8 in 1 soil parameters monitor sensor

RD-S8IN1

HONDE TECHNOLOGY CO,LTD

1. Product Introduce

The sensor has stable performance and high sensitivity, and can simultaneously monitor soil temperature, moisture, conductivity, salinity, nitrogen, phosphorus, potassium, PH 8 parameters. It is an important tool for observing and studying the occurrence, evolution, improvement, and water and salt dynamics of saline soil. By measuring the dielectric constant of the soil, it can directly and stably reflect the true moisture content of various soils. It can measure the volume percentage of soil moisture, which is a soil moisture measurement method that meets the current international standards. By measuring the electrical conductivity of the soil, the salinity reflects the salinity of the soil in time, and by measuring the nitrogen, phosphorus and potassium content of the soil, it reflects the nutrient status of the soil in time, by measuring the soil PH, it reflects the soil acidity and alkalinity, providing a data basis for scientific planting.

2. Product Features

- 1. The eight parameters of soil water content, electrical conductivity, salinity, temperature and nitrogen, phosphorus and potassium and PH are combined into one.
- 2. Low threshold, few steps, fast measurement, no reagents, unlimited detection times.
- 3. The electrode is made of specially processed alloy material, which can withstand strong external impact and is not easy to damage.
- 4. Completely sealed, resistant to acid and alkali corrosion, can be buried in soil or directly into water for long-term dynamic testing.
- 5. High precision, fast response, good interchangeability, the adjustment instruction have opened to ensure accurate measurement and reliable performance.

3. Product application

The sensor is suitable for soil moisture monitoring, scientific experiments, water-saving irrigation, greenhouses, flowers and vegetables, grassland pastures, soil rapid testing, plant cultivation, sewage treatment, precision agriculture and other occasions.

4. Product Parameter

- 1. Technical Parameters
- Measurement parameters: soil moisture and temperature and EC and salinity and NPK and PH
- Measuring range
 - Temperature: -40° C~80° C
 - Moisture: 0~100% RH
 - EC:0~20000µs/cm
 - Salinity:0~10000ppm

- NPK: 1-1999 mg/kg(mg/L)
- PH:3-9ph
- Measurement accuracy:
 - Temperature: ±0.5° C
 - Moisture: 0-50%, ±2%; 53%-100%, ±3%
 - EC: ±3%
 - Salinity: ±3%
 - NPK: ±2%FS
 - PH: ±0.3ph
- Resolution:
 - Temperature: 0.1°C
 - Moisture: 0.1%RH
 - EC: 10 us/cm
 - Salinity:1ppm
 - NPK: 1 mg/kg(mg/L)
 - PH:0.1ph
- Response time: < 15s
- ightharpoonup Conductivity temperature compensation: Built-in temperature compensation sensor, compensation range 0-50 $\,^{\circ}$ C
- Output signal: RS485 (standard Modbus-RTU protocol, default address: 01)
- Baud rate: 9600/4800/2400bps, default is 9600bps
- ➤ Supply voltage: 4.5 ~ 30V DC
- Power consumption≤0.15W (@12V,25 ° C)
- ➤ Working temperature range: -40° C~80° C
- ➤ Working humidity range: 0-100% (Relative humidity, non-condensing)
- Protect level: IP68
- 2. Physical parameter
- > Sealing material: ABS engineering plastic, epoxy resin, waterproof grade IP68
- Probe Material: Austenitic 316 stainless steel which Anti-rust, anti-electrolysis, salt and alkali resistance, Suitable for all kinds of soil
- Low power consumption, high sensitivity, signal stabilization

5. Product Size

6. Connection method

The wide voltage power input can be 4.5~30V. When connecting the RS485 signal line, please note that the two lines of A/B cannot be reversed, and the addresses of multiple devices on the bus must not conflict. RS485 connection

M12 PIN NO.	Wire colour	Interface	
1	Brown	Positive power(4.5 -30VDC)	
2	Black	GND	
3	Yellow	RS485 A	
4	Blue	RS485 B	

7. Measurement methods

Since the electrode directly measures the conductivity of the soluble salt ions in the soil, the soil volumetric water content must be higher than about 20% when the soluble ions in the soil can accurately reflect the conductivity of the soil. In the long-term observation, the measured value after irrigation or rainfall is closer to the true level. If you are performing a quick test, you can water the soil to be tested first, and perform the measurement after the water is fully penetrated.

If you are measuring on a hard surface, you should drill a hole first (the hole diameter should be smaller than the probe diameter), then insert it into the soil and compact the soil before measuring; the sensor should be protected from severe vibration and impact, let alone knocked with hard objects. Because the sensor is a black package, the sensor will heat up sharply (up to 50°C) under strong sunlight. In order to prevent excessive temperature from affecting the temperature measurement of the sensor, please pay attention to shading and protection when using it in the field or in the field.

- 1. Soil Surface measure method
- > Select a representative soil environment to clean up surface debris and vegetation
- Insert the sensor vertically and completely into the soil
- If there is a hard object, the measurement location should be replaced and re-measured
- For accurate data, it is recommended to measure multiple times and take the average
- To measure deep soil moisture, it is recommended to use our company's dedicated soil drill
- 2. Buried measure method

- Make a soil profile in the vertical direction, slightly deeper than the installation depth of the bottommost sensor, between 20cm and 50cm in diameter
- Insert the sensor horizontally into the soil profile
- After the installation is completed, the excavated soil is backfilled in order, layered and compacted, and horizontal installation is guaranteed.
- If you have the conditions, you can put the removed soil in a bag and number it to keep the soil moisture unchanged, and backfill it in reverse order.

3. Three-tier installation

- 1. Measure Notes
- (1). All steel needles must be inserted into the soil during measurement.

- (2). Avoid direct sunlight on the sensor, which will cause excessive temperature. Field ambassador use caution against lightning strikes.
- (3). Do not bend the steel needle violently, do not pull the sensor lead wire with force, do not beat or violently impact sensor.
- (4). The protection grade of the sensor is IP68, which can soak the sensor in water.
- (5). Due to the presence of radio frequency electromagnetic radiation in the air, it should not be left in the air for a long time power-on state

9. Data conversion method

1. Standard Modbus-RTU protocol

Baud rate: 2400bit/s, 4800bit/s, 9600 bit/s can be set, the factory default is 9600bit/s

Check digit: none; Data bit: 8; Stop bit: 1

2. Data frame format definition

Using Modbus-RTU communication protocol, the format is as follows:

Time for initial structure ≥ 4 bytes

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error check = 16-bit CRC code

End structure ≥ 4 bytes of time

Address code: the address of the transmitter, which is unique in the communication network (factory default the top layer is 0X01, the middle layer is 0X02, the bottom layer is 0x03).

Function code: The command function instruction issued by the host. The transmitter uses function codes 0x03 (read register data) and 0x06 (write register data).

Data area: The data area is the specific communication data, pay attention to the high byte of 16bits data first!

CRC code: two-byte check code.

Host inquiry frame structure

Address code	Function code	Register start address	Register length	Check digit low	Check digit high	
1 byte	1 byte	2 bytes	2 bytes	1 byte	1 byte	

Slave response frame structure

Address code	Function code	Effective bytes	Data 1 area	Data 1 area Data 2 area		Check code	
1 byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes	2 bytes	

3. Register address

Register address PLC or configuration	Content	Operation	Definition description
---------------------------------------	---------	-----------	------------------------

	address			
0000 H	40001 (Decimal)	Soil Moisture	Read only	Real-time value of water content (expand 10 times)
0001 H	40002 (Decimal)	Soil Temperature	Read only	Real-time temperature value (enlarge 10 times)
0002 H	40003 (Decimal)	Soil EC	Read only	Real-time conductivity
0003 H	4004 (Decimal)	Soil PH	Read only	PH real-time value (expanded ten times)
0004H		Nitrogen content	Read only	Real-time value of nitrogen content
0005H		Phosphorus content	Read only	Real-time value of phosphorus content
0006H		Potassium content	Read only	Real-time value of potassium content
0007 H	40005 (Decimal)	Salinity	Read only	Salinity real-time value
0008 H	40006 (Decimal)	TDS(for water)	Read only	TDS real-time value
0022 H	40035 (Decimal)	Conductance temperature coefficient	Read and write	0-100 corresponds to 0.0%-10.0% 0.0% by default
0023 H	40036 (Decimal)	Salinity coefficient	Read and write	0-100 corresponds to 0.00-1.00 Default 55 (0.55)
0024 H	40037 (Decimal)	TDS coefficient	Read and write	0-100 corresponds to 0.00-1.00 Default 50 (0.5)
0050 H	40081 (Decimal)	Temperature calibration value	Read and write	Integer (expand 10 times)
0051 H	40082 (Decimal)	Calibration value of water content	Read and write	Integer (expand 10 times)
0052 H	40083 (Decimal)	Conductivity calibration value	Read and write	Integer
0053 H	40083 (Decimal)	PH calibration value	Read and write	Integer
0045 H		Conductivity coefficient High sixteen	Read and write	actual value
0046 H		Conductivity coefficient Low sixteen	Read and write	(IEEE754 standard floating point type)
02E8 H	40475 (Decimal)	Nitrogen content coefficient High sixteen	Read and write	actual value
02E9 H	40476(Decimal)	Nitrogen content coefficient Low sixteen	Read and write	(IEEE754 standard floating point type)
02EA H	40747 (Decimal)	Calibration value of nitrogen content	Read and write	Integer

		Phosphorus		
02F2 H	40755 (Decimal)	content coefficient	Read and write	
		High sixteen		actual value
		Phosphorus		(IEEE754 standard floating point type)
02F3 H	40756 (Decimal)	content coefficient	Read and write	
		Lower sixteen		
		Calibration value		
02F4 H	40757(Decimal)	of phosphorus	Read and write	Integer
		content		
		Potassium content		
02FC H	40765(Decimal)	factor	Read and write	
		High sixteen		actual value
		Potassium content		(IEEE754 standard floating point type)
02FD H	40766(Decimal)	factor	Read and write	
		Lower sixteen		
		Calibration value		
02FE H	40767(Decimal)	of potassium	Read and write	Integer
		content		
07D0 H	42001 (Decimal)	Device address	Read and write	1~254 (Factory default 1)
				0 for 2400
07D1 H	42002 (Decimal)	Device baud rate	Read and write	1 for 4800
				2 for 9600

^{4.} Communication protocol examples and explanations

(1) Modify the address, for example: change the address of the transmitter with address 1 to 2, host \rightarrow slave

Original address	Function code	Register address low	Register address high	New address low	New address	CRC16	CRC16 high
0X01	0X06	0X07	0XD0	0X00	0X02	0X08	0X86

If success, the slave will send: 01 06 07 D0 00 02 08 86 $\,$

(2) Read soil Moisture &Temperature & EC&PH & N & P & K & Salinity at device address 0x01

Inquiry frame

Address code	Function code	Register start address	Register length	Low check bit	High check bit
0X01	0X03	0X00 0X00	0X00 0X08	0X44	0X0C

Response frame

Address	Function	Number		Data area						Low	High	
code	code	of valid	Moisture	Moisture Temp EC PH N P K Salinity					check	Check		
		bytes									bit	bit

0X01	0X03	0X10	0x03	0x01	0x05	0x00	0x00	0x00	0x01	0x03	0XA2	0X3D
			0XA8	0x11	0XB3	0x46	0X69	0X8F	0X63	0X22		

Calculation instructions:

Moisture: 03A8(hexadecimal) = 936(Decimal) => Moisture = 93.6%

Temperature: 0111(hexadecimal)= 273(Decimal) => Temperature = 27.3°C

EC: 05B3(hexadecimal) = 1459(Decimal) => EC = 1459us/cm

PH:0046(hexadecimal)=70(Decimal) => PH = 7

N:0069((hexadecimal) = 105(Decimal) => N = 105mg/KG

P:008F(hexadecimal) = 143(Decimal) => P = 143mg/KG

K:0163(hexadecimal) = 355(Decimal) => K = 355mg/KG

Salinity:0322(hexadecimal) = 802(Decimal) => Salinity= 802ppm

Note: When the temperature is lower than 0 $\,^{\circ}$ C, the temperature data is uploaded in the form of complement code.

For example: Temperature: FF9B H (hexadecimal) = -101 => temperature = -10.1°C

(3) Calibrate the PH value at device address 0x01, for example, increase the PH value by 0.8

Inquiry frame

Address code	Function code	Register start address	tart address Change value Low check bit		Check code
					high
0X01	0X06	0X00 0X53	0X00 0X08	0X78	0X1D

If success, it will feedback: 01 06 00 53 00 08 78 1D

(4) Calibration value at device address 0x01 reset to factory settings

> Inquiry frame

Address cod	e Function code	Register start address	Change value	Low check bit	Check code
					high
0X01	0X06	0X00 0X53	0X00 0X00	0X79	0XDB

If success, it will feedback: 01 06 00 53 00 00 79 DB

(5) Change the measured value factor

Example: Write the coefficient to change the nitrogen content of the device address 0x01 (change the coefficient of nitrogen, phosphorus and potassium and the calibration value can only use 10 function code)

Inquiry frame (hexadecimal): change to twice the original value, that is, write 2.0 (converted to hexadecimal floating point is 40000000H)

Address	Function	Start	Data length	Number of	Nitrogen	Nitrogen conte	Check	Check
	code	address		valid bytes		nt coefficient	Code	code
				written			low	high

					content coefficie nt High 16 bits	Low 16 bits		
0x01	0x10	0x02 0xE8	0x00 0x02	0x04	0x40 0x00	0x00 0x00	0xF0	0xE1

Response frame (hexadecimal):

Address	Function code	Start address	Data length	Check code low	Check code high	
	2.42	0x02	0x00 0x02			
0x01	0x10	0xE8		0xC0	0x44	

Inquiry frame (hexadecimal): Check whether the 0x02 0xE8 register has been changed

Address	Function code	Start address	Data length	Check code low	Check code high
0x01	0x03	0x02 0xE8	0x00 0x02	0x45	0x87

Response frame (hexadecimal): 0x02 0xE8 register value has been changed to 4000000H, which is 2.0

Address	Function	Returns the	Nitrogen content	Nitrogen content	Check	Check
	code	number of valid	coefficient	coefficient	code low	code high
		bytes	High sixteen	Low 16 bits		
0x01	0x03	0x04	0x40 0x00	0x00 0x00	0xEF	0XF3

Example: Write the coefficient to change the EC content of the device address 0x01 (change the coefficient of EC and the calibration value can only use 10 function code)
Inquiry frame (hexadecimal): change to 0.66 times the original value, that is, write 0.66
(converted to hexadecimal floating point is 3F 28 F5 C2)

Address	Function	Start address	Data lengt	Number of	EC content co	EC content co	Check	Check
	code		h	valid bytes written	efficient	efficient	code low	code high
					High sixteen	Low 16 bits		
0x01	0x10	0x00 0x45	0x00 0x02	0x04	0x3F 0x28	0XF5 0XC2	0x7D	0x7D

Response frame (hexadecimal):

Address	Function code	Start address	Start address Data length		Check code high	
0x01	0x10	0x00 0x45	0x00 0x02	0x50	0x1D	

Inquiry frame (hexadecimal): Check whether the 0x00 0x45 register has been changed

Address	Function code	unction code Start address		Check code low	Check code high	
0x01	0x03	0x00 0x45	0x00 0x02	0XD5	0xDE	

Response frame (hexadecimal): 0x00 0X45 register value has been changed to 3F28F5C2 which is

Address	Function c	Returns the number of valid bytes	EC content	EC content	Check code low	Check code high
			High sixteen	Low 16 bits		
0x01	0x03	0x04	0x3F 0x28	0XF5 0XC2	0x93	0X2E

Note: Do not modify the device address, if the address conflicts, the device will be scrapped

10. Common problems and solutions

The device cannot be connected to the PLC or computer possible reason:

- 1. The computer has multiple COM ports and the selected port is incorrect.
- 2. The device address is wrong, or there are devices with duplicate addresses.
- 3. The baud rate, check method, data bit and stop bit are wrong.
- 4. The 485 bus is disconnected, or the A and B wires are connected reversely.
- 5. If the number of equipment is too large or the wiring is too long, power should be supplied nearby, and a 485 booster should be added and a 120Ω terminal resistance should be added at the same time.
- 6. The USB to 485 driver is not installed or damaged.
- 7. The equipment is damaged.