MOSFET - Power, Single **N-Channel**

80 V, 1.1 mΩ, 337 A

NVMTS1D2N08H

Features

- Small Footprint (8x8 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	80	V
Gate-to-Source Voltage	Э		V _{GS}	±20	V
Continuous Drain		T _C = 25°C	I _D	337	Α
Current R _{θJC} (Notes 1, 3)	Steady	T _C = 100°C		238	
Power Dissipation	State	T _C = 25°C	P_{D}	300	W
R _{θJC} (Note 1)		T _C = 100°C		150	
Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2, 3)	Steady State	T _A = 25°C	I _D	43.5	Α
		T _A = 100°C		30.8	
Power Dissipation		T _A = 25°C	P_{D}	5	W
R _{θJA} (Notes 1, 2)		T _A = 100°C		2.5	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	900	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to + 175	°C
Source Current (Body Diode)			IS	250	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 28.9 A)			E _{AS}	3170	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	0.5	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	30	

- 1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	1.1 mΩ @ 10 V	337 A

N-CHANNEL MOSFET

DFNW8 CASE 507AP

MARKING DIAGRAM

= Assembly Location WL = 2-digit Wafer Lot Code

= Year Code WW = Work Week Code

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS						I	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =	250 μΑ	80			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				57		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	T _J = 25 °C			10	
		V _{DS} = 80 V	T _J = 125°C			250	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	s = 20 V			100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 590 μΑ	2.0	2.9	4.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-7.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 90 A		0.93	1.1	mΩ
Forward Transconductance	9 _{FS}	V _{DS} =15 V, I _D	= 90 A		400		S
CHARGES, CAPACITANCES & GATE RE	SISTANCE						
Input Capacitance	C _{ISS}			10100		pF	
Output Capacitance	Coss	V _{GS} = 0 V, f = 500 kHz, V _{DS} = 40 V			1455		
Reverse Transfer Capacitance	C _{RSS}				43		
Total Gate Charge	Q _{G(TOT)}				147		
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 64 V; I _D = 90 A			27		nC
Gate-to-Source Charge	Q _{GS}				41		
Gate-to-Drain Charge	Q_GD				32		1
Plateau Voltage	V_{GP}				4		V
SWITCHING CHARACTERISTICS (Note	5)						•
Turn-On Delay Time	t _{d(ON)}				29		
Rise Time	t _r	V_{GS} = 10 V, V_{DS}	s = 64 V.		14		ns
Turn-Off Delay Time	t _{d(OFF)}	I _D = 90 A, R _G	= 2.5 Ω		66		
Fall Time	t _f				19		1
DRAIN-SOURCE DIODE CHARACTERIS	STICS				•		•
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.8 1.2		,,,
		I _S = 90 A	T _J = 125°C		0.6		V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dIS/dt}$	= 100 A/us.		84		ns
Reverse Recovery Charge	Q _{RR}	I _S = 90 /	Α		189		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

Figure 3.On-Resistance vs. Gate-to-Source Voltage

V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

8

9

10

6

0

3

0.5

10

60

Figure 5.On-Resistance Variation with **Temperature**

Figure 6.Drain-to-Source Leakage Current vs. Voltage

5

160

110

I_D, DRAIN CURRENT (A)

Figure 4.On-Resistance vs. Drain Current and

210

6

TYPICAL CHARACTERISTICS

V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Q_{GD} Q_{GS} $T_{.J} = 25^{\circ}C$ I_D = 90 A V_{DS} = 64 V 0 20 80 100 120 140 Q_G, TOTAL GATE CHARGE (nC)

Q_{G(tot)}

Figure 8.Gate-to-Source Voltage vs. Total Charge

Figure 9.Resistive Switching Time Variation vs. Gate Resistance

Figure 10.Diode Forward Voltage vs. Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12.Maximum Drain Current vs. Time in **Avalanche**

TYPICAL CHARACTERISTICS

Figure 13. Transient Thermal Impedance

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMTS1D2N08H	NVMTS1D2N08H	POWER 88 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DIM	N	IILLIMET	ERS
Dilvi	MIN.	NOM.	MAX.
Α	1.00	1.10	1.20
A1	0.00	-	0.05
b	0.90	1.00	1.10
b1	0.35	0.45	0.55
С	0.23	0.28	0.33
D	8.20	8.30	8.40
D1	7.90	8.00	8.10
D2	6.80	6.90	7.00
D3	6.90	7.00	7.10
E	8.30	8.40	8.50
E1	7.80	7.90	8.00
E2	5.24	5.34	5.44
E3	0.25	0.35	0.45
е	2.00 BSC		
e/2	1.00 BSC		
e1	2.70 BSC		
e1/2	1.35 BSC		
K	1.50	1.57	1.70
L	0.64	0.74	0.84
L1	0.67	0.77	0.87
θ	0°		12°

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE
STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD
THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES
REFERENCE MANUAL, SOLDERRM/D.

STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOA	D
THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES	
REFERENCE MANUAL, SOLDERRM/D.	

DOCUMENT NUMBER:	98AON80534G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TDFNW8 8 30v8 40v1 10 2 00P		PAGE 1 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

TDFNW8 8.30x8.40x1.10, 2.00P

CASE 507AP ISSUE E

DATE 08 MAY 2024

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot Code
Y = Year Code
WW = Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

	TDFNW8 8.30x8.40x1.10, 2.00P		PAGE 2 OF 2
DOCUMENT NUMBER: 98AON80534G Electronic versions are uncontrolled except when accessed directly from the Document of the printed versions are uncontrolled except when stamped "CONTROLLED COPY" in			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales