

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине: «Вычислительная математика»

Студент	журавлев Николаи Вадимович			
Группа	РК6-52Б			
Тип задания	Лабораторная работа	<i>№</i> 3		
Тема лабораторной работы	Модель биологическо	ого нейрона		
Студент		<u>Журавлев Н. В.</u>		
	подпись, дата	фамилия, и.о.		
Преподаватель		Першин А. Ю		
	подпись, дата	фамилия, и.о.		

Оглавление

Оглавление	2
Введение	3
Цель выполнения лабораторной работы	4
Задачи на лабораторную работу	4
Базовая часть	4
Выполненные задачи	5
Базовая часть	5
1. Разработка функций для возврата дискретной траектории	5
2. Нахождение траектории заданной динамической системы шагом h = 0.5	7
3. Вывод траекторий на графиках	7
4. Особенности режимов нейрона	9
Заключение	9
CUNCOK NCUOUPSOBSPAPIN NCTOUPINKOB	a

Введение

Численные методы решения задачи Коши для систем обыкновенных дифференциальных уравнений (ОДУ) 1-го порядка активно используются далеко за пределами стандартных инженерных задач. Примером области, где подобные численные методы крайне востребованы, является нейробиология, где открытые в XX веке модели биологических нейронов выражаются через дифференциальные уравнения 1-го порядка. Математическая формализация моделей биологических нейронов также привела к появлению наиболее реалистичных архитектур нейронных сетей, известных как, спайковые нейронные сети (Spiking Neural Networks). В данной лабораторной работе мы исследуем одну из простейших моделей подобного типа: модель Ижикевича. Дана система из двух ОДУ 1-го порядка:

$$\begin{cases} \frac{dv}{dt} = f_1(u, v) = 0.04v^2 + 5v + 140 - u + I; \\ \frac{du}{dt} = f_2(u, v) = a(bv - u); \end{cases}$$
(1)

и дополнительно условия, определяющего возникновение импульса в нейроне:

если
$$v \ge 30$$
, то $\begin{cases} u \leftarrow c; \\ u \leftarrow u + d; \end{cases}$ (2)

где v - потенциал мембраны (мВ), u – переменная восстановления мембраны (мВ), t – время (мс), I – внешний ток, проходящий через синапс в нейрон от всех нейронов, с которыми он связан.

Описания параметров представленной системы:

- a задаёт временной масштаб для восстановления мембраны (чем больше a, тем быстрее происходит восстановление после импульса);
- b чувствительность переменной восстановления к флуктуациям разности потенциалов;
 - с значение потенциала мембраны сразу после импульса;
- d значение переменной восстановления мембраны сразу после импульса;

Таблица 1: Характерные режимы заданной динамической системы и соответствующие значение её параметров.

Режим	a	b	c	d
Tonic spiking (TS)	0.02	0.2	-65	6
Phasic spiking (PS)	0.02	0.25	-65	6
Chattering (C)	0.02	0.2	-50	2
Fast spiking (FS)	0.1	0.2	-65	2

Цель выполнения лабораторной работы

Изучить численные методы задачи Коши для систем обыкновенных дифференциальных уравнений (ОДУ) 1-го порядка на примере модели *Ижикевича* и реализовать с использованием языка программирования *Руthon*. Проанализировать результат, полученный при применении разных режимов работы заданной динамической системы.

Задачи на лабораторную работу

Базовая часть

- 1. Реализовать следующие функции, каждая из которых возвращает дискретную траекторию системы ОДУ с правой частью, заданной функцией \mathbf{f} , начальным условием $\mathbf{x_0}$, шагом по времени \mathbf{h} и конечным временем $\mathbf{t_n}$:
 - а. $euler(x_0, t_n, f, h)$, где дискретная траектория строится с помощью метода Эйлера;
 - b. $implicit_euler(x_0, t_n, f, h)$, где дискретная траектория строится с помощью неявного метода Эйлера;
 - с. $runge_kutta(x_0, t_n, f, h)$, где дискретная траектория строится с помощью метода Рунге-Кутта 4-ого порядка;
- 2. Для каждого из реализованных методов численно найти траектории заданной динамической система, используя шаг h = 0.5 и характерные режимы, указанные в *таблице* I. В качестве начальных условий можно использовать v(0) = c и u(0) = bv(0). Внешний ток принимается равным I = 5.
- 3. Вынести полученные траектории на четырёх отдельных графиках как зависимость потенциала мембраны v от времени t, где каждый график должен соответствовать своему характерному режиму работы нейрона.

4. По полученным графикам кратко описать особенности указанных режимов.

Выполненные задачи

Базовая часть

1. Разработка функций для возврата дискретной траектории

Разработаны функции, которые возвращают дискретную траекторию систему ОДУ с правой частью, заданной функцией \mathbf{f} , начальным условием $\mathbf{x}_{\mathbf{0}}$, шагом по времени \mathbf{h} , конечным временем $\mathbf{t}_{\mathbf{n}}$:

1. *euler*(*x*_0, *t*_*n*, *f*, *h*), где потенциал и переменная восстановления мембраны рассчитываются с помощью метода Эйлера (Листинг 1). Листинг 1: реализация метода Эйлера для нахождения потенциала мембраны и переменной восстановления мембраны

```
def euler(t0, tn, f, h):
    m = int((tn - t0) / h)

v = np.zeros((m + 1,))
u = np.zeros((m + 1,))

v[0] = c
u[0] = b * v[0]

for i in range(m):
    v[i + 1] = v[i] + h * f[0](u[i], v[i])
    u[i + 1] = u[i] + h * f[1](u[i], v[i])

if v[i + 1] >= 30:
    v[i + 1] = c
    u[i + 1] = u[i + 1] + d

return u, v
```

2. *implicit_eluer*(*x_0*, *t_n*, *f*, *h*), где потенциал и переменная восстановления мембраны находятся с помощью с помощью неявного метода Эйлера (*Листинг 2*);

Листинг 2: реализация неявного метода Эйлера для нахождения потенциала мембраны и переменной восстановления мембраны

```
def implicit_euler(t0, tn, f, h):
```

```
def phi v(vi 1, ui, vi):
        return vi 1 - vi - h * f[0](u[i], v[i])
    def phi u(ui 1, ui, vi):
        return ui_1 - ui - h * f[1](u[i], v[i])
   m = int((tn - t0) / h)
    v = np.zeros((m + 1,))
    u = np.zeros((m + 1,))
    v[0] = c
    u[0] = b * v[0]
    for i in range(m):
        v[i + 1] = optimize.fsolve(phi v, v[i], args=(u[i],
v[i]))
        u[i + 1] = optimize.fsolve(phi u, v[i], args=(u[i],
v[i]))
        if v[i + 1] >= 30:
            v[i + 1] = c
            u[i + 1] = u[i + 1] + d
    return u, v
```

3. *runge_kutta(x_0, t_n, f, h)*, где потенциал и переменная восстановления мембраны находятся с помощью с помощью метода Рунге-Кутта 4-ого порядка (*Листинг 3*);

Листниг 3: реализация метода Рунге-Кутта для нахождения потенциала мембраны и переменной восстановления мембраны

```
def runge kutta(t0, tn, f, h):
   m = int((tn - t0) / h)
   v = np.zeros((m + 1,))
   u = np.zeros((m + 1,))
   v[0] = c
   u[0] = b * v[0]
    for i in range(m):
       vk1 = h * f[0](u[i], v[i])
       vk2 = h * f[0](u[i] + h / 2, v[i] + vk1 / 2)
       vk3 = h * f[0](u[i] + h / 2, v[i] + vk2 / 2)
       vk4 = h * f[0](u[i] + h, v[i] + vk3)
       uk1 = h * f[1](u[i], v[i])
        uk2 = h * f[1](u[i] + uk1 / 2, v[i] + h / 2)
        uk3 = h * f[1](u[i] + uk2 / 2, v[i] + h / 2)
       uk4 = h * f[1](u[i] + uk3, v[i] + h)
        v[i + 1] = v[i] + (vk1 + 2 * vk2 + 2 * vk3 + vk4) / 6
        u[i + 1] = u[i] + (uk1 + 2 * uk2 + 2 * uk3 + uk4) / 6
```

```
if v[i + 1] >= 30:
    v[i + 1] = c
    u[i + 1] = u[i + 1] + d

return u, v
```

2. Нахождение траектории заданной динамической системы шагом h = 0.5

Для каждого из реализованных методов были численно найдены траектории заданной динамической системы, используя шаг h = 0.5 и характерные режимы, указанные в таблице 1. В качестве начальных условий были использованы v(0) = c и u(0) = bv(0). Внешний ток равен I = 5. Подставим эти значения в формулу (1) для каждого режима (Листинг 4). Листинг 4: реализация численного нахождения дискретной траектории.

```
fig, axs = plt.subplots(4, 1, figsize=(14, 20))
names = ['Tonic spiking', 'Phasic spiking', 'Chattering', 'Fast
spiking']
for i, j, ax in zip(['TS', 'PS', 'C', 'FS'], names, axs):
    a = mode[i][0]
   b = mode[i][1]
    c = mode[i][2]
    d = mode[i][3]
    u euler, v euler = euler(t0, tn, [f1, f2], h)
    u implicit euler, v implicit euler = implicit euler(t0, tn, [f1,
f2], h)
    u runge kutta, v runge kutta = runge kutta(t0, tn, [f1, f2], h)
    ax.plot(t, v euler, 's--', label='Метод Эйлера', markersize=10)
    ax.plot(t, v implicit euler, 'o--', label='Неявный метод Эйлера',
markersize=5)
    ax.plot(t, v runge kutta, 'o--', label='Метод Рунге-Кута',
markersize=5)
```

3. Вывод траекторий на графиках

Были выведены полученные траектории на четырёх отдельных графиках как зависимость потенциала мембраны v от времени t, где каждый график соответствует своему характерному режиму работы нейрона. Полученные графики изображены на $Pucyhke\ 1$.

Рисунок 1: зависимость потенциала от времени. Для разных режимов был выведен свой график.

4. Особенности режимов нейрона

Восстановление мембраны, зависит от расстояния между двумя скачками графика, чем раньше они появляются, тем лучше восстановление мембраны. Используя это, по полученным графикам можно описать особенности указанных режимов:

- a. Режим *Tonic Spiking* имеет среднее восстановление мембраны, относительно остальных.
- b. Режим *Phasic Spiking* значительно улучшенное восстановление мембраны по сравнению с предыдущем режимом.
- с. Режим *Chattering* имеет самое долгое восстановление мембраны.
- d. Режим Fast Spiking имеет самое быстрое восстановление мембраны.

Заключение

Во время выполнения лабораторной работы были выполнены следующие пункты:

- 1. Изучены и применены численные методы уравнения Коши: Эйлера, Рунге-Кутта 4-ого порядка и неявный метод Эйлера.
- 2. Изучены и применены режимы заданной динамической системы (Tonic Spiking, Phasic Spiking, Chattering, Fast Spiking), и, основываясь на них, были построены графики зависимости потенциала мембраны от времени.
- 3. По графикам изучены особенности режимов динамической системы.

Список использованных источников

- 1. Першин А.Ю. Лекции по курсу «Вычислительная математика». Москва, 2018-2021. URL: https://archrk6.bmstu.ru/index.php/f/810046. (облачный сервис кафедры РК6).
- 2. Соколов, А.П., Першин, А.Ю «Инструкция по выполнению лабораторных работ (общая)». Москва: Соколов, А.П., Першин, А.Ю.,

2018-2021. URL: https://arch.rk6.bmstu.ru. (облачный сервис кафедры *PK6*).