Importing Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

```
In [17]:
    df=pd.read_csv("innovation_and_development_database.csv")
    df
```

Out[17]:		country	code	year	eap	eca	lac	mena	sha	sa	hi	•••	у	stockpatEPO	
	0	Aruba	ABW	1960	0	0	1	0	0	0	0.0		NaN	NaN	
	1	Aruba	ABW	1961	0	0	1	0	0	0	0.0		NaN	NaN	
	2	Aruba	ABW	1962	0	0	1	0	0	0	0.0		NaN	NaN	
	3	Aruba	ABW	1963	0	0	1	0	0	0	0.0		NaN	NaN	
	4	Aruba	ABW	1964	0	0	1	0	0	0	0.0		NaN	NaN	
	•••		•••												
	8290	Zimbabwe	ZWE	1998	0	0	0	0	1	0	0.0		8.290000e+09	8.0	12
	8291	Zimbabwe	ZWE	1999	0	0	0	0	1	0	0.0		8.230000e+09	8.0	12
	8292	Zimbabwe	ZWE	2000	0	0	0	0	1	0	0.0		7.830000e+09	8.0	12
	8293	Zimbabwe	ZWE	2001	0	0	0	0	1	0	0.0		NaN	8.0	12
	8294	Zimbabwe	ZWE	2002	0	0	0	0	1	0	0.0		NaN	NaN	

8295 rows × 33 columns

Data Cleaning and Data Preprocessing

```
In [18]:
    df=df.fillna(1)
    df
```

Out[18]:		country	code	year	eap	eca	lac	mena	sha	sa	hi	•••	у	stockpatEPO
	0	Aruba	ABW	1960	0	0	1	0	0	0	0.0		1.000000e+00	1.0
	1	Aruba	ABW	1961	0	0	1	0	0	0	0.0		1.000000e+00	1.0
	2	Aruba	ABW	1962	0	0	1	0	0	0	0.0		1.000000e+00	1.0
	3	Aruba	ABW	1963	0	0	1	0	0	0	0.0		1.000000e+00	1.0
	4	Aruba	ABW	1964	0	0	1	0	0	0	0.0		1.000000e+00	1.0
	•••													

	country	code	year	eap	eca	lac	mena	sha	sa	hi	•••	у	stockpatEPO	
8290	Zimbabwe	ZWE	1998	0	0	0	0	1	0	0.0		8.290000e+09	8.0	12
8291	Zimbabwe	ZWE	1999	0	0	0	0	1	0	0.0		8.230000e+09	8.0	12
8292	Zimbabwe	ZWE	2000	0	0	0	0	1	0	0.0		7.830000e+09	8.0	12
8293	Zimbabwe	ZWE	2001	0	0	0	0	1	0	0.0		1.000000e+00	8.0	12
8294	Zimbabwe	ZWE	2002	0	0	0	0	1	0	0.0		1.000000e+00	1.0	

8295 rows × 33 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8295 entries, 0 to 8294
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	country	8295 non-null	object
1	code	8295 non-null	object
2	year	8295 non-null	int64
3	eap	8295 non-null	int64
4	eca	8295 non-null	int64
5	lac	8295 non-null	int64
6	mena	8295 non-null	int64
7	sha	8295 non-null	int64
8	sa	8295 non-null	int64
9	hi	8295 non-null	float64
10	pat	8295 non-null	float64
11	patepo	8295 non-null	float64
12	royal	8295 non-null	float64
13	rdexp	8295 non-null	float64
14	rdper	8295 non-null	float64
15	rdfinabro	8295 non-null	float64
16	rdfinprod	8295 non-null	float64
17	rdperfprod	8295 non-null	float64
18	rdperfhe	8295 non-null	float64
19	rdperfpub	8295 non-null	float64
20	lowrdexp	8295 non-null	float64
21	lowrdfinprod	8295 non-null	float64
22	lowrdperfprod	8295 non-null	float64
23	У	8295 non-null	float64
24	stockpatEPO	8295 non-null	float64
25	poptotal	8295 non-null	float64
26	labor	8295 non-null	float64
27	rdexpgdp	8295 non-null	float64
28	patgrantedstock	8295 non-null	float64
29	plantpatstock	8295 non-null	float64
30	designpatstock	8295 non-null	float64
31	plantpat	8295 non-null	float64
32	designpat	8295 non-null	float64

```
dtypes: float64(24), int64(7), object(2)
```

memory usage: 2.1+ MB

```
In [21]: data=df[['year' ,'lac']]
    data
```

```
Out[21]:
               year lac
             0 1960
                      1
             1 1961
                      1
             2 1962
                      1
             3 1963
                      1
             4 1964
                      1
                  ...
          8290 1998
                      0
          8291 1999
          8292 2000
                      0
          8293 2001
                      0
          8294 2002
```

8295 rows × 2 columns

```
In [25]: a=df.head(60) a
```

Out[25]:		country	code	year	eap	eca	lac	mena	sha	sa	hi	•••	у	stockpatEPO	poptotal	labor
	0	Aruba	ABW	1960	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	1	Aruba	ABW	1961	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	2	Aruba	ABW	1962	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	3	Aruba	ABW	1963	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	4	Aruba	ABW	1964	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	5	Aruba	ABW	1965	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	6	Aruba	ABW	1966	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	7	Aruba	ABW	1967	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	8	Aruba	ABW	1968	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	9	Aruba	ABW	1969	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	10	Aruba	ABW	1970	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	11	Aruba	ABW	1971	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	12	Aruba	ABW	1972	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	13	Aruba	ABW	1973	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	14	Aruba	ABW	1974	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
	15	Aruba	ABW	1975	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0

	country	code	year	eap	eca	lac	mena	sha	sa	hi	•••	у	stockpatEPO	poptotal	labor
16	Aruba	ABW	1976	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
17	Aruba	ABW	1977	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
18	Aruba	ABW	1978	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
19	Aruba	ABW	1979	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
20	Aruba	ABW	1980	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
21	Aruba	ABW	1981	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
22	Aruba	ABW	1982	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
23	Aruba	ABW	1983	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
24	Aruba	ABW	1984	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
25	Aruba	ABW	1985	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
26	Aruba	ABW	1986	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
27	Aruba	ABW	1987	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
28	Aruba	ABW	1988	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
29	Aruba	ABW	1989	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
30	Aruba	ABW	1990	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
31	Aruba	ABW	1991	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
32	Aruba	ABW	1992	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
33	Aruba	ABW	1993	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
34	Aruba	ABW	1994	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
35	Aruba	ABW	1995	0	0	1	0	0	0	0.0		1.0	0.0	1.0	1.0
36	Aruba	ABW	1996	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
37	Aruba	ABW	1997	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
38	Aruba	ABW	1998	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
39	Aruba	ABW	1999	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
40	Aruba	ABW	2000	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
41	Aruba	ABW	2002	0	0	1	0	0	0	0.0		1.0	1.0	1.0	1.0
42	Andorra	ADO	1960	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
43	Andorra	ADO	1961	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
44	Andorra	ADO	1962	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
45	Andorra	ADO	1963	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
46	Andorra	ADO	1964	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
47	Andorra	ADO	1965	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
48	Andorra	ADO	1966	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
49	Andorra	ADO	1967	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
50	Andorra	ADO	1968	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
51	Andorra	ADO	1969	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0

	country	code	year	eap	eca	lac	mena	sha	sa	hi	•••	у	stockpatEPO	poptotal	labor
52	Andorra	ADO	1970	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
53	Andorra	ADO	1971	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
54	Andorra	ADO	1972	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
55	Andorra	ADO	1973	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
56	Andorra	ADO	1974	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
57	Andorra	ADO	1975	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
58	Andorra	ADO	1976	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0
59	Andorra	ADO	1977	0	1	0	0	0	0	0.0		1.0	1.0	1.0	1.0

60 rows × 33 columns

Line chart

Line chart

```
In [27]: data.plot.line()
```

Out[27]: <AxesSubplot:>

Bar chart

Histogram

```
In [30]: data.plot.hist()
Out[30]: <AxesSubplot:ylabel='Frequency'>
```


Area chart

Out[31]: <AxesSubplot:>

Box chart

```
In [32]: data.plot.box()
```

Out[32]: <AxesSubplot:>

Pie chart

```
In [33]:
b.plot.pie(y='lac')
```

Out[33]: <AxesSubplot:ylabel='lac'>

Scatter chart

```
In [34]: data.plot.scatter(x='year' ,y='lac')
Out[34]: <AxesSubplot:xlabel='year', ylabel='lac'>
```

```
1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0 - 1960 1970 1980 1990 2000 year
```

```
In [35]: df.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 8295 entries, 0 to 8294 Data columns (total 33 columns): Non-Null Count # Column Dtype -----0 8295 non-null object country 1 8295 non-null object code 2 8295 non-null int64 year 3 8295 non-null int64 eap 8295 non-null 4 int64 eca 5 8295 non-null int64 lac 6 8295 non-null int64 mena 7 8295 non-null int64 sha 8 8295 non-null int64 sa 9 8295 non-null float64 hi 10 8295 non-null float64 pat 8295 non-null float64 11 patepo 8295 non-null float64 12 royal 13 8295 non-null float64 rdexp 14 8295 non-null float64 rdper float64 15 8295 non-null rdfinabro float64 8295 non-null 16 rdfinprod rdperfprod 8295 non-null float64 17 float64 18 rdperfhe 8295 non-null float64 19 rdperfpub 8295 non-null float64 20 lowrdexp 8295 non-null float64 21 lowrdfinprod 8295 non-null float64 22 lowrdperfprod 8295 non-null 23 8295 non-null float64 24 stockpatEP0 8295 non-null float64 25 poptotal 8295 non-null float64 26 labor 8295 non-null float64 27 rdexpgdp 8295 non-null float64 28 patgrantedstock 8295 non-null float64 29 plantpatstock 8295 non-null float64 30 designpatstock 8295 non-null float64 31 plantpat 8295 non-null float64 32 designpat 8295 non-null float64 dtypes: float64(24), int64(7), object(2) memory usage: 2.1+ MB

```
In [38]: df.columns
```

```
Out[38]: Index(['country', 'code', 'year', 'eap', 'eca', 'lac', 'mena', 'sha', 'sa', 'hi', 'pat', 'patepo', 'royal', 'rdexp', 'rdper', 'rdfinabro', 'rdfinprod', 'rdperfprod', 'rdperfhe', 'rdperfpub', 'lowrdexp',
```

Out[36

```
'lowrdfinprod', 'lowrdperfprod', 'y', 'stockpatEPO', 'poptotal', 'labor', 'rdexpgdp', 'patgrantedstock', 'plantpatstock', 'designpatstock', 'plantpat', 'designpat'], dtype='object')
```

In [36]: df.describe()

5]:		year	eap	eca	lac	mena	sha	sa	
	count	8295.000000	8295.000000	8295.000000	8295.000000	8295.000000	8295.000000	8295.000000	8
	mean	1981.203014	0.094515	0.195901	0.176974	0.098614	0.150090	0.026522	
	std	12.421590	0.292561	0.396917	0.381670	0.298161	0.357182	0.160691	
	min	1960.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1970.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	50%	1981.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	75%	1992.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	max	2002.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	

8 rows × 31 columns

```
In [39]: df1=df[['year', 'eap', 'eca', 'lac', 'mena', 'sha', 'sa', 'hi']]
```

EDA AND VISUALIZATION

```
In [40]: sns.pairplot(df1[0:50])
```

Out[40]: <seaborn.axisgrid.PairGrid at 0x2a1696d65b0>

In [44]: sns.displot(df1['year'])

Out[44]: <seaborn.axisgrid.FacetGrid at 0x2a16f3d6a90>


```
In [42]: sns.heatmap(df1.corr())
```

Out[42]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [45]: x=df[['year', 'eap', 'eca', 'lac', 'mena', 'sha', 'sa']]
y=df['hi']

In [46]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

```
In [47]: from sklearn.linear_model import LinearRegression lr=LinearRegression()
```

```
lr.fit(x_train,y_train)
          LinearRegression()
Out[47]:
In [48]:
           lr.intercept_
          -0.10129916868360311
Out[48]:
In [49]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[49]:
                Co-efficient
           year
                   0.000312
                  -0.516784
           eap
```

year 0.000312
eap -0.516784
eca -0.516617
lac -0.516767
mena -0.516982
sha -0.516911
sa -0.516918

```
In [50]: prediction =lr.predict(x_test)
   plt.scatter(y_test,prediction)
```

Out[50]: <matplotlib.collections.PathCollection at 0x2a16fc09d00>

ACCURACY

```
In [51]: lr.score(x_test,y_test)
Out[51]: 0.4613696470505868
In [52]: lr.score(x_train,y_train)
```

Out[52]: 0.442752791624356

Ridge and Lasso

```
In [53]:
          from sklearn.linear_model import Ridge,Lasso
In [54]:
          rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[54]: Ridge(alpha=10)
```

Accuracy(Ridge)

```
In [55]:
          rr.score(x_test,y_test)
Out[55]:
         0.458186877260473
In [56]:
          rr.score(x_train,y_train)
         0.44143721604040387
Out[56]:
In [57]:
          la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[57]: Lasso(alpha=10)
In [58]:
          la.score(x_train,y_train)
Out[58]: 0.0
```

Accuracy(Lasso)

```
In [59]:
          la.score(x_test,y_test)
         -0.00034648662632985605
Out[59]:
In [60]:
          from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
         ElasticNet()
Out[60]:
In [61]:
          en.coef_
Out[61]: array([ 0., -0., -0., -0., -0., -0., -0.])
```

Evaluation Metrics

```
from sklearn import metrics
    print(metrics.mean_absolute_error(y_test,prediction))
    print(metrics.mean_squared_error(y_test,prediction))
    print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))

0.23530485566046233
0.12001888817033582
0.3464374231666317
```

Logistic Regression

```
In [66]:
          from sklearn.linear_model import LogisticRegression
In [67]:
          feature_matrix=df[['year', 'eap', 'eca', 'lac', 'mena', 'sha', 'sa']]
          target vector=df['hi']
In [68]:
          feature_matrix.shape
         (8295, 7)
Out[68]:
In [69]:
          target_vector.shape
         (8295,)
Out[69]:
In [70]:
          from sklearn.preprocessing import StandardScaler
In [71]:
          fs=StandardScaler().fit_transform(feature_matrix)
In [72]:
          logr=LogisticRegression(max_iter=10000)
          logr.fit(fs,target_vector)
Out[72]: LogisticRegression(max_iter=10000)
```

```
In [74]:
          observation=[[1,2,3,4,5,6,7]]
In [75]:
          prediction=logr.predict(observation)
          print(prediction)
         [0.]
In [76]:
          logr.classes_
         array([0., 1.])
Out[76]:
In [77]:
          logr.score(fs,target_vector)
         0.8772754671488848
Out[77]:
In [78]:
          logr.predict_proba(observation)[0][0]
Out[78]: 1.0
In [79]:
          logr.predict proba(observation)
Out[79]: array([[1.00000000e+00, 8.32677247e-28]])
```

Random Forest

```
In [80]:
          from sklearn.ensemble import RandomForestClassifier
In [81]:
          rfc=RandomForestClassifier()
          rfc.fit(x_train,y_train)
Out[81]:
         RandomForestClassifier()
In [82]:
          parameters={ 'max depth':[1,2,3,4,5],
                       'min samples leaf':[5,10,15,20,25],
                       'n_estimators':[10,20,30,40,50]
          }
In [83]:
          from sklearn.model selection import GridSearchCV
          grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy
          grid_search.fit(x_train,y_train)
Out[83]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
In [84]:
          grid_search.best_score_
```

```
Out[84]: 0.8670341026524285
In [85]:
         rfc_best=grid_search.best_estimator_
In [86]:
         from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['a','b','c',
Out[86]: [Text(2232.0, 1630.8000000000002, 'eap <= 0.5\ngini = 0.224\nsamples = 3676\nvalue =
        [5058, 748] \setminus class = a'),
         Text(1116.0, 543.59999999999, 'gini = 0.243\nsamples = 3337\nvalue = [4526, 748]
        \nclass = a'),
         Text(3348.0, 543.59999999999, 'gini = 0.0\nsamples = 339\nvalue = [532, 0]\nclass
                                    eap <= 0.5
                                    gini = 0.224
                                 samples = 3676
                              value = [5058, 748]
                                      class = a
                 gini = 0.243
                                                        gini = 0.0
                                                     samples = 339
              samples = 3337
            value = [4526, 748]
                                                    value = [532, 0]
                    class = a
                                                         class = a
```

Conclusion

Accuracy

Linear Regression

```
In [87]: lr.score(x_test,y_test)
Out[87]: 0.4613696470505868
In [88]: lr.score(x_train,y_train)
Out[88]: 0.442752791624356
```

Lasso

```
In [89]: la.score(x_test,y_test)
```

```
-0.00034648662632985605
Out[89]:
In [90]:
          la.score(x_train,y_train)
Out[90]: 0.0
        Ridge
In [91]:
          rr.score(x_test,y_test)
         0.458186877260473
Out[91]:
In [92]:
          rr.score(x_train,y_train)
Out[92]: 0.44143721604040387
        Elastic Net
In [93]:
          en.score(x_test,y_test)
Out[93]: -0.00034648662632985605
        Logistic Regression
In [95]:
          logr.score(fs,target_vector)
Out[95]: 0.8772754671488848
        Random Forest
In [96]:
          grid_search.best_score_
Out[96]: 0.8670341026524285
        From the above data, we can conclude that logistic regression is preferrable to other regression types
 In [ ]:
 In [ ]:
```