

Computational Photography

Dr. Irfan EssaProfessor
School of Interactive Computing

Study the basics of computation and its impact on the entire workflow of photography, from capturing, manipulating and collaborating on, and sharing photographs.

Georgialnstitute of Technology

Light Fields: Part 2 of 2 Really using the Rays of Light

Dr. Irfan Essa

Professor
School of Interactive Computing

How can we capture a Light Field?

Lesson Objectives

- ★ Explain in your own words how a different uses of a pinhole and a lens system can lead to observations about the scene.
- Explain in your own words the impact of an eccentric aperture on a simple lens system.
- Explain in your own words how a lens with an array of pinhole camera can encode direction and intensity of the rays of light.
- Describe in your own words how a 4D Light Field camera works.

Review: Plenoptic Function and a Light Field

- \star $P(\theta, \phi, \lambda, t, V_x, V_y, V_z) \rightarrow 7 Dimensions$
 - Complete scene; holographic video
- $+ P(\theta, \phi, V_x, V_y, V_z) \rightarrow 5$ Dimensions
 - Ignore time and wavelength
 - Capture only viewpoint and direction
- \star $P(\theta, \phi, V_x, V_y, V_z) \rightarrow 4$ Dimensions
 - Within a bounding box. (Space of all lines in 2D space is 4D)
 - No occluding objects, with viewpoint and direction
- \star $P(\theta, \phi) \rightarrow 2$ Dimensions
 - At the same viewpoint
 - Panorama

Any point within a scene is represented by a 5D plenoptic function. Outside of a scene (outside of the sphere of a snow globe) light from the scene does not get occluded by objects, and is represented, as a 4D light field.

http://en.wikipedia.org/wiki/Light_field http://commons.wikimedia.org/wiki/File:Snow_Globe_icon.jpg

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Single Pinhole

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Adelson and Wang (1991)

Monday, April 22, 13

Single Pinhole

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Adelson and Wang (1991)

Single Pinhole

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Adelson and Wang (1991)

Single Pinhole

ngie rinnoie Double rinnoi

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

Lens gathers light from all points. These are averaged at the sensor plane in a camera

6

6

1. In-focus object; forms a Point Image.

In-focus object;
 forms a Point
 Image.

In-focus object;
 forms a Point
 Image.

In-focus object;
 forms a Point
 Image.

- In-focus object;
 forms a Point
 Image.
- 2. Near object; blurred

- 1. In-focus object; forms a Point Image.
- 2. Near object; blurred

Single Lens System (1) Point Light Source (3)(1)

- In-focus object;
 forms a Point
 Image.
- 2. Near object; blurred

Single Lens System (1) Point Light Source

- In-focus object;
 forms a Point
 Image.
- 2. Near object; blurred

(1)

(3)

Single Lens System (1) Point Light Source

- In-focus object;
 forms a Point
 Image.
- 2. Near object; blurred
- 3. Far object; blurred

(1)

(3)

-

-

-

In-focus object;
 forms a Point
 Image.

1. In-focus object; forms a Point Image.

In-focus object;
 forms a Point
 Image.

In-focus object;
 forms a Point
 Image.

- 1. In-focus object; forms a Point Image.
- 2. Near object; blurred, to the right

Monday, April 22, 13

- In-focus object;
 forms a Point
 Image.
- 2. Near object; blurred, to the right

- 1. In-focus object; forms a Point Image.
- 2. Near object; blurred, to the right

- In-focus object;
 forms a Point
 Image.
- 2. Near object; blurred, to the right

- In-focus object;
 forms a Point
 Image.
- 2. Near object; blurred, to the right
- 3. Far object; blurred, to the left

We add a miniature pinhole at the image plane

Monday, April 22, 13

- We add a miniature pinhole at the image plane
- Analyzes the structure of light at each macro-pixel.

Lens and Microlens

Photosensor

A Light-field / Plenoptic Camera (Ng et al. 2005)

http://en.wikipedia.org/wiki/Lenticular_lens

Lens and Microlens

A Light-field / Plenoptic Camera (Ng et al. 2005)

http://en.wikipedia.org/wiki/Lenticular_lens

A Light-field / Plenoptic Camera (Ng et al. 2005)

http://en.wikipedia.org/wiki/Lenticular_lens

A Light-field / Plenoptic Camera (Ng et al. 2005)

http://en.wikipedia.org/wiki/Lenticular_lens

A Light-field / Plenoptic Camera (Ng et al. 2005)

Lectincular Array used in lenticular printed cards

http://en.wikipedia.org/wiki/Lenticular_lens

A Light-field / Plenoptic Camera (Ng et al. 2005)

Lectincular Array
used in lenticular printed cards
http://en.wikipedia.org/wiki/Lenticular_lens

Cylindrical lenses to form a Lenticular Array

A Light-field / Plenoptic Camera (Ng et al. 2005)

History of Light Field Camera

- ★ 1908: Lippmann proposed one that used integral photography.
 - A Nobel laureate in physics for a method to reproduce colors photographically based on interference.
- 1930: Ives constructed Parallax Panoramagrams.
- ★ 1992: Adelson and Wang proposed a plenoptic camera and used it to generate stereo from a single lens.
- 1990s (mid): Graphics researchers explored Light fields for Image-based Rendering
- ★ 2005: Ng et al. proposed a hand-held Plenoptic Camera
- ★ 2012: Lytro available (lytro.com)

4D Light Field Camera (Lytro)

- * Allows for
 - refocussing images
 - showing parallax

Summary

- Discussed the different uses of a pinhole and a lens system to analyze the scene.
- Showed the application of an eccentric aperture on a simple lens system.
- Discussed a system with a lens with an array of pinhole camera to encode direction and intensity of the rays of light.
- Desribed conceptually, how a 4D Light Field camera works.

Monday, April 22, 13

Further Information

- Adelson and Bergen (1991), "The Plenoptic Function and the Elements of Early Vision" Computational models of visual processing. [PDF]
- ★ Adelson and Wang (1992) "Single lens stereo with a plenoptic camera", IEEE PAMI 14(2) [PDF]
- Ng, Levoy, et al. (2005), "Light field photography with a hand-held plenoptic camera" Stanford Tech Report CTSR 2005-02, 2005. [PDF][DOI]

Monday, April 22, 13

Next Class

★ Connecting the dots.

Credits

- ★ Lytro Camera and Software.
- ★ For more information, see
 - Richard Szeliski (2010) Computer Vision:
 Algorithms and Applications, Springer.
- ★ Some video retrieved from
 - http://commons.wikimedia.org/.
 - List will be available on website.

Computational Photography

Dr. Irfan EssaProfessor
School of Interactive Computing

Study the basics of computation and its impact on the entire workflow of photography, from capturing, manipulating and collaborating on, and sharing photographs.