Normal Distribution, Known σ , Any Sample Size

▶ Under these assumptions, a $100(1 - \alpha)\%$ CI of sample mean μ is given by

$$(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}})$$

General Distribution, Unknown σ , Large Sample

▶ Under these assumptions, an approximate $100(1 - \alpha)\%$ CI of sample mean μ is given by

$$(\bar{x} - z_{\alpha/2} \cdot \frac{\hat{\sigma}}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\hat{\sigma}}{\sqrt{n}})$$

Notice a special case if the distribution is Bernoulli, we have a more accurate but very complicated formula.

Normal Distribution, Unknown σ , Any Sample Size

▶ Under these assumptions, a $100(1 - \alpha)\%$ CI of sample mean μ is given by

$$(\bar{x}-t_{\alpha/2,n-1}\cdot\frac{\hat{\sigma}}{\sqrt{n}},\bar{x}+t_{\alpha/2,n-1}\cdot\frac{\hat{\sigma}}{\sqrt{n}})$$

▶ Here we utilize the *t* distribution.

Hypothesis Testing

- A statistical hypothesis, or just hypothesis, is a claim or assertion either about the value of a single parameter (population characteristic or characteristic of a probability distribution), about the values of several parameters, or about the form of an entire probability distribution.
- A testing problem usually contains two hypotheses: the null hypothesis, denoted by H₀, is the claim that is initially assumed to be true (the "prior belief" claim). The alternative hypothesis, denoted by H_a, is the assertion that is contradictory to H₀.
- The null hypothesis will be rejected in favor of the alternative only if sample evidence suggests that H₀ is false. If the sample does not strongly contradict H₀, we will continue to believe in the truth of the null hypothesis. The two possible conclusions from a testing analysis are then reject H₀ or fail to reject H₀.

Examples

Ex. A factory claims that less than 10% of the components they produce are defective. A consumer group is skeptical of the claim and checks a random sample of 300 components and finds that 39 are defective. Is there evidence that more than 10% of all components made at the factory are defective?

$$H_0: p \le 0.10$$
 $H_a: p > 0.10$

Ex. We are interested in height of all Columbia students. In a sample of 12 students, the sample mean is 66.30 inches, and the sample s.d. is 4.35 inches. Should we reject the null hypothesis H_0 : μ = 68 vs H_a : $\mu \neq$ 68?

Remarks

- In our treatment of hypothesis testing, H_0 will always be stated as an equality claim. If θ denotes the parameter of interest, the null hypothesis will have the form H_0 : $\theta = \theta_0$.
- The alternative to the null hypothesis H_0 : $\theta = \theta_0$ will usually look like one of the following three forms:
- 1. H_a : $\theta > \theta_0$ (in which case the implicit null hypothesis is $\theta \le \theta_0$).
- 2. H_a : $\theta < \theta_0$ (in which case the implicit null hypothesis is $\theta \ge \theta_0$).
- 3. H_a : $\theta \neq \theta_0$.
- 4. H_a : $\theta = \theta_1 \neq \theta_0$ (simple alternative).
- The value θ_0 separates the alternative from the null and is called the null value. The null and alternative are not treated equivalently, once a statement is in the null hypothesis, we will not easily reject it unless we have enough evidence.

Motivating example

Ex. Suppose we have a biased coin, we believe that it has probability 95% of having a head in a flip. Alternatively, it could also have probability 5% of having a head. Can you design a simple test to see if the coin has probability 95% of having heads?

Simple alternative: H_0 : p = 0.95 H_a : p = 0.05

Test Procedures

A test procedure is specified by the following:

- 1. Find a test statistic, a function of the sample data on which the decision (reject H_0 or do not reject H_0).
- 2. Construct a rejection region, the set of all test statistic values for which H_0 will be rejected.

The null hypothesis will then be rejected if and only if the observed or computed test Statistic value falls in the rejection region.

Can you construct a test procedure for the previous example?

Example cont.

Ex. (Biased coin cont.) In order to test if p = 0.95 we decide to conduct one experiment. We are going to flip this biased coin once, if it comes out a head, we will accept the null hypothesis, if it comes out a tail, we will reject the null hypothesis.

Test statistic: X = outcome of the first flip (Bernoulli rv.)

Rejection region: {X: X = 0}

Any other test statistics?

What are the odds that we'll make a mistake in our decision?

Two types of errors

Definition

A type I error α consists of rejecting the null hypothesis H_0 when it is true.

A type II error β involves not rejecting H_0 when H_0 is false.

	Decide to accept	Decide to reject
Null is true	Right	Type I
Alternative is true	Type II	Right

Errors

• Choice of α is subjective. As move threshold to left, increase α and decrease β .

Example cont.

Ex. (Biased coin cont.) In order to test if p = 0.95 we decide to conduct one experiment. We are going to flip this biased coin once, if it comes out a head, we will accept the null hypothesis, if it comes out a tail, we will reject the null hypothesis. What are the two types of errors associated with this test procedure?

Criteria

- A good test will be aimed to make two types of errors, both α and β , as small as possible.
- Unfortunately, there is no rejection region that will simultaneously make both α and β small once the test statistic and sample size are fixed. Thus, a region must be chosen to effect a compromise between α and β .
- Because of the suggested guidelines for specifying and . A type I error is usually more serious than a type II error (we don't want to reject the null easily).
- In practice, people specify to the largest value that α can be tolerated and find a rejection region having that value of α . The resulting value of α is often referred to as the significance level of the test (0.1, 0.05, 0.01). The corresponding test procedure is called an α level test. The previous example was an exact 0.05-level test.