

CIÊNCIAS DA COMPUTAÇÃO

Aspectos Teóricos da Computação

Prof. César C. Xavier

Aspectos Teóricos da Computação

ROTEIRO

Máquinas de Turing - Parte II

- Exercícios
- Expressões Regulares
- Autômato Finito Não-Determinístico (NFA)
- Conversão NFA para DFA
- Máquina de Turing Não Determinísticas
- Máquina de Turing com Várias Fitas
- Máquina de Turing com Acesso Aleatório

Prof. César C. Xavier

Exercícios

#1: Demonstre que $B = \{ w \mid w \text{ tem um número ímpar de 1's } \text{\'e}$ regular, ou seja, mostre que existe um AFD que o reconheça.

Resp.:

Prof. César C. Xavier

Aspectos Teóricos da Computação

Exercícios

#2: $C = \{ w \mid w \text{ tem o mesmo número de 0's e de 1's } \} \text{ é regular?}$

Resp.:

Não! AFD e AFND não possuem memória!

Expressões Regulares

Sejam A e B linguagens. São operações regulares:

a) União: conjunto de palavras que estão em A ou em B.

$$A \cup B = \{ w \mid w \in A \text{ ou } w \in B \}$$

b) Concatenação: conjunto de strings que podem ser formadas tomando-se qualquer string de *A* e concatenando-se esta string com qualquer string de *B*.

$$A.B = AB = A \circ B = \{ xy \mid x \in A \in y \in B \}$$

Prof. César C. Xavier

Aspectos Teóricos da Computação

Expressões Regulares

Sejam A e B linguagens. São operações regulares:

c) Fechamento (ou estrela ou fechamento de Kleene): o fechamento da linguagem A é denominado de A* e representa o conjunto de todos os strings que podem ser formados tomando-se qualquer número de strings de A, possivelmente com repetições (ou seja, o mesmo string pode ser escolhido mais de uma vez) e concatenando-se todos eles.

Expressões Regulares

Exemplos:

#1) Seja
$$A = \{01, 001, 111\} e B = \{\epsilon, 001\}.$$

a)
$$A \cup B = ?$$

$$A \cup B = \{\epsilon, 01, 001, 111\}$$

 $AB = \{01, 001, 111, 01001, 001001, 111001\}$

Prof. César C. Xavier

Aspectos Teóricos da Computação

Expressões Regulares

Exemplos:

#2) Concatenação: Seja
$$A = \{0, 11\}$$
. $A^0 = \{\epsilon\}$.

a)
$$A^2 = ?$$
 (escolha 2 strings de A)

$$A^2 = \{00, 011, 110, 1111\}$$

b)
$$A^3$$
= ? (escolha 3 strings dos dois de A); $A^2A = AA^2$?

$$A^3 = \{ 000, 0011, 0110, 01111, 1100, 11011, 11110, 111111 \}$$

c)
$$A^* = A^0 \cup A^1 \cup A^2 \cup ...$$

Prof. César C. Xavier

Expressões Regulares

- São construídas (i) a partir de elementos de um alfabeto Σ , componentes de Σ , linguagem vazia ϕ , string vazia (ϵ) e (ii) faz uso de: \cup , o, *

Exemplos:

$$-(0 \cup 1)^* = ?$$

 Σ^* , nos dá todas as strings de Σ .

$$-\Sigma^* 1 = ?$$

nos dá todas as strings que terminam com 1.

$$- \Sigma^* 11 \Sigma^* = ?$$

nos dá todas as strings que contém 11 = $L(M_1)$.

Prof. César C. Xavier