Algebraic Geometry.

Alec Zabel-Mena

September 28, 2023

Contents

1	Affine Algebraic Sets		5
	1.1	Affine n-Space and Algebraic Sets	5
	1.2	Ideals of Algebraic Sets	9
	1.3	Hilbert's Basis Theorem	11
	1.4	Irreducible Components	14
	1.5	Algebraic Subsets of The Plane	15

4 CONTENTS

Chapter 1

Affine Algebraic Sets

1.1 Affine *n*-Space and Algebraic Sets

Definition. Let k be a field. We define **affine** n-space over k to be the cartesian product $\mathbb{A}^n(k) = \underbrace{k \times \cdots \times k}_{n\text{-times}}$. If the field k is understood, we write \mathbb{A}^n . We call the elements of

 $\mathbb{A}^{(k)}$ affine points. We call $\mathbb{A}^{(k)}$ and $\mathbb{A}^{(k)}$ the affine line and affine plane over k, respectively.

Definition. Let k be a field, and let $f \in k[x_1, \ldots, x_n]$. We call an affine point $P \in \mathbb{A}^n(k)$ a **zero**, or **root** of f if f(P) = 0, where f(P) is understood to be $f(a_1, \ldots, a_n)$, where $P = (a_1, \ldots, a_n)$. We call the set of zeros of f, V(f) the **hypersurface** defined by f. We call hypersurfaces in $\mathbb{A}^2(k)$ affine plane curves. If deg f = 1, we call V(f) a **hyperplane**. We call hypersurfaces in $\mathbb{A}^1(k)$ lines.

Example 1.1. The following curves in figure 1.1 define algebraic sets.

Definition. Let k be a field, and S any set of polynomials in $k[x_1, \ldots, x_n]$. We define the **set of zeros** of S to be the set $V(S) = \{P \in \mathbb{A}^n(k) : f(P) = 0 \text{ for all } f \in S\}$. We call a subset X of $\mathbb{A}^n(k)$ an **affine algebraic set** if X = V(S) for some set S of polynomials.

Lemma 1.1.1. The following are true for any field k.

- (1) If \mathfrak{a} is an ideal in $k = [x_1, \dots, x_n]$ generated by a set $S \subseteq k[x_1, \dots, x_n]$, then $V(\mathfrak{a}) = V(S)$.
- (2) If $\{\mathfrak{a}_{\alpha}\}$ is a collection of ideals of $k[x_1,\ldots,x_n]$, then

$$V\Big(\bigcup\mathfrak{a}_{\alpha}\Big)=\bigcap V(\mathfrak{a}_{\alpha})$$

- (3) If $\mathfrak{a} \subseteq \mathfrak{b}$ are ideals, then $V(\mathfrak{b}) \subseteq V(\mathfrak{a})$.
- (4) If $f, g \in k[x_1, \dots, x_n]$, then $V(fg) = V(f) \cup V(g)$.
- (5) $V(0) = \mathbb{A}^n(k) \text{ and } V(1) = \emptyset.$

Figure 1.1: Affine Algebraic Sets in $\mathbb{A}^2(\mathbb{R})$ and $\mathbb{A}^3(\mathbb{R})$.

Proof. First, let S be a set of polynomials in $k[x_1, \ldots, x_n]$. Let $\mathfrak{a} = (S)$ the ideal generated by S. Then if $f \in S$ is a polynomia, $f \in I$. Then if $P \in \mathbb{A}^n$ is a zero of f in S, it is a zero of f in \mathfrak{a} , hence $V(S) \subseteq V(\mathfrak{a})$. Conversely, we have that if $f \in \mathfrak{a}$, then by suppostion, $f(x_1, \ldots, x_n) = f_1(x_1, \ldots, x_n) + \cdots + f_n(x_1, \ldots, x_n) + \cdots$. Now, if f(P) = 0 in I, then we have $f_i(P) = 0$ for every i. This makes f(P) = 0 in S, so that $V(\mathfrak{a}) \subseteq V(S)$.

Now, consider the collection $\{\mathfrak{a}_{\alpha}\}$ of ideals in $k[x_1, \ldots, x_n]$. Let $P \in V(\bigcup \mathfrak{a}_{\alpha})$. Then for every $f \in \bigcup \mathfrak{a}_{\alpha}$, f(P) = 0 for each α . So that $P \in \bigcap V(\mathfrak{a}_{\alpha})$. Again, on the otherhand, if $P \in \bigcap V(\mathfrak{a}_{\alpha})$, $P \in V(\mathfrak{a}_{\alpha})$ for all α so that $P \in V(\bigcup \mathfrak{a}_{\alpha})$.

Let \mathfrak{a} and \mathfrak{b} ideals in $k[x_1, \ldots, x_n]$, where $\mathfrak{a} \subseteq \mathfrak{b}$. Let $P \in V(\mathfrak{b})$. Then for every polynomial $f \in \mathfrak{b}$, f(P) = 0, so that f(P) = 0 when $f \in \mathfrak{a}$, hence $P \in V(\mathfrak{a})$. This makes $V(\mathfrak{b}) \subseteq V(\mathfrak{a})$.

Consider now the polynomials $f, g \in k[x_1, \ldots, x_n]$. Certainly if $P \in V(fg)$ it is a root of fg; i.e.e. fg(P) = 0. This makes f(P) = 0 or g(P) = 0 so that $V(fg) \subseteq V(f) \cup V(g)$. On the otherhand if P is a root of f, or a root of f, it is a root of f making f making f and equality is established.

Finally, observe that the zero polynomial $0(x_1, \ldots, x_n)$ has all its coefficients 0, so that any point $P \in \mathbb{A}^n$ is a zero. This makes $V(0) = \mathbb{A}^n$. Likewise, the constant polynomial $1(x_1, \ldots, x_n)$ has its 0-th coefficient 1 so that it has not points $P \in \mathbb{A}^n$ as roots. That is $V(1) = \emptyset$.

Corollary. Finite unions of algebraic sets are algebraic.

- **Example 1.2.** (1) Let k be a field, and consider $\mathbb{A}^1(k)$. Let $f \in k[x]$ be a polynomial of degree n. Then f has at most n roots in k. Now, if \mathfrak{a} is an ideal in k, since k is a PID, we also get $\mathfrak{a} = (f)$ for some $f \in k[x]$. That is $|V(\mathfrak{a})| \leq n$, and so any algebraic set in $\mathbb{A}^1(k)$ is necessarily finite, except, possibly $\mathbb{A}^1(k)$.
 - (2) Let k be a finite field with p^m elements, where $p, m \in \mathbb{Z}^+$ and p is prime. Then k is the splitting field of the polynomial $f(x_n) = x_n^{p^m} x_n$ over the finite field \mathbb{F}_p . Suppose then that there is no set S of polynomials in $k[x_1, \ldots, x_n]$ for which X = V(S), for some $X \in \mathbb{A}^n(k)$. Choose then a point $P \in X$ and a polynomial $g \in S$. Then we have $g(x_1, \ldots, x_n) = g_1(\tilde{X})x_n + \cdots + g_n(\tilde{X})x_n$. Notice that if P is a root of f; i.e. $P \in V(f)$; i.e. $P^{p^m} P = 0$, then since $P^{p^m} P$ is a generator for k as a multiplicative group, it generates S. That is, S must contain the point P as a root for g, notice $P^{p^m} = P$ so that $g(P) = g_1(P)P + \cdots + g_n(P)P = 0$ in k. This contradicts that $X \neq V(S)$. This makes every set of $\mathbb{A}^n(k)$ algebraic for any finite field.
 - (3) By the corollory to lemma 1.1.1, we have that finite unions of algebraic sets are algebraic. Now, consider the field \mathbb{Q} , and let $f_q(x) = x + \frac{q}{2}$ in $\mathbb{Q}[x]$. We have that there are $X \subseteq \mathbb{A}^1(\mathbb{Q})$ algebraic, ini where $X = V(f_q)$. Notice however, that the polynomial

$$f(x) = \prod_{q \in \mathbb{Q}} f_q(x)$$

has no roots in \mathbb{Q} , as that would imply that for some $n \in \mathbb{Z}^+$, $\sqrt[n]{2} \in \mathbb{Q}$. That is, there is no $X \subseteq \mathbb{A}^1(\mathbb{Q})$ for which $X = V(\prod f_q) = \bigcup V(f_q)$. In general, the countable union of algebraic sets need not be algebraic.

- **Example 1.3.** (1) Let k be a field, and $X = \{(t, t^2, t^3) \in \mathbb{A}^3(k) : t \in k\}$. If k is finite, this is algebraic. Suppose that k is infinite, and consider the polynomial $f(x_1, x_2, x_3) = x_1 + x_2^2 + x_3^3$. Notice that the point $0 \in X$ is a root of f, and that if P is a root of f, then $P \in X$. That is, X = V(f) making X algebraic.
 - (2) Let $X = \{(\cos t, \sin t) \in \mathbb{A}^2(\mathbb{R}) : t \in \mathbb{R}\}$. Consider the polynomial $f(x, y) = x^2 + y^2 1$. Since we have that $\cos^2 t + \sin^2 t = 1$, X = V(f) and X is algebraic.
 - (3) Let $X = \{(r, \sin t) \in \mathbb{A}^2(\mathbb{R}) : r = \sin t, t \in \mathbb{R}\}$. Consider the polynomial f(x, y) = x y. Then X = V(f).

Lemma 1.1.2. Let k be a field and $C \subseteq \mathbb{A}^2(k)$ an affine plane curve. Let $L\mathbb{A}^2(k)$ a line not contained in C. Then C and L intersect at no more than n points; that is, $C \cap L$ is finite with at most n points.

Proof. Let C = V(f) where $f \in k[x,y]$ is a polynomial of degree n, and let L = V(l) where l(x,y) = y - ax + b, for some $a,b \in k$. We have that $f(x,y) = f_1(x)y + f_2(x)y^2$. Now, notice that if X,Y is a root of l, then l(X,Y) = Y - aX + b = 0, so that Y = aX + b. Now, consider a point $P = (X,Y) \in C \cap L = V(f) \cap V(l)$. Then $f(X,Y) = f(X,aX + b) = f_1(X)(aX + b) + f_2(X)(aX + b)^2$. Since f has finitely many roots, there are finitely many P = (X,Y) satisfying f(X,Y) = 0 Moreover, f has at most f roots. We finally observe that f(X,Y) = f(X,aX + b). Which shows that f(X,Y) = f(X,aX + b).

Example 1.4. The following sets are not algebraic.

- (1) $X = \{(x,y) \in \mathbb{A}^2(\mathbb{R}) : y = \sin x\}$. Let L be a line in $\mathbb{A}^2(\mathbb{R})$. Notice then that L intersects X at infinitely many points, so that X cannot be algebraic.
- (2) $X = \{(z, w) \in \mathbb{A}^2(\mathbb{C}) : |z|^2 + |w|^2 = 1\}$, where $|x + iy|^2 = x^2 + y^2$ for all $x, y \in \mathbb{R}$. Let $f(z, w) = |z|^2 + |w|^2 1$, and suppose that X = V(f). Let L be a line in $\mathbb{A}^2(\mathbb{C})$ Then $|L \cap X| = 4$; however deg f = 2, so that X cannot be algebraic.
- (3) $X = \{(\cos t, \sin t, t) \in \mathbb{A}^3(\mathbb{R}) : t \in \mathbb{R}\}$. As in (1), there is a line L intersecting X at infinitely many points.

Theorem 1.1.3. Let k be an algebraically closed field, Then for $n \ge 1$, the complement of an algebraic set is infinite.

Proof. Observe that since k is algebraically closed, k is infinite, so that $\mathbb{A}^n(k)$ is infinite. Now, suppose n = 1, and let $f \in k[x]$ a nonconstant polynomial, and let X = V(f) an algebraic set. Since f has at most finitely many roots, we get |X| is finite, so that $\mathbb{A}^1(k)\backslash X$ is infinite. Moreover since k[x] is a PID, every algebraic set is of the form X = V(f).

Now, suppose that n > 1, Let $S \subseteq k[x_1, \ldots, x_n]$. Let X be an algebraic set with X = V(S). Then $S = (f_1, \ldots, f_m, \ldots)$. Now, if $P \in \mathbb{A}^{n-1}(k)$, then each $f_i(P, x_n) \in k[x_n]$ has finitely many roots. So that the polynomial $f_1(P, x_n) + \cdots + f_m(P, x_n) + \ldots$ has finitely many roots. This makes X finite, and hence $\mathbb{A}^n(k) \setminus X$ is infinite.

Corollary. If $f \in k[x_1, ..., x_n]$ is nonconstant, then V(f) is infinite.

Proof. consider $f \in k[x_1, \ldots, x_n]$ nonconstant. Observe that

$$f(x_1,\ldots,x_n)=\sum f_i(x_1,\ldots,x_{n-1})x_n^i$$

Where $f_i \in k[x_1, \ldots, x_{n-1}]$. Now, suppose that $P = (a_1, \ldots, a_{n-1})$, then

$$f(P,x_n) = \sum f_i(a_1,\ldots,a_{n-1})x_n^i$$

has at most n roots in $k[x_n]$. However, notice that since $\mathbb{A}^n(k)$ is infinite, there are infinitely many choices for P, so that if $Q = (P, a_n)$ is a root of f, then f has infinitely many roots. That is, V(f) is finite.

Lemma 1.1.4. Let k be a field, and let $X \subseteq \mathbb{A}^n(k)$ and $Y \subseteq \mathbb{A}^m(k)$ algebraic sets. Then $X \times Y$ is an algebraic set in $\mathbb{A}^{n+m}(k)$.

Proof. Since $\mathbb{A}^m(k)$ and $\mathbb{A}^n(k)$ are cartesian products, we have that $\mathbb{A}^m(k) \times \mathbb{A}^n(k) = \mathbb{A}^{m+n}(k)$. Then $X \times Y = (X,Y)$. Now, let $S \subseteq k[x_1,\ldots,x_m]$ and $T \subseteq k[x_1,\ldots,x_n]$ such that X = V(S) and Y = V(T). Let $P \in X \times Y$, then P = (A,B) where $A = (a_1,\ldots,a_m)$ and $B = (b_1,\ldots,b_n)$. Let $f = f_1+\cdots+f_d+\cdots \in S$ and $g = g_1+\cdots+g_l \in T$. Consider then $f \times g((x_1,\ldots,x_m),(y_1,\ldots,y_n)) = f(x_1,\ldots,x_m)g(y_1,\ldots,y_n)$. Since f(A) = 0 and g(B) = 0, then $f \times g(P) = f(A)g(B) = 0$ so that $P \in V(f) \times V(g)$. Conversely, let $P \in V(f) \times V(g)$. Then P = (A,B) where $A \in \mathbb{A}^m(k)$ and $B \in \mathbb{A}^n(k)$, and $f \times g(P) = f(A)g(B) = 0$. Since $A \in V(f)$ and $B \in V(g)$, we get f(A) = 0 and f(B) = 0, so that $P \in X \times Y$. This makes $X \times Y = V(f) \times V(g)$.

1.2 Ideals of Algebraic Sets

Lemma 1.2.1. Let k be a field, and $X \times \mathbb{A}^n(k)$. Consider the set $I(X) = \{f \in k[x_1, \dots, x_n] : f(P) = 0 \text{ for all } P \in X\}$. Then I(X) forms an ideal of $k[x_1, \dots, x_n]$.

Proof. Let $f, g \in I(X)$. Then for all $P \in X$, f(P) = 0, and g(P) = 0, so that f + g(P) = f(P) + g(P) = 0. Moreover, -f(P) = 0 as well. So I is a subgroup of $k[x_1, \ldots, x_n]$ under addition. Now, take $f \in I(X)$ and $g \in k[x_1, \ldots, x_n]$. Then fg(P) = 0 for all $P \in X$ which makes I(X) into an ideal.

Definition. Let k be a field and $X \subseteq \mathbb{A}^n(k)$. We define the **ideal** of X to be the ideal $I(X) = \{f \in k[x_1, \dots, x_n] : f(P) = 0 \text{ for all } P \in X\}$ of $k[x_1, \dots, x_n]$.

Lemma 1.2.2. Let k be a field. The following are true for all $X, Y \subseteq \mathbb{A}^n(k)$ and for all $S \subseteq k[x_1, \ldots, x_n]$.

- (1) If $X \subseteq Y$, then $I(Y) \subseteq I(X)$.
- (2) $I(\emptyset) = k[x_1, \dots, x_n]$ and $I(\mathbb{A}^n(k)) = (0)$.
- (3) $S \subseteq I(V(S))$ and $X \subseteq V(I(X))$.
- (4) V(I(V(S))) = V(S) and I(V(I(X))) = I(X).

Proof. Let $X, Y \subseteq \mathbb{A}^n(k)$, with $X \subseteq Y$. Let $f \in I(Y)$, then for all $P \in Y$, f(P) = 0. Now, since $P \in X$, we get for all $P \in X$ f(P) = 0 so that $f \in I(X)$.

Observe now that the polynomial $1(x_1, \ldots, x_n) = 1$ has no points in $\mathbb{A}^n(k)$ as roots, so that $I(\emptyset) = k[x_1, \ldots, x_n]$. Likewise, for the polynomial $0(x_1, \ldots, x_n) = 0$, every point in $\mathbb{A}^n(k)$ is a root, so that $I(\mathbb{A}^n(k)) = (0)$.

For the third assertion, let $S \subseteq k[x_1, \ldots, x_n]$. If $f \in V(S)$, then for every $P \in V(S)$, f(P) = 0, by definition. This makes $S \subseteq I(V(S))$. Likewise, if $X \subseteq \mathbb{A}^n(k)$ and $P \in X$, then for all $f \in I(X)$, f(P) = 0, so that $P \in V(I(X))$.

Lastly, let $P \in V(S)$, and $f \in I(V(S))$. By definition, f(P) = 0 so that $V(S) \subseteq V(I(V(S)))$. Conversely, let $P \in V(I(V(S)))$ then for every $f \in I(V(S))$, f(P) = 0, which puts $P \in V(S)$ so that $V(I(V(S))) \subseteq V(S)$. Likewise, by similar reasoning we conclude that I(V(I(X))) = I(X).

Corollary. If k is an infinite field, then for any $a_1, \ldots, a_n \in k$, $I(a_1, \ldots, a_n) = (x_1 - a_1, \ldots, x_n - a_n)$.

Proof. Let $f \in I(a_1, \ldots, a_n)$. Since k is infinite, and $f(a_1, \ldots, a_n) = 0$,

$$f(x_1,\ldots,x_n)=\sum g_i(x_1,\ldots,x_n)(x_i-a_i)$$

so $f \in (x_1 - a_1, \dots, x_n - a_n)$. Conversely, if $f \in (x_1 - a_1, \dots, x_n - a_n)$, we observe that $f \in I(a_1, \dots, a_n)$.

Definition. Let \mathfrak{a} be an ideal of a ring R. We define the **radical** of \mathfrak{a} to be the set

Rad
$$\mathfrak{a} = \{ a \in \mathbb{R} : a^n \in \mathfrak{a}, \text{ for some } n \in \mathbb{Z}^+ \}$$

We call I a radical ideal if I = Rad I.

Lemma 1.2.3. Let R be a ring, and \mathfrak{a} an ideal of R. Then $\operatorname{Rad} \mathfrak{a}$ is also an ideal of R.

Proof. Let $a, b \in \text{Rad }\mathfrak{a}$, then $a^m \in \mathfrak{a}$ and $b^n \in \mathfrak{a}$ for some $m, n \in \mathbb{Z}^+$. Now, observe that

$$(a+b)^{m+n} = a^{m+n} + \sum_{i=1}^{m+n-2} {m+n \choose i} a^i b^{m+n-i} + b^{m+n}$$

Now, $a^{m+n}=a^ma^n\in\mathfrak{a}$ and $b^{m+n}=b^nb^m\in\mathfrak{a}$ by the ideal properties of \mathfrak{a} . Moreover, notice if $i\geq n$, then $a^ib^{m+n-i}\in\mathfrak{a}$; on the otherhand, if $m\leq m+n-i$, then $a^ib^{m-n-i}\in\mathfrak{a}$. This makes each $a^ib^{m-n-i}\in\mathfrak{a}$, and that $(a+b)^{m+n}\in\mathfrak{a}$. Also observe that if $a^n\in\mathfrak{a}$, then $(-a)^n=-(a^n)\in\mathfrak{a}$. So that Rad \mathfrak{a} is an additive subgroup of R.

Lastly, suppose that if $a \in \operatorname{Rad} R$, and $r \in R$, then we have $(ra)^n = r^n a^n \in \mathfrak{a}$ for some $n \in \mathbb{Z}^+$. Thus $ra \in \operatorname{Rad} \mathfrak{a}$. This makes $\operatorname{Rad} \mathfrak{a}$ an ideal of R.

Corollary. Rad \mathfrak{a} is a radical ideal of R.

Proof. Observe that Rad $\mathfrak{a} \subseteq \operatorname{Rad}(\operatorname{Rad}\mathfrak{a})$. Now, let $a \in \operatorname{Rad}(\operatorname{Rad}\mathfrak{a})$, then $a^n \in \operatorname{Rad}\mathfrak{a}$ for some $n \in \mathbb{Z}^+$, so that $(a^n)^m = a^{mn} \in \mathfrak{a}$ for some $m \in \mathbb{Z}^+$. This makes $a \in \operatorname{Rad}\mathfrak{a}$. So $\operatorname{Rad}(\operatorname{Rad}\mathfrak{a}) \subseteq \operatorname{Rad}\mathfrak{a}$. This makes $\operatorname{Rad}\mathfrak{a}$ radical.

Lemma 1.2.4. Any prime ideal in a ring R is radical.

Proof. Let \mathfrak{p} be a prime ideal. We have that $\subseteq \operatorname{Rad}\mathfrak{p}$. Now, let $a \in \operatorname{Rad}\mathfrak{p}$. Then for some $n \in \mathbb{Z}^+$, we have that $a^n \in \mathfrak{p}$. Since \mathfrak{p} is prime, either $a \in \mathfrak{p}$ or $a^{n-1} \in \mathfrak{p}$. If $a \in \mathfrak{p}$, we are done; otherwise we have $a^{n-1} = aa^{n-2} \in \mathfrak{p}$. Repeating this process recursively, we obtain that $a \in \mathfrak{p}$, so that $\mathfrak{p} = \operatorname{Rad}\mathfrak{p}$.

Lemma 1.2.5. Let k be a field, then for any $X \subseteq \mathbb{A}^n(k)$, I(X) is a radical ideal.

Proof. For any
$$f \in I(X)$$
, notice that $f^n(P) = f(f^{n-1}(P)) = \cdots = \underbrace{f(f((P)))}_{n \text{ times}}$

Example 1.5. Observe that $\mathbb{R}[x]/(x^2+1) \simeq \mathbb{C}$ is a field, so that (x^2+1) is a maximal ideal, hence a prime ideal, and hence, a radical ideal. Observe also that $V(x^2+1) = \emptyset$, so that $I(V(x^2+1)) = \mathbb{R}[x]$. Therefore, (x^2+1) is not the ideal of any nonempty set of $\mathbb{A}^1(\mathbb{R})$.

Lemma 1.2.6. If X and Y are algebraic sets in $\mathbb{A}^n(k)$, then I(X) = I(Y) if, and only if X = Y.

Proof. If X = Y, then we can observe that I(X) = I(Y). Conversely, suppose that I(X) = I(Y), and let $f \in I(X)$. Then for all $P \in X$, we have f(P) = 0. Since I(X) = I(Y), we must have that $P \in Y$ so that $X \subseteq Y$. In similar fashion, we get that $Y \subseteq X$.

Theorem 1.2.7. Let k be a field. The ideal $(x_1 - a_1, \ldots, x_n - a_n)$ of $k[x_1, \ldots, x_n]$ is a maximal ideal of $k[x_1, \ldots, x_n]$ and the natural map

$$k \to k[x_1, \dots, x_n]/(x_1 - a_1, \dots, x_n - a_n)$$

defines an isomorphism.

Proof. Define the map $\phi: k[x_1, \ldots, k_n] \to k$ defined by the rule $f(x_1, \ldots, x_n) \to f(a_1, \ldots, a_n)$ where $a_1, \ldots, a_n \in k$. Then notice that $\ker \phi = (x_1 - a_1, \ldots, x_n - a_n)$. Now, consider $f(x_1, \ldots, x_n) = 1 + 0x_1 + \cdots + 0x_n \in k[x_1, \ldots, x_n]$. Then $f(a_1, \ldots, a_n) = 1 + 0a_1 + \cdots + 0a_n = 1 \in \phi(k[x_1, \ldots, x_n])$. So that ϕ is onto. By the first isomorphism theorem for ring homomorphisms, we get

$$k[x_1,\ldots,x_n]/(x_1-a_1,\ldots,x_n-a_n)\simeq k$$

So that $(x_1 - a_1, ..., x_n - a_n)$ is a maximal ideal. Notice also that $\Phi = \pi \circ \phi$ where $\pi : k \to k[x_1, ..., x_n]/(x_1 - a_1, ..., x_n - a_n)$ is the natural map. So π defines the isomorphism.

1.3 Hilbert's Basis Theorem

Definition. Let R be a ring. We say a sequence of ideals $\{\mathfrak{a}_n\}$ is an **ascending chain** of ideals if $\mathfrak{a}_n \subseteq \mathfrak{a}_{n+1}$ for all $n \in \mathbb{Z}^+$. We say that the chain $\{\mathfrak{a}_n\}$ stabalizes if there exists some $k \geq n$, $\mathfrak{a}_k = \mathfrak{a}_n$.

Definition. Let R be a ring. We call A **Noetherian** if every ascending chain of ideals of A stabilizes. We say that A satisfies the **ascending chain condition** on ideals.

Lemma 1.3.1. If \mathfrak{a} is an ideal of a Noetherian ring R, then the factor ring $A_{\mathfrak{a}}$ is also Noetherian. In particular, the image of a Noetherian ring under any ring homomorphism is Noetherian.

Proof. This follows by the isomorphism theorems for ring homomorphisms.

Theorem 1.3.2. The following are equivalent for any ring R.

- (1) R is Noetherian.
- (2) Every nonempty collection of ideals of R contains a maximal element under inclusion.
- (3) Every ideal of R is finitely generated.

Proof. Let R be Noetherian, and let S an nonempty collection of ideals of R. Choose an ideal $\mathfrak{a}_1 \in S$. If \mathfrak{a}_1 is maximal, we are done. If not, then there is an ideal $\mathfrak{a}_2 \in A$ for which $\mathfrak{a}_1 \subseteq \mathfrak{a}_2$. Now, if \mathfrak{a}_2 is maximal, we are done. Otherwise, proceeding inductively, if there are no maximal ideals of R in S, then by the axiom of choice, construct the infinite strictly increasing chain

$$\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \dots$$

of ideal of R. This contradicts that R is Noetherian, so \mathcal{S} must contain a maximal element. Now, suppose that any nonempty collection of ideals of R contains a maximal element. Let \mathcal{S} the collection of all finitely generated ideals of R, and let \mathfrak{a} be any ideal of R. By hypothesis, \mathcal{S} has a maximal element \mathfrak{a}' . Now suppose that $\mathfrak{a} \neq \mathfrak{a}'$, and choose an $x \in \mathfrak{a} \setminus \mathfrak{a}'$, then the ideal generated by \mathfrak{a}' and x is finitely generated, and so is in \mathcal{S} ; but that contradicts the maximality of \mathfrak{a}' . Therefore we must have $\mathfrak{a} = \mathfrak{a}'$. Finally, suppose every ideal of R is finitely genrated, and let $\mathfrak{a} = (a_1, \ldots, a_n)$. Let

$$\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \dots$$

an ascending chain of ideals of R for which

$$\mathfrak{a} = igcup_{n \in \mathbb{Z}^+} \mathfrak{a}_n$$

Since $a_i \in \mathfrak{a}$ for each $1 \leq j \leq n$, we have that $a_i \in \mathfrak{a}_{i_j}$ and $i \in \mathbb{Z}^+$. Now, let $m = \max\{j_1, \ldots, j_n\}$ and coinsider the ideal \mathfrak{a}_m . Then $a_i \in \mathfrak{a}_m$ for each i, which makes $\mathfrak{a} \subseteq \mathfrak{a}_m$. That is, $\mathfrak{a}_n = \mathfrak{a}_m$ for some $n \geq m$; which makes R Noetherian.

- **Example 1.6.** (1) Every principle ideal domain (PID) is Noetherian, since any collection of ideals has a maximal element. Moreover, lemma ?? states that PIDs satisfy the ascending chain condition.
 - (2) The rings \mathbb{Z} , $\mathbb{Z}[i]$, and k[x] (where k is a field) are Noetherian.
 - (3) The multivariate polynomial ring $\mathbb{Z}[x_1, x_2, \dots]$ is not Noetheria, since the ideal (x_1, x_2, \dots) is not finitely generated.

Definition. We call a ring in which every ideal is finitely generated a **Noetherian ring**.

Theorem 1.3.3 (Hilbert's Basis Theorem). If R is a Noetherian ring, then so is the polynomial ring R[x].

Proof. Let \mathfrak{a} be an ideal of R[x], and let L be the set of all leading coefficients of polynomials in \mathfrak{a} . Notice that since $0 \in \mathfrak{a}$, then $0 \in L$, so that L is nonempty. Moreover, let $f(x) = ax^d + \ldots$ and $g(x) = bx^e + \ldots$ polynomials in \mathfrak{a} of degree $\deg f = d$ and $\deg g = e$, with leading coefficients $a, b \in R$. Then for any $r \in R$, we have the coefficient ra - b = 0, or ra - b is the leading coefficient of the polynomial $rx^e f - x^d g \in \mathfrak{a}$. In either case, we get $ra - b \in L$. This makes L an ideal of R. Now, since R is Noetherian L is finitely generated; let $L = (a_1, \ldots, a_n)$. Then for every $1 \le i \le n$, let $f_i \in \mathfrak{a}$ the polynomial of degree $\deg f_i = e_i$ whose leading coefficient is a_i . Take, then $N = \max\{e_1, \ldots, e_n\}$. Then for any $d \in \mathbb{Z}/N\mathbb{Z}$, let L_d be the set of all leading coefficients of polynomials in \mathfrak{a} , of degree d, together with 0. Let $f_{di} \in \mathfrak{a}$ a polynomial of degree $\deg f_{di} = d$ with leading coefficient b_{di} . We wish to show that

$$\mathfrak{a}=(f_1,\ldots,f_n)\cup(f_{d1},\ldots f_{nd})$$

Let $\mathfrak{a}' = (f_1, \ldots, f_n) \cup (f_{d1}, \ldots f_{nd})$. By construction, since the generators were chosen from $\mathfrak{a}, \mathfrak{a}' \subseteq \mathfrak{a}$. Now, if $\mathfrak{a} \neq \mathfrak{a}'$. Then there is a nonzero polynomial $f \in \mathfrak{a}$ of minimum degree not contained in \mathfrak{a}' (i.e $f \notin \mathfrak{a}'$). Let deg f = d, and let a be the leading coefficient of f. Suppose that $d \geq N$. Since $a \in L$, a is an R-linear combination of the generators of L; i.e.

$$a = r_1 a_1 + \dots + r_n a_n$$

where $r_1, \ldots, r_n \in R$. Let

$$g = r_1 x^{d-e_1} f_1 + \dots + r_n x^{d-e_n} f_n$$

then $g \in \mathfrak{a}'$ and has degree $\deg g = d$ and leading coefficient a. Hence $f - g \in \mathfrak{a}'$ is of smaller degree, and by the minimality of f, f - g = 0, which makes $f = g \in \mathfrak{a}'$; a contradiction. Therefore $\mathfrak{a} = \mathfrak{a}'$

Now, if d < N, then $a \in L_d$, and so is an R-linear combination of generators of L_d ; that is

$$a = r_1 b_{d1} + \dots + r_n b_{dn}$$

where $r_1, \ldots, r_n \in R$. Then let

$$q = r_1 f_{d1} + \cdots + r_n f_{dn}$$

then $g \in \mathfrak{a}'$ is a polynomial of degree $\deg g = d$ and leading coefficient a; which gives us the above contradiction.

Therefore, $\mathfrak{a} = \mathfrak{a}'$, and since \mathfrak{a}' is finitely generated, R[x] is Noetherian.

Corollary. Let k be a field. Then the polynomial ring in n variables $k[x_1, \ldots, x_n]$ is Noetherian.

Theorem 1.3.4. Every algebraic set is the intersection of a finite number of hypersurfaces.

Proof. Let \mathfrak{a} be an iddeal in the ring $k[x_1, \ldots, x_n]$ for some field k, and consider the set $V(\mathfrak{a})$. Since $k[x_1, \ldots, x_n]$ is Noetherian, then $\mathfrak{a} = (f_1, \ldots, f_n)$, so that

$$V(\mathfrak{a}) = V(f_1) \cap \cdots \cap V(f_n)$$

Theorem 1.3.5. Let \mathfrak{a} be an ideal in a ring R, and consider the natural map $\pi: R \to R/\mathfrak{a}$. The following are true.

- (1) For every ideal \mathfrak{b}' of $R_{\mathfrak{a}}$, $\pi^{-1}(\mathfrak{b}') = \mathfrak{b}$ is an ideal of R containing \mathfrak{a} . Moreover, for any ideal \mathfrak{b} of R containing \mathfrak{a} , then $\pi(\mathfrak{b}) = \mathfrak{b}'$.
- (2) The ideal \mathfrak{b}' of $R_{\mathfrak{g}}$ is a radical ideal if, and only if \mathfrak{b} is a radical ideal in R.
- (3) If \mathfrak{b} is finitely generated in R, then \mathfrak{b}' is finitely generated in $R_{\mathfrak{a}}$. Moreover, $R_{\mathfrak{a}}$ is Noetherian if R is Noetherian.

Proof. Let \mathfrak{b}' be an ideal of $R_{\mathfrak{a}}$. Since the natural map π is onto, there is an ideal $\mathfrak{b} \in R$ for which $\mathfrak{b} = \pi^{-1}(\mathfrak{b}')$. Now, let $a, b \in \mathfrak{b}$, then $\pi(a), \pi(b) \in \mathfrak{b}'$, so that $\pi(a+b) \in \mathfrak{b}'$ and $-\pi(a) \in \mathfrak{b}'$. Moreover, if $a \in \mathfrak{b}$, and $r \in R$, then $r\pi(a) = \pi(ra) \in \mathfrak{b}'$, since \mathfrak{b}' is an ideal. Now, since $\ker \pi = \mathfrak{a}$, we have that $\mathfrak{a} \subseteq \mathfrak{b}$. So that \mathfrak{b} is an ideal containing \mathfrak{a} . By similar reasoning, if \mathfrak{b} is an ideal containing \mathfrak{a} , then $\mathfrak{b}' = \pi(\mathfrak{b})$ is also an ideal.

Now, suppose that \mathfrak{b} is a radical ideal. That is, $\mathfrak{b} = \operatorname{Rad} \mathfrak{b}$. Since $\mathfrak{b} = \pi^{-1}(\mathfrak{b}')$, we have $\pi^{-1}(\mathfrak{b}') = \operatorname{Rad} \pi^{-1}(\mathfrak{b}')$. Now, suppose that \mathfrak{b} is a prime ideal, then if $ab \in \mathfrak{b}$, either $a \in \mathfrak{b}$ or $b \in \mathfrak{b}$. This implies whenever $\pi(ab) \in \mathfrak{b}'$, either $\pi(a) \in \mathfrak{b}'$ or $\pi(b) \in \mathfrak{b}'$. This makes \mathfrak{b}' prime. Similarly, if \mathfrak{b}' is prime so is \mathfrak{b} . Finally, by definition of a maximal idea, \mathfrak{b} is maximal if, and only if \mathfrak{b}' is maximal.

Finally, suppose that \mathfrak{b} is finitely generated, then $\mathfrak{b} = (a_1, \ldots, a_n) = \pi^{-1}(\mathfrak{b}')$ for $a_1, \ldots, a_n \in R$. Then every element of \mathfrak{b} is the sum of a_1, \ldots, a_n . That is, $b = r_1 a_1 + \cdots + r_n a_n$ for every $b \in \mathfrak{b}$, and $r_1, \ldots, r_n \in R$. Now, since $b \in \mathfrak{b} = \pi^{-1}(\mathfrak{b}')$, then $\pi(b) = r_1 \pi(a_1) + \cdots + r_n \pi(a_n) \in \mathfrak{b}'$, so that $\mathfrak{b}' = (\pi(a_1), \ldots, \pi(a_n))$. This makes \mathfrak{b}' finitely generated. We can then conclude that if R is Noetherian, by theorem 1.3.2, R must also be Noetherian.

Corollary. Let k be a field and \mathfrak{a} an ideal of $k[x_1, \ldots, x_n]$. Any ring of the form $k[x_1, \ldots, x_n] / \mathfrak{a}$ is a Noetherian ring.

1.4 Irreducible Components

Definition. Let k be a field. We call an algebraic set $X \subseteq \mathbb{A}^n(k)$ reducible if it can be written as the union of two algebraic sets; that is, there exist $X_1, X_2 \subseteq \mathbb{A}^n(k)$ such that $X = X_1 \cup X_2$. We call an algebraic set **irreducible** if it is not reducible.

Example 1.7. (1) The algebraic sets defined by the equations $y^2 = x^3 - x$, $y^2 = x^3 + x^2$, and $z^2 = x^2 + y^2$ in $\mathbb{A}^2(\mathbb{R})$ and $\mathbb{A}^3(\mathbb{R})$, respectively, are irreducible.

(2) The algebraic set described by the equation $y^2 - xy - x^2y + x^2 = 0$ is reducible in $\mathbb{A}^2(\mathbb{R})$.

Lemma 1.4.1. An algebraic set is reducible if, and only if its ideal is prime.

Proof. Let k be a field, and $X \subseteq \mathbb{A}^n(k)$. Suppose that the ideal I(X) is not prime. Let $f_1 f_2 \in I(X)$, but $f_1, f_2 \notin I(X)$. Then

$$X = (X \cap V(f_1)) \cup (X \cap V(f_2))$$

and $X \cap V(f_1) \subseteq X$ and $X \cap V(f_2) \subseteq X$. This makes X reducible, by definition.

Conversely, suppose that X is reducible, and that $X = X_1 \cup X_2$ for $X_1, X_2 \subseteq \mathbb{A}^n(k)$. Then $I(X) \subseteq I(X_1)$ and $I(X) \subseteq I(X_2)$. Let $f_1 \in I(X_1)$ and $f_2 \in I(X_2)$, but $f_1, f_2 \notin I(X)$. Then $f_1 f_2 \in I(X)$, but $f_1, f_2 \notin I(X)$, so that I(X) is not prime.

Lemma 1.4.2. Any collection of algebraic sets has a minimal member.

Proof. If $\{X_{\alpha}\}$ is a collection of algebraic sets in \mathbb{A}^n , then by theorem 1.3.2 the collection of ideals $\{I(X_{\alpha})\}$ has a maximal member. Choose such a maximal member $I(X_{\alpha_0})$, then the corresponding algebraic set X_{α_0} is a minimal member of the collection $\{X_{\alpha}\}$.

Theorem 1.4.3. Any algebraic set can be uniquely expressed as the disjoint union of irreducible algebraic sets. That is; for any algebraic set $X \subseteq \mathbb{A}^n$, there exist unique pairwise disjoint $X_1, \ldots, X_m \subseteq \mathbb{A}^n$ for which

$$X = X_1 \cup \cdots \cup X_m$$

Proof. We first show that such a decomposition exists for every algebraic set in \mathbb{A}^n . Let \mathcal{S} be the collection of all algebraic sets which cannot be expressed as a (not necessarily disjoint) union of (not necessarily unique) irreducible algebraic sets. Let X be a minimal element of \mathcal{S} . Then X is not irreducible. Hence there exist $X_1, X_2 \subseteq \mathbb{A}^n$ for which $X = X_1 \cup X_2$; suppose further that $X_1, X_2 \subseteq X$. By the minimality of $X, X_1, X_2 \notin \mathcal{S}$, so that

$$X_i = \bigcup_{j=1}^{m_i} X_{ij}$$

where each X_{ij} is irreducible. This makes

$$X = \bigcup_{i=1,j=1}^{m,m_i} X_{ij}$$

which contradicts that $X \in \mathcal{S}$. Therefore \mathcal{S} must be empty, and every algebraic set can be expressed as the union of irreducible algebraic sets.

Now, take $X = X_1 \cup ... X_m$, where each X_i is irreducible, and discard all those X_i for which $X_i \subseteq X_j$ for all $i \neq j$. This makes X a disjoint union. Now, suppose that $X = Y_1 \cup ... Y_r$. Then

$$X_i = \bigcup_{j=1}^r \left(Y_j \cap X_i \right)$$

so that $X_i \subseteq Y_j$ for some j. Similarly, we get that $Y_j \subseteq X_k$ for some k. Thus $X_i \subseteq X_k$, but since X is already a disjoint union, this makes i = k so that $X_i = Y_j$ and m = r. Thus the decomposition of X into mutually disjoint irreducible algebraic sets is unique.

Definition. Let k be a field, and $X \subseteq \mathbb{A}^n(k)$ an algebraic set. Let $X = X_1 \cup \ldots X_m$ the decomposition of X into the union of pairwise disjoint irreducible algebraic sets. We call each X_i an **irreducible component** of X.

1.5 Algebraic Subsets of The Plane

Lemma 1.5.1. Let k be a field, and let $f, g \in k[x, y]$ polynomials with no common factor. Then the set $V(f, g) = V(f) \cap V(g)$ is a finite set of points.

Proof. Notice that if f and g are coprime in $k[x,y] \simeq k[x][y]$, then they are coprime in k(x)[y], where k(x) is the field of fractions of k[x]. We have that k(x)[y] is a PID, and that the ideal (f,g)=(1). Then there exist $r,s\in k(x)[y]$ for which rf(x,y)+sg(x,y)=1. There also exists a $d\in k[x]$ such that d(x)r=a(x,y) and and d(x)s=b(x,y) in k[x,y]. Then a(x,y)f(x,y)+b(x,y)g(x,y)=d(x)(rf(x,y))+d(x)(rg(x,y))=d(x). Now, if $A,B\in V(f,g)$, then d(A)=0. Now, d has finitely many roots in k, so that there are finitely many x-coordinates corresponding to the points of V(f,g). Similarly, in the PID k(y)[x], we get that there are finitely many y-coordinates corresponding to the points of V(f,g) have finitely many points.

Corollary. If f is irreducible in k[x,y] and V(f) is finite, then I(V(f)) = (f), and V(f) is an irreducible algebraic set.

Proof. Suppose that $g \in I(V(f))$, then V(f,g) is infinite, and by the above lemma, we get that g|f. Then $g \in (f)$, so that I(V(f)) = (f). Moreover, since f is irreducible in the k[x,y], if $ab \in (f)$, then either $a \in (f)$ or $b \in (f)$, which makes I(V(f)) = (f) a prime ideal. This makes V(f) irreducible by lemma 1.4.1.

Corollary. Suppose that k an infinite field, then the irreducible algebraic sets of $\mathbb{A}^2(k)$ are $\mathbb{A}^2(k)$ itself, the emptyset, point sets, and irreducible plane curves V(f), where $f \in k[x,y]$ is irreducible and V(f) is infinite.

Proof. Let $X \subseteq \mathbb{A}^2(k)$ an irreducible algebraic set. If X is finite, or I(X) = (0), then it is either $\mathbb{A}^n(k)$, the emptyset, or a finite algebraic set (i.e. a set of points). Suppose then, that X is infinite. Then there exists a nonconstant polynomial $f \in I(X)$. Now, since X is irreducible, I(X) is prime, and hence contains an irreducible factor of f; thus, suppose without loss of generality that f is irreducible. Then I(X) = (f); for otherwise, if $g \in I(X)$ but $g \notin (f)$, then $X \subseteq V(f,g)$ is finite which is a contradiction. This makes X = V(f) as required.

Corollary. If k is an algebraically closed field, and f has the decomposition $f = f_1^{n_1} \dots f_m^{n_m}$ into irreducible factore, then $V(f) = V(f_1) \cup \dots V(f_m)$ is the decomposition of V(f) into irreducible components. Moreover, $I(V(f)) = (f_1, \dots, f_m)$.

Proof. By hypothesis, we have that each f_i and f_j are coprime whenever $i \neq j$. That is, there exist no inclusions under each $V(f_i)$, so that the decomposition $V(f) = V(f_1) \cup \cdots \cup V(f_m)$ is the decomposition of V(f) into irreducible components. Now, we also have that

$$I(V(f)) = \bigcap_{i=1}^{m} I(V(f_i)) = \bigcap_{i=1}^{m} (f_i)$$

Now, since each polynomial divisible by f_i is also divisible by $f_1 \dots f_m$, we get that $\bigcap (f_i) = (f_1, \dots, f_m)$. Lastly, notice that since k is algebraically closed, and hence infinite, each $V(f_i)$ is infinite.

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.
- [3] M. Atiyah and I. MacDonald, *Introduction to Commutative Algebra*. Addison-Wesly Series in Mathematics, CRC Press.
- [4] D. Eisenbud, Commutative Algebra: Wit a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Springer Verlag.
- [5] R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics, Springer Verlag.
- [6] W. Fulton, Algebraic Curves: An Introduction to Algebraic Geometry. Advanced Book Classics, Addison-Wesley.