One-dimensional calculus of variations

E. Cen and B. Park

Contents

L	Introduction	1
2	Basic theorems	4
3	Existence theorem	6
1	Regularity theorem	8

1 Introduction

The main goal of this note is to study the following minimization problem. Let $u \in u_0 + W_0^{1,2}((a,b))$ be a minimizer of

$$\inf \left\{ I(u) = \int_{(a,b)} f(x, u(x), u'(x)) \, dx : u \in u_0 + W_0^{1,2}((a,b)) \right\} = m, \quad (1)$$

where $u_0 \in W^{1,2}((a,b))$ with $I(u_0) < \infty$.

In section 3, we establish the existence of solutions within the Sobolev space $W^{1,2}$. Subsequently, in Section 4, we refine our analysis and demonstrate that the minimizer can, in fact, be found within the space of smooth functions (C^{∞}) .

To facilitate the proof of the main results, we will first introduce a set of preliminary definitions.

Definition 1 (Definitions of L^p Spaces). Let $\Omega \subset \mathbb{R}$ be an open set. A measurable function $u: \Omega \to \mathbb{R}$ belongs to the $L^p(\Omega)$ space if the L^p norm is finite.

$$||u||_{L^p(\Omega)} = \begin{cases} \left(\int_{\Omega} |u(x)|^p \, dx \right)^{\frac{1}{p}}, & \text{if } 1 \le p < \infty, \\ \inf\{\alpha > 0 : |u(x)| \le \alpha \text{ a.e. in } \Omega\}, & \text{if } p = \infty. \end{cases}$$

Example 1. The function $u(x) = x^{-\frac{1}{3}}$ on the interval (0,1) is in $L^2((0,1))$.

Example 2. The function $u(x) = x^{-\frac{1}{2}}$ on the interval (0,1) is not in $L^2((0,1))$.

Definition 2 (Definition of Sobolev Spaces $W^{1,p}(\Omega)$). Let $\Omega \subset \mathbb{R}$ be an open set and $1 \leq p \leq \infty$. We define the Sobolev space $W^{1,p}(\Omega)$ as the set of functions $u: \Omega \to \mathbb{R}$ such that $u \in L^p(\Omega)$ and the derivative $u' \in L^p(\Omega)$. This space is endowed with the following norm:

$$\|u\|_{W^{1,p}(\Omega)} = \begin{cases} \left(\|u\|_{L^p(\Omega)}^p + \|u'\|_{L^p(\Omega)}^p \right)^{\frac{1}{p}}, & \text{if } 1 \leq p < \infty, \\ \max\left\{ \|u\|_{L^\infty(\Omega)}, \|u'\|_{L^\infty(\Omega)} \right\}, & \text{if } p = \infty. \end{cases}$$

In the case where p=2, the space $W^{1,2}(\Omega)$ is sometimes denoted by $H^1(\Omega)$.

Example 3. The function $u(x) = \sqrt{x}$ on the interval [0,1] is in $W^{1,2}([0,1])$.

Example 4. The function $u(x) = |x|^{-\frac{1}{3}}$ on the interval [-1,1] is not in $W^{1,2}([-1,1])$ because as u' approaches 0, the function diverges, and therefore u' is not in $L^2([-1,1])$.

Definition 3. Let $\Omega \subset \mathbb{R}$ be an open set and $1 \leq p \leq \infty$.

(i) A sequence u_{ν} is said to (strongly) converge to u if $u_{\nu}, u \in L^p$ and if

$$\lim_{\nu \to \infty} \|u_{\nu} - u\|_{L^p} = 0.$$

We will denote this convergence by: $u_{\nu} \to u$ in L^p .

(ii) If $1 \leq p < \infty$, we say that the sequence u_{ν} weakly converges to u if $u_{\nu}, u \in L^p$ and if

$$\lim_{\nu \to \infty} \int_{(a,b)} \left[u_{\nu}(x) - u(x) \right] \varphi(x) \, dx = 0, \, \forall \varphi \in L^{p'}((a,b)).$$

This convergence will be denoted by: $u_{\nu} \rightharpoonup u$ in L^p .

(iii) If $p = \infty$, the sequence u_{ν} is said to weak* converge to u if $u_{\nu}, u \in L^{\infty}$ and if

$$\lim_{\nu \to \infty} \int_{(a,b)} \left[u_{\nu}(x) - u(x) \right] \varphi(x) \, dx = 0, \, \forall \varphi \in L^1((a,b)).$$

and will be denoted by: $u_{\nu} \stackrel{*}{\rightharpoonup} u$ in L^{∞} .

Example 5. Let $\Omega = (0, 2\pi)$ and $u_{\nu}(x) = \sin \nu x$, then we have

$$\sin \nu x \nrightarrow 0 \ in \ L^2$$

$$\sin \nu x \rightharpoonup 0 \ in \ L^2$$
.

Proof. First we need to check if $u_{\nu}(x) = \sin(\nu x)$ tends to 0 in its norm. We compute

$$||u_{\nu}(x)||_{L^{2}} = \left(\int_{0}^{2\pi} |\sin(\nu x)|^{2} dx\right)^{\frac{1}{2}}.$$

Since the average value of $|\sin(\nu x)|^2$ over one period is $\frac{1}{2}$, we have

$$||u_{\nu}(x)||_{L^{2}}^{2} = \int_{0}^{2\pi} |\sin(\nu x)|^{2} dx = \frac{2\pi}{2} = \pi.$$

Thus, $||u_{\nu}(x)||_{L^2} = \sqrt{\pi}$, indicating that the norm does not tend to 0. Therefore, $\sin(\nu x)$ does not strongly converge to 0 in L^2 .

Next, we need to show that $sin(\nu x)$ weakly converges to 0 in L^2 . The Riemann-Lebesgue Theorem (cf. theorem 8) states that if $g(x) \in L^1(\Omega)$, where Ω is a bounded domain, then the Fourier coefficients of g(x) tends to 0 as their frequency increases. In this case, for any function $g(x) \in L^1(0, 2\pi)$ we have

$$\lim_{\nu \to \infty} \int_0^{2\pi} g(x) \sin(\nu x) dx = 0.$$
 (2)

To prove weak convergence of $sin(\nu x)$ to 0 in $L^2(0,2\pi)$, consider any function $g(x) \in L^2(0,2\pi)$. Since $L^2(0,2\pi) \subset L^1(0,2\pi)$, the function g(x) is also in $L^1(0,2\pi)$. By the Riemann-Lebesgue Theorem, we have (2), which directly implies that $sin(\nu x)$ weakly converges to 0 in L^2 .

Example 6. Let $\Omega = (0,1), \ \alpha, \beta \in \mathbb{R}$

$$u(x) = \begin{cases} \alpha & \text{if } x \in (0, 1/2) \\ \beta & \text{if } x \in (1/2, 1). \end{cases}$$

Extend u by periodicity from (0,1) to \mathbb{R} and define

$$u_{\nu}(x) = u(\nu x).$$

Note that u_{ν} takes only the values α and β and the sets where it takes such values are, both, sets of measure 1/2. It is clear that $\{u_{\nu}\}$ cannot be compact in any L^p spaces; however from Riemann-Lebesgue Theorem (cf. theorem 8), we will find

$$u_{\nu} \rightharpoonup \frac{\alpha + \beta}{2} \text{ in } L^{p}, \quad \forall 1 \leq p < \infty \quad and \quad u_{\nu} \stackrel{*}{\rightharpoonup} \frac{\alpha + \beta}{2} \text{ in } L^{\infty}.$$

Proof. We prove for the case p=2. First we want to show that u_{ν} weakly converges to $\frac{\alpha+\beta}{2}$. That is, we want to show

$$\lim_{\nu \to \infty} \int_0^1 \left[u_{\nu}(x) - \frac{\alpha + \beta}{2} \right] \varphi(x) dx = 0, \forall \varphi \in L^2(0, 1). \tag{3}$$

Define

$$\bar{u} = \int_0^1 u(x)dx = \int_0^{\frac{1}{2}} \alpha dx + \int_{\frac{1}{\alpha}}^1 \beta dx = \frac{\alpha + \beta}{2}.$$

By Riemann-Lebesgue Theorem (cf. theorem 8), $u_{\nu} \rightharpoonup \bar{u}$ in L^2 (i.e. (3)).

2 Basic theorems

Theorem 1. Let $(a,b) \subset \mathbb{R}$ be open, and $u \in L^2((a,b))$. The following properties are then equivalent:

- (i) $u \in W^{1,2}((a,b));$
- (ii) There exists a constant c = c(u, (a, b)) so that

$$\left| \int_{(a,b)} u(x)\varphi'(x) \, dx \right| \le c \|\varphi\|_{L^2} \quad \forall \varphi \in C_0^{\infty}((a,b)), \, \forall i = 1, 2, \dots, n.$$

Theorem 2. Let $(a,b) \subset \mathbb{R}$ be a bounded open interval. Then $W^{1,2}(a,b) \subset C^{0,\alpha}(a,b)$ for every $\alpha \in [0,\frac{1}{2}]$. In particular, there exists a constant c=c(a,b) such that

$$||u||_{L^{\infty}} \le c||u||_{W^{1,2}}.$$

Theorem 3. Let $(a,b) \subset \mathbb{R}$ be a bounded open interval. Let $f \in C^1((a,b) \times \mathbb{R} \times \mathbb{R})$, $f = f(x,u,\xi)$, satisfy

(H3)
$$\exists \beta \geq 0 \text{ so that for every } (x, u, \xi) \in (a, b) \times \mathbb{R} \times \mathbb{R},$$

 $|f_u(x, u, \xi)|, |f_{\xi}(x, u, \xi)| \leq \beta (1 + |u| + |\xi|),$

where $f_{\xi} = (f_{\xi_1}, \dots, f_{\xi_n})$, $f_{\xi_i} = \frac{\partial f}{\partial \xi_i}$ and $f_u = \frac{\partial f}{\partial u}$. Then u satisfies the weak form of the Euler-Lagrange equation

$$(Ew) \quad \int_{(a,b)} \left[f_u(x,u,\nabla u)\varphi + \langle f_{\xi}(x,u,\nabla u),\nabla\varphi\rangle \right] dx = 0, \quad \forall \varphi \in W_0^{1,2}((a,b)).$$

Conversely, if $(u, \xi) \to f(x, u, \xi)$ is convex for every $x \in (a, b)$ and if u is a solution of either (Ew), then it is a minimizer of Equation (1).

Theorem 4 (Fundamental Theorem of Calculus). If f is a real-valued continuous function on [a, b] and F is an antiderivative of f in [a, b], then

$$\int_{a}^{b} f(t)dt = F(b) - F(a).$$

Theorem 5 (Poincaré inequality). There exists a constant C, depending only on [a,b], so that, for every function u of the Sobolev space $W_0^{1,2}([a,b])$ of zero-trace (i.e. zero on the boundary) functions, we have

$$||u||_{L^2([a,b])} \le C||u'||_{L^2([a,b])}.$$

Proof. We will prove this for the case f is a $W_0^{1,2}$ function, thus satisfying f(a) = f(b) = 0. Here the statement becomes

$$\int_a^b f^2 \le kb^2 \int_a^b (f')^2.$$

By the Fundamental Theorem of Calculus (cf. theorem 4)

$$f(s) = \int_{a}^{s} f'(x)dx, \ \forall s \in (a, b).$$

Therefore

$$|f(s)| \le \int_a^s |f'(x)| dx, \ \forall s \in (a,b).$$

Recall the Cauchy-Schwarz inequality $\left(\int hg \leq \left(\int h^2\right)^{1/2} \left(\int g^2\right)^{1/2}\right)$. Apply this with $h=1,\ g=|f'|$ to get

$$|f(s)| \le \left(\int_a^s (f')^2\right)^{1/2} (b+s)^{1/2} \le \left(\int_a^b (f')^2\right)^{1/2} (2b)^{1/2}.$$

Squaring both sides gives

$$|f(s)|^2 \le 2b \int_a^b (f'(s))^2,$$

and finally we integrate over [a, b] to give

$$\int_a^b |f(s)|^2 \le 4b^2 \int_a^b |f'(s)|^2,$$

as required.

Theorem 6 (Fundamental lemma of the calculus of variations). Let $\Omega \subset \mathbb{R}$ be an open set and $u \in L^1_{loc}(\Omega)$ be such that

П

$$\int_{\Omega} u(x) \, \psi(x) \, dx = 0, \, \forall \psi \in C_0^{\infty}(\Omega),$$

then u = 0 almost everywhere in Ω .

Theorem 7. Let $\Omega \subset \mathbb{R}$ be a bounded open set. If $u_{\nu} \rightharpoonup u$ in L^2 , then there exists a constant $\gamma > 0$ so that $\|u_{\nu}\|_{L^2} \leq \gamma$, moreover $\|u\|_{L^2} \leq \liminf_{\nu \to \infty} \|u_{\nu}\|_{L^2}$.

Theorem 8 (Riemann-Lebesgue Theorem). Let $\Omega = (a,b)$ and $u \in L^2(a,b)$. Let u be extended by periodicity from Ω to \mathbb{R} and define

$$u_{\nu}(x) = u(\nu x)$$
 and $\bar{u} = \frac{1}{b-a} \int_a^b u(x) dx$,

then $u_{\nu} \rightharpoonup \bar{u}$ in L^2 .

3 Existence theorem

Theorem 9. Let $(a,b) \subset \mathbb{R}$ be a bounded open interval. Let $f \in C^1([a,b] \times \mathbb{R} \times \mathbb{R})$, where f = f(x,u,u') satisfies the following conditions:

- 1. $(u, u') \rightarrow f(x, u, u')$ is convex for every $x \in [a, b]$;
- 2. there exist $\alpha_1 > 0$, $\alpha_2 \in \mathbb{R}$ such that

$$f(x, u, u') \ge \alpha_1 |u'|^2 + \alpha_2, \forall (x, u, u') \in [a, b] \times \mathbb{R} \times \mathbb{R}.$$

3. there exists a constant $\beta \geq 0$ so that for every $(x, u, u') \in [a, b] \times \mathbb{R} \times \mathbb{R}$

$$\left|\frac{\partial f}{\partial u}\right|, \left|\frac{\partial f}{\partial u'}\right| \le \beta \left(1 + |u| + |u'|\right).$$

4. there exists $\bar{u} \in u_0 + W_0^{1,2}([a,b])$ a minimizer of (1).

Furthermore if $(u, u') \to f(x, u, u')$ is strictly convex for every $x \in [a, b]$, then the minimizer is unique.

Proof. Part 1 (Existence). The proof is divided into three steps.

Step 1 (Compactness). Recall that by assumption on u_0 and by *item* 2 we have

$$-\infty < m \le I(u_0) < \infty.$$

Let $u_{\nu} \in u_0 + W_0^{1,2}([a,b])$ be a minimizing sequence of (1), i.e.

$$I(u_{\nu}) \to \inf\{I(u)\} = m$$
, as $\nu \to \infty$.

We therefore have from item 2 that for ν large enough

$$m+1 \ge I(u_{\nu}) \ge \alpha_1 \int_a^b (u'_{\nu})^2 dx - |\alpha_2|(b-a)$$

and hence there exists $\alpha_3 > 0$ so that

$$\left(\int_a^b (u_\nu')^2 dx\right)^{\frac{1}{2}} \le \alpha_3.$$

Appealing to Poincaré inequality (cf. theorem 5) we can find constants $\alpha_4, \alpha_5 > 0$ so that

$$\alpha_3 \ge \left(\int_a^b (u_\nu')^2 dx\right)^{\frac{1}{2}} \ge \alpha_4 \|u_\nu\|_{W^{1,2}} - \alpha_5 \|u_0\|_{W^{1,2}}$$

and hence we can find $\alpha_6 > 0$ so that

$$||u_{\nu}||_{W^{1,2}} \le \alpha_6.$$

By Theorem 7 we deduce that there exists $\overline{u} \in u_0 + W_0^{1,2}([a,b])$ and a subsequence (still denoted u_{ν}) such that

$$u_{\nu} \rightharpoonup \overline{u} \text{ in } W^{1,2}, \text{ as } \nu \to \infty.$$

Step 2 (Lower semicontinuity). We now show that I is (sequentially) weakly lower semicontinuous; this means that

$$u_{\nu} \to \overline{u} \text{ in } W^{1,2} \implies \liminf_{\nu \to \infty} I(u_{\nu}) \ge I(\overline{u}).$$
 (4)

This step is independent of the fact that $\{u_{\nu}\}$ is a minimizing sequence. Using the convexity of f and the fact that it is C^1 we get

$$f(x, u_{\nu}, u'_{\nu}) \ge f(x, \overline{u}, \overline{u}') + \left| \frac{\partial f}{\partial \overline{u}} \right| (u_{\nu} - \overline{u}) + \left\langle \left| \frac{\partial f}{\partial \overline{u}'} \right|, u'_{\nu} - \overline{u}' \right\rangle. \tag{5}$$

Before proceeding further we need to show that the combination of *item* 3 and $\overline{u} \in W^{1,2}([a,b])$ leads to

$$\left|\frac{\partial f}{\partial \overline{u}}\right| \in L^2([a,b]) \text{ and } \left|\frac{\partial f}{\partial \overline{u}'}\right| \in L^2([a,b];\mathbb{R})$$
 (6)

Indeed let us prove the first statement, the other one being shown similarly. We have $(\beta_1 \text{ being a constant})$

$$\int_a^b \left| \frac{\partial f}{\partial \overline{u}} \right|^2 dx \le \beta^2 \int_a^b \left(1 + |\overline{u}| + |\overline{u}'| \right)^2 dx \le \beta_1 \left(1 + \|\overline{u}\|_{W^{1,2}}^2 \right) < \infty.$$

Using Hölder inequality and (6) we find that for $u_{\nu} \in W^{1,2}([a,b])$

$$\left|\frac{\partial f}{\partial \overline{u}}\right|\left(u_{\nu}-\overline{u}\right),\,\left\langle\left|\frac{\partial f}{\partial \overline{u'}}\right|;u'_{\nu}-\overline{u'}\right\rangle\in L^{1}([a,b]).$$

We next integrate (5) to get

$$I(u_{\nu}) \ge I(\overline{u}) + \int_{a}^{b} \left| \frac{\partial f}{\partial \overline{u}} \right| (u_{\nu} - \overline{u}) dx + \int_{a}^{b} \left\langle \left| \frac{\partial f}{\partial \overline{u}'} \right| ; u_{\nu}' - \overline{u}' \right\rangle dx. \tag{7}$$

Since $u_{\nu} - \overline{u} \rightharpoonup 0$ in $W^{1,2}$ (i.e. $u_{\nu} - \overline{u} \rightarrow 0$ in L^2 and $u'_{\nu} - \overline{u}' \rightarrow 0$ in L^2) and (6) holds, we deduce, from the definition of weak convergence in L^2 , that

$$\lim_{\nu \to \infty} \int_a^b \left| \frac{\partial f}{\partial \overline{u}} \right| (u_{\nu} - \overline{u}) \, dx = \lim_{\nu \to \infty} \int_a^b \left\langle \left| \frac{\partial f}{\partial \overline{u}'} \right| ; u_{\nu}' - \overline{u}' \right\rangle dx = 0.$$

Therefore returning to (7) we have indeed obtained that

$$\liminf_{\nu \to \infty} I(u_{\nu}) \ge I(\overline{u}).$$

Step 3. We now combine the two steps. Since $\{u_{\nu}\}$ was a minimizing sequence (i.e. $I(u_{\nu}) \to \inf\{I(u)\} = m$) and for such a sequence we have lower semicontinuity (i.e. $\liminf I(u_{\nu}) \ge I(\overline{u})$) we deduce that $I(\overline{u}) = m$, i.e. \overline{u} is a minimizer of (1).

Part 2 (Uniqueness). Assume that there exist $\overline{u}, \overline{v} \in u_0 + W_0^{1,2}([a,b])$ so that

$$I(\overline{u}) = I(\overline{v}) = m$$

and we prove that this implies $\overline{u} = \overline{v}$. Denote by $\overline{w} = (\overline{u} + \overline{v})/2$ and observe that $\overline{w} \in u_0 + W_0^{1,2}([a,b])$. The function $(u,u') \to f(x,u,u')$ being convex, we can infer that \overline{w} is also a minimizer since

$$m \le I(\overline{w}) \le \frac{1}{2}I(\overline{u}) + \frac{1}{2}I(\overline{v}) = m,$$

which readily implies that

$$\int_{a}^{b} \left[\frac{1}{2} f\left(x, \overline{u}, \overline{u}'\right) + \frac{1}{2} f\left(x, \overline{v}, \overline{v}'\right) - f\left(x, \frac{\overline{u} + \overline{v}}{2}, \frac{\overline{u}' + \overline{v}'}{2}\right) \right] dx = 0.$$

The convexity of $(u, \xi) \to f(x, u, \xi)$ implies that the integrand is non-negative, while the integral is 0. This is possible only if

$$\frac{1}{2}f\left(x,\overline{u},\overline{u}'\right) + \frac{1}{2}f\left(x,\overline{v},\overline{v}'\right) - f\left(x,\frac{\overline{u}+\overline{v}}{2},\frac{\overline{u}'+\overline{v}'}{2}\right) = 0 \quad \text{a.e. in } [a,b].$$

We now use the strict convexity of $(u, u') \to f(x, u, u')$ to obtain that $\overline{u} = \overline{v}$ and $\overline{u}' = \overline{v}'$ a.e. in [a, b], which implies the desired uniqueness, namely $\overline{u} = \overline{v}$ a.e. in [a, b].

4 Regularity theorem

Theorem 10. Let $(a,b) \subset \mathbb{R}$ be a bounded open interval. Let $f \in C^1([a,b] \times \mathbb{R} \times \mathbb{R})$, where f = f(x,u,u') satisfies the following conditions:

- 1. $(u, u') \rightarrow f(x, u, u')$ is convex for every $x \in [a, b]$;
- 2. there exist $\alpha_1 > 0$, $\alpha_3 \in \mathbb{R}$ such that

$$f(x, u, u') \ge \alpha_1 |u'|^2 + \alpha_3, \forall (x, u, u') \in [a, b] \times \mathbb{R} \times \mathbb{R}.$$

3. there exists a constant $\beta \geq 0$ so that for every $(x, u, u') \in [a, b] \times \mathbb{R} \times \mathbb{R}$

$$\left|\frac{\partial f}{\partial u}\right|, \left|\frac{\partial f}{\partial u'}\right| \le \beta \left(1 + |u| + |u'|\right).$$

Let $q \in C^{\infty}([a,b] \times \mathbb{R})$ satisfy

$$f(x, u, \xi) = \frac{1}{2}\xi^2 + g(x, u).$$

Then there exists $u \in C^{\infty}([a,b])$, a minimizer of (P). If, in addition, $u \to g(x,u)$ is convex for every $x \in [a,b]$, then the minimizer is unique.

Proof. We have from existence theorem (Theorem 9) that a minimizer $\overline{u} \in W^{1,2}(a,b)$ exists and if g is convex, \overline{u} is unique. Using Theorem 3, \overline{u} satisfies the weak form of the Euler-Lagrange equation:

$$\int_{\Omega} \left[f_u(x, u, \nabla u) \varphi + \langle f_{\xi}(x, u, \nabla u), \nabla \varphi \rangle \right] dx = 0, \quad \forall \varphi \in W_0^{1,p}(\Omega).$$

Since

$$f(x, u, \xi) = \frac{1}{2}\xi^2 + g(x, u),$$

The partial derivatives of $f(x, \overline{u}, \xi)$ are given by:

$$f_u(x, \overline{u}, \xi) = g_u(x, \overline{u})$$
 and $f_{\xi}(x, \overline{u}, \xi) = \xi$.

Substituting these into the weak form of the Euler-Lagrange equation, we obtain:

$$\int_{a}^{b} \left[g_{u}(x, \overline{u})v + \overline{u}'v' \right] dx = 0, \quad \forall v \in C_{0}^{\infty}(a, b),$$

then

$$\int_a^b \overline{u}'v' dx = -\int_a^b g_u(x, \overline{u})v dx, \quad \forall v \in C_0^\infty(a, b).$$

We now want to show that $\overline{u} \in W^{2,2}(a,b)$. We know $\overline{u} \in W^{1,2}$. First we show that $\overline{u} \in L^{\infty}$ and then $g_u(x,\overline{u}) \in L^2$.

Using Theorem 2, we know that if $\overline{u} \in W^{1,2}(a,b)$, then \overline{u} is also in $C^{0,\alpha}(a,b)$, which means \overline{u} is Hölder continuous.

Since \overline{u} is continuous over the compact set [a,b], the image $\overline{u}([a,b])$ is also compact. This implies that there exists some bound [c,d] such that $\overline{u}([a,b]) \subseteq [c,d]$, meaning that \overline{u} is finite and therefore belongs to $L^{\infty}(a,b)$.

Now we want to show $g_u(x, \overline{u}) \in L^2$ We need to check that the following integral is finite:

$$\int_a^b |g_u(x,\bar{u})|^2 \, dx < \infty.$$

From $u \in L^{\infty}(a,b)$, we can define $\sup \bar{u} = c$. Then, we have:

$$|\bar{u}(x)| < c$$
 for all $x \in [a, b]$.

Next, define the set K as:

$$K = [a, b] \times [-c, c].$$

This set K represents the domain [a, b] for x and the range [-c, c] for $\bar{u}(x)$. Since g(x, u) is C^{∞} and K is a compact set, it follows that $g_u(x, u)$ is bounded on K. Therefore, there exists a constant T such that:

$$|g_u(x,u)| \leq T$$
 for all $(x,u) \in K$.

We can now bound the square of the integral of $g_u(x, \bar{u})$ over (a, b) as follows:

$$\int_{a}^{b} |g_{u}(x,\bar{u})|^{2} dx \le \int_{a}^{b} (T)^{2} dx = (T)^{2} \int_{a}^{b} 1 dx = (T)^{2} (b-a).$$

Since $(T)^2(b-a)$ is finite, it follows that:

$$\int_{a}^{b} |g_u(x,\bar{u})|^2 dx < \infty,$$

which implies that $g_u(x, \bar{u}) \in L^2(a, b)$.

We have already established that $\bar{u} \in L^{\infty}(a,b)$ and $g_u(x,\bar{u}) \in L^2(a,b)$. Now, we aim to establish the following inequality:

$$\left| \int_{a}^{b} u'v' \, dx \right| \le \|g_{u}(x, \bar{u})\|_{L^{2}} \|v\|_{L^{2}}, \quad \forall v \in C_{0}^{\infty}(a, b).$$

Recall from the weak form of the Euler-Lagrange equation that:

$$\int_a^b g_u(x,\bar{u})v\,dx = -\int_a^b u'v'\,dx.$$

To establish this inequality, we apply the Cauchy-Schwarz inequality in L^2 space, which states that for any functions f(x) and g(x) in $L^2(a,b)$:

$$\left| \int_{a}^{b} f(x)g(x) \, dx \right| \le \|f\|_{L^{2}} \|g\|_{L^{2}}.$$

Let $f(x) = g_u(x, \bar{u})$ and g(x) = v(x). Applying the Cauchy-Schwarz inequality, we get:

$$\left| \int_a^b g_u(x, \bar{u}) v(x) \, dx \right| \le \|g_u(x, \bar{u})\|_{L^2} \|v\|_{L^2}.$$

Substituting the earlier integral relation $\int_a^b g_u(x,\bar{u})v(x)\,dx = -\int_a^b \overline{u}'(x)v'(x)\,dx$, we have:

$$\left| \int_a^b \overline{u}' v' \, dx \right| = \left| - \int_a^b g_u(x, \overline{u}) v \, dx \right| \le \|g_u(x, \overline{u})\|_{L^2} \|v\|_{L^2}.$$

Therefore,

$$\left| \int_a^b \overline{u}'v' \, dx \right| \le \|g_u(x, \overline{u})\|_{L^2} \|v\|_{L^2}, \quad \forall v \in C_0^{\infty}(a, b).$$

Now, to show that $u \in W^{2,2}(a,b)$, we will use Theorem 1.

Next, consider the derivative \bar{u}' . The inequality in Theorem 1 (ii) holds for \bar{u}' because it satisfies the Cauchy-Schwarz inequality we derived earlier:

$$\left| \int_{a}^{b} \bar{u}'v' \, dx \right| \le \|g_{u}(x, \bar{u})\|_{L^{2}} \|v\|_{L^{2}}, \quad \forall v \in C_{0}^{\infty}(a, b).$$

This inequality is of the same form as the one in Theorem 1 (ii), with \bar{u}' playing the role of u in the theorem. Therefore, by Theorem 1, we conclude that $\bar{u}' \in W^{1,2}(a,b)$.

Since $\bar{u}' \in W^{1,2}(a,b)$, it follows that the second derivative \bar{u}'' exists almost everywhere, and $\bar{u}'' \in L^2(a,b)$. Consequently, $\bar{u} \in W^{2,2}(a,b)$.

We have already established that $\overline{u} \in W^{2,2}(a,b)$, meaning that \overline{u}'' exists and $\overline{u}'' \in L^2(a,b)$. Now, we want to show that $\overline{u}'' = g_u(x,\overline{u})$.

Starting from the weak form of the Euler-Lagrange equation, we have:

$$\int_{a}^{b} (g_u(x, \bar{u})v + \overline{u}'v') dx = 0, \quad \forall v \in C_0^{\infty}(a, b).$$

Next, we integrate by parts. The integration by parts formula is:

$$\int_a^b \overline{u}'v' \, dx = \left[\overline{u}'v\right]_a^b - \int_a^b \overline{u}''v \, dx.$$

and

$$\left[\overline{u}'v\right]_a^b \quad \text{evaluates to } 0 \quad \text{since } v \in C_0^\infty(a,b) \quad \text{and } v(a) = v(b) = 0$$

then

$$\int_a^b \overline{u}'v' \, dx = -\int_a^b \overline{u}''v \, dx.$$

Substituting this into the weak form of the Euler-Lagrange equation, we get:

$$-\int_a^b \overline{u}''v \, dx + \int_a^b g_u(x, \overline{u})v \, dx = 0, \quad \forall v \in C_0^{\infty}(a, b).$$

This simplifies to:

$$\int_{a}^{b} (-u'' + g_u(x, \bar{u})) v \, dx = 0, \quad \forall v \in C_0^{\infty}(a, b).$$

Since this equality holds for all functions $v \in C_0^{\infty}(a, b)$, due to the Fundamental Theorem of Calculus of variations:

$$-\overline{u}''(x) + g_u(x, \overline{u}(x)) = 0$$
 almost everywhere in (a, b) ,

or equivalently,

$$\overline{u}''(x) = g_u(x, \overline{u}(x))$$
 almost everywhere in (a, b) .

This completes the proof that $\overline{u}'' = g_u(x, \overline{u})$.

Now, since $\bar{u} \in W^{2,2}(a,b)$, we know that $\bar{u}' \in W^{1,2}(a,b)$.

Applying Theorem 2 with p = 2 > 1 = n, we conclude that:

$$\bar{u}' \in C^{0,\alpha}(a,b)$$
 for some $\alpha \in [0,1]$.

This means that \bar{u} is in $C^{1,\alpha}(a,b)$, and in particular \bar{u} is $C^1(a,b)$. Since g(x,u) is C^{∞} , it follows that $g_u(x,\bar{u})$ is $C^1(a,b)$ as well. We previously established that $\bar{u}'' = g_u(x, \bar{u})$ a.e., which implies:

$$\bar{u}'' \in C^1(a,b).$$

Now, because \bar{u}'' is $C^1(a,b)$, it follows that \bar{u} is in $C^3(a,b)$, meaning that the third derivative \bar{u}''' exists.

Repeating this process, we observe:

- 1. Since $\bar{u} \in C^3(a,b)$, it follows that \bar{u}''' exists and is continuous,
- 2. Since $g_u(x, u)$ is C^{∞} , the function $g_u(x, \bar{u})$ is C^3 ,
- 3. Since $\overline{u}''(x) = g_u(x, \overline{u}(x)), \ \overline{u}'' \in C^3$, so \overline{u} is in C^5 .

Continuing this iterative process, we eventually establishing that:

$$\bar{u} \in C^{\infty}(a,b).$$