11.9.3.3

EE23BTECH11065 - prem sagar

Question:

The 5th,8th and 11th terms of a GP are p,q and s respectively .show that

$$q^2 = ps$$

 $u(n) = \begin{cases} 1, & \text{if } n \ge 0 \\ 0, & \text{otherwise} \end{cases}$

solution:

Given,

$$x(n) = a \cdot r^n \cdot u(n) \tag{17}$$

$$x(8) = q$$
 (2) from (17)

$$x(11) = s (3) x(n) = \begin{cases} a \cdot r^n & \text{if } n \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

(6)

using (19)

let first term of a GP= a common ratio of GP=r we know,

nth term of a GP =
$$x(n) = a \cdot r^n$$
, if $n \ge 0$ (4)

so 5th term of
$$GP(x(5)) = a \cdot r^5 = p$$
 (5)

8th term of
$$GP(x(8)) = a \cdot r^8 = q$$

11th term of
$$GP(x(11)) = a \cdot r^{11} = s$$
 (7)

$$x(8) \cdot x(8) = a \cdot r^8 \cdot a \cdot r^8 \tag{8}$$

$$=a^2 \cdot r^{16} \tag{9}$$

$$x(5) \cdot x(11) = a \cdot r^5 \cdot a \cdot r^{11} \tag{10}$$

$$=a^2 \cdot r^{16} \tag{11}$$

$$x(8)^2 = x(5) \cdot x(11) \tag{12}$$

$$x(n) \stackrel{Z}{\longleftrightarrow} X(Z)$$
 (18)

$$X(Z) = \sum_{n = -\infty}^{\infty} x(n) \cdot Z^{-n}$$
 (19)

$$= \sum_{n=-\infty}^{\infty} a \cdot r^n \cdot u(n) \cdot z^{-n}$$
 (20)

$$= a \sum_{n=-\infty}^{\infty} r^n \cdot u(n) \cdot z^{-n}$$
 (21)

$$=a\sum_{n=0}^{\infty}r^n\cdot z^{-n} \qquad (22)$$

sum of infinite terms in G.P = $\frac{a}{1-r}$ (23)

$$p = a \cdot r^5 \tag{13}$$

$$q = a \cdot r^{8}$$

$$s = a \cdot r^{11}$$

$$q^{2} = p \cdot s$$

$$(14)$$

$$= a \cdot \frac{1}{1 - r \cdot z^{-1}}$$

$$= \frac{a}{1 - r \cdot z^{-1}}$$

$$(25)$$

$$s = a \cdot r^{11}$$
 (15)
$$q^{2} = p \cdot s$$
 (16)
$$= \frac{1 - r \cdot z^{-1}}{1 - r \cdot z^{-1}}$$
 (25)

hence proved

so,

symbol	value	description
<i>x</i> (5)	$a \cdot r^5 = p$	5th term of GP
<i>x</i> (8)	$a \cdot r^8 = q$	8th term of GP
<i>x</i> (11)	$a \cdot r^{11} = s$	11th term of GP

$R.O.C \rightarrow |z| > r$

symbol	value	description
x(n)	$a \cdot r^n$	nth term of GP
X(Z)	$\frac{a}{1-r\cdot z^{-1}}$	Z transform of $x(n)$
u(n)		unit step function