Machine Learning Part V

Anomaly Detection/ Recommender System

Anomaly detection example

- > Fraud detection:
 - $\rightarrow x^{(i)}$ = features of user i's activities
 - \rightarrow Model p(x) from data.
 - \rightarrow Identify unusual users by checking which have p(x)

- > Manufacturing
- > Monitoring computers in a data center.
 - $\rightarrow x^{(i)}$ = features of machine i
 - x_1 = memory use, x_2 = number of disk accesses/sec,
 - $x_3 = \text{CPU load}$, $x_4 = \text{CPU load/network traffic}$.

Gaussian (Normal) Distribution

• Probability distribution (add up to 1)

Parameter estimation

> Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $x^{(i)} \in \mathbb{R}$

Anomaly detection algorithm

- Choose features x_i that you think might be indicative of anomalous examples. $\{x^{(i)}, \dots, x^{(m)}\}$
-) 2. Fit parameters $\mu_1, \ldots, \mu_n, \sigma_1^2, \ldots, \sigma_n^2$

Fit parameters
$$\mu_1, \dots, \mu_n, \sigma_1, \dots, \sigma_n$$

$$\Rightarrow \begin{bmatrix} \mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)} & p(x_j; \mu_j, \sigma_j^2) & p(x_j; \mu_j, \sigma_j^2) \\ \sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2 & \uparrow \end{bmatrix} \xrightarrow{\mu_i, \mu_i, \mu_i, \dots, \mu_n} \begin{bmatrix} \mu_i \\ \mu_i \\ \mu_n \end{bmatrix} = \frac{1}{m} \underbrace{\sum_{i=1}^m x_i^{(i)}}_{\text{final}} \times \underbrace{\sum_{i=1}^m x$$

> 3. Given new example x, compute p(x):

$$\underline{p(x)} = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)$$

Anomaly if $p(x) < \varepsilon$

Visualization

Evaluation (supervised learning)

When developing a learning algorithm (choosing features, etc.), making decisions is much easier if we have a way of evaluating our learning algorithm.

- Assume we have some labeled data, of anomalous and nonanomalous examples. (y = 0 if normal, y = 1 if anomalous).
- Training set: $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$ (assume normal examples/not anomalous)
- > Cross validation set: $(x_{cv}^{(1)}, y_{cv}^{(1)}), \dots, (x_{cv}^{(m_{cv})}, y_{cv}^{(m_{cv})})$ > Test set: $(x_{test}^{(1)}, y_{test}^{(1)}), \dots, (x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$

Aircraft engines motivating example

Training set: 6000 good engines (y = 0), 10 anomalous (y = 1) Test: 2000 good engines (y = 0), 10 anomalous (y = 1)

Algorithm evaluation

- > Fit model p(x) on training set $\{x^{(1)},\ldots,x^{(m)}\}$
- ightharpoonup On a cross validation/test example x , predict

$$y = \begin{cases} \frac{1}{0} & \text{if } p(x) < \varepsilon \text{ (anomaly)} \\ 0 & \text{if } p(x) \ge \varepsilon \text{ (normal)} \end{cases}$$

Possible evaluation metrics:

- True positive, false positive, false negative, true negative
- Precision/Recall
- F₁-score

Can also use cross validation set to choose parameter ε

Also, use validation set to decide what features to include (square co?)

Anomaly detection

- > Very small number of positive examples (y = 1). (0-20 is common).
- \rightarrow Large number of negative $(\underline{y} = 0)$ examples. $(\underline{y}) \leq$
- Many different "types" of anomalies. Hard for any algorithm to learn from positive examples what the anomalies look like;
- future anomalies may look nothing like any of the anomalous examples we've seen so far.

vs. Supervised learning

Large number of positive and negative examples.

Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples likely to be similar to ones in training set.

Spam -

Error analysis for anomaly detection

Want p(x) large for normal examples x. p(x) small for anomalous examples x.

Most common problem:

p(x) is comparable (say, both large) for normal and anomalous examples

Adding features that can distinguish normal and anomalous samples

Multivariate Gaussian (Normal) distribution

 $x \in \mathbb{R}^n$. Don't model $p(x_1), p(x_2), \ldots$, etc. separately. Model p(x) all in one go.

U

Parameters: $\mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n imes n}$ (covariance matrix)

$$P(x;\mu,\xi) = \frac{1}{(2\pi)^{n/2}} \exp(-\frac{1}{2}(x-\mu)^{T} \xi^{-1}(x-\mu))$$

$$|\xi| = \det(\sin^{n} n \alpha t) \quad \text{det } |Signa|$$

Multivariate Gaussian (Normal) distribution

Parameters μ, Σ

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Parameter fitting:

Given training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ \leftarrow

$$\boxed{\mu} = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} \quad \boxed{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

Anomaly detection with the multivariate Gaussian

1. Fit model p(x) by setting

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

2. Given a new example x, compute

$$p(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Flag an anomaly if $p(x) < \varepsilon$

Original model

$$p(x_1; \mu_1, \sigma_1^2) \times \cdots \times p(x_n; \mu_n, \sigma_n^2)$$

Manually create features to capture anomalies where x_1, x_2 take unusual combinations of values.

(alternatively, scales better to large

OK even if m (training set size) is small

vs. S Multivariate Gaussian

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} x - \mu\right)$$

Automatically captures correlations between features

Computationally more expensive

$$\Rightarrow \begin{cases} \sqrt{\frac{n^2}{2}} \\ \sqrt{\frac{n^2}{2}} \end{cases}$$

Must have m > n or else Σ is non-invertible.

Androw No

Recommender Systems

Content-based recommender systems $\frac{n_u = 4}{\sqrt{n_m} = 5}$

			-	7	1.	1	} (
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1	x_2	[0]
15	-> O(1)	0(2)	00)	9(4)	(romance)	(action)	5
Love at last	5	5	0	0	→ 0.9	-> 0	_ \
Romance forever 2	5	?	?	0	-> 1.0	→ 0.01	1
Cute puppies of love	74.95	4	0	?	0.99	→ 0	
Nonstop car chases 4	0	0	5	4	0.1	→ 1.0	
Swords vs. karate 5	0	0	5	?	→ 0	→ 0.9	n=2
	•						

 \Rightarrow For each user j, learn a parameter $\underline{\theta^{(j)} \in \mathbb{R}^3}$. Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars.

$$\chi^{(3)} = \begin{bmatrix} 0.99 \\ 0.99 \end{bmatrix} \longrightarrow \begin{array}{c} O^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix} & \begin{pmatrix} O^{(1)} \end{pmatrix}^T \chi^{(3)} = 54.95 \\ = 4.95 \end{array}$$

Content Based Recommendations

- content means we have the features to describe the product
- It is essentially a linear regression problem, only that we train a set of parameters for each user.

Optimization algorithm:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \ \underline{\text{(for } k = 0)}$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \ (\text{for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \ (\text{for } k \neq 0)$$

7(00) 0(Na))

Collaborative Filtering

Given
$$\underline{x^{(1)},\ldots,x^{(n_m)}}$$
 (and movie ratings), can estimate $\underline{\theta^{(1)},\ldots,\theta^{(n_u)}}$ Given $\underline{\theta^{(1)},\ldots,\theta^{(n_u)}}$, can estimate $x^{(1)},\ldots,x^{(n_m)}$

Each movie is a vector of genre features Each audience is also a vector of preference features

Collaborative filtering optimization objective (iii) : c(iii): \ \rightarrow Given $x^{(1)}, \dots, x^{(n_m)}$, estimate $\theta^{(1)}, \dots, \theta^{(n_u)}$: $\sum_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{j=1}^{n} (\theta_k^{(j)})^2$ \Rightarrow Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, estimate $x^{(1)}, \dots, x^{(n_m)}$: $= \sum_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$ Minimizing $x^{(1)}, \dots, x^{(n_m)}$ and $\theta^{(1)}, \dots, \theta^{(n_u)}$ simultaneously: $J(x^{(1)}, \dots, x^{(n_m)}, \underline{\theta^{(1)}}, \dots, \underline{\theta^{(n_u)}}) = \frac{1}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n_u} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n_u} (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$ $\min_{x^{(1)},...,x^{(n_m)}} J(x^{(1)},...,x^{(n_m)},\theta^{(1)},...,\theta^{(n_u)})$

Learn x and θ in simultaneously!

Collaborative filtering algorithm

- 1. Initialize $x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)}$ to small random values.
- 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j=1,\ldots,n_u, i=1,\ldots,n_m$:

$$x_{k}^{(i)} := x_{k}^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^{T} x^{(i)} - y^{(i,j)}) \theta_{k}^{(j)} + \lambda x_{k}^{(i)} \right)$$

$$\theta_{k}^{(j)} := \theta_{k}^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^{T} x^{(i)} - y^{(i,j)}) x_{k}^{(i)} + \lambda \theta_{k}^{(j)} \right)$$

$$= \frac{\lambda}{\lambda}$$

$$\sum_{i:r(i,j)=1} ((\theta^{(j)})^{T} x^{(i)} - y^{(i,j)}) x_{k}^{(i)} + \lambda \theta_{k}^{(j)}$$

3. For a user with parameters $\underline{\theta}$ and a movie with (learned) features x, predict a star rating of $\theta^T x$.

$$(\mathcal{G}^{(i)})^{\mathsf{T}}(\mathbf{x}^{(i)})$$

Vectorization

Finding related movies

For each product i, we learn a feature vector $\underline{x}^{(i)} \in \mathbb{R}^n$.

How to find movies
$$j$$
 related to movie i ?

Small $||x^{(i)} - x^{(j)}|| \rightarrow \text{movie } \hat{s}$ and \hat{t} are "similar"

5 most similar movies to movie *i*:

 \rightarrow Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Movie rating to network setting?

- Bipartite network (users, movies)
- Objective: link weight prediction (predict user rating for unseen movies).
- common 3 hop neighbors between a user and a movie

Ex8-2.2.2 of Collaborative Filtering

```
for i = 1:num_movies
    idx = find(R(i, :) == 1);
    Theta_tmp = Theta(idx, :);
    Y_tmp = Y(i, idx);
    X_grad(i, :) = (X(i, :) * Theta_tmp' - Y_tmp) * Theta_tmp;
end

for j = 1:num_users
    idx = find(R(:, j) == 1);
    X_tmp = X(idx, :);
    Y_tmp = Y(idx, j);
    Theta_grad(j, :) = (Theta(j, :) * X_tmp' - Y_tmp') * X_tmp;
end
```