

Our File No.: SPLX.P0053

Examiner: <not assigned yet>

CERTIFICATE OF MAILING BY "FIRST CLASS MAIL"

I hereby certify that this correspondence is being the position with the United States Postal Service as first class mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231, on July 19, 2002.

Mani Adeli

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application for:

Steve Teig

Serial No.: 10/047,982

Filing Date: 1/14/02

For: METHOD AND APPARATUS FOR

PROBABILISTIC ROUTING

PRELIMINARY AMENDMENT

Assistant Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

Please amend the application as follows:

IN THE CLAIMS

Please amend claims 27-32 and 36-41as follows:

27. A method of routing a plurality of nets in a region of a design layout, each net having a set of pins in the region, the method comprising:

MA

- a) partitioning the region into several sub-regions, wherein a plurality of edges exist between said sub-regions,
- b) for each combination of a particular edge and a particular net, identifying an edge-intersect cost based on the number of potential routes for the particular net that intersect the particular edge, wherein a potential route for a particular net traverses the set of sub-regions that contain the particular net's set of pins; and
- c) selecting routes for nets based on the computed edge-intersect costs.
- 28. The method of claim 27, wherein the cost for each combination of a particular edge and a particular net equals the number of potential routes of the particular net that intersect the particular edge.
- 29. The method of claim 27, wherein identifying the cost for each combination of a particular edge and a particular net comprises:

identifying an edge-intersect probability that equals the number of potential routes of the particular net that intersect the particular edge divided by the number of potential routes of the particular net.

30. The method of claim 29, wherein the cost for each combination of a particular edge and a particular net equals the edge-intersect probability for the combination.

MA -- 2 -- Docket No.:SPLX.P0053

31. The method of claim 29, wherein identifying the cost for each combination of a particular edge and a particular net further comprises:

deriving the cost for the combination from the edge-intersect probability for the combination.

- 32. The method of claim 27, wherein selecting a route for each net comprises:
 - a) using the edge-intersect costs to predict congestion of the edges;
 - b) based on the predicted congestion, selecting routes for nets.
- 36. A method of routing a plurality of nets in a region of a design layout, each net having a set of pins in the region, the method comprising:
- a) partitioning the region into several sub-regions, wherein a plurality of paths exist between said sub-regions,
- b) for each combination of a particular path and a particular net, identifying a path-use cost based on the number of potential routes of the particular net that use the particular path, wherein a potential route for a particular net traverses the set of sub-regions that contain the particular net's set of pins; and
 - c) selecting routes for the nets based on the computed path-use costs.
- 37. The method of claim 36, wherein the cost for each combination of a particular path and a particular net equals the number of potential routes of the particular

MA -- 3 -- Docket No.:SPLX.P0053

net that use the particular path.

38. The method of claim 36, wherein identifying the cost for each combination of a particular path and a particular net comprises:

identifying a path-use probability that equals the number of potential routes of the particular net that use the particular path divided by the number of potential routes of the particular net.

- 39. The method of claim 38, wherein the cost for each combination equals the path-use probability for the combination.
- 40. The method of claim 38, wherein identifying the cost for each combination of a particular path and a particular net further comprises:

deriving the cost for the particular path from the path-use probability for the particular path.

- 41. The method of claim 36, wherein selecting a route for each net comprises:
 - a) using the path-use costs to predict congestion of the paths;
 - b) based on the predicted congestion, selecting routes for nets.

REMARKS

This Preliminary Amendment amends claims 27-32 and 36-41. Accordingly, after this amendment, claims 27-44 remain pending.

Respectfully submitted,

STATTLER, JOHANSEN & ADELI LLP

Dated: July 19, 2002

Mani Adeli Reg. No. 39,585

Stattler, Johansen & Adeli LLP P.O. Box 51860

Palo Alto, CA 94303-0728 Phone: (650) 752-0990 x102

Fax: (650) 752-0995

MA

MARKED-UP VERSION OF AMENDED CLAIMS

- 27. A method of routing a plurality of nets in a region of a design layout, each net having a set of pins in the region, the method comprising:
- a) partitioning the region into several sub-regions, wherein a plurality of edges exist between said sub-regions,
- b) for each <u>combination of a particular edge and a particular net</u>, identifying an edge-intersect cost based on the number of potential routes for [the nets] the <u>particular net</u> that intersect the particular edge, wherein a potential route for a particular net traverses the set of sub-regions that contain the particular net's set of pins; and
- c) selecting routes for nets based on the computed edge-intersect costs.
- 28. The method of claim 27, wherein the cost for each <u>combination of a</u> particular edge <u>and a particular net</u> equals the number of potential routes <u>of the particular</u> net that intersect the particular edge.
- 29. The method of claim 27, wherein identifying the cost for each <u>combination</u> of a particular edge <u>and a particular net comprises</u>:

identifying an edge-intersect probability [for each particular edge, wherein

«Initials» -- 6 -- Docket No.:«Docket»

the edge-intersect probability for each particular edge] that equals the number of potential routes of the particular net that intersect the particular edge divided by the number of potential routes of the particular net.

- 30. The method of claim 29, wherein the cost for each <u>combination of a</u>
 particular edge <u>and a particular net</u> equals the edge-intersect probability for the [particular edge] <u>combination</u>.
- 31. The method of claim 29, wherein identifying the cost for each <u>combination</u> of a particular edge <u>and a particular net</u> further comprises:

deriving the cost for [each particular edge] <u>the combination</u> from the edgeintersect probability for the [particular edge] <u>combination</u>.

- 32. The method of claim 27, wherein selecting a route for each net comprises:
 - a) using the edge-intersect costs to predict congestion of the edges;
 - b) based on the predicted congestion, selecting routes for nets.
- 36. A method of routing a plurality of nets in a region of a design layout, each net having a set of pins in the region, the method comprising:
- a) partitioning the region into several sub-regions, wherein a plurality of paths exist between said sub-regions,
 - b) for each combination of a particular path and a particular net,

«Initials» -- 7 -- Docket No.:«Docket»

identifying a path-use cost based on the number of potential routes [for the nets] of the particular net that use the particular path, wherein a potential route for a particular net traverses the set of sub-regions that contain the particular net's set of pins; and

- c) selecting routes for the nets based on the computed path-use costs.
- 37. The method of claim 36, wherein the cost for each <u>combination of a</u> particular path <u>and a particular net equals the number of potential routes of the particular net that use the particular path.</u>
- 38. The method of claim 36, wherein identifying the cost for each <u>combination</u> of a particular path <u>and a particular net comprises:</u>

identifying a path-use probability [for each particular path, wherein the path-use probability for each particular path] that equals the number of potential routes of the particular net that use the particular path divided by the number of potential routes of the particular net.

- 39. The method of claim 38, wherein the cost for each <u>combination</u> [particular path] equals the path-use probability for the [particular path] <u>combination</u>.
- 40. The method of claim 38, wherein identifying the cost for each <u>combination</u> of a particular path <u>and a particular net</u> further comprises:

deriving the cost for [each] the particular path from the path-use probability for the particular path.

«Initials» -- 8 -- Docket No.:«Docket»

- 41. The method of claim 36, wherein selecting a route for each net comprises:
 - a) using the path-use costs to predict congestion of the paths;
 - b) based on the predicted congestion, selecting routes for nets.

«Initials» -- 9 -- Docket No.:«Docket»