L3 – MIASHS 2021 2022 Parcours Informatique UE MIC0602T

TD 2 – Automates – Solutions

Pierre-Jean Charrel – Sophie Ebersold

1. (a)

V	а	b
Q		
0	0,1	0
1	=	<u>2</u>
<u>2</u>	<u>2</u>	<u>2</u>

,	V	а	b
Q			
0	0	0,1	0
0, 1	1	0,1	0, 2
0, 2	2	0, 1, 2	0, 2
0, 1, 2	<u>3</u>	0,1, 2	0, 2

Renumérotation des états du nouvel automate

Σ	а	b
Q		
0	1	0
1	1	<u>2</u>
2	<u>3</u>	<u>2</u>
<u>3</u>	<u>3</u>	<u>2</u>

(d)

Classe des états non terminaux

$$A = \{0, 1\}$$

Classe des états terminaux

$$B = \{2, 3\}$$

A est séparable par "b", qui envoie 0 sur un non terminal et 1 sur un terminal 2 et 3 ne sont pas séparables : ils envoient l'automate sur un état terminal avec "a" et "b"

Expression régulière : b*aa*b(a+b)*

Σ	а	b
Q		
0	1	ı
1	2	ı
2	-	3
2 3 4	3, 5	3, 4
	-	<u>6</u>
5	<u>6</u>	I
<u>6</u> 7	8	7
7	_	<u>6</u>
8	<u>6</u>	-

indéterminations

	V	а		b	
Q					
0	0	1	1		
1	1	2	2		
2	2			3	3
3	3	3, 5	4	3, 4	5
3, 5	4	3, 5 <u>, 6</u>	<u>6</u>	3, 4	5
3, 4	5	3, 5	4	3, 4 <u>, 6</u>	<u>7</u>
3, 5 <u>, 6</u>	<u>6</u>	3, 5 <u>, 6,</u>	8 <u>8</u>	3, 4, 7	9
<u>3</u> , 4 <u>, 6</u>	<u>7</u>	3, 5, 8	10	3,4, <u>6,</u> 7	<u>11</u>
3, 5 <u>, 6,</u> 8	<u>8</u>	3, 5 <u>, 6,</u>	8 <u>8</u>	3, 4, 7	9
3, 4, 7	9	3, 5	4	3, 4 <u>, 6</u>	<u>7</u>
3, 5, 8	10	3, 5 <u>, 6</u>	6	3, 4	5
3, 4 <u>, 6,</u> 7	<u>11</u>	3, 5, 8	10	3,4 <u>,6,</u> 7	<u>11</u>

renumérotation

	V	а		b
Q				
0	0	1	1	puits
1	1	2	2	puits
2	2	puits		3 3
3	3	3, 5	4	3, 4 5
3, 5	4	3, 5 <u>, 6</u>	<u>6</u>	3, 4 5
3, 4	5	3, 5	4	3, 4 <u>, 6</u> <u>7</u>
3, 5 <u>, 6</u>	<u>6</u>	3, 5 <u>, 6,</u> 8	<u>8</u>	3, 4, 7 9
<u>3</u> , 4 <u>, 6</u>	<u>7</u>	3, 5, 8 1	0	3,4, <u>6,</u> 7 <u>11</u>
3, 5 <u>, 6,</u> 8	<u>8</u>	3, 5 <u>, 6,</u> 8	8	3, 4, 7 9
3, 4, 7	9	3, 5	4	3, 4 <u>, 6</u> <u>7</u>
3, 5, 8	10	3, 5 <u>, 6</u>	<u>6</u>	3, 4 5
3, 4 <u>, 6,</u> 7	<u>11</u>	3, 5, 8 1	0	3,4 <u>,6,</u> 7 <u>11</u>

(d)

Classe des états non terminaux

$$A = \{0, 1, 2, 3, 4, 5, 9, 10\}$$

Classe des états terminaux

7 est séparable de 6 par "a"

11 est séparable de 6 par "a"

6 et 8 ne sont pas séparables

$$B = \{ 6, 8 \}$$

$$B1 = \{7\}$$

$$B2 = \{ 11 \}$$

7 et 11 ont le même comportement donc sont regroupés en

$$B1 = \{7, 11\}$$

	V	а	b	(d)
Q				Classe des états non terminaux
0	0	1 1	puits	A = {0, 1, 2, 3, 4, 5, 9, 10} 2 séparable de 0 par "a" (et "b")
1	1	2 2	puits	1 est séparable de 0 "a" (et "b")
2	2	puits	3 3	3 est séparable de 0 par « b » 4 est séparable de 0 par « b"
3	3	3, 5 4	3, 4 5	5 est séparable de 0 par "a"
3, 5	4	3, 5 <u>, 6</u> <u>6</u>	3, 4 5	9 est séparable de 0 par « b"
3, 4	5	3, 5 4	3, 4 <u>, 6</u> <u>7</u>	10 est séparable de 0 par "a" A = {0}
3, 5 <u>, 6</u>	<u>6</u>	3, 5 <u>, 6,</u> 8 <u>8</u>	3, 4, 7 9	A1 = { 1 }
<u>3, 4, 6</u>	<u>7</u>	3, 5, 8 10	3,4, <u>6,</u> 7 <u>11</u>	$A2 = \{ 2 \}$
3, 5 <u>, 6,</u> 8	8	3, 5 <u>, 6,</u> 8 <u>8</u>	3, 4, 7 9	$A3 = \{ 3 \}$ $A4 = \{ 4 \}$
3, 4, 7	9	3, 5 4	3, 4 <u>, 6</u> <u>7</u>	A5 = { 5 }
3, 5, 8	10	3, 5 <u>, 6</u>	3, 4 5	$A6 = \{ 9 \}$
3, 4 <u>, 6,</u> 7	<u>11</u>	3, 5, 8 10	3,4 <u>,6,</u> 7 <u>11</u>	A7 = { 10 } A5 et A6 ont le même comportement,

regroupés en A5 = { 5,9 }
A4 et AA7 ont le même comportement,

A4 et AA7 ont le même comportement, regroupés en A4 = { 4,10 }

	<u>i</u>	
V	a	b
Q		
A	A1	puits
A1	A2	puits
A2	puits	A3
A3	A4	A5
A4	<u>B</u>	A5
A5	A4	<u>B1</u>
<u>B</u>	<u>B</u>	A5
<u>B1</u>	A4	<u>B1</u>
A a	•(A1)	a

l'automate est minimal

1. (c)

	Σ	а	b
Q			
0		-	<u>1</u>
1		<u>1</u>	=

(d)

L'automate est déterministe et minimal :

- aucune source d'indétermination
- une seule état par classe

Exercice 2 : Déterminiser automate p. 95 et 96 du support de cours - Déterminisation

	V	a		b		c	
Q							
0	0	1	0, 1	2	0, 2	3	0, 3
1	0, 1	<u>4</u>	0, 1, 4	5	0, 1, 2	6	0, 1, 3
2	0, 2	5	0, 1, 2	<u>7</u>	0, 2, 4	8	0, 2, 3
3	0, 3	6	0, 1, 3	8	0, 2, 3	9	<u>0, 3, 4</u>
<u>4</u>	<u>0, 1, 4</u>	<u>4</u>	0, 1, 4	5	0, 1, 2	6	0, 1, 3
5	0, 1, 2	<u>10</u>	0, 1, 2, 4	<u>10</u>	0, 1, 2, 4	11	0, 1, 2, 3
6	0, 1, 3	<u>12</u>	0, 1, 3, 4	11	0, 1, 2, 3	<u>12</u>	0, 1, 3, 4
<u>7</u>	0, 2, 4	5	0, 1, 2	<u>7</u>	0, 2, 4	8	0, 2, 3
8	0, 2, 3	11	0, 1, 2, 3	<u>13</u>	0, 2, 3, 4	<u>13</u>	0, 2, 3, 4
9	0, 3, 4	6	0, 1, 3	8	0, 2, 3	9	0, 3, 4
<u>10</u>	0, 1, 2, 4	<u>10</u>	0, 1, 2, 4	11	0, 1, 2, 3	11	0, 1, 2, 3
11	0, 1, 2, 3	14	0, 1, 2, 3, 4	<u>14</u>	0, 1, 2, 3, 4	<u>14</u>	0, 1, 2, 3, 4
<u>12</u>	0, 1, 3, 4	<u>12</u>	0, 1, 3, 4	11	0, 1, 2, 3	<u>12</u>	0, 1, 3, 4
<u>13</u>	0, 2, 3, 4	11	0, 1, 2, 3	<u>13</u>	0, 2, 3, 4	<u>13</u>	0, 2, 3, 4
<u>14</u>	0, 1, 2, 3, 4	<u>14</u>	0, 1, 2, 3, 4	<u>14</u>	0, 1, 2, 3, 4	<u>14</u>	0, 1, 2, 3, 4

L3 MIASHS - Langages - TD2 - Solutions - PJ Charrel - S. Ebersold

Minimisation

```
Classe des états terminaux : B = { 4, 7, 9, 10, 12, 13, 14 }
Classe des états non terminaux : A = \{0, 1, 2, 3, 5, 6, 8, 11\}
7 et 4 sont séparables par "a"
B1 = \{7\}
B = \{ 4, 9, 10, 12, 13, 14 \}
9 et 4 sont séparables par "a"
B2 = \{9\}
B = \{ 4, 10, 12, 13, 14 \}
10 et 4 sont séparables par "a"
B3 = \{10\}
B = \{4,12,13,14\}
12 et 4 sont séparables par "a"
B4 = \{12\}
B = \{ 4, 13, 14 \}
13 et 4 sont séparables par "a"
B5 = \{13\}
B = \{ 4, 14 \}
14 et 4 sont séparables par "a"
B6 = \{14\}
B = \{ 4 \}
```

De même tous les états de la classe A sont séparables.

L'automate est donc minimal, chaque classe est constituée d'un seul état.

3. Matrice de transition

	a	b
1	1	3
2	1	2
3	<u>2</u>	1

$$E1 = a*bE3$$

$$E2 = b*(aE1 + E) = b*aa*bE3 + b*$$

$$E1 = a* b ((ab*a + b) a*b)* ab*$$

Exercice 4: (a)

		b
	a	
0	1, 2	
1		2,3
2	1	
<u>3</u>	3	2

	a	b
0	1,2	
1,2	1	2,3
1		2,3 2,3
<u>2,3</u>	1,3	2
2,3 1,3	<u>3</u>	2, 3
2	1	
3	3	2

	a	b
0	1	puits
1	2	<u>3</u>
2	puits	<u>3</u>
<u>3</u>	<u>4</u>	5
3 4 5	<u>6</u>	<u>3</u>
5	2	puits
6	6	5

(b) B =
$$\{0, 2, 5\}$$
 A = $\{1, 3, 4, 6\}$

Pour la classe A:

1 et 3 sont séparables par a

$$A = \{1, 4, 6\}$$

 $A1 = \{3\}$

4 et 1 sont séparables par b

$$A = \{1, 6\}, A1 = \{3\}, A2 = \{4\}$$

6 et 1 sont séparables par b

$$A = \{1\}, A1 = \{3\}, A2 = \{4\}, A3 = \{6\}$$

Pour la clase B

0 et 2 sont séparables par a

$$B = \{0, 5\}$$

 $B1 = \{2\}$

0 et 5 sont séparable par b

$$B2 = \{5\}$$

 $B = \{0\}$

$$B = \{0\}, B1 = \{2\}, B2 = \{5\}$$

On retombe sur les 7 classes de l'automate initial. Il est donc minimal.

Exercice 5 : Expression régulière associée à l'automate des diapositives 91 et 92

Pour simplifier, posons :

$$a = 0+3+6+9$$

 $b = 1+4+7$

$$c = 2+5+8$$

De la table de transition, on déduit les équations suivantes :

$$= ((a*b (a*b(a*ca*b)*a*(b+ca*c) + a*c (a*ca*b)*a*(b+ca*c))* a*$$

Expression régulière associée aux automates de la diapositive 93 1-

E0 = 0 E0 + 1 E1
E1 = 1 E1 +
$$\varepsilon$$

E0 = 0 * 1 E1
E1 = 1 *

$$E0 = 0 * 1 +$$

2-

E0 =
$$a E0 + E1$$

E1 = $b E1 + E2$
E2 = $c E2 + E$
E0 = $a * E1$
E1 = $b * E2$
E2 = $c *$

$$= a * b * c*$$