MATH 118

The Multivariable Chain Rule

Suppose you're hiking up a mountain modelled by the surface z = f(x, y). You walk on a hiking trail such that your x and y-coordinates are functions of time. This means that your elevation can also be expressed as a function of time. To find the rate of change of your elevation as a function of time (i.e., the slope of the hiking trail), we need the *Multivariable Chain Rule*.

1. (a) If z = f(x, y), x = g(t) and y = h(t), draw the tree diagram for z.

- (b) Write down the formula for $\frac{dz}{dt}$.
- (c) If $f(x,y) = x^2 + 3xy^2 + 2y$, $g(t) = \cos(t)$ and $h(t) = \sin(3t)$, use part (a) to find $\frac{dz}{dt}$ when t = 0.

2. (a) In certain situations, x and y may themselves be functions of two new variables. If z = f(x, y), x = g(s, t) and y = h(s, t), draw the tree diagram for z.

- (b) Write down the formula for $\frac{\partial z}{\partial s}$.
- (c) If $f(x,y) = x^2 + 3xy^2 + 2y$ (as before) and now $g(s,t) = s\cos(t)$, $h(s,t) = s^2\sin(3t)$, use part (a) to find $\frac{\partial z}{\partial s}$ when $(s,t) = (1,\pi)$.

3. (a) In other situations, the new variables s and t may themselves depend on other variables u and v. If z = f(x,y), x = g(s,t), y = h(s,t), $s = \phi(u,v)$ and $t = \psi(u,v)$, draw the tree diagram for z.

(b) Write down a formula for $\frac{\partial z}{\partial u}$.

- 4. The temperature at a point (x,y) is T(x,y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1+t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimetres.
 - (a) For each of the following, provide the units of the rate of change and write a sentence interpreting its meaning.
 - (i) $\frac{\partial T}{\partial x}$
 - (ii) $\frac{\partial T}{\partial y}$
 - (iii) $\frac{dx}{dt}$
 - (iv) $\frac{dy}{dt}$
 - (v) $\frac{dT}{dt}$
 - (b) If the temperature function satisfies $T_x(2,3) = 4$ and $T_y(2,3) = 3$, how fast is the temperature rising on the bug's path after 3 seconds?
- 5. Suppose f(x, y) is a differentiable function of x and y, and $g(u, v) = f(e^u + \sin(v), e^u + \cos(v))$. Use the table of values to calculate $g_u(0, 0)$ and $g_v(0, 0)$.

(x,y)	\int	g	f_x	f_y
(0,0)	3	6	4	8
(1,2)	6	3	2	5

- 6. Consider the ellipsoid $x^2 + 2y^2 + 3z^2 = 4$.
 - (a) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point (1,0,1).

(b) Use your answer to (a) to find the equation of the plane tangent to the ellipsoid at (1,0,1).