Spectral Statistics of Random Matrices

$\begin{tabular}{ll} A Thesis \\ Presented to \\ The Division of Mathematics and Natural Sciences \\ Reed College \end{tabular}$

In Partial Fulfillment of the Requirements for the Degree Bachelor of Arts

Ali Taqi

May 2021

Approved for the Division (Mathematics)

Jonathan M. Wells

Table of Contents

\mathbf{Introd}	uction	
Chapte	er 1: F	Random Matrices
1.1		x Ensembles
	1.1.1	Hermite Beta-Ensembles
1.2	Analy	tical Results
	1.2.1	Real Symmetric Matrices have Real Eigenvectors
Chapte		Ratios and Mixing Times
2.1	Introd	luction
2.2	Marko	ov Chains
	2.2.1	Classification of states
2.3	Erdos-	-Renyi Graphs
2.4	Mixin	g Time Simulations
2.5		ions
	2.5.1	Questions
Chapte	er 3: S	spectral Statistics
3.1	Introd	luction
	3.1.1	The Quintessential Spectral Statistic: the Eigenvalue 1
	3.1.2	Interlude: Ensembles
3.2	Eigen	value Dispersions
	3.2.1	A Caveat: Eigenvalue Ordering
	3.2.2	Pairing Schema
	3.2.3	Dispersion Metrics
	3.2.4	Matrix and Ensemble Dispersions
Appen	dix A:	Math Appendix
A.1	Proba	bility Theory
Appen	dix B:	Algorithm Appendix
B.1	Matrix	x Simulation
Appen	dix C:	Code Appendix

Abstract

On their own, random variables exude deterministic properties regarding their uncertainty. The same generalization can be made for random matrices, which are matrices whose entries are random variables. One particular statistic worth investigating is the distribution of a matrix ensemble's eigenvalues, or its spectrum. In this thesis, there will be an exploration of various classes of random matrices and relevant spectral statistics like their spectra and mixing times.

Dedication

For my mother.

Introduction

What are *spectral statistics*? Do they have to do with rainbows? Sceptres? No, they don't, but they're almost as colorful and regal. *Spectral statistics*, aptly named so, borrows from the spectral-like patterns observed in statistical physics - whether it may be atomic spectra or other quantum mechanical phenomena. The borrowing is loose and not literal, but still somewhat well founded.

Random matrix theory - as a field - was developed extensively in the 1930s by Wigner, a nuclear physicist. He found connections between the deterministic properties of atomic nuclei and their random and stochastic behaviors. The link? – Random matrices.

Chapter 1

Random Matrices

As promised, here is what a random matrix is.

Definition 1.0.1 (Random Matrix). A (homogenous) random matrix is any matrix $M \in \mathbb{F}^{N \times N}$ is a matrix whose entries are i.i.d random variables. So, if a random matrix $M = (m_{ij})$ is \mathcal{D} -distributed, this is equivalent to saying $m_{ij} \sim \mathcal{D}$. In the scope of this thesis, we will only work with homogenous random matrices. From thereonafter, assume every random matrix to be homogenously distributed.

1.1 Matrix Ensembles

1.1.1 Hermite Beta-Ensembles

Definition 1.1.1 (Hermite-Gaussian β -ensemble). The Hermite β -ensemble is the ensemble of random matrices whose eigenvalues have the joint probability density function:

$$f_{\beta}(\lambda) = c_H^{\beta} \prod_{i < j} |\lambda_i - \lambda_j|^{\beta} e^{-1/2\sum_i \lambda_i^2}$$

where the normalization constant c_H^{β} is given by:

$$c_H^{\beta} = (2\pi)^{-n/2} \prod_{i=1}^n \frac{\Gamma(1+\beta/2)}{\Gamma(1+\beta j/2)}$$

They represent a matrix whose entries have β real number components.

1.2 Analytical Results

1.2.1 Real Symmetric Matrices have Real Eigenvectors

Notation. For notational convenience, for any $N \in \mathbb{N}$, let $\widetilde{N} = \{1, \dots, N\}$.

In this document, we prove that for any $M \times M$ real symmetric matrix, S_M , there exists for some eigenvalue λ , a corrosponding **real** eigenvector $\vec{v} \in \mathbb{R}^M$. Prior to starting the main proof, we begin with a lemma.

Lemma. Suppose we have a $M \times M$ real symmetric matrix with a some eigenvalue λ . If there we have a corrosponding eigenvector $v \in \mathbb{C}^M$, then every entry of v, say v_i is equal to a **real** linear combination of the other entries $v_j \mid j \neq i$.

So, we will show that:

$$\forall i \in \widetilde{M} : v_i = \sum_{j \neq i} c_j v_j \quad (c_j \in \mathbb{R})$$

Proof of Lemma. Begin by taking a real symmetric matrix S_M for some $M \in \mathbb{N}$. Suppose we have an eigenvalue λ . Then, if we have some eigenvector v, we know that:

$$(1): \forall i \in \widetilde{M}: a_1v_1 + \dots + d_iv_i + \dots + a_{m-1}v_m = \lambda v_i \quad (a_j \in \mathbb{R})$$

We obtain (1) by expanding the equality $Av = \lambda v$ and noticing that every row of Av is expressible as the sum of the non-diagonal entries multiplied by $v_j \mid j \neq i$ plus $d_i v_i$. Note that since our matrix is symmetric, for some rows, some of the constants a_j are not distinct but this should not raise any issues. Next, we collect the terms:

$$\forall i \in \widetilde{M} : a_1 v_1 + \dots + a_{m-1} v_m = v_i (\lambda - d_i)$$

Since S_M is a real symmetric matrix, the a_j terms are real so we can say:

$$\forall i \in \widetilde{M} : v_i(\lambda - d_i) = \sum_{j \neq i} a_j v_j \quad (a_j \in \mathbb{R})$$

Finally, divide both sides by $(\lambda - d_i)$. Since S_M is a real symmetric matrix, we know $\lambda \in \mathbb{R}$ then also $(\lambda - d_i) \in \mathbb{R}$. On the right hand side, the coefficients of the v_j become $\frac{a_j}{(\lambda - d_i)}$. Since $a_j \in \mathbb{R}$, then also $\frac{a_j}{(\lambda - d_i)} \in \mathbb{R}$. Letting $c_j = \frac{a_j}{(\lambda - d_i)}$, we obtain:

$$\forall i \in \widetilde{M} : v_i = \sum_{j \neq i} c_j v_j \quad (\forall j : c_j \in \mathbb{R})$$

Thus, for any $M \in \mathbb{N}$, a real symmetric matrix with eigenvalue λ must have a corrosponding eigenvector v such that each of its entries is expressible as a real linear combination of the other entries. \square

Now, we will prove the main theorem.

Theorem (**Taqi**). Suppose we have a $M \times M$ real symmetric matrix, S_M . Then, we will show that there exists for some eigenvalue λ , a corrosponding **real** eigenvector $\vec{v} \in \mathbb{R}^M$.

Proof. For this proof we will induct on the dimension of the matrix, M. So let the inductive statement be

 $f(M): S_M$ has a real eigenvector v corresponding to an eigenvalue λ

Base Case. Take the base case M = 2. Then by **Zoom Meeting 11.12**, we know f(2) is true.

Inductive Step. For our inductive step, we need to show that $f(M) \Rightarrow f(M+1)$. So, let us assume f(M). This means that we can assume any real symmetric matrix S_M has a real eigenvector $v \in \mathbb{R}^M$ corrosponding to λ .

Next, we will write S_{M+1} as the matrix \widetilde{S}_M augmented by some $u \in \mathbb{R}^M$ as follows:

$$S_{M+1} = \left[\begin{array}{c|c} S_M & u \\ \hline u^T & d_{M+1} \end{array} \right]$$

From our lemma, we use the fact that S_{M+1} is symmetric and our assumption of f(M) to obtain:

(1):
$$\forall i \in \{1, \dots, m+1\} : v_i = \sum_{j \neq i} c_j v_j \quad (c_j \in \mathbb{R})$$

$$(2): \forall i \in \tilde{M}: v_i \in \mathbb{R}$$

In particular for (2), we know that $v_i = \left(\sum_{j \neq i} \frac{a_j}{d_i - \lambda} v_j\right)$.

From (1), we know that for row i = m+1: $v_{m+1} = \sum_{j \neq m+1} c_j v_j \quad (c_j \in \mathbb{R})$ By (2), this is a linear combination of real entries v_i . Since $v_{m+1} \in \mathbb{R}$, it follows that:

$$\forall i \in \{1, \dots, m+1\} : v_i \in \mathbb{R}$$

So, we have established that $f(m) \Rightarrow f(M+1)$.

By the induction, the theorem is proved. \Box .

Chapter 2

Ratios and Mixing Times

2.1 Introduction

In this chapter, we'll talk about consecutive ratio sequence simulations.

2.2 Markov Chains

Definition 2.2.1 (Markov Chain). Say a set of random variables X_i each take a value in a set, called the state space, $S_M = \{1, 2, ..., M\}$. Then, a sequence of such random variables $X_0, X_1, ..., X_n$ is called a Markov Chain if the following conditions are satisifed:

- $\forall X_i : X_i$ has support and range $S_M = \{1, 2, ..., M\}$.
- (Markov Property) The transition probability from state $i \to j$, $P(X_{n+1} = j \mid X_n = i)$ is conditionally independent from all past events in the sequence $X_{n-1} = i', X_{n-2} = i'', \dots, X_0 = i^{(n-1)}$, excluding the present/last event in the sequence. In other words, given the present, the past and the future are conditionally independent.

$$\forall i, j \in S_M : P(X_{n+1} = j \mid X_n = i) = P(X_{n+1} = j \mid X_n = i, X_{n-1} = i', \dots, X_0 = i^{(n-1)})$$

Definition 2.2.2 (Transition Matrixx). Let X_0, X_1, \ldots, X_M be a Markov Chain with state space S_M . Letting $q_{ij} = P(X_{n+1} = j \mid X_n = i)$ be the transition probability from $i \to j$, then the matrix $Q \in \mathcal{M}_{\mathbb{R}^+}[M \times M] : Q = (q_{ij})$ is the transition matrix of the chain. Q must satisfy the following conditions to be a valid transition matrix:

Definition 2.2.3 (Transition Matrix). Take a Markov Chain with states $1, \ldots, M$. Letting $q_{ij} = P(X_{n+1} = j \mid X_n = i)$ be the transition probability from $i \to j$, then the matrix $Q = (q_{ij})$ is the transition matrix of the chain. For this transition matrix to be valid, its rows have to be stochastic, meaning their entries sum to $1; \forall i \in 1, \ldots, M: \sum_{j \in 1, \ldots, M} q_{ij} = 1$.

- Q is a non-negative matrix. That is, note that $Q \in \mathcal{M}_{\mathbb{R}^+}[M \times M]$ so every $q_{ij} \in \mathbb{R}^+$. This follows because probabilities are necessarily non-negative values.
- The entries of every row i of Q must sum up to 1. This may be understood as applying the law of total probability to the event of transitioning from any given state $\forall i \in S_M$. In other words, the chain has to go somewhere with probability 1.

$$\forall i \in S_M : \sum_{j \in S_M} q_{ij} = 1$$

• Note, it is NOT necessary that the converse holds. The columns of our transition matrix need not sum to 1 for it to be a valid transition matrix.

Definition 2.2.4 (n-Step Transition Probability). The n-step transition probability of $i \to j$ is the probability of being at j exactly n steps after being at i. We denote this value $q_{ij}^{(n)}$:

$$q_{ij}^{(n)}: P(X_n = j \mid X_0 = i)$$

Realize:

$$q_{ij}^{(2)} = \sum_{k \in S_M} q_{ik} \cdot q_{kj}$$

Because by definition, a Markov Chain is closed under a support/range of S_M so the event $i \to j$ may have taken any intermediate step $k \in S_M$. Realize by notational equivalence, $Q^2 = (q_{ij}^{(2)})$. Inducting over n, we then obtain that:

$$q_{ij}^{(n)}$$
 is the (i,j) entry of Q^n

Definition 2.2.5 (Marginal Distribution of Xn). Let $\mathbf{t} = (t_1, t_2, ..., t_M)$ such that $\forall i \in S_M : t_i = P(X_0 = i)So$, $\mathbf{t} \in \mathcal{M}_{\mathbb{R}}[1, M]$. Then, the marginal distribution of X_n is given by the product of the vector $\mathbf{t}Q^n \in \mathcal{M}_{\mathbb{R}}[1, M]$. That is, the j^{th} component of that vector is $P(X_n = j)$ for any $j \in S_M$. We may call \mathbf{t} an initial state distribution.

2.2.1 Classification of states

- A state $i \in S_M$ is said to be **recurrent** if starting from i, the probability is 1 that the chain will *eventually* return to i. If the chain is not recurrent, it is **transient**, meaning that if it starts at i, there is a non-zero probability that it never returns to i.
- Caveat: As we let $n \to \infty$, our Markov chain will gurantee that all transient states will be left forever, no matter how small the probability is. This can be proven by letting the probability be some ε , then realizing that by the support of $\text{Geom}(\varepsilon)$ is always some finite value, then the equivalence between the Markov property and independent Geometric trials gurantees the existence of some finite value such that there is a success of never returning to i.

Definition 2.2.6 (Reducibility). A Markov chain is said to be **irreducible** if for any $i, j \in S_M$, it is possible to go from $i \to j$ in a finite number of steps with positive probability. In other words:

$$\forall i, j \in S_M : \exists n \in \mathbb{N} : q_{ij}^{(n)} > 0$$

- From our quantifier formulation of irreducible Markov chains, note that we can equivalently say that a chain is irreducible if there is integer $n \in \mathbb{N}$ such that the (i,j) entry of Q^n is positive for any i,j.
- A Markov chain is **reducible** if it is not **irreducible**. Using our quantifier formulation, it means that it suffices to find transient states so that:

$$\exists i, j \in S_M : \nexists n \in \mathbb{N} : q_{ij}^{(n)} > 0$$

2.3 Erdos-Renyi Graphs

Definition 2.3.1 (Erdos-Renyi Graph). An Erdos-Renyi graph is a graph G = (V, E) with a set of vertices V = 1, ..., nM and edges $E = \mathbb{1}_{i,j \in V} \sim Bern(p_{ij})$. It is homogenous if $p_{ij} = p$ is fixed for all i, j.

Essentially, an Erdos-Renyi graph is a graph whose 'connectedness' is parameterized by a probability p (assuming it's homogenous, which this document will unless otherwise noted). As $p \to 0$, we say that graph becomes more sparse; analogously, as $p \to 1$ the graph becomes more connected.

Recall from probability theory that a sum of i.i.d Bernoulli random variables is a Binomial variable. As such, we may alternatively say that the degree of each vertex v is distributed as $deg(v) \sim Bin(M,p)$. This is helpful to know because the process of simulating graphs becomes much simpler.

2.4 Mixing Time Simulations

With the Erdos-Renyi graph defined, we may now motivate the simulation of random walks on them. First, however, we need to generate their corrosponding transition matrices. An algorithm for this is outlined below.

Suppose we have simulated a transition matrix for an Erdos-Renyi graph called Q. Now, fixing some initial probability distribution $\vec{x} \in \mathbb{R}^M$, we may consider the evolution sequence of a random walk on this Erdos-Renyi graph by taking its evolution sequence $\mathcal{S}(Q, x)$.

Definition 2.4.1 (Random Batches). Let \mathbb{F} be a field, and fix some $M \in \mathbb{N}$. Let $\mathcal{B}_{\lambda} \subset \mathbb{F}^{M}$ be a uniformly random batch of points in the M-hypercube of length λ . That is,

$$\mathcal{B}_{\lambda} = \{ \vec{x} \mid x_i \sim \textit{Unif}(-\lambda, \lambda) \textit{ for } i = 1, \dots, M \}$$

Note: If $\mathbb{F} = \mathbb{C}$, then take $\vec{x} \in \mathcal{B}_{\lambda}$ to mean $\vec{x} = a + bi$ where $a, b \sim \textit{Unif}(-\lambda, \lambda)$.

Definition 2.4.2 (Evolution Sequence). An evolution sequence of a vector $\vec{\pi}$ and a transition matrix Q is defined as the sequence $S(Q, \pi) = (\pi'_n)_{n=1}^N$ where $\pi'_n = \pi Q^n$

Definition 2.4.3 (Finite Evolution Sequences). Suppose we sample a random point from \mathcal{B}_{λ} , emulating a random point $\vec{v} \in \mathbb{F}^{M}$. Additionally, let $Q \in \mathbb{F}^{M \times M}$ be a transition matrix over \mathbb{F} . Fixing a maximum power ('time') $T \in \mathbb{N}$, define the evolution sequence of \vec{v} as follows:

$$S(v, Q, T) = (\alpha_n)_{n=1}^T \text{ where } \alpha_k = vQ^k$$

If we do not impose a finiteness constraint on the sequence, we consider powers for $n \in \mathbb{N}$ or $t = \infty$

Definition 2.4.4 (Consecutive Ratio Sequences). Accordingly, define the consecutive ratio sequence (CST) of \vec{v} as follows:

$$\mathcal{R}(v,Q,T) = (r_n)_{n=2}^T \text{ where } (r_n)_j = \frac{(\alpha_n)_j}{(\alpha_{n-1})_j} \text{ for } j = 1,\ldots,M$$

In other words, the consecutive ratio sequence of v can be obtained by performing component-wise division on consecutive elements of the evolution sequence of v.

Definition 2.4.5 (Near Convergence). Because these sequences may never truly converge to eigenvectors of the matrix, we formalize a notion of "near convergence". As a prelimenary, we first define ε -equivalence. Let \mathbb{F} be a field, and fix $\varepsilon \in \mathbb{R}^+$. Suppose we have vectors $v, v' \in \mathbb{F}^M$. Then, $v \sim_{\varepsilon} v'$ if $||v - v'|| < \varepsilon$ where $||\cdot||$ is the norm on \mathbb{F} .

Let $\varepsilon \in \mathbb{R}^+$, and suppose we have an evolution sequence $(a[\vec{v}])_n$. Then, a_n ε -converges at $N \in \mathbb{N}$ if:

$$\forall n \ge N \mid a_N \sim_{\varepsilon} a_n$$

2.5. Questions

2.5 Questions

1. How are the entries of the CRS distributed? Are they normal, and if so, what is its mean?

- 2. Are the entries of the CRS i.i.d as $t \to \infty$?
- 3. For an Erdos-Renyi matrix, is the mixing time t dependent on the parameter p?
- 4. What impact does the running time parameter T have on σ (the variance of the distribution of the CRS entries)?

2.5.1 Questions

It seems to be the case that the **log-transformed** entries of the CRS are Cauchy distributed about $\log \lambda_1$ where $\lambda_1 = \max(\sigma(Q))$, the largest eigenvalue of Q. That is,

$$r_i \sim \text{Cauchy}(\ln \lambda_1) \text{ for } i = 1, \dots, M$$

Chapter 3

Spectral Statistics

3.1 Introduction

Spectral statistics, in this context, will be an umbrella term to describe the statistics found from the eigenvalues and eigenvectors of matrices. We begin with some motivating definitions.

With a *random matrix* intialized, we can study its features by studying a very core type of number that "summarizes" it - the eigenvalue. The study of eigenvalues and eigenvectors are primarily in the scope of Linear Algebra. They are quite important for many reasons. In statistical physics, many processors are represented by operators or matrices, and as such, their behaviours can be described by the eigenvalues of their corrosponding matrices! So, what are *eigenvalues* exactly?

3.1.1 The Quintessential Spectral Statistic: the Eigenvalue

Given any standard square matrix $P \in \mathbb{F}^{N \times N}$, the *eigenvalue* is given by the roots of the characteristic polynomial $\operatorname{char}_P(\lambda) = \det(P - \lambda I)$. By the Fundamental Theorem of Algebra, we always have as many complex eigenvalues $\lambda \in \mathbb{C}$ as there are dimensions to the square matrix (n). When the matrix is distributed a certain way, we can see patterns in the eigenvalue distributions! So, an eigenvalue is a **spectral statistic** of a random matrix!

Now that we have defined eigenvalues, we need to talk about them in a concise manner. Since we know an $N \times N$ matrix has exactly N eigenvalues (counting repeated values), we motivate the *eigenvalue spectrum*.

Definition 3.1.1 (Spectrum). Given a matrix P, the spectrum of P is defined as the multiset of its eigenvalues, denoted by $\sigma(P) = \{\lambda_i \in \mathbb{C}\}_{i=1}^N$. Note that we say multiset since eigenvalues could be repeated (through algebraic multiplicity).

3.1.2 Interlude: Ensembles

While the spectrum of a matrix provides a good summary of the matrix, in random matrix theory, a matrix is considered a single point or observation. Additionally,

simulating large matrices becomes harder and harder as $N \to \infty$. As such, to obtain more eigenvalue statistics efficiently, another dimension is introduced by motiving the *random matrix ensemble*.

Definition 3.1.2 (Random Matrix Ensemble). A \mathcal{D} -distributed random matrix ensemble \mathcal{E} over $\mathbb{F}^{N\times N}$ of size K is defined as a set of \mathcal{D} -distributed random matrices $\mathcal{E} = \{P_i \sim \mathcal{D} \mid P_i \in \mathbb{F}^{N\times N}\}_{i=1}^K$. In simple words, it is simply a collection of iterations of a specified class of random matrix.

Now that ensembles are well defined, we can motivate a very core object in random matrix theory - the spectrum of a random matrix ensemble. From its name, it is indeed what one might expect it to be.

Definition 3.1.3 (Ensemble Spectrum). If we have an ensemble \mathcal{E} , then we can naturally extend the definition of $\sigma(\mathcal{E})$. To take the spectrum of an ensemble, simply take the union of the spectra of each of its matrices. In other words, if $\mathcal{E} = \{P_i \sim \mathcal{D} \mid P_i \in \mathbb{F}^{N \times N}\}_{i=1}^K$, then $\sigma(\mathcal{E}) = \bigcup_{i=1}^K \sigma(P_i)$.

A common theme in this thesis will be that singleton matrices do not provide insightful information on their own. Rather, it is the collective behavior of a \mathcal{D} -distributed ensemble that tells us about how \mathcal{D} impacts our spectral statistics. As such, ensemble statistics are in a way the engine of our research.

3.2 Eigenvalue Dispersions

Another important spectral statistic is the spacings between the eigenvalues.

3.2.1 A Caveat: Eigenvalue Ordering

When we motivate the idea of matrix dispersion, we will consider order statistics of that matrix's eigenvalues in tandem with its dispersion. However, to do so presupposes that we have a sense of what "ordered" eigenvalues means. Suppose are given a matrix P which has an "unordered" spectrum $\sigma(P) = \{\lambda_j\}$. It is paramount to know what ordering scheme $\sigma(P)$ is using, because otherwise, the indices are meaningless! So, to delineate this, we add an index to σ . Often, the ordering context will be clear and the indexing will be omitted. Consider the two following *ordering schema*:

Classical definitions of an *ordered spectrum* follow the standard ordering in the reals; denote this as the ordering by "sign" scheme. Note that because well-ordering is defined on the reals, we cannot use the sign scheme when $\sigma_P \subset \mathbb{C}^N$. Additionally, if we have a symmetric matrix (of real or complex entries), we have real eigenvalues. In that case, we could either this metric of the other. Without further ado, we write the *sign-ordered spectrum* as follows:

$$\sigma_S(P) = \{\lambda_j : \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_N\}_{j=1}^N$$

Alternatively, we can motivate a different scheme that properly handles complex eigenvalues. We could sort the spectrum by the norm of its entries; denote this as the

ordering by "norm" scheme. Note that when we take the norms of the eigenvalues, we essentially ignore "rotational" features of the eigenvalues. Signs of eigenvalues indicate reflection or rotation, so when we take the norm, we essentially become more concerned with scaling. Without further ado, we write the *norm-ordered spectrum* as follows:

$$\sigma_N(P) = \{\lambda_j : |\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_N|\}_{j=1}^N$$

Furthermore, we introduce a new eqivalence class, the integer difference of the sorted eigenvalue ranks.

Definition 3.2.1 (Ranking Delta). The ranking delta is a function $\delta : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ which takes the index of two eigenvalues (from an **ordered** spectrum) and returns their difference. In other words, $\delta : (\lambda_i, \lambda_j) \mapsto (i - j)$.

With the function δ , we may take the set of unique eigenvalue pairs (i > j) and partition it into equivalence classes. To achieve this, we define the equivalence relation \sim_{δ} which says $(\lambda_m, \lambda_n) \sim_{\delta} (\lambda_p, \lambda_q) \iff (m-n) = (p-q)$. These equivalence classes then naturally corrospond to pairs a set distance $\rho = i - j$ apart. So, for a $N \times N$ matrix, δ assumes a range $\rho \in \{1, \ldots, N-1\}$.

In summary, \sim_{δ} takes the set $\{(\lambda_i, \lambda_j) \mid \lambda_i, \lambda_j \in \sigma(P) \text{ and } i > j\}$ and surjectively partitions it onto the equivalence classes $[(\lambda_i, \lambda_j)]_{\rho}$ for $\rho \in \{1, \dots, N-1\}$. Note that the sizes of each equivalence class are **never equal**. With this partition in mind, we consider the eigenvalue dispersions under each of those equivalence classes.

3.2.2 Pairing Schema

Next up, we introduce a new notation for a pairing scheme denoted Π . What are pairing schemes and why do they matter? Recall that our goal is to study the spacings between eigenvalues. If we are studying spacing, then a priori, we are concerned with pairs of eigenvalues! Spacing, after all, is a binary relationship. So, with the definitions of spectra well motivated, a natural definition of pairing schema follows. Essentially, Π is just a subset of the Cartesian product of a spectrum with itself. In other words, if we denote $\mathbb{S} := \sigma(P)$, then we say that a pairing scheme is simply a subset $\Pi \subseteq \mathbb{S}^2$. There are a few special pairing schema to consider:

1. Let $\Pi_{>}$ be the set of unique upper-pair ($\dot{\xi}$) combinations of ordered eigenvalues. This will be the standard ordered pair scheme used in lieu of our dispersion metric argument orders (more later).

$$\Pi_{>} = \{\pi_{ij} = (\lambda_i, \lambda_j) \mid i > j\}_{i=1}^{N-1}$$

1. Let Π_{\leq} be the set of unique lower-pair (j) combinations of ordered eigenvalues.

$$\Pi_{\leq} = \{ \pi_{ij} = (\lambda_i, \lambda_j) \mid i < j \}_{i=1}^{N-1}$$

1. Let Π_1 be the largest pair of eigenvalues of a spectrum. Nice and sweet.

$$\Pi_1 = \{(\lambda_2, \lambda_1)\}$$

1. Let Π_C be the consecutive pairs of eigenvalues in a spectrum. This pairing scheme gives us the minimal information needed to express important bounds and spacings in terms of its elements.

$$\Pi_C = \{ \pi_{ij} = (\lambda_i, \lambda_j) \mid i = j + 1 \}_{i=1}^{N-1}$$

3.2.3 Dispersion Metrics

When we define the dispersion of a matrix, we will see that there is a free argument d called the dispersion metric. This function d is a general function whose domain is always two eigenvalues. In set notation, this is the set $\mathbb{C} \times \mathbb{C}$ - a pair of two complex numbers. Its range will often be the positive reals \mathbb{R}^+ ; this is because the dispersion metric often will be substitutable with distance metric. Sometimes, the range will be \mathbb{C} . So, the dispersion metric will take the following form:

$$d: \mathbb{C} \times \mathbb{C} \to \{\mathbb{R}^+, \mathbb{C}\}$$

Consider the following dispersion metrics below. Out of those 4 dispersion metrics, only the first one has a range of \mathbb{C} . The rest have a range of \mathbb{R}^+ . Additionally, the second and third metrics are **symmetric** operations while the rest are not.

1. The identity difference: $d_{id}(z,z')=z'-z$ 1. The standard norm: $d_n(z,z')=|z'-z|$ 1. The β -norm: $d_{\beta}(z,z')=|z'-z|^{\beta}$ 1. The difference of absolutes: $d_{ad}(z,z')=|z'|-|z|$

Finally, we are able to motivate the definition of a matrix dispersion! Suppose we have a \mathcal{D} -distributed random matrix $P \in \mathbb{F}^{N \times N}$ or a random matrix ensemble $\mathcal{E} = \{P_i \sim \mathcal{D} \mid P_i \in \mathbb{F}^{N \times N}\}$. Then we define their dispersion as follows.

3.2.4 Matrix and Ensemble Dispersions

Definition 3.2.2 (Dispersion). The dispersion of a matrix $P \in \mathbb{F}^{N \times N}$ with respect to a dispersion metric $d : \mathbb{C} \times \mathbb{C} \to \mathbb{F}$ and pairing scheme Π , call it $\Delta_d(P, \Pi)$, is defined as follows. Suppose $\sigma(P) := \mathbb{S}$ is the ordered spectrum of P where $\sigma(P) = \{\lambda_1, \ldots, \lambda_N\}$. Then, let $\Pi = \{\pi_{ij} = (\lambda_i, \lambda_j)\} \subseteq \mathbb{S}^2$ be a subset of eigenvalue ordered pairs. Then, the dispersion of P with respect to d is simply the set $\Delta_d(P, \Pi) = \{\delta_{ij} = d(\pi_{ij}) \mid \pi_{ij} = (\lambda_i, \lambda_j) \in \Pi\}$.

Definition 3.2.3 (Ensemble Dispersion). If we have an ensemble \mathcal{E} , then we can naturally extend the definition of $\Delta_d(\mathcal{E},\Pi)$. To take the dispersion of an ensemble, simply take the union of the dispersions of each of its matrices. In other words, if $\mathcal{E} = \{P_i \sim \mathcal{D} \mid P_i \in \mathbb{F}^{N \times N}\}_{i=1}^K$, then $\Delta_d(\mathcal{E},\Pi) = \bigcup_{i=1}^K \Delta_d(P_i,\Pi)$.

Appendix A

Math Appendix

A.1 Probability Theory

Definition A.1.1 (Random Variable). A random variable $X : \Omega \to \mathbb{R}$ is a function from some sample space $\Omega = \{s_i\}_{i=1}^n$ to the real numbers \mathbb{R} . The sample space is taken to be any set of events such that the probability function corrosponding to the random variable, p_X exhausts over all the events in Ω . In other words, we expect $\int_{\Omega} p_X(s) = 1$.

Appendix B

Algorithm Appendix

B.1 Matrix Simulation

Algorithm B.1.1 (Transition Matrix of an Erdos-Renyi Graph).

- 1. Fix $N \in \mathbb{N}$ and $p \in [0, 1]$.
- 2. Generate a matrix Q such that every entry $i, j \in 1, ..., N$ is $x_{ij} \sim Unif(0, 1)$.
- 3. For each v_i in $\{1, ..., N\}$, generate $deg(v_i) \sim Bin(N, p)$.
- 4. Randomly chose $(1 deg(v_i))$ vertices, set the entries x_{ij} in the j columns to 0.
- 5. Renormalize the matrix by dividing each row by its sum; let $(x_i) \leftarrow (x_i) / \sum_j (x_i)$.

Appendix C Code Appendix