Exercise Sheet 6

MAGIC009 - Category Theory

November 22nd, 2024

- 1. Prove explicitly that the following categories have an initial object, binary coproducts, coequalisers and pushouts:
 - (a) Set, the category of sets and functions,
 - (b) **Grp**, the category of groups and group homomorphisms,
 - (c) **Top**, the category of topological spaces and continuous functions.
- 2. A zero object in a category $\mathbb C$ is an object that is both initial and terminal. The kernel of a morphism $f:X\to Y$ in a category $\mathbb C$ with a zero object 0 is the pullback of $f:X\to Y$ along the unique morphism $!:0\to Y$. Meanwhile, the cokernel of f is the kernel of f in $\mathbb C^{\operatorname{op}}$.
 - (a) What is the zero object in that category of groups?
 - (b) Describe explicitly the kernel and cokernel of a group homomorphism. Does this match with the group theoretic notion of kernel and cokernel?
- 3. Let X be a set and let $u: U \to X$ and $v: V \to X$ be inclusions of subsets $U \subseteq X$ and $V \subseteq X$.
 - (a) Show that the intersection $U \cap V$ is the pullback of u and v.
 - (b) Let $p:U\cap V\to U$ and $q:U\cap V\to V$ denote the pullback projections. Show that the union $U\cup V$ is the pushout of p and q.