eg/	Sketch :
	$\frac{2x^2+5}{4-x^2}$
	V - 7 x
Seln	· Domain = (-0,-2) U(-2,2) U(2,00).
	· 2x2+5+0 anywhere. So, there is no x-intercept;
	g(0) = 5 Thus (0,5) is the y-intercept.
,	Now, $4-x^2=0 \Rightarrow x=\pm 2$. (a) and $2x^2+5+0$. Thus,
	$x = 2$ and $x = -2$ are vertical asymptotes of $g = \begin{cases} \lim_{x \to 2} f(x) = \infty \\ \lim_{x \to 2} f(x) = -\infty \end{cases}$
	lim 2x2+5 = lim 2+5 2-10. 4-2 2-2. 4-1 = -2; Thus, 522
	/2 m
	lim 2+2+5 = -2. The horizontal asymptotes.
	91/x)= (4-x2)4x +2(2x2+5)x
	$= \frac{16x - 4x^3 + 4x^3 + 10x}{1(4-x^2)^2} = \frac{26x}{(4-x^2)^2}$
	(4-x²)
	g'(x)=0 => x=0. (2) [2,-2 are not in domain)
	Thus, x=0 is the chifical point.
	9'(-1) 40
	511) 70.