Project 2 University Enrollment

Xuhui Ying

10/05/2022

- · Logistic Models, the Tidymodel way.
 - Load Libraries
 - o Stage w. Readr
 - · Profile w. Skimr
 - Explore target
 - Explore numerics
 - Explore character variables
 - 0. Make Factors!
 - 1. Partition my data 70/30 (train / test split)
 - 2. Recipe
 - o 3. Bake
 - 4. Fit
 - 5. Prep for Evaluation
 - 6. Evaluate

Logistic Models, the Tidymodel way.

Load Libraries

```
options(warn = -1)
library(tidyverse)
library(tidymodels)
library(janitor)
library(skimr)
library(kableExtra)
library(GGally)
library(kableExtra) # -- make nice looking resutls when we knitt
library(vip) # -- tidymodels variable importance
library(fastshap) # -- shapley values for variable importance
library(MASS)
```

Stage w. Readr

Import your data with read_csv()

[1] 56237

head(df)

enroll	total_contacts	self_init_cntcts	travel_init_cntcts	solicited_cntcts	campus_visit r	na
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl> <</dbl>	:dl
1	1	1	0	0	0	
1	8	7	1	0	0	
1	1	1	0	0	0	
1	6	6	0	0	0	
1	1	1	0	0	0	
1	3	3	0	0	0	
ნ rows 1	-8 of 17 columns					
4						•

Profile w. Skimr

skimr has lots of options and supports groupby - check it out.

df %>% skim()

Data summary

Name	Piped data
Number of rows	56237
Number of columns	17
	_

Column type frequency:

character	1
numeric	16
Group variables	None

Variable type: character

skim_variablen_missingcomplete_rateminmaxemptyn_uniquewhitespace

instate 0 1 1 1 0 2

Variable type: numeric

skim_variable	n_missingcon	nplete_rate	mean	sd	p0	p25	p50	p75	p100hist
enroll	0	1.00	0.05	0.22	0.00	0.00	0.00	0.00	1.00
total_contacts	0	1.00	2.26	2.01	1.00	1.00	2.00	3.00	58.00
self_init_cntcts	0	1.00	1.31	1.81	0.00	0.00	1.00	2.00	56.00
travel_init_cntct	s 0	1.00	0.37	0.56	0.00	0.00	0.00	1.00	5.00
solicited_cntcts	0	1.00	0.55	0.65	0.00	0.00	0.00	1.00	9.00
campus_visit	0	1.00	0.04	0.20	0.00	0.00	0.00	0.00	2.00
mailq	0	1.00	4.08	1.45	1.00	3.00	5.00	5.00	5.00
premiere	0	1.00	0.04	0.19	0.00	0.00	0.00	0.00	1.00
interest	0	1.00	0.06	0.25	0.00	0.00	0.00	0.00	3.00
stuemail	0	1.00	0.50	0.50	0.00	0.00	0.00	1.00	1.00
init_span	0	1.00	19.64	8.71 -	216.00	13.00	19.00	25.00	91.00
int1rat	0	1.00	0.04	0.02	0.00	0.02	0.04	0.05	1.00
int2rat	0	1.00	0.04	0.03	0.00	0.02	0.06	0.06	1.00
hscrat	0	1.00	0.04	0.06	0.00	0.00	0.04	0.05	1.00
avg_income	12801	0.774	7605.932	0799.667	117.003	2228.004	2606.005	7710.002	00001.00
distance	11905	0.79	378.17	397.23	0.42	112.39	181.63	538.43	3901.07 _

```
\mbox{\#} address missing values (drop columns with more than 20% missing values)
```

data <- df %>% dplyr::select(-avg_income, -distance)

#data %>% write_csv("data.csv")

Explore target

what's the frequency of responders? remember the count function of summarize is n() with no parameters.

```
data$enroll <- as.factor(data$enroll)

data %>%
    ggplot(aes(x=enroll, fill=enroll)) +
    geom_histogram(stat="count") +
    labs(title = "enroll vs not enroll")
```

enroll vs not enroll


```
data %>%
  group_by(enroll) %>%
  summarize(n=n()) %>%
  ungroup() %>%
  mutate(pct = n/sum(n))
```

enroll <fct></fct>	n <int></int>	pct <dbl></dbl>
0	53369	0.94900155
1	2868	0.05099845
2 rows		

Explore numerics

Compare numeric variables by comparing histograms of respond vs non-respond of course you can follow up with descriptive statistics too...

numeric variables: total_contacts, self_init_cntcts, travel_init_cntcts, solicited_cntcts, referral_cntcts, mailq, interest, init_span, int1rat, int2rat, hscrat

```
# -- comparative boxplots

boxplot <- function(m) {
    ggplot(data, aes(x=!!as.name(m), y=enroll, fill=enroll)) +
    geom_boxplot() +
    labs(title = as.character(m))
}

numerics <- c("total_contacts", "self_init_entcts", "travel_init_entcts", "solicited_entcts", "mailq", "interest", "init_span", "intlrat", "int2rat", "hscrat")

for (c in numerics) {
    print(boxplot(c))
}</pre>
```

total_contacts

solicited_cntcts

interest

Explore character variables

cycle through each character column and look for separation for respond vs non-respond

categorical variables: recr_code, campus_visit, premiere, stuemail, instate

```
char_explore <- function(col) {
    data %>%
    ggplot(aes(!!as.name(col))) +
    geom_bar(aes(fill = enroll), position = "fill")
}

data$campus_visit <- as.character(data$campus_visit)
data$premiere <- as.character(data$premiere)
data$stuemail <- as.character(data$stuemail)

# -- for each character column, create a chart
for (column in names(data %>% select_if (is_character))) {
    chrt <- char_explore(column)
    print(chrt)
}</pre>
```


0. Make Factors!

The next step for us is to create a dataset for modeling. Let's include a set of all of the columns we are interested in, and convert all the **character columns** to **factors** as well as any "nominal" or low frequency numeric columns likely to be a factor. This is done for the modeling functions coming later.

```
data %>%
    mutate_if(is.character, factor) -> data_prep
head(data_prep)
```

enroll	total_contacts	self_init_cntcts	travel_init_cntcts	solicited_cntcts	campus_visit	ma
<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<dl< td=""></dl<>
1	1	1	0	0	0	
1	8	7	1	0	0	
1	1	1	0	0	0	
1	6	6	0	0	0	
1	1	1	0	0	0	
1	3	3	0	0	0	
6 rows 1	-8 of 15 columns					
▲						•

1. Partition my data 70/30 (train / test split)

```
# -- set a random seed for repeatablity
set.seed(1234)

# -- performs our train / test split
data_split <- initial_split(data_prep, prop = 0.7)

# -- extract the training data
data_train <- training(data_split)
# -- extract the test data
data_test <- testing(data_split)

sprintf("Train PCT : %1.2f%", nrow(data_train)/ nrow(data) * 100)</pre>
```

```
## [1] "Train PCT : 70.00%"
```

```
sprintf("Test PCT: %1.2f%%", nrow(data_test)/ nrow(data) * 100)
```

```
## [1] "Test PCT : 30.00%"
```

2. Recipe

```
# -- create our recipe --
data_recipe <- recipe(enrol1 ~ ., data = data_train) %>%

# step_rm(duration) %>%
    step_impute_mode(all_nominal(), -all_outcomes()) %>%
    step_impute_median(all_numeric()) %>%
    step_dummy(all_nominal(), -all_outcomes()) %>%
    prep()
data_recipe
```

```
## Recipe
##
## Inputs:
##
##
         role #variables
##
      outcome
##
   predictor
                      14
## Training data contained 39365 data points and no missing data.
##
## Operations:
##
## Mode imputation for campus_visit, premiere, stuemail, instate [trained]
## Median imputation for total_contacts, self_init_cntcts, travel_init_c... [trained]
## Dummy variables from campus_visit, premiere, stuemail, instate [trained]
```

3. Bake

```
# -- apply the recipe
bake_train <- bake(data_recipe, new_data = data_train)
bake_test <- bake(data_recipe, new_data = data_test)</pre>
```

4. Fit

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	-24.0851	190.3719	-0.1265	0.8993
total_contacts	0.3869	0.1152	3.3578	0.0008
self_init_cntcts	0.1239	0.1174	1.0552	0.2913
travel_init_cntcts	-0.0280	0.1276	-0.2195	0.8263
solicited_cntcts	-0.4336	0.1216	-3.5669	0.0004
mailq	0.1871	0.0252	7.4171	0.0000
interest	0.5605	0.0746	7.5124	0.0000
init_span	-0.0587	0.0051	-11.4447	0.0000
int1rat	5.2312	1.2619	4.1455	0.0000
int2rat	5.6289	1.1038	5.0997	0.0000
1-10 of 16 rows			Previous	1 2 Next

5. Prep for Evaluation

We want to attach both the Predicted Probabilities (.pred_No, .pred_Yes) and the Predicted Class (.pred_class) to the dataset so we can deep dive into where out model is performing well and where it's not. We do this to both the Training and the Test set.

```
# -- training
predict(logistic_glm, bake_train, type = "prob") %>%
bind_cols(.,predict(logistic_glm, bake_train)) %>%
bind_cols(.,bake_train) -> scored_train_glm
head(scored_train_glm)
```

.pred_0 <dbl></dbl>	. pred_1 <dbl></dbl>	.pred_class <fct></fct>	total_contacts <dbl></dbl>	self_init_cntcts <dbl></dbl>	travel_init_cntcts <dbl></dbl>	S
0.9541034	4.589657e-02	0	2	1	1	
1.0000000	1.245570e-10	0	1	0	0	
0.9132568	8.674321e-02	0	7	4	1	
0.9984921	1.507886e-03	0	1	0	0	
1.0000000	9.869545e-11	0	1	0	0	
1.0000000	1.005288e-10	0	1	0	1	
6 rows 1-8 d	of 19 columns					
4						•

```
# -- testing
predict(logistic_glm, bake_test, type = "prob") %>%
bind_cols(.,predict(logistic_glm, bake_test)) %>%
bind_cols(.,bake_test) -> scored_test_glm
head(scored_test_glm)
```

.pred_0	.pred_1	.pred_class	total_contacts	self_init_cntcts	travel_init_cntcts
<dbl></dbl>	<dbl></dbl>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
3.917703e-01	0.10822973	0	1	1	0
9.602403e-01	0.03975973	0	1	1	0
3.535963e-01	0.64640367	1	6	6	0
1.807514e-04	0.99981925	1	3	3	0
9.537229e-01	0.04627712	0	2	2	0
5.065245e-06	0.99999493	1	10	10	0
ows 1-8 of 1	9 columns				

6. Evaluate

We want to check our model's performance and take a look at which features were most important.

.metric <chr></chr>	.estimator <chr></chr>	.estimate part <dbl> <chr></chr></dbl>
accuracy	binary	0.9655532 training
roc_auc	binary	0.9779126 training
accuracy	binary	0.9650308 testing
roc_auc	binary	0.9786638 testing
4 rows		

```
# -- Variable Importance top 10 features
logistic_glm %>%
vip(num_features = 10)
```



```
# -- Confustion Matricies
scored_train_glm %>%
conf_mat(enroll, .pred_class) %>%
autoplot( type = "heatmap") +
labs(title="Train Confusion Matrix")
```

Train Confusion Matrix


```
scored_test_glm %>%
conf_mat(enroll, .pred_class) %>%
autoplot( type = "heatmap") +
labs(title="Test Confusion Matrix")
```

Test Confusion Matrix


```
## -- Use stepwise selection to reduce the model

steplog <- glm(enroll ~ ., data = bake_train, family=binomial(link="logit"))

step <- stepAIC(steplog, direction="both")
```

```
## Start: AIC=6577.81
## enroll ~ total_contacts + self_init_cntcts + travel_init_cntcts +
      solicited_cntcts + mailq + interest + init_span + intlrat +
      int2rat + hscrat + campus_visit_X1 + campus_visit_X2 + premiere_X1 +
##
##
      stuemail_X1 + instate_Y
##
##
                       Df Deviance
                                     AIC
## - travel init cntcts 1 6545.9 6575.9
## - self_init_cntcts
                     1 6546. 9 6576. 9
## <none>
                            6545.8 6577.8
## - total_contacts
                     1 6556. 9 6586. 9
## - solicited_cntcts
                      1 6558.3 6588.3
## - instate_Y
                           6560.7 6590.7
                        1
## - campus_visit_X2 1
                           6561. 5 6591. 5
## - intlrat
                           6563.3 6593.3
                        1
## - int2rat
                       1
                           6569.9 6599.9
## - interest
                        1
                           6600.5 6630.5
## - mailq
                        1
                            6602. 4 6632. 4
## - campus visit X1
                       1 6643.9 6673.9
## - premiere X1
                      1 6672.1 6702.1
## - init span
                      1 6691.3 6721.3
## - stuemail X1
                      1 7362.8 7392.8
## - hscrat
                      1 7625. 7 7655. 7
##
## Step: AIC=6575.85
\#\# enroll \tilde{\ } total_contacts + self_init_cntcts + solicited_cntcts +
##
      mailq + interest + init_span + int1rat + int2rat + hscrat +
      campus_visit_X1 + campus_visit_X2 + premiere_X1 + stuemail_X1 +
##
##
      instate Y
##
##
                       Df Deviance
                                     AIC
## <none>
                            6545.9 6575.9
## + travel_init_cntcts 1 6545.8 6577.8
## - self_init_cntcts 1 6552.3 6580.3
## - instate_Y
                        1 6560. 7 6588. 7
## - campus visit X2
                        1
                           6561.6 6589.6
## - int1rat
                            6563.3 6591.3
## - int2rat
                        1
                            6569.9 6597.9
## - solicited cntcts
                           6583.9 6611.9
                       1
## - total_contacts
                           6589.4 6617.4
                        1
## - interest
                        1
                            6600.6 6628.6
                           6606. 4 6634. 4
## - mailq
                       1
## - campus_visit_X1 1
                           6644. 3 6672. 3
## - premiere_X1
                       1 6672. 1 6700. 1
## - init_span
                       1
                            6691.3 6719.3
```

```
summary(step)
```

```
##
## Call:
## glm(formula = enroll ~ total_contacts + self_init_cntcts + solicited_cntcts +
      mailq + interest + init_span + intlrat + int2rat + hscrat +
##
##
      campus_visit_X1 + campus_visit_X2 + premiere_X1 + stuemail_X1 +
##
      instate_Y, family = binomial(link = "logit"), data = bake_train)
##
## Deviance Residuals:
##
     Min
              1Q Median
                             3Q
                                   Max
## -6.889 -0.157 0.000
                          0.000
                                 3.085
##
## Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
##
                  -24. 091477 190. 372752 -0. 127 0. 899297
## (Intercept)
## total_contacts
                    0.364734 0.055218 6.605 3.97e-11 ***
## solicited_cntcts -0.411363
                              0.066946 -6.145 8.01e-10 ***
                    0. 188336
                               0.024579
                                        7.663 1.82e-14 ***
## mailq
## interest
                    0.560530
                               0.074607 7.513 5.78e-14 ***
                               0.005125 -11.443 < 2e-16 ***
## init span
                   -0.058650
## int1rat
                    5. 231269
                               1. 261863
                                         4.146 3.39e-05 ***
## int2rat
                    5. 622590
                               1.103444 5.095 3.48e-07 ***
## hscrat
                   12. 264189
                               0.478629 25.624 < 2e-16 ***
## campus visit X1
                  0.970875
                               0.096717 10.038 < 2e-16 ***
## campus_visit_X2
                    2. 119043
                               0. 585656
                                         3.618 0.000297 ***
                               0.092643 11.279 < 2e-16 ***
## premiere_X1
                    1.044916
## stuemail_X1
                   18. 414758 190. 372655
                                        0.097 0.922941
                                        3.812 0.000138 ***
## instate Y
                    0.399986
                               0.104936
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 15891.6 on 39364 degrees of freedom
## Residual deviance: 6545.9 on 39350 degrees of freedom
## AIC: 6575.9
##
## Number of Fisher Scoring iterations: 20
```

```
##
## Call: glm(formula = enroll \sim total contacts + self init cntcts + solicited cntcts +
       mailq + interest + init_span + int1rat + int2rat + hscrat +
##
       campus_visit + premiere + instate, family = binomial(link = "logit"),
##
       data = data_train)
##
##
## Coefficients:
        (Intercept)
                        total\_contacts \quad self\_init\_cntcts \quad solicited\_cntcts
##
           -6.29381
##
                               0.43612
                                                  0.17495
                                                                    -0.37087
                                                                     int1rat
##
              mai1q
                              interest
                                                init_span
##
            0.17161
                               0.67259
                                                 -0.06979
                                                                     6.08524
##
            int2rat
                                hscrat
                                            campus\_visit1
                                                               campus_visit2
##
            6.36424
                              11.84376
                                                  1.02076
                                                                     2.30075
##
          premiere1
                              instateY
##
            0.99552
                               0.33732
##
## Degrees of Freedom: 39364 Total (i.e. Null); 39351 Residual
## Null Deviance:
                         15890
## Residual Deviance: 7364 AIC: 7392
```

```
summary(model_1)
```

```
##
## Call:
## glm(formula = enroll ~ total_contacts + self_init_cntcts + solicited_cntcts +
       mailq + interest + init_span + int1rat + int2rat + hscrat +
##
       campus_visit + premiere + instate, family = binomial(link = "logit"),
##
       data = data train)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
## -7.5931 -0.1710 -0.1081 -0.0689
                                       3.3958
##
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
##
                   -6. 29381
                               0.17880 -35.201 < 2e-16 ***
## (Intercept)
## total_contacts
                    0.43612
                               0.05528
                                        7.889 3.05e-15 ***
## self_init_cntcts 0.17495
                               0.05771
                                        3. 031 0. 002435 **
## solicited cntcts -0.37087
                               0.06741 -5.502 3.76e-08 ***
## mailq
                                        6.959 3.44e-12 ***
                    0.17161
                               0.02466
## interest
                    0.67259
                               0.07500
                                        8.967 < 2e-16 ***
                               0.00525 -13.294 < 2e-16 ***
## init_span
                   -0.06979
## intlrat
                    6.08524
                               1. 26853
                                        4.797 1.61e-06 ***
## int2rat
                    6.36424
                               1. 13283
                                        5.618 1.93e-08 ***
## hscrat
                   11.84376
                               0.42333 27.977 < 2e-16 ***
## campus_visit1
                    1.02076
                               0.09660 10.567 < 2e-16 ***
## campus_visit2
                    2.30075
                               0.61208
                                        3.759 0.000171 ***
## premiere1
                    0. 99552
                               0.09209 10.811 < 2e-16 ***
                                         3.215 0.001303 **
## instateY
                    0.33732
                               0.10491
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 15891.6 on 39364 degrees of freedom
##
## Residual deviance: 7363.6 on 39351 degrees of freedom
## AIC: 7391.6
##
## Number of Fisher Scoring iterations: 25
```

```
## Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 12
##
## Training data contained 39365 data points and no missing data.
##
## Operations:
##
## Median imputation for total_contacts, self_init_cntcts, solicited_cnt... [trained]
```

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	-6.2938	0.1788	-35.2005	0.0000
total_contacts	0.4361	0.0553	7.8887	0.0000
self_init_cntcts	0.1749	0.0577	3.0313	0.0024
solicited_cntcts	-0.3709	0.0674	-5.5018	0.0000

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
mailq	0.1716	0.0247	6.9585	0.0000
interest	0.6726	0.0750	8.9674	0.0000
init_span	-0.0698	0.0053	-13.2936	0.0000
int1rat	6.0852	1.2685	4.7971	0.0000
int2rat	6.3642	1.1328	5.6180	0.0000
hscrat	11.8438	0.4233	27.9773	0.0000
1-10 of 14 rows			Previous	1 2 Next

```
# -- training predictions from stepwise model
predict(logistic_step1, bake_steptrain, type = "prob") %>%
bind_cols(.,predict(logistic_step1, bake_steptrain)) %>%
bind_cols(.,bake_steptrain) -> scored_train_step1
```

head(scored_train_step1)

.pred_0	.pred_1	.pred_class	total_contacts	self_init_cntcts	solicited_cntcts	ma
<dbl></dbl>	<dbl></dbl>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl< td=""></dbl<>
).9751860	0.0248140497	0	2	1	0	-
).9937606	0.0062394078	0	1	0	1	Ų
).9302196	0.0697803886	0	7	4	1	•
).9993977	0.0006023133	0	1	0	1	,
).9960810	0.0039189841	0	1	0	1	,
).9949554	0.0050446364	0	1	0	0	
rows 1-9 of 16 columns						

```
# -- testing predictions from stepwise model
predict(logistic_step1, bake_steptest, type = "prob") %>%
bind_cols(.,predict(logistic_step1, bake_steptest)) %>%
bind_cols(.,bake_steptest) -> scored_test_step1
head(scored_test_step1)
```

.pred_0	.pred_1	.pred_class	total_contacts	self_init_cntcts	solicited_cntcts	ma
<dbl></dbl>	<dbl></dbl>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
9.396685e-01	0.06033154	0	1	1	0	5
9.802095e-01	0.01979047	0	1	1	0	5
4.404356e-01	0.55956439	1	6	6	0	5
4.491213e-04	0.99955088	1	3	3	0	5
9.748635e-01	0.02513652	0	2	2	0	5
6.156524e-06	0.99999384	1	10	10	0	2
6 rows 1-9 of 1	6 columns					
4						•

.metric	.estimator	.estimate part
<chr></chr>	<chr></chr>	<dbl> <chr></chr></dbl>
accuracy	binary	0.9640290 training
roc_auc	binary	0.9705458 training
accuracy	binary	0.9640825 testing
roc_auc	binary	0.9725269 testing
4 rows		

```
# -- Variable Importance top 10 features
model_1 %>%
   vip(num_features = 10)
```



```
# -- Confustion Matricies
scored_train_step1 %>%
conf_mat(enroll, .pred_class) %>%
autoplot(type = "heatmap") +
labs(title="Train Confusion Matrix")
```

Train Confusion Matrix


```
scored_test_step1 %>%
conf_mat(enroll, .pred_class) %>%
autoplot(type = "heatmap") +
labs(title="Test Confusion Matrix")
```

Test Confusion Matrix

