COL380

Introduction to Parallel & Distributed Programming

PRAM Recap

Recall PRAM

Synchronous steps:

- Read
- Compute
- Write

- EREW
- CREW
- CRCW

Parallel Algorithms

- Maximize concurrency
 - → Reduce dependency
 - OK to sometime recompute data
- Map tasks to processors
 - Statically or Dynamically
 - → Reduce communication

Parallel Addition

```
p = n; B[i] = A[i]
                                        p3
              p0
                       p1
                               p2
p = p/2; if(i<p) B[i] = B[2i]+B[2i+1]
                                       p3
                               p2
              p0
                      p1
p = p/2; if(i<p) B[i] = B[2i]+B[2i+1]
              p0
                      p1
p = p/2; if(i<p) B[i] = B[2i]+B[2i+1]
```

```
p = n/2

forall i < n

B[i] = A[i]

while(p > 0) {

forall i < p

B[i] = B[2i] + B[2i + 1]

p = p/2;

}
```

p6

p7

p4

- processors: n
- time: O(log n)
- Speed-up: n/(log n)
- Efficiency: 1/log(n)
- Cost: n log n
- Work: n

n operands ⇒ log n steps

- n operands ⇒ log n steps
- Total work = O(n)

How do you map processor to work

- n/2i processors per step
- → step i: if !(id%2i)
 - ▶ Read: id, id+1
 - Write id

Subodh Kuma

- n operands ⇒ log n steps
- Total work = O(n)

- → Consider p < n
- → Locally reduce at each processor
- → p/2i processors per step
- → step i: if !(id%2i)

- n operands ⇒ log n steps
- Total work = O(n)

- Count the number of operations
 - → Then map to p processors
- Sometime, convenient to start with p
 - And map operation to processors
- How do you map processor to work
 - → Consider p < n
 - → Locally reduce at each processor
 - → p/2i processors per step
 - → step i: if !(id%2i)

Input: x

- P[0] = x[0]
- For i = 1 to n-1
 - $\rightarrow P[i] = P[i-1] + x[i]$

0 1 2 3 4 5 6 7 8 9 10

forall i < n

R[i] = Map(D[i]);

Input: x

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

Input: x

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

Subodh Kuma

								4				
filter	0	0	1 2	1 3	1 4	0 5	1	O 7	0 8	0	1 10	

Input: x

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

Input: x

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

Input: x

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

forall i < n

```
P 2 3 4 6 10

S 0 0 1 2 3 3 4 4 5

filter 0 0 1 1 1 1 0 0 0 0 1

D
```

```
forall i < n

if(filter(D[i]))

R[i] = Map(D[i]);
```

```
F[i] = filter(D[i]);
S = Par_PrefixSum(F)
forall i < n
if(F[i]) P[S[i]-1] = i;
forall i < S[n]
R[i] = Map(D[P[i]]);
```

Subodh Kuma

•
$$P[0] = x[0]$$

- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

•
$$P[0] = x[0]$$

- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

Pair-wise sum

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

Subodh Kuma

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

Subodh Kuma

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

- P[0] = x[0]
- For i = 1 to n-1
 - P[i] = P[i-1] + x[i]

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

•
$$P[0] = x[0]$$

- For i = 1 to n-1
 - $\Rightarrow P[i] = P[i-1] + x[i]$

$$T(n) = T(n/2) + O(1)$$

 $W(n) = W(n/2) + Kn/2$

$$T(n) = T(n/2) + O(1)$$

 $W(n) = 2W(n/2)+Kn/2$

$$W(n) = O(n \log n)$$

•
$$P[0] = x[0]$$

- For i = 1 to n-1
 - $\Rightarrow P[i] = P[i-1] + x[i]$

$$T(n) = T(n/2) + O(1)$$

 $W(n) = W(n/2) + Kn/2$

$$W(n) = O(n)$$


```
prefixSums(P, x, [0:n))
   forall i in [0:n/2)
       y[i] = OP(x[2*i], x[2*i+1])
   prefixSum(z, y, [0:n/2))
   P[0] = x[0]
                                    Or OP^{-1}(z[i/2], x[i]),
   forall i in [1:n)
                                   if op invertible
       if(i\&1) P[i] = z[i/2]
       else P[i] = OP(z[i/2-1], x[i])
                        Prefix Sum
```

forall i = 0 to n

B[0][i] = A[i]

for h = 1 to log n

forall i in 0:n/2h

B[h][i] = B[h-1][2i] **OP** B[h-1][2i+1]

P[0] = x[0]For i = 1 to n-1 P[i] = P[i-1] + x[i]

Prefix Sum Binary Tree (Non recursive)

Prefix Sum Binary Tree

(Non recursive)

```
forall i = 0 to n
```

$$B[0][i] = A[i]$$

for h = 1 to log n

forall i in 0:n/2h

B[h][i] = B[h-1][2i] **OP** B[h-1][2i+1]

P[0] = x[0]

For i = 1 to n-1

for h = log n to 0

C[h][0] = B[h][0]

forall i in 1:n/2h

Odd i: C[h][i] = C[h+1][i/2]

Even i: C[h][i] = C[h+1][i/2-1] **OP** B[h][i]

Prefix Sum Binary Tree

(Non recursive)

forall i = 0 to n

B[0][i] = A[i]

for h = 1 to log n

forall i in 0:n/2h

B[h][i] = B[h-1][2i] **OP** B[h-1][2i+1]

P[0] = x[0]

For i = 1 to n-1

for h = log n to 0

C[h][0] = B[h][0]

forall i in 1:n/2h

Odd i: C[h][i] = C[h+1][i/2]

Even i: C[h][i] = C[h+1][i/2-1] **OP** B[h][i]

Prefix Sum Binary Tree

(Non recursive)

```
forall i = 0 to n
```

$$B[0][i] = A[i]$$

for h = 1 to log n

forall i in 0:n/2h

B[h][i] = B[h-1][2i] **OP** B[h-1][2i+1]

for h = log n to 0

C[h][0] = B[h][0]

forall i in 1:n/2h

Odd i: C[h][i] = C[h+1][i/2]

Even i: C[h][i] = C[h+1][i/2-1] **OP** B[h][i]

forall i = 0 to n

B[0][i] = A[i]

for h = 1 to $\log n$

forall i in 0:n/2h

B[h][i] = B[h-1][2i] **OP** B[h-1][2i+1]

P[0] = x[0]

For i = 1 to n-1

for h = log n to 0

C[h][0] = B[h][0]

forall i in 1:n/2h

Odd i: C[h][i] = C[h+1][i/2]

Even i: C[h][i] = C[h+1][i/2-1] **OP** B[h][i]

Prefix Sum Binary Tree (Non recursive)

Balanced Tree Approach

- Build binary tree on the input
- Hierarchically divide into groups
 - → and groups of groups...
- Traverse tree upwards/downwards
- Useful to think of "tree" network topology
 - → Only for algorithm design
 - → Later map sub-trees to processors

Merge Sorted Arrays A,B

if(A[i] <= B[j])

$$C[k++] = A[i++]$$

else
 $C[k++] = B[j++]$

Merge Sorted Arrays A,B

if(A[i] <= B[j])

$$C[k++] = A[i++]$$

else
 $C[k++] = B[j++]$

$$T(2n) = T(n) + ?$$

if(A[i] <= B[j])

$$C[k++] = A[i++]$$

else
 $C[k++] = B[j++]$

$$T(2n) = T(n) + ?$$

if(A[i] <= B[j])

$$C[k++] = A[i++]$$

else
 $C[k++] = B[j++]$

$$T(2n) = T(n) + ?$$

if(A[i] <= B[j])

$$C[k++] = A[i++]$$

else
 $C[k++] = B[j++]$

if(A[i] <= B[j])

$$C[k++] = A[i++]$$

else
 $C[k++] = B[j++]$
 $T(2n) = T(n) + ?$
 $T(2n) = T(3n/2) + log n$

- Determine Rank of each element in A U B
- Rank(x, A U B) = Rank(x, A) + Rank(x, B)
 - → A and B are each sorted; only need to compute the ranks in the other list

- Determine Rank of each element in A U B
- Rank(x, A U B) = Rank(x, A) + Rank(x, B)
 - → A and B are each sorted; only need to compute the ranks in the other list
- Find Rank(A[i], B) ∀i and Rank(B[j], A) ∀j
- Find Rank by binary search
 - → O(log n) time
- O(n log n) work

Partition A and B into log n sized blocks

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- · Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in O(log n) time

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in O(log n) time
 - → Otherwise, partition B_i into log n blocks
 - ▶ And Recursively subdivide A_i into sub-sub-sequences

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in O(log n) time
 - → Otherwise, partition B_i into log n blocks
 - ▶ And Recursively subdivide A_i into sub-sub-sequences

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in O(log n) time
 - → Otherwise, partition B_i into log n blocks
 - ▶ And Recursively subdivide A_i into sub-sub-sequences

- · Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in O(log n) time
 - → Otherwise, partition B_i into log n blocks
 - ▶ And Recursively subdivide A_i into sub-sub-sequences

Total time is O(log n)

Total work is O(n)

- · Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- Rank each selected element of A in B
 - → Binary search
- Merge pairs of sub-sequences
 - → If $|B_i| \le log(n)$, Sequential merge in O(log n) time
 - → Otherwise, partition B_i into log n blocks
 - ▶ And Recursively subdivide A_i into sub-sub-sequences

Total time is O(log n)
Total work is O(n)

Data Partitioning Technique

Can we do better?

- Partition A and B into log n sized blocks
- Select from A, elements i * log n, i ∈ 0:n/log n
- · Rank each selected element of A in B
 - → Binary search ←
- Merge pairs of sub-sequences
 - → If $|B_i| \le \log(n)$, Sequential merge in O(log n) time
 - → Otherwise, partition B_i into log n blocks
 - ▶ And Recursively subdivide A_i into sub-sub-sequences

Total time is O(log n)

Total work is O(n)

Data Partitioning Technique

limited by

Can we do better?