Probability

Probability Model

- 1. Ingredients of a probability model:
 - (a) Sample space Ω : set of all possible outcomes.
 - (b) Events: subsets $A \subset \Omega$ to which a probability can be assigned.
 - (c) Probability: function $\mathbb P$ that assigns a number to each possible event A, satisfying $0 \leq \mathbb P(A) \leq 1$, $\mathbb P(\Omega) = 1$, and the Sum Rule: if A_1, A_2, \ldots cannot occur at the same time, then

$$\mathbb{P}\left(\bigcup_{i} A_{i}\right) = \sum_{i} \mathbb{P}\left(A_{i}\right).$$

- 2. A^c : A does not occur (complement of A).
- 3. $A \cap B$: Both A and B occur (also written A, B).
- 4. $A \cup B$: Either A or B (or both) occur.
- 5. If $A \cap B = \emptyset$. A and B are disjoint.
- 6. If $A \subset B$ then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- 7. $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$ and hence $\mathbb{P}(A^c \mid B) = 1 \mathbb{P}(A \mid B)$.
- 8. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.

Probability by Counting

9. When all (finitely many) outcomes in Ω are equally likely, the probability of an event $A\subset\Omega$ is

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{\text{Number of elements in } A}{\text{Number of elements in } \Omega}$$

			Replacement
10.	Order	Yes	No
10.	Yes	n^k	$\frac{n!}{(n-k)!} = n(n-1)\cdots(n-k+1)$
	No	_	$\binom{n}{k} = \frac{n!}{(n-k)!k!} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 1}$

Conditional Probability

11. Definition:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

12. Events A and B are said to be *independent* if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\,\mathbb{P}(B).$$

13. Product Rule (notation $AB = A \cap B$):

$$\mathbb{P}(A_1 A_2 \dots A_n) = \mathbb{P}(A_1) \, \mathbb{P}(A_2 \mid A_1) \cdots \mathbb{P}(A_n \mid A_1 \dots A_{n-1}).$$

14. Product Rule for independent events:

$$\mathbb{P}(A_1 A_2 \dots A_n) = \mathbb{P}(A_1) \, \mathbb{P}(A_2) \dots \mathbb{P}(A_n).$$

15. For an event B and a collection of disjoint events,

 E_1, E_2, \dots, E_k with union Ω , the Law of Total Probability:

$$P(B) = P(B \cap E_1) + P(B \cap E_2) + \dots + P(B \cap E_k)$$

= $P(B \mid E_1)P(E_1) + P(B \mid E_2)P(E_2) + \dots + P(B \mid E_k)P(E_k)$.

16. Bayes' Rule:

$$P(A|B) = P(B|A)P(A)/P(B)$$
, provided $P(B) \neq 0$.

Random Variables

17. Cumulative distribution function (cdf) of a random variable X:

$$F(x) = \mathbb{P}(X \le x), \quad x \in \mathbb{R}.$$

18. Probability mass function (pmf) of a discrete random variable:

$$f(x) = \mathbb{P}(X = x)$$
 for all x .

19. Probability density function (pdf) of a continous random variable X: positive function f with integral 1 such that:

$$\mathbb{P}(a < X \le b) = F(b) - F(a) = \int_a^b f(u) \, \mathrm{d}u.$$

20. Relations between the cdf and pdf of a continuous random variable:

$$F(x) = \int_{-\infty}^{x} f(t) dt, \qquad f(x) = \frac{d}{dx} F(x).$$

Expectation

21. Expectation of a discrete random variable with pmf f:

$$\mathbb{E}X = \sum_{x} x f(x).$$

22. Expectation of a continuous random variable with pdf f:

$$\mathbb{E}X = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x.$$

23. Expectation of a function of a discrete random variable X with pmf f:

$$\mathbb{E}g(X) = \sum_{x} g(x) f(x) .$$

24. Properties of expectation:

- (a) $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$,
- (b) $\mathbb{E}(g(X) + h(X)) = \mathbb{E}(g(X)) + \mathbb{E}(h(X))$.
- 25. Variance: $Var(X) = \mathbb{E}(X \mu)^2$, where $\mu = \mathbb{E}X$.
- 26. Properties of variance:
- (a) $Var(X) = \mathbb{E}X^2 (\mathbb{E}X)^2$.
- (b) $Var(a + bX) = b^2 Var(X)$.
- (c) s.d. $(X) = \sqrt{\operatorname{Var}(X)}$.

Bernoulli Random Variable

- 27. Notation: $X \sim \mathsf{Ber}(p)$
- 28. $\mathbb{P}(X = 1) = p \text{ and } \mathbb{P}(X = 0) = 1 p$
- 29. $\mathbb{E}X = p$
- 30. Var(X) = p(1-p)

Binomial Random Variable

- 31. Notation: $X \sim \text{Bin}(n, p)$
- 32. $\mathbb{P}(X=x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x=0,1,\ldots,n.$
- 33. $\mathbb{E}X = np$
- 34. Var(X) = np(1-p).

Uniform Random Variable

- 35. Notation: $X \sim \mathsf{U}[a,b]$
- 36. Probability density function:

$$f(x) = \frac{1}{b-a}$$
, $a \le x \le b$ (and $f(x) = 0$ otherwise).

- 37. $\mathbb{E}X = (a+b)/2$
- 38. $Var(X) = (b-a)^2/12$

Normal Random Variable

- 39. Notation: $X \sim N(\mu, \sigma^2)$
- 40. Probability density function:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \ x \in \mathbb{R}$$

- 41. $\mathbb{E}X = \mu$
- 42. $Var(X) = \sigma^2$
- 43. Standardization: $\frac{X-\mu}{\sigma} \sim N(0,1)$.

Multiple Random Variables

44. Joint cdf of X_1, \ldots, X_n :

$$F(x_1,\ldots,x_n)=\mathbb{P}(X_1\leq x_1,\ldots,X_n\leq x_n).$$

45. Joint pmf of discrete X_1, \ldots, X_n :

$$f(x_1,...,x_n) = \mathbb{P}(X_1 = x_1,...,X_n = x_n).$$

46. Joint pdf of continuous X_1, \ldots, X_n (summarised as \mathbf{X}): positive function f with total integral 1 such that

$$\mathbb{P}(\mathbf{X} \in B) = \int_{\mathbf{x} \in B} f(\mathbf{x}) \, d\mathbf{x} \text{ for all sets } B.$$

47. X_1, \ldots, X_n with joint pmf or pdf f are independent if

$$f(x_1, ..., x_n) = f_{X_1}(x_1) \cdots f_{X_n}(x_n)$$
 for all $x_1, ..., x_n$.

48. Covariance: $Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$, where $\mu_X = \mathbb{E}X$ and $\mu_Y = \mathbb{E}Y$.

49. Correlation coefficient: $\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$, where

$$\sigma_X^2 = \operatorname{Var}(X) \text{ and } \sigma_Y^2 = \operatorname{Var}(Y).$$

50. Properties of Var and Cov:

 $\operatorname{Var}(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2.$ $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X).$

 $Cov(X,Y) = \mathbb{E}XY - \mathbb{E}X\mathbb{E}Y.$

Cov(X, Y) = Cov(Y, X).

Cov(aX + bY, Z) = a Cov(X, Z) + b Cov(Y, Z)

Cov(X, X) = Var(X).

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y).

X and Y independent $\Longrightarrow \operatorname{Cov}(X,Y) = 0$.

51. For all random variables X_1, \ldots, X_n and constants a, b_1, \ldots, b_n :

$$\mathbb{E}(a+b_1X_1+\cdots+b_nX_n)=a+b_1\mathbb{E}X_1+\cdots+b_n\mathbb{E}X_n.$$

52. For independent random variables,

$$Var(a + b_1X_1 + \dots + b_nX_n) = b_1^2 Var(X_1) + \dots + b_n^2 Var(X_n).$$

53. For independent random variables,

$$\mathbb{E}[X_1 X_2 \cdots X_n] = \mathbb{E} X_1 \mathbb{E} X_2 \cdots \mathbb{E} X_n.$$

54. For independent normal random variables X_1, X_2, \ldots, X_n :

$$Y = a + b_1 X_1 + \dots + b_n X_n \sim \mathsf{N}\left(a + \sum_{i=1}^n b_i \, \mathbb{E} X_i, \sum_{i=1}^n b_i^2 \, \mathsf{Var}(X_i)\right).$$

55. Law of large numbers: If X_1, \ldots, X_n are iid with finite expectation μ , then for large n,

$$\bar{X} = \frac{X_1 + \dots + X_n}{n} \approx \mu.$$

56. Central limit theorem (CLT) for sums: If X_1, \ldots, X_n are iid with finite expectation μ and variance $\sigma^2 > 0$, then for large n:

$$X_1 + \cdots + X_n \stackrel{\text{approx.}}{\sim} \mathsf{N}(n\mu, n\sigma^2).$$

57. Central limit theorem (CLT) for means (conditions as above):

$$\frac{X_1+\dots+X_n}{n} = \bar{X} \overset{\mathrm{approx.}}{\sim} \mathsf{N}\left(\mu,\frac{\sigma^2}{n}\right).$$

58. By the CLT, $X \sim \mathsf{Bin}(n,p)$ has approximately a N(np, np(1-p)) distribution.

59. Continuity correction. Adjustments for approximating a discrete random variable X with a continuous random variable Y:

$$P(X = x) \approx P(x - 0.5 < Y < x + 0.5)$$

 $P(X \le x)$ $\approx P(Y \le x + 0.5)$

 $\begin{array}{lcl} P(X < x) & \approx & P(Y < x - 0.5) \\ P(X \ge x) & \approx & P(Y \ge x - 0.5) \\ P(X \ge x) & \approx & P(Y \ge x + 0.5) \\ P(X > x) & \approx & P(Y > x + 0.5) \end{array}$

Statistics

60. Sample mean: $\bar{X} = \sum_{i=1}^{n} X_i/n$.

61. Sample variance:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n\bar{X}^2 \right).$$

Confidence Intervals

62. 1-sample iid data. Approximate confidence interval for μ :

$$\bar{X} \pm q \frac{S}{\sqrt{n}},$$

where q is the $1 - \alpha/2$ quantile of the t_{n-1} distribution. This CI is exact when the data is drawn from a normal distribution.

63. 1-sample normal data. Exact confidence interval for σ^2 :

$$\left(\frac{(n-1)S^2}{q_2}, \frac{(n-1)S^2}{q_1}\right),\,$$

where q_1 and q_2 are the $\alpha/2$ and $1-\alpha/2$ quantiles of the χ^2_{n-1} distribution.

64. Pooled sample variance:

$$S_p^2 = \frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}.$$

65. 2-sample data (assuming equal variances). Approximate confidence interval for $\mu_X - \mu_Y$:

$$\bar{X} - \bar{Y} \pm q \, S_p \sqrt{\frac{1}{m} + \frac{1}{n}},$$

where q is the $1 - \alpha/2$ quantile of the t_{m+n-2} distribution. This CI is exact when the data for each group is drawn from a normal distribution.

66. 2-sample normal data (unequal variances). Approximate confidence interval for $\mu_X - \mu_Y$:

$$\bar{X} - \bar{Y} \pm q \sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}},$$

where q is the $1 - \alpha/2$ quantile of $t_{\rm df}$, where df is given by either Welch's approximation or the conservative approximation given

67. 1-sample binomial data. Approximate confidence interval for p:

$$\hat{P} \pm q \sqrt{\frac{\hat{P}(1-\hat{P})}{n}},$$

where $\hat{P} = X/n$ and q is the $1 - \alpha/2$ quantile of N(0, 1).

68. 2-sample binomial data. Approximate confidence interval for $p_X - p_Y$:

$$\hat{P}_X - \hat{P}_Y \pm q \sqrt{\frac{\hat{P}_X(1 - \hat{P}_X)}{m} + \frac{\hat{P}_Y(1 - \hat{P}_Y)}{n}},$$

where $\hat{P}_X = X/m$, $\hat{P}_Y = Y/n$ and q is the $1 - \alpha/2$ quantile of

Hypothesis Testing

69. The 7 steps for a statistical test: model, hypotheses, test statistic, distribution of the test statistic under H_0 , outcome of the test statistic, p-value, accept or reject H_0 .

70. p-value: the probability that under H_0 the (random) test statistic takes a value as extreme as or more extreme than the one observed.

71. Type I error: reject a H_0 that is actually true. Type II error: fail to reject a H_0 that it is actually false. Power: probability of correctly rejecting H_0 when H_1 is true.

72. 1-sample t-test. Test statistic

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}.$$

Under $H_0: \mu = \mu_0$, we have $T \sim \mathsf{t}_{n-1}$

73. 1-sample binomial test. Test statistic X. Under $H_0: p = p_0$, we have $X \sim \text{Bin}(n, p_0)$, approximated by $\hat{P} \sim N(p_0, np_0(1 - p_0))$. Test statistic:

$$Z = \frac{\hat{P} - p_0}{\sqrt{p_0(1 - p_0)/n}} \sim N(0, 1)$$

74. 2-sample t-test (assuming equal variances). Test statistic:

$$T = \frac{\bar{X} - \bar{Y}}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}},$$

Under $H_0: \mu_X = \mu_Y$, we have $T \sim \mathsf{t}_{m+n-2}$.

75. 2-sample t-test (unequal variances). Test statistic:

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}}}.$$

Under $H_0: \mu_X = \mu_Y$, we have $T \stackrel{\text{approx.}}{\sim} \mathsf{t}_{\mathrm{df}}$ distribution with Welch's

$$df = \frac{\left(\frac{s_X^2}{m} + \frac{s_Y^2}{n}\right)^2}{\frac{s_X^4}{m^2(m-1)} + \frac{s_Y^4}{n^2(n-1)}}.$$

Conservative approximation: df = min(m-1, n-1).

76. 2-sample binomial test. Test statistic:

$$Z = \frac{\hat{P}_X - \hat{P}_Y}{\sqrt{\hat{P}(1-\hat{P})\left(\frac{1}{m} + \frac{1}{n}\right)}},$$

where $\hat{P} := \frac{X+Y}{m+n}$. Under $H_0: p_X = p_Y$, we have $Z \stackrel{\text{approx.}}{\sim} \mathsf{N}(0,1)$. 77. Chi-squared test:

 $expected = (row total) \times (column total)/overall total,$

$$\chi^2 = \sum (\text{observed - expected})^2/\text{expected},$$

 $df = (\text{rows} - 1) \times (\text{columns} - 1).$

Linear Models

78. 1-factor ANOVA model. Let Y_{ik} be the response for the k-th replication at level i. Then,

$$Y_{ik} = \mu_i + \varepsilon_{ik}, \quad k = 1, \dots, n_i, i = 1, \dots, d,$$

where $\{\varepsilon_{ik}\} \stackrel{\text{iid}}{\sim} \mathsf{N}(0,\sigma^2)$.

79. 1-factor ANOVA. Test statistic $F=\frac{\text{MSF}}{\text{MSE}}$. Under H_0 : all $\{\mu_i\}$ are equal, we have $F\sim \mathsf{F}(d-1,n-d)$.

80. 1-factor ANOVA table:

Source	$_{ m DF}$	ss	$_{ m MS}$	F	$\mathbb{P}(F > f)$
Factor	d-1	SSF	$\frac{SSF}{d-1}$	MSF MSE	P-value
Error	n-d	SSE	$\frac{\overline{SSE}}{n-d}$		
Total	n-1	SST			

81. 2-factor ANOVA model (factor effects formulation). Let Y_{ijk} be the response for the k-th replication at level (i,j). Then,

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk},$$

$$k = 1, \dots, n_{ij}, i = 1, \dots, d_1, j = 1, \dots, d_2,$$

where $\{\varepsilon_{ijk}\}\sim_{\mathrm{iid}}\mathsf{N}(0,\sigma^2)$.

82.
$$R^2 = (SST - SSE)/SST$$

83. Simple linear regression:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \dots, n,$$

where $\{\varepsilon_i\} \stackrel{\text{iid}}{\sim} \mathsf{N}(0, \sigma^2)$.

84. Multiple linear regression:

$$Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_d x_{id} + \varepsilon_i, \quad i = 1, \dots, n,$$

where $\{\varepsilon_i\} \stackrel{\text{iid}}{\sim} \mathsf{N}(0, \sigma^2)$.

85. Normal linear model:

$$\mathbf{Y} = \mathcal{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

where β is a vector of parameters and ε a vector of independent error terms, each $N(0, \sigma^2)$ distributed.

Other Mathematical Formulas

86. Binomial theorem: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.

87. Geometric sum: $1+a+a^2+\cdots+a^n=\frac{1-a^{n+1}}{1-a}\ (a\neq 1).$ If |a|<1 then $1+a+a^2+\cdots=\frac{1}{1-a}.$

88. Logarithms:

- (a) $\log(xy) = \log x + \log y$.
- (b) $e^{\log x} = x$.

89. Exponential:

- (a) $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
- (b) $e^x = \lim_{n \to \infty} (1 + \frac{x}{n})^n$.
- (c) $e^{x+y} = e^x e^y$.

90. Differentiation:

- (a) (f+g)' = f' + g',
- (b) (fg)' = f'g + fg',
- (c) $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.
- (d) $\frac{\mathrm{d}}{\mathrm{d}x}x^n = n x^{n-1}.$
- (e) $\frac{\mathrm{d}}{\mathrm{d}x}\mathrm{e}^x = \mathrm{e}^x$.
- (f) $\frac{\mathrm{d}}{\mathrm{d}x}\log(x) = \frac{1}{x}$.
- 91. Chain rule: (f(g(x)))' = f'(g(x)) g'(x).
- 92. **Integration**: $\int_a^b f(x) dx = [F(x)]_a^b = F(b) F(a)$, where F' = f.

93. Integration by parts:

 $\int_a^b f(x)\,G(x)\,\mathrm{d}x=[F(x)\,G(x)]_a^b-\int_a^b F(x)\,g(x)\,\mathrm{d}x.$ (Here F'=f and G'=g.)

Standard Normal Distribution

This table gives the cumulative distribution function (cdf) Φ of a $\mathsf{N}(0,1)$ -distributed random variable Z:

$$\Phi(z) = \mathbb{P}(Z \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx.$$

Example: $\Phi(1.65) = \mathbb{P}(Z \le 1.65) = 0.9505$.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
$\overline{0.0}$	5000	5040	5080	5120	5160	5199	5239	5279	5319	5359
0.1	5398	5438	5478	5517	5557	5596	5636	5675	5714	5753
0.2	5793	5832	5871	5910	5948	5987	6026	6064	6103	6141
0.3	6179	6217	6255	6293	6331	6368	6406	6443	6480	6517
0.4	6554	6591	6628	6664	6700	6736	6772	6808	6844	6879
0.5	6915	6950	6985	7019	7054	7088	7123	7157	7190	7224
0.6	7257	7291	7324	7357	7389	7422	7454	7486	7517	7549
0.7	7580	7611	7642	7673	7704	7734	7764	7794	7823	7852
0.8	7881	7910	7939	7967	7995	8023	8051	8078	8106	8133
0.9	8159	8186	8212	8238	8264	8289	8315	8340	8365	8389
1.0	8413	8438	8461	8485	8508	8531	8554	8577	8599	8621
1.1	8643	8665	8686	8708	8729	8749	8770	8790	8810	8830
1.2	8849	8869	8888	8907	8925	8944	8962	8980	8997	9015
1.3	9032	9049	9066	9082	9099	9115	9131	9147	9162	9177
1.4	9192	9207	9222	9236	9251	9265	9279	9292	9306	9319
1.5	9332	9345	9357	9370	9382	9394	9406	9418	9429	9441
1.6	9452	9463	9474	9484	9495	9505	9515	9525	9535	9545
1.7	9554	9564	9573	9582	9591	9599	9608	9616	9625	9633
1.8	9641	9649	9656	9664	9671	9678	9686	9693	9699	9706
1.9	9713	9719	9726	9732	9738	9744	9750	9756	9761	9767
2.0	9772	9778	9783	9788	9793	9798	9803	9808	9812	9817
2.1	9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
2.2	9861	9864	9868	9871	9875	9878	9881	9884	9887	9890
2.3	9893	9896	9898	9901	9904	9906	9909	9911	9913	9916
2.4	9918	9920	9922	9925	9927	9929	9931	9932	9934	9936
2.5	9938	9940	9941	9943	9945	9946	9948	9949	9951	9952
2.6	9953	9955	9956	9957	9959	9960	9961	9962	9963	9964
2.7	9965	9966	9967	9968	9969	9970	9971	9972	9973	9974
2.8	9974	9975	9976	9977	9977	9978	9979	9979	9980	9981
2.9	9981	9982	9982	9983	9984	9984	9985	9985	9986	9986
3.0	9987	9987	9987	9988	9988	9989	9989	9989	9990	9990
3.1	9990	9991	9991	9991	9992	9992	9992	9992	9993	9993
3.2	9993	9993	9994	9994	9994	9994	9994	9995	9995	9995
3.3	9995	9995	9995	9996	9996	9996	9996	9996	9996	9997
3.4	9997	9997	9997	9997	9997	9997	9997	9997	9997	9998
3.5	9998	9998	9998	9998	9998	9998	9998	9998	9998	9998
3.6	9998	9998	9999	9999	9999	9999	9999	9999	9999	9999

Student (or t-distribution)

In this table we list the γ -quantiles values of the $t_{\rm df}$ -distribution for various values of df and γ .

Examples: The 0.95-quantile for the t_5 distribution is 2.02. Let $T \sim t_5$. Then, $\mathbb{P}(-2.02 < T \le 2.02) = \mathbb{P}(T_5 \le 2.02) - \mathbb{P}(T_5 \le -2.02) = 0.95 - \mathbb{P}(T > 2.02) = 0.95 - 1 + \mathbb{P}(T \le 2.02) = 0.95 - 1 + 0.95 = 0.90$.

	1							
$\frac{\gamma}{\mathrm{df}}$	0.90	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
1	3.08	6.31	12.71	31.82	63.66	127.32	318.33	636.67
2	1.89	2.92	4.30	6.96	9.92	14.09	22.33	31.60
3	1.64	2.35	3.18	4.54	5.84	7.45	10.21	12.92
4	1.53	2.13	2.78	3.75	4.60	5.60	7.17	8.61
5	1.48	2.02	2.57	3.37	4.03	4.77	5.89	6.87
6	1.44	1.94	2.45	3.14	3.71	4.32	5.21	5.96
7	1.41	1.89	2.36	3.00	3.50	4.03	4.79	5.41
8	1.40	1.86	2.31	2.90	3.36	3.83	4.50	5.04
9	1.38	1.83	2.26	2.82	3.25	3.69	4.30	4.78
10	1.37	1.81	2.23	2.76	3.17	3.58	4.14	4.59
11	1.36	1.80	2.20	2.72	3.11	3.50	4.02	4.44
12	1.36	1.78	2.18	2.68	3.05	3.43	3.93	4.32
13	1.35	1.77	2.16	2.65	3.01	3.37	3.85	4.22
14	1.35	1.76	2.14	2.62	2.98	3.33	3.79	4.14
15	1.34	1.75	2.13	2.60	2.95	3.29	3.73	4.07
16	1.34	1.75	2.12	2.58	2.92	3.25	3.69	4.02
17	1.33	1.74	2.11	2.57	2.90	3.22	3.65	3.97
18	1.33	1.73	2.10	2.55	2.88	3.20	3.61	3.92
19	1.33	1.73	2.09	2.54	2.86	3.17	3.58	3.88
20	1.33	1.72	2.09	2.53	2.85	3.15	3.55	3.85
21	1.32	1.72	2.08	2.52	2.83	3.14	3.53	3.82
22	1.32	1.72	2.07	2.51	2.82	3.12	3.51	3.79
23	1.32	1.71	2.07	2.50	2.81	3.10	3.48	3.77
24	1.32	1.71	2.06	2.49	2.80	3.09	3.47	3.75
25	1.32	1.71	2.06	2.49	2.79	3.08	3.45	3.73
26	1.31	1.71	2.06	2.48	2.78	3.07	3.44	3.71
27	1.31	1.70	2.05	2.47	2.77	3.06	3.42	3.69
28	1.31	1.70	2.05	2.47	2.76	3.05	3.41	3.67
29	1.31	1.70	2.05	2.46	2.76	3.04	3.40	3.66
30	1.31	1.70	2.04	2.46	2.75	3.03	3.39	3.65
40	1.30	1.68	2.02	2.42	2.70	2.97	3.31	3.55
50	1.30	1.68	2.01	2.40	2.68	2.94	3.26	3.50
100	1.29	1.66	1.98	2.36	2.63	2.87	3.17	3.39
200	1.29	1.65	1.97	2.35	2.60	2.84	3.13	3.34
∞	1.28	1.64	1.96	2.33	2.58	2.81	3.09	3.29

Chi-square-distribution

In this table we list the γ quantiles of the $\chi^2_{\rm df}$ distribution, for various values of df and γ .

				, 1			/tai				araco or ·	-	,
di	\int_{1}^{γ}	.005	.010	.025	.050	.100	.250	.750	.900	.950	.975	.990	.995
	1	.000	.000	.001	.004	.016	.102	1.32	2.71	3.84	5.02	6.63	7.88
	2	.010	.020	.051	.103	.211	.575	2.77	4.61	5.99	7.38	9.21	10.6
	3	.072	.115	.216	.352	.584	1.21	4.11	6.25	7.81	9.35	11.3	12.8
	4	.207	.297	.484	.711	1.06	1.92	5.39	7.78	9.49	11.1	13.3	14.9
	5	.412	.554	.831	1.15	1.61	2.67	6.63	9.24	11.1	12.8	15.1	16.7
	6	.676	.872	1.24	1.64	2.20	3.45	7.84	10.6	12.6	14.4	16.8	18.5
	7	.989	1.24	1.69	2.17	2.83	4.25	9.04	12.0	14.0	16.0	18.5	20.3
	8	1.34	1.65	2.18	2.73	3.49	5.07	10.2	13.4	15.5	17.5	20.1	22.0
	9	1.73	2.09	2.70	3.33	4.17	5.90	11.4	14.7	16.9	19.0	21.7	23.6
	10	2.16	2.56	3.25	3.94	4.87	6.74	12.5	16.0	18.3	20.5	23.2	25.2
	11	2.60	3.05	3.82	4.57	5.58	7.58	13.7	17.3	19.7	21.9	24.7	26.8
	12	3.07	3.57	4.40	5.23	6.30	8.44	14.8	18.5	21.0	23.3	26.2	28.3
	13	3.57	4.11	5.01	5.89	7.04	9.30	16.0	19.8	22.4	24.7	27.7	29.8
	14	4.07	4.66	5.63	6.57	7.79	10.2	17.1	21.1	23.7	26.1	29.1	31.3
	15	4.60	5.23	6.26	7.26	8.55	11.0	18.2	22.3	25.0	27.5	30.6	32.8
	16	5.14	5.81	6.91	7.96	9.31	11.9	19.4	23.5	26.3	28.8	32.0	34.3
	17	5.70	6.41	7.56	8.67	10.1	12.8	20.5	24.8	27.6	30.2	33.4	35.7
	18	6.26	7.01	8.23	9.39	10.9	13.7	21.6	26.0	28.9	31.5	34.8	37.2
	19	6.84	7.63	8.91	10.1	11.7	14.6	22.7	27.2	30.1	32.9	36.2	38.6
	20	7.43	8.26	9.59	10.9	12.4	15.5	23.8	28.4	31.4	34.1	37.6	40.0
	21	8.03	8.90	10.3	11.6	13.2	16.3	24.9	29.6	32.7	35.5	38.9	41.4
	22	8.64	9.50	11.0	12.3	14.0	17.2	26.0	30.8	33.9	36.8	40.3	42.8
	23	9.26	10.2	11.7	13.1	14.8	18.1	27.1	32.0	35.2	38.1	41.6	44.2
	24	9.89	10.9	12.4	13.8	15.7	19.0	28.2	33.2	36.4	39.4	43.0	45.6
	25	10.5	11.5	13.1	14.6	16.5	19.9	29.3	34.4	37.7	40.6	44.3	46.9
	26	11.2	12.2	13.8	15.4	17.3	20.8	30.4	35.6	38.9	41.9	45.6	48.3
	27	11.8	12.9	14.6	16.2	18.1	21.7	31.5	36.7	40.1	43.2	47.0	49.6
	28	12.5	13.6	15.3	16.9	18.9	22.7	32.6	37.9	41.3	44.5	48.3	51.0
	29	13.1	14.3	16.0	17.7	19.8	23.6	33.7	39.1	42.6	45.7	49.6	52.3
	30	13.8	15.0	16.8	18.5	20.6	24.5	34.8	40.3	43.8	47.0	50.9	53.7
	40	20.7	22.2	24.4	26.5	29.1	33.7	45.6	51.8	55.8	59.3	63.7	66.8
	50	28.0	29.7	32.4	34.8	37.7	42.9	56.3	63.2	67.5	71.4	76.2	79.5
	60	35.5	37.5	40.5	43.2	46.5	52.3	67.0	74.4	79.1	83.3	88.4	92.0
	70	43.3	45.4	48.8	51.7	55.3	61.7	77.6	85.5	90.5	95.0	100.4	104.2
	80	51.2	53.5	57.2	60.4	64.3	71.1	88.1	96.6	101.9	106.6	112.3	116.3
	90	59.2	61.8	65.6	69.1	73.3	80.6	98.6	107.6	113.1	118.1	124.1	128.3
	100	67.3	70.1	74.2	77.9	82.4	90.1	109.1	118.5	124.3	129.6	135.8	140.2
						_					2		

Examples: The 0.01-quantile of the χ_5^2 distribution is 0.554. Let $X \sim \chi_5^2$. Then, $\mathbb{P}(0.412 < X \le 9.24) = \mathbb{P}(X \le 9.24) - \mathbb{P}(X \le 0.412) = 0.90 - 0.005 = 0.895$

F-distribution

In the next three pages we list the γ -quantiles of the $F_{m,n}$ distribution, for $\gamma=0.99,0.975$ and 0.95 and various value of m and n.

		\cap	0	0
\sim	_	11	·	u.

	m = 1	2	3	4	5	6	7	8	9
n=1	4052	5000	5403	5625	5764	5859	5928	5982	6023
2	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4
3	34.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3
4	21.2	18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.7
5	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.2
6	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98
7	12.2	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
8	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
9	10.6	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
10	10.0	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56
∞	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41

	m=10	12	15	20	30	40	60	120	∞
n=1	6056	6106	6157	6209	6261	6287	6313	6339	6366
2	99.4	99.4	99.4	99.4	99.5	99.5	99.5	99.5	99.5
3	27.2	27.1	26.9	26.7	26.5	26.4	26.3	26.2	26.1
4	14.5	14.4	14.2	14.0	13.8	13.7	13.7	13.6	13.5
5	10.1	9.89	9.72	9.55	9.38	9.29	9.20	9.11	9.02
6	7.87	7.72	7.56	7.40	7.23	7.14	7.06	6.97	6.88
7	6.62	6.47	6.31	6.16	5.99	5.91	5.82	5.74	5.65
8	5.81	5.67	5.52	5.36	5.20	5.12	5.03	4.95	4.86
9	5.26	5.11	4.96	4.81	4.65	4.57	4.48	4.40	4.31
10	4.85	4.71	4.56	4.41	4.25	4.17	4.08	4.00	3.91
12	4.30	4.16	4.01	3.86	3.70	3.62	3.54	3.45	3.36
15	3.80	3.67	3.52	3.37	3.21	3.13	3.05	2.96	2.87
20	3.37	3.23	3.09	2.94	2.78	2.69	2.61	2.52	2.42
30	2.98	2.84	2.70	2.55	2.39	2.30	2.21	2.11	2.01
40	2.80	2.66	2.52	2.37	2.20	2.11	2.02	1.92	1.80
60	2.63	2.50	2.35	2.20	2.03	1.94	1.84	1.73	1.60
120	2.47	2.34	2.19	2.03	1.86	1.76	1.66	1.53	1.38
∞	2.32	2.18	2.04	1.88	1.70	1.59	1.47	1.32	1.00

Example: If $X \sim F_{7,10}$, then $\mathbb{P}(X \leq 5.20) = 0.99$.

75

	m=1	2	3	4	5	6	7	8	9
n=1	648	800	864	900	922	937	948	957	963
2	38.5	39.0	39.2	39.2	39.3	39.3	39.4	39.4	39.4
3	17.4	16.0	15.4	15.1	14.9	14.7	14.6	14.5	14.5
4	12.2	10.6	9.98	9.60	9.36	9.20	9.07	8.98	8.90
5	10.0	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68
6	8.81	7.26	5.60	6.23	5.99	5.82	5.70	5.60	5.52
7	8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82
8	7.57	6.05	5.42	5.05	4.82	4.65	4.53	4.43	4.36
9	7.21	5.71	5.08	4.72	4.48	4.32	4.20	4.10	4.03
10	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78
12	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44
15	6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12
20	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84
30	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57
40	5.42	4.05	3.46	3.13	2.90	2.74	2.62	2.53	2.45
60	5.29	3.93	3.34	3.01	2.79	2.63	2.51	2.41	2.33
120	5.15	3.80	3.33	2.89	2.67	2.52	2.39	2.30	2.22
∞	5.02	3.69	3.12	2.79	2.67	2.41	2.29	2.19	2.11

	m = 10	12	15	20	30	40	60	120	∞
n=1	969	977	985	993	1001	1006	1010	1014	1018
2	39.4	39.4	39.4	39.4	39.5	39.5	39.5	39.5	39.5
3	14.4	14.3	14.3	14.2	14.1	14.0	14.0	13.9	13.9
4	8.84	8.75	8.66	8.56	8.46	8.41	8.36	8.31	8.26
5	6.62	6.52	6.43	6.33	6.23	6.18	6.12	6.07	6.02
6	5.46	5.37	5.27	5.17	5.07	5.01	4.96	4.90	4.85
7	4.76	4.67	4.57	4.47	4.36	4.31	4.25	4.20	4.14
8	4.30	4.20	4.10	4.00	3.89	3.84	3.78	3.73	3.67
9	3.96	3.87	3.77	3.67	3.56	3.51	3.45	3.39	3.33
10	3.72	3.62	3.52	3.42	3.31	3.26	3.20	3.14	3.08
12	3.37	3.28	3.18	3.07	2.96	2.91	2.85	2.79	2.72
15	3.06	2.96	2.86	2.76	2.64	2.59	2.52	2.46	2.40
20	2.77	2.68	2.57	2.46	2.35	2.29	2.22	2.16	2.09
30	2.51	2.41	2.31	2.20	2.07	2.01	1.94	1.87	1.79
40	2.39	2.29	2.18	2.07	1.94	1.88	1.80	1.72	1.64
60	2.27	2.17	2.06	1.94	1.82	1.74	1.67	1.58	1.48
120	2.16	2.05	1.94	1.82	1.69	1.61	1.53	1.43	1.31
∞	2.05	1.94	1.83	1.71	1.57	1.48	1.39	1.27	1.00

Example: if $X \sim F_{7,10}$. Then, $\mathbb{P}(X \leq 3.95) = 0.975$.

1.88

1.94

				$\gamma = 0$.95				
	m=1	2	3	4	5	6	7	8	9
n=1	161	200	216	225	230	234	237	239	241
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4
3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96

	m = 10	12	15	20	30	40	60	120	∞
n=1	242	244	246	248	250	251	252	253	254
2	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5
3	8.79	8.74	8.70	8.66	8.62	8.59	8.57	8.55	8.53
4	5.96	5.91	5.86	5.80	5.75	5.72	5.69	5.66	5.63
5	4.74	4.68	4.62	4.56	4.50	4.46	4.43	4.40	4.37
6	4.06	4.00	3.94	3.87	3.81	3.77	3.74	3.70	3.67
7	3.64	3.57	3.51	3.44	3.38	3.34	3.30	3.27	3.23
8	3.35	3.28	3.22	3.15	3.08	3.04	3.01	2.97	2.93
9	3.14	3.07	3.01	2.94	2.86	2.83	2.79	2.75	2.71
10	2.98	2.91	2.85	2.77	2.70	2.66	2.62	2.58	2.54
12	2.75	2.69	2.62	2.54	2.47	2.43	2.38	2.34	2.30
15	2.54	2.48	2.40	2.33	2.25	2.20	2.16	2.11	2.07
20	2.35	2.28	2.20	2.12	2.04	1.99	1.95	1.90	1.84
30	2.16	2.09	2.01	1.93	1.84	1.79	1.74	1.68	1.62
40	2.08	2.00	1.92	1.84	1.74	1.69	1.64	1.58	1.51
60	1.99	1.92	1.84	1.75	1.65	1.59	1.53	1.47	1.39
120	1.91	1.83	1.75	1.66	1.55	1.50	1.43	1.35	1.25
∞	1.83	1.75	1.67	1.57	1.46	1.39	1.32	1.22	1.00

Example: if $X \sim F_{7,10}$. Then, $\mathbb{P}(X \leq 3.14) = 0.95$.

3.84

 ∞

3.00

2.60

2.37

2.21

2.10

2.01