

1 Camera Interface Module

1.1 Overview

The camera interface module (CIM) connects to a CMOS or CCD type image sensor. The CIM sources the digital image stream through a common parallel digital protocol. The CIM can be configured to connect directly to external image sensors and CCIR656 standard video decoders.

The CIM has the following features:

- Input image size up to 2048x2048 pixels
- Integrated DMA support
- Supports generic image data format
- Supports CCIR656 data format
- Configurable CIM_VSYNC and CIM_HSYNC signals: active high/low
- Configurable CIM_PCLK: active edge rising/falling
- 32x32 image data receive FIFO (RXFIFO)

Pin Description 1.2

Table 1-1 Camera Interface Pins Description

Name	I/O	Description
CIM_MCLK	Output	Master clock to Image Sensor
CIM_PCLK	Input	Pixel clock from Image Sensor
CIM_VSYNC	Input	VSYNC from Image Sensor
CIM_HSYNC	Input	HSYNC from Image Sensor
CIM_DATA[7:0]	Input	Data bus from Image Sensor

1.3 Register Description

The CIM has nine registers to configure camera interface and DMA operation for the input data. The table below list these registers.

Name RW **Reset Value Address Access Size CIMCFG** RW 0x00000000 0x13060000 32 **CIMCR** RW 0x00000000 0x13060004 32 **CIMST** RW 32 0x0000000 0x13060008 CIMIID R 0x1306000C 32 0x0000000 **CIMRXFIFO** R 32 0x???????? 0x13060010 **CIMDA** RW0x0000000 0x13060020 32 **CIMFA** 0x00000000 R 0x13060024 32 **CIMFID** R 0x00000000 0x13060028 32 **CIMCMD** 32 R 0x00000000 0x1306002C

Table 1-2 CIM Registers

1.3.1 CIM Configuration Register Register (CIMCFG)

Bits	Name	Description	RW
31:16	Reserved		R
15	INV_DAT	Inverse every bit of input data.	RW
		0 – not inverse; 1 – inverse	
14	VSP	VSYNC polarity selection. When VSYNC signal is input from pin	RW
		CIM_VSYNC, this bit specifies the VSYNC signal active level and leading	
		edge. When VSYNC is retrieved from SAV&EAV, this bit is ignored.	
		0 – VSYNC signal active high, VSYNC signal leading edge is rising edge;	
		1 – VSYNC signal active low, VSYNC signal leading edge is falling edge	
13	HSP	Specifies the HSYNC signal active level and leading edge.	RW

		0 – HSYNC signa	al active high, HSYN	C signal leading edge is rising edge;	
		_	-	C signal leading edge is falling edge	
12	PCP		LK working edge.	3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	RW
		•	oled by PCLK rising e	dae:	
		•	led by PCLK falling	•	
11:10	Reserved				R
9	DUMMY	DUMMY zero fur	nction. When DUMM	Y is 1, CIM hardware adds one byte	RW
		zero to every 3 ir	nput data bytes to for	m 32-bit data.	
		0 – DUMMY zero	function disabled;		
		1 – DUMMY zero	function enabled		
8	E_VSYN	External / interna	I VSYNC selection. V	When DSM is CCIR656 Progressive	RW
	С	Mode, VSYNC c	an be external (provi	ded by sensor) or internal (retrieved	
		from SAV&EAV)	. This bit only valid fo	r CCIR656 Progressive Mode; In	
		other DSM mode	es, this bit is ignored.		
		0 - Internal VSY	NC mode, pin CIM_V	/SYNC is ignored;	
		1 – External VSY	'NC mode, VSYNC is	s provided by image sensor via pin	
		CIM_VSYNC			
7	Reserved				R
6:4	PACK	Data packing mo	de, pack 8-bit input o	data into 32-bit data for FIFO.	RW
		PACK	Description	In this table, 0x11, 0x22, 0x33	
		3'b000	0x 11 22 33 44	and 0x44 means the received	
		3'b001	0x 22 33 44 11	data from the sensor, 0x11 is	
		3'b010	0x 33 44 11 22	received first and 0x44 is	
		3'b011	0x 44 11 22 33	received last.	
		3'b100	0x 44 33 22 11		
		3'b101	0x 33 22 11 44		
		3'b110	0x 22 11 44 33		
		3'b111	0x 11 44 33 22		
3:2	Reserved				R
1:0	DSM	Data sample mo	de. Please refer to th	e table below	RW
1.0	DOW	Data sample mo	Descript		1200
		2'b00	CCIR656 Progress		
		2'b01	CCIR656 Interlace		
		2'b10	Gated Clock Mode		
		2'b11	Non-Gated Clock I		
		2011	14011 Galed Glock I	VICAC	

1.3.2 CIM Control Register (CIMCR)

	CII	ИC	R																										0x	130	60 0	004
Bit	31	30	29	28	27	26	25	24	23	22	21 2	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			M	CLŀ	(DI	V			R	esei	vec	d		FR	RC.		pozoba A		VDDM	DMA_SOFM	DMA_EOFM	DMA_STOPM	RF_TRIGM	RF_OFM	Reserved	RF.	_TF	RIG	Reserved	DMA_EN	RF_RST	ENA
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name			Description	RW									
31:24	MCLKDIV	Th	e paramete	for master clock MCLK generation from device clock.	RW									
			MCLK = (Device clock) / (MCLKDIV + 1)										
23:20	Reserved				R									
19:16	FRC	CII	M frame rate	control. Specifies the sampling frame data rate. If FRC =	RW									
		N,	CIM samplir	ng one frame of every N+1 frames from the sensor. In this										
		wa	y, CIM redu	ces the frame rate of sensor. Another way to reduce										
		fra	me rate is to	decrease the MCLK frequency output to the image										
		sei	nsor.											
			FRC	Description										
			4'b0000 Sample every frame from the sensor											
			4'b0001 Sample 1 frame of every 2 frames from the sensor											
			4'b1110 Sample 1 frame of every 15 frames from the sensor											
			4'b1111	Sample 1 frame of every 16 frames from the sensor										
15:14	Reserved				R									
13	VDDM	Th	e enable co	ntrol bit for VDD interrupt.	RW									
		0 -	- disable; 1 -	- enable										
12	DMA_SOF	Th	e enable co	ntrol bit for DMA_SOF interrupt.	RW									
	М	0 -	- disable; 1 -	- enable										
11	DMA_EOF	Th	e enable co	ntrol bit for DMA_EOF interrupt.										
	М	0 -	- disable; 1 -	- enable										
10	DMA_STO	Th	The enable control bit for DMA_STOP interrupt.											
	PM	0 -	- disable; 1 -	- enable										
9	RF_TRIGM	Th	e enable co	ntrol bit for RXF_TRIG interrupt.	RW									
		0 -	- disable; 1 -	- enable										
8	RF_OFM	Th	e enable co	enable control bit for RXF_OF interrupt.										
		0 -	- disable; 1 -	disable; 1 – enable										

7	Reserved			R
6:4	RF_TRIG	Specifies the trig	ger value of RXFIFO.	RW
		RXF_TRIG	Description	
		0	Trigger Value is 4	
		1	Trigger Value is 8	
		2	Trigger Value is 12	
		3	Trigger Value is 16	
		4	Trigger Value is 20	
		5	Trigger Value is 24	
		6	Trigger Value is 28	
		7	Trigger Value is 32	
3	Reserved			R
2	DMA_EN	Enable / disable	the DMA function.	RW
		0 – disable DMA	; 1 – enable DMA	
1	RF_RST	RXFIFO software	e reset. Setting 1 to RXF_RST can reset RXFIFO	RW
		immediately. Set	tting 0 to RXF_RST can stop resetting RXFIFO. After	
		reset, RXFIFO is	s empty.	
0	ENA	Enable / disable	the CIM module. Setting 1 to ENA can enable CIM.	RW
		When CIM is wo	rking, clear ENA to 0 can stop CIM immediately.	
		0 – CIM is not er	nabled, or disable CIM immediately;	
		1 - CIM is enable	ed, or enabling CIM	

1.3.3 CIM Status Register (CIMST)

	CIN	IST	•																										0 x	130	600	800
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												Re	ser\	/ed												DMA_SOF	DMA_EOF	DMA_STOP	RF_OF	RF_TRIG	RF_EMPTY	VDD
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1	0	0	0	0	0

Bits	Name	Description	RW
31:7	Reserved		R
6	DMA_SOF	When set to 1, Indicate the DMA start transferring the first data from	RW
		RXFIFO to frame buffer. Can generate interrupt if CIMCR.DMA_SOFM	
		bit is set. Writing 0 to this bit will clear it, writing 1 will be ignored.	
5	DMA_EOF	When set to 1, indicate the DMA complete transferring one frame data	RW
		from RXFIFO to frame buffer. Can generate interrupt if	
		CIMCR.DMA_EOFM bit is set. Writing 0 to this bit will clear it, writing 1	
		will be ignored.	
4	DMA_STO	When set to 1, indicate the DMA complete transferring data and stop	RW
	Р	the operation. Can generate interrupt if CIMCR.DMA_STOPM bit is set.	
		Writing 0 to this bit will clear it, writing 1 will be ignored.	
3	RF_OF	RXFIFO over flow. When RXFIFO over flow happens, RXF_OF is set 1.	RW
		Can generate interrupt if CIMCR.RF_OFM bit is set. Writing 0 to this bit	
		will clear it, writing 1 will be ignored.	
2	RF_TRIG	RXFIFO trigger. Indicates whether RXFIFO meet the trigger value or	R
		not. When the valid data number in RXFIFO reaches the trig value,	
		RXF_TRIG is set 1; when the valid data number in RXFIFO do not	
		reach the trig value, RXF_TRIG is set 0. Can generate interrupt if	
		CIMCR.RF_TRIGM bit is set.	
		0 – RXFIFO does not meets the trigger value;	
		1 – RXFIFO meets the trigger value	
1	RF_EMPT	RXFIFO empty. Indicates whether RXFIFO is empty or not. After reset,	R
	Υ	RXFIFO is empty, and RXF_EMPTY is 1.	
		0 – RXFIFO is not empty;	
		1 – RXFIFO is empty	
0	VDD	CIM disable done. Indicate this module is disabled after clear the	RW
		CIMCR.ENA bit to disable the CIM module. Can generate interrupt if	
		CIMCR.DMA_VDDM bit is set.	

	0 – CIM has not been disabled;	
	1 – CIM has been disabled	
	Writing 0 to this bit will clear it, writing 1 will be ignored.	

1.3.4 CIM Interrupt ID Register (CIMIID)

 Bits
 Name
 Description
 RW

 31:0
 FID
 Frame ID. Contains a copy of the Frame ID register (CIMFID) from the descriptor currently being processed when a DMA_SOF or DMA_EOF interrupt is generated. CIMIID is written to only when CIMCMD.SOFINT or CIMCMD.EOFINT is high. As such, the register is considered to be sticky and will be overwritten only when the

associated interrupt is cleared by writing the CIM state register.

1.3.5 CIM RXFIFO Register (CIMRXFIFO)

	CIN	/IRX	(FIF	0																									0x	130	600	010
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																Da	ata															
RST	?	?	?	?	?	?	?	?	?	?	?	?	?	?	7	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

Bits	Name	Description	RW
31:0	Data	This register provides a port for software to read image data directly.	R
		When the software start CIM with DMA_EN=1, this register should not be	
		read. Otherwise, the DMA data may be damaged.	

1.3.6 CIM Descriptor Address (CIMDA)

Bits	Name	Description	RW
31:0	NDA	Hold the physical address of the next descriptor in external memory. The	RW
		DMAC fetches the descriptor at this location after finishing the current	
		descriptor. The target address Bits [3:0] must be zero to be aligned to	
		16-byte boundary.	

1.3.7 CIM Frame buffer Address Register (CIMFA)

Bits	Name	Description	RW
31:0	FPA	Hold the physical address of frame buffer in external memory. When	R
		starts CIM, DMA transfers data from RXFIFO to frame buffer. This	
		address is incremented by hardware as the DMAC writes data to	
		memory. The target address Bits [3:0] must be zero to be aligned to	
		16-byte boundary.	

1.3.8 CIM Frame ID Register (CIMFID)

Bits	Name	Description	RW
31:0	FID	Hold the ID field that describes the current frame. The particular use of	R
		this field is up to the software. This ID register is copied to the CIM	
		Interrupt ID Register when an interrupt occurs.	

1.3.9 CIM DMA Command Register (CIMCMD)

	CIN	ИFI	D																										0 x	130	60 0	2C
Bit	31	30	29	28	27	26	25	24	23	22 2	21 2	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SOFINT	EOFINT	Reserved	STOP	R	ese	rve	d												LE	ΞN											
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31	SOFINT	DMA start transferring frame data interrupt. When set to 1, the DMA sets	R
		the start of frame bit (CIMSTATE.DMA_SOF) when start transferring	
		image data.	
30	EOFINT	DMA end transferring frame data interrupt. When set to 1, the DMA sets	R
		the end of frame bit (CIMSTATE.DMA_EOF) when complete transferring	
		image data.	
29	Reserved		R
28	STOP	DMA stop. When DMA complete transferring data, STOP bit decides	R
		whether DMA should loading next descriptor or not.	
		0 – DMA start loading next descriptor;	
		1 – DMA stopped, and CIMSTATE.DMA_STOP bit is set 1 by hardware	
27:24	Reserved		R
23:0	LEN	Length of transfer in words. Indicate the number of words to be	R

¹⁰

	transferred by DMA. LEN = 0 is not valid. DMA transfers data according	
	to LEN. Each time one or more word(s) been transferred, LEN is	
	decreased automatically.	

1.4 CIM Data Sampling Modes

This module support 4 data sampling mode:

- 1. Gated Clock Mode
- 2. Non-Gated Clock Mode
- 3. CCIR656 Interlace Mode
- 4. CCIR656 Progressive Mode

1.4.1 Gated Clock Mode

CIM_VSYNC, CIM_HSYNC, and CIM_PCLK signals are used in this mode.

A frame start with VSYNC leading edge, then HSYNC goes active and holds the entire line. Data is sampled at the valid edge of PCLK when HSYNC is active; That means, HSYNC functions like "data enable" signal. Please refer to the figure below.

The VSYNC leading edge, HSYNC active HIGH or LOW, PCLK valid edges are programmable.

1.4.2 Non-Gated Clock Mode

CIM_VSYNC and CIM_PCLK signals are used in this mode. CIM_HSYNC signal is ignored.

A frame starts with VSYNC leading edge, and samples data at every PCLK valid edge. Please refer to the figure below.

Figure 1-1 Non-Gated Clock Mode

1.4.3 CCIR656 Interlace Mode

CIM_PCLK and CIM_DAT signals are used in this mode, CIM_VSYNC, CIM_HSYNC signals are ignored.

CIM utilizes the SAV & EAV code within CCIR656 data stream to get active video data.

The following diagrams and tables are quoted from CCIR656 standard. Only the PAL format is shown. CIM supports both NTSC and PAL formats. For more information about CCIR656, please refer to CCIR656 standard.

1.4.3.1 PAL Vertical Timing

LINE	F	٧	Н	Н
NUMBER			(EAV)	(SAV)
1-22	0	1	1	0
23-310	0	0	1	0
311-312	0	1	1	0
313-335	1	1	1	0
336-623	1	0	1	0
624-625	1	1	1	0

Figure 1-2 Typical BT.656 Vertical Blanking Intervals for 625/50 Video Systems

1.4.3.2 PAL Horizontal Timing

Figure 1-3 BT.656 8-BIT Parallel Interface Data Format for 625/50 Video Systems

1.4.3.3 Coding for SAV and EAV

Data Pin Number	1 st Byte 0xFF	2 nd Byte 0x00	3 rd Byte 0x00	4 th Byte 0xXY
7 (MSB)	1	0	0	1
6	1	0	0	F
5	1	0	0	V
4	1	0	0	Н
3	1	0	0	P3
2	1	0	0	P2
1	1	0	0	P1
0 (LSB)	1	0	0	P0

1.4.3.4 Coding for Protection Bits

F	V	Н	P3	P2	P1	P0
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	1	1
1	0	1	1	0	1	0
1	1	0	1	1	0	0
1	1	1	0	0	0	1

1.4.4 CCIR656 Progressive Mode

CIM_PCLK and CIM_DAT signals are used in this mode. CIM_HSYNC signal is ignored.

CIM_VSYNC is optional in this mode. When the start of frame information is retrieved from SAV and EAV, it is known as internal VSYNC mode. When CIM_VSYNC is provided by sensor directly, it is known as external VSYNC mode. CIM supports both internal and external VSYNC modes.

CCIR656 Progressive Mode is a kind of Non-Interlace Mode. The image data are encoded within only one field. The F-bit of SAV and EAV are ignored. Most sensors support CCIR656 Progressive Mode.

Figure 1-4 CCIR656 Progressive Mode

1.5 DMA Descriptors

A DMA descriptor is a 4-word block corresponding to the four DMA registers – CIMDA, CIMFA, CIMFID, and CIMCMD, aligned on 4-word (16-byte) boundary, in external memory:

- word [0] contains the physical address for next CIMDA
- word [1] contains the physical address for CIMFA
- word [2] contains the value for CIMFID
- word [3] contains the value for CIMCMD

Software must write the physical address of the first descriptor to CIMDA before enabling the CIM. Once the CIM is enabled, the first descriptor is read, and all 4 registers are written by the DMAC. The next DMA descriptor pointed to by CIMDA is loaded into the registers after all data for the current descriptor has been transferred.

Note: If only one frame buffer is used in external memory, the CIMDA field (word [0] of the DMA descriptor) must point back to itself. That is to say, the value of CIMDA is the physical address of itself.

1.6 Interrupt Generation

CIM has next interrupt sources:

- RXFIFO FULL Interrupt (RF_TRIG)
 When the valid data number of RXFIFO reaches trigger value, CIMST.RF_TRIG bit is set. At the same time, if RF_TRIGM is 1, RF_TRIG interrupt is generated.
- RXFIFO Over Flow Interrupt (RF_OF)
 When the valid data number of RXFIFO reaches 32 and one more data are written to RXFIFO, CIMST.RF_OF bit is set. At the same time, if RF_OFM is 1, RF_OF interrupt is generated.
- DMA Start Of Frame Data Transferring Interrupt (DMA_SOF)
 When the CIMCMD.SOFINT bit is 1 and DMA start transferring the first data from RXFIFO to frame buffer, CIMST.DMA_SOF bit is set. At the same time, if DMA_SOFM is 1, DMA_SOF interrupt is generated.
- DMA End Of Frame Data Transferring Interrupt (DMA_EOF)
 When the CIMCMD.EOFINT bit is 1 and DMA complete transferring the last data from RXFIFO to frame buffer, CIMST.DMA_EOF bit is set. At the same time, if DMA_EOFM is 1, DMA_EOF interrupt is generated.
- DMA Stop Transferring Interrupt (DMA_STOP)
 When the CIMCMD.STOP bit is 1 and DMA complete transferring the last data from RXFIFO to frame buffer, CIMST.DMA_STOP bit is set. At the same time, if DMA_STOPM is 1, DMA_STOP interrupt is generated.
- CIM Disable Done Interrupt (VDD)
 When disable the module by clearing the CIMCR.ENA, the module should be disabled after transferring current valid data. Then set the CIMST.VDD bit, at the same time, if VDDM is set, VDD interrupt is generated.

1.7 Software Operation

1.7.1 Enable CIM with DMA

- 1. Configure register CIMCFG;
- 2. Prepare frame buffer and descriptors;
- 3. Configure register CIMDA;
- 4. Write 0 to register CIMSTATE; // clear state register
- 5. Configure register CIMCTRL with DMA_EN=1, RXF_RST=1, ENA=0;// resetting RXFIFO
- Configure register CIMCTRL with DMA_EN=1, RXF_RST=0, ENA=0;// stop resetting RXFIFO
- 7. Configure register CIMCTRL with DMA_EN=1, RXF_RST=0, ENA=1;// enable CIM

1.7.2 Enable CIM without DMA

- 1. Configure register CIMCFG;
- 2. Write 0 to register CIMSTATE; // clear state register
- Configure register CIMCTRL with DMA_EN=0, RXF_RST=1, ENA=0;// resetting RXFIFO
- 4. Configure register CIMCTRL with DMA_EN=0, RXF_RST=0, ENA=0;// stop resetting RXFIFO
- 5. Configure register CIMCTRL with DMA_EN=0, RXF_RST=0, ENA=1;// enable CIM

1.7.3 Disable CIM

Method 1:

- 1. Configure register CIMCTRL with RXF_RST=0, ENA=0; // quick disable
- 2. Write 0 to register CIMSTATE; // clear state register

Method 2:

When DMA is enabled, the following sequence is recommended:

- 1. Configure descriptor with STOP = 1;
- 2. Wait DMA_STOP interrupt, when it occurs, write 0 to CIMCTRL.ENA.
- 3. Write 0 to register CIMSTATE; // clear state register