Lecture 17. Isobaric, Isothermal and Adiabatic processes.

• Ideal Gas Law

$$PV = nRT$$

Last Time

Internal energy:

$$\Delta U = Q - W$$

$$\Delta V = nC_v \Delta T$$

$$U = \frac{\mathrm{dof}}{2} nRT$$

$$C_v = \frac{3}{2}R$$

Work done by ideal gas:

$$W = \int P(V) \ dV$$

$$W = P \cdot \Delta V$$
 if $P = \text{const}$

• Terms:

> isochoric: V constant

> isobaric: P constant

> isothermal: T constant

> adiabatic: Q = 0

Q: In the two situations below, a gas is heated from 300K to 400K. Compare heat added in these two cases.

less heat

$$Q = ?$$

$$AU = Q - W$$

$$Q = \Delta U + W_{ges}$$

$$\Delta T \quad P, \Delta V$$

$$Same \quad 1) \quad W = 0$$

$$2) \quad W > 0$$

Last Time

Heat for Constant Pressure and Constant volume:

isochenic

• Prove that for V = const: $Q = nC_{\nu}\Delta T$

$$Q = nC_v \Delta T$$

$$Q = \Delta U + W$$
; $W = P\Delta V = 0$ $\Rightarrow Q = \Delta U = h C_v \Delta T$
• Prove that for $P = const$: $Q = nC_p \Delta T$ where $C_p = C_v + R$

$$Q = nC_{p}\Delta T$$

$$C_p = C_v + R$$

$$P_{\Delta}V = n R_{\Delta}T$$

$$= n (C_s + R) \Delta T$$

- > isochoric: V constant
- > isobaric: P constant

Heat for Constant Pressure and Constant volume:

• Prove that for
$$V = const$$
: $Q = nC_v \Delta T$

•
$$\Delta U = nC_v \Delta T = Q - W$$
 • $W = P\Delta V = 0$

• Prove that for
$$P=const$$
: $Q=nC_p\Delta T$ where $C_p=C_v+R$

•
$$Q = \Delta U + W$$

•
$$\Delta U = nC_v \Delta T$$

•
$$W = P\Delta V = nR\Delta T$$
 (ideal gas law)

• So
$$Q = n(C_v + R)\Delta T$$

• Define:
$$C_p = C_v + R$$

• We get:
$$Q = nC_p \Delta T$$

- ➤ isochoric: *V* constant
- > isobaric: *P* constant

$$\Delta U = nC_v \Delta T$$

$$W = P\Delta V = nR\Delta T$$

$$Q = \Delta U + W$$

➤ isobaric: *P* constant

Constant Pressure: Summary

• Ideal Gas Law
$$\Longrightarrow PV = nRT$$

$$> P, n = \text{const} \implies \frac{V}{T} = \text{const} \quad \left(\frac{V_1}{T_1} = \frac{V_2}{T_2}\right)$$

$$\bullet \Delta U = Q - W$$

$$\triangleright \Delta U = nC_{\nu}\Delta T$$

$$\rightarrow W = P\Delta V$$

$$\triangleright Q = nC_p\Delta T$$

$$\succ C_p = C_v + R$$

➤ isobaric: *P* constant

 $(V \propto T)$

Constant Volume: Summary (Last Time)

- Ideal Gas Law $\implies PV = nRT$
 - $rightarrow n, V \text{ are constant} \Longrightarrow \frac{P}{T} = \text{const}$

$$\bullet \Delta U = Q - W$$

$$\rightarrow W = P\Delta V = 0$$

$$\triangleright$$
 So: $Q = \Delta U = nC_v \Delta T$

$$\left(\frac{P_1}{T_1} = \frac{P_2}{T_2}\right)$$

$$(P \propto T)$$

Q: Gas in a cylinder is slowly expanded while in contact with a heat reservoir so that its temperature remains constant. During this process, we can say that

$$\Delta U = Q - W$$

11

0

- A. Both Q and ΔU are 0
- B. Q is 0 and ΔU is positive
- C. Q is 0 and ΔU is negative
- D. ΔU is 0 and Q is positive
 - E. ΔU is 0 and Q is negative

A. Both Q and ΔU are 0

B. Q is 0 and ΔU is positive

C. Q is 0 and ΔU is negative

D. ΔU is 0 and Q is positive

E. ΔU is 0 and Q is negative

Constant T $\Longrightarrow \Delta U = 0$

W is positive (expansion)

First Law: $\Delta U = Q - W$

So Q = W > 0

Q: Which graph could represent the expansion of an ideal gas at constant temperature?

$$p = \frac{\cos st}{V}$$

Q: Which graph could represent the expansion of an ideal gas at constant temperature?

Have PV = nRT

So
$$P = \frac{\text{const}}{V}$$

Q: Given an isothermal process for an ideal gas, which graph best represents the heat transfer Q, work W, and internal energy ΔU , as the pressure increases?

Q: Given an isothermal process for an ideal gas, which graph best represents the heat transfer Q, work W, and internal energy ΔU , as the pressure increases?

W

Q: In the picture, process 1 and 3 are isothermal. During how many of the four processes does (positive) heat flow into the gas?

Q: In the picture, process 1 and 3 are isothermal. During how many of the four processes does (positive) heat flow into the gas?

4: isochoric

$$W = 0$$
 so $Q = \Delta U = nC_v \Delta T$

Positive Q since $P \uparrow \text{implies } T \uparrow \text{at constant } V$

1: isothermal

$$\Delta U = 0$$
 so $Q = W > 0$ since expanding

2 & 3:

These are the reverse of 4 & 1, so Q < 0

D. 3

E. 4

Work for constant temperature

1) Find
$$P(V)$$

2) Find
$$F(V)$$
 with $\frac{dF(V)}{dV} = P(V)$

3) Calculate
$$W = F(V_f) - F(V_i)$$

$$W = \int_{V_i}^{V_f} P(V) \, dV$$

Work for constant temperature

$$W = \int_{V_i}^{V_f} P(V) \, dV$$

1) Find P(V)

Ideal Gas Law gives: $P(V) = \frac{nRT}{V}$

2) Find F(V) with $\frac{dF(V)}{dV} = P(V)$

Can choose: $F(V) = nRT \ln(V)$

3) Calculate $W = F(V_f) - F(V_i)$

Get:
$$W = nRT \ln(V_f) - nRT \ln(V_i)$$

$$W = nRT \ln \left(\frac{V_f}{V_i}\right)$$

Constant Temperature: Summary

• Ideal Gas Law
$$\Longrightarrow PV = nRT$$

$$\triangleright$$
 $PV = \text{const so } P_1V_1 = P_2V_2 \qquad (P \propto 1/V)$

•
$$\Delta U = Q - W$$

$$\rightarrow \Delta U = 0$$

"isothermal"
$$\triangleright Q = W = \text{area under cur}$$

ightharpoonup Q = W =area under curve $= nRT \ln \left(\frac{V_f}{V_i} \right)$