1. Class sums. Let R be a commutative ring with 1, and let G be a finite group. Before starting, review our work considering groups acting on themselves by conjugation (Section 4.3 in D&F). In particular, the conjugacy classes of group elements partition the group. For example, in S_n , the conjugacy classes are in bijection with cycle type; in S_3 in particular, the classes are

$$\{1\}, \{(12), (13), (23)\}, \text{ and } \{(123), (132)\}.$$

(a) In RG, a class sum corresponding to a conjugacy class

$$\mathcal{K}_g = \{ h \in G \mid h = aga^{-1} \text{ for some } a \in G \}$$
 is $\kappa_g = \sum_{h \in \mathcal{K}_g} h$.

For example, the class sums in RS_3 are

$$\kappa_1 = 1, \quad \kappa_{(12)} = (12) + (13) + (23), \quad \text{and} \quad \kappa_{(123)} = (123) + (132).$$

Compute the class sums in RD_8 and RA_4 .

Answer. Recall that $D_8 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$ with $|r| = 4, |s| = 2, s \neq r^i$ for every i, and $rs = sr^{-1}$. The equivalency classes of D_8 under conjugacy are

$$\{1\}$$
 $\{r, r^3\}$ $\{r^2\}$ $\{s, sr^2\}$ $\{sr, sr^3\}$

Hence, the class sums of RD_8 are,

$$\kappa_1 = 1, \quad \kappa_r = r + r^3 \quad \kappa_{r^2} = r^2 \quad \kappa_s = s + sr^2 \quad \kappa_{sr} = sr + sr^3$$

Now note that $A_4 =$

.....

(b) For each of the class sums κ in RD_8 , compute $r\kappa r^{-1}$ and $s\kappa s^{-1}$. Use your results to argue that $g\kappa = \kappa g$ for all $g \in D_8$.

Answer. We have the following for $r\kappa r^{-1}$,

$$r\kappa_{1}r^{-1} = r1r^{-1} = 1$$

$$r\kappa_{r}r^{-1} = r(r+r^{3})r^{-1} = (r^{2}+r^{4})r^{-1} = r+r^{3}$$

$$r\kappa_{r^{2}}r^{-1} = r(r^{2})r^{-1} = r^{2}$$

$$r\kappa_{s}r^{-1} = r(s+sr^{2})r^{-1} = (rs+rsr^{2})r^{-1} = (sr^{-1}+sr)r^{-1} = sr^{-2}+s = s+sr^{2}$$

$$r\kappa_{sr}r^{-1} = r(sr+sr^{3})r^{-1} = (rsrrsr^{3})r^{-1} = (s+sr^{2})r^{-1} = sr^{-1}+sr = sr+sr^{3}$$

Now for $s \kappa s^{-1}$,

$$s\kappa_1 s^{-1} = s1s^{-1} = 1$$

$$s\kappa_r s^{-1} = s(r+r^3)s^{-1} = (sr+sr^3)s^{-1} = r^{-1} + r^{-3} = r + r^3$$

$$s\kappa_{r^2} s^{-1} = s(r^2)s^{-1} = r^{-2}ss^{-1} = r^2$$

$$s\kappa_s s^{-1} = s(s+sr^2)s^{-1} = (s^2+s^2r^2)s^{-1} = s^{-1} + r^2s^{-1} = s + sr^2$$

$$s\kappa_{sr} s^{-1} = s(sr+sr^3)s^{-1} = (s^2+s^2r^3)s^{-1} = s^{-1} + r^3s^{-1} = s + sr^3$$

Now we know that D_8 is generated by $\{r, s\}$. That is, the elements r, s along with the rules mentioned in part (a) allow us to express any element of D_8 . Hence, for any $g \in D_8$, we can write

$$g = r^i s^j$$

with $1 \le i \le 8$ and $1 \le j \le 2$. Thus, by the previous reasoning and above derivations, for any class sum κ , we have,

$$g\kappa g^{-1} = r^i s^j \kappa s^{-j} r^{-i}$$
$$= r^i \kappa r^{-i}$$
$$= \kappa$$

Now, multiplying by g on the right side of both sides of the equation yields,

$$(g\kappa g^{-1})g = \kappa g$$
$$\iff g\kappa = \kappa g$$

as required.

.....

(c) Claim: the center of the group algebra RG is the R-span of the class sums of G,

$$Z(RG) = R\{\kappa_g \mid g \in G\} = \{r_1\kappa_1 + \dots + r_\ell\kappa_\ell \mid r_i \in R\},\$$

where $\kappa_1, \ldots, \kappa_\ell$ denote the ℓ class sums of G.

Let's prove it:

(i) For each $g \in G$, show that for all $h \in G$, we have $h\kappa_g h^{-1} = \kappa_g$. Conclude that $a\kappa_g = \kappa_g a$ for all $a \in RG$ (showing that $\kappa_g \in Z(RG)$).

Proof. Let $g \in G$ and suppose κ_g is the class sum of g. Then $\kappa_g = g + g_1 + \cdots + g_k$ for $g, g_1, \ldots, g_k \in \mathcal{K}_g$. Now fix $h \in G$. Then we have,

$$h\kappa_g h^{-1} = h(g + g_1 + \dots + g_k)h^{-1}$$

= $hgh^{-1} + hg_1h^{-1} + \dots + hg_kh^{-1}$

Since R is commutative, we have,

$$h\kappa_g h^{-1} = hgh^{-1} + hg_1h^{-1} + \dots + hg_kh^{-1}$$

$$= h(gh^{-1}) + h(g_1h^{-1}) + \dots + h(g_kh^{-1})$$

$$= hh^{-1}g + hh^{-1}g_1 + \dots + hh^{-1}g_k$$

$$= 1g + 1g_1 + \dots + 1g_k$$

$$= g + g_1 + \dots + g_k$$

$$= \kappa_g$$

Since $g, h \in G$ were arbitrary, this holds for all such $g, h \in G$ as required.

Now fix
$$a \in RG$$
. Then $a = a_1g_1 + a_2g_2 + \cdots + a_ng_n$ for $a_i \in R$, $g_i \in G$.

(ii) Use the previous part to show that $r_1\kappa_1 + \cdots r_\ell\kappa_\ell \in Z(RG)$ for all $r_i \in R$ (showing that $R\{\kappa_i \mid i=1,\ldots\ell\} \subseteq Z(RG)$).

Proof. By part (i), we have that for each $g \in G$, $\kappa_g \in Z(RG)$. Hence, $a\kappa_g = \kappa_g a$ for all $a \in RG$. So let us consider,

$$a(r_1\kappa_1 + \dots + r_\ell\kappa_\ell) = ar_1\kappa_1 + \dots + ar_\ell\kappa_\ell$$

Since R is commutative and $\kappa_q \in Z(RG)$ for all g, we have,

$$ar_1\kappa_1 + \dots + ar_\ell\kappa_\ell = r_1\kappa_1a + \dots + r_\ell\kappa_\ell a$$

= $(r_1\kappa_1 + \dots + r_\ell\kappa_\ell)a$

As a result, $(r_1\kappa_1 + \cdots + r_\ell\kappa_\ell) \in Z(RG)$.

(iii) Conversely, show that for $a = \sum_{g \in G} s_g g \in RG$, if $hah^-1 = a$ for all $h \in G$, then $s_g = s_{g'}$ whenever g is conjugate to g (i.e. the coefficients are constant across conjugacy classes). [Hint: Start one at a time: if $hah^-1 = a$, then compare both sides to get $s_g = s_{h^{-1}gh}$. Try on your examples in part (b) to get started if you need help.]

(iv) Let $a \in RG$. Show that if ha = ah for all $h \in G$, then ba = ab for all $b \in RG$.

Proof. Let $a \in RG$ and suppose ha = ah for all $h \in G$. Let $b \in RG$ and let us write b as $b = b_1g_1 + b_2g_2 + \cdots + b_ng_n$ for $b_i \in R$, $g_j \in G$ with $1 \le i, j \le n$. Let us also write $a \in RG$ as $a = a_1g_1 + a_2g_2 + \cdots + a_ng_n$ for $a_i \in R$, $g_j \in G$ with $1 \le i, j \le n$. Then we have,

$$ba = (b_1g_1 + b_2g_2 + \dots + b_ng_n) \cdot (a_1g_1 + a_2g_2 + \dots + a_ng_n)$$
$$= \sum_{g_ig_i = g_k} a_ib_jg_k$$

We have that ha = ah for all $h \in G$ and that

(d) Let F be a field with $n! \neq 0$ in F. Show that

$$e_{+} = \sum_{\sigma \in S_{n}} \sigma$$
 and $e_{-} = \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \sigma$

are essential idempotents in FS_n and are central, and compute the corresponding (pure) idempotents. [Hint: Do e_+ first, using the fact that any group acts transitively on itself by left multiplication. For e_- , do some small examples first, and modify your proof for e_+ appropriately.]

- 2. **Vector spaces.** U, V, and W denote vector spaces over a common field F; φ and ψ denote linear transformations; A, B, and C denote bases; A, B, and C denote matrices in $M_n(F)$.
 - (a) Let $\varphi: V \to V$ be a linear map. An element $v \in V$ satisfying $\varphi(v) = \lambda v$ for some $\lambda \in F$ is called a weight vector of weight λ (otherwise known as an eigenvector of eigenvalue λ). More restrictively, element $\lambda \in F$ is called a weight or eigenvalue of φ if it is the weight of some non-zero weight vector of φ . Given a weight of φ , the weight space of V associated to λ is

$$V_{\lambda} = \{ v \in V \mid \varphi(v) = \lambda v \}$$

¹As usual, as an element of F, n! means $1 + 1 + \cdots + 1$ (n! terms).

(the set of weight vectors in V of weight λ).

Show that V_{λ} is a subspace of V.

Proof. By definition, every $v \in V_{\lambda}$ is also an element of V. Hence, we have $V_{\lambda} \subset V$. Now observe that $\lambda 0 = 0$ for any $\lambda \in F$. Hence, $0 \in V_{\lambda}$ and thus V_{λ} is non-empty. Now, by the submodule criterion, we just need to show that $x + ry \in V_{\lambda}$ for all $r \in F$ and for all $x, y \in V_{\lambda}$. Let us start by applying φ to this element and using the properties of the linearity of φ ,

$$\varphi(x + ry) = \varphi(x) + r\varphi(y)$$
$$= \lambda x + r\lambda y$$
$$= \lambda(x + ry)$$

Hence, $x + ry \in V_{\lambda}$ and so V_{λ} is a subspace of V.

(b) Check briefly that $\varphi(v) = \lambda v$ is equivalent to $(\varphi - \lambda \cdot id)(v) = 0$.

Proof. We have that $\varphi(v) \in \operatorname{Hom}_F(V, V)$. Now, $\operatorname{id}(rx + y) = rx + y = r\operatorname{id}(x) + \operatorname{id}(y)$ for all $x, y \in V$ and $r \in F$, so $\operatorname{id} \in \operatorname{Hom}_F(V, V)$ as well. Thus, we can apply Proposition 2(2) from Section 10.2 of Dummit and Foote to get,

$$(\varphi - \lambda \cdot id)(v) = 0$$

$$\iff \varphi(v) - \lambda \cdot id(v) = 0$$

$$\iff \lambda v - \lambda v = 0$$

$$\iff \lambda v = \lambda v$$

(c) Given a weight λ of φ , the generalized weight space associated to λ is

$$V^{\lambda} = \{ v \in V \mid (\varphi - \lambda \cdot \mathrm{id})^m(v) = 0 \text{ for some } m \in \mathbb{Z}_{>0} \}.^2$$

(i) Let

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{and} \quad v = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Check that $v \in V^2$ but $v \notin V_2$.

Answer. Consider,

$$\varphi(v) = Av$$

$$= \begin{pmatrix} 1\\2\\0 \end{pmatrix}$$

Note that,

$$2v = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$$

²Here, ψ^m means $\psi \circ \psi \circ \cdots \circ \psi$ (*m* terms).

Hence, we have that $\varphi(v) \neq 2v$, and so $v \notin V_2$. Now we have,

$$Av - 2v = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

And thus,

$$(\varphi - 2 \cdot id)(Av - 2v) = A(Av - 2v) - 2(Av - 2v)$$
$$= \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0$$

As a result, we have that $(\varphi - 2 \cdot \mathrm{id})^2(v) = 0$, and so $v \in V^2$

(ii) Briefly argue that $V_{\lambda} \subseteq V^{\lambda}$.

Answer. Suppose $v \in V_{\lambda}$. Then $\varphi(v) = \lambda v$ and, by part (b), we have that

$$(\varphi - \lambda \cdot id)(v) = (\varphi - \lambda \cdot id)^{1}(v) = 0$$

. Hence, v also satisfies the definition of V^{λ} with m=1, so $v\in V^{\lambda}$. Since v was arbitrary, this holds for every $v\in V_{\lambda}$ and so $V_{\lambda}\subset V^{\lambda}$.

.....

(iii) Show that V^{λ} is a subspace of V. [Hint: If $(\varphi - \lambda \cdot \mathrm{id})^m(v) = 0$, then $(\varphi - \lambda \cdot \mathrm{id})^n v = 0$ for all integers $n \geq m$.]

Proof. By definition, every $v \in V^{\lambda}$ is also an element of V. Hence, we have $V^{\lambda} \subset V$. Now observe that, for any $\lambda \in F$,

$$\varphi(v) = \lambda 0 = 0v = 0$$

 $\iff (\varphi - \lambda \cdot id)(0) = 0$

Hence, $0 \in V^{\lambda}$ and thus V^{λ} is non-empty. Now, by the submodule criterion, we just need to show that $x + ry \in V^{\lambda}$ for all $r \in F$ and for all $x, y \in V^{\lambda}$. Since, $x, y \in V^{\lambda}$, we have that

$$(\varphi - \lambda \cdot id)^{\ell}(x) = 0$$
$$(\varphi - \lambda \cdot id)^{m}(y) = 0$$

Let $k = \max\{\ell, m\}$. Then by the fact that if $(\varphi - \lambda \cdot \mathrm{id})^m(v) = 0$, then $(\varphi - \lambda \cdot \mathrm{id})^n v = 0$ for all integers $n \geq m$ and by the fact that linear combinations and compositions of linear functions are linear, we have that,

$$(\varphi - \lambda \cdot id)^k (x + ry) = (\varphi - \lambda \cdot id)^k (x) + r(\varphi - \lambda \cdot id)^k (y)$$
$$= 0 + r0$$
$$= 0$$

Hence, $x + ry \in V^{\lambda}$ and so V^{λ} is a subspace of V.

To receive credit for this assignment, include the following in your solutions [edited appropriately]:

Academic integrity statement: I did not violate the CUNY Academic Integrity Policy in completing this assignment. Christopher Hayduk

For example:

Academic integrity statement: I did not violate the CUNY Academic Integrity Policy in completing this assignment.

Zajj B. Daugherty