Guadeloupe – 2007

On transfert le pétrole contenu dans un réservoir B vers un réservoir A à l'aide d'une pompe.

Après démarrage de la pompe, on constate que la hauteur de pétrole dans le réservoir A augmente de 3 cm par minute. Le réservoir A est vide au départ.

I. Remplissage du réservoir A.

1/ Recopier et compléter le tableau suivant :

Temps (en min)	0	10	20	30	40
Hauteur du pétrole dans le réservoir A (en cm)	0		60		

2/ On appelle x le temps (en minute) de fonctionnement de la pompe et f(x) la hauteur du pétrole (en cm) dans le réservoir A.

Parmi les trois fonctions suivantes, laquelle correspond à la fontion f:

$$x \mapsto -2x$$

$$x \mapsto 3x + 20$$

$$x \mapsto 3x$$

3/ Représenter graphiquement la fonction f , pour x variant de 0 à 40, sur la feuille de papier millimétrée jointe.

Les unités:

en abscisse: 2 cm représenteront 5 minutes;

en ordonnée: 1 cm représentera une hauteur de 10 cm de pétrole dans la cuve.

4/ Déterminer graphiquement le temps nécessaire pour obtenir une hauteur de pétrole de 105 cm dans le réservoir A. On fera apparaître les tracés sur le graphique.

II. Vidange du réservoir B.

Sur la feuille de papier millimétrée, le segment [CD] représente la hauteur (en centimètre) de pétrole dans la cuve B en fonction du temps (en minute).

Le segment [CD] est représenté sur la feuille de papier millimétrée distribuée aux élèves. Le point C a pour coordonnées (0;200) et le point D(40;0).

Les unités sont les mêmes que dans la première partie :

en abscisse: 2 cm représenteront 5 minutes;

en ordonnée : 1 cm représentera une hauteur de 10 cm de pétrole dans la cuve.

1/ Recopier le tableau ci-dessous.

Le compéter en utilisant le graphique de la feuille millimétrée.

Temps (en min)	0	10		40
Hauteur du pétrole dans le réservoir B (en cm)	200		80	

2/ On appelle x le temps (en minute) de fonctionnement de la pompe et g(x) la hauteur du pétrole (en cm) dans le réservoir B.

Parmi les trois fonctions suivantes, quelle est celle qui correspond à la fontion g:

$$x \mapsto -4x$$

$$x \mapsto 3x + 200$$

$$x \mapsto -5x + 200$$

- 3/ Déterminer par le calcul le temps au bout duquel les hauteurs de pétrole dans les cuves A et B sont égales.
- 4/ Expliquer comment on peut retrouver graphiquement ce dernier résultat.