grokking

neural networks: loss graph

neural networks: overfitting

neural networks: weight decay

 $\lambda \|w\|_2$

grokking: epoch-loss graph

grokking: epoch-loss graph

grokking: example

*	а	b	С	d	е
а	а	d	?	С	d
b	С		d	а	С
С	?		d	h	d
d	а	2	?	b	С
е	b	b	С	?	а

phase change: epoch-loss graph

example: addition mod 113

Train + Test Loss curves for modular addition trained on 95% of the data

Modular addition mod 113 loss curve, trained on 95% of the data

example: 5 digit addition

example: predicting repeated subsequences

example: finding the max element

phase change: possible explanation

- A lottery ticket hypothesis-inspired explanation
- A random walk explanation
- An evolutionary explanation

phase change + weight decay + small sample

phase change

grokking: explanation

bonus: $x + y \mod p$ algorithm

- 1. x, y
- 2. $\cos kx$, $\sin kx$, $\cos ky$, $\sin ky$
- 3. $\cos k(x + y)$, $\sin k(x + y)$
- 4. $\cos k(x + y z)$

$$k = \frac{2\pi}{p}$$