

SEQUENCE LISTING

<110> Goryshin, Igor Y
Naumann, Todd A
Reznikoff, William S

<120> DOUBLE TRANSPOSITION METHODS FOR MANIPULATING NUCLEIC ACIDS

<130> 960296.97541

<140>
<141>

<150> 60/251482

<151> 2000-12-05

<160> 10

<170> PatentIn Ver. 2.1

<210> 1

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: LINKER A (FULL LENGTH)

<400> 1

ctgtctcttg atcagatcta ctgtgtata agagtcag

38

<210> 2

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: LINKER A (COMPRESSED)

<400> 2

ctgtctcttg atcagatgtg tataagagtc ag

32

<210> 3

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: LINKER B (FULL LENGTH)

<400> 3

ctgtctcttg atcagatcta gatgtgtata agagacag

38

<210> 4
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: LINKER B
(COMPRESSED)

<400> 4
ctgtctttt atcagatgtg tataagagac ag 32

<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER FWD2

<400> 5
cagatctcat gcaagcttga gctc 24

<210> 6
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 6
ggctctgtttt ctgacaaaact cgggc 25

<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: PRIMER

<400> 7
acgcgaaata cgggcagaca tggcc 25

<210> 8
<211> 3277
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Pgt4

<400> 8
gacagctgtc ttcttgatcag atctcatgca agcttggctg cagggggggg gggaaagcca 60

cgttgtgtct caaaatctct gatgttacat tgcaacaatg aaaaatataat catcatgaac 120
 aataaaacttc tctgttttca taaaacgatgata tacaagggtt gttagtgccg atatttcaacg 180
 gggaaacgtct tgctcgaggc cgcgatataa ttcccaacatg gatgtcgatt tatatggtaa 240
 taaatgggtc cggatataatg tcggcaacatc aggtcgacaa atctatcgat tgatgtggaa 300
 gcccgtatgc ccaggatgtt ttcttgcacaa tgccaaagggt acgcgtgcac atgtatgttac 360
 agatgatgtc tgcatgacaa atcggtgcac gaaatttatg ctcttcggcc ccatcaacga 420
 ttttatccgt actctgtatg atgcgttggt acttcaccaat gcgtatcccg ggaaaacagc 480
 attgcaggta ttgaagaatg atccgttgc acggatgtt atgttgccg ctgcgtccgt 540
 gtttcgtccg cctgttgcatt cgatcttgc ttgttaatgtt cttttaaacg gcgatcgcc 600
 attcgtctc gctcaggcgc aatccacaaatg gaataaccgtt tggttgcgtatg cagtgatgtt 660
 ttagatcaggc cgttaatggc ggcgttgcga aacagtctgg aagaatgtc aaatgttcc 720
 gccattctca cggatgtacg tgctcaactca tggtgttattc tactgtatgtt accttattt 780
 tgacgagggg aataatataatg gtgtatgtt tggtgttgcga gtccgtatgc cagaccgata 840
 ccaggatctt ggcattctat gggactgcct cgggtatgtt ttcttcgtatc tagacaaacg 900
 gtttttcaaa aatatgttgc ttgataatcc tgatgtatgtt aaatttgcgt ttcatgttg 960
 gtcgtatgtc tttttcaatg cagaatgttgc taatttgcgtt ttacacttgcg agagacttac 1020
 gtdgtatgtt gggccgcgcg gttttgttgc aataatccaaatg ttcttcgttgc tggttgcgtatg 1080
 cagatcacccg atcttcggccaa cAACGCGAC cgttccgttgc caaagaaaaa gttccaaatc 1140
 accaaatgtt ccacccatcaa cAAAGCTTC atcaaccgtg gtcccttcacatd ttcttcgttgc 1200
 gatgttgggg cgattcagc cttgtatgttgc tgcaacaaatg ctttcgtatcc acggacacat 1260
 cagccccccc cccccccctgc aggtcgactc tagaggatcc cgggttacccg agtctcgaaatt 1320
 cagatctgtat cagaagacagc ctgtcgacgt cttgttgcac gtttccggaa atgtgcgcg 1380
 gaacccttat ttgttattt ttcttgcacaaatc atccaaatatg gtatccgtcc atgagacata 1440
 aaccctgtata aatgttccatc taatgttgcga aaaaaggaaatg tgatgtatgtt caacatcc 1500
 gttgtccctt tatttccttc tggttgcgtatc ttgttgcgtt tggttgcgtatc tggttgcgtatc 1560
 cgtctgttgc agtaaaatgt gtcgtatgc agtttgggtc acggatgttgc tacatcgac 1620
 tggatctcaaa cagcggttgcg atcccttgcgat gttttccgtcc gggaaacgtt ttcccaatg 1680
 tgacactttt taatgttgcgat ctatgttgcg cttgtatgttgc acggatgttgc gggggccatc 1740
 aacgtactgg tcgcgcgcata cactatgttgc aatgttgcgtt gtttgcgtatc tgaccatgtc 1800
 cagaaaacgaa ttccatgttgc ggcgtatgc aatgttgcgtt acggatgttgc gggccatc 1860
 tgagtgtataa cactcgccgc aacttacttc tgcaacatgttgc acggaggacg aaggacttac 1920
 cccgtttttt gcaacatcgtt gggggatgtatc taacttgcgtt tgatgttgcgaa gacccggcgc 1980
 tgaatgttgcg cttatccaaac gggactcgatc gggactacatc acggatgttgc ggggttgcgtt 2040
 cgttgcgcaaa actatataatc gggactactac ttacttgcgtt ttccggccaa caatataatg 2100
 atcgatgttgc gggatgttgc gggccatcgtt ttccggccaa atcgatgttgc ggggttgcgtt 2160
 gttttatgtc tgataatgttgc gggccatcgtt acggatgttgc ttccggccatcgtt ggggttgcgtt 2220
 tggggccatca tggttgcgtt cccctgtatgc tgatgttgcgtt cttatccatc acggccggg 2280
 ctatggatca acggatgttgc cttatccatc acggatgttgc gggccatcgtt ggggttgcgtt 2340
 aactgttgcg cccaaatgttgc cttatccatc acggatgttgc gggccatcgtt ggggttgcgtt 2400
 tttaaatggat cttatccatc acggatgttgc gggccatcgtt ggggttgcgtt gggccatcgtt 2460
 agtttttgcgtt cttatccatc acggatgttgc gggccatcgtt ggggttgcgtt gggccatcgtt 2520
 cttttttttc ggcgtatgc tttatccatc acggatgttgc gggccatcgtt ggggttgcgtt 2580
 ttgttgcgtt ggtatcaggat cttatccatc acggatgttgc gggccatcgtt ggggttgcgtt 2640
 cgcagatacc aataatgttgc tttatccatc acggatgttgc gggccatcgtt ggggttgcgtt 2700
 ctgtgttgcaccc ggcgtatccatc acggatgttgc gggccatcgtt ggggttgcgtt gggccatcgtt 2760
 gggatgttgcg ggcgtatccatc acggatgttgc gggccatcgtt ggggttgcgtt gggccatcgtt 2820
 gggccatcgtt acggatgttgc gggccatcgtt ggggttgcgtt gggccatcgtt ggggttgcgtt 2880
 aactgttgcg cttatccatc acggatgttgc gggccatcgtt ggggttgcgtt gggccatcgtt 2940
 cggccatcgtt tttatccatc acggatgttgc gggccatcgtt ggggttgcgtt gggccatcgtt 3000
 gggggaaaacgc cttatccatc acggatgttgc gggccatcgtt ggggttgcgtt gggccatcgtt 3060
 gattttttgcgtt atcgatgttgc gggggccgtt gggccatcgtt ggggttgcgtt gggccatcgtt 3120
 tttttatccatc acggatgttgc gggccatcgtt ggggttgcgtt gggccatcgtt ggggttgcgtt 3180
 ctgtatccatc acggatgttgc gggccatcgtt ggggttgcgtt gggccatcgtt ggggttgcgtt 3240
 gaaacccatc acggatgttgc gggccatcgtt ggggttgcgtt gggccatcgtt ggggttgcgtt 3300

<210> 9
<211> 7814
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Pgt7

<400> 9

tatatacttt agattgtttaaaaacttcat tttaattta aaaggatcta ggtgaagatc 6960
cttttgata atotcatgac caaaatccct taacgtgagt ttccgttcca ctgagcgtca 7020
gaccggtag aaaaatccctt agatgttctc tgagatctt ttttctcg cgtaatctgc 7080
tgcttgc当地 caaaaaacc accgttacca ggctgtt gtttgc当地 tcaagagcta 7140
ccaaacttctt ttccgaaggta aactggcttc agcagagcgc agataccaaa tactgtctt 7200
ctatgttgc cgtatgttgg ccaccatctc aagaactctg tagcaccgc tacataacctc 7260
gtctgttca ttctgttacc agtggctgtt gccagtgccg ataagtctgt tcttacccgg 7320
ttggactcaa gacgatgtt accggataa ggcgcagcgtt cggctgaaac ggggggttcg 7380
tgcacacago ccagtttgcg gogaacgacc tacaccgaaac tgatgttctt acagctgag 7440
ctatgagaaa ggcacacgtt tcccaaggaa agaaaaggccg acaggatctt gtaaaggccg 7500
agggtcgaaa caggagagcg cacgaggagg ctccagggg gaaacgcctg gtatctt 7560
agtccctgtc ggtttccca ctctgttactt gagegtcgat ttttgtatg ctcgtcagg 7620
ggccgagcc tatggaaaaaa cgccacaaac gggcccttt tacggatctt ggcctttgc 7680
tggccctttt ctcacatgtt ttccctgtc ttatccctt attcgttgcg taaccgtattt 7740
acccgctttt agttagtgcg taccgtcgcg cgcacccgaa cgacccgacg cagcgtca 7800
gtgagcggagg aagc 7814

<210> 10

<211> 9265

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Pgt8

<400> 10

ctaagaaacc attatttatca tgacattaac ctataaaaat aggctatca cgaggccctt 60
tcgtcttca gggtcgtca ctggccgtt tccagtcggg aaacctgtcg tgccagctgc 120
attaatgttca cggcggccgc gggggagag ggggggttgcg tattttggcgc cagggtgg 180
tttttttca ccgttgcggcc gggcaacage tgatgtccct tccaccgtctg gcctgagag 240
atggtcgacca agccgttccac gctgggttgc cccaggccg gaaaatctgtt tttgtatgt 300
gttgcacccg ggtatataaca tgatgttgcg tccgtatgtt cgtatcccaac taccgagata 360
tgcacacaa ccgcacggcc gggactgttgcg atggccgtca tgccggcccg cgcacatgt 420
tcgttgcggcc ccacccatgtc agtggggacg atggccatctat tcagcatttg catgggtt 480
tggaaaaaccg acatggcact ccgttgcgttccg tccgttccg ctatcggtcg aatttgcatt 540
cgagtggat atttatgtca gcccggccgaa cgcacccggc cccggacacgaa atttaatggg 600
cccgccatca aggccggatcc ttgttgcggcc aatggccatca gatgtcccaac gcccacgtcg 660
tgaccgttcc ttgttgcggcc aataataatctg ttgtatgttgcg tttttcccgca gatcatcaaga 720
aataacgcggc gaacatgttgcg tccatccatctg tccatccatctg gatcatccatc 780
ggatgttca tgatgttgcg actggccgtt tgccggccg gatgttgcac ccgcgttta 840
caggcttgcg ccgcgttccatcttccatccacca cgcacccggc cgcgttgcacc cagttgtatgc 900
gcgcggatatt taatccggcc gacaatgttgc gacggccgtt gacggggccag actggggatgt 960
gcacccggccaa tcacggccaa ctgttttgcg gccagttgtt tgccggccg gttggaaatgt 1020
taatttcgttcc ctggccatctg ctgtttccact tttttcccg tttttcccgca aacctgttgc 1080
gcctgggttca ccacccggcc aacggctgtt taagggacac ccgcataactc tgcgcacatcg 1140
tataacgttca ttgttgcgttccatccacca ctgttttgcg tttttcccg ggcgttcatat 1200
gcacccggcc gaaagggtttt gacccatctg atgggttgcg cagctgtggg tcttggccac 1260
gggttgcgttca gatgttgcgttcc tttttcccg gacccggccg gacggccgtt gacggggccat 1320
gtgatgttgcg tttttcccg gacccggccg gacccggccg gacggccgtt gacggggccat 1380
ttgttgcggaa ttgttgcggcc aataacatgttcc acacccggcc gacggggccg gttttcccg 1440
aacaaaaaaaaaa ccacccggcc aacggccgtt tggttgcggcc gatcaacggcc tccatccatct 1500
ttttcccgcaag gtaactgttgcg tccacggccg gacccggccg gacccggccg gttttcccg 1560
ggccgttgcg gggccacccatccatccacca ctgttttgcg tttttcccg gacccggccg 1620
aatctgttca ccgttgcgttcc tttttcccg gacccggccg gacccggccg gttttcccg 1680
aagacgtatgttcc tttttcccg gacccggccg gacccggccg gacccggccg gttttcccg 1740
gcggccatgttcc gggccacccatccatccacca ctgttttgcg tttttcccg gacccggccg 1800
aaggccacccatccatccacca gggccacccatccatccacca ctgttttgcg tttttcccg 1860
aacaggagag ccacccggcc gggccacccatccatccacca ctgttttgcg tttttcccg 1920
cggttgcgttcc tttttcccg gacccggccg gacccggccg gttttcccg gacccggccg 1980

gctttccccg tcaagctcta aatcgaaaaa tcgactgtct cttatacaca tcttgagtga 9240
gtgagaacct gcattaaatga atcg 9265

QBMAD\319926.1

DOUBLE TRANSPOSITION METHODS FOR MANIPULATING NUCLEIC ACIDS

Inventors: Igor Yu Goryshin/Todd A. Naumann/William S. Reznikoff

Application No.:

Docket Number: 960296,97541

TABLE 1

Insert #	Δ #	Invert End	Δ End	Size of Partial ORFs	Complete ORFs		Grow w/o IPTG
					Partial ORFs	ORFs	
1	1.3	1073109	1094823	2177 ^b b1028b1012	b1013putA:putB:phobtB1021-1025;tra5 ^a b1027		Y
2	2.8	2776930	2770104	6826 ^b b2638b2647	b2639:b2646		Y
3	3.1	4407731	4403605	4126 ^b yifI	yifB:yacB:yifH		Y
4	4.2	3735047	3725227	9821 ^b yifB	yifB:yifA:xifF:xyG:xyH:xyI:xyR:b3570		Y
4	4.6	3735047	3723521	11526 none	yah:yaa:yab:xyB:xyA:xyIF:xyG:xyH:xyI:xyR:b3570		N
4	4.9	3735047	3719490	15537 yifS	glb:glc:cyah:yala:yah:xyB:xyI:xyA:xyF:yifG:xyH:xyI:xyR:b3570		Y
5	5.1	1224154	1210042	14112 mcrA:minD	b1180:b1173:minE		Y
6	6.2	3045059	3042244	2805 ^b bgaA:gcpP	yifF		N
7	7.1	2772369	2767042	12227 b653:b2647	b2634:b2646		Y
8	8.4	3882592	3882500	92 none	none		N
9	9.7	4589240	4589593	5853 minD:bsr ^a	yifN:yifM:b44556		Y
10	10.3	4141018	4117566	23522 minA:trnC	nsU:nsV:nsW:nsY:nsZ:nsT:nsL:nsM:nsJ:nsI:nsH:nsF:nsG:nsY:nsE:nsD:nsC:nsB:nsA:nsD:nsG		N
11	11.3	2793059	2795902	2803 gabF:b2668	yab:t2665:b2667		Y
12	12.17	141966	12088	2078 none	dnak		N
13	13.19	4542104	4546111	4507 fmcC:fimH	fmcD:fimF:fimG		Y
14	14.17	3821524	3818998	2526 spoT	tpo2:grmk		N
15	15.17	1570686	1544492	26194 ydcY:ddG	fndG:fndH:t4ntb:1477:b1478:sfCA:RpsV:b1481:osmC:b1483-1491:xsA:xsG:adG		Y