

How do LMs learn facts? Dynamics, curricula and hallucinations

Nicolas Zucchet^{1,+}, Jörg Bornschein², Stephanie Chan², Andrew Lampinen², Razvan Pascanu² and Soham De²

¹ETH Zürich, ²Google DeepMind, ⁺Work done at Google DeepMind

HUMANE Lab 박현빈 25.04.11

Key Findings

- LMs learn in 3 phases
 - distribution statistics -> performance plateaus -> acquiring knowledge
- The training data distribution impacts learning dynamics, as imbalanced distribution lead to shorter plateaus
- Hallucinations emerge simultaneously with knowledge

Synthetic Biographies

1. Create N individuals with unique names beforehand

James Frida Zhu

attribute type

Birthdate: 16/05/2042 attribute value

Birthplace: Shanghai

University: Erasmus university, Rotterdam

Major: Statistics

Company: Global Dynamics

Location: Cairo

2. Sample one template per attribute and fill in these templates with personal information

James Frida Zhu's life began on March 16, 2042.

James Frida Zhu is a native of Shanghai.

James Frida Zhu received their education in Erasmus University, Rotterdam.

James Frida Zhu holds a degree in Statistics.

James Frida Zhu currently works for Global Dynamics.

James Frida Zhu's habitation is in Cairo.

3. Create a biography by randomly permuting the generated sentences and concatenating them.

Predicting attribute tokens is a factual recall task which measures the model's knowledge.

- 25 templates per attribute type (20 for training, 5 for evaluation)
- Keep 5 for evaluation to measuring knowledge rather than memorization
- Evaluate the model using attribute loss and attribute accuracy

Training Setup

Model (decoder-only Transformer)		
parameters	44M	Number of parameters.
n_layers	8	Number of layers.
n_heads	8	Number of attention heads per attention layer.
d_model	512	Model dimension (residual stream).
d_hidden	2048	Hidden dimension of the multi-layer perception.
key_size	64	Dimension of the key and values.
sequence_mixer	Attention	Which sequence mixing block we are using.
Training		
training_steps	16k	Number of training steps.
batch_size	128	Batch size.
lr_scheduler	cosine	Learning rate scheduler, default is cosine scheduler (no warm-up, final learning rate: 10^{-7}).
lr	$4\cdot 10^{-4}$	Maximum learning rate.
weight_decay	0.1	Weight decay.
optimizer	AdamW	Optimizer (momentum parameters for the AdamW optimizer are $\beta_1 = 0.9$, $\beta_2 = 0.95$).

How language models acquire knowledge

- Initial language understanding
 - the network learns the overall attribute value distribution
 - at the end of this phase, it performs like an optimal model without individual-specific knowledge
- Performance plateaus
- Knowledge emergence

How language models acquire knowledge

- Why occur performance plateaus
 - losses are not properly backpropagated from attribute value tokens to name tokens
- Performing attention circuit during the plateau
 - name tokens grouping circuit
 - the first attention layer aggregates name tokens together to form a representation of the individual's name at position of the last name token
 - extraction circuit

• the final attention layer give high attention to name tokens when predicting the first attribute value token

1.00
0.75
0.50
0.25
0.00
0k
5k
10k
15
Training steps

Attention Patching Experiment

- Hypothesis: a model with learned attention patterns should learn faster than one pre-learning patterns (shorter plateaus)
- First train a reference model, and save reference checkpoints
- Then restart training from scratch, but replace the model's attention patterns with those produced from one of the reference checkpoints

Data Curricula

- While each individual appears with equal frequency in the preceding analysis, real-world data can be significantly less balanced
- Plateau length minimized in highly imbalanced distributions, whereas knowledge acquisition speed maximized in uniform distributions

 $\alpha=0$ means uniform distribution, $\alpha=1$ means highly imbalanced distribution

 warm-up strategy: the model initially trains on a subset of individuals for a fixed number of steps, and on all individuals afterwards

Hallucination

- Hallucinations emerge simultaneously with knowledge acquisition
- Performance on rapidly collapse during the initial stages of fine-tuning, with very little corresponding acquisition of new knowledge
- Incorporating replay data about pre-training individuals in the fine-tuning set partially mitigates the collapse and facilitates the restoration of corrupted knowledge

Conclusion

- Language models first learn statistical patterns, then form attention circuits during a plateau phase before acquiring knowledge
- The more imbalanced the probability of individuals appearing in training data, the sooner the plateau ends. Conversely, the more uniform the probabilities, the more extensive the knowledge acquisition
- Dynamically adjusting the probability distribution during training can yield optimal outcomes
- Hallucinations occur simultaneously with knowledge acquisition and hinder learning new data
- When fine-tuning a model, a substantial amount of previously learned knowledge is lost; however, incorporating pre-training data into the fine-tuning dataset can mitigate this knowledge loss

My Review

- This study offers valuable insights into the internal mechanisms of LMs,
 which have traditionally been treated as black boxes
- It conducts the analysis using a simplified dataset and small-scale models
- However, it would have been more informative if broader datasets had also been considered.