ECN 6338 Cours 6

Approximation de fonctions

William McCausland

2022-02-15

Survol du cours 5

Approximations locales

- Approximation de Taylor
- Approximation de Padé

L'approximation Padé

L'approximation en général est

$$f(x) \approx r(x) \equiv \frac{p(x)}{q(x)}$$
.

La condition $f^i(x_0) = r^i(x_0)$, i = 0, 1, ..., m + n s'exprime aussi comme

$$p^{i}(x) - (f \cdot q)^{i}(x) = 0, \quad i = 0, 1, \dots, m + n.$$

Calcul de l'approximation Padé (2,1) de e^x autour de x=0

L'approximation r(x) est

$$r(x) = \frac{p_0 + p_1 x + p_2 x^2}{1 + q_1 x}.$$

Les coefficients p_0 , p_1 , p_2 et q_1 sont donnés par

$$(p_0 + p_1 x + p_2 x^2) - e^x (1 + q_1 x) \Big|_{x=0} = p_0 - 1 = 0,$$

$$(p_1 + 2p_2 x) - e^x (1 + q_1 x) \Big|_{x=0} = p_1 - 1 - q_1 = 0,$$

$$2p_2 - e^x (1 + q_1 x) - 2e^x q_1 \Big|_{x=0} = 2p_2 - 1 - 2q_1 = 0,$$

$$-e^x (1 + q_1 x) - 3e^x q_1 \Big|_{x=0} = -1 - 3q_1 = 0.$$

- La première équation donne $p_0 = 1$; la dernière, $q_1 = -\frac{1}{3}$.
- Ensuite, la deuxième équation donne $p_1=1+q_1=\frac{2}{3}$; la troisième, $p_2=\frac{1}{2}+q_1=\frac{1}{6}$.

Exemple I, Taylor et Padé, $f(x) = e^x$, $x_0 = 0$.

source('Taylor_Pade_exp.R')

Exemple I, erreurs d'approximation

Exemple II, Taylor et Padé, $f(x) = \log x$, $x_0 = 1$.

source('Taylor_Pade_log.R') 0 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0

х

Exemple II, erreurs d'approximation

