

Simultaneous Localization and Mapping (SLAM)

Lecture 03

SLAM Fundamentals

Process Model

The state transition model for the vehicle is given as

$$x_{v}(k) = f(x_{v}(k-1), u(k-1), w(k-1))$$

where F is

$$F_{[i,j]} = \frac{\partial f_{[i]}}{\partial x_{[j]}} (\hat{x}(k-1), u(k-1), 0)$$

 The augmented state vector containing both the state of the vehicle and the state of all landmark locations is

$$x(k) = \begin{bmatrix} x_v^T(k) & p_1^T & \dots & p_N^T \end{bmatrix}^T$$

SLAM Fundamentals

Observation Model

The observation model is given as

$$z(k) = h(x(k), v(k))$$

where

- v(k) is a vector of uncorrelated observation errors with zero mean and variance R(k)
- h is a non-linear function that relates the sensor output z(k) to the state vector x(k) when observing a landmark and is written as

$$J_{h_{[i,j]}} = \frac{\partial h_{[i]}}{\partial x_{[j]}} (\widetilde{x}(k), 0)$$

SLAM Example

A Single Landmark

Robot Process Model

Kinematic Equations

$$\dot{x} = V \cos \varphi$$

$$\dot{y} = V \sin \varphi$$

$$\dot{\varphi} = \frac{V \tan \gamma}{L}$$
Non-linear!

Radar Location

$$\begin{bmatrix} x(k+1) \\ y(k+1) \\ \varphi(k+1) \end{bmatrix} = \begin{bmatrix} x(k) + \Delta t V(k) \cos \varphi(k) \\ y(k) + \Delta t V(k) \sin \varphi(k) \\ \varphi(k) + \frac{\Delta t V(k) \tan \gamma(k)}{L} \end{bmatrix} + w(k)$$

Robot Process Model

Kinematic Equations

$$\dot{x} = V \cos \varphi$$

Objective: Based on system inputs, V and γ (with sensor feedback for regulation, i.e. optical encoders) at time k, estimate the vehicle position at time (k+1)

Radar Location

$$\begin{bmatrix} x(k+1) \\ y(k+1) \\ \varphi(k+1) \end{bmatrix} = \begin{bmatrix} x(k) + \Delta t V(k) \cos \varphi(k) \\ y(k) + \Delta t V(k) \sin \varphi(k) \\ \varphi(k) + \frac{\Delta t V(k) \tan \gamma(k)}{L} \end{bmatrix} + w(k)$$

Landmark Process Model

Radar Location

Recall that in the SLAM algorithm, landmarks are assumed to be stationary. Therefore,

$$p_{i}(k+1) = p_{i}(k)$$

$$\begin{bmatrix} x_{i}(k+1) \\ y_{i}(k+1) \end{bmatrix} = \begin{bmatrix} x_{i}(k) \\ y_{i}(k) \end{bmatrix}$$

$$\begin{bmatrix} x_{1}(k+1) \\ y_{1}(k+1) \end{bmatrix} = \begin{bmatrix} x_{1}(k) \\ y_{1}(k) \end{bmatrix}$$

Overall System Process Model

$$\begin{bmatrix} x(k+1) \\ y(k+1) \\ \varphi(k+1) \\ x_1(k+1) \\ y_1(k+1) \end{bmatrix} = \begin{bmatrix} x(k) + \Delta t V(k) \cos \varphi(k) \\ y(k) + \Delta t V(k) \sin \varphi(k) \\ \varphi(k) + \frac{\Delta t V(k) \tan \gamma(k)}{L} \\ x_1(k) \\ y_1(k) \end{bmatrix} + \begin{bmatrix} w_x(k) \\ w_y(k) \\ w_{\varphi}(k) \\ 0 \\ 0 \end{bmatrix}$$

Observation Model

Radar Location

$$z(k) = h(x(k), v(k))$$

The radar used in the experiment returns the range $r_i(k)$ and bearing $\theta_i(k)$ to a landmark i. Thus, the observation model is

$$r_i(k) = \sqrt{(x_i - x_r(k))^2 + (y_i - y_r(k))^2} + v_r(k)$$

$$\theta_i(k) = \arctan\left(\frac{y_i - y_r(k)}{x_i - x_r(k)}\right) - \varphi(k) + v_{\theta}(k)$$

Prediction

$$\hat{x}(k)^{-} = f(\hat{x}(k-1), u(k-1), 0)$$

$$x(k+1) = \begin{bmatrix} y(k) + \Delta t V(k) \sin \varphi(k) \\ \varphi(k) + \frac{\Delta t V(k) \tan \gamma(k)}{L} \\ x_1(k) \\ y_1(k) \end{bmatrix} + \begin{bmatrix} w_y(k) \\ w_{\varphi}(k) \\ 0 \\ 0 \end{bmatrix}$$

$$P(k)^{-} = F(k)P(k-1)F(k)^{T} + W(k)Q(k-1)W(k)^{T}$$

 $x(k) + \Delta t V(k) \cos \varphi(k)$

 $w_{x}(k)$

$$F(k) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial \varphi} & \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial y_1} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial \varphi} & \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial y_1} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial \varphi} & \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial y_1} \\ \frac{\partial f_4}{\partial x} & \frac{\partial f_4}{\partial y} & \frac{\partial f_4}{\partial \varphi} & \frac{\partial f_4}{\partial x_1} & \frac{\partial f_4}{\partial y_1} \\ \frac{\partial f_5}{\partial x} & \frac{\partial f_5}{\partial y} & \frac{\partial f_5}{\partial \varphi} & \frac{\partial f_5}{\partial x_1} & \frac{\partial f_5}{\partial y_1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\Delta t V(k) \sin \varphi(k) & 0 & 0 \\ 0 & 1 & \Delta t V(k) \cos \varphi(k) & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Prediction

$$\hat{x}(k)^{-} = f(\hat{x}(k-1), u(k-1), 0)$$

$$P(k)^{-} = F(k)P(k-1)F(k)^{T} + W(k)Q(k-1)W(k)^{T}$$

Prediction
$$\hat{x}(k)^{-} = f(\hat{x}(k-1), u(k-1), 0)$$

$$x(k+1) = \begin{bmatrix} x(k) + \Delta t V(k) \cos \varphi(k) \\ y(k) + \Delta t V(k) \sin \varphi(k) \\ \varphi(k) + \frac{\Delta t V(k) \tan \gamma(k)}{L} \\ \vdots \\ x_1(k) \end{bmatrix} + \begin{bmatrix} w_k(k) \\ w_y(k) \\ w_{\varphi}(k) \\ \vdots \\ w_{\varphi}(k) \end{bmatrix}$$

$$P(k)^{-} = F(k)P(k-1)F(k)^{T} + W(k)Q(k-1)W(k)^{T}$$

$$W(k) = \begin{bmatrix} \frac{\partial f_1}{\partial w_x} & \frac{\partial f_1}{\partial w_y} & \frac{\partial f_1}{\partial w_y} & \frac{\partial f_1}{\partial w_y} & \frac{\partial f_1}{\partial w_y} \\ \frac{\partial f_2}{\partial w_x} & \frac{\partial f_2}{\partial w_y} & \frac{\partial f_2}{\partial w_{\varphi}} & \frac{\partial f_1}{\partial w_{x_1}} & \frac{\partial f_1}{\partial w_{y_1}} \\ \frac{\partial f_3}{\partial w_x} & \frac{\partial f_3}{\partial w_y} & \frac{\partial f_3}{\partial w_{\varphi}} & \frac{\partial f_1}{\partial w_{x_1}} & \frac{\partial f_1}{\partial w_{y_1}} \\ \frac{\partial f_4}{\partial w_x} & \frac{\partial f_4}{\partial w_y} & \frac{\partial f_4}{\partial w_{\varphi}} & \frac{\partial f_4}{\partial w_{x_1}} & \frac{\partial f_4}{\partial w_{y_1}} \\ \frac{\partial f_5}{\partial w_x} & \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{x_1}} & \frac{\partial f_5}{\partial w_{y_1}} \\ \frac{\partial f_5}{\partial w_x} & \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{x_1}} & \frac{\partial f_5}{\partial w_{y_1}} \\ \frac{\partial f_5}{\partial w_x} & \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{x_1}} & \frac{\partial f_5}{\partial w_{y_1}} \\ \frac{\partial f_5}{\partial w_x} & \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{x_1}} & \frac{\partial f_5}{\partial w_{y_1}} \\ \frac{\partial f_5}{\partial w_x} & \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{x_1}} & \frac{\partial f_5}{\partial w_{y_1}} \\ \frac{\partial f_5}{\partial w_x} & \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{x_1}} & \frac{\partial f_5}{\partial w_{y_1}} \\ \frac{\partial f_5}{\partial w_x} & \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{x_1}} & \frac{\partial f_5}{\partial w_{y_1}} \\ \frac{\partial f_5}{\partial w_x} & \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{x_1}} & \frac{\partial f_5}{\partial w_{y_1}} \\ \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{y_1}} \\ \frac{\partial f_5}{\partial w_x} & \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{x_1}} & \frac{\partial f_5}{\partial w_{y_1}} \\ \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_y} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{\varphi}} & \frac{\partial f_5}{\partial w_{\varphi}} \\ \frac{\partial f_5}{\partial w_z} & \frac{\partial f_5}{\partial w_z}$$

Kalman Gain

$$K(k) = P(k)^{-} J_{h}(k)^{T} (J_{h}(k)P(k)^{-} J_{h}(k)^{T} + V(k)R(k)V(k)^{T})^{-1}$$

$$z(k) = \begin{bmatrix} r_i(k) \\ \theta_i(k) \end{bmatrix} = \begin{bmatrix} \sqrt{(x_i - \hat{x}(k)^-)^2 + (y_i - \hat{y}(k)^-)^2} \\ \tan^{-1} \left(\frac{y_i - \hat{y}(k)^-}{x_i - \hat{x}(k)^-} \right) - \hat{\varphi}(k)^- \end{bmatrix} + v(k)$$

$$J_{h}(k) = \begin{bmatrix} \frac{\partial h_{1}}{\partial x} & \frac{\partial h_{1}}{\partial y} & \frac{\partial h_{1}}{\partial \varphi} & \frac{\partial h_{1}}{\partial x_{1}} & \frac{\partial h_{1}}{\partial y_{1}} \\ \frac{\partial h_{2}}{\partial x} & \frac{\partial h_{2}}{\partial y} & \frac{\partial h_{2}}{\partial \varphi} & \frac{\partial h_{2}}{\partial x_{1}} & \frac{\partial h_{2}}{\partial y_{1}} \end{bmatrix} = \begin{bmatrix} \frac{x - x_{i}}{r} & \frac{y - y_{i}}{r} & 0 & \frac{x_{i} - x}{r} & \frac{y_{i} - y}{r} \\ \frac{y_{i} - y}{r^{2}} & \frac{x - x_{i}}{r^{2}} & -1 & \frac{y - y_{i}}{r^{2}} & \frac{x_{i} - x}{r^{2}} \end{bmatrix}$$

where
$$r = \sqrt{(x_i - x)^2 + (y_i - y)^2}$$

Kalman Gain

$$K(k) = P(k)^{-} J_{h}(k)^{T} (J_{h}(k)P(k)^{-} J_{h}(k)^{T} + V(k)R(k)V(k)^{T})^{-1}$$

$$z(k) = \begin{bmatrix} r_i(k) \\ \theta_i(k) \end{bmatrix} = \begin{bmatrix} \sqrt{(x_i - \hat{x}(k)^-)^2 + (y_i - \hat{y}(k)^-)^2} \\ \tan^{-1} \left(\frac{y_i - \hat{y}(k)^-}{x_i - \hat{x}(k)^-} \right) - \hat{\varphi}(k)^- \end{bmatrix} + v(k)$$

$$V(k) = \begin{bmatrix} \frac{\partial h_1}{\partial v_r} & \frac{\partial h_1}{\partial v_\theta} \\ \frac{\partial h_2}{\partial v_r} & \frac{\partial h_2}{\partial v_\theta} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Measurement Update

$$\hat{x}(k) = \hat{x}(k)^{-} + K(k) \Big(z(k) - H(k) \Big)$$

$$P(k) = \Big(I - K(k) J_h(k) \Big) P(k)^{-}$$
 Innovation

z(k) is 10 fabricated measurements of range and bearing to landmark 1.

There is only one landmark and it is incorporated into the model from the start.

SLAM Example

Multiple Landmarks

Overall System Process Model

$$\begin{bmatrix} x(k+1) \\ y(k+1) \\ \varphi(k+1) \\ p_1(k+1) \\ \vdots \\ p_N(k+1) \end{bmatrix} = \begin{bmatrix} x(k) + \Delta t V(k) \cos \varphi(k) \\ y(k) + \Delta t V(k) \sin \varphi(k) \\ \varphi(k) + \frac{\Delta t V(k) \tan \gamma(k)}{L} \\ p_1(k) \\ \vdots \\ p_N(k) \end{bmatrix} + \begin{bmatrix} w_x(k) \\ w_y(k) \\ w_{\varphi}(k) \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Landmark 1: (3,4) Landmark 2: (12,7) Landmark 3: (13,14)

Observation Model

Radar Location

$$z(k) = h(x(k), v(k))$$

The radar used in the experiment returns the range $r_i(k)$ and bearing $\theta_i(k)$ to a landmark i. Thus, the observation model is

$$r_i(k) = \sqrt{(x_i - x_r(k))^2 + (y_i - y_r(k))^2} + v_r(k)$$

$$\theta_i(k) = \arctan\left(\frac{y_i - y_r(k)}{x_i - x_r(k)}\right) - \varphi(k) + v_{\theta}(k)$$

Prediction

$$\hat{x}(k)^{-} = f(\hat{x}(k-1), u(k-1), 0)$$

$$x(k+1) = \begin{bmatrix} x(k) + \Delta t V(k) \cos \varphi(k) \\ y(k) + \Delta t V(k) \sin \varphi(k) \\ \varphi(k) + \frac{\Delta t V(k) \tan \gamma(k)}{L} \end{bmatrix} + w(k)$$

$$P(k)^{-} = F(k)P(k-1)F(k)^{T} + W(k)Q(k-1)W(k)^{T}$$

Initially, before landmarks are added

$$F(k) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial \varphi} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial \varphi} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial \varphi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\Delta t V(k) \sin\varphi(k) \\ 0 & 1 & \Delta t V(k) \cos\varphi(k) \\ 0 & 0 & 1 \end{bmatrix} \quad W(k) = \begin{bmatrix} \frac{\partial f_1}{\partial w_x} & \frac{\partial f_1}{\partial w_y} & \frac{\partial f_1}{\partial w_y} \\ \frac{\partial f_2}{\partial w_x} & \frac{\partial f_2}{\partial w_y} & \frac{\partial f_2}{\partial w_y} \\ \frac{\partial f_3}{\partial w_x} & \frac{\partial f_3}{\partial w_y} & \frac{\partial f_3}{\partial w_y} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Kalman Gain

$$K(k) = P(k)^{-} J_{h}(k)^{T} (J_{h}(k)P(k)^{-} J_{h}(k)^{T} + V(k)R(k)V(k)^{T})^{-1}$$

$$z(k) = \begin{bmatrix} r_i(k) \\ \theta_i(k) \end{bmatrix} = \begin{bmatrix} \sqrt{(x_i - \hat{x}(k)^-)^2 + (y_i - \hat{y}(k)^-)^2} \\ \tan^{-1} \left(\frac{y_i - \hat{y}(k)^-}{x_i - \hat{x}(k)^-} \right) - \hat{\varphi}(k)^- \end{bmatrix} + v(k)$$

Initially, before landmarks are added

$$J_{h}(k) = \begin{bmatrix} \frac{\partial h_{1}}{\partial x} & \frac{\partial h_{1}}{\partial y} & \frac{\partial h_{1}}{\partial \varphi} \\ \frac{\partial h_{2}}{\partial x} & \frac{\partial h_{2}}{\partial y} & \frac{\partial h_{2}}{\partial \varphi} \end{bmatrix} = \begin{bmatrix} \frac{x - x_{i}}{r} & \frac{y - y_{i}}{r} & 0 \\ \frac{y_{i} - y}{r^{2}} & \frac{x - x_{i}}{r^{2}} & -1 \end{bmatrix} \qquad V(k) = \begin{bmatrix} \frac{\partial h_{1}}{\partial v_{r}} & \frac{\partial h_{1}}{\partial v_{\theta}} \\ \frac{\partial h_{2}}{\partial v_{r}} & \frac{\partial h_{2}}{\partial v_{\theta}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

where
$$r = \sqrt{(x_i - x)^2 + (y_i - y)^2}$$

Measurement Update

$$\hat{x}(k) = \hat{x}(k)^{-} + K(k)(z(k) - H(k))$$

$$P(k) = (I - K(k)J_h(k))P(k)^{-}$$

Now, if a landmark is observed at t(k+1), the state model is updated

$$\begin{bmatrix} x(k+1) \\ y(k+1) \\ \varphi(k+1) \\ x_1(k+1) \\ y_1(k+1) \end{bmatrix} = \begin{bmatrix} x(k) + \Delta t V(k) \cos \varphi(k) \\ y(k) + \Delta t V(k) \sin \varphi(k) \\ \varphi(k) + \frac{\Delta t V(k) \tan \gamma(k)}{L} \\ x_1(k) \\ y_1(k) \end{bmatrix} + \begin{bmatrix} w_x(k) \\ w_y(k) \\ w_{\varphi}(k) \\ 0 \\ 0 \end{bmatrix}$$

$$x_1(k+1) = x(k) + r\cos\theta \qquad y_1(k+1) = y(k) + r\sin\theta$$

Prediction (2)

Prediction (2)
$$\hat{x}(k)^{-} = f(\hat{x}(k-1), u(k-1), 0)$$

$$x(k+1) = \begin{bmatrix} x(k) + \Delta t V(k) \cos \varphi(k) \\ y(k) + \Delta t V(k) \sin \varphi(k) \\ \varphi(k) + \frac{\Delta t V(k) \tan \gamma(k)}{L} \\ x_1(k) \\ y_1(k) \end{bmatrix} + \begin{bmatrix} w_x(k) \\ w_y(k) \\ w_{\varphi}(k) \\ 0 \\ 0 \end{bmatrix}$$

$$P(k)^{-} = F(k)P(k-1)F(k)^{T} + W(k)Q(k-1)W(k)^{T}$$

$$F(k) = \begin{bmatrix} \frac{\partial f}{\partial (x, y, \varphi)} & 0\\ 0 & I^{2N \times 2N} \end{bmatrix}$$
 where N is the number of landmarks

 $x(k) + \Delta t V(k) \cos \varphi(k)$

Kalman Gain (2)

$$K(k) = P(k)^{-} J_{h}(k)^{T} (J_{h}(k)P(k)^{-} J_{h}(k)^{T} + V(k)R(k)V(k)^{T})^{-1}$$

If observing the 1st landmark

$$J_h(k) = \left[\frac{\partial h}{\partial (x, y, \varphi)} \quad \frac{\partial h}{\partial (x_i, y_i)} \quad 0 \quad \dots \quad 0 \right]$$

If observing the 2nd landmark

$$J_h(k) = \begin{bmatrix} \frac{\partial h}{\partial (x, y, \varphi)} & 0 & \frac{\partial h}{\partial (x_i, y_i)} & 0 & \dots & 0 \end{bmatrix}$$

Must repeat for each landmark!!

Measurement Update (2)

$$\hat{x}(k) = \hat{x}(k)^{-} + K(k)(z(k) - H(k))$$

$$P(k) = (I - K(k)J_h(k))P(k)^{-1}$$