#### **BB84**

Luc Spachmann

3. Februar 2022

### Allgemeines

- Quantenprotokoll zum Schlüsseltausch
- Kann als Schlüssel für Onetime Pad verwendet werden
- Fast alle asymmetrischen Verfahren unsicher gegen Quantencomputer

## Qubit

- Beschreibt einen Quantenzustand
- Kann mit einer beliebigen Basis  $|0\rangle, |1\rangle$  und  $a, b \in \mathbb{C}$  beschrieben werden

$$q = a|0\rangle + b|1\rangle$$

mit 
$$|a|^2 + |b|^2 = 1$$

- 'No-Cloning-Theorem': Qubits können nicht kopiert werden
- Qubits können nur in Basis ausgewertet werden
- Ergebnis ist  $|0\rangle$  mit W'keit  $|a|^2$ , und  $|1\rangle$  mit W'keit  $|b|^2$
- Alternative Basis: Hadamar-Basis:

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \qquad |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

• Angepasste Parameter können genau so berechnet werden

#### **BB84 Protokoll**

- Alice erzeugt Zufallsbits  $a_1, ..., a_n$  und  $a'_1, ..., a'_n$ .
- Alice kodiert das Bit  $a_i$  als  $\begin{cases} |0\rangle \text{ bzw. } |1\rangle, \text{ falls } a_i'=0 \\ |+\rangle \text{ bzw. } |-\rangle, \text{ falls } a_i'=1 \end{cases}$
- Alice sendet kodierte Bits  $a_1, ..., a_n$  über Quantenkanal an Bob
- Bob erzeugt Zufallsbits  $b'_1, ..., b'_n$
- Alice und Bob vergleichen  $a_1', \dots$  und  $b_1', \dots$  über klassischen ungesicherten Kanal
- Ist  $a'_i \neq b'_i$  werden  $a_i, b_i$  gelöscht
- Alice und Bob tauschen k zufällige Bits  $a_i$ ,  $b_i$  aus und vergleichen.
- Bei Fehler: Abbruch



Luc Spachmann BB84 3. Februar 2022

# Aufgaben

• Implementiert das BB84 Protokoll