Exercice 1. 1.5 points

Démontrer que la suite (u_n) définie sur \mathbb{N} par $u_n = 5 - 4\sin(n^2 + 5)$ est bornée.

Exercice 2. 4.5 points

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel $n : u_{n+1} = 2u_n - n + 3$. On a calculé les premiers termes de ces deux suites à l'aide d'un tableur.

Une copie d'écran est donnée ci-dessous.

	A	В
1	rang n	terme u_n
2	0	1
3	1	5
4	2	10
5	3	25
6	4	50

- 1. Quelle formule a été entrée dans la cellule B3 pour obtenir par copie vers le bas les termes de la suite (u_n) ?
- 2. Démontrer par récurrence que, pour tout entier naturel n, on a $u_n = 3 \times 2^n + n 2$.
- 3. Déterminer, sans le justifier, le rang du premier terme de la suite supérieur à 1 million.

Exercice 3. 8 points

On considère la suite (u_n) définie sur \mathbb{N} par $u_0 \in]0$; 1[et, pour tout $n \geq 0$,

$$u_{n+1} = u_n \left(2 - u_n \right).$$

- 1. Soit f la fonction définie sur [0; 1] par f(x) = x(2-x).
 - (a) Étudier les variations de f sur [0;1]
 - (b) En déduire que pour tout $x \in [0; 1]$, $f(x) \in [0; 1]$.
- 2. Démontrer que : $\forall n \in \mathbb{N}, \quad 0 < u_n < 1.$
- 3. Étudier la monotonie de la suite (u_n) .

Exercice 4. 6 points

Soit la suite (u_n) définie par son premier terme $u_1 = \frac{3}{2}$ et la relation de récurrence : $u_{n+1} = \frac{nu_n + 1}{2(n+1)}$. On définit une suite auxiliaire (v_n) par : pour tout entier $n \ge 1$, $v_n = nu_n - 1$.

- 1. Montrer que la suite (v_n) est géométrique; préciser sa raison et son premier terme.
- 2. En déduire que, pour tout entier naturel $n \ge 1$, on a : $u_n = \frac{1 + (0,5)^n}{n}$.
- 3. Déterminer la limite de la suite (u_n) .

Exercice 1.

Soit la suite (u_n) définie par $u_1 = 1$ et pour tout entier naturel $n \ge 1$, $u_{n+1} = -2u_n + 9$. Démontrer que : $\forall n \in \mathbb{N}^*$ on a :

$$u_n = (-2)^n + 3.$$

Exercice 2.

Soit la suite u définie pour tout entier naturel n par :

$$\begin{cases} u_0 = 8 \\ u_{n+1} = \frac{4u_n - 2}{u_n + 1} \end{cases}$$

- 1. Dresser le tableau de variations de la fonction f définie sur]-1; $+\infty[$ par $f(x)=\frac{4x-2}{x+1}$.
- 2. Démontrer par récurrence que pour tout entier naturel n on a $u_n > 2$.
- 3. La suite u est-elle monotone?

Exercice 3.

Soit (q_n) la suite définie par $q_1 = \frac{1}{3}$ et pour tout $n \geqslant 1$ par :

$$q_{n+1} = \frac{n+1}{3n}q_n.$$

Montrer que pour tout $n \geqslant 1$, $q_n = \frac{n}{3^n}$.

Exercice 4.

Pour un entier naturel $k \ge 1$, on note k! (ce qui se lit « factorielle k ») le produit des k premiers entiers naturels non nuls.

Ainsi $k! = 1 \times 2 \times 3 \times \ldots \times (k-1) \times k$.

- 1. Calculer 1!, 2!, 3! et 4!.
- 2. Soit $S_n = \sum_{k=1}^n k \times (k!)$ pour $n \ge 1$.
- 3. (a) Écrire S_1 , S_2 et S_3 sans le symbole \sum et les calculer.
 - (b) Montrer par récurrence que, pour tout entier $n \ge 1$, $S_n = (n+1)! 1$.