

CD40102BMS CD40103BMS

CMOS 8-Stage Presettable Synchronous Down Counters

December 1992

Features

- · High Voltage Type (20V Rating)
- CD40102BMS: 2-Decade BCD Type
- CD40103BMS: 8-Bit Binary Type
- Synchronous or Asynchronous Preset
- Medium Speed Operation
 - fCL = 3.6MHz (Typ) at 10V
- Cascadable
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Standardized Symmetrical Output Characteristics
- 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- Divide-By- "N" Counters
- Programmable Times
- Interrupt Timers
- Cycle/Program Counter

Pinout

CD40102BMS, CD40130BMS TOP VIEW

Description

CD40102BMS and CD40103BMS consist of an 8-stage synchronous down counter with a single output which is active when the internal count is zero. The CD40102BMS is configured as two cascaded 4-bit BCD counters, and the CD40103BMS contains a single 8-bit binary counter. Each type has control inputs for enabling or disabling the clock, for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the CARRY-OUT/ZERO-DETECT output are active-low logic.

In normal operation, the counter is decremented by one count on each positive transition of the CLOCK. Counting is inhibited when the CARRY-IN/COUNTER ENABLE (CI/CE) inputs is high. The CARRY-OUT/ZERO-DETECT (CO/ZD) output goes low when the count reaches zero if the CI/CE input is low, and remains low for one full clock period.

When the SYNCHRONOUS PRESET-ENABLE (\$\overline{SPE}\$) input is low, data at the JAM input is clocked into the counter on the next positive clock transition regardless of the state of the \$\overline{CI/CE}\$ input. When the ASYNCHRONOUS PRESET-ENABLE (\$\overline{APE}\$) input is low, data at the JAM inputs is asynchronously forced into the counter regardless of the state of the \$\overline{SPE}\$, \$\overline{CI/CE}\$, or CLOCK inputs. JAM inputs J0-J7 represent two 4-bit BCD words for the CD40102BMS and a single 8-bit binary word for the CD40103BMS.

When the CLEAR ($\overline{\rm CLR}$) input is low, the counter is asynchronously cleared to its maximum count (99₁₀ for the CD40102BMS and 255₁₀ for the CD40103BMS) regardless of the state of any other input. The precedence relationship between control inputs is indicated in the truth table.

If all control inputs except $\overline{\text{CI/CE}}$ are high at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 100 or 256 clock pulses long.

This causes the $\overline{\text{CO/ZD}}$ output to go low to enable the clock on each succeeding clock pulse.

The CD40102BMS and CD40103BMS may be cascaded using the $\overline{\text{CI/CE}}$ input and the $\overline{\text{CO/ZD}}$ output, in either a synchronous or ripple mode as shown in Figures 16 and 17.

The CD40102MS and CD40103BMS are supplied in these 16-lead outline packages:

Braze Seal DIP *H4W †H4X
Frit Seal DIP *H1L †H1F
Ceramic Flatpack H6W
*CD40102B Only †CD40130B Only

Absolute Maximum Ratings Reliability Information DC Supply Voltage Range, (VDD) -0.5V to +20V Thermal Resistance 20°C/W (Voltage Referenced to VSS Terminals) 20°C/W Input Voltage Range, All Inputs -0.5V to VDD +0.5V Flatpack Package 70°C/W DC Input Current, Any One Input±10mA Maximum Package Power Dissipation (PD) at +125°C Operating Temperature Range -55°C to +125°C For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Type D, F, K) 500mW For $T_A = +100$ °C to +125 °C (Package Type D, F, K). Derate Package Types D, F, K, H Storage Temperature Range (TSTG).....-65°C to +150°C Linearity at 12mW/°C to 200mW Device Dissipation per Output Transistor 100mW Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for For T_A = Full Package Temperature Range (All Package Types)

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (I	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μΑ
		VDD = 18V, VIN = VD	/DD = 18V, VIN = VDD or GND		-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20V	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	'	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	VDD = 5V, VOUT = 0.4V		+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V		1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V		1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V		1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13.5V, VOL < 1.5V		1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	٧

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

10s Maximum

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	600	ns
Clock to Output	TPLH1		10, 11	+125°C, -55°C	-	810	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	400	ns
Carry In/Counter Enable to Output	TPLH2		10, 11	+125°C, -55°C	-	540	ns
Propagation Delay	TPHL3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	1300	ns
Asynchronous Preset Enable to Output	TPLH3		10, 11	+125°C, -55°C	-	1755	ns
Propagation Delay	TPLH4	VDD = 5V, VIN = VDD or GND	9	+25°C	-	750	ns
Clear to Output			10, 11	+125°C, -55°C	-	1012	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	.7	-	MHz
Frequency			10, 11	+125°C, -55°C	.52	-	MHz

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μА
				+125°C	-	150	μА
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	-	300	μА
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
				+125°C	-	600	μА
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

				LIN			
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MIN MAX	
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	260	ns
Clock to Output	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	190	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	180	ns
Carry In/Counter Enable to Output	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	130	ns
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	-	600	ns
Asynchronous Preset Enable to Output	TPLH3	VDD = 15V	1, 2, 3	+25°C	-	400	ns
Propagation Delay	TPLH4	VDD = 10V	1, 2, 3	+25°C	-	360	ns
Clear to Output		VDD = 15V	1, 2, 3	+25°C	-	200	ns
Transition Time	TTHL1	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH1	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Maximum Clock Input Frequency	FCL	VDD = 10V	1, 2	+25°C	1.8	-	MHz
		VDD = 15V	1, 2	+25°C	2.4	-	MHz
Minimum SPE Setup	TSU	VDD = 5V	1, 2, 3	+25°C	-	280	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	140	ns
		VDD = 15V	1, 2, 3	+25°C	-	100	ns
Minimum CI/CE Setup	TSU	VDD = 5V	1, 2, 3	+25°C	-	500	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	250	ns
		VDD = 15V	1, 2, 3	+25°C	-	150	ns
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	300	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	180	ns
		VDD = 15V	1, 2, 3	+25°C	-	80	ns
Minimum APE Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	360	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	160	ns
		VDD = 15V	1, 2, 3	+25°C	-	120	ns
Minimum JAM Setup	TSU	VDD = 5V	1, 2, 3	+25°C	-	200	ns
Time (Synchronous Presetting)		VDD = 10V	1, 2, 3	+25°C	-	80	ns
		VDD = 15V	1, 2, 3	+25°C	-	60	ns
Minimum APE Removal	TREM	VDD = 5V	1, 2, 3	+25°C	-	220	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	100	ns
		VDD = 15V	1, 2, 3	+25°C	-	70	ns
Minimum CLR Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	320	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	160	ns
		VDD = 15V	1, 2, 3	+25°C	-	100	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre	Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B Subgroup B-5		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	

TABLE 6. APPLICABLE SUBGROUPS (Continued)

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Group D	Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TEST		READ AND RECORD		
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD	
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4	

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR			
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz		
PART NUMBER	PART NUMBER CD40102BMS, CD40103BMS							
Static Burn-In 1 Note 1	14	1 - 13, 15	16					
Static Burn-In 2 Note 1	14	8	1 - 7, 9 - 13, 15, 16					
Dynamic Burn- In Note 1	-	3, 8, 15	2, 16	14	1, 4, 6, 11, 13	5, 7, 9, 10, 12		
Irradiation Note 2	-							

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Functional Diagram

CD40102BMS, CD40103BMS

CD40102BMS, CD40103BMS

TRUTH TABLE

CONTROL INPUTS					
CLR	APE	SPE	CI/CE	PRESET MODE	ACTION
1	1	1	1	Synchronous	Inhibit Counter
1	1	1	0		Count Down*
1	1	0	Х		Preset on next positive clock transition
1	0	Х	Х	Asynchronous	Preset Asynchronously
0	Х	Х	Х]	Clear to maximum count

NOTES:

1. 0 = Low Level

1 = High Level

X = Don't Care

2. Clock connected to clock input

3. Synchronous operation: changes occur on negative-to-positive clock transitions

4. JAM inputs: CD40102BMS;

MSD = J7, J6, J5, J4, (J7 is MSB) LSD = J3, J2, J1, J0 (J3 is MSB)

CD40103BMS Binary;

MBS = J7, LSB = J0

*At zero count, the counters will jump to the maximum count on the next clock transition to "High"

Typical Performance Characteristics

FIGURE 3. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 5. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 4. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 6. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

CD40102BMS, CD40103BMS

Typical Performance Characteristics (Continued)

FIGURE 7. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 8. TYPICAL PROPAGATION DELAY TIME AS A FUNC-TION OF LOAD CAPACITANCE (CLOCK TO CO/ZD)

FIGURE 9. TYPICAL MAXIMUM CLOCK INPUT FREQUENCY
AS A FUNCTION OF SUPPLY VOLTAGE

FIGURE 10. TYPICAL DYNAMIC POWER DISSIPATION AS A FUNCTION OF FREQUENCY

FIGURE 15. MICROPROCESSOR INTERRUPT TIMER

^{*}An output spike (160ns at VDD = 5V) occurs whenever two or more devices are cascaded in the parallel-clocked mode because the clock-to-carry out delay is greater than the carry-in-to-carry out delay. This spike is eliminated by gating the output of the last device with the clock as shown.

FIGURE 16. SYNCHRONOUS CASCADING

FIGURE 17. RIPPLE CASCADING

Chip Dimensions and Pad Layouts

CD40102BMS

CD40103BMS

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10-3 inch).

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902

TEL: (321) 724-7000 FAX: (321) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310