Московский Государственный Университет им. М.В. Ломоносова
Факультет Вычислительной Математики и Кибернетики
Кафедра Суперкомпьютеров и Квантовой Информатики

Параллельное программирование для высокопроизводительных вычислительных систем

Параллельный алгоритм DNS матричного умножения
Разработка параллельной MPI программы и исследование ее
эффективности

Работу выполнил

М.А.Осипов

Постановка задачи:

Разработать параллельную программу с использованием технологии MPI, реализующую алгоритм умножения плотных матриц на C=AB. Тип данных – double. Провести исследование эффективности разработанной программы на системе Blue Gene/P.

Параметры, передаваемые в командной строке:

- - имя файла матрица A размером n x n
- - имя файла матрица В размером п х п
- - имя файла результат, матрица С
- число процессов по одному из измерений

Формат задания матриц – как в первом задании.

Требуется:

- 1. Разработать параллельную программу с использованием технологии MPI. Предусмотреть равномерное распределение элементов матриц блоками. Для организации работы с файлами использовать функции MPI для работы с параллельным вводом-выводом.
- 2. Исследовать эффективность разработанной программы в зависимости от размеров матрицы и количества используемых процессов. Построить графики времени работы, ускорения и эффективности разработанной программы. Время на ввод/вывод данных не включать.
- 3. Исследовать эффективность использования параллельной работы с файлами. Для каждого из вариантов построить графики накладных расходов, связанных с вводом/выводом.
- 4. Исследовать влияние мэппинга параллельной программы на время работы программы.
- 5. Построить таблицы: времени, ускорения, эффективности.

Максимальное время

N	M	1	8	64	64(XYZT)	512	512(XYZT)
512	512	2.41667	0.305162	0.0384008	0.0384112	0.00503353	0.00504377
1024	1024	19.2566	2.41628	0.303394	0.30316	0.03867	0.0386922
2048	2048	153.99	19.2594	2.41706	2.4165	0.305373	0.30539
4096	4096	1235.66	153.964	19.2622	19.2568	2.41734	2.4186

Ускорение

N	M	1	8	64	64(XYZT)	512	512(XYZT)
512	512	1	7.91931	62.9328	62.9158	480.23	479.255
1024	1024	1	7.96954	63.4705	63.5196	497.882	497.597
2048	2048	1	7.9957	63.7105	63.7253	504.155	504.126
4096	4096	1	8.02562	64.1495	64.1674	511.165	510.898

Эффективность

N	M	1	8	64	64(XYZT)	512	512(XYZT)
512	512	1	0.989914	0.983326	0.98306	0.937949	0.936044
1024	1024	1	0.996192	0.991727	0.992494	0.972426	0.971869
2048	2048	1	0.999462	0.995477	0.995707	0.984677	0.984622
4096	4096	1	1.0032	1.00234	1.00262	0.998369	0.99784

Суммарное время выводы результата в файл

N	M	8	64	512
512	512	166.421	1621.41	11272.31

