In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: data=pd.read_csv(r"C:\Users\user\Downloads\19_nuclear_explosions - 19_nuclear_explosions
data

Out[2]:

		WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Dŧ
	0	USA	Alamogordo	DOE	32.54	-105.57	
	1	USA	Hiroshima	DOE	34.23	132.27	
	2	USA	Nagasaki	DOE	32.45	129.52	
	3	USA	Bikini	DOE	11.35	165.20	
	4	USA	Bikini	DOE	11.35	165.20	
;	2041	CHINA	Lop Nor	HFS	41.69	88.35	
:	2042	INDIA	Pokhran	HFS	27.07	71.70	
;	2043	INDIA	Pokhran	NRD	27.07	71.70	
;	2044	PAKIST	Chagai	HFS	28.90	64.89	
:	2045	PAKIST	Kharan	HFS	28.49	63.78	

2046 rows × 16 columns

```
In [3]: df=data.head(100)
df
```

Out[3]:

Э	Data.Magnitude.Body	Data.Magnitude.Surface	Location.Cordinates.Depth	Data.Yeild.Lower	Data.Yeild.Upper
7	0.0	0.0	-0.100	21.0	21.0
7	0.0	0.0	-0.600	15.0	15.0
2	0.0	0.0	-0.600	21.0	21.0
Э	0.0	0.0	-0.200	21.0	21.0
Э	0.0	0.0	0.030	21.0	21.0
Э	0.0	0.0	0.000	1600.0	1600.0
Э	0.0	0.0	-0.001	0.0	20.0
Э	0.0	0.0	0.000	0.3	0.3
Э	0.0	0.0	0.000	14.0	14.0
Э	0.0	0.0	0.000	5.5	5.5

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	WEAPON SOURCE COUNTRY	100 non-null	object
1	WEAPON DEPLOYMENT LOCATION	100 non-null	object
2	Data.Source	100 non-null	object
3	Location.Cordinates.Latitude	100 non-null	float64
4	Location.Cordinates.Longitude	100 non-null	float64
5	Data.Magnitude.Body	100 non-null	float64
6	Data.Magnitude.Surface	100 non-null	float64
7	Location.Cordinates.Depth	100 non-null	float64
8	Data.Yeild.Lower	100 non-null	float64
9	Data.Yeild.Upper	100 non-null	float64
10	Data.Purpose	100 non-null	object
11	Data.Name	100 non-null	object
12	Data.Type	100 non-null	object
13	Date.Day	100 non-null	int64
14	Date.Month	100 non-null	int64
15	Date.Year	100 non-null	int64

dtypes: float64(7), int64(3), object(6)

memory usage: 12.6+ KB

```
In [6]: | df.columns
 Out[6]: Index(['WEAPON SOURCE COUNTRY', 'WEAPON DEPLOYMENT LOCATION', 'Data.Source',
                 'Location.Cordinates.Latitude', 'Location.Cordinates.Longitude',
                 'Data.Magnitude.Body', 'Data.Magnitude.Surface',
                 'Location.Cordinates.Depth', 'Data.Yeild.Lower', 'Data.Yeild.Upper',
                 'Data.Purpose', 'Data.Name', 'Data.Type', 'Date.Day', 'Date.Month',
                 'Date.Year'],
                dtype='object')
In [15]: x=df[[ 'Location.Cordinates.Latitude', 'Location.Cordinates.Longitude',
                 'Location.Cordinates.Depth', 'Data.Yeild.Lower', 'Data.Yeild.Upper', 'Date.Month
         y=df['Date.Year']
In [16]: | from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [17]: from sklearn.linear model import LinearRegression
          lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[17]: LinearRegression()
In [18]: |print(lr.intercept_)
          1951.7190117003415
In [19]: | coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
          coeff
Out[19]:
                                       Co-efficient
            Location.Cordinates.Latitude
                                     5.577527e-02
          Location Cordinates Longitude
                                     9.830217e-07
              Location Cordinates Depth -1.062193e-01
                      Data.Yeild.Lower -1.007850e+03
                      Data.Yeild.Upper 1.007850e+03
                          Date Month -1.515702e-01
```

```
prediction=lr.predict(x_test)
In [20]:
         plt.scatter(y_test,prediction)
Out[20]: <matplotlib.collections.PathCollection at 0x2153858f0a0>
          22500
          20000
          17500
          15000
          12500
          10000
           7500
           5000
           2500
                           1948
                    1946
                                   1950
                                          1952
                                                  1954
                                                         1956
In [21]: print(lr.score(x_test,y_test))
          -1668253.0697343305
In [22]: print(lr.score(x_train,y_train))
         0.19549753763732247
         from sklearn.linear model import Ridge,Lasso
In [23]:
In [24]: rr=Ridge(alpha=10)
         rr.fit(x train,y train)
Out[24]: Ridge(alpha=10)
In [25]: |rr.score(x_test,y_test)
Out[25]: 0.056974226708429776
In [26]: la=Lasso(alpha=10)
         la.fit(x train,y train)
Out[26]: Lasso(alpha=10)
In [27]: la.score(x_test,y_test)
Out[27]: 0.08076915742845991
In [28]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[28]: ElasticNet()
```

Evaluation metrics

Model Saving

```
In [37]: import pickle
In [38]: filename='prediction'
  pickle.dump(lr,open(filename,'wb'))
In []:
```