Algorytm dekompozycji QR

Anna Szczepaniak

21 lutego 2019

Spis treści

1	\mathbf{W} stęp		2
2	Preliminaria 2.0.1 Definicje dotyczące macierzy		
	2.1.2 Definicje dotyczące wyznacznika macierzy, jej wartości własnej oraz wektorów własnych.	•	4
3	Algorytm QR		6
4	Eksperymenty numeryczne		8
5	Podsumowanie		9

Wstęp

Preliminaria

2.0.1 Definicje dotyczące macierzy

Definicja 2.1 (Definicja macierzy). $Macierzą m \times n$ (tzn. o m wierszach i n kolumnach) o wyrazach w zbiorze <math>X nazywamy tablicę:

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{bmatrix}$$

 $gdzie \ x_{ij} \in X \ dla \ 1 \leqslant i \leqslant m, \ 1 \leqslant j \leqslant n.$

Korzystając z definicji 2.1

Definicja 2.0.1.2

Macierzą kwadratową o wymiarze n ${\bf x}$ n nazywamy macierz o liczbie wierszy równiej liczbie kolumn. Liczbę n nazywamy stopniem macierzy.

Definicja 2.0.1.3

Macierzą jednostkową nazywamy macierz kwadratową, która na swojej głównej przekątnej posiada same wartości równe 1, natomiast reszta jest wypełniona zerami. Współczynniki tej macierzy są określone następującymi wzorami:

$$a_{ij} = \begin{cases} 1 & \text{dla } j = i \\ 0 & \text{dla } j \neq i \end{cases}$$

Definicja 2.0.1.4

Macierzą symetryczną nazywamy macierz kwadratową, której wyrazy położone symetrycznie względem głównej przekątnej są równe. Formalnie jest to macierz kwadratowa

$$A = [a_{ij}]$$

stopnia n, która dla

$$i, j = 1, ..., n$$

spełnia warunek

$$a_{ij} = a_{ji}$$
.

Definicja 2.0.1.5

Macierz trójkątna to macierz kwadratowa, której wszystkie współczynniki pod główną przekątną lub wszystkie współczynniki nad tą przekątną są równe zero.

Definicja 2.0.1.6

Macierzą transponowaną (przestawioną) macierzy A nazywamy macierz A^T , która powstaje z danej poprzez zamianę jej wierszy na kolumny i kolumn na wiersze. Operację tworzenia macierzy transponowanej nazywamy transpozycją (przestawianiem).

Dla macierzy $A = (a_{ij})$:

$$A^T = \left(a_{ij}\right)^T = \left(a_{ji}\right)$$

.

Definicja 2.0.1.7

Iloczynem macierzy $A = [a_{ij}]$ i $B = [b_{jk}]$, gdzie $A \in M_m^n(F)$, $B \in M_p^m(F)$ nazywamy macierz $C = [c_{ik}]$, $C \in M_p^n(F)$, daną wzorem

$$c_{ik} = \sum_{j=1}^{n} a_{ij} \cdot b_{jk}.$$

Oznaczamy $C = A \cdot B$.

Definicja 2.0.1.8 Niech A będzie macierzą kwadratową ustalonego stopnia. Macierz A jest odwracalna, jeśli istnieje taka macierz B, że zachodzi

$$A \cdot B = B \cdot A = I$$
,

gdzie I jest macierzą jednostkową. Macierz B nazywa się wówczas macierzą odwrotną do macierzy A i oznacza się przez A^{-1} .

Definicja 2.0.1.9

Macierz A nazywamy macierzą nieosobliwą, jeśli istnieje macierz B, która jest do niej odwrotna.

Definicja 2.0.1.10

Macierzą ortogonalną nazywamy macierz kwadratową $A \in M_n(R)$ o elementach będących liczbami rzeczywistymi spełniająca równość:

$$A^T \cdot A = A \cdot A^T = I_n$$

gdzie I_n oznacza macierz jednostkową wymiaru n, A^T oznacza macierz transponowaną względem A.

Definicja 2.0.1.11

Dwie macierze kwadratowe A i B nazywamy macierzami podobnymi, jeśli istnieje taka macierz nieosobliwa P, że zachodzi związek:

$$B = P^{-1} \cdot A \cdot P.$$

2.1.1 Definicje dotyczące wektorów

Definicja 2.0.2.1

Wektorem nazywamy uporządkowaną parę punktów, z których jeden jest początkiem a drugi końcem tego wektora. Każdy wektor posiada zwrot, kierunek i długość.

Definicja 2.0.2.2

Układ wektorów $(v_1, v_2, ..., v_k)$ w przestrzeni liniowej V nad ciałem K nazywamy liniowo niezależnym, jeśli z $a_1 \cdot v_1 + a_2 \cdot v_2 + ... + a_k \cdot v_k = 0$ wynika, że $a_1 = a_2 = ... = a_k = 0$.

2.1.2 Definicje dotyczące wyznacznika macierzy, jej wartości własnej oraz wektorów własnych.

Definicja 2.0.3.1

Niech będzie dana macierz kwadratowa A stopnia n. Wyznacznikiem nazywamy takie odwzorowanie, które danej macierzy A wymiaru $n \times n$ przyporządkowuje dokładnie jedną liczbę rzeczywistą det A. Jeśli macierz jest stopnia n=1, to jej wyznacznik $det A=a_{11}$. Jeśli stopień macierzy jest większy niż 1, to jej wyznacznik obliczamy według następującego wzoru:

$$det A = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot det M_{ij},$$

gdzie $det M_{ij}$ oznacza wyznacznik macierzy powstałej z macierzy A przez skreślenie i-tego wiersza i j-tej kolumny.

Definicja 2.0.3.2

Niech B będzie macierzą wymiaru m x m i niech I będzie macierzą jednostkową wymiaru m x m. Wówczas skalary (liczby o wymiarze 1 x 1) $\lambda_1, \lambda_2, ..., \lambda_m$ nazywamy wartościami własnymi macierzy B, jeśli spełniają

$$|B - \lambda \cdot I| = 0.$$

Definicja 2.0.3.3

Niech B będzie macierzą wymiaru m x m i niech λ będzie wartością własną macierzy B. Wówczas niezerowy wektor e wymiaru m x 1 nazywamy wektorem własnym macierzy B, jeżeli

$$B \cdot e = \lambda \cdot e.$$

Algorytm QR

Twierdzienie 3.1 (O rozkładzie QR)

Niech A będzie macierzą o wymiarach m x n, gdzie $m \ge n$, której kolumny są liniowo niezależne. Istnieje wtedy jedyny rozkład A=QR na dwa czynniki: macierz Q o wymiarach m x n taka, że $Q^T \cdot Q = D$, gdzie $D = diag(d_1, d_2, ..., d_n)$, $d_k > 0$ dla (k = 1, 2, ..., n) i macierz trójkątną górną R z elementami $r_{kk} = 1(k = 1, 2, ..., n)$.

Dowód twierdzenia 3.1

Podane wyżej twierdzenie jest przekształceniem procesu ortogonalizacji Grama-Schmidta. Jeśli zastosujemy Grama-Schmidta do kolumn a_i macierzy $A = [a_1, a_2, ..., a_n]$ od lewej do prawej, otrzymamy sekwencje ortonormalnych wektorów od q_1 do q_n obejmujących tę samą przestrzeń: te ortogonalne wektory są kolumnami Q. Gram-Schmidt również wylicza współczynniki wyrażające każdą kolumnę a_i jako liniową kombinację q_1 przez

$$q_i: a_i = \sum_{i=1}^i r_{ji} \cdot q_i,$$

gdzie r_{ji} to współczynniki macierzy R.

Algorytm QR został wynaleziony w 1961 roku przez Francisa i Kubłanowską. Jest jedną z efektywniejszych znanych metod rozwiązywania pełnego zadania własnego dla macierzy symetrycznych lub niesymetrycznych. W podstawowym algorytmie QR tworzy się ciąg macierzy $A = A_0, A_1, A_2, \dots$ taki, że

$$A_s = Q_s R_s,$$

$$R_s Q_s = A_{s+1},$$

$$(s = 0, 1, ...),$$

gdzie Q_s jest macierzą ortogonalną, a R_s - trójkątną górną. Łatwo widać, że z twierdzenia o rozkładzie QR wynika, że ciąg A_s (s=0,1,...) jest w zasadzie określony jednoznacznie. Ponieważ

$$A_{s+1} = R_s Q_s = Q_s^T A_s Q_s,$$

więc każdy krok w algorytmie QR jest przekształceniem przez podobieństwo.

Metoda Householdera

Metoda Householdera pozwala znaleźć rozkład QR dowolnej macierzy prostokatnej m x n $(m \ge n)$.

Macierz Householdera

Macierzą Householdera H zwaną również refleksją nazywamy symetryczną i ortogonalną macierz przekształcenia wektora, które odbija go względem pewnej płaszczyzny.

Transformacja Householdera

Niech $v \in \mathbb{R}^m$, i $v \neq 0$. Wówczas transformacją Householdera nazywamy macierz postaci:

$$H = I - Wvv^{T}, H = I - Wvv^{T}, W = \frac{2}{v^{T}v}W = \frac{2}{v^{T}v}$$

Macierz H jest macierzą symetryczną i ortogonalną oraz ma taką własność, że dowolny wektor x wymiaru m jest odbiciem lustrzanym wektora Hx względem hiperpłaszczyzny (wymiaru m-1) prostopadłej do wektora v[3]. Łatwo sprawdzić, że tak jest ponieważ:

$$H^2 = \left(I - \frac{2vv^T}{v^Tv}\right)^2 = I - \frac{4vv^T}{v^Tv} + 4\left(\frac{vv^T}{v^Tv}\right)^2 = IH^2 = \left(I - \frac{2vv^T}{v^Tv}\right)^2$$

$$=I-\frac{4vv^T}{v^Tv}+4\left(\frac{vv^T}{v^Tv}\right)^2=I((vv^T)(v^Tv)=(vv^T)^2)((vv^T)(v^Tv)=(vv^T)^2)$$

oraz

$$H^T = \left(I - \frac{2vv^T}{v^Tv}\right)^T = I - \left(\frac{2vv^T}{v^Tv}\right)^T = I - \frac{2vv^T}{v^Tv} = HH^T = \left(I - \frac{2vv^T}{v^Tv}\right)^T$$

$$= I - \left(\frac{2vv^T}{v^Tv}\right)^T = I - \frac{2vv^T}{v^Tv} = H((vv^T)^T = (vv^T))((vv^T)^T = (vv^T))$$

Z drugiej równości wynika symetria, z pierwszej ortogonalność, ponieważ

$$H^TH = HH = I$$
.

Zatem:

$$|Hx| = \sqrt{(Hx)^T(Hx)} = \sqrt{x^T(H^TH)x} = \sqrt{x^TIx} = |x||Hx| = \sqrt{(Hx)^T(Hx)} = \sqrt{x^T(H^TH)x} = \sqrt{x^TIx} = |x|.$$

Mnożac dowolny wektor $x \in \mathbb{R}^m$ otrzymujemy:

$$Hx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x + (-2\frac{vv^Tx}{v^Tv}) = x - 2rHx = x - \frac{2vv^Tx}{v^Tv} = x - \frac{2vv^Tx}{v^Tv}$$

Eksperymenty numeryczne

Podsumowanie