Számítógépes hálózatok

HATODIK ELŐADÁS – Hálózati réteg, forgalomirányítási protokollok, címzés

KÉSZÍTETTE: ÁCS ZOLTÁN

Hálózati réteg szerepkörei

FŐ FELADATA

A csomagok továbbítása a forrás és a cél között.

 A legalacsonyabb olyan réteg, amely két végpont közötti átvitellel foglalkozik

ELVÁRÁSOKKAL KAPCSOLATOS FELADATOK

- Ismernie kell a kommunikációs alhálózat topológiáját.
 - Megfelelő útvonalak meghatározására.
- Ügyelni kell, hogy ne terheljen túl se bizonyos kommunikációs útvonalakat, se bizonyos *router*-eket úgy, hogy mások tétlen maradnak.

Felhasználói réteg		
Szállítási réteg		
HÁLÓZATI RÉTEG		
Adatkapcsolati réteg		
Fizikai réteg		

Forgalomirányító algoritmusok

DEFINÍCIÓ

A hálózati réteg szoftverének azon része, amely azért a döntésért felelős, hogy a bejövő csomag melyik kimeneti vonalon kerüljön továbbításra.

- A folyamat két jól-elkülöníthető lépésre bontható fel:
 - 1. Forgalomirányító táblázatok feltöltése és karbantartása.
 - 2. Továbbítás.

ELVÁRÁSOK

helyesség, egyszerűség, robosztusság, stabilitás, igazságosság, optimalitás és hatékonyság

ALGORITMUS OSZTÁLYOK

- 1. Adaptív algoritmusok
 - A topológia és rendszerint a forgalom is befolyásolhatja a döntést
- 2. Nem-adaptív algoritmusok
 - offline meghatározás, betöltés a router-ekbe induláskor

Forgalomirányító algoritmusok

KÜLÖNBSÉGEK AZ EGYES ADAPTÍV ALGORITMUSOKBAN

- 1. Honnan kapják az információt?
 - szomszédok, helyileg, minden router-től
- 2. Mikor változtatják az útvonalakat?
 - meghatározott másodpercenként, terhelés változásra, topológia változásra
- 3. Milyen mértékeket használnak az optimalizáláshoz?
 - távolság, ugrások (hops) száma, becsült késleltetés

Optimalitási elv

Ha **J** router az **I** router-től **K** router felé vezető *optimális útvonalon* helyezkedik el, akkor a J-től a K-ig vezető útvonal ugyanerre esik.

Következmény

Az összes forrásból egy célba tartó optimális utak egy olyan fát alkotnak, melynek a gyökere a cél. Ezt nevezzük *nyelőfá*nak.

Legrövidebb út alapú forgalomirányítás

ALHÁLÓZAT REPREZENTÁCIÓJA

Az alhálózat tekinthető egy gráfnak, amelyben minden router egy csomópontnak és minden él egy kommunikációs vonalnak felel meg. Az éleken értelmezünk egy $w: E \to \mathbb{R}_0^+$ nem-negatív súlyfüggvényt, amelyek a legrövidebb utak meghatározásánál használunk.

- *G*=(*V*,*E*) gráf reprezentálja az alhálózatot
- P útvonal súlya: $w(P) = \sum_{e \in P} w(e)$

Távolságvektor alapú forgalomirányítás

- Dinamikus algoritmusoknak 2 csoportja van:
 - távolságvektor alapú illetve (distance vector routing)
 - kapcsolatállapot alapú (link-state routing)
- Minden router-nek egy táblázatot kell karbantartania, amelyben minden célhoz szerepel a legrövidebb ismert távolság, és annak a vonalnak az azonosítója, amelyiken a célhoz lehet eljutni. A táblázatokat a szomszédoktól származó információk alapján frissítik.
 - Elosztott Bellman-Ford forgalomirányítási algoritmusként is nevezik.
 - ARPANET eredeti forgalomirányító algoritmusa ez volt. RIP (Routing Information Protocol) néven is ezt használták.

Távolságvektor alapú forgalomirányítás Elosztott Bellman-Ford algoritmus

KÖRNYEZET ÉS MŰKÖDÉS

- Minden csomópont csak a közvetlen szomszédjaival kommunikálhat.
- Aszinkron működés.
- Minden állomásnak van saját távolság vektora. Ezt periodikusan elküldi a direkt szomszédoknak.
- A kapott távolság vektorok alapján minden csomópont új táblázatot állít elő.

Cél	Ktsg.
Α	5
В	2
D	2
Е	4
F	1

- Nincs bejegyzés C-hez
- Kezdetben csak a közvetlen szomszédokhoz van info
 - Más célállomások költsége = ∞
- Végül kitöltött vektort kapunk

Distance Vector Initialization

Node A

Dest.	Cost	Next
В	2	В
С	7	С
D	∞	

Node B

Dest.	Cost	Next
Α	2	Α
С	1	С
D	3	D

Initialization:

- **for all** neighbors *V* **do**
- if V adjacent to A
- D(A, V) = c(A,V);
- else

 $D(A, V) = \infty;$

Node C

Dest.	Cost	Next
А	7	А
В	1	В
D	1	D

Node D

Dest.	Cost	Next
Α	∞	
В	3	В
С	1	С

Distance Vector: 1st Iteration

Distance Vector: End of 3rd Iteration

Elosztott Bellman-Ford algoritmus – *példa*

Time

Elosztott Bellman-Ford algoritmus – Végtelenig számolás problémája

Count to Infinity Problem

Elosztott Bellman-Ford algoritmus – Végtelenig számolás problémája

PROBLÉMA

- A "jó hír" gyorsan terjed.
- A "rossz hír" lassan terjed.
- Azaz ciklusok keletkezhetnek.
- Lehetséges megoldás:
 - "split horizon with poisoned reverse": negatív információt küld vissza arról a szomszédjának, amit tőle "tanult". (RFC 1058)

Poisoned Reverse

- If C routes through B to get to A
 - C tells B that D(C, A) = ∞
 - Thus, B won't route to A via C

Node B

D C NA 4 AC 1 B

Node C

D	С	N
Α	5	В
В	1	В

N

1	В
С	N
50	A
1	В
	50

60

D

Α

N

Α

Kapcsolatállapot alapú forgalomirányítás Link-state routing

Motiváció

- 1. Eltérő sávszélek figyelembevétele.
- 2. Távolság alapú algoritmusok lassan konvergáltak.

Az alapötlet öt lépésből tevődik össze

- 1. Szomszédok felkutatása, és hálózati címeik meghatározása.
- 2. Megmérni a késleltetést vagy költséget minden szomszédhoz.
- 3. Egy csomag összeállítása a megismert információkból.
- 4. Csomag elküldése az összes többi router-nek.
- 5. Kiszámítani a legrövidebb utat az összes többi router- hez.
 - Dijkstra algoritmusát használják.

Kapcsolatállapot alapú forgalomirányítás működése

- 1. A router beindulásakor az első feladat a szomszédok megismerése, ezért egy speciális HELLO csomag elküldésével éri el, amelyet minden kimenő vonalán kiküld. Elvárás, hogy a vonal másik végén lévő router válaszolt küldjön vissza, amelyben közli az azonosítóját (, ami globálisan egyedi!).
- 2. A késleltetés meghatározása, amelynek legközvetlenebb módja egy speciális ECHO csomag küldése, amelyet a másik oldalnak azonnal vissza kell küldenie. A körbeérési idő felével becsülhető a késleltetés. (Javítás lehet a többszöri kísérlet átlagából számított érték.)
- 3. Az adatok összegzése, és csomag előállítása a megismert információkról. A kapcsolatállapot tartalma: a feladó azonosítója, egy sorszám, egy korérték és a szomszédok listája. Minden szomszédhoz megadják a felé tapasztalható késleltetést. Az előállítás történhet periodikusan vagy hiba esemény esetén. (Un. LSA Link State Advertisment, azaz kapcsolatállapot hírdetés)

Kapcsolatállapot alapú forgalomirányítás működése

4. A kapcsolat csomagok megbízható szétosztása. Erre használható az elárasztás módszere, viszont a csomagban van egy sorszám, amely minden küldésnél 1-gyel nő. A router-ek számon tartanak minden (forrás,sorszám) párt, amelyet látnak. Ha új érkezik, akkor azt küldik minden vonalon, kivéve azon, amin érkezett. A másod példányokat eldobják. A kisebb sorszámúakat elavultnak tekintik, és nem küldik tovább.

Probléma	Megoldás
Sorszámok egy idő után körbe érnek	32 bites sorszám használata
Router összeomlik	Kor bevezetése. A kor értéket másod-
A sorszám mező megsérül	percenként csökkenti a router, ha a kor eléri a nullát, akkor el kell dobni.

 További finomítások: tároló területre kerül először a csomag és nem a küldési sorba; nyugtázás

Kapcsolatállapot alapú forgalomirányítás működése

5. Új útvonalak számítása. Amint egy router a kapcsolatállapot csomagok egy teljes készletét összegyűjtötte, megszerkesztheti az alhálózat teljes gráfját, mivel minden kapcsolat képviselve van. Erre lefuttatható Dijkstra algoritmusa, eredményeképp pedig megkapjuk a forgalomirányító táblát.

JELLEMZŐK

- A router-ek és a router-ek szomszédinak átlagos számával arányos tárterület kell az algoritmus futtatásához. O(kn), ahol k a szomszédok száma és n a router-ek száma. Azaz nagy hálózatok esetén a számítás költséges és memória igényes lesz.
- A hardver- és szoftver-problémák komoly gondot okozhatnak. A hálózat méretének növekedésével a hiba valószínűsége is nő.

Dijkstra algoritmus (1959)

- Statikus algoritmus
- Cél: két csomópont közötti legrövidebb út meghatározása.

INFORMÁLIS LEÍRÁS

- Minden csomópontot felcímkézünk a forrás csomóponttól való legrövidebb ismert út mentén mért távolságával.
 - Kezdetben a távolság végtelen, mivel nem ismerünk útvonalat.
- Az algoritmus működése során a címkék változhatnak az utak megtalálásával. Két fajta címkét különböztetünk meg: ideiglenes és állandó. Kezdetben minden címke ideiglenes. A legrövidebb út megtalálásakor a címke állandó címkévé válik, és továbbá nem változik.


```
E' = \{ \}
Q = \{ (B, 2), (G, 6) \}
```



```
E' = \{ (A,B) \}
Q = \{ (E,4), (G,6), (C,9) \}
```



```
E' = \{ (A,B), (B,E) \}
Q = \{ (G,5), (F,6), (C,9) \}
```



```
E' = \{ (A,B), (B,E), (E,G) \}
Q = \{ (F,6), (C,9), (H,9) \}
```



```
E' = \{ (A,B), (B,E), (E,G), (E,G), (E,F) \}
Q = \{ (H,8), (C,9) \}
```



```
E' = \{ (A,B), (B,E), (E,G), (E,G), (E,F), (F,H) \}
Q = \{ (C,9), (D,10) \}
```



```
E' = \{ (A,B), (B,E), (E,G), (E,G), (E,F), (F,H), (B,C) \}
Q = \{ (D,10) \}
```



```
E' = { (A,B), (B,E),
(E,G), (E,F),
(F,H), (B,C)
(H,D) }
```

Dijkstra algoritmus pszeudo-kód

```
Output: egy legrövidebb utak fája T=(V,E') G-ben s gyökérrel
01 \; E' := \emptyset:
02 ready[s] := true;
                                                                       INICIALIZÁCIÓS
03 ready[v] := false; \forall v \in V \ {s};
04 d[s] := 0;
05 d[v] := \infty; \forall v \in V \setminus \{s\};
06 priority queue Q;
07 forall v \in Adj[s] do
08
     pred[v] := s;
     d[v] := w(s,v);
      Q.Insert(v,d[v]);
10
11 od
12 while Q \neq \emptyset do
```

Dijkstra(G,s,w)

```
v := Q.DeleteMin();
13
     E':= E' U {(pred[v],v)};
     ready[v] := true;
15
     forall u \in Adj[v] do
17
        if u \in Q and d[v] + w(v,u) < d[u]) then
18
          pred[u] := v;
          d[u] := d[v] + w(v,u);
                                                        LÉPÉSEK
          Q.DecreasePriority(u,d[u]);
20
        else if u ∉ Q and not ready[u] then
          pred[u] := v;
          d[u] := d[v] + w(v,u);
24
          Q.Insert(u,d[u]);
       fi
25
26
     od
27 od
```

OSPF vs. IS-IS

Két eltérő implementáció a link-state routing stratégiának

OSPF

- Cégek és adatközpontok
- Több lehetőséget támogat

- IPv4 felett
 - LSA-k IPv4 feletti küldése
 - OSPFv3 szükséges az IPv6-hoz

IS-IS

- Internet szolgáltatók által használt
- Sokkal tömörebb
 - Kisebb hálózati overhead
 - Több eszközt támogat
- Nem kötődik az IP-hez
 - Működik mind IPv4-gyel és IPv6-tal

Eltérő felépítés

OSPF

- Átfedő területek köré szerveződik
- Area 0 a hálózat magja

IS-IS

- 2-szintű hierarchia
- A 2. szint a gerinchálózat

Link State vs. Distance Vector

	Link State	Distance Vector
Message Complexity	O(n²*e)	O(d*n*k)
Time Complexity	O(n*log n)	O(n)
Convergence Time	O(1)	O(k)
Robustness	 Nodes may advertise incorrect link costs Each node computes their own table 	 Nodes may advertise incorrect path cost Errors propagate due to sharing of DV tables

- Which is best?
- In practice, it depends.
- In general, link state is more popular.

Hálózati réteg protokolljai - Környezet

Szállítási réteg felé nyújtott szolgálatok

VEZÉRELVEK

- 1. A szolgálat legyen független az alhálózat kialakításától.
- A szállítási réteg felé el kell takarni a jelenlevő alhálózatok számát, típusát és topológiáját.
- A szállítási réteg számára rendelkezésre bocsájtott hálózati címeknek egységes számozási rendszert kell alkotniuk, még LAN-ok és WAN-ok esetén is.

SZOLGÁLATOK KÉT FAJTÁJÁT KÜLÖNBÖZTETIK MEG

- Összeköttetés nélküli szolgálat (Internet)
 - datagram alhálózat
- Összeköttetés alapú szolgálat (ATM)
 - virtuális áramkör alhálózat

HÁLÓZATI RÉTEG — FORGALOMIRÁNYÍTÁS

Hierarchikus forgalomirányítás

MOTIVÁCIÓ

- A hálózat méretének növekedésével a router-ek forgalomirányító táblázatai is arányosan nőnek.
 - A memória, a CPU és a sávszélesség igény is megnövekszik a router-eknél.
- <u>Ötlet:</u> telefonhálózatokhoz hasonlóan hierarchikus forgalomirányítás alkalmazása.

Hierarchikus forgalomirányítás

JELLEMZŐK

- A router-eket tartományokra osztjuk. A saját tartományát az összes router ismeri, de a többi belső szerkezetéről nincs tudomása.
- Nagy hálózatok esetén többszintű hierarchia lehet szükséges.
- N darab router-ből álló alhálózathoz az optimális szintek száma $\ln N$, amely router-enként $e*\ln N$ bejegyzést igényel. (Kamoun és Kleinrock, 1979)

Adatszóró forgalomirányítás

- Adatszórás (vagy angolul broadcasting) egy csomag mindenhová történő egyidejű küldése.
- Több féle megvalósítás lehetséges:
 - 1. Külön csomag küldése minden egyes rendeltetési helyre
 - sávszélesség pazarlása, lista szükséges hozzá
 - 2. Elárasztás.
 - kétpontos kommunikációhoz nem megfelelő

Adatszóró forgalomirányítás

- 3. Többcélú forgalomirányítás (vagy angolul multidestination routing). Csomagban van egy lista a rendeltetési helyekről, amely alapján a router-ek eldöntik a vonalak használatát, mindegyik vonalhoz készít egy másolatot és belerakja a megfelelő célcím listát.
- **4. A forrás router-hez tartozó nyelőfa használata**. A feszítőfa (vagy angolul *spanning tree*) az alhálózat részhalmaza, amelyben minden router benne van, de nem tartalmaz köröket. Ha minden router ismeri, hogy mely vonalai tartoznak a feszítőfához, akkor azokon továbbítja az adatszóró csomagot, kivéve azon a vonalon, amelyen érkezett.
 - nem mindig ismert a feszítőfa

Adatszóró forgalomirányítás 2/2

5. Visszairányú továbbítás (vagy angolul reverse path forwarding). Amikor egy adatszórásos csomag megérkezik egy routerhez, a router ellenőrzi, hogy azon a vonalon kapta-e meg, amelyen rendszerint ő szokott az adatszórás forrásához küldeni. Ha igen, akkor nagy esély van rá, hogy az adatszórásos csomag a legjobb utat követte a router-től, és ezért ez az első másolat, amely megérkezett a router-hez. Ha ez az eset, a router kimásolja minden vonalra, kivéve arra, amelyiken érkezett. Viszont, ha az adatszórásos csomag más vonalon érkezett, mint amit a forrás eléréséhez előnyben részesítünk, a csomagot eldobják, mint valószínű másodpéldányt.

Többes-küldéses forgalomirányítás

• **Többes-küldés** (vagy angolul *multicasting*) – egy csomag meghatározott csoporthoz történő egyidejű küldése.

MULTICAST ROUTING

- Csoport kezelés is szükséges hozzá: létrehozás, megszüntetés, csatlakozási lehetőség és leválasztási lehetőség. (Ez nem a forgalomirányító algoritmus része!)
- Minden router kiszámít egy az alhálózatban az összes többi routert lefedő feszítőfát.
- Többes-küldéses csomag esetén az első router levágja a feszítőfa azon ágait, amelyek nem csoporton belüli hoszthoz vezetnek. A csomagot csak a csonkolt feszítőfa mentén továbbítják.

Hierarchikus forgalomirányítás IP

- Hierarchikus (2 szintű)
 - AS-ek közötti:
 - EGP
 - Exterior Gateway Protocols
 - Tartományok közötti
 - AS-en belüli
 - IGP
 - Interior Gateway Protocols
 - Tartományon belüli
- AS Autonom System Autonóm Rendszer

Hálózati réteg az Interneten

- A hálózati réteg szintjén az internet autonóm rendszerek összekapcsolt együttesének tekinthető.
 - Nincs igazi szerkezete, de számos főbb gerinchálózata létezik.
 - A gerinchálózatokhoz csatlakoznak a területi illetve regionális hálózatok.
 - A regionális és területi hálózatokhoz csatlakoznak az egyetemeken, vállalatoknál és az internet szolgáltatóknál lévő LAN-ok.
- Az internet protokollja, az IP.

Hálózati réteg az Interneten

- Az Interneten a kommunikáció az alábbi módon működik:
 - 1. A szállítási réteg viszi az adatfolyamokat és datagramokra tördeli azokat.
 - 2. Minden datagram átvitelre kerül az Interneten, esetleg menet közben kisebb egységekre darabolva.
 - 3. A célgép hálózati rétege összeállítja az eredeti datagramot, majd átadja a szállítási rétegének.
 - 4. A célgép szállítási rétege beilleszti a datagramot a vételi folyamat bemeneti adatfolyamába.

HÁLÓZATI RÉTEG – CÍMZÉS

Az IP fejrésze

Az IP fejrésze

- verzió: IP melyik verzióját használja (jelenleg 4 és 6 közötti átmenet zajlik)
- IHL: a fejléc hosszát határozza meg 32-bites szavakban mérve, legkisebb értéke 5.
- szolgálat típusa: szolgálati osztályt jelöl (3-bites precedencia, 3 jelzőbit [D,T,R])
- teljes hossz: fejléc és adatrész együttes hossza bájtokban
- azonosítás: egy datagram minden darabja ugyanazt az azonosítás értéket hordozza.
- **DF:** "ne darabold" flag a router-eknek
- MF: "több darab" flag minden darabban be kell legyen állítva, kivéve az utolsót.
- darabeltolás: a darab helyét mutatja a datagramon belül. (elemi darab méret 8 bájt)

Az IP fejrésze

- élettartam: másodpercenként kellene csökkenteni a mező értékét, minden ugrásnál csökkentik eggyel az értékét
- protokoll: szállítási réteg protokolljának azonosítóját tartalmazza
- ellenőrző összeg: a router-eken belüli rossz memóriaszavak által előállított hibák kezelésére használt ellenőrző összeg a fejrészre, amelyet minden ugrásnál újra kell számolni
- forrás cím és cél cím: IP cím (később tárgyaljuk részletesen)
- **opciók:** következő verzió bővíthetősége miatt hagyták benne. Eredetileg 5 opció volt. (router-ek általában figyelmen kívül hagyják)

IP cím

- Minden hoszt és minden router az Interneten rendelkezik egy IP-címmel, amely a hálózat számát és a hoszt számát kódolja. (egyedi kombináció)
- 4 bájton ábrázolják az IP-címet.
- Több évtizeden keresztül 5 osztályos címzést használtak: A,B, C, D és E.

IP cím

- Az IP-t pontokkal elválasztott decimális rendszerben írják. Például: 192.168.0.1
- Van pár speciális cím. Lásd az alábbiakban.

0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ez egy hoszt.
00	hoszt	Ez egy hoszt ezen hálózaton.
1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Adatszórás a helyi hálózaton.
Hálózat	11	Adatszórás egy távoli hálózaton.
0 1 1 1 1 1 1 1	(bármi)	Visszacsatolás.

IP cím – alhálózatok

- Az azonos hálózatban lévő hosztok ugyanazzal a hálózatszámmal rendelkeznek.
- Egy hálózat belső felhasználás szempontjából több részre osztódhat, de a külvilág számára egyetlen hálózatként jelenik meg.
 - Alhálózat (avagy angolul subnet)

IP cím – alhálózatok

Azonosítás

- alhálózati maszk (avagy angolul *subnet mask*) ismerete kell a routernek
 - Két féle jelölés IP-cím jellegű vagy a fix pozíciók száma.
- A forgalomirányító táblázatba a router-eknél (hálózat,0) és (saját hálózat, hoszt) alakú bejegyzések.
- Ha nincs találat, akkor az alapértelmezett router felé továbbítják a csomagot.

IP cím – CIDR

- IP címek gyorsan fogytak. 1996-ban kötötték be a 100.000-edik hálózatot.
 - Az osztályok használata sok címet elpazarolt. (B osztályú címek népszerűsége)
- Megoldás: osztályok nélküli környezetek közötti forgalomirányítás (CIDR).
 - Például 2000 cím igénylése esetén 2048 méretű blokk kiadása.
- Forgalomirányítás megbonyolódik:
 - Minden bejegyzés egy 32-bites maszkkal egészül ki.
 - Egy bejegyzés innentől egy hármassal jellemezhető: (ip-cím, alhálózati maszk, kimeneti vonal)
 - Új csomag esetén a cél címből kimaszkolják az alhálózati címet, és találat esetén a leghosszabb illeszkedés felé továbbítják.
- Túl sok bejegyzés keletkezik.
 - Csoportos bejegyzések használata.

CIDR címzés példa

Mi történik, ha a router egy 135.46.57.14 IP cím felé tartó csomagot kap?

/22-ES CÍM ESETÉN

10001011 00101110 00111001 00001110

AND <u>11111111111111111111100 00000000</u>

10001011 00101110 00111000 00000000 -

Kimaszkolás eredménye

/23-ES CÍM ESETÉN

10001011 00101110 00111001 00001110

AND 11111111 11111111 11111110 00000000

10001011 00101110 00111000 00000000 4

• Vagyis 135.46.56.0/22-as vagy 135.46.56.0/23-as bejegyzést kell találni, azaz jelen esetben a 0.interface felé történik a továbbítás.

Cím/maszk	Következő ugrás
135.46.56.0/22	0.interface
135.46.60.0/23	1.interface
192.53.40.0/23	1.router
Alapértelmezett	2.router

CIDR bejegyzés aggregálás példa

• Lehet-e csoportosítani a következő bejegyzéseket, ha feltesszük, hogy a *következő ugrás* mindegyiknél az 1.router: 57.6.96.0/21, 57.6.104.0/21, 57.6.112.0/21, 57.6.120.0/21?

• Azaz az (57.6.96.0/19, 1.router) bejegyzés megfelelően csoportba fogja a 4 bejegyzést.

Forgalomirányítási tábla példa

Network Destination	Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	192.168.0.1	192.168.0.100	10
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
192.168.0.0	255.255.255.0	192.168.0.100	192.168.0.100	10
192.168.0.100	255.255.255.255	127.0.0.1	127.0.0.1	10
192.168.0.255	255.255.255.255	192.168.0.100	192.168.0.100	10

NAT

• Gyors javítás az IP címek elfogyásának problémájára. (hálózati címfordítás)

ALAPELVEK

- Az internet forgalomhoz minden cégnek egy vagy legalábbis kevés IP-címet adnak. A vállalaton belül minden számítógéphez egyedi IP-címet használnak a belső forgalomirányításra.
- A vállalaton kívüli csomagokban a címfordítást végzünk.
- 3 IP-címtartományt használunk:
 - 10.0.0/8, azaz 16 777 216 lehetséges hoszt;
 - 172.16.0.0/12, azaz 1 084 576 lehetséges hoszt;
 - 192.168.0.0/16, azaz 65 536 lehetséges hoszt;
- NAT box végzi a címfordítást

NAT

- Hogyan fogadja a választ?
 - A port mezők használata, ami mind a TCP, mind az UDP fejlécben van
 - Kimenő csomagnál egy mutatót tárolunk le, amit beírunk a *forrás port* mezőbe. *65536* bejegyzésből álló fordítási táblázatot kell a *NAT box*-nak kezelni.
 - A fordítási táblázatban benne van az eredeti IP és forrás port.
- Ellenérvek: sérti az IP architekturális modelljét, összeköttetés alapú hálózatot képez, rétegmodell alapelveit sérti, kötöttség a TCP és UDP fejléchez, szöveg törzsében is lehet az IP, szűkös port tartomány

Vége

Köszönöm a figyelmet!