The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. There are many approaches to the Software development process. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Integrated development environments (IDEs) aim to integrate all such help. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Integrated development environments (IDEs) aim to integrate all such help. Code-breaking algorithms have also existed for centuries. One approach popular for requirements analysis is Use Case analysis. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Different programming languages support different styles of programming (called programming paradigms). There are many approaches to the Software development process. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Different programming languages support different styles of programming (called programming paradigms). Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses.