Augabe 1
$$\ddot{\gamma} + \frac{d}{m} \dot{\gamma} = -\frac{g}{e} \sin \theta \qquad \qquad \ddot{\gamma} = -\frac{d}{n} \dot{\gamma} - \frac{g}{e} \sin \theta \qquad \qquad \dot{\gamma} = -\frac{d}{n} \dot{\gamma} - \frac{g}{e} \sin \theta \qquad \qquad \dot{\gamma} = -\frac{g}{e} \sin \theta \qquad \qquad \dot{\gamma} = -\frac{g}{e} \sin \theta \qquad \qquad \dot{\gamma} = -\frac{g}{e} \sin (x_{1}) \qquad \dot{\gamma} = -\frac{g}{e} \sin (x_{2}) \qquad \dot{\gamma} = -\frac{g}{e} \sin (x_{1}) \qquad \dot{\gamma} = -\frac{g}{e} \sin (x_$$

Aufgabe 1 (Fortsetzung) det (\$ - >11) = 0 $\begin{vmatrix} -\lambda & 1 \\ -\frac{q}{e} & -\lambda - \frac{d}{m} \end{vmatrix} = (-\lambda)(-\lambda - \frac{d}{m}) + \frac{q}{e} = 0$ $\begin{vmatrix} -\frac{q}{e} & -\lambda - \frac{d}{m} \\ -\frac{d}{e} & -\lambda - \frac{d}{m} \end{vmatrix} = 0$ $\left(\lambda + \frac{d}{2n}\right)^2 = -\frac{9}{e} + \left(\frac{d}{2n}\right)^2$ X = - d + - (d)2 - 9 $\frac{d}{m} > 0$ $\frac{g}{e} > 0$ \rightarrow asympt. stabil Linearisieung um xor = (7) $\dot{x} \approx \frac{1}{x_{02}} + \left(\frac{0}{\frac{9}{e}} - \frac{d}{m} \right) \left(\frac{x}{x} - \frac{x_{02}}{x_{02}} \right)$ j = 4 5 $\det \left(A - \lambda 1 \right) = \begin{vmatrix} -\lambda & 1 \\ \frac{9}{6} & -\lambda - \frac{d}{m} \end{vmatrix} = 0$ $LD \lambda = -\frac{d}{2m} + \sqrt{\left(\frac{d}{2m}\right)^2 + \frac{a}{2}}$ Lo Instabilitat, en positiver Realteil $V\left(\frac{d}{2m}\right)^2 > \frac{9}{e} \rightarrow Stabiler thaten$ D (d)2 < 9 -b strole (/Fotus

4)
$$\left[\frac{x_{0}}{x_{0}}\right]^{2} > \frac{9}{e} \Rightarrow Stabile Thoten$$

D $\left(\frac{d}{2n}\right)^{2} < \frac{9}{e} \Rightarrow Stabile Strudel/Fotous$

D $\left(\frac{d}{2n}\right)^{2} = \frac{9}{e} \Rightarrow Stabile Strudel/Fotous$

D $\left(\frac{d}{2n}\right)^{2} = \frac{9}{e} \Rightarrow Stabile Thoten$

Saftelpunkt (McO, N2 > 6)

Aufgabe 3 (Fortsetzung)

Ridtings fold 3D ~
$$\delta$$
 $f(\begin{pmatrix} g \\ g \end{pmatrix}) = k R \begin{pmatrix} 1 \\ 0 \end{pmatrix}$