基 礎 徹 底 演 習 基本問題プリント

ベクトル

125 内分点・外分点の位置ベクトル

O を原点とする座標平面上に 2 点 A (2, 1), B (5, 2) がある。線分 AB を 2:1 に内分する点を C, 外分する点を D とするとき, $\overrightarrow{OC} =$ \overrightarrow{T} $\overrightarrow{OA} +$ \overrightarrow{T} \overrightarrow{OB} , $\overrightarrow{OD} =$ \overrightarrow{T} $\overrightarrow{OA} +$ \overrightarrow{D} \overrightarrow{OB}

126 ベクトルの平行

2つのベクトル $\vec{a} = (2, 3)$, $\vec{b} = (x, 1)$ について、 $3\vec{a} + \vec{b}$ と $\vec{a} - \vec{b}$ が平行になるとき、

 $x = \frac{\overline{r}}{1}$ \overline{r} \overline{s} \overline{s}

127 ベクトルの内積となす角

 $\vec{a}=(1,-2),\ \vec{b}=(1,\ 3)$ とすると、 $|\vec{a}|=\sqrt{\mathbb{P}}$,内積 $\vec{a}\cdot\vec{b}=$ 「イウ」であり、 \vec{a} と \vec{b} のなす角を θ $(0^\circ \le \theta \le 180^\circ)$ とするとき、 $\theta=$ 「エオカ」。である。

年 組 番 名前

128 ベクトルの内積と大きさ

 $|\vec{a}|=1, \ |\vec{b}|=2, \ |\vec{a}-2\vec{b}|=\sqrt{11}$ のとき、内積 $\vec{a}\cdot\vec{b}=$ であり、 $|\vec{a}-\vec{b}|=\sqrt{$ である。

129 ベクトルの大きさの最小値

t は実数, $|\vec{a}|=3$, $|\vec{b}|=2$, $|\vec{a}\cdot\vec{b}|=-2$ とする。 $|\vec{a}+t\vec{b}|$ は $t=\frac{r}{1}$ のとき,最小値

ウ√ェをとる。

130 ベクトルの垂直と内積

 \triangle OAB があり、OA=2、OB= $\sqrt{3}$ 、 \angle AOB=150° を満たしている。 $\overrightarrow{OA}=\overrightarrow{a}$ 、 $\overrightarrow{OB}=\overrightarrow{b}$ とすると、 $\overrightarrow{a}\cdot\overrightarrow{b}=$ アイ である。次に、辺 AB 上に点 P をとり、AP: PB=t: (1-t) (ただし、0 < t < 1) と おくと、OP \bot AB のとき、t= $\frac{\dot{7}}{\Box t}$ である。