является число 0. Для каждого набора выполнить следующее действие: если набор является пилообразным (см. задание Series23), то вывести количество его элементов; в противном случае вывести номер первого элемента, который не является зубцом.

11 Процедуры и функции: группа Proc

11.1 Процедуры с числовыми параметрами

- **Proc1**. Описать процедуру PowerA3(A, B), вычисляющую третью степень числа A и возвращающую ее в переменной B (A входной, B выходной параметр; оба параметра являются вещественными). С помощью этой процедуры найти третьи степени пяти данных чисел.
- **Proc2**. Описать процедуру PowerA234(A, B, C, D), вычисляющую вторую, третью и четвертую степень числа A и возвращающую эти степени соответственно в переменных B, C и D (A входной, B, C, D выходные параметры; все параметры являются вещественными). С помощью этой процедуры найти вторую, третью и четвертую степень пяти данных чисел.
- Ргос3. Описать процедуру Mean(X, Y, AMean, GMean), вычисляющую cpedhee apuфметическое <math>AMean = (X + Y)/2 и cpedhee $ceomempuческое <math>GMean = \sqrt{X \cdot Y}$ двух положительных чисел X и Y (X и Y входные, AMean и GMean выходные параметры вещественного типа). С помощью этой процедуры найти среднее арифметическое и среднее геометрическое для пар (A, B), (A, C), (A, D), если даны A, B, C, D.
- **Proc4**°. Описать процедуру TrianglePS(a, P, S), вычисляющую по стороне a равностороннего треугольника его периметр $P = 3 \cdot a$ и площадь $S = a^2 \sqrt{3} / 4$ (a входной, P и S выходные параметры; все параметры являются вещественными). С помощью этой процедуры найти периметры и площади трех равносторонних треугольников с данными сторонами.
- Ргос5. Описать процедуру $\operatorname{RectPS}(x_1, y_1, x_2, y_2, P, S)$, вычисляющую периметр P и площадь S прямоугольника со сторонами, параллельными осям координат, по координатам (x_1, y_1) , (x_2, y_2) его противоположных вершин (x_1, y_1, x_2, y_2) входные, P и S выходные параметры вещественного типа). С помощью этой процедуры найти периметры и площади трех прямоугольников с данными противоположными вершинами.
- **Proc6**. Описать процедуру DigitCountSum(K, C, S), находящую количество C цифр целого положительного числа K, а также их сумму S (K входной, C и S выходные параметры целого типа). C помощью этой процедуры найти количество и сумму цифр для каждого из пяти данных целых чисел.

- **Proc7**. Описать процедуру InvertDigits(K), меняющую порядок следования цифр целого положительного числа K на обратный (K параметр целого типа, являющийся одновременно входным и выходным). С помощью этой процедуры поменять порядок следования цифр на обратный для каждого из пяти данных целых чисел.
- **Proc8**°. Описать процедуру AddRightDigit(D, K), добавляющую к целому положительному числу K справа цифру D (D входной параметр целого типа, лежащий в диапазоне 0–9, K параметр целого типа, являющийся одновременно входным и выходным). С помощью этой процедуры последовательно добавить к данному числу K справа данные цифры D_1 и D_2 , выводя результат каждого добавления.
- **Proc9**. Описать процедуру AddLeftDigit(D, K), добавляющую к целому положительному числу K слева цифру D (D входной параметр целого типа, лежащий в диапазоне 1–9, K параметр целого типа, являющийся одновременно входным и выходным). С помощью этой процедуры последовательно добавить к данному числу K слева данные цифры D_1 и D_2 , выводя результат каждого добавления.
- **Proc10**. Описать процедуру Swap(X, Y), меняющую содержимое переменных X и Y (X и Y вещественные параметры, являющиеся одновременно входными и выходными). С ее помощью для данных переменных A, B, C, D последовательно поменять содержимое следующих пар: A и B, C и D, B и C и вывести новые значения A, B, C, D.
- **Proc11**. Описать процедуру Minmax(X, Y), записывающую в переменную X минимальное из значений X и Y, а в переменную Y максимальное из этих значений (X и Y вещественные параметры, являющиеся одновременно входными и выходными). Используя четыре вызова этой процедуры, найти минимальное и максимальное из данных чисел A, B, C, D.
- **Proc12**. Описать процедуру SortInc3(A, B, C), меняющую содержимое переменных A, B, C таким образом, чтобы их значения оказались упорядоченными по возрастанию (A, B, C вещественные параметры, являющиеся одновременно входными и выходными). С помощью этой процедуры упорядочить по возрастанию два данных набора из трех чисел: (A_1 , B_1 , C_1) и (A_2 , B_2 , C_2).
- **Proc13**. Описать процедуру SortDec3(A, B, C), меняющую содержимое переменных A, B, C таким образом, чтобы их значения оказались упорядоченными по убыванию (A, B, C вещественные параметры, являющиеся одновременно входными и выходными). С помощью этой процедуры упорядочить по убыванию два данных набора из трех чисел: (A_1 , B_1 , C_1) и (A_2 , B_2 , C_2).

- **Proc14**. Описать процедуру ShiftRight3(A, B, C), выполняющую *правый циклический сдвиг*: значение A переходит в B, значение B в C, значение C в A (A, B, C вещественные параметры, являющиеся одновременно входными и выходными). С помощью этой процедуры выполнить правый циклический сдвиг для двух данных наборов из трех чисел: (A_1 , B_1 , C_1) и (A_2 , B_2 , C_2).
- **Proc15**. Описать процедуру ShiftLeft3(A, B, C), выполняющую *левый циклический сдвиг*: значение A переходит в C, значение C в B, значение B в A (A, B, C вещественные параметры, являющиеся одновременно входными и выходными). С помощью этой процедуры выполнить левый циклический сдвиг для двух данных наборов из трех чисел: (A_1 , B_1 , C_1) и (A_2 , B_2 , C_2).

11.2 Функции с числовыми параметрами

- **Proc16**. Описать функцию Sign(X) целого типа, возвращающую для вещественного числа X следующие значения:
 - -1, если X < 0; 0, если X = 0; 1, если X > 0. С помощью этой функции найти значение выражения $\operatorname{Sign}(A) + \operatorname{Sign}(B)$ для данных вещественных чисел A и B.
- **Proc17**. Описать функцию RootsCount(A, B, C) целого типа, определяющую количество корней квадратного уравнения $A \cdot x^2 + B \cdot x + C = 0$ (A, B, C вещественные параметры, $A \neq 0$). C ее помощью найти количество корней для каждого из трех квадратных уравнений с данными коэффициентами. Количество корней определять по значению $\partial uckpumuhahma$: $D = B^2 4 \cdot A \cdot C$.
- **Proc18**. Описать функцию CircleS(R) вещественного типа, находящую площадь круга радиуса R (R вещественное). С помощью этой функции найти площади трех кругов с данными радиусами. Площадь круга радиуса R вычисляется по формуле $S = \pi \cdot R^2$. В качестве значения π использовать 3.14.
- Ргос19. Описать функцию RingS(R_1 , R_2) вещественного типа, находящую площадь кольца, заключенного между двумя окружностями с общим центром и радиусами R_1 и R_2 (R_1 и R_2 вещественные, $R_1 > R_2$). С ее помощью найти площади трех колец, для которых даны внешние и внутренние радиусы. Воспользоваться формулой площади круга радиуса R: $S = \pi \cdot R^2$. В качестве значения π использовать 3.14.
- **Proc20**. Описать функцию TriangleP(a, h), находящую периметр равнобедренного треугольника по его основанию a и высоте h, проведенной к основанию (a и h вещественные). С помощью этой функции найти периметры трех треугольников, для которых даны основания и высоты. Для нахождения боковой стороны b треугольника использовать meopemy $\Pi u \phi a copa$:

$$b^2 = (a/2)^2 + h^2.$$

- **Proc21**. Описать функцию SumRange(A, B) целого типа, находящую сумму всех целых чисел от A до B включительно (A и B целые). Если A > B, то функция возвращает 0. С помощью этой функции найти суммы чисел от A до B и от B до C, если даны числа A, B, C.
- **Proc22**. Описать функцию Calc(A, B, Op) вещественного типа, выполняющую над ненулевыми вещественными числами A и B одну из арифметических операций и возвращающую ее результат. Вид операции определяется целым параметром Op: 1 вычитание, 2 умножение, 3 деление, остальные значения сложение. С помощью Calc выполнить для данных A и B операции, определяемые данными целыми N_1 , N_2 , N_3 .
- **Proc23**. Описать функцию Quarter(x, y) целого типа, определяющую номер координатной четверти, в которой находится точка с ненулевыми вещественными координатами (x, y). С помощью этой функции найти номера координатных четвертей для трех точек с данными ненулевыми координатами.
- **Proc24**. Описать функцию Even(K) логического типа, возвращающую True, если целый параметр K является четным, и False в противном случае. С ее помощью найти количество четных чисел в наборе из 10 целых чисел.
- **Proc25**. Описать функцию IsSquare(K) логического типа, возвращающую True, если целый параметр K (> 0) является квадратом некоторого целого числа, и False в противном случае. С ее помощью найти количество квадратов в наборе из 10 целых положительных чисел.
- **Proc26**. Описать функцию IsPower5(K) логического типа, возвращающую True, если целый параметр K (> 0) является степенью числа 5, и False в противном случае. С ее помощью найти количество степеней числа 5 в наборе из 10 целых положительных чисел.
- **Proc27**. Описать функцию IsPowerN(K, N) логического типа, возвращающую True, если целый параметр K (> 0) является степенью числа N (> 1), и False в противном случае. Дано число N (> 1) и набор из 10 целых положительных чисел. С помощью функции IsPowerN найти количество степеней числа N в данном наборе.
- **Proc28**. Описать функцию IsPrime(N) логического типа, возвращающую True, если целый параметр N (> 1) является простым числом, и False в противном случае (число, большее 1, называется *простым*, если оно не имеет положительных делителей, кроме 1 и самого себя). Дан набор из 10 целых чисел, больших 1. С помощью функции IsPrime найти количество простых чисел в данном наборе.
- **Proc29**. Описать функцию DigitCount(K) целого типа, находящую количество цифр целого положительного числа K. Используя эту функцию, найти количество цифр для каждого из пяти данных целых положительных чисел.

- **Proc30**. Описать функцию DigitN(K, N) целого типа, возвращающую N-ю цифру целого положительного числа K (цифры в числе нумеруются справа налево). Если количество цифр в числе K меньше N, то функция возвращает -1. Для каждого из пяти данных целых положительных чисел K_1 , K_2 , ..., K_5 вызвать функцию DigitN с параметром N, изменяющимся от 1 до 5.
- **Proc31**. Описать функцию IsPalindrom(K), возвращающую True, если целый параметр K (> 0) является *палиндромом* (то есть его запись читается одинаково слева направо и справа налево), и False в противном случае. С ее помощью найти количество палиндромов в наборе из 10 целых положительных чисел. При описании функции можно использовать функции DigitCount и DigitN из заданий Proc29 и Proc30.
- **Proc32**. Описать функцию DegToRad(D) вещественного типа, находящую величину угла в радианах, если дана его величина D в градусах (D вещественное число, 0 < D < 360). Воспользоваться следующим соотношением: $180^{\circ} = \pi$ радианов. В качестве значения π использовать 3.14. С помощью функции DegToRad перевести из градусов в радианы пять данных углов.
- Ргос33. Описать функцию RadToDeg(R) вещественного типа, находящую величину угла в градусах, если дана его величина R в радианах (R вещественное число, $0 < R < 2 \cdot \pi$). Воспользоваться следующим соотношением: $180^\circ = \pi$ радианов. В качестве значения π использовать 3.14. С помощью функции RadToDeg перевести из радианов в градусы пять данных углов.
- **Proc34**. Описать функцию Fact(N) вещественного типа, вычисляющую значение факториала $N! = 1 \cdot 2 \cdot ... \cdot N$ (N > 0 параметр целого типа; вещественное возвращаемое значение используется для того, чтобы избежать целочисленного переполнения при больших значениях N). С помощью этой функции найти факториалы пяти данных целых чисел.
- **Proc35**. Описать функцию Fact2(N) вещественного типа, вычисляющую *двойной факториал*:

N!! = 1.3.5...N, если N — нечетное;

N!! = 2.4.6...N, если N — четное

- (N>0 параметр целого типа; вещественное возвращаемое значение используется для того, чтобы избежать целочисленного переполнения при больших значениях N). С помощью этой функции найти двойные факториалы пяти данных целых чисел.
- **Proc36**. Описать функцию Fib(N) целого типа, вычисляющую N-й элемент последовательности *чисел Фибоначчи* F_K , которая описывается следующими формулами:

$$F_1 = 1$$
, $F_2 = 1$, $F_K = F_{K-2} + F_{K-1}$, $K = 3, 4, \dots$

Используя функцию Fib, найти пять чисел Фибоначчи с данными номерами $N_1, N_2, ..., N_5$.

11.3 Дополнительные задания на процедуры и функции

- Ргос37. Описать функцию Power1(A, B) вещественного типа, находящую величину A^B по формуле $A^B = \exp(B \cdot \ln(A))$ (параметры A и B вещественные). В случае нулевого или отрицательного параметра A функция возвращает 0. С помощью этой функции найти степени A^P , B^P , C^P , если даны числа P, A, B, C.
- **Proc38**. Описать функцию Power2(A, N) вещественного типа, находящую величину A^N (A вещественный, N целый параметр) по следующим формулам:

 $A^0=1$; $A^N=A\cdot A\cdot ...\cdot A$ (N сомножителей), если N>0; $A^N=1/(A\cdot A\cdot ...\cdot A)$ (|N| сомножителей), если N<0.

 $A^N=1/(A\cdot A\cdot ...\cdot A)$ (|N| сомножителей), если N<0. С помощью этой функции найти A^K , A^L , A^M , если даны числа A, K, L, M.

- Ргос39. Используя функции Power1 и Power2 (задания Proc37 и Proc38), описать функцию Power3(A, B) вещественного типа с вещественными параметрами, находящую A^B следующим образом: если B имеет нулевую дробную часть, то вызывается функция Power2(A, Round(B)); в противном случае вызывается функция Power1(A, B). С помощью этой функции найти A^P , B^P , C^P , если даны числа P, A, B, C.
- Ргос40. Описать функцию $\text{Exp1}(x, \varepsilon)$ вещественного типа (параметры x, ε вещественные, $\varepsilon > 0$), находящую приближенное значение функции $\exp(x)$: $\exp(x) = 1 + x + x^2/(2!) + x^3/(3!) + \dots + x^n/(n!) + \dots$
 - $(n! = 1 \cdot 2 \cdot ... \cdot n)$. В сумме учитывать все слагаемые, большие ε . С помощью Exp1 найти приближенное значение экспоненты для данного x при шести данных ε .
- **Proc41**. Описать функцию Sin1(x, ε) вещественного типа (параметры x, ε вещественные, ε > 0), находящую приближенное значение функции sin(x): $sin(x) = x x^3/(3!) + x^5/(5!) ... + (-1)^n \cdot x^{2 \cdot n+1}/((2 \cdot n+1)!) + ...$

В сумме учитывать все слагаемые, модуль которых больше ε . С помощью Sin1 найти приближенное значение синуса для данного x при шести данных ε .

Proc42. Описать функцию Cos1(x, ε) вещественного типа (параметры x, ε — вещественные, ε > 0), находящую приближенное значение функции cos(x): cos(x) = $1 - x^2/(2!) + x^4/(4!) - ... + (-1)^n \cdot x^{2\cdot n}/((2\cdot n)!) + ...$

В сумме учитывать все слагаемые, модуль которых больше ε . С помощью Cos1 найти приближенное значение косинуса для данного x при шести данных ε .