Tích của vectơ với một số

A. Lí thuyết.

- Tích của vectơ với một số: Cho số $k \neq 0$ và vectơ $\vec{a} \neq \vec{0}$. Tích của vectơ \vec{a} với số k là một vectơ, kí hiệu là $k\vec{a}$, cùng hướng với \vec{a} nếu k > 0, ngược lại, ngược hướng với \vec{a} nếu k < 0 và có độ dài bằng $|k| |\vec{a}|$.
- Tính chất: Với hai vectơ a và b bất kì, với mọi số h và k, ta có:

+)
$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$

+)
$$(h+k)\vec{a} = h\vec{a} + k\vec{a}$$

+)
$$h(\vec{ka}) = (h\vec{k})\vec{a}$$

+)
$$1.\vec{a} = \vec{a}; (-1)\vec{a} = -\vec{a}$$

- Quy tắc trung điểm: Nếu I là trung điểm của đoạn thẳng AB thì với mọi điểm M ta có: $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$
- Quy tắc trọng tâm: Nếu G là trọng tâm của tam giác ABC thì với mọi điểm M ta có: $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$
- Điều kiện để hai vectơ cùng phương: Cho hai vectơ \vec{a} và \vec{b} ($\vec{b} \neq \vec{0}$), \vec{a} và \vec{b} cùng phương khi và chỉ khi tồn tai số k để $\vec{a} = k\vec{b}$.
- Điều kiện ba điểm thẳng hàng: Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi có tồn tại một số k khác 0 để $\overrightarrow{AB} = k\overrightarrow{AC}$.
- Chú ý: Đối với vecto không : $0.\vec{a} = \vec{0}$; $k.\vec{0} = \vec{0}$

B. Các dạng bài.

Dạng 1: Tính độ dài vecto khi biết tích vecto với một số.

Phương pháp giải:

Sử dụng định nghĩa tích của vectơ với một số, các quy tắc về tổng, hiệu của các vectơ và các hệ thức lượng, định lý Py-ta-go để tính độ dài vectơ đó.

Ví dụ minh họa:

Bài 1: Cho tam giác ABC đều cạnh a. Biết M là trung điểm BC. Tính độ dài vecto $\frac{1}{2}\overrightarrow{CB} + \overrightarrow{MA}$.

Giải:

Ta có: $CM = \frac{1}{2}CB$ (do M là trung điểm BC) và B, C, M thẳng hàng.

$$\Rightarrow \frac{1}{2}\overrightarrow{CB} = \overrightarrow{CM}$$

$$\Rightarrow \frac{1}{2}\overrightarrow{CB} + \overrightarrow{MA} = \overrightarrow{CM} + \overrightarrow{MA} = \overrightarrow{CA}$$

$$\Rightarrow \left| \frac{1}{2} \overrightarrow{CB} + \overrightarrow{MA} \right| = \left| \overrightarrow{CA} \right| = CA = a \text{ (ABC là tam giác đều cạnh a)}$$

Bài 2: Cho hình vuông ABCD cạnh 2a tâm O. Tính độ dài vector $\frac{1}{2}\overrightarrow{BD} + \frac{1}{2}\overrightarrow{AC}$.

Giải:

+) Vì B, O, D thẳng hàng và $OD = \frac{1}{2}BD$ (do O là tâm hình vuông ABCD)

$$\Rightarrow \overrightarrow{OD} = \frac{1}{2} \overrightarrow{BD}$$

+) Vì A, O, C thẳng thàng và $OC = \frac{1}{2}AC$ (do O là tâm hình vuông ABCD)

$$\Rightarrow \overrightarrow{OC} = \frac{1}{2}\overrightarrow{AC}$$

+) Ta có:
$$\frac{1}{2}\overrightarrow{BD} + \frac{1}{2}\overrightarrow{AC} = \overrightarrow{OD} + \overrightarrow{OC}$$

- +) Áp dụng quy tắc hình bình hành ta có: $\overrightarrow{OD} + \overrightarrow{OC} = \overrightarrow{OM}$.
- +) Xét hình bình hành OCMD có:

$$COD = 90^{\circ}$$

$$OC = OD$$

- ⇒OCMD là hình vuông.
- +) Xét tam giác DAB vuông tại A

Áp dụng định lý Py-ta-go ta có:

$$BD^2 = AD^2 + AB^2$$

$$\Rightarrow$$
 BD² = $(2a)^2 + (2a)^2 = 8a^2$

$$\Rightarrow$$
 BD = $\sqrt{8a^2}$ = $2a\sqrt{2}$

$$\Rightarrow$$
 OD = OC = $\frac{1}{2}$ BD = $\frac{1}{2}$.2a $\sqrt{2}$ = a $\sqrt{2}$

+) Xét tam giác ODM vuông tại D

$$DM = OC = a\sqrt{2}$$
 (do OCMD là hình vuông)

Áp dụng định lý Py-ta-go ta có:

$$OM^2 = OD^2 + DM^2$$

$$\Rightarrow$$
 OM² = $(a\sqrt{2})^2 + (a\sqrt{2})^2 = 4a^2$

$$\Rightarrow$$
 OM = $\sqrt{4a^2}$ = 2a

$$\Rightarrow \left| \frac{1}{2} \overrightarrow{BD} + \frac{1}{2} \overrightarrow{AC} \right| = \left| \overrightarrow{OM} \right| = OM = 2a$$

Dạng 2: Tìm một điểm thỏa mãn một đẳng thức vecto cho trước.

Phương pháp giải:

Biến đổi đẳng thức đã cho về dạng $\overrightarrow{AM} = \overrightarrow{u}$ trong đó A là một điểm cố định, \overrightarrow{u} cố định và dựng điểm M là điểm thỏa mãn $\overrightarrow{AM} = \overrightarrow{u}$.

Ví dụ minh họa:

Bài 1: Cho hai điểm phân biệt A và B. Tìm điểm C sao cho $3\overrightarrow{CA} + 2\overrightarrow{CB} = \overrightarrow{0}$.

Giải:

$$3\overrightarrow{CA} + 2\overrightarrow{CB} = \overrightarrow{0}$$

$$\Rightarrow 3\overrightarrow{CA} + 2(\overrightarrow{CA} + \overrightarrow{AB}) = \overrightarrow{0}$$

$$\Rightarrow$$
 5 \overrightarrow{CA} + 2 \overrightarrow{AB} = $\overrightarrow{0}$

$$\Rightarrow$$
 5 $\overrightarrow{CA} = -2\overrightarrow{AB}$

$$\Rightarrow 5\overrightarrow{CA} = 2\overrightarrow{BA}$$

$$\Rightarrow \overrightarrow{CA} = \frac{2}{5}\overrightarrow{BA}$$

Vậy ta dựng được điểm C thỏa mãn C, A, B thẳng hàng và $CA = \frac{2}{5}AB$.

Bài 2: Cho tam giác ABC. Tìm điểm K sao cho: $\overrightarrow{KA} + \overrightarrow{KB} + 2\overrightarrow{KC} = \overrightarrow{0}$ Giải:

+) Ta có:
$$\overrightarrow{KA} + \overrightarrow{KB} + 2\overrightarrow{KC} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{KA} + \overrightarrow{KB} = -2\overrightarrow{KC}$$

$$\Leftrightarrow \overrightarrow{KA} + \overrightarrow{KB} = 2\overrightarrow{CK}$$
 (1)

+) Gọi I là trung điểm của AB. $\Rightarrow \overrightarrow{KA} + \overrightarrow{KB} = 2\overrightarrow{KI}$ (2)

+)
$$T\dot{v}$$
 (1) $v\dot{a}$ (2) $\Rightarrow 2\overrightarrow{CK} = 2\overrightarrow{KI} \iff \overrightarrow{CK} = \overrightarrow{KI}$

Vậy ta dựng được điểm K là trung điểm của CI.

C. Bài tập tự luyện.

Bài 1: Cho tam giác đều ABC cạnh a, I là trung điểm BC. Tính độ dài vecto $\overrightarrow{BA} - \frac{1}{2}\overrightarrow{BC}$

Đáp án:
$$\left| \overrightarrow{BA} - \frac{1}{2} \overrightarrow{BC} \right| = \frac{a\sqrt{3}}{2}$$

Bài 2: Cho hình vuông ABCD tâm O cạnh a. Biết K là trung điểm của OD. Tính độ dài vector $\frac{1}{4}\overrightarrow{DB} + \frac{1}{2}\overrightarrow{AC}$

Đáp án:
$$\left| \frac{1}{4} \overrightarrow{DB} + \frac{1}{2} \overrightarrow{AC} \right| = \frac{a\sqrt{10}}{4}$$

Bài 3: Cho tam giác vuông ABC có đường cao AH. Biết AB = AC = a. Tính độ dài vector $\frac{1}{2}\overrightarrow{BC} + \overrightarrow{CA}$.

Đáp án:
$$\left| \frac{1}{2} \overrightarrow{BC} + \overrightarrow{CA} \right| = \frac{a\sqrt{2}}{2}$$

Bài 4: Cho hình vuông ABCD cạnh a tâm O. Cho M là điểm có vị trí tùy ý. Tính độ dài vector $\overrightarrow{u} = 4\overrightarrow{MA} - 3\overrightarrow{MB} + \overrightarrow{MC} - 2\overrightarrow{MD}$.

Đáp án: $|\vec{u}| = a\sqrt{5}$

Bài 5: Cho tam giác ABC, có điểm E trên AB sao cho EB = $\frac{1}{6}$ AB và điểm F là trung điểm của BC. Biết $\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{AC} - \frac{2}{3}\overrightarrow{AB}$. Dựng điểm J.

Đáp án:

Bài 6: Cho tam giác ABC. Dựng điểm O sao cho $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$. Đáp án: O là trọng tâm tam giác ABC.

Bài 7: Cho tứ giác ABCD. Biết M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Dựng điểm I sao cho $\overrightarrow{IM} + \overrightarrow{IN} + \overrightarrow{IP} + \overrightarrow{IQ} = \overrightarrow{0}$.

Đáp án:

Bài 8: Cho tam giác ABC. Tìm điểm J sao cho $\overrightarrow{JA} - \overrightarrow{JB} - 2\overrightarrow{JC} = \overrightarrow{0}$. Biết I là trung điểm của AB.

Đáp án:

Bài 9: Cho 4 điểm A, B, C, M. Tìm điểm C sao cho $\overrightarrow{MA} + \overrightarrow{MB} - 2\overrightarrow{MC} = \overrightarrow{0}$. Đáp án: C là trung điểm của AB.

Bài 10: Cho 3 điểm M, P, Q. Tìm điểm M sao cho $\overrightarrow{MQ} = 3\overrightarrow{QN} - 3\overrightarrow{QM}$.

Đáp án:

