Lección 1: Análisis de regresión simple

Módulo 4: Introducción al análisis de regresión

Magdalena Cornejo

Análisis de Correlación

- Un análisis de correlación expresa la relación entre dos variables utilizando un único número.
- El coeficiente de correlación es una medida de asociación lineal entre dos variables.
- El coeficiente de correlación nos da una pauta de cuál alineada está la nube de puntos (gráfico de dispersión) en torno a una recta.
- Pero no no dice cuál es esa relación (función), ni puede capturar relaciones no lineales.

Análisis de Correlación

Fitting line

- Utilice la base de datos en Excel: ventas.xls que contiene datos de ventas e inversión en publicidad de una compañía entre 1993 y 2007.
- Compruebe que el coeficiente de correlación da 0.904.
- Construya un gráfico de dispersión entre las ventas y los gastos de publicidad.
- Prediga cuánto espera vender el próximo año si va a gastar 10 mil en publicidad.

Modelo lineal

Asume:

$$y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- y: variable dependiente o explicada
- X: variable explicativa o regresor
- β_0 y β_1 : parámetros desconocidos
- ε : error aleatorio

El problema entonces es estimar los parámetros (β_0 y β_1) basados en datos de una muestra. Veremos el método de estimación de **mínimos** cuadrados ordinarios.

Mínimos Cuadrados Ordinarios (MCO)

Busca aproximar esta relación con nuestras observaciones de forma de:

- minimizar la suma de los residuos al cuadrado $(\sum_i e_i^2)$, o
- que la nube de puntos esté lo más cerca posible de la recta estimada

Los estimadores MCO

A través de dicha minimización se obtiene la fórmula del estimador de la constante y la pendiente:

$$\widehat{\beta}_{1} = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^{2}} = \frac{S_{XY}}{S_{X}^{2}}$$

$$\widehat{\beta}_{0} = \overline{Y} - \widehat{\beta}_{1}.\overline{X}$$

Interpretación de las estimaciones

¿Qué nos dicen los valores de los coeficiente que obtuvimos?

- $\widehat{\beta}_0$ es el **efecto autónomo** (cuando la variable explicativa es cero). Es decir, el valor medio de la variable dependiente.
- $\widehat{\beta}_1$ es el **efecto parcial**, esto es, indica cómo cambia la variable explicada cuando la explicativa cambia en una unidad.

En nuestro ejemplo:

$$\hat{y}_i = 79,324 + 102,59x$$

Bondad del Ajuste

Una vez estimado el modelo nos interesa saber:

¿Qué porcentaje de la variabilidad en y está siendo explicada por X? ¿Son las observaciones cercanas a la recta estimada?

Bondad del Ajuste

Una vez estimado el modelo nos interesa saber:

¿Qué porcentaje de la variabilidad en y está siendo explicada por X? ¿Son las observaciones cercanas a la recta estimada?

Para responder a estas preguntas podemos calcular el \mathbb{R}^2 o **coeficiente de determinación**.

$EI R^2$

 Es la medida más utilizada, pero no la única y se calcula como la fracción de la varianza muestral de y que está siendo explicada por X.

$$R^{2} = \frac{\sum (\widehat{y_{i}} - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum e_{i}^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

- El R^2 indica qué proporción de la variabilidad total está siendo explicada por el modelo.
- Está acotada entre 0 y 1. En nuestro ejemplo: $R^2 = 0.82$.
- En el caso de la regresión simple, $R^2 = \rho_{XY}^2$.

Aplicación en Excel

Estadísticas de la rearesión

Coeficiente de correlación múltiple	0.90
Coeficiente de determinación R^2	0.82
R^2 ajustado	0.80
Error típico	0.94
Observaciones	15

ANÁLISIS DE VARIANZA

	Grados de	Suma de	Promedio de		
	libertad	cuadrados	los cuadrados	F	Valor crítico de F
Regresión	1	52.03	52.03	58.44	0.00
Residuos	13	11.57	0.89		
Total	14	63.6			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	0.35	0.70	0.50	0.63	-1.17	1.87
Ventas	0.01	0.00	7.64	0.00	0.01	0.01

Inferencia estadística

Para hacer inferencia estadística en el contexto de regresión necesitamos conocer la distribución de los estimadores de MCO $(\hat{\beta}_0 \text{ y } \hat{\beta}_1)$.

Para ello, necesitamos hacer los siguientes supuestos:

- **Supuesto 1**: la distribución condicional de ε_i dado X_i tiene media cero.
- **Supuesto 2:** $(X_i, Y_i), i = 1, ..., n$ son IID a través de las observaciones.
- **Supuesto 3:** los *outliers* son poco probables.

Supuestos clásicos

Bajo estos supuestos y mediante el TCL, se puede probar que:

$$\widehat{\beta}_0 \sim N\left(\beta_0, \sigma_{\varepsilon}^2 \frac{\sum X_i^2}{n \sum (X_i - \overline{X})^2}\right)$$

$$\widehat{\beta}_1 \sim N\left(\beta_1, \sigma_{\varepsilon}^2 \frac{1}{\sum (X_i - \overline{X})^2}\right)$$

Noten que en realidad las varianzas del estimador MCO son desconocidas por no se conoce σ_{ε}^2 .

Pero como vimos antes, se puede estimar con:

$$S_{\varepsilon}^2 = \frac{\sum \varepsilon^2}{n-2}$$

Inferencia estadística

Test de significatividad individual:

$$H_0: \beta_1 = 0$$

 $H_1: \beta_1 \neq 0$

Estadístico:

$$t = rac{\hat{eta}_1}{\mathsf{SE}(\hat{eta}_1)} \sim t_{n-2}$$

• Intervalos de confianza: $\hat{eta}_1 \pm t_c.SE(\hat{eta}_1)$

Aplicación en Excel

Estadísticas de la regresión

Coeficiente de correlación múltiple	0.90
Coeficiente de determinación R^2	0.82
R^2 ajustado	0.80
Error típico	0.94
Observaciones	15

ANÁLISIS DE VARIANZA

	Grados de	Suma de Promedio de			
	libertad	cuadrados	los cuadrados	F	Valor crítico de F
Regresión	1	52.03	52.03	58.44	0.00
Residuos	13	11.57	0.89		
Total	14	63.6			

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	0.35	0.70	0.50	0.63	-1.17	1.87
Ventas	0.01	0.00	7.64	0.00	0.01	0.01