Proof Playground

Severen Redwood

This document serves as my playground for practising the art of writing mathematical proofs. As such, do not expect to find a proof of the Riemann hypothesis here, or indeed anything else that is original. Instead, you will find a range of proofs related to mostly standard undergraduate material that I *hope* are correct.

Algebra

Theorem 1 (Quadratic Formula). *The solutions of the quadratic equation of the form* $ax^2 + bx + c = 0$ *are*

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Proof. Let $ax^2 + bx + c = 0$. Complete the square to obtain

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a}.$$

Solve for *x* to obtain

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}.$$

Thus,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

as desired.

Theorem 2 (Logarithm of a Product). $\log_h(xy) = \log_h(x) + \log_h(y)$.

Proof. Let $x := b^m$ and $y := b^n$. From the definition of a logarithm, it follows that $\log_b(x) = m$ and $\log_b(y) = n$.

By substituting b^m and b^n for x and y in $\log_h(xy)$,

$$\log_b(xy) = \log_b(b^m b^n)$$
$$= \log_b(b^{m+n})$$
$$= m + n.$$

Since $m = \log_b(x)$ and $n = \log_b(y)$, the above can be written as

$$\log_h(xy) = \log_h(x) + \log_h(y),$$

which is the desired identity.

Theorem 3 (Logarithm of a Quotient). $\log_b \left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$.

Proof. Let $x := b^m$ and $y := b^n$. From the definition of a logarithm, it follows that $\log_h(x) = m$ and $\log_h(y) = n$.

By substituting b^m and b^n for x and y in $\log_h(x/y)$,

$$\log_b \left(\frac{x}{y}\right) = \log_b \left(\frac{b^m}{b^n}\right)$$
$$= \log_b (b^{m-n})$$
$$= m - n.$$

Since $m = \log_b(x)$ and $n = \log_b(y)$, the above can be written as

$$\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y),$$

which is the desired identity.

Theorem 4 (Logarithm of a Power). $\log_h(x^y) = y \log_h(x)$.

Proof. Let $x := b^n$. From the definition of a logarithm, it follows that $\log_b(x) = n$. By substituting b^n for x in $\log_b(x^y)$,

$$\log_b(x^y) = \log_b((b^n)^y)$$
$$= \log_b(b^{y^n})$$
$$= yn.$$

Since $n = \log_h(x)$, the above can be written as

$$\log_h(x^y) = y \log_h(x),$$

which is the desired identity.

Theorem 5 (Change of Base Formula). *Any logarithm can be rewritten in terms of another base with the formula*

$$\log_b(a) = \frac{\log_x(a)}{\log_x(b)}.$$

Proof. Let $c := \log_b(a)$. From the definition of a logarithm, it follows that $b^c = a$. By taking the base-x logarithm of both sides,

$$\log_{r}(b^{c}) = \log_{r}(a).$$

Therefore,

$$c \log_{x}(b) = \log_{x}(a)$$
$$c = \frac{\log_{x}(a)}{\log_{x}(b)}.$$

Since $c = \log_h(a)$, the above can be written as

$$\log_b(a) = \frac{\log_x(a)}{\log_x(b)},$$

which is the change of base formula.

Number Theory

Definition 1 (Natural Number). A natural number is a member of the set $\mathbb{N} = \mathbb{Z}^+ = \{1, 2, 3, ...\}$.

Result 1. *The number* $\sqrt{2}$ *is irrational.*

Proof. Suppose that $\sqrt{2}$ is rational, and so it can be expressed as a ratio of two integers. Hence, let $\sqrt{2} = a/b$, where a and b are coprime. By squaring both sides,

$$2 = \frac{a^2}{h^2} \Longleftrightarrow 2b^2 = a^2.$$

Therefore, a^2 is even, and in turn, a is also even, since squares of odd integers are never even. Hence, there exists some integer k such that a = 2k. By substituting this in,

$$2b^2 = (2k)^2 \Longleftrightarrow b^2 = 2k^2.$$

Using the same reasoning as with a, it must be that b is also even. However, since a and b are both even, a contradiction arises. Two even integers cannot be coprime, so $\sqrt{2}$ cannot be expressed as a ratio of two integers. Thus, $\sqrt{2}$ is irrational.

Theorem 1. *There are infinitely many prime numbers.*

Proof. Suppose there are only finitely many prime numbers. Let $p_1, p_2, ..., p_n$ be a list of all primes and let $m := p_1 p_2 \cdots p_n + 1$. Note that m is not divisible by p_1 since dividing m by p_1 gives a remainder of 1. Similarly, m is not divisible by any other number in the list. Because m is larger than 1, m is either a prime or a product of primes.

If *m* is a prime, then we have found a prime not in our list, which contradicts the assumption that it was a list of all prime numbers.

If m is a product of primes, then it must be divisible by one of the primes in our list. However, we have shown m is not divisible by any number in the list. Thus the assumption that the list was a list of all prime numbers is again contradicted.

Since the assumption that there are only finitely many prime numbers has led to a contradiction, there must be infinitely many prime numbers. \Box

Result 2. If p and q are two consecutive primes that are each greater than 2, then p + q is a product of three integers that are each greater than 1.

Proof. Without loss of generality, assume that p < q. Note that p and q are both odd integers since they are both prime numbers greater than 2. Therefore, p + q = 2a, for some integer a. It cannot be that a is prime since a = (p + q)/2, which is a contradiction. Hence, a must be composite, and so the theorem holds.

Theorem 2. The sum of the first n natural numbers is equal to

$$\frac{n(n+1)}{2}.$$

Proof. We proceed by induction. If n = 1, then the theorem is clearly true:

$$\sum_{i=1}^{1} i = \frac{1(1+1)}{2} = 1.$$

So, the theorem holds for the base case of n = 1.

For the inductive hypothesis, assume the formula is true for all k > 1. Hence,

$$\sum_{i=1}^{k} i = \frac{k(k+1)}{2}.$$

For the inductive step, let n = k + 1. By the properties of summation,

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1).$$

By using the inductive hypothesis,

$$\sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

$$= \frac{(k+1)((k+1)+1)}{2}.$$

So, the theorem holds when n = k + 1.

Since the base case and inductive step have been shown, the theorem holds for all natural numbers by the principle of mathematical induction. \Box

Theorem 3. *The sum of the squares of the first n natural numbers is equal to*

$$\frac{n(n+1)(2n+1)}{6}.$$

Proof. We proceed by induction. If n = 1, then the theorem is clearly true:

$$\sum_{i=1}^{1} i^2 = \frac{1(1+1)(2\cdot 1+1)}{6} = 1.$$

So, the theorem holds for the base case of n = 1.

For the inductive hypothesis, assume the formula is true for all k > 1. Hence,

$$\sum_{i=1}^{k} i = \frac{k(k+1)(2k+1)}{6}.$$

For the inductive step, let n = k + 1. By the properties of summation,

$$\sum_{i=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2.$$

By using the inductive hypothesis,

$$\begin{split} \sum_{i=1}^{k} i^2 + (k+1)^2 &= \frac{k(k+1)(2k+1)}{6} + (k+1) \\ &= \frac{k(k+1)(2k+1) + 6(k+1)}{6} \\ &= \frac{(k+1)(k+2)(2k+3)}{6} \\ &= \frac{(k+1)((k+1) + 1)(2(k+1) + 1)}{6}. \end{split}$$

So, the theorem holds when n = k + 1.

Since the base case and inductive step have been shown, the theorem holds for all natural numbers by the principle of mathematical induction. \Box

Set Theory

Definition 1 (Ordered Pair). The ordered pair of two elements *a* and *b* is the set

$$(a,b) := \{\{a\}, \{a,b\}\}.$$

Definition 2 (Cartesian Product). The Cartesian product of two sets *A* and *B* is the set

$$A \times B := \{ (a, b) : a \in A, b \in B \}.$$

Theorem 1. For any sets A, B, and C, the following hold:

- (a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$
- (b) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- (c) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- (d) $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Proof of A. Let $(u, v) \in (A \cup B) \times C$. Therefore, $u \in A \cup B$ and $v \in C$. This means that $u \in A$ or $u \in B$. If $u \in A$, then $(u, v) \in A \times C$. If $u \in B$, then $(u, v) \in B \times C$. Either way, $(u, v) \in (A \times C) \cup (B \times C)$. Hence,

$$(A \cup B) \times C \subseteq (A \times C) \cup (B \times C).$$

Now, let $z := (x, y) \in (A \times C) \cup (B \times C)$. Either $z \in A \times C$ or $z \in B \times C$. In the first case, $x \in A$ and $y \in C$. In the second, $x \in B$ and $y \in C$, so $z = (x, y) \in (A \cup B) \times C$. This implies that

$$(A \times C) \cup (B \times C) \subset (A \cup B) \times C$$
.

Putting the two parts together completes the proof.

Proof of B. Let $(u,v) \in (A \cap B) \times C$. Therefore, $u \in A \cap B$ and $v \in C$. This means that $u \in A$ and $u \in B$. Thus, $(u,v) \in A \times C$ and $(u,v) \in B \times C$, and consequently, $(u,v) \in (A \times C) \cap (B \times C)$. Hence,

$$(A \cap B) \times C \subset (A \times C) \cap (B \times C).$$

Now, let $z := (x, y) \in (A \times C) \cap (B \times C)$. Therefore, $z \in A \times C$ and $z \in B \times C$. So, $x \in A$ and $x \in B$, and likewise, $y \in C$. Thus, $z = (x, y) \in (A \cap B) \times C$. This implies that

$$(A \times C) \cap (B \times C) \subseteq (A \cap B) \times C.$$

Putting the two parts together completes the proof.

Real Analysis

Definition 1 (Limit). Let f be a real-valued function defined on a subset D of the real numbers. Let c be a limit point of D and let L be a real number. We say that

$$\lim_{x \to c} f(x) = L$$

if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that, for all $x \in D$,

$$0 < |x - c| < \delta \Longrightarrow |f(x) - L| < \varepsilon$$
.

Result 1. $\lim_{x \to 2} (x^2 + 1) = 5$.

Proof. Suppose $\varepsilon > 0$. Let $\delta := \min(1, \varepsilon/5)$ and $x \in \mathbb{R}$ such that $0 < |x - 2| < \delta$. Since $|x - 2| < \delta$, it follows that

$$|x - 2| < 1 \Longrightarrow -1 < x - 2 < 1$$
$$\Longrightarrow 1 < x < 3.$$

In particular, this means that |x + 2| < 5. Likewise, it follows that $|x - 2| < \varepsilon/5$. Hence,

$$|x - 2| < \delta \Longrightarrow |x - 2| < \frac{\varepsilon}{5}$$

$$\Longrightarrow |x + 2||x - 2| < 5 \cdot \frac{\varepsilon}{5}$$

$$\Longrightarrow |x^2 - 4| < \varepsilon$$

$$\Longrightarrow |(x^2 + 1) - 5| < \varepsilon.$$

Result 2. $\lim_{x\to 3} (x^2 + 6) = 15.$

Proof. Suppose $\varepsilon > 0$. Let $\delta := \min(1, \varepsilon/7)$ and $x \in \mathbb{R}$ such that $0 < |x - 3| < \delta$. Since $|x - 3| < \delta$, it follows that

$$|x - 3| < 1 \Longrightarrow -1 < x - 3 < 1$$
$$\Longrightarrow 2 < x < 4.$$

In particular, this means that |x + 3| < 7. Likewise, it follows that $|x - 3| < \varepsilon/7$. Hence,

$$|x - 3| < \delta \Longrightarrow |x - 3| < \frac{\varepsilon}{7}$$

$$\Longrightarrow |x + 3||x - 3| < 7 \cdot \frac{\varepsilon}{7}$$

$$\Longrightarrow |x^2 - 9| < \varepsilon$$

$$\Longrightarrow |(x^2 + 6) - 15| < \varepsilon.$$

Result 3. $\lim_{x\to 0} \frac{x}{x^2 + 1} = 0.$

Proof. Suppose $\varepsilon > 0$. Let $\delta := \min(1, 2\varepsilon)$ and $x \in \mathbb{R}$ such that $0 < |x| < \delta$.

Since $|x| < \delta$, it follows that |x| < 1, and thus $|x^2 + 1| < 2$. Likewise, it follows that $|x| < 2\varepsilon$.

Hence,

$$|x| < 2\varepsilon \Longrightarrow \frac{|x|}{|x^2 + 1|} < \frac{2\varepsilon}{2}$$

$$\Longrightarrow \frac{|x|}{|x^2 + 1|} < \varepsilon$$

$$\Longrightarrow \left| \frac{x}{x^2 + 1} \right| < \varepsilon.$$

Result 4. $\lim_{x \to 5^+} \frac{1}{x - 5} = \infty$.

Proof. Suppose M > 0. Let $\delta := 1/M$ and $x \in \mathbb{R}$ such that $0 < x - 5 < \delta$. Since $x - 5 < \delta$, it follows that

$$x - 5 < \frac{1}{M} \Longrightarrow \frac{1}{x - 5} > M.$$