# Clustering Multi-Path Components in radio channel

Zhiming Huang

### **Preliminaries**

- What is Multi-path Components (MPCs)?
- Why to cluster them?
- How to Cluster them?

## My work

- Modified Fuzzy C-means algorithm (MFCM)
- A new clustering Framework based on MFCM
- Fusion Modified FCM (FMCM)
- A new clustering Framework based on FMCM

#### What is Multi-path Components (MPCs)?



Figure 5.2: BS and MS angle parameters

3GPP Spatial Channel Model

### Why to cluster them?

An essential step in establishing the model Delay, Power, Angle of Departure (AOD), Angle of Arrival (AoA) **Extracting Channel** Establishing the Clustering Parameters from model measurement data e.g. Double directional channel model

$$h(t, \tau, \Omega_T, \Omega_R) = \sum_{m=1}^{M} \left\{ \sum_{n=1}^{N_m} P_{n,m} e^{j\Phi_{m,n}} \delta(\tau - \tau_m - \tau_{m,n}) \times \delta(\Omega_T - \Omega_{T,m} - \Omega_{T,m,n}) \times \delta(\Omega_R - \Omega_{R,m} - \Omega_{R,m,n}) \right\}$$
(1)

### How to Cluster them?

Clustering algorithms like Kmeans, Fuzzy C-means

Distance metric (similarity between MPCs ): Multipath components Distance

$$MCD_{ij} = \sqrt{\|MCD_{AoA,ij}\|^{2} + \|MCD_{AoD,ij}\|^{2} + MCD_{\tau,ij}^{2}}$$
(8)  
$$MCD_{\tau,ij} = \frac{\tau_{std}}{\Delta \tau_{max}^{2}} \cdot [\tau_{i} - \tau_{j}]$$
(9)

$$MCD_{AoA,ij/AoD,ij} = \frac{1}{2} \left| \begin{pmatrix} \sin(\theta_i)\cos(\varphi_i) \\ \sin(\theta_i)\sin(\varphi_i) \\ \cos(\theta_i) \end{pmatrix} - \begin{pmatrix} \sin(\theta_j)\cos(\varphi_j) \\ \sin(\theta_j)\sin(\varphi_j) \\ \cos(\theta_j) \end{pmatrix} \right| (10)$$



## Modified Fuzzy C-means algorithm (MFCM)

#### FCM algorithm

The object function of FCM is

$$J_m = \sum_{i=1}^{N} \sum_{j=1}^{C} u_{ij}^2 \cdot \|x_i - c_j\|^2$$

$$(1) \qquad \sum_{j=1}^{C} u_{ij} = 1,$$

Apply the method of Lagrange multipliers

$$L_{J_m} = \sum_{i=1}^{N} \sum_{j=1}^{C} u_{ij}^2 \cdot \|x_i - c_j\|^2 + \lambda (\sum_{j=1}^{C} u_{ic} - 1)$$
(2)

$$\frac{\partial L_{J_m}}{\partial \lambda} = \left(\sum_{i=1}^{C} u_{ij} - 1\right) = 0 \tag{3}$$

Calculate partial gradient

$$\frac{\partial L_{J_m}}{\partial u_{ij}} = \left(\sum_{i=1}^{N} \sum_{j=1}^{C} m(u_{ij})^{m-1} \|x_i - c_j\|^2 - \lambda\right) = 0 \tag{4}$$

$$\frac{\partial L_{J_m}}{\partial c_j} = \left(\sum_{i=1}^{N} \sum_{j=1}^{C} u_{ij}^m x_i - c_j \sum_{i=1}^{n} u_{ij}^m\right) = 0$$
 (5)

$$\frac{\partial L_{J_m}}{\partial \lambda} = \left(\sum_{j=1}^C u_{ij} - 1\right) = 0 \tag{3}$$

$$\frac{\partial L_{J_m}}{\partial u_{ij}} = \left(\sum_{i=1}^{N} \sum_{j=1}^{C} m(u_{ij})^{m-1} \|x_i - c_j\|^2 - \lambda\right) = 0 \tag{4}$$

$$\frac{\partial L_{J_m}}{\partial c_j} = \left(\sum_{i=1}^{N} \sum_{j=1}^{C} u_{ij}^m x_i - c_j \sum_{i=1}^{n} u_{ij}^m\right) = 0$$
 (5)

Main idea of FCM:

- 1.Initialize membership belief matrix u or centrods c
- 2. Iterate with Eq.(6) and Eq.(7)
- 3. Stop when u and c are not change



$$c_{j} = \frac{\sum_{i=1}^{N} u_{ij}^{m} \cdot x_{i}}{\sum_{i=1}^{N} u_{ij}^{m}}$$
(7)

Christial et al. "Clustering of MIMO channel parameters – performance comparison

introduced FCM into clustering MPCs:

$$u_{ij} = \frac{1}{\sum_{k=1}^{C} \left(\frac{\|x_i - c_j\|}{\|x_i - c_k\|}\right)^{\frac{2}{m-1}}} \qquad c_j = \frac{\sum_{i=1}^{N} u_{ij}^m \cdot x_i}{\sum_{i=1}^{N} u_{ij}^m}$$

$$c_j = \frac{\sum_{i=1}^{N} u_{ij}^m \cdot x_i}{\sum_{i=1}^{N} u_{ij}^m}$$



$$u_{ij} = \frac{1}{\sum_{k=1}^{C} \left(\frac{MCD(x_i, c_j)}{MCD(x_i, c_j)}\right)^{\frac{2}{m-1}}} \qquad c_j = \frac{\sum_{i=1}^{N} u_{ij}^m \cdot x_i}{\sum_{i=1}^{N} u_{ij}^m}$$

$$c_{j} = \frac{\sum_{i=1}^{N} u_{ij}^{m} \cdot x_{i}}{\sum_{i=1}^{N} u_{ij}^{m}}$$



$$J_m = \sum_{i=1}^{N} \sum_{j=1}^{C} u_{ij} \cdot P_i \cdot MCD(x_i, c_j)$$



$$\frac{\partial L_{J_m}}{\partial c_j} = \left(\sum_{i=1}^{N} \sum_{j=1}^{C} u_{ij}^m x_i - c_j \sum_{i=1}^{n} u_{ij}^m\right) = 0$$



$$c_j = \frac{\sum_{i=1}^{N} u_{ij}^m \cdot x_i}{\sum_{i=1}^{N} u_{ij}^m}$$

#### Modification proposed in my paper

#### Mapping function:

$$M(x) = \begin{bmatrix} \tau \\ \sin \varphi_{AoA} \cdot \cos \theta_{AoA} \\ \sin \varphi_{AoA} \cdot \sin \theta_{AoA} \\ \cos \varphi_{AoA} \\ \sin \varphi_{DoA} \cdot \cos \theta_{DoA} \\ \sin \varphi_{DoA} \cdot \sin \theta_{DoA} \\ \cos \varphi_{DoA} \end{bmatrix}$$

$$||M(x_i) - M(c_j)|| = MCD(x_i, c_j)$$

$$J_m = \sum_{i=1}^{N} \sum_{j=1}^{C} u_{ij}^m \cdot P_i \cdot ||M(x_i) - M(c_j)||^2$$

$$u_{ij} = \frac{1}{\sum_{k=1}^{C} \left(\frac{MCD(x_i, c_j)}{MCD(x_i, c_j)}\right)^{\frac{2}{m-1}}}$$

$$M(c_j) = \frac{\sum_{i=1}^{N} u_{ij}^m \cdot P_i \cdot M(x_i)}{\sum_{i=1}^{N} u_{ij}^m \cdot P_i}$$

### results



### Clustering Framework based on MFCM



InitialGuess: generating the Centroids
Firstly select a MPC with the strongest power
Select following MPCs having maximum distance to the
Centords

Censor Process: delete MPCs that tend to be noise

Threshold e

Allocate MPC to a certain cluster if its membership belief > e

Delete the MPC doesn't belong to any cluster

Kr method: a method to assess the clustering performance Proposed by Mota et al. "Estimation of the Number of Clusters in Multipath Radio Channel Data Sets"

### Comparison with KPowerMeans Framework





Lower XB better clustering

Higher GD better clustering

Average value of 300 snapshots

### Comparison with KPowerMeans Framework



## Fusion Modified FCM (FMFCM)

Dempster-Shafer combination rule

$$k = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

$$m(A) = \frac{1}{1-k} \sum_{B \cap C = A} m_1(B) m_2(C)$$

Simple example: two sets {a:0.7,b:0.3} {a:0.6,b:0.4}

The process of D-S combination

Pr(a) = 0.7\*0.6 = 0.42

Pr(b) = 0.3\*0.4 = 0.12

 $Pr(\emptyset) = 0.7*0.4 + 0.3*0.6 = 0.46$ 

Then nomalize the Pr(a) and Pr(b) by dividing  $1-Pr(\emptyset)$ 

Pr(a) = 0.42/(1-0.46) = 0.78

Pr(b) = 0.12/(1-0.46) = 0.22



### Results of FMFCM





Noise won't be enhanced

### Clustering algorithm based on FMFCM



Replace this term with FMFCM

## Thank you!