Integer Division

Division of Unsigned Integers

Two operands: Divisor and Dividend

- $D = Q \times M + R$
- Long-hand-division (paper-and-pencil method)

Binary Division

- In binary division the only possibilities for quotient bits are 0 and 1
- Divisor is positioned appropriately with respect to the dividend and perform subtraction
- 1101) 100010010(10101 1101 10000

1**100**1

 If the remainder is 0 or positive, a quotient bit of 1 is determined

- $0001110 \\ 11001 \\ \hline 0001$
- The remainder is extended by another bit of the dividend
- The devisor is repositioned and another subtraction is performed
- If the remainder is negative, a quotient bit of 0 is determined
- The dividend is restored by adding back the divisor

n-bit Unsigned Division - Restoring Division

- For any n-bit division, we will have n/2-bit divisor and n-bit dividend
- It produces n-bit quotient and n-bit remainder
- Restoring division method uses 3 registers
 - Register M: $m_n m_{n-1} \dots m_1 m_0$. (n+1)-bit length
 - It holds n/2-bit positive divisor. The MSB holds 0
 - Register Q: $q_{n-1} \dots q_1 q_0$
 - It holds *n*-bit positive dividend at the start of the operation
 - After the division is complete, it will contain *n*-bit quotient
 - Register A: $a_n a_{n-1} \dots a_1 a_0$. (n+1)-bit length
 - Set to 0 at the beginning of the operation
 - After the division is complete, it will contain n-bit remainder
 - The extra bit in MSB of A and M accommodates the sign bit during subtraction
 - Subtraction is done using 2's complement arithmetic

Figure 6.21 Circuit arrangement for binary division.

- Algorithm:
- Do the following steps *n* times
- 1. Shift A and Q left one binary position
- 2. Subtract M from A, and place the answer back in A
- 3. If the sign of A is 1
 - 1. Set q_0 to 0
 - 2. Add M back to A (i.e. restore A)
- 4. Otherwise, set q_0 to 1

- 4-bit division:
- 8/3
 - Quotient: 2
 - Remainder: 2

- Algorithm:
- Do the following steps *n* times
- 1. Shift A and Q left one binary position
- 2. Subtract M from A, and place the answer back in A
- 3. If the sign of A is 1
 - 1. Set q_0 to 0
 - 2. Add M back to A (i.e. restore A)
- 4. Otherwise, set q_0 to 1

Algorithm:

Do the following steps *n* times

- 1. Shift A and Q left one binary position
- 2. Subtract M from A, and place the answer back in A
- 3. If the sign of A is 1
 - 1. Set q_0 to 0
 - 2. Add M back to A (i.e. restore A)
- 4. Otherwise, set q_0 to 1

Set q_0 :

Restore:

- Algorithm:
- Do the following steps *n* times
- 1. Shift A and Q left one binary position
- 2. Subtract M from A, and place the answer back in A
- 3. If the sign of A is 1
 - 1. Set q_0 to 0
 - 2. Add M back to A (i.e. restore A)
- 4. Otherwise, set q_0 to 1

Algorithm:

Do the following steps *n* times

- 1. Shift A and Q left one binary position
- 2. Subtract M from A, and place the answer back in A
- 3. If the sign of A is 1
 - 1. Set q_0 to 0
 - 2. Add M back to A (i.e. restore A)
- 4. Otherwise, set q_0 to 1

- The restoring division can be improved by avoiding the need for restoring A after unsuccessful subtraction
- Subtraction is said to be unsuccessful if the result is negative

Algorithm:

Step-1:

Do the following steps *n* times

- 1. Shift A and Q left one binary position
- If the sign of A is 0
 then, subtract M from A
 else, add M to A
- 3. If the sign of resulting A is 0 then set q_0 to 1 Otherwise, set q_0 to 0

Step-2:

If the sign of A is 1, add M to A

4-bit division:

M

00011

First Cycle:

Algorithm:

Step-1:

Do the following steps *n* times

- 1. Shift A and Q left one binary position
- If the sign of A is 0
 then, subtract M from A
 else, add M to A
- 3. If the sign of resulting A is 0 then set q_0 to 1 Otherwise, set q_0 to 0

Step-2:

If the sign of A is 1, add M to A

4-bit division:

Second Cycle:

Algorithm:

Step-1:

Do the following steps n times

- 1. Shift A and Q left one binary position
- If the sign of A is 0
 then, subtract M from A
 else, add M to A
- 3. If the sign of resulting A is 0 then set q_0 to 1 Otherwise, set q_0 to 0

Step-2:

If the sign of A is 1, add M to A

Third Cycle:

Algorithm:

Step-1:

Do the following steps *n* times

- 1. Shift A and Q left one binary position
- If the sign of A is 0
 then, subtract M from A
 else, add M to A
- 3. If the sign of resulting A is 0 then set q_0 to 1 Otherwise, set q_0 to 0

Step-2:

If the sign of A is 1, add M to A

4-bit division: Μ 00001 Fourth Cycle: 0)001d Shift: 1110 Subtract: 1)1111 ((1 0 Set q_0 : 0001 Add: 0001d CC1d Remainder **Quotient**

Signed Integer Division

- There is no simple algorithms for directly performing division on signed operands
- In signed division, the negative operands can be preprocessed to transform them into positive values
- After using restoring or non-restoring division method, the results are transformed to the correct signed values

Combinational Array Division Circuit

Combinational Array Multiplier Circuit

Uses ripple carry adder

Combinational Array (CA) Division Circuit

- Analogous to the array multiplier
- Array divider can be realized by implementing the behaviour of each division step on a row of basic cells
- Basic cell in array divider depends on the specific division algorithm (restored or non-restored) to be implemented

Non-Restoring Algorithm:

- A row of cells accepts the intermediate remainder and divisor as input
- Addition or Subtraction should be implemented i.e. 1-bit full adder/subtractor to be implemented based on the sign

Algorithm:

Step-1:

Do the following steps *n* times

- 1. Shift A and Q left one binary position
- If the sign of A is 0
 then, subtract M from A
 else, add M to A
- 3. If the sign of resulting A is 0 then set q_0 to 1 Otherwise, set q_0 to 0

Step-2:

If the sign of A is 1, add M to A

4-bit division:

Basic Cell of a CA Division -Non-restoring Algorithm

• Dividend is 2*n*-bit length

$$D = d_{2n-1} d_{2n-2} \dots d_1 d_0$$

• Divisor is *n*-bit length

$$M = m_{n-1} m_{n-2} \dots m_1 m_0$$

adder (FA) that acts as Basic cell is a full an adder/subtractor_circuit

Dividend: 00001000 • D_{7-0} : $d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0$ $\begin{array}{c|c} \mathbf{M}_{3\text{-}0} \colon m_3 \, m_2 \, m_1 \, m_0 \\ \frac{d_7 \, m_3}{0 | \, |0} & 0 | \, |0 \end{array}$ Divisor: 0011 **Addition**

• D_{7-0} : $d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0$ Dividend: 00001000 Divisor: 0011 **Subtraction**

• D_{7-0} : $d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0$ Dividend: 00001000

• M_{3-0} : $m_3 m_2 m_1 m_0$ Divisor: 0011

CA Division Circuit - Restoring Algorithm

- A row of cells accepts the intermediate remainder and divisor as input
- Subtraction should be implemented i.e. 1-bit full subtractor to be implemented
- Depending upon the outcome of subtraction
 - the row output can be restored intermediate remainder input to the row
 - the result of the subtraction

Basic Cell of a CA Division - Restoring Algorithm

• Dividend is 2*n*-bit length

$$D = d_{2n-1} d_{2n-2} \dots d_1 d_0$$

• Divisor is *n*-bit length

$$\mathsf{M} = m_{n-1} m_{n-2} \dots m_1 m_0$$

Basic cell is a full subtractor (FS) along with extra logic circuit

 $b_{\rm in}$: Barrow in

b_out: Barrow out

 $-b_{in}$ r_{i} : Remainder bit

when,

$$a=1$$
, $r_j=d_j$

$$a = 0$$
, $r_i = d_i - m_i - b_i$

- Algorithm:
- Do the following steps *n* times
- 1. Shift A and Q left one binary position
- 2. Subtract M from A, and place the answer back in A
- 3. If the sign of A is 1
 - 1. Set q_0 to 0
 - 2. Add M back to A (i.e. restore A)
- 4. Otherwise, set q_0 to 1

Dividend: 00001000 • D_{7-0} : $d_7 d_6 d_5 d_4 d_3 d_2 d_1 d_0$ Divisor: 0011 M_{3-0} : $m_3 m_2 m_1 m_0$

