1364 1432 3 4 1364 1798 3 4 1364 1435 3 4 1364 1834 3 4 1364 1450 3 4 1364 1837 3 4 1364 1453 3 4 1364 1846 3 4 1364 1453 3 4 1364 1846 3 4 1364 1459 3 4 1364 1882 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
1894 3 4 843 1504 3 4 843 1900 3 4 843 1507 3 4 843 1906 3 4 843 1372 3 4 1364 1909 3 4 843 1378 3 4 1364 1768 3 4 1364 1384 3 4 1364 1786 3 4 1364 1432 3 4 1364 1798 3 4 1364 1435 3 4 1364 1834 3 4 1364 1450 3 4 1364 1837 3 4 1364 1453 3 4 1364 1846 3 4 1364 1453 3 4 1364 1846 3 4 1364 1459 3 4 1364 1882 3 4 1364 1480 3 4 1364 1882 <	1675					3		
1900 3 4 843 1507 3 4 843 1906 3 4 843 1372 3 4 1364 1909 3 4 843 1378 3 4 1364 1768 3 4 1364 1432 3 4 1364 1786 3 4 1364 1432 3 4 1364 1798 3 4 1364 1435 3 4 1364 1834 3 4 1364 1450 3 4 1364 1837 3 4 1364 1450 3 4 1364 1852 3 4 1364 1459 3 4 1364 1852 3 4 1364 1459 3 4 1364 1852 3 4 1364 1459 3 4 1364 1852 3 4 1364 1480 3 4 1364 145 4 2 2207 190 4 2 2207 148 4 2 2207 190 4 2 2207 154 4 2 2207 1228 3 4 2207 352 4 2 2207 1228 3 4 2207 352 4 2 2207 0 0 0 0 0 385 4 2 2207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1891	3						
1906 3 4 843 1372 3 4 1364 1909 3 4 843 1378 3 4 1364 1768 3 4 1364 1384 3 4 1364 1786 3 4 1364 1432 3 4 1364 1798 3 4 1364 1435 3 4 1364 1834 3 4 1364 1450 3 4 1364 1837 3 4 1364 1450 3 4 1364 1846 3 4 1364 1453 3 4 1364 1852 3 4 1364 1459 3 4 1364 1852 3 4 1364 1459 3 4 1364 1852 3 4 1364 1480 3 4 1364 1852 3 4 1364 1480 3 4 1364 1852 3 4 1364 1483 3 4 1364 145 4 2 2207 190 4 2 2207 148 4 2 2207 190 4 2 2207 154 4 2 2207 1228 3 4 2207 352 4 2 2207 0 0 0 0 358 4 2 2207 0 0 0 0 385 4 2 2207 0 0 0 0								
1909 3 4 843 1378 3 4 1364 1768 3 4 1364 1384 3 4 1364 1786 3 4 1364 1432 3 4 1364 1798 3 4 1364 1435 3 4 1364 1834 3 4 1364 1450 3 4 1364 1837 3 4 1364 1453 3 4 1364 1846 3 4 1364 1459 3 4 1364 1852 3 4 1364 1459 3 4 1364 1852 3 4 1364 1480 3 4 1364 1852 3 4 1364 1480 3 4 1364 1852 3 4 1364 1480 3 4 1364 145 4 2 2207 190 4 2 2207 148 4 2 2207 412 4 2 2207 154 4 2 2207 1228 3 4 2207 352 4 2 2207 0 0 0 0 358 4 2 2207 0 0 0 0 385 4 2 2207 0 0 0								
1786 3 4 1364 1432 3 4 1364 1798 3 4 1364 1435 3 4 1364 1834 3 4 1364 1450 3 4 1364 1837 3 4 1364 1453 3 4 1364 1846 3 4 1364 1459 3 4 1364 1852 3 4 1364 1480 3 4 1364 1882 3 4 1364 1483 3 4 1364 145 4 2 2207 190 4 2 2207 148 4 2 2207 412 4 2 2207 154 4 2 2207 0 0 0 0 358 4 2 2207 0 0 0 0 385 4 2 2207 0 0 0 0 406 4	1909	3	4	843		3	4	
1798 3 4 1364 1435 3 4 1364 1834 3 4 1364 1450 3 4 1364 1837 3 4 1364 1453 3 4 1364 1846 3 4 1364 1459 3 4 1364 1852 3 4 1364 1480 3 4 1364 1882 3 4 1364 1480 3 4 1364 145 4 2 2207 190 4 2 2207 148 4 2 2207 190 4 2 2207 154 4 2 2207 1228 3 4 2207 352 4 2 2207 0 0 0 0 0 385 4 2 2207 0 0 0 0 0 0 406 4 2 2207 0 0 0 0		3						
1834 3 4 1364 1450 3 4 1364 1837 3 4 1364 1453 3 4 1364 1846 3 4 1364 1459 3 4 1364 1852 3 4 1364 1480 3 4 1364 1882 3 4 1364 1483 3 4 1364 145 4 2 2207 190 4 2 2207 148 4 2 2207 412 4 2 2207 154 4 2 2207 0 0 0 0 352 4 2 2207 0 0 0 0 358 4 2 2207 0 0 0 0 406 4 2 2207 0 0 0 0								
1837 3 4 1364 1453 3 4 1364 1846 3 4 1364 1459 3 4 1364 1852 3 4 1364 1480 3 4 1364 1882 3 4 1364 1483 3 4 1364 145 4 2 2207 190 4 2 2207 148 4 2 2207 412 4 2 2207 154 4 2 2207 0 0 0 0 352 4 2 2207 0 0 0 0 358 4 2 2207 0 0 0 0 406 4 2 2207 0 0 0 0		3						
1846 3 4 1364 1459 3 4 1364 1852 3 4 1364 1480 3 4 1364 1882 3 4 1364 1483 3 4 1364 145 4 2 2207 190 4 2 2207 148 4 2 2207 412 4 2 2207 154 4 2 2207 0 0 0 0 352 4 2 2207 0 0 0 0 358 4 2 2207 0 0 0 0 406 4 2 2207 0 0 0 0								
1882 3 4 1364 1483 3 4 1364 145 4 2 2207 190 4 2 2207 148 4 2 2207 412 4 2 2207 154 4 2 2207 1228 3 4 2207 352 4 2 2207 0 0 0 0 358 4 2 2207 0 0 0 0 406 4 2 2207 0 0 0 0		3						1364
145 4 2 2207 190 4 2 2207 148 4 2 2207 412 4 2 2207 154 4 2 2207 1228 3 4 2207 352 4 2 2207 0 0 0 0 358 4 2 2207 0 0 0 0 385 4 2 2207 0 0 0 406 4 2 2207 0 0 0								
148 4 2 2207 412 4 2 2207 154 4 2 2207 1228 3 4 2207 352 4 2 2207 0 0 0 0 358 4 2 2207 0 0 0 0 385 4 2 2207 0 0 0 406 4 2 2207 0 0 0								
154 4 2 2207 1228 3 4 2207 352 4 2 2207 0 0 0 0 358 4 2 2207 0 0 0 0 385 4 2 2207 0 0 0 0 406 4 2 2207 0 0 0			2					
352 4 2 2207 0 0 0 0 0 358 4 2 2207 0 0 0 0 0 385 4 2 2207 0 0 0 0 0 406 4 2 2207 0 0 0 0			2					
358 4 2 2207 0 0 0 0 0 385 4 2 2207 0 0 0 0 0 406 4 2 2207 0 0 0 0								
406 4 2 2207 0 0 0 0	358	4	2	2207	0	0	0	0
415 4 2 2207 A A A A	406 415	4	2	2207	0	0	0	0

13 17-6

```
418 4 2 2207
               0 0 0
 439 4 2 2207
              0 0 0
 457 4 2 2207
               0 0 0
 460 4 2 2207
               0 0 0
               0 0 0
 814 4 2 2207
              0 0 0
 817 4 2 2207
1579 3 4 2207
               0 0 0
                       0
COMPARE (PRECURSEUR + GENE + TERMINAL) ET (REGULATION N2 - SUPPRIMEE)
   _ GENE REEL BILFULTFBETA1
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144 233 377 610 987 1597 2584
 8 3 9 11 3 12 33 5
LUCAS...
47 76 199 322 521 843 1364 2207
5 2 4 13 5 9 8 15
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
 0 21 0 1 0 14428 0 55
88 0 25 0 18507 0 23167 0
        0 18507 0 23167
 0 0 0 32 0
0 25 0 4 0
             0 0 · 0 25120
0 34270 0 188
_ GENE REGULATION N2- SUPPRIMEE
BILAN NB RESONANCES PAR LONGUEURS....
FIBONACCI...
55 89 144 233 377 610 987 1597
 7 3 6 12 7 10 30 3
LUCAS...
47 76 123 199 322 521 843 1364 2207
3 2 1 6 18 3 11 10 6
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 16 0 3 0 8595 0 165
33 0 26 0 16978 0 21714
0 0 0 36 0
0 22 0 2 0
                   0 0 29335
             0 15695
                        0 94
DETAIL RESONANCES PONTS
2149 2 1
         55 1750 2 1
                      55-
         55 1753 2 1
2152 2 1
                      55
         55 1762 2 1
2155 2 1
                      55
2164 2 1
         55 1771 1 4
                      55
2170 2 1
         55 1774 1 4
                      55
         55 1777 1 4
2173 1 4
                      55
         55 1783 2 1 55
2179 2 1
2182 2 1
         55 1738 2 1 89
2140 2 1
         89 1741 2 1
                     89
2143 2 1
         89 1744 2 1
2146 2 1
         89 1684 2 1 144
2086 2 1
        144 1687 2 1 144
2092 2 1
        144 1690 2 1
2101 2 1
        144 1705 2 1
2107 2 1
                    144
        144 1711 2 1
2113 2 1
        144 1786 1 2
                    144
                    233
2182 1 2 144 1708 2 1
2185 1 2
        144 1711 2 1
                    233
```

2188	1	2	144	1750	1	2	233
2191	1	2	144	1768	1	2	233
							233
2110	2	1	233	1774	2	1	233
2113	2	1	233	1777	1	2	233
							222
2173	2	1	233	1777	2	1	233
2176	2	1	233	1786	2	1	233
2179	2	1	233	1789	2	1	233
			233				233
2188	2	1	233	1792	2	1	233
2191	2	1	233	1795	2	1	233
			233			ī	233
2194	2	1	233	1798	2		233
2200	1	2	233	1744	2	3	377
2200	2	1	233	1747	1	2	377 377
2200	-		233			~	277
2203	1	2	233	1747	2	3	377 377 377
2083	2	1	377	1750	1	2	377
2146	2	3	377	1750	2	3	377
			377	1730			277
2158	1	2	377	1756	1	2	377
1600	2	3	610	1768	2	3	377
	2	3	610	1198	2		610
1879						3	010
1882	2	3	610	1480	2		610
1888	2	3	610	1483	2	3	610
						3	
1975	1	2	610	1489	2	3	610
1978	1	2	610	1576	1	2	610
1984	1	2	610	1585	1	2	610
						-	
1987	1	2	610	1612	1	2	610
2014	1	2	610	1615	1	2	610
2017	1	2	610	1621	1	2	610
2020	1	2	610	1624	1	2	610
2023	1	2	610	865	2	1	987
1264	2	1	987	874	2	1	987
1204				074			
1267	2.	1	987	877	2	1	987
1279	2	1	987	880	2	1	987
1282	2	1	987	907	2	1	987
	~				~		
1306	2	1	987	910	2	1	987
1309	2	1	987	955	2	3	987
1351	2	3	987	958	2	1	987
1331	~				~		
1357	2	3	987	958	2	3	987
1360	2	1	987	964	2	3	987
1363	2	3	987	967	2	1	987
	~				-	÷	
1366	2	1	987	967	2	3	987
1366	2	3	987	973	2	1	987
1369 1369	2	1	987	979	2	3	987
1000	~		987	979 985	~	~	987
1369	2	3			2	3	
1375	2	1	987	1006	2	3	987
1387	2	3	987	1009	2	3	987
	_	2			~	~	
1405	2	3	987	1012	2	3	987
1408	2	3	987	1018	2	3	987
1411	2	3	987	1021	2	3	987
	2	3			~	3	
1414	2	3	987	1024	2	3	987
1417	2	3	987	1027	2	3	987
1420	2	3	987	1030	2	3	987
	2	3			-		
1423	2	3 3 3	987	1039	2 2 2	3	987
1426	2	3	987	1042	2	3	987
1429	2	2	987	1045	2	3	987
	2	3 3			~	2	
1432	2	3	987	1057	2	3	987
1441	2	3	987	1354	1	2	987
1444	2	3	987	1357	1	2	987
		3				~	
1447	2	3	987	1360	1	2	987
1762	1	2	987	556	2	1	1597
1765	ī	2	987	475	1	2	2584
		2		1774	4		
1771	7	7	987	1//4	4	4	47

1774 955 982 1195 1222 835 2173 2176 2182 2194 2143 2047 2149 2152 2158	2 2 2 2 2 2 2 2 1 1 1 4 4 4 4 3 3 3 3 4 4 4	1 1 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1597 1597 1597 1597 1597 2584 47 47 47 47 76 199	1795 1738 1741 1798 1645 1747 1750 1753	3 3 3 4 4 4 4 4 3 3	4 4 2 4 2 2 2 2	47 76 76 123
1975 1984 1996	3 3 3	4 4 4	322 322	1768 1771	4	2	322 322
2167 2170	3 4 4	2 2	322 322 322	1774 1777 1780	4 4 4	2 2 2	322 322 322
2173 2179	44	2 2	322	1783 1792	4	2	322 322
2182	4	2	322	1795	4	2	322
2185 2197	4	2	322 322	1507 1528	3 3	4 4	521 521
1909 1927	3 3	4 4	521 521	1531 1201	3	4 4	521 843
1930	3	4	521	1216	3	4	843
1933 2059	3 4	4	521 521	1270 1273	3	4 4	843 843
1600	3	4	843	1276	3	4	843
1615 1618	3.	4	_843 843	1465 1489	_3 . 3	4	843 843
1675	3	4	843	1492	3	4	843
1891 1894	3	4 4	843 843	1498 1504	3	4 4	843 843
1900 1906	3	4 4	843 843	1507 1372	3	4	843
1909	3	4	843	1378	3	4 4-	1364 1364
1768 1786	3	4 4	1364 1364	1384 1432	3 3	4 4	1364 1364
1798	3	4	1364	1435	3	4	1364
1834 1837	3	4 4	1364 1364	1450 1453	3	4 4	1364 1364
1846	3	4	1364	1459	3	4	1364
1852 1882	3 3	4 4	1364 1364	1480 1483	3	4 4	1364 1364
145	4	2	2207	190	4	2	2207
148 154	4 4	2	2207 2207	412 1228	4 3	2 4	2207 2207
352 358	4	2	2207	0	0	0	0
385	4 4	2	2207 2207	0	0	0	0
406	4	2	2207	Ō	0	Ō	ŏ

fig 17-9

```
415 4 2 2207
              0 0 0
                       n
                                 lig 17-10
  418 4 2 2207
               0 0 0
                       0
  439 4 2 2207
               0 0 0
                       0
 457 4 2 2207
               0 0 0
  460 4 2 2207
               0 0 0
  814 4 2 2207
               0 0 0
 817 4 2 2207
               0 0 0
 1579 3 4 2207
               0 0 0
 COMPARE (PRECURSEUR + GENE + TERMINAL) ET (REGULATION P+ SUPPRIMEE)
   __ GENE REEL BILFULTFBETA1 __
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144 233 377 610 987 1597 2584
 8 3 9 11 3 12 33
LUCAS...
47 76 199 322 521 843 1364 2207
 5 2 4 13 5 9 8 15
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 21 0 1 0 14428 0
38 0 25 0 18507 0 23167
0 0 0 32 0 0 0
                             55
                   0 0 25120
 0 25 0
        4
             0 34270
                       0 188
GENE PEGULATION P+ SUPPRIMEE
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144 233 377 610 987 1597 2584
10 2 5 12 5 13 33
                        4
LUCAS...
47 76 123 199 322 521 843 1364 2207
5 2 1 4 10 3 11 12 5
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 23 0 5 0 19075 0 275
36 0 23 0 20227
               0 21193
 0 0 0 37 . 0
                  0 0 29979
 0 12 0 4
             0 12598
                       0 188
DETAIL RESONANCES PONTS
         55 2071 2 1
2149 2 1
                     55
2152 2 1
         55 2074 2 1
55 2077 2 1
                     55
2155 2 1
                     55
2164 2 1
         55 2083 2 1
                     55
2170 2 1
         55 2089 1 4
                     55
2173 1 4
         55 2092 1 4
                     55
2179 2 1
         55 2098 1 4
                     55
2182 2 1
         55 2101 1 4
                     55
2140 2 1
         89 2104 1 4
                     55
2143 2 1
         89 2104 2 1
                     55
2146 2 1
         89 2062 2 1
                     89
2086 2 1
        144 2068 2 1
                     89
2092 2 1
        144 2008 2 1
                    144
2101 2 1
        144 2011 2 1
2107 2 1
        144 2032 2 1
2113 2 1
        144 2107 1 2
                    144
2182 1 2
        144 2110 1 2
                    144
```

	ĺ			
	ě .			
2185 1 2	144	2029	2 1	233
2188 1 2	144	2032	2 1	233
2191 1 2	144	2035	2 1	233
2110 2 1	233	2089	1 2	233
2113 2 1	233	2092	2 1	233
2173 2 1	233		2 1	233
21/3 2 1		2095		233
2176 2 1	233	2098	2 1	233
2179 2 1	233	2110	2 1	233
2188 2 1	233	2113	2 1	233
	233			233
2191 2 1	233	2116	2 1	233
2194 2 1	233	2122	1 2	233
2200 1 2	233	2122	2 1	233
			2 1	
2200 2 1	233	2068	2 3 1 2	377
2203 1 2	233	2071	1 2	377
2083 2 1	377	2071	2 3	377
2146 2 3	377	2077		377
2140 2 3	3//	2011		3//
2158 1 2	377	2080	1 2	377
1600 2 3	610	1513	2 3	610
1879 2 3	610	1801	2 3	610
			2 2	
1882 2 3	610	1804	2 3	610
1888 2 3	610	1810	2 3	610
1975 1 2	610	1894	1 2	610
1978 1 2	610	1897	1 2	610
19/0 1 2			1 2	
1984 1 2	610	1906	1 2	610
1987 1 2	610	1909	1 2	610
2014 1 2	610	1936	1 2	610
2017 1 2			1 2	
2017 1 2	610	1939	1 2	610
2020 1 2	610	1942	1 2	610
2023 1 2	610	1945	1 2	610
1264 2 1	987	1948	1 2	610
1267 2 1	987	1183	2 1	987
	207			
1279 2 1	987	1186	2 1	987
1282 2 1	987	1189	2 1	987
1306 2 1	987	1192	2 1	987
1309 2 1	987	1195.	.2_1	. 987
1309 2 1 1351 2 3	987	1198	2 1	987
1057 2 3				
1357 2 3	987	1201	2 1	987
1360 2 1	987	1204	2 1	987
1363 2 3	987	1213	2 1	987
1366 2 1	987	1228	2 1	987
1300 2 1	207			
1366 2 3	987	1231	2 1	987
1369 2 1	987	1240 1276	2 · 1 2 · 3 2 · 3 2 · 3	987
1369 2 3	987	1276	2 3	987
1375 2 1	987	1279	2 3	987
1375 2 1 1387 2 3 1405 2 3	007		2 2	
1387 2 3	987	1285	2 3	987
1405 2 3	987	1288	2 1	987
1408 2 3	987	1288	2 1 2 3	987
1411 2 3	987	1294	2 1 2 3 2 1 2 3	987
1411 2 3	207	1237	2 1 2 3	207
1414 2 3	987	1327 1333	2 3	987
1417 2 3	987	1333	23	987
1420 2 3	987	1339	2 3	987
1411 2 3 1414 2 3 1417 2 3 1420 2 3 1423 2 3	987	1342	2 3 2 3 2 3 2 3 2 3	987
1426 2 3	007	1045	2 3	007
1426 2 3 1429 2 3	987	1345	2 3	987
1429 2 3	987	1348	2 3	987
1432 2 3	987	1351	2 3 2 3	987
1441 2 3	987	1360	2 3	987
1369 2 1 1369 2 3 1375 2 1 1387 2 3 1405 2 3 1408 2 3 1411 2 3 1414 2 3 1417 2 3 1420 2 3 1423 2 3 1426 2 3 1429 2 3 1432 2 3 1432 2 3 1444 2 3	987	1363	2 3 3 2 3 2 2 3 2 2 3 2 3	987
1447 0 0		1202	2 3	
1447 2 3	987	1366	2 3	987
1762 1 2	987	1378	2 3	987
1765 1 2	987	1675	1 2	987

fig 17-11

lig 17-12

	\$)				
11 991223376924037 1177582 1177582 1177582 1177582 1177582 117779582 117779582 117779582 117779582 11777999999999999999999999999999999999	12222114444333333444433333333444444433333333	2113122444444442222444444222222244444444	987777 15597777777777777777777777777777777	16843 16	1122221114444333334444333334444333333344333333	4 4 4 4 4 4 2 2 2 2 4 0 0	988777774447776639999922222222222111133333333333333333
460 814 817	4 4	2 2 2	2207 2207 2207	0 0 0	0 0 0	0 0 0	0 0 0
1579	3	4	2207	ñ		ň	ň

Figure 18-VISUALISE LES PONTS A CHEVAL SUR BASE 2203+1176 (JOINT GENE/TERMINAL VISUALISE LES PONTS A CHEVAL SUR BASE 2203+1176 (JOINT GENE/TERMINAL HUDDOUGH SUPPRESSION REGIONS COMPLETES DE REGULATION HUDDOUGH COMPARE (PRECURSEUR + GENE + TERMINAL) ET (REGULATION N1- SUPPRIMEE) _ GENE REEL BILBOUTFBETA1 ____ BILAN NB RESONANCES PAR LONGUEURS... FIBO.. 55 89 144 233 377 610 9 3 10 8 13 LUCAS 47 76 123 SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 11 2 0 2 7 0 0 0 123 0 94 0 539 0 0 GENE REGUL N1- SUPPRIMEE

```
lig 18-2
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55 89 144 233 377 610 2584
 6 4
      12 15
             21
                   3
LUCAS
47 76 123 199 322 521 843 1364 2207
                 9
           9 6
                     5
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 23 0 0 0 10103
                      0 0
                              0
21 0 18 0 4956
                  0 3181
                      0 13354
0 2 0 37 0
                  123
                        0
                             0
      0 0
              0 5702
DETAIL RESONANCES PONTS
         55 3106 1 2
                       55
3346 2 3
         55 3109 2 3
                       55
3352 1 2
         55 3112 2 3
                       55
3355 1 2
                       55
         55 3115 2 1
3358 1 2
                       55
3361 1 2
         55 3115 2 3
3364 1 2
         55 3118 2 1
                       55
         55 3079 1
                       89
3367. 1 2
         55 3079 2 1
3373 1 2
                       89
3376 1 2
         55 3094 2 3
                       89
3325 2 3
         89 3097 2 3
                       89
         89 3013 2 3
3328 2 3
                      144
3376 1 2
         89 3028 2 1
3244 2 3 144 3031 2 1
3274 2 3 144 3034 2 1
3277 2 3 144 3037 2 1
3280 2 3 144 3046 2 3
3289 2 3 144 3049 2 3
3298 2 3 144 3100 2 1
                      144
3364 2 3 144 3133 2 3
                      144
3367 2 3 144 3139 2 3
                      144
3370 2 3 144 3145 2 3
                      144
3376 2 3 144 3148 2 3
                      144
3205 2 3 233 2938 1 2
                      233
3208 2 3 233 2944 1 2
                      233
      3 233 2944 2 1
                      233
3211 2
3349 2 3 233 2947 2 1
                      233
3370 2 1 233 2950 1 2
                      233
3373 2 1 233 2950 2 1
                      233
3376 2 1 233 2956 1 2
                      233
3379 1 2 233 2974 2 3
                      233
3220 2 3 377 2998 2 1
                      233
3223 2 3 377 3037 2 1
                      233
3259 2 3 377 3061 2 1
                      233
3262 2 3 377 3070 1 2
                      233
3265 2 3 377 3076 1 2
                      233
3268 2 3 377 3100 2 3
                      233
3271 2 3 377 3103 2 3
                      233
3289 2 1 377 2833 2 1
                      377
3292 2 1 377 2857 1 2
                      377
3295 2 1 377 2881
                      377
3298 2 1 377 2884 2
                      377
3301 2 1 377 2887
                      377
3340 2 1 377 2905
                 2 1
                      377
                 2 1
3124 2 1 610 2911
                      377
3127 2 1 610 2914 2 1
                      377
```

334 3337 3343 3376 3376 3376 3376 3376 3	24422222222222200000000000000000000000	47 47 47 47 76 76 76 123 123 00 00 00 00 00 00 00 00 00 00 00 00 00	29351733333333333333333333333333333333333	111112221111111113333343333333333333333	222233332222222222444424444444444444444	337777777777777000477777777777777777777

fig 18-3

```
1.3 18-4
  0 0 0
         0 2848 3 4 521
         0 2854 3 4 521
  0 0 0
  0 0 0
         0 2938 4 2 521
  0 0 0
         0 2947 4 2 521
  0 0 0
         0 2563 3 4 843
         0 2566 3 4 843
  0 0 0
        0 2569 3 4 843
  0 0 0
        0 2575 3 4 843
         0 2881 3 4 843
         0 2170 3 4 1364
         0 2509 3 4 1364
         0 1399 3 4 2207
  0 0 0
COMPARE (PRECURSEUR +GENE + TERMINAL) ET (PRECURSEUR ENHANCER SUPPRIME)
  _ GENE REEL BILBOUTFBETA1 ___
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55 89 144 233 377 610
9 3 10 8 13 2
LUCAS
47 76 123
6 3 2
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 10 0 0 0 762 0 0
11 0 24 0 4181 0 5244 0
          0 123
0 2 0 2
                 0 94
0 7 0 0
           0 539
                  0 0
GENE PRECURSEUR ENHANCER SUPPRIME
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55 89 144 233 377 610 2584
6 4 12 15 21 3
LUCAS
47 76 123 199 322 521 843 1364 2207
     4 9 6 9 5 2 1
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 23 0 0 0 10103 0 0
21 0 18 0 4956 0 3181
              123 0 13354
5702 0 0
0 2 0 37 . 0
0 16 0 0 0 5702
DETAIL RESONANCES PONTS
       55 2935 1 2 55
3346 2 3
        55 2938 2 3 55
3352 1 2
3355 1 2
        55 2941 2 3 55
3358 1 2
        55 2944 2 1
                    55
3361 1 2
        55 2944 2 3
                    55
3364 1 2
        55 2947 2 1
3367 1 2
        55 2908 1 2
                    89
        55 2908 2 1
3373 1 2
                    89
        55 2923 2 3
3376 1 2
                   89
3325 2 3
        89 2926 2 3
                   89
        89 2842 2 3
3328 2 3
                  144
3376 1 2
        89 2857 2 1
                   144
3244 2 3 144 2860 2 1
                   144
```

```
3274 2 3 144 2863 2 1
                          144
     2 3 144 2866 2 1
                          144
3277
3280 2 3 144 2875
                          144
3289 2 3 144 2878 2 3
                          144
3298 2 3 144 2929 2
                       1
                          144
3364 2 3 144 2962 2
                       3
                          144
     2 3 144 2968 2
                       3
                          144
3367
       3 144 2974 2 3
                          144
3370 2
                          144
3376
       3 144 2977
                    2
                       3
3205 2
       3 233 2767
                    1
                       2
                          233
3208 2 3 233 2773 1 2
                          233
3211 2 3 233 2773 2 1
                          233
     2 3 233 2776
                    2 1
                          233
3349
                          233
3370 2 1 233 2779
                    1
                       2
       1 233
              2779
                     2
                          233
3373
     2
                       1
     2
          233
               2785
                          233
3376
        1
3379
     1
        2
          233
              2803
                     2
                       3
                          233
          377
                          233
3220
     2
        3
               2827
                     2
                       1
          377
              2866
                          233
3223
     2
        3
                    2
                       1
          377
                          233
              2890
                     2
3259
     2
        3
                       1
     2
          377
              2899
                    1
                       2
                          233
3262
        3
          377
              2905
                       2
                          233
3265
     2
        3
                     1
          377
              2929
                          233
3268
     2
        3
                    2
          377
              2932
                          233
3271
     2
        3
3289
     2
       1
          377
              2662
                          377
3292 2
       1
          377
              2686
                       2
                          377
3295 2
       1
          377
              2710
                    2
                       1
                          377
3298 2
          377
              2713 2 1
                          377
              2716 2
                       1
                          377
3301 2
       1
          377
              2734 2
                          377
                       1
3340 2 1
          377
3124 2 1 610 2740 2
                       1
                          377
3127 2 1
          610 2743
                     2
                       1
                           377
3334 3 2
           47
               2758
                    1
                       2
                           377
     3 4
           47
               2764
                       . 2
                           377
3334
     3
        4
           47
               2770
                     1
                       2
                          377
3337
3343 4
        2
           47
               2776
                           377
3361
     4
           47
               2782
                       2
                          377
        2
        2
               2812
                     2
                          377
3370
     4
           47
                       3
              2887
                          377
                    2
                       3
3304
     3
        2
           76
              2890
                    2
                          377
        2
           76
                       3
3343
     4
3376
     4
        2
           76
              2929
                    1
                       2
                          377
3352
              2932
                       2
                          377
     4
       2
          123
                    1
                          377
3355
     4
          123 2935 1
                       2
        2
            0 2938 1
                       2
                           377
   0
     0
       0
   0
     0
       0
            0 2941 1
                       2
                          377
              2575 1 2
                           610
     0
       0
            0
   0
              2578 1 2
                          610
    0
       0
             0
     0
              2644 1 2
                           610
   0
       0
             0
                         2584
   0
    0
       0
            0
                475 1 2
                     3
   0 0
       0
            0
              2932
                       2
                            47
     0
               2935
                     3
                            47
        0
            0
                       4
   0
                            47
   0
     0
        0
             0
               2938
                            47
     0
               2941
                    .3
        0
                            47
     0
        0
             0
               2944
                     3
               2944
                     4
                            47
     0
        0
             0
                       2
     0
        0
             0
               2950
                     3
                            47
                            47
               2956
                     3
     0
        0
            0
              2959
                     3
                            47
            0
     0
        0
     0
        0
            0
              2974
                     3
                            47
   0
             0 2977
     0
        0
                            47
```

fig 18-5

```
0 2902 3 2
   0 0 0
                         76
                                              fig 18-6
     0 0
           0 2920 4 2
                         76
   0
           0 2935 3 4
                         76
   0
     0 0
           0 2941
                         76
   0
    0 0
           0 2944 3 4
                         76
                         76
   0 0 0
           0 2950 3 4
   0 0 0
           0 2962 3 4
                         76
           0 2974 3 4
                         76
   0 0 0
   0 0 0
           0 2875 4 2
                        123
   0 0 0
           0 2917 3 4
                       123
   0 0 0
           0 2920 3 4
                       123
   0 0 0
           0 2935 3 4
                       123
   0 0 0
           0 2809 4 2
   0 0 0
           0 2884 3 4
   0 0 0
           0 2890 3 4
   0 0 0
           0 2893 3 4
   0 0 0
           0 2902 3 4
                       199
   0 0 0
           0 2932 3 4
                       199
   0 0 0
           0 2938 3 4
                       199
   0 0 0
           0 2941 3 4
                       199
           0 2971 3 4
   0 0 0
                       199
           0 2698 4 2
   0 0 0
                       322
   0.00
           0 2812 4 2
                       322
   0 0
           0 2815 4 2
                       322
           0 2827 4
   0 0 0
                       322
           0 2830 4 2
   0 0 0
                       322
   0 0 0
           0 2869 3 4
                       322
           0 2509 4 2
                       521
   0 0 0
   0 0 0
           0 2536 4 2
                       521
   0 0 0
           0 2539 4 2
                       521
   0 0 0
           0 2554 4 2
                       521
    0 0
           0 2557 4 2
                       521
   0 0 0
           0 2677 3 4
                       521
   0 0 0
           0 2683 3 4
                       521
   0 0 0
           0 2767 4 2
                      521
   0 0 0
           0 2776 4 2
                       521
   0 0 0
           0 2392 3 4
                       843
           0 2395 3 4
   0 0 0
                       843
   0 0 0
           0 2398 3 4
                       843
   0 0 0
           0 2404 3 4
                       843
   0 0 0
           0 2710 3 4 843
   0 0 0
           0 1999 3 4 1364
   0 0 0
           0: 2338 3 4 1364
           0 1228 3 4 2207
COMPARE (PRECURSEUR + GENE + TERMINAL) ET (REGULATION N2- SUPPRIMEE)
    GENE REEL BILBOUTFBETA1
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55 89 144 233 377 610
9 3 10
           8 13
LUCAS
47 76 123
6 3 2
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 10 0 0 0 762 0 0
11 0 24 0 4181 0 5244 0
              0 123
0 539
      0 2
                     0 94
```

0.0

```
GENE REGULATION N2- SUPPRIMEE
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55 89 144 233 377 610
 6 4 12 15 21
LUCAS
47 76 123 199 322 521 843 1364 2207
  8 4 9 6 9 5 2 1
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 22 0 0 0 7519 0 0
21 0 18 0 4956 0 3181
0 2 0 37
           0 123
                     0 13354
 0 16 0 0
             0 5702
                      0
                         0
DETAIL RESONANCES PONTS
3346 2 3 55 2935 1 2 55
3352 1 2 55 2938 2 3
                     55
3355 1 2 55 2941 2 3
                     55
3358 1 2 55 2944 2 1
                     55
3361 1 2 55 2944 2 3
                      55
         55 2947 2 1
3364 1 2
                      55
3367 1 2 55 2908 1 2
                      89
3373 1 2
         55 2908 2 1
                     89
         55 2923 2 3
3376 1 2
                     89
3325 2 3
        89 2926 2 3
                     89
3328 2 3
        89 2842 2 3
                     144
        89 2857 2 1
3376 1 2
                    144
3244 2 3 144 2860 2 1
                    144
3274 2 3 144 2863 2 1
                    144
3277 2 3 144 2866 2 1
                    144
3280 2 3 144 2875 2 3
                    144
3289 2 3 144 2878 2 3
                    144
3298 2 3 144 2929 2 1 144
3364 2 3 144 2962 2 3 144
3367 2 3 144 2968 2 3 144
3370 2 3 144 2974 2 3 144
3376 2 3 144 2977 2 3
                    144
3205 2 3 233 2767 1 2
                    233
3208 2 3 233 2773 1 2
                    233
3211 2 3 233 2773 2 1
                    233
3349 2 3 233 2776 2 1
                    233
3370 2 1 233 2779 1 2
3373 2 1 233 2779 2 1
                     233
                     233
3376 2 1 233 2785 1 2
                     233
3379 1 2 233 2803 2 3
                    233
3220 2 3 377 2827 2 1
                    233
3223 2 3 377 2866 2 1
                    233
3259 2 3 377 2890 2 1
                    233
3262 2 3 377 2899 1 2
                    233
3265 2 3 377 2905 1 2
                    233
3268 2 3 377 2929 2 3
                    233
3271 2 3 377 2932 2 3 233
3289 2 1 377 2662 2 1
                    377
3292 2 1 377 2686 1 2
                    377
3295 2 1 377 2710 2 1
```

377

3298 2 1 377 2713 2 1

330 331 333 333 336 337 337 337 337 337 337 337
40 24 34 34 33 34 31 31 31 31 31 31 31 31 31 31 31 31 31
222233344434440000000000000000000000000
111124422222220000000000000000000000000
377700 61074774776610 1233000000000000000000000000000000000
2734 2734 2774 2774 2774 2776 2776 27776 227788 227788 227788 2077
111112222333322222222224444224444422444444224444244424444
37777777777777777777777777777777777777

fiz 18-8

```
fig 18-9
  0 0 0
         0 2536 4 2 521
         0 2539 4 2 521
         0 2554 4 2 521
  0 0 0
  0 0 0
         0 2557 4 2 521
         0 2677 3 4 521
  0 0 0
        0 2683 3 4 521
  0 0 0
  0 0 0
        0 2767 4 2 521
  0 0 0
        0 2776 4 2 521
  0 0 0
        0 2392 3 4 843
         0 2395 3 4 843
  0 0 0
  0 0 0
         0 2398 3 4 843
  0 0 0
         0 2404 3 4 843
         0 2710 3 4 843
  0 0 0
         0 1999 3 4 1364
  0 0 0
         0 2338 3 4 1364
  0 0 0
         0 1228 3 4 2207
ο απο στο συματικό της της της συματικής της συματικής συματικής συματικής συματικής συματικής συματικής συματ
COMPARE (PRECURSEUR + GENE + TERMINAL) ET (REGULATION P+ SUPPRIMEE)
  __ GENE REEL BILBOUTFBETA1
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55 89 144 233 377 610
 9 3 10 8 13 2
LUCAS
47 76 123
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 10 0 0 0 762 0 0
11 0 24 0 4181 0 5244
                      0
0 2 0 2 0 123 0 94
0 7 0 0 0 5.39
                    .0 0.
GENE PEGULATION P+ SUPPRIMEE _
BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55 89 144 233 377 610 2584
5 4 13 - 11 21 5 - 3 -
LUCAS
47 76 123 199 322 521 843 1364 2207
8 8 9 ,8 3 10 5 7 1
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 26 0 0 0 16025 0 0
20 0 16 0 4867 0 2893
                            0
                123 0 19530
6176 0 0
0 2 0 39 0 123
0 18 0 0 0 6176
DETAIL RESONANCES PONTS
3346 2 3 55 3259 2 3 55
3352 1 2 55 3262 2 3
                     55
3355 1 2 55 3265 2 1
                      55
        55 3265 2 3
                      55
3358 1 2
        55 3268 2 1
                      55
3361 1 2
        55 3229 1 2
                      89
3364 1 2
        55 3229 2 1
3367 1 2
                      89
3373 1 2 55 3244 2 3
                      89
3376 1 2 55 3247 2 3
                      89
```

3327 3327 3327 3227 3227 3227 3227 3227	8 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	233333333333333333333333333333333333333	899 844 1444 1444 1444 1444 1444 1444 14	3178 3178 3178 3181 3184	5 1 1 2 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2	2 1 1 1 2 1 3	144 144
--	---	---	--	--------------------------------------	---	---------------------------------	------------

frg 18-10

```
0
   0
     0
             3298
                            47
                    3
   0
             3226
                            76
0
     0
           0
                    3
                       2
0
   0
     0
           0
             3238
                       2
                            76
0
   0
             3241
                       2
                            76
     0
           0
   0
0
           0
             3265
                    3
                       4
                            76
     0
                            76
0
   0
     0
           0
             3268
                    3
                       4
0
   0
     0
             3277
                            76
           0
   0
0
     0
           0
             3283
                       4
                            76
   0
0
     0
           0
             3289
                    3
                       4
                            76
0
   0
     0
             3196
                       2
                           123
   0
             3199
                    4
                       2
0
     0
           0
                           123
   0
                       4
0
     0
           0
             3238
                    3
                           123
   0
     0
           0
             3241
                       4
0
                    3
                           123
0
   0
     0
           0
             3244
                    3
                       4
                           123
   0
0
     Ò
           0
             3247
                    3
                       4
                           123
   0
0
     0
           0
             3259
                    3
                       4
                           123
   0
     0
                    3
0
           0
             3271
                       4
                           123
                    3
   0
     0
           0
             3289
                       4
                           123
   0
0
     0
           0
             3127
                       2
                           199
   0
             3130
                           199
0
     0
                    4
           0
                       2
0
   0
     0
           0
             3208
                    3
                       4
                           199
   0
                    3
     0
             3211
                       4
                           199
0
           0
   0
             3217
                    3
                           199
0
     0
           0
                       4
0
   0
     0
           0
             3229
                    3
                           199
0
  0
     0
           0
             3238
                           199
   0
     0
           0
             3292
                    3
                           199
                    4
0
   0
     0
             3136
                       2
                           322
           0
                    4
                      .2
0
   0
     0
           0
             3151
                           322
0
  0
     0
          0
             3190
                    3
                           322
  0
           0
             2830
                    4
                       2
0
     0
                           521
                    4
0
  0
     0
          0
             2857
                      2
                           521
0
   0
     0
          0
             2860
                    4
                       2
                           521
                           521
0
   0
     0
          0
             2863
                    4
                       2
                       2
   0
     0
           0
             2878
                    4
                           521
             2905
                    4
                       2
   0
     0
          0
                           521
  0
             2995
                    4
                       2
     0
           0
                           521
             3004
0
  0
     0
          0
                    3
                       4
                           521
  0
     0
             3091
                    4
                           521
0
          0
                       2
Ó
  0
             3097
                    4
                       2
     0
          0
                           521
0
  0
     0
          0
             2707
                    3
                       4
0
  0
     0
          0
             2716
                    3
                       4
                           843
             2719
  0
     0
                    3
0
          0
                       4
                           843
  0
     0
             2725
                    3
0
          0
                      4
                           843
0
  0
    0
             2746
                    3
                       4
                           843
0
  0
     0
             2314
                    3
  0
                    3
0
     0
             2320
                      4
  0
     0
                    3
0
             2326
                      4
0
  0
     0
          0
             2509
                    3
                      4
0
  0
     0
          0
             2578
                    3
                      4
                         1364
  0
                    3 4
0
     0
          0
             2659
                         1364
0
  0 0
          0
                    3 4
                         1364
             2662
0
 0...0..
          0
             1549
                    3
                       4
                         2207
```

fig 18-11

```
Figure 19
VISUALISE TOUTES RESONANCES (ARNM COMPLET PRECURSEUR/GENE/TERMINAL)
000000000 SUPPRESSION REGIONS COMPLETES DE REGULATION 00000000
COMPARE (PRECURSEUR + GENE + TERMINAL) ET (REGULATION N1- SUPPRIMEE)
____ GENE REEL BILFULTFBETA1
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
 55 89 144 233 377 610 987 1597.2584
464 286 146 86 83 36 50
LUCAS...
 47 76 123 199 322 521 843 1364 2207
490 298 220 130 81 48 29 16 15
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
 1 222 18 116 55 51545 1126 12015
336 36 394 45 60316 2799 92102 2815
161 186 144 402 14503 19531 13523 92126 <del><</del> ←
  4 273 16 145 188 77044 839 11616
____ GENE REGUL N1- SUPPRIMEE
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
 55 89 144 233 377 610 987 1597 2584
440 241 124 71 76 32 53 13
47 76 123 199 322 521 843 1364 2207
482 275 196 134 80 55 29 16 14
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
 2 216 17 97 110 51113 1037 8960
289 22 367 43 53198 1482 85445 2705
145 187 139 415 13624 21874 12908 91690
 6 249 18 124
              282 73238
                       904 11540
COMPARE (PRECURSEUR+GENE+TERMINAL) ET (PRECURSEUR ENHANCER SUPPRIME)
GENE REEL BILFULTFBETA1
                        BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144 233 377 610 987 1597 2584
464 286 146 86 83 36 50
                      16
LUCAS...
47 76 123 199 322 521 843 1364 2207
490 298 220 130 81 48 29 16 15
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
1 222 18 116 55 51545 1126 12015
336 36 394 45 60316 2799 92102 2815
161 186 144 402 14503 19531 13523 92126 <
 4 273 16 145 188 77044 839 11616
```

```
GENE PRECURSEUR ENHANCER SUPPRIME
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
 55 89 144 233 377 610 987 1597 2584
419 228 116 54 76 37 43 6 1
LUCAS...
 47 76 123 199 322 521 843 1364 2207
460 262 189 130 72 57 24 14 3
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
  2 201 19 110 110 45890 1147 10146
281 36 287 46 52381 2833 63249
159 166 141 369 14597 20608 13237 85131 ←
  6 224 18 130
               282 43107 904 11761
COMPARE (PRECURSEUR+GENE+TERMINAL) ET (REGULATION N2- SUPPRIMEE)
GENE REEL BILFULTFBETA1
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
 55 89 144 233 377 610 987 1597 2584
464 286 146 86 83 36 50 16 1
 47 . 76 123 199 322 521 843 1364 2207
490 298 220 130 81 48 29 16 15
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES

    1
    222
    18
    116
    55
    51545
    1126
    12015

    336
    36
    394
    45
    60316
    2799
    92102
    2815

    161
    186
    144
    402
    14503
    19531
    13523
    92126

 4 273 16 145 188 77044 839 11616
GENE REGULATION N2- SUPPRIMEE
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144 233 377 610 987 1597
447 268 143 82 83 39 42 5
LUCAS...
47 76 123 199 322 521 843 1364 2207
456 274 197 124 74 52 19 12 6
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
```

54

BILAN NB RESONANCES PAR LONGUEURS... FIBONACCI...

55 89 144 233 377 610 987 1597 2584 464 286 146 86 83 36 50 16 1 LUCAS...

47 76 123 199 322 521 843 1364 2207

47 76 123 199 322 521 843 1364 2207 490 298 220 130 81 48 29 16 15

SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES

1 222 18 116 55 51545 1126 12015

336 36 394 45 60316 2799 92102 2815

161 186 144 402 14503 19531 13523 92126

4 273 16 145 188 77044 839 11616

GENE PEGULATION P+ SUPPRIMEE

BILAN NB RESONANCES PAR LONGUEURS...

FIBONACCI...

55 89 144 233 377 610 987 1597 2584 492 281 154 86 78 39 49 4 3

LUCAS...

47 76 123 199 322 521 843 1364 2207

492 311 226 124 73 60 29 26 5

SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES

0 226 22 132 0 56632 1346 14217 325 36 401 44 59748 2731 72582 2726

142 183 158 427 10932 19298 14970 101383 <---

PRECURSEUR BETAGLOBINE

1 | GTAGAGCCAC ACCCTGGTAA GAGCCAATCT GCTCACACAG GATAGAGAGG 51 | GCAGGAGCCA GGGCAGAGCA TATAAGGTGA GGTAGGATCA GTTGCTCCTC 101 | ACATTTGCTT CTGACACAAC TGTGTTCACT AGCAACCTCA AACAGACACC

151

7-1-20-5

201 |

BETAGLOBINE .: PARTIE TRADUITE

1 | ATGGTGCACC TGACTCCTGA GGAGAAGTCT GCGGTTACTG CCCTGTGGGG
51 | CAAGGTGAAC GTGGATGAAG TTGGTGGTA GGCCCTGGGC AGGCTGCTGG
101 | TGGTCTACCC TTGGACCCAG AGGTTCTTTG AGTCCTTTGG GGATCTGTCC
151 | ACTCCTGATG CAGTTATGGG CAACCCTAAG GTGAAGGCTC ATGGCAAGAA
201 | AGTGCTCGGT GCCTTTAGTG ATGGCCTGGC TCACCTGGAC AACCTCAAGG
251 | GCACCTTTGC CACACTGAGT GAGCTGCACT GTGACAAGCT GCACGTGGAT
301 | CCTGAGAACT TCAGGCTCCT GGGCAACGTG CTGGTCTGTG TGCTGGCCCA
351 | TCACTTTGGC AAAGAATTCA CCCCACCAGT GCAGGCTGCC TATCAGAAAG
401 | TGGTGGCTGG TGTGGCTAAT GCCCTGGCCC ACAAGTATCA CTAA

BETAGLOBINE: REGION TERMINALE

1	GCTCGCTTTC	TTGCTTGCCA	ATTTCTATTA	AAGGTTCCTT	TGTTCCCTAA
51 i	GTCCAACTAC	TAAACTGGGG	GATATTATGA	AGGGCCTTGA	GCATCTGGAT

101 | TCTGCCTAAT AAAAAACATT TATTTTCATT GC

151 i

igure 21

Comment une mutagenèse intensive du promoteur de la Relobine humaine a révélé que des séquences homologues à

celles que l'on trouve dans d'autres promoteurs sont nécessaires à la transcription. On a introduit des mutations ponctuelles dans l'ADN cloné en utilisant l'acide nitreux, l'acide formique ou l'hydrazine, et on a mesuré le niveau de la synthèse d'ARN après introduction des promoteurs mutés dans des cellules HeLa. Les positions où les mutations provoquent une activité de promoteur plus saible sont indiquées en couleur; les positions où les mutations ont augmenté la synthèse de l'ARN

Les séquences essentielles de deux des promoteurs les mieux caractérisés de l'ARN polymérase II de mammifère. (a)

773 Site de dépan du mARN Site CAP Signal proximal **3oite TATA** Slément riche en GC Premier signal distal (b) Promoteur de la thymidine kinase du virus de l'herpès Homologie CCAAT Mutants pour lesquels la transcription diminue (down) Mutants pour lesquels la transcription augmente (up) Homologie CCAAT (brin opposé) (a) Promoteur de Aglobine humaine Second signal distal Elément riche en GC

essentielles dans le promoteur de la thymidine kinase du virus de l'herpès. Les substitutions de bases groupées sont essectuées sieurs bases groupées a révélé la localisation de séquences Kingsbury, Science 217 (1982) : 316-324] et les substitutions de McKnight et R. Kingsbury, Cell 37 (1984) : 253-262]. Le niveau mutations dans les régions indiquées par des lignes droites tion. Dans ce promoteur, les régions sensibles aux mutations l'homologie CCAAT. On a récemment démontré in vitro par la technique de linker scanning [voir S.L. McKnight et R. bases simples par la mutagénèse oligonucléotidique (voir S.L. de transcription de ces ADN mutés a été testé par injection dans des ovocytes de Xenopus (voir figure 21-36a). Les séquences ont donné une activité plus saible du promoteur; les n'ont donné aucune réduction de l'essicacité de la transcripcomprennent deux régions riches en GC, la bolte TATA et l'attachement aux séquences riches en GC du facteur de transcription SPI (voir figure 21-29) et celui d'un autre facteur protesque à la sequence CCAAT. [Voir K.R. Jones, mutations dans les trois régions dont on montre ici K.R. Yamanoto et R. Tijan, Cell 42 (1985); 559-572.]

Figure 21-27

donné des niveaux de transcription de type sauvage. Noter que sont indiquées en gris. Toutes les autres substitutions ont le site de départ de l'ARN, la boite TATA, ainsi que l'homologie CCAAT sont toutes des régions de promoteur sensibles aux Myers, K. Tilly et T. Maniatis; voir aussi R.M. Myers, L.S.

Lerman et T. Maniatis, Science, 229

mutations. [Données aimablement communiquées par R.M

b) Comment la mutagénèse par substitution d'une ou plu-

Séquences de promoteurs de l'ARN polymérase II en amont du site de départ

Tyure 22 -

```
AAAA ENSEMBLE DES RESONANCES BETAGLOBINE AAAAA
AAAA PONT AUTOUR BASE 25 CCAAT
                                \Delta\Delta\Delta
GLOFUL
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
3 3
LUCAS...
47 76 123 199
15 1 12 1
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 5 11 7
      0 235 1125 785
0.0 06
      0 0 0 311
GLOFULP
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
89
3
LUCAS...
47 123 199
9 17 6
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 0 0 0
                0
3 0 0 0 267
         0
             0
                 0
```

57.

```
GLOFULN1
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
8 6
LUCAS...
47 76 123
12 8 4
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 3 0 0 0 233
6 5 0 0 432 309
              0 0
0 0 23 0 0 0 1617 0
0 0 0 1 0 0 0 47
GLOFULN11
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55
. 4
LUCAS...
47 76 123 199
13 1 17 5
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 3 0 0 0 165
1 0 0 0 55 0 0 0
0 0 15 13 0 0 1921 1447
0 0 2 6 0 0 94 311
GLOFULN12
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
4 15
LUCAS...
47 76 123
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 16 0 0 0 1288
3 0 0 0 267 0
             0 0
0 0 23 1 0 0 1378 123
0 0 0 8 0 0 0 492
GLOFULN13
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
```

```
55 89
5 2
LUCAS...
47 76 123 199
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 3 0 0 0 165
   0 0 288
           0
               0
                  ്റ
       0 235 1125 785
0 5 11 7
                0 311
0 0 0 6
        0
          0
GLOFULN14
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
4 18
LUCAS...
47 76 123
15 15 4
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 16 0 0 0 1288
6 0 0 0 534 0
                0 0
0 5 17 2
        0 235 1393
                   94
   0 10 0 0
                0 615
GLOFULN15
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
3
  3
LUCAS...
47 76 123 199
  1 12 1
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 5 11 7 0 235 1125 785
0 0 0 6 0 0 0 311
GLOFULN21
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
7 1
LUCAS...
47 76 123 199
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
   03 00
              0 165
5 0
   0 0 309 0
              0
   10 3
        0 0 1230 369
```

```
0 0 0 7 0 0 0 387
GLOFULN22
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
 5 2
LUCAS...
47 76 123 199
12 1 12 1
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 2 11 7 0 94 1125 785
0 0 0 6 0 0 0 311
GLOFULN23
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
3 3
LUCAS...
47 76 123
15 9 12
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 3 0 0 0 165
3 0 0 0 267 0 0 0
0 5 11 6 0 235 1125 586
0 0 0 14 0 0 0 919
GLOFULN24
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
3 6
LUCAS...
47 76 123 199
15 1 12 1
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
 \begin{smallmatrix} 0 & 5 & 11 & 7 & & 0 & 235 & 1125 & 785 \\ 0 & 0 & 0 & 6 & & 0 & & 0 & & 0 & 311 \\ \end{smallmatrix} 
GLOFULN25
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
```

```
1-1 22-5
LUCAS...
47 76 123 199
15 1 12 1
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 3 0 0 0 165
3 0 0 0 267 0 0 0
3 0 0 0 267
0 5 11 7 0 235 1125 785
0 0 0 6 0 0 0 311
GLOFULN34
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
3 3
LUCAS...
47 76 123 199
15 1 12 1
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 0 3 0 0 0 165
3 0 0 0 267 0 0 0
0 5 11 7 0 235 1125 785
000600
              0 311
GLOMUTANT
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
89
                     « gene "étranger"
3
LUCAS...
47 123 199 521
9 17 8 5
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
          0
              0
3 0 0 0 267
0 5 8 26 0 235 984 5492
       0
          0 0
0 0 0 0
                 0
```

Figure 23 -

fig 23-1

85 3

2 123

2 123

92 3 2 123

93 3 2

3 3

2 4

76 0

0 0 0

55 0 0 0 0

```
0 0
                                         55 0
                94 3 2
                        123 100 2 4
 89
    3 2 123
                                            0
                                               0
                                                  0
                                       123
         123
                97
                   3
                     3
                          76 101 3
                                    4
       2
 90
                                            0
                          76 102 3
                                    2
                                         76
                                               0
                                                  0
       2
         123
                98
                   3
                      3
 91
                                            0
                                                  0
                                        123
                                               0
                          55
                             102 3
                                    4
         123
                99
                   2
 92
       2
                                            0
                                               0
                                                  0
                          55 103
                                         76
                                  3
                                    3
         123
              100
                   2
 93
      2
                        123 104 3 3
                                         76
                                            0
                                               0
                                                  0
         123 101
                   3 4
    3 2
                                            0
                          76 105 3 3
                                         76
                                               0
                                                  0
           76 102
                   3 2
 97
    3 3
                                  3 3
                                         76
                                             0
                                               0
                        123 106
           76 102
                   3 4
 98
    3 3
                          76 107
                                         76
                                            0
                                                  0
                                  3
                                     3
                                               0
           55 103
                   3
                      3
 99
    2
       4
                                         76
                                             0
                                               0
                                                  0
                          76 108 3
                                    3
                   3 3
100
    2
           55 104
                                         76
                                            0
                                               0
                                                  0
                          76 109
                                  3
                                     3
          123 105
                   3 3
101
    3
       4
                          76 110
                                  3
                                     3
                                         76
                                             0
                                               0
                                                  0
                                                    0
    3 2
          76 106
                   3 3
102
                                  3
                                     2
                                         76
                                             0
                                               0
                                                  0
         123 107
                   3 3
                          76 111
102
    3
       4
                                   2
                                     4
                                         55
                                             0
                                               0
                                                  0
                                                    0
           76 108
                   3 3
                          76 113
103
    3 3
                                         76
                                             0
                                                  0
                                                    0
                          76 114
                                     3
                                               0
           76 109
                   3
                      3
104
    3 3
                                                  0
                          76 115
                                   3
                                     3
                                         76
                                             0
                                               0
                                                    0
           76 110
                   3
                      3
    3 3
105
                                   3
                                         47
                                            0
                                               0
                                                  0
                                                    0
    3 3
           76 111
                   3
                      2
                          76 119
                                     3
106
                                         47
                                            0 0
                                                 0
                          55 120
                                   3
                                     3
              113
                    2
107
    3
       3
           76
                                         47
                                             0 0
                                                 0
                          76 121
                                   3
                                     3
       3
           76
               114
                    3
                      3
108
    3
                                         47 0 0 0
                          76 122
                                   3
                                     3
109
     3
       3
           76
               115
                    3
                      3
                                         76 0 0 0
                          47 128
                                   3
                                     4
110
     3
       3
           76
               119
                    3
                      3
                                         76 0 0
                                                 0
                                                    0
                          47 129
                                   3
                                     2
111
     3
       2
          - 76
               120
                    3
                      3
                                   3
                                         76 0 0 0
                                                    0
                          47 130
                                     2
                      3
     2
           55
               121
                    3
113
       4
                                         76 0 0 0
                                                    0
              122
                    3
                      3
                          47 131
                                  3 2
           76
       3
114
     3
                                         76 0 0 0 0
                          76 132
                                   3 2
           76
              128
                    3
                      4
115
     3
       3
                                   3 2
                                         76 0 0
                                                 0 0
                    3
                      2
                          76 134
           47
              129
119
     3
       3
                                         47 0
                          76 135
                                               0
                                                  0 0
                                  3 3
120
     3
           47 130
                    3
                      2
       3
                                         76 0
                                               0
                                                  0
                                                    0
                    3 2
                          76 135
                                  3 2
               131
121
     3
       3
           47
                                               0
                                  3 3
                                         47
                                             0
                                                  0
                                                    0
                   3 2
                          76 136
122
     3
       3
           47
               132
                                             0
                                               0
                                                  0
                      2
                          76 137
                                   3
                                     2
                                         47
                   3
              134
128
    3
       4
           76
                      3
                          47 137
                                   3
                                     3
                                         47
                                             0
                                               0
                                                  0
                                                     0
              135
                   3
    3 2
129
           76
                      2
                          76 137
                                   3
                                     4
                                         47
                                             0
                                               0
                                                  0
                                                     0
130 3 2
              135
                    3
           76
                                               0
                                     2
                                             0
                                                  0
                                                     0
131 3 2
              136
                    3
                      3
                          47
                              138
                                   3
                                         47
           76
                                               0
                                                  0
                                                     0
                                         47
                                             0
132 3 2
              137
                    3
                      2
                          47
                              138
                                   3
                                     3
           76
                                               0
                                   3
                                     4
                                         47
                                             0
                                                  0
                                                     0
                    3
                      3
                          47
                              138
134
    3 2
           76
              137
                                             0
                                               0
                                                  0
                                                     0
                                         47
    3 3
               137
                    3
                      4
                          47
                              139
                                   3
                                     3
135
           47
                                         47
                                             0
                                               0
                                                  0
                                                     0
                          47
                                     4
                      2
                              139
                                   3
135
     3 2
           76
               138
                    3
                                     3
                                         47
                                             0
                                               0
                                                  0
                                                     0
                              140
                                   3
                      3
                          47
     3
           47
               138
                    3
136
       3
                                         47 0
                                               0
                                                     0
                              140
                                   3
                                     4
                    3
                      4
                          47
137
     3
       2
           47
               138
                              141
                                   3
                                     2
                                         47
                                             0
                                               0
                                                  0
                                                     0
     3
                      3
                          47
137
       3
           47
               139
                    3
                                         47
                                             0
                                               0
                                                  0
                                                     0
               139
                      4
                          47
                              141
                                   3
                                     4
137
     3
       4
           47
                    3
                                               0
                                                 0
                                                    0
                                   3
                                     2
                                         47
                                             0
               140
                    3
                      3
                          47
                              142
138
     3
           47
       2
                                                  0
                                     4
                                         47
                                             0
                                               0
                    3
                      4
                          47
                              142
                                   3
138
     3
       3
           47
               140
                                     4
                                         89
                                             0
                                               0
                                                  0
                                                    0
                              143
                                   1
138
     3
       4
           47
               141
                    3
                      2
                          47
                                         89
                                            0
                                               0
                                                  0
                                                     0
                      4
                          47
                              144
                                   1
                                     4
139
     3
       3
           47
               141
                    3
                                     2
                                         47
                                             0
                                               0
                                                  0
                                                    0
                      2
                          47
                              144
                                   3
139
     3
           47
               142
                    3
       4
                                                    0
                                   3
                                     4
                                         47
                                             0
                                               0
                                                  0
               142
                    3
                      4
                          47
                              145
140
     3
           47
       3
                                                  0 0
                              146
                                   3
                                     4
                                         47
                                             0
                                               0
140
     3
           47
               143
                    1
                      4
                          89
       4
                                             0
                                   3
                                     4
                                         47
                                               0
                                                 0 0
141
           47
               144
                    1
                          89
                              147
     3
       2
                                                  0
                                         89
                                             0
                                               0
                                                     0
                              148
                                   1 4
               144
                    3
                      2
                          47
141
     3
       4
           47
                                   3 2
                                         47
                                             0
                                               0
                                                  0
                                                     0
                              149
142
     3
           47
               145
                    3
                      4
                          47
       2
                              149
                                   4
                                     4
                                        123
                                             0
                                                0
                                                  0
                                                     0
                      4
                          47
142
     3
           47
               146
                    3
                                             0
                                                0
                                                     0
                                 0
                                   0
                                     0
                                           0
                                                  0
               147
                    3
                      4
                          47
143
     1
       4
           89
                                   0
                                           0
                                             0
                                                0
                                                  0
                                                     0
                      4
                          89
                                 0
                                     0
               148
                   - 1
144
    1
       4
           89
                                 0
                                   0
                                     0
                                           0
                                             0
                                                0
                                                  0
                                                     0
               149
                    3
                      2
                          47
144
     3
       2
           47
               149
                    4
                         123
                                 0
                                   0
                                     0
                                           0
                                             0
                                                0
                                                  0
                                                     0
                      4
145
    3
       4
           47
                                 0
                                   0
                                     0
                                           0
                                             0
                                                0
                                                  0
                                                     0
146
       4
           47
                  0
                    0
                      0
                            0
     3
                                                0
                                                     0
                    0
                            0
                                 0
                                   0
                                     0
                                           0
                                             0
                                                  0
           47
                  0
                       0
147
     3
        4
                                             0
                                                0
                                                  0
                                                     0
                                 0
                                   0
                                     0
                                           0
           89
                  0
                    0
                       0
                            0
148
     1
        4
                                             0
                                                0
                                                  0
                                 0
                                   0
                                     0
                                           0
                  0
                    0
                       0
                            0
149
     3
        2
            47
                                   0 0
                                           0
                                             0
                                                0
                                 0
          123
                  0
                    0
                       0
                            0
149
    4
```

fig 23-2

J-igne 24.- lg 24-1

7667778899901010111111111111111111111111111	უ უ უ უ უ უ უ უ უ უ უ უ უ უ უ უ უ უ	2323232323333333333333333333322222444333333	777777777777777777777777777777777777777	789 799 823 990 100 100 100 100 100 100 100 100 100	。 3	323233332333333333332334222222444333333234234	777777777777777777777777777777777777777	8237823104567890011111111111111111111111111111111111	333333333333333333333333333333333333333	3333233333333333342222224443333332342343434242424442000	76 0 0 0 0 0 0 76 0 0 0 0 0 76 0 0 0 0 0
139	3	4	47	142	3	2	47	146	3	4	47 0 0 0 0
140 141	3 3	4 2	47 47	144 145	3 3	2 4	47 47	149 0	3 0	2 0	47 0 0 0 0
142	3	2	47	147	3	4	47	0 0 0	0	0	0 0 0 0 0
142	3	2	47 47	149	3	0	47	0	0	0	0 0 0 0 0
145 146	3 3	4 4	47 47	0 0	0	0	0	0	0	0	0 0 0 0 0
147 149	3 3	4 2	47 47	0	0	0	0	0	0	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure 25-

GLOFULP3 DEPLACE MUTAT GLOFULP DE AGG#AGA EN BASE 107: G#T MAINTENANT)
...(DONC APRES SITE CAP: CELA A POUR EFFET DE CREER 14 ONDES EN T..??..
...SUR PONT 150 PRE/GENE ALORS QUE toutes LES MUTATIONS = 0 SUR CASE 3 1
LE TRAVAIL EST FAIT PAR BOSSEP3

```
AAAA IMPACT DEPLACEMENT ZONE P+
△△△△ PONT AUTOUR BASE 25 CCAAT
GLOFUL
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
LUCAS...
47 76 123 199
15 1 12 1
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
              0 165
          0
3 0 0 0 267
              ٥
          O
0 5 11 7 0 235 1125 785
      0 0 0 311
0 0 0 6
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
89
3
LUCAS...
47 123 199
9 17 6
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0000000
                0
3 0 0 0 267
         0
            0
                0
0 5 8 19 0 235 984 2489
    0
       0
            0
PONT AUTOUR DE REGION CCAAT
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
3 3
LUCAS...
47 76 123 199
15 1 17 6
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
            0 165
000300
  0 0 267
          0
              0
0 5 11 17
       0 235 1125 2395
0006
        0 0 0 311
```

Figure 26 - fig 26-1

3 3

76 102

3 4

3 1

90122345678901131111111111111111111111111111111111
444243333333333333333333342222223232323
555363666666666666666666777777777777777
10456789001131459012289013131335567738888990000000000000000000000000000000
3333333334333333333342222323232342343434244424442400000000
76666666667777777777777777777777777777
8999999999999999999999999999999999999
。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。
12121212223344241344343433333243333342222232323433434343424442444424
$\begin{array}{c} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$
000000000000000000000000000000000000000

Fig. 26/2

Figure 27 - fig 27-1

COMPARAISON DES SAUTS DF RESONANCES DE TYPE 3 1 (LFF T) ENTRE:

COMPLET A GAUCHE ... ET TGF BETA1 + CAT A DROITE...

BETAGLOGINET TGF PRECURSEUR + VECTEUR CAT

260 3 1 123 261 3 1 76 796 3 1

799 3 1

199

```
263 3 1
            76
                799 3 1
 264 3
            76
                802
                    3
                       1
                           76
 265 3
            76
                802
                     3 1
                          199
        1
 272 3 1
          123
                805
                     3 1
                           47
                805 3
 273 3 1
          123
                       1
                           76
 274 3 1
                805 3 1
                          199
            76
 279 3 1
           47
                808 3
                           47
                       1
 283 3 1
           47
                808 3
                       1
                           76
                                          vide 2
           47
                     3 1
                           47
 284 3 1
                811
           47
                     3 1
                           76
 286 3
        1
                811
                814
     3
          322
                     3 1
 397
        1
                           76
 436 3 1
          199
                823 3 1
                          199
                832 3 1
 437 3 1
          199
                          123
444 3 1
           47
                835 3 1
                           47
445 3 1
           47
                838 3 1
                           47
447 3 1
           47
                838 3 1 123
448 3
           47
                841 3 1 123
       1
449 3
                850 3 1 123
       1
           47
458 3
                    3 1 123
       1
           47
                853
     3
3
461
       1
           47
                856
                     3
                       1 123
 462
        1
           47
                856
                     3
                       1
                         199
463
     3
        1
           47
                859
                     3
                       1
                         199
464
     3
           47
                862
                       1
       1
                     3
                         123
465
     3
           47
                871
                     3
                       1
       1
                         123
466
     3
           47
                880
       1
                     3
                       1
                         123
467
     3
          199
                883
                    3
       1
                       1
                           76
471 3
       1
           47
                883
                    3 1
                         123
472
     3
       1
           47
                889
                    3 1
                           47
473
    3
       1
           47
                892
                    3 1
                           47
474
    3
       1
           47
                895
                    3 1
                           47
475
     3
       1
           47
                901 3 1
                         199
476
    3
       1
           47
                904 3 1
                         199
477
     3
       1
           47
                937 3 1
                           47
4.78
    3_ 1
           47
                937 3 1
                          76
    3 1 199
494
                961 3 1
                          47
       1-123
499
     3
                964
                    3 1
                          47
501
     3
       1
         123
                976
                    3 1
                          47
502
     3
       1
         123
                    3
                979
                       1
                          47
503
     3
       1
         123
                979
                    3
                       1
                          76
504
     3
       1
         123
                982
                    3
                       1
                          47
510
     3
       1
         123
              1309
                    3
                       1
                         521
533
     3
       1
           76
              1339
                    3
                      1
                         322
           76
537
    3
       1
              1342
                    3
                         322
                      1
538
           7.6
              1345
    3
       1
                    3
                      1
                         322
539
    3
       1
           76 1348 3
                      1
                         322
556
    3 1
           47
              1351 3
                      1
                         322
557
    3 1
           47 1354 3
                         199
                      1
558
    3 1
           47 1360 3
                      1
                         199
561
    3 1
           47 1390 3
                      1
                          47
    3 1
567
           47 1396 3
                          47
568 3 1
           47 1399 3
                          47
633 3 1
          47 1408 3
                      1
                         123
634 3 1
          47 1411 3 1
                          76
634 3 1
                          76
          76 1414 3 1
635
    3 1
          47
              1441 3 1
                          47
636
    3
      1
          47
              1447
                    3
                          47
                      1
639
    3
          76
              1447
      1
                    3
                      1
                          76
640
    3
          76
              1450
      1
                      1
                          76
648
    3
      1
          47
              1453
                      1
                          47
649
    3
      1
          47
              1456
                    3
                          47
652
    3
      1
          47
              1465
                    3
                      1
                          76
653
    3
              1468
      1
          47
                    3
                      1
                          47
655
    3
          47
              1471
      1
                    3
                      1
                          47
```

656 3 1

47 1474 3 1

7.6

Rig. 27-2

7:C

```
660 3 1
           47 1480 3 1
                            47
                        1 123
1 47
              1489
                     3
    3 1
           47
662
    3 1
           47
               1495
              1495
                     3
                        1
       1
           47
663
    3 1
           47
              1498
664
    3 1
              1501
                     3 1
           47
    0 0
            0
              1504
                     3
                        1
                            47
    0 0
            0
              1504
                     3 1
                          123
    0 0
              1507
                     3 1
                            76
    0 0
  0
            0
              1510
                     3
                        1
                            76
              1510
                        1
                          199
       0
            0
              1513
                            76
  0
    0 0
            0
                        1
              1513
            0
                     3
                        1
                          123
            0 1516
  0
    0
      0
                     3
                        1
                          123
            0
              1519
                     3
    0
       0
                        1
  0
    0
            0 1540
                     3 1
                            76
      0
    0 0
                           76
  0
      0
            0
              1543
      ò
  0
              1549
                     3
            0
                       1
                           76
  0
       0
              1552
            0
                     3
                       1
                          123
      ŏ
  0
              1555
                    3
    0 0 0
            0
                       1
                           47
                           47
      0
            0
              1558
                    3
  0 0
              1564
1570
      0
                    3
            0
                       1
                          199
      0
            0
                    3
                       1
                           76
    0
      0
              1570
                    3
  0 0 0
            0
                       1
                          199
      0
            0 1573
                    3
                       1
                           76
      0
              1576
                     3
                           76
    0 0 0
            0
                       1
      0
              1582
                    3
            0
                       1
                          123
  0
      0
              1591
                       1
                           76
            0
              1591
      0
            0
                    3
                          123
                       1
    0 0 0 0 0 0 0 0 0
  0
            0
              1594
                    3
                       1
                          123
              1597
                    3
            0
                       1
                          123
  0 0
              1603 3
                    3
              1606
                           47
            0
                       1
              1648
            0
                       1 123
                       1
    0
  0
      0
              1657
                    3
                           76
            0
                    3
      0
            0
              1657
                       1
                          123
    0
  0
      0
            0
              1660
                    3
                       1
                          123
              1663
      .0
                    3
            0
                       1
                           76
 0
0
0
   0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
            0
              1666 3
                       1
                    3 1
3 1
              1669
                           47
            0
            0
              1672
                           47
 0000000
            0
              1684 3
                       1
                           47
              1684 3
                       1
                           76
            0
                    3
3
                       1
            0
              1690
                           47
              1693
                           47
            0
              1696
                    3
                           47
                    3
              1696
                       1
                           76
            0
            0
              1699
                       1
                           47
 0
                    3
              1720
                       1
                           47
           0
 0
                    3
            0
              1738
                       1
                           47
 0
                    3
                         123
           0
              1804
                       1
              1816
           0
                       1
                          123
 0
   0
           0 1819
0 1822
      0
                    3
                         123
                       1
      0
                    3 1 123
 0
    0
      0
           0.1825
                    3
                          123
   0
 0
             1825
                    3
                       1 199
      0
           0
 0
              1828
           0
                    3 1 199
    0
              1834
1840
 0
      0
           0
                    3 1 123
      0
                    3
           0
                       1
   0
 0
             1843
                    3
      0
                    3
 0
      0
           0.1852
                       1 123
    0
 0
      0
           0
              1855
                    3
                       1
   0
             1858
                    3
 0
      0
                         123
           0
                       1
              1861
 0
      0
                    3
                      1
                           47
   0
 0
              1864
                    3
      0
           0
                       1
                         47
 0
              1864
                    3
      0
           0
                       1
                         123
   Ö
 0
             1867
                    3
      0
           0
 0
      0
             1870
                         123
           0
                    3
                      1
 0
    0
      0
              1873
                          123
 0
    0
              1876
      0
           0
                    3
                       1
                         123
    0
                    3 1 123
 0
              1879
   0
 0
      0
           0
              1882
                    3 1
                         123
              1894
                    3
           0
 0
      0
              1912
    0
 0
      0
           0 1948
                    3
                           76
                       1
    0
             1963
 ŋ
      0
           0
                    3
                       1
                           47
```

fig 27-3

```
extraivale GENBANK)
                                         Figure 28
              Plasmid pT13SNco.
     ORGANISM Artificial gene
              Artificial sequences: Genes.
                 (bases 1 to 223)
   REFERENCE
              Tonouchi, N., Oouchi, N., Kashima, N., Kawai, M., Nagase, K., Okano, A.,
     AUTHORS
              Matsui, H., Yamada, K., Hirano, T. and Kishimoto, T.
              High-level expression of human BSF-2/IL-6 cDNA in Escherichia coli
     TITLE
              using a new type of expression-preparation system
              J. Biochem. 104, 30-34 (1988)
     JOURNAL
     STANDARD full staff entry
              pT13SNco was constructed from pT9-11 by replacement of the
   COMMENT
              Hpal-Xbal fragment with synthetic DNA which was designed so that
              codons could be changed without any change in the coded amino acid
              in order to possess many restriction sites. The expression level of
              human IL-2 in pT13SNco was similar to that for pT9-11, suggesting
              that the third letters of each codon are not so important for
              transcription-translation efficiency.
                        Location/Qualifiers
   FEATURES
                        42..>223
   .PE1 CDS
                        /note="human IL-2"
                        /codon start=1
                        /translation="MAPTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFK
                        FYMPKKATELKHLQCL"
                                              56 t
                            47 c
                                     43 g
                   77 a
   BASE COUNT
              HpaI site.
   ORIGIN
   Name: SYNT13SNCO
                          Length:
   Subsequence names and qualifiers:
   SYNT13SNCO.PE1 CDS /note="human IL-2" /codon start=1 /translation="MAPTSSSTKKTQ
                                                                50
                                          30
                                20
                     10
                                                          M A P.
             aactagtacg caagttcacg taaaaagggt atcgataagc catggcacct
                                                         >SYNT13SNCO.PE1
                                                   . . 90
                                                               100
                                70
                                          80 - -
                                   TQLQLEHLLL
              T S S S T K K
             acctcqaqta qtactaaqaa aacacaqctq caqctaqaqc atctqctqct
                                         130
                                                    140
               D L Q M I L N G I N N Y K
                                                        и в к
             agatetecag atgattttga atggaattaa taattacaag aateecaage
                          170 180 190
L T F K F Y M P K K
                                                    190
             ttacgcgtat gttaacattt aaattttaca tgcctaagaa ggccacagag
                                          230
                               220
                    210
              L K H
                        LQCL
             ctcaagcatc ttcagtgtct aga
                       SYNT13SNCO.PE1<
```

1-igure 29

GENE PT911 (PARTIE CODANTE)

ATGGCACCTA CTTCAAGTTC TACAAAGAAA ACACAGCTAC AGCTACAGCA TTTACTGCTG 51 GATTTACAGA TGATTTTGAA TGGAATTAAT AATTACAAGA ATCCCAAACT CACCAGGATG 101 | CTCACATTTA AGTTTTACAT GCCCAAGAAG GCCACAGAAC TGAAACATCT TCAGTGTCTA 151

GENE PT13SNCO, MODIFIE DEPUIS PT911 (PARTIE CODANTE)

ATGGCACCTA CCTCGAGTAG TACTAAGAAA ACACAGCTGC AGCTAGAGCA TCTGCTGCTA GATCTCCAGA TGATTTTGAA TGGAATTAAT AATTACAAGA ATCCCAAGCT TACGCGTATG 51 | TTAACATTTA AATTTTACAT GCCTAAGAAG GCCACAGAGC TCAAGCATCT TCAGTGTCTA 101 | 151 |

LES ACIDES AMINES DE CES 2 GENES SONT IDENTIQUES...

MET ALA PRO THR SER SER SER THR LYS LYS THR GLN LEU GLN LEU GLU HIS LEU LEU LEU ASP LEU GLN MET ILE LEU ASN GL Y ILE ASN ASN TYR LYS ASN PRO LYS LEU THR ARG MET LEU T HR PHE LYS PHE TYR MET PRO LYS LYS ALA THR GLU LEU LYS HIS LEU GLN CYS LEU

> 1gure 30 30-1

TOUTES RESONANCES 00000000000000000 ILK6 PT911FUL ET PT13SNCOFUL 000000000000000 00000000 000000000 MUTANTS PT911MFUL ET PT13SNCOMFUL 000000000000000 VISUALISE LES PONTS A CHEVAL SUR BASE 37/41 (JOINT PRECURSEUR/GENE) 000000000 COMPARE (PRECURSEUR + GENE PT911 VRAI) ET (PT13SNCO) GENE REEL BILPT911FUL BILAN NB RESONANCES PAR LONGUEURS... FIBONACCI... 55 89 144 12 5 23 LUCAS... 47 76 123 SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 0 0 26 0 0 0 2846 0 0 0 0 14 0 0 0 1571 1 8 0 0 76 376 0 0 0 2167 0 0 24 0 0 O GENE MUTE BILPT13SNCOFUL BILAN NB RESONANCES PAR LONGUEURS... FIBONACCI... 55 4 LUCAS... 47 76 9 9 SYNTHÈSE VENTILEE PAR TYPES DE RESONANCES ET DE BASES

0 0 3 0 0 0 165 0

0 0 0 55 0 0 0 0 0 0 15 0 0 0 937

O. 0 170 0 0.30

DETAIL RESONANCES PONTS 1 1 3 89 1 4 3 76

fog 30-2

lig 30-3

```
34 2 4 144
          0 0 0
34 3 2
     47
          0 0 0
                0
          0 0 0
                0
34 4 3 123
          0 0 0
                0
35 1 3
      55
          0 0 0
                O
35 2 4 144
          0 0 0
               0
35 3 2 47
          0 0 0
               ٥
36 2 4 144
36 3 2
          0 0 0
               0
      47
37 1 3
      55
          0 0 0
                0
37 2 4 144
          0 0 0
      47
         0 0 0
                0
37 3 2
      76
          0 0 0
               0
COMPARE (PRECURSEUR + GENE PT911 VRAI) ET (PT911 MUTE)
   GENE REEL BILPT911FUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144
12 5 23
LUCAS...
47 76 123
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 26 0 0 0 2846 0
0 0 0 14 0
           0 0 1571
                0
                  0
1 8 0 0 76 376
0 0 24 0 0 0 2167
                    O
GENE CHIMERE BILPT911MFUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144
20 6 16
LUCAS...
47 76 123
16 9 11
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES .
0 0 29 0 0 0 2867 0
         0
            0 0 1071
0 0 0 13
3 5 0 0 369.235
                 0 0
0 0 28 0 0 0 2185
                     0
DETAIL RESONANCES PONTS
1 1 3 89 15 1 3
               55
2 1 3
     89 24 1 3
               55
2 1 3 144 25 1 3
               55
3 1 3 89 27 1 3
               55
               55
3 1 3 144 28 1 3
               55
 4 1 3 89 29 1 3
 4 1 3 144 29 2 4
               55
               55
 5 1 3 144 30 1 3
5 4 3
               55
     76 30 2 4
 6 1 3 144 31 1 3
               55
               55
 7 1 3 144 31 2 4
               55
 8 1 3 144 32 1 3
 9 1 3 144 32 2 4
               55
```

lig 30-4

10112134467788899900111456778889900001111222233333333333333333333333333	11414444414441441411441414124242234122322342234		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3345556771234674567901121567714567012234578112223456723589348222345781112111111111111111111111111111111111	2212212111111111111111111222244444444343433344444444	443443433333333333333333333333333333333	$\begin{array}{c} 55555555588888888444444444444444444444$
37 37 37 37	1 2 3 3	3 4 2 1		14 16 17 18		1 3 3 3	123 123 123 123

```
tig 30-5
       0 22 4 3 123
 0 0 0
        0 30 4 3 123
 0 0 0
        0 33 4 3 123
 0 0 0
        0 34 4 3 123
 0 0 0
        0 36 4 3 123
 0 0 0
COMPARE (PRECURSEUR + GENE PT911 VRAI) ET (PT13SNCO MUTE)
  __ GENE REEL BILPT911FUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144
12 5 23
LUCAS...
47 76 123
14 8 11
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 26 0 0 0 2846 0
            0
               0 1571
0 0 0 14 0
1 8 0 0 76 376
                 0
0 0 24 0 0 0 2167
                      0
GENE CHIMERE BILPT13SNCOMFUL
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55
LUCAS...
47 76
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 6 0 0 0 330 0
              0 0
  0 0 0 55
            0
0 14 0 0 0 803 0 0
0 0 4 0 0 0 217 0
<del>44444444444444444444444</del>
DETAIL RESONANCES PONTS
1 1 3 89 11 1 3 55
      89 12 1 3 55
 2 1 3
 2 1 3 144 13 1 3 55
      89 14 1 3 55
3 1 3 144 22 1 3 55
      89 23 1 3 55
4 1 3 144 32 2 1 55
5 1 3 144 19 4 3 47
5 4 3 76 24 4 3 47
6 1 3 144 25 4 3 47
7 1 3 144 30 3 2 47
8 1 3 144 31 3 2 47
9 1 3 144 32 3 2 47
10 1 3 55 33 3 2 47
10 1 3 144 34 3 2 47
11 4 3 123 35 3 2 47
12 1 3 144 39 3 2 47
12 4 3 123 40 3 2 47
13 4 3 76 41 3 2 47
14 4 3 76 11 4 3 76
```

```
Tig 30-6
14 4 3 123 28 3 2
                                                  2692594
   4 3
         47 29 3 2 76
 17
    1 3
        144 30 3
                2
                  76
 17 4 3
         47
            31
              3 2
                  76
 18 4 3
         47
            32 3 2
                  76
 18 4 3
         76
            0 0 0
                   0
 18 4 3 123
            0 0 0
                   0
 19 1 3
       144
            0 0 0
                   0
 19 4 3
         76
            0
              0
                0
                   0
 19 4 3
       123
              0
            0
                0
                   0
 20 1 3
        144
            0
              0 0
                   0
 20 4 3
        76
            0 0 0
                   0
 21 1 3
        89
            0 0 0
 21 1 3 144
            0 0 0
                   0
 21 4 3
        76
            0 0 0
                   0
 24 4 3 123
            0 0 0
                   0
 25
   1 3
        55
            0 0 0
                   0
26 4 3
        47
            0 0 0
                   0
27 1 3
        55
            0 0 0
                   0
27 4 3
        47
            0 0 0
                   0
28 1 3
        55
            0 0 0
                   0
28 2 4
        55
            0 0 0
                   0
28
   4 3
        47
            0 0 0
                   0
29
   2 4 144
            0.00
                   0
29
   4 3
       123
            0 0 0
30 2 4
        55
            0 0 0
                   0
30 2 4
       144
            0 0 0
30 3 2
        47
            0 0 0
                   0
30 4 3
       123
            0 0 0
                   0
31 1 3
        55
            0 0
                   0
               0
   2 4
31
        55
            0 0
                   0
   2 4
31
       144
            0 0 0
                   0
31 3 2
        47
            0 0 0
32 2 4
        55
            0 0 0
32 2 4 144
            0 0 0
                   0
32
   3 2
        47
            0 0 0
                  0
       123
32
   4 3
            0 0 0
33
   2 4
        55
            0.00
                  0
33
  2 4
       144
            0 0 0
                  0
33
  3 2
        47
            0 0 0
                  0
  4 3 123
33
            0 0 0
34
  2 4 144
            0 0 0
                  0
34
   3 2
        47
            0 0 0
                  0
  4 3
       123
34
            0 - 0
               0
   1
35
    3
        55
            0
             0
               0
                  0
35
   2 4 144
            0 0 0
                  0
35 3 2
        47
            0 0
               0
36 2 4 144
            0 0 0
                  0
36 3 2
        47
           0 0 0
                  0
37 1 3
        55
           0 0 0
                  0
37 2 4 144
           0 0 0
                  0
37 3 2
       47
           0
             0 0
                  0
37 3 1
       76
           0 0 0
                  0
VVVVVVVVVVVAAAAAA DETAIL RESONANCES AAAAAAAAAAAVVVVVVVVVVVVV
```

BILAN NB RESONANCES PAR LONGUEURS...

```
50. <sub>†</sub>2692594
 55 89 144
 67 55 31
 LUCAS...
 47 76 123
 69 54 26
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
 0 0 69 0 0 0 6145 0
 0 7 0 77 0 385 0 6514
37 27 3 0 2923 1530 141
                      0
 3 0 79 0 141 0 5810
                        0
0 0 69 0 0 0 6145 0
 0 7 0 77
           0 385 0 6514
37 27 3 0 2923 1530 141
                      0
 3 0 79 0 141 0 5810
PT13SNCO
       BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
53 21
LUCAS...
47 76 123
60 39 5
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
 0 0 23 0 0 0 1503 0
 1 20 0 30
          55 1100 0 2126
37 23 5 0 2583 1313 235
                     0
0 0 39 0 0 0 2268 0
0 0 23 0 0 0 1503 0
1 20 0 30 55 1100 0 2126
37 23 5 0 2583 1313 235
0 0 39 0 0 0 2268
DETAIL TRIE... PT911 COTACOTE PT13SNCO
1 1 3 89
         1 4 3 76
 2 1 3 89
          8 3 2 47
 2 1 3 144
          16 1 3 55
 3 1 3 89
          18 1 3
                55
 3 1 3 144
          23 1 3 55
 4 1 3 89
          29 4 3 47
 4 1 3 144
          30 4 3
                47
 5 1 3 144
         31 3 2 47
: 5
  4 3
      76
         31 3 2 76
 6 1 3 144
         32 3 2 47
 7 1 3 144
         33 3 2 76
8 1 3 144
         34 3 2
                47
 9 1 3 144
         34 3 2
                76
10 1 3
         35 3 2
     55
                47
10 1 3 144
         35 3 2
               76
11 4 3 123
         36 2 1 55
12 1 3 144 36 3 2 47
12 4 3 123
         36 3 2 76
13 4 3 76 37 3 2
                76
14 4 3 76
         38 3 2
                76
14 4 3 123
        39 3 2
                76
```

16 4 3 47 40 3 2

log 30-10

555555666666666666666677777788888888888
2 2 3 3 3 3 4 4 4 3 3 2 4 3 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 3 2 3 3 2 3
1 4 4 3 1 4 4 3 1 4 4 3 1 4 4 3 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1256677778889991560011111111111111111111111111111111
1 4 1 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4
334341333333441414111144134143331
76 55 89 55 89 76 55

fig 30-11

888875575784748454584558455888847547587777578875875875875888884484999996556596596596596599977977977
2 4 3 3 4 4 3 3 4 3 3 1 3 1 3 1 3 1 3 1 3
977888890001122223444556667777788899999000111111111111111111111111

```
129 4 3
              0 0 0
130 3 1
         47
130 3 2
         76
              0 0 0
130 4 3
         76
              0 0 0
131 1 3
         55
                                 fig 30-12
131 3 2
         76
              0 0 0
 131 4 3
         76
              0 0 0
132 2 4
         55
              0 0 0
132 3 2
         47
132 3 2
         76
              0 0 0
133 3 2
         47
              0 0
                 0
133 3 2
         76
134 3 2
135 3 2
         76
              0 0 0
         76
              0 0 0
136 2 4
         55
             0 0 0
                     0
136 3 2
         76
              0 0 0
                     0
137 2 4.
         55
              0 0 0
137 3 2
         76
             0 0 0
                     0
138 2 4
         55
             0 0 0
138 3 2
         76
             0 0 0
140 3 2
         47
             0 0 0
                     0
143 3 2
         47
             0 0 0
144 3 2
             0 0 0
         47
146 3 2
             0 0 0
         47
                     O
147 3 2
         47
             0 0 0
154 2 4
         55
             0 0 0
                     0
155 2 4
         55
             0 0 0
                     0
157 2 4
         55
             0 0 0
157 4 3
         47
             0 0 0
                     O
158 4 3
         47
             0 0 0
                     0
159 4 3
         47
             0 0 0
160 4 3
         47
             0 0 0
PT911M
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89 144
78 56 27
LUCAS...
47 76 123
74 56 26
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
  0 74 0 - 0 - 0 6276 -0 - 7 0 80 0 385 0 6501
 O
   0
40 25
                 0 5922
 3
0 74 0 0 0 6276 0
0 7 0 80 0 385 0 6501
40 25 3 0 3292 1436 141 0
3 0 85 0 141 0 5922 0
                  0 5922
PT13SNCOM
BILAN NB RESONANCES PAR LONGUEURS...
FIBONACCI...
55 89
56 21
LUCAS...
47 76 123
60 36
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES
0 0 26 0 0 0 1668 0
1 20 0 30 55 1100 0 2126
                          0
1 20 0 30 55 1100
37 19 5 0 2583 1038
0 0 40 0 0
                     235
                            0
           0 0 2315
                             ٥
0 0 26 0
             0
                0 1668
                           0
1 20 0 30
             55 1100
                     0 2126
37 19 5 0 2583 1038 235
                            0
   0 40 0
              0
                   0 2315
```

0 0

0 0

39 41

0 93

0 1949 2543

GENE SELECTIONNE PARMI 100 SYNONIMES CONDUISANT AU MEME POLYPEPTIDE (ACIDES AMINES) AUE PT911...

1 | AACTAGTACG CAAGTTCACG TAAAAAGGGT ATCGACAATG GCGCCGACGT
51 | CGTCATCAAC CAAAAAAACA CAACTTCAAC TACAGCATCT TCTACTTGAT
101 | CTTCAAATGA TCTTAAACGG GATCAACAAC TACAAAAAATC CGAAACTGAC
151 | CCGTATGTTG ACTTTCAAAT TTTATATGCC AAAGAAGGCA ACAGAATTAA
201 | AACATTTGCA GTGTCTC
251

ANALYSE COMPAREE DES RESONANCES ENTRE PT911 ET CE GENE OPTIMUM

SEQUENCE PT911 (PRECURSEUR PT911 + GENE PT911)

BILAN NB RESONANCES PAR LONGUEURS...
FIBO...
55 89 144
67 55 31
LUCAS
47 76 123
69 54 26

SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES 0 0 69 0 0 0 6145 0

SEQUENCE OPTIMALE (PRECURSEUR PT911 + GENE OPTIMAL)

BILAN NB RESONANCES PAR LONGUEURS... FIBO... 55 89 144 87 43 29 LUCAS 47 76 123 199

52 63 46 4
SYNTHESE VENTILEE PAR TYPES DE RESONANCES ET DE BASES

Figure 32-

89901566590111111111111111111111111111111
33344333344444444434333434433311122222222
1111331111333333333313111313331113333122222343432323232
7777777777777777777777777777777777775555
19490233344455670488999 244444555555555555566666788889999990 1000000000000000000000000000
4444443334433433433331111122221221122222222
333333311133113111111133333444433443344
12333333333333333333333333333333333333
13567889001333344444444555556777634888889999999 1111719011234562
444434443434333333344444333343344444344344343
333323333232323222223333311131131333331331
12333333333333333333333333333333333333
3
2 .
- 2

112 4 3 47 113 4 3 47	130 3 2 76 130 4 3 76	76 3 2 76 76 4 3 76
117 4 3 47 118 3 1 47 119 3 1 47 120 3 1 47	131 3 2 76 131 4 3 76 132 3 2 76 133 3 2 76	77 4 3 76 83 3 1 76 84 3 1 76 85 3 1 76
121 4 3 4 7 122 4 3 47 123 4 3 47	134 3 2 76 135 3 2 76 136 3 2 76	86 3 1 76 91 3 1 76 92 3 1 76
129 4 3 47 131 4 3 47 152 3 1 47 153 3 1 47	137 3 2 76 138 3 2 76 10 1 3 55 25 1 3 55	93 4 3 76 94 3 1 76 98 4 3 76 100 4 3 76
154 3 1 47 158 3 1 47 158 4 3 47 159 3 1 47	27 1 3 55 28 1 3 55 28 2 4 55 30 2 4 55	101 4 3 76 102 4 3 76 103 3 1 76 103 4 3 76
161 4 3 47 162 4 3 47 163 4 3 47	31 1 3 55 31 2 4 55 32 2 4 55 33 2 4 55	104 3 1 76 104 4 3 76 105 3 1 76 105 4 3 76
166 3 1 47 167 3 1 47 0 0 0 0	35 1 3 55 37 1 3 55 39 2 4 55	106 3 1 76 106 4 3 76 107 3 1 76
0 0 0 0 0 0 0 0 0 0 0 0	43 2 4 55 44 2 4 55 45 2 4 55 46 2 4 55	107 4 3 76 108 4 3 76 136 3 1 76 136 4 3 76
0 0 0 0 0 0 0 0 0 0 0 0	47 2 4 55 48 2 4 55 49 2 4 55 -50 1 3 55	137 3 1 76 139 3 1 76 11 1 3 55 12 1 3 55
0 0 0 0 0 0 0 0 0 0 0 0	50 2 4 55 51 1 3 55 52 1 3 55	13 1 3 55 14 1 3 55 15 2 1 55
0 0 0 0 0 0 0 0 0 0 0 0	56 1 3 55 57. 1 3 55	21 2 1 55 22 2 1 55 23 2 1 55
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58 1 3 55 71 2 2 55 72 2 2 55 73 2 2 55 83 1 3 55	24 2 1 55 25 1 3 55 25 2 1 55 27 1 3 55
00000	89 1 3 55 91 1 3 55 91 2 2 55 92 1 3 55	28 1 3 55 28 2 4 55 30 2 1 55 30 2 4 55
0 0 0 0 0 0 0 0 0 0 0 0	93 1 3 55 93 2 2 55 94 2 2 55	31 1 3 55
0 0 0 0 0 0 0 0 0 0 0 0	95 2 2 55 95 2 4 55 96 2 4 55	31 2 1 55 31 2 4 55 32 2 4 55 33 2 1 55 33 2 4 55 34 2 1 55
0 0 0 0 0 0 0 0 0 0 0 0 0 0	96 2 4 55 99 2 4 55 100 2 4 55 101 2 4 55 105 1 3 55	35 1 3 55 36 1 3 55 44 1 3 55 45 1 3 55
0 0 0 0	105 1 3 55 106 2 4 55 107 1 3 55	46 1 3 55 50 1 3 55

55555555555555555555555555555555555555	55 55 55
3333333444333444344434443333333333334442442	2 4 2 2
11111111222111222122221222111111111121111	2 2 2 2
941248888888100078990112234111111111111111111111111111111111	155 155 156
555555555555555555577777777777777777777	47 47 47 47
44334333333344444443333332222222223322333333	3 3 1
22112111111222222244444433333333443344444444	3 3 4
10111111111111111111111111111111111111	68 72 73 80
000000000000000000000000000000000000000	0 0 0
000000000000000000000000000000000000000	0 0 0 0
	0 0 0
	0 0 0

3)	_	1
_	_		\sim

	0 95 4 3 0 102 3 1 0 103 3 1 0 104 3 1 0 105 3 1 0 106 3 1 0 107 3 1 0 109 3 1 0 125 4 3 0 127 3 1 0 125 4 3 0 127 4 3 0 128 3 1 0 129 3 1 0 130 3 2 0 140 3 2 0 143 3 2 0 144 3 2 0 146 3 2 0 147 3 2 0 147 3 2 0 147 3 2 0 147 3 2 0 147 3 2 0 147 3 2 0 157 4 3 0 158 4 3 0 159 4 3 0 159 4 3 0 159 4 3 0 159 4 3 0 159 4 3 0 159 4 3 0 159 4 3 0 160 4 3 0	0 1 0 1 0 1 0 1 0 1 0 1	6 7 8 9 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	444444444444444444444444444444444444
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	20 4 3 25 3 1 25 4 3 27 4 3 47 3 1 48 3 1	47 47 47 47 47