BOI

BOI 2024

Vilnius, Lithuania May 3 - May 7, 2024 tiles d2 Tasks Polish (POL)

Płytki

Uważa się, że pierwszy i jedyny król litewski Mendog wkrótce po przejściu na chrześcijaństwo nakazał budowę katedry w Wilnie. Budowa jest już prawie ukończona, z wyjątkiem tego, że podłoga musi zostać pokryta ceramicznymi zdobionymi szkliwionymi płytkami.

Posadzka Katedry Wileńskiej jest wielokątem na płaszczyźnie 2D w kartezjańskim układzie współrzędnych. Wielokąt ma N różnych wierzchołków, ponumerowanych od 1 do N. Dla każdego i takiego, że $1 \leq i \leq N$, wierzchołek i znajduje się w punkcie (X[i],Y[i]), gdzie X[i] oraz Y[i] są nieujemnymi liczbami całkowitymi. Istnieje krawędź łącząca wierzchołek i z wierzchołkiem i+1 (dla każdego i takiego, że $1 \leq i \leq N-1$), oraz krawędź łącząca wierzchołek N z wierzchołkiem 1. Wierzchołki są podane albo w kolejności zgodnej z ruchem wskazówek zegara, albo przeciwnie do ruchu wskazówek zegara.

Katedra jest wielokątem **równoległym do osi**, co oznacza, że każda z krawędzi jest równoległa do osi x lub osi y. Co więcej, katedra jest **prostym** wielokątem, czyli:

- dokładnie dwie krawędzie spotykają się w każdym wierzchołku;
- każda para krawędzi może spotkać się tylko w jednym wierzchołku.

Budowniczowie katedry mają nieskończenie wiele płytek. Każda płytka jest kwadratem o boku długości 2. Budowniczowie chcieliby pokryć nimi dużą część katedry. W szczególności, budowniczowie chcą wybrać pewną pionową prostą i pokryć nią część katedry na lewo od tej prostej. Dla dowolnej liczby całkowitej k, niech L_k oznacza pionową prostą składającą się z punktów o współrzędnej x równej k. Pokrycie części katedry na lewo od L_k to umieszczenie pewnej liczby płytek na płaszczyźnie w taki sposób, że

- każdy punkt, który leży we wnętrzu wielokąta i ma współrzędną x mniejszą niż k, jest pokryty jakąś płytką;
- ullet każdy punkt, który leży na zewnątrz wielokąta lub ma współrzędną x większą niż k, nie jest pokryty przez żadną płytkę;
- wnętrza płytek nie pokrywają się.

Zapewnione jest, że wśród wierzchołków katedry minimalna współrzędna x wynosi 0. Niech M oznacza maksymalną współrzędną x wierzchołków katedry.

Zadanie

Pomóż budowniczym katedry w Wilnie, wyznaczając największą liczbę całkowitą k, taką, że $k \leq M$, oraz istnieje pokrycie części katedry na lewo od L_k . Zauważmy, że z definicji istnieje pokrycie części katedry na lewo od L_0 (która używa 0 kawałków).

Wejście

Pierwszy wiersz wejścia zawiera dwie liczby całkowite N oraz M – kolejno liczbę wierzchołków i maksymalną współrzędną x dowolnego wierzchołka.

Następnie znajduje się N wierszy, przy czym i-ty z nich zawiera dwie liczby całkowite x_i oraz y_i – współrzędne i-tego wierzchołka. Wierzchołki są podane albo w kolejności zgodnej z ruchem wskazówek zegara, albo przeciwnie do ruchu wskazówek zegara.

Wyjście

Należy wypisać maksymalną liczbę całkowitą k taką, że $k \leq M$ oraz istnieje pokrycie części katedry na lewo od L_k .

Przykłady

Wejście	Wyjście	Wyjaśnienie
14 6 0 1 0 3 2 3 2 4 0 4 0 6 3 6 3 7 4 7 6 5 3 5 3 2 3 1	2	Poniższy rysunek przedstawia część katedry po lewej stronie prostej L_k dla $k=2$:
4 3 0 0 0 3 3 3 3 0	0	Nie istnieje dodatnia wartość k taka, że część katedry na lewo od L_k jest pokryta.

Ograniczenia

- $\bullet \quad 4 \leq N \leq 2 \cdot 10^5$
- $1 \le M \le 10^9$
- $0 \le y_i \le 10^9$ (dla wszystkich $1 \le i \le N$)
- Katedra tworzy prosty, równoległy do osi, wielokąt.
- ullet Minimalna wartość wśród $x_1,x_2,...,x_N$ wynosi 0 oraz maksymalna wartość wśród $x_1,x_2,...,x_N$ wynosi M.

Podzadania

Numer	Punkty	Dodatkowe warunki
1	4	N=4.
2	9	$N \leq 6$.
3	11	$x_N=0, y_N=0$, $x_i \leq x_{i+1}, y_i \geq y_{i+1}$ (dla wszystkich i takich, że $1 \leq i \leq N-2$).
4	19	$M \leq 1000$ oraz wszystkie $y_i \leq 1000$.
5	22	Wszystkie wartości y_i są parzyste.
6	25	Wszystkie wartości x_i są parzyste.
7	10	Brak dodatkowych warunków.