Engineering Graduate Salary Prediction

Exploratory Data Analysis

Brief Description

India has a total 6,214 Engineering and Technology Institutions in which around 2.9 million students are enrolled. Every year, on an average 1.5 million students get their degree in engineering, but due to lack of skill required to perform technical jobs less than 20% get employment in their core domain.

A relevant question is what determines the salary and the jobs these engineers are offered right after graduation. Various factors such as college grades, candidate skills, the proximity of the college to industrial hubs, the specialization one have, market conditions for specific industries determine this. On the basis of these various factors, your objective is to determine the salary of an engineering graduate in India.

Data Source:

https://www.kaggle.com/datasets/manishkc06/engineering-graduate-salary-prediction

Data Description [1]

ID: A unique ID to identify a candidate

Salary: Annual CTC offered to the candidate (in INR)

Gender: Candidate's gender

DOB: Date of birth of the candidate

10percentage: Overall marks obtained in grade 10 examinations

10board: The school board whose curriculum the candidate followed in grade 10

12graduation: Year of graduation - senior year high school **12percentage**: Overall marks obtained in grade 12 examinations **12board**: The school board whose curriculum the candidate followed

CollegeID: Unique ID identifying the university/college which the candidate attended for her/his

undergraduate

CollegeTier: Each college has been annotated as 1 or 2. The annotations have been computed from the average AMCAT scores obtained by the students in the college/university. Colleges with an average score above a threshold are tagged as 1 and

others as 2.

Degree: Degree obtained/pursued by the candidate

Specialization: Specialization pursued by the candidate

CollegeGPA: Aggregate GPA at graduation

CollegeCityID: A unique ID to identify the city in which the college is located in.

CollegeCityTier: The tier of the city in which the college is located in. This is annotated based on the population of the cities.

CollegeState: Name of the state in which the college is located

Data Description [2]

```
GraduationYear: Year of graduation (Bachelor's degree)
English: Scores in AMCAT English section
Logical: Score in AMCAT Logical ability section
Quant: Score in AMCAT's Quantitative ability section
Domain: Scores in AMCAT's domain module
ComputerProgramming: Score in AMCAT's Computer programming section
ElectronicsAndSemicon: Score in AMCAT's Electronics & Semiconductor Engineering section
ComputerScience: Score in AMCAT's Computer Science section
MechanicalEngg: Score in AMCAT's Mechanical Engineering section
Electrical Engineering section
TelecomEngg: Score in AMCAT's Telecommunication Engineering section
CivilEngg: Score in AMCAT's Civil Engineering section
conscientiousness: Scores in one of the sections of AMCAT's personality test
agreeableness: Scores in one of the sections of AMCAT's personality test
extraversion: Scores in one of the sections of AMCAT's personality test
nueroticism: Scores in one of the sections of AMCAT's personality test
openess_to_experience: Scores in one of the sections of AMCAT's personality test
```

Data Cleaning

[1] Reading and Understanding Our Data

• Read the data into pandas data frame and load the brief look of the data.

	ID	Gender	DOB	10percentage	10board	12graduation	12percentage	12board	CollegeID	CollegeTier		MechanicalEngg	ElectricalEngg	Telecor
0	604399	f	1990- 10-22	87.80	cbse	2009	84.00	cbse	6920	1		-1	-1	
1	988334	m	1990- 05-15	57.00	cbse	2010	64.50	cbse	6624	2	20	-1	-1	
2	301647	m	1989- 08-21	77.33	maharashtra state board,pune	2007	85.17	amravati divisional board	9084	2		-1	-1	

• Find more information about the features and data types.

We can see that there's no null data. Hence, we won't deal with missing values.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2998 entries, 0 to 2997
Data columns (total 34 columns):
                         Non-Null Count Dtype
                         -----
    ID
                         2998 non-null
                                       int64
                         2998 non-null
                                       object
   10percentage
                         2998 non-null
                                       float64
4 10board
                         2998 non-null
                                       object
```

• Use the describe() function to show the count, mean, max, of the features attribute.

Add median and range to describe() table

	ID	10percentage	12graduation	12percentage	CollegeID	CollegeTier	collegeGPA	CollegeCityID	CollegeCityTier	GraduationYear	 М
count	2.998000e+03	2998.000000	2998.000000	2998.000000	2998.000000	2998.000000	2998.000000	2998.000000	2998.000000	2998.000000	
mean	6.648926e+05	77.666264	2008.080720	74.341061	5210.210807	1.924616	71.509857	5210.210807	0.296197	2011.939960	
std	3.648951e+05	10.002785	1.631814	11.120299	4776.609877	0.264053	8.122462	4776.609877	0.456655	36.780582	
25%	3.334648e+05	71.140000	2007.000000	66.000000	526.250000	2.000000	66.530000	526.250000	0.000000	2012.000000	
median	6.396945e+05	78.965000	2008.000000	74.000000	4027.500000	2.000000	71.800000	4027.500000	0.000000	2013.000000	
75%	9.951770e+05	85.600000	2009.000000	82.600000	8822.250000	2.000000	76.300000	8822.250000	1.000000	2014.000000	
min	1.124400e+04	43.000000	1998.000000	40.000000	2.000000	1.000000	6.630000	2.000000	0.000000	0.000000	
max	1.297877e+06	97.760000	2012.000000	98.700000	18409.000000	2.000000	99.930000	18409.000000	1.000000	2017.000000	
range	1.286633e+06	54.760000	14.000000	58.700000	18407.000000	1.000000	93.300000	18407.000000	1.000000	2017.000000	

[2] Handling the Duplicates

 Check whether there are any duplicates in our data and if there's any, remove the duplicates.

There's no duplicate data, so we don't remove any duplicates

```
#Check if there is any duplicate in our dataframe
df['ID'].duplicated().sum()

df.ID.is_unique

True

df.index.is_unique

True
```

[3] Feature Selection

• Get rid of some irrelevant variables that do not affect Salary

• Check category counts to make sure all categories have reasonable representation

Aggregate some variables in Specialization feature into 1 category because they only have very few counts

	-
electronics and communication engineering computer science & engineering	55
information technology	50
computer engineering	41
computer application	20
mechanical engineering	15
electronics and electrical engineering	14
electronics & telecommunications	8
electrical engineering	6
electrical engineering electronics & instrumentation eng	2
instrumentation and control engineering	1
information science engineering	1
electronics and instrumentation engineering	1
civil engineering	1
electronics engineering	1
biotechnology	1
other	1
industrial & production engineering	-
chemical engineering	
applied electronics and instrumentation	
mechanical and automation	
telecommunication engineering	
automobile/automotive engineering	
computer science and technology	
aeronautical engineering	
instrumentation engineering	
electronics and computer engineering	
mechatronics	
metallurgical engineering	
industrial engineering	
biomedical engineering	
information & communication technology	
electronics	
embedded systems technology	
industrial & management engineering	
electrical and power engineering	
computer and communication engineering	
mechanical & production engineering	
control and instrumentation engineering	
ceramic engineering	
computer networking	
information science	
Name: Specialization, dtype: int64	
mane. specialization, dtype: Into4	

electronics and communication engineering	678
computer science & engineering	557
information technology	506
computer engineering	415
computer application	201
mechanical engineering	155
electronics and electrical engineering	148
electronics & telecommunications	89
Others	7.6
electrical engineering	63
electronics & instrumentation eng	24
electronics and instrumentation engineering	18
instrumentation and control engineering	18
information science engineering	18
civil engineering	15
electronics engineering	13
biotechnology	12
Name: Specialization, dtype: int64	

[3] Handling The Outliers

• Plot every predictor variable using scatter plot function to visually detect the outliers.

We found outliers in variables: collegeGPA, Domain, ComputerProgramming, ElectronicsAndSemicon, ComputerScience, MechanicalEngg, ElectricalEngg, TelecommEngg, and CivilEngg.

[3.1] Handling The Outliers

• Using uni-variate analysis (box plot) to get rid of outliers in collegeGPA variable.

Drop collegeGPA less than 20

[3.2] Handling The Outliers

 We found out that in variables Domain, ComputerProgramming, ElectronicsAndSemicon, ComputerScience, MechanicalEngg, ElectricalEngg, TelecommEngg, and CivilEngg all data outliers are in -1 values. To handle these outliers, we will replace -1 with nan first, and then fill the nan values with mean values

```
df2 = df2.replace(-1,np.nan)
cols_with_nan = [col for col in df2.columns if df2.isna().sum()[col]>0]
for col in cols_with_nan:
    df2[col] = df2[col].fillna(df2[col].mean())
```


Exploratory Data Analysis

[1] Looking for Correlations

Calculate correlations of every predictor variable to target variable (Salary)

Quant	0.238025
Logical	0.192844
10 (March 1911) 1 (1914)	B
ComputerProgramming	0.189329
Domain	0.184818
10percentage	0.180528
English	0.178810
12percentage	0.171857
collegeGPA	0.149643
agreeableness	0.074807
ComputerScience	0.056355
MechanicalEngg	0.048106
ElectronicsAndSemicon	0.047189
CivilEngg	0.033688
ElectricalEngg	0.031881
TelecomEngg	0.020219
openess_to_experience	0.000987
extraversion	-0.004129
conscientiousness	-0.046078
nueroticism	-0.069793
CollegeTier	-0.175449
Name: Salary, dtype: flo	pat64

Visually Inspect the Correlations

Build relationship plots of every predictor variables to target variable (Salary) We can see that there are upward-curved relationships in the correlation plots between 'Salary' to 'agreeableness' and between 'Salary' to 'openess_to_experience'. This suggests that we should do quadratic polynomial terms or transformations for these features later.

Construct a Correlation Heatmap

 Build a heatmap to see the relationships across the variables
 We can see that the relationship between '12percentage' and '10percentage' is the strongest.

[2] Skew Variables

 Build distribution plots for every feature to visually inspect any variables with skewed distribution

Log Transformation

 Visually inspect the effect of log transformation first.

2) Apply log transformation

Square Root Transformation

 Visually inspect the effect of square root transformation first.

2) Apply square root transformation

collegeGPA

Feature Engineering

[1] Data Preprocessing

 We can see that Gender, Degree, and Specialization are 'object' variables, which aren't suitable for ML input. Hence, we need to process those variables.

44	Column		
#	COTUMIN	Non-Null Count	Dtype
0	Gender	2989 non-null	object
1	10percentage	2989 non-null	float64
2	12percentage	2989 non-null	float64
3	CollegeTier	2989 non-null	int64
4	Degree	2989 non-null	object
5	Specialization	2989 non-null	object
6	collegeGPA	2989 non-null	float64
7	English	2989 non-null	int64
8	Logical	2989 non-null	int64
9	Quant	2989 non-null	int64
10	Domain	2989 non-null	float64
11	ComputerProgramming	2989 non-null	float64
12	ElectronicsAndSemicon	2989 non-null	float64
13	ComputerScience	2989 non-null	float64
14	MechanicalEngg	2989 non-null	float64
15	ElectricalEngg	2989 non-null	float64
16	TelecomEngg	2989 non-null	float64
17	CivilEngg	2989 non-null	float64
	conscientiousness	2989 non-null	float64
19	agreeableness	2989 non-null	float64
20	extraversion	2989 non-null	float64
21	nueroticism	2989 non-null	float64
22	openess to experience	2989 non-null	float64
23	Salary	2989 non-null	int64
	es: float64(16), int64(5), object(3)	
	y usage: 583.8+ KB	/	

	Gender	10percentage	12percentage	CollegeTier	Degree	Specialization
0	0	87.80	84.00	1	0	15
1	1	57.00	64.50	2	0	5
2	1	77.33	85.17	2	0	8
3	1	84.30	86.00	1	0	5
4	0	82.00	75.00	2	0	1

[2] Feature Scaling

Normalize our data

```
norm data = MinMaxScaler().fit transform(df2 num)
norm data
array([[0.81811541, 0.74957411, 0.
                                         , ..., 0.46516554, 0.8510643 ,
       0.10340479],
       [0.25566107, 0.41737649, 1.
                                         , ..., 0.52859645, 0.78723948,
       0.01891551],
       [0.62691746, 0.76950596, 1.
                                         , ..., 0.39242765, 0.78706182,
       0.0554855 1.
       [0.88385683, 0.43543441, 1.
                                         , ..., 0.45122175, 0.89230393,
       0.08827238],
       [0.83345508, 0.4286201 , 1.
                                         , ..., 0.19641898, 0.879157 ,
       0.12484237],
      [0.62089116, 0.60477002, 1.
                                         . ..., 0.63432574, 0.55319291,
       0.04161412]])
```

Standardize our data

[3] Polynomial Features

Separate our predictor variables from target variable.

Apply polynomial calculation

```
X2 = X.copy()

X2['agree2'] = X2['agreeableness'] ** 2
X2['opennes2'] = X2['openess_to_experience'] ** 2
```

[3.1] Polynomial Features in Scikit-Learn

	1	agreeableness	openess_to_experience	agreeableness^2	agreeableness openess_to_experience	openess_to_experience^2
0	1.0	0.3789	0.2889	0.143565	0.109464	0.083463
1	1.0	0.0459	-0.2859	0.002107	-0.013123	0.081739
2	1.0	-0.1232	-0.2875	0.015178	0.035420	0.082656
3	1.0	0.2124	0.4805	0.045114	0.102058	0.230880
4	1.0	-0.7473	0.1864	0.558457	-0.139297	0.034745
	6	73.0	22.0		£.	
2984	1.0	0.9688	0.0284	0.938573	0.027514	0.000807
2985	1.0	0.0328	0.5024	0.001076	0.016479	0.252406
2986	1.0	0.1888	0.6603	0.035645	0.124665	0.435996
2987	1.0	1.2808	0.5419	1.640449	0.694066	0.293656
2988	1.0	-1.9521	-2.3937	3.810694	4.672742	5.729800

[4] Getting Dummy Variables (One-Hot Encoding)

• We will create a new feature column for each category value, and fill these columns with 1s and 0s to indicate which category is present for each row. This method is called dummy variables or one-hot encoding. (Notice that before we have 24 columns, but now we have 44)

J	Gender	10percentage	12percentage	CollegeTier	Degree	Specialization	collegeGPA	English	Logical	Quant	 MechanicalEngg	ElectricalEngg
0	f	87.80	84.00	1	B.Tech/B.E.	instrumentation and control engineering	73.82	650	665	810	 401.174863	423.336066
1	m	57.00	64.50	2	B.Tech/B.E.	computer science & engineering	65.00	440	435	210	 401.174863	423.336066
2	m	77.33	85.17	2	B.Tech/B.E.	electronics & telecommunications	61.94	485	475	505	 401.174863	423.336066
3	m	84.30	86.00	1	B.Tech/B.E.	computer science & engineering	80.40	675	620	635	 401.174863	423.336066
4	f	82.00	75.00	2	B.Tech/B.E.	biotechnology	64.30	575	495	365	 401.174863	423.336066
5	ws × 24	columns										

	10percentage	12percentage	CollegeTier	collegeGPA	English	Logical	Quant	Domain	ComputerProgramming	Electronics And Semicon	
0	87.80	84.00	1	73.82	650	665	810	0.694479	485.000000	366.000000	
1	57.00	64.50	2	65.00	440	435	210	0.342315	365.000000	335.947917	
2	77.33	85.17	2	61.94	485	475	505	0.824666	449.620837	400.000000	
3	84.30	86.00	1	80.40	675	620	635	0.990009	655.000000	335.947917	
4	82.00	75.00	2	64.30	575	495	365	0.278457	315.000000	335.947917	
	83.	225	900	1323	85.0	922	-	1 229		323	2.2
2993	75.00	73.00	2	70.00	505	485	445	0.538387	245.000000	333.000000	
2994	84.00	77.00	2	75.20	345	585	395	0.190153	315.000000	335.947917	
2995	91.40	65.56	2	73.19	385	425	485	0.600057	435.000000	335.947917	
2996	88.64	65.16	2	74.81	465	645	505	0.901490	545.000000	335.947917	
2997	77.00	75.50	2	69.30	370	390	285	0.486747	315.000000	335.947917	
2989 rd	ows × 44 colur	mns									

pd.get_dummies(df2)

Result Example of One-Hot Encoding

0

Before One-Hot Encoding

[5] Getting to Fancier Features

 We'll create features that capture where a feature value lies relative to the members of a category it belongs to. In particular, we'll calculate deviance of a row's feature value from the mean value of the category that row belongs to. This helps to capture information about a feature relative to the category's distribution,

```
def add_deviation_feature(X, feature, category):
    #temp groupby object
    category_gb = X.groupby(category)[feature]

#create category means and standard deviations for each observation
    category_mean = category_gb.transform(lambda x: x.mean())
    category_std = category_gb.transform(lambda x: x.std())

#compute stds from category mean for each feature value,
#add to X as new feature
    deviation_feature = (X[feature] - category_mean) / category_std
    X[feature + '_Dev_' + category] = deviation_feature
```


#We can see in 2nd and 3rd rows (negatives), mean that they are below the average for that specific Degree

collegeGPA_Dev_Specialization	Specialization	collegeGPA	openess_to_experience_Dev_Degree	openess_to_experience	Degree	
-0.255174	instrumentation and control engineering	73.82	0.426733	0.2889	B.Tech/B.E.	0
-1.014374	computer science & engineering	65.00	-0.143249	-0.2859	B.Tech/B.E.	1
-0.918264	electronics & telecommunications	61.94	-0.144835	-0.2875	B.Tech/B.E.	2
1.289844	computer science & engineering	80.40	0.616726	0.4805	B.Tech/B.E.	3
-1.698599	biotechnology	64.30	0.325092	0.1864	B.Tech/B.E.	4
			197			

Hypothesis Testing

Hypothesis Testing 1

 $H_0: \mu_1 <= \mu_2$ The average salary of females are less than or equal to graduates from males.

 $H_A: \mu_1 > \mu_2$ The average salary of females are greater than or equal to males.

Hypothesis Testing 2

 $H_0: \mu_1 - \mu_2 = 0$ There is no difference between the collegeGPA of graduates from CollegeTier 1 and CollegeTier 2. $H_A: \mu_1 - \mu_2! = 0$ There is difference between the collegeGPA of graduates from CollegeTier 1 and CollegeTier 2.

Hypothesis Testing 3

 $H_0: \mu_1 = \mu_2 = \mu_3$ The mean Salary of graduates from every Degree are the same. $H_A:$ At least one of the Degrees's salary is not the same.

Conducting Hypothesis Testing 1

 Calculate the average salary for males and females

```
In [95]: male = df2.loc[df2.Gender == 'm']
    male_salary = male.Salary
    malesalary_mean = male_salary.mean()
    malesalary_mean

Out[95]: 309786.2796833773

In [96]: female = df2.loc[df2.Gender == 'f']
    female_salary = female.Salary
    femalesalary_mean = female_salary.mean()
    femalesalary_mean
Out[96]: 290139.86013986013
```

 Build a boxplot to visualize the distribution Salary by Gender


```
alpha=0.05
t val, p value = stats.ttest ind(male salary, female salary)
p value onetail = p value/2
print("t value = {} , p value ={} , p value onetail = {}".format(t val, p value, p value onetail))
t value = 2.1591696882415574 , p value =0.03091638149374018 , p value onetail = 0.01545819074687009
# Enter your code and run the cell
if p value <alpha:
    print("Conclusion: since p value {} is less than alpha {} ". format (p_value_onetail,alpha))
    print("Reject the null hypothesis that the average salary of females are less than or equal to males.")
else:
    print("Conclusion: since p value {} is greater than alpha {} ". format (p value onetail,alpha))
    print("Fail to reject the null hypothesis that the average salary of females are less than males.")
Conclusion: since p value 0.01545819074687009 is less than alpha 0.05
Reject the null hypothesis that the average salary of females are less than or equal to males.
```

Suggestions

In getting rid of outliers, we can also try to conduct bi-variate analysis and Z-score analysis to make sure all the data outliers have been eliminated. In data exploratory analysis, the categories of AMCAT scores can be explored more in order to inspect the features that affect Salary. We can also do another feature engineering method, like PCA

Summary

Overall, in the terms of duplicate values and missing values, this data is in a very good quality because every feature doesn't have any null-values. But in the term of outliers, there are a lot of outliers that we need to take care of from this data.

Thank You