Recursion for decision problems

Knapsack problem

Given: a set S of n objects each with a weight w_i and value v_i , $0 \le i \le n - 1$ and a knapsack with weight capacity W **Question**: What is the maximum value that can be obtained by packing the knapsack with objects from S such that the sum of weights of chosen objects does not exceed W?

- To answer this question you don't need to examine every possible subset of S
- Optimality principle: Suppose in an optimal solution, after choosing objects from subset of first m objects, capacity C remains. Then the choices for the remaining n-m objects must be an optimal solution for the subproblem of knapsack capacity C.

Knapsack examples

- Can we use a greedy approach?
- Consider weights = {6,4,2, 1} and
 values = {6,4,5,3} and
 capacity of knapsack W = 6
- Fill objects by weights, smallest first.
 weights chosen = {1,2}, total value = 3+5= 8
- Fill objects by values, largest first.
 weights chosen = {6}, total value = 6
- Best solution :

Weights chosen = $\{4,2\}$, total value = 4+5=9

Recursion subproblem for knapsack

- **Given**: A subset of remaining objects indexed from k (i.e. k, k+ $0, \ldots$ n- 1) and remaining capacity c of knapsack where $0 \le c \le W$,
- **Needed**: What is the maximum value $F_k(c)$ that can be obtained?

Answer to original problem : Set k = 0 and c = W

Base step:

 $F_n(c) = 0$ (as no more objects available)

Recursion step (k=0, 1,2,...n- 1):

$$F_k(c) = F_{k+1}(c)$$
 if $w_i > c$ (object cannot be chosen)

$$F_k(c) = \max(v_i + F_{k+1}(c - w_i), F_{k+1}(c))$$
 otherwise

i.e. choose between uselt or loselt decisions

Need $F_0(W)$ to answer the original problem.

```
public static int knapsack(int [] weights, int [] values, int start, int
capacity) {
  if (start == weights.length) {
     return 0;
   if (weights[start] > capacity) {
     return knapsack(weights, values, start + 1, capacity);
   return Math.max(knapsack(weights, values, start+ 1, capacity),
        values[start] + knapsack(weights, values, start+ 1, capacity-
weights[start));
public static int knapsack(int [] weights, int [] values, int capacity) {
   return knapsack(weights, values, 0, capacity);
```

Some of recursive calls starting from K=0, C=6Order of calls shown with alphabets, dotted lines show call returns, numbers show values returned.

Remaining knapsack capacity C ----→

	6	5	4	3	2	1	0
K=0 W={6,4,2,1} V = {6,4,5,3}	$a \mid \uparrow$						
K=I W={4,2,1} V = {4,5,3}	9	i	5				
K=2 W={2,1} V = {5,3}	b 8	3			<i>j</i> 3		
K=3 W={1} V = {3}	<i>c</i> 3					m	0
K=4 W= [] V = []	$d \mid 0$	e 0	g 0	h 0	<i>k</i> 0	1 0	$n \downarrow 0$