QXD0133 - Arquitetura e Organização de Computadores II

Universidade Federal do Ceará - Campus Quixadá

Thiago Werlley thiagowerlley@ufc.br

18 de outubro de 2025

Capítulo 2

Capítulo 2

Fundamentos do processador ARM

• Aquitetura **load-store**

• Aquitetura load-store

 Load: Memória para registrador

• Aquitetura load-store

- Load: Memória para registrador
- **Store**: Registrador para memória

• Aquitetura load-store

- Load: Memória para registrador
- **Store**: Registrador para memória

Sign extend: Conversão de dados sinalizados de 8 e 16 bits para dados sinalizados de 32 bits

Aquitetura load-store

- Load: Memória para registrador
- **Store**: Registrador para memória

Sign extend: Conversão de dados sinalizados de 8 e 16 bits para dados sinalizados de 32 bits

Rn, Rm \rightarrow Operandos

• Aquitetura load-store

- Load: Memória para registrador
- **Store**: Registrador para memória

Sign extend: Conversão de dados sinalizados de 8 e 16 bits para dados sinalizados de 32 bits $Rn, Rm \rightarrow Operandos$

 $\frac{\mathsf{Kn},\;\mathsf{Km}}{\mathsf{Rd}\to\mathsf{Resultado}}$

• Aquitetura load-store

- **Load**: Memória para registrador
- **Store**: Registrador para memória

Sign extend: Conversão de dados sinalizados de 8 e 16 bits para dados sinalizados de 32 bits

Rn, Rm → Operandos

Rd → Resultado

Barrel shifter → Deslocamento de dados em algumas instruções

User

- User
 - Modo de execução normal

- User
 - Modo de execução normal
- FIQ

- User
 - Modo de execução normal
- FIQ
 - Interrupções rápidas, com alta velocidade

- User
 - Modo de execução normal
- FIQ
 - Interrupções rápidas, com alta velocidade
- IRQ

- User
 - Modo de execução normal
- FIQ
 - Interrupções rápidas, com alta velocidade
- IRQ
 - Interrupções gerais

- User
 - Modo de execução normal
- FIQ
- Interrupções rápidas, com alta velocidade
- IRQ
 - Interrupções gerais
- Supervisor

- User
 - Modo de execução normal
- FIQ
 - Interrupções rápidas, com alta velocidade
- IRQ
 - Interrupções gerais
- Supervisor
 - Modo para o Sistema Operacional

- User
 - Modo de execução normal
- FIQ
 - Interrupções rápidas, com alta velocidade
- IRQ
 - Interrupções gerais
- Supervisor
 - Modo para o Sistema Operacional
- Abort

- User
 - Modo de execução normal
- FIQ
 - Interrupções rápidas, com alta velocidade
- IRQ
 - Interrupções gerais
- Supervisor
 - Modo para o Sistema Operacional
- Abort
 - Modo de proteção para o acesso à memória

- User
 - Modo de execução normal
- FIQ
 - Interrupções rápidas, com alta velocidade
- IRQ
 - Interrupções gerais
- Supervisor
 - Modo para o Sistema Operacional
- Abort
 - Modo de proteção para o acesso à memória
- Undefined

- User
 - Modo de execução normal
- FIQ
 - Interrupções rápidas, com alta velocidade
- IRQ
 - Interrupções gerais
- Supervisor
 - Modo para o Sistema Operacional
- Abort
 - Modo de proteção para o acesso à memória
- Undefined
 - Instruções indefinidas, usadas na emulação de hardware

- User
 - Modo de execução normal
- FIQ
 - Interrupções rápidas, com alta velocidade
- IRQ
 - Interrupções gerais
- Supervisor
 - Modo para o Sistema Operacional
- Abort
 - Modo de proteção para o acesso à memória
- Undefined
 - Instruções indefinidas, usadas na emulação de hardware
- System

- User
 - Modo de execução normal
- FIQ
 - Interrupções rápidas, com alta velocidade
- IRQ
 - Interrupções gerais
- Supervisor
 - Modo para o Sistema Operacional
- Abort
 - Modo de proteção para o acesso à memória
- Undefined
 - Instruções indefinidas, usadas na emulação de hardware
- System
 - Modo de usuário com privilégios adicionais

Modos de exceção			
Mode		Abbreviation	Privileged
Abort		abt	yes
Fast interrupt request		fiq	yes
Interrupt request		irq	yes
Supervisor		SVC	yes
System		sys	yes
Undefined	*	und	yes
User		usr	no

Mode	Abbreviation	Privileged	Mode[4:0]
Abort	abt	yes	10111
Fast interrupt request	fiq	yes	10001
Interrupt request	irq	yes	10010
Supervisor	svc	yes	10011
System	sys	yes	11111
Úndefined	und	yes	11011
User	usr	no	10000

Registradores

User and system r0 rIr2r3 r4Fast r5 interrupt r6 request *r*7 r8r8_fiq r9r9_fiq r10 r10_fiq Interrupt r11r11_fiq request Supervisor Undefined Abort r12 r12_fiq r13 sp r13_fiq r13_irq r13_svc r13_undef r13_abt r14 lr r14_irq r14_undef r14_fiq r14_svc r14_abt r15 pc cpsr spsr_fiq spsr_irq spsr_svc spsr_undef spsr_abt

Modes							
	•	Privileged modes					
		Exception modes—					
User	System	Supervisor	Abort	Undefined	Interrupt	Fast interrup	
R0	R0	R0	R0	R0	R0	R0	
R1	R1	R1	R1	R1	R1	R1	
R2	R2	R2	R2	R2	R2	R2	
R3	R3	R3	R3	R3	R3	R3	
R4	R4	R4	R4	R4	R4	R4	
R5	R5	R5	R5	R5	R5	R5	
R6	R6	R6	R6	R6	R6	R6	
R7	R7	R7	R7	R7	R7	R7	
R8	R8	R8	R8	R8	R8	R8_fiq	
R9	R9	R9	R9	R9	R9	R9_fiq	
R10	R10	R10	R10	R10	R10	R10_fiq	
R11	R11	R11	R11	R11	R11	R11_fiq	
R12	R12	R12	R12	R12	R12	R12_fiq	
R13	R13	R13_svc	R13_abt	R13_und	R13_irq	R13_fiq	
R14	R14	R14_svc	R14_abt	R14_und	R14_irq	R14_fiq	
PC	PC	PC	PC	PC	PC	PC	
CPSR	CPSR	CPSR	CPSR	CPSR	CPSR	CPSR	
		SPSR_svc	SPSR_abt	SPSR_und	SPSR_irq	SPSR_fiq	

Current Program Status Register (CPSR)

Current Program Status Register (CPSR)

Exemplo:

Carry Flag \rightarrow C = 1

Modo ARM \rightarrow T = 0 e J = 0

FIQ Desabilitada \rightarrow F = 1

IRQ Habilitada $\rightarrow I = 0$

Modo Supervisor \rightarrow M = 10011

Mnemônicos de condição

Mnemonic	Name	Condition flags	
EQ	equal	Z	
NE	not equal	z	
CS HS	carry set/unsigned higher or same	C	
CC LO	carry clear/unsigned lower	с	
MI	minus/negative	N	
PL	plus/positive or zero	n	
VS	overflow	V	
VC	no overflow	ν	
HI	unsigned higher	zC	
LS	unsigned lower or same	Z or c	
GE	signed greater than or equal	NV or nv	
LT	signed less than	Nv or nV	
GT	signed greater than	NzV or nzv	
LE	signed less than or equal	Z or Nv or nV	
AL	always (unconditional) ignored		

Mnemônicos de condição - Exemplo

```
If (r0 != 10) {
 r1 = r1 + r0 - r2
}
```

Mnemônicos de condição - Exemplo

If
$$(r0 != 10)$$
 { $r1 = r1 + r0 - r2$ }

Sem condicional

CMP r0, #10 BEQ FUNC ADD r1, r1, r0 SUB r1, r1, r2 FUNC: ...

Mnemônicos de condição - Exemplo

If
$$(r0 != 10)$$
 { $r1 = r1 + r0 - r2$ }

Sem condicional

CMP r0, #10 BEQ FUNC ADD r1, r1, r0 SUB r1, r1, r2 FUNC: ...

Com condicional

CMP r0, #10 ADDNE r1,r1,r0 SUBNE r1,r1,r2

CPSR Mode bits

M[4:0]	Mode	Accessible registers
0b10000	User	PC, R14 to R0, CPSR
0b10001	FIQ	PC, R14_fiq to R8_fiq, R7 to R0, CPSR, SPSR_fiq
0b10010	IRQ	PC, R14_irq, R13_irq, R12 to R0, CPSR, SPSR_irq
0b10011	Supervisor	PC, R14_svc, R13_svc, R12 to R0, CPSR, SPSR_svc
0b10111	Abort	PC, R14_abt, R13_abt, R12 to R0, CPSR, SPSR_abt
0b11011	Undefined	PC, R14_und, R13_und, R12 to R0, CPSR, SPSR_und
0b11111	System	PC, R14 to R0, CPSR (ARM architecture v4 and above)

Conditional Flags

Flag	Flag name	Set when
Q	Saturation	the result causes an overflow and/or saturation
V	oVerflow	the result causes a signed overflow
C	Carry	the result causes an unsigned carry
Z	Zero	the result is zero, frequently used to indicate equality
N	Negative	bit 31 of the result is a binary 1

Cache - A simplified Von Neumann architecture with cache.

Tighly Coupled Memory (TCM) - A simplified Harvard architecture with TCMs.

Cache e TCM

Outras unidades

- MPU
- MMU
- CP15

Resumo de características do ISA

	ARM (cpsr $T = 0$)	Thumb (cpsr $T = 1$)
Instruction size	32-bit	16-bit
Core instructions	58	30
Conditional execution ^a	most	only branch instructions
Data processing instructions	access to barrel shifter and ALU	separate barrel shifter and ALU instructions
Program status register	read-write in privileged mode	no direct access
Register usage	15 general-purpose registers +pc	8 general-purpose registers +7 high registers +pc

	Jazelle (cpsr T = 0, J = 1)
Instruction size Core instructions	8-bit Over 60% of the Java bytecodes are implemented in hardware; the rest of the codes are implemented in software.

Nomenclatura

$ARM\{x\}\{y\}\{z\}\{T\}\{D\}\{M\}\{I\}\{E\}\{J\}\{F\}\{-S\}$

x—family

y—memory management/protection unit

z—cache

T—Thumb 16-bit decoder

D—JTAG debug

M—fast multiplier

I—EmbeddedICE macrocell

E—enhanced instructions (assumes TDMI)

J—Jazelle

F—vector floating-point unit

S—synthesizible version

Comparação entre famílias ARM

	ARM7	ARM9	ARM10	ARM11
Pipeline depth	three-stage	five-stage	six-stage	eight-stage
Typical MHz	80	150	260	335
mW/MHz ^a	0.06 mW/MHz	0.19 mW/MHz (+ cache)	0.5 mW/MHz (+ cache)	0.4 mW/MHz (+ cache)
MIPS ^b /MHz	0.97	1.1	1.3	1.2
Architecture	Von Neumann	Harvard	Harvard	Harvard
Multiplier	8×32	8×32	16×32	16×32

^a Watts/MHz on the same 0.13 micron process.

^b MIPS are Dhrystone VAX MIPS.

Pipeline

Pipelined instruction sequence.

Pipeline

ARM7 Three-stage pipeline.

ARM9 five-stage pipeline.

ARM10 six-stage pipeline.

Instruction Sequence

ARM instruction sequence.

Instruction Sequence

Example: pc = address + 8.

Tabela de vetores

- Quando uma interrupção ou exceção ocorre, o PC é setado para um endereço específico de uma região chamada de tabela de vetores.
 - O processador suspende a execução normal e carrega instruções da tabela de vetores

Tabela de vetores

- Quando uma interrupção ou exceção ocorre, o PC é setado para um endereço específico de uma região chamada de tabela de vetores.
 - O processador suspende a execução normal e carrega instruções da tabela de vetores

Exceção	Condição
Reset Undefined Instruction Software Interrupt Prefetch abort Data abort Interrupt request Fast interrupt request	 → Após reset → Quando uma instrução não pode ser decodificada → Interrupções por software (instrução SWI) → Não há permissão para acessar uma instrução → Não há permissão para acessar um dado → Interrupção externa → Interrupção externa de alta velocidade/prioridade

Tabela de vetores

Exception/interrupt	Shorthand	Address	High address
Reset	RESET	0x00000000	0xffff0000
Undefined instruction	UNDEF	0x00000004	0xffff0004
Software interrupt	SWI	0x00000008	0xffff0008
Prefetch abort	PABT	0x0000000c	0xffff000c
Data abort	DABT	0x00000010	0xffff0010
Reserved	_	0x00000014	0xffff0014
Interrupt request	IRQ	0x00000018	0xffff0018
Fast interrupt request	FIQ	0x0000001c	0xffff001c

Reset

```
R14 svc = UNPREDICTABLE value
SPSR svc = UNPREDICTABLE value
CPSR[4:0] = 0b10011
                                  /* Enter Supervisor mode */
CPSR[5] = 0
                                  /* Execute in ARM state */
CPSR[6] = 1
                                  /* Disable fast interrupts */
CPSR[7]
          = 1
                                  /* Disable normal interrupts */
if high vectors configured then
    PC
          = 0xFFFF0000
else
          = 0 \times 0 0 0 0 0 0 0 0
    PC
```

Undefined

MOVS PC, R14

• Software Interruption

MOVS PC, R14

Prefetch Abort

SUBS PC, R14, #4

Data Abort

```
R14_abt = address of the aborted instruction + 8
SPSR_abt = CPSR
CPSR[4:0] = 0b10111
                                   /* Enter Abort mode */
CPSR[5] = 0
                                   /* Execute in ARM state */
/* CPSR[6] is unchanged */
CPSR[7] = 1
                                   /* Disable normal interrupts */
if high vectors configured then
    PC.
          = 0 \times FFFF0010
else
    PC.
       = 0 \times 0 0 0 0 0 1 0
```

```
SUBS PC, R14, #8
```

OU

IRQ

FIQ

```
R14_fig = address of next instruction to be executed + 4
SPSR_fiq = CPSR
CPSR[4:0] = 0b10001
                                  /* Enter FIQ mode */
CPSR[5] = 0
                                  /* Execute in ARM state */
CPSR[6] = 1
                                  /* Disable fast interrupts */
CPSR[7] = 1
                                  /* Disable normal interrupts */
if high vectors configured then
    PC
          = 0 \times FFFF001C
else
    PC
          = 0 \times 0000001C
```

SUBS PC, R14, #4

Priority		Exception
Highest	1	Reset
	2	Data Abort
	3	FIQ
	4	IRQ
	5	Prefetch Abort
Lowest	6	Undefined instruction SWI

Exception Handler (range de até 32MB)

. . .

```
Vector Init Block
                  b
                           Reset Addr
                  b
                           Undefined Addr
                  b
                           SWI Addr
                  b
                           Prefetch Addr
                  b
                           Abort Addr
                  NOP
                                             :Reserved vector
                  b
                           IRQ Addr
                  b
                           FIQ Addr
Reset Addr
Undefined Addr
SWI Addr
Prefetch Addr
Abort Addr
                  . . .
IRQ Addr
                  . . .
FIQ Addr
```

Exception Handler

Vector_Init_Block

	LDR	PC, Reset_Addr	
	LDR	PC, Undefined_Addr	
	LDR	PC, SWI_Addr	
	LDR	PC, Prefetch_Addr	
	LDR	PC, Abort_Addr	
	NOP		;Reserved vector
	LDR	PC, IRQ_Addr	
	LDR	PC, FIQ_Addr	
Reset_Addr	DCD	Start_Boot	
Undefined_Addr	DCD	Undefined_Handler	
SWI_Addr	DCD	SWI_Handler	
Prefetch Addr	DCD	Prefetch Handler	
Abort_Addr	DCD	Abort_Handler	
	DCD	0	;Reserved vector
IRQ_Addr	DCD	IRQ_Handler	
FIQ Addr	DCD	FIQ Handler	

QXD0133 - Arquitetura e Organização de Computadores II

Universidade Federal do Ceará - Campus Quixadá

Thiago Werlley thiagowerlley@ufc.br

18 de outubro de 2025

Capítulo 2