Lecture 15 Direct products

Diamend Tromorphism. If $A \leq G$, $N \triangleleft G$, then $AN \leq G$ and $AN/N \cong A/ANN$

Example $A = \langle 4 \rangle$ $N = \langle 10 \rangle$ in $G = \mathbb{Z}$ $(A+N)/N = (\langle 4 \rangle + \langle 10 \rangle)/\langle 10 \rangle$ is isomorphic to A/AnN, and $AnN = \langle 4 \rangle n \langle 10 \rangle = \langle 20 \rangle$ so $(A+N)/N \cong \langle 4 \rangle/\langle 20 \rangle$ which is ayelic of order $5 \cong \mathbb{Z}_5$.

Check $A+N = (\gcd(4,10))^2 \langle 2 \rangle$ and $\langle 2 \rangle/\langle 10 \rangle \cong \mathbb{Z}_5$.

Direct product: Given two groups A and B, we can make $A \times B = \{(a,b) \mid a \in A, b \in B\}$ into a group: define (a,b)(a',b') = (aa',bb'), where $aa' \in A$ is defined using the given group operation on A, and like vise $bb \in B$. It is straightforward to cheek this is an associative operation of $A \times B$, that (e_A, e_B) is an identity element if $e_A \in A$, $e_B \in B$ are identity elements, and that the innerse $a \in A$ is $a \in A$, $a \in B$ are identity elements, and that the innerse $a \in A$ is $a \in A$.

To be clear, $A \times B$ is different from $AB = \{ab \mid a \in A, b \in B\}$ where $A \leq G$ $B \leq G$ are subgroups of the same group G.

However, it is possible that AB and $A \times B$ may be isomorphic.

Eq. In $G = \mathbb{Z}_2 \times \mathbb{Z}_3$, let $A = \{(a,0) \mid a \in \mathbb{Z}_2\}$ $B = \{(0,b) \mid b \in \mathbb{Z}_3\}$ then AB = G and $A \cong \mathbb{Z}_2$ $B \cong \mathbb{Z}_3$ so $AB \cong A \times B$. But in S_3 , $A = \{e(12)\}$ $B = \{e(123)(132)\}$ (normal) thu $A \cong \mathbb{Z}_2$, $B \cong \mathbb{Z}_3$, $AB = S_3$ but S_3 is not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_3$ (since S_3 is not abelian).

Proposition 3.1.5 Suppose ADG, BDG, AnB= {e}.
Then ABDG and

(1) for all a & A and b & B, ab = be.

(2) $\varphi: A \times B \rightarrow AB$, $(\varphi(a,b)=ab$, is an isomorphism.

Proof let $ab \in AB$, $g \in G$. thu $g(ab)g^{-1} = (gag^{-1}(gbg^{-1}) \in AB. \text{ Thus } AB \triangleleft G$ $\in A \in B$

Suce A Since B normal nurmal

(1) Observe $ab = ba \iff aba^{-1}b^{-1} = e$. Now $aba^{-1}b^{-1} = a(ba^{-1}b^{-1}) \in A$

> EA since A normal

(aba-1)b-1∈B

EBsince Bnormal, so $aba^{-1}b^{-1} \in A \cap B = ieig$ and $aba^{-1}b^{-1} = e$.

(2) Define φ: AXB → AB by φ(a,b) =ab.

φ is surjective by construction.

 φ is a homomorphism by (1): $\varphi((a,b)(a',b')) = \varphi(aa',bb') = a$

 $(\phi((a,b)(a',b'))= (\phi(aa',bb')=aa'bb'=aba'b'=\phi(a,b)\phi(a',b')$ Kernel? $(\phi(a,b)=e \Rightarrow a=b')$ $\Rightarrow a \in A \cap B$ and $b \in A \cap B$ so a=e, b=e.

Kernel is trivial, so () is injective 12

Example $G = \mathbb{C}^{k} = \mathbb{C} \setminus \{0\}$ with multiplication. $A = \mathbb{R}_{+} = \{r \in \mathbb{R} \mid r > 0\}$ $B = U = \{e^{i\theta} \mid \theta \in \mathbb{R}\}$

then ADG, BDG since G is abelian.

Also AnB = 213.

Also $AB = R + U = C^*$, because every complex number has a polar form $z = re^{i\theta}$.

So by the proposition, $\varphi: \mathbb{R}_+ \times \mathbb{U} \longrightarrow \mathbb{C}^*$ $\varphi(r, e^{i\theta}) = re^{i\theta}$

is an isomorphism.

We can also think about the direct product of more than two groups. If A, A2, ..., An one groups then

 $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i \}$ is a group with operation. $(a_1, a_2, \dots, a_n)(a_1', a_2', \dots, a_n) = (a_1a_1', a_2a_2', \dots, a_na_n')$ (check it!)

As with the case of two groups, there is a proposition that helps us recognize when a group is isomorphic to a direct product:

Proposition 3.1.12: Suppose N, Nz, ..., Nr & G are normal subgroups and that for all i, 15 isr,

 $N_i \cap (N_1 N_2 \cdots N_{i-1} N_{i+1} \cdots N_r) = \{e^{\xi}\}$

then $N_1 N_2 \cdots N_r \triangleleft G$ and $\varphi: N_1 \times N_2 \times \cdots \times N_r \rightarrow N_1 N_2 \cdots N_r$ $\varphi(n_1, n_2, ..., n_r) = n_1 n_2 \cdots n_r$

is an immorphism.

Proof see Goodman.