Lista 1

Questão 14

Para cada $n \in \mathbb{N}$, seja $\mathcal{P}_n = \{X \subset \mathbb{N} : \text{card } X = n\}$. Prove que \mathcal{P}_n é enumerável.

Prova:

Sejam $n \in \mathbb{N}$, $\mathcal{B}_n = \{X \subset \mathbb{N} : \text{card } X \leq n\}$ e a aplicação $\psi : \mathbb{N} \times \dots \mathbb{N} \longrightarrow \mathcal{B}_n$ definida por $\psi(x_1, x_2, \dots, x_n) = \{x_1, \dots, x_n\}$ para todo $(x_1, x_2, \dots, x_n) \in \mathbb{N} \times \dots \mathbb{N}$.

Afirmações:

- (a) ψ é sobrejetora.
- (b) $\widetilde{\mathbb{N} \times \mathbb{N} \times \dots \mathbb{N}}$ é enumerável.
- (c) $\mathcal{P}_n \subset \mathcal{B}_n$

Pela afirmação (a) e (b), o conjunto \mathcal{B}_n é enumerável; e todo subconjunto de \mathcal{B}_n é enumerável. Pela afirmação (c), \mathcal{P}_n é enumerável.

Lista 5

Questão 19.

Sejam C compacto, A aberto, e $C \subset A$. Mostre que existe $\epsilon > 0$ tal que se $x \in C$ e $|y-x| < \epsilon$, então $y \in A$.

Prova:

Definimos $\epsilon = \inf\{|c - d| : c \in C, d \in \mathbb{R} \setminus A\}.$

Afirmações:

- (a) $\mathbb{R} \setminus A$ é fechado.
- (b) $\epsilon > 0$.

Supomos, por absurdo, que $\epsilon = 0$ então existen duas sequências: (c_n) com elementos em C e (d_n) com elementos em $\mathbb{R} \setminus A$ tal que

$$|c_n - d_n| \longrightarrow 0.$$
 (1)

Como o conjunto C é compacto, existe uma subsequência (c_{j_n}) de (c_n) tal que $c_{j_n} \to c_0$ para algum $c_0 \in C$. Por (1)

$$|c_{j_n} - d_{j_n}| \longrightarrow 0, n \to \infty$$

Vemos que $(d_{j_n}) \subset \mathbb{R} \setminus A$ converge a c_0 , ou seja

$$|d_{j_n} - c_0| \le \underbrace{|d_{j_n} - c_{j_n}|}_{\to 0} + \underbrace{|c_{j_n} - c_0|}_{\to 0} \Longrightarrow |d_{j_n} - c_0| \to 0.$$

Pela parte (a), $\mathbb{R} \setminus A$ é fechado, e então os valores de aderência de (d_n) estão contidos em $\mathbb{R} \setminus A$, portanto $c_0 \in \mathbb{R} \setminus A$. Além disso, $c_0 \in C \subset A$ o que contradiz $c_0 \in \mathbb{R} \setminus A$.

(c) Se $x \in C$ e $|y - x| < \epsilon \Longrightarrow y \in A$.

Supomos, por absurdo, que $y\notin A\,(y\in\mathbb{R}\setminus A).$ Pela definição de ϵ obtemos

$$|\underbrace{x}_{\in C} - \underbrace{y}_{\in \mathbb{R} \backslash A}| \ge \epsilon,$$

o que contradiz o fato $|y - x| < \epsilon$.