# Московский авиационный институт

(национальный исследовательский университет)

Институт № 8 «Информационные технологии и прикладная математика»

# КУРСОВАЯ РАБОТА

| Студент:       | Мазаев В. В.  |
|----------------|---------------|
| Группа:        | М8О-104Б-22   |
| Преподаватель: | Потенко М. А. |
| Подпись:       |               |
| Оценка:        |               |

Тема: Процедуры и функции в качестве параметров

Задание: Составить программу на языке Си с процедурами решения трансцендентных алгебраических уравнений различными численными методами (итерации, Ньютона и половинного деления — дихотомии). Нелинейные уравнения оформить как параметры-функции, разрешив относительно неизвестной величины в случае необходимости. Применить каждую процедуру к решению двух уравнений, начиная с варианта с заданным номером. Если метод неприменим, дать математическое обоснование и графическую иллюстрацию с использованием gnuplot.

#### Вариант 15

<u>Уравнение:</u>  $0,4 + arctg\sqrt{x} - x = 0$ 

Отрезок, содержащий корень: [1, 2]

Базовый метод: метод итераций

Приближённое значение корня: 1,2388

#### Вариант 16

<u>Уравнение:</u>  $3sin\sqrt{x} + 0.35x - 3.8 = 0$ 

Отрезок, содержащий корень: [2, 3]

Базовый метод: метод итераций

Приближённое значение корня: 2,2985

#### Описание методов:

#### 1. Метод дихотомии (половинного деления)

Численное нахождение приближенного значения корня функции строится на базе следствия из теоремы Больцано-Коши: «Если непрерывная функция на концах некоторого интервала имеет значение разных знаков, то внутри этого интервала у нее есть как минимум один корень».

Считаем, что отделение корней произведено и на интервале [a, b] расположен один корень, который необходимо уточнить с погрешностью  $\varepsilon$ . Итак, имеем f(a)\*f(b)<0. Метод дихотомии заключается в следующем. Определяем половину отрезка  $c=\frac{1}{2}(a+b)$  и вычисляем f(c). Проверяем следующие условия:

- 1) Если  $|f(c)| < \varepsilon$ , то c корень. Здесь  $\varepsilon$  заданная точность.
- 2) Если f(c)\*f(a)<0, то корень лежит в интервале [a,c].
- 3) Если f(c)\*f(b)<0, то корень лежит на отрезке[c,b].

Продолжая процесс половинного деления в выбранных подынтервалов, можно дойти до сколь угодно малого отрезка, содержащего корень  $\xi$ . Так как за каждую итерацию интервал, где расположен корень уменьшается в два раза, то через п итераций интервал будет равен:  $b_n - a_n = \frac{1}{2^n}(b-a)$ , при этом  $an \le \xi \le bn$ ,

$$|\xi - a_n| \le \frac{1}{2^n} (b - a), |\xi - b_n| \le \frac{1}{2^n} (b - a)$$

В качестве корня  $\xi$  возьмем =  $\frac{1}{2}(bn + an)$ . Тогда погрешность определения корня будет равна  $\frac{bn-an}{2}$ . Если выполняется условие  $\frac{b_n-a_n}{2} < \varepsilon$ , то процесс поиска заканчивается и  $\varepsilon = \frac{1}{2}(bn + an)$ .

# Геометрическая интерпретация метода половинного деления



- Функция  $f(x) = 0.4 + arctg\sqrt{x} x$  непрерывна на отрезке [1, 2] и на концах его принимает значения разных знаков:  $f(1) \approx 0.185$ ;  $f(2) \approx -0.645$
- Функция  $f(x) = 3sin\sqrt{x} + 0.35x 3.8$  непрерывна на отрезке [2, 3] и на концах его принимает значения разных знаков:  $f(2) \approx -0.137$ ;  $f(3) \approx 0.211$

#### 2. Метод итераций

Суть метода в поиске по известному приближению искомой величины следующего, более точного приближения. Пусть дана функция F(x). Заменим исходное уравнение F(x)=0 на эквивалентное f(x)=x. Выберем начальное приближение корня  $x_0$ . Тогда получим некоторое число  $x_1=f(x_0)$ . Теперь подставляя вместо  $x_0$  число  $x_1$  получим  $x_2=f(x_1)$ . Повторяя этот процесс, будем иметь последовательность  $x_n=f(x_{n-1}), n=1,2,\ldots$ . Если эта последовательность сходящаяся, то существует предел  $\lim_{n\to\infty}x_n$ , то данный предел является корнем уравнения и может быть вычислен по формуле  $x_n=f(x_{n-1})$ . Для преобразования F(x)=0 в f(x)=x используется

уравнение вида  $f(x) = x - \lambda F(x)$ , где  $\lambda$  — некоторая постоянная, знак которой совпадает со знаком производной F'(x) в некоторой окрестности корня.

Условие сходимости метода итераций: |f'(x)| < 1

# Геометрическая интерпретация метода простой итерации



• Найдем f(x) для функции F(x):  $0.4 + arctg\sqrt{x} - x \Leftrightarrow 0.4 + arctg\sqrt{x}$ 

$$f'(x) = \frac{1}{2\sqrt{x(x+1)}}; \left| \frac{1}{2\sqrt{x(x+1)}} \right| < 1$$

Условие сходимости выполняется на данном отрезке [1, 2].

• Найдем f(x) для функции F(x):  $3sin\sqrt{x} + 0.35x - 3.8 \Leftrightarrow 0.3x - 6sin\sqrt{x} + 7.6$ 

$$f'(x) = 0.3 - \frac{3\cos\sqrt{x}}{\sqrt{x}}; \left|0.3 - \frac{3\cos\sqrt{x}}{\sqrt{x}}\right| < 1$$

Условие сходимости выполняется на данном отрезке [2, 3]

#### 3. Метод Ньютона

Метод Ньютона — частный случай метода итераций  $(f(x) = x - \frac{F(x)}{F'(x)})$ . Суть метода состоит в разбиении отрезка [a,b] на два отрезка с помощью касательной и выборе нового отрезка от точки пересечения касательной с осью абсцисс до неподвижной точки, на которой функция меняет знак и содержит решение.

Построение касательных продолжается до достижения необходимой точности ε.

Метод итераций сходится тогда и только тогда, когда |f'(x)| < 1, подставим в условие выражение для f(x) и получим условие сходимости метода Ньютона:

$$\left|\frac{F(x)F''(x)}{(F'(x))^2}\right| < 1$$

Условие окончания: если  $|x_{n+1}-x_n|<\varepsilon$ , то значение  $x_{n+1}$  считается приближенным значением корня уравнения.

Проверим условие сходимости для заданных функций, вычислив их производные.

#### Вариант 15

$$f'(x) = (0.4 + arctg\sqrt{x} - x)' = \frac{1}{2\sqrt{x(x+1)}} - 1$$

$$f''(x) = \left(\frac{1}{2\sqrt{x(x+1)}} - 1\right)' = -\frac{\sqrt{x}(3x+1)}{4x^4 + 8x^3 + 4x^2}$$

 $|f(x) \cdot f''(x)| < f'(x)^2$  на отрезке [1, 2]:



(Синим - 
$$f'(x)^2$$
; красным -  $f(x) \cdot f''(x)$ )

 $|f(x) \cdot f''(x)| < f'(x)^2$  на отрезке [2, 3]:

Условие сходимости выполняется.

#### Вариант 16

$$f'(x) = \left(3\sin\sqrt{x} + 0.35x - 3.8\right)' = \frac{3\cos\sqrt{x}}{2\sqrt{x}} + 0.35$$
$$f''(x) = \left(\frac{3\cos\sqrt{x}}{2\sqrt{x}} + 0.35\right)' = -\frac{3\sin\sqrt{x}\sqrt{x} + 3\cos\sqrt{x}}{4x^{3/2}}$$



(Синим -  $f'(x)^2$ ; красным -  $f(x) \cdot f''(x)$ )

Условие сходимости выполняется.

# Используемое оборудование:

ЭВМ HP Pavilion Laptop 15

Процессор AMD Ryzen 5 5500U with Radeon Graphics

ОП 8192 Мб

НМД 524288 Мб

## Программное обеспечение:

Операционная система семейства *UNIX* 

Наименование *Ubuntu* 

Версия 18.04.6

Интерпретатор команд bash

Редактор текстов gedit

Утилиты операционной системы Терминал

Местонахождение и имена файлов программ /Users/diss/kp3.c; /Users/diss/eps.c

Программа будет написана на языке программирования Си, скомпилирована и запущена посредством терминала.

## Функциональное назначение:

Программа находит корни уравнения посредством манипуляций над вещественными числами и математических операций над данными.

# Описание функций и переменных, используемых в программе:

| Название функции | Тип функции | Описание переменных                    | Смысл функции      |
|------------------|-------------|----------------------------------------|--------------------|
| function_1       | double      | double x – точка, в которой необходимо | Вычисляет          |
|                  |             | вычислить значение функции             | значение функции в |
|                  |             |                                        | указанной точке    |
|                  |             |                                        | (вариант 15)       |
| function_1_iter  | double      | double x – точка, в которой необходимо | Вычисляет          |
|                  |             | вычислить значение доп. функции        | значение           |
|                  |             |                                        | дополнительной     |
|                  |             |                                        | функции в          |
|                  |             |                                        | указанной точке    |
|                  |             |                                        | (вариант 15)       |
| function_1_diff  | double      | double x – точка, в которой необходимо | Вычисляет          |
|                  |             | вычислить значение производной         | производную        |
|                  |             | функции                                | функции в          |
|                  |             |                                        | указанной точке    |
|                  |             |                                        | (вариант 15)       |
| function_2       | double      | double x – точка, в которой необходимо | Вычисляет          |
|                  |             | вычислить значение функции             | значение функции в |
|                  |             |                                        | указанной точке    |
|                  |             |                                        | (вариант 16)       |
| function_2_iter  | double      | double x – точка, в которой необходимо | Вычисляет          |
|                  |             | вычислить значение доп. функции        | значение           |
|                  |             |                                        | дополнительной     |
|                  |             |                                        | функции в          |
|                  |             |                                        | указанной точке    |
|                  |             |                                        | (вариант 15)       |
| function_2_diff  | double      | double x – точка, в которой необходимо | Вычисляет          |
|                  |             | вычислить значение производной         | производную        |
|                  |             | функции                                | функции в          |
|                  |             |                                        | указанной точке    |
|                  |             |                                        | (вариант 16)       |
| dichotomy        | double      | double(*Func_main)(double)- указатель  | Вычисляет корень   |
|                  |             | на функцию, корень которой нужно       | уравнения методом  |

|           |        | вычислить                               | дихотомии         |
|-----------|--------|-----------------------------------------|-------------------|
|           |        | double a, double b - значения концов    |                   |
|           |        | отрезка                                 |                   |
|           |        | DBL_EPSILON – библиотечное              |                   |
|           |        | значение машинного эпсилон              |                   |
| iteration | double | double(*func)(double)- указатель на     | Вычисляет корень  |
|           |        | дополнительную функцию для              | уравнения методом |
|           |        | функции, корень которой нужно           | итераций          |
|           |        | вычислить                               |                   |
|           |        | double a, double b - значения концов    |                   |
|           |        | отрезка                                 |                   |
|           |        | double x_cur, x_last – вычисляемые      |                   |
|           |        | приближения                             |                   |
|           |        | DBL_EPSILON – библиотечное              |                   |
|           |        | значение машинного эпсилон              |                   |
| newton    | double | double(*Func_main)(double)- указатель   | Вычисляет корень  |
|           |        | на функцию, корень которой нужно        | уравнения методом |
|           |        | вычислить                               | Ньютона           |
|           |        | double (*func_diff)(double) – указатель |                   |
|           |        | на функцию, вычисляющую                 |                   |
|           |        | производную                             |                   |
|           |        | double x_cur, x_last - вычисляемые      |                   |
|           |        | приближения                             |                   |
|           |        | double a, double b - значения концов    |                   |
|           |        | отрезка                                 |                   |
|           |        | DBL_EPSILON – библиотечное              |                   |
|           |        | значение машинного эпсилон              |                   |

### Код программы:

```
#include <stdio.h>
#include <math.h>
#include <float.h>
double function 1(double x)
    return 0.4 + atan(sqrt(x)) - x;
}
double function 1 iter(double x)
    return 0.4 + atan(sqrt(x));
double function 1 diff(double x)
    return 1 / (2 * sqrt(x) * (x + 1)) - 1;
double function 2 (double x)
   return 3 * \sin(sqrt(x)) + 0.35 * x - 3.8;
}
double function 2 iter(double x)
    return 0.3 * x - 6 * sin(sqrt(x)) + 7.6;
}
double function 2 diff(double x)
   return (3 * cos(sqrt(x))) / (2 * sqrt(x)) + 0.35;
}
double dichotomy(double(*Func main)(double), double a, double b)
   double x;
    while (fabs(a - b) > DBL EPSILON) { //пока значения концов отрезка
отличаются с заданной точностью
       x = (a + b) / 2.0;
       if ((*Func main)(a) * (*Func main)(x) < 0.0) //если значение
функции на концах отрезка разных знаков - обновление значений концов
отрезка
           b = x;
        else
           a = x;
    }
   return x;
}
double iteration(double(*func)(double), double a, double b)
    double x cur = (a + b) / 2.0, x last; //первое и последующие
приближения
    while (fabs(x_cur - x_last) > DBL_EPSILON) { //пока значения
```

```
отличаются с заданной точностью, вычислять следующее приближение
       x last = x cur;
        x cur = (*func)(x last);
   return x cur;
}
double newton(double(*Func main)(double), double (*func diff)(double),
double a, double b)
    double x cur = (a + b) / 2.0, x last; //первое и последующие
    while (fabs(x cur - x last) > DBL EPSILON) { //пока значения
отличаются с заданной точностью, вычислять следующее приближение (с
помощью касательной)
       x last = x cur;
        x cur -= (*Func main) (x last) / (*func diff) (x cur);
    return x cur;
}
int main() {
    printf("Для перого уравнения на отрезке [1, 2]:\n");
    printf("Методом диохтомии: %.10lf\n", dichotomy(function 1, 1.0,
2.0)); //вывод корня уравнения, вычисленного методом диохтомии для
варианта 15
    printf("Методом итераций: %.10lf\n", iteration(function 1 iter,
1.0, 2.0)); //вывод корня уравнения, вычисленного методом итераций для
варианта 15
    printf("Методом Ньютона: %.10lf\n", newton(function 1,
function 1 diff, 1.0, 2.0)); //вывод корня уравнения, вычисленного
методом Ньютона для варианта 15
    printf("Для второго уравнения на отрезке [2, 3]:\n");
    printf("Методом диохтомии: %.10lf\n", dichotomy(function 2, 2.0,
3.0)); //вывод корня уравнения, вычисленного методом диохтомии для
варианта 16
    printf("Методом итераций: %.10lf\n", iteration(function 2 iter,
2.0, 3.0)); //вывод корня уравнения, вычисленного методом итераций для
варианта 16
    printf("Методом Ньютона: %.10lf\n", newton(function 2,
function 2_diff, 2.0, 3.0)); //вывод корня уравнения, вычисленного
методом Ньтона для варианта 16
   return 0;
}
```

#### Результат выполнения:

```
Для перого уравнения на отрезке [1, 2]:
Методом диохтомии: 1.2388399776
Методом итераций: 1.2388399776
Методом Ньютона: 1.2388399776
Для второго уравнения на отрезке [2, 3]:
Методом диохтомии: 2.2985361709
Методом итераций: 2.2985361709
Методом Ньютона: 2.2985361709
```

**Вывод:** В процессе выполнения данного задания я углубился в тему решения математических задач с помощью программных средств. Я научился использовать функции в качестве параметров других функций, то есть применять указатели.

Часто сложно аналитически, с помощью формул решит трансцендентные уравнения. А иногда на практике уравнение содержит коэффициенты, значения которых заданы приблизительно, так что говорить о точном решении уравнений в таких случаях вообще не имеет смысла. Таким образом, задача нахождения приблизительных значений корней уравнений с определённой точностью является актуальной.

В данном задании рассматривались 3 метода решения таких уравнений: метод дихотомии, метод итераций и метод Ньютона. С помощью этих методов были вычислены значения корней заданных уравнений. В итоге значения с точностью до 10 знаков не отличаются.

Численные методы являются основным инструментом решения современных прикладных задач. Численный анализ математических моделей является в настоящее время актуальным и наиболее эффективным аппаратом конструктивного исследования прикладных проблем.