10.08.99

日本国特許

PATENT OFFICE
JAPANESE GOVERNMENT

REC'D 27 SEP 1999
WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

1998年 7月24日

出願番号 Application Number:

平成10年特許願第208820号

出 顧 人 Applicant (s):

財団法人相模中央化学研究所

株式会社プロテジーン

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

1999年 8月27日

特許中長官

ratem cance

"早红山建

【書類名】

特許願

【整理番号】

S018160

【提出日】

平成10年 7月24日

【あて先】

特許庁長官殿

【発明の名称】

疎水性ドメインを有するヒト蛋白質およびそれをコード

するDNA

【請求項の数】

6

【発明者】

【住所又は居所】

神奈川県相模原市若松3-46-50

【氏名】

加藤 誠志

【発明者】

【住所又は居所】

東京都葛飾区高砂5-13-11

【氏名】

山口 知子

【特許出願人】

【代表出願人】

【識別番号】

000173762

【住所又は居所】 神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】

財団法人相模中央化学研究所

【代表者】

近藤 聖

【電話番号】

0427 (42) 4791

【特許出願人】

【識別番号】

596134998

【住所又は居所】

東京都目黒区中町2丁目20番3号

【氏名又は名称】

株式会社プロテジーン

【代表者】

棚井 丈雄

【電話番号】

03(3792)1019

【手数料の表示】

【予納台帳番号】 011501

【納付金額】

21,000円

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 疎水性ドメインを有するヒト蛋白質およびそれをコードするDNA

【特許請求の範囲】

【請求項1】 配列番号1から配列番号10で表されるアミノ酸配列のいずれかを含む蛋白質。

【請求項2】 請求項1記載の蛋白質のいずれかをコードするDNA。

【請求項3】 配列番号11から配列番号20で表される塩基配列のいずれかを含むcDNA。

【請求項4】 配列番号21から配列番号30で表される塩基配列のいずれかからなる、請求項3記載のcDNA。

【請求項5】 請求項2から請求項4のいずれかに記載のDNAをインビトロ 翻訳あるいは真核細胞内で発現しうる発現ベクター。

【請求項6】 請求項2から請求項4のいずれかに記載のDNAを発現し、請求項1記載の蛋白質を生産しうる形質転換真核細胞。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、疎水性ドメインを有するヒト蛋白質、それをコードしているDNA、このDNAの発現ベクター、およびこのDNAを発現させた真核細胞に関する。本発明の蛋白質は、医薬品として、あるいはこの蛋白質に対する抗体を作製するための抗原として用いることができる。本発明のヒトcDNAは、遺伝子診断用プローブや遺伝子治療用遺伝子源として用いることができる。また、このcDNAがコードしている蛋白質を大量生産するための遺伝子源として用いることができる。これらの遺伝子を導入して分泌蛋白質や膜蛋白質を大量発現させた細胞は、対応するレセプターやリガンドの検出、新しい低分子医薬のスクリーニングなどに利用できる。

[0002]

【従来の技術】

[0003]

一方、膜蛋白質は、シグナルレセプター、イオンチャンネル、トランスポーターなどとして、細胞膜を介する物質輸送や情報伝達において重要な役割を担っている。例えば、各種サイトカインに対するレセプター、ナトリウムイオン・カリウムイオン・塩素イオン等に対するイオンチャンネル、糖・アミノ酸等に対するトランスポーターなどが知られており、その多くはすでに遺伝子もクローン化されている。これらの膜蛋白質の異常は、これまで原因不明であった多くの病気と関連していることがわかってきた。従って、新しい膜蛋白質が見い出せれば、多くの病気の原因解明につながるものと期待され、膜蛋白質をコードする新たな遺伝子の単離が望まれている。

[0004]

従来、これらの分泌蛋白質や膜蛋白質は、ヒト細胞から精製することが困難なので、遺伝子の方からのアプローチによって単離されたものが多い。一般的な方法は、cDNAライブラリーを真核細胞に導入して、cDNAを発現させたのち、目的とする活性を有する蛋白質を分泌発現あるいは膜表面上に発現している細胞をスクリーニングする、いわゆる発現クローニング法である。しかしこの方法

(- 1 1)

1000

一般に分泌蛋白質や膜蛋白質は、蛋白質内部に少なくとも一個所疎水性ドメイ

ンを有しており、リボソームで合成された後、このドメインが分泌シグナルとして働いたり、リン脂質膜内に留まり膜にトラップされる。従って、完全長 c D N A の全塩基配列を決定してやり、その c D N A がコードしている蛋白質のアミノ酸配列の中に疎水性の高い領域が存在すれば、その c D N A は分泌蛋白質や膜蛋白質をコードしていると考えられる。

[0006]

【発明が解決しようとする課題】

本発明の目的は、疎水性ドメインを有する新規のヒト蛋白質、この蛋白質をコードするDNA、このDNAの発現ベクター、およびこのDNAを発現しうる形質転換真核細胞を提供することである。

[0007]

【課題を解決するための手段】

本発明者らは鋭意研究の結果、ヒト完全長 c D N A バンクの中から疎水性ドメインを有する蛋白質をコードする c D N A をクローン化し、本発明を完成した。すなわち、本発明は疎水性ドメインを有するヒト蛋白質である、配列番号 1 から配列番号 1 0 で表されるアミノ酸配列のいずれかを含む蛋白質を提供する。また本発明は上記蛋白質をコードする D N A、例えば配列番号 1 1 から配列番号 3 0 で表される塩基配列のいずれかを含む c D N A、並びにこの D N A をインビトロ翻訳あるいは真核細胞内で発現しうる発現ベクター、及びこの D N A を発現し上記蛋白質を生産しうる形質転換真核細胞を提供する。

[0008]

【発明の実施の形態】

本発明の蛋白質は、ヒトの臓器、細胞株などから単離する方法、本発明のアミノ酸配列に基づき化学合成によってペプチドを調製する方法、あるいは本発明の疎水性ドメインをコードするDNAを用いて組換えDNA技術で生産する方法などにより取得することができるが、組換えDNA技術で取得する方法が好ましく用いられる。例えば、本発明のcDNAを有するベクターからインビトロ転写によってRNAを調製し、これを鋳型としてインビトロ翻訳を行なうことによりインビトロで蛋白質を発現できる。また翻訳領域を公知の方法により適当な発現ベ

[0009]

本発明の蛋白質を、インビトロ翻訳でDNAを発現させて生産させる場合には、このcDNAの翻訳領域を、RNAポリメラーゼプロモーターを有するベクターに組換え、プロモーターに対応するRNAポリメラーゼを含む、ウサギ網状赤血球溶解物や小麦胚芽抽出物などのインビトロ翻訳系に添加してやれば、本発明の蛋白質をインビトロで生産することができる。RNAポリメラーゼプロモーターとしては、T7、T3、SP6などが例示できる。これらのRNAポリメラーゼプロモーターを含むベクターとしては、PKA1、PCDM8、PT3/T718、PT7/3 19、PBluescript IIなどが例示できる。また、反応系にイヌ膵臓ミクロソームなどを添加してやれば、本発明の蛋白質を分泌型あるいはミクロソーム膜に組み込まれた形で発現することができる。

[0010]

1

本発明の蛋白質を、大腸菌などの微生物でDNAを発現させて生産させる場合には、微生物中で複製可能なオリジン、プロモーター、リボソーム結合部位、 c DNAクローニング部位、ターミネーター等を有する発現ベクターに、本発明の c DNAの翻訳領域を組換えた発現ベクターを作成し、この発現ベクターで宿主 細胞を形質転換したのち、得られた形質転換体を培養してやれば、この c DNA がコードしている蛋白質を微生物内で大量生産することができる。この際、任意の翻訳領域の前後に開始コドンと停止コドンを付加して発現させてやれば、任意の領域を含む蛋白質断片を得ることができる。あるいは、他の蛋白質との融合蛋白質として発現させることもできる。この融合蛋白質を適当なプロテアーゼで切断することによってこの c DNA がコードする蛋白質部分のみを取得することもできる。大腸菌用発現ベクターとしては、 p U C 系、 p B l u e s c r i p t

本発明の蛋白質を、真核細胞でDNAを発現させて生産させる場合には、この

c DN Aの翻訳領域を、プロモーター、スプライシング領域、ポリ(A)付加部 位等を有する真核細胞用発現ベクターに組換え、真核細胞内に導入してやれば、本発明の蛋白質を分泌生産あるいは膜蛋白質として細胞膜表面上で生産すること ができる。発現ベクターとしては、pKA1、pED6dpc2、pCDM8、pSVK3、pMSG、pSVL、pBK-CMV、pBK-RSV、EBVベクター、pRS、pYES2などが例示できる。真核細胞としては、サル腎臓細胞COS7、チャイニーズハムスター卵巣細胞CHOなどの哺乳動物培養細胞、出芽酵母、分裂酵母、カイコ細胞、アフリカツメガエル卵細胞などが一般に用いられるが、本蛋白質を発現できるものであれば、いかなる真核細胞でもよい。発現ベクターを真核細胞に導入するには、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法など公知の方法を用いることができる。

[0012]

本発明の蛋白質を原核細胞や真核細胞で発現させたのち、培養物から目的蛋白質を単離精製するためには、公知の分離操作を組み合わせて行うことができる。例えば、尿素などの変性剤や界面活性剤による処理、超音波処理、酵素消化、塩析や溶媒沈殿法、透析、遠心分離、限外濾過、ゲル濾過、SDS-PAGE、等電点電気泳動、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、アフィニティークロマトグラフィー、逆相クロマトグラフィーなどがあげられる。【0013】

本発明の蛋白質には、配列番号1から配列番号10で表されるアミノ酸配列のいかなる部分アミノ酸配列を含むペプチド断片(5アミノ酸残基以上)も含まれる。これらのペプチド断片は抗体を作製するための抗原として用いることができる。また、本発明の蛋白質の中でシグナル配列を有するものは、シグナル配列が除去された後、成熟蛋白質の形で分泌される。したがって、これらの成熟蛋白質は本発明の蛋白質の範疇にはいる。成熟蛋白質のN末端アミノ酸配列は、シグナル配列切断部位決定法[特開平8-187100]を用いて容易に求めることができる。また、いくつかの膜蛋白質は、細胞表面でプロセシングを受けて分泌型となる。このような分泌型となった蛋白質あるいはペプチドも本発明の蛋白質の範疇にはいる。アミノ酸配列の中に糖鎖結合部位が存在すると、適当な真核細胞

[0014]

本発明のDNAには、上記蛋白質をコードするすべてのDNAが含まれる。このDNAは、化学合成による方法、cDNAクローニングによる方法などを用いて取得することができる。

[0015]

本発明のcDNAは、例えばヒト細胞由来cDNAライブラリーからクローン 化することができる。 cDNAはヒト細胞から抽出した ポリ (A) $^{\dagger}RNA$ を鋳 型として合成する。ヒト細胞としては、人体から手術などによって摘出されたも のでも培養細胞でも良い。cDNAは、岡山-Berg法 [Okayama, H and Berg, P., Mol. Cell. Biol. 2:161-1 70 (1982)]、Gubler-Hoffman法[Gubler, U. and Hoffman, J., Gene 25:263-269 (1983)] などいかなる方法を用いて合成してもよいが、完全長クローンを効率的に得る ためには、実施例にあげたようなキャッピング法 [Kato, S. et al]., Gene 150:243-250 (1994)] を用いることが望ましい 。また市販のヒトcDNAライブラリーを用いることもできる。cDNAライブ ラリーから本発明のcDNAをクローン化するには、本発明のcDNAの任意の 部分の塩基配列に基づいてオリゴヌクレオチドを合成し、これをプローブとして 用いて、公知の方法によりコロニーあるいはプラークハイブリダイゼーションに よるスクリーニングを行えばよい。また、目的とするcDNA断片の両末端にハ イブリダイズするオリゴヌクレオチドを合成し、これをプライマーとして用いて 、ヒト細胞から単離したmRNAからRT-PCR法により、本発明のcDNA 断片を調製することもできる。

[0016]

いは配列番号としから配列番号として表される塩基配列のいすれかを含むことを 特徴とするものである。それぞれのクローン番号(HP番号)、cDNAクロー

[0017]

【表1】

表 1

配列番号	H P 番号	細胞	塩基数	アミノ酸 残基数
1, 11, 2	1 HP01550	胃癌	510	1 2 5
2, 12, 2	2 HP02593	S a o s - 2	697	1 3 1
3, 13, 2	3 HP10195	HT-1080	1619	2 4 2
4, 14, 2	4 HP10423	U-2 OS	1066	264
5, 15, 2	5 HP10506	胃癌	6 1 8	1 1 2
6, 16, 2	6 HP10507	胃癌	1 0 2 1	1 4 6
7, 17, 2	7 HP10548	胃癌	1 4 3 2	3 4 4
8, 18, 2	8 HP10566	胃癌	6 0 1	9 7
9, 19, 2	9 HP10567	胃癌	5 8 5	1 2 4
10,20,3	0 HP10568	胃癌	1 1 0 0	3 2 7

[0018]

なお、配列番号11から配列番号30のいずれかに記載のcDNAの塩基配列に基づいて合成したオリゴヌクレオチドプローブを用いて、本発明で用いたヒト細胞株やヒト組織から作製したcDNAライブラリーをスクリーニングすることにより、本発明のcDNAと同一のクローンを容易に得ることができる。

[0019]

一般にヒト遺伝子は個体差による多型が頻繁に認められる。従って配列番号1 1から配列番号30において、1又は複数個のヌクレオチドの付加、欠失および /又は他のヌクレオチドによる置換がなされているcDNAも本発明の範疇には

[0020]

同様に、これらの変更によって生じる、1又は複数個のアミノ酸の付加、欠失 および/又は他のアミノ酸による置換がなされている蛋白質も、配列番号1から 配列番号9で表されるアミノ酸配列を有するそれぞれの蛋白質の活性を有する限 り、本発明の範疇に入る。

[0021]

本発明のcDNAには、配列番号11から配列番号20で表される塩基配列あるいは配列番号21から配列番号30で表される塩基配列のいかなる部分塩基配列を含むcDNA断片(10bp以上)も含まれる。また、センス鎖およびアンチセンス鎖からなるDNA断片もこの範疇にはいる。これらのDNA断片は遺伝子診断用のプローブとして用いることができる。

[0022]

【実施例】

次に実施例により発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。DNAの組換えに関する基本的な操作および酵素反応は、文献 ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory、1989]に従った。制限酵素および各種修飾酵素は特に記載の無い場合宝酒造社製のものを用いた。各酵素反応の緩衝液組成、並びに反応条件は付属の説明書に従った。cDNA合成は文献 [Kato, S. et al., Gene 150:243-250(1994)]に従った。

[0023]

(1) 疎水性ドメインを有する蛋白質をコードしているcDNAの選別 cDNAライブラリーとして、骨肉腫細胞株Saos-2cDNAライブラリー(WO97/33993)、骨肉腫細胞株U-2 OScDNAライブラリー

フォフラン・ 、WO b 8 / 1.1 こ、7 、 、 手術によって摘出された胃癌組織で11 N A ライブラリー (WO 9 8 / 2 1 3 2 8) を用いた。個々のライブラリーから

完全長cDNAクローンを選択し、その全塩基配列決定を行い、完全長cDNAクローンからなるホモ・プロテインcDNAバンクを構築した。ホモ・プロテインcDNAバンクに登録された完全長cDNAクローンがコードしている蛋白質について、Kyte-Doolittleの方法[Kyte, J & Doolittle, R. F., J. Mol. Biol. 157:105-132(1982)]により、疎水性/親水性プロフィールを求め、疎水性ドメインの有無を調べた。コードしている蛋白質のアミノ酸配列中に分泌シグナルや膜貫通ドメインと思われる疎水的な領域があるクローンを候補クローンとして選別した。

(2) インビトロ翻訳による蛋白質合成

本発明の c DN Aを有するプラスミドベクターを用いて、 T_N T ウサギ網状赤血球溶解物キット(プロメガ社製)によるインビトロ転写/翻訳を行なった。この際 [35 S] メチオニンを添加し、発現産物をラジオアイソトープでラベルした。いずれの反応もキットに付属のプロトコールに従って行なった。プラスミド2μgを、 T_N T ウサギ網状赤血球溶解物 $12.5\mu1$ 、緩衝液(キットに付属) 0.5 $\mu1$ 、アミノ酸混合液(Metを含まない)2 $\mu1$ 、[35 S] メチオニン(アマーシャム社)2 $\mu1$ (0.37 MBq $_{\mu}$ 1)、 $_{\mu}$ 7 R N Aポリメラーゼ 0.5 $_{\mu}$ 1、RN asin 20 Uを含む総量 $_{\mu}$ 25 $_{\mu}$ 1の反応液中で $_{\mu}$ 30 $_{\mu}$ 6 で $_{\mu}$ 9 分間反応させた。また、膜系存在下の実験は、この反応系に、イヌ膵臓ミクロソーム画分(プロメガ)2.5 $_{\mu}$ 1を添加して行った。反応液 $_{\mu}$ 1 に SD S サンプリングバッファー($_{\mu}$ 1 2 5 $_{\mu}$ 1 を添加して行った。反応液 $_{\mu}$ 1 に SD S サンプリングバッファー($_{\mu}$ 2 5 $_{\mu}$ 1 を添加して行った。反応液 $_{\mu}$ 1 に SD S サンプリングバッファー($_{\mu}$ 2 5 $_{\mu}$ 3 を添加して行った。反応液 $_{\mu}$ 4 に SD S $_{\mu}$ 5 $_{\mu}$ 6 の $_{\mu}$ 7 の $_{\mu}$ 7 の $_{\mu}$ 8 を添加して行った。分別では $_{\mu}$ 9 の $_{\mu}$ 9

[0025]

[0024]

(3) COS 7による発現

本発明の蛋白質の発現ベクターを有する大腸菌を100μg/m1アンピシリン含有2xYT培地2m1中で37℃2時間培養した後、ヘルパーファージM1

[0026]

サル腎臓由来培養細胞COS 7 は、10% ウシ胎児血清を含むダルベッコ改変イーグル (DMEM) 培地中、 $5\%CO_2$ 存在下、37で培養した。 1×10^5 個のCOS 7 細胞を6穴プレート(ヌンク社、穴の直径3 c m)に植え、5%C O_2 存在下、37でで2 2 時間培養した。培地除去後、リン酸緩衝液で細胞表面を洗浄し、さらに 50 mMトリス塩酸 (p H 7. 5) を含むDMEM (T DM EM) で再度洗浄した。この細胞に一本鎖ファージ懸濁液 1μ 1、DMEM 培地 0. 6 m 1、 T R A N S F E C T A M TM (I B F 社) 3μ 1 を懸濁したものを添加し、 $5\%CO_2$ 存在下、37℃で 3 時間培養した。サンプル液を除去後、 T DMEMで細胞表面を洗浄し、10% ウシ胎児血清含有 DMEMを1 穴あたり 2 m 1 加え、 $5\%CO_2$ 存在下、37℃にて 2 日間培養した。培地を $[^{35}$ S] システインあるいは $[^{35}$ S] メチオニンを含む培地に交換した後、1 時間培養した。遠心分離によって、培地と細胞を分けたあと、培地画分と細胞膜画分の蛋白質を 5 D 5 P A 5 E にかけた。

[0027]

(4) クローン例

<HP01550>(配列番号1、11、21)

ヒト胃癌 c D N A ライブラリーから得られたクローンHP01550の c D N A インサートの全塩基配列を決定したところ、65bpの5'非翻訳領域、378bpのORF、67bpの3'非翻訳領域からなる構造を有していた。ORFは125アミノ酸残基からなる蛋白質をコードしており、1箇所の推定膜貫通ドメインが存在した。図1にKyte-Doolittleの方法で求めた本蛋白

想される分子量主は、アエンとはは同じ、シャフィの翻訳産物が生成した。

[0028]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、 線虫仮想蛋白質F45G2.c(GenBankアクセション番号Z93382)と類似性を有していた。表2に、本発明のヒト蛋白質(HP)と線虫仮想蛋白 質F45G2.c(CE)のアミノ酸配列の比較を示す。一はギャップを、*は 本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基 をそれぞれ表す。全領域にわたって、44.5%の相同性を有していた。

[0029]

【表2】

表 2

HP MAKYLAQIIVMGVQVVGRAFARALRQEF-----AASRAAADARGRAGHRSAAASNLS-

CE MPWRTALKVALAAGEAVAKALTRAVRDEIKQTQQAAARHAASTGQSASETRENANSNAKL

HP GLSLQEAQQILNV-SKLSPEEVQKNYEHLFKVNDKSVGGSFYLQSKVVRAKERLDEEL-K

*.**.*. ***** . *..**.*.**** **..**** ****...***. .

CE GISLEESLQILNVKTPLNREEVEKHYEHLFNINDKSKGGTLYLQSKVFRAKERIDEEFGR

HP IQAQEDREKGQMPHT

.*...*

CE IELKEEKKKEENAKTE

[0030]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA338859)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0031]

<HP02593>(配列番号2、12、22)

ヒト骨肉腫細胞株Saos-2cDNAライブラリーから得られたクローンHP02593のcDNAインサートの全塩基配列を決定したところ、103bp

[0032]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、ヒトOB-R遺伝子関連蛋白質(EMBLアクセション番号 Y 1 2 6 7 0)と類似性を有していた。表3に、本発明のヒト蛋白質(HP)とヒトOB-R遺伝子関連蛋白質(OB)のアミノ酸配列の比較を示す。-はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。全領域にわたって、6 7. 9%の相同性を有していた。

[0033]

【表3】

表 3

 $\tt OB_ATSSACRELAYFFTTGIVVSAFGFPVILARVAVIKWGACGLVLAGNAVIFLTIQGFFLIF$

HP GSNDDFSWQQW

* ***** **

OB GRGDDFSWEQW

エイン ホーント い 塩基配列を用い ー・・ ニョッニュア 検密 こう こう こう こう アクロウェン 番号 A A 3

[0035]

<HP10195>(配列番号3、13、23)

ヒトフィブロサルコーマHT-1080cDNAライブラリーから得られたクローンHP10195のcDNAインサートの全塩基配列を決定したところ、286bpの5′非翻訳領域、729bpのORF、604bpの3′非翻訳領域からなる構造を有していた。ORFは242アミノ酸残基からなる蛋白質をコードしており、C末端に1箇所の推定膜貫通ドメインが存在した。図3にKyte-Doo1itt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量27,300よりやや大きい32kDaの翻訳産物が生成した。

[0036]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、アメフラシ (Aplysia) VAP-33 (SWISS-PROTアクセション番号P53173) と類似性を有していた。表4に、本発明のヒト蛋白質(HP)とアメフラシ (Aplysia) VAP-33 (AP)のアミノ酸配列の比較を示す。-はギャップを、*は本発明の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれぞれ表す。全領域にわたって、46.5%の相同性を有していた。

[0037]

【表4】

表 4

[0038]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA447905)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0039]

<HP10423>(配列番号4、14、24)

ヒト骨肉腫細胞株U-2 OScDNAライブラリーから得られたクローンH P10423のcDNAインサートの全塩基配列を決定したところ、64bpの 5'非翻訳領域、795bpのORF、207bpの3'非翻訳領域からなる構造を有していた。ORFは264アミノ酸残基からなる蛋白質をコードしており、N末端に分泌シグナル、N末端に1箇所の推定膜貫通ドメインが存在した。図4にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量29,377とほぼ同じ30kDaの翻訳産物が生成した。

また、キャロNAの塩基配列を用いては、エトルトルとを検索した。これにより Tの中に、90%以上の相同性を有するもの(例えば、アクセション番号D80 116)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコ ードしているかどうかは判定できない。

[0041]

<HP10506>(配列番号5、15、25)

ヒト胃癌 c DNAライブラリーから得られたクローンHP10506の c DNAインサートの全塩基配列を決定したところ、53bpの5、非翻訳領域、339bpのORF、226bpの3、非翻訳領域からなる構造を有していた。ORFは112アミノ酸残基からなる蛋白質をコードしており、1箇所の推定膜貫通ドメインが存在した。図5にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量11、821とほぼ同じ12kDaの翻訳産物が生成した。

[0042]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA282544)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0043]

<HP10507>(配列番号6、16、26)

ヒト胃癌 c DNAライブラリーから得られたクローンHP10507の c DN Aインサートの全塩基配列を決定したところ、412bpの5'非翻訳領域、441bpのORF、168bpの3'非翻訳領域からなる構造を有していた。ORFは146アミノ酸残基からなる蛋白質をコードしており、N末端に分泌シグナルが、C末端に1箇所の推定膜貫通ドメインが存在した。図6にKyte-Doo1itt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量16,347よりやや大きい19kDaの翻訳産物が生成した。

[0044]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ES Tの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA4

[0045]

<HP10548>(配列番号7、17、27)

ヒト胃癌 c D N A ライブラリーから得られたクローンH P 1 0 5 4 8 の c D N A インサートの全塩基配列を決定したところ、330 b p の 5 '非翻訳領域、1 0 3 5 b p の O R F 、67 b p の 3 '非翻訳領域からなる構造を有していた。O R F は 3 4 4 アミノ酸残基からなる蛋白質をコードしており、4 箇所の推定膜貫通ドメインが存在した。図7にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、高分子量の翻訳産物が生成した。

[0046]

また、本 c D N A の塩基配列を用いてG e n B a n k を検索したところ、E S T の中に、90%以上の相同性を有するもの(例えば、アクセション番号 A A 1 4 3 1 5 2)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0047]

<HP10566>(配列番号8、18、28)

ヒト胃癌 c DN A ライブラリーから得られたクローンHP10566のc DN A インサートの全塩基配列を決定したところ、61bpの5'非翻訳領域、294bpのORF、246bpの3'非翻訳領域からなる構造を有していた。ORFは97アミノ酸残基からなる蛋白質をコードしており、C末端に1箇所の推定膜貫通ドメインが存在した。図8にKyte-Doolittleの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量11,452とほぼ同じ12kDaの翻訳産物が生成した。

[0048]

<HP10567>(配列番号9、19、29)

ヒト胃癌 c D N A ライブラリーから得られたクローンH P 1 0 5 6 7 の c D N A インサートの全塩基配列を決定したところ、77 b p の 5 '非翻訳領域、37 5 b p の O R F、133 b p の 3 '非翻訳領域からなる構造を有していた。O R F は 124 アミノ酸残基からなる蛋白質をコードしており、C 末端に1箇所の推定膜貫通ドメインが存在した。図 9 に K y t e ー D o o 1 i t t 1 e の方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、O R F から予想される分子量 14,484とほぼ同じ 14k D a の翻訳産物が生成した。

[0049]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA428475)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0050]

<HP10568>(配列番号10、20、30)

ヒト胃癌cDNAライブラリーから得られたクローンHP10568のcDNAインサートの全塩基配列を決定したところ、56bpの5′非翻訳領域、984bpのORF、60bpの3′非翻訳領域からなる構造を有していた。ORFは327アミノ酸残基からなる蛋白質をコードしており、N末端に分泌シグナルが、C末端に1箇所の推定膜貫通ドメインが存在した。図10にKyte-Doo1itt1eの方法で求めた本蛋白質の疎水性/親水性プロフィールを示す。インビトロ翻訳の結果、ORFから予想される分子量34,326にほぼ一致する36.5kDaの翻訳産物が生成した。この際、ミクロソームを添加すると、糖鎖が付加されたと考えられる40kDaの産物が生成した。なお、この蛋白質のアミノ酸配列の中には、Nーグリコシレーションが起こる可能性がある部位が2箇所(138番目Asn-Leu-Thr、206番目Asn-Leu-Se

[0051]

本蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、 ヒト細胞表面A33抗原(SWISS-PROTアクセション番号Q99795) と類似性を有していた。表5に、本発明のヒト蛋白質(HP)とヒト細胞表面 A33抗原(A3)のアミノ酸配列の比較を示す。-はギャップを、*は本発明 の蛋白質と同一アミノ酸残基を、. は本発明の蛋白質と類似アミノ酸残基をそれ ぞれ表す。N末端領域243残基において、30.0%の相同性を有していた。

[0052]

【表5】

表 5

HP MAFLPGPFLCGALLGFLCLSGLAVEVKVPTEPLSTPLGKTAELTCTYSTSVGDSFAL-EW MVGKMWPVLWTLCAVRVTVDAISVETPQDVLRASQGKSVTLPCTYHTSTSSREGLIQW A.3 HP SFVQPGKPISESHPILYFTNGHLYPTGSKSKRVSLLQNPPTVGVATLKLTDVHPSDTGTY A3 DKLL--LTHTERVVIWPFSNKN-YIHGELYKNRVSISNNAEQSDASITIDQLTMADNGTY HP LCQVNNPPDFYTNGLGLINLTVLVPPSNPLCSQSGQTSVGGSTALRCSSSEGAPKPVYNW * *. .*. .*. * ****** * . .*. * * .*. .* * *.*. * * .* A3 ECSVSLMSDLEGNTKSRVRLLVLVPPSKPECGIEGETIIGNNIQLTCQSKEGSPTPQYSW HP VRLGTFPTPSPGSMVQDEVSGQLILTNLSLTSSGTYRCVATNQMGSASCELTLSVTEPS-A3 KRYNILNQEQP--LAQPASGQPVSLKNISTDTSGYYICTSSNEEGTQFCNITVAVRSPSM HP -QGRVAGALIGVILLGVILLSVAAFCLVRFQKERGKKPKETYGGSDLREDAIAPGISEHTC AL INVALYAGIAYGVAALIII LUIIIY WUU KGRI I MIHII KHI AKENKEAYHELE FOLKHESK

HP MRADSSKGFLERPSSASTVTTTKSKLPMVV

A3 EREEEDDYRQEEQRSTGRESPDHLDQ

[0053]

また、本cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号T24595)が登録されていたが、部分配列なので本発明の蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

[0054]

【発明の効果】

本発明は疎水性ドメインを有するヒト蛋白質、それをコードしているDNA、このDNAの発現ベクター、およびこのDNAを発現させた真核細胞を提供する。本発明の蛋白質は、いずれも分泌されるかあるいは細胞膜に存在するので、細胞の増殖や分化を制御している蛋白質と考えられる。したがって、本発明の蛋白質は、細胞の増殖や分化の制御に関わる制癌剤などの医薬品として、あるいはこの蛋白質に対する抗体を作製するための抗原として用いることができる。本発明のDNAは、遺伝子診断用プローブや遺伝子治療用遺伝子源として用いることができる。また、このDNAを用いることにより、この蛋白質を大量に発現することができる。これら遺伝子を導入してこの蛋白質を発現させた細胞は、対応するレセプターやリガンドの検出、新しい低分子医薬のスクリーニングなどに利用できる。

[0055]

【配列表】

配列番号:1

配列の長さ:125

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP01550

配列

Met Ala Lys Tyr Leu Ala Gln Ile Ile Val Met Gly Val Gln Val Val

1

5

10

15

Gly Arg Ala Phe Ala Arg Ala Leu Arg Gln Glu Phe Ala Ala Ser Arg

20

25

30

Ala Ala Asp Ala Arg Gly Arg Ala Gly His Arg Ser Ala Ala Ala

35

40

45

Ser Asn Leu Ser Gly Leu Ser Leu Gln Glu Ala Gln Gln Ile Leu Asn

50

55

60

Val Ser Lys Leu Ser Pro Glu Glu Val Gln Lys Asn Tyr Glu His Leu

65

70

75

80

Phe Lys Val Asn Asp Lys Ser Val Gly Gly Ser Phe Tyr Leu Gln Ser

85

90

95

Lys Val Val Arg Ala Lys Glu Arg Leu Asp Glu Glu Leu Lys Ile Gln

100

105

110

Ala Gln Glu Asp Arg Glu Lys Gly Gln Met Pro His Thr

115

120

125

[0056]

配列番号: 2

配列の長さ:131

配列の型:アミノ酸

トポロジー:直鎖状

Roje 🚼

しょかせー イヤルコス

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン: Saos-2

クローン名: HP02593

配列

Met Ala Gly Ile Lys Ala Leu Ile Ser Leu Ser Phe Gly Gly Ala Ile

1 5 10 15

Gly Leu Met Phe Leu Met Leu Gly Cys Ala Leu Pro Ile Tyr Asn Lys

20 25 30

Tyr Trp Pro Leu Phe Val Leu Phe Phe Tyr Ile Leu Ser Pro Ile Pro

35 40 45

Tyr Cys Ile Ala Arg Arg Leu Val Asp Asp Thr Asp Ala Met Ser Asn

50 55 60

Ala Cys Lys Glu Leu Ala Ile Phe Leu Thr Thr Gly Ile Val Val Ser

65 70 75 80

Ala Phe Gly Leu Pro Ile Val Phe Ala Arg Ala His Leu Ile Glu Trp

85 90 95

Gly Ala Cys Ala Leu Val Leu Thr Gly Asn Thr Val Ile Phe Ala Thr

100 105 110

Ile Leu Gly Phe Phe Leu Val Phe Gly Ser Asn Asp Asp Phe Ser Trp

115 120 125

Gln Gln Trp

130

[0057]

配列番号:3

配列の長さ:242

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:フィブロサルコーマ

セルライン: HT-1080

クローン名: HP10195

配列

Met Ala Lys His Glu Gln Ile Leu Val Leu Asp Pro Pro Thr Asp Leu

1 5 10 15

Lys Phe Lys Gly Pro Phe Thr Asp Val Val Thr Thr Asn Leu Lys Leu

20 25 30

Arg Asn Pro Ser Asp Arg Lys Val Cys Phe Lys Val Lys Thr Thr Ala

35 40 45

Pro Arg Arg Tyr Cys Val Arg Pro Asn Ser Gly Ile Ile Asp Pro Gly

50 55 60

Ser Thr Val Thr Val Ser Val Met Leu Gln Pro Phe Asp Tyr Asp Pro

65 70 75 80

Asn Glu Lys Ser Lys His Lys Phe Met Val Gln Thr Ile Phe Ala Pro

85 90 95

Pro Asn Thr Ser Asp Met Glu Ala Val Trp Lys Glu Ala Lys Pro Asp

100 105 110

Glu Leu Met Asp Ser Lys Leu Arg Cys Val Phe Glu Met Pro Asn Glu

115 120 125

Asn Asp Lys Leu Asn Asp Met Glu Pro Ser Lys Ala Val Pro Leu Asn

130 135 140

165

Ala Ser Lys Gln Asp Gly Pro Met Pro Lys Pro His Ser Val Ser Leu

āsn āsp īhr alu īhr ārg "ys Leu Met alu alu ays "ys ārg "eu Glm

170 175

Gly Glu Met Met Lys Leu Ser Glu Glu Asn Arg His Leu Arg Asp Glu

180

185

190

Gly Leu Arg Leu Arg Lys Val Ala His Ser Asp Lys Pro Gly Ser Thr

195

200

205

Ser Thr Ala Ser Phe Arg Asp Asn Val Thr Ser Pro Leu Pro Ser Leu

210

215

220

Leu Val Val Ile Ala Ala Ile Phe Ile Gly Phe Phe Leu Gly Lys Phe

225

230

235

240

Ile Leu

[0058]

配列番号:4

配列の長さ: 264

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン: U-2 OS

クローン名: HP10423

配列

Met Phe Val Pro Cys Gly Glu Ser Ala Pro Asp Leu Ala Gly Phe Thr

1

5

10

15

Leu Leu Met Pro Ala Val Ser Val Gly Asn Val Gly Gln Leu Ala Met

20

25

30

Asp Leu Ile Ile Ser Thr Leu Asn Met Ser Lys Ile Gly Tyr Phe Tyr

35

40

45

Thr	Asp	Cys	Leu	Val	Pro	Met	Val	Gly	Asn	Asn	Pro	Tyr	Ala	Thr	Thr
	50					55					60				
Glu	Gly	Asn	Ser	Thr	Glu	Leu	Ser	Ile	Asn	Ala	Glu	Val	Tyr	Ser	Leu
65					70					7 5					80
Pro	Ser	Arg	Lys	Leu	Val	Ala	Leu	Gln	Leu	Arg	Ser	Ile	Phe	Ile	Lys
				85					90					95	
Tyr	Lys	Ser	Lys	Pro	Phe	Cys	Glu	Lys	Leu	Leu	Ser	Trp	Val	Lys	Ser
			100					105					110		
Ser	Gly	Cys	Ala	Arg	Val	Ile	Val	Leu	Ser	Ser	Ser	His	Ser	Tyr	Gln
		115					120					125			
Arg	Asn	Asp	Leu	Gln	Leu	Arg	Ser	Thr	Pro	Phe	Arg	Tyr	Leu	Leu	Thr
	130					135					140				
Pro	Ser	Met	Gln	Lys	Ser	Val	Gln	Asn	Lys	Ile	Lys	Ser	Leu	Asn	Trp
145					150					155					160
Glu	Glu	Met	Glu	Lys	Ser	Arg	Cys	lle	Pro	Glu	Ile	Asp	Asp	Ser	Glu
				165					170					175	
Phe	Cys	Ile	Arg	Ile	Pro	Gly	Gly	Gly	He	Thr	Lys	Thr	Leu	Tyr	Asp
			180					185					190		
Glu	Ser	Cys	Ser	Lys	Glu	He	Gln	Met	Ala	Val	Leu	Leu	Lys	Phe	Val
		195					200					205			
Ser	Glu	Gly	Asp	Asn	He	Pro	Asp	Ala	Leu	Gly	Leu	Val	Glu	Tyr	Leu
	210					215					220				
Asn	Glu	Trp	Leu	Gln	He	<u>L</u> eu	Lys	Pro	Leu	Ser	Asp	Asp	Pro	Thr	Val
225					230					235					240
Ser	Ala	Ser	Arg	Trp	Lys	lle	Pro	Ser	Ser	Trp	Arg	Leu	Leu	Phe	Gly
				245					250					255	

[0059]

7.7

配列番号:5

配列の長さ:112

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10506

配列

Met Gly Ser Arg Leu Ser Gln Pro Phe Glu Ser Tyr Ile Thr Ala Pro

1 5 10 15

Pro Gly Thr Ala Ala Pro Ala Lys Pro Ala Pro Pro Ala Thr Pro

20 25 30

Gly Ala Pro Thr Ser Pro Ala Glu His Arg Leu Leu Lys Thr Cys Trp

35 40 45

Ser Cys Arg Val Leu Ser Gly Leu Gly Leu Met Gly Ala Gly Gly Tyr

50 55 60

Val Tyr Trp Val Ala Arg Lys Pro Met Lys Met Gly Tyr Pro Pro Ser

65 70 75 80

Pro Trp Thr Ile Thr Gln Met Val Ile Gly Leu Ser Ile Ala Thr Trp

85 90 95

Gly Ile Val Val Met Ala Asp Pro Lys Gly Lys Ala Tyr Arg Val Val

100 105 110

[0060]

配列番号: 6

配列の長さ:146

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10507

配列

Met Leu Ala Gly Ala Gly Arg Pro Gly Leu Pro Gln Gly Arg His Leu

1 5 10 1

Cys Trp Leu Leu Cys Ala Phe Thr Leu Lys Leu Cys Gln Ala Glu Ala

20 25 30

Pro Val Glu Glu Lys Leu Ser Ala Ser Thr Ser Asn Leu Pro Cys

35 40 45

Trp Leu Val Glu Glu Phe Val Val Ala Glu Glu Cys Ser Pro Cys Ser

50 55 60

Asn Phe Arg Ala Lys Thr Thr Pro Glu Cys Gly Pro Thr Gly Tyr Val

65 70 75 80

Glu Lys Ile Thr Cys Ser Ser Ser Lys Arg Asn Glu Phe Lys Ser Cys

 85
 90
 95

Arg Ser Ala Leu Met Glu Gln Arg Leu Phe Trp Lys Phe Glu Gly Ala

100 105 110

Val Val Cys Val Ala Leu Ile Phe Ala Cys Leu Val Ile Ile Arg Gln

115 120 125

Arg Gln Leu Asp Arg Lys Ala Leu Glu Lys Val Arg Lys Gln Ile Glu

130 135 140

1

[0061]

配列番号:7

配列の長さ: 344

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10548

配列

Met Asp Phe Leu Val Leu Phe Leu Phe Tyr Leu Ala Ser Val Leu Met

1 5 10 15

Gly Leu Val Leu Ile Cys Val Cys Ser Lys Thr His Ser Leu Lys Gly

20 25 30

Leu Ala Arg Gly Gly Ala Gln Ile Phe Ser Cys Ile Ile Pro Glu Cys

35 40 45

Leu Gln Arg Ala Val His Gly Leu Leu His Tyr Leu Phe His Thr Arg

50 55 60

Asn His Thr Phe Ile Val Leu His Leu Val Leu Gln Gly Met Val Tyr

65 70 75 80

Thr Glu Tyr Thr Trp Glu Val Phe Gly Tyr Cys Gln Glu Leu Glu Leu

85 90 95

Ser Leu His Tyr Leu Leu Leu Pro Tyr Leu Leu Gly Val Asn Leu

100 105 110

Phe Phe Phe Thr Leu Thr Cys Gly Thr Asn Pro Gly Ile Ile Thr Lys

115 120 125

Ala Asn Glu Leu Leu Phe Leu His Val Tyr Glu Phe Asp Glu Val Met

130 135 140

Phe Pro Lys Asn Val Arg Cys Ser Thr Cys Asp Leu Arg Lys Pro Ala Arg Ser Lys His Cys Ser Val Cys Asn Trp Cys Val His Arg Phe Asp His His Cys Val Trp Val Asn Asn Cys Ile Gly Ala Trp Asn Ile Arg Tyr Phe Leu Ile Tyr Val Leu Thr Leu Thr Ala Ser Ala Ala Thr Val Ala Ile Val Ser Thr Thr Phe Leu Val His Leu Val Val Met Ser Asp Leu Tyr Gln Glu Thr Tyr Ile Asp Asp Leu Gly His Leu His Val Met Asp Thr Val Phe Leu Ile Gln Tyr Leu Phe Leu Thr Phe Pro Arg Ile Val Phe Met Leu Gly Phe Val Val Leu Ser Phe Leu Leu Gly Gly Tyr Leu Leu Phe Val Leu Tyr Leu Ala Ala Thr Asn Gln Thr Thr Asn Glu Trp Tyr Arg Gly Asp Trp Ala Trp Cys Gln Arg Cys Pro Leu Val Ala Trp Pro Pro Ser Ala Glu Pro Gln Val His Arg Asn Ile His Ser His Gly Leu Arg Ser Asn Leu Gln Glu Ile Phe Leu Pro Ala Phe Pro Cys His Glu Arg Lys Lys Gln Glu

配列番号:>

配列の長さ:97

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10566

配列

Met Thr Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile Asp

1 5 10 15

Gly Leu Glu Glu Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu Ala Val

20 25 30

Asn Ser Arg Leu His Ser Arg Glu Leu Ser Pro Glu Ala Arg Arg Ser

35 40 45

Leu Glu Lys Glu Lys Asn Ser Leu Met Asn Lys Ala Ser Asn Tyr Glu

50 55 60

Lys Glu Leu Lys Phe Leu Arg Gln Glu Asn Arg Lys Asn Met Leu Leu

65 70 75 80

Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala Tyr Trp Thr

 85
 90
 95

Met

[0063]

配列番号:9

配列の長さ:124

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP10567

配列

Met Ala Thr Ser Ser Met Ser Lys Gly Cys Phe Val Phe Lys Pro Asn

1

5

10

15

Ser Lys Lys Arg Lys Ile Ser Leu Pro Ile Glu Asp Tyr Phe Asn Lys

20

25

30

Gly Lys Asn Glu Pro Glu Asp Ser Lys Leu Arg Phe Glu Thr Tyr Gln

35

40

45

Leu Ile Trp Gln Gln Met Lys Ser Glu Asn Glu Arg Leu Gln Glu Glu

50

55

60

Leu Asn Lys Asn Leu Phe Asp Asn Leu Ile Glu Phe Leu Gln Lys Ser

65

70

75

80

His Ser Gly Phe Gln Lys Asn Ser Arg Asp Leu Gly Gly Gln Ile Lys

85

90

95

Leu Arg Glu Ile Pro Thr Ala Ala Leu Val Leu Gly Ile Tyr Ala Tyr

100

105

110

Val Cys Ser Cys Met His Leu Cys Val Phe Arg Phe

115

120

[0064]

配列番号:10

配列の長さ:327

配列の型:アミノ酸

113

配列の種類:蛋白質

ハイポセティカル:No

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP10568

配列

Met Ala Glu Leu Pro Gly Pro Phe Leu Cys Gly Ala Leu Leu Gly Phe Leu Cys Leu Ser Gly Leu Ala Val Glu Val Lys Val Pro Thr Glu Pro Leu Ser Thr Pro Leu Gly Lys Thr Ala Glu Leu Thr Cys Thr Tyr Ser Thr Ser Val Gly Asp Ser Phe Ala Leu Glu Trp Ser Phe Val Gln Pro Gly Lys Pro Ile Ser Glu Ser His Pro Ile Leu Tyr Phe Thr Asn Gly His Leu Tyr Pro Thr Gly Ser Lys Ser Lys Arg Val Ser Leu Leu Gln Asn Pro Pro Thr Val Gly Val Ala Thr Leu Lys Leu Thr Asp Val His Pro Ser Asp Thr Gly Thr Tyr Leu Cys Gln Val Asn Asn Pro Pro Asp Phe Tyr Thr Asn Gly Leu Gly Leu Ile Asn Leu Thr Val Leu Val Pro Pro Ser Asn Pro Leu Cys Ser Gln Ser Gly Gln Thr Ser Val Gly Gly Ser Thr Ala Leu Arg Cys Ser Ser Ser Glu Gly Ala Pro Lys Pro Val Tyr Asn Trp Val Arg Leu Gly Thr Phe Pro Thr Pro Ser Pro Gly Ser

特平10-208820

Met Val Gln Asp Glu Val Ser Gly Gln Leu Ile Leu Thr Asn Leu Ser 205 195 200 Leu Thr Ser Ser Gly Thr Tyr Arg Cys Val Ala Thr Asn Gln Met Gly 220 210 215 Ser Ala Ser Cys Glu Leu Thr Leu Ser Val Thr Glu Pro Ser Gln Gly 235 240 225 230 Arg Val Ala Gly Ala Leu Ile Gly Val Leu Leu Gly Val Leu Leu Leu 250 245 Ser Val Ala Ala Phe Cys Leu Val Arg Phe Gln Lys Glu Arg Gly Lys 265 260 Lys Pro Lys Glu Thr Tyr Gly Gly Ser Asp Leu Arg Glu Asp Ala Ile

Lys Pro Lys Glu Thr Tyr Gly Gly Ser Asp Leu Arg Glu Asp Ala Ile 275 280 285

Ala Pro Gly Ile Ser Glu His Thr Cys Met Arg Ala Asp Ser Ser Lys
290 295 300

Gly Phe Leu Glu Arg Pro Ser Ser Ala Ser Thr Val Thr Thr Lys
305 310 315 320

Ser Lys Leu Pro Met Val Val

325

配列番号:11

配列の長さ: 375

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

war et 對

グローン名:日1 - 1 - 1

配列

[0065]

配列番号:12

配列の長さ:393

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン:Saos-2

クローン名: HP02593

配列

ATGGCAGGCA	TCAAAGCTTT	GATTAGTTTG	TCCTTTGGAG	GAGCAATCGG	ACTGATGTTT	60
TTGATGCTTG	GATGTGCCCT	TCCAATATAC	AACAAATACT	GGCCCCTCTT	TGTTCTATTT	120
TTTTACATCC	TTTCACCTAT	TCCATACTGC	ATAGCAAGAA	GATTAGTGGA	TGATACAGAT	180
GCTATGAGTA	ACGCTTGTAA	GGAACTTGCC	ATCTTTCTTA	CAACGGGCAT	TGTCGTGTCA	240
GCTTTTGGAC	TCCCTATTGT	ATTTGCCAGA	GCACATCTGA	TTGAGTGGGG	AGCTTGTGCA	300
CTTGTTCTCA	CAGGAAACAC	AGTCATCTTT	GCAACTATAC	TAGGCTTTTT	CTTGGTCTTT	360
GGAAGCAATG	ACGACTTCAG	CTGGCAGCAG	TGG			393

[0066]

配列番号:13

配列の長さ:726

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:フィブロサルコーマ

セルライン: HT-1080

クローン名:HP10195

配列

ATGGCGAAGC	ACGAGCAGAT	CCTGGTCCTC	GATCCGCCCA	CAGACCTCAA	ATTCAAAGGC	60
CCCTTCACAG	ATGTAGTCAC	TACAAATCTT	AAATTGCGAA	ATCCATCGGA	TAGAAAAGTG	120
TGTTTCAAAG	TGAAGACTAC	AGCACCTCGC	CGGTACTGTG	TGAGGCCCAA	CAGTGGAATT	180
ATTGACCCAG	GGTCAACTGT	GACTGTTTCA	GTAATGCTAC	AGCCCTTTGA	CTATGATCCG	240
AATGAAAAGA	GTAAACACAA	GTTTATGGTA	CAGACAATTT	TTGCTCCACC	AAACACTTCA	300
GATATGGAAG	CTGTGTGGAA	AGAGGCAAAA	CCTGATGAAT	TAATGGATTC	CAAATTGAGA	360
TGCGTATTTG	AAATGCCCAA	TGAAAATGAT	AAATTGAATG	ATATGGAACC	TAGCAAAGCT	420
GTTCCACTGA	ATGCATCTAA	GCAAGATGGA	CCTATGCCAA	AACCACACAG	TGTTTCACTT	480
AATGATACCG	AAACAAGGAA	ACTAATGGAA	GAGTGTAAAA	GACTTCAGGG	AGAAATGATG	540
AAGCTATCAG	AAGAAAATCG	GCACCTGAGA	GATGAAGGTT	TAAGGCTCAG	AAAGGTAGCA	600
CATTCGGATA	AACCTGGATC	AACCTCAACT	GCATCCTTCA	GAGATAATGT	CACCAGTCCT	660
CTTCCTTCAC	TTCTTGTTGT	AATTGCAGCC	ATTTTCATTG	GATTCTTTCT	AGGGAAATTC	720
ATCTTG						726

[0067]

配列番号: 14

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン: U-2 OS

クローン名: HP10423

配列

ATGTTCGTTC	CCTGCGGGGA	GTCGGCCCCC	GACCTTGCCG	GCTTCACCCT	CCTAATGCCA	60
GCAGTATCTG	TTGGAAATGT	TGGCCAGCTT	GCAATGGATC	TGATTATTTC	TACACTGAAT	120
ATGTCTAAGA	TTGGTTACTT	CTATACCGAT	TGTCTTGTGC	CAATGGTTGG	AAACAATCCA	180
TATGCGACCA	CAGAAGGAAA	TTCAACAGAA	CTTAGCATAA	ATGCTGAAGT	GTATTCATTG	240
CCTTCAAGAA	AGCTGGTGGC	TCTACAGTTA	AGATCCATTT	TTATTAAGTA	TAAATCAAAG	300
CCATTCTGTG	AAAAACTGCT	TTCCTGGGTG	AAAAGCAGTG	GCTGTGCCAG	AGTCATTGTT	360
CTTTCGAGCA	GTCATTCATA	TCAGCGTAAT	GATCTGCAGC	TTCGTAGTAC	TCCCTTCCGG	420
TACCTACTTA	CACCTTCCAT	GCAAAAAGT	GTTCAAAATA	AAATAAAGAG	CCTTAACTGG	480
GAAGAAATGG	AAAAAGCCG	GTGCATTCCT	GAAATAGATG	ATTCCGAGTT	TTGTATCCGC	540
ATTCCGGGAG	GAGGTATCAC	AAAAACACTC	TATGATGAAA	GCTGTTCTAA	AGAAATCCAA	600
ATGGCAGTTC	TGCTGAAATT	TGTTTCAGAA	GGGGACAACA	TCCCAGATGC	ATTAGGTCTT	660
GTTGAGTATC	TTAATGAGTG	GCTTCAGATA	CTCAAACCAC	TTAGCGATGA	CCCCACAGTA	720
TCTGCCTCAC	GGTGGAAAAT	ACCAAGTTCT	TGGAGATTAC	TCTTTGGCAG	TGGTCTTCCC	780
CCTGCACTTT	TC					792

[0068]

配列番号:15

配列の長さ:336

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10506

配列

ATGGGGTCTC	GGTTGTCCCA	GCCTTTTGAG	TCCTATATCA	CTGCGCCTCC	CGGTACCGCC	60
GCCGCGCCCG	CCAAACCTGC	GCCCCCAGCT	ACACCCGGAG	CGCCGACCTC	CCCAGCAGAA	120
CACCGCCTGT	TGAAGACCTG	CTGGAGCTGT	CGCGTGCTTT	CTGGGTTGGG	GCTGATGGGG	180
GCGGGCGGGT	ACGTGTACTG	GGTGGCACGG	AAGCCCATGA	AGATGGGATA	CCCCCGAGT	240
CCATGGACCA	TTACGCAGAT	GGTCATCGGC	CTCAGCATTG	CCACCTGGGG	TATCGTTGTC	300
ATGGCAGACC	CCAAAGGGAA	GGCCTACCGC	GTTGTT			336

[0069]

配列番号:16

配列の長さ:438

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10507

配列

ATGCTTGCGG	GTGCCGGGAG	GCCTGGCCTC	CCCCAGGGCC	GCCACCTCTG	CTGGTTGCTC	60
TGTGCTTTCA	CCTTAAAGCT	CTGCCAAGCA	GAGGCTCCCG	TGCAGGAAGA	GAAGCTGTCA	120
GCAAGCACCT	CAAATTTGCC	ATGCTGGCTG	GTGGAAGAGT	TTGTGGTAGC	AGAAGAGTGC	180

ATGGAACAAC GCTTATTTTG GAAGTTCGAA GGGGCTGTCG TGTGTGTGGC CCTGATCTTC 360

GCTTGTCTTG	TCATCATTCG	TCAGCGACAA	TTGGACAGAA	AGGCTCTGGA	AAAGGTCCGG	420
AAGCAAATCG	AGTCCATA					438
10070	1					

[0070]

配列番号:17

配列の長さ:1032

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10548

配列

ATGGACTTTC	TGGTCCTCTT	CTTGTTCTAC	CTGGCTTCGG	TGCTGATGGG	TCTTGTTCTT	60
ATCTGCGTCT	GCTCGAAAAC	CCATAGCTTG	AAAGGCCTGG	CCAGGGGAGG	AGCACAGATA	120
TTTTCCTGTA	TAATTCCAGA	ATGTCTTCAG	AGAGCCGTGC	ATGGATTGCT	TCATTACCTT	180
TTCCATACGA	GAAACCACAC	CTTCATTGTC	CTGCACCTGG	TCTTGCAAGG	GATGGTTTAT	240
ACTGAGTACA	CCTGGGAAGT	ATTTGGCTAC	TGTCAGGAGC	TGGAGTTGTC	CTTGCATTAC	300
CTTCTTCTGC	CCTATCTGCT	GCTAGGTGTA	AACCTGTTTT	TTTTCACCCT	GACTTGTGGA	360
ACCAATCCTG	GCATTATAAC	AAAAGCAAAT	GAATTATTAT	TTCTTCATGT	TTATGAATTT	420
GATGAAGTGA	TGTTTCCAAA	GAACGTGAGG	TGCTCTACTT	GTGATTTAAG	GAAACCAGCT	480
CGATCCAAGC	ACTGCAGTGT	GTGTAACTGG	TGTGTGCACC	GTTTCGACCA	TCACTGTGTT	540
TGGGTGAACA	ACTGCATCGG	GGCCTGGAAC	ATCAGGTACT	TCCTCATCTA	CGTCTTGACC	600
TTGACGGCCT	CGGCTGCCAC	CGTCGCCATT	GTGAGCACCA	CTTTTCTGGT	CCACTTGGTG	660
GTGATGTCAG	ATTTATACCA	GGAGACTTAC	ATCGATGACC	TTGGACACCT	CCATGTTATG	720
GACACGGTCT	TTCTTATTCA	GTACCTGTTC	CTGACTTTTC	CACGGATTGT	CTTCATGCTG	780
GGCTTTGTCG	TGGTTCTGAG	CTTCCTCCTG	GGTGGCTACC	TGTTGTTTGT	CCTGTATCTG	840
GCGGCCACCA	ACCAGACTAC	TAACGAGTGG	TACAGAGGTG	ACTGGGCCTG	GTGCCAGCGT	900

TGTCCCCTTG TGGCCTGGCC TCCGTCAGCA GAGCCCCAAG TCCACCGGAA CATTCACTCC 960
CATGGGCTTC GGAGCAACCT TCAAGAGATC TTTCTACCTG CCTTTCCATG TCATGAGAGG 1020
AAGAAACAAG AA 1032

[0071]

配列番号:18

配列の長さ:291

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP10566

配列

ATGACTAAAA AGAAGCGGGA GAATCTGGGC GTCGCTCTAG AGATCGATGG GCTAGAGGAG 60

AAGCTGTCCC AGTGTCGGAG AGACCTGGAG GCCGTGAACT CCAGACTCCA CAGCCGGGAG 120

CTGAGCCCAG AGGCCAGGAG GTCCCTGGAG AAGGAGAAAA ACAGCCTAAT GAACAAAGCC 180

TCCAACTACG AGAAGGAACT GAAGTTTCTT CGGCAAGAGA ACCGGAAGAA CATGCTGCTC 240

TCTGTGGCCA TCTTTATCCT CCTGACGCTC GTCTATGCCT ACTGGACCAT G 291

[0072]

配列番号:19

配列の長さ:372

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

.

过源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10567

配列

ATGGCTACGT	CCTCGATGTC	TAAGGGTTGC	TTTGTTTTTA	AGCCAAACTC	CAAAAAGAGA	60
AAGATCTCTC	TGCCAATAGA	GGACTATTTT	AACAAAGGGA	AAAATGAGCC	TGAGGACAGT	120
AAGCTTCGAT	TCGAAACTTA	TCAGTTGATA	TGGCAGCAGA	TGAAATCTGA	AAATGAGCGA	180
CTACAAGAGG	AATTAAATAA	AAACTTGTTT	GACAATCTGA	TTGAATTTCT	GCAAAAATCA	240
CATTCTGGAT	TCCAGAAGAA	TTCAAGAGAC	TTGGGCGGTC	AAATAAAACT	CAGAGAAATT	300
CCAACTGCTG	CTCTTGTTCT	TGGTATATAT	GCGTATGTTT	GTTCATGCAT	GCATCTCTGT	360
GTATTTCGTT	TT					372

[0073]

配列番号:20

配列の長さ:981

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10568

配列

60	GTGCCTGAGT	TAGGCTTCCT	GGGGCCCTGC	CTTTCTCTGC	TCCCGGGGCC	ATGGCCGAGC
120	GGGGAAGACA	GCACGCCCCT	GAGCCGCTGA	GGTACCCACA	TGGAGGTGAA	GGGCTGGCCG
180	GGAGTGGAGC	GCTTCGCCCT	GTGGGAGACA	CAGCACGTCG	CCTGCACCTA	GCCGAGCTGA
240	CACCAATGGC	TCCTGTACTT	TCCCATCCAA	CATCTCTGAG	CTGGGAAACC	TTTGTGCAGC
300	CCCCCCACA	TGCTTCAGAA	CGGGTCAGCC	TAAGTCAAAG	CAACTGGTTC	CATCTGTATC
360	AACCTACCTC	CAGATACTGG	GTCCACCCCT	ACTGACTGAC	CCACACTGAA	GTGGGGGTGG
420	CAACCTTACT	TGGGGCTAAT	ACCAATGGGT	AGATTTCTAC	ACAACCCACC	TGCCAAGTCA

配列番号:21

配列の長さ:510

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP01550

配列の特徴:

特徴を表す記号:CDS

存在位置:66..443

特徴を決定した方法:E

配列

ACGCTTGATC CCCGGCCGCG GGGCCAGGAA GTCGGAGTTT GAGCCCCGGA GGCAGAGCGG 60

Met Ala ys yr eu Ala oln le le val Met elv var elb var

1 5 10 15

GTG GGC AGG GCC TT	F GCA CGG GCC TTC	G CGG CAG GAG TTT	GCA GCC AGC 158
Val Gly Arg Ala Ph	e Ala Arg Ala Leu	ı Arg Gln Glu Phe	Ala Ala Ser
2)	25	30
CGG GCC GCA GCT GA	T GCC CGA GGA CGC	C GCT GGA CAC CGG	TCT GCA GCC 206
Arg Ala Ala Ala As	Ala Arg Gly Arg	Ala Gly His Arg	Ser Ala Ala
3 5	40)	45
GCT TCC AAC CTC TC	C GGC CTC AGC CTC	C CAG GAG GCA CAG	CAG ATT CTC 254
Ala Ser Asn Leu Se	r Gly Leu Ser Leu	ı Gln Glu Ala Gln	Gln Ile Leu
50	55	60	
AAC GTG TCC AAG CT	G AGC CCT GAG GAC	GTC CAG AAG AAC	TAT GAA CAC 302
Asn Val Ser Lys Le	ı Ser Pro Glu Glı	Val Gln Lys Asn	Tyr Glu His
65	70	75	
TTA TTT AAG GTG AA	GAT AAA TCC GTC	GGT GGC TCC TTC	TAC CTG CAG 350
Leu Phe Lys Val Ass	n Asp Lys Ser Val	Gly Gly Ser Phe	Tyr Leu Gln
80	85	90	95
TCA AAG GTG GTC CG	C GCA AAG GAG CGC	CTG GAT GAG GAA	CTC AAA ATC 398
Ser Lys Val Val Ar	g Ala Lys Glu Arg	Leu Asp Glu Glu	Leu Lys Ile
10)	105	110
CAG GCC CAG GAG GAG	C AGA GAA AAA GGO	G CAG ATG CCC CAT	ACG TGACTGCTC 450
Gln Ala Gln Glu As	Arg Glu Lys Gly	Gln Met Pro His	Thr
115	120)	125
GCTCCCCCCG CCCACCC	CGC CGCCTCTAAT TI	CATAGCTTG GTAATAA	ATT TCTTTTCTGC 510
[0074]			
配列番号:22			
配列の長さ:697			
配列の型:核酸			

41 出証特平11-3059788

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン:Saos-2

クローン名: HP02593

配列の特徴:

特徴を表す記号:CDS

存在位置:104..499

特徴を決定した方法:E

配列

ACTTCCGGGT GTTGTCTGGC CGCCGTAGCG CGTCTTGGGT CTCCCGGCTG CCGCTGCTGC 60

CGCCGCCGCC TCGGGTCGTG GAGCCAGGAG CGACGTCACC GCC ATG GCA GGC ATC 115

Met Ala Gly Ile

1

AAA GCT TTG ATT AGT TTG TCC TTT GGA GGA GCA ATC GGA CTG ATG TTT

Lys Ala Leu Ile Ser Leu Ser Phe Gly Gly Ala Ile Gly Leu Met Phe

5 10 15 20

TTG ATG CTT GGA TGT GCC CTT CCA ATA TAC AAC AAA TAC TGG CCC CTC

Leu Met Leu Gly Cys Ala Leu Pro Ile Tyr Asn Lys Tyr Trp Pro Leu

25 30 35

TTT GTT CTA TTT TTT TAC ATC CTT TCA CCT ATT CCA TAC TGC ATA GCA

Phe Val Leu Phe Phe Tyr Ile Leu Ser Pro Ile Pro Tyr Cys Ile Ala

40 45 50

AGA AGA TTA GTG GAT GAT ACA GAT GCT ATG AGT AAC GCT TGT AAG GAA 307

Arg Arg Leu Val Asp Asp Thr Asp Ala Met Ser Asn Ala Cys Lys Glu

55 60 65

,eu Ala , le lhe leu lhr lhr bly lle val vaï ser Ala lhe oly ,eu 70 75 80

259

特平10-2088€

CCT ATT GTA TTT GCC AGA GCA CAT CTG ATT GAG TGG GGA GCT TGT GCA 403 Pro Ile Val Phe Ala Arg Ala His Leu Ile Glu Trp Gly Ala Cys Ala 85 90 95 100 CTT GTT CTC ACA GGA AAC ACA GTC ATC TTT GCA ACT ATA CTA GGC TTT 451 Leu Val Leu Thr Gly Asn Thr Val Ile Phe Ala Thr Ile Leu Gly Phe 110 105 TTC TTG GTC TTT GGA AGC AAT GAC GAC TTC AGC TGG CAG CAG TGG TGAA 500 Phe Leu Val Phe Gly Ser Asn Asp Asp Phe Ser Trp Gln Gln Trp 120 125 130 AAGAAATTAC TGAACTATTG TCAAATGGAC TTCCTGTCAT TTGTTGGCCA TTCACGCACA 560 CAGGAGATGG GGCAGTTAAT GCTGAATGGT ATAGCAAGCC TCTTGGGGGT ATTTTAGGTG 620 CTCCCTTCTC ACTTTTATTG TAAGCATACT ATTTTCACAG AGACTTGCTG AAGGATTAAA 680 AGGATTTTCT CTTTTGG 697

[0075]

配列番号:23

配列の長さ:1619

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:フィブロサルコーマ

セルライン: HT-1080

クローン名:HP10195

配列の特徴:

特徴を表す記号: CDS

存在位置:287..1015

特徴を決定した方法:E

配列

GCAC	GAGGC	CCG T	TCAC(GTGG(GT CO	GCCG	AGGCT	r cgo	CAAG	rgcg	CGTC	GCCC	GTG (GCGGC	CTGGTG	60
TGGC	GGTTC	GAG [TCAG:	TTGT(GG G	ACCC(GGAGO	C TGO	CTGAG	CCCA	GCGC	GTG	GCC (CACCO	GAACCO	120
GTG!	A CACA	GC (GGCA	GGCG7	A TI	GGGC7	rcggo	G AGO	CCGC	GAGC	CTGC	CCT	CGT (CCTAC	GAGCTC	180
GGC	CGAGO	CCG T	TCGC(CGCC	GT CO	GTCCG	CCCG	C CCC	CCAG	TCAG	CAAA	CCG	CCG (CCGCC	GGGCGC	240
GCCC	CCCGC	CTC :	TGCG(CTGT	CT C	rccg <i>i</i>	ATGG(C GTO	CCGC	CTCA	GGGC	GCC I	ATG (GCG A	AAG	295
												}	let I	Ala I	_ys	
													1			
CAC	GAG	CAG	ATC	CTG	GTC	CTC	GAT	CCG	CCC	ACA	GAC	CTC	AAA	TTC	AAA	343
∄is	Glu	Gln	Ile	Leu	Val	Leu	Asp	Pro	Pro	Thr	Asp	Leu	Lys	Phe	Lys	
	5					10					15					
GGC	CCC	TTC	ACA	GAT	GTA	GTC	ACT	ACA	AAT	CTT	AAA	TTG	CGA	AAT	CCA	391
Gly	Pro	Phe	Thr	Asp	Val	Val	Thr	Thr	Asn	Leu	Lys	Leu	Arg	Asn	Pro	
20					2 5					30					35	
TCG	GAT	AGA	AAA	GTG	TGT	TTC	AAA	GTG	AAG	ACT	ACA	GCA	CCT	CGC	CGG	439
Ser	Asp	Arg	Lys	Val	Cys	Phe	Lys	Val	Lys	Thr	Thr	Ala	Pro	Arg	Arg	
				40					4 5					50		
TAC	TGT	GTG	AGG	CCC	AAC	AGT	GGA	ATT	ATT	GAC	CCA	GGG	TCA	ACT	GTG	487
Tyr	Cys	Val	Arg	Pro	Asn	Ser	Gly	Ile	Ile	Asp	Pro	Gly	Ser	Thr	Val	
			55					60					65			
ACT	GTT	TCA	GTA	ATG	CTA	CAG	CCC	TTT	GAC	TAT	GAT	CCG	AAT	GAA	AAG	535
Thr	Val	Ser	Val	Met	Leu	Gln	Pro	Phe	Asp	Tyr	Asp	Pro	Asn	Glu	L y s	
		70					75					80				
AGT	AAA	CAC	AAG	TTT	ATG	GTA	CAG	ACA	ATT	TTT	GCT	CCA	CCA	AAC	ACT	583
Ser	Lys	His	Lys	Phe	Met	Val	Gln	Thr	He	Phe	Ala	Pro	Pro	Asn	Thr	
	85					90					95					

ser Asp Met Glu Ala Val Trp Lys olu Ala Lys Ero Asp Glu Leu Met 115 105 100 110

GAT TCC	AAA T	TG AGA	TGC	GTA	TTT	GAA	ATG	CCC	AAT	GAA	AAT	GAT	AAA	679
Asp Ser	Lys L	eu Arg	Cys	Val	Phe	Glu	Met	Pro	Asn	Glu	Asn	Asp	Lys	
		120					125					130		
TTG AAT	GAT A	ATG GAA	CCT	AGC	AAA	GCT	GTT	CCA	CTG	AAT	GCA	TCT	AAG	727
Leu Asn	Asp M	let Glu	Pro	Ser	Lys	Ala	Val	Pro	Leu	Asn	Ala	Ser	Lys	
	1	35				140					145			
CAA GAT	GGA C	CCT ATG	CCA	AAA	CCA	CAC	AGT	GTT	TCA	CTT	AAT	GAT	ACC	775
Gln Asp	Gly F	ro Met	Pro	Lys	Pro	His	Ser	Val	Ser	Leu	Asn	Asp	Thr	
	150				155					160				
GAA ACA	AGG A	AAA CTA	ATG	GAA	GAG	TGT	AAA	AGA	CTT	CAG	GGA	GAA	ATG	823
Glu Thr	Arg L	ys Leu	Met	Glu	Glu	Cys	Lys	Arg	Leu	Gln	Gly	Glu	Met	
165				170					175					
ATG AAG	CTA I	TCA GAA	GAA	AAT	CGG	CAC	CTG	AGA	GAT	GAA	GGT	TTA	AGG	871
Met Lys	Leu S	Ser Glu	Glu	Asn	Arg	His	Leu	Arg	Asp	Glu	Gly	Leu	Arg	
180			185					190					195	
CTC AGA	AAG C	GTA GCA	CAT	TCG	GAT	AAA	CCT	GGA	TCA	ACC	TCA	ACT	GCA	919
Leu Arg	Lys V	Val Ala	His	Ser	Asp	Lys	Pro	Gly	Ser	Thr	Ser	Thr	Ala	
		200					205					210		
TCC TTC	AGA C	GAT AAT	GTC	ACC	AGT	CCT	CTT	CCT	TCA	CTT	CTT	GTT	GTA	967
Ser Phe	Arg A	Asp Asn	Val	Thr	Ser	Pro	Leu	Pro	Ser	Leu	Leu	Val	Val	
	2	215				220					225			
ATT GCA	GCC A	ATT TTC	ATT	GGA	TTC	TTT	CTA	GGG	AAA	TTC	ATC	TTG		1012
lle Ala	Ala]	lle Phe	Ιle	Gly	Phe	Phe	Leu	Gly	Lys	Phe	Ile	Leu		
	230				235					240				
TAGAGTG	AAG C	ATGCAGA	GT G	CTGT	TTCT'	T TT	TTTT	TTTT	TTC	TCTT	GAC	CAGA	AAAA	1070
GATTTGT	TTA CO	CTACCAT	TT CA	ATTG	GTAG'	T AT	GGCC	CACG	GTG	ACCA	TTT	TTTT	GTGTGT	1130
ACAGCGT	CAT AT	TAGGCTT	TG C	CTTT.	AATG.	A TC	TCTT	ACGG	TTA	GAAA	ACA	CAAT	AAAAAC	1190
AAACTGT	TCG G	CTACTGG	AC AC	GGTT	GTAT.	A TT.	ACCA	GATC	ATC	ACTA	GCA	GATG	TCAGTT	1250
GCACATT	GAG TO	CCTTTAT	GA A	ATTC	ATAA	A TA	AAGA	ATTG	TTC	TTTC	TTT	GTGG	TTTTAA	1310

[0076]

配列番号:24

配列の長さ:1066

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:骨肉腫

セルライン: U-2 OS

クローン名: HP10423

配列の特徴:

特徴を表す記号: CDS

存在位置:65..859

特徴を決定した方法:E

配列

CTTCTTGCTG CCCTCGTTCT TGCCGGGGCC GCGGTTAGTC CCTGCTGGCC ACCCCACTGC 60

GACC ATG TTC GTT CCC TGC GGG GAG TCG GCC CCC GAC CTT GCC GGC TTC 109

Met Phe Val Pro Cys Gly Glu Ser Ala Pro Asp Leu Ala Gly Phe

 $\mathcal{S}=\{\mathcal{S}_{1},\ldots,\mathcal{S}_{n},\mathcal{$

Thr Leu Leu Met Pro Ala Val Ser Val Gly Asn Val Gly Gln Leu Ala

				20					25					30		
ATG	GAT	CTG	ATT	ATT	TCT	ACA	CTG	AAT	ATG	TCT	AAG	ATT	GGT	TAC	TTC	205
Met	Asp	Leu	He	Ile	Ser	Thr	Leu	Asn	Met	Ser	Lys	Ile	Gly	Tyr	Phe	
			35					40					4 5			
TAT	ACC	GAT	TGT	CTT	GTG	CCA	ATG	GTT	GGA	AAC	AAT	CCA	TAT	GCG	ACC	253
Tyr	Thr	Asp	Cys	Leu	Val	Pro	Met	Val	Gly	Asn	Asn	Pro	Tyr	Ala	Thr	
		50					55					60				
ACA	GAA	GGA	AAT	TCA	ACA	GAA	CTT	AGC	ATA	AAT	GCT	GAA	GTG	TAT	TCA	301
Thr	Glu	Gly	Asn	Ser	Thr	Glu	Leu	Ser	Ile	Asn	Ala	Glu	Val	Tyr	Ser	
	65					70					7 5					
TTG	CCT	TCA	AGA	AAG	CTG	GTG	GCT	CTA	CAG	TTA	AGA	TCC	ATT	TTT	ATT	349
Leu	Pro	Ser	Arg	Lys	Leu	Val	Ala	Leu	Gln	Leu	Arg	Ser	Ile	Phe	Ile	
80					85					90					95	
AAG	TAT	AAA	TCA	AAG	CCA	TTC	TGT	GAA	AAA	CTG	CTT	TCC	TGG	GTG	AAA	397
Lys	Tyr	Lys	Ser	Lys	Pro	Phe	Cys	Glu	Lys	Leu	Leu	Ser	Trp	Val	Lys	
				100					105					110		
AGC	AGT	GGC	TGT	GCC	AGA	GTC	ATT	GTT	CTT	TCG	AGC	AGT	CAT	TCA	TAT	445
Ser	Ser	Gly	Cys	Ala	Arg	Val	Ile	Val	Leu	Ser	Ser	Ser	His	Ser	Tyr	
			115					120					125			
CAG	CGT	AAT	GAT	CTG	CAG	CTT	CGT	AGT	ACT	CCC	TTC	CGG	TAC	CTA	CTT	493
Gln	Arg	Asn	Asp	Leu	Gln	Leu	Arg	Ser	Thr	Pro	Phe	Arg	Tyr	Leu	Leu	
		130					135					140				
ACA	CCT	TCC	ATG	CAA	AAA	AGT	GTT	CAA	AAT	AAA	ATA	AAG	AGC	CTT	AAC	541
Thr	Pro	Ser	Met	Gln	Lys	Ser	Val	Gln	Asn	Lys	Ile	Lys	Ser	Leu	Asn	
	145					150					155					
TGG	GAA	GAA	ATG	GAA	AAA	AGC	CGG	TGC	ATT	CCT	GAA	ATA	GAT	GAT	TCC	589
Trp	Glu	Glu	Met	Glu	Lys	Ser	Arg	Cys	Ile	Pro	Glu	Ile	Asp	Asp	Ser	
160					165					170					175	
GAG	TTT	TGT	ATC	CGC	ATT	CCG	GGA	GGA	GGT	ATC	ACA	AAA	ACA	CTC	TAT	637

Glu Phe Cys Ile Arg Ile Pro Gly Gly Gly Ile Thr Lys Thr Leu Tyr	
180 185 190	
GAT GAA AGC TGT TCT AAA GAA ATC CAA ATG GCA GTT CTG CTG AAA TTT	685
Asp Glu Ser Cys Ser Lys Glu Ile Gln Met Ala Val Leu Leu Lys Phe	
195 200 205	
GTT TCA GAA GGG GAC AAC ATC CCA GAT GCA TTA GGT CTT GTT GAG TAT	733
Val Ser Glu Gly Asp Asn Ile Pro Asp Ala Leu Gly Leu Val Glu Tyr	
210 215 220	
CTT AAT GAG TGG CTT CAG ATA CTC AAA CCA CTT AGC GAT GAC CCC ACA	781
Leu Asn Glu Trp Leu Gln Ile Leu Lys Pro Leu Ser Asp Asp Pro Thr	
225 230 235	
GTA TCT GCC TCA CGG TGG AAA ATA CCA AGT TCT TGG AGA TTA CTC TTT	829
Val Ser Ala Ser Arg Trp Lys Ile Pro Ser Ser Trp Arg Leu Leu Phe	
240 245 250 255	
GGC AGT GGT CTT CCC CCT GCA CTT TTC TGATCTAATT TCTGTTTTAT ACCT	880
Gly Ser Gly Leu Pro Pro Ala Leu Phe	
260	
TATACCCAAA ACACTTACTA CCAACACAGC TGTTAAACAT TCTATACAAA AAAATTGTAT	940
GATCTGGTAT TAGGAAATTA CTTTCACAGT AAATATCAAA GAAAAAAGAT TAAGGGTCTC	1000
TTTGCCATGC TTTTCATCAT ATGCACCAAA TGTAAATTTT GTACAATAAA ATTTTATTTC	1060
CTAAGT	1066
[0077]	

[0077]

配列番号:25

配列の長さ:618

配列の型:核酸

鎖の数: 二本鎖

配列の種類: ロンコー・・・ペント

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名:HP10506

配列の特徴:

特徴を表す記号: CDS

存在位置: 54.. 392

特徴を決定した方法:E

配列

GTT	FACG	CCA (GTTT	GAAC	CA A	AGAC	GCCC	A AGO	GTTG	AGGC	CGAG	GTTC	CAG	AGC A	ATG	56
														1	¶e t	
															1	
GGG	TCT	CGG	TTG	TCC	CAG	CCT	TTT	GAG	TCC	TAT	ATC	ACT	GCG	CCT	CCC	104
Gly	Ser	Arg	Leu	Ser	Gln	Pro	Phe	Glu	Ser	Tyr	Ile	Thr	Ala	Pro	Pro	
			5					10					15			
GGT	ACC	GCC	GCC	GCG	CCC	GCC	AAA	CCT	GCG	CCC	CCA	GCT	ACA	CCC	GGA	152
Gly	Thr	Ala	Ala	Ala	Pro	Ala	Lys	Pro	Ala	Pro	Pro	Ala	Thr	Pro	Gly	
		20					25					30				
GCG	CCG	ACC	TCC	CCA	GCA	GAA	CAC	CGC	CTG	TTG	AAG	ACC	TGC	TGG	AGC	200
Ala	Pro	Thr	Ser	Pro	Ala	Glu	His	Arg	Leu	Leu	Lys	Thr	Cys	Trp	Ser	
	35					40					45					
TGT	CGC	GTG	CTT	TCT	GGG	TTG	GGG	CTG	ATG	GGG	GCG	GGC	GGG	TAC	GTG	248
Cys	Arg	Val	Leu	Ser	Gly	Leu	Gly	Leu	Met	Gly	Ala	Gly	Gly	Tyr	Val	
50					55					60					65	
TAC	TGG	GTG	GCA	CGG	AAG	CCC	ATG	AAG	ATG	GGA	TAC	CCC	CCG	AGT	CCA	296
Tyr	Trp	Val	Ala	Arg	Lys	Pro	Met	Lys	Met	Gly	Tyr	Pro	Pro	Ser	Pro	
				70					75					80		
TGG	ACC	ATT	ACG	CAG	ATG	GTC	ATC	GGC	CTC	AGC	ATT	GCC	ACC	TGG	GGT	344
Trp	Thr	Ile	Thr	Gln	Met	Val	Ιle	Gly	Leu	Ser	Ile	Ala	Thr	Trp	Gly	
			85					90					95			

ATC GTT GTC ATG GCA G	AC CCC AAA GGG A	AG GCC TAC CGC GTT	GTT T 390
lle Val Val Met Ala A	sp Pro Lys Gly L	ys Ala Tyr Arg Val	Val
100	105	110	
GAAAGTACCA CCAGTGAATC	TGTCTTCTGT CTCT	GTCCCT TTCCCCGTGA C	ACACACAGC 450
AGGCATGGAA TTTAATGGGT	GTTCTGGACA GACA	CTTGTA CATGGACAGA C	ATCACTACT 510
GTGGATACTA CAAGACTGAG	AAGAAAATCG TATG	TTGTCA TTCTCTGGCT A	TGGAGTGTT 570
TGTGGCCTTC ACAGATTTCA	CAGGAACCAA TAAA	TCCCTC AGAGAAGT	618
[0078]			

配列番号:26

配列の長さ:1021

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10507

配列の特徴:

特徴を表す記号:CDS

存在位置:413..853

特徴を決定した方法:E

配列

AAGACTATAA GCCCCAGCGG GCGACGACCG AACGCCCCCG GGAACACCGG GCCCCGAGCT 60
CGGTCCCGCG CCCGAGGATC CTCCACGGGG CTAGATGGCT GCGTCGGGGG CGGGAGCGGA 120
GGTGAGCGGG CGCTAGGGCC GCGAGCCCCC GCCGGCCCTT CCTCCAGCGC CCTGCGGACC 180

AGG	CCTG	TGG	AGTA	GGTC	CC T	CTGT	TCCG	A CA	GGTG	CGAC	ACT	TGGC	GCT	CC A	TG CTT	418
														M	et Leu	
															1	
GCG	GGT	GCC	GGG	AGG	CCT	GGC	CTC	CCC	CAG	GGC	CGC	CAC	СТС	TGC	TGG	466
Ala	Gly	Ala	Gly	Arg	Pro	Gly	Leu	Pro	Gln	Gly	Arg	His	Leu	Cys	Trp	
		5	;				10					15				
TTG	CTC	TGT	GCT	TTC	ACC	TTA	AAG	CTC	TGC	CAA	GCA	GAG	GCT	CCC	GTG	514
Leu	Leu	Cys	Ala	Phe	Thr	Leu	Lys	Leu	Cys	Gln	Ala	Glu	Ala	Pro	Val	
	20					25					30					
CAG	GAA	GAG	AAG	CTG	TCA	GCA	AGC	ACC	TCA	AAT	TTG	CCA	TGC	TGG	CTG	562
Gln	Glu	Glu	Lys	Leu	Ser	Ala	Ser	Thr	Ser	Asn	Leu	Pro	Cys	Trp	Leu	
35					40					4 5					50	
GTG	GAA	GAG	TTT	GTG	GTA	GCA	GAA	GAG	TGC	TCT	CCA	TGC	TCT	AAT	TTC	610
Val	Glu	Glu	Phe	Val	Val	Ala	Glu	Glu	Cys	Ser	Pro	Cys	Ser	Asn	Phe	
				55					60					65		
CGG	GCT	AAA	ACT	ACC	CCT	GAG	TGT	GGT	CCC	ACA	GGA	TAT	GTA	GAG	AAA	658
Arg	Ala	Lys	Thr	Thr	Pro	Glu	Cys	Gly	Pro	Thr	Gly	Tyr	Val	Glu	L ys	
			70					75					80			
ATC	ACA	TGC	AGC	TCA	TCT	AAG	AGA	AAT	GAG	TTC	AAA	AGC	TGC	CGC	TCA	706
Ile	Thr	Cys	Ser	Ser	Ser	Lys	Arg	Asn	Glu	Phe	Lys	Ser	Cys	Arg	Ser	
		85					90					95				
GCT	TTG	ATG	GAA	CAA	CGC	TTA	TTT	TGG	AAG	TTC	GAA	GGG	GCT	GTC	GTG	754
Ala	Leu	Met	Glu	Gln	Arg	Leu	Phe	Trp	Lys	Phe	Glu	Gly	Ala	Val	Val	
	100					105					110					
TGT	GTG	GCC	CTG	ATC	TTC	GCT	TGT	CTT	GTC	ATC	ATT	CGT	CAG	CGA	CAA	802
Cys	Val	Ala	Leu	Ile	Phe	Ala	C y s	Leu	Val	Ile	Ile	Arg	Gln	Arg	Gln	
115					120					125					130	
TTG	GAC	AGA	AAG	GCT	CTG	GAA	AAG	GTC	CGG	AAG	CAA	ATC	GAG	TCC	ATA	850
Leu	Asp	Arg	Lys	Ala	Leu	Glu	Lys	Val	Arg	Lys	Gln	Ile	Glu	Ser	Ile	

135 140 145

TAGCTACATT CCACCCTTGT ATCCTGGGTC TTAGAGACCC TATCTCAGAC AGTGAAAGTG 910 ANATGGACTG ATTTGCACTC TTGGTTCTTT GGAGCCTTGT GGTGGAATCC CCTTTTCCCC 970 ATCTTCTTCT TTCAGATCAT TAATGAGCAG AATAAAAAGA GTAAAATGGT T 1021

[0079]

配列番号:27

配列の長さ:1432

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10548

配列の特徴:

特徴を表す記号:CDS

存在位置: 3 3 1. . 1 3 6 5

特徴を決定した方法:E

配列

ATCGCGCCCG GGAGGCGCCG GAGCCCAGCG GCTGGCGGGC CGCCGTCCCA CCCCCACCTC 60 GCCCGAGTCC GGGGCGCCC CGGTGTCCCC TCCGAGCCTG CTGCACTCCA CGTCCCCCTA 120 CCAGGGCTCC AGCCCCCAGG GAAATCTCCG ACCAGGCCCG CCCAGGAGCC AGATCCAGGC 180 TCCTGGAAGA ACCATGTCCG GCAGCTACTG GTCATGCCAG GCACACACTG CTGCCCAAGA 240 GGAGCTGCTG TTTGAATTAT CTGTGAATGT TGGGAAGAGG AATGCCAGAG CTGCCGGCTG 300 AAAATTACCC AACCAAGAGA AATCTGCAGG ATG GAC TTT CTG GTC CTC TTC TTG 354

TTC TAC CTG GCT TCG GTG CTG ATG GGT CTT GTT CTT ATC TGC GTC TGC

Phe	Tyr	Leu	Ala	Ser	Val	Leu	Met	Gly	Leu	Val	Leu	He	Cys	Val	Cys	
	10					15					20					
TCG	AAA	ACC	CAT	AGC	TTG	AAA	GGC	CTG	GCC	AGG	GGA	GGA	GCA	CAG	ATA	450
Ser	Lys	Thr	His	Ser	Leu	Lys	Gly	Leu	Ala	Arg	Gly	Gly	Ala	Gln	Ile	
25					30					35					40	
TTT	TCC	TGT	ATA	ATT	CCA	GAA	TGT	CTT	CAG	AGA	GCC	GTG	CAT	GGA	TTG	498
Phe	Ser	Cys	Ile	Ile	Pro	Glu	Cys	Leu	Gln	Arg	Ala	Val	His	Gly	Leu	
				45					50					55		
CTT	CAT	TAC	CTT	TTC	CAT	ACG	AGA	AAC	CAC	ACC	TTC	ATT	GTC	CTG	CAC	546
Leu	His	Tyr	Leu	Phe	His	Thr	Arg	Asn	His	Thr	Phe	Ile	Val	Leu	His	
			60					6 5					70			
CTG	GTC	TTG	CAA	GGG	ATG	GTT	TAT	ACT	GAG	TAC	ACC	TGG	GAA	GTA	TTT	594
Leu	Val	Leu	Gln	Gly	Met	Val	Tyr	Thr	Glu	Tyr	Thr	Trp	Glu	Val	Phe	
		7 5					80					85				
GGC	TAC	TGT	CAG	GAG	CTG	GAG	TTG	TCC	TTG	CAT	TAC	CTT	CTT	CTG	CCC	642
Gly	Tyr	Cys	Gln	Glu	Leu	Glu	Leu	Ser	Leu	His	Tyr	Leu	Leu	Leu	Pro	
	90					95					100					
			CTA													690
Tyr	Leu	Leu	Leu	Gly	Val	Asn	Leu	Phe	Phe	Phe	Thr	Leu	Thr	Cys	Gly	
105					110					115					120	
ACC	AAT	CCT	GGC	ATT	ATA	ACA	AAA	GCA	AAT	GAA	TTA	TTA	TTT	CTT	CAT	738
Thr	Asn	Pro	Gly	Ile	He	Thr	Lys	Ala	Asn	Glu	Leu	Leu	Phe	Leu	His	
				125					130					135		
GTT	TAT	GAA	TTT	GAT	GAA	GTG	ATG	TTT	CCA	AAG	AAC	GTG	AGG	TGC	TCT	786
Val	Ţyr	Glu	Phe	Asp	Glu	Val	Met	Phe	Pro	Lys	Asn	Val	Arg	Cys	Ser	
			140					145					150			
ACT	TGT	GAT	TTA	AGG	AAA	CCA	GCT	CGA	TCC	AAG	CAC	TGC	AGT	GTG	TGT	834
Thr	Cys	Asp	Leu	Arg	Lys	Pro	Ala	Arg	Ser	Lys	His	Cys	Ser	Val	Cys	
		155					160					165				

AAC	TGG	TGT	GTG	CAC	CGT	TTC	GAC	CAT	CAC	TGT	GTT	TGG	GTG	AAC	AAC	882
Asn	Trp	Cys	Val	His	Arg	Phe	Asp	His	Нis	Cys	Val	Trp	Val	Asn	Asn	
	170					175					180					
TGC	ATC	GGG	GCC	TGG	AAC	ATC	AGG	TAC	TTC	CTC	ATC	TAC	GTC	TTG	ACC	930
Cys	Ile	Gly	Ala	Trp	Asn	Ile	Arg	Tyr	Phe	Leu	He	Tyr	Val	Leu	Thr	
185					190					195					200	
TTG	ACG	GCC	TCG	GCT	GCC	ACC	GTC	GCC	ATT	GTG	AGC	ACC	ACT	TTT	CTG	978
Leu	Thr	Ala	Ser	Ala	Ala	Thr	Val	Ala	Ile	Val	Ser	Thr	Thr	Phe	Leu	
				205					210					215		
GTC	CAC	TTG	GTG	GTG	ATG	TCA	GAT	TTA	TAC	CAG	GAG	ACT	TAC	ATC	GAT	1026
Val	His	Leu	Val	Val	Met	Ser	Asp	Leu	Tyr	Gln	Glu	Thr	Tyr	Ile	Asp	
			220					225					230			
GAC	CTT	GGA	CAC	CTC	CAT	GTT	ATG	GAC	ACG	GTC	TTT	CTT	ATT	CAG	TAC	1074
Asp	Leu	Gly	His	Leu	His	Val	Met	Asp	Thr	Val	Phe	Leu	Ile	Gln	Tyr	
		235					240					245				
CTG	TTC	CTG	ACT	TTT	CCA	CGG	ATT	GTC	TTC	ATG	CTG	GGC	TTT	GTC	GTG	1122
Leu	Phe	Leu	Thr	Phe	Pro	Arg	Ile	Val	Phe	Met	Leu	Gly	Phe	Val	Val	
	250					255					260					
GTT	CTG	AGC	TTC	CTC	CTG	GGT	GGC	TAC	CTG	TTG	TTT	GTC	CTG	TAT	CTG	1170
Val	Leu	Ser	Phe	Leu	Leu	Gly	Gly	Tyr	Leu	Leu	Phe	Val	Leu	Tyr	Leu	
265					270					275					280	
GCG	GCC	ACC	AAC	CAG	ACT	ACT	AAC	GAG	TGG	TAC	AGA	GGT	GAC	TGG	GCC	1218
Ala	Ala	Thr	Asn		Thr	Thr	Asn	Glu		Tyr	Arg	Gly	Asp		Ala	
				285					290					295		
TGG	TGC	CAG	CGT	TGT	CCC	CTT	GTG	GCC	TGG	CCT	CCG	TCA	GCA	GAG	CCC	1266
Ţrp	Cys	Gln	Arg	Cys	Pro	Leu	Val	Ala	Trp	Pro	Pro	Ser	Ala	Glu	Pro	
1.1	V: I	À.	. (-,-	AA	A'. İ	1.		Α.	5.50.55.1	• •	. 11 -	Ņķ.	.1.A.		AA	* 1 4 4
Gln	Val	His	Arg	Asn	He	His	Ser	His	Gly],eu	Arg	Ser	Asn	Leu	Gln	

315

320

325

GAG ATC TTT CTA CCT GCC TTT CCA TGT CAT GAG AGG AAG AAA CAA GAA

1362
Glu Ile Phe Leu Pro Ala Phe Pro Cys His Glu Arg Lys Lys Gln Glu

u ile ine geu i.

335

340

TGACAAGTGT ATGACTGCCT TTGAGCTGTA GTTCCCGTTT ATTTACACAT GTGGATCC

1420

TCGTTTTCCA AG

1432

[0080]

330

配列番号:28

配列の長さ:601

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10566

配列の特徴:

特徴を表す記号:CDS

存在位置:62..355

特徴を決定した方法:E

配列

1

ATGCGCACAT AGCGACTTGG TGGGCGCGTC CAGTGATGAC TGGGGGGATCC CGGCAAGTAA

C ATG ACT AAA AAG AAG CGG GAG AAT CTG GGC GTC GCT CTA GAG ATC GAT 109

Met Thr Lys Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile Asp

10

15

GGG CTA GAG GAG AAG CTG TCC CAG TGT CGG AGA GAC CTG GAG GCC GTG

157

60

Gly Leu Glu Glu Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu Ala Val

20

5

25

30

AAC TCC AGA CTC CAC AGC CGG GAG CTG AGC CCA GAG GCC AGG AGG TCC	205
Asn Ser Arg Leu His Ser Arg Glu Leu Ser Pro Glu Ala Arg Arg Ser	
3 5 4 0 4 5	
CTG GAG AAG GAG AAA AAC AGC CTA ATG AAC AAA GCC TCC AAC TAC GAG	253
Leu Glu Lys Glu Lys Asn Ser Leu Met Asn Lys Ala Ser Asn Tyr Glu	
50 55 60	
AAG GAA CTG AAG TTT CTT CGG CAA GAG AAC CGG AAG AAC ATG CTG CTC	301
Lys Glu Leu Lys Phe Leu Arg Gln Glu Asn Arg Lys Asn Met Leu Leu	
65 70 75 80	
TCT GTG GCC ATC TTT ATC CTC CTG ACG CTC GTC TAT GCC TAC TGG ACC	349
Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala Tyr Trp Thr	
85 90 95	
ATG TGAGCCTGGC ACTTCCCCAC AACCAGCACA GGCTTCCACT TGGCCCCT	400
Met	
TGATCAGGAT CAAGCAGGCA CTTCAAGCCT CAATAGGACC AAGGTGCTGG GGTGTTCCCC	460
TCCCAACCTA GTGTTCAAGC ATGGCTTCCT GGCGGCCCAG GCCTTGCCTC CCTGGCCTGC	520
TGGGGGGTTC CGGGTCTCCA GAAGGACATG GTGCTGGTCC CTCCCTTAGC CCAAGGGAGA	580
GGCAATAAAG ACACAAAGCT G	601

[0081]

配列番号: 29

配列の長さ:585

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

生物名:ふもとサレゴレニ

細胞の種類:胃癌

クローン名: HP10567

配列の特徴:

特徴を表す記号: CDS

存在位置:78..452

特徴を決定した方法:E

配列

ACT	AACCI	rct (GCCC.	rgc a	GC C	GCGA	GGGC	G CG	CGGG	IAA AT	. CCC	GAGT	GCA	TCTG	GAATA	C 60
GCAC	GAGTO	CAG :	TAAGA	ACC .	ATG (GCT	ACG	TCC	TCG	ATG	TCT	AAG	GGT	TGC	TTT	110
]	Met	Ala	Thr	Ser	Ser	Met	Ser	Lys	Gly	Cys	Phe	
					1				5					10		
GTT	TTT	AAG	CCA	AAC	TCC	AAA	AAG	AGA	AAG	ATC	тст	CTG	CCA	ATA	GAG	158
Val	Phe	Lys	Pro	Asn	Ser	Lys	Lys	Arg	Lys	Ile	Ser	Leu	Pro	lle	Glu	
			15					20					25	j		
GAC	TAT	TTT	AAC	AAA	GGG	AAA	AAT	GAG	CCT	GAG	GAC	AGT	AAG	CTT	CGA	206
Asp	Tyr	Phe	Asn	Lys	Gly	Lys	Asn	Glu	Pro	Glu	Asp	Ser	Lys	Leu	Arg	
		30					35	i				40	1			
TTC	GAA	ACT	TAT	CAG	TTG	ATA	TGG	CAG	CAG	ATG	AAA	TCT	GAA	AAT	GAG	254
Phe	Glu	Thr	Tyr	Gln	Leu	Ile	Trp	Gln	Gln	Met	Lys	Ser	Glu	ı Asn	Glu	
	45					50					55	j				
CGA	CTA	CAA	GAG	GAA	TTA	AAT	AAA	AAC	TTG	TTT	GAC	AAT	CTC	TTA 3	GAA	302
Arg	Leu	Gln	Glu	Glu	Leu	Asn	Lys	Asn	Leu	P h e	Asp	Asn	Leu	ı Ile	Glu	
60					65					70)				75	
TTT	CTG	CAA	AAA	TCA	CAT	TCT	GGA	TTC	CAG	AAG	TAA ;	TCA	AGA	GAC	TTG	350
Phe	Leu	Gln	Lys	Ser	His	Ser	Gly	Phe	Gln	Lys	Asn	Ser	Arg	g Asp	Leu	
				80					85	j				90		
GGC	GGT	CAA	ATA	AAA	CTC	AGA	GAA	ATT	CCA	ACT	GCT	GCT	CTI	GTT	CTT	398
Gly	Gly	Gln	Ile	Lys	Leu	Arg	Glu	lle	Pro	Thr	Ala	Ala	Lei	ı Val	Leu	
			95					100	1				105	5		
ССТ	АТА	TAT	CCC	TAT	СТТ	тст	TCA	TCC	\ ATC	CAT	СТС	тст	СТ	TTT	ССТ	116

110

115

120

TTT TAAATTTTTT TTTATTGTTG AGAATAGTGG AAGGACCTGT TTTGATGAGC C

500

Phe

TATTTTGTCT CTCTTATTTG TACAATTAAA CCAACTATAG TTTATATTAC ATATTTTCAA

560

AAACCAATAA AAATTCCTTA TCTTT

585

[0082]

配列番号:30

配列の長さ:1100

配列の型:核酸

鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類:cDNA to mRNA

起源:

生物名:ホモ=サピエンス

細胞の種類:胃癌

クローン名: HP10568

配列の特徴:

特徴を表す記号:CDS

存在位置:57..1040

特徴を決定した方法:E

配列

AGACCGACCT TGACCGCCCA CCTGGCAGGA GCAGGACAGG ACGGCCGGAC GCGGCC ATG

59

Met

1

Ala alu leu Fro aly Fro The Leu Lys aly Ala Leu Leu aly The Leu

5

10

15

TGC	CTG	AGT	GGG	CTG	GCC	GTG	GAG	GTG	AAG	GTA	CCC	ACA	GAG	CCG	CTG	155
Cys	Leu	Ser	Gly	Leu	Ala	Val	Glu	Val	Lys	Val	Pro	Thr	Glu	Pro	Leu	
		20					25					30				
AGC	ACG	CCC	CTG	GGG	AAG	ACA	GCC	GAG	CTG	ACC	TGC	ACC	TAC	AGC	ACG	203
Ser	Thr	Pro	Leu	Gly	Lys	Thr	Ala	Glu	Leu	Thr	Cys	Thr	Tyr	Ser	Thr	
	35					40					4 5					
TCG	GTG	GGA	GAC	AGC	TTC	GCC	CTG	GAG	TGG	AGC	TTT	GTG	CAG	CCT	GGG	251
Ser	Val	Gly	Asp	Ser	Phe	Ala	Leu	Glu	Trp	Ser	Phe	Val	Gln	Pro	Gly	
50					55					60					65	
AAA	CCC	ATC	TCT	GAG	TCC	CAT	CCA	ATC	CTG	TAC	TTC	ACC	AAT	GGC	CAT	299
Lys	Pro	Ile	Ser	Glu	Ser	His	Pro	Ile	Leu	Tyr	Phe	Thr	Asn	Gly	His	
				70					75					80		
CTG	TAT	CCA	ACT	GGT	TCT	AAG	TCA	AAG	CGG	GTC	AGC	CTG	CTT	CAG	AAC	347
Leu	Tyr	Pro	Thr	Gly	Ser	Lys	Ser	Lys	Arg	Val	Ser	Leu	Leu	Gln	Asn	
			8 5					90					95			
CCC	CCC	ACA	GTG	GGG	GTG	GCC	ACA	CTG	AAA	CTG	ACT	GAC	GTC	CAC	CCC	395
Pro	Pro	Thr	Val	Gly	Val	Ala	Thr	Leu	Lys	Leu	Thr	Asp	Val	His	Pro	
		100					105					110				
						CTC										443
Ser	•	Thr	Gly	Thr	Tyr	Leu	Cys	Gln	Val	Asn		Pro	Pro	Asp	Phe	
	115					120					125					
						CTA										491
	Thr	Asn	Gly	Leu		Leu	He	Asn	Leu		Val	Leu	Val	Pro		
130					135	~.~			~	140	m.o.m	o m o	221	000	145	500
						CAG										539
Ser	Asn	Pro	Leu		Ser	Gln	Ser	Gly		Thr	Ser	Val	Gly		Ser	
		a	. ~ .	150	. ~ ~	m ~ =	m~~	a	155	007	c		cc:	160	T. C	F 0 7
						TCT										587
Thr	Ala	Leu	Arg	Uys	Ser	Ser	Ser	Glu	Gly	Ala	Pro	Lys	Pro	۷ a I	lyr	

			165					170					175			
AAC	TGG	GTG	CGT	CTT	GGA	ACT	TTT	CCT	ACA	CCT	TCT	CCT	GGC	AGC	ATG	635
Asn	Trp	Val	Arg	Leu	Gly	Thr	Phe	Pro	Thr	Pro	Ser	Pro	Gly	Ser	Met	
		180					185					190				
GTT	CAA	GAT	GAG	GTG	TCT	GGC	CAG	CTC	ATT	CTC	ACC	AAC	CTC	TCC	CTG	683
Val	Gln	Asp	Glu	Val	Ser	Gly	Gln	Leu	Ile	Leu	Thr	Asn	Leu	Ser	Leu	
	195					200					205					
ACC	TCC	TCG	GGC	ACC	TAC	CGC	TGT	GTG	GCC	ACC	AAC	CAG	ATG	GGC	AGT	731
Thr	Ser	Ser	Gly	Thr	Tyr	Arg	Cys	Val	Ala	Thr	Asn	Gln	Met	Gly	Ser	
210					215					220					225	
GCA	TCC	TGT	GAG	CTG	ACC	CTC	TCT	GTG	ACC	GAA	CCC	TCC	CAA	GGC	CGA	779
Ala	Ser	Cys	Glu	Leu	Thr	Leu	Ser	Val	Thr	Glu	Pro	Ser	Gln	Gly	Arg	
				230					235					240		
GTG	GCC	GGA	GCT	CTG	ATT	GGG	GTG	CTC	CTG	GGC	GTG	CTG	TTG	CTG	TCA	827
Val	Ala	Gly	Ala	Leu	Ile	Gly	Val	Leu	Leu	Gly	Val	Leu	Leu	Leu	Ser	
			245					250					255			
										AAA						875
Val	Ala		Phe	Cys	Leu	Val		Phe	Gln	Lys	Glu		Gly	Lys	Lys	
		260					265					270				
										CGG						923
Pro	•	Glu	Thr	Tyr	Gly	•	Ser	Asp	Leu	Arg		Asp	Ala	He	Ala	
	275					280					285					05.4
										GCT						971
	Gly	He	Ser	Glu		Thr	Cys	Met	Arg	Ala	Asp	Ser	Ser	Lys		
290					295					300					305	
TTC	CTG	GAA	AGA	CCC	TCG	TCT	GCC	AGC	ACC	GTG	ACG	ACC	ACC	AAG	TCC	1019

AAG CTC CCT ATG GTC GTG TGACTTCTCC CGATCCCTGA GGGCGGTGAG GGG 1070

Lys Leu Pro Met Val Val

325

GAATATCAAT AATTAAAGTC TGTGGGTACC

1100

【図面の簡単な説明】

- 【図1】 クローンHP01550がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図2】 クローンHP02593がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図3】 クローンHP10195がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図4】 クローンHP10423がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図5】 クローンHP10506がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図6】 クローンHP10507がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図7】 クローンHP10548がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図8】 クローンHP10566がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図9】 クローンHP10567がコードする蛋白質の疎水性/親水性プロフィールを示す図である。
- 【図10】 クローンHP10568がコードする蛋白質の疎水性/親水性プロフィールを示す図である。

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【要約】

【課題】 疎水性ドメインを有するヒト蛋白質、それをコードしているcDNA、このcDNAの発現ベクター、およびこのcDNAを発現させた真核細胞を提供する。

【解決手段】 配列番号1から配列番号10で表されるアミノ酸配列のいずれかを含む蛋白質、この蛋白質をコードするDNA、例えば配列番号11から配列番号20で表される塩基配列を含むcDNA、このcDNAの発現ベクター、およびこのcDNAを発現させた真核細胞。疎水性ドメインを有するヒト蛋白質をコードしているcDNAの組換え体を発現させることにより、この蛋白質並びにこの蛋白質を発現する真核細胞を提供することができる。

【選択図】 なし

金融機ポント ターコンドン

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】 申請人

【識別番号】 000173762

【住所又は居所】 神奈川県相模原市西大沼4丁目4番1号

【氏名又は名称】 財団法人相模中央化学研究所

【特許出願人】

【識別番号】 596134998

【住所又は居所】 東京都目黒区中町2丁目20番3号

【氏名又は名称】 株式会社プロテジーン

出願人履歴情報

識別番号

[000173762]

1. 変更年月日

1995年 4月14日

[変更理由]

住所変更

住 所

神奈川県相模原市西大沼4丁目4番1号

氏 名

財団法人相模中央化学研究所

出願人履歴情報

識別番号

[596134998]

1. 変更年月日 1996年 9月13日

[変更理由] 新規登録

住 所 東京都目黒区中町2丁目20番3号

氏 名 株式会社プロテジーン