

Recherche Hardware und Software

AUER-JAMMERBUND, BINDER, CSURMANN, ENGELHART, FELDHOFER, FRITZEL, GRAF

Dies ist das Projekttagebuch der Hardware- und Software-Gruppe

Inhaltsverzeichnis

Arbeitsauftrag	. 3
Abzugebendes	. 3
Projekttagebuch	. 3
07/11/2019	
14/11/2019	. 3
21/11/2019	
28/11/2019	. 3
05/11/2019	. 4
12/11/2019	. 4
Fertige Stückliste von Hardware-Gruppe:	. 4
Programmcode von Software-Gruppe:	. 5

5AHET 2019/2020

Arbeitsauftrag

Hardware-Gruppe:

Mithilfe der Hardware-Liste sollen alle benötigten Bauteile bestellt und anschließend zusammengebaut werden. Hierzu wird die Liste von der Vorgängergruppe übernommen. Es sollen, wenn möglich, alle Bauteile auf at.rs gefunden und bestellt werden.

Software-Gruppe:

Existierende Software einlesen und fertigstellen. Es wurde uns eine Software von, der Vorgänger Gruppe weitergegeben. Diese muss zuerst verstanden und dann erweitert werden.

Abzugebendes

Am Ende des Zyklus soll eine übersichtliche Dokumentation der erbrachten Leistungen vorliegen.

Projekttagebuch

07/11/2019

Ausgabe des Arbeitsauftrags und Einarbeiten in die Unterlagen, welche wir von der Vorgänger-Gruppe übernommen haben.

Es wurden zwei Gruppen gebildet. Die Hardware- und Software-Gruppe. Die Hardware Gruppe besteht ausfolgenden Mitschülern:

- Binder Juliana
- Engelhart Sophie
- Graf Linus

Die Software Gruppe besteht aus:

- Auer-Jammerbund Markus
- Csurmann Mathias
- Manuel Fritzel
- Feldhofer Hans-Peter

Hardware-Gruppe: Suche nach passenden Bauteilen auf RS.at

Software-Gruppe: Einlesen der erhaltenen Software.

14/11/2019

Hardware-Gruppe: Die Suche nach den passenden Bauteilen wurde fortgeführt

Software-Gruppe: Verwerfen der erhaltenen Software nach Empfehlung der vorherigen

Laborgruppe. Einlesen in die Fachtheorie und Neubeginn des Programmes.

21/11/2019

Hardware-Gruppe: Ein paar bereits gefundene Bauteile wurden ausgetauscht, da wir doch etwas anderes zur Realisierung gewählt haben.

Software-Gruppe: Recherche Stromsensor sowie die Einbindung der Kalibrierung im Programm.

(Siehe: Beilage)

28/11/2019

Hardware-Gruppe: Die Bauteile wurden in einer übersichtlichen Liste zusammengeführt, um jene dem Abteilungsvorstand vorzulegen.

Software-Gruppe: Aufstellung des Grundkonzeptes. Beginn der Programmierung ohne Klassen.

5AHET 2019/2020

05/11/2019

Hardware-Gruppe: Die Liste wurde genehmigt und die Bauteile bestellt. Lediglich ein Bauteil, welches auf Amazon bestellt wird, wurde nicht bestellt, da dieses von den Schülern bestellt werden wird. Software-Gruppe: Weiterführung des Programmes leider konnten wir dieses Vorhaben nicht zur Gänze erfüllen. Der Programmcode wurde auf unseren eigens für dieses Projekt angelegten GIT-Hub Repository hochgeladen. Der Link für diesen Git-Hub Repository ist wie folgt:

 $\underline{\text{https://github.com/CsurMathias/LA1V_HK}}$

12/11/2019

Fertigstellen der Dokumentation

Fertige Stückliste von Hardware-Gruppe:

Website	Bestellnummer	Hersteller. T-Nr.	Produktbeschreibung	Anzahl	Preis
at.rs-online.com	188-8310	Pi4 4GB Bulk	Raspberry Pi	1	49,159€
at.rs-online.com	379-2487	MCP3208-BI/P	Analog Digital Umwandler	1	4,02€
conrad.at	1616236 - 62	Iduino ME067	Stromsensor	3	je 6,24€
at.rs-online.com	765-2939	CH143DU	Sicherungsschalter	1	44,0€
at.rs-online.com	187-3413	RPI4 PSU EU WHITE	Raspberry Netzteil	1	7,69€
at.rs-online.com	916-0340	EUC3-40-4P	Schütz	1	74,76€
conrad.at	1695384 - 62	COM-KY019RM	Relais-Modul	3	je 3,33€

Preis gesamt: 208,269€

5AHET 2019/2020

Programmcode von Software-Gruppe:

Hier folgt der Programmcode sowie die Kommentare die den Code erläutern:

```
#include <wiringPi.h>
2
    #include <string>
    #include <bitset>
    #include <iostream>
5
6
    using namespace std
7
    #define ADU_PIN0 6
9
    #define ADU PIN1 10
    #define ADU_PIN2 11
10
11
    #define ADU PIN3 31
12
13
    #define RELAIS SOURCE 2
14
    #define RELAIS STAR 3
    #define RELAIS TRIANGLE 4
15
16
17
    const int analogInCurrent = 8;
    const int analogInVoltage = 9;
18
19
20
    int mV A = 100;
                               //mV/A (datasheet)
21
22
    int rawValue = 0;
    int acOffset = 2500;  //datasheet
23
24
25
26
    const int maxAmount = 20;
    int rawVoltage[maxAmount];
27
28
29
```

Pin-Belegung, definieren Variablen, Magic Numbers wurden aus Datenblatt entnommen

LA1V 5AHET Asynchronmaschine 2019/2020

```
int main(void)
30
31
32
             wiringPiSetupSys();
              pinMode(ADU PIN0, INPUT);
34
35
              pinMode(ADU_PIN1, INPUT);
              pinMode(ADU_PIN2, INPUT);
              pinMode(ADU PIN3, INPUT);
37
              pinMode(analogInCurrent, INPUT);
39
              pinMode(analogInVoltage, INPUT);
40
41
42
43
44
             return 0;
45
     }
46
     double findPeakV()
48
     {
              int arrayMax = 0;
49
50
              //read ADC
51
              for (int counter = 0; counter < maxAmount; counter++)</pre>
53
              {
                      rawVoltage[counter] = readADC();
54
55
              }
56
```

findPeakV Funktion um den Scheitelwert der Spannung zu bestimmen.

LA1V 5AHET Asynchronmaschine 2019/2020

```
//find max U val
57
             for (int counter = 0; counter < maxAmount; counter++)</pre>
58
                      if (rawVoltage[counter] > arrayMax)
                      {
61
                              arrayMax = rawVoltage[counter];
62
                      }
63
             }
64
     }
     //calculate Current value from raw input
67
     double calcCurrent(int rawInput)
68
             rawValue = rawInput;
             double voltage = (rawValue / 1024.0) * 5000;
71
             return ((voltage - acOffset) / mV_A);
72
73
     }
74
     //reads ADC-Value converts it to ulong
76
     int readADC()
77
     {
             int bit0 int = digitalRead(ADU PIN0);
             int bit1 int = digitalRead(ADU PIN1);
79
             int bit2 int = digitalRead(ADU PIN2);
             int bit3_int = digitalRead(ADU_PIN3);
81
82
             std::string bit0 = std::to string(bit0 int);
             std::string bit1 = std::to string(bit1 int);
84
             std::string bit2 = std::to string(bit2 int);
             std::string bit3 = std::to string(bit3 int);
```

calcCurrent Funktion um Strom auszulesen und in ein brauchbares Format umrechnen readADC brauchen wir da Raspberry Pi keinen Analogen Eingangspin besitzt.

5AHET 2019/2020

```
87
               std::string nibble = bit3 + bit2 + bit1 + bit0;
               int decVal = std::bitset<8>(nibble).to ulong();
 91
               return decVal;
 92
      }
 94
      void meassure(int mode)
      {
               digitalWrite(RELAIS_SOURCE, HIGH);
               //TDODO: Software lock
100
               switch (mode)
101
102
               {
103
                       case 1:
                                //star-triangle
104
                                //TODO: meassure current to go to triangle
                                digitalWrite(RELAIS_STAR, HIGH);
106
                                break;
107
108
109
                       case 2:
                                //star
110
111
                                digitalWrite(RELAIS_TRIANGLE, LOW);
                                digitalWrite(RELAIS_STAR, HIGH);
112
                                break;
113
114
                       case 3:
                                //triangle
115
                                digitalWrite(RELAIS_STAR, LOW);
116
117
                                digitalWrite(RELAIS_TRIANGLE, HIGH);
Stern-Dreieck Anlauf.
```


5AHET 2019/2020

```
118
                     case 100:
                             //error
120
                             break;
                     default:
                             break;
124
     //get userinput
     int userChoice()
128
             int input;
             int ack;
              std::cout << "Select your desired starting manner. 1 = Stern-Dreieck / 2 = Sternbetrieb / 3 = Dreieckbetrieb";</pre>
             std::cin >> input;
             std::cout << "You have chosen " << input << " correct = 1 / exit = 0";</pre>
138
             if (ack == 1)
                     return input;
              }
             else
144
              {
145
                     return 100;
              }
147 }
```

User Input für Navigation im Programm.