

Dr. Hiran Ekanayake

DIGITAL ELECTRONIC FUNDAMENTALS – PART 1

References

- Tutorials on Logic Gates
 - https://www.electronics-tutorials.ws/category/logic

Lesson Outline

- AND, OR, and NOT logic functions
- Digital logic ICs

LOGIC AND

- Describe the logic AND function.
 - The Logic AND Function output is only true when all of its inputs are true, otherwise the output is false.
 - It states that two or more events must occur together and at the same time for an output action to occur. The order in which these actions occur is unimportant.
- Give an example to demonstrate the logic AND function.

In the given series circuit, both switch A AND switch B must be closed (Logic "1") in order to put the lamp on.

Give the truth table of the logic AND function.

Switch A	Switch B	Output	Description		^		
0	0	0	A and B are both open, lamp OFF	<u> </u>	<u>+</u> -		Lamp - ON = "1"
0	1	0	Symbol		Truth Table		Lamp-OFF = "0"
1	0	0		В	А	Q	11"
1	1	1	Ao	0	0	0	
Boolean	Expression (A	A AND B)	8 O Q	0	1	0	
			2-input AND Gate	1	0	0	
				1	1	1	
			Boolean Expression Q = A.B	Read a	s A AND B	gives Q	

- Which electronic component provides logic AND function?
 - IC (integrated circuit) packages

Quad 2-Input AND Gates

Triple 3-Input AND Gates

Dual 4-Input AND Gates

Give a test circuit to test a 2-input AND gate.

 Give an equivalent transistor-based circuit for the AND gate.

 How would you construct a 6-input AND gate using 2-input and/or 3-input AND gates?

Boolean Expression:

Q = (A.B).(C.D).(E.F)

LOGIC OR

- Describe the logic OR function.
 - The Logic OR function output is only true if one or more of its inputs are true, otherwise the output is false.
 - Also called "Inclusive-OR"

Give an example to demonstrate the logic OR function.

Here the two switches A and B are connected in parallel and either Switch A OR Switch B can be closed in order to put the lamp on.

Give the truth table of the logic OR function.

Switch A	Switch B	Output	Description			A B		
0	0	0	A and B are both open, lamp OFF		L.			
0	1	1	Symbol		Truth Table			Lamp - ON = "1" Lamp - OFF = "0"
1	0	1		В	Α	_	ed = "1" ed = "1"	
1	1	1	AO	0	0	0		
Boolear	Expression (A OR B)	$B \circ Q$	0	1	1		
			2-input OR Gate	1	0	1		
				1	1	1		
			Boolean Expression Q = A+B	Read	as A OR B g	ives Q		

 Which IC packages provide the logic OR function?

Quad 2-Input OR Gates

 How would you construct a 6-input OR gate using 2-input and/or 3-input OR gates?

 Give an equivalent transistor-based circuit for the OR gate.

LOGIC NOT (INVERTER)

- Describe the logic NOT function.
 - It "inverts" (complements) its input signal.
- Give an equivalent transistor-based circuit for the NOT gate.

Give the truth table of the logic NOT function.

Inversion Bubble

Input/Out Inversion

 Describe the use of inversion bubble in the following logic elements.

Which IC packages provide the logic NOT function?

DIGITAL ICS

Digital Logic Gates

- What is the difference between 74XX and 4XXX IC packages?
 - Are they compatible with each other?
- What is the convention used in the labelling of IC packages?

Main Families of Logic Gates

- Transistor-Transistor Logic (TTL)
 - Mainly the 7400 series of chips
 - Use NPN and PNP type Bipolar Junction Transistors to implement the logic
- Complementary Metal-Oxide-Silicon (CMOS)
 - Mainly the 4000 series of chips
 - Use complementary MOSFET or JFET type Field Effect Transistors

Classification of ICs

- Small Scale Integration or (SSI)
 - 10 or few transistors in a package to form simple gates like AND, OR, and NOT
- Medium Scale Integration or (MSI)
 - 10 100 transistors to perform digital operations such as adders, decoders, counters, flip-flops and multiplexers
- Large Scale Integration or (LSI)
 - 100 1,000 transistors to perform specific digital operations such as I/O chips, memory, arithmetic and logic units

Classification of ICs

- Very-Large Scale Integration or (VLSI)
 - 1,000 10,000 transistors to perform computational operations such as processors, large memory arrays and programmable logic devices
- Super-Large Scale Integration or (SLSI)
 - 10,000 100,000 transistors to perform computational operations such as microprocessor chips, micro-controllers, basic PICs and calculators

Classification of ICs

- Ultra-Large Scale Integration or (ULSI)
 - More than 1 million transistors in a package, used in computers CPUs, GPUs, video processors, micro-controllers, FPGAs and complex PICs

E.g., Intel Core2 Duo Processor E8500 uses 410 million transistors

Voltage Levels

Voltage Levels

Data source: EETimes, A brief recap of popular logic standards (Mark Pearson, Maxim).

The Intermediate Region ("no-man's land")

- Noise immunity of a gate
 - For a logic gate not to be affected by noise it must be able to tolerate a certain amount of unwanted noise on its input without changing the state of its output.

TTL/CMOS Logic Gates

TTL/CMOS Logic Gates

- TTL Limitations:
 - Since bipolar transistors are current operated, their current consumption is very high
 - Limited operating speed due to slow rise/fall time (propagation delay)
- CMOS Strengths:
 - Near zero power consumption (1-2 uA)
 - High-speed switching (>100MHz)

TTL Numbering

https://www.electronics-notes.com/articles/electronic_components/logic-ic-families-technologies/ic-numbering-schemes.php

PART NUMBERING SCHEME FOR 74XX00 SERIES LOGIC ICS

Manufacturer	This code normally consists of two letters and is a code normally used by a given manufacturer. SN is one used by Texas Instruments. Other manufacturers have their own codes that they place here.
Temperature range	This is indicated by these two figures. 74 indicates 0°C to 70°C commercial and 54 military: -55°C to +125°C. For most applications the 74 series is perfectly acceptable and this series will be found in consumer devices.
Logic series	This is the sub-family. 7400 for example is the basic series, but there are many others.
Device	This indicates the device function / type. For example devices with 04 are hex inverters, etc. They are the common across all sub-families.
Package code	This is the package suffix. It is necessary to refer to the manufacturers datasheets as these codes vary between manufacturers.

CMOS Numbering

https://www.electronics-notes.com/articles/electronic_components/logic-ic-families-technologies/ic-numbering-schemes.php

PART NUMBERING SCHEME FOR 4000 SERIES LOGIC ICS

Manufacturer	This code normally consists of two letters and is a code normally used by a given manufacturer. HEF is what used to be Mullard / Phillips.
Series	This is indicated by these the 4 in the 4000 figure.
Device	This indicates the device function / type. For example devices the 01, i.e. 4001 is a quad 2-input NOR.
Output	Early devices did not have any output buffering and were lacking in drive. Later versions were buffered and these chips had the "B" suffix added to the part number.

e.g.,

CD = RCA

N = Signetics PC = Signetics

MM = National Semiconductor

SN = Texas Instruments

TTL Sub-Families

Basic 74-series code

PARAMETERS		UNITS						
PARAMETERS	Standard	L	Н	S	LS	AS	ALS	UNITS
Propagation Delay (2-input NAND gate)	9nS	33	6	3	8	2	4	nS
Power Dissipation (per gate)	10 mW	1	22	20	2	22	1	mW
V _{IH}	2.0V	2.0	2.0	2.0	2.0	2.0	2.0	V
V _{OH}	2.4V	2.4	2.4	2.7	2.7	V _{DD} -2V	V _{DD} -2V	V
NM-H	400 mV	400	400	700	700	700	700	mV
V _{IL}	0.8V	0.7	0.8	0.8	0.8	0.8	0.8	V
V _{OL}	0.4V	0.3	0.4	0.5	0.5	0.5	0.5	V
NM-L	400 mV	300	400	300	300	300	300	mV

TTL-compatible inputs

Comparing the Frequency vs. Power Consumption

Inspecting Datasheets

QUAD 2-INPUT AND GATE

SN54/74LS08

J SUFFIX CERAMIC CASE 632-08

D SUFFIX SOIC CASE 751A-02

N SUFFIX PLASTIC CASE 646-06

ORDERING INFORMATION

SN54LSXXJ Ceramic SN74LSXXN Plastic SN74LSXXD SOIC

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
loH	Output Current — High	54, 74			-0.4	mA
l _{OL}	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Co	onditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
\/	Input LOW/Voltage				0.7	V	Guaranteed Input	LOW Voltage for	
VIL	Input LOW Voltage	74			8.0	V	All Inputs		
٧IK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	–18 mA	
V	Output HICH Voltage	54	2.5	3.5		V	\lor_{CC} = MIN, I_{OH} = MAX, \lor_{IN} = \lor_{IH} or \lor_{IL} per Truth Table		
VOH	Output HIGH Voltage	74	2.7	3.5		V			
Vol	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$	
VOL	Output EOW Voltage	74		0.35	0.5	>	I _{OL} = 8.0 mA	per Truth Table	
lu.	Input HICH Current				20	μΑ	V_{CC} = MAX, V_{IN}	= 2.7 V	
ΙΗ	Input HIGH Current				0.1	mA	V_{CC} = MAX, V_{IN}	= 7.0 V	
I _{IL}	Input LOW Current				-0.4	mA	\lor_{CC} = MAX, \lor_{IN}	= 0.4 V	
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
lcc	Power Supply Current Total, Output HIGH				4.8	mA	V _{CC} = MAX	-	
	Total, Output LOW				8.8				

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C)

		Limits		Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
t _{PLH}	Turn-Off Delay, Input to Output		8.0	15	ns	V _{CC} = 5.0 ∨	
t _{PHL}	Turn-On Delay, Input to Output		10	20	ns	C _L = 15 pF	

Inspecting Datasheets

August 1986 Revised July 2001

DM7408

Quad 2-Input AND Gates

General Description

This device contains four independent gates each of which performs the logic AND function.

Ordering Code:

Order Number	Package Number	Package Description
DM7408N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

Function Table

Inp	uts	Output
Α	В	Y
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

Y = AB

H = HIGH Logic Level L = LOW Logic Level

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{он}	HIGH Level Output Current			-0.8	mA
l _{OL}	LOW Level Output Current			16	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I = -12 mA			-1.5	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max	2.4	3.4		v
	Output Voltage	$V_{IL} = Max$	2.4	3.4		ľ
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max		0.2	0.4	v
	Output Voltage	$V_{IH} = Min$				•
I _I	Input Current @ Max Input Voltage	V _{CC} = Max, V _I = 5.5V			1	mA
IH	HIGH Level Input Current	V _{CC} = Max, V _I = 2.4V			40	μА
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-1.6	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 3)	-18		-55	mA
Іссн	Supply Current with Outputs HIGH	V _{CC} = Max		11	21	mA
Iccl	Supply Current with Outputs LOW	V _{CC} = Max		20	33	mA

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 3: Not more than one output should be shorted at a time.

Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Max	Units
tpLH	Propagation Delay Time	C _L = 15 pF		27	ns
	LOW-to-HIGH Level Output	$R_L = 400\Omega$			
t _{PHL}	Propagation Delay Time			19	25
	HIGH-to-LOW Level Output			18	ns

Exercise

 Develop an Arduino based system to discover the truth table (logic function) of an unknown logic element (e.g., IC tester). State any assumptions you make.

