Questions de cours.

- **1.** Développer $\sin(a-b)$ pour $a,b \in \mathbb{R}$, puis énoncer et démontrer l'inégalité triangulaire et ses cas d'égalité.
- **2.** Factoriser $\cos p \cos q$ pour $p, q \in \mathbb{R}$, puis énoncer et démontrer la formule de Moivre.
- **3.** Linéariser $\sin^2 \theta$ pour $\theta \in \mathbb{R}$, puis donner une CNS sur $a, b \in \mathbb{C}$ pour que les vecteurs d'affixes respectives a et b soient orthogonaux.

1 Nombres complexes

Exercice 1.1 (*). Pour quelles valeurs de $n \in \mathbb{N}$ a-t-on $(1+i)^n \in \mathbb{R}$?

Exercice 1.2 (\star) .

1. Écrire sous forme algébrique :

a.
$$\left(\frac{1+i}{1-i}\right)^{15}$$
 b. $(1+j)^3 + (1+j^2)^3$, avec $j = \exp\left(\frac{2i\pi}{3}\right)$.

2. Écrire sous forme exponentielle :

a.
$$\left(\frac{\sqrt{3}-i}{1+i}\right)^{2018}$$
 b. $1+e^{i\theta}$.

Exercice 1.3 (*). On pose $u = \sqrt{2 - \sqrt{2}} - i\sqrt{2 + \sqrt{2}}$. Calculer u^4 . En déduire |u| et un argument de u.

Exercice 1.4 (*). On note $H = \{z \in \mathbb{C}, \Im(z) > 0\}$ et $D = \{z \in \mathbb{C}, |z| < 1\}$. On définit :

$$g: \begin{vmatrix} \mathbb{C} \setminus \{-i\} \longrightarrow \mathbb{C} \\ z \longmapsto \frac{z-i}{z+i} \end{vmatrix} \quad et \quad f: \begin{vmatrix} H \longrightarrow D \\ z \longmapsto \frac{z-i}{z+i} \end{vmatrix}.$$

- 1. f et g sont-elles bien définies?
- 2. Étudier l'injectivité et la surjectivité de g.
- **3.** Mêmes questions avec f.

Exercice 1.5 (*). On fixe $\alpha \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} l'équation :

$$\left(\frac{z-1}{z+1}\right)^n + \left(\frac{z+1}{z-1}\right)^n = 2\cos\alpha.$$

Exercice 1.6 (*). Soit $z \in \mathbb{C}$.

- 1. Donner une CNS sur z pour que 1, z et z^3 soient alignés.
- **2.** Donner une CNS sur z pour que 1, z et (z+i) soient les affixes des sommets d'un triangle dont le cercle circonscrit a pour centre l'origine du repère.

Exercice 1.7 (Droite d'Euler, \star). On considère trois points (non alignés) A, B, C dans le plan, d'affixes respectives a, b, c. Le centre de gravité G du triangle (ABC) est l'unique point vérifiant :

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = 0.$$

1. Montrer que G est bien défini et exprimer son affixe en fonction de a,b,c.

On appelle hauteur issue de A (resp. B, C) la droite passant par A (resp. B, C) et orthogonale à la droite (BC) (resp. (AC), (AB)).

2. Si M est un point du plan d'affixe z, donner une CNS sur z pour que M appartienne à la hauteur issue de A

On appelle centre du cercle circonscrit de (ABC) l'unique point Ω vérifiant $A\Omega = B\Omega = C\Omega$.

3. Montrer que Ω est bien défini.

4. Montrer que les trois hauteurs de (ABC) s'intersectent en un point H, appelé orthocentre de (ABC), et vérifiant $\overrightarrow{\Omega H} = 3\overrightarrow{\Omega G}$. En particulier, Ω , H et G sont alignés.

Exercice 1.8 (*). On considère un point O du plan, un rayon r > 0 et deux points A et B distincts du cercle de centre O et de rayon r. Montrer que si M est un troisième point du même cercle, alors l'angle $(\overrightarrow{OA}, \overrightarrow{OB})$ est le double de $(\overrightarrow{MA}, \overrightarrow{MB})$.

Exercice 1.9 (*). Soit $n \in \mathbb{N}_{\geq 2}$. Déterminer les complexes z t.q. $(z+i)^n = (z-i)^n$.

Exercice 1.10 (*). Soit $z \in \mathbb{C}$ avec $|z| \leq 1$. Montrer que $\Re(z^2 + 4z + 3) \geq 0$.

Exercice 1.11 (\star) .

- **1.** En considérant les racines cinquièmes de (-1), montrer que $2\cos\left(\frac{\pi}{5}\right) + 2\cos\left(\frac{3\pi}{5}\right) 1 = 0$.
- **2.** En déduire la valeur de $\cos\left(\frac{\pi}{5}\right)$

Exercice 1.12 (*). Pour $n \in \mathbb{N}^*$, on note respectivement ℓ_n et A_n le périmètre et l'aire du polygone régulier dont les sommets sont les racines n-ièmes de l'unité.

- **1.** Donner une expression simple de ℓ_n et A_n .
- **2.** Déterminer $\lim_{n\to+\infty} \ell_n$ et $\lim_{n\to+\infty} A_n$.

Exercice 1.13 (\star) . Soit $q \in \mathbb{C}$ et $n \in \mathbb{N}^*$. Donner une CNS pour que l'équation $(1+iz)^n = q(1-iz)^n$ ait une solution réelle.

Exercice 1.14 (*). Décrire l'ensemble $\{z \in \mathbb{C}, \exists \lambda \in \mathbb{R}, z^2 - \lambda z + 1 = 0\}$.

Exercice 1.15 (*). Soit $n \in \mathbb{N}_{\geqslant 2}$. On pose $P_n : \begin{vmatrix} \mathbb{C} \longrightarrow \mathbb{C} \\ z \longmapsto z^2 + \cdots + z^{2n} \end{vmatrix}$.

- 1. Calculer $\sum_{k=1}^{n-1} \exp\left(i\frac{k\pi}{n}\right)$ et en déduire $\sum_{k=1}^{n-1} \cos\left(\frac{k\pi}{n}\right)$.
- **2.** Déterminer toutes les racines de P_n .
- **3.** En déduire une factorisation de P_n .
- **4.** En considérant $P_n(1)$, en déduire $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{2n}\right)$.
- **5.** En utilisant le coefficient de z^{2n-1} de P_n retrouver le résultat du 1.

Exercice 1.16 (\star) . Soit A, B, C trois points du plan d'affixes respectives a, b, c.

- 1. Montrer que les assertions suivantes sont équivalentes :
 - (i) Le triangle (ABC) est équilatéral.
 - (ii) j ou j^2 est racine du polynôme $aX^2 + bX + c$.
 - (iii) $a^2 + b^2 + c^2 = ab + bc + ca$.
- 2. Généraliser à n points.

Exercice 1.17 (*). Soit $n \in \mathbb{N}^*$.

- **1.** Pour $k \in \mathbb{Z}$, calcular $A_k = \sum_{z \in \mathbb{U}_n} z^k$.
- **2.** Soit $N \in \mathbb{N}$ avec N < n. Soit $(a_0, \ldots, a_N) \in \mathbb{C}^{N+1}$. On définit $P : z \in \mathbb{C} \longmapsto \sum_{q=0}^N a_q z^q$. Si $M = \max\{|P(z)|, z \in \mathbb{U}_n\}$, montrer que $\forall q \in \{0, \ldots, N\}, |a_q| \leq M$.