Algoritmi

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Introduzione				
	1.1	Confro	onto tra algoritmi	. :	
	1.2	Rappr	resentazione dei dati		
2	Calcolo della complessità				
	2.1	Lingua	aggi di programmazione		
		2.1.1	Blocchi iterativi		
		2.1.2	Blocchi condizionali		
		2.1.3	Blocchi iterativi		
	2.2	Esemp	oio		
	2.3		e di grandezza		
		2.3.1	Esempi di dimostrazioni		

1 Introduzione

Un'algoritmo è una sequenza **finita** di **istruzioni** volta a risolvere un problema. Per implementarlo nel pratico si scrive un **programma**, cioè l'applicazione di un linguaggio di programmazione, oppure si può descrivere in modo informale attraverso del **pseudocodice** che non lo implementa in modo preciso, ma spiega i passi per farlo.

Ogni algoritmo può essere implementato in modi diversi, sta al programmatore capire qual'è l'opzione migliore e scegliere in base alle proprie necessità.

1.1 Confronto tra algoritmi

Ogni algoritmo si può confrontare con gli altri in base a tanti fattori, come:

- Complessità: quanto ci vuole ad eseguire l'algoritmo
- Memoria: quanto spazio in memoria occupa l'algoritmo

1.2 Rappresentazione dei dati

Per implementare un algoritmo bisogna riuscire a strutturare i dati in maniera tale da riuscire a manipolarli in modo efficiente.

2 Calcolo della complessità

La complessità di un algoritmo mette in relazione il numero di istruzioni da eseguire con la dimensione del problema, e quindi è una funzione che dipende dalla dimensione del problema.

La dimensione del problema è un insieme di oggetti adeguato a dare un idea chiara di quanto è grande il problema da risolvere, ma sta a noi decidere come misurare il problema.

Ad esempio una matrice è più comoda da misurare come il numero di righe e il numero di colonne, al posto di misurarla come il numero di elementi totali.

La complessità di solito si calcola come il **caso peggiore**, cioè il limite superiore di esecuzione dell'algoritmo.

2.1 Linguaggi di programmazione

Ogni linguaggio di programmazione è formato da diversi blocchi:

- 1. Blocco iterativo: un tipico blocco di codice eseguito sequenzialmente e tipicamente finisce con un punto e virgola.
- 2. Blocco condizionale: un blocco di codice che viene eseguito solo se una condizione è vera.
- 3. Blocco iterativo: un blocco di codice che viene eseguito ripetutamente finché una condizione è vera.

Questi sono i blocchi base della programmazione e se riusciamo a calcolare la complessità di ognuno di questi blocchi possiamo calcolare più facilmente la complessità di un intero algoritmo.

2.1.1 Blocchi iterativi

$$I_1$$
 $c_1(n)$
 I_2 $c_2(n)$
 \vdots \vdots
 I_l $c_l(n)$

Se ogni blocco ha complessità $c_1(n)$, allora la complessità totale è data da:

$$\sum_{i=1}^{l} c_i(n)$$

2.1.2 Blocchi condizionali

IF cond
$$c_{cond}(n)$$

$$I_1 c_1(n)$$
ELSE
$$I_2 c_2(n)$$

La complessità totale è data da:

$$c(n) = c_{cond}(n) + \max(c_1(n), c_2(n))$$

A volte la condizione è un test sulla dimensione del problema e in quel caso si può scrivere una complessità più precisa.

2.1.3 Blocchi iterativi

WHILE cond
$$c_{cond}(n)$$

$$I \qquad c_0(n)$$

Si cerca di trovare un limite superiore m al limite di iterazioni.

Di conseguenza la complessità totale è data da:

$$c_{cond}(n) + m(c_{cond}(n) + c_0(n))$$

2.2 Esempio

Esempio 2.1

Calcoliamo la complessità della moltiplicazione tra 2 matrici:

$$A_{n \times m} \cdot B_{m \times l} = C_{n \times l}$$

L'algoritmo è il seguente:

Partiamo calcolando la complessità del ciclo for più interno. Non ha senso tenere in considerazione tutti i dati, ma solo quelli rilevanti. In questo caso avremo:

$$(m+1+m(4)) = 5m+1$$

Questa complessità contiene informazioni poco rilevanti perchè possono far riferimento alla velocità della cpu e un millisecondo in più o in meno non cambia nulla se teniamo in considerazione solo l'incognita abbiamo:

m

Questo semplifica molto i calcoli, rendendo meno probabili gli errori. Siccome la complessità si calcola su numeri molto grandi, le costanti piccole prima o poi verranno tolte perchè poco influenti.

La complessità totale alla fine sarebbe stata:

$$5nml + 4ml + 2n + n + 1$$

Ma ciò che ci interessa veramente è:

$$5nml + 4ml + 2n + n + 1$$

Se non consideriamo le costanti inutili, la complessità finale è:

nml

Nella maggior perte dei casi ci si concentra soltanto sull'ordine di grandezza della complessità, e non sulle costanti.

2.3 Ordine di grandezza

L'ordine di grandezza è una funzione che approssima la complessità di un algoritmo:

$$f \in O(g)$$

$$\exists c > 0 \; \exists \bar{n} \; \; \forall n \geq \bar{n} \; \; f(n) \leq cg(n)$$

Figura 1: Esempio di funzione $f \in O(g)$

$$f \in \Omega(g)$$

$$\exists c > 0 \ \exists \bar{n} \ \forall n \geq \bar{n} \ f(n) \geq cg(n)$$

$$f \in \Theta(g)$$

$$f \in O(g) \land f \in \Omega(g)$$

Per gli algoritmi:

Definizione 2.1

$$A \in O(f)$$

So che l'algoritmo A termina entro il tempo definito dalla funzione f. Di conseguenza se un algoritmo termina entro un tempo f allora sicuramente termina entro un tempo g più grande. Ad esempio:

$$A \in O(n) \Rightarrow A \in O(n^2)$$

Questa affermazione è corretta, ma non accurata.

$$A \in \Omega(f)$$

Significa che esiste uno schema di input tale che se g(n) è il numero di passi necessari per risolvere l'istanza n allora:

$$g \in \Omega(f)$$

Quindi l'algoritmo non termina in un tempo minore di f.

Calcolando la complessità si troverà lo schema di input tale che:

$$g \in O(f)$$

cioè il limite superiore di esecuzione dell'algoritmo.

Successivamente ci si chiede se esistono algoritmi migliori e si troverà lo schema di input tale che:

$$g \in \Omega(f)$$

 $cio\`e\ il\ limite\ inferiore\ di\ esecuzione\ dell'algoritmo.$

Se i due limiti coincidono allora:

$$g \in \Theta(f)$$

abbiamo trovato il tempo di esecuzione dell'algoritmo.

Teorema 1 (Teorema di Skolem) Se c'è una formula che vale coi quantificatori esistenziali, allora nel linguaggio si possono aggiungere delle costanti al posto delle costanti quantificate e assumere che la formula sia valida con quelle costanti.

2.3.1 Esempi di dimostrazioni

Esempio 2.2

È vero che $n \in O(2n)$? Se prendiamo c = 1 e $\bar{n} = 1$ allora:

 $n \leq c2n$

 $Quindi\ \grave{e}\ vero$

Esempio 2.3

È vero che $2n \in O(n)$? Se prendiamo c=2 e $\bar{n}=1$ allora:

 $2n \leq 2n$

 $Quindi\ \grave{e}\ vero$

Esempio 2.4

 $\grave{E} \ \textit{vero che} \ f \in O(g) \iff g \in \Omega(f) ?$

Dimostro l'implicazione da entrambe le parti:

ullet \rightarrow : Usando il teorema di Skolem:

$$\forall n \geq \bar{n} \ f(n) \leq cg(n)$$

Trasformo la disequazione:

$$\forall n \ge \bar{n} \ \frac{f(n)}{c} \le g(n)$$

$$\forall n \ge \bar{n} \ g(n) \ge \frac{f(n)}{c}$$

$$\forall n \geq \bar{n} \ g(n) \geq \frac{1}{c} f(n) \quad \Box$$

Se la definizione di $\Omega(g)$ è:

$$\exists c' > 0 \ \exists \bar{n}' \ \forall n \ge \bar{n}' \ f(n) \ge c'g(n)$$

sappiamo che:

$$c' = \frac{1}{c}$$

 $\bullet \leftarrow$: Usando il teorema di Skolem:

$$\forall n \ge \bar{n}' \ g(n) \ge c' f(n)$$

Trasformo la disequazione:

$$\forall n \geq \bar{n}' \ \frac{g(n)}{c'} \geq f(n)$$

$$\forall n \geq \bar{n}' \ f(n) \leq \frac{1}{c'} g(n) \quad \Box$$

Esempio 2.5

$$f_1 \in O(g) \ f_2 \in O(g) \Rightarrow f_1 + f_2 \in O(g)$$

Dimostrazione:

Ipotesi

$$\bar{n}_1 c_1 \ \forall n > n_1 \quad f_1(n) \le c_1 g(n)$$

$$\bar{n}_1 c_2 \ \forall n > n_2 \quad f_2(n) \le c_2 g(n)$$

$$f_1(n) + f_2(n) \le (c_1 + c_2)g(n) \quad \Box$$

Quindi:

$$c = (c_1 + c_2)$$

$$\bar{n} = \max(\bar{n}_1, \bar{n}_2)$$

Esempio 2.6

 $S\epsilon$

$$f_1 \in O(g_1) \ f_2 \in O(g_2)$$

è vero che:

$$f_1 \cdot f_2 \in O(g_1 \cdot g_2)$$

Dimostrazione:

Ipotesi

$$\bar{n}_1 c_1 \ \forall n > \bar{n}_1 \quad f_1(n) \le c_1 g_1(n)$$

$$\bar{n}_2 c_2 \ \forall n > \bar{n}_2 \quad f_2(n) \le c_2 g_2(n)$$

$$f_1(n) \cdot f_2(n) \le (c_1 \cdot c_2)(g_1(n) \cdot g_2(n)) \quad \square$$

Quindi:

$$c = c_1 \cdot c_2$$

$$\bar{n} = \max(\bar{n}_1, \bar{n}_2)$$