Einführung in die Automatisierungstechnik

Studiengang: Produktionstechnik, Systems Engineering

- Vorlesung 03 -

Prof. Dr.-Ing. habil. Andreas Fischer Dr.-Ing. Gerald Ströbel

Bremer Institut für Messtechnik, Automatisierung und Qualitätswissenschaft

Lehrziele und Gliederung

- V1 Motivation, Anwendungsbereiche, Prozesse und Methoden der Automatisierungstechnik
- V2 Automatisierung in der Produktion
- V3 Boolesche Algebra 1
- Ü1 Matlab Einführung
- V4 Bolsche Algebra 2: Graphen
- Ü2 Übung Boolsche Algebra
- V5 Fuzzy Logic
- Ü3 Fuzzy Logic
- V6 Neuronale Netze
- Ü4 Neuronale Netze
- V7 Automatisiertes Messen und Steuern
- Ü5 Automatisiertes Messen und Steuern
- V8 Speicherprogrammierbare Steuerungen
- Ü6 Übungen und Musterklausuren

- Boolesche Funktionen -

- Boolesche Funktionen -

- Aussagelogik liefert die Grundlage für die Boolesche Algebra
- vergleiche Theorie zur "mathematischen Logik"
- Eine Aussage ist jeder Satz, der entweder wahr oder falsch ist {w,f}
- Schaltfunktionen und Schaltnetze
- f_{schlt} : Abbildung von $\{0,1\}^n --> \{0,1\}^m$
- Sie bildet die Menge mit n-Tupel mit n Eingängen in die Menge der m-Tupel mit m Ausgängen ab (Tupel: Liste mathematischer Objekte)
- Literatur: Grundlagen der Informatik/ Math. Logik und Automatentheorie
- z.B. Rembold /Levi: Einführung in die Informatik

- Definition des Schaltnetzes -

Schaltfunktionen

$$y_j = f(x_1,...x_i,...x_n)$$

 $x_i,y_j \in \{0,1\}$

DIN 44300: Ein Schaltnetz ist ein Schaltwerk, dessen Ausgangswert zu irgendeinem Zeitpunkt nur von Wert am Eingang zu diesem Zeitpunkt abhängt

- Schaltverknüpfungen -

	NEGATION auch NICHT-Verknüpfung	KONJUNKTION auch UND-Verknüpfung	DISJUNKTION auch ODER-Verknüpfung
Logische Darstellung		^	V
Beispiel	y = \overline{x}	$y = x_1 \wedge x_2$	$y = x_1 \vee x_2$
Definition durch Wert der Schaltfunktion	<u>0</u> = 1 1 = 0	$0 \land 0 = 0$ $0 \land 1 = 0$ $1 \land 0 = 0$ $1 \land 1 = 1$	$0 \lor 0 = 0$ $0 \lor 1 = 1$ $1 \lor 0 = 1$ $1 \lor 1 = 1$
Schaltsymbol DIN 40700 seit 1976	хо—1о_оу	x ₁ o y	$\begin{array}{c c} x_1 & & \\ \hline x_2 & & \\ \hline \end{array}$
Repräsentation mit Schaltern	\(\frac{\frac{1}{X}}{X} \text{y} \)	x ₁ x ₂ y	X_1 X_2 X_2

- Normen und Symbole -

	Symbole (Funktion)	Schaltsymbole DIN 40 700 seit 1976 IEC 60617-12	Schaltsymbole DIN 40 700 bis 1976	Amerikanische Symbole	logische Darstellung
AND	AND				$(\mathbf{x}_1 \wedge \mathbf{x}_2)$
OR	OR	<u>≥1</u>			$(\mathbf{x}_1 \vee \mathbf{x}_2)$
NOT	NOT	1			$\overline{\mathbf{x}}_1$
XOR	XOR	=1			$(\mathbf{x}_1 \otimes \mathbf{x}_2)$ $(\mathbf{x}_1 \wedge \overline{\mathbf{x}}_2) \vee (\overline{\mathbf{x}}_1 \wedge \mathbf{x}_2)$

- Normen und Symbole -

Schaltsymbole Schaltsymbole Symbole DIN 40 700 Amerikanische DIN 40 700 logische Darstellung (Funktion) seit 1976 Symbole bis 1976 $(\mathbf{x}_1 \wedge \mathbf{x}_2)$ IEC 60617-12 **NAND NAND** & $(X_1 \wedge X_2)$ **NOR** NOR $(X_1 \vee X_2)$ ≥1

Freie Symbolik (beliebige Schaltfunktion)

$$(x_1 \wedge \overline{x}_1 \wedge x_2) \vee (x_1 \wedge x_2 \wedge \overline{x}_2) \\ (x_1 \wedge \overline{x}_1 \wedge x_2) \vee (x_1 \wedge x_2 \wedge \overline{x}_2) \\ (x_1 \wedge \overline{x}_1 \wedge x_2) \vee (x_1 \wedge x_2 \wedge \overline{x}_2) \\ (\overline{x}_1 \wedge \overline{x}_2) \wedge \neg x_2 \vee \overline{x}_3 \wedge x_4 \vee x \wedge \overline{x}_2 \wedge x \wedge y_2$$

- Die Gesetze der Booleschen Algebra -

	τ	JNI)	(DDE	R
1.	$\mathbf{X}_1 \wedge \mathbf{X}_2$	=	$\mathbf{X}_2 \wedge \mathbf{X}_1$	$X_1 \vee X_2$	=	$X_2 \vee X_1$
2.	$X_1 \wedge X_2 \wedge X_3$	=	$(\mathbf{x}_1 \wedge \mathbf{x}_2) \wedge \mathbf{x}_3$	$X_1 \lor X_2 \lor X_3$	=	$(\mathbf{X}_1 \vee \mathbf{X}_2) \vee \mathbf{X}_3$
		=	$X_1 \wedge (X_2 \wedge X_3)$		=	$X_1 \vee (X_2 \vee X_3)$
		=	$X_2 \wedge (X_1 \wedge X_3)$		=	$\mathbf{x}_2 \vee (\mathbf{x}_1 \vee \mathbf{x}_3)$
3.	$X_1 \wedge (X_2 \vee X_3)$	=	$(\mathbf{X}_1 \wedge \mathbf{X}_2) \vee (\mathbf{X}_1 \wedge \mathbf{X}_3)$	$X_1 \vee (X_2 \wedge X_3)$	=	$(\mathbf{X}_1 \vee \mathbf{X}_2) \wedge (\mathbf{X}_1 \vee \mathbf{X}_3)$
4.	$x \wedge 1$	=	X	$x \vee 1$	=	1
5.	$x \wedge 0$	=	0	$\mathbf{x} \vee 0$	=	X
6.	$X \wedge \overline{X}$	=	0	$X \vee \overline{X}$	=	1
7.	$X_1 \wedge (X_2 \vee X_3)$	=	$X_1 \wedge X_4$	$\mathbf{x}_1 \vee (\mathbf{x}_2 \wedge \mathbf{x}_3)$	=	$X_1 \vee X_4$
	$mit x_4$	=	$X_2 \vee X_3$	$mit x_4$	=	$\mathbf{X}_2 \wedge \mathbf{X}_3$

- 1.: Kommutativgesetz
- 2.: Assoziativgesetz
- 3.: Distributivgesetz
- 4.: Einsgesetz
- 5.: Nullgesetz
- 6.: Komplementgesetz
- 7.: Substitution

- Die Sätze der Booleschen Algebra -

1.
$$(\overline{x}) = x$$

UND ODER
2. $x \wedge x = x$ $x \vee x = x$
3. $x_1 \wedge (x_1 \vee x_2) = x_1$ $x_1 \vee (x_1 \wedge x_2) = x_1$
4. $x_1 \wedge (\overline{x}_1 \vee x_2) = x_1 \wedge x_2$ $x_1 \vee (\overline{x}_1 \wedge x_2) = x_1 \vee x_2$
5. $(x_1 \wedge x_2) \vee (x_1 \wedge \overline{x}_2) = x_1$ $(x_1 \vee x_2) \wedge (x_1 \vee \overline{x}_2) = x_1$
6. De Morgansches Theorem $y(xi, \overline{x}i, 0, 1, \wedge, \vee) = \overline{y}(\overline{x}i, xi, 1, 0, \vee, \wedge)$

Beispiel 1: Satz 3a

Behauptung:

$$x_1 \wedge (x_1 \vee x_2) = x_1$$

 $x_1 \wedge (x_1 \vee x_2) = (x_1 \vee 0) \wedge (x_1 \vee x_2)$ wg. Nullgesetz
 $= x_1 \vee (0 \wedge x_2)$ wg. Distributivgesetz
 $= x_1 \vee 0$ wg. Nullgesetz
 $= x_1$

qed.

- De Morgan Theorem -

Der Beweis für das De Morgansche Theorem in seiner allgemeinen Form ist nicht so einfach und auch aufwendig. Wir beschränken uns darum auf den Beweis eines Sonderfalles mit zwei Variablen x_1 und x_2 .

Beispiel 2:

Behauptung:

$$\begin{array}{lll} x_1 \wedge x_2 = y & \Longrightarrow & \overline{x}_1 \vee \overline{x}_2 = \overline{y} \\ y \wedge \overline{y} = 0 & = & (x_1 \wedge x_2) \wedge (\overline{x}_1 \vee \overline{x}_2) \\ & = & (x_1 \wedge x_2 \wedge \overline{x}_1) \vee (x_1 \wedge x_2 \wedge \overline{x}_2) \\ & = & (x_1 \wedge \overline{x}_1 \wedge x_2) \vee (x_1 \wedge x_2 \wedge \overline{x}_2) \\ & = & ((x_1 \wedge \overline{x}_1) \wedge x_2) \vee (x_1 \wedge (x_2 \wedge \overline{x}_2)) \\ & = & (0 \wedge x_2) \vee (x_1 \wedge 0) \\ & = & 0 \vee 0 \\ & = & 0 \end{array}$$

wg. Komplementgesetz

wg. Distributivgesetz

wg. Kommutativgesetz

wg. Assoziativgesetz

wg. Komplementgesetz

wg. Nullgesetz

trivial

qed.

- Boolesche Verknüpfungen -

Zur Veranschaulichung eines Satzes der Booleschen Algebra

- Vollständige Wertetabelle -

n Eingangsvariable $k=2^n$ Zahl der Schaltfunktionen $f=2^{2^n}$

Vollständige Wertetabelle für 3 Eingangsvariablen

Zeile	X_3	X_2	X_1	у
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

- Disjunktive Normalform -

Die "Wahrheitstabelle" und die disjunktive Normalform

- Boolesche Funktionen -

Die "Wahrheitstabelle" und die konjunktive Normalform

- Boolesche Funktionen -

- Aus der DNF oder der KNF lässt sich immer ein Schaltnetz ableiten, das die Schaltfunktion erfüllt.
- Dieses Schaltnetz ist jedoch nicht optimal bezüglich der Zahl der Verknüpfungen bzw. Bauelemente, die für seine physikalische Abbildung verwendet werden.

- Karnaugh-Veitch Diagramme -

o Zeile	X ₄	X ₃	X ₂	X ₁	y
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

x .	X_2	X ₁	01	11	10	
**4	X ₃ 00	0	0	0	0	
	01	0	1	0	0	
	11	$_{\odot}$		1		
	10	1)	0	0	1	

Gruppe	erfüllt von
1	X ₄ ^ X ₃
2	$X_4 \wedge \overline{X_1}$
3	$X_3^{\wedge} \overline{X}_2^{\wedge} X_1$

$$y = (x_4 \wedge x_3) \vee (x_4 \wedge \overline{x}_1) \vee (x_3 \wedge \overline{x}_2 \wedge x_1)$$

Minimierung mit Karnaugh-Veitch Diagramm

- Karnaugh-Veitch Diagramme -

Beispiele für Gruppenbildung in Karnaugh-Diagrammen

- Ist die Schaltfunktion von fünf Eingangsvariabien abhängig, vergrößern sich die Gruppen durch Berücksichtigung von Symmetrien entlang der in Abb. 2.4-10 senk-rechten Mittelachse. Ist eine Gruppe n Felder groß, so sind die in dieser Gruppe enthaltenen Konjunktionen der disjunktiven Normalform unabhängig von m = ld(n) Schaltvariablen. Eine Gruppe ist von einer Schaltvariablen unabhängig, wenn die Schaltvariable innerhalb dieser Gruppe beide möglichen Schaltzustände einnehmen kann.
- Beispiel
- 4 Felder (Mitte) m = ld(4)=2 d.h. abhängig von $(\bar{x}_1 \wedge x_2 \wedge x_4)$ unabhängig von $(x_5 \wedge x_3)$
- 8 Felder (Mitte) m = Id(8)=3 d.h abhängig von $(x_1 \wedge x_2)$ unabhängig von $(x_3 \wedge x_4 \wedge x_5)$

- Speicherelemente -

Speicherelemente zum Aufbau von Schaltwerken

- Nachdem zunächst Methoden zur Behandlung von Schaltnetzen vorgestellt wurden, zeigt der folgende Teil grundlegende Bauelemente mit Speicherfunktion.
- Solche Speicherelemente werden Flipflops genannt. Flipflops sind bistabile Kippschaltungen mit zwei stabilen Ausgangssignalzuständen.
- Vergl. EN60617-12

- Speicherelemente, das RS Flipflop -

Wertetabelle

			1		
	Zeile	R_{ξ}	S_{ξ}	Qts	$Q_{\xi+l}$
	1	0	0	0	0
	2	0	0	1	1
2:	3	0	1	0	1
3:	4	0	1	1	1
	5	1	0	0	0
ţ:	6	1	0	1	0
<u>;</u> :	7	1	1	0	\unbe-
<u>;</u> :	8	1	1	1	stimmt

Symbol

Schaltung

Zeitdiagramm

Charakteristische Gleichung

$$Q_{\xi+1} = \left[S \vee (\overline{R} \wedge Q) \right]_{\xi}$$

$$\text{für } R \wedge S = 0$$

- Speicherelemente, das T-Flipflop -

Wertetabelle

Zeile	T_{ξ}	Q_{ξ}	$Q_{\xi+1}$
1	0	0	0
2	0	1	1
3	1	0	1
4	1	1	0

T-FF aus RS-FF

Symbol

Charakt. Gleichung

$$Q_{\xi+1} = \left[\left(T \wedge \overline{Q} \right) \vee \left(\overline{T} \wedge Q \right) \right]_{\xi}$$

- Speicherelemente, das T-Flipflop -

• Zeitlicher Verlauf T-FF

- Speicherelemente, das D-Flipflop -

Wertetabelle

Symbol

Zeile	D_{ξ}	Q_{ξ}	$Q_{\xi+1}$
1	0	0	0
2	0	1	0
3	1	0	1
4	1	1	1

D-Latch aus RS-FF

Charakt. Gleichung $Q_{\xi+1} = D_{\xi}$

(speichert D in Q bis D=0 und CL=1)

- Speicherelemente, das JK-Flipflop -

Wertetabelle

Zeile	J_{ξ}	K_{ξ}	Q_{ξ}	$Q_{\xi+1}$
1	0	0	0	0
2	0	0	1	1
3	0	1	0	0
4	0	1	1	0
5	1	0	0	1
6	1	0	1	1
7	1	1	0	1
8	1	1	1	0

Symbol

JK-FF aus RS-FF

Charakt. Gleichung

$$Q_{\xi+1} = \left[\left(\overline{K} \wedge Q \right) \vee \left(J \wedge \overline{Q} \right) \right]$$

- Speicherelemente, das JK-Flipflop -

CK	J	K	Q_{ξ}	$Q_{\xi+1}$
X	0	0	0	0
X	0	0	1	1
\uparrow	0	1	X	0
\uparrow	1	0	X	1
↑	1	1	Toggle	

Verkürzte Darstellung der Wertetabelle mit 4 Eingängen CK Clock und -> steht für die Flanke (z.B. Vorderflanke) X (0 oder 1) Zeile 3 Rücksetzen, Zeile 4 Setzen

Toggle: 0 -> 1; 1 -> 0

(hin und herschalten, das FF "schwingt" mit der Frequenz des Clock

Signals bei JK=1)

- Speicherelemente, das JK-Flipflop -

Zei le	CK	J	K	Q	Q+ 1	
0	0	0	0	0	0	
1	0	0	0	1	1	
2	0	0	1	0	0	
3	0	0	1	1	1	
4	0	1	0	0	0	
5	0	1	0	1	1	
6	0	1	1	0	0	
7	0	1	1	1	1	
8	1	0	0	0	0	
9	1	0	0	1	1	
10	1	0	1	0	0	
11	1	0	1	1	0	
12	1	1	0	0	1	
13	1	1	0	1	1	
14	1	1	1	0	1	
15	1	1	1	1	0	

- Speicherelemente, das JK-Flipflop -

Zeitlicher Verlauf JK-FF

- Speicherelemente, Flipflops -

Lehrziele und Gliederung

- V1 Motivation, Anwendungsbereiche, Prozesse und Methoden der Automatisierungstechnik
- V2 Automatisierung in der Produktion
- V3 **Boolesche Algebra 1**
- Ü1 Matlab Einführung
- V4 Bolsche Algebra 2: Graphen
- Ü2 Übung Boolsche Algebra
- V5 Fuzzy Logic
- Ü3 Fuzzy Logic
- V6 Neuronale Netze
- Ü4 Neuronale Netze
- V7 Automatisiertes Messen und Steuern
- Ü5 Automatisiertes Messen und Steuern
- V8 Speicherprogrammierbare Steuerungen
- Ü6 Übungen und Musterklausuren

