Deep Learning Book Notes

$\mathrm{July}\ 28,\ 2025$

Deep Learning Book Notes Peter Kruse

Contents

1	Intr 1.1 1.2	oduction Who Should Read This Book?
2	Line	ear Algebra Basics
	2.1	Scalars, Vectors, Matrices, and Tensors
	2.2	Matrix and Vector Multiplication
	2.3	Identity and Inverse Matrices
	2.4	Linear Dependence and Span
	2.5	Norms
	2.6	Special Kinds of Matrices and Vectors
	2.7	Eigendecomposition
	2.8	Singular Value Decomposition
	2.9	Moore-Penrose Pseudoinverse
	2.10	Trace Operator
		Determinant
	2.12	Example: PCA

1 Introduction

- Deep Learning building hierarchical graph of concepts with many layers
 - representations are expressed in terms of other, simpler representations
 - MLP: function that maps input to output; composition of many simpler functions
- Knowledge Base Apporach: hard-code knowledge or rules in formal language
- Machine Learning: the ability to extract ("learn") patterns from raw data
- Representation Learning: using machine learning to derive a representation (extract features); ex: autoencoders

1.1 Who Should Read This Book?

1.2 Historical Trends in Deep Learning

- Cybernetics (1940s-50s): aimed to computationally model the brain, very theoretical, very little learning mechanism
 - MCP Neuron: first model of a neuron, inspired by human brain; used propositional logic, no learning mechanism
 - Perceptron: first learning algorithm, used for binary classification; limited to linearly separable data
 - **ADALINE**: special case of SGD
- Connectionism (1980s-90s): introduced backpropagation, focus on MLPs and CNNs for automatic feature extraction on basic learning tasks
 - Backprop: discovered independently in the 70s/80s by multiple groups; popularized by Rumelhart, Hinton, and Williams, efficient and scalable learning mechansim
 - MLP: multi-layer perceptron; used for supervised learning; feature differentiable and continuous nonlinearities, which worked with backprop; universal approximator
 - CNN: convolutional neural networks; used for image processing, introduced by LeCun et al. in 1989; uses local connectivity and weight sharing
- **Deep Learning** (2000s-present): focus on large datasets, deeper models, new architectures, and computational power

- GPU Computing: use of graphics processing units to accelerate deep learning training
- **Transfer Learning**: leveraging pre-trained models on new tasks with limited data
- Generative Models: models that can generate new data samples, e.g., GANs and VAEs
- Models became more useful as data sizes increased; performance increased despite very little difference in architecture
- Models became more complex with infrastructure improvements
 - faster CPUs, general purpose GPUs
 - software libraries like TensorFlow, PyTorch, and JAX

2 Linear Algebra Basics

2.1 Scalars, Vectors, Matrices, and Tensors

- Scalar: single number, specified by type \mathbb{R} , \mathbb{N} , \mathbb{Z}
- Vector: an array of numbers arranged in a single row or column
 - First element of **x** is x_1 , second is x_2 , and so on: $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$
 - must specify the type of numbers stored, i.e., $\mathbf{x} \in \mathbb{R}^n$, where n is the number of elements/dimensionality
 - can think of a vector as identifying a point in space; each element gives a coordinate along a different axis
 - can index vectors with a set
 - * indices $1, 3, 6 \to S = \{1, 3, 6\} \to x_S = \{x_1, x_3, x_6\}$
 - "–" indicates the complement of a set; $x_{-1} \to \text{all}$ elements except -1
- Matrix: 2-d array of numbers
 - each element is specified by two indices (row, col) instead of one
 - $-A_{m,n}$: entry at row m, col n
 - $-A_{i,:}$: all entries in the i_{th} row of A
 - $-A_{:,j}$: all entries in the j_{th} column of A
- Tensor: Array with more than two axes
 - $-A_{i,j,k}$
- Transpose: mirror image of a matrix across its main diagonal
 - $(A^T)_{i,j} = A_{j,i}$
 - row-column swap
- Matrix Addition: element-wise addition of two matrices of the same size
- Scalar times matrix: $D = a \cdot B + c \rightarrow D_{i,j} = a \cdot B_{i,j} + c$
- Matrix-Vector Addition: $C = A + \mathbf{b} \to C_{i,j} = A_{i,j} + b_j$
 - vector b is added to each row of matrix A
 - Broadcasting: the copying of a vector to match the dimensions of a matrix

2.2 Matrix and Vector Multiplication

- matrix product: C = AB
 - to be defined, A, must have the same number of columns as B has rows
 - if A is $m \times n$ and B is $n \times p$, then C is shape $m \times p$
 - $-C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$
- Hadamard product: element-wise multiplication of a matrix, denoted $A \circ B$
- Dot Product: $x \cdot y$ is the same dimensionality as the matrix product $x^T y$
 - $-C = AB \rightarrow C_{i,j}$ is the dot product of row i of A and column j of B
- Matrix Operation Properties:
 - distributive: A(B+C) = AB + AC
 - associative: (AB)C = A(BC)
 - **not** commutative: $AB \neq BA$ in general; however vector dot product is commutative: $x^Ty = y^Tx$
 - transpose of a matrix product: $(AB)^T = B^T A^T$
- System of Linear Equations
 - $-Ax = b, A \in \mathbb{R}^{m \times n}$ is a known matrix, $b \in \mathbb{R}^m$ is a known vector, and $x \in \mathbb{R}^n$ is unknown, and we would like to solve for it.
 - can rewrite as:

$$A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,n}x_n = b_1$$

$$A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,n}x_n = b_2$$

$$\vdots$$

$$A_{m,1}x_1 + A_{m,2}x_2 + \dots + A_{m,n}x_n = b_m$$

2.3 Identity and Inverse Matrices

- Matrix Inversion: analytic solution to the system of linear equations
- Identity Matrix: does not change a vector when multiplied by it; denoted I_n , formally $I_n \in \mathbb{R}^{\mathbb{N} \times \mathbb{N}}$ and $\forall x \in \mathbb{R}^n, I_n x = x$; takes form of 1s along the diagonal
- Matrix Inverse: A^{-1} is the inverse of A, defined as the matrix such that $A^{-1}A = I_n$

• Solving a system of linear equations:

$$Ax = b \tag{1}$$

$$A^{-1}Ax = A^{-1}b (2)$$

$$I_n x = A^{-1} b (3)$$

$$x = A^{-1}b \tag{4}$$

• inverse matrix is primarily used as a theoretical tool - it's hard to represent at high precision on a digital computer

2.4 Linear Dependence and Span

- \bullet for A^{-1} to exist, the system of lin. eqns. must have one solution for every value of b
- it is also possible to have a system with no solutions or infinitely many solutions
- it is not possible to have a system with more than one but less than infinite solutions; if x and y are solutions, then

$$z = \alpha x + (1 - \alpha)y$$

is also a solution $\forall \alpha \in \mathbb{R}$

• Finding Solutions to a System of Linear Equations:

- columns of A: different directions that we can travel from the origin
- how many ways are there to reach b?
- -x how far we travel in each direction:

$$Ax = \sum_{i} x_i A_{:,i}$$

– textbfLinear Combination: multiply a set of vectors by scalars and add the results:

$$\sum_{i} c_{i} v^{i}$$

- Span: all points obtainable by linear combination of the original vectors
- to find if the system has a solution, we must check if b is in the span of the columns of A, called the **column space/range** of A.
- A must have at least m columns to span \mathbb{R}^m ; if A has fewer than m columns, then it cannot span \mathbb{R}^m and the system has no solutions
- columns can also be redundant; so this is not a sufficient condition for a solution

- Linear Dependence: if one column can be expressed as a linear combination of other columns
- Linear Independence: no vector in the set is a linear combination of the other vectors
- for a column space to span \mathbb{R}^m , it must have at least m linearly independent columns
- for a matrix to have an inverse, we need to ensure that our system has atmost one solution for each value of b; the matrix then must have at most m columns, otherwise one of the columns must be linearly dependent
- therefore, our matrix must be square (m = n), and all columns must be linearly independent; this is a **singular** matrix
- 2.5 Norms

•

2.6 Special Kinds of Matrices and Vectors

•

2.7 Eigendecomposition

.

2.8 Singular Value Decomposition

•

2.9 Moore-Penrose Pseudoinverse

•

2.10 Trace Operator

•

2.11 Determinant

•

2.12 Example: PCA