ANSWER 1 OF 1 WPIX COPYRIGHT 2004 THE THOMSON CORP on STN

ACCESSION NUMBER:

2002-425637 [45] WPIX Full-text

DOC. NO. CPI:

C2002-120480

TITLE:

Production of long chain alpha-olefins having narrow molecular weight distribution and useful for the production of polyalphaolefins, involves addition of a 4-10C olefin fraction to an isomerizing metathesis

reaction.

DERWENT CLASS:

A41 E17 H04

INVENTOR(S):

BLACKBOROW, R J; KARL, J; MACH, H; RATH, H P; ROEPER, M;

STEPHAN, J; BLACKBOROW, R

PATENT ASSIGNEE(S):

(BADI) BASF AG

COUNTRY COUNT:

97

PATENT INFORMATION:

PATENT NO	O KIND	DATE	WEEK	LA	PG	MAIN	IPC	

WO---200216290 A2 20020228 (200245)* GE 13 C07C-002-00

RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW

W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

DE----10041345 A1 20020307 (200245)

C07C-006-04<--

AU---200214957 A 20020304 (200247)

C07C-002-00

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
WO200216290 DE10041345 AU200214957	A1	2000DE-1041345	20010823 20000823 20010823

FILING DETAILS:

PATENT NO	KI	ND	PATENT	NO
AU200214957	Α	Based on	WO2003	216290

PRIORITY APPLN. INFO: 2000DE-1041345

20000823

INT. PATENT CLASSIF.:

MAIN:

C07C-002-00; C07C-006-04

SECONDARY:

C07C-011-00; C08F-002-34; C08F-010-00

BASIC ABSTRACT:

WO 200216290 A UPAB: 20020717

NOVELTY - A process for the production of long chain alpha -olefins having a narrow molecular weight distribution comprises addition of a 4-10C olefin fraction to an isomerizing metathesis reaction; separation of the resulting mixture; addition of the desired fraction to an ethenolysis reaction; and isolation of the resulting alpha -olefin fraction produced. DETAILED DESCRIPTION - A process for the production of long chain alpha olefins having a narrow molecular weight distribution comprises: (A) addition of a 4-10C olefin fraction to an isomerizing metathesis reaction;

- (B) separation of the resulting mixture into: (1) a 2-3C olefin fraction;
- (2) a fraction that contains olefins having the desired number of C atoms; and

(3) a low boiling point fraction having a carbon number of 4 to less than the carbon number of fraction (B2); (C) recycling of the light fraction (B3) and optionally the heavy faction (B4) to step (A);

(D) addition of fraction (B2) to an ethenolysis reaction; and (E) isolation of the alpha -olefin fraction produced in step (D).

USE - The product 8-12C olefin mixture is useful for the production of polyalphaolefins, preferably polyalphaolefins having a degree of polymerization of 3-8 and 10-50 (claimed).

ADVANTAGE - The product alpha -olefin mixture has a narrow molecular weight distribution.

Dwg.0/0

FILE SEGMENT: CPI FIELD AVAILABILITY: AB; DCN

MANUAL CODES: CPI: A01-D13; E10-J02C3; E11-F03; H04-E11; H04-F02E;

NO1-A; NO1-B; NO2-A; NO2-B; NO2-C; NO2-D; NO2-E;

NO2-F; NO3-A; NO3-B; NO3-C; NO3-D; NO3-E

BUNDESREPUBLIK DEUTSCHLAND

PATENT- UND MARKENAMT

Offenlegungsschrift

_® DE 100 41 345 A 1

(2) Aktenzeichen: 100 41 345.5 ② Anmeldetag: 23. 8. 2000 (3) Offenlegungstag: 7. 3.2002

(f) Int. Cl.⁷: C 07 C 6/04 C 07 C 11/00 C 08 F 10/00.

C 08 F 2/34

(71) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

(74) Vertreter:

Patent- und Rechtsanwälte Bardehle, Pagenberg, Dost, Altenburg, Geissler, Isenbruck, 68165 Mannheim

(72) Erfinder:

Rath, Hans Peter, Dr., 67269 Grünstadt, DE; Mach, Helmut, Dr., 69115 Heidelberg, DE; Röper, Michael, Prof. Dr., 67157 Wachenheim, DE; Stephan, Jürgen, Dr., 68163 Mannheim, DE; Karl, Jörn, Dr., 68159 Mannheim, DE; Blackborow, Richard J., Prof., Andresy, FR

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(A) Verfahren zur Synthese von terminalen Olefinen mit enger Molgewichtsverteilung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von linearen α-Olefinen durch eine isomerisierende Metathesereaktion mit nachfolgender Ethenolyse. Das Verfahren umfaßt die Verfahrensschritte

i) Einführen einer linearen C₄-C₁₀-Olefinfraktion in eine isomerisierende Metathesereaktion

ii) Auftrennen des erhaltenen Gemischs in

a) eine C2-C3-Olefinfraktion

b) eine Fraktion, die Olefine mit der gewünschten Kohlenstoffzahl enthält,

c) eine leichte Fraktion, die Olefine mit einer Kohlenstoffzahl von C₄ bis unterhalb der Kohlenstoffzahl der gewünschten Fraktion b) enthält und

d) eine schwere Fraktion, die Olefine mit einer Kohlenstoffzahl oberhalb der Kohlenstoffzahl der gewünschten Fraktion b) enthält

iii) Rückführen der leichten Fraktion c) sowie gegebenenfalls der schweren Fraktion d) in die isomerisierende Metathesereaktion i)

iv) Einführen der Fraktion b) sowie gegebenenfalls der Fraktion d) in eine Ethenolysereaktion

v) Isolieren der in iv) hergestellten α -Olefinfraktion. Insbesondere lassen sich mit diesem Verfahren lineare

C₈-C₁₂-α-Olefine darstellen.

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung langkettiger α-Olefine mit enger Molgewichtsverteilung, wobei das Verfahren eine isomierende Metathese und eine Ethenolyse als Verfahrensschritte umfaßt. Das Verfahren eignet sich dabei insbesondere zur Herstellung linearer α -Olefine mit 8 bis 12 Kohlenstoffatomen. [0002] Olefine stellen aufgrund ihrer Kohlenstoff-Doppelbindung, über die die Einführung einer Vielzahl funktionel- 10 ler Gruppen möglich ist, die wichtigste Klasse von Grundchemikalien für die chemische Industrie dar. Für Olefine, die, wie dem Fachmann bekannt ist, in verschiedene Klassen unterteilt werden, beispielsweise in kurz- und langkettige, lineare und verzweigte Olefine oder Olefine mit inter- 15 nen und terminalen Doppelbindungen, existieren die verschiedensten Herstellungsverfahren. Dabei stellt das Crakken von gesättigten Kohlenwasserstoffen das am häufigsten verwendete Verfahren der Darstellung von Olefinen dar. Dieses eignet sich jedoch vor allem zur Herstellung kurzket- 20 tiger Olefine im C-Zahlenbereich bis max. 4.

[0003] Lineare höhere α-Olefine mit C-Zahlen von etwa C₁₀-C₂₀ stellen eine Klasse von Olefinen dar, die nach Weiterverarbeitung bei der Herstellung von Waschmitteln, Weichmachern und Schmierölen ein breites Anwendungs- 25 gebiet gefunden haben. Für diese Klasse von Olefinen existiert nur eine begrenzte Anzahl von Herstellungsverfahren. Dabei sind die Dehydratisierung natürlicher Alkohole und das Cracken höherer Paraffine (Wachsspaltung) unbedeutend. Die Mehrzahl linearer α-Olefine wird durch Über- 30 gangsmetall-katalysierte Oligomerisierung von Ethylen nach dem Ziegler-Verfahren oder dem sogenannten SHOP-Prozeß der Shell hergestellt, wodurch sich hochlineare Olefinfraktionen mit α-Olefingehalten von > 99% erhalten lassen. Als Katalysator dienen beim Ziegler-Verfahren Alumi- 35 nium-Alkyle, beim SHOP-Prozeß finden Phosphin-modifizierte Nickel-Komplexe als aktive Spezies bei der Oligomerisierungsreaktion Anwendung. Die Längenverteilung der Kohlenstoffkette folgt dabei der sogenannten Schulz-Flory-Verteilung mit einem hohen Anteil an kurzkettigen α-Ole- 40 verteilung, umfassend die folgenden Verfahrensschritte: finen. Der jeweilige Anteil eines bestimmten α-Olefins nimmt exponentiell mit steigender Kohlenstoffzahl ab.

[0004] Um die nach der Abtrennung der erwünschten C₁₀-C₂₀-Olefine verbleibenden kurz- und langkettigen Olefine verwenden zu können, werden diese im SHOP-Verfahren zu 45 Olefinen mit innenständiger Doppelbindung isomerisiert und das erhaltene Gemisch einer sogenannten Metathesereaktion unterworfen. Dabei entstehen beispielsweise Olefine im Kohlenstoff-Bereich von C₁₀-C₂₀ mit internen Doppel-

[0005] Die US 3,491,163 offenbart eine Aufbaureaktion für Olefine, die nicht auf einer Übergangsmetall-katalysierten Oligomerisierung beruht. Propylen wird als Ausgangsolefin zunächst einer Metathesereaktion unterworfen. Der dabei entstandene, von leichteren und schwereren Olefinen 55 befreite C₄-Schnitt wird dann in eine isomerisierende Metathesereaktion eingesetzt, nach der der entstandene C5- und C6-Olefinschnitt von den leichteren und schwereren Isomcren abgetrennt und wieder in eine isomerisierende Metathese eingesetzt wird. Das dabei entstehende gewünschte 60 Produkt, nämlich C7-C10-Olefine, werden isomerisiert, anschließend von leichteren und schwereren Fraktionen befreit und anschließend ein letztes Mal isomerisiert und metathetisiert. Die jeweils abgetrennten leichten bzw. schweren Olefine werden zurückgeführt und erneut in die Reaktion eingesetzt bzw., im Fall von Ethylen, in einer Aufbaureaktion verwendet. Man erhält ein Gemisch von C₁₁-C₁₅-Olefinen mit innenständiger Doppelbindung.

[0006] Das in der WO 97/34854 beschriebene Verfahren dagegen erlaubt die Herstellung von linearen α -Olefinen. Das Verfahren ist dadurch gekennzeichnet, daß ein Olefingemisch aus Olefinen mit innenständiger Doppelbindung mit 6 bis 30 Kohlenstoffatomen unter Nicht-Gleichgewichtsbedingungen metathetisiert wird. Das entstehende Produkt wird in einen niedrig siedenden Olefinanteil und einen höher siedenden Olefinanteil aufgetrennt. Beide Fraktionen bestehen aus internen Olefinen. Der höhersiedende Anteil wird anschließend einer Metathese mit Ethylen unterworfen (Ethenolyse), dabei werden die genannten α-Olefine gebildet. Bei der beschriebenen Reaktionsführung findet jedoch keine Aufbaureaktion zu Olefinen statt, sondern lediglich die Umwandlung eines Olefinschnitts mit innenständiger Doppelbindung in einen Olefinschnitt mit terminalen Doppelbindungen.

[0007] Obwohl die Übergangsmetall-katalysierte Aufbaureaktion und auch das in der US 3,491,163 offenbarte Verfahren hochlineare α-Olefinfraktionen im gewünschten Kohlenstoffzahl-Bereich mit sehr guten oder zumindest befriedigenden Ausbeuten ergeben, weisen diese Verfahren nach dem Stand der Technik den Nachteil auf, daß ausschließlich Ethylen als Ausgangsolefin eingesetzt werden kann. Bei der Herstellung von Ethylen durch Cracken fällt jedoch in Abhängigkeit von den Crackbedingungen und vor allem der Wahl des Ausgangsmaterials eine unterschiedlich große Menge an C_{3+} -Olefinen mit einer Kohlenstoffzahl > 3 an. Während aber Propylen ein sehr begehrtes Rohprodukt, beispielsweise für die Herstellung von Polypropylen ist, fallen die C4+Olefine häufig in Mengen an, die den Bedarf deutlich übersteigen.

[0008] Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, mit dem sich in Crackverfahren anfallende niedere Olefine in α-Olefine im Kohlenstoffzahl-Bereich von C₈-C₂₀ überführen lassen. Insbesondere sind dabei lineare \alpha-Olefine im Kohlenstoffzahl-Bereich von C_8 bis C_{12} erwünscht.

[0009] Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung langkettiger α-Olefine mit enger Molgewichts-

- i) Einführen einer linearen C₄-C₁₀-Olefinfraktion in eine isomerisierende Metathesereaktion
- ii) Auftrennen des erhaltenen Gemischs in
 - a) eine C2-C3-Olefinfraktion,
 - b) eine Fraktion, die Olefine mit der gewünschten Kohlenstoffzahl enthält,
 - c) eine leichte Fraktion, die Olefine mit einer Kohlenstoffzahl von C4 bis unterhalb der Kohlenstoffzahl der gewünschten Fraktion b) enthält und d) eine schwere Fraktion, die Olefine mit einer Kohlenstoffzahl oberhalb der Kohlenstoffzahl der gewünschten Fraktion b) enthält
- iii) Rückführen der leichten Fraktion c) sowie gegebenenfalls der schweren Fraktion d) in die isomerisierende Metathesereaktion i)
- iv) Einführen der Fraktion b) in eine Ethenolysereak-
- v) Isolieren der in iv) hergestellten α-Olefinfraktion.

[0010] Durch geeignetes Führen der Kreisströme und geschicktes Einstellen der geeigneten Reaktionsbedingungen läßt sich die Metathesereaktion so durchführen, daß das erhaltene Produkt einen hohen Anteil an höheren Olefinen aufweist. Es ist somit möglich, durch die Metathesereaktion einen Aufbau der Kohlenstoffkette durchzuführen.

[0011] Als Eduktgemisch für die Metathesereaktion eignen sich kurzkettige lineare Olefine mit Kohlenstoff-Zahlen

von 4 bis 10, die etwa aus Steam- oder sogenannten FCC-Crackern stammen können. Beispielsweise enthalten solche Schnitte Cis/Trans-Butene, Cis/Trans-Pentene und Cis/Trans-Hexene mit unterschiedlicher Position der Doppelbindung. Vorzugsweise wird ein C₄-C₆-Olefin-Gemisch eingesetzt. Insbesondere sind C₄-Olefine als Ausgangsmaterial geeignet.

3

[0012] Es empfiehlt sich, die eingesetzten Olefine durch entsprechende Behandlung an Adsorber-Schutzbetten, vorzugsweise an Aluminiumoxiden mit großer Oberfläche oder 10 Molsieben von Verunreinigungen zu befreien.

[0013] Das Metatheseverfahren wird dabei an einem Katalysator durchgeführt, der die Metathesereaktion und gleichzeitig die Doppelbindungsisomerisierung der entstandenen Olefine katalysiert. Es können dabei in dem Reaktor 15 ein Metathesekatalysator und ein Isomerisierungskatalysator getrennt vorhanden sein. Der Metathesekatalysator enthält eine Verbindung eines Metalls der Gruppen VIb, VIIb oder VIII des Periodensystems der Elemente. Vorzugsweise enthält der Metathese-Katalysator ein Oxid eines Metalls 20 der Gruppe VIb oder VIIb des Periodensystems der Elemente. Insbesondere ist der Metathesekatalysator ausgewählt aus der Gruppe bestehend aus Re₂O₇, WO₃ und MoO₃.

[0014] Der Isomerisierungskatalysator enthält ein Metall 25 aus den Gruppen Ia, IIa, IIIb, IVb, Vb oder VIII des Periodensystems der Elemente oder eine Verbindung davon. Vorzugsweise ist der Isomerisierungskatalysator ausgewählt aus der Gruppe bestehend aus RuO₂, MgO und K₂CO₃.

[0015] Vorzugsweise wird ein Katalysator verwendet, der 30 sowohl als Metathese- als auch als Isomerisierungskatalysator aktiv ist. Ein solcher Katalysator weist eine Kombination der vorstehend genannten Katalysatorkomponenten auf, enthält also eine Verbindung eines Metalls aus den Gruppen VIb, VIIb oder VIII zur Katalyse der Metathese und ein Element aus den Gruppen Ia, IIa, IIIb, IVb, Vb oder VIII des Periodensystems der Elemente zur Katalyse der Isomerisierungsreaktion. Bevorzugte und besonders bevorzugte Mischkatalysatoren enthalten jeweils mindestens eine der oben als bevorzugt und besonders bevorzugt erwähnten Ver- 40 bindungen.

[0016] Die Katalysatoren sind generell auf den üblichen, dem Fachmann bekannten Materialien geträgert. Beispiele für geeignete Materialien umfassen SiO_2 , γ - Al_2O_3 , MgO, WO_3 oder Mischungen dieser Materialien, beispielsweise γ - 45 $Al_2O_3/B_2O_3/SiO_2$.

[0017] Die isomerisierende Metathese wird bei Temperaturen von 40 bis 450°C, vorzugsweise 100 bis 180°C, insbesondere 130 bis 150°C, und Drücken von 1 bis 60 bar, vorzugsweise 10 bis 45 bar, insbesondere 30 bis 35 bar, durchsgeführt.

[0018] Durch Einstellen der dem Fachmann bekannten Reaktionsparameter läßt sich die isomerisierende Metathese so durchführen, daß ein hoher Anteil an Olefinen im gewünschten C-Zahlenbereich erhalten wird. Diese Reaktionsparameter umfassen beispielsweise den C-Zahlenbereich der Einsatzolefine, die Wahl der Katalysatoren, die Reaktionstemperatur, die Verweilzeit, den Grad der Ausschleusung des entstandenen Produkts sowie die Zusammensetzung und den Grad der Rückführung der Olefinfraktion, die 60 nach der isomerisierenden Metathese und der nachfolgenden Austrennung erhalten werden.

[0019] In einer insbesondere bevorzugten Ausführungsform der vorliegenden Erfindung wird ein C_4 -Schnitt in die isomerisierende Metathesereaktion eingesetzt, als Fraktion 65 b) eine C_{14} - C_{22} -Olefinfraktion erhalten und diese mit Ethylen in Schritt iv) zu einer C_8 - C_{12} - α -Olefinfraktion umgesetzt.

[0020] Die isomerisierende Metathesereaktion kann dabei kontinuierlich oder diskontinuierlich durchgeführt werden. Häufig ist nach gewisser Zeit eine Desaktivierung des Katalysatorsystems festzustellen. Dies läßt sich durch Regenerieren der Katalysatoren, generell durch Erhitzen in einem sauerstoffhaltigen Stickstoffstrom unter Abbrennen der organischen Ablagerungen erreichen.

[0021] Das nach der isomerisierenden Metathese erhaltene Produktgemisch wird dann mit den üblichen Methoden, vorzugsweise durch Destillation, aufgetrennt. Die gewünschte Olefinfraktion, die anschließend einer Ethenolyse unterzogen wird oder auch, falls gewünscht, zu Wertprodukten weiterverarbeitet wird, läßt sich so erhalten. Vorzugsweise ist diese gewünschte Fraktion die C₁₄-C₂₂-Fraktion. [0022] Weiterhin wird eine Leichtsiederfraktion erhalten, die C₂- und C₃-Olefine enthält. Diese werden abgetrennt und in den üblichen Verfahren weiterverarbeitet.

[0023] Weiterhin wird eine leichte Olefinfraktion isoliert, die Olefine enthält, deren Kohlenstoffzahl-Bereich bei Werten von C₄ bis unterhalb der Kohlenstoffzahl der gewünschten Olefinfraktion liegt. Diese Fraktion wird in die isomerisierende Metathese zurückgeführt. Diese leichte Fraktion ist vorzugsweise die C₄-C₁₃-Olefinfraktion.

[0024] Schließlich erhält man auch eine schwere Olefinfraktion, die Olefine enthält, deren Kohlenstoffzahl-Bereich
bei Werten liegt, die höher sind als die Kohlenstoffzahlen
der gewünschten Olefinfraktion. Auch diese Fraktion kann
gegebenenfalls in die isomerisierende Metathesereaktion
rückgeführt werden, alternativ kann sie auch vollständig
oder teilweise der Fraktion b) in der Ethenolysereaktion iv)
beigemischt werden. Vorzugsweise handelt es sich bei der
schweren Fraktion um C₂₂₊-Olefine.

[0025] Die gewünschte Olefinfraktion, vorzugsweise die C₁₄-C₂₂-Olefinfraktion, läßt sich als solche in einigen Anwendungen einsetzen, in denen Olefine mit internen Doppelbindungen besser geeignet sind als α-Olefine, teilweise aufgrund des günstigeren Preises auch vorteilhafter sind als α-Olefine. Beispiele dafür umfassen insbesondere C₁₆₊ oder C₂₀₊-Olefine als Lösemittel mit hohen Flammpunkten von > 100°C bzw. 120°C zum Strecken von Silikonen oder anderen Dichtstoffen, oder C11-C13-Olefine nach Hydroformylierung und Alkoxilierung als industrielle Reinigungsmittel. [0026] Vorzugsweise wird die gewünschte Olefinfraktion erfindungsgemäß einer metathetischen Spaltung mit Ethylen unterworfen (Ethenolyse). Von den dabei entstehenden linearen α-Olefinen wird die Wertproduktfraktion abgetrennt, vorzugsweise destillativ, die höher und niedriger siedenden Fraktionen werden wieder in die isomerisierende Metathese rückgeführt. Wird die C₁₄-C₂₂-Olefinfraktion in der Ethenolyse eingesetzt, erhält man als Wertproduktfraktion C₈-C₁₂α-Olefine.

[0027] Gemäß einer Variante der Erfindung wird auch die Fraktion d), die langkettige Olefine enthält, oder ein Teil davon in die Ethenolysereaktion eingeführt.

55 [0028] Die Reaktionsbedingungen bei der Ethenolyse entsprechen den üblichen, dem Fachmann bekannten Bedingungen einer solchen Reaktion. Die Temperaturen liegen generell bei Werten von 20 bis 160°C, vorzugsweise 40 bis 60°C, Drücke bei Werten von 20 bis 200 bar, vorzugsweise 40 bis 80 bar.

[0029] Die Katalysatoren, die bei der Ethenolyse eingesetzt werden, entsprechen den Katalysatoren, die in der isomerisierenden Metathesereaktion als Metathesekatalysatoren eingesetzt werden. Vorzugsweise kommt Re₂O₇ zum Einsatz. Es werden auch die gleichen Trägermaterialien ver-

wendet, vorzugsweise γ -Al₂O₃.

[0030] Die erfindungsgemäß erhaltenen Olefine eigenen sich für verschiedene Anwendungen.

6

[0031] α -Olefine von C_8 bis C_{12} sind für die Herstellung von Schmierstoffen von Interesse. Mit ihnen lassen sich durch Oligomerisation (n = 3-8) sogenannte Polyalphaolefine herstellen, die hydriert als vollsynthetisches Grundöl Grundlage hochwertiger Motorenöle sind. Mit n = 10-50 er- 5 hält man Polymere, die zur Herstellung von sogenannten aschefreien Dipergatoren durch en-Reaktion mit Maleinsäureanhydrid und Imidierung mit Polyaminen hilfreich sind. Sie werden Motorenölen in Mengen von 3 bis 8% zur Rußdispergierung zugesetzt, besonders günstig sind die viskosi- 10 metrischen Eigenschaften dieser Produkte im Vergleich zu Produkten mit einem Polyisobutylen-Kohlenwasserstoffgerüst. Dabei werden Produkte erhalten, die denjenigen entsprechen, die in der deutschen Anmeldung mit dem Titel "Verwendung von Metallocen-katalysiert hergestellten Oli- 15 godecenen als Komponenten in Schmiermitteln", Anmelde-Nr. DE 198 27 323 mit Anmeldetag 19.06.1998 der BASF AG offenbart sind. Beispielsweise kann aus einer erfindungsgemäß erhaltenen C_8 - C_{12} - α -Olefin-Destillatfraktion gemäß Beispiel 1 der DE 198 27 323 bei 60°C mit Cp₂ZrCl₂ 20 bei 10 bar Wasserstoffdruck ein Polyalphaolefin hergestellt werden, das bis 150°C/2 mbar ausdestilliert wird. Der Sumpf hat nach üblichen Methoden der Gelpermeationschromatographie ein Molekulargewicht M_N von 520, eine Viskosität bei 100°C von 6 mm²/s und einen Viskositätsin- 25 dex von 156, und ist als Zusatz zu Motorenölen geeignet. [0032] Die Erfindung wird nun in dem nachfolgenden Beispiel erläutert:

Beispiel

[0033] Ein 200 ml Rohrreaktor wird mit 53 g MoO₃/SiO₂ sowie 46 g RuO2 auf Al2O3 befüllt. Die Reaktion wird bei 130°C und 30 bar durchgeführt. Raffinat 2, erhalten aus einem Steamcracker-C₄-Schnitt nach Butadienextraktion (bis 35 auf > 10 ppm) und nachfolgender Isobutenabtrennung (Isobutengehalt max. 0,5%) wird mit den in der Aufarbeitung anfallenden Rückführströmen vermischt und mit einer Flussgeschwindigkeit von 100 g/h über den Reaktor geleitet. Der Produktstrom wird in einer Trennwandkolonne auf- 40 destilliert. Über Kopf werden Leichtsieder (Ethen und Propen) abgetrennt. Im Sumpf fällt in geringer Menge eine Olefinfraktion an, welche mehr als 22 Kohlenstoffatome enthält. Im Seitenabzug wird ein Olefinstrom abgenommen, der in einer weiteren unter Vakuum betriebenen Kolonne aufde- 45 stilliert wird. Die Bedingungen werden dabei so gewählt, daß im Sumpf dieser zweiten Kolonne ein Kohlenwasserstoffschnitt, enthaltend 14-22 Kohlenstoffatome abgetrennt werden kann. Der über Kopf abgetrennte Olefinstrom wird vor den Reaktor zurückgeführt. Der erhaltene Produktstrom 50 wird direkt in einem weiteren 200 ml Rohrreaktor, befüllt mit 149 g 10% Re₂O₇/Al₂O₃ bei 60°C und 40 bar mit Ethen umgesetzt. Mittels einer weiteren Trennwandkolonne werden nun über Kopf leichter siedende Olefine sowie im Sumpf höher siedende Olefine abgetrennt und zum ersten 55 Reaktor rückgeführt. Im Seitenstrom wird ein Produktstrom entnommen, der aus einem Gemisch linearer \alpha-Olefine, enthaltend 8-12 Kohlenstoffatome besteht.

Patentansprüche

- 1. Verfahren zur Herstellung langkettiger α -Olefine mit enger Molgewichtsverteilung, umfassend die folgenden Verfahrensschritte:
 - i) Einführen einer linearen C₄-C₁₀-Olefinfraktion 65 in eine isomerisierende Metathesereaktion
 - ii) Auftrennen des erhaltenen Gemischs in
 - a) eine C2-C3-Olefinfraktion,

- b) eine Fraktion, die Olefine mit der gewünschten Kohlenstoffzahl enthält,
- c) eine leichte Fraktion, die Olefine mit einer Kohlenstoffzahl von C₄ bis unterhalb der Kohlenstoffzahl der gewünschten Fraktion b) enthält und
- d) eine schwere Fraktion, die Olefine mit einer Kohlenstoffzahl oberhalb der Kohlenstoffzahl der gewünschten Fraktion b) enthält
- iii) Rückführen der leichten Fraktion c) sowie gegebenenfalls der schweren Fraktion d) in die isomerisierende Metathesereaktion i)
- iv) Einführen der Fraktion b) sowie gegebenenfalls der Fraktion d) in eine Ethenolysereaktion
- v) Isolieren der in iv) hergestellten α -Olefinfraktion.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine C_4 -Olefinfraktion, insbesondere eine C_4 -Olefinfraktion, in die isomerisierende Metathesereaktion i) eingesetzt wird.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Fraktion b) eine C_{14} - C_{22} -Olefinfraktion ist.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß in der Ethenolysereaktion iv) eine C₈-C₁₂-α-Olefinfraktion erhalten wird.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in Schritt i) ein Metathesekatalysator und ein Isomerisierungskatalysator vorhanden sind und der Metathesekatalysator mindestens eine Verbindung enthält, die ausgewählt ist aus Verbindungen eines Metalls der Gruppen VIb, VIIb oder VIII des Periodensystems der Elemente und der Isomerisierungskatalysator mindestens eine Verbindung eines Metalls enthält, das ausgewählt ist aus der Gruppe bestehend aus Metallen der Gruppen Ia, IIa, IIIb, IVb, Vb und VIII des Periodensystems der Elemente.
- 6. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Metathesekatalysator ein Oxid eines Metalls der Gruppe VIb oder VIIb des Periodensystems der Elemente, insbesondere Re₂O₇, WO₃ und/oder MoO₃ enthält und der Isomerisierungskatalysator RuO₂, MgO und/oder K₂CO₃ enthält.
- 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß ein Katalysator verwendet wird, der sowohl als Metathese- als auch als Isomerisierungskatalysator aktiv ist und mindestens jeweils eine der Verbindungen enthält, die in Anspruch 5 und 6 für den Metathesekatalysator und den Isomerisierungskatalysator aufgeführt sind.
- 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die isomerisierende Metathese i) bei Temperaturen von 40 bis 450°C, vorzugsweise 100 bis 180°C, insbesondere 130 bis 150°C, und Drücken von 1 bis 60 bar, vorzugsweise 10 bis 45 bar, insbesondere 30 bis 35 bar, durchgeführt wird.
- 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß in der Ethenolysereaktion iv) ein Katalysator eingesetzt wird, der eine Verbindung eines Metalls der Gruppen VIb, VIIb oder VIII des Periodensystems der Elemente, vorzugsweise ein Oxid eines Metalls der Gruppe VIb oder VIIb des Periodensystems der Elemente, insbesondere Re₂O₇, enthält.
- 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Ethenolysereaktion iv) bei Temperaturen von 20 bis 160°C, vorzugsweise 40

bis 60°C, und Drücken von 20 bis 200 bar, vorzugsweise 40 bis 80 bar, durchgeführt wird.

11. Verwendung eines mit dem Verfahren nach einem der Ansprüche 1 bis 10 hergestellten C₈-C₁₂-Olefingemischs zur Herstellung von Polyalphaolefinen, insbesondere Polyalphaolefinen mit Polymerisationsgraden von 3 bis 8 und 10 bis 50.

- Leerseite -