Exercises Week 12

- 1. A signal x[n] has a Z transform with one pole $p_1 = -0.5$ and one zero $z_1 = 0.9$. It is known that at $\omega = \pi$, the modulus of the Fourier transform is $|X(\omega = \pi)| = 1$.
 - a. Find the signals's Z transform X(z)
 - b. Compute the expression of $|X(\omega)|$ and $\angle X(\omega)$
 - c. Find the values $|X(\frac{\pi}{2})|$, $|X(\frac{-\pi}{2})|$ and |X(0)|
 - d. Sketch $|X(\omega)|$
- 2. Design the pole-zero plot of a signal with:
 - low frequency content
 - frequency content around the frequency $\omega = \frac{\pi}{2}$
- 3. A digital filter has the following properties:
 - it is a high-pass filter of order 1
 - $\bullet\,$ the pole is situated at a distance 0.9 from the origin
 - continuous signals are completely blocked by the filter

Requirements:

- a. Draw the pole-zero diagram and find the system function H(z)
- b. Compute the amplitude response and the phase response of the filter
- c. Normalize the filter such that $|H(\pi)| = 1$
- d. Find the output signal y[n] if the input signal is $x[n] = 2\cos(\frac{\pi}{6}n + \frac{\pi}{4}), n \in \mathbb{Z}$
- 4. Design two filters of order 2 of the following types, and write their difference equation:
 - a low-pass filter
 - a band-pass filter with central frequency around the frequency $\omega = \frac{3\pi}{4}$