ELEC 5200-001/6200-001 (Spring 2019) Homework 3 - Solution Assigned 03/01/19, due 03/08/19

Problem 1: Execution times of hardware blocks of a single cycle datapath are as follows:

Program counter write	5ps
Multiplexer	2ps
Control	3ps
Register file read or write	15ps
Sign extension	2ps
Shift left by 2	2ps
Adder or ALU	20ps
Instruction/data memory read or write	20ps

All other hardware times can be neglected. Find a lower bound on the cycle time for the program counter. (7 points)

Answer:

The critical path is exercised by the lw instruction. Execution of instruction begins by writing of the program counter (PC). The lw instruction is executed as follows [items in brackets are concurrent with the previous item but take less time and therefore do not affect the critical path delay]:

Operation Hardware used PC written PC write		Time required 5ps	
[Adder, PC+4]	[Adder in parallel with memory]	[20ps]	
Register read	register file	15ps	
[Immediate argument]	[(control or sign ext.) + multiplexer]	[5ps]	
Address computation	ALU	20ps	
Data memory read Data memory		20ps	
Mux, mem data to reg file	Multiplexer	2ps	
Write register	register file	15ps	
Total time		97ps	

The clock cycle time for PC must not be less than 97ps.

Problem 2: Consider the hardware times of major units (all others being negligible) in a datapath as:

Memory access (read or write) 25ps ALU 20ps Register file (read or write) 15ps

Determine minimum clock cycle time, average CPI, and average instruction execution time for single-cycle and multi-cycle datapaths for the following program statistics:

10% lw, 10% sw, 40% register-type, 20% branch and 20% jump. (7 points)

Answer:

Single-cycle clock period (cycle time) is determined by the lw instruction, which activates the critical path:

Cycle time = memory + reg. file + ALU + memory + reg. file =
$$25 + 15 + 20 + 25 + 15$$
 = 100 ps

Avg. CPI = 1

Avg. time/instruction = $100 \times 1 = 100 ps$

Multi-cycle clock period (cycle time) is determined by the slowest hardware unit (memory in this case):

Cycle time = 25ps

Clock cycles used by instructions are 5 for lw, 4 for sw, 4 for r-type, 3 for branch and 3 for jump. Therefore,

Avg. CPI =
$$0.1 \times 5 + 0.1 \times 4 + 0.4 \times 4 + 0.2 \times 3 + 0.2 \times 3$$
 = 3.7

Avg. time/instruction = $25 \times 3.7 = 92.5$ ps

The following table summarizes the results:

Datapath	Min cycle type (ps)	Avg. CPI	Avg time/inst (ps)
Single cycle	100	1	100
Multi-cycle	25	3.7	92.5

Problem 3:

(a) Suppose an operation involving register file, memory or ALU each takes 1 time unit. Neglecting the time of all other hardware, how much time will each MIPS instruction take on a single-cycle datapath? Consider R-type, lw, sw, beq and j instructions. (1 point)

Answer:

Each instruction will take 5 units of time on a single-cycle datapath.

(b) What will be the execution times for MIPS instructions on a 5-cycle multi-cycle datapath using a clock period of 1 time unit? (5 points)

Answer:

Times for MIPS instructions to run on a multi-cycle datapath are:

Load, *lw* 5 time units Store, *sw* 4 time units R-type, *add*, *sub*, *etc*. 4 time units Branch, *beq*, *bne* 3 time units Jump, *j* 3 time units

(c) A program contains the following mix of instructions: lw 5%, sw 5%, r-type 70%, branch 10%, jump 10%.

What is the ratio of single-cycle CPU time to multicycle CPU time for running this program on these datapaths? (3 points)

(c) CPU time ratio =
$$\frac{\text{Single-cycle (cycles per instruction} \times \text{cycle time})}{\text{Multicycle (average cycles per instruction} \times \text{cycle time})}$$

$$= \frac{1 \times 5}{(0.05 \times 5 + 0.05 \times 4 + 0.7 \times 4 + 0.1 \times 3 + 0.1 \times 3) \times 1}$$

$$= \frac{(1 \times 5) / (3.85 \times 1)}{(0.05 \times 5 + 0.05 \times 4 + 0.7 \times 4 + 0.1 \times 3 + 0.1 \times 3) \times 1}$$

Problem 4: Clock rates for single-cycle and multicycle datapaths are given as 1GHz and 5GHz, respectively. The following subroutine is used for estimating performance. The argument register \$a0 contains a large positive integer and \$a1 contains integer 1.

Determine:

(a) Average cycles per instruction (CPI) for two datapaths. (7 points)

Answer:

CPI:

Single-cycle CPI = 1.0, because each instruction executes in one cycle.

The instruction mix for multicycle datapath is:

```
sub takes 4 cycles and is executed a0 times beq takes 3 cycles and is executed a0 times j takes 3 cycles and is executed a0 – 1 times jr takes 3 cycles and is executed once
```

Total number of instructions = $3\mathbf{a0} - 1 + 1 = 3\mathbf{a0}$

```
Multicycle CPI = (4 \times \mathbf{a0} + 3 \times \mathbf{a0} + 3 \times \mathbf{a0} - 3 + 3) / (3 \times \mathbf{a0})
= 10/3 = 3.333
```

(b) How much faster is the multicycle execution of the program (ratio of single-cycle to multicycle execution times)? (3 points)

Answer:

Execution time ratio:

The multicycle clock period is 0.2 ns and the single-cycle clock period is 1 ns.

Therefore,

```
Performance ratio = \frac{(\text{single-cycle time})}{(\text{multicycle time})}
= \frac{(1\times3\mathbf{a0})}{(0.2\times3.333\times3\mathbf{a0})}
= \frac{1.5}{(1\times3\mathbf{a0})}
```