Измерение удельного заряда электрона

Голышев Иван и Медведев Илья

Московский физико-технический институт

Сентябрь, 2022

Цель работы

Определение отношения заряда электрона к его массе методом магнитной фокусировки и методом магнетрона.

Метод магнитной фокусировки: теория

Пусть магнитное поле однородно и постоянно ($\vec{B}=const$). Тогда траектории движения заряженных частиц в нем имеют форму спирали, радиус которых описывается:

$$r_B = \frac{v_\perp}{\omega_B} = \frac{mv_\perp}{qB} \tag{1}$$

Откуда найдем шаг спирали за циклотронный период:

$$T_B = \frac{2\pi r_B}{v_\perp} \longrightarrow L = v_\parallel T_B = \frac{2\pi v \cos \alpha}{\frac{e}{m} \cdot B},$$
 (2)

где α – угол между \vec{v} и \vec{B} .

Метод магнитной фокусировки: теория

При малых углах $lpha \ll 1, \cos lpha \approx 1$:

$$L \approx \frac{2\pi v}{\frac{e}{m}B} \tag{3}$$

Значит при малых углах $L \neq L(\alpha)$. Откуда делается вывод, что индукция поля B определяется только удельным зарядом электрона $\frac{e}{m}$.

Метод магнитной фокусировки: экспериментальная установка и методика эксперимента

Рис. 1. Схема измерений по методу магнитной фокусировки

Если расстояние от пушки до экрана I, то пучок сфокусируется на экране при условии

$$I = nL, n = 1, 2, 3, ...,$$
 (4)

Метод магнитной фокусировки: экспериментальная установка и методика эксперимента

Скорость движения электрона можно найти, зная разность потенциалов U_A , пройденную электроном:

$$\frac{mv^2}{2} = eU_A \longrightarrow v_{\parallel} = \sqrt{\frac{2eU_A}{m}}$$
 (5)

Обозначая B_f – величину поля при фокусировки пучка электронов, получим:

$$\frac{e}{m} = \frac{8\pi^2 U}{l^2} \frac{n^2}{B_f^2(n)} \tag{6}$$

Метод магнитной фокусировки: ожидания

- Результат $\frac{e}{m}$ должен совпасть с результатом, полученным методом магнетрона,
- Калибровочный график B(I) должен быть линейным,
- ullet Рассчетный график $B_f(n)$ тоже должен быть линейным.

Метод магнитной фокусировки: обработка результатов

1. Снимаем зависимость (I). С помощью формулы = BSN получаем зависимость B(I).

2. Из графика B(I), определяем усредненные значения B_f для каждого фокуса. Строим $B_f(n)$:

Метод магнитной фокусировки: обработка результатов

Из графика (2) и формулы (6), получаем:

$$\frac{e}{m} = \frac{8\pi^2 U}{l^2} \frac{n^2}{B_f^2(n)}$$

$$\longrightarrow \frac{e}{m} = (1, 2 \pm 0, 4) \cdot 10^{11} \ C/kg$$

Метод магнетрона: теория

В так называемом методе магнетрона отношение e/m измеряется на основе исследования движения электрона в скрещенных электрическом и магнитном полях, перпендикулярных друг другу.

Рис. В.1. Движение заряда в скрещенных полях

Метод магнетрона: теория

Пусть $\vec{E} \perp \vec{B}$. Тогда

- $\forall U \; \exists B_{cr}$: траектории электронов касаются поверхности анода.
- Если $B < B_{cr}$, то все электроны достигают анода и ток через магнетрон имеет то же значение, что и без магнитного поля.
- Если же $B>B_{cr}$, то электроны не достигают анода и ток через лампу равен нулю.

Метод магнетрона: теория

Рассчет B_{cr} :

$$m\dot{\vec{v}} = q\vec{E} + q\vec{v} \times \vec{B} \tag{7}$$

$$\longrightarrow \dot{v_x} = \omega_B v_y, \quad \dot{v_y} = \frac{q}{m} E - \omega_B v_x \tag{8}$$

Решение дифф. уравнений – циклоида:

$$x = vt - R\sin\omega t, \quad y = R(1 - \cos\omega t), \tag{9}$$

где $v = \frac{E}{B}, \; R = \frac{Em}{eB^2}.$

Касание происходит при 2R = h. Откуда:

$$B_{cr} = \frac{\sqrt{2U}}{h\sqrt{\frac{e}{m}}} \longrightarrow \frac{e}{m} = \frac{2U}{B_{cr}^2 h^2}$$
 (10)

Метод магнетрона: экспериментальная установка и методика

Рис. 5. Схема измерительной установки

Движение электронов в этом случае проис ходит в кольцевом пространстве, заключённом между катодом и анодом двухэлектродной электронной лампы (рис. 2).

Метод магнетрона: экспериментальная установка и методика

Рис. 2. Схема устройства двухэлектродной лампы

Рис. 3. Траектории электронов, вылетающих из катода, при разных значениях индукции магнитного поля

Метод магнетрона: экспериментальная установка и методика

Пусть потенциал анода равен U_A . Решая задачу о движении электрона в магнетроне, получим, что:

$$eU = \frac{m}{2}(\dot{r}^2 + (r\frac{eB}{2m})^2) \tag{11}$$

При $r = r_a \ \dot{r} = 0$. Откуда:

$$\frac{e}{m} = \frac{8U_A}{r_A^2 B_{cr}^2} \tag{12}$$

Метод магнетрона: ожидания

- Результат $\frac{e}{m}$ должен совпасть с результатом, полученным методом магнитной фокусировки,
- Зависимости $I_M(I_C)$ должны иметь на некотором участке резкий наклон,
- Зависимость $B_{cr}^2(U_A)$ должна быть линейной.

Метод магнетрона: обработка результатов

1. Снимаем зависимость $I_M(I_C)$ для пяти значений U_A . Домнажаем I_C на переводной коэффицент $k=3,5\cdot 10^{-3}$ (он был написан на установке). Строим семейство кривых $I_M(B)$:

Метод магнетрона: обработка результатов

2. По участкам с резким наклоном графиков определяем B_{cr} . Строим график $B_{cr}^2(U_A)$:

Метод магнетрона: обработка результатов

3. По наклону графика (4) и из формулы (12) получаем:

$$\frac{e}{m} = \frac{8U_A}{r_A^2 B_{cr}^2}$$

$$\longrightarrow \frac{e}{m} = (1,9 \pm 0,3) \cdot 10^{11} \ C/kg$$

Выводы

•
$$(\frac{e}{m})_{focus} = (1, 2 \pm 0, 4) \cdot 10^{11} \ C/kg$$

•
$$(\frac{e}{m})_M = (1,9 \pm 0,3) \cdot 10^{11} \ C/kg$$

•
$$(\frac{e}{m})_{table} = 1,76 \cdot 10^{11} \ C/kg$$

Как мы видим экспериментально полученные значения попадают в 2σ окрестность эталонного значения.

Обсуждение результатов

Недостатки метода магнетрона:

В идеальной модели график I(B) должен иметь вертикальный скачок в точке B_{cr} , но на практике такой зависимости нет. Авторы считают, что это связано с неоднородностью поля и с тепловым движением электронов. Поэтому уравнение (7) точно не описывает траекторию движения всех электронов.