Introducción a datos espaciales y S+SpatialsData

Sergio Andrés Hernández Duarte Universidad Nacional de Colombia

Facultad de Ciencias agrarias Bogotá

18 de abril de 2022

Resumen

El presente documento es un resumen pequeño sobre algunas características de los datos espaciales

1. Tipos de datos espaciales

Los datos espaciales tienen la característica de ser determinados por localizaciones específicas, es decir tienen una latitud y una longitud asociada, siempre son observaciones de interés sobre un fenómeno en particular y pueden ser observaciones de fenómenos discretos y continuos.

1.1. Datos Geoestadísticos

Datos que presentan generalmente una continuidad espacial, que presentan variaciones a pequeña escala, y pueden ser modelados mediante una correlación espacial. La variabilidad espacial es modelada en función de la distancia. Un hecho claro es que el análisis espacial puede usarse a cualquier tipo de datos de los cuales se considera su localización. Sin embargo, la aplicación de geoestadística solo se puede usar cumpliendo algunas restricciones en los datos obtenidos: Estacionaridad de segundo orden.

1.1.1. Datos Lattice

Son datos asociados con regiones espaciales (en un área determinada), una colección fija regular o irregular de puntos, generalmente corresponden a un polígono delimitado por una serie de vértices y bordes que se divide en pixeles.

1.1.2. Patrones de puntos espaciales

Consiste en un número finito de observaciones localizadas en una región espacial, generalmente, se estudia si estos puntos corresponden a un patrón aleatorio, regular, o agregado. Empleando indices como Moran, Morisita, Fisher y Floyd.

2. Análisis de datos espaciales

Es diferente de otros tipos de análisis de datos debido a que incluye la localización espacial del fenómeno, empleando diferentes modelos se pueden llegar a diferentes estimaciones sobre el fenómeno.

2.0.1. Modelo de datos

Los datos espaciales generalmente se pueden descomponer en dos componente principales:

datos= pequeña escala de variación+ amplia escala de variación

La variación a gran escala presenta tendencias globales, mientras que la variación a pequeña escala se puede modelar mediante patrones de dependencia local. A esto se les atribuye un error que puede llevarse desde la medición y la variabilidad dentro de la región o del lugar.

2.0.2. Precisión

Los datos recolectados siempre pueden tener errores en la medición. Generalmente las regiones areales pueden tener muchas formas y tamaños, la resolución con la que se capta la medición puede tener diferentes fuentes de error. Los modelos de dependencia espacial dependen del área y pueden ser afectados por valores atípicos.

2.0.3. Estacionariedad

Implica que la variabilidad del fenómeno observado en el tiempo es muy baja.

2.0.4. Isotropía

El fenómeno observado presenta las mismas cualidades sin importar la dirección en la cuál es observado

2.0.5. Escala

Todos los fenómenos espaciales son dependientes de la escala, la resolución de captura del fenómeno permite diferentes tipos de análisis, hasta que medida local (Finca o tal vez municipio) o si se debe manejar regional (ciudades, país, global), etc.

Referencias

[1] Stephen P. Kaluzny Silvia C. Vega Tamre P. Cardoso Alice A. Shelly., (1995).S+SPATIALSTATS, Springer.