Insumo-Produto*

2ª Lista de Exercícios

Alberson da Silva Miranda

13 de maio de 2024

 $^{{\}rm *C\'odigo~dispon\'ivel~em~https://github.com/albersonmiranda/insumo_produto.}$

Índice

1	Dados				
2	Q1		4		
	2.1	Dados e cômputo da inversa de Leontief	4		
	2.2	Multiplicadores	5		
3	Q2		7		
	3.1	Multiplicadores para importações	7		
	3.2	Multiplicadores para impostos			
	3.3	Multiplicadores para emprego			
4	Q3		11		
5	Q4		12		
	5.1	Impacto de exportações de petróleo	12		

1 Dados

Escolha das matrizes vetores:

- 1. Z: matriz de consumo intermediário: D6:BB56
- 2. f: matriz de consumo final: BD6:BJ56
- 3. x: vetor de produção total: D79:BB79
- 4. v: vetor de valor adicionado: D78:BB78
- 5. r: vetor de remuneração: D69:BB69. Aqui, optei por apenas as remunerações do fator trabalho, pois será endogeneizado o consumo das famílias. Não considerei a alínea Excedente Operacional Bruto e Rendimento Misto Bruto por estarem associadas ao investimento (representada pela proxy Formação Bruta de Capital Fixo)
- 6. e: vetor de ocupações: D80:BB80
- 7. C: vetor de consumo das famílias: BH6:BH56
- 8. m: vetor de importações: D58:BB58
- 9. E: vetor de exportações: BD6:BD56
- 10. taxes: vetor de impostos: D59:BB59

Calcule os multiplicadores da produção do tipo I e tipo II para cada setor de atividade e decomponha os efeitos direto, indireto e renda. Após, identifique os 5 setores com maior efeito indireto e efeito-renda. Esses setores são os mesmos? Quais fatores poderiam explicar as diferenças entre os setores segundo o tipo de multiplicador?

2.1 Dados e cômputo da inversa de Leontief

```
mip = fio::iom_br_2020_51
   A = mip ▷
      fio::tecnical_coef()
   B = A >
     fio::leontief_inverse()
10
11
   n = nrow(B)
13
14
   # coeficientes do modelo fechado
15
   coef_consumo_familias = mip[["C"]] / sum(mip[["r"]])
16
   coef_remuneracoes = mip[["r"]] / mip[["x"]]
17
18
19
   A_fechado = rbind(
20
     cbind(A, coef_consumo_familias),
21
      cbind(coef_remuneracoes, 0))
22
23
24
   B_fechado = solve(diag(n + 1) - A_fechado)
25
```

Tabela 2.1: Top 5 setores com maior efeito indireto

setores	efeito_total_aberto	efeito_total_fechado	efeito_direto	efeito_indireto	efeito_renda
Refino de petróleo e coque	2.546	3.301	2.546	0.848	0.756
Automóveis camionetas caminhões e ônibus	2.379	3.831	2.379	0.684	1.453
Alimentos e Bebidas	2.418	3.604	2.418	0.664	1.186
Fabricação de aço e derivados	2.362	3.447	2.362	0.640	1.085
Metalurgia de metais não-ferrosos	2.246	3.265	2.246	0.627	1.019

2.2 Multiplicadores

Para a comparação dos multiplicadores, no modelo fechado optei por usar o efeito total truncado, ou seja, sem considerar o coeficiente de consumo das famílias no somatório, deixando apenas os setores produtivos, assim como no cômputo do efeito total do modelo aberto.

```
# top 5 setores com maior efeito renda
sort_by(
multiplicadores,
multiplicadores$efeito_renda,
decreasing = TRUE
```

Tabela 2.2: Top 5 setores com maior efeito renda

setores	efeito_total_aberto	efeito_total_fechado	efeito_direto	efeito_indireto	efeito_renda
Serviços domésticos	1.000	4.789	1.000	0.000	3.789
Educação pública	1.218	4.532	1.218	0.092	3.314
Administração pública e seguridade social	1.378	4.069	1.378	0.152	2.691
Educação mercantil	1.436	4.120	1.436	0.162	2.683
Saúde pública	1.538	4.213	1.538	0.233	2.676

```
head(5) >
kableExtra::kbl(booktabs = TRUE, digits = 3) >
kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
```

Não, não são os mesmos setores. O efeito indireto é maior em setores que possuem maior impacto na cadeia produtiva daquela economia. Faz sentido que a indústria de transformação lidere esse tipo de efeito. Já o efeito-renda nos diz a taxa em que os benefícios dos efeitos diretos e indiretos são transformados em consumo das famílias, resultando novamente em demanda para os diversos setores. Setores de maior propenção ao consumo tendem a liderar esse tipo de efeito.

3.1 Multiplicadores para importações

```
# coeficiente de importações
   coef_import = mip[["m"]] / mip[["x"]]
   coef_import = as.vector(coef_import)
   # matriz geradora de import
   coef_import_hat = diag(coef_import)
   M = coef_import_hat %*% B
   M_fechado = coef_import_hat %*% B_fechado[1:n, 1:n]
   # multiplicadores de import
10
   multiplicadores_import = tibble::tibble(
11
     setores = rownames(A),
12
    simples = colSums(M),
13
     tipo_I = colSums(M) / coef_import,
     totais = colSums(M_fechado),
15
     tipo_II = colSums(M_fechado) / coef_import
16
17
18
19
   sort_by(
20
     multiplicadores_import,
     multiplicadores_import$tipo_I,
     decreasing = TRUE
23
   ) >
24
     head(5) ▷
25
     kableExtra::kbl(booktabs = TRUE, digits = 3) ▷
26
     kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
27
```

Tabela 3.1: Top 5 setores com maior multiplicador de importação

setores	simples	tipo_I	totais	tipo_II
Álcool	0.113	4.807	0.163	6.939
Alimentos e Bebidas	0.124	3.433	0.183	5.074
Serviços de alojamento e alimentação	0.073	2.951	0.144	5.835
Produtos do fumo	0.133	2.822	0.185	3.918
Refino de petróleo e coque	0.168	2.584	0.206	3.162

3.2 Multiplicadores para impostos

```
# coeficiente de impostos
   coef_taxes = mip[["m"]] / mip[["x"]]
   coef_taxes = as.vector(coef_taxes)
4
   # matriz geradora de impostos
   coef_taxes_hat = diag(coef_taxes)
   taxes = coef taxes hat %*% B
   taxes_fechado = coef_taxes_hat %*% B_fechado[1:n, 1:n]
   # multiplicadores de impostos
10
   multiplicadores_taxes = tibble::tibble(
11
     setores = rownames(A),
12
     simples = colSums(taxes),
     tipo_I = colSums(taxes) / coef_taxes,
14
     totais = colSums(taxes_fechado),
15
     tipo_II = colSums(taxes_fechado) / coef_taxes
16
17
18
19
   sort_by(
20
     multiplicadores_taxes,
21
     multiplicadores_taxes$tipo_I,
     decreasing = TRUE
23
   ) >
24
     head(5) ▷
25
     kableExtra::kbl(booktabs = TRUE, digits = 3) ▷
26
     kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
27
```

Tabela 3.2: Top 5 setores com maior multiplicador de impostos

setores	simples	tipo_I	totais	tipo_II
Álcool	0.113	4.807	0.163	6.939
Alimentos e Bebidas	0.124	3.433	0.183	5.074
Serviços de alojamento e alimentação	0.073	2.951	0.144	5.835
Produtos do fumo	0.133	2.822	0.185	3.918
Refino de petróleo e coque	0.168	2.584	0.206	3.162

3.3 Multiplicadores para emprego

```
# coeficiente de emprego
   coef_emprego = mip[["e"]] / mip[["x"]]
   coef_emprego = as.vector(coef_emprego)
4
   # matriz geradora de emprego
   coef_emprego_hat = diag(coef_emprego)
   E = coef emprego hat %*% B
   E_fechado = coef_emprego_hat %*% B_fechado[1:n, 1:n]
   # multiplicadores de emprego
10
   multiplicadores_emprego = tibble::tibble(
11
     setores = rownames(A),
12
     simples = colSums(E),
     tipo_I = colSums(E) / coef_emprego,
14
     totais = colSums(E_fechado),
15
     tipo_II = colSums(E_fechado) / coef_emprego
16
17
18
19
   sort_by(
20
     multiplicadores_emprego,
21
     multiplicadores_emprego$tipo_II,
     decreasing = TRUE
23
   ) >
24
     head(5) ▷
25
     kableExtra::kbl(booktabs = TRUE, digits = 3) ▷
26
     kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
27
```

Tabela 3.3: Top 5 setores com maior multiplicador de emprego

setores	simples	tipo_I	totais	tipo_II
Refino de petróleo e coque	4.788	95.571	10.639	212.358
Petróleo e gás natural	5.490	25.258	13.264	61.023
Minério de ferro	4.219	24.044	8.994	51.251
Defensivos agrícolas	5.406	17.673	12.248	40.039
Fabricação de resina e elastômeros	4.978	11.570	11.631	27.034

```
# média multiplicadores de emprego
medias_emprego = sapply(multiplicadores_emprego[, sapply(multiplicadores_emprego, is.numeric)], fur
mean(multiplicador, na.rm = TRUE)
}

# investimento necessário
3350000 / medias_emprego
```

```
simples tipo_I totais tipo_II 248731.4 535278.7 137608.0 244200.8
```

O multiplicador ideal seria o tipo I. Isso porque o posto de trabalho, sendo uma unidade física, não pode ser fracionada. O multiplicador do tipo I nos dá a quantidade de empregos gerados direto e indireto, que são as possibilidades de empregos que podem ser gerados.

Para cada um dos cenários abaixo, calcule o impacto sobre a produção de cada setor: 1. Um aumento de 15,65% nas exportações de petróleo 1. Um aumento de 0,36% no consumo das famílias 1. Um aumento nos investimentos (FBCF) equivalente a R\$ 8 bilhões

5.1 Impacto de exportações de petróleo

```
# coeficiente de exportações
   coef_export = mip[["E"]] / t(mip[["x"]])
   coef_export = as.vector(coef_export)
   # matriz geradora de exportações
   coef_export_hat = diag(coef_export)
   X = coef_import_hat %*% B
   X_fechado = coef_export_hat %*% B_fechado[1:n, 1:n]
   # multiplicadores de exportações
10
   multiplicadores_export = tibble::tibble(
     setores = rownames(A),
12
     simples = colSums(X),
13
     tipo_I = colSums(X) / coef_export,
14
     totais = colSums(X_fechado),
15
     tipo_II = colSums(X_fechado) / coef_export
16
17
```