19/3

Unesco technical papers in marine science 44

Algorithms for computation of fundamental properties of seawater

Endorsed by Unesco/SCOR/ICES/IAPSO Joint Panel on Oceanographic Tables and Standards and SCOR Working Group 51

Unesco 1983

UNESCO TECHNICAL PAPERS IN MARINE SCIENCE

Numbers 2, 3, 5, 6, 7, 9, 10, 12, 13, 17, 18, 20, 21, 22 and 23, are out of stock.

For full titles see inside back cover.

Numbers 1, 4, 8 and 14 are incorporated in No. 27.

No		Year	SCOR WG	No		Year	SCOR
11	An intercomparison of some current meters, report on an experiment at WHOI Mooring Site "D", 16-24 July 1967 by the Working Group on Continuous Current Velocity Measurements. Sponsored by SCOR, IAPSO and Unesco	1969	WG 21		Coastal lagoon research, present and future, Report and guidelines of a seminar, Duke University Marine Laboratory, Beaufort, NC, U.S.A. August 1978. (Unesco, IABO).	1981	
15	Monitoring life in the ocean; sponsored by SCOR, ACMRR, Unesco, IBP/PM	1973	WG 29	33	Coastal lagoon research, present and future. Proceedings of a seminar, Duke University, August 1978, (Unesco, IABO).	1981	_
16	Sixth report of the joint panel on oceanographic tables and standards, Kiel, 24-26 January 1973; sponsored by Unesco, ICES, SCOR, IAPSO	1974	WG10		The carbon budget of the oceans. Report of a meeting, Paris, 12-13 November 1979	1980	WG 62
19	Marine Science Teaching at the University Level. Report of the Unesco Workshop on University Curricula-Available in French, Spanish and Arabic	1974	_	35	Determination of chlorophyll in seawater. Report of intercalibration tests sponsored by SCOR and carried out by C.J. Lorenzen and S.W. Jeffrey, CSIRO Cronulla, N.S.W., Australia, September-October 1978	1980	_
24	Seventh report of the joint panel on oceano- graphic tables and standards, Grenoble, 2-5 September 1975; sponsored by Unesco, ICES, SCOR, IAPSO	1976	WG 10	36	The practical salinity scale 1978 and the international equation of state of seawater 1980. Tenth report of the Joint Panel on Oceanographic Tables and Standards, Sidney, B.C., Canada, 1-5 September 1980. Sponsored by Unesco, ICES,		
25	Marine science programme for the Red Sea: Recommendations of the workshop held in Bremerhaven, FRG, 22-23 October 1974; sponsored by the Deutsche Forschungsgemein-			37	SCOR, IAPSO. Background papers and supporting data on the	1981 1981	WG 10
26	schaft and Unesco Marine science in the Gulf area-Report of a	1976	_	38	Background papers and supporting data on the	1981	WH 10
	consultative meeting, Paris, 11-14 November 1975	1976	_	39	International Oceanographic Tables, Vol. 3	1981	WG 10
27	Collected reports of the joint panel on oceano- graphic tables and standards, 1964-1969	1976	WG 10	40	International Oceanographic Tables, Vol. 4. (To be published)	1982	WG 10
28	Eighth report of the joint panel on oceano- graphic tables and standards, Woods Hole, U.S.A., sponsored by Unesco, ICES, SCOR, IAPSO	1978	WG 10	41	Ocean-Atmosphere Materials exchange (OAMEX) Report of SCOR Working Group 44, Unesco, Paris, 14-16 November 1979	1982	WG 44
	Committee for the preparation of CLOFETA- Report of the first meeting, Paris, 16-18 January 1978	1979	_		Carbon dioxide sub-group of the joint panel on oceanographic tables and standards. Report of a meeting Miami, Florida, 21-23 September 1981 sponsored by Unesco, ICES, SCOR, IAPSO	1983	_
30	Ninth report of the joint panel on oceanographic tables and standards, Unesco, Paris, 11-13 September 1978	1979	_	43	International Symposium on Coastal lagoons Bordeaux, France, 8-14 September 1981	1982	_
31	Coastal lagoon survey (1976-1978)	1980					

17 94 3

Unesco technical papers in marine science 44

Algorithms for computation of fundamental properties of seawater

by N. P. Fofonoff and R.C. Millard Jr.

Endorsed by Unesco/SCOR/ICES/IAPSO Joint Panel on Oceanographic Tables and Standards and SCOR Working Group 51 This series, the <u>Unesco Technical Papers in Marine Science</u>, is produced by the Unesco Division of Marine Sciences as a means of informing the scientific community of recent developments in oceanographic research and marine science affairs.

Many of the texts published within the series result from research activities of the Scientific Committee on Oceanic Research (SCOR) and are submitted to Unesco for printing following final approval by SCOR of the relevant working group report.

Unesco Technical Papers in Marine Science are distributed free of charge to various institutions and governmental authorities. Requests for copies of individual titles or additions to the mailing list should be addressed, on letterhead stationery if possible, to:

Division of Marine Sciences Unesco Place de Fontenoy 75700 Paris, France.

Abstract

Algorithms for computation of fundamental properties of seawater, based on the practical salinity scale (PSS-78) and the international equation of state for seawater (EOS-80), are compiled in the present report for implementing and standardizing computer programs for oceanographic data processing.

Sample FORTRAN subprograms and tables are given to illustrate usage of the algorithms and to show the range of variation and limits of validity of commonly used seawater properties within the oceanic ranges for salinity, temperature and pressure. The algorithms cover the following: conductivity to salinity conversion; salinity to conductivity conversion; specific volume anomaly and density anomaly of seawater; pressure to depth conversion; freezing point temperature of seawater; specific heat of seawater; adiabatic lapse rate; potential temperature; sound speed in seawater.

Résumé

Des algorithmes pour le calcul des propriétés fondamentales de l'eau de mer, fondés sur l'échelle de salinité pratique (PSS-78) et l'équation d'état internationale de l'eau de mer (EOS-80), sont réunis dans le présent rapport qui a pour objectif la mise en oeuvre et la standardisation de programmes informatiques destinés au traitement des données océanographiques.

Un choix de sous-programmes en FORTRAN et de tables illustrent l'utilisation des algorithmes; les plages de variation des propriétés de l'eau de mer couramment utilisées correspondant aux gammes de valeur que prennent dans l'océan la salinité, la température et la pression sont mises en évidence, de même que les limites de validité des algorithmes. Ceux-ci couvrent les points suivants: conversion de la conductivité en salinité; conversion de la salinité en conductivité; anomalies de volume spécifique et de densité de l'eau de mer; conversion de la pression en immersion; température du point de congélation de l'eau de mer; gradient vertical de température adiabatique; température potentielle; vitesse du son dans l'eau de mer.

Resumen

Este informe, vinculado a la implementación y estandarización de programas de computación para el procesamiento de datos oceanográficos, presenta algoritmos para calcular propiedades básicas del agua de mar basados en la escala práctica de salinidad (PSS-78) y la ecuación internacional del estado del agua de mar (EOS-80).

Se presentan ejemplos de sub-programas FORTRAN y de tablas para ilustrar el uso de los algoritmos y mostrar el rango de variación y limites de validez de propiedades del agua de mar de uso común dentro de los rangos oceánicos de la salinidad, temperatura y presión. Los algoritmos cubren: conversión de conductividad en salinidad; conversión de salinidad en conductividad; anomalia del volúmen específico y anomalia de la densidad del agua de mar; conversión de la presión en profundidad; temperatura de congelamiento para el agua de mar; calor específico para el agua de mar; tasa del lapso adiabático; temperatura potencial; velocidad de sonido en el agua de mar.

Аннотация

Настоящий отчет содержит алгоритмы для вычисления некоторых свойств водных масс, основанные на практической шкале солености (PSS-78) и международном уравнении состояния воды (EOS-80). Работа выполнена с целью разработки и стандартизации программ для ЭВМ, предназначенных для обработки океанографических данных.

Приведены некоторые подпрограммы на языке Фортран и таблицы, которые иллюстрируют использование алгоритмов и показывают диапазон колебаний и пределы точности обычно измеряемых физических параметров морской воды — солености, температуры и давления в пределах их возможных значений в Мировом океане. Алгоритмы составлены для следующих прецедур: перевода электропроводности в значения солености и солености — в значения электропроводности, вычисления значений конкретных аномалий объема и плотности воды, перевод величины давления в глубину, вычисления точки замерзания морской воды, теплосодержания, скорости адиабатических изменений, потенциальной температуры, а также скорости распространения звука в морской воде.

" ملخص "

يتضمن التقرير الحالى الحسابيات (الغوريثمات) الخاصة بحساب قيم الخواص الأساسية لماء البحر ، بناء على مقياس الملوحة العملية (١٩٧٨) والمعادلة العالمية لحالة ماء البحر (١٩٨٠) وذلك لتوحيد برامج الحاسب الألكترونى واستخدامها في معالجـــة البيانات الأوقيانوغرافية ،

وقد قدمت عينات من برامج فرعية معدّة بلغة " الفورتران " مع جداول لتوضيح استعمال هذه الحسابيات ولتبيان مدى التغير وحدود صحة انطباق الخواص الشائعـــة الاستعمال لمياه البحر في ظل معدلات الملوحة والحرارة والضغط في المحيطات ٠

وتغطى الحسابيات الواردة بالتقرير العمليات الآتية : تحويل درجة التوصيل الكهربائى الى الملوحة ودرجة الملوحة الى التوصيل الكهربائى ، حساب الحيود فى كل من الحجم النوعى وكثافة ماء البحر ، تحويل الضغط الى عمق ، تعيين كل مصين درجة حرارة التجمد والحرارة النوعية لماء البحر ، معدل التغير " الأدياباتيكى "للحرارة ، حساب درجة حرارة الوضع وسرعة الصوت فى ماء البحر ،

摘 要

本报告列举了以实用盐度表(PSS-78)和国际海水物态方程(EOS 80) 为基础的海水基本特性计算法,以便实行标准化的计算机程序,供海洋学数据处理使用。

提供了FORTRAN语言的子程序和图表的实例来说明计算法的使用,并表明通常使用的海水特性在海洋盐度、温度和压力的范围之内的变化范围与有效限度。这些计算法包括以下各个方面:传导率——盐度转换;盐度——传导率转换;海水的比容偏差和密度偏差;深度转换压力;海水的冰点温度;海水的比热;绝热递减率;势温;海水中声速。

CONTENTS

		Page
	Abstract	1
	Foreword	4
	Introduction	5
1.	Conductivity to Salinity Conversion	6
2.	Salinity to Conductivity Conversion	9
3.	Specific Volume Anomaly and Density Anomaly of Seawater	15
4.	Pressure to Depth Conversion	25
5.	Freezing Point Temperature of Seawater	29
6.	Specific Heat of Seawater	31
7.	Adiabatic Lapse Rate	38
8.	Potential Temperature	42
9.	Sound Speed in Seawater	46
	References	51

Foreword

The algorithms compiled in the present report are based on the practical salinity scale and the international equation of state for seawater endorsed by UNESCO/SCOR/ICES/IAPSO Joint Panel on Oceanographic Tables and Standards and SCOR Working Group 51 on evaluation of CTD data.

Compilation of the algorithms and tables was supported by the Office of Naval Research under contracts N00014-74-C-0262, NR083-004 and N00014-76-C-0197, NR083-400 and by the National Science Foundation under Grant OCE 78-06886.00.

Introduction

The recent adoption for general oceanographic use of the practical salinity scale (PSS-78) and the international equation of state for seawater (EOS80) by the Joint Panel on Geanographic Tables and Standards (Unesco Report No. 38, 1981) has created a need for a consistent set of algorithms for computing various derived properties from the basic observations of electrical conductivity ratio, temperature and pressure. Formulas based on earlier salinity and temperature scales are with few exceptions not recommended for use with the new practical salinities.

Lewis and Perkin (1981) examined differences between PSS-78 salinities and salinities obtained from several formulas developed for the previous salinity scale. Within the oceanic range, the differences are less than 0.01 but larger than the precision of measurement (± 0.003). For more diluted or concentrated seawaters, the differences are as high as 0.06 (Lewis and Perkin, 1981, Tables 2-7). Temperatures based on the International Practical Temperature Scale (IPTS-68) differ from the 1948 scale (IPTS-48) by as much as .009 °C (Barber, 1969) over the oceanic range (-2 to 40°C). Because both temperature and salinity scales differences exceed the precision of measurement of modern sensors, corrections or conversions are necessary to maintain precision in derived variables for temperature and salinity data obtained on the previous scales.

The 1980 equation of state (EOS80) provides a significant improvement in accuracy of density and specific volume of seawater over the entire oceanic range. Thermal expansion, compressibility, specific heat, adiabatic lapse rate, potential temperature and sound speed can be computed with improved accuracy from EOS80.

A selection of algorithms, consistent with practical salinity (PSS-78) and temperature (IPTS-68) are compiled in the present report. Formulas documented in publications were compared with direct calculations using EOS80 to establish consistency.

Formulas are given for:

- Conductivity ratio to practical salinity conversion (SAL78)
- 2. Practical salinity to conductivity ratio conversion (SAL78)
- Specific volume anomaly SYAN(S,t,p,SIGMA); Density anomaly SIGMA
- Pressure to depth conversion DEPTH (p,latitude)
- 5. Freezing point temperature for seawater TF(S,P)
- Specific heat of seawater CPSW(S,t,p)
- Adiabatic lapse rate ATG(S,t,p)
- 8. Potential temperature THETA(S,t,p,pr)
- Sound speed in seawater SVEL(S,t,p)

A sample FORTRAN subprogram is included for each formula together with a test value, error estimates and a summary table of typical values in the oceanographic range. Summary tables extending beyond the range of the algorithms, have a border drawn around values within the range of

validity (see Salinity Table Page 8). The call list input variables are S=salinity (PSS-78); t=temperature in degrees Celsius (IPTS-1968); p=pr= pressure in decibars (1 decibar = 10^4 Pa). It should be noted that the pressure coefficients of some of the subprograms have units of bars (Formulas 3,5, and 8 in list above). A rescaling of input pressure from decibars to bars is found in these subprograms. Depth requires latitude in degrees and the specific volume anomaly function returns density anomaly in the call list. The check values are computed for a 32-bit word length with a 24-bit mantissa (using an implicit leading bit) yielding a numerical resolution of 2^{-24} or 6×10^{-8} .

1. Conductivity Ratio to Salinity Conversion

If C(S,t,p) is electrical conductivity of seawater at salinity S(PSS-78), temperature t (IPTS-68) and pressure p decibars, the conductivity ratio is defined to be

$$R = C(S.t.p)/C(35.15.0)$$

where C[35,15,0] is the conductivity of standard seawater of practical salinity 35, at 15°C and atmospheric pressure, defined to be equal to the conductivity of a reference solution of potassium chloride (KCl) at the same temperature and pressure. This KCl reference contains 32.4356 grams of KCl in a mass of one kilogram of solution.

The conductivity ratio can be factored into three parts, i.e.,

$$R = R_p \cdot R_t \cdot r_t$$

where

$$R_p(S,t,p) = C(S,t,p)/C(S,t,0)$$

$$R_{t}(S,t) = C(S,t,0)/C(35,t,0)$$

$$r_t(t) = C(35,t,0)/C(35,15,0)$$

As the ratios R_{t} or R are measured directly with conductivity bridges together with temperature and pressure, formulas have been developed for the ratios in these variables rather than in salinity S.

The practical salinity, therefore, may be computed with the equation

$$S = a_0 + a_1 R_t^{1/2} + a_2 R_t + a_3 R_t^{3/2} + a_4 R_t^2 + a_5 R_t^{5/2} + \Delta S$$
 (1)

where

$$\Delta S = \frac{(t-15)}{1+k(t-15)} \left(b_0 + b_1 R_t^{1/2} + b_2 R_t + b_3 R_t^{3/2} + b_4 R_t^2 + b_5 R_t^{5/2} \right) \tag{2}$$

with the constants ai defined in Equation (1) and

$$a_0 = + 0.0080$$
 $b_0 = + 0.0005$
 $a_1 = -0.1692$ $b_1 = -0.0056$
 $a_2 = + 25.3851$ $b_2 = -0.0066$
 $a_3 = + 14.0941$ $b_3 = -0.0375$ $k = + 0.0162$
 $a_4 = -7.0261$ $b_4 = + 0.0636$
 $a_5 = + 2.7081$ $b_5 = -0.0144$
 $\Sigma a_i = 35.0000$ $\Sigma b_i = 0.0000$

. 2 < S < 42

The equations (1) and (2) are valid over the ranges of temperature (-2 to 35° C), and practical salinity (2-42) in the world ocean (Perkin and Lewis, 1980).

The ratio rt is given by

$$r_t = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4$$
 (3)

where

$$c_3 = -6.9698$$
 E-7
 $c_4 = +1.0031$ E-9

Range of validity: t = -2 to $35^{\circ}C$

The ratio R_p is given by

$$R_{p} = 1 + \frac{p(e_{1} + e_{2}p + e_{3}p^{2})}{1 + d_{1}t + d_{2}t^{2} + (d_{3} + d_{4}t)R}$$
(4)

where

$$e_1 = + 2.070 E-5$$
 $d_1 = + 3.426 E-2$
 $e_2 = -6.370 E-10$ $d_2 = + 4.464 E-4$
 $e_3 = + 3.989 E-15$ $d_3 = + 4.215 E-1$
 $d_4 = -3.107 E-3$

Maxima of the range of pressures (decibars) over which the pressure correction to conductivity ratio was computed is given in the following table (Perkin and Lewis, 1980);

T°C/S	T < 0	5	10	15	20	25	30
2		**************************************					
14	1998	1998	1998	1998	1998	1998	1998
22 31	1998	1998	3996	1998	1998	1998	1998
31	1722	1722	1722	1722	1722	1722	
35	10,334	9988	3996	1998	199દ	1998	1998
39	1722	1722	5162	5162	1722	1722	

Given R, t, p, the ratio R_t is given by

$$R_t = R/(R_p \cdot r_t)$$

and salinity is computed from (1) and (2).

The following values are provided for checking the correct use of the above equations.

R	(°C)	p (dbars)	R _p	rt	R _t	S
1 1.2	15 20	0 2000	1.0000000 1.0169429	1.0000000 1.1164927	1.0000000 1.0568875	35.000000 37.245628
0.65	5	1500	1.0204864	0.77956585	0.81705885	27.995347

2. Salinity to Conductivity Ratio Conversion

If the conductivity ratio is required, the salinity algorithm can be inverted numerically by an iterative computation.

Given salinity S and temperature t, the conductivity ratio R_t is found by inverting formulas (1) and (2), i.e.,

$$S = S(R_+, t) . (5)$$

If a value R_{tn} is known, the corresponding value of S_n is found from (5). As S_n will differ from S, a better approximation R_{tn+1} is obtained from the Taylor expansion of (5),

$$S - S_n \approx \frac{\partial S}{\partial R_t} (R_{tn+1} - R_{tn})$$

i.e.,

$$R_{tn+1} = R_{tn} + (S - S_n)/\partial S/\partial R_t$$
.

This procedure is the standard Newton-Raphson iteration if the derivative aS/aR $_{t}$ is evaluated directly by differentiating the formula for S. In the actual computation it is more convenient to differentiate with respect to \sqrt{R}_{t} and solve for \sqrt{R}_{t} because of the half powers in the formula.

If $\mathbf{R}_{\mathbf{t}}$ is known, the value of R is computed by solving the quadratic equation obtained from

$$R = r_{t} \cdot R_{t} \cdot R_{p} = r_{t} \cdot R_{t} \cdot (1 + \frac{C}{AR + B})$$

$$R = \frac{1}{2A} \left[SQRT[(B - Ar_{t}R_{t})^{2} + 4r_{t}R_{t}A(B + C)] - (B - Ar_{t}R_{t}) \right]$$
(6)

where A, B and C are polynomials in temperature and pressure given in (4).

Both the conductivity ratio to salinity and salinity to conductivity ratio formulas are combined in a single function subprogram. Although the Practical Salinity Scale is not defined below 2, the subroutine returns non-zero values above 0.02. For conductivity ratios of less than 0.0005 or salinities less than 0.02, the function is forced to return a zero value to avoid convergence problems for zero input values of salinity or conductivity.

```
REAL FUNCTION SAL73(CND,T,P,M)
 ***********************
     THE CONDUCTIVITY RATIO (CND) = 1.0000000 FOR SALINITY = 35 PSS-78
C
     TEMPERATURE = 15.0 DEG. CELSIUS , AND ATMOSPHERIC PRESSURE.
C
C*********************
C FUNCTION TO CONVERT CONDUCTIVITY RATIO TO SALINITY (M = 0)
C SALINITY TO CONDUCTIVITY RATIO (M = 1, CND BECOMES INPUT SALINITY)
C*********************
               ALSO LOCATED IN UNESCO REPORT NO. 37 1981
   REFERENCES:
  PRACTICAL SALINITY SCALE 1978: E.L. LEWIS IEEE OCEAN ENG. JAN. 1980
 ***<del>**********************</del>
 UNITS:
C
      PRESSURE
                           DECIBARS
                    Т
C
                           DEG CELSIUS (IPTS-68)
      TEMPERATURE
C
      CONDUCTIVITY
                    CND
                           RATIO
                                    (M=0)
C
                    SAL78
                           (PSS-78) (M=0)
      SALINITY
C
  CHECKVALUES:
C
      SAL78=1.888091 :CND= 40.0000,T=40 DEG C,P= 10000 DECIBARS:
      SAL78=40.00000 :CND=1.888091,T=40 DEG C,P=10000 DECIBARS:
                                                        M=0
C********************
C SAL78 RATIO: RETURNS ZERO FOR CONDUCTIVITY RATIO: < 0.0005
C SAL78: RETURNS ZERO FOR SALINITY: < 0.02
 C INTERNAL FUNCTIONS
 PRACTICAL SALINITY SCALE 1978 DEFINITION WITH TEMPERATURE CORRECTION
  XT=T-15.0 : XR=SORT(RT)
     SAL(XR,XT) = ((('2.7081*XR-7.0261)*XR+14.094.*XR+25.3851)*XR
    X-0.1692)* XR+0.0080
     +(XT/(1.0+0.0162*XT))*(((((-0.0144*XR+
       0.0636) *XR-0.0375) *XR-0.0066) *XR-0.0066) *XR+0.0005)
  DSAL(XR,XT) FUNCTION FOR DERIVATIVE OF SALXR,XT) WITH XR.
    DSAL(XR,XT) =((((13.5405*XR-28.1044)*XR+42.2823)*XR+50,7702)*XP
       -0.1692) + (XT/(1.0+0.0162*XT))*((((-0.072\*\x\R+0.2544)\*\x\R
       -0.1125) *XR-0.0132) *XR-0.0056)
 FUNCTION RT35 : C(35,T,0)/C(35,15,0) VARIATION WITH TEMPERATURE
  WITH TEMPERATURE.
     RT35(XT) = (((1.0031E-9*XT-6.9698E-7)*XT+1.104259E-4)*XT
       + 2.00564E-2)*XT + 0.6766097
C POLYNOMIALS OF RP: C(S,T,P)/C(S,T,O) VARIATION WITH PRESSURE
  C(XP) POLYNOMIAL CORRESPONDS TO A1-A3 CONSTANTS: LEWIS 1980
     C(XP) = ((3.989E-15*XP-6.370E-10)*XP+2.070E-5)*XP
     B(XT) = (4.464E-4*XT+3.426E-2)*XT + 1.0
 A(XT) POLYNOMIAL CORRESPONDS TO B3 AND B4 CONSTANTS: LEWIS 1980
    A(XT) = -3.107E - 3*XT + 0.4215
```

```
C ZERO SALINITY/CONDUCTIVITY TRAP
     SAL78=0.0
     IF((M.EQ.O).AND.(CND.LE.5E-4)) RETURN
     IF((M.EQ.1).AND.(CND.LE.0.02)) RETURN
C *************
     DT = T - 15.0
C SELECT BRANCH FOR SALINITY (M=0) OR CONDUCTIVITY (M=1)
     IF(M.EO.1) GO TO 10
C *************
C CONVERT CONDUCTIVITY TO SALINITY
     R = CND
     RT = R/(RT35(T)*(1.0 + C(P)/(B(T) + A(T)*R)))
     RT = SQRT(ABS(RT))
     SAL78 = SAL(RT,DT)
     RETURN
 ******* END OF CONDUCTIVITY TO SALINITY SECTION *******
C **************
 INVERT SALINITY TO CONDUCTIVITY BY THE
  NEWTON-RAPHSON ITERATIVE METHOD.
 C FIRST APPROXIMATION
  10 RT = SQRT(CND/35.0)
     SI = SAL(RT,DT)
     N = 0
C
C
  ITERATION LOOP BEGINS HERE WITH A MAXIMUM OF 10 CYCLES
  15 RT = RT + (CND - SI)/DSAL(RT,DT)
     SI = SAL(RT,DT)
     N = N + 1
     DELS = ABS(SI - CND)
     IF((DELS.GT.1.0E-4).AND.(N.LT.10))GO TO 15
 C COMPUTE CONDUCTIVITY RATIO
     RTT = RT35(T)*RT*RT
     AT = A(T)
     BT = B(T)
     CP = C(P)
     CP = RTT*(CP + BT)
     BT = BT - RTT*AT
 SOLVE QUADRATIC EQUATION FOR R: R=RT35*RT*(1+C/AR+B)
     R = SQRT(ABS(BT*BT + 4.0*AT*CP)) - BT
C CONDUCTIVITY RETURN
     SAL78 = 0.5*R/AT
     RETURN
     END
```

				PSS-78]			
PRESSURE DEC IBARS	0	1 EMP1 10	ERATURE °C 20	IPTS-68 30	40	COND. RATIO 0.6990725	:
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	36.2864 35.6746 35.1188 34.6143 34.1568 33.7426 33.3684 33.0314 32.7289 32.4588 32.2191	26.8609 26.5072 26.1836 25.8880 25.6183 25.3729 25.1501 24.9485 24.7669 24.6042 24.4592	20.8085 20.5932 20.3953 20.2136 20.0470 19.8948 19.7562 19.6303 19.5166 19.4143 19.3231	16.7100 16.5725 16.4456 16.3286 16.2211 16.1225 16.0324 15.9505 15.8762 15.8093 15.7495	13.8131 13.7213 13.6364 13.5579 13.4855 13.4191 13.3582 13.3027 13.2523 13.2069 13.1662	-COND. RATIO :	•
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	50.0127 49.2140 48.4874 47.8269 47.2272 46.6837 46.1921 45.7489 45.3509 44.9952 44.6791	36.9676 36.4999 36.0717 35.6801 35.3226 34.9970 34.7013 34.4336 34.1923 33.9760 33.7832	28.6080 28.3203 28.0556 27.8125 27.5896 27.3858 27.2001 27.0314 26.8790 26.7419 26.6195	22.9533 22.7681 22.5970 22.4394 22.2943 22.1614 22.0399 21.9292 21.8290 21.7388 21.6580	18.9594 18.8351 18.7200 18.6135 18.5154 18.4253 18.3427 18.2674 18.1991 18.1375 18.0822	0.9320967	
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	64.4641 63.4810 62.5855 61.7706 61.0299 60.3579 59.7498 59.2011 58.7080 58.2670 57.8750	47.5215 46.9414 46.4098 45.9233 45.4790 45.0741 44.7060 44.3727 44.0722 43.8026 43.5623	36.7173 36.3576 36.0265 35.7222 35.4432 35.1879 34.9552 34.7439 34.5527 34.3809 34.2274	29.4273 29.1942 28.9788 28.7802 28.5975 28.4300 28.2769 28.1375 28.0111 27.8973 27.7955	24.2862 24.1289 23.9832 23.8485 23.7244 23.6102 23.5057 23.4104 23.3239 23.2458 23.1759	COND. RATIO:	
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	79.7047 78.5355 77.4695 76.4986 75.6154 74.8136 74.0874 73.4318 72.8423 72.3148 71.8457	58.5321 5/.8397 57.2050 56.6237 56.0925 55.6082 55.1678 54.7688 54.4088 54.0858 53.7979	45.1289 44.6972 44.2997 43.9342 43.5989 43.2922 43.0124 42.7583 42.5284 42.3216 42.1369	36.1195 35.8382 35.5783 35.3386 35.1181 34.9158 34.7308 34.5624 34.4098 34.2723 34.1492	29.7800 29.5894 29.4128 29.2496 29.0991 28.9607 28.8340 28.7184 28.6135 28.5188 28.4340	1.3981451	

			DUCTIVITY RAT			
PRESSURE DEC IBARS		TEMPE 10	ERATURE °C 1 20	IPTS-68 30	40	SALINITY: 25
0	0.498008	0.654990	0.825481	1.006639	1.195796	-SALINITY: 30
1000	0.506244	0.662975	0.833139	1.013951	1.202767	
2000	0.513925	0.670435	0.840302	1.020797	1.209296	
3000	0.521068	0.677385	0.846983	1.027187	1.215394	
4000	0.527692	0.683840	0.853194	1.033130	1.221069	
5000	0.533813	0.689814	0.858947	1.038640	1.226330	
6000	0.539447	0.695319	0.864254	1.043724	1.231189	
7000	0.544609	0.700369	0.869126	1.048395	1.235653	
8000	0.549314	0.704976	0.873574	1.052661	1.239732	
9000	0.553574	0.709153	0.877610	1.056533	1.243435	
10000	0.557404	0.712912	0.881243	1.060020	1.246770	
0	0.588220	0.772567	0.972727	1.185361	1.407338	SALINITY: 35
1000	0.597649	0.781728	0.981533	1.193791	1.415394	
2000	0.606437	0.790282	0.989769	1.201681	1.422939	
3000	0.614605	0.798249	0.997447	1.209045	1.429984	
4000	0.622176	0.805646	1.004585	1.215893	1.436539	
5000	0.629168	0.812488	1.011194	1.222240	1.442617	
6000	0.635602	0.818792	1.017289	1.228097	1.448228	
7000	0.641494	0.824574	1.022884	1.233476	1.453382	
8000	0.646862	0.829847	1.027990	1.238388	1.458092	
9000	0.651722	0.834627	1.032622	1.242846	1.462367	
10000	0.656090	0.838926	1.036792	1.246860	1.466219	
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	0.676610 0.687138 0.696945 0.706057 0.714499 0.722293 0.729461 0.736025 0.742002 0.747413 0.752275	0.887529 0.897778 0.907346 0.916254 0.924521 0.932167 0.939209 0.945666 0.951555 0.956891 0.961690	1.116493 1.126369 1.135602 1.144210 1.152207 1.159613 1.166440 1.172706 1.178425 1.183612 1.188279	1.359679 1.369156 1.378024 1.386298 1.393993 1.401122 1.407701 1.413741 1.419257 1.428769	1.613508 1.622586 1.631085 1.639020 1.646403 1.653247 1.659565 1.665369 1.670672 1.675484 1.679819	SALINITY: 40
0	0.763298	1.000073	1.257061	1.529967	1.814775	
1000	0.774845	1.011334	1.267906	1.540427	1.824816	
2000	0.785595	1.021844	1.278102	1.550212	1.834216	
3000	0.795580	1.031625	1.287575	1.559342	1.842990	
4000	0.804827	1.040701	1.296377	1.567830	1.851154	
5000	0.813362	1.049093	1.304525	1.575694	1.858721	
6000	0.821209	1.056821	1.312037	1.582949	1.865705	
7000	0.828392	1.063905	1.318929	1.589610	1.872121	
8000	0.834932	1.070363	1.325218	1.595692	1.877982	
9000	0.846851	1.076215	1.330921	1.601210	1.883301	
10000	0.846168	1.081478	1.336054	1.606179	1.888091	

3. Specific Volume Anomaly and Density Anomaly of Seawater

The international equation of state for seawater diluted with pure water or concentrated by evaporation has been determined to be used with the practical salinity scale (Millero et al., 1980; Millero and Poisson, 1981). This equation is more precise than the currently used equations (Knudsen et al., 1902; Ekman, 1908; Cox et al., 1970) and covers a wider range of temperature and pressure. Data reports describing the details of the fitting procedure are available (Millero, Chen, Bradshaw and Schleicher, Unesco Report No. 38 (1981); Millero and Poisson, Unesco Report No. 38 (1981).

The density (ρ , kg/m³) of seawater as a function of practical salinity (S), temperature (t, °C) and applied or gauge pressure (ρ , decibars) is given by

$$\rho(S,t,p) = \rho(S,t,0)/[1-p/K(S,t,p)]$$
 (7)

where K(S,t,p) is the secant bulk modulus. The specific volume $(V = 1/p m^3/kg)$ of seawater can be obtained from

$$V(S,t,p) = V(S,t,0) \cdot [1-p/K(S,t,p)]$$
 (8)

Because the maximum variation of density and specific volume of sea water is less than 7 percent over the oceanic range of variables, numerical precision is lost by retaining the full numerical magnitude. A 32 bit single precision floating point number has about 7 significant decimal digits. While such precision exceeds the accuracy of the measurements and is adequate for most purposes where the full value is required, it is insufficient for taking differences for Brunt-Vaisala frequency calculations. An improvement by two orders of magnitude in the oceanographic range is obtained by computing specific volume anomaly δ defined by:

$$\delta = V(S,t,p) - V(35,0,p)$$
 (9)

and reported in units of 10^{-8} m³/kg.

For many oceanographic applications, the specific volume (or steric) anomaly δ provides a more convenient measure of the baroclinic structure in the ocean. For computational convenience, V(35,0,p) has been obtained from the EOS80 by evaluating the coefficients for a salinity of 35 (PSS-78) and temperature of 0°C (IPTS-68) in the form

$$V(35,0,p) = V(35,0,0) \cdot [1 - p/K(35,0,p)]$$

$$K(35,0,p) = K_0 + A_0 p + B_0 p^2$$
(10)

where

$$V(35,0,0) = 9.7266204 E-4 m^3/kg$$

$$K_0 = + 21582.27$$

$$A_0 = + 3.35940552$$

$$B_0 = + 5.03217 E-5$$

To achieve the increased precision, terms in the difference equation for δ that are functions of pressure only must be eliminated. The pressure terms can be subtracted by reformulating the equation for δ in terms of the difference K(S,t,p)-K(35,0,p) as follows:

$$\delta = V(S,t,0) \cdot \left[1 - \frac{p}{K(S,t,p)} + \frac{p}{K(35,0,p)} - \frac{p}{K(35,0,p)}\right]$$

$$-V(35,0,0) \cdot \left[1 - \frac{p}{K(35,0,p)}\right]$$

$$= \delta(S,t,0) \cdot \left[1 - \frac{p}{K(35,0,p)}\right] + V(S,t,0) \cdot \left[\frac{p}{K(35,0,p)} - \frac{p}{K(S,t,p)}\right]$$

$$\delta = \delta(S,t,0) \cdot \left[1 - \frac{p}{K(35,0,p)}\right] + V(S,t,0) \cdot p \cdot \left[\frac{K(S,t,p) - K(35,0,p)}{K(S,t,p) + K(35,0,p)}\right]$$
(11)

Improvement in the numerical precision is achieved by subtracting the coefficients in the formulas for $\delta(S,T,0)$ and K(S,T,p)-K(35,0,p) prior to coding (see terms marked with asterisks).

The density anomaly σ is defined by

$$\sigma = \frac{1}{V(S,t,p)} - 1000 \text{ kg/m}^3$$

The formula for σ , obtained by a similar derivation, is

$$\sigma = \rho(35,0,0) - 1000 \text{ kg/m}^3 + \frac{p}{V(35,0,p)K(35,0,p)} - \frac{\delta}{V(35,0,p)V(S,t,p)}$$
(12)
where
$$\rho(35,0,0) - 1000 \text{ kg/m}^3 = 28.106331 \text{ kg/m}^3$$

It should be noted that this procedure improves the numerical precision only and does not effect the accuracy of the 1980 equation of state. The accuracy is determined by the laboratory measurements used to construct the equation.

The asterisked constants that follow are modified from the constants given in Millero and Poisson (1980) to permit the computation of specific volume anomaly s. The modified constants necessary for specific volume anomaly computations are enclosed in brackets.

$$\rho(S,t,0) = \rho_{W}^{+} (b_{0}^{+} b_{1}^{+} t + b_{2}^{+} t^{2} + b_{3}^{+} t^{3} + b_{4}^{+} t^{4}) S + (c_{0}^{+} c_{1}^{+} t + c_{2}^{+} t^{2}) S^{3/2} + d_{0}^{-} S^{2}$$

$$(13)$$

$$b_{0} = + 8.24493E - 1 \qquad c_{0} = - 5.72466E - 3$$

$$b_{1} = - 4.0899 E - 3 \qquad c_{1} = + 1.0227 E - 4$$

$$b_{2} = + 7.6438 E - 5 \qquad c_{2} = - 1.6546 E - 6$$

$$b_{3} = - 8.2467 E - 7$$

$$b_{4} = + 5.3875 E - 9 \qquad d_{0} = + 4.8314 E - 4$$

The density of the reference pure water (SMOW, Craig, 1961) is given by (IUPAC, 1976)

$$\rho_{W} = a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} + a_{4}t^{4} + a_{5}t^{5}$$
 (14)

where

$$a_0^* = + 999.842594 [-28.263737]$$
 $a_1^* = + 6.793952 E-2$
 $a_2^* = - 9.095290 E-3$
 $a_3^* = + 1.001685 E-4$
 $a_4^* = - 1.120083 E-6$
 $a_5^* = + 6.536332 E-9$

Should more reliable data for pure water become available in the future, this equation can be easily modified. The secant bulk modulus (K) of seawater is given by

$$K(S,t,p) = K(S,t,0) + Ap + Bp^{2}$$
 (15)

where

$$B = B_{w} + (m_{0} + m_{1}t + m_{2}t^{2})S$$

$$m_{0} = -9.9348 E-7$$

$$m_{1} = + 2.0816 E-8$$

$$m_{2} = + 9.1697 E-10$$
(18)

The pure water terms of the secant bulk modulus are given by

$$K_{W} = e_{0} + e_{1}t + e_{2}t^{2} + e_{3}t^{3} + e_{4}t^{4}$$
 (19)
 $e_{0}^{*} = + 19652.21 [-1930.06]$ $e_{2} = - 2.327105$
 $e_{1} = + 148.4206$ $e_{3} = + 1.360477 E-2$
 $e_{4} = - 5.155288 E-5$

$$A_{w} = h_{0} + h_{1}t + h_{2}t^{2} + h_{3}t^{3}$$
 $h_{0}^{*} = + 3.239908 [-0.1194975]$
 $h_{1} = + 1.43713 = E-3$
 $h_{2} = + 1.16092 = E-4$
 $h_{3} = - 5.77905 = E-7$
 $B_{w} = k_{0} + k_{1}t + k_{2}t^{2}$
 $k_{0}^{*} = + 8.50935 = E-5 [+ 3.47718 = E-5]$
 $k_{1} = - 6.12293 = E-6$
 $k_{2} = + 5.2787 = E-8$

The EOS80 is valid for S=0 to 42; t=-2 to $40^{\circ}C$; p=0 to 10000 decibars.

The following values are provided (Unesco Report No. 38 p. 191) for checking the correct use of the above equation. The density anomaly can be compared directly with $\rho(S,t,p)$ when 1000. kg/m³ is added. Differences in the last decimal place particularly of specific volume can be expected due to round-off. (Units of ρ are kg m⁻³ and V m³/kg.)

S	t(°C)	p(dbars)	ρ(S,t,p)	V(S,t,p)10 ⁻³ m ³ /kg
0	5	0 10000	999.96675 1044.12802	1.000033251 .957736964
	25	0 10000	997.04796 1037.90204	1.00296078 .96348 <i>2</i> 064
35	5	0 10000	1027.67547 1069.48914	.973069835 .935025857
	25	0 10000	1023.34306 1062.53817	.977189409 .941142660

```
REAL FUNCTION SYAN(S,T,PO,SIGMA)
 **<del>*****************</del>
 SPECIFIC VOLUME ANOMALY (STERIC ANOMALY) BASED ON 1980 EQUATION
C OF STATE FOR SEAWATER AND 1978 PRACTICAL SALINITY SCALE.
C REFERENCES
C MILLERO, ET AL (1980) DESP-SEA RES.,27A,255-264
C MILLERO AND POISSON 1981, DEEP-SEA RES. , 28A PP 625-629.
C BOTH ABOVE REFERENCES ARE ALSO FOUND IN UNESCO REPORT NO. 38 (1981)
C UNITS:
C
        PRESSURE
                       PO
                                DECIBARS
C
       TEMPERATURE
                       T
                                DEG CELSIUS (IPTS-68)
C
        SALINITY
                       S
                               (PSS-78)
C
                                1.0E-8 M**3/KG
        SPEC. VOL. ANO. SVAN
C
        DENSITY ANO. SIGMA
                                KG/M**3
C ****************
CHECK VALUE: SVAN = 981.30210 E - 8 M^* 3 / KG FOR S = 40 (PSS-78).
C T = 40 DEG C, PO= 10000 DECIBARS.
C CHECK VALUE: SIGMA = 59.82037 KG/M**3 FOR S = 40 (PSS-78).
C T = 40 DEG C, PO = 10000 DECIBARS.
      REAL P,T,S,SIG,SR,R1,R2,R3,R4
      REAL A,B,C,D,E,A1,B1,AW,BW,K,K0,KW,K35
C EOUIV
      EQUIVALENCE (E,D,B1),(BW,B,R3),(C,A1,R2)
      EQUIVALENCE (AW,A,R1),(KW,KO,K)
C DATA
      DATA R3500,R4/1028.1063,4.8314E-4/
     DATA DR350/28.106331/
    R4 IS REFERRED TO AS C IN MILLERO AND POISSON 1981
C CONVERT PRESSURE TO BARS AND TAKE SQUARE ROOT SALINITY.
     P = P0/10.
     SR = SORT(ABS(S))
C *******************
C PURE WATER DENSITY AT ATMOSPHERIC PRESSURE
    BIGG P.H.,(1967) BR. J. APPLIED PHYSICS 8 PP 521-537.
     R1 = (((6.536332E-9*T-1.120083E-6)*T+1.001685E-4)*T
    X-9.095290E-3) *T+6.793952E-2) *T-28.263737
C SEAWATER DENSITY ATM PRESS.
  COEFFICIENTS INVOLVING SALINITY
  R2 = A IN NOTATION OF MILLERO AND POISSON 1981
     R2 = (((5.3875E-9*T-8.2467E-7)*T+7.6438E-5)*T-4.0899E-3)*T
    X +8.24493E -1
  R3 = B IN NOTATION OF MILLERO AND POISSON 1981
     R3 = (-1.6546E - 6*T + 1.0227E - 4)*T - 5.72466E - 3
  INTERNATIONAL ONE-ATMOSPHERE EQUATION OF STATE OF SEAWATER
     SIG = (R4*S + R3*SR + R2)*S + R1
C SPECIFIC VOLUME AT ATMOSPHERIC PRESSURE
     V350P = 1.0/R3500
     SVA = -SIG*V350P/(R3500+SIG)
     SIGMA=SIG+DR350
  SCALE SPECIFIC VOL. ANOMALY TO NORMALLY REPORTED UNITS
     SVAN=SVA*1.CE+8
     IF(P.EQ.O.O) RETURN
```

```
C *******************************
C ****** NEW HIGH PRESSURE EQUATION OF STATE FOR SEAWATER *******
C ***************************
        MILLERO, ET AL , 1980 DSR 27A, PP 255-264
C
              CONSTANT NOTATION FOLLOWS ARTICLE
C
C**************
C COMPUTE COMPRESSION TERMS
     E = (9.1697E-10*T+2.0816E-8)*T-9.9348E-7
     BW = (5.2787E - 8*T - 6.12293E - 6)*T + 3.47718E - 5
     B = BW + E*S
C
     D = 1.910755-4
     C = (-1.6078E-6*T-1.0981E-5)*T+2.2838E-3
     AW = ((-5.77905E - 7*T + 1.16092E - 4)*T + 1.43713E - 3)*T
    X-0.1194975
     A = (D*SR + C)*S + AW
     B1 = (-5.3009E-4*T+1.6483E-2)*T+7.944E-2
     A1 = ((-6.1670E-5*T+1.09987E-2)*T-0.603459)*T+54.6746
     KW = (((-5.155288E - 5*T + 1.360477E - 2)*T - 2.327105)*T
    X+148.4206) *T-1930.06
     KO = (B1*SR + A1)*S + KW
C EVALUATE PRESSURE POLYNOMIAL
C **************
   K EOUALS THE SECANT BULK MODULUS OF SEAWATER
C
   DK=K(S,T,P)-K(35,0,P)
C
  K35=K(35,0,P)
 **<del>*****************</del>
     DK = (B*P + A)*P + KO
     K35 = (5.03217E-5*P+3.359406)*P+21582.27
     GAM=P/K35
     PK = 1.0 - GAM
     SVA = SVA*PK + (V350P+SVA)*P*DK/(K35*(K35+DK))
  SCALE SPECIFIC VOL. ANOMALY TO NORMALLY REPORTED UNITS
     SVAN=SVA*1.0E+8
     V350P = V350P*PK
  C COMPUTE DENSITY ANOMALY WITH RESPECT TO 1000.0 KG/M**3
  1) DR359. DENSITY ANOMALY AT 35 (PSS-78), O DEG. C AND O DECIBARS
  2) DR35P: DENSITY ANOMALY 35 (PSS-78), O DEG. C , PRES. VARIATION
  3) DVAN : DENSITY ANOMALY VARIATIONS INVOLVING SPECFIC VOL. ANOMALY
    *<del>***</del>***<del>*********</del>
C CHECK VALUE: SIGMA = 59.82037 KG/M**3 FOR S = 40 (PSS-78).
C T = 40 DEG C, PO = 10000 DECIBARS.
DR35P=GAM/V350P
     DVAN=SVA/(V350P*(V350P+SVA))
     SI GMA=DR350+DR35P-DVAN
     RETURN
    END
```

SPECIFIC VOLUME ANOMALY & [1.0E-8 M**3/KG]

PRESSURE DEC IBARS 0 1000 2000 3000 4000 5000 6000	0 2749.54 2692.64 2638.40 2586.70 2537.45 2490.57 2445.96	TEMPERATURE 10 2763.60 2736.49 2710.21 2684.72 2659.94 2635.84 2612.37	°C IPTS-68 20 2913.49 2904.38 2895.15 2885.75 2876.12 2866.23 2856.04	30 3170.58 3171.35 3171.60 3171.24 3170.22 3168.49 3166.00	3517.86 3522.43 3526.47 3529.86 3532.52 3534.39 3535.38
7000 8000 9000 10000	2403.53 2363.22 2324.94 2288.61	2589.48 2567.14 2545.31 2523.95	2845.51 2834.63 2823.37 2811.70	3162.73 3158.63 3153.68 3147.85	3535.46 3534.57 3532.67 3529.74
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	383.22 375.74 368.58 361.74 355.20 348.95 342.99 337.31 331.89 326.72 321.80	480.62 495.18 508.77 521.39 533.07 543.83 553.69 562.66 570.77 578.03 584.47	681.41 709.37 735.63 760.21 783.16 804.51 824.28 842.51 859.23 874.49 888.30	967.03 1002.13 1035.19 1066.25 1095.35 1122.54 1147.84 1171.31 1192.97 1212.86 1231.03	1326.09 1363.40 1398.64 1431.85 1463.06 1492.31 1519.66 1545.13 1568.77 1590.62 1610.72
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	109.29 130.28 150.03 168.57 185.92 202.12 217.20 231.18 244.08 255.95 266.80	317.33 351.06 382.85 412.76 440.82 467.08 491.58 514.37 535.48 554.95 572.83	607.14 647.58 685.76 721.75 755.59 787.33 817.03 844.73 870.48 894.34 916.34	968.21 1010.59 1050.67 1088.52 1124.19 1157.74 1189.23 1218.70 1246.22 1271.83 1295.58
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	-380.79 -373.50 -366.52 -359.84 -353.46 -347.35 -341.52 -335.96 -330.64 -325.58 -320.74	-260.05 -232.77 -206.99 -182.66 -159.74 -138.20 -118.00 -99.11 -81.48 -65.09 -49.90	-45.03 -5.65 31.58 66.70 99.79 130.88 160.04 187.30 212.73 236.37 258.26	248.83 294.51 337.73 378.55 417.05 453.28 487.30 519.17 548.96 576.71 602.49	611.92 659.26 704.09 746.50 786.55 824.32 859.88 893.29 924.63 953.94 981.30

DENSITY ANOMALY o [KG/M**3]

PRESSURE			JRE °C IPTS			LINITY: 0
DEC IBARS	0	10	20	30	40	
0 1000	-0.1574 4.8727	-0.2979 4.4302	-1.7937 2.7392	-4.3489 0.0620	-7.7796 -3.4369	
2000	9.7895	9.0578	7.1782	4.3817	0.8145	
3000	14.5955	13.5875	11.5264	8.6137	4.9785	
4000	19.2931	18.0221 22.3641	15.7866 19.9618	12.7611 16.8269	9.0585 13.0578	
5000 6000	23.8849 28.3731	26.6162	24.0545	20.8142	16.9795	
7000	32.7602	30.7807	28.0675	24.7257	20.8267	
8000 9000	37.0485 41.2400	34.8600 38.8563	32.0032 35.8640	28.5641 32.3319	24.6021 28.3086	
10000	45.3371	42.7718	39.6522	36.0315	31.9487	
						INITY: 30
0 1000	24.0716 28.8258	23.0511 27.5630	20.9539 25.3064	17.9854 22.2381	14.2781 18.4767	
2000	33.4772	31.9820	29.5717	26.4061	22.5912	
3000	38.0283	36.3108	33.7524	30.4923	26.6245	
4000 5000	42.4816 46.8396	40.5521 44.7083	37.8513 41.8710	34.4994 38.4302	30.5792 34.4580	
6000	51.1046	48.7820	45.8141	42.2871	38.2634	
7000	55.2790	52.7754	49.6829	46.0725	41.9978	
8000 9000	59.3650 63.3647	56.6909 60.5305	53.4797 57.2067	49.7888 53.4382	45.6635 49.2627	
10000	67.2802	64.2965	60.8660	57.0228	52.7975	
	20 10.62	06 0504	04 75 20	01 7006		INITY: 35
0 1000	28.1063 32.8184	26.9524 31.4305	24.7630 29.0871	21.7286 25.9565	17.9731 22.1496	
2000	37.4290	35.8168	33.3248	30.1005	26.2429	
3000 4000 ·	41.9407	40.1139 44.3245	37.4788	34.1636 38.1484	30.2558	
5000	46.3561 50.6777	48.4511	41.5519 45.5467	42.0575	34.1909 38.0507	
60.00	54.9078	52.4963	49.4656	45.8933	41.8377	
7000	59.0487	56.4622	53.3110	49.6584	45.5541	
8000 9000	63.1027 67.0719	60.3513 64.1655	57.0851 60.7902	53.3548 56.9849	49.2023 52.7842	
10000	70.9584	67.9071	64.4283	60.5506	56.3020	
0	32.1471	30.8624	28.5825	25.4829	<u>SAL</u> 21.6788	INITY: 40
1000	36.8179	35.3074	32.8787	29.6863	25.8336	
2000	41.3887	39.6615	37.0892	33.8068	29.9061	
3000 4000	45.8620 50.2404	43.9275 48.1080	41.2170 45.2647	37.8471 11.8099	33.8990 37.8148	
5000	54.5263	52.2055	49.2348	45.6976	41.6560	
6000	58.7221	56.2226	53.1299	49.5128	45.4248	
7000 8000	62.8302 66.8528	60.1615 64.0244	56.9521	53.2577 56.9345	49.1236	
9000	70.7920	67.8135	60.7039 64.3873	60.5454	52.7544 56.3194	
10000	74.6498	71.5310	68.0044	64.0924	59.8204	

SPECIFIC VOLUME V [1.0E-3 M**3/KG]

PRESSURE			TS-68		SALINITY:	0
DEC IBARS C	10	20	30	40		
0 1.0001 1000 0.9951		1.0017970 0.9972682	1.0043678	1.0078406		
1000 0.9951 2000 0.9903		0.9972682	0.9999380 0.9956374	1.0034488 0.9991861		
3000 0.9856	0.9865947	0.9886050	0.9914599	0.9950461		
4000 0.9810 5000 0.976ა		0.9844587 0.9804289	0.9873998 0.9834515	0.9910228 0.9871105		
6000 0.9724		0.9765105	0.9796102	0.9833040		
7000 0.9682		0.9726987	0.9758709	0.9795982		
8000 0.9642 9000 0.9603		0.9689891 0.9653777	0.9722292 0.9686807	0.9759886 0.9724707		
10000 0.9566		0.9618601	0.9652216	0.9690405		
0 0.9764	943 0.9774683	0.9794762	0.9823323	0.9859229	-SALINITY:	30
1000 0.9719	818 0.9731762	0.9753182	0.9782457	0.9818584		
2000 0.9676 3000 0.9633	· · · · · · · · · · · · · · · · · · ·	0.9712777 0.9673497	0.9742733	0.9779078 0.9740660		
3000 0.9633 4000 0.9592		0.9635292	0.9704099 0.9666511	0.9740660		
5000 0.9552	562 0.9572051	0.9598116	0.9629921	0.9666898		
6000 0.9513 7000 0.9476		0.9561929 0.9526687	0.9594285 0.9559567	0.9631467 0.9596949		
8000 0.9439	617 0.9463505	0.9492353	0.9525725	0.9563305		
9000 0.9404 10000 0.9369		0.9458889 0.9426261	0.9492726 0.9460534	0.9530502 0.9498503		
10000 0.9369	010 0.9393676	0.9420201	0.9400534	0.9490303	SALINITY:	35
0 0.9726		0.9758353	0.9787335	0.9823442		
1000 0.9682 2000 0.9639		0.9717350 0.9677499	0.9747003 0.9707791	0.9783304		
3000 0.9597	476 0.9614332	0.9638751	0.9669650	0.9706328		
4000 0.9556 5000 0.95170		0.9601058 0.9564374	0.9632535 0.9596400	0.9669394 0.9633441		
6000 0.9479		0.9528660	0.9561205	0.9598424		
7000 0.9442		0.9493873	0.9526908	0.9564306		
8000 0.94064 9000 0.93714		0.9459977 0.9426935	0.9493477 0.9460874	0.9531051 0.9498623		
10000 0.9337		0.9394714	0.9429065	0.9466990		
0 0.9688	541 0.9700615	0.9722117	0.9751503	0.9787812	SALINITY:	<u>40</u>
1000 0.96448	395 0.9658967	0.9681680	0.9711696	0.9748170		
2000 0.96025 3000 0.95614		0.9642372	0.9672987	0.9709623		
4000 0.9521		0.9604145 0.9566954	0.9635331 0.9598681	0.9672126 0.9635630		
5000 0.94829	931 0.9503846	0.9530755	0.9562994	0.9600098		
6000 0.94453 7000 0.94088		0.9495505 0.9461166	0.9528230 0.9494353	0.9565489 0.9531765		
8000 0.9373	364 0.9398280	0.9427702	0.9461325	0.9498892		
9000 0.93388 10000 0.9305		0.9395076 0.9363257	0.9429111 0.9397680	0.9466834 0.9435561		
10000 017000.	000 010006771	0.5000657	0.5057000	0.07400001		

4. Pressure to Depth Conversion

Saunders and Fofonoff (1976) developed an accurate formula for pressure to depth conversion using the hydrostatic equation and the Knudsen-Ekman equation of state. The formula included variation of gravity with latitude and depth. Depths estimated using the Saunders-Fofonoff formula deviate by only 0.08 m at 5000 decibars and by 0.44 m at 10000 decibars from estimates based on EOS80. These departures are considerably smaller than errors in pressure measurements.

However, for simplicity and consistency, a new formula (in SI units) based on EOS80 has been developed that is accurate to 0.1 m over the pressure range 0 - 10000 decibars. It should be noted that Saunders (1981) has developed a simpler but less precise quadratic depth formula based on EOS80.

Following Saunders and Fofonoff, the hydrostatic equation is integrated in the form

$$\int_{p}^{z} g dz = [g_{0}(\phi) + \frac{1}{2} \gamma z] z = \int_{0}^{p} V dp = \int_{0}^{p} V(35,0,p) dp + \Delta D \qquad (20)$$

where $g_{\Omega}(\phi)$ is gravity at the ocean surface, a function of latitude and γ is is the mean vertical gradient of gravity, V is specific volume and ΔD geopotential anomaly determined by

$$\Delta D = \int_{0}^{p} \delta dp \qquad (21)$$

where

$$\delta = V(S,t,p) - V(35,0,p)$$

is specific volume anomaly.

EOS80 has the form

$$V(35,0,p) = V(35,0,0)(1 - \frac{p}{K + Ap + Bp^2})$$
 (22)

which can be integrated exactly to yield

$$\int_{0}^{p} V(35,0,p) dp = V(35,0,0) \left[p - \frac{1}{2B} [\log_{e} (1 + Ap/K + Bp^{2}/K) + A/R \log_{e} (\frac{(2BP + A - R)/(A-R)}{(2BP + A + R)/(A+R)}] \right]$$
(23)

where $R^2 = A^2 - 4BK$ and

$$K = + 21582.27$$
 $A = + 3.35941$
 $B = + 5.032$ E-5
 $V(35,0,0) = 9.72662$ E-4

for S = 35, t = 0°C and pressure in decibars.

Because the exact formula is not convenient for routine applications, a least squares polynomial of fourth order in pressure was fitted to a table of values computed from the exact formula over the range 0-12000 decibars with a precision equivalent to 0.0002 m or better, in the form

$$\int_{0}^{p} V(35,0,p) dp \approx c_{1}^{2}p + c_{2}p^{2} + c_{3}p^{3} + c_{4}p^{4}$$
 (24)

where

$$C_1 = + 9.72659$$
 $C_2 = -2.2512 E-5$
 $C_3 = +2.279 E-10$
 $C_4 = -1.82 E-15$

Check value = 95224.4 for p = 10000 decibars.

The least squares formula eliminates the need for computing logarithms with negligible loss of precision. The complete formula has the form

$$z = \frac{c_1 p + c_2 p^2 + c_3 p^3 + c_4 p^4}{g(\phi) + \frac{1}{2} \gamma' p} + \frac{\Delta D}{9.8}$$

$$z' = + 2.184 E - 6 \qquad m/s^2/decibar$$
(25)

Gravity is the same as given in Saunder's and Fofonoff (1976) llowing Anon (1970) but with trigonometric substitutions for Sin(2ø).

$g(\phi) = 9.780318 (1.0 + 5.2788 E-3 sin^2 \phi + 2.36 E-5 sin^4 \phi)$

Check value: z=9712.653~m for p=10000 decibars, Latitude = 30° where depth z is given in meters, pressure p in decibars, g in ms⁻² and ΔD in J/kg. The correction for the actual density distribution is contained in the geopotential anomaly and is about 2 m or less. The replacement of depth by a linear pressure term in the depth correction to gravity yields an error of less than 0.1 m at 10000 decibars.

```
REAL FUNCTION DEPTH(P,LAT)
  ********
C DEPTH IN METERS FROM PRESSURE IN DECIBARS USING
C SAUNDERS AND FOFONOFF'S METHOD.
C DEEP-SEA RES., 1976,23,109-111.
C FORMULA REFITTED FOR 1980 EQUATION OF STATE
C UNITS:
C
       PRESSURE
                       Р
                                DECIBARS
C
       LATITUDE
                       LAT
                               DEGREES
       DEPTH
                       DEPTH
                               METERS
C CHECKYALUE: DEPTH = 9712.653 M FOR P=10000 DECIBARS, LATITUDE=30 DEG
     ABOVE FOR STANDARD OCEAN: T=0 DEG. CELSIUS; S=35 (PSS-78)
C***********
     REAL LAT
C
     X = SIN(LAT/57.29578)
     X = X \times X
C GR= GRAVITY VARIATION WITH LATITUDE: ANON (1970) BULLETIN GEODESIQUE
     GR = 9.780318*(1.0+(5.2788E-3+2.36E-5*X)*X) + 1.092E-6*P
     DEPTH = (((-1.82E-15*P+2.279E-10)*P-2.2512E-5)*P+9.72659)*P
     DEPTH=DEPTH/GR
     RETURN
     END
```

TABLE OF DEPTH (METERS)

LATITUDE (DEGREES)

PRESSURE DEC IBARS	<u>o</u>	<u>30</u>	<u>45</u>	<u>60</u>	<u>90</u>
500	496.65	496.00	495.34	494.69	494.03
1000	992.12	990.81	989.50	988.19	986.88
2000	1979.55	1976.94	1974.33	1971.72	1969.11
3000	2962.43	2958.52	2954.61	2950.71	2946.81
4000	3940.88	3935.68	3930.49	3925.30	3920.10
5000	4915.04	4908.56	4902.08	4895.60	4889.13
6000	5885.03	5877.•27	5869.51	5861.76	5854.01
7000	6850.95	6841.92	6832.89	6823.86	6814.84
8000	7812.93	7802.63	7792.33	7782.04	7771.76
9000	8771.07	8759.51	8747.95	8736.40	8724.85
10000	9725.47	9712.65	9699.84	9687.03	9674.23

5. Freezing Point Temperature of Seawater

A formula for computing freezing point temperatures of seawater was proposed by Millero (Millero and Leung, 1976) based on measurements by Doherty and Kester (1974) and adopted by the Joint Panel on Oceanographic Tables and Standards (Unesco Report No. 28, 1978, Annex 6).

The freezing point temperature $\mathbf{t}_{\mathbf{f}}$ is given as a function of salinity S and pressure p by

$$t_{f} = a_{0}S + a_{1}S^{3/2} + a_{2}S^{2} + bp$$
 where
$$a_{0} = -0.0575$$

$$a_{1} = +1.710523 E-3$$

$$a_{2} = -2.154996 E-4$$

$$b = -7.53 E-4$$

Check Value: $t_f=-2.588567\,^\circ\text{C}$ for S=40, p=500 decibars. The formula is valid in the range 4-40 practical salinity at atmospheric pressure. Measurements at elevated pressures showed no significant dependence of the pressure coefficient on salinity in the range 27 to 35 (Fujino, Lewis and Perkin, 1974). The estimated error to pressure of 500 decibars is $0.003\,^\circ\text{C}$ (Unesco Report No. 28, 1978, Annex 6).

```
REAL FUNCTION TF(S,P)
C****************
C
   FUNCTION TO COMPUTE THE FREEZING POINT OF SEAWATER
C
C
   REFERENCE: UNESCO TECH. PAPERS IN THE MARINE SCIENCE NO. 28. 1978
C
   EIGHTH REPORT JPOTS
   ANNEX 6 FREEZING POINT OF SEAWATER F.J. MILLERO PP.29-35.
000000
  UNITS:
                   Ρ
        PRESSURE
                            DECIBARS
                   S
        SALINITY
                            PSS-78
        TEMPERATURE
                   TF
                            DEGREES CELSIUS
        FREEZING PT.
TF=(-.0575+1.710523E-3*SORT(ABS(S))-2.154996E-4*S)*S-7.53E-4*P
    RETURN
    END
```

FREEZING POINT TEMPERATURE C

SALINITY PSS-78

PRESSURE DEC IBARS	5	10	15	20	25	30	35	40
0	-0.274	-0.542	-0.812	-1.083	-1.358	-1.638	-1.922	-2.212
100	-0.349	-0.618	-0.887	-1.159	-1.434	-1.713	-1.998	-2.287
200	-0.424	-0.693	-0.962	-1.234	-1.509	-1.788	-2.073	-2.363
300	-0.500	-0.768	-1.038	-1.309	-1.584	-1.864	-2.148	-2.438
400	-0.575	-0.844	-1.113	-1.384	-1.660	-1.939	-2.224	-2.513
500	-0.650	-0.919	-1.188	-1.460	-1.735	-2.014	-2.299	-2.589

6. Specific Heat of Seawater

Specific heat of seawater C_p (J/(kg°C)), defined to be the heat in Joules required to raise the temperature of one kilogram of seawater one degree Celsius at constant pressure, is a function of salinity S, temperature t and pressure p. For seawater of oceanic salinities, the specific heat increases with temperature and decreases with salinity and pressure.

Cox and Smith (1959) measured C_p at atmospheric pressure for samples of Red Sea water diluted with distilled water over the salinity range $10\text{--}40^\circ/\circ\circ$ (Knudsen scale) and temperature range $0\text{--}30^\circ\text{C}$ (IPTS-48). More recently, Millero, Perron and Desnoyers (1973) measured C_p for standard seawater, diluted with pure water or concentrated by evaporation, over the chlorinity range $0\text{--}22^\circ/\circ\circ$ and temperature range $5\text{--}35^\circ\text{C}$ (IPTS-68). The agreement between these two sets of measurements and those of Bromley et al. (1967) was within $\pm 2 \text{ J/(kg}^\circ\text{C})$ except at low temperatures where Cox's values are lower by as much as 6 $\text{J/(kg}^\circ\text{C})}$. Salinities converted from chlorinity are consistent with the PSS-78 salinities.

For computation of C_p , the empirical formula given by Millero <u>et al.</u> (1973) has been selected. The choice is guided by the better agreement between Millero and Bromley's results at low temperature and by their use of Standard Seawater for the measurements.

Specific heat values differ slightly on the IPTS-48 and IPTS-68 temperature scales because 1°C intervals on the two scales are different, i.e.,

$$\frac{dt_{48}}{dt_{68}} \approx 1.00044 \text{ at 0°C}$$

$$C_p(S, t_{68}) = C_p(S, t_{48}) \cdot \frac{dt_{48}}{dt_{68}} = C_p(S, t_{48}) \cdot 1.00044$$

so that for example

$$C_p(0,t_{48}) = 4217.4 \text{ J/(kg°C)}$$

$$C_p(0,t_{68}) = 4219.3 \text{ J/(kg°C)}$$

$$\Delta C_p = 1.9 \text{ J/(kg°C)}$$
 at $t_{48} = t_{68} = 0°C$

The differences introduced by correcting for the temperature scale change are comparable to the accuracy of determination of C_p , and no correction is made for the possible change of temperature scale in the laboratory determinations. The effect on potential temperature calculations, for example, would not exceed 0.0004 °C and may be neglected.

The formula for C_p , converted to SI units and salinity, from Millero et al. (Unesco Report No. 38 1981)

$$C_p(S,t,0) = C_p(0,t,0) + AS + BS^{3/2}$$
 (26)

where

$$c_p(0,t,0) = c_0 + c_1t + c_2t^2 + c_3t^3 + c_4t^4$$

$$A = a_0 + a_1t + a_2t^2$$

$$B = b_0 + b_1t + b_2t^2$$

$$C_0 = +4217.4$$
 $a_0 = -7.643575$ $b_0 = +0.1770383$ $c_1 = -3.720283$ $a_1 = +0.1072763$ $b_1 = -4.07718$ E-3 $c_2 = +0.1412855$ $a_2 = -1.38385$ E-3 $c_3 = -2.654387$ E-3 $c_4 = +2.093236$ E-5

Range of Validity: S = 0 to 40 ; t = 0 to $35^{\circ}C$ Check: $C_p = 3980.051 \, \text{J/(kg°C)}$ for S = 40, $t = 40^{\circ}C$, Std. Dev.= 0.5 J/(kg°C)

Specific heat of seawater C_p: Pressure Dependence

Direct measurements of specific heat of seawater are not available. The pressure dependence is computed from the thermodynamic equation

$$\frac{\partial C_p}{\partial p} = -T \frac{\partial^2 V}{\partial t^2}$$

where V is specific volume (m^3/kg) , T absolute temperature (K) and p pressure (P_a) . For pressure in bars, the equation can be integrated to yield

$$C_p(S,t,p) = C_p(S,t,0) - 10^5 \int_0^p (t + 273.15) \frac{\partial^2 V}{\partial t^2} dp$$
 (27)

Because the pressure dependence is not economically evaluated from the exact integrals, a polynomial expression has been fitted to a table of values generated from the exact formulas. The least squares formula has been fitted in two steps. Polynomials in temperature and pressure were fitted to values of $\Delta_1^C_p = C_p(0,t,p) - C_p(0,t,0)$ to obtain the pressure dependence at S=0. The salinity and pressure dependence was obtained by fitting values of $\Delta_2^C_p = C_p(S,t,p) - C_p(S,t,0) - [C_p(0,t,p) - C(0,t,0)]$. The two specific heat pressure polynomials $\Delta_1^C_p$ and $\Delta_2^C_p$ are valid over the range of salinity, temperature, and pressure of EOS80. These least squares polynomials combined with the Millers et al. (1981) polynomials for $C_p(S,t,0)$ provide specific heat estimates over the full range of salinity, temperature and pressure.

Specific heat of seawater C_{p}

$$C_p(S,t,p) = C_p(S,t,0) + \Delta_1 C_p(0,t,p) + \Delta_2 C_p(S,t,p)$$

Polynomials for S = 0

$$\Delta_{1}C_{p}(0,t,p) = (a_{0} + a_{1}t + a_{2}t^{2} + a_{3}t^{3} + a_{4}t^{4}) p$$

$$+ (b_{0} + b_{1}t + b_{2}t^{2} + b_{3}t^{3} + b_{4}t^{4}) p^{2}$$

$$+ (c_{0} + c_{1}t + c_{2}t^{2} + c_{3}t^{3}) p^{3}$$
(28)

$$a_0 = -4.9592$$
 E-1 $b_0 = +2.4931$ E-4 $a_1 = +1.45747$ E-2 $b_1 = -1.08645$ E-5 $a_2 = -3.13885$ E-4 $b_2 = +2.87533$ E-7 $a_3 = +2.0357$ E-6 $b_3 = -4.0027$ E-9 $a_4 = +1.7168$ E-8 $b_4 = +2.2956$ E-11

$$c_0 = -5.422$$
 E-8
 $c_1 = +2.6380$ E-9
 $c_2 = -6.5637$ E-11
 $c_3 = +6.136$ E-13

CHECK VALUES

$$C_p(S,T,0) = 3980.051 \text{ J/(kg°C)}$$
 $\Delta_1 C_p(0,T,P) = -177.985 \text{ J/(kg°C)}$
 $p = 10000 \text{ decibars, } t = 40°C S = 40$
Standard Deviation: $\Delta_1 C_p = 0.074 \text{ J/(kg°C)}$

Polynomials for S > 0

$$\Delta_{2}C_{p} (S,T,P) = [(d_{0} + d_{1}t + d_{2}t^{2} + d_{3}t^{3} + d_{4}t^{4}) S]$$

$$+ (e_{0} + e_{1}t + e_{2}t^{2}) S^{3/2}] p$$

$$+ [(f_{0} \cdot f_{1}t + f_{2}t^{2} + f_{3}t^{3}) S]$$

$$+ (g_{0}) S^{3/2}] p^{2}$$

$$+ [(h_{0} + h_{1}t + h_{2}t^{2}) S]$$

$$+ J_{1}t S^{3/2}] p^{3}$$

$$(29)$$

```
REAL FUNCTION CPSW(S,T,PO)
  ********
C UNITS:
C
        PRESSURE
                        PO
                                 DECIBARS
C
                        T
                                 DEG CELSIUS (IPTS-68)
        TEMPERATURE
C
                        S
                                 (PSS-78)
        SALINITY
        SPECIFIC HEAT
                       CPSW
C
                                 J/(KG DEG C)
C***************
C REF: MILLERO ET AL, 1973, JGR, 78, 4499-4507
        MILLERO ET AL, UNESCO REPORT NO. 38 1981 PP. 99-188.
C PRESSURE VARIATION FROM LEAST SQUARES POLYNOMIAL
C DEVELOPED BY FOFONOFF 1980.
C CHECK VALUE: CPSW = 3849.500 \text{ J/(KG DEG. C)} FOR S = 40 \text{ (PSS-}78),
C T = 40 DEG C, PO= 10000 DECIBARS
C********
    SCALE PRESSURE TO BARS
      P=P0/10.
C SORT SALINITY FOR FRACTIONAL TERMS
      SR = SORT(ABS(S))
C SPECIFIC HEAT CPO FOR P=0 (MILLERO ET AL, UNESCO REPORT NO. 38 1981)
      A = (-1.38385E - 3*T + 0.1072763)*T - 7.643575
      B = (5.148E-5*T-4.07718E-3)*T+0.1770383
      C = (((2.093236E-5*T-2.654387E-3)*T+0.1412855)*T
     Х
          -3.720283)*T+4217.4
      CPO = (B*SR + A)*S + C
C CP1 PRESSURE AND TEMPERATURE TERMS FOR S = 0
      A = (((1.7168E - 8*T + 2.0357E - 6)*T - 3.13885E - 4)*T + 1.45747E - 2)*T
         -0.49592
     χ
      B = (((2.2956E-11*T-4.0027E-9)*T+2.87533E-7)*T-1.08645E-5)*T
         +2.4931E-4
      C = ((6.136E-13*T-6.5637E-11)*T+2.6380E-9)*T-5.422E-8
      CP1 = ((C*P+B)*P+A)*P
C CP2 PRESSURE AND TEMPERATURE TERMS FOR S > 0
      A = (((-2.9179E-10*T+2.5941E-8)*T+9.802E-7)*T-1.28315E-4)*T
     X +4.9247E-3
      B = (3.122E - 8*T - 1.517E - 6)*T - 1.2331E - 4
      A = (A+B*SR)*S
      B = ((1.8448E-11*T-2.3905E-9)*T+1.17054E-7)*T-2.9558E-6
      B = (B+9.971E-8*SR)*S
      C = (3.513E-13*T-1.7682E-11)*T+5.540E-10
      C = (C-1.4300E-12*T*SR)*S
      CP2 = ((C*P+B)*P+A)*P
C SPECIFIC HEAT RETURN
      CPSW = CPO + CP1 + CP2
     RETURN
     END
```

חחרכנוחר	SPE	CIFIC HEAT ST	EAWATER C _p [C IPTS-ES	J/(KG°C)]	SALINITY: 25
PRESSURE DEC IBARS	0	10	20	30	40
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	4048.4 4011.5 3978.0 3947.8 3920.6 3896.3 3874.4 3854.9 3837.4 3821.8 3807.7	4041.8 4012.9 3986.3 3962.0 3939.8 3919.6 3901.1 3884.3 3869.0 3855.1 3842.3	4044.8 4020.2 3997.4 3976.2 3956.7 3938.6 3921.9 3906.5 3892.2 3879.0 3866.7	4049.1 4026.9 4006.2 3986.9 3968.9 3952.0 3936.3 3921.7 3907.9 3895.1 3883.0	4051.2 4031.8 4013.6 3996.7 3980.9 3966.1 3952.4 3939.5 3927.6 3916.4 3905.9
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	4017.2 3982.1 3950.3 3921.6 3895.7 3872.5 3851.7 3833.1 3816.5 3801.6 3788.2	4013.8 3986.2 3960.8 3937.6 3916.3 3897.0 3879.3 3863.3 3848.7 3835.4	4019.1 3995.4 3973.3 3953.0 3934.1 3916.7 3900.6 3885.7 3872.0 3859.2 3847.4	4024.7 4003.2 3983.1 3964.3 3946.9 3930.6 3915.3 3901.1 3887.8 3875.4 3863.6	4027.2 4008.4 3990.8 3974.4 3959.1 3944.9 3931.7 3919.3 3907.9 3897.1 3887.1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	3986.5 3953.3 3923.1 3895.9 3871.3 3849.3 3829.5 3811.8 3796.0 3781.8 3769.1	3986.3 3959.9 3935.7 3913.5 3893.2 3874.7 3857.9 3842.6 3828.7 3816.0 3804.4	3993.9 3970.9 3949.6 3930.0 3911.8 3895.0 3879.5 3865.2 3851.9 3839.7 3828.3	4000.7 3979.7 3960.2 3942.0 3925.1 3909.2 3894.5 3880.7 3867.8 3855.7 3844.3	4003.5 3985.2 3968.2 3952.3 3937.6 3923.9 3911.1 3899.3 3888.2 3877.9 3868.3
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	3956.4 3925.0 3896.4 3870.6 3847.4 3826.4 3807.7 3790.9 3776.0 3762.6 3750.6	3959.3 3934.1 3910.9 3889.8 3870.4 3852.8 3836.7 3822.2 3808.9 3796.9 3785.9	3968.9 3946.8 3926.2 3907.2 3889.7 3873.5 3858.6 3844.8 3832.0 3820.2 3809.3	3977.0 3956.6 3937.6 3919.9 3903.4 3888.1 3873.8 3860.4 3847.9 3836.1 3825.1	3980.1 3962.3 3945.8 3930.5 3916.2 3903.0 3890.7 3879.3 3868.7 3858.8 3849.5

7. Adiabatic Lapse Rate

The adiabatic lapse rate $\Gamma(S,t,p)$ (°C/decibar) is defined as the change of temperature per unit pressure for an adiabatic change of pressure of an element of seawater. It is assumed that no heat or salt is exchanged with the surroundings so that the pressure change is both adiabatic and isentropic. From thermodynamic considerations, the adiabatic lapse rate Γ , a function of pressure, temperature and salinity can be expressed as $\Gamma(S,t,p) = \frac{T_0 V/\partial t}{C_p}$

where T = t + 273.15 is absolute temperature (Kelvin), $aV/at (m^3/(kg °C))$ is thermal expansion and C_n (J/(kg $^{\circ}$ C)) specific heat of seawater at constant pressure.

(30)

The lapse rate Γ is positive except at low salinities, temperatures and pressures where aV/at is negative. Typical values in the oceanic range are $1-2 \times 10^{-4}$ °C/decibar.

Adiabatic lapse rate can be calculated from the equation of state and specific heat (Bryden, 1973) or from direct measurements (Caldwell and Eide, 1980).

Caldwell and Eide (1980) measured the temperature change resulting from an adiabatic pressure change directly and constructed formulas to estimate lapse rate and potential temperature. Agreement with estimates based on the thermodynamic equations using EOS80 and Millero et al. (1973) specific heats is within 5 x 10^{-3} °C at 35 over the pressure range 0-10000 decibars except at low temperatures (< 2°C) and high pressures (> 4000 decibars) where differences exceed 10 x 10^{-3} °C. As these differences are within the stated error of their measurements and within the estimated accuracy of the thermodynamic values (Bryden, 1973) the relative accuracy of the two estimates is indeterminate.

Bryden's (1973) formulas are selected because of their closer agreement with values obtained from EOS80. These formulas yield values for potential temperature within 6×10^{-3} °C over the entire pressure and temperature range at a salinity of 35.

CHECK VALUE:

 Γ = 3.255976 E-4 °C /decibar For S = 40 t = 40 °C p = 10000 decibars Standard Deviation: 3.38 x 10⁻⁷ °C/decibar

Range of Validity: The ranges with differences less than one percent from direct calculations using EOS80 are outlined in the adiabatic lapse rate table.

```
SEPT 25 1982
      REAL FUNCTION ATG(S,T,P)
C ******
C ADIABATIC TEMPERATURE GRADIENT DEG C PER DECIBAR
C REF: BRYDEN, H., 1973, DEEP-SEA RES., 20, 401-408
C UNITS:
                       Р
C
       PRESSURE
                                DECIBARS
C
       TEMPERATURE
                       Т
                                DEG CELSIUS (IPTS-68)
C
       SALINITY
                       S
                                (PSS-78)
C
                       ATG
                               DEG. C/DECIBAR
       ADIABATIC
 CHECKVALUE: ATG=3.255976E-4 C/DBAR FOR S=40 (PSS-78),
C T=40 DEG C,P=10000 DECIBARS
C **********
     DS = S - 35.0
     ATG = (((-2.1687E-16*T+1.8676E-14)*T-4.6206E-13)*P
    X+((2.7759E-12*T-1.1351E-10)*DS+((-5.4481E-14*T
    X+8.733E-12)*T-6.7795E-10)*T+1.8741E-8))*P
    X+(-4.2393E-8*T+1.8932E-6)*DS
    X+((6.6228E-10*T-6.836E-8)*T+8.5258E-6)*T+3.5803E-5
     RETURN
     END
```

ADIABATIC LAPSE RATE r [°C/1000 Decibars]

PRESSURE DECIBARS	0	TEMPERATURE	°C IPTS-68	30	SALINITY: _25
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	0.0169 0.0363 0.0548 0.0723 0.0890 0.1047 0.1195 0.1334 0.1463 0.1583 0.1694	0.1002 0.1135 0.1263 0.1384 0.1500 0.1610 0.1713 0.1811 0.1903 0.1989 0.2069	0.1738 0.1325 0.1908 0.1987 0.2063 0.2135 0.2204 0.2270 0.2332 0.2390 0.2445	0.2417 0.2467 0.2515 0.2561 0.2605 0.2648 0.2688 0.2726 0.2763 0.2797 0.2830	0.3079 0.3099 0.3119 0.3137 0.3154 0.3170 0.3184 0.3198 0.3210 0.3221 0.3230
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	0.0263 0.0452 0.0631 0.0801 0.0962 0.1113 0.1256 0.1389 0.1512 0.1627 0.1732	0.1075 0.1205 0.1328 0.1445 0.1556 0.1662 0.1761 0.1855 0.1942 0.2024 0.2099	0.1790 0.1874 0.1954 0.2031 0.2104 0.2173 0.2239 0.2302 0.2361 0.2416 0.2468	0.2448 0.2497 0.2543 0.2588 0.2630 0.2671 0.2710 0.2747 0.2782 0.2815 0.2846	0.3089 0.3109 0.3129 0.3147 0.3164 0.3179 0.3194 0.3207 0.3219 0.3229 0.3239
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	0.0358 0.0541 0.0714 0.0879 0.1034 0.1180 0.1316 0.1443 0.1562 0.1670 0.1770	0.1149 0.1274 0.1393 0.1506 0.1613 0.1714 0.1809 0.1898 0.1981 0.2059 0.2130	0.1843 0.1923 0.2001 0.2074 0.2144 0.2211 0.2274 0.2334 0.2390 0.2442 0.2491	0.2479 0.2526 0.2571 0.2614 0.2655 0.2695 0.2732 0.2767 0.2801 0.2832 0.2862	0.3098 0.3119 0.3138 0.3156 0.3173 0.3188 0.3203 0.3216 0.3227 0.3238 0.3247 SALINITY: 40
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	0.0453 0.0630 0.0798 0.0956 0.1106 0.1246 0.1377 0.1498 0.1611 0.1714	0.1222 0.1343 0.1457 0.1566 0.1669 0.1766 0.1857 0.1941 0.2020 0.2093 0.2161	0.1895 0.1973 0.2047 0.2118 0.2185 0.2249 0.2309 0.2366 0.2419 0.2468 0.2515	0.2510 0.2556 0.2599 0.2641 0.2681 0.2718 0.2754 0.2788 0.2820 0.2849 0.2877	0.3108 0.3129 0.3148 0.3166 0.3182 0.3198 0.3212 0.3225 0.3236 0.3247 0.3256

8. Potential Temperature

Potential temperature has been defined classically as the temperature an element of seawater would have if raised adiabatically with no change of salinity to atmospheric pressure. More generally, the potential temperature can be defined as the temperature resulting from an adiabatic displacement to a reference pressure P_r that may be greater or less than the initial pressure p. The potential temperature θ can be computed from the adiabatic lapse rate Γ ,

$$e(S,t,p,p_r) = t + \int_{p}^{p_r} \Gamma(S,t',p) dp'$$
 (32)

by integration along an adiabat, i.e., at'/ap' = Γ '. The potential temperature can be evaluated by using an empirical formula or by numerical integration of the defining equation. Only the numerical integration by the Runge-Kutta method is given as both it and a Newton-Raphson iterative technique of the Bryden potential temperature at atmospheric pressure require about the same number of calculations and the latter retains the fitting errors of the potential temperature formula.

The potential temperature $\theta(S,t,p,p_r)$ at reference pressure p_r can be computed with sufficient precision using a 4th order Runge-Kutta integration algorithm (Fofonoff, 1977). If S_0 , t_0 , p_0 are the <u>in situ</u> values, the potential temperature θ at p_r is estimated as follows:

$$\Delta \Theta_{1} = \Delta p \cdot \Gamma(S_{0}, t_{0}, p_{0})$$

$$\Theta_{1} = t_{0} + \frac{1}{2} \Delta \Theta_{1}$$

$$\Delta \Theta_{2} = \Delta p \cdot \Gamma(S_{0}, \Theta_{1}, p_{0} + \frac{1}{2} \Delta p)$$

$$\Theta_{2} = \Theta_{1} + (1 - 1/\sqrt{2})(\Delta \Theta_{2} - q_{1})$$

$$\Delta \Theta_{3} = \Delta p \cdot \Gamma(S_{0}, \Theta_{2}, p_{0} + \frac{1}{2} \Delta p)$$

$$\Theta_{3} = \Theta_{2} + (1 + 1/\sqrt{2})(\Delta \Theta_{3} - q_{2})$$

$$\Delta \Theta_{4} = \Delta p \cdot \Gamma(S_{0}, \Theta_{3}, p_{0} + \Delta p)$$

$$\Theta_{4} = \Theta_{3} + \frac{1}{6} (\Delta \Theta_{4} - 2q_{3})$$

$$q_1 = \Delta \theta_1$$

$$q_2 = (2 - \sqrt{2}) \Delta \theta_2 + (-2 + 3/\sqrt{2}) q_1$$

$$q_3 = (2 + \sqrt{2}) \Delta \theta_3 + (-2 - 3/\sqrt{2}) q_2$$

$$\Delta p = p_r - p_0$$

a nd

$$e(S_0t_0,p_0,p_r) = e_4$$

The integration error is less than 0.1 x 10^{-3} °C for $\Delta p = 10000$ decibars Check Value: $\theta = 36.89073$ °C for S = 40, t = 40 °C, p = 10000 decibars,

$$p_r = 0$$
 decibars

Range of Validity: The ranges with differences less than 0.005°C from direct calculations using EOS80 are outlined in the potential temperature table.

```
REAL FUNCTION THETA(S,TO,PO,PR)
 *************************************
C TO COMPUTE LOCAL POTENTIAL TEMPERATURE AT PR
C USING BRYDEN 1973 POLYNOMIAL FOR ADIABATIC LAPSE RATE
C AND RUNGE-KUTTA 4-TH ORDER INTEGRATION ALGORITHM.
C REF: BRYDEN,H.,1973,DEEP-SEA RES.,20,401-408
C FOFONOFF, N., 1977, DEEP-SEA RES., 24, 489-491
C UNITS:
C
        PRESSURE
                         PO
                                  DECIBARS
C
                        TO
        TEMPERATURE
                                  DEG CELSIUS (IPTS-68)
C
        SALINITY
                         S
                                  (PSS-78)
C
                         PR
        REFERENCE PRS
                                  DECIBARS
        POTENTIAL TMP.
                        THETA
                                  DEG CELSIUS
C CHECKYALUE: THETA= 36.89073 C,S=40 (PSS-78),T0=40 DEG C,
C PO=10000 DECIBARS, PR=0 DECIBARS
 ***********************************
       SET-UP INTERMEDIATE TEMPERATURE AND PRESSURE VARIABLES
      P=P0
      T=T0
      H = PR - P
      XK = H*ATG(S,T,P)
      T = T + 0.5*XK
      Q = XK
      P = P + 0.5*H
      XK = H*ATG(S,T,P)
      T = T + 0.29289322*(XK-0)
      Q = 0.58578644*XK + 0.121320344*Q
      XK = H*ATG(S,T,P)
     T = T + 1.707106781*(XK-Q)
      Q = 3.414213562*XK - 4.121320344*Q
      P = P + 0.5*H
      XK = H*ATG(S,T,P)
     THETA = T + (XK - 2.0*0)/6.0
     RETURN
     END
```

POTENTIAL TEMPERATURE θ °C (Ref. Pres. = 0.0)

PRESSURE DEC IBARS		TEMPERATURE 10	°C IPTS-68	30	40	SALINITY: 25
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	0.0000 -0.0265 -0.0715 -0.1339 -0.2125 -0.3061 -0.4139 -0.5349 -0.6679 -0.8122 -0.9667	10.0000 9.8935 9.7749 9.6448 9.5040 9.3531 9.1927 9.0234 8.8459 8.6607 8.4684	20.0000 19.8224 19.6377 19.4461 19.2480 19.0438 18.8338 18.6183 18.3978 18.1724 17.9426	30.0C70 29.7566 29.7566 29.5098 29.2599 29.0070 28.7512 28.4928 28.2319 27.9685 27.7030 27.4353	40.0000 39.6921 39.3842 39.0763 38.7684 38.4607 38.1531 37.8458 37.5387 37.2319 36.9254	
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	0.0000 -0.0357 -0.0892 -0.1595 -0.2454 -0.3458 -0.4598 -0.5864 -0.7246 -0.8734 -1.0320	10.0000 9.8864 9.7611 9.6248 9.4782 9.3219 9.1565 8.9827 8.8010 8.6120 8.4164	20.0000 19.8174 19.6278 19.4317 19.2293 19.0211 18.8074 18.5885 18.3648 18.1365 17.9040	30.0000 29.7535 29.5038 29.2511 28.9955 28.7372 28.4763 28.2130 27.9475 27.6798 27.4102	40.0000 39.6911 39.3821 39.0731 38.7641 38.4552 38.1465 37.8379 37.5296 37.2216 36.9139	
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	0.0000 -0.0448 -0.1069 -0.1851 -0.2783 -0.3856 -0.5058 -0.6380 -0.7813 -0.9348 -1.0974	10.0000 9.8793 9.7473 9.6048 9.4523 9.2906 9.1203 8.9419 8.7560 8.5633 8.3643	20.0000 19.8123 19.6179 19.4172 19.2106 18.9985 18.7810 18.5587 18.3317 18.1005 17.8654	30.0000 29.7505 29.4979 29.2423 28.9840 28.7231 28.4598 28.1942 27.9264 27.6567 27.3851	40.0000 39.6901 39.3800 39.0699 38.7598 38.4498 38.1399 37.8301 37.5205 37.2113 36.9023	
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	0.0000 -0.0540 -0.1246 -0.2107 -0.3113 -0.4253 -0.5518 -0.6897 -0.8381 -0.9962 -1.1629	10.0000 9.8721 9.7335 9.5847 9.4265 9.2594 9.0840 8.9011 8.7110 8.5145 8.3121	20.0000 19.8072 19.6080 19.4028 19.1919 18.9758 18.7546 18.5288 18.5288 18.2986 18.0645 17.8266	30.0000 29.7474 29.4919 29.2335 28.9725 28.7091 28.4433 28.1753 27.9053 27.6335	40.0000 39.6891 39.3780 39.0668 38.7556 38.4444 38.1332 37.8223 37.5115 37.2009 36.8907	

9. Sound Speed in Seawater

Sound speed has been measured for samples of standard seawater, diluted with pure water or concentrated by evaporation, by Chen and Millero (1977). The formula developed from these measurements is consistent with the new salinity scale and is in better agreement with values computed from EOS80 than the formulas given by Wilson (1960) (see the following Sound Speed Comparison Table) and Del Grosso and Mader (1972).

Speed of sound in seawater U (Chen and Millero, 1977)

$$A(t,p) = A_{00} + A_{01}t + A_{02}t^{2} + A_{03}t^{3} + A_{04}t^{4}$$

$$+ (A_{10} + A_{11}t + A_{12}t^{2} + A_{13}t^{3} + A_{14}t^{4}) p$$

$$+ (A_{20} + A_{21}t + A_{22}t^{2} + A_{23}t^{3}) p^{2}$$

$$+ (A_{30} + A_{31}t + A_{32}t^{2}) p^{3}$$

$$A_{00} = + 1.389 \qquad A_{10} = + 9.4742 \quad E-5$$

$$A_{01} = -1.262 \quad E-2 \qquad A_{11} = -1.2580 \quad E-5$$

$$A_{02} = + 7.164 \quad E-5 \qquad A_{12} = -6.4885 \quad E-8$$

$$A_{03} = + 2.006 \quad E-6 \qquad A_{13} = + 1.0507 \quad E-8$$

$$A_{04} = -3.21 \quad E-8 \qquad A_{14} = -2.0122 \quad E-10$$

$$A_{20} = -3.9064 \quad E-7 \qquad A_{30} = + 1.100 \quad E-10$$

$$A_{21} = + 9.1041 \quad E-9 \qquad A_{31} = + 6.649 \quad E-12$$

$$A_{22} = -1.6002 \quad E-10 \qquad A_{32} = -3.389 \quad E-13$$

$$A_{23} = + 7.988 \quad E-12$$

$$B(t,p) = B_{00} + B_{01}t + (B_{10} + B_{11}t) p \qquad (36)$$

$$B_{00} = -1.922 \quad E-2 \qquad B_{10} = + 7.3637 \quad E-5$$

$$B_{01} = -4.42 \quad E-5 \qquad B_{11} = + 1.7945 \quad E-7$$

$$D(t,p) = D_{00} + D_{10} p \qquad (37)$$

$$D_{00} = + 1.727 \quad E-3 \qquad D_{10} = -7.9836 \quad E-6$$

Range of validity: S = 0 to 40; t = 0 to $40^{\circ}C$; p = 0 to 10000 decibars

Standard Deviation: 0.19 m/s

U(S,t,0) - U(0,t,0): .03 m/s Millero and Kubinski (1975)

U(S,t,p) - U(0,t,p) - (U(S,t,0) - U(0,t,0)): 0.19 Chen and Millero (1976)

U(0,t,p) - U(0,t,0): .08 m/s Chen and Millero (1976)

Check Value: 1731.995 m/s for S = 40, t = 40°C, p = 10000 decibars

Sound Speed Comparison Table 1

		(a) Chen/	Miller	o (1977)	Formu	1a - U	(E0S80)	
<u>s:</u>	0	_5_	10	<u>15</u>	20	25	_30	35	40	Salinity
Δ:	.15	.24	.32	.39	.42	.42	.38	.30	.18	m/s
σ:	.20	.20	.23	.27	.30	.31	.31	.32	.40	m/s
	(b) Wilson (1960) Formula - U(E0S80)									
<u>s:</u>	0	_5_	10	15	_20	25	30	35	40	Salinity
Δ:	1.10	.85	.65	.51	.48	.49	.60	.82	1.13	m/s
σ:	1.15	1.04	.96	.89	.85	.80	.77	.75	.75	m/s

 $[\]Delta$ = mean difference

 $[\]sigma$ = standard deviation

¹The differences (formula indicated minus sound speed computed using EOS80) at each salinity in the Sound Speed Comparison Table above are computed from 242 values over the temperature range -2 to 40°C at 2°C intervals and pressure range 0 to 10000 decibars at 1000 decibar intervals.

```
REAL FUNCTION SVEL(S,T,PO)
*****************
C SOUND SPEED SEAWATER CHEN AND MILLERO 1977, JASA, 62, 1129-1135
C UNITS:
                         PO
        PRESSURE
C
                                  DEC IBARS
C
                         Т
                                  DEG CELSIUS (IPTS-68)
        TEMPERATURE
C
        SALINITY
                         S
                                  (PSS-78)
                         SVEL
        SOUND SPEED
                                  METERS/SECOND
C CHECKVALUE: SYEL=1731.995 M/S, S=40 (PSS-78), T=40 DEG C,P=10000 DBAR
 <del>**********</del>
      EQUIVALENCE (AO, BO, CO), (A1, B1, C1), (A2, C2), (A3, C3)
C
C
    SCALE PRESSURE TO BARS
      P=P0/10.
      SR = SQRT(ABS(S))
C S**2 TERM
      D = 1.727E-3 - 7.9836E-6*P
C S**3/2 TERM
      B1 = 7.3637E-5 + 1.7945E-7*T
      BO = -1.922E - 2 - 4.42E - 5 T
      B = BO + B1*P
C S**1 TERM
      A3 = (-3.389E-13*T+6.649E-12)*T+1.100E-10
      A2 = ((7.988E-12*T-1.6002E-10)*T+9.1041E-9)*T-3.9064E-7
      A1 = (((-2.0122E-10*T+1.0507E-8)*T-6.4885E-8)*T-1.2580E-5)*T
     X
           +9.4742E-5
      AO = (((-3.21E-8*T+2.006E-6)*T+7.164E-5)*T-1.262E-2)*T
     X
           +1.389
      A = ((A3*P+A2)*P+A1)*P+A0
C S**O TERM
      C3 = (-2.3643E-1.2*T+3.8504E-10)*T-9.7729E-9
      C2 = (((1.0405E-12*T-2.5335E-10)*T+2.5974E-8)*T-1.7107E-6)*T
           +3.1260E-5
      C1 = (((-6.1185E-10*T+1.3621E-7)*T-8.1788E-6)*T+6.8982E-4)*T
     X
           +0.153563
      CO = ((((3.1464E-9*T-1.47800E-6)*T+3.3420E-4)*T-5.80852E-2)*T
           +5.03711)*T+1402.388
      C = ((C3*P+C2)*P+C1)*P+C0
C SOUND SPEED RETURN
      SVEL = C + (A+B*SR+D*S)*S
      RETURN
      END
```

SOUND SPEED IN SEAWATER U [m/s]

PRESSURE DECIBARS	0	TEMPERATURE	°C IPTS-68	30	40 SALINITY: 25
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	1435.8 1452.0 1468.6 1485.6 1502.8 1520.4 1538.1 1556.0 1574.1 1592.2 1610.4	1494.1 1510.7 1527.5 1544.3 1561.3 1578.4 1595.6 1612.8 1630.1	1527.0 1543.6 1560.3 1576.9 1593.6 1610.3 1626.9 1643.5 1660.2 1676.8	1552.1 1569.0 1585.7 1602.4 1619.0 1635.5 1651.9 1668.2 1684.5	1587.6 1604.5 1621.3 1638.0 1654.6 1671.0 1687.2 1703.3
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000	1475.4 1492.4 1509.7 1527.2 1544.9 1562.7 1580.7 1598.8	1500.2 1516.8 1533.6 1550.4 1567.4 1584.4 1601.5 1618.7	1549.2 1565.8 1582.4 1599.1 1615.7 1632.3 1648.9 1665.5 1682.1	1557.3 1574.1 1590.8 1607.4 1624.0 1640.4 1656.8 1673.1 1689.3 1705.4	1558.3
0 1000 2000 3000 4000 5000 6000 7000 8000 9000		1506.3 1523.0	1521.5 1538.1 1554.7 1571.3 1587.9 1604.5 1621.0 1637.6	1545.6 1562.4 1579.2 1595.9 1612.5 1629.0 1645.4	1563.2 1580.2 1597.1 1613.9 1630.7 1647.3 1663.8 1680.1 1696.2 1712.2 1727.8
0 1000 2000 3000 4000 5000 6000 7000 8000 9000	1455.8 1472.3 1489.1 1506.1 1523.3 1540.7 1558.2 1575.9 1593.7 1611.5 1629.3	1495.9 1512.5 1529.1 1545.8 1562.5 1579.4 1596.3 1613.3 1630.3 1647.4 1664.6	1527.1 1543.7 1560.3 1576.8 1593.3 1609.8 1626.3 1642.8 1659.2 1675.7	1550.8 1567.6 1584.3 1600.9 1617.5 1633.9 1650.2 1666.5 1682.6 1698.7 1714.6	1568.1 1585.0 1601.8 1618.6 1635.3 1651.9 1668.3 1684.6 1700.6 1716.4 1732.0

References

- Anon (1970) Geodetic Reference System 1967. Bulletin Geodesique, Special Publication of the Association Internationale de Geodesie, Paris.
- Barber, C. R., 1969. The international practical temperature scale of 1968. Metrologia, 5, 35-41.
- Bromley, L. A.; DeSaussure, V. A.; Clipp, J. C.; J. A. Wright 1967. Heat capacities of seawater solutions at salinities of 1 to 12°/ and temperatures of 2° to 80°C. J. Chem. Eng. Data, 12, 202-206.°
- Bryden, H. L. 1973. New polynomials for thermal expansion, adiabacic temperature gradient and potential temperature of sea water. Deep-Sea Res., 20, 401-408.
- Caldwell, D. R.; Eide, S. A. 1980. Adiabatic temperature gradient and potential temperature correction in pure and saline water: an experimental determination. <u>Deep-Sea Res.</u>, 27A, 71-78.
- Chen, C.-T.; Millero, F. J. 1976. Re-evaluation of Wilson's soundspeed measurements in pure water. <u>J. Acoust. Soc. of Amer.</u>, 60 (6), 1270-1273.
- Chen, C.-T.; Millero, F. J. 1977. Speed of sound in seawater at high pressures. J. Acoust. Soc. of Amer., 62 (5), 1129-1135.
- Cox, R. A.; Smith, N. D. 1959. The specific heat of sea water. <u>Proc.</u> Roy. Soc. Lond., <u>252</u> (1286), 51-62.
- Cox, R. A.; McCartney, M. J.; Culkin, F. 1970. The specific gravity/salinity/temperature relationship in natural sea water. Deep-Sea Res., 17, 679-689.
- Craig, H. 1961. Standard for reporting concentrations of Deuterium and Oxygen-18 in natural waters. <u>Science</u>, <u>133</u>, 1833-1934.
- Del Grosso, V. A.; Mader, C. W. 1972. Speed of sound in pure water. J. Accust. Soc. of Amer., 52, 1442-1446.
- Doherty, B. T.; Kester, D. R. 1974. Freezing point of seawater. <u>J. Mar. Res.</u>, 32, 285-300.
- Ekman, V. W. 1908. Die Zusammendrueckbarkeit des Meerwassers nebst einigen Werten fuer Wasser und Quecksilber. <u>Publ. Cir. Cons. Explor. Mer.</u>, 43, 1-47.
- Fofonoff, N. P. 1977. Computation of potential temperature of seawater for an arbitrary reference pressure. <u>Deep-Sea Res.</u>, 24, 489-491.

- Fujino, K.; Lewis, E. L.; Perkin, R. G. 1974. The freezing point of seawater at pressures up to 100 bars. J. Geophys. Res., 79, 1792-1797.
- IUPAC 1976. Recommended Reference Materials for Realization of Physico-chemical Properties. Section: Density. Pure and Applied Chem., 45, 1-9.
- Knudsen, M.; Forsch, C.; Sorensen, S.P.L. 1902. Berichte uber die Konstantenbestimmungen zur Aufstellung der Hydrographischen Tabellen.

 Vgl. Danske Videnskab. Selskabs, Skrifter, Naturvidenskab. math,
 Afdel. XII, 1, 1-151.
- Lewis, E. L. 1980. The Practical Salinity Scale 1978 and its antecedents. IEEE J. of Ocean. Engin., OE-5 (1), 3-8.
- Lewis, E. L.; Perkin, R. G. 1981. The Practical Salinity Scale 1978: conversion of existing data. Dec. Sea Res., 28A, 307-328.
- Millero, F. J.; Perron, G.; Desnoyers, J. F. 1973. Heat capacity of seawater solutions from 5° to 35°C and .05 to 22°/°° chlorinity. J. Geophys. Res., 78 (21), 4499-4506.
- Millero, F. J.; Kubinski, T. 1975. The speed of sound in seawater as a function of temperature and salinity at one atmosphere. <u>J. Acoust.</u> Soc. of Amer., 57, 312-319.
- Millero, F. J.; Leung, W. H. 1976. The thermodynamics of seawater at one atmosphere. Amer. J. Sci., 276, 1035-1077.
- Millero, F. J.; Chen, C.-T.; Bradshaw, A.; Schleicher, K. 1980. A new high-pressure equation of state for seawater. Deep-Sea Res., 27A, 255-264.
- Millero, F. J., Poisson, A. 1981. Summary of data treatment for the Unesco one atmosphere equation of state for seawater. <u>Deep-Sea Res. 28A</u>, 625-629.
- Millero, F. J.; Chen, C.-T.; Bradshaw, A.; Schleicher, K. 1981. Summary of data treatment for the international high pressure equations of state for seawater. Unesco Tech. Pap. in Mar. Sci., No. 38, 99-188.
- Perkin, R. G.; Lewis, E. L. 1980. The Practical Salinity Scale 1978: Fitting the data. <u>IEEE J. Oceanic Eng.</u>, 0E-5 (1), 9-16.
- Saunders, Peter M. 1981. Practical Conversion of Pressure to Depth. J. Phys. Oceanogr., 11, 573-574.
- Saunders, P. M.; Fofonoff, N. P. 1976. Conversion of pressure to depth in the ocean. Deep-Sea Res., 23, 109-111.

- Unesco 1978. Eighth report of the Joint Panel on Oceanographic Tables and Standards, Woods Hole, March 1977. Unesco Tech. Paper in Mar. Sci., No. 28, 32 pp.
- Unesco 1981. Background Papers and Supporting Data on the Practical Salinity Scale, 1978. Unesco Tech. Pap. in Mar. Sci., No. 37, 144 pp.
- Unesco 1981. Background papers and supporting data on the International Equation of State of Sea Water, 1980. Unesco Tech. Pap. in Mar. Sci., No. 38, 192 pp.
- Wilson, W. D. 1960. Speed of sound in seawater as a function of temperature, pressure and salinity. J. Acoust. Soc. Amer., 32, 641-644.

UNESCO TECHNICAL PAPERS IN MARINE SCIENCE

Titles of numbers which are out of stock

No	o.	Year	SCOR WG	N	0.	Year	SCOR WG
1	Incorporated with Nos. 4, 8 and 14 in No. 27	1965	WG 10	13	Technical report of sea trials conducted by the working group on photosynthetic radiant		
2	Report of the first meeting of the joint group of experts on photosynthetic radiant energy held at Moscow, 5-9 October 1964. Sponsored				energy, Gulf of California, May 1968; sponsored by SCOR, IAPSO, Unesco	1969	WG 15
	by Unesco, SCOR and IAPO	1965	WG 15	14	Incorporated with Nos. 1, 4 and 8 in No. 27	1970	WG 10
3	Report on the intercalibration measurements in Copenhagen, 9-13 June 1965. Organized	1066		17 An intercomparison of some current meters, report on an experiment of Research Vessel			
	by ICES	1966	_		Akademic Kurchatov, March-April 1970, by the Working Group on Current Velocity Measurements:	:	
4	Incorporated with Nos. 1,8 and 14 in No. 27	1966	WG 10		sponsored by SCOR, IAPSO, Unesco	1974	WG 21
5	Report of the second meeting of the joint group of experts on photosynthetic radiant energy held at Kauizawa, 15-19 August 1966.			18	A review of methods used for quantitative phytoplankton studies; sponsored by SCOR, Unesco	1974	WG 33
	Sponsored by Unesco, SCOR, IAPO	1966	WG 15			1714	11 0 33
6	Report of a meeting of the joint group of experts on radiocarbon estimation of primary			20	Ichthyoplankton. Report of the CICAR Ichthyo- plankton Workshop-Also published in Spanish	1975	_
	production held at Copenhagen, 24-26 October 1966. Sponsored by Unesco, SCOR, ICES	1967	WG 20	21	An intercomparison of open sea tidal pressure sensors. Report of SCOR Working Group 27: "Tides of the open sea"	1975	WG 27
7	Report of the second meeting of the Committee				To the second or assessing in second		
	for the Check-List of the Fishes of the North Eastern Atlantic and on the Mediterranean,			22	European sub-regional co-operation in oceano- graphy. Report of Working Group sponsored		
	London, 20-22 April 1967	1968	_		by the Unesco Scientific Co-operation Bureau for Europe and the Division of Marine Sciences	1975	_
8	Incorporated with Nos. 1, 4 and 14 in No. 27	1968	WG 10		•		
9	Report on intercalibration measurements, Leningrad, 24-28 May 1966 and Copenhagen,			23	An intercomparison of some currents meters, III. Report on an experiment carried out from the Research Vessel Atlantis II. August-September		
	September 1966; organized by ICES	1969	-		1972, by the Working Group on Continuous Velocity Measurements: sponsored by SCOR,		
10	Guide to the Indian Ocean Biological Centre (IOBC), Cochin (India), by the Unesco Curator	1060				1975	WG 21
	1967-1969 (Dr. J. Tranter)	1969	_				
12	Check-List of the Fishes of the North-Eastern Atlantic and of the Mediterranean (report of the third meeting of the Committee, Hamburg,						
	April 1969)	1969					