Détection d'anomalies de classification dans l'IoT via Machine Learning

Antoine Urban, Yohan Chalier

Projet de filière SR2I Télécom ParisTech

22 juin 2018

Introduction

La détection d'obstacles : un enjeu de sécurité!

Ensemble des capteurs présents dans le véhicule

Attaques potentielles

Attaque par aveuglement des capteurs

Attaque par modification

Objectifs

Proposition d'un modèle de classification multi-classes en réalisant un classeur à partir d'un algorithme d'apprentissage supervisé.

Première implémentation

- Extraction des colonnes largeur et longueur de la base de données
- Suppression des redondances
- Définition de zones de décision arbitraires
- Génération des données malicieuses

validité	intervalle de longueur	intervalle de largeur
non-malicieux	3 à 6,5 mètres	1,4 à 2,4 mètres
malicieux	3 à 4,1 mètres	2,05 à 2,4 mètres
malicieux	5,25 à 6,5 mètres	1,4 à 1,65 mètres

Méthodes d'évaluation

Matrice de confusion

Classe réelle

Classe prédite

	Positif	Négatif	
Positif	TP	FP	P
Négatif	FN	TN	F
	TPR	FPR	
	FNR	TNR	

PPV FDR FOR NPV

Méthodes d'évaluation

Score F1

Objectif

Maximisation du score F1 comme critère de performance

$$\mathsf{f1\text{-}score} = \frac{2 \times (\mathsf{Recall} \times \mathsf{Precision})}{(\mathsf{Recall} + \mathsf{Precision})} = 2 \times \frac{PPV \times TPR}{PPV + TPR} \tag{1}$$

$$Precision = \frac{TP}{TP + FP}$$
 (2)

$$Recall = \frac{TP}{TP + FN} \tag{3}$$