Analisi Matematica per Bio-Informatici Esercitazione 04 – a.a. 2007-2008

Dott. Simone Zuccher

23 Novembre 2007

Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

Richiami utili per gli esercizi:

- Forme indeterminate: $+\infty \infty$, $0 \cdot (\pm \infty)$, $\frac{0}{0}$, $\frac{\pm \infty}{\pm \infty}$, 0^0 , $(\pm \infty)^0$ e $1^{\pm \infty}$.
- Principali limiti notevoli (si lascia allo studente la loro dimostrazione):

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$\lim_{x \to 0} \left(1 + x \right)^{\frac{1}{x}} = e$$

$$\lim_{x \to 0} \frac{\log_a (1+x)}{x} = \log_a e = \frac{1}{\log a}, \quad a \in \mathbb{R}^+ \setminus \{1\} \qquad \Rightarrow \quad \lim_{x \to 0} \frac{\log(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log a, \qquad a \in \mathbb{R}^+ \setminus \{1\} \qquad \Rightarrow \quad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{(1+x)^k - 1}{x} = k, \qquad k \in \mathbb{R}$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

1 Verifica di limiti

Esercizio 1.1 Si verifichi, tramite la definizione di limite, che

$$\lim_{x \to 1} \frac{2x^2 - x - 1}{x - 1} = 3$$

Risoluzione. Scelto $\epsilon > 0$ si ottiene $1 - \epsilon/2 < x < 1 + \epsilon/2$

Esercizio 1.2 Si verifichi, tramite la definizione di limite, che

$$\lim_{x \to -\infty} \frac{x-1}{x} = 1$$

Risoluzione. Scelto $\epsilon > 0$ si ottiene $x < -1/\epsilon$

Esercizio 1.3 Si verifichi, tramite la definizione di limite, che

$$\lim_{x \to 2} \frac{1}{4x - x^2 - 4} = -\infty$$

Risoluzione. Scelto M > 0 si ottiene $2 - 1/\sqrt{M} < x < 2 + 1/\sqrt{M}$.

Esercizio 1.4 Si verifichi, tramite la definizione di limite, che

$$\lim_{x \to -\infty} x^3 = -\infty$$

Risoluzione. Scelto M > 0 si ottiene $x < -\sqrt[3]{M}$.

2 Calcolo di limiti

Esercizio 2.5 Si calcoli, se esiste, il limite

$$\lim_{x \to 1} \frac{x^3 + x - 5}{2x^2 + 1}$$

Risoluzione. -1.

Esercizio 2.6 Si calcoli, se esiste, il limite

$$\lim_{x \to 1} \frac{x^2 + 1}{x^2 - 2x + 1}$$

 $Risoluzione. +\infty.$

Esercizio 2.7 Si calcoli, se esiste, il limite

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x - 1}$$

Risoluzione. -1.

Esercizio 2.8 Si calcoli, se esiste, il limite

$$\lim_{x \to 1} \frac{x - 1}{\sqrt{x} - 1}$$

Risoluzione. 2.

Esercizio 2.9 Si calcoli, se esiste, il limite

$$\lim_{x \to 0} \frac{x^3 + x^2 - x}{x^2 + 2x}$$

Risoluzione. -1/2.

Esercizio 2.10 Si calcoli, se esiste, il limite

$$\lim_{x \to +\infty} x^2 + x$$

 $Risoluzione. +\infty.$

Esercizio 2.11 Si calcoli, se esiste, il limite

$$\lim_{x \to -\infty} x^2 + x$$

 $Risoluzione. +\infty.$

Esercizio 2.12 Si calcoli, se esiste, il limite

$$\lim_{x \to -\infty} \frac{x^5 - x^3 + x + 1}{3x^3 + 1}$$

 $Risoluzione. +\infty.$

Esercizio 2.13 Si calcoli, se esiste, il limite

$$\lim_{x \to +\infty} \frac{x^3 - 4x^2 + 2}{1 + x - 3x^3}$$

Risoluzione. -1/3.

Esercizio 2.14 Si calcoli, se esiste, il limite

$$\lim_{x \to -\infty} \frac{x^2 + x}{3x^3 + 1}$$

Risoluzione. 0.

Esercizio 2.15 Si calcoli, se esiste, il limite

$$\lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x}$$

Risoluzione. 0.

Esercizio 2.16 Si calcoli, se esiste, il limite

$$\lim_{x \to +\infty} \sqrt{2x^2 - 1} - \sqrt{2x^2 - x - 1}$$

Risoluzione. $1/(2\sqrt{2})$.

Esercizio 2.17 Si calcoli, se esiste, il limite

$$\lim_{x \to -\infty} \sqrt{2x^2 - 1} - \sqrt{2x^2 - x - 1}$$

Risoluzione. $-1/(2\sqrt{2})$.

Esercizio 2.18 Si calcoli, se esiste, il limite

$$\lim_{x \to +\infty} \frac{\sin x}{x}$$

Risoluzione. 0.

Esercizio 2.19 Si calcoli, se esiste, il limite

$$\lim_{x \to -\infty} \frac{x^3 + \cos(e^x)}{4x}$$

 $Risoluzione. +\infty.$

Esercizio 2.20 Si calcoli, se esiste, il limite

$$\lim_{x \to 0} \frac{1}{x}$$

Risoluzione. $\not\exists$ perché il limite destro vale $+\infty$ e quello sinistro $-\infty$.

Esercizio 2.21 Si calcoli, se esiste, il limite

$$\lim_{x \to 0} e^{\frac{1}{x}}$$

Risoluzione. $\not\exists$ perché il limite destro vale $+\infty$ e quello sinistro 0.

Esercizio 2.22 Si calcoli, se esiste, il limite

$$\lim_{x \to \frac{\pi}{2}} \frac{3\sin^2 x + \sin x - 4}{\cos x}$$

Risoluzione. Si noti che $3\sin^2 x + \sin x - 4 = (\sin x - 1)(3\sin x + 4)$, per cui, moltiplicando numeratore e denominatore per $\sin x + 1$, si ottiene $-(\cos x)^2(3\sin x + 4)/[\cos x(\sin x + 1)]$, da cui il limite 0.

Esercizio 2.23 Si calcoli, se esiste, il limite

$$\lim_{x \to +\alpha} \frac{\cos x - \cos \alpha}{x - \alpha}$$

Risoluzione. Ricordando che $\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$, si ha $-\sin\alpha$.

Esercizio 2.24 Si calcoli, se esiste, il limite

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

Risoluzione. Moltiplicando numeratore e denominatore per $\cos x + 1$, si ottiene 1/2

Esercizio 2.25 Si calcoli, se esiste, il limite

$$\lim_{x \to -2} \frac{e^{x+2} - 1}{x+2}$$

5

Risoluzione. A seguito della sostituzione y = x + 2 si ottiene 1

Esercizio 2.26 Si calcoli, se esiste, il limite

$$\lim_{x \to 0} \frac{\sqrt[5]{x+1} - 1}{5x}$$

Risoluzione. 1/25

Esercizio 2.27 Si calcoli, se esiste, il limite

$$\lim_{x \to +\infty} \left(\frac{x-3}{x+4} \right)^{\frac{x^2-1}{2x}}$$

Risoluzione. $1/\sqrt{e^7}$

Esercizio 2.28 Si calcoli, se esiste, il limite

$$\lim_{x \to 0} \frac{\sin x^2}{\sqrt[6]{x^2 + 1} - 1}$$

Risoluzione. 6

Esercizio 2.29 Si calcoli, se esiste, il limite

$$\lim_{x \to 1} \frac{\sqrt[5]{x} - 1}{\sqrt[7]{x} - 1}$$

Risoluzione. Dopo aver posto y = x - 1, si ottiene 7/5

Esercizio 2.30 Si calcoli, se esiste, il limite

$$\lim_{x \to 0} \frac{x \tan x}{\log(1 + 3x^2)}$$

 $Risoluzione. 1/3 \blacksquare$

Esercizio 2.31 Si calcoli, se esiste, il limite

$$\lim_{x \to 0} \frac{x(2^x - 3^x)}{1 - \cos(3x)}$$

6

Risoluzione. Si osservi che $\frac{x(2^x - 3^x)}{1 - \cos(3x)} = \frac{x^2 3^x \left[\left(\frac{2}{3}\right)^x - 1\right]}{9x^2 \frac{1 - \cos(3x)}{9x^2}}, \text{ da cui il limite } \frac{2}{9}\log(2/3).$

Esercizio 2.32 Si calcoli, se esiste, il limite

$$\lim_{x \to 1} x^{x/(1-x)}$$

Risoluzione. Dopo aver notato che $x^{x/(1-x)} = e^{\frac{x}{1-x}\log x}$, si faccia il cambio di variabile x = y + 1, ottenendo il limite 1/e.

Esercizio 2.33 Si calcoli, se esiste, il limite

$$\lim_{x \to 0} |x|^{1/x}$$

Risoluzione. $\not\exists$ perché il limite destro vale 0 e quello sinistro $+\infty$.