# Comparison of WRTDS and GAMs for evaluating long-term trends in chlorophyll

Marcus W. Beck<sup>1</sup> Rebecca Murphy<sup>2</sup>

<sup>1</sup>ORISE, USEPA, Gulf Ecology Division, beck.marcus@epa.gov

<sup>2</sup>UMCES at Chesapeake Bay Program, rmurphy@chesapeakebay.net

October 16, 2015

#### Since the last call...

- Application of GAMs and WRTDS to 30 year time series of monthly chlorophyll at LE1.2 and TF1.6
- Development of comparable methods for model fitting
- Development of simulated datasets to evaluate flow-normalization
- Comparison of results and conclusions

## Model applications

Both models used Vertically-integrated chlorophyll, monthly timestep

LE1.2: lnchla  $\sim$  time + salinity

TF1.6:  $lnchla \sim time + flow$ 

Fits evaluated for whole time series and annual/seasonal/flow aggregations:

- predicted to observed, GAM predicted to WRTDS predicted
- Trends in flow-normalized results (average and % change overall, by time period)

## Model applications

For comparing each model's *predictions to observed*, at both sites:

$$RMSE_{fit} = \sqrt{\frac{\sum\limits_{i=1}^{n}\left(Chl_{i}-\widehat{Chl}_{i}\right)^{2}}{n}}$$

For comparing *predictions between models*, at both sites:

$$RMSE_{btw} = \sqrt{\frac{\sum\limits_{i=1}^{n}\left(\widehat{Chl}_{WRTDS,\,i} - \widehat{Chl}_{GAM,\,i}\right)^{2}}{n}}$$

Average difference = 
$$\begin{pmatrix} \frac{\sum\limits_{i=1}^{n}\widehat{Chl}_{WRTDS,\,i} - \sum\limits_{i=1}^{n}\widehat{Chl}_{GAM,\,i}}{\sum\limits_{i=1}^{n}\widehat{Chl}_{GAM,\,i}} \end{pmatrix} * 100$$

## Model fitting and flow-normalization

Objective: compare model fits

**Problem**: Need methods to prevent over-fitting and to compare apples-to-apples

GAMs - identify optimal degrees of freedom for smoothing parameters

WRTDS - identify optimal window widths for time, discharge (salinity or flow), and season

Existing method for GAMs, k-fold cross-validation and search algorithm ('limited memory BFGS quasi-Newton method') to identify window-widths for WRTDS

Basically, a statistical infrastructure to 'automatically' fit the best model given the dataset

## Development of simulated datasets

**Objective**: evaluate ability of each model to reproduce flow-normalized trends

 ${\it Problem}$ : The true flow-normalized trends are not known and can only be empirically estimated

We created monthly simulated datasets following the general technique in Hirsch et al. 2015 (sec. 4, MC simulations)

- Actual daily time series: discharge from Bowie gage, Jug Bay fluorescence
- Overall:  $Chl_{obs} = Chl_{flo} + Chl_{bio}$
- From discharge:  $Chl_{flo} = I\left(\widehat{Q}_{seas} + \sigma \cdot \varepsilon_{Q,sim}\right)$
- From fluorescence:  $Chl_{bio} = \widehat{Chl}_{seas} + \sigma \cdot \varepsilon_{Chl, sim}$
- indicator I changes to simulate changing flow component



## Development of simulated datasets



Comparison of WRTDS and GAMs





Table: RMSE of observed to predicted ln-chlorophyll.

| Period      | LE1.2 |       | TF1.6 |       |
|-------------|-------|-------|-------|-------|
|             | GAM   | WRTDS | GAM   | WRTDS |
| All         |       |       |       |       |
|             | 0.54  | 0.51  | 0.54  | 0.52  |
| Annual      |       |       |       |       |
| 1986-1993   | 0.54  | 0.50  | 0.53  | 0.49  |
| 1994-2000   | 0.52  | 0.50  | 0.58  | 0.58  |
| 2001-2007   | 0.63  | 0.60  | 0.54  | 0.53  |
| 2008-2014   | 0.39  | 0.36  | 0.49  | 0.44  |
| Seasonal    |       |       |       |       |
| $_{ m JFM}$ | 0.61  | 0.58  | 0.53  | 0.49  |
| AMJ         | 0.69  | 0.64  | 0.60  | 0.58  |
| $_{ m JAS}$ | 0.38  | 0.35  | 0.48  | 0.46  |
| OND         | 0.41  | 0.38  | 0.55  | 0.54  |
| Flow        |       |       |       |       |
| 1 (Low)     | 0.40  | 0.36  | 0.48  | 0.46  |
| 2           | 0.47  | 0.42  | 0.56  | 0.54  |
| 3           | 0.61  | 0.57  | 0.56  | 0.52  |
| 4 (High)    | 0.64  | 0.63  | 0.56  | 0.54  |

Table : Comparison of predicted results between models.

| Period        | LE1.2      |      | TF1.6      |      |  |
|---------------|------------|------|------------|------|--|
|               | Ave. diff. | RMSE | Ave. diff. | RMSE |  |
| All           |            |      |            |      |  |
|               | -0.11      | 0.15 | 0.01       | 0.17 |  |
| Annual        |            |      |            |      |  |
| 1986-1993     | 0.18       | 0.16 | -0.78      | 0.17 |  |
| 1994-2000     | 0.53       | 0.15 | -1.09      | 0.19 |  |
| 2001-2007     | -0.95      | 0.14 | 0.48       | 0.14 |  |
| 2008-2014     | -0.18      | 0.14 | 3.12       | 0.18 |  |
| Seasonal      |            |      |            |      |  |
| $_{ m JFM}$   | 2.91       | 0.14 | -5.02      | 0.22 |  |
| AMJ           | -3.42      | 0.17 | 0.93       | 0.14 |  |
| JAS           | 5.03       | 0.14 | -0.10      | 0.17 |  |
| OND           | -5.25      | 0.14 | 2.08       | 0.17 |  |
| Flow          |            |      |            |      |  |
| Flow 1 (Low)  | 0.19       | 0.16 | -0.09      | 0.12 |  |
| Flow 2        | -0.83      | 0.16 | 0.73       | 0.15 |  |
| Flow 3        | 0.19       | 0.15 | 0.84       | 0.20 |  |
| Flow 4 (High) | 0.03       | 0.13 | -1.62      | 0.20 |  |



Figure : Seasonal variation from model predictions.



Figure : Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly  $5^{\rm th}$  and  $95^{\rm th}$  percentiles.



Figure: Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly 5<sup>th</sup> and 95<sup>th</sup> percentiles.



Figure: Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly 5<sup>th</sup> and 95<sup>th</sup> percentiles.



Figure : Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly  $5^{\rm th}$  and  $95^{\rm th}$  percentiles.



Figure : Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly  $5^{\rm th}$  and  $95^{\rm th}$  percentiles.



Figure : Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly  $5^{\rm th}$  and  $95^{\rm th}$  percentiles.



Figure : Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly  $5^{\rm th}$  and  $95^{\rm th}$  percentiles.



Figure: Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly 5<sup>th</sup> and 95<sup>th</sup> percentiles.



Figure : Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly  $5^{\rm th}$  and  $95^{\rm th}$  percentiles.



Figure : Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly  $5^{\rm th}$  and  $95^{\rm th}$  percentiles.



Figure: Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly 5<sup>th</sup> and 95<sup>th</sup> percentiles.



Figure: Changes in the relationship between chlorophyll and flow across the time series, seaprate plots by month, model, and station. The scales of salinity and flow are reversed for comparison of trends. Units are proportions of the total range in the observed data with values in each plot truncated by the monthly 5<sup>th</sup> and 95<sup>th</sup> percentiles.