Queens' College Cambridge

Logic and Proof

Alistair O'Brien

Department of Computer Science

June 25, 2021

Contents

1	Pro	positional Logic	4
	1.1	Syntax	4
	1.2	Semantics	4
			7
		1.2.2 Normal Forms	8
			9
	1.3	Proof Systems	0
		· ·	0
		· · · · · · · · · · · · · · · · · · ·	1
			2
			4
		1	5
	1.4		7
		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7
			8
		r	0
			2
2	Fire	t Order Logic 2	R
_	2.1	_	8
	$\frac{2.1}{2.2}$	·	0
	2.2		3
	2.3	1	4
	2.5	V	$\frac{4}{4}$
		J	7
	0.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
	2.4		9
	2.5		2
	2.6		5
	2.7	Automated Theorem Proving 4	6

		2.7.1	First-Or																			
		2.7.2	2.7.1.1 Tableaux		_																	
		2.1.2	Tableau	x Carci	iius		•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	43
3	Dec	ision F	Procedur	es																		51
	3.1	Fourie	r-Motzkin	ı Elimi	natio	n.																51
	3.2	Satisfi	ability Mo	odulo 7	Γheor	ies													•			52
4	Mo	dal Log	gic																			54
	4.1	Syntax	ς																			54
			itics																			
		4.2.1	Equivale	ences .																		56
	4.3	Proof	Systems .																			56
			Hilbert-S																			
			Sequent																			

1 Propositional Logic

1.1 Syntax

Definition 1.1.1. (Propositional Logic) $\Sigma_P = \{P_1, \ldots\}$ is the countably infinite set of propositional symbols. $\Omega_0 = \{\top, \bot, \neg, \land, \lor, \rightarrow, \longleftrightarrow\}$ is the set of operators with arity $\alpha : \Omega_0 \to \mathbb{N}$.

The formal language, or syntax, of the propositional logic is $\mathcal{L}_0(\Omega_0) = \mathbb{T}_{\Omega_0}(\Sigma_P)$, that is:

$$\psi ::= P \in \Sigma_P$$

$$\downarrow \underbrace{o(\psi_1, \dots, \psi_n)}_{\text{where } o(o)=n}$$

- **Precedence**: (in order) of operators in Ω_0 : $\longleftrightarrow < \to < \lor < \land < \neg$.
- $\psi_1 \equiv \psi_2$ denotes syntactically identical propositions (abstract syntax trees).

1.2 Semantics

• Boolean Algebra $\mathbf{B} = (\{0,1\},+,\cdot)$ where $\mathbb{B} = \{0,1\}$.

Definition 1.2.1. (Interpretation) The interpretation \mathcal{I} of the proposition $\psi \in \mathcal{L}_0$ is a function $\mathcal{I} : \Sigma_P \to |\mathbf{B}|$. The set of interpretations is denoted $\Sigma_{\mathcal{I}} = \mathcal{P} [\Sigma_P \to |\mathbf{B}|]$.

Definition 1.2.2. (Valuation) The *truth* value of the proposition $\psi \in \mathcal{L}_0$ in the context of the interpretation \mathcal{I} , denoted $\mathcal{T} \llbracket \psi \rrbracket_{\mathcal{I}}$, where $\mathcal{T} \llbracket \cdot \rrbracket_{\mathcal{I}} : \mathcal{L}_0 \to |\mathbf{B}|$

is inductively defined by

$$\mathcal{T} \llbracket \top \rrbracket_{\mathcal{I}} = 1 \qquad \qquad \mathcal{T} \llbracket \bot \rrbracket_{\mathcal{I}} = 0$$

$$\mathcal{T} \llbracket P \rrbracket_{\mathcal{I}} = \mathcal{I}(P) \qquad \qquad \mathcal{T} \llbracket \psi_{1} = \overline{\mathcal{T}} \llbracket \psi_{1} \rrbracket_{\mathcal{I}}$$

$$\mathcal{T} \llbracket \psi_{1} \wedge \psi_{2} \rrbracket_{\mathcal{I}} = \mathcal{T} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} \cdot \mathcal{T} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T} \llbracket \psi_{1} \vee \psi_{2} \rrbracket_{\mathcal{I}} = \mathcal{T} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} + \mathcal{T} \llbracket \psi_{2} \rrbracket_{\mathcal{I}}$$

$$\mathcal{T} \llbracket \psi_{1} \rightarrow \psi_{2} \rrbracket_{\mathcal{I}} = \overline{\mathcal{T}} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} + \mathcal{T} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T} \llbracket \psi_{1} \longleftrightarrow \psi_{2} \rrbracket_{\mathcal{I}} = \overline{\mathcal{T}} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} \oplus \mathcal{T} \llbracket \psi_{2} \rrbracket_{\mathcal{I}}$$

• Notation: $\vDash_{\mathcal{I}} \psi \iff \mathcal{T} \llbracket \psi \rrbracket_{\mathcal{I}} = 1.$

Lemma 1.2.1. (Coincidence Lemma I) For all $\psi \in \mathcal{L}_0$ and $\mathcal{I}, \mathcal{I}' \in \Sigma_{\mathcal{I}}$,

$$(\forall P \in \llbracket \psi \rrbracket_P . \mathcal{I}(P) = \mathcal{I}'(P)) \implies \mathcal{T} \llbracket \psi \rrbracket_{\mathcal{T}} = \mathcal{T} \llbracket \psi \rrbracket_{\mathcal{T}'}.$$

• $\implies \models \psi$ is decidable w/ $O(2^{|\llbracket \psi \rrbracket_P|})$ complexity via truth tables.

Definition 1.2.3. (Tautology, Satisfiable, Contradiction) For $\psi \in \mathcal{L}_0$:

- (i) ψ is a tautology, or *valid*, iff $\forall \mathcal{I} \in \Sigma_{\mathcal{I}}. \vDash_{\mathcal{I}} \psi$.
- (ii) ψ is satisfiable, iff $\exists \mathcal{I} \in \Sigma_{\mathcal{I}}. \vDash_{\mathcal{I}} \psi$.
- (iii) ψ is unsatisfiable, or a contradiction, iff $\forall \mathcal{I} \in \Sigma_{\mathcal{I}}. \not\models_{\mathcal{I}} \psi$.

Definition 1.2.4. (Entailment and Equivalence) A proposition ψ_1 entails ψ_2 , denoted $\psi_1 \vDash \psi_2$ iff $\forall \mathcal{I} \in \Sigma_{\mathcal{I}}$. $\vDash_{\mathcal{I}} \psi_1 \implies \vDash_{\mathcal{I}} \psi_2$. The propositions ψ_1 and ψ_2 are equivalent, denoted $\psi_1 \simeq \psi_2 \iff \psi_1 \vDash \psi_2 \land \psi_2 \vDash \psi_1$.

• Notation: $\vDash \Delta$ is equivalent to $\emptyset \vDash \Delta$, $\{\psi_1\} \vDash \psi_2$ is equivalent to $\psi_1 \vDash \psi_2$, and $\Gamma_1, \Gamma_2 \vDash \Delta$ is equivalent to $\Gamma_1 \cup \Gamma_2 \vDash \Delta$.

Theorem 1.2.1. For all $\Gamma, \Delta \in \mathcal{P}(\mathcal{L}_0)$:

- (i) $\Gamma \vDash \Delta \iff \neg \Gamma \cup \Delta$ is contradicting.
- (ii) Γ is contradicting $\implies \Gamma \vDash \Delta$.
- (iii) $\vDash \Delta \iff \Delta$ is a tautology $\iff \neg \Delta$ is contradicting.

Theorem 1.2.2. (Preorder \vDash) The tuple (\mathcal{L}_0, \vDash) is a preorder:

(R) Reflexive: $\forall \psi \in \mathcal{L}_0.\psi \vDash \psi$

(T) Transitive: $\forall \psi, \phi, \varphi \in \mathcal{L}_0.\psi \vDash \phi \land \phi \vDash \varphi \implies \psi \vDash \varphi$

Theorem 1.2.3. (Monotonicity of \models)

$$\forall \Gamma_1, \Gamma_2, \Delta \in \mathcal{P}(\mathcal{L}_0).\Gamma_1 \vDash \Delta \land \Gamma_1 \subseteq \Gamma_2 \implies \Gamma_2 \vDash \Delta.$$

Theorem 1.2.4. (Equivalence Relation \simeq) \simeq : $\mathcal{L}_0 \longleftrightarrow \mathcal{L}_0$ is an equivalence relation on \mathcal{L} :

- (R) Reflexive: $\forall \psi \in \mathcal{L}_0.\psi \simeq \psi$
- (S) Symmetric: $\forall \psi, \phi \in \mathcal{L}_0.\psi \simeq \phi \implies \phi \simeq \psi$
- (T) Transitive: $\forall \psi, \phi, \varphi \in \mathcal{L}_0.\psi \simeq \phi \land \phi \simeq \varphi \implies \psi \simeq \varphi$

Theorem 1.2.5. (Congruence \simeq) \simeq : $\mathcal{L}_0 \leftrightarrow \mathcal{L}_0$ is a congruence relation on \mathcal{L}_0 , that is

$$\forall \psi, \phi \in \mathcal{L}_0.\psi \simeq \phi \implies (\forall C \in \Sigma_C.C[\psi] \simeq C[\phi]),$$

where $C \in \Sigma_C$ is the set of contexts of \mathcal{L}_0 , defined by:

where $* \in \{\land, \lor, \rightarrow, \longleftrightarrow\} \subset \Sigma_{\Omega}$.

Theorem 1.2.6. (Deduction Theorem) For all $\psi, \phi \in \mathcal{L}_0$:

- (i) $\models \psi \rightarrow \phi \iff \psi \models \phi$
- (ii) $\vDash \psi \longleftrightarrow \phi \iff \psi \simeq \phi$

1.2.1 Equivalences

• Idempotent laws:

$$\psi \wedge \psi \simeq \psi \quad \psi \vee \psi \simeq \psi.$$

• Commutative laws:

$$\psi_1 \wedge \psi_2 \simeq \psi_2 \wedge \psi_1 \quad \psi_1 \vee \psi_2 \simeq \psi_2 \vee \psi_1.$$

• Associative laws:

$$(\psi_1 \wedge \psi_2) \wedge \psi_3 \simeq \psi_1 \wedge (\psi_2 \wedge \psi_3) \quad (\psi_1 \vee \psi_2) \vee \psi_3 \simeq \psi_1 \vee (\psi_2 \vee \psi_3).$$

• Distributive laws:

$$\psi_1 \vee (\psi_2 \wedge \psi_3) \simeq (\psi_1 \vee \psi_2) \wedge (\psi_1 \vee \psi_3) \quad \psi_1 \wedge (\psi_2 \vee \psi_3) \simeq (\psi_1 \wedge \psi_2) \vee (\psi_1 \wedge \psi_3).$$

• Negation laws:

$$\neg\neg\psi\simeq\psi\quad\psi\vee\neg\psi\simeq\top\quad\psi\wedge\neg\psi\simeq\bot.$$

• Identity laws:

$$\psi \wedge \top \simeq \psi \quad \psi \vee \bot \simeq \psi.$$

• Annihilation laws:

$$\psi \wedge \bot \simeq \bot \quad \psi \vee \top \simeq \top.$$

• De Morgans' laws:

$$\neg(\psi_1 \wedge \psi_2) \simeq \neg\psi_1 \vee \neg\psi_2 \quad \neg(\psi_1 \vee \psi_2) \simeq \neg\psi_1 \wedge \neg\psi_2.$$

• Connective equivalence laws:

$$\psi_1 \longleftrightarrow \psi_2 \simeq (\psi_1 \to \psi_2) \land (\psi_2 \to \psi_1) \simeq (\neg \psi_1 \land \neg \psi_2) \lor (\psi_1 \land \psi_2)$$

$$\psi_1 \to \psi_2 \simeq \neg \psi_1 \lor \psi_2$$

• Contrapositive:

$$\psi_1 \to \psi_2 \simeq \neg \psi_2 \to \neg \psi_1$$
.

1.2.2 Normal Forms

- **Problem**: Existence of *adequate* propositional logics $\implies \mathcal{L}_0$ contains redundancy.
- Examples:
 - $-\mathcal{L}_0(\{\top,\bot,\neg,\lor,\land\})\cong\mathcal{L}_0$, by connective equivalence laws.
 - $-\mathcal{L}_0(\{\neg, \lor, \land\}) \cong \mathcal{L}_0$, by negation laws.
 - $-\mathcal{L}_0(\{\neg, \land\}) \cong \mathcal{L}_0(\{\neg, \lor\}) \cong \mathcal{L}_0$ by De Morgans' laws

Definition 1.2.5. (Primitive Propositional Logic) The primitive propositional logic is $\mathcal{L}_0^P = \mathcal{L}_0(\{\top, \bot, \neg, \lor, \land\})$, henceforth denoted $\mathcal{L}_0^P \subset \mathcal{L}_0$.

Definition 1.2.6. (**Dual**) The dual of a primitive proposition $\psi \in \mathcal{L}_0^P$, denoted ψ^* , where $\cdot^* : \mathcal{L}_0^P \to \mathcal{L}_0^P$ is inductively defined by

$$P^* = \neg P \qquad \qquad \top^* = \bot \qquad \qquad \bot^* = \top (\neg \psi)^* = \neg \psi^* \qquad (\psi_1 \wedge \psi_2)^* = \psi_1^* \vee \psi_2^* \qquad (\psi_1 \vee \psi_2)^* = \psi_1^* \vee \psi_2^*$$

Theorem 1.2.7. (Principle of Duality)

$$\forall \psi \in \mathcal{L}_0^P.\psi^* \simeq \neg \psi.$$

Definition 1.2.7. (Negation Normal Form) A literal is defined by $\ell := P \mid \neg P$. A primitive proposition $\psi \in \mathcal{L}_0^P$ is said to be in negation normal form, iff

$$\psi \in \mathcal{L}_0(\{\neg P : P \in \Sigma_P\} \cup \{\land, \lor\}) = \mathcal{L}^{NNF}.$$

Definition 1.2.8. (Conjuctive and Disjunctive Normal Forms) A negation normalized proposition $\psi \in \mathcal{L}_0^{NNF}$ is said to be in conjunctive normal form (CNF) if $\psi \in \mathcal{L}_0^{CNF} \cong \mathcal{L}_0^{NNF}$, defined by:

$$C \,::=\, \ell \,\vee\, C \,\mid\, \ell \qquad \qquad \psi \,::=\, C \,\wedge\, \psi \,\mid\, C$$

That is $\psi \equiv \bigwedge_{i=0}^n \bigvee_{j=0}^{m_i} \ell_{ij}$.

A negation normalized proposition $\psi \in \mathcal{L}_0^{NNF} \cong \mathcal{L}_0^{NNF}$ is said to be in disjunctive normal form (DNF) if $\psi \in \mathcal{L}_0^{DNF}$, defined by:

$$C \,::=\, \ell \, \wedge \, C \, \mid \, \ell \qquad \qquad \psi \, ::=\, C \, \vee \, \psi \, \mid \, C$$

That is $\psi \equiv \bigvee_{i=0}^{n} \bigwedge_{j=0}^{m_i} \ell_{ij}$.

- \bullet Translation from \mathcal{L}_0 to CNF (or DNF):
 - Eliminate \rightarrow and \longleftrightarrow .
 - Push ¬ using ¬¬ $\psi \simeq \psi$ and De Morgans' laws.
 - Push \vee (or \wedge) using distributive laws.
 - Simplify w/ absorption law: $\psi_1 \wedge (\psi_1 \vee \psi_2) \simeq \psi_1$ and $(\neg \psi_1 \vee \psi_2) \wedge (\psi_1 \vee \psi_2) \simeq \psi_2$.

1.2.3 Clauses

Definition 1.2.9. (Clause) A (set-based) clause is a finite set of literals $C \in \mathcal{P}(\Sigma_{\ell}) = \Sigma_{C}$. A family of clauses $\Delta \in \mathcal{P}(\Sigma_{C}) = \Sigma_{\Delta}$ The empty clause \emptyset is semantically equivalent to $\bot (\bigvee \emptyset = \bot)$, by identity).

- Σ_{Δ} and \mathcal{L}_0 are congruent.
- The sets of positive and negative literals in a clause C are denoted $P(C), N(C) \subseteq C$, respectively.

Theorem 1.2.8. A family of clauses $\Delta \in \Sigma_{\Delta}$ may be simplified:

1. For all $C, C' \in \Delta$,

$$C \subseteq C' \implies \Delta \simeq_{\Delta} \Delta \setminus \{C'\}.$$

2. For all C,

$$P(C) \cap N(C) \neq \emptyset \implies \Delta \simeq_{\Delta} \Delta \setminus \{C\}.$$

• Kowalski Notation: The clause $\{\neg P_0, \dots, \neg P_k, P_{k+1}, \dots, P_n\}$ are written as $P_0 \wedge \dots \wedge P_k \to P_{k+1} \vee \dots \vee P_n$.

1.3 Proof Systems

• **Problem**: Decidable methods to determine whether $\Gamma \vDash \psi$ holds.

• Solution: Proof Systems

1.3.1 Hilbert-Style Proof System

• A proof system is said to be *Hilbert-style* if it has a minimal set of axiom and inference rules *with* a Modus Ponens inference rule. Useful for **LCF** style ATP.

Definition 1.3.1. (Hilbert-Style \mathcal{H}_0) \mathcal{H}_0 , the Hilbert-style proof system for Propositional logic, is defined on the language $\mathcal{L}_0(\{\neg, \rightarrow\})$ (henceforth denoted \mathcal{L}_0) with the following axioms and inference rules:

(S)
$$\frac{(V)}{(\psi \to (\phi \to \chi)) \to ((\psi \to \phi) \to (\psi \to \chi))}$$
 (K)
$$\frac{(V)}{(\nabla \phi \to \nabla \psi) \to ((\nabla \phi \to \psi) \to \phi)}$$
 (MP)
$$\frac{\psi \to (\psi \to \phi)}{\phi}$$

Theorem 1.3.1. (Deduction Theorem) For all $\Gamma \in \mathcal{P}(\mathcal{L}_0)$ and propositions $\psi, \phi \in \mathcal{L}_0$,

$$\Gamma, \psi \vdash_{\mathscr{H}_0} \phi \iff \Gamma \vdash_{\mathscr{H}_0} \psi \to \phi.$$

• The deduction theorem justifies the standard: "Assume ψ , prove ϕ . So we have $\psi \to \phi$ " argument $\implies Natural\ Deduction$ or Sequent forms.

Theorem 1.3.2. (Soundness and Completeness of \mathcal{H}_0) \mathcal{H}_0 is sound and complete, that is

$$\forall \Gamma \in \mathcal{P}(\mathcal{L}), \psi \in \mathcal{L}.\Gamma \vdash_{\mathscr{H}_0} \psi \implies \Gamma \vDash \psi,$$

and

$$\forall \Gamma \in \mathcal{P}(\mathcal{L}_0), \psi \in \mathcal{L}_0.\Gamma \vDash \psi \implies \Gamma \vdash_{\mathscr{H}_0} \psi.$$

• Idea: Explicit movement of assumptions via a sequent

Definition 1.3.2. (Sequent) A sequent in the proof system \mathcal{P} for \mathcal{L} is a meta-formula of the form $\Gamma \vdash \psi$, where $\Gamma \in \mathcal{P}(\mathcal{L})$ and $\psi \in \mathcal{L}$.

- The sequent form of a proof system \mathcal{P} explicitly specifies the assumptions Γ in the proof trees \mathscr{T} .
- The set of sequents on a language \mathcal{L} is denoted $\mathscr{S}_{\mathcal{L}}$.
- By substitutivity (theorem ??) we may simplify our proofs by incorporating theorems (and meta-theorems) as derived rules (denoted with a ') of the proof system.

Definition 1.3.3. (The Sequent Form of \mathcal{H}_0) $\mathcal{H}_0^{\varsigma}$, the sequent form of \mathscr{H}_0 is a proof system, is defined on the language $\mathscr{S}_{\mathcal{L}_0}$ with the following axioms and inference rules:

$$(R') \frac{\psi \in \Gamma}{\Gamma \vdash \psi}$$

(S)
$$\overline{\Gamma \vdash (\psi \to (\phi \to \chi)) \to ((\psi \to \phi) \to (\psi \to \chi))}$$

$$(K) \frac{\Gamma \vdash \psi \to (\phi \to \psi)}{\Gamma \vdash \psi \to (\phi \to \psi)}$$

(K)
$$\frac{1}{\Gamma \vdash \psi \to (\phi \to \psi)}$$
 (N) $\frac{1}{\Gamma \vdash (\neg \phi \to \neg \psi) \to ((\neg \phi \to \psi) \to \phi)}$

(MP)
$$\frac{\Gamma \vdash \psi \qquad \Gamma \vdash \psi \to \phi}{\Gamma \vdash \phi}$$

$$(DT I') \frac{\Gamma, \psi \vdash \phi}{\Gamma \vdash \psi \to \phi}$$

$$(\mathrm{DT}\ \mathsf{I}') \, \frac{\Gamma, \psi \vdash \phi}{\Gamma \vdash \psi \to \phi} \qquad \qquad (\mathrm{DT}\ \mathsf{E}') \, \frac{\Gamma \vdash \psi \to \phi}{\Gamma, \psi \vdash \phi}$$

- $\Delta \vdash_{\mathscr{H}^s} (\Gamma \vdash \psi) \iff \Delta, \Gamma \vdash_{\mathscr{H}_0} \psi.$
- The sequent form $\mathscr{H}_0^{\varsigma}$ w/ derived rules and operators provides a richer proof system. (See notes for derived rules).

Definition 1.3.4. (Derived Operator) A derived operator $O^{\Delta} \notin \Omega$ is an operator o defined in terms of operators in Ω , given by $O^{\Delta}(\psi_1,\ldots,\psi_n) \triangleq$

$$O(\psi_1, \dots, \psi_n)$$
 where $O(\psi_1, \dots, \psi_n) \in \mathcal{L}_0(\Omega)$.
$$\top \triangleq \psi \to \psi$$

$$\perp \triangleq \neg(\psi \to \psi)$$

$$\psi \lor \phi \triangleq \neg \psi \to \phi$$

Each derived operator $O^{\Delta}(\psi_1,\ldots,\psi_n) \triangleq O(\psi_1,\ldots,\psi_n)$ has the introduction and elimination rules:

 $\psi \land \phi \triangleq \neg(\psi \to \neg \phi)$

$$\frac{\Gamma \vdash O^{\Delta}(\psi_1, \dots, \psi_n)}{\Gamma \vdash O(\psi_1, \dots, \psi_n)} \quad \frac{\Gamma \vdash O(\psi_1, \dots, \psi_n)}{\Gamma \vdash O^{\Delta}(\psi_1, \dots, \psi_n)}$$

1.3.2 Gentzen's Natural Deduction System

• Idea: Derived rules from $\mathcal{H}_0^{\varsigma}$ results in a *natural system*. A non-minimal system that consists of *introduction* and *elimination* (or left or right) rules for each operator.

Definition 1.3.5. (\mathscr{G}_0 **Proof System**) The \mathscr{G}_0 proof system, Gentzen's Natural Deduction System, is defined on the language $\mathscr{S}_{\mathcal{L}_0}$ with the following axioms and inference rules:

Alistair O'Brien Logic and Proof

Operator	Introduction	Elimination
	$(\bot I) \frac{\Gamma \vdash \psi \land \neg \psi}{\Gamma \vdash \bot}$	$(\bot E) \frac{\Gamma \vdash \bot}{\Gamma \vdash \psi}$ $(\top E) \frac{\Gamma \vdash \top}{\Gamma \vdash \psi \lor \neg \psi}$ $(\neg E) \frac{\Gamma, \neg \psi \vdash \bot}{\Gamma \vdash \psi}$ $(\neg E) \frac{\Gamma \vdash \neg \neg \psi}{\Gamma \vdash \psi}$ $(\lor E) \frac{\Gamma \vdash \psi \lor \phi \qquad \Gamma \vdash \psi \to \chi \qquad \Gamma \vdash \phi \to \chi}{\Gamma \vdash \chi}$ $(\land E_1) \frac{\Gamma \vdash \psi \land \phi}{\Gamma \vdash \psi} (\land E_2) \frac{\Gamma \vdash \psi \land \phi}{\Gamma \vdash \phi}$ $(\longleftrightarrow E_1) \frac{\Gamma \vdash \psi \longleftrightarrow \phi}{\Gamma \vdash \psi \to \phi} (\longleftrightarrow E_2) \frac{\Gamma \vdash \psi \longleftrightarrow \phi}{\Gamma \vdash \phi \to \psi}$
Т	$(\top I) {\Gamma \vdash \top}$	$(\top E) \frac{\Gamma \vdash \top}{\Gamma \vdash \psi \vee \neg \psi}$
¬	$(\neg I) \frac{\Gamma, \psi \vdash \bot}{\Gamma \vdash \neg \psi}$	$(\neg E) \frac{\Gamma, \neg \psi \vdash \bot}{\Gamma \vdash \psi}$
77	$(\neg\neg\mathbf{I}) \frac{\Gamma \vdash \psi}{\Gamma \vdash \neg\neg\psi}$	$(\neg\neg E) \frac{\Gamma \vdash \neg \neg \psi}{\Gamma \vdash \psi}$
V	$(\forall I_1) \frac{\Gamma \vdash \psi}{\Gamma \vdash \psi \lor \phi} (\forall I_2) \frac{\Gamma \vdash \phi}{\Gamma \vdash \psi \lor \phi}$	$(\vee E) \ \frac{\Gamma \vdash \psi \lor \phi \qquad \Gamma \vdash \psi \to \chi \qquad \Gamma \vdash \phi \to \chi}{\Gamma \vdash \chi}$
٨	$(\land I) \frac{\Gamma \vdash \psi \qquad \Gamma \vdash \phi}{\Gamma \vdash \psi \land \phi}$	$(\land E_1) \frac{\Gamma \vdash \psi \land \phi}{\Gamma \vdash \psi} (\land E_2) \frac{\Gamma \vdash \psi \land \phi}{\Gamma \vdash \phi}$
\rightarrow	$(\to I) \frac{\Gamma, \psi \vdash \phi}{\Gamma \vdash \psi \to \phi}$	$(\rightarrow E) \frac{\Gamma \vdash \psi \qquad \Gamma \vdash \psi \rightarrow \phi}{\Gamma \vdash \phi}$
\longleftrightarrow	$\left \begin{array}{ccc} (\longleftrightarrow I) & \frac{\Gamma \vdash \psi \to \phi & \Gamma \vdash \phi \to \psi}{\Gamma \vdash \psi \longleftrightarrow \phi} \end{array} \right $	$(\longleftrightarrow E_1) \xrightarrow{\Gamma \vdash \psi \longleftrightarrow \phi} (\longleftrightarrow E_2) \xrightarrow{\Gamma \vdash \psi \longleftrightarrow \phi}$

1.3.3 Sequent Calculus

• Idea: Extends \mathcal{G}_0 w/ generalized sequents.

Definition 1.3.6. (Generalized Sequent) An generalized sequent in a proof system \mathscr{P} for $\mathcal{L}_0(\Omega)$ where $\vee \in \Omega$ is a meta-formula of the form $\Gamma \vdash \Delta$, where $\Gamma, \Delta \in \mathcal{P}(\mathcal{L})$, with the semantic definition

$$\Gamma \vdash \Delta \iff \Gamma \vdash \bigvee \Delta.$$

• Semantically, by deduction theorem and soundness and completeness:

$$\Gamma \vdash \Delta \iff \models \bigwedge \Gamma \rightarrow \bigvee \Delta$$

• The generalized sequent: explicitly specifies the assumptions Γ and reduces non-determinism (branching) on \vee .

Definition 1.3.7. (Sequent Calculus \mathscr{S}_0 Proof System) \mathscr{S}_0 , the Sequent calculus proof system for Propositional logic, is defined on the generalized sequent form language of $\mathcal{L}_0(\Omega_0)$ with the following axioms and inference rules:

Operator		Right
Axiom	$(A) {\Gamma, \psi \vdash \Delta, \psi}$	
¬	$(\neg l) \frac{\Gamma \vdash \Delta, \psi}{\Gamma, \neg \psi \vdash \Delta}$	$(\neg r) \frac{\Gamma, \neg \psi \vdash \bot}{\Gamma \vdash \Delta, \neg \psi}$
٨	$(\land l) \frac{\Gamma, \psi, \phi \vdash \Delta}{\Gamma, \psi \land \phi \vdash \Delta}$	$(\neg r) \frac{\Gamma, \neg \psi \vdash \bot}{\Gamma \vdash \Delta, \neg \psi}$ $(\wedge r) \frac{\Gamma \vdash \Delta, \psi \qquad \Gamma \vdash \Delta, \phi}{\Gamma \vdash \Delta, \psi \land \phi}$ $(\forall r) \frac{\Gamma \vdash \Delta, \psi, \phi}{\Gamma \vdash \Delta, \psi \lor \phi}$ $(\rightarrow r) \frac{\Gamma, \psi \vdash \Delta, \phi}{\Gamma \vdash \Delta, \psi \to \phi}$ $(\longleftrightarrow r) \frac{\Gamma, \psi \vdash \Delta, \phi}{\Gamma \vdash \Delta, \psi \longleftrightarrow \phi}$
V	$(\vee l) \frac{\Gamma, \psi \vdash \Delta \qquad \Gamma, \phi \vdash \Delta}{\Gamma, \psi \land \phi \vdash \Delta}$	$(\vee r) \; \frac{\Gamma \vdash \Delta, \psi, \phi}{\Gamma \vdash \Delta, \psi \lor \phi}$
\rightarrow	$(\to l) \frac{\Gamma \vdash \Delta, \psi \qquad \Gamma, \phi \vdash \Delta}{\Gamma, \psi \to \phi \vdash \Delta}$	$(\to r) \frac{\Gamma, \psi \vdash \Delta, \phi}{\Gamma \vdash \Delta, \psi \to \phi}$
\longleftrightarrow	$(\longleftrightarrow l) \xrightarrow{\Gamma \vdash \Delta, \psi, \phi} \xrightarrow{\Gamma, \psi, \phi \vdash \Delta} \xrightarrow{\Gamma, \psi \longleftrightarrow \phi \vdash \Delta}$	$(\longleftrightarrow r) \; \frac{\Gamma, \psi \vdash \Delta, \phi \qquad \Gamma, \phi \vdash \Delta, \psi}{\Gamma \vdash \Delta, \psi \longleftrightarrow \phi}$

Theorem 1.3.3. (Soundness and Completeness of \mathscr{S}_0) \mathscr{S}_0 is sound and complete, that is

$$\forall \Gamma, \Delta \in \mathcal{P}(\mathcal{L}).\Gamma \vdash_{\mathscr{S}_0} \Delta \iff \Gamma \vDash \bigvee \Delta.$$

Proof. By the soundness and completeness of \mathcal{H}_0 and the derived rules of \mathcal{H}_0 (see notes), then it follows that \mathcal{S}_0 is sound and complete.

1.3.3.1 Structural Rules

• Structural rules apply to generalized sequents, as opposed to operators.

Lemma 1.3.1. (Weakening) We have the following weakening rules:

$$(\text{Weaken } l) \, \frac{\Gamma \vdash \Delta}{\Gamma, \psi \vdash \Delta} \qquad (\text{Weaken } r) \, \frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, \psi}$$

• Contradiction not required for our formalization due to the usage of sets since $\{x, x\} = \{x\}$.

$$(\text{Contradiction } l) \, \frac{\Gamma, \psi, \psi \vdash \Delta}{\Gamma, \psi \vdash \Delta} \qquad (\text{Contradiction } r) \, \frac{\Gamma \vdash \Delta, \psi, \psi}{\Gamma \vdash \Delta, \psi}$$

Lemma 1.3.2. (Contradiction) We have the following contradiction rules:

Theorem 1.3.4. (Cut Elimination Theorem) The rule

(Cut)
$$\frac{\Gamma \vdash \Delta, \psi \qquad \Gamma, \psi \vdash \Delta}{\Gamma \vdash \Delta}$$

is derived.

1.4 Automated Theorem Proving

- Proof systems \mathscr{P} yield decidable methods for determining whether $\Gamma \vDash \psi$ holds given a proof tree \mathscr{T}
- **Problem**: Determining whether $\Gamma \vDash \psi$ holds without a proof tree \Longrightarrow Automated Theorem Proving.
- Many automated methods use search algorithms on proof trees (see Tableux Calculus) or *clause-based* methods (See section?? for *clauses*).

1.4.1 Tautology Checking

- Approach: Reduce $\Gamma \vDash \psi$ to $\vDash \underbrace{\bigwedge \Gamma \to \psi}_{\phi}$ via deduction theorem and uncurrying.
- Solutions:
 - Truth tables, considering $\mathcal{T} \llbracket \cdot \rrbracket_{\mathcal{I}}$ under the finite $2^{\left| \llbracket \phi \rrbracket_{P} \right|}$ interpretations.
 - Tautology checking: Determine whether $\not \models \phi$ is true. (falsifying)
- Approach: Determine whether $\not\vDash \phi$ using clauses

Theorem 1.4.1. For a family of clauses $\Delta \in \Sigma_{\Delta}$:

(i)
$$\not\vdash C \iff P(C) \cap N(C) = \emptyset$$

(ii)
$$\not\vdash \Delta \iff \exists C \in \Delta. \not\vdash C$$

Definition 1.4.1. (\mathscr{T}_0 **Proof System**) The \mathscr{T}_0 (tautology checking) proof system is defined on the language Σ_{Δ} with the following axiom and inference rule:

(i)
$$\frac{P(C) \cap N(C) = \emptyset}{\{C\}}$$

(ii)
$$\frac{\{C_k\}}{\{C_1, \dots, C_n\}} [1 \le k \le n]$$

with the axioms and inference rules corresponding to statements in Theorem ??.

Theorem 1.4.2. (Completeness and Soundness of \mathscr{T}_0) The proof system \mathscr{T}_0 satisfies

$$\not\vdash_{\mathscr{T}_0} \Delta \iff \Gamma \vDash \psi.$$

- Method to prove $\Gamma \vDash \psi$:
 - 1. Compute $\Delta = \llbracket \llbracket \bigwedge \Gamma \to \psi \rrbracket_{CNF} \rrbracket_{\Delta}$
 - 2. Determine whether $\vdash_{\mathscr{T}_0} \Delta$ is true, a tautological refutation using \mathscr{T} . Performing simplification on Δ improves efficiency (see theorem ??).
 - 3. If $\vdash_{\mathscr{T}_0} \Delta$ is true, then $\Gamma \not\vDash \psi$.
- Advantage: If a refutation cannot be found, then it is easy to determine a satisfiable interpretation.

1.4.2 Propositional Resolution

- **Problem**: CNF of $\bigwedge \Gamma \to \psi$ has an exponential space complexity (due to distributive law).
- Solution: Use Γ ⊨ ψ ⇔ Λ Γ ∧ ¬ψ is contradicting.
 The (set-based) family of clause representation of Λ Γ ∧ ¬ψ computed using:

$$\left[\!\!\left[\bigwedge \Gamma \wedge \neg \psi\right]\!\!\right]_{\Delta} = \bigcup_{\varphi \in \Gamma \cup \{\neg \psi\}} \left[\!\!\left[\!\!\left[\varphi\right]\!\!\right]_{CNF}\right]\!\!\right]_{\Delta}.$$

Improved efficiency by computing the CNF of smaller propositions.

Theorem 1.4.3. (Resolution Theorem) For all $\psi_1, \psi_2, \psi_3 \in \mathcal{L}_0$,

 $(\psi_1 \vee \psi_2) \wedge (\neg \psi_1 \vee \psi_3)$ is satisfiable $\implies \psi_2 \vee \psi_3$ is satisfiable.

Definition 1.4.2. (\mathscr{R}_0 **Proof System**) The \mathscr{R}_0 (propositional resolution) proof system is defined on the language Σ_{Δ} with the following axiom and inference rules:

$$(\emptyset) \frac{\emptyset \in \Delta}{\Delta}$$

(R)
$$\frac{\Delta \cup \{C \setminus \{p\} \cup \overline{C} \setminus \{\neg p\} : C \in \Lambda_p, \overline{C} \in \overline{\Lambda}_p\}}{\Delta \cup \Lambda_p \cup \overline{\Lambda_p}}$$

where $\Lambda_p = \{ p \in C : C \in \Delta' \}$, $\overline{\Lambda}_p = \{ \neg p \in \overline{C} : \overline{C} \in \Delta' \}$ and $\Delta' = \Delta \cup \Lambda_p \cup \overline{\Lambda}_p$.

• This yields a $O(| [\![\Delta]\!]_P |)$ algorithm. Since each application of (R) removes a predicate symbol \implies terminiating.

Theorem 1.4.4. (Completeness and Soundness of \mathcal{R}_0) The proof system \mathcal{R}_0 satisfies

$$\vdash_{\mathscr{R}_0} \Delta \iff \Delta \text{ is unsatisfiable.}$$

- Method to prove $\Gamma \vDash \psi$:
 - 1. Compute $\Delta = \llbracket \bigwedge \Gamma \land \neg \psi \rrbracket_{\Delta}$
 - 2. Determine whether $\vdash_{\mathscr{R}_0} \Delta$ is true, a *refutation* using \mathscr{R}_0 . Performing simplification on Δ improves efficiency (see theorem ??).
 - 3. If $\vdash_{\mathscr{R}_0} \Delta$ is true, then Δ is contradicting. Hence $\Gamma \vDash \psi$ is true.
- Often useful to use resolution trees, e.g.

$$\frac{\{\neg P, R\} \qquad \{P\}}{\{R\}} \qquad \{\neg R\}$$

with the resolution rule: $\frac{P, \Delta}{\Delta, \Gamma} \neg P, \Gamma$.

- Strategies:
 - Ignore irrelavant clauses: Not all clauses are or can be used in a resolution proof (e.g. clauses containing pure literals)

- Set of support: Initial application of resolution must contain the clause of the consequence $(\neg \psi)$.
- Linear resolution: Each resolvent is the parent clause for the next resolvent w/ the other parent being drawn from the set of axiom clauses e.g.

$$\frac{\{\neg P\} \quad \{P,Q\}}{\{Q\}} \quad \{P,\neg Q\} \quad \{\neg P\}$$

$$\frac{\{P\} \quad \{\neg P\}}{\emptyset}$$

Additional space complexity improvement by only storing the current resolvent (starting w/ the set of support).

- Cuts: Using a cut (or case split):

$$\frac{\neg P, \Gamma \qquad P, \Gamma}{\Gamma}$$

is often useful to reduce clause sizes.

1.4.3 DPLL

 DPLL: simple claused-based ATP procedure that determines unsatisfiablity.

Definition 1.4.3. (Pure Literal) A literal ℓ is pure in $\Delta \iff$ no clause $C \in \Delta$ contains $\neg \ell$.

- Algorithm:
 - 1. Delete all tautological clauses: $\{P, \neg P, \ldots\}$. $\top \wedge C \simeq C$
 - 2. Delete all clauses containing pure literals.
 - 3. Unit propagation: For each unit clause $\{\ell\}$:
 - Delete all clauses containing ℓ . $\ell \wedge (\ell \vee C) \simeq C$.
 - Delete $\neg \ell$ from all clauses. $\ell \wedge (\neg \ell \vee C) \simeq C \wedge \psi$
 - 4. Case split: Perform a case split (cut) on some literal ℓ , recursively applying the DPLL method on Δ , ℓ and Δ , $\neg \ell$. Satisfiable \iff one of the cases is satisfiable. $(\ell \land \psi) \lor (\neg \ell \land \psi) \simeq \psi$.

5. If the empty clause is generated \implies unsatisfiable (a refutation). If all clauses are deleted \implies satisfiable.

```
let dpll \Delta
| S.is_empty \Delta = True
| S.empty \in \Delta = False
| otherwise = rule1
where

rule1 = maybe rule2 dpll (unit_prop \Delta)
rule2 = maybe rule3 dpll (pure_lit \Delta)
rule3 = dpll (S.insert \{p\} \Delta)

|| dpll (S.insert \{\neg p\} \Delta)

// arbitrary choice. Could optimize based on occurrence of literal etc p = max (S.filter is_pos (S.unions \Delta))
```

- **Terminates**: Each unit propagation removes a propositional symbol and $[\![\Delta]\!]_P$ is finite.
- The set of unit propagations $\{\ell_1, \ldots\}$ (for a satisfiable termination) defines a satisfying interpretation \mathcal{I} s.t $\forall 1 \leq i \leq n$. $\vDash_{\mathcal{I}} \ell_i$.

Definition 1.4.4. (**DPLL Proof System**) The \mathcal{D}_0 DPLL proof system is defined on the sequents of Σ_{Δ} w/ the following axioms and inference rules:

$$(\text{Unit}) \frac{\Gamma, \ell \vdash \Delta}{\Gamma \vdash \Delta, \{\ell\}}$$

$$(\text{Unit } \mathsf{E}_1) \frac{\Gamma, \ell \vdash \Delta}{\Gamma, \ell \vdash \Delta, C \cup \{\ell\}} \qquad (\text{Unit } \mathsf{E}_2) \frac{\Gamma, \ell \vdash \Delta, C}{\Gamma, \ell \vdash \Delta, C \cup \{\neg \ell\}}$$

$$(\text{Split}) \frac{\Gamma, \ell \vdash \Delta}{\Gamma \vdash \Delta} \frac{\Gamma, \neg \ell \vdash \Delta}{\Gamma \vdash \Delta} \qquad (\text{Unsat}) \frac{\Gamma \vdash \Delta, \emptyset}{\Gamma \vdash \Delta, \emptyset}$$

Theorem 1.4.5. (Completeness and Soundness of \mathcal{D}_0) The proof system \mathcal{D}_0 satisfies

 $\vdash_{\mathscr{D}_0} \Delta \iff \Delta \text{ is unsatisfiable.}$

1.4.4 Binary Decision Diagrams

- **Problem**: $\mathscr{T}_0, \mathscr{D}_0, \mathscr{R}_0$ proof systems still suffer from exponential increase in number of literals (due to distributivity) for clause-based methods.
- Observation: Semantic mapping of boolean algebra operators $\{\bar{\cdot}, \cdot, +, \oplus\}$ and syntactic operators $\Omega_0 = \{\neg, \land, \lor, \longleftrightarrow, \rightarrow\}$. Reason about tautologies using semantics expressions.
- The homogenous Boolean algebra $\mathbf{B} = (\{0,1\}, \{\bar{\cdot}, \cdot, +, \oplus\}, \{=_{\mathbf{B}}\})$ defines the term algebra $\mathbf{B}(V) = (\mathbb{B}_{\Omega}(V), \Omega, \{=_{\mathbf{B}}\})$ where $s, t, u \in \mathbb{B}(V)$ is the set of *boolean expressions* and $V = \{a, b, c, \ldots\}$ is the set of boolean variables.

Definition 1.4.5. (**Tenrary Operator**) We extend $\mathbf{B} = (\{0,1\}, \{\bar{\cdot}, \cdot, +, ...\}, \{=\})$ to \mathbf{B}' by introducing the *ternary operator* a?b:c, defined by

$$a?b: c = a \cdot b + \overline{a} \cdot c.$$

Lemma 1.4.1. The algebra $\mathbf{B}_? = (\{0,1\}, \{\cdot?\cdot:\cdot\}, \{=\})$ is adequate, that is $\mathbb{B}_?(V) \lesssim \mathbb{B}(V)$.

Proof. The following identities prove the lemma:

$$\overline{a} = a?0:1$$
 $a \cdot b = a?b:0 = b?a:0$
 $a + b = a?1:b = b?1:a$
 $a \oplus b = a?b:(b?0:1)$

Lemma 1.4.2. For boolean expressions, $s^0, s^1, t^0, t^1 \in \mathbb{B}'(V)$, define $s = a?s^1: s^0$ and $t = a?t^1: t^0$, then

- (i) $\overline{s} = a?\overline{s^1}: \overline{s^0},$
- (ii) For all $\odot \in \{\cdot, +, \oplus\}$,

$$s \odot t = a?(s^1 \odot t^1) : (s^0 \odot t^0),$$

and by extension, for all $o_n: \mathbb{B}^n \to \mathbb{B}$ n-ary boolean operators, then

$$\forall 1 \le i \le n. t_i = a? t_i^1 : t_i^0 \implies o_n(t_1, \dots, t_n) = a? o_n(t_1^1, \dots, t_n^1) : o_n(t_1^0, \dots, t_n^0).$$

Proof. Let s^0, s^1, t^0, t^1 be arbitrary boolean expressions. For a boolean variable a, define $s = a?s^1 : s^0$ and $t = a?t^1 : t^0$.

(i) We have

$$\overline{s} = \overline{a \cdot s^1 + \overline{a} \cdot s^0}$$
 (Definition ??)
$$= \overline{a \cdot s^1} \cdot \overline{a} \cdot s^0$$
 (De Morgan's Law)
$$= (\overline{a} + \overline{s^1}) \cdot (a + \overline{s^0})$$
 (De Morgan's Law)
$$= \overline{a} \cdot \overline{s^0} + a \cdot \overline{s^1} + \overline{s^0} \cdot \overline{s^1}$$
 (Distributive Law)
$$= \overline{a} \cdot \overline{s^0} + a \cdot \overline{s^1}$$
 ($a \cdot b + \overline{a} \cdot c + b \cdot c = a \cdot b + \overline{a} \cdot c$)
$$= a?\overline{s^1} : \overline{s^0}$$

as required.

(ii) For

 $\odot = \cdot$, we have

$$s \cdot t = (a \cdot s^{1} + \overline{a} \cdot s^{0}) \cdot (a \cdot t^{1} + \overline{a} \cdot t^{0})$$
 (Definition ??)

$$= a \cdot s^{1} \cdot t^{1} + \overline{a} \cdot s^{0} \cdot t^{0}$$
 (Distributive Law)

$$= a \cdot s^{1} \cdot t^{1} : s^{0} \cdot t^{0}$$

a as required.

Similar proofs hold for $\odot \in \{+, \oplus\}$, with the extension by induction.

Theorem 1.4.6. $\mathcal{L}_0(\{\bot, \top, ? :\})$ and \mathcal{L}_0 are congruent.

Proof. Follows from the homomorphism μ between semantic and syntactic operators and lemma ??.

Definition 1.4.6. (TNF) A boolean expression $s \in \mathbb{B}(V)$ is said to be in ternary normal form (TNF) if $s \in \mathbb{B}_{?}(V)$, where $\mathbb{B}_{?}(V)$ is defined by

$$s ::= 0 \mid 1 \mid a ? s^1 : s^0$$

where $a \in V, s \in \mathbb{B}_{?}(V)$.

• A boolean expression s with variables a_1, \ldots, a_n is denoted $s(a_1, \ldots, a_n)$.

Theorem 1.4.7. All boolean expressions $s \in \mathbb{B}(V)$ may be expressed in TNF

Proof. Follows from Lemma ??

• **Idea**: The truth-table of some expression $s(a_1, \ldots, a_n)$ yields a TNF of $s(a_1, \ldots, a_n)$.

a	b	c	d	s
			0	0
		0	1	0
	0		0	0
		1	1	1
0			0	0
		0	1	0
	1		0	0
		1	1	0
			0	0
	0	0	1	1
			0	0
1		1	1	1
			0	0
		0	1	0
	1		0	1
		1	1	1

• Idea: Truth-tables may be represented using $trees \implies BDDs$

Definition 1.4.7. (**BDD**) A binary decision diagram (BDD) is a DAG G = (V, E) satisfying

- Leaf nodes: There are at least 2 distinct leaf nodes with the labels 0 and 1 (respectively).
- Internal nodes: Each internal node $v \in V \setminus L$ has a boolean variable label a with two out-going edges $e_0, e_1 \in E$, referred to as the 0 (or low) edge (dashed) and the 1 (or high) edge, respectively.
- A BDD has the following $\rightarrow reductions$:
 - 1. Eliminating Duplicate Terminals:

CHAPTER 1. PROPOSITIONAL LOGIC

2. Eliminating Redundant Vertices:

3. Eliminating Duplicate Vertices:

 \bullet The variable (or label) of a non-terminal v w/ variable a, low vertex u and high w is associated with

$$var(v) = a, lo(v) = u, hi(v) = w.$$

This is denoted as $v = \langle a, u, w \rangle \in V \setminus L$. Leaves $v \in L$ are denote $v = \langle k \rangle$ where $k \in \mathbb{B}$.

Definition 1.4.8. (**RBDD**) A BDD is a *reduced BDD* if no more \rightarrow reductions may be applied.

Definition 1.4.9. (**OBDD**) A BDD is an *ordered BDD* (OBDD) with total order (V, \leq) , if for all (v_{x_1}, v_{x_n}) paths

$$v_{x_1} \to v_{x_2} \to \cdots \to v_{x_n},$$

 $x_1 \le x_2 \le \cdots \le x_n$ holds.

• An reduced ordered BDD (ROBDD) is a ordered BDD that is reduced.

Theorem 1.4.8. (ROBDD Representation) For a given total ordering (V, \leq) , every ROBDD G = (V, E) represents a unique boolean expression s.

Proof. We proceed by rule induction on an ROBDD G=(V,E), with the statement

$$P(v) = \exists! s^v \in \mathbb{B}_?(V).$$

Base Case: For a leaf $v = \langle k \rangle \in L$, we have the following cases:

- $v = \langle 0 \rangle$. So we have $s^v = 0$.
- $v = \langle 1 \rangle$. So we have $s^v = 1$.

So we have P(v).

Inductive Step: For a vertex $v = \langle a, u, w \rangle \in V$, we wish to show that $P(u) \wedge P(w) \Longrightarrow P(v)$. Let us assume that P(u) and P(w) hold, then we have s^u and s^w . We define

$$s^v = a?s^w : s^u,$$

where uniqueness follows from the uniqueness of s^u , s^w and a (on subpaths). So we have P(v).

By the Principle of Rule Induction, we conclude the statement P(v) holds for all $v \in V$.

Theorem 1.4.9. (ROBDD Canonicity) For a given total ordering (V, \leq) s.t $a_n \leq \cdots \leq a_1$, for all boolean expressions $s(a_1, \ldots, a_n)$ there exists a unique ROBDD representing $s(a_1, \ldots, a_n)$.

Proof. We proceed by induction on $n \in \mathbb{N}$ with the statement

$$P(n) = \forall s(a_1, \dots, a_n) \in \mathbb{B}_?(V).\exists ! \text{ROBDD } G = (V, E).G \text{ represents } s(a_1, \dots, a_n).$$

Base Case: For n = 0, there exists exactly two ground expressions 0 and 1, with ROBDDs $G = (\{0\}, \emptyset)$ and $G = (\{1\}, \emptyset)$ respectively. So we have P(0).

Inductive Step: We wish to show that $\forall n \in \mathbb{N}.P(n) \Longrightarrow P(n+1)$. Let $n \in \mathbb{N}$ be an arbitrary natural. Let $s(a_1, \ldots, a_{n+1}) \in \mathbb{B}_?(V)$. Define $s^0(a_1, \ldots, a_n) = s(a_1, \ldots, a_n, 0)$ and $s^1(a_1, \ldots, a_n) = s(a_1, \ldots, a_n, 1)$. Then it follows that

$$s(a_1,\ldots,a_{n+1}) = a_{n+1}?s^1(a_1,\ldots,a_n):s^0(a_1,\ldots,a_n).$$

Let us assume that P(n) holds. Instantiating for s^1 and s^0 yields the ROB-DDs $G^1 = (V^1, E^1)$ and $G^0 = (V^0, E^0)$, with roots v_0 and v_1 respectively. We have the following cases:

- $G^1 \neq G^0$. Let us assume that $G^1 = G^0$. Hence $s^0 = s^{v_0} = s^{v_1} = s^1$. Hence $s = s^1 = s^0$. So we have $G = G^1 = G^0$.
- $G^1 \neq G^0$. So we have $s^{v_1} = s^1 \neq s^0 = s^{v_0}$. Define a new vertex $v = \langle a_{n+1}, v_0, v_1 \rangle$. This yields a new ROBDD $G = (V^1 \cup V^2 \cup \{v\}, E^1 \cup E^2 \cup \{(v, v_0), (v, v_1)\})$ representing s. The uniqueness of G follows from the uniqueness of G^1 , G^2 and the ordering (V, \leq) .

So we have P(n+1).

By the Principle of Mathematical Induction, we conclude the statement P(n) holds for all $n \in \mathbb{N}$.

• Consequences:

- Tautology checking $\Gamma \vDash \psi$ consists of checking whether the ROBDD for ψ is equal to 1.
- Checking semantic equivalence is determined by checking whether the ROBDDs are equal.

2 First Order Logic

2.1 Syntax

Definition 2.1.1. (Homogenous Signature) A signature $\Omega = (S, \mathcal{F}, \mathcal{R})$ is homogenous, or *uni-typed* iff $S = \{s\}$, where s is some arbitrary type.

Definition 2.1.2. (Ω -**Terms**) For a homogenous signature $\Omega = (S, \mathcal{F}, \mathcal{R})$, the set of Ω -terms $\mathbb{T}_{\Omega}(V)$ (in context of \mathcal{L}_1) is defined by

$$s,t,u ::= x \in V \mid f(t_1,\ldots,t_n)$$

where $f: s^n \to s \in \Omega$.

• \mathbb{T}_{Ω} is the set of ground terms.

Definition 2.1.3. (First Order Logic) For a homogenous signature Ω and set of Ω -terms $\mathbb{T}_{\Omega}(V)$:

- $\Sigma_A(\Omega) = \{p(t_1, \dots, t_n) : p : s^n \in \mathcal{R} \land t_i \in \mathbb{T}_{\Omega}(V)\}$ is the set of Ω -atoms.
- $\Omega_1 = \Omega_0 \cup \{ \forall x..., \exists x... : x \in V \}$ is the set of operators.
- The formal language, or *syntax*, of the first order logic is $\mathcal{L}_1(\Omega_1, \Omega) = \mathbb{T}_{\Omega_1}(\Sigma_A(\Omega))$, often denoted $\mathcal{L}_1(\Omega)$, that is

$$\psi ::= p(t_1, \dots, t_n) \in \Sigma_A(\Omega)$$

$$\mid \top \mid \bot \mid \neg \psi$$

$$\mid \psi_1 \wedge \psi_2 \mid \psi_1 \vee \psi_2$$

$$\mid \psi_1 \rightarrow \psi_2 \mid \psi_1 \longleftrightarrow \psi_2$$

$$\mid \forall x. \psi \mid \exists x. \psi$$

Definition 2.1.4. (Variables) For any term $t \in \mathbb{T}_{\Omega}(V)$, var(t) is the set of variables in t:

$$var(x) = \{x\}$$
$$var(f(t_1, \dots, t_n)) = \bigcup_{1 \le i \le n} var(t_i)$$

• $Qx.\psi$ binds x in ψ where $Q \in \{\exists, \forall\}$ is a quantifier.

Definition 2.1.5. (Free and bound variables) For any formula $\psi \in \mathcal{L}_1(\Omega)$, $fv(\psi)$ and $var(\psi)$ are the sets of *free* variables and variables in t, respectively:

$$fv(p(t_1, \dots, t_n)) = \bigcup_{1 \le i \le n} var(t_i) \qquad var(p(t_1, \dots, t_n)) = \bigcup_{1 \le i \le n} var(t_i)$$

$$fv(o(\psi_1, \dots, \psi_n)) = \bigcup_{1 \le i \le n} fv(\psi_i) \qquad var(o(\psi_1, \dots, \psi_n)) = \bigcup_{1 \le i \le n} var(\psi_i)$$

$$fv(Qx.\psi) = fv(\psi) \setminus \{x\} \qquad var(Qx.\psi) = var(\psi) \cup \{x\}$$

The bound variables of ψ is defined as $bv(\psi) = var(\psi) \setminus fv(\psi)$.

• Notation: ψ may be written as $\psi(x_1, \ldots, x_n)$ to denote $fv(\psi) \subseteq \{x_1, \ldots, x_n\}$.

Definition 2.1.6. (Closed Formulae and Closures) $\psi \in \mathcal{L}_1$ is closed iff $fv(\psi) = \emptyset$. $\forall \mathbf{x}.\psi$ and $\exists \mathbf{x}.\psi$ are the universal closure, existential closure of $\psi(\mathbf{x})$.

Definition 2.1.7. (Substitution) A substitution θ is a partial function $\theta: V \rightharpoonup \mathbb{T}_{\Omega}(V)$.

• Notation: $\{t_1/x_1, \ldots, t_n/x_n\}$ denotes a substitution θ , where $\theta(x_i) = t_i$ and $t/x \in \theta \iff \theta(x) = t$.

Definition 2.1.8. (Application (Terms)) The application of a substitution θ to $t \in \mathbb{T}_{\Omega}(V)$, denoted θt , is inductively defined by

$$\theta x = \begin{cases} \theta(x) & \text{if } x \in \text{dom } \theta \\ x & \text{otherwise} \end{cases}$$

$$\theta f(t_1, \dots, t_n) = f(\theta t_1, \dots, \theta t_n)$$

Definition 2.1.9. (Application (Formulae)) The application of a substitution θ to $\psi \in \mathcal{L}_1(\Omega)$, denoted $\theta \psi$, is inductively defined by

$$\theta p(t_1, \dots, t_n) = p(\theta t_1, \dots, \theta t_n)$$

$$\theta o(\psi_1, \dots, \psi_n) = o(\theta \psi_1, \dots, \theta \psi_n)$$

$$\theta \mathcal{Q}x.\psi = \begin{cases} \mathcal{Q}x. \left[(\theta \setminus \{t/x\})\psi \right] & t/x \in \theta \\ \mathcal{Q}x.\theta\psi & x \notin \text{dom } \theta \land x \notin fv(\text{rng } \theta) \end{cases}$$

• Substitutions are *capture avoiding* (see quantifier case).

Definition 2.1.10. (α -equivalence) The \equiv_{α} : $\mathbb{T}_{\Omega}(V) \longleftrightarrow \mathbb{T}_{\Omega}(V)$ is inductively defined by

$$\overline{x} \equiv_{\alpha} x$$
 $\forall 1 \leq i \leq n.t_i \equiv_{\alpha} s_i$ $o(t_1, \dots, t_n) \equiv_{\alpha} o(s_1, \dots, s_n)$.

and $\equiv_{\alpha}: \mathcal{L}_1(\Omega) \longrightarrow \mathcal{L}_1(\Omega)$ is defined by

$$\frac{\forall 1 \leq i \leq n.t_i \equiv_{\alpha} s_i}{p(t_1, \dots, t_n) \equiv_{\alpha} p(s_1, \dots, s_n)} \quad \frac{\forall 1 \leq i \leq n.\psi_i \equiv_{\alpha} \phi_i}{o(\psi_1, \dots, \psi_n) \equiv_{\alpha} o(\phi_1, \dots, \phi_n)} \quad \frac{z \notin var(\psi) \cup var(\phi)}{Qx.\psi \equiv_{\alpha} Qy.\phi} \quad \frac{\langle z/x \rangle \psi \equiv_{\alpha} \langle z/y \rangle \phi}{Qx.\psi \equiv_{\alpha} Qy.\phi}$$

• α -equivalence is used w/ capture avoiding substitutions.

2.2 Semantics

Definition 2.2.1. (Homogeneous Algebra) A homogeneous algebra, **A** is a the tuple $(\mathbb{A}, \mathscr{F}_{\mathbf{A}}, \mathscr{R}_{\mathbf{A}})$ such that $(\{\mathbb{A}\}, \mathbb{A} \cup \mathscr{F}_{\mathbf{A}}, \mathscr{R}_{\mathbf{A}})$ is an algebra, with the (implicit) homogeneous signature $(\{\mathbb{A}\}, \mathbb{A} \cup \mathscr{F}, \mathscr{R})$ where:

- $-\mathscr{F}_{\mathbf{A}}$ is the set of functions, where for each symbol $f \in \mathscr{F}$ of type $\mathbb{A}^n \to \mathbb{A}$, there is a function $f_{\mathbf{A}} \in \mathscr{F}_{\mathbf{A}}$ of type $f_{\mathbf{A}} : \mathbb{A}^n \to \mathbb{A}$.
- $-\mathscr{R}_{\mathbf{A}}$ is the set of relations, where for each symbol $p \in \mathscr{R}$ of type \mathbb{A}^n , there is a relation $p_{\mathbf{A}} \in \mathscr{R}_{\mathbf{A}}$ of type $p_{\mathbf{A}} \subseteq \mathbb{A}^n$.
- m-ary partial functions $f_{\mathbf{A}}: \mathbb{A}^m \to \mathbb{A}$ are defined as m+1-ary relations $p_{\mathbf{A}}^f \subseteq \mathbb{A}^{m+1}$. We often define a guard relation $p_{\mathbf{A}}^f \downarrow \subseteq \mathbb{A}^m$, where $p_{\mathbf{A}}^f(x) \downarrow$ is true if $x \in \text{dom } f$.

Definition 2.2.2. (Valuation) For an Ω -homogenous algebra \mathbf{A} . A valuation $v_{\mathbf{A}}: V \to |\mathbf{A}|$ is a total function associating each variable $x \in V$ with a unique value $a \in |\mathbf{A}|$. Set of \mathbf{A} valuations is $\Sigma_v(\mathbf{A}) = \mathcal{P}[V \to |\mathbf{A}|]$

• The domain $|\mathbf{A}|$ must be non-empty for a valid valuation.

Definition 2.2.3. (Ω-interpretation) For an Ω-homogenous algebra **A** and valuation $v_{\mathbf{A}}: V \to |\mathbf{A}|$, the tuple $\mathcal{I} = (\mathbf{A}, v_{\mathbf{A}})$ is a Ω-interpretation. The set of Ω-interpretations is given by $\Sigma_{\mathcal{I}}(\Omega)$.

Definition 2.2.4. (Value of terms) For a Ω-interpretations $\mathcal{I} = (\mathbf{A}, v_{\mathbf{A}})$, the value of a term t in context of \mathcal{I} is inductively defined by

$$\mathcal{V}_{\mathbf{A}} \llbracket x \rrbracket_{v_{\mathbf{A}}} = v_{\mathbf{A}}(x)$$

$$\mathcal{V}_{\mathbf{A}} \llbracket f(t_1, \dots, t_n) \rrbracket_{v_{\mathbf{A}}} = f_{\mathbf{A}} \left(\mathcal{V}_{\mathbf{A}} \llbracket t_1 \rrbracket_{v_{\mathbf{A}}}, \dots, \mathcal{V}_{\mathbf{A}} \llbracket t_n \rrbracket_{v_{\mathbf{A}}} \right)$$

Lemma 2.2.1. (Coincidence Lemma for Terms) For all Ω-interpretations $(\mathbf{A}, v_{\mathbf{A}}), (\mathbf{A}, v'_{\mathbf{A}}) \in \Sigma_{\mathcal{I}}(\Omega)$ and terms $t \in \mathbb{T}_{\Omega}(V)$,

$$\forall x \in var(t).v_{\mathbf{A}}(x) = v_{\mathbf{A}}'(x) \implies \mathcal{V}_{\mathbf{A}} \llbracket t \rrbracket_{v_{\mathbf{A}}} = \mathcal{V}_{\mathbf{A}} \llbracket t \rrbracket_{v_{\mathbf{A}}'}.$$

Definition 2.2.5. (Valuation variant) For any set variables $X \subseteq V$ and valuations $v_{\mathbf{A}}, v'_{\mathbf{A}} \in \Sigma_v(\Omega)$. $v'_{\mathbf{A}}$ is said to be an X-variant of $v_{\mathbf{A}}$, denoted $v_{\mathbf{A}} =_{\backslash X} v'_{\mathbf{A}}$, if

$$\forall y \in V \setminus X.v_{\mathbf{A}}(y) = v'_{\mathbf{A}}(y).$$

- Notation:
 - For $X = \{x\}$, v and v' are x-variants, denoted $v =_{\backslash x} v'$.
 - For $X = \{x_1, \ldots, x_n\}$, if $v_X = \setminus X$ v and $v_X(x_i) = a_i \in |\mathbf{A}|$ for all $x_i \in X$, then we write $v_X = \{a_1/x_1, \ldots, a_n/x_n\} v$.

Definition 2.2.6. (Semantics of First Order Logic) Let $\mathcal{I} = (\mathbf{A}, v_{\mathbf{A}}) \in \Sigma_{\mathcal{I}}(\Omega)$ be a Ω-interpretation. The truth value of a formula $\psi \in \mathcal{L}_1(\Omega)$ in the context of the interpretation \mathcal{I} , denoted $\mathcal{T}_{\mathbf{A}} \llbracket \psi \rrbracket_{v_{\mathbf{A}}}$, where $\mathcal{T}_{\mathbf{A}} \llbracket \cdot \rrbracket_{v_{\mathbf{A}}} : \mathcal{L}_1(\Omega) \to |\mathbf{B}|$ is inductively defined by

$$\mathcal{T}_{\mathbf{A}} \llbracket p(t_{1}, \dots, t_{n}) \rrbracket_{v_{\mathbf{A}}} = \begin{cases} 1 & \text{if } (\mathcal{V}_{\mathbf{A}} \llbracket t_{1} \rrbracket_{v_{\mathbf{A}}}, \dots, \mathcal{V}_{\mathbf{A}} \llbracket t_{n} \rrbracket_{v_{\mathbf{A}}}) \in p_{\mathbf{A}} \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{T}_{\mathbf{A}} \llbracket \forall x. \psi \rrbracket_{v_{\mathbf{A}}} = \prod_{v'_{\mathbf{A}} = \backslash_{x} v_{\mathbf{A}}} \mathcal{T}_{\mathbf{A}} \llbracket \psi \rrbracket_{v'_{\mathbf{A}}}$$

$$\mathcal{T}_{\mathbf{A}} \llbracket \exists x. \psi \rrbracket_{v_{\mathbf{A}}} = \sum_{v'_{\mathbf{A}} = \backslash_{x} v_{\mathbf{A}}} \mathcal{T}_{\mathbf{A}} \llbracket \psi \rrbracket_{v'_{\mathbf{A}}}$$

- The number of x-variants of v is $|\mathbf{A}|$.
- Notation: $\vDash_{(\mathbf{A},v_{\mathbf{A}})} \psi \iff \mathcal{T}_{\mathbf{A}} \llbracket \psi \rrbracket_{v_{\mathbf{A}}} = 1.$

Lemma 2.2.2. (Coincidence Lemma II) For all $\psi \in \mathcal{L}_1(\Omega)$ and $(\mathbf{A}, v_{\mathbf{A}}), (\mathbf{A}, v_{\mathbf{A}}') \in \Sigma_{\mathcal{I}}(\Omega)$,

$$(\forall x \in fv(\psi).v_{\mathbf{A}}(x) = v'_{\mathbf{A}}(x)) \implies \mathcal{T}_{\mathbf{A}} \llbracket \psi \rrbracket_{v_{\mathbf{A}}} = \mathcal{T}_{\mathbf{A}} \llbracket \psi \rrbracket_{v'_{\mathbf{A}}}.$$

Definition 2.2.7. (Satisfiable)

- A Ω -interpretation $\mathcal{I} = (\mathbf{A}, v_{\mathbf{A}}) \in \Sigma_{\mathcal{I}}(\Omega)$ satisfies $\psi \in \mathcal{L}_1(\Omega)$ iff $\vDash_{(\mathbf{A}, v_{\mathbf{A}})} \psi$.
- $\psi \in \mathcal{L}_1(\Omega)$ is said to be satisfiable in **A** iff $\exists v_{\mathbf{A}} \in \Sigma_v(\Omega)$. $\vDash_{(\mathbf{A},v_{\mathbf{A}})} \psi$.
- $\psi \in \mathcal{L}_1(\Omega)$ is said to be satisfiable iff $\exists (\mathbf{A}, v_{\mathbf{A}}) \in \Sigma_{\mathcal{I}}(\Omega)$. $\vDash_{(\mathbf{A}, v_{\mathbf{A}})} \psi$.

Definition 2.2.8. (Models) A Ω-homogenous algebra **A** is a model (or Ω-model) for $\psi \in \mathcal{L}_1(\Omega)$ iff

$$\forall v_{\mathbf{A}} \in \Sigma_v(\Omega). \vDash_{(\mathbf{A},v_{\mathbf{A}})} \psi,$$

denoted $\vDash_{\mathbf{A}} \psi$. For $\Delta \in \mathcal{P}(\mathcal{L}_1(\Omega))$:

- (i) **A** is a model of Δ (denoted $\vDash_{\mathbf{A}} \Delta$) iff $\forall \psi \in \Delta$. $\vDash_{\mathbf{A}} \psi$.
- (ii) Δ is consistent iff there exists an Ω -model **A** of Δ .

Definition 2.2.9. (Entailment and Equivalence) A formula ψ_1 entails ψ_2 , denoted $\psi_1 \vDash \psi_2$ iff $\forall \mathbf{A} . \vDash_{\mathbf{A}} \psi_1 \implies \vDash_{\mathbf{A}} \psi_2$. The formulae $\psi_1, \psi_2 \in \mathcal{L}_1(\Omega)$ are equivalent, denoted $\psi_1 \simeq \psi_2 \iff \psi_1 \vDash \psi_2 \land \psi_2 \vDash \psi_1$.

Definition 2.2.10. (Validity) Let **A** be a Ω -homogenous algebra and $\psi \in \mathcal{L}_1(\Omega)$.

- $-\psi$ is valid in $\mathbf{A} \iff \vDash_{\mathbf{A}} \psi$.
- $-\psi$ is valid, or a tautology $\iff \models \psi$.
- A tautology ψ may have infinite models.

2.2.1 Equivalences

• Negation laws:

$$\neg(\forall x.\psi) \simeq \exists x.\neg\psi \quad \neg(\exists x.\psi) \simeq \forall x.\neg\psi.$$

• Quantifier expansion (*left*) laws:

$$(\forall x.\psi) \land \phi \simeq \forall x.(\psi \land \phi)$$
$$(\forall x.\psi) \lor \phi \simeq \forall x.(\psi \lor \phi)$$
$$(\exists x.\psi) \land \phi \simeq \exists x.(\psi \land \phi)$$
$$(\exists x.\psi) \lor \phi \simeq \exists x.(\psi \lor \phi)$$

given $x \notin fv(\phi)$. By commutativity, there equivalent right laws.

• Distributive laws:

$$(\forall x.\psi) \land (\forall x.\phi) \simeq \forall x.(\psi \land \phi)$$
$$(\exists x.\psi) \lor (\exists x.\phi) \simeq \exists x.(\psi \lor \phi)$$

• Implication laws:

$$(\forall x.\psi) \to \phi \simeq \exists x.(\psi \to \phi)$$
$$(\exists x.\psi) \to \phi \simeq \forall x.(\psi \to \phi)$$

given $x \notin fv(\phi)$, and

$$\psi \to (\forall x.\psi) \simeq \forall x.(\psi \to \phi)$$

$$\psi \to (\exists x.\psi) \simeq \exists x.(\psi \to \phi)$$

given $x \notin fv(\psi)$. (Derived using the equivalence $\psi \to \phi \simeq \neg \psi \lor \phi$).

• Expansion laws:

$$\forall x.\psi \simeq (\forall x.\psi) \land \{t/x\} \psi$$
$$\exists x.\psi \simeq (\exists x.\psi) \lor \{t/x\} \psi$$

• Alpha equivalence laws:

$$\psi \equiv_{\alpha} \phi \implies \psi \simeq \phi$$

2.3 Proof Systems

- First-order proof systems \mathscr{P} on $\mathcal{L}_1(\Omega)$ consist of:
 - **Logical** Axioms and Rules: A conventional proof system $\mathscr{P}(\Omega)$ (see section ??) parameterized on Ω (due to substitutions, constants, etc).
 - Non-logical Axioms: Axioms defined by the algebra or *model* on Ω . e.g. Group axioms, etc.

2.3.1 Hilbert-Style Proof System

Definition 2.3.1. (Hilbert-Style $\mathcal{H}_1(\Omega)$) $\mathcal{H}_1(\Omega)$, the Hilbert-style proof system for first-order logic, is defined on the language $\mathcal{L}_1(\{\neg, \rightarrow, \forall\}, \Omega)$ (henceforth denoted $\mathcal{L}_1(\Omega)$) with the following axioms and inference rules:

(S)
$$\frac{1}{(\psi \to (\phi \to \chi)) \to ((\psi \to \phi) \to (\psi \to \chi))}$$
 (K) $\frac{1}{\psi \to (\phi \to \psi)}$

$$(N) \frac{}{(\neg \phi \to \neg \psi) \to ((\neg \phi \to \psi) \to \phi)} \qquad (\forall D) \frac{}{(\forall x. \psi \to \phi) \to (\psi \to \forall x. \phi)} [x \notin fv(\psi)]$$

$$(\forall \mathsf{E}) \; \frac{}{\forall x. \psi \to \{t/x\} \, \psi}$$

$$(MP) \frac{\psi \qquad \psi \to \phi}{\phi} \qquad \qquad (\forall I) \frac{\{y/x\} \, \psi}{\forall x. \psi} \left[x \equiv y \lor y \notin fv(\psi) \right]$$

Lemma 2.3.1. (Alpha Equivalence for \mathcal{H}_1) For all $\psi, \phi \in \mathcal{L}_1(\Omega)$,

$$\psi \equiv_{\alpha} \phi \implies \psi \dashv \vdash_{\mathscr{H}_1} \phi,$$

where $\psi \dashv \vdash_{\mathscr{H}_1} \phi$ iff $\psi \vdash_{\mathscr{H}_1} \phi$ and $\phi \vdash_{\mathscr{H}_1} \psi$.

Theorem 2.3.1. (The Deduction Theorem for \mathscr{H}_1) For all $\Gamma \subseteq \mathcal{L}_1(\Omega)$ and $\psi, \phi \in \mathcal{L}_1(\Omega)$:

- (i) If $\Gamma \vdash_{\mathscr{H}_1} \psi \to \phi$, then $\Gamma, \psi \vdash_{\mathscr{H}_1} \phi$.
- (ii) If $\Gamma, \psi \vdash_{\mathscr{H}_1} \phi$ and ψ is closed, then $\Gamma \vdash_{\mathscr{H}_1} \psi \to \phi$

Definition 2.3.2. (The Sequent Form of $\mathscr{H}_1(\Omega)$) $\mathscr{H}_1^{\varsigma}(\Omega)$, the sequent form of $\mathscr{H}_1(\Omega)$ is a proof system, is defined on the language $\mathscr{S}_{\mathcal{L}_1(\Omega)}$ with the following axioms and inference rules:

$$(R') \frac{\psi \in \Gamma}{\Gamma \vdash \psi}$$

(S)
$$\Gamma \vdash (\psi \to (\phi \to \chi)) \to ((\psi \to \phi) \to (\psi \to \chi))$$

$$(K) \frac{1}{\Gamma \vdash \psi \to (\phi \to \psi)}$$

$$(N) \frac{1}{\Gamma \vdash (\neg \phi \to \neg \psi) \to ((\neg \phi \to \psi) \to \phi)}$$

$$(\forall \mathsf{D}) \frac{}{\Gamma \vdash (\forall x.\psi \to \phi) \to (\psi \to \forall x.\phi)} \left[x \notin fv(\psi) \right] \quad (\forall \mathsf{E}) \frac{}{\Gamma \vdash \forall x.\psi \to \{t/x\} \, \psi}$$

$$(\forall \mathsf{E}) \; \frac{}{\Gamma \vdash \forall x. \psi \to \{t/x\} \, \psi}$$

$$(MP) \frac{\Gamma \vdash \psi \qquad \Gamma \vdash \psi \to \phi}{\Gamma \vdash \phi}$$

$$(\forall \mathsf{I}) \; \frac{\Gamma \vdash \{y/x\} \; \psi}{\Gamma \vdash \forall x. \psi} \; [x \equiv y \lor y \not\in fv(\psi) \cup fv(\Gamma)]$$

$$(DT I') \frac{\Gamma, \psi \vdash \phi}{\Gamma \vdash \psi \to \phi}$$

(DT E')
$$\frac{\Gamma \vdash \psi \to \phi}{\Gamma, \psi \vdash \phi}$$

• Existential quantification is introduced via a derived operator.

Definition 2.3.3. (Existential Quantification in $\mathcal{H}_1(\Omega)$) Existential quantification in $\mathcal{H}_1(\Omega)$ is the derived operator defined by

$$\exists x.\psi \triangleq \neg \forall x.\neg \psi.$$

Theorem 2.3.2. Existential quantification introduction, denoted as the derived rule $(\exists I')$

$$(\exists \mathsf{I}') \frac{\Gamma \vdash \{t/x\} \, \psi}{\Gamma \vdash \exists x. \psi}$$

Proof. Let $t \in \mathbb{T}_V(\Omega)$ be arbitrary. We have

$$(\forall \mathsf{E}) \frac{}{\vdash \forall x. \neg \psi \to \neg \{t/x\} \psi} \frac{(\mathsf{CP} \ \mathsf{E} \leftarrow') \frac{}{\vdash (\forall x. \neg \psi \to \neg \{t/x\} \psi) \to (\neg \neg \{t/x\} \to \neg \forall x. \neg \psi)}}{(\mathsf{MP}) \frac{}{\vdash (\forall x. \neg \psi \to \neg \{t/x\} \to \neg \forall x. \neg \psi)}} \frac{}{(\mathsf{DN} \ \mathsf{I} \to') \frac{}{\vdash \{t/x\} \psi \to \neg \neg \{t/x\} \psi}}$$

• The rule $(\exists E')$ cannot be expressed as a derived rule

$$(\exists \mathsf{E}') \frac{\Gamma \vdash \exists x.\psi}{\Gamma \vdash \{x_0/x\} \; \psi} \left[x_0 \notin fv(\Gamma) \cup fv(\exists x.\psi) \right]$$

Proofs involving $(\exists \mathsf{E}')$ are denoted $\Gamma \vdash_{\exists} \psi$.

Theorem 2.3.3. (($\exists E'$) Elimination Theorem) For all $\Gamma \in \mathcal{P}(\mathcal{L}_1(\Omega)), \psi \in \mathcal{L}_1(\Omega)$

$$\Gamma \vdash_{\exists} \psi \implies \Gamma \vdash_{\mathscr{H}_1} \psi,$$

assuming no variable introduced by $(\exists \mathsf{E}')$ occurs in ψ .

Proof. (sketch) Assume there are k applications of $(\exists \mathsf{E}')$ in $\Gamma \vdash_{\exists} \psi$. We show, for all $1 \le i \le k$, the statement P(i) holds, that is

$$\Gamma, \{y_1^0/y_1\} \psi_1, \dots \{y_{i-1}^0/y_{i-1}\} \psi_{i-1} \vdash_{\mathscr{H}_1} \exists y_i.\psi_i,$$

and

$$\Gamma, \left\{y_1^0/y_1\right\}\psi_1, \ldots, \left\{y_i^0/y_i\right\}\psi_i \vdash_{\exists} \psi,$$

with (k-i) applications of $(\exists E')$.

Proof.

Base Case: trivial.

Inductive Step: Replace

$$(\exists \mathsf{E}') \; \frac{\Gamma, \{y_1^0/y_1\} \; \psi_1, \dots \{y_{i-1}^0/y_{i-1}\} \; \psi_{i-1} \vdash \exists y_i.\psi_i}{\Gamma, \{y_1^0/y_1\} \; \psi_1, \dots \{y_{i-1}^0/y_{i-1}\} \; \psi_{i-1} \vdash_\exists \{y_i^0/y_i\} \; \psi_i}$$

with

$$(R') \frac{}{\Gamma, \{y_1^0/y_1\} \psi_1, \dots, \{y_i^0/y_i\} \psi_i \vdash_{\mathscr{H}} \{y_i^0/y_i\} \psi_i}$$

By the Principle of Mathematical Induction, the statement P(i) holds for all $1 \le i \le k$.

We show, for all $0 \le i \le k$, the statement Q(i) holds, that is

$$\Gamma, \{y_1^0/y_1\} \psi_1, \dots, \{y_{k-i}^0/y_{k-i}\} \psi_{k-i} \vdash_{\mathscr{H}_1} \psi.$$

Proof.

Base Case: We have Q(0) = P(k).

Inductive Step: We have

$$\frac{\Gamma, \{y_1^0/y_1\} \psi_1, \dots, \{y_{k-i}^0/y_{k-i}\} \psi_{k-i} \vdash \psi}{\Gamma, \{y_1^0/y_1\} \psi_1, \dots, \{y_{k-(i+1)}^0/y_{k-(i+1)}\} \psi_{k-(i+1)} \vdash \{y_{k-i}^0/y_{k-i}\} \psi_{k-i} \to \psi}{\Gamma, \{y_1^0/y_1\} \psi_1, \dots, \{y_{k-(i+1)}^0/y_{k-(i+1)}\} \psi_{k-(i+1)} \vdash \forall y_{k-i}^0. (\{y_{k-i}^0/y_{k-i}\} \psi_{k-i} \to \psi)}$$

We have the derived rule (see equivalences)

$$(\exists \to') \frac{\Gamma \vdash \forall x. \psi \to \phi}{\Gamma \vdash (\exists x. \psi) \to \phi} [x \notin fv(\phi)]$$

So by lemma ??, the derived rule $(\exists \rightarrow)$, and P(k-(i+1)) we have:

$$(\text{MP}) \frac{\Gamma, \{y_{1}^{0}/y_{1}\} \psi_{1}, \dots, \{y_{k-(i+1)}^{0}/y_{k-(i+1)}\} \psi_{k-(i+1)} \vdash \exists y_{k-i}, \psi_{k-i}}{\Gamma, \{y_{1}^{0}/y_{1}\} \psi_{1}, \dots, \{y_{k-(i+1)}^{0}/y_{k-(i+1)}\} \psi_{k-(i+1)} \vdash \exists y_{k-i}, \psi_{k-i}\} \psi_{k-i} \rightarrow \psi}{\Gamma, \{y_{1}^{0}/y_{1}\} \psi_{1}, \dots, \{y_{k-(i+1)}^{0}/y_{k-(i+1)}\} \psi_{k-(i+1)}\} \psi_{k-(i+1)} \vdash \exists y_{k-i}, \psi_{k-i} \rightarrow \psi}}{\Gamma, \{y_{1}^{0}/y_{1}\} \psi_{1}, \dots, \{y_{k-(i+1)}^{0}/y_{k-(i+1)}\} \psi_{k-(i+1)}\} \psi_{k-(i+1)}}$$

By the Principle of Mathematical Induction, the statement Q(i) holds for all $0 \le i \le k$.

By
$$Q(k)$$
, we have $\Gamma \vdash_{\mathscr{H}_1} \psi$. So we are done.

• \Longrightarrow ($\exists E'$) is a sound and complete rule in a non-minimal system.

Theorem 2.3.4. (Soundness and Completeness of $\mathcal{H}_1(\Omega)$) $\mathcal{H}_1(\Omega)$ is sound and complete, that is

$$\forall \Gamma \in \mathcal{P}(\mathcal{L}), \psi \in \mathcal{L}_1(\Omega).\Gamma \vdash_{\mathscr{H}_1} \psi \iff \Gamma \vDash \psi.$$

2.3.2 Sequent Calculus

• Extends \mathscr{S}_0 w/ introduction and elimination rules for quantifiers $\mathscr{Q} \in \{\exists, \forall\}$.

Definition 2.3.4. (Sequent Calculus $\mathscr{S}_1(\Omega)$ Proof System) $\mathscr{S}_1(\Omega)$, the Sequent calculus proof system for Propositional logic, is defined on the generalized sequent form language of $\mathcal{L}_1(\Omega)$ with the following axioms and inference rules:

Alistair O'Brien Logic and Proof

Operator	Left	Right
Axiom	$A) \frac{1}{\Gamma, \psi \vdash \Delta, \psi}$	
¬	$(\neg l) \frac{\Gamma \vdash \Delta, \psi}{\Gamma, \neg \psi \vdash \Delta}$	$(\neg r) \frac{\Gamma, \neg \psi \vdash \bot}{\Gamma \vdash \Delta, \neg \psi}$
\wedge	$\left(\wedge l \right) \frac{1}{\Gamma} \frac{\psi, \phi \vdash \Delta}{\psi \land \phi \vdash \Delta}$	$(\wedge r) \frac{\Gamma \vdash \Delta, \psi \qquad \Gamma \vdash \Delta, \phi}{\Gamma \vdash \Delta, \psi \land \phi}$
V	$(\forall l) \frac{\Gamma, \psi \vdash \Delta}{\Gamma, \psi \land \phi \vdash \Delta}$	$(\vee r) \frac{\Gamma \vdash \Delta, \psi, \phi}{\Gamma \vdash \Delta, \psi \lor \phi}$
\rightarrow	$(\rightarrow l) \frac{\Gamma \vdash \Delta, \psi \qquad \Gamma, \phi \vdash \Delta}{\Gamma, \psi \rightarrow \phi \vdash \Delta}$	$(\to r) \frac{\Gamma, \psi \vdash \Delta, \phi}{\Gamma \vdash \Delta, \psi \to \phi}$
\longleftrightarrow	$(\longleftrightarrow l) \xrightarrow{\Gamma \vdash \Delta, \psi, \phi \qquad \Gamma, \psi, \phi \vdash \Delta} \Gamma, \psi \longleftrightarrow \phi \vdash \Delta$	$(\longleftrightarrow r) \; \frac{\Gamma, \psi \vdash \Delta, \phi \qquad \Gamma, \phi \vdash \Delta, \psi}{\Gamma \vdash \Delta, \psi \longleftrightarrow \phi}$
\forall	$(\forall l) \frac{\Gamma, \{t/x\} \psi \vdash \Delta}{\Gamma, \forall x. \psi \vdash \Delta}$	$(\forall r) \ \frac{\Gamma \vdash \Delta, \{y/x\} \ \psi}{\Gamma \vdash \Delta, \forall x. \psi} \ [x \equiv y \lor y \notin fv(\Gamma, \Delta, \psi)]$
3	$ \left (\exists l) \frac{\Gamma, \{x_0/x\} \psi \vdash \Delta}{\Gamma, \exists x. \psi \vdash \Delta} \left[x_0 \notin fv(\Gamma, \Delta, \psi) \right] \right $	$(\exists l) \frac{\Gamma \vdash \Delta, \{t/x\} \psi}{\Gamma \vdash \Delta, \exists x. \psi}$

• Note that $(\forall r)$ and $(\exists l)$ are dual rules.

Theorem 2.3.5. (Soundness and Completeness of $\mathscr{S}_1(\Omega)$) $\mathscr{S}_1(\Omega)$ is sound and complete, that is

$$\forall \Gamma, \Delta \in \mathcal{P}(\mathcal{L}_1(\Omega)).\Gamma \vdash_{\mathscr{S}_1} \Delta \iff \Gamma \vDash \bigvee \Delta,$$

Proof. By the soundness and completeness of $\mathcal{H}_1(\Omega)$ and the derived rules of $\mathcal{H}_1(\Omega)$, then it follows that $\mathcal{S}_1(\Omega)$ is sound and complete.

2.4 Skolemization

• Notation: \overrightarrow{Qx} denotes $Q_1x_1.Q_2x_2....Q_nx_n$. Q^* denotes the dual quantifier of Q.

Lemma 2.4.1. (Quantifier Movement) Let $\psi, \phi \in \mathcal{L}_1(\Omega), z \notin fv(\psi, \phi) \cup \mathbf{x}$. For all $\mathcal{Q}, \mathcal{O} \in \{\forall, \exists\}$:

$$\overrightarrow{Q}\overrightarrow{\mathbf{x}}\neg \mathcal{O}y.\psi \simeq \overrightarrow{Q}\overrightarrow{\mathbf{x}}\mathcal{O}^*y.\neg \psi$$

$$\overrightarrow{Q}\overrightarrow{\mathbf{x}}(\mathcal{O}y.\psi \vee \phi) \simeq \overrightarrow{Q}\overrightarrow{\mathbf{x}}\mathcal{O}z.\left(\{z/y\}\psi \vee \phi\right)$$

$$\overrightarrow{Q}\overrightarrow{\mathbf{x}}(\psi \vee \mathcal{O}y.\phi) \simeq \overrightarrow{Q}\overrightarrow{\mathbf{x}}\mathcal{O}z.\left(\psi \vee \{z/y\}\phi\right)$$

Corollary 2.4.0.1.

$$\overrightarrow{Qx} (\mathcal{O}y.\psi \wedge \phi) \simeq \overrightarrow{Qx} \mathcal{O}z. (\{z/y\} \psi \wedge \phi)$$

$$\overrightarrow{Qx} (\psi \wedge \mathcal{O}y.\phi) \simeq \overrightarrow{Qx} \mathcal{O}z. (\psi \wedge \{z/y\} \phi)$$

$$\overrightarrow{Qx} [(\mathcal{O}y.\psi) \to \phi] \simeq \overrightarrow{Qx} \mathcal{O}^*z. (\{z/y\} \psi \to \phi)$$

$$\overrightarrow{Qx} (\psi \to \mathcal{O}y.\phi) \simeq \overrightarrow{Qx} \mathcal{O}z. (\psi \to \{z/y\} \phi)$$

Proof. Follows from De Morgan's Laws, and \rightarrow equivalences.

Definition 2.4.1. (Quantifier-free Formulae) The set of quantifier-free formulae $\mathcal{L}_1^{QF}(\Omega)$ is defined by

$$\chi, \xi ::= p(t_1, \dots, t_n) \in \Sigma_A(\Omega)$$

$$\mid \top \mid \bot \mid \neg \chi$$

$$\mid \chi_1 \wedge \chi_2 \mid \chi_1 \vee \chi_2$$

$$\mid \chi_1 \rightarrow \chi_2 \mid \chi_1 \longleftrightarrow \chi_2$$

Definition 2.4.2. (Prenex Normal Form (PNF)) A formula $\psi \in \mathcal{L}_1(\Omega)$ is said to be in *prenex normal form* if $\psi \in \mathcal{L}_1^{PNF}(\Omega)$, where $\mathcal{L}_1^{PNF}(\Omega)$ is defined by

$$\psi, \phi ::= \chi \in \mathcal{L}_1^{QF}(\Omega) \mid \forall x. \psi \mid \exists x. \psi$$

That is $\psi = \overrightarrow{Qx}\chi$.

- \overrightarrow{Qx} is the *prenex* and χ is the *body* of ψ .
- $\mathcal{L}_1^{PNF}(\Omega) \cong \mathcal{L}_1(\Omega)$.
- Translation to PNF:
 - 1. Use α -equivalence to obtain unique variables for all bound and free variables
 - 2. Use the equivalences of lemma?? to push quantifiers out.
- PNF contains redundancy \implies PCNF

Definition 2.4.3. (Prenex Conjunctive Normal Form (PCNF)) A formula $\psi \in \mathcal{L}_1(\Omega)$ is said to be in *prenex conjunctive normal form* if $\psi \in \mathcal{L}_1^{PNF}(\Omega)$ and the body of $\psi(\chi)$ is in CNF.

- Translation from PNF to PCNF:
 - 1. Convert the "propositional" body χ to CNF. (see section ??)

Theorem 2.4.1. (Skolem Normal Form Theorem) Let $\psi \equiv \overrightarrow{\forall \mathbf{x}} \exists y. \phi \in \mathcal{L}_1(\Omega)$ where $\mathbf{x} = \{x_1, \dots, x_n\}$, y are distinct, and $\mathcal{Q}x_i \notin \llbracket \psi \rrbracket_{\mathcal{Q}}$. Let $\Omega' = \Omega \cup \{g : s^n \to s\}$ be an *expansion* of Ω . Then

- (i) For all Ω' models of $\psi' \equiv \overrightarrow{\forall \mathbf{x}} \{g(x_1, \dots, x_n)/y\} \phi \in \mathcal{L}_1(\Omega')$ is a Ω' model of ψ .
- (ii) For all Ω models of ψ can be expanded to a Ω' model of ψ' .

Proof.

(i) We have $\vDash \psi' \to \psi$. Hence for all Ω' homogenous algebra $\mathbf{A}, \vDash_{\mathbf{A}} \psi' \Longrightarrow \vDash_{\mathbf{A}} \psi$ by the Deduction Theorem.

(ii) Let **A** be a Ω -model of ψ , that is $\vDash_{\mathbf{A}} \psi$. Hence for all $\mathbf{a} \in |\mathbf{A}|^n$, there exists $a \in |\mathbf{A}|$ s.t

$$\mathcal{T}_{\mathbf{A}} \llbracket \phi \rrbracket_{v_{\mathbf{A}}\{(x_i, a_i), (y, a)\}} = 1.$$

Define a function $g_{\mathbf{A}}: |\mathbf{A}|^n \to |\mathbf{A}|$ s.t

$$g(a_1,\ldots,a_n)=a\iff \mathcal{T}_{\mathbf{A}}\left[\!\left[\phi\right]\!\right]_{v_{\mathbf{A}}}=1.$$

So we have

$$\mathcal{T}_{\mathbf{A}} \llbracket \phi \rrbracket_{v_{\mathbf{A}}\{(x_i, a_i), (y, g_{\mathbf{A}}(a_1, \dots, a_n))\}} = 1$$

Let **B** be an extension of **A** w/ signature Ω' and $g_{\mathbf{B}} = g_{\mathbf{A}}$. Then it follows that for all $v_{\mathbf{B}} \in \Sigma_v(\mathbf{B})$:

$$\mathcal{T}_{\mathbf{A}} \left[\left\{ g(x_1, \dots, x_n) / y \right\} \phi \right]_{v_{\mathbf{B}}} = 1.$$

So we have $\vDash_{\mathbf{B}} \psi'$.

Corollary 2.4.1.1. (Equisatisfiablity) Let $\psi \in \mathcal{L}_1(\Omega), \psi' \in \mathcal{L}_1(\Omega')$ be as defined.

- (i) $\exists \mathbf{A}. \vDash_{\mathbf{A}} \psi \implies \exists \mathbf{B}. \vDash_{\mathbf{B}} \psi'$.
- (ii) ψ is unsatisfiable $\iff \psi'$ is unsatisfiable.
 - g is said to be a Skolem function (for n = 0, c = g() is a Skolem constant).

Definition 2.4.4. (Skolem normal form (SNF)) A formula $\psi \in \mathcal{L}_1(\Omega)$ is said to be in *skolem normal form* if $\psi \equiv \forall \mathbf{x}.\chi$ where $\chi \in \mathcal{L}_1^{QF}(\Omega)$. The set of SNF formulae is denoted $\mathcal{L}_1^{SNF}(\Omega)$.

If χ is in CNF, then ψ is in skolem conjunctive normal form (SCNF).

- Translating ψ to SCNF, denoted $[\![\psi]\!]_{SCNF}$:
 - Translate ψ into CNF. (see section ??)
 - Push existential quantifiers out using lemma ?? (or push universal quantifiers in: miniscoping) Until we have quantifier form: $\overrightarrow{\forall \mathbf{x}} \exists y. \phi$.
 - Choose $|\mathbf{x}|$ function symbol g, delete $\exists y$ and replace free occurrences of $y \le \forall \mathbf{x} \{g(x_1, \dots, x_n)/y\} \phi$.
- Using a PNF (pushing out quantifiers) is harder. Push quantifiers in for better clauses. This is called *miniscoping*.

2.5 Herbrand's Theorem

Definition 2.5.1. (The Herband Universe) Let Ω be a homogenous signature containing at least one constant. The set of ground terms $\mathbb{T}_{\Omega} \subseteq \mathbb{T}_{\Omega}(V)$ is called the Herband Universe.

Definition 2.5.2. (Herbrand Algebra) A Ω-algebra $\mathbf{H}(\Omega)$ where Ω contains at least one constant, is a Herbrand Algebra iff $|\mathbf{H}(\Omega)| = \mathbb{T}_{\Omega}$.

- For all $f \in \mathscr{F}$, $f_{\mathbf{H}} = f$. **H** must define $p_{\mathbf{H}} \subseteq \mathbb{T}_{\Omega}^n$.
- $|\mathbf{H}(\Omega)|$ is non-empty since Ω contains at least one constant.
- Valuations $v_{\mathbf{H}}$ are ground substitutions: $v_{\mathbf{H}}: V \to \mathbb{T}_{\Omega}$ (or $|\mathbf{H}|$).

Definition 2.5.3. (Herbrand Interpretation) A Herbrand interpretation is $\mathcal{I} = (\mathbf{H}, v_{\mathbf{H}})$ where $v_{\mathbf{H}} : V \to \mathbb{T}_{\Omega}$. For all $t \in \mathbb{T}_{V}(\Omega)$ with $var(t) = \{x_1, \ldots, x_n\}$,

$$\mathcal{V}_{\mathbf{H}} [\![t]\!]_{v_{\mathbf{H}}} = \{v(x_i)/x_i : 1 \le i \le n\} t.$$

Definition 2.5.4. (Herbrand Model) A Herbrand model of a set $\Delta \in \mathcal{P}(\mathcal{L}_1(\Omega))$, denoted $\vDash_{\mathbf{H}} \Delta$, is a Herbrand algebra \mathbf{H} s.t

$$\forall v_{\mathbf{H}} \in \Sigma_v(\mathbf{H}). \forall \psi \in \Delta. \vDash_{(\mathbf{H}, v_{\mathbf{H}})} \psi,$$

where $v_{\mathbf{H}}$ is a Herbrand valuation (defined on the $fv(\Delta)$).

Theorem 2.5.1. Let Ω be a homogenous signature containing at least one constant. Let $\Lambda = \{\lambda_1, \ldots, \lambda_n\}$ be a finite set of *ground literals*.

- (i) $\bigwedge \Lambda$ has a model $\iff P(\Lambda) \cap N(\Lambda) = \emptyset$.
- (ii) $\bigwedge \Lambda$ is never valid.
- (iii) $\bigvee \Lambda$ always has a model.
- (iv) $\bigvee \Lambda$ is valid $\iff P(\Lambda) \cap N(\Lambda) \neq \emptyset$.

Definition 2.5.5. (Ground Instances) Let Ω be a homogenous signature containing at least one constant. Let $\Delta \subseteq \left\{ \overrightarrow{\forall \mathbf{x}} \chi : \chi \in \mathcal{L}_1^{QF}(\Omega) \land \mathbf{x} = fv(\chi) \right\} = \mathcal{L}_{1}^{\forall QF}(\Omega)$ be a non-empty set of formulae. The **ground instance** of $\psi \equiv \overrightarrow{\forall \mathbf{x}} \chi \in \Delta$, denoted $\mathfrak{g}(\psi)$, is

$$\mathfrak{g}(\psi) = \left\{ \left\{ t_1/x_1, \dots, t_n/x_n \right\} \chi : t_1, \dots, t_n \in \mathbb{T}_{\Omega} \right\}.$$

• $\mathfrak{g}(\Delta) = \bigcup_{\psi \in \Delta} \mathfrak{g}(\psi)$.

Theorem 2.5.2. (Herbrand's Theorem) Let Ω and Δ be as in definition ??. Then

 Δ has a model

 $\iff \Delta$ has a Herbrand model

 $\iff \mathfrak{g}(\Delta)$ has a model

 $\iff \mathfrak{g}(\Delta)$ has a Herbrand model

Proof. (Sketch) It suffices to show that for all $\psi \in \mathcal{L}_1(\Omega)$, ψ has a model $\implies \psi$ has a Herbrand model.

Assume $\vDash_{\mathbf{A}} \psi$. We define the Herbrand interpretation $(\mathbf{H}, v_{\mathbf{H}})$ where for all $p \in \mathcal{R}$

$$p_{\mathbf{H}} = \{(t_1, \dots, t_n) \in \mathbb{T}_{\Omega} : \models_{\mathbf{A}} p(t_1, \dots, t_n)\}.$$

So we have $p_{\mathbf{H}} = p_{\mathbf{A}}$. By induction, on $\mathcal{T} \llbracket \cdot \rrbracket$ and ψ , we deduce that $\vDash_{\mathbf{A}} \psi$. \square

• Set of Herbrand algebras may be though paths on trees $\mathscr{T}_{|\mathbf{H}|}$ that enumerate the countably infinite set of ground atomic formulae: $p(t_1, \ldots, t_n)$.

• Given a vertex v, \mathbf{H}_{π} is the Herbrand algebra defined by labels of the path $\pi \in \mathcal{T}_{|\mathbf{H}|}$ from the root to v.

Lemma 2.5.1. Let $\Delta \subseteq \mathfrak{g}(\mathcal{L}_1^{QF}(\Omega))$ be a set of ground quantifier-free formulae. Δ has a model $\iff \forall$ finite $\Gamma \in \mathcal{P}(\Delta)$. Γ has a model.

Proof.

 (\Longrightarrow) . Trivial.

(\iff). Assume \forall finite $\Gamma \in \mathcal{P}(\Delta)$. Γ has a model. We proceed by contradiction, assume Δ does not have a model.

By Herbrand theorem, Γ has a Herbrand model and Δ does not have a Herbrand model. Hence for all paths $\pi \in \mathcal{T}_{|\mathbf{H}|}$, there exists $\chi_{\pi} \in \Delta$ s.t $\not\models_{\mathbf{H}_{\pi}} \chi_{\pi}.$

Since χ_{π} consists of a finite set of ground atoms, there exists a finite path π s.t $\not\models_{\mathbf{H}_{\pi}} \chi_{\pi}$. Hence the set $\{\chi_{\pi} : \not\models_{\mathbf{H}_{\pi}} \chi_{\pi}\} \in \mathcal{P}(\Delta)$ is a finite subset of Δ that doesn't have a Herbrand model. Hence by Herbrand's Theorem, $\{\chi_{\pi}: \not\models_{\mathbf{H}_{\pi}} \chi_{\pi}\}$ doesn't have a model. A contradiction!

Theorem 2.5.3. Let $\Delta \in \mathcal{P}(\mathcal{L}_1(\Omega))$. Δ has a model \iff \forall finite $\Gamma \in$ $\mathcal{P}(\Delta)$. Γ has a model.

Proof. (Sketch)

By lemma ??, Δ has a model \iff $\llbracket \Delta \rrbracket^{SNF} = \left\{ \llbracket \psi \rrbracket^{SNF} : \psi \in \Delta \right\}$ has a model. By Herbrand's theorem, $\iff \mathfrak{g}(\llbracket \Delta \rrbracket^{SNF})$ has a model. By lemma ??, $\iff \forall$ finite $\Gamma' \in \mathcal{P}(\mathfrak{g}(\llbracket \Delta \rrbracket^{SNF}))$ has a model. (\Longrightarrow) . Trivial

 (\Leftarrow) . Assume Δ doesn't have a model. Hence finite Γ' does not have

a model. Since Γ' is a subset of a ground instantiation of some finite $\Gamma \in$ $\mathcal{P}(\Delta)$, denoted $\Gamma' \subseteq v_{\mathbf{H}}(\Gamma)$, then it follows that Γ does not have a model. A contradiction!

Theorem 2.5.4. (Skolem-Godel-Herbrand Theorem) Let $\Delta \in \mathcal{P}(\mathcal{L}_1(\Omega))$. Δ is unsatisfiable, iff \exists finite $\Gamma \in \mathcal{P}(\mathfrak{g}(\Delta))$. Γ is unsatisfiable.

Proof. See theorem ??.

• \implies Decidable method for determining whether Δ is unsatisfiable:

- Given ψ , compute $\psi' \leftarrow \llbracket \psi \rrbracket^{SCNF}$.
- Compute:

```
\begin{split} \Gamma \leftarrow \{ \texttt{new\_instance\_of}(\psi') \} \\ \texttt{while } & (\Gamma \texttt{ is satisfiable}) \texttt{ } \{ \\ & \Gamma \leftarrow \Gamma \cup \{ \texttt{new\_instance\_of}(\psi') \} \\ \} \end{split}
```

Generating new instances of ψ' consists of enumerating the ground substitutions $v_{\mathbf{H}}: V \to \mathbb{T}_{\Omega}$, which is countable.

2.6 Unification

Definition 2.6.1. (Instance) A term $t \in \mathbb{T}_{\Omega}(V)$ is an instance of $s \in \mathbb{T}_{\Omega}(V)$ iff there exists a substitution θ s.t $t \equiv \theta s$.

- t is a common instance of t_1, \ldots, t_n iff there exists $\theta_1, \ldots, \theta_n$ s.t $t \equiv \theta_1 t_1 \equiv \theta_2 t_2 \equiv \cdots \equiv \theta_n \theta_n$.
- **Problem**: Finding common instances \implies unification. The process of solving the "equation" $\theta s \equiv \theta t$.

Definition 2.6.2. (Unifiability) A term $t \in \mathbb{T}_{\Omega}(V)$ is unifiable with $s \in \mathbb{T}_{\Omega}(V)$ if there exists a substitution θ s.t $\theta t \equiv \theta s$, denoted $t \sim s : \theta$. θ is the unifier of s, t.

• Some unifiers may be regarded as being "more general"

Definition 2.6.3. Let θ, τ be substitutions.

- $-\theta$ is more general than τ , denoted $\theta \succeq \tau$, iff there exists χ s.t $\tau = \chi \circ \theta$.
- $-\theta$ is strictly more **general** than τ , denoted $\theta \succ \tau$ if $\theta \succsim \tau$ and $\tau \not\succsim \theta$.
- \succsim is a preorder on $\mathbf{S}_{\Omega}(V)$. $\theta \sim \tau \iff \theta \succsim \tau \wedge \tau \succsim \theta$, defines an equivalence relation on $\mathbf{S}_{\Omega}(V)$.

Definition 2.6.4. (Most General Unifier) A substitution θ is the most general unifier (mgu) of $s,t \in \mathbb{T}_{\Omega}(V) \iff$ for all unifiers $s \sim t : \tau$, there exists χ s.t $\tau = \chi \circ \theta$

• Note: There may be multiple mgus. If θ and τ are mgu's of $s, t \in \mathbb{T}_{\Omega}(V)$, then $\theta \sim \tau$.

Theorem 2.6.1. (Unification Algorithm) For all $t, s \in \mathbb{T}_{\Omega}(V)$, the mgu θ of t, s satisfies $t \sim s \rhd \theta$, inductively defined by:

$$(\mathsf{Var}) \frac{}{x \sim x \rhd \emptyset}$$

$$(\mathsf{Var-Left}) \frac{x \notin fv(\psi)}{x \sim \psi \rhd \{t/x\}} \qquad (\mathsf{Var-Right}) \frac{x \notin fv(\psi)}{\psi \sim x \rhd \{t/x\}}$$

$$(\mathsf{Comp}) \frac{\psi_1 \sim \phi_1 \rhd \theta_1 \qquad \dots \qquad (\theta_{n-1} \circ \dots \circ \theta_1) \psi_n \sim (\theta_{n-1} \circ \dots \circ \theta_1) \phi_n \rhd \theta_n}{o(\psi_1, \dots, \psi_n) \sim o(\phi_1, \dots, \phi_n) \rhd \theta_n \circ \dots \circ \theta_1}$$

where $x \in V, o \in \Omega$.

 $\bullet \implies$ natural recursive unification algorithm.

2.7 Automated Theorem Proving

2.7.1 First-Order Resolution

- Recall:
 - For all $\Gamma \in \mathcal{P}(\mathcal{L}_1(\Omega)), \psi \in \mathcal{L}_1(\Omega), \Gamma \vDash \psi \iff \Delta \cup \{\neg \psi\}$ is unsatisfiable.
 - Δ has an equi-unsatisfiable set $[\![\Delta]\!]^{SNF}$

Definition 2.7.1. (SCNF Clauses) A (set-based) SCNF family of clauses of $\llbracket \psi \rrbracket^{SCNF}$ for $\psi \in \mathcal{L}_1(\Omega)$ is the set $\Delta = \{C_i : 1 \leq i \leq n\}$ s.t $\llbracket \psi \rrbracket^{SCNF} \equiv \forall \mathbf{x}. \bigwedge_{1 \leq i \leq n} C_i$, where each clause $C_i \equiv \bigvee_{1 \leq j \leq m_i} \lambda_j$ has the (set-based) clause $C_i = \{\lambda_j : 1 \leq j \leq_{i,i}\}$.

- Notation:
 - For any substitution θ , $\theta C = \{\theta \lambda_j : 1 \leq j \leq m\}$
 - $-\mathfrak{g}(C) = \{\theta C : \theta : V \to \mathbb{T}_{\Omega}\}\$

Lemma 2.7.1. Let $\{C_i : 1 \leq i \leq n\} \in \Sigma_{\Delta}(\Omega)$ be a family of clauses. Then

$$\overrightarrow{\forall \mathbf{x}} \bigwedge_{1 \le i \le n} C_i \simeq \bigwedge_{1 \le i \le n} \overrightarrow{\forall \mathbf{x}}_i C_i.$$

Proof. \forall and \land cases of lemma ??

• Removes common variables between clauses, allowing clauses: $\{p(x)\}$ and $\{\neg p(g(x))\}$ are unifiable.

Definition 2.7.2. ($\mathscr{R}_1(\Omega)$ **Proof System**) The $\mathscr{R}_1(\Omega)$ resolution proof system is defined on the language $\Sigma_{\Delta}(\Omega)$ with the following axioms and inference rules:

$$(\emptyset) \frac{\emptyset \in \Delta}{\Delta}$$

$$(\mathbf{R})\,\frac{\Delta \cup \left\{\theta(C_i' \cup C_j')\right\}}{\Delta \cup \left\{(C_i' \cup \Lambda_p^i), (C_j' \cup \overline{\Lambda_p^j})\right\}}\,[\theta = \mathsf{unify}(\Lambda_p^i \cup \overline{\Lambda_p^j})]$$

where $i \neq j, \Lambda_p^i = \{p(\mathbf{s}) \in C_i\} \neq \emptyset$, and $\overline{\Lambda_p^j} = \{\neg p(\mathbf{t}) \in C_j\} \neq \emptyset$.

• Non-terminating: Each application of (R) may not remove *all* occurrences of p. Since Λ need not exhaust all literals in either clauses (and other clauses may contain occurrences of p).

Theorem 2.7.1. (Soundness and Completeness of $\mathscr{R}_1(\Omega)$) $\mathscr{R}_1(\Omega)$ is sound and complete, that is

$$\forall \Delta \in \Sigma_{\Delta}(\Omega)$$
. $\vdash_{\mathscr{R}_1} \Delta \iff \Delta$ is unsatisfiable.

• $\mathcal{R}_1(\Omega)$ may be defined using a binary resolution and factoring rule:

$$(\emptyset)$$
 $\overline{\emptyset}$

(BR)
$$\frac{\psi, C \quad \phi, C'}{\theta(C, C')} [\psi \sim \phi : \theta]$$

(F)
$$\frac{\psi_1, \dots, \psi_n, C}{\theta(\psi_1, C)} [\theta \psi_1 \equiv \dots \theta \psi_n]$$

• The binary resolution rule (BR) increases the size of clauses (assuming C and C' are disjoint). Hence factoring rule (F) is required for completeness of $\mathcal{R}_1(\Omega)$ since a refutation in $\mathcal{R}_1(\Omega)$ requires the empty clause \emptyset , thus a rule is required to reduce the size of clauses.

Definition 2.7.3. (Subsumption) A clause C subsumes C' iff there exists θ s.t $\theta C \subseteq C'$.

- In $\mathcal{R}_1(\Omega)$, we delete subsumed clauses from Δ , as they don't the satisfiability of Δ .
- Redundant Clauses:
 - Tautological clauses. e.g. $\{P, \neg P, \ldots\}$
 - Subsumed clauses. e.g. $\{P,Q\}$ is subsumed by $\{P\}$.

2.7.1.1 Prolog

Definition 2.7.4. (**Horn Clause**) A Horn Clause, or *definite clause*, is a clause of the form: $\{\neg p_1(\mathbf{t}_1), \dots, \neg p_n(\mathbf{t}_n), p(\mathbf{s})\}$, or in Kowalski notation, $p_1(\mathbf{t}_1), \dots, p_n(\mathbf{t}_n) \to p(\mathbf{s})$

- Notation:
 - $-p(\mathbf{s}) \leftarrow p_1(\mathbf{t}_1), \dots, p_n(\mathbf{t}_n)$ e.g. friends(A, B) \leftarrow likes(A, B), likes(B, A).
 - If $n \ge 1$, then the clause is a *rule*. If n = 0, then the clause is a *fact*.
- Prolog uses **linear resolution** in $\mathcal{R}_1(\Omega)$, with a program being stored in a database \mathcal{D} of clauses, and a query (or goal clause): $p(\mathbf{t}) \leftarrow$ (Prolog notation: ?- $p(\mathbf{t})$.)

• Linear resolution \implies improved space complexity, reduced search space (only (BR) rule may be used). Deterministic search.

2.7.2 Tableaux Calculus

• **Problem**: Dual rules w/ connectives in $\mathscr{S}_1(\Omega) \implies$ redundancy

Definition 2.7.5. (Tableaux Calculus) $\mathcal{T}_1(\Omega)$, the Tableaux calculus proof system for first order logic, defined on NNF $\mathcal{L}_1^{NNF}(\Omega)$, with the following axioms and inference rules:

$$(\text{Basic}) \frac{\neg \psi, \psi, \Gamma \vdash}{\neg \psi, \psi, \Gamma \vdash} \qquad (\text{Cut}) \frac{\neg \psi, \Gamma \vdash \psi, \Gamma \vdash}{\Gamma \vdash}$$

$$(\wedge l) \frac{\psi, \phi, \Gamma \vdash}{\psi \land \phi, \Gamma \vdash} \qquad (\vee l) \frac{\psi, \Gamma \vdash \phi, \Gamma}{\psi \lor \phi, \Gamma \vdash}$$

$$(\forall l) \frac{\{t/x\} \psi, \Gamma \vdash}{\forall x. \psi, \Gamma \vdash} \qquad (\exists l) \frac{\{x_0/x\} \psi, \Gamma \vdash}{\exists x. \psi, \Gamma \vdash} [x_0 \notin fv(\psi, \Gamma)]$$

- \mathscr{T}_0^{\square} uses the left modal rules of \mathscr{S}_0^{\square} .
- To prove $\Gamma \vDash \psi$:
 - Convert to $\llbracket \Gamma \rrbracket_{NNF}$, $\llbracket \psi \rrbracket_{NNF} \vdash$, a refutation system.
 - Find a proof tree \mathscr{T} in $\mathscr{T}_1(\Omega) \iff \Gamma \vDash \psi$
- **Problem**: Choice of term in $(\forall l)$ still yields non-determinism.
- ullet Solution: Unification w/ Skolemization \Longrightarrow free-variable tableaux calculus

Definition 2.7.6. (Free-Tableaux Calculus) $\mathcal{T}_1^{fv}(\Omega)$, the Tableaux calculus proof system for first order logic, defined on Skolem NNF $\mathcal{L}_1^{SNNF}(\Omega)$, with the following axioms and inference rules:

$$(\text{Basic}) \frac{\phi \sim \psi : \theta}{\neg \phi, \psi, \Gamma \vdash} \qquad (\text{Cut}) \frac{\neg \psi, \Gamma \vdash \psi, \Gamma \vdash}{\Gamma \vdash}$$

$$(\wedge l) \frac{\psi, \phi, \Gamma \vdash}{\psi \wedge \phi, \Gamma \vdash} \qquad (\vee l) \frac{\psi, \Gamma \vdash \phi, \Gamma}{\psi \vee \phi, \Gamma \vdash}$$

$$(\forall l) \frac{\{y/x\} \psi, \Gamma \vdash}{\forall x. \psi, \Gamma \vdash} [y \notin fv(\psi, \Gamma)]$$

• Note: Free variables in $\Gamma \vdash$ must unify to the same terms. Otherwise the proof fails, by the $(\forall l)$ rule in $\mathcal{T}_1(\Omega)$

3 Decision Procedures

- **Decidability**: A set of problems is *decidable* \iff there exists a algorithm that determines whether an instance of the problem has a solution. (See Computation Theory).
- The algorithm is a decision procedure.

3.1 Fourier-Motzkin Elimination

• Decision procedure for solving systems of linear constraints:

$$\bigwedge_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_j \le b_i.$$

By eliminating a n-variable system to a (n-1)-variable system.

• Procedure:

1. For all $1 \le i \le m$, we have the following cases:

$$-a_{in} = 0 \implies$$
 constraint doesn't involve x_n .

 $a_{in} > 0 \implies x_n \le \frac{1}{a_{in}} \left(b_i - \sum_{j=1}^{n-1} a_{ij} x_j \right).$

$$a_{in} < 0 \implies x_n \ge \frac{1}{a_{in}} \left(b_i - \sum_{j=1}^{n-1} a_{ij} x_j \right).$$

2. This yields the set of constraint

$$\bigwedge_{i=1}^{k} L_i(x_1, \dots, x_{n-1}) \le x_n \quad \bigwedge_{i=1}^{\ell} x_n \le U_i(x_1, \dots, x_{n-1}),$$

where L_i, U_i are lower and upper bounds w/ n-1 variables and $k + \ell \le m$

3. Set of constraints are valid iff

$$\bigwedge_{i=1}^k \bigwedge_{j=1}^\ell L_i(\mathbf{x}) \le U_j(\mathbf{x}) \iff \bigwedge_{1 \le i \le k, 1 \le j \le \ell} L_i(\mathbf{x}) - U_j(\mathbf{x}) \le 0,$$

yielding $k \cdot \ell$ constraints w/ n-1 variables.

- 4. Repeat 1 3 until system of 0 (or 1) variables. A contradicting constraint ⇒ unsatisfiablity. Otherwise satisfiable.
- Complexity: Doubly exponential $\Theta\left(\frac{m^{2^n}}{2^{2^{n+1}-1}}\right)$ (for average # of upper and lower bounds: m/2):

$$T(m,0) = \Theta(m)$$

$$T(m,n) = T\left(\frac{m^2}{4}, n-1\right)$$

3.2 Satisfiability Modulo Theories

- SMTs are decision procedures for propositional logic w/ propositions ranging over relations on integers, reals, etc.
- \mathcal{T} -solvers: domain specific solvers that determine $\Delta \vDash_{\mathcal{T}} C$ (defined on $\Sigma_{\Delta}(\Omega_{\mathcal{T}})$). Set of \mathcal{T} -solver atoms: $\Sigma_{A}(\Omega_{\mathcal{T}})$.

Definition 3.2.1. (**DPLL**(\mathcal{T})) DPLL(\mathcal{T}) is an extension of DPLL that determines a model for a formula in \mathcal{L}_0 w/ $\Sigma_P = \Sigma_A(\Omega_{\mathcal{T}})$ (an extension of propositional logic w/ domain specific propositions).

- $\mathrm{DPLL}(\mathcal{T})$ procedure:
 - 1. Convert a formula to a family of clauses (\mathcal{T} propositions are literals e.g. $x \geq 7$ is a literal).
 - 2. Use the DPLL algorithm (without pure literal elimination) until either unsatisfiablity or a model.

Alistair O'Brien Logic and Proof

3. If a model (interpretation) \mathcal{I} , \mathcal{T} -solver (a domain specific decision procedure) determines validity of \mathcal{I} .

4. If \mathcal{I} (represented by set of literals Γ) is invalid by \mathcal{T} -solver, then backtrack.

Definition 3.2.2. (**DPLL**(\mathcal{T}) **Proof System**) The $\mathscr{D}_0(\mathcal{T})$ DPLL(\mathcal{T}) proof system is defined on the sequents of Σ_{Δ} w/ the following axioms and inference rules:

$$(\text{Unit}) \frac{\Gamma, \ell \vdash \Delta}{\Gamma \vdash \Delta, \{\ell\}}$$

$$(\text{Unit } \mathsf{E}_1) \frac{\Gamma, \ell \vdash \Delta}{\Gamma, \ell \vdash \Delta, C \cup \{\ell\}} \qquad (\text{Unit } \mathsf{E}_2) \frac{\Gamma, \ell \vdash \Delta, C}{\Gamma, \ell \vdash \Delta, C \cup \{\neg \ell\}}$$

$$(\text{Split}) \frac{\Gamma, \ell \vdash \Delta}{\Gamma \vdash \Delta} \qquad (\mathcal{T}\text{-Solve}) \frac{\Gamma \vdash_{\mathcal{T}}}{\Gamma \vdash}$$

ullet Example \mathcal{T} -solver: Fourier-Motzkin Elimination.

4 Modal Logic

• Logic based on "necessary" and "possibly".

4.1 Syntax

Definition 4.1.1. (Modal Logic) Given Σ_P as countably infinite set of propositional symbols:

- $\Omega_0^{\square} = \Omega_0 \cup \{\square, \diamond\}$ is the set of operators, where \square and \diamond are the *necessary* and *possibly* operators.
- The formal language of modal logic is $\mathcal{L}_0^{\square}(\Omega_0^{\square}) = \mathbb{T}_{\Omega_0^{\square}}(\Sigma_P)$, often denoted \mathcal{L}_0^{\square}

$$\psi ::= P \in \Sigma_P$$

$$\mid \dots \mid \Box \psi \mid \diamond \psi$$

• **Precedence**: (in order) of operators in Ω_0^{\square} : $\longleftrightarrow < \to < \lor < \land < \neg < \diamond < \square$.

4.2 Semantics

• Idea: Reason about "necessarily" and "possibly" using worlds (states) w/ transitions.

Definition 4.2.1. (Modal Frame) A modal frame is the pair (\mathcal{W}, R) , where \mathcal{W} is the non-empty set of possible worlds and $R: \mathcal{W} \longrightarrow \mathcal{W}$ is the accessibility relation.

Definition 4.2.2. (Modal Interpretation) The modal interpretation \mathcal{I} defined on the frame (\mathcal{W}, R) is a function $\mathcal{I} : \Sigma_P \to \mathcal{P}(\mathcal{W})$.

- $\mathcal{I}(P)$ is the set of worlds that propositional symbol P is true.
- Modal operators \square , \diamond relate to universal and existential quantification over (\mathcal{W}, R)

Definition 4.2.3. (Valuation) The *truth* value of the proposition $\psi \in \mathcal{L}_0^{\square}$ in the context of modal frame (\mathcal{W}, R) and interpretation $\mathcal{I} \in \Sigma_{\mathcal{I}}(\mathcal{W})$ in world $w \in \mathcal{W}$, denoted $\mathcal{T}_w \llbracket \psi \rrbracket_{\mathcal{I}}$, where $\mathcal{T}_w \llbracket \cdot \rrbracket_{\mathcal{I}} : \mathcal{L}_0^{\square} \to |\mathbf{B}|$ is inductively defined by

$$\mathcal{T}_{w} \llbracket \top \rrbracket_{\mathcal{I}} = 1 \qquad \mathcal{T}_{w} \llbracket \bot \rrbracket_{\mathcal{I}} = 0
\mathcal{T}_{w} \llbracket P \rrbracket_{\mathcal{I}} = w \in \mathcal{I}(P) \qquad \mathcal{T}_{w} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} = \mathcal{T}_{w} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} + \mathcal{T}_{w} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T}_{w} \llbracket \psi_{1} \lor \psi_{2} \rrbracket_{\mathcal{I}} = \mathcal{T}_{w} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} + \mathcal{T}_{w} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T}_{w} \llbracket \psi_{1} \lor \psi_{2} \rrbracket_{\mathcal{I}} = \mathcal{T}_{w} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} + \mathcal{T}_{w} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T}_{w} \llbracket \psi_{1} \lor \psi_{2} \rrbracket_{\mathcal{I}} = \mathcal{T}_{w} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} + \mathcal{T}_{w} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T}_{w} \llbracket \psi_{1} \lor \psi_{2} \rrbracket_{\mathcal{I}} = \mathcal{T}_{w} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} \oplus \mathcal{T}_{w} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T}_{w} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} \oplus \mathcal{T}_{w} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T}_{w} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} \oplus \mathcal{T}_{w} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T}_{w} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} \oplus \mathcal{T}_{w} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T}_{w} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} \oplus \mathcal{T}_{w} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T}_{w} \llbracket \psi_{1} \rrbracket_{\mathcal{I}} \oplus \mathcal{T}_{w} \llbracket \psi_{2} \rrbracket_{\mathcal{I}} \qquad \mathcal{T}_{w} \llbracket \psi_$$

• Notation: $w \Vdash_{(\mathscr{W},R),\mathcal{I}} \psi \iff \mathcal{T}_w \llbracket \psi \rrbracket = 1$ in modal frame (\mathscr{W},R) .

Definition 4.2.4. (Validity) For $\psi \in \mathcal{L}_0^{\square}$:

- $-\psi$ is valid, denoted $\Vdash_{(\mathcal{W},R),\mathcal{I}} \psi$, iff $\forall w \in \mathcal{W}.w \Vdash_{(\mathcal{W},R),\mathcal{I}} \psi$.
- $-\psi$ is universally valid, denoted $\Vdash_{(\mathscr{W},R)} \psi$, iff $\forall \mathcal{I} \in \Sigma(\mathscr{W})$. $\Vdash_{(\mathscr{W},R),\mathcal{I}} \psi$.
- All propositional tautologies are universally valid.

Definition 4.2.5. (Entailment and Equivalence) For $\psi_1, \psi_2 \in \mathcal{L}_0^{\square}$:

- $-\psi_1$ entails ψ_2 , denoted $\psi_1 \Vdash_{(\mathscr{W},R)} \psi_2$ iff $\forall \mathcal{I} \in \Sigma_{\mathcal{I}}(\mathscr{W})$. $\Vdash_{(\mathscr{W},R),\mathcal{I}} \psi_1 \implies \Vdash_{(\mathscr{W},R),\mathcal{I}} \psi_2$.
- ψ_1 and ψ_2 are equivalent, denoted $\psi_1 \simeq_{(\mathscr{W},R)} \psi_2 \iff \psi_1 \Vdash_{(\mathscr{W},R)} \psi_2 \land \psi_2 \Vdash_{(\mathscr{W},R)} \psi_1$.
- Notation: Modal frame is often implicit e.g. $\vdash \psi$.

Theorem 4.2.1. (Deduction Theorem \Longrightarrow) For all $\psi, \phi \in \mathcal{L}_0^{\square}$:

- (i) $\Vdash \psi \to \phi \implies \psi \Vdash \phi$
- (ii) $\Vdash \psi \longleftrightarrow \phi \implies \psi \simeq \phi$

4.2.1 Equivalences

• Dual laws:

$$\Box \psi \simeq \neg \diamond \neg \psi \quad \diamond \psi \simeq \neg \Box \neg \psi.$$

 $(\psi \text{ is necessarily true iff not } \psi \text{ is not possible})$

• Conjunctive laws:

$$\Box(\psi \land \phi) \simeq \Box \psi \land \Box \phi \quad \diamond (\psi \land \phi) \Vdash \diamond \psi \land \diamond \phi.$$

• Disjunctive laws:

$$\Box(\psi \lor \phi) \simeq \Box \psi \lor \Box \phi \quad \diamond (\psi \lor \phi) \simeq \diamond \psi \lor \diamond \phi.$$

• Implication laws:

$$\Box(\psi \to \phi) \Vdash \Box \psi \to \Box \phi \quad \diamond (\psi \to \phi) \Vdash \Box \psi \to \diamond \phi.$$

4.3 Proof Systems

4.3.1 Hilbert-Style Proof System

Definition 4.3.1. (Hilbert-Style \mathscr{H}_0^{\square}) \mathscr{H}_0^{\square} , the Hilbert-style proof system for modal propositional logic, is defined on the language $\mathcal{L}_0^{\square}(\{\neg, \rightarrow, \square\})$ (henceforth denoted \mathcal{L}_0^{\square}) with the following axioms and inference rules:

(S)
$$\frac{1}{(\psi \to (\phi \to \chi)) \to ((\psi \to \phi) \to (\psi \to \chi))}$$
 (K) $\frac{1}{\psi \to (\phi \to \psi)}$

(N)
$$\frac{}{(\neg \phi \rightarrow \neg \psi) \rightarrow ((\neg \phi \rightarrow \psi) \rightarrow \phi)}$$

$$(\Box K) \frac{\psi}{\Box (\psi \to \phi) \to (\Box \psi \to \Box \phi)} \qquad (\Box N) \frac{\psi}{\Box \psi}$$

$$(MP) \frac{\psi \qquad \psi \to \phi}{\phi}$$

• (\square K) is the distributive law (often called K) and (\square N) is the necessitation law.

- \diamond is a derived operator $w/\diamond\psi\triangleq\neg\Box\neg\psi$.
- \mathscr{H}_0^{\square} is a *pure*, or *normal*, modal logic (sometimes referred to as K).
- Pure logics are extended w/ axioms dependent, called *class axioms*, on characteristics of R:
 - (S1) R is serial: $\forall w \in \mathcal{W}. \exists w' \in \mathcal{W}. R(w, w')$. Axiom (D): $\Box \psi \to \diamond \psi$.
 - (S3) R is reflexive. Axiom (T): $\Box \psi \to \psi$.
 - (S4) R is transitive. Axiom (4): $\Box \psi \to \Box \Box \psi$.
 - (S5) R is symmetric. Axiom (B): $\psi \to \Box \diamond \psi$.
- Notation: $\mathscr{A}(R)$ is the set of class axioms defined by frame (\mathscr{W}, R) . $\mathscr{H}_0^{\square}(R)$ denotes \mathscr{H}_0^{\square} w/ class axioms $\mathscr{A}(R)$.

Theorem 4.3.1. (Soundness and Completeness of $\mathscr{H}_0^{\square}(R)$) $\mathscr{H}_0^{\square}(R)$ is sound and complete in (\mathscr{W}, R) , that is

$$\forall \Gamma \in \mathcal{P}(\mathcal{L}_0^{\square}), \psi \in \mathcal{L}_0^{\square}.\Gamma \vdash_{\mathscr{H}_0^{\square}} \psi \iff \Gamma \Vdash_{(\mathscr{W},R)} \psi,$$

4.3.2 Sequent Calculus for S4

- $S4 \implies$ Temporal logic. *Intuitively*, worlds are *futures*, each future has multiple futures. Paths are *timelines*.
- S4 equivalences:

$$\Box \psi \simeq \Box \psi \qquad \qquad \diamond \diamond \psi \simeq \diamond \psi$$

$$\Box \diamond \Box \diamond \psi \simeq \Box \diamond \psi \qquad \qquad \diamond \Box \diamond \Box \psi \simeq \diamond \Box \psi$$

- S4 operator strings:
 - $-\Box \psi$: ψ is true from now on. In all futures, ψ is true. ψ is true forever.
 - $\diamond \psi$: ψ is true at some point in the future. In some future, ψ is true.
 - $-\Box \diamond \psi$: ψ will be true infinitely often.
 - $-\Box\Box\psi$: ψ is true from now on.

Alistair O'Brien Logic and Proof

- $-\Box \diamond \Box \psi$: In all futures, at some point, ψ will be true forever.
- $\diamond \Box \diamond \psi$: At some point, ψ will be true infinitely often.

Definition 4.3.2. (Sequent Calculus \mathscr{S}_0^{\square} Proof System) \mathscr{S}_0^{\square} , the Sequent calculus proof system for modal propositional logic, is defined on the generalized sequent form language of $\mathcal{L}_0^{\square}(\Omega_0^{\square})$ with the following axioms and inference rules:

Operator	Left	Right
Axiom	$(A) {\Gamma, \psi \vdash \Delta, \psi}$	
¬	$(\neg l) \frac{\Gamma \vdash \Delta, \psi}{\Gamma, \neg \psi \vdash \Delta}$	$(\neg r) \frac{\Gamma, \neg \psi \vdash \bot}{\Gamma \vdash \Delta, \neg \psi}$
\wedge	$(\land l) \frac{\Gamma, \psi, \phi \vdash \Delta}{\Gamma, \psi \land \phi \vdash \Delta}$	$(\wedge r) \frac{\Gamma \vdash \Delta, \psi \qquad \Gamma \vdash \Delta, \phi}{\Gamma \vdash \Delta, \psi \land \phi}$
V	$(\vee l) \frac{\Gamma, \psi \vdash \Delta}{\Gamma, \psi \land \phi \vdash \Delta}$	$(\vee r) \frac{\Gamma \vdash \Delta, \psi, \phi}{\Gamma \vdash \Delta, \psi \lor \phi}$
\rightarrow	$(\rightarrow l) \frac{\Gamma \vdash \Delta, \psi \qquad \Gamma, \phi \vdash \Delta}{\Gamma, \psi \rightarrow \phi \vdash \Delta}$	$(\to r) \frac{\Gamma, \psi \vdash \Delta, \phi}{\Gamma \vdash \Delta, \psi \to \phi}$
\longleftrightarrow	$(\longleftrightarrow l) \frac{\Gamma \vdash \Delta, \psi, \phi \qquad \Gamma, \psi, \phi \vdash \Delta}{\Gamma, \psi \longleftrightarrow \phi \vdash \Delta}$	$(\longleftrightarrow r) \; \frac{\Gamma, \psi \vdash \Delta, \phi \qquad \Gamma, \phi \vdash \Delta, \psi}{\Gamma \vdash \Delta, \psi \longleftrightarrow \phi}$
	$(\Box l) \frac{\Gamma, \psi \vdash \Delta}{\Gamma, \Box \psi \vdash \Delta}$	$(\Box r) \; \frac{\Gamma^* \vdash \Delta^*, \psi}{\Gamma \vdash \Delta, \Box \psi}$
♦	$(\diamond l) \frac{\Gamma^*, \psi \vdash \Delta^*}{\Gamma, \diamond \psi \vdash \Delta}$	$(\neg r) \frac{\Gamma, \neg \psi \vdash \bot}{\Gamma \vdash \Delta, \neg \psi}$ $(\wedge r) \frac{\Gamma \vdash \Delta, \psi}{\Gamma \vdash \Delta, \psi \land \phi}$ $(\forall r) \frac{\Gamma \vdash \Delta, \psi, \phi}{\Gamma \vdash \Delta, \psi \lor \phi}$ $(\rightarrow r) \frac{\Gamma, \psi \vdash \Delta, \phi}{\Gamma \vdash \Delta, \psi \to \phi}$ $(\longleftrightarrow r) \frac{\Gamma, \psi \vdash \Delta, \phi}{\Gamma \vdash \Delta, \psi \to \phi}$ $(\Box r) \frac{\Gamma, \psi \vdash \Delta, \phi}{\Gamma \vdash \Delta, \psi \longleftrightarrow \phi}$ $(\Box r) \frac{\Gamma^* \vdash \Delta^*, \psi}{\Gamma \vdash \Delta, \Box \psi}$ $(\diamond r) \frac{\Gamma \vdash \Delta, \psi}{\Gamma \vdash \Delta, \diamond \psi}$

where $\Gamma^* = \{\Box \psi : \Box \psi \in \Gamma\}, \ \Delta^* = \{\diamond \psi : \diamond \psi \in \Delta\}.$

• Γ^*, Δ^* needed for world independence.