Inter'l Appl. No.: PCT/US2004/018171

Page 2 of 20

Amendments to the Claims:

1. (Original) A compound of formula (I):

$$R_1$$
 N
 R_2
 R_3
 R_4
 R_1
 R_2
 R_3
 R_4
 R_4

wherein

R₁ is a branched or straight chain C₁-C₈ alkyl;

R₂ is of the formula (II),

$$R_{5}$$
 (CH₂)_nN-R₆ (II)

wherein n is an integer ranging from 1 to 8; R_5 is H or $(CH_2)_pCH_3$, and R_6 is H or $(CH_2)_mOH$,

wherein p is an integer ranging from 1 to 7 and m is an integer ranging from 1 to 8;

R₃ is of the formula (III),

$$--(CH_2)_qC_6H_4-R_7$$
 (III)

wherein q is an integer ranging from 1 to 8; and R₇ is selected from the group consisting of H, OH, NH₂, (CH₂)_tOH, and R₉COOH;

wherein R_9 is a straight or branched chain alkylene or alkenylene group having 1 to 8 carbon atoms, and t is an integer ranging from 1 to 8; R_4 is of the formula (IV),

$$-(CH2)r - (IV)$$

$$R8$$

wherein r is an integer ranging from 1 to 8 and R_8 is ortho or meta and is selected from the group consisting of H, OH, (CH₂)_fNH₂, (CH₂)_sOH, and R₁₀COOH

Inter'l Appl. No.: PCT/US2004/018171

Page 3 of 20

wherein f is 0 or f and s are independently integers ranging from 1 to 8; and,

 R_{10} is a C_1 - C_8 straight or branched chain alkylene or alkenylene; and; salts, solvates, and hydrates thereof.

- 2. (Original) The compound according to Claim 1, wherein R_1 is C_3 alkyl; R_2 is $(CH_2)_2N(CH_2CH_3)(CH_2)_2OH$; R_8 is NH_2 ; R_7 is H; R_8 is NH_2 ; R_8 is R_8 ; R_8 ; R_8 ; R_8 is R_8 ; R_8 ;
- 3. (Original) The compound according to Claim 1, wherein R_1 is C_3 alkyl; R_5 is C_3 (CH_3), wherein p is 1; R_6 is H; R_7 is NH_2 ; f is 0; R_8 is NH_2 ; n is 2; q is 1; and r is 2.
- 4. (Original) The compound according to Claim 1, wherein R_1 is C_3 alkyl; R_5 is C_3 (C_3) wherein p is 1; C_4 is C_5 is C_6 is C_7 is C_8 is
- 5. (Original) The compound according to Claim 1, wherein R_1 is C_3 alkyl; R_5 is $CH_3(CH_2)_p$ wherein p is 1; R_6 is H; R_7 is H; R_8 is $(CH_2)_sOH$ wherein s is 2 and $R_{10}COOH$, wherein R_{10} is CH=CH; n is 2; q is 1; and r is 2.
- 6. (Original) The compound according to Claim 1, wherein R_1 is C_3 alkyl; R_5 is $CH_3(CH_2)_p$ wherein p is 1; R_6 is H; R_7 is $(CH_2)_tOH$ wherein t is 2 and R_9COOH , wherein R_9 is CH=CH; R_8 is NH_2 ; f is 0; n is 2; q is 1; and r is 2.
- 7. (Currently amended) A diagnostic assay-type probe <u>comprising a compound</u> <u>according to claim 1; of the compound (I):</u>

$$\begin{bmatrix} R_1 & N & R_2 \\ N & N & R_3 \\ N & R_4 & (I) \end{bmatrix}$$

Inter'l Appl. No.: PCT/US2004/018171

Page 4 of 20

wherein

R₁ is a branched or straight chain C₁-C₈ alkyl;

R₂ is of the formula (II),

$$\frac{R_5}{(CH_2)_nN-R_6}$$
 (II)

wherein n is an integer ranging from 1 to 8; R_5 is H or $(CH_2)_pCH_3$, and R_6 is H or $(CH_2)_mOH$,

wherein p is an integer ranging from 1 to 7 and m is an integer ranging from 1 to 8;

R₃ is of the formula (III),

$$---(CH_2)_qC_6H_4-R_7$$
 (III)

wherein q is an integer ranging from 1 to 8; and R₇ is selected from the group consisting of H, OH, NH₂, (CH₂)_tOH, and R₉COOH;

wherein R₉ is a straight or branched chain alkylene or alkenylene group having 1 to 8 carbon atoms, and t is an integer ranging from 1 to 8; R₄ is of the formula (IV),

wherein r is an integer ranging from 1 to 8 and R₈ is ortho or meta and is selected from the group consisting of H, OH, (CH₂)_fNH₂, (CH₂)₆OH, and R₁₀COOH;

wherein f is 0 or f and s are independently integers ranging from 1 to 8; and,

Inter'l Appl. No.: PCT/US2004/018171

Page 5 of 20

R₁₀ is a C₁-C₈ straight or branched chain alkylene or alkenylene; and; salts, solvates, and hydrates thereof;

wherein the compound is labeled by a radioactive or non-radioactive material thereon or optionally connected to the compound of formula (I) by a spacer component present thereon, wherein the spacer component has functionality which bonds to the amine, hydroxyl, or carboxyl functionality present on the R₇ or R₈ substituent of the compound.

- 8. (Original) The assay-type probe according to Claim 7, wherein said non-radioactive material is a fluorescent dye.
- 9. (Original) The assay-type probe according to Claim 7, wherein said non-radioactive material is biotin.
- 10. (Original) The assay-type probe according to Claim 7, wherein said non-radioactive material is a luminescent dye.
- 11. (Original) The assay-type probe according to Claim 7, wherein said non-radioactive material is obelin.
- 12. (Original) The assay-type probe according to Claim 7, wherein R_1 is C_3 alkyl, R_5 is $CH_3(CH_2)_p$; p is 1; R_7 is H; R_8 is NH_2 ; f is 0; n is 2; q is 1; r is 2; and R_6 is $(CH_2)_mOH$; m is 2; and the non-radioactive material is biotin bonded to the hydroxyl group present on R_6 .
- 13. (Original) The assay-type probe according to Claim 7, wherein R_1 is C_3 alkyl; R_5 is $CH_3(CH_2)_p$ wherein p is 1; R_6 is H; R_7 is NH_2 ; f is 0; n is 2; q is 1; r is 2; R_8 is NH_2 ; and the non-radioactive material is biotin bonded to the amino group present on R_8 .
- 14. (Original) The assay-type probe according to Claim 7, wherein R_1 is C_3 alkyl; R_5 is C_3 is C_4 is C_5 wherein p is 1; C_6 is H; C_7 is H; n is 2; q is 1; r is 2; and C_8 is

Inter'l Appl. No.: PCT/US2004/018171

Page 6 of 20

 $R_{10}COOH$, wherein R_{10} is an alkylene or alkenylene group having 1 to 8 carbon atoms; and the non-radioactive material is biotin bonded to the carboxyl group present on R_8 .

- 15. (Original) The assay-type probe according to Claim 7, wherein the compound is labeled by the radioactive material connected by a spacer component, and the spacer component has functionality which bonds to the amine, hydroxyl, or carboxyl functionality present on the R₇ or R₈ substituent of the compound.
- 16. (Original) The assay-type probe according to Claim 7, wherein the compound is labeled by the radioactive material and the radioactive material is a radioactive isotope selected from the group consisting of ¹⁸F, tritium, ¹¹C, ¹³C, and ¹⁵N; a complex of a metal atom or complex of a metal ion, a chelating agent, or ¹²⁵I.
- 17. (Currently amended) An imaging agent for adenosine receptors comprising a compound according to claim 1; of Formula (I):

wherein

R₄ is a branched or straight chain C₄-C₈ alkyl;

R₂ is of the formula (II),

Inter'l Appl. No.: PCT/US2004/018171

Page 7 of 20

$$R_{5}$$
 (CH₂)_nN-R₆ (II)

wherein n is an integer ranging from 1 to 8; R_5 is H or $(CH_2)_pCH_3$, and R_6 is H or $(CH_2)_mOH$,

wherein p is an integer ranging from 1 to 7 and m is an integer ranging from 1 to 8;

R₃ is of the formula (III),

$$---(CH_2)_qC_6H_4-R_7$$
 (III)

wherein q is an integer ranging from 1 to 8; and R₇ is selected from the group consisting of H, OH, NH₂, (CH₂)_tOH, and R₉COOH;

wherein R₉ is a straight or branched chain alkylene or alkenylene group having 1 to 8 carbon atoms, and t is an integer ranging from 1 to 8; R₄ is of the formula (IV),

wherein r is an integer ranging from 1 to 8 and R₈ is selected from the group consisting of H, OH, (CH₂)_fNH₂, (CH₂)_sOH, and R₁₀COOH

wherein f is 0 or f and s are independently integers ranging from 1 to 8; and,

R₁₀ is a C₁-C₈ straight or branched chain alkylene or alkenylene; and;

Inter'l Appl. No.: PCT/US2004/018171

Page 8 of 20

salts, solvates, and hydrates thereof wherein at least one of its atoms or one or more atoms bonded thereto are radioactively radioactive, spin labeled, or both radioactively radioactive and spin labeled.

- 18. (Original) The imaging agent of according to Claim 17 wherein the marker atom is a nuclear spin labeled.
- 19. (Original) The imaging agent of according to Claim 18 wherein the marker atom is a ¹⁹F.
- 20. (Original) The imaging agent of according to Claim 17 wherein the marker atom is a radioactive isotope.
- 21. (Original) The imaging agent of according to Claim 17 wherein the radioactive isotope is ¹⁸F, ¹¹C, ¹⁵N, ¹²⁵I, or ³H
- 22. (Currently amended) A method of treating A₁ adenosine receptor related disorders in a mammal in need of treatment thereof, comprising administering an effective amount of a compound <u>according to claim 1</u>, of formula (I):

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

wherein

R₄ is a branched or straight chain C₄-C₈ alkyl;

R₂ is of the formula (II),

Inter'l Appl. No.: PCT/US2004/018171

Page 9 of 20

$$R_{5}$$
 (CH₂)_nN-R₆ (II)

wherein n is an integer ranging from 1 to 8; R_5 is H or $(CH_2)_pCH_3$, and R_6 is H or $(CH_2)_mOH$,

wherein p is an integer ranging from 1 to 7 and m is an integer ranging from 1 to 8;

R₃ is of the formula (III),

$$---(CH_2)_qC_6H_4-R_7-(III)$$

wherein q is an integer ranging from 1 to 8; and R₇ is selected from the group consisting of H, OH, NH₂, (CH₂)_tOH, and R₉COOH;

wherein R_9 is a straight or branched chain alkylene or alkenylene group having 1 to 8 carbon atoms, and t is an integer ranging from 1 to 8; R_4 is of the formula (IV),

$$\begin{bmatrix} -(CH_2)r - \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \end{bmatrix}$$

wherein r is an integer ranging from 1 to 8 and R₈ is selected from the group consisting of H, OH, (CH₂)_fNH₂, (CH₂)_sOH, and R₄₀COOH

wherein f is 0 or f and s are independently integers ranging from 1 to 8; and,

 R_{10} is a C_1 - C_8 straight or branched chain alkylene or alkenylene; and; or a pharmaceutically acceptable salt salts, solvate solvates, or hydrate and hydrates thereof, or a combination of compounds according to claim 1 of formula (I), optionally in combination with one or more other therapeutic agents, to the mammal in need thereof.

Inter'l Appl. No.: PCT/US2004/018171

Page 10 of 20

23. (Original) The method according to Claim 22 wherein for the compound of formula (I) R_1 is C_3 alkyl; R_5 is $CH_3(CH_2)_p$ wherein p is 1; R_6 is $(CH_2)_mOH$ wherein m is 2; R_7 is H; R_8 is NH_2 ; f is 0; n is 2; m is 2; q is 1; and r is 2.

- 24. (Original) The method according to Claim 22 wherein for the compound of formula (I) R_1 is C_3 alkyl; R_5 is C_3 is C_3 wherein p is 1; C_4 is C_5 is C_6 is C_7 is C_8 is C_8
- 25. (Original) The method according to Claim 22 wherein for the compound of formula (I) R_1 is C_3 alkyl; R_5 is $CH_3(CH_2)_p$ wherein p is 1; R_6 is H; R_7 is H; R_8 is NH_2 ; f is 0; n is 2; q is 1; and r is 2.
- 26. (Original) The method according to Claim 22 wherein for the compound of formula (I) R_1 is C_3 alkyl; R_5 is $CH_3(CH_2)_p$ wherein p is 1; R_6 is H; R_7 is H; R_8 is $(CH_2)_sOH$ wherein s is 2 and $R_{10}COOH$, wherein R_{10} is CH=CH; n is 2; q is 1; and r is 2.
- 27. (Original) The method according to Claim 22 wherein for the compound of formula (I) R_1 is C_3 alkyl; R_5 is $CH_3(CH_2)_p$ wherein p is 1; R_6 is H; R_7 is $(CH_2)_tOH$ wherein t is 2 and R_9COOH , wherein R_9 is CH=CH; R_8 is NH_2 ; f is 0; n is 2; q is 1; and r is 2.
- 28. (Original) The method according to Claim 22 wherein the A₁ adenosine receptor related disorder is congestive heart failure, hypertension, ischemia-reperfusion organ injury, endotoxin-related tissue injury, renal failure, Alzheimer's disease, depression, obesity, asthma, diabetes, cystic fibrosis, allergic conditions, autoimmune disorders, inflammatory disorders, chronic obstructive pulmonary disorders, chronic cough, coronary artery disease, biliary colic, postoperative ileus, fibrosis, sclerosis, Adult Respiratory Distress Syndrome (ARDS), acquired immunodefiency syndrome

Inter'l Appl. No.: PCT/US2004/018171

Page 11 of 20

(AIDS), Acute Lung Injury (ALI), acquired immunodefiency syndrome (AIDS), Severe Acute Respiratory Syndrome (SARS), septicemia, substance abuse, drug dependence, or Parkinson's disease and the mammal is a human.

29. (Currently amended) A pharmaceutical composition <u>comprising</u> which comprises a compound <u>according to claim 1</u>, of Formula (I):

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

wherein

R₁ is a branched or straight chain C₁-C₈ alkyl;

R₂ is of the formula (II),

$$\begin{bmatrix} R_5 \\ (CH_2)_n N - R_6 \end{bmatrix}$$
 (II)

wherein n is an integer ranging from 1 to 8; R_5 is H or $(CH_2)_pCH_3$, and R_6 is H or $(CH_2)_mOH$,

wherein p is an integer ranging from 1 to 7 and m is an integer ranging from 1 to 8;

R₃ is of the formula (III),

$$---(CH_2)_qC_6H_4-R_7--(III)$$

wherein q is an integer ranging from 1 to 8; and R₇ is selected from the group consisting of H, OH, NH₂, (CH₂)_tOH, and R₀COOH;

Inter'l Appl. No.: PCT/US2004/018171

Page 12 of 20

wherein R₉ is a straight or branched chain alkylene or alkenylene group having 1 to 8 carbon atoms, and t is an integer ranging from 1 to 8; R₄ is of the formula (IV),

$$\begin{bmatrix} -(CH_2)r - \begin{pmatrix} \\ + \\ R_8 \end{bmatrix}$$

wherein r is an integer ranging from 1 to 8 and R₈ is selected from the group consisting of H, OH, (CH₂)_fNH₂, (CH₂)_sOH, and R₁₀COOH wherein f is 0 or f and s are independently integers ranging from 1 to 8; and,

R₁₀-is a C₁-C₈ straight or branched chain alkylene or alkenylene; and; or a pharmaceutically salt salts, solvate solvates, or hydrate and hydrates thereof and a pharmaceutically acceptable carrier.

30. (Currently amended) A prodrug comprising a compound according to claim

1. of the compound of the formula (I):

$$\begin{bmatrix} & & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & &$$

wherein

R₄ is a branched or straight chain C₄-C₈ alkyl;

R₂ is of the formula (II),

Inter'l Appl. No.: PCT/US2004/018171

Page 13 of 20

$$R_{5}$$
 (CH₂)_nN-R₆ (II)

wherein n is an integer ranging from 1 to 8; R_5 is H or $(CH_2)_pCH_3$, and R_6 is H or $(CH_2)_mOH$,

wherein p is an integer ranging from 1 to 7 and m is an integer ranging from 1 to 8:

R₃ is of the formula (III),

$$---(CH_2)_qC_6H_4-R_7$$
 (III)

wherein q is an integer ranging from 1 to 8; and R₇ is selected from the group consisting of H, OH, NH₂, (CH₂)_tOH, and R₉COOH;

wherein R_9 is a straight or branched chain alkylene or alkenylene group having 1 to 8 carbon atoms, and t is an integer ranging from 1 to 8; R_4 is of the formula (IV),

$$\begin{bmatrix} -(CH_2)r - \begin{pmatrix} \\ + \\ R_8 \end{bmatrix} \end{bmatrix}$$

wherein r is an integer ranging from 1 to 8 and R₈ is selected from the group consisting of H, OH, (CH₂)_fNH₂, (CH₂)_eOH, and R₁₀COOH

wherein f is 0 or f and s are independently integers ranging from 1 to 8; and,

R₁₀ is a C₁-C₈-straight or branched chain alkylene or alkenylene; and; salts, solvates, and hydrates thereof.

Inter'l Appl. No.: PCT/US2004/018171

Page 14 of 20

31. (Currently amended) A method of treating an A₁ adenosine receptor related disorder in a patient in need of treatment thereof, comprising administering an effective amount of a prodrug according to claim 30, or a pharmaceutically acceptable salt, solvate, or hydrate thereof, optionally in combination with one or more other therapeutic agents, to the patient in need thereof. The method of administering an appropriate amount of a prodrug of Claim 30 to a patient in need thereof.

32. (Currently amended) A method of preparing a compound of <u>claim 1, the</u> <u>method comprising:</u> formula (I):

$$\begin{bmatrix} R_1 & N & R_2 \\ N & N & R_3 \\ N & R_4 & (I) \end{bmatrix}$$

wherein

R₄ is a branched or straight chain C₄-C₈ alkyl;

R₂ is of the formula (II),

$$R_{5}$$
 (CH₂)_nN-R₆ (II)

wherein n is an integer ranging from 1 to 8; R_5 is H or $(CH_2)_pCH_3$, and R_6 is H or $(CH_2)_mOH$,

wherein p is an integer ranging from 1 to 7 and m is an integer ranging from 1 to 8;

R₃ is of the formula (III),

Inter'l Appl. No.: PCT/US2004/018171

Page 15 of 20

$$---(CH_2)_qC_6H_4-R_7$$
 (III)

wherein q is an integer ranging from 1 to 8; and R₇ is selected from the group consisting of H, OH, NH₂, (CH₂)_tOH, and R₉COOH;

wherein R₉ is a straight or branched chain alkylene or alkenylene group having 1 to 8 carbon atoms, and t is an integer ranging from 1 to 8; R₄ is of the formula (IV),

$$\begin{bmatrix} -(CH_2)r - R_8 \end{bmatrix}$$

wherein r is an integer ranging from 1 to 8 and R₈ is selected from the group consisting of H, OH, (CH₂)_fNH₂, (CH₂)_sOH, and R₁₀COOH

wherein f is 0 or f and s are independently integers ranging from 1 to 8; and,

R₁₀ is a C₁-C₈ straight or branched chain alkylene or alkenylene; and; salts, solvates, and hydrates thereof comprising:

condensing R₄-NH₂ with R₁NCO to yield a substituted ureas <u>urea</u> of formula (V)

condensing a substituted urea of formula (V) with cyanoacetic acid to yield a compounds compound of formula (VI),

Inter'l Appl. No.: PCT/US2004/018171

Page 16 of 20

converting a compound of formula (VI) by treatment with strong base to yield a compound of formula (VII),

reacting a compound of formula (VII) with NaNO₂ under acidic conditions to yield a compound of formula (VIII)

reducing a compound of formula (VIII) to produce a compound of formula (IX)

Inter'l Appl. No.: PCT/US2004/018171

Page 17 of 20

$$R_1$$
 NH_2 NH_2 R_4 (IX)

condensing a compound of formula (IX) with R₃-CO₂H a compound of either formula (Xa) or (Xb),

cyclizing a compound of formula (Xa) or (Xb) in the presence of a strong base to form a compound of formula (XI), and

$$R_1$$
 N
 N
 R_3
 (XI)

reacting a compound of formula (XI) with L-R2, wherein L is a leaving group, to yield a compound of formula (I).

Inter'l Appl. No.: PCT/US2004/018171

Page 18 of 20

- 33. (Currently amended) The compound according to Claim 1, wherein the compound is: which is:
- 3-[2-(2-Aminophenyl)ethyl]-8-benzyl-7-(2-methylamino)ethyl-1-propylxanthine,
- 3-[2-(3-Aminophenyl)ethyl]-8-benzyl-7-(2-methylamino)ethyl-1-propylxanthine,
- 3-[2-(2-Aminophenyl)ethyl]-8-benzyl-7-(2-ethylamino)ethyl-1-propylxanthine,
- 3-[2-(3-Aminophenyl)ethyl]-8-benzyl-7-(2-ethylamino)ethyl-1-propylxanthine,
- 3-[2-(2-Aminophenyl)ethyl]-7-(2-ethylamino)ethyl-8-[4-(2-hydroxyethyl)]benzyl-1-propylxanthine,
- 3-[2-(3-Aminophenyl)ethyl]-7-(2-ethylamino)ethyl-8-[4-(2-hydroxyethyl)]benzyl-1-propylxanthine,
- 8-(4-Aminobenzyl)-3-[2-(2-aminophenyl)ethyl]-7-[2-ethylamino]ethyl-1-propylxanthine,
- 8-(4-Aminobenzyl)-3-[2-(3-aminophenyl)ethyl]-7-[2-ethylamino]ethyl-1-propylxanthine,
- 3-[2-(2-Aminophenyl)ethyl]-8-benzyl-7-(2-ethylamino)ethyl-1-propylxanthine,
- 3-[2-(3-Aminophenyl)ethyl]-8-benzyl-7-(2-ethylamino)ethyl-1-propylxanthine,
- 3-[2-(2-Aminophenyl)ethyl]-8-benzyl-7-[2-methyl(2-hydroxyethyl)amino]ethyl-1-propylxanthine,
- 3-[2-(3-Aminophenyl)ethyl]-8-benzyl-7-[2-methyl(2-hydroxyethyl)amino]ethyl-1-propylxanthine,
- 3-[2-(2-Aminophenyl)ethyl]-8-benzyl-7-[2-ethyl(2-hydroxyethyl)amino]ethyl-1-propylxanthine,
- 3-[2-(3-Aminophenyl)ethyl]-8-benzyl-7-[2-ethyl(2-hydroxyethyl)amino]ethyl-1-propylxanthine,
- 8-(4-Aminobenzyl)-3-[2-(2-aminophenyl)ethyl]-7-[2-ethyl(2-hydroxyethyl)amino]ethyl-1-propylxanthine,
- 8-(4-Aminobenzyl)-3-[2-(3-aminophenyl)ethyl]-7-[2-ethyl(2-hydroxyethyl)amino]ethyl-1-propylxanthine,
- 3-[4-(2-Aminophenyl)butyl]-8-benzyl-7-[2-ethyl(2-hydroxyethyl)amino]ethyl-1-propylxanthine,

Inter'l Appl. No.: PCT/US2004/018171

Page 19 of 20

3-[6-(2-Aminophenyl)hexyl]-8-benzyl-7-[2-ethyl(2-hydroxyethyl)-amino]ethyl-1-propylxanthine,

- 3-[4-(2-Aminophenyl)butyl]-8-benzyl-7-(2-ethylamino)ethyl-1-propylxanthine,
- 3-[6-(2-Aminophenyl)hexyl]-8-benzyl-7-(2-ethylamino)ethyl-1-propylxanthine,
- 3-[4-(3-Aminophenyl)butyl]-8-benzyl-7-[2-ethyl(2-hydroxyethyl)amino]ethyl-1-propylxanthine,
- 3-[6-(3-Aminophenyl)hexyl]-8-benzyl-7-[2-ethyl(2-hydroxyethyl)-amino]ethyl-1-propylxanthine,
- 3-[4-(3-Aminophenyl)butyl]-8-benzyl-7-(2-ethylamino)ethyl-1-propylxanthine or 3-[6-(3-Aminophenyl)hexyl]-8-benzyl-7-(2-ethylamino)ethyl-1-propylxanthine.