Introduction to Machine Learning and Pattern Recognition

David Brady¹

¹ECE Department Northeastern University

Fall 2018

The Classification Problem

Solutions to classification problems involve:

- data sensing
 - equipment, installation, data storage and retrieval
- preprocessing
 - segmentation (isolation of fish)
 - grouping (tail + torso + head)
- feature extraction
 - invariance to scale, 3D rotation, etc.
 - length, weight, lightness, etc.
- classification design: (this course)
 - bass or salmon?
 - use feature space! (next)
 - missing data

RE 1.1. The objects

Decision Boundary in Feature Space

Placing the decision boundary depends on:

- cost of each type of error
- prior probabilities

Why is *length* a poor feature for distinguishing fish?

Figure: Histograms for length feature.

Feature Selection

Feature selection depends on:

- sensing noise
- classification problem
- class invariance
- training samples

Figure: Histograms for lightness feature.

>2D Feature Space

Additional features provide:

- discrimination
- information
- complexity
- increased training size

How should you select features?

Figure: 2D feature space with a decision

990

Overfitting

Overly-complex boundaries follow noise!

FIGURE 1.5. Overly complex models for the fish will lead to decision boundaries that are complicated. While such a decision may lead to perfect classification of our training marked? is evidently most likely a salmon, whereas the complex decision boundary shown leads it to be classified as a sea bass.

Use the simplest possible boundaries.

EECE 5644 NEU

Classifier Design Cycle

Design Tweaking Issues: (improve performance, reduce complexity)

- data collection
 - relevant data for features
- feature choice
 - retain fewest
- model choice
 - connects features & hypotheses
 - prefer simpler models
- training
 - balance overfitting with typicality

- evaluation
 - criteria (error rates, costs)
 - confidence bounds on criteria (training size)