

Professor

Índice

- ☐ Tipos de Sistemas em relação ao número de I/O
- ☐ Representação por Variáveis de Estado
- ☐ Bibliografia

Jorge Leonid Aching Samatelo jlasam001@gmail.com

> Tipos de Sistemas em relação ao número de I/O Classificação

□ SISO (Single Input Single Output): uma entrada e uma saída.

x(t)**→** y(t) $x(t) \xrightarrow{T} y(t)$ $y(t) = T\{x(t)\}$

Tipos de Sistemas em relação ao número de I/O

Tipos de Sistemas em relação ao número de I/O

Classificação

☐ SIMO (Single Input Multiple Outputs): uma entrada e múltiplas saídas.

$$x(t) \xrightarrow{T} \mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ \cdots \\ y_m(t) \end{bmatrix}$$
$$\mathbf{v}(t) = T\{x(t)\}$$

8

Tipos de Sistemas em relação ao número de I/O

Classificação

☐ MISO (*Multiple Inputs Single Output*): múltiplas entradas e uma saída.

$$x_1(t) \xrightarrow{\vdots} T\{\} \qquad y(t)$$

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \cdots \\ x_r(t) \end{bmatrix} \xrightarrow{T} y(t)$$
$$y(t) = T\{\mathbf{x}(t)\}$$

Tipos de Sistemas em relação ao número de I/O

Classificação

☐ MIMO (*Multiple Inputs Multiple Output*): múltiplas entradas e múltiplas saídas.

$$x_1(t)$$
 \vdots
 $x_r(t)$
 \vdots
 $y_n(t)$

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \cdots \\ x_r(t) \end{bmatrix} \xrightarrow{T} \mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ \cdots \\ y_m(t) \end{bmatrix}$$
$$\mathbf{y}(t) = T\{\mathbf{x}(t)\}$$

Como podemos representar uma sistema LTI quando é MIMO?

Através do uso de variáveis de estado

Representação por Variáveis de Estado

Variáveis de estado

- ☐ *Que é um estado?*
 - \triangleright Denotadas como $o_1(t), o_2(t), ..., o_n(t)$ é o conjunto de variáveis tais que o conhecimento do valor destas variáveis e das entradas, com as equações que descrevem a dinâmica, fornece os estados futuros e as saídas futuras do sistema.

12

 $o_1(t)$

 $o_n(t)$

Representação por Variáveis de Estado

Modelo por variáveis de estado para sistemas LTI MIMO

- ☐ Supondo que o sistema MIMO seja LTI a representação por variáveis de estado vem descrita em duas partes.
 - Equações de saída. m equações lineares, especificamente, uma equação para cada saída.
 - **Equações de estado.** *n* EDO lineares de primeiro ordem, especificamente, é uma EDO de 1^{ro} ordem para cada estado.

Representação por Variáveis de Estado

ao sistema não são observadas

Modelo por variáveis de estado para sistemas LTI MIMO

Equações de saída. As saídas e as entradas considerando as variáveis de estado estão relacionadas linearmente, especificamente, cada saída é uma combinação linear das variáveis de estado e das entradas.

$$\begin{aligned} y_1(t) &= c_{11}o_1(t) + c_{12}o_2(t) + \dots + c_{1n}o_n(t) + d_{11}x_1(t) + d_{12}x_2(t) + \dots + d_{1r}x_n(t) \\ y_2(t) &= c_{21}o_1(t) + c_{22}o_2(t) + \dots + c_{2n}o_n(t) + d_{21}x_1(t) + d_{22}x_2(t) + \dots + d_{2r}x_n(t) \\ &\vdots \\ y_m(t) &= c_{m1}o_1(t) + c_{m2}o_2(t) + \dots + c_{mn}o_n(t) + d_{m1}x_1(t) + d_{m2}x_2(t) + \dots + d_{mr}x_n(t) \end{aligned}$$

O conjunto de equações que relaciona as entradas com as saídas via as variáveis de estado pode ser representado elegantemente com a notação matricial.

Representação por Variáveis de Estado

Modelo por variáveis de estado para sistemas LTI MIMO

Equações de saída. As saídas e as entradas considerando as variáveis de estado estão relacionadas linearmente, especificamente, cada saída é uma combinação linear das variáveis de estado e das entradas.

$$\mathbf{y}(t) = \mathbf{Co}(t) + \mathbf{Dx}(t)$$

$$\begin{bmatrix} y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{m}(t) \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix} \begin{bmatrix} o_{1}(t) \\ o_{2}(t) \\ \vdots \\ o_{n}(t) \end{bmatrix} + \begin{bmatrix} d_{11} & d_{12} & \cdots & d_{1r} \\ d_{21} & d_{22} & \cdots & d_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ d_{m1} & d_{m2} & \cdots & d_{mr} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix}$$

$$= \mathbf{v}(t)$$

Modelo por variáveis de estado para sistemas LTI MIMO

☐ Equações de estado. As derivadas das variáveis de estado estão relacionadas linearmente, especificamente, cada derivada de 1ro ordem de um estado é uma combinação linear das variáveis de estado e das entradas.

$$\frac{do_1(t)}{dt} = a_{11}o_1(t) + a_{12}o_2(t) + \dots + a_{1n}o_n(t) + b_{11}x_1(t) + b_{12}x_2(t) + \dots + b_{1r}x_n(t)$$

$$\frac{do_2(t)}{dt} = a_{21}o_1(t) + a_{22}o_2(t) + \dots + a_{2n}o_n(t) + b_{21}x_1(t) + b_{22}x_2(t) + \dots + b_{2n}x_n(t)$$

$$\frac{do_n(t)}{dt} = a_{n1}o_1(t) + a_{n2}o_2(t) + \dots + a_{nn}o_n(t) + b_{n1}x_1(t) + b_{n2}x_2(t) + \dots + b_{nn}x_n(t)$$

20

Representação por Variáveis de Estado

Modelo por variáveis de estado para sistemas LTI MIMO

□ Resumindo

> Seja o sistema LTI – MIMO

> Seu modelo de variáveis de estado tem a forma

Representação por Variáveis de Estado

Modelo por variáveis de estado para sistemas LTI MIMO

Equações de estado. As derivadas das variáveis de estado estão relacionadas linearmente, especificamente, cada derivada de 1ro ordem de um estado é uma combinação linear das variáveis de estado e das entradas.

$$\frac{d}{dt}\mathbf{o}(t) = \mathbf{A}\mathbf{o}(t) + \mathbf{B}\mathbf{x}(t)$$

$$\frac{d}{dt}\mathbf{o}(t) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} \begin{bmatrix} o_1(t) \\ o_2(t) \\ \vdots \\ o_2(t) \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

 $\frac{d}{dt}\mathbf{o}(t) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} o_{1}(t) \\ o_{2}(t) \\ \vdots \\ o_{n}(t) \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1r} \\ b_{21} & b_{22} & \cdots & b_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nr} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix}$

Representação por Variáveis de Estado

Modelo por variáveis de estado para sistemas LTI MIMO

- ☐ Muitas técnicas estão disponíveis para obtenção da representação por variáveis de estado de sistemas LTI descritos por EDO lineares de coeficientes constantes. Mas a representação não é única.
- Modelos com variáveis físicas
- ☐ Modelos a partir de EDO lineares
 - Controlável.
 - Observável.
 - Diagonal.
 - Jordan.

Modelos com variáveis físicas

- ☐ Esta modelagem consiste em determinar as equações diferenciais que descrevem a dinâmica do SISTEMA FÍSICO analisado e posteriormente organizá-las na forma matricial.
- ☐ O número de variáveis de estado que definem completamente a dinâmica do sistema é igual ao número de elementos armazenadores de energia presentes no sistema (capacitores e indutores em circuitos elétricos).
- ☐ Implicando que, as grandezas relacionadas com os elementos armazenadores de energia (correntes e tensões dos capacitores e indutores) POSSAM ser escolhidas como as variáveis de estado.

Representação por Variáveis de Estado

Exemplo

☐ Para o circuito da figura, determine um modelo por variáveis de estado, onde a entrada é fonte de tensão e a saída é a tensão no segundo capacitor

22

24

Representação por Equações Diferenciais

Solução

☐ Paso 1. Determinamos as equações lineares que caracterizam ao sistema.

➤ Usando a Lei de Malhas de *Kirchoff* na primeira malha obtemos:

$$x(t) = Ri_1(t) + v_{C1}(t)$$

➤ Onde,

$$i_1(t) = C_1 \frac{dv_{C1}(t)}{dt}$$

➤ Substituindo a 2^{da} equação na 1^{ra} equação obtemos:

$$x(t) = RC_1 \frac{dv_{C1}(t)}{dt} + v_{C1}(t)$$

Representação por Equações Diferenciais

Solução

Paso 1. Determinamos as equações lineares que caracterizam ao sistema.

➤ Usando a Lei de Malhas de *Kirchoff* na segunda malha obtemos:

$$v_2(t) = Ri_2(t) + v_{C2}(t)$$

➤ Onde,

$$i_2(t) = C_2 \frac{dv_{C2}(t)}{dt}$$

$$v_2(t) = K v_{C1}(t)$$

➤ Substituindo a 2^{da} e 3^{ra} equação na 1^{ra} equação obtemos:

$$Kv_{C1}(t) = RC_2 \frac{dv_{C2}(t)}{dt} + v_{C2}(t)$$

22

Representação por Equações Diferenciais

Solução

Paso 1. Determinamos as equações lineares que caracterizam ao sistema.

Determinamos a equação de saída.

$$y(t) = v_{C2}(t)$$

Representação por Equações Diferenciais

Solução

- Paso 1. Determinamos as equações lineares que caracterizam ao sistema.
 - > Então o sistema de EDOs lineares que determina a relação de entrada e saída do circuito são:

$$x(t) = RC_1 \frac{dv_{C1}(t)}{dt} + v_{C1}(t)$$

$$Kv_{C1}(t) = RC_2 \frac{dv_{C2}(t)}{dt} + v_{C2}(t)$$

$$y(t) = v_{C2}(t)$$

$$v_{C1}(t) = v_{C2}(t)$$

$$v_{C2}(t) = v_{C2}(t)$$

$$v_{C1}(t) = v_{C2}(t)$$

$$v_{C2}(t) = v_{C2}(t)$$

$$v_{C3}(t) = v_{C3}(t)$$

$$v_{C4}(t) = v_{C4}(t)$$

$$v_{C4}(t) =$$

Podemos ver que as variáveis ocultas do sistema são:

$$v_{C1}(t)$$
$$v_{C2}(t)$$

26

28

Representação por Equações Diferenciais

Solução

- Paso 2. Determinamos o modelo em variáveis de estado
 - Admitindo como variáveis de estado

$$o_1(t) = v_{C1}(t)$$

 $o_2(t) = v_{C2}(t)$ > O conjunto de equações do sistemas será rescrito como:

$$x(t) = RC_1 \frac{do_1(t)}{dt} + o_1(t)$$

$$Ko_1(t) = RC_2 \frac{do_2(t)}{dt} + o_2(t)$$

$$y(t) = o_2(t)$$

➤ Ou equivalentemente:

$$\frac{do_1(t)}{dt} = -\frac{1}{RC_1}o_1(t) + \frac{1}{RC_1}x(t)$$

$$\frac{do_2(t)}{dt} = \frac{K}{RC_2}o_1(t) - \frac{1}{RC_2}o_2(t)$$

$$y(t) = o_2(t)$$

Representação por Equações Diferenciais

Solução

Paso 2. Determinamos o modelo em variáveis de estado

> Determinando as Equações de estado.

$$\begin{bmatrix} \frac{do_{1}(t)}{dt} \\ \frac{do_{2}(t)}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{1}{RC_{1}} o_{1}(t) + \frac{1}{RC_{1}} x(t) \\ \frac{K}{RC_{2}} o_{1}(t) - \frac{1}{RC_{2}} o_{2}(t) \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{RC_{1}} o_{1}(t) \\ \frac{K}{RC_{2}} o_{1}(t) - \frac{1}{RC_{2}} o_{2}(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{RC_{1}} x(t) \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{RC_{1}} & 0 \\ \frac{K}{RC_{2}} & -\frac{1}{RC_{2}} \end{bmatrix} \begin{bmatrix} o_{1}(t) \\ o_{2}(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{RC_{1}} x(t) \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{RC_{1}} & 0 \\ \frac{K}{RC_{2}} & -\frac{1}{RC_{2}} \end{bmatrix}$$

Representação por Equações Diferenciais

Solução

- Paso 2. Determinamos o modelo em variáveis de estado
 - > Determinando as Equações de saída.

$$y(t) = o_{2}(t)$$

$$= 0.o_{2}(t) + 1.o_{2}(t)$$

$$= \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{e_{2}} \underbrace{\begin{bmatrix} o_{1}(t) \\ o_{2}(t) \end{bmatrix}}$$

☐ Finalmente, o modelo de estado com variáveis físicas do sistema em estudo é:

$$\begin{bmatrix} \frac{do_1(t)}{dt} \\ \frac{do_2(t)}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{1}{RC_1} & 0 \\ \frac{K}{RC_2} & -\frac{1}{RC_2} \end{bmatrix} \begin{bmatrix} o_1(t) \\ o_2(t) \end{bmatrix} + \begin{bmatrix} \frac{1}{RC_1} \\ 0 \end{bmatrix} x(t) = \mathbf{A} \begin{bmatrix} o_1(t) \\ o_2(t) \end{bmatrix} + \mathbf{B}x(t)$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} o_1(t) \\ o_2(t) \end{bmatrix} = \mathbf{C} \begin{bmatrix} o_1(t) \\ o_2(t) \end{bmatrix}$$

Representação por Variáveis de Estado

Exercício

☐ Para o circuito da figura, determine um modelo por variáveis de estado, onde a entrada é fonte de tensão e a saída é a corrente através do resistor.

 $v_L(t) = L \frac{di_L(t)}{dt}$

Representação por Variáveis de Estado

Modelos a partir de EDO lineares

☐ Suponhamos que temos o sistema LTI-SISO

☐ Caracterizado por uma EDO linear de coeficientes constantes é:

$$\sum_{k=0}^{N} a_k \frac{d^k}{dt^k} y(t) = \sum_{k=0}^{M} b_k \frac{d^k}{dt^k} x(t)$$

$$a_0 y(t) + a_1 \frac{d}{dt} y(t) + \dots + a_N \frac{d^N}{dt^N} y(t) = b_0 x(t) + b_1 \frac{d}{dt} x(t) + \dots + b_M \frac{d^M}{dt^M} x(t)$$

☐ Tal sistema pode ser representado via variáveis de estado.

Representação por Variáveis de Estado

Modelos a partir de EDO lineares

- □ Casos
 - A entrada NÃO POSSUI derivadas.

$$a_0 y(t) + \dots + a_{N-1} \frac{d^N}{dt^N} y(t) + \frac{d^N}{dt^N} y(t) = b_0 x(t)$$

A entrada **POSSUI** derivadas.

$$a_0 y(t) + \dots + a_{N-1} \frac{d^N}{dt^N} y(t) + \frac{d^N}{dt^N} y(t) = b_0 x(t) + b_1 \frac{d}{dt} x(t) + \dots + b_N \frac{d^N}{dt^N} x(t)$$

Exemplo

☐ Para o circuito da figura, cuja EDO linear é

$$16y(t) + 10\frac{d}{dt}y(t) + \frac{d^2}{dt^2}y(t) = 2x(t)$$

☐ Onde, a entrada é a tensão aplicada e a saída é a corrente na segunda malha. Determinar o modelo por variáveis de estado.

Representação por Variáveis de Estado

1^{ra} Solução

2^{da} Solução

Paso 1. a saída y(t) e as derivadas de ordem superior de y(t) são definidas como variáveis de estado.

Representação por Variáveis de Estado

2^{da} Solução

Paso 2. Rescrevemos a EDO linear em relação à variáveis de estado definidas.

Representação por Variáveis de Estado

2^{da} Solução

☐ Paso 3. Determinando as Equações de estado.

OBSERVADO
$$\frac{d}{dt}o_1(t) = o_2(t)$$
DETERMINADO
$$\frac{d}{dt}o_2(t) = -16o_1(t) - 10o_2(t) + 2x(t)$$

☐ Agrupando e operando

$$\begin{bmatrix} \frac{do_{1}(t)}{dt} \\ \frac{do_{2}(t)}{dt} \end{bmatrix} = \begin{bmatrix} o_{2}(t) \\ -16o_{1}(t) - 10o_{2}(t) + 2x(t) \end{bmatrix}$$

$$= \begin{bmatrix} o_{2}(t) \\ -16o_{1}(t) - 10o_{2}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 2x(t) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ -16 & -10 \end{bmatrix} \begin{bmatrix} o_{1}(t) \\ o_{2}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} x(t)$$

$$= \begin{bmatrix} 0 & 1 \\ -16 & -10 \end{bmatrix} \begin{bmatrix} o_{1}(t) \\ o_{2}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} x(t)$$

Representação por Variáveis de Estado

2^{da} Solução

45

47

☐ Paso 4. Determinando as Equações de saída.

DEFINIDO
$$y(t) = o_1(t)$$

= $1.o_1(t) + 0.o_2(t) = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{-C} \underbrace{\begin{bmatrix} o_1(t) \\ o_2(t) \end{bmatrix}}_{}$

☐ Finalmente, o modelo de estado do sistema em estudo é:

$$\begin{bmatrix} \frac{do_1(t)}{dt} \\ \frac{do_2(t)}{dt} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -16 & -10 \end{bmatrix} \begin{bmatrix} o_1(t) \\ o_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} x(t) = \mathbf{A} \begin{bmatrix} o_1(t) \\ o_2(t) \end{bmatrix} + \mathbf{B}x(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} o_1(t) \\ o_2(t) \end{bmatrix} = \mathbf{C} \begin{bmatrix} o_1(t) \\ o_2(t) \end{bmatrix}$$