Interpretação de Contexto em Ambientes Inteligentes

Matheus Erthal¹, Douglas Mareli¹, David Barreto¹, Orlando Loques¹

¹Instituto de Computação – Universidade Federal Fluminense (UFF) Niterói – RJ – Brazil

{merthal, dmareli, dbarreto, loques}@ic.uff.br

Resumo.

1. Introdução

A Computação Ubíqua, como proposta por Weiser na década de 90 [Weiser 1991], prevê uma mudança no paradigma de interação entre o usuário e os sistemas computacionais. Weiser previu o surgimento do que chamou de "computação calma", onde a interação entre os usuários e os computadores ocorre de forma indireta. Uma aplicação ubíqua identifica as necessidades do usuário obtendo informação de contexto através de sensores, e provê serviços através de atuadores. Este tipo de sistema de aplicações está geralmente associado a um espaço denominado de ambiente inteligente [?].

A construção e manipulação de aplicações ubíquas representam um grande desafio para desenvolvedores com pouco conhecimento técnico e recursos escassos. Alguns
problemas estão mais em evidência como a diversidade de requisitos não funcionais característicos de sistemas distribuídos como segurança e tolerância a falhas. Para construção
e teste de aplicações há a necessidade de um contingente de recursos como dispositivos
embarcados e espaço físico. Há uma dificuldade de estabelecer um protocolo comum de
comunicação em boa parte destes dispositivos. E por fim, a quantidade e variedade de
informações de contexto disponível no ambiente dificulta a interatividade das aplicações
ubíquas. Atendendo esta demanda é proposto um *framework* com o objetivo de facilitar a aplicação dos conceitos de computação ubíqua em ambientes inteligentes de forma
simples e confiável.

Muitos trabalhos como [?] [?] [?] tentam atingir esse objetivo. Em [?] são apontados desafios na aquisição de conhecimentos do ambiente. Em [?], é proposto um *middleware* entre a camada física, a qual compreende os sensores e atuadores, e a camada de aplicação, na qual se encontram o ambiente de desenvolvimento e as aplicações. Em [?] são propostos serviços para gerenciar, no nível de *middleware*, componentes representativos do ambiente. Em [?], sabendo-se que um ambiente inteligente pode possuir uma variedade imensa de dispositivos, propõe se uma estrutura de representação dos componentes da camada física através de ontologia. Esta estruturação permite ampliar o escopo de operações de suporte sobre um ambiente inteligente.

- 2. Conceitos Básicos
- 2.1. Prototipagem de Aplicações Pervasivas
- 3. Proposta do Framework
- 3.1. Modelo de Componentes Distribuídos
- 3.2. Comunicação

Figura: Comunicação direta e indireta em alto nível

Figura 1. Camada de Interpretação de Regra

A principal forma de comunicação no SmartAndroid é através de um mecanismo de publica-subscreve (*publish-subscribe*), também chamado de comunicação por eventos. Este paradigma corresponde à uma comunicação assíncrona, que envolve o registro de interesse por parte da entidade interessada na entidade de interesse. As entidades são mapeadas no SmartAndroid em ARs, e uma entidade pode registrar seu interesse no contexto de uma outra qualquer, co-localizada ou remota. Conforme o contexto da entidade de interesse varia no tempo, esta notifica aos interessados, que desempenham suas ações relacionadas.

3.3. Suporte ao Gerenciamento de Recursos

3.4. Modelo de Contexto

Figura 2. Interpretador de Regra

3.4.1. Variáveis de Contexto e Operações

3.4.2. Interpretador de Contexto

Figura: Figura que permita mostrar o funcionamento passo-a-passo do IC

4. Avaliação

5. Trabalhos Relacionados

6. Conclusão e Trabalhos Futuros

Referências

- Abowd, G., Dey, A., Brown, P., Davies, N., Smith, M., and Steggles, P. (1999). Towards a better understanding of context and context-awareness. In *Handheld and Ubiquitous Computing*, pages 304–307. Springer.
- Cardoso, L. and Sztajnberg, A. (2006). Self-adaptive applications using ADL contracts. *Self-Managed Networks, Systems*, pages 87–101.
- Chen, G. and Kotz, D. (2002). Solar: An Open Platform for Context-Aware Mobile Applications. (June):41–47.
- Chen, Y.S. and Chen, I.C. and Chang, W. (2010). Context-aware services based on OSGi for smart homes. *Ubi-media Computing (U-Media)*, 2010 3rd IEEE International Conference on, 11:392.
- Dey, A., Abowd, G., and Salber, D. (2001). A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. *Human-Computer Interaction*, 16(2):97–166.
- Lee, Y., Iyengar, S., Min, C., Ju, Y., Kang, S., Park, T., Lee, J., Rhee, Y., and Song, J. (2012). Mobicon: a mobile context-monitoring platform. *Communications of the ACM*, 55(3):54–65.
- Liu, H. and Parashar, M. (2003). Dios++: A framework for rule-based autonomic management of distributed scientific applications. *Euro-Par 2003 Parallel Processing*, pages 66–73.
- Sudha, R., Rajagopalan, M., Selvanayaki, M., and Selvi, S. (2007). Ubiquitous semantic space: A context-aware and coordination middleware for ubiquitous computing. In *Communication Systems Software and Middleware*, 2007. COMSWARE 2007. 2nd International Conference on, pages 1–7. IEEE.
- Wang, Q. (2005). Towards a rule model for self-adaptive software. *ACM SIGSOFT Software Engineering Notes*, 30(1):8.
- Weis, T., Knoll, M., and Ulbrich, A. (2007). Rapid prototyping for pervasive applications. *IEEE Pervasive*.
- Weiser, M. (1991). The computer for the 21st century. *Scientific American*, 265(3):94–104.