Problem 1. 2-7

Suppose we consider a beam of neutrons incident upon a thin target with an intensity of $10^{12} \frac{neutrons}{cm^2s}$. Suppose further that the total cross section for the nuclei in this target is 4b. Using this information, determine how long one would have to wait, on the average, for a given nucleus in the target to suffer a neutron interaction.

Solution

We know that our reaction rate is equal to intensity * cross section. Our mean time before a reaction is the inverse of the rate:

$$\frac{1}{intensity*cross\ section} = 2.5*10^{11}s$$

Problem 2. 2-11

Using the data from BNL-325, compute the mean free paths of neutrons with the following energies in the specified materials:

- (a) 14MeV neutrons in air, water, and uranium (characteristic of thermonuclear fusion neutrons),
- (b) 1MeV neutrons in air, water, and uranium (fast breeder reactor neutrons), and
- (c) 0.05eV neutrons in air, water, and uranium (thermal reactor neutrons).

Solution

	14MeV	1MeV	0.05eV
U	3.54cm	2.91cm	1.42cm
Water	10.04cm	1.79cm	0.53cm
Air	$1.27 * 10^2 cm$	5640cm	2041cm

Problem 3. 2-12

Determine the kinetic energy at which the wavelength of a neutron is comparable to:

- (a) the diameter of a nucleus,
- (b) an atomic diameter,
- (c) the interatomic spacing in graphite, and
- (d) the diameter of a nuclear reactor core.

(Only rough estimates are required.)

Solution

The deBroglie wavelength of a particle is expressed by:

$$\lambda = \frac{h}{\sqrt{2Tm}}$$

from which we derive:

$$T = \frac{h^2}{2m\lambda^2}$$

Object	λ	Т
the diameter of a nucleus	15 fm	3.63 MeV
an atomic diameter	350 pm	$6.68 * 10^{-9} MeV$
the interatomic spacing in graphite	0.142 nm	$4.06*10^{-9} MeV$
the diameter of a nuclear reactor core	1 m	$8.18*10^{-28} MeV$

Problem 4. 2-15

Using the Maxwell-Boltzman distribution M(V,T), calculate the most probable energy of the nuclei characterized by such a distribution. Also calculate the average thermal energy of these nuclei.

Solution

Problem 5. 2-20

Determine the fission-rate density necessary to produce a thermal power density of 400kW/liter (typical of a fast breeder reactor core). Assume that the principle fissile isotope is $^{239}_{94}$ Pu.

Solution

Each fission of $^{239}_{\ 94}\mathrm{Pu}$ produces 211.5 MeV. Therefore:

$$\begin{split} TPD &= \frac{E}{fission} * FRD \\ FRD &= \frac{TPD}{\frac{E}{fission}} \\ &= \frac{400 \frac{J}{s*L}}{211.5 \frac{MeV}{fission} / 6.2415 * 10^{12} \frac{MeV}{J}} \\ &= 1.18 * 10^{16} \frac{fissions}{L*s} \end{split}$$