Trigonometry

Hertzberg, Joakim D. April 15, 2024

MAT03c: Mathematics 3c

Figure 1: A right angle triangle $\triangle ABC$

1 Trigonometric Functions

1.1 The sin & cos functions

The sin function is defined as the ratio between the opposite side and hypotenuse of a right angle triangle, at a certain angle θ . The cos function, on the other hand is defined as the ratio between the adjacent side and hypotenuse in a right triangle, defined at a certain angle θ .

In the above example, $\sin(\theta)$ is defined as follows:

$$\sin(\theta) = \frac{c}{b}$$

And $cos(\theta)$ as such:

$$\cos(\theta) = \frac{a}{b}$$

1.1.1 The Law of Sines

For this triangle it is true that:

$$\frac{\sin A}{a} \; = \; \frac{\sin B}{b} \; = \; \frac{\sin C}{c}$$

1.2 The tan function

The tan function is defined as the ratio between the opposite, and adjacent side of a right triangle, defined at a certain angle θ . See Fig 1. Hence, we may define $\tan(\theta)$ as such:

$$\cos(\theta) = \frac{c}{a}$$

1.3 On non-right triangles

1.3.1 Finding Areas

Acute triangles

In a triangle like this, $A = \frac{ac\sin(B)}{2}$

Proof:

Assume that
$$A = \frac{ch}{2}$$

$$\frac{ac\sin(\angle B)}{2} = \frac{ch}{2}$$

$$\frac{a\sin(\angle B)}{2} = \frac{h}{2}$$

$$a\sin(\angle B) = h$$

$$\because \sin(\angle B) = \frac{h}{a} \implies a\sin(\angle B) = h$$

$$h = h$$

$$LHS = RHS \quad \Box$$

Obtuse triangles

For triangles like above, it is true that $A = \frac{cb\sin(\angle A)}{2}$

Proof: Assume that $A = \frac{ch}{2}$

$$\frac{cb\sin(\angle A)}{2} = \frac{ch}{2}$$

$$\frac{b\sin(\angle A)}{2} = \frac{h}{2}$$

$$b\sin(\angle A) = h$$

$$\because (\sin(180\deg - \angle A) = \sin(\angle A)) \wedge \sin(\angle A) = \frac{h}{b} \implies b\sin(\angle A) = h$$

$$h = h$$

$$LHS = RHS \quad \Box$$

Summary

This then implies that the sine of an interior angle multiplied by it's adjacent sides, all over 2, gives the area of the triangle.

1.4 The functions cot, csc, and sec

These functions are all reciprocals of their respective trigonometric functions in 1.1~&~1.2.

2 The Unit Circle

The *Unit Circle* is a circle with a radius of 1.

In the Unit Circle, a certain poin P, defined as the corner of a right triangle with a certain angle θ , which is lying on the circumference of the unit circle, has following coordinates:

$$P = (\cos \theta, \sin \theta)$$

For a circle for which $r \neq 1$ is true, it can be more generally represented as:

$$P = (r \cos \theta, r \sin \theta)$$

3 The trigonometric Functions on a Graph

Although immediately obscure, the shapes of these functions can be explained by imagining how the lengths of the different functions change as you change θ such that P rotates one revolution around the unit circle.