

PANAJI SOLAR CITY MASTER PLAN

Sep 2014

Submitted by

DARASHAW

ALL ABOUT TRUST

PROJECT DETAILS

Project Name:

Master Plan for Development of Panajim City as a solar city under Solar City Program of Ministry of New & Renewable Energy, Govt. of India

Client:

Goa Energy Development Agency (GEDA)

Corporation of the City of Panaji

Goa

Work Order No. and Date:

81/P.Pr. V./S.C./N.N.M/2009, October 05, 2009

Submission History:

Draft Master Plan report submitted on March 31, 2010

Present Report Checking Mechanism:

Initiator(s):

Sachin Singh Yadav, Senior Associate Sunita Awadh, Assistant Vice President

Checker(s):

Mr. Pradeep Kumar, Associate Vice President

Approver(s):

Mr. Yogendra Naik, Head- Infrastructure advisory

Acknowledgement

Darashaw & Co. Pvt. Ltd., Mumbai places on record its profound appreciation to Ministry of New & Renewable Energy (MNRE), Goa Energy Development Agency (GEDA) and Corporation of the City of Panaji (CCP) for conceiving this unique assignment of "Panaji Solar City".

Darashaw & Co. is extremely thankful to the CCP and GEDA officials for entrusting Darashaw & Co. in carrying out this prestigious assignment and their coordination and support throughout the study:

Sr. No.	Name	Organization
1	Shree Sanjit Rodrigues	Commissioner, Corporation of the City of Panaji
2	Dr. Pramod Pathak	Member Secretary, GEDA
3	Mr. Lawande	Executive Engineer, Corporation of the City of Panaji
4	Mrs. Prashila Salkar	Project coordinator

The Darashaw & Co. Study team is indebted to all the Officers of CCP for their invaluable guidance and support throughout the study.

We take this opportunity to express our appreciation for the excellent support provided by Local Service Providers, and Equipment Suppliers for their active involvement and their valuable inputs in making the program successful and in completion of the Solar City Master Plan.

Thanking You

Pradeep Kumar
Assistant Vice President
Darashaw & Company Pvt. Ltd.
6th Floor, Express Building,
14th "E" Road, Churchgate (West),
Mumbai 400 020

EXECUTIVE SUMMARY

The programme of 'Development of Solar City' by the Ministry of New and Renewable Energy (MNRE), Government of India is aimed to promote the use of Renewable Energy in Urban Areas by providing support to the Urban Local Bodies (ULBs) for preparation and implementation of a Road Map to develop their cities as Solar Cities. The target set for the cities under the scheme is to reduce the consumption of fossil fuel to the extent of 10% in the coming five years. This target would be achieved through a mix of various Renewable Energy and Energy Efficiency Projects. This Master Plan is an outcome of the scheme and is prepared to envision and implement the scheme as per the guidelines of MNRE.

The Master Plan begins with an introduction to the current status of the energy scenario in cities of the modern world and emphasis on the need of sustainable practices in the form of renewable energy and energy efficiency. The 2nd chapter talks about the approach and methodology adopted by the consultant for preparation of the master plan. 3rd chapter talks about the international case studies on the success stories of similar Solar Cities throughout the world.

The 4th chapter talks about the stakeholder committee meeting and the views, points and suggestions raised by the various stakeholders during the first stakeholder committee meeting.

The 5th chapter draws the present energy baseline of CCP and highlights the energy consumption pattern of the last five years.

The 6th chapter talks about the Energy consumption, Forecasting and target setting of the city. Electricity consumption in the base year 2013-14 was as follows

	Consumption of Energy Sources in Year 2013-14				
Energy	Electricity	Petrol (KL)	Diesel	Kerosene	LPG (MT)
Source (MU)		(KL)	(KL)	LPG (MI)	
Consumption	92	9008	7780	798	1246

Now if we convert these sources of energy into a common denomination, we can arrive at equivalent million units of electricity for all these different sources of

energy. The table shows these values converted into the same units of million equivalent of Electricity produced (in Million Units).

Consumption	n of Energy Sourc	es in Year 201	3-14 converted	d into Million I	Units of
	e	lectricity equiv	alent.		
Energy Source	Electricity(MU)	Petrol (MU)	Diesel (MU)	Kerosene (MU)	LPG (MU)
Consumption	92	97	88	30	16

Now, the solar city programme envisage a 10% reduction in conventional energy demand through a combination of various demand side and supply side measures spread across all the sectors by the end of next 5 years. Accordingly, the target for CCP could be considered as a reduction of 10% of the total energy demand which turns out to be equal to 45 Million Units of electricity.

The target for the Solar city programme for CCP could be taken as the reduction in the demand of electricity equivalent by 45 MU by next five years through various supply and demand side measures in residential, commercial and institutional sectors.

The 7th chapter deals with the Green Building & energy efficiency for buildings in Residential, Commercial, Municipal and Industrial (Hotel) sector.

Chapter 8th talks about the energy planning in residential, commercial, municipal and Industrial sector.

The 9th and 10th talk about the various renewable energy and energy efficiency strategies and the implementable projects in the city. It gives a brief description of the various projects and the probable strategies that can be adopted in order to achieve the objectives of the scheme.

The 11^{th} chapter talks in detail about the budget and five year action plan for the implementation of the solar city scheme. The total budgeted yearly expenditure is estimated as per the table below:

RE & EE	Energy	Saving T	arget ove	er 5 year	s period	% of	Emission	
Strategy for	of	implemer	savings	reduction				
ССР	1st	2nd	3rd	4th	5th	target to		
	Year	Year	Year	Year	Year	achieve		
		Cumul	Cumul	Cumul	Cumula			
		ative	ative	ative	tive			
RE for Residential	0	1	2	3	5	10%	3333	
Sector								
RE for	2	5	10	15	21	47%	17242	
commercial								
RE for Municipal	2	4	6	9	12	27%	10606	
RE for Industrial	0	1	2	3	4	9%	3205	
Total RE	5	12	20	30	42	93%	31180	
Strategy								
EE for Residential	0	1	1	2	3	7%	2605	
EE for	1.03	2.58	4.64	7.21	10.31	22.92%	8348	
Commercial								
EE for Industrial	0.041	0.103	0.18	0.29	0.41	0.91%	333	
EE for Municipal	0.13	0.33	0.59	0.92	1.32	3%	1299	
Total for EE	2	4	7	11	15.25	34%	12584	
strategy								
RE & EE	6	15	27	41	57	127%	43765	
Combined								
Strategy								

The total indicative budget of solar city is estimated as Rs 243 crore which will be invested over a five year period. The year wise budget allocation is shown in the table below.

	Budge	t Contrib	ution			
	Total					
	(Year		Year		Year
MNRE Contribution	Lakhs)	1	Year2	3	Year 4	5
Renewable Energy Strategy						
- Residential	1371	137	206	274	343	411
Renewable Energy -				-		
Commercial	1755	176	263	351	439	527
Renewable Energy Municipal	866	87	130	173	216	260
Renewable Energy Strategy						
- Industrial	659	66	99	132	165	198
19.17%	4651	399	599	798	998	1198
State / City Contribution						
Renewable Energy Municipal	5520	552	828	1104	1380	1656
Energy Efficiency Strategy -						
Municipal	419	42	63	84	105	126
24.48%	5938	594	891	1188	1485	1782
Private User Contribution						
Renewable Energy Strategy						
- Residential	3156	316	473	631	789	947
Renewable Energy Strategy						
- Commercial	5615	561	842	1123	1404	1684
Energy Efficiency Strategy -						
Residential	1067	107	160	213	267	320
Energy Efficiency Strategy -						
Commercial	2227	223	334	445	557	668
Renewable Energy-						
Industrial	1537	154	231	307	384	461
Energy Efficiency Industrial	72	7	11	14	18	22
56.36%	13674	1367	2051	2735	3418	4102
Grand Total	24263	2360	3541	4721	5901	7081

As per the current schemes of MNRE for eastern states, the total direct contribution of **MNRE** has been estimated to be around **19** % of the total estimated expenditure of Solar City. The share of the **state/City** and **end user** has been proposed to be **24** % **and 56** % respectively over a period of five years. However

the same is subject to change depending upon the methods of financing the projects adopted by the state.

The chapter also discusses about the various financing schemes and models in order to arrange the finances for the proper and timely execution of the various projects.

At the end, there are various annexure giving details of the action plan for the utilization of the fund allocated by MNRE for the implementation of the scheme over a period of five years

The Master Plan provides a framework to compare and analyze the alternative strategies and policies, in order to facilitate Councils review and decision making process. Achieving significant reduction in energy consumption requires collective effort by all city departments, other government departments, business, industries and citizens. The investigation showed the biggest potential for energy savings in the residential sector and huge potential for implementation of various solar projects.

Table of contents

EXE	CUTIVE	SUMMARY iii
1	Introduc	ction
1.1		Background1
1.2		ENERGY SCENARIO2
1.3		_NEED FOR RENEWABLE ENERGY
1.4		_ROLE OF SOLAR POWER IN ENERGY SECURITY
1.5		GREEN CITY4
	1.5.1	Goals and Objectives
2	Approac	th and Methodology5
2.1		_Master Plan for Solar City
	2.1.1	Objectives5
2.2		_Study Approach5
2.3		_METHODOLOGY6
	2.3.1	Mobilization6
	2.3.2	Project Instigation6
	2.3.3	Preparation of Energy Baseline for 2012
	2.3.4	Demand Forecasting for 2014-15 to 20123-24
2.4		STRATEGIC VISION
3	Success	Stories8
3.1		_Introduction 8
3.2		_INSTITUTIONS INVOLVED ON SOLAR CITIES8
	3.2.1	International Solar Cities initiatives (ISCI)
	3.2.2	European Solar Cities Initiatives8
	3.2.3	Solar city Task force
	3.2.4	European solar cities projects9
4	Stakeho	olders Consultation
4.1		FORMATION OF STAKE HOLDER COMMITTEE
	4.1.1	Problems and suggestions highlighted by the stakeholders 11
5	Sector v	vise Energy Consumption & Baseline
5.1		_INTRODUCTION13
5.2		_ABOUT THE CITY13
	5.2.1	Demographic Profile

	5.2.2	Land Use Pattern	16
	5.2.3	Electricity Consumption Scenario	16
	5.2.4	Consumption Scenario of Petroleum Products	18
	5.2.5	Residential Sector	19
	5.2.6	Commercial sector	21
	5.2.7	Industrial Sector	22
6	Energy	Forecasting and Target Setting	24
6.1		INTRODUCTION	24
6.2		PROJECTION FOR ELECTRICITY DEMAND UP TO 2023-24	24
	6.2.1	Residential Sector	25
	6.2.2	Commercial Sector	26
	6.2.3	Industrial Sector	26
(5.3	PROJECTION OF DEMAND OF PETROL, DIESEL AND LPG FOR NEXT DECADE	IN
Bus	SINESS AS	S USUAL (BAU) SCENARIO	27
	6.3.1	Projected demand for Petrol and Diesel	27
	6.3.2	Projected demand for LPG	28
6.4		Target Setting	29
7	Green	Building & Energy Efficiency in Buildings	32
7.1		Introduction	32
7.2		BUILDING ENERGY EFFICIENCY – EXISTING POLICY FRAMEWORK	32
7.3		Green Building-An Understanding	33
7.4		Need for a Green building	34
7.5		BENEFITS AND OUTCOMES OF A GREEN BUILDING	34
7.6		RATING SYSTEM FOR GREEN BUILDINGS	35
7.7		PROCEDURE FOR CERTIFICATION	36
	7.7.1	Salient Features of Green Building	40
7.8		DEMAND COMPARISON: CONVENTIONAL VIS A VIS GREEN BUILDING	42
7.	.9	GREEN BUILDING IMPLEMENTATION FRAMEWORK MODEL FOR CORPORATION	OF
THE	CITY OF	Panaji	42
	7.10	STEPS TO BE TAKEN BY CCP FOR EFFECTIVE IMPLEMENTATION OF ENERGY	,
EFF	ICIENCY I	n Buildings	43
8	Energy	Planning	45
8.1		RENEWABLE ENERGY RESOURCE ASSESSMENT	45
•		Biomass potential	
		Solar Energy	

9	Renewa	ble Energy Strategy2	17
9.1		_RESIDENTIAL SECTOR RE STRATEGY	.47
	9.1.1	Solar Water Heaters	47
	9.1.2	Solar PV for Home Inverters	48
	9.1.3	Solar PV for replacement of DG sets	48
	9.1.4	Area Requirement for installation of Solar PV and water heating	
	system	in residential sector	. 49
	9.1.5	Summary of RE strategy for Residential Sector	. 50
9.2		COMMERCIAL SECTOR RE STRATEGY	. 51
	9.2.1	Installation of Rooftop Solar PV in the Schools & Community Hall	51
	9.2.2	Installation of Rooftop Solar PV in the Health Centers & others	
	comme	rcial establishments	. 51
	9.2.3	Installation of Rooftop Solar PV in the Banks	. 52
	9.2.4	1 MW Community based Grid Connected Solar Power Plant	. 53
	9.2.5	2 MW Municipal Solid Waste Power Plant on Public Private Partnersh	nip
	basis	53	
	9.2.6	Solar water heater for Hotels, Resorts, Hospitals, Medical centers &	
	Comme	rcial centers	. 54
	9.2.7	Area Requirement for installation of Solar PV and water heating	
	system	in commercial sector	. 55
	9.2.8	Summary of RE strategy for Commercial Sector	56
9.3		MUNICIPAL SECTOR RE STRATEGY	<u>. 57</u>
	9.3.1	Installation of Rooftop Solar PV in the Government Buildings	. 57
	9.3.2	Installation of Rooftop Solar PV in the Market & Shopping Centers	. 57
	9.3.3	Replacement of conventional street light with solar street light	. 58
	9.3.4	Installation of solar traffic light	. 59
	9.3.5	Installation of solar Advertising Hoardings	. 59
	9.3.6	Installation of Sewerage Treatment based Biogas power plant	60
	9.3.7	Summary of RE strategy for Municipal Sector	61
9.4		_INDUSTRIAL (HOTEL) SECTOR RE STRATEGY	62
	9.4.1	Installation of Solar Water Heating system for Heating or cooking	62
	9.4.2	Installation of Roof Top Solar PV System in High rise buildings having	ng
	plot size	e more than 1000 SqM	63
10	Energy	Efficiency Strategy6	54
10.	1	ENERGY EFFICIENCY STRATEGIES IN RESIDENTIAL SECTOR	. 64
	10 1 1	Replacement of CFL with LFD	64

	10.1.2	Replacement of Conventional Ceiling fan with Energy Efficient Ceiling	g
	fans	64	
	10.1.3	Replacement of Conventional AC with EE Star Rated AC	65
	10.1.4	Summary of EE strategy for Residential Sector	66
10.2	2	COMMERCIAL SECTOR EE STRATEGY	<u>67</u>
	10.2.1	Replacement of CFL with LED	67
	10.2.2	Replacement of T12/T8 with T5 Tube Light	67
	10.2.3	Replacement of conventional Ceiling fan with EE ceiling fan	68
	10.2.4	Replacement of conventional AC with Star Rated AC	69
	10.2.5	Summary of EE strategy for Commercial Sector	70
10.3	3	INDUSTRIAL (HOTEL) SECTOR EE STRATEGY	<u>71</u>
	10.3.1	Replacement of T12 with 15 W LED	71
	Assump	tions:	71
	10.3.2	Replacement of T12 / T8 by T5 Tube light	71
	Assump	tions:	71
	10.3.3	Replacement of ceiling fan with EE ceiling fan	72
	Assump	tions:	72
	10.3.4	Replacement of conventional air conditioners with EE air conditioner	s
		73	
	Assump	tions:	73
	10.3.5	Summary of EE strategy for Industrial (Hotel) sector	74
،10	4	MUNICIPAL SECTOR EE STRATEGY	<u>75</u>
	10.4.1	Replacement of 40 W Tube Light with 15 W LED	<i>75</i>
	10.4.2	Replacement of 250 W HPSV with 100 W LED	76
	10.4.3	Replacement of 150 W HPSV with 70 W LED	77
	10.4.4	Electricity Saving by Design Efficiency in Water pumping system	78
	10.4.5	Electricity saving by installation of Variable frequency Drives (VFD)	in
	Water p	umping system	78
	10.4.6	Summary of EE strategy Municipal Sector	<i>7</i> 9
11	Budget	& Action Plan 8	0
11.:	1	IMPLEMENTATION PLAN	80
		Annual Energy Saving Target	
11.3	3	Annual Budget Allocation	83
		- Indicative Budget for Renewable Energy	
		Indicative Budget for Energy Efficiency	
11.4	4	Action Plan	88
		CARACITY BUILDING AND AWARENESS GENERATION	

11.5.1 Capacity Building for Green Buildings	39
References 91	
Annexure 1- Action plan for Utilization of Funds9	2
Annexure 2- Summary of RE Strategies9	<u>4</u>
Annexure 3- Summary of EE Strategies9	6
Annexure 4- Year wise Action Plan for Solar City Project9	8
Annexure 6- Initiative taken by CCP	<u>5</u>
Annexure 7- List of Solar City members	<u>5</u>
Annexure 8- List of Stakeholder committee members	5
ANNEXURE 9- SOLAR CITY APPROVAL LETTER FROM MNRE	5

LIST OF TABLES

Table 5.1: Year wise population: urban Agglomeration - Panaji	5
Table 5.2: Sector wise Total Number of Consumers	8
Table 5.3: Social & Geographical profile of CCP	9
Table 6.1: Consumption of Energy Sources in Year 2013-14	9
Table 6.2: Consumption of Energy Sources in Year 2013-14 converted into Millio	n
Units (MU) of electricity equivalent	0
Table 7.3: Projected Consumption of energy from Conventional sources in 2018	3-
19	0
Table 7.4: Projected Consumption of energy from Conventional sources in 2023-2	4
	0
Table 7.5: Target Reduction of conventional Energy @10%	0
Table 8.1: List of Projects Identified for CCP to implement solar Power Project 4	5
Table 9.1: Target for SWH installation in Panaji4	7
Table 9.2: Solar PV for Home Invertors	8
Table 9.3: Solar PV for Replacement of DG Sets	9
Table 9.4: Summary of RE Strategy for Residential Sector	0
Table 9.5: Roof Top Solar PV System in Schools & Community Hall 5	1
Table 9.6: Roof Top Solar PV - Health Care Centers, Hotels, Resorts etc 5	2
Table 9.7: Rooftop Solar in Banks	2
Table 9.8: 1 MW Community Based Grid Connected Power Plant 5	3
Table 9.9: 2 MW Grid Connected Municipal Solid Waste based Power Plant 5	3
Table 9.10: SWH for Hotels, Resorts, Hospitals, Medical centers etc 5	4
Table 9.11: Summary of RE strategy for Commercial Sector	6
Table 9.12: Roof Top Solar PV System in Government Buildings 5	7
Table 10.13: Roof Top Solar PV System in Market & Shopping Centre 5	8
Table 10.14: Replacement of Conventional street lights with Solar Street Lights . 5	8
Table 9.15: Solar Traffic Lights	9
Table 9.16: RE system for Advertisement Hoardings 5	9
Table 9.17: Sewerage Treatment based biogas power plant 6	0
Table 9.18: Summary of RE strategy for Municipal Sector	1
Table 9.19: Solar water Heting System 2000 LPD Capacity each 6	2
Table 9.20: Roof Top Solar PV System in High Rise Buildings having plot size mor	·e
than 1000 Sq.M 6	3

Table 10.1: Replacement of CFL with LED
Table 10.2: Replacement of conventional ceiling fan with Energy Efficient fans \dots 65
Table 10.3: Replacement of conventional AC with EE star rated ACs 65
Table 10.4: Summary of EE Strategy for Residential Sector
Table 10.5: Replacement of CFL with LED
Table 10.6: Replacement of T12 / T8 light by T5 Tube Light
Table 10.7: Replacement of Conventional ceiling fan with Energy Efficient Fans 68
Table 11.8: Replacement of Conventional air conditioners with EE star rated ACs 69
Table 10.9: Summary of EE strategy for commercial sector
Table 10.10: Replacement of T12 with 15 W LED in all the premises
Table 10.11: Replacement of T12 / T8 Tube Lights with T5 Tube Light 72
Table 10.12: Replacement of Conventional Ceiling fan with Energy Efficient Ceiling
Fans
Table 10.13: Replacement of Conventional air conditioners with EE air conditioners
Table 10.14: Summary of EE strategy for Industrial (IT) sector
Table 10.15: Replacement of 40 W Tube Light with 15 W LED
Table 10.16: Replacement of 250 W HPSV with 100 W LED
Table 10.17: Replacement of 150 W HPSV with 70 W LED
Table 10.18: Improvement in Design Efficiency
Table 10.19: Improvement in Design Efficiency
Table 11.20: Summary of EE strategy Municipal Sector
Table 11.1: Year wise Energy Saving Target
Table 12.2: Year wise budget Allocation for RE projects
Table 12.2: Year wise budget Allocation for RE projects

List of Figures

igure 5-1: Satellite Image of Panaji City 1
igure 5-2: Population Growth of Panaji1
igure 6-3: Land use pattern of CCP1
igure 5-4: Total Annual Electricity consumption (MU)
igure 5-5: Sectoral electricity use pattern1
igure 6-6: Annual consumption of Petroleum Products (MU)
igure 5-7: Annual electricity Consumption – domestic (MU)
igure 5-8: Household Energy consumption pattern
igure 5-9: Contribution of different luminaries in electricity consumption 2
igure 5-10: Commercial Sector Electricity Consumption2
igure 5-11: No. of Commercial consumers2
igure 5-12: Industrial Sector Electricity Consumption2
igure 5-13: No. of Commercial consumers2
igure 6-1: Projected population data for Panaji2
igure 6-2 Total Projected Annual Electricity consumption (MU) in BAU scenario . 2
rigure 6-3: Projected Annual Electricity consumption (MU) in BAU scenario
igure 6-4: Projected Annual Electricity consumption (MU) in BAU scenario
Commercial
igure 6-5: Projected Annual Electricity consumption (MU) in BAU scenario
ndustrial 2
igure 6-6: Projected Annual Petrol & Diesel consumption (KL) in BAU scenario 2
igure 6-7: Projected Annual LPG consumption (MT) in BALL scenario

1 Introduction

1.1 Background

The inevitable process of urbanization brought with the environmental degradation, besmirched quality of life and knocked out the root of sustainable development of cities and towns. The limited resource bases of cities are not able to cope with the ever increasing pressure of people migrating from rural areas for the variety of reasons.

The people and governments are already working hard to cut greenhouse gases, and everyone can help. It should be our moral mission to get actively involved for preventing degradation of our environment and save the planet.

Cities are spatial manifestations of human and economic activities; buildings form a crucial part of this spatial manifestation. Estimates put construction alone responsible for approximately 40 percent of the total energy use worldwide, most of which is sourced from fossil fuels.

With nearly 8% rise in annual energy consumption in the residential and commercial sectors, building energy consumption has seen an increase from a low 14 percent in 1970s to nearly 33 percent in 2004-05.

Residential Energy Consumption in India

In India residential sector is responsible for 13.3 percent of total commercial energy use. Energy sources are mainly being electricity, kerosene, firewood, crop residue and renewable energy such as solar, wind, hydro. During the period 1990-2003, the two commercial fuels LPG and Electricity has grown at the average annual growth rate of 11.26 percent and 8.25 percent respectively.

Residential energy consumption can be broadly divided into six categories such as: Lighting, Cooking, Space Conditioning, Refrigeration, Water, Heating and Others.

Commercial Sector Energy Consumption

In India, 60 percent of the total electricity is consumed for lighting, 32 percent for space conditioning and 8 percent for refrigeration in the commercial sector. The commercial sector comprises various institutional and industrial establishments such as: Banks, Hotels, Shopping Complexes, Offices, and Public Departments supplying basic utilities.

Environmentalists have suggested one approach by reducing greenhouse gases emissions from a variety of sources with technologies available, rather than relying

on an enormous change in a single area. Strategies for mitigation of global warming include development of new technologies; carbon offsets; renewable energy such as biodiesel, solar power, biomass, geothermal and wind power; electric or hybrid automobiles; fuel cells; energy conservation; carbon credits; carbon taxes; enhancing natural carbon dioxide sinks; population control; and carbon capture & storage. Many environmental groups encourage individual lifestyle and political action against global warming. Plants and trees absorb CO2 as they grow, "sequestering" carbon naturally.

1.2 Energy Scenario

In the past sixty years India has achieved remarkable growth in development of electricity systems, from a meager installed capacity of around 1350 MW to 250256.95 MW of installed capacity as on 31 July 2014. While this growth is impressive, the needs of the nation are daunting. Some facts

- With 17.31% of world's population India has
 - Only 0.6% of global oil reserves and 7 % of coal reserves
- o Rapidly growing Economy (2003-09) 8%; to grow 8-10% per annum
- o Indian Power Sector (as of 31 July 2014)
 - o Installed Capacity: 250 GW (per capita 779 kWh)
- o India needs 300 GW of incremental power generation
 - Capacity to be added over the next 10 years
- GOI target for renewable Energy
 - o 20% by 2020

However if India has to ensure GDP growth rate in excess of 8% for a sustained period of time, it has to ensure sufficient energy supply for industrial and commercial activity in the country, as energy is an essential input in the economic activity. To achieve this and to ensure sufficient electricity to all at reasonable rates, it is not only necessary to have an efficient and competitive power sector but there is also a need to explore all possible options for electricity generation and distribution.

1.3 Need for Renewable Energy

India has been dependent on fossil fuels such as coal, oil and gas for its energy requirements. As per data provided by Ministry of Power (MoP) today, more than 57% of its capacity is coal fuel dependent. Despite the recent discoveries of gas as well as initiatives to develop coal reserves, it is likely that our dependence on fossil fuels will continue in near future. However, in the last couple of years, the price of fossil fuels has shown a consistent upward trend.

As per data published by Ministry of Petroleum and natural Gas in Economic Report "Basic Statistics on Indian Petroleum & Natural Gas, 2011-12" India imports in year 2011-12 were about 81% of its total oil consumption and considering the past trend this share of imported oil is expected to reach 90% by 2031-32. The story of coal imports is not expected to be significantly different. It is envisaged that India will be importing 50-60 million tons of coal every year by the end of the eleventh five year plan. Given this scenario, it is of paramount importance that the country develops all possible domestic energy sources. India cannot afford to ignore any source of energy just because those sources are currently expensive, because the economic loss due to non – supply of electricity will be greater than the cost of selected sources of energy.

1.4 Role of Solar Power in Energy Security

While wind has been a success story in India and has great potential, wind is extremely site specific and therefore, not suitable or large scale distributed generation. Further the total wind potential (approx 50 GW) in the country is much less as compared to the total solar energy potential (approx 600 GW). Further, this estimated potential is done at current targets for technology efficiency. If technology is improved, solar energy potential could be further increased significantly.

Further, solar energy systems do not require any fuel and therefore, operating costs are negligible. Over a life time cycle, the costs of the solar energy applications like large solar farms, roof top installations, telecom towers etc. can be lower than that of conventional energy products especially the more expensive and highly polluting diesel generators. The other advantages of solar energy systems are that they are modular in nature, have long life, are reliable, and require low maintenance effort. This distributed source of energy is uniquely suitable for India.

1.5 Green City

The smart solution to the problem of unplanned growth of cities and towns would be to make affordable a new level of quality townships that would seriously consider the important role that environmental issues play globally, locally and domestically. Thus, the concept of the Green City was conceived.

What our cities will look like in the future will depend on, how they are planned or, much more important; whether they are planned at all. The key point is that planning has a key role in ensuring sustainability.

Many of the problems associated with our cities have happened because they have not been planned, or the planning has been ineffective or misdirected. Planning has seldom kept pace with the scale of urban growth and rapid urbanization it has also been unresponsive to the needs of the poor. Forced evictions in some cities have been justified by the so called need for "proper planning".

1.5.1 Goals and Objectives

The Goal of the Solar City program is to promote the use of Renewable Energy in Urban Areas by providing support to the CCP for preparation and implementation of a Road Map to develop their cities as Solar Cities. The objectives of the programme are given below:

- To enable/empower Urban Local Governments to address energy challenges at City - level.
- To provide a framework and support to prepare a Master Plan including assessment of current energy situation, future demand and action plans
- To build capacity in the Urban Local Bodies and create awareness among all sections of civil society.
- o To involve various stakeholders in the planning process
- To oversee the implementation of sustainable energy options through public private partnerships.

2 Approach and Methodology

2.1 Master Plan for Solar City

Master plan for solar city is both a perspective and a vision for the future development of a city; as a renewable energy city or an eco green city minimizing the demand for conventional energy at the end of fifth year. It presents the current stage of the city's existing energy demand and supply scenario. It sets out the directions of change, to reduce the demand for conventional sources, assessment of various renewable energy resources and identifying the thrust areas. It also suggests alternative routes, strategies, and interventions for decreasing the demand for conventional energy resources and to make renewable energy & energy efficiency be able to reduce at least 10% of the projected total demand of conventional energy. It provides a framework and vision within which projects need to be identified and implemented. It establishes a logical and consistent framework for evaluation of investment decisions.

Master plan for development of CCP as a Solar City is initiated by Goa Energy Development Agency & Corporation of the City of Panaji under the scheme for development of solar cities, a scheme of MNRE.

2.1.1 Objectives

The objective of development of Solar Cities is for:

- Preparation of a master plan for increasing energy efficiency and renewable energy supply in the city
- Setting-up institutional arrangements for the implementation of the master plan.
- > Awareness generation and capacity building activities.

The program aims at minimum 10% reduction in projected demand of conventional energy at the end of tenth year, which can be achieved through a combination of energy efficiency measures and enhancing supply from renewable energy sources. Out of this at least 5% will be from renewable energy sources.

2.2 Study Approach

The master plan exercise will be carried out through consistent stakeholder participation at various stages. Focus Group Discussion will be organized in all the stakeholder meetings to familiarize them with the purpose, process, and expected outcomes, and to build enthusiasm, understanding and commitment to the development of solar city. This helps in arriving at a

- consensus between CCP and other stakeholders in confirming the identified sector strategies and various projects identified.
- Preparation of a master plan is a multi-stage exercise, involving:
- ➤ In-depth analysis of the existing situation, covering the detailed documentation of the existing energy demand and supply scenario for the city: The purpose of this stage is to review and analyze the current status of the city with regard to sector wise energy consumption and energy supply.
- > Demand forecasting from financial year 2014-15 to 2023-24: Using the results of the first stage of analysis combined with consultations with key stakeholders and civil society, demand for energy is forecasted, by determining growth in energy use in different sectors.
- > Formulating sector wise strategies, based on the techno economic feasibility of different renewable energy and energy efficiency options for each sector.

2.3 Methodology

The Consultant has rich experience in working on similar assignments on city development plans and renewable energy in the past and hence the consultant has laid thrust on two aspects while developing the methodology. One is the past experience on similar kind of assignments and the other is related to the project requirement.

2.3.1 Mobilization

Immediately after the signing of the contract and the orders to commence work, the Consultant mobilized the project team. Team comprising of planners and renewable energy specialists will study the intricacies of the project and hold discussions with the CCP & GEDA and concerned departments on the work plan that can be adopted for various stakeholder meetings, primary and secondary data collection and identification of various sector specific strategies.

2.3.2 Project Instigation

This task involved several sub tasks like:

- > Reviewing case studies on various documents related to Green Cities/ eco cities prepared nationally and internationally.
- Meetings and consultations with stakeholders
- Appreciation of prevailing development policies

2.3.3 Preparation of Energy Baseline for 2012

Task 01: Database Identification and Anthology

- Primary and secondary data forms the backbone of any kind of research work and also helps in focusing the study towards the definite approach. Under this task, the database required and the departments responsible for such kind of data was identified at urban level during the data collection.
- Secondary data would be collected in relation to different sectors.
- Apart from the secondary data, sample surveys was conducted to cover aspects such as energy consuming appliances, consumption patterns, consumer preferences; efficiency of use etc by detailed survey of various household of various categories

Task 02: Preparation of energy baseline report

Here, all the information collected from Secondary and primary sources are analyzed to arrive at the energy baseline for each sector. In order to develop a better understanding of the energy consumption and supply of different sectors.

2.3.4 Demand Forecasting for 2014-15 to 20123-24

The energy demand for each of the sectors is established. This is done by taking into account the various parameters (e.g. Fuel consumption by outside vehicle, future commercial & Industrial growth etc.).

2.4 Strategic Vision

Strategic vision for developing CCP as a solar city has been decided on the basis of stakeholder consultation and focused group discussion during the preparation of solar city master plan.

3 Success Stories

3.1 Introduction

A large proportion of the world's population lives in cities, towns and urban regions, in which three quarters of the overall energy consumption occurs. Urbanization and economic development are leading to a rapid rise in energy demand in urban areas. The urban areas are heavily dependent on fossil fuels for maintaining essential public services for powering homes, transport, infrastructure, industry and commerce etc. It is generally recognized that a transformation of the present energy system is required in order to secure the energy supply and to mitigate the risks of climate change. The transformation can be made possible by a shift towards Renewable Energy Systems (RES) and a more national use of energy. One of the approaches to achieve such a transformation might be to convert more number of cities to solar cities.

3.2 Institutions involved on Solar Cities

Several institutions working on solar cities are given below.

- European Solar cities initiatives (ESCI)
- International Solar cities initiatives (ISCI)
- Solar city Task force

The following section discusses briefly about the initiatives and activities undertaken by these institutions.

3.2.1 International Solar Cities initiatives (ISCI)

International Solar cities initiative is the group who had organized the first solar cities congress in Daegu, Korea in 2004. The primary focus of ISCI is to set up the target for introduction of renewable energy and reduction of green house gas emissions on a longer term.

3.2.2 European Solar Cities Initiatives

The aim of the initiative is to support the European energy and climate policy by stimulating the interests of European "high performance" cities and surrounding regions (prospective "Solar cities"), the European research community and the European sustainable energy industry.

The initiative will mobilize a critical mass of participants to find efficient and rapid ways of implementing Renewable Energy Sources (RES) and Rational Use of Energy (RUE) in European cities through research, development, demonstration and information dissemination activities and through stakeholder participation (citizen

and others). The goal is to speed up the transformation of the European cities into solar cities.

A working definition of solar city is a city that aims at reducing the level of green house gas emissions through a holistic strategy for the introduction of RES and RUE to a climate stable and thus sustainable level in the year 2050.

3.2.3 Solar city Task force

Solar city task force is an advisory service to assist towns, cities etc. integrating renewable energy technologies and energy conservation and efficiency measures in order to reduce the green house gas emission. A general methodology has been developed based on the experiences and best practices adopted by different institutions internationally for providing such services.

3.2.4 European solar cities projects

The European Solar cities projects (EU Solar Cities) aims at promoting the wider and larger scale use of renewable energy (RE) within the context of long term planning for sustainable urban development. It is basically a study that addresses the planning and application of technologies for utilizing RES and RUE in an urban context and their relevance for reducing CO_2 emissions.

Solar city is seen as a city that has made firm commitments in order to reduce green house gas emission targets while incorporating renewable energy technologies.

Within the scope of this project several activities were conducted.

- The collection and assessment of information about different activities and programmes of selected European cities and city networks, with a description on their implementation and an assessment of their impact.
- The examination of these activities assisted in the development of two guide books for city actors, namely:
 - · Good practice guide
 - Guide on CO₂ reduction potential in cities.

The results encompass a range of informative materials, with recommendations for replication to city actors and local governments.

The good practice guide is useful for city actors that require ideas and information for planning their own activities and strategies to implement clean energy sources and promote the reduction of harmful emissions. A set of generic good practices have been identified , which represent a good starting point for cities that require an introduction to the concept of implementing RES and RUE strategies and activities.

The CO_2 reduction potential assessment and issues impacting on CO_2 balances, is a comprehensive report that addresses reduction targets and baseline targets. This is

particularly useful for guiding cities interested in implementing a strategy, with basic steps identified to assist this process.

It has to be noted that there are many different approaches that are, and can be, used by cities, with different baselines and varied ways of presenting emissions reduction results. Although scientists are not unanimous in agreeing to the best way to measure emissions, or the most effective way to calculate emission reductions, the project team has the view that a delay in implementing the strategies and activities that will adequately reduce harmful emissions is in itself the most damaging approach.

Under this study eight cities were identified. Cities were selected from Austria, Belgium, Denmark, France, Germany and Italy. Sixty three city good practices from seven cities and one housing association have been identified. Every city needs to consider the results of its actions in terms of energy used and the effect it has on the environment.

A range of good practices recommended for replication have been identified and present a guide to urban actions that contribute to sustainability in cities, and actions that strengthen networks.

- 63 city good practices
- 22 city network good practices.

4 Stakeholders Consultation

The success of the Solar City Master Plan depends on the extent of people participation. As it is very rightly said "Planning is an exercise 'For' the people, 'Of' the people and 'By' the people". People perception and views should be given an important position in any development programme as the whole exercise is done for the common good of the people.

As per the guidelines, Consultants were supposed to organize its **first inception workshop** with assistance from GEDA & CCP. The aim of the workshop was to familiarize various stakeholders the purpose, process and expected outcomes of the Master Plan. Stakeholders included elected representatives, Municipal commissioner and people from local departments like PWD, Electricity Department, Town and country planning department, development Authority.

4.1 Formation of Stake Holder Committee

A stake holder committee comprising of the Municipal corporation officials, Department of Electricity officials, PWD, NGOs, and Press etc. was formed. The Solar City Cell members will participate in the discussions at every stage during the course of preparation of the City Development Plan. The Steering Group members of Goa State Solar City Cell are as follows:

- > Municipal commissioner, CCP
- Project Officer GEDA, Goa
- > Additional District Magistrate
- District Supply Officer
- Principal, ITI, Goa
- Executive Engineer, Department of Electricity

4.1.1 Problems and suggestions highlighted by the stakeholders

The problems and issues identified by the elected representatives and administrative staff and other stakeholders are encapsulated as under:

- Primary Survey type has to be Presented, like questionnaire filled, consumers approached etc.
- Transport Sector has been included as much as possible in Solar City master plan. Due to technical and geographical constraints direct intervention is not possible at this stage in transport sector. CCP should introduce battery operated vehicle for reducing the conventional fuel demand in transport sector.

- > Project to be Included: Solar Panel mounted on top of the Building to capture the sunlight and feed the electricity generated into the grid.
- > Solar Water heating system & Star ratings of Buildings should be promoted in housing complex and commercial buildings.
- Renewable energy and water conservation projects should be identified for Hotel Industries.
- > Separate chapter on Green Building should be included in Master Plan.
- > Bus Depot and Bus stands should also be considered for installation of solar rooftop systems.
- Waste to energy analysis for future should be made in the Master Plan, like type of project, area required for the project, cost of project, technology used.
- > Buildings or parks can be utilized for street lighting through solar energy.

5 Sector wise EnergyConsumption & Baseline

5.1 Introduction

Energy baseline is the amount of energy that would be consumed annually in Business As Usual (BAU) scenario. This BAU is without consideration of any energy conservation measure and is entirely dependent upon the historical data, engineering calculations, metered energy consumption in systems, building load simulation model, statistical regression analysis or a combination of these. This chapter is focused on present energy consumption in residential, institutional, commercial and municipal sector with its overall energy consumption scenario for Panaji city.

5.2 About the city

Panaji the capital city of Goa comprises 30 wards like fountain has, Mala, St Tome, Alto Pilots, Boca de Vaca, Portais, Bhatlem, Tonca, Alto Guimaraes, Campal, St Inez, Gaspar Dias, Ribandar, Dona Paula, etc. Panaji's history is long. Historical accounts of this place date back to Kadamba King Shasthadeva (1007-1050).

The Corporation of the City of Panaji is the oldest civic institution in Asia. It received the status of a Portuguese city in 1843. It is also the world's smallest municipal corporation, catering to the civic needs of Goa's capital city of Panaji. Goa one of the youngest

states, which was incorporated into Indian Union (in 1962). The City Panaji is the capital of the state of Goa, and it is the headquarters of the North Goa district. The official name is Panaji, though in the local language (Konkani) the Panaji gets pronounced as Ponnji, Ponnje, or Ponjhe.

Panaji is a tiny city that packs in a large punch, built around a church facing a prominent square and lies on the banks of the Mandovi estuary in the district of North Goa.

Panaji is the important center in terms of Indo-Portuguese cultural heritage. Panaji is spotted as one of the most attractive tourist destination centers in India, and it attracts around 2.0 Lakhs of National tourist and 0.35 Lakh of international tourist annually.

The City Panaji is located in 15.25° North Latitude 73.5° to East Latitude and about 60 Meter above the Mean Sea Level. The city is bound by the Rua de Querem creek on the north that has been artificially trained to flow along its east side, the Mondovi river on the north, the hillock of Altinho on the south east and the St.Inez Nullah and Taleigaoon the west.

Panaji is the travel & transit hub of Goa. The city is well connected by roadways, airways, waterways and railway network (Map 3.1). to the urban centers in the state, national capital and important cities in the neighboring states. Being Goa's capital city and administrative headquarter, it is well connected by road to the towns and cities within the state and with important towns in neighboring states, as it is served by National Highway No. 17 and 4A. Goa, Maharashtra and Karnataka state transport corporations operate from Panaji's Kadamba bus stand.

As Panaji is located along the river Mandovi, on island of Tiswadi in land/waterways have also developed to some extent. It is well connected by airways, from Mumbai (Bombay), Bangalore, Cochin, Delhi, Chennai (Madras), Mangalore and Trivandrum. The airport is located at Dabolim, which is about 35 km away from the city of Panaji. Panaji is also connected by air with Secunderabad, and Jaipur in addition to above towns. The railway station is located at Madgaon.

5.2.1 Demographic Profile

The Figure below gives us the population data for CCP. The table 6.1 shown below gives us the yearly population, its increase in absolute terms as well as in percentage for CCP.

5.2.2 Land Use Pattern

The total area of CCP is 830 ha. The land use pattern is as per North Goa Planning and Development Authority has been shown in figure 6.3

5.2.3 Electricity Consumption Scenario

In order to have a better understanding about energy conservation potential, it is imperative to understand the profile of the energy consumption under the business as usual scenario (BAU). The following sections focus on present energy consumption pattern in residential, industrial and commercial sector with its overall energy consumption scenario.

The total energy consumption for Panaji city is shown in the Figure 5.4. As can be seen from the figure, the electricity consumption has become 1.5 times that of the year 2007-08 and it stands at 92 MU for the year 2013-14.

Figure 5.5 shown gives us an idea about sectoral electricity use pattern of Panaji city for the year 2013-14. It shows that commercial and followed by residential sectors are the most power consuming sector and others are having only 3% of total consumption.

Table 5.2: Sector wise Total Number of Consumers						
Type of User	2008-	2009-	2010-	2011-	2012-	
	2009	2010	2011	2012	2013	
Residential	11361	11944	13109	13546	13400	
Commercial	6037	6346	6966	7198	7469	
Industrial	91	95	96	100	105	
Institutional	105	107	110	111	113	
Municipal						
Hotel Industries	76	76	76	77	78	
Source: Department of Electricity						

The total number of consumer per year has been shown in the table 5.2 for domestic, commercial, Industrial, Institutional and Municipal sector. All sectors are not having variation with respect to number of consumers in the last five years. It shows that there is no so much growth in the city.

5.2.4 Consumption Scenario of Petroleum Products

The transport, commercial, institutional and residential sectors are the major consumers of petroleum products (Petrol, Diesel and LPG). Liquid Petroleum Gas (LPG) is mainly used in commercial, institutional and residential sector. Petrol and diesel are used mainly in transport, residential, commercial and institutional sectors. The following figure shows the annual consumption pattern of petroleum products for the last 5 years.

The consumption of petroleum products is increasing, especially for petrol and diesel. It clearly shows that there has been a considerable change in annual petrol consumption pattern. The consumption of petrol and diesel has increased

substantially in the last couple of year. The increase in consumption of petrol may be attributed to transportation sector as the number of households has increased substantially in the last couple of year. Further, the number of commercial establishments has increased substantially in the last couple of year to cater to this increase in the floating population. Consumption of diesel has decreased in last 2 years. The consumption of LPG in the city has increased in the past 5 years due to rise in commercial activity and increase in household consumption. There is decrease in consumption of LPG in year 2013-14. It is due to new subsidy scheme of central government for residential LPG cylinder.

5.2.5 Residential Sector

The population of Panaji city is 79650 for 2014. The Socio economic profile of CCP is indicated in the Table 6.3 below.

Table 5.3: Social & Geographical profile of CCP			
Particulars	Year- 2014		
Population	79650		
Area (ha)	830		
Number of households	13400		

The annual electricity consumption pattern is shown in the figure 5.7. As can be seen from the figure, the consumption of energy has increased 1.5 times in the last five years in Panaji city. Currently it stands at around 92 MU.

Since it's a new city, it is assumed that all the households are electrified. The household electricity consumption pattern based on our sample survey is indicated in the figure 5.8. It shows that the AC is having maximum connected load in the total load. Largest chunk of electricity is being used in operating the AC followed by Microwave as every household use these appliances on daily basis. A nominal portion of electricity is used in Television. The same sample survey indicates that there is a good awareness among the people about use of CFL (Compact Florescent Lamp). If we further delve into the sample survey data about type of luminaries in the household, we can see the contribution of various luminaries used for lighting in the figure 5.9. As the chart shows that CFL is used for the 75% of total lighting requirement.

5.2.6 Commercial sector

The commercial sector growth is almost stable in Panaji. To cater these floating population commercial setups is coming up. The commercial sector has got both the HT as well as LT consumers. The electricity consumption of the commercial sector is 49 MU in year 2013-14 which is shown in the figure 5.10.

In order to have a better understanding about energy conservation potential, it is imperative to understand the profile of the energy consumption under the business as usual scenario (BAU). The following sections focus on present energy consumption pattern in commercial sector with its overall energy consumption scenario.

The average number of consumers per year has been shown in the figure 5.11 for commercial sector. The number of commercial consumers has increased 6037 in FY 2009-10 from 7469 in FY 2003-14.

5.2.7 Industrial Sector

The industrial sector growth is almost stable in Panaji. The Industrial sector has got both the HT as well as LT consumers. The electricity consumption of the Industrial sector is 3 MU in year 2013-14 which is shown in the figure 5.10.

In order to have a better understanding about energy conservation potential, it is imperative to understand the profile of the energy consumption under the business as usual scenario (BAU). The following sections focus on present energy

consumption pattern in commercial sector with its overall energy consumption scenario.

The total number of consumers per year has been shown in the figure 5.13 for Indutrial sector. The number of commercial consumers has from increased 91 in FY 2009-10 to 105 in FY 2003-14.

6 Energy Forecasting and Target Setting

6.1 Introduction

As discussed the current situation in the earlier section, now we are doing the trend analysis for the population data, we get the following data for the projected population as shown in figure 6.1. It shows that by the end of 2024, the population will grow up to 82,000.

6.2 Projection for electricity demand up to 2023-24

Based on the total electricity consumption data for Panaji for the past five year, a trend analysis has been done for preparation of BAU scenario and the same has been projected for the next 10 years as shown in figure 6.2. It clearly shows that by 2023-24, the annual electricity consumption of Pani City would be around 262 MU in BAU scenario which is about 2.85 times the total electricity consumption of the city in the year 2013-14.

The projection of different sectors has been given in the following sections.

6.2.1 Residential Sector

All the demand forecast/projection in the following sections has been done through time series analysis of data gathered from various sources for historical data.

Based on the electricity consumption data, a trend analysis has been done for preparation of BAU scenario and the projection of electricity demand has been done

for the next ten years as shown in the figure 6.3. It shows that in case of BAU scenario, the electricity consumption in the residential sector would go up to 103 MU by 2023-24, which was 39 MU in FY 2013-14. It means that the expected growth in electricity consumption in the residential sector would be more than the growth rate of the total electricity consumption for Panaji. This could be attributed to the spurt in commercial activity to cater to the floating population of the city. Residential consumption will increase due to increase in number of consumers.

6.2.2 Commercial Sector

The commercial sector is growing at a considerable rate in Panaji. Some of these establishments are HT consumers and others are LT consumers. The total energy consumption from all these commercial consumers have been projected for the next ten years on the basis of past five year data using regression analysis and shown in figure 6.4. It clearly shows that by the end of 2023-24, the annual electricity consumption in commercial sector will be around 150 MU in BAU scenario, which was 49 MU in FY 2013-14.

6.2.3 Industrial Sector

The Industrial sector is having almost stagnant growth in Panaji. Some of these establishments are HT consumers and others are LT consumers. The total energy consumption from all these commercial consumers have been projected for the next ten years on the basis of past five year data using regression analysis and

shown in figure 6.5. It clearly shows that by the end of 2023-24, the annual electricity consumption in commercial sector will be around 10 MU in BAU scenario, which was 3 MU in FY 2013-14.

6.3 Projection of demand of Petrol, Diesel and LPG for next Decade in Business as usual (BAU) scenario

6.3.1 Projected demand for Petrol and Diesel

Forecast/projection for petrol, Diesel and LPG has been done through time series analysis of data gathered from various sources for historical data. The fuel consumed is projected for next ten years considering the appropriate growth rate.

Based on the fuel consumption data, a trend analysis has been done for preparation of BAU scenario and the projection of fuel demand has been done for the next ten years as shown in the figure 6.6. It shows that in case of BAU scenario, the Petrol and Diesel consumption would go up to 18038 KL and 16122 KL respectively by 2023-24, which was 9008 KL and 7780 KL respectively in FY 2013-14. Projections for petrol have been done based on growth rate of 5 years CAGR and for petrol and diesel is 7.2% and 7.6% respectively has been considered.

6.3.2 Projected demand for LPG

The consumption of gas will keep on increasing in the BAU scenario. The projection of LPG consumption is shown in figure 6.7 in MT. The projected consumption of LPG has shown a considerable increase over next 10 years. LPG consumption is projected on the basis of 5 years CAGR. It shows that in case of BAU scenario, the LPG consumption would go up to 1393 MT by 2023-24, which was 1246 MT in FY 2013-14. It clearly shows that by the end of 2023-24, the annual LPG consumption will increase due to increase in no. of households & Population.

6.4 Target Setting

As shown in the previous sections, the demand of energy is going to increase unabated in the Business as Usual scenario. If we convert all the energy derived from fossil fuel source to equivalent amount of electricity in Million Units, we can arrive at a baseline of 2013-14. The total equivalent electricity consumption thus derived in the baseline year could be taken as the basis and the target setting can be done accordingly (10% reduction in next 5 years). The following table 6.1 shows the consumption of electricity as well as fossil fuel projected in the baseline year.

Table 6.1: Consumption of Energy Sources in Year 2013-14					
Energy	Electricity	Petrol (KL)	Diesel	Kerosene	LPG (MT)
Source	(MU)		(KL)	(KL)	
Consumption	92	9008	7780	798	1246

Now if we convert these sources of energy into a common denomination, we can arrive at equivalent million units of electricity for all these different sources of energy. The table 6.2 shows these values converted into the same units of million equivalent of Electricity produced (in Million Units).

Table 6.2: Consumption of Energy Sources in Year 2013-14 converted into Million Units (MU) of electricity equivalent.

Energy	Electricity(MU)	Petrol	Diesel (MU)	Kerosene	LPG (MU)
Source		(MU)	'	(MU)	
Consumption	92	97	88	30	16

Now, the solar city programme envisage a 10% reduction in conventional energy demand through a combination of various demand side and supply side measures spread across all the sectors by the end of next 5 years. Accordingly, the target for CCP could be considered as a reduction of 10% of the total energy demand which turns out to be equal to 85 Million Units of electricity.

 Table 6.3: Projected Consumption of energy from Conventional sources in 2018

19.

Energy	Electricity(MU)	Petrol	Diesel	Kerosene	LPG	Total
Source		(MU)	(MU)	(MU)	(MU)	(MU)
Consumption	155	137	127	13	17	450

Table 6.4: Projected Consumption of energy from Conventional sources in 2023-

24

Energy	Electricity(MU)	Petrol	Diesel	Kerosene	LPG	Total
Source		(MU)	(MU)	(MU)	(MU)	(MU)
Consumption	262	194	183	6	18	663

Table 6.5: Target Reduction of conventional Energy @10%				
Year Total (MU)				
2016-17	45 MU			
2021-22	66 MU			

The target for the Solar city programme for Panaji City could be taken as the reduction in the demand of electricity equivalent by 45 MU by next five years through various supply and demand side measures in residential, commercial, Industrial and Municipal sectors. This would lead to a marked reduction in the Carbon footprint of the city and will propel it onto a sustainable path of growth in terms of energy. Various Renewable Energy (RE) and Energy Efficiency (EE) options through which this can be achieved are explained in detail in the subsequent chapters.

Solar City Master Plan PANAJI

CCP will achieve 73% of total target by Renewable energy and balance 27% through energy efficiency sources. Total estimated targeted reduction of RE sources is 42 MU and reduction of EE measures is 15 MU by 2018-19.

7 Green Building & Energy Efficiency in Buildings

7.1 Introduction

Residential, public and commercial buildings consume a large amount of energy mostly for lighting, appliances, space heating and water heating. In order to improve energy efficiency and conserve energy through the concept of solar city existing buildings and new buildings must evolve to incorporate energy efficiency and energy conservation measures.

To encourage the best practices in Panaji, this chapter considers how energy efficiency is incorporated into building codes. Strategies to achieve energy efficient buildings according to international practice will be explained here for the main components of a building in order to achieve energy efficiency and conservation in the developing solar city of Panaji. Information on technologies and energy saving methods outlined in this chapter aim to assist CCP in going beyond basic energy efficient strategies and to provide more the tools for innovative design for new and retrofit buildings for Panaji.

As Panaji lies in the hot and humid climate, any energy efficient building system must be designed according to this climate. This should also be a major consideration when looking at various practices that are suitable to follow.

This chapter will explain in detail the various green and sustainable initiatives that can be incorporated during the construction and operation of any new construction as well as retrofitting of existing buildings planned in city of Panaji.

7.2 Building Energy Efficiency – Existing policy Framework

In India there exist the National Building codes 2005 (NBC 2005) and the new Energy conservation of buildings codes 2006 (ECBC 2006). The national building codes only consider regulations in building construction primarily for the purposes of regulating administration, health and safety, materials and construction requirements and building and plumbing services whereas the ECBC 2006 consider energy conservation and energy efficiency in buildings to provide minimum requirement for the energy efficient design and construction of buildings. The NBC 2005 refers to a wide variety of building type and ownership whereas ECBC 2005 only refers to commercial buildings and some building complexes.

The ECBC 2006 mainly considers administration and enforcement, the building envelope, HVAC, service hot water and pumping, lighting and electric power to

encourage conservation of energy. These are considered in new buildings and additions to existing buildings.

At present the energy conservation act 2001 empowers the state governments to adjust the codes according to local conditions. This encourages inconsistency in building practices across the country and can lead to huge deviations from the existing codes. There are currently state designated agencies for implementation of this code for example in Panaji, Department of Electricity Goa is the state designated agency for implementing the energy conservation act 2001 and hence ECBC 2006. The regulating authority is different for each state and is responsible for enforcing the adapted building codes for that state. Experts check the plans for new buildings or changes to existing buildings and permit the builder to carry out construction if the design meets the code requirements. The plans are rejected and sent for alteration if they do not meet the requirements. After the building is built it must again be certified as complete by the state designated agency before it is used.

The Bureau of Energy Efficiency is working on certifying Energy Auditing Agencies in order to evaluate buildings energy use, which will enable better regulation of energy conservation in buildings. In order to encourage green rating practices of buildings, IGBC has come up with LEED rating.

Points are given for different criterion at the site planning, building planning and construction, and the building operation and maintenance stages of the building life cycle as explained in action plan.

7.3 Green Building-An Understanding

Green Building, also known as green construction or sustainable building, is the practice of creating structures and using processes that are environmentally responsible and resource- efficient throughout a building's life-cycle.

Although new technologies are constantly being developed to complement current practices in creating greener structures, the common objective is that green buildings are designed to reduce the overall impact of the built environment on human health and the natural environment by:

- Efficiently using energy, water, and other resources
- Protecting occupant health and improving employee productivity
- Reducing waste, pollution and environmental degradation.

7.4 Need for a Green building

Traditional buildings consume large amounts of energy and other natural resources and generate harmful byproducts for the environment around them. In India buildings account for 30% of total energy consumption and generate 35% of green house gas emissions that harm air quality and contribute to global warming.

Thus Buildings have an enormous impact on the environment, human health, and the economy. The successful adoption of green building strategies can maximize both the economic and environmental performance of buildings.

7.5 Benefits and outcomes of a Green building

The major benefits of a Green building are as follows:

- ✓ Reduced energy consumption without sacrificing the comfort levels
- Reduced destruction of natural areas, habitats, and biodiversity, and reduced soil loss from erosion etc.
- Reduced air and water pollution (with direct health benefits)
- ✓ Reduced water consumption
- Limited waste generation due to recycling and reuse
- ✓ Reduced pollution loads
- ✓ Increased user productivity
- ✓ Enhanced image and marketability

Following are the outcomes of a Green building as researched on basis of existing Green buildings.

- There is 8-9 % decrease in operating costs
- ❖ The building value increases by around 7.5 %.
- The return on investment is around 6.6 %.
- There is around 3.5 % increase in occupancy in Green buildings.
- ❖ Reported increase of about 3.0 % in rent ration.

7.6 Rating system for Green buildings

In India, at present, there are predominantly two rating systems to certify buildings as green buildings, namely GRIHA and LEED-INDIA. These rating systems have a predefined set of criteria and there are points for each one of these criterion. The buildings are required to fulfill the defined criteria and achieve a certain number of points to be certified.

GRIHA Rating: GRIHA, an acronym for Green Rating for Integrated Habitat Assessment, is the National Rating System of India. It has been conceived by TERI and developed jointly with the MNRE Ministry of New and Renewable Energy, Government of India. It is a green building 'design evaluation system', and is suitable for all kinds of buildings in different climatic zones of the country.

It is a rating tool that helps people, assess the performance of their building against certain nationally acceptable benchmarks. It will evaluate the environmental performance of a building holistically over its entire life cycle, thereby providing a definitive standard for what constitutes a 'green building'. The rating system, based on accepted energy and environmental principles, will seek to strike a balance between the established practices and emerging concepts, both national and international. The guidelines/criteria appraisal may be revised every three years to take into account the latest scientific developments during this period.

Going by the old adage 'what gets measured, gets managed', GRIHA attempts to quantify aspects such as energy consumption, waste generation, renewable energy adoption, etc. so as to manage, control and reduce the same to the best possible extent.

LEED India Rating: LEED-INDIA is the Indian counterpart of United States Green Building Council's LEED (Leadership in Energy and Environmental Design). It is led by the Indian Green Building Council (IGBC) in India.

The Leadership in Energy and Environmental Design (LEED-INDIA) Green Building Rating System is a nationally and internationally accepted benchmark for the design, construction and operation of high performance green buildings.

LEED-INDIA rating system provides a roadmap for measuring and documenting success for every building type and phase of a building lifecycle.

7.7 Procedure for certification

1. GRIHA Rating

All buildings, except for industrial complexes and housing colonies, which are in the design stage, are eligible for certification under the GRIHA system which also adopted by MNRE (Ministry of New and Renewable Energy). Buildings include offices, retail spaces, institutional buildings, hotels, hospital buildings, healthcare facilities, residences, and multi-family high-rise buildings.

Registration

- A project has to be registered with GRIHA through the GRIHA website (www.grihaindia.org) by filling in the registration form online.
- Registration should preferably be done at beginning of a project, as several issues need to be addressed at the pre-design stage.
- The registration process includes access to the essential information related to rating. If desired by the applicant, one-day training for the design team by GRIHA on the rating system is also included at a nominal additional cost.

During the training session, the following areas shall be covered:

- Overview of the green building design
- Building project and project-specific guidance system
- Documentation process
- Evaluation process

The key steps for the process of Certification for getting a building evaluated under GRIHA are:

- 1. Registration
- 2. Submission of documentation
- 3. Preliminary evaluation by TERI Technical team
- 4. Evaluation by panel of experts
- 5. Preliminary rating with comments sent to project team
- 6. Final submission of documents
- 7. Final evaluation by panel of experts
- 8. Approval of rating by advisory committee
- 9. Award of rating

Fees

The registration cum rating fee (subject to review and modification every year) w.e.f. from July 1 2008 is as follows:

Registration Cost and the fee for	r Rs. 2,50,000 {Fixed Cost}		
secretariat			
Evaluation fee for up to 5000 sq. m	Rs. 64,000		
Evaluation fee for area > 5000 sq. m	Rs 64,000 + Rs3.75/sq.m for each		
	sq. m over and above 5000 sq. m		

This fee is to be paid upfront on registration of the project for GRIHA certification and is non-refundable.

The fee includes

- Cost of GRIHA documents and templates
- Third party evaluator fees
- One-day training workshop for all consultants involved in the project {In Delhi or Bangalore}
- GRIHA secretariat costs for documents collection, assimilation, valuation and submission.

MNRE Scheme on Energy efficient Solar / Green buildings:

- Budget Allocation: The total budget of Rs. 10.00 crore has been allocated for implementation of the scheme during the year 2013-14 and rest of the 12th Plan period. The Ministry aims to promote the green building principles & concept with emphasis on the renewable energy application in the green buildings among the stakeholders through a combination of promotional incentives and support majors in the country.
- Financial Provisions: The scheme provides for the financial incentives to carry out the following promotional activities to promote the construction of Green Buildings in the country.
- Incentives for Capacity Building and Awareness Activities: A financial support of up to Rs. 2.00 lakh for 1-2 days and Rs. 3.0 lakh for three days activity could be provided for organizing training programmes, workshops, conferences, seminars, publications, awareness campaigns, and orientation programmes etc. to the implementing agencies. However, for International Conferences/ exhibitions/ workshops the financial supports up to Rs. 5.0 lakh may be considered based on merit.

- Awards to Urban Local bodies (ULBs): The onetime cash award of Rs.
 10 lakh along with a shield will be given to best 3 ULBs per year selected through competition for adopting and promoting the energy efficient solar/green buildings to be rated under the rating system in vogue i.e., GRIHA, LEED India etc.
- Awards to the Green Building having maximum RE installations: The
 cash award of Rs. 15 Lakh 10 Lakh and 5 Lakh along with a shield will be
 given to best 3 buildings per year that have the maximum installation of
 renewable energy systems and the net Zero energy based buildings in the
 country.
- Incentives for Renewable Energy Projects installations: The proposals
 on RE systems including SPV installations, SWH, waste to energy projects,
 biogas generation projects etc. or any other innovative RE related projects
 in the Energy Efficient Solar/ Green buildings may be considered under the
 Scheme as per available incentives under various MNRE's schemes.

2. LEED India Rating

LEED India certification provides independent, third-party verification that a building project meets the highest performance standards. The LEED India plaque awarded by the IGBC is recognition of the project achievement.

Registration:

The first step toward earning LEED-INDIA certification is project registration. Registering during the early phases of project design will ensure maximum potential for achieving certification. Registration is an important step that establishes contact with the IGBC and provides access to essential information, software tools and communications. Upon registration, project contacts receive LEED India templates and a Reference guide.

Once a project is registered, the project team begins to prepare documentation and calculations to satisfy the prerequisite and credit submittal requirements. It is helpful to have an IGBC Accredited Professional as the project contact and team member responsible for coordinating the LEED-INDIA process and requirements.

Credit Interpretations:

In some cases, project teams may encounter difficulties applying a LEED India prerequisite or credit to a specific project. In such cases, projects can apply for Credit Interpretation Request (CIR).

Certification Process:

The key steps for the process of Certification for getting a building evaluated under LEED India are:

- 1. Registration
- 2. Credit Interpretations
- 3. Certification and Documentation
- 4. Certification Award
- 5. Appeal

Registration Fee

Fee Summary

The registration and rating fees for LEED rating is as follows:

Registration			
IGBC Member	rs	Rs.25,000	
Non Members	5	Rs.30,000	
Certification I	Fee	•	
	5,000 sq.m	5,001 sq.m to 50,000 sq.m	50,001 sq.m
	& below		& above
	Fixed rate	Based on sq.m	Fixed rate
Founding		Rs. 2,90,000 plus Rs. 5.30 per	
Members	Rs. 2,90,000	additional sq.m over & above	Rs. 5,30,000
Members		5,000 sq.m	
Annual		Rs. 3,25,000 plus Rs. 5.30 per	
members	Rs. 3,25,000	additional sq.m over & above	Rs. 5,65,000
members		5,000 sq.m	
Non-		Rs. 3,35,000 plus Rs. 5.30 per	
	Rs. 3,35,000	additional sq.m over & above	Rs. 5,75,000
members		5,000 sq.m	

^{*} Parking areas need not be considered as part of the built-up area

^{*} Fee is inclusive of service tax

^{*} Registration and Certification fee are non-refundable

^{*} Membership discounts can be availed only if the project owner is a member of IGBC.

IGBC to recognize Government Green Buildings Demonstrating Global Leadership

To enable wider adoption of Green Building concepts by the government sector, IGBC would like to offer the following benefits to Government building projects, registering with IGBC, effective April 1, 2010.

Free Feasibility Study*:

An exclusive feasibility study for the project team. This is a techno-economic study to help the project team to decide on the level of rating that can be aspired for, by verifying the projects compliance with the mandatory and other credit requirements. The study would enable incorporating energy & water saving measures by design. It is designed to provide strategic inputs & direction to achieve the rating. This service is offered free of cost. However, organizations are requested to reimburse the travel and accommodation for 2 professionals.

Free Training Programme on Green Buildings*:

Training program on green buildings for the project team will facilitate information sharing on green buildings, rating systems and case studies. This also provides an insight into various facets of green building design and enlightens the participants to acquire knowledge on expectation of a green building, both during design and performance. This service is offered free of cost. However, organizations are requested to reimburse the travel and accommodation for 2 professionals.

Unique Benefits for Government Buildings achieving Platinum rating of IGBC

Achieving 'PLATINUM' rating under various rating programmes of IGBC is a challenging task. 'PLATINUM' rating signifies demonstration of global leadership in green building design and construction practices.

IGBC will refund 100% certification fee for the Government building project, on achieving the 'PLATINUM' rating of any IGBC rating system

Note:

*The above said incentives & services are offered for buildings constructed by Not-For-Profit governmental organizations

7.7.1 Salient Features of Green Building

Green Building has the following advantages:

> Minimum Air Conditioning Load:

Each tonne of refrigeration (TR) caters to more than 300 Sqft (Normal buildings in India require 150-200 Sqft / TR) of air conditioned area, despite higher fresh air intake. This is achieved through specially selected double glazing for each

orientation, and by ensuring that all external walls and exposed roofs are well insulated, thus minimizing the air conditioning load.

Lighting Power Density:

Energy efficient general lighting power density is less than 10 W / Sq.mt (Normal is 20 W/Sqmt), as per LED requirements.

Power Consumption:

Annual power consumption for Green Office building is generally less than 250 KWH / Sq.mt for normal 12 hours / day operation (Normal buildings are 400 KWH / Sq.mt.).

Excellent Indoor Air Quality:

Fresh air requirement is 3% higher than ASHRAE 62.1 - 2004, to improve the indoor air quality (IAQ). Therefore personnel working indoor are always subject to generous quantity of treated fresh air, which keeps them fresh and energetic even after extended working hours, thereby improving productivity. Fresh air is generally supplied on-demand basis monitored thru CO_2 level in return air.

> Treated Fresh Air:

Treated fresh air is provided with heat recovery wheel (HRW) to minimize the air conditioning load by reducing the ambient air temperature before it passes through the cooling coil of the space AHUs.

> Visible Light Transmittance:

Glass of window is specified for superior visible light transmittance allowing maximum harnessing of day-light (without adding glare on computer screen) thus reducing energy consumption through electrical light fixtures throughout the day.

Water Conservation:

It is achieved through Zero Discharge, that is, entire effluent is treated in Sewerage Treatment Plant (STP), and treated water is recycled as makeup for air conditioning and DG sets cooling towers, for flushing in WCs and urinals, and for gardening

> Rain Water Harvesting System:

Rain water harvesting system with filtration is provided. This water can be used for cars / car parking washing and for general washing.

7.8 Demand Comparison: Conventional Vis a Vis Green Building

Table 7.1: Demand comparison of Conventional building vis-à-vis Green Building				
Type of Loads	Conventional Building	Green Buildings *		
Air-conditioning Cooling Load	150 SFT/TR	600 SFT/TR		
Electrical Demand Load	10 WATT/SFT	4 WATT/SFT		
Lighting Power Density office area	2 WATT/SFT	< 0.6 WATT/SFT		
Lighting Power Density retail area	4 WATT/SFT	< 1 WATT/SFT		
Lighting Power Density parking area	1 WATT/SFT	< 0.15 WATT/SFT		
Potable Water Demand	45 Liters per day per person	20 Liters per day per person		

^{* -} As per the Green measures adopted

Green buildings are scored by rating systems, such as the Leadership in Energy and Environmental Design (LEED) rating system developed by the Indian Green Building Council, U.S. Green Building Council, Green Globes from GBI and other locally developed rating systems.

7.9 Green Building Implementation Framework Model for Corporation of the City of Panaji

In order to propagate the energy efficient/ green building in the jurisdiction of CCP, the construction of commercial, industrial and residential complexes/ townships can be made mandatory by CCP or can advocate some special financial incentives can be given by CCP such as property tax rebates or incentives in electricity bills etc.

For the effective implementation of sustainable construction as per the LEED/ GRIHA criteria CCP should set up a Green Building cell which can be a subset of the solar city cell, which will consist of members of town planning authority, PWD and CCP who will be trained on Green Building concept and also seek the help of LEED AP or GRIHA certified professionals.

This green building cell will be responsible for the approval of all plans in order to ensure that it is as per the criteria of LEED/ GRIHA which can also have a third party inspection from LEED AP/ GRIHA certified professionals who in turn will give the certification report to town planning department advising them on any changes to be made in plan if required or recommending approval. The model framework depicted in Figure below. CCP should conduct extensive training programme either

by GRIHA or IGBC (Indian Green Building Council) for all the local architects and people involved in civil construction in order to do effective capacity building on Green buildings with the help of MNRE.

7.10 Steps to be taken by CCP for effective implementation of Energy Efficiency in Buildings

- CCP may mandate solar water heating or Solar PV system mandatory for the Hotel industries and commercial establishments as technology being suitable in the climate of the proposed Solar City.
- Note: Government of Haryana Notification No.22/52/2005-06 Dated 29-07-2005 has made it mandatory to use solar water Heating System (SWHS) in all industries where hot water is required for processing, Hospitals & Nursing Homes including Government Hospitals, Hotels, Motels, Canteens, Housing Complexes set up by group Housing Societies/Housing Boards & all Residential Buildings (plot size 500 sq. yards & above)falling within Municipal Committees /

- Corporations and HUDA sectors, All Government Buildings, Residential schools, Educational and training institutes, Tourism Complexes And Universities Etc. in the state.
- CCP can mandate the energy conservation measures considering the following example of Administration of Union Territory of Chandigarh. Detailed Notification is attached as an annexure.
- **Note:** In exercise of the powers conferred by Section 18 of the Energy Conservation Act, 2001 (52 of 2001), read with the Government of India, Ministry of Home Affairs Notification No.S.O. 593(E)/F.No. U-11030/1/2005-UTL dated the 24th April, 2006 Administrator of Union Territory of Chandigarh hereby issues the following directions for efficient use of energy and its conservation in the Union Territory of Chandigarh namely:
 - o Mandatory use of Solar Water Heating Systems
 - Mandatory use of Compact Fluorescent Lamp (CFL) in Government Buildings/Government Aided Institutions/Boards/corporations.
 - Mandatory use of Energy Efficient Tube Light System/Retrofit Assembly in Government Buildings/Government Aided Institutions/Boards/ Corporations.
 - Mandatory use of Compact Fluorescent lamps (CFLs) and T-5 (28 watt)
 Tube Lights.
 - o Promotion of Energy Efficient Building Design
 - o Mandatory use of Energy Efficient Street Lights

8 Energy Planning

8.1 Renewable Energy Resource Assessment

Having arrived at baseline scenario, the next logical step is look for ways and means to address the issue of ever increasing energy demand. It is required to see how best the demand can be meeting in a sustainable manner. To meet the goal for Sustainable development, effective plan is required for meeting the energy requirement and at the same time minimizing the impact of such activities on the environment through emissions reduction. Under the national plan for climate change, India plans to install 20 GW of solar power by 2020. Also India has fifth largest capacity of wind power installed. Further, the Ministry for New and Renewable energy has taken many steps to encourage the installation of power plants based on renewable. But in order to assess the generation mix by these renewable, one needs to evaluate the resources for renewable energy available at that particular site. Currently Goa has less than 1% of installed capacity from Renewable Energy sources. The analysis of the potential of these renewable is presented in the following sections.

8.1.1 Biomass potential

In Corporation of the City of Panaji biomass power potential is too less to establish biomass based power plant. Biomass is used in the organic farming.

8.1.2 Solar Energy

Corporation of City of Panaji is having good potential for power generation through Solar PV. Good potential for use of solar energy in thermal applications is available for Panaji. List of implementable projects are shown in the table below.

Table 8	Table 8.1: List of Projects Identified for CCP to implement solar Power Project					
SI. No.	Name of Project	Proposed Project size (KW)				
1	Govt. Polytechnic Collage, Althino, Panaji, Goa	50				
2	Dhempe Collage of Arts and Science, Miramar, Goa	50				
	National Institute of Ocean Graphy, Dona Pola,					
3	Panaji, Goa	50				

Solar City Master Plan PANAJI

4	Goa Dental Collage, Banbolin , Panaji, Goa	3
	Goa Industries Development Corporation (GIDC)	
5	Patto, Panaji, Goa	25
6	Paryatan Bhavan (Goa Tourism), Patto, Panaji, Goa	50
7	Passport Office, Patto, Panaji, Goa	20
8	Kadamba Bus stand	100
9	The Municipal Garden	75
10	Francisco Luis Gomes Garden	50
11	Dona Paula	100
12	Miramar Beach	100
13	Kala Academy	25
14	Church of Our Lady of the Immaculate Conception	25
	Total	723

9 Renewable Energy Strategy

9.1 Residential Sector RE strategy

9.1.1 Solar Water Heaters

Assumptions:

- 200 LPD can replace 4.5 KW capacity Geyser
- Hot water requirement in one house hold for 4 months
- Average operations 1 hour per day from 10 liters geyser (1.5 KW)
 - \circ = 4 X 30 X 1.5 X 1 = 180 Kwh / year.
- Number of household = 13400
- Emission Factor .81 tCO₂ / MWh.

Table 9.1: Target for SWH installation in Panaji			
Single Household	Value	Units	
Average size of domestic SWH	200	LPD	
Collector Area	4	Sqmt	
Total energy saved per year	180	KWh	
Indicative Cost of Installation	35000	`	
MNRE Subsidy at Rs 3000 per sq Mtr 3300 per sq mtr	10500	`	
for ETC and FPC			
Cost of Energy Savings	1170	`	
Emission Reduction per year	0.14	Tonnes	
Payback Period	30	Years	
Target for Entire City			
Total No of Households	13400	Nos	
Residential Household using fossil fuel for water	70%		
heating			
Target to replace electric geyser by SWH in 5 years	60%		
Average size of domestic SWH	200	LPD	
Number of SWH to be installed in 5 year plan	5628	Nos	
Total collector area in sqm	22512	Sqmt	
Total energy saved per year	1.01	MU	
Indicative cost of installation	1969	`Lakhs	
MNRE Subsidy at Rs 1100 per sq Mtr	590	`Lakhs	

Cost of Energy Savings	25	`Lakhs	
Payback Period	3	years	
Emission Reduction per year	820	tonnes	
Source for Subsidy & cost of system MNRF, Emission Factor CFA calculation			

9.1.2 Solar PV for Home Inverters

Assumptions:

- Solar Insolation Level 4.5 kWh/m²/day
- Subsidy 30%
- Emission Factor .81 tCO₂ / MWh.

Table 9.2: Solar PV for Home Invertors

Capacity of solar PV system for Home Inverter Indicative cost of incorporating Solar PV to home inverter Total Residential Household 1340	50 WI	nits
Indicative cost of incorporating Solar PV to home inverter Total Residential Household 1340)0 `	0
inverter Total Residential Household 1340		
Total Residential Household 1340		I
Decidential Household using inventor during land 700)0 no	S
Residential Household using inverter during load 70	% %	
shedding		
Target to introduce solar charger for inverters in 5 60	% %	
years		
Number of solar invertors to be installed in 5 years 562	28 No	S
plan		
Total PV capacity installed 140)7 KV	Vp
Energy generated by PV 1.9	98 MU	J
Cost of energy saved	19 `L	akhs
Indicative cost of installation 168	38 `L	akhs
MNRE Subsidy 50)6 `L	akhs
Emission Reduction per year 160	00 to	nnes

Source: CCP, GEDA, MNRE & CEA for emission factor

9.1.3 Solar PV for replacement of DG sets

Assumptions:

- Solar Insolation Level 4.5 kWh/m²/day
- Subsidy 30%
- Emission factor of Diesel 0.81 tco₂/Mwh

Table 9.3: Solar PV for Replacement of DG Sets					
	Value	Units			
Proposed Capacity of solar PV system	1	KWp			
Indicative cost of solar power pack	1.2	`Lakhs			
Total residential households	13400	nos			
Residential households use generators during load shedding	10%	%			
Target to introduce solar power packs in 5 years	50%	%			
Number of solar power packs to be introduced in 5 years	670	nos			
Total PV capacity installed	670	KWp			
Energy generated by PV arrays per year	0.94	MU			
Typical generator used	5-10	KW			
Average fuel consumption per day for 4-6 hours of load	6	litres			
shedding					
Amount of diesel saving for the entire city	1467	KL			
Cost of Diesel saved	733	`Lakhs			
Indicative cost of installation	804	`Lakhs			
MNRE Subsidy	241	`Lakhs			
Payback period	2	years			
Emission reduction per year for replacement of diesel	762	tonnes			

9.1.4 Area Requirement for installation of Solar PV and water heating system in residential sector

Sr.	Renewable Energy Strategy -	Target	Target	Area
No.	Residential	Unit	Capacity	Requirement
				(SqM)
1	Installation of solar water heaters	Nos	5628	22512
	(200 LPD)			
2	Use of Solar home inverter(250	KWp	1407	21105
	Wp)	1	'	
3	Use of PV for replacing DG sets	KWp	670	10050
4	Total Area required			53667

We have considered the area requirement for solar water heater is 4 SqM per 200 LPD systems as per and 15 SqM per KW for solar PV system as per MNRE guidelines. Considering the same total roof top area required for installation of Solar PV and water heating system is 53667 SqM.

9.1.5 Summary of RE strategy for Residential Sector

	Table 9.4: Summary of RE Strategy for Residential Sector							
Renewable Energy Strategy - Residential	Target Unit	Target Capacit y	Investm ent (`lakhs)	MNRE Subsidy (`lakhs)	User Contrib ution (`Lakhs)	y Save d per year (MU)	Emis sion Redu ction (Ton nes)	
Installation of solar water heaters (200 LPD)	Sqmt	22512	1970	591	1379	1.01	821	
Use of solar home lighting systems (74Wp)	Nos	402	64	32	32	0.63	151	
Use of Solar home inverter(250 Wp)	KWp	1407	1688	507	1182	1.98	1600	
Use of PV for replacing DG sets	KWp	670	804	241	563	0.94	762	

4527

1371

3156

4.56

3333

Source: Darashaw Analysis

Total

9.2 Commercial Sector RE Strategy

9.2.1 Installation of Rooftop Solar PV in the Schools & Community Hall

Assumptions:

Cost of Roof Top SPV: Rs. 0.9 Lakhs per KW

MNRE Subsidy: 30%

o 55% of total Load considered for Roof Top Solar PV

Daily insolation level taken: 4.5 kWh/m²/day

Emission Factor 0.81 t CO₂ / MWh

o Roof Top Solar PV System without Battery Backup

Table 9.5: Roof Top Solar PV System in Schools & Community Hall						
Particulars	Total	Units				
Primary School	98	nos				
Middle School	48	nos				
Secondary & Higher secondary School	41	nos				
Higher Education institution	12	nos				
Total connected load of Building	2893	KW				
Tentative Potential for Roof Top in Buildings	1736	KW				
Total Indicative Cost of Installation	1562	`Lakhs				
Total Energy Generated	2.85	MU				
MNRE Subsidy	469	` Lakhs				
Cost of Energy Saved	185	` Lakhs				
Emission Reduction per year	2309	tonnes				
Source: CCP,GEDA, MNRE & CEA for emission	factor					

9.2.2 Installation of Rooftop Solar PV in the Health Centers & others commercial establishments

Assumptions:

o Cost of Roof Top SPV: Rs. 0.9 Lakhs per KW

MNRE Subsidy: 30%

Daily insolation level taken: 4.5 kWh/m²/day

Roof Top Solar PV System without Battery Backup

o Emission Factor 0.81 t CO₂ / MWh

Table 9.6: Roof Top Solar PV - Health Care Centers, Hotels, Resorts etc.

Particulars	Total	Units
Hospital	23	nos
Hotels	35	
Police station	1	
Health care Centre & Blood Bank	19	nos
Total Connected load of Heath Care Facilities	4794	KW
Tentative Potential for Roof Top in Health Care Facilities	2876	KW
Total Indicative Cost of Installation	2589	` Lakhs
Total Energy Generated	4.04	MU
MNRE Subsidy	776	` Lakhs
Cost of energy saved	262	` Lakhs
Emission Reduction per year	3271	tonnes

Source: CCP,GEDA, MNRE & CEA for emission factor

9.2.3 Installation of Rooftop Solar PV in the Banks

Assumptions:

o Cost of Roof Top SPV: Rs. 0.9 Lakhs per KW

MNRE Subsidy: 30%

Daily insolation level taken: 4.5 kWh/m2/day

 \circ Emission Factor 0.81 t CO₂ / MWh

o Roof Top Solar PV System without Battery Backup

Table 9.7: Rooftop Solar in Banks					
Particulars	Total	Unit			
No of Schedule Bank	72	nos			
No of Co-operative Bank	24	nos			
Total Connected Load for Banks	901.0716	KW			
Tentative Potential for Roof Top in Banks	720	KW			
Total Indicative Cost of Installation	648	` akhs			
Total Energy Generated	1.01	MU			
MNRE Subsidy	194	` akhs			
Cost of energy saved	30	` akhs			
Emission Reduction per year	819	tonnes			
Source: CCP.GEDA, MNRF & CFA					

9.2.4 1 MW Community based Grid Connected Solar Power Plant

Assumptions:

Cost of Roof Top SPV: Rs. 7.5 Crore Per MW

o Daily insolation level taken: 4.5 kW/m²/day

o Total Operational Days 312

o Emission Factor 0.81 t CO₂ / MWh

Table 9.8: 1 MW Community Based Grid Connected Power Plant					
Particulars	Value	Units			
Capacity of Solar PV power plant	1	MW			
Indicative cost of installation	15	` Crore			
Total Energy Generated	1.40	MU			
Cost of energy saved	42.12	` Lakhs			
Emission Reduction per year	1137.24	tonnes			

9.2.5 2 MW Municipal Solid Waste Power Plant on Public Private Partnership basis

Assumptions:

 $_{\odot}$ 25-30 Tons of bio degradable waste required for generating 1 MW (25 MT/MW)

Table 9.9: 2 MW Grid Connected Municipal Solid Waste based Power Plant						
	Value	Units				
Total Solid Waste Generated by 2018-19	50	tonnes				
Quantity of Refuse Derived Fuel	30	tonnes				
Quantity required for 1 MW	28	tonnes				
Tentative Potential	2	MW				
Plant Load Factor	75%	%				
Auxiliary Consumption	10%	%				
Total Energy generated per year	13.14	MU				
Total Energy exported to Grid	11.826	MU				
Cost of Installation	1000.00	` Lakhs				
MNRE Subsidy	300.00	` Lakhs				
Emission Reduction per year	9579.06	tonnes				
Source: CCP, GEDA and Darashaw Analysis						

9.2.6 Solar water heater for Hotels, Resorts, Hospitals, Medical centers & Commercial centers.

Assumptions:

- Average size of SWH system = 2000 LPD
- Collective area for each SWH system = 40 SqM
- Operational days 365 / year for 12 hours each day
- Emission Factor .81 tCO₂ / MWh

Table 9.10: SWH for Hotels, Resorts, Hospitals, Medical centers etc.						
SWH for Commercial Sector	Value	Units				
Average size of domestic SWH	2000	LPD				
Collector Area	60	Sqmt				
Total energy saved per year	6570	KWh				
Indicative Cost of Installation	300000	Lakh				
MNRE Subsidy at Rs 1100 per sq Mtr	66000	•				
Cost of Energy Savings	49275	`				
Emission Reduction per year	5.42025	Tonnes				
Payback Period	6	Years				
Target for Entire City						
Total No of commercial establishments	65	Nos				
Commercial consumers uses electric geyser	80%					
Target to replace electric geyser by SWH in 5 years	45%					
Average size of domestic SWH	2000	LPD				
Number of SWH to be installed in 5 year plan	23	Nos				
Total collector area in sqm	1404	Sqmt				
Total energy saved per year	0.15	MU				
Indicative cost of installation	70.2	`Lakhs				
MNRE Subsidy at Rs 1100 per sq Mtr	15.44	`Lakhs				
Cost of Energy Savings	11.53	`Lakhs				
Payback Period	3	years				
Emission Reduction per year	124.52778	tonnes				
Source: CCP, GEDA, MNRE and Darashaw Analysis						

9.2.7 Area Requirement for installation of Solar PV and water heating system in commercial sector

Renewable Energy Strategy -	Target Unit	Target	Area
Commercial		Capacity	Requirement
			(SqM)
Rooftop Solar PV in Buildings of school	KW	1736	26037
and Community hall			
Rooftop Solar in Hotels, Hospitals and	KW	2877	43153
police stations			
Rooftop Solar in Banks	KW	721	10812
SWH for Commercial Sector	Sqmt	1404	1404
Solar PV Power Plant	KW	1000	15000
Root top area requirement (SqM)			96407

We have considered the area requirement for solar water heater is 4 SqM per 200 LPD systems as per and 15 SqM per KW for solar PV system as per MNRE guidelines. Considering the same total roof top area required for installation of Solar PV and water heating system is 96, 407 SqM.

9.2.8 Summary of RE strategy for Commercial Sector

Table 9.11: Summary of RE strategy for Commercial Sector							
Renewable	Target	Target	Investment	MNRE	User	Energy	Emission
Energy	Unit	Capacity	(`lakhs)	Subsidy	Contribution	Saved	Reduction
Strategy -	'				(`Lakhs)	per	(Tonnes)
Commercial				`lakhs)		year	
						(MU)	
Rooftop	KW	1736	1562	469	1094	2.85	2309
Solar PV in							
Buildings of							
school and							
Community							
hall							
Rooftop	KW	2877	2589	777	1812	4.04	3272
Solar in							
Hotels,							
Hospitals							
and police							
stations							
Rooftop	KW	721	649	195	454	1.01	820
Solar in							
Banks							
SWH for	Sqmt	1404	70	15	55	0.15	125
Commercial							
Sector							
Solar PV	MW	1	1500	0	1500	1.40	1137
Power Plant							
Energy	MW	2	1000	300	700	11.83	9579
From							
Municipal							
Solid Waste							
Total			7370	1755	5615	21.29	17242

9.3 Municipal Sector RE Strategy

9.3.1 Installation of Rooftop Solar PV in the Government Buildings

Assumptions:

o Cost of Roof Top SPV: Rs. 0.9 Lakhs per KW

MNRE Subsidy: 30%

Solar insolation level taken: 4.5 kWh/m²/day

o Roof Top Solar PV System without Battery Backup

Emission Factor: .81 tCO₂ / MWh

Table 9.12: Roof Top Solar PV System in Government Buildings

Sr. No.	Building Category	Total	Units
1	Block Level centers	4	nos
2	Utility Area	13	nos
3	Post Office	64	nos
4	Bus Stand	1	nos
5	Telegraph office	1	nos
6	Other Government Buildings	15	nos
7	Total connected load of Government Buildings	1346	KW
8	Tentative Potential for Roof Top in Govt	1211	KW
	Buildings		
9	Total Indicative Cost of Installation	1090	`Lakhs
10	Total Energy Generated	1.70	MU
11	MNRE Subsidy	327	` Lakhs
12	Cost of Energy Saved	51	` Lakhs
13	Emission Reduction per year	1377	tonnes
Source: CCP	GEDA, MNRE and Darashaw Analysis		

9.3.2 Installation of Rooftop Solar PV in the Market & Shopping Centers

Assumptions:

Cost of Roof Top SPV: Rs. 0.9 Lakhs per KW

MNRE Subsidy: 30%

Daily insolation level taken: 4.5 kW/m²/day

Roof Top Solar PV System without Battery Backup

o Emission Factor: .81 tCO₂ / MWh

Table 9.13: Roof Top Solar PV System in Market & Shopping Centre				
Sr.	Market Categories	Total	Units	
NO.				
1	Neighborhood centre	15	nos	
2	Agriculture Cooperative Society	0	nos	
3	Markets	4	nos	
4	Total connected load of Markets	445	KW	
5	Tentative Potential for Rooftop in Markets	400	KW	
6	Total Indicative Cost of Installation	360	` Lakhs	
7	Total Energy Generated	0.56	MU	
8	MNRE Subsidy	108	` Lakhs	
9	Cost of Energy Saved	16	` Lakhs	
10	Emission Reduction per year	455	tonnes	
Source:	CCP,GEDA, MNRE & Darashaw Analysis			

Source: CCP,GEDA, MNRE & Darashaw Analysis

9.3.3 Replacement of conventional street light with solar street light.

Assumptions:

Estimated Cost of Solar Street Light: Rs. 20, 000

MNRE Subsidy: 30%

o Daily insolation level taken: 4.5 kW/m²/day

o Roof Top Solar PV System without Battery Backup

o Emission Factor: .81 tCO₂ / MWh

Table 9.14: Replacement	of Conventional	street lights wit	h Solar Street Lights

Sr. NO.	Particulars	Value	Units
1	Target no of street lights	800	nos
2	Capacity of one solar PV Module	74	Wp
3	Indicative cost of one street light	20000	`
4	Total PV capacity installed	59.2	KW
5	Energy Generated by PV	0.08	MU
6	Cost of energy saved	6.23	` Lakhs
7	Indicative cost of installation	160	` Lakhs
8	MNRE Subsidy	48	` Lakhs
9	Emission Reduction per year	67	tonnes

9.3.4 Installation of solar traffic light.

Assumptions:

Estimated Cost of LED based Solar Traffic Light: Rs. 25, 000

 \circ Daily insolation level taken: 4.5 kW/m²/day

o Solar PV System without Battery Backup

o Emission Factor: .81 tCO₂ / MWh

Table 9.15: Solar Traffic Lights			
Particulars	Value	Units	
Target no of street lights	800	nos	
Capacity of one solar PV Module	74	Wp	
Indicative cost of one street light	20000	`	
Total PV capacity installed	59	KW	
Energy Generated by PV	0.08	MU	
Cost of energy saved	2.49	` Lakhs	
Indicative cost of installation	160	` Lakhs	
MNRE Subsidy	48	` Lakhs	
Emission Reduction per year	67	tonnes	
Source: PWD, CCP and GEDA			

9.3.5 Installation of solar Advertising Hoardings.

Assumptions:

o Estimated Cost of LED based Solar Traffic Light: Rs. 25, 000

o Solar PV System with Battery Backup

o Emission Factor: .81 tCO₂ / MWh

Table 9.16: RE system for Advertisement Hoardings			
	Value	Units	
Target no of traffic lights	50	nos	
Capacity of one solar PV Module (2*74Wp)	148	Wp	
Indicative cost of one traffic light	25000	`	
Total PV capacity installed	7.4	KW	
Energy Generated by PV	0.01	MU	
Cost of energy saved	0.0000003	` Lakhs	
Indicative cost of installation	12.5	` Lakhs	
MNRE Subsidy	3.75	` Lakhs	
Emission Reduction per year	8	tonnes	
Source: PWD, CCP and GEDA			

9.3.6 Installation of Sewerage Treatment based Biogas power plant

Assumptions:

Estimated Water requirement Per Person: 120 lpcd

o Waste Water generated: 80% of total water used

o Biodegradable waster available for methanization: 40%

Estimated Biogas Consumption Cubic Meter / Hour / 1 MW: 521 Cum

Operational Days: 350

Table 9.17: Sewerage Treatment based biogas power plant			
Particulars	Value	Units	
Total projected Population in 2024	83843	nos	
Total Water Requirement @ 120 lpcd	11.32	MLD	
Total waste water generated	9	MLD	
Total biodegradable waste available for biomethanation	3.62	TPD	
Digester efficiency	65%	%	
Biogas yield	0.8	cum/kg	
Total biogas yield per day	1883	cum	
Biogas consumption Cu mtr/hour/engine for @ 1MW	521	cum	
Tentative capacity of bio-methanation plant	150	Kw	
PLF	80%	%	
Auxiliary consumption	10%	%	
Total energy generated	1012218	Kwh	
Electricity exported to grid	0.91	MU	
Cost of Installation	50	` lakhs	
MNRE Subsidy	15	lakhs	
Emission Reduction per year	737	tonnes	

Source: PWD, CCP and Darashaw Analysis

9.3.7 Summary of RE strategy for Municipal Sector

Table	Table 9.18: Summary of RE strategy for Municipal Sector						
Renewable	Targe	Target	Invest	MNRE	User	Energy	Emissio
Energy Strategy -	t Unit	Capaci	ment	Subsidy	Contr	Saved	n
Municipal		ty	((ibuti	per	Reducti
			`lakhs	`lakhs)	on (year	on
)		`Lak	(MU)	(Tonnes
					hs))
Installation of 5	MW	5	3500	0	3500	7.50	6525
MW Solar PV Plant							
Rooftop Solar PV in	KW	1211	1090	327	763	1.70	1378
Building							
Rooftop Solar PV in	KW	401	360	108	252	0.56	455
Markets							
Replacement of	Nos	800	160	48	112	0.08	67
Conventional							
Street Lights with							
Solar Street Lights							
Solar Traffic Lights	Nos	50	13	4	9	0.010	8
Sewerage	Kw	151	50	15	35	0.91	738
treatment plant							
Demonstration	KW	723	1012	304	709	1.08	878
Projects							
RE systems for	Nos	200	200	60	140	0.08	68
Advertisement							
Hoardings							
Total			6385	866	5520	11.94	10118

9.4 Industrial (Hotel) Sector RE Strategy

9.4.1 Installation of Solar Water Heating system for Heating or cooking

Table 9.19: Solar water Heting System 2000 LPD Capacity each

	Value	Units
Average size of domestic SWH	2000	LPD
Collector Area	40	Sqmt
Total energy saved per year	16000	KWh
Indicative Cost of Installation	175000	
MNRE Subsidy at Rs 1100 per sq Mtr	52500	`
Cost of Energy Savings	72000	`
Emission Reduction per year	13	Tonnes
Payback Period	2	Years
Target for Entire City		
Total No of Households	50	Nos
Industrial consumers using fossil fuel for water heating	100%	
Target to replace electric geyser by SWH in 5 years	80%	
Average size of domestic SWH	2000	LPD
Number of SWH to be installed in 5 year plan	40	Nos
Total collector area in sqm	1600	Sqmt
Total energy saved per year	0.64	MU
Indicative cost of installation	70	`Lakhs
MNRE Subsidy at Rs 1100 per sq Mtr	21	`Lakhs
Cost of Energy Savings	29	`Lakhs
Payback Period	3	years
Emission Reduction per year	518	tonnes

Source: CCP, GEDA and Darashaw Analysis

9.4.2 Installation of Roof Top Solar PV System in High rise buildings having plot size more than 1000 SqM.

Assumptions

o Cost of Roof Top SPV: Rs. 0.9 Lakhs per KW

o MNRE Subsidy: 30%

o Daily insolation level taken: 4.5 kW/m²/day

o Roof Top Solar PV System without Battery Backup

Emission Factor: .81 tCO₂ / MWh

Table 9.20: Roof Top Solar PV System in High Rise Buildings having plot size more than 1000 Sq.M

Particulars	Value	Units
Total potential for Roof Top Solar PV system	4.725	MWp
Target to introduce solar Power Plant in 5 years	50%	%
Total PV capacity installed	2.4	MWp
Energy generated by PV arrays per year	3.32	MU
Cost of Diesel saved	590	`Lakhs
Indicative cost of installation	2126	`Lakhs
MNRE Subsidy	638	`Lakhs
Payback period	3	years
Emission reduction per year for replacement of diesel	2686	tonnes

Source: CCP, GEDA, Darashaw Analysis

10 Energy Efficiency Strategy

10.1 Energy Efficiency Strategies in Residential Sector

10.1.1 Replacement of CFL with LED

Assumptions:

Estimated Cost of 15 W LED: Rs. 1800/-

• Hrs. of operation: 8

• Electricity Saving Per CFL: 10W

Table 10.1: Replacement of CFL with LED			
Particulars	Value	Units	
Total Residential Households	13400	nos	
Households using CFL	100%	%	
Target to replace CFL with LED	75%	%	
Number of CFL to be replaced per households	4	nos	
Total number of Incandescent bulb to be replaced	40200	nos	
Indicative cost of installation	724	` Lakhs	
Energy saved by replacing 25 W CFL with 15W LED	1	MU	
Cost of electricity savings	29	` Lakhs	
Payback period	25	years	
Emission Reduction per year	951	tonnes	
Source: CCP GEDA and Darashaw	Analysis	<u>. </u>	

10.1.2 Replacement of Conventional Ceiling fan with Energy Efficient Ceiling fans

Assumptions:

• Cost of 1 EE Ceiling Fan: Rs. 1500/-

• Hrs. of operation: 8

• Electricity saving Per Fan: 20 W

Table 10.2: Replacement of conventional ceiling fan with Energy Efficient fans				
Particulars	Value	Units		
Total residential households	13400	nos		
Household using conventional fans	100%	%		
Target to replace conventional fan by energy efficient fans	90%	%		
Number of conventional fan to be replaced per household	2	nos		
Total number of conventional fans to be replaced	24120	nos		
Indicative cost of installation	362	` Lakhs		
Energy saved by replacing conventional fans by EE fans	1	MU		
Cost of electricity savings	35	` Lakhs		
Payback period	7	years		
Emission reduction per year	1141	tonnes		
Source: CCP GEDA and Darashaw Ana	Source: CCP GEDA and Darashaw Analysis			

10.1.3 .Replacement of Conventional AC with EE Star Rated AC

Assumptions:

• Cost of 1.5 T AC: Rs. 28000/-

• Normal energy Consumption per day: 9.45 kWh/day

Hrs. of operation: 8Months of operation: 5

• Energy Saving per day: 1.75 kWh/day

Table 10.3: Replacement of conventional AC with EE star rated ACs				
Particulars	Value	Units		
Total Residential Households	13400	nos		
Households using conventional ACs	45%	%		
Target to replace Conventional ACs by EE star rated Acs	40%	%		
Number of Conventional Acs to be replaced per household	1	nos		
Total number of conventional ACs to be replaced	2412	nos		
Indicative cost of installation	675	` lakhs		
Energy saved by replacing conventional Acs by EE star	0.63	MU		
rated Acs				
Cost of electricity savings	15	` lakhs		
Payback period	15	years		
Emission Reduction per year	512	tonnes		
Source: CCP GEDA and Darashaw Ana	lysis			

10.1.4 Summary of EE strategy for Residential Sector

Table 10.4: Summary of EE Strategy for Residential Sector					
Energy Efficiency Strategy - Residential	Target Unit	Target Capacity	Investment (`lakhs)	Energy Saved per year (MU)	Emission Reduction (Tonnes)
Replacement of CFL with LED	nos	40200	30	1.17	951
Replacement of conventional ceiling fan with Energy Efficient ceiling fans	nos	24120	361	1.41	1141
Replacement of conventional airconditioners with EE star rated ACs	nos	2412	675	0.63	513
Total			1066	3.22	2605

10.2 Commercial Sector EE Strategy

10.2.1 Replacement of CFL with LED

Assumptions:

o Cost of each 15 W LED: Rs. 1800/-.

o Energy Saving per CFL: 10 W

o Hours of operation: 6 Hrs

Table 10.5: Replacement of CFL with LED

Particulars	Value	Units
Total Commercial Consumers	7469	nos
Consumers using CFL	95%	%
Target to replace CFL with LED	90%	%
Number of CFL to be replaced per consumer	15	nos
Total number of CFL to be replaced	95790	nos
Indicative cost of installation	1725	`Lakhs
Energy saved by replacing 25 W CFL with 15W LED	2.10	MU
Cost of electricity savings	63	`Lakhs
Payback period	27	years
Emission Reduction per year	1699	tonnes

Source: PWD, CCP & Darashaw Analysis

10.2.2 Replacement of T12/T8 with T5 Tube Light

Assumptions:

o Cost of each T5 (28W) FTL: RS. 500/-

o Energy Saving per T5: 22W

o Hours of operation: 6 Hrs

Table 10.6: Replacement of T12 / T8 light by T5 Tube Light

Particulars	Value	Units
Total Commercial Consumers	7469	nos
Consumers using T8/T12 tube lights	95%	%
Target to replace T8/T12 by T5 tube lights	90%	%
No of tube lights to be replaced per consumer	15	nos
Total number of T8/T12 tube lights to be replaced	95790	nos
Indicative cost of installation	478	`Lakhs
Energy saved by replacing T8/T12 (with magnetic	4.62	MU
ballast) with T5 (with electronic ballast)		
Cost of electricity savings	138	`Lakhs
Pay back period	2	years
Emission Reduction per year	3738	tonnes

Source: PWD, CCP & Darashaw Analysis

10.2.3 .Replacement of conventional Ceiling fan with EE ceiling fan

Assumptions:

o Cost of each EE Ceiling Fan: RS. 1500/-

Energy Saving per Fan: 20WHours of operation: 8 Hrs

Table 10.7: Replacement of Conventional ceiling fan with Energy Efficient Fans

Particulars	Value	Units
Total Commercial Consumers	7469	nos
Consumers using conventional fans	95%	%
Target to replace conventional fan by energy efficient	80%	%
fans		
Number of conventional fan to be replaced per	8	nos
consumer		
Total number of conventional fans to be replaced	45412	nos
Indicative cost of installation	681	`Lakhs
Energy saved by replacing conventional fans by EE fans	2.65	MU
Cost of electricity savings	80	`Lakhs
Payback period	7	years
Emission reduction per year	2148	tonnes

Source: PWD, CCP & Darashaw Analysis

10.2.4 Replacement of conventional AC with Star Rated AC

Assumptions:

Cost of each 1.5 Ton AC: RS. 28000/-

Normal Energy Consumption in conventional AC per day: 9.47kWh/day

3 Star AC Energy Consumption: 7.7 kWh/day

Energy Saving per day: 1.75 kWh/day

Hours of operation: 8 Hrs

Months of operation: 5 months

Table 10.8: Replacement of Conventional air conditioners with EE star rated ACs

Particulars	Value	Units
Total Commercial Consumers	7469	nos
Consumers using conventional ACs	60%	%
Target to replace Conventional ACs by EE star rated Acs	80%	%
Number of Conventional Acs to be replaced per consumer	2	nos
Total number of conventional ACs to be replaced	3585	nos
Indicative cost of installation	1004	`lakhs
Energy saved by replacing conventional Acs by EE star rated Acs	0.94	MU
Cost of electricity savings	28	`lakhs
Payback period	15	years
Emission Reduction per year	762	tonnes

10.2.5 .Summary of EE strategy for Commercial Sector

Table 10.9: Summary of EE strategy for commercial sector					
Energy	Target Unit	Target	Investment	Energy	Emission
Efficiency		Capacity	(`lakhs)	Saved per	Reduction
Strategy -				year (MU)	(Tonnes)
Commercial					
Replacement	nos	95790	63	2.10	1699
of CFL with					
LED					
Replacement	nos	45412	681	2.65	2148
of conventional					
ceiling fan with					
Energy					
Efficient ceiling					
fans					
Replacement	nos	3585.12	1004	0.94	762
of conventional					
air conditioners					
with EE star					
rated ACs					
Replacement	nos	95790	479	4.62	3738
of T12/T8 tube					
light by T5					
tube light					
Total			2227	10.31	8348

10.3 Industrial (Hotel) Sector EE Strategy

10.3.1 Replacement of T12 with 15 W LED

Assumptions:

o Cost of each 15 W LED: Rs. 1800/-.

o Energy Saving per T12: 25 W

o Hours of operation: 8 Hrs

Table 10.10: Replacement of T12 with 15 W LED in all the premises			
Particulars	Value	Units	
Total T12 installations in all the premises	105	nos	
Consumers using Incandescent Bulbs	100%	%	
Target to replace Incandescent Bulbs with CFL	100%	%	
Number of lights to be replaced per consumer	2625	nos	
Total number of Lights to be replaced	2625	nos	
Indicative cost of installation	47	`Lakhs	
Energy saved by replacing 40 W F12 with 15 W LED	0.19	MU	
Cost of electricity savings	9	`Lakhs	
Payback period	0.4	years	
Emission Reduction per year	155	tonnes	
Source: PWD, CCP and Darashaw Analy	/sis		

10.3.2 Replacement of T12 / T8 by T5 Tube light

Assumptions:

o Cost of each T5 Tube Lights: Rs. 500/-.

o Energy Saving per T12: 22 W

o Hours of operation: 6 Hrs

Table 10.11: Replacement of T12 / T8 Tube Lights with T5 Tube Light			
Particulars	Value	Units	
Total Industrial Consumers	105	nos	
Consumers using T8/T12 tube lights	90%	%	
Target to replace T8/T12 by T5 tube lights	90%	%	
No of tube lights to be replaced per consumer	25	nos	
Total number of T8/T12 tube lights to be replaced	2126	nos	
Indicative cost of installation	11	`Lakhs	
Energy saved by replacing T8/T12 (with magnetic	0.102	MU	
ballast) with T5 (with electronic ballast)			
Cost of electricity savings	5	Lakhs	
Payback period	2	years	
Emission Reduction per year	83	tonnes	
Source: PWD, CCP and Darashaw Analysis			

10.3.3 Replacement of ceiling fan with EE ceiling fan

Assumptions:

Cost of one 50 W Fan: Rs. 1500/-.
 Energy Saving per T12: 20 W
 Hours of operation: 8 Hrs

Table 10.12: Replacement of Conventional Ceiling fan with Energy Efficient Ceiling Fans

Particulars	Value	Units
Total Industrial Consumers	105	nos
Consumers using conventional fans	70%	%
Target to replace conventional fan by energy efficient fans	100%	%
Number of conventional fan to be replaced per industrial	20	nos
consumer		
Total number of conventional fans to be replaced	1470	nos
Indicative cost of installation	22	`Lakhs
Energy saved by replacing conventional fans by EE fans	0.086	MU
Cost of electricity savings	4	`Lakhs
Payback period	7	years
Emission reduction per year	70	tonnes

Source: PWD, CCP and Darashaw Analysis

10.3.4 Replacement of conventional air conditioners with EE air conditioners

Assumptions:

o Cost of each 1.5 Ton AC: RS. 28000/-

 Normal Energy Consumption in conventional AC per day: 9.47kWh/day

o 3 Star AC Energy Consumption: 7.7 kWh/day

o Energy Saving per day: 1.75 kWh/day

o Hours of operation: 8 Hrs

o Months of operation: 8 months

Table 10.13: Replacement of Conventional air conditioners with EE air conditioners

Particulars	Value	Units
Total Industrial Consumers	105	nos
Consumers using conventional ACs	70%	%
Target to replace Conventional ACs by EE star rated Acs	100%	%
Number of Conventional Acs to be replaced per industrial	4	nos
consumer		
Total number of conventional ACs to be replaced	74	nos
Indicative cost of installation	31	`lakhs
Energy saved by replacing conventional Acs by EE star	0.03	MU
rated Acs		
Cost of electricity savings	1.39	`lakhs
Payback period	15	years
Emission Reduction per year	25	tonnes

Source: PWD, CCP and Darashaw Analysis

10.3.5 .Summary of EE strategy for Industrial (Hotel) sector.

Table 10.14: Summary of EE strategy for Industrial (IT) sector

Energy Efficiency	Target	Target	Investment	Energy	Emission
Strategy - Industrial	Unit	Capacity	(lakhs)	Saved per	Reduction
				year (MU)	(Tonnes)
Replacement of T12 with	nos	2625	9	0.19	155
15W LED in all the					
premises					
Replacement of T12/T8	nos	2126	11	0.10	83
tube light by T5 tube					
light					
Replacement of	nos	1470	22	0.09	70
conventional ceiling fan					
with Energy Efficient					
ceiling fans					
Replacement of	nos	73.50	31	0.03	25
conventional					
airconditioners with EE					
star rated ACs					
Total			72	0.41	333

10.4 Municipal Sector EE Strategy

10.4.1 Replacement of 40 W Tube Light with 15 W LED

Table 10.15: Replacement of 40 W Tube Light with 15 W LED

Sr.	Type of Fixture	Calculation	Unit Unit	HPSV 400	LED 160
No.				w	w
				[A]	[B]
1	Working Hours/Day	-	Hrs/Day/Fixture	12	12
2	Power Consumption	-	KW/Day/Fixture	0.65	0.18
3	Annual Power	[2] x 365	KW/Annum/Fixture	237	66
	Consumption				
4	Power Saving	[A]-[B]	KW/Annum/Fixture	0	171
5	Total Nos of Fixtures		Nos	600	600
6	Total Power Saving	[4] x [5]	KW/Annum	0	102492
7	Monetary Saving	3x [6]	`/Annum	0	307476
8	Life of Lamp	-	Years	2	10
9	Cost of Lamp	-	`/lamp	4000	-
10	Replacement Cost	[5] x [9] x	`/12 Yrs	13090909	
		12/ [8]			
11	Cost of Fixture	-	`/Fixture	15000	40000
5	Total Cost of Fixtures	[5] x [11]	,	9000000	24000000
13	Maintenance Cost	-	%	10	1
14	Total Maintenance Cost	[12] x [13]/	`/12 Yrs	900000	120000
		100			
15	Maintenance Cost	[14]/12	`/Yr	75000	10000
16	Salvage Value of HPSV	[12A] x 0.5	,	-	4500000
	Fixture @ 50%				
17	Net Investment	[10] + [12]	,	22090909	19510000
		- [16]			
18	Net Saving	[7] - [15]	`/Annum	-	297476
19	Payback Period	12 x [17]/	Month	_	787
		[18]			
20	Emission Reduction per		tonnes		83
	year				

Source: PWD, Electricity Department & Darashaw Analysis

10.4.2 Replacement of 250 W HPSV with 100 W LED

	Table 10.16: Repl	acement of 25	0 W HPSV with 10	0 W LED	
Sr.	Type of Fixture	Calculatio	Unit	HPSV	LED 100
No.		n		250 W	W
				[A]	[B]
1	Working Hours/Day	-	Hrs/Day/Fixtur	12	12
			е		
2	Power Consumption	-	KW/Day/Fixtur	3	1
			е		
3	Annual Power	[2] x 365	KW/Annum/Fix	1095	438
	Consumption		ture		
4	Power Saving	[A]-[B]	KW/Annum/Fix	0	657
			ture		
5	Total Nos of Fixtures		Nos	1318	1318
6	Total Power Saving	[4] x [5]	KW/Annum	0	865926
7	Monetary Saving	3x [6]	`/Annum	0	2597778
8	Life of Lamp	-	Years	2	12
9	Cost of Lamp	-	`/lamp	0	-
10	Replacement Cost	[5] x [9] x	`/12 Yrs	0	
		12/ [8]			
11	Cost of Fixture	-	`/Fixture	2800	13000
5	Total Cost of Fixtures	[5] x [11]	,	3690400	17134000
13	Maintenance Cost	-	%	10	1
14	Total Maintenance Cost	[12] x [13]/	`/12 Yrs	369040	85670
		100			
15	Maintenance Cost	[14]/12	`/Yr	30753	7139
16	Salvage Value of HPSV	[12A] x 0.5	`	-	0
	Fixture @ 50%				
17	Net Investment	[10] + [12]	,	3690400	17141139
		- [16]			
18	Net Saving	[7] - [15]	`/Annum	-	2590639
19	Payback Period	12 x [17]/	Month	-	79
		[18]			
20	Emission Reduction per		tonnes		701
	year				

10.4.3 Replacement of 150 W HPSV with 70 W LED

	Table 1	0.17: Replacement of	150 W HPSV with 70 V	W LED	
Sr.	Type of Fixture	Calculation	Unit	HPSV 150	LED 70
No.	'	<u>'</u>		w	W
				[A]	[B]
1	Working	-	Hrs/Day/Fixture	12	12
	Hours/Day				
2	Power	-	KW/Day/Fixture	2	1
	Consumption				
3	Annual Power	[2] x 365	KW/Annum/Fixture	657	307
	Consumption				
4	Power Saving	[A]-[B], [A]-[C]	KW/Annum/Fixture	0	350
5	Total Nos of		Nos	993	993
	Fixtures				
6	Total Power	[4] x [5]	KW/Annum	0	347947
	Saving				
7	Monetary Saving	3x [6]	`/Annum	0	1043842
8	Life of Lamp	-	Years	2	12
9	Cost of Lamp	-	`/lamp	550	-
10	Replacement Cost	[5] x [9] x 12/ [8]	`/12 Yrs	2979000	
11	Cost of Fixture	-	`/Fixture	2500	6500
5	Total Cost of	[5] x [11]	`	2482500	6454500
	Fixtures				
13	Maintenance Cost	-	%	10	1
14	Total Maintenance	[12] x [13]/ 100	`/12 Yrs	248250	32273
	Cost				
15	Maintenance Cost	[14]/12	`/Yr	20688	2689
16	Salvage Value of	[12A] x 0.5	`	-	1241250
	HPSV Fixture @				
	50%				
17	Net Investment	[10] + [12] - [16]	`	5461500	5215939
18	Net Saving	[7] - [15]	`/Annum	-	1041152
19	Payback Period	12 x [17]/ [18]	Month	-	60
20	Emission		tonnes		282
	Reduction per year				

10.4.4 Electricity Saving by Design Efficiency in Water pumping system.

Table 10.18: Improvement in Design Efficiency							
Particulars	Value	Units					
Annual Energy consumption	0.007	MU					
Annual Energy Cost	0.23	Lakhs					
Estimated Investment	1.70	lakhs					
Tentative Energy Savings	12%	%					
Total Annual Savings	936	Kwh					
Annual Monetary Savings	2808	Rs.					
Emission Reduction	1	tonnes					

10.4.5 .Electricity saving by installation of Variable frequency Drives (VFD) in Water pumping system.

Table 10.19: Improvement in Design Efficiency							
Particulars	Value	Units					
Annual Energy consumption	0.007	MU					
Annual Energy Cost	0.23	Lakhs					
Estimated investment	6	Lakhs					
Tentative Energy Savings	8%	%					
Total Annual Savings	624	Kwh					
Annual Monetary Savings	1873	Rs.					
Emission Reduction	1	tonnes					

10.4.6 .Summary of EE strategy Municipal Sector

Table 10.2	0: Summary	of EE strate	egy Municipal S	ector	
Energy Efficiency Strategy - Municipal	Target Unit	Target Capacity	Investment (`lakhs)	Energy Saved	Emission Reduction
				per year (MU)	(Tonnes)
Replacement of Tube Lights of 40W with LED lights of 15 W	nos	600	195	0.10	83
Replacement of High Pressure Sodium Vapor Lamps of 250W with LED lights of 100 W	nos	1318	171	0.87	701
Replacement of High Pressure Sodium Vapor Lamps of 150 W with LED lights of 70 W	nos	993	52	0.35	282
Improvement of Design Efficiency in Pumping System	MU	0.00	0	0.00	0
Variable Speed Drivers Total	MU	0.00	0 419	0.00 1.32	0 1066

Source: CCP, PWD and Darashaw Analysis

11 Budget & Action Plan

To meet the growing energy needs of Panaji, optimizing energy conservation and resource efficiency is needed which would thus reduce per capita electricity demand. This would minimize the need for new generation and reduce GHG emissions. It would enable a cleaner environment with reduced green house gases and other pollutants, thereby addressing the environmental concerns.

As matter of priority, in order to develop Panaji as a solar city, the principal government agencies should be committed to:

- Discussing critical energy issues jointly through open meetings and ongoing informal communication.
- Sharing of information and analyses to minimize duplication, maximize a common understanding and ensure a broad basis for decision making.
- Continuing progress in meeting the environmental goals and standards, including minimizing the energy sectors impact on local and global environment.

Based on the analysis of potential for demand side measures along with that of supply side augmentation through renewable energy technologies, the following targets are proposed for Panaji in order to develop it as a solar city. These targets are based on the detailed analysis and renewable resource potential assessment.

The short term targets for energy conservation are based on the energy conservation options identified and also with the recommendation for detailed energy audit. To achieve the medium and long term targets the key implementation points of the proposed Integrated Development Plan to make Panaji a solar city is summarized below.

11.1 Implementation Plan

- For implementation of the projects under the solar city scheme, an empowered committee may be set up which may work in coordination with the Solar city cell under the chairmanship of CCP.
- The solar city cell may take advantage of the programmes like JNNURM for implementation of the master plan.
- The solar city cell may also take advantage of the grant in aid being provided by the BEE to design a few pilot energy efficient buildings in the city, in accordance with ECBC. The possibility of availing incentives provided by central government for IGBC/GRIHA rated buildings may also be explored.
- The solar city cell/CCP may work proactively:

- o To get ECBC notification immediately.
- o To ensure that building byelaws are changed in accordance with it.
- To ensure that all upcoming non residential buildings are brought under the ambit of ECBC and incorporate the relevant green building elements.
- To ensure that the major new commercial complexes are IGBC/GRIHA certified.
- CCP may distribute quality LED lights to its residents at concessional prices or on easy payment terms which could be registered as CDM project, which can act as a revenue generator to CCP and also help in energy conservation.
- CCP may initiate a dialogue with the electricity department for introducing rebate on electricity tariff for domestic consumers who employ solar devices.
- CCP may also give property tax rebates to residents, commercial establishment who install solar water heating systems and rain water harvesting systems.
- To begin with CCP can go in for the detailed Energy audit of the whole area under township and take up various projects; street lighting, optimization of water pumping system etc. on priority basis through ESCO mode. The draft EOI, RFP documents for the same are attached in Annexure.
- CCP may initiate on priority basis the tender for Roof top Solar PV for CCP office building and other buildings.
- Utilizing various MNRE schemes CCP may initiate installation of solar based LED traffic lights, solar street lights, building integrated solar PV, and other relevant solar products on priority basis.
- CCP may launch adequate and suitable campaign on solar city covering all media resources – including print, radio and television.
- In order to spearhead the campaign activities and to demonstrate the same
 to public, CCP can construct an energy park and avail benefits of Scheme
 (Format attached in Annexure) which will act as an inviting place to provide
 public education about issues of sustainable energy and also demonstrate
 working models and benefits of various RE/EE devices along with Akshay
 Urja Shops.
- Setting up of solar powered, LED display boards at the strategic locations of the city which would not only display the fact that Panaji is a solar city but also display pollution levels, temperature updates, and messages useful to general public can taken up on public private partnership basis.

- CCP along with GEDA can organize a series of training programmes on Green Buildings for Town Planners, architects, HVAC and lighting consultants and engineers involved in the building sector.
- CCP in close coordination with BEE may initiate the creation of database of energy auditors who can then be engaged by house owners / builders/developers for obtaining the energy audit and implementing EC measures. Such residents could be given rebates / subsidies.
- CCP may initiate working closely with local traders and manufacturers to initiate the propagation energy efficient appliances.

11.2 Annual Energy Saving Target

The target of reduction was set as to achieve a 10% reduction in the demand for the baseline year by the end of five year period. Now since this turns out to be 45 million Units of electricity equivalent. This has to be achieved through a combination of RE and EE measures. The action plan sets a goal of total savings of 45 MU with the savings due to RE is 42 MU and due to EE is 15 MU. Therefore, it can be seen that 73 % of the reduction is achieved through suggested RE measures and 27 % of the reduction is achieved through EE measures.

Table 11.1: Year wise Energy Saving Target

RE & EE Strategy for CCP	per	ergy Savi riod of im	% of savings target	Emiss ion reduc			
	1st2nd3rd4th5thYearYearYearYearYearCumul ativeCumul ativeCumul ativeCumul ative		to achieve	tion			
RE for Residential Sector	0	1	2	Ω	5	10%	3333
RE for commercial Sector	2	5	10	15	21	47%	17242
RE for Municipal sector	2	4	6	9	12	27%	10606
RE for Industrial sector	0	1	2	3	4	9%	3205
Total RE Strategy	5	12	20	30	42	93%	31180
EE for Residential Sector	0	1	1	2	3	7%	2605
EE for Commercial Sector	1.03	2.58	4.64	7.21	10.31	22%	8348
EE for institutional sector	0.04	0.103	0.18	0.29	0.41	0.91%	333
EE for Municipal sector	0.13	0.33	0.59	0.92	1.32	3%	1299
Total for EE strategy	2	4	7	11	15.25	34%	12584
RE & EE Combined Strategy	6	15	27	41	57	127%	43765

11.3 Annual Budget Allocation

The total indicative budget of solar city is estimated as Rs 243 crore which will be invested over a five year period. Indicative Budget for Renewable Energy and Energy efficiency is Rs. 205 Crore and Rs. 38 Crore respectively. The year wise budget allocation is shown in the table 11.2 and table 11.3 below.

11.3.1 Indicative Budget for Renewable Energy

Table 11.2: Year wise budget Allocation for RE projects

Activities	Total	Year 1	Year2	Year 3	Year 4	Year 5
	Budget					
	(lakhs)					
		10%	15%	20%	25%	30%
Domourah	la Casassi	Chunhami	Dasida	- L i - I		
		Strategy -				
Installation of solar water	1970	197	295	394	492	591
heaters (200 LPD)						
Use of solar home lighting	64	6	10	13	16	19
systems (74Wp)						
Use of Solar home inverter(250	1688	169	253	338	422	507
Wp)						'
Use of PV for replacing DG sets	804	80	121	161	201	241
Sub Total	4527	453	679	905	1132	1358
Rene	ewable En	ergy -Com	mercial			
Rooftop Solar PV in Buildings of	1562	156	234	312	391	469
school and Community hall						1
Rooftop Solar in Hotels,	2589	259	388	518	647	777
Hospitals and police stations						
Rooftop Solar in Banks	649	65	97	130	162	195
SWH for Commercial Sector	70	7	11	14	18	21
Solar PV Power Plant	1500	150	225	300	375	450
Energy From Municipal Solid Waste	1000	100	150	200	250	300

Sub Total	7370	737	1106	1474	1843	2211
Re	l newable E	nergy Mur	nicipal			
Installation of 5 MW Solar PV	3500	350	525	700	875	1050
Plant						
Rooftop Solar PV in Building	1090	109	164	218	273	327
Rooftop Solar PV in Markets	360	36	54	72	90	108
Replacement of Conventional	160	16	24	32	40	48
Street Lights with Solar Street						
Lights						
Solar Traffic Lights	13	1	2	3	3	4
Sewerage treatment plant	50	0	0	0	0	50
Demonstration Projects	1012	101	152	202	253	304
RE systems for Advertisement	200	20	30	40	50	60
Hoardings						
Sub Total	6385	634	950	1267	1584	1951
Renewal	ole Energy	Strategy	- Indust	rial		
SWH installation in Industrial	70	7	11	14	18	21
sector of New Kolkata Town						
City						
Roof Top Solar PV System in	2126	213	319	425	532	638
High Rise Residential,						
corporate institutional and IT						
sector						
Sub Total	2196	220	329	439	549	659
Grand Total	20479	2043	3064	4086	5107	6179

11.3.2 Indicative Budget for Energy Efficiency

Table 11.3: Year wise budget Allocation for EE projects																	
Er	nerg	y Efficiency	Strategy	- Resi	ider	ntial											
Particulars	Inv	vestment	Year 1	Year2		Year 3		Year 4		Year 5							
'	(La	akhs Rs.)															
Replacement of CFL with		29	3		4		6		7	9							
LED																	
Replacement of		362	36		54		72		90	109							
conventional ceiling fan																	
with Energy Efficient																	
ceiling fans																	
Replacement of		675	68	10	01		135		169	203							
conventional air																	
conditioners with EE star																	
rated ACs																	
Total		1067	107	10	60	213			267	320							
En	ergy	y Efficiency	Strategy	- Com	mei	rcial											
Particulars		Investmen	t	Year	Ye	ar2	Yea	ır	Year	Year 5							
		(Lakhs Rs.)	1			3		4								
Replacement of CFL with			62.93	6.29		9		13	16	19							
LED																	
Replacement of convention	nal		681.17	68		102	1	36	170	204							
ceiling fan with Energy																	
Efficient ceiling fans																	
Replacement of convention		:	1003.83	100		151	2	01	251	301							
air conditioners with EE sta	ar																
rated ACs																	
Replacement of T12/T8 tul	oe 📗		478.95	48		72		96	120	144							
light by T5 tube light																	
Energy Efficiency in Green			0.00	0		0		0	0	0							
Buildings																	
Total			2226.89	223		334	4	45	557	668							
		Energy Effic	ciency Ind	dustria													
								Energy Emolericy Industrial									

Particulars	Investment		Year	Year2	Year	Year	Year 5
	(Lakhs Rs.)		1		3	4	
Replacement of T12 with		8.62	0.86	1.29	1.72	2.16	2.59
15W LED in all the premises							
Replacement of T12/T8 tube		10.63	1.06	1.59	2.13	2.66	3.19
light by T5 tube light							
Replacement of conventional		22.05	2.21	3.31	4.41	5.51	6.62
ceiling fan with Energy							
Efficient ceiling fans							
Replacement of conventional		30.87	3.09	4.63	6.17	7.72	9.26
air conditioners with EE star							
rated ACs							
Total		72.17	7.22	10.83	14.43	18.04	21.65
Ener	gy Efficiency S	Strategy	y - Mur	nicipal			
Particulars	Investment		Year	Year2	Year	Year	Year 5
	(Lakhs Rs.)		1		3	4	
Replacement of Tube Lights		195	20	29	39	49	59
of 40W with LED lights of 15							
W							
Replacement of High		171	17	26	34	43	51
Pressure Sodium Vapor							
Lamps of 250W with LED							
lights of 100 W							
Replacement of High		52	5	8	10	13	16
Pressure Sodium Vapor							
Lamps of 150 W with LED							
lights of 70 W							
Improvement of Design		0	0	0	0	0	0
Efficiency in Pumping							
System							
Variable Speed Drivers		0	0	0	0	0	0
Sub Total		419	42	63	84	105	126
Grand Total		3784	378	568	757	946	1135

• The total budget will be shared by CCP/ state Government, MNRE and private share in the proportion shown in the figure below.

T	Table 11.4: Budget Contribution										
MNRE Contribution	Total	Year 1	Year2	Year 3	Year 4	Year 5					
	(Lakhs)										
Renewable Energy	1371	137	206	274	343	411					
Strategy - Residential											
Renewable Energy -	1755	176	263	351	439	527					
Commercial											
Renewable Energy	866	87	130	173	216	260					
Municipal				'							
Renewable Energy	659	66	99	132	165	198					
Strategy - Industrial											
19.17%	4651	399	599	798	998	1198					
State / City											
Contribution											
Renewable Energy	5520	552	828	1104	1380	1656					
Municipal				1							
Energy Efficiency	419	42	63	84	105	126					
Strategy - Municipal											
24.48%	5938	594	891	1188	1485	1782					

Private User						
Contribution						
Renewable Energy	3156	316	473	631	789	947
Strategy - Residential						
Renewable Energy	5615	561	842	1123	1404	1684
Strategy - Commercial						
Energy Efficiency	1067	107	160	213	267	320
Strategy - Residential						
Energy Efficiency	2227	223	334	445	557	668
Strategy - Commercial						
Renewable Energy-	1537	154	231	307	384	461
Industrial						
Energy Efficiency	72	7	11	14	18	22
Industrial						
56.36%	13674	1367	2051	2735	3418	4102
Grand Total		236	3541	4721	5901	7081
		0				
	242	63				

11.4 Action Plan

The table shown in **Annex** shows the detailed year wise action plan and targets of various strategies (RE & EE). He year wise target has been distributed in such a way that initial years target is less and it gradually increases till 5th year as the awareness level of the citizens also increase.

11.5 Capacity Building and Awareness Generation

In order to inculcate the energy conservation techniques in the common architecture, it is essential that all the practitioners be properly trained in energy efficient or Green Architecture. CCP may organize a series of training programmes for the planners, architects, electrical, HVAC and lighting consultants and engineers involved in the building sector. These courses, tailor made to suit different levels, would have to be imparted to all the professionals, in public as well as in private sector – on a regular basis.

Specific training programmes need to be designed for front line workers and technicians and also for those in supervisory role, for effective monitoring of energy demand.

Entire members of solar city cell should be trained on RE and EE by MNRE and BEE respectively on various PPP models and in terms of selection of appropriate private party.

Public awareness and education being central to successful changeover to solar city, it is imperative for CCP to engage the public through sustained awareness campaigns and communicate the benefits of energy conservation and renewable energy to different user groups, including local elected representatives.

A key component of the awareness campaign would be to capture school children's attention towards energy efficiency and clean future. Thus the campaign for the school children will include the following elements:

- Inter School essay and drawing competitions.
- > Inter School quizzes.
- Workshops and seminars.
- Exhibitions and demonstrations.
- > Field Trips.

CCP can also initiate awareness campaigns along with electricity departments to generate a public response on energy conservation like door to door campaign, newsletters etc.

11.5.1 Capacity Building for Green Buildings

Target Groups	Subgroups	Types of Awareness/training Required				
Government Agencies	 1. CCP 2. PWD 3. Department of Electricity 4. GEDA 	Training on Guidelines and regulations to achieve energy efficiency in the built environment of CCP Awareness Generation Activities: 1. National environmental initiatives viz., GRIHA, ECBC etc 2. Audit all govt. buildings and retrofit				

	I							
Building Professional s and Professional Bodies	Architects Engineers Planners Builders	Training on Guidelines and regulations that are incorporated into the building bye laws to achieve energy efficiency in the built environment of CCP. **Awareness Generation Activities:** 1. Incentives for building professionals and builders 2. Latest products in the market 3. National environmental initiatives viz., GRIHA, ECBC etc 4. Labeled appliances/products 5. Annual meets to have a segment on energy efficiency in buildings						
Civil Society	General public	Training on simple techniques upon energy conservation, electricity saving and practices on green building construction Awareness generation activities: 1. Through Website 2. Hoardings and billboards 3. Print media/posters/education leaflets 4. Eco Cell free personalized consultations interface with general public 5. Print & electronic media (TV, Radio) initiatives to sensitize public to the need of energy efficient buildings						
	Resident welfare associations	Training on simple techniques upon energy conservation, electricity saving and practices on green building construction Awareness generation activities: 1. Energy efficient construction measures, energy saving – provide checklist for display in residential areas 2. Locality related development measures 3. National energy conservation initiatives viz.,						

References

- http://www.cea.nic.in
- www.mnre.gov.in
- <u>www.powermin.nic.in</u>
- http://www.indiaenergyportal.org/overview-detail.php
- http://www.bee-india.nic.in
- http://www.isci-cities.org
- http://www.eu-solarcities.org
- http://www.solarcity.org
- http://www.ises.org
- http://www.europeangreencities.com/publications/publications.asp
- http://www.energy-cities.eu
- http://www.environment.gov.au/settlements/solarcities/
- http://www.martinot.info/solarcities/barcelona.htm
- http://www.martinot.info/solarcities/linz.htm
- http://www.mahaurja.com/
- http://www.igbc.in
- http://lab.cgpl.iisc.ernet.in/Atlas/
- http://www.larc.nasa.gov/cgi-bin/disclaimer.cgi?http://www.retscreen.net/
- http://mnre.gov.in/pdf/mission-document-JNNSM.pdf
- India Manual for the Development of Municipal Energy Efficiency Projects,
 2008
- International Energy Agency, 2009 report
- Unlocking Energy Efficiency in US Economy, McKinsey Global Energy and Materials, July 2009
- Environmental and Energy Sustainability: An Approach for India, McKinsey
 Company, Aug 2009
- The Economics of Solar Power, McKinsey Quarterly, June 2008

Annexure 1- Action plan for Utilization of Funds

Solar City Scheme based Activities and Fund Utilization Plan												
		Budgetted	ted Time Line (Funds Requirement at the beginning of Each Half Year Period)									
Sr.No.	Acitvity Heads	Amount,	6 Months	12 Months	18 Months	24 Month:	30 Month:	36 Month:	42 Month:	48 Month	54 Month	60 Months
Α.	Setting-up Solar Cell & Its Functioning	1000000										
a1.	Setting-up Office Infrastructure	200000	200000	0	0	0	0	0	0	0	0	0
<i>a</i> 2.	EE/RE/CDM Awareness through Technology Interpretation Center	300000	0	300000	0	0	0	0	0	0	0	0
a3.	Capacity Building for Solar City Committee Members	300000	200000	100000	0	0	0	0	0	0	0	0
a4.	Case Study Tour Solar City Committee Members	200000	200000	0	0	0	0	0	0	0	0	0
В.	Promotional & Awareness Activities	2000000										
B1.	Stakeholders Consultations:	1200000										
a.	Workshop for Capacity Building for PPP in RE; ESCO in EE & Carbon Financing for Municipal Employees; Government Departments; State Nodal Agencies	400000	100000	100000	100000	100000	0	0	o	0	0	0
b.	Workshop on EE/RE involving Resident Welfare Association; NGOs	200000	100000	100000	0	0	0	0	0	0	0	0
c.	Capacity Building on EE/RE/Carbon Financing for Industrial Association	200000	100000	100000	0	0	0	0	0	0	0	0
d.	Capacity Building on EE/RE/Carbon Financing for Trade & Commerce Associations	200000	100000	100000	0	0	0	0	0	0	0	0
e.	Workshop on Green Buildings Ratings for Association of Engineers, Architects, Developers /Builders	200000	100000	100000	0	0	0	0	0	0	0	0
B2.	Media & Publicity:	800000										
a.	Print Media based Awareness Campaign	250000	50000	100000	50000	50000	0	0	0	0	0	0
b.	Radio based Awareness Campaign	150000	50000	50000	50000	0	0	0	0	0	0	0
c.	Cable T.V based Awareness Campaign	150000	50000	50000	50000	0	0	0	0	0	0	0
d.	Promotional Campaign for Schools & Colleges	250000	100000	50000	50000	50000	0	0	0	0	0	0

		0-10:4-0			41 •		4:					
		Solar City S Budgetted	cheme ba						Faab Half	Veer Deri	-d\	
Sr.No.	Acitvity Heads	Amount, in	6 Months		ine (Funds 18 Months							60 Months
	Preparation of Solar City Master Plan	1000000	o months	12 Mondia	TO MONGIS	24111011013	30 Monais	JO INOIREIS	42 Mondia	40 Monars	3 T INIONAII 3	oo monara
	Preparation & Submission of Primary & Secondary Sectorwise Survey Report with Inception Note & Stakeholders Consultation Report	100000	100000	0	0	0	0	0	0	0	0	0
c2.	Preparation & Submission of 3 Concept Papers on Priority Sectors	200000.00	200000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
с3.	Preparation & Presentation of Draft Master Plan to Solar Cell Members	200000.00	200000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
c4.	Preparation of Capital Investment Plan and Financial Operating Plan	300000.00	300000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
c5.	Preparation & Presentation of Final Master Plan Report to Solar Cell Members	100000.00	100000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
с6.	Submission of Final Report to SNA & MNRE after incorporating further suggestions/modifications	100000.00	0.00	100000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
D.	Monitoring of Implementation	1000000										
d1.	Preparation of 6 monthly Master Plan Progress Report, Progress Review Meetings & Fund Utilization Report	100000.00	25000.00	25000.00	25000.00	25000.00	0.00	0.00	0.00	0.00	0.00	0.00
d2.	Preparation of NIT, Bid Documents & delivering Bid Process Management Services for Priority Energy Efficiancy (EE), Renewable Energy (RE) & Clean Development Mechanism (CDM) Projects	600000.00	200000.00	200000.00	200000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
d3.	Presenting Municipal Projects for Approvals & Sanctioning of CFAs/Subsidies as per MNRE, BEE & other Government Schemes	300000.00	0.00	0.00	150000.00	******	0.00	0.00	0.00	0.00	0.00	0.00
	Column Total in Rs.	5000000	2475000	1475000	675000	375000	0.00	0.00	0.00	0.00	0.00	0.00

Annexure 2- Summary of RE Strategies

Renewable Energy Strategy -	Target	Target	Investment	MNRE	User	Energy	Emission
Residential	Unit	Capacity	(Lakhs Rs.)	Subsidy	Contribution	Saved	Reduction
				(Lakhs	(Lakhs Rs.)	per year	(Tonnes)
				Rs.)		(MU)	
Installation of solar water heaters (200	Sqmt	22512	1969.80	590.94	1378.86	1.01	820.56
LPD)							ı
Use of solar home lighting systems (74Wp)	Nos	402	64.32	32.16	32.16	0.63	150.51
Use of Solar home inverter(250 Wp)	KWp	1407	1688.40	506.52	1181.88	1.98	1600.10
Use of PV for replacing DG sets	KWp	670	804.00	241.20	562.80	0.94	761.95
Total			4526.52	1370.82	3155.70	4.56	3333.12
	ŀ	Renewable E	nergy -Commerc	cial			_
Rooftop Solar PV in Buildings of school and	KW	1735.80	1562.22	468.67	1093.55	2.85	2309.35
Community hall							ı
Rooftop Solar in Hotels, Hospitals and police	KW	2876.87	2589.19	776.76	1812.43	4.04	3271.70
stations							ı
Rooftop Solar in Banks	KW	720.86	648.77	194.63	454.14	1.01	819.79
SWH for Commercial Sector	Sqmt	1404.00	70.20	15.44	54.76	0.15	124.53
Solar PV Power Plant	MW	1.00	1500.00	0.00	1500.00	1.40	1137.24
Energy From Municipal Solid Waste	MW	2.00	1000.00	300.00	700.00	11.83	9579.06

Total			7370.38	1755.50	5614.88	3500.00 7.50 6 763.18 1.70 3 252.32 0.56 112.00 0.08 8.75 0.01 35.00 0.91 708.54 1.08 140.00 0.08 5519.79 11.94 10 49.00 0.64			
	Renewable Energy Municipal Solution So								
		Renewable	Energy Municip	al					
Renewable Energy Municipal Substitution of 5 MW Solar PV Plant MW 5.00 3500.00 0.00 3500.00 7.50 6525.00									
Rooftop Solar PV in Building	KW	Renewable Energy Municipal 5.00 3500.00 0.00 3500.00 7.50 6525.00 1211.40 1090.26 327.08 763.18 1.70 1377.65 400.50 360.45 108.14 252.32 0.56 455.46 800.00 160.00 48.00 112.00 0.08 67.32 50.00 12.50 3.75 8.75 0.01 8.42 150.63 50.00 15.00 35.00 0.91 737.91 723.00 1012.20 303.66 708.54 1.08 878.45 200.00 200.00 60.00 140.00 0.08 68.23 6385.41 865.62 5519.79 11.94 10118.44 newable Energy Strategy - Industrial 1600.00 70.00 21.00 49.00 0.64 518.40 2.36 2126.25 637.88 1488.38 3.32 2686.73			1377.65				
Rooftop Solar PV in Markets	KW	Renewable Energy Municipal 5.00 3500.00 0.00 3500.00 7.50 65 1211.40 1090.26 327.08 763.18 1.70 13 400.50 360.45 108.14 252.32 0.56 4 800.00 160.00 48.00 112.00 0.08 6 50.00 12.50 3.75 8.75 0.01 0.91 7 150.63 50.00 15.00 35.00 0.91 7 723.00 1012.20 303.66 708.54 1.08 8 200.00 200.00 60.00 140.00 0.08 6 6385.41 865.62 5519.79 11.94 10 wable Energy Strategy - Industrial 1600.00 70.00 21.00 49.00 0.64 5 2.36 2126.25 637.88 1488.38 3.32 26			455.46				
Replacement of Conventional Street Lights	Nos	800.00	160.00	48.00	112.00	0.08	67.32		
with Solar Street Lights				3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75					
Solar Traffic Lights	Nos	50.00	12.50	3.75	8.75	0.01	8.42		
Sewerage treatment plant	Kw	150.63	50.00	15.00	35.00	0.91	737.91		
Demonstration Projects	KW	723.00	1012.20	303.66	708.54	1.08	878.45		
RE systems for Advertisement Hoardings	Nos	200.00	200.00	60.00	140.00	0.08	68.23		
Total			6385.41	865.62	5519.79	11.94	10118.44		
	Rene	ewable Energ	y Strategy - Inc	dustrial					
SWH installation in Industrial sector of New	Sqmt	1600.00	70.00	21.00	49.00	0.64	518.40		
Kolkata Town City									
Roof Top Solar PV System in High Rise	MWp	2.36	2126.25	637.88	1488.38	3.32	2686.73		
Residential, corporate institutional and IT									
sector									
Total			2196.25	658.88	1537.38	3.96	3205.13		

Annexure 3- Summary of EE Strategies

Energy Efficiency Strategy - Residential	Target Unit	Target	Investment	Energy	Emission
		Capacity	(Lakhs Rs.)	Saved per	Reduction
				year (MU)	(Tonnes)
Replacement of CFL with LED	nos	40200.00	29.35	1.17	950.83
Replacement of conventional ceiling fan with Energy Efficient	nos	24120.00	361.80	1.41	1140.9
ceiling fans					
Replacement of conventional air conditioners with EE star rated	nos	2412.00	675.36	0.63	512.85
ACs			'		
Tota	I		1066.51	3.22	2604.63
Energy Efficien	cy Strategy - Co	mmercial			
Replacement of CFL with LED	nos	95790	62.93	2.10	1699.22
Replacement of conventional ceiling fan with Energy Efficient	nos	45412	681.17	2.65	2148.15
ceiling fans					
Replacement of conventional air conditioners with EE star rated	nos	3585	1003.83	0.94	762.29
ACs					
Replacement of T12/T8 tube light by T5 tube light	nos	95790	479	5	3738
Tota	I		2226.89	10.31	8347.93

Energy Ef	ficiency Industr	ial			
Replacement of T12 with 15W LED in all the premises	nos	2625	8.623125	0.191625	155
Replacement of T12/T8 tube light by T5 tube light	nos	2126	10.63	0.10	83
Replacement of conventional ceiling fan with Energy Efficient	nos	1470	22.05	0.085848	70
ceiling fans			'		
Replacement of conventional air conditioners with EE star rated	nos	73.5	30.87	0.03087	25
ACs					
Total			72.17	0.41	333
Energy Efficien	cy Strategy - M	unicipal			
Replacement of Tube Lights of 40W with LED lights of 15 W	nos	600	195.10	0.10	83.02
Replacement of High Pressure Sodium Vapor Lamps of 250W with	nos	1318	171.41	0.87	701.40
LED lights of 100 W					
Replacement of High Pressure Sodium Vapor Lamps of 150 W	nos	993	52.16	0.35	281.84
with LED lights of 70 W					
Improvement of Design Efficiency in Pumping System	MU	0.00	0.00	0.00	0.00
Variable Speed Drivers	MU	0.00	0.00	0.00	0.00
Total			418.67	1.32	1066.26

Annexure 4- Year wise Action Plan for Solar City Project

	Unit	1st Year	10 %	Targe t	2nd Year	15 %	Targe t	3rd Year	20 %	Targe t	4th Year	25 %	Targe t	5th Year	30 %	Targe t	Aggreg	rate in	5 years	44.9 66
Ac tivities	for capa city targ eted	Capa city Targ eted	Savi ngs (MU)	Emiss ion Redu ction (Tonn es)	Capa city Targe ted	Savi ngs (MU)	Emiss ion Redu ction (Tonn es)	Capac ity Target ed	Savi ngs (MU)	Emissi on Reduc tion (Tonn es)	% of targe t									
Renewable																				
Renewable	Energy	Strategy	y-Resid	ential																
Installation of solar water heaters (200 LPD)	Sqmt	2251	0.10	82	3377	0.15	123.0 8	4502	0.20	164.1 1	5628	0.25	205.1 4	6754	0.30	246.1 7	22512	1.01	820.56	2.25 %
Use of solar home lighting systems (74Wp)	Nos	40	0.06	15.05	60	0.09	22.58	80	0.13	30.10	101	0.16	37.63	121	0.19	45.15	402	0.63	150.51	1.40 %
Use of Solar home inverter(25 0 Wp)	KWp	141	0.19	160.0	211	0.30	240.0	281	0.40	320.0	352	0.49	400.0 2	422	0.59	480.0	1407	1.97 5	1600.1	4.39 %
Use of PV for replacing DG sets	KWp	67	0.09 4	76.20	101	0.14	114.2 9	134	0.19	152.3 9	168	0.24	190.4 9	201	0.28	228.5 9	670	0.94 1	761.95	2.09 %
Total for Residenti al Sector			0.46	333.3 1		0.68	499.9 7		0.91	666.6 2		1.14	833.2 8		1.37	999.9 4		4.56 0	3333. 12	10.1 4%

RE Strategy for Commercial Sector

D 0																				
Rooftop Solar PV in Buildings of school and Community hall	KW	173.5 8	0.28 5	230.9 35	260.3 7	0.42 8	346.4 03	347.1 6	0.57	461.8 7	433.9 5	0.71	577.3 4	520.7 4	0.86	692.8 1	1735.8 0	2.85	2309.3	6.34 %
Rooftop Solar in Hotels, Hospitals and police stations	KW	287.6 9	0.40 4	327.1 70	431.5 3	0.60 6	490.7 54	575.3 7	0.81	654.3 4	719.2 2	1.01	817.9 2	863.0 6	1.21	981.5 1	2876.8 7	4.03 9	3271.7 0	8.98 %
Rooftop Solar in Banks	KW	72.09	0.10 1	81.97 9	108.1 3	0.15 2	122.9 68	144.1 7	0.20	163.9 6	180.2 1	0.25	204.9 5	216.2 6	0.30	245.9 4	720.86	1.01 2	819.79	2.25
SWH for Commercia I Sector	Sqmt	140.4 0	0.01	12.45 3	210.6 0	0.02	18.67 9	280.8	0.03	24.91	351.0 0	0.04	31.13	421.2 0	0.05	37.36	1404.0 0	0.15 4	124.53	0.34
Solar PV Power Plant	MW	0.10	0.14	113.7 24	0.15	0.21 1	170.5 86	0.20	0.28	227.4 5	0.25	0.35	284.3 1	0.30	0.42	341.1 7	1.00	1.40 4	1137.2 4	3.12
Energy From Municipal Solid Waste	MW	0.20	1.18 3	957.9 06	0.30	1.77 4	1436. 859	0.40	2.37	1915. 81	0.50	2.96	2394. 77	0.60	3.55	2873. 72	2.00	11.8 26	9579.0 6	26.30 %
Total for Commerci al Sector	I		2.12 9	1724. 166		3.19 3	2586. 250		4.25 7	3448. 333		5.32 2	4310. 416		6.38 6	5172. 499		21.2 86	17241 .663	47.3 4%
								RE Sti	ategy f	or Munic	ipal Sec	tor								
Installation of 5 MW Solar PV Plant	MW	1.000	1.50 0	1305. 000	1.000	1.50 0	1426. 800	5.000	7.50 0	7012.2 00	16.67 9%									
Rooftop Solar PV in Building	KW	121.1 40	0.17 0	137.7 65	181.7 10	0.25 5	206.6 48	242.2 80	0.34 0	275.5 31	302.8 50	0.42 5	344.4 13	363.4 20	0.51 0	413.2 96	1211.4 00	1.70 1	1377.6 53	3.782 %
Rooftop Solar PV in Markets	KW	40.05 0	0.05 6	45.54 6	60.07 5	0.08 4	68.32 0	80.10 0	0.11	91.09 3	100.1 25	0.14	113.8 66	120.1 50	0.16 9	136.6 39	400.50 0	0.56	455.46 5	1.251 %

Replaceme nt of Convention al Street Lights with Solar Street Lights	Nos	80.00	0.00 8	6.732	120.0 00	0.01	10.09 9	160.0 00	0.01 7	13.46 5	200.0	0.02	16.83 1	240.0	0.02 5	20.19 7	800.00	0.08	67.325	0.185 %
Solar Traffic Lights	Nos	5.000	0.00	0.842	7.500	0.00	1.262	10.00	0.00	1.683	12.50 0	0.00	2.104	15.00 0	0.00	2.525	50.000	0.01	8.416	0.023
Sewerage treatment plant	Kw	15.06 3	0.09 1	73.79 1	22.59 4	0.13 7	110.6 86	30.12 6	0.18 2	147.5 81	37.65 7	0.22 8	184.4 77	45.18 8	0.27 3	221.3 72	150.62 8	0.91 1	737.90 7	2.026 %
Demonstrat ion Projects	KW	72.30 0	0.10 8	87.84 5	108.4 50	0.16 3	131.7 67	144.6 00	0.21 7	175.6 89	180.7 50	0.27 1	219.6 11	216.9 00	0.32 5	263.5 34	723.00 0	1.08 5	878.44 5	2.412 %
RE systems for Advertisem ent Hoardings	Nos	20.00	0.00 8	6.823	30.00 0	0.01	10.23 5	40.00 0	0.01 7	13.64 7	50.00 0	0.02 1	17.05 9	60.00	0.02 5	20.47 0	200.00	0.08	68.234	0.187 %
Total			1.94 4	1664. 344	531.3 29	2.16 5	1965. 817	708.1 06	2.38	2145. 489	884.8 82	2.60 9	2325. 161	1061. 658	2.83 1	2504. 833	3540. 528	11.9 36	10605. 644	26.5 45%
				377	23					ndustrial			101	038		655	328	30	044	7570
SWH installation in Industrial sector of Panaji	Sqmt	160.0 00	0.06 4	51.84	240.0 00	0.09 6	77.76 0	320.0 00	0.12	103.6 80	400.0	0.16	129.6 00	480.0 00	0.19	155.5 20	1600.0 00	0.64	518.40 0	1.423
Roof Top Solar PV System in High Rise Residential, corporate institutional and Hotel sector	МWр	0.236	0.33 2	268.6 73	0.354	0.49 8	403.0 09	0.473	0.66 3	537.3 46	0.591	0.82 9	671.6 82	0.709	0.99 5	806.0 19	2.363	3.32	2686.7 30	7.377 %
			0.39	320.5		0.59	480.7		0.79	641.0			801.2			961.5			3205.	8.80

			6	13		4	69		1	26		9	82		7	39		7	130	0%
				13		_	09		-	20		9	02		,	39		'	130	0 70
	<u></u>			1																
								Ene	rgy Effi	ciency S	trategies	<u> </u> 								
		1			1		l .	EE Stra	ategy fo	r Reside	ntial Sec	ctor		1				1	1	
Replaceme nt of CFL with LED	nos	4020	0.11 7	95.08	6030	0.17 6	142.6 2	8040	0.23 5	190.1 6	10050	0.29 3	237.7 0	12060	0.35 2	285.2 4	40200	1.17 4	950.81	2.61 %
Replaceme nt of convention al ceiling fan with Energy Efficient ceiling fans	nos	2412	0.14	114.1	3618	0.21 1	171.1 5	4824	0.28 2	228.1 9	6030	0.35 2	285.2 4	7236	0.42	342.2 9	24120	1.40 9	1140.9 7	3.13 %
Replaceme nt of convention al aircondition ers with EE star rated ACs	nos	241	0.06	51.29	362	0.09 5	76.93	482	0.12 7	102.5 7	603	0.15 8	128.2 1	724	0.19 0	153.8 6	2412	0.63	512.85	1.41 %
Total for Residenti al Sector			0.32	260.4 6		0.48	390.7 0		0.64	520.9 3		0.80	651.1 6		0.96	781.3 9		3.21 6	2604. 63	7.15 %
								EE Stra	tegy fo	r Comme	ercial Se	ctor								
Replaceme nt of CFL with LED	nos	9579	0.21	169.9 2	14368	0.31 5	254.8 8	19158	0.42 0	339.8 4	23947	0.52 4	424.8 0	28737	0.62 9	509.7 7	95790	2.09 8	1699.2 2	4.67 %
Replaceme nt of convention al ceiling	nos	4541	0.26 5	214.8	6812	0.39 8	322.2 2	9082	0.53 0	429.6 3	11353	0.66 3	537.0 4	13623	0.79 6	644.4 4	45412	2.65 2	2148.1 5	5.90 %

fan with Energy Efficient ceiling fans																				
Replaceme nt of convention al air conditioner s with EE star rated ACs	nos	359	0.09	76.23	538	0.14	114.3 4	717	0.18 8	152.4 6	896	0.23 5	190.5 7	1076	0.28	228.6 9	3585	0.94 1	762.29	2.09 %
Replaceme nt of T12/T8 tube light by T5 tube light	nos	9579	0.46 2	373.8 3	14368	0.69 2	560.7 4	19158	0.92 3	747.6 6	23947	1.15 4	934.5 7	28737	1.38 5	1121. 48	95790	4.61 5	3738.2 8	10.26 %
Energy Efficiency in Green Buildings	Nos	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0.00 %
Total for Commerci al Sector			1.03	834.7 9	3608 6.47	1.55	1252. 19	4811 5.30	2.06	1669. 59	6014 4.12	2.58	2086. 98	7217 2.95	3.09	2504. 38	24057 6.49	10.3 1	8347. 93	22.9 2%
EE Strategy	for Ind	ustrial (Hotel)																	
Replaceme nt of T12 with 15W LED in all the premises		263	0.01 92	16	394	0.02 87	23	525	0.03 83	31	656	0.04 79	39	788	0.05 75	47	2625	0.19	155.22	0.43
Replaceme nt of T12/T8 tube light by T5 tube light		213	0.01 02	8	319	0.01 54	12	425	0.02 05	17	532	0.02 56	21	638	0.03 07	25	2126	0.10	82.98	0.227 8%

Replaceme																				
nt of convention al ceiling fan with Energy Efficient ceiling fans		147	0.00 86	7	221	0.01 29	10	294	0.01 72	14	368	0.02 15	17	441	0.02 58	21	1470	0.08 6	69.54	0.190 9%
Replaceme nt of convention al air conditioner s with EE star rated ACs		7	0.00	2.50	11	0.00 46	3.75	15	0.00 62	5.00	18	0.00 77	6.25	22	0.00 93	7.50	74	0.03	25.00	0.068 7%
Total			0.04	33.27	944.2	0.06	49.91	1258. 95	0.08	66.55	1573. 69	0.10	83.18	1888. 43	0.12	99.82	6294. 75	0.41	332.7 4	0.91 %
					_				ategy f	or Munic	•	or		73			73		7	70
Replaceme nt of Tube Lights of 40W with LED lights of 15 W	nos	60	0.01	8.30	90	0.02	12.45	120	0.02	120.0	150	0.03	150.0 0	180	0.03	24.91	600	0.10	316	0.23
Replaceme nt of High Pressure Sodium Vapor Lamps of 250W with LED lights of 100 W	nos	132	0.09	70.14	198	0.13	105.2 1	264	0.17	140.2 8	330	0.22	175.3 5	395	0.26	210.4	1318	0.86	701	1.93
Replaceme nt of High Pressure Sodium Vapor	nos	99	0.03	28.18	149	0.05	42.28	199	0.07	56.37	248	0.09	70.46	298	0.10	84.55	993	0.34 8	282	0.77 %

																		56.9 9	Sum Total	126. 74%
Total			0.13	106.6 3	436.6 5	0.20	159.9 4	582.2 0	0.26	316.6 5	727.7 5	0.33	395.8 1	873.3 0	0.39	319.8 8	2911. 00	1.32	1299	2.93 %
Variable Speed Drivers	MU	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00
LED lights of 70 W Improveme nt of Design Efficiency in Pumping System	MU	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0.00
Lamps of 150 W with																				

Annexure 6- Initiative taken by CCP

Annexure 7- List of Solar City members

Annexure 8- List of Stakeholder committee members

Annexure 9- Solar City Approval Letter from MNRE

Darashaw & Co. Pvt. Ltd.

6th Floor, Express Building 14th "E"Road, Near Government Law College, Churchgate (West) Mumbai-400020

Tel.: 91 22 4302 2355 Fax: 91 22 4302 2366

E-mail: team-consultancy@darashaw.com Website: www.darashaw.com