Probability Memorandum

Events and probability

1

- **Definition**: A **probability space** is a triple (Ω, F, P) , where:
 - 1. Ω is the sample space;
 - 2. F is a collection of subsets of Ω , called **events**, satisfying axioms $\mathbf{F}_1 \mathbf{F}_3$ below;
 - 3. P is a **probability measure**, which is a function $P: F \to [0,1]$, satisfying aximos $\mathbf{P}_1 \mathbf{P}_3$ below;
- The axioms of probability:
 - F is a collectino of subsets of Ω , with:

 \mathbf{F}_1 : $\emptyset \in F$.

 \mathbf{F}_2 : If $A \in F$, then also $A^c \in F$.

 \mathbf{F}_3 : If $\{A_i, i \in I\}$ is a finite or countably infinite collection of members of F, then $\bigcup_{i \in I} A_i \in F$

• P is a function from F to \mathbb{R} , with:

 \mathbf{P}_1 : For all $A \in F$, $P(A) \geq 0$.

P₂: P(Ω) = 1.

P₃: If $\{A_i, i \in I\}$ is a finite or countably infinite collection of members of F, and $A_i \cap A_j = \emptyset$ for $i \neq j$, then $P(\bigcup_{i \in I} A_i) = \sum_{i \in I} P(A_i)$.

- **Theorem**: Let (Ω, F, P) be a probability space, then:
 - 1. $P(A^c) = 1 P(A)$.
 - 2. If $A \subseteq B$, then P(A) < P(B).
- **Definition**: Let (Ω, F, P) be a probability space. If $A, B \in F$ and P(B) > 0 then the **conditional** probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- . (If P(B) = 0, then P(A|B) is not defined).
- **Theorem**: Let (Ω, F, P) be a probability space and let $B \in F$ satisfy P(B) > 0. Define a new function $Q: F \to \mathbb{R}$ by Q(A) = P(A|B). Then (Ω, F, Q) is also a probability space.
- Definition:
 - 1. Events A and B are independent if $P(A \cap B) = P(A)P(B)$. More generally
 - 2. More generally, a family of events $A = \{A_i, i \in I\}$ is independent if

$$P\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}P(A_i)$$

for all finite subsets J of I.

3. A family A of events is pairwise independent if $P(A_i \cap A_j) = P(A_i)P(A_j)$, whenever $i \neq j$.

- **Theorem**: Suppose that A and B are independent. Then:
 - 1. A and B^c are independent.
 - 2. A^c and B^c are independent.
- **Definition**: A family of events $\{B_1, B_2, \dots\}$ is a **partition** of Ω if:
 - 1. $\Omega = \bigcup_{i>1} B_i;$
 - 2. $B_i \cap B_j = \emptyset$ whenever $i \neq j$.
- The law of total probability: Suppose $\{B_1, B_2, \dots\}$ is a partition of Ω by sets from F such that $P(B_i) > 0$ for all $i \geq 1$. Then, for any $A \in F$,

$$P(A) = \sum_{i>1} P(A|B_i)P(B_i)$$

• Bayes' Theorem: Suppose $\{B_1, B_2, ...\}$ is a partition of Ω by sets from F such that $P(B_i) > 0$ for all $i \geq 1$. Then, for any $A \in F$ such that P(A) > 0,

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum_{i>1} P(A|B_i)P(B_i)}$$

2 Discrete random variables

- **Definition**: A **discrete random variable** X on a probability space (Ω, F, P) is a function $X : \Omega \to \mathbb{R}$ such that:
 - 1. $\{\omega \in \Omega : X(\omega) = x\} \in F \text{ for each } x \in \mathbb{R};$
 - 2. $ImX := \{X(\omega) : \omega \in \Omega\}$ is a finite or countably infinite subset of \mathbb{R} .
- **Definition**: The **probability mass function** (p.m.f.) of X is the function $p_X : \mathbb{R} \to [0,1]$ defined by

$$p_X(x) = P(X = x)$$

.

• Definition: The expectation (or mean or expected value) of X is

$$E[X] = \sum_{x \in ImX} xP(X = x)$$

provided that $\sum_{x \in ImX} |x| P(X = x) < \infty$. If $\sum_{x \in ImX} |x| P(X = x)$ is infinite, we say that the expectation does not exist.

• **Theorem**: If $h : \mathbb{R} \to \mathbb{R}$, then

$$E[h(X)] = \sum_{x \in ImX} h(x)P(X = x)$$

provided that $\sum_{x \in ImX} h(x)P(X=x) < \infty$.

- Theorem: Let X be a discrete random variable such that E[X] exists.
 - 1. If X is non-negative, then $E[X] \ge 0$.
 - 2. If $a, b \in \mathbb{R}$ then E[aX + b] = aE[X] + b.
- **Definition** For a discrete random variable X, the **variance** of X is defined by

$$var(X) = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}$$

provided that this quantity exists.

• Theorem: Let X be a discrete random variable and $a, b \in \mathbb{R}$, then

$$var(aX + b) = a^2 var(X)$$

• **Definition**: Suppose that B si an event such that P(B) > 0. Then the **conditional distribution** of X given B is

$$P(X = x|B) = \frac{P(\{X = x\} \cap B)}{P(B)}$$

for $x \in \mathbb{R}$. The **conditional expectation** of X given B is

$$E[X|B] = \sum_{x} xP(X = x|B)$$

whenever the sum converges absolutely. We write $p_{X|B}(x) = P(X = x|B)$.

• Partition theorem for expectations: Suppose $\{B_1, B_2, ...\}$ is a partition of Ω by sets from F such that $P(B_i) > 0$ for all $i \geq 1$ then

$$E[X] = \sum_{i>1} E[X|B_i]P(B_i)$$

• **Definition**: Given two random variable X and Y, their **joint distribution** is

$$p_{X,Y}(x,y) = P(\{X = x\} \cap \{Y = y\})$$

. The marginal distribution of X is

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$

.

• Theorem: Suppose X and Y are discrete random variables and $a, b \in \mathbb{R}$. Then

$$E[aX + bY] = aE[X] + bE[Y]$$

provided that both E[X] and E[Y] exist.

• **Theorem**: If X and Y are independent random variables whose expectations exist, then

$$E[XY] = E[X]E[Y]$$

.

• **Definition**: The **covariance** of two random variables X and Y is defined by

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[X][Y] - E[X]E[Y]$$

. Also,

$$var(X + Y) = var(X) + var(Y) + 2cov(X, Y)$$

•

• Theorem:

$$var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} var(X_i) + 2\sum_{i < j} cov(X_i, X_j)$$

3 Difference equations and random walks

• Definition: A kth order linear recurrence relation (or difference equation) has the form

$$\sum_{j=0}^{k} a_j u_{n+j} = f(n)$$

with $a_0 \neq 0$ and $a_k \neq 0$, where $a_0 \dots a_k$ are constants independent of n. A **solution** to such a difference equation is a sequence $(u_n)_{n>0}$ satisfying the above equation for all $n \geq 0$.

• Theorem: The general solution $(u_n)_{n\geq 0}$ (if the boundary conditions are not specified) can be written as $u_n = v_n + w_n$, where $(v_n)_{n\geq 0}$ is a particular solution to the equation and $(w_n)_{n\geq 0}$ solves the homogeneous equation

$$\sum_{j=0}^{k} a_j w_{n+j} = 0$$

• Theorem: Consider a random walk on the integer \mathbb{Z} , started from some n > 0, which at each step increases by 1 with probability p, and decreases by 1 with probability q = 1 - p. Then the probability u_n that the walk ever hits 0 is given by

$$u_n = \begin{cases} \left(\frac{q}{p}\right)^n & \text{if } p > q, \\ 1 & \text{if } p \le q. \end{cases}$$

.

4 Probability generating functions

 \bullet **Definition**: Let X be a non-negative integer-valued random variable. Let

$$S = \left\{ s \in \mathbb{R} : \sum_{k=0}^{\infty} |s|^k P(X = k) < \infty \right\}$$

. Then the **probability generating function** (p.g.f.) of X is $G_X : S \in \mathbb{R}$ defined by

$$G_X(s) = E[s^X] = \sum_{k=0}^{\infty} s^k P(X = k)$$

.

- **Theorem**: The distribution of X is uniquely determined by its probability generating function, G_X .
- ullet Theorem: If X and Y are independent random variables, then

$$G_{X+Y}(s) = G_X(s)G_Y(s)$$

.

- **Theorem**: Suppose that X_1, X_2, \ldots, X_n are independent Ber(p) random variables and let $Y = X_1 + \cdots + X_n$. Then $Y \sim Bin(n, p)$.
- **Theorem**: Suppose that X_1, X_2, \ldots, X_n are independent random variables such that $X_i \sim Po(\lambda_i)$ and let $Y = X_1 + \cdots + X_n$. Then $Y \sim Po(\sum_{i=1}^n \lambda_i)$.
- Theorem: Let X be a random variable with p.f.g. G_X . Then
 - 1. $E[X] = G'_X(1)$
 - 2. $var(x) = G_X''(1) + G_X'(1) (G_X'(1))^2$
 - 3. In general, $E[X(X-1)...(X-k+1)] = \frac{d^k G_X}{de^k}(1)$

- Theorem: Let X_1, X_2, \ldots be i.i.d. non-negative integer-valued random variables with p.g.f. $G_X(s)$. Let N be another non-negative integer-valued random variable with p.g.f. $G_N(s)$, independent of X_1, X_2, \ldots . Then the p.g.f. of $\sum_{i=1}^{N} X_i$ is $G_N(G_X(s))$.
- Branching process: Suppose we have a population. Each individual in the population survives just one unit of time and, just before dying, gives birth to a random number of children in the next generation. This number of children has probability mass function p(i), called the **offspring distribution**. Let X_n be the size of the population in generation n, so that $X_0 = 1$. Let $C_i^{(n)}$ be the number of children of the ith individual in generation $n \geq 0$, so that we can write

$$X_{n+1} = C_1^{(n)} + C_2^{(n)} + \dots + C_{X_n}^{(n)}$$

.

• **Theorem**: For $n \geq 0$,

$$G_{n+1}(s) = G(G_n(s)) = \underbrace{G(G(\ldots G(s)\ldots))}_{n+1 \text{ times}} = G(G_n(s))$$

Hence, suppose that the mean number of children of a single individual is $\mu = \sum_{i=1}^{\infty} ip(i)$, then

$$E[X_n] = \mu^n$$

.

• **Theorem**: The extinction probability q is the smallest non-negative solution of

$$x = G(x)$$

.

• **Theorem**: Assume $p(1) \neq 1$. Then q = 1 if $\mu \leq 1$ and q < 1 if $\mu > 1$.

5 Continuous random variables

- **Definition**: A random variable X defined on a probability space (Ω, F, P) is a function $X : \Omega \to \mathbb{R}$ such that $\{\omega : X(\omega)\} \in F$ for each $x \in \mathbb{R}$.
- **Definition**: The **cumulative distribution function** (c.d.f.) of a random variable X is the function $F_X : \mathbb{R} \to [0, 1]$ defined by

$$F_X(x) = P(X \le x)$$

.

• Theorem:

- 1. F_X is non-decreasing.
- 2. $P(a < X \le b) = F_X(b) F_X(a)$ for a < b.
- 3. $\lim_{x\to -\infty} F_X(x) = 0$.
- 4. $\lim_{x\to\infty} F_X(x) = 1$.
- **Definition**: A **continuous random variable** X is a random variable whose c.d.f. satisfies

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(u) du$$

, where $f_X: \mathbb{R} \to \mathbb{R}$ is a function such that

1. $f_X(u) \ge 0$ for all $u \in \mathbb{R}$.

$$2. \int_{-\infty}^{\infty} f_X(u) du = 1.$$

 f_X is called the **probability density function** (or **density**) of X.

• Theorem: From the Fundamental Theorem of Calculus, we have

$$\frac{dF_X(x)}{dx} = f_X(x)$$

, at any point x where $f_X(x)$ is continuous.

• **Theorem**: If X is a continuous random variable with p.d.f. $f_X(x)$ then

$$P(X = x) = 0 \text{ for all } x \in \mathbb{R}$$

and

$$P(a \le X \le b) = \int_a^b f_X(x) dx$$

• **Definition**: Let X be a continuous random variable with p.d.f. $f_X(x)$. The expectation of X is defined to be

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

whenever $\int_{-\infty}^{\infty} x f_X(x) dx < \infty$. Otherwise, we say that the mean is undefined.

• Theorem: Let X be a continuous random variable and h a function $h: \mathbb{R} \to \mathbb{R}$. Then

$$E[h(X)] = \int_{-}^{\infty} h(x)f_X(x)dx$$

• **Theorem**: Suppose that X is a continuous random variable with density f_X and that $h : \mathbb{R} \to \mathbb{R}$ is a differentiable function which is strictly increasing (i.e. $\frac{dh}{dx}(x) > 0$ for all x). Then Y = h(X) is a continuous random variable with p.d.f.

$$f_Y(y) = f_X(h^{-1}(y)) \frac{d}{dy} h^{-1}(y)$$

where h^{-1} is the inverse function of h.

• **Definition**: Let X and Y be random variables such that

$$F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u,v) du dv$$

for some function $f: \mathbb{R}^2 \to \mathbb{R}$ such that

- 1. $f_{X,Y}(u,v) \ge 0$ for all $u,v \in \mathbb{R}$
- 2. $int_{-\infty}^{infty} \int_{-\infty}^{\infty} f_{X,Y}(u,v) du dv = 1$

Then X and Y are jointly continuous and $f_{X,Y}$ is their joint density function.

• **Theorem**: For a pair of jointly continuous random variables X and Y, we have

$$P(a < X \le b, c < Y \le d) = \int_a^b \int_c^d f_{X,Y}(u, v) du dv$$

for a < b and c < d.

• **Theorem**: Suppose X and Y are jointly continuous with joint density $f_{X,Y}$. Then X is a continuous random variable with density

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$$

• **Definition**: Jointly continuous random variables X and Y with joint density $f_{X,Y}$ are independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

for all $x, y \in \mathbb{R}$.

6 Random samples and the weak law of large numbers

- **Definition**: Let $X_1, X_2, ..., X_n$ denote i.i.d. random variables. Then these random variables are said to constitute a **random sample** of size n from the distribution.
- **Definition**: The **sample mean** is defined to be

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

.

• **Theorem**: Suppose that X_1, X_2, \ldots, X_n form a random sample from a distribution with mean μ and variance σ^2 . Then the expectation and variance of the sample mean are

$$E[\bar{X}_n] = \mu \text{ and } var(\bar{X}_n) = \frac{1}{n}\sigma^2$$

.

• Weak law of large numbers: Suppose that $X_1, X_2, ...$ are i.i.d. random variables with mean μ . Then for any fixed $\epsilon > 0$,

$$\lim_{n \to \infty} P\left(\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| > \epsilon \right) = 0$$

 \bullet Markov's inequality: Suppose that Y is a non-negative random variable whose expectation exists. Then

$$P(Y \ge t) \le \frac{E[Y]}{t}$$

for all t > 0.

• Chebyshev's inequality: Suppose that Z is a random variable with a finite variance. Then, for any t > 0,

$$P(|Z - E[Z]| \ge t) \le \frac{var(Z)}{t^2}$$

.

7 Common discrete distributions

Distribution	Probability mass function	Mean	Variance	Generating function	
$Uniform U\{1,2,\ldots,n\},$	$P(X=k) = \frac{1}{n}, 1 \le k \le n$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$G_X(s) = \frac{s - s^{n+1}}{n(1-s)}$	
$n \in \mathbb{N}$					
Bernoulli $Ber(p), p \in [0, 1]$	P(X = 1) = p, P(X = 0) = 1 - p	p	p(1-p)	$G_X(s) = 1 - p + ps$	
Binomial $Bin(n, p)$,	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, k = 0, 1, \dots, n$	np	np(1-p)	$G_X(s) = (1 - p + ps)^n$	
$\mathbf{n} \in \mathbb{N}, p \in [0, 1]$	(6)1	1	1 (1)		
Poisson $Po(\lambda), \lambda \geq 0$	$P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}$	λ	λ	$G_X(s) = e^{\lambda(s-1)}$	
$\begin{array}{c} \textbf{Geometric} \\ Geom(p) \end{array}$	$P(X = k) = (1 - p)^{k-1}p, k = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$G_X(s) = \frac{ps}{1 - (1 - p)s}$	
$p \in [0, 1]$	I(A=h)=(1-p) $p,h=1,2,$		p^2	$GX(S) = \frac{1 - (1 - p)s}{1 - (1 - p)s}$	
Alternative geometric $p \in [0, 1]$	$P(X = k) = (1 - p)^{k} p, k = 0, 1, \dots$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$G_X(s) = \frac{p}{1 - (1 - p)s}$	
Negative binomial $NegBin(k, p)$ $k \in \mathbb{N}, p \in [0, 1]$	$P(X = k) = {\binom{n-1}{k-1}} (1-p)^{n-k} p^k, n = k, k+1, \dots$	$\frac{k}{p}$	$\frac{k(1-p)}{p^2}$	$G_X(s) = \left(\frac{ps}{1 - (1 - p)s}\right)^k$	

8 Common continuous distributions

Distribution	Probability density function	Cumulative distribution function	Mean	Variance
Uniform	$f_X(x) = \frac{1}{b-a}, a \le x \le b$	$F_X(x) = \frac{x-a}{b-a}, a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$ \begin{array}{ c c } \hline U[a,b], a < b \\ \hline \textbf{Exponential} \end{array} $	0-a	b-a	2	12
Exponential $Exp(\lambda), \lambda > 0$	$f_X(x) = \lambda e^{-\lambda x}, x \ge 0$	$F_X(x) = 1 - e^{-\lambda x}, x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma				
$Gamma(,\lambda)$	$f_X(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, x \in \mathbb{R}$		$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$
$\alpha > 0, \lambda \ge 0$	` ,			
Normal	$(x-\mu)^2$			_
$N(,\sigma^2)$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}$	$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$	μ	σ^2
$\mu \in \mathbb{R}, \sigma^2 > 0$	V = 1.5			
Beta	$f_X(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, x \in [0,1]$	<u> </u>		αβ
$Beta(\alpha, \beta)$	$\int X(x) - \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha)\Gamma(\beta)}x \qquad (1-x) \qquad , x \in [0,1]$	$\frac{\alpha}{\alpha+\beta}$		$(\alpha+\beta)^2(\alpha+\beta-1)$