Improving Robustness in Data Centric Machine Learning

Masashi Sugiyama

RIKEN Center for Advanced Intelligence Project/
The University of Tokyo

http://www.ms.k.u-tokyo.ac.jp/sugi/

About Myself

Masashi Sugiyama:

- Director: RIKEN AIP, Japan
- Professor: University of Tokyo, Japan
- Consultant: several local startups

- ML theory & algorithm →
- ML applications (signal, image, language, brain, robot, mobility, advertisement, biology, medicine, education...)

Academic activities:

 Program Chairs for NeurlPS2015, AISTATS2019, ACML2010/2020...

Sugiyama & Kawanabe, Machine Learning in Non-Stationary Environments, MIT Press, 2012

Sugiyama, Suzuki & Kanamori, Density Ratio Estimation in Machine Learning, Cambridge University Press, 2012

Sugiyama, Statistical Reinforcement Learning, Chapman and Hall/CRC, 2015

Sugiyama, Introduction to Statistical Machine Learning, Morgan Kaufmann, 2015

Nakajima, Watanabe & Sugiyama, Variational Bayesian Learning Theory, Cambridge University Press, 2019

Sugiyama, Bao, Ishida, Lu, Sakai & Niu. Machine Learning from Weak Supervision, MIT Press, 2022.

What is "RIKEN"?

Name in Japanese:

- Pronounced as: rikagaku kenkyusho
- Meaning: Physics and Chemistry Research Institute

■Acronym in Japanese: 理研 (RIKEN)

What is RIKEN-AIP?

- MEXT Advanced Intelligence Project (2016-2025):
- 130 employed researchers (36% international, 23% female)
- 200 visiting researchers, 100 domestic students
- 140 international interns (total)

Missions:

- Develop new AI technology (ML, Opt, math)
- Accelerate scientific research (cancer, material, genomics)
- Solve socially critical problems (disaster, elderly healthcare)
- Study of ELSI in AI (ethical guidelines, personal data)
- Human resource development (researchers, engineers)

Distributed offices across Japan

Main office in the heart of Tokyo

Selected Research

ullet Extension to input-dependent noise T(x).

Natural disaster:

- Fugaku-based earthquake simulation
- Remote sensing disaster analysis

Elderly healthcare:

- Chat-robot-quided cognitive function improvement
- Education:
- Automatic essay evaluation
- Interactive essay writing support

employed to separate hidden cause

Accelerating Scientific Research

Medical science:

- Prostate/pancreatic cancer detection
- ALS early diagnosis
- Fetal heart screening
- Colonoscopy

Material science:

Database creation with text mining

Data-driven science:

 Selective inference for reliability evaluation

Studying AI-ELSI

■ Al Ethical guidelines:

- Japanese Society for Al, Ministry of Internal Affairs and Communications, Cabinet Office
- IEEE, G20, OECD

Personal data management:

- Individual-based accessibility control system
- Al security and reliability:
- Adversarial attack/defense
- Fairness faking/guarantee

Contents

- 1. Introduction of RIKEN-AIP
- 2. Robust Machine Learning
 - A) Weakly Supervised Learning
 - **B)** Transfer Learning
 - C) Noise-Robust Learning
- 3. Summary

Robust Machine Learning

- Goal: Develop novel ML theories and algorithms that enable reliable learning from limited information.
 - Insufficient information: weak supervision.
 - Data bias: changing environments, privacy.
 - Label noise: human error, sensor error.
 - Attack: adversarial noise, distribution shift.

Contents

- 1. Introduction of RIKEN-AIP
- 2. Robust Machine Learning
 - A) Weakly Supervised Learning
 - **B)** Transfer Learning
 - C) Noise-Robust Learning
- 3. Summary

ML from Limited Data

- ML from big labeled data is successful.
 - Speech, image, language, advertisement,...
 - \bullet Estimation error of the boundary decreases in order $1/\sqrt{n}$. n : Number of labeled samples

- However, there are various applications where big labeled data is not available.
 - Medicine, disaster, robots, brain, ...

Alternatives to Supervised Classification

Unsupervised classification:

- No label is used.
- Essentially clustering.
- No guarantee for prediction.

Semi-supervised classification:

- Additionally use a small amount of labeled data.
- Propagate labels along clusters.
- No guarantee for prediction.

Weakly Supervised Learning

- Coping with labeling cost:
 - Improve data collection (e.g., crowdsourcing)
 - Use a simulator to generate pseudo data (e.g., physics, chemistry, robotics, etc.)
 - Use domain knowledge (e.g., engineering)
 - Use cheap but weak data (e.g., unlabeled)

High Supervised classification -abeling cost Semi-supervised classification Weakly supervised learning High accuracy & low cost Unsupervised classification Low High Low Classification accuracy

Positive-Unlabeled Classification

Given: Positive and unlabeled samples

$$\{\boldsymbol{x}_{i}^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{P}}} \overset{\mathrm{i.i.d.}}{\sim} p(\boldsymbol{x}|y=+1)$$

 $\{\boldsymbol{x}_{j}^{\mathrm{U}}\}_{j=1}^{n_{\mathrm{U}}} \overset{\mathrm{i.i.d.}}{\sim} p(\boldsymbol{x})$

Goal: Obtain a PN classifier

Example: Ad-click prediction

- Clicked ad: User likes it → P
- Unclicked ad: User dislikes it or User likes it but doesn't have time to click it → U (=P or N)

Positive

Unlabeled (mixture of positives and negatives)

Solution (Sketch)

Given: Positive and unlabeled data

du Plessis, Niu & Sugiyama (NIPS2014, ICML2015)

$$\{\boldsymbol{x}_i^{\mathrm{P}}\}_{i=1}^{n_{\mathrm{P}}} \overset{\mathrm{i.i.d.}}{\sim} p(\boldsymbol{x}|y=+1) \quad \{\boldsymbol{x}_j^{\mathrm{U}}\}_{j=1}^{n_{\mathrm{U}}} \overset{\mathrm{i.i.d.}}{\sim} p(\boldsymbol{x})$$

Decomposition of the classification risk:

$$R(f) = \mathbb{E}_{p(\boldsymbol{x},y)} \Big[\ell \Big(y f(\boldsymbol{x}) \Big) \Big] \quad \ell : \text{loss} \qquad \begin{aligned} \pi &= p(y = +1) : \\ \text{Class prior (assumed known)} \end{aligned}$$

$$= \pi \mathbb{E}_{p(\boldsymbol{x}|y=+1)} \Big[\ell \Big(f(\boldsymbol{x}) \Big) \Big] + (1-\pi) \mathbb{E}_{p(\boldsymbol{x}|y=-1)} \Big[\ell \Big(-f(\boldsymbol{x}) \Big) \Big]$$
 Risk for positive data

Eliminate the expectation over negative data as

$$\mathbb{E}_{\boldsymbol{p}(\boldsymbol{x})} \left[\ell \left(-f(\boldsymbol{x}) \right) \right] - \pi \mathbb{E}_{\boldsymbol{p}(\boldsymbol{x}|\boldsymbol{y}=+1)} \left[\ell \left(-f(\boldsymbol{x}) \right) \right]$$
$$p(\boldsymbol{x}) = \pi p(\boldsymbol{x}|\boldsymbol{y}=+1) + (1-\pi)p(\boldsymbol{x}|\boldsymbol{y}=-1)$$

$$p(\boldsymbol{x}) = \pi p(\boldsymbol{x}|y=+1) + (1-\pi)p(\boldsymbol{x}|y=-1)$$
 Unbiased risk estimation:
$$\mathcal{O}_p\left(1/\sqrt{n_{\mathrm{P}}} + 1/\sqrt{n_{\mathrm{U}}}\right)$$

$$\widehat{R}_{\mathrm{PU}}(f) = \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell \left(f(\boldsymbol{x}_{i}^{\mathrm{P}}) \right) + \frac{1}{n_{\mathrm{U}}} \sum_{j=1}^{n_{\mathrm{U}}} \ell \left(-f(\boldsymbol{x}_{j}^{\mathrm{U}}) \right) - \frac{\pi}{n_{\mathrm{P}}} \sum_{i=1}^{n_{\mathrm{P}}} \ell \left(-f(\boldsymbol{x}_{i}^{\mathrm{P}}) \right)$$

Sakai, du Plessis, Niu & Sugiyama (ICML2017)

- Let's decompose PNU into PU, PN, and NU:
 - Each is solvable.
 - Let's combine them!
- Without cluster assumptions, PN classifiers are trainable!

$$\mathcal{O}_p \Big(1/\sqrt{n_{\mathrm{P}}} + 1/\sqrt{n_{\mathrm{N}}} + 1/\sqrt{n_{\mathrm{U}}} \Big)$$

Various Extensions

Learning from weakly supervised data is possible in many different forms!

All are loss-correction based and consistent.

$$\mathcal{O}_p\Big(1/\sqrt{n}\Big)$$

Any loss, classifier, and optimizer can be used.

Multiclass Methods

- Labeling patterns in multi-class problems is extremely painful.
- Multi-class weak-labels:
 - Complementary labels: (NIPS2017, ICML2019) Chou et al. (ICML2020)
 Specify a class that a pattern does not belong to ("not 1").

Partial labels: Specify a subset of classes
 Feng et al.
 that contains the correct one ("1 or 2").
 (ICML2020, NeurIPS2020)
 Lv et al. (ICML2020)

Ishida et al.

- Single-class confidence: Cao et al. (arXiv2021)
 One-class data with full confidence
 ("1 with 60%, 2 with 30%, and 3 with 10%")
- Systematic loss correction is possible!

 $\mathcal{O}_p\!\left(1/\sqrt{n}\right)$

Summary: Weakly Supervised Learning

- We developed an empirical risk minimization framework for weakly supervised learning:
 - Any loss, classifier, and optimizer can be used.
 - Statistical consistency with optimal convergence.

Sugiyama, Bao, Ishida, Lu, Sakai & Niu, Machine Learning from Weak Supervision: An Empirical Risk Minimization Approach. MIT Press, August 2022.

Contents

- 1. Introduction of RIKEN-AIP
- 2. Robust Machine Learning
 - A) Weakly Supervised Learning
 - **B)** Transfer Learning
 - c) Noise-Robust Learning
- 3. Summary

Transfer Learning

- Training and test data often have different distributions, due to
 - changing environments,
 - sample selection bias (privacy).

- Transfer learning (domain adaptation):
 - Train a test-domain predictor using training data from different domains.

Classical Approach for Transfer Learning

- Two-step adaptation:
 - 1. Importance weight estimation:

$$\widehat{w} = \operatorname*{argmin}_{w} \widehat{\mathbb{E}}_{p_{\operatorname{tr}}(\boldsymbol{x}, y)} \left[D\left(w(\boldsymbol{x}, y), \frac{p_{\operatorname{te}}(\boldsymbol{x}, y)}{p_{\operatorname{tr}}(\boldsymbol{x}, y)} \right) \right]$$

$$\widehat{f} = \operatorname*{argmin}_{f} \widehat{\mathbb{E}}_{p_{\operatorname{tr}}(\boldsymbol{x}, y)} [\widehat{\boldsymbol{w}}(\boldsymbol{x}, y) \ell(f(\boldsymbol{x}), y)]$$

- However, estimation error in Step 1 is not taken into account in Step 2.
 - We want to integrate these two steps!

Sugiyama & Kawanabe (MIT Press 2012)

Joint Weight-Predictor Optimization ²¹

Covariate shift: Only input distributions change.

$$p_{\mathrm{tr}}(oldsymbol{x})
eq p_{\mathrm{te}}(oldsymbol{x}) \qquad p_{\mathrm{tr}}(y|oldsymbol{x}) = p_{\mathrm{te}}(y|oldsymbol{x})$$
 Shimodaira (JSPI2000)

- Suppose we are given
 - Labeled training data: $\{(\boldsymbol{x}_i^{\mathrm{tr}}, y_i^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y)$
 - Unlabeled test data: $\{m{x}_i^{ ext{te}}\}_{i=1}^{n_{ ext{te}}} \overset{ ext{i.i.d.}}{\sim} p_{ ext{te}}(m{x})$
- Minimize a risk upper bound jointly (ACML2020, SNCS2021) w.r.t. weight w and predictor f: $J_{\ell_{\mathrm{tr}}}(f,w) \geq R_{\ell_{\mathrm{te}}}(f)^2$

$$\widehat{f} = \underset{w \ge 0}{\operatorname{argmin}} \min_{w \ge 0} \widehat{J}_{\ell_{\operatorname{tr}}}(f, w) \qquad R_{\ell}(f) = \mathbb{E}_{p_{\operatorname{te}}(\boldsymbol{x}, y)}[\ell(f(\boldsymbol{x}), y)]$$

$$\ell_{\operatorname{te}} \le 1, \ell_{\operatorname{tr}} \ge \ell_{\operatorname{te}}$$

 $\widehat{J_\ell}$: Empirical approximation of J_ℓ

Theoretical guarantee:

$$R_{\ell_{\text{te}}}(\widehat{f}) \le \sqrt{2} \min_{f} R_{\ell_{\text{te}}}(f) + \mathcal{O}_p(n_{\text{tr}}^{-1/4} + n_{\text{te}}^{-1/4})$$

Dynamic Importance Weighting

- General changing distributions: $p_{tr}(\boldsymbol{x}, y) \neq p_{te}(\boldsymbol{x}, y)$
- Suppose we are given
 - Labeled training data: $\{(\boldsymbol{x}_i^{\mathrm{tr}}, y_i^{\mathrm{tr}})\}_{i=1}^{n_{\mathrm{tr}}} \overset{\mathrm{i.i.d.}}{\sim} p_{\mathrm{tr}}(\boldsymbol{x}, y)$
 - Labeled test data: $\{(\boldsymbol{x}_i^{\text{te}}, y_i^{\text{te}})\}_{i=1}^{n_{\text{te}}} \overset{\text{i.i.d.}}{\sim} p_{\text{te}}(\boldsymbol{x}, y)$
- For each mini-batch $\{(\bar{x}_i^{\rm tr}, \bar{y}_i^{\rm tr})\}_{i=1}^{\bar{n}_{\rm tr}}, \{(\bar{x}_i^{\rm te}, \bar{y}_i^{\rm te})\}_{i=1}^{\bar{n}_{\rm te}},$ importance weights are estimated by [NeurlPS2020] matching losses by kernel mean matching:

Huang et al. (NeurlPS2007)

$$\frac{1}{\bar{n}_{\mathrm{tr}}} \sum_{i=1}^{n_{\mathrm{tr}}} r_{i} \ell(f(\bar{\boldsymbol{x}}_{i}^{\mathrm{tr}}), \bar{y}_{i}^{\mathrm{tr}}) \approx \frac{1}{\bar{n}_{\mathrm{te}}} \sum_{j=1}^{n_{\mathrm{te}}} \ell(f(\bar{\boldsymbol{x}}_{j}^{\mathrm{te}}), \bar{y}_{j}^{\mathrm{te}})$$

Extremely simple, but highly powerful!

Summary

- In transfer learning with importance weighting, simultaneously performing importance estimation and predictor training is promising.
- What should we do if training and test distributions look very different?
 - Mechanism transfer!

Teshima, Sato & Sugiyama (ICML2020)

Bai, Zhang, Zhao, Sugiyama & Zhou (NeurIPS2022)

Current challenge: Continuous distribution change

Contents

- 1. Introduction of RIKEN-AIP
- 2. Robust Machine Learning
 - A) Weakly Supervised Learning
 - **B)** Transfer Learning
 - c) Noise-Robust Learning
- 3. Summary

Supervised Classification

Supervised classification with clean labels:

Training error minimization is statistically consistent and work well in practice.

However, real-world labels are noisy possibly due to human error:

Training error minimization is no longer consistent and does not work well in practice.

Classical Approaches

- Unsupervised outlier removal:
 - Substantially more difficult than classification.

Robust loss:

 Works well for regression, but limited effectiveness for classification.

Regularization:

 Effective in suppressing overfitting, but too smooth for strong noise.

Need new approaches!

Noise Transition Correction

- Noise transition matrix *T*:
 - Clean-to-noisy flipping probability.

	1	0	0
T =	0.1	8.0	0.1
	0.5	0.5	0

- Major approaches: Patrini et al. (CVPR2017)
 - ullet Loss correction by $oldsymbol{T}^{-1}$ to eliminate noise.
 - ullet Classifier adjustment by $oldsymbol{T}$ to simulate noise.
- lacksquare We want to estimate T only from noisy data:
 - ullet Use human cognition as a "mask" for T.

Han, Yao, Niu, Zhou, Tsang, Zhang & Sugiyama (NeurlPS2018)

- ullet Reduce estimation error of $T_{
 m Yao,\ Liu,\ Han,\ Gong,\ Deng,\ Niu\ \&\ Sugiyama\ \&\ Tao\ (NeurlPS2019)}$
- ullet Learn T and classifier simultaneously.

Zhang, Niu & Sugiyama (ICML2021)

ullet Estimate T under weaker conditions.

Li, Liu, Han, Niu & Sugiyama (ICML2021)

Beyond Class-Conditional Noise

- Real-world noise may be instance-dependent:
 - Ex.: Noise is large near the boundary.

- Instance-dependent noise: $T_{y,ar{y}}(oldsymbol{x})=ar{p}(ar{y}|y,oldsymbol{x})$
 - Extremely challenging to estimate the noise transition matrix function!
- Various heuristic solutions:
 - Parts-based estimation.
 - Use of additional confidence scores.
 - Manifold regularization.

Xia, Liu, Han, Wang, Gong, Liu, Niu, Tao & Sugiyama (NeurlPS2020)

Berthon, Han, Niu, Liu & Sugiyama (ICML2021)

Cheng, Liu, Ning, Wang, Han, Niu, Gao & Sugiyama (CVPR2022)

Co-teaching

Memorization of neural nets:

Arpit et al. (ICML2017) Zhang et al. (ICLR2017)

- Stochastic gradient descent fits clean data faster.
- However, naïve early stopping does not work well.

- "Co-teaching" between two neural nets:
 - Teach small-loss data each other.

Han, Yao, Yu, Niu, Xu, Hu, Tsang & Sugiyama (NeurlPS2018)

Teach only disagreed data.

Yu, Han, Yao, Niu, Tsang & Sugiyama (ICML2019)

Gradient ascent for large-loss data.

Han, Niu, Yu, Yao, Xu, Tsang & Sugiyama (ICML2020)

- No theory but very robust in experiments:
 - Works well even if 50% random label flipping!

Contents

- 1. Introduction of RIKEN-AIP
- 2. Robust Machine Learning
 - A) Weakly Supervised Learning
 - **B)** Transfer Learning
 - c) Noise-Robust Learning
- 3. Summary

Challenges in Reliable ML

- Reliability for expectable situations:
 - Model the corruption process explicitly and correct the solution.
 - How to handle modeling error?
- Reliability for unexpected situations:
 - Consider worst-case robustness ("min-max").
 - How to make it less conservative?
 - Include human support ("rejection").
 - How to handle real-time applications?
- Exploring somewhere in the middle would be practically more useful:
 - Use partial knowledge of the corruption process.