ITM426, Mid-term, 2019 Fall

Code ITM 426
Title Engineering Math.
Time for Exam 2 hours
Questions 8
Weighting 20 %

- \bullet Closed book, closed notes, no calculator.
- Only writing instrments are allowed on the desk.
- Absolutely no phone on the desk.
- $\bullet\,$ Do not remove the original staple.
- You may detach the last three sheets of this packet.
- Write legibly.

"Exams are formidable even to the best prepared, for the greatest fool may ask more than the wisest man can answer". - Charles Caleb Colton

1	10
2	10
3	5
4	10
5	5
6	5 5
7	5
8	10
Total	60

#1. For each of the following statements, write either True or False. If True, then explain your reasoning. If False, then provide a **counter-example**.[each 2pts]

- (a) If A is a 3×3 , then |5A| = 5|A|.
- ullet (b) IF A is a 2×2 matrix with a zero determinant, then all elements of A are equal to zero.
- (c) Every square matrix is a product of elementary matrices.
- (d) If A and B are $n \times n$ and invertible, then $A^{-1}B^{-1}$ is the inverse of AB.
- (e) A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.

#2. Find the general solutions of the systems whose augmented matrices are given as follows: [10pts]

(a)
$$\begin{bmatrix} 1 & -7 & 0 & 6 & 5 \\ 0 & 0 & 1 & -2 & -3 \\ -1 & 7 & -4 & 2 & 7 \end{bmatrix}$$

(b)

$$\left[\begin{array}{cccccc} 1 & 2 & -5 & -6 & 0 & 5 \\ 0 & 1 & -6 & -3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right]$$

#3. Suppose the solution set of a certain system of linear equations can be described as $x_1 = 3x_4, x_2 = 8 + x_4, x_3 = 2 - 5x_4$, with x_4 free. Use vectors to describe this set as a "line" in \mathbb{R}^4 . [5pts]

#4. Consider the following vectors

$$\mathbf{b}_1 = \left[\begin{array}{c} 1 \\ -3 \end{array} \right], \mathbf{b}_2 = \left[\begin{array}{c} -2 \\ 4 \end{array} \right], \mathbf{c}_1 = \left[\begin{array}{c} -7 \\ 9 \end{array} \right], \mathbf{c}_2 = \left[\begin{array}{c} -5 \\ 7 \end{array} \right].$$

- (a) Find a linear transformation matrix that translate \mathbf{b}_1 into \mathbf{c}_1 and \mathbf{b}_2 into \mathbf{c}_2 . [5pts]
- (b) What would the above linear transformation translate a vector $z=[2,-8]^t$ into?[5pts]

#5. Find the inverse of the following matrix.[5pts]

$$\left[\begin{array}{rrr} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{array}\right]$$

#6. Note that followings are regarding block matrices. Suppose A_{11} is invertible, Find X and Y such that

$$\left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right] = \left[\begin{array}{cc} I & O \\ X & I \end{array}\right] \left[\begin{array}{cc} A_{11} & O \\ O & S \end{array}\right] \left[\begin{array}{cc} I & Y \\ O & S \end{array}\right],$$

where $S = A_{22} - A_{21}A_{11}^{-1}A_{12}$. The matrix S is called the **Schur complement**.[5pts]

#7. Find an LU factorization of the following matrix.[5pts]

$$\left[\begin{array}{ccc} 3 & -6 & 3 \\ 6 & -7 & 2 \\ -1 & 7 & 0 \end{array}\right]$$

#8. Find the determinants of the following matrices. [5pts] (a)

$$\left[\begin{array}{rrrr}
1 & 5 & -4 \\
-1 & -4 & 5 \\
-2 & -8 & 7
\end{array}\right]$$

$$\left[\begin{array}{ccccc}
1 & 3 & 2 & -4 \\
0 & 1 & 2 & -5 \\
2 & 7 & 6 & -3 \\
-3 & -10 & -7 & 2
\end{array}\right]$$

Write your name before detaching this page.	Your Name:
---	------------

(blank)

Write your name before detaching this page.	Your Name:
---	------------

(blank)