CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 29, 2023 Lecture 10 – Basic Mathematical Structures Equivalence relations and partitions

Recap: Proofs and Structures

Chapter 1: Proofs

- 1. Propositions, predicates
- 2. Types of proofs, axioms
- 3. Mathematical Induction, Well-ordering principle
- 4. Strong Induction

Recap: Proofs and Structures

Chapter 1: Proofs

- 1. Propositions, predicates
- 2. Types of proofs, axioms
- 3. Mathematical Induction, Well-ordering principle
- 4. Strong Induction

Chapter 2: Sets and Functions

- 1. Finite and infinite sets.
- 2. Using functions to compare sets: focus on bijections.
- 3. Countable, countably infinite and uncountable sets.
- 4. Cantor's diagonalization (New/powerful proof technique!).

Recap: Proofs and Structures

Chapter 1: Proofs

- 1. Propositions, predicates
- 2. Types of proofs, axioms
- 3. Mathematical Induction, Well-ordering principle
- 4. Strong Induction

Chapter 2: Sets and Functions

- 1. Finite and infinite sets.
- 2. Using functions to compare sets: focus on bijections.
- 3. Countable, countably infinite and uncountable sets.
- 4. Cantor's diagonalization (New/powerful proof technique!).

Chapter 3: Relations

Relations

Definition: Relation

▶ A relation R from A to B is a subset of $A \times B$. If $(a,b) \in R$, we also write this as a R b.

We write R(A, B) for a relation from A to B and just R(A) if A = B. Also if A is clear from context, we just write R.

Relations

Definition: Relation

▶ A relation R from A to B is a subset of $A \times B$. If $(a,b) \in R$, we also write this as a R b.

We write R(A, B) for a relation from A to B and just R(A) if A = B. Also if A is clear from context, we just write R.

Examples of relations

- ▶ All functions are relations.
- $R_1(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a-b \text{ is even } \}.$
- $R_2(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}.$
- ▶ Let S be a set, $R_3(\mathcal{P}(S)) = \{(A, B) \mid A, B \subseteq S, A \subseteq B\}.$

Relations

Definition: Relation

▶ A relation R from A to B is a subset of $A \times B$. If $(a,b) \in R$, we also write this as a R b.

We write R(A, B) for a relation from A to B and just R(A) if A = B. Also if A is clear from context, we just write R.

Examples of relations

- ▶ All functions are relations.
- $R_1(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a-b \text{ is even } \}.$
- $R_2(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}.$
- ▶ Let S be a set, $R_3(\mathcal{P}(S)) = \{(A, B) \mid A, B \subseteq S, A \subseteq B\}.$

Representations of a relation from A to B.

As a set of ordered pairs of elements, i.e., subset of $A \times B$; As a directed graph; As a (database) table.

Definition

A partition of a set S is a

Definition

A partition of a set S is a set P of its subsets such that

Definition

A partition of a set S is a set P of its subsets such that

- ▶ if $S' \in P$, then $S' \neq \emptyset$.
- $\bigcup_{S' \in P} S' = S$: its union covers entire set S.
- ▶ If $S_1, S_2 \in P$, then $S_1 \cap S_2 = \emptyset$: sets are disjoint.

Examples

- ▶ Natural numbers are partitioned into even and odd.
- ► Class is partitioned into sets of students from same hostel.

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- ▶ Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- ▶ Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...
- ▶ But, this sounds like relation, right? Which one?

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...
- ▶ But, this sounds like relation, right? Which one?

Every Partition gives rise to a Relation

- ▶ All elements in a set of the partition are related by the "sameness" or "likeness" property.
- ▶ We can define this as a relation!

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...
- ▶ But, this sounds like relation, right? Which one?

Every Partition gives rise to a Relation

- ▶ All elements in a set of the partition are related by the "sameness" or "likeness" property.
- \blacktriangleright We can define this as a relation! aRb if a is "like" b.

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...
- ▶ But, this sounds like relation, right? Which one?

Every Partition gives rise to a Relation

- ► All elements in a set of the partition are related by the "sameness" or "likeness" property.
- \blacktriangleright We can define this as a relation! aRb if a is "like" b.
- Formally, we define R(S) by aRb if a and b belong to the same set in the partition of S.

Thus, a partition divides S into subsets that each contain (only) elements that share some common property. e.g.,

- Evenness or oddness (formally, remainder modulo 2!).
- ► Same hostel...
- ▶ But, this sounds like relation, right? Which one?

Every Partition gives rise to a Relation

- ► All elements in a set of the partition are related by the "sameness" or "likeness" property.
- \blacktriangleright We can define this as a relation! aRb if a is "like" b.
- Formally, we define R(S) by aRb if a and b belong to the same set in the partition of S.

What properties does this relation have?

1. All elements must be related to themselves

- 1. All elements must be related to themselves
 - ▶ A relation R(S) is called **reflexive** if for all $a \in S$, aRa.

- 1. All elements must be related to themselves
 - ▶ A relation R(S) is called **reflexive** if for all $a \in S$, aRa.
- 2. If a is "like" b, then b must be "like" a.

- 1. All elements must be related to themselves
 - ▶ A relation R(S) is called **reflexive** if for all $a \in S$, aRa.
- 2. If a is "like" b, then b must be "like" a.
 - A relation R(S) is called **symmetric** if for all $a, b \in S$, we have aRb implies bRa.

- 1. All elements must be related to themselves
 - ▶ A relation R(S) is called **reflexive** if for all $a \in S$, aRa.
- 2. If a is "like" b, then b must be "like" a.
 - A relation R(S) is called **symmetric** if for all $a, b \in S$, we have aRb implies bRa.
- 3. If a is "like" b and b is "like" c, then a must be "like" c.

- 1. All elements must be related to themselves
 - ▶ A relation R(S) is called **reflexive** if for all $a \in S$, aRa.
- 2. If a is "like" b, then b must be "like" a.
 - A relation R(S) is called **symmetric** if for all $a, b \in S$, we have aRb implies bRa.
- 3. If a is "like" b and b is "like" c, then a must be "like" c.
 - A relation R(S) called **transitive** if for all $a, b, c \in S$, we have aRb and bRc implies aRc.

- 1. All elements must be related to themselves
 - ▶ A relation R(S) is called **reflexive** if for all $a \in S$, aRa.
- 2. If a is "like" b, then b must be "like" a.
 - A relation R(S) is called **symmetric** if for all $a, b \in S$, we have aRb implies bRa.
- 3. If a is "like" b and b is "like" c, then a must be "like" c.
 - A relation R(S) called **transitive** if for all $a, b, c \in S$, we have aRb and bRc implies aRc.

Any other defining properties?

- 1. All elements must be related to themselves
 - ▶ A relation R(S) is called **reflexive** if for all $a \in S$, aRa.
- 2. If a is "like" b, then b must be "like" a.
 - A relation R(S) is called **symmetric** if for all $a, b \in S$, we have aRb implies bRa.
- 3. If a is "like" b and b is "like" c, then a must be "like" c.
 - A relation R(S) called **transitive** if for all $a, b, c \in S$, we have aRb and bRc implies aRc.

Any other defining properties?

Definition

A relation which satisfies all these three properties is called an equivalence relation.

- 1. All elements must be related to themselves
 - ▶ A relation R(S) is called **reflexive** if for all $a \in S$, aRa.
- 2. If a is "like" b, then b must be "like" a.
 - A relation R(S) is called **symmetric** if for all $a, b \in S$, we have aRb implies bRa.
- 3. If a is "like" b and b is "like" c, then a must be "like" c.
 - A relation R(S) called **transitive** if for all $a, b, c \in S$, we have aRb and bRc implies aRc.

Any other defining properties?

Definition

A relation which satisfies all these three properties is called an equivalence relation.

Thus, from any partition, we get an equivalence relation.

- 1. All elements must be related to themselves
 - ▶ A relation R(S) is called **reflexive** if for all $a \in S$, aRa.
- 2. If a is "like" b, then b must be "like" a.
 - A relation R(S) is called **symmetric** if for all $a, b \in S$, we have aRb implies bRa.
- 3. If a is "like" b and b is "like" c, then a must be "like" c.
 - A relation R(S) called **transitive** if for all $a, b, c \in S$, we have aRb and bRc implies aRc.

Any other defining properties?

Definition

A relation which satisfies all these three properties is called an equivalence relation.

Thus, from any partition, we get an equivalence relation. Is the converse true?

Examples

- ▶ Reflexive: $\forall a \in S, aRa$.
- ▶ Symmetric: $\forall a, b \in S$, aRb implies bRa.
- ▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.
- ▶ Equivalence: Reflexive, Symmetric and Transitive.

Examples

▶ Reflexive: $\forall a \in S, aRa$.

▶ Symmetric: $\forall a, b \in S$, aRb implies bRa.

▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.

► Equivalence: Reflexive, Symmetric and Transitive.

Relation	Refl.	Sym.	Trans.	Equiv.
aR_4b if students a and b take	✓	✓	✓	√
same set of courses				
aR_5b if student a takes course b				
$\{(a,b) \mid a,b \in \mathbb{Z}, (a-b) \mod 2 = 0\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$				
$\overline{\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}}$				
$\{(a,b) \mid a,b \in \mathbb{Z}, a \mid b\}$				
$\{(a,b) \mid a,b \in \mathbb{R}, a-b < 1\}$				
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$				
$\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc)\}$				

Definition

A partition of a set S is a set P of its subsets such that

- ightharpoonup if $S' \in P$, then $S' \neq \emptyset$.
- $\bigcup_{S' \in P} S' = S$: its union covers entire set S.
- ▶ If $S_1, S_2 \in P$, then $S_1 \cap S_2 = \emptyset$: sets are disjoint.

Example: natural numbers partitioned into even and odd...

Theorem

Every partition of set S gives rise to a canonical equivalence relation R on S, namely,

ightharpoonup aRb if a and b belong to the same set in the partition of S.

Definition

A partition of a set S is a set P of its subsets such that

- ightharpoonup if $S' \in P$, then $S' \neq \emptyset$.
- $\bigcup_{S' \in P} S' = S$: its union covers entire set S.
- ▶ If $S_1, S_2 \in P$, then $S_1 \cap S_2 = \emptyset$: sets are disjoint.

Example: natural numbers partitioned into even and odd...

Theorem

Every partition of set S gives rise to a canonical equivalence relation R on S, namely,

ightharpoonup aRb if a and b belong to the same set in the partition of S.

Is the converse true? Can we generate a partition from every equivalence relation?

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- ▶ Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

)

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- ▶ Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

In $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a - b) \mod 5 = 0\}$, what are [0], [1]?

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- ▶ Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

In $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a - b) \mod 5 = 0\}$, what are [0], [1]?

Lemma

Let R be an equivalence relation on S. Let $a, b \in S$. Then, the following statements are equivalent:

- 1. *aRb*
- 2. [a] = [b]
- 3. $[a] \cap [b] \neq \emptyset$.

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- ▶ Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

In $R = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid (a-b) \mod 5 = 0\}$, what are [0], [1]?

Lemma

Let R be an equivalence relation on S. Let $a, b \in S$. Then, the following statements are equivalent:

- 1. *aRb*
- 2. [a] = [b]
- 3. $[a] \cap [b] \neq \emptyset$.

Proof Sketch: (1) to (2) symm and trans, (2) to (3) refl, (3) to (1) symm and trans. (H.W.: Redo the proof formally.)

From equivalence relations to partitions

Theorem

1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.

From equivalence relations to partitions

Theorem

- 1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.
- 2. Conversely, given a partition P of S, there is an equivalence relation R whose equivalence classes are exactly the sets of P.

From equivalence relations to partitions

Theorem

- 1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.
- 2. Conversely, given a partition P of S, there is an equivalence relation R whose equivalence classes are exactly the sets of P.

Proof sketch of (1): Union, non-emptiness follows from reflexivity. The rest (pairwise disjointness) follows from the previous lemma.

(H.W.): Write the formal proofs of (1) and (2).

Defining new objects using equivalence relations

Consider

$$R = \{((a,b),(c,d)) \mid (a,b),(c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad=bc)\}.$$

Defining new objects using equivalence relations

Consider

$$R = \{ ((a,b), (c,d)) \mid (a,b), (c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc) \}.$$

- ightharpoonup Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.
- ▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\begin{bmatrix} p \\ q \end{bmatrix}$.

Defining new objects using equivalence relations

Consider

$$R = \{ ((a,b), (c,d)) \mid (a,b), (c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc) \}.$$

- ightharpoonup Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.
- ▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\begin{bmatrix} p \\ q \end{bmatrix}$.
- ▶ With this definition, why are addition and multiplication "well-defined"?

Defining new objects using equivalence relations

Consider

$$R = \{ ((a,b), (c,d)) \mid (a,b), (c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc) \}.$$

- ightharpoonup Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.
- ▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\begin{bmatrix} p \\ q \end{bmatrix}$.
- ► With this definition, why are addition and multiplication "well-defined"?

Can we define integers and real numbers starting from naturals by using equivalence classes?