Функціональний Аналіз

https://csc-knu.github.io/fa

Дмитро Клюшин*

12 жовтня 2020 р.

^{*}Редактор Нікіта Скибицький

When introduced to a new idea, always ask why you should care. Do not expect an answer right away, but demand one eventually.

— Ravi Vakil.

Про цю книгу

Цей матеріал позиціонується як спроба покращити структурованість, зрозумілість, типографічну та естетичну якість конспекту лекцій Дмитра Анатолійовича Клюшина, а саме його курсу "Функціональний аналіз", що викладається у четвертому семестрі на спеціальності "Прикладна математика" на факультеті комп'ютерних наук та кібернетики.

Книга структурована наступним чином: кожна глава представляє собою одну лекцію і містить кілька розділів. Зокрема, наприкінці кожної глави є рекомендована література до відповідної лекції, а також кілька типових або цікавих задач для закріплення здобутих знань на практиці. Самі глави зібрані у три частини які приблизно розділяють матеріал на змістовні модулі.

Подяки

Редактор вдячний Володимиру Володимировичу Семенову, одному з небагатьох українських науковців і педагогів, які підтримують у сучасному студенстві зацікавленість математикою як наукою в цілому, і функціональним аналізом зокрема.

Редактор також вдячний Евану Чену за неоціненну допомогу, яку надають усій спільноті його стильові файли для типографічної системи І^АТ_ЕХ, що розміщені у відкритому доступі на GitHub.

Помилки

На жаль, жоден відносно великий проєкт не обходиться без помилок. Без сумніву, цей матеріал не є виключенням. Ми то чудово розуміємо, і сподіваємося, що ваше невдоволення наявними тут помилками хоча б частково окупиться відчуттям інтелектуальної переваги над редактором, отриманим від виявлення цих помилок.

Будь ласка, надсилайте виправлення, коментарі, зображення кошенят, і таке інше на n.skybyskyi@gmail.com, або ж створюйте пул-ріквести у репозиторії курсу, що знаходиться за адресою https://github.com/csc-knu/fa.

Зміст

I	3aı	гальна топологія					
1	Топ	Топологічні простори					
	1.1	Нагадування: метрична топологія					
	1.2	Основні означення					
	1.3	Замикання					
	1.4	Щільність					
	1.5	Література					
2	Me	годи введення топології					
	2.1	Замикання і внутрішність					
	2.2	База топології					
	2.3	Література					
3	36i:	жність і неперервність					
	3.1	Аксіоми зліченності					
	3.2	Збіжність					
	3.3	Неперервність					
	3.4	Гомеоморфізми					
	3.5	Література					
4	Акс	іюми віддільності					
	4.1	Власне аксіоми					
	4.2	Наслідки з аксіом					
	4.3	Замкнені бази та функціональна віддільність					
	4.4	Література					
5	Компактність в топологічних просторах						
	5.1	Покриття і підпокриття					
	5.2	Компактні простори					
	5.3	Види компактності					
	5.4	Зв'язки між видами компактності					
	5.5	Література					
II	Пр	остори зі структурою					
6	Me	тричні простори					
	6.1	Основні означення					
	6.2	Збіжність і замкненість					
	6.3	Збіжність і фундаментальність					
	6.4	Література					
7	Пов	вні метричні простори					
	7.1	Повнота, ізометрія і поповнення					
	7.2	Вкладені кулі і повнота					

	7.3 7.4	Категорії множин 46 Стискаючі відображення 46
	7.5	Література
8	Ком	пактні метричні простори 49
	8.1	Зв'язки між видами компактності
	8.2	Література
9	Ліні	йні простори 53
•	9.1	Лінійні простори і функціонали
	9.2	Продовження функціоналів
	9.3	Ланцюги і мажоранти
	9.4	Література
	J. T	onicparypa
10	•	мовані простори 59
		Норми векторів
	10.2	Норми функціоналів
		Простір операторів
	10.4	Література
Ш	Фун	кціональний аналіз 63
11	Спр	ажений простір 65
		Лінійні топологічні простори і неперевність функціоналів 65
		Топологія у спряженому просторі і його повнота
		Другий спряжений простір і природне відображення
	11.4	Рефлексивні простори
	11.5	Література
12	Спа	бка топологія і слабка збіжність 73
12		Слабка топологія
		Слабка збіжність
		Види топології у спряженому просторі 76 Література 77
	12.4	Jineparypa
13	•	нцип рівномірної обмеженості 79
	13.1	Види збіжності послідовностей операторів
	13.2	Повнота простору лінійних неперервних операторів 81
	13.3	Література
14	При	нцип відкритості відображення 83
	•	Обмеженість на всюди щільній множині
		Лінійний обмежений обернений оператор
		Обернений до наближеного і резольвента
		Принцип відкритості відображення
		Література
15		яжені оператори, спектр і компактні оператори 89
13		Спряжені оператори
		Спектр оператора
		Компактні оператори
	-0.0	

Зміст

	15.4 Література	93
16	Гільбертові простори 16.1 Скалярний добуток і породжена ним норма	95
	16.2 Скалярний добуток породжений нормою	96 98
	16.4 Лінійний функціонал як скалярне множення на елемент	100
	16.5 Література	101
17	Теорема про ізоморфізм	103
	17.1 Базиси у гільбертових просторах	103
	17.2 Елементи аналізу Фур'є	104
	17.3 Сепарабельний простір	106
	17.4 Література	107
IV	Фільтри і напрямленності	109
18	Напрямленості	111
	18.1 Частково упорядковані множини (нагадування)	111
	18.2 Напрямленості	112
	18.3 Границі напрямленості	113
	18.4 Напрямленості та неперервність	114
	18.5 Література	115
19	Фільтри	117
	19.1 Фільтри	117
	19.2 Бази фільтрів	117
	19.3 Образи фільтрів і баз фільтрів	118
	19.4 Фільтри, породжені базою	119
	19.5 Література	120
20	Фільтри і збіжність	121
	20.1 Границі і граничні точки фільтрів	121
	20.2 Границя функції по фільтру	122
	20.3 Література	122
21	Ультрафільтри	123
	21.1 Ультрафільтр як мажоранта	123
	21.2 Властивості і критерій ультрафільтра	123
	21.3 Ультрафільтри, збіжність і компактність	124
	21.4 Література	125
22	Зв'язок між фільтрами і напрямленностями	127
	22.1 Відповідність між фільтрами і напрямленостями	127
	22.2 Границі і граничні точки фільтрів і напрямленостей	128
	22.3 Універсальні напрямленності і ультрафільтри	128
	22.4 Література	129

V	Додаткові розділи функціонального аналізу	131
23	Топологія, що породжена сім'єю відображень	133
	23.1 Топологія, у якій задані функції неперервні	133
	23.2 Породжена топологія і віддільність	133
	23.3 Породжена топологія і фільтри	134
	23.4 Література	134
24	Тихоновський добуток і тихоновська топологія	135
	24.1 Декартів добуток як множина функцій	135
	24.2 Проектори, тихоновська топологія і добуток	135
	24.3 Тихоновська топологія і фільтри	136
	24.4 Література	137
25	Основні відомості про топологічні векторні простори	139
	25.1 Простір із неперервними операціями	139
	25.2 Поглинаючі та урівноважені множини	139
	25.3 Узгодженість та віддільність	140
	25.4 Література	140
26	Повнота, передкомпактність, компактність	141
	26.1 Фільтр Коші	141
	26.2 Повнота і фільтри	141
	26.3 Передкомпактність і компактність	142
	26.4 Поглинання і обмеженість	142
	26.5 Література	143
VI	Сучасний функціональний аналіз	145
27	Лінійні оператори і функціонали	147
	27.1 Лінійні оператори, обмеженість і неперервність	147
	27.2 Лінійні функціонали і їхні ядра	148
	27.3 Скінченновимірні простори і координатні функціонали	148
	27.4 Література	149
28	Напівнорми і топології	151
	28.1 Локальна опуклість, опуклі комбінація і оболонка	151
	28.2 Напівнорми, одиничні кулі і функіонал Мінковського	151
	28.3 Лінійно-опукла топологія породжена сім'єю напівнорм	152
	28.4 Література	153
29	Слабка топологія	155
	29.1 Слабка топологія: означення і властивості	155
	29.2 Леми про перетин ядер і обмеженість на підпросторі	155
	29.3 Неперервність функціоналів у слабкій топології	156
	29.4 Література	157
30	Двоїстість	159
	30.1 Двоїстість, дуальні пари і слабка топологія	159
	30.2 Поляра і аннулятор множини, їхні власивості	160
	30.3 Література	161

Зміст	vii

31	Біполяра 31.1 Абсолютна опуклість і біполяра	
32	Спряжений оператор	165
	32.1 Алгебраїчно спряжний і спряжений оператори	165
	32.2 Література	166

Ι

Загальна топологія

Частина I: Зміст

1	То	опологічні простори
-	1.1	Мологічні простори Нагадування: метрична топологія
	1.2	Основні означення
	1.3	Замикання
	1.4	Щільність
	1.5	Література
2	М	етоди введення топології
	2.1	Замикання і внутрішність
	2.2	База топології
	2.3	Література
3	36	ііжність і неперервність
	3.1	Аксіоми зліченності
	3.2	Збіжність
	3.3	Неперервність
	3.4	Гомеоморфізми
	3.5	Література
4	Aĸ	ксіоми віддільності
	4.1	Власне аксіоми
	4.2	Наслідки з аксіом
	4.3	Замкнені бази та функціональна віддільність
	4.4	Література
5	Ko	омпактність в топологічних просторах
	5.1	Покриття і підпокриття
	5.2	Компактні простори
	5.3	Види компактності
	5.4	Зв'язки між видами компактності
	5.5	Література

1 Топологічні простори

§1.1 Нагадування: метрична топологія

В курсі математичного аналізу [1, c. 26] уже розглядалися поняття околу точки, відкритої та замкненої множин, точки дотику, граничної точки, границі послідовності в просторі $\mathbb R$ тощо. Всі ці поняття визначалися за допомогою метрики простору $\mathbb R$ і відбивали певні властивості, притаманні множинам, за допомогою яких ми могли описувати основну концепцію цієї теорії — близькість між точками. Адже саме поняття близькості між точками (в розумінні малої відстані) є базовим для таких головних понять математичного аналізу як збіжність послідовностей і неперервність функцій.

Відносним недоліком цього підходу є очевидна залежність від метрики, уведеної в просторі. Тому постало питання, чи не можна побудувати більш абстрактну конструкцію, за допомогою якої можна було б описати ідеї, згадані вище. Серед дослідників цієї проблеми слід відзначити французьких математиків М. Фреше (1906), М. Рісса (1907–1908), німецького математика Ф. Хаусдорфа (1914), польського математика К. Куратовського (1922) і радянського математика П. Александрова (1924). В результаті досліджень цих та багатьох інших математиків виникла нова математична дисципліна — загальна топологія, предметом якої є вивчення ідеї про неперервність на максимально абстрактному рівні.

В цій та наступній лекціях ми введемо в розгляд ряд важливих топологічних понять. Це дозволить нам вийти на вищий рівень абстракції та опанувати ідеї, що пронизують майже всі розділи математики. Не буде великим перебільшенням сказати, що в певному розумінні топологія разом з алгеброю є скелетом сучасної математики, а функціональний аналіз — це розділ математики, головною задачею якого є дослідження нескінченновимірних просторів та їх відображень.

§1.2 Основні означення

Означення 1.1. Нехай X — множина елементів, яку ми будемо називати носієм. **Топологією** в X називається довільна система τ його підмножин, яка задовольняє таким умовам (аксіомам Александрова):

A1.
$$\varnothing, X \in \tau$$
.

А2. $G_{\alpha} \in \tau, \ \alpha \in A \implies \bigcup_{\alpha \in A} G_{\alpha} \in \tau, \ \text{де } A -$ довільна множина.

A3.
$$G_{\alpha} \in \tau$$
, $\alpha = 1, 2, \dots, n \implies \bigcap_{\alpha=1}^{n} G_{\alpha} \in \tau$.

Інакше кажучи, топологічною структурою називається система множин, замкнена відносно довільного об'єднання і скінченого перетину.

Означення 1.2. Пара $T = (X, \tau)$ називається **топологічним простором**.

Приклад 1.1 (топологічного простору)

Нехай X — довільна множина, $\tau = 2^X$ — множина всіх підмножин X. Пара $(X,2^X)$ називається простором з дискретною (максимальною) топологією.

Приклад 1.2 (топологічного простору)

Нехай X — довільна множина, $\tau = \{\emptyset, X\}$. Пара (X, τ) називається простором з тривіальною (мінімальною, або антидискретною) топологією.

Зрозуміло, що на одній і тій же множині X можна ввести різні топології, утворюючи різні топологічні простори. Припустимо, що на носії X введено дві топології — τ_1 і τ_2 . Вони визначають два топологічні простори: $T_1 = (X, \tau_1)$, і $T_2 = (X, \tau_2)$.

Говорять, що топологія τ_1 є **сильнішою**, або **тонкішою**, ніж топологія τ_2 , якщо $\tau_2 \subset \tau_1$. Відповідно, топологія τ_2 є **слабкішою**, або **грубішою**, ніж топологія τ_1 . Легко бачити, що найслабкішою є тривіальна топологія, а найсильнішою — дискретна

Зауваження 1.1 — Множина всіх топологій не є цілком упорядкованою, тобто не всі топології можна порівнювати одну з одною. Наприклад, наступні топології (зв'язні двокрапки) порівнювати не можна: $X = \{a,b\}, \ \tau_1 = \{\varnothing,X,\{a\}\}, \ \tau_2 = \{\varnothing,X,\{b\}\}.$

Означення 1.3. Множини, що належать топології τ , називаються **відкритими**. Множини, які є доповненням до відкритих множин, називаються **замкненими**.

Наприклад, множина всіх цілих чисел \mathbb{Z} замкнена в \mathbb{R} .

Зауваження 1.2 — Топологія містить всі відкриті множини. Водночас, треба зауважити, що поняття відкритих і замкнених множин не є взаємовиключними. Одна і та ж множина може бути одночасно і відкритою і замкненою (наприклад, \varnothing або X), або ані відкритою, ані замкненою (множини раціональних та ірраціональних чисел в \mathbb{R}). Отже, топологія може містити й замкнені множини, якщо вони одночасно є відкритими.

Як бачимо, поняття відкритої множини в топологічному просторі постулюється — для того щоб довести, що деяка множина M в топологічному просторі T є відкритою, треба довести, що вона належить його топології.

Означення 1.4. Нехай (X, τ) — топологічний простір, $M \subset X$. Топологія (M, τ_M) , де $\tau_M = \{U_M^{(\alpha)} = U_\alpha \cap M, U_\alpha \in \tau\}$, називається **індукованою**.

Означення 1.5. Топологічний простір (X, τ) називається **зв'язним**, якщо лише множини X і \varnothing є замкненими й відкритими одночасно.

Означення 1.6. Множина M топологічного простору (X, τ) називається **зв'язною**, якщо топологічний простір (M, τ_M) є зв'язним.

Приклад 1.3 (зв'язних просторів)

Тривіальний (антидиск
ретний) простір і зв'язна двокрапка є зв'язними просторами.

Зловживання позначеннями 1.1. Надалі ми будемо часто скорочувати (X, τ) просто як X або T.

Означення 1.7. Довільна відкрита множина $G \in T$, що містить точку $x \in T$, називається її **околом**.

Означення 1.8. Точка $x \in T$ називається **точкою дотику** множини $M \subset T$, якщо кожний окіл O(x) точки x містить хоча б одну точку із $M \colon \forall O(x) \in \tau : O(x) \cap M \neq \emptyset$.

Означення 1.9. Точка $x \in T$ називається **граничною точкою** множини $M \subset T$, якщо кожний окіл точки x містить хоча б одну точку із M, що не збігається з x: $\forall O(x) \in \tau : O(x) \cap M \setminus \{x\} \neq \emptyset$.

§1.3 Замикання

Означення 1.10. Сукупність точок дотику множини $M \subset T$ називається **замиканням** множини M і позначається \overline{M} .

Означення 1.11. Сукупність граничних точок множини $M \subset T$ називається похідною множини M і позначається M'.

Теорема 1.1 (про властивості замикання)

Замикання задовольняє наступним умовам:

- 1. $M \subset \overline{M}$;
- 2. $\overline{\overline{M}} = \overline{M}$ (ідемпотентність);
- 3. $M \subset N \implies \overline{M} \subset \overline{N}$ (монотонність);
- 4. $\overline{M \cup N} = \overline{M} \cup \overline{N}$ (адитивність).
- 5. $\overline{\varnothing} = \varnothing$.

Доведення.

1. $M \subset \overline{M}$.

Нехай $x \in M$. Тоді x — точка дотику множини M. Отже, $x \in \overline{M}$.

2. $\overline{M} = \overline{M}$.

Внаслідок твердження 1) $\overline{M} \subset \overline{\overline{M}}$. Отже, достатньо довести, що $\overline{\overline{M}} \subset \overline{M}$. Нехай $x_0 \in \overline{\overline{M}}$ і U_0 — довільний окіл точки x_0 . Оскільки $U_0 \cap \overline{M} \neq \varnothing$ (за означенням точки дотику), то існує точка $y_0 \in U_0 \cap \overline{M}$. Отже, множину U_0 можна вважати околом точки y_0 . Оскільки $y_0 \in \overline{M}$, то $U_0 \cap M \neq \varnothing$. Значить, точка x_0 є точкою дотику множини M, тобто $x_0 \in \overline{M}$.

3. $M \subset N \implies \overline{M} \subset \overline{N}$.

Нехай $x_0 \in \overline{M}$ і U_0 — довільний окіл точки x_0 . Оскільки $U_0 \cap M \neq \emptyset$ (за означенням точки дотику) і $M \subset N$ (за умовою), то $U_0 \cap N \neq \emptyset$. Отже, x_0 — точка дотику множини N, тобто $x_0 \in \overline{N}$. Таким чином, $\overline{M} \subset \overline{N}$.

4. $\overline{M \cup N} = \overline{M} \cup \overline{N}$.

3 очевидних включень $M\subset M\cup N$ і $N\subset M\cup N$ внаслідок монотонності операції замикання випливає, що $\overline{M}\subset \overline{M\cup N}$ і $\overline{N}\subset \overline{M\cup N}$. Отже, $\overline{M}\cup \overline{N}\subset \overline{M\cup N}$. Отже, $\overline{M}\cup \overline{N}\subset \overline{M\cup N}$. Отже, іншого боку, припустимо, що $x\not\in \overline{M}\cup \overline{N}$, тоді $x\not\in \overline{M}$ і $x\not\in \overline{N}$. Отже, існує такий окіл точки x, у якому немає точок з множини $M\cup N$, тобто $x\not\in \overline{M\cup N}$. Таким чином, за законом заперечення, $x\in \overline{M\cup N}\Longrightarrow x\in \overline{M\cup N}$, тобто $\overline{M\cup N}\subset \overline{M}\cup \overline{N}$.

5. $\overline{\varnothing} = \varnothing$.

Припустимо, що замикання порожньої множини не є порожньою множиною: $x \in \overline{\varnothing} \implies \forall O(x) : O(x) \cap \varnothing \neq \varnothing$. Але $\forall N \subset X : N \cap \varnothing = \varnothing$. Отже, $\overline{\varnothing} = \varnothing$. \square

Теорема 1.2 (критерій замкненості)

Множина M топологічного простору X є замкненою тоді й лише тоді, коли $M = \overline{M}$, тобто коли вона містить всі свої точки дотику.

Доведення. Необхідність. Припустимо, що M — замкнена множина, тобто $G = X \setminus M$ — відкрита множина. Оскільки, $M \subset \overline{M}$, достатньо довести, що $\overline{M} \subset M$. Дійсно, оскільки G — відкрита множина, вона є околом кожної своєї точки. До того ж $G \cap M = \emptyset$. Звідси випливає, то жодна точка $x \in G$ не може бути точкою дотику для множини M, отже всі точки дотику належать множині M, тобто $\overline{M} \subset M$.

$$G = X \setminus M \in \tau \implies G \cap M = \varnothing \implies \overline{M} \subset M.$$

Достатність. Припустимо, що $\overline{M}=M$. Доведемо, що $G=X\setminus M$ — відкрита множина (звідси випливатиме замкненість множини M). Нехай $x_0\in G$. З цього випливає, що $x_0\not\in M$, а значить $x_0\not\in \overline{M}$. Тоді за означенням точки дотику існує окіл U_{x_0} такий, що $U_{x_0}\cap M=\varnothing$. Значить, $U_{x_0}\subset X\setminus M=G$, тобто $G=\bigcup_{x\in G}U_x\in \tau$. \square

Наслідок 1.1

Замикання \overline{M} довільної множини M із простору X є замкненою множиною в X

Теорема 1.3

Замикання довільної множини M простору (X, τ) збігається із перетином всіх замкнених множин, що містять множину M.

$$\forall M \subset X : \overline{M} = \bigcap_{\alpha} F_{\alpha}, \quad F_{\alpha} = \overline{F}_{\alpha}, M \subset F_{\alpha}.$$

Доведення. Нехай M — довільна множина із (X,τ) і $N=\bigcap_{\alpha}F_{\alpha}$, де $F_{\alpha}=\overline{F}_{\alpha}$, $M\subset F_{\alpha}$.

Покажемо включення $\bigcap_{\alpha} F_{\alpha} \subset \overline{M}$.

$$N = \bigcap_{\alpha} F_{\alpha} \implies N \subset F_{\alpha} \forall \alpha \implies N \subset \overline{F}_{\alpha} \forall \alpha.$$

Оскільки $\{F_{\alpha}\}$ — множина усіх замкнених множин, серед них є множина \overline{M} : $\exists \alpha_0: F_{\alpha_0} = \overline{M}$. Отже,

$$N \in \overline{F}_{\alpha} \forall \alpha \implies N \in F_{\alpha_0} = \overline{M} \implies \bigcap_{\alpha} F_{\alpha} \subset \overline{M}.$$

Тепер покажемо включення $\overline{M} \subset \bigcap_{\alpha} F_{\alpha}$. Розглянемо довільну замкнену множину F, що містить $M \colon F = \overline{F}, M \subset F$. Внаслідок монотонності замикання маємо:

$$\overline{F} = F, M \subset F \implies \overline{M} \subset \overline{F} = F \implies \overline{M} \subset F_{\alpha}, F_{\alpha} = \overline{\forall} \alpha \implies \overline{M} \subset \bigcap_{\alpha} F_{\alpha}.$$

Порівнюючи обидва включення, маємо

$$\overline{M} = \bigcap_{\alpha} F_{\alpha}.$$

Наслідок 1.2

Замикання довільної множини M простору X є найменшою замкненою множиною, що містить множину M.

§1.4 Щільність

Означення 1.12. Нехай A і B — дві множини в топологічному просторі T. Множина A називається щільною в B, якщо $\overline{A} \supset B$.

Приклад 1.4 (щільних множин)

В топології числової прямої множина всіх раціональних чисел \mathbb{Q} є щільною в множині всіх ірраціональних чисел $\mathbb{R} \setminus \mathbb{Q}$, і навпаки.

Зауваження 1.3 — Множина A не обов'язково міститься в B: множина раціональних чисел є щільною в множині ірраціональних чисел і навпаки.

Означення 1.13. Якщо $\overline{A} = X$, множина A називається **скрізь щільною**.

Означення 1.14. Множина A називається **ніде не щільною**, якщо вона не є щільною в жодній непорожній відкритій підмножині множини X.

Приклад 1.5 (ніде не щільних множин)

Найпростішими прикладами ніде не щільних множин є цілі числа просторі \mathbb{R} і пряма в просторі \mathbb{R}^2 .

Множина A є щільною в кожній непорожній відкритій множині, якщо $\forall U \in \tau, U \neq \varnothing$: $\overline{A} \supset U$, тобто кожна точка множини U є точкою дотику множини A. Отже, $\forall x \in U \forall O(x) \in \tau O(x) \cap A \neq \varnothing$. Заперечення цього твердження збігається з означенням ніде не щільної множини. Формальний запис означення має такий вигляд:

$$\exists U_0 \in \tau, U_0 \neq \varnothing : \overline{A} \not\supset U_0 \implies \exists x_0 \in U_0 \exists O(x_0) \in \tau : O(x_0) \cap A = \varnothing$$

Означення 1.15. Простір T, що містить скрізь щільну зліченну множину, називається **сепарабельним**.

Приклад 1.6 (сепарабельного простору)

Зліченна множина всіх раціональних чисел \mathbb{Q} є скрізь щільною у просторі \mathbb{R} , отже простір \mathbb{R} є сепарабельним.

3 того, що $\overline{\mathbb{Q}} = \mathbb{R}$ і $\overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}$, зокрема, випливає, що \mathbb{Q} і $\mathbb{R} \setminus \mathbb{Q}$ є ані відкритими, ані замкненими множинами.

Приклад 1.7 (сепарабельного простору)

Зліченна множина всіх поліномів з раціональними коефіцієнтами за теоремою Вейєрштрасса є скрізь щільною в просторі неперервних функцій C[a,b]. Отже, простір C[a,b] є сепарабельним.

§1.5 Література

- [1] **Ляшко И. И.** Основы классического и современного математического анализа / И. И. Ляшко, В. Ф Емельянов, А. К. Боярчук. К.: Вища школа, 1988 (стр. 26–27).
- [2] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 10–20).
- [3] **Энгелькинг Р.** Общая топология / Р. Энгелькинг. М.: Мир, 1986 (стр. 32—50).

2 Методи введення топології

§2.1 Замикання і внутрішність

Система аксіом, наведена в означенні топології належить радянському математику П.С. Александрову (1925). Проте першу систему аксіом, що визначає топологічну структуру, запропонував польський математик К. Куратовський (1922).

Означення 2.1. Нехай X — довільна множина. Відображення $cl: 2^X \to 2^X$ називається **оператором замикання Куратовського на** X, якщо воно задовольняє наступні умови (аксіоми Куратовського):

K1. $\operatorname{cl}(M \cup N) = \operatorname{cl}(M) \cup \operatorname{cl}(N)$ (адитивність);

K2. $M \subset cl(M)$;

K3. $\operatorname{cl}(\operatorname{cl}(M)) = \operatorname{cl}(M)$ (ідемпотентність);

K4. $cl(\emptyset) = \emptyset$.

Теорема 2.1

Якщо в деякій множині X введено топологію в розумінні Александрова, то відображення cl, що задовольняє умові $\mathrm{cl}(M)=\overline{M}$ є оператором Куратовського на X.

Доведення. Неважко помітити, що аксіоми K1–K4 просто збігаються із властивостями замикання, доведеними в теоремі про властивості замикання.

Теорема 2.2 (про завдання топології оператором Куратовського)

Кожний оператор Куратовського cl на довільній множині X задає в X топологію $\tau = \{U \subset X : \operatorname{cl}(X \setminus U) = X \setminus U\}$ в розумінні Александрова, до того ж замикання \overline{M} довільної підмножини M із X в цій топології τ збігається з $\operatorname{cl}(M)$, тобто $\operatorname{cl}(M) = \overline{M}$.

Доведення. Побудуємо сімейство

$$\sigma = \{ M \subset X : M = X \setminus U, U \in \tau \},\$$

що складається із всіх можливих доповнень множин із системи τ , тобто таких множин, для яких $\mathrm{cl}(M)=\overline{M}.$ Інакше кажучи, система σ складається з нерухомих точок оператора замикання Куратовського. За принципом двоїстості де Моргана, для сімейства σ виконуються аксіоми замкненої топології

F1. $X, \emptyset \in \sigma$.

F2. $F_{\alpha} \in \sigma, \alpha \in A \implies \bigcap_{\alpha \in A} F_{\alpha} \in \sigma$, де A — довільна множина.

F3.
$$F_{\alpha} \in \sigma, \alpha = 1, 2, ..., n \implies \bigcup_{\alpha=1}^{n} G_{\alpha} \in \sigma.$$

Отже, щоб перевірити аксіоми Александрова для сімейства множин τ , достатньо перевірити виконання аксіом F1–F3 для сімейства множин σ .

- 1. Перевіримо аксіому F1: $X \in \sigma$? $\varnothing \in \sigma$? Аксіома K2 стверджує, що $M \subset \operatorname{cl}(M)$. Покладемо M = X. Отже, $X \subset \operatorname{cl}(X) \subset X \implies \operatorname{cl}(X) = X \implies X \in \sigma$. Аксіома K4 стверджує, що $\operatorname{cl}(\varnothing) = \varnothing \implies \varnothing \in \mathbb{C}$
- 2. Перевіримо виконання аксіоми F2.

Спочатку покажемо, що оператор cl є монотонним:

$$\forall A, B \in \sigma : A \subset B \implies \operatorname{cl}(A) \subset \operatorname{cl}(B).$$

Нехай $A, B \in \sigma$ і $A \subset B$. Тоді за аксіомою K1:

$$\operatorname{cl}(B) = \operatorname{cl}(B \cup A) = \operatorname{cl}(B) \cup \operatorname{cl}(A).$$

Отже,

$$\operatorname{cl}(A) \subset \operatorname{cl}(A) \cup \operatorname{cl}(B) = \operatorname{cl}(B \cup A) = \operatorname{cl}(B).$$

Використаємо це допоміжне твердження для перевірки аксіоми F3. З одного боку,

$$\forall F_{\alpha} \in \sigma: \bigcap_{\alpha \in A} F_{\alpha} \subset F_{\alpha} \quad \forall \alpha \in A \implies$$

$$\implies \operatorname{cl}\left(\bigcap_{\alpha \in A} F_{\alpha}\right) \in \operatorname{cl}(F_{\alpha}) = F_{\alpha} \quad \forall \alpha \in A \implies$$

$$\implies \operatorname{cl}\left(\bigcap_{\alpha \in A} F_{\alpha}\right) \subset \bigcap_{\alpha \in A} F_{\alpha}.$$

З іншого боку, за аксіомою К2

$$\bigcap_{\alpha \in A} F_{\alpha} \subset \operatorname{cl}\left(\bigcap_{\alpha \in A} F_{\alpha}\right).$$

Отже,

$$\operatorname{cl}\left(\bigcap_{\alpha\in A}F_{\alpha}\right)=\bigcap_{\alpha\in A}F_{\alpha}\in\sigma.$$

3. Перевіримо виконання аксіоми F3.

$$A, B \in \sigma \implies \operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B) = A \cup B \implies A \cup B \in \sigma.$$

Таким чином, σ — замкнена топологія, а сімейство τ , що складається із доповнень до множин із сімейства σ — відкрита топологія.

Залишилося показати, що в просторі (X,τ) , побудованому за допомогою оператора cl, замикання \overline{M} довільної множини M збігається з $\mathrm{cl}(M)$.

Дійсно, за критерієм замкненості, множина M є замкненою, якщо $\overline{M}=M$. З аксіом K2 і K3 випливає, що множина $\operatorname{cl}(M)$ є замкненою і містить M. Покажемо, що ця множина — найменша замкнена множина, що містить множину M, тобто є її замиканням.

Нехай F — довільна замкнена в (X, τ) множина, що містить M:

$$M \subset F$$
, $\operatorname{cl}(F) = F$.

Внаслідок монотонності оператора сІ отримуємо наступне:

$$M \subset F, \operatorname{cl}(F) = F \implies \operatorname{cl}(M) \subset \operatorname{cl}(F) = F.$$

Означення 2.2. Нехай X — довільна множина. Відображення int : $2^X \to 2^X$ називається **оператором взяття внутрішності множини** X, якщо воно задовольняє наступні умови:

K1. $int(M \cap N) = int(M) \cap int(N)$ (адитивність);

K2. $int(M) \subset M$;

K3. int(int(M)) = int(M) (ідемпотентність);

K4. $int(\emptyset) = \emptyset$.

Наслідок 2.1

Оскільки

$$int A = X \setminus \overline{X \setminus A},$$

оператор взяття внутрішності є двоїстим для оператора замикання Куратовського. Отже, система множин $\tau = \{A \subseteq X : \text{int } A = A\}$ утворює в X топологію, а множина int A в цій топології є внутрішністю множини A.

§2.2 База топології

Для завдання в множині X певної топології немає потреби безпосередньо указувати всі відкриті підмножини цієї топології. Існує деяка сукупність відкритих підмножин, яка повністю визначає топологію. Така сукупність називається базою цієї топології.

Означення 2.3. Сукупність β відкритих множин простору (X, τ) називається базою топології τ або базою простору (X, τ) , якщо довільна непорожня відкрита множина цього простору є об'єднанням деякої сукупності множин, що належать β :

$$\forall G \in \tau, G \neq \emptyset \quad \exists B_{\alpha} \in \beta, \alpha \in A : \quad G = \bigcup_{\alpha \in A} B_{\alpha}.$$

Зауваження 2.1 — Будь-який простір (X, τ) має базу, оскільки система всіх відкритих підмножин цього простору утворює базу його топології.

Зауваження 2.2 — Якщо в просторі (X, τ) існують ізольовані точки, вони повинні входити в склад будь-якої бази цього простору.

Теорема 2.3

Для того щоб сукупність β множин із топології τ була базою цієї топології, необхідно і достатньо, щоб для кожної точки $x \in X$ і довільної відкритої множини U, що містить точку x, існувала множина $V \in \beta$, така щоб $x \in V \subset U$.

Доведення. Необхідність. Нехай β — база простору $(X,\tau),\ x_0\in X,\ a\ U_0\in \tau,\$ таке що $x_0\in U_0.$ Тоді за означенням бази $U_0=\bigcup_{\alpha\in A}V_\alpha,\$ де $V_\alpha\in \beta.$ З цього випливає, що $x_0\in V_{\alpha_0}\subset U_0.$

$$\beta = \mathcal{B}(\tau), x_0 \in X, U_0 \in \tau, x_0 \in U_0 \implies U_0 = \bigcup_{\alpha \in A} V_\alpha, V_\alpha \in \beta \implies x_0 \in V_{\alpha_0} \subset U_0.$$

Достатність. Нехай для кожної точки $x \in X$ і довільної відкритої множини $U \in \tau$, що містить точку x, існує множина $V_x \in \beta$, така що $x \in V_x \subset U$. Легко перевірити, що $U = \bigcup_{x \in U} V_x$.

Дійсно, якщо точка $x \in U$, то за умовою теореми, вона належить множині $V_x \subset U$, а отже й об'єднанню таких множин $\bigcup_{x \in U} V_x$:

$$x \in U \implies \exists V_x \subset U : x \in V_x \implies x \in \bigcup_{x \in U} V_x.$$

I навпаки, якщо точка належить об'єднанню $\bigcup_{x\in U} V_x$, то вона належить принаймні одній із цих множин $V_x\subset U$, а отже — вона належить множині U:

$$x \in \bigcup_{x \in U} V_x \implies \exists V_x \subset U : x \in V_x \implies x \in U.$$

Таким чином, довільну відкриту множину $U \in \tau$ можна подати у вигляді об'єднання множин із β .

Приклад 2.1

Оскільки $\forall x \in \mathbb{R}^1$ і $\forall (a,b) \ni x \exists (a_0,b_0) \subset (a,b)$, то за попередньою теоремою сукупність всіх відкритих інтервалів утворює базу топології в \mathbb{R}^1 .

Приклад 2.2

Оскільки $\forall x \in \mathbb{R}^1$ і $\forall (a,b) \ni x \; \exists (r_1,r_2) \subset (a,b), \; r_1,r_2 \in \mathbb{Q}$, то за попередньою теоремою сукупність всіх відкритих інтервалів із раціональними кінцями також утворює базу топології в \mathbb{R}^1 .

З цієї теореми випливають два наслідки.

Наслідок 2.2

Об'єднання всіх множин, які належать базі β топології τ , утворює всю множину X.

Надалі будемо також називати цей наслідок першою властивістю бази топології.

Наслідок 2.3

Для довільних двох множин U і V із бази β і для кожної точки $x \in U \cap V$ існує множина W із β така, що $x \in W \subset U \cap V$.

Доведення. Оскільки $U \cap V \in \tau$, то за попередньою теоремою в множині $U \cap V$ міститься відкрита множина W із бази, така що $x \in W$.

Надалі будемо також називати цей наслідок другою властивістю бази топології.

Теорема 2.4 (про завдання топології за допомогою бази)

Нехай в довільній множині X задана деяка сукупність відкритих множин β , що має властивості бази топології. Тоді в множині X існує єдина топологія τ , однією з баз якої є сукупність β .

Доведення. Припустимо, що τ — сімейство, що містить лише порожню множину і всі підмножини множини X, кожна з яких є об'єднанням підмножин із сукупності β :

$$\tau = \left\{ \varnothing, G_{\alpha} \subset X, \alpha \in A, G_{\alpha} = \bigcup_{i \in I} B_{i}^{\alpha}, B_{i}^{\alpha} \in \beta \right\}.$$

Перевіримо, що це сімейство множин є топологією. Виконання аксіом топології 1 і 2 є очевидним: $\emptyset \in \tau, \ X \in \tau$ і

$$G_{\alpha} \in \tau, \alpha \in A \implies \bigcup_{\alpha \in A} G_{\alpha} \in \tau.$$

Аксіома 3 є наслідком властивостей. Не обмежуючи загальності, можна перевірити її для випадку перетину двох множин.

Нехай $U,U'\in \tau$. За означенням, $U=\bigcup_{i\in I}V_i$ і $U'=\bigcup_{j\in J}V_j'$, де $V_i,V_j'\in \beta$. Розглянемо перетин

$$U \cap U' = \left(\bigcup_{i \in I} V_i\right) \cap \left(\bigcup_{j \in J} V_i'\right) = \bigcup_{i \in I, j \in J} (V_i \cap V_j').$$

Доведемо, що $V_i \cap V_j' \in \tau$. Нехай $x \in V_i \cap V_j'$. Тоді, за другою властивістю, існує множина $W_x \in \beta$, така що $x \in W_x \subset V_i \cap V_j'$. Оскільки точка $x \in V_i \cap V_j'$ є довільною, то $V_i \cap V_j' = \bigcup_{x \in V_i \cap V_j'} W_x \in \tau$. Отже, $U \cap U' \in \tau$.

Таким чином, сімейство τ дійсно утворює топологію на X, а система β є її базою.

§2.3 Література

- [1] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 14–22).
- [2] **Энгелькинг Р.** Общая топология / Р. Энгелькинг М.: Мир, 1986 (стр. 46–50).

Збіжність і неперервність

§3.1 Аксіоми зліченності

В основі поняття збіжності послідовностей в топологічних просторах лежать аксіоми зліченності, які своєю чергою використовують поняття локальної бази в точці.

Означення 3.1. Система β_{x_0} відкритих околів точки x_0 називається локальною базою в точці x_0 , якщо кожний окіл U точки x_0 містить її деякий окіл V із системи β_{x_0} .

Означення 3.2. Топологічний простір X називається таким, що задовольняє першій аксіомі зліченності, якщо в кожній його точці існує локальна база, що складається із не більш ніж зліченої кількості околів цієї точки.

Означення 3.3. Топологічний простір X називається таким, що задовольняє другій аксіомі зліченності, або простором зі зліченною базою, якщо він має базу, що складається із не більш ніж зліченої кількості відкритих множин.

Лема 3.1

Якщо простір X задовольняє другій аксіомі зліченності, то він задовольняє і першій аксіомі зліченності.

Доведення. Нехай $U_1, U_2, \ldots, U_n, \ldots$ – зліченна база в просторі X, тоді $\beta_{x_0} = \{U_k \in \beta : x_0 \in U_k\}$ — зліченна локальна база в точці x_0 .

Лема 3.2

Існують простори, що задовольняють першій аксіомі зліченності, але не задовольняють другій аксіомі зліченності.

Доведення. В якості контрприкладу розглянемо довільну **незліченну** множину X, в якій введено дискретну топологію $\tau = 2^X$.

Вправа 3.1. Переконайтеся що ви розумієте, чому цей простір задовольняє першій аксіомі зліченності, але не задовольняє другій аксіомі зліченності перед тим як читати далі.

Приклад 3.1

Простір \mathbb{R}^n , топологія якого утворена відкритими кулями, задовольняє першій аксіомі зліченності, оскільки в кожній точці $x_0 \in X$ існує зліченна локальна база $S(x_0, 1/n)$.

Очевидно, що цей простір задовольняє і другій аксіомі зліченності, оскільки має зліченну базу, що складається з куль $S(x_n,r)$, де центри куль x_n належать зліченній скрізь щільній множині (наприклад, мають раціональні координати), а r — раціональне число.

Поняття точки дотику і замикання множини відіграють основну роль в топології, оскільки будь-яка топологічна структура повністю описується в цих термінах.

§3.2 Збіжність

Проте поняття точки дотику занадто абстрактне. Набагато більше змістовних результатів можна отримати, якщо виділити широкий клас просторів, топологічну структуру яких можна описати виключно в термінах границь збіжних послідовностей.

Означення 3.4. Послідовність точок $\{x_n\}$ топологічного простору X називається збіжною до точки $x_0 \in X$, якщо кожний окіл U_0 точки x_0 містить всі точки цієї послідовності, починаючи з деякої. Точку x_0 називають границею цієї послідовності: $\lim_{n\to\infty} x_n = x_0$.

Приклад 3.2

В довільному тривіальному просторі послідовність збігається до будь-якої точки цього простору.

Довільна гранична точка множини A довільного топологічного простору X є точкою дотику. Проте в загальних топологічних просторах не для всякої точки дотику $x \in A$ існує послідовність $\{x_n\} \subset A$, що до неї збігається.

Приклад 3.3

Нехай X — довільна незліченна множина. Задамо в просторі X топологію, оголосивши відкритими порожню множину і всі підмножини, які утворені із X викиданням не більш ніж зліченної кількості точок.

$$\tau = \{\emptyset, X \setminus \{x_1, x_2, \dots, x_n, \dots\}\}.$$

Доведення. Спочатку покажемо, що в цьому просторі збіжними є лише стаціонарні послідовності.

Припустимо, що в просторі існує нестаціонарна послідовність $\{x_n\} \to x_0$. Тоді, взявши за окіл точки x_0 множину U, яка утворюється викиданням із X всіх членів послідовності $\{x_n\}$, які відрізняються від точки x_0 , ми дійдемо до суперечності з тим, що окіл U мусить містити всі точки послідовності $\{x_n\}$, починаючи з деякої.

Тепер розглянемо підмножину $A = X \setminus \{x_0\}$. Точка x_0 є точкою дотику множини A. Справді, якщо U — довільний відкритий окіл точки x_0 , то за означенням відкритих в X множин, доповнення $X \setminus U$ є не більш ніж зліченим.

$$U \in \tau \implies U = X \setminus \{x_1, x_2, \dots, x_n, \dots\} \implies$$

$$\implies X \setminus U = X \setminus (X \setminus \{x_1, x_2, \dots, x_n, \dots\}) = \{x_1, x_2, \dots, x_n, \dots\} \implies$$

$$\implies A \cap U \neq \emptyset,$$

оскільки |A|=c, а доповнення $X\setminus U$ і тому не може містити в собі незліченну множину A.

З іншого боку, оскільки в просторі X збіжними є лише стаціонарні послідовності, то із $x_0 \notin A$ випливає, що жодна послідовність точок із множини A не може збігатися до точки дотику $x_0 \notin A$.

Теорема 3.1

Якщо простір X задовольняє першій аксіомі зліченності, то $x_0 \in \overline{A}$ тоді й лише тоді, коли x_0 є границею деякої послідовності $\{x_n\}$ точок із A.

Доведення. Достатність. Якщо в довільному топологічному просторі послідовність $\{x_n\} \in A$, $\lim_{n\to\infty} x_n = x_0$, то $x_0 \in \overline{A}$.

Необхідність. Нехай $x_0 \in \overline{A}$. Якщо $x_0 \in A$, достатньо в якості $\{x_n\} \in A$ взяти стаціонарну послідовність.

Припустимо, що $x_0 \in \overline{A} \setminus A$ і $U_1, U_2, \ldots, U_n, \ldots$ — зліченна локальна база в точці x_0 , до того ж $\forall n \in \mathbb{N}$: $U_{n+1} \subset U_n$. (Якби ця умова не виконувалася, ми взяли б іншу базу $\{V_n\}$, де $V_n = \bigcap_{k=1}^n U_k$). Оскільки $A \cap U_n \neq \emptyset$, взявши за x_n довільну точку із $A \cap U_n$, ми отримаємо послідовність $\{x_n\} \in A$, $\lim_{n \to \infty} x_n = x_0$.

Дійсно, нехай V — довільний окіл точки x_0 . Оскільки $U_1,U_2,\ldots,U_n,\ldots$ база в точці x_0 , існує такий елемент U_{n_0} , який належить цій базі, що $U_{n_0} \subset V$. З іншого боку, для всіх $n \geq n_0$: $U_{n+1} \subset U_n$. Це означає, що $\forall n \geq n_0$: $x_n \in A \cap U_n \subset U_{n_0} \subset U$. Отже, $x_0 = \lim_{n \to \infty} x_n$.

§3.3 Неперервність

Поняття неперервного відображення належить до фундаментальних основ топології.

Означення 3.5. Відображення $f: X \to Y$ називається **сюр'єктивним**, якщо f(X) = Y, тобто множина X відображається на весь простір Y.

Означення 3.6. Відображення $f: X \to Y$ називається **ін'єктивним**, якщо з того, що $f(x_1) \neq f(x_2)$ випливає, що $x_1 \neq x_2$.

Означення 3.7. Відображення $f: X \to Y$, яке одночасно є сюр'єктивним та ін'єктивним, називається **бієктивним**, або взаємно однозначною відповідністю між X і Y.

Тепер нагадаємо основні співвідношення для образів та прообразів множин відносно функції $f:X \to Y$.

Якщо $A, B \subset X$, то

- 1. $A \subset B \implies f(A) \subset f(B) \not \Longrightarrow A \subset B$;
- 2. $A \neq \emptyset \implies f(A) \neq \emptyset$;
- 3. $f(A \cap B) \subset f(A) \cap f(B)$;
- 4. $f(A \cup B) \subset f(A) \cup f(B)$.

Якщо $A', B' \subset Y$, то

- 1. $A' \subset B' \implies f^{-1}(A') \subset f^{-1}(B')$;
- 2. $f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B')$;
- 3. $f^{-1}(A' \cup B') = f^{-1}(A') \cup f^{-1}(B')$.

Якщо $B' \subset A' \subset Y$, то

- 1. $f^{-1}(A' \setminus B') = f^{-1}(A') \setminus f^{-1}(B');$
- 2. $f^{-1}(Y \setminus B') = X \setminus f^{-1}(B');$

Для довільних множин $A\subset X$ і $B'\subset Y$

1. $A \subset f^{-1}(f(A));$

2.
$$f(f^{-1}(B')) \subset B'$$
.

Введемо поняття неперервного відображення.

Означення 3.8. Нехай X і Y — два топологічних простора. Відображення f : $X \to Y$ називається **неперервним в точці** x_0 , якщо для довільного околу V точки $y_0 = f(x_0)$ існує такий окіл U точки x_0 , що $f(U) \subset V$.

Означення 3.9. Відображення $f: X \to T$ називається **неперервним**, якщо воно є неперервним в кожній точці $x \in X$.

Інакше кажучи, неперервне відображення зберігає граничні властивості: якщо точка $x \in X$ є близькою до деякої множини $A \subset X$, то точка $y = f(x) \in Y$ є близькою до образу множини A.

Теорема 3.2

Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатнью, щоб прообраз $f^{-1}(V)$ будь-якої відкритої множини $V \subset Y$ був відкритою множиною в X.

Доведення. Необхідність. Нехай $f: X \to Y$ — неперервне відображення, а V — довільна відкрита множина в Y. Доведемо, що множина $U = f^{-1}(V)$ є відкритою в X.

Для цього візьмемо довільну точку $x_0 \in U$ і позначимо $y_0 = f(x_0)$. Оскільки множина V є відкритим околом точки y_0 в просторі Y, а відображення f є неперервним в точці x_0 , в просторі X існує відкритий окіл U_0 точки x_0 , такий що $f(U_0) \subset V$. Звідси випливає, що $U_0 \subset U$. Отже, множина U є відкритою в X.

$$f \in C(X,Y) \implies \exists U_0 \in \tau_X : x_0 \in U_0, f(U_0) \subset V \implies$$
$$\implies f^{-1}(f(U_0)) \subset f^{-1}(V) = U \implies U_0 \subset f^{-1}(f(U_0)) \subset U \implies U \in \tau_X.$$

Достатність. Нехай прообраз $f^{-1}(V)$ довільної відкритої в Y множини V є відкритим в X, а $x_0 \in X$ — довільна точка. Доведемо, що відображення f є неперервним в точці x_0 .

Дійсно, нехай $y_0=f(x_0)$, а V — її довільний відкритий окіл. Тоді $U=f^{-1}(V)$ за умовою теореми є відкритим околом точки x_0 , до того ж $f(U)\subset V$. Отже, відображення f є неперервним в кожній точці $x_0\in X$. Таким чином, f є неперервним в X

$$V \in \tau_X, U := f^{-1}(V) \in \tau_X \implies f(U) = f(f^{-1}(V)) \subset V \implies f \in C(X,Y).$$

Теорема 3.3

Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатньо, щоб прообраз $f^{-1}(V)$ будь-якої замкненої множини $V \subset Y$ був замкненою множиною в X.

Доведення випливає з того, що доповнення відкритих множин є замкненими, а прообрази множин, що взаємно доповнюють одна одну, самі взаємно доповнюють одна одну.

Теорема 3.4

Для того щоб відображення $f:X\to Y$ було неперервним, необхідно і достатньо, щоб $\forall A\subset X: f(\overline{A})\subset \overline{f(A)}.$

Доведення. Необхідність. Нехай відображення $f: X \to Y$ є неперервним, а $x_0 \in \overline{A}$. Покажемо, що $y_0 = f(x_0) \in \overline{f(A)}$.

Справді, нехай V — довільний окіл точки y_0 . Тоді внаслідок неперервності f існує окіл U, який містить точку x_0 такий, що $f(U) \subset V$. Оскільки $x_0 \in \overline{A}$, то в околі U повинна міститись точка $x' \in A$ (можливо, вона збігається з точкою x_0). Разом з тим, очевидно, що y' = f(x') належить одночасно множині f(A) і околу V, тобто $y_0 \in \overline{f(A)}$.

$$f \in C(X,Y) \implies \forall V \in \tau_Y : f(x_0) \in V : \exists U \in \tau_X : x \in U, f(U) \subset V.$$
$$x_0 \in \overline{A} \implies U \cap A \neq \varnothing \implies \exists x' \in U \cap A \implies$$
$$\implies f(x') \in f(U \cap A) \subset f(U) \cap f(A) \implies y_0 = f(x_0) \in \overline{f(A)}.$$

Достатність. Нехай $\forall A \subset X : f(\overline{A}) \subset \overline{f(A)}$ і B — довільна замкнена в Y множина. Покажемо, що множина $A = f^{-1}(B)$ є замкненою в X.

Нехай x_0 — довільна точка із \overline{A} . Тоді $f(x_0) \in f(\overline{A}) \subset \overline{f(A)}$. Разом з тим

$$A = f^{-1}(B) \implies f(A) = f(f^{-1}(B)) \subset B \implies \overline{f(A)} \subset \overline{B} = B.$$

Тому $f(x_0) \in B$, отже, $x_0 \in A$. Таким чином, $\overline{A} \subset A$, тобто A — замкнена множина. Звідси випливає, що відображення f є неперервним.

§3.4 Гомеоморфізми

Означення 3.10. Бієктивне відображення $f: X \to Y$ називається **гомеоморфим**, або **гомеоморфізмом**, якщо і само відображення f і обернене відображення f^{-1} є неперервними.

Означення 3.11. Топологічні простори X і Y називаються **гомеоморфними**, або **топологічно еквівалентними**, якщо існує хоча б одне гомеоморфне відображення $f: X \to Y$.

Цей факт записується так: $X \stackrel{f}{\equiv} Y$.

Приклад 3.4

Тривіальний приклад гомеоморфізму — тотожне перетворення.

Приклад 3.5

Відображення, що задається строго монотонними неперервними дійсними функціями дійсної змінної є гомеоморфізмами. Гомеоморфним образом довільного інтервалу є інтервал.

Означення 3.12. Неперервне відображення $f: X \to Y$ називається **відкритим**, якщо образ будь-якої відкритої множини простору X є відкритим в Y.

Означення 3.13. Неперервне відображення $f: X \to Y$ називається **замкненим**, якщо образ будь-якої замкненої множини простору X є замкненим в Y.

Зауваження 3.1 — Поняття відкритого і замкненого відображення не є взаємовиключними. Тотожне відображення одночасно є і відкритим, і замкненим.

Приклад 3.6

Відображення вкладення (ін'єктивне відображення) $i:A\subset X\to X$ є відкритим, якщо підмножина A є відкритою, і замкненим, якщо підмножина A є замкненою.

Теорема 3.5

Відображення $f:X\to Y$ є замкненим тоді й лише тоді, коли $\forall A\subset X:f(\overline{A})=\overline{f(A)}.$

Доведення. Необхідність. Оскільки замкнене відображення є неперервним (за означенням), то внаслідок теореми $3.4 \ \forall A \subset X : f(\overline{A}) \subset \overline{f(A)}$.

Разом з тим, очевидно, що $f(A)\subset f(\overline{A})$, тому внаслідок монотонності замикання $\overline{f(A)}\subset \overline{f(\overline{A})}$.

Оскільки відображення f є замкненим, то $\overline{f(\overline{A})}=f(\overline{A})$. Таким чином, $\overline{f(A)}=f(\overline{A})$.

Достатність. Функція f є неперервною внаслідок теореми 3.4. З умови $\overline{f(A)} = f(\overline{A})$ для замкненої множини $A \subset X$ отримуємо, що $f(A) = \overline{f(A)}$, тобто образ будь-якої замкненої множини є замкненим.

Теорема 3.6

Відкрите бієктивне відображення $f: X \to Y$ є гомеоморфізмом.

Доведення. Оскільки $f: X \to Y$ — бієктивне відображення, існує обернене відображення $f^{-1}: Y \to X$. Оскільки $\forall A \subset X: (f^{-1})^{-1}(A) = f(A)$ і, за умовою теореми, f — відкрите відображення, то прообрази відкритих підмножин із X є відкритими.

З теореми 3.2 випливає, що відображення f^{-1} є неперервним. Оскільки бієктивне відкрите відображення завжди є неперервним, доходимо висновку, що f — гомеоморфізм.

Теорема 3.7

Замкнене бієктивне відображення $f: X \to Y$ є гомеоморфізмом.

Доведення цілком аналогічне попередній теоремі.

Теорема 3.8

Гомеоморфие відображення $f: X \equiv Y$ одночасно є і відкритим, і замкненим.

Доведення. Нехай $f^{-1}: Y \to X$ — обернене відображення. Тоді $\forall A \subset X: f(A) = (f^{-1})^{-1}(A)$. Оскільки відображення f є гомеоморфізмом, відображення f і f^{-1} є неперервними.

Оскільки образ множини A при відображенні f є прообразом множини A при відображенні $(f^{-1})^{-1}$ і обидва ці відображення є неперервними, то відображення f є відкритим і замкненим одночасно, тобто відкриті множини переводить у відкриті, а замкнені — у замкнені.

Теорема 3.9

Бієктивне відображення $f:X\to Y$ є гомеоморфізмом тоді й лише тоді, коли воно зберігає операцію замикання, тобто $\forall A\subset X: f(\overline{A})=\overline{f(A)}.$

Необхідність випливає з теорем 3.5 і 3.8, а достатність — з теорем 3.5 і 3.7.

§3.5 Література

- [1] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 24–28).
- [2] **Энгелькинг Р.** Общая топология / Р. Энгелькинг М.: Мир, 1986 (стр. 57—68).
- [3] **Колмогоров А.Н.** Элементы теории функций и функционального анализа. 5-е изд. / Колмогоров А.Н., С. В. Фомин М.: Наука, 1981 (стр. 89–91).

4 Аксіоми віддільності

Аналізуючи властивості різних топологічних просторів ми бачили, що їх структура може бути настільки "неприродною", що будь-яка послідовність збігається до будь-яких точок (тривіальний простір), існують точки дотику множин, які не є границями послідовностей їх елементів (простір Зариського) тощо. В математичному аналізі ми не зустрічаємо таких "патологій": там всі послідовності мають лише одну границю, кожна точка дотику є границею тощо. Отже, виникає потреба в інструментах, які дозволили б виділити серед топологічних просторів "природні" простори. Такими інструментами є аксіоми віддільності, які разом з аксіомами зліченності дають можливість повністю описати властивості топологічних просторів.

§4.1 Власне аксіоми

Аксіоми віддільності в топологічному просторі (X, τ) формулюються наступним чином.

• T_0 (Колмогоров, 1935). Для двох довільних різних точок x і y, що належать множині X, існує множина із топологічної структури τ , яка містить рівно одну з цих точок.

$$(\forall x \neq y \in X) : ((\exists V_x \in \tau : x \in V_x, y \notin V_x) \lor (\exists V_y \in \tau : y \in V_y, x \notin V_y)).$$

• T_1 (Picc, 1907). Для двох довільних різних точок x і y, що належать множині X, існують множина V_x із топологічної структури τ , яка містить точку x і не містить точки y, і множина V_y із топологічної структури τ , яка містить точку y і не містить точки x.

$$(\forall x \neq y \in X) : ((\exists V_x \in \tau : x \in V_x, y \notin V_x) \land (\exists V_y \in \tau : y \in V_y, x \notin V_y)).$$

• T_2 (Хаусдорф, 1914). Для двох довільних різних точок x і y, що належать множині X, існують множина V_x із топологічної структури τ , яка містить точку x, і множина V_y із топологічної структури τ , яка містить точку y, такі що не перетинаються.

$$(\forall x \neq y \in X) : (\exists V_x \sqcup V_y \in \tau) : (x \in V_x \land y \in V_y).$$

• T_3 (В'єторіс, 1921). Для довільної точки x і довільної замкненої множини F, що не містить цієї точки, існують дві відкриті множини V_x і V, що не перетинаються, такі що $x \in V_x$, а $F \subset V$.

$$(\forall x \in X, \overline{F} \subset X) : (\exists V_x \sqcup V \in \tau) : (x \in V_x \land \overline{F} \subset V).$$

• $T_{3\frac{1}{2}}$ (Урисон, 1925). Для довільної точки x і довільної замкненої множини \overline{F} , що не містить цієї точки, існує неперервна числова функція f, задана на просторі X, така що $0 \leq f(t) \leq 1$, до того ж f(x) = 0 і f(t) = 1, якщо $x \in \overline{F}$.

$$(\forall x \in X, \overline{F} \subset X : x \notin \overline{F}) : (\exists f : X \to \mathbb{R}^1 : 0 \le f(t) \le 1, f(x) = 0, f(\overline{F}) = 1).$$

• T_4 (В'єторіс, 1921). Для двох довільних замкнених множин $\overline{F_1}$ і $\overline{F_2}$ що не перетинаються, існують відкриті множини G_1 і G_2 , що не перетинаються, такі що $\overline{F_1} \subset G_1$, $\overline{F_2} \subset G_2$.

$$(\forall \overline{F_1}, \overline{F_2} \subset X : \overline{F_1} \cap \overline{F_2} = \varnothing) : (\exists G_1, G_2 \in \tau : \overline{F_1} \subset G_1, \overline{F_2} \subset G_2, G_1 \cap G_2 = \varnothing).$$

Означення 4.1 (Колмогоров, 1935). Топологічні простори, що задовольняють аксіому T_0 , називаються T_0 -просторами, або колмогоровськими.

Означення 4.2 (Рісс, 1907). Топологічні простори, що задовольняють аксіому T_1 , називаються T_1 -просторами, або досяжними.

Означення 4.3 (Хаусдорф, 1914). Топологічні простори, що задовольняють аксіому T_2 , називаються **хаусдорфовими**, або **віддільними**.

Означення 4.4 (В'єторіс, 1921). Топологічні простори, що задовольняють аксіоми T_1 і T_3 , називаються **регулярними**.

Означення 4.5 (Тихонов, 1930). Топологічні простори, що задовольняють аксіоми T_1 і $T_{3\frac{1}{3}}$, називаються **цілком регулярними**, або **тихоновськими**.

Означення 4.6 (Тітце (1923), Александров і Урисон (1929)). Топологічні простори, що задовольняють аксіоми T_1 і T_4 , називаються **нормальними**.

§4.2 Наслідки з аксіом

Розглянемо наслідки, які випливають з аксіом віддільності.

Теорема 4.1 (критерій досяжності)

Для того щоб топологічний простір (X,τ) був T_1 -простором необхідно і достатью, щоб будь-яка одноточкова множина $\{x\} \subset X$ була замкненою.

Доведення. Необхідність. Припустимо, що виконується перша аксіома віддільності: якщо $x \neq y$, то існує окіл $V_x \in \tau : x \notin V_y$. Тоді $\forall y \neq x, \ y \notin \overline{\{x\}}$, тобто $\overline{\{x\}} = \{x\}$.

Достатність. Припустимо, що $\overline{\{x\}} = \{x\}$. Тоді $\forall y \neq x : \exists V_y \in \tau : x \notin V_y$. Отже, виконується перша аксіома віддільності.

Наслідок 4.1

В просторі T_1 будь-яка скінченна множина є замкненою.

Теорема 4.2

Для того щоб точка x була граничною точкою множини M в T_1 -просторі необхідно і достатньо, щоб довільний окіл U цієї точки містив нескінченну кількість точок множини M.

Доведення. Необхідність. Якщо точка x є граничною точкою множини M, то

$$\forall O(x) \in \tau : O(x) \cap M \setminus \{x\} \neq \emptyset.$$

Припустимо, що існує такий окіл U точки x, що містить лише скінченну кількість точок $x_1, x_2, \ldots, x_n \in M$. Оскільки простір (X, τ) є T_1 -простором, то існує окіл і U точки x, що не містить точку x_i .

Введемо в розгляд множину $V = \bigcap_{i=1}^n U_i$. Ця множина є околом точки x, що не містить точок множини M, за винятком, можливо, самої точки x. Отже, точка x не є граничною точкою множини M, що суперечить припущенню.

Достатність. Якщо довільний окіл U точки x містить нескінченну кількість точок множини M, то вона є граничною за означенням.

Приклад 4.1

Зв'язна двокрапка є колмогоровским, але недосяжним простором.

Приклад 4.2

Простір Зариського є досяжним, але не хаусдорфовим.

Теорема 4.3 (критерій хаусдорфовості)

Для того щоб простір (X, τ) був хаусдорфовим необхідно і достатньо, щоб для кожної пари різних точок x_1 і x_2 в X існувало неперервне ін'єктивне відображення f простору X в хаусдорфів простір Y.

Доведення. Необхідність. Нехай простір (X,τ) є хаусдорфовим. Тоді можна покласти Y=X і f=I — тотожне відображення.

Достатність. Нехай (X, τ) — топологічний простір і

$$(\exists O(f(x_1)) \in \tau_Y, O(f(x_2)) \in \tau_Y) : (O(f(x_1)) \cap O(f(x_2)) = \emptyset),$$

де Y — хаусдорфів, а f — неперервне відображення. Оскільки простір Y є хаусдорфовим, то

$$(\exists O(f(x_1)), O(f(x_2)) \in \tau_Y) : (O(f(x_1)) \cap O(f(x_2)) = \emptyset).$$

Оскільки відображення f є неперервним, то

$$(\exists O(x_1) \in \tau_X, O(x_2) \in \tau_Y) : (f(O(x_1)) \subset O(f(x_1)) \land f(O(x_2)) \subset O(f(x_2))).$$

Тоді околи
$$V(x_1) = f^{-1}(f(O(x_1)))$$
 і $V(x_2) = f^{-1}(f(O(x_2)))$ не перетинаються. \square

Означення 4.7. Замкнена множина, що містить точку x разом з деяким її околом, називається **замкненим околом** точки x.

Теорема 4.4 (критерій регулярності)

Для того щоб T_1 -простір (X, τ) був регулярним необхідно і достатнью, щоб довільний окіл U довільної точки x містив її замкнений окіл.

Доведення. Необхідність. Нехай простір (X,τ) є регулярним, x — його довільна точка, а U — її довільний окіл. Покладемо $F = X \setminus U$. Тоді внаслідок регулярності

простору (X,τ) існує окіл V точки x і окіл W множини F, такі що $V\cap W=\varnothing$. Звідси випливає, що $V\subset X\setminus W$, отже, $\overline{V}=\overline{X\setminus W}=X\setminus W\subset X\setminus F=U$.

Достатність. Нехай довільний окіл довільної точки x містить замкнений окіл цієї точки, а F — довільна замкнена множина, що не містить точку x. Покладемо G = $X \setminus F \in \tau$. Нехай V — замкнений окіл точки x, що міститься в множині G. Тоді $W = X \setminus V$ є околом множини F, який не перетинається з множиною V.

Приклад 4.3

Розглянемо множину $X=\mathbb{R}$ і введемо топологію так: замкненими будемо вважати всі множини, що є замкненими у природній топології числової прямої, а також множину $A=\left\{\frac{1}{n},n=1,2,\ldots\right\}$. Точка нуль їй не належить, але будь-які околи точки нуль і довільні околи множини A перетинаються. Це означає, що побудований простір не є регулярним, але є хаусдорфовим.

§4.3 Замкнені бази та функціональна віддільність

Означення 4.8. Система $\gamma = \{A_i, i \in I\}$ замкнених підмножин простору X називається його **замкненою базою**, якщо будь-яку замкнену в X множину можна подати у вигляді перетину множин із системи γ .

Означення 4.9. Система $\delta = \{B_j\}$ замкнених підмножин B_j називається **замкненою передбазою**, якщо будь-яку замкнену в X множину можна подати у вигляді перетину скінченних об'єднань множин із системи δ .

Означення 4.10. Підмножини A і B простору X називаються функціонально віддільними, якщо існує дійсна неперервна функція $f: X \to [0,1]$ така, що

$$f(x) = \begin{cases} 0, & x \in A \\ 1, & x \in B. \end{cases}$$

Оскільки замкнені бази і передбази є двоїстими до відкритих, мають місце наступні твердження.

Лема 4.1

Для того щоб система $\gamma = \{A_i, i \in I\}$ замкнених множин із X була замкненою базою в X, необхідно і достатньо, щоб для кожної точки $x_0 \in X$ і для кожної замкненої множини F_0 , що не містить точку x_0 , існувала множина A_{j_0} така, що $x_0 \notin A_{j_0} \supset F_0$.

Вправа 4.1. Доведіть лему.

Лема 4.2

Для того щоб система $\delta = \{B_j, j \in J\}$ замкнених множин із X була замкненою передбазою в X, необхідно і достатнью, щоб для кожної точки $x_0 \in X$ і для кожної замкненої множини F_0 , що не містить точку x_0 , існував скінченний набір елементів $B_{j_1}, B_{j_2}, \ldots, B_{j_n}$ такий, що $x_0 \notin \bigcup k = 1^n B_{j_k} \supset F_0$.

Вправа 4.2. Доведіть лему.

Теорема 4.5 (критерій цілковитої регулярності)

Для того щоб (X, τ) був цілком регулярним (тихоновським) необхідно і достатньо, щоб кожна його точка x_0 була функціонально віддільною від усіх множин із деякої замкненої передбази $\delta = \{F_i, i \in I\}$, що її не містять.

Доведення. Необхідність. Якщо простір (X, τ) є цілком регулярним (тихоновським), то точка x_0 є функціонально віддільною від усіх замкнених множин, що її не містять, а значить, і від усіх множин із деякої замкненої передбази $\delta = \{F_i, i \in I\}$, що її не містять.

Достатність. Нехай F_0 — довільна замкнена в X множина, що не містить точку x_0 , і нехай $F_{i_1}, F_{i_2}, \ldots, F_{i_n}$ — скінченний набір елементів із δ такий, що $x_0 \notin \bigcup_{k=1}^n F_{j_k} \supset F_0$ (за другою лемою). За припущенням, існує неперервна функція $f_k: X \to [0,1]$, яка здійснює функціональну віддільність точки x_0 і замкненої множини F_{i_k} .

Покладемо $f(x) = \sup_k f_k(x)$ і покажемо, що функція f здійснює функціональну віддільність точки x_0 і множини F, а тим більше, точки x_0 і множини $F_0 \subset F$.

Дійсно, $f(x_0) = \sup_k f_k(x_0) = 0$. Далі, оскільки $\forall k = 1, 2, \dots, n$: $f_k(x) \leq 1$, із $x \in F$ випливає, що $f(x) = \sup_k f_k(x) = 1$. Крім того, із того що $x \in F = \bigcup_{k=1}^n F_{i_k}$ випливає, що, $x \in F_{i_m}$, $1 \leq m \leq n$, тобто $f_m(x) = 1$.

Залишилося показати неперервність побудованої функції. Для цього треба довести, що

$$(\forall x' \in X, \varepsilon > 0) : (\exists U \in \tau : X' \in U) : (\forall x \in U) : |f(x) - f(x')| < \varepsilon.$$

Оскільки f_k — неперервна функція, то існує окіл U_k точки x', такий що $\forall x \in U_k$: $|f_k(x) - f_k(x')| < \varepsilon$.

Покладемо $U = \bigcap_{k=1}^n U_k$. Тоді для кожного $x \in U$ і $\forall k = 1, 2, \dots, n$ виконуються нерівності

$$f_k(x') - \varepsilon < f_k(x) \le \sup_k f_k(x) = f(x),$$

$$f_k(x) < f_k(x') + \varepsilon \le f_k(x') + \varepsilon = f(x') + \varepsilon.$$

Звідси випливає, що $f(x' - \varepsilon < f(x) < f(x') + \varepsilon$.

Зауваження 4.1 — Побудова регулярних просторів, які не ε тихоновськими ε нетривіальною задачею.

Теорема 4.6 (Мала лема Урисона (критерій нормальності))

Досяжний простір X є нормальним тоді й лише тоді, коли для кожної замкненої підмножини $F \subset X$ і відкритої множини U, що її містить, існує такий відкритий окіл V множини F, що $\overline{V} \subset U$, тобто коли кожна замкнена підмножина має замкнену локальну базу.

Доведення. Необхідність. Нехай простір X нормальний. Розглянемо замкнену множину F та її окіл U. Покладемо $F' = X \setminus U$. Оскільки $F \cap F' = \varnothing$, то існує відкритий окіл V множини F і відкритий окіл V' множини F', такі що $V \cap V' = \varnothing$. Отже, $V \subset X \setminus V'$. З цього випливає, що $\overline{V} \subset \overline{X \setminus V'} = X \setminus V' \subset X \setminus F' = U$.

Достатність. Нехай умови леми виконані, а F і F' — довільні диз'юнктні замкнені підмножини простору X. Покладемо $U=X\setminus F'$. Тоді, оскільки множина U є відкритим околом множини F, то за умовою леми, існує окіл V множини F, такий що $\overline{V}\subset U$. Покладаючи $V'=X\setminus \overline{V}$ безпосередньо переконуємося, що множини V і V' не перетинаються і є околами множини F і F'.

Теорема 4.7 (Велика лема Урисона)

Будь-які непорожні диз'юнктні замкнені підмножини нормального простору є функціонально віддільними.

Зауваження 4.2 — Ця лема — критерій нормальності.

§4.4 Література

- [1] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 191–206).
- [2] **Колмогоров А.Н.** Элементы теории функций и функционального анализа. 5-е изд. / Колмогоров А.Н., С. В. Фомин М.: Наука, 1981 (стр. 94–97).
- [3] **Энгелькинг Р.** Общая топология / Р. Энгелькинг М.: Мир, 1986 (стр. 69–85).

5 Компактність в топологічних просторах

Велику роль в топології відіграє клас компактних просторів, які мають дуже важливі властивості. Введемо основні поняття.

§5.1 Покриття і підпокриття

Означення 5.1. Система множин $S = \{A_i \subset X, i \in I\}$ називається покриттям простору X, якщо $\bigcup_{i \in I} A_i = X$.

Означення 5.2. Покриття S називається **відкритим** (**замкненим**), якщо кожна із множин A_i є відкритою (замкненою).

Означення 5.3. Підсистема P покриття S простору X називається **підпокриттям** покриття S, якщо сама P утворює покриття X.

Теорема 5.1 (Ліндельоф)

Якщо простір X має злічену базу, то із його довільного відкритого покриття можна виділити не більш ніж злічене підпокриття.

Доведення. Нехай $\beta = \{U_n\}$ — деяка злічена база простору X, а $S = \{G_i, i \in I\}$ — довільне відкрите покриття простору X. Для кожного $x \in X$ позначимо через $G_n(x)$ один з елементів покриття S, що містить точку x, а через $U_n(x)$ — один з елементів бази β , що містить точку x і цілком міститься у відкритій множині G_n (теорема 2.3).

$$x \in U_n(x) \subset G_n(x)$$
.

Відібрані нами множини $U_n(x) \in \beta$ утворюють злічену множину. Крім того, кожна точка x простору X міститься в деякій множині $U_n(x)$, отже

$$\bigcup_{x \in X} U_n(x) = X.$$

Вибираючи для кожного $U_n(x)$ відкриту множину $G_n(x)$, ми отримаємо не більш ніж злічену систему, яка є підпокриттям покриття S.

Означення 5.4. Топологічний простір (X, τ) , в якому із довільного відкритого покриття можна виділити не більш ніж злічене підпокриття, називається **ліндельофовим**, або фінально компактним.

§5.2 Компактні простори

Звузимо клас ліндельофових просторів і введемо наступне поняття.

Означення 5.5. Топологічний простір (X, τ) називається компактним (бікомпактним), якщо будь-яке його відкрите покриття містить скінченне підпокриття (умова Бореля—Лебега).

Приклад 5.1

Простір з тривіальною топологією є компактним.

Приклад 5.2

Простір з дискретною топологією є компактним тоді й лише тоді, коли він складається зі скінченної кількості точок.

Приклад 5.3

Простір Зариського є компактним.

Приклад 5.4

Простір \mathbb{R}^n , $n \ge 1$ не є компактним.

Теорема 5.2 (перший критерій компактності)

Для компактності топологічного простору (X, τ) необхідно і достатнью, щоб будь-яка сукупність його замкнених підмножин з порожнім перетином містила скінченну підмножину таких множин із порожнім перетином.

$$(X,\tau)-\text{компактний}\iff \\ \forall \left\{\overline{F}_{\alpha},\alpha\in A:\bigcap_{\alpha\in A}\overline{F}_{\alpha}=\varnothing\right\}\quad \exists \left\{\overline{F}_{\alpha_{1}},\overline{F}_{\alpha_{2}},\ldots,\overline{F}_{\alpha_{n}}\right\}:\quad \bigcap_{i=1}^{n}\overline{F}_{\alpha_{i}}=\varnothing.$$

Доведення. Необхідність. Нехай (X,τ) — компактний, а $\{\overline{F}_{\alpha}, \alpha \in A\}$ — довільна сукупність замкнених множин, що задовольняє умові $\bigcap_{\alpha \in A} \overline{F}_{\alpha} = \emptyset$. Розглянемо множини $U_{\alpha} = X \setminus F_{\alpha}$. За правилами де Моргана (принцип двоїстості) сукупність множин $\{U_{\alpha}, \alpha \in A\}$ задовольняє умові $\bigcup_{\alpha \in A} U_{\alpha} = X$, тобто утворює покриття простору (X,τ) . Оскільки, за припущенням, (X,τ) — компактний простір, то існує скінченна підмножина множин $\{U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n}\}$, які також утворюють покриття: $\bigcup_{i=1}^n U_{\alpha_i} = X$. Отже, за правилами де Моргана

$$X \setminus \bigcap_{i=1}^{n} \overline{F}_{\alpha_i} = \bigcup_{i=1}^{n} (X \setminus \overline{F}_{\alpha_i}) = \bigcup_{i=1}^{n} U_{\alpha_i} = X \implies \bigcap_{i=1}^{n} \overline{F}_{\alpha_i} = \emptyset.$$

Достатність. Нехай $\{U_{\alpha}, \alpha \in A\}$ — довільне відкрите покриття простору (X, τ) . Очевидно, що множини $\overline{F}_{\alpha} = X \setminus U_{\alpha}, \alpha \in A$ є замкненими, а їх сукупність має порожній перетин: $\bigcap_{\alpha \in A} \overline{F}_{\alpha} = \emptyset$. За умовою, ця сукупність містить скінченну підмножину множин $\{\overline{F}_{\alpha_1}, \overline{F}_{\alpha_2}, \dots, \overline{F}_{\alpha_n}\}$, таку що $\bigcap_{i=1}^n \overline{F}_{\alpha_i} = \emptyset$. Звідси випливає, що множини U_{α_n} , які є доповненнями множин \overline{F}_{α_n} , утворюють покриття простору (X, τ) , тобто простір (X, τ) є компактним.

Означення 5.6. Система підмножин $\{M_{\alpha} \subset X, \alpha \in A\}$ називається **центрованою**, якщо перетин довільної скінченної кількості цих підмножин є непорожнім.

$$\forall \{\alpha_1, \alpha_2, \dots, \alpha_n\} \in A \bigcap_{i=1}^n M_{\alpha_i} \neq \varnothing \implies \{M_\alpha \subset X, \alpha \in A\}$$
 — центрована система.

Теорема 5.3 (другий критерій компактності)

Для компактності топологічного простору (X,τ) необхідно і достатнью, щоб будь-яка центрована система його замкнених підмножин мала непорожній перетин

Доведення. Необхідність. Нехай простір (X,τ) — компактний, а $\{F_{\alpha}\}$ — довільна центрована система замкнених підмножин. Множини $G_{\alpha} = X \setminus F_{\alpha}$ відкриті. Жодна скінченна система цих множин $G_{\alpha_n}, n \in \mathbb{N}$ не покриває X, оскільки

$$\forall n \in \mathbb{N} \bigcap_{i=1}^{n} F_{\alpha_i} \neq \emptyset \implies X \setminus \bigcap_{i=1}^{n} F_{\alpha_i} = \bigcup_{i=1}^{n} G_{\alpha_i} \neq X \setminus \emptyset = X.$$

Отже, оскільки (X,τ) — компактний простір, система $\{G_{\alpha}\}$ не може бути покриттям компактного простору. Інакше ми могли б вибрати із системи $\{G_{\alpha}\}$ скінченне підпокриття $\{G_{\alpha_1},G_{\alpha_2},\ldots,G_{\alpha_n}\}$, а це означало б, що $\bigcap_{i=1}^n F_{\alpha_i}=\varnothing$. Але, якщо $\{G_{\alpha}\}$ — не покриття, то $\bigcap_{\alpha} F_{\alpha} \neq \varnothing$.

Достатність. Припустимо, що довільна центрована система замкнених множин із X має непорожній перетин. Нехай $\{G_{\alpha}\}$ — відкрите покриття (X,τ) . Розглянемо множини $F_{\alpha}=X\setminus G_{\alpha}$. Тоді

$$\bigcup_{\alpha} G_{\alpha} = X \implies X \setminus \bigcup_{\alpha} G_{\alpha} = X \setminus X = \emptyset \implies \bigcap_{\alpha} (X \setminus G_{\alpha}) = \bigcap_{\alpha} F_{\alpha} = \emptyset.$$

Це означає, що система $\{F_{\alpha}\}$ не є центрованою, тобто існують такі множини F_1, F_2, \ldots, F_N , що

$$\bigcap_{i=1}^{N} F_i = \varnothing \implies X \setminus \bigcap_{i=1}^{N} F_i = X \setminus \varnothing \implies \bigcup_{i=1}^{N} G_i = X.$$

Отже, із покриття $\{G_{\alpha}\}$ ми виділили скінчену підсистему

$$\{G_1,\ldots,G_N\}=\{X\setminus F_1,\ldots,X\setminus F_N\}$$

таку що $\bigcup_{i=1}^N G_i = X$. Це означає, що простір (X, τ) є компактним.

§5.3 Види компактності

Означення 5.7. Множина $M \subset X$ називається компактною (бікомпактною), якщо топологічний підпростір (M, τ_M) , що породжується індукованою топологією, є компактним.

Означення 5.8. Множина $M \subset X$ називається відносно компактною (відносно бікомпактною), якщо її замикання \overline{M} є компактною множиною.

Означення 5.9. Компактний і хаусдорфів простір називається **компактом** (бікомпактом).

Означення 5.10. Топологічний простір називається **зліченно компактним**, якщо із його довільного зліченного відкритого покриття можна виділити скінченне підпокриття (умова Бореля).

Означення 5.11. Топологічний простір називається **секвенційно компактним**, якщо довільна нескінченна послідовність його елементів містить збіжну підпослідовність (умова Больцано-Вейєрштрасса).

§5.4 Зв'язки між видами компактності

Теорема 5.4 (перший критерій зліченної компактності)

Для того щоб простір (X, τ) був зліченно компактним необхідно і достатньо, щоб кожна його нескінченна підмножина мала принаймні одну строгу граничну точку, тобто точку, в довільному околі якої міститься нескінченна кількість точок підмножини.

Доведення. Необхідність. Нехай (X,τ) — зліченно компактний простір, а M — довільна нескінченна множина в X. Припустимо, усупереч твердженню, що M не має жодної строгої граничної точки. Розглянемо послідовність замкнених множин $\Phi_n \subset M$, таку що $\Phi_n \subset \Phi_{n+1}$. Візьмемо $x_n \in \Phi_n$. За припущенням нескінченна послідовність точок $x_1, x_2, \ldots, x_n, \ldots$ не має строгих граничних точок. Побудуємо скінченну систему підмножин $\{F_n, n \in \mathbb{N}\}$, поклавши $F_n = \{x_n, x_{n+1}, \ldots\}$. Зі структури цих множин випливає, що будь-яка скінченна сукупність точок F_n має непорожній перетин, всі множини F_n є замкненими, але $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$. Отже, ми побудували зліченну центровану систему замкнених множин, перетин яких порожній, що суперечить припущенню, що простір (X,τ) зліченно компактним.

Достатність. Нехай в просторі (X,τ) кожна нескінченна множина M має строгу граничну точку. Доведемо, що простір (X,τ) є зліченно компактним. Для цього достатньо перевірити, що будь-яка зліченна центрована система $\{F_n\}$ замкнених множин має непорожній перетин. Побудуємо множини $\hat{F}_n = \bigcap_{i=1}^n F_i$. Оскільки система $\{F_n\}$ є центрованою, то замкнені непорожні множини \hat{F}_n утворюють послідовність $\hat{F}_1, \hat{F}_2, \ldots, \hat{F}_n, \ldots$, що не зростає. Очевидно, що $\bigcap_{n \in \mathbb{N}} F_n = \bigcap_{n \in \mathbb{N}} \hat{F}_n$. Можливі два варіанти: серед множин \hat{F}_n є лише скінченна кількість попарно різних множин, або нескінченна кількість таких множин. Розглянемо ці варіанти окремо.

- 1. Якщо серед множин \hat{F}_n є лише скінченна кількість попарно різних множин, то починаючи з деякого номера n_0 виконується умова $\hat{F}_{n_0} = \hat{F}_{n_0+1} = \dots$ Тоді твердження доведено, оскільки $\bigcap_{n\in\mathbb{N}} \hat{F}_n = \hat{F}_{n_0} \neq \varnothing$.
- 2. Якщо серед множин \hat{F}_n є лише нескінченна кількість попарно різних множин, то можна вважати, що $\hat{F}_n \backslash \hat{F}_{n+1} \neq \varnothing$. Оберемо по одній точці з кожної множини $\hat{F}_n \backslash \hat{F}_{n+1}$. Отже, ми побудували нескінченну множину різних точок, яка, за умовою, має граничну точку x^* . Всі точки x_n, x_{n+1}, \ldots належать множинам \hat{F}_n . Отже, $x^* \in \hat{F}_n' \forall n \in \mathbb{N}$, до того ж $\overline{\hat{F}_n} = \hat{F}_n$. З цього випливає, що $\bigcap_{n \in \mathbb{N}} \hat{F}_n \neq \varnothing$

Зауваження 5.1 — Вимогу наявності строгої граничної точки можна замінити аксіомою T_1 . Інакше кажучи, в досяжних просторах будь-яка гранична точка є строгою. Припустимо, що X — досяжний простір, а гранична точка x множини A не є строгою, і тому існує деякий окіл U, що містить лише скінчену кількість точок множини A, що відрізняються від x. Розглянемо множину $V = U \setminus ((A \cap U)\setminus\{x\})$, тобто різницю між множиною U і цим скінченним перетином. Оскільки простір X є досяжним, то в ньому будь-яка скінченна множина є замкненою. Отже, множина V0 є відкритою ($V = X \cap (U\setminus\{A\cap U\setminus\{x\}\}) = U\cap(X\setminus(U\cap A\setminus\{x\}))$, містить точку x1, а перетин множин дорівнює $A\cap V = \{x\}$ 3 або \emptyset 1. Це суперечить тому, що x1— гранична точка множини A1.

Зауваження 5.2 — Чому не можна взагалі зняти умову наявності строгої граничної точки? Розглянемо як контрприклад топологію, що складається з натуральних чисел на відрізку [1,n], тобто $\tau = \{\varnothing, \mathbb{N}, [1,n] \cap \mathbb{N} \forall n \in \mathbb{N}\}$. Цей простір не є зліченно компактним (порушується другий критерій компактності). Розглянемо нескінченну множину $A \subset \mathbb{N}$ і покладемо $n = \min A$. Тоді будь-який $m \in A \setminus \{n\}$ є граничною точкою множини A, тобто \mathbb{N} є слабко зліченно компактним простором.

Теорема 5.5 (другий критерій зліченної компактності)

Для того щоб досяжний простір (X, τ) був зліченно компактним необхідно і достатнью, щоб кожна нескінченна множина точок із X мала принаймні одну граничну точку (такі простори називаються слабко зліченно компактними). Інакше кажучи, в досяжних просторах слабка зліченна компактність еквівалентна зліченній компактності.

Доведення. Необхідність. Припустимо, що A — злічена підмножина X, що не має граничних точок (це не обмежує загальності, оскільки в будь-якій нескінченій підмножині ми можемо вибрати злічену підмножину). Множина A є замкненою в X (оскільки будь-яка точка множини $\overline{A} \setminus A$ є граничною точкою множини A, яка за припущенням не має граничних точок, тому $\overline{A} = A$). Нехай $A = \{a_1, s_2, \dots\}$ і $A_n = \{a_n, a_{n+1}, \dots\}$. Зі сказаного вище випливає, що $A_n = \overline{A}_n$, інакше $A' = \varnothing$. Покладемо $G_n = X \setminus A_n$. Ця множина є доповненням замкненої множини A_n , тому вона є відкритою. Розглянемо послідовність множин G_n . Вона зростає і покриває X, тому що кожна точка X із множини $X \setminus A$ належить G_1 , а значить, усім множинам G_n , а якщо $X \in A$, то вона дорівнює якомусь A_n , отже, належить $A_n \in A_n$. Таким чином, послідовність множин $A_n \in A_n$ 0, оскільки об'єднання елементів цього скінченне підпокриття $A_n \in A_n$ 1, оскільки об'єднання елементів цього скінченного підпокриття було б найбільшим серед усіх множин $A_n \in A_n$ 2, які утворюють зростаючу послідовність).

$$G_1 \subset G_2 \subset \cdots \subset \bigcup_{k=1}^n G_{i_k} = G_N = X.$$

У цьому випадку об'єднання $G_N = \bigcup_{k=1}^n G_{i_k}$ не може містити усі елементи a_i , номер яких перевищує N (за конструкцією), отже, воно не покриває X. У такому випадку простір X не є зліченно компактним. Отримана суперечність доводить бажане.

Достатність. Припустимо, що простір X не є зліченно компактним. Значить, існує зліченне відкрите покриття $\{G_n\}_{n\in\mathbb{N}}$, що не містить скінченного підпокриття. Жодна сукупність множин $\{G_1,G_2,\ldots,G_n\}$ не є покриттям, тому можемо вибрати з множин $X\setminus\bigcup_{k=1}^nG_i$ по одній точці x_i і утворити із них множину A.

Розглянемо довільну точку $x \in X$. Оскільки $\{G_n\}_{n \in \mathbb{N}}$ — покриття простору X, точка x належить якійсь множині G_N , яка своєю чергою може містити лише такі точки x_i із множини A, номер яких задовольняє умові i < N (оскільки за означенням точка x_i не належить жодному G_j , якщо $j \le i$). Отже, множина G_N є околом точки x, перетин якої із множиною A є лише скінченним. Водночас, оскільки простір є досяжним, в околі граничної точки будь-якої множини повинно міститись нескінченна кількість точок цієї множини. Отже, точка x не є граничною точкою множини A. Це твердження є слушним для будь-якої точки x, отже, множина A не має жодної граничної точки. Отримана суперечність доводить бажане.

Теорема 5.6 (про еквівалентність компактності та зліченої компактності)

Для топологічного простору (X, τ) зі зліченною базою компактність еквівалентна зліченній компактності.

Доведення. Необхідність. Нехай (X, τ) — компактний простір. Тоді із довільного відкритого покриття можна виділити скінченне покриття. Значить, скінченне покриття можна виділити зі зліченного відкритого покриття.

Достатність. Нехай (X,τ) є зліченно компактним простором, а $S = \{U_{\alpha}, \alpha \in A\}$ — його довільне відкрите покриття. Оскільки простори зі зліченою базою мають властивість Ліндельофа (теорема 5.1), то покриття S містить підпокриття S', яке, внаслідок, зліченної компактності простору (X,τ) містить скінченне підпокриття S''. Отже, простір (X,τ) є зліченно компактним.

Теорема 5.7 (про еквівалентність компактності, секвенційної компактності та зліченної компактності)

Для досяжних просторів зі зліченою базою компактність, секвенційна компактність і зліченна компактність є еквівалентними.

Доведення. З огляду на теорему 5.6, достатньо показати, що злічена компактність в досяжному просторі зі зліченною базою еквівалентна секвенційній компактності.

Необхідність. Розглянемо зліченно компактний простір (X,τ) . Нехай $A=\{x_n\}_{n\in\mathbb{N}}$ — довільна нескінченна послідовність (тобто послідовність, що містить нескінченну кількість різних точок), а простір є зліченно компактним. Отже, за теоремою 5.5, множина A має граничну точку x^* . Розглянувши зліченну локальну базу околів $\{G_k\}_{k\in\mathbb{N}}$ точки x^* , так що $G_{k+1}\subset G_k$, можна виділити послідовність x_{n_k} , що збігається до x^* . Отже, простір (X,τ) є секвенційно компактним.

Достатність. Нехай простір (X, τ) є секвенційно компактним. З теореми 5.4 випливає, що будь-яка зліченна нескінченна підмножина простору X має строгу граничну точку. Це означає, що будь-яка нескінченна зліченна послідовність має граничну точку, тобто із неї можна виділити збіжну підпослідовність.

§5.5 Література

- [1] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 225–238).
- [2] **Колмогоров А.Н.** Элементы теории функций и функционального анализа. 5-е изд. / Колмогоров А.Н., С. В. Фомин М.: Наука, 1981 (стр. 98–105).
- [3] **Энгелькинг Р.** Общая топология / Р. Энгелькинг М.: Мир, 1986 (стр. 195—215).

II

Простори зі структурою

Частина II: Зміст

6	Me	етричні простори				
	6.1	Основні означення				
	6.2	Збіжність і замкненість				
	6.3	Збіжність і фундаментальність				
	6.4	Література				
7	Повні метричні простори					
	7.1	Повнота, ізометрія і поповнення				
	7.2	Вкладені кулі і повнота				
	7.3	Категорії множин				
	7.4	Стискаючі відображення				
	7.5	Література				
3	Ko	омпактні метричні простори				
	8.1	Зв'язки між видами компактності				
	8.2	Література				
)	Лir	нійні простори				
	9.1	Лінійні простори і функціонали				
	9.2	Продовження функціоналів				
	9.3	Ланцюги і мажоранти				
	9.4	Література				
	Ho	ррмовані простори				
10		reaction of the rest of the control				
10		Норми векторів				
10	10.1	Норми векторів				
10	$10.1 \\ 10.2$	Норми векторів				

6 Метричні простори

Численні поняття і теореми математичного аналізу використовують поняття відстані між точками простору. Зокрема, це стосується границі і неперервності. В багатьох випадках самі теореми та їх доведення залежать не від способу завдання метрики, а лише від їхніх властивостей: невід'ємності, симетрії і нерівності трикутника.

§6.1 Основні означення

Означення 6.1. Нехай X — довільна множина. Відображення $\rho: X \times X \to \mathbb{R}^+$ називається **метрикою**, якщо $\forall x, y, z \in X$ воно має такі властивості (аксіоми метрики):

- 1. $\rho(x,y)=0 \iff x=y$ (аксіома тотожності);
- 2. $\rho(x,y) = \rho(y,x)$ (аксіома симетрії);
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ (нерівність трикутника).

Означення 6.2. Метричним простором називається пара (X, ρ) , де X — множина-носій, а ρ — метрика.

Приклад 6.1

$$\left(\mathbb{R}^n, \sqrt{\sum_{i=1}^n (x_i - y_i)^2}\right).$$

Приклад 6.2

$$(C[a,b], \max_{t \in [a,b]} |x(t) - y(t)|).$$

Означення 6.3. Відкритою кулею радіуса $\varepsilon > 0$ з центром в точці $x_0 \in X$ називається множина

$$S(x_0, \varepsilon) = \{ x \in X : \rho(x, x_0) < \varepsilon \}.$$

Означення 6.4. Замкненою кулею радіуса $\varepsilon > 0$ з центром в точці $x_0 \in X$ називається множина

$$\overline{S}(x_0, \varepsilon) = \{x \in X : \rho(x, x_0) < \varepsilon\}.$$

Приклад 6.3

В просторі $(\mathbb{R}, |x-y|)$ відкритою кулею $S(x_0, r)$ є інтервал $(x_0 - r, x_0 + r)$, а замкненою кулею — сегмент $[x_0 - r, x_0 + r]$.

Приклад 6.4

В просторі $(\mathbb{R}^2, \sqrt{(x_1-y_1)^2+(x_2-y_2)^2})$ відкритою кулею $S(x_0,r)$ є круг без границі радіуса r з центром в точці x_0 .

Приклад 6.5

В просторі $(\mathbb{R}^2, |x_1 - y_1| + |x_2 - y_2|)$ одинична куля є ромбом з вершинами (0, 1), (1, 0), (0, -1) і (-1, 0).

Приклад 6.6

В просторі $(C[a,b], \max_{t \in [a,b]} |x(t) - y(t)|)$ околом є смуга, що складається із функцій, які задовольняють умові $\forall t \in [a,b]: |x(t) - y(t)| < r$.

Означення 6.5. Множина $G \subset X$ називається **відкритою** в метричному просторі (X, ρ) , якщо $\forall x \in G \ \exists S(x, r) \subset G$.

Означення 6.6. Множина $G \subset X$ називається **замкненою**, якщо її доповнення є відкритою множиною.

Означення 6.7. Множина метричного простору є обмеженою за відстанню, або просто обмеженою, якщо воно міститься в деякій кулі: $\exists S(x,r): M \subset S(x,r)$.

§6.2 Збіжність і замкненість

Означення 6.8. Точка x метричного простору (X, ρ) називається границею послідовності точок $x_n \in X$, якщо $\rho(x_n, x) \to 0$ при $n \to \infty$. Така збіжність називається збіжністю за відстанню (або за метрикою).

Цей факт записується так: $x = \lim_{n \to \infty} x_n$.

Лема 6.1

Для довільних точок x, x', y, y' метричного простору (X, ρ) виконується нерівність

$$|\rho(x', y') - \rho(x, y)| \le \rho(x, x') + \rho(y, y').$$

Доведення. Із нерівності трикутника випливає:

$$\rho(x', y') \le \rho(x', x) + \rho(x, y') \le \rho(x, x') + \rho(x, y) + \rho(y, y').$$

Отже,

$$\rho(x', y') - \rho(x, y) \le \rho(x, x') + \rho(y, y').$$

Аналогічно,

$$\rho(x,y) \le \rho(x,x') + \rho(x',y) \le \rho(x,x') + \rho(x',y') + \rho(y',y).$$

Звідси випливає, що

$$\rho(x, y) - \rho(x', y') \le \rho(x, x') + \rho(y, y').$$

Таким чином,

$$|\rho(x',y') - \rho(x,y)| < \rho(x,x') + \rho(y,y').$$

Лема 6.2

Метрика $\rho(x,y)$ є неперервною функцію своїх аргументів, тобто якщо $x_n\to x,$ $y_n\to y,$ то $\rho(x_n,y_n)\to \rho(x,y).$

Доведення. Із леми 6.1 випливає, що при $x_n \to x, y_n \to y$

$$|\rho(x_n, y_n) - \rho(x, y)| \le \rho(x_n, x) + \rho(y_n, y) \to 0.$$

Теорема 6.1

Відкрита куля S(a,r) в метричному просторі (X,ρ) є відкритою множиною в топології метричного простору, що породжена його метрикою.

Доведення. Розглянемо довільну точку $x \in S(a, r)$.

$$x \in S(a,r) \implies \rho(x,a) < r.$$

Покладемо $\varepsilon = r - \rho(x, a)$. Розглянемо довільну точку $y \in S(x, \varepsilon)$.

$$y \in S(x, e) \implies \rho(y, x) < \varepsilon$$
.

$$\rho(y, a) \le \rho(y, x) + \rho(x, a) < r \implies y \in S(a, r) \implies S(x, \varepsilon) \subset S(a, r).$$

Таким чином, точка x є внутрішньою точкою множини S(a,r), тобто S(a,r) — відкрита множина.

Теорема 6.2

Точка x належить замиканню \overline{A} множини $A\subset X$ в топології, що індукована на X метрикою ρ , тоді і лише тоді, якщо існує послідовність точок множини A, що збігається до точки x.

Доведення. Необхідність.

$$x \in \overline{A} \implies \forall n \in \mathbb{N} \exists x_n \in S \cap S(x, \frac{1}{n}) \implies \rho(x, x_n) < \frac{1}{n} \implies x = \lim_{n \to \infty} x_n.$$

Достатність.

$$x \notin \overline{A} \implies \exists r > 0 : A \cap S(x,r) = \varnothing \implies \\ \forall x' \in A : \rho(x,x') \ge r \implies \nexists \{x_n\}_{n \in \mathbb{N}} \subset A : \lim_{n \to \infty} x_n = x.$$

Що і треба було довести.

Наслідок 6.1

Теорема 6.2 стверджує, що кожна точка дотику множини в метричному просторі є границею деякої послідовності елементів цієї множини. Отже, топологію метричного простору можна описати не лише за допомогою куль, а й за допомогою збіжних послідовностей.

Наслідок 6.2

Множина є замкненою, якщо всі послідовності її точок збігаються лише до точок цієї ж множини.

Теорема 6.3

Замкнена куля $\overline{S}(a,r)$ є замкненою множиною в топології метричного простору, що породжена його метрикою.

Доведення. Нехай $x_n \in \overline{S}(a,r)$.

$$x_n \in \overline{S}(a,r) \implies \rho(x_n,a) \le r \implies$$

$$\lim_{n \to \infty} \rho(x_n,a) = \rho\left(\lim_{n \to \infty} x_n, a\right) = \rho(x,a) \le r \implies x \in \overline{S}(a,r).$$

Отже, всі граничні точки множини $\overline{S}(a,r)$, які є точками її дотику, належать кулі $\overline{S}(a,r)$.

§6.3 Збіжність і фундаментальність

Означення 6.9. Послідовність $\{x_n\}_{n\in\mathbb{N}}$ точок метричного простору (X,ρ) називається фундаментальною, якщо $\rho(x_n,x_m)\to 0$ при $n\to\infty,\ m\to\infty.$

Лема 6.3

Будь-яка збіжна послідовність метричного простору є фундаментальною.

 \square оведення. Нехай $x_n \to x$ при $n \to \infty$. Тоді

$$\rho(x_n, x_m) \leq \rho(x_n, x) + \rho(x, x_m) \to 0$$
 при $n, m \to \infty$.

Отже, послідовність є фундаментальною.

Лема 6.4

Будь-яка фундаментальна послідовність точок метричного простору ϵ обмеженою.

Доведення. Задамо $\varepsilon > 0$ і підберемо натуральне число N так, щоб $\rho(x_n, x_m) < \varepsilon$ при $n, m \geq N$. Зокрема, $\rho(x_n, x_N) < \varepsilon$ при $n \geq N$. Введемо позначення

$$r = \max\{\varepsilon, \rho(x_1, x_N), \rho(x_2, x_N), \dots, \rho(x_{N-1}, x_N)\}.$$

Тепер при всіх $n=1,2,\ldots$

$$\rho(x_n, x_N) \le r.$$

Інакше кажучи,

$$\{x_n\}_{n\in\mathbb{N}}\subset \overline{S}(x_N,r).$$

Замінюючи число r на будь-яке число r'>r, можна заключити послідовність в довільну відкриту кулю:

$$\{x_n\}_{n\in\mathbb{N}}\subset S(x_N,r').$$

§6.4 Література

- [1] **Александрян Р. А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 47–50).
- [2] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 60–69).

7 Повні метричні простори

§7.1 Повнота, ізометрія і поповнення

Означення 7.1. Метричний простір називається **повним**, якщо в ньому будь-яка фундаментальна послідовність має границю.

Приклад 7.1

$$\left(\mathbb{R}^n, \sqrt{\sum_{i=1}^n (x_i - y_i)^2}\right).$$

Приклад 7.2

$$(C[a,b], \max_{t \in [a,b]} |x(t) - y(t)|).$$

Означення 7.2. Бієктивне відображення φ одного метричного простору (E_1, ρ_1) на інший (E_2, ρ_2) називається **ізометрією**, якщо

$$\forall x_1, x_2 \in E_1 : \rho_1(x_1, x_2) = \rho_2(\varphi(x_1), \varphi(x_2)).$$

Означення 7.3. Метричні простори, між якими існує ізометрія, називаються **ізометричними**.

Означення 7.4. Повний метричний простір $(\tilde{E}, \tilde{\rho})$ називається поповненням метричного простору (E, ρ) , якщо

- 1. $E \subset \tilde{E}$;
- 2. $\overline{E} = \tilde{E}$.

Теорема 7.1 (про поповнення метричного простору, Хаусдорф)

Будь-який метричний простір має поповнення, єдине з точністю до ізометрії, що залишає точки простору нерухомими.

Лема 7.1

Якщо фундаментальна послідовність містить збіжну підпослідовність, то сама послідовність збігається до тієї ж границі.

 \square оведення. Припустимо, що $\lim_{n_k \to \infty} \rho(x_{n_k}, x_0) = 0$, тобто

$$\forall \varepsilon > 0 \exists N_1(\varepsilon) > 0 : \forall n \geq N_1 : \rho(x_{n_k}, x_0) < \varepsilon.$$

За нерівністю трикутника

$$\rho(x_n, x) \le \rho(x_n, x_{n_k}) + \rho(x_{n_k}, x).$$

Оскільки послідовність $\{x_n\}_{n\in\mathbb{N}}$ є фундаментальною,

$$\forall \varepsilon > 0 \exists N_2(\varepsilon) > 0 : \forall n, m \ge N_2 : \rho(x_n, x_m) < \varepsilon.$$

Таким чином,

$$\forall \varepsilon > 0 \forall n, n_k \ge \max(N_1, N_2) : \rho(x_n, x_0) \le \rho(x_n, x_{n_k}) + \rho(x_{n_k}, x_0) < \varepsilon + \varepsilon = 2\varepsilon.$$

Лема 7.2

Будь-яка підпослідовність фундаментальної послідовності є фундаментальною.

Доведення. За нерівністю трикутника

$$\rho(x_{n_k}, x_{n_l}) \le \rho(x_{n_k}, x_n) + \rho(x_n, x_{n_l}).$$

Оскільки послідовність $\{x_n\}_{n\in\mathbb{N}}$ є фундаментальною,

$$\forall \varepsilon > 0 \exists N(\varepsilon) > 0 : \forall n, m \ge N : \rho(x_n, x_m) < \varepsilon.$$

Отже,

$$\forall \varepsilon > 0 \forall n, n_k, n_l \ge N : \rho(x_{n_k}, x_{n_l}) \le \rho(x_{n_k}, x_n) + \rho(x_n, x_{n_l}) < \varepsilon + \varepsilon = 2\varepsilon.$$

§7.2 Вкладені кулі і повнота

Теорема 7.2 (принцип вкладених куль)

Для того щоб метричний простір був повним, необхідно і достатнью, щоб у ньому будь-яка послідовність замкнених вкладених одна в одну куль, радіуси яких прямують до нуля, мала непорожній перетин.

Доведення. Необхідність. Нехай (X, ρ) — повний метричний простір, а $S_1^{\star}(x_1, r_1) \supset S_2^{\star}(x_2, r_2) \supset \ldots$ — вкладені одна в одну замкнені кулі.

Послідовність їх центрів є фундаментальною, оскільки

$$\rho(x_n, x_m) < r_n$$
 при $m > n$, а $r_n \to 0$ при $n \to \infty$.

Оскільки (X, ρ) — повний метричний простір, існує елемент $x = \lim_{n \to \infty} x_n, x \in X$. Покажемо, що x належить всім кулям $S_n^{\star}(x_n, r_n), n \in \mathbb{N}$, тобто $x \in \bigcap_{n=1}^{\infty} S_n^{\star}(x_n, r_n)$. Дійсно, оскільки $x = \lim_{n \to \infty} x_n$, то

$$\forall \varepsilon > 0 \exists N > 0 : \forall n \ge N : \rho(x_n, x) < \varepsilon.$$

Значить, в довільному околі точки x знайдеться нескінченна кількість точок із послідовності $\{x_n\}$, починаючи з деякого номера N. Оскільки кулі вкладені одна в одну, ці точки належать всім попереднім кулям $S_1^\star, S_2^\star, \ldots, S_{N-1}^\star$. Отже, для довільного n точка x є точкою дотику множини S_n^\star , тобто належить його замиканню. Оскільки кожна куля є замкненою, точка x належить всім S_n^\star . Це означає, що

$$x \in \bigcap_{n=1}^{\infty} S_n^{\star}.$$

Достатність. Покажемо, що якщо $\{x_n\}_{n\in\mathbb{N}}$ — фундаментальна послідовність, то вона має границю $x\in X$.

- 1. Оскільки послідовність $\{x_n\}_{n=1}^{\infty}$ є фундаментальною, то $\forall \varepsilon > 0 \exists n_1 > 0 \colon \forall n \geq n_1 \ \rho(x_n, x_{n_1}) < \varepsilon$. Поклавши $\varepsilon = \frac{1}{2}$, ми можемо вибрати точку x_{n_1} так, що $\rho(x_n, x_{n_1}) < \frac{1}{2}$ для довільного $n > n_1$. Зробимо точку x_{n_1} центром замкненої кулі радіуса $1 \colon S_1^{\star}(x_{n_1}, 1)$.
- 2. Оскільки підпослідовність $\{x_n\}_{n=n_1}^\infty$ є фундаментальною (за лемою 7.2), то поклавши $\varepsilon=\frac{1}{2^2}$, можна вибрати точку x_{n_2} х таку, що $\rho(x_n,x_{n_2})<\frac{1}{2^2}$ для довільного $n>n_2>n_1$. Зробимо точку x_{n_2} центром замкненої кулі радіуса $\frac{1}{2}$: $S_2^\star(x_{n_2},\frac{1}{2})$.

. . .

k. Нехай $x_{n_1}, x_{n_2}, \ldots, x_{n_{k-1}}$, де $n_1 < n_2 < \cdots < n_{k-1}$ уже вибрані. Тоді, оскільки підпослідовність $\{x_n\}_{n=n_{k-1}}^{\infty}$ є фундаментальною, покладемо $\varepsilon = \frac{1}{2^k}$ і виберемо точку x_{n_k} так, щоб виконувалися умови $\rho(x_n, x_{n_k}) < \frac{1}{2^k}$ для довільного $n \ge n_k > n_{k-1}$. Як і раніше, будемо вважати точку x_{n_k} центром замкненої кулі радіуса $\frac{1}{2^{k-1}}$: $S_k^{\star}(x_{n_k}, \frac{1}{2^{k-1}})$.

. . .

Продовжуючи цей процес, ми отримаємо послідовність замкнених куль, радіуси яких прямують до нуля. Покажемо, що ці кулі вкладаються одна в одну, тобто

$$S_{k+1}^{\star}(x_{n_{k+1}}, \frac{1}{2^k}) \subset S_k^{\star}(x_{n_k}, \frac{1}{2^{k-1}}).$$

Нехай точка $y \in S_{k+1}^{\star}(x_{n_{k+1}}, \frac{1}{2^k})$. Значить, $\rho(y, x_{n_{k+1}}) \leq \frac{1}{2^k}$. За нерівністю трикутника

$$\rho(y, x_{n_k}) \le \rho(y, x_{n_{k+1}}) + \rho(x_{n_{k+1}}, x_{n_k}).$$

Оскільки $n_{k+1} > n_k$, то $\rho(x_{n_{k+1}}, x_{n_k}) < \frac{1}{2^k}$. Значить,

$$\rho(y,x_{n_k}) \leq \frac{1}{2^k} + \frac{1}{2^k} = \frac{2}{2^k} = \frac{1}{2^{k-1}}.$$

Інакше кажучи.

$$y \in S_k^{\star}(x_{n_k}, \frac{1}{2^{k-1}})$$

Таким чином, ми побудували послідовність вкладених одна в одну замкнених куль, радіуси яких прямують до нуля. За припущенням, в просторі (X, ρ) існує точка x, спільна для всіх таких куль: $x \in \bigcap_{k=1}^\infty S_k^\star(x_{n_k}, \frac{1}{2^{k-1}})$. Крім того, за побудовою, $\rho(x_n, x) = \frac{1}{2^{k-1}} \to 0$, коли $k \to \infty$. Таким чином, фундаментальна послідовність $\{x_n\}$ містить підпослідовність $\{x_{n_k}\}$, що збігається до деякої точки в просторі (X, ρ) . Із леми 7.1 випливає, що і вся послідовність $\{x_n\}$ прямує то тієї ж точки. Таким чином, простір (X, ρ) є повним.

Зауваження 7.1 — Покажемо, що умову $r_n \to 0$ зняти не можна. Розглянемо метричний простір (\mathbb{N}, ρ) , де

$$\rho(n,m) = \begin{cases} 1 + \frac{1}{n+m}, & n \neq m, \\ 0, & \text{ihakiie.} \end{cases}$$

Визначимо послідовність замкнених куль з центрами в точках n і радіусом $1 + \frac{1}{2n}$:

$$\overline{S}(n, 1 + \frac{1}{2n}) = \{m : \rho(n, m) \le 1 + \frac{1}{2n}\} = \{n, n + 1, \dots\}, \quad n = 1, 2, \dots$$

Ці кулі є вкладеними одна в одну і замкненими, простір є повним, але перетин куль є порожнім (яке б число ми не взяли, знайдеться нескінченна кількість куль, які лежать правіше цієї точки). Отже, необхідні умови в принципі вкладених куль не виконуються.

§7.3 Категорії множин

Означення 7.5. Підмножина M метричного простору (X, ρ) називається **множиною першої категорії**, якщо її можна подати у вигляді об'єднання не більш ніж зліченої кількості ніде не щільних множин.

Означення 7.6. Підмножина M метричного простору (X, ρ) називається **множиною другої категорії**, якщо вона не є множиною першої категорії.

Теорема 7.3 (теорема Бера про категорії)

Нехай (X, ρ) — непорожній повний метричний простір, тоді X є множиною другої категорії.

Доведення. Припустимо супротивне, тобто

$$X = \bigcup_{n=1}^{\infty} E_n,$$

і кожна множина E_n , $n=1,2,\ldots$ є ніде не щільною в X. Нехай S_0 — деяка замкнена куля радіуса 1.

Оскільки множина E_1 є ніде не щільною, існує замкнена куля S_1 , радіус якої менше $\frac{1}{2}$, така що

$$S_1 \subset S_0$$
 i $S_1 \cap E_1 = \emptyset$.

(Якщо існує куля радіуса більше $\frac{1}{2}$, що задовольняє таким умовам, то ми виберемо в ній кулю, радіуса менше $\frac{1}{2}$.)

Оскільки множина E_2 є ніде не щільною, існує замкнена куля S_2 , радіус якої менше $\frac{1}{2^2}$, така що

$$S_2 \subset S_1 \text{ i } S_2 \cap E_2 = \emptyset.$$

Продовжуючи цей процес, ми отримаємо послідовність вкладених одна в одну замкнених куль $\{S_n\}_{n\in\mathbb{N}}$, радіуси яких прямують до нуля. За принципом вкладених куль існує точка $x\in\bigcap_{n=1}^\infty S_n\cap X$. Оскільки за побудовою $S_n\cap E_n=\varnothing$, то $x\not\in E_n,\ \forall n=1,2,\ldots$ Значить, $x\not\in\bigcup_{n=1}^\infty E_n$. Це суперечить припущенню, що $X=\bigcup_{n=1}^\infty E_n$.

§7.4 Стискаючі відображення

Означення 7.7. Відображення $g:(X,\rho) \to (X,\rho)$ називається **стискаючим**, якщо існує таке число 0 < a < 1, що $\rho(g(x),g(y)) \le a\rho(x,y)$ для довільних $x,y \in X$.

Теорема 7.4

Будь-яке стискаюче відображення є неперервним.

Доведення. Нехай $x_n \to x$, а $g: X \to X$ є стискаючим відображенням. Тоді

$$0 \le \rho(g(x_n), g(x)) \le \alpha \rho(x_n, x) \to 0$$
 при $n \to \infty$.

Отже,

$$g(x_n) \to g(x)$$
, коли $x_n \to x$.

Теорема 7.5 (принцип стискаючих відображень Банаха)

Будь-яке стискаюче відображення повного метричного простору (X, ρ) в себе має лише одну нерухому точку, тобто $\exists ! x \in X \colon g(x) = x$.

Доведення. Нехай x_0 — деяка точка із X. Визначимо послідовність точок $\{x_n\}_{n\in\mathbb{N}}$ за таким правилом:

$$x_1 = g(x_0), \dots, x_n = g(x_{n-1}).$$

Покажемо, що ця послідовність є фундаментальною. Дійсно, якщо m>n, то

$$\rho(x_n, x_m) = \rho(g(x_{n-1}), g(x_{m-1})) \le \alpha \rho(x_{n-1}, x_{m-1}) \le \dots \le \alpha^n \rho(x_0, x_{m-n}) \le \alpha^n (\rho(x_0, x_1) + \rho(x_1, x_2) + \dots + \rho(x_{m-n-1}, x_{m-n}) \le \alpha^n \rho(x_0, x_1) (1 + \alpha + \alpha^2 + \dots + \alpha^{m-n-1}) \le \alpha^n \rho(x_0, x_1) \frac{1}{1-\alpha}.$$

Таким чином, оскільки $0 < \alpha < 1$,

$$\rho(x_n, x_m) \to 0, n \to \infty, m \to \infty, m > n.$$

Внаслідок повноти простору (X, ρ) в ньому існує границя послідовності $\{x_n\}$. Позначимо її через $x = \lim_{n \to \infty} x_n$.

Із теореми 7.3 випливає, що

$$g(x) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} x_{n+1} = x.$$

Отже, нерухома точка існує.

Доведемо її єдиність. Якщо g(x) = x і g(y) = y, то $\rho(x,y) \le a\rho(x,y)$, тобто $\rho(x,y) = 0$. За аксіомою тотожності (невиродженості) це означає, що x = y.

Наслідок 7.1

Умову a < 1 не можна замінити на $a \le 1$.

Добедення. Якщо відображення $g:(X,\rho)\to (X,\rho)$ має властивість $\rho(g(x),g(y))\le \rho(x,y),\ \forall x,y\in X,\ x\neq y,$ то нерухомої точки може не бути. Дійсно, розглянемо простір $([1,\infty),|x-y|)$ і визначимо відображення $g(x)=x+\frac{1}{x}.$ Тоді $\rho(g(x),g(y))=|x+\frac{1}{x}-y-\frac{1}{y}|<|x-y|.$ Оскільки для жодного $x\in [1,\infty)$ $g(x)=x+\frac{1}{x}\neq x,$ нерухомої точки немає.

§7.5 Література

- [1] **Садовничий В. А.** Теория операторов. / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 41–47).
- [2] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 66–75).

8 Компактні метричні простори

§8.1 Зв'язки між видами компактності

Означення 8.1. Нехай A — деяка множина в метричному просторі (X, ρ) і ε — деяке додатне число. Множина B із цього простору називається ε -сіткою для множини A, якщо $\forall x \in A \ \exists y \in B \colon \rho(x,y) < \varepsilon$.

Означення 8.2. Множина A називається **цілком обмеженою**, якщо для неї при довільному $\varepsilon > 0$ існує скінченна ε -сітка.

Теорема 8.1 (Хаусдорф)

Нехай (X, ρ) — метричний простір. Наступні твердження є еквівалентними.

- 1. (X, ρ) компактний;
- 2. (X, ρ) повний і цілком обмежений;
- 3. із довільної післідовності точок простору (X, ρ) можна вибрати збіжну підпослідовність (секвенціальна компактність);
- 4. довільна нескінченна підмножина в X має хоча б одну граничну точку (зліченна компактність).

Доведення. $1 \implies 2 \implies 3 \implies 4 \implies 1$.

Покажемо, що $1 \implies 2$. Нехай (X, ρ) — компактний простір. Покажемо його повноту. Нехай $\{x_n\}$ — фундаментальна послідовність в X. Покладемо $A_n = \{x_n, x_{n+1}, \dots\}$ і $B_n = \overline{A}_n$. Оскільки система $\{B_n\}$ є центрованою системою замкнених підмножин, то $\bigcap_{i=1}^{\infty} B_i$ — непорожня множина. Нехай $x_0 \in \bigcap_{i=1}^{\infty} B_i$. Тоді

$$\forall \varepsilon > 0 \forall N > 0 \exists n > N : \rho(x_0, x_n) < \varepsilon$$

$$\forall \varepsilon > 0 \exists N > 0 \forall n, m > N : \rho(x_n, x_m) < \varepsilon$$

$$\forall \varepsilon > 0 \exists N > 0 \forall n, m > N : \rho(x_0, x_m) \le \rho(x_0, x_n) + \rho(x_n, x_m) < 2\varepsilon.$$

З цього випливає, що

$$x_0 = \lim_{n \to \infty} x_n \in X.$$

Отже, (X, ρ) — повний простір. Припустимо тепер, що простір (X, ρ) не є цілком обмеженим. Інакше кажучи, припустимо, що існує таке число ε_0 таке, що в X немає скінченної ε_0 -сітки. Візьмемо довільну точку $x_1 \in X$.

- 1. $\exists x_2 \in X : \rho(x_1, x_2) > \varepsilon_0$. Інакше точка x_1 утворювала б ε_0 -сітку в X.
- 2. $\exists x_3 \in X : \rho(x_1, x_3), \rho(x_2, x_3) > \varepsilon_0$. Інакше точки x_1, x_2 утворювали б ε_0 -сітку в X.

 $n. \; \exists x_{n+1} \in X : \; \rho(x_i, x_{n+1}) > \varepsilon_0, \; i=1,2,\ldots,n.$ Інакше точки x_1, x_2,\ldots,x_n утворювали б ε_0 -сітку в X.

. . .

Таким чином, ми побудували послідовність $\{x_n\}$, яка не є фундаментальною, а, отже, не має границі. З цього випливає, що кожна із множин $A_n = \{x_n, x_{n+1}, \dots\}$, які утворюють центровану систему, є замкненою. Їх перетин є порожнім. Це протирічить компактності простору (X, ρ) .

Покажемо, що 2 \implies 3. Нехай $\{x_n\}$ — послідовність точок X.

1. Виберемо в X скінченну 1-сітку і побудуємо навколо кожної з точок, що її утворюють, кулю радіуса 1: $S_i(a_i,1), i=1,\ldots,N_1$. Оскільки X є цілком обмеженою,

$$\bigcup_{i=1}^{N_1} S_i(a_i, 1) = X.$$

З цього випливає, що принаймні одна куля, скажімо, S_1 , містить нескінченну підпослідовність $\{x_n^{(1)}\}_{n=1}^{\infty}$ послідовності $\{x_n\}$.

2. Виберемо в X скінченну $\frac{1}{2}$ -сітку і побудуємо навколо кожної з цих точок, що її утворюють кулю радіуса $\frac{1}{2}$: $S_i(b_i,\frac{1}{2}),\,i=1,2,\ldots,N_2$. Оскільки множина X є цілком обмеженою,

$$\bigcup_{i=1}^{N_2} S_i(b_i, \frac{1}{2}) = X.$$

3 цього випливає, що принаймні одна куля, скажімо, S_2 , містить нескінченну підпослідовність $\{x_n^{(2)}\}_{n=1}^\infty$ послідовності $\{x_n^{(1)}\}_{n=1}^\infty$.

. . .

m. Виберемо в X скінченну $\frac{1}{m}$ -сітку і побудуємо навколо кожної з цих точок, що її утворюють кулю радіуса $\frac{1}{m}$: $S_i(c_i,\frac{1}{m}),\,i=1,2,\ldots,N_m$. Оскільки множина X є цілком обмеженою,

$$\bigcup_{i=1}^{N_m} S_i(c_i, \frac{1}{m}) = X.$$

З цього випливає, що принаймні одна куля, скажімо, S_m , містить нескінченну підпослідовність $\{x_n^{(m)}\}_{n=1}^\infty$ послідовності $\{x_n^{(m-1)}\}_{n=1}^\infty$.

. . .

Продовжимо цей процес до нескінченності. Розглянемо діагональну послідовність $\{x_n^{(n)}\}_{n=1}^{\infty}$. Вона є підпослідовністю послідовності $\{x_n\}_{n=1}^{\infty}$. Крім того, при $m \geq n_0$: $x_m^{(m)} \in \{x_n^{(n_0)}\} \subset S_{n_0}$. Це означає, що $\{x_n^{(n)}\}$ є фундаментальною і внаслідок повноти (X, ρ) має границю.

Твердження $3 \implies 4$ є тривіальним, оскільки із довільної нескінченної множини можна виділити зліченну множину $\{x_n\}_{n=1}^{\infty}$, яка внаслідок секвенціальної компактності містить збіжну підпослідовність: $\{x_{n_k}\}_{k=1}^{\infty} \to x_0 \in X$.

Покажемо тепер, що $4 \implies 1$. Для цього спочатку доведемо, що множина X є цілком обмеженою, тобто в ній для довільного числа $\varepsilon > 0$ існує ε -сітка. Якщо б це було не так, то застосувавши той же прийом, що і на етапі $1 \implies 2$, ми побудували б послідовність $\{x_n\}_{n=1}^{\infty}$, яка не має граничних точок, оскільки вона не є фундаментальною. Для кожного n побудуємо скінченну $\frac{1}{n}$ -сітку і розглянемо об'єднання всіх таких сіток. Воно є щільним і не більше ніж зліченним. Таким чином, простір (X, ρ) є сепарабельним, отже, має зліченну базу.

Для того щоб довести компактність простору, що має зліченну базу, достатньо перевірити, що із будь-якого зліченного (а не довільного нескінченного) відкритого

покриття можна виділити скінченне підпокриття. Припустимо, що $\{U_{\alpha}\}$ — довільне покриття простору (X,ρ) , а $\{V_n\}$ — його зліченна база. Кожна точка $x\in X$ міститься в деякому U_{α} . За означенням бази знайдеться деяке $V_i\in \{V_n\}$ таке, що $x\in V_i\subset U_{\alpha}$. Якщо кожній точці $x\in X$ поставити у відповідність окіл $V_i\in \{V_n\}$, то сукупність цих околів утворить зліченне покриття множини X.

Залишилося довести, що із довільного зліченного відкритого покриття множини X можна вибрати скінченне підпокриття. Для цього достатньо довести еквівалентне твердження для замкнених підмножин, що утворюють зліченну центровану систему.

Нехай $\{F_n\}_{n=1}^{\infty}$ — центрована система замкнених підмножин X. Покажемо, що

$$\bigcap_{n=1}^{\infty} F_n \neq \emptyset.$$

Нехай $\Phi_n = \bigcap_{k=1}^n F_k$. Ясно, що множини Φ_n є замкненими і непорожніми, оскільки система $\{F_n\}_{n=1}^{\infty}$ є центрованою, і

$$\Phi_1 \supset \Phi_2 \supset \dots, \quad \bigcap_{n=1}^{\infty} \Phi_n = \bigcap_{n=1}^{\infty} F_n.$$

Можливі два випадки.

1. Починаючи з деякого номера

$$\Phi_{n_0} = \Phi_{n_0+1} = \dots = \Phi_{n_0+k} = \dots$$

Тоді

$$\bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} \Phi_n = \Phi_{n_0} \neq \varnothing.$$

2. Серед Φ_n є нескінченно багато попарно різних. Достатньо розглянути випадок, коли всі вони відрізняються одна від одної. Нехай $x_n \in \Phi_n \setminus \Phi_{n+1}$. Тоді послідовність $\{x_n\}$ є нескінченною множиною різних точок із X і, внаслідок уже доведеного факту (зліченна компактність), має хоча б одну граничну точку x_0 . Оскільки Φ_n містить всі точки x_n, x_{n+1}, \ldots то x_0 — гранична точка для кожної множини Φ_n і внаслідок замкненості Φ_n

$$\forall n \in \mathbb{N} : x_0 \in \Phi_n$$
.

Отже,

$$x_0 \in \bigcap_{n=1}^{\infty} \Phi_n = \bigcap_{n=1}^{\infty} F_n,$$

тобто $\bigcap_{n=1}^{\infty} F_n$ є непорожнім.

§8.2 Література

[1] **Садовничий В. А.** Теория операторов / В. А. Садовничий — М.: Изд-во Моск. ун-та, 1986 (стр. 49–51).

9 Лінійні простори

Лінійна система є алгебраїчною структурою, яка абстрагує властивості, пов'язані із додаванням та множенням векторів евклідова простору на скаляр.

§9.1 Лінійні простори і функціонали

Означення 9.1. Дійсним лінійним (векторним) простором називається упорядкована трійка $(E,+,\cdot)$, що складається з множини E, елементи якого називаються векторами, операції додавання і операції множення на дійсні числа, якщо для кожних двох її елементів x та y визначено їх суму $x+y\in E$, і для будь-якого x та дійсного числа λ визначено добуток $\lambda x\in E$, які задовольняють аксіоми лінійного простору:

```
1. \exists \vec{0} \in E, що x + \vec{0} = x для довільного x \in E;
```

```
2. \forall x \in E \ \exists (-x) \in E : x + (-x) = 0;
```

3.
$$(x + y) + z = x + (y + z)$$
 (асоціативність додавання);

4.
$$x + y = y + x$$
 (комутативність додавання);

5.
$$(\lambda + \mu)x = \lambda x + \mu x$$
 (дистрибутивність);

6.
$$\lambda(x+y) = \lambda x + \lambda y$$
 (дистрибутивність);

7.
$$(\lambda \mu)x = \lambda(\mu x)$$
 (асоціативність множення);

8. $1 \cdot x = x$.

Зауваження **9.1** — Властивості 1–4 означають, що лінійний простір є **абеле-**вою (комутативною) групою.

Приклад 9.1

Сукупність дійсних чисел \mathbb{R} із звичайними арифметичними операціями додавання та множення є лінійним простором.

Приклад 9.2

Евклідів простір \mathbb{R}^n — сукупність векторів (x_1, x_2, \dots, x_n) , що складаються с дійсних чисел, є лінійним.

Означення 9.2. Лінійні простори E і F називаються **ізоморфними**, якщо між їхніми елементами можна установити взаємно-однозначну відповідність, яка узгоджена із операціями в цих просторах, тобто $x \leftrightarrow x', y \leftrightarrow y', x, y \in E, x', y' \in F$: $x + y \leftrightarrow x' + y', \lambda x \leftrightarrow \lambda x'$.

Зауваження 9.2 — Ізоморфні простори можна вважати різними реалізаціями одного простору.

Приклад 9.3

Простір \mathbb{R}^n і простір поліномів, степінь яких не перевищує n-1 є ізоморфними.

Означення 9.3. Числова функція f, визначена на лінійному просторі E, називається функціоналом.

Означення 9.4. Функціонал f називається **адитивним**, якщо

$$\forall x, y \in E : f(x+y) = f(x) + f(y).$$

Означення 9.5. Функціонал називається однорідним, якщо

$$\forall \lambda \in \mathbb{R} \forall x \in E : f(\lambda x) = \lambda f(x).$$

Означення 9.6. Адитивний однорідний функціонал називається лінійним.

Означення 9.7. Функціонал називається **неперервним у точці** x_0 , якщо з того що послідовність x_n прямує до x_0 випливає, що послідовність $f(x_n)$ прямує до $f(x_0)$.

Означення 9.8. Сукупність усіх лінійних неперервних функціоналів, заданих на лінійному топологічному просторі E, називається **спряженим простором**, і позначається як E^* .

Приклад 9.4

 $I(f) = \int_a^b f(t) dt$ є лінійним функціоналом в C[a,b].

Означення 9.9. Нехай E — лінійний простір. Визначений на просторі E функціонал p(x) називається опуклим, якщо

$$\forall x, y \in E, 0 < a < 1 : p(\lambda x + (1 - \lambda)y) < \lambda p(x) + (1 - \lambda)p(y).$$

Означення 9.10. Функціонал p(x) називається додатно-однорідним, якщо

$$\forall x \in E, \lambda > 0 : p(\lambda x) = \lambda p(x).$$

Приклад 9.5

Будь-який лінійний функціонал є додатно-однорідним.

Означення 9.11. Непорожня підмножина L' лінійного простору L називається лінійним підпростором, якщо вона сама утворює лінійний простір відносно операцій додавання і множення на число, уведених в просторі L.

§9.2 Продовження функціоналів

Означення 9.12. Нехай E — дійсний лінійний простір, а E_0 — його підпростір. До того ж на підпросторі E_0 заданий деякий лінійний функціонал f_0 . Лінійний функціонал f, визначений на всьому просторі E, називається **продовженням** функціонала f_0 , якщо

$$\forall x \in E_0 : f_0(x) = f(x).$$

9 Лінійні простори 55

Теорема 9.1 (Хана—Банаха)

Нехай p(x) —додатно-однорідний і опуклий функціонал, визначений на дійсному лінійному просторі L, а L_0 — лінійний підпростір в L. Якщо f_0 — лінійний функціонал, заданий на L_0 і підпорядкований на цьому підпросторі функціоналу p, тобто

$$f_0(x) \le p(x), \forall x \in L_0 \tag{9.1}$$

то функціонал f_0 може бути продовжений до лінійного функціонала f, заданого на просторі L і підпорядкованого функціоналу p на всьому просторі L:

$$f(x) \le p(x), \forall x \in L. \tag{9.2}$$

Доведення. Покажемо, що якщо $L_0 \neq L$, то f_0 можна продовжити на $L' \supset L_0$, зберігаючи умову підпорядкованості. Нехай $z \in L' \setminus L_0$, а L'— елементарне розширення L_0 :

$$L' = \{x' : x' = \lambda z + x, x \in L_0, \lambda \in \mathbb{R}\} = \{L_0; z\}.$$

Якщо f' — шукане продовження f_0 на L', то

$$f'(\lambda z + x) = \lambda f'(z) + f(x) = \lambda f'(z) + f_0(x).$$

Покладемо f'(z) = c. Тоді $f'(\lambda z + x) = \lambda c + f_0(x)$. Виберемо c так, щоб виконувалась умова підпорядкованості:

$$\forall x \in L_0: f_0(x) + \lambda c \le p(x + \lambda z). \tag{9.3}$$

Якщо $\lambda>0$, поділимо (9.3) на λ і отримаємо еквівалентну умову

$$\forall x \in L_0: f_0(\frac{x}{\lambda}) + c \le p(\frac{x}{\lambda} + z) \implies c \le p(\frac{x}{\lambda} + z) - f_0(\frac{x}{\lambda}). \tag{9.4}$$

Якщо $\lambda < 0$, поділимо (9.3) на $-\lambda$. Тоді

$$\forall x \in L_0 : -f_0(\frac{x}{\lambda}) - c \le p(-\frac{x}{\lambda} - z) \implies c \ge -p(-\frac{x}{\lambda} - z) - f_0(\frac{x}{\lambda}). \tag{9.5}$$

Покажемо, що число c, що задовольняє умови (9.4) і (9.5) існує. Нехай y' і $y'' \in L_0$, а $z \in L' \setminus L_0$. Тоді

$$f_0(y''-y')=f_0(y'')-f_0(y')\leq p(y''-y')=p(y''+z-y-z)\leq p(y''+z)+p(-y'-z).$$

З цього випливає, що

$$-f_0(y'') + p(y'' + z) \ge -f_0(y') - p(-y' - z).$$

Покладемо

$$c'' = \inf_{y''} (-f_0(y'') + p(y'' + z)), \quad c' = \sup_{y'} (-f_0(y') + p(-y' - z)).$$

Оскільки y' і y'' — довільні, то з умови підпорядкованості випливає, що $c'' \ge c'$. Отже, $\exists c: c'' \ge c \ge c'$.

Визначимо функціонал f' на L':

$$f'(\lambda z + x) = \lambda c + f_0(x).$$

За побудовою цей функціонал задовольняє умову (9.1). Отже, якщо f_0 задано на $L_0 \subset L$ і задовольняє на L_0 умову (9.1), то його можна продовжити на $L' \supset L$ із збереженням цієї умови (9.2).

Якщо в просторі L існує злічена система елементів $x_1, x_2, \ldots, x_n, \ldots$ така, що будьякий елемент простору L можна подати як (скінченну) лінійну комбінацію елементів $x_1, x_2, \ldots, x_n, \ldots$, то продовження функціонала f_0 на L можна побудувати за індукцією, розглядаючи зростаючий ланцюжок підпросторів

$$L^{(1)} = \{L_0, x_1\}, \quad L^{(2)} = \{L^{(1)}; x_2\}, \quad \dots, \quad L^{(n)} = \{L^{(n-1)}; x_n\}, \quad \dots,$$

де $L^{(k)} = \{L^{(k-1)}; x_k\}$ — мінімальний лінійний підпростір, що містить $L^{(k-1)}$ і x_k . Тоді кожний елемент $x \in L$ увійде в деякий $L^{(k)}$ і функціонал f_0 буде продовжений на весь простір L.

В загальному випадку використовується схема, яка базується на лемі Цорна. Введемо у розгляд потрібні означення.

§9.3 Ланцюги і мажоранти

Означення 9.13. Говорять, що на множині X задано **відношення часткового порядку** \leq , якщо виділено деяку сукупність пар $P = \{(x, y) \in X \times X\}$, для яких

- 1. $x \leq x$;
- $2. \ x \leq y, y \leq z \implies x \leq z.$

При цьому не вимагається, щоб усі елементи були порівняними.

Приклад 9.6

Площина \mathbb{R}^2 , на якій між точками $x = (x_1, x_2)$ і $y = (y_1, y_2)$ встановлено відношення $x \leq y$, якщо $x_1 \leq y_1$ і $x_2 \leq y_2$.

Означення 9.14. Якщо всі елементи X є попарно порівняними, то множина X називається лінійно упорядкованою.

Означення 9.15. Лінійно упорядкована підмножина частково упорядкованої множини називається **ланцюгом**.

Приклад 9.7

Пряма \mathbb{R} із покоординатним порядком, що розглядається як підмножина площини \mathbb{R}^2 , є ланцюгом.

Означення 9.16. Якщо X — частково упорядкована множина і $M \subset X$, то елемент $m^* \in X$ називається мажорантою множини M, якщо

$$m \leq m^{\star}, \forall m \in M.$$

Означення 9.17. Якщо m_{\star} — така мажоранта $M \subset X$, що $m_{\star} \leq m'$ для будь-якої іншої мажоранти m' множини M, то m_{\star} називається **точною верхньою гранню** множини M.

Означення 9.18. Елемент $m \in X$ називається **максимальним**, якщо немає такого елемента $m' \in X$, що m < m'.

9 Лінійні простори 57

Лема 9.1 (Цорна)

Якщо будь-який ланцюг в частково упорядкованій множині X має мажоранту, то в X існує максимальний елемент.

Доведения. (теореми Хана—Банаха) Позначимо через \mathfrak{M} сукупність усіх можливих продовжень функціоналу f_0 на більш широкі підпростори з умовою підпорядкованості p. Кожне таке продовження f' має лінійну область визначення L', на якій $f' \leq p$ і $f'|_{X_0} = f$. Будемо вважати продовження f' підпорядкованим продовженню f'', якщо для відповідних областей визначення маємо $L' \subset L''$ і $f''|_{L'} = f'$. Таким чином, маємо частковий порядок. Умова щодо ланцюгів виконана: якщо дано ланцюг продовжень f_α з областями визначення L_α , то мажоранта $f \in \mathfrak{M}$ будується так. Розглянемо множину $L = \bigcup_\alpha L_\alpha$, яка є лінійним простором, оскільки $\forall x, y \in L \; \exists L_\alpha, L_\beta$, такі що $x \in L_\alpha$ і $y \in L_\beta$. Але за означенням ланцюга або $L_\alpha \subset L_\beta$, або $L_\beta \subset L_\alpha$, тобто $x + y \in L$. Ясно, що $\lambda x \in L$, $\forall \lambda \in \mathbb{R}$. З тих же причин функціонал $f(x) = f_\alpha(x_\alpha)$ для $x = x_\alpha$ коректно заданий на L, тобто $f_\alpha(x_\alpha) = f_\beta(x_\beta)$, якщо $x_\alpha = x_\beta$. До того ж $f \leq p$ на L. Отже, $f \in \mathfrak{M}$ — мажоранта для всіх f_α . За лемою Цорна в \mathfrak{M} є максимальний елемент f. Отже, область визначення функціонала f збігається із X, інакше функціонал f можна було б лінійно продовжити на більш широкий простір із умовою підпорядкованості p, що суперечить максимальності p.

§9.4 Література

- [1] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 91–96, 106–109).
- [2] Колмогоров А. Н. Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 119–138).
- [3] **Богачев В. И.** Действительный и функциональный анализ. Университетский курс / В. И. Богачев, О. Г. Смолянов М.: Ижевск: НИЦ "Регулярная и хаотическая динамика", 2009 (стр. 14–16, 258–264).

10 Нормовані простори

§10.1 Норми векторів

Означення 10.1. Нехай E — лінійний простір над полем k. Відображення $\|\cdot\|$: $E \to \mathbb{R}^+$ називається **нормою** в просторі E, якщо $\forall x,y \in E, \ \lambda \in k$) виконуються аксіоми норми:

- 1. ||x|| = 0 тоді і тільки тоді, коли x = 0 (віддільність);
- 2. $\|\lambda x\| = |\lambda| \cdot \|x\|$ (однорідність);
- 3. $||x|| + ||y|| \le ||x + y||$ (нерівність трикутника).

Означення 10.2. Лінійний простір із введеною на ньому нормою називається **нор- мованим**.

Зауваження 10.1 — Ясно, що нормований простір є метричним, оскільки в ньому можна ввести метрику $\rho(x,y) = \|x-y\|$. З цього випливає, що норма елемента в нормованому просторі є відстанню між ним і нульовим елементом: $\|x\| = \rho(x,\vec{0})$.

Приклад 10.1

Простір

$$\ell = \left\{ x = (x_1, x_2, \dots, x_n, \dots) : \sum_{i=1}^{\infty} |x_i| < \infty \right\}$$

 ϵ нормованим з нормою $||x|| = \sum_{i=1}^{\infty} |x_i|$.

Означення 10.3. Послідовність $\{x_n\}$ елементів нормованого простору E називається збіжною за нормою, або сильно збіжною, або просто збіжною, до елемента $x_0 \in E$, якщо $\|x_n - x_0\| \to 0$ при $n \to \infty$. Якщо $\{x_n\}$ збігається до елемента $x_0 \in E$, то $x_0 = \lim_{n \to \infty} x_n$.

Означення 10.4. Повний нормований простір називається банаховим.

§10.2 Норми функціоналів

Означення 10.5. Функціонал називається обмеженим, якщо

$$\exists C > 0 : |f(x)| < C||x||_E. \tag{10.1}$$

Означення 10.6. Найменша серед усіх додатних констант, що задовольняють нерівність (10.1) називається **нормою** функціонала:

$$||f|| = \sup_{x \neq \vec{0}} \frac{|f(x)|}{||x||}.$$

Означення 10.7. Нехай E_1 і E_2 — нормовані простори. На множині $D \subset E_1$ задано **оператор**, або відображення A, із значеннями в E_2 , якщо кожному елементу $x \in D$ поставлено у відповідність елемент $y = Ax \in E_2$.

Означення 10.8. Оператор A називається **лінійним**, якщо

- 1. $\alpha x_1 + \beta x_2 \in D$ для довільних $x_1, x_2 \in D$, де α, β дійсні числа;
- 2. $A(\alpha x_1 + \beta x_2) = \alpha A(x_1) + \beta A(x_2)$ для довільних $x_1, x_2 \in D$, де α, β дійсні числа.

Означення 10.9. Якщо A — лінійний оператор з E_1 в E_2 такий, що $D = E_1$, та з умови $x_n \to x_0, x_n, x_0 \in E_1$ випливає, що $A(x_n) \to A(x_0)$ в E_2 , то A називається лінійним неперервним оператором.

Означення 10.10. Оператор A називається **обмеженим** в просторі E, якщо існує така константа C, що

$$||Ax|| \le C||x||. \tag{10.2}$$

Означення 10.11. Найменша константа C, яка задовольняє нерівність (10.2), називається **нормою** оператора A.

Теорема 10.1

Лінійний оператор, заданий на лінійному нормованому просторі, є неперервним тоді і тільки тоді, коли він обмежений.

Доведення. Необхідність. Припустимо, що A — неперервний, лінійний, але не обмежений оператор. Тоді

$$\forall n \in \mathbb{N} \exists x_n \in E : ||Ax_n||_F > n||x_n||_E.$$

Покладемо

$$\xi_n = \frac{1}{n} \frac{x_n}{\|x_n\|}.$$

За побудовою

$$\xi_n = \frac{1}{n} \frac{x_n}{\|x_n\|} \to 0, \quad n \to \infty.$$

Оцінимо норму елемента $||A\xi_n||_F$:

$$||A\xi_n||_F = ||A\left(\frac{1}{n}\frac{x_n}{||x_n||}\right)|| = \frac{1}{n||x_n||_E}||Ax_n||_F > \frac{n||x_n||_E}{n||x_n||_E} = 1.$$

З цього випливає, що

$$\lim_{n \to \infty} ||A\xi_n||_F \neq 0 \implies \lim_{n \to \infty} A\xi_n \neq 0.$$

Тобто A — лінійний оператор, $A\vec{0} = 0$ і у той же час $\xi_n \to 0$, але $A\xi_n \neq \to 0$, тобто A — не неперервний. Отримане протиріччя доводить, що оператор A є обмеженим. Достатність. A — обмежений оператор, а тому

$$\exists C > 0 : \forall x \in E : ||Ax||_F \le C||x||_E.$$

Нехай

$$x_n \to x \implies \|x_n - x\|_E \to 0 \implies$$

$$\|Ax_n - Ax\|_F = \|A(x_n - x)\|_F \le C\|x - x_n\|_E \to 0 \implies$$

$$\|Ax_n - Ax\|_F \to 0 \implies Ax_n \to Ax, \quad n \to \infty.$$

Це означає, що оператор A — неперервний.

§10.3 Простір операторів

Означення 10.12. Лінійні оператори A, що відображають нормований простір E в нормований простір F, утворюють **нормований простір операторів** $\mathcal{L}(E,F)$ з нормою

$$||A|| = \sup_{\|x\| \neq 0} \frac{||Ax||_F}{\|x\|_E} = \sup_{\|x\| = 1} ||Ax||_F = \sup_{\|x\| \leq 1} ||Ax||_F.$$

Теорема 10.2

Нехай A — лінійний обмежений оператор, що діє із нормованого простору E в банахів простір F. Якщо область визначення оператора D(A) щільна в E, то існує такий лінійний обмежений оператор $\overline{A}: E \to F$ такий що, $\overline{A}x = Ax$, $\forall x \in D(A)$ і $\|\overline{A}\| = \|A\|$.

Доведення. Нехай $x \in E \setminus D(A)$. Оскільки $\overline{D}(A) = E$, то

$$\exists \{x_n\}_{n=1}^{\infty} \subset D(A) : \lim_{n \to \infty} x_n = x.$$

Із нерівності

$$||Ax_n - Ax_m||_F \le ||A|| \cdot ||x_n - x_m||_E.$$

і обмеженості оператора А випливає, що

$$\forall \varepsilon > 0 \exists N(\varepsilon) : \forall n, m \ge N : ||Ax_n - Ax_m||_F \le ||A|| \cdot ||x_n - x_m||_E < \varepsilon.$$

Це означає, що послідовність $\{Ax_n\}_{n=1}^{\infty}$ є фундаментальною. Оскільки простір F є повним, ця послідовність є збіжною:

$$\exists \overline{A}x = \lim_{n \to \infty} A_n x.$$

Покажемо, що цей елемент визначений коректно, тобто не залежить від вибору послідовності $\{x_n\}_{n=1}^{\infty} \subset D(A)$: $\lim_{n\to\infty} x_n = x$. Припустимо, що існує ще одна послідовність $\{x_n'\}_{n=1}^{\infty} \subset D(A)$, яка збігається до елемента x:

$$\lim_{n \to \infty} x_n' = x.$$

Нехай

$$y = \lim_{n \to \infty} Ax_n, \quad y' = \lim_{n \to \infty} Ax'_n.$$

З того що

$$\lim_{n \to \infty} ||Ax_n - Ax_n'||_F \le \lim_{n \to \infty} ||A|| \cdot ||x_n - x_n'||_E = 0,$$

випливає

$$||y - y'||_F = \lim_{n \to \infty} ||y - y'||_F \le \lim_{n \to \infty} ||y - Ax_n||_F + \lim_{n \to \infty} ||Ax_n - Ax_n'||_F + \lim_{n \to \infty} ||Ax_n' - y'||_F = 0.$$

Отже, y = y'.

Лінійність оператора \overline{A} випливає із лінійності оператора A і властивостей границь.

Оскільки оператор \overline{A} збігається з оператором A в області визначення D(A), але має більш широку область визначення,

$$||A|| \le ||\overline{A}||.$$

З іншого боку,

$$||Ax_n||_F \le ||A|| \cdot ||x_n||_E, \quad \forall x_n \in E.$$

Отже,

$$\lim_{n\to\infty} \|Ax_n\|_F = \left\| A\left(\lim_{n\to\infty} x_n\right) \right\| = \|\overline{A}x\|_F \le \|A\| \cdot \left\| \lim_{n\to\infty} x_n \right\| = \|A\| \cdot \|x\|_E, \quad x \in E.$$

Це означає, що

$$\|\overline{A}\| \le \|A\|.$$

Порівнюючи оцінки $\|\overline{A}\|$, отримуємо

$$\|\overline{A}\| = \|A\|.$$

Теорема 10.3 (Хана—Банаха в нормованому просторі)

Нехай E — дійсний нормований простір, L — його підпростір, f_0 — обмежений лінійний функціонал на L. Цей лінійний функціонал можна продовжити до деякого лінійного функціонала f, заданого на всьому просторі E без збільшення норми:

$$||f|| = ||f_0||.$$

$$|f_0(x)| \le ||f_0|| \cdot ||x||, \forall x \in L.$$

За теоремою Хана—Банаха в лінійному просторі

$$\exists f$$
 — продовження f_0 на $E: |f(x)| \leq ||f_0|| \cdot ||x||, \forall x \in E$.

З цього випливає, що

$$||f|| \le ||f_0||.$$

3 іншого боку, $L \subset E$, а тому

$$||f|| = \sup_{x \neq \vec{0}, x \in E} \frac{|f(x)|}{||x||} \ge \sup_{x \neq \vec{0}, x \in L} \frac{|f(x)|}{||x||} = \sup_{x \neq \vec{0}, x \in L} \frac{|f_0(x)|}{||x||} = ||f_0||.$$

Отже,
$$||f|| = ||f_0||$$
.

§10.4 Література

[1] **Садовничий В. А.** Теория операторов / В. А. Садовничий — М.: Изд-во Моск. ун-та, 1986 (стр. 96–102).

III

Функціональний аналіз

Частина III: Зміст

11	Спряжений простір	65
11	11.1 Лінійні топологічні простори і неперевність функціоналів	65
	11.2 Топологія у спряженому просторі і його повнота	67 68
	11.3 Другий спряжений простір і природне відображення	
	11.4 Рефлексивні простори	69
	11.5 Література	71
12	Р. Слабка топологія і слабка збіжність	73
	12.1 Слабка топологія	73
	12.2 Слабка збіжність	74
	12.3 Види топології у спряженому просторі	76
	12.4 Література	77
13	В Принцип рівномірної обмеженості	79
	13.1 Види збіжності послідовностей операторів	79
	13.2 Повнота простору лінійних неперервних операторів	81
	13.3 Література	82
	19.9 viriepatypa	02
14	Принцип відкритості відображення	83
	14.1 Обмеженість на всюди щільній множині	83
	14.2 Лінійний обмежений обернений оператор	84
	14.3 Обернений до наближеного і резольвента	86
	14.4 Принцип відкритості відображення	87
	14.5 Література	88
15	Спряжені оператори, спектр і компактні оператори	89
	15.1 Спряжені оператори	89
	15.2 Спектр оператора	90
	15.3 Компактні оператори	92
	15.4 Література	93
16	: F: 6	ΩE
10	Гільбертові простори	95
	16.1 Скалярний добуток і породжена ним норма	95
	16.2 Скалярний добуток породжений нормою	96
	16.3 Ортогональність і проекції	98
	16.4 Лінійний функціонал як скалярне множення на елемент	100
	16.5 Література	101
17	′ Теорема про ізоморфізм	103
	17.1 Базиси у гільбертових просторах	103
	17.2 Елементи аналізу Фур'є	104
	17.3 Сепарабельний простір	106
	17.4 Література	107

11 Спряжений простір

Ввести топологію в лінійному просторі можна не лише за допомогою норми.

§11.1 Лінійні топологічні простори і неперевність функціоналів

Означення 11.1. Упорядкована четвірка $(L,+,\cdot,\tau)$ називається лінійним топологічним простором, якщо

- 1. $(L, +, \cdot)$ дійсний лінійний простір;
- 2. (L, τ) топологічний простір;
- 3. операція додавання і множення на числа в L є неперервними, тобто
 - а) якщо $z_0 = x_0 + y_0$, то для кожного околу U точки z_0 можна указати такі околи V і W точок x_0 і y_0 відповідно, що $\forall x \in V$, $\forall y \in W$: $x + y \in U$;
 - б) якщо $\alpha_0 x_0 = y_0$, то для кожного околу U точки y_0 існує окіл V точки x_0 і таке число $\varepsilon > 0$, що $\forall \alpha \in \mathbb{R} : |\alpha \alpha_0| < \varepsilon, \forall x \in V : \alpha x \in U$.

Приклад 11.1

Всі нормовані простори є лінійними топологічними просторами.

Зауваження 11.1 — Оскільки будь-який окіл будь-якої точки x в лінійному топологічному просторі можна отримати зсувом околу нуля U шляхом операції U+x, топологія в лінійному топологічному просторі повністю визначається локальною базою нуля.

Спочатку доведемо деякі допоміжні факти щодо лінійних функціоналів, заданих на лінійному топологічному просторі L.

Означення 11.2. Функціонал, визначений на лінійному топологічному просторі L, називається **неперервним**, якщо для будь-якого $x_0 \in L$ і будь-якого $\varepsilon > 0$ існує такий окіл U елемента x_0 , що

$$\forall x \in U : |f(x) - f(x_0)| < \varepsilon.$$

Лема 11.1

Якщо лінійний функціонал f є неперервним в якійсь одній точці x_0 лінійного топологічного простору L, то він є неперервним на усьому просторі L.

Доведення. Дійсно, нехай y — довільна точка простору L і $\varepsilon > 0$. Необхідно знайти такий окіл V точки y, щоб

$$\forall z \in V : |f(z) - f(y)| < \varepsilon.$$

Виберемо окіл U точки x_0 так, щоб

$$\forall x \in U : |f(x) - f(x_0)| < \varepsilon.$$

Побудуємо окіл точки y шляхом зсуву околу U на елемент $y-x_0$:

$$V = U + (y - x_0) = \{z \in L : z = u + y - x_0, u \in U\}.$$

Із того, що $z \in V$, випливає, що $z - y + x_0 \in U$, отже,

$$|f(z) - f(y)| = |f(z - y)| = |f(z - y + x_0 - x_0)| = |f(z - y + x_0) - f(x_0)| < \varepsilon.$$

Що і треба було довести.

Наслідок 11.1

Для того щоб перевірити неперервність лінійного функціонала в просторі, достатньо перевірити його неперервність в одній точці, наприклад, в точці 0.

Зауваження 11.2 — У скінчено-вимірному лінійному топологічному просторі будь-який лінійний функціонал ϵ неперервним.

Теорема 11.1

Для того щоб лінійний функціонал f був неперервним на лінійному топологічному просторі L, необхідно і достатньо, щоб існував такий окіл нуля в L, на якому значення функціонала f є обмеженими в сукупності.

Доведення. Необхідність. З того що функціонал f є неперервним в точці 0, випливає що

$$\forall \varepsilon > 0 : \exists U(0) : \forall x \in U(0) : |f(x)| < \varepsilon.$$

Отже, його значення ϵ обмеженими в сукупності на U(0).

Достатність. Нехай U(0) — такий окіл нуля, що

$$\forall U(0) : |f(x)| < C.$$

Крім того, нехай $\varepsilon > 0$. Тоді в околі нуля

$$\frac{\varepsilon}{C}U(0) = \{x \in L : x = \frac{\varepsilon}{C}y, y \in U(0)\}.$$

виконується нерівність $|f(x)| < \varepsilon$.

Це означає, що функціонал f є неперервним в околі нуля, а значить в усьому просторі L.

Нехай E — нормований простір. Нагадаємо, що спряженим простором E^{\star} називається сукупність усіх лінійних неперервних функціоналів, заданих на просторі E із нормою

$$||f|| = \sup_{x \neq \vec{0}} \frac{|f(x)|}{||x||} = \sup_{||x|| \le 1} |f(x)|.$$

Теорема 11.2

Для того щоб лінійний функціонал f був неперервним на нормованому просторі E, необхідно і достатнью, щоб значення функціонала f були обмеженими в сукупності на одиничній кулі.

Доведення. Необхідність. Нормований простір E є лінійним топологічним простором. За теоремою 11.1 будь-яке значення неперервного лінійного функціонала f в деякому околі нуля є обмеженими в сукупності.

$$\forall C > 0 : \exists U(0) : \forall x \in U(0) : |f(x)| < C.$$

В нормованому просторі будь-який окіл нуля містить кулю.

$$\exists S(0,r) \subset U(0).$$

Отже, значення функціонала f є обмеженими в сукупності в деякій кулі. Оскільки f — лінійний функціонал, це еквівалентно тому, що значення функціонала f є обмеженими в сукупності в одиничній кулі, оскільки

$$\forall x \in S(0,r) : |f(x)| < C \implies \forall y = \frac{1}{r}x \in S(0,1) : |f(y)| < \frac{C}{r}.$$

Достатність. Оскільки значення функціонала f є обмеженими в сукупності в одиничній кулі, а одинична куля є околом точки 0, то за теоремою 11.1 він є неперервним в точці 0. Отже, лінійний функціонал f є неперервним в нормованому просторі E.

§11.2 Топологія у спряженому просторі і його повнота

На спряженому просторі можна ввести різні топології. Найважливішими з них є сильна і слабка топології.

Означення 11.3. Сильною топологією в просторі E^* називається топологія, визначена нормою в просторі E^* , тобто локальною базою нуля

$$\{f \in E^{\star} : ||f|| < \varepsilon\}.$$

де функціонали f задовольняють умову

$$|f(x)| < \varepsilon, \quad \forall x \in E : ||x|| \le 1.$$

а ε — довільне додатне число.

Теорема 11.3

Спряжений простір E^{\star} є повним.

Доведення. Нехай $\{f_n\}_{n=1}^{\infty}$ — фундаментальна послідовність лінійних неперервних функціоналів, тобто

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \ge N : ||f_n - f_m|| < \varepsilon.$$

Отже,

$$\forall x \in E : |f_n(x) - f_m(x)| \le ||f_n - f_m|| \cdot ||x|| < \varepsilon ||x||. \tag{11.1}$$

Покладемо $\forall x \in E$:

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Покажемо, що f — лінійний неперервний функціонал.

$$f(\alpha x + \beta y) = \lim_{n \to \infty} f_n(\alpha x + \beta y) = \lim_{n \to \infty} (\alpha f_n(x) + \beta f_n(y)) = \alpha f(x) + \beta f(y).$$

Крім того, з нерівності (11.1) випливає, що

$$\forall x \in E: \lim_{m \to \infty} |f_n(x) - f_m(x)| = |f(x) - f(n)| < \varepsilon ||x||.$$

Це означає, що функціонал $f-f_n$ є обмеженим. Оскільки він є лінійним і обмеженим, значить він є неперервним. Таким чином, функціонал $f=f_n+(f-f_n)$ також є неперервним. Крім того, $||f-f_n|| \le \varepsilon$, $\forall n \ge N$, тобто $f_n \to f$ при $n \to \infty$ за нормою простору E^* .

Зауваження 11.3 — Зверніть увагу на те, що простір E^* повний незалежно від того, чи є повним простір E.

Приклад 11.2

 $c_0^{\star} = \ell_1$.

Приклад 11.3

 $\ell_1^{\star} = m$.

Приклад 11.4

$$\ell_p^{\star} = \ell_q$$
, де $\frac{1}{p} + \frac{1}{q} = 1$, $p, q > 1$.

§11.3 Другий спряжений простір і природне відображення

Означення 11.4. Другим спряженим простором $E^{\star\star}$ називається сукупність усіх лінійних неперервних функціоналів, заданих на просторі E^{\star} .

Лема 11.2

Будь-який елемент $x_0 \in E$ визначає певний лінійний неперервний функціонал, заданий на E^{\star} .

Доведення. Введемо відображення

$$\pi: E \to E^{\star\star}$$

поклавши

$$\varphi_{x_0}(f) = f(x_0), \tag{11.2}$$

де x_0 — фіксований елемент із E, а f — довільний лінійний неперервний функціонал із E^\star . Оскільки рівність (11.2) ставить у відповідність кожному функціоналу f із E^\star дійсне число $\varphi_{x_0}(f)$, вона визначає функціонал на просторі E^\star .

Покажемо, що φ_{x_0} — лінійний неперервний функціонал, тобто він належить $E^{\star\star}$. Дійсно, функціонал φ_{x_0} є лінійним, оскільки

$$\varphi_{x_0}(\alpha f_1 + \beta f_2) = \alpha f_1(x_0) + \beta f_2(x_0) = \alpha \varphi_{x_0}(f_1) + \beta \varphi_{x_0}(f_2).$$

Крім того, нехай $\varepsilon>0$ і A — обмежена множина в E, що містить x_0 . Розглянемо в E^\star окіл нуля $U(\varepsilon,A)$:

$$U(\varepsilon, A) = \{ f \in E^*, x_0 \in A : |f(x_0)| \le \varepsilon \}.$$

тобто

$$U(\varepsilon, A) = \{ f \in E^*, x_0 \in A : |\varphi_{x_0}(f)| \le \varepsilon \}.$$

З цього випливає, що функціонал φ_{x_0} є неперервним в точці 0, а значить і на всьому просторі E^* .

Означення 11.5. Відображення $\pi: E \to E^{**}$, побудоване в лемі 11.2, називається природнім відображенням простору E в другий спряжений простір E^{**} .

§11.4 Рефлексивні простори

Означення 11.6. Якщо природне відображення $\pi: E \to E^{\star\star}$ є бієкцією і $p(E) = E^{\star\star}$, то простір E називається **напіврефлексивним**.

Означення 11.7. Якщо простір E є напіврефлексивним і відображення $\pi: E \to E^{\star\star}$ є неперервним, то простір E називається **рефлексивним**.

Зауваження 11.4 — Якщо E — рефлексивний простір, то природне відображення $\pi: E \to E^{\star\star}$ є ізоморфізмом.

Теорема 11.4

Якщо E — нормований простір, то природне відображення $\pi: E \to E^{\star\star}$ є ізометрією.

Доведення. Нехай $x \in E$. Покажемо, що

$$||x||_E = ||\pi(x)||_{E^{\star\star}}.$$

Нехай f — довільний ненульовий елемент простору E^{\star} . Тоді

$$|f(x)| \le ||f|| \cdot ||x|| \implies ||x|| \ge \frac{|f(x)|}{||f||}.$$

Оскільки ліва частина нерівності не залежить від f, маємо

$$||x|| \ge \sup_{f \in E^*, f \ne 0} \frac{|f(x)|}{||f||} = ||\pi(x)||_{E^{**}}.$$

З іншого боку, внаслідок теореми Хана—Банаха, якщо x — ненульовий елемент в нормованому просторі E, то існує такий неперервний лінійний функціонал f, визначений на E, що

$$||f|| = 1, \quad f(x) = ||x||$$

(визначаємо функціонал на одновимірному підпросторі формулою $f(\alpha x) = \alpha ||x||$, а потім продовжуємо без збільшення норми на весь простір). Отже, для кожного $x \in E$ знайдеться такий ненульовий лінійний функціонал f, що

$$|f(x)| = ||f|| \cdot ||x||$$

тому

$$\|\pi(x)\|_{E^{\star\star}} = \sup_{f \in E^{\star}, f \neq 0} \frac{|f(x)|}{\|f\|} \ge \|x\|.$$

Отже, $||x||_E = ||\pi(x)||_{E^{\star\star}}$.

Зауваження 11.5 — Оскільки природне відображення нормованих просторів $\pi: E \to E^{\star\star}$ є ізометричним, поняття напіврефлексивних і рефлексивних просторів для нормованих просторів є еквівалентними.

Зауваження 11.6 — Оскільки простір, спряжений до нормованого, є повним (теорема 11.3), будь-який рефлексивний нормований простір є повним.

Зауваження 11.7 — Обернене твердження є невірним.

Приклад 11.5

Простір c_0 є повним, але нерефлексивним, тому що спряженим до нього є простір ℓ_1 , а спряженим до простору ℓ_1 є простір m.

Приклад 11.6

Простір неперервних функцій C[a,b] є повним, але нерефлексивним (більше того, немає жодного нормованого простору, для якого простір C[a,b] був би спряженим).

Приклад 11.7

Приклад рефлексивного простору, що не збігається із своїм спряженим:

$$\ell_p^{\star\star} = \ell_q^{\star} = \ell_p, \quad p, q > 1, p \neq q, \frac{1}{p} + \frac{1}{q} = 1.$$

Приклад 11.8

Приклад рефлексивного простору, що збігається із своїм спряженим:

$$\ell_2^{\star\star} = \ell_2^\star = \ell_2.$$

§11.5 Література

- [1] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 112-123).
- [2] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 175–178, 182–192).

12 Слабка топологія і слабка збіжність

Ми розглянули поняття сильної топології і сильної збіжності в нормованому просторі E, а також сильної топології і сильної збіжності в спряженому просторі E^* . Ці топології та поняття збіжності спиралися на поняття норми.

Розглянемо відповідні поняття слабкої топології і слабкої збіжності в нормованих просторах E і E^{\star} .

§12.1 Слабка топологія

Означення 12.1. Слабкою топологією в просторі E^* називається топологія, визначена локальною базою нуля, тобто сукупністю множин

$$U_{f_1,f_2,...,f_n;\varepsilon} = \{x \in L : |f_i(x)| < \varepsilon, i = 1, 2, ..., n\},\$$

де f_1, f_2, \ldots, f_n — скінченна сукупність неперервних функціоналів, а ε — довільне додатне число.

Лема 12.1

Слабка топологія слабкіша за вихідну топологію простору L.

Доведення. Розглянемо скінчену сукупність неперервних функціоналів f_1, f_2, \dots, f_n і довільне додатне число ε .

Тоді внаслідок неперервності функціоналів f_1, f_2, \ldots, f_n множина $U_{f_1, f_2, \ldots, f_n; \varepsilon}$ є відкритою в вихідній топології простору L, оскільки прообразом відкритої множини при неперервному відображенні є відкрита множина, і містить нуль, тобто є околом нуля, оскільки ці функціонали є лінійними.

Перетин двох таких околів сам містить множину точок, в яких скінченна кількість функціоналів за модулем менше ε , отже, виконується критерій локальної бази.

Оскільки нова топологія ϵ лише частиною локальною бази нуля в вихідній топології, вона ϵ слабкішою.

Зауваження 12.1 — Слабка топологія є найменшою з усіх топологій, в яких є неперервними всі лінійні функціонали, неперервні у природній топології простору.

Зауваження 12.2 — У нормованому просторі слабка топологія задовольняє аксіому T_2 , але може не задовольняти першу аксіому зліченності, отже, вона не описується за допомогою збіжних послідовностей.

§12.2 Слабка збіжність

Означення 12.2. Послідовність називається **слабко збіжною**, якщо вона є збіжною в слабкій топології.

Лема 12.2

Послідовність $\{x_n\}_{n=1}^{\infty}$ елементів лінійного топологічного простору L є слабко збіжною до $x_0 \in L$ тоді і лише тоді, коли для будь-якого неперервного лінійного функціонала f на L числова послідовність $f(x_n)$ збігається до $f(x_0)$.

Доведення. Необхідність. Без обмеження загальності, розглянемо випадок $x_0 = 0$. Якщо для будь-якого околу $U_{f_1,\dots,f_k;\varepsilon}$ в слабкій топології існує таке число N, що $x_n \in U_{f_1,\dots,f_k;\varepsilon}$ для всіх $n \geq N$, то ця умова виконується і для околу $U_{f;\varepsilon}$, де $f \in L^*$ — довільний фіксований функціонал, а це означає, що $f(x_n) \to 0$ при $n \to \infty$.

Достатність. Припустимо, що $f(x_n) \to 0$ для будь-якого $f \in L^*$. Тоді ця умова виконується і для всіх функціоналів $f_i \in L^*$, $i = 1, 2, \ldots, k$, що визначають довільний окіл в слабкій топології:

$$U_{f_1, f_2, \dots, f_k; \varepsilon} = \{x \in L : |f_i(x)| < \varepsilon, i = 1, 2, \dots, k\}.$$

Виберемо числа N_i так, щоб $|f_i(x_n)| < \varepsilon$ при $n \ge N_i$ і покладемо $N = \max_{i=1,\dots,k} N_i$. Отже, при всіх $n \ge N$ виконується умова $x_n \in U$. Це означає, що послідовність $\{x_n\}_{n=1}^{\infty}$ збігається в слабкій топології.

Лема 12.3

Будь-яка сильно збіжна послідовність є слабко збіжною, але не навпаки.

Доведення. Відповідно до леми 12.1, слабка топологія слабкіша за вихідну топологію лінійного топологічного простору, тому будь-яка послідовність, що збігається в сильній топології, буде збігатися і в слабкій.

Обернене твердження є невірним, тому що, наприклад, в просторі ℓ_2 послідовність ортів $e_n = (0, 0, \dots, 0, 1, 0, \dots)$ слабко збігається до нуля, але не збігається до нуля сильно.

Розглянемо поняття слабкої збіжності в нормованому просторі E.

Теорема 12.1

Якщо послідовність $\{x_n\}_{n=1}^{\infty}$ слабко збігається в нормованому просторі E, то існує така константа C, що

$$||x_n|| \le C$$

тобто будь-яка слабко збіжна послідовність в нормованому просторі ϵ обмеженою.

Доведення. Розглянемо в просторі E^* множини

$$A_{k,n} = \{ f \in E^* : |f(x_n)| \le k \}, \quad k, n = 1, 2, \dots$$

Оскільки при фіксованому x_n функціонали $\varphi_{x_n}(f) = f(x_n)$ є неперервними (лема 11.2), множини $A_{k,n}$ є замкненими.

Дійсно,

$$f_m \to f, f_m \in A_{k,n} \implies \varphi_{x_n}(f_m) = f_m(x_n) \le k \implies f(x_n) \le k.$$

Отже, множина

$$A_k = \bigcap_{n=1}^{\infty} A_{k,n}$$

є замкненою.

Оскільки послідовність $\{x_n\}_{n=1}^{\infty}$ збігається слабко, послідовність $\varphi_{x_n}(f)$ є обмеженою для кожного $f \in E^*$.

Дійсно,

$$x_n \to x \implies \varphi_{x_n}(f) = f(x_n) \to f(x) \implies \exists k > 0 : |f(x_n)| \le k.$$

Отже, будь-який функціонал $f \in E^*$ належить деякій множині A_k , тобто

$$E^{\star} = \bigcup_{k=1}^{\infty} A_k.$$

Оскільки простір E^* є повним (теорема 11.3), то за теоремою Бера хоча б одна з множин A_k , наприклад, A_{k_0} повинна буди щільною в деякій кулі $S(f_0, \varepsilon)$. Оскільки множина A_{k_0} замкненою, це означає, що

$$S(f_0,\varepsilon)\subset \overline{A}_{k_0}=A_{k_0}.$$

Звідси випливає, що послідовність $\{\varphi_{x_n}(f)\}_{n=1}^{\infty}$ є обмеженою на кулі $S(f_0,\varepsilon)$, а значить, на будь-якій кулі в просторі E^{\star} , оскільки E^{\star} є лінійним топологічним простором. Зокрема, це стосується одиничної кулі. Таким чином, послідовність $\{x_n\}_{n=1}^{\infty}$ є обмеженою як послідовність елементів з $E^{\star\star}$ Оскільки природне відображення $\pi:E\to E^{\star\star}$ є ізометричним, це означає обмеженість послідовності $\{x_n\}_{n=1}^{\infty}$ в просторі E.

Теорема 12.2

Послідовність $\{x_n\}_{n=1}^\infty$ елементів нормованого простору E слабко збігається до $x\in E,$ якщо

- 1. значення $||x_n||$ є обмеженими в сукупності деякою константою M;
- 2. $f(x_n) \to f(x)$ для будь-яких функціоналів f, що належать множині, лінійні комбінації елементів якого скрізь щільними в E^* .

Доведення. Із умови 2) і властивостей операцій над лінійними функціоналами випливає, що якщо φ — лінійна комбінація функціоналів f, то

$$\varphi(x_n) \to \varphi(x)$$
.

Нехай φ — довільний елемент з E^* і $\{\varphi_k\}_{k=1}^\infty$ — сильно збіжна до φ послідовність лінійних комбінацій із функціоналів f, тобто $\|\varphi_k - \varphi\| \to 0$ (вона завжди існує внаслідок щільності). Покажемо, що $\varphi(x_n) \to \varphi(x)$.

Нехай M задовольняє умову

$$||x_n|| \le M$$
, $n = 1, 2, \dots, n, \dots$, $||x|| \le M$.

Оскільки $\varphi_k \to \varphi$, то

$$\forall \varepsilon > 0 \exists K \in \mathbb{N} : \forall k \geq K : \|\varphi - \varphi_k\| < \varepsilon.$$

З цього випливає, що

$$|\varphi(x_n) - \varphi(x)| \le |\varphi(x_n) - \varphi_k(x_n) + |\varphi_k(x_n) - \varphi_k(x)| + |\varphi_k(x) - \varphi(x)| \le \|\varphi - \varphi_k\|M + |\varphi_k(x_n) - \varphi_k(x)| + \|\varphi - \varphi_k\|M \le \varepsilon M + |\varphi_k(x_n) - \varphi_k(x)| + \varepsilon M.$$

За умовою теореми, $\varphi_k(x_n) \to \varphi_k(x)$ при $n \to \infty$. Отже,

$$\varphi(x_n) - \varphi(x) \to 0, \quad n \to \infty, \quad \forall \varphi \in E^*.$$

§12.3 Види топології у спряженому просторі

Розглянемо поняття слабкої топології в спряженому просторі E^* . Спочатку згадаємо, що із означення 11.3 сильної топології в спряженому просторі випливає, що цю топологію можна задати за допомогою локальної бази нуля. Наведемо її еквівалентие формулювання.

Означення 12.3. Сильною топологією в спряженому просторі E^* називається топологія, визначена локальною базою нуля, тобто сукупністю множин

$$B_{\varepsilon,A} = \{ f \in E^* : |f(x)| < \varepsilon, x \in A \subset E \},$$

де A — довільна обмежена множина в E, а ε — довільне додатне число.

Зауваження 12.3 — Оскільки будь-яка скінченна множина є обмеженою, то слабка топологія в E^* є слабкішою, ніж сильна топологія цього простору.

Означення 12.4. Послідовність $\{f_n\}_{n=1}^{\infty}$ називається **слабко збіжною**, якщо вона є збіжною в слабкій топології E^{\star} , інакше кажучи, $f_n(x) \to f(x)$ для кожного $x \in E$.

Зауваження 12.4 — В спряженому просторі сильно збіжна послідовність є одночасно слабко збіжною, але не навпаки.

В спряженому просторі мають місце теореми, аналогічні теоремам 12.1 і 12.2.

Теорема 12.3

Якщо послідовність лінійних функціоналів $\{f_n\}_{n=1}^{\infty}$ слабко збігається на банаховому просторі E, то існує така константа C, що

$$||f_n|| \leq C$$
,

тобто будь-яка слабко збіжна послідовність простору, спряженого до банахова простору, ϵ обмеженою.

Теорема 12.4

Послідовність лінійних функціоналів $\{f_n\}_{n=1}^{\infty}$ елементів спряженого простору E^{\star} слабко збігається до $f \in E$, якщо

1. послідовність $||f_n||$ є обмеженою, тобто

$$\exists C \in \mathbb{R} : ||f_n|| \leq C, \quad n = 1, 2, \ldots;$$

2. $\varphi_x(f_n) \to \varphi_x(f)$ для будь-яких елементів x, що належать множині, лінійні комбінації елементів якої скрізь щільними в E.

Зауваження 12.5 — Простір E^* лінійних неперервних функціоналів, заданих на просторі E, можна тлумачити і як простір, спряжений до простору E, і як основний простір, спряженим до якого є простір E^{**} . Відповідно, слабку топологію в просторі E^* можна ввести або за означенням 12.4 (через скінченні множини елементів простору E), або як в основному просторі відповідно до означення 12.1 (через функціонали із простору E^{**}). Для рефлексивних просторів це одне й теж, а для нерефлексивних просторів ми таким чином отримуємо різні слабкі топології.

Означення 12.5. Топологія в спряженому просторі E^* , що вводиться за допомогою простору $E^{\star\star}$ (як в означенні 12.1), називається **слабкою** і позначається як $\sigma(E^\star, E^{\star\star})$.

Означення 12.6. Топологія в спряженому просторі E^* , що вводиться за допомогою простору E (як в означенні 12.4), називається *-слабкою і позначається як $\sigma(E^*, E)$.

Зауваження 12.6 — Очевидно, що \star -слабка топологія в E^{\star} є більш слабкою, ніж слабка топологія простору E, тобто в слабкій топології не менше відкритих множин, ніж в \star -слабкій топології.

§12.4 Література

- [1] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 114–117).
- [2] Колмогоров А. Н. Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 192–202).

13 Принцип рівномірної обмеженості

В цій лекції ми розглянемо види збіжності послідовностей лінійних неперервних операторів і з'ясуємо, коли простір $\mathcal{L}(E,F)$ є банаховим в розумінні тої чи іншої збіжності.

§13.1 Види збіжності послідовностей операторів

Означення 13.1. Послідовність операторів $\{A_n\}_{n=1}^{\infty}$, що діють із нормованого простору E в нормований простір F, **поточково збігається** до оператора A в просторі $\mathcal{L}(E,F)$ при $n\to\infty$, якщо $\forall x\in E$: $\lim_{n\to\infty}A_nx=Ax$.

Означення 13.2. Послідовність операторів $\{A_n\}_{n=1}^{\infty}$, що діють із нормованого простору E в нормований простір F, **рівномірно збігається** до оператора A в просторі $\mathcal{L}(E,F)$ при $n \to \infty$, якщо $\lim_{n \to \infty} \|A_n - A\| = 0$.

Зауваження 13.1 — Якщо $F = \mathbb{R}$, то простір $\mathcal{L}(E,\mathbb{R})$ є спряженим простором, поточкова збіжність є аналогом слабкої збіжності в спряженому просторі, а рівномірна збіжність є аналогом сильної збіжності в спряженому просторі.

Лема 13.1

Якщо послідовність лінійних обмежених операторів $A_n: E \to F$, де E, F нормовані простори, є такою, що послідовність $\{\|A_n\|\}_{n=1}^{\infty}$ є необмеженою, то послідовність $\{\|A_nx\|\}_{n=1}^{\infty}$ є необмеженою в будь-якій замкненій кулі.

Доведення. Припустимо супротивне: послідовність $\{\|A_n x\|\}_{n=1}^{\infty}$ є обмеженою в деякій замкненій кулі $\overline{S}(x_0,\varepsilon)$:

$$\exists (\overline{S}(x_0,\varepsilon), C > 0) : \forall n \in \mathbb{N} : \forall x \in (x_0,\varepsilon) : ||A_n x||_F \le C.$$

Кожному елементу $\xi \in E$ поставимо у відповідність елемент $x = \frac{\varepsilon}{\|\xi\|_E} \xi + x_0$, якщо $\xi \neq 0$. Елементу $\xi = 0$ поставимо у відповідність елемент $x = x_0$.

$$\xi \neq 0 \implies \|x - x_0\|_E = \left\| \frac{\varepsilon}{\|\xi\|_E} \xi + x_0 - x_0 \right\|_E = \left\| \frac{\varepsilon}{\|\xi\|_E} \xi \right\|_E = \varepsilon.$$

Це означає, що для довільних $\xi \in E$ всі елементи $x \in \overline{S}(x_0, \varepsilon)$.

Оцінимо наступну величину (використовуючи допоміжну нерівність $||x|| - ||y|| \le ||x+y||$.

$$\left| \frac{\varepsilon}{\|\xi\|_E} \|A_n \xi\|_F - \|A_n x_0\|_F \right| \le \left\| \frac{\varepsilon}{\|\xi\|_E} A_n \xi + A_n x_0 \right\|_F = \left\| A_n \left(\frac{\varepsilon}{\|\xi\|_E} \xi + x_0 \right) \right\|_F \le C. \tag{13.1}$$

Отже,

$$\frac{\varepsilon}{\|\xi\|_E} \|A_n \xi\|_F - \|A_n x_0\|_F \le C.$$

Звідси випливає, що

$$||A_n\xi||_F \le \frac{C + ||A_nx_0||_F}{\varepsilon} ||\xi||_E \le \frac{2C}{\varepsilon} ||\xi||_E.$$

Отже,

$$\exists C_1 = \frac{2C}{\varepsilon} > 0 : \forall \xi \in E : ||A_n \xi||_E \le C_1 ||\xi||_E \implies ||A_n|| \le C_1.$$

Отримане протиріччя доводить лему.

Теорема 13.1 (Банаха—Штейнгауза)

Нехай послідовність лінійних обмежених операторів $\{A_n\}_{n=1}^{\infty}$, що відображають банахів простір E в нормований простір F, поточково збігається до оператора A при $n \to \infty$. Тоді послідовність $\{\|A_n\|\}_{n=1}^{\infty}$ є обмеженою, оператор A є лінійним і неперервним, а $A_n x \to A x$ рівномірно по n на кожному компакті $K \subset E$ (тобто n не залежить від x).

Доведення. Припустимо, що послідовність $\{\|A_n\|\}_{n=1}^{\infty}$ є необмеженою. Тоді за лемою 13.1 послідовність $\{\|A_nx\|\}_{n=1}^{\infty}$ є необмеженою на довільній замкненій кулі $\overline{S}(x_0, \varepsilon_0)$. Отже,

$$\exists (n_1 \in \mathbb{N}, x_1 \in \overline{S}(x_0, \varepsilon_0) : ||A_{n_1}x_1||_F > 1.$$

Оскільки A_{n_1} — неперервний оператор,

$$\exists \overline{S}(x_1, \varepsilon_1) \subset \overline{S}(x_0, \varepsilon_0) : \forall x \in \overline{S}(x_1, \varepsilon_1) : ||A_{n_1}x||_F > 1.$$

На кулі $\overline{S}(x_1, \varepsilon_1)$ послідовність $\{\|A_n x\|_F\}_{n=1}^\infty$ також є необмеженою. Отже,

$$\exists \overline{S}(x_2, \varepsilon_2) \subset \overline{S}(x_1, \varepsilon_1) : \forall x \in \overline{S}(x_2, \varepsilon_2) : ||A_{n_2}x||_F > 2.$$

Нехай $A_{n_1}, A_{n_2}, \dots, A_{n_k}$ і x_1, x_2, \dots, x_k :

$$n_1 < n_2 < \dots < n_k$$
, $\overline{S}(x_0, \varepsilon_0) \supset \overline{S}(x_1, \varepsilon_1) \supset \dots \supset \overline{S}(x_k, \varepsilon_k)$.

Продовжуючи цей процес при $k \to \infty$, отримуємо послідовність вкладених замкнених куль, таких що

$$\forall x \in \overline{S}(x_k, \varepsilon_k) : ||A_{n_k}x||_F > k, \quad \varepsilon_k \to 0.$$

Оскільки E — повний простір, за принципом вкладених куль

$$\exists x^* \in \bigcap_{k=1}^{\infty} S(x_k, \varepsilon_k) : ||A_{n_k} x^*||_F \ge k, \quad \forall k \in \mathbb{N}.$$

Звідси випливає, що $\exists x^* \in E$ така, що послідовність $\{A_n x^*\}$ не збігається. Це суперечить умові теореми, згідно якої послідовність операторів $\{A_n x\}_{n=1}^{\infty}$ поточково збігається в кожній точці простору E.

Покажемо, що оператор A — лінійний. Оскільки

$$A_n(x+y) = A_n(x) + A_n(y), \quad A_n(\lambda x) = \lambda A_n(x),$$

маємо

$$A(x+y) = \lim_{n \to \infty} A_n(x+y) = \lim_{n \to \infty} A_n(x) + \lim_{n \to \infty} A_n(y) = Ax + Ay.$$
$$A(\lambda x) = \lim_{n \to \infty} A_n(\lambda x) = \lambda \lim_{n \to \infty} A_n(x) = \lambda Ax.$$

Крім того,

$$||A_n x||_F \le C ||x||_E \implies \lim_{n \to \infty} ||A_n x||_F = \left\| \lim_{n \to \infty} A_n x \right\|_F = ||Ax||_E \le C ||x||_E.$$

Отже, A — лінійний і обмежений, а значить, неперервний.

Нехай $K\subset E$ — компакт, $\varepsilon>0$. За теоремою Хаусдорфа існує скінчена $\frac{\varepsilon}{3C}$ -сітка M:

$$\forall x \in K : \exists x_{\alpha} \in M, \alpha \in A : ||x - x_{\alpha}||_{E} < \frac{\varepsilon}{3C},$$

де A — скінчена множина.

Оскільки послідовність $\{A_n x\}_{n=1}^{\infty}$ поточково збігається в кожній точці простору E, то вона збігається і в кожній точці сітки M:

$$\forall x_{\alpha} \in M : \exists n_{\alpha} : \forall n \ge n_{\alpha} : ||A_n x_{\alpha} - A x_{\alpha}||_F < \frac{\varepsilon}{3}.$$

Нехай $n_0 = \max_{\alpha \in A} n_\alpha$ (сітка M є скінченою, тому максимум існує). Тоді $\forall n \geq n_0$, $\forall x \in S\left(x_\alpha, \frac{\varepsilon}{3C}\right)$

$$||A_n x - Ax||_F \le ||A_n x - A_n x_\alpha + A_n x_\alpha - Ax_\alpha + Ax_\alpha - Ax||_F \le$$

$$||A_n x - A_n x_\alpha||_F + ||A_n x_\alpha - Ax_\alpha||_F + ||Ax_\alpha - Ax||_F <$$

$$C||x - x_\alpha||_F + \frac{\varepsilon}{3} + C||x - x_\alpha||_F = \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Отже, $\forall n \geq n_0, \ \forall x \in K \colon \|A_n x - A x\|_F < \varepsilon$, до того ж номер n_0 не залежить від точки x. Це означає, що $A_n x \to A x$ рівномірно по n на кожному компакті $K \subset E$. \square

§13.2 Повнота простору лінійних неперервних операторів

З'ясуємо, коли простір $\mathcal{L}(E,F)$ є повним у розумінні рівномірної або точкової збіжності.

Теорема 13.2

Якщо нормований простір F — банахів, то $\mathcal{L}(E,F)$ — банахів у розумінні рівномірної збіжності.

$$||A_n - A_m|| \to 0, \quad n, m \to \infty.$$

Тоді $\forall x \in E$

$$||A_n x - A_m x|| \le ||A_n - A_m|| \cdot ||x|| \to 0, \quad n, m \to \infty.$$

Для кожного фіксованого $x \in E$ послідовність $\{A_n x\}$ є фундаментальною в F. Оскільки простір F є повним за умовою теореми, то послідовність $\{A_n x\}$ збігається

до певного елемента $y \in F$. Позначимо $\lim_{n\to\infty} A_n x$. Отже, ми визначили відображення $A: E \to F$. Його лінійність випливає із властивостей границі. Покажемо його обмеженість: $\{\|A_n\|\}$ фундаментальна в \mathbb{R} , адже

$$|||A_n|| - ||A_m||| \le ||A_n - A_m|| \to 0, \quad n, m \to \infty,$$

а отже $\{\|A_n\|\}$ обмежена в \mathbb{R} , тобто

$$\exists C : \forall n \in \mathbb{N} : ||A_n|| < C.$$

Отже,

$$||A_n x|| \le ||A_n|| \cdot ||x|| \le C||x||.$$

Внаслідок неперервності норми, маємо

$$||Ax|| \lim_{n \to \infty} ||A_n x|| \le C||x||.$$

Покажемо, що A_n рівномірно збігається до A в просторі $\mathcal{L}(E,F)$. Задамо $\varepsilon > 0$ і виберемо n_0 так, щоб $||A_{n+p}x - A_nx|| < \varepsilon$ для $n \ge n_0, \ p > 0$ і для будь-якого $x: ||x|| \le 1$. Нехай $p \to \infty$. Тоді

$$\forall n \ge n_0, x : ||x|| \le 1 : ||Ax - A_n x|| < \varepsilon,$$

звдки

$$||A_n - A|| = \sup_{\|x\| \le 1} ||(A_n - A)x|| \le \varepsilon,$$

а тому $A = \lim_{n \to \infty} A_n$ в розумінні рівномірної збіжності.

Отже, $\mathcal{L}(E,F)$ є банаховим.

Теорема 13.3

Якщо нормовані просторі E і F — банахові, то $\mathcal{L}(E,F)$ — банахів у розумінні поточкової збіжності.

Доведення. Розглянемо точку $x \in E$ і фундаментальну у розумінні поточкової збіжності послідовність $\{A_n\}_{n=1}^{\infty}$.

Оскільки F — банахів простір, то існує елемент $y = \lim_{n\to\infty} A_n x$. Таким чином, визначений оператор $A: E\to F$, такий що y=Ax. Лінійність цього оператора випливає із лінійності границі, а обмеженість — із теореми Банаха-Штейнгауза:

$$||Ax|| = \left\| \lim_{n \to \infty} A_n x \right\| \le \lim_{n \to \infty} ||A_n|| \cdot ||x|| = C||x||.$$

§13.3 Література

- [1] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 96–102).
- [2] **Ляшко И. И.** Основы классического и современного математического анализа / И. И. Ляшко, В. Ф Емельянов, А. К. Боярчук. К.: Вища школа, 1988 (стр. 576-578).

14 Принцип відкритості відображення

§14.1 Обмеженість на всюди щільній множині

Лема 14.1

Нехай E і F — банахові простори, $A \in \mathcal{L}(E,F), E_n$ — множина тих точок $x \in E$, для яких

$$||Ax||_F \le n||x||_E, \quad n = 1, 2, \dots$$

Тоді $E = \bigcup_{n=1}^{\infty} E_n$ і принаймні одна із множин E_n є всюди щільною в E.

Доведення. Спочатку пересвідчимось в тому, що

$$\forall x \in E : \exists n \in \mathbb{N} : x \in E_n.$$

Очевидно, що $E_n \neq \emptyset$, оскільки $\forall n \in \mathbb{N} : 0 \in E$. Якщо $x \neq 0$, позначимо через n найменше натуральне число, що задовольняє нерівність

$$n \ge \frac{\|Ax\|_F}{\|x\|_E}.$$

Тоді

$$\forall x \in E : \exists n \in \mathbb{N} : ||Ax||_F \le n||x||_E.$$

Звідси випливає, що

$$E = \bigcup_{n=1}^{\infty} E_n$$

Згідно теореми Бера, банахів простір E не може бути поданий у вигляді не більш ніж зліченного об'єднання ніде не щільних множин. Значить, одна із множин E_{n_0} не є ніде не щільною. Отже, існує відкрита куля $S(x_0, r)$, така що $S(x_0, r) \subset \overline{E}_{n_0}$.

Розглянемо замкнену кулю $\overline{S}(x_1, r_1)$ з центром $x_1 \in E_{n_0}$, таку що

$$\overline{S}(x_1, r_1) \subset S(x_0, r).$$

Візьмемо довільний елемент x з нормою $||x|| = r_1$. Оскільки

$$||x_1 + x - x_1||_E = ||x||_E = r_1,$$

отримаємо, що $x_1+x\in \overline{S}(x_1,r_1)$. Отже, $\overline{S}(x_1,r_1)\subset \overline{E}_{n_0}$, звідки

$$\exists \{y_k\}_{k=1}^{\infty} \subset S(x_1, r_1) \cap E_{n_0} : y_k \to x_1 + x, \quad k \to \infty.$$

Якщо $x_1+x\in E_{n_0}$, ця послідовність може бути стаціонарною. Таким чином, $\exists \{x_k\}_{k=1}^\infty=\{y_k-x_1\}_{k=1}^\infty$, така що

$$\lim_{k \to \infty} x_l = \lim_{k \to \infty} y_k - x_1 = x.$$

Оскільки

$$||x||_E = r_1, \quad ||x_k||_E \le r_1,$$

можна вважати, що

$$\forall k \in \mathbb{N} : ||x_k||_E \ge \frac{r_1}{2} \tag{14.1}$$

Із умов $y_k \in E_{n_0}, x_1 \in E_{n_0}, y_k = x_k + x_1$ маємо наступні оцінки

$$||Ax_k||_F = ||Ay_k - Ax_1||_F \le ||Ay_k||_F + ||Ax_1||_F \le n_0(||y_k||_E + ||x_1||_E).$$
 (14.2)

$$||y_k||_E = ||x_k + x_1||_E \le ||x_k||_E + ||x_1||_E \le r_1 + ||x_1||_E.$$
(14.3)

Беручи до уваги умову (14.1) і оцінки (14.2), (14.3), маємо

$$||Ax_k||_F \le n_0(r_1 + 2||x_1||_E) \le \frac{2n_0|}{r_1}(r_1 + 2||x_1||_E)||x_k||_E.$$

Нехай n — найменше натуральне число, що задовольняє нерівність

$$n \ge \frac{2n_0}{r_1}(r_1 + 2||x_1||_E).$$

Тоді $||Ax_k||_F \le n||x_k||_E$, тобто $x_k \in E_n$.

Таким чином, довільний елемент x, норма якого дорівнює r_1 можна апроксимувати елементами множини E_n .

Нехай $x \in E$ — довільний ненульовий елемент. Розглянемо точку

$$\xi = r_1 \frac{x}{\|x\|_E}.$$

Вище ми довели, що існує послідовність

$$\{\xi_k\}_{k=1}^{\infty}: \xi_k \in E_n, \lim_{k \to \infty} \xi_k = \xi.$$

Тоді

$$\lim_{k \to \infty} x_k = \lim_{k \to \infty} \xi_k \frac{\|x\|_E}{r_1} = x,$$

звідки

$$||Ax_k||_F = \frac{||x||_E}{r_1} ||A\xi_k||_F \le \frac{||x||_E}{r_1} n ||\xi_k||_E = n ||x_k||_E.$$

Отже, $x_k \in E_n$ і $\lim_{k\to\infty} x_k = x, \, \forall x \in E$. Таким чином, множина E_n скрізь щільна в E.

§14.2 Лінійний обмежений обернений оператор

Теорема 14.1 (Банаха, про обернений оператор)

Нехай E і F — банахові простори, A — лінійний обмежений взаємно-однозначний оператор, що діє із E в F. Тоді існує лінійний обмежений обернений оператор $A^{-1}:F\to E$.

Доведення. Покажемо лінійність оберненого оператора. Покладемо $\forall x_1, x_2 \in E$: $Ax_1 = y_1, Ax_2 = y_2$. Внаслідок лінійності оператора A

$$\forall \alpha, \beta \in \mathbb{R} : A(\alpha x_1 + \beta x_2) = \alpha y_1 + \beta y_2. \tag{14.4}$$

Оскільки $A^{-1}y_1=x_1,\ A^{-1}y_2=x_2,$ помножимо ці рівності на α і β відповідно і складемо результати:

$$\alpha A^{-1}y_1 + \beta A^{-1}y_2 = \alpha x_1 + \beta x_2. \tag{14.5}$$

Із рівності (14.4) і означення оберненого оператора випливає, що

$$\alpha x_1 + \beta x_2 = A^{-1}(\alpha y_1 + \beta y_2).$$

Беручи до уваги рівність (14.5), отримуємо

$$A^{-1}(\alpha y_1 + \beta y_2) = \alpha A^{-1} y_1 + \beta A^{-1} y_2.$$

Отже, оператор A^{-1} є лінійним. Тепер доведемо його обмеженість.

3а лемою 14.1 банахів простір F можна подати у вигляді

$$F = \bigcup_{k} F_k$$

де F_k — множина таких елементів $y \in F$, для яких

$$||A^{-1}y||_E \le k||y||_F$$

до того ж одна із множин F_k скрізь щільна в F. Позначимо цю множину через F_n . Візьмемо довільну точку $y \in F$, а її норму позначимо як $\|y\|_F = a$. Знайдемо таку точку $y_1 \in F_n$, щоб виконувались нерівності

$$||y - y_1||_F \le \frac{a}{2}, \quad ||y_1||_F \le a.$$

Такий вибір можливий, оскільки множина $\overline{S}(0,a) \cap F_n$ є щільною в замкненій кулі $\overline{S}(0,a)$ і $y \in \overline{S}(0,a)$. Знайдемо такий елемент $y_2 \in F_n$, щоб виконувались умови

$$||y - y_1 - y_2||_F \le \frac{a}{2^2}, \quad ||y_1||_F \le \frac{a}{2}.$$

Продовжуючи вибір, побудуємо елементи $y_k \in F_n$, такі що

$$||y - (y_1 + \dots + y_k)||_F \le \frac{a}{2^k}, \quad ||y_k||_F \le \frac{a}{2^{k-1}}.$$

Внаслідок вибору елементів y_k маємо

$$\lim_{m \to \infty} \left\| y - \sum_{k=1}^{m} y_k \right\|_F = 0.$$

Це означає, що ряд $\sum_{k=1}^{\infty}y_k$ збігається до елемента y. Покладемо $x_k=A^{-1}y_k$. Тоді отримуємо оцінку

$$||x_k||_E \le n||y_k||_F \le \frac{na}{2^{k-1}}.$$

Оскільки

$$||v_{k+p} - v_k||_E = \left\| \sum_{i=k+1}^{k+p} x_i \right\|_E \le \sum_{i=k+1}^{k+p} ||x_i||_E \le \sum_{i=k+1}^{\infty} ||x_i||_E \le \sum_{i=k+1}^{\infty} \frac{na}{2^{i-1}} = \sum_{i=0}^{\infty} \frac{na}{2^{i+k}} = \frac{na}{2^k} \sum_{i=0}^{\infty} \frac{1}{2^i} = \frac{na}{2^k} \frac{1}{1 - \frac{1}{2}} = \frac{na}{2^{k-1}},$$

а простір E — повний, послідовність $\{v_k\}_{k=1}^{\infty}$, де $v_k = \sum_{i=1}^k x_i$ збігається до деякої границі $x \in E$. Отже,

$$x = \lim_{k \to \infty} \sum_{i=1}^{k} x_i = \sum_{i=1}^{\infty} x_i.$$

Внаслідок лінійності і неперервності оператора A, маємо

$$Ax = A\left(\lim_{k \to \infty} \sum_{i=1}^{k} x_i\right) = \lim_{k \to \infty} \sum_{i=1}^{k} Ax_i = \lim_{k \to \infty} \sum_{i=1}^{k} y_i = y.$$

Звідси отримуємо, що

$$||A^{-1}y||_E = ||x||_E = \lim_{k \to \infty} \left\| \sum_{i=1}^k x_i \right\|_E \le \lim_{k \to \infty} \sum_{i=1}^k ||x_i||_E \le \sum_{i=1}^\infty \frac{na}{2^{i-1}} = 2na = 2n||y||_E.$$

Оскільки y — довільний елемент із простору F, обмеженість оператора A^{-1} доведено. \Box

Наслідок 14.1

Якщо E і F — банахові простори, $A \in \mathcal{L}(E, F)$, то образ будь-якого околу нуля простору E містить деякий окіл нуля простору F.

§14.3 Обернений до наближеного і резольвента

Нехай E, F — банахові простори. Відокремимо в банаховому просторі $\mathcal{L}(E, F)$ множину операторів $\mathfrak{M}(E, F)$, що мають обернений оператор.

Теорема 14.2

Нехай $A_0 \in \mathfrak{M}(E,F), \Delta \in \mathcal{L}(E,F)$ і $\|\Delta\| \cdot \|A_0^{-1}\| < 1$. Тоді $A = A_0 + \Delta \in \mathfrak{M}(E,F)$.

Доведення. Зафіксуємо довільний $y \in F$ і розглянемо відображення $B: E \to E$, таке що $Bx = A_0^{-1}y - A_0^{-1}\Delta x$.

Оскільки $\|\Delta\|\cdot\|A_0^{-1}\|<1$, відображення B є стискаючим. Простір E — банахів, тому існує єдина нерухома точка відображення B

$$x = Bx = A_0^{-1}y - A_0^{-1}\Delta x.$$

Отже,

$$Ax = A_0x + \Delta x = y.$$

Якщо існує ще одна точка x', така що Ax' = y, то x' також є нерухомою точкою відображення B. Оскільки це відображення має єдину нерухому точку, це означає, що x = x'. Отже, для будь-якого $y \in F$ рівняння Ax = y має єдиний розв'язок в просторі E. Значить, оператор A має обернений оператор A^{-1} . За теоремою Банаха про обернений оператор A^{-1} є обмеженим.

Теорема 14.3

Нехай E — банахів простір, I — тотожній оператор, що діє в E, $A \in \mathcal{L}(E,E)$ і $\|A\| < 1$. Тоді оператор $(I-A)^{-1}$ існує, обмежений і може бути поданий у вигляді

$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

Доведення. Спочатку зауважимо, що із ||A|| < 1 випливає

$$\sum_{k=0}^{\infty} ||A^k|| \le \sum_{k=0}^{\infty} ||A||^k < \infty.$$

Простір E — банахів, тому із збіжності ряду $\sum_{k=0}^{\infty} \|A^k\|$ випливає, що $\sum_{k=0}^{\infty} A^k \in \mathcal{L}(E,E)$. Для довільного $n \in \mathbb{N}$:

$$(I-A)\sum_{k=0}^{n} A^{k} = \sum_{k=0}^{n} A^{k}(I-A) = I - A^{n+1}.$$

Перейдемо до границі при $n \to \infty$ і зважимо на те, що $\|A^{n+1}\| \le \|A\|^{n+1} \to 0$. Отже,

$$(I - A) \sum_{k=0}^{\infty} A^k = \sum_{k=0}^{\infty} A^k (I - A) = I.$$

Звідси випливає, що

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

§14.4 Принцип відкритості відображення

Теорема 14.4 (принцип відкритості відображення)

Лінійне сюр'єктивне і неперервне відображення банахова простору E на банахів простір F є відкритим відображенням.

Доведення. Покажемо, що образ будь-якої відкритої множини простору E є відкритою множиною простору F. Нехай $G \subset E$ — непорожня відкрита множина, $x \in G$, а G_0 — окіл нуля в E, такий що $x + G_0 \in G$. Розглянемо окіл нуля G_1 в просторі F, такий що $G_1 \subset AG_0$, який існує завдяки наслідку 14.1. Мають місце включення

$$Ax + G_1 \subset Ax + AG_0 = A(x + G_0) \subset AG.$$

Оскільки $Ax + G_1$ є околом точки Ax, а x — довільна точка із множини G і $Ax \in AG$, то множина AG разом із кожною своєю точкою містить її деякий окіл W. Отже, множина AG є відкритою і відображення A є відкритим.

§14.5 Література

- [1] **Березанский Ю. М.** Функциональный анализ / Ю. М. Березанский, Г. Ф. Ус, 3. Г. Шефтель — К.: Выща школа, 1990 (стр. 254–255).
- [2] **Ляшко И. И.** Основы классического и современного математического анализа / И. И. Ляшко, В. Ф Емельянов, А. К. Боярчук. К.: Вища школа, 1988 (стр. 578–581).
- [3] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 102–106).
- [4] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 224–233).

15 Спряжені оператори, спектр і компактні оператори

§15.1 Спряжені оператори

Нехай E і F — лінійні топологічні простори. Розглянемо неперервний лінійний оператор $A:E\to F$ і функціонал $g\in F^\star$. Застосуємо функціонал g до елемента y=Ax. Це визначає функціонал $f\in E^\star$, який визначається формулою f(x)=g(Ax).

Означення 15.1. Оператор $A^*: F^* \to E^*$, що визначається формулою f(x) = g(Ax) і ставить кожному функціоналу g із простору F^* функціонал f із простору E^* , називається спряженим до оператора A.

Приклад 15.1

Розглянемо оператор

$$A: \mathbb{R}^n \to \mathbb{R}^m$$

і функціонал

$$y = Ax$$
,

який визначається як

$$y_i = \sum_{i=1}^n a_{i,j} x_j, \quad i = 1, 2, \dots, m.$$

Тоді

$$f(x) = g(Ax) = \sum_{i=1}^{m} g_i y_i = \sum_{i=1}^{n} \sum_{j=1}^{m} g_i a_{i,j} x_j = \sum_{i=1}^{n} x_j \sum_{j=1}^{m} g_i a_{i,j}.$$

Отже,

$$f_j = \sum_{i=1}^m g_i a_{i,j}, \quad j = 1, 2, \dots, n$$

З цього випливає, що

$$f = A^*g \implies A^* = A^\intercal.$$

Це означає, що спряжений оператор визначається транспонованою матрицею.

Позначивши значення функціонала f на елементі x символом (f,x), отримаємо, що

$$(g, Ax) = (f, x) = (A^*g, x).$$

Теорема 15.1

Якщо $A \in \mathcal{L}(E, F)$, де E, F — банахові простори, то $||A|| = ||A^*||$.

Доведення. З одного боку

$$|(A^*g, x)| = |(g, Ax)| \le ||g|| \cdot ||A|| \cdot ||x||,$$

звідки

$$||A^*q|| \le ||A|| \cdot ||q||,$$

тобто

$$||A^*|| \le ||A||$$
.

З іншого боку, для $x \in E$ і $Ax \neq 0$ існує елемент

$$y_0 = \frac{Ax}{\|Ax\|} \in F \implies \|y_0\| = 1.$$

Отже, за теоремою Хана—Банаха існує функціонал g, такий що $\|g\|=1,\ (g,y_0)=1.$ З цього випливає, що

$$(g, y_0) = \left(g, \frac{Ax}{\|Ax\|}\right) = \frac{1}{\|Ax\|}(g, Ax) = 1.$$

Тоді (g, Ax) = ||Ax||. Таким чином,

$$||Ax|| = (g, Ax) = |(A^*g, x)| \le ||A^*|| \cdot ||g|| \cdot ||x|| = ||A^*|| \cdot ||x||,$$

тобто

$$||A|| \le ||A^\star||.$$

Поєднуючи дві нерівності отримуємо, що

$$||A|| = ||A^*||.$$

§15.2 Спектр оператора

Означення 15.2. Нехай $A: E \to E$, де E — комплексний банахів простір. Число λ називається **регулярним** для оператора A, якщо оператор

$$R_{\lambda} = (A - \lambda I)^{-1}$$

визначений на всьому просторі E.

Означення 15.3. Оператор $R_{\lambda} = (A - \lambda I)^{-1}$ називається **резольвентою**.

Означення 15.4. Сукупність всіх чисел λ , які не є регулярними для оператора A, називається його спектром.

Означення 15.5. Число λ , таке що рівняння

$$Ax = \lambda x$$

має ненульові розв'язки, називається **власним числом** оператора A.

Означення 15.6. Всі власні числа оператора A належать його спектру і утворюють **точковий спектр**.

Означення 15.7. Доповнення до точкового спектру називається **неперервним** спектром.

Приклад 15.2

Розглянемо простір C[a,b] і оператор

$$Ax(t) = tx(t).$$

Тоді

$$(A - \lambda I)x(t) = (t - \lambda)x(t).$$

Із умови

$$(t - \lambda)x(t) = 0, \quad \forall \lambda \in \mathbb{R}$$

випливає, що неперервна функція x(t) тотожно дорівнює нулю, тому оператор $(A - \lambda I)^{-1}$ існує для довільного λ .

Проте при $\lambda \in [a,b]$ обернений оператор, що діє за формулою

$$(A - \lambda I)^{-1}x(t) = \frac{x(t)}{t - \lambda}$$

визначений не на всьому просторі C[a,b] і не є обмеженим. Таким чином, спектром є весь відрізок [a,b], власних чисел немає, тобто оператор A має лише неперервний спектр.

Зауваження 15.1 — У скінченновимірних просторах неперервний спектр оператора є порожньою множиною, спектр збігається із точковим спектром і складається лише із власних чисел.

У нескінченновимірних просторах кожне число відносно оператора є регулярним значенням, власним значенням або елементом неперервного спектру.

Теорема 15.2

Якщо $A\in\mathcal{L}(E,E)$, де E — банахів простір і $|\lambda|>\|A\|$, то λ — регулярне значення для оператора A.

Доведення. Оскільки

$$A - \lambda I = -\lambda (I - \frac{1}{\lambda}A),$$

то

$$R_{\lambda} = (A - \lambda I)^{-1} = -\frac{1}{\lambda} \left(I - \frac{A}{\lambda} \right)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{A^k}{\lambda^k}.$$

За умови $|\lambda| > \|A\|$ цей ряд збігається і визначає на E обмежений оператор (теорема 14.4).

Зауваження 15.2 — З теореми 15.2 випливає, що спектр оператора A міститься в колі радіусу $\|A\|$ з центром в нулі.

§15.3 Компактні оператори

Означення 15.8. Оператор A, що діє із банахового простору E в банахів простір F називається **компактним**, або **цілком неперервним**, якщо кожну обмежену множину він переводить у відносно компактну множину.

Приклад 15.3

Лінійний неперервний оператор A, що переводить банахів простір E в його скінченновимірний підпростір, ϵ компактним.

Теорема 15.3

Якщо послідовність компактних операторів $\{A_n\}_{n=1}^{\infty}$ в банаховому просторі E збігається до оператора A рівномірно, то оператор A теж є компактним.

Доведення. Для доведення компактності оператора A доведемо, що для будь-якої обмеженої послідовності $\{x_n\}_{n=1}^{\infty} \subset E$ із послідовності $\{Ax_n\}_{n=1}^{\infty}$ можна виділити збіжну підпослідовність.

Оператор A_1 — компактний, тому із послідовності $\{A_1x_n\}_{n=1}^{\infty}$ можна виділити збіжну підпослідовність. Нехай $\{x_n^{(1)}\}_{n=1}^{\infty} \subset E$ — послідовність, на якій збігається послідовність, яку ми виділили із $\{A_1x_n\}_{n=1}^{\infty}$.

Оператор A_2 — компактний, тому із послідовності $\{A_2x_n^{(1)}\}_{n=1}^{\infty}$ можна виділити збіжну підпослідовність. Нехай $\{x_n^{(2)}\}_{n=1}^{\infty} \subset E$ — послідовність, на якій збігається послідовність, яку ми виділили із $\{A_2x_n^{(1)}\}_{n=1}^{\infty}$.

Продовжимо цей процес і виділимо діагональну послідовність

$$x_1^{(1)}, x_2^{(2)}, \dots, x_n^{(n)}, \dots$$

Оператори $A_1, A_2, \ldots, A_n, \ldots$ переводять її у збіжну послідовність. Покажемо, що оператор A теж переводить її в збіжну послідовність. Простір E — повний, тому достатньо показати, що $\{Ax_n^{(n)}\}_{n=1}^{\infty}$ є фундаментальною послідовністю.

$$||Ax_{n}^{(n)} - Ax_{m}^{(m)}|| \le$$

$$||Ax_{n}^{(n)} - A_{k}x_{n}^{(n)} + A_{k}x_{n}^{(n)} - A_{k}x_{m}^{(m)} + A_{k}x_{m}^{(m)} - Ax_{m}^{(m)}|| \le$$

$$||Ax_{n}^{(n)} - A_{k}x_{n}^{(n)}|| + ||A_{k}x_{n}^{(n)} - A_{k}x_{m}^{(m)}|| + ||A_{k}x_{m}^{(m)} - Ax_{m}^{(m)}||.$$

Нехай $||x_n|| \leq C$. Оскільки $||A_n - A|| \to 0$ при $n \to \infty$,

$$\exists K \in \mathbb{N} : \forall k \ge K : ||A - A_k|| < \frac{\varepsilon}{3C}.$$

Крім того, оскільки послідовність $\{A_k x_n^{(n)}\}$ є збіжною,

$$\exists N \in \mathbb{N} : \forall n, m \ge N : \left\| A_k x_n^{(n)} - A_k x_m^{(m)} \right\| < \frac{\varepsilon}{3}.$$

Вибравши $M = \max(K, N)$, отримуємо

$$\forall n, m \ge M : \left\| Ax_n^{(n)} - Ax_m^{(m)} \right\| < \varepsilon.$$

Теорема 15.4

Якщо A — лінійний компактний оператор, оператор B — лінійний обмежений, то оператори AB і BA є компактними.

Доведення. Якщо множина $M\subset E$ є обмеженою, то BM — обмежена множина, оскільки обмежений оператор переводить будь-яку обмежену множину в обмежену множину. Отже, множина ABM є відносно компактною. Це означає, що оператор AB є компактним.

Аналогічно, якщо множина $M\subset E$ є обмеженою, то AM — відносно компактна множина, оскільки компактний оператор переводить будь-яку обмежену множину у відносно компактну множину. Оператор B — неперервний, тому множина BAM є відносно компактною. Це означає, що оператор BA є компактним.

Наслідок 15.1

В нескінченновимірному просторі E компактний оператор не може мати обмеженого оберненого оператору.

Теорема 15.5

Оператор, спряжений до компактного, є компактним.

Спряжені, самоспряжені і компактні оператори відіграють особливо важливу роль у гільбертових просторах. Саме на цих поняттях побудована теорія розв'язності операторних рівнянь в гільбертових просторах.

§15.4 Література

[1] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин — М.: Наука, 1981 (стр. 230–250).

16 Гільбертові простори

§16.1 Скалярний добуток і породжена ним норма

Означення 16.1. Дійсна лінійна система H називається дійсним передгільбертовим простором (або евклідовим, або унітарним), якщо кожній парі елементів x, y поставлено у відповідність дійсне число (x, y), що задовольняє умови (аксіоми скалярного добутку):

- 1. $(x,x) \ge 0$, до того ж (x,x) = 0 тільки при $x = \vec{0}$;
- 2. (x,y) = (y,x);
- 3. $(x_1 + x_2, y) = (x_1, y) + (x_2, y);$
- 4. $(\lambda x, y) = \lambda(x, y)$.

Лема 16.1 (нерівність Коші—Буняковського)

В дійсному передгільбертовому просторі справджується нерівність

$$|(x,y)| \le \sqrt{(x,x)}\sqrt{(y,y)},$$

для довільних $x, y \in H$.

Доведення. Розглянемо вираз

$$0 \le (x + \lambda y, x + \lambda y) = (x, x) + 2\lambda(x, y) + \lambda^2(y, y).$$

Це означає, що дискримінант цього квадратного трьохчлена є недодатним:

$$(x,y)^2 - (x,x)(y,y) \le 0.$$

Отже,

$$|(x,y)| \le \sqrt{(x,x)}\sqrt{(y,y)}.$$

За скалярним добутком в H можна ввести норму $||x|| = \sqrt{(x,x)}$.

Лема 16.2

Відображення $\|\cdot\|: x \mapsto \sqrt{(x,x)}$ є нормою.

Доведення. Перевіримо аксіоми норми.

1. $\forall x \in H: ||x|| = 0 \iff x = \vec{0}:$

$$\sqrt{(x,x)} = 0 \iff (x,x) = 0 \iff x = \vec{0}.$$

2. $\|\lambda x\| = |\lambda| \cdot \|x\|, \ |\forall x \in H, \ \forall \lambda \in \mathbb{R}$:

$$\|\lambda x\| = \sqrt{(\lambda x, \lambda x)} = \sqrt{\lambda(x, \lambda x)} = \sqrt{\lambda^2(x, x)} = |\lambda| \sqrt{(x, x)} = |\lambda| \cdot \|x\|.$$

3. $||x + y|| \le x + y, \forall x, y \in H$:

$$||x + y||^2 = (x + y, x + y) = (x, x) + 2(x, y) + (y, y) \le$$

$$||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2 \implies ||x + y|| \le ||x|| + ||y||.$$

Що і треба було довести.

Лема 16.3

Скалярний добуток є неперервним відображенням, тобто

$$\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y \implies \lim_{n \to \infty} (x_n, y_n) = (x, y).$$

Доведення.

$$|(x,y) - (x_n, y_n)| = |(x,y) - (x,y_n) + (x,y_n) - (x_n, y_n)| = |(x,y-y_n) + (x-x_n, y_n) \le |(x,y-y_n)| + |(x-x_n, y_n)| \le ||x|| \cdot ||y-y_n|| + ||x-x_n|| \cdot ||y_n||.$$

Враховуючи, що з $\lim_{n\to\infty}y_n=y$ випливає, що $\exists C:\forall n:\|y_n\|\leq C$, можемо заключити, що

$$\lim_{n \to \infty} |(x, y) - (x_n, y_n)| \le 0,$$

як сума двох доданків вигляду $0 \cdot C$, а тому

$$\lim_{n \to \infty} (x_n, y_n) = (x, y).$$

§16.2 Скалярний добуток породжений нормою

Твердження 16.1 (характеристична властивість передгільбертових просторів)

Для того щоб нормований простір E був передгільбертовим необхідно і достатньо, щоб для довільних елементів х і у виконувалась рівність

$$\forall x, y \in H : \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2). \tag{16.1}$$

Доведення. Необхідність.

$$||x + y||^2 + ||x - y||^2 = (x + y, x + y) + (x - y, x - y) = (x, x) + 2(x, y) + (y, y) + (x, x) - 2(x, y) + (y, y) = 2(||x||^2 + ||y||^2).$$

Достатність. Нехай рівність (16.1) виконується. Покладемо

$$(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2). \tag{16.2}$$

Покажемо, що якщо рівність (16.1) виконується, то функція (16.2) задовольняє всім аксіомам скалярного добутку.

Оскільки при x = y маємо

$$(x,x) = \frac{1}{4}(\|x+x\|^2 - \|x-x\|^2) = \|x\|^2,$$

то за допомогою такого скалярного добутку можна задати норму в просторі E.

1. (невід'ємність). Знову-таки, підставляємо x = y:

$$(x,x) = \frac{1}{4}(\|x+x\|^2 + \|x-x\|^2) = \|x\|^2 \ge 0.$$

2. (симетричність). Ця аксіома виконується за визначенням:

$$(x,y) = \frac{1}{4}(\|x+y\|^2 + \|x-y\|^2) = \frac{1}{4}(\|y+x\|^2 + \|y-x\|^2) = (y,x).$$

3. (адитивність). Для перевірки цієї аксіоми розглянемо функцію, що залежить від трьох векторів.

$$\Phi(x, y, z) = 4((x + y, z) - (x, z) - (y, z)).$$

Покажемо, що ця функція тотожно дорівнює нулю.

$$\Phi(x, y, z) = \|x + y + z\|^2 - \|x + y - z\|^2 - \|x + z\|^2 + \|x - z\|^2 - \|y + z\|^2 + \|y - z\|^2.$$
 (16.3)

Із рівності (16.1) випливає, що

$$||x + y \pm z||^2 = 2||x \pm z||^2 + 2||y||^2 - ||x \pm z - y||^2$$

Підставляючи цю рівність в (16.3), маємо

$$\Phi(x, y, z) = -\|x + y - z\|^2 + \|x - y - z\|^2 + \|x + z\|^2 - \|x - z\|^2 - \|y + z\|^2 + \|y - z\|^2.$$
 (16.4)

Обчислимо напівсуму виразів (16.3) і (16.4).

$$\Phi(x, y, z) = \frac{1}{2}(\|y + z + x\|^2 + \|y + z - x\|^2) - \frac{1}{2}(\|y - z + x\|^2 + \|y - z - x\|^2) - \|y + z\|^2 + \|y - z\|^2.$$

Внаслідок (16.1) перший член дорівнює

$$||y + z||^2 + ||x||^2,$$

 $-||y - z||^2 - ||x||^2,$

Отже,

$$\Phi(x, y, z) \equiv 0.$$

4. (однорідність). Розглянемо функцію

$$\varphi(c) = (cx, y) - c(x, y).$$

Із рівності (16.2) випливає, що

$$\varphi(0) = \frac{1}{4}(\|g\|^2 - \|g\|^2) = 0,$$

а, оскільки (-x, y) = -(x, y), то

$$\varphi(-1) = 0.$$

Отже, для довільного цілого числа n:

$$(nx,y) = (\operatorname{sgn} n(x+x+\dots+x), y) = \operatorname{sgn} n((x,y) + (x,y) + \dots + (x,y)) = |n| \operatorname{sgn} n(x,y) = n(x,y).$$

Таким чином,

$$\varphi(n) = 0.$$

При цілих p, q і $q \neq 0$ маємо

$$\left(\frac{p}{q}x,y\right) = p\left(\frac{1}{q}x,y\right) = \frac{p}{q}q\left(\frac{1}{q}x,y\right) = \frac{p}{q}(x,y).$$

Отже, $\varphi(c)=0$ при всіх раціональних числах c. Оскільки функція φ є неперервною, з цього випливає, що

$$\varphi(c) \equiv 0.$$

§16.3 Ортогональність і проекції

Означення 16.2. Повний передгільбертів простір H називається **гільбертовим**.

Приклад 16.1

Простір ℓ_2 зі скалярним добутком $(x,y) = \sum_{i=1}^{\infty} x_i y_i$ і нормою $||x|| = \sqrt{\sum_{i=1}^{\infty} x_i^2}$ є гільбертовим.

Приклад 16.2

Простір $C^2[a,b]$ зі скалярним добутком $(x,y)=\int_a^b x(t)y(t)dt$ і нормою $\|x\|=\sqrt{\int_a^b x^2(t)dt}$. є гільбертовим.

Приклад 16.3

Простір $C[0,\frac{\pi}{2}]$ з нормою $\|x(t)\|=\max_{t\in[0,\frac{\pi}{2}]}|x(t)|$ не є передгільбертовим — в ньому не виконується основна характеристична властивість. Нехай $x(t)=\sin t$ і $y(t)=\cos t$. Оскільки $\|x\|=\|y\|=1, \ \|x+y\|=\sqrt{2}, \ \|x-y\|=1,$ то

$$||x+y||^2 + ||x-y||^2 = 2 + 1 = 3 \neq 4 = 2 \cdot 2 = 2(||x||^2 + ||y||^2).$$

 Γ ільбертів простір є банаховим. Отже, на нього переносяться всі попередні означення і факти.

Означення 16.3. Елементи x і y гільбертового простору називаються **ортогональними**, якщо (x,y)=0. Цей факт записується як $x\perp y$.

Означення 16.4. Якщо фіксований елемент $x \in H$ є ортогональним до кожного елемента деякої множини $E \subset H$, говорять, що елемент x є **ортогональним множині** E. Цей факт позначається як $x \perp E$.

Означення 16.5. Сукупність усіх елементів, ортогональних до даної множини $E \subset H$ є підпростором простору H. Цей підпростір називається **ортогональним доповненням множини** E.

Теорема 16.1 (Релліха)

Нехай H_1 — підпростір гільбертового простору H і H_2 — його ортогональне доповнення. Будь-який елемент $x \in H$ можна єдиним способом подати у вигляді

$$x = x' + x'', \quad x' \in H_1, \quad x'' \in H_2.$$
 (16.5)

До того ж елемент x' реалізує відстань від x до H_1 , тобто

$$||x - x'|| = \rho(x, H_1) = \inf_{y \in H_1} \rho(x, y).$$

Доведення. Позначимо $d=\rho(x,H_1)$. За означенням $\inf_{y\in H_1}\rho(x,y)$ (точної нижньої грані) існують елементи $x_n\in H_1$ такі, що

$$||x - x_n||^2 < d^2 + \frac{1}{n^2}, \quad n = 1, 2, \dots$$
 (16.6)

Застосуємо лему 16.4 до елементів $x - x_n$ і $x - x_m$:

$$\|(x - x_m) + (x - x_m)\|^2 + \|x_n - x_m\|^2 = 2(\|x - x_n\|^2 + \|x - x_m\|^2).$$

Оскільки $\frac{1}{2}(x_n + x_m) \in H_1$:

$$\|(x-x_n)+(x-x_m)\|^2=4\left\|x-\frac{x_n+x_m}{2}\right\|^2\geq 4d^2.$$

Отже,

$$||x_n - x_m||^2 \le 2\left(d^2 + \frac{1}{n^2} + d^2 + \frac{1}{m^2}\right) - 4d^2 = \frac{2}{n^2} + \frac{2}{m^2}.$$

Таким чином, послідовність $\{x_n\}_{n=1}^{\infty}$ є фундаментальною. Оскільки H — повний простір, $\exists x' = \lim_{n \to \infty} x_n$. В гільбертовому просторі будь-який підпростір є замкненою лінійною множиною, отже $x' \in H_1$.

Перейдемо до границі в нерівності (16.6). Отримаємо, що

$$||x - x'|| \le d. \tag{16.7}$$

З іншого боку,

$$\forall y \in H_1 : ||x - y|| \ge d \implies ||x - x'|| \ge d.$$
 (16.8)

Порівнюючи нерівності (16.7) і (16.8), доходимо висновку, що

$$||x - x'|| = d.$$

Доведемо твердження:

$$x'' = x - x' \perp H_1 \implies x'' \in H_2$$

Візьмемо $y \in H_1, y \neq 0$. Тоді

$$\forall \lambda \in \mathbb{R} : x' + \lambda y \in H_1 \implies ||x'' - \lambda y||^2 = ||x - (x' + \lambda y)||^2 \ge d^2 \implies (x'' - \lambda y, x'' - \lambda y) = (x'', x'') - 2\lambda(x'', y) + \lambda^2(y, y) \ge d^2 \implies d^2 - 2\lambda(x'', y) + \lambda^2(y, y) \ge d^2 \implies -2\lambda(x'', y) + \lambda^2(y, y) \ge 0.$$

Покладемо $\lambda = \frac{(x'',y)}{(y,y)}$. Тоді

$$-2\frac{(x'',y)^2}{(y,y)} + \frac{(x'',y)^2}{(y,y)} \ge 0 \implies (x'',y)^2 \le 0.$$

Це можливо лише тоді, коли

$$(x'', y) = 0 \implies x'' \perp y.$$

Доведемо тепер єдиність подання (16.5). Припустимо, що існують два подання:

$$x = x' + x'', \quad x' \in H_1, \quad x'' \in H_2,$$

 $x = x'_1 + x''_1, \quad x'_1 \in H_1, \quad x''_1 \in H_2.$

З цього випливає, що

$$x' - x_1' = x_1'' - x'',$$

але $x' - x_1' \in H_1$, і $x_1'' - x'' \in H_2$, а ці підпростори перетинаються лише по $\vec{0}$, тобто

$$x' - x_1' = \vec{0} = x_1'' - x''.$$

Означення 16.6. Елементи x' і x'', які однозначно визначаються елементом x = x' + x'', називаються проекціями елемента x на підпростори H_1 і H_2 відповідно.

§16.4 Лінійний функціонал як скалярне множення на елемент

Теорема 16.2 (Picca)

Якщо $f \in H^*$, то існує єдиний елемент $y(f) \in H$, такий що f(x) = (x,y) для довільного $x \in H$, та $||f||_{H^*} = ||y||_H$.

Доведення. Спочатку доведемо існування елемента y. Позначимо через $H_0 = \ker f$ множину тих елементів $x \in H$, які функціонал f відображає в нуль:

$$H_0 = \{x \in H : f(x) = 0\}.$$

Оскільки $f \in H^*$, він є лінійним і неперервним, отже, $H_0 = \ker f$ — підпростір, тобто замкнена лінійна множина. Якщо $H_0 = H$, покладемо y = 0.

Розглянемо випадок, коли $H_0 \neq H$. Нехай $y_0 \in H \setminus H_0$. За теоремою Релліха подамо його у вигляді

$$y_0 = y' + y'', \quad y' \in H_0, \quad y'' \perp H_0.$$

Якщо $y'' \neq 0$, то $f(y'') \neq 0$. Значить, можна покласти

$$f(y'') = 1$$

(інакше ми могли б взяти замість y'' елемент $\frac{y''}{f(y'')}$. Виберемо довільний елемент $x \in H$ і позначимо $f(x) = \alpha$. Розглянемо елемент $x' = x - \alpha y''$. Тоді

$$f(x') = f(x) - \alpha f(y'') = \alpha - \alpha = 0.$$

Отже,

$$x' \in H_0 \implies (x, y'') = (x' + \alpha y'', y'') = \alpha(y'', y'') \implies$$

$$f(x) = \alpha = \left(x, \frac{y''}{(y'', y'')}\right) \implies y = \frac{y''}{(y'', y'')}.$$

Доведемо єдиність цього елемента. Дійсно, якщо

$$\exists y, y_1 \in H : \forall x \in H : (x, y) = (x, y_1),$$

то

$$(x, y - y_1) = 0 \implies y - y_1 \perp H \implies y = y_1.$$

Оцінимо норму функціонала.

$$|f(y)| \le ||f|| \cdot ||y|| \implies ||f|| \ge f\left(\frac{y}{||y||}\right) = \frac{(y,y)}{||y||} = ||y||.$$

З іншого боку,

$$|f(x)| = |(x,y)| \le ||x|| \cdot ||y|| \implies ||f|| \le ||y||.$$

Зауваження 16.1 — З теореми Рісса випливає, що між гільбертовим простором H і спряженим простором H^{\star} існує ізоморфізм, і скалярні добутки вичерпують весь запас функціоналів, які можна задати на просторі H.

§16.5 Література

- [1] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 143–147).
- [2] **Канторович Л. В.** Функциональный анализ / Л. В. Канторович, Г. П. Акилов М.: 1977 (стр. 160–167, 197–198).

17 Теорема про ізоморфізм

Обравши в n-вимірному евклідовому просторі ортогональний нормований базис e_1, e_2, \ldots, e_n , можна кожний вектор $x \in \mathbb{R}^n$ записати у вигляді

$$x = \sum_{k=1}^{n} c_k e_k,$$

де

$$c_k = (x, e_k).$$

Постає питання, як узагальнити цей розклад на випадок нескінченновимірного евклідова простору. Введемо наступні поняття.

§17.1 Базиси у гільбертових просторах

Означення 17.1. Система ненульових векторів $\{e_k\} \subset E$ називається **ортогональною**, якщо $(e_k, e_l) = 0$ при $k \neq l$.

Означення 17.2. Система $\{e_k\} \subset E$, елементи якої задовольняють умову

$$(e_k, e_l) = \begin{cases} 0, & k \neq l, \\ 1, & k = l. \end{cases}$$

називається ортонормованою.

Нагадаємо означення із теорії лінійних просторів.

Означення 17.3. Найменший лінійний підпростір, що містить множину A у лінійному просторі X, називається **лінійною оболонкою** множини A, або лінійним підпростором, що породжений множиною A. Цей підпростір позначається як span A.

Зауваження 17.1 — Лінійна оболонка лінійної множини A є замкненою, але якщо множина A є довільною, це не обов'язково так. В той же час у нормованих просторах підпростори є замкненими за означенням, тому лінійна оболонка множини в нормованому просторі є замкненою.

Означення 17.4. Система $\{e_k\} \subset E$ називається **повною**, якщо її лінійна оболонка є скрізь щільною в E, тобто $\overline{\operatorname{span}\{e_k\}} = E$.

Означення 17.5. Повна ортонормована система $\{e_k\} \subset E$ називається **ортонормованим базисом**.

Приклад 17.1

В просторі ℓ_2 ортонормований базис утворюють послідовності

$$e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, 0, \dots).$$

Скалярний добуток: $(x,y) = \sum_{n=1}^{\infty} x_n y_n$.

Приклад 17.2

В просторі $C^2(a,b)$ ортонормований базис утворюють вектори

$$\frac{1}{2}, \cos \frac{2\pi t}{b-a}, \sin \frac{2\pi t}{b-a}, \dots \cos \frac{2\pi nt}{b-a}, \sin \frac{2n\pi t}{b-a}, \dots$$

Скалярний добуток: $(f,g) = \int_a^b f(t)g(t)dt$.

Лема 17.1

В сепарабельному евклідовому просторі будь-яка ортогональна система є не більш ніж зліченною.

Доведення. Не обмежуючи загальності, розглянемо ортонормовану систему $\{\varphi_k\}\subset E$. Тоді

$$\|\varphi_k - \varphi_l\| = \sqrt{(\varphi_k - \varphi_l, \varphi_k - \varphi_l)} = \sqrt{(\varphi_k, \varphi_k) - 2(\varphi_k, \varphi_l) + (\varphi_l, \varphi_l)} = \sqrt{(\varphi_k, \varphi_k) + (\varphi_l, \varphi_l)} = \sqrt{1 + 1} = \sqrt{2}.$$

Розглянемо сукупність куль $S\left(\varphi_k, \frac{1}{2}\right)$. Ці кулі не перетинаються. Якщо зліченна множина $\{\psi_k\}$ є скрізь щільною в E, то в кожну кулю потрапить принаймні один елемент ψ_k . Отже, потужність множини таких куль не може перевищувати потужність зліченої множини.

§17.2 Елементи аналізу Фур'є

Означення 17.6. Ортонормована система $\{\varphi_k\} \subset E$ називається **замкненою**, якщо для довільного $f \in E$ виконується **рівність Парсеваля**

$$\sum_{k=1}^{\infty} c_k^2 = ||f||^2. \tag{17.1}$$

Означення 17.7. Нехай $\{\varphi_k\}\subset E$ — ортонормована система в евклідовому просторі, а f — довільний елемент із E. Поставимо у відповідність елементу $f\in E$ послідовність чисел

$$c_k = (f, \varphi_k), \quad k = 1, 2, \dots$$

Числа c_k називаються координатами, або коефіцієнтами Фур'є елемента f по системі $\{\varphi_k\}\subset E$, а ряд

$$\sum_{k=1}^{\infty} c_k \varphi_k$$

називається рядом $\Phi yp'\varepsilon$ елемента f по системі $\{\varphi_k\}\subset E$.

Теорема 17.1

Ряд Фур'є збігається тоді і лише тоді, коли система $\{\varphi_k\} \subset E$ є замкненою.

Доведення. Розглянемо суму

$$S_n = \sum_{k=1}^n \alpha_k \varphi_k$$

і для заданого числа n відшукаємо коефіцієнти α_k , що мінімізують $||f - S_n||^2$.

$$||f - S_n||^2 = \left(f - \sum_{k=1}^n \alpha_k \varphi_k, f - \sum_{k=1}^n \alpha_k \varphi_k\right) =$$

$$(f, f) - 2\left(f, \sum_{k=1}^n \alpha_k \varphi_k\right) + \left(\sum_{k=1}^n \alpha_k \varphi_k, \sum_{k=1}^n \alpha_k \varphi_k\right) =$$

$$||f||^2 - 2\sum_{k=1}^n \alpha_k c_k + \sum_{k=1}^n \alpha_k^2 = ||f||^2 - \sum_{k=1}^n c_k^2 + \sum_{k=1}^n (\alpha_k - c_k)^2.$$

Мінімум цього виразу досягається тоді, коли останній член дорівнює нулю, тобто, коли

$$\alpha_k = c_k, \quad k = 1, 2, \dots, n.$$

В цьому випадку

$$||f - S_n||^2 = ||f||^2 - \sum_{k=1}^n c_k^2.$$
 (17.2)

Оскільки $||f - S_n||^2 \ge 0$, то

$$\sum_{k=1}^{n} c_k^2 \le ||f||^2.$$

Переходячи до границі при $n \to \infty$, отримуємо нерівністю Бесселя:

$$\sum_{k=1}^{\infty} c_k^2 \le ||f||^2.$$

Із тотожності (17.2) випливає, що рід Фур'є збігається тоді і лише тоді, коли виконується рівність Парсеваля, тобто система є замкненою.

Теорема 17.2 (Рісса—Фішера)

Нехай $\{\varphi_k\}\subset E$ — довільна ортонормована система в гільбертовому просторі E, а числа $c_1,c_2,\ldots,c_n,\ldots$ є такими, що ряд $\sum_{k=1}^n c_k^2$ є збіжним. Тоді існує такий елемент $f\in E$, що $c_k=(f,\varphi_k)$ і $\sum_{k=1}^n c_k^2=(f,f)=\|f\|^2$.

Доведення. Розглянемо суму

$$f_n = \sum_{k=1}^n c_k \varphi_k.$$

Тоді,

$$||f_{n+p} - f_n||^2 = ||c_{n+1}\varphi_{n+1} + \dots + c_{n+p}\varphi_{n+p}||^2 = \sum_{k=n+1}^{n+p} c_k^2.$$

Оскільки ряд $\sum_{k=1}^{n} c_k^2$ є збіжним, а простір E — повним, послідовність $\{f_n\}_{n=1}^{\infty}$ збігається до деякого елемента $f \in E$. Оцінимо наступний скалярний добуток.

$$(f, \varphi_i) = (f_n, \varphi_i) + (f - f_n, \varphi_i).$$

При $n \geq i$ перший доданок дорівнює c_i , а другий доданок при $n \to \infty$ прямує до нуля, оскільки

$$|(f - f_n, \varphi_i)| < ||f - f_n|| \cdot ||\varphi_i||.$$

Ліва частина рівності від n не залежить. Переходячи до границі при $n \to \infty$, доходимо висновку, що

$$(f, \varphi_i) = c_i$$
.

Оскільки за означенням елемента f

$$\lim_{n \to \infty} ||f - f_n|| = 0,$$

то

$$\left(f - \sum_{k=1}^{n} c_k \varphi_k, f - \sum_{k=1}^{n} c_k \varphi_k\right) = (f, f) - \sum_{k=1}^{\infty} c_k^2 \to 0, \quad n \to \infty.$$

Отже,

$$\sum_{k=1}^{n} c_k^2 = (f, f).$$

§17.3 Сепарабельний простір

Теорема 17.3

В сепарабельному евклідовому просторі E будь-яка повна ортонормована система є замкненою, і навпаки.

Доведення. Необхідність. Нехай система $\{\varphi_k\} \subset E$ є замкненою. Тоді за теоремою 17.1 для довільного елемента $f \in E$ послідовність часткових сум його ряду Фур'є збігається до f. Це означає, що $\overline{\operatorname{span}\{\varphi_k\}} = E$, тобто система $\{\varphi_k\}$ є повною.

Достатність. Нехай система $\{\varphi_k\}$ є повною, тобто довільний елемент $f \in E$ можна скільки завгодно точно апроксимувати лінійною комбінацією $\sum_{k=1}^{n} \alpha_k \varphi_k$ елементів системи $\{\varphi_k\}$:

$$\forall \varepsilon > 0 : \exists \sum_{k=1}^{n} \alpha_k \varphi_k : \left\| f - \sum_{k=1}^{n} \alpha_k \varphi_k \right\| < \varepsilon.$$

За теоремою 17.1 елементом найкращого наближення серед усіх сум вигляду $\sum_{k=1}^{n} \alpha_k \varphi_k$ є ряд Фур'є. Отже, цей ряд збігається, а, значить, виконується рівність Парсеваля, тобто система $\{\varphi_k\}$ є замкненою.

Теорема 17.4 (про ізоморфізм)

Довільні два сепарабельних гільбертових простора ε ізоморфними один до одного.

Доведення. Покажемо, що кожний гільбертів простір H є ізоморфним простору ℓ_2 . Це доведе теорему про ізоморфізм.

Виберемо в H довільну повну ортонормовану систему $\{\varphi_k\} \subset H$ і поставимо у відповідність елементу $f \in H$ сукупність його коефіцієнтів Фур'є за цією системою $c_1, c_2, \ldots, c_n, \ldots$ Оскільки $\sum_{k=1}^{\infty} c_k^2 < \infty$, то послідовність $\{c_1, c_2, \ldots, c_n, \ldots\}$ належить ℓ_2 .

І навпаки, за теоремою Рісса—Фішера довільному елементу $\{c_1, c_2, \ldots, c_n, \ldots\} \in \ell_2$ відповідає деякий елемент $f \in H$, у якого числа $c_1, c_2, \ldots, c_n, \ldots$ є коефіцієнтами Фур'є за системою $\{\varphi_k\} \subset H$. Ця відповідність є взаємно-однозначною.

Крім того, якщо

$$f \leftrightarrow \{c_1, c_2, \dots, c_n, \dots\},$$

$$g \leftrightarrow \{d_1, d_2, \dots, d_n, \dots\},$$

то

$$f + g \leftrightarrow \{c_1 + d_1, c_2 + d_2, \dots, c_n + d_n, \dots\},\$$

 $\alpha f \leftrightarrow \{\alpha c_1, \alpha c_2, \dots, \alpha c_n, \dots\}.$

Нварешті, із рівності Парсеваля випливає, що

$$(f, f) = \sum_{k=1}^{\infty} c_k^2, \quad (g, g) = \sum_{k=1}^{\infty} d_k^2,$$

а тому

$$2(f,g) = (f+g,f+g) - (f,f) - (g,g) = \sum_{k=1}^{\infty} (c_k + d_k)^2 - \sum_{k=1}^{\infty} c_k^2 - \sum_{k=1}^{\infty} d_k^2 = 2\sum_{k=1}^{\infty} c_k d_k.$$

Отже,

$$(f,g) = \sum_{k=1}^{\infty} c_k d_k.$$

Таким чином, установлена відповідність між елементами просторів H і ℓ_2 є ізоморфізмом.

§17.4 Література

[1] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин — М.: Наука, 1981 (стр. 149–157).

IV

Фільтри і напрямленності

Частина IV: Зміст

18		прямленості	111
		Частково упорядковані множини (нагадування)	111
		Напрямленості	112
	18.3	Границі напрямленості	113
	18.4	Напрямленості та неперервність	114
	18.5	Література	115
19	Фi	льтри	117
		Фільтри	117
		Бази фільтрів	117
		Образи фільтрів і баз фільтрів	118
		Фільтри, породжені базою	119
		Література	120
20	Фi	льтри і збіжність	121
		Границі і граничні точки фільтрів	121
	20.2	Границя функції по фільтру	122
	20.3	Література	122
21	Ул	ьтрафільтри	123
		Ультрафільтр як мажоранта	123
		Властивості і критерій ультрафільтра	123
		Ультрафільтри, збіжність і компактність	124
		Література	125
22	25	'язок між фільтрами і напрямленностями	127
22			127
		Відповідність між фільтрами і напрямленостями	
		Границі і граничні точки фільтрів і напрямленостей	128
		Універсальні напрямленності і ультрафільтри	128
	<i>ZZ</i> .4	Література	129

18 Напрямленості

Як добре відомо, в основі усіх основних понять і конструкцій математичного аналізу (неперервності, диференційовністі, інтегрованісті, сумування рядів тощо) лежить концепція збіжності. В основному курсі функціонального аналізу ми показали, що за допомогою цієї концепції в топологічних просторах, що задовольняють першу аксіому зліченості, можна навіть задавати топологію.

Концепція збіжності містить в собі два поняття: послідовність і границю. Спочатку в математиці розглядалися лише послідовності дійсних чисел. Згодом теорію розповсюдили на послідовності точок в метричному просторі, і, нарешті, узагальнили для послідовності точок в довільному топологічному просторі.

Прагнення вийти за межі просторів, що задовольняють першу аксіому зліченості, в 1920-х роках привело до узагальнення поняття границі звичайних послідовностей на узагальнену послідовність (збіжність за Муром—Смітом) і появи теорії напрямленостей. В 1930-х роках французський математик А. Картан розробив загальну теорію збіжності, яка заснована на поняттях фільтра, ультрафільтра та їх границь. Ця теорія є універсальною. Вона заміняє теорію Мура—Сміта і суттєво спрощує загальну теорію збіжності.

Для того щоб глибше зрозуміти зміст цих теорій, доцільно детально їх розглянути та порівняти.

§18.1 Частково упорядковані множини (нагадування)

Нагадаємо деякі означення із теорії множин.

Означення 18.1. Нехай A — довільна множина. Позначимо як $A \times A$ сукупність усіх упорядкованих пар (a,b), де $a,b \in A$. Говорять, що в множині A задано **бінарне відношення** φ , якщо в $A \times A$ виділено довільну підмножину R_{φ} . Елемент a перебуває у відношенні φ з елементом b, якщо пара (a,b), належить R_{φ} .

Приклад 18.1

Бінарним відношенням ϵ , наприклад, тотожність. Множиною R_{φ} у цьому випадку ϵ діагональ $(a,a) \in A \times A$.

Означення 18.2. Бінарне відношення, задане в множині A, називається **відношенням часткового передупорядкування**, якщо воно є рефлексивним і транзитивним, тобто

- 1. $(a, a) \in R_{\varphi}$ рефлексивність;
- 2. $(a,b),(b,c) \in R_{\varphi} \implies (a,c) \in R_{\varphi}$ транзитивність.

Означення 18.3. Бінарне відношення, задане в множині A, називається **відношенням часткового упорядкування**, якщо воно є рефлексивним, транзитивним і антисиметричним, тобто

- 1. $(a,a) \in R_{\varphi}$ рефлексивність;
- 2. $(a,b),(b,c) \in R_{\varphi} \implies (a,c) \in R_{\varphi}$ транзитивність.
- 3. $(a,b),(b,a) \in R_{\varphi} \implies a=b$ антисиметричність.

Означення 18.4. Множина *A* із заданим на ній відношенням часткового упорядкування (передупорядкування) називається **частково упорядкованою** (передупорядкованою) множиною.

Зауваження 18.1 — У частково упорядкованих множинах за традицією відношення xRy позначають як $x \le y$ або $y \ge x$.

§18.2 Напрямленості

Означення 18.5. Частково упорядкована множина S називається фільтрівною вправо, або напрямленням за зростанням, або просто напрямленою множиною, якщо

$$\forall s_1, s_2 \in S \quad \exists s \in S : \quad s \ge s_1, s_2.$$

Приклад 18.2

Множина натуральних чисел із природним упорядкуванням є напрямленою.

Приклад 18.3

Нехай x — фіксована точка топологічного простору X, а Ω_x — сукупність усіх околів цієї точки.

Введемо в множині Ω_x відношення упорядкування за оберненим включенням:

$$V \subset U \iff V > U$$
.

Оскільки

$$\forall U_1, U_2 \in \Omega \quad U_1 \cap U_2 \geq U_1, U_2,$$

то множина Ω_x є *напрямленою* множиною усіх околів точки x в просторі X.

Розглянемо довільну множину X і деяку послідовність її елементів x_n . Послідовність x_n можна трактувати як відображення

$$f: \mathbb{N} \to X$$
,

де
$$f(n) = x_n$$
.

Якщо замінити множину $\mathbb N$ довільною напрямленою множиною S, отримаємо означення узагальненої послідовності, або напрямленості.

Означення 18.6. Будь-яке відображення напрямленої множини називається **напрямленістю**, або **узагальненою послідовністю**, або **сіттю**. До того ж, якщо $f:S \to X$ — напрямленість, то напрямлена множина S називається областю визначеності напрямленості f, а множина f(S) — областю її значень.

Зауваження 18.2 — Будь-яка послідовність елементів простору X є напрямленістю в X з областю визначення \mathbb{N} . Для зручності значення f_s напрямленості $f: S \to X$ на елементі $s \in S$ часто позначають як x_s , а саму напрямленість f подають як множину $\{x_s \mid s \in S\}$.

18 Напрямленості 113

Приклад 18.4

Нехай Ω_x — напрямлена множина усіх околів точки x простору X. Вибираючи по точці x_U з кожного околу $U \subset \Omega_x$, отримуємо напрямленість $\{x_U \mid U \in \Omega_x\}$.

Означення 18.7. Говорять, що напрямленість $f: S \to X$ починаючи з деякого місця належить, або майже вся лежить в підмножині $A \subset X$, якщо існує $s_0 \in S$, таке що $\forall s \geq s_0 \ x_s \in A$.

Означення 18.8. Якщо $\forall s \in A \ \exists t \geq s \colon f_t \in A$, то говорять, що напрямленість $f : S \to X \in \mathbf{vactoo}$ в підмножині $A \subset X \ (\mathbf{vacto} \ \mathbf{буває} \ \mathbf{e} \ A)$.

Зауваження 18.3 — Якщо напрямленість $f:S\to X$ є частою в A, то вона не може майже вся лежати в доповненні $X\setminus A$. І навпаки, якщо напрямленість майже вся лежить в доповненні $X\setminus A$, то вона не може бути частою в A.

Означення 18.9. Точка x^* називається **граничною точкою** напрямленості, якщо ця напрямленість часто буває в будь-якому околі точки x^* .

§18.3 Границі напрямленості

Означення 18.10. Напрямленість $f: S \to X$ в топологічному просторі X називається **збіжною** до точки $x_0 \in X$, якщо вона майже вся лежить в будь-якому околі точки x_0 , тобто якщо для довільного околу U цієї точки знайдеться елемент $s_U \in S$, такий що $\forall s \geq s_U \ f_s \in U$. Точка $x_0 = \lim_S f_s$ називається **границею** напрямленості $f: S \to X$.

Приклад 18.5

Кожна збіжна послідовність в просторі X є збіжною напрямленістю в X, границя якої є границею послідовності.

Приклад 18.6

Нехай $\{x_U \mid U \in \Omega_x\}$ — напрямленість в просторі X. Легко бачити, що ця напрямленість збігається до точки x. Дійсно, нехай U_0 — довільний окіл точки x. Тоді $\forall U \geq U_0$ $x \in U \subset U_0$, тобто ця напрямленість майже вся лежить в довільному околі точки x.

Зауваження 18.4 — Напрямленість, як і послідовність, в загальних топологічних просторах може мати різні границі. В хаусдорфових просторах вона має одну границю.

Означення 18.11. Напрямленість $g: T \to X$ називається **піднапрямленістю** напрямленості $f: S \to X$, якщо існує відображення $h: T \to S$, таке що $g = f \circ h$ і $\forall s_0 \in S \ \exists t_0 \in T \colon \forall t \geq t_0 \ h(t) \geq s_0$.

Зауваження 18.5 — На відміну від означення звичайної підпослідовності, означення піднапрямленості допускає, щоб область визначення піднапрямленості не була частиною області визначення напрямленості.

Означення 18.12. Частково упорядкована множина $X \in \mathbf{конфінальною}$ своїй підмножині A, якщо в X не існує жодного елемента, що є наступним за усіма елементами множини A.

Приклад 18.7

Інтервал (0,1) є конфінальним множині $\left\{\frac{n}{n+1}\middle|n\in\mathbb{N}\right\}$.

Зауваження 18.6 — Якщо $T \subset S$, а h — відображення вкладення, то друга умова еквівалентна конфінальності T в S. І навпаки, для будь-якої конфінальної частини T з S і будь-якої напрямленості $f: S \to X$ звуження f на T є піднапрямленістю напрямленості f.

Теорема 18.1 (Бірхгофа)

Нехай A — деяка підмножина довільного топологічного простору X. Тоді $x \in \overline{A}$ тоді і лише тоді, коли існує напрямленість в A, що збігається до точки x.

Доведення. **Необхідність.** Нехай $x \in \overline{A}$ і Ω_x — напрямлена множина усіх околів точки x. Оскільки

$$\forall U \in \Omega_x \quad A \cap U \neq \emptyset,$$

то, вибираючи по одній точці $x_U x \in A \cap U$, отримуємо напрямленість $\{x_U \mid U \in \Omega_x\}$ в A, що збігається до точки x.

Достатність. Нехай $\{x_s \mid s \in S\}$ — напрямленість в A, що збігається в X до точки x. Тоді за означенням границі напрямленості

$$\forall U \in \Omega_x \quad \exists s_0 \in S : \quad \forall s \ge s_0 \quad x_s \in U.$$

Отже,

$$A \cap U \neq \emptyset \implies x_0 \in \overline{A}.$$

§18.4 Напрямленості та неперервність

Зауваження 18.7 — Нагадаємо, що в просторах із першою аксіомою зліченності неперервність відображення f в довільній точці x_0 була еквівалентною умові, що з $x_n \to x_0$ випливає $f(x_n) \to f(x_0)$. Перехід від послідовностей до напрямленостей дозволяє відмовитись від цієї умови.

Теорема 18.2 (критерій неперервності)

Відображення $f: X \to Y$ є неперервним в точці x_0 тоді і лише тоді, коли для будь-якої напрямленості $\{x_s \mid s \in S\}$, що збігається до точки $x_0 \in X$ напрямленість $\{f(x_s) \mid s \in S\}$ збігається то точки $f(x_0) \in Y$.

18 Напрямленості 115

Доведення. **Необхідність.** Нехай $f: X \to Y$ неперервна в точці x_0 і $\{x_s \mid s \in S\}$ — деяка напрямленість в X, що збігається до точки x_0 . Нехай також V_0 — довільний окіл точки $f(x_0)$ в Y. Тоді достатньо перевірити, що напрямленість $\{f(x_s) \mid s \in S\}$ майже вся лежить в V_0 .

Справді, оскільки відображення f є неперервним в точці x_0 , то існує окіл U_0 точки x_0 , такий що $f(U_0) \subset V_0$. Оскільки напрямленість $\{x_s \mid s \in S\}$ збігається до x_0 , то знайдеться індекс $s_0 \in S$ такий, що при всіх $s \geq s_0$ $x_s \in U_0$. Отже, для всіх $s \geq s_0$ $f(x_s) \in V_0$, а це значить, що майже вся напрямленість $\{f(x_s) \mid s \in S\}$ лежить в V_0 .

Достатність. Припустимо, що умови теореми виконуються, але відображення f не є неперервним в точці x_0 . Тоді існує такий окіл V_0 точки $f(x_0)$, що в будь-якому околі U точки x_0 знайдеться точка x_U , образ $f(x_U)$ якої належить $Y \setminus V_0$.

Розглянемо напрямленість $\{x_U \mid U \in \Omega_{x_0}\}$, де Ω_{x_0} — напрямлена множина усіх околів точки x_0 . Очевидно, що ця напрямленість збігається до точки x_0 .

Проте напрямленість $\{f(x_U) \mid U \in \Omega_{x_0}\}$ не може збігатися до точки $f(x_0)$, оскільки в такому випадку вона майже вся лежала б в околі V_0 . Отримане протиріччя доводить достатність.

§18.5 Література

- [1] **Колмогоров А. Н.** Элементы теории функций и функционального анализа / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 18–21).
- [2] **Александрян Р. А.,** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 91–98).
- [3] **Келли Дж.** Общая топология / Дж. Келли М.: Наука, 1966 (стр. 91–118).

19 Фільтри

Окрім збіжності напрямленостей, існує ще один вид узагальненої збіжності — збіжність фільтрів. Ця ідея базується на альтернативному означенні збіжної послідовності: послідовність x_n називається збіжною до точки x_0 , якщо для будь-якого околу U цієї точки доповнення до прообразу $f^{-1}(U)$ є скінченною підмножиною з \mathbb{N} , де $f: \mathbb{N} \to X$ — відображення, що задає послідовність. Якщо множину \mathbb{N} замінити абстрактним простором E, в якому виділено сім'ю підмножин F, що має певні загальні властивості, то можна дати розумне означення узагальненої збіжності.

§19.1 Фільтри

Означення 19.1. Сім'я підмножин \mathfrak{F} множини X називається фільтром на X, якшо:

- 1. Сім'я \mathfrak{F} непорожня.
- 2. $\varnothing \notin \mathfrak{F}$.
- 3. Якщо $A, B \in \mathfrak{F}$, то $A \cap B \in \mathfrak{F}$.
- 4. Якщо $A \in \mathfrak{F}$, $A \subset B \subset X$, то $B \in \mathfrak{F}$.

Наслідок 19.1

 $X \in \mathfrak{F}$.

Наслідок 19.2

$$A_1, A_2, \dots, A_n \in \mathfrak{F} \implies \bigcap_{i=1}^n A_i \in \mathfrak{F}.$$

Наслідок 19.3

$$A_1, A_2, \dots, A_n \in \mathfrak{F} \implies \bigcap_{i=1}^n A_i \neq \varnothing.$$

Приклад 19.1

Система Ω_x усіх околів точки x у топологічному просторі X є фільтром.

§19.2 Бази фільтрів

Означення 19.2. Непорожня сім'я підмножин $\mathfrak D$ множини X називається базою фільтра, якщо:

- 1. $\varnothing \notin \mathfrak{D}$;
- 2. $\forall A, B \in \mathfrak{D} \ \exists C \in \mathfrak{D} : C \subset A \cap B$.

Означення 19.3. Нехай $\mathfrak D$ — база фільтра. Фільтром, що **породжений** базою $\mathfrak D$, називається сім'я $\mathfrak F$ усіх множин $A\subset X$, що містять як підмножину хоча б один елемент бази $\mathfrak D$.

Вправа 19.1. Довести, що фільтр, породжений базою, дійсно є фільтром.

Доведення. Перевіримо аксіоми фільтра. Перші дві аксіоми очевидні, адже фільтр містить як підмножину свою непорожню базу, і порожня множина не є надмножиною ніякоїмножини окрім порожньої, а база її не містить. Перевіримо тепер другі дві аксіоми.

Перетин: якщо $A, B \in \mathfrak{F}$ то $\exists C, D \in \mathfrak{D}$ такі, що $C \subset A$ і $D \subset B$, а тоді $\exists E \in \mathfrak{D}$: $E \subset C \cap D$, і тому $E \subset A \cap B$ і, як наслідок, $A \cap B \in \mathfrak{F}$.

Надмножина: якщо $A \in \mathfrak{F}$ то $\exists B \in \mathfrak{D} \colon B \subset A$, а тому $B \subset C$ для усіх $C \supset A$ і, як наслідок, $C \in \mathfrak{F}$.

Приклад 19.2

Якщо X — топологічний простір, $x_0 \in X$, \mathfrak{D} — сукупність усіх відкритих множин, що містять x_0 , то фільтр, породжений базою \mathfrak{D} , є фільтром \mathfrak{M}_{x_0} , що складається з усіх околів точки x_0 .

Означення 19.4. Нехай $\{x_n\}_{n=1}^{\infty}$ — послідовність елементів множини X. Тоді сім'я $\mathfrak{D}_{\{x_n\}}$ "хвостів" послідовності $\{x_n\}_{n=N}^{\infty}$ є базою фільтра. Фільтр $\mathfrak{F}_{\{x_n\}}$, породжений базою $\mathfrak{D}_{\{x_n\}}$, називається фільтром, **асоційованим** з послідовністю $\{x_n\}_{n=1}^{\infty}$.

§19.3 Образи фільтрів і баз фільтрів

Теорема 19.1

Нехай X,Y — множини, $f:X\to Y$ — функція, $\mathfrak D$ — база фільтра в X. Тоді сім'я $f(\mathfrak D)$ усіх множин вигляду $f(A),\,A\in\mathfrak D$ є базою фільтра в Y.

Доведення. Виконання першої аксіоми бази фільтра є очевидним, адже образ непорожньої множини — непорожня множина. Нехай f(A), f(B) — довільні елементи сім'ї $f(\mathfrak{D}), A, B \in D$. За другою аксіомою існує таке $C \in \mathfrak{D}$, що $C \subset A \cap B$. Тоді $f(C) \subset f(A) \cap f(B)$. Отже друга аксіома виконується і для сім'ї $f(\mathfrak{D})$.

Наслідок 19.4

Якщо \mathfrak{F} — фільтр на X, то $f(\mathfrak{F})$ — база фільтра в Y.

Означення 19.5. Образом фільтра \mathfrak{F} при відображенні f називається фільтр $f[\mathfrak{F}]$, породжений базою $f(\mathfrak{F})$, тобто

$$A \in f[\mathfrak{F}] \iff f^{-1}(A) \in \mathfrak{F}.$$

19 Фільтри

Теорема 19.2

Нехай $\mathfrak{C} \subset 2^X$ — непорожня сім'я множин. Тоді аби існував фільтр $\mathfrak{F} \supset \mathfrak{C}$ (тобто такий, що усі елементи сім'ї \mathfrak{C} є елементами фільтра \mathfrak{F}) необхідно і достатньо, щоб \mathfrak{C} була центрованою.

Доведення. **Необхідність.** Якщо \mathfrak{F} — фільтр і $\mathfrak{F} \supset \mathfrak{C}$, то будь-який скінчений набір A_1, A_2, \ldots, A_n елементів сім'ї \mathfrak{C} буде складатися з елементів фільтра \mathfrak{F} . Отже,

$$\bigcap_{i=1}^{n} A_i \neq \varnothing.$$

Достатність. Нехай \mathfrak{C} — центрована сім'я. Тоді сім'я \mathfrak{D} усіх множин вигляду

$$\bigcap_{i=1}^{n} A_i, \quad n \in \mathbb{N}, \quad A_1, A_2, \dots, A_n \in \mathfrak{C}$$

буде базою фільтра. Як фільтр $\mathfrak F$ треба взяти фільтр, породжений базою $\mathfrak D$.

§19.4 Фільтри, породжені базою

Означення 19.6. Нехай \mathfrak{F} — фільтр на X. Сім'я множин \mathfrak{D} називається базою фільтра \mathfrak{F} , якщо \mathfrak{D} база фільтра і фільтр, породжений базою \mathfrak{D} , збігається з \mathfrak{F} .

Теорема 19.3 (критерій бази фільтра \mathfrak{F})

Для того щоб $\mathfrak D$ була базою фільтра $\mathfrak F$, необхідно і достатнью, щоб виконувалися дві умови:

- 1. $\mathfrak{D} \subset \mathfrak{F}$;
- 2. $\forall A \in \mathfrak{F} \exists B \in \mathfrak{D} : B \subset A$.

Вправа 19.2. Доведіть цю теорему.

Доведення. **Необхідність.** Без першої з цих умов \mathfrak{F} замалий щоб бути породженим базою \mathfrak{D} (не містить якоїсь із множин бази), а без другої — завеликий (містить якусь множину A, яка не є надмножиною жодної із множин бази).

Достатність. Зрозуміло, що за таких умов усі множини фільтра \mathfrak{F} будуть належати фільтру, породженому базою \mathfrak{D} . Відповідно, питання полягає у тому, щоб у породженому фільтрі не опинилося зайвих множин. Розглянемо якусь множинк A з нього. Вона є надмножиною якогось елемента B бази. З першої умови випливає, що фільтр \mathfrak{F} також містить B. Тоді він містить і множину A як надмножину B. Отже, породжений базою \mathfrak{D} фільтр не може бути ані більшим ані меншим від фільтра \mathfrak{F} , і теорема доведена.

Означення 19.7. Нехай F — фільтр на X і $A \subset X$. Слідом фільтра \mathfrak{F} на A називається сім'я підмножин $\mathfrak{F}_A = \{A \cap B \mid B \in \mathfrak{F}\}.$

Теорема 19.4

Для того щоб слід \mathfrak{F}_A фільтра \mathfrak{F} був фільтром на A, необхідно і достатньо, щоб усі перетини $A \cap B$, $B \in \mathfrak{F}$ були непорожніми.

Вправа 19.3. Доведіть цю теорему.

Доведення. **Необхідність.** Якщо $A \cap B$ порожня для якогось $B \in \mathfrak{F}$, то \mathfrak{F}_A містить $A \cap B = \emptyset$, тобто точно не є фільтром, адже не задовольняє першу аксіому.

Достатність. Перевіримо аксіоми фільтра. Перші дві аксіоми очевидні. Перевіримо другі дві аксіоми.

Перетин. Якщо $B,C\in\mathfrak{F}_A$, то $\exists D,E\in\mathfrak{F}$: $B=D\cap A,\,C=E\cap A.$ Тоді $B\cap C=(D\cap A)\cap(E\cap A)=(D\cap E)\cap A\in\mathfrak{F}.$

Надмножина. Якщо $B \in \mathfrak{F}_A$, $C \supset B$, $C \subset A$, то $\exists D \in \mathfrak{F}$: $B = D \cap A$. Тоді $C \cup D \supset D$, тобто $C \cup D \in \mathfrak{F}$, а тому $(C \cup D) \cap A = (C \cap A) \cup (D \cap A) = C \cup B = C \in \mathfrak{F}_A$. \square

Наслідок 19.5

Зокрема, якщо $A \in \mathfrak{F}$, то \mathfrak{F}_A — фільтр.

§19.5 Література

- [1] **Александрян Р. А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 99–102).
- [2] **Кадец В. М.** Курс функционального анализа / В. М. Кадец Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 481–484).

20 Фільтри і збіжність

§20.1 Границі і граничні точки фільтрів

Означення 20.1. Нехай на множині X задані фільтри \mathfrak{F}_1 і \mathfrak{F}_2 . Говорять, що \mathfrak{F}_1 мажорує \mathfrak{F}_2 , якщо $\mathfrak{F}_2 \subset \mathfrak{F}_1$, тобто кожний елемент фільтра \mathfrak{F}_2 є водночас і елементом фільтра \mathfrak{F}_1 .

Приклад 20.1

Нехай $\{x_n\}_{n\in\mathbb{N}}$ — послідовність в X, а $\{x_{n_k}\}_{k\in\mathbb{N}}$ — її підпослідовність. Тоді фільтр $\mathfrak{F}_{\{x_{n_k}\}}$ асоційований з підпослідовністю, мажорує фільтр $\mathfrak{F}_{\{x_n\}}$, асоційований з самою послідовністю.

Дійсно, нехай $A\in\mathfrak{F}_{\{x_n\}}$. Тоді існує таке $N\in\mathbb{N}$, що $\{x_n\}_{n=N}^\infty\subset A$. Але тоді й $\{x_{n_k}\}_{k=N}^\infty\subset A$, тобто $A\in\mathfrak{F}_{\{x_{n_k}\}}$.

Означення 20.2. Нехай X — топологічний простір, \mathfrak{F} — фільтр на X. Точка $x \in X$ називається **границею фільтра** \mathfrak{F} (цей факт позначається як $x = \lim \mathfrak{F}$), якщо \mathfrak{F} мажорує фільтр околів точки x. Іншими словами, $x = \lim \mathfrak{F}$, якщо кожний окіл точки x належить фільтру \mathfrak{F} .

Означення 20.3. Точка $x \in X$ називається **граничною точкою фільтра** \mathfrak{F} , якщо кожний окіл точки x перетинається з усіма елементами фільтра \mathfrak{F} . Множина усіх граничних точок фільтра називається LIM \mathfrak{F} .

Приклад 20.2

Нехай $\{x_n\}_{n\in\mathbb{N}}$ — послідовність в топологічному просторі X. Тоді $x=\lim\mathfrak{F}_{\{x_n\}}=\lim_{n\to\infty}x_n$, а $x\in\mathrm{LIM}\,\mathfrak{F}_{\{x_n\}}$ збігається з множиною граничних точок послідовності $\{x_n\}_{n\in\mathbb{N}}$.

Теорема 20.1

Нехай \mathfrak{F} — фільтр на топологічному просторі X, \mathfrak{D} — база фільтра \mathfrak{F} . Тоді

- 1. $x = \lim \mathfrak{F} \iff \forall U \in \Omega_x \; \exists A \in \mathfrak{D} \colon A \subset U;$
- 2. $x = \lim \mathfrak{F} \implies x \in \text{LIM }\mathfrak{F}$. Якщо до того ж X хаусдорфів простір, то у фільтра \mathfrak{F} немає інших граничних точок. Зокрема, якщо у фільтра в хаусдорфовому просторі є границя, то ця границя є єдиною;
- 3. множина LIM \mathfrak{F} збігається з перетином замикань усіх елементів фільтра \mathfrak{F} .

Доведення.

- 1. $x = \lim \mathfrak{F} \iff \forall U \in \Omega_x \ U \in \mathfrak{F} \iff \forall U \in \mathfrak{F} \ \exists A \in \mathfrak{D} : A \subset U.$
- 2. $x = \lim \mathfrak{F}, U \in \Omega_x \implies U \in \mathfrak{F} \implies \forall A \in \mathfrak{F} \ A \cap U \neq \emptyset \implies x \in \text{LIM } \mathfrak{F};$ $x \in \text{LIM } \mathfrak{F} \implies \forall U \in \mathfrak{F}, V \in \Omega_y \ U \cap V \neq \emptyset \implies x = y$ (простір хаусдорфів).
- 3. $x = \text{LIM } \mathfrak{F} \iff \forall A \in \mathfrak{F}, U \in \Omega_x \ A \cap U \neq \emptyset \iff \forall A \in \mathfrak{F} \ x \in \overline{A}.$

Теорема 20.2

Нехай \mathfrak{F}_1 , \mathfrak{F}_2 — фільтри на топологічному просторі X і $\mathfrak{F}_1 \subset \mathfrak{F}_2$. Тоді:

- 1. $x = \lim \mathfrak{F}_1 \implies x = \lim \mathfrak{F}_2;$
- 2. $x \in LIM \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1$;
- 3. $x = \lim \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1$.

Доведення.

- 1. \mathfrak{F}_1 мажорує фільтр \mathfrak{M}_x околів точки $x,\,\mathfrak{F}_1\subset\mathfrak{F}_2\implies \mathfrak{M}_x\subset\mathfrak{F}_2.$
- 2. Оскільки при збільшенні сім'ї множин її перетин зменшується, то

$$LIM \mathfrak{F}_2 = \bigcap_{A \in \mathfrak{F}_2} \overline{A} \subset \bigcap_{A \in \mathfrak{F}_1} \overline{A} = LIM \mathfrak{F}_1.$$

3. $x = \lim \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_2 \implies x \in LIM \mathfrak{F}_1$.

§20.2 Границя функції по фільтру

Означення 20.4. Нехай X — множина, Y — топологічний простір, \mathfrak{F} — фільтр на X. Точка $y \in Y$ називається **границею функції** $f: X \to Y$ по фільтру \mathfrak{F} (цей факт позначається як $y = \lim_{\mathfrak{F}} f$, якщо $y = \lim_{\mathfrak{F}} f$]. Іншими словами, $y = \lim_{\mathfrak{F}} f$ [\mathfrak{F}], якщо для довільного околу U точки y існує такий елемент $A \in \mathfrak{F}$, що $f(A) \subset U$.

Означення 20.5. Точка $y \in Y$ називається граничною точкою функції $f: X \to Y$ по фільтру \mathfrak{F} , якщо $y \in \text{LIM } f[\mathfrak{F}]$, тобто якщо довільний окіл точки y перетинається з образами усіх елементів фільтра \mathfrak{F} .

Приклад 20.3

Нехай X — топологічний простір, $f:\mathbb{N}\to X$ і \mathfrak{F} — фільтр Фреше на \mathbb{N} . Тоді $\lim_{\mathfrak{F}}f=\lim_{n\to\infty}f(n)$.

Теорема 20.3

Нехай X і Y — топологічні простори, \mathfrak{F} — фільтр на $X, x = \lim \mathfrak{F}$ і $f: X \to Y$ — неперервна функція. Тоді $f(x) = \lim_{\mathfrak{F}} f$.

Доведення. Нехай U — довільний окіл точки f(x). Тоді існує окіл V точки X, для якого $f(V) \subset U$. Умова $x = \lim \mathfrak{F}$ означає, що $V \in \mathfrak{F}$. Інакше кажучи, для довільного околу U точки f(x) ми знайшли шуканий елемент $V \in \mathfrak{F}$: $f(V) \subset U$.

§20.3 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: XHУ им. В. Н. Каразина, 2006. (стр. 484-488).

21 Ультрафільтри

§21.1 Ультрафільтр як мажоранта

Лема 21.1

Нехай \mathfrak{M} — лінійно упорядкована непорожня сім'я фільтрів, заданих на множині X, тобто для довільни $\mathfrak{F}_1, \mathfrak{F}_2 \in \mathfrak{M}$ або $\mathfrak{F}_1 \subset \mathfrak{F}_2$, або $\mathfrak{F}_2 \subset \mathfrak{F}_1$. Тоді об'єднання \mathfrak{F} усіх фільтрів сім'ї \mathfrak{M} також буде фільтром на X.

Доведення. Перевіримо виконання аксіом фільтра для об'єднання сім'ї множин **M**. Перші дві аксіоми є очевидними, а тому перевіримо останні дві.

Перетин: якщо $A, B \in \mathfrak{F}$, то знайдуться такі $\mathfrak{F}_1, \mathfrak{F}_2 \in \mathfrak{M}$, що $A \in \mathfrak{F}_1, B \in \mathfrak{F}_2$. За умовою, один з фільтрів \mathfrak{F}_1 і \mathfrak{F}_2 мажорує інший. Нехай, без обмеження загальності, $\mathfrak{F}_1 \subset \mathfrak{F}_2$. Тоді окрім множини B йому належить і множина A, адже $A \in \mathfrak{F}_1 \subset \mathfrak{F}_2$. Оскільки $\mathfrak{F}_2 - \Phi$ ільтр, то $A \cap B \in \mathfrak{F}_2 \subset \mathfrak{F}$, тобто сім'я \mathfrak{F} справді замкнена відносно (скінченного) перетину.

Надмножина: якщо $A \in \mathfrak{F}$ і $A \subset B \subset X$, то знайдеться такий $\mathfrak{F}_1 \in \mathfrak{M}$, що $A \in \mathfrak{F}_1$, а тому $B \in \mathfrak{F}_1$, як надмножина елемента фільтра. Як наслідок, $B \in \mathfrak{F}$ і сім'я \mathfrak{F} виявляється замкненою відносно взяття надмножини.

Означення 21.1. Ультрафільтром на X називається максимальний за включенням фільтр на X. Інакше кажучи, фільтр $\mathfrak A$ на X називається ультрафільтром, якщо будь-який фільтр $\mathfrak F$ на X, що мажорує $\mathfrak A$, збігається з $\mathfrak A$.

Теорема 21.1

Для кожного фільтра $\mathfrak F$ на X існує ультрафільтр, що його мажорує.

Доведення. Випливає з леми Цорна. Більш детально, необхідно розглянути частково упорядковану множину (сім'ю) фільтрів, що мажорують \mathfrak{F} . Лемма 21.1 показує, що довільний ланцюг (лінійно впорядкована підмножина) має верхню межу (також кажуть верхню грань або мажоранту).

Тоді лема Цорна стверджує, що у нашій частково упорядкованій множині є максимальний елемент. З одного боку зрозуміло, що він буде ультрафільтром, адже немає іншого фільтра, що його мажорує, а з іншого — що він буде мажорувати \mathfrak{F} , адже усі елементи нашої частково упорядкованої множини за побудовою мажорують \mathfrak{F} .

§21.2 Властивості і критерій ультрафільтра

Лема 21.2

Нехай $\mathfrak A$ — ультрафільтр, $A\subset X$ і всі елементи ультрафільтра перетинаються з A. Тоді $A\in \mathfrak A.$

¹для якого не існує більшого, але не обов'язково більший за кожен інший

Доведення. Додавши до сім'ї множин $\mathfrak A$ як елемент множину A ми отримаємо центровану систему множин. Справді, для цього достатньо аби $\mathfrak A$ була просто фільтром, а точніше замкненою відносно скінченного перетину. Тоді додавши у цей перетин, який є елементом $\mathfrak A$, ще й A можна просто скористатися умовою на непорожні перетини A із елементами $\mathfrak A$. Зрозуміло, що ці міркування працюють і для ультрафільтрів, адже кожен ультрафільтр є фільтром. Таким чином уся розширена система множин є центрованою.

За теорем. 19.2 звідси випливає, що знайдеться фільтр \mathfrak{F} , який містить усі елементи нашої центрованої системи. Але тоді $\mathfrak{F} \supset \mathfrak{A}$, звідки випливає, що $\mathfrak{F} = \mathfrak{A}$, адже \mathfrak{A} — ультрафільтр, і розширюватися уже нікуди. У той же час, за побудовою, $A \in \mathfrak{F}$, тобто $A \in \mathfrak{A}$.

Зауваження 21.1 — Якщо зняти умову того, що $\mathfrak A$ — ультрафільтр, і сказати що він просто фільтр, то вийде, що його можна розширити до якогось $\mathfrak A'$ щоб додати якийсь новий елемент A, за умови що цей A перетинається із усіма елеменами $\mathfrak A$.

Теорема 21.2 (критерій ультрафільтра)

Для того, щоб фільтр $\mathfrak A$ на X був ультрафільтром, необхідно і достатньо, щоб для довільної множини $A\subset X$ або сама множина A, або її доповнення $X\setminus A$ належало фільтру $\mathfrak A$.

Доведення. **Необхідність.** Нехай $\mathfrak A$ — ультрафільтр, і $X \setminus A \notin \mathfrak A$. Тоді жодна множина $B \in \mathfrak A$ не міститься цілком в $X \setminus A$, тобто будя-яка $B \in \mathfrak A$ перетинається з A. Отже, за попередньою лемою, $A \in \mathfrak A$.

Достатність. Припустимо що \mathfrak{A} — не ультрафільтр. Тоді існує фільтр $\mathfrak{F} \supset \mathfrak{A}$ і множина $A \in \mathfrak{F} \setminus \mathfrak{A}$. За побудовою, $A \notin \mathfrak{A}$. З іншого боку, $X \setminus A$ не перетинається з A, $A \in \mathfrak{F}$, отже $X \setminus A \notin \mathfrak{F}$, а отже $X \setminus A \notin \mathfrak{A} \subset \mathfrak{F}$.

Наслідок 21.1

Образ ультрафільтра є ультрафільтром.

Доведення. Нехай $f: X \to Y$ і \mathfrak{A} — ультрафільтр на X. Розглянемо довільну множину $A \subset Y$. Тоді або $f^{-1}(A)$ або $f^{-1}(Y \setminus A) = Y \setminus f^{-1}(A)$ належить \mathfrak{A} , отже $A \in f[\mathfrak{A}]$ або $Y \setminus A \in f[\mathfrak{A}]$.

§21.3 Ультрафільтри, збіжність і компактність

Лема 21.3

Нехай $\mathfrak A$ — ультрафільтр на хаусдорфовому топологічному просторі X і $x\in \mathrm{LIM}(\mathfrak A).$ Тоді $x=\lim \mathfrak A.$

Доведення. Нехай $U \in \Omega_x$. Тоді за означенням граничної точки окіл U перетинається зі всіма елементами ультрафільтра \mathfrak{A} . За лемм. 21.2 $U \subset \mathfrak{A}$.

21 Ультрафільтри 125

Теорема 21.3 (критерій компактності у термінах ультрафільтрів)

Для хаусдорфового топологічного простору X наступні умови еквівалентні:

- X компакт;
- \bullet кожен ультрафільтр на X має граничну точку;
- \bullet кожен ультрафільтр на X має границю.

Доведення. $1 \implies 2$. Фільтр \mathfrak{F} — центрована сім'я множин. Тим більше, центрованою буде сім'я замикань елементів фільтра. Отже, перетин $LIM(\mathfrak{F})$ цих замикань не є порожнім.

 $2 \implies 1$. Нехай $\mathfrak C$ — довільна центромана система замкнених підмножин простору X. За теорем. 19.2 існує фільтр $\mathfrak F \supset \mathfrak C$. Тоді

$$\bigcap_{A\in\mathfrak{C}}\overline{A}\supset\bigcap_{A\in\mathfrak{F}}\overline{A}=\mathrm{LIM}(\mathfrak{F})\neq\varnothing.$$

- $2 \implies 3$. За умовою кожен ультрафільтр має граничну точку, а за лемм. 21.3 ця точка буде його границею.
- $3 \implies 2$. Розглянемо довільний фільтр $\mathfrak F$ на X і виберемо (теорем. 21.1) ультрафільтр $\mathfrak A \supset \mathfrak F$. За умовою ультрафільтр $\mathfrak A$ має границю $x \in X$. Згідно твердження 3) теорем. 20.2 точка $x \in \text{граничною точкою фільтра } \mathfrak F$.

Наслідок 21.2

Нехай $\mathfrak A$ — ультрафільтр на E, X — топологічний простір і образ f(E) функції $f: E \to X$ лежить в деякому компакті $K \subset X$. Тоді існує $\lim_{\mathfrak A} f$.

Доведення. Розглянемо f як функцію, що діє з E в K. Оскільки (виснов. 21.1) $f[\mathfrak{A}]$ є ультрафільтром на компакті K, то існує $\lim f[\mathfrak{A}]$. Отже, за означенням границі функції за фільтром, $\lim_{\mathfrak{A}} f = \lim f[\mathfrak{A}]$.

§21.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 484-490).

22 Зв'язок між фільтрами і напрямленностями

Фільтри і напрямленості в одній множині X приводять до еквівалентних теорій збіжності. З одного боку, як показано раніше, кожній напрямленості $\{x_s \mid s \in S\}$ в множині X відповідає асоційований з нею фільтр в X. З іншого боку, має місце така теорема.

§22.1 Відповідність між фільтрами і напрямленостями

Теорема 22.1

Нехай \mathfrak{F} — довільний фільтр в множині X. Тоді в цій множині існує напрямленість $\{x_s \mid s \in S\}$ така, що асоційований з нею фільтр збігається з фільтром \mathfrak{F} .

Доведення. Розглянемо множину усіх можливих пар s=(x,M), де $M\in\mathfrak{F}$, а $x\in M$. Введемо у множині таких пар S частковий передпорядок, поклавши $(x,M)\leq (y,N)$, якщо $M\supset N$. Таким чином, S — напрямлена множина.

Задамо відображення $f: S \to X$, поклавши

$$f(s) = x, \quad \forall s = (x, M) \in S.$$

Нехай s = (x, M) — довільний елемент з S, а $\hat{M}_s = \{f(t) \mid t \geq s\}$. За означенням фільтра $\hat{\mathfrak{F}}$, асоційованого з напрямленістю $f: S \to X$, система підмножин \hat{M}_s , де s пробігає усі значення в множині S, утворює базу $\hat{\beta}$ фільтра $\hat{\mathfrak{F}}$.

Покажемо, що фільтр $\hat{\mathfrak{F}}$, асоційований з побудованою напрямленістю $f:S\to X$, збігається з фільтром \mathfrak{F} , тобто

$$\hat{\mathfrak{F}} \leq \mathfrak{F}$$
 i $\mathfrak{F} \leq \hat{\mathfrak{F}}$.

1. Для того щоб довести, що $\hat{\mathfrak{F}} \leq \mathfrak{F}$, треба показати, що

$$\forall \hat{M}_s \in \hat{\beta} \quad \exists M \in \mathfrak{F} : \quad M \subset \hat{M}_s.$$

Насправді має місце більш сильний факт:

$$\forall \hat{M}_s \in \hat{\beta} \quad \exists M \in \mathfrak{F} : \quad M = \hat{M}_s.$$

Дійсно, нехай $y \in \hat{M}_s$, тобто

$$\exists t = (z, N) > (x, M) = s : \quad y = f(t),$$

тоді

$$y = z \in N \subset M \implies \hat{M}_s \subset M.$$

Тепер візьмемо довільну точку $z \in M$ і покладемо $t^* = (z, M)$. Оскільки $t^* \ge s = (x, M)$, то $f(t^*) = z \in \hat{M}_s$, тобто $M \subset \hat{M}_s$. Таким чином, $M = \hat{M}_s$.

2. Покажемо, що має місце і обернене твердження: $\mathfrak{F} \leq \hat{\mathfrak{F}}$. Для цього пересвідчимось, що

$$\forall M \in \mathfrak{F} \quad \exists \hat{M}_s \in \hat{\beta} : \quad \hat{M}_s = M.$$

Нехай x^* — довільний елемент з M і $s^* = (x^*, M)$. Повторимо міркування, наведені вище.

Нехай $s^* = (x^*, M)$ — довільний елемент з S, а $y^* \in \hat{M}_{s^*}$, тобто

$$\exists t^* = (z^*, N) \ge (x^*, M) = s^* : \quad y = f(t^*),$$

тоді

$$y^* = x^* \in N \subset M \implies \hat{M}_{s^*} \subset M.$$

Тепер візьмемо довільну точку $z^* \in M$ і покладемо $t^* = (z^*, M)$. Оскільки $t^* \geq s^* = (x, M)$, то $f(t^*) = z^* \in \hat{M}_{s^*}$, тобто $M \subset \hat{M}_{s^*}$.

Таким чином, $\mathfrak{F} = \hat{\mathfrak{F}}$.

§22.2 Границі і граничні точки фільтрів і напрямленостей

Теорема 22.2

Нехай $\xi = \{x_s \mid s \in S\}$ — напрямленість в топологічному просторі X, а \mathfrak{F} — асоційований з нею фільтр. Тоді кожна границя (відповідно, гранична точка) напрямленості ξ є границею (відповідно, граничною точкою) фільтра \mathfrak{F} , і навпаки.

Доведення. **Необхідність.** Нехай $x_0 = \lim_S x_s$. Покажемо, що фільтр \mathfrak{F} мажорує фільтр \mathfrak{F}_{x_0} околів точки x_0 , тобто $x_0 = \lim \mathfrak{F}$. Нехай U_0 — довільний елемент \mathfrak{F}_{x_0} , тобто деякий окіл точки x_0 в просторі X. Тоді

$$x_0 = \lim_{S} x_s \implies \exists s_0 \in S : M_{s_0} = \{x_s \mid s \ge s_0\} \subset U_0.$$

Оскільки M_{s_0} — елемент бази фільтра, асоційованого з напрямленістю ξ , то $M_{s_0} \subset U_0 \implies U_0 \in \mathfrak{F}$. Отже,

$$\mathfrak{F}\supset\mathfrak{F}_{x_0}\implies x_0=\lim\mathfrak{F}.$$

Достатність. Нехай $x_0 = \lim \mathfrak{F}$. Отже, будь-який окіл U_0 точки x_0 є елементом фільтра \mathfrak{F} . За означенням, множини $M_s = \{x_t \mid t \geq s\}$ утворюють базу фільтра \mathfrak{F} , тому $\exists M_{s_0} \subset U_0$. Отже, для будь-якого околу U_0 точки x_0 існує $s_0 \in S$, такий що усі члени напрямленості ξ при $s \geq s_0$ лежать в U_0 , тобто $x_0 = \lim_S x_s$.

§22.3 Універсальні напрямленності і ультрафільтри

Означення 22.1. Напрямленість $\{x_s \mid s \in S\}$ в множині X називається **універсальною**, якщо для будь-якої підмножини $M \subset X$ вона або майже вся лежить в M, або майже вся лежить в $X \setminus M$.

Теорема 22.3

Напрямленість в X ϵ універсальною тоді і лише тоді, коли асоційований з нею фільтр ϵ ультрафільтром.

Доведення. **Необхідність.** Нехай $\xi = \{x_s \mid s \in S\}$ — універсальна напрямленість в X, \mathfrak{F} — асоційований з нею фільтр, а M — довільна підмножина з X. Покажемо, що або M, або $X \setminus M$ належать фільтру \mathfrak{F} , звідки випливає, що \mathfrak{F} — ультрафільтр (теорем. 21.2).

Оскільки $\xi = \{x_s \mid s \in S\}$ — універсальна напрямленість в X, то вона майже вся лежить або в M, або в $X \setminus M$, тобто існує індекс $s_0 \in S$, такий що множина $M_{s_0} = \{x_s \mid s \geq s_0\}$ цілком міститься або в M, або в $X \setminus M$. Але оскільки M_{s_0} належить базі фільтра \mathfrak{F} , то або M, або $X \setminus M$ містить M_{s_0} , тобто є елементом фільтра \mathfrak{F} .

Достатність. Нехай \mathfrak{F} — ультрафільтр, а M — довільна підмножина з X. Доведемо, що $\xi = \{x_s \mid s \in S\}$ майже вся лежить або в M, або в $X \setminus M$. Оскільки або M, або $X \setminus M$ є елементом фільтра \mathfrak{F} , то одна з цих множин повинна цілком містити деяку множину з бази фільтра \mathfrak{F} тобто деяку множину M_{s_0} . Це значить, що $\xi = \{x_s \mid s \in S\}$ майже вся лежить або в M, або в $X \setminus M$. Отже, ξ — універсальна напрямленість в X.

§22.4 Література

[1] **Александрян Р. А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян — М.: Высшая школа, 1979 (стр. 101–113).

V

Додаткові розділи функціонального аналізу

Частина V: Зміст

22 7	Гопологія, що породжена сім'єю відображень	133
	3.1 Топологія, що породжена сім єю відооражень 3.1 Топологія, у якій задані функції неперервні	133
		133
	3.2 Породжена топологія і віддільність	
	3.3 Породжена топологія і фільтри	134
23	3.4 Література	134
24 7	Гихоновський добуток і тихоновська топологія	135
24	I.1 Декартів добуток як множина функцій	135
24	1.2 Проектори, тихоновська топологія і добуток	135
	1.3 Тихоновська топологія і фільтри	136
	I.4 Література	137
25 (Основні відомості про топологічні векторні простори	139
	Основні відомості про топологічні векторні простори	
25	5.1 Простір із неперервними операціями	139
$\frac{25}{25}$	5.1 Простір із неперервними операціями	139 139
25 25 25	5.1 Простір із неперервними операціями	139 139 139 140 140
25 25 25 25	5.1 Простір із неперервними операціями 5.2 Поглинаючі та урівноважені множини 5.3 Узгодженість та віддільність 5.4 Література	139 139 140 140
25 25 25 25	5.1 Простір із неперервними операціями 5.2 Поглинаючі та урівноважені множини 5.3 Узгодженість та віддільність 6.4 Література Повнота, передкомпактність, компактність	139 139 140 140
25 25 25 25 26 26	5.1 Простір із неперервними операціями 5.2 Поглинаючі та урівноважені множини 5.3 Узгодженість та віддільність 5.4 Література Повнота, передкомпактність, компактність 6.1 Фільтр Коші	139 139 140 140 141 141
25 25 25 25 26 C 26	5.1 Простір із неперервними операціями 5.2 Поглинаючі та урівноважені множини 5.3 Узгодженість та віддільність 5.4 Література Повнота, передкомпактність, компактність 6.1 Фільтр Коші 6.2 Повнота і фільтри	139 139 140 140 141 141
25 25 25 25 26 Γ 26 26 26	5.1 Простір із неперервними операціями 5.2 Поглинаючі та урівноважені множини 5.3 Узгодженість та віддільність 5.4 Література Повнота, передкомпактність, компактність 5.1 Фільтр Коші 5.2 Повнота і фільтри 5.3 Передкомпактність і компактність	139 139 140 140 141 141 141
25 25 25 25 26 Γ 26 26 26	5.1 Простір із неперервними операціями 5.2 Поглинаючі та урівноважені множини 5.3 Узгодженість та віддільність 5.4 Література Повнота, передкомпактність, компактність 6.1 Фільтр Коші 6.2 Повнота і фільтри	139 139 140 140 141 141

23 Топологія, що породжена сім'єю відображень

§23.1 Топологія, у якій задані функції неперервні

Нехай на множині X задано сім'я відображень F, де відображення $f \in F$ діють у топологічні простори f(X), які, взагалі кажучи, можуть бути різними. Для будьякої точки $x \in X$, будь-якого скінченного сім'ї відображень $\{f_k\}_{k=1}^n \subset F$ і відкритих околів V_k точок $f_k(x)$ в просторі $f_k(X)$ визначимо множини

$$U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x) = \bigcap_{k=1}^n f_k^{-1}(V_k).$$

Як відомо, якщо для кожної точки $x \in X$ задане непорожнє сім'я підмножин U_x , що має такі властивості:

- 1. якщо $U \in U_x$, то $x \in U$;
- 2. якщо $U_1, U_2 \in U_x$, то існує таке $U_3 \in U_x$, що $U_3 \subset U_1 \cap U_2$;
- 3. якщо $U \in U_x$ і $y \in U$, то існує така множина $V \in U_y$, що $V \subset U$,

то існує топологія au на X, для якої сім'ї U_x будуть базами околів відповідних точок.

Таким чином, на X існує топологія, для якої множини $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ утворюють базу околів точки x при всіх точках $x \in X$. Позначимо цю топологію як $\sigma(X,F)$. Зокрема, околами точок $x \in X$ в топології $\sigma(X,F)$ будуть всі множини $f^{-1}(V)$, де $f \in F$, а V — окіл точки f(x) в топологічному просторі f(X). Отже, усі відображення сім'ї F є неперервними в топології $\sigma(X,F)$.

Теорема 23.1

 $\sigma(X,F)$ — найслабкіша топологія серед усіх топологій на X, в яких усі відображення сім'ї F є неперервними.

Доведення. Нехай τ — довільна топологія, в якій усі відображення сім'ї F є неперервними. Доведемо, що будь-яка множина $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ є околом точки x в топології τ . Звідси випливатиме, що $\tau \succ \sigma(X,F)$. За умовою, усі відображення $f_k: X \to F_k(X)$ є неперервними в топології τ . Отже, $f_k^{-1}(V_k)$ — це відкриті околи точки x в топології τ . Відкритим околом буде і скінченний перетин $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ таких множин.

Означення 23.1. Топологія $\sigma(X, F)$ називається топологією, породженою сім'єю відображень F, або слабкішою топологією, в якій усі відображення сім'ї F є неперереними.

§23.2 Породжена топологія і віддільність

Означення 23.2. Кажуть, що сім'я відображень F **розділяє** точки множини X, якщо $\forall x_1, x_2 \in X, \ x_1 \neq x_2, \ \exists f \in F \colon f(x_1) \neq f(x_2).$

Теорема 23.2

Нехай усі простори f(X), $f \in F$ є хаусдорфовими. Для того щоб топологія $\sigma(X,F)$ була віддільною за Хаусдорфом необхідно і достатнью, щоб сім'я відображень F розділяла точки множини X.

Доведення. Достатність. Припустимо, що сім'я відображень F розділяє точки множини X. Тоді

$$\forall x_1, x_2 \in X, x_1 \neq x_2 \quad \exists f \in F : \quad f(x_1) \neq f(x_2).$$

Оскільки f(X) — хаусдорфів простір, існують околи V_1, V_2 точок $f(x_1)$ і $f(x_2)$ відповідно. Множини $f^{-1}(V_1)$ і $f^{-1}(V_2)$ є шуканими околами в топології $\sigma(X, F)$, що розділяють точки x_1 і x_2 .

Необхідність. Нехай сім'я відображень F не розділяє точок множини X. Тоді

$$\exists x_1, x_2 \in X, x_1 \neq x_2 \quad \forall f \in F: \quad f(x_1) = f(x_2).$$

Візьмемо довільний окіл $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x_1)$ точки x_1 в топології $\sigma(X,F)$. Оскільки $f_k(x_1)=f_k(x_2)$ для всіх $k=1,2,\ldots,n$, то й точка x_2 лежить у тому ж околі $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x_1)$. Отже, в топології $\sigma(X,F)$, не виконується навіть аксіома про віддільність, а не лише властивість Хаусдорфа.

§23.3 Породжена топологія і фільтри

Теорема 23.3

Для того щоб фільтр \mathfrak{F} на X збігався в топології $\sigma(X,F)$ до елемента x, необхідно і достатньо, щоб умова $\lim_{\mathfrak{F}} f = f(x)$ виконувалася для всіх $f \in F$.

Доведення. **Необхідність.** З огляду на неперервність усіх $f \in F$ в $\sigma(X, F)$, необхідність випливає з теореми 3.3.

Достатність. Нехай $\lim_{\mathfrak{F}} f = f(x)$ для всіх $f \in F$. Доведемо, що будь-який окіл $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ є елементом фільтра \mathfrak{F} . За умовою, $\lim_{\mathfrak{F}} f_k = f_k(x)$, отже $f_k^{-1}(V_k) \in \mathfrak{F}$ для усіх $k=1,2,\ldots,n$. Оскільки фільтр є замкненим відносно скінченого перетину елементів

$$U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x) = \bigcap_{k=1}^n f_k^{-1}(V_k) \in \mathfrak{F}.$$

§23.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 492–495).

24 Тихоновський добуток і тихоновська топологія

§24.1 Декартів добуток як множина функцій

Нехай Γ — не обов'язково скінченна індексна множина, кожному елементу γ якої поставлено у відповідність деяку множину X_{γ} .

Означення 24.1. Декартовим добутком множин X_{γ} по $\gamma \in \Gamma$ називається множина $\prod_{\gamma \in \Gamma} X_{\gamma}$, яка складається із усіх таких функцій $x : \Gamma \to \bigcup_{\gamma \in \Gamma} X_{\gamma}$, що $\forall \gamma \in \Gamma$ $x(\gamma) \in X_{\gamma}$.

Зауваження 24.1 — У частковому випадку, коли $\forall \gamma \in \Gamma \ X_{\gamma} = X$, добуток складається з усіх функцій $x : \Gamma \to X$ і називається декартовим степенем X^{Γ} .

Приклад 24.1

Простір Фреше — добуток $\prod_{n\in\mathbb{N}} X_n$, де $X_n = \mathbb{R}$. Отже, простір Фреше є степенем $\mathbb{R}^{\mathbb{N}} = \mathbb{R}^{\aleph_0}$, елементами якого є зліченні послідовності $x = \{x_n\}_{n=1}^{\infty}$ дійсних чисел x_n .

Приклад 24.2

Гільбертів куб — добуток $\prod_{n\in\mathbb{N}} X_n$, де $X_n=I=[0,1]$, тобто це простір I^{\aleph_0} .

Приклад 24.3

Тихоновський куб — добуток $\prod_{\gamma\in\Gamma}X_\gamma$, де # $\Gamma=\nu$, а $X_\gamma=I=[0,1]$, тобто це простір I^ν .

Приклад 24.4

Канторів дисконтинуум ваги ν — добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$, де $\#\Gamma = \nu$, а множини $X_{\gamma} = D = \{0,1\}$ (проста двокрапка), тобто це простір D^{ν} .

§24.2 Проектори, тихоновська топологія і добуток

Означення 24.2. Відображення $P_{\alpha}: \prod_{\gamma \in \Gamma} X_{\gamma} \to X_{\alpha}$, що діє за правилом $P_{\alpha}(x) = x_{\alpha}, \forall \alpha \in \Gamma$, називається координатним проектором.

Означення 24.3. Нехай $X_{\gamma},\ \gamma\in\Gamma$ — топологічні простори. Тихоновською топологією на $\prod_{\gamma\in\Gamma}X_{\gamma}$ називається найслабкіша з топологій, в якій усі координатні проектори $P_{\alpha}(x),\ \alpha\in\Gamma$ є неперервними.

Означення 24.4. Декартів добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$, наділений тихоновською топологією, називається **тихоновським добутком**.

Зауваження 24.2 — Очевидно, що координатні проектори розділяють точки добутку, тому за теорем. 23.2 тихоновський добуток хаусдорфових просторів є віддільним за Хаусдорфом.

Означення 24.5. Нехай K — скінчений набір індексів з Γ . Добуток $A = \prod_{\gamma \in \Gamma} A_{\gamma}$, де $A_{\gamma} = X_{\gamma}$ при $\gamma \notin K$, і $A_{\gamma} \subset X_{\gamma}$ при $\gamma \in K$ і A_{γ} — відкриті множини в топологіях τ_{γ} , називається відкритою циліндричною множиною з основою $\prod_{\gamma \in K} A_{\gamma}$.

Запишемо тихоновську топологію як топологію, що породжена сім'єю відображень. Нехай $x\in\prod_{\gamma\in\Gamma}X_\gamma,\, K\subset\Gamma$ — скінченна множина індексів, $V_\gamma\subset X_\gamma,\, \gamma\in K$ — околи точок x_γ . Введемо позначення

$$U_{K,\{V_{\gamma}\}_{\gamma\in K}}(x) = \left\{\gamma \in \prod_{\gamma\in\Gamma} X_{\gamma} : \gamma_{\alpha} \in V_{\alpha}, \forall \alpha \in K\right\}.$$

Зауваження 24.3 — Множина $U_{K,\{V_\gamma\}_{\gamma\in K}}(x)$ є відкритим циліндричним околом точки x з основою $\prod_{\gamma\in K}V_\gamma$.

Теорема 24.1 (про базу околів точки в тихоновській топології)

Множини $U_{K,\{V_\gamma\}_{\gamma\in K}}(x)$ утворюють у тихоновській топології базу околів точки x.

Вправа 24.1. Перевірте властивості бази.

 \square оведення. . . .

§24.3 Тихоновська топологія і фільтри

Теорема 24.2 (критерій збіжності в тихоновському добутку)

Фільтр \mathfrak{F} на $\prod_{\gamma\in\Gamma}X_{\gamma}$ збігається в тихоновській топології до елемента $x=\{x_{\gamma}\}_{\gamma\in\Gamma}$ тоді і тільки тоді, коли $x_{\gamma}=\lim_{\mathfrak{F}}P_{\gamma},\,\forall\gamma\in\Gamma.$

Доведення. **Необхідність.** Оскільки координатні проектори на $\prod_{\gamma \in \Gamma} X_{\gamma}$ є неперервними і $x = \lim \mathfrak{F}$, то за теорем. 20.3 $\lim_{\mathfrak{F}} P_{\gamma} = P_{\gamma}(x) = x_{\gamma}$.

Достатність. Покажемо, що будь-який окіл V точки x належить фільтру \mathfrak{F} . З огляду на те, що $\forall A \in \mathfrak{F}$ $A \subset B \subset X \implies B \in \mathfrak{F}$, достатньо розглянути відкритий циліндричний окіл точки x, який міститься в V. Отже, розглянемо відкритий циліндричний окіл $U = \prod_{\gamma \in \Gamma} V_{\gamma}$ точки x з основою $\prod_{\gamma \in K} V_{\gamma}$, тобто $U_{K,\{V_{\gamma}\}_{\gamma \in K}}(x)$.

Оскільки $\forall \gamma_0 \in K$ множина V_{γ_0} є околом точки x_{γ_0} в просторі X_{γ_0} і $\lim_{\mathfrak{F}} P_{\gamma_0} = x_{\gamma_0}$, то існує множина $A \in \mathfrak{F}$ така, що $P_{\gamma_0}(A) \subset V_{\gamma_0}$, отже, $A \subset P_{\gamma_0}^{-1}(V_{\gamma_0})$, тому $P_{\gamma_0}^{-1}(V_{\gamma_0}) \in \mathfrak{F}$. Таким чином, $\forall \gamma \in K$ $P_{\gamma}^{-1}(V_{\gamma}) \in \mathfrak{F}$. Оскільки множина K є скінченою, то $\bigcap_{\gamma \in K} P_{\gamma}^{-1}(V - \gamma) \in \mathfrak{F}$.

Оскільки

$$\bigcap_{\gamma \in K} P_{\gamma}^{-1}(V_{\gamma}) \subset U_{K,\{V_{\gamma}\}_{\gamma \in K}}(x),$$

а $U_{K,\{V_\gamma\}_{\gamma\in K}}(x)$ утворюють в $\prod_{\gamma\in\Gamma}X_\gamma$ базу околів точки x(теорем. 24.1), то

$$\bigcap_{\gamma \in K} P_{\gamma}^{-1}(V_{\gamma}) \subset U, \quad \forall U \in \Omega_x.$$

Тому, за четвертою аксіомою фільтра $U \in \mathfrak{F}$.

Зауваження 24.4 — Із теорем. 24.1 випливає, що послідовність $x_n = \{x_{n,\gamma}\}_{\gamma \in \Gamma}$ точок добутку $\prod_{\gamma \in \Gamma} X_{\gamma}$ топологічних просторів збігається до точки x тоді і лише тоді, коли для кожного $\gamma_0 \in \Gamma$ послідовність $\{x_{\gamma_0,n}\}$ збігається в просторі X_{γ_0} до точки x_{γ_0} .

Інакше кажучи, збіжність в тихоновській топології є покоординатною.

Теорема 24.3 (теорема Тихонова про добуток компактів)

Тихоновський добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$ будь-якої сім'ї непорожніх топологічних просторів $X_{\gamma}, \gamma \in \Gamma$ є компактним тоді і лише тоді, коли усі X_{γ} є компактними.

Доведення. **Необхідність.** Нехай $X_{\gamma}, \gamma \in \Gamma$ — довільна сім'я непорожніх просторів і їх тихоновський добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$ є компактним. Оскільки кожна множина $X_{\gamma}, \gamma \in \Gamma$ є образом компактного простору $\prod_{\gamma \in \Gamma} X_{\gamma}$, отриманим за допомогою неперервного відображення $P_{\gamma}: X \to X_{\gamma}$, то простори $X_{\gamma}, \gamma \in \Gamma$ є компактними (неперервний образ компактного простору є компактним простором).

Достатність. За критерієм компактності в термінах фільтрів, для того щоб простір був компактним, необхідно і достатньо, щоб кожний ультрафільтр на X збігався. Нехай $\mathfrak A$ — ультрафільтр на $\prod_{\gamma\in\Gamma} X_{\gamma}$. Оскільки $X_{\gamma},\ \gamma\in\Gamma$ — компактні топологічні простори, то за критерієм компактності в термінах фільтрів $\forall \gamma\in\Gamma\ \exists y_{\gamma}=\lim_{\mathfrak A} P_{\gamma}$. Оскільки P_{γ} — неперервні відображення, то за теорем. 24.2 $y=\{y_{\gamma}\}_{\gamma\in\Gamma}=\lim_{\mathfrak A} \mathfrak A$. \square

§24.4 Література

- [1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 492–495).
- [2] **Александрян Р. А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979(стр. 120–126, 230–234).

25 Основні відомості про топологічні векторні простори

§25.1 Простір із неперервними операціями

Означення 25.1. Лінійний простір X(дійсний чи комплексний) із заданою на ньому топологією τ називається **топологічним векторним простором**(ТВП), якщо топологія τ так погоджена з лінійною структурою, що відображення суми елементів і множення скаляра на елемент є неперервними по сукупності змінних.

Розпишемо означення докладніше. Нехай X — топологічний векторний простір. Розглянемо функції $+: X \times X \to X$ і $\cdot: \mathbb{R} \times X \to X$. Узгодження топології лінійною структурою означає, что функції + і \cdot є неперервними як функції двох змінних.

Теорема 25.1

Нехай U — відкрита множина у просторі X. Тоді

- 1. для будь-якого $x \in X$ множина U + x є відкритою
- 2. для будь-якого $\lambda \neq 0$ множина λU є відкритою.

Доведення. Зафіксуємо $x_2 = -x$ і скористаємося неперервністю функції $+(x_1, x_2) = x_1 + x_2$ по першій змінній при фіксованій другій змінній. Отже, функція $f(x_1) = x_1 - x$ є неперервною по x_1 , а U + x є прообразом відкритої множини U під дією функції f. Отже, множина U + x є відкритою.

Друга властивість виводиться так само, але з використанням неперервності функції $q(x) = \lambda^{-1}x$.

З теореми випливає, що околи будь-якого елемента $x \in X$ є множинами вигляду U + x, де U — околи нуля. Відповідно, топологія τ однозначно визначається системою \Re_0 околів нуля. Тому інші властивості топології τ будуть формулюватися через околи нуля. Далі через S_r позначатимемо множину $S_r = \{\lambda \in \mathbb{R} : |\lambda| \leq r\}$.

§25.2 Поглинаючі та урівноважені множини

Означення 25.2. Підмножина A лінійного простору X називається поглинаючою, якщо для будь-якого $x \in X$ існує таке $n \in \mathbb{N}$, що $x \in tA$ для будь-якого t > n.

Означення 25.3. Підмножина $A \subset X$ називається **урівноваженою**, якщо для будь-якого скаляра $\lambda \in S_1$ виконане включення $\lambda A \subset A$.

Теорема 25.2

Властивості системи \Re_0 околів нуля топологічного векторного простору X:

- 1. Будь-який окіл нуля є поглинаючою множиною.
- 2. Довільний окіл нуля містить урівноважений окіл нуля.
- 3. Для кожного околу $U \in \mathfrak{R}_0$ існує урівноважений окіл $V \in \mathfrak{R}_0$ з $V + V \subset U$.

Доведення.

- 1. Зафіксуємо $x \in X$ і скористаємося неперервністю функції $f(\lambda) = \lambda x$. Оскільки f(0) = 0, неперервність у точці $\lambda = 0$ означає, що для будь-якого $U \in \mathfrak{R}_0$ існує таке $\varepsilon > 0$, що $\lambda x \in U$ для будь-якого $\lambda \in S_{\varepsilon}$. Увівши позначення $t = \lambda^{-1}$, одержимо, що $x \in tU$ для будь-якого $t \geq \varepsilon^{-1}$.
- 2. Нехай $U \in \mathfrak{R}_0$. Через неперервність у точці (0,0) функції $\cdot (\lambda, x) = \lambda x$, існує таке $\varepsilon > 0$ і такий окіл $W \in \mathfrak{R}_0$, що $\lambda x \in U$ для будь-якого $\lambda \in S_{\varepsilon}$ і будь-якого $x \in W$.

Покладемо $V = \bigcup_{\lambda \in S_{\varepsilon}} \lambda W$. Покажемо, що множина $V \supset U$ і є шуканаий урівноваженаий окіл нуля. З одного боку, $V \supset W$, отже, $V \in \mathfrak{R}_0$. З іншого боку, для будь-якого $\lambda_0 \in S_1$ маємо $\lambda_0 S_{\varepsilon} \subset S_{\varepsilon}$, отже,

$$\lambda_0 V = \bigcup_{\lambda \in S_{\varepsilon}} \lambda_0 \lambda W = \bigcup_{\mu \in \lambda_0 S_{\varepsilon}} \mu W \subset \bigcup_{\mu \in S_{\varepsilon}} \mu W = V,$$

чим доведена урівноваженість околу V.

3. Через неперервність у точці (0,0) функції $+(x_1,x_2)=x_1+x_2$, для будь-якого околу $U\in\mathfrak{R}_0$ існують околи $V_1,V_2\in\mathfrak{R}_0$ з $V_1+V_2\subset U$. Шуканий урівноважений окіл нуля V виберемо за пунктом 2 так, щоб V містився в околі $V_1\cap V_2$.

§25.3 Узгодженість та віддільність

Теорема 25.3

Нехай система \mathfrak{R}_0 околів нуля топології τ на лінійному просторі X підкоряється умовам теорем. 25.2, і для будь-якої точки $x \in X$ система околів \mathfrak{R}_x цієї точки отримується паралельним переносом \mathfrak{R}_0 на вектор x. Тоді топологія τ узгоджується з лінійною структурою.

Зауваження 25.1 — Через урівноваженість умову $V+V\subset U$ пункту 3 теорем. 25.2 можна записувати у вигляді $V-V\subset U$.

Теорема 25.4

Для віддільності за Хаусдорфом топологічного векторного простору X необхідно і достатнью, щоб система \mathfrak{R}_0 околів нуля підкорялася такій умові: для будь-якого $x \neq 0$ існує окіл $U \in \mathfrak{R}_0$, що не містить точку x.

Доведення. Нехай $x \neq y$. Тоді $x - y \neq 0$ та існує окіл $U \in \mathfrak{R}_0$, який не містить x - y. Виберемо такий окіл $V \in \mathfrak{R}_0$, що $V - V \subset U$. Тоді околи x + V і y + V не перетинаються: якщо існує точка z, яка лежить одночасно в x + V і y + V, то $z - x \in V$, $z - y \in V$ і $x - y = (z - y) - (z - x) \in V - V \subset U$.

§25.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 497-499).

26 Повнота, передкомпактність, компактність

§26.1 Фільтр Коші

Означення 26.1. Фільтр \mathfrak{F} у топологічному векторному просторі X називається фільтром Коші, якщо для будьякого околу нуля U існує такий елемент $A \in F$, що $A - A \subset U$. Такий елемент A називається малим порядку U.

Теорема 26.1

Якщо фільтр \mathfrak{F} має границю, то \mathfrak{F} — фільтр Коші.

Доведення. Нехай $\lim \mathfrak{F} = x$ і $U \in \mathfrak{R}_0$. Виберемо $V \in \mathfrak{R}_0$ з $V - V \subset U$. За теоремою 1.1 (п.1) існує такий елемент $A \in \mathfrak{F}$, що $A \subset x + V$ Отже,

$$A - A \subset (x + V) - (x + V) \subset V - V \subset U.$$

Теорема 26.2

Нехай \mathfrak{F} — фільтр Коші на ТВП X і x — гранична точка \mathfrak{F} . Тоді $\lim \mathfrak{F} = x$.

Доведення. Нехай x+U — довільний окіл точки x, де $U\in\mathfrak{R}_0$. Виберемо окіл $V\in\mathfrak{R}_0$ з $V+V\subset U$ і множину $A\in F$, малу порядку $V\colon A-A\subset V$. За означенням граничної точки, множини A і x+V перетинаються, тобто існує $y\in A\cap (x+V)$. Тоді

$$x + U \supset x + V + V \supset y + V \supset y + A - A \supset y + A - y = A.$$

Таким чином, окіл x+U містить елемент фільтра \mathfrak{F} , отже, $x+U \in F$.

§26.2 Повнота і фільтри

Означення 26.2. Множина A у ТВП X називається **повною**, якщо будь-який фільтр Коші на X, що містить A як елемент, має границю, що належить A.

Зауваження 26.1 — Зокрема, топологічний векторний простір X називається повним, якщо будь-який фільтр Коші в X має границю.

Теорема 26.3

Нехай X — підпростір топологічного векторного простору E і $A\subset X$ — повна в X підмножина. Тоді A є повною як підмножина простору E.

Доведення. Нехай \mathfrak{F} — фільтр Коші на E, що містить A як елемент. Тоді, зокрема $X \in \mathfrak{F}$, то слід \mathfrak{F}_X фільтра \mathfrak{F} на X є фільтром. Легко бачити, що \mathfrak{F}_X — це фільтр Коші на X, що містить A як елемент. Отже, через повноту A у X фільтр \mathfrak{F}_X має в X границю $a \in A$. Ця ж точка a буде границею фільтра \mathfrak{F} в E.

Теорема 26.4

Повна підмножина A хаусдорфового ТВП X є замкнутою.

Зауваження 26.2 — Зокрема, якщо підпростір хаусдорфового ТВП є повним в індукованій топології, то цей підпростір є замкнутим.

§26.3 Передкомпактність і компактність

Доведення. Нехай точка $x \in X$ належить замиканню множини A. Нам потрібно довести, що $x \in A$. Розглянемо сімейство $\mathfrak D$ усіх перетинів вигляду $(x+U) \cap A$, де $U \in \mathfrak R_0$. Усі такі перетини не порожні, і $\mathfrak D$ задовольняє усі аксіоми бази фільтра. Фільтр $\mathfrak F$, породжений базою $\mathfrak D$, мажорує фільтр $\mathfrak R_x$ усіх околів точки x, отже, $x = \lim \mathfrak F$. Зокрема, $\mathfrak F$ — це фільтр Коші. За побудовою, наша повна множина A є елементом фільтра $\mathfrak F$; отже, відповідно до означення, фільтр $\mathfrak F$ має границю в A. Через єдиність границі $x \in A$, що і було потрібно довести.

Означення 26.3. Множина A у ТВП X називається **передкомпактом**, якщо для будь-якого околу нуля U існує така скінченна множина $B \subset X$, що $A \subset U + B$. Така множина B називається, за аналогією з ε -сіттю, U-сіттю множини A.

Теорема 26.5

Щоб підмножина A хаусдорфового ТВП X була компактом, необхідно і достатньо, щоб A була одночасно передкомпактом і повною множиною в X.

§26.4 Поглинання і обмеженість

Означення 26.4. Нехай X — топологічний векторний простір. Будемо говорити, що окіл нуля $U \in \mathfrak{R}_0$ поглинає множину $A \subset X$, якщо існує таке число N > 0, що $A \subset tU$ для будь-якого $t \geq N$.

Означення 26.5. Множина $A \subset X$ називається **обмеженою**, якщо вона поглинається кожним околом нуля.

Теорема 26.6

Властивості обмежених підмножин топологічного векторного простору X:

- 1. Нехай $A\subset X$ обмежена множина. Тоді для будьякого околу $U\in\mathfrak{R}_0$ існує таке число N>0, що $A\subset tU$ для будь-якого $t\geq N$.
- 2. Об'єднання скінченної кількості обмежених множин обмежене.
- 3. Будь-яка скінченна множина є обмеженою.
- 4. Будь-який передкомпакт у X є обмеженим.

Доведення.

1. Нехай $V \in \Omega_0$ — врівноважений окіл, що міститься в U за теорем. 25.2 (п. 2). Виберемо таке число N>0, що $A\subset NV$. Тоді для будь-якого $t\geq N$ маємо

$$A \subset NV = t(Nt^{-1}V) \subset tV \subset tU.$$

2. Нехай A_1, A_2, \dots, A_n — обмежені множини, U — окіл нуля. За попереднім пунктом

$$\forall A_k \quad \exists N_k : \quad \forall t \ge N \quad A_k \subset tU.$$

Покладемо $N=\max_k N_k,\ k=1,2,\ldots,n.$ Тоді $\forall t\geq N$ усі включення $A_k\subset tU$ виконуються одночасно, тобто $\bigcup_{k=1}^n A_k\subset tU.$

- 3. Одноточкова множина є обмеженою, оскільки окіл нуля є поглинаючою множиною. Отже, за попереднім пунктом, будь-яка скінченна множина як скінченне об'єднання одноточкових множин є обмеженою.
- 4. Нехай A передкомпакт в X, U окіл нуля. Виберемо врівноважений окіл $V \in \Omega_0$, такий що $V + V \subset U$. За означенням передкомпакта, існує така скінченна множина $B \subset X$, що $A \subset B + V$. Відповідно до попереднього пункту, можна знайти такий коефіцієнт N > 0, що $B \subset NV$. Тоді

$$A \subset B + V \subset NV + V \subset N(V + V) \subset NU.$$

§26.5 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 502–504).

VI

Сучасний функціональний аналіз

Частина VI: Зміст

27	7 Лінійні оператори і функціонали	147
	27.1 Лінійні оператори, обмеженість і неперервність	147
	27.2 Лінійні функціонали і їхні ядра	148
	27.3 Скінченновимірні простори і координатні функціонали	148
	27.4 Література	149
	21.4 viiicparypa	143
28	В Напівнорми і топології	151
	28.1 Локальна опуклість, опуклі комбінація і оболонка	151
	28.2 Напівнорми, одиничні кулі і функіонал Мінковського	151
	28.3 Лінійно-опукла топологія породжена сім'єю напівнорм	152
	28.4 Література	153
29	9 Слабка топологія	155
	29.1 Слабка топологія: означення і властивості	155
	29.2 Леми про перетин ядер і обмеженість на підпросторі	155
	29.3 Неперервність функціоналів у слабкій топології	156
	29.4 Література	157
30) Двоїстість	159
30	30.1 Двоїстість, дуальні пари і слабка топологія	159
	30.2 Поляра і аннулятор множини, їхні власивості	160
	30.3 Література	161
	зо.з литература	101
31	. Біполяра	163
	31.1 Абсолютна опуклість і біполяра	163
	31.2 Література	164
32	2 Спряжений оператор	165
32	32.1 Алгебраїчно спряжний і спряжений оператори	165
	32.2 Література	166
	92.2 γπτορατγρα	100

27 Лінійні оператори і функціонали

Нехай X і E — топологічні векторні простори.

§27.1 Лінійні оператори, обмеженість і неперервність

Теорема 27.1

Лінійний оператор $T:X\to E$ є неперервним тоді і лише тоді, коли він є неперервним в точці x=0.

Доведення. **Необхідність.** Неперервний оператор є неперервним у будь-якій точці простору, зокрема у нулі.

Достатність. Припустимо, що оператор T є неперервним в нулі. Доведемо, що він є неперервним у довільній точці $x_0 \in X$. Нехай V — довільний окіл точки Tx_0 у просторі E. Тоді $V - Tx_0$ — окіл нуля в E. За умовою теореми, $T^{-1}(V - Tx_0)$ — окіл нуля в X. Оскільки оператор T є лінійним, маємо

$$T^{-1}(V) = T^{-1}(V - Tx_0) + x_0,$$

отже $T^{-1}(V)$ — окіл точки x_0 .

Означення 27.1. Лінійний оператор $T: X \to E$ називається **обмеженим**, якщо образ будь-якої обмеженої множини під дією T в X є обмеженою множиною в E.

Теорема 27.2

Кожний неперервний лінійний оператор $T: X \to E$ є обмеженим.

Доведения. Нехай A — обмежена множина в X. Доведемо обмеженість множини T(A). Нехай V — довільний окіл нуля в E і U — такий окіл нуля в X, що $T(U)\subset V$. Оскільки A — обмежена множина, то існує таке число N>0, що $\forall t>N$ $A\subset tU$. Тоді

$$\forall t > N \quad T(A) \subset tT(U) \subset tV.$$

Теорема 27.3

Нехай оператор $T:X\to E$ переводить деякий окіл U простору X в обмежену множину. Тоді оператор T є неперервним.

Доведення. Нехай T(U) — обмежена множина. Для довільного околу V нуля в E існує число t>0, що $T(U)\subset tU$. Тоді $t^{-1}U\subset T^{-1}(V)$, тобто $T^{-1}(V)$ є околом нуля у просторі X.

§27.2 Лінійні функціонали і їхні ядра

Теорема 27.4

Для ненульового лінійного функціонала f, заданого на топологічному просторі X, наступні умови є еквівалентними.

- 1. Функціонал f є неперервним.
- 2. Ядро функціонала $f \in$ замкненим.
- 3. Ядро функціонала f не є щільним в X.
- 4. Існує окіл нуля U: f(U) обмежена множина.

Доведення. $1 \implies 2$. ker $f = f^{-1}(0)$. Оскільки $\{0\}$ — замкнена множина, а f — неперервний функціонал, то, оскільки прообраз замкненої множини під дією неперервного функціонала є замкненим, ker f є замкненою множиною.

- $2 \implies 3$. (Від супротивного.) Якщо ядро функціонала є замкненим і щільним в X, то ker f = X, тобто $f \equiv 0$, але за умовою теореми f ненульовий функціонал.
- $3 \implies 4$. Нехай ядро не є щільним. Тоді існує точка $x \in X$ і врівноважений окіл нуля U, такі що $(U+x) \cap \ker f = \emptyset$. Це значить, функціонал f в жодній точці $y \in U$ не може набувати значення -f(x). Отже, f(U) врівноважена множина чисел, що відрізняється від числової прямої (точніше, відрізок, симетричний відносно нуля).

$$4 \implies 1$$
. Випливає з теорем. 27.3

Позначимо через X^* множину усіх неперервних лінійних функціоналів на X.

§27.3 Скінченновимірні простори і координатні функціонали

Означення 27.2. Нехай $\{x_k\}_{k=1}^{\infty}$ — базис банахового простору X і $x \in X$. Коефіцієнти розкладу $f_n(x)$ елемента x по базису $\{f_k\}_{k=1}^{\infty}$ називаються координатними функціоналами, що визначені на просторі X: $x = \sum_{k=1}^{\infty} f_n(x) x_k$.

Теорема 27.5

Нехай X — хаусдорфовий ТВП із $\dim X = n$. Тоді:

- 1. Будь-який лінійний функціонал на X є неперервним.
- 2. Для будь-якого топологічного векторного простору E будь-який лінійний оператор $T:X\to E$ є неперервним.
- 3. Простір X є ізоморфним n-вимірному гільбертовому простору ℓ_2^n .
- 4. Простір $X \in \text{повним}$.

Доведення. $1 \implies 2$. Обираючи в X базис $\{x_k\}_{k=1}^n$ з координатними функціоналами $\{f_k\}_{k=1}^n$, оператор T можна подати у вигляді

$$T(x) = T\left(\sum_{k=1}^{n} f_k(x)x_k\right) = \sum_{k=1}^{n} f_k(x)Tx_k.$$

Отже, обчислення T(x) зводиться до обчислення скалярів $f_k(x)$, де f — неперервний функціонал, множенню їх на фіксовані вектори Tx_k і додаванню добутків. В результаті отримуємо неперервний оператор T.

- $2 \Longrightarrow 3$. Оскільки обидва простори X і ℓ_2^n мають однакову розмірність n, то існує лінійна бієкція $T: X \to \ell_2^n$. За умовою оператори T і T^{-1} є неперервними, отже, існує ізоморфізм $T: X \to \ell_2^n$.
 - $3 \implies 4$. Випливає з повноти простору ℓ_2^n .
- $4 \implies 1$. Скористаємось математичною індукцією по n. При n=0 простір X містить лише нульовий елемент, тому твердження є тривіальним. Доведемо тепер крок індукції: нехай $\dim X = n+1$ і f ненульовий функціонал на X. Тоді $\dim \ker f = n$. За імплікаціями $1 \implies 2 \implies 3 \implies 4$ отримуємо, що $\ker f$ повний простір. Отже, $\ker f$ є замкнений в X і за теорем. 27.4 функціонал f є неперервним.

§27.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 507–510).

28 Напівнорми і топології

 ${
m Hexa}$ й X — топологічний векторний простір.

§28.1 Локальна опуклість, опуклі комбінація і оболонка

Означення 28.1. ТВП X називається **локально опуклим**, якщо для будь-якого околу нуля U існує опуклий окіл нуля V, що міститься в U.

Зауваження 28.1 — Інакше кажучи, топологічний векторний простір X є локально опуклим, якщо система околів нуля \mathfrak{R}_0 містить базу, що складається з опуклих множин.

Означення 28.2. Нехай $\{x_k\}_{k=1}^n$ — довільний скінчений набір елементів лінійного простору X. Елемент вигляду $x = \sum_{k=1}^n \lambda_k x_k$ називається опуклою комбінацією елементів x_k , якщо $\lambda_k > 0$, $\forall k = 1, \ldots, n$ і $\sum_{k=1}^n \lambda_k = 1$.

Означення 28.3. Нехай A — довільна підмножина лінійного простору X. Множина усіх опуклих комбінацій елементів з A називається **опуклою оболонкою** множини A і позначається як conv A.

Означення 28.4. Нагадаємо, що підмножина $A \subset X$ називається **урівноваженою**, якщо для будь-якого скаляра λ із $|\lambda| \leq 1$ виконане включення $\lambda A \subset A$.

Теорема 28.1

Кожний опуклий окіл нуля U містить опуклий врівноважений відкритий окіл нуля V.

Доведення. За теорем. 25.2 у кожному відкритому околі нуля U міститься відкритий врівноважений окіл нуля V.

- 1. Покажемо, що conv $V \subset U$. Опуклість цієї множини є очевидною (за означенням опуклої оболонки).
- 2. Покажемо, що conv $V \subset \mathfrak{R}_0$. $V \in \mathfrak{R}_0$, $V \subset \operatorname{conv} V \implies \operatorname{conv} V \in \mathfrak{R}_0$.
- 3. Покажемо, що conv V є врівноваженим околом. Нехай $|\lambda| \leq 1$. V врівноважений окіл нуля $\implies \lambda V \subset V \implies \lambda \operatorname{conv} V = \operatorname{conv}(\lambda V) \subset \operatorname{conv} V$
- 4. Покажемо, що conv V є відкритою множиною. $V \in \tau$, операції множення на скаляр і суми множин замкнені відносно відкритих множин $\Longrightarrow \sum_{k=1}^n \lambda_k V \in \tau$, де $n \in \mathbb{N}$, $\lambda_k > 0$ і $\sum_{k=1}^n \lambda_k = 1 \Longrightarrow \operatorname{conv} V = \bigcup_{n=1}^\infty \sum_{k=1}^n \lambda_k V \in \tau$.

§28.2 Напівнорми, одиничні кулі і функіонал Мінковського

Означення 28.5. Функція $p: X \to \mathbb{R}$ називається **напівнормою**, якщо

- 1. $p(x) \ge 0, \forall x \in X$;
- 2. $p(\lambda x) = |\lambda| p(x), \forall x \in X, \lambda \in \mathbb{R};$
- 3. $p(x+y) \le p(x) + p(y), \forall x, y \in X$.

Зауваження 28.2 — Напівнорма відрізняється від норми тим, що вона напівнорма маже дорівнювати нулю на деяких ненульових елементах $x \in X$.

Означення 28.6. Одиничною кулею напівнорми p називається множина $B_p = \{x \in X : p(x) < 1\}.$

Зауваження 28.3 — Множина B_p є опуклою врівноваженою множиною.

Означення 28.7. Функціоналом Мінковського опуклої поглинаючої множини в лінійному просторі X називається дійсна функція, задана на X формулою

$$\varphi_A(x) = \inf\{t > 0 : t^{-1}x \in A\}.$$

Зауваження 28.4 — Функціонал φ_A пов'язаний з множиною A такими співвідношеннями:

- 1. $x \in A \implies \varphi_A(x) \le 1$;
- $2. \ \varphi_A(x) < 1 \implies x \in A.$

Зауваження 28.5 — Якщо A — опукла поглинаюча множина в лінійному просторі X, то φ_A — опуклий функціонал, що набуває невід'ємні значення.

Теорема 28.2

Напівнорма p на топологічному векторному просторі X є неперервною тоді і лише тоді, коли B_p — окіл нуля.

Доведення. **Необхідність.** $B_p = p^{-1}(-1,1)$ — прообраз відкритої множини. Якщо p — неперервна функція, то прообраз відкритої множини є відкритим.

Достатність. Нехай B_p — окіл нуля. Доведено неперервність напівнорми. Для будь-якого $x \in X$ і будь-якого $\varepsilon > 0$ треба знайти такий окіл U точки x, що

$$p(U) \subset (p9x) - \varepsilon, p(x) + \varepsilon$$
.

Таким околом є $U = x + \varepsilon B_p$. Дійсно,

$$\forall y \in U \quad y = x + \varepsilon z, \quad p(z) < 1.$$

Отже, за нерівністю трикутника

$$p(x) - \varepsilon < p(y) < p(x) + \varepsilon$$
.

§28.3 Лінійно-опукла топологія породжена сім'єю напівнорм

Означення 28.8. Нехай G — сім'я напівнорм на лінійному просторі X. Позначимо через \mathfrak{D}_G систему усіх скінчених перетинів множин вигляду rB_p , де $p \in G$ і r > 0.

Лінійно-опуклою топологією, породженою сім'єю напівнорм G, називається топологія τ_G на X, у якій базою околів точки $x \in X$ є сім'я множин вигляду x + U, де $U \in \mathfrak{D}_G$.

Зауваження 28.6 — Тобто, \mathfrak{D}_G є базою околів нуля топології τ_G .

Означення 28.9. Сім'я напівнорм G називається **невиродженою**, якщо для будьякого $x \in X \setminus \{0\}$ існує $p \in G$ з $p(x) \neq 0$.

Теорема 28.3

Нехай $G-\mathrm{cim}$ 'я напівнорм на лінійному просторі X. Тоді мають місце такі твердження:

- 1. топологія τ_G , породжена сім'єю G, узгоджується з лінійною структурою і є локально опуклою;
- 2. топологія τ_G є віддільною тоді і лише тоді, коли сім'я напівнорм G є невиродженою;
- 3. топологічний векторний простір X є локально опуклим тоді і лише тоді, коли його топологія породжується деякою сім'єю напівнорм.

Теорема 28.4

Нехай X — топологічний векторний простір, а f — лінійний функціонал на X. Для неперервності функціонала f необхідно і достатньо, щоб існувала така неперервна напівнорма p на X, що $|f(x)| \leq p(x) \ \forall x \in X$.

Доведення. **Необхідність.** Нехай f — неперервний. Тоді шукана напівнорма задається формулою p(x) = |f(x)|.

Достатність. Нехай $|f(x)| \le p(x) \ \forall x \in X \ i \ p$ — неперервна напівнорма. Тоді функціонал f є обмеженим в околі нуля B_p .

Теорема 28.5 (теорема Хана-Банаха в локально опуклих просторах)

Нехай f — лінійний непепервний функціонал, заданий на підпросторі Y локально опуклого простору X. Тоді функціонал f можна продовжити на весь простір X зі збереженням його лінійності і неперервності.

§28.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 512–515).

29 Слабка топологія

§29.1 Слабка топологія: означення і властивості

Означення 29.1. Нехай X — лінійний простір, X' — алгебраїчно спряжений до нього простір (тобто простір усіх лінійних функціоналів, заданих на X), $E \subset X'$ — деяка підмножина.

Слабкою топологією на X, породженою множиною функціоналів E, називається найслабкіша топологія, в якій функціонали з E є неперервними.

Зауваження 29.1 — Ця топологія є частковим випадком топології, породженою сім'єю відображень, тому для неї використовується те ж позначення $\sigma(X, E)$.

Для будь-якого скінченого набору функціоналів $G=(g_1,g_2,\ldots,g_n)$ і будь-якого $\varepsilon>0$ введемо позначення

$$U_{G,\varepsilon} = \bigcap_{g \in G} \{x \in X : |g(x)| < \varepsilon\} = \{x \in X : \max_{g \in G} |g(x)| < \varepsilon\}.$$

Сім'я множин вигляду $U_{G,\varepsilon}$, де $G=(g_1,g_2,\ldots,g_n)\subset E$ і $\varepsilon>0$, утворює базу околів нуля топології $\sigma(X,E)$. Базу околів будь-якого елемента $x_0\in X$ утворюють множини вигляду

$$\bigcap_{g \in G} \{ x \in X : |g(x - x_0)| < \varepsilon \} = x_0 + U_{G,\varepsilon}.$$

Звідси випливає, що топологія $\sigma(X, E)$ — це локально-опукла топологія, що породжена сім'єю напівнорм $p_G(x) = \max_{g \in G} |g(x)|$, де G пробігає усі скінчені підмножини множини E. Для того щоб ця топологія була віддільною, необхідно і достатньо, щоб сім'я функціоналів E розділяла точки простору X.

Як зазначалося в попередніх лекціях, фільтр \mathfrak{F} на X збігається в топології $\sigma(X,E)$ до елемента x тоді і лише тоді, коли $\lim_{\mathfrak{F}} f = f(x)$ для всіх $f \in E$. Зокрема, цей критерій збіжності є слушним і для послідовностей: $x_n \to x$ в топології $\sigma(X,E)$, якщо $f(x_n) \to f(x)$ для всіх $f \in E$.

§29.2 Леми про перетин ядер і обмеженість на підпросторі

Лема 29.1

Нехай $f,\{f_k\}_{k=1}^n$ — лінійні функціонали на X і $\ker f\supset \bigcap_{k=1}^n\ker f_k$. Тоді $f\in \lim(f_1,f_2,\ldots,f_n)$.

Доведення. Застосуємо індукцію по n, поклавши як базу n=1.

Якщо $f_1 = 0$, то $\ker f \supset \ker f_1 = X$, тобто f = 0.

Якщо $f_1 \neq 0$, то $Y = \ker f_1$ — це гіперплощина в X. Отже, існує вектор $e \in X \setminus Y$ такий, що $\lim(e,Y) = X$. Позначимо a = f(e) і $b = f_1(e)$. Функціонал $f - ab^{-1}f_1$

дорівнює нулю як на Y, так і точці e. Отже, функціонал $f - ab^{-1}f_1$ дорівнює нулю на всьому просторі X = lin(e, Y), тобто $f \in \text{lin}(f_1)$.

Індукційний перехід $n \to n+1$. Розглянемо підпростір $Y = \bigcap_{k=1}^n \ker f_k$. Умова $\ker f \supset \bigcap_{k=1}^{n+1} \ker f_k$ означає, що ядро звуження функціонала f на Y містить ядро звуження функціонала f_{n+1} на Y. Отже (випадок n=1), існує такий скаляр α , що $f - \alpha f_{n+1}$ дорівнює нулю на всьому $Y = \bigcap_{k=1}^n \ker f_k$. Отже,

$$\ker(f - \alpha f_{n+1}) \supset Y = \bigcap_{k=1}^{n} \ker f_k.$$

За припущенням індукції, $f - \alpha f_{n+1} \in \lim(f_1, \dots, f_n)$, тобто $f \in \lim(f_1, \dots, f_{n+1})$.

Лема 29.2

Нехай Y — підпростір лінійного простору $X, f \in X'$ і існує таке a > 0, що $|f(y)| \le a$ на всьому підпросторі Y. Тоді f(y) = 0 для всіх $y \in Y$.

Доведення. Нехай існує $y_0 \in Y$ такий що $f(y_0) \neq 0$.

Тоді на елементі $y = 2af(y_0)^{-1}y_0 \in Y$ маємо |f(y)| = 2a > a.

§29.3 Неперервність функціоналів у слабкій топології

Теорема 29.1

Функціонал $f \in X'$ є неперервним в топології $\sigma(X, E)$, тоді і лише тоді, коли $f \in \text{lin}(E)$.

Зауваження 29.2 — Зокрема, якщо $E\subset X'$ — лінійний підпростір, множина $(X,\sigma(X,E))^*$ усіх функціоналів, неперервних в топології $\sigma(X,E)$ на X, збігається з E.

Доведення. **Необхідність.** За означенням топології $\sigma(X, E)$, усі елементи множини E є функціоналами, неперервними в топології $\sigma(X, E)$. Отже, неперервними будуть і їх лінійні комбінації.

Достатність. Нехай функціонал $f \in X'$ є неперервним в $\sigma(X, E)$. Тоді існує скінчена множина функціоналів $G = \{g_1, g_2, \dots, g_n\} \subset E$ і таке $\varepsilon > 0$, що в околі

$$U_{G,\varepsilon} = \{x \in X : \max_{g \in G} |g(x)| < \varepsilon\}.$$

усі значення функціонала f є обмеженими за модулем деяким числом a>0. Цим же число будуть обмежені значення функціонала на підпросторі

$$Y = \bigcap_{k=1}^{n} \ker f_k \subset U_{G,\varepsilon}.$$

За лемм. 29.2 функціонал f обертається на нуль на просторі Y, що за лемм. 29.1 значить, що $f \in \text{lin}(g_1, g_2, \dots, g_n) \subset \text{lin}(E)$.

29 Слабка топологія 157

§29.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — X.: XHУ им. В. Н. Каразина, 2006. (стр. 516–518).

30 Двоїстість

§30.1 Двоїстість, дуальні пари і слабка топологія

Означення 30.1. Нехай X, Y — лінійні простори. Відображення, що ставить кожній парі елементів $(x, y) \in X \times Y$ комплексне число (x, y) називається **двоїстістю**, якщо

1. $\langle x, y \rangle$ — білінійна форма, тобто

$$\langle a_1 x_1 + a_2 x_2, y \rangle = a_1 \langle x_1, y \rangle + a_2 \langle x_2, y \rangle,$$

$$\langle x, a_1 y_1 + a_2 y_2 \rangle = a_1 \langle x, y_1 \rangle + a_2 \langle x, y_2 \rangle.$$

2. $\langle x, y \rangle$ задовольняє умови невиродженості:

$$\forall x \in X \setminus \{0\} \quad \exists y \in Y : \quad \langle x, y \rangle \neq 0,$$

 $\forall y \in Y \setminus \{0\} \quad \exists x \in X : \quad \langle x, y \rangle \neq 0.$

Означення 30.2. Пара просторів X, Y із заданою на них двоїстістю називаються **дуальною парою**, або *парою просторів* у *двоїстюсті*.

Означення 30.3. Нехай X, Y — пара просторів у двоїстості. По кожному $y \in Y$ визначимо функціонал на X за правилом $y(x) = \langle x, y \rangle$, тобто $Y \subset X'$.

Слабкою топологією на X називатимемо топологію $\sigma(X,Y)$, тобто базу околів нуля топології $\sigma(X,Y)$ задає сім'я множин $\{x \in X : \max_{y \in G} |\langle x,y \rangle| < \varepsilon\}$, де $\varepsilon > 0$, а G пробігає всі скінчені підмножини простору Y.

Зауваження 30.1 — Друга аксіома дуальної пари гарантує віддільність слабкої топології. За теоремою 12.1 $(X, \sigma(X, E))^* = Y$, тобто будь-яку дуальну пару можна вважати парою вигляду (X, X^*) .

Зауваження 30.2 — Особливістю загального визначення дуальної пари є рівноправність просторів X і Y. Елементи x також можна вважати функціоналами на Y і розглядати слабку топологію $\sigma(Y,X)$ на просторі Y.

Зауваження 30.3 — Топологія $\sigma(X,Y)$ — це найслабкіша топологія, в якій усі функціонали $y(x) = \langle x,y \rangle$ є неперервними. Зокрема, якщо X — локально опуклий простір, то $\sigma(X,X^\star)$ слабкіше вихідної топології (звідси і назва).

Теорема 30.1

Кожна опукла замкнена множина локально опуклого простору X є замкненою і в слабкій топології $\sigma(X, X^*)$. Зокрема, кожний замкнений підпростір локально опуклого підпростору X є $\sigma(X, X^*)$ -замкненим.

Доведення. Без доведення.

§30.2 Поляра і аннулятор множини, їхні власивості

Означення 30.4. Нехай X,Y — дуальна пара. Полярою множини $A \subset X$ називаеться множина $A^0 \subset Y$, що визначається за правилом: $y \in A^0$ якщо $|\langle x,y \rangle| \leq 1$ для всіх $x \in A$. Аналогічно визначається поляра $A^0 \subset X$ множини $A \subset Y$.

Означення 30.5. Аннулятором множини $A \subset X$ називається множина $A^{\perp} \subset Y$, що складається з тих $y \in Y$, якщо $\langle x,y \rangle = 0$ для всіх $x \in A$. Очевидно, $A^{\perp} \subset A^0$ і згідно леми 12.2, якщо A — лінійний підпростір, то $A^{\perp} \subset A$. Крім того, $A^{\perp} = (\ln A)^{\perp}$.

Приклад 30.1

Розглянемо пару (X, X^*) , де X — банахів простір. Тоді $(B_X)^0 = B_{X^*}^0$. Дійсно,

$$f \in \overline{B}_{X^{\star}} \iff \|f\| \le 1 \iff \sup_{x \in B_X} |f(x)| \le 1 \iff f \in (B_X)^0.$$

Теорема 30.2

Поляри мають такі властивості:

- 1. якщо $A \subset B$, то $A^0 \supset B^0$;
- 2. $\{0_X\}^0 = Y$, $\{0_Y\}^0 = X$, де 0_X і 0_Y нульові елементи X і Y відповідно;
- 3. $(\lambda A)^0 = \lambda^{-1} A^0$ при $\lambda \neq 0$;
- 4. $(\bigcup_{A\in\mathfrak{C}}A)^0=\bigcap_{A\in\mathfrak{C}}A^0$ для будь-якої сім'ї \mathfrak{C} підмножин простору X.
- 5. $\{x\}^0$ опуклий, врівноважений $\sigma(X,Y)$ -замкнений окіл нуля;
- 6. A^0 опукла врівноважена $\sigma(X,Y)$ -замкнена множина;
- 7. множини вигляду A^0 , де A пробігає усі скінчені підмножини простору X, утворюють базу околів нуля в топології $\sigma(X,Y)$.

Доведення. Властивості 1-4 є очевидними. Опуклість і врівноваженість множини

$$\{x\}^0 = \{y \in Y : |\langle x, y \rangle| \le 1\} = \{y \in Y : |x(y)| \le 1\} = x^{-1}\{\lambda \in \mathbb{C} : |\lambda| \le 1\}$$

випливають з лінійності x як функціонала на Y. Оскільки $C_1 = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$ — це замкнений окіл нуля в \mathbb{C} , а функціонал x є неперервним в топології $\sigma(X,Y)$, то ця формула означає, що $\{x\}^0$ — це $\sigma(X,Y)$ -замкнений окіл нуля. Із цього випливає властивість 5).

Властивість 6) випливає з 5) внаслідок властивості 4): $A^0 = \bigcap_{x \in A} \{x\}^0$, а операція перетину не порушує опуклості, замкненості і врівноваженості.

Для доведення властивості 7) зауважимо таке: якщо підмножина $A \subset X$ є скінченою, то $A^0 = \bigcap_{x \in A} \{x\}^0$ — це скінчений перетин $\sigma(X,Y)$ -околів. Отже, поляра скінченої множини — це слабкий окіл. Далі, за означенням, будь-який $\sigma(X,Y)$ -окіл містить множину вигляду

$$U_{G,\varepsilon} = \{ y \in Y : \max_{g \in G} |g(x)| < \varepsilon \}, \quad G = \{ g_1, \dots, g_n \} \subset X, \quad \varepsilon > 0.$$

Для $A=(2\varepsilon)^{-1}G$ маємо $U_{G,\varepsilon}\supset A$. Отже, будь-який $\sigma(X,Y)$ -окіл містить множину вигляду A^0 , де $A\subset X$ є скінченою множиною.

30 Двоїстість 161

Наслідок 30.1

Аннулятор довільної $A\subset X$ є $\sigma(X,Y)$ -замкненим лінійним підпростором.

Доведення. Лінійність перевіряється безпосереднью, а $\sigma(X,Y)$ -замкненість випливає з властивості 6) і формули $A^{\perp} = (\ln A)^{\perp} = (\ln A)^{0}$.

§30.3 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 528-531).

31 Біполяра

§31.1 Абсолютна опуклість і біполяра

Означення 31.1. Нехай X — лінійний простір.

Абсолютно опуклою комбінацією набору елементів $\{x_k\}_{k=1}^n \subset X$ називається будь-яка сума вигляду $\sum_{k=1}^n \lambda_k x_k$, де $\sum_{k=1}^n |\lambda_k| \le 1$.

Означення 31.2. Абсолютно опуклою оболонкою множини A в лінійному просторі X називається множина усіх абсолютно опуклих комбінацій скінченняшя числа елементів множини A. Позначається абсолютно опукла оболонка як асопу A.

Нехай (X,Y) — дуальна пара, $A \subset X$. Тоді $A^0 \subset Y$ і у цієї множини теж можна розглянути поляру.

Означення 31.3. Множина $(A^0)^0 \subset X$ називається **біполярою** множини $A \subset X$ і позначається як A^{00} .

Теорема 31.1

Біполяра A^{00} множини $A\subset X$ збігається з $\sigma(X,Y)$ -замиканням абсолютно опуклої оболонки множини A.

Доведення. Зауважимо, що $A^{00}\supset A$. Дійсно, якщо $x\in A$, то за означенням множини A^0 :

$$\forall y \in A^0 \quad |\langle x, y \rangle| \le 1.$$

Це означає, що $X \in A^{00}$.

Далі, біполяра — частковий приклад поляри. Отже, відповідно до пункту 6) теореми 13.2 A^{00} — опукла врівноважена $\sigma(X,Y)$ -замкнена множина. Відповідно, A^{00} $\supset \overline{aconv}$ A

Для доведення оберненого включання візьмемо довільну точку $x_0 \in X \setminus \overline{\text{асопv}} A$ і переконаємося, що $x_0 \notin A^{00}$. Дійсно, оскільки $x_0 \in \overline{\text{асопv}} A$ і $\overline{\text{асопv}} A$ — це опукла врівноважена $\sigma(X,Y)$ -замкнена множина, тому за теоремою Хана—Банаха (теорем. 28.5) існує такий $\sigma(X,Y)$ -неперервний лінійний функціонал y на X, що

- 1. $|y(x)| \le 1 \ \forall x \in \overline{\text{aconv}} A$;
- 2. $|y(x_0)| > 1$.

Будь-який $\sigma(X,Y)$ -неперервний лінійний функціонал — це елемент простору Y. Умова 1 означає, що $y \in (\overline{\text{aconv}} A)^0 \subset A^0$. Тоді друга умова означає, що $x_0 \notin A^{00}$. \square

Наслідок 31.1

Якщо $A\subset X-\sigma(X,Y)$ -замкнена врівноважена множина, то $A^{00}=A.$ Зокрема, $B^{000}=B^0$ $\forall B\subset Y.$

Наслідок 31.2

 $A^{\perp\perp}=\overline{\lim}\,A\ \forall A\subset X.$ Якщо A — лінійний підпростір, то $A^{\perp\perp}=\overline{A}.$ Нарешті, $B^{\perp\perp\perp}=B^\perp\ \forall B\subset Y.$

Доведення.

$$A^{\perp \perp} = (A^{\perp})^{\perp} = ((\operatorname{lin} A)^{\perp})^{\perp}) = (\operatorname{lin} A)^{00} = \overline{\operatorname{lin}} A.$$

Наслідок 31.3

Якщо $A_1,A_2\subset X-\sigma(X,Y)$ -замкнені врівноважені множини, то $A_1=A_2\Longleftrightarrow A_1^0=A_2^0.$ Якщо до того ж $A_1=A_2-$ підпростори, то $A_1=A_2\Longleftrightarrow A_1^\perp=A_2^\perp$

З іншого боку, якщо $A_1^0=A_2^0$, то $A_1^{00}=A_2^{00}$ і можна застосувати теорему про біполяру.

Теорема 31.2

Нехай (X,Y) — дуальна пара і $A\subset X$. Тоді наступні умови є еквівалентними:

- 1. Множина функціоналів $A \subset X$ розділяє точки простору X.
- 2. $A^{\perp} = \{0\};$
- 3. $A^{\perp \perp} = X$;
- 4. Лінійна оболонка множини $A \in \sigma(Y, X)$ -щільною в Y.

Доведення. 1 \implies 2. Включення $A^{\perp} \supset \{0\}$ виконано завжди. Якщо ж $x \in X \setminus \{0\}$, то за умовою існує $y \in A$ такий, що $\langle x, y \rangle \neq 0$. У цьому випадку $x \notin A^{\perp}$.

- $2 \implies 1.$ Нехай $x \in X \setminus \{0\}.$ Тоді $x \notin A^\perp,$ отже існує $y \in A,$ такий що $\langle x,y \rangle \neq 0.$
- $2\iff 3$. Оскільки A^\perp і $\{0\}$ це $\sigma(X,Y)$ -замкнені підпростори, можна скористатися наслідком 11.3.

$$3 \iff 4$$
. За наслідком $11.2 \ A^{\perp \perp} = \overline{\lim} \ A$.

§31.2 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 533-535).

32 Спряжений оператор

§32.1 Алгебраїчно спряжний і спряжений оператори

Означення 32.1. Нехай X, Y — лінійні простори, $T: X \to Y$ — лінійний оператор. Алгебраїчно спряженим оператором до T називається оператор $T': Y' \to X'$, що діє за правилом $T'f = f \circ T$.

Означення 32.2. Нехай $(X_1, Y_1), (X_2, Y_2)$ — дуальні пари. Будемо говорити, що у оператора T існує **спряжений оператор** $T^*: Y_2 \to Y_1$, якщо для будь-якого $y \in Y_2$ існує такий елемент $T^*y \in Y_1$, що $\langle Tx, y \rangle = \langle x, T^*, y \rangle$ для всіх $x_1 \in X$.

Трактуючи елементи просторів Y_1 , Y_2 як функціонали на X_1 і X_2 відповідно, бачимо, що $T^*y = y \circ T$. Очевидно, що спряжений оператор до T існує тоді і лише тоді, коли $T'(Y_2) \subset Y_1$. У цьому випадку T^* — це звуження алгебраїчно спряженого оператора T' на Y_2 . Для дуальних пар (X_1, X_1^*) , (X_2, X_2^*) , де X_1, X_2 — банахові простори, то нове означення спряженого оператора збігається з відомим означенням спряженого до оператору в банахових просторах.

Теорема 32.1

Нехай X_1 і X_2 — локально опуклі простори, $T: X_1 \to X_2$ — лінійний неперервний оператор. Тоді у T існує спряжений $T^*: X_2^* \to X_1^*$.

Доведення. Нехай $f \in X_2^{\star}$. Тоді функціонал $T'f = f \circ T$ є неперервним як композиція двох неперервних відображень. Отже, $T'(X_2^{\star}) \subset X_1^{\star}$.

Теорема 32.2

Нехай $(X_1,Y_1),\ (X_2,Y_2)$ — дуальні пари, $T:X_1\to X_2$ — лінійний оператор, $T^\star:Y_2\to Y_1$ — спряжений оператор. Тоді для довільного $A\subset Y_2$

$$T^{-1}(A^0) = (T^*A)^0.$$

Доведення.

$$x \in T^{-1}(A^0) \iff Tx \in A^0 \iff \forall y \in A \, |\langle Tx, y \rangle| \le 1 \iff \\ \iff \forall y \in A \, |\langle x, T^{\star}y \rangle| \le 1 \iff \forall z \in T^{\star}A \, |\langle x, z \rangle| \le 1 \iff x \in (T^{\star}A)^0. \quad \Box$$

Теорема 32.3

Нехай $(X_1,Y_1), (X_2,Y_2)$ — дуальні пари, $T:X_1\to X_2$ — лінійний оператор. Тоді наступні умови є еквівалентними:

- 1. У оператора T існує спряжений.
- 2. T слабко неперервний оператор, тобто він є неперервним як оператор, що діє з $(X_1, \sigma(X_1, Y_1))$ і $(X_2, \sigma(X_2, Y_2))$.

Доведення. $1 \implies 2$. Внаслідок лінійності достатньо перевірити неперервність оператору в нулі. За теоремою 13.2 базу околів нуля в топології $\sigma(X_2, Y_2)$ утворюють поляри скінчених множин $A \subset Y$. За формулою

$$T^{-1}(A^0) = (T^*A)^0$$

прообраз $T^{-1}(A^0)$ околу A^0 — це знову поляра $(T^\star A)^0$ скінченої множини $T^\star A \subset Y_1$. Отже, $T^{-1}(A^0)$ — це окіл нуля в топології $\sigma(X_1,Y_1)$.

Наслідок 32.1

Нехай X_1, X_2 — локально опуклі простори, $T: X_1 \to X_2$ — лінійний неперервний оператор. Тоді T — слабко неперервний оператор в топологіях $\sigma(X_1, X_1^\star)$ і $\sigma(X_2, X_2^\star)$.

§32.2 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 535–538).