Vorlesung 9 | 24.11.2020 | 14:15–16:00 via Zoom

Handzettel

In der letzten Vorlesungen haben wir gesehen: Beschränkung eines σ -Algebra, Bedingte W-keiten, Bayes'sche Formel, Unabhängigkeit, von Z.V. erzeugten σ -Algebren, Produkt σ -Algebra.

Definition 1. Zwei Ereignisse $A, B \in \mathcal{F}$ heißen unabhängig, falls

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B).$$

Allgemeiner, heißen n Ereignisse A_1, \ldots, A_n unabhängig, falls $\forall m \leq n, 1 \leq i_1 \leq \cdots \leq i_m \leq n$,

$$\mathbb{P}\left(\cap_{k=1}^{m} A_{i_k}\right) = \prod_{k=1}^{m} \mathbb{P}\left(A_{i_k}\right).$$

Definition 2.

•

$$\Omega = \Omega_1 \times \Omega_2 = \{\omega = (\omega_1, \omega_2) | \omega_1 \in \Omega_1, \omega_2 \in \Omega_2\}$$

heißt das Produktraum von Ω_1 und Ω_2 .

• $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$ ist die kleinste σ -Algebra, die alle Menge der Form $C = A \times B$, $A \in \mathcal{F}_1$, $B \in \mathcal{F}_2$ enthält. $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$ heißt die Produkt σ -Algebra von \mathcal{F}_1 und \mathcal{F}_2 .

Lemma 3. Es gilt

- a) $\forall C \in \mathcal{F}_1 \otimes \mathcal{F}_2, x \in \Omega_1, y \in \Omega_2 \ dann, C_x \in \mathcal{F}_2, C^y \in \mathcal{F}_1$
- b) $\forall f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ messbar dann, $\forall x \in \Omega_1, y \in \Omega_2$ $f_x: (\Omega_2, \mathcal{F}_2) \to \mathbb{R}$, $f^y: (\Omega_1, \mathcal{F}_1) \to \mathbb{R}$ messbar sind.

Heutigen Vorlesung.

Satz 4. Seien \mathbb{P}_1 , \mathbb{P}_2 W-masse auf $(\Omega_1, \mathcal{F}_1)$ und $(\Omega_2, \mathcal{F}_2)$

a) $\exists ! \ \mathbb{P} = \mathbb{P}_1 \otimes \mathbb{P}_2 \text{ W-masse auf } (\Omega, \mathcal{F}_1 \otimes \mathcal{F}_2) \text{ s.d.}$

$$(\mathbb{P}_1 \otimes \mathbb{P}_2)(A \times B) = \mathbb{P}_1(A) \mathbb{P}_2(B) \qquad \forall A \in \mathcal{F}_1, B \in \mathcal{F}_2.$$

b) Falls $C \in \mathcal{F}_1 \otimes \mathcal{F}_2$, dann

$$\mathbb{P}_1 \otimes \mathbb{P}_2(C) = \int_{\Omega_1} \mathbb{P}_2(C_x) d\mathbb{P}_1(x) = \int_{\Omega_2} \mathbb{P}_1(C^y) d\mathbb{P}_2(y).$$

Satz 5. (Fubini–Tonelli) Seien $(\Omega_k, \mathcal{F}_k, \mathbb{P}_k)_{k=1,2}$ zwei W-räume, $f \geqslant 0$ eine reelle messbare Funkion auf $(\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2)$. Dann ist

$$h: x \in \Omega_1 \mapsto h(x) \coloneqq \int_{\Omega_2} f(x, y) d\mathbb{P}_2(y), \qquad \mathscr{F}_2\text{-messbar}.$$

$$h: y \in \Omega_2 \mapsto g(y) := \int_{\Omega_1} f(x, y) d\mathbb{P}_1(x), \quad \mathscr{F}_1$$
-messbar.

Dazu,

$$\int_{\Omega_1 \times \Omega_2} f \mathbf{d}(\mathbb{P}_1 \otimes \mathbb{P}_2) = \int_{\Omega_1} h \mathbf{d} \mathbb{P}_1 = \int_{\Omega_2} g \mathbf{d} \mathbb{P}_2.$$

Satz 6. Sei $f: (\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ absolut integrierbar bzgl. $\mathbb{P}_1 \otimes \mathbb{P}_2$. Dann

- a) f(x,y) ist $L^1(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$ für \mathbb{P}_1 -fast alle $x \in \Omega_1$, (und umgekehrt)
- b) $h(x) = \int_{\Omega_2} f(x, y) d\mathbb{P}_2(y)$ wohldefiniert bis auf \mathbb{P}_2 -Nullmengen und $h \in L^1(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$, $g(y) = \int_{\Omega_1} f(x, y) d\mathbb{P}_1(x)$ wohldefiniert bis auf \mathbb{P}_1 -Nullmengen und $g \in L^1(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$,

c)

$$\int_{\Omega_1 \times \Omega_2} f d(\mathbb{P}_1 \otimes \mathbb{P}_2) = \int_{\Omega_1} h d\mathbb{P}_1 = \int_{\Omega_2} g d\mathbb{P}_2.$$

Unendliche Produkte

Definition 7. Seien $(\Omega_k, \mathcal{F}_k)_{k \in \mathbb{N}}$ Messräume und $\hat{\Omega} = \prod_{k \ge 1} \Omega_k$ das unendliche Produkträum (geordnete Produkt).

Definieren wir die Produkt- σ -Algebra $\hat{\mathcal{F}}$ auf $\hat{\Omega}$, als die kleinste σ -Algebra, die alle Teilmengen von $\hat{\Omega}$ der Form $A = \bigotimes_{k \in I} A_k \times \overline{\bigotimes_{\ell \notin I} \Omega_{\ell}}$ enthält, wobei $A_k \in \mathcal{F}_k$, $I = (i_1, \ldots, i_n) \in \mathbb{N}^n$. Diese Mengen heißen Zylindermengen.

Definition 8. Seien $(\Omega_k, \mathcal{F}_k, \mathbb{P}_k)_{k \in \mathbb{N}}$ W-raüme. Wir definieren das unendliche Produktmaß $\hat{\mathbb{P}} := \bigotimes_{k \in \mathbb{N}} \mathbb{P}_k$ auf $(\hat{\Omega}, \hat{\mathcal{F}})$ s.d. für alle Zylindermengen A gilt

$$\hat{\mathbb{P}}(A) = \hat{\mathbb{P}}(\otimes_{k \in I} A_k \times \otimes_{\ell \not\in I} \Omega_\ell) = \prod_{k \in I} \mathbb{P}_k(A_k).$$

Definition 9. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-raum. Eine messbare Abbildung

$$X: (\Omega, \mathcal{F}) \to (\mathbb{R}^{\mathbb{N}}, \mathcal{B}(\mathbb{R}^{\mathbb{N}}))$$

heißt Zufallsfolge, oder stochasticher Prozess in diskreter Zeit.