

CMC Addition, lbs./ton	7	7	4	0	8	4	0	0	0	8	4	0	7	4	4	0	4
Kymene Addition, Ibs./ton	25	25	25	40	10	40	10	40	10	40	25	25	10	25	25	25	25
Actual Refining Energy, kWh/mt	40	53	27	27	27	53	27	108*	108	108	108	53	23	53	53	53	53
NBSK Inclusion Rate,	75%	75%	75%	75%	75%	75%	75%	78%	78%	%99	%99	75%	75%	75%	75%	75%	75%
NBSK	PA Control	TR 962	TR 962	TR 963													
Sample Number	199:100	199:101	199:102	199:105	199:115	199:120	199:125	199:130	199:131	199:135	199:140	199:145	199:150	199:155	199:160	199:165	199:170

Sample Number	199;101	199:155	199:170
Pulp	Prince Albert	Prince Albert	TR963
Refining Energy Input, kWh/mt	53	53	53
CSF, ml	955	550	540
Calculated PFR, sec ²	12.1	12.1	12.4
Basis Weight, g/m ²	22.0	21.3	20.9
Bulk, m ³ /1000 kg	16.0	17.0	17.0
Machine Direction (MD) Dry Tensile Index, Nm/g	13.03	11.78	13.38
Cross Machine Direction (CD) Dry Tensile Index, Nm/g	10.48	68.6	12.67
Square Root of MD*CD Tensile Index, Nm/g	11.69	10.79	13.02
MD Dry Tensile, N/m	287	251	280
CD Dry Tensile, N/m	231	211	265
Total Dry Tensile, N/m	518	462	545
MD/CD Tensile Strength Ratio	1.24	1.19	1.06
MD Stretch, %	17.8	18.4	18.3
MD TEA Index, J/kg	1189	1117	1263
CD Wet Tensile Index, Nm/g	3.05	2.90	3.21
CD Wet Tensile, N/m	<i>L</i> 9	62	<i>L</i> 9
CD Wet Tensile/CD Dry Tensile, %	29.0	29.4	25.3
Wet Burst Strength, g	211.0	205.4	247.2
Wet Burst Strength/Square Root MD*CD Tensile, in	0.32	0.34	0.37
Water Absorbency, g water/g sheet	7.4	7.4	7.1

Sample Number	199:135	199:160
Pulp	Prince Albert	TR962
NBSK Inclusion Rate, %	99	75
Refining Energy Input, kWh/mt	108	53
CSF, ml	480	460
Calculated PFR, sec ²	14.7	15.5
Basis Weight, g/m ²	21.4	22.6
Bulk, m ³ /1000 kg	17.9	16.1
Machine Direction (MD) Dry Tensile Index, Nm/g	12.77	12.21
Cross Machine Direction (CD) Dry Tensile Index, Nm/g	11.67	11.5
Square Root of MD*CD Tensile Index, Nm/g	12.21	14.61
MD Dry Tensile, N/m	273	276
CD Dry Tensile, N/m	250	260
Total Dry Tensile, N/m	523	536
MD/CD Tensile Strength Ratio	1.09	1.06
MD Stretch, %	18.0	19.2
MD TEA Index, J/kg	1243	1163
CD Wet Tensile Index, Nm/g	3.67	3.31
CD Wet Tensile, N/m	78	75
CD Wet Tensile/CD Dry Tensile, %	31.2	28.8
Wet Burst Strength, g	272.4	263.4
Wet Burst Strength/Square Root MD*CD Tensile, in	0.40	0.32
Water Absorbency, g water/g sheet	7.5	7.2

Sample Number	199:101	199:155	199:145	199:160	199:165
Pulp	Prince Albert	Prince Albert	Prince Albert	TR962	TR962
CMC Addition Rate, lbs./ton	4	4	0	4	0
CSF, ml	550	550	550	460	520
Calculated PFR, sec ²	12.1	12.1	12.1	15.5	13.1
Basis Weight, g/m ²	22.0	21.3	20.7	21.8	22.6
Bulk, m ³ /1000 kg	16.0	17.0	16.6	17.3	16.1
Machine Direction (MD) Dry Tensile Index, Nm/g	13.03	11.78	9.71	15.09	12.21
Cross Machine Direction (CD) Dry Tensile Index, Nm/g	10.48	9.89	8.25	14:15	11.5
Square Root of MD*CD Tensile Index, Nm/g	11.69	10.79	8.95	14.61	11.85
MD Dry Tensile, N/m	287	251	201	329	276
CD Dry Tensile, N/m	231	211	171	308	260
Total Dry Tensile, N/m	518	462	372	637	536
MD/CD Tensile Strength Ratio	1.24	1.19	1.18	1.07	1.06
MD Stretch, %	17.8	18.4	19.4	19.4	19.2
MD TEA Index, J/kg	1189	1117	934	1422	1163
CD Wet Tensile Index, Nm/g	3.05	2.90	2.06	3.72	3.31
CD Wet Tensile, N/m	29	62	43	103	75
CD Wet Tensile/CD Dry Tensile, %	29.0	29.4	25.1	33.4	28.8
Wet Burst Strength, g	211.0	205.4	139.3	263.4	206.3
Wet Burst Strength/Square Root MD*CD Tensile, in	0.32	0.34	0.29	0.32	0.30
Water Absorbency, g water/g sheet	7.4	7.4	7.6	7.6	7.2

	WRV g/g	1.99	1.77	2.27	2.15	2.08	2.19	2.14	2.06	2.16	2.17	2.07	1.99	1.79	2.13	1.95	2.21	2.08	2.03	2.17	2.05	1.90	2.19	1.84	2.13	2.01	2.15	2.09	1.96	1.91	1.80
٠	Actual PFR sec2	7.7	7.0	18.1	11.6	10.6	10.0	8.6	10.8	12.8	14.4	12.3	8.7	0.9	11.3	6.8	14.8	10.8	8.4	12.7	11.0	7.0	14.0	9.9	11.5	10.5	10.7	10.5	10.6	8.3	7.2
	Bufk cc/g	3.87	3.90	3.12	3.18	3.39	3.60	3.36	3.46	3.47	3.09	9.33	3.45	4.14	3.23	4.04	3.18	3.54	3.48	3.45	3.32	4.01	3.19	3.85	3.35	3.45	3.31	3.37	3.53	3.74	3.80
Data	Wet Burst /Dry Tensile	0.2656	0.2958	0.3068	0.3156	0.2790	0.3316	0.3040	0.3204	0.2810	0.2981	0.3109	0.3207	0.2806	0.3136	0.2936	0.3524	0.2838	0.2836	0.2939	0.3187	0.2802	0.3331	0.3180	0.3250	0.3169	0.3152	0.3146	0.2983	0.2220	0.2865
0	Wet Burst g	1268	1456	1989	1902	1600	1680	1798	1856	1563	1929	1791	1880	1179	1795	1358	2216	1642	1593	1600	1923	1261	2032	1630	2019	1812	1970	1853	1765	1127	1453
	Dry Tensile g/in	4774	4922	6482	4057	5734	2909	5915	26/2	5563	6472	0925	£985	4201	5723	4625	6289	9825	5617	5444	6034	4500	6101	5125	6212	5718	6250	5890	5916	5076	5071
	Actual Carboxyl meq/100g	3	12	3	12	7	7	7	7	3	12	3	12	7	7	7	7	3	12	3	12	7	7	7	7	7	7	7	7	ဗ	12
	Type of Point	Edge center	Center	Center	Center	Center																									
	CMC lb/t	2	. 7	2	2	0	0	Þ	4	0	0	4	4	2	2	2	2	2	2	2	2	0	0	4	4	2	2	2	2	0	0
gn	Kymene lb/t	35	35	35	35	20	50	20	50	35	35	35	35	20	20	50	50	20	20	50	50	35	35	35	35	35	35	35	35	35	35
ken Design	Refined PFR sec2	7	7	13	13	10	10	10	10	10	10	10	10	7	13	7	13	. 10	10	10	10	7	13	7	13	10	10	10	10	7	~
Box-Behnke	Carboxyl Level meq/100g	4	16	4	. 16	10	10	10	10	4	16	4	16	10	10	10	10	4	16	4	16	10	10	10	10	10	10	10	10		
Box	Block	Block 1	Block 1	Block 1	Block 1	Block 1																									
	Run Order	22	2	26	8	20	7	18	5	3	28	11	4	25	13	16	17	14	12	10	6	24	21	23	15	9	19	27	1	29	30
	Standard Order	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	extra	extra

FIGURE 6

PFR vs. PFI Revs

Wet Burst vs. PFR

Tensile Strength vs. PFR

WB:DT Ratio vs. PFR

				_																		
WRV g/g				1.519		1.839									1.734		1.741			1.752		
WB/DT in.	0.214	0.246	0.271	0.255	0.220	0.271	0.274	0.236	0.269	0.200	0.225	0.198	0.285	0.266	0.272	0.232	0.257	0.217	0.268	0.258	0.215	0.225
Tensile g/in.	4419	4621	5498	5087	5259	5013	5147	4605	5638	5354	5368	3303	5546	4560	4949	4274	5084	4458	3956	4734	4686	3766
Wet Burst	945	1139	1488	1298	1157	1360	1411	1089	1517	1069	1207	654	1578	1215	1346	991	1304	296	1062	1221	1005	846
Bulk cm³/g	3.455	3.755	3.553	3.451	3.425	3.726	3.484	3.559	3.086	3.536	3.663	4.305	3.626	3.722	3.855	3.988	3.652	3.985	4.245	3.973	3.697	4.269
BSW⊤ g/m²	27.0	26.6	26.5	27.2	27.0	27.2	27.3	26.9	26.4	26.8	26.8	27.0	26.9	26.7	26.7	27.2	27.1	26.6	26.8	27.2	26.7	26.8
CMC lbs./ton	4	4	8	4	8	4	4	0	8	4	4	0	8	8	4	0	4	4	8	4	0	4
Kymene lbs./ton	10	40	40	25	10	25	40	10	25	10	10	25	25	25	25	40	25	10	25	25	10	10
CSF	575	575	475	475	475	475	375	475	375	375	375	575	375	575	475	475	475	575	575	475	475	575
Pulp	Carboxylated	PA-Pilot Dried	PA-Pilot Dried	Carboxylated	PA-Pilot Dried	Prince Albert	Prince Albert	PA-Pilot Dried	Carboxylated	Carboxylated	PA-Pilot Dried	Prince Albert	PA-Pilot Dried	Carboxylated	PA-Pilot Dried	Prince Albert	Carboxylated	PA-Pilot Dried	Prince Albert	Prince Albert	Carboxylated	Prince Albert
Run	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45

FIGURE 11B

Pulp	CSF	Kymene	CMC	BSWT	Bulk	Wet Burst	Tensile	WB/DT	WRV
		lbs./ton	lbs./ton	g/m²	cm³/g	б	g/in.	ij.	6/6
PA-Pilot Dried	475	25	4	26.9	3.647	1388	5091	0.273	1.774
Prince Albert	475	10	0	26.8	3.802	891	4415	0.202	
PA-Pilot Dried	575	25	8	26.7	3.651	1341	4750	0.282	
Carboxylated	375	40	4	27.0	3.354	1615	5619	0.287	
Prince Albert	475	40	8	26.3	3.725	1486	4929	0.301	1.802
Prince Albert	475	25	4	26.8	3.717	1334	4976	0.268	
Carboxylated	375	25	0	27.0	3.261	1332	5305	0.251	
Prince Albert	375	25	0	27.3	3.568	1047	4803	0.218	
PA-Pilot Dried	575	25	0	26.9	3.748	882	4086	0.216	
Carboxylated	475	25	4	27.0	3.427	1306	5113	0.255	1.711
Carboxylated	575	40	4	26.9	3.559	1258	4612	0.273	
PA-Pilot Dried	375	25	0	26.9	3.384	1324	5228	0.253	
Carboxylated	575	25	0	26.9	3.554	1071	4455	0.240	
PA-Pilot Dried	375	40	4	27.2	3.291	1578	5480	0.288	
Prince Albert	575	40	4	26.6	3.962	949	3965	0.239	
Carboxylated	475	10	8	26.7	3.253	1112	5217	0.213	
Prince Albert	475	10	8	27.3	3.609	1115	4714	0.237	
Prince Albert	375	25	8	26.7	3.577	1365	5418	0.252	
Carboxylated	475	40	0	27.2	3.465	1214	5167	0.235	
Carboxylated	475	40	8	26.7	3.384	1436	5333	0.269	į
PA-Pilot Dried	475	25	4	24.9	3.669	1455	5349	0.272	1.758
PA-Pilot Dried	475	40	0	27.1	3.537	1081	4711	0.230	
Prince Albert	375	10	4	26.4	3.509	1143	5119	0.223	

FIGURE 11A

FIGURE 12A

FIGURE 12B

FIGURE 13A

FIGURE 13B

15/16

FIGURE 14A

FIGURE 14B

Fig.15A.

Fig. 15B.