

Intro to Deep Learning

Michelle Bourdon University of Western Ontario March 6, 2024

Agenda

- Presentation
 - Intro to Deep Learning
- Deep Learning Onramp
 - Complete 60% for a prize
- Additional resources
 - Machine Learning Tutorial

QUICK START GUIDE

Deep Learning with MATLAB

Deep Learning Toolbox™ provides built-in functionality for creating, training, and validating deep neural networks. This reference shows some common use cases. For additional examples, visit the documentation: mathworks.com/help/deeplearning/examples.html

Training Options Training Options		Vali	idation	Improving Accuracy		
		Inference		Improving model accuracy depends on the task and the data. Common approaches		
Execution Environment	Parallel, GPU, multi- GPU, auto (default)	each class	babilities belonging to	include: Network architecture: Use pretrained models from community experts		
MaxEpocha	An epoch is one full pass over entire training set	belonging to each cle [Ypred,scores] =	classify(net,X);			
MiniBatchSize	Subset of training set to evaluate gradient and update weights	II	State captured and updated dateState and	Update layers and adjust parameters Data preparation: Add data		
InitialLearnRate	A higher initial rate will speed up training but may diverge	1.00	alization	Training/validation/test split Normalize data Remove outliers Balance classes (add weights) Hyperparameter tuning:		
LearnRateSchedule	Drop the learn rate over time by a factor		ofions and visualizations gh trainingOptions			
ValidationData	Validate during training	Plots	Visualize progress			
ValidationPatience	Stop training if accuracy is repeated a certain (saves time)	Verbose	Set to true to display training progress each epoch	Tune the training parameters with Bayes optimization Set up problem with		
		VerboseFrequency	How often to display	optimizableVariable		
		OutputPon	Custom function	Write function calling model and options Perform optimization with bayesopt		
		CheckpointPath	Directory to save model each epoch	obj = bayesopt(ObjFcn,OptVars,);		

Learn more: mathworks.com/solutions/deep-learning

mathworks.com

What is Deep Learning?

- Subset of machine learning (ML) with automatic feature extraction
 - Learns features and tasks directly from data
- Implemented using a neural network architecture
 - Deep refers to the numerous number of layers in the network
- Accuracy can surpass traditional ML Algorithms

Deep Learning Models are Neural networks

 Neural networks are a set of neurons that perform computations on input data to predict what the input object is

How can a neural network perform computations on an image or audio file?

Deep Learning Networks Take in Numeric Data

199	206	208	201	188	178	165	164	180
202	205	202	188	176	169	178	186	183
203	206	189	178	181	183	182	154	87
203	192	184	186	177	167	153	181	192
191	182	176	166	153	141	136	180	227
166	165	154	154	138	137	169	170	211
158	150	145	183	144	156	158	154	179
143	51	98	144	129	130	143	178	123
107	50	33	95	152	173	192	159	87
104	100	84	120	132	172	131	64	94
119	101	97	81	90	109	87	106	111
127	122	110	97	108	120	133	131	134
111	117	108	119	131	143	146	141	156
126	122	113	119	139	142	155	161	151
129	126	130	111	103	130	149	149	156
138	128	136	144	136	129	134	122	145
154	133	134	141	168	150	126	127	151

Images are a numeric matrix

Signals are numeric vectors

The Bird Flies = [0 13 5 6]
The Leaf Is Brown = [13 3 11 2]

Text is processed as numeric vectors

Deep Learning Workflow

PREPARE DATA Label: Dog Size: 524x640 Label: Lion Size: 444x205 Label: Cat Size: 3338x2592

The data must be labeled and preprocessed to give accurate results

Build a neural network that learns from your dataset

Integrate your trained model onto embedded hardware or cloud

Pretrained Neural Networks

- Pretrained neural networks are networks that have been designed and trained
- These networks can be used to classify data just by loading it
- GoogLeNet for example can be used to classify 1000 object categories, such as keyboard, mouse, pencil, and many animals
- Using these networks can save time and leverage the accuracy achieved in these models

Deploying neural networks

- Use MATLAB to deploy the trained model to:
 - GPUs and CPUs
 - Embedded devices (e.g. NVIDIA or Raspberry Pi)
 - Standalone applications
 - Web Apps

Resources to get started on your own

- Free Deep learning onramp course
 - What we are doing today!
- Free Machine learning onramp course
 - Next time!

TO DO

Create your UWO - MathWorks Account

https://www.mathworks.com/academia/tah-portal/western-university-964054.html

- Go to Deep Learning Onramp
- (Within the AI, Machine Learning, and Deep Learning Tab)
- https://matlabacademy.mathworks.com/
- Launch Deep Learning Onramp

MATLAB Prizes

- Complete at least 60% of the Deep Learning Onramp to be eligible for any prize
 - Bring your laptop when you come to collect the prize

Follow us on Instagram!

@UWOMATLAB

