10 – Introduction to Relational Databases (RDB)

LBSCI 700 | Spring 2019 Queens College, CUNY

10-database.pdf

Database Intro

Keys

Integrity Rules

Normalization Rules

DB Queries

DB Implementation: MS Access

Database Intro

Database Intro

Data vs. Information

- Changing data into information
 - Organize data so that it can be viewed in a useful form
 - Requirements of this process

Data into Information: Identify Context

Data

- Athy, Annrei M 12****64

- Cooper, Aisha M 23****12

- Diggle, Robert 23****22

- lannuzzo, Jessica 23****12

Context

- Class Roster
- Course LBSCI700, Section: 2, Spring 2019

DB – What and Why?

A database is shared, integrated computer structure that stored a collection of end-user data and metadata.

- **---** Database Systems: Design, Implementation, & Management: Rob & Coronel
- Front End/Back End
- Spreadsheet vs DB
- Integrate with website (interactive)
- Examples
 - Collect Data (<u>AARP Membership</u>)
 - Generate reports (Store Locator)
 - Searchable (ALA Accredited Programs)

DB Anatomy

Table

- Columns
- Rows

- Fields
- Records

Example: Table

123	STU_NUM	STU_LNAME	STU_FNAME	STU_INIT	STU_DOB	STU_HRS	STU_CLASS
•	321452	Bowser	William	C	Saturday, February 12, 1972	42	So
33	324257	Smithson	Anne	K	Tuesday, November 15, 1977	81	Jr
	324258	Brewer	Juliette		Tuesday, August 23, 1966	36	So
S	324269	Oblonski	Walter	Н	Sunday, September 16, 1973	66	Jr
	324273	Smith	John	D	Friday, December 30, 1955	102	Sr
- 1.	324274	Katinga	Raphael	P	Thursday, October 21, 1976	114	Sr
	324291	Robertson	Gerald	T	Wednesday, April 08, 1970	120	Sr
	324299	Smith	John	В	Wednesday, November 30, 1983	15	Fr

Database Systems: Design, Implementation, & Management: Rob & Coronel

- 8 rows & 7 columns
- Row = record
- Column = field
 - has specific characteristics (data type, format, value range)

DB Software

Relational DB (RDB)

Commercial

- Oracle
- Microsoft SQL Server

Open Source

- MySQL
- SQLite

Keys

Keys

Keys are used to ensure that each row in a table is uniquely identifiable

Primary – unique identifier (Each record must be unique)

Candidate keys - combination of fields used to identify a database record without any extraneous data. A table may have one or more candidate keys. One of these candidate keys is selected as the table primary key.

Foreign Keys – relating information in other table

11

1:M Relationship

One-to-many (1:M):

Most common.

The primary key table contains only one record that relates to none, one, or many records in the related table.

-Parent-child (sibling) example

1:1 Relationship

One to one (1:1):

Rare.

A special case of the 1:M

Both tables can have only one record on either side of the relationship. Each primary key value relates to only one (or no) record in the related table. Most one-to-one relationships are forced by business rules and don't flow naturally from the data. In the absence of such a rule, you can usually combine both tables into one table without breaking any normalization rules.

- Spouse example;
- PROFESSOR chairs DEPARTMENT

Relating Tables with Keys: Example

 Provides a logical "human-level" view of the data and associations among groups of data (i.e., tables)

M:M/M:N Relationship

Many-to-many (M:M/M:N):

Each record in both tables can relate to any number of records (or no records) in the other table. Many-to-many relationships require a third table, known as a bridge table, because relational systems can't directly accommodate the relationship.

Course and Students Example

M:N to 1:M Conversion

M:N to 1:M Conversion

- 1. Move the foreign key columns to create a bridge table & add attributes if needed.
- 2. Collapse the duplicate records in remaining tables.

Integrity Rules

Integrity Rules

- Entity Integrity
 - Each entity has unique key
- Referential Integrity
 - Foreign key value is null or matches primary key values in related table
- Most RDBMS enforce integrity rules automatically.

STU_ID	STU_LNAME	STU_FNAME	DEPT_CODE
12345	Doe	John	245
12346	Dew	John	243
22134	Dew	James	

DEPT_CODE	DEPT_NAME
243	Astronomy
244	Computer Science
245	Sociology

^{*}The basic building blocks of all data models are entities, attributes, relationships, and constraints

DB Efficiency

Normalization

- Normalization of database tables
- -Reduce repetitive entries (minimize data redundancies)
- -Levels (1 NF, 2 NF, 3NF)

20

Normalization: First Normal Form

First normal form (1 NF) Rules:

- Each cell has a single value
- Each row/record needs to be unique

Steps

- 1. Eliminate repeating groups (columns) from the same table.
- 2. Identify primary key.
- 3. Identify all dependencies
 - Partial dependency
 - Transitive dependency

Normalization: 1NF example

Covert an ill-organized table to 1NF

Full Names	Physical Address	Movies rented	Salutation
Janet Jones	First Street Plot No 4	Pirates of the Caribbean, Clash of the Titans	Ms.
Robert Phil	3 rd Street 34	Forgetting Sarah Marshal, Daddy's Little Girls	Mr.
Robert Phil	5 th Avenue	Clash of the Titans	Mr.

FULL NAMES	PHYSICAL ADDRESS	Movies rented	SALUTATION
JanetJones	First Street Plot No 4	Pirates of the Caribbean	Ms.
JanetJones	First Street Plot No 4	Clash of the Titans	Ms.
Robert Phil	3 rd Street 34	Forgetting Sarah Marshal	Mr.
Robert Phil	3 rd Street 34	Daddy's Little Girls	Mr.
Robert Phil	5 th Avenue	Clash of the Titans	Mr.

Normalization: Second Normal Form

Converting to 2NF is done only when the 1NF has a composite primary key

- Second Normal Form (2NF) Rules
 - It is in 1NF
 - There are no partial dependencies (single column primary key)
- Conversion to 2NF Steps
 - 1. Write each key component (w/ partial dependency) on separate line
 - 2. Write original (composite) key on last line
 - 3. Each component is new table
 - 4. Assign corresponding dependent attributes after each key

```
1NF (<u>FULL_NAMES</u>, <u>PHYSICAL_ADDRESS</u>, MOVIE_RENTED, SALUTATION)
```

MEMBERS (<u>MEMBERSHIP ID</u>, FULL_NAMES, PHYSICAL_ADDRESS, SALUTATION)
MOVIES (<u>MEMBERSHIP ID</u>, MOVIE RENTED)

Normalization: 2NF example

_	Composite	Key
6		-

1	Robert Phil	3 rd Street 34	\	Daddy's Little Girls	Mr.	
J	Robert Phil	5 th Avenue		Clash of the Titans	Mr.	

Names are common. Hence you need name as well Address to uniquely identify a record.

TABLE1: MEMBERS

MEMBERSHIP ID	FULL NAMES	PHYSICAL ADDRESS	SALUTATION
1	Janet Jones	First Street Plot No 4	Ms.
2	Robert Phil	3 rd Street 34	Mr.
3	Robert Phil	5 th Avenue	Mr.

TABLE2: MOVIES

MEMBERSHIP ID	Movies rented
1	Pirates of the Caribbean
1	Clash of the Titans
2	Forgetting Sarah Marshal
2	Daddy's Little Girls
3	Clash of the Titans

Normalization: Third Normal Form

- Third Normal Form (3NF)
 - It is in 2NF
 - There are no transitive dependencies
- Conversion to 3NF Steps
- 1. Start with 2NF format
- 2. Break off the transitive dependencies and create separate tables

```
MEMBERS (<u>MEMBERSHIP ID,</u> FULL_NAMES, PHYSICAL_ADDRESS, SALUTATION)

↓
```

MEMBERS (<u>MEMBERSHIP_ID</u>, FULL_NAMES, PHYSICAL_ADDRESS) SALUTATION (<u>SALUTATION_ID</u>, SALUTATION)

Normalization: 3NF example

MEMBERSHIP ID	FULL NAMES	PHYSICAL ADDRESS	SALUTATION
1	Janet Jones	First Street Plot No 4	Ms.
2	Robert Phil	3 rd Street 34	Mr.
3	Robert Phil	5 th Avenue	Mr. May Change
Change in Na	me -		Salutation

TABLE1: MEMBERS

MEMBERSHIP ID	FULL NAMES	PHYSICAL ADDRESS	SALUTATION ID
1	JanetJones	First Street Plot No 4	2
2	Robert Phil	3 rd Street 34	1
3	Robert Phil	5 th Avenue	1

TABLE2: MOVIES

MEMBERSHIP ID	MOVIES RENTED
1	Pirates of the Caribbean
1	Clash of the Titans
2	Forgetting Sarah Marshal
2	Daddy's Little Girls
3	Clash of the Titans

TABLE3: SALUTATION

SALUTATION ID	SALUTATION
1	Mr.
2	Ms.
3	Mrs.
4	Dr.

Examples from https://www.guru99.com/database-normalization.html

DB Queries / Search for next time ...

SQL - modify and retrieve data

Commands:

- Select Fetches data.
- Insert Inserts one or more rows of data.
- Update Modifies existing row(s) of data
- Delete Deletes rows of data

DB Implementation: MS Access

Outline

- Access Table
- Access Queries
- Access Reports

Recap

Database Intro

Keys

Integrity Rules

Normalization Rules

DB Queries

DB Implementation: MS Access

Last Things

About Usability Studies

• Continue ...

32

ToDo

- ➤ Start homework
 - -- Look for email
 - -- Check Bb weekly folder

Note any questions from reading and homework

* Next Monday, April 15, Asynchronous Online