sources: wikipedia K-d tree

You are asked to complete the pseudocode draft below to realize the KD tree construction over a set of points $P = \{p1, p2, ..., p_n\}$ and the coordinates of point p_i is $(p_i.x, p_i.y)$. The algorithm should satisfy the following requirements:

- 1. Start with X-axis when choosing the first division.
- 2. Divide the space until there is at most one point in each sub-panel
- 3. Do not divide further if there is only one point left in a panel
- 4. Assume there exists a function mid(Points s, boolean byX_axis) that returns the point that is the middle point by either X_axis or Y_axis
- 5. Each KD tree node has a value field pointing to the dividing point, one left child and one right child.

Algorithm 1 Construct the KD tree from a set of points

- procedure KD(P, byX_axis). → If byX_axis is true, then divide the points by X_axis.
 Otherwise divide by Y_axis. P is the set of points.: //This algorithm constructs a KD tree based on a points set P and the first division is
- 2. by X axis if the parameter by X axis is true. It returns the KD root tree node.

3.

- 4. if !p {return NULL} //If there are no points in list, return NULL
- 5. if P.len==1 {return root = P} //If there is only one point, return the one point as KD Tree
- 6. P.sort(X_axis); //Sorts points
- 7. $p = mid(Points s, boolean byX_axis)$ //Sets the correct median point by X axis
- 8. KDnode root.point = p //Sets KDnode to mid point
- 9. Node //Create node and construct subtrees

10. (

- 11. left_child=KD(P[1...med]), !byX_axis), //Creates left child from left half of P
- 12. right_child=KD(P[med+(1...n), !byX_axis) //Creates right_child from right_half of P
- 13.);

14.

- 15. root = Node; //Sets root to Node
- 16. **return** root
- 17. end procedure