© THE QUEEN'S PRINTER FOR ONTARIO 2000

REPRODUCED WITH PERMISSION

L'IMPRIMEUR DE LA REINE POUR L'ONTARIO

REPRODUIT AVEC PERMISSION

20 Victoria Street Toronto, Ontario M5C 2N8 Tel.: (416) 362-5211

Toll Free: 1-800-387-2689 Fax: (416) 362-6161 Email: info@micromedia.on.ca

VOLUME

VOLUME

1

20 Victoria Street Toronto, Ontario M5C 2N8 Tel.: (416) 362-5211 Toll Free: 1-800-387-2689 Fax: (416) 362-6161 Emall: info@micromedia.on.ca

Lake Couchiching Environmental Quality 1997

Volume I; Main Findings

ISBN 0-7778-8497-6 (VOL.I) 0-7778-8498-4

LAKE COUCHICHING ENVIRONMENTAL QUALITY - 1997

VOLUME I - MAIN FINDINGS

April 2000

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 2000

This publication may be reproduced for non-commercial purposes with appropriate attribution.

Lake Couchiching Environmental Quality - 1997

Volume I - Main Findings

Bruce Kilgour

Water Systems Analysts 60 Omar Street Guelph, Ontario N1H 2V6

Bruce Hawkins and John Westwood

Surface Water Section
Water Resources Assessment Unit
Ontario Ministry of the Environment
659 Exeter Road
London, Ontario
N6E 1L3

Peter Kauss

Water Monitoring Section
Environmental Monitoring & Reporting Branch
Ontario Ministry of the Environment
Etobicoke, Ontario
M9P 3V6

Andy Gemza

Biomonitoring Section
Environmental Monitoring & Reporting Branch
Ontario Ministry of the Environment
Etobicoke, Ontario
M9P 3V6

SUMMARY

Introduction

Lake Couchiching is part of the Trent-Severn Waterway, connecting Lake Ontario with Georgian Bay. Water enters the lake from Lake Simcoe at Atherley Narrows and flows north. Lake Couchiching (latitudes 44°36' to 44°45' N; longitudes 79°20' to 79°25' W) has a surface area of about 33.75 km² (12,100 acres) and has 45 km (28 mi) of shoreline. One large island (Chiefs Island) and several smaller ones (Horseshoe, Heron and Garnet) comprise a land area of 0.84 km², with a total shoreline length of 14.6 km. The lake is shallow, with a maximum depth of 12 m (39 feet) and an average depth of 6 m (20 feet).

In response to concerns that the environmental quality of Lake Couchiching is under pressure from increasing recreational uses and development along its shores, this study was conducted to:

- establish a baseline database with respect to the lake's limnology, water, sediment and biological quality,
- (ii) define the existing aquatic environmental quality and trophic status of Lake Couchiching (i.e., at the present level of development); and,
- (iii) develop recommendations concerning possible impacts associated with future development.

Based on these overall objectives, this study characterized water and sediment quality at several locations in Lake Couchiching. This study also characterized bacteria, phytoplankton, zooplankton, macroflora (macroalgae and macrophytes) and benthic macroinvertebrate communities. This study did not attempt to characterize the condition of fish populations in Lake Couchiching since the local Ministry of Natural Resources offices routinely update that information. The biological communities (phytoplankton, zooplankton, macroflora, and benthos) that are characterized in this study are however, capable of being used as early warning indicators of potential effects on fish populations in the lake. Surveys were conducted throughout the ice-free period in 1997.

Methods

Water quality was characterized every two weeks at four mid-lake stations, while samples were collected during late spring and mid summer at 17 stations located around the periphery of the lake. At the two deepest points in the lake (Stations 5 and 15), water samples were collected both 1 m below the surface, and 1 m off bottom (1 MOB). At all four mid-lake stations, dissolved oxygen and temperature profiles were determined to further examine the effect the sediments might have on dissolved oxygen concentrations. Surficial sediments and sediment cores were collected and examined for metals and organic compounds. Sediment cores collected historical sediments deposited in the lake. They thus provide a good baseline against which to judge current sediment contaminant concentrations. Zooplankton at the four mid-lake stations were counted and identified to species. Zebra mussels veliger larvae were also counted. Surveys of macroflora (plants/algae) and benthic invertebrates were made at the 21 stations.

Highlights

Basic Chemistry and Nutrients Status

Lake Couchiching is a basic, hardwater lake with high alkalinity (greater than 100 mg/L) and pH (above 8). The lake is therefore not susceptible to the effects of acidic precipitation. Based on nutrient chemistry, the lake is oligotrophic. Primary production in the lake is limited by phosphorus which was present at low concentrations. Where phosphorus is the limiting nutrient, the Ontario Ministry of Environment recommends that total phosphorus concentrations be kept below 0.020 mg/L to avoid nuisance growths of algae. Total phosphorus concentrations in the lake were typically less than 0.014 mg/L suggesting that nutrient concentrations are not high enough to cause nuisance growths of algae.

Concentrations of chlorophyll a in Lake Couchiching were low. Among the mid-lake stations, chlorophyll a concentrations ranged from 0.5 to 2.6 μ g/L. Concentrations peaked in mid-July and were lowest through late August and September. Lakes with summer average chlorophyll a concentrations of between 2 and 5 μ g/L are typically classified as mesotrophic. Based on the observed chlorophyll a concentrations, Lake Couchiching can be classified as oligotrophic to slightly mesotrophic.

Lake clarity can also be used to characterize nutrient status. Water clarity was measured by Secchi disc depths. In general, Lake Couchiching has good clarity: Secchi discs were visible on the bottom at all shallow nearshore stations. At mid lake, Secchi depths varied between 4 and 7 m and had increased from 1977. Lakes with a Secchi depths greater than 5 m are typically considered oligotrophic. Based on Secchi depth readings, Lake Couchiching can, therefore, be considered oligotrophic.

Bacteria

Bacterial counts were determined from water samples collected at each of the 21 stations during June and July. These samples were not in the vicinity of beach areas. Bacteria were detected infrequently and at low densities. The highest density or concentration of the indicator *Escherichia coli*, 36 organisms per 100 ml at Station 1 near Cedar Island, was well below the Provincial Water Quality Objective (PWQO) of 100 organisms per 100 ml for the protection of recreational water users. Faecal *Streptococcus* was detected at a maximum density of 18, again at Station 1 near Cedar Point. There is currently no PWQO for numbers of faecal streptococci. The pathogen *Pseudomonas aeruginosa* was not detected in any of the samples. Based on these data, there is no apparent risk of infection by swimming in Lake Couchiching.

Taste and Odour Problems

Residents of Orillia have complained about poor taste and odour of municipal water supplies originating from Lake Couchiching. Taste and odour problems have been attributed to two compounds (geosmin, or 1,10-trans-dimethyl-trans-9-decalol, and 2-MIB or 2-methylisoborneol) that originate primarily in algae. Previous work had shown that algal densities in the water column of Lake Couchiching are below thresholds that would cause taste and odour problems. It has been suggested, however, that green and blue-green algae that reside on the bottom of the lake may be

partially responsible for the poor taste and odour. Indirectly, the introduction of zebra mussels to the lake may be responsible for the poor taste and odour. Where zebra mussels colonize, densities of benthic algae have been shown to increase. Zebra mussels have colonized virtually every location within the lake and this survey did document areas with extensive growths of algae.

Metals

Slices of historic sediments indicated that arsenic and some metals (e.g., lead, zinc, mercury, cadmium, copper) have increased in the lake's surficial sediments. Metal levels in water and sediment are, however, still at safe levels for aquatic life. Even though metal levels were low, there is still evidence that mercury is biologically available and biomagnifies in the aquatic food chain. Routine monitoring by the Ontario Ministry of the Environment shows that mercury levels in large smallmouth bass, largemouth bass, northern pike, walleye and yellow perch are elevated, and that there are consumption restrictions.

Organic Contaminants

Relative to concentrations in historical sediments, concentrations of oil and grease were slightly elevated in surficial sediments, especially in the vicinity of Orillia (Stations 1 to 4). However, since no petroleum hydrocarbons were detected, the oil and grease found near Orillia would appear to be from natural sources such as lipids and fats resulting from decomposing plant and animal matter. Atrazine was detected at "trace" amounts (i.e., less than 150 ng/L) in over half of the water samples, with most of the detections occurring along the western shore. Atrazine concentrations were less than levels required to pose ecological or human health risks. Atrazine is a herbicide used in the cultivation of corn, and is non-persistent in aquatic environments.

Polycyclic aromatic hydrocarbons (PAHs) were detected at low concentrations in a few of the Lake Couchiching surficial sediment samples. PAHs were detected primarily in the south-west end of the lake near Orillia. With one minor exception, concentrations of the individual compounds, as well as total PAHs were below the respective Provincial Sediment Quality Low Effect Levels (i.e., concentrations at which there is the potential to affect 5% of the sediment-dwelling biota). Persistent organic contaminants including polychlorinated biphenyls (PCBs), organochlorine pesticides, phenoxy acid herbicides, chlorinated phenols, and chlorinated aliphatics and aromatics were not detected in any of the surface sediment samples. Organic contaminants in Lake Couchiching, therefore do not pose ecological or human health risks.

Phytoplankton (Algae)

The phytoplankton were represented by 54 genera. Communities were generally similar among the mid-lake stations, reflecting relatively homogeneous water quality across the lake. At all stations, biovolumes of phytoplankton were low ($<350,000~\mu\text{m}^3/\text{ml}$). No nuisance levels of algae were observed. The dominant algae in Lake Couchiching were those typical of oligotrophic (low nutrient) conditions including the diatom *Cyclotella* sp.

Zooplankton

Zooplankton were represented by 15 species. Zebra mussel veliger larvae were also recorded in the

plankton. The zooplankton were composed primarily of calanoid and cyclopoid copepods and non-daphnid cladocerans (*Bosmina longirostris*). The zooplankton community was also characteristic of oligotrophic conditions with a low biomass ranging between 5 and 37 mg/m³ and peaking at only 80 mg/m³. In this survey, zebra mussel veliger larvae were first observed on June 17. On July 9, veliger larvae exceeded the biomass of other zooplankters. Of a total zooplankton biomass of about 18 mg/m³, veligers constituted about 14 mg/m³ of the total, with a density of over 16,000 veligers per m³. Through the remainder of the summer, veligers gradually fell in importance from about 40% of the zooplankton biomass to about 20% by the end of August. Veliger densities were strongly associated with water clarity, with peak densities occurring during the spring clear-water phase evident through June and July.

Macroflora

In Lake Couchiching, the macroalga Chara was the single most dominant form. It was a dominant bottom feature at all shallow-water (< 7 m) stations, but was absent at the two deepest stations (5, 15). When found, beds of Chara were up to 50 cm high. Vallisneria americana, (tape grass, wild celery), Utricularia vulgaris (bladderwort), Najas flexilis (bushy pondweed) and Potamogeton richardsonii (Richardsons pondweed) were also present at many stations. Broadleaf forms of Potamogeton (P. amplifolius), Elodea canadensis (common waterweed) and Myriophyllum sp. (Eurasian Water Milfoil) were found at a few stations each.

The filamentous green alga Spirogyra was common in the south portion of the lake. This plant was growing on (fouling) the aquatic macrophytes and Chara sp. beds. Large billowy clouds of this alga were present on the sandy substrates near the breakwalls around the marina at Orillia and in the bay areas between the marina and the Narrows near the incoming flows from Lake Simcoe. Previous studies of plants did not document significant growths of this alga. Large growths of filamentous green algae can result in water quality problems, including loss of recreational potential (i.e., swimming) and loss of habitat for fish and wildlife (fouling of plant beds and bottom substrate). Large amounts of Spirogyra and other filamentous green algae have the potential to reduce dissolved oxygen levels during the night.

In 1972, Myriophyllum was the most dominant (79% of stations) and abundant plant form. In 1997, Myriophyllum was not abundant or prevalent, being found at only a single station (19) at the inflow of Lake Couchiching. In 1972, the species of Myriophyllum was probably M. spicatum (or Eurasian Water Milfoil). This exotic plant clogged several lakes in Southern Ontario with growths impeding the operation of water craft. The decline in abundance of Myriophyllum in Lake Couchiching is not unusual. Since the early 1970s, Myriophyllum has declined or disappeared from other lakes in Ontario and the north western United States.

Benthic Communities

The benthic community was represented by 96 taxa from 22 major invertebrate taxonomic groups. In general, sediments at most stations contained the common amphipod *Hyalella azteca*, a good variety of chironomids (midges), the mayfly *Caenis punctata*, a few Leptoceridae (caddisflies), an assortment of gastropod molluscs (snails) and a large number of the bivalve mollusc *Dreissena*

polymorpha (i.e., zebra mussels). The generally uniform substrate of silty sand, with a high mollusc shell content and dense mat of the aquatic plant *Chara* was probably responsible for the generally uniform benthos. Total numbers of benthos (including zebra mussels) ranged from just over 7,000 m⁻² to just under 100,000 m⁻², while the number of taxa per sample ranged from 14 to 28.

Adult zebra mussels were found at all stations in abundances ranging as high as 60,000 m⁻². Most of these zebra mussels were associated with *Chara*, actually being attached to the macroalga. So far, abundances of zebra mussels in Lake Couchiching are not extraordinary. Zebra mussel populations have exceeded 200,000 m⁻² on hard substrate in Lake Erie, but are typically lower (10,000 m⁻²) on soft substrate.

The date of entry of zebra mussels into the lake has not been confirmed. However, some of the limnological characteristics of the lake may already reflect the effect of zebra mussels. For example, an increase in water clarity from 1977 to 1997 could be attributed, in part, to the introduction of zebra mussels. To document the arrival of zebra mussels, the Ontario Ministry of Natural Resources has conducted surveys of zebra mussel veliger larvae (the free-swimming stage) for several years but has not published the findings of those studies.

The benthic fauna of Lake Couchiching generally reflected a slightly mesotrophic condition. The presence of Orthocladiinae chironomids (especially *Epoicocladius*), and the Tanytarsini chironomids *Stempellina* and *Zavreliella* suggest relatively high water quality since these taxa are sensitive to eutrophication. The most dominant chironomids included *Chironomus*, *Dicrotendipes*, *Paratendipes*, *Tanytarsus*, and *Procladius*. All but *Tanytarsus* are reasonably tolerant of oxygen deficits. Finally, mesotrophy can be assumed based on the abundances of organisms at all stations. Typically, oligotrophic lakes can support only up to about 2,000 benthic organisms m⁻². In Lake Couchiching, numbers were generally in excess of about 20,000 m⁻² suggesting at least a slightly mesotrophic condition.

The composition of benthic invertebrate communities in the lake was relatively homogeneous, with a few exceptions. Deep-water communities (Stations 5 and 15) did have more fingernail clams (Pisidium), snails (Helisoma anceps) and phantom midges (Chaoborus) than did shallower sites. Station 19 near the inflow from Lake Simcoe had larger populations of aquatic sowbugs, and valvatid snails than other locations. Fauna from this station may reflect the cooler waters from Lake Simcoe. Finally, Stations 16 (near the YMCA discharge at Geneva Park) and 18 (at the mouth of Sucker Creek, into which Fern Resort discharges) had large populations of midge larvae (Chironomidae) indicating moderate impairment.

Trophic Status

The lake can be classified as either oligotrophic or moderately mesotrophic based on the good water clarity, low nutrient concentrations, and a suite of organisms (phytoplankton, zooplankton, benthos) that are typically associated with oligotrophic and slightly mesotrophic conditions. Oligotrophic lakes are the most desirable from a recreational standpoint because of the high clarity. They also tend to support large sport fish because oxygen concentrations are high throughout the year, even in

deep water. Mesotrophic lakes are characterized by moderate growth of algae and aquatic plants. They are suitable for the pursuit of water-oriented recreational activities but have the potential to develop periodic algal blooms.

Recommendations

The third objective of this report is to provide recommendations concerning possible impacts associated with future development. With increasing development, there is the potential for alterations in water quality to occur. Some of the more significant sources of water quality impairment include:

- i) soil erosion and sedimentation from construction activities
- ii) increased contaminant, bacterial, and suspended solids loadings from storm-water runoff
- iii) increased phosphorus loadings from future development (municipal sewage)
- iv) streambank erosion in new developments
- v) introduction of exotic species
- vi) loss of aquatic habitat through shoreline development

Based on the predicted impacts of development and on the results of the survey, the following recommendations are made.

Recommendation 1: Further confirmation and investigation of sites where impairment was demonstrated.

Biological impairment was evident at Station 16 and at Station 18. Further confirmation and investigation of impairment at these two locations by the Ministry of the Environment is warranted.

Recommendation 2: Implement appropriate management practices to minimize water quality impairment

Water quality impairment from development can be minimized through proper planning, education and mitigation. In this regard, the Ministry of the Environment is conducting meetings with Municipalities, conservation authorities and consultants in Simcoe County.

Recommendation 3: Develop a monitoring program to track long-term changes due to the trophic status of the lake.

In order to assist area municipalities in making prudent planning decisions, the Ministry of the Environment will conduct periodic biological and chemical monitoring in Lake Couchiching.

ACKNOWLEDGEMENTS

The Project Managers for this study were Bruce Hawkins and Peter Kauss. This study was designed by Bruce Hawkins, Peter Kauss, John Westwood, Andy Gemza, and Rein Jaagumagi. Technical field assistance was provided by crew chiefs Greg Hobson and Wendy Page, Captain Dave Brandreth of the Ministry of the Environment survey vessel Monitor VI, and students Brian Thorburn and Melissa Krausse. Water and sediment chemistry analysis was performed by the Ontario Ministry of the Environment Laboratory Services Branch in Etobicoke. Zooplankton counts and identification were performed by Beroe consultants, while counts and identification of benthic macroinvertebrates were performed by Bill Morton. The report was compiled and edited by Bruce Kilgour, with contributions from Peter Kauss (water and sediment chemistry), Andy Gemza (water chemistry, phytoplankton and zooplankton from the mid-lake stations) and John Westwood (macroflora). Bruce Kilgour analyzed and interpreted the benthic community data.

TABLE OF CONTENTS

Sumn	nary	ii
Ackn	owledger	nents viii
List o	f Tables	x
List o	f Figures	x
1.0		GROUND
	1.1	Lake Setting and Characteristics
	1.2	Historical Environmental Information
	1.3	Current Land and Water Uses4
2.0	em in	Y OBJECTIVES 6
2.0	3100	I OBJECTIVES
3.0	METH	IODS7
	3.1	Preliminary Lake Reconnaissance7
	3.2	On-Board Water Quality Measurements
	3.3	Current Metering7
	3.4	Water Quality9
	2.4	3.4.1 Spatial Variation9
	4	3.4.2 Temporal Variations9
	3.5	Sediment Quality
	3.6	Laboratory Analytical Methods
	3.7	Plankton
	3.8	Macroflora
	3.9	Benthic Macroinvertebrate Community
		12
4.0		LTS AND DISCUSSION
	4.1	Lake Currents
	4.2	Water Quality
		4.2.1 Temperature and Dissolved Oxygen Profiles
		4.2.2 General Water Chemistry
		4.2.3 Water clarity
		4.2.4 Nutrient Chemistry
		4.2.5 Bacteria
		4.2.6 Taste and Odour Problems
		4.2.7 Metals
		4.2.8 Organic Contaminants
	4.3	Sediment Characteristics and Quality
		4.3.1 Core Sediments from Stations 5 and 15
		4.3.2 Spatial Survey of Surficial (Recent) Sediments
	4.4	Plankton

		4.4.1 Phytoplankton 31 4.4.2 Zooplankton 31 4.4.3 Zebra Mussel Veliger Larvae 34
	4.5	4.4.3 Zebra Mussel Veliger Larvae
	4.6	Benthic Macroinvertebrates
5.	OVE	RVIEW OF ENVIRONMENTAL QUALITY
6.	REC	OMMENDATIONS
7.	REFE	ERENCES
		LIST OF TABLES
Table	1.	Water chemistry data representative of the general water quality of Lake Couchiching, 1997
		LIST OF FIGURES
Figure	1.	General location of Lake Couchiching and its catchment
Figure	2.	Map of Lake Couchiching showing points of interest, intakes and discharges, and depth contours (m)
Figure	3.	Map of Lake Couchiching showing locations of the 21 sampling locations for water, sediments, benthic macroinvertebrates, and aquatic plants
Figure	4.	Seasonal variations in Secchi disc depths (m) in 1977 and 1997 17
Figure	5.	Seasonal variations in concentrations of chlorophyll a (a), and total phosphorus and TN:TP ratio (b) at Station 5 in Lake Couchiching during 1997
Figure	6.	Spatial variations in total phosphorus concentrations in Lake Couchiching on June 3 and July 7/8
Figure	7.	Concentrations of chloride, zinc and lead with increasing depth at Stations 5 and 15 in Lake Couchiching
Figure	8.	Concentrations of mercury, cadmium and copper with increasing depth at Stations 5 and 15 in Lake Couchiching
Figure	9.	Spatial variations in surficial sediment concentrations of chloride, zinc and lead in Lake Couchiching.
Figure	10.	Spatial variations in surficial sediment concentrations of copper, arsenic and cadmium in Lake Couchiching
Figure 11.		Spatial variations in organic carbon, Kjeldahl nitrogen and phosphorus concentrations in surficial sediments

Figure 12.	Seasonal trends in algal community composition at Station 5 in Lake Couchiching during 1997
Figure 13.	Seasonal zooplankton succession at Station 5 in Lake Couchiching, 1997 33
Figure 14.	Underwater photo of a benthic algal growth at Station 2 in Lake
	Couchiching
Figure 15.	Map of Lake Couchiching showing the percent composition of major groups of benthic macroinvertebrates at each station in 1997.

1.0 BACKGROUND

1.1 Lake Setting and Characteristics

Lake Couchiching derives its name from the native peoples, who referred to this lake as "Lake of Many Winds". Lake Couchiching is part of the Trent-Severn Waterway, connecting Lake Ontario with Georgian Bay (Figure 1). Water enters the lake from Lake Simcoe at Atherley Narrows and flows north. Located in Simcoe County (Latitudes 44°36' to 44°45' N; Longitudes 79°20' to 79°25' W), the lake is bordered by the Townships of Orillia, Rama and Mara, which together encompass an area of about 72,000 hectares; of this, 64.44 km² drains into Lake Couchiching (Cumming Cockburn, 1992). Geologically, the land immediately surrounding Lake Couchiching varies considerably, ranging from a sand plain adjacent to the west and south shores, to a clay plain dotted with drumlins along the lower eastern shore in Mara Township, which is separated by a limestone plain from the Canadian Shield along the upper half of the east shore (Chapman & Putnam, 1966).

Lake surface area and shoreline length are about 44.75 km² (12,100 acres) and 45 kilometres (28 miles), respectively (Jones & Veal, 1972). One large island (Chiefs Island) and several smaller ones (Horseshoe, Heron and Garnet) comprise a land area of 0.84 km², with a total shoreline length of 14.6 km.

Lake Couchiching is relatively shallow, with a maximum depth of 12 m (39 feet) and an average, or mean, depth of 6 m (20 feet). The deepest areas are located at: roughly the midpoint of the lake, halfway between Amigo Beach and Quarry Bay; and from just south of Horseshoe Island to near Orillia. Nevertheless, the shallowness of the lake prevents any significant thermal stratification during the summer.

Apart from the Lake Simcoe inflow to the lake at Atherley Narrows (Figure 2), tributaries to Lake Couchiching are relatively small. They include: Sucker Creek, on the east shore near Garnet Island; an unknown creek on the west shore, opposite Chiefs Island; Robinsons Creek at Amigo Beach, with two discharge points; and another unknown creek on the west shore, opposite Green Island. Outflow of Lake Couchiching to Lake Huron is through three channels at its northern end: the Severn River, with two branches; and the Trent Canal.

1.2 Historical Environmental Information

Available water quality data for Lake Couchiching is largely out-dated, dating back to the late 1970's. During June of 1972, dissolved oxygen and temperature profiles were determined by the Ministry of Natural Resources (unpublished data). Between late June and late August of 1977, the Ontario Ministry of Environment characterized dissolved oxygen, temperatures and other basic water quality parameters (unpublished data). Between 1971 and the end of 1993, water quality information was obtained through the Ministry of the Environment's Provincial Water Quality Monitoring network at both the inflow and outflow of the lake: samples were collected monthly at both the inlet (Highway 12, at Atherley) and outlet (Highway 169, at Washago) of the lake. In addition, the inflow water quality to the lake has been monitored bi-weekly since 1990, as part of the Lake Simcoe Environmental Management Strategy. Flow rate has been monitored by the Water Survey of Canada at several discharge points of the lake since 1963, but only water level is recorded at the inlet to the

Figure 1. General location of Lake Couchiching and its catchment.

Figure 2. Map of Lake Couchiching showing points of interest, intakes and discharges, and depth contours (m).

lake by Environment Canada. The latter data were used to derive an estimated long-term (1963 to 1990) average Lake Simcoe discharge to Lake Couchiching of 28.63 m³/s, as well as the export of nitrogen and phosphorus from Lake Simcoe (Cumming Cockburn, 1992).

Some biological surveys have been conducted on Lake Couchiching. The earliest study of aquatic plants was conducted at 86 stations by OMOE in July, 1972 (Jones and Veal 1972). This revealed a large standing stock of aquatic macrophytes in the shallow waters (<8 m depth) of the lake, with the major species in decreasing importance being *Chara*, tapegrass (*Vallisnaria americana*), Eurasian Water Milfoil (*Myriophyllum* spp.) and different pondweeds (*Potamogeton* spp.).

Biological monitoring of persistent contaminants was conducted by the Ontario Ministry of the Environment in 1996. Young-of-the-year yellow perch were collected from the lake at three nearshore locations in the lake (upper, middle eastern and bottom). Analysis of PCBs and organochlorine pesticides did not find any concentrations above guidelines for the protection of higher trophic levels (i.e., larger fish or fish-eating birds; G. Hitchin, Ontario Ministry of the Environment, pers. comm., 1998).

Being shallow, Lake Couchiching supports a warm-water fishery. Key recreational species include walleye, largemouth and smallmouth bass, northern pike and yellow perch. Persistent contaminants in sport fish have been monitored over the years by the Ontario Ministry of the Environment. Currently, restricted consumption advisories for humans are in effect for larger sizes of smallmouth bass, largemouth bass, walleye, northern pike and yellow perch due to mercury levels above safe levels (>0.5 mg/kg). PCB concentrations in the dorsal fillets are, however, at safe concentrations set by Health Canada (<0.5 mg/kg, OMOEE, 1997).

1.3 Current Land and Water Uses

Land in the Lake Couchiching watershed is used for agriculture. A number of insecticides, fungicides and herbicides are used on the field fruit and vegetable crops. Of the latter, phenoxy acid and triazine herbicides predominate (Hunter and McGee, 1994).

Washago, Orillia, Ontario Educational Leadership Training Centre, YMCA Geneva Park, Camp Wahanowin and Casino Rama have drinking water intakes in the lake (Figure 2). Of the discharges to the lake (Figure 2 and Appendix A), those of Casino Rama include a continuous discharge from a sewage treatment plant as well as effluent from a wetland stormwater treatment facility. Discharges from the Ontario Educational Leadership Training Centre, YMCA Geneva Park, Camp Wahonowin and Fern Resort are seasonal.

Public and private beaches are located all around Lake Couchiching (Figure 2). The Simcoe County Department Health Unit in Midhurst regularly monitors bacterial densities at Washago Park, Couchiching Beach Park, Tudhope Beach, Fern Resort, Camp Couchiching, Geneva Park, Camp Wahonowin and the Ontario Student Leadership Camp. Levels of faecal coliform bacteria (the bacteria associated with health risks) have routinely been low (Katona, 1998).

Urban development is largely concentrated in Orillia, although a number of smaller communities are

scattered around the shoreline (Figure 2). Concerns related to water quality impacts have been expressed regarding an increase in development around Lake Couchiching in recent years. Most notable was the construction of the Casino Rama complex and associated developments on the east shore of the lake. This led to requests being received by Southwestern Region of the Ontario Ministry of the Environment from the local municipalities and from the Ministry's District Office in Barrie for a whole-lake environmental characterization.

Residents of Orillia have complained about poor taste and odour of municipal water supplies originating from Lake Couchiching. Taste and odour problems have been attributed to two compounds (geosmin, or 1,10-trans-dimethyl-trans-9-decalol, and 2-MIB or 2-methylisoborneol) that originate primarily in algae. Previous work has shown that algal densities in the water column of Lake Couchiching are below thresholds that would cause taste and odour problems (Katona, 1998). It has been suggested, however, that green and blue-green algae that reside on the bottom of the lake may be responsible for the poor taste and odour.

2.0 STUDY OBJECTIVES

Based on the extensive recreational use of the lake, the increased level of development along its shores, and poor water quality (for consumption), this study had the following objectives:

- (i) to establish a baseline database with respect to the lake's limnology, water, sediment and biological quality,
- (ii) to define the existing aquatic environmental quality and trophic status of Lake Couchiching (i.e., at the present level of development); and,
- (iii) to develop recommendations concerning possible impacts associated with future development.

Based on these overall objectives, this study characterized water and sediment quality at several locations in Lake Couchiching. This study also characterized bacteria, phytoplankton, zooplankton, macroflora (macroalgae and macrophytes) and benthic macroinvertebrate communities. This study did not attempt to characterize the condition of fish populations in Lake Couchiching since the local Ministry of Natural Resources offices routinely updates that information. Phytoplankton, zooplankton, macroflora, and benthos are however, capable of being used as early warning indicators of potential effects on fish populations in the lake. Surveys were conducted throughout the ice-free period in 1997.

3.0 METHODS

3.1 Preliminary Lake Reconnaissance

On May 6, 1997 a reconnaissance survey was conducted by staff from the Ontario Ministry of the Environment to determine the nature of sediments and the benthic habitat of the lake. In all, 19 locations were sampled, using a Ponar grab. Water depth, grab fullness, sediment characteristics and any flora and fauna present were noted and recorded. This information (Appendix B) was used to select the areas and stations to be sampled later for water quality, sediment quality, benthic communities and aquatic plants.

Based on the results of the reconnaissance survey, 21 stations were selected for sampling. Of these 21 stations, four were situated at roughly mid-lake positions (Stations 5, 12, 15, 21). Stations 5 and 15 were considered to be indicative of whole lake quality. Station locations and map coordinates, are listed in Appendix C and shown in Figure 3. Discrete sampling locations were fixed using an on-board computer equipped with a navigation software package Hydro®, interfaced to a Trimble® differential global positioning system (GPS). This permitted an on-board visual display of when the station location had been reached.

3.2 On-Board Water Quality Measurements

Prior to the collection of water samples in June and July, spatial variations in chlorophyll, conductivity and temperature were determined by following a pre-determined course around the lake and using on-board metres. A Chelsea Aquatracka Model 3 UV-fluorescence metre was used to determine chlorophyll concentrations and a Hydrolab Datasonde unit for the remaining measurements. Data was stored in an on-board computer interfaced to the Trimble® differential global positioning (GPS) unit and plotted with the navigation software package Hydro®.

Concurrent with water quality sampling during the June and July surveys, water temperature, conductivity, pH, and dissolved oxygen were also measured at ~1 metre depth increments, using a pre-calibrated Hydrolab Datasonde unit. Data was stored in an on-board computer interfaced to a Trimble® differential GPS unit.

Depth of visible light penetration was determined with a Secchi disc at each station. Also, Photosynthetically Active Radiation (400-700 nm) was profiled with a LI-COR model LI92SA Underwater Quantum Sensor connected to a LI000 DataLogger. At the three deepest stations (5, 15 and 17), the light extinction coefficient was calculated from a plot of the transmitted light fraction in relation to depth.

3.3 Current Metering

Current speed, current direction and water temperature were measured during the water quality survey in early June to provide information on the flow structure within the lake, as well as the velocities nearer the shore (e.g., near some of the beach locations). Locations of these 25 stations (Appendix C) were somewhat different from those used for water and sediment quality sampling. At each station, one or two Mini-Aanderaa Model SD-2000 metres (set to record at the minimum time interval of 8 minutes) were deployed to measure current velocity and direction for 45 minutes. At locations where major flows were anticipated (e.g., between islands), the metres were left in for

Figure 3. Map of Lake Couchiching showing locations of the 21 sampling locations for water, sediments, benthic macroinvertebrates and aquatic plants.

a longer time period (e.g., several hours or overnight). At each station, the meter(s) were attached to a weighted line with a marker buoy and deployed at 1 metre below surface (or 20 % of the water depth, whichever was greater) and at 1 metre above the bottom (or 80 % of the water depth, whichever was the shallower). At stations of less than 3 m water depth, the current meter was deployed only at mid-depth. The deployment and retrieval times were recorded for each meter and station depth, along with any other pertinent observations. Data recorded by the meters was later downloaded for interpretation.

During the May 28-June 2 surficial sediment quality sampling, current speed was also determined at approximately 0.2 m above bottom at each station, using a Marsh-McBirney meter, while the survey vessel was anchored. Measurement period was at least 30 minutes, with a minimum of three data points being recorded during that period.

3.4 Water Quality

3.4.1 Spatial Variation

To characterize spatial variation in water quality, water samples were collected at the 21 stations (Stations 1 to 21, Figure 3) in late spring (June 3) and summer (July 7-8). Most of these stations were situated around the periphery of the lake. Stations included potentially impacted (e.g., urban development, with point source discharge) and unimpacted (i.e., undeveloped) areas, and four openwater sites. Analyses carried out on the water samples are provided in Appendix D. Due to analytical capacity limitations, chlorophenols, phenoxy acid herbicides and triazine herbicides could only be analyzed for on samples from the June 3 survey.

On each survey, grab water samples were collected from 1 metre below the surface, using a March Model 5C MD submersible pump and Teflon[®]-lined hose system that had been cleaned with hexane and distilled water before the beginning of each day's sampling. Once on station, the pumping system was flushed for five minutes with lake water prior to actually taking samples. Except for those bottles that had been pre-cleaned or which already contained a preservative, sample containers were rinsed twice with sample water before filling.

In addition to the routine sample collections, on each survey two additional replicate samples were collected at two stations randomly selected from the total of 21 and submitted for <u>all</u> analyses except bacteria. Data from these samples was used to provide information on sample handling, analytical reproducibility, and short-term temporal variability. To obtain information on potential field and sample container effects, one set of field procedural blank samples was also obtained for each survey by pouring distilled water through the collection system and submitted for <u>all</u> analytical requests except bacteria. To provide data on potential sample container effects, one set of distilled water travel blanks was obtained by filling the required bottles for <u>all</u> analytical requests except bacteria at the laboratory and transporting them to the field and back.

3.4.2 Temporal Variations

Of the 21 water quality stations, four located in a line up the centre of the lake (5, 12, 15, 21; Figure 3) were selected for more detailed analysis of trends through time and variations with depth. At these stations, water samples were collected approximately bi-weekly between June 3 and October

23, 1997. These four stations were selected because they were considered to represent general lake quality. To determine whether sediment nutrient release may be taking place, samples from 1 metre off bottom (1 MOB) were also retrieved at the two deeper stations (5 and 15). Euphotic zone samples were collected by lowering and raising a weighted narrow-mouthed (2 cm) glass bottle through the water column. The bottles were lowered through two times the measured Secchi disc depth to a maximum of 1 MOB. Samples from 1 MOB were retrieved by activating a 6-litre, Kemmerer sampler at depth.

Sub-samples for water chemistry were transferred from the collection bottles or sampler to the required sample containers and preserved following OMOE (1989) procedures. Samples were then analyzed for metals, chlorophyll and nutrients (Appendix D). Oxygen and temperature profiles were determined using an air-saturated calibration of a YSI Model 58 combination dissolved oxygen and temperature probe.

3.5 Sediment Quality

Between May 29 and June 2, surficial sediment samples were collected at each of the 21 stations (Figure 3). At each station, sufficient surficial sediment (upper 5 cm) was collected using a stainless steel Ponar grab. Between stations, the Ponar was rinsed with hexane and distilled water to eliminate potential cross-contamination. At all but two stations, three replicate surficial sediment samples were obtained, composited and homogenized in a hexane and distilled water rinsed stainless steel tray. At the remaining two randomly-selected stations, the three replicates were processed separately to provide estimates of within-station spatial variability.

On June 4, four replicate core samples were collected from each of the two deeper stations (5 and 15) using a Hobson-Benthos corer and 6.7 cm ID plastic core tubes of about 1 m in length. Each tube and end caps were pre-cleaned with hexane and lake water before use. The cores were brought back to shore, where they were individually sectioned at 0-5 cm (the surface layer), followed thereafter by 10 cm intervals (i.e., 5-15 cm, 15-25 cm, etc.). For each core section, the four replicates were then composited and homogenized as described above for the surficial sediment grabs.

While still on site, a subsample of each sediment composite or replicate was weighed using a small glass jar of known volume. The remaining material was then distributed among the required sample jars/containers and preserved as required (OMOE, 1989). With sediment core sections from stations 5 and 15, all but trace organic contaminants were analyzed for (Appendix E), pending receipt and review of the surficial sediment data. All surficial sediment grab samples were analyzed for nutrients, particle size distribution, oils and greases, total petroleum hydrocarbons, heavy metals, and organic contaminants (Appendix F). Sufficient extra sediment from each surficial sediment or core depth increment was put in an amber (trace organics) jar labelled with the station number, field sample number, and was kept frozen (-20°C) until all laboratory analyses had been received and reviewed.

3.6 Laboratory Analytical Methods

Water and sediment samples were submitted to the Ministry laboratories in Etobicoke and analyzed according to documented procedures (OMOEE, 1993; OMOEE 1994a; OMOEE, 1994c-d; OMOEE 1995a-c).

3.7 Plankton

At the four mid-lake stations (5, 12, 15, 21), plankton abundance and species composition were monitored approximately bi-weekly, between June 3 and October 23.

Phytoplankton

Only Station 5 was sampled bi-weekly to characterize temporal variation. For the three remaining mid-lake stations, bi-weekly algal samples were pooled for an annual "recombined" analysis to assess spatial variation and to provide an inventory of species. Samples were collected by allowing a weighted 1-L bottle with a restricted inlet to fill as it was lowered and raised through the euphotic zone (twice the Secchi disc depth). Samples were immediately fixed with Lugols solution, and transported to the OMOE laboratory on Resources Road. Phytoplankton samples were analyzed according to Gemza (1995a).

Zooplankton

Only Station 5 was sampled bi-weekly, to assess temporal changes and to obtain a species inventory. Samples were collected using a metered Clarke-Bumpus style conical net (80- μ m mesh) lowered to 1 m above bottom and then retrieved to the surface at a fixed rate. The sample was rinsed from the net into a 4 oz. glass jar, preserved with 4 % sugared formalin and stored for later analysis as described by Gemza (1995b).

3.8 Macroflora

Macroflora were characterized visually at the 21 stations on July 7. On August 6 and 7, grab samples of macroflora were collected at each of these stations. The macroflora sampling in August was conducted with the use of a grapnel employing a modified approach of methods outlined by Schloesser and Manny (1984). The five-hook grapnel was 40cm long and 27cm in diameter. The grapnel was lined with 1cm square wire mesh.

The grapnel was dragged behind the boat at a slow, constant speed so that the grapnel remained on the bottom substrate. Three 10 m long hauls were collected at each sampling station. The abundance of plants on the grapnel was recorded by the collector (subjectively) as: H- heavy (grapnel obscured by plant bio-mass); M-moderate (grapnel wire mesh screen covered with plant bio-mass); P-present (grapnel wire mesh screen less than covered with plant biomass); and, V- void (no plant biomass). The plants were identified in their order of dominance (by volume) on the grapnel. Macrophytes and macroscopic algae were identified following Fassett (1957), Newmaster et al (1997), and Schloesser (1986). A reference collection of plants was made and is retained at the London Regional Office of the Ministry of the Environment.

In addition to these observations made at specific sampling points, a depth sounder (Lowrance X16 sonar unit with paper graph recording) was used to characterize distributions of macroflora with depth along three transects (Appendix C):

- 1)-From Cunningham Bay on the west shore to the north tip of Geneva Park on the east shore.
- 2)-From Maniac Beach (south) on the west shore to south of Geneva Park on the east shore.
- 3)-From the Nathan area on the west shore to Garnet Island near the east shore.

The transects were started at the 1-m depth contour on the west shore and were continuous to their termination on the east shore.

3.9 Benthic Macroinvertebrate Community

Benthic fauna associated with surficial sediments were also collected during the May 29-June 2 surficial sediment quality survey at each of the 21 sediment sampling stations (Figure 3). Three replicate samples were obtained by stainless steel Ponar grab at each station and individually sieved through a 600-µm mesh Nitex bag using clean lake water. Organisms and detritus retained in the bag were preserved with buffered formalin in wide-mouth plastic jars with a screw cap. For each grab, the percentage fullness of the Ponar grab, the percentage macrophyte cover and species present, the sediment characteristics and any obvious fauna were recorded on the field note sheets (Appendix K).

At each station, a fourth replicate Ponar grab was collected and placed directly in a covered plastic pail. These samples were picked up by staff of the Ministry's Aquatic Sciences Section in Dorset for processing (picked live) according to the Rapid Bioassessment protocol (David et al. 1998). These data have been reported separately (David et al., 1998).

Analysis and Interpretation

Analysis and interpretation of the benthic community in Lake Couchiching had two general objectives:

- to establish trophic condition of the lake; and,
- to determine the degree to which local point sources, and natural features and anthropogenic features influence benthic community composition.

Known tolerances of benthic organisms were used to establish the trophic status of the lake. In addition, detailed statistical procedures were used to establish the associations between benthic community composition and local point sources and variations in habitat quality. The details of the various statistical and interpretational methods are given in Appendix J.

4.0 RESULTS AND DISCUSSION

This section reviews the general findings of the various sampling programs. The objective of this discussion is to highlight those findings that directly impact this characterization of environmental quality. In some cases, the data obtained led to very obvious conclusions and did not require excessive summary. For example, persistent chlorinated organic contaminants were not found in any sediment samples. Trends were therefore obvious, so no data summaries are provided in the main body of the report (Volume I). Most of the raw data collected in this study, however, is provided either in the main document, or in the appendices (Volume II). For conciseness, an attempt was also made to summarize the results of complimentary surveys. For example, temporal variations in water quality were characterized by collecting water samples at mid-lake stations every two weeks, while spatial variations in water quality were characterized by collecting water samples at stations located around the periphery of the lake in June and July. Data over time from the mid-lake stations could be used on their own to classify the lake trophically. Those temporal data are, however, discussed in association with the spatial surveys conducted in June and July at all stations to make a more concise and compelling discussion of lake trophic status. This section deals first with chemical and physical aspects of the lake, then biological aspects.

4.1 Lake Currents

Current velocities and directions were determined at the 21 stations during the late May-early June survey, but in more detailed fashion between June 4 and 6 at 24 "current" stations (Appendix C). This discussion focuses on the data from the 24 current stations. Current data are provided in Appendix D. In general, water currents in the lake were slow, averaging from 0.3 to 11.2 cm/s. Of these, the fastest currents were recorded at stations just off Couchiching Point (5.4 cm/s, near the bottom), off Wilson Point (5.9 cm/s), just north of Mariposa Beach (9.4 and 5.2 cm/s) and at Cedar Island (11.2 cm/s). Greatest short-term variability of current speed was usually observed at the deepest stations, located offshore and along the north-south axis of the lake, and off Woods Bay. Near Atherley Narrows, current speed was somewhat higher just off the bottom than just below the surface. Surface waters typically flowed west-northwest or north-northeast, but surface and bottom waters did not always flow in the same direction.

4.2 Water Quality

Variations in key water quality characteristics that are important to algae, zooplankton, benthos and fish are summarized below. Raw water quality data are presented in Appendix D.

4.2.1 Temperature and Dissolved Oxygen Profiles

By May 27, there was spatial variation in surface temperatures (8 to 14°C) with higher temperatures along the western half of the lake, particularly the nearshore area north of Orillia. By June 3 surface water temperatures averaged 16°C and by July 8 averaged 21°C. Mid-lake temperatures peaked on July 22 at 22°C, falling to 10°C on October 23 (Appendix D).

Because Lake Couchiching is relatively shallow for its size, the water column is usually fully mixed. Temperatures are, therefore, generally isothermal and dissolved oxygen concentrations remain high even near the bottom in deeper areas of the lake. Evidence for slight thermal stratification was evident at the deepest station (5) in early and mid June (Table 1). Oxygen concentrations were as

low as 6.2 mg/L in June, but ranged between 8.0 and 10.5 mg/L through the remainder of the summer (Table 1).

4.2.2 General Water Chemistry

Lake Couchiching is a basic, hardwater lake. At the four open water stations (5, 12, 15, 21), pH ranged between 8.2 and 8.4, while mean annual alkalinity levels ranged between 102 and 111 mg/L. Mean annual calcium concentrations ranged between 37 mg/L at station 12, to 41 mg/L at station 5. Alkalinity and calcium levels were marginally higher in the spring. At the mid-lake stations, conductivity was about 330 μ S/cm (Table 1). Given the local geology, the lake is at no risk of effects from acidic precipitation.

4.2.3 Water clarity

Lake Couchiching had good water clarity; Secchi discs were still visible on the bottom of the lake at all of the shallow-water (2-3 m deep) stations. At the mid-lake stations, Secchi disc depth ranged between 4.0 and 7.0 m, with an annual mean of 5.1 m (Figure 4, Table 1). Peak Secchi depths representing the clear water phase were measured on June 17. Visibility declined through late August to the end of September with readings as low as 4.0 m. Based on these figures for Secchi disc depths, Lake Couchiching can be classified as either oligotrophic or mesotrophic. Vollenweider (1972; as cited in Wetzel, 1983) showed that lakes considered mesotrophic have an average Secchi disc depth of about 4.2 m but can range between 1.5 and 8.1 m. According to Carlton(1977), lakes with a Secchi dis depth greater than 5 m are oligotrophic, while those with Secchi disc depths between 2 and 5 m are mesotrophic. Water clarity in Lake Couchiching is also obviously adequate for swimming. Health and Welfare Canada (1983) suggests that Secchi disc depths should exceed 1.2 m to ensure that subsurface hazards can be observed.

Clarity in Lake Couchiching increased substantially between 1977 and 1997 (Figure 4). Based on the assumption that nutrient levels in the lake have not decreased since 1977, increased clarity in Lake Couchiching is probably associated with the presence of zebra mussels in the lake. Zebra mussels feed by filtering algae and bacteria from the water column (Stoeckmann and Garton 1997). In shallow lakes (like Lake Couchiching) it has been estimated that zebra mussel populations can filter the equivalent volume of a lake between 0.2 and 1.3 times daily (Fanslow et al. 1995).

4.2.4 Nutrient Chemistry

Several nutrients are important in determining the productive potential of algae, zooplankton, benthos and fish. In the discussion below, we focus on total phosphorus because the lake is phosphorus limited, and because lake trophic classification can be based on total phosphorus concentrations. Variations in chlorophyll a concentrations and silica were also summarized because they are both related to variations in phytoplankton abundances.

Total Phosphorus

In both the open lake and nearshore areas, the ratio of total nitrogen to total phosphorus (TN:TP) varied between 30 and 60 depending on the time of year (Figure 5, Table 1). Ratios in excess of 20:1 generally imply that phosphorus limits the production (growth) of algae (Wetzel, 1983; Smith, 1986). Phosphorus is therefore limiting in Lake Couchiching.

IMPORTANT NOTE CONCERNING THE FOLLOWING PAGES

THE PAGES WHICH FOLLOW HAVE BEEN FILMED
TWICE IN ORDER TO OBTAIN THE BEST
REPRODUCTIVE QUALITY

USERS SHOULD CONSULT ALL THE PAGES
REPRODUCED ON THE FICHE IN ORDER TO OBTAIN
A COMPLETE READING OF THE TEXT.

REMARQUE IMPORTANTE CONCERNANT LES PAGES QUI SUIVENT

LES PAGES SUIVANTES ONT ÉTÉ REPRODUITES EN DOUBLE AFIN D'AMÉLIORER LA QUALITÉ DE REPRODUCTION

LES UTILISATEURS DOIVENT CONSULTER TOUTES LES PAGES REPRODUITES SUR LA FICHE AFIN D'OBTENIR LA LECTURE DU TEXTE INTÉGRAL

20 Victoria Street Toronto, Ontario M5C 2N8 Tel.: (416) 362-5211 Toll Free: 1-800-387-2689 Fax: (416) 362-6161

Email: info@micromedia.on.ca

Table 1. Water chemistry data representative of the general water quality of Lake Couchiching, 1997.

STATION S	June 3	June	ne 17	July 8	Jo	July 22	August 8	Aug	August 22	September 10		September 25	October	1 44	October	2	Mean
Euphone Lane											-	-	-	-		Ī	T
Secchi disc depth (m)	5.5	-	7.0	5.5	-	6.1	4.5		4.0	40	+	40	1	-	-	Ì	
Chloride	26.6	_	26.8			27.0	37.6	-	7.4	34.6	_	2	0 9	200	4.0		3.1
Chlorophyll a		_	0		_	3.6		-		0.72	_	4.17	.87	0	28.0		27.4
Calcium		_	63 30	-		20.00	7.1	-	* 1	0.8	_	0.6		0	1.0		1.1
Victorian		_	2.30		_	2000	40.00	7	8	39.60	_	10.20	40.2	0	41.00		40.69
Sodium	_		0.000			080.7	7.100		091	7.240	_	7.320	7.14	0	7.320		7.163
Potsection		_	13.60		_	0.70	10.40	2	09:	16.20	_	16.40	15.3	0	16.20		15.95
Salehate		_	800			200			-82	1.86	_	1.84	1.9	0	2.02		1.88
Colour Civilia		_	1.3		_	0.0	18.3	_	6.3	19.0		18.5	19.	0	19.5		18.8
Conductivity (office)	_	_	2.5		_	*0.4	77	_	4.2	4.0	_	2.2	*	9	4.6		4.8
- Consuctivity (percent)	_	_	243	_	_	337	335	_	322	330	_	333	33	9	342		335
Allement		_	5 1			6.3	*	_	4.4	8.3	_	8.3	œi	2	8.3		8.3
		_	A CHI			113	011		601	901	_	110	=	0	114		111
Integrate (FTC)		_	0.82		_	0.90	1.10	_	.23	1.19		1.48	1.2	2	1.67		1.21
Micogen: ammonium	0.008	_	0.020	_		0.014	0.032	0.0	128	0.034	_	0.046	0.03	**	0.034		0.028
Mitrogen: nitrate	0.001	_	0.001			0.002	0.005	0.0	100	0.004	_	0.007	00.00	_	0.001		0.002
National authorities	0.010		0.003		_	0.030	0.010	0	500	0.015	_	0.025	0.02	0	0.025		0.016
Prosphorus: prosphate	0.001	_	0.001			0.003	0.004	0	100	0.002	_	0.004	00.00	_	0.001		0.002
L'hosphorus: total	0.008	_	0.012		_	0.00%	0.010	0.0	010	0.008	_	800.0	0.00	*	0.008		0.00
INKorgen: total Kjeldani	0.400		0.340			0.480	0.400	0.0	120	0.460	_	0.420	0.44	0	0.420		0.420
IN: IP (ratio)	51.3		28.8	-	-	63.8	41.0	*	2.5	59.4		55.6	57.	3	55.6		50.6
Carbon: dissolved organic	3.7	_				4.2	43		4.2	4.2		4.1	-	2	4.2		-
Carbon: dissolved inorganic	26.6	_	27.0			25.8	25.6	7	4.6	25.2	_	25.0	24.	9	25.4		24.5
Silicon: reactive silicate	0.76	_	0.88			1.58	99.1	_	**	1.36	_	1.36	1.3	0	1.32		1.30
Ahminium	0.003		0.007	0.000		0.000	900.0	0.0	600.0	900.0	-	0.008	0.00	7	0.007		0.007
Iron	0.009		900.0	0.003		0.004	0.005	0.0	900	0.004	9	6000	000	9	0.007		0.000
Freed		_	0.002			0.003	0.002	0.0	704	0.007	-	9000	0.003	8	0.001		0.004
1 MOB		+	+		+	+	+	+	+	1	+	+	+	1		1	T
Turbidity (FTO)	+	\dagger	11/1		+	100	-	-	-	+	+	-	-				
Nitrogen: Ammonium	0.002	_	0.016			0.022	0.034	00	0.044	0.048	_	0.00	0.040	0 0	00.1		0.87
Nitrogen: Nitrite	0.001	_	0.002			0.001	0.005	0.0	100	0.004	_	000	000	-	0.000	_	0.000
Nitrogen: attende-milette	0.003		0.035			0.030	0.015	0.0	500	0.020		028	0.00		0.00	-	0.00
Total Kjeldahi	0.440		0.440			0.480	0.460	0.0	081	0.560	-	0991	0.44	0	0.440		1.00
Phosphorus: phosphate	0.001	_	0.004			0.003	0.003	0.0	100	0.001	0	.003	0.00	_	0.001		9.002
Phosphorus: Total	0.008	_	0.014		_	0.014	0.008	0.0	800	0.010	-	1.012	0.00	_	0.010	_	0.010
IN: IF (ramo)	35.6		33.9			36.4	59.4	•	9.6	58.0		40.4	58.	-	46.0		49.8
Carbon: dissolved inorganic	26.6	_	_			_		_			_						3.8
Silicon: reactive silicate	0.72	_	_		_	_				_	_	_		_			0.72
Aluminium	0.009		0.011	0.008	-	0.000	0.000	0.0	800	0.007	0	600	0.01	0	0.007		
Iron	0.010	_	300.0	0.004		0.003	0.007	0.0	900.0	9000	0	1000	0.010	0	0.00		0.007
Lead			2			0.022	0.009	0.0	112	0.007	-	900.0	0.023		0.015		0.012
Depth (m)	Uny.	remp.		p. Ony.		Uny. Term	emp. Oxy.	emp. Oxy.	y. Temp.	Uny.	emp.	Ty. Tem	6. Ony.	Temp.	OEV.	1emp.	T
	1.7	14.7			20.6			2.1.2			18.3			L	6.6	66	
	7.0	14.6			20.6			21.8			18.5				6.6	9.9	
• •	6.9	14.5			20.6			21.8			18.5				6.6	6.6	
• •	7.59	12.3	9.8		20 6	0.0	10.2	21.8	#.2 19.6	6.0	18.3	9.6	15.11	14.1	6.6	6.6	
		1000			200			61.5			16.2				7.2	7.9	

Legend
Note: All measurements in mg/L usless otherwise indicated.
TN: Total Nitrogen = Nitrates + Nitrites + Kjetdahl
TP: Total Phosphorus
Euphoric Zone: Zx secchi depth
Osy:: Orygen (mg/L)

I MOB = I metre off bottom ND: non-detect Temp:: Temperature (°C)

Table 1. Water chemistry data representative of the general water quality of Lake Couchiching, 1997.

STATION S	June 3	Jun	June 17	July 8	8 4	July 22	77	August a	2	Snv	Valence ee		or included		т		+		-
Fushotic Zone									-	-	1	-		0,	t	4.3	+	157	+
	-	-	10	-	5.5		6.1	4	5		0 \$	*	0	4.0	_	0.0	_	2000	_
Secchi disc depth (m)	36.6	_	36.8			7	0.7	27	9.	7	7.4	27.	9	27.4		28.0		0.87	_
Chloride	0.07	_	01	_	_	_	2.6	_		_	0.4	0		9.0	_	0.1	_	0.1	-
Chlorophyll a		_	05 14	_		*	40.60	40.	38	40	90	39.6	0	40.20	_	40.20		3	-
Calcium		_	V 880		_	7	080	7.1	09	7.	09	7.24	0	7.320	_	7.140	_	075	-
Magnesium	_	_	15.80			-	1.70	16.	40	15	09	16.2	0	16.40	_	15.30	_	07.9	_
Sodium		_	1 86	_			06	-	84	_	82	2.8	9	1.84	_	8	_	70.7	_
Potassium		_	1001				8.5	118	1.5	-	8.5	19	0	18.5	-	19.0		19.3	_
Sulphate		_	13	_			7.0	_	1.2	_	4.2	*	0	2.2	_	4.6		4.6	_
Colour (TCU)		_	242	_	_	_	117	-	35		122	33	0	333	-	336	_	342	_
Conductivity (µS/cm)	_	_	243	_			8 3	_	*		8.4	*	3	8.3		8.2	_	S. 3	
Hd	_	_	2.5				113	_	10		601	36	99	110	_	110		1	
Alkalinity	_	_	117		_	_	000	-	101	_	23	1.1	6	1.48		1.25	_	1.67	
Turbidity (FTU)		_	0.82	_		-	2.0	00	3.5	0	328	0.0	71	0.046	_	0.038	_	0.034	0
Nitrogen: ammonium	0.008	_	0.020	_	_	0 0	000	00	00	0	100	0.00	7	0.002	_	0.001	_	0.001	0
Nitrogen: nitrite	0.001	_	0.001	_		9 6	700	000	10	0	300	0.0	13	0.025	_	0.020	_	0.025	0
Nitrogen: nitrate+nitrite	0.010	_	0.003			9 0	000	200	200	0	100	0.0	12	0.004	_	0.001	_	100.0	0
Phosphorus: phosphate	0.001	_	0.001			-	000	0.0	010	0	010	0.00	80	0.008	_	0.008	_	800.0	0
Phosphorus: total	0.00%	_	0.012	_	_	9 0	900	9.0	00		420	0.44	95	0.420	_	0.440	_	0.420	0
Nitorgen: total Kjeldahl	0.400	_	0.340			-	980		200	_	3.6	66	*	55.6	_	57.5		55.6	_
TN: TP (ratio)	51.3	_	28.8		_	_	979	_	1 1 1		4.2	_	2	4.1	_	4.2	_	4.2	_
Carbon: dissolved organic	3.7	_		_	-		7.4	,	2 8 8	-	9.46	25	7	25.0	_	24.6		25.4	_
Carbon: dissolved inorganic	26.6	_	27.0	_		_		-	2	_	44	-	96	1.36	_	1.30	_	1.32	_
Silicon: reactive afficate	0.76	_	0.88	_	2000	-	900	0.0	908	0	600	0.000	96	0.00		0.007		0.007	0.007
Abuninium	0.003	_	0.00		0.003	-	100	0.0	308	0	900	0.0	70	0.009	_	900.0	_	0.007	
Iron	60000	_	0.000	_	200.0	- 0	0.003	0.002	300	0	0.004	0.0	00	0.006		0.005	_	0.001	-
Lead										-	+	-	+		1	+	+	+	+
1 Mon		+	-	-									-		1		+	100	+
The state of the s	+	+	07.1	-	-	-	1.03		.75	•	1	- 0	***	0.00		0 040	_	0.036	•
Nitrogen: Ammonium	0.002	_	910.0				1.022	0	0.034	0 0	0.044	0.00		0 000		0.001	_	0.002	-
Nitropen: Nitrite	0.001	_	0.002	_			1001	5 6	200	-	300	00	00	0.023		0.029	_	0.020	-
Nitrogen: nitrate-tuitrite	0.005	_	0.035	_	_		700	9 0	998	0	480	0.3	09	0.460		0.440	_	0.440	_
Total Kjeldahl	0.440	_	0.440	_			003	0	003	0	100	0.0	10	0.003		0.001	_	0.001	_
Phosphorus: phosphate	00.00	_	0.00	_	_		1014	0	800	0	800	0.0	010	0.012		0.008		0.010	_
Phosphorus: Total	48.6	_	88.9	-	_		36.4	-	19.4		9709	3	0.8	40.4		28.1	-	0.0	_
Carbon dissolved organic	3.8	_		_	_			_	_				_			_	_	_	16.6
Carbon: dissolved inorganic	26.6		_	_	_	_	_	_	_	_		_	_				_		_
Silicon: reactive silicate	0.72		1100	_	0.008	_	600	0	900	0	800	0.0	0.007	0.009		0.010		0.007	_
Aluminium	0.000		0.008	_	0.004	_	0.005	0	0.007	0	900.0	0.0	900	0.007		0.010	_	0.000	_
Iron	0.00		R	_		_	0.022	0	600	-	1.012	0.0	100	0.006		0.02		0.010	_
							1	- Line	The same	mo.	UEV. Tel	no. Ory	y. Tem	Ory.	1 emp.	Uny.	lemp.	URS.	emp.
Depth (m)	Ony.	lemp.	Ony.	emb.	OE)		-	1		1	K.X	L	9.0	5 10.0		10.2	15.4	6.6	9.9
0	1.1	14.7	9.5	19.6	2 8	20.0		22.0		28.8	8.2	19.6				10.4	15.0	9.9	B 0
	7.0	0.4.0	0	10 4		20.6		22.0		21.8	8.2	9.61				10.4	14.9	6.6	7.0
• •	6.2		8.6	19.0	8.3	20.6	8.9	21.9	10.5	21.8	8.2	19.6	8.9	9.6	13.	10.2	-	9.6	9.9
•	200		9 0	141	8.7	20.6		20.11		21.8	7.9	17.0						1	١

Legend
Note: All measurements in mg/L unless otherwise indicated.
TN: Total Nitrogen = Nitrates + Nitrites + Kjeldahl
TP: Total Phosphorus
Euphotic Zone: Zx secchi depth
Ory:: Oxygen (mg/L)

I MOB = I metre off bottom ND: non-detect Temp:: Temperature (*C)

Table 1 (cont'd). Water quality of Stations 12, 15 and 21. Lake Couchiching, 1997.

TATION 12 Euphotic Zone	June 3	June 17	July 8	July 22	ringuis o	August 22	September 10	September 25	October 7	October 23	Mean
hioride	26 8	21.2		27.2	27.8	276	28.0	0.6	276	280	27
Chlorophyll s		0.6		1.5	0.6 36.20	0.4	37.50	0.6	0.0	0-	36 8
Calcium Vagnesium					7.200		7.300				7.25
iodium					16.90		16.20				16.5
otassium					1.95	100	1.92				1.9
ulphate					18.0		19.0				18:
Colour (TCU)					320		324				32
Conductivity (µS/cm) H					8.4		8.2				
Ukalinity					101		102				10
urbidity (FTU)		1.08		1.67	4.10	2.10	1.55	2.70	2.50	1 48	2.1
itrogen: ammonium	0.010	0.018		0.016	0.032	0.016	0.024	0.001	0.032	0.032	0.02
Hrugen: nitrite	0.001	0.001		0.001	0.002	0.005	0.020	0.020	0.015	0.020	0.01
firogen: nitrate+nitrite ftrogen: total Kjeidahi	0.360	0.360		0.480	0.500	0.420	0.460	0.440	0.340	0.440	0 42
hosphorus: phosphate	0.001	0.001		0.003	0.003	0.001	0.001	0.003	0.001	0.001	0.00
hosphorus, total	0.006	0 006		0.006	0.014	0.010	0.006	0.006	0.006	0.006	0.00
N:TP (ratio)	60.8	60.8		63.1	36.1	42.5	80.0	76.7	59.2	767	61
arbon: dissolved organic	3.9				4.6 22.8		240				24
arbon: dissolved inorganic	25.2 0.44				1.74		1.50				1.2
Juminium	0.006										0.00
ron	0.007										0.00
end											-
TATION 15											_
uphotic Zone hioride	26.8	270	26.8	27.2	27.4	27.6	27.8	27.6	28 0	278	27
Morsphyll s	20.6	10	1.6	2.6	1.6	0.6	1.0	0.8	14	0.8	1
alcium			40.30		39 90		38.50				39.5
lagnesium			6 960	1	7.120		7.240				710
odium			15.90		16.50		16.10				1.0
vtassium			1.94		1.86	1	190		1	1	17
ulphate olour (TCU)			3.8		46	1	3.8				4
onductivity (µS/cm)			335	1	333		326			1	33
Н			8.3		8.4	1	82			1	
Jkalinity					111		104	1.84	1.35	1.24	1.3
urbidity (FTU)	0.000	0 88	1	1.01	0.96	230	0 032	0.038	0 030	0.038	0.0
(Itrogen: Ammonium	0.008	0.012		0.010	0.032	9 001	0.003	0.002	0.001	0 002	0.00
litrogen: Nitrite litrogen: nitrate+nitrite	0.005	0.005		0.025	0.005	0 005	0 025	0.020	0.025	0.025	0.0
itrogen: total Kjeldahl	0 360	0.360	1	0.440	0.420	0.420	0.440	0 420	0 440	0 440	
hosphorus: phosphate	0.001	0.001	1	0 003	0 003	0.004	0.001	0.002	0.001	0.001	0.0
heepherus: total	0.006	0.006		0.010	0.006	0.010		0.014	0.008	0 006	0.0
N:TP (ratio)	60 8	45.6		46.5	70.8	42.5	581	31.4	58 1	11.3	17
arbon: dissolved organic	3.8 25.8		1	1	24.8		24.4		1		25
arbon: dissolved inorganic	0.50				1 54		1.40				1.
Juminium	0.006	1	1	1							0.0
ren	0.002		1								0.0
esd			_		-	-			-	-	+
TATION 21									-	-	\vdash
uphotic Zone Chloride		26.8	26.6	27 2	28.0	27.6	27.8	27.8	27.6	27 8	21
Macophyll s		0.6			1.0			0.6			
alcium		1	40.60		36.70		38.60				38
Angnesium		1	6.960		7.240		7.260		1	1	7.1
odium		1	17.30		16.70		16 20		1	1	16
stassium			1.86		1 85		19.0				li
ulphate colour (TCU)			3.8		48		3.8				
conductivity (µS/cm)			335		330		327				1 3
Н			8.3		8.4		8.2		1		
licalinity		1		1	107		105	1 20	1.10	12	
urbidity (FTU)		0.66		0.86				0.038			
itrogen: ammonium		0.018		0.016				0.902			
Otrogen: altrite	-	0.001		0.001				0.020			
litrogen: nitrate+nitrite litrogen: total Kjeldahl		0.340		0.480				0 420	0.48	0 42	0 0
heapherus: pheephate		0.001		0.003		0 001	0.001	0.002			
hosphorus: total		0.008		0.000				0.001			
N:TP (ratio)		43 1		60.6				55.0	62:	5 73.	
Carbon: dissolved organic					44		24.2				1 2
Carbon: dissolved inorganic					1.56		1.38				l i
Illicon: reactive silicate Uuminium			1		1.36		1.30	1		1	1
ren											
rend		1	1		1				1		

Table 1 (cont'd). Water quality of Stations 12, 15 and 21, Lake Couchiching, 1997.

STATION 12 Euphetic Zone	June 3	June 17	July 8	July 22	August 8	August 22		September 25	October 7		Mean
Chlorophyll a Calcium Magnesium Sodium	25.8	06	194	1.6	27.8 9.6 36.20 7.200 16.90	0.4	28.0 0.8 37.50 7.300 16.20	0.6	0.8	0.4	36.8 7.25 16.5
Putanium Sulphate Colour (TCU) Conductivity (µS/cm)		98		177,160	1.95 18.0 5.0 320	1000	1:92 19.0 3.8 324				1.9 18. 4. 32
pH Alicalinity Furbidity (FTU)		1.08		1.67	101	2.10 0.016	8.2 102 1.55 0.024	2.70 0.034	2.50 0.032	1.48	10 2.1 0.02
Vitrogen: ammonium Vitrogen: nitrite Virogen: nitrate+nitrite Vitrogen: total Kjeklahl	0.010 0.001 0.005 0.360	0.018 0.001 0.005 0.360	n a,ê	0.016 0.001 0.025 0.480	0.032 0.002 0.005 0.500	0.001 0.005 0.420	0.003 0.020 0.460	0.001 0.020 0.440	0.002 0.015 0.340 0.001	9.002 0.020 0.440 0.001	0.00 0.01 0.42 0.00
'hoophorus: phosphate 'hoophorus, total 'N:TP (ratio) Carbon: dissolved organic	0.001 0.006 60.8 3.9	0.001 0.006 60.8	14.140	0.003 0.008 63.1	0.003 0.014 36.1 4.6	0.001 0.010 42.5	0.001 0.006 90.0 4.3	0.003 0.006 76.7	0.006	9.006	61.
arbon: dissolved inorganic lilicon: reactive afficutz Juminium ren .end	25.2 9.44 0.006 0.007	MS:1184		14,0.46	22.8 1.74	1,14,8610	24.0 1,50	# Breva 1	18.11%		0.00 0.00
TATION 15 caphatic Zane									28.0	27.8	27
hioride hiorophyli a alcium fagnesium odium	26.8	10	26.8 1.6 40.30 6.960 15.90	27.2	27.4 1:6 39.90 7.120 16.50	27.6 0.6	27.8 1.0 38.50 7.240 16.10	27.6 Q.8	14	01	39.5 7.10 16.1
ulphate clour (TCU) conductivity (µS/cm) #			16.5 3.8 335 8.3		18.0 4.6 333 8.4		19.0 3.8 326 8.2 104	sle out s	Out 1970		17. 4. 33 8.
ikalinity urbidity (FTU) fitrogon: Ammonium fitrogon: Nitrito fitrogen: aitrate-nitrite fitrogen: total Kjeldahl hosphorum: phosphate hosphorum: fotal	0.008 0.001 0.005 0.360 0.001 0.006	0.88 0.012 0.001 0.005 0.360 0.001 0.006	ra s	1.01 0.010 0.001 0.025 0.440 0.003 0.010 46.5	0.96 0.032 0.003 0.003 0.420 0.003 0.806 70.8	2.30 0.010 9.001 0.008 0.420 0.004 9.010 42.5	1.46 0.032 0.003 0.025 0.440 0.001 0.008 58.1	1.84 0.038 0.002 0.020 0.420 0.002 0.014 31.4	1.35 0.030 0.001 0.025 0.440 0.001 0.003 58.1	1.24 0.038 8.602 0.025 0.440 0.001 0.001	1.3 0.02 0.00 0.01 0.41 0.00 0.00
IN: TP (ratio) Carbon: dissolved organic Carbon: dissolved inorganic Micon: rasctive difficate Liumbalum ren Lead	60.8 3.8 25.8 9.50 0.006 0.002	45.6	Service S	40.3	4.3 24.8 1.54	MS THE	4.2 24.4 1.40	September 1			25 1.3 0.00 0.00
STATION 21 Caphatic Zone Chioride		26.8	26.6	27.2	28.0	27.6	27.8	27.8	27.6	27.8	27
Salerophyll i Salerom Angresium Jodium		0.6	40.60 6.960 17.30	1.6	1.0 36.70 7.240 16.70	0.6	1.0 38.60 7.260 16.20	0.6	0.6		38.6 7.13 16.7
suiphate clour (TCU) cenductivity (µS/cm)			1.86 16.0 3.8 335		1.85 18.5 4.8 330		19.0 3.8 327 8.2				17 4 33
H Ukalinity wrbidity (FTU) ittragen: amroonium ittragen: attrite		0.66 0.018 0.001	13	0.86 0.016 0.001 0.025	8.4 107 0.75 0.032 0.006 0.010	0.90 0.024 0.001 0.005	105 1,49 0,026 0,004 0,015	1.39 0.038 0.602 0.020	1.10 0.030 0.001 0.020	0.032 0.002 0.020	0.00
fitrogen: nitrate-nitrite fitrogen: total Kjeldahi hosphorus: phosphate hosphorus: total N:TP (ratio)		0.005 0.340 0.001 0.008 43.1		0.025 0.460 0.003 0.008 60.6	0.480 0.002 0.006 81.7	0.400 0.400 0.001 0.006 67.5	0.460 0.001 0.008 59.4	0.420 0.002 0.008 55.0	0.480 0.001 0.008 62.5	0.420 0.001 0.006 73.3	0.40 0.00 0.00 62
arbon: dissolved organic arbon: dissolved inorganic dissolved inorganic dissolved inorganic dissolved inorganic dissolved inorganic dissolved inorganic dissolved inorganic dissolved inorganic dissolved inorganic dissolved inorganic		1.000	0.00	15,750	24.8 1.56		4.2 24.2 1.38			Priting de	24

Figure 4. Seasonal variations in Secchi disc depths (m) in 1977 and 1997.

Figure 5. Seasonal variations in concentrations of chlorophyll a (a), and total phosphorus and TN:TP ratio (b) at Station 5 in Lake Couchiching during 1997.

Where phosphorus is limiting, the OMOEE (1994b) recommends that total phosphorus concentrations be kept below 0.020 mg/L to avoid nuisance growths of algae. The Ministry also recommends that total phosphorus be kept below 0.010 mg/L to provide a high level of protection against aesthetic degradation. Among the nearshore stations, total phosphorus concentrations ranged between 0.006 and 0.016 mg/L (Figure 6, Appendix D), with concentrations in excess of 0.010 mg/L at all stations during at least one survey with the exception of Stations 11, 19 and 20 (Appendix D). There were no spatial patterns in total phosphorus concentrations that indicated important point sources of pollution.

Phosphorus concentrations at the four mid-lake stations were similar to concentrations at the nearshore stations. Mid-lake annual average total phosphorus concentrations (TP) ranged from 0.007 to 0.009 mg/L (Figure 5, Table 1). Spring concentrations were slightly higher at Station 5, trending downwards as the season progressed. A short-lived TP peak of 0.012 mg/L was detected on June 17 (Figure 5). Total phosphorus concentrations were slightly higher near the bottom with an annual average of 0.010 mg/L and a mid-summer maximum of 0.014 mg/L at Station 12 (Table 1). Variations in euphotic zone and 1 MOB phosphorus concentrations were probably associated with bioturbation (Redshaw et al., 1990), temperatures variations and resuspension of sediments through wind action (Quigley and Robbins, 1986).

The high pH of waters and the presence of carbonate deposits on *Chara* and in the sediments suggest that Lake Couchiching has at least some of the characteristics of a marl lake. In such lakes, primary production is phosphorus-limited, partly because phosphorus is precipitated out of the water column into the sediments, as iron and manganese complexes (Wetzel, 1983).

Silica

Silica concentrations varied between 0.34 and 1.56 mg/L among the nearshore stations (Appendix D). Among the four mid-lake stations (5, 12, 15, 21), silica concentrations were lowest in spring, rising through the early summer to peak levels in late July (1.66 mg/L). Levels fell through August before stabilizing in September and October (Table 1). Rising silica concentrations during June and July preceded the onset of the diatom bloom which dominated the phytoplankton community most of the year (Section 4.4.1). Diatoms utilize silica in the construction of their frustules, so the decline in silica levels documented during the diatom bloom was typical (Klemer and Barko, 1991).

Chlorophyll a

In early June, chlorophyll a concentrations were lowest in the southern two-thirds of the lake $(0.09 - 0.14 \ \mu g/L)$, with patches of higher concentrations $(0.14 - 0.19 \ \mu g/L)$ southeast of Chiefs Island and in the northern half of the lake. The highest concentrations $(0.19 \text{ to } 0.24 \ \mu g/L)$ were found along the nearshore between Quarry Bay and Floral Point. Among the nearshore stations, values ranged from trace amounts to $2.6 \ \mu g/L$ in June, and from trace to $1.6 \ \mu g/L$ in July among the nearshore stations. Among the mid-lake stations, chlorophyll a concentrations ranged from $0.5 \text{ to } 2.6 \ \mu g/L$ (Figure 5). At all four mid-lake stations, chlorophyll a concentrations peaked in mid-July and were at their lowest through late August and September. Based on the observed chlorophyll a concentrations, Lake Couchiching can be classified as oligotrophic to slightly mesotrophic. Carleton (1977) classified lakes with summer average chlorophyll a concentrations of between 1 and $6.4 \ \mu g/L$ as mesotrophic.

Spatial variations in total phosphorus concentrations in Lake Couchiching on June 3 and July 7/8. Figure 6.

4.2.5 Bacteria

Bacteria were detected infrequently and at low densities in Lake Couchiching. The highest density or concentration of the indicator *Escherichia coli*, 36 organisms per 100 ml at Station 1 near Cedar Island, was well below the PWQO (OMOEE, 1994b) of 100 organisms per 100 ml for the protection of recreational water users. These data are consistent with historical findings (Katona, 1998). Faecal *Streptococcus* was detected at a maximum density of 18 organisms per 100 ml, again at Station 1 near Cedar Point. There is currently no limit for the numbers of faecal streptococci (CCME, 1991). The pathogen *Pseudomonas aeruginosa* was not detected in any of the samples (Appendix D). Based on these data for faecal coliforms, there is no apparent risk of infection by swimming in Lake Couchiching.

4.2.6 Taste and Odour Problems

Residents of Orillia have complained about poor taste and odour of municipal water supplies originating from Lake Couchiching. Taste and odour problems have been attributed to two compounds (geosmin, or 1,10-trans-dimethyl-trans-9-decalol, and 2-MIB or 2-methylisoborneol) that originate primarily in algae (Katona, 1998). Previous work has shown that algal densities in the water column of Lake Couchiching are below thresholds that would cause taste and odour problems (Katona, 1998). It has been suggested, however, that green and blue-green algae that reside on the bottom of the lake may be responsible for the poor taste and adour. Indirectly, the introduction of zebra mussels to the lake may be responsible for the poor taste and odour. Where zebra mussels colonize, densities of benthic algae have been shown to increase (Lowe and Pillsbury, 1995). Zebra mussels have colonized virtually every location within the lake and this survey did document obvious growths of benthic algae (Section 4.4).

4.2.7 Metals

Metal levels in Lake Couchiching water were very low and averaged from one (e.g., cadmium) to four orders of magnitude (e.g., beryllium) lower than their respective Provincial Water Quality Objectives (PWQOs) (Appendix D). Only one duplicate sample of mercury from Station 21 in June (0.25 μ g/L) slightly exceeded the PWQO of 0.2 μ g/L.

4.2.8 Organic Contaminants

Of the 30 organic compounds for which water samples were screened, only atrazine was found at 'trace' levels of 66 to 140 ng/L, in 15 of the 24 samples collected (Appendix D). No phenoxy acid herbicides or chlorophenols were detected in Lake Couchiching water. Atrazine was detected at "trace" amounts (i.e., less than 150 mg/L in over half of the water samples, with most of the detections occurring along the western shore where temperatures were warmer. Atrazine has a short half life and probably originates from agricultural runoff. Surface runoff from agricultural landscapes should be warmer than typical stream runoff. Both higher temperatures and trace amounts of atrazine therefore suggest that runoff from agricultural areas are being introduced to the lake along the western shore. Concentrations of atrazine were below levels that pose ecological or human health risks. The federal water quality guideline for the protection of aquatic life is set at 1800 ng/L, while the federal drinking water objective is set at 5000 ng/L (CCME, 1991).

4.3 Sediment Characteristics and Quality

Sediment chemistry data from this study (Appendices E, F) were compared to the Provincial Sediment Quality Guidelines (PSQG; Persaud et al., 1993) as well as to data from deeper layers of the cores obtained from Stations 5 and 15, which should represent background levels for the inorganic contaminants in this system.

4.3.1 Core Sediments from Stations 5 and 15

Visual, olfactory and chemical characteristics of the surface (0-5 cm) sections from cores collected at stations in the middle and southern basin of the lake were generally consistent with the information obtained from the surficial sediment samples. Surface layers at Stations 5 and 15 consisted of a gray or gray-brown, watery ooze (Appendix F). At Station 5, where an odour of rotten eggs was given off by the surface sediment, this odour persisted to a depth of 35-45 cm. At ~95 cm depth a gray clay or clay-like material appeared. Moisture content of the sediments decreased from 74-75 % in the surface (0-5 cm) layers, to 47-51 % at depths of a metre or more, probably due to compaction. Below 15 cm depth, white particles of marl (calcium carbonate) were evident, and snail or clam shells or fragments were also found in some sediment layers. Microscopic and size distribution analysis by sieving indicated that medium to fine sand, and silt and clay predominated in the sediments, with fine particles of less than $63-\mu m$ diameter (silt and clay) usually contributing 50 % or more of the sediment.

Calcium, magnesium, aluminum, barium, cobalt, iron, manganese and strontium concentrations were relatively constant with depth, whereas titanium increased slightly in deeper sediment. In contrast, concentrations of chloride, cadmium, copper, lead, zinc and mercury increased markedly in more recently deposited (upper 15-25 cm) sediments (Figures 7, 8). The core sections were not dated for this study, so no age in terms of years can be assigned to the different layers of the cores. Nevertheless, increased levels of chloride in surface sediments probably reflect urban development and increasing use of road salt. Similar increasing trends in chloride levels in water from Lake Simcoe have been shown (LSRCA et al., 1995). An increase in lead levels in surficial sediments is a typical result because of the historic use of leaded gasoline. Cadmium, copper, lead and zinc can also be contributed from urban areas (Klassen, 1992; Schueler, 1992). In neighbouring Lake Simcoe, mercury contamination originates from sanitary landfill sites, sewage sludge disposal areas, urban stormwater runoff, golf courses that use mercurial fungicides, and atmospheric sources. Natural geologic sources and contributions from intensive agriculture in the Holland Marsh have been shown to be insignificant (OMOE, 1978).

The average chemical concentrations in the lower sections (> 25 cm depth) of cores from Stations 5 and 15 were used as an additional comparison or reference for the concentrations found in surface (top 5 cm) sediments from stations in shallower waters of the lake.

4.3.2 Spatial Survey of Surficial (Recent) Sediments

Observations of the sediment samples indicated that the uppermost layer (surface) of sediment at most of the 21 sampling stations consisted of silty ooze. Rooted aquatic plants - particularly calcified *Chara* - were also present at all stations but 5, 15 and 17. No oil or petroleum odour was detected at any of the stations, but a number of them, particularly those situated in the southwest end of the

Concentrations of chloride, zinc and lead with increasing depth at Stations 5 and 15 in Lake Couchiching. Figure 7.

Concentrations of mercury, cadmium and copper with increasing depth at Stations 5 and 15 in Lake Couchiching. Figure 8.

lake near Orillia, had sediments which gave off a rotten egg (hydrogen sulphide) odour. Microscopic examination of these surface sediment samples showed that the majority of the sediment was composed of sand, silt and clay (carbonates and quartz), with the balance contributed by shell debris, vegetation fibres and fossilized plant material. Particle size analysis by sieving also indicated that sand, silt and clay predominated in the sediments, with fine material of less than $63-\mu m$ diameter (silt and clay) usually contributing 50 % or more of the sediment. Exceptions to this were found at Stations 10, 13, 14, and 18, where sand predominated.

The major elemental composition of a few of these samples was determined using X-ray diffraction spectroscopy. In all cases, the principal cation was calcium, followed by aluminum, iron, potassium and silica. Macro-ion and trace metals analysis of the sediment samples also indicated this trend; namely, calcium was present at the highest concentrations (77,000-210,000 mg/kg, or 7.7-21 %, by dry weight), followed by iron, aluminum, magnesium, titanium, manganese and strontium (Appendix F).

Overall, inorganic and heavy metal contaminant levels were quite low in the surface sediment samples from Lake Couchiching. The average concentrations of arsenic and selected metals for all 21 stations sampled are given below:

Element	Average (mg/kg)	Element	Average (mg/Kg)
arsenic	1.8	manganese	232
cadmium	0.5	mercury	0.02
chromium	11	nickel	7.6
copper	7	selenium	0.5
lead	20	zinc	35

Comparison of the surface sediment arsenic and heavy metal concentrations with the "background" concentrations derived from deeper layers of sediment cores (Section 4.3.1) revealed those locations with levels above the "background" for the lake. These stations included:

Element	Stations above background	Element	Stations above background	
arsenic	all but 10, 13, 18	manganese	14, 17	
aluminum	1, 15	molybdenum	1, 2	

Element	Stations above background	Element	Stations above background
antimony	1 to 7	nickel	1, 5, 15 to 17
barium	1	selenium	1 to 5, 7, 11, 14 to 17, 19
cadmium	1, 5	strontium	2 to 5, 7, 11, 12, 16, 17, 19
chromium	1, 5, 15	titanium	1, 10, 11, 18
cobalt	1, 15	vanadium	1, 15, 18
copper	1 to 5, 15, 17	zinc	1 to 5, 14, 15, 17, 19, 20
lead	1 to 8, 11, 12, 14 to 17, 19 to 21		

Anthropogenic contamination by metals was therefore most evident at stations in the vicinity of Orillia, likely reflecting inputs such as surface runoff from urban areas (Figures 9, 10). However, with the exception of cadmium, surficial metal concentrations were all well below (by factors of up to 10) the respective PSQG Lowest Effect Level (LEL) for the protection of sediment-dwelling organisms (benthic invertebrates) (Persaud et al., 1993). LELs are the concentrations above which more than 5% of the sediment-dwelling benthic taxa can be expected to be impacted (Persaud et al., 1993). The average concentration of cadmium, 0.5 mg/kg, was only just below the PSQG-LEL of 0.6 mg/kg, due in part to high concentrations Stations 1, 3, 5, 15 and 17 (Figure 10). In addition, a few stations had concentrations of one or more of these metals above their respective guidelines. This was most evident at Station 1, just off the Orillia marina, where a variety of metals were in excess of the PSQG LEL. These included arsenic (9.5 mg/kg, LEL = 6 mg/kg), cadmium (1.9 mg/kg, LEL=0.6 mg/kg), chromium (55 mg/kg, LEL=26 mg/kg), copper (22 mg/kg, LEL=16 mg/kg), lead (58 mg/kg, LEL=31 mg/kg) and nickel (28 mg/kg, LEL=16 mg/kg) (Figures 9, 10, Appendix F). Nevertheless, these concentrations were all well below the PSQG Severe Effect Levels (SELs) for these contaminants. SELs are the concentrations above which effects can be expected on more than 95% of sediment-dwelling benthic taxa (Persaud et al., 1993).

Even though metal concentrations were low, there was evidence that at least mercury is biologically available and biomagnifies in the food chain in Lake Couchiching. Routine monitoring by the OMOEE (1997) shows that mercury levels in large specimens of smallmouth bass, largemouth bass, northern pike, walleye and yellow perch are elevated, with resultant consumption restrictions for people. In Lake Simcoe, there have been no changes in mercury concentrations in cisco, whitefish or perch since 1928.

Although nutrient concentrations increased marginally in surficial sediments relative to background concentrations, historical concentrations have generally naturally exceeded PSQGs LELs (Appendix E). For example, the LEL for total Kjeldahl nitrogen (TKN) is 0.55 g/kg. Surficial concentrations of TKN averaged 3.0 and ranged from 0.7 to 4.9 g/kg (Figure 11). However, core data show that

Spatial variations in surficial sediment concentrations of chloride, zinc and lead in Lake Couchiching. "Bkgd" = background concentrations from deep cores from Stations 5 and 15.

CONCENTRATION (mg/kg dry)

Spatial variations in surficial sediment concentrations of copper, arsenic and cadmium in Lake Couchiching. "Bkgd" = background concentrations from deep cores from Stations 5 and 15. Figure 10.

Spatial variations in organic carbon, Kjeldahl nitrogen and phosphorus concentrations in surficial sediments. Figure 11.

TKN concentrations were originally about 1 g/kg (Appendix E). Results for total organic carbon (TOC) are similar. The LEL for TOC is 1% or 10 g/kg. Concentrations of TOC in surficial sediments averaged 30 g/kg and ranged from 7 to 42 g/kg (Figure 11). Core data show that TOC concentrations were originally about 25-30 g/kg (Appendix E). Finally, phosphorus concentrations in surficial sediments have increased from historical concentrations of about 0.1 to 0.2 g/kg, to 0.3 g/kg (Figure 11). The PSQG LEL for phosphorus in sediments is 0.6 g/kg. As a result, phosphorus in sediments has been, and continues to be within acceptable limits. None of the nutrients exceed PSQG SEL concentrations (Appendix E).

Polycyclic aromatic hydrocarbons (PAHs) were detected at low concentrations in a few of the Lake Couchiching surface sediment samples. These were congregated in the south-west end near Orillia (Stations 1, 2, 3, 4 and 5) and at Stations14, 15, 17, 18, 19 and 20. Of the 16 compounds analyzed for, eleven (benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)-fluoranthene, benzo(g,h,i)perylene, benzo(a)pyrene, chrysene, fluoranthene, indeno(1,2,3,-cd)pyrene, naphthalene, phenanthrene and pyrene) were detected at one or more stations. Fluoranthene, indeno(1,2,3-cd)pyrene and pyrene were detected most frequently, i.e., at six to seven of the 21 stations. These included four stations at the south-west end of the lake (Stations 1 to 4), and the two in the deeper basins (Stations 5 and 15). With one exception however, concentrations of the individual compounds, as well as of total PAHs were below the respective PSQG-LELs. At Station 1, the concentration of indeno(1,2,3-cd)pyrene (240 μ g/kg) was slightly above the PSQG-LEL of 200 μ g/kg. Due to the relatively low PAH concentrations, core sections from Stations 5 and 15 were not analyzed for these compounds.

One surface sediment sample, from Station 2, off the Orillia water treatment plant intake and just north of the Orillia marina, was also analyzed for polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs). Results indicated low concentrations of the different homolog groups, ranging from 5.6 ng/kg PentaCDD to 150 ng/kg for OctaCDD. The homolog distribution pattern is typical of combustion sources (Rappe, 1994). Concentrations of the toxic (2,3,7,8-substituted) isomers ranged from 1.3 ng/kg for 1,2,3,4,7,8-HexaCDF to 29 ng/kg for 1,2,3,4,6,7,8-HeptaCDD. The calculated 2,3,7,8-Tetra CDD Toxic Equivalence (TEQ) was 4.3 ng/kg, which is in the background range for the Great Lakes Basin (Reiner, OMOE LSB, pers. comm, 1998). This TEQ was obtained by multiplying the individual isomer concentrations by their respective International Toxic Equivalence Factor (I-TEF), which ranks toxicity relative to that of the most toxic isomer, 2,3,7,8-Tetrachlorodibenzo-p-dioxin, assigned an I-TEF of 1.

Other persistent organic contaminants, including PCBs, organochlorine pesticides, phenoxy acid herbicides, chlorinated phenols, and chlorinated aliphatics and aromatics, were not detected in any of the Lake Couchiching surface sediment samples. Consequently, core sections from stations 5 and 15 were not analyzed for these contaminants.

Solvent extractables (a measure of fats, oils and greases, both natural and man-made) in surface sediments of the lake averaged 1074 mg/kg and ranged from 370 to 2200 mg/kg (Appendix E). No PSQG for the protection of benthic invertebrates is available to interpret these concentrations. However the Open Water Dredged Material Disposal Guideline of 1500 mg/kg can be used for comparison. Levels at six of the 21 stations were at or above this guideline. Four of these stations

(1 to 4) were in the south-west end of the lake, near Orillia; the remaining two were in Woods Bay (Station 7) and off James B. Tudhope Park, near Old Brewery Bay (Station 20). It should be noted that no petroleum hydrocarbons were found in any sediments from the lake (Method Detection Limit of 100 mg/kg), suggesting that the solvent extractables found in samples represent natural sources, such as lipids and fats resulting from decomposing plant and animal matter.

4.4 Plankton

4.4.1 Phytoplankton

The phytoplankton community was represented by 54 genera from six classes. No representatives of the Euglenophyta were found (Appendix G). Two marked periods of succession were observed (Figure 12). The chrysophyte, *Dinobryon sp.*, was the clear dominant of the early summer followed by *Uroglena sp.* This was followed by a clear genus shift which occurred in late July. *Uroglena sp.* replaced *Dinobryon sp.*. The Bacillariophytes (diatoms) dominated the community through the rest of the summer (Appendix G). *Rhizosolenia sp.* and *Cyclotella sp.*, were co-dominant in early August through September, when *Cyclotella sp.*, became the dominant diatom for the remainder of the year.

Through the early season the chrysophytes made up almost 95% of the community composition, but by mid-summer diatoms made up almost 71% of the community. Lake Couchiching phytoplankton communities were almost identical at the four mid-lake stations (Appendix G). Chrysophytes and diatoms were the dominant classes, and biovolumes were highest at Stations 5 and 15. Diatoms ranged in dominance between 27% and 43% of the population, while Chrysophytes ranged between 43% and 56% of the community composition (Appendix G).

Phytoplankton communities were generally similar among the open-lake stations, reflecting generally homogeneous water chemistry. Although Station 5 (nearest Orillia) had marginally higher nutrient levels, algal community composition was similar to the other three stations. Total algal biovolume at Station 5 was however approximately twice as high as at Stations 12 and 21 (Appendix G). At all stations, biovolumes were low, so nuisance algal levels were not observed.

Seasonal succession of algal communities in Lake Couchiching was markedly different from successions observed in more eutrophic areas such as Penetang Bay, (Gemza 1995a), (which is situated at the western extreme of the Severn River into which L. Couchiching empties) and Saginaw Bay, Lake Huron (Stoermer and Theriot 1985). In Saginaw Bay, diatoms bloom are dominant in spring, while dinophytes, chlorophytes and cryptophytes are dominant in the summer, and blue-green algae are dominant in the fall. In Penetang Bay of Severn Sound, *Melosira* sp. dominate the algal community, reflecting eutrophic conditions. In contrast, the diatom community in Lake Couchiching is dominated by *Cyclotella sp.*, which is usually associated with oligotrophic conditions.

4.4.2 Zooplankton

Zooplankton were represented by 15 species (Appendix H). Biomass peaked in mid June (84 mg/m³), coincident with the clear water phase (Figure 13). A second biomass peak occurred in early September when the community was dominated by the calanoid, Skistodiaptomus oregonensis. Cyclopoid copepods (primarily Diacyclops thomasii) made up over 70% of the zooplankton community at that time. The zooplankton were composed primarily of calanoid and cyclopoid

Figure 12. Seasonal trends in algal community composition at Station 5 in Lake Couchiching during 1997.

Figure 13. Seasonal zooplankton succession at Station 5 in Lake Couchiching, 1997.

copepods and non-daphnid cladocerans (Bosmina longirostris). Daphnid cladocerans made up almost 24% of the community in late September but usually constituted less than 10% of the community (Appendix H). The calanoid copepods, primarily Leptodiaptomus minutus and Skistodiaptomus oregonensis, succeeded the cyclopoids and non-daphnid cladocerans by early August (Appendix H).

In Lake Couchiching, zooplankton community composition was also characteristic of oligotrophic conditions. Increasing zooplankton biomass with increasing lake eutrophy is a well established phenomenon (Pace 1986). Eutrophic systems typically are dominated by smaller-bodied non-daphnid cladocerans such as *Bosmina spp.*, as well. Both trends indicating eutrophy were observed in Penetang Bay and across Severn Sound (Gemza 1995 b). Compared to eutrophic Penetang Bay where zooplankton biomass typically peaked at over 400 mg/m³, zooplankton biomass in L. Couchiching only reached peaks near 80 mg/m³, and typically ranged between 5 and 37 mg/m³.

4.4.3 Zebra Mussel Veliger Larvae

Zebra mussels (*Dreissena polymorpha*) have a planktonic larval (veliger) stage. Between 1992 and 1995, the Ontario Ministry of Natural Resources (Lake Simcoe Fisheries Assessment Unit) monitored Lake Couchiching for the presence of zebra mussel veligers. The results of those surveys have yet to be released by the Ministry. During this 1997 survey, zooplankton collection utilized 80-μm mesh which is small enough to collect later-stage veliger larvae (larvae remain in the water column until they are about 200-μm long). In this survey, veliger larvae were first observed in the samples on June 17. On July 9, veliger larvae exceeded the biomass of other zooplankters (Appendix H). Of a total zooplankton biomass of about 18 mg/m³, veligers constituted about 14 mg/m³ of the total, with a density of over 16,000 veligers per m³. On August 7, the biomass of veliger larvae fell to about 9 mg/m³. Through the remainder of the summer, veligers gradually fell in importance from about 40% of the zooplankton biomass to less than 20% (4.2 mg/m³) by August 22. By September the planktonic veliger constituted less than 1% of the equivalent zooplankton biomass. Peak veliger densities were measured during the spring clear water phase, evident through June and July.

4.5 Macroflora

Aquatic macroflora (macroalgae and macrophytes) are important to lake systems because they provide food and habitat for fish and wildlife, cycle nutrients, assist in thermal regulation of the lake, are aesthetically appealing, and stabilize lake sediments (provide protection from wind-induced scour). In excess, macroflora can be detrimental by impeding boating and swimming, fouling shorelines with large mats of plant debris, and can cause degraded water quality as a result of decomposing organic matter (oxygen depletion) in bottom waters, and taste and odour problems in drinking water.

In Lake Couchiching, the macroalga *Chara* was the single most dominant form at 19 of 21 sampling locations. *Chara* was absent only at Stations 5 and 15 where water depths were 7 and 9 m respectively. At these two deeper stations, only the filamentous alga *Cladophora* was found. When found, beds of *Chara* were up to 50 cm tall (Appendix I). *Vallisneria americana*, (tape grass, wild celery), *Utricularia vulgaris* (bladderwort), *Najas flexilis* (bushy pondweed) and *Potamogeton richardsonii* (Richardsons pondweed) were also present at many stations (Appendix I). Broadleaf

forms of Potamogeton (P. amphipolius), Elodea canadensis (common waterweed) and Myriophyllum spp. (Eurasian Water Milfoil) were found at a few stations each (Appendix I). The presence of Najas flexilis (bushy pondweed) increased significantly between July and August. Fragments of this plant were commonly observed floating on the surface of the lake in August, and a wind row 1m wide and approximately 15 cm thick was observed fouling the beach near the Orillia water treatment plant.

The plant growth in nearshore areas and around islands was variable. Luxuriant growths of Vallisneria americana and Elodea canadensis and Spirogyra (a filamentous green alga) were present near the marina at Orillia. This area is sheltered by break walls that reduce wave action and receives stormwater discharges from Orillia. Myriophyllum spicatum was growing in the south end of the lake, especially near the Narrows in the areas receiving incoming flows from Lake Simcoe. Heavy growths in the Narrows area interfered with the operation of the boat. The shallow sand areas around Chiefs Island were void of plants in many areas or produced sparse growths of Chara sp.

The three depth sounder transects further characterized the dominance of the macrophyte *Chara* at depths between 1 and 6 m. Only the filamentous green alga *Cladophora* and the odd plant sprig was documented by grapnel in depths greater than 6 metres. While the depth sounder recorded nearly continuous plant growths over the bottom in depths less than 6 m, it also documented that plant growths did not reach the surface in the open sections of the lake. Luxuriant plant growth in nearshore areas appeared to be limited to narrow bands and patches. The dominant plants, *Chara* and *Vallisneria americana* are not nuisance plants. *Chara* grows on the bottom, and is rarely found in the upper water column. The ribbon-like leaves of *Vallisneria americana* sometimes reach the surface, but usually only the slender coiled flower stalks are present on the surface in August.

The presence of the filamentous green alga Spirogyra was commonly noted in the south portion of the lake. This plant grew on (fouled) the aquatic macrophytes and Chara sp. beds. Large billowy clouds of this alga were present on the sandy substrates near the breakwalls around the marina at Orillia and in the bay areas between the marina and the narrows near the incoming flows from Lake Simcoe (Figure 14). Past plant studies by Veal and Jones (1972) did not document significant growths of Spirogyra. Large growths of filamentous green algae (i.e., Spirogyra)can result in water quality problems including loss of recreational potential (i.e., swimming) and loss of habitat for fish and wildlife (fouling of plant beds and bottom substrate). Large amounts of Spirogyra and other filamentous green algae also have the potential to reduce dissolved oxygen levels during night time, due to respiration.

During the plant survey, large numbers of zebra mussels were observed throughout the lake. Small mussels from 2 to 10 mm long were commonly found on macrophytes, particularly *Chara sp.* In 1972, *Myriophyllum* was the single most dominant (79% of stations) and abundant plant (Veal and Jones, 1972). *Chara, Vallisneria americana* and *Najas flexilis* were less abundant, but still prevalent. In 1997, *Myriophyllum* was not abundant or prevalent, being found at only a single station (19) at the inflow of Lake Couchiching. In 1972, the species of *Myriophyllum* was probably *M. spicatum* (Eurasian Water Milfoil). This exotic plant clogged several lakes in Southern Ontario with growths impeding operation of water craft (Wile et al., 1979). At some lakes, mechanical harvesting was

Figure 14. Underwater photo of a benthic algal growth at Station 2 in Lake Couchiching

implemented to cut channels for boat access through the plant beds (e.g., in Rondeau Bay, Lake Erie, Chemong Lake). The movement (invasion) of this plant into Southern Ontario was underway in 1971 (Chemong Lake) and peaked in the late 1970's. The decline in abundance of *Myriophyllum* in Lake Couchiching is typical. This plant has similarly disappeared from or declined in other lakes in Ontario and the north western United States (Aiken et al., 1979; Carter, 1979).

Scirpus acutus (hardstem bullrush) was present in many shallow (less than 1 m depth), sandy, nearshore and island areas of the lake. Large beds of this plant were present around Chiefs Island and in the south end of the lake in the vicinity of the narrows. No attempt was made to sample or totally quantify the presence of this emergent plant. These observations are similar to those by Veal and Jones (1972).

Overall, the aquatic macroflora study documented a healthy plant community in Lake Couchiching dominated by the native plants Chara sp., Vallisneria americana, Najas flexilis and Utricularia vulgaris. These plants provide food and habitat for fish and wildlife and provide many water quality benefits (e.g., increased water clarity and algae control). They are present throughout the lake with the exception of the two deep basins (where insufficient light reaches the bottom) which are located to the north and south of Chiefs Island. These deeper areas (greater than 6m in depth) had a thin layer of filamentous green alga Cladophora sp. on the surface of the silt, muck substrate.

4.6 Benthic Macroinvertebrates

This study documented 96 distinct taxa from 22 major taxonomic groups (Appendix L). In general, most samples contained the common amphipod *Hyalella azteca*, a good variety of chironomids (midges), the mayfly *Caenis punctata*, a few Leptoceridae (Trichoptera), an assortment of gastropod molluscs (snails) and a large number of adult zebra mussels (*Dreissena polymorpha*) (Appendix J, Figure 15). The generally uniform substrate of silty sand, with a high mollusc shell content and dense mat of the aquatic plant *Chara* was probably responsible for the generally uniform benthos. Total numbers of benthos ranged from just over 7,000 m⁻² to just under 100,000 m⁻² (Appendix J), while the number of taxa per sample ranged from 14 to 28. Diversity was relatively high, ranging from 1.98 at one of the deeper stations (Station 5) to 3.68 at Station 4.

None of the benthos found in the lake were unusual, although the dominant mayfly in the lake (Caenis punctata, Provonsha, 1990) is of interest taxonomically. Specimens from Lake Couchiching have features that resemble Caenis youngi, and were similar to specimens observed near Sault Ste. Marie (Morton, pers. comm.). Provonsha (pers. comm.) suggests that those with similarities to both C. punctata and C. youngi may actually be the undescribed nymphs of Caenis candida.

Zebra mussels were dominant members of the benthic community at all stations (Figure 15) with numbers ranging as high as 60,000 m⁻² (Appendix J). Most of these zebra mussels were associated with *Chara*, actually being attached to the macroalga. So far, abundances of zebra mussels in Lake Couchiching are not extraordinary. Zebra mussel populations have exceeded 200,000 m⁻² on hard substrate in Lake Erie (Dermott et al., 1993), but are typically lower (10,000 m⁻²) on soft substrate (e.g., Griffiths, 1993).

Figure 15. Map of Lake Couchiching showing the percent composition of major groups of benthic macroinvertebrates at each station in 1997.

The arrival of zebra mussels in Lake Couchiching has the potential to alter both biological and physico-chemical aspects of the lake. The date of entry of zebra mussels into the lake has not been confirmed (Ron Allan, OMNR, Lake Simcoe Fisheries Assessment Unit, pers. comm.). However, some of the "baseline" characteristics described in this survey may already reflect the presence of zebra mussels. The change in lake clarity since 1977 is a good example (Section 4.2.3). Such changes in clarity are typically followed by effects on local sediments and fauna. For example, in Lake Erie, increased clarity has caused walleye to seek deeper (darker) water. In addition, the filtering ability of zebra mussels shifts a lot of energy from the water column to the sediments where it is more available to benthic organisms. In Lake St. Clair, increased water clarity is considered one reason plant growths have increased (Griffiths, 1993). In Lake Erie, Dermott et al. (1993) demonstrated that benthic communities in the vicinity of zebra mussels were more abundant. Via production of pseudofaeces, zebra mussels also have the potential to alter sediment type (make sediments finer) and increase contaminant concentrations in sediments (Howell et al., 1996).

Most of these effects on fish, plants and small benthos are fairly subtle in relation to the effects zebra mussels have on large Unionidae. Unionids are large bivalves that live in soft sediments, and like zebra mussels, filter water. In Lake Couchiching, the single species of unionid bivalve identified in the survey was Lampsilis radiata (Appendix L). Specimens of L. radiata were found at Stations 13 and 15 using the Ponar grab. Specimens were also observed (but not collected in the Ponar samples) at Station 21. At that station, the "bed" of unionids started in about 2 m of water, while between 3 and 4 m, several hundred unionids were apparent. Zebra mussels tend to use unionids as a substrate for attachment. Large numbers of mussels can occlude the siphon apparatus of unionids, effectively killing them (Mackie, 1991; Gillis and Mackie, 1994). Severe negative impacts on L. radiata can therefore be expected as a result of the introduction of zebra mussels into Lake Couchiching.

In addition to the effects of zebra mussels on biological systems, zebra mussels have also been known to foul domestic and industrial water intakes. For those municipalities with drinking water intakes, the die-off of zebra mussels inside pipes can lead to taste and odour problems unrelated to those associated with increased algal growths (Katona, 1998). Treatment of water inside intake systems can control infestations beyond the point of intake. In municipal intakes, the use of alum to remove suspended solids also removes veliger larvae from the water column (Mackie and Kilgour, 1995). Low levels of chlorine added to intake water during settling periods (mid-summer) also prevents the settlement and attachment of mussels inside water intakes and distribution systems (Claudi and Mackie, 1994). Finally, zebra mussels do tend to be fairly abundant and when they die, their shells may wash up on shore. As a result, beaches can be less attractive for swimming and walking due to shell debris.

The ability of zebra mussels to filter and clarify lake water may be associated with changes in the taste and odour of drinking water taken from the lake. Increased light penetration should increase the production of macroflora, as well as benthic algae and bacteria. As discussed, growths of algal near the bottom of the lake have been observed.

The benthic fauna of Lake Couchiching generally reflect a slightly mesotrophic condition (Appendix J). This conclusion is based, in part, on the low numbers of tubificid worms. Tubificids are typically

found in high numbers in eutrophic conditions (Howmiller, 1977; Milbrink, 1983). The conclusion of slight mesotrophy is also based on the complex of chironomid taxa found (Appendix J). The high proportion of Orthocladiinae chironomids (especially *Epoicocladius*), the Tanytarsini chironomids *Stempellina* and *Zavreliella* suggest relatively high water quality, since these taxa are sensitive to eutrophication (Saether, 1979; Bode, 1988). The most dominant chironomids included *Chironomus*, *Dicrotendipes, Paratendipes, Tanytarsus*, and *Procladius*. All but *Tanytarsus* are reasonably tolerant of eutrophic conditions, implying that the lake is at least to some degree eutrophied. Finally, mesotrophy can be assumed based on the abundances of organisms at all stations. Typically, oligotrophic lakes can support only up to about 2,000 benthic organisms m⁻² (Dermott, 1985; Dermott et al., 1986). In Lake Couchiching, numbers were generally in excess of about 20,000 m⁻² (Appendix J).

Spatial variation in benthic community composition in Lake Couchiching was apparent (Figure 15) but was unrelated to any of the chemical measurements made of water or sediments. As such, much of the observed variation in benthic community composition can be considered natural for the lake. The single physical factor that did tend to correlate with variation in benthic communities was depth. Although all stations were dominated by zebra mussels, benthic communities from the deep stations (5, 15, 17) had benthic communities with higher proportions of the phantom midge Chaoborus punctipennis. Two of these stations (5 and 15) also tended to have higher proportions of sphaeriid or fingernail clams (Pisidium), the snail Helisoma anceps and the chironomid Paracladopelma. The benthic fauna at Station 19 was unique. Station 19 was shallow (1.7 m depth) and near the inflow from Lake Simcoe. The benthic fauna there had relatively high proportions of isopods (Lirceus lineata, Caecidotea racovitzae), snails (Viviparous georgianus) and worms (Limnodrilus clarapedianus). All of these taxa are reasonably tolerant of high nutrient concentrations, but L. lineata tends to be found in cooler water. The fauna at this station are unique because it receives water from Lake Simcoe, which is a little cooler.

Chironomids, which are generally fairly tolerant of degraded water quality, were more dominant at Stations 8, 12, 16 and 18. The fauna at Station 18 was primarily composed of chironomids (midges; Figure 15). Chironomids may be prevalent at Station 8 because Robinson Creek discharges at that point. Benthic fauna at creek outlets can be expected to be somewhat unique because the discharges are a source of allochthonous organic matter. High proportions of the benthic fauna at Stations 16 and 18 may be reflecting impaired water quality at these locations.

5. OVERVIEW OF ENVIRONMENTAL QUALITY

Lake Couchiching is a basic, hardwater lake. Primary production in the lake is limited by phosphorus, since water-borne phosphorus concentrations are low. In general, the lake can be classified as either oligotrophic or slightly mesotrophic based on good water clarity, low nutrient concentrations, and a suite of organisms (phytoplankton, zooplankton, benthos) that are typically associated with oligotrophic to slightly mesotrophic conditions. Bacterial (i.e., faecal coliform) levels in the lake were low, such that swimming is of high quality. Oligotrophic lakes are the most desirable from a recreational standpoint because of the high clarity. They also tend to support large sport fish because oxygen concentrations are high throughout the year, even in deep water. Mesotrophic lakes are characterized by moderate growth of algae and aquatic plants. They are suitable for the pursuit of water oriented recreational activities but have the potential to develop periodic algal blooms.

The lake has been exposed to anthropogenic sources of both metals and organic contaminants. Sediment core samples demonstrated significant increases in levels of chlorides, nutrients and metals in the most recently deposited sediments. These increases appear to be most localized near Orillia, and probably originate from urban runoff. Historically, sediment nutrients have been above PSQG LELs and are currently not above SELs. Water-borne nutrient concentrations are below concentrations that are typically associated with nuisance growths of algae. Metal levels are also generally below provincial water quality objectives and sediment LELs. Metal levels in water and sediments should therefore have no adverse effects on the biological systems of Lake Couchiching.

Contamination by organic compounds in Lake Couchiching is at low levels. Some marginal elevation of levels of oil and grease was demonstrated in more recent lake sediments, but these increases were associated with natural sources such as lipids and fats resulting from decomposing plant and animal matter. Atrazine was found at trace levels in water along the western shore. This herbicide originates from agricultural practices and is non-persistent. Observed trace amounts of atrazine do not pose ecological or human health risks. PAHs were detected at low concentrations in a few of the Lake Couchiching surficial sediment samples. PAHs were detected primarily in the south-west end of the lake near Orillia. With one minor exception, concentrations of the individual compounds, as well as total PAHs were below the respective LELs. Persistent organic contaminants including PCBs, organochlorine pesticides, phenoxy acid herbicides, chlorinated phenols, and chlorinated aliphatics and aromatics were not detected in any of the surface sediment samples. Organic contaminants in Lake Couchiching should therefore pose no ecological or human health risks.

Even though metal levels were low, there is still evidence that at least mercury is biologically available and biomagnifies in the food chain. Routine monitoring by the OMOEE (1997) shows that mercury levels in large specimens of smallmouth bass, largemouth bass, northern pike, walleye and yellow perch are elevated with consumption restrictions. Mercury levels in mid-lake surface sediments are elevated above historical levels, but remain below LELs.

The flora and fauna of Lake Couchiching are fairly typical for lakes in central Ontario. During the 1970s, macrophytes were dominated by Eurasian Water Milfoil. Since then, prevalence of this exotic species has declined. Another exotic, the zebra mussel (*Dreissena polymorpha*) is now a numerically dominant organism in the lake. Zebra mussels were shown in the 1997 survey to be dominant in both

the benthos and plankton. Typically, zebra mussels adhere to hard substrate, but will attach to plants. With the macrophyte *Chara* prevalent at almost all stations, zebra mussels used the *Chara* as substrate. Zebra mussels present the most immediate environmental concern in the lake since it has the potential to not only alter biological processes in the lake, but to also interfere with domestic and industrial water uses, and recreation.

6. RECOMMENDATIONS

Recommendations

The third objective of this report is to provide recommendations concerning possible impacts associated with future development. With increasing development, there is the potential for alterations in water quality to occur. Some of the more significant sources of water quality impairment include:

- i) soil erosion and sedimentation from construction activities
- ii) increased contaminant, bacterial, and suspended solids loadings from storm-water runoff
- iii) increased phosphorus loadings from future development (municipal sewage)
- iv) streambank erosion in new developments
- v) introduction of exotic species
- vi) loss of aquatic habitat through shoreline development

Based on the predicted impacts of development and on the results of the survey, the following recommendations are made.

Recommendation 1: Further confirmation and investigation of sites where impairment was demonstrated.

Biological impairment was evident at Station 16 and at Station 18. Further confirmation and investigation of impairment at these two locations by the Ministry of the Environment is warranted.

Recommendation 2: Implement appropriate management practices to minimize water quality impairment

Water quality impairment from development can be minimized through proper planning, education and mitigation. In this regard, the Ministry of the Environment is conducting meetings with Municipalities, conservation authorities and consultants in Simcoe County.

Recommendation 3: Develop a monitoring program to track long-term changes due to the trophic status of the lake.

In order to assist area municipalities in making prudent planning decisions, the Ministry of the Environment will conduct periodic biological and chemical monitoring in Lake Couchiching.

7. REFERENCES

- Aiken, S.G., P.R. Newroth and I. Wile. 1979. The biology of Canadian weeds. 34. Myriophyllum spicatum. Canadian Journal of Plant Science, 59:201-215.
- Bode, R.W. 1988. Quality assurance workplan for biological stream monitoring in New York State. Stream Biomonitoring Unit, Bureau of Monitoring and Assessment, Division of Water, NYS Department of Environmental Conservation, Albany, NY.
- CCME (Canadian Council of Ministers of the Environment). 1991. Canadian Water Quality Guidelines.
- Carleton, R.E. 1977. A trophic state index for lakes. Limnology and Oceanography, 22:361-369.
- Carter, S.R. 1979. The invasion and decline of Myriophyllum spicatum in a eutrophic Wisconsin lake. In, J.E. Breck, R.T. Prentki and O.L. Loucks (eds) Aquatic Plants, Lake Management and Ecosystem Consequences of Lake Harvesting. Conference proceedings, Madison, Wisconsin, February 146, 1979.
- Chapman, L.J. and D.F Putnam, 1966. The Physiography of Southern Ontario. 2nd edition. Univ. of Toronto Press.
- Claudi, R. and G.L. Mackie. 1993. Practical Manual for Zebra Mussel Monitoring and Control. Lewis Publishers, Boca Raton.
- Cumming Cockburn Ltd., 1992. Estimated Monthly Flows and Exports of Total Nitrogen and Phosphorus from Lake Simcoe at Atherley. Report prep. for The Lake Simcoe Environmental Management Strategy Technical Committee. LSEMS Implementation Tech. Rep. No. Imp.B.12, April, 1992. 8 pp. + tables and appendix.
- David, S.M., K.M. Somers, R.A. Reid, R.J. Hall and R.E. Girard, 1998. Sampling Protocols for the Rapid Bioassessment of Streams and Lakes using Benthic Macroinvertebrates. Ontario Ministry of Environment and Energy, Aquatic Sciences Section report. Dorset, Ontario.
- Dermott, R.M. 1985. Benthic fauna in a series of lakes displaying a gradient of pH. Hydrobiologia, 128:31-38.
- Dermott, R.M., J.R.M. Kelso and A. Douglas. 1986. The benthic fauna of 41 acid sensitive headwater lakes in north central Ontario. Water, Air and Soil Pollution, 28:283-292.
- Dermott, R.M., J. Mitchell, I. Murray and E. Fear. 1993. Biomass and production of zebra mussels (Dreissena polymorpha) in shallow waers of northeastern Lake Erie. In, T.F. Nalepa and D.W. Schloesser (eds), Zebra Mussels, Biology, Impacts, and Control. pp. 399-414.
- Fanslow, D.L., T. Nalepa, G. Lang. 1995. Filtration rates of the zebra mussel on natural seston from Saginaw Bay, Lake Huron. Journal of Great Lakes Research, 21:489-500.
- Fassett, N.C. 1957. A Manual of Aquatic Plants. The University of Wisconsin Plants. 405 pp.
- Gemza, A., 1995a. Spatial and temporal water quality trends in Severn Sound, Georgian Bay, since the introduction of phosphorus control guidelines: nutrients and phytoplankton, 1973 to 1991. Water Quality Research Journal of Canada, 30(4):565-591.
- Gemza, A., 1995b. Zooplankton seasonal dynamics and community structure in Severn Sound, Lake Huron. Water Quality Research Journal of Canada, 30(4):673-691.
- Gillis, P. and G.L. Mackie. 1994. Impact of the zebra mussel, *Dreissena polymorpha*, on populations of Unionidae (Bivalvia) in Lake St. Clair. Canadian Journal of Zoology, 72:1260271.

Griffiths, R.W., 1993. Effects of zebra mussels (*Dreissena polymorpha*) on the benthic fauna of Lake St. Clair. T.F. Nalepa and D.W. Schloesser (eds), *Zebra Mussels: Biology, Impacts and Control*. Lewis Publishers, Boca Raton, Florida. pp. 415-437.

Health and Welfare Canada. 1983. Guidelines for Canadian Recreational Water Quality. Federal-Provincial Advisory Committee on Environmental and Occupational Health, Ottawa.

- Howell, E.T., C.H. Marvin, R.W. Bilyea, P.B. Kauss and K. Somers, 1996. Changes in environmental conditions during Dreissena colonization of a monitoring station in eastern Lake Erie. Journal of Great Lakes Research, 22(3):744-756.
- Howmiller, R.P. and M.A. Scott. 1977. An environmental index based on relative abundance of oligochaete species. Journal of the Water Pollution Control Federation, 49:809-815
- Hunter, C. and B. McGee, 1994. Survey of Pesticide Use in Ontario, 1993. Estimates of Pesticides Used on Field Crops, Fruit and Vegetable Crops, Provincial Highway Roadsides, and by Licensed Pesticide Applicators. Ontario Ministry of Agriculture, Food and Rural Affairs, Policy Analysis Branch report, November 1994. 31 pp.
- Jones, M. and D. Veal, 1972. Aquatic Plant Growths in Lake Couchiching. Ontario Ministry of the Environment, Water Resources Division report. Toronto, Ontario. 29 pp. + appendix.
- Katona, G.Z. 1998. Phytoplankton and water quality study of Lake Couchiching to identify causes of taste and odour problems in Orillia drinking water supply. Prepared for the City of Orillia. Report AWM - 039.
- Kilgour, B.W., R.C. Bailey, E.T. Howell and W.M. Morton. 1995. Nearshore benthos of Lake Ontario, 1981 and 1991. Final report prepared by Water Systems Analysts for the Ontario Ministry of Environment and Energy.

Klemer, A. and J. Barko 1991. Effects of mixing and silica enrichment on phytoplankton seasonal succession. Hydrobiologia 210:17181.

- Lake Simcoe Conservation Authority, Ministry of Natural Resources, Ministry of Environment and Energy, and Ministry of Agriculture, Food and Rural Affairs. 1995. Lake Simcoe: Our Waters, Our Heritage. Lake Simcoe Environmental Management Strategy, Implementation Program, Summary of Phase I Progress and Recommendations for Phase II, November 1995.
- Lowe, R.L. and R.W. Pillsbury. 1995. Shifts in benthic algal community structure and function following the appearance of zebra mussels (*Dreissena polymorpha*) in Saginaw Bay, Lake Huron. Journal of Great Lakes Research, 21:558-566.
- Mackie, G.L. 1991. Biology of the exotic zebra mussel, *Dreissena polymorpha*, in relation to native bivalves and its potential impact in Lake St. Clair. Hydrogiologia, 219:251-268.
- Mackie, G.L. and B.W. Kilgour. 1995. Efficacy and role of alum in removal of zebra mussel veliger larvae from raw water supplies. Water Research, 29:731-744.
- Marchant, R. 1989. A subsampler for samples of benthic invertebrates. Bulletin of the Australian Society of Limnology, 12:49-52
- Milbrink, G. 1983. An improved environmental index based on the relative abundance of oligochaete species. Hydrobiologia, 102:89-97.
- Newmaster, S.G., A.G. Harris, and L.J. Kershaw. 1997. Wetland Plants of Ontario. Lone Pine Publishing, Edmonton. 240 pp.

- Nicholls, K.H., E.C. Carney and G.W. Robinson, 1977. Phytoplankton of an inshore area of Georgian Bay, Lake Huron, prior to reductions in phosphorus loading. Journal of Great Lakes Research, 3(1-2):79-92.
- OMOE (Ontario Ministry of the Environment). 1978. Mercury in the Lake Simcoe aquatic environment. Water Resources Branch.
- OMOE (Ontario Ministry of the Environment), 1989. A Guide to the Collection and Submission of Samples for Laboratory Analysis. Laboratory Services Branch, Etobicoke, Ontario. 81 pp.
- OMOEE (Ontario Ministry of Environment and Energy), 1993. The Determination of Trace Metals in Potable Waters by ICP-MS. DWATER-E3051A. Laboratory Services Branch Quality Management Office, July 9, 1993. 43 pp.
- OMOEE. 1994a. The Determination of Trace Metals in Sediments by the Spectro Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). HMARSOIL-E3062A. Laboratory Services Branch Quality Management Office, March 28, 1994. 45 pp.
- OMOEE. 1994b. Water Management Policies, Guidelines, Provincial Water Quality Objectives of the Ministry of Environment and Energy. July, 1994. Toronto, Ontario. 21 pp. + table + appendix.
- OMOEE. 1994c. The Determination of Polychlorinated Biphenyls (PCBs), Organochlorines (OCs) and Chlorobenzenes (CBs) in Soil and Sediments by Gas Liquid Chromatography-Electron Capture Detection (GLC-ECD). PSAOC-E3270A. Laboratory Services Branch Quality Management Office, July 18, 1994. 37 pp.
- OMOEE. 1994d. The Determination of Polynuclear Aromatic Hydrocarbons (PAH) in Soil and Sediments by Gel Permeation Chromatography-High Performance Liquid Chromatography (GPC-HPLC). PSAPAH-E3350A. Laboratory Services Branch Quality Management Office, July 20, 1994. 28 pp.
- OMOEE. 1995a. The Determination of Total Carbon in Soil and Sediments by the Leco Carbon Analyzer. CARBONTC-E3142A. Laboratory Services Branch Quality Management Office, July 1, 1995. 19 pp.
- OMOEE. 1995b. The Determination of Moisture Content, RST, RSTA, and LOI in Sediments by Gravimetry. PHYSOLID-E3139A Laboratory Services Branch Quality Management Office, October 16, 1995. 18 pp.
- OMOEE. 1995c. The Determination of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Soil and Sediment by GC-MS. PSAFD-E3151B. Laboratory Services Branch Quality Management Office, November 25, 1995. 34 pp.
- OMOEE. 1997. Guide to Eating Ontario Sport Fish. 1997998. Environmental Monitoring and Reporting Branch, Biomonitoring Section.
- OMNR (Ontario Ministry of Natural Resources). 1985. Guide to taxonomic standards for the identification of Ontario freshwater invertebrates. Draft report, 1985.
- Pace, M.L. 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnology and Oceanography, 31:45-55.
- Persaud, D., R. Jaagumagi and A. Hayton, 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy, Standards Development Branch and Environmental Monitoring and Reporting Branch. August, 1993, reprinted September, 1994. Toronto, Ontario. 24 pp. + 3 figs.

- Provonsha, A.V. 1990. A revision of the genus Caenis in North America (Ephemeroptera: Caenidae). Transactions of the American Entomological Society, 116:801-884.
- Quigley, M.A. and J. Robbins 1986. Phosphorus release processes in nearshore southern Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences, 43:1201207.
- Rappe, C., 1994. Dioxin, patterns and source identification. Fresenius Journal of Analytical Chemistry, 348:63-75.
- Redshaw, C.J., C. Mason, C. Hayes, and R. Roberts. 1990. Factors influencing phosphate exchange across the sediment water interface of eutrophic reservoirs. Hydrobiologia 192:233-245.
- Resh, V.H. and E.P. McElravy. 1993. Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In, D.M. Rosenberg and V.H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York.
- Reynoldson, T.B., and D.M. Rosenberg. 1996. Sampling strategies and practical considerations in building reference data bases for the prediction of invertebrate community structure. In, R.C. Bailey, R.H. Norris and T.B. Reynoldson (eds), Study Design and Data Analysis in Benthic Macroinvertebrate Assessments of Freshwater Ecosystems Using a Reference Site Approach, Technical Information Workshop, North American Benthological Society, 44th Annual Meeting, Kalispell, MT.
- Saether, O.A. 1979. Chironomid communities as water quality indicators. Holarctic Ecology, 2:65-74.
- Schloesser, D.W. 1986. A Field Guide to Valuable Underwater Plants of the Great Lakes. U.S. Fish and Wildlife Service, Great Lakes Fishery Laboratory, Ann Arbor, Michigan, and Cooperative Extension Serive, Michigan State University, East Lansing, Michigan. Contribution 644, Great Lakes Fishery Laboratory, U.S. Fish and Wildlife Service, Ann Arbor Michigan.
- Schloesser, D.W. and B.A. Manny. 1984. Distribution of Eurasian Water Milfoil, *Myriophllum spicatum*, in the St. Clair-Detroit River system in 1978. Journal of Great Lakes Research, 10:322-326.
- Shannon, C.E. and W. Weaver. 1949. The Mathematical Theory of Communication. The University of Illinois Press. Urbana, IL.
- Smith, V.H. 1986. Low nitrogen to phosphorus ratios favor dominance of blue-green algae in lake phytoplankton. Canadian Journal of Fisheries and Aquatic Sciences, 43:14853.
- Stoeckmann, A.M. and D.W. Garton. 1997. A seasonal energy budget for zebra mussels in western L. Erie. Canadian Journal of Fisheries and Aquatic Sciences, 54:2743-2751.
- Stoermer, E.F. and E. Theriot 1985. Phytoplankton distribution in Saginaw Bay. Journal of Great Lakes Research, 11:13242.
- Vollenweider, R.A., M. Munawar and P. Stadelman, 1974. A comparative review of phytoplankton and primary production in the Laurentian Great Lakes. Journal of the Fisheries Research Board of Canada, 31: 739-762.
- Wetzel, R.G., 1983. Limnology, 2nd edition. W.B. Saunders Co., Toronto.
- Wile, I., G. Hitchin and G. Beggs. 1979. Impact of mechanical harvesting on Chemung Lake. In, J.E. Breck, R.T. Prentki and O.L. Loucks (eds) Aquatic Plants, Lake Management and Ecosystem Consequences of Lake Harvesting. Conference proceedings, Madison, Wisconsin, February 14-16, 1979.

VOLUME

VOLUME

2

20 Victoria Street Toronto, Ontario M5C 2N8 Tel.: (416) 362-5211 Toll Free: 1-800-387-2689

Fax: (416) 362-6161 Email: info@micromedia.on.ca

Lake Couchiching Environmental Quality 1997

Volume II: Appendices

Ministry of the Environment

ISBN 0-7778-8497-6 (VOL.II) 0-7778-8499-2

LAKE COUCHICHING ENVIRONMENTAL QUALITY - 1997

VOLUME II - APPENDICES

April 2000

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 2000

This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 3736e01

Lake Couchiching Environmental Quality - 1997

Volume II - Appendices

Bruce Kilgour

Water Systems Analysts 60 Omar Street Guelph, Ontario N1H 2V6

Bruce Hawkins and John Westwood

Surface Water Section
Water Resources Assessment Unit
Ontario Ministry of the Environment
659 Exeter Road
London, Ontario
N6E 1L3

Peter Kauss

Water Monitoring Section
Environmental Monitoring & Reporting Branch
Ontario Ministry of the Environment
Etobicoke, Ontario
M9P 3V6

Andy Gemza

Biomonitoring Section

Environmental Monitoring & Reporting Branch
Ontario Ministry of the Environment
Etobicoke, Ontario
M9P 3V6

Table of Contents

Volume II

Appendix A - Wastewater Discharges to Lake Couchiching

Appendix B Preliminary Reconnaissance Survey Results for Candidate Sampling Locations

Appendix C Station Location Information

Appendix D Surface Water Quality and Current Data

Appendix E Sediment Core Data

Appendix F Surficial Sediment Data

Appendix G Phytoplankton Data

Appendix H Zooplankton Data

Appendix I Macroflora Data

Appendix J Benthic Macroinvertebrate QA/QC Measures and Detailed Statistical Analyses

Appendix K Benthic Collection Field Notes

Appendix L Raw Benthic Macroinvertebrate Data

Appendix A - Wastewater Discharges to Lake Couchiching

List of Tables

Table A.1 Wastewater discharges to Lake Couchiching

Table A.1 Wastewater discharges to Lake Couchiching

		Discharge	**			Emu	ent Criter	Effluent Criteria/Objective, mg/L or organisma/Di	
Pacility	Treatment	Type	Discharge Point	BOD	95	T.P.	T. NH	Chlorine	E. coli
Casino Rama STP	mechanical tertiary, with UV disinfection	continuous	400 m offshore	<10	<10	<0.15	<3	QN	<100
Casino Rama stormweler	wetland	intermittent	Marina watercourse (East Branch)						
Casino Rema WTP	packaged, conventional	backwesh			<15				
YMCA Geneva Park STP	three-cell lagoon	seasonal: spring & fall	into bay	13	20	0.5			
Camp Wahonowin STP	single facultative	seasonal: spring or fall	into wetland & then into lake via two culverts	25	25	1.0			
Fern Resort Ltd. STP	single-cell lagoon +	seasonal: spring & fall	into Sucker Creek						
Ontario Educational Leadership STP	extended-air STP	seasonal							

Appendix B - Preliminary Reconnaissance Survey Results for Candidate Sampling Locations.

List of Tables

Table B.1 Preliminary Reconnaissance Survey Results for Candidate Sampling Locations.

Preliminary Reconnaissance Survey Results for Candidate Sampling Locations. Table B.1

	Offer						Crayfish Orconsector s)#. Johnny Darter	leech		dragonfly, large worms & darter	dragonfly & sponge	dragonfly, large worms & leach			large				large	crayfish
	Massel	Dreissens	Diretssena (many on Chara)	Drotssena	Dreissena	Dreissena (larger)	- 5	Dreissene (small, on Chers)	Droissena (small, on Chara)	-	Dreissena (large & small)	Dreissens	Dreissena	Dreissena (on Chara)	Dreissens	Dveissens	Dreissena	Dreissena	Dreissena	Dreissena
	Clean	Engernail, Corbiculo			fingernaid		fingernal (fingernail (Sphaeriu m)	fingernail (Sphaeriu m)		fingernail (Pisidisem)	fingernail (Sphaerise m)	fingernail		(Sphaeriu			fingemail	fingernail
	Small						Helisome, Physic			Helisoma	Lymeraea				Нейготе		Americola, Helisoma, Physa		Bythinia, Cincinnalia	
P Botto	Berr. Mayfly					,	/ (large)	,			/ (large & small)	/ (large)	/ (abundant)	1	/ (large)	,				
	Chiromonial B	/ (red)	/ (red)	/ (red &	,	1	/ (red)	/ (red)	/ (red)	,	,	/ (red & green)		/ (red)	/ (red)	>	7	/ (red)	1	7
	Joseph	,	>																	
	Amphiped			-		-													(abundant)	
	Other		tubers		tubers	tubers	lubers	Potamogeto				Potamogeto			tubers		Potamogeto		Myrtophyllu m, Blodea	
P lors	Chara	J (+Ca)	,	/ (abundant & finer)	/ (abundant)	,	/ (abundant)	/ (very obundant)	7	,	/ (abundant)	7	/ (abundant)	/ (abundant)	1			-		7
	Debris	calcareous, wood chips, snail & fingernail clam shells	calcareous, snail & fingernail clam shells	calcareous, Corbinule shell	Pin	calcareous, unionid shells	calcareous, Corbruía & Sngernal clam shells	calcareous; snail & Engernail clam shells		calcareous, shells	calcareous	calcareous	calcarrous (abundant)	calcareous	calcareous, abundant bark, unsoned shell	mail, fingernal clam & unonid shells	calcareous, unionid shell	calcareous, clam & unioned shells, wood		clam & unioned shells
Settlement	Characteristics	grey, very sulty, organic	grey, sandy, silty, jelly-like ooze, H ₂ S odour	grey, sandy, silty, jeffy-like ooze, H,S odour	grey, sandy, silty ooze, sight H,S odour	grey, silty, gritty voze (more sand)	more brown-grey, sulty ooze, slight H ₁ S odour	grey, sulty ooze	grey, sulty ooze, H ₃ S odour	darker grey, sandy silt	grey-black, sandy silt, some H,S odour	grey, sandy salt	grey, sandy silt	grey, sandy sult; large rock outcrope	grey, more sandy salt	grey, fine, siley come	grey, soft, silty ooze	grey, sandy, silty ooze, H,S odour	brown, silty sand	grey, salty ooze
-	Fullness	3/5	5/2	2/2	5/5	5//5	88	3/3	3/3	5857	3/5	5//5	3/2	3/3	4/5	\$	88	375	4/5	4/5
Depth.	metres	3.0	81	3.0	3.4	80 1	27.30	2.4	1.5	8	3.4		2.7	2.1	3.0	-6	51	1.5	1.5	2.1
Tables .	ross. No First No. Location/Description	off Orillia marina	middle of Pumpkin Bay	north of Couchiching Beach Park	south of Tafton	in bay south of Wilson Pt., off boat channel	off Wilson Pt., near red buoy	Woods Bay, off radio antertra & Happyland	off Amigo Beach	Cumberland Beach, off brown order collage with fence	south of Scarlet Park	north of Scarlet Park	Washago, north of green. buoy No. 263	Floral Park	bey at YMCA Camp	off flashing red buoy	Geneva Park	off mouth of Sucker Cr.	north of Atherley, off Couchichine Point	off Monse Beach
No.	Lecter. No Films No.	-	2	3	4	3	0	2	00	0.	01	=	13	13	14	15	91	1.1	81	10

Appendix C - Station Location Information

List of Tables and Figures

- Table C.1. Sampling Locations and Coordinates.
- Figure C-1. Map of Lake Couchiching showing locations of the 25 stations at which currents were characterized.
- Figure C-2. Map of Lake Couchiching showing locations of the three transects along which macrophytes were characterized.

Table C.1. Sampling Locations and Coordinates.

Station		Water	Metres from	Coordinates	(NAD83)
Number	Location / Description	Depth, m	shore	Northing, m	Easting, m
1	west shore, 70 m southeast of Orillia Marina break wall; off Cedar Island	2.0		4941010	626400
2	west shore, off Couchiching Beach Park	2.8	150	4941690	626081
3	west shore, 300 m north of Orillia water intake structure	2.7	300	4942327	626123
4	west shore, off Tafton; 525 m off Wilson Point	2.2		4943947	626076
5	in centre of south basin; 1000 m south of Chiefs Island	9.0		4944015	628261
6	west shore, halfway between red buoy SC6 and Wilson Point	3.2		4944651	626586
7	west shore, off Woods Bay	2.1	300	4945263	626186
8	west shore, off Amigo Beach	1.4	240	4949501	627734
9	west shore, off Cumberland Beach Point	2.1		4950735	628064
10	west shore, in centre of Cunningham Bay	1.8	240	4951596	628278
11	west shore, off small tributary north of Scarlet Park	2.0	430	4953889	630121
12	north end, 120 m east of green buoy S263 (Washago)	1.7		4955588	631488
13	east shore, off Floral Point	1.8	125	4953966	631163
14	east shore, off YMCA camp, in centre of small bay south of Floral Park	3.2	80	4951427	631186
15	in centre of north basin; 1200 m northwest of Geneva Park Point	9.8		4949644	628766
16	east shore, off Geneva Park	1.5	115	4948143	630197
17	east shore, off Casino Rama WTP & at discharge	6.8	435	4945939	629840
18	east shore, off mouth of Sucker Creek	1.4	110	4943206	630323
19	south end, 400 m south of Nadie Island; east of buoy \$305 (Atherley)	1.8		4941423	629450
20	south end, off Moose Beach	2.1	200	4940769	627811
21	middle, in bay north of Chiefs Island	2.6		4945912	628132

Figure C-1. Map of Lake Couchiching showing locations of the 25 stations at which currents were characterized.

Figure C-2. Map of Lake Couchiching showing locations of the three transects along which macrophytes were characterized.

Appendix D Surface Water Quality and Current Data

List of Tables and Figures

- Table D-1. On-board physical-chemical measurements of Lake Couchiching waters.
- Table D-2. Current speed, direction and temperature of Lake Couchiching waters (June 4-6 measurements, using Mini-Aanderaa meters).
- Table D-3. Macroi-ion, nutrient and phenolics concentrations in Lake Couchiching water samples in June and July 1997.
- Table D-4. Physical factors, chlorophyll and bacterial concentrations in Lake Couchiching water samples in June and July 1997.
- Table D-5. Inorganics and heavy metals concentrations in Lake Couchiching water samples in June and July 1997.
- Table D-6. Triazine herbicides concentrations in Lake Couchiching water samples on June 3, 1997
- Table D-7. Phenoxy acid herbicides concentrations in Lake Couchiching water samples.
- Table D-8. Chlorinated phenols concentrations in Lake Couchiching water samples.
- Figure D-1. Temperature, current speed and direction at Station C1 at 1 m below surface.
- Figure D-2. Temperature, current speed and direction at Station C1 at 1 m above bottom.

Table D-1. On-board physical-chemical measurements of Lake Couchiching waters.

Concentration units as noted: mg1 = ppm; NTU = Nephelometric Turbidity Units.

Number Date Number m m degree C	8 8 8 1 1	degrees C	G. FRR. B						
20	881		1+H Bot	lığır	% seharation	umhos/cm@25C	DEN.	cm/sec	magnetic North
	8 8 1 8	1831	8.59	10.76	107.6	339	41	1	1
	81 1 8	15.33	8.30	10.75	97.01	339	57	. 1	1
	1.73	1831	153	10.80	108.0	336	45	1	8
	W. V.	14.50	3	t	1	1	t	979	145
22 28.38 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	200	10.17	8.13	18.36	936	329	00	t	1
22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	1.50	1 20.25	8.26	878	99.3	326	0.0	1	1
	0.50	1534	15.31	10.84	108.4	339	97	1	1
77 TZ SEE	100	1534	8.8	10.80	108.4	339	97	T.	1
	2.00	15.29	8.6	10.90	108.4	339	99	t	1
	2.40	15.28	8.0	06:01	108.4	339	53	1	1
	2.55	15.63		1	8		1	90	131
	0.40	30.10	8.17	8.07	89.2	330	0.0		
	1.30	1 20.22	8.77	808	19.4	330	0.0	1	1
25 7429 25	2.50	1 20.21	8.72	101	88.9	330	0.0	1	
	0.00	18.57	8.45	10.79	108.5	338	45	1	1
	1.10	15.60	8.47	10.73	67.01	338	3	1	
	200	15.47	8.8	10.89	100.2	337	2	\$	
824	2.65	15.93	8	1	\$	8	8	9.0	
TOB 48617 2.5	0 0.00	30.39	8.16	7.94	=	331	1.0	t	
	. 1.60	20.38	8118	7.95	88.2	301	0.5	1	
	2.30	38.37	B.19	196	683	332	910	1	
145 76840 2.6	0.50	15.95	873	10.10	102.3	338	5.7	1	
	1.00	15.96	6.37	10.12	102.6	338	28	1	
	. 130	9 15.96	103	10.09	102.2	338	815	\$	
- 878	. 1.85	\$ 16.85	1	8	1	1	1	30	
7198 48616 2.5	0.30	7 20.17	8.30	878	91.5	330	0.0	1	
	87 .	38.16	8.24	837	92.5	331	00	1	
503 76841 9.3	0.50	9 14.00	2	101	29.0	339	43	t	
	1.70	99 11466	151	7.06	9.69	339	43	1	
	2.00	14.63	8.30	27.9	66.2	339	7	1	
	3.00	1464	8.54	60.0	629	339	7	B	
	4.00	9 14.6		979	1.09	130	45	1	
	3.00	14.46	8.35	97.9	61.4	339	4.7	ŧ	
	9 .	1442	8.6	6.15	60.3	339	4.5	1	
	7.16	12.67	8.42	92.9	39.3	338	97	1	
	808	0 1231	8.39	679	986	139	67	1	1
- 87%	\$0.6	13.68	1	;	1	1	1	0.0	26
3108 48615 9.1	0.30	20.60	873	8.29	92.4	331	0.0	*	1
	. 1.00	0 20.60	8238	163	97.6	101	0.0	1	
	061 .	0 20.60	8.27	16.8	92.5	131	0.0	1	3
•	400	0 20.60	1.17	878	414	100	0.0	1	1
	. 6.00	0 20.59	8.76	878	92.2	331	0.0	•	1
	. 8.00	10 20.57	828	824	816	330	00	1	3
103 76844 3.0	0.50	0 17.10	R.H	8	1	337	90	1	
	. 1.00	18.87	15.1	1	1	336	0.0	1	
	2.00	1613	8.41	1	3	336	0.2	1	•

Table D-1. On-board physical-chemical measurements of Lake Couchiching waters.

Concentration units as noted: mg/l = ppm; NTU = Nephelometric Turbidity Units.

1	Sample	Page 1	Depth.			dissolved				Speed	Direction
Date	Number Date Number m m	8		degrees C	-log[H+]	No.	% saturation	umhov/em@25C	MTU	cm/sec	magnetic North
			2.40	16.16	8.40	:	1	335	0.4	1	
97/05/78	1	•	2.85	16.13	8	1	1	1		2.7	11
SENTENTA .	48613	3.00	0.0	20.45	8.25	1.46	016	330	0.0		
		٠	8	20.43	8.27	8.0	93.7	330	00	1	
		٠	200	20.44	8.28	8.0	93.7	330	0.0	1	
	•	•	2.50	20.44	8.78	8.43	43.7	326	0.0	1	
97/06/03	76845	2.20	0.40	16.92	8.47	8	1	328	0.0	I.	
		•	1.10	17.15	846	ŧ	1	330	0.0	1	
		٠	1.60	17.01	97.8	:	1	329	90	1	
97/03/19	8		205	14.80	1	:	ŧ	1	8	3.6	13
97/07/08	48612	2.20	0.40	20.01	8.20	7.93	87.3	328	0.0	1	
		•	95	20.02	818	787	86.7	329	0.0	1	
97/06/03	76848	1.30	090	17.34	8.27	1	2	329	0.0	3	
		•	0.9	17.30	8.39	1	1	329	0.0	8	
97/05/29	1	•	1.15	15.20	t	1			8	7.6	105
TOTALLA	10987	1.40	0.20	22.13	808	11.46	1316	297	000		
	•	•	1.20	22.15	8.72	11.29	129.7	297	00	ı	
97/06/03	768.49	2.00	0.50	16.59	8.53	1	1	331	0.0	3	
		•	1.00	16.67	878	1	1	333	0.0	9	
9		•	8:	16.47	8.45	8	8	331	0.0	1	
97/03/79	8		1.85	15.02	1	1	8	:	B		
COLLOURS.	9098	2.20	0.60		8.37		101.7	324	00	3	
		•	8.		14	8.97	102.7	333	00	1	
97/06/03	76850	1.70	09.0	16.75	8.40	3	2	334	0.0	3	
		•	1.00	16.66	8.39	1	1	334	0.0	1	
1	t		1.35	1	1	3	3	8	3	3	
TB/TB/TQ	48605	1.60	0.70		8.42	910	0.101	324	0.0	•	
		•	1.10		8.40	(E. 0)	100 4	334	90	9	
97/06/03	76858	8:	9.0		8.4	8	3	329	0.0	t	
	•	•	0.8		8.35	3	8	200	03	1	
		•	97	17.57	8.36	1	1	328	00	1	
1	8	٠	1.75		1	3	3	t	1	1	
TON BALL	1098	8.1	0.70	21.90	998	10.23	1169	315	03	1	
		•	1.10	11.92	198	16'6	1133	315	90	1	
		•	9.	21.93	9978	10.15	116.1	315	0.0	8	
\$1106.03	76852	8.1	0.50	16.64	8.47	8	3	330	0.0		
		•	1.08	16.60	8.42	3	1	920	0.0	1	
1	1	٠	1.35	1	1	-1	2		1	1	•
TBITBITE	20980	1.40	0.40	22.04	8.6	0.47	108.5	317	0.7	1	
	•		1.00	22.05	**	97.6	108.4	317	0.7	1	
97/04/03	76853	1.3	0.50	15.74		8	t	331	0.0	1	
			8	15.70	8.45	\$	3	331	0.0	8	
3	2	•	1.55	9	1	ı			ŧ	ı	•
TOLIBILI	(0989)	1.70	0.50	21.87	873	9.12	104.1	313	0.0	1	•
		•	2	21.88	839	4 02	103.1	1112	9.0	B	U
#7/06/03	35855	***	50	3131	8.40	1		111	***		
	2000	3.00	200	10.00	-	ì	4	333	4.7	3	

Table D-1. On-board physical-chemical measurements of Lake Couchiching waters.

Concentration units as noted: mg/l = ppm; NTU = Nephelometric Turbidity Units.

Sumple Dept	1			Charles				manyler,	CARRESTON
nber m	8	ntber Date Number m m degrees C	-tog[H+]	figur	% saluration	umhas/em@25C	NTU	CHT/1660	magnetic North
		14.50	8.51	3		332	60	2	
	. 22	1424	18.51	1	3	333	80	1	1
		14.85	8	2	8		3	0.2	141
	90 06	21.01	8.35	8.72	97.9	121	00	1	
		20.92	8.37	838	96.2	322	90		1
	. 31	20.65	8.35	8.46	93.7	STR	0.0	1	
	. 2	10.57	8.8	8.45	176	333	000	t	1
207	20	15.89	8.6	1	1	334	2.0	1	:
		15.80	978	2	3	334	11	1	1
	. 36	15.44	8.47		3	333	16	1	1
		15.12	8.30	:	8	333	2.8	t	1
	. 31	14.87	8.30	8	2	MI	2.9	:	:
		1447	8.50	1	8	335	2.9		1
	. 7	13.24	8.6	t	3	MI	2.6	1	:
		12.95	8.42	:	t	333	3.6	,	2
	. 90	12.41	124	:	B	335	61		
		55 14.52	1	3	1	1	1	0.0	981
e-DC	0 99	21.03	8.36	12.8	93.0	326	0.0	8	:
	. 31	21.04	R.H	8.28	93.0	326	0.0	ı	1
		21.63	8.35	8.26	92.8	326	0.0	1	t
		21.04	134	828	828	326	0.0		1
		21.43	833	8.26	8.2.6	326	99	1	1
		21.03	8.34	8.26	92.8	30%	0.0	8	1
951	8	16.89	134	3	1	339	9.0	:	ŧ
	. 1	06.91 00	11.17	1	t	339	0.0	8	1
		19.36	1	t	1	3	3	0.0	259
119	30 00	20.31	12.3	161	1.99	306	0.0	t	1
		20.31	8.32	9.13	101.2	326	000	8	1
857	.00 00	15.64	85.8	t	1	339	00	ŧ	1
		15.57	8.6	1	8	330	00	ı	1
		15.54	8.40	1	ŧ	330	0.0	1	1
	. 3	14.60	8.0	t	\$	337	0.0	8	2
		14.29	978	3	8	336	00	ŧ	1
	. 3	13.46	1.37	3	8	338	0.0	•	I
		13.13	8.28	1	t	340	8.0	3	1
1		14.00	t	2	2	:	ŧ	00	340
9739	0 00	20.45	8.24	8.52	946	350	0.2	3	1
		20.45	8.30	15.1	996	331	0.0	3	t
		20.45	8.30	858	94.5	331	0.0	1	1
	•	20.45	8.79	8.50	94.5	331	6.5	1	;
828	.28 0.	85.91 05	8.40		8	340	3.5	1	1
1		15.63	1	2	8	8	8	0.0	195
229	30 00	22.61 05.	8.39	996	104.7	721	0.0	1	1
		19.22	1.42	996	104.5	737	0.0	1	1
99	B	0051 09	978	1	t	330	9.4	1	ŧ
		15.03	8.6	2	1	338	0.4	1	ŧ

Table D-1. On-board physical-chemical measurements of Lake Couchiching waters.

Concentration units as noted: mg/l = ppm; NTU = Nephelometric Turbidity Units.

Station Sample Sample Depth. Number Date Number in 20 9710709 48621 1.89 20 97106493 78843 1.19 21 97106493 78846 2.20 21 97106403 78846 2.20 21 97106403 78846 2.20	Page 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	degrees C 19.48 19.43		dissolved				made	TARGETTE .
9705/09 Heating		degrees C 19.41 19.43					į		4 10 1
10480 10480	8 1 8 8 1 8 8 1 8 8 8 1 8 8 8 1 8 8 1 8 8 1	19.43	-log[H+]	ng/l	% saturation	umhow/cm@25C	MTU	cm/sec	magnetic North
97105/29 70843 7.18 97105/29 46620 2.00 121 97106/03 76846 2.39 97106/03 78846 2.39	8 1 1 8 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8	[9.43	838	90.6	98.7	335	000	1	
970643 76843 2.18 970543 208 211 970643 16846 2.39 9706402 308	88 85 88		77	9.12	99.3	33%	0.0	1	
97/06/03	8 8 8 8 8	14.67	8.51	3	8	336	0.0	1	
9709229 500 9700003 108 11 9700003 76646 2.59 9700002 - 159 9700003 - 231	188	9751	8.49	ŧ	8	335	0.0	1	
97105/29 97105/29 97105/29 97105/29 97105/29 97105/23 97105/23 97105/23	138	15.44	8.8	ŧ	2	334	90	1	
### 97100/08 46626 2.08 ### 97106/03 76646 2.38 ### 9710/07 48601 2.38	0.50	1367		8	1	1	1	0.0	
11 97/06/03 76846 2.59 97/07/07 48401 2.21		98 61	8.34	8.8	186	327	0.0	1	
97106403 76646 1.59 97106402 97107107 48601 2.31	95 1	19.85	6.27	8.57	94.0	327	0.0	1	
9706/02 9706/03 9706/03	0.70	16.54	8.39	t	1	336	0.0	1	
97/06/02 97/07/07 48601 2.20 0.4.346 Dev'rs. 97/06/03	8	16.31	8.35	8	ŧ	335	0.0		
97106/02 97106/03 230	360	95 51	8.41	ŧ	8	303	0.0	1	
9700002 == 230 9700707 == 8801 = 230 1 == 240 == 240		17.30	3	1	t	1	ŧ	9.0	
97/07/07 48801 2.20 . 97/06/03	3 5	36 33	8 26	8.69	98.1	329	6.0	4	
	0.40	77.17		1		250	91	,	
n & Staf Davin. 97/06/03	. 100	21.22	8.27	9 2	45.7	359			
in At. 30d. Leevill. 97/00/03		3807+ 8911	844 +/-0.07	9.28 +/-2.78	92.8 +/-28.1	335 +/-3.8	1.68 +/2.21	1	
Mean & Std Devin. 97/97/97-08		20.76 +/-0.83			98.1 +/-9.6	326 +1-7.6	0.12 +/-0.30		
One		:	\$189	4@10C-7@0C	87-09	1	1	,	
IPWQO		1	4.	1	1	ı	•		

NOTES: blank or "-" indicates that data is not available for this parameter or sample.

Disactored Oxygen guideline range is for warmster fishes.

TABLE D-2. Current speed, direction and temperature of Lake Couchiching waters (June 4-6 measurements, using Mini-Aanderaa meters).

Station		Water	Meter			C	Current Sper	7			Co	Current Headin	,				emperatur		ı	
Number	Sample	Dept	Depth.				cm/sec				d and	lapse from magnetic North	ie North				degrees C			
SWS	Dete		8	Vector Mean	Mean *	Min.	Mex	=	Std Dev'n. *	% Coeff Var'n.	Vector Mean	Min.	Max.		Mean *	Min	Mex	Std Devn. *		% Coeff Varin.
ō	C1 OTRACEA	9	90			*	8.0	-	*	:	-									
			2.0	37	8.6	3.3	3.6			2 5	100	9 6	B	17	9 :	18.35	19.37	87.0	75	1.5
5	97/05/65	3.6	90	3.0		3.6		: \$	9 6	2 1	-		2	7		17.60	18.93	0.33	=	1.0
1 5	-			2 :			7 5	3 :	6.0	4	260	0	343	2	19.04	18.94	19.20	0.09	17	6.5
3 1	10000	5.9	-	3.2	33	1.4	3.0	=	0.7	=	327	0	348	22	19.39	19.06	19.77	0.24	=	6.3
3	97/06/04	1.1	=	3.6	5.9	3.3	9.5	=	1.9	32	87	0	240	=	30.61	20.19	20.82	0.70	11	01
2	97/06/04	3.7	2.2	3.4	3.5	2.4	4.5	15	0.7	20	6		30	15	19.08	18.77	19.84	0.78	=	
8	97/06/04	8.2	1.5	5.3	9.6	7.6	11.3	11	1.1	13	16	45	345	28	00.61	18.97	10.06	0.34		2 6
		٠	6.7	8.0	5.2	3.3	6.2	22	0.8	15	**	0	330	21	14.44	14.76	14.96	9.76	2 2	
0	97106/04	2.7	1.3	2.8	3.9	0.0	22	=	=	R	151	8	270	=	8	18.85	10.01			
0	97106/04	2.9	1.4	3	11.2	7.5	12.6	9	1.8	91	P	2	155	9	10.72	3	6			
S	97/06/04-05	9.7	2.0	0.2	0.2	0.0	2.8	123	0.7	350	316	0	345	123	16.07	16.78	1786	833		
		•	7.7		4.7	0.0	9.2	134	2.6	35	2112	8	155	124	13.84	13.18	14.51	0.10	:	2.5
٠	90-Sayou.6	9.6	2.0		0.5	0.0	4.5	133	1.1	220	102		345		17.74	17.35	18.4	0.25	35	**
٠	٠	•	7.0		0.0	0.0	0.0	139		1		0	345		13.96	13.41	14.69	9.0	9	3.6
CIO	97/06/04-05	9.0	2.0	0.3	63	0.0	4.1	13	1.6	333	59	20	180	113	16.89	16.65	17.90	0.26	=	**
	•		7.0	0.2	0.3	0.0	5.0	=	1.0	333	22	0	345	_	15.00	1433	8.9	Ro	114	4.7
CII	97/06/04	7.0	2	0.7	1.0	8.8	5.4	13	1.7	88	121	15	345	13	19.34	18.92	19.74	0.27	=	7
		٠	5.5	0.2	1.3	0.0	6.2	13	2.1	162	250	8	155		15.50	15.33	15.84	0.15		1.0
CIS	97/06/03	7.0	1.5	0.7	1.5	0.0	3.7	9	91	103	328	8	M		19.27	19.09	19.43	0.13	•	0.7
		•	3.5	m	0.0	0.0	0.0			3		0	345	6	16.61	16.45	16.82	9.14	-	8.0
CIS	97/06/05	3.3	1.8	17	13	0.0	5.0		2.0	120	12	15	345		19.73	19.61	19.81	95'0		03
2	97/10/2015	3.5	1.5	2.0	2.1	00	3.7	-	1.5	78	292	370	315	4	21.28	21.18	21.39	90'0	95	0.0
CIS	97/06/03	8.0	1.5	3.7	3.8	33	4.		9.4	=	11	0	15		19.88	19.84	19.91	900	4	0.2
		•	6.5	2.8	3.0	2.4	7	-	0.5	11	49	R	75		14.90	14.74	15.31	0.21	*	1.4
CIE	97/06/05	3.0	1.5	1.3	10	0.0	33	-	7	R	317	89	336	1	20.93	29.41	21.94	690	~	3.0
CI7	97/06/05	3.2	1.3	1.5	67	0.0	7		97	3	311	0	300	100	28.10	19.78	28.54	0.35	*	1.7
CIB	97/06/05	3.0	1.5	97	34	2.4	5.0	2	8.0	24	=	15	330	14	19.96	19.87	19.91	0.02	•	0.1
CIS	97/10/6/05	3.9	2.4	2.1	43	2.4	6.2	=	7	33	346	•	345	=	19.65	19.34	19.93	0.19	9	1.0
20	97/06/05	3.2	1.7	1.1	3.6	2.4	6.2	3	-	33	330	0	336	3	20.30	20.07	20.57	6.13	13	9.0
22	97/06/05	18	2	1.8	1.7	0.0	3.7	-	13	4	CNI	15	246		30.00	28.56	20.82	90'0		9.4
C	97/06/05-06	3.2	1.7	0.3	9.0	0.0	6.2	135	1.3	315	341	0	345	135	18.79	17.87	19.67	0.43	133	2.4
CD	97/06/05-06	2.7	1.2	1.1	1.2	0.0	6.2	133	1.9	138	2	0	345	132	19.29	18.38	21.50	0.85	131	**
20	90/90/16	3.0	1.5	0.5	1.5	0.0	13	1	14	63	198	8	315	+	19.59	19.45	19.86	070		1.0
S	97/06/06	3.0	1.5	2.8	3.6	2.4	3.7	9	0.5	1.1	751	225	300	9	18.78	17.06	20.00	1.4	9	1.9

Table D-3. Macro-ion, nutrient and phenolics concentrations in Lake Couchiching water samples.

Concentration units as noted.

Number Date Number 1 9709403 74837 2 9700503 74838 9 970708 48618	uniber				dissolved Inorganic	distolyed Organic	tous Organic	total particulate					
	Number assic	us/em@19C	-log[H*]	Mu	liga	Man	Ingri	New	liga	l _g	N _g m	ng/	Villa
	7430	38	17.9	136	36.0	39	46	0.2	-W 48.1	368	87.9	187	15.4
	6198	197	8.33	133	26.4	43	4.8	6.2	9 IF Ano	26.8	7.04	1.85	13.7
	8638	¥	8.30	133	36.6	3.9	4.4	9.2		36.8	98.9	91	191
	8198	338	8.31	134	26.4	43	20	0.5		398	98	461	651
	6030	345	8.08	90	797	3.8	7 6	0.7	Call Dis	76.6	704		15.0
	2617	9	OK I	135	0.77	77	: :	9 0		36.8	6.74	98	18.7
	0840	96	8.21	133	* * *	7		0.3		17.3	716	2.61	16.2
	9198	340	8.32	133	26.6	3.7	0 0 0 0	92	C=W 41.7	38.6	6.73	98	18.5
	OBA!	2	8.34	136	36.6	3.6	46	0.3		38.6	999	1.85	13.7
	M2-DC	CH. 0	07.0	21.1	36.8	4	7.0	80		26.8	7.00	1.92	18.7
	Bei S.	11.0	£31	134	272	43	5.2	0.1		26.8	7.96	2.02	15.8
	0000	363		135	26.0	3.7	5.2	0.3		26.8	6.72	28 -	15.4
	1991	136	8.30	132	26.6	4.4	0.6		CT 41.0	26.8	7.04	1.92	15.9
	100.00	116	8.27	131	151	3.8	3.6	0.2	A.16 W-0	17.1	979	181	15.2
	MALE 2	337	8.79	131	17.1	41	5.2	0.2	C=W 410	36.6	96.9	161	16.0
	1000	335	8.76	131	25.4	3.9	87	97		1 26.8	999	1.76	15.6
	1008	3005	8.50	112	21.6	4.7	5.2	0.4			989	1.82	15.2
	6869	337	8.22	132	258	318	43	0.3	<=W 42.0	279	95.9	181	15.4
	9008	336	8.36	127	14.8	4.1	2	5.2			98.9	1.85	181
	9689	346	8.29	133	15.8	3.8	48	0.1	c=W 42.5		9 :	2	13.4
	\$008	330	8.35	136	34.6	4.0	5.2	0.3		37.2	989	1	132
	15891	335	8.24	130	15.6	3.8	9.9	6.2	019 A=>	2 2	700	2 2	16.4
	1000	322	828	77	258	: :	75	9 0			3	82.	18.7
	16852	336	8.34	621	13.2		2 3	9.5		26.8		18	17.4
	20990	332	2 3	60	16.6	31	40	9 2	C-W 42.0	36.8	6.62	181	15.8
	16853	2 3	8.28	13.6	24.4	42	2	0.2		3 26.8	181	181	15.5
	1000	300	R 2	7.	36.3	3.8	4.0	6.2	8.5h W->	36.8	6.60	1.82	18.7
	1000 B	2.0	7.	128	25.2	4.4	87	1.2		17.0	7.00	161	16.0
	1000	110	8.31	127	25.4	**	4.8	0.3	c=W 39.5	1 27.0	96.9	1 92	16.0
	BEE IV.	3	8.76	135	25.8	318	43	0.1	<=W 42.8	1 26.8	6.74		16.0
	SIA.DC	116	8.33	129	26.2	42	3.6	9.2	<=W 40.3	36.8	96.9	1	159
	75.876	366	8.74	132	36.6	3.0	4.2	0.3	C=W 41.7	7 26.8	08.9	8 1	158
	11991	1116	R 30	129	36.2	4.4	5.2	0.3		1 370	86.9	8 -	15.8
	M57-R	345	8.37	138	27.0	80	9.0	0.2	(** M->	1 26.6		1.85	15.5
	488	346	18.31	136	17.1	3.8	**	0.3		1 266	2	1 85	19.7
	48624	340	8.34	901	36.0	4.0	5.2	0.3		9 79 8	734	1 83	15.9
	16839	3	8.29	136	17.6	14	5.0	0.3		36.4		181	15.3
	W22-R	338	8.37	137	26 0	44	5.2	0.3		384	114	2	15.6
	1623-R	318	8 40	134	16.4	**	8.5	0.3		26.2	716	F .	154
	0989	7	8.28	134	16 8	3.7	99	0.3	<=W 42.6	9 364	28.9	185	13.1
	1620	345	8.42	140	36.6	3.8	**	0.3		168	104	2	187
	76843	X	8.28	KI	26.4	3.9	99	0.2	9 Ch M=>	386	97.9	3	183
	200	111	8.33	132	36.8	43	9.7	9.0	4	3 26.8	104	8	150
	-		77.0	7	36.4	3.7	3.6	0.5	C=(N 42	7 368	999	98 -	13.4

Table D-3. Macro-ion, nutrient and phenolics concentrations in Lake Couchiching water samples.

Concentration units as noted.

		Field	Conductivity	7		Hardness	Carbon,	Carbon,	Carbon,	Carbon,		Calcium	Chloride	Magnesium	Potassium		Sodium
Number	Date	Number	unform@25C	-teg[H']		New	dissolved inorganic mg/l	dissolved Organic mg/l	total Organic mg/l	total particulate mg/l	dete	San A	J. Bur	No.	-		1
		76847-R	341	824		134	364	3.8	**	0.5	Mas	42.8	111	909	2		156
	97/01/07	10999	333	8.30		130	26.0	13	9	0.3	May 1	9.00	36.6	**			17.3
4.5	Mean & Std Dev's 9709493	1000	342 +/-40		826 +/-806	133 +/-26	16.2	19% 86					36.8			1,000	156 2/8
	Mean & Std Dev'n 97/07/07-08	80-10/1	334 +/84	838	90 0-/+	130 +/-60	258 +4.13	43 +/42	53 +/-10	0.3	1.1%	40 6 4/27	2 368 +/-02	8		189 -/- 681	158 +/-05
	63/09/16	76861-58	1	663		118	₽ 90	W=> 10	0.2 c=W	10		990	02 <=W	900	100	Mes	8.0
		76862-TB	14	10'9		0.2 c=W		W=> 1.0	02 c=W	0			0.5		0.02	-	0.10
1	BOYLOYE	48625-SB	זיל	643		02 c=W	02 <=W	W=> 1.0	02 c=W	0.3	M=> 1	W-> 20.0		0 00	100	W=>	D 800
		48626-TB	14	6.10		0.2 <=W	02 <=W	W=> 10	D 10	0.7			0.7	V ~> 500 /	100	Mo	D 800
PWQO:			:	6545		1	t	t	1	1		1	1	:			,
IPW00			ı	1		ŧ		:	2	1	:		:	1			1

NOTES: "<MDL" = less than method detection limit.

* <= W * = 10 measurable response (zero) less than reported value.

*.R * - field temporal replicate.

*. DC * * Depth Composite

-SB - System Blank. -TB - Travel Blank.

Table D-3. Macro-ion, nutrient and phenolics concentrations in Lake Couchiching water samples.

Concentration units as noted.

Tampfe Sample Date Name Name	Mumber mg/l Marst 173 Assis 173 Assis	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		40 M M M M M M M M M M M M M M M M M M M	3 3 6	0 000 0 0015	3	ST TO ST	2 %		1 1		mg/l	A PA	
	E	0017 0017 0017 0017 0017 0017 0017 0017	₹	1000 1000 1000 1000 1000 1000 1000 100	3 3 6	0 000 0 000 0 000 0 0 0 0 0 0 0 0 0 0	*	Mg/l	Mgm		N [®] W		Ng/I	100	
		0 0000 0 0000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* *	9000	*	97.0							
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* *	0.015			0 0005	M=o	9000	4	950	0.2	-
		0.000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*		-	9.44	0 0000	M=>	0.012		4	80	P
		0.008		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	0 000	W=>	0.36	0.0003	W=>	9000	t	85.0	0.3	#=>
		0 000	t t t ₹	0.001	-	0190	F	0 42	0 0000	Mas	9100		141	9.0	r
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ + ₹ + + +	0.001 0.007 0.001 0.001 0.001 0.001	W=>	0.005	W=>	0.44	0 0003	M=>	9000	t	95.0	0.1	Nac.
		9000	t t t t	0.001 0.007 0.001 0.001 0.001	۲	0.015	t	0 44	0 0003	M=>	0 014		1 46	0.7	/w>
		0000	₹	0.007 0.001 0.001 0.001	W=>	0 000	Mas	92.0	0.0005	M=>	9000	t	95.0	0.3	V=>
		000000000000000000000000000000000000000	₹	1900		0.015	t	0 42	0 0005	M=>	0.010		1.40	0.4	F
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* * * * *	1900	W=>	0.010	t	0.40	0.0005	Mass	0.008	b	87.0		
		000000000000000000000000000000000000000	t t t	0.003	W->	0 000	W->	970	50000	Mari	900.0	t	0.72	6.2	N=>
			t t t	1900		0.010	t	170	0.0005	Mes	0.012		3	0.4	t
		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	t t t	1900	t	0.010		170	0 0005	Mary	0000		99.1	0.2	0
			t t t	1000	-m-	0.00%	Max	9,0	0.6005	W-D	8000	t	0.48	0.3	Call Call
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	t t t			9919		270	0.0005	M.	9100		142	0.2	C
		0000	t t t	200		010.0	7		0.0010		0.004	*	21.0	6.9	Des
		0000	t t	1000	A	0000	A	10		7 1	-	7	***		,
		1000	t t	0.004	t	0.010	t	27.0	0.0003	A=>	0000		917		5
		0000	t	0.001	M=>	0.003	N =>	0.34	0.0015	t	9000	b	8	0.7	1
		9000	t	0 000	Wes.	0.025		0.48	0.0620	t	0.010		101		b
				0.03	Mes	0.005	A-o	0.32	0.0010	t	9000	t	170	0.5	3
		0.010		0.001	Mary			0.40	0.0030	t	0.008	t	960	70	Ç
		9 0.010		0.001	M.o.		Mary	0.32	0 0005	M-O	0.004	t	9 0	20	
		0 003		0.001	M=>			0.40	0.0030	t	9090	t	76.0	0.4	7
		9100 9010		100 0	M=>	0 000	Mary	0.34	0 0000	M-o	9000	t	***	0.5	5
		100 001		0.001	Meo	0.025		0.42	0.0010	t	9000	t	90 -	0 2	C .
		S . 0.010		1900	M=>	0.005	M-o	0.36	0 0000	A.o.	9000	t	0.44	0.7	8
	191 191	0.011		0.001	Mas	0.000	t	0.42	0.0025		0.008	t	80	0	▽ '
	17.	5 0.010	0	0.001	Mas	0.005	A->	0.34	0.0005	W=>	9000	t	8.0	0.7	No.
	191 191	0000	P .	0.001	W=>	0.025		0.40	0.0078	t	0.008	t	1.00	0	<u></u>
	171	3000	W-> 5	100.0	M=>	0.005	M->	0.32	0 0003	M=O	9000	¢	0.50	0.3	T
	W.R. 16	\$ 0.018		0.002	t	0.010	t	0.40	0 0005	Mas	0 0 10		96:0	0	<u></u>
	90.8	5 0 0 0 2 2	64	0 003	t	0.010	r	270	0.0005	A-o	0000		96:0	0	V
	E. 19	9000		1000	Mary	0.005	8-0	97.0	0.0005	M=>	9000	t	0.00	0.7	No.
	200	8100		0.002	t	0.010	t	0.42	0 0005	Mas	0000		36.0	9.0	∇
	11	9007		1900	W=>	0.005	M-D	0.38	0.0005	Mas	900 0	t	950	0	<u></u>
		9 9010		0 000	6	0.005	W=>	0.42	0 0000	Mas	0.00		I.M	03	~
		900		0 661	W->	6.003	W=>	0.34	0.0005	Mas	9000	V	87.0	0.7	2
	37-K			1900	W-0	2000	W=>	7.0	0.0005	Was.	9000	V	0.76	0.2	-
	28-K	0000		1000		0015		0.0	2000 0	W=>	9012			9.0	~
	624 17	000			-	0.000	100	9.49	0.0005	Was.	9100		96.0	0.3	3
	120 12	8 000		1000		-	* *		0 0000	78-7	8.612		-	9.0	~
	12-R 17	9000	t 1	2000	7 (200	7 4		0 0000	-	0.000		1.16	0	~
	23-R 16	8000	v	0 000	t 1	0100	2	77.0	1000	-	0.000	*			Cal
	180 IS	5 0014	•	0.002	t	0.025		0.32	0.0000	*	-	7	3		
	(1)	0 001		0 003	5	9100	t	0.40	0 0000	M=o	9012	-	112		
	71 17	5 0.012	13	1900	M=>	9000	M=>	98.0	0.0003	M=>	9000	t	3	70	8
	91 961	5 0014	*	0.000	Mes	0.010	r	9.46	0.0005	Man	0000		*	=	∇ _
		9919		0.005	Was	9 900 8	Wes	0.32	01000	t	9 000	t	0.48	0.2	- Can

Table D-3. Macro-ion, nutrient and phenolics concentrations in Lake Couchiching water samples.

Concentration units as noted.

1	1	1	1	-	Hitrogen, HH1NH6		NOs NOs		Nitrogen, NOr+HOr		Nitrogen, TKN		Phosphon	si .	Party	4	Sileon, reactive		Phenolica,	
1	2	Humber	Jan 1		New A		Total Control		lan.		-		1		1		1		1	
		76847-R.	18.0		0.008	r	0.001	M=>	0.003	Mass	0.32		0.0010	Þ	9000	V	940		0.2	Was.
	THE PLANT	1000	16.0		910.0		0.001	Mes	0.025		0.0		0.0025		0100		136		9.2	Me
1	News & Sel. Davis, 97/04/03	1070	17.6	+/03		+/-0.004	0.002	200 0-/+	0.00	+0.07+	0.36	+/-0.05	0.0005	M=>	9000	-			93	May
an A s	Meun & Sul. Dev'n. 9787/07-08	80-1018	16.5	+1014	0.018	+/-0.007	0.001	M=>	0.015		0.0		90000		100	+/-0.002	171	+/-0.21	2	
	\$1106/03	74861-58		4	0.002	M.	1000	N-O	0 000	Mes	0.02	1	0.0005	Mrs.	0.002		0.02		3	1
		70862-TB	23	t	0.004	t	0.001	M.O	0.005	Mes	0.02	N-o	0.0005	M=O	0.001	Mary .	0.02	Mary	0.3	Mes
11	SOUGHE	48675-58	5.0		0.002	Mao	0.00	Mas	0.010	b	0.02		0.0005	M=>	2000		0.03		0.4	
		48436-TB	5.0		0 002	M-o	0.001	Mes	0.810	t	9.62		0.6065	Ano.	0.002		0.03		1	
MQO:			ţ		0.020		8		1		1		:		1		1		-	
IPWQ0.			1		8		1		8		1		8		0000	_	1		1	

NOTES: "<MOL" - less than method detection limit.

" <=W " = no measurable response (zero); less than reported value

*.R * - Sald temporal repli

*. DC * - Depth Comp

-588 - System Blank. -TB - Travel Blank.

Table D-4. Physical factors, chlorophyll and bacterial concentrations in Lake Couchiching water samples in June and July 1997.

Concentration units as noted: mg/l = ppm; ug/l = ppb; counts/dl = counts/100 mt; TCU = total colourimetric units st noted:

		Field	Field Weter	Semple	Secola	College,	Turbidity	Suspended	Chlorophyll e,	Chlorophyll	1	Chiecophyll a.	Exchanicia		Fecal	Preudomorea
1	1	The same	Depty	Oppor	Design		E	1	1	1		and and	CONTRACTOR		countries	D) WHO
and an	Det.	Figure		E	E	100			i			-				
-	97/06/03	97/06/03 76837	1.9	1.0	1.9	\$	689	10 001	9I A		5 5	70 CT		*	=	
	STATIONS	0198	1.0	01	130	=	970	5 91	97		M=> 11	10 04		•	~	
~	\$310KUS	36236	2.7	01	2.7	:		10 01	9		17	N=> 01		v :	P (
	STATIONS	-	2.8	0	11	=	990	9	0		M-> 17	8-0 GT		V	2	
	1106/03	76839	2.8	10	2.8	42	0.39	1.0 0-1	**		T	0 on	٠	V		
	BOYLDIL6	48617	1.5	1.8	25	*	23'0	0	0.5	t	t ====================================	10 cat		~		
•	97/06/03	76840	1.0	61	2.0	40	161	P 01	100	•	12 4	N=> 01		~	***	
	STITUTE	9198	2.0	01	10	97	0.52	01	***		M-> 11	1.0 <=W		~	9	
99	\$7/06/03	76841	9.2	01	3.5	:	990	10 <=>	W 1.4		11 4	1.0 c=W		9	1	
		74842-DC	9.2	0048	55	*	0.65	20 01	F 2.0		13 4	10 ct		× ~	*	0.0
	9719708	4614.DC	96	0.00	53	*	0.87	01	01		N=> 11	M=> 01		2 <	**	M
		2000	00	8.0	55	43	1.00	P 91	1		1	1		t	t	
¥	erankers.	Tenan	3.0	10	3.6	43	96.0	1000	W 1.2		12 4	10 c=W		v **	~	6.0
		40011	2		10	52	6.70 524	P 01	80 1	4	11 4	1.8 c=W	-	1	**	EJ
,	-	******	: :	:	**	3.6	790	1.0 01	90 M	-	W=> 11	1.0	-	v #	2	62
	-		: :	: :	: :		70	51	61		13 4	10		2 4	***	62
	27/01/08		3 :	2 :		: :		1.0 00	W 12		7 4	10		2	***	3
	SDAM'S		2 :	80	2 :	: :					West Li	91		~	~	62
	CONTRACT	48607	3	9	•	2				,						
	\$1/06/03	76840	2.0	01	1.0	16	0 00	01			7	2 :		7 1		
	TOTANES	909	11	01	22	41	67.0	> 01	-		5 7	2 :				
2	97/06/03	76850	1.7	1.0	1.7	46	0.62	2 61	90 M	t	No II	91		2 1	~	
	TOTOTE	48605	1.6	97	1.6	3.6	19'0	1.6	T 12		No II	10		~	***	60
=	ED/SOLES	76851	1.9	1.0	61	318	1.12	1.0 0.1	80 A	t	32 d	0		2	-	ba
	TOTTOTTO	10989	1.9	0.1	119	46	0.73	1.0	90	t	N=> 11	9		2		
2	97/06/03	76852	1.5	1.0	1.5	41	16'9	10 01	W 1.2		32 d	9		, ,	*	94
	TOTOTA	20990	71	1.0	2	3.4	969	10	90 L	5	912 ct	10		~	7	
2	\$7,0403	74853	1.3	1.0	1.7	43	660	3.6	T 2.6		7 7	2.0		2	*	92
	CONTON P	(09%)	1.7	1.0	1.7	3.6	0.77	01	90 L	t	N= II	1.0		~	H	w
*	1999016	76854	3.6	1.0	3.0	40	6.93	20	T 10		13 4	0		2	m	
	STATIONS	4808.R	2.9	2	2.9	42	870	10	90 L	t	W-0 18	0		> 1	•	
		#1609.R	2.9	1.0	1.9	46	0.52	91	30 T	+	11 d	1.0		2 4	100	
52	199016	76855-DC	2 9.7	0.0-0.0	95	17	180	10 <	11 11		P 10	70 T		2 <	(44)	40
	SOTOTO	48616-DC	96	0.0-8.5	9.6	3.6	080	> 01	91		11 C	0.0		-	m	
	67/06/03	70856	1.5	1.0	1.5	7	6.77 52	-> 01	01 M		92 CT	1.0		2 <	94	42
	97/07/08	-	5	1.0	2	*	0.49	9.5	T 0.8	t	02 C	0.0		>	-	No.
13	\$1000L6	76857-R	1.0	1.0	5.0	40	190	1.0 <=	91 M		02 A	1.0		v •••	P4	•
		748.8E.R.	7.8	1.0	5.0	42	0.75	10 01	41 M		02 cf	1.0 <=/		2 <	79	v
	WATTER	45.624	7.8	91	30	44	1.13	1.5 <	T 12		01 CT	10 cm		· .		
	# TRANSFE	36830	12	91	1.2	99	1.69	2.0	T 1.6		02 cf	18 cell		> 2	en .	
	OTHER TREE	A.C.23-R	1	91	17	7.8	87.8	. 61	T 1.0		02 CT	10 01		> 2	•	
		4673-R	2	1.0	13	£1	190	1.6	10 Is		02 CT	10 01		~	9	
2	STANSON S	76860	1.7	01	1.3	=	0.35	1.0 0.1	90 M	t	92 cf	10 of		v #*	F4	w
	-	1000	=	01	=	*	0.46	9.5	T 0.8	t	W-> 1.0	10 cell			P4	b
5	-	2000	3.1	0	2.1	**	590	10 01	-W 1.6		01 d	1.0 call		> ~		6
2 .					2.0	=	950	0.5	T 0.4	t	W-> 1.0	1.0 call		2 <		W
. ;	a literal		0 :		3.5	3.6	8.74	W-> 01	W 1.8		D1 4	18 call		2 <	-	
7	\$100mg	/ Jane	2													

Table D-4. Physical factors, chlorophyll and bacterial concentrations in Lake Couchiching water samples in June and July 1997.

Concentration units as noted: mg/l = ppm; ug/l = ppb; counts/dl = counts/100 ml; TCU = total colourimetric units, FTU = Formazin colourimetric units.

Station 1	11	11	P de m	11.	Secolal Dayst,	Coles.	E E	Stapended Solids, mg/l	Chlorophylla, total	Chlorophyll b., total	Chienophysis, corrected	Eschericia cali commissión	Strapstonerns counties	111
		76847-8	2.5	1.0	2.5	3.4	0.90	1.0		> 63 <		1 0	2 4	•
	TOTTOTA	109	11	01	11	38	1.37	D 07	80	A 82 4	N=> 01 1		•	•
2	COMMUNICATION	76861-58	1	1	1	₽ 98	1	ط 10	o-W 0.2 c−W	₩ 02 cf	W=> 01 T	1	,	'
		74862-TB	1	i	i	₽ 0.0	0.02	W-011 P				t	1	t
17 9	THOUSE.	4625.SB	t	,	t	0.2 c=W		A 055	C=W 0.2 C=W	W 0.1 <=W		1	t	1
		48626-TB	1	1	1	0.2 <=W		ط 105	- M	1	1	1	ı	ı
WQC.			1	1	,	1	1	t	4	t	1	8	,	'

NOTES. "< "= actual result is less than the reported vulse.
" < " = a measurable trace amount. interpret with caution

" <= W " = no measurable response (zero); less than reported vulne

* -DC * = Dayth Composite (bacteria sample taken et 1 metre depth).

".TB " - Threel Blank.

" \$24" - Sample settled 20-40 % during I minute test period.

Table D-5. Inorganics and heavy metals concentrations in Lake Couchiching water samples.

All concentration in ugil (ppb).

		Field	See al												-		-		Copper		and a	_	Lead	•	-
Station	Sample	1	Depth.	1	9	Arsenic	*	Barrian			Berylliam		Cadminist												1
1	200	Number																							
												-	0.6160	95.00	8.474	*/-0.770	0.0920	+/-0.0055	0.511	+/-0.110		+4.5.70	_	1/4.1400	9 :
	eTMM/RIS	76837	10	4.9	1-1- 8	01.10	8.5 cm	W 2	-/+ 67	990	00301	0/60/0//	200				0.0513	********		1/-0.100		4.1.0	-	+/-0.1116	3.14
	STINTER	91997	1.0	5.1	9/+ 98	351	0.5 cm		24 +1-	+-1.12		*/-0.0066	-0.0078		2		0.0752	97.0 6176	0.463	+/-0.100		+4-5.70		+/-0.1200	78
	-	3000	01	3.1	B-1+ 91	151	115 00	W 2	-/+ 06	+/-0.75	0.0538	+/-0 0530	-0.0928	06200-/+	****			*/.00%		+/-0.085		+/-1.35	0.0415 +/	+/-0.0980	5.14
	STATISTICS	-	=		P++4	97	.> 50	W 3	14 4/	56.0-/+		*/4.0785	-0 0023	*/-0 0713						+/-0.064	103	+4-7.10		+/-0.1500	1.60
	-	200.00	1.0	7	19 4/4	0.42	85 cm	W 2	·/+ 0'6	09 1-/+		0/10/0//	0.0280	+/-0.0320				-7.0 mms		+/-0.084		+1.24	4 SEDO:4-	+/-0.1545	28
	-	-	=	3,	-/+ 6	10	05 cm	W 3	-/+ 9Th	+/-1.20		+/-00124	4.0076	1300 0-/+	4.73					1.0 007		+/-5.00	0.5480 11	+/-0.1600	330
	-	-		=	7 +6.	27	0.5 4	W 3	97 4	*/-0.88		0910'0-/+	0.0450	+/-0 0300	0.731		200	2000		*/-8074		+/-2.35	-	+/-0.0969	4.68
	61100000				-	15 07	8 C.		15.4 +/-	11.077	6110.0	+/-0.0197	-0.0087	*/-0.0165	-		0.0133			00.00		*/4230		+/-0.1400	1.95
	97/87/68		2 :			2007	96		19 5 4/	+/-0.83		+/-0.0210	0.0184		0.297		0.0429		740			96.5.70		+/-0.2960	128
5	97/06/03	-	01				86 48		30.3 +/-	4/1.50		0580 0-/+	0.0138		0.274		0.0554			-		M 67*	_	+/-0.1180	418
		76842-DX	0000				96	*		160-/-		+/-0.0158	0.0046	-	4.6		0.0221			CBO'0-/4		***		+/-02123	424
	BONLONE	48614-DC	0000		33	76.0-14			74 5 4/	70 17		+/-0.0224	0.0071	+/-0.0248	3.96	1.03%	8100			11.0.0	2 0			-/-0.238D	2.18
			2 :	•	6	1004				+/-1.78	0.0841	*/-0.0500	0.1180		0.243		0.0713		200.0			413.80		*/-01172	415
•	97/06/03		9		2	61.00			14.4	67.07		61100/+	91100	+/-0.0303	3.72		0.0112		0.400		!!	***	-	+/-0.2480	1.73
	97/07/08		07	•	4 67	1800			- DW	9017		+/-0.0630	0.1600	+/-0.0230	0.465	\$ +/-0.000	0.078	0610'0-/-	0.753	06.1.0-/+		000		9/1180	3.94
1	97/06/03		0.1		1 1	200			10.8	3		+/-0.0029	0.0034	1+10.0/+	3.78		0.015	1-7-0.0000	0.416	100/				+4.03638	139
	BOTTOTTO		07	-	20	1001			-	36 17		9/-00 00/4	0.0090	14/0.0187	0.358	#0.0-/+ I	0.036	1/00/0-/+	0.330	1/-0.052				27.0 1047	11.11
	97/06/83		6.9		14 66	*60/*	2			30.00	0.00	*/-0 0432	0.0012		707	4 +/-0.57	0.028	+/-0.0136	0.306	4/0113					8
	\$1107007		01	-	111 +	91.0-1+	65			9		7.0 000	-0.0002			ME 0-/+ 9	0.019	+/-0.0108	0.360	+/-0.051	9		-		123
•	97/06/03		1.0		194 +1	+/-0.48	0.5	*	100	17.0-7			CHC0.0		20.0		-0.018	1913'8-1+ 6	0.735		48.			-	91
	TOTOTO		1.0	-	11 4	+1-28.7	0.5 <	Man	42.4	7.1.7	01/70			0210077			0.035	8129-7- 9	0.300		6.12		0.120	ACCOUNT.	
10	97/06/03		1.0		. 97	+1-0.45	0.5 <	*	194 +	/-0.63	0.00		0.000	4/4/074			-0.001	4 +/-0.0048	0.307		201		8118	440172	
	TBITATE		1.0	•	1. 063	1.0.79	0.5 <	*	96	4.1.70	0.0290	-078.8-1-		-			0.038	0/00/0//	0.358	+/-0.053	117		Q I	+/-0.0479	3 4
=	97/86/83		10		* 188	01-0-10	0.5	*	19.5	*/-1.06	0.0361		-	*********			26100	710.017	0.802	*/-0.0#	472		0.1980	-/-0.0-67	97
	STIMTING.		10	•	1. 69.	11.17	0.5 <	Me	181	7.0 82	0.0233						0.053	9 */-0.0080	0.463	*/-0.058	7.38		-9.0208	1600-1-	1
22	COMMUS.		10		* 585	19'0-/+	0.5	Mari	. 962	2.07	0.0053	#10.0-/+					0.00	950007+ 64	0.249	+/-0.034	4.59		4150	*/-0.0523	
2 .	-		10		1.54 H	+/-0.74	0.5	M-0	39.4	66.0-/-	0.0323		-0.00	7/100//			200		0.402		454	1 +/-2.52	-0.0307	*/-0.0817	5
:	-		01		194 4	+/-0.41	0.5	Men	28.9	14.1.42	0.0319		9.00	0 +/-0 0211			000		0.365		338	+/-2.84	-0.0659	+/-0.0770	1.8
2 .	-				. 279	+1-0.62	9.5	Mary	79.7	17-0.75	0.038		0.00	7 -/-0 02M					0.261		9	14.1.9	-0.1510	*/-0.0536	8
. :	STATE OF THE PARTY				677 4	1.062	9.5	Man	386	16.07	0.0353		-0.0012			W.0-/-	-		0.437		111	1 44.131	0.0274	*/ B.1836	1.6
• •	-		91		7.02 +	11.071	6.5	Mes	30.9	15.1.74	0.0394		0.014						9816		1.1	1 4.137	0.4340	-/4.128	200
	-		91		. 189	+/-0.55	9.5	Mary	314	19.0-/-	0.0143	+/-0.0073	0.00						1110		9.6	3 +/-3.50	0.000	140074	1.50
:	-		N 00.00		6.21	*/-0.65	6.5	Mes	39.5	*/-1.02	0.0278	+/-0.0064	000						0.491		286	6 4/159	0.0310	+/4.1159	
2	-				7.76 +	1080	0.5	Mass	324	+/-8.75	0.0309	+/-0.0174	100						0.304		38	3 4.14	9719	*/404	42
. :	THE PERSON NAMED IN				7.78	1/-0.63	65	W=>	389	+-0.74	0.0361		99	***************************************			0.000		0.862		2.94	4 +1.2.41	0.1210	*/41178	338
•	COMMIN		-		4.78	14.0.57	9.5	Mass	13.1	901-/+	0.0773		900				4000		4117		5.20	0 +1241	0.3650	*/-0.0000	166
	WINDINGS				1	W 974	9.5	Mas	28.5	*/-0.83	0.0173		900						911.0		69		0 2110	*/-0.1007	1.78
11	97/100/03	_			37	-/-0.42	9.5	Mas	28.0	08.0-/-	0.0194		0.00		_	1920 +/-0.101					7.05		2660	+/-0.388	455
						-/-0.74	6.5	Max	×	91 1-/-	0.0079		0.0130								115		9000	+/-0.0784	156
	97/07/08			, ,		2007	9.0	Mes		17.0 82	0.010	1/10/0//	900		•	**************************************					13		4,000	+/41399	328
=	97/04/03	780				******		Mes			0.8074	1-/-0 0300	000								2		1 640	1/43177	33
•	STATINGS	12	-		7/1			Mary			0.0216	/-0.0124		95100-/+ 12									919	1000.074	1.4
•		#133	-		171	20-10		-			95100			MS +/48172									0.160	+/-0.1067	3.28
2	97/05/0	-	-		50	75 0-/-					\$11.00			137 +/-00194		405 +/030				_	:		0.2278		280
	BULBULB	-	-			*/-0.55	63				2000				_	1336 +/-0.130			•		= ;				6.13
2	STABLE	700	- 0		731	11.07	6.9	***		2000	2100							mode/- 00000			7 :				1.76
•	B/LOIL6	W	- 0		10.3	80 1-7+	65		N I		50000		1800 0			1362 -/-0.086		739 -7-00116	0.507	07 -/-0110		16.74	W. 180-		
211	PROFILE	3 76846	-		534	1.07	0.5	Nac.	183	1/4/3	-														

Table D-5. Inorganics and heavy metals concentrations in Lake Couchiching water samples.

All concentration in ug/l (ppb).

3	1			Alaminum	Annual	1		- Bridge		-	O.	Chromium	S	Cols	ű	Copper	1	3	,	}	1
STREETS	1000 LAC	1 = =	2 2	625 +/498	W=> 20 0.5 <=₩	38.1	+/-1.10	90379	0.0484 +/-0.0459	0.0064 +/-0.0240		463		0.0633 +/-0.0140		0.399 +/-0.093	315 +61	+1.246 -0	0.2500 +/-0.1800 -0.1690 +/-0.0668		3 2
Man & Std Devn. Man & Std Devn.	ern. 979643 erh. 979797-8	2 2		1617+ 16173 1617+ 16173	35 SE	2 3	+446	18400	*/-0.0307	0.0067 +/-0	*/-0.0126	13 to 12 to	WE!#	0.0351 +/-0.0340		0.48 +/4210	22 45 45 45 45 45 45 45 45 45 45 45 45 45	44373 G	02362 +/4343		82
15 E	7.0861-58 7.0862-78 7.08 6625-58	8 2 2 2		3.69 +4.0.33 0.938 +4.0.12 1.01 +4.0.03 0.731 +4.0.031	2222	3 5 5 5	+/4 036 +/4 031 +/4 031	0.0017	-/-0.0361 -/-0.0361 -/-0.0159	0.0000 +/-0 0.0169 +/-0 0.0287 +/-0 0.0427 +/-0	*/-4.0188 */-4.0188	9688	+4.0079 +4.0081 +4.0115 +4.0115	0.0502 +/-0(0.0703 +/-0(0.0156 +/-0(+/-0.00% +/-0.00% +/-0.00%	461 +/4334 8136 +/48234 0.425 +/4.092 0.380 +/4.079	134 ÷ 100 ÷	4.2.8 4 4.2.91 4 4.2.319 0	4.056 +/-0710 4.2790 +/-4.0822 8.3730 +/-4.1483 8.83377 +/-4.1919		E 25 25 25 25 25 25 25 25 25 25 25 25 25
ODMA				t	8	1		8		8	= =	1.0 (CrVI)		8		50	*		•		i

NOTES: * 44. * = 95 % Confidence Limits, unless otherwise specified.
* <= W * = no seasonable response (pres): less than reported vulos

- A . - Said temperal replic

. DC . - Days Comp

. 13 - System Black . 13 - Thered Black managed and budded volt

Table D-5. Inorganics and heavy metals concentrations in Lake Couchiching water samples.

All concentration in ugil (ppb).

10 +4472 000 cmm 10 +447						-
10 +4477 042 043 044		-0.0976 +/-0.2800	156 +/4.5	8.92 +4-1.80	0.439	1.160 01-11
10 +4.88 000 cm 10 +4.88 000 cm 10 +4.88 000 cm 10 +4.82 000 cm 10 +		A CHE'NG +/-8 0289	142 +/-75	9.32 +/-0.78	0.586 +/-0.032	0.976 47-0.182
10 +422 000 cm 10 +422 000 cm 10 +423 000 cm 10 +426			146 +/-9.0	1.94 H-0.77	0.411	1 180 mm
10 +4.0.0			142 +1-76	10.1 +/-0.69	0.679 +/-0.041	0.512 +/-0.164
10 +40.00			144 +1.73	830 +/-057	0.007 +/-0.050	1.160 +/-0.240
10 +428 000 cm 10 +428 000 cm 10 +428 000 cm 10 +421 0		_		190	1000+ 2000	1,760 +/-0,267
10 +4.0 10 10 10 10 10 10 10				5		4380 +/-0.480
10 +4013 002 cm 10 +4013 003 cm 10 +4013 003 cm 10 +4013 003 cm 10 +4013 003 cm 10 +4014 003 cm 10 +4014 003 cm 10 +4014 003 cm 10 +4014 003 cm 10 +4015 003 cm 10 +4016 003 cm	_				5590	0.547 +/-0.159
10 +4-00 10 +4-00 10 +4-01 10 +4-01 10 +4-01 10 +4-01 10 +4-00 10 +4-00		01280 +/-0.2197				1 970 +/-0.410
10 140 000		-0.0362 +/-0.2500				
10 +4413 002 -4418 002 -4418 002 -4413 002 -44	A 400 A / A 6577		154 4/-12	0 884 +/-091		
10 +4413 000 -4411		871.9	145 4-7.5	9 9.17 +/-0.64	0690	201 D. L. CHE D.
10 +4423 002 -4 10 +4423 002 -4 10 +4400 002 -4 10 +44		91.10	140 +1-7.7	7 954 11-064	9 0.667 +/-0.061	1 000 -1-0.112
10 +4423 0.02 cm 10 +4413 0.02 cm 10 +4414 0.02 cm 10 +4414 0.02 cm 10 +4406 0.02 cm		-		E.90 1/-0.70	0 0.432 +/-0.062	
10 +44 13 000 14 15 14 16 16 16 16 16 16 16				871 +/-0.39	BC0-0-/+ BC9/6 66	0.626 +/-0.171
10 +400 002	0.449 +/-0.053	0.003			0	2.170 +/-0.210
10 +4410 0012 10 +4407 0012 110 +4408 0012	0.460 +/-0.034	0.1630			0770	0.794 +/-0.170
10 +4407 10 +4404 10 +4404 10 +4404 10 +4406 10		1000	*		97.0	1.080 +/-0.158
10 +4414 002 001 002 002 002 002 002 002 002 002	•	43070 +/-0.1236	9	777	0.670	0.572 +/-0.236
10 +4084 000 000 000 000 000 000 000 000 000		_		9.6		-
10 +4438		1 -0.3676 +/-0.1038	91	7.02		e 621 +/-0.353
10 +4408	1000		8	77	200	-
10 +4417	0.00		142 +/43	1.11	1	
10 +4415 007 10 +4415 007 10 +4415 007 10 +4415 007 10 +4415 007 10 +4406 007 10 +	000		136 1/43	7.45	0.333	
10 +4100 000 10 +4100 10 +4100 10 10 10 10 10 10 10	1000		92-1- 201 1	6.75	0.455	
10 +418 000 000 10 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10		-0.3320	1 138 +/4.9	837	79.0	
10 +/405 000 10 +/405 000 10 +/405 000 10 +/406 000 10 +/406 000 10 +/406 000 10 +/406 000 10 +/406 000 10 +/406 000 10 +/406 000 10 +/406 000 10 +/406 000 10 +/406 000 10 +/406 000 10 +/406 000 10 +/406 000 000 10 +/406 000 000 10 +/406 000 000 000 10 +/406 000		-0.2798	141 +1-75	15 153 ++0.87	0.405	
10 +/465 0.02		0.3800	69/4 961	1.9 1/0.44	959'0	-
10 +405 002 10 +407 002 10 +407 002 10 +408 002 10 +408 002 10 +408 10 +408 002 10	0.432		9	7.18 +/-0.47	147 6.471 +/-0.028	
10 +/407 007 10 +/406 007 10 +	970	0.11.0	2	7.13	151 0.619 +/-0.035	
10 +400 000 10 10 10 10 10 10 10 10 10 10 10	0.40	0.3410		1.0	+1-0.55 0.469 +1-0.036	3.520 +/-0.314
10 +/412 902 10 +/402 10 +/406 10	1 0.453	-0.2140				0.657 +/-0.150
10 +/409 000	7 0.47	0.1620				2860 +/-0.303
1645 +400 000 1041 000 1041 000 1041 000 1041	W 0.487 +/-0.050	0318	7		0.40	9.750 +/-0.851
10-45 5-400 007 10-42 20 107 10-42 20 107 10-42 20 107 10-42 20 107 10-42 10-4	W 0.427 +/-0.033	0.3040			0.38	1.076 +/-0.20
10 +44.20 002 10 +44.20 002 10 +44.20 002 10 +44.12 002 10 +44.12 002 10 +44.15	W 0.454 +/-0.033	4.0451	•		9000	19.70 +/-1.617
10 +4-030 002 110 +4-030 110 +4-0	W 0.439 +/-0.042	4.1200	2		*****	
10 +4-010 002 110 +4-011 002 110 +4-011 002 110 +4-011 002 110 +4-012 002 110 +4-	TO 0.438 +/-0.027	-0.0666	Ξ	82		
10 +4411 002 10 10 10 10 10 10 10 10 10 10 10 10 10	0.420	•	2	135		1010
10 +4412 000 10 +4409 000 10 +4409 000 10 +4409 000	0.83		3	127		2 570
200 900+ 01 200 900+ 01 200 910+ 01	0.40	774 4.1840 +/4.1127	91	26.6		
200 900/4 61 200 900/4 61 200 900/4 61		,	143	+482 158 +1	0.559	
10 +4 10 002 002 002 002 002 002 002 002 002		0.1670	*			
200 900/- 61		0.1730	81	14 996 08/4	170 60 0 600 1/0 021	330
200 900-1- 01		-	9	178	11-0.40 0.555 +1-0.046	1,010
000	0.462	9771	571	**	1/0.09 1/0.037	1300
010/+ 01	0.445	7	3	906	_	1.450 +/-0.20
	1 0.475	11604	3	01.6	0.633	1 1 1 1 1 1 1 1 1 1
10 +/-016		16700-		168		0/4 0/11 6
			5			

Table D-5. Inorganics and heavy metals concentrations in Lake Couchiching water samples.

All concentration in ugil (ppb).

38	t	1	1		Mercury	3	Molyhdenum		Metal		Spresdian		The same of		Varadium		750	
1	Date	Hamber	E															
		768-47-R	1.0	1.0 +/-0.31	0.25		0.435	0.435 +/-0.035	0.3990	+/-0.150	145	145 +/4.7	9.02	+-1.60	0.424	+/-0.038	1.630	+/4 360
	THETHE	100	2	11.0-/+		Mao	0.427	+/-0.034	4.724	+/4.114	139	+-7.3	7.50	+/-0.54	0.577	*/-0.038	0.200	+/-0.107
-	Man & Sel Darin.	97106/03		+4-1.32	0.02	-	0.475	+/-0.039	-0.0652	+/-0.3385		+/-6.2	8.03		0.463		3.011	
1	den & Std Devn.	STATISTICS.		H-1.34	0.02	*	0.456		413%	+/-0.3616	<u>∓</u>	+/-10.3	9.35	+4-3.36	0.692	+/-0.265	1.06	+/-0.828
	2786011	NEG. CR		219 07/*	pro	30	- NO.00	+/-4.0131	0.0053	+/-0.0724	254	+/-0.13	0.249	+/-0.064	0.0414	1-0.0099	8.79	14.551
		THE PARTY		*/-0 025	0.02	Mas	0.0226	+/-0.0117	0.0075	+/-0.0364	_				0.0188	11-0.0040		
-	MATRICE	4625.58		170071	0.02	*	0.0178	17-0.0061	0.2020		0.902	+/-0.055			1/20.0		2.930	
		ST-40		14.0042	0.62	W-0 200	1000	+/-0.0048	0.3740				0.206		95000	+1-0.0107		0 +/-0.26E
1 8					93		9		n		'		'					2
2																		

NOTES: "+/-" = 95% Confidence Limits, unless otherwise specified.

" \sim " W " = no measurable response (zero); less than reported with

. R - - field temporal replicate.

- DC - - Depth Compo

- - SB * - Syetam Blank

". TB" = Travel Black. indicinal and bolded values coverd PWQO for the protection of squade life.

Table D-6. Triazine herbicides concentrations in Lake Couchiching water samples.

All concentrations in ng/l (ppt).

			Treks									ė														å	
March Marc	takon	Sample	Sample	Alachior	-	Ametryrie		Afraione	*	Drange.	8	pinis	0	antin	Metoketik		Metribum		Prometone		ometryne		operate .	Sumaz		ethylates	_
	1	1	Number								~	rarine														Simurine	
	-	97/06/03	76807	88	Mes	8	A	8	3		*		*				8			M=>	8	M=>			-	2	
March Marc	2	97/06/03	74838	200	W=>	8	M=>	8	M		t		M-C				100	-		N.	8	M=>		-	-	2	
Marcol M	-	\$7,06/03	76839	88	W=>	8	May	8	Man		+		*				100		8	Mas	8	M=>		21	-	200	
18 18 18 18 18 18 18 18	*	97106/03	76840	98	M=>	8	M->		M-3		t		M-I				100		8	M=>	8	M=>		-		8	
Market M	100	97106/03	786	98	M=>	8	A->	8	M-S		t		M=				18		8	M=>	8	M=>		-		R	
1985 1985			78842-DC	88	W=>	8	*	8	Man		•		M-				190		8	A.	8	M=>		-		2	
1866 1866		97/06/03	76844	200	W=>	8	M=>	8	M=0		t		M-C				100		8	M=>	8	M=>		-		92	
1866 186	1	97/04/03	76845	280	Mas	8	M=>	8	M-3		4		M-1				8		8	M=>	8	M->				2	
1885 1886		97106/03	768.68	38	N=>	8	Mas	8	Mes		t		*-				100		8	M=>	8	Mas		-		20	
1881 1880 1881		97/06/03	76849	360	W=>	8	Mes	8	Mes		t		*				100		8	M=>	8	Mas			A-> 0	20	
March Marc	9	97/06/03	76850	380	M=>	8	-	8	-	130	r		-				100		8	M=>	8	Mas			M=> 0	2	
1855 185	=	97/06/03	76851	300		8	Mes	8	M=>	110	•		-				8		8	M=>	8	M=>			A-0		
1885 1880	12	9710603	76852	300	-	8	M=>	8	M-0		*		M=2	N=> 001			100		8	M=>	8	M=>	-	-			
1885-100 1886-100	13	97/06/03	76853	200	>	8	M=>	8	*		3		Med	N=> 001			901		2	Mas	8	M=>				37	
1885 - 1	=	97/06/63	76854	98	M->		Mas	8	M-0		*		M=3				100		8	Ma>	8	M->		_		92	
1865 20 cay 20 cay 20 cay 20 cay 100 cay 20 cay 100 cay 20 cay 2	15	97/06/03	768SS-DC	800	-	8	M=>	8	Man		t		Med				100			M=>	8	M=>				2	
14894 20 cay 20	9	97/06/03	76856	200	May	8	Mes	8	M=>		*		M=0				100		8	M=>	8	M=>				R	
1869 20 cay 20	11	97/06/03	74857-R	300	W->	8	*	8	Mary	-	*		Mwa				100		8	Mas	8	M=>		-		R	
3 1860 S0 cott			76858-R	200	Mes	8	M=>	8		-	*		Med				100		8	Mas	8	M=>	-		N=0	R	
3 7860 SO COV SO	=	97106/03	76859	800	May	2	-	8	Man		7		Mes				9		8	Mas	8	M=>			A-> 0	R	
3 7866 S 50 cay 50 cay 50 cay 10 cay 10 cay 100 cay 100 cay 100 cay 50 cay 100 cay 50 cay 50 cay 50 cay 50 cay 50 cay 50 cay 100 cay 50	•	97/06/43	76860	906	Mary	8	M=>	8	M=>	~	3-		M-3				180		8	Mas	8	M=>			A-0 0	R	
3 1984-12	2	97/06/03	76843	800	N=>	8	-	8	M->		t		M-2				100	-	8	N=O	8	M=>			A-> 0	2	-
3 74641-33 SO COW SO COW SO COW SO COW 100 COW SO COW 100 COW SO	21	97/06/03	76846-R	200	Meo	8	M=>	8	M-S		t		M=2				100	-	8	Mas	8	M=>	-			R	
3 7886158 S00 c=W S0 c=W S0 c=W 100 c=W S00 c=W 100 c=W S0 c=W S0 c=W S0 c=W 200 c=W 2			76847-R	300	May !	2	Mus	8	M->		t		M-o				001	~	8	M=>	8	Mas	3			2	*
200 c=W 50 c=W 50 c=W 200 c=W 100 c=W 500 c=W 100 c=W 50 c	-	Pad Davis.		1		ÿ		1			8.7	1		1			1		1		2		1				
30 caW 35 caW 50 caW 70 caW 100 caW 100 caW 100 caW 30 caW 50 caW 20 caW		97/06/03	76861-53	98	Na.	8	N.o.		Man		*		A-0				-				8					R	
1 1 100%			76862-TB	200	M=> (8	Mas	-	M->	~	M-S	~	Mac	~	-	-	-			*	8					92	
	904			1		1		1		,		:		1	300		1		8		1		1		,	ľ	

NOTES: blank or "-" indicates that data is not evallable for this parameter or earnple
"<-W" = no measurable response (zero); less than reported value.
"<T" = a measurable trace amount: interpret with custom.

* -R * - Said temporal replica

-. DC * - Depth Compos *. SB * - System Black *. TB * - Travel Black

Table D-7. Phenoxy acid herbicides concentrations in Lake Couchiching water samples.

All concentrations in ng/l (ppt).

		Field												2.4-D				ı		ı	ı
11	1 1	11	Bronnougen		Oicamba		Disease	Dictoflapmenethyl	-	3,4-D		2,4-DB		Propione		1457		Pictorian		100	
-	97/06/03	76837	8	Mes	2				3		*	92	M=>	8		8	M=>	8		-	300
**	97/04/03	766.18	8	Mass	8	1	W-> 05	100 001	Mes		M-2	280	Mes	8		8	Mary	8		^	M=> 0
•	97/06/03	768.39	8	Nes.	8	-			*		M-0	200	*	001		8	Mao	8		~	-> 0
•	97/06/03	76840	2	May.	8	M=>		igo es	*		Mes	30	*	8	M=>	8	*	<u>=</u>			M-> 0
49	97/06/03	76841	8	N.o.	8	Meo	20 c=W	io 001	W=>		Man	98	Meo	9		8	Mes	8		-	No of
		JOBO DC	2	Nes.	*	M=>	W=> 05	io <-	Mar>		Man	100	-	8		8	-	2		-	-
•	97/06/03	7684	2		8	N.o.	W=> 02	io 001	*		Man	90	A.	8		8	**>	2	Meo (_	-
4	97/06/03	76845	2	-	8		W-0 82	i 100 o	*		M=o	300	M=>	8		8	M=>	2	A-0	-	M-> 0
-	97106/03	76.00	9	-	8	*	W== 05	· 001	Mao		Mac	92		8		8	-	ĕ	M-0 1	-	M=> 0
	9TABLES	76849	9	-	8	Mm>	M=> 02	901	Man		Mes	300		90		8	M=>	Ē	M=0	-	M-> 0
9	97/06/03	34830	9	-	*	M=>	W-> 02	> 001	*		Man	200		8		8	*	9	Man (-	M=> 0
=	97/06/03	76851	2	Mes	*	M=>	20 c=W		*		Mas	200		8		8	M=>	8	-	~	M=> 0
13	97/06/03	76852	8	-	8	M->	W-> 02	001	*		M=>	200		8		8	A=0	×	N-O	-	0
13	97/06/03	76853	8	-	8	Mar.	20 c=W				Many	200		8		R	-	=	Neo 1	-	
2	97/96/03	76854	9,	*	8	M=o	30 c=W		3		M=>	300		8		8	Man o	=	3	_	W-0
15	97/06/03	76855-DC	8	-	8	Mass	W-> 05		Mes	8	Mas	8	-	8		R	*->	2	No.	-	-> 0
2	97/06/03	76856	8	Mas	8	M=>	W-0 85	·> 001			Mas	200		8	M.	8	*	9	M-> 0	-	N-O
11	97/06/03	76857-R	8	Mas	8	M=>	20 c=W		*		Mas	200		3	-	8	Meo	9	N-O		M=> 0
4		76858-R	8	Mes	8	M->	20 c=W	o 901	*		M=>	200		9	M=>	8	-	9	W-0	~	M=> 0
*	97/06/03	76859	8	May	9.	-	N= OZ	901	*		N.o.	200		100		8	W->	=	M-0		
•	97/06/03	76860	8	Mary	8	Mac	W-0 05				Meo	200		8	3.0	8	Neo-	=	300	-	
8	97/06/03	76843	8	-	8	-	W=> 05		*	8	Mas	200	Mes .	90	-	8	N-O	=	N=0		0
17	97/06/03	76646-R	2	May	8	A	20 c=W	-	Mary		Mas	82		100	-	8		9	No 0	-	3
	•	76847-R	2	May	8	Nº5	W-> 00	8	3		M=>	200	*	90	*	8	M=>	≘	N-O		
2	97106/03	1 "	"		8		W-> 02	8	Ano	8	M.	370	-	9	N.o.	8	A=>	-	A co	"	W=> 00
٠		76862-TB	8	Mao	8	A=>	70 c=W	8	*	8	M=>	200		8		85	N=> 86		N= 00	•	M=> 0
MACO			'		250090		1	8		800				'			١,				١,
													١		ı	ı	١	ı	١	١	ı

NOTES: Mask or "-" indicates that data is not evaluable for this parameter or sample. * <=W * = no measureable response (zero); less than reported value.

* -R * = field temporal replicate.

- - DC " - Depth Composite.

- - SB " - System Blank.

- - TB " - Travel Blank.

Table D-7. Phenoxy acid herbicides concentrations in Lake Couchiching water samples.

All concentrations in ng/l (ppd).

Discussion Distriction 2,4 D 2,4 D 2,4 D Acid	١		27.72												740				-		-	
District Matthew commons						Picambe		Discount	Dielofop		7,4D		1,4 DB		Propionic		2,45-7		Pictorium		Survey	
Princetti (1988) 1988 1990 VA	1	1		BEOMORYS					methyl						Acid							1
9708403 78838 39 C-W 39 C-W 10 C-W 100			-							1	1		300	10-10	91	-	S	W=>	8	M=>	20	V=>
97106401 78839 99 CW 59 CW 70 CW 100		97/06/03		8	Max	8	M=>			M=>	3		3		8		9		901		20	W=>
9706403 76859 38 C-W 20 C-W 20 C-W 100		armenta.		8	M=>	8	Mas			M=>	8		9				5		901		92	W=>
97706403 74844 50 C=W 50 C=W 10 C=W 100 C=W 10	,	-		8	180	5	Was			M=>	8		200		8		R		1		1	
9700603 78841 30 caW 30 caW 100 caW 10	3	97/06/83		R		2				W=>	100		200		8		8	M=>	8	M=V	R	~
9778603 76841 50 CW 50 CW 20 CW 100 CW 100 CW 200 C	-	97106/03		8	M=>	R	A			-	100		200		160		8	W=>	8	W=>	20	-
97196473 74844 S9 C=W S9 C=W 10 C=W 100 C=W 100 C=W 20 C=W 100		47/194/03		8	M=>	8	M=>		801	Na V	3		1		100		9	W=>	100	M=>	20	W=>
9770603 78845 50 C-W 50 C-W 20 C-W 100 C-W 100 C-W 200 C-W 200 C-W 100 C-W 200				9	M=>	84	W=>		8	M=>	8		700				1 5		901		22	Was>
97106403 78845 50 CW 50 CW 20 CW 100 CW 100 CW 200				5	-	9	Was>		8	M=>	100		300		90	M=>	R		1			
9778643 78845 50 CW 50 CW 70 CW 100 CW 100 CW 200 C		97/06/03		2 :		8 8	70		80	W=>	100		200		90	M=> 1	2		B		2	
9710603 76849 50 CW 50 CW 10 CW 100 CW 200 CW 200 CW 100 CW 200 C	1	97/06/03		R	***	2	-		901	Mary	100		200	May !	90		8	M=>	8	M=>	2	~
9710603 78850 78850 99 c=W 90 c=W 100		97/06/03		8	M=>	8	Cal	M=> 97	3	-	901		286		100	W=> (8	W=>	8	Mas	20	N=>
97106403 74850 99 C=W 50 C=W 10 C=W 100 C=W 10		97/06/83		8	M=>	8	/=>	20 <=-M	8				300		100	W=> 1	8	W=>	901	M=>	2	M=>
9778603 78853 59 C=W 59 C=W 100 C=W 100 C=W 100 C=W 200 C=W 20		07/04/03		8	Mas	8	M=>	20 <=/	8	M=>			1			Was I	9		8	Mas	30	W=>
9710603 76853 50 c-W 50 c-W 10 c-W 100 c-W 100 c-W 200 c-W 100		07105.003		8	M=>	8	M=>	N=> 02	801	M=>	6		7				5		8	Was	30	W=>
97706403 74855 59 C=W 50 C=W 100 C=W 1	= !	-		\$	**	8	M=>	20 <=W	901	M=>	0	M=> 0	70	M=>							95	
97706403 76854 59 c=W 50 c=W 100 c=W 1	13	63/100/43				1	10-10	30 <=W	100	M=>	101	M=> 1	20	M=> 6	0	M=>	R		3			
97706403 74854 59 C=W 59 C=W 100 C=W 100 C=W 200 C=W 2	13	61/06/03		8	Am>	R	-	B-7 05	901	W=>	100		100	M=> 1	10		S	M=> 0	8		25	
9776403 76855 DC 59 c=W 59 c=W 100 c=W	14	97/06/03		8	M=>	R			1	100	100		306	W=> (9	W=> 0	95	M=> 06	8	M=> 1	7	B-> 0
97786403 74856 59 C=W 59 C=W 20 C=W 100 C=W 10	18	97/06/03		8	M=>	8		A=> 02	8				8	Was i	10		86	M=> 06	8	M=> 1	30	M=> (
97786403 74859-R 59 c=W 59 c=W 20 c=W 100 c=W 100 c=W 20 c=W 100 c=W 1	4	07/06/07		8	Mas	8	M=>	20 <=-		M=>	2		1	-	9		*		901	Was (×	Me> (
97706/03 76859-R 50 c=W 50 c=W 100 c=W	2 1	-		9	Mas	8		20 <=V	_	M=>	9		20	A S	2 :		, 0		8			W=> 0
78659-8 59 c=W 50 c=W 100 c=W	11	60,000/6			-	8		28 cm	-		9		2	A=> 0	9		-		5			
74849 59 C=W 70 C=W 100 C=W 10				R	May 1						10		92	W=> 0	91		9	M=> 0	8		-	-
74846 50 c=W 50 c=W 20 c=W 100 c=W 100 c=W 200 c=W 200 c=W 100 c=W 200	=	971/06/03		8	=>	R	May	2 2			10		20		01		8	M=> 0	8	-	-	-
74843 59 c=W 50 c=W 100 c=W 10		67/06/03		8	Mar>	8							30		91			M=> 0	90	M-> 0		M-> 02
74646-18 50 c=W 50 c=W 100 c=W	92	97/06/03				8	M=>	=> 82		-	2 5		30					M=> 0	8	W=> 0		M=> 00
74647-R 59 c=W 59 c=W 10 c=W 100 c=W 100 c=W 200 c=W 100 c=W 200 c=W 100 c=W 1	:	OTHER P.				8	W=>		_		20	-						Wes a	100	W=> 0	3	W=> 01
70461-SB 50 <=W 50 <=W 100 <=W 100 <=W 100 <=W 100 <=W 100 ==W 100 <=W						8	M=>	-> 00 c=			2	*	N.	N=>								
76661-5B 50 <=W 50 <=W 100 <=w							- 1	1										M=> 0		M=> 001		W=> 02
74462-TB 50 <=W 50 <=W 100 <=w	61	81/106/03			-			8										M=> 05				M=> 0
- 1000					-			20														1
000	-					300000		1	1		8	2		1		:		:		1		:

NOTES: blank or "..." indicates that data is not svalable for this parameter or sample

 $^{\circ}$ <= 0.0 measurable response (zero): less than reported value.

- R = fadd temporal replicate.
- DC = Depth Composite.
- 38 = System Blank.
- TR = Travel Blank.

Table D-8. Chlorinated phenols concentrations in Lake Couchiching water samples.

All concentrations in ng/l (ppt).

2.3.4.6. Posts. Teterobloro- chiero- cwW 18 cwW cwW 18 cwW 18 cwW
Photos

NOTES. Namk or "--" indicates that data is not available for this parameter or sample. " $<-W^*=$ no measurable response (zero). Ites than reported value.

" -R " - field temporal replicate.

*-DC * = Depth Composite.

. SB * - System Blank.

.. TB * - Travel Blank.

Table D-8. Chlorinated phenols concentrations in Lake Couchiching water samples. All concentrations in ng/l (ppt).

		1,1610	7.4		4.5.4		6.4.3		7,4,5		6,3,4,7		*****				
Station	Sample	Sumple	Dichloro-		Trichlor-		Trichlor-		Theblor-		Tetrachloro-		Tetrachloro	A	T	chloro-	
Number	Date	Number	phenol		phenol		phenol		phenol		phenol		phenol		-	phenol	-
-	97/06/03	76837	3000	M=>	801	May	8	M=>	20 <	N=>	30	M=>	-		M=>	2	M=>
	97/06/03	76838	2000	M=>	001	Mas	100	M=>	20 <	M->	20	M=>		> 01	M=>	01	M=>
	97/06/03	76839	1000	W=>	901	W=>	100	M=>	> 02	M=>	20	M=>	-	-> Q	M=>	9	Mes
*	97/06/03	76840	2000	W=>	901	W=>	100	M= >	> 92	M=>	20	M=>		*> 0i	Mas	9	M=>
100	97/06/03	76841	2000	W=>	100	M=>	100	M=>	20 <	Mas	30	M=>		> 0	M=>	0	M=>
		76842-DC	2000	W=>	100	W=>	100	Mas	20 <	M×>	20	M=>		> 0	W->	0	M=>
9	97/06/03	76844	2000	M=>	901	M=>	100	W=>	20 <	M=>	90	M=>		0	Mes	0	->
10-	97/06/03	76845	2000	M=>	061	M=>	100	M=>	> 02	M=>	30	M=>		00	W=>	0	M=>
60	97/06/03	76848	2000	M=>	100	M=>	100	W =>	20 <	M=>	2	May.		> 01	M=>	10	M=>
0	60/90/16	76849	2000		90	M=>	100	M=>	200 <	M=>	92	Mas		00	M=>	10	M=>
9	97/06/93	76850	2000	W=>	001	M=>	100	W=>	> 02	M=>	20	M=>		00	M=>	9	M=>
=	97/06/03	76851	2000	W=>	100	M=>	100	M=>	2	M=>	30	May :		.> OI	M=>	2	W=>
12	60/90/16	76852	2000	W=>	100	Mass	100	M=>	2	M=>	30	Mes		÷ 99	M->	10	M=>
13	97/06/03	76853	2000	W=>	100	Mas	100	M=>	2	M=>	30	May 1	_	2	M->	10	M=>
*	97/06/03	76854	2000		901	Mas	901	M=>	20 0	M=>	30	M=>		> 01	W=>	00	N=>
15	97/06/03	76855-DC	2000		001	W=>	100	M=>	> 02	M=>	30	M=> 1	_	> 02	M=>	90	M=>
91	97/06/03	76856	2000		100	**	100	Mas	> 00	M=>	20	M=>	~	> 00	M=>	9	# × >
11	97/06/03	76857-R	2000		991	M=>	100	Mes	> 00	Mas	02	Mary	_	> 02	M=>	0	>
		76838-R	3000	M=>	100	Mas	100	May .	> 92	M=>	30	M-> (> 07	M=>	2	~
	97/06/03	76859	3000	W=>	100	Mary	100	Mass	20	M=>	20	M-> 1		000	M=>	01	V=>
9	97/06/03	76860	3000		001	W=>	100	W=>	> 22	M=>	H	M=> 1		> 00	M=>	9	M =>
30	60/90/66	76843	3000		80	W=>	100	May	2	M=>	20	Ma> I		2	M=>	2	No.
31	97/06/03	76846-R	2000		100	W=>	901	M=>	20	M->	M	M=> (_	00	M=>	9	M=>
		76847-R	3000		98	M=>	8	No.	92	M=>	×	A-> 0	_	9	*	9	8
2	97/06/03	76861-58	3000				100		20	Mes	~	M=> 8		9	W=>	9	M=>
		76862-TB	2000	M=> (100	Mes	100	M=>	90	M->	~	M=> (-	M.o.	2	M=>
			900	١.					4		1000		100	000		909	

NOTES: blank or "--" indicates that data is not available for this parameter or sample $\sim -W^{-} = no$ measurable response (zero): less than reported value

". R " = field temporal replicate

*.DC * = Depth Composite

*. SB * - System Blank *. TB * - Travel Blank

Temperature, current speed and direction at Station C1 at 1 m below surface. Figure D-1.

Figure D-2. Temperature, current speed and direction at Station C1 at 1 m above bottom.

Appendix E Sediment Core Data

List of Tables and Figures

- Table E-1. Field observations of Lake Couchiching sediment core samples
- Table E-2. Particle size, macro-ion, nutrients, organic carbon and solvent extractables in Lake Couchiching sediment cores.
- Table E-3. Microscopic characteristics of Lake Couchiching sediment core samples.
- Table E-4. Inorganics and heavy metal concentrations in Lake Couchiching sediment core samples.

Table E-1. Field observations of Lake Couchiching sediment core samples.

80	Sample Date	Depth,	Sample Number	Description	Odour	Fauna	Flora
6	97/06/04	0 - 5	76365	cohesive, grav-brown, watery onze	slight H2S	sparse chirenomids	snarse filamentous alone on nurface
		\$-15	76366	less watery gray ooze; sparse mari	very slight H2S		
		15-25	76367	gray, more cohesive silt; moderate marl; moderate gas pockets	almost no H2S	strail shells	1
		25-35	76368	still more cohesive gray silt; moderate marl; moderate gas pockets	simost no H2S	snail shells	1
		35-45	76369	packed, gray silt; moderate marl; moderate gas pockets	still less H2S	snail shells	1
		45-55	76370		1	snail shells	1
		55-65	76371	thicker, sticky, cohesive gray silt; less marl	1	anail shells	1
		65-75	76372		1	strail shells	1
		75-85	76373	still thicker & drier gray, moderate fine marl	1	snail shells	1
		85-95	76374	still drier, gray, moderate fine marl; piece of bark	1	snail shells	1
		95 - 105	76375	thicker & drier gray mud (almost clay-like), moderate fine mari	1	1	1
		105-115	76376	thicker & still drier gray mud (almost clay-like); moderate fine mart	8	1	8
8	97/06/04	0-5	76377	watery, gray ooze	ı	1/2 mussel shell	1
		5-15	76378	less watery, gray ooze	ŧ	1/2 mussel shell	1
		15-25	76379	thicker, gray ooze, sparse, fine mari	1	1	1
		25-35	76380	thicker gray ooze; sparse fine mari	1	sparse fingernail clam & snail shells	ı
		35-45	76381	thicker gray ooze, sparse fine mart, some small gas pockets	1	1	1
		45-55	76382	thicker cohesive, jelly-like gray muck; very sparse marl	1	sparse fingernail clam shells	1
		55-65	76383	very thick, more clay-like, drier gray mud; small gas pockets	1	moderate no. of fingernail clam shells	1
		65-75	76384	thicker, more clay-like gray mud, moderate marl; small gas pockets	1	smail shells	1
		75-85	76385	very thick, cly-like gray, moderate very fine mark; small gas pockets	1		
		85-95	76386	very thick gray mud, small gas pockets; very sparse mari	1	ŧ	1
		95-105	76387		1	1	ı
		105 . 124	3857	were dere gean plant moderate mari	1	fineernail clam shells: large muscel shell	1

Table E-2. Particle size, macro-ion, nutrient, organic carbon and solvent extractables concentrations in Lake Couchiching sediment cores.

Concentration units as noted: % = percent; g/kg = ppth; mg/kg = ppm. Except for particle size, all results are on dry weight basis.

Southwest Statemark Field Field Motivators Countre Stated Stand Stand Motivators Stand Stand Motivators Stand Stand Motivators Stand		Paramen,					
Sumple Days Sample Density No. No. No. No. No. r Days cm Numbras p(cm3) No. 64 0.00 21.83 No.	Sala Clay	total loss	Carbon,	Calcium,	Magnessen,	Chloride	
Thirt One Name Section Name	um (9)	on ignition	lotal	unif total	usef, total	aq. coft.	
Tributoria 6.5 76365 1.21 74 6.00 1.18 1.5 78366 1.29 6.6 0.00 31.35 1.5 78366 1.29 6.6 0.00 31.35 1.5 78366 1.34 38 0.00 31.46 1.5 78376 1.34 38 0.00 31.46 1.5 78376 1.34 38 0.00 31.46 1.5 78376 1.34 38 0.00 31.46 1.5 78376 1.34 33 0.00 31.46 1.5 78376 1.34 33 0.00 31.36 1.5 78377 1.34 33 0.00 31.36 1.5 78378 1.37 31 47 0.00 21.36 1.5 78378 1.34 33 0.00 21.36 1.5 78378 1.37 34 0.00 21.36 1.5 784	*	g/g	3/4	mg/kg	246m	El Marie	1
TYTOROGO DEST TASK 1.21 66 0.00 31.36 1 1.5.55 78.847 1.28 66 0.00 31.36 1 1.5.55 78.847 1.28 66 0.00 31.46 1 1.5.55 78.946 1.34 88 0.00 31.46 1 25.55 78.77 1.39 32 0.00 27.86 1 55.55 78.77 1.39 33 0.00 27.86 1 85.55 78.77 1.38 32 0.00 27.86 1 85.55 78.77 1.38 32 0.00 27.86 1 85.55 78.77 1.28 47 0.00 27.83 1 1.55 78.77 1.18 77 0.00 27.83 1 1.55 78.78 1.24 27 0.00 27.84 1 1.55 78.78 1.24 27 0.00 27.84	2112	×	57	380000	9007	R	
13.5 13.8 13.8 65 0.00 27.08 1.2		99	39	380000	900+	*	
15.55 78.00 1.30 61 0.00 75.65 75.00 1.30 75.65 75.00 1.30 75.65 75.00 1.30 75.65 75.00 1.30 75.65 75.70 1.30 75.65 75.70 1.30 75.65 75.70 75.70	1911	*	39	270000	4500	35	
1.5.5.3 7.0.000 1.3.7 9.0 1.4.6 1.5.4.5 7.0.000 1.3.4 3.0 0.00 13.4 1.5.4.5 7.0.00 1.3.4 3.0 0.00 13.4 1.5.4.5 7.0.7 1.3.7 5.3 0.00 13.4 1.5.4.5 7.0.7 1.3.9 5.3 0.00 13.4 1.5.4.5 7.0.7 1.3.9 5.3 0.00 13.4 1.5.4.5 7.0.7 1.3.9 5.3 0.00 13.4 1.5.4.5 7.0.7 1.3.9 4.7 0.00 13.4 1.5.4.5 7.0.7 1.3.7 4.7 0.00 13.4 1.5.4.5 7.0.7 1.3.7 4.7 0.00 13.4 1.5.5.5 7.0.7 1.3.4 5.4 0.00 13.4 1.5.5.5 7.0.7 1.3.4 5.4 0.00 13.4 1.5.5.5 7.0.7 1.3.4 5.4 0.00 13.4 1.5.5.5 <td< td=""><td></td><td></td><td>34</td><td>270000</td><td>4300</td><td>3</td><td></td></td<>			34	270000	4300	3	
95-65 78-89 1.34 38 000 25-65 1-5 55-55 7877 1.39 37 000 25-65 1-5 65-75 7877 1.39 35 000 25-65 1-5 75-65 7877 1.39 35 000 25-65 1-5 75-65 7877 1.30 47 000 22-65 1-5 75-65 7877 1.27 47 000 22-65 1-5 75-16 7877 1.27 47 000 22-65 1-5 7877 1.27 47 000 22-65 1-5 7877 1.27 47 000 22-65 1-5 7877 1.27 47 000 22-65 1-5 7878 1.27 47 000 22-25 1-5 7880 1.24 47 000 22-25 1-5 7845 7884 1.24 24 <th< td=""><td></td><td>9</td><td>*</td><td>279000</td><td>9017</td><td>*</td><td></td></th<>		9	*	279000	9017	*	
45.55 76.570 1.39 57 0.00 28.99 6.5-75 76.55 76.371 1.39 53 0.00 28.99 1 65-75 76.37 1.39 53 0.00 20.99 2 65-75 76.37 1.39 53 0.00 20.45 2 55-163 76.37 1.42 47 0.00 20.43 3 165-163 76.37 1.27 47 0.00 20.43 4 165-163 76.37 1.27 47 0.00 20.43 5 76.37 1.37 47 0.00 20.43 5 76.37 1.37 42 0.00 20.43 5 76.37 1.34 53 0.00 20.44 5 76.37 1.34 54 0.00 20.44 5 76.44 1.43 54 0.00 20.44 6 75.53 76.44 1.44 0.00 </td <td>7414</td> <td>8</td> <td>36</td> <td>270000</td> <td>4300</td> <td>u</td> <td></td>	7414	8	36	270000	4300	u	
95-65 Na371 139 53 000 23-46 1 75-65 76374 1.39 53 0.08 24-55 1 75-65 76374 1.28 53 0.08 24-55 1 85-67 76374 1.27 44 0.00 21-56 1 95-165 76376 1.27 47 0.00 21-56 1 165-15 76376 1.37 47 0.00 21-58 97-164 76376 1.37 47 0.00 21-58 97-164 9.5 78-7 0.00 21-58 97-164 9.5 78-7 0.00 21-58 98-165 78-81 1.31 9 0.00 21-58 98-165 78-82 1.34 54 0.00 21-58 98-165 78-84 1.35 9 0.00 21-58 98-165 78-84 1.45 9 0.00 21-58	3001		01	280000	4300	R	
95-163 1387 138 53 008 3435 1-154 1381 138 53 008 2463 1-154 1481 44 000 2463 1-154 1481 47 000 2463 1-154 1481 13 000 2463 1-154 1481 13 000 1364 1-154 1481 13 000 1364 1-154 1481 13 000 1364 1-154 1481 149 54 000 1364 1-154 1481 149 54 000 1364 1-154 1481 149 54 000 1469 1469 1-154 1481 149 54 000 1469 1469 1-154 1481 149 54 000 1469 1469 1-154 1481 149 54 000 1469 1469	38.2	8	34	280000	4200	=	
7-545 74513 1.38 5.0 000 2163 9-104 7555 74574 1.42 47 000 2215 9-105 7537 - 47 000 2213 9-105 7437 1.37 33 000 2213 9-105 7437 1.18 73 000 2228 1-105 7437 1.27 64 000 2228 1-105 7437 1.27 64 000 2228 1-105 744 000 000 2228 1-105 744 000 2228 1-105 744 000 2228 1-105 744 000 2228 1-105 744 000 2228 1-105 744 000 2421 1-105 744 000 744 1-105 744 000 7460 7460 1-105 744 000 746			30	270000	4600	=	
*** See See See See See See See See See			29	280000	9099	*	
*** Mean, 25-15 or 137 57 000 25.83 *** Mean, 25-15 or 1.37 33 0.02 25.83 *** Mean, 25-15 or 1.37 33 0.02 25.83 *** S15 76378 1.18 73 0.00 22.83 *** S15 76379 1.31 63 0.00 22.48 *** S15 76381 1.34 57 0.00 22.48 *** S15 76381 1.34 59 0.00 22.16 *** S15 76384 1.39 59 0.00 22.16 *** S15 76384 1.40 59 0.00 22.16 *** S15 76384 1.40 59 0.00 22.16 *** S15 76386 1.40 60 0.00 22.16 *** S15 76386 1.40 60 0.00 22.16 *** S15 76386 1.40 60 0.00 24.21 *** S15 76386 1.40			22	280000	4700	7	
*** Mean, 25-115 cm 137 35 0.02 28.59 *** Mean, 25-115 cm 1.37 35 0.00 22.39 *** S15 78379 1.27 68 0.00 22.39 *** S15.3 78379 1.31 63 0.00 22.39 *** S15.3 78389 1.34 97 0.00 22.39 *** S15.45 78381 1.34 97 0.00 22.16 *** S15.45 78381 1.37 54 0.00 22.16 *** S15.45 78384 1.45 54 0.00 22.16 *** S15.45 78384 1.45 54 0.00 22.16 *** S15.15 78385 1.45 46 0.00 22.16 *** S15.15 78386 1.45 46 0.00 24.21 *** S15.15 78386 1.45 46 0.00 24.21 *** S15.15 78386 1.45 46 0.00 24.21 *** S15.15 <			20	270000	9097	13	
*** Mean, 25-115 cm* 1.37 53 0.02 38.99 *** Name, 25-115 cm* 1.37 73 0.00 19.044 *** 15-25 76377 1.18 73 0.00 22.28 *** 15-25 76377 1.31 63 0.00 22.46 *** 15-25 76377 1.31 63 0.00 22.46 *** 15-25 76371 1.33 59 0.00 22.46 *** 15-25 76371 1.37 54 0.00 22.46 *** 15-25 76371 1.39 54 0.00 22.46 *** 15-25 76372 1.39 54 0.00 22.46 *** 15-25 76372 1.45 46 0.00 32.42 *** 16-24 76372 1.24 46 0.00 34.21 *** 16-24 76-24 0.00 44.73 34.21 *** 16-24 76-24 0.00 34.21 *** 16-24 76-24 0.00 34.21 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
97104/04 6.5 74377 1.118 75 0.00 1904 - 15-515 74378 1.27 64 0.00 2228 - 15-515 74378 1.31 6.0 0.00 2228 - 25-35 74379 1.31 6.0 0.00 2228 - 25-35 74389 1.34 59 0.00 2216 - 65-55 74381 1.37 54 0.00 2216 - 55-55 74381 1.39 54 0.00 2216 - 75-515 74381 1.40 54 0.00 2421 - 85-515 74381 1.40 64 0.00 2421 - 85-515 74381 1.40 64 0.00 2421 - 85-515 74381 1.40 64 0.00 2421 - 105-124 74381 1.40 64 0.00 2421 - 105-124 74381 1.40 64 0.00 2421 - 105-124 74381 1.40 64 0.00 2421 - 105-124 74381 1.40 64 0.00 2421	T.IT 6	22	33	276666	19	92	
15.15	96'08	34	99	240000	4800	*	
15-25	17.71	2	39	230000	9800	*	
13-35 78380 134 577 0.00 28.92 13.94 13.95 1	M. 78.54	3	36	240000	4900	4	
136-45 76,281 1,33 59 0,00 22,16 65-55 76,281 1,37 54 0,00 1244 65-55 76,281 1,37 54 0,00 1244 65-55 76,284 1,45 59 0,00 13,18 75-45 76,284 1,45 46 0,00 13,18 85-56 76,287 - 49 0,00 14,73 95-56 76,287 - 49 0,00 14,73 95-56 76,287 - 49 0,00 14,73 95-56 76,287 - 49 0,00 14,73 95-56 76,287 - 49 0,00 14,73 95-56 76,287 - 49 0,00 14,73 95-56 76,287 - 49 0,00 14,73 95-56 76,287 - 49 0,00 14,73 95-56 76,287 1,28 +/-0.04 53 +/-4.4 0,01 +/-0.03 30,33 95-56 76,287 1,28 +/-0.04 53 +/-4.4 0,01 +/-0.03 30,33 95-56 76,287 1,28 +/-0.04 53 +/-4.4 0,01 +/-0.03 30,33 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 1,287 95-56 76,287 1,287 1,287 1,287 1,287 95-56 76,287 1	71.08	19	34	250000	4700	2.	
- 65-55 76342 1.37 54 0.00 22-44 - 55-55 76344 1.40 50 0.00 35.18 - 75-85 76344 1.40 50 0.00 35.18 - 85-50 76345 49 0.00 44.75 - 95-105 76347 49 0.00 34.45 - 95-105 76347 49 0.00 34.45 - 165-124 76348 49 0.00 34.21 - Man, 25-124 cm 0.73 52 0.00 32.21	11.84	8	37	250000	9	22	
- 55-65 YMM3 1.39 54 0.00 3518 - 65-75 YMM4 1.40 90 90 18-20 - 75-85 YMM5 1.45 46 00 00 18-20 - 85-95 YMM5 1.45 46 46 0.00 18-20 - 95-105 YMM5 1.45 46 00 00 18-20 - 95-105 YMM5 1.45 46 00 00 18-20 - 165-124 YMM5 1.45 40 01 4-0.00 YMM5 - 165-124 YMM5 1.45 40 YMM5 - 165-124 YMM5 -	M 77.56	8	35	260000	980	2	
. 65-75 75844 1.45 50 0.00 28-59 . 75-87 76884 1.45 46 46 0.00 44.75 . 85-95 76887 - 49 0.00 84.75 . 95-165 76887 - 49 0.00 84.91 . 165-124 7688 - 49 0.00 84.91 . 165-124 7688 - 78 76 0.00 76.91 . 166-124 7688 - 78 76 0.00 76.91 . 166-124 7688 - 78 76 0.00 76.91	18 64.82	8	35	240000	2000	*	
- 73-67 76.88 1.45 48 000 41.73 - 85-65 76.88 - 49 0.00 38-40 - 95-165 76.88 - 49 0.00 38-40 - 165-124 76.88 - 51 0.00 24.21 - Manu, 25-124-cm 0.73 32 0.00 32.22	20 11.50	38	31	260000	94,7	= :	
- 85-95 76386 - 49 0.00 38-49 46-91 76386 - 49 0.00 38-49 46-91 76388 - 49 0.00 24-21 76388 - 51 0.00 24-21 76388 - 51 0.00 38-49 76-91 76	73 58.27	*	38	260000	909	2	
- 95-105 76.MT - 49 000 44-91 - 105-124 76.MT - 51 000 24.21 - Mean, 25-124 cm 075 52 000 32.05 Natura, 83d Devin, 25-124 cm 1.38 +/-0.04 53 +/-44 0.01 +/-0.03 30.32	09 19 00		39	260000	989	= :	
- 105-124 76389 51 0.00 24.21 - Mann, 25-124 cm 0.75 52 0.00 32.055 Mann & Sad Dev'n, 25-124 cm 1.38 +/-0.04 53 +/-4.4 0.01 +/-0.03 30.32	80 53 09	R	33	260000	4790	2 :	
* Mann, 25-124 cm 0.75 52 0.00 32-055 Mann & Sad Dev'n, 25-124 cm 1.38 +/-0.04 53 +/-4.4 0.01 +/-0.03 30-32	21 75.79	æ	1	150000	2100	2	
Neten & Sad Dev'n,, 25-124cm 1.38 +/-0.04 53 +/-44 0.01 +/-0.03 30.32	\$67.95	×	34	254444	11.11	13	
	+4-7.12 69.84	11-7.06 56 14-7.0	32 +/-89	26444 +/-11991	4622	+/-232 19	+14.9
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1	2	1	1	1	
THOUGH.	:	8	1000	:	1	1	
THEODIA	t	t	:	:	1	1	

NOTES. "<MOL" = lass than method detection limit.
isabicand and bolded values creand PSQ-LEL guiddine for the protection of sediment-dis-

Table E-2. Particle size, macro-ion, nutrient, organic carbon and solvent extractables concentrations in Lake Couchiching sediment cores.

Concentration units as noted: % = percent, gftg = pptd: mgftg = ppm. Except for perticle size, all results are on dry weight basis

				The state of the s							Total	
		Selement	Take	total Kjeldald,	Phosphen	*	Salphue,		Sohrest		Petroleum	
1	1	The state of	İ	and reset	M 100	_	1	_	Extractables	=	phosphore	
1	Des	8	Number	£	3		3		Table .		T de	1
	STIDENSE	5.0	3836	4.0	0.34		17		1		8	CANDL
		\$118	76366	2.9	8.20		22		3		<u>=</u>	<mde.< td=""></mde.<>
		15-25	76367	3.0	91.0		2.1		3		8	<mdl< td=""></mdl<>
		15-15	76348	2.6	91.0		*1		8		8	<mdl< td=""></mdl<>
		35-45	76348	2.7	91.0		2		38		8	<mdl.< td=""></mdl.<>
		48-55	76370	2.9	9.0		1.3				8	<mdl< td=""></mdl<>
		59-65	16371	2.4	91.0		1.1		2		8	-MDE
		65-75	76372	2.8	0.12		1.2		95		8	<mdl.< td=""></mdl.<>
		75-45	26373	2.6	0.12		1.2		3		8	<mdl< td=""></mdl<>
	٠	89-68	76374	2.1	0.16		=		330		8	-MDL
		95-105	76375	1.0	91.0		95.0		*		8	CMDL
		511-501	36376	1.7	0.16				9		8	-MDF
		Mean, 25-115 cm		2.4	*110		2		*		8	-MDF
9	PTIMENTA	6.5	THEN	3.6	6.32		2		9		8	-
		\$118	76378	3.6	0.70		2.0		*		8	CMDL
		15.25	74379	2.0	9.18		2		8		8	<mdl< td=""></mdl<>
		25.35	76380	2.0	91.0		-		*		3	-MDE
		35-45	76381	2.5	91.0		11		*		<u>s</u>	-MDC
		48-55	76362	2.5	91.0		1.1		8		8	-MDF
		35-65	CHEN	2.6	6.12		1.1		3		8	<mdl.< td=""></mdl.<>
		65-75	76384	2.2	91.0		**		8		3	CMDL
		75.65	76385	1.6	91.0				*		<u>=</u>	<mdl< td=""></mdl<>
		88-88	76386	1.8	91.0		97.0		2		8	CMDL
		95-105	76387	1.7	0.12		0.87		2.20		8	CMDL.
		105-134	76388	2.4	910		10		3		8	<hbox< td=""></hbox<>
		Mean, 25-124 cm		77	9.15		:		2		8	CMDC
\$4.15	Man & Sa	Maun & Ski. Davin, 25-124 cm		. 13	*/-0.4 0.15	1/4 03	101	91 0-/-	350	67:79	8	-CMDL
MOCHEL:	70			0.55	80		1		ŧ		1	
CO-SEL	11:			:	1.00				1		ı	
-									1 6000			

NOTES: "-CADL" - less than method detection land.

infinized and builded values crossed PSQ-LEL guideline for the protestion of resiment-develong organise

Table E3. Microscopic characteristics of Lake Couchiching sediment core samples

1	Sample	Dayst,	No. of Street, or other Persons and Street, o	Sili & Clay (carbonates, quartz)	Clay (carbonales, quartz)	Material (shell debris)	Vegetation
	97/MMANDA	9-0	76365	*8		10%	Trans
		\$118	76366	36.56		3 %	Trans
		15.25	76367		* 56	246	Trace
		25-35	76368		36.06	*01	1
		35-45	16369		100 %	Trace	1
		45-55	76370		* 56	2%	1
		55-65	76371		*06	*5	:
		65-75	16372		100%	Trace	1
		75-85	16373		100%	Trace	:
		88-95	76374		34 56	2.50	:
		95-105	76375		100 %	Trace	1
		105-115	76376		% 001	Trace	1
5	97/06/094	9-8	76377		1001	Trace	Trace
	•	5-15	7637		100 %	Trace	1
		15-25	76379		95 86	245	1
		25-35	76380		36 001	Trace	
		35-45	76381		98 56	2.50	t
		45-55	76382		35 %	3.60	1
		55-65	76383		*06	9601	1
		65-75	76384		100%	Trace	1
		75-85	76385		3,001	Truce	3
		88-95	76386		100%	Trace	1
		98-105	76387		1,001	Trace	ı
		105-124	76388		95 %	2.56	1

Note: no fossilized plants, wood bark chips, wood char or coal soot was found.

Table E-4. Inorganics and heavy metal concentrations in Lake Couchiching sediment core samples
All concentrations in mg/kg (ppm), dry weight.

1	1	4	1	Aleminan.	Assissmenty	Arsenie	Barium	Beryllian	0	Cubini	Chromium	Cobs	Copper		3	Mangaran
		8	Number													
•	PTIBLISE	3	76365	907	P 910	**	93	es 50		97	35	75	2		:	:
•		\$15	76366	7260	0.7 cf	339	951	es es		.2	2					2 1
		15.23	78367	7600	P 10	42	2	9.5 0			2				9 5	
		25.35	76368	7300	0.2 <=0	D 610	9	•> 50			2					
		35-65	76369	7400	0.2 <=0	F 0.5 CT	921	85 ca	3/800	83 CIE	13	3.6	1.0		20 000	1 5
		45-33	76370	008	0.2 <=4	P 88 4	921	9.5 0			13	3.5	7.0	200		
		35-65	14371	02.0	0.2 <=/	P 88 4	051	95 0	340	0.4 CTE	=	3.6	6.0	8730	20 call	
		65-75	76377	6200	0.1	D 100 1	001	9.5 00	3M×o	0.5 ATE	=	3.6	6.0	98		1 5
		75.65	26373	008	0.2 <=4		81	15 0	3A-o	0.2 C-WE	=	3.6	7.0	908	1	
		82-65	76374	7000	0.2 <=0		931	9.5 0	SA.	0.2 C-WE	12	37	09	9006	1	
		95-105	76375	0000	0.2 <=4	D 100 1	2	9.5 0	340		12	*	6.0	9048		
		511-501	34376	7100	0.2 <=1		2	95 0	3A-o	0.3 ATE	13	40	7.0	9100	30 CE	*
		Mean, 25-115 cm		118	0.2 cel	P 88 4	8	2	38-0	20 CE		**	3	87.98	2	H
13	97106/04	2	76377	6360	P 78	11	<u>=</u>	9.5	3A-	17 4	11	9	2	11000	37	8
		\$15	76378	6300	15 24		130	9.5	3M=>		2	4.6	9	11000	2	3
		15-25	24.03F	8300	0.2 cm	91	2	0.5	_	A. A.	15	40	9.0	12000	10 at	350
		15-35	N.M.	818	0.2 cm	90	2	9.5	34.00		2	42	7.0	11000		36
		35-65	76,381	200	8.2 cm	0.5	8	95 0	M-o		13	=	7.0	11000		36
		48-33	76362	7800	0.2 or	N 115 CT	130	200	34-0	T 10	=	45	7.0	11000	20 SE	350
		35-45	7636	8	0.2 cm	2	130	2			15	=	7.0	12000	2.0 C-WE	350
•		68-78	76384	1900	0.2	-	8	200			13	47	3	11000	=======================================	350
	•	27	76385	901	0.2 <=0	7 20	•	20 00	3A-	17 AE	13	3.9	93	10000	STD 09	350
		25.45	76.386	7400	0.2 0		2	95	34-0		13	3	7.0	10000	315 638	2
		95-165	16367	7300	100	t 33	2	-	3Meo	21 TE	2	7	09	10000		98
		105-134	100	8	9.2 cm		2		IA.	3 AE	15	=	=	12000	20 21	338
		Mean, 25-124 cm	-	7089	0.2 c=W	P 88 4	28	95 00	3.80	5	=	2	:		# C	
54.15	Mean & Std	Mean & Sid Devh. 15-134 cm	6	7300 +/-402	0.2 ++4	97 97	442 134 H	4483 85 44	9/19	1.0-/- 1.0	13 +412	41 +/44	67 +41.0	97E 44-764	40 4/22	317 +4-23
andos.	3			1	1	•	1	1		90	*	1	2	3000	=	*
PROG-SEL.	-			1	1	13	1			9	011	1	911	4000	258	811
DOMINIO	5															

HOTES: Mark or "-" indicates that dets is not evallable for this per

- J.

MON - W-O.

weill ..

"O-WE" = so measurable response after cats, district or convent infinited and bolded values caused PRQ-LEI, guidalise for the pr

Table E-4. Inorganics and heavy metal concentrations in Lake Couchiching sediment core samples
All concentrations in mg/kg (ppm), dry weight.

-		1	11	Mercury	ı	Mohtdense		Nickel	Selenium		Strontian	Thansium	V	Verteilium	Zine
								,			!	***		;	8
w :	97/08/04	3	16365	100		60	- ME	2 5		7 6					2 4
		2 3		0.00			-	: :		: 4	100	8			:
		15.25	78.867			0.0	S.M.E.		6		27	3		2	2 :
		25-35	76346		t	0.5	-ME	7.9	0.3	t	220	8		•	10
		35-45	76369		t	0.5	WE	2	6.0		120	8		13	n
		45-55	76370	> 10.0	~	0.5	SW-	2.7	03	t	210	470		7	24 CTE
		35-65	76371		t	0.5	3/A->	93	0.3		220	470		=	n at
		65.73	76372		~	0.5	C.WE	1.6	0.3		220	420		13	n AE
		75.65	76373		+	0.5	3M=>	11	0.3		220	*		=	n che
		85-95	76374	900	t	9.5	3/4">	11	0.3		220	520		118	25
		95-105	76375	900	t	6.5	3Mas	7.9	63	t	220	800		IS	M ATE
		105-115	76376	900	5	6.5	3M=>	=	0.3	t	220	530		15	22
		Mean, 25-115 cm	15 cm	900	t	0.5	3Am	7.5	2	t	219			=	2
	emente	9.4	76877	0.07		9.5	SW-	2	9.0	t	82	228		2	g
		\$118	76378	100		0.5	-ME	12	0.7	t	200	98		•	43
		15.25	7637	100	-	6.5	3M=>	9.6	-	t	300	98		=	#
		15-35	76380	600	t	6.5	3M=>	0.6	6.9	t	200	995		11	2
		35-45	76361	000	•	6.5	34	=	9.0	t	300	260		11	я
		45-55	76382		t	0.5	3Mac	=	63	r	210	930		11	2
		58-65	76383		t	0.5	3Mes	8.7		t	200	009		•	2
		65-75	76384			0.5	3M=>	1.6	0.3	t	200	350		9	*
		73.45	76385	5910	-	0.5	3Mes	2	6.9	4	210	808		•	27
		88-88	76.386	100	+	0.5	3M=>	22	6.0	t	300	550		9	28
		95-105	76367	900	+	9.5	3M=>	9.8	0.3	5	300	550		9	11
		105-124	76388	600	t	9.5	34->	10	9.6	t	380	95		2	N
	*	Mean, 25-124 cm	34 cm	8	t	2	3Mes	=	63	t	200	354		11	22
3.8.15	Mean & St	Mean & Std. Dev'n., 25-124 cm	124 cm	9000	+/-0.01	9.5	9/19	82 448		03 +/-0.1	111 4/33	320	94-/+	16 +/-1.4	17 +/-10
1				9.5		1		2	,		1	ì		,	82
1	4			3.0		1		75			1	1		1	820
-	4 1					1		1	1		1	1		1	1

NOTES: black or "-" indicates that data is not evaluable for this para "<T" = a measurable trace amount: interpret with outdon.

"<=-W" = no measurable response (zero): less than reporter

c=TE = a manurable trass after cette dilution or concentration; assisten.
c=WE = no measurable response after extre dilution or concentration; last the instituted and bubbed values occured PSQ-LEL guidaline for the protection of safe.

Appendix F - Surficial Sediment Data

List of Tables and Figures

- Table F-1. Field observations of Lake Couchiching surficial sediment samples.
 Table F-2. Microscopic characteristics of Lake Couchiching surficial sediment samples.
 Table F-3. Macro-ion, nutrient and solvent extractables concentrations in Lake Couchiching surficial sediment samples.
 Table F-4. Inorganics and heavy metal concentrations in Lake Couchiching surficial sediment samples.
- Table F-5. Polycyclic aromatic hydrocarbon concentrations in Lake Couchiching surficial sediment samples.
- Table F-6. Polychlorinated dibenzo-p-dioxins and dibenzofurans in Lake Couchiching surficial sediment samples.
- Table F-7. Organochlorine pesticides concentrations in Lake Couchiching surficial sediment samples.
- Table F-8. Chlorinated aliphatics, aromatics and biphenyls concentrations in Lake Couchiching surficial sediment samples.
- Table F-9. Phenoxy acid herbicides and chlorinated phenols concentrations in Lake Couchiching surficial sediment samples.

Table F-1. Field observations of Lake Couchiching surficial sediment samples.

Fauna			amphipoda, chironomid, dameiffy, Dressena, isopoda, Heragania, mayffy, worm, crayfish; snail & clam shella	emphipods, chinonomist, Drotssens, Hexegenie, Ieach, snails, smil shells	amphipods, chironomid, Dreissene, clain, Hazagenie, crayfish, snail shells	seations with the shirement demanding Desirons Hermanica may be smaller and the	enplayous, cause my, one occurrent, secondary, pressent, recognition,	charonomids, phantom midge, Decisiente, clam, Henegerist, situate	chironomids, Dreissene, Henegaria, worms; abundant small shells		amphipods, chirenennisi, clam, damselfly, Dreissene, fishfly, isopods, Hazagenia, leach, crayfish	amphipods, chironomids, Dreissene, Henegenie, maydy, worm	chironomid, clams, Destasens	amphipod, chirottomid, Devissena	emphipoda, chironomidis, dragon fly, Dretzeene, Hezagenia, snaile, worms, crayfish; abundant snail shelli	caddistly, chironomids, dragon fly, Dretssene, Henegenia, snaile, worms, crayfish; abundant snail shells			EXPERIMENTAL CHARACTERISTICS, CHARACTERISTICS, LATERANCE, CHARACTER, CONTRACTOR CONTRACTOR CONTRACTOR CHARACTER CONTRACTOR CONTRACTO	anympted, chromonial, calin, argenty, transmy, mysy, verm	chronomids, phantom mage, carte, Designere, readingere, and	amphipods, chironomids, damaelly, dragonily, Deissens, Hanagesis, maylly, leech, snais; abundan snai sneis	chironomid, phantom midge, clams, Desissene, Hexagenia; mail shalls	chironomial, phantom midge, clams, Dvetseeve, fishifty, Henegenta, smill shells	chironomid, phantom midge, clams, Dreiseera, fishiliy, Hexageria; snail sholls	amphinoda, abundant chironomida, clama, Divetasene, isopod, mayffy, snaid, worms	combineds chiconomids Destasses include shandart smalls, conflicts	Milyanomide caldida Pastesan women cavilat	all the standard email chaile there are the search and the standard email chaile	subtraction, caroness, transfers, my spirit
Odour			HAS	His	16.6		Mis	slight HzS	Sch Has	Sight to strong Hall	none	none	none	HaS	none	-	O'll office 11.0	NOTE TO SUSTINE	none	BOUR	morse	slight H1S	ROME	HORS	none	olishe M.C.		Has	Hes	Has
Parameter	1		silvo corre & some hand clay; some organic matter	after conta	area from	ago April	aggly octas	silly ooss	seav. silty cope; tan surface layer	atto Ajja Atta	annu cillu come	acro silv occe	seem silly order				they want occur	gray silly cone	brown silt over gray, sandy clay	gray silty come; shundant organic detritus (bark)	gray silty com	ages sight oogs	array sifty come	and other contra		man ham had	sally sand with some hard city; stundart countil	gray silty oons	gray salty oute	way offer note
		1										Town B																		
1	1	3	9738678					•								9710530				97/06/02							97/05/29			COMPANY
1	1	2					_										=	2	(3)	*	*						=	61	20	-

NOTE: "-R" = field spetial replicate.

Table F-1. Field observations of Lake Couchiching surficial sediment samples.

			calcided Chara (SPN cover), Bludes, maccophyte fubers	Chara (30-40% cover), mscrophyte tuben	bravity calcified Chara (100% cover)	calcifie	sheet to shundari flumentous algo-		heavity cuicified Chara (95% cover), spane Myriophyllum & macrophyre tuben; spane globular colonial signe			6821-R.	calcified Chara (90% cover	calcified Chara (85% cover)	calcified Chara (97% cover)	calcified Chara (90-93% cover)		Chara (Whis covery), machigings tubers	16830	Chare (70-80% cover), metrophyre tutens	6833-R.	16834-R			Ohara (40% cover), sparse Blodes; common signe		Chara (10% cover), macrophyte tubette
7		21			- 3	2	2	36	16	16	35	36	76	26	12	7	2	7	7	7	36	16	76			-	
Field	unple Sample	Date Numb	76812	•		٠					٠	4	٠	DEV2017			٠	106/02						5/09/16			0.THINKERS
Field	Sample	umber Date Numb	B67 952-9179 1	•										00/20/19			. 69	14 97/06/02	. 91	. 91				97/89/79		. 2	30 0711960
Field Field		Humber				. 7 5180.	. 5 9000	. 9 51801		. 8 0000	76E20-R 9 "	76821-R "	76822-R	9	=	74628 (2 *	. (1) 62892	*	76830 15	76832 16 "	74833-R 17 "	76834-R		=		. 00 51800	

NOTE "-R" = field spelled replicate; NOTE "-R" = Said spelled replicate.

Table F-2. Microscopic characteristics of Lake Couchiching surficial sediment samples.

tion	Sample Date	Field Sample Number	Sand,Silt & Clay (carbonates, quartz)	Biological Material (shell debris)	Vegetation Fossilized Fibres Plant	Fossilized Plant	Wood & Bark Chips	Wood Char	Wood Char Coal Soot	Elemental Composition
_	97/05/79	76812	% 08	20 %	1	t	Trace	Trace	Trace	Ca > Fe, K, Si
2	*	76813	% 08	20 %	1	ŧ	1	:	Trace	Ca>K, Si
	8	76814	70%	20 %	% 01	1	t	t	1	Ca > Fe, K, Si
*	8	76815	% 08	20 %	Trace	8	t	t	1	
*	*	76816	% 06	3%6	3.96	ı	1	t	t	Ca > Fe, K, Si
9	*	76817	70 %	20 %	10 %	t	t	1	ı	
7	*	76818	% 09	3%	3.86	30 %	1	t	ı	
90	*	76819	% 09	10 %	% 01	20 %	1	1	1	
6	*	76820	% 08	10 %	ı	10%	ŧ	t	ı	
	3	76821	% 08	% 01	1	10%	t	t	1	
2	*		75 %	% 01	2%5	10 %	ŧ	t	ı	
0	97/08/30		% 09	20 %	20 %	â	ŧ	t	:	
_	æ		70%	20 %	t	10%	ŧ	t	t	
2		76828	% 09	% 01	96 01	20 %	1	1	1	
3			% 08	20 %	1	Trace	1	1	1	
*	97/06/02		70%	20 %	10 %	3	1	ì	1	Ca > Al, Fe, K, Si
*	*		% 06	% 01	ŧ	1	1	1	1	Ca > Al, Fe, K, Si
9	2	76832	% 08	10 %	96 01	1	1	1	1	Ca, Fe, Si > Al, Cl, Mg, K
1	t	76833	% 001	Trace	1	1	1	1	1	c.
		76834	% 06	10 %	t	1	1	1	:	Ca > Al, Fe, K, Si
*	2	76835	% 06	10 %	Trace	1	1	1	1	
80	97/05/29	76823	70 %	20 %	% 01	8	Trace	\$	ī	
6	*	76824	30 %	40 %	10 %	8	:	t	ı	
9	2	76825	% 09	% 01	% 01	20 %	1	t	1	
=	97/06/02	76836	70 %	20 %	ı	10 %	Trace	ŧ	1	

NOTE: "--" = not detected / not found.

IMPORTANT NOTE CONCERNING THE FOLLOWING **PAGES**

THE PAGES WHICH FOLLOW HAVE BEEN FILMED TWICE IN ORDER TO OBTAIN THE BEST REPRODUCTIVE QUALITY

USERS SHOULD CONSULT ALL THE PAGES REPRODUCED ON THE FICHE IN ORDER TO OBTAIN A COMPLETE READING OF THE TEXT.

REMARQUE IMPORTANTE CONCERNANT LES **PAGES QUI SUIVENT**

LES PAGES SUIVANTES ONT ÉTÉ REPRODUITES EN DOUBLE AFIN D'AMÉLIORER LA QUALITÉ DE REPRODUCTION

LES UTILISATEURS DOIVENT CONSULTER TOUTES LES PAGES REPRODUITES SUR LA FICHE AFIN D'OBTENIR LA LECTURE DU TEXTE INTÉGRAL

20 Victoria Street Toronto, Ontario M5C 2N8 Tel.: (416) 362-5211 Toll Free: 1-800-387-2689

Fax: (416) 362-6161

Email: info@micromedia.on.ca

Table F-3. Macro-ion, nutrient, and oil and grease extractables concentrations in Lake Couchiching surficial sediment samples.

Concentration units as noted: % = percent, g/kg = ppth; mg/kg = ppm. Except for particle size, all results are on dry weight basis.

						·					Petroper,		
	Past	Moistage	Course Sand	Sand	Silita Clay	total loss	Carbon,	Culcium,	Magnesium,	Chloride,	tecal Kjebladd,	Phosphorus,	
Sample			2000-1400 um	1000-63 um	-63 um	8	100	und total	und total	at out	unf. reset.	and bead	
- B	Number	*	*	2	*	s/s	al's	246u	Maga	myke.	£	ž.	
STABST	9 70812	8	900	217	88	33	32	210000	2000	R	8.7	0.84	
	76813	1	0.43	13.13	95.39	t.	39	290000	3600	=	13	970	
•	76814	#	91.0	39.32	05.99	3	37	310000	3300	at.	43	0.32	
٠	76815	2	900	31.97	67.90	2	37	200000	2400	2	3.8	979	
	76816	*	900	1943	70.90	P	39	300000	4580	22	3.9	0.0	
	76817	*	0.03	38.34	2919	8	27	196000	9077	37	2.2	0.32	
•	36818	E	910	28.76	71.00	*	42	290000	3400	8	4.7	0.26	
	76819	25	010	40.58	86.36	=	21	140000	2800	я	2.4	0.64	
•	76826-8	25 1	600	32.55	77.40	tx.	61	140000	3100	8	1.0	0.50	
	76621-8	*	000	95 91	10.44	×	20	1 50000	3400	2	77	0.50	
•	76822-8	38	000	28.74	200	2	25	10000	3300	3	2.5	9.0	
678873	0 76876	2	000	66.17	13.00	=	13	77000	1700	Ħ	17	30	
	76827	3	000	38.25	71.68		31	250000	3300	8	2.6	0.38	
•	76628	59	62.0	28.97	20.70		36	260000	2900	33	2	97.0	
	76879	=	490	70.07	29.26	=	1.0	100000	1800	R	2.7	0.24	
D. TORNE	2 78831	3	950	35.58	400	19	33	170000	8100	9	2.8	0.0	
•	74830	69	012	45.16	EL.18	2	=	340000	9069	=	1.0	0.62	
•	16831	8	613	nn	67.15	4.0	35	270000	1500	2	3.8	**	
•	76833-1	8	0.19	33.02	66.70	2	37	280000	4600		3.8	87.0	
•	78834-1		000	28.15	71.85	63	9	21500000	4300	R	3.4	134	
•	76835-	*	800	29.63	78.30	*	35	360000	4788	2	3.4	0.32	
97/89/16	_	*	0.13	88.28	10.38	=	10	280000	2500	23	LI	0.60	
•	70834	3	0.78	23.38	15.91	3	36	280000	9007	9	4.7	0.0	
•		8	61.0	11.11	47.70	35	29	170000	900	3	3.3	95'0	
1756/03	2000	Ħ	9110	85.07	92.26	4	23	990091	4000	4	2	970	
Mean & Std. Dents.		62 4-10	40.10 0.17 +4-0.30	38.81 +/-17.61	9871-74 1619 161306	61-/+ 85 981	30 1/10	117400 +/-69857	3988 +/-1448	27 29	3.0 4413		8.48 +/4.15
LE		3	1	1	1		91	t	1	1	0.35	990	
SEL:		1	:	1	1	i	901	1	ı	1	=	200	
Oun		1	1	1	1	-		1					

HOTES: "<MDL" = less then method detection lijd.

"R" - Seld spetial replicate.

Indicated and bedead values caused Previous Sulfirmers Quality L.E.L. guideline for the protection of endirent-dredling enganisms or the Open Water Designed Material Disposal Ouideline, values in shaded orth served PSQ-SEL guideline

Table F-3. Macro-ion, nutrient, and oil and grease extractables concentrations in Lake Couchiching surficial sediment samples. Concentration units as noted: % = percent, g/kg = ppth, mg/kg - ppm. Except for particle size, all results are on dry weight basis.

State State <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Residue,</th><th>1 Nigarite</th><th></th><th></th><th></th><th>Sundania</th><th></th><th></th><th></th></th<>								Residue,	1 Nigarite				Sundania			
Sample Sample Sample Sample Sample And to sampl			Eveld	Mosships	Coarse Sand	Sand	Sulta Clay	total loss	Carbon,	Calcium,	Magnessum,	C'hlonde.	total Kych		hosphorus,	
			Comments		2000. 1000 um	1000-63 um	63 um	ugh uo	total	unf total	unf total	aq extr	und reac		unf total	
STATE OF STATE O		Date	Number	2	%	*		s/s	s/s	mg/kg	Sa/kgm	mg/kg	8/8		2/4	
				1		9, 17	92.55	65	32	210000	7,000	E		0.7	0.84	
*** SMAIL 11 0.64 31.72 m 90 64 37 10000 500 71 4.3 *** SMAIL 11 0.64 31.97 67.99 73 3.90 77 3.8 *** SMAIL 73 0.66 31.87 6.79 77 10000 400 77 3.8 *** SMAIL 71 0.66 31.87 7.69 77 10000 77 2.2 *** SMAIL 71 0.66 31.74 7.69 77 10000 77 2.2 *** SMAIL 71 0.66 31.74 7.69 77 10000 77 2.2 *** SMAIL 72 0.60 1.74 7.74 74 76 10000 100 2.7 10000 100 2.7 10000 100 2.7 10000 100 2.7 10000 100 2.7 10000 100 2.7 10000 100 1.7 1.7 1.7 1.7	-	97/05/29	76812	65	\$0.0 t	2 2 2	25 26	2	65	298800	3600	25	•	1.3	97.0	
	64		76813	11	0.45	2000	3 3	1	47	NOW	1200	740	•	4.3	0.32	
		٠	76814	7.0	8:0	21 61	2 5	8 F	12	24,0000	5,400	7.0	7	3.8	98 0	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	*		76815	2	000	20 16	200	2 8	92	340000	00,1	7.0		3.9	0.40	
************************************	41	9	76816	11	90.0	2001	06.07		2.2	Oliveri .	999	47		2.2	0.32	
- 7848	9	0	18817	Ħ	0.03	26.36	29 19	2 1	4 9	200000	1400	100		4.7	0.26	
1,000,000 1,000	7	٠	76818	11	910	定 集	71 00			Occupation 1		3		2.4	0.64	
1,042,0, 1,042,0, 1,042,0, 1,044,0, 1,144,0,		0	76819	25	010	43.51	2.3	9	17	140003	0007	R 5			0 60	
Trigger Trig			76820-R	52	0.03	37 56	17 48	ZA.	67	140000	3100	3 :		3.5	RS	
1,000 1,00			76821-R	R	0000	95 91	1344	9	7.0	1,0000		\$:	•		2 0	
1982 1982 1982 1982 1982 1983	9	9	76822-R	3	0.00	21 74	78 26	2	2.5	140000	4200	3			900	
7.6423 6.4 9.07 38.25 71.08 46 3.1 2.0000 31.00 4.0 4.0 4.0 4.0 4.0 3.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 3.0 2.0 3.0 3.0 2.0 3.0 3.0 2.0 3.0 3.0 2.0 3.0	9	67/06/30	36836	92	000	6617	33.83	=	12	71000	1300	H.			0.04	
1962 1 55 Align 1963 1 196 Align 196 Align 196 Align 196 Align 196 Align 196 Align 197 Align 197 Align 197 Align 198 A	2 :		24837	3	0.07	28.25	71.68	8	31	2,0000	3300	8		2.0	E 0	
1,000,000 1,000,000 1,00	= :	٠	34878	**	0.25	78.07	20.20	*	76	200000	2900	8			90	
1,000,00 1,000,000,00 1,000	21		2790		0.67	70 00	29 26	=	7.0	100000	1800	9		2.7	0.24	
Total	13		1000	7	3	85.55	43.87	19	33	178606	8100	69		2.8	0.40	
Total	4	4.70mm02	74.030	8 5	013	45.16	54.72	7.6	-	240000	1000	=		1.0	29.0	
1,000.27	5		768.90	/0		13 13	67.15	0.7	3.5	270000	1100	83		3.8	80	
788334 70	9		76812	8	010	27.00	25. 43	92	37	210000	4600	8		3.8	0.28	
- 76854R 69 000 22643 7038 69 35 Zoomoo 6700 61 3.4 - 76855R 69 013 23.94 1198 18 69 36 Zoomoo 2500 25 110 4.7 - 76825 58 013 23.94 1791 60 36 ZOO 17000 61 110 4.7 - 76825 66 019 72 140 01 14.120	17		76833-R	2	010	2010	11.85	6.7	410	210000	4700	2		3.4	0 34	
- 76655-R 66 0 08		0	76834-R	\$	000	CINI	2 2	3	44	200000	6730	70		3.4	0.43	
71/05/29 76423 38 0 013 39428 15.01 66 36 36 20000 4200 110 4.7 70 110 4.7 70 110 4.7 70 110 4.7 70 110 4.7 70 110 4.7 70 110 110 4.7 70 110 110 4.7 70 110 110 4.7 70 110 110 4.7 70 110 110 110 110 4.7 70 110 110 110 110 110 110 110 110 110	0		76835-R	89	0 08		8 9	=	100	780000	2900	3.6		1.1	0.60	
76824 64 071 2334 7741 55 29 17000 660 64 3.3 4.		61/69/16	76823	20	013	87 68		1 1	3.6	2000000	4000	911		4.7	0 42	
7706/02 76836 58 018 4738 5234 42 29 160000 488 47460 43 473 42 3 4 4 4 9 3 6 4 4 19 3 6 4 4 19 3 6 4 4 19 3 6 4 4 19 3 6 4 4 19 3 6 4 4 19 3 6 4 4 19 3 6 19 3 6 4 19 3 6 4 19 3 6 4 19 3 6 4 19 3 6 4 19 3 6 4 19 3 6 4 1	61	a	76824	999	0.11	23 48	1000	2 2	20	13000	9000	2		3.3	9 0	
9708/02 76856 58 0.18 4758 3/24 2.2 3.0 +1.13 Derin 62 +1.10 0.17 +1.020 38.81 +1.1701 61.01 +1.1706 54 +1.19 3.0 +1.10 217000 1/-5/857 3/688 +1.140 62 +1.22 3.0 +1.13 100 0.10 0.10 0.10 0.10 0.10 0.10 0.10	92		76825	\$	910	11.75	0.00		20	140000	WWW THE	47		4.3	8	
Derin 62 +2.10 017 +2.020 38.81 +2.17.01 61.01 +2.17.00 54 +2.19 36 +2.10 217.000 +2.68877 3988 +2.1460 62 +2.22 3.6 +2.13 1.0 6.55 1.0 1.00	23	97/06/02	76836	35	818	47 TB	27.74	7								
	men & St	ld Den'n		20 29				25	30		3488 1/-1/48D	62	122	3.0 **13	0.43	10%
							:	;	101		:	2		95.0	0 00	
	SQCI.E				1				81	;	:	:			3.80	
	SQG-SEL	-		:	:									1	*	

NOTES "- MDI." - less than method detection liut

. R. field spatial replicate

takeued and holded values exceed Provincial Sediment (pashly 1.F1, guideline for the protection of sediment-dwelling organisms or the Cypen Water I hedged Material Dispusal Caudeline, values in shaded cells exceed PSQ SF1, guideline

Table F-3. Macro-ion, nutrient, and oil and grease extractables concentrations in Lake Couchiching surficial sediment samples.

Concentration units as noted: % = percent; gkg = ppth; mg/kg = ppm. Except for particle size, all results are on dry weight basis.

		7	Salphur.	Solvent	Petroleum		Petroleum	
1	1	1	1	Extractables	Hydrocarbona,	Ē	decates.	
1	2	Number	ž.	and the same of th	angle a		No.	1
-	STABILI	76812	:	1500	100	-MDI	8	-MDL
**		74813	13	2200	P 801	MO.	8	-
•		7681.4	2.8	1800	¥ 81	MO.	8	-
•		34415	319	1700	P 81	ğ	8	AD.
90		3000	2	1360	₩ 8 <u>1</u>	Z,	8	ALC:
•		718817	11	380	100	MO.	8	-MDL
		31816	3.0	1700	8	MO.	8	- NO
		34819	13	2	₽ 8 1	NO.	8	4
		THEOD R.	=	27.0	₩ 8i	ZQ.	8	-
		76821-R	1.7	810	981	MQ.	8	- NON-
		70822-R	2.1	2	P 83	MO.	8	-MDI
2	97/05/30	36867		370		MOL	3	- PROPERTY
=		76827	2.6	2	P 801	-(MD).	8	₽ T
=======================================			11	1000	₽ 8i	MO.	3	SHD.
2			0.97	*	8	MOL	8	- PROF
=	97/06/02		3.2	1300	8	MO.	8	-
15			*1	2	8	MO.	8	-MOH-
*			3.6	1300	\$ 8i	MO.	8	- PROF
11		Name A	1.5	8	₩ 8 <u>1</u>	ğ	<u>=</u>	-MDL
			1.5	=	8	ğ	3	404
			1.5	903	8	ď	8	-MDI
=	ST/SB/L6		13	***	18 A	NO.	8	-HDF
•			1.7	1300	198	MO.	8	-MDI.
2		76825	2.5	1500	8	MOL	8	40
=	97106472	76876	2.2	8	3	ď	8	- PROPERTY
1	and 344 Dark		11 400	1014 114	8	-(MDL	8	\$MDL.
DO-LEI	1		1	\$	t			
OG-ME			1	i	8		2	
BETTALEN	pi.		-	1 600	8		:	

NOTES: "-- AIDL" - less than method detection Lik

"A" - field spatial replicate.

or the Open Water Dreignel Material Disposal Quideliber, values in shaded orth consol PSQ-SEL guidelies.

Table F-4. Inorganics and heavy metal concentrations in Lake Couchiching surficial sediment samples.

All concentrations in mg/tg (ppm), dy weight.

																	-
1 1	11	1	Aleminum	Antimenty	Aramic	1	Berylliam	Cadmium	6	Cheerman		Cupper		1	2	1	Mental
-	97/8/01/9	76612	00001	P 80	25	91	0.5 c=WE			55	11	7	22	98991	25	88	908
		74813	2	D 80	2.8	001	0.5 c=WE			=	319			5360	38	310	100
-		76814	2960	13.4	•	120	0.5 C=WE	_			3.6	•	0	4280	13	200	0.00
		74815	3800	D 10	2.2	911	0.5 CWE			0.6	20 ATE	•		0019	11	230	0.00
100		7816	6700	0.5 <7	24	001	0.5 c=WE	9.8	₽	91	3.1		13	8388	25	320	9.05
	*	74817	3300	100	•11	2	8.5 CAWE			10	139	•	31 0	2480	*	9	100
		3000	3200	5 53	91	120	85 c=WE	9.9	and the same of th	10	16 AB		0/	9999	=	8	200
		76819	3400	0.1 <=W	01	69	0.5 C=WE	63	t	99	2.9	•	P .	5500	13	220	
		76820-R	3600	02 c=W	11	=	0.5 c=WE	0.3	t	7.0	1.5	•	P 4	3800	D 06	200	100
		76#21-R	999	W=> 20	111	3	8.5 c=WE			0.8			D 0	6300	13	220	0.01
		76822-R	3480	82 c=W	п	11	3M=> 50	0.2		7.0	P =1	4 III	40 ATE	2000	30 CE	300	0.01
9	97/05/30	76826	2700	82 ~=W	07 CT	37	M=> 50			6.9			N=> 0	2400	70 OF	170	100
=		74827	3600	0.2 c=W	12	2	BA-> 50			7.0				819	=	81	190
22		36828	2609	0.2 <=W		*	8.5 c+WE			0.0			10 CE	4300	13	8	100
		76829	2300	0.2 <=W		*	Wa> 2.0			8.0			10 0	4700	5.0 cT	9	0.01
2	97/06/02	1680	7000	D 50		2	0.5 coW	0.4		98				7800	18	290	000
18		76830	8700	0.5 cf		81	8.5 c=WE	_		11		_	11	11000	36	8	80
		76832	3200	0.2 c=W		911	0.5 c=WE			••					13	210	200
11		76833-R	0069	D 10		130	0.5 c=WT	_		13	3.0		01	970	11	330	88
		74834.R	9839	P 79		130	105 c=WT			13	3.6		01	909	n	336	96
		74835-R	670	5 60		130	0.5 c=W1			0	3.9		91	1500	=	330	900
	97/8/9/79	74823	2100	0.2 c=W		3	0.5 c=WE	_		:	7	-	10 4	0006	3.0 ℃	9	970
		7467.0	2900	P 60		120	0.5 <=WE	1 0.4		7.0	♥ 8 1	-	91	0007	115	250	0.62
90		74825	4500	D 63		83	0.5 c=WI	1 02		0	43		9/	7100	=	230	0.02
2	97106/02	76836	2900	0.2 c=W		8	0.5 <=WI		3M=>	07	0.7	- TE	9	3300	2	2	100
an & 54	Mean & Sld. Devil.		4261-/+ SEE	03 +/42	11 441.7	97 +4.35	3W~ 88 e-WE	50	443	11 4/4	9.8 -4-3.8		70 4/45	6756 +1-2885	20 +/-12	133 +/-00	
PEOC.1 EL				1		1	,	9.0		32	ı		2	20000	31	\$	9.2
00-881	-			1	33	1	1	91	-	011	1	-	01	9990	250	1100	20
											5					1	

NOTES: Mark or "-" indicates that data is not available for this parameter or sample

"R" - Seld spatial replicate.

"- a measurable trace amount interpret with caution.

"c= $W^* = n_0$ measurable response (sero): less than reported value

"c=TE" = a measurable trace after extra dilation or concentration: caution * c=WE" = no measurable response after extra dilation or concentration: less than reported value.

isalicized and bolded values exceed Provincial Sediment Quality Lowest Effect Level Guideline for the pro

Table F-4. Inorganics and heavy metal concentrations in Lake Couchiching surficial sediment samples.

All concentrations in mg/kg (ppm), dry weight.

		Field											1
11	1 8	11		Motybdena		Hickel	Selenium		Streetien	Therine	Vertical	Zine	
-	97/SDITE	76812		13	₩	28	0.7	t	92	8	я	8	
2		78813	t	1.0	F	7.5	6.0	t	250	250	86	9	
3		78814	4	6.5	3/6->	7.4	80	t	360	190	=	200	
*		74815	t	6.5	3/A=>	2.2	80	t	220	280	13	*	
		76816		0.5	3A->	13	0.7	t	220	420	92	88	
		74817		0.5	3M=>	53	-	t	8	300	9	11	
1		76818		9.5	3M=>	979	0.0	r	130	300	87	#	
		74819		0.5	Meo	43	63	b	130	380	13	35	
		76836-R		0.5	N-O	17	6.3	r	130	984	13	22	t
	*	76821-R	Mes	6.5	A-0	53	63	t	130	830	2	26	t
		74823-R	-	9.5	3M=>	419	***	\rangle	9	380	12	24	€
10	97/05/30	78836	M=>	6.5	M=>	3.4	6.2	M=>	74	570	13	113	t
=		74827		0.5	BA->	6.2	6.0	r	228	900	13	36	26
-		34628		0.5	=M=>	5.2	**	t	220	278	9	22	E
13		76879		0.5	M.	2.8	0.2	May.		8	=	13	t
1	97/06/02	74831			E	7.1	6.5	t	130	2,0	*	38	
13		78830		9.5	3/A=>	13	6.7	t	310	558	21	3	
*		76832		9.5	3M->	5.5	9.0	t	340	230	8.0	20	
11		76833-R		9.6	#	676	9.5	t	130	999	15	3	
		74834-R		0.5	<-WE	=	9.0	r	130	959	2	\$9	
		74835-R		**	田	9	9.0	t	230	8	91	2	
=	97/83/T9	76823		9.5	A.o	5.8	0.2	Mas	38	3	•	23	t
		76824	t	9.0	E	5.5		t	150	300	8.0	31	
2		74825		0.5	3/M=>	8.9	***	t	991	907	14	200	
=	97/06/02	76836		9.5	3M∞	45	63	F	8	98	=	92	3
A man	Sal Deve		100/+		16 +/42	7.6 4-5.1	88	+/43	D/+ GII	411 ++180	13 +/49		35 44.17
SQC-LEI.	3			1		91			ī	:	1	921	1
SQG-SEL	28			1		22	1		i	1	1	876	
WDMDC	2			1		ŧ	1		2	t	ı	1	

NOTES: black or "-" indicates that data is not available for this parameter or sample

*-R" - Seld spatial replicate.

"""""
"
"
The amount interpret with caution.

"C=W" = no measurable response (zero); less than reported value.

 $^{\circ} \text{cr} \overline{\text{TB}}^{\circ} = a$ measurable trace after extra dilution or concentration: caution.

*O-WE" = no measurable response after extra dilution or concentration: less than reported value.

infection and bothed values exceed Provincial Sodiment Quality Lowest Effect Level Ouisisies for the protection of sediment-deciling organizms.

Table F-5. Polycyclic aromatic hydrocarbons concentrations in Lake Couchiching surficial sediment samples.

All concentrations in ug/kg (ppb), dry weight.

(LASSING-		ran- Biocent- ric there	orns there there		orse there
	8		91	91	91
F	8	8	\$	* 5 =	* 5 =
A-			の ショ	の ショ	の ショ
+	8	8	8	\$ P 8	\$ P 8
*	20 <	8	8	80 CT 20	80 CT 20
M.o.	200	30 c=W 30 c	20	30 c=W 20	30 c=W 20
A-M	N	m cw m c	2	28 c=W 28	28 c=W 28
*	N-00	20 c=W 20 c	30	7 20 ~W 20	7 20 ~W 20
3	20 c=W	20 c=W 20 c=	2	1 20 c=W 20	1 20 c=W 20
*	30 c=W	20 c=W 20 c=	2	1 20 c=W 20	1 20 c=W 20
2	N=> R	30 c=W 20 c=	2	10 c=W 20	10 c=W 20
*	2 0 M	2	2	B C-W 28	V 20 c=W 20 c=W 20
	N-0 82	2	2	20 C=W 20	V 26 c=W 26 c=W 20
2	N-0 02	No M	2	<m 28="" <m="">28 <m 28="" <m="" <m<="" td=""><td>N 20 caW 20 caW 20</td></m></m>	N 20 caW 20 caW 20
2	N-0 82	2	2	R MoR	R MoR
W	20 82	2	2	M B U M	N Now wet N
W.	98	22	-W 86 cf 28	-W 86 cf 28	-W 86 cf 28
M-o	9	92	C=W 20 C=W 20	C=W 20 C=W 20	C=W 20 C=W 20
M=O	0 02	2	<=W 48 <t 20<="" td=""><td><=W 48 <t 20<="" td=""><td><=W 48 <t 20<="" td=""></t></td></t></td></t>	<=W 48 <t 20<="" td=""><td><=W 48 <t 20<="" td=""></t></td></t>	<=W 48 <t 20<="" td=""></t>
M-o	0 8	2	2	C=W 28 C=W 20	C=W 28 C=W 20
M=o	0 8	2	~ M → M →	~ M → M →	~ M → M →
M-o	20 00	20 c=W 20 c	22	~W 20 ~W 20	~W 20 ~W 20
W.	20 0	20	<-₩ 40 cf 20 ·	<-₩ 40 cf 20 ·	<-₩ 40 cf 20 ·
M-o	20 00	20	-W 48 cT 20	-W 48 cT 20	-W 48 cT 20
*	N=0	92	C=W 20 C=W 20	C=W 20 C=W 20	C=W 20 C=W 20
	9	. 240	330 - 340		
330000	90	13,40000			

NOTE: "<T" = a measurable trace emount: interpret with causion

"<-W" - no measurable response (zero): less than reported value

net Quality Lowest Effect Level Guideline for the protection of soliment-develling organisms ".R" – Sold spatial replicate. Indicipal and builded values exceed Provincial

Table F-5. Polycyclic aromatic hydrocarbons concentrations in Lake Couchiching surficial sediment samples.

All concentrations in ug/tg (ppb), dry weight.

9L Je	_	22	3	9	3	*	•	•	•	•	•	•	•	0	•		\$	228			•	0		2	8	6
5	Z	-																								
				t	t	t	M=o	M=o	Mes	Mes	Meo	-	-	Mes	-	Mes	Mac	F	-	-	-	-	-	7	r	-
	Pyrente	=	8		9		2	30	92	92	92	30	8	2	20	2	2		R	R	2	8	2	R	8	38
		t	t	M=>	t	M=>	-	Mas	A->	Mes	M=>	-	Mes	M=>	M->	M=>	M=>	-	Mes	May	-	-	-	-	Mes	March
Person	Person	8	8	2	=	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	-
		۲	And	r	Mes	A	No	M=>	N-O	Mes	-	-	-	-	-	Man	No	-	-	-	-	-	t	t	-	Mes
1	Humber	74817	74813	76814	74815	76816	74817	76818	20819	76820-R	76821-R	76823-R	76826	76827	76828	76829	76831	380	76832	76833-R	MESAR	3425-R	76825	76874	78825	30000
İ	2	97ASML6				٠						٠	BE/SDIL6				STIDENT		٠				97/29/79		•	-
1	funder	-	*		•	w	•	1					2	=	22	13	=	115	2	17			=	•	2	

NOTE: "CF - a measurable trace amount. interpret with custion.

PROCEEL

"O-W" - so measurable response (zero): less flus reported velle

"A" - field spatial replicate.

ined and bubbled values consed Provisoial Sediment Quality Lowest Effect Lovel Oxidelites for the protection of sediment-develop organisms.

Table F-6. Polychlorinated dibenzo-p-dioxins and dibenzofurans in Lake Couchiching surficial sediment samples.

All concentrations in 1894 (1993). 49 weight.

	Manh	Number TetaCDF TetaCDD	-	otherCDO	ACO .		QQ :	#	JO	# (000	2	ACD!	Ŧ.	CDD	OctaCD	PresECDO HearCDF HearCDD HepacDF HepacDD GeaCDF GeaCDD	137.9- TemODF		TelesCDD	Paracop 14
25	2	3613 19 (17) 1.0	60	91	21	(ES)	25 (23) 24 (23) 25 (2) 34 (3) 2 (2) 34 (3) 2 (2) 34 (3) 34	6	n	E						1					
3 1	2 8	Field Station Sample Sample 23.A.7.8-		12378	123478	4	23678	**	3,46,78	77	23,789	2	3472	123	6.78	(1337)	19. 123.667£	SACALLI STAALLI SACLLI SECLLI SECLLI SECLLI SACLLI SECLLI SECLLI		123,467,8	
3	18	Date Number PertaCDF		Permetto	HeadOF		HeadCDF		HeusCDF		HeurCDF		HexacDF	Henn	HenaCDD	HeraC	HexaCDD HepaCDF	Нерысов		Hepacoo	TEO
2	74813	1.7		2	2		1.7		=		18 < 13	٧	2	1	23	3.6	2	2	٧	R	\$

NOTE: "<" = not detected at inficated detection limit.

Table F-7. Organochlorine pesticides concentrations in Lake Couchiching surficial sediment samples.

All concentrations in ug/kg (ppb), dry weight

				•	1								-			Bille	
2	à	L		Chlor	Oller			-	- 20		•	-,416	Elek-		4	1	
BIHC	23	BHC		des	dare	Desiden		000	BDDE		DOT	DOT	all a		4	-	Esstin
	-	*	No I	1 000	**	Meo	I cow	8	M-o	Meo	Neo S	*	Neo 1	No I	No. 1	*	1 00
	-	*	Neo I	2 0-1	W 2	Meo	2 c-W	5	I Meo	M=>	S caW	8	O-W	May 2	No +	4 00	•
	-	-4	Mo I	2 call	**	Meo	1 0-W	30	I Meo	M.	No S	*	C-W	No I	No 1		1 04
	-	-	100	2 04		Meo	1 cow	3 0	N-O	Mes	N=0 S	3	C=W	Meo I	No. 1	1 00	-
	-	M-	Mes I	2 <= 1	W 2	M=O	1 0-W	3	I Am	Mes	N=0 S	*	Cow W	Neo I	New 1	N-0 P	-
	-	*	No I	2 00	W 2	M·o	2 c=W	8	I A	Mes	N=0 S	3	W-D	Ano 1	4 cow	4 col	* 0-10
	-	-	No I	2 <=#	2	M=>	N=0 Z	20	I Am	Mes	No s		Call 1	M=> 1	No t	A col	A-0 +
	~	*	M=0 1	2 call	1 1	M=>	1 0-1	5 0	N=O	A-0	Neo 5	*	West 1	No I	No F	4 00	Mary 9
-	V	*	No I	1 04	1	A.o	1 0-1	5 0	M=	Mes	8 c=W	8	C-W	No I	N-O F	100	W-> 1
-	V		M=> 1	2 c=1	1 1	Meo	1 0-W	5 0	M-o	M=>	No S		W->	No I	No 1	4 00	No 1
-	A	*	W-> 1	2 c=1	1 3	Man	I ow	3 0	O-W	Mes	N=0 S	9	May 1	Mo I	4 C=W	4 0-1	N-> 1
-	V		Neo I	2 cell	1	Mo	1 ~W	3 0	M=>	Ano	S cow	*	N-S	Neo 1	N-O F	4 04	No 1
-	V	*	Meo I	104	2	M-o	1 0.W	30	M-O	M=>	N-o S	50	Mes 1	N= 1	No F		N-0 1
-	V	-	M-0 -	2 00	W 2	M-o	No I	3 0	N=o	M=>	Neo S	8	Man 1	N=0 T	No F	4 00	A-0 1
-	V	*	Meo I	2 00	W 2	Meo	1 -W	20	M-o	Ano	8 c=W	3	May 1	No I	No F	4 04	A-0 9
-	V	-	Meo I	1 0	W 2	Meo	1 c=W	20	M.	Mes	N=0 5	8	A.	N= I	No 1	100	A-0 7
-	V	*	M-0 -	1 04	W 2	Meo	1 0-W	20	O-W	Mar>	N-o S	*	Mes	Mes 1	N=0 P	1 00	A 1
-	V	*	N-0 1	2 00	W 2	M-o	2 co W	3 0	Man I	Mes	S oww	*	M->	N-O Z	N=0 1	*	N-0 1
-	V	*	N=0 1	1 00	W 2	M-o	2 <=W	3 0	M-o	Mes	S Call	3	Mary 1	Meo 2	No F	*	1 00
-	V	*	No I	1 0-1	W 2	Mo	2 c=W	30	M.o.	Mes	S cow	3	M-o	Neo 1	N=0 7	1	No 1
-	A	-	A-0 1	1 00	W 2	Meo	1 c=W	8 0	Meo	M=>	N-o S	\$	M-o	Neo 1	No T	*	N-0 7
-	A	*	Mes 1	1 04	W 2	Mas	2 c=W	3 0	M-o	A-	No S	2	Meo	N=0 2	M-> *	1	No 1
-	V	*	N=> 1	2 call	W 2	Mes	2 <=W	20	M-o	M=>	No S	8	M-o	N=> 1	M=> F	4 (=)	A-0 1
-	V	*	M=> 1	2 c=W	W 2	Mes	2 c=W	0 5	M-o	Mes	8 c=W	*	Mes	W-> 1	N=> F	101	•
-	V	*	Meo I	2	a Me	A Co	1 cow	3	M-o	M=>	No S	•	Amo	N-0 7	Nes 1	***	M-0 -
5	1		-	1.	1			-	"	2	:-	-		١.	ı	1	3
21000		**	-	-	2000	- 01000		2000	1.0000		71.000 ax	41,000	:				1 20000

NOTE: "<-W" - so measurable response (zero): less than reported value; "<T" - s measurable trace amount: unimpet with one

"A" - field spetial replicate.

*POCG-LEL" & "POCG-SEL" - Provincial Sediment Quality-Lowest Effect Level & Severe Effect Lovel guidelines for the

** * = guideline is for sum of the two Obserbase isomers. *** - guideline is for sum of the two DOT isomers.

Table F-7. Organochlorine pesticides concentrations in Lake Couchiching surficial sediment samples.

All concentrations in 18/18 (ppb), dry weight

		Fredd			th.						1		
-	Sample	1	Hepte		die		Metho				-		
1	Date	Number	diler		Epocode		xychlor		Marex		å		1
-	97/69/29	76612	-	1	-	-	*	*		S Call		2	*
		76813	-	Mes	-	-	*	Mes		8 c=W		2	*
		76814	-	-	-	Mes	193	-		8 co.W		9	3
*		76815	-	M=>		Mes	8	May		S cow		2	*
*		34816	-	Aco	-	Mes	8	Mes		N= 5		0	*
		76817	-	Mes	-	Mes	•	Mes		Neo S		0 2	*
		30818	-	Mes	-	-	*	Mes		S COW		0 2	*
		76819	-	Me	-	Neo.	8	Mes		N= S		10	*
		76830-R	-	Meo	-	Nes.	2	Mes		S cow		2 0	
		76821-R	-	Meo	-	Mo	*	Mes		N-O S		2	*
		36822-R	-	Mes	-	W.C.	8	M=>		S COW		Ü	3
9	97/05/30	76826	-	Mes	-	Mary .	8	M-o		N-O S		9	7
=		76827	-	Mes	-	-	~	Mes		S Call		9	7
12		76828	-	Mes	-	Mo	9	Mary		N= S		0	*
=		16829	-	Meo	-	N-O	*	Mes		8 0-W		0 14	-
-	97/06/02	76831	-	Mo	-	N-S	8	Mes		5 c-W		0	7
15		78830	100	Meo	-	-	8	Mes		S OW	_		3
	٠	76832	-	Me	_	-	S.	Mes		S C-W			7
13		76833-R	-	Mes	_	M-O	3	Mes		S OF		1	7
		76834-R	-	M.o		Mary .		Mes		S OW		3	*
*	*	76835-R	-	Mes		M-O		May		No s		-	-
*	97/89/19	76873	-	1	_	-	80	Mas		3 0-1		2	-
2		76824	-	-	_	800	8	Mas		3 04	_	-	*
. 8		76825		-		M-O		Mes		N=o S		2	Man or
12	STIMBLES.	76.00	-	3		-	*	-		3 00		24	7
SOC-L	P.F.		1				1			-		1.	
					4000				98	8			

NOTE: "<=W" = 10 measurable response (2mu) less than reported value; "<\" = a measurable trace amount unimpret with caution.

".R" - Seld spetial replicate

*PSQULEL! A *PSQC-SEL" - Provincial Sediment Quality Lowest Effect Level & Severe Effect Level guidelines for the proinction of sediment-dwelling org

** - guideline is for sum of the two Chindane isomers.

*** - guideline is for sum of the two DOT isomers.

Table F-8. Chlorinated aliphatics, aromatics and biphenyls concentrations in Lake Couchiching surficial sediment samples.

All concentrations in ug/kg (ppb), dry weight

	office Total		West West		R	-	<-W C=W 20 <=W	Was i www 20 cast	2	Was I was I Was	c=W I c=W 20 c=9	1 <=W 20	M=> R	W-> 1 (-W 20 (-W)	-	8 M=> 1	-	<=W <=W 28 <=W	Cow I cow 20 com	New I call the Man	W-> 1 W 20	<=W <=W 20 <=W	CaW I caW 28 caW	CaW I caW 20 caW	1 c=W 20	I <=W 20	I <=W 20	New I Call 28 call		
Hexa-	chloro- benzene		W=>	W=2		M=>	M=>	I M=>	I M=>	I W=>	- M=>	M=>	I M=>	1 M=>	1 M=>	1 M=>	M=>	I M=>	(Me)	M->	M=>	(=M)	M=>	I // // //	I // // //	I #*>	I May	I Mas		30
T .	benuene		- "			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		1
12.45. Television	robenzene		M=> 1 /	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	W=> 1	W=> 1	W=> 1	N=> 1		1
1,2,3,5 Tetrachlon-	пореплене		M=> I	N=> I	Na I		>	M=> I	N=>	M=> I	M=> 1	Mes	M=>	M=> I	M=>	M=>	-	M=> 1	M=>	A-> 1	M=> 1	M=>	M=> 1	N=> 1	M=> 1	May 1	1 <=\W	I caW		
	robenzene		-	May 1	Wes I	1 2-11	A	May !	M=> .	May 1	M=> 1	Man	M=> 1	M=> -	Mas	M=> -	May 1	M=>	M=>	M=>	May .	Mas	May 1	Mes	M=>	A-> I	Ma> 1	M=>		:
1.3,5- Trichiers	benzene		2 <=W	2 c=W	2 <=W	J. colli		Mary	Mary 7		A		***	Any 7	M-V C	May 2		M=> 7	Z <=W	M=> 7	May 7	M=> 7	Ano 7	M=> 7	2 <=W	2 <=W	2 <=/	2 <=W		ı
1,2,4. Trichloro	benzene		May 7	2 <=W	1 cow	2 <=W	3			A	2 call	3	A C	A County	3 c=W	J Call	3		A C					*	7 W	2 call	2 <= W	7 c=W		***
Thickloro-	реплене		Man 7	N=> 2	2 <=W	2 c=W	2 <=W	2 coll	2 <=0.00	2 <=00	2 <=W	J coll	2 <=W	2 <-W	2 <=W	2 c=W	2 call	3	1000		3 000	a colle	2 call		M=> 1	N 7	M=> 2	May 7		
Z.A.p. Trichiero	tolaene			M=>	N=> I	W=> 1	W=>	W=> 1	Alex I	May 1	Ma>	Way I	W=>	M=>	W=>	M=>	W=>	Wen I	All collins	I call	Was I	No.	Mes !		Me	May 1	Me		,	
ZA3- Trichloro-	Inherse	Went !		May	May 1	M=> 1	May 1	Was I	W=> 1	M=> I	Was I	W=>	W=> 1	M=> I	I caW	Was I	Wa> I	W=> 1	Mes I	Mes I	May 1	M=> I	W-> 1	Wan I	M-1	Mary I			1	
Trichlore	tolaene	1		May 1	M=> 1	M=> 1	W=>	1 <=W	W=> 1	W=> 1	M=> 1	M=> I	M=> I	W=> 1	W=> 1	W=> 1	W=> 1	Me> I	W-> 1	W=>	Mes I	M=> I	We> 1	Wes !	-	May 1	-		1	
chlere	hutsdiene	Was I V	1		M=> I	May 1 /	W=> 1 V	M=> I	W=> 1	W=> 1 1	M=> 1 /	W=> 1 1	- ,	M=> 1 /	W=> 1	M=> 1	W=> 1	M=> 1	M=> !	Mes !	May 1	M=> I	M=> 1	Wes I	Town !	May 1	T Coll			
dilore	chare	l <=/	Harry 1		-	N=>	M=>	N=> 1	Ne> 1	May 1	M=>	M=>	M=> I	W=> 1	c=W	W=> 1	N=>	W=> 1	May 1	N=> I	V=> I	N=> 1	N=> 1	M=>	W=>	Wa>	Me>		1	
Smp	Number	76812	76811	3400.4	*190/	76815	70816	76817	76818	76819	76826-R	76821-R	76822-R	76826	76827	76828	76829	16891	76836	76832	76833-R	76834-R	76835-R	76823	74824	76825	76836			
Sample	8	97/85/Z9												97/05/30			*	97/06/02						62/58/16			97/06/02		-	
1		-	3				8		7		•			01	=	13	13	*	115	91	11			=	61	20	21		PSQG-LEL	-

NOTE: "<=W" = no measurable response (zero): less than reported value; "<T" = a measurable trace amount, interpret with custion.
".R" = field spatial replicate.

Table F-9. Phenoxy acid herbicides and chlorinated phenols concentrations in Lake Couchiching surficial sediment samples.

All concentrations in ug/kg (ppb), dry weight.

			-						-				-		-		-		44.50		4,5,0		4,3,4,4		477		
Name .	Semple	Sample	Dicamb		74-D		2,4.08		Propose	2	243-1		Pickerum		Mirror		Trichlor		Thichier		Trichlor	š	Tetrachiono		Tetrachiceo		chloro
Number	Date	Number							Acad								phenol		phenol		phenol		phenol	- 1	T T	1	Merrol
-	97/05/79	76812	10	M=>	91		300												30		2			M=>	su.	M=>	~
2		76813	100		100		200			M=> 901				Mes 0	8		0		2		Ξ			M=>	S	-	8
9		76814	10		90		200												20		=			Mes	*	Mas	8
4		76815	10		100		200								8		9		2		=			M=>	90	M=>	8
8	•	76816	100	M=> (100	*	200	May 1		M=> 00		M=> 06	001 /	M=> 0	8	M=>	01	M=>	20	Max	9	M=> 0	9	M=>	*	Mas	N=> S
9		76817	10		100		200								8	Ma>			20		2			May	*	Mas	8
4		76818	10		100		200								8	Mas	0		20		2		9	M=>	s.	M=>	3
		78819	101		100		200			M=> 001				M=> 0	8		01		20		36	M=> 0			99	Meo	N=0 5
		76820	10		100		200								8	Ma>	9		20		=		9	W=>	80	Mo	9
		76821		4	1		1			8			1		1		1		1		1		8		1		1
		76822	,	4	\$		1			1		1	8		1		-		1		-		3		1		1
01	97/05/30	76826	8		9		200			M=> 001					8	M=>	01		20		9			M=>	99	May	
=		76827	100				200					M-> 00			8	Mas	0		20		0	M=> 0	9		91	M=>	8
11		76828	10		180		200								8	-	0		20		11	W-> 0		M=>	en.	M=	
13		76879	100	No C		M=>	200		_	M=> 90		M=> 0	100	May 0	R	Mas	9		20	M=>	=	May C			8	A-M	8 c=W
14	97/06/02	76831	10		8		200								8	-	01		30		16	M=> 0	2	M=>	10	M=>	5 <
115		76830	901				200			W=> 001		N=> 00			8	Meo	0		20		H	W=> 01			*	Mary	8
91		76832	01	May (180		200								8	Mas	9		20		2		9		*	Mas	8
11		76833	10	May C	180		200								8	M->	io		20		7				~	Mo	8
		76834	,	9	\$		3			B	•	1	ı		8		1		1		1	4	t		ŧ		1
		76835	4	4	1		-			1			-		1		1		1		1		1		1		1
2	95/SDIL6	76823	10	M=> 0	100	May.	200			M=> 801		N=> 05	100				0		2		0		2		8	Mes	10
61		76824	10		100	M=>	200										36		20		M				89	M·	9
30		76825	100	May 0	100	May	100	May 1		M=> M		M=> 0		Nes C	8	*	10	Mar.	20	Mes	H	Mes C		M->	S	Mes	No S
17	97/06/02	76836	10	W=> 0	8	Ma>	200		7							-	10	-	20		36				8	M=>	0

NOTES: black or "-" indicates that data is not available for this parameter or sample $^*c=W^*=no$ measurable response (zero); less than reported value.

Appendix G - Phytoplankton Data

List of Tables

Table G-1. List of phytoplankton genera collected from Lake Couchiching during 1997.

Table G-2. Seasonal phytoplankton trends and comparative phytoplankton data between stations in Lake Couchiching

Table G-1. List of phytoplankton genera collected from Lake Couchiching during 1997.

Cyanophytes	Chrysophytes
Anabaena	Chromulina
Aphanothece	Chrysidiastrum
Chroococcus	Chrysocromulina parva
Microcystis	Chrysolykos
Oscillatoria	Chrysophyte unid.
	Chrysophyte unid.
Dinophytes	Chrysophyte unid.
Gymnodium	Codonocladium
Peridinium	Dinobryon
	Dinobryon cysts
Cryptophytes	Epipyxis
Cryptomonas	Kephyrion
Katablepharis	Mallomonas
Rhodomonas	Ochromonas
	Pseudokephyrion
Chlorophytes	Salpingoeca
Botryococcus	Spiniferomonas
Chlamydomonas	Limglena
Chlorella	
Coelastrum	Bacillariophytes
Cosmarium	Achnanthes
Dictyosphaerium	Amphora
Gloecystis	Asterionella
Gloeotila	cocconeis
Golenkinia	Cyclotella
Green unid.	Cymbella
Micractinium	Diatoma
Oocystis	Fragilaria
Pediastrum	Navicula
Pedimonas	Nitzschia
Scenedesmus	Rhizoselenia
Stichococcus	Rhoicosphenia
Tetraedron	Stephanodiscus
	Synedra

Table G-2. Seasonal phytoplankton trends and comparative phytoplankton data between stations in Lake Couchiching

(a) Seasonal phytoplankton trends showing community composition for

Date	Cyano	Dino	Crypto	Eugleno	Chryso	plankton (μ Chloro	Bacill	Total
03-Jun-97	0	0	21	0	560	1	10	592
17-Jun-97	1	2	10	0	45	5	7	70
08-Jul-97	0	17	10	0	84	2	12	125
22-Jul-97	7	11	12	0	508	5	23	566
07-Aug-97	8	13	6	0	36	21	93	177
22-Aug-97	11	8	3	0	25	5	271	323
10-Sep-97	1	0	8	0	75	0	204	288
25-Sep-97	3	1	19	0	28	3	51	105
07-Oct-97	14	0	15	0	93	7	180	309
23-Oct-97	0	3	26	0	72	1	65	167

(b) Phytoplankton community composition as a percentage of total biovolume

a	t Station 5, L	ake Couch	iching. 19	97.				
Date	Cyano	Dino	Crypto	Eugleno	Chryso	Chloro	Bacill	Total
03-Jun-97	0.0	0.0	3.5	0.0	94.6	0.2	1.7	100
17-Jun-97	1.4	2.9	14.3	0.0	64.3	7.1	10.0	100
08-Jul-97	0.0	13.6	8.0	0.0	67.2	1.6	9.6	100
22-Jul-97	1.2	1.9	2.1	0.0	89.8	0.9	4.1	100
07-Aug-97	4.5	7.3	3.4	0.0	20.3	11.9	52.5	100
22-Aug-97	3.4	2.5	0.9	0.0	7.7	1.5	83.9	100
10-Sep-97	0.3	0.0	2.8	0.0	26.0	0.0	70.8	100
25-Sep-97	2.9	1.0	18.1	0.0	26.7	2.9	48.6	100
07-Oct-97	4.5	0.0	4.9	0.0	30.1	2.3	58.3	100
23-Oct-97	0.0	1.8	15.6	0.0	43.1	0.6	38.9	100

(c) Seasonal euphotic zone, average algal composition from the four L. Couchiching stations. 1997.

	(Calculated fr	om recomb	ined sampl	es between J	une 3 and	(µm3/mlx100	0)	
Station	Cyano	Dino	Crypto	Eugleno	Chryso	Chloro	Bacill	Total
Station 5	4.5	5.5	13.0	0.0	152.6	5.0	91.6	272.2
Station 12	3.0	5.0	3.0	0.0	51.0	5.0	25.0	92.0
Station 15	16.0	20.0	8.0	0.0	142.0	2.0	142.0	330.0
Station 21	2.0	8.0	11.0	0.0	74.0	2.0	43.0	140.0

(d) Seasonal euphotic zone, algal compostion as a % of total biovolume from the four

	Lake Couci	uciung Stati	ions (Caicuia	ited from re	comorned s	ampies oetw	een June 3 a	ma Oct 23/9
Station	Cyano	Dino	Crypto	Eugleno	Chryso	Chloro	Bacill	Total
Station 5	1.653196	2.020573	4.7759	0	56.06172	1.836885	33.65173	100
Station 12	3.26087	5.434783	3.26087	0	55.43478	5.434783	27.17391	100
Station 15	4.848485	6.060606	2.424242	0	43.0303	0.606061	43.0303	100
Station 21	1.428571	5.714286	7.857143	0	52.85714	1.428571	30.71429	100

Appendix H - Zooplankton Data

List of Tables

- Table H-1. List of common limnetic zooplankton from Lake Couchiching, 1997.
- Table H-2. Seasonal zooplankton succession expressed as a biomass (mg/m³) in Lake Couchiching, 1997
- Table H-3. Seasonal zooplankton succession density trends (#/m³) from Lake Couchiching, 1997
- Table H-4. Seasonal zooplankton length (μm) trends in Lake Couchiching, 1997.

Table H-1. List of common limnetic zooplankton from Lake Couchiching, 1997.

Cladocerans

Acroperus harpae
Bosmina longirostris
Chydorus sphaericus
Daphnia galeata mendotae
Daphnia tetrocurva
Diaptomus birgeii
Bosmina coregonii
Holopedium gibberum

Calanoid Copepods

Calanoid copepodid
Leptodiaptomus minutus
Skistodiaptomus oregonensis
Epischura lacustris
Epischura lacustris copepodid
Calanoid nauplii

Cyclopoid Copepods

Cyclopoid copepodid Diacyclops thomasii Eucyclops serrulatus Mesocyclops edax Tropocyclops extensus Cyclopoid nauplii

Dreissenidae (Bivalvia) = Zebra mussels veliger larvae

Table II-2: The Sessonal zooplankton succession expressed as a biomass (ng/m²), in Lake Couchiching, 1997.

			2.863								- 1
313	Cycl.Namp	0.261	3.212	1.227	0.453	0.584	0.438	0.448	0.506	0.651	0.151
338	T.Extens	0	0.049	0.041	6100	0.012	0.192	1.466	1.117	0.816	1.088
309	Me.Edex	0	0	0.023	0	0.391	1.863	1.251	0.454	0.172	0
			0			0	0	0	0	0	0
362	Di.The	2.146	21.851	0	0.581	0.203	0.114	0.522	0.358	0.519	0.549
301	Cycl.Cop	2.555	32.417	2.024	2.323	3.34	6.556	5.847	5.007	4.173	\$ 197
318	Cal.Namp	0.285	0.221	0.124	0.124	0.237	0.197	0.437	0.181	0.093	0.04
311	Ep Lac.Cp	0	1.138	0	0.442	0	369 0	2.981	1.306	0.983	0
210	Ep.Lecus	0	0.802	0	0.472	0	0.577	0.597	0	0	0
200	M. Oregon	0	1.286	0	0.537	0.628	3.299	13.037	2.451	0.436	0.743
304	e.Minut	860.0	2.845	0	0.634	0.728	4 032	1.046	2 089	0.676	60.0
107	Cal.Cop L	1.341	4.836	0.711	1.549	1.752	5 003	4.408	7.509	3.683	3.874
138	So. Gibber	0	0	0	0	0	0.216	0.261	0.486	0.651	0.301
133	los.Core I	0	0	0	0	0	0.136	0	0	0	0
151	Die Birg	0	0	0.027	0	0.134	0.578	0.352	0.441	0	0.001
127	De Reiro	0	0	0	0	0.137	0.914	4 325	6 921	1 485	0.529
122	De.G. Mon	0	0.048	0.041	0.722	0.224	0 224	013	0.097	0.214	0.133
118	Ch States 1	0 000	0 0 0 36	9000	9000	0	•	0	0	0	0
116	-	0 318	15132	0.624	4 7 SR	0.015	3910	0 39	0 964	2056	1.687
181	A. Carr	0	0	0	0.404	0	•	0 0	0 0	0 0	0
Sameties	1	97.06.03	67.06-17	97.07.08	97.07-22	07.08.07	07.08.77	97.00.10	97.00.75	00-10-00	97-10-23

Table H-3: Seasonal zooplankton density trends (#/m3) from Lake Couchiching 1997.

*	Vollage.	0.0	4199.6	16305.7	12170.1	9581.4	4748.8	150.8	75.4	301.5	0.0
313	rel Name	3808.2	\$2656.8	21950.0	5673.9	8509.3	7010.1	8140.8	7010.1	8216.2	2186.0
338	I. Extense C	0.0	40.4	39.2	20.6	16.8	226.1	1620.6	1243.7	810.3	1055.3
389	Me.Edan	0.0	0.0	8.6	0.0	134.0	640.7	339.2	150.8	\$6.5	0.0
333	Eu.Serral	0.0	0.0							0.0	
303	Di.The	451.5	6137.9	0.0	123.3	50.3	75.4	150.8	113.1	9691	131.9
100	Cycl.Cop	2198.5	31658.7	3174.9	25491	4020.2	4145.8	4221.2	4447.3	4899.6	5728.7
215	Cal. Neup	1531.1	2261.3	1411.1	8.986	2211.1	2110.6	4221.2	1809.1	678.4	150.8
211	Lac.Cp	0.0	646.1	0.0	370.0	0.0	226.1	1281.4	452.3	527.6	0.0
310	p.Lacus E	0.0	40.4	0.0	20.6	0.0	37.7	75.4	0.0	0.0	0.0
206	Oreges E	0.0	201.9	0.0	61.7	0 29	452.3	15829	263 8	5 95	75.4
104	A. Minut Sh	19.6	726.9	0.0	164.5	201 0	1093 0	301 5	0 109	9 69 1	18.8
101	Cal.Cop I	863.7	1615.2	5 106	657 8	14071	17337	15829	98911	17337	1582.9
136	In.Gibber	0.0	00	00	00	00	17.7	1508	89	3638	37.7
132	Bea.Core E	0.0	0.0	00	00	00	17.7	00	00	00	00
152	Dia.Birg	00	00	10.2	00	818	376.0	301 8	8051	00	
127	De Retro	00	00	00	000	67.0	130.7	27136	2348 2	0 203	2761
122	la.G.Mon	00	404	196	346.7	63.6	12.3	100	76.4	92.3	32.7
883	'h Sadan	20.4	1210	78.4		-	000	000	0.0	000	0.0
110	Parlan.	274.8	206741	1801	4440.4	22.6	33.3	201.3	2000	5 1077	3103.9
101	Account	00	000	0.0	200	100	0.0	0.0	0.0	0.0	0.0
Sancton	1	67 04 03	02 06 12	11-00-16	20.00	27-10-16	10-90-16	77-30-16	91-09-10	97-09-23	97-10-07

Table H-4: Seasonal zooplankton length (µm) trends in L. Couchiching, 1997.

£	oliger	0.0			113.0	124.1	118.7		111.9	131.2	1 40 1		114.4	00	200
313	rel.Nasp V	180.7		1.4.1	168.3	192.9	181.5		1/0/1	166.2	187 6	0.701	192.9	170.0	1/0.0
338	L'Extens C					489.4									1
368	Me.Edax 1					0.0									1
333	Eu.Serval				-	0.0									
301	Di.The	1				931.7									-1
301	Cycl.Cop	S BUS		481.7	400.6	464.4	9 688		557.9	5137		480.2	453.3	9.00	453.2
315	Cal.Ness	277.0	-	1861	195.0	228.2	3156	2	205.8	2153		211.1	241.0		328.3
2111	Tales.Co	00		0.119	0.0	515.1	00	0.0	758.9	9119		129.4	581.8		0.0
310	Talecus E	00	200	16#5.2	0.0	1788.2	00	200	1515.7	10107		0.0	0.0	-	0.0
205	L.Oregee	00	0.0	1039.0	0.0	12042	13366	1633.0	1120.5	11711		1236.0	1141.8		1263.2
104	La.Minut S	8 930	230.8	0.698	0.0	863.2	843.0	0.550	848.9	837 1		825.2	876.2		942.7
201	Cal.Com	C80 0	202.0	764.9	447.0	6 989	4326	243.0	735 8	230.8	-	688.4	9 099		696.4
136	Se Glibber	00	0.0	0.0	0.0	00	000	0.0	802.0	C38 C	238.3	9666	5 105		1.188
133	Bea Care	00	0.0	0.0	00	00	000	00	528.2	0	0.0	0.0	00	0.0	0.0
162	Dile Blee	00	0.0	0.0	4977	00	2000	7.810	656.4	4000	321.1	8167	00	0.0	179.6
127	The Better		0.0	0.0	00	000	2000	0.660	1676	2000	0300	708.2	176.0	163.7	716.1
177	The Contract	Section 1	0.0	6 009	3226			1790.8	C C301	2001	11180	6619	10460	1040.0	848.0
800	-	-	249.5	1004	1703	216.4	4.512	0.0	00	0.0	0.0	00	000	0.0	0.0
010		Ber 1 40 mg	353.5	101 7		6.747									
9495	101	AC. C. BET	0.0	00	000	200	1771	00	00	0.0	00	00	0.0	0.0	00
	-	Liente	97-06-03	67 06 17	00 00 00	B7-10-16	27-10-16	60-00-06	00 00 00	77-90-16	97-09-10	30.00.00	C7-40-16	91-19-19	97.10.23

Appendix I - Macroflora Data

List of Tables

Table I-1. Dominance of macrophytes at each of the 21 water and sediment quality stations.

Table I-1. Dominance of macroflora at each of the 21 water and sediment quality stations.

Station	#1	#2	#3	#4
1	Chara	Vallisneria		
2	Chara	Vallisneria	Utricularia	
3	Chara	Najas	Utricularia	
4	Chara	Vallisneria	Utricularia	
5				Spirogyra
6	Chara	Vallisneria	Potamogeton amphipolius.	
7	Chara	Najas		
8	Chara	Najas	Vallisneria	
9	Chara	Vallisneria	Elodea	
10	Chara			
11	Chara	Vallisneria	Utricularia	
12	Chara	Utricularia	Najas	
13	Chara	Najas	Utricularia	
14	Chara	Utricularia	Vallisneria	
15				Spirogyra
16	Chara	Najas	Vallisneria	,
17	Chara	Vallisneria	Najas	Utricularia
18	Chara	Vallisneria		Spirogyra
19	Elodea	Vallisneria	Myriophyllum	7
20	Chara	Vallisneria		
21	Chara	Vallisneria		

***			st 1997	
Station	#1	#2	#3	#4
1	Chara	Vallisneria		
2	Chara	Vallisneria	Utricularia	
3	Chara			
4	Chara			
5				
6	Chara	Najas		
7	Chara	Vallisneria		
8	Chara			
9	Chara			
10	Chara	Spirygyra		
11	Chara			
12	Chara			
13	Chara			
14	Chara			
15				
16	Chara	Vallisneria		
17	Spirogyra/Clad	lophora		
18	Chara			
19	Elodea	Chara	Potamogeton richardsonii	
20	Chara	Vallisneria		
21	Chara			

Appendix J - Benthic Macroinvertebrate Data, QA/QC Measures, and Detailed Statistical Analyses

Table of Contents

J.1	Introd	uction
J.2	Metho	ods
J.3	Result	s
J.4	Litera	ture Cited 6
J.5	Taxor	nomic Literature Used to Identify Benthic Invertebrates
List	of Tables	s and Figures
Table	e J-1.	Mantel correlations between Euclidean and Bray-Curtis distance of raw and log transformed benthic community data and Euclidean distance matrices of suites of environmental descriptors
Table	e J-2.	Principal components analysis of physico-biological data and sediment metal concentrations.
Table	e J-3.	Benthic QA/QC results.
Tabl	e J-4.	Correlations among community descriptors and selected environmental variables.
Tabl	e J-5.	Average % abundances of major taxonomic benthic groups at each of the 21 benthic sampling stations in Lake Couchiching on May 29, 1997.
Tabl	e J-6 .	Percentage composition of profundal and sublittoral chironomid communities.
Figu	re J-1.	Dendrogram showing the similarities in benthic community composition among stations in Lake Couchiching. Dendrogram was based on a complete linkage method using a Jaccards coefficient of community.
Figu	ire J-2.	Dendrogram showing the similarities in benthic community composition among

method using a Bray-Curtis distance measure.

- Figure J-3. Scatterplots of Correspondence Analysis (CA) axis scores. Samples close together in (a) have similar benthic communities. In (b) taxa close together tended to be found at the same sites.
- Figure J-4. Relationships between the first two ordination axes and depth, colour and secchi depth.

J.1 Introduction

This appendix provides details on sorting procedures, sorting efficiencey (QA/QC) and detailed statistical analysis. The results of statistical analysis are briefly described, and are elaborated upon in the main document. Field notes made during the collection of the benthic samples are given in Appendix K, while raw benthic macroinvertebrate data are provided in Appendix L.

J.2 Methods

Sample Processing and Identification

In the laboratory, all samples were stained with rose bengal dye to improve visibility of the preserved organisms and washed using a 200 μ m mesh sieve to remove excess dye, preservative and debris. Samples were scanned under a binocular microscope at 6-12 x magnification to further improve visibility of benthic invertebrates. Benthos were removed from the debris and re-preserved in 70% ethanol until they were identified. Sorting efficiency was just over 94% (i.e., > 94% of the organisms in the samples were removed, Appendix J).

Many of the samples were split to reduce the time needed for sorting. In most cases, sorting required 3-4 hours to process at least ≥¼ of a sample, collecting at least 100 organisms (Griffiths, 1998). Splitting or sub-sampling was performed by volume during the washing process in the laboratory. Splitting by volume is relatively common (Marchant, 1989; Resh and McElravy, 1993; Reynoldson and Rosenberg, 1996), does not bias for specific taxa, has negligible effects on variance of total numbers within stations (Kilgour et al., 1995), and little effect on the ability to distinguish between different types of benthic communities (Reynoldson and Rosenberg, 1996).

Benthic invertebrates were identified following the standards described by the Ontario Ministry of Natural Resources (OMNR, 1985). Chironomids from each sample were sorted into like groups. A minimum of 10% of the organisms from each group were slide mounted in a clearing agent for identification. Up to 50 oligochaete worms from each sample were also slide mounted in a clearing agent for identification. The taxonomic keys used for the identification of benthos from Lake Couchiching are given in Appendix J. Identifications of oligochaete worms were confirmed by Dr. David Barton, University of Waterloo. All identified specimens as well as a reference collection were stored in 70% alcohol in glass vials with neoprene stoppers. Slide-mounted specimens are in labelled slide boxes. This material is available for review from the Ontario Ministry of the Environment, Southwest Region, London (B. Hawkins).

To ensure a high degree of efficiency in removing invertebrates from benthic samples collected from Lake Couchiching, Water Systems Analysts implemented a Quality Assurance/Quality Control (QA/QC) work program. Only one technician (Ms. Nell Farmer, M.Sc.) sorted benthos from the samples. Mr. Bill Morton performed the QA/QC checking. During initial sorting, samples were split into four parts (quarters). Benthic invertebrates were removed from each quarter until approximately three hours had elapsed. During sorting, large organisms were removed first, and the sample was scanned under a stereo microscope at 6-12 x magnification. The numbers of organisms sorted from the debris was recorded. During re-

sorting (QA/QC checking), sub-samples that had been processed were re-processed as if it was the first time. The numbers of organisms found in the re-sorted samples was recorded.

Data Analysis

Analysis and interpretation of the benthic community in Lake Couchiching had two general objectives:

- 1. to establish trophic condition of the lake; and,
- to determine the degree to which local point sources, and natural features and anthropogenic features influence benthic community composition.

To establish the trophic condition of the lake, we followed Saether's (1979) interpretations of sublittoral and profundal chironomid communities. We also compared observed total abundances in Lake Couchiching with abundances from lakes with known trophic status.

To achieve the second objective, we analyzed the benthic data using a two-step approach. The first step involved the calculation of summary metrics and examining the spatial variations of those metrics. The metrics included:

- l total abundance.
- 2 total number of taxa.
- 3 Shannon's H' (Shannon and Weaver, 1949)

$$H' = \sum p_i \log_2 p_i$$
 [1]

where, p, refers to the proportion of the total numbers accounted for by the ith taxon; and,

4 Evenness, J' (Price, 1973)

$$J' = \frac{H'}{H'_{\text{max}}}$$
 [2]

where, H' is Shannon's H', and H'max is the maximum possible H'.

The second step involved detailed multivariate analyses to more fully explore variations in composition and to explore the relationships between benthic community composition and physico-chemical properties at each of the stations.

Multivariate methods used to examine spatial variations in benthic community composition, included clustering and ordination techniques. Cluster analyses included the complete-linkage method, the flexible-clustering method (with beta set equal to -1), the single-linkage method, the unweighted pair-group method using an arithmetic average (UPGMA), the unweighted pair-group method using a centroid average (UPGMC), the weighted pair-group method using an arithmetic average (WPGMA), and the weighted pair-group method using a centroid average (WPGMC). Cluster analyses were performed on both a Bray-Curtis distance measure and a Jaccard's Coefficient of Community (Rohlf, 1993). For each cluster result, we examined

the correlation between the cophenetic matrix based on the cluster dendrogram and the original distance matrix (i.e., Bray-Curtis distance measure or the Jaccard Coefficient). Such cophenetic correlations can be used as a measure of the goodness of fit of a cluster analysis (Rohlf, 1993). In this analysis, the complete linkage method provided strong correlations with both the \log_{10} transformed (Bray-Curtis) and presence/absence data (Jaccard Coefficient; Table 3). As such, these dendrograms were examined for spatial pattern.

In addition to the cluster analyses, we also used ordination (Correspondence Analysis, CA) to portray similarities among stations. Of the available methods, CA was selected because it gives an ordination of both taxa and stations so that it is readily possible to identify those taxa that are important to the patterns among stations. Although not presented here, other ordinations (Principal Components, Non-Metric Multidimensional Scaling) demonstrated similar relationships among stations. To portray spatial variations in community composition, we plotted the first two ordination axes from CA in a two-dimensional scatterplot.

Associations between benthic community composition and measured environmental conditions were determined in three stages. Mantel's (1967) test was used for the first stage to evaluate the concordance (correlation) between distance matrices based on faunal composition and physico-chemical properties at each station. Euclidean and Bray-Curtis distance matrices were calculated using average taxa abundances at each of the 21 stations, and using both raw and log₁₀ abundances. Euclidean distances were calculated based on suites of environmental variables that included: (1) depth, (2) water column metal concentrations, (3) water column nutrient and major ion concentrations, (4) water column physical and biological characteristics, (5) concentrations of organic contaminants in the water column, (6) sediment physical features (particle size), (7) concentrations of solvent extractables in sediments, (8) concentrations of metals in sediments, (9) concentrations of nutrients and major ions in sediments, and (10) sediment organic content.

With Mantel's (1967) test, concordance between two matrices is measured as a summation of the cross-products between the off-diagonal elements of the two matrices. The degree of association of the two matrices is then judged against a null distribution determined via permutation. Because the Mantel statistic operates like a coefficient of determination (i.e., r^2 , K.M. Somers, pers. comm.), Mantel r values indicate approximately, the amount of variation in one matrix explained by another.

In the second stage of the multivariate analysis, we used simple correlation analysis with scatterplots to determine the strength and nature of the relationships between the measured environmental variables and ordination axes that characterized variations in benthic community composition in Lake Couchiching. In this analysis, we used a subset of environmental variables against which to explore associations. Based on the Mantel correlations, it was apparent that depth, physical and biological characteristics of the water column and sediment metal concentrations explained significant amounts of spatial variation in benthic community composition (Table J-1). Rather than correlate all of the water physico-biological and sediment metal variables with benthic ordination axes, we selected those variables most strongly

associated with spatial patterns in environmental conditions. This selection process was based on a principal components analysis (PCA) of the physical and biological water data, and sediment metal data PCA (Table J-2). There was a single dominant gradient in the sediment metal concentrations primarily explained by high to low concentrations of iron. In the physical and biological water column data, secchi depth and colour were correlated with the two dominant gradients (PCA axes). Water depth, sediment-iron levels, secchi depth and colour were used as explanatory environmental variables in the correlation analyses.

J.3 Results

A total of 10 of the 63 (16%) benthic samples from Lake Couchiching were resorted. Subsampling errors ranged from 0 to 9.9% and averaged 5.9%. Therefore, over 94% of benthic organisms were recovered during sorting (Table J-3).

Spatial variation in benthic community composition in Lake Couchiching was significant. Figures J-1 and J-2 show this spatial variation in cluster dendrograms, while Figure J-3 shows the associations among stations based on an ordination (correspondence analysis). In general, the three figures were consistent in demonstrating the separation of Stations 5, 6, 15, 17, 18 and 19 from all other stations. Stations 5, 15 and 17 were the deep-water stations in the middle of the lake. Depth was correlated with the dominant gradient in benthic community composition (Table J-4, Figure J-4). The deep-water Stations (5, 15 and 17) had benthic communities with higher proportions of the phantom midge Chaoborus punctipennis. Two of these stations (5 and 15) also tended to have higher proportions of sphaeriid comes (Pisidium), the snail *Helisoma anceps* and the chironomid *Paracladopelma* (Figure J-3, Table J-5). Station 19, a shallow station (1.7 m) near the inflow from Lake Simcoe had a unique fauna that consisted of relatively high proportions of isopods (Lirceus lineata, Caecidotea racovitzae), snails (Viviparous georgiamus) and worms (Limnodrilus clarapediamus) (Figure J3, Table J-5). Although the major gradient in benthic community composition was associated with depth, the secondary gradient in benthic community composition (CA Axis 2) was associated with colour (Table J-4, Figure J-4).

The dominant chironomid taxa in both shallow and deep water are given in Table J-6. A variety of sensitive Orthocladiinae were present in the lake including *Epoicocladius* and *Thienemanniella*. More tolerant chironomids included representatives of the Chironomini (*Chironomus*, *Dicrotendipes*, *Paratendipes*), Tanytarsini (*Cladotanytarsus*, *Tanytarsus*) and Tanypodinae (*Procladius*).

J.4 Literature Cited

Griffiths, R.W. 1998. Sampling and evaluating the water quality of streams in southern Ontario. Ministry of Municipal Affairs and Housing, Planning Policy Branch, Toronto, Ontario.

Kilgour, B.W., R.C. Bailey, E.T. Howell and W.M. Morton. 1995. Nearshore benthos of Lake Ontario, 1981 and 1991. Final report prepared by Water Systems Analysts for the Ontario Ministry of the Environment.

- Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, 27:209-220.
- Marchant, R. 1989. A subsampler for samples of benthic invertebrates. Bulletin of the Australian Society of Limnology, 12:49-52.
- Price, P. 1973. Insect Ecology. Wiley, NY.
- Resh, V.H. and E.P. McElravy. 1993. Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In, D.M. Rosenberg and V.H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York.
- Reynoldson, T.B. and D.M. Rosenberg. 1996. Sampling strategies and practical considerations in building reference data bases for the prediction of invertebrate community structure. In. R.C. Bailey, R.H. Norris and T.B. Reynoldson (eds), Study Design and Data Analysis in Benthic Macroinvertebrate Assessments of Freshwater Ecosystems Using a Reference Site Approach, Technical Information Workshop, North American Benthological Society, 44th Annual Meeting, Kalispell, MT.
- Rohlf, F.J. 1993. NYSYS-pc, Numerical Taxonomy and Multivariate Analysis System, version 1.80. Exeter Software, 100 North County Road, Building B, Setauket, NY.
- Saether, O.A. 1979. Chironomid communities as water quality indicators. Holarctic Ecology, 2:65-74.
- Shannon, C.E. and W. Weaver. 1949. The Mathematical Theory of Communication. The University of Illinois Press. Urbana, IL.

J.5 Taxonomic Literature Used to Identify Benthic Invertebrates

- Brinkhurst, R.O. 1986. Guide to the freshwater aquatic microdrile Oligochaetes of North America. Can. Spec. Publ. Fish. Aquat. Sci. 84. 259 p.
- Brown, H.P. 1972. Aquatic Dryopoid beetles of the United States. Biota of Freshwater Ecosystems Identification Manual 6, 82 p.
- Burch, J.B. 1989. North American freshwater snails. Malacological Publications, Hamburg, Michigan. 365 p.
- Clarke, A.H. 1980. The freshwater molluscs of Canada. Nat. Mus. Nat. Sci. 448 p.
- Cook, D.R. 1974. Water mite genera and subgenera. Mem. Am. Entomol. Inst. 21, 860 p.

- Crocker, D.W., and D.W. Barr. 1968. Handbook of the Crayfishes of Ontario. R. Ont. Mus. Life Sci. Misc. Publ., 158 p.
- Domm, S., R.W. McCauley, E. Kott, and J.D. Ackerman. 1993. Physiological and taxonomic separation of two dreissenid mussels in the Laurentian Great Lakes. Can. J. Fish. Aquat. Sci. 50: 2294-2297.
- Floyd, M.A. 1995. Larvae of the caddisfly genus Oecetis (Trichoptera: Leptoceridae) in North America. Ohio Biologicla Survey 10(3), 85 p.
- Grodhaus, G. 1987. Endochironomus Kieffer, Tribelos Townes, Synendotendipes, n. gen., and Endotribelos, n. gen. (Diptera: Chironomidae) of the nearctic region. J. Kans. Entomol. Soc. 60: 167-247.
- Haddock, J.D. 1977. The biosystematics of the caddis fly genus Nectopsyche in North America with emphasis on the aquatic stages. Am. Midl. Nat. 98: 382-421.
- Holsinger, J.R. 1972. The Freshwater Amphipod Crustaceans (Gammaridae) of North America. Biota of Freshwater Ecosystems Identification Manual No. 5, 89 p.
- Klemm, D.J. [ed.]. 1985. A guide to the freshwater Annelida (Polychaeta, Naidid and Tubificid Oligochaeta, and Hirudinea) of North America. Kendall/Hunt Publ. Co., Dubuque, Iowa. 198 p.
- Klemm, D.J. 1991. Taxonomy and pollution ecology of the Great Lakes region leeches (Annelida: Hirudinea). Mich. Acad. 24: 37-103.
- Mackie, G.L., D.S. White, and T.W. Zdeba. 1980. A guide to freshwater molluscs of the Laurentian Great Lakes with special emphasis on the genus Pisidium. EPA-600/3-80-068, 143 p.
- McCafferty, W.P. 1975. The burrowing mayflies of the United States (Ephemeroptera: Ephemeroidea). Trans. Am. Entomol. Soc. 101: 447-504.
- Merritt, R.W., and K.W. Cummins. 1996. An introduction to the aquatic insects of North America. 3rd ed., Kendall/Hunt Publishing Company, Dubuque, Iowa. 862 p.
- Pennak, R.W. 1989. Freshwater invertebrates of the United States: Protozoa to Mollusca. 3rd ed. John Wiley & Sons Inc., New York. 628 p.
- Provonsha, A.V. 1990. A revision of the genus Caenis in North America (Ephemeroptera: Caenidae). Trans. Am. Entomol. Soc. 116: 801-884.
- Reynolds, J.W. 1977. The earthworms (Lumbricidae and Sparganophilidae) of Ontario. Life Sci. Misc. Pub., R. Ont. Mus. 141 p.
- Roback, S.S. 1976. The immature Chironomids of the eastern United States. I. Introduction

- and Tanypodinae Coelotanypodini. Proc. Acad. Nat. Aci. Phila. 127: 147-201.
- Saether, O.A. 1972. Chapter 6, Chaoboridae. p. 123-133. In H.J. Elter and W. Ohle [ed.] Das Zooplankton der Binnengewasser. Binnengewasser 26, Suttgart.
- Walker, E.M. 1953. The Odonata of Canada and Alaska. Vol. I, Part I, general; Part II, the Zygoptera Damselflies. University of Toronto Press, Toronto. 292 p.
- Walker, E.M., and P.S. Corbet. 1975. The Odonata of Canada and Alaska. Vol. III, Part III, The Anisoptera Three Families. University of Toronto Press, Toronto. 307 p.
- Wiederhom, T. [ed.] 1983. Chironomidae of the holarctic region. Keys and diagnosis. Part 1. Larvae. Entomol. Scand. Suppl.. 19, 457 p.
- Wiederholm, T. [ed.] 1986. Chironomidae of the holarctic region. Keys and diagnosis. Part 2. Pupae. Entomol. Scand. Suppl. 28, 482 p.
- Wiggins, G.B. 1996. Larvae of the North American caddisfly genera (Trichoptera). 2nd ed. University of Toronto Press, Toronto. 457 p.
- Williams, W.D. 1972. Freshwater Isopods (Asellidae) of North America. Biota of Freshwater Ecosystems Identification Manual No. 7, 45 p.
- Yamamoto, T., and G.b. Wiggins. 1964. A comparative study of the North American species in the caddisfly genus Mystacides (Trichoptera: Leptoceridae). Can. J. Zool. 42: 1105-1126.

Table J-1. Mantel correlations between Euclidean and Bray-Curtis distance of raw and log transformed benthic community data and Euclidean distance matrices of suites of environmental descriptors. Sample size is n=21. Probability of no significant positive association is given in parenthesis and is based on randomization. Significant positive correlations are in bold font.

	Distance Matrix	Date	Euclidean	Distance	Bray-Curtis D	istance Matrix
			Raw Data	Logged	Raw Data	Logged
-1	Sediment metals	June 2-3	0.034 (0.284)	0.367	0.252 (0.108)	0.323 (0.041)
-2	Sediment particle size	June 2-3	0.185 (0.158)	0.136 (0.175)	0.126 (0.226)	0.078 (0.316)
-3	Sediment major ions	June 2-3	0.079 (0.186)	0.139 (0.090)	-0.186 (0.980)	-0.179 (0.962)
4	Sediment loss on ignition	June 2-3	0.031 (0.305)	-0.031 0.446)	0.017 (0.403)	-0.033 (0.461)
-5	Sediment TPH and oil & grease	June 2-3	-0.033 (0.505)	0.012 (0.438)	-0.011 (0.503)	-0.007 (0.526)
-6	Depth	June 2-3	0.135 (0.161)	0.415 (0.01)	0.461 (0.01)	0.614 (0.00)
		July 7-8	0.132 (0.17)	0.409 (0.01)	0.458 (0.02)	0.612
-7	Water metals	June 2-3	-0.006 (0.543)	0.216 (0.053)	0.045 (0.359)	0.050 (0.356)
		July 7-8	-0.134 (0.849)	-0.174 (0.827)	-0.194 (0.934)	-0.187 (0.898)
-8	Water major ions	June 2-3	-0.107 (0.210)	-0.200 (0.043)	0.079 (0.745)	0.135 (0.868)
		July 7-8	-0.034 (0.566)	0.100 (0.754)	-0.113 (0.719)	-0.036 (0.516)
.9	Water physical features	June 2-3	0.168 (0.167)	0.562 (0.001)	0.574 (0.002)	0.677 (0.001)
		July 7-8	0.195 (0.119)	0.465 (0.001)	0.672 (0.002)	0.627 (0.001)
-10	Water Atrazine	June 2-3	-0.002 (0.553)	-0.018 (0.611)	-0.046 (0.759)	-0.023 (0.588)

Principal components analysis of physico-biological data and sediment metal concentrations. Table J-2.

Sediment Metals	tals				Phy	Physico-Biological (June 3)	ogical (Ju	ne 3)		
					June 2-3				35983	
Variable	-	2	3	Variables	1	2	3	1	2	3
Aluminum	0.58	0.81	0.12	Secchi Depth	0.93	60.0	0.15	0.95	0.26	0.13
Barium	0	0	-0.25	Colour	0.1	-0.68	0.73	-0.26	96.0	0.08
Chromium	0	0	0	Tubidity	0	0	-0.1	80.0	0	0.04
Cobalt	0	0	0	Chl a	0.17	-0.73	99.0-	0.12	80.0	-0.99
Copper	0	0	0							
Iron	0.82	0.56	-0.12							
Lead	0	0	0.1							
Manganese	0	0.1	-0.1							
Mercury	0	0	0							
Nickel	0	0	0							
Selenium	0	0	0							
Strontium	0	0.1	-0.54							
Titanium	0	-0.1	0.77							
Vanadium	0	0	0.01							
Zinc	0	0	-0.1							
Variance	7.76	2.2	90.0		72.3	15.2	6.6	64.2	30.9	3.11

Table J-3. Benthic QA/QC results

Station		3	4	5	7	7	7	12	18	20		
Replicate	2		-	3	-	2	3	2	2	3		
Date	97.05.28	97.05.28	97.05.28	97.05.28	97.05.29	97.05.29	97.05.29	97.05.30	97.05.29	97.05.29		
TAXA												
ANNELIDA:									5			
OLIGOCHAETA:			90									
AMPHIPODA:		5	4		80	3	10	1				
ISOPODA:									1			
DIPTERA:												
Chaoboridae:				2								
Chironomidae:		7	4	1	5	7	11	3	9			
EPHEMEROPTERA	2			1	2	2	1		1			
TRICHOPTERA:			1									
MOLLUSCA:												
Dreissena		7	2 1		\$							
Sphaeriidae:				2								
PLATYHELMINTHES			-				2					
No. in resort(A)	2	14	61 1	3	20	12	23	4	13	0		
No. in original sample(B)	48	306	5 276	16	181	121	223	961	141	798		
Total specimens(A+B)	80	320	295	103	201	133	246	200	154	1 268		
% error((A/A+B)X 100)	*	4.4	6.4	4.2	6.6	6	9.3	2	80	4	average	5.76
Resorted 10/63 samples = 16%	%91:											
Original Sort Technician: Nell Farmer	Nell Farme		QC Techi	QC Technician: W.	B. Morton							
1007 17 16												

Table J-4. Correlations among community descriptors and selected environmental variables.

	CA Axis 1	CA Axis 2	CA Axis 3	Secchi	Colour	Iron	Depth
CA Axis 1	1.00						
CA Axis 2	-0.03	1.00					
CA Axis 3	-0.04	0.05	1.00				
Secchi	-0.85	0.09	0.34	1.00			
Colour	-0.01	-0.65	-0.30	-0.12	1.00		
Iron	-0.41	-0.10	-0.01	0.32	0.30	1.00	
Depth	-0.94	0.02	0.29	0.96	-0.05	0.39	1

	CA Axis 1	CA Axis 2	CA Axis 3	Secchi	Colour	Iron	Depth
CA Axis 1	1.00						
CA Axis 2	-0.10	1.00					
CA Axis 3	0.09	-0.05	1.00				
Secchi	0.53	-0.70	0.50	1.00			
Colour	-0.51	-0.35	-0.24	-0.12	1.00		
Iron	0.14	-0.41	0.09	0.32	0.30	1.00	
Depth	0.51	-0.80	0.44	0.96	-0.05	0.39	1.00

Average % abundances of major taxonomic benthic groups at each of the 21 benthic sampling stations in Lake Couchiching on May 29, 1997. Table J-5.

Major Group										5	tation							ı	ı	ı	
	-	2	3	4		9	7	×	0	10	11	12	13	14	15	16	17	18	10	20	21
Hirudines	1>	>	</td <td> ></td> <td></td> <td>1></td> <td>1></td> <td>-</td> <td> ></td> <td></td> <td>1></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td>-</td> <td>~</td> <td></td>	>		1>	1>	-	>		1>								-	~	
Oligochaeta	-	7	~	9		9	V	V	V	-	_		~	8	9			7	7	-	2
Acam	-		-	_	-	~	-	_	_	V	_		⊽	~		_	7	7	~	-	V
Chydoridae				7																	
Amphipoda	37	115	38	20			26	37	24	20	22	25	23	00	⊽	23	7	7	30	36	11
Decapoda			~					V				V									V
Isopoda	3	_						V										7	8	~	
Elmidae (beetles)					- 																
Ceratopogonidae		V		-	-		V	V	-	_	_	-	-	-		_	,			V	
Chaoboridae			V		7				~						90		7				
Chironomidae	30	61	17	29	16	21	28	27	24	12	31	38	00	23	10	46	35	74	8	23	26
Empididae							⊽	⊽											V		
Ephemeroptera	115	-	2	-	7	17	14	1	9	-	16	4	00	-	8	6	21	9		7	12
Megaloptera														⊽			_				~
Odonata	-		V				V	7	V		~			~		-			~		
Trichoptera	7	-	-	3		-	_	-	V	7	_	-	_	_		_		V	~	-	_
Dreissenidae	6	47	35	24	2	47	22	20	35	62	22	27	45	89	40	14	31	gation	45	31	42
Sphaeriidae	~				4	7		<u>-</u>	~	-		~	~		9	~	-	-			7
Unionidae													~		~						
Gastropoda	-	13	4	91	12	4	sn.	N)	1	1	4	4	m	7	24	4	-	N)	14	2	4
Nematoda	_	-		~									~		7		F	<u></u>		~	
Platyhelminthes	1		1>			(×	>	1>		V		~	-	-	- 		-		>	1	
Total Number of	. 23	20	20	56	18	14	21	28	25	23	24	21	23	24	61	22	14	61	61	25	24
Taxa					-		1		1												
Total Number of 36974	36974	42840 \$	50839	52439	48825	7229	31049	29668	46247	62216	38574	40826	36737	98005	15376	46751	5422	22753	34959	36678	25775
Specimens						-	,			1											
H	3.01	2.70	2.46	3.68	86.1	2.60	3.19	3.11	2.92	1.98	3.31	3.21	2.79	2.38	2.78	3.41	2.67	2.65	2.63	2.91	3.12
1		1									в		н		п				4	4	4

Table J-6. Percentage composition of profundal and sublittoral chironomid communities.

Chironomid taxon	profundal	sublittoral
Chironomus	12	5
Cladotanytarsus	9	3
Cryptochironomus	1	1
Dicrotendipes	4	26
Microtendipes		<1
Parachironomus		<1
Paracladopelma	1	<1
Paratanytarsus		2
Paratendipes	7	20
Phaenopsectra flavipes		<1
Polypedilum	2	3
Pseudochironomus		2
Stempellina	1	1
Tanytarsus	35	9
Tribelos jucundum	2	6
Zavreleilla		<1
ORTHOCLADIINAE:		
Cricotopus		2
Epoicocladius	<1	<1
Psectrocladius	2	3
Thienemanniella		<1
TANYPODINAE:		
Ablabesmyia	4	8
Clinotanypus pinguis		1
Procladius	21	7

Figure J-1. Dendrogram showing the similarities in benthic community composition among stations in Lake Couchiching. Dendrogram was based on a complete linkage method using a Jaccards coefficient of community.

Figure J-2. Dendrogram showing the similarities in benthic community composition among stations in Lake Couchiching. Dendrogram was based on a complete linkage method using a Bray-Curtis distance measure.

Figure J-3. Scatterplots of Correspondence Analysis (CA) axis scores. Samples close together in (a) have similar benthic communities. In (b) taxa close together tended to be found at the same sites.

Figure J-4. Relationships between the first two ordination axes and depth, colour and secchi depth.

Appendix K - Benthic Collection Field Notes

LAKE Couchiehing Ay 28/9 1) Location: Couchiching - SE of MERINA BRIAKWALL Sampler Fullness: 5/5 Sample Bottles: 1- SNOW Sediment Type: 5.44 COZE Sediment Characteristics: Macrophytes: none sparce common abundant CHAZA Algae none sparce common abundant _____ Invertebrates: M. DGE Zebea MUSSOS, ISOPODS HEYAGENIA AUCH PLOS DUDE 11.6 Notes: - CALTIM BUILD ON CHARA Location: Concluintingo. St. of MARINA BESAKWILL (70 mi Sampler Fullness: 5/5 S. Hu OCZE Sediment Type: _____ HARD CLAY SOME ORGANICS Sediment Characteristics: Macrophytes: none sparce common abundant CHARA. TUBER Algae none sparce common abundant _____ Invertebrates: MIDSS MAYELY, ZERRA MUSICIS DEAD SUBILE CLEM MARINA BESLEWAIL (Sampler Fullness: Sample Bottles: 1 - SNCW Odour Sulphur Sediment Type: SILTY OOZE Sediment Characteristics: 36MQ HARD CIAY Macrophytes: none sparce common abundant C. . . . - . 2 FR Algae: none sparce common abundant DEAD SUA !! MIDGE Notes: COUNCIL SWIFT ZORE HUSSE'S N SEE.

Notes By: 16 1559

LOCATION: Couchiching - PERSONDICULAR	MAY 28 /9 STN = 2
Depth: 28 " Sampler Fullness: 5/5 Sediment Type: 5/14 - 0074	Sample Bottles: 1- SNOW
Sediment Characteristics: Macrophytes: none (sparos) common abundant (LUAPA	
Algae none sparce common abundant	
Notes:	
Location: Couchiching - off Couchichi	
Depth: Sampler Fullness: 5/5 Sediment Type: 3/44-002e	
Sediment Characteristics: Macrophytes: none sparce common abundant CHA	EA . TURERS
Algae none sparce common abundant	
Notes:	PHIPODS, FOCH, MIDGS, DRAD
Location: Couche ching - of Cowhich n	ico BENCH PARK (ISOM)
Location: Couche ching - of Couchich a Depth: Sem Sampler Fullness: 5/6 Sediment Type: 511655	Sample Bottles: 1-5 NOW
Location: Couche china - of Couchich a Depth: SEM Sampler Fullness: 5/6	Sample Bottles: 1-5 NOW Odour: Suiphur
Location: Couche ching - Cf Couchich N Depth: Sediment Type: SIL - Couchich N Sediment Characteristics: Sediment Characteristics: Macrophytes: none Sparce common abundant Algae: none sparce common abundant	Sample Bottles: 1-5 NOW Odour. Support
Location: Couche ching - Couchich was Depth: Sem Sampler Fullness: 5/c Sediment Type: 5/12 Sediment Characteristics: Macrophytes: none Sparce common abundant Algae: none sparce common abundant Invertebrates: NORM 145 AGENTA, 26000 M.	Sample Bottles: 1-5 NOW Odour. Support
Location: Couche ching - Cf Couchich No Depth: A Sampler Fullness: 5/6 Sediment Type: SIL Sediment Characteristics: Macrophytes: none Sparce common abundant Algae: none sparce common abundant Invertebrates: NORM, I+ENAGENIA, 2600A M. Notes:	Sample Bottles: 1-5 NOW Odour. Stiphair - 12 WSSELS SNE-15, MIDGE, AMA
Location: Couche ching - Cf Couchich a Depth: SEM Sampler Fullness: 5/c Sediment Type: S11 Sediment Characteristics: Macrophytes: none Sparce common abundant Algae: none sparce common abundant Invertebrates: NORM, 145 AGENTA, 2000A M Notes: D Addition Information: 30-40% COJER CHIS	Sample Bottles: 1-5 NOW Odour: Stiphtif WSSELS SNE. IS MIDGE AMP
Location: Couche ching - Couchich No Depth: Sem Sampler Fullness: 5/6 Sediment Type: SIL Sediment Characteristics: Macrophytes: none Sparce common abundant Algae: none sparce common abundant Invertebrates: NORM, I+ENAGENIA, 2600A M. Notes:	Sample Bottles: 1-5 NOW Odour: Stiphtif WSSELS SNE. IS MIDGE AMP

Depth: 2.7cc Sampler Fullness: 415 Sediment Type: 5: 14 0028	Sample Bottles: 1- Shows
Sediment Characteristics:	
Macrophyles: none sparce common abundant CHARA	
Algae none sparce common abundant	
Invertebrates: ZERRA MAROLS MIDGE, AMPHIPOD	DEAD SNAILS
Notes: 1- SLLY COLCIUM DE CT-1-5 GN CH	
0	*
Location: Couchiching - Same AS ABOUR	
Depth: 2.7 m Sampler Fullness: 4/5	Sample Bottles: - SNCW
Sediment Type: SILy 0028	Odour Sulphur
Sediment Characteristics:	
Macrophytes: none sparce common abundant CHARA	
Algae: none sparce common abundant	
Invertebrates: Antipods, seber wesself Mil	DISE DEAD THATE
Notes: Itsluy colcium a toto on c.	
Holes: 15100 Car Color M 2011	
0	
,	
7	
Location: Couchich No - Spue as ABNE	
Location: Couchich Nis - Saus AS ABJUE Depth: 2.7m Sampler Fullness: 4/5	Sample Bottles: _ ' - \$ Now
Location: Couchich No - Saus AS FBILE Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5: 144 0029	Sample Bottles: _ ' - \$ Now
Location: Couchich No - Spue AS ABJUE Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5: 144 0029 Sediment Characteristics:	Sample Bottles: _ ' - \$ Now
Location: Couch Chinds - Saus AS Fisher Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5, 144 0029 Sediment Characteristics: Macrophytes: none sparce common abundant	Sample Bottles: _ ' - \$ Now
Location: Couchick - Sauce AS ABJUE Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5: 144 0029 Sediment Characteristics: Macrophytes: none sparce common abundant	Sample Bottles: '- SNOW Odour: Sulphur
Location: Couch Chinds - Saus AS Fisher Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5, 144 0029 Sediment Characteristics: Macrophytes: none sparce common abundant	Sample Bottles: '- SNOW Odour: Sulphur
Location: COUCHICHING - Spue AS FEIGE Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5.144 0029 Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: MDEE ZENES (EAYFISH (THAT L	Sample Bottles: '- SNOW Odour: Sulphur
Location: Couchick - Sauce AS ABJUE Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5: 144 0029 Sediment Characteristics: Macrophytes: none sparce common abundant	Sample Bottles: '- SNOW Odour: Sulphur
Location: COUCHICHING - Spue AS FEIGE Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5.144 0029 Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: MDEE ZENES (EAYFISH (THAT L	Sample Bottles: '- SNOW Odour: Sulphur
Location: CONCINION - Spuc AS FENCE Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5.144 0029 Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: MDES ZENES (EAYFISH (THAT I	Sample Bottles: '- SNOW Odour: Sulphur
Location: Couchich No - Space AS FENE Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5: 144 0020 Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: MDES ZENES CERYFISH (THAT INVOICE) Notes: 15000 Council	Sample Bottles: '- SNOW Odour Sulphur
Location: COUCHICHING - Spue AS FEIGE Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5.144 0029 Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: MDEE ZENES (EAYFISH (THAT L	Sample Bottles: '- SNOW Odour. Sulphur SITES , Amph. pod, CLAM, DE
Location: Couchich No - Space AS FENE Depth: 27m Sampler Fullness: 4/5 Sediment Type: 5: 14u 0020 Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none) sparce common abundant Invertebrates: MDES ZENEA CEAYFISH (THAT INVOICE) Notes: 15000 COUCH = 10000 COUCHE	Sample Bottles: '- SNOW Odour. Sulphur EITES), Amph. pod, CLAM, DE
Location: COUCHICH NIG - SAME AS FEIVE Depth: 27m Sampler Fullness: 4/5 Sediment Type: 5: 14u 0020 Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: MDES ZEVER CRAYFISH (THAT INVOICE) Notes: 15000 COUCH = 10000 COUCHE	Sample Bottles: '- SNOW Odour. Sulphur EITES), Amph. pod, CLAM, DE
Location: Couchich No - Space AS FENE Depth: 27m Sampler Fullness: 4/5 Sediment Type: 5: 14u 0020 Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none) sparce common abundant Invertebrates: MDES ZENEA CEAYFISH (THAT INVOICE) Notes: 15000 COUCH = 10000 COUCHE	Sample Bottles: '- SNOW Odour. Sulphur SITES , Amph. pod, CLAM, DE
Location: COUCHICH NO - SAME AS ABJUE Depth: 2.7m Sampler Fullness: 4/5 Sediment Type: 5.144 0020 Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: MDES ZENES CESYFISH (THAT INVOICES: 1500)	Sample Bottles: - SNOW Odour Sulphur SITES , amph. poo, CLAM, DEA

Notes:

Addition Information: Course (collection)) 5/5 3, fue 5 11. WZE

Collector: Notes By: Ma 1550

: LAKE Conchichinen 1) Location: Crarchicking - S. ITH of CHIEFS ISLAND (IKM) Sample Bottles: _ |- [13] Sampler Fullness: Sediment Type: SH4 002 F Odour CLIGHT Sulphill Sediment Characteristics: __ Macrophyles; none, sparce common abundant Algae: none sparce common abundant AT SURFACE - SHOOT FUAMENTS Invertebrates: M.DUS HEXEGENIA, PHONOSIM MIDES ZEBRA MYSSOLS 2) Location: Couch china - Some as Agove Depth: 9.0 Sampler Fullness: 5/5 Sample Bottles: 1- SNOW Odour NONS Sediment Type: S. Hu. OOZE Sediment Characteristics: __ Macrophytes: grone sparce common abundant Algae: none sparce common abundant Invertebrates: MIDES - CY: STI, B . SILAU ZEBEA HUSSOLE 3) Location: Conchiching - Some as ABOUE Depth: 9.0 m Sampler Fullness: 5/5 Sample Bottles: 1 - SNOW Sediment Type: S. Itu 007 F Odour. Nows Sediment Characteristics: Macrophytes: none sparce common abundant Algae, none, sparce common abundant Invertebrates: CLOM HEVELISTULA, MIDGE ZERRA MUSSELS PLANTOM MIDGE Addition Information: Serchi = 60m 5/5 , SITY COZE, NO SMELL, FLORE

Collector: HAWK Notes By: MC ISSA

Depth: Sampler Fullness: 5	Sample Bottles:
Sediment Type: 5 - 4 - 55 F	Odour STRONDIA SCHOOL
Sediment Characteristics: C151 Care Care	3.5.
Macrophytes: none sparce common abundant	
Algae: none paro common abundant GloBular ro	2001/0 /0000
Invertebrates: 2cbita https: 5. CADDISFLY, MIDGS	
,	SNATT
Notes:	
Location: (s.chichine - Sur A- FBLE	
Depth: 2 M Sampler Fullness: 5/5	Sample Bottles: - SNOW.
Sediment Type: Silve - OUT E	Odour store suprar
Sediment Characteristics:	
Macrophytes: none sparce common abundant	TURSKS
Algae: none sparce common abundant	
Invenebrates: DEAGON FIN MUNELLY MINES, H	EVERSING PRECINITION
	FIE GENTA
Notes: 1-1204 CALEIRA ON CHATA	
Location: CALERTON - D. S. A.	
Location: Sampler Fullness: 415	Sample Bottles:
Location: CALERTON ON CHATA Location: CALERTON ON CHATA Location: Sampler Fullness: TS Sediment Type: Sampler Fullness: TS	Sample Bottles:
Location:	Sample Bottles: 1 51-1 w
Notes: If the galeram of the Characteristics: Gray - Colone Macrophytes: none sparce common abundant	Sample Bottles: 1 51-1 w
Location:	Sample Bottles: 1. 50-100 Odour: 5: 5-2 50 6100
Notes: If the galeram of Characteristics: Sediment Type:	Sample Bottles: 1. 50-100 Odour: 5: 5-2 50 6100
Notes: If the galeram of Characteristics: Sediment Type:	Sample Bottles: 1 51-1 w
Location:	Sample Bottles: 1-51-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Notes: If the galeram of Characteristics: Sediment Type:	Sample Bottles: 1 51-1 w
Location:	Sample Bottles: 1 51-1 w
Location:	Sample Bottles: 1. 50-100 Odour: 5: 5-2 50 6100
Location: Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Cley - Colone Macrophytes: none sparce common abundant Algae: none sparce common abundant Colone Invertebrates: Common abundant Colone Colo	Sample Bottles: 1 51-100 Odour. 5 Sul plicu Signal place
Location:	Sample Bottles: 1 500000000000000000000000000000000000
Location:	Sample Bottles: 1 500000000000000000000000000000000000
Location:	Sample Bottles: 1 500000000000000000000000000000000000
Location:	Sample Bottles: 1 500000000000000000000000000000000000

Location: Corachichiala - 240 m of of	LAIGO BEACH
Depth: 1.4 m. Sampler Fullness: 5/	Sample Bottles: \
Sediment Type: Silly - 2078	
Sediment Characteristics: STEM COLOR	
Macrophytes: none sparce common abundant [DORA	
Algae none sparce common abundant	
Invertebrates: CROYELSIA SIJE S 145 XECEN	A zabes hiverals leed was
Notes: Calcified Chick But hurre	A C C
Notes: Calciffed (Makes Di) Rolles	NEW COMP
Location: Conthich ac- Wis AS ARON	£
Depth: Sampler Fullness: 5/5	Sample Bottles: 1- SNC: 1
Sediment Type: state of the sediment Type:	
Sediment Characteristics:	
Macrophytes: none sparce common abundant CHACA	
Algae: none sparce common abundant	
	MANIMONS SIEND WITTEN
Invertebrates: +EXEGSNIA, M. D.S. ISOPODS, AM	,
Notes: CALCIFIED CHARA	
Location: (ICM: Chara - SANS AS AFENTE Depth: 1.4m Sampler Fullness: 5/5 Sediment Type: 4 14-0026 Sediment Characteristics: 1264 IN colour. Macrophytes: none sparce common abundant	Sample Bottles: 1- SNOW Odour. NONE
Location: (1. 10 in 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Sample Bottles: 1- SNOW Odour. NONE CH SNAIS ZUDRA MASSELS, MID
Notes: CACIFIED CHARA Location: Continue - Sans as Africa Depth: 14m Sampler Fullness: 5/5 Sediment Type: 4 14-0026 Sediment Characteristics: 7-REU IN colour. Macrophytes: none sparce common abundant Algae: none sparce common abundant	Sample Bottles: 1- SNOW Odour. NONE CH SNAIS ZODRA MASSELS, MID
Location: (I ICM: Chi. Ch. Ch. Sampler Fullness: 5/5 Depth: 1.4m Sampler Fullness: 5/5 Sediment Type: 6/4-0026 Sediment Characteristics: 1.20 IN colour. Macrophytes: none sparce common abundant	Sample Bottles: 1- SNOW Odour. NONE CH SNAIS ZODRA MASSELS, MID
Location: (I ICM; Chirich - SING AS APACE Depth: 14m Sampler Fullness: 5/5 Sediment Type: 4 14-0026 Sediment Characteristics: IREU IN colour. Macrophytes: none sparce common abundant	Sample Bottles: 1- SNOW Odour. NONE CH SNAIS ZUDRA MASSELS, MID
Location: (ICM: Chin C - SANS AS AFENTE Depth: 1.4m Sampler Fullness: 5/5 Sediment Type: < 14-0026 Sediment Characteristics:	Sample Bottles: 1- SNOW Odour. NONE CH SNAILS ZEDRA MASSELS, MID AUPNIZED
Location: (10 in the Co - Sans as Africa) Depth: 14 m Sampler Fullness: 5/5 Sediment Type: 4 14 - 2026 Sediment Characteristics: 7 REU IN colour. Macrophytes: none sparce common abundant Invertebrates: CRUSSI SSULLY, CLAY, LEE Notes: 12 fight Curica Addition Information: 100 E is 900, 100 CLAY, LEE Addition Information: 100 E is 900, 100 CLAY	Sample Bottles: 1- SNOW Odour. NONE CH SNAILS ZEDRA HUSSELS MID AUDNIZED TERE WAS A SEPTIME EME!
Location: (10 in the Co - Sans as Africa) Depth: 14 m Sampler Fullness: 5/5 Sediment Type: 4 14 - 2026 Sediment Characteristics: 7 REU IN colour. Macrophytes: none sparce common abundant Invertebrates: CRUSSI SSULLY, CLAY, LEE Notes: 12 fight Curica Addition Information: 100 E is 900, 100 CLAY, LEE Addition Information: 100 E is 900, 100 CLAY	Sample Bottles: 1- SNOW Odour. NONE CH SNAILS ZEDRA HUSSELS MID AUDNIZED TERE WAS A SEPTIME EME!
Notes: CALCIFIED CHARA Location: (I ICM: Chara - SANS AS AFRIE Depth: 14m Sampler Fullness: 5/5 Sediment Type: 4 14-0026 Sediment Characteristics: 1264 IN colour. Macrophytes: none sparce common abundant Invertebrates: CRAFSIJ FSULLY, CLAY, LEE Notes: 12/6 Field Cris Addition Information: 1008 Field Public Clay Addition Information Field Public Clay Addition Information Field Public Clay Addition Information Field Public Clay Addition Information Field Public Clay	Sample Bottles: 1- SNOW Odour. NONE CH SNAIS ZEDRA MASSELS, MID AUDNIZED TERE WAS A SEPLIKE EME!
Location: (ICM: Chica - SANS AS AFENTE Depth: 1.4m Sampler Fullness: 5/5 Sediment Type: < 14-0026 Sediment Characteristics:	Sample Bottles: 1- SNOW Odour. NONE CH SNAILS ZEDRA HUSSELS, MID AUDNINGO THE SEPTIME EME!
Location: (ICM: (h. C - SAN: AS AFX) Depth: 1.4 m Sampler Fullness: 5/5 Sediment Type: 4 h-0026 Sediment Characteristics: 7 REU IN colour. Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: CRASI SSUL SSULLY, CLAY, LEE Notes: 14 C Field Criss	Sample Bottles: 1- SNOW Odour. NONE CH SNAILS ZEDRA MUSSELS MID AMPNIZED TERE WAS A SEPTIME EME!

Location: Couch church - F			
Depth: 2 m S Sediment Type: 51/2 0076	Sampler Fullness:	315	Sample Bottles: 1. Chrw
Sediment Type:		•	Odour: NOINE
Sediment Characteristics:	Eu colona		
Macrophytes: none sparce common	abundano CN2	(4	
Algae: none sparce common abunda			
Invertebrates: 20173 10055013	MITCY, HEX	EGENIA MIXE	EMPHIPOD, WORM
Notes: CEICITIES CHARE			
,			
Location: Company of Nor-			
Depth: a. 1			Sample Bottles: 1- SNOW
Sediment Type:			Odour NONE
Sediment Characteristics:			
Macrophytes: none sparce common			
Algae: none sparce common abunda	ant 0.06	1.00 LOTO!	VIAL ALGAE
Invertebrates: MIDGS CLANS	TIBIL MUSES	C	
Notes: CAICIFIED CHAR	45		
Notes: CAICIFIED CHAR	45		
Notes: CAICIFIED CHAR	45		
Notes: CALCIFIED CHAR	45		
Location: Couchiching - s	My 4 to	€U€	Sample Rottles: \- 5 \(\cdot \)
Location: Couch chine - s Depth: 3 m s	My と が	615 515	Sample Bottles: 1-5~c~
Location: Location: Location: Location: Septiment Type: Size - 0024	MS 4 MS Sampler Fullness:	515	Sample Bottles: 1-5~c~
Depth: 3 m s Sediment Type: c 1 m c 2 s Sediment Characteristics: CFE	Exampler Fullness:	515	
Location: Location: Location: Location: Location: Sediment Type: Sediment Type: Sediment Characteristics: Case Macrophytes: none sparce common	Sampler Fullness:	515	
Depth: 3 m s Sediment Type: c 1 m c 2 c 2 c Sediment Characteristics: c 2 c Macrophytes: none sparce common abunda	Sampler Fullness: Early colors abundant	515 	Odour Suiphur
Location: Linch, ch. No S Depth: M	Sampler Fullness: Eabundand ant Mussels A	515 	Odour Suiphur
Depth: 3 m s Sediment Type: c 1 m c 2 c 2 c Sediment Characteristics: c 2 c Macrophytes: none sparce common abunda	Sampler Fullness: Eabundand ant Mussels A	515 	Odour Suiphur
Location: Linch, ch. No S Depth: M	Sampler Fullness: Eabundand ant Mussels A	515 	Odour Suiphur
Location: Linch, ch. No S Depth: M	Sampler Fullness: Eabundand ant Mussels A	515 	Odour Suiphur
Location: Linch, ch. No S Depth: M	Sampler Fullness: Eabundand ant Mussels A	515 	Odour Suiphur
Location: Cuchichini S Depth: 3 m S Sediment Type: 5 m - 00 24 Sediment Characteristics: 6 m - 00 24 Macrophytes: none sparce common abunda Invertebrates: MIDGE ZEBRA Notes: 1 C C F E D C	sampler Fullness: sampler Fullness: extraction and and MUSSELS , All ALA RA	SIS MOHIPOD	Odour Suiphur
Location: Linch, ch. No S Depth: M	sampler Fullness: sampler Fullness: extraction and and MUSSELS , All ALA RA	SIS MOHIPOD	Odour Suiphur
Location: Cuchichini S Depth: 3 m S Sediment Type: 5 m - 00 24 Sediment Characteristics: 6 m - 00 24 Macrophytes: none sparce common abunda Invertebrates: MIDGE ZEBRA Notes: 1 C C F E D C	sampler Fullness: sampler Fullness: extraction and and MUSSELS , All ALA RA	SIS MOHIPOD	Odour Suiphur
Location: COUCHICHING - S Depth: 3 M S Sediment Type: 5 2 - 00 2 4 Sediment Characteristics: 6 2 2 4 Macrophytes: none sparce common abunda Invertebrates: MIDGE ZEBRA Notes: 1 CIFED C	ampler Fullness: FORCER abundant ant MUSSELS AI ALA RA PUTO CHASE	SIS MOHIPOD	Odour Suiphur
Location: Cuchichini S Depth: 3 m S Sediment Type: 5 m - 00 24 Sediment Characteristics: 6 m - 00 24 Macrophytes: none sparce common abunda Invertebrates: MIDGE ZEBRA Notes: 1 C C F E D C	ampler Fullness: FORCER abundant ant MUSSELS AI ALA RA PUTO CHASE	SIS MOHIPOD	Odour Suiphur
Location: COUCHICHING - S Depth: 3 M S Sediment Type: 5 2 - 00 2 4 Sediment Characteristics: 6 2 2 4 Macrophytes: none sparce common abunda Invertebrates: MIDGE ZEBRA Notes: 1 CIFED C	ampler Fullness: FORCER abundant ant MUSSELS AI ALA RA PUTO CHASE	SIS MOHIPOD	Odour Suiphur

Depth: Sampler Fullness: 5/5	Sample Bottles:
Sediment Type: State Con F	Odour:
Sediment Characteristics:	
Macrophytes: none sparce common abundant cianca	
Algae: none sparce common abundant	
Invertebrates: U.V.M. HETICHEA, MIDER, AMPHIPOD	1
Notes: 14 11 5 12 STARRA LETTE OF DE	
Location: Couch clinic . Same as Alexe	
Depth: 19m Sampler Fullness: 4/5	Sample Bottles: 1- 5N1W
Sediment Type: 11 Hu - 002 E	Odour NONE
Sediment Characteristics: 65 200	
Macrophytes: none sparce common abundant	
Algae none sparce common abundant	
Invertebrates: DP=GCN FLV	CAE AMPHIPMES WHEN THE
Note: C' C. C. C. C. D. A . D.C. A.	LITE OF WEAR CHAIC
Notes: CONFRE COMMA	LCTS OF DEAD SHAILS
Location: Construction of AGOVE Depth: 12m - Sampler Fullness: 4/5	Sample Bottles:
Location: Construction (see AGOVE Depth: 19 - Sampler Fullness: 4/5 Sediment Type: 5/14/1/2016	Sample Bottles: SAME Odour N. T. F.
Location: Construction of AGOVE Depth: 12m - Sampler Fullness: 4/5	Sample Bottles: SAME Odour N. T. F.
Location: Construction (see AGOVE Depth: 19 - Sampler Fullness: 4/5 Sediment Type: 5/14/1/2016	Sample Bottles: 1. SALE Odour: 1. DATE
Location: Cerca Citiva (s AGOUE Depth: 12 - Sampler Fullness: 4/5 Sediment Type: 5.146-1507 E Sediment Characteristics: 3:E1 Calcal	Sample Bottles: 1. SALE Odour: 1. DATE
Location:	Sample Bottles: 1. SAIS ~ Odour. N. D. A. E.
Location: Constitution of AGOUE Depth: Sampler Fullness: 4/5 Sediment Type: Sediment Characteristics: Sediment Characteristics: Chical Macrophytes: none sparce common abundant: Algae: none sparce common abundant	Sample Bottles: Alt wo Odour NOTATE Odour NOTATE EE ISIA MUSSOLS CRESH MOIN
Location:	Sample Bottles: TAIS W Odour NOTA = Odour NOTA = Odour NOTA =
Location:	Sample Bottles: TAIS W Odour NOTA = Odour NOTA = Odour NOTA =
Location:	Sample Bottles: TAIS W Odour NOTA = Odour NOTA = Odour NOTA =
Location: Constitution of AGOUE Depth: Sampler Fullness: 4/5 Sediment Type: Sediment Characteristics: Sediment Characteristics: Characteristics: Algae: none sparce common abundant: Algae: none sparce common abundant Invertebrates: WOAMS HEYEGENIA MIDERE 2 Notes: Canada AGOUE	Sample Bottles: TAIS W Odour NOTA = Odour NOTA = Odour NOTA =
Location:	Sample Bottles: Alt wo Odour NOTATE Odour NOTATE EE ISIA MUSSOLS CRESH MOIN
Location: Constitutes and AGOVE Depth: Sampler Fullness: 4/5 Sediment Type: Sediment Characteristics: Sediment Character	Sample Bottles: SALL Odour. Odour. Odour. E (3)A MUSSCI S (CALL FISH) AMPIN
Location: Constitution of AGOUE Depth: Sampler Fullness: 4/5 Sediment Type: Sediment Characteristics: Sediment Characteristics: Characteristics: Algae: none sparce common abundant: Algae: none sparce common abundant Invertebrates: WOAMS HEYEGENIA MIDERE 2 Notes: Canada AGOUE	Sample Bottles: SALL Odour. Odour. Odour. E (3)A MUSSCI S (CALL FISH) AMPIN
Location: Constitutes and AGOVE Depth: Sampler Fullness: 4/5 Sediment Type: Sediment Characteristics: Sediment Character	Sample Bottles:SALL Odour PARL ODOUR PARL ODOUR PARL ODO PROPERTY OF THE PARL OF THE PA
Location: Constitutes and AGOVE Depth: Sampler Fullness: 4/5 Sediment Type: Sediment Characteristics: Sediment Character	Sample Bottles: SALW Odour. Odour. ACLE ACLE

	Sampler Fullness:	Sample Bottles:
Sediment Type:	- 100 F	Odour Nite
Sediment Characteristics:		
Macrophytes: none sparce of	che abundant che	
	abundant	· · · · · · · · · · · · · · · · · · ·
	MAILS SPECONFLY HENCE	7911 1375 How Alux
	MACA, LOTS OF DEAD S	
	a tout of tent	
	Sampler Fullness:	Sample Bottles: 1 - S 2
	CEZE	Odour:
	die de la	
Macrophytes: none sparce o	ommon abundant C-12: 2	
Algae: none sparce common	abundant	
nvertebrates: 21 6/3 Mus	THE HEVELENIE SADJUH	HIDGS
	LES LESS OF DEAD	
Notes.		2/11
voies.		-N 3
voies.		JAT &
_ocation: Control Control	x - See	
Location:	Sampler Fullness: 5/<	Sample Bottles: 1- sncw
Location:	Sampler Fullness: 5/5	Sample Bottles: 1 - SNCW
Depth: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sampler Fullness: 5/5	Sample Bottles: 1 - SNCW
Depth: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sampler Fullness: 5/<	Sample Bottles: <u>しらいとい</u> Odour: <u>しょ</u>
Depth: 2 000 Sediment Type: 2 000 Sediment Characteristics: 2 000 Macrophytes: none sparce common	Sampler Fullness: 5/5	Sample Bottles: 1 - SNCW
Depth:	Sampler Fullness: 5/5 common abundan; abundant 2588A Mussels Mide = 25	Sample Bottles: 1- SNCW Odour: 1-35NE VECSALA (ADDISFLY
Location: Depth: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce or Algae: none sparce common Invertebrates: Depth: epth: Depth:	Sampler Fullness: 5/5	Sample Bottles: 1- SNCW Odour: 1-35NE VECSALA (ADDISFLY
Depth:	Sampler Fullness: 5/5 common abundan; abundant 2588A Mussels Mide = 25	Sample Bottles: 1- SNCW Odour: 1-35NE VECSALA (ADDISFLY
Depth:	Sampler Fullness: 5/5 common abundan; abundant 2588A Mussels Mide = 25	Sample Bottles: 1- SNCW Odour: 1-35NE VECSALA (ADDISFLY
Depth:	Sampler Fullness: 5/5 common abundan; abundant 2588A Mussels Mide = 25	Sample Bottles: 1- SNCW Odour: 1-35NE VECSALA (ADDISFLY
Depth: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sampler Fullness: 5/5 common abundan: abundant 2586A Mussels Mide: 42	Sample Bottles: 1- SNCW Odour: 1-35NE VECSALA (ADDISFLY
Depth: 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sampler Fullness: 5/5 common abundan: abundant 2586A Mussels Mide: 42	Sample Bottles: 1- SNCW Odour: 1-35NE VECSALA (ADDISFLY
Depth: De	Sampler Fullness: 5/5 common abundan: abundant 2586A Mussels Mide: 42	Sample Bottles: 1- SNCW Odour: 1- SNCW XECSULA, CADDISTLY NAI! 5
Depth:	Sampler Fullness: 5/5 common abundan: abundant 2586A Mussels Mide: 42	Sample Bottles: 1- SNCW Odour: 1- SNCW XECSULA, CADDISTLY NAI! 5
Depth: De	Sampler Fullness: 5/5 common abundan: abundant 2586A Mussels Mide: 42	Sample Bottles: 1- SNCW Odour: 1- SNCW XECSULA, CADDISTLY NAI! 5

Depth: Sampler Fullness:	Comple Doubles
Sediment Type: Sediment Characteristics:	
Macrophytes: none sparce common abundant	
Algae: none sparce common abundant	
Invertebrates: Variable Control of the Control of Contr	
Notes: CALCER CHARE	431516 -
Location:	
Depth: 17 Sampler Fullness:	Sample Bottles: I- CACW
Sediment Type:	Odour LICKE
Sediment Characteristics:	
Macrophytes: none sparce common abundant CUALA	
Algae: none sparce common abundant	
Invertebrates: 15 Mars	
Notes:	
Location: Sampler Fullness:	Sample Bottles: 1-51000
Depth: Sampler Fullness:	Odour StIGHT Suif.
Depth: Sampler Fullness:	Odour S/16HT Suif.
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant	Odour Slight Suit
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant	Odour Slight Suit.
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant: Algae: none sparce common abundant Hovertebrates: However the sparce common abundant the sparce commo	Odour Slight Saif.
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant	Odour Slight Saif.
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant: Algae: none sparce common abundant Hovertebrates: However the sparce common abundant the sparce commo	Odour Slight Suif.
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant: Algae: none sparce common abundant Hovertebrates: However the sparce common abundant the sparce commo	Odour Slight Suif.
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics:	Odour Slight Suif.
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant: Algae: none sparce common abundant Hovertebrates: However the sparce common abundant the sparce commo	Odour Slight Suif.
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: Here a sparce common abundant	Odour. Slight Suif.
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics:	Odour. Slight Suif.
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: Here a sparce common abundant	Odour. Slight Saif.
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: Here a sparce common abundant	Odour Slight saif

	Sampler Fullness:	
Sediment Type: Strick	CLAV	Odour:
Sediment Characteristics:	TAN CLES COREY CO.	
Macrophytes: none sparce	ommon abundant	
	n abundant	
	THE STATE OF STATE	
Notes: PAIR FED AL	ace lot of :	ביויטים שיניןב
Location:		
Depth: 16m	Sampler Fullness:	Sample Bottles: - States
Sediment Type: ZROWN	silt over sme !	Odour.
Sediment Characteristics:	" C C C C C C C C C C C C C C C C C C C	*
Macrophytes: none sparce	Sommon abundant CLARA	
Algae: none sparce common	abundant	
nvertebrates:	expose : Terr	12 (115-10, D
Notes:	٠٠٠٠ ٤١٤٠٠٠٠	
	. F;	
	Sampler Fullness:	
	SILL OVER SAUDY CLAN	
	TAN CIFE GISH C:	
_	ommon abundant	
-	abundant	
	Mussain, icon price	CHILLY ALKED
Notes:		. * . *
,		
ddition Information:	30-11	
5/5 BIDWS +	COLA 13854 20.75 -	NE LOCIE COM

Depth: Sampler Fullness: Sampler Fullness:	Sample Bottles:
Sediment Characteristics:	
Macrophytes: none sparce common abundant 1.46.4.	TUBOS.
Algae: Tione sparce common abundant	
Invertebrates: Josá Sualis, TOL-NETV, MIDES 2	LEBRA HUSSI'S , WAIFLY
Notes: 45 G DETECTS	,
Location: Oscialist was - Come as here	
Depth: 3.am Sampler Fullness: 5/5	Sample Bottles:
Sediment Type:	Odour CHAFE
Sediment Characteristics:	
Macrophytes: none sparce common abundant Chair	. 85.4.5
Algae: none sparce common abundant	
Invertebrates: Den Sin is IAVE COLUMN SIN	0- 0.00
Notes: OFLAND DE CK	
Notes. TREATING THE DR	
,	
Depth: Sampler Fullness:	Sample Bottles: - This co
Depth: Sampler Fullness:	Odour NONE
Depth: Sampler Fullness: 55	Odour. NONE
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics:	Odour. NONE
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant	Odour. NONE
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Sediment Sedi	Odour. NONE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: DEA TABLE STATES	Odour. NONE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: DEA TABLE STATES	Odour. NONE
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: DEA TABLE STATES	Odour. NONE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: DE LA LE STATES Notes:	Odour NONE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: DEA TABLE STATES	Odour. NONE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae none sparce common abundant Invertebrates: Notes: Addition Information:	Odour: NONE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae none sparce common abundant Invertebrates: Notes:	Odour: NONE
Depth: Sampler Fullness: Sediment Type: Sediment Characteristics:	Odour: NONE

	Sample Bottles: 1-717, 1
Sediment Type:	Odour.
Macrophytes none sparce common abundant	
Algae: none sparce common abundant	
Invertebrates: DCAT TIPE TO TREETER MOTOR	S. JAITH MINE
Notes:	
	•
Location: Continue Nation Location As ASOLE	
Depth: Sampler Fullness: 5/5	Sample Bottles: 1- Chacas
Sediment Type:	Odour. 1401.E
Sediment Characteristics:	
Macrophytes none sparce common abundant	
Algae: none sparce common abundant	
nvertebrates: 7.6 ber 1:050 - AU HEVEREN'A	1 HOVE 300 - 111 -
Notes:	
Depth: Sampler Fullness: 5/5	Sample Bottles:
Depth: Sampler Fullness: 5/5	Sample Bottles: Odour
Sediment Type:	Sample Bottles: Odour:
Sediment Type:	Sample Bottles: Odour: i JCNE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant	Sample Bottles: Odour: i JCNE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant	Sample Bottles: Odour: i JUNE
Depth: Sampler Fullness: 5/5 Sediment Type: Sediment Characteristics: Common abundant Macrophytes: none sparce common abundant mivertebrates: Sediment Characteristics: Common abundant Macrophytes: none sparce common abundant mivertebrates: Sediment Characteristics: Common abundant Macrophytes: Sediment Characteristics: Common abundant Macrophytes: Sediment Characteristics: Sediment Type: Sediment Characteristics: Sediment Ch	Sample Bottles: Odour: i JUNE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant nivertebrates:	Sample Bottles: Odour: i JUNE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant nivertebrates:	Sample Bottles: Odour: i JCNE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant nivertebrates:	Sample Bottles: Odour: i JUNE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant nivertebrates:	Sample Bottles: Odour: i JUNE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant nivertebrates:	Sample Bottles: Odour: i JUNE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant nivertebrates: Notes:	Sample Bottles: Odour i JCNE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant nivertebrates:	Sample Bottles: Odour i JCNE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant nivertebrates: Motes:	Sample Bottles: Odour i JCNE
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant nivertebrates: Motes:	Sample Bottles: Odour i JCNE

Depth: Sampler Fullness: Sediment Type: F	Odour.
Sediment Characteristics:	
Macrophytes: none sparce common abundant	[]
Algae: none sparce common abundant	
Invertebrates: BLDGS TER & MISSE - MICH POD	
Notes:	
Location: 1 1 1 - The AS ABOVE	
Depth: Sampler Fullness:	Sample Bottles: \- 51
Sediment Type:	
_	
Sediment Characteristics: Macrophytes: none sparce common abundant	6:10
Algae: none sparce common abundant	
Improved head and the control of the	the state of the state of
Invertebrates: Formant for tough por 20% unit	
Notes:	
Location:	
Location: Depth: Sampler Fullness: Sk	Sample Bottles:
Location: Depth: Sampler Fullness: SS	Sample Bottles:
Location: Depth: Sampler Fullness:S Sediment Type: Sediment Characteristics:	Sample Bottles:
Location: Depth: Sampler Fullness: S Sediment Type: Sediment Characteristics: Macrophytes: none sparce mmon abundant	Sample Bottles:
Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant	Sample Bottles:
Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: 22015 Museur 15 March 1975 March 1975	Sample Bottles: - Time of Sample Bottles: -
Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant	Sample Bottles: - Time of Sample Bottles: -
Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: 22015 Museur 15 March 1975 March 1975	Sample Bottles: - Time of Sample Bottles: -
Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: 22015 Museur 15 March 1975 March 1975	Sample Bottles: - Time of Sample Bottles: -
Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: Notes:	Sample Bottles: - Time of Sample Bottles: -
Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: 22015 Museur 15 March 1975 March 1975	Sample Bottles: - Time of Sample Bottles: -
Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: Notes:	Sample Bottles: - Time of Sample Bottles: -
Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: 22012 MICE IS MICE IS MICE IS MICE IS Notes:	Sample Bottles:
Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: Notes:	Sample Bottles:
Location: Depth: Sampler Fullness: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: 22012 MICE IS MICE IS MICE IS MICE IS Notes:	Sample Bottles:

1)	Location: Courhichioca - 435 Perpendicula	
	Depth: Sampler Fullness:	Sample Bottles:
	Sediment Type: Sth. const	Odour:
	Sediment Characteristics: (
	Macrophytes: none sparce common abundant	
	Algae: none sparce common abundant	
	Invertebrates: HEXECISILA SEAD SATIS CU	W 26812 1 642 1
	Notes: 4 THATTH	
2)	Location: (such since Such as pers	
	Depth: 68m Sampler Fullness: 515	Sample Bottles: 1-51320
	Sediment Type: S 12 - 25%	Odour:
	Sediment Characteristics:	
	Macrophytes: from sparce common abundant	
	Algae: none sparce common abundant	
	Invertebrates: FSHFLV 3843 SNA 2 TO 412 MICES	
	Notes:	or Dest Cons
3)	Depth: Sampler Fullness: K	Odour Nr. NE.
	Sediment Characteristics: () Co. C	
	Macrophytes: none sparce common abundant	
	Algae: none sparce common abundant	
	Invertebrates: _ ===== 11/4 IS ====== 14/15705, 11/5	NE POSE FOR MOSE
	Notes:	Les contracts
	Addition Information:	
	- This is the second	
	- SAMING DIEE WAR TON A TON	
4)		102605
4)	Collector	Bur 11 to

21-	
Depth: 11 Sampler Fullness: 3/5	Sample Bottles: 1- Cryc
Sediment Type: SILV - SAND	
Sediment Characteristics: OPLANIC DEBRIS LAND KLA	
Macrophytes: none sparo common abundant THAIA DI	KKINEED (LITTLE SIT) ELODE:
Algae: none sparce common abundant	
Invertebrates: 11.17, F CLOU WORLS, AUFHIPOD	
Notes: lists of MIDGE	
Location: COLICHICHIMS - SAIR AS ALINE	
Depth: Sampler Fullness: 4/5	Sample Bottles: 1-5000
Sediment Type: Siller Sach	Odour C. C R (+1
Sediment Characteristics: Sime WARD (LEV)	
Macrophytes: none sparce common abundant CHARA	DUCKWERG (SPATESE
Algae: none sparce common abundant	,
Invertebrates: MIDISE - LOURINS	
Notes: 1 ats of MIDGS	
roles.	
Location: Communication Spin 25 April 2016 Depth: 14 Sampler Fullness: 4/5	Sample Bottles: 1 - < N.3 w
Depth: Sampler Fullness:	
Depth: Sampler Fullness: 4/5	Odour sui pirus / stignit
Sediment Type: Sampler Fullness: 4/5 Sediment Characteristics: 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Odour sulphus / shoul
Sediment Type: Sampler Fullness: 4/5 Sediment Type: SAND Sediment Characteristics: 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Odour Sul phus ! Show!
Sediment Type: Sampler Fullness: 4/5 Sediment Characteristics: 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Odour Sulphurs / Showit
Sediment Type: Sediment Characteristics: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates:	Odour Sui pinne / Stignet
Sediment Type: Sampler Fullness: 4/5 Sediment Characteristics: 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Odour Sui pinne / Stignet
Sediment Type: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates:	Odour Sulphurs / Showit
Sediment Type: Sediment Characteristics: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates:	Odour Sui piers / Sligarit
Sediment Type: Sampler Fullness: 4/5 Sediment Characteristics: Sedimen	Odour Sui piers / Sligarit
Sediment Type: Sediment Characteristics: Sediment Characteristics: Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates:	Odour Sui piers / Sligarit
Sediment Type: Sampler Fullness: 4/5 Sediment Characteristics: Sedimen	Odour Sui piers / Sligarit
Sediment Type: Sampler Fullness: 4/5 Sediment Characteristics: 55 Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: 55 Notes: 45 Addition Information: 65 EAC	Odour Sui pinns / Shigait
Sediment Type: Sampler Fullness: 4/5 Sediment Characteristics: Sedimen	Odour Sui piers / Sligarit
Sediment Type: Sampler Fullness: 4/5 Sediment Characteristics: 55 Macrophytes: none sparce common abundant Algae: none sparce common abundant Invertebrates: 45 Notes: 45 Addition Information: 65 E 45	Odour Sui pinns / Shigait

Depth: Sampler Fullness: 5/5	
Sediment Type: CHY - CHY !	Odour.
Sediment Characteristics:	
Macrophytes: none sparce common abundant (HACA	TIODEA (Sparce)
Algae: none sparce common abundant	
Invertebrates: SNA IS 20 DES MUSICIS ISOPODS M NAS	
Notes:	, , , ,
NOISS.	
Location: Corchiching - Sine A: ABIVE	
Depth: 19 m Sampler Fullness: 5/5	Sample Bottles: 1- SNew
Sediment Type: 5 44 1576	Odour. 5. 21.11
Sediment Characteristics:	
Macrophytes: none sparce common abundant	10 100
Algae: none sparce common abundant	
Was 1 2000	
Invertebrates: SNAILS MIDES ISDEDS - MPLAFODS ZEE	FRA MIKELIE
Notes:	
Location: Couchichae - Terrains Armit	
Location: Couchiculate True and Armit Depth: 19m Sampler Fullness: 4/5	Sample Bottles: 1- SAUL
Location: Couch Character Sampler Fullness: 4/5 Sediment Type:	Odour: Superior
Location: Couch Character Sampler Fullness: 4/5 Sediment Type:	Odour: Superior
Depth: 19m Sampler Fullness: 4/15 Sediment Type:	Odour: Superior
Depth: Sampler Fullness: Liss Sediment Type: Sediment Characteristics: Sediment Characteristics: Adaptive common abundant Algae: none sparce common abundant	Odour: Su ps: 10
Location: Colichic Hara- Farm and Algae: none sparce common abundant Invertebrates: Aught ports at a series of the series of th	Odour: Su ps: 10
Location: Conchiculation Sampler Fullness: 4/15 Depth: Sediment Type: Sampler Fullness: 4/15 Sediment Characteristics: Characteristics: Algae: none sparce common abundant Invertebrates: Aught ports of the sample sparce common abundant Invertebrates of the sample sparce common abundant Invertebrates of the sample sparce common abundant Invertebrates of the sample sparce common a	Odour: Su ps: 10
Depth: 19m Sampler Fullness: 4/15 Sediment Type:	Odour: Su par in
Depth: 19m Sampler Fullness: 4/15 Sediment Type:	Odour: Su par an
Depth: 19m Sampler Fullness: 41/2 Sediment Type: Sediment Characteristics: Characteristic	Odour: Su prince
Location: Conchiculation Sampler Fullness: 4/5 Depth: Sediment Type: Sediment Characteristics: Conchiculation Sediment	Odour: Su par in
Location: Conchiculation - American - Americ	Odour: Su par in
Location: Conchicus - Conchicu	Odour: Su par an
Location: Conchicus - Conchicu	Sample Bottles: 1- Shith Odour: Superior Missers
Location: Conchicus - Conchicu	Sample Bottles: 1- Shink Odour: Su parince Lincoln

Depth:	Sample: Fullness:	Sample Bottles:
		Odour 11014 E
	15	
	abundant	
		ex eng
Notes: Olicium 60	Lia	
Location:	- Sus As Asove	
	Sampler Fullness: 5/5	
	Sampler Confess.	Odour Silinic
	(65= 4 - 000 WE	
	_	
	nmon abundant 1.AV.A	
Invertebrates:	395 - 395 - 395	
Notes:		
Location:	1 1 1 1	
Location:	Sampler Fullness:	Sample Bottles:
Location:	1 1 1 1	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics:	Sampler Fullness:	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics:	Sampler Fullness:	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce con	Sampler Fullness:	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common	Sampler Fullness:	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce com Algae: none sparce common	Sampler Fullness:	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common Invertebrates:	Sampler Fullness:	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common Invertebrates:	Sampler Fullness:	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common Invertebrates:	Sampler Fullness:	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common Invertebrates: Notes:	Sampler Fullness: Sampler Fulln	Sample Bottles: 1-1> Odour. 1>
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common Invertebrates: Notes:	Sampler Fullness:	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common Invertebrates: Notes: Addition Information:	Sampler Fullness: Sampler Fulln	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common Invertebrates: Notes: Addition Information:	Sampler Fullness: Sampler Fulln	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common Invertebrates: Notes: Addition Information:	Sampler Fullness: Sampler Fulln	Sample Bottles:
Location: Depth: Sediment Type: Sediment Characteristics: Macrophytes: none sparce common Invertebrates: Notes: Addition Information:	Sampler Fullness: Sampler Fulln	Sample Bottles:

1)	Location: Conclude - == + 11 conc	" Fer C. FF. ISA.
	Depth: Sampler Fullness:	Sample Bottles:
	Sediment Type:	Odour.
	Sediment Characteristics:	
	Macrophytes: none sparce common abundant Cucha	e c RS
	Algae: none sparce common abundant	
	Invertebrates: GRAYFTH, MILES HEYEGEISH WE FE	
	Notes:	
0)	Location: Sweet + sees	
2)		
	Depth: Sampler Fullness:	Sample Bottles: 1-21,500
	Sediment Type:	Odour. Sair visit
	Sediment Characteristics:	
	Macrophytes: none sparce common abundant CUCIS	
	Algae: figor sparce common abundant	
	Invertebrates: LOW OF THE THE THE WORLD INCOME IN	- C - S - C - C - C - C - C - C - C - C
	Notes:	
-		
3)	Location: The report of the Line of the Control of	
	Depth: Sampler Fullness:	Sample Bottles:
	Sediment Type:	Odour.
	Sediment Characteristics:	**
	Macrophytes: none sparce common abuncam	
	Algae: none sparce common abundant	
	Invertebrates: 4.45 2.116 Miles, DEAT & Lie 1.55 2	in its remanusale
	Notes:	
	Addition Information:	
,	Addition Information:	
1	****	
4	The second of the second	to the cost of
_		
	\(\lambda_{\text{init}} \)	
C	Collector: Notes By	1271.00

Appendix L - Raw Benthic Macroinvertebrate Data

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	1	-	-	2	2	2	6	3	3	4	4	4
Replicate			3	-	2	3	1	2	3	-	2	3
Date	e 97.05.28	97.05.28	82.50.76	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28
Original % Subsampled	2		25	20	25	25	25	25	25	25	25	25
TAXA LIST												
ANNELIDA:HIRUDINEA												
ERPOBDELLIDAE: (juveniles)												
Mooreobdella fervida												
Nephelopsis obscura					4							
GLOSSIPHONIIDAE												
Alboglossiphonia heteroclita												
Desserobdella phalera							4					
Glossiphonia complanata												
Helobdella elongata		2										
Helobdella fusca												
Helobdella triserialis												4
ANNELIDA: OLIGOCHAETA												
ENCHYTRAEIDAE:												
NAIDIDAE:												
Nais communis												
Ophidonais serpentina												
SPARGANOPHILIDAE:												
Sparganophilus eiseni			4									
TUBIFICIDAE:												
Immatures with hairs	4					4	4		4	12	18	28
Immatures without hairs												
Aulodrilus pigueti												
Aulodrilus pluriseta												
Ilyodrilus templetoni												
Limnodrilus clarapedianus												
Limnodrilus hosmeisteri												
Potamothrix bavaricus	4					24		4		80	80	32
ANNELIDA:POLYCHAETA												
Manayunkia speciosa												
ACARINA.												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	-	-	-	2	2	2	3	3	9	4	4	4
Replicate	-	2	3	1	2	6	-	2	6	-	2	6
Date	97.05.28		97.05.28	97.05.28	97	97.05.28	97.05.28	28	97.05.28	28	97.	97.05.28
Original % Subsampled	mpled 25	20	25	20	25	25	25	25	25	25	25	25
Albia			The second second second									
Arrenurus										4		
Hygrobates		4	80						4	12	80	28
Konikea												
Lebertia								4	4			
Limnesia								4				
Unionicola												
CRUSTACEA												
AMPHIPODA:												
GAMMARIDAE												
Gammarus fasciatus												
Gammarus pseudolimnaeus	80		24		4	4			4	18		12
HYALELLIDAE:												
Hyalella azteca	280	34	748	92	288	40	612	324	392	300	132	256
CLADOCERA:												
CHYDORIDAE												
Eurycercus				2	80					12	20	32
DECAPODA:												
CAMBARIDAE												
Orconectes virillis									4			
ISOPODA:				-					the state of the other state of the state of			
ASELLIDAE												
Caecidotea intermedius	16				12	80				-		
Caecidotea racovitzai			76									
Lirceus lineatus			48									
INSECTA:												
COLEOPTERA:												
ELMIDAE												
Stenelmis												
DIPTERA:												90
CERATOPOGONIDAE				2		*					•	97
CHAOBORIDAE												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	-	-	-	2	2	2	3	3	3	*	4	*
Replicate	-	2	8	-	2	9	-	2	9	-	2	9
Date	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28
Original % Subsampled	25	20	25	20	25	25	25	25	25	25	25	25
Chaoborus punctipennis									4			
CHIRONOMIDAE												
CHIRONOMINAE												
Chironomus	24	80	4				76	32	90			
Cladotanytarsus		2								26		26
Cryptochironomus		80										
Dicrotendipes	12	9	80	9	26	4	84	52	78	72	80	28
Microtendipes										4		
Parachironomus	*			2								
Paracladopelma				2							and case on the party of the pa	
Paratanytarsus										18	28	18
Paratendipes	∞	4	32		196	16			12	9	9	140
Phaenopsectra flavipes					•				The second secon			
Polypedilum				7		7				36	80	94
Pseudochironomus										80		
Stempellina		2								4	12	
Tanytarsus	4	62	48	22	52	•			60	20	80	16
Tribelos jucundum	16			18		80				80	20	18
Zavreleilla												
ORTHOCLADIINAE				-								
Cricotopus	•		80	16	80		20	80	20			4
Epoicocladius												
Psectrocladius	*	4		•	38		12	18	00	4		80
Thienemanniella								-				
TANYPODINAE												
Ablabesmyia	80		00	12	72		48	48	4	9	32	88
Clinotanypus pinguis				•							4	
Procladius	80	24	32	7	28					8	20	72
EMPIDIDAE:											and the sale of the sale of	
Hemerodromia												
EPHEMEROPTERA:												
DARTINAE.												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	-	-	-	2	2	2	3	6	3	*	4	+
Renlicate	-	2	6	-	2		-	2	3	-	2	3
Date 97.0	97.05.28	97.05.28	15.28 97.05.28 97.05.28 97.05.28 97.	97.05.28	05 28	97.05.28	0	7.05.28 97.05.28	97.05.28	97.05.28	97.05.28	97
Original % Subsampled	25	20	25	20	25	25		25		25	25	
Callibaetis			4	2				4		4	4	80
CAENIDAE:										-		
Caenis punctata	82	38	172	2			24	24	12	•	*	4
EPHEMERELLIDAE:												
Eurylophella										4	12	
EPHEMERIDAE:												
Hexagenia limbata		2				4	The second secon					*
LEPTOPHLEBIIDAE												
Leptophlebia												
MEGALOPTERA:												
SIALIDAE					-						The same	
Sialis												
ODONATA:									-			
COENAGRIONIDAE							***************************************					
Enallagma sp.		2							*			-
Enallagma civile			4						4			
Enallagma hageni			20									
CORDULIIDAE												
Tetragoneuria cynosura												
TRICHOPTERA:												
HYDROPTILIDAE												
Orthotrichia			4									
LEPTOCERIDAE												
Ceraclea						4	91	0	•			•
Mystacides sepulchralis	*									•	4.0	18
Nectopsyche albida										0	71	2 8
Oecetis inconspicua-group	4	9		4				•		0	0	3
Triaenodes	4		*									The second secon
POLYCENTROPODIDAE												
Polycentropus								•				
MOLLUSCA:BIVALVIA:			-					-				-
DREISSENIDAE												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	-	-	-	2	2	2	3	3	3	4	4	*
Replicate	-	2	9	-	2	9	-	2	3	-	2	6
Date	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.05.28	97.	97.05.28
Original % Subsampled	ampled 25 50	20	25	20	25	25	25	25	25	25	25	25
Dreissena polymorpha	28	9	312	144	1018	280	278	412	200	200	208	448
Pisidium			4									
Sphaerium simile												
Sphaerium striatinum		2	*									
UNIONIDAE												
Lampsilis radiata												
MOLLUSCA:GASTROPODA:												
ANCYLIDAE:												
Ferrissia												
HYDROBIIDAE												
Amnicola limosa	4	2	12	48	184	52	4	18	18	44	168	136
Cincinnatia cincinnatiensis												
Probythinia lacustris												
PHYSIDAE:												
Physella gyrina			80		4					12	80	12
PLANORBIDAE:												
Gyraulus circumstriatus				2	80	4	00	4	4	4	20	
Helisoma anceps												
Promenetus exacuous			4			00	00	12	12			
VALVATIDAE:												
Valvata tricarinata						4		12	80	36	28	16
VIVIPARIDAE:												
Viviparus georgianus				16	80	80						
NEMATODA:	12	2	80			12				4		4
PLATYHELMINTHES:												
Dugesia tigrina			•				80					
Hydrolimax griseus												
Total Number of Taxa	22	20	27	21	18	20	15	21	23	32	56	30
Total Number of Specimens	592	220	1684	ACA	1088	496	1224	1000	1208	1084	87R	1580

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	2	2	2	9	9	9	7	7	7	89	8	80
Renlicate	-	2	9	-	2	9	-	2	3	-	2	3
Date	97 05 28	97	97.05.28	97.05.28	97.05.28	97.05.28	97.05.29	97.05.29	97.05.29	97.05.29	97.05.29	97.05.29
Original % Subsampled	20	25	25	20	20		52	25	25	25	25	25
TAXA LIST												
ANNELIDA:HIRUDINEA												
ERPOBDELLIDAE: (juveniles)												
Mooreobdella fervida							4					
Nephelopsis obscura												
GLOSSIPHONIIDAE												
Alboglossiphonia heteroclita												
Desserobdella phalera									•			
Glossiphonia complanata												
Helobdella elongata						2						
Helobdella fusca									and the same			
Helobdella triserialis												
ANNELIDA: OLIGOCHAETA												
ENCHYTRAEIDAE:												
NAIDIDAE:												
Nais communis												
Ophidonais serpentina												
SPARGANOPHILIDAE												
Sparganophilus eiseni				9		4						
TUBIFICIDAE												
Immatures with hairs		4					•					
Immatures without hairs				4				•				
Aulodrilus pigueti	80	12										
Aulodrilus pluriseta												
Ilyodrilus templetoni												
Limnodrilus clarapedianus												•
Limnodrilus hossmeisteri					2						•	•
Potamothrix bavaricus												
ANNELIDA:POLYCHAETA												
Manayunkia speciosa												
ACADIMA.												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	5	2	S	8	9	9	7	7	7	80	80	80
Replicate	-	2	9	-	2	9	-	2		-	2	0
Date	Date 97.05.28	97	97.05.28	97	97.05.28	97.05.28	97.05.29	97.05.29	37	97	.05.29 97.05.29 97.05.29	97.05.29
Original % Subsampled	1 50	25	25		20	20	25	25	25	25	25	25
Albia												
Arrenurus							4		4	4		
Hygrobates							00		4		4	12
Konikea												
Lebertia										*		
Limnesia	2										4	
Unionicola						2	4					
CRUSTACEA												
AMPHIPODA:												
GAMMARIDAE:												
Gammarus fasciatus												
Gammarus pseudolimnaeus										*	80	
HYALELLIDAE:												
Hyalella azteca					4		252	88	232	240	464	818
CLADOCERA:												
CHYDORIDAE												
Eurycercus										4		
DECAPODA:												
CAMBARIDAE												
Orconectes virilis										*		4
ISOPODA:												
ASELLIDAE:												
Caecidotea intermedius												
Caecidotea racovitzai										-		-
Lirceus lineatus										*	4	10
INSECTA:												
COLEOPTERA:												
ELMIDAE:												
Stenelmis	2						1					
DIPTERA:							-					•
CERATOPOGONIDAE	9		*				80			•		*
CHADBODIDAE												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	2	S	5	9	9	9	7	7	7	80	80	80
Replicate	-	2	6	1	2	3	-	2	6	-	2	3
Date	97 05 28	97.05.28	97.05.28	.28	.28	28	97.05.29	.29	97.05.29	97.05.29	97.05.29	97.05.29
Original % Subsampled	20	25	25	50	20	20	25	25	25	25	25	25
Chaoborus punctipennis	14	12	12									
CHIRONOMIDAE												
CHIRONOMINAE											-	
Chironomus	9		44									
Cladotanytarsus			16									
Cryptochironomus											4	12
Dicrotendipes	4	12			2	To also	96	20	96	104	144	148
Microtendipes												
Parachironomus												
Paracladopelma				2								
Paratanytarsus							4					
Paratendipes	10			12	2	14	28	4	28	4	32	112
Phaenopsectra flavipes			The state of the s									
Polypedilum	2	4		14		2	4	4	4	00	12	100
Pseudochironomus							1					4
Stempellina							-	4	4	18		
Tanytarsus	42	40	48	2		2	80	24	24	12	36	40
Tribelos jucundum	2		4					80		80	40	74
Zavreleilla												
ORTHOCLADIINAE:											0	a
Cricolopus				-			4		4		0	0
Epoicocladius				2					•	5		40
Psectrocladius		4	4		4		*	4	2	71	8	2
Thienemanniella		-			-							
TANYPODINAE:						9	90	24	20	40	00	33
Ablabesmyia				7		0	8	57	90	2 0	2	30
Clinotanypus pinguis					•	**	0	90	20	12	ar.	a
Procladius	16	12	77	2	0	*	0	07	36	71	3	3
EMPIDIDAE:									•			1
Hemerodromia									•			
EPHEMEROPTERA:												
BAETIDAE												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station		9	S	9	89	9	7	7	7	80	60	60
Replicate	-	7		-	2	3	1	2			0	
Date	97	97.05.28	97.05.28	97.05.28	97.05.28	97.0	97.05.29	97 05 29	97.0	07 06 20	6	02 00
Original % Subsampled	1 50	25	25	20	20	20	25	36	20.10	00.70	87.CO	B
Callibaetis						3	60	63	67	2	25	25
CAENIDAE:										*		
Caenis punctata	2			7		10	20	404	0			
EPHEMERELLIDAE:						2	07	3	200	#	44	200
Eurylophella								•				
EPHEMERIDAE:								0			4	12
Hexagenia limbata	2	80	24	24	20	24		90	-			
LEPTOPHLEBIIDAE						5		07	4	4	4	
Leptophlebia												
MEGALOPTERA:												
SIALIDAE												
Sialis												
ODONATA:												
COENAGRIONIDAE												
Enallagma sp.												
Enallagma civile												
Enallagma hageni												and the second
CORDULIDAE										•		
Tetragoneuria cynosura								1				
TRICHOPTERA:												
HYDROPTILIDAE:												
Orthotrichia												
LEPTOCERIDAE												
Ceraclea												
Mystacides sepulchralis					2							œ
Nectopsyche albida						2	*		4	-	,	
Oecetis inconspicua-group							7		4			•
Triaenodes										-	0	
POLYCENTROPODIDAE												
Polycentropus						2	4				4.0	40
MOLLUSCA:BIVALVIA:											71	10
DREISSENIDAE											_	

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	2	2	S	9	9	9	7	7	7	80	80	80
Replicate	-		6	1	2	3	-	2	3	-	2	3
Date	97.05.28	97.05.28	28	97.05.28	97.05.28	97.05.28	97.05.29	97.0	97.0	97.05.29	97.05.29	97.05.29 97.05.29
Original % Subsampled	20	25	25	20	20	20	25	25	25	25	25	25
Dreissena polymorpha	980	1724	120	36	122	82	180	88	208	284	132	344
SPHAERIIDAE						-						
Pisidium	42	48	12	2	2	4					4	12
Sphaerium simile												
Sphaerium strialinum			4									
UNIONIDAE		4										
Lampsilis radiata												
MOLLUSCA:GASTROPODA:												
ANCYLIDAE:												
Ferrissia								00				
HYDROBIIDAE		ę.										
Amnicola limosa	4	80	36	4	10	4	32		32	40	40	76
Cincinnatia cincinnatiensis	4	80										
Probythinia lacustris			4									
PHYSIDAE:												
Physella gyrina					2					80	4	20
PLANORBIDAE												
Gyraulus circumstriatus	9	80					12		36			
Нейгота ансеря	2	4										
Promenetus exacuous												
VALVATIDAE:												
Valvata tricarinata	64	108	32						12			
VIVIPARIDAE								The second secon				
Viviparus georgianus												
NEMATODA:												
PLATYHELMINTHES:												
Dugesia tigrina						2			4			4
Hydrolimax griseus												
Total Number of Taxa	21	17	15	14	12	18	23	17	24	27	28	30
Total Number of Specimens	006	2020	378	124	178	186	724	492	880	904	1108	2018

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	6	6	6	9	9	9	=	=	=	12	12	
Replicate	-	2		-	2	3	-	2	3	-	2	
Date	97.05.29	97.05.29	97	9 97.05.30	0 87.05.30	97.	97.05.30	97.05.30	97.05.30	97.	97.05.30	0 87.05.30
Original % Subsampled	mpled 25		20	25	25	25	25	25	25	25	25	
AXA LIST												
ANNELIDA:HIRUDINEA												
ERPOBDELLIDAE: (juveniles)												
Mooreobdella fervida												
Nephelopsis obscura							4					
GLOSSIPHONIIDAE												
Alboglossiphonia heteroclita										-		
Desserobdella phalera									*			
Glossiphonia complanata	4				-							
Helobdella elongata												
Helobdella fusca												
Helobdella triserialis												
ANNELIDA:OLIGOCHAETA							The state of the s					
ENCHYTRAEIDAE:	And the second s											
NAIDIDAE												
Nais communis											-	7
Ophidonais serpentina												
SPARGANOPHILIDAE												
Sparganophilus eiseni				80	80	8						- 1
TUBIFICIDAE:												
Immatures with hairs												_
mmatures without hairs		*					12		*			
Aulodrilus pigueti												
Aulodrilus pluriseta												- 1
lyodrilus templetoni						80						
Limnodrilus clarapedianus		4						4				
Limnodrilus hosfineisteri							•		*			- 1
Potamothrix bavaricus												
ANNELIDA:POLYCHAETA												
Manayunkia speciosa						and the second s						

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	a	6	6	10	10	10	11	-	=	12	12	12
Danicate		2	3	-	2	6	1	2	3	-	2	3
September 1	07 06 20	07	07 (97 05 30	97.05.30	97.05.30	97.05.30	97.05.30	97.05.30	97.05.30	97.05.30	37
Original % Subsampled	moled 25		5		25	25		25	25	25	25	25
Albia												
Arrenurus									16			
Hygrobates	16	80			4			4				
Konikea	4	4			80			20				
Lebertia	4	4							•			
Limnesia	4							4				
Unionicola						and the state of the state of						
CRUSTACEA						The second second second						
AMPHIPODA:						And the second second second						
GAMMARIDAE:												
Gammarus fasciatus												
Gammarus pseudolimnaeus	4					-						
HYALELLIDAE							977	700	900	000	278	132
Hyalella azteca	480	276	99	184	282	316	140	677	200	202	213	30
CLADOCERA:												
CHYDORIDAE												
Eurycercus												
DECAPODA:												
CAMBARIDAE:										4		
Orconectes virilis												
ISOPODA:					40-1							
ASELLIDAE:												
Caecidotea intermedius												
Caecidotea racovitzai				And the second second second								
Lirceus lineatus												
INSECTA:				-								
COLEOPTERA:												
ELMIDAE:												
Stenelmis			-									
DIPTERA:			-	•			**	•	-	•	12	4
CERATOPOGONIDAE	*	32	2	*	2	0	7	-				
CHAORORIDAE			_									

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	6	6		6	9	10	10	11	11	11	12	12	12
Replicate	-	2		3	-	2	9	-	2	3	-	2	6
Date	97.05.29	97.05.29	29 97	05.29	97.05.30	97.05.30	97.05.30	97.05.30	97.05.30	97.05.30	97.05.30	97.05.30	97.05.30
Original % Subsampled	mpled 25			20	25	25	25	25		25	25	25	25
Chaoborus punctipennis				2									
CHIRONOMIDAE													
CHIRONOMINAE													
Chironomus													
Cladotanytarsus		4			4		4				4	80	4
Cryptochironomus		4				80		4		80			
Dicrotendipes	132	80		62	36	116	36	148	136	100	96	92	52
Microtendipes													
Parachironomus													
Paracladopelma													
Paratanytarsus	16				28	20	*	4			8	8	
Paratendipes	90	84		30				20	8	80	80	80	32
Phaenopsectra flavipes													
Polypedilum	12						+	38	20	24		8	4
Pseudochironomus	16	8		4	24	12	24	18		4	80		8
Stempellina						*		•		4			
Tanytarsus	*			4	4	80	12	80	4	4	26	28	4
Tribelos jucundum	12	12			18	18		32	12	20	4	94	88
Zavreleilla			-							80			
ORTHOCLADIINAE:													
Cricotopus			+	2		4					00		
Epoicocladius			-			4							
Psectrocladius	12	80		4		80	4		12		88	32	32
Thienemanniella								*					
TANYPODINAE													
Ablabesmyia	24	36		9	4	20	4	80	28	9	72	80	20
Clinotanypus pinguis	4	*				*	4	80	4		20	4	4
Procladius	40	00		2	80	80	*	36	2	20	20	28	18
EMPIDIDAE:			-										
Hemerodromia													
EPHEMEROPTERA:			+										
DACTIOAE.													

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	6	6	6	9	9	10	=	=	=	12	12	12
Replicate	-	2	6	-	2	3	-	2	6	-	2	9
Date	97.05.29	100	97.05.29	97.05.30	97.05.30	97.	97.05.30	97.	97.05.30	97.05.30	30	97.05.30
Original % Subsampled	mpled 25	25	20	25	25	25	25	25	25	25	25	25
Callibaetis	4					4		80	00	•		
CAENIDAE										-	-	
Caenis punctata	4	112	18		20	*	108	76	164	12	9	20
EPHEMERELLIDAE												
Eurylophella							*					
EPHEMERIDAE:												
Hexagenia limbata	4			4	4	80	24	00	38	20	80	18
LEPTOPHLEBIIDAE												
Leptophlebia						And the state of the same of t						
MEGALOPTERA:												
SIALIDAE:												
Sialis												
ODONATA:												
COENAGRIONIDAE												
Enallagma sp.	*											
Enallagma civile												
Enallagma hageni												
CORDULIIDAE:												
Tetragoneuria cynosura	4						*	4				
TRICHOPTERA:												
HYDROPTILIDAE:												
Orthotrichia												
LEPTOCERIDAE:												
Ceraclea												
Mystacides sepulchralis					+ 3	*						
Nectopsyche albida	4				71							
Oecetis inconspicua-group	4		2	16	20	80						
Triaenodes												
POLYCENTROPODIDAE							-			50	**	
Polycentropus	4						0		0	3	71	
MOLLUSCA:BIVALVIA:												
DDEISCENIDAE												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	6	o	0	10	10	10	11	11	11	12	12	12
Replicate	-	2	က	-	2		-	7	က	-	2	3
Date	97.05.29	97.05.29	97.05.29	97.05.30	97.05.30	97.05.30 97.05.30	97.05.30	97.05.30 97.05.30 97.05.30 97.05.30 97.05.30	97.05.30	97.05.30	97.05.30	97.05.30
Original % Subsampled	25	npled 25 25 50	20	25	25	25	25	25	25	25	25	25
Dreissena polymorpha	900	392	130	360	1120		218	136	224	436	276	96
Pisidium	4			80	80	4				4		
Sphaerium simile		4										
Sphaerium striatinum		4										
UNIONIDAE												
ampsilis radiata												
MOLLUSCA: GASTROPODA:												
ANCYLIDAE:												
Ferrissia												
HYDROBIIDAE												
Amnicola limosa	80	88	26	80	16	+	20	48	20	44	28	20
Cincinnatia cincinnatiensis												
Probythinia lacustris												
PHYSIDAE:												
Physella gyrina	4	80	2		*					80	4	
PLANORBIDAE:												
Gyraulus circumstriatus	4				4	80						
Helisoma anceps	4											
Promenetus exacuous												
VALVATIDAE:												
Valvata tricarinata	4	40	80						4		4	
VIVIPARIDAE:												
Viviparus georgianus												
NEMATODA:												
PLATYHELMINTHES:												
Dugesia tigrina					4					4		
Hydrolimax griseus												
Total Number of Taxa	34	25	17	16	29	23	25	21	25	24	20	18
Total Number of Specimens	1552	1200	370	718	477A	1708	RRA	77.9	OAR	1222	1000	403

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	13	13	13	14	14	14	15	15	15	16	16	16
Replicate	-	2	6	-	2	9	-	2	3	-	2	6
Date	Date 97.05.30	97.0	97	97.06.02	97.0	97.08.02	97.06.02	97.08.02	97.06.02	97.06.02	.02	97.06.02
Original % Subsampled	25			25				20	50	25	25	25
TAXA LIST												
ANNELIDA:HIRUDINEA												
ERPOBDELLIDAE: (juveniles)												
Mooreobdella fervida												
Nephelopsis obscura										4		*
GLOSSIPHONIIDAE												
Alboglossiphonia heteroclita												
Desserobdella phalera												
Glossiphonia complanata								-				
Helohdella elongata												
Helobdella fusca										*		
Helobdella triserialis												
ANNELIDA: OLIGOCHAETA												
ENCHYTRAEIDAE:												
NAIDIDAE:												
Nais communis												
Ophidonais serpentina												
SPARGANOPHILIDAE												
Sparganophilus eiseni	4				4				2			
TUBIFICIDAE:												
Immatures with hairs				84	9	176		2				
Immatures without hairs				4		12	00	2				
Aulodrilus pigueti												
Aulodrilus pluriseta							12	4	14			
Ilyodrilus templetoni												
Limnodrilus clarapedianus												
Limnodrilus hossmeisteri				-				7				
Potamothrix bavaricus				12	12	36						
ANNELIDA:POLYCHAETA												
Manayunkia speciosa							2	2				
ACARINA:												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	13	13	13	14	14	7	15	15	15	16	18	16
Replicate	-			-	2	3	-	2		-	2	6
Date	97.05.30	97.05.30	97.05.30	97.08.02	02	97.06.02	97.08.02	97.06.02	97.06.02	97.06.02	97.06.02	97.08.02
Original % Subsampled	mpled 25			25	25	25	20	20	20		25	25
Albia												
Arrenurus				4	•					12		
Hygrobates			4	4						*		
Konikea												
Lebertia		•								80		4
Limnesia												
Unionicola												-
CRUSTACEA												
AMPHIPODA:												
GAMMARIDAE												
Gammarus fasciatus												
Gammarus pseudolimnaeus		*				*			2			12
HYALELLIDAE:												
Hyalella azteca	244	120	188	204	141	124				232	178	284
CLADOCERA:												
CHYDORIDAE:												
Eurycercus												
DECAPODA:												
CAMBARIDAE:												
Orconectes virilis												
ISOPODA:												
ASELLIDAE												
Caecidotea intermedius												
Caecidotea racovitzai												
Lirceus lineatus												
INSECTA:												
COLEOPTERA:												
ELMIDAE												
Stenelmis												
DIPTERA:												
CERATOPOGONIDAE	28	•		16	12	12				12	4	8
CHACOCOLAG						-		-				

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	13	13	13	*	14	14	15	15	15	16	16	16
Decilood		0		-	2	6	-	2	3	-	2	6
Copiedic	07 05 30	07	20	97	97	97	97.06.02	02	97.06.02	97.06.02	97.	97.08.02
Orioinal % Subsamoled	25	25	25	25		1		20	20	25		25
Chaoborus punctipennis							12	30	42			
CHIRONOMIDAE												
CHIRONOMINAE												
Chironomus	4			92	40	108	2	2				
Cladotanylarsus	20	80	80				=	12	2	90	32	38
Crustochironomus	7	7	*					2	4			
Dicrotendipes	16	12	12	188	164	192				184	80	164
Microtendipes		12	80									
Parachironomus			*									
Paracladopelma		7						2				-
Paralanylarsus	12			24		&						•
Paratendipes	80	80	80	28	80	184	4		2	244	18	2
Phaenopsectra flavipes							24 4 4			80		
Polypedilum	•	*			12	12			4	35	2	2
Pseudochironomus											•	-
Stempellina							0,1		**	200		00
Tanylarsus	32	12	12	80	=	48	2	7	•	102	5	70
Tribelos jucundum	48	32	36	4	25	9		2				0
Zavreleilla							The same of the sa					
ORTHOCLADIINAE										70	0	a
Cricotopus										57	0	0
Epoicocladius	•											
Psectrocladius	18	*								•		
Thienemanniella												
TANYPODINAE												
Ablabesmyia	24	12	2	38	20	9	7	7		71	•	40
Clinotanypus pinguis	12	7	4		·				•	0	2	2 4
Procladius	12	4			00	*	7	7	7	8	71	2
EMPIDIDAE												
Hemerodromia						The state of the s						
EPHEMEROPTERA:												
BAFTIDAE												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	13	13	13	14	14	14	15	15	15	16	18	18
Replicate		2	9	-	2	3	-	2	3	-	2	3
Date	97.05.30	97.05.30	97.05.30	97.08.02	97.06.02	97.06.02	97.06.02	97.08.02	97.08.02	97.08.02	97.06.02	97.0
Original % Subsampled	25	25		25	25	25	20	20	20	25	25	
Callibaetis										4		
CAENIDAE:												
Caenis punctata	24	80	28	24	4	20				120	52	100
EPHEMERELLIDAE:												
Eurylophella												
EPHEMERIDAE:												
Hexagenia limbata	32	56	28				22	9	10			
LEPTOPHLEBIIDAE												
Leptophlebia				4								
MEGALOPTERA:												
SIALIDAE:												
Sialis						4						
ODONATA:												
COENAGRIONIDAE:												
Enallagma sp.										4		
Enallagma civile												
Enallagma hageni				4	4						80	12
CORDULIDAE												
Tetragoneuria cynosura				4		4					4	
TRICHOPTERA:												
HYDROPTILIDAE:												
Orthotrichia												
LEPTOCERIDAE:												
Ceraclea											4	
Mystacides sepulchralis												
Nectopsyche albida			4	4						12	4	4
Oecetis inconspicua-group		•	4	16	4	12						
Triaenodes												
POLYCENTROPODIDAE												
Polycentropus	+		4	80	4	80						80
MOLLUSCA:BIVALVIA:												
DREISSENIDAE												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	13	13	13	14	14	14	15	15	15	18	18	18
Denticate	-	2	67	-	2	6	-	2	က	-	7	က
ata C	97 05 30	97 05 30	97.05.30	97.06.02	97.06.02 97.06.02	37.06.02	97.06.02	97.06.02	97.08.02	97.06.02	97	97.06.02
Original % Subsampled	25	25	25	25	25	25	20	20	20	25	25	25
Desistena polymorpha	532	272	532 272 316	816	1320	1868	26	328	132	140	128	148
Pisidium	4						22	30	4	*		
Sphaerium simile												
Sphaerium striatinum												
UNIONIDAE					-			-				
Jampsilis radiata	4				and the second second			7	7			
MOLLUSCA:GASTROPODA:												
ANCYLIDAE												
Ferrissia					-							
HYDROBIIDAE											90	90
Amnicola limosa	52	20	12	24	28	25	76	28	32	25	97	97
Cincinnatia cincinnatiensis									00			
Probythinia lacustris						-		*	3			
PHYSIDAE:		The second secon										
Physella gyrina				4			The same of the same					
PLANORBIDAE												
Gyraulus circumstriatus									•			
Helisoma anceps								7	7			
Promenetus exacuous												
VALVATIDAE:									4			
Valvata tricarinata		*				4	2	2	2			
VIVIPARIDAE												
Viviparus georgianus								•	9			
NEMATODA:	4							0	2			
PLATYHELMINTHES:								•				
Dugesia tigrina	4	*	4	•	*	10		7				
Hydrolimax griseus						18						
Tatal Mumber of Tour	36	24	20	28	21	24	15	24	19	25	19	22
lotal Number of Laxa	4460	ASO	708	1848	2004	29R4	224	504	310	1460	656	1040

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station		17	17	18	18	18	19	19	19	20	20	20
Replicate		2	3	-	2	(?)	-	2	3	-	2	2
Date 97.	97.0	97.08.02	97.08.02	97.05.29	97.05.29	97.05.29	97.05.29	29	97.05.29	97.05.29	97 05 29	97.0
Original % Subsampled	100	20	100	25	25	25	25		25	25	26	
TAXALIST											3	3
ANNEI IDA-HIRLIDINEA												
ERPOBDELLIDAE: (juveniles)							-					
Mooreobdella fervida							-		•			
Nephelopsis obscura									•			
GLOSSIPHONIIDAE												
Alboglossiphonia heteroclita							4		,			
Desserobdella phalera										-		
Glossiphonia complanata												
Helobdella elongata												
Helobdella fusca												
Helobdella triserialis												
ANNELIDA: OLIGOCHAETA												
ENCHYTRAEIDAE												
NAIDIDAE:												
Nais communis				24	80				~			
Ophidonais serpentina						7			,			
SPARGANOPHILIDAE												
Sparganophilus eiseni				4	*	4		4			7	
TUBIFICIDAE												
Immatures with hairs						*					oc.	
Immatures without hairs				24	80		80				,	
Aulodrilus pigueti												
Aulodrilus pluriseta												
llyodrilus templetoni												
Limnodrilus clarapedianus							4		4			
Limnodrilus hosmeisteri				*	80	60	80		*		4	
Potamothrix bavaricus						80						
ANNELIDA:POLYCHAETA												
Manayunkia speciosa												
ACADIMA.						+						

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	17	17	17	18	60	18	19	19	19	20	20	20
deciled		2		-	2		-	2		-	2	-
Nephicale	07	07 (07 AR 02	07 05 20	07 05 20	07 05 20	97 05 20 6	20	07	07	07	97 05 29
Orininal % Subsamoled	n	0	100	25	25	25	25	25	5	25		25
Albia				4								
Arrenurus	-	2	2									
Hygrobates									4	4	8	12
Konikea												
Lebertia			-								12	
Limnesia												
Unionicola												
CRUSTACEA												
AMPHIPODA:												
GAMMARIDAE:												
Gammarus fasciatus							88	52	156			
Gammarus pseudolimnaeus	-	9		12	4	4				80	4	12
HYALELLÍDAE												
Hyalella azteca					12		92	108	244	208	288	364
CLADOCERA:												
CHYDORIDAE:												
Eurycercus												
DECAPC. A:												
CAMBARIDAE:												
Orconectes virilis												
ISOPODA:												
ASELLIDAE:												
Caecidotea intermedius												
Caecidolea racovitzai				80	80	12	18	4	16			
Lirceus lineatus							38	12	32		80	*
INSECTA:												
COLEOPTERA:												
ELMIDAE:												
Stenelmis												
DIPTERA:												
CERATOPOGONIDAE		2	4									*
CHAOBORIDAE												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	17	17	17	18	18	18	19	19	19	20	20	20
Replicate	-	2	3	1	2	3	-	2	3	-	2	9
Date	Date 97.06.02	97.08.02	97.08.02	97.	97.05.29	29	97.05.29	.29	97.05.29	97.05.29	97.05.29	97.05.29
Original % Subsampled	100	20	100	25	25	25	25	25	25		25	
Chaoborus punctipennis		2	7									
CHIRONOMIDAE												
CHIRONOMINAE												
Chironomus				40	80					4	48	24
Cladotanytarsus				16		4				4		4
Cryptochironomus							4					
Dicrotendipes			1	16	16	80		4	16	28	88	48
Microtendipes					16	12						
Parachironomus												
Paraciadopeima			3									
Paratanytarsus						80			4			24
Paratendipes	2	2	10	276	224	348	80	12	4	80	32	98
Phaenopsectra flavipes										+		
Polypedilum					4						4	4
Pseudochironomus				72	18	40				80		
Stempellina		2	1									
Tanylarsus	2	2	3	80						4	20	24
Tribelos jucundum												
Zavreleilla				The state of the s								4
ORTHOCLADIINAE:												
Cricotopus									4	20	12	16
Epoicocladius			-									
Psectrocladius			-						4	80		4
Thienemanniella											12	
TANYPODINAE:												
Ablabesmyia	4	80	2		4					4	4	12
Clinotanypus pinguis											4	
Procladius	80	10	32		4						24	4
EMPIDIDAE:												
Hemerodromia								4				
EPHEMEROPTERA:												
RAFTINAF												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	17	17	17	18	18	18	19	19	18	20	20	20
Renlicate		2	6	-	2	9	-	2	3	+	2	3
Oate	97 08 02	97 (97.06.02	97.05.29	97.05.29	97.05.29	97.05.29	97.05.29	97.05.29	97.05.29	97.05.29	97.05.29
Original % Subsampled			100	25	25	25			25	25	25	25
Callibaetis											4	
CAENIDAE:												
Caenis punctata				24	36	32				00	77	71
EPHEMERELLIDAE:												
Eurylophella										4		
EPHEMERIDAE:												
Hexagenia limbata	11	18	34									
LEPTOPHLEBIIDAE												
Leptophlebia												
MEGALOPTERA:						and the second						-
SIALIDAE												
Sialis	-	2	-									
ODONATA:												
COENAGRIONIDAE												
Enallagma sp.												
Enallagma civile												
Enallagma hageni								*	•			
CORDULIIDAE:												
Tetragoneuria cynosura												
TRICHOPTERA:							-					
HYDROPTILIDAE												
Orthotrichia												
LEPTOCERIDAE:									•		1	
Ceraclea				-					*		•	•
Mystacides sepulchralis				00					-	-	*	-
Nectopsyche albida									•	•		
Oecetis inconspicua-group												
Triaenodes												
POLYCENTROPODIDAE										•		-
Polycentropus						-						
MOLLUSCA:BIVALVIA:												
DDEISCENIDAE												

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	17	17	17	18	18	18	19	19	10	20	000	00
Replicate		2		+	6			2	0	23	22	22
Date 07	07	OR 02 07 08 02	0.7	07 06 70	2 00 00	6		7	3	-		3
Original & C. transfer	0	20.00.00	0	87.00.78	87.CD. /8 87.CD. /8	B	B	6	97	97.05.29	97.05.29	97.05.29
Original % subsampled	3	2	8	52	25	25	25	25	25	25		25
SPHAFBIIDAE	2	136	18	*	80		412	236	372	184	260	320
Pisidium			-			4.5						
Sphaerium simile	and the second s		,			71						
Sphaerium striatinum												
UNIONIDAE												
Lampsilis radiata												
MOLLUSCA: GASTROPODA:					The second secon							
ANCYLIDAE:												
Ferrissia												
HYDROBIIDAE												
Amnicola limosa		2		24	80	24	12	7	4	œ	28	28
Cincinnatia cincinnaliensis					-						02	07
Probythinia lacustris												
PHYSIDAE:												
Physella gyrina							00	7	44			-
PLANORBIDAE												
Gyraulus circumstriatus						4		7	24			-
Helisoma anceps												
Promenetus exacuous									00			13
VALVATIDAE:					and the same of th			-				7
Valvata tricarinata			-		4	18	18	28	44	Y		
VIVIPARIDAE:												
liviparus georgianus				4		4	56	16	88			
NEMATODA:	-		10	*								-
PLATYHELMINTHES:												-
Dugesia tigrina								4			4	
Hydrolimax griseus	-		-							4	4	4
Total Number of Taxa	10	13	19	20	19	19	18	16	25	21	38	28
Total Number of Specimens	37	194	135	580	400	558	758	200	1104	523	700	200

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	21	21	21
Replicate		2	6
Date	97.06.02	97.	97.06.02
Original % Subsampled			
TAXA LIST			
ANNELIDA:HIRUDINEA			
ERPOBDELLIDAE: (juveniles)			
Mooreobdella fervida			
Nephelopsis obscura			
GLOSSIPHONIIDAE			
Alboglossiphonia heteroclita			
Desserobdella phalera			
Glossiphonia complanata			
Helobdella elongata			
Helobdella fusca			
Helobdella triserialis			
ANNELIDA: OLIGOCHAETA			
ENCHYTRAEIDAE:			
NAIDIDAE:			
Nais communis			
Ophidonais serpentina			
SPARGANOPHILIDAE			
Sparganophilus eiseni		4	2
TUBIFICIDAE:			
Immatures with hairs		4	
Immatures without hairs		4	
Aulodrilus pigueti			
Aulodrilus pluriseta			
llyodrilus templetoni			
Limnodrilus clarapedianus			
Limnodrilus hosmeisteri			
Potamothrix bavaricus		16	
ANNELIDA:POLYCHAETA			
Manayunkia speciosa			
ACARINA:			

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	21	21	21
Replicate	-	2	6
Date	97.06.02	9	0
Original % Subsan	25		50
Albia			
Arrenurus			
Hygrobates		7	
Konikea			
Lebertia			
Limnesia			
Unionicola			
CRUSTACEA			
AMPHIPODA:			
GAMMARIDAE			
Gammarus fasciatus			
Gammarus pseudolimnaeus			
HYALELLIDAE:			
Hyalella azteca	108	64	28
CLADOCERA:			
CHYDORIDAE			
Eurycercus			
DECAPODA:			
CAMBARIDAE:			
Orconectes virilis	4		
ISOPODA:			
ASELLIDAE:			
Caecidotea intermedius			
Caecidotea racovitzai			
Lirceus lineatus			
NSECTA:			
COLEOPTERA:			
ELMIDAE:			
Stenelmis			
DIPTERA:			
CERATOPOGONIDAE	4	80	2

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	21	21	21
Replicate	-	2	6
Date	97.08.02	97.0	97.0
Original % Subsampled	25	25	
Chaoborus punctipennis			The second of th
CHIRONOMIDAE			
CHIRONOMINAE			
Chironomus	28	4	2
Cladotanytarsus	4	*	
Cryptochironomus			
Dicrotendipes	84	28	18
Microtendipes			
Parachironomus			
Paracladopelma			2
Paratanylarsus	4	4	2
Paratendipes	24	12	16
Phaenopsectra flavipes			
Polypedilum		4	
Pseudochironomus		4	
Stempellina		4	4
Tanytarsus	36	28	4
Tribelos jucundum			
Zavreleilla			
ORTHOCLADIINAE:			
ricotopus	4		
poicocladius			2
sectrocladius	•	80	2
Thienemanniella			
TANYPODINAE			
4 blabesmyia	80	16	12
linotanypus pinguis	4	4	
Procladius	24	20	28
EMPIDIDAE:			
Нетегодготіа			
EPHEMEROPTERA:			
PAETIDAE			-

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	21	21	21
Replicate	-	2	6
-	97.06.02	97	97.0
Original % Subsampled	25	25	
Callibaetis			
CAENIDAE			
Caenis punctata	88	52	34
EPHEMERELLIDAE:			
Eurylophella			4
EPHEMERIDAE:			
Hexagenia limbata	4		24
LEPTOPHLEBIIDAE:			
Leptophlebia			
MEGALOPTERA:			
SIALIDAE			
Sialis			2
ODONATA:			
COENAGRIONIDAE			
Enallagma sp.			
Enallagma civile			
Enallagma hageni			
CORDULIIDAE:			
Tetragoneuria cynosura			
TRICHOPTERA:			
HYDROPTILIDAE:			
Orthotrichia			
LEPTOCERIDAE:			
Ceraclea		4	
Mystacides sepulchralis			
Nectopsyche albida	4	4	
Oecetis inconspicua-group	80	+	
Triaenodes			
POLYCENTROPODIDAE			
Polycentropus	4		
MOLLUSCA:BIVALVIA:			
DREISENIDAE			

Table L-1. Total numbers (#/0.025m²) of benthic invertebrates from 21 stations in Lake Couchiching

Station	21	21	21
Replicate	-	2	3
Date	97.06.02	97.06.02	97.06.02
Original % Subsampled	25	25	20
Dreissena polymorpha	344	284	118
SPHAERIIDAE			
Pisidium			2
Sphaerium simile			
Sphaerium striatinum		4	
UNIONIDAE:			
Lampsilis radiata			
MOLLUSCA: GASTROPODA:			
ANCYLIDAE:			
Ferrissia			
HYDROBIIDAE			
Amnicola limosa	40	28	4
Cincinnatia cincinnatiensis			
Probythinia lacustris			
PHYSIDAE:			
Physella gyrina	4		
PLANORBIDAE:			
Gyraulus circumstriatus			
Helisoma anceps			
Promenetus exacuous	80		
VALVATIDAE			
Valvata tricarinata			
VIVIPARIDAE:			
Viviparus georgianus			
NEMATODA:			
PLATYHELMINTHES:			
Dugesia tigrina			
Hydrolimax griseus			
Total Number of Taxa	23	27	22
Total Number of Specimens	804	624	312