Al for Video Data Processing 3: R-CNN for Object Detection

Outline

- 1. R-CNN
- 2. Fast R-CNN
- 3. Faster R-CNN
- 4. Faster R-CNN with FPN
- 5. Mask R-CNN
- 6. RetinaNet

1. From CNN to R-CNN

Original CNNs are designed for Image Classification: LeNet, AlexNet, VGG, ResNet, DenseNet, ...

1. From CNN to R-CNN

If we want to detect objects in an image, then ...

Object detection with bounding boxes

1. Object Proposal Algorithm in CV

Zitnick, C. Lawrence, and Piotr Dollár. "Edge boxes: Locating object proposals from edges." In *European Conference on Computer Vision*, pp. 391-405. Springer, Cham, 2014.

For example: 2k object proposals for one image

Girshick, Donahue, Darrell, Malik. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. CVPR 2014.

1.R-CNN (Region-based Convolutional Neural Net)

Per-image computation

Per-region computation

Selective search, Edge Boxes, MCG, ...

1. Use an off-the-shelf Region of Interest (Rol) proposal algorithm (~2k proposals per image)

Per-region computation for each $r_i \in r(I)$ Per-image computation Crop & warp Selective search, Edge Boxes, MCG, ... 2. Crop and warp each proposal image window to obtain a fixed-size network input

Per-region computation for each $r_i \in r(I)$ Per-image computation ConvNet(Crop & warp Selective search, Edge Boxes, MCG, ... 3. Forward propagate the fixed-size network input to get a feature representation

Per-region computation for each $r_i \in r(I)$ Per-image computation Linear classifier ConvNet(Crop & warp Selective search, Edge Boxes, 4. Object classification MCG, ...

1. From R-CNN to Generalized R-CNN Framework

Per-image computation

Per-region computation for each $r_i \in r(I)$

Input image per-image operations | per-region operations

Per-region computation for each $r_i \in r(I)$

Transformation of the input image into a featurized representation

Per-region computation for each $r_i \in r(I)$

Region of Interest proposals computed for the image

representation of each proposal

2. Fast R-CNN

"Slow" R-CNN

2. Fast R-CNN

2. Fast R-CNN-Rol Pooling

2. Fast R-CNN-Rol Pooling

Transform arbitrary size proposal into a fixed-dimensional representation (e.g., H=7 x W=7)

RoI max pooling works by dividing the $h \times w$ RoI window into an $H \times W$ grid of sub-windows of approximate size $h/H \times w/W$ and then max-pooling the values in each sub-window into the corresponding output grid cell.

2. Fast R-CNN-Rol Pooling

Transform arbitrary size proposal into a fixed-dimensional representation (e.g., H=7 x W=7)

2. The Problem with Fast R-CNN

Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.

2. Faster R-CNN

Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.

3. Faster R-CNN

3. RPN: Region Proposal Network

3. RPN: Region Proposal Network

3. RPN: Anchor Box

Anchor box: predictions are w.r.t. this box, *not the 3x3* sliding window

3. RPN: Anchor Box

Anchor box: predictions are w.r.t. this box, *not the 3x3* sliding window

3. RPN: Prediction (on object)

P(object) = 0.94

3x3 "sliding window"

Objectness classifier [0, 1]

Box regressor predicting (dx, dy, dh, dw)

3. RPN: Prediction (on object)

Anchor box: transformed by box regressor

3. RPN: Prediction (off object)

Objectness score

Anchor box: transformed by box regressor

- Objectness classifier
- Box regressor predicting (dx, dy, dh, dw)

3. RPN: Multiple Anchors

3x3 "sliding window" K objectness classifiers K box regressors Conv feature map

Anchor boxes: *K* anchors per location with different scales and aspect ratios

4. Faster R-CNN with a Feature Pyramid Network

4. FPN: Improving Scale Invariance and Equivariance

Detectors need to

- 1. classify and
- 2. localize objects over a wide range of scales

FPN improves this ability

Strategy 1: Image Pyramid

(a) Featurized image pyramid

Standard solution – slow!

(E.g., Viola & Jones, HOG, DPM, SPP-net, multi-scale Fast R-CNN, ...)

Strategy 2: Multi-scale Features (Single-scale Map)

(b) Single feature map

Leave it all to the features – *fast, suboptimal* (E.g., Fast/er R-CNN, YOLO, ...)

Strategy 3: Naïve In-network Pyramid

(c) Pyramidal feature hierarchy
Use the internal pyramid – fast, suboptimal
(E.g., ≈ SSD, ...)

Strategy 3: Naïve In-network Pyramid

(c) Pyramidal feature hierarchy

Use the internal pyramid – fast, suboptimal (E.g., ≈ SSD, ...)

Strategy 4: Feature Pyramid Network

(d) Feature Pyramid Network

Top-down enrichment of high-res features – fast, less suboptimal

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.

FPN:
Light-weight,
Top-down
Refinement
Module

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.

5. Generalized R-CNN: Adding More Heads

Mask R-CNN [He, Gkioxari, Dollár, Girshick]

[Güler, Neverova, Kokkinos]

[Gkioxari, Malik, Johnson arXiv 2019]

No Compromise on Feature Quality, Still Fast

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017. See also: Shrivastava's TDM.

5. Mask R-CNN

5. Mask R-CNN

He et al. Mask R-CNN. ICCV 2017. **Best Paper Award**

5. RolAlign Operation (on each Proposal)

Summary of 1-5

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

aeroplane? no.

regions

CNN features

Summary of 1-5

Figure 1. The Mask R-CNN framework for instance segmentation.

Summary of 1-5

6. RetinaNet

Lin, Tsung-Yi, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. "Focal loss for dense object detection." In *IEEE International Conference on Computer Vision*, pp. 2980-2988. 2017.

Best Student Paper Award

- Identify class imbalance is the major issue for training one-stage dense detector
- Propose Focal Loss to address class imbalance
- Achieve state-of-the-art accuracy and speed

6. RetinaNet

Class Imbalance Few training examples from foreground Most examples from background - Easy and uninformative Distracting Many negative examples, no useful signal Few positive examples, rich information

- 100000 easy : 100 hard examples
- 40x bigger loss from easy examples

6. RetinaNet

The one-stage RetinaNet detector outperforms all previous one-stage and two-stage detectors

6. RetinaNet Model Description

- Backbone with FPN
- > 6 anchors per location (2 scales × 3 aspect ratios)
- ➤ 100 200k anchor boxes to classify per image → "dense" detection

6. Focal Loss: larger Gamma focuses more on Hard-Example

probability of ground truth class

6. Impact of Focal Loss (FL)

$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} \log(p_t).$$

(b) Varying γ for FL (w. optimal α)

(ResNet-50-FPN 600px input image)

6. Loss Distribution under Focal Loss

Reference:

- 1. Dr. Ross Girshick, Facebook AI Research, CVPR 2019 Tutorial on Visual Recognition and Beyond https://www.dropbox.com/s/rakgo35h6b8p7uv/cvpr2019_tutorial_ross_girshick.pptx?dl=0
- 2. Dr. Kaiming He, ICCV 2017 Oral Talk for the Mask R-CNN paper. https://www.youtube.com/watch?v=g7z4mkfRjI4&ab_channel=ComputerVisionFoundationVideos
- 3. Dr. Tsung-Yi Lin, ICCV 2017 Oral Talk for the Focal Loss paper. https://www.youtube.com/watch?v=44tlnmmt3h0&ab_channel=ComputerVisionFoundationVideos