INU CSE 2024.05.24

#### **2024 CAPSTONE DESIGN**

## SMART BARRICADE

조민제, 김시온, 채승민, 송도현

Contents

01 주제선정배경

02 기능

03 Flow Chart

04 구현

05 시연영상

06 기대효과

## 1. 주제 선정 배경



35% 보행 중 사망자

지난 2023년 한해 교통사고 사망자 10명 가운데 3명은 보행 중에 사망한 것으로 나타났다. 이는 OECD 회원국 평균의 1.9배에 달한다.



**8.6**% 증가 우회전 사망자 수

우회전 시 일시 정지 도입 이후에도 우회전 차량에 의한 사망자 수는 1년 새 8.6% 급증했다. 이는 법을 지켜도 사고를 유발하는 사고위험요인이 존재함을 의미한다.

### 사고 위험 요인

우회전 시 운전자 사각지대 발생 일반 승용차는 4.2m, SUV는 5m, 대형 화물차는 8.3m 우측 사각지대 발생

부적절한 횡단보도 위치 우회전을 하자마자 횡단보도가 나타나 위험. 교차로 회전 구간과 횡단보도 간 거리 확장 필요



보행 신호와 차량 신호 동시 등화 보행자 우선 출발 신호 필요

## SMART BARRICADE

보행자를 보호하는 우회전 사고 방지 시스템

## 2. 기능





우회전 도로에서 영상 촬영 후 사람과 차량 탐지



#### 속도 측정

직셀 당 실제 거리를 환산하여 차량이 1 프레임 당 움직인 픽셀을 계산하여 속도 측정



#### 위험성 모니터링

진행 중인 차량이 횡단 중인 보행자를 기준으로 제동 가능한지 따라 위험성을 판단하고, admin 서버에서 위험성 모니터링



#### 바리케이드 작동

위험성 판단 시 차종과 속도에 따라 높이를 조절하여 바리케이드 작동

### 3. Flow Chart



D: 20 Speed: 43.21 km/h

차량 탐지 및 속도 측정

SIV

Local PC로 실시간 영상 전달







Admin 서버에서 실시간 모니터링 및 각종 기록 DB화



# 구현

Model, Server, Motor

## Model

#### **RTSP**

CCTV에서 RTSP를 이용해 들어오는 영상을 YOLO 모델의 입력 사이즈인 640에 맞춰 640x480의 해상도로 resizing한다. 처리된 영상은 640x480에 30FPS이다.

#### YOLOv8

프레임 별로 차량, 사람 탐지를 시작한다. 차량이 지나가는 차선, 횡단보도 및 근처 구역을 ROI로 설정한다. 픽셀 당 실제 거리를 환산하여 차량이 1 프레임 당 움직인 픽셀을 계산하여 속도를 측정한다. 차종과 속도를 기반으로 진행 중인 차량이 횡단 중인 보행자를 기준으로 제동이 가능한지에 따라 위험성을 판단한다.



## Server

## Motor



## Raspberrypi

TCP 소켓을 통해 차종과 차량 속도 데이터를 수신하고 그에 따른 모터 각도를 아두이노로 전송



## **Arduino**

라즈베리파이로부터 시리얼로 명령을 받아 서보 모터를 제어



# 시연영상

RC카를 이용한 바리케이드 작동 시연



## 06

## 기대효과

차종과 속도에 따라 바리케이드의 높이가 조절되어 효과적으로 차량을 막을 수 있으며 이를 통해 우회전 시 운전자의 사각지대에서 일어나는 인명 사고를 방지할 수 있다. 또한 바리케이드를 설치함으로써 운전자의 우회전 시 일시정지를 유도한다.



# 감사합니다