MA557 Homework 12

Carlos Salinas

December 4, 2015

CARLOS SALINAS PROBLEM 12.1

PROBLEM 12.1

Let R be a Noetherian domain. Show that the following are equivalent:

- (i) R is a unique factorization domain
- (ii) every prime ideal of R of height one is principal
- (iii) R is normal with Cl(R) = 0.
- *Proof.* (i) \Longrightarrow (ii) Suppose R is a Noetherian domain. Let \mathfrak{p} be a height one prime. Then there exists at least one nonzero element $x \in \mathfrak{p}$. Let $x = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ be the factorization of x into irreducible (prime) elements of R. Set $p := p_i$ for any prime in the factorization of x. Then the ideal generated by p is a prime ideal contained in \mathfrak{p} , i.e., $\langle p \rangle \subset \mathfrak{p}$. But $\operatorname{ht}(\mathfrak{p}) = 1$. Thus, $\langle p \rangle = \mathfrak{p}$.
- (ii) \Longrightarrow (ii) Suppose that every height one prime ideal in R is principal. To show that R is a UFD, it suffices to show that every irreducible element p is a prime element, that is, $\langle p \rangle$ is a prime ideal. Let $\mathfrak p$ be the minimal prime containing p. Since $\mathfrak p$ is principal, $\mathfrak p = \langle x \rangle$ for some $x \in \mathfrak p$. Thus, p = xy for some $y \in R$. But p is prime hence, irreducible so either x or y is a unit. If x is a unit, then $\mathfrak p = R$, which is a contradiction. Thus, y must be a unit and we see that $\langle p \rangle = \langle xy \rangle = \mathfrak p$ is prime.

MA557 Homework 12

CARLOS SALINAS PROBLEM 12.2

PROBLEM 12.2

Let R be a ring with total ring of quotients K, M an R-module, and

$$\Im(M) = \{ \, x \in M \mid ax = 0 \text{ for some non zero-divisor } a \text{ of } RR \, \}.$$

The submodule $\mathfrak{I}(M)$ is called the torsion of M, and M is called torsion free if $\mathfrak{I}(M)=0$. Show

- (a) $\mathfrak{I}(M) = \ker(M \to K \otimes_R M)$
- (b) $M/\mathfrak{I}(M)$ is torsion free.

Proof.

MA557 Homework 12

CARLOS SALINAS PROBLEM 12.3

PROBLEM 12.3

Let R be a Dedekind domain and M a finitely generated R-module of rank r. Show that:

- (a) If M is torsion free then M is projective (hint: induct on r).
- (b) $M \cong \mathfrak{I}(M) \oplus P$ with P projective.
- (c) If $M \neq 0$ is projective then $M \cong R^{r-1} \oplus I$ with $I \neq 0$ an ideal.
- (d) If M is torsion (i.e., $M = \mathfrak{T}(M)$) then

$$M \cong R/I_1 \oplus \cdots \oplus R/I_n$$
 with $I_1 \supset \cdots \supset I_n \neq 0$

ideals (hint: for $p_1, ..., p_s$ the minimal primes of ann(M) and $S = R \setminus (\mathfrak{p}_1 \cup \cdots \cup \mathfrak{p}_s)$, show that $S^{-1}R$ is a PID).

Proof.

MA557 Homework 12