Билеты по квантовой механике

Авторы заметок: Хоружий Кирилл Примак Евгений

От: 21 декабря 2021 г.

То, что остаётся после всех этих абстракций, не следует ли... считать тем реальным и неизменным содержанием, которое навязывается существам всех видов с одинаковой необходимостью, потому что оно не зависит ни от индивида, ни от момента времени, ни от точки зрения?

В. И. Ленин

Содержание

1	адачи
	дача №2
	адача №3
	дача №4
	дача №7
	дача №8
	NAME AND THE STATE OF THE STATE

1 Задачи

Задача №2

Вычислить $[x, \hat{p}^2], [U(x), \hat{p}], [U(x), \hat{p}^2].$

В координатном представлении $\hat{x}=x$ и $\hat{p}_x=-i\hbar\partial_x$, тогда $\hat{p}_x^2=-\hbar^2\partial_x^2$.

0) Начнём с нулевого примера, чтобы убедиться, что правильно смотрим на мир:

$$[\hat{x}, \, \hat{p}]\psi(x) = x(-i\hbar)\partial_x\psi - (-i\hbar)\partial_x(x\psi) = i\hbar\psi + i\hbar x\partial_x\psi - i\hbar x\partial_x\psi = i\hbar\psi,$$

$$\Rightarrow [\hat{x}, \, \hat{p}] = i\hbar.$$

а) Аналогично, в смысле операторного равенства,

$$\begin{split} [\hat{x},\,\hat{p}^2]\psi(x) &= x(-i\hbar)^2\partial_x^2\psi - (-i\hbar)^2\partial_x^2(x\psi) = -\hbar^2x\partial_x^2\psi + \hbar^2\partial_x(\psi + x\partial_x\psi) = \\ &= -\hbar^2x\partial_x^2\psi + \hbar^2\partial_x\psi + \hbar^2\partial_x\psi + \hbar^2x\partial_x^2\psi = 2i\hbar\hat{p}\psi, \\ \Rightarrow [\hat{x},\,\hat{p}^2] &= 2i\hbar\hat{p}. \end{split}$$

б) Теперь найдём коммутатор с некоторой функцией U(x):

$$[U(\hat{x}), \hat{p}]\psi(x) = U(x)(-i\hbar\partial_x\psi) + i\hbar\partial_x(U\psi) = U(-i\hbar\partial_x\psi) + i\hbar(\psi\partial_xU + U\partial_x\psi) = i\hbar(\partial_xU)\psi,$$

$$\Rightarrow [U(\hat{x}), \hat{p}] = 2i\hbar\hat{p}.$$

в) Наконец,

$$\begin{split} [U(\hat{x}),\,\hat{p}^2]\psi(x) &= U(-\hbar^2)\partial_x^2\psi + \hbar^2\partial_x^2U\psi = U(-\hbar^2)\psi'' + \hbar^2(\psi U'' + 2U'\psi' + \psi''U) = \\ &= \hbar^2(\psi U'' + 2U'\psi') = (\hbar^2U'' + \hbar 2iU'\hat{p})\psi, \\ \Rightarrow [U(\hat{x}),\,\hat{p}^2] &= \hbar^2U'' + 2i\hbar U'\hat{p}. \end{split}$$

Задача №3

Доказать соотноешния Фейнмана-Гельмана $\partial_{\lambda} f_n(\lambda) = \langle n | \partial_{\lambda} \hat{f}(\lambda) | n \rangle$, где f_n – собственное значение $\hat{f} | n \rangle = f_n | n \rangle$, то есть $f_n = \langle n | \hat{f} | n \rangle$.

△. По формуле Лейбница:

$$\begin{split} \partial_{\lambda}f_{n} &= \langle n|\partial_{\lambda}\hat{f}|n\rangle + \langle \partial_{\lambda}n|\hat{f}|n\rangle + \langle n|\hat{f}|\partial_{\lambda}n\rangle = \langle n|\partial_{\lambda}\hat{f}|n\rangle + \langle \partial_{\lambda}n|n\rangle f_{n} + \langle n|\partial_{\lambda}n\rangle f_{n} = \\ &= \langle n|\partial_{\lambda}\hat{f}|n\rangle + f_{n}\partial_{\lambda}\langle n|n\rangle = \langle n|\partial_{\lambda}\hat{f}|n\rangle, \end{split}$$

что и требовалось доказать.

Задача №4

Найти операторы рождения и уничтожения для гармонического осцилляора в представлении Гейзенберга.

І. Запишем уравнение Гейзенберга

$$i\hbar\frac{\hat{d}f}{dt} = i\hbar\frac{\partial\hat{f}}{\partial t} + \left[\hat{f},\,\hat{H}\right].$$

Запищем гамильтониан системы

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right),$$

тогда можем найти

$$i\hbar\frac{\hat{d}a}{dt}=\hbar\omega\left[\hat{a},\,\hat{a}^{\dagger}\hat{a}\right]=\hbar\omega\left(\hat{a}\hat{a}^{\dagger}\hat{a}-\hat{a}^{\dagger}\hat{a}\hat{a}\right)=\hbar\omega\left(\left[\hat{a},\,\hat{a}^{\dagger}\right]\hat{a}\right)=\hbar\omega\hat{a},$$

и, решая диффур, находим

$$i\hbar \frac{\hat{d}a}{dt} = \hbar\omega \hat{a}, \quad \Rightarrow \quad \begin{cases} \hat{a}(t) = e^{-i\omega t}\hat{a}, \\ \hat{a}^{\dagger}(t) = e^{i\omega t}\hat{a}^{\dagger}. \end{cases}$$

3

II. Можно было напрямую, воспользоваться

$$\hat{U}(t) = \exp\left(-\frac{i}{\hbar}\hat{H}t\right), \quad \Rightarrow \quad \hat{a}(t) = \hat{a} + (i\omega t)[\hat{a}^{\dagger}\hat{a}, \, \hat{a}] + (i\omega t)^{2}[\hat{a}^{\dagger}\hat{a}, \, -\hat{a}] + \dots = \exp(-i\omega t)\hat{a},$$

где мы воспользовались равенством, доказанным в У6:

$$e^{\xi A}Be^{-\xi A} = B + \xi[A, B] + \frac{1}{2!}\xi^2[A, [A, B]] + \dots$$

Задача №7

Найти уровни энергии и волновые функции стационарных состояний частицы в потенциальном ящике

$$U(x) = \begin{cases} 0, & x \in [0, a], \\ +\infty, & x \in \mathbb{R} \setminus [0, a]. \end{cases}$$

Стационарное уравнение Шрёдингера:

$$\hat{H}\psi(x) = E\psi(x), \quad \Rightarrow \quad \psi''(x) + \frac{2mE}{\hbar^2}\psi(x) = 0.$$

Тогда решение может быть найдено в виде

$$\psi(x) = A\sin(kx) + B\cos(kx), \quad k^2 = \frac{2m}{\hbar^2}E,$$

но в силу требования $\psi(x)|_{x\in\{0,a\}}=0$, сразу получаем B=0, и условие на k:

$$k = k_n = \frac{\pi n}{a}, \quad \Rightarrow \quad E_n = \frac{\hbar^2}{2ma^2}\pi^2 n^2,$$

то есть спектр дискретный.

Из нормировки ψ можем найти

$$\langle \psi | \psi \rangle = \int_0^a dx |\psi(x)|^2 = \frac{|A|^2}{2} a = 1, \quad \Rightarrow \quad A = \sqrt{\frac{2}{a}}.$$

Тогда искомая волнавая функция стационарных состояний и соответсвующие уровни энергии

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi n}{a}x\right), \quad E_n = \frac{\hbar^2}{2ma^2} \pi^2 n^2.$$

Задача №8

Найти уровни энергии a и волновые функции стационарных состояний частицы в потенциале $U(x)=-\frac{\hbar^2}{m}\varkappa_0\delta(x)$.

Координатное представление. Сделаем замечание, что E < 0, тогда получим

$$\hat{H}\psi = -|E|\psi, \qquad \varkappa^2 \stackrel{\text{def}}{=} \frac{2m|E|}{\hbar}.$$

С такой заменой получим:

$$-\frac{\hbar^2}{2m}\psi'' - \frac{\hbar^2}{m}\varkappa_0\delta(x)\psi + |E|\psi = 0 \qquad \Rightarrow \qquad \psi'' - (\varkappa - 2\varkappa_0\delta(x))\psi = 0.$$

Мы ожидаем непрерывности от волной функции на границах областей, а именно в точке дельта-ямы, то есть одним из граничных условий будет $\psi(-0) = \psi(+0)$.

Потребовав непрерывности ψ , из-за дельта функции, мы получаем разрыв для первой производной

$$\psi'' - (\varkappa - 2\varkappa_0 \delta(x))\psi = 0 \qquad \Longrightarrow^{\int_{-\xi}^{+\varepsilon}} \qquad \psi'(+0) - \psi'(-0) = -2\varkappa_0 \psi(0).$$

Вне ямы будем наблюдать спад по экспоненте, сама же яма – по сути точечна, значит такое же поведение будем ожидать и в связном состоянии, таким образом ищем волновую функцию как

$$\psi = \begin{cases} C_1 e^{-\varkappa x} , x > 0 \\ C_2 e^{\varkappa x} , x < 0 \end{cases}$$

Из непрерывности получим автоматически, что

$$\psi(-0) = \psi(+0) \qquad \Rightarrow \qquad C_2 = C_1 = C.$$

 $[^]a\Phi$ ормально «уровень энергии», δ -ямая – всегда мелкая яма, то есть ∃! связное состояние.

Разрыв же первой производной позволит нам найти

$$\psi'(+0) - \psi'(-0) = -2\varkappa_0\psi(0) \quad \Rightarrow \quad -2\varkappa_0C = C(-\varkappa - \varkappa) \quad \Rightarrow \quad \varkappa = \varkappa_0.$$

Таким образом энергия связного состояния:

$$E = -\frac{\hbar^2 \varkappa_0^2}{2m}.$$

Теперь, осталось проверить нормировку нашей волновой функции

$$\int_{\mathbb{R}} \psi \psi^* dx = 1 \quad \Rightarrow \quad C^2 \int_{-\infty}^{+\infty} e^{-2\varkappa_0 |x|} dx = \frac{C^2}{\varkappa_0} \int_0^{+\infty} e^{-2\varkappa_0 x} d2\varkappa_0 x = \frac{C^2}{\varkappa_0} = 1 \quad \Rightarrow \quad \varkappa_0 = C^2.$$

Таким образом собирая всё вместе получаем волновую функцию вида:

$$\langle x|0\rangle = \psi(x) = \sqrt{\varkappa_0}e^{-\varkappa_0|x|}.$$

Импульсное представление. Вставляя разбиение единицы, вида $\mathbb{1}=\int_{\mathbb{R}}|x\rangle\langle x|\,dx$, находим

$$\psi(p) = \langle p|0\rangle = \int_{\mathbb{R}} dx \langle p|x\rangle \langle x|0\rangle = \left/\langle p|x\rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{-\frac{i}{\hbar}px}\right/ = \frac{\sqrt{\varkappa_0}}{\sqrt{2\pi\hbar}} \int_{\mathbb{R}} e^{-\varkappa_0 x - \frac{i}{\hbar}px} dx = \frac{\sqrt{\varkappa_0}}{\sqrt{2\pi\hbar}} \cdot \frac{2\varkappa_0}{\varkappa_0^2 + (p/\hbar)^2} = \sqrt{\frac{2}{\pi}} \frac{(\varkappa_0 \hbar)^{3/2}}{(\varkappa_0 \hbar)^2 + p^2}.$$

Задача №8

Найти волновую функцию, минимизирующую соотношение неопределенностей $\Delta x \cdot \Delta p = \hbar/2$.

Возьмём операторы импульса $\hat{p} = -i\hbar\partial_x$ и координаты \hat{x} . Сразу найдём их средние и коммутатор

$$\bar{x} = \langle x \rangle = \langle \psi | \hat{x} | \psi \rangle, \qquad \bar{p} = \langle p \rangle = \langle \psi | \hat{p} | \psi \rangle, \qquad [\hat{x}, \hat{p}] = i\hbar$$

Перейдём к несмещенным переменным:

$$\hat{\xi} = \hat{x} - \bar{x}, \qquad \hat{\eta} = \hat{p} - \bar{p}, \qquad [\hat{\xi}, \hat{\eta}] = i\hbar.$$

С неизмененным значением дисперсии

$$(\Delta \xi)^2 = \langle \psi | (\hat{\xi} - \bar{\xi}) | \psi \rangle = \langle \psi | (\hat{x} - \bar{x}) | \psi \rangle = (\Delta x)^2, \qquad (\Delta \eta)^2 = (\Delta p)^2.$$

Теперь введем функцию Ф по методу Вейля

$$|\Phi\rangle = (\hat{\xi} - i\gamma\hat{\eta}) |\psi\rangle.$$

И, по определению нормы, $\langle \Phi | \Phi \rangle \geqslant 0$, а значиты

$$\langle \psi | (\hat{\xi} - i \gamma \hat{\eta})^{\dagger} (\hat{\xi} - i \gamma \hat{\eta}) | \psi \rangle = \langle \psi | \hat{\xi}^2 - i \gamma (\hat{\xi} \hat{\eta} - \hat{\eta} \hat{\xi}) + \gamma^2 \hat{\eta}^2 | \psi \rangle \geqslant 0.$$

Неотрипательной должно быть и выражение

$$(\Delta x)^2 + \hbar \gamma + \gamma^2 (\Delta p)^2 \geqslant 0$$
 \Rightarrow $\hbar^2 - 4(\Delta p)^2 (\Delta x)^2 \leqslant 0$,

что получилось просто из условия на дискриминант для квадратного уравнения на γ , тогда минимум достигнется просто при нулевом дискриминанте

$$(\Delta p)^2 (\Delta x)^2 = \frac{\hbar}{4}, \qquad \gamma = -2 \frac{(\Delta x)^2}{\hbar}.$$

Таким образом и нашли волновую функцию, которая удовлетворяет минимизации соотношения неопределенности, что мы четко и показали

$$|\Phi\rangle = \left[\hat{x} - \bar{x} + \frac{2i}{\hbar}(\Delta x)^2(\hat{p} - \bar{p})\right]|\psi\rangle$$
,

для некоторой $\forall \psi$.