

Unmanned Vehicle Design Software

황인성 한국항공우주연구원

2022, 11, 8

CONTENTS

- 01 무인항공기시장
- **02** PX4 비행제어
- **03** 소형 드론 설계 SW
- **04** 무인이동체 매개변수모델링&해석

01 무인항공기 시장

01 항공기 시장

에어버스 A320(좌) 보잉 737(우)

- Airbus A320 family deliveries^{[39][40]}
- Boeing 737 series deliveries^{[41][42]}

• 전통적인 민항기 시장 ⇒ 소품종 소량 생산

01 무인기(드론) 시장

(공중) '20년 159억불→ '25년 385억불→ '30년 915억불

(출처: 무인이동체로드맵 공청회)

2021년 매출 US\$ 3.83B

미국 드론 등록 대수 (2022, FAA)

- 865,505 drones registered
 - o 314,689 commercial drones registered
 - o 538,172 recreational drones registered

- 무인기(드론) 시장
 - ⇒ 다품종 대량 생산

PX4 Autopilot

The PX4 Autopilot provides guidance, navigation, and control algorithms for autonomous fixed wing, multirotor, and VTOL airframes, along with estimators for attitude and position.

MAVLink

Feature complete and fully customizable control station for MAVLink based UAVs. It can be used to update, configure, and tune an airframe. The control station has a mighty mission planner and tracks missions.

MAVSDK

MAVSDK

to update, configure, and tune an

0 # \$ 9

QGroundControl @ aGroundControl

02 PX4 비행제어

02 PX4 비행제어 알고리즘 개선

드론 기체 형상 설정 (QGC)

LC62-50B (항우연)

02 PX4 비행제어 알고리즘 개선

- 천이 비행을 위한 비행제어 알고리즘 개선
 - 천이 중 선회 비행이 가능하도록 비행제어 알고리즘 개선
 - 회전익+고정익 모드 혼합 시 비행제어 안정화

03 소형 드론 설계 SW

03 소형 드론 초기설계 SW

25kg 이하 소형드론 초기설계용 소프트웨어

03

해석 모드

- 입력
 - 사용자 요구 임무 형상
 - 멀티콥터 구성품 제원
- 결과
 - 멀티콥터 성능
 - 임무 달성 가능 여부

설계 모드

- 입력
 - 사용자 요구 임무 형상
 - 멀티콥터 요구 성능
- 결과
 - 최적설계된 멀티콥터의 구성품 제원

03 드론 기술시연기 개발 및 성능검증

목적함수 비행시간 최대화

설계변수	단위	최소	최대	
모터상수	RPM/V	200	600	
프로펠러 지름	In	15	17	
배터리 전압	V	4 S	6S	
배터리 용량	mAh	5,000	15,000	
ESC 최대전류량	А	30	70	
이륙중량*	g		5000	

* 계측장비중량 1250g 포함

설계결과 및 기술시연기 개발

	CLOUDS	기술시연기 적용*		
모터	390	KDE 4014XF-380		
프로펠러	15.2x5.0	Tmotor 16.0x5.4		
배터리	6S x 12,000	Dinogy 11,000		
ESC	30	Hobbywing Xrotor 50A		
이륙중량	4923	4910		
축간거리	800	700		

^{*} 프로펠러 크기에 따른 축간거리 선정후 재계산

비행시험 결과

임무중량 (g)	CLOUDS	비행시험
0	15분 49초	16분 22초
500	12분 41초	12분 19초
1000	11분 10초	11분 19초

04

무인이동체 매개변수 모델링 & 해석

04 무인이동체 매개변수 형상 모델링

Unmanned Vehicle Parameters (Excel)

LandingPadLength(%)	101
LandingPadWidth(%)	105
LandingPadHeight	170
LandingPadLift	400
LifterLength(%)	90
BatteryLength	1200
BatteryWidth	600
BatteryHeight	200
BaseLength	1450
GroundClearance	330

Main Shape	Parameters			
L,a	425	MainFrame1X	355	XFrameH
L_b	3075	MainFrame1X-2X	830	XFrameTh
L,c	1005	MainFrame2X-3X	1490	SubFrame
l_ao	80	MainFrame3X-Plate	1190	PipeCenT
L_co	350	MainFrameWidth	32	SubFrame
d	450	FrameInnerHeight/2	166	SubFrame
theta	25	InnerThickness	40	SubFrame
n	2.5	FrameRibThickness	2	Subframe
FrameWeight	75	FrameRibOffset	4	Subframe
Fairing/Weight	38	FrameRibHeight	8	Subframe

	AFT Wing Parameters								
Position	Х	2109	Z	164	Attack Angle	0			
	Airfoil	Chord	Thickness	Twist angle	Span	Sweepback	Dihedral	Buffer zone	Twist ref. chord
Root	sd7032	991	149	0	0				25%
Mid	sd7032	486	75	0	453	29	0	5	25%
Tip	sd7032	311	30	0	1300	0.3	0		25%
Buffer Zon	e Shape					AFT Control Surface Use		Use	TRUE
	W2-3					Span Start(%)	Span End(%)	Width(%)	Clearance
Num Sections	10					5	45	23	1.5
Blend Bulge	0.5								
Continuity	Tangent	1							
		•							
				Front Wing P	arameters				
Position	X	776	Z	50	Attack Angle	0			
	Airfoil	Chord	Thickness	Twist angle	Span	Sweepback	Dihedral	Buffer zone	Twist ref. chord
Root	sd7032	348	79	0	0				25%
Tip	sd7032	256	35	0	1120	0.35	0		25%
	BMD Control Surface Like TI						TRUE		

Vehicle 3D CAD

Model Data

Surface Volume Weight Area Volume Center (3D) Center of gravity (3D)

Fuselage XSection

04 무인이동체 매개변수 유동해석

04 무인이동체 매개변수 최적설계 자동화

