

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

Bachelor of science in Applied Sciences Second Year - Semester I Examination – July/Aug 2023

MAA 2302- Probability & Statistics II

Time:	Three	(03)	hours

Answer all questions.

Calculators and Statistical tables will be provided.

- 1. a) A company aims to form a Welfare Society by choosing a committee consisting of 4 members from a pool of 10 employees.
 - i. Consider a group of 10 people. How many ways can a committee of 4 individuals be formed, disregarding the order of selection?
 - ii. Given that the answers obtained in part (i) are equally likely, calculate the probability of a specific individual being selected to be part of the committee.
 - iii. Calculate the probability that a particular person is not included in the committee.
 - iv. From a group of 10 individuals, determine the number of ways to form a committee of 4 people where one person is designated as the chairperson.

(08 marks)

b) Two events A and B are such that P(A) = 0.2, P(B) = 0.3 and $P(A \cup B) = 0.4$. Find the following probabilities,

i. $P(A \cap B)$

ii. $P(\bar{A} \cup \bar{B})$

iii. $P(\bar{A} \cap \bar{B})$

iv. $P(\bar{A}|B)$

(08 marks)

- 2. a) Let *X* and *Y* be two discrete random variables.
 - i. Define joint probability mass function and independence of X and Y.
 - ii. If X and Y have means E[X] and E[Y] respectively, show that

$$cov(X,Y) = E[XY] - E[X]E[Y].$$

(06 marks)

b) Consider the number of contracts awarded to Firm A, represented by the random variable *X*, and the number of contracts awarded to Firm B, represented by the random variable *Y*. The joint probability distribution for *X* and *Y* is illustrated in the table below.

V	X			$P_{Y}(y)$
1	0	1	2	
0	1/9		1/9	4/9
1	2/9	2/9		
2	1/9		0	1/9
$P_X(x)$	4/9	4/9		1

- i. Calculate the missing probabilities necessary to fill in the table.
- ii. Investigate the independence between the random variables *X* and *Y*. Justify your conclusion with appropriate reasoning.
- iii. Construct the conditional probability distribution of X given Y for all y.
- iv. Find the covariance between *X* and *Y*.

(12 marks)

3. Let *X* and *Y* be two continuous random variables with the following joint probability density function.

$$f_{(X,Y)}(x,y) = \begin{cases} \frac{(x+y)}{3} ; 0 < x < 1, 0 < y < 2, \\ 0 ; o/w. \end{cases}$$

a) Find the marginal density functions of X and Y.

- b) Find the marginal distribution functions of *X* and *Y*.
- c) Check whether random variables *X* and *Y* are independent or not.
- d) Find the conditional probability density function denoted by $f_{(X|Y)}(x|y)$.
- e) Calculate the mean and the variance of the continuous random variable X.

(16 marks)

4. a) In the context of a bakery selling bread, the random variable X represents the amount of bread sold in a day, measured in hundreds of pounds. The probability function for X is defined by the probability density function f(x),

$$f(x) = \begin{cases} Ax & \text{; } 0 \le x < 10, \\ A(20 - x) & \text{; } 10 \le x < 20, \\ 0 & \text{; } 0/w. \end{cases}$$

where A is a constant.

- i. Find the value of A.
- ii. Determine the probabilities corresponding to the given pound values for the amount of bread that will be sold tomorrow is,
 - I. more than 10 pounds.
 - II. less than 10 pounds.
 - III. between 5 and 15 pounds.

(12 marks)

b) Given that the number of customers arriving at a grocery store follows a Poisson distribution with an average arrival rate of 10 customers per hour, let X denote the number of customers arriving between 10.00 am and 11.30 am. Determine the probability, denoted as $P(10 < X \le 15)$, of having more than 10 but less than or equal to 15 customers.

(05 marks)

5. a) A sample of size n = 25 was randomly selected from a population with an unknown mean μ and a known standard deviation σ = 3. The sample mean X was calculated to be 4.5. Using a z-value of 2, compute the *confidence interval estimate for μ*.
Also, determine the followings,

- i. The 50% confidence interval estimate of μ when n=25
- ii. The 50% confidence interval estimate of μ when n = 100
- iii. The 95% confidence interval estimate of μ when n = 100

(08 marks)

- b) Let X be a random variable with mean μ and variance Var(X). Prove the following;
 - i. E[aX + b] = aE[X] + b; where a and b are constants.
 - ii. $Var[X] = E[X^2] \mu^2$

(06 marks)

c) For the sample variance S^2 , prove that,

$$S^{2} \equiv \frac{1}{n} \sum_{k=1}^{n} (X_{k} - \bar{X})^{2} = \frac{1}{n} \left[\sum_{k=1}^{n} X_{k}^{2} \right] - \bar{X}^{2}.$$

(05 marks)

6. a) A continuous random variable *X* has the following p.d.f

$$f(x) = ax ; 0 \le x \le 1.$$

Determine the constant a and also find $P[X \le 1/2]$.

(05 marks)

b) Assuming that $X_n^2 \equiv X_1^2 + X_2^2 + \dots + X_n^2$ is called the Chi-square random variable with n degrees of freedom, show the following,

i.
$$E[X_n^2] = n$$

ii.
$$Var(X_n^2) = 2n$$

iii.
$$\sigma(X_n^2) = \sqrt{2n}$$

(09 marks)