1. Construyamos dos inyecciones entre ambos conjuntos.

Primero, observemos que todo subconjunto $S \subset A$ de cardinal β esta en biyeccion con B, es decir dado un tal S existe $\phi_S : B \to S$ biyectiva. Si consideramos la inclusion $i_S : S \to A$, podemos, a cada subconjunto de cardinal β de A, asignarle una funcion $\psi_S : B \to A$ definida como $\psi_S = i_S \circ \phi_S$. Observemos que $\operatorname{Im}(\psi_S) = S$ por lo que la asignacion $S \mapsto \psi_S$ es inyectiva, si $\psi_S = \psi_T \Rightarrow S = \operatorname{Im}(\psi_S) = \operatorname{Im}(\psi_T) = T$. De esta forma $\#\wp_\beta(A) \leq \#\{f : B \to A\}$.

En la otra direccion:

Construyamos la asignacion

$$\tau: \{f: B \to A\} \to \wp_{\beta}(A \times B)$$

para cada funcion f, $\tau(f) = \{(x, f(x)) : x \in B\} = \mathcal{G}(f)$, en otras palabras, a cada funcion le asignamos su grafico.

Observemos que para toda f el conjunto $\mathcal{G}(f)$ esta en biyeccion con B por la funcion que envia $b \mapsto (b, f(b))$ y por lo tanto tiene cardinal β . Ademas esta aplicacion es inyectiva pues si dos funciones tienen el mismo grafico entonces son iguales. Esto prueba la desigualdad restante y por lo tanto el ejercicio.

2. (a) Probemos ambas inclusiones; sean A, B abiertos:

 $A \cap B \subseteq \overline{A \cap B}$, pero A y B son abiertos por lo que $A \cap B$ es abierto, y si un abierto esta contenido en un conjunto entonces esta contenido en su interior. Luego $A \cap B \subseteq (\overline{A \cap B})^{\circ}$.

 $(\overline{A \cap B})^{\circ} \subseteq (\overline{A} \cap \overline{B})^{\circ}$ pues la clausura de la interseccion siempre esta contenida en la interseccion de las clausuras. Pero ademas el interior de una interseccion es igual a la interseccion de los interiores, por lo que

 $(\overline{A} \cap \overline{B})^{\circ} = \overline{A}^{\circ} \cap \overline{B}^{\circ} = A \cap B$, la ultima igualdad debido a que A y B son abiertos regulares. Esto prueba la otra contencion.

Como contraejemplo para la union se puede tomar A = (0,1) y B = (1,2).

(b) Queremos probar que para todo $C\subseteq X, \overline{\overline{C}}^{\circ}=\overline{C}^{\circ}$. Veamos las dos contenciones:

Para un lado, observemos que $\overline{C}^{\circ} \subseteq \overline{C}$, luego $\overline{\overline{C}^{\circ}} \subseteq \overline{\overline{C}} = \overline{C}$. Tomando interior a esta ultima inclusion obtenemos $\overline{\overline{C}^{\circ}}^{\circ} \subseteq \overline{C}^{\circ}$.

Al reves, $\overline{C}^{\circ} \subseteq \overline{\overline{C}^{\circ}}$. Pero ademas \overline{C}° es abierto, y siempre que un abierto esta contenido en un conjunto, resulta estar contenido en su interior. Se tiene entonces que $\overline{C}^{\circ} \subseteq \overline{\overline{C}^{\circ}}^{\circ}$ como queriamos.

(c) Observemos que por el inciso anterior, $\overline{U \cup V}^{\circ}$ es un abierto regular. Resta probar que si U y V estan contenidos en un abierto regular G entonces $\overline{U \cup V}^{\circ} \subseteq G$.

Pero, si U y V estan contenidos en G entonces:

$$U \cup V \subset G \Rightarrow \overline{U \cup V} \subset \overline{G} \Rightarrow \overline{U \cup V}^{\circ} \subset \overline{G}^{\circ} = G.$$

3. Llamemos $D \subseteq X$ al denso numerable. Para probar que S(X) es separable construiremos un denso numerable dentro. Definamos:

$$R = \{(d_n)_{n \in \mathbb{N}} : d_n \in D \text{ y } d_n = d \forall n \ge n_0\}$$

en otras palabras, R esta formado por las sucesiones de D que son constantes a partir de un punto.

R es numerable pues se puede poner en biyección con las tiras finitas de elementos de D como sigue:

$$\psi: (d_1, \dots, d_n, d, d, d, \dots) \mapsto (d_1, \dots, d_n, d) \in D^{n+1} \subset \bigcup_{m \in \mathbb{N}} D^m$$

y este ultimo conjunto es numerable al ser union numerable de numerables.

Para ver que R es denso, veamos que para todo $(a_n) \in S(X)$, $\epsilon > 0$ existe $(d_n) \in R$ tal que $d_{\infty}((a_n), (d_n)) \leq \epsilon$.

Para eso, sabemos que $a_n \to a$ y que existe n_0 tal que $d(a, a_n) < \epsilon/2$ para todo $n \ge n_0$. Consideremos el siguiente elemento $(d_n) \in R$:

- Para $n < n_0$, elegimos d_n de manera que $d(a_n, d_n) < \epsilon$.
- Para $n \geq n_0$, tomamos $d_n = d$ tal que $d(a, d) < \epsilon/2$.

Luego, para $n < n_0$, $d(a_n, d_n) < \epsilon$ por definicion. Y si $n \ge n_0$,

$$d(a_n, d_n) = d(a_n, d) \le d(a_n, a) + d(a, d) < \epsilon/2 + \epsilon/2 = \epsilon.$$

Por lo tanto, se debe tener que $d_{\infty}((a_n),(d_n)) = \sup_{n \in \mathbb{N}} d(a_n,d_n) \leq \epsilon$.

4. (a) Sea $(a_n) \in \ell^1$, veamos que $\sum |a_n|^2 < \infty$. Como $\sum |a_n| < \infty$ debe valer que $a_n \to 0$, en particular existe n_0 tal que $|a_n| < 1$ para todo $n > n_0$. Para esos valores de n vale que $|a_n|^2 < |a_n|$. Luego:

$$\sum_{n \in \mathbb{N}} |a_n|^2 = \sum_{n=0}^{n=n_0-1} |a_n|^2 + \sum_{n=n_0}^{\infty} |a_n|^2 \le \sum_{n=0}^{n=n_0-1} |a_n|^2 + \sum_{n=n_0}^{\infty} |a_n| < \infty.$$

como queriamos.

- (b) Llamemos 0 a la sucesion constantemente 0. Supongamos que d_1 y d_2 son topologicamente equivalentes, en particular debe existir $\delta > 0$ tal que $B_{\delta}(0, \ell^2) \subseteq B_1(0, \ell^1)$. Sabemos que $\sum_{n \in \mathbb{N}} 1/n^2 = C < \infty$, consideremos los siguientes elementos de $r^m \in \ell^1$, definidos como:
 - $r_n^m = \delta/Cn$ si $n \le m$
 - $r_n^m = 0 \text{ si } n > m$

Observemos que $d_2(r^m, 0) < \delta$ para todo m, es decir $r_m \in B_{\delta}(0, \ell^2)$ para todo m, sin embargo, la serie $\sum \delta/Cn$ diverge y los terminos $d_1(0, r^m)$ son sus sumas parciales, por lo que debe existir m tal que $d_1(0, r^m) > 1 \Rightarrow r^m \notin B_1(0, \ell^1)$. Esto es absurdo y provino de suponer que ambas distancias eran topologicamente equivalentes.

(c) Una forma simple de probar este inciso es la siguiente, ℓ^1 es completo con d_2 si y solo si es cerrado en ℓ^2 . Pero ℓ^1 contiene las sucesiones que son eventualmente cero. Estas sucesiones son densas en ℓ^2 , por lo que ℓ^1 es denso en ℓ^2 con d_2 , por lo tanto si fuera completo, tambien seria cerrado y tendriamos $\ell^1 = \ell^2$. Sin embargo esto no es cierto.

Sin apelar a que las sucesiones que son eventualmente cero son constantes en ℓ^2 el ejercicio se puede resolver como sigue, consideremos $s^m \in \ell^1$ y $s \in \ell^2$ definidas como:

- $s_n^m = 1/n \text{ si } n \leq m$
- $s_n^m = 0$ si n > m

y $s_n = 1/n$. Observemos que con la distancia d_2 , $s^m \to s$, que $s^m \in \ell^1$ para todo m pero $s \notin \ell^1$. Por lo tanto ℓ^1 no es cerrado en ℓ^2 y en consecuencia no es completo con d_2 .

5. Veamos ambas implicaciones.

Supongamos que existe tal ϕ . Veamos que f debe ser uniformemente continua. Sea $\epsilon > 0$, queremos ver que existe $\delta > 0$ tal que $d(x,y) < \delta \Rightarrow d(f(x),f(y)) < \epsilon$. Sabemos que como ϕ es continua en 0, existe δ tal que $x < \delta \Rightarrow \phi(x) < \epsilon$. Tomemos ese delta:

Luego, si $d(x,y) < \delta \Rightarrow d(f(x),f(y)) < \phi(d(x,y)) \le \phi(\delta) < \epsilon$. Hemos probado que f es uniformemente continua.

Al reves, definamos ϕ como en la sugerencia, $\phi(r) = \sup d(f(x), f(y)) : x, y \in X$ y $d(x, y) \leq \delta$. Observemos que si $x_0, y_0 \in X$ entonces automaticamente vale la condicion del enunciado, pues:

$$d(f(x_0, y_0)) \le \sup d(f(x), f(y)) : x, y \in X \ y \ d(x, y) \le d(x_0, y_0) = \phi(d(x_0, y_0)).$$

Resta entonces ver que ϕ es monotona creciente, continua en 0 y $\phi(0) = 0$.

- $\phi(0) = \sup \{d(f(x), f(y)) : x, y \in X \ y \ d(x, y) \le 0\} = \sup d(f(x), f(x)) = 0$
- Observemos que si r < s entonces

$$\{d(f(x), f(y)) : x, y \in X \ y \ d(x, y) \le r\} \subseteq \{d(f(x), f(y)) : x, y \in X \ y \ d(x, y) \le s\}$$

por lo que el supremo del primer conjunto es menor que el del segundo, esto nos dice que $\phi(r) \leq \phi(s)$, es decir ϕ es monotona creciente.

• Sea $\epsilon > 0$, queremos ver que existe $\delta > 0$ tal que $r < \delta \Rightarrow \phi(r) < \epsilon$. Como f es uniformemente continua sabemos que existe δ tal que $d(x,y) \leq \delta \Rightarrow d(f(x),f(y)) < \epsilon/2$ (se puede tomar menor o igual). Afirmo que ese mismo δ sirve para la continuidad en cero de ϕ .

En efecto, el conjunto $\{d(f(x), f(y)) : x, y \in X \text{ y } d(x, y) \leq \delta\}$ se encuentra acotado superiormente por $\epsilon/2$, por la continuidad uniforme de f, por lo tanto:

$$\phi(\delta) = \sup \left\{ d(f(x), f(y)) : x, y \in X \ \forall \ d(x, y) < \delta \right\} < \epsilon/2 < \epsilon.$$

Luego, si $r < \delta$, $\phi(r) \le \phi(\delta) < \epsilon$, como queriamos probar.