Introduction to Program Analysis

11. Sparse Analysis

Kihong Heo

Cost Reduction Techniques

- How to reduce the analysis cost without sacrificing the analysis precision?
 - In terms of memory and time consumption

Software Complexity

less-382 (23,822 LOC)

Key Idea: Sparsity

- "Meaningful semantic effect is so sparse"
- Spatial sparsity: each program portion (an expression, a statement, a block, etc) usually accesses only a small part of the whole memory
- Temporal sparsity: after the definition of a memory location, its use is not immediate but a while later
- Generally applicable to flow-sensitive analyses when a memory is a map from abstract locations to abstract values, e.g.,

$$\mathbb{D}^{\sharp} = \mathbb{L} \to (\mathbb{X} \to \mathbb{V}^{\sharp})$$

Vanilla (non-sparse) analysis

Spatial sparsity

Spatial + temporal sparsity

Spatial Sparsity

- Only need the part of the memory used in that program portion
 - Otherwise, discard (so-called abstract garbage collection)
- The original abstract semantic function:

$$F^{\sharp}: (\mathbb{L} o \mathbb{M}^{\sharp}) o (\mathbb{L} o \mathbb{M}^{\sharp})$$

The sparse version:

$$F_{sparse}^{\sharp} : (\mathbb{L} \to \mathbb{M}_{sparse}^{\sharp}) \to (\mathbb{L} \to \mathbb{M}_{sparse}^{\sharp})$$

$$\mathbb{M}_{sparse}^{\sharp} = \{ m^{\sharp} \in \mathbb{M}^{\sharp} \mid dom(m^{\sharp}) = U^{\sharp}(l), l \in \mathbb{L} \} \cup \{ \bot \}$$

Abstract locations to be used for each label

Temporal Sparsity

- Follow the semantic dependency to directly deliver the memory effect
 - Not blindly following the syntactic control-flow
- Def-use chain: for each label, defined locations are directly passed to its use labels

$$\langle l, m^{\sharp} \rangle \hookrightarrow^{\sharp}_{sparse} \langle l', m^{\sharp'} \rangle$$

Directly propagate defined locations to the use points

Def-use chain

Def-Use Chain

- How to formally define semantic def and use sets?
- Def and Use:

$$D^{\sharp}(l) = \{x \mid \exists m^{\sharp} \sqsubseteq \mathbf{lfp} F^{\sharp}(l). \ m^{\sharp}(x) \neq m^{\sharp'}(x), \langle l, m^{\sharp} \rangle \hookrightarrow^{\sharp} \langle -, m^{\sharp'} \rangle \}$$

$$U^{\sharp}(l) = \{x \mid \exists m^{\sharp} \sqsubseteq \mathbf{lfp} F^{\sharp}(l). \ m_{1}^{\sharp}|_{D^{\sharp}(l)} \neq m_{2}^{\sharp}|_{D^{\sharp}(l)}, \langle l, m^{\sharp} \rangle \hookrightarrow^{\sharp} \langle -, m_{1}^{\sharp} \rangle, \langle l, m^{\sharp} \rangle \hookrightarrow^{\sharp} \langle -, m_{2}^{\sharp} \rangle \}$$

Def-use chain:

$$l_0 \stackrel{x}{\leadsto} l_n \iff \langle l_0 | \mathbf{lfp} F^{\sharp}(l_0) \rangle \hookrightarrow^{\sharp} \cdots \hookrightarrow^{\sharp} \langle l_n | \mathbf{lfp} F^{\sharp}(l_n) \rangle$$

$$\wedge x \in D^{\sharp}(l_0) \wedge x \in U^{\sharp}(l_n) \wedge \forall i \in (0, n). \ x \notin D^{\sharp}(l_i)$$

Theorem:

$$\mathbf{lfp}F^{\sharp} = \mathbf{lfp}F^{\sharp}_{sparse} \text{ modulo } D^{\sharp}$$

Computing Def-Use Chain

- The ideal def-use chain is available only after the main analysis
 - It requires the full abstract semantics of a given program
- But, we need def-use chain before the analysis to speed up
- Solution: compute approximated def-use chain by yet another analysis

Pre-Analysis

- A coarser (hence quicker) analysis than the main analysis
- Any sound approximation of the main analysis is eligible
- For example, the flow-insensitive version of the main analysis:

$$\mathbb{D}^{\sharp} = \mathbb{L} \to \mathbb{M}^{\sharp} \xrightarrow{\gamma} \mathbb{D}_{pre}^{\sharp} = \mathbb{M}^{\sharp}$$

- Relationship between the pre and main analysis
 - The pre-analysis controls the sparsity, not the final precision

Precision-Preserving Def-Use Chain

- Safe def / use sets from pre-analysis must satisfy the following conditions:
 - 1. The def and use sets from the pre-analysis over-approximate those of the original analysis:

$$\forall l \in \mathbb{L}. \ D^{\sharp}(l) \subseteq D^{\sharp}_{pre}(l) \quad \text{and} \quad U^{\sharp}(l) \subseteq U^{\sharp}_{pre}(l)$$

2. All spurious definitions from the pre-analysis are included in the use set from the pre-analysis:

$$\forall l \in \mathbb{L}. \ D_{pre}^{\sharp}(l) \setminus D^{\sharp}(l) \subseteq U_{pre}^{\sharp}(l)$$

Approximated def-use chain by the pre-analysis

$$l_0 \stackrel{x}{\leadsto}_{pre} l_n \iff \langle l_0, \mathbf{lfp} F_{pre}^{\sharp}(l_0) \rangle \hookrightarrow^{\sharp} \cdots \hookrightarrow^{\sharp} \langle l_n, \mathbf{lfp} F_{pre}^{\sharp}(l_n) \rangle$$

$$\wedge x \in D_{pre}^{\sharp}(l_0) \wedge x \in U_{pre}^{\sharp}(l_n) \wedge \forall i \in (0, n). \ x \notin D_{pre}^{\sharp}(l_i)$$

Def-use chain by the original analysis

Unsafe def-use edge by the pre-analysis

Safe def-use edge by the pre-analysis

Realizable Sparse Analysis

• The final sparse abstract semantic function:

$$\mathbb{M}^{\sharp}_{sparse^{\sharp}} = \{ m^{\sharp} \in \mathbb{M}^{\sharp} \mid dom(m^{\sharp}) = U^{\sharp}_{pre}(l), l \in \mathbb{L} \} \cup \{ \bot \}$$

$$F^{\sharp}_{sparse^{\sharp}} : (\mathbb{L} \to \mathbb{M}^{\sharp}_{sparse^{\sharp}}) \to (\mathbb{L} \to \mathbb{M}^{\sharp}_{sparse^{\sharp}})$$

• The sparse abstract state transitions (using approx. def-use chains):

$$\langle l, m^{\sharp} \rangle \hookrightarrow^{\sharp}_{sparse^{\sharp}} \langle l', m^{\sharp'} \rangle$$

18 / 21

• Theorem: $\mathbf{lfp}F^{\sharp} = \mathbf{lfp}F^{\sharp}_{sparse^{\sharp}} \bmod D^{\sharp}_{pre}$

Benchmarks

Program	LOC	Functions	Statements	Blocks	maxSCC	AbsLocs
gzip-1.2.4a	7K	132	6,446	4,152	2	1,784
bc-1.06	13K	132	10,368	4,731	1	1,619
tar-1.13	20K	221	12,199	8,586	13	3,245
less-382	23K	382	23,367	9,207	46	3,658
make-3.76.1	27K	190	14,010	9,094	57	4,527
wget-1.9	35K	433	28,958	14,537	13	6,675
screen-4.0.2	45K	588	39,693	29,498	65	12,566
a2ps-4.14	64K	980	86,867	27,565	6	17,684
sendmail-8.13.6	130K	756	76,630	52,505	60	19,135
nethack-3.3.0	211K	2,207	237,427	157,645	997	54,989
vim60	227K	2,770	150,950	107,629	1,668	40,979
emacs-22.1	399K	3,388	204,865	161,118	1,554	66,413
python-2.5.1	435K	2,996	241,511	99,014	723	51,859
linux-3.0	710K	13,856	345,407	300,203	493	139,667
gimp-2.6	959K	11,728	1,482,230	286,588	2	190,806
ghostscript-9.00	1,363K	12,993	2,891,500	342,293	39	201,161

*Oh et al., Design and Implementation of Sparse Global Analyses for C-like Languages, PLDI'12

Practical Impact

Programs	Interva	I _{vanilla}	Interv	al _{base}	$Spd \uparrow_1$	$\operatorname{Spd}\uparrow_1 \qquad \qquad \qquad \operatorname{Interval}_{\operatorname{sparse}}$				I _{sparse}			$Spd \uparrow_2$	$Mem{\downarrow}_2$
	Time	Mem	Time	Mem			Dep	Fix	Total	Mem	$\hat{\sf D}(c)$	$\hat{\sf U}(c)$		
gzip-1.2.4a	772	240	14	65	55 x	73 %	2	1	3	63	2.4	2.5	5 x	3 %
bc-1.06	1,270	276	96	126	13 x	54 %	4	3	7	75	4.6	4.9	14 x	40 %
tar-1.13	12,947	881	338	177	38 x	80 %	6	2	8	93	2.9	2.9	42 x	47 %
less-382	9,561	1,113	1,211	378	8 x	66 %	27	6	33	127	11.9	11.9	37 x	66 %
make-3.76.1	24,240	1,391	1,893	443	13 x	68 %	16	5	21	114	5.8	5.8	90 x	74 %
wget-1.9	44,092	2,546	1,214	378	36 x	85 %	8	3	11	85	2.4	2.4	110 x	78 %
screen-4.0.2	∞	N/A	31,324	3,996	N/A	N/A	724	43	767	303	53.0	54.0	41 x	92 %
a2ps-4.14	∞	N/A	3,200	1,392	N/A	N/A	31	9	40	353	2.6	2.8	80 x	75 %
sendmail-8.13.6	∞	N/A	∞	N/A	N/A	N/A	517	227	744	678	20.7	20.7	N/A	N/A
nethack-3.3.0	∞	N/A	∞	N/A	N/A	N/A	14,126	2,247	16,373	5,298	72.4	72.4	N/A	N/A
vim60	∞	N/A	∞	N/A	N/A	N/A	17,518	6,280	23,798	5,190	180.2	180.3	N/A	N/A
emacs-22.1	∞	N/A	∞	N/A	N/A	N/A	29,552	8,278	37,830	7,795	285.3	285.5	N/A	N/A
python-2.5.1	∞	N/A	∞	N/A	N/A	N/A	9,677	1,362	11,039	5,535	108.1	108.1	N/A	N/A
linux-3.0	∞	N/A	∞	N/A	N/A	N/A	26,669	6,949	33,618	20,529	76.2	74.8	N/A	N/A
gimp-2.6	∞	N/A	∞	N/A	N/A	N/A	3,751	123	3,874	3,602	4.1	3.9	N/A	N/A
ghostscript-9.00	∞	N/A	∞	N/A	N/A	N/A	14,116	698	14,814	6,384	9.7	9.7	N/A	N/A
	Non-sparse Spatial Sparsity			Spatial + Temporal Sparsity										

*Oh et al., Design and Implementation of Sparse Global Analyses for C-like Languages, PLDI'12

Summary

- Sparse analysis: a general framework for reducing the analysis cost while preserving the precision
 - Input: sound yet scalability-unattended static analysis
- Key idea: "Right part at right moment"
- Based on semantic def-use chain rather than syntactic control-flow
- Approximated def-use chain by pre-analysis
 - Safety conditions on def and use