Lecture 8: PGM — Inference

Qinfeng (Javen) Shi

17 September 2015

Intro. to Stats. Machine Learning COMP SCI 4401/7401

Table of Contents I

- What are MAP and Marginal Inferences?
 - Marginal and MAP Queries
 - Marginal and MAP Inference
 - How to infer?
- 2 Variable elimination
 - VE for marginal inference
 - VE for MAP inference
- Message Passing
 - Sum-product
 - Max-product

Marginal and MAP Queries

Given joint distribution P(Y, E), where

- Y, query random variable(s), unknown
- E, evidence random variable(s), observed i.e. E = e.

Two types of queries:

- Marginal queries (a.k.a. probability queries) task is to compute P(Y|E=e)
- MAP queries (a.k.a. most probable explanation) task is to find $y^* = \operatorname{argmax}_{y \in Val(Y)} P(Y|E = e)$

Marginal and MAP Inference

Marginal inference:
$$P(x_i) = \sum_{x:i \neq i} P(x_1, x_2, x_3)$$

MAP inference:
$$(x_1^*, x_2^*, x_3^*) = \underset{x_1, x_2, x_3}{\operatorname{argmax}} P(x_1, x_2, x_3)$$

Marginal and MAP Inference

- (d) Directed graph (e) Undirected graph
- (f) Factor graph

Marginal inference:
$$P(x_i) = \sum_{x_i: j \neq i} P(x_1, x_2, x_3)$$

MAP inference:
$$(x_1^*, x_2^*, x_3^*) = \underset{x_1, x_2, x_3}{\operatorname{argmax}} P(x_1, x_2, x_3)$$

Warning: $x_i^* \neq \operatorname{argmax} P(x_i)$ in general

Marginal and MAP Inference

Extends to seeing the evidence E,

Marginal inference:
$$P(x_i|E) = \sum_{x_i: j \neq i} P(x_1, x_2, x_3|E)$$

MAP inference:
$$(x_1^*, x_2^*, x_3^*) = \underset{x_1, x_2, x_3}{\operatorname{argmax}} P(x_1, x_2, x_3 | E)$$

Example of 4WD

- $P(\neg g, a|s)$? (i.e. $P(G = \neg g, A = a|S = s)$)
- *P*(*S*)?

Example of 4WD

- $P(\neg g, a|s)$? (i.e. $P(G = \neg g, A = a|S = s)$)
- *P*(*S*)?
- $\operatorname{argmax}_{G,A,S} P(G,A,S)$?

Marginals

When do we need marginals? Marginals are used to compute

query for probabilities like in W4D example.

Marginals

When do we need marginals? Marginals are used to compute

- query for probabilities like in W4D example.
- normalisation constant

$$Z = \sum_{x_i} q(x_i) = \sum_{x_j} q(x_j) \ \forall i, j = 1, \dots$$

log loss in Conditional Random Fields (CRFs) is $-\log P(x_1, \dots, x_n) = \log(Z) + \dots$
Here $q(x_i)$ is a belief (not necessarily a probability) in marginal inference.

Marginals

When do we need marginals? Marginals are used to compute

- query for probabilities like in W4D example.
- normalisation constant

$$Z = \sum_{x_i} q(x_i) = \sum_{x_j} q(x_j) \ \forall i,j=1,\ldots$$
 log loss in Conditional Random Fields (CRFs) is $-\log P(x_1,\ldots,x_n) = \log(Z) + \ldots$ Here $q(x_i)$ is a belief (not necessarily a probability) in marginal inference.

• expectations like $\mathbb{E}_{P(x_i)}[\phi(x_i)]$ and $\mathbb{E}_{P(x_i,x_j)}[\phi(x_i,x_j)]$, where $\psi(x_i) = \langle \phi(x_i), w \rangle$ and $\psi(x_i,x_j) = \langle \phi(x_i,x_j), w \rangle$ Gradient of CRFs risk contains above expectations.

MAP

When do we need MAP?

• find the most likely configuration for $(x_i)_{i \in V}$ in testing.

MAP

When do we need MAP?

- find the most likely configuration for $(x_i)_{i \in \mathcal{V}}$ in testing.
- find the most violated constraint generated by $(x_i^{\dagger})_{i \in \mathcal{V}}$ in training (i.e. learning), e.g. by cutting plane method (used in SVM-Struct) or by Bundle method for Risk Minimisation (Teo JMLR2010).

How to infer?

How to infer?

How to infer by hand for Bayesian Networks? (previous lecture).

Problems: hand-tiring for many variables, and it's only for Bayesian Networks.

How to infer?

How to infer by hand for Bayesian Networks? (previous lecture).

Problems: hand-tiring for many variables, and it's only for Bayesian Networks.

How to infer for other graphical models and how to do it in a computer program?

Variable elimination

Variable elimination: infer by eliminating variables (works for both marginal and MAP inference)

$$P(A) = \sum_{S,G} P(A,S,G)$$

$$= \sum_{A,G} P(S)P(A|S)P(G|S)$$

$$= \sum_{S} P(S)P(A|S)(\sum_{G} P(G|S)) = \sum_{S} P(S)P(A|S)$$

Step by step:

 sum over missing variables (marginalisation) for the full distribution.

- sum over missing variables (marginalisation) for the full distribution.
- 2 factorise the full distribution.

- sum over missing variables (marginalisation) for the full distribution.
- factorise the full distribution.
- rearrange the sum operator to reduce the computation.

- sum over missing variables (marginalisation) for the full distribution.
- 2 factorise the full distribution.
- rearrange the sum operator to reduce the computation.
- eliminate the variables.

Variable elimination — BayesNets

Marginal inference P(A)?

$$P(A) = \sum_{B,C} P(A, B, C)$$

$$= \sum_{B,C} P(B)P(C)P(A|B, C)$$

$$= \sum_{B} P(B) \sum_{C} P(C)P(A|B, C)$$

$$= \sum_{B} P(B)m_1(A, B) \quad (C \text{ eliminated})$$

$$= m_2(A) \quad (B \text{ eliminated})$$

$$P(x_1, x_2, x_3) = \frac{1}{7} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_1) \psi(x_2) \psi(x_3)$$

 ψ are given. Show example using the document camera.

$$\begin{split} P(x_1) &= \sum_{x_2, x_3} \frac{1}{Z} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_1) \psi(x_2) \psi(x_3) \\ &= \frac{1}{Z} \sum_{x_2, x_3} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_1) \psi(x_2) \psi(x_3) \\ &= \frac{1}{Z} \psi(x_1) \sum_{x_2} \left(\psi(x_1, x_2) \psi(x_2) \right) \sum_{x_3} \left(\psi(x_1, x_3) \psi(x_3) \right) \\ &= \frac{1}{Z} \psi(x_1) m_{2 \to 1}(x_1) m_{3 \to 1}(x_1) \end{split}$$

$$\begin{split} P(x_2) &= \sum_{x_1, x_3} \frac{1}{Z} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_1) \psi(x_2) \psi(x_3) \\ &= \frac{1}{Z} \psi(x_2) \sum_{x_1} \left(\psi(x_1, x_2) \psi(x_1) \sum_{x_3} \left[\psi(x_1, x_3) \psi(x_3) \right] \right) \\ &= \frac{1}{Z} \psi(x_2) \sum_{x_1} \psi(x_1, x_2) \psi(x_1) m_{3 \to 1}(x_1) \\ &= \frac{1}{Z} \psi(x_2) m_{1 \to 2}(x_2) \end{split}$$

Variable elimination — factor graphical models

Works too.

Replace the ψ by factors $f_1, f_2, ...$

VE for marginal inference VE for MAP inference

Break

Take a break ...

MAP inference:

$$(x_1^*, x_2^*, x_3^*, ..., x_n^*) = \operatorname*{argmax}_{x_1, x_2, x_3, ..., x_n} P(x_1, x_2, x_3, ..., x_n)$$

Step by step:

max over the full distribution.

MAP inference:

$$(x_1^*, x_2^*, x_3^*, ..., x_n^*) = \operatorname*{argmax}_{x_1, x_2, x_3, ..., x_n} P(x_1, x_2, x_3, ..., x_n)$$

- max over the full distribution.
- 2 factorise the full distribution.

MAP inference:

$$(x_1^*, x_2^*, x_3^*, ..., x_n^*) = \underset{x_1, x_2, x_3, ..., x_n}{\operatorname{argmax}} P(x_1, x_2, x_3, ..., x_n)$$

- max over the full distribution.
- 2 factorise the full distribution.
- orearrange the max operator to reduce the computation.

MAP inference:

$$(x_1^*, x_2^*, x_3^*, ..., x_n^*) = \operatorname*{argmax}_{x_1, x_2, x_3, ..., x_n} P(x_1, x_2, x_3, ..., x_n)$$

- max over the full distribution.
- 2 factorise the full distribution.
- 3 rearrange the max operator to reduce the computation.
- eliminate the variables.

Variable elimination — BayesNets

MAP inference $\operatorname{argmax}_{A,B,C} P(A,B,C)$?

$$\begin{aligned} \max_{A,B,C} P(A,B,C) &= \max_{A,B,C} P(B)P(C)P(A|B,C) \\ &= \max_{A} \left\{ \max_{B} \left[P(B) \max_{C} \left(P(C)P(A|B,C) \right) \right] \right\} \\ &= \max_{A} \left\{ \max_{B} \left[P(B)m_{1}(A,B) \right] \right\} \ \, (\textit{C eliminated, record its best assignment)} \\ &= \max_{A} m_{2}(A) \ \, (\textit{B eliminated, record its best assignment, and A's best assignment)} \end{aligned}$$

MAP solution?

Variable elimination — BayesNets

MAP inference $\operatorname{argmax}_{A,B,C} P(A,B,C)$?

$$\begin{aligned} \max_{A,B,C} P(A,B,C) &= \max_{A,B,C} P(B)P(C)P(A|B,C) \\ &= \max_{A} \Big\{ \max_{B} \Big[P(B) \max_{C} \Big(P(C)P(A|B,C) \Big) \Big] \Big\} \\ &= \max_{A} \Big\{ \max_{B} \Big[P(B)m_1(A,B) \Big] \Big\} \quad (\textit{C eliminated, record its best assignment)} \\ &= \max_{A} m_2(A) \quad (\textit{B eliminated, record its best assignment, and A's best assignment)} \end{aligned}$$

MAP solution? $\operatorname{argmax} = A, B, C$'s best assignments.

$$\begin{aligned} & \underset{x_1, x_2, x_3, x_4}{\max} P(x_1, x_2, x_3, x_4) \\ &= \underset{x_1, x_2, x_3, x_4}{\max} \psi(x_1, x_2) \psi(x_2, x_3) \psi(x_2, x_4) \psi(x_1) \psi(x_2) \psi(x_3) \psi(x_4) \\ &= \underset{x_1, x_2}{\max} \left[\dots \underset{x_3}{\max} \left(\psi(x_2, x_3) \psi(x_3) \right) \underset{x_4}{\max} \left(\psi(x_2, x_4) \psi(x_4) \right) \right] \\ &= \underset{x_1}{\max} \left[\psi(x_1) \underset{x_2}{\max} \left(\psi(x_2) \psi(x_1, x_2) m_{3 \to 2}(x_2) m_{4 \to 2}(x_2) \right) \right] \\ &= \underset{x_1}{\max} \left(\psi(x_1) m_{2 \to 1}(x_1) \right) \end{aligned}$$

$$\begin{array}{l} \max\limits_{x_1, x_2, x_3, x_4} P(x_1, x_2, x_3, x_4) \\ = \max\limits_{x_1, x_2, x_3, x_4} \psi(x_1, x_2) \psi(x_2, x_3) \psi(x_2, x_4) \psi(x_1) \psi(x_2) \psi(x_3) \psi(x_4) \\ = \max\limits_{x_1, x_2} \Big[\ldots \max\limits_{x_3} \Big(\psi(x_2, x_3) \psi(x_3) \Big) \max\limits_{x_4} \Big(\psi(x_2, x_4) \psi(x_4) \Big) \Big] \\ = \max\limits_{x_1} \Big[\psi(x_1) \max\limits_{x_2} \Big(\psi(x_2) \psi(x_1, x_2) m_{3 \to 2}(x_2) m_{4 \to 2}(x_2) \Big) \Big] \\ = \max\limits_{x_1} \Big(\psi(x_1) m_{2 \to 1}(x_1) \Big) \end{array}$$

argmax = recorded best assignments.

$$\begin{split} & \max_{x_1, x_2, x_3, x_4} P(x_1, x_2, x_3, x_4) \\ & = \max_{x_1, x_2, x_3, x_4} \psi(x_1, x_2) \psi(x_2, x_3) \psi(x_2, x_4) \psi(x_1) \psi(x_2) \psi(x_3) \psi(x_4) \\ & = \max_{x_1, x_2} \Big[\dots \max_{x_3} \Big(\psi(x_2, x_3) \psi(x_3) \Big) \max_{x_4} \Big(\psi(x_2, x_4) \psi(x_4) \Big) \Big] \\ & = \max_{x_1} \Big[\psi(x_1) \max_{x_2} \Big(\psi(x_2) \psi(x_1, x_2) m_{3 \to 2}(x_2) m_{4 \to 2}(x_2) \Big) \Big] \\ & = \max_{x_1} \Big(\psi(x_1) m_{2 \to 1}(x_1) \Big) \end{split}$$

argmax = recorded best assignments.
What if you didn't (or don't want to) record the assignments?
How to get them back?

$$\begin{aligned} & \underset{x_1, x_2, x_3, x_4}{\text{max}} & P(x_1, x_2, x_3, x_4) \\ & = \underset{x_1, x_2, x_3, x_4}{\text{max}} & \psi(x_1, x_2)\psi(x_2, x_3)\psi(x_2, x_4)\psi(x_1)\psi(x_2)\psi(x_3)\psi(x_4) \\ & = \underset{x_1}{\text{max}} \left[\dots \underset{x_3}{\text{max}} \left(\psi(x_2, x_3)\psi(x_3) \right) \underset{x_4}{\text{max}} \left(\psi(x_2, x_4)\psi(x_4) \right) \right] \\ & = \underset{x_1}{\text{max}} \left[\psi(x_1) \underset{x_2}{\text{max}} \left(\psi(x_2)\psi(x_1, x_2) m_{3 \to 2}(x_2) m_{4 \to 2}(x_2) \right) \right] \\ & = \underset{x_1}{\text{max}} \left(\psi(x_1) m_{2 \to 1}(x_1) \right) \end{aligned}$$

argmax = recorded best assignments.

What if you didn't (or don't want to) record the assignments?

How to get them back?

Hint:
$$x_1^* = \operatorname{argmax}_{x_1} \left(\psi(x_1) m_{2 \to 1}(x_1) \right)$$

Variable elimination — MRFs

$$\begin{aligned} & \underset{x_1, x_2, x_3, x_4}{\text{max}} & P(x_1, x_2, x_3, x_4) \\ &= & \underset{x_1, x_2, x_3, x_4}{\text{max}} & \psi(x_1, x_2) \psi(x_2, x_3) \psi(x_2, x_4) \psi(x_1) \psi(x_2) \psi(x_3) \psi(x_4) \\ &= & \underset{x_1}{\text{max}} \left[\dots \max_{x_3} \left(\psi(x_2, x_3) \psi(x_3) \right) \max_{x_4} \left(\psi(x_2, x_4) \psi(x_4) \right) \right] \\ &= & \underset{x_1}{\text{max}} \left[\psi(x_1) \max_{x_2} \left(\psi(x_2) \psi(x_1, x_2) m_{3 \to 2}(x_2) m_{4 \to 2}(x_2) \right) \right] \\ &= & \underset{x_1}{\text{max}} \left(\psi(x_1) m_{2 \to 1}(x_1) \right) \end{aligned}$$

argmax = recorded best assignments.

What if you didn't (or don't want to) record the assignments?

How to get them back?

Hint:
$$x_1^* = \operatorname{argmax}_{x_1} (\psi(x_1) m_{2 \to 1}(x_1))$$

 x_2^* ?

Variable elimination — MRFs

$$\begin{aligned} & \underset{x_1, x_2, x_3, x_4}{\text{max}} & P(x_1, x_2, x_3, x_4) \\ & = \underset{x_1, x_2, x_3, x_4}{\text{max}} & \psi(x_1, x_2) \psi(x_2, x_3) \psi(x_2, x_4) \psi(x_1) \psi(x_2) \psi(x_3) \psi(x_4) \\ & = \underset{x_1}{\text{max}} \left[\dots \underset{x_3}{\text{max}} \left(\psi(x_2, x_3) \psi(x_3) \right) \underset{x_4}{\text{max}} \left(\psi(x_2, x_4) \psi(x_4) \right) \right] \\ & = \underset{x_1}{\text{max}} \left[\psi(x_1) \underset{x_2}{\text{max}} \left(\psi(x_2) \psi(x_1, x_2) m_{3 \to 2}(x_2) m_{4 \to 2}(x_2) \right) \right] \\ & = \underset{x_1}{\text{max}} \left(\psi(x_1) m_{2 \to 1}(x_1) \right) \end{aligned}$$

 $\operatorname{argmax} = \operatorname{recorded}$ best assignments.

What if you didn't (or don't want to) record the assignments?

How to get them back?

Hint:
$$x_1^* = \operatorname{argmax}_{x_1} \left(\psi(x_1) m_{2 \to 1}(x_1) \right)$$

 x_2^* ? $x_2^* = \operatorname{argmax}_{x_2} \left(\psi(x_2) \psi(x_1^*, x_2) m_{3 \to 2}(x_2) m_{4 \to 2}(x_2) \right)$
 x_3^*, x_4^* ?

Variable elimination — MRFs

$$\begin{aligned} & \underset{x_1, x_2, x_3, x_4}{\text{max}} & P(x_1, x_2, x_3, x_4) \\ & = \underset{x_1, x_2, x_3, x_4}{\text{max}} & \psi(x_1, x_2)\psi(x_2, x_3)\psi(x_2, x_4)\psi(x_1)\psi(x_2)\psi(x_3)\psi(x_4) \\ & = \underset{x_1, x_2}{\text{max}} \left[\dots \underset{x_3}{\text{max}} \left(\psi(x_2, x_3)\psi(x_3) \right) \underset{x_4}{\text{max}} \left(\psi(x_2, x_4)\psi(x_4) \right) \right] \\ & = \underset{x_1}{\text{max}} \left[\psi(x_1) \underset{x_2}{\text{max}} \left(\psi(x_2)\psi(x_1, x_2)m_{3\rightarrow 2}(x_2)m_{4\rightarrow 2}(x_2) \right) \right] \\ & = \underset{x_1}{\text{max}} \left(\psi(x_1)m_{2\rightarrow 1}(x_1) \right) \end{aligned}$$

argmax = recorded best assignments.

What if you didn't (or don't want to) record the assignments?

How to get them back?

$$\begin{split} \text{Hint: } x_1^* &= \operatorname{argmax}_{x_1} \left(\psi(x_1) m_{2 \to 1}(x_1) \right) \\ x_2^*? & \quad x_2^* &= \operatorname{argmax}_{x_2} \left(\psi(x_2) \psi(x_1^*, x_2) m_{3 \to 2}(x_2) m_{4 \to 2}(x_2) \right) \\ x_3^*, x_4^*? & \quad x_3^* &= \operatorname{argmax}_{x_3} \left(\psi(x_2^*, x_3) \psi(x_3) \right) \\ & \quad x_4^* &= \operatorname{argmax}_{x_4} \left(\psi(x_2^*, x_4) \psi(x_4) \right) \end{split}$$

Answer: backtrack the best assignments (in the reversed the elimination order)

Variable elimination — factor graphical models

Works too.

Replace the ψ by factors $f_1, f_2, ...$

Message Passing

Reuse the intermediate results (called messages) of VE

- ⇒ Message Passing:
 - VE for marginal inference ⇒ sum-product message passing
 - VE for MAP inference ⇒ max-product message passing

Revisit VE for marginal

Assume
$$P(x_1, x_2, x_3) = \frac{1}{Z} \psi(x_1, x_2) \psi(x_1, x_3) \psi(x_1) \psi(x_2) \psi(x_3)$$

$$\begin{split} P(x_1) &= \frac{1}{Z} \psi(x_1) \sum_{x_2} \left(\psi(x_1, x_2) \psi(x_2) \right) \sum_{x_3} \left(\psi(x_1, x_3) \psi(x_3) \right) \\ &= \frac{1}{Z} \psi(x_1) m_{2 \to 1}(x_1) m_{3 \to 1}(x_1) \end{split}$$

$$P(x_2) = \frac{1}{Z} \psi(x_2) \sum_{x_1} \left(\psi(x_1, x_2) \psi(x_1) \sum_{x_3} \left[\psi(x_1, x_3) \psi(x_3) \right] \right)$$

$$= \frac{1}{Z} \psi(x_2) \sum_{x_1} \psi(x_1, x_2) \psi(x_1) m_{3 \to 1}(x_1)$$

$$= \frac{1}{Z} \psi(x_2) m_{1 \to 2}(x_2)$$

 $m_{3\rightarrow 1}(x_1)$ can be reused instead of computing twice.

Sum-product

Can we compute all messages first, and then use them to compute all marginal distributions?

Sum-product

Can we compute all messages first, and then use them to compute all marginal distributions?

Yes, it's called sum-product.

Sum-product

Can we compute all messages first, and then use them to compute all marginal distributions?

Yes, it's called sum-product.

In general,

$$P(x_i) = \frac{1}{Z} \Big(\psi(x_i) \prod_{j \in Ne(i)} m_{j \to i}(x_i) \Big)$$

$$m_{j \to i}(x_i) = \sum_{x_j} \Big(\psi(x_j) \psi(x_i, x_j) \prod_{k \in Ne(j) \setminus \{i\}} m_{k \to j}(x_j) \Big)$$

Ne(i): neighbouring nodes of i (i.e. nodes that connect with i).

Revisit VE for MAP

$$\begin{split} & \max_{x_1, x_2, x_3, x_4} P(x_1, x_2, x_3, x_4) \\ & = \max_{x_1, x_2, x_3, x_4} \psi(x_1, x_2) \psi(x_2, x_3) \psi(x_2, x_4) \psi(x_1) \psi(x_2) \psi(x_3) \psi(x_4) \\ & = \max_{x_1, x_2} \left[\dots \max_{x_3} \left(\psi(x_2, x_3) \psi(x_3) \right) \max_{x_4} \left(\psi(x_2, x_4) \psi(x_4) \right) \right] \\ & = \max_{x_1} \left[\psi(x_1) \max_{x_2} \left(\psi(x_2) \psi(x_1, x_2) m_{3 \to 2}(x_2) m_{4 \to 2}(x_2) \right) \right] \\ & = \max_{x_1} \left(\psi(x_1) m_{2 \to 1}(x_1) \right) \\ & x_1^* & = \operatorname{argmax}_{x_1} \left(\psi(x_1) m_{2 \to 1}(x_1) \right) \\ & x_2^* & = \operatorname{argmax}_{x_2} \left(\psi(x_2) \psi(x_1^*, x_2) m_{3 \to 2}(x_2) m_{4 \to 2}(x_2) \right) \\ & x_3^* & = \operatorname{argmax}_{x_3} \left(\psi(x_2^*, x_3) \psi(x_3) \right) \\ & x_4^* & = \operatorname{argmax}_{x_4} \left(\psi(x_2^*, x_4) \psi(x_4) \right) \end{split}$$

Max-product

Variable elimination for MAP \Rightarrow Max-product:

$$\begin{aligned} x_i^* &= \operatorname*{argmax}_{x_i} \left(\psi(x_i) \prod_{j \in Ne(i)} m_{j \to i}(x_i) \right) \\ m_{j \to i}(x_i) &= \max_{x_j} \left(\psi(x_j) \psi(x_i, x_j) \prod_{k \in Ne(j) \setminus \{i\}} m_{k \to j}(x_j) \right) \end{aligned}$$

Ne(i): neighbouring nodes of i (i.e. nodes that connect with i).

 $Ne(j)\setminus\{i\}=\emptyset$ if j has only one edge connecting it. e.g. x_1,x_3,x_4 . For such node j,

$$m_{j\to i}(x_i) = \max_{x_j} \left(\psi(x_j)\psi(x_i,x_j)\right)$$

Easier computation!

Max-product

Order matters: message $m_{2\rightarrow 3}(x_3)$ requires $m_{1\rightarrow 2}(x_2)$ and $m_{4\rightarrow 2}(x_2)$.

Alternatively, leaves to root, and root to leaves.

Extension

To avoid over/under flow, often operate in the log space.

Max/sum-product is also known as Message Passing and Belief Propagation (BP).

In graphs with loops, running BP for several iterations is known as Loopy BP (neither convergence nor optimal guarantee in general).

Extend to Junction Tree Algorithm (exact, but expensive) and Clusters-based BP.

That's all

Thanks!