UJIAN TENGAH SEMESTER MACHINE LEARNING

Oleh: FAJAR ALFIANTINO – 202310072 MICHAEL MERVIN RUSWAN – 202310016 YUDHISTIRA KUSUMA – 202310067

KELAS: 7 TI-20-PA

PROGRAM STUDI TEKNOLOGI INFORMASI FAKULTAS INFORMATIKA DAN PARIWISATA INSTITUT BISNIS DAN INFORMATIKA KESATUAN BOGOR

2023

DAFTAR ISI

DAFTA	AR ISI
DAFTA	AR TABELi
DAFTA	AR GAMBARii
DAFTA	AR LAMPIRANiv
1. ATR	IBUT [10 Poin] 1
	1.1 Atribut Prediktor
	1.2 Atribut Label
2. STAT	ΓISTIK DESKRIPTIF2
	2.1 Sebelum Praproses Data
	2.2 Setelah Praproses Data
3. MOI	DEL KLASIFIKASI9
	3.1 KNN
	3.2 Decision Tree
	3.3 SVM
4. MOI	DEL CLUSTERING 17
	4.1 Agglomerative <i>Clustering</i>
	4.2 DBSCAN
	4.3 K-Means
LAMD	ID AN

DAFTAR TABEL

Tabel 1.1 Tabel Atribut Prediktor
Tabel 1.2 Tabel Atribut Label
Tabel 2.1 Kode Menampilkan Statistik Deskriptif Sebelum Praproses Data
Tabel 2.2 Kode Memisahkan Atribut Prediktor dengan Atribut Label
Tabel 2.3 Kode Menggunakan SimpleImputer untuk Menangani <i>Missing Values</i> . 4
Tabel 2.4 Kode Menggunakan MinMaxScaler untuk Mengubah Nilai Atribu
Prediktor5
Tabel 2.5 Kode Menampilkan Statistik Deskriptif MinMaxScaler
Tabel 2.6 Kode Menggunakan StandardScaler untuk Mengubah Nilai Atribu
Prediktor
Tabel 2.7 Kode Menampilkan Statistik Deskriptif StandardScaler
Tabel 3.1 <i>Code</i> Model Klasifikasi Menggunakan Algoritma KNN9
Tabel 3.2 <i>Code</i> Model Klasifikasi Menggunakan Algoritma <i>Decision Tree</i> 12
Tabel 3.3 <i>Code</i> Model Klasifikasi Menggunakan Algoritma SVM 14
Tabel 4.1 Kode Agglomerative Clustering
Tabel 4.2 Kode DBSCAN
Tabel 4.3 Kode K-Means

DAFTAR GAMBAR

Gambar 2.1 Statistik Deskriptif Sebelum Praproses Data	3
Gambar 2.2 Hasil Statistik Deskriptif Menggunakan MinMaxScaler	<i>6</i>
Gambar 2.3 Hasil Statistik Deskriptif Menggunakan StandardScaler	8
Gambar 3.1 Hasil Model Klasifikasi Menggunakan Algoritma KNN	11
Gambar 3.2 Hasil Model Klasifikasi Menggunakan Algoritma Decision Tree	13
Gambar 3.3 Hasil Model Klasifikasi Menggunakan Algoritma SVM	16
Gambar 4.1 Hasil Silhouette Score Menggunakan Agglomerative Clustering	19
Gambar 4.2 Hasil Silhouette Score Menggunakan DBSCAN	21
Gambar 4.3 Hasil Silhouette Score Menggunakan K-Means	23

DAFTAR LAMPIRAN

Lampiran 1 Screenshot Google Collab	2	4
-------------------------------------	---	---

1. ATRIBUT [10 Poin]

1.1 Atribut Prediktor

Tabel 1.1 Tabel Atribut Prediktor

Nama	Jenis Atribut	Keterangan	
battery_power	Numerik	Skala Rasio	
blue	Biner		
clock_speed	Numerik	Skala Rasio	
dual_sim	Biner		
fc	Numerik	Skala Rasio	
four_g	Biner		
int_memory	Numerik	Skala Rasio	
m_dep	Numerik	Skala Rasio	
mobile_wt	Numerik	Skala Rasio	
n_cores	Numerik	Skala Rasio	
pc	Numerik	Skala Rasio	
px_height	Numerik	Skala Rasio	
px_width	Numerik	Skala Rasio	
ram	Numerik	Skala Rasio	
sc_h	Numerik	Skala Rasio	
sc_w	Numerik	Skala Rasio	
talk_time	Numerik	Skala Rasio	
three_g	Biner		
touch_screen	Biner		
wifi	Biner		

1.2 Atribut Label

Tabel 1.2 Tabel Atribut Label

Nama	Jenis Atribut
price_range	Ordinal

2. STATISTIK DESKRIPTIF

2.1 Sebelum Praproses Data

- 1. Statistik deskriptif merupakan cabang dari statistik untuk mendeskripsikan dan merangkum data. Contoh hal umum yang biasa dilakukan di dalam tipe statistik ini seperti pembuatan graph, dan menghitung berbagai macam pengukuran data seperti Mean.
- 2. Sebelum dilakukan praproses data, pada dataset masih terdapat *missing* values.
- 3. Untuk menampilkan statistik deskriptif dapat menjalankan perintah seperti kode berikut pada Google Collab.

Tabel 2.1 Kode Menampilkan Statistik Deskriptif Sebelum Praproses Data

Tampilkan statistik deskriptif sebelum pengisian missing value dan standarisasi # Statistik deskriptif => cabang dari statistik untuk mendeskripsikan dan merangkum data.

2 jenis statistik deskriptif => Measures of Central Tendency (mean, median, modus), Measures of Spread (std, kuartil)

deskripsi_awal = dataset.describe()
print("Statistik Deskriptif Sebelum Pengisian Missing Value dan Standarisasi:")
print(deskripsi_awal)

- Hasil dari kode di atas menghasilkan statistik deskriptif seperti berikut.

Static	tik Deskrinti	f Sahalum Dan	gisian Missin	r Value dan S	tandaricaci:		
JCacis	battery powe			dual sim	fc	١	
count	1990.00000		2000.000000	2000.000000	2000.000000		
mean	1237.86783		1.522250	0.509500	4.309500		
std	439.67602		0.816004	0.500035	4.341444		
min	501.00000		0.500000	0.000000	0.000000		
25%	850.25000		0.700000	0.000000	1.000000		
50%	1225.00000		1.500000	1.000000	3.000000		
75%	1615.00000		2.200000	1.000000	7.000000		
max	1998.00000		3.000000	1.000000	19.000000		
IIIdX	1990.00000	0 1.0000	3.000000	1.000000	19.000000		
	four_g	int_memory	m_dep	mobile wt	n_cores		
count	2000.000000	1990.000000	2000.000000	1990.000000	2000.000000		
mean	0.521500	31.987940	0.501750	140.344221	4.520500		
std	0.499662	18.136427	0.288416	35.407114	2.287837		
min	0.000000	2.000000	0.100000	80.000000	1.000000		
25%	0.000000	16.000000	0.200000	109.000000	3.000000		
50%	1.000000	32.000000	0.500000	141.000000	4.000000		
75%	1.000000	48.000000	0.800000	170.000000	7.000000		
max	1.000000	64.000000	1.000000	200.000000	8.000000		
	px_height	px_width	ram	sc_h	SC_W		
count	2000.000000	2000.000000	1990.000000	2000.000000	2000.000000		
mean	645.108000	1251.515500	2124.991960	12.306500	5.767000		
std	443.780811	432.199447	1084.885362	4.213245	4.356398		
min	0.000000	500.000000	256.000000	5.000000	0.000000		
25%	282.750000	874.750000	1208.250000	9.000000	2.000000		
50%	564.000000	1247.000000	2146.500000	12.000000	5.000000		
75%	947.250000	1633.000000	3065.500000	16.000000	9.000000		
max	1960.000000	1998.000000	3998.000000	19.000000	18.000000		
	talk_time	three_g	touch_screen	wifi	price_range		
count	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000		
mean	11.011000	0.761500	0.503000	0.507000	1.500000		
std	5.463955	0.426273	0.500116	0.500076	1.118314		
min	2.000000	0.000000	0.000000	0.000000	0.000000		
25%	6.000000	1.000000	0.000000	0.000000	0.750000		
50%	11.000000	1.000000	1.000000	1.000000	1.500000		
75%	16.000000	1.000000	1.000000	1.000000	2.250000		
max	20.000000	1.000000	1.000000	1.000000	3.000000		
[8 row	s x 21 column	5]					

Gambar 2.1 Statistik Deskriptif Sebelum Praproses Data

 Pada hasil di atas, terlihat terdapat beberapa informasi yang disampaikan dari 21 kolom, mulai dari jumlah data, rata-rata atau mean, standar deviasi, nilai minimal, nilai maksimal, kuartil pertama, kuartil kedua atau median, serta kuartil ketiga.

2.2 Setelah Praproses Data

- 1. Praproses data merupakan langkah yang dilakukan sebelum data diproses lebih lanjut.
- 2. Terdapat tiga tahap pada praproses data yang dilakukan, yaitu memisahkan bagian atribut prediktor dengan label data menjadi dua variabel terpisah,

- memastikan tidak adanya missing values pada dataset, serta menyeragamkan nilai dari masing-masing atribut.
- 3. Untuk langkah memisahkan bagian atribut prediktor dilakukan dengan pertama-tama membuat dua variabel, misalnya variabel X merupakan variabel yang berisi atribut prediktor yaitu atribut selain atribut price_range sehingga kita menghapus kolom price range pada variabel x.
- 4. Untuk variabel kedua yaitu variabel Y ditetapkan kolom price_range yang digunakan sebagai atribut label.
- 5. Untuk contoh kode dapat dilihat seperti berikut.

Tabel 2.2 Kode Memisahkan Atribut Prediktor dengan Atribut Label

```
# Pisahkan atribut prediktor dan atribut label

X = dataset.drop("price_range", axis=1) # Atribut prediktor

y = dataset["price_range"] # Atribut label
```

- 6. Dari dataset yang kami dapatkan terdapat beberapa missing values. Untuk mengisi missing values dilakukan dengan menggunakan SimpleImputer dan nilai median sebagai strategi pengisian nilai.
- 7. Hal yang pertama dilakukan adalah inisialisasi SimpleImputer dan menetapkan strategi median.
- 8. Kedua, melakukan imputasi nilai mneggunakan SimpleImputer yang telah diinisialisasi sebelumnya.
- 9. Untuk menjalankan perintah kode dapat dilihat seperti berikut.

Tabel 2.3 Kode Menggunakan SimpleImputer untuk Menangani Missing Values

```
# Inisialisasi SimpleImputer untuk mengisi nilai-nilai yang hilang dengan median imputer = SimpleImputer(strategy="median")
```

Imputasi missing value dengan median

X imputed = imputer.fit transform(X)

- 10. Setelah missing values terisi, maka langkah selanjutnya adalah menyeragamkan nilai dari masing-masing atribut. Terdapat dua opsi metode yang dapat dilakukan, yaitu menggunakan MinMaxScaler atau StandardScaler.
- 11. Baik untuk MinMaxScaler dan StandardScaler, langkah yang perlu dilakukan serupa, dimulai dari inisialasi metode, penerapan metode pada atribut prediktor yang sudah diimputasi, mengonversi hasil transformasi ke Pandas DataFrame, serta menggabungkan atribut prediktor yang sudah diimputasi dan distandarisasi dengan atribut label
- 12. Untuk kode menggunakan MinMaxScaler dapat dilihat seperti berikut.

Tabel 2.4 Kode Menggunakan MinMaxScaler untuk Mengubah Nilai Atribut Prediktor

```
# Inisialisasi Min-Max Scaler
scaler = MinMaxScaler()

# Lakukan Min-Max Scaling pada atribut prediktor yang sudah diimputasi
X_scaled = scaler.fit_transform(X_imputed)

# Konversi hasil transformasi kembali ke Pandas DataFrame (opsional)
X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)

# Gabungkan atribut prediktor yang sudah diimputasi dan distandarisasi dengan atribut label
data_scaled = pd.concat([X_scaled_df, y], axis=1)
```

13. Untuk menampilkan hasil statistik deskriptif setelah dilakukan praproses data menggunakan MinMaxScaler dapat menjalankan kode berikut.

Tabel 2.5 Kode Menampilkan Statistik Deskriptif MinMaxScaler

```
# Tampilkan statistik deskriptif setelah pengisian dan standarisasi

deskripsi_setelah = data_scaled.describe()

print("Statistik Deskriptif Setelah Pengisian dan Standarisasi (Menggunakan MinMaxScaler):")

print(deskripsi_setelah)
```

14. Untuk statistik deskriptif setelah dilakukannya praproses data mengguanakan MinMaxScaler dapat dilihat seperti di bawah ini.

Statis	tik Deskrinti:	f Setelah Pen	gisian dan St	andarisasi (M	enggunakan Mi	MaxScaler):
	battery power		clock speed		fc	*
count	2000.000000			2000.000000		•
mean	0.49218	7 0.4950	0.408900	0.509500	0.226816	
std	0.29297	0.5001	0.326402	0.500035	0.228497	
min	0.00000	0.0000	0.000000	0.000000	0.000000	
25%	0.23430	2 0.0000	0.080000	0.000000	0.052632	
50%	0.483634	4 0.0000	0.400000	1.000000	0.157895	
75%	0.74348	7 1.0000	0.680000	1.000000	0.368421	
max	1.00000	0 1.0000	1.000000	1.000000	1.000000	
	four_g	int_memory	m_dep	mobile_wt	n_cores	\
count	2000.0000000	2000.000000	2000.000000	2000.000000	2000.000000	
mean	0.521500	0.483677	0.446389	0.502896	0.502929	
std	0.499662	0.291790	0.320462	0.294321	0.326834	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.225806	0.111111	0.241667	0.285714	
50%	1.000000	0.483871	0.444444	0.508333	0.428571	
75%	1.000000	0.741935	0.777778	0.750000	0.857143	
max	1.000000	1.000000	1.000000	1.000000	1.000000	
	pc	px_height	px_width	ram		\
count	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	
mean	0.495825	0.329137	0.501679	0.499492	0.521893	
std	0.303216	0.226419	0.288518	0.289195	0.300946	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.250000	0.144260	0.250167	0.255144	0.285714	
50%	0.500000	0.287755	0.498665	0.505211	0.500000	
75%	0.750000	0.483291	0.756342	0.749332	0.785714	
max	1.000000	1.000000	1.000000	1.000000	1.000000	
	5C W	talk time	three_g	touch screen	wifi	
count	sc_w 2000.000000	2000.000000	2000.000000	2000.0000000		
mean	0.320389	0.500611	0.761500	0.503000	0.507000	
std	0.242022	0.303553	0.426273	0.500116		
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.111111	0.222222	1.000000	0.000000	0.000000	
50%	0.277778	0.500000	1.000000	1.000000	1.000000	
75%	0.500000	0.777778	1.000000	1.000000	1.000000	
max	1.000000	1.000000	1.000000	1.000000	1.000000	
AILU Z	11000000	11000000	11000000	11000000	1:000000	

Gambar 2.2 Hasil Statistik Deskriptif Menggunakan MinMaxScaler

15. Sedangkan kode menggunakan StandardScaler dapat dilihat seperti berikut.

Tabel 2.6 Kode Menggunakan StandardScaler untuk Mengubah Nilai Atribut Prediktor

Inisialisasi StandardScaler untuk mengubah nilai atribut prediktor agar nilai dari masing-masing atribut seragam scaler = StandardScaler()

Lakukan standarisasi menggunakan StandardScaling Scaling pada atribut prediktor yang sudah diimputasi

X_scaled = scaler.fit_transform(X_imputed)

Konversi hasil transformasi kembali ke Pandas DataFrame (opsional)

X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)

Gabungkan atribut prediktor yang sudah diimputasi dan distandarisasi dengan atribut label

data_scaled = pd.concat([X_scaled_df, y], axis=1)

16. Untuk menampilkan hasil statistik deskriptif setelah dilakukan praproses data menggunakan StandardScaler dapat menjalankan kode berikut.

Tabel 2.7 Kode Menampilkan Statistik Deskriptif StandardScaler

Tampilkan statistik deskriptif setelah pengisian missing value dan standarisasi deskripsi_setelah = data_scaled.describe()
print("\nStatistik Deskriptif Setelah Pengisian Missing Value dan Standarisasi (Menggunakan StandardScaler):")
print(deskripsi_setelah)

17. Adapun hasil statistik deskriptif setelah dilakukan praproses data menggunakan StandardScaler

Gambar 2.3 Hasil Statistik Deskriptif Menggunakan StandardScaler

- 18. Dari dua metode di atas terlihat terdapat perbedaan representasi statistik deskriptif. Pada metode MinMaxScaler tidak menggunakan e untuk merepresentasikan nilai, sementara pada StandardScaler menggunakan e untuk merepresentasikan nilai.
- 19. Dari statistik deskriptif juga dapat terlihat bahwa terdapat perbedaan baik dari hasil sebelum praproses data maupun setelah praproses data. Bahkan, perbedaan metode yang digunakan praproses data juga menghasilkan statistik deskriptif yang berbeda. Misalkan, standar deviasi battery_power bernilai 439.676025 sebelum praproses data, 0.292970 pada MinMaxScaler, dan 1.000250e+00 pada StandardScaler.

3. MODEL KLASIFIKASI

3.1 KNN

Berikut ini merupakan langkah-langkah dalam membangun model klasifikasi menggunakan algoritma KNN:

- 1. Hal pertama yang harus dilakukan adalah memisahkan atribut. Atribut akan dipisahkan berdasarkan jenisnya, yaitu atribut prediktor dan atribut label.
- 2. Melakukan inisialisasi SimpleInputer yang bertujuan untuk mengisi nilainilai yang hilang dengan menggunakan median.
- 3. Dataset kemudian akan dibagi menjadi data latih dan data uji dengan masing-masing persentase 80% untuk data latih dan 20% untuk data uji dengan metode *holdout*.
- 4. Langkah berikutnya adalah melakukan inisialisasi untuk model KNN.
- 5. Melakukan pelatihan model KNN dengan menggunakan data latih yang sudah disiapkan pada langkah sebelumnya.
- 6. Melakukan prediksi label pada data uji.
- 7. Langkah berikutnya adalah menghitung nilai akurasi dari model yang sudah dibuat.
- 8. Langkah terakhir adalah menampilkan confusion matrix.

Untuk penjelasan lebih lanjut, berikut ini adalah contoh *code* dari model klasifikasi KNN:

Tabel 3.1 Code Model Klasifikasi Menggunakan Algoritma KNN

```
# Pisahkan atribut prediktor dan atribut label

X = dataset.drop("price_range", axis=1) # Atribut prediktor

y = dataset["price_range"] # Atribut label

# Inisialisasi SimpleImputer untuk mengisi nilai-nilai yang hilang dengan median imputer = SimpleImputer(strategy="median")

X = imputer.fit_transform(X)
```

```
# Bagi data menjadi data latih (80%) dan data uji (20%) dengan metode holdout
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random state=42)
# Inisialisasi model KNN
knn model = KNeighborsClassifier(n neighbors=25) # Ganti nilai n neighbors
sesuai kebutuhan, 25 terbaik, 94,75% (?)
# Latih model KNN menggunakan data latih
knn model.fit(X train, y train)
# Prediksi label pada data uji
y pred = knn model.predict(X test)
# Hitung akurasi
accuracy = accuracy score(y test, y pred)
print("Akurasi Model: {:.2f}%".format(accuracy * 100))
class report = classification report(y test, y pred)
# Tampilkan confusion matrix
conf matrix = confusion matrix(y test, y pred)
print("Confusion Matrix:")
print(conf matrix)
print("Laporan Klasifikasi:\n", class report)
```

Hasil yang didapat dari model klasifikasi menggunakan algoritma KNN dapat dilihat dari gambar dibawah :

```
Akurasi Model: 94.75%
Confusion Matrix:
[[102
            0
                0]
                0]
           86
                2]
       0 8 104]]
Laporan Klasifikasi:
               precision
                             recall f1-score
                                                 support
                              0.97
                                                    105
           0
                   0.98
                                        0.98
                   0.93
                              0.96
                                        0.94
                   0.90
                              0.93
                                        0.91
                   0.98
                              0.93
                                        0.95
                                                    112
                                        0.95
                                                    400
    accuracy
                              0.95
                                                    400
   macro avg
                   0.95
                                        0.95
weighted avg
                   0.95
                              0.95
                                        0.95
                                                    400
```

Gambar 3.1 Hasil Model Klasifikasi Menggunakan Algoritma KNN

3.2 Decision Tree

Berikut ini merupakan langkah-langkah dalam membangun model klasifikasi menggunakan algoritma *Decision Tree*:

- 1. Hal pertama yang harus dilakukan adalah memisahkan atribut. Atribut akan dipisahkan berdasarkan jenisnya, yaitu atribut prediktor dan atribut label.
- 2. Melakukan inisialisasi SimpleInputer yang bertujuan untuk mengisi nilainilai yang hilang dengan menggunakan median.
- 3. Dataset kemudian akan dibagi menjadi data latih dan data uji dengan masing-masing persentase 80% untuk data latih dan 20% untuk data uji dengan metode *holdout*.
- 4. Langkah berikutnya adalah melakukan inisialisasi untuk model *Decision Tree*.
- 5. Melakukan pelatihan model *Decision Tree* dengan menggunakan data latih yang sudah disiapkan pada langkah sebelumnya.
- 6. Melakukan prediksi label pada data uji.
- 7. Langkah berikutnya adalah menghitung nilai akurasi dari model yang sudah dibuat.
- 8. Langkah terakhir adalah menampilkan confusion matrix.

Untuk penjelasan lebih lanjut, berikut ini adalah contoh *code* dari model klasifikasi *Decision Tree*:

Tabel 3.2 Code Model Klasifikasi Menggunakan Algoritma Decision Tree

```
# Pisahkan atribut prediktor dan atribut label
X = dataset.drop("price range", axis=1) # Atribut prediktor
y = dataset["price range"] # Atribut label
# Inisialisasi SimpleImputer untuk mengisi nilai-nilai yang hilang dengan median
imputer = SimpleImputer(strategy="median")
X = imputer.fit transform(X)
# Bagi data menjadi data latih (80%) dan data uji (20%) dengan metode holdout
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random state=42)
# Inisialisasi model Decision Tree
decision tree model = DecisionTreeClassifier()
# Latih model Decision Tree menggunakan data latih
decision tree model.fit(X train, y train)
# Prediksi label pada data uji
y pred = decision tree model.predict(X test)
# Hitung akurasi
accuracy = accuracy score(y test, y pred)
print("Akurasi Model: {:.2f}%".format(accuracy * 100))
class report = classification report(y test, y pred)
# Tampilkan confusion matrix
conf matrix = confusion matrix(y test, y pred)
print("Confusion Matrix:")
```

```
print(conf_matrix)
print("Laporan Klasifikasi:\n", class_report)
```

Hasil yang didapat dari model klasifikasi menggunakan algoritma *Decision Tree* dapat dilihat dari gambar dibawah :

```
Akurasi Model: 81.50%
Confusion Matrix:
        0 0]
  7 75 9 0]
  0 16 63 13]
  0 0 13 99]]
Laporan Klasifikasi:
                             recall f1-score
               precision
                                                 support
                                        0.89
           0
                   0.93
                              0.85
                                                    105
                   0.70
                              0.82
                                        0.76
                                                     91
           2
                   0.74
                              0.68
                                        0.71
                                                     92
                   0.88
                              0.88
                                        0.88
                                                    112
                                        0.81
                                                    400
    accuracy
   macro avg
                   0.81
                              0.81
                                        0.81
                                                    400
                   0.82
                              0.81
                                        0.82
                                                    400
weighted avg
```

Gambar 3.2 Hasil Model Klasifikasi Menggunakan Algoritma Decision Tree

3.3 SVM

Berikut ini merupakan langkah-langkah dalam membangun model klasifikasi menggunakan algoritma SVM :

- 1. Hal pertama yang harus dilakukan adalah memisahkan atribut. Atribut akan dipisahkan berdasarkan jenisnya, yaitu atribut prediktor dan atribut label.
- Melakukan inisialisasi SimpleInputer yang bertujuan untuk mengisi nilainilai yang hilang dengan menggunakan median dan StandardScaler untuk melakukan normalisasi data agar data yang digunakan tidak memiliki penyimpangan yang besar.
- 3. Melakukan imputasi *missing value* dan standarisasi atribut prediktor.
- 4. Melakukan inisialisasi model SVM (Support Vector Machine) dengan kernel linear.

- 5. Dataset kemudian akan dibagi menjadi data latih dan data uji dengan masing-masing persentase 80% untuk data latih dan 20% untuk data uji dengan metode *holdout*.
- 6. Melakukan pelatihan model SVM dengan menggunakan data latih yang sudah disiapkan pada langkah sebelumnya.
- 7. Melakukan prediksi label pada data uji.
- 8. Langkah berikutnya adalah menghitung nilai akurasi dari model yang sudah dibuat.
- 9. Langkah terakhir adalah menampilkan confusion matrix.

Untuk penjelasan lebih lanjut, berikut ini adalah contoh *code* dari model klasifikasi SVM:

Tabel 3.3 Code Model Klasifikasi Menggunakan Algoritma SVM

```
# Pisahkan atribut prediktor dan atribut label

X = dataset.drop("price_range", axis=1) # Atribut prediktor yang sudah diimputasi dan distandarisasi

y = dataset["price_range"] # Atribut label

# Inisialisasi SimpleImputer dan StandardScaler imputer = SimpleImputer(strategy="median")

scaler = StandardScaler()

# Imputasi missing value dan standarisasi atribut prediktor

X_imputed = imputer.fit_transform(X)

X_scaled = scaler.fit_transform(X_imputed)

# Inisialisasi model SVM (Support Vector Machine) dengan kernel linear svm_model = SVC(kernel='linear')

# Bagi data menjadi data latih (80%) dan data uji (20%) dengan metode holdout
```

```
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

# Latih model SVM menggunakan data latih svm_model.fit(X_train, y_train)

# Prediksi label pada data uji 
y_pred = svm_model.predict(X_test)

# Evaluasi model 
accuracy = accuracy_score(y_test, y_pred) 
conf_matrix = confusion_matrix(y_test, y_pred) 
class_report = classification_report(y_test, y_pred)

# Tampilkan hasil evaluasi 
print("Akurasi: {:.2f}%".format(accuracy * 100)) 
print("Matriks Konfusi:\n", conf_matrix) 
print("Laporan Klasifikasi:\n", class_report)
```

Hasil yang didapat dari model klasifikasi menggunakan algoritma SVM dapat dilihat dari gambar dibawah :

```
Akurasi: 96.00%
Matriks Konfusi:
 [[ 97
                0]
       90
                0]
                3]
        3 86
            1 111]]
Laporan Klasifikasi:
               precision
                            recall f1-score
                                                support
                             0.92
                                        0.96
                                                   105
                   1.00
                             0.99
                                        0.94
                   0.89
                                                    91
                   0.98
                             0.93
                                        0.96
                                                    92
                   0.97
                             0.99
                                        0.98
                                                   112
    accuracy
                                        0.96
                                                   400
   macro avg
                   0.96
                              0.96
                                        0.96
                                                   400
weighted avg
                   0.96
                              0.96
                                        0.96
                                                   400
```

Gambar 3.3 Hasil Model Klasifikasi Menggunakan Algoritma SVM

4. MODEL CLUSTERING

4.1 Agglomerative Clustering

Berikut cara yang dapat dilakukan untuk mencari silhouette *score* dengan menggunakan Agglomerative *Clustering*:

- 1. Memisahkan atribut prediktor dengan cara menggunakan fungsi *drop*
- 2. Melakukan *simple* imputer untuk mengisi nilai-nilai kosong dengan menggunakan median
- 3. Melakukan inisiasi agglomerative *clustering* dengan menggunakan metode penggabungan dan jumlah cluster yang ingin diketahui
- 4. Disini kami menggunakan *looping* untuk menampilkan dan menentukan pengaturan terbaik dari metode penggabungan dan jumlah cluster
- 5. Menampilkan hasil silhouette *score* terbaik dari agglomerative *clustering*

Berikut contoh kode yang kami gunakan dalam mencari silhouette *score* pada agglomerative *clustering*:

Tabel 4.1 Kode Agglomerative Clustering

Pisahkan atribut prediktor

X = dataset.drop("price_range", axis=1) # Atribut prediktor

Inisialisasi SimpleImputer untuk mengisi nilai-nilai yang hilang dengan median imputer = SimpleImputer(strategy="median")

X_imputed = imputer.fit_transform(X)

Inisialisasi model Agglomerative Clustering

num_clusters_range = range(2,8) # Ganti dengan jumlah cluster yang ingin dicoba

linkage_methods = ['ward', 'complete', 'average', 'single'] # Ganti dengan metode penggabungan yang ingin dicoba

best_silhouette_score = -1 # Inisialisasi skor Silhouette terbaik

best config = None # Inisialisasi konfigurasi terbaik

```
# Loop melalui variasi jumlah cluster dan metode penggabungan
for num clusters in num clusters range:
for linkage method in linkage methods:
# Inisialisasi model Agglomerative Clustering
agg_model
                           AgglomerativeClustering(n clusters=num clusters,
linkage=linkage method)
# Lakukan klustering dengan Agglomerative Clustering
labels = agg model.fit predict(X imputed)
# Hitung Silhouette Score
silhouette avg = silhouette score(X imputed, labels)
# Cetak hasil
print(f"Number
                   of
                         Clusters:
                                      {num clusters},
                                                         Linkage
                                                                     Method:
{linkage method}, Silhouette Score: {silhouette avg}")
# Periksa apakah hasil saat ini lebih baik
if silhouette avg > best silhouette score:
best silhouette score = silhouette avg
best config = (num clusters, linkage method)
print("Best Configuration:")
print(f"Number
                                                          Linkage
                   of
                                     {best config[0]},
                                                                     Method:
                        Clusters:
{best config[1]}")
print("Best Silhouette Score:", best_silhouette_score)
```

Hasil dari percobaan kami adalah mendapatkan silhouette *score* sebesar 37% atau 0.3794 dengan jumlah cluster 2 dan metode penggabungan ward.

```
Linkage Method: ward, Silhouette Score: 0.3794387610344186
Linkage Method: complete, Silhouette Score: 0.3697867898618279
Linkage Method: average, Silhouette Score: 0.376730003158973
Linkage Method: single, Silhouette Score: 0.12523571232387107
→ Number of Clusters: 2,
        Number of Clusters: 2,
Number of Clusters: 2,
                                                              Linkage Method: average, Sithouette Score: 0.12523571232387107

Linkage Method: single, Silhouette Score: 0.24772147110710824

Linkage Method: complete, Silhouette Score: 0.24078691471030247

Linkage Method: average, Silhouette Score: 0.2499049214577642

Linkage Method: single, Silhouette Score: 0.07681025030009409

Linkage Method: ward, Silhouette Score: 0.19291302141421546
         Number of Clusters: 2,
        Number of Clusters: 3,
Number of Clusters: 3,
         Number of Clusters: 3,
         Number of Clusters: 3,
         Number of Clusters: 4,
                                                               Linkage Method: complete, Silhouette Score: 0.1967349543175183
Linkage Method: average, Silhouette Score: 0.19946383471130555
Linkage Method: single, Silhouette Score: -0.015446864208103801
Linkage Method: ward, Silhouette Score: 0.16279192224867714
         Number of Clusters: 4,
         Number of Clusters: 4,
         Number of
                                Clusters: 4,
         Number of Clusters: 5,
                                                               Linkage Method: complete, Silhouette Score: 0.1973272622576889
Linkage Method: average, Silhouette Score: 0.19409020960323067
Linkage Method: single, Silhouette Score: -0.07247282561803892
Linkage Method: ward, Silhouette Score: 0.16025372510910676
         Number of Clusters: 5,
         Number of Clusters: 5,
         Number of
                                Clusters: 5,
                                                               Linkage Method: ward, Silhouette Score: -0.07247202301803092

Linkage Method: complete, Silhouette Score: 0.1766917250659397

Linkage Method: average, Silhouette Score: 0.17492512091847748

Linkage Method: single, Silhouette Score: -0.08369198932862139

Linkage Method: ward, Silhouette Score: 0.1540792130833362
                                Clusters: 6,
         Number of
         Number of Clusters: 6,
        Number of Clusters: 6,
Number of Clusters: 6,
                                Clusters: 7,
         Number of
                                                               Linkage Method: complete, Silhouette Score: 0.16809184705673655
Linkage Method: average, Silhouette Score: 0.16858152464198986
Linkage Method: single, Silhouette Score: -0.24944457318142263
         Number of Clusters: 7,
         Number of Clusters: 7,
         Number of Clusters: 7.
         Best Configuration:
         Number of Clusters: 2, Linkage Method: ward
         Best Silhouette Score: 0.3794387610344186
```

Gambar 4.1 Hasil Silhouette Score Menggunakan Agglomerative Clustering

4.2 DBSCAN

Berikut cara yang dapat dilakukan untuk mencari silhouette score dengan menggunakan DBSCAN:

- 1. Memisahkan atribut prediktor dengan cara menggunakan fungsi *drop*
- 2. Melakukan *simple* imputer untuk mengisi nilai-nilai kosong dengan menggunakan median
- 3. Melakukan inisiasi standar scaler untuk standarisasi attribut prediktor
- 4. Menentukan nilai epsilon dan min sample value
- 5. Disini kami menggunakan looping untuk menampilkan dan menentukan nilai epsilon dan min sample terbaik untuk mencari silhouette score
- 6. Menampilkan hasil silhouette score terbaik dari DBCSAN

Berikut contoh code yang kami gunakan dalam mencari silhouette score pada DBSCAN:

Tabel 4.2 Kode DBSCAN

```
# Pisahkan atribut prediktor

X = dataset.drop("price_range", axis=1) # Atribut prediktor
```

```
# Inisialisasi SimpleImputer untuk mengisi nilai-nilai yang hilang dengan median
imputer = SimpleImputer(strategy="median")
X \text{ imputed} = \text{imputer.fit transform}(X)
# Inisialisasi StandardScaler untuk standarisasi atribut prediktor
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X imputed)
# Range nilai eps dan min samples yang ingin dicoba
eps values = [4.0, 4.35, 4.5, 4.65] # Ganti dengan nilai eps yang ingin dicoba
min_samples_values = [20, 30, 40, 50] # Ganti dengan nilai min_samples yang
ingin dicoba
best silhouette score = -1 # Inisialisasi skor Silhouette terbaik
best eps = None # Inisialisasi nilai eps terbaik
best min samples = None # Inisialisasi nilai min samples terbaik
for eps in eps values:
for min samples in min samples values:
# Inisialisasi model DBSCAN dengan parameter yang disesuaikan
dbscan model = DBSCAN(eps=eps, min samples=min samples)
# Lakukan klustering dengan DBSCAN
labels = dbscan model.fit predict(X scaled)
# Hitung Silhouette Score
silhouette avg = silhouette score(X scaled, labels)
# Tampilkan hasil
print(f''eps:
              {eps},
                       min_samples:
                                        {min_samples},
                                                           Silhouette
                                                                        Score:
{silhouette avg}")
```

```
# Periksa apakah hasil saat ini lebih baik

if silhouette_avg > best_silhouette_score:

best_silhouette_score = silhouette_avg

best_eps = eps

best_min_samples = min_samples

print("Best Configuration:")

print(f''eps: {best_eps}, min_samples: {best_min_samples}")

print("Best Silhouette Score:", best_silhouette_score)
```

Hasil dari percobaan kami adalah mendapatkan silhouette score sebesar 15% atau 0.1558 dengan nilai epsilon 4.65 dan min sample value 20.

```
eps: 4.0, min_samples: 20, Silhouette Score: 0.023588216255901122 eps: 4.0, min_samples: 30, Silhouette Score: 0.051242108900158484 eps: 4.0, min_samples: 40, Silhouette Score: 0.03560687181759633 eps: 4.0, min_samples: 50, Silhouette Score: 0.01766015885450677 eps: 4.35, min_samples: 20, Silhouette Score: 0.12264845314750267 eps: 4.35, min_samples: 30, Silhouette Score: 0.11160132137320525 eps: 4.35, min_samples: 40, Silhouette Score: 0.09995934950750388 eps: 4.35, min_samples: 50, Silhouette Score: 0.09098370687212781 eps: 4.5, min_samples: 20, Silhouette Score: 0.1374837222320706 eps: 4.5, min_samples: 30, Silhouette Score: 0.1386198864936266 eps: 4.5, min_samples: 40, Silhouette Score: 0.11918878221428339 eps: 4.5, min_samples: 50, Silhouette Score: 0.11275756066740253 eps: 4.65, min_samples: 20, Silhouette Score: 0.15587933570561763 eps: 4.65, min_samples: 30, Silhouette Score: 0.15587933570561763 eps: 4.65, min_samples: 50, Silhouette Score: 0.15587933570561763 eps: 4.65, min_samples: 50, Silhouette Score: 0.15587933570561763 eps: 4.65, min_samples: 50, Silhouette Score: 0.15587933570561763 eps: 4.65, min_samples: 20
Best Silhouette Score: 0.15587933570561763
```

Gambar 4.2 Hasil Silhouette Score Menggunakan DBSCAN

4.3 K-Means

Berikut cara yang dapat dilakukan untuk mencari silhouette score dengan menggunakan K-Means:

- 1. Memisahkan atribut prediktor dengan cara menggunakan fungsi drop
- Melakukan simple imputer untuk mengisi nilai-nilai kosong dengan menggunakan median

- 3. Melakukan inisiasi jumlah cluster yang ingin digunakan
- 4. Disini kami menggunakan looping untuk menampilkan dan menentukan pengaturan terbaik dari jumlah cluster yang dicoba
- 5. Menampilkan hasil silhouette score terbaik dari K-Means

Berikut contoh code yang kami gunakan dalam mencari silhouette score pada kmeans:

Tabel 4.3 Kode K-Means

```
# Pisahkan atribut prediktor
X
           dataset.drop("price range",
                                          axis=1)
                                                      #
                                                           Atribut
                                                                       prediktor
# Inisialisasi SimpleImputer untuk mengisi nilai-nilai yang hilang dengan median
imputer = SimpleImputer(strategy="median")
X \text{ imputed} = \text{imputer.fit transform}(X)
# Range jumlah kluster yang ingin dicoba
num clusters range = range(2, 8) # Coba dari 2 hingga 7 kluster
# Inisialisasi nilai n init yang ingin digunakan
n init value = 10 # Ganti dengan nilai n init yang Anda inginkan
best silhouette score
                            -1
                                      Inisialisasi
                                                            Silhouette
                                                                         terbaik
                                                    skor
for num clusters in num clusters range:
# Inisialisasi model K-Means dan setel n init secara eksplisit
kmeans_model = KMeans(n_clusters=num_clusters, n_init=n_init_value)
# Lakukan klustering dengan K-Means
labels = kmeans model.fit predict(X imputed)
# Hitung Silhouette Score
silhouette_avg = silhouette_score(X_imputed, labels)
```

```
# Tampilkan hasil

print(f"Number of Clusters: {num_clusters}, Silhouette Score:

{silhouette_avg}")

# Periksa apakah hasil saat ini lebih baik

if silhouette_avg > best_silhouette_score:

best_silhouette_score = silhouette_avg

best_config = num_clusters

print("Best Configuration:")

print(f"Number of Clusters: {best_config}")

print("Best Silhouette Score:", best_silhouette_score)
```

Hasil dari percobaan kami adalah mendapatkan silhouette score sebesar 39% atau 0.3983 dengan nilai cluster 2.

```
Number of Clusters: 2, Silhouette Score: 0.3983422741001593
Number of Clusters: 3, Silhouette Score: 0.27794814569235043
Number of Clusters: 4, Silhouette Score: 0.2620004173839964
Number of Clusters: 5, Silhouette Score: 0.24263073582900407
Number of Clusters: 6, Silhouette Score: 0.22662952026243344
Number of Clusters: 7, Silhouette Score: 0.22627946273518137
Best Configuration:
Number of Clusters: 2
Best Silhouette Score: 0.3983422741001593
```

Gambar 4.3 Hasil Silhouette Score Menggunakan K-Means

LAMPIRAN

Lampiran 1 Screenshot Google Collab

Link GoogleCollab:

https://colab.research.google.com/drive/1eZtq4ze5-

8ZJqOxhznxwLSKyIpv65E9f?usp=sharing