

Physique

21/05/2024

2024-05-20

Lucas Duchet-Annez

LHB 2023/2024 *101* Physique Lucas Duchet-Annez

1 Exercice 20 p 420

1.1 Partie 1

1.1.1

$$E_{photon1} = h \times \frac{c}{\lambda} = 6.63 \times 10^{-34} \times \frac{3.00 \times 10^8}{400 \times 10^{-9}} = 4.97 \times 10^{-19} J$$

1.1.2

Chaque photon a la même énergie et pour $\lambda_2=700nm$ cette énergie est insuffisante pour arracher des électrons ainsi augmenter l'intensité lumineuse n'augmente pas l'énergie d'un photon car chaque photon n'a toujours pas l'énergie suffisante

1.1.3

Car dans cette formule on considère la lumière sous forme corpusculaire, le photon.

1.1.4

$$\begin{split} E_{photon} &= W_{extraction} + E_c \\ E_{photon} &= W_{extraction} + \frac{1}{2} m v^2 \\ v &= \sqrt{\frac{2}{m} \big(E_{photon} - W_{extraction} \big)} \\ v &= \sqrt{\frac{2}{9.11 \times 10^{-31}} (4.97 \times 10^{-19} - (2.29 \times 1.60 \times 10^{-19}))} \\ v &= 5.35 \times 10^5 m \cdot s^{-1} \end{split}$$

1.1.5

A Étude de l'effet photoélectrique

1.2 Partie 2

1.2.1

Physique Lucas Duchet-Annez

1.2.2

1.2.2.a

La puissance maximale fournie pour un éclairement de $1000W\cdot m^{-2}$ est de 180W

1.2.2.b

Quand la puissance maximale est atteinte la tension est de 24V

1.2.2.c

$$I=\frac{P}{U}$$
 $I=\frac{180}{24}=7.5A$ L'intensité du courant est alors de $7.5A$

1.2.3

$$\eta = \frac{P_{\mathrm{\'elec}}}{P_{lum}}$$

$$P_{lum} = E \times S$$

$$P_{lum} = 1000 \times 1318 \times 10^{-3} \times 994 \times 10^{-3}$$

$$P_{lum} = 1.31 \times 10^{3}$$

Ainsi

$$\eta = \frac{180}{1.31 \times 10^3} = 0.137$$

Soit le rendement maximale est égale à 13.7%

1.2.4

1.2.4.a

$$\frac{3.5 \times 10^3}{180} = 19.4 \approx 20$$

Il faut donc 20 panneaux pour fournir 3.5kWc

1.2.4.b

$$E_{lum} = 1450 \times 1318 \times 10^{-3} \times 994 \times 10^{-3} \times 20$$

$$E_{lum} = 3.80 \times 10^4 kW \cdot h$$

Le rendement étant de 10%

$$E_{elec} = 3.80 \times 10^3 kW \cdot h$$

Ainsi le revenu sera de $r = 0.20 \times 3.80 \times 10^3 = 760$ €