



# **Grundbegriffe der Informatik Tutorium 33**

Lukas Bach, lukas.bach@student.kit.edu | 8.12.2016



KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

## Gliederung



Lukas Bach, lukas.bach@student.kit.edu

Kontextfreie Grammatike

Relationen vol. 2

1 Kontextfreie Grammatiken

Relationen vol. 2

## Kontextfreie Grammatiken



Lukas Bach, lukas.bach@student.kit.edu

### Kontextfreie Grammatiken

Relationen vol. 2

Zur Rekapitulation...

- Was ist ein Alphabet, was eine formale Sprache?
- Was kennen wir für Operationen auf formalen Sprachen?

Betrachte  $L:=\{a^nba^n:n\in\mathbb{N}\}$ . Wie kann man diese Sprache darstellen?

## Kontextfreie Grammatiken



Lukas Bach, lukas.bach@student.kit.edu

### Kontextfreie Grammatiken

Relationen vol. 2

### Kontextfreie Grammatik

Ein Tupel G = (N, T, S, P) mit

- N Alphabet (Nichtterminalsymbole)
- T Alphabet mit  $N \cap T = \emptyset$  (Terminalsymbole)
- $S \in N$  (Startsymbol)
- $P \subseteq N \times (N \cup T)^*$  mit  $|P| \in \mathbb{N}_0$
- Was ist  $N \times (N \cup T)^*$ ? Bei  $N := \{a, b, c\}, T = \{S, A, B\}$ :  $N \times (N \cup T)^* = \{(a, abSAcB), (a, SSS), (b, BSabc), ...\}$ .
- Andere Schreibweise:  $P: N \to (N \cup T)^*$ .
- Für  $(X, w) \in P$  schreibt man  $X \to w$
- Statt  $\{X \to w_1, X \to w_2\}$  schreibt man auch  $\{X \to w_1 | w_2\}$

## **Ableitungsschritt**



Lukas Bach, lukas.bach@student.kit.edu

## Kontextfreie Grammatiken

Relationen vol. 2

Erinnerung: N = Nichtterminalsymbole, T = Terminalsymbole.

## Ableitungsschritt

 $v \in (N \cup T)^*$  ist in einem Schritt aus  $u \in (N \cup T)^*$  ableitbar, wenn

- $u = w_1 X w_2$  und  $v = w_1 w_X w_2$  für  $w_1, w_2 \in (N \cup T)^*$
- und  $X \rightarrow w_X$  in P

#### Notation

 $u \Rightarrow v$ 

## Beispiel

$$\textit{G} := (\{\textit{S},\textit{B}\},\{\textit{a},\textit{b}\},\textit{S},\{\textit{S} \rightarrow \textit{aBa}|\textit{aSa},\textit{B} \rightarrow \textit{b}\})$$

- $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aaaBaaa \Rightarrow aaabaaa$ . Fertig.
- aaaSaaa ⇒ aaaabaaaa! ⇒ heißt eine Ableitung!

## **Ableitungsfolge**



Lukas Bach, lukas.bach@student.kit.edu

#### Kontextfreie Grammatiken

## Ableitungsfolge

Wir definieren  $\Rightarrow^i$  für  $i \in \mathbb{N}_0$  folgendermaßen:

#### Relationen vol. 2

Für  $u, v \in (N \cap T)^*$  gelte:

- $u \Rightarrow^0 v$  genau dann, wenn u = v gilt.
- $u \Rightarrow^{i+1} v$  genau dann, wenn ein  $w \in (N \cup T)^*$  existiert, für das  $u \Rightarrow w \Rightarrow^i v$  gilt. Für  $u \Rightarrow^i v$  sagt man "v ist aus u in i Schritten ableitbar".

## **Beispiel**

$$G:=(\{S,B\},\{a,b\},S,\{S
ightarrow aBa|aSa,B
ightarrow b\})$$
 Dann gilt  $aaaSaaa\Rightarrow^0$   $aaaSaaa$  und  $aaaSaaa\Rightarrow^2$   $aaaabaaaa$ 

Lukas Bach, lukas.bach@student.kit.edu

## Kontextfreie Grammatiken

Relationen vol. 2

#### Ableitbarkeit

Für  $u, v \in (N \cup T)^*$  gelte  $u \Rightarrow^* v$  genau dann, wenn ein  $i \in \mathbb{N}_0$  existiert, mit  $u \Rightarrow^i v$ . Man sagt dann "v ist aus u ableitbar".

## Beispiel

 $G:=(\{S,B\},\{a,b\},S,\{S
ightarrow aBa|aSa,B
ightarrow b\})$  Dann gilt  $S\Rightarrow^*$  aaaSaaa und  $aSa\Rightarrow^*$  aaaabaaaa aber aSa
eq abba.

## **Ableitungsbaum**



Lukas Bach, lukas.bach@student.kit.edu

### Kontextfreie Grammatiken

#### Relationen vol. 2

## **Beispiel**

$$G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$$
  
Dann gilt  $S \Rightarrow^* aaabaaa$ 

- Startsymbol ist Wurzel
- Nichtterminale sind innere Knoten
- Für X ⇒ w sind die Zeichen von w die Kinder von X
- Terminale sind die Blätter



## Übung zu Kontextfreien Grammatiken



Lukas Bach, lukas.bach@student.kit.edu

## Kontextfreie Grammatiken

Relationen vol. 2

## Übung

Gegeben ist die Kontextfreie Grammatik (N, T, S, P) mit:

- Nichtterminalsymbolen  $N := \{A, B, S\}$ .
- Terminalsymbolen  $T := \{a, b, c\}$
- Startsymbol S
- Produktionen  $P := \{S \rightarrow aaS|bbS|SAS|\varepsilon, A \rightarrow cB, B \rightarrow a, b, c, \varepsilon\}.$

Aufgabe: Welche der folgenden Wörter sind ableitbar? Konstruiere den Ableitungsbaum und zeige, wie sie abgeleitet werden.

- ccbbcbbbbbbbbaaaa?
- aabbaabbaabb?
- c?

## Formale Sprachen erzeugen



Lukas Bach, lukas.bach@student.kit.edu

### Kontextfreie Grammatiken

Relationen vol. 2

## Erzeugte Sprache

Sei G = (N, T, S, P) eine kontextfreie Grammatik. Dann nennen wir  $L(G) := \{w \in T^* | S \Rightarrow^* w\}$  die von G erzeugte Sprache.

## Kontextfreie Sprache

Eine formale Sprache L heißt genau dann kontextfrei, wenn eine kontextfreie Grammatik G existiert, mit L(G) = L.

$$G := (\{S, B\}, \{a, b\}, S, \{S \rightarrow aBa | aSa, B \rightarrow b\})$$

Dann ist 
$$L(G) = \{a^nba^n | n \in \mathbb{N}_+\}$$

## Verständnisfragen



Lukas Bach, lukas.bach@student.kit.edu

### Kontextfreie Grammatiken

Relationen vol. 2

- $\bullet G = (\{X\}, \{a, b\}, X, \{X \to \varepsilon | aX | bX\})$ 
  - Welche Wörter lassen sich in drei Schritten ableiten?
  - $\rightarrow \{aa, ab, ba, bb\}$
  - Was ist L(G)?
  - $\rightarrow L(G) = \{a, b\}^*$
- Gibt es auch eine Grammatik G mit  $L(G) = \{\}$ ?
- $\to G_1 := (\{X\}, \{a, b\}, X, \{X \to X\}) \text{ oder } G_2 := (\{X\}, \{a, b\}, X, \{\})$ 
  - Wahr oder falsch? Wenn  $w_1 \Rightarrow w_2$  gilt, dann gilt auch  $w_1 \rightarrow w_2$
- Was ist der Unterschied von  $\Rightarrow$  und  $\Rightarrow$ \*?

Lukas Bach, lukas.bach@student.kit.edu

### Kontextfreie Grammatiken

Relationen vol. 2

### Aufgaben zu kontextfreien Grammatiken

- Sei  $L_1 := \{wbaaw' | w, w' \in \{a, b\}^*\}$ . Konstruiere eine Grammatik  $G_1$  mit  $L(G_1) = L_1$ .
- $\rightarrow G_1 := (\{X,Y\}, \{a,b\}, X, \{X \rightarrow YbaaY, Y \rightarrow aY|bY|\varepsilon\}).$ 
  - Welche Sprache erzeugt  $G_2 = (\{S, X, Y\}, \{a, b\}, S, P_2)$  mit  $P_2 = \{S \rightarrow X | Y, X \rightarrow aaXb|aab, Y \rightarrow aYbb|abb\}$ ?
- $\to L(G_2) = \{a^{2k}b^k | k \in \mathbb{N}_+\} \cup \{a^kb^{2k} | k \in \mathbb{N}_+\}$

## Beispiel zu kontextfreien Grammatiken



Lukas Bach, lukas.bach@student.kit.edu

### Kontextfreie Grammatiken

Relationen vol. 2

$$G = (\{X\}, \{(,)\}, X, \{X \to XX | (X) | \varepsilon\})$$

- Welche Wörter sind ableitbar?
- → "wohlgeformte Klammerausdrücke"
  - Welche Eigenschaften besitzen diese Wörter?
- $\rightarrow N_{(}(w) = N_{)}(w)$  Ist diese Eigenschaft hinreichend?
- $\rightarrow$  Nein, es muss gelten: Für alle Präfixe v von w gilt  $N_{(v)} \geq N_{(v)}$
- Andere Grammatik möglich, die alle wohlgeformten Klammerausdrücke erzeugt?

$$\rightarrow G = (\{X\}, \{(,)\}, X, \{X \rightarrow (X)X | \varepsilon\})$$

## **Grenze kontextfreier Grammatiken**



Lukas Bach, lukas.bach@student.kit.edu

### Kontextfreie Grammatiken

Relationen vol. 2

Es gibt auch Sprachen, die wir nicht mit einer kontextfreien Grammatik erzeugen können!

Beispiel aus der Vorlesung:

$$L_{vv} = \{vcv|v \in \{a,b\}^*\} \subseteq \{a,b,c\}^*$$

## Relationen



Lukas Bach, lukas.bach@student.kit.edu

Kontextfreie Grammatike

Relationen vol. 2

## Erinnerung Relationen

Es seien A und B Mengen. Eine Teilmenge  $R \subseteq A \times B$  heißt Relation.

Lukas Bach, lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Relationen vol. 2

#### Definition Produkt von Relationen

Es seinen A, B und C Mengen und  $B \subseteq A \times B$ ,  $S \subseteq B \times C$  Relationen. Dann ist

Dann ist

 $S \circ R := \{(a, c) \in A \times C | \exists b \in B \text{ mit } (a, b) \in R \land (b, c) \in S\}$  das Produkt der Belationen B und S.

## Bemerkung

 $S \circ R$  ist eine Relation auf A und C, bildet also von A nach C ab.

### Assoziativität des Produktes

Es seien A, B, C und D Mengen und  $R \subseteq A \times B, S \subseteq B \times C$  sowie  $T \subseteq C \times D$  Relationen. Dann gilt  $(T \circ S) \circ R = T \circ (S \circ R)$ .

Lukas Bach, lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Relationen vol. 2

## Homogene Relation

Es seien A und B Mengen und  $R \subseteq A \times B$  eine Relation. R heißt homogen, wenn A = B und heterogen, wenn  $A \neq B$  gilt.

## Identität

Sei M eine Menge.  $I_M := \{(x, x) | x \in M\}$ 

## Potenz von Relationen

Sei M eine Menge und  $R\subseteq M\times M$  eine homogene Relation. Dann definieren wir  $R^i$  für  $i\in\mathbb{N}_0$  folgendermaßen:

- $R^0 := I_M$
- Für alle  $i \in \mathbb{N}_0 : R^{i+1} := R^i \circ R$

Also  $R^4 = R \circ R \circ R \circ R$ .

## Reflexitivität



Lukas Bach, lukas.bach@student.kit.edu

## Satz über das neutrale Element

Kontextfreie Grammatiker Es seien A und B Mengen und  $R \subseteq A \times B$  eine Relation. Dann gilt:  $R \circ I_B = R = I_A \circ R$ .

#### Relationen vol. 2

### Reflexivität

Sei M eine Menge und  $R \subseteq M \times M$  eine homogene Relation. Wenn für alle  $x \in M : (x, x) \in R$ , nennt man R reflexiv.

Also jedes Element der Definitionsmenge der Relation wird auf sich selbst abgebildet (und vielleicht auch auf andere Elemente abgebildet).

#### Lemma

Sei M eine Menge und  $R \subseteq M \times M$  eine homogene Relation. R ist genau dann reflexiv, wenn  $I_M \subseteq R$  gilt.

## **Transitivität**



Lukas Bach, lukas.bach@student.kit.edu

Kontextfreie Grammatiker

Relationen vol. 2

## Transitivität

Sei M eine Menge und  $R \subseteq M \times M$  eine homogene Relation.

R heißt transitiv, wenn:

$$\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$$

#### Lemma

Sei M eine Menge und  $R \subseteq M \times M$  eine homogene Relation. R ist genau dann transitiv, wenn  $R \circ R \subseteq R$ .

Lukas Bach, lukas.bach@student.kit.edu

Kontextfreie Grammatiken

Relationen vol. 2

## Aufgaben

Sei  $M := \{1, 2, 3\}.$ 

- Ist  $R := \{(1,1), (1,2), (2,3)\}$  transitiv? Nein!
- Ist R reflexiv? Nein!
- Wie müsste R aussehen, um transitiv zu sein?
- lst  $S := \{(1,1), (1,2), (1,3), (2,2), (2,3)\}$  reflexiv? Nein!
- Ist S transitiv? Ja!
- Wie müsste S aussehen, um reflexiv zu sein?

## Reflexiv-transitive Hülle



Lukas Bach, lukas.bach@student.kit.edu

Kontextfreie Grammatiker

Relationen vol. 2

## Definition

Sei M eine Menge und  $R \subseteq M \times M$  eine homogene Relation.

Dann nennt man  $R^*:=igcup_{i\in\mathbb{N}_0}R^i$  die reflexiv-transitive Hülle von R.

## Satz

- R\* ist reflexiv
- R\* ist transitiv
- $R^*$  ist die kleinste Relation, die reflexiv und transitiv ist und  $R \subseteq R^*$  erfüllt.

### **Bemerkung**

■ Sei M eine Menge und  $R \subseteq M \times M$  eine homogene, reflexive und transitive Relation. Dann gilt  $R^* = R$ .

Lukas Bach, lukas.bach@student.kit.edu

#### Kontextfreie Grammatiken

Relationen vol. 2

### **Aufgaben**

- Sei  $M = \{1,2,3\}$  und  $R := \{(1,1),(1,2),(2,3)\}$  Was ist  $R^*$ ?
- $\rightarrow R^* = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$ 
  - Sei M eine Menge und  $R \subseteq M \times M$  eine homogene Relation. Was ist  $(R^*)^*$  ?
- $\rightarrow (R^*)^* = R^*$ 
  - $M := \{1, 2, 3, 4\}$  und  $R := \{(1, 2), (2, 3), (3, 4), (4, 1)\} \subseteq M \times M$ . Ist R reflexiv? Ist R transitiv? Nein und nein!

Lukas Bach, lukas.bach@student.kit.edu

## Kontextfreie Grammatiken

Relationen vol. 2

Die Relationen R und S über  $\mathbb{N}_0$  seien gegeben durch:

- Für alle  $a, b \in \mathbb{N}_0$  :  $aRb \Leftrightarrow a|b$  (a ist Teiler von b)
- Für alle  $a, b \in \mathbb{N}_0$  :  $aSb \Leftrightarrow ggT(a, b) = 1$

Prüfe auf Reflexivität und Transitivität!

- → R ist transitiv, aber nicht reflexiv.
- ightarrow S ist reflexiv, aber nicht transitiv. [TODO]

## Informationen



Lukas Bach, lukas.bach@student.kit.edu

#### Kontextfreie Grammatiken

Relationen vol. 2

## Zum Tutorium

- Lukas Bach
- Tutorienfolien auf:
  - http:

//gbi.lukasbach.com

- Tutorium findet statt:
  - Donnerstags, 14:00 15:30
  - 50.34 Informatikbau, -107

## Mehr Material

- Ehemalige GBI Webseite:
  - http://gbi.ira.uka.de
  - Altklausuren!

## Zur Veranstaltung

- Grundbegriffe der Informatik
- Klausurtermin:
  - **o** 06.03.2017, 11:00
  - Zwei Stunden Bearbeitungszeit
  - 6 ECTS für Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

## Zum Übungsschein

- Übungsblatt jede Woche
- Ab 50% insgesamt hat man den Übungsschein
- Keine Voraussetzung für die Klausur, aber für das Modul