Demostración Directa

 $\begin{array}{ll} \textbf{Proposicion:} \ P \Longrightarrow Q \\ \textbf{Prueba:} & \text{Suponga} \ P \\ & \vdots \\ & \vdots \ Q \\ \end{array}$

- A. Usar el método de demostración directa para demostrar los siguientes enunciados
 - 1. Si x es un entero par, entonces x^2 es par.
 - 2. Si x es un entero impar, entonces x^3 es impar.
 - 3. Si a es un entero impar, entonces $a^2 + 3a + 5$ es impar.
 - 4. Suponga $x, y \in \mathbb{Z}$. Si x y y son impares, entonces xy es impar.
 - 16. Si dos enteros tienen la misma paridad, entonces su suma es par. (Intente casos)
 - 17. Si dos enteros tienen paridad opuesta, entonces su producto es par.
 - 18. Suponga $x, y \in \mathbb{R}^+$. Si x < y, entonces $x^2 < y^2$

Demostración Contra-reciproca

 $\begin{array}{|c|c|} \textbf{Proposicion: } P \Longrightarrow Q \\ \textbf{Prueba:} & \textbf{Suponga} \ \neg Q \\ & \vdots \\ & \because \neg P \end{array}$

- A. Usar método de demostración contra-reciproca para demostrar los siguientes enunciados. (En cada caso debe también pensar como demostraría por directa. Se encontrara que en la mayoría de casos la contra-reciproca es mas fácil).
 - 1. Suponga $n\in\mathbb{Z}.$ Si n^2 es par, entonces nes par.
 - 2. Suponga $n \in \mathbb{Z}$. Si n^2 es impar, entonces n es impar.
 - 3. Suponga $a,b\in\mathbb{Z}$. Si $a^2(b^2-2b)$ es impar, entonces a y b son impares.
 - 4. Suponga $a, b, c \in \mathbb{Z}$. Si a no divide a bc, entonces a no divide a b.
 - 5. Suponga $x \in \mathbb{R}$. Si $x^2 + 5x < 0$ entonces x < 0
 - 6. Suponga $x \in \mathbb{R}$. Si $x^3 x > 0$ entonces x > -1
- B. Demuestre los siguientes enunciados usando método directo o contra-reciproca. A veces un método es mucho mas fácil que el otro.
 - 1. Si $a, b \in \mathbb{Z}$ y a y b tienen la misma paridad, entonces 3a + 7 y 7b 4 no.
 - 2. Suponga $x \in \mathbb{Z}$. Si $x^3 1$ es par, entonces x es par.
 - 3. Suponga $x \in \mathbb{Z}$. Si x + y es par, entonces x y y tienen la misma paridad.
 - 4. Si n es par, entonces $8|(n^2-1)|$

Prueba por Contradicción

 ${\bf Proposicion} \colon P$

Prueba: Suponga $\neg P$

:

 $\div \ C \wedge \neg C$

Prueba de condicional por Contradicción

 $\begin{array}{ll} \textbf{Proposicion:} \ P \Longrightarrow Q \\ \textbf{Prueba:} & \text{Suponga} \ P \land \neg Q \\ \vdots & & \vdots \\ & \vdots \ C \land \neg C \\ \end{array}$

- A. Use el método de prueba por contradicción para probar los siguientes enunciados. (En cada caso, debe pensar como funcionaria una demostración directa y contra-reciproca. Encontrara que en la mayoría de casos la demostración por contradicción es mas fácil)
 - 1. Suponga $n \in \mathbb{Z}$, Si n es impar, entonces n^2 es impar.
 - 2. Suponga $n \in \mathbb{Z}$, Si n^2 es impar, entonces n es impar.
 - 3. Pruebe que $\sqrt[3]{2}$ es irracional.
 - 4. Pruebe que $\sqrt{6}$ es irracional.
 - 5. Pruebe que $\sqrt{3}$ es irracional.
 - 6. Si $a, b \in \mathbb{Z}$, entonces $a^2 4b 2 \neq 0$
 - 7. Si $a, b \in \mathbb{Z}$, entonces $a^2 4b 3 \neq 0$
 - 8. Suponga $a, b, c \in \mathbb{Z}$. Si $a^2 + b^2 = c^2$, entonces $a \circ b$ son pares.