Regularne operacije in ekvivalentnost avtomatov

Uroš Čibej

Pregled

- regularne operacije
- tihi prehodi (prehodi ε)
- ekvivalenca NKA in DKA
- reg. izrazi

Literatura

• Sipser razdelka 1.2 in 1.3

Regularni jeziki

Def. Jezik L za katerega obstaja DKA, da velja L(M) = L, imenujemo **regularni jezik**.

Množico regularnih jezikov bomo označevali z Reg.

Regularne operacije

Operacije, ki ohranjajo regularnost:

- unija
- stik
- Kleenejevo zaprtje

5

Unija

Izrek:

$$L_1, L_2 \in Reg. \implies L_1 \cup L_2 \in Reg$$

Intuicija dokaza

Dva avtomata izvajamo vzporedno

Dokaz

Podana sta avtomata $M_1=\langle Q_1,\Sigma,\delta_1,q_0,F_1
angle$ in $M_1=\langle Q_2,\Sigma,\delta_2,r_0,F_2
angle$

Produktni avtomat:

$$M_{1\cup 2} = \langle Q_{12}, \Sigma, \delta', (q_0, r_0), F'
angle$$

- $ullet \ Q_{12} = \{(q,r) \mid q \in Q_1, r \in Q_2\}$
- $\delta'((q,r),a) = (\delta_1(q,a),\delta_2(r,a))$
- ullet $F'=\{(q,r)\mid q\in F_1ee r\in F_2\}$

8

Primer

Stik (narobe)

ε -prehodi (tihi prehodi)

Uvedemo prehode preko praznega niza arepsilon

avtomat se nedeterministično "odloči", da skoči v novo stanje, brez porabe znaka na vhodu

Primer

w=abaa, napišimo sled izvajanja

ε -pot

Def. Pot med stanjema q in r imenujmo ε pot, če gre samo po tihih prehodih.

ε -ovojnica stanja, množice stanj

$$E(q) = \{r' \in Q \mid ext{obstaja } arepsilon - ext{pot} q, r\}$$

NB: med q in q vedno obstaja ε pot

$$E(A) = igcup_{q \in A} E(q)$$

Ekvivalenca računskih modelov

Dva računska modela sta ekvivalentna, če z njima lahko rešujemo isti razred problemov.

Bolj formalno:

1.
$$orall I_1 \in Mod_1, \exists I_2 \in Mod_2: L(I_1) = L(I_2)$$

2.
$$\forall I_2 \in Mod_2, \exists I_1 \in Mod_1: L(I_1) = L(I_2)$$

Ekvivalenca DKA in NKA

Izrek:

$$orall M \in NKA, \exists M' \in DKA: L(M') = L(M)$$

Dokaz za NKA brez ε

Za poljuben NKA $M=\langle Q, \Sigma, \delta, q_0.F
angle$, zgradimo DKA

$$M' = \langle Q', \Sigma, \delta', \{q_0\}, F'
angle$$

- $Q' = 2^Q$
- ullet $\delta'(S,a) = igcup_{q \in S} \delta(q,a)$
- ullet $F'=\{S\in 2^Q\mid S\cap F
 eq\emptyset\}$

Primer

Ekvivalenca z ε

- 1. Začetno stanje je $q_0^\prime=E(q_0)$
- 2. $\delta'(S,a) = E(igcup_{q \in S} \delta(q,a))$

Primer

Pretvorimo v DKA

Rešitev

Stik ohranja regularnost

Izrek: $L_1, L_2 \in Reg \implies (L_1 \circ L_2) \in Reg$

Dokaz

Kleenejevo zaprtje (zvezdica) ohranja regularnost

Izrek: $L \in Reg \implies L^* \in Reg$

Dokaz

Regularni izrazi

- "opisni" način podajanja jezikov
- široko uporabno (in uporabljano) orodje

Formalna definicija - baza

Tri vrste osnovnih regularnih izrazov

sintaksa	pomen
$a\in \Sigma$	$\{a\}$
arepsilon	$\{arepsilon\}$
Ø	Ø

Formalna definicija - pravila

Naj bosta r_1, r_2 regularna izraza in njuna jezika L_1 in L_2

sintaksa	pomen
r_1+r_2	$L(r1) \cup L(r_2)$
$r_1\circ r_2$	$L(r_1)\circ L(r_2)$
r_1^*	$L(r_1)^*$

Primeri

- $(0+1)^*$
- (0+1)*0
- $(001 + 100)^*(111 + \varepsilon)$

Primer iz realnosti (veljavni e-naslov)

• $[a-zA-Z0-9._\%+-]+@[a-zA-Z0-9.-]+.[a-zA-Z]{2,}$

Ekvivalenca RI in KA

Izrek:

- 1. $orall r \in RI, \exists M \in KA: L(r) = L(M)$ (danes)
- 2. $orall M \in KA, \exists r \in RI: L(r) = L(M)$ (naslednjič)

Dokaz - baza

1. $a \in \Sigma$

 $2. \varepsilon$

3. ∅

Dokaz - pravila

Sicer smo že vse to dokazali

Predpostavka

$$r_1, r_2 \in RI
ightarrow M_1, M_2 \in KA$$

Primer

$$(a+b)^*b(ab+b)^*$$