

Product : TouchLock Bike Pro

Trade mark : BIO-key
Model/Type reference : BF1509

Serial Number : N/A

Report Number : EED32K00105701

FCC ID : 2AIKJ-BF1509

Date of Issue : Jun. 05, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

BIO-key Hong Kong Limited
Unit 1212, 12/F,Grand City Plaza,1-17 Sai Lau Kok Road,
Tsuen Wan, New Territories, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested by:

Tom-chen

Tom chen (Test Project)

Reviewed by:

Date:

ke In Tony

Kevin yang (Reviewer)

Jun. 05, 2018

Kevin Lan (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:1022518894

Page 2 of 53

2 Version

Version No.	Date	(6	Description	·
00	Jun. 05, 2018		Original	
	193	/°>	793	/35
		(47)		

3 Test Summary

Report No.: EEED32K00105701

1 est Sullillary			_
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Report No.: EEED32K00105701 Page 4 of 53

4 Content

	7					
1 COVE	ER PAGE			•••••		1
2 VERS	SION		•••••	•••••		2
3 TEST	SUMMARY	•••••	•••••	•••••		3
4 CON	TENT				•••••	4
5 TEST	REQUIREMENT					5
5. 5. 5. 5.2 T 5.3 T	TEST SETUP	etup ons test setupsions test setup				5 6 6
6.2 C 6.3 F 6.4 E 6.5 T 6.6 E 6.7 A 6.8 C	CLIENT INFORMATION	EUT SUBJECTIVE TO THIS STATE UNITS DS NDARD CONDITIONS JESTED BY THE CUSTOR	ANDARD			
7 EQUI	PMENT LIST			•••••		10
8 RADI	O TECHNICAL REQUIR	REMENTS SPECIFICA	ATION	•••••		12
A; A; A; A; A; A; A;	ppendix A): 6dB Occupie ppendix B): Conducted F ppendix C): Band-edge fo ppendix D): RF Conducte ppendix E): Power Spect ppendix F): Antenna Rec ppendix G): AC Power Li ppendix H): Restricted ba ppendix I): Radiated Spu	d Bandwidtheak Output Poweror RF Conducted Emised Spurious Emissions ral Densityuirementne Conducted Emissions ands around fundamer	esions	adiated)		13 15 17 19 22 24 25
РНОТС	OGRAPHS OF TEST SE	TUP		•••••	•••••	36
РНОТ С	OGRAPHS OF EUT CON	ISTRUCTIONAL DET	AILS	(ch)		38

Report No. : EEED32K00105701 Page 5 of 53

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(6)
Temperature:	25.0 °C		
Humidity:	48 % RH	1000	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx		RF Channel	Channel	
	TX/RX	Low(L)	Middle(M)	High(H) Channel 40 2480MHz	
0504	04001411 04001411	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode: The EUT transmitted the continuous signal at the specific					

6 General Information

6.1 Client Information

Applicant:	BIO-key Hong Kong Limited	
Address of Applicant:	Unit 1212, 12/F,Grand City Plaza,1-17 Sai Lau Kok Road, Tsuen Wan, New Territories, Hong Kong	
Manufacturer:	Dongguan Otoma Industrial Co., Ltd.	
Address of Manufacturer:	No. 8, Shanglang Road, Xiabian Zone, Chang' an Town, Dongguan City, Guangdong Province, P. R. China	
Factory:	Dongguan Otoma Industrial Co., Ltd.	
Address of Factory:	No. 8, Shanglang Road, Xiabian Zone, Chang' an Town, Dongguan City, Guangdong Province, P. R. China	

6.2 General Description of EUT

Product Name:	TouchLock Bike Pro				
Model No.(EUT):	BF1509				
Trade mark:	BIO-key		(10)		(20)
EUT Supports Radios application:	BT 4.1 Signal mode , 2402-2	2480MHz	0.		6.
Power Supply:	Battery:3.7V, 130mAh				
Hardware Version:	(manufacturer declare)5.0	/3		/3	
Software version:	(manufacturer declare)29	(3)		(35)	
Sample Received Date:	May 03, 2018				
Sample tested Date:	May 03, 2018 to Jun. 05, 20	18			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		0
Bluetooth Version:	4.1		
Modulation Technique:	DSSS		
Modulation Type:	GFSK	100	
Number of Channel:	40	(6)	
Sample Type:	Portable production		
Test power grade:	(manufacturer declare)N/A		
Test software of EUT:	(manufacturer declare)BLUENRG_GUI.exe		13
Antenna Type and Gain:	Type: PCB Antenna; Gain: 0.49dBi		(0,
Test Voltage:	Battery:3.7V, 130mAh		

Report No.: EEED32K00105701 Page 8 of 53

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment name		Manufacture	model	serial number	Supplied by	Certification
AE1	AC Adapter	XIAOMI	MDY-08-EZ	2C418010000013A	СТІ	UL

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None

6.8 Other Information Requested by the Customer

None.

Report No.: EEED32K00105701 Page 9 of 53

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
0	DE novem conducted	0.31dB (30MHz-1GHz)		
2	RF power, conducted	0.57dB (1GHz-18GHz)		
2	De dieted Couriers amineiant of	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)		
4	Occadination assissing	3.6dB (9kHz to 150kHz)		
4	Conduction emission	3.2dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	2.8%		
7	DC power voltages	0.025%		

Report No. : EEED32K00105701 Page 10 of 53

7 Equipment List

_qa.p	<u> </u>		X 2007		~ # Z
		RF tes	t system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
power meter & power sensor	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	158060006	03-13-2018	03-12-2019
Temperature / Humidity Indicator	Defu	TH128		07-08-2017	07-07-2018

Conducted disturbance Test										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018					
Temperature/ Humidity Indicator			1905	05-02-2018	05-01-2019					
LISN	LISN schwarzbeck NNL		8121-529	06-13-2017	06-12-2018					

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 11 of 53

	31	vi Semi/tuli-ar	echoic Chamb	per	
Equipment	Manufacturer	anufacturer Model No. Se		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
Spectrum Analyzer	Agilent	E4443A	MY45300910	11-16-2017	11-15-2018
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	06-09-2017	06-08-2018
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Microwave Preamplifier	JS Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA 09CL12- 0395-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA 08CL12- 0393-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA 04CL12- 0396-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA 03CL12- 0394-001	(0)	01-10-2018	01-09-2019

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10		PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10		PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Appendix A): 6dB Occupied Bandwidth

Test Result

		The second secon					
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark		
BLE	LCH	0.7013	1.0496	PASS			
BLE	MCH	0.7251	1.0476	PASS	Peak		
BLE	нсн	0.7694	1.0484	PASS	detector		

Test Graphs

Page 15 of 53

Appendix B): Conducted Peak Output Power

Test Result

5.307	3.32				
Mode	Channel	Conduct Peak Power[dBm]	Verdict		
BLE	LCH	3.361	PASS		
BLE	MCH	3.228	PASS		
BLE	нсн	2.236	PASS		

Test Graphs

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
BLE	LCH	2.717	-51.303	-17.28	PASS	
BLE	нсн	0.463	-41.479	-19.54	PASS	

Test Graphs

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	2.472	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	2.181	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	0.193	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-12.178	8	PASS
BLE	MCH	-12.399	8	PASS
BLE	НСН	-14.250	8	PASS

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.49dBi.

Report No.: EEED32K00105701 Page 25 of 53

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequ
TEST LINCERNIE.	i resi nedi

Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

[Limit (dBµV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 26 of 53

No.	Freq.		ing_Le (BuV)	evel	Correct Factor	M	Measurement (dBuV)		Limit (dBuV)		Margin (dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.5140	34.45		26.14	9.72	44.17		35.86	56.00	46.00	-11.83	-10.14	Р	
2	0.9020	26.78		16.27	9.75	36.53		26.02	56.00	46.00	-19.47	-19.98	Р	
3	1.3420	25.19		14.77	9.72	34.91		24.49	56.00	46.00	-21.09	-21.51	Р	
4	1.8380	23.80		12.66	9.72	33.52		22.38	56.00	46.00	-22.48	-23.62	Р	
5	2.4860	23.86		12.21	9.70	33.56		21.91	56.00	46.00	-22.44	-24.09	Р	
6	12.0060	30.71		19.00	9.88	40.59		28.88	60.00	50.00	-19.41	-21.12	Р	

Page 27 of 53

MHz Peak QP AVG dB peak QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG P/F Comment 1 0.1780 26.23 10.85 9.73 35.96 20.58 64.57 54.57 -28.61 -33.99 P 2 0.5140 33.04 28.53 9.72 42.76 38.25 56.00 46.00 -13.24 -7.75 P 3 0.8940 24.24 14.56 9.75 33.99 24.31 56.00 46.00 -22.01 -21.69 P 4 1.3619 22.51 14.10 9.72 32.23 23.82 56.00 46.00 -23.77 -22.18 P 5 1.9020 20.84 12.39 9.72 30.56 22.11 56.00 46.00 -25.44 -23.89 P 6 3.6180 20.66 11.09 9.67 30.33 20.76 56	-	No.	Freq.		ling_Le dBuV)	evel	Correct Factor	M	leasurem (dBuV)	ent	Lir (dB			rgin dB)		
2 0.5140 33.04 28.53 9.72 42.76 38.25 56.00 46.00 -13.24 -7.75 P 3 0.8940 24.24 14.56 9.75 33.99 24.31 56.00 46.00 -22.01 -21.69 P 4 1.3619 22.51 14.10 9.72 32.23 23.82 56.00 46.00 -23.77 -22.18 P 5 1.9020 20.84 12.39 9.72 30.56 22.11 56.00 46.00 -25.44 -23.89 P			MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
3 0.8940 24.24 14.56 9.75 33.99 24.31 56.00 46.00 -22.01 -21.69 P 4 1.3619 22.51 14.10 9.72 32.23 23.82 56.00 46.00 -23.77 -22.18 P 5 1.9020 20.84 12.39 9.72 30.56 22.11 56.00 46.00 -25.44 -23.89 P		1	0.1780	26.23		10.85	9.73	35.96		20.58	64.57	54.57	-28.61	-33.99	Р	
4 1.3619 22.51 14.10 9.72 32.23 23.82 56.00 46.00 -23.77 -22.18 P 5 1.9020 20.84 12.39 9.72 30.56 22.11 56.00 46.00 -25.44 -23.89 P	_	2	0.5140	33.04		28.53	9.72	42.76		38.25	56.00	46.00	-13.24	-7.75	Р	
5 1.9020 20.84 12.39 9.72 30.56 22.11 56.00 46.00 -25.44 -23.89 P		3	0.8940	24.24		14.56	9.75	33.99		24.31	56.00	46.00	-22.01	-21.69	Р	
		4	1.3619	22.51		14.10	9.72	32.23		23.82	56.00	46.00	-23.77	-22.18	Р	
6 3.6180 20.66 11.09 9.67 30.33 20.76 56.00 46.00 -25.67 -25.24 P		5	1.9020	20.84		12.39	9.72	30.56		22.11	56.00	46.00	-25.44	-23.89	Р	
		6	3.6180	20.66		11.09	9.67	30.33		20.76	56.00	46.00	-25.67	-25.24	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EEED32K00105701 Page 28 of 53

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
		Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	(3)
Test Procedure:	a. The EUT was placed or at a 3 meter semi-anec determine the position of the EUT was set 3 me was mounted on the top c. The antenna height is was determine the maximum polarizations of the antenna was tuned was turned from 0 degree. The test-receiver system Bandwidth with Maximum.	n the top of a rota hoic camber. The of the highest rad ters away from the of a variable-he varied from one men value of the field enna are set to maission, the EUT value of to heights from 1 ees to 360 degreem was set to Peal	e table was liation. le interfere light anten neter to fou d strength lake the m was arrang meter to es to find	ence-receina tower. ur meters Both hor easureme ged to its v meters a the maxim	360 degrees above the grain and vent. worst case along the rotate and the rotate and meading.	to a, which ound to vertica and the able
	f. Place a marker at the e frequency to show com bands. Save the spectr for lowest and highest of	nd of the restricte pliance. Also mea um analyzer plot.	asure any	emissions	s in the restri	
	f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of lowest and highest of lowest and highest of the state of the spectra for lowest and highest of lowest and high	and of the restricted pliance. Also mean um analyzer plot. Channel re as below: e is the test site, ber change form to table west channel, the ments are perform to found the X axis	change from table 0.8 r is 1.5 meters e Highest ned in X, Ye positionir	emissions or each poor semi- neter to 1 er). channel /, Z axis png which it	Anechoic Ch.5 meter(Aboositioning for tis worse car	dulation nambe ove
Limit:	f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of the following of the foll	nd of the restricted pliance. Also measum analyzer plot. channel re as below: e is the test site, ber change form and table west channel, the ments are perform a found the X axis res until all frequents.	change from table 0.8 r is 1.5 meters and in X, N is positionir encies mea	emissions or each poor semi-meter to 1 er). channel Y, Z axis pong which it asured wa	Anechoic Ch.5 meter(Aboositioning for tis worse car	dulation nambe ove
Limit:	f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of lowest and highest of lowest and highest of the state of the spectra for lowest and highest of lowest and high	and of the restricted pliance. Also mean um analyzer plot. Channel re as below: e is the test site, ber change form to table west channel, the ments are perform to found the X axis	change from table 0.8 r is 1.5 meters and in X, N is positionir encies mea	emissions or each poor semi- meter to 1 er). channel Y, Z axis p ng which it asured wa	Anechoic Ch.5 meter(Aboositioning for tis worse cases complete.	dulation nambe ove
Limit:	f. Place a marker at the end frequency to show combands. Save the spectra for lowest and highest of the following of the foll	rnd of the restricted pliance. Also measum analyzer plot. channel re as below: e is the test site, ber change form of the meter and table west channel, the ments are performed found the X axis res until all frequents. Limit (dBµV/m	change from table 0.8 r is 1.5 meters and in X, N is positionir encies mea	om Semi- meter to 1 er). channel r/, Z axis p ng which it asured wa Rer Quasi-pe	Anechoic Ch.5 meter(Abecositioning for tis worse cases complete.	dulation nambe ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectr for lowest and highest of the following of the followin	re as below: e is the test site, ber change form and table west channel, the ments are perform to found the X axis res until all frequency and to the X axis res until (dBµV/m 40.0)	change from table 0.8 r is 1.5 meters and in X, N is positionir encies mea	emissions or each poor each poor semi-meter to 1 er). channel Y, Z axis poor gwhich it asured wa Rer Quasi-pe	Anechoic Ch.5 meter(Aboositioning for tis worse cars complete.	dulation nambe ove
Limit:	f. Place a marker at the ending frequency to show combands. Save the spectron for lowest and highest of the following for lowest and highest of the following for lowest and highest of the fully Anechoic Champand for the fu	re as below: e is the test site, ber change form and table west channel, the ments are perform found the X axis res until all frequency described and table west channel, the ments are perform a found the X axis res until all frequency described and the X axis res until all frequency described and the X axis res until all frequency described and the X axis res until all frequency described and the X axis res until all frequency described and the X axis res until all frequency described and the X axis result all frequency de	change from table 0.8 r is 1.5 meters and in X, N is positionir encies mea	om Semi- meter to 1 er). channel r, Z axis p ng which it asured wa Rer Quasi-pe Quasi-pe	Anechoic Ch.5 meter(Aboositioning for tis worse cases complete.	dulation nambe ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectr for lowest and highest of the spectra for lowest and highest of the spectra for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamalaghz the distance is the spectra function in the lowest low	re as below: e is the test site, ber change form and table west channel, the ments are perform a found the X axis res until all freques Limit (dBµV/m 40.0 43.5 46.0	change from table 0.8 r is 1.5 meters and in X, N is positionir encies mea	emissions or each poor each end of the each each each each each each each ea	Anechoic Ch.5 meter(Above sitioning for the second	dulation nambe ove

Report No. : EEED32K00105701 Page 29 of 53

Test plot as follows:

Worse case mode:	GFSK		(67)
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Freq			Preamp Factor					Pol/Phase	Remark
MHz	dB/m	dB	dB	dBuV	dBuV/m	dBuV/m	dB		
1 2390.000	32.53	3.07	44.03	52.82	44.39	74.00	-29.61	Vertical	

Report No.: EEED32K00105701 Page 30 of 53

Worse case mode:	GFSK	(241)	(30)	
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	GFSK		
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

3.12 44.14 49.52 41.21 74.00 -32.79 Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2483.500 32.71

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
6	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(32)	Above 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete

J. Repeat above pi	ocedures until all frequen	icies illeasured wa	3 complete	•	16.5
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	36-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-		30
/	1.705MHz-30MHz	30	-	(0-)	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
(20)	216MHz-960MHz	200	46.0	Quasi-peak	3
(0,0)	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical

	Freq		Cable Loss					Pol/Phase	Remark	
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			_
0	31.180	12.15	0.08	13.74	25.97	40.00	-14.03	Vertical	QP	
	44.275	14.16	0.08	9.13	23.37	40.00	-16.63	Vertical	QP	
	138.387	9.54	0.61	16.74	26.89	43.50	-16.61	Vertical	QP	

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	52.208	14.24	0.13	6.37	20.74	40.00	-19.26	Horizontal	QP
2	143.830	9.18	0.61	13.46	23.25	43.50	-20.25	Horizontal	QP
3 рр	216.024	11.88	1.18	25.33	38.39	46.00	-7.61	Horizontal	QP
4	373.311	14.79	1.32	18.92	35.03	46.00	-10.97	Horizontal	QP
5	455.906	16.29	1.48	12.98	30.75	46.00	-15.25	Horizontal	QP
6	916.069	22.07	2.44	7.07	31.58	46.00	-14.42	Horizontal	QP

Report No. : EEED32K00105701 Page 34 of 53

Transmitter Emission above 1GHz

Worse case	mode:	GFSK		Test char	nnel:	Lowest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1251.079	30.35	1.94	44.31	48.47	36.45	74.00	-37.55	Pass	Н
1529.749	30.93	2.33	43.96	48.63	37.93	74.00	-36.07	Pass	ЭН
4804.000	34.69	5.98	44.60	47.09	43.16	74.00	-30.84	Pass	Н
5836.044	35.78	7.28	44.52	49.26	47.80	74.00	-26.20	Pass	Н
7206.000	36.42	6.97	44.77	47.95	46.57	74.00	-27.43	Pass	Н
9608.000	37.88	6.98	45.58	47.28	46.56	74.00	-27.44	Pass	Н
1267.104	30.38	1.96	44.29	48.69	36.74	74.00	-37.26	Pass	V
1553.293	30.97	2.35	43.94	48.09	37.47	74.00	-36.53	Pass	V
4804.000	34.69	5.98	44.60	47.70	43.77	74.00	-30.23	Pass	V
5674.896	35.66	7.11	44.53	49.38	47.62	74.00	-26.38	Pass	V
7206.000	36.42	6.97	44.77	47.28	45.90	74.00	-28.10	Pass	V
9608.000	37.88	6.98	45.58	46.73	46.01	74.00	-27.99	Pass	V

Worse case mode:		GFSK		Test channel:		Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1210.356	30.25	1.88	44.37	48.43	36.19	74.00	-37.81	Pass	→ H
1553.293	30.97	2.35	43.94	48.82	38.20	74.00	-35.80	Pass	(NH)
4880.000	34.85	6.13	44.60	48.16	44.54	74.00	-29.46	Pass	Н
5821.207	35.77	7.26	44.52	48.99	47.50	74.00	-26.50	Pass	Н
7320.000	36.43	6.85	44.87	46.64	45.05	74.00	-28.95	Pass	Н
9760.000	38.05	7.12	45.55	46.97	46.59	74.00	-27.41	Pass	Н
1150.279	30.10	1.78	44.46	48.76	36.18	74.00	-37.82	Pass	V
1593.340	31.04	2.40	43.89	48.60	38.15	74.00	-35.85	Pass	V
4880.000	34.85	6.13	44.60	48.62	45.00	74.00	-29.00	Pass	V
5836.044	35.78	7.28	44.52	48.98	47.52	74.00	-26.48	Pass	V
7320.000	36.43	6.85	44.87	46.27	44.68	74.00	-29.32	Pass	V
9760.000	38.05	7.12	45.55	47.24	46.86	74.00	-27.14	Pass	V

Worse case mode:		GFSK		100			200		
				Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1176.935	30.17	1.82	44.42	48.69	36.26	74.00	-37.74	Pass	→ H
1537.557	30.94	2.34	43.96	48.24	37.56	74.00	-36.44	Pass	H)
4960.000	35.02	6.29	44.60	46.93	43.64	74.00	-30.36	Pass	H
6017.064	35.91	7.44	44.50	48.74	47.59	74.00	-26.41	Pass	Н
7440.000	36.45	6.73	44.97	48.21	46.42	74.00	-27.58	Pass	Н
9920.000	38.22	7.26	45.52	46.81	46.77	74.00	-27.23	Pass	Н
1263.883	30.38	1.96	44.29	48.40	36.45	74.00	-37.55	Pass	V
1514.252	30.90	2.31	43.98	47.59	36.82	74.00	-37.18	Pass	V
4960.000	35.02	6.29	44.60	46.82	43.53	74.00	-30.47	Pass	V
6032.401	35.92	7.43	44.50	49.12	47.97	74.00	-26.03	Pass	V
7440.000	36.45	6.73	44.97	47.61	45.82	74.00	-28.18	Pass	V
9920.000	38.22	7.26	45.52	47.13	47.09	74.00	-26.91	Pass	V

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: BF1509

Radiated spurious emission Test Setup-1(Below 30M)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Report No. : EEED32K00105701 Page 37 of 53

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: BF1509

View of Product-1

View of Product-2

View of Product-3

View of Product-4

Page 40 of 53

View of Product-5

View of Product-6

Report No. : EEED32K00105701 Page 41 of 53

View of Product-7

View of Product-8

Report No. : EEED32K00105701 Page 42 of 53

View of Product-9

View of Product-10

Report No. : EEED32K00105701 Page 43 of 53

View of Product-11

View of Product-12

View of Product-13

View of Product-14

View of Product-16

View of Product-17

View of Product-18

View of Product-19

View of Product-20

View of Product-21

View of Product-23

View of Product-24

Report No.: EEED32K00105701 Page 50 of 53

View of Product-25

Report No. : EEED32K00105701 Page 51 of 53

View of Product-27

View of Product-28

Report No. : EEED32K00105701 Page 52 of 53

View of Product-29

View of Product-30

Report No. : EEED32K00105701 Page 53 of 53

View of Product-31

View of Product-32

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com