2021

https://github.com/Santandersecurityresearch/CurrentSense-TinyML

- Santander Group Cyber Security Research Team
- read current from target and predict LED on / off state

2021

- didn't finish the project due to my lack of knowledge
- no AI to help as of today in 2024

2024

left: target board | right: observer board RGB LED: R, G and B values [0 - 255]

- Python firmware on both boards + PC software
- ADC oversampling to reduce the noise
- PC software is ready to receive current and send the RGB value


```
df = pd.read csv("./labeled dataset 1 small.csv", sep=',')
     print('\n\ndf.head(10):\n')
     print(df.head(10))
✓ 0.0s
df.head(10):
   current
 0.036605
           0.639
                 0.639
                         0.639
  0.001844 0.396 0.000
                        0.396
2 0.012273 0.639
                 0.396 0.639
  0.002571 0.639
                  0.000
                        0.396
  0.012477 0.639
                  0.396
                        0.639
  0.006664
            0.396
                  0.396
                        0.639
  0.012040 0.396
                  0.639 0.639
            0.639
  0.038608
                  0.639 0.639
  0.001615 0.000
                  0.396 0.000
  0.002370 0.639 0.000 0.396
```

- feature engineering
- testing polynomial fit

- very small differences of each current from the total currents
- need to (quickly) improve the hardware to read higher values

