МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет информационных технологий Кафедра параллельных вычислений

Основы параллельного программирования

Отчет

О выполнении работы № 4

Работу выполнил:

Е. И. Биточкин

Группа: 22209

Преподаватель:

А. А. Артюхов

Новосибирск 2024

Содержание

1.	Цель	3					
2. Задание							
3.	Описание работы 3.1. Реализация 3.2. Профилирование 3.3. Замеры 3.3.1. Зависимость времени выполнения от числа процессов	4 4 5 7					
4.	Заключение	8					
	Приложение 5.1. Исходный кол	8					

1. Цель

- Реализовать алгоритм Якоби используя МРІ.
- Реализовать передачу данных, параллельную вычислениям.
- Исследовать разработанный алгоритм.

2. Задание

- Реализация алгоритма Якоби.
- Выявления зависимости времени работы алгоритма от числа процессов

3. Описание работы

3.1. Реализация

Алгоритм был реализован на C++. В качестве системы сборки был выбран CMake.

3.2. Профилирование

За счет того, что коммуникация происходит на фоне вычислений, время на коммуникацию минимально:

Рисунок 3.1. Работа

Если мы посмотрим на статистику, то увидим, что время, потраченное на коммуникацию минимально:

Ratio

This section represents a ratio of all MPI calls to the rest of your code in the application.

Рисунок 3.2. Статистика по времени

Более того, 14.4 из 14.5 секунд было потрачено на сборку результата в одном процессе (MPI Gather):

Top MPI functions

This section lists the most active MPI functions from all MPI calls in the application.

MPI_Gatherv	14.4 sec (9.29 %)
MPI_Allreduce	0.0335 sec (0.0216 %)
MPI_Waitall	0.0177 sec (0.0114 %)
MPI_Isend	0.00135 sec (0.000871 %)
MPI_Finalize	0.000539 sec (0.000347 %)

Рисунок 3.3. Gather

Из чего можно сделать вывод, что коммуникация получилась эффективной/

3.3. Замеры

3.3.1. Зависимость времени выполнения от числа процессов

На кластере был произведен замер для выявление зависимости времени работы от числа процессов:

число процессов	время, с		ускорение, раз	'	эффективность, %
1	3,90757	1	1,00	1	100,00
2	3,49905	2	1,12	2	55,84
4	1,78751	4	2,19	4	54,65
8	1,87174	8	2,09	8	26,10
16	0,984717	16	3,97	16	24,80

Рисунок 3.4. Nx = Ny = Nz = 600

Грфики:

Рисунок 3.5. Время, Ускорение, Эффективность

4. Заключение

Был реализован алгоритм Якоби на нескольких процессах. Рассмотренна эффективность изложенного подхода.

- Зависимость времени работы алгоритма от числа процессов рассмотрена.
- Была написана программа, вычисляющая метод Якоби в трехмерной области

5. Приложение

5.1. Исходный код

https://github.com/BigCubeCat/bpp_labs.git