Module EA4 – Éléments d'Algorithmique II Outils pour l'analyse des algorithmes

Dominique Poulalhon dominique.poulalhon@irif.fr

Université de Paris L2 Informatique & DL Bio-Info, Jap-Info, Math-Info Année universitaire 2020-2021 dernier TP cette semaine (toujours avec une permanence sur discord jeudi matin et vendredi matin)

dernier TD la semaine prochaine; groupes INFO1 et INFO2 sur discord (probablement mardi 11 à 8h30)

contrôle nº 3 mercredi prochain (12 mai) sur moodle, de 15h à 16h30

QUELQUES APPLICATIONS DES TRIS

Applications du tri en géométrie : 1. Calcul de l'enveloppe convexe

enveloppe convexe d'une partie ${\mathcal P}$ du plan : plus petite partie convexe ${\mathcal C}$ contenant ${\mathcal P}$

Applications du tri en géométrie : 1. Calcul de l'enveloppe convexe

enveloppe convexe d'une partie ${\mathcal P}$ du plan : plus petite partie convexe ${\mathcal C}$ contenant ${\mathcal P}$

si \mathcal{P} est un ensemble fini de points (on parle de *nuage* de points), \mathcal{C} est un polygone dont les sommets sont des points du nuage

Applications du tri en géométrie : 1. Calcul de l'enveloppe convexe

enveloppe convexe d'une partie ${\mathcal P}$ du plan : plus petite partie convexe ${\mathcal C}$ contenant ${\mathcal P}$

si \mathcal{P} est un ensemble fini de points (on parle de *nuage* de points), \mathcal{C} est un polygone dont les sommets sont des points du nuage

enveloppe convexe(nuage)

étant donné un nuage de points du plan, déterminer l'enveloppe convexe des points du nuage

Un nuage de points

Son enveloppe convexe

Une arête [pq] de l'enveloppe (dans le sens direct)

Tous les angles pqr « tournent à gauche »

Tous les angles pqr « tournent à gauche »

Tous les angles pqr « tournent à gauche »

... contrairement au cas où [pq] n'est pas une arête de l'enveloppe

ENVELOPPE CONVEXE D'UN NUAGE - MÉTHODE NAÏVE

```
def enveloppe_convexe_naive(nuage) :
  tous_les_couples =  # tous les couples de points du nuage
        [ (p,q) for p in nuage for q in nuage if p != q ]
  aretes_enveloppe = []
  for (p, q) in tous_les_couples :
    for r in nuage : # r contredit-il la caractérisation pour [pq]?
        if tourne_a_droite(p, q, r) : break
    else : # ie si la boucle termine normalement, [pq] ∈ enveloppe
        aretes_enveloppe += [(p,q)]
  return aretes_enveloppe
```

Enveloppe convexe d'un nuage - méthode naïve

```
def enveloppe_convexe_naive(nuage) :
  tous_les_couples =  # tous les couples de points du nuage
        [ (p,q) for p in nuage for q in nuage if p != q ]
  aretes_enveloppe = []
  for (p, q) in tous_les_couples :
    for r in nuage : # r contredit-il la caractérisation pour [pq]?
    if tourne_a_droite(p, q, r) : break
    else : # ie si la boucle termine normalement, [pq] ∈ enveloppe
        aretes_enveloppe += [(p,q)]
  return aretes_enveloppe
```

Lemme

enveloppe_convexe_naive(nuage) retourne une liste formée des arêtes de l'enveloppe convexe de nuage en temps $\Theta(n^3)$ (au pire et en moyenne)

Idée : pour être plus efficace, il ne faut pas considérer tous les couples mais essayer de « tourner » autour du nuage

Plus précisément :

- partir d'un point « extrémal » p₀ par exemple celui d'ordonnée minimale - qui appartient nécessairement à l'enveloppe
- considérer ensuite les points un par un p₁, p₂,... p_{n-1} pour déterminer si p_i appartient à l'enveloppe convexe du nuage {p₀, p₁,..., p_i}

Question : dans quel ordre faut-il considérer les points du nuage?


```
def enveloppe_convexe_par_balayage(nuage) :
   p0 = point_le_plus_bas(nuage)
   angles = [ angle_polaire(point, p0) for point in nuage ]
   nuage_trié = trier_selon_angles(nuage, angles)
   pile = [ nuage_trié[0], nuage_trié[1], nuage_trié[2] ]
   for point in nuage_trié :
    while tourne_a_droite(pile[-2], pile[-1], point) :
        pile.pop()
        pile.append(point)
   return pile
```

```
def enveloppe_convexe_par_balayage(nuage) :
 p0 = point_le_plus_bas(nuage)
 angles = [ angle_polaire(point, p0) for point in nuage ]
 nuage_trié = trier_selon_angles(nuage, angles)
 pile = [ nuage_trié[0], nuage_trié[1], nuage_trié[2] ]
 for point in nuage_trié :
   while tourne_a_droite(pile[-2], pile[-1], point) :
     pile.pop()
   pile.append(point)
 return pile
def trier_selon_angles(nuage, angles) :
  # exemple de « decorate-sort-undecorate »
 return [ point
       for (angle, point) in sorted(zip(angles, nuage)) ]
```

Théorème

enveloppe_convexe_par_balayage(nuage) produit la liste des sommets de l'enveloppe convexe en temps $\Theta(n\log n)$

Démonstration

- point le plus bas : c'est juste un min $\implies \Theta(n)$
- tri selon l'angle : $\Theta(n \log n)$
- double boucle : $\Theta(n)$ car chacun des n points est, au pire, sorti une fois de la pile

Applications du tri en géométrie : 2. Points les plus proches

points_les_plus_proches(nuage)

étant donné un nuage de points du plan, déterminer les deux points du nuage les plus proches l'un de l'autre

Applications du tri en géométrie : 2. Points les plus proches

points_les_plus_proches(nuage)

étant donné un nuage de points du plan, déterminer les deux points du nuage les plus proches l'un de l'autre

problème presque équivalent :

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux points du nuage

Cette distance minimale est appelée maille du nuage de points

Points les plus proches - méthode naïve

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

```
def distance_minimale_naive(nuage) :
   toutes_les_distances =
    [ distance(p,q) for p in nuage for q in nuage if p != q ]
   return min(toutes_les_distances)
```

Points les plus proches - méthode naïve

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

```
def distance_minimale_naive(nuage) :
   toutes_les_distances =
    [ distance(p,q) for p in nuage for q in nuage if p != q ]
   return min(toutes_les_distances)
```

Lemme

distance_minimale_naive(nuage) calcule la distance minimale entre deux points du nuage en temps $\Theta(n^2)$

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

- découper le problème en sous-problèmes de taille inférieure
- résoudre *récursivement* le ou les sous-problèmes
- résoudre le problème initial à l'aide des résultats des sous-problèmes

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

- séparer nuage en deux sous-listes gauche et droite
- résoudre *récursivement* le ou les sous-problèmes
- résoudre le problème initial à l'aide des résultats des sous-problèmes

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

- séparer nuage en deux sous-listes gauche et droite
- e calculer d1 = distance_minimale(gauche)
 et d2 = distance_minimale(droite)
- résoudre le problème initial à l'aide des résultats des sous-problèmes

distance minimale(nuage)

étant donné un nuage de points du plan, déterminer la distance minimale entre deux éléments du nuage

- séparer nuage en deux sous-listes gauche et droite
- calculer d1 = distance_minimale(gauche)
 et d2 = distance_minimale(droite)
- chercher s'il existe p1 dans gauche et p2 dans droite plus proches que min(d1, d2)

Partitionnement gauche - droite

Appels récursifs sur gauche et droite

Calcul de d = min(d1, d2)

Extraction de la bande médiane de largeur 2d

Recherche dans la bande médiane

Comment optimiser l'algorithme?

Pour le partitionnement gauche-droite

Trier *une fois pour toutes* la liste des points selon les abscisses ⇒ étant donné L_x, le partitionnement a un coût constant

Comment optimiser l'algorithme?

Pour le partitionnement gauche-droite

Trier *une fois pour toutes* la liste des points selon les abscisses ⇒ étant donné L_x, le partitionnement a un coût constant

Pour la recherche des couples (p1, p2)

Trier une fois pour toutes la liste des points selon les ordonnées

⇒ étant donné L_y, la recherche a un coût linéaire

Comment optimiser l'algorithme?

Pour le partitionnement gauche-droite

Trier *une fois pour toutes* la liste des points selon les abscisses ⇒ étant donné L_x, le partitionnement a un coût constant

Pour la recherche des couples (p1, p2)

Trier une fois pour toutes la liste des points selon les ordonnées \implies étant donné L_y, la recherche a un coût linéaire

$$\begin{split} C_{totale}(n) &= C_{tris}(n) + C_{rec}(n) = \Theta(n \log n) + C_{rec}(n) \\ C_{rec}(n) &= 2C_{rec}\left(\frac{n}{2}\right) + O(n) \\ &\implies C_{totale}(n) \in \Theta(n \log n) \end{split}$$

