

# AUTOMATIC DETECTION OF FAKE BANKNOTES



## Context

- The National Organization for the Fight against Counterfeiting — A government organisation
- The organisation has noticed differences in the dimensions of real and fake banknotes.
- Project objective create an algorithm capable of automatically differentiating real and fake banknotes using the dimensions of the banknotes.





# Percentage of real and fake banknotes Real 66.7% (1000)33.3% (500)Fake

## The Data

## 1500 banknotes

• 1000 real, 500 fake

## 7 columns

- is\_genuine: if the banknote is real or fake
- length
- height\_left
- height\_right
- margin\_up: the margin between the top edge of the banknote and the image on the banknote
- margin\_low: the margin between the bottom edge of the banknote and the image on the banknote
- diagonal: measurement of banknote when measured diagonally



## Descriptive Analysis

- There are quite big differences between real and fake banknotes in terms of the "length", "margin\_up" and "margin\_low" dimensions.
- However, the "diagonal", "height\_left", and "height\_right" dimensions are quite similar.







# Descriptive Analysis

Most relevant variables for "is\_genuine":

- length
- margin\_low
- margin\_up

Least important variable for "is\_genuine":

diagonal



# Descriptive Analysis

## Kernel density plots

- The real and the fake banknotes are clearly differentiated by the "length" and "margin\_low" variables.
- This is not true for "diagonal", "height\_left", and "height\_right".

## Scatterplots

- Scatterplots that contain "length,"
   "margin\_low," and "margin\_up" have fairly
   well-separated clusters.
- Useful for determining which banknotes are real and which are fake.







|                   |          |            |                  |           | =========           |         |           |  |
|-------------------|----------|------------|------------------|-----------|---------------------|---------|-----------|--|
| Dep. Variable:    |          | margin     | n_low R-squared: |           |                     |         | 0.617     |  |
| Model:            |          |            | OLS Adj. R-squa  |           |                     | ared:   |           |  |
| Method: Lea       |          | Least Squ  | east Squares     |           | F-statistic:        |         |           |  |
| Date:             | Tł       | nu, 08 Feb | 08 Feb 2024      |           | Prob (F-statistic): |         |           |  |
| Time:             |          | 17:4       | 17:48:57         |           | Log-Likelihood:     |         |           |  |
| No. Observations: |          |            | 1463             |           |                     |         | 1555.     |  |
| Df Residuals:     |          |            | 1460             | BIC:      |                     |         | 1571.     |  |
| Df Model:         |          |            | 2                |           |                     |         |           |  |
| Covariance T      | ype:     | nonro      | bust             |           |                     |         |           |  |
| ========          | ======== |            | ======           |           |                     | ======= |           |  |
|                   | coef     | std err    |                  | t<br>     | P> t                | [0.025  | 0.975]    |  |
| Intercept         | 5.9263   | 0.198      | 30               | .003      | 0.000               | 5.539   | 6.314     |  |
| margin_up         | -0.2119  | 0.059      | -3.              | .612      | 0.000               | -0.327  | -0.097    |  |
| is_genuine        | -1.1632  | 0.029      | -40              | .477      | 0.000               | -1.220  | -1.107    |  |
| Omnibus:          | =======  | <br>22     | .365             | <br>Durbi | n-Watson:           | ======  | <br>2.041 |  |
| Prob(Omnibus):    |          | 0          | 0.000            |           | Jarque-Bera (JB):   |         |           |  |
| Skew:             |          | 0          | 0.057            |           | Prob(JB):           |         |           |  |
| Kurtosis:         |          | 3          | 3.793            |           | Cond. No.           |         | 65.0      |  |

#### Bar plot

- "is\_genuine" has a lot of influence on the "margin\_low" variable.
- "margin\_up" also has a slight influence.

#### Model

- The best model uses only "margin\_up and "is\_genuine"
- R2 = 0.617
- Statistically significant (1.24e-403<0.05)</li>
- Coefficients "margin\_up" = -0.2119, is\_genuine = -1.1632



#### Cook's Distance Outliers

 79 fake and 14 real banknotes classified as outliers

#### Process

- Outliers for fake banknotes are not very surprising
- But the relative differences between the outliers of real banknotes and other real banknotes are more surprising.
- After looking at the differences, I removed the 14 real banknotes that were outliers.



## 93 outliers



## Before

| OLS Regression Results                                           |                  |                  |                   |           |        |  |  |
|------------------------------------------------------------------|------------------|------------------|-------------------|-----------|--------|--|--|
| Dep. Variable:                                                   | margin low       | R-squa           | red:              | 0.617     |        |  |  |
| Model:                                                           | OLS              | Adj. F           | R-squared:        |           | 0.616  |  |  |
| Method:                                                          | Least Squares    | F-stat           | istic:            | 1174.     |        |  |  |
| Date:                                                            | Γhu, 08 Feb 2024 | Prob (           | F-statistic)      | 1.24e-304 |        |  |  |
| Time:                                                            |                  |                  | Log-Likelihood:   |           |        |  |  |
| No. Observations:                                                | 1463             | AIC:             |                   | 1555.     |        |  |  |
| Df Residuals:                                                    | 1460             | BIC:             |                   |           | 1571.  |  |  |
| Df Model:                                                        | 2                |                  |                   |           |        |  |  |
| Covariance Type:                                                 | nonrobust        | nonrobust        |                   |           |        |  |  |
| coef                                                             | std err          | t                | P> t              | [0.025    | 0.975] |  |  |
| Intercent 5 9263                                                 | 0.198            | 30.003           | 0.000             | 5.539     | 6.314  |  |  |
| margin_up -0.2119                                                | 0.059            | -3.612           | 0.000             | -0.327    | -0.097 |  |  |
| is genuine -1.1632                                               | 0.029 -          | 40.477           | 0.000             | -1.220    | -1.107 |  |  |
| Omnibus: 22.365 Prob(Omnibus): 0.000 Skew: 0.057 Kurtosis: 3.793 |                  | Jarque<br>Prob(J | Jarque-Bera (JB): |           |        |  |  |

## After

| OLS Regression Results |                       |           |            |            |         |        |  |
|------------------------|-----------------------|-----------|------------|------------|---------|--------|--|
|                        |                       |           |            |            |         |        |  |
|                        |                       | argin_low | R-squared: |            |         | 0.627  |  |
| Model:                 | Model: OLS            |           | Adj. R-s   | 0.627      |         |        |  |
| Method:                | Method: Least Squares |           | F-statis   | 1249.      |         |        |  |
| Date:                  |                       |           | Prob (F-   | 1.00e-318  |         |        |  |
| Time:                  | Time: 16:42:32        |           | Log-Like   | -749.04    |         |        |  |
| No. Observations:      |                       | 1486      |            |            |         | 1504.  |  |
| Df Residuals:          |                       | 1483      | BIC:       |            |         | 1520.  |  |
| Df Model:              |                       | 2         |            |            |         |        |  |
| Covariance Type:       | nonrobust             |           |            |            |         |        |  |
| ===========            |                       |           |            |            |         |        |  |
|                        | coef std              | err       | t          | P> t       | [0.025  | 0.975] |  |
| Intercept 6.           | 0124 0                | .194 30   | . 969      | 0.000      | 5.632   | 6.393  |  |
| margin_up -0.          | 2377 0                | .058 -4.  | . 119      | 0.000      | -0.351  | -0.124 |  |
| is_genuine -1.         |                       | .028 -41  | . 835      | 0.000      | -1.222  | -1.112 |  |
|                        |                       | ========  |            | =======    | ======= |        |  |
| Omnibus:               |                       | 30.919    | Durbin-W   | latson:    |         | 2.046  |  |
| Prob(Omnibus):         |                       | 0.000     | Jarque-B   | Bera (JB): |         | 59.806 |  |
| Skew:                  |                       | 0.087     |            | Prob(JB):  |         |        |  |
| Kurtosis:              |                       | 3.967     | Cond. No   | ).         |         | 66.0   |  |
|                        |                       |           |            |            |         |        |  |



#### Distribution of residuals

- The statistic of the model is good.
- But the p value < 0.05 calls into question the normality of the residuals.
- The residuals are not very different from a symmetric distribution and the sample has more than 30 individuals
- So, the results obtained by the model are not absurd

#### Conclusion

• I will use this model to impute the missing values (project requirements explicitly required me to).

## No problem with colinearity = Valid

VIF for the coefficients = [1.6202, 1.6202] (Less than 10)

## Homoscedasticity = Not valid

Breusch Pagan p-value: 1.9624e-39

## Distribution of residuals = Not valid

Statistic = 0.9928 p-value = 1.7644e-06



# CREATION OF THE ALGORITHMS







```
is_genuine ~ margin_up + height_right + length + margin_low + 1
Optimization terminated successfully.
         Current function value: 0.026782
         Iterations 13
is the final model !
                            Logit Regression Results
Dep. Variable:
                                          No. Observations:
                                                                             1500
Model:
                                 Logit
                                         Df Residuals:
                                                                             1495
                                         Df Model:
Method:
                                   MLE
                                                                           0.9579
Date:
                      Thu, 08 Feb 2024
                                         Pseudo R-squ.:
                              17:49:00
                                         Log-Likelihood:
Time:
                                                                          -40.173
                                         11-Null:
                                                                           -954.77
converged:
                                  True
Covariance Type:
                             nonrobust
                                         LLR p-value:
                                                                            0.000
                                                     P> z
                                                                 [0.025
                    coef
                            std err
                                                                             0.975]
               282 4740
                                                     0.043
                                                               -555.731
                                                                             -9.217
Intercent
                            139,419
                                         -2.026
margin up
                -10.4098
                              2.197
                                         -4.738
                                                     0.000
                                                                -14.716
                                                                             -6.103
height right
                -3.3512
                              1.123
                                         -2.984
                                                     0.003
                                                                -5.553
                                                                             -1.150
length
                  6.1592
                              0.889
                                         6.931
                                                                 4.418
                                                                              7.901
                                                     0.000
margin low
                 -6.3058
                              0.963
                                         -6.550
                                                     0.000
                                                                 -8.193
                                                                             -4.419
```

# Statsmodels: Logistic Regression

#### Bar plot

 "margin\_up", "margin\_low", and "length" have a relatively strong influence on "is\_genuine".

#### Model

- The best model uses "margin\_up", "margin\_low", "length" and "height\_right".
- Pseudo R2 = 0.9579
- Statistically significant (0.00<0.05)</li>
- Coefficients "margin\_up" = -10.41,
  "height\_right" = -3.35, "length" = 6.16,
  "margin\_low" = -6.31



# Statsmodels - Logistic Regression



**Accuracy:** 99.33%

**Precision:** 98.96%

Recall: 100%

**ROC-AUC:** 0.9909

# Statsmodels: Logistic Regression

Increase the threshold = Reduce the number of false positives

Reduce the threshold = Reduce the number of false negatives

#### Threshold of 0.7

- No false positives
- BUT 1 false negative

```
Seuil 0.3 - Nombre de True Negative = 106
Seuil 0.3 - Nombre de True Positive = 190
Seuil 0.3 - Nombre de False Negative = 0
Seuil 0.3 - Nombre de False Positive = 4
Seuil 0.4 - Nombre de True Negative = 106
Seuil 0.4 - Nombre de True Positive = 190
Seuil 0.4 - Nombre de False Negative = 0
Seuil 0.4 - Nombre de False Positive = 4
Seuil 0.5 - Nombre de True Negative = 108
Seuil 0.5 - Nombre de True Positive = 190
Seuil 0.5 - Nombre de False Negative = 0
Seuil 0.5 - Nombre de False Positive = 2
Seuil 0.6 - Nombre de True Negative = 108
Seuil 0.6 - Nombre de True Positive = 189
Seuil 0.6 - Nombre de False Negative = 1
Seuil 0.6 - Nombre de False Positive = 2
Seuil 0.7 - Nombre de True Negative = 110
Seuil 0.7 - Nombre de True Positive = 189
Seuil 0.7 - Nombre de False Negative = 1
Seuil 0.7 - Nombre de False Positive = 0
Seuil 0.8 - Nombre de True Negative = 110
Seuil 0.8 - Nombre de True Positive = 187
Seuil 0.8 - Nombre de False Negative = 3
Seuil 0.8 - Nombre de False Positive = 0
```

# Statsmodels - Logistic Regression



**Accuracy:** 99.67%

Precision: 100%

**Recall:** 99.47%

**ROC-AUC:** 0.9974



|                                                                    | Accuracy | Precision | Recall | ROC-AUC score |
|--------------------------------------------------------------------|----------|-----------|--------|---------------|
| Length, margin_low, margin_up, height_right, height_left, diagonal | 0.9933   | 0.9896    | 1      | 0.9909        |
| Length, margin_low, margin_up, height_right, height_left           | 0.9933   | 0.9896    | 1      | 0.9909        |
| Length, margin_low, margin_up, height_right                        | 0.99     | 0.9845    | 1      | 0.9864        |
| Length, margin_low, margin_up                                      | 0.9933   | 0.9896    | 1      | 0.9909        |
| Length, margin_low                                                 | 0.9867   | 0.9794    | 1      | 0.9818        |
| Length                                                             | 0.9533   | 0.94      | 1      | 0.9402        |

# SciKit-Learn: Logistic Regression

## Bar plot

• "length", "margin\_low" and "margin\_up" have the strongest influence on "is\_genuine".

#### Model

- The best model uses "length", "margin\_low", and "margin\_up", and "height\_right".
- Using fewer variables simplifies the model and reduces the risk of overfitting.



# SciKit-Learn – Logistic Regression



Accuracy: 99%

**Precision:** 98,45%

Recall: 100%

**ROC-AUC:** 0,9864

# Scikit-Learn: Logistic Regression

Increase the threshold = Reduce the number of false positives

Reduce the threshold = Reduce the number of false négatives

Threshold of 0.6 or 0.7

- No false negatives
- 2 false positives

```
Seuil 0.3 - Nombre de True Negative = 102
Seuil 0.3 - Nombre de True Positive = 190
Seuil 0.3 - Nombre de False Negative = 0
Seuil 0.3 - Nombre de False Positive = 8
Seuil 0.4 - Nombre de True Negative = 105
Seuil 0.4 - Nombre de True Positive = 190
Seuil 0.4 - Nombre de False Negative = 0
Seuil 0.4 - Nombre de False Positive = 5
Seuil 0.5 - Nombre de True Negative = 107
Seuil 0.5 - Nombre de True Positive = 190
Seuil 0.5 - Nombre de False Negative = 0
Seuil 0.5 - Nombre de False Positive = 3
Seuil 0.6 - Nombre de True Negative = 108
Seuil 0.6 - Nombre de True Positive = 190
Seuil 0.6 - Nombre de False Negative = 0
Seuil 0.6 - Nombre de False Positive = 2
Seuil 0.7 - Nombre de True Negative = 108
Seuil 0.7 - Nombre de True Positive = 190
Seuil 0.7 - Nombre de False Negative = 0
Seuil 0.7 - Nombre de False Positive = 2
Seuil 0.8 - Nombre de True Negative = 109
Seuil 0.8 - Nombre de True Positive = 187
Seuil 0.8 - Nombre de False Negative = 3
Seuil 0.8 - Nombre de False Positive = 1
```

# SciKit-Learn - Logistic Regression



**Accuracy:** 99,33%

**Precision:** 98,96%

Recall: 100%

**ROC-AUC:** 0,9909



## K-means

## Number of clusters

No need for the elbow method – 2 clusters –
 the real and the fake banknotes

## K-means plot

• 2 well-defined clusters



# K-means



**Accuracy:** 98,67%

Precision: 99,49%

Recall: 98,48%

**ROC-AUC:** 0,9875

# Conclusion

## Best algorithm:

Statsmodels logistic regression

- Best accuracy score
- Best precision score
- Best ROC-AUC score





|                                     | Accuracy | Precision | Recall | ROC-AUC score |
|-------------------------------------|----------|-----------|--------|---------------|
| Statsmodels Logistic<br>Regression  | 0.9967   | 1         | 0.9947 | 0.9974        |
| Scikit-Learn Logistic<br>Regression | 0.9933   | 0.9896    | 1      | 0.9909        |
| K-means                             | 0.9867   | 0.9802    | 1      | 0.9804        |