

Tribhuvan University
Institute of Science and Technology
BSc.CSIT 4th Semester
Micro Syllabus of Database Management System

Credit hours: 3 hrs.

Course no.:(CSC 253)

Full Marks: 60+20+20

Pass Marks: 24+8+8

Course Description: This is a first database course for B.Sc. Computer Science and Information

Technology students. It introduces the fundamentals of database technology. Topics covered include: database concepts, Database System Architecture, E-R model, relational model, database design theory, database languages, transaction management, concurrency control and database recovery.

Course Objectives: There are two principle objectives for this course.

- To introduce the fundamental concepts and methods necessary for the design and use of a database systems.
- To provide practical experience in applying these concepts and methods using commercial database management systems.

Unit – 1	19 hrs
-----------------	---------------

- Why Data Management is Important
- When Data Becomes Information
- Database Management System
 - Definition
 - Primary goal of DBMS: is to store and manage data
 - Related Data
 - Integrated Data
- Database Management Systems and Database Systems
- Example Usages of Database Management systems
- History
- Simplified Database System Organization
- Example of Relational Database: Student Records (any)
- Approaches to management of data
 - Database approach
 - File system approach
- File layout for the student records (any)
- Database Vs. File Systems Approaches
 - Data Abstraction

- Reliability
 - Efficiency/Performance
- Data Models (in chronological order)
 - Hierarchical
 - Network
 - Relational
 - Entity Relationship
 - Object Oriented
- Database Schema & Instances
- Data Abstraction...Views
- 3-level Architecture (ANSI/APARC Architecture)
- Advantages of the 3 schema representation
- Mapping
- Data independence
- Drawbacks of using file systems to store data
- Advantages of Database Processing
 - Extracting Information from Data
 - Sharing of Data
 - Standards
 - Controlled Redundancy
 - Integrity Control
 - Security
 - Economy of Scale
 - Data Independence
- Additional Advantages of DB approach
 - Expandability/Flexibility
 - Reduce applications development time
 - Economy of scale
 - Centralized control by the DBA
- Applicability
 - When a DBMS is needed?
 - When a DBMS is Inappropriate?
- DBMS Languages
- Database System Components
 - Data
 - Hardware
 - Software
 - Users
- Data Administration and Database Administration
- Tasks of DBA
- DB End Users
- DB Developers
- Database System Structure

- The storage manager
 - The query processor components
- The Data Communications Manager
- DBMS Interfaces
- Database System Utilities
- Centralized and Client-Server Architectures
 - Two Tier Client-Server Architecture
 - Three Tier Client-Server Architecture
- Classification of DBMSs
- Variations of Distributed environments
- Database System Life Cycle
- Design
 - Functional Design
 - Database Design
 - Conceptual database design
 - Logical database design
 - Physical database design
- Entities and Attributes
- Two Semantics primitives
 - Entities
 - Relationships
 - Attribute types & Entity Types
- Uniqueness or Key Constraint
- Key Attributes
- Domains of Attributes
- Relationships
- Constraints on Relationship Types
- Cardinality ratios
- Participation Constraints
- Attributes of Relationship Types
- Strong and Weak Entities
- Identifying Relationships
- ER-Diagrams with one case study
- EER Model: Enhanced/Extended ER Model
- Subclasses and Super classes
- Specialization and Generalization
- Relational Model Concepts
- Definition Formal and Informal
- Characteristics of Relations
- Relational Integrity Constraints
 - Key Constraints
 - Entity Integrity
 - Referential Integrity
 - Semantic Integrity Constraints

- Update Operations on Relations
 - INSERT a tuple
 - DELETE a tuple
 - MODIFY a tuple
- Relational Algebra
 - Unary Relational Operations
 - Relational Algebra Operations From Set Theory, Type Compatibility
 - Binary Relational Operations
 - Additional Relational Operations
 - Examples of Queries in Relational Algebra
- Relational Calculus
 - Tuple Relational Calculus
 - Well-formed Formula
 - Safety of Expressions
 - Equivalent Expressions
 - Examples of Queries in Tuple Relational (Basic operations only)
 - Domain Relational Calculus (Basic operations only)
- Overview of the QBE language
- Relational Commercial Languages
 - SQL (DDL, DML, Views)
- ER-to-Relational Mapping Algorithm
 - Step 1: Mapping of Regular Entity Types
 - Step 2: Mapping of Weak Entity Types
 - Step 3: Mapping of Binary 1:1 Relation Types
 - Step 4: Mapping of Binary 1:N Relationship Types.
 - Step 5: Mapping of Binary M:N Relationship Types.
 - Step 6: Mapping of Multivalued attributes.
 - Step 7: Mapping of N-ary Relationship Types.

Unit – 2	12 hrs
-----------------	---------------

- Constraints in SQL
 - Key constraints
 - Attribute constraints
 - Tuple constraints
 - Trigger and assertions
 - ECA rules
- Authorization and Privileges
- GRANT and REVOKE authorizations
- Data encryption (basic concept only)
- Functional Dependencies (FD)
- Trivial and non-trivial FDs, closure of a set of FDs, attribute closure FDs, irreducible set of FDs
- First, Second, and Third normal forms
- Transitivity, Reflexivity and Augmentation properties of FDs

- BCNF and decomposition into BCNF

Unit – 3 **14 hrs**

- Introduction to Transaction Processing
- Transaction and System Concepts
- Desirable Properties of Transactions (ACID)
- Characterizing Schedules based on Recoverability
- Characterizing Schedules based on Serializability
- Transaction Support in SQL
- Databases Concurrency Control
 - Purpose of Concurrency Control
 - Two-Phase locking
 - Limitations of CCMs
 - Timestamp-based protocols
 - Commit protocols
 - Index Locking
 - Lock Granularity
 - Time stamp ordering multi version concurrency control,
 - Deadlock handling - detection and resolution
- Databases Recovery
 - Purpose of Database Recovery
 - Types of Failure
 - The Storage Hierarchy
 - Buffer Management
 - Transaction Log
 - Data Updates
 - Data Caching
 - Transaction Roll-back (Undo) and Roll-Forward
 - Check pointing, shadow paging
 - Recovery schemes (WAL Write-Ahead Logging protocol)
 - Failure with Loss of Non-volatile storage (general concepts)
 - Recovery in Multidatabase System

Prerequisite: Be familiar with at least one high-level programming language such as C, C++ or Java.
Introduction to Operating Systems, Data Structures and Algorithms.

Textbooks: A. Silberschatz, H.F. Korth, and S. Sudarshan, *Database System Concepts*, 4th edition, McGraw Hill

References:

- 1.C. J. Date, *An Introduction to Database Systems* , 8th edition, Addison Wesley
2. Raghu Ramakrishnan, and Johannes Gehrke, *Database Management Systems*, McGraw-Hill, 2003. (ISBN: 0-07-246563-8)

3. Ramez Elmasri and Shamkant B. Navathe, *Fundamentals of Database Systems*, Fourth Edition, Pearson Addison Wesley; 2003, (ISBN: 0321122267)

Laboratory Projects: The course involves a mini project using any one of the popular

Commercial database packages like Oracle, MySql, MS SQL Server, MS Access etc.

Homework Homework assignments can be given according to the course **Assignments:** covered throughout the semester.

Computer Usage: Windows or Linux based PC or workstation, Commercial database package installed in the Database server.

Category Content: Science Aspects: 60%

Design Aspects: 40%