Essays on Causes and Consequences of Income Inequality in Natural Resource-Rich Countries:

Empirical Evidence from the Chilean Economy

Javier Beltran

Queensland University of Technology

QUT Business School

Motivation

"If income gaps are not reduced, the next crisis will happen as surely as autumn follows summer"

An interview with Michael Kumhof by Mikael Feldbaum, https://www.eurozine.com, 2012

General Research Problem

Extant literature has documented as potential negative consequences of increasing inequality:

- Unemployment, increasing fiscal expenses, indebtedness and political instability (Berg & Ostry, 2011).
- Crime rates, health and education (Atkinson, 2015).
- Social and economic mobility and trust.
- Slow down economic growth by making it less inclusive and sustainable.

Income inequality could have a significant effect on social cohesion and instability, spreading its influence like a *disease*

However, inequality still occupies a ${\bf secondary}\ {\bf role}$ in the design of economic policy

Essay 1

Natural Resources: Curse or Blessing? Evidence on the Spatial Dimension of Income Inequality at the County Level in Chile

Research so far

Sources (causes) of income inequality include:

- · Globalization (Milanovic, 2016),
- Skill-biased technological change (Tinbergen, 1975),
- Investment in physical and human capital (Murphy & Topel, 2016; Gylfason & Zoega, 2003),
- Institutions, redistributive policy and country-specific characteristics (Acemoglu, 1995, 2002; Acemoglu et al., 2001a, 2001c)
- Endowment of natural resources (Engerman & Sokoloff, 1994, 1997; Engerman, Sokoloff, Urquiola, & Acemoglu, 2002; Leamer, Maul, Rodriguez, & Schott, 1999)

Evidence for the Chilean economy has documented

 High and persistent levels of income inequality with significant geographical differences (Aroca & Bosch, 2000; Paredes, Iturra, & Lufin, 2016)

Natural Resources: Curse or Blessing?

Research Question

How does the natural resource endowment influence the paths and structure of income inequality in natural resource-rich countries?

Research Hypothesis

"A higher degree of dependence on natural resources is associated with higher levels of income inequality"

Data and Variables

- · Merging of the following datasets:
 - Six waves of CASEN Survey for household data (years 2006-2009-2011-2013-2015-2017)
 - o SINIM for information about municipalities
 - · INE for population data
- In total 1944 observations (324 counties in 6 years)

Dep. Variable (gini)

Indep. Variable (pss_casen)

Gini coefficient of autonomous income (the sum of labour income and non-labour income such as rents, interests and pensions) for each county.

Measure of natural resource dependence: Percentage of employment in the primary sector (mining, fishing, forestry and agriculture) in each county

Natural Resources: Curse or Blessing?

Methodology (Spatial Approach) and Results

Natural Resources. Curse of Blessi

Where (What) is Chile?

How is the country geographically (spatially) divided?

How are our main variables spatially distributed?

latural Resources: Curse or Blessing?

Testing for spatial correlation (Moran's I)

Define "Neighbourhood" (W): 5-nearest neighbours

So, we will be analysing how "similar" is the level of inequality in one county compared to the weighted average level of inequality in the 5-nearest neighbouring counties (this is know as the **Spatial Lag**)

- H_0 : Spatial randomness (I = 0)
- H_1 : Spatial autocorrelation:
 - Positive (I > 0)
 Negative (I < 0)

Positive Spatial Autocorrelation:

Counties with similar levels of inequality tend to be close each other

ural Resources: Curse or Blessing?

Cross-sectional Model Comparison (six-year average data)

	OLS	SLX	SAR	SEM	SARAR	SDM	SDEM	SARARX
pss_casen	-0.001***	-0.002***	-0.001***	-0.001***	-0.002***	-0.002***	-0.002***	-0.002***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
lnincome	0.163***	0.171***	0.154***	0.171***	0.172***	0.176***	0.177***	0.177***
	(0.014)	(0.016)	(0.014)	(0.014)	(0.015)	(0.015)	(0.014)	(0.015)
poverty	0.005***	0.004***	0.004***	0.004***	0.004***	0.004***	0.004***	0.004***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
unemployment	-0.000	-0.000	-0.000	0.000	0.000	0.000	0.000	0.000
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
labour_force	-0.002*	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
education	-0.017***	-0.021***	-0.017***	-0.020***	-0.020***	-0.023***	-0.022***	-0.023***
	(0.004)	(0.005)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Indensity	-0.005***	-0.004*	-0.005***	-0.005***	-0.005***	-0.004*	-0.004*	-0.004*
	(0.001)	(0.002)	(0.001)	(0.001)	(0.001)	(0.002)	(0.002)	(0.002)
rural	0.001***	0.001***	0.001***	0.001***	0.001***	0.001***	0.001***	0.001***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
lnmuni_expenditure	-0.019***	-0.017***	-0.018***	-0.017***	-0.017***	-0.017***	-0.018***	-0.017***
	(0.004)	(0.005)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
north	0.012*	0.026	0.010	0.015	0.015	0.030	0.033	0.030
	(0.006)	(0.027)	(0.006)	(0.008)	(0.008)	(0.025)	(0.024)	(0.025)
south	0.021***	0.005	0.013**	0.023***	0.024**	0.002	0.001	0.001
	(0.005)	(0.019)	(0.005)	(0.006)	(0.008)	(0.018)	(0.018)	(0.018)
lambda			0.200**		-0.030	0.273***		0.228
			(0.064)		(0.112)	(0.078)		(0.422)
rho				0.345***	0.372***		0.280***	0.059
				(0.075)	(0.112)		(0.079)	(0.473)
Adj. R ²	0.630	0.652						
Num. obs.	324	324	324	324	324	324	324	324
Parameters			14	14	15	25	25	26
Log Likelihood			728.017	730.916	730.949	744.840	744.408	744.868

tural Resources: Curse or Blessing?

Run an **OLS regression** of Gini against NRD (+ controls) and test for **spatial autocorrelation** in the **OLS residuals**

 $gini_i = \beta_0 + \beta_1 pss_casen + \beta_2 lnincome + \beta_3 poverty + \beta_4 unemployment + \beta_5 labour_force + \beta_6 education + \beta_7 lndensity + \beta_8 rural + \beta_9 lnmuni_expenditure + \beta_{10} north + \beta_{11} south$

- · We get the OLS residuals
- We test for spatial autocorrelation in OLS residuals
- If OLS residuals show significant spatial autocorrelation,
- How should we include the spatial autocorrelation (**Spatial Dependence**)

Natural Resources: Curse or Blessing

Panel Data Regressions (non-spatial)

Pooled	Pooled	Fixed Effects	
		Tixed Effects	Random Effects
-0.001***	-0.001***	-0.0003*	-0.001***
(0.0001)	(0.0001)	(0.0002)	(0.0001)
	0.158***	0.184***	0.161***
	(0.007)	(0.008)	(0.007)
	0.002***	0.0002	0.001***
	(0.0002)	(0.0002)	(0.0002)
	0.003***	0.003***	0.003***
	(0.0004)	(0.0004)	(0.0003)
	-0.002***	-0.006*	-0.003***
	(0.0005)	(0.003)	(0.001)
	-0.022***	-0.022***	-0.023***
	(0.002)	(0.003)	(0.002)
	-0.003***	0.011	-0.002**
	(0.001)	(0.026)	(0.001)
	0.0004***	-0.00004	0.0003***
	(0.0001)	(0.0002)	(0.0001)
	-0.014***	0.005	-0.013***
	(0.003)	(0.007)	(0.004)
0.026***	0.015***		0.016**
(0.004)	(0.005)		(0.006)
0.054***	0.035***		0.041***
(0.003)	(0.003)		(0.004)
0.468***	0.037		0.052
(0.004)	(0.042)		(0.051)
Yes	Yes	Yes	Yes
1,944	1,944	1,944	1,944
0.230	0.443	0.272	0.410
	0.026**** (0.004) 0.054*** (0.003) 0.468*** (0.004) Yes 1,944	0.158": (0.007) (0.007) (0.007) (0.0002) (0.0002) (0.0004) (0.0005) (0.0005) (0.0001	0.158*** 0.184** (0.007) (0.008) (0.007) (0.008) (0.0002) (0.0002) (0.0002) (0.0002) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.003) (0.002*** 0.002** (0.002) (0.003) (0.003*** 0.011 (0.001) (0.005) (0.001*** 0.011 (0.001) (0.005) (0.003) (0.003) (0.003) (0.003) (0.005*** 0.015*** (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.003) (0.003) (0.003) (0.004) (0.003) (0.004) (0.003) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005)

Natural Resources: Curse or Riessing?

Spatial Model Specification (Cross-Sectional)

The model could be expressed as:

$$y = \lambda W y + X \beta + W X \gamma + u$$

where

$$u = \rho W u + \varepsilon$$

- m W is our weight matrix that works as a NxN spatial lag operator (**Spatial Lag**: Weighted sum of the values observed at neighbouring locations)
- Thus, the parameter:
 - $\circ~\lambda$ capture the influence of the spatial lag for the dependent variable, Wy (Spatial Autoregressive Model, SAR)
 - $\circ \ \gamma$ capture the influence of the spatial lag for the explanatory variables, WX (SLX model)
 - \circ ho capture the influence of the spatial lag for the errors, Wu (Spatial Error Model, SEM)
- ε is a vector of idiosyncratic errors.

atural Resources: Curse or Blessing?

Panel Data Regressions (Spatial)

ML Spatial SAR Models

ML Spatial SEM Models

ficients	Pooled	$\Pr(> t)$	FE	Pr(> t)	RE	$\Pr(> t)$	Coefficients	Pooled	$\Pr(> t)$	FE	Pr(> t)	RE	Pr(>
da	0.007	0.875	-0.002	0.949	0.001	0.700	rho	0.097	0.009	0.061	0.098	0.076	0.0
casen	-0.001	0.000	0.000	0.056	-0.001	0.000	pss casen	-0.001	0.000	0.000	0.065	-0.001	0.0
ome	0.157	0.000	0.184	0.000	0.163	0.000	Inincome	0.159	0.000	0.186	0.000	0.164	0.0
rty	0.002	0.000	0.000	0.236	0.001	0.000	poverty	0.002	0.000	0.000	0.249	0.001	0.0
nployment	0.003	0.000	0.003	0.000	0.003	0.000	unemployme	nt 0.003	0.000	0.003	0.000	0.003	0.0
ur_force	-0.002	0.000	-0.006	0.063	-0.003	0.000	labour_force	-0.002	0.000	-0.005	0.074	-0.003	0.0
ation	-0.022	0.000	-0.022	0.000	-0.024	0.000	education	-0.022	0.000	-0.022	0.000	-0.024	0.0
nsity	-0.003	0.000	0.011	0.627	-0.002	0.079	Indensity	-0.003	0.000	0.013	0.584	-0.002	0.0
1	0.000	0.000	0.000	0.870	0.000	0.001	rural	0.000	0.000	0.000	0.840	0.000	0.0
mi_expenditure	-0.014	0.000	0.005	0.442	-0.012	0.002	lnmuni_expe	nditure -0.014	0.000	0.006	0.417	-0.012	0.0

GM Spatial Models

		SA	AR		SEM				
Coefficients	FE	Pr(> t)	RE	Pr(> t)	FE	$\Pr(> t)$	RE	Pr(> t)	
oss_casen	0.000	0.052	-0.001	0.000	0.000	0.065	-0.001	0.000	
nincome	0.183	0.000	0.161	0.000	0.185	0.000	0.163	0.000	
overty	0.000	0.270	0.001	0.000	0.000	0.250	0.001	0.000	
memployment	0.003	0.000	0.003	0.000	0.003	0.000	0.003	0.000	
abour_force	-0.006	0.086	-0.003	0.000	-0.006	0.074	-0.003	0.000	
ducation	-0.022	0.000	-0.024	0.000	-0.022	0.000	-0.024	0.000	
ndensity	0.010	0.694	-0.002	0.063	0.013	0.588	-0.002	0.047	
ural	0.000	0.900	0.000	0.000	0.000	0.843	0.000	0.000	
nmuni_expenditure	0.005	0.493	-0.013	0.000	0.005	0.421	-0.012	0.001	

Natural Resources: Curse or Blessing?

Discussion and Recommendations

- · Contrary to our main hypothesis, NRD shows a significant and negative association with income inequality.
- This **result is robust** to the type of analysis (cross-sectional vs panel data). the approach (spatial vs non-spatial) and the inclusion of different controls.
- Implication: The downward trend in the participation of the primary sector in terms of employment in the Chilean economy could be one of the reasons explaining the high persistence in the levels of income inequality.
- Policies oriented to transform the structure of local economies to less dependent ones on natural resources will generate additional challenges for local and central governments in their attempts to reduce inequality
- · Education and municipal expenditure seem to be effective policy tools aiming to reduce inequality in Chile.

Limitations and Future Research

Limitations

- · Data availability at the county level
- · Results do not allow us to make causal inferences about the effect of NRD on income inequality
- · Results are sensitive to the specification of the spatial weights

Future Research

- "Innovative" ways to define "distance" and W.
- · Incorporate measures of commuting and migration between counties.
- In studies about causal effects of income inequality over other variables, we could use a measure of NRD as instrument for income inequality.

Assessing and Explaining Local Government Efficiency in Natural Resource-Rich Countries: The case of Chilean Municipalities

Essav 2

Research so far

- · Evidence on the Trade-off between efficiency and equity is not conclusive
 - Pursuing equality can reduce efficiency (see Okun 1975; Browning & Johnson 1984; Andersen & Maibom 2016)
 - · But, equality could also be an important ingredient in promoting and sustaining growth (see Berg & Ostry 2011; kumhof, Rancière &

Explaining differences in LGE

and outputs)

Non-discretionary

· Discretionary factors (inputs

(contextual) factors: Socio-

economic, demographic,

geographic, political,

institutional, etc.

· Local Government Efficiency (LGE) studies have been focus on:

Measuring LGE

- · Single service vs overall efficiency
- · Parametric (SFA) vs nonparametric (DEA) techniques
- Înput oriented vs output oriented
- · Selection of inputs and outputs

Research Ouestion

What role does income inequality play in explaining differences in municipal efficiency?

Research Hypotheses

 H_1 : Income inequality has a negative effect on municipal efficiency.

Data

Inputs - Outputs used to measure LGE

- · National System of Municipal Information, SINIM (2006-2017)
- Sample of 324 municipalities in 12 years (3888 observations)

County-Level Data on Contextual Factors

- · National Socioeconomic Characterization Survey, CASEN (2006 2009 -2011 - 2013 - 2015 - 2017)
- SINIM
- "Servicio de Impuestos Internos", SII
- · National Institute of statistics, INE
- · in total 1944 observations

Methodology: Two Stage Approach

First Stage: DEA analysis

- Input oriented assuming variable returns to scale
- Result: A vector of efficiency scores (ES) for each municipality

Second Stage: Regression Analysis

- Dependent variable: DEA efficiency scores
- · Independent variables: Measure of Income inequality + remaining contextual factors including county (zone) specific and time fixed effects
- Estimation method: Censored regression + Instrumental Variable (IV)
- Proposed Instrument: $pss_firms = \frac{\text{Number of firms in primary sector}}{\text{Model No. 100}}$

How do we capture geographical differences in LGE?

First Stage: DEA Results

Evolution Efficiency Scores by Zone (Full Period)

Efficiency Scores by Zone and Region

North			max	min	$_{ m sd}$	median	mean	n_counties	Unit
1 6 0.73 0.80 0.28 0.25 1		06		0.26	0.19	0.86	0.83	41	North
1			$\overline{}$	0.27	0.22	1.00	0.88	3	XV
HI 8 0.079 0.759 0.014 0.03 1 1			1	0.26	0.28	0.80	0.73	6	I
III 9 0.79 0.79 0.14 0.53 1		- B	1	0.70	0.07	1.00	0.98	8	II
Country North 121 0.88 0.94 0.14 0.32 1	Tarical (a. 4.1)		1	0.53	0.14	0.79	0.79	9	
V 36 0.82 0.84 0.15 0.39 1 XIII 52 0.95 1.00 0.09 0.47 1 VI 33 0.81 0.82 0.15 0.32 1 VII 39 0.81 0.82 0.15 0.32 1 VII 30 0.81 0.82 0.15 0.34 1 VIII 30 0.81 0.82 0.15 0.34 1 VIII 30 0.81 0.82 0.15 0.40 1 XIX 32 0.87 0.77 0.77 0.76 0.40 1 South 46 0.77 0.77 0.77 0.18 0.31 1 XIV 12 0.74 0.74 0.74 0.18 0.31 1 XIV 12 0.74 0.74 0.74 0.18 0.31 1			1						
XIII 52 0.95 1.00 0.09 0.47 1 VI 33 0.81 0.82 0.15 0.32 1 Centre, South 116 0.82 0.83 0.15 0.34 1 VIII 54 0.84 0.88 0.15 0.40 1 VIII 54 0.84 0.88 0.15 0.40 1 VIII 54 0.84 0.88 0.15 0.34 1 XIX 32 0.77 0.77 0.16 0.40 1 South 46 0.77 0.77 0.18 0.31 1 XIV 12 0.74 0.74 0.73 0.18 0.31 1 XIV 12 0.74 0.74 0.73 0.18 0.31 1		400	1						Centre_North
VI 33 0.81 0.82 0.15 0.32 1 Centre_South 116 0.82 0.83 0.15 0.34 1 VIII 50 0.81 0.82 0.15 0.34 1 VIII 51 0.84 0.88 0.15 0.34 1 VIII 54 0.84 0.88 0.15 0.34 1 Secrith 46 0.77 0.77 0.18 0.31 1 Secrith 46 0.77 0.77 0.18 0.31 1 XIV 12 0.74 0.74 0.73 0.15 0.31 1			1						
Centre South 1.6 0.82 0.83 0.15 0.34 1 VII 30 0.81 0.82 0.15 0.40 1 VII 54 0.84 0.88 0.15 0.34 1 IX 32 0.77 0.77 0.70 0.40 0.40 1 South 46 0.77 0.77 0.18 0.31 1 XIV 12 0.74 0.74 0.73 0.13 0.46 1			1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		100	1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A77	1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- 40	1						
South 46 0.77 0.77 0.18 0.31 1 XIV 12 0.74 0.74 0.13 0.46 1			1						
XIV 12 0.74 0.74 0.13 0.46 1		100	1						
		- 1							
		- 68	1						
		100	1						
XI 6 0.89 0.98 0.15 0.44 1 XII 3 0.85 0.91 0.17 0.52 1		- 45	1						
		- 400							
Country 324 0.83 0.86 0.16 0.26 1		434	1	0.26	0.16	0.86	0.83	324	Country
w w									
The mean efficiency score for the		All I	he	ort	re f	W SCO	ienc	n effic	The mea
		27							
country and the full period is 0.83 .		E .	33.	s u. 8	od 1	l peri	e full	and the	country
**************************************		Jac MP							,
		7.5	_	_					
This means, municipalities could,		27.5	d.	oul	es c	oalitio	nicir	ıs, mu r	This mear
			. ,						
on average, reduce the use of		rite.		Ι	se c	tne u	uce	ge, rea	on averag
inputs in 17% to get the same level			-01	1011	nma	the e	cot	170/- +0	innute in
inputs in 17 % to get the same level		198 9	CI	ie v	arric	tite se	gei	1/70 10	mputs m
of outputs		4322						2	of outputs
or outputs		The state of the s						•	or output
2000		- See 9							

Second Stage

The model

To test our hypothesis, the empirical model is defined as:

$$\theta_{it} = \beta_1 gini_{it} + Z_{it}\beta + \delta_t + \alpha_i + \epsilon_{it}$$

Where:

- $heta_{it}$ is the vector of efficiency scores from the DEA analysis,
- $gini_{it}$ is the Gini coefficient of each county,
- Z is a vector of controls.
- δ_t are year-specific effects,
- α_i are municipality-specific constants,
- ϵ_{it} is a vector of error terms and

Model Comparisons - Cross-sectional Censored Regressions

		Depen	dent variable: Ef	ficiency Score (V.	RS)	
_	2006	2009	2011	2013	2015	2017
gini	-0.228	-0.447**	-0.393*	-0.242	-0.189	-0.371*
log(income)	0.119*	0.249***	0.208***	0.164**	0.221***	0.257**
agroland	-0.002***	-0.003***	-0.003***	-0.001	-0.002***	-0.001
log(density)	0.019**	0.032***	0.021***	0.034***	0.017**	0.005
own	-0.002*	-0.002	-0.003**	-0.004***	0.002*	-0.002
education	-0.018	-0.038*	-0.046**	-0.026	-0.009	-0.020
IDD	-0.005**	-0.006***	-0.004*	-0.001	-0.004*	-0.006**
professional	0.001	-0.0001	-0.0002	0.003**	0.002	0.0003
mcf	0.002*	0.002**	0.002**	0.0003	0.0004	0.0004
LEFT mayor	-0.016	0.012	0.008	0.003	0.020	-0.022
RIGHT mayor	0.007	-0.002	0.032	0.013	0.038	0.002
reg_cap	-0.039	-0.061	-0.043	-0.106*	0.0004	-0.012
Centre South	0.068**	0.126***	0.050	0.028	0.054*	0.040
North	-0.019	0.099**	0.056	0.135***	0.006	0.034
South	-0.051	0.044	0.015	-0.025	-0.019	-0.065^{*}
Observations	324	324	324	324	324	324
Log Likelihood	-14.778	12.330	-15.924	-24.773	-1.200	6.937
Akaike Inf. Crit.	63.555	9.339	65.848	83.546	36.400	20.127

*p<0.1; **p<0.05; ***p<0.01

Local Government Efficie

32

Main results

- DEA
 - The "production function" of municipalities shows variable returns to scale.
 - The **average level of inefficiency is 17%**, with higher levels in the South area of the country.
 - Efficiency shows a cyclical behaviour and, on average, has remained stable in the period 2006 - 2017.
- · Regression analysis
 - Empirical evidence of a negative relationship between inequality and efficiency.
 - A reduction of income inequality (or an increase in equality) could have positive effects on economic efficiency, at least at the level of local governments.
 - Negative association with Education.

Limitations and Future Research

Limitations

- · Results sensitive to the selection and number of inputs and outputs
- Associated with observational data and the interpretation of results as causal relationships.

Future research

- · How to capture quality in the provision of public services
- Is the negative coefficient for *education* explained by the reduction in *electoral participation*?
- Modelling spatial dependence-heterogeneity in LGE. Predictive analytics (Machine Learning?) for the probability to get an efficient performance.
- Given the current situation: What about the issue of reverse causality?

Government Efficiency

Pa	nel Data Regress	ions : Dependent	variable - Efficie	mcy Score (VRS)	
Devled			DE		ble Tobit IV
					(6)
(0.082)	(0.068)	(0.081)	(0.073)	(0.432)	-1.196* (0.538)
		0.184*** (0.026)	0.106*** (0.025)	0.258*** (0.054)	0.292** (0.069)
		-0.002***	-0.002***	-0.002***	-0.002**
		(0.0003)	(0.0004)	(0.0003)	(0.0003)
		0.022***	0.020***	0.012***	0.021**
		(0.003)	(0.005)	(0.003)	(0.003)
		-0.002***	-0.001**	-0.001***	-0.001**
		(0.001)	(0.001)	(0.0004)	(0.0005)
		-0.022***	-0.005	-0.034***	-0.033**
		(0.008)	(0.008)	(0.008)	(0.010)
		-0.004***	-0.005***	-0.002**	-0.003**
		(0.001)	(0.001)	(0.001)	(0.001)
		0.001*	-0.00004	0.0004	0.0008
		(0.0005)	(0.0005)	(0.0004)	(0.0005)
		0.001***	0.002***	0.001***	0.001**
		(0.0003)	(0.0004)	(0.0003)	(0.0004)
		-0.001	0.006	-0.007	-0.005
		(0.011)	(0.010)	(0.009)	(0.011)
		0.017	0.005	0.003	0.013
		(0.012)	(0.011)	(0.010)	(0.012)
		-0.047**	-0.069**	0.024	-0.021
		(0.023)	(0.034)	(0.022)	(0.028)
-0.089***	-0.086***	0.058***	0.022	0.123***	0.113**
(0.012)	(0.019)	(0.014)	(0.022)	(0.028)	(0.035)
-0.054***	-0.045	0.050***	0.059*	0.030*	0.061**
(0.016)	(0.033)	(0.019)	(0.032)	(0.016)	(0.020)
-0.142***	-0.124***	-0.019	-0.033	0.036	0.021
(0.016)	(0.044)	(0.016)	(0.026)	(0.023)	(0.029)
Yes	Yes	Yes	Yes	Yes	Yes
	Pooled (1) =0.033 (0.082) -0.089*** (0.012) (0.012) -0.142***	Probled RE	Poded RE	Pooled RE Pooled RE	Product

Essay 3

Does economic disadvantage diminish social cohesion? A study of the relationship between incivilities and income inequality at the municipal level in Chile

What are "Incivilities"?

Incivilities are those visible disorders in the public space that violate respectful social norms and tend not to be treated as crimes by the criminal justice system

There two types of incivilities:

- Social incivilities include antisocial behaviours such as public drinking, noisy neighbours, fighting in public places and street drug sales.
- Physical incivilities include, among others, vandalism, graffiti, abandoned cars and garbage on the streets.

What is the problem?

Broken Window Theory

Higher rates of incivilities are a signal of social disorganization which result in higher crime rates (Wilson & Kelling, 1982)

es economic disadvantage diminish social cohesion?

37

. .

Do differences in the rate of incivilities mirror differences in income inequality between counties?

Research Ouestion

Research Hypotheses

 H_1 : Incivilities will be higher in counties with high levels of inequality.

 ${\cal H}_2$: Incivilities will be higher in counties with a high proportion of the young population.

 ${\cal H}_3$: Incivilities will be higher in counties with a high proportion of foreign inhabitants.

 ${\cal H}_4$: Incivilities will be lower in counties managed by municipalities more autonomous from central government transfers.

Research so far

The negative impact of incivilities is not merely reflected in its association with crime rates (Skogan, 2015)

Incivilities have been associated with:

- Health problems (Branas et al., 2011; Cohenet al., 2000; Hill & Angel, 2005; Ross, 2011; Ross & Mirowsky, 2001)
- Greater victimization and fear of crime (Brunton-Smith, Jackson, & Sutherland, 2014; Mijanovich & Weitzman, 2003)
- · Multiple negative economic effects:
 - Reduction in commercial activity, lower investment in real estate and reduction in house prices (Skogan, 2015)
 - Population instability (Hipp, 2010).

Does economic disadvantage diminish social cohesion?

Daniel dia desarra dininistra anni

onic distavantage diminish social concision.

Data

- Data on the number of **incivilities** were obtained from the "**Centre of Studies and Analysis of Crime**" (Chilean government)
- · Dependent variable:

$$inciv_rate = \frac{incivilities_{it}}{n_{it}} * 1000;$$

- Where *inciv_rate* is the incivilities rate, *t* is the year, *i* the county and *n* is the population of the county per year.
- Independent variable:
 - $\circ\,$ The ${\bf Gini}$ ${\bf coefficient}$ is calculated for each county and included through the variable gini.

Research so far

The "Incivilities Thesis"

Incivilities are caused by inequality and the lack of informal mechanisms of social control. The patterns of incivilities should mirror the patterns of inequality (Taylor, 1999)

Chilean evidence:

- Focussed on crime and showing weak and ambiguous results
 - Indicators of socio-economic disadvantage would only have significant effects on property crime (Beyer & Vergara, 2006; Nuñez, Rivera, Villavicencio, & Molina, 2003; Rivera, Gutiérrez, & Núñez,2009).
 - Crime deterrence variables: The probability of being caught or the number of police resources (Beyer & Vergara, 2006; Rivera et al., 2009; Vergara, 2012).

Evolution Average County Rate of Incivilities per 1000 inhabitants

Does economic disadvantage diminish social cohesion?

Annual Average Number of Incivilities per County

Method: Panel Count Data models

· Considering as the response variable the count of incivilities:

$$\lambda_{it} = exp(\beta_0 + \beta_1 gini_{it} + X\gamma + \alpha_i + \theta_t)$$

- · where
 - $\circ \lambda$ is the rate of incivilities,
 - $\circ X$ is our vector of controls,
 - $\circ \ lpha's$ are county-specific constants and
 - \circ $\theta's$ are time-specific constants.
- To account for differences in county population, we have:

$$rac{\lambda_{it}}{(rac{population_{it}}{1000})} = exp(eta_0 + eta_1 gini_{it} + X\gamma + lpha_i + heta_t)$$

• The model estimated using Maximum Likelihood Estimation (MLE) is:

$$log(\lambda_{it}) = eta_0 + eta_1 gini_{it} + X\gamma + lpha_i + heta_t + log(rac{population_{it}}{1000})$$

Results: Poisson Regression

				Dependent vari	able: Number of	Incivilities			
		Pooled			Fixed Effects			Random Effects	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
gini	0.042***	-0.010***	-0.003**	0.039***	0.021	0.022**	0.039***	0.021***	0.020***
	(0.001)	(0.001)	(0.001)	(0.002)	(0.002)	(0.002)	(0.001)	(0.002)	(0.002)
log(income)	0.395***	-0.317***	-0.186***	0.275***	0.100***	0.125	0.277***	0.101***	0.112***
	(0.011)	(0.012)	(0.013)	(0.017)	(0.018)	(0.018)	(0.017)	(0.018)	(0.018)
poverty	-0.0004***	0.0003**	0.0001	-0.0003***	0.003***	0.001	0.003***	0.003***	0.001***
	(0.0001)	(0.0001)	(0.0001)	(0.0002)	(0.0002)	(0.0002)	(0.0001)	(0.0002)	(0.0002)
unemployment	-0.006***	0.003***	0.005***	0.006***	0.007***	0.008***	0.006***	0.007***	0.008***
	(0.0003)	(0.0002)	(0.0003)	(0.0003)	(0.0002)	(0.0003)	(0.0003)	(0.0003)	(0.0003)
vouth		-0.059***	-0.050***		-0.032***	-0.002		-0.031***	-0.010***
		(0.0004)	(0.0004)		(0.003)	(0.003)		(0.003)	(0.003)
foreign		0.119***	0.083***		0.028***	0.044***		0.028***	0.041***
		(0.0004)	(0.0005)		(0.0006)	(0.0007)		(0.0006)	(0.0007)
autonomy		0.004***	0.003***		-0.003***	-0.001***		-0.003***	-0.002***
		(0.00004)	(0.00004)		(0.0001)	(0.0001)		(0.0001)	(0.0001)
housing		(0.00004)	-0.010***		(0.0001)	-0.0003		(0.0001)	-0.0002
accuracy.			(0.0001)			(0.0002)			(0.0001)
log(density)			-0.009***			-0.469***			-0.268***
oog(acaanty)			(0.001)			(0.017)			(0.017)
women			-0.026***			0.033***			0.033***
WORKER			(0.0003)			(0.001)			(0.001)
community_org			0.003			0.002***			0.002***
Johnnandy_org			(0.0001)			(0.0001)			(0.0001)
deterrence			0.007			0.004***			0.005***
geterrence			(0.0001)			(0.00007)			(0.00007
capitalYes			0.101***			(0.00007)			0.409***
capitai res			(0.001)						(0.080)
mayorLEFT			0.010***			0.044***			0.041***
mayorLEF I			(0.002)			(0.002)			(0.002)
			0.002)			0.034***			0.031***
mayorRIGHT									
			(0.002)			(0.002)			(0.002)
gini:log(income)	-0.006***	0.003***	0.001	-0.007***	-0.004***	-0.004	-0.007***	-0.004***	-0.004**
	(0.0002)	(0.0002)	(0.0003)	(0.0003)	(0.0004)	(0.0004)	(0.0003)	(0.0004)	(0.0003)
Constant	0.380***	5.521***	6.737				1.409***	3.208***	2.802
	(0.062)	(0.067)	(0.071)				(0.105)	(0.127)	(0.185)
Year Dummies?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Region Dummies?	Yes	Yes	Yes	No	No	No	Yes	Yes	Yes
Observations	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944
Log Likelihood	-285,168,100	-189,792,700	-167,855.800	-73,068.100	-71,772.252	-68,801.188	-75,895.29	-74.599.891	-71.802.581

Discussion and Recommendations

- We found strong evidence of a significant and positive association between the rate of incivilities and income inequality.
- Policies aimed at controlling the behaviour of young people do not have strong empirical support.
- The significant increase in the **foreign population** seems to be associated with a significant increase in the problem of incivilities.
- · Efforts managed from the municipalities can be an important complement to those from the central government.

Conclusions and Future Research

- Increasing income inequality or persistently high levels might be associated with the rise of antisocial behaviours in the form of incivilities.
- Future research should go further on the role of local authorities analysing the impact of specific programs in counties with similar characteristics.
- **Program evaluation** could help to elucidate the question of whether local interventions from the local governments have a causal effect on incivilities and crime rates.
- · A deeper analysis of the impact that foreign migration is having on social cohesion in the Chilean society is an interesting avenue for future studies

