Sampling refers to how observations are "selected" from a probability distribution when the simulation is run.

- Pure random sampling.
 - The quantity of interest is a function of N random variables $X_1, ..., X_N$. That is we are interested in the function

$$g(X)$$
 where $X = (X_1, X_2, ..., X_N)$

■ The random variables $X_I,...,X_N$ follow some joint distribution F.

- \square Random sampling generates an observation "randomly" from F.
 - What observations are more likely?

Depending on the number of trials you may or may not observe values in the "tails".

$$r.v. \ \overline{x} \sim N(\mu = 125, \sigma_{\overline{x}} = 5/\sqrt{10} = 1.58)$$

- ☐ The range of each random variable $X_1,...,X_N$ is divided up into n equal probability non-overlapping intervals.
- ☐ E.g., normal, uniform, exponential.

- Generate an observation from each interval using the conditional distribution.
- □ Example Uniform.

 \square Do this for all $X_1, ..., X_N$.

One value from each of the n observations are randomly matched to form a realization of

$$X = (X_1, X_2, ..., X_N)$$

 \square Example with 2 random variables (n = 5).

1	,	•)
/	•	4	_

	1	2	3	4	5
1			X		
2	X				
3					X
4		X			
5				Χ	

X1

☐ Crystal Ball demo.

- Random sampling will always work and may give you a better idea of the variability you may observe.
- Latin hypercube sampling should give better estimates of mean values (less variance).

Monte Carlo Simulation Applications

The evaluation of probability modeling problems

Probability Modeling

- 1. Containers of boxes are delivered to the receiving area of retail business and the boxes must be placed in a temporary storage facility until they can be moved to store shelves. There is one delivery every two days. Each container in a delivery contains the same number of boxes, which are taken out of the container and stored on the floor. A box requires 4 sq. ft. of storage space and can be stacked no more than two-high. The number of boxes in a container (the same for all containers in a delivery) follows a discrete uniform distribution with minimum = 8, and maximum = 16. The number of containers in a delivery has a Poisson distribution with a mean = 5.
 - What is the expected value and variance of the storage space required for a delivery? For a Poisson random variable X, E[X] = Var[X]. Clearly state any assumptions you make.

Probability Modeling

2. p denotes the probability that an inspected part in a lot of parts is defective and is independent of the other parts. A lot of parts contains 100 parts and an inspector inspects every part in the lot. It takes T time units to inspect a single part and T ~ Uniform[a,b]. If a defective part is discovered an additional R time units is required to prepare the defective to be returned and R ~ Uniform[c,d]. What is the expected value and variance of the time required to complete the inspection of a lot?

Developing Monte Carlo Simulations

- A certain amount of "art" or creativity within the constraints of the software being used is required.
- Crystal Ball/Excel examples
 - Integration
 - Generating points distributed uniformly in a circle
 - Stochastic Project Network

- Developed by Manhattan Project scientists near the end of WWII.
- A-Bomb development.
- Will consider a simple example.
 - Applied to more complex integration where other numerical methods do not work as well.

☐ To estimate *I* use Monte Carlo simulation

Crystal Ball Example

$$I = \int_{0}^{\pi} \sin x dx = 2$$

Generating Points Uniformly in a Circle

- \square HW #2 Consider the x-y plane and a circle of radius = 1, centered at x=2, y=2. An algorithm for generating random points within this circle is as follows:
 - 1. Generate a random angle θ that is uniformly distributed between $-\pi$, and $+\pi$.
 - 2. Generate a random distance r from the center of the circle where $r \sim U(0,1)$.
 - 3. Compute the coordinates of the point

$$x = 2 + r * \cos(\theta),$$

$$y = 2 + r * \sin(\theta).$$

This does not work.

In-Class Exercise

- Devise a general approach to generate points uniformly distributed in the circle.
 - Hint Generate points uniformly in a square first.

A project network is used to depict the various milestones in a project, the activities needed to achieve the milestones, and the precedence relationships between milestones.

- A general n-node simulation model can be developed in Excel.
- Need a general method to represent arbitrary n-node networks.

Node-Arc Incidence Matrix

	Arc								
Node	1-2	1-3	1-4	2-3	2-5	3-4	3-6	4-6	5-6
1	1	1	1	0	0	0	0	0	0
2	-1	0	0	1	1	0	0	0	0
3	0	-1	0	-1	0	1	1	0	0
4	0	0	-1	0	0	-1	0	1	0
5	0	0	0	0	-1	0	0	0	1
6	0	0	0	0	0	0	-1	-1	-1

In-class Exercise

☐ Generate the node-arc incidence matrix for the following network.

In-class Exercise

Stochastic Project Network - Demo

	Node-Arc	Incidence	Matrix								
					Arc						
Node	1-2	1-3	1-4	2-3	2-5	3-4	3-6	4-6	5-6		
1	1	1	1	0	0	0	0	0	0		
2	-1	0	0	1	1	0	0	0	0		
3	0	-1	0	-1	0	1	1	0	0		
4	0	0	-1	0	0	-1	0	1	0		
5	0	0	0	0	-1	0	0	0	1		
6	0	0	0	0	0	0	-1	-1	-1		
					Arc						
Node	1-2	1-3	1-4	2-3	2-5	3-4	3-6	4-6	5-6	Time node	/milestone achieved
1	1	1	1	0	0	0	0	0	0	0	
2	1	0	0	0	0	0	0	0	0	1	
3	0	2	0	5	0	0	0	0	0	5	
4	0	0	3	0	0	11	0	0	0	11	
5	0	0	0	0	6	0	0	0	0	6	
6	0	0	0	0	0	0	12	19	15	19	
Length	1	2	3	4	5	6	7	8	9		
Mean	5	3	2	6	7	11	7	9	10		
Std Dev.	5	3	2	6	7	11	7	9	10		
CV	1	1	1	1	1	1	1	1	1		