Project 2 (Global Sequence Alignment) Clarifications and Hints

Prologue

Project goal: write a program to compute the optimal sequence alignment of two DNA strings

The zip file (https://www.cs.umb.edu/~msolah/cs110_f18/project2.zip) for the project contains

- project specification (project2.pdf)
- starter files (edit_distance.py, alignment.py)
- test script (run_tests.py)
- test data (data/)
- report template (report.txt)

This checklist will help only if you have read the writeup for the project and have a general understanding of the problems involved. So, please read the project writeup $\ \ \,$ before you continue with this checklist.

Problems

Problem 1 (Calculating Edit Distance Using Dynamic Programming) Write a program edit_distance.py that reads strings x and y from standard input and computes the edit-distance matrix opt. The program should output x, y, the dimensions (number of rows and columns) of opt, and opt itself.

Hints

- Read the sequences x and y from standard input, as strings
- Create an $(M+1) \times (N+1)$ edit-distance matrix opt with all elements initialized to 0, where M and N are the lengths of x and y respectively
- Set the bottom row of opt to 2 * (N j) and its right column to 2 * (M i), where $0 \le j \le N 1$ and $0 \le i \le M 1$
- For example, if x = 'HAM' (M = 3) and y = 'SPAM' (N = 4), then the corresponding opt matrix after the above step is

	х\у	i	S	1 P	2 A	M	-
0	H		0	0	0	0	6
1	Α		0	0	0	0	4
2	M		0	0	0	0	2
3	-		8	6	4	2	0

Problems

• Fill in the rest of the opt matrix, starting at opt[M - 1] [N - 1] and ending at opt[0][0], as follows: if x[i] and y[j] are the same, where 0 <= i <= M - 1 and 0 <= j <= N - 1, then

```
{\tt opt[i][j] = min(opt[i + 1][j + 1], opt[i + 1][j] + 2, opt[i][j + 1] + 2)}
```

and

```
opt[i][j] = min(opt[i + 1][j + 1] + 1, opt[i + 1][j] + 2, opt[i][j + 1] + 2)
```

otherwise

 \bullet The $_{\mathtt{opt}}$ matrix for the above example after the preceding step is

- Write the following output, each starting on a new line
 - String x
 - String y
 - Dimensions of the opt matrix separated by a space
 - Elements of opt; use format string '%3d ' for elements not on the last column, and '%3d\n' for the last-column elements

Problems

Problem 2 (*Recovering the Alignment*) Write a program <code>alignment.py</code> that reads from standard input, the output produced by <code>edit_distance.py</code>, ie, input strings <code>x</code> and <code>y</code>, and the <code>opt</code> matrix. The program should then recover an optimal alignment, and write to standard output the edit distance between <code>x</code> and <code>y</code> and the alignment itself.

Hints

- Read from standard input the sequences x and y as strings, and the matrix opt as a 2D array of integers
- Write the edit distance between x and y, ie, the value of opt[0][0]
- Recover and output the alignment, starting at ${\tt opt[0][0]}$ and ending at ${\tt opt[M-1][N-1]}$, as follows: if ${\tt opt[i][j]}$ equals ${\tt opt[i+1][j]}+2$, then align ${\tt x[i]}$ with a gap and penalty of 2, and increment i by 1; if ${\tt opt[i][j]}$ equals ${\tt opt[i][j+1]}+2$, then align a gap with ${\tt y[j]}$ and penalty of 2, and increment j by 1; otherwise, align ${\tt x[i]}$ with ${\tt y[j]}$ and penalty of 0/1 based on whether ${\tt x[i]}$ and ${\tt y[j]}$ match or not, and increment both i and j by 1

Note: if one of the sequences is exhausted before the other, align a character from the other with a gap and penalty of 2

• For our running example, the optimal alignment produced by the previous step is

```
- H A M
S P A M
2 1 0 0 (edit distance = 3)
```

Epilogue

Be sure to test your programs thoroughly using the short test data files and actual genomic data files under the data directory; here are the optimal edit distances of several of the supplied files:

```
ecoli2500.txt
                 118
ecoli5000.txt
                 160
fli8.txt
fli9.txt
fli10.txt
                 758
ftsa1272.txt
gene57.txt
                   8
stx1230.txt
                 521
stx19.txt
                  10
stx26.txt
                  17
stx27.txt
                  19
```

Epilogue

Your project report (use the given template, report.txt) must include

- time (in hours) spent on the project
- short description of how you approached each problem, issues you encountered, and how you resolved those issues
- acknowledgement of any help you received
- other comments (what you learned from the project, whether or not you enjoyed working on it, etc.)

Before you submit your files

 make sure your programs meet the input and output specifications by running the following command on the terminal

```
$ python3 run_tests.py -v [<problems>]
```

where the optional argument problems> lists the problems (Problem1, Problem2, etc.)
you want to test, separated by spaces; all the problems are tested if no argument
is given

 make sure your programs meet the style requirements by running the following command on the terminal

```
$ pycodestyle codestyle
```

 make sure your report isn't too verbose, doesn't contain lines that exceed 80 characters, and doesn't contain spelling/grammatical mistakes