Discrete Mathematics Peergrade assignment 1

1. Solve for x the following equations. Present the result in the simplest form.

(a)
$$\frac{5}{3}x + \frac{2}{5} = 7$$

(b)
$$\frac{4}{1+x} + \frac{15}{4} = 5$$

(c)
$$\left| \frac{4x}{5} \right| = \left(\frac{1}{2} - \frac{1}{3} \right)^{-1}$$

(d)
$$\frac{x-3}{3} = 2\left(\frac{2+x}{5} + 1\right)$$

Note: you need to show how you obtained the solution. Mark each step with a justification.

2. Show that \rightarrow and \sim form a functionally complete set of logical operators, that is that we can express other logical operators using only these two.

To do that, find formulas written using only p, q, \rightarrow and \sim , which encode

- (a) disjunction¹ $p \vee q$,
- (b) conjunction $p \wedge q$ and
- (c) biconditional $p \leftrightarrow q$

In each step, use a truth table to show that your formula is logically equivalent to the operator it encodes.

3. Use the logical equivalences in Figure 1 below to verify the following logical equivalences step by thep. Supply a reason for each step. i.e. state, which of the equivalences from Figure 1 you used.

(a)
$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

(b)
$$(p \land \sim q) \to r \equiv (p \land \sim r) \to q$$

(c)
$$(p \land q) \to r \equiv p \to (q \to r)$$

(d)
$$\sim ((p \to q) \land \sim q) \lor \sim p \equiv \mathbf{t}$$

¹Hint: start by looking at Figure 1, particularly the Conditional (12) law.

Given any statement variables p, q, and r, a tautology ${\bf t}$ and a contradiction ${\bf c}$, the following logical equivalences hold:

1. Commutative laws:	$p \wedge q \equiv q \wedge p$	$p\vee q\equiv q\vee p$
2. Associative laws:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p\vee q)\vee r\equiv p\vee (q\vee r)$
3. Distributive laws:	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
4. Identity laws:	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
5. Negation laws:	$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
6. Double negative law:	$\sim (\sim p) \equiv p$	
7. Idempotent laws:	$p \wedge p \equiv p$	$p\vee p\equiv p$
8. Universal bound laws:	$p\vee \mathbf{t}\equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
9. De Morgan's laws:	${\sim}(p \wedge q) \equiv {\sim}p \vee {\sim}q$	${\sim}(p\vee q)\equiv{\sim}p\wedge{\sim}q$
10. Absorption laws:	$p \vee (p \wedge q) \equiv p$	$p \land (p \lor q) \equiv p$
11. Negations of ${\bf t}$ and ${\bf c}$:	${\sim}{f t}\equiv{f c}$	$\sim\!\!\mathbf{c}\equiv\mathbf{t}$
12. Conditional:	${\sim}p \vee q \equiv p \to q$	$p \to q \equiv {\sim} q \to {\sim} p$
13. Biconditional:	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$	$p \leftrightarrow q \equiv {\sim} p \leftrightarrow {\sim} q$

Figure 1: Logical equivalences.

For example, to verify the equivalence $(p \wedge q) \wedge q \equiv p \wedge q$, you would write:

$$(p \wedge q) \wedge q$$

$$\equiv p \wedge (q \wedge q) \qquad (2)$$

$$\equiv p \wedge q \qquad (7)$$
or
$$(p \wedge q) \wedge q$$

$$\stackrel{(2)}{\equiv} p \wedge (q \wedge q)$$

$$\stackrel{(7)}{\equiv} p \wedge q$$