

Improved Approximation Bounds for the Minimum Constraint Removal Problem

Sayan Bandyapadhyay, <u>Neeraj Kumar</u>, <u>Subhash Suri</u> and Kasturi Varadrajan University of Iowa and <u>UC Santa Barbara</u>

Problem Description

Input : An arrangement of obstacles in plane, source *s*, target *t*

Problem Description

Input : An arrangement of obstacles in plane, source *s*, target *t*

Find the smallest set of obstacles whose removal gives an obstacle free s-t path

Problem Description

Input : An arrangement of obstacles in plane, source s, target t

Find the smallest set of obstacles whose removal gives an obstacle free s-t path

O Robot Motion Planning

Configuration space approach:

• Robot Motion Planning

Configuration space approach:

- Shrinks robot to a point, expands obstacles

• Robot Motion Planning

Configuration space approach:

– Shrinks robot to a point, expands obstacles

Sensor Network Coverage (commonly known as *Barrier Resillience*)

• Robot Motion Planning

Configuration space approach:

– Shrinks robot to a point, expands obstacles

Sensor Network Coverage (commonly known as *Barrier Resillience*)

Which sensors to disable?

• Robot Motion Planning

Configuration space approach:

– Shrinks robot to a point, expands obstacles

Sensor Network Coverage (commonly known as *Barrier Resillience*)

Which sensors to disable?

• Robot Motion Planning

Configuration space approach:

– Shrinks robot to a point, expands obstacles

[Polygonal Obstacles]

Sensor Network Coverage (commonly known as *Barrier Resillience*)

Which sensors to disable?

Barrier Resillience ≡ Minimum number of sensors to disable

[Disk Obstacles]

• Known to be intractable but no known approximations

[Erickson and LaValle, 2013, Eiben et al. 2018]

• Known to be intractable but no known approximations

[Erickson and LaValle, 2013, Eiben et al. 2018]

- Barrier resillience extensively studied in sensor network community
 - Constant approximation for unit disks and few other restricted cases

[Bereg and Kirkpatrick, 2009, Chan and Kirkpatrick, 2014]

• Known to be intractable but no known approximations

[Erickson and LaValle, 2013, Eiben et al. 2018]

- Barrier resillience extensively studied in sensor network community
 - Constant approximation for unit disks and few other restricted cases
 [Bereg and Kirkpatrick, 2009, Chan and Kirkpatrick, 2014]

Key Idea: Optimal path does not cross an obstacle a lot of times

• Known to be intractable but no known approximations

[Erickson and LaValle, 2013, Eiben et al. 2018]

- Barrier resillience extensively studied in sensor network community
 - Constant approximation for unit disks and few other restricted cases

[Bereg and Kirkpatrick, 2009, Chan and Kirkpatrick, 2014]

Key Idea: Optimal path does not cross an obstacle a lot of times

For unit square obstacles, this number is 2

– 2-approximation readily follows

- An $O(\sqrt{n})$ -approximation if input obstacles are rectilinear polygons
- An $O(\sqrt{n})$ -approximation for arbitrary disk obstacles
- An $O(\sqrt{n}\alpha(n))$ -approximation for arbitrary polygons

 Inverse Ackerman function

- An $O(\sqrt{n})$ -approximation if input obstacles are rectilinear polygons
- An $O(\sqrt{n})$ -approximation for arbitrary disk obstacles
- An $O(\sqrt{n}\alpha(n))$ -approximation for arbitrary polygons

 Inverse Ackerman function

Hardness of Approximation

- For rectilinear obstacles, hard to approximate within a factor of 2
- For rectangles, the problem is APX-hard

- An $O(\sqrt{n})$ -approximation if input obstacles are rectilinear polygons
- An $O(\sqrt{n})$ -approximation for arbitrary disk obstacles
- An $O(\sqrt{n}\alpha(n))$ -approximation for arbitrary polygons

 Inverse Ackerman function

Hardness of Approximation

- For rectilinear obstacles, hard to approximate within a factor of 2
- For rectangles, the problem is APX-hard
- → Based on an **algorithmic framework** that also gives
- An $O(\sqrt{n})$ -approximation for *min-color path* problem in graphs

- An $O(\sqrt{n})$ -approximation if input obstacles are rectilinear polygons
- An $O(\sqrt{n})$ -approximation for arbitrary disk obstacles
- An $O(\sqrt{n}\alpha(n))$ -approximation for arbitrary polygons

 Inverse Ackerman function
- Hardness of Approximation
 - For rectilinear obstacles, hard to approximate within a factor of 2
 - For rectangles, the problem is APX-hard

Based on an algorithmic framework that also gives

• An $O(\sqrt{n})$ -approximation for *min-color path* problem in graphs

Previous work: Optimal path does not cross an obstacle a lot of times

For more general obstacles:

Even for axis-aligned squares

Previous work: Optimal path does not cross an obstacle a lot of times

For more general obstacles:

– The optimal path can cross the same obstacle up to $\Theta(n)$ times

Even for axis-aligned squares

Previous work: Optimal path does not cross an obstacle a lot of times

For more general obstacles:

– The optimal path can cross the same obstacle up to $\Theta(n)$ times

To alleviate this problem:

- we introduce a **filtering step**

Even for axis-aligned squares

Previous work: Optimal path does not cross an obstacle a lot of times

For more general obstacles:

– The optimal path can cross the same obstacle up to $\Theta(n)$ times

Even for axis-aligned squares

To alleviate this problem:

– we introduce a **filtering step**

Identify a "small set" of potentially dangerous obstacles

Input: Graph G = (V, E), set of colors CEvery vertex is assigned a subset $\mathcal{X}(v) \subseteq C$

Input: Graph G = (V, E), set of colors CEvery vertex is assigned a subset $\mathcal{X}(v) \subseteq C$

Find the minimum-color path from s to t

Input: Graph G = (V, E), set of colors CEvery vertex is assigned a subset $\mathcal{X}(v) \subseteq C$

Find the minimum-color path from s to t

that is, $|\bigcup_{v \in path} \mathcal{X}(v)|$ is minimum

Input: Graph G = (V, E), set of colors CEvery vertex is assigned a subset $\mathcal{X}(v) \subseteq C$

Find the minimum-color path from s to t

that is, $|\bigcup_{v \in path} \mathcal{X}(v)|$ is minimum

Hard to approximate within a logarithmic factor (simple reduction from Set-Cover)

Input: Graph G = (V, E), set of colors CEvery vertex is assigned a subset $\mathcal{X}(v) \subseteq C$

Find the minimum-color path from s to t

that is, $|\bigcup_{v \in path} \mathcal{X}(v)|$ is minimum

Hard to approximate within a logarithmic factor (simple reduction from Set-Cover)

Minimum Constraint removal can be cast as an instance of min-color path

Input: A colored graph G = (V, E, C), and an integer k

Input: A colored graph G = (V, E, C), and an integer $k \in C$ find a k-color path

Input: A colored graph G = (V, E, C), and an integer $k \in C$ find a k-color path

Key Idea: Define a notion of neighborhood $\mathcal N$ for colors in $\mathcal C$

Discard colors with 'dense' neighborhoods

Input: A colored graph G = (V, E, C), and an integer k find a k-color path

Key Idea: Define a notion of neighborhood $\mathcal N$ for colors in $\mathcal C$

Discard colors with 'dense' neighborhoods

Neighborhood $\mathcal{N}: C \to 2^{\mathcal{P}}$ is a mapping from colors to a subset of objects \mathcal{P} that satisfies:

- **Description** Bounded-size: Total neighborhood size is O(kn)
- **3** Bounded-occurrence: A color C appears on path at most $O(|\mathcal{N}(C)|)$ times

Input: A colored graph G = (V, E, C), and an integer k find a k-color path

Key Idea: Define a notion of neighborhood $\mathcal N$ for colors in $\mathcal C$

Discard colors with 'dense' neighborhoods

Neighborhood $\mathcal{N}: C \to 2^{\mathcal{P}}$ is a mapping from colors to a subset of objects \mathcal{P} that satisfies:

- **Description** Bounded-size: Total neighborhood size is O(kn)
- Bounded-occurrence: A color C appears on path at most $O(|\mathcal{N}(C)|)$ times

 In other words, C appears on path "because of" an element in $\mathcal{N}(C)$

Input: A colored graph G = (V, E, C), and an integer k find a k-color path

Key Idea: Define a notion of neighborhood $\mathcal N$ for colors in $\mathcal C$

Discard colors with 'dense' neighborhoods

Neighborhood $\mathcal{N}: C \to 2^{\mathcal{P}}$ is a mapping from colors to a subset of objects \mathcal{P} that satisfies:

- **Description** Bounded-size: Total neighborhood size is O(kn)
- **Solution** Bounded-occurrence: A color C appears on path at most $O(|\mathcal{N}(C)|)$ times

Algorithm Outline

– Construct neigborhood \mathcal{N} , discard colors C that have $|\mathcal{N}(C)| > \sqrt{n}$

Input: A colored graph G = (V, E, C), and an integer k find a k-color path

Key Idea: Define a notion of neighborhood $\mathcal N$ for colors in $\mathcal C$

Discard colors with 'dense' neighborhoods

Neighborhood $\mathcal{N}: C \to 2^{\mathcal{P}}$ is a mapping from colors to a subset of objects \mathcal{P} that satisfies:

- **8** Bounded-size: Total neighborhood size is O(kn)
- **Solution** Bounded-occurrence: A color C appears on path at most $O(|\mathcal{N}(C)|)$ times

Algorithm Outline

- Construct neigborhood \mathcal{N} , discard colors C that have $|\mathcal{N}(C)| > \sqrt{n}$
- Assign cardinalities as weight and return the shortest *s-t* path

Input: A colored graph G = (V, E, C), and an integer k find a k-color path

Key Idea: Define a notion of neighborhood $\mathcal N$ for colors in $\mathcal C$

Discard colors with 'dense' neighborhoods

Neighborhood $\mathcal{N}: C \to 2^{\mathcal{P}}$ is a mapping from colors to a subset of objects \mathcal{P} that satisfies:

- **Description** Bounded-size: Total neighborhood size is O(kn)
- **8** Bounded-occurrence: A color C appears on path at most $O(|\mathcal{N}(C)|)$ times

Algorithm Outline

$$O(k\sqrt{n})$$
 discards

- Construct neigborhood \mathcal{N} , discard colors C that have $|\mathcal{N}(C)| > \sqrt{n}$
- Assign cardinalities as weight and return the shortest *s-t* path

Input: A colored graph G = (V, E, C), and an integer k find a k-color path

Key Idea: Define a notion of neighborhood $\mathcal N$ for colors in $\mathcal C$

Discard colors with 'dense' neighborhoods

Neighborhood $\mathcal{N}: C \to 2^{\mathcal{P}}$ is a mapping from colors to a subset of objects \mathcal{P} that satisfies:

- **8** Bounded-size: Total neighborhood size is O(kn)
- **8** Bounded-occurrence: A color C appears on path at most $O(|\mathcal{N}(C)|)$ times

Algorithm Outline

$$O(k\sqrt{n})$$
 discards

- Construct neigborhood \mathcal{N} , discard colors C that have $|\mathcal{N}(C)| > \sqrt{n}$
- Assign cardinalities as weight and return the shortest *s-t* path

• uses
$$O(k\sqrt{n})$$
 colors

An Approximation Framework

Input: A colored graph G = (V, E, C), and an integer k find a k-color path

Key Idea: Define a notion of neighborhood $\mathcal N$ for colors in $\mathcal C$

Discard colors with 'dense' neighborhoods

Neighborhood $\mathcal{N}: C \to 2^{\mathcal{P}}$ is a mapping from colors to a subset of objects \mathcal{P} that satisfies:

- **8** Bounded-size: Total neighborhood size is O(kn)
- **8** Bounded-occurrence: A color C appears on path at most $O(|\mathcal{N}(C)|)$ times

Algorithm Outline

$$O(k\sqrt{n})$$
 discards

- Construct neigborhood \mathcal{N} , discard colors C that have $|\mathcal{N}(C)| > \sqrt{n}$
- Assign cardinalities as weight and return the shortest *s-t* path

• uses
$$O(k\sqrt{n})$$
 colors

Suffices to just find the neighborhood ${\mathcal N}$

Suffices to just find the neighborhood ${\mathcal N}$

 $\mathcal{P} = V$, the vertices of colored-graph $G = (V, E, \mathcal{C})$

 $\mathcal{N}(C)$ = vertices that contain C and have at most k colors

Suffices to just find the neighborhood ${\mathcal N}$

 $\mathcal{P} = V$, the vertices of colored-graph $G = (V, E, \mathcal{C})$ $\mathcal{N}(C)$ = vertices that contain C and have at most k colors

Can easily verify bounded size and occurrence properties

$$\sum_{C \in \mathcal{C}} \mathcal{N}(C) = O(k|V|)$$

 $O(\sqrt{n})$ -approximation

Suffices to just find the neighborhood ${\mathcal N}$

 $\mathcal{P} = V$, the vertices of colored-graph $G = (V, E, \mathcal{C})$ $\mathcal{N}(C) = \text{vertices that contain } C \text{ and have at most } k \text{ colors}$

Can easily verify bounded size and occurrence properties

$$\sum_{C \in \mathcal{C}} \mathcal{N}(C) = O(k|V|)$$

$$O(\sqrt{n})$$
-approximation

Does not really help with minimum constraint removal as $|V| = \Omega(n^2)$

With more effort, can still find a sparse neighborhood ${\mathcal N}$

Application to Geometric Objects

Step 1. Represent input as a colored graph G = (V, E, C) such that:

- k-color path in G corresponds to path removing $\leq k$ obstacles
- \bullet path removing k obstacles corresponds to $\leq k$ -color path

Application to Geometric Objects

Step 1. Represent input as a colored graph G = (V, E, C) such that:

- k-color path in G corresponds to path removing $\leq k$ obstacles
- \bullet path removing k obstacles corresponds to $\leq k$ -color path

Step 2. Construct the neighborhood $\mathcal N$

Graph Construction

G = (V, E): complete graph over all n polygon vertices

To ensure k-color path in G corresponds to path removing $\leq k$ obstacles

Graph Construction

G = (V, E): complete graph over all n polygon vertices

To ensure k-color path in G corresponds to path removing $\leq k$ obstacles

- Fix embedding e_{uv} of an edge (u, v)
- Assign colors corresponding to obstacles crossed by e_{uv}

Graph Construction

G = (V, E): complete graph over all n polygon vertices

To ensure k-color path in G corresponds to path removing $\leq k$ obstacles

- Fix embedding e_{uv} of an edge (u, v)
- Assign colors corresponding to obstacles crossed by e_{uv}

To ensure path removing k obstacles corresponds to $\leq k$ -color path in G

Can show: path crossing *k*-obstacles can be made rectilinear without crossing extra obstacles

Graph Construction

G = (V, E): complete graph over all n polygon vertices

To ensure k-color path in G corresponds to path removing $\leq k$ obstacles

- Fix embedding e_{uv} of an edge (u, v)
- Assign colors corresponding to obstacles crossed by e_{uv}

To ensure path removing k obstacles corresponds to $\leq k$ -color path in G

Can show: path crossing *k*-obstacles can be made rectilinear without crossing extra obstacles

Neighborhood Construction

What causes the path to cross a given obstacle?

-An obstacle corner

Neighborhood Construction

What causes the path to cross a given obstacle?

-An obstacle corner

Obvious candidate for the set \mathcal{P} : set of all corners

How to add corners to $\mathcal{N}(C)$ of obstacle C ensuring small total size?

Neighborhood Construction

What causes the path to cross a given obstacle?

-An obstacle corner

Obvious candidate for the set \mathcal{P} : set of all corners

How to add corners to $\mathcal{N}(C)$ of obstacle C ensuring small total size?

- Shoot a ray at a corners p
- Include *p* to neighborhood of first *k* obstacles

Neighborhood Construction

What causes the path to cross a given obstacle?

-An obstacle corner

Obvious candidate for the set \mathcal{P} : set of all corners

How to add corners to $\mathcal{N}(C)$ of obstacle C ensuring small total size?

- Shoot a ray at a corners p
- Include *p* to neighborhood of first *k* obstacles

Total neighborhood size = $4k \cdot n$

Each crossing of *C* by a valid *k*-color path is charged to a *neighbor* corner

Each crossing of C by a valid k-color path is charged to a *neighbor* corner

Each corner is charged for C at most twice C is crossed $O(|\mathcal{N}(C)|)$ times

Each crossing of C by a valid k-color path is charged to a *neighbor* corner

Each corner is charged for C at most twice C is crossed $O(|\mathcal{N}(C)|)$ times

Both bounded size and bounded occurrence propertiey are satisfied

 $O(\sqrt{n})$ -approximation!

- First sublinear approximation for minimum constraint removal problem
 - Almost $O(\sqrt{n})$ for all geometric objects

- First sublinear approximation for minimum constraint removal problem
 - Almost $O(\sqrt{n})$ for all geometric objects
- Improved hardness of approximation results
 - Factor of 2 for rectilinear/convex polygons, APX-hardness with rectangles

- First sublinear approximation for minimum constraint removal problem
 - Almost $O(\sqrt{n})$ for all geometric objects
- Improved hardness of approximation results
 - Factor of 2 for rectilinear/convex polygons, APX-hardness with rectangles
- First sublinear approximation for min-color path

Problem also recently studied under FPT lenses for some special graph classes [Eiben and Kanj, ICALP'18]

- First sublinear approximation for minimum constraint removal problem
 - Almost $O(\sqrt{n})$ for all geometric objects
- Improved hardness of approximation results
 - Factor of 2 for rectilinear/convex polygons, APX-hardness with rectangles
- First sublinear approximation for min-color path

Problem also recently studied under FPT lenses for some special graph classes [Eiben and Kanj, ICALP'18]

Natural open problem: Can we improve upon these bounds? Likely to need new techniques ...

- First sublinear approximation for minimum constraint removal problem
 - Almost $O(\sqrt{n})$ for all geometric objects
- Improved hardness of approximation results
 - Factor of 2 for rectilinear/convex polygons, APX-hardness with rectangles
- First sublinear approximation for min-color path

Problem also recently studied under FPT lenses for some special graph classes [Eiben and Kanj, ICALP'18]

Natural open problem: Can we improve upon these bounds? Likely to need new techniques ...

Thanks!

Backup : Tight Example

Create $\Theta(n)$ such channels