Assignment 4 No.5

(a)

ln[7]:= ParametricPlot[{x, y}, {t, 0, 4 π }]

(b)
$$L = \int_{a}^{b} \sqrt{\left(\left(\frac{dIx}{dIt}\right)^{2} + \left(\frac{dIy}{dIt}\right)^{2}\right)} dIt$$

In[9]:= D[Cos[t], t]

Outgg = -Sin[t]

In[11]:= L =
$$\int_0^{4\pi} \sqrt{\left((-2\cos[t]\sin[t])^2 + (-\sin[t])^2\right)} dt // N$$

Out[11]:= 11.8315

i.e, 11.8315 meters

(C)

about x axis.

$$S = \int_a^b 2 \operatorname{Pi} y \, ds \text{ where } ds = \sqrt{\left(\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2\right)}$$

In[12]:= ClearAll["Global`*"]

In[12]:= ClearAll["Global`*"]

In[17]:=
$$x = a (Cos[\theta])^3$$

Out[17]:= $a Cos[\theta]^3$

In[18]:= $y = a (Sin[\theta])^3$

Out[18]:= $a Sin[\theta]^3$

In[19]:= $a Sin[\theta]^3$

Out[19]:= $a Sin[\theta]^3$

In[20]:= $a Sin[\theta]^3$

Out[20]:= $a Sin[\theta]^3$

Out[20]:= $a Sin[\theta]^3$

Out[21]:= $a Sin[\theta]^3$

Out[22]:= $a Sin[\theta]^3$

Out[23]:= $a Sin[\theta]^3$