7.2 Properties of Bases

Theorem

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a basis for a subspace V of \mathbb{R}^n , then every vector \mathbf{v} in V can be expressed in exactly one way as a linear combination of the vectors in S.

Theorem

Let S be a finite set of vectors in a nonzero subspace V of \mathbb{R}^n . If S spans V, but is not a basis for V, then a basis for V can be obtained by removing appropriate vectors from S.

Theorem

Let S be a finite set of vectors in a nonzero subspace V of \mathbb{R}^n . If S is linearly independent, but is not a basis for V, then a basis for V can be obtained by addinging appropriate vectors from V to S.

Theorem

If V is a nonzero subspace of \mathbb{R}^n , then $\dim(V)$ is the maximum number of linearly independent vectors in V.

Subspaces of subspaces

Theorem

If V and W are subspaces of \mathbb{R}^n , and if V is a subspace of W, then:

(a)
$$0 \le \dim(V) \le \dim(W) \le n$$
.

(b) V = W if and only if dim(V) = dim(W).

Subspaces of subspaces

Theorem

Let S be a nonempty set of vectors in \mathbb{R}^n , and let S' be a set that results by adding additional vectors in \mathbb{R}^n to S.

(a) If the additional vectors are in span(S), then span(S') = span(S).

(b) If span(S') = span(S), then the additional vectors are in span(S).

(c) If span(S') and span(S) have the same dimension, then the additional vectors are in span(S) and span(S') = span(S).

Sometimes spanning implies linear independence, and conversely

Theorem

- (a) A set of k linearly independent vectors in a nonzero k-dimensional subspace of \mathbb{R}^n is a basis for that space.
- (b) A set of k vectors that span a nonzero k-dimensional subspace of \mathbb{R}^n is a basis for that space.
- (c) A set of fewer than k vectors in a nonzero k-dimensional subspace of \mathbb{R}^n cannot span that subspace.
- (d) A set with more than k vectors in a nonzero k-dimensional subspace of \mathbb{R}^n is linearly dependent.

Example

Show that the vectors $\mathbf{v}_1=(1,2,1), \mathbf{v}_2=(1,-1,3),$ and $\mathbf{v}_3=(1,1,4)$ form a basis for $\mathbb{R}^3.$

The unifying theorem

Theorem

If A is an $n \times n$ matrix, then the followings are equivalent.

- 1. The reduced row echelon form of A is I_n .
- 2. A is expressible as a product of elementary matrices.
- 3. A is invertible.
- 4. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 5. $A\mathbf{x} = \mathbf{b}$ is consistent for every vector \mathbf{b} in \mathbb{R}^n .
- 6. $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every vector \mathbf{b} in \mathbb{R}^n .
- 7. The column vectors of A are linearly independent.
- 8. The row vectors of A are linearly independent.
- 9. $det(A) \neq 0$.
- 10. T_A is one-to-one.
- 11. T_A is onto.

The unifying theorem

- 12. The column vectors of *A* are linearly independent.
- 13. The row vectors of *A* are linearly independent.
- 14. The column vectors of A span \mathbb{R}^n .
- 15. The row vectors of *A* span \mathbb{R}^n .
- 16. The column vectors of *A* form a basis for \mathbb{R}^n .
- 17. The row vectors of *A* form a basis for \mathbb{R}^n .