	20-P-MOM-DY-29
	A m= 1 kg block is attatched to the end of a l=1.5
	rigid rud with negligible mass. The other end of the rod is connected to a pivot which allows the rod to rotate
	rod is connected to a pivot which allows the cod to rotate
	In the harizontal plane. If the many is translate at the
	velocity v = 2 m/s before the rod has a completely inelastic
8	velocity $v = 2 \frac{m}{s}$ before the rod has a completely inelastic collision with a 0.5 kg mass at the middle of the rod,
	determine the velocity of the block after the collision.
	J
	VAN B
	A//VA
	$ t_2$
	Solution: Hy + Z M Jt = H2
	Compro + GMV + O = rAMAVAZ + CBMB VBZ
	$V_{\text{A2}} = \omega_2 r_A$
	VBZ = WZ VIZ
	187 - W 7 13
	ramar = rama wara + ramp war 13 = wa (razma + razma)
	1,185
	(CA SMA + MEZMA)
	VA2 = W2 rA = 1,77 %
	Alouta
2	