Primera entrega Estadística. Grupo m3

- 1. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim U(\theta, 4\theta)$. Demostar que el estadístico $T = (X_{(1)}, X_{(n)})$ es suficiente pero no completo.
- 2. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim U(0, \theta)$. Calcular el sesgo de los estimadores $T_1 = X_{(n)}$ y $T_2 = \bar{X}$ para estimar la media poblacional.
- 3. Dada una muestra aleatoria simple de tamaño n, demostrar que la cuasivarianza muestral $S^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j \bar{X})^2$ es un estimador insesgado para estimar la varianza poblacional.
- 4. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = e^{-x+\theta}$ si $\theta < x < \infty$ y $\theta > 0$. Encontrar un estadístico suficiente e insesgado para estimar θ .
- 5. Dada una muestra aleatoria simple de tamaño 1 de $X \sim Poisson(\lambda)$ y dado el estimador T(X) = 1 si X = 0 y T(X) = 0 si $X \ge 1$. Demostrar que T es insesgado para estimar $Z(\lambda) = e^{-\lambda}$. ¿Es T eficiente para estimar $Z(\lambda) = e^{-\lambda}$?
- 6. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = \theta x^{\theta-1}$ con 0 < x < 1 y $\theta > 0$. Calcular la esperanza y la varianza del estadístico $T = -\frac{1}{n} \sum_{j=1}^{n} \ln X_j$. ¿Es T el ECUMV para estimar $Z(\theta) = \frac{1}{\theta}$?
- 7. Sea $(X_1, X_2, ..., X_n)$ una muestra aleatoria simple de $X \sim f_{\theta}(x) = \frac{x}{\theta^2} \exp\{-\frac{x^2}{2\theta^2}\}$ con x > 0 y $\theta > 0$. Hallar un estadístico suficiente y completo para θ . Hallar el estimador de máxima verosimilitud para θ^2 y comprobar si además es eficiente para estimar $Z(\theta) = \theta^2$.
- 8. Dada una muestra aleatoria simple de tamaño n de $X \sim B(1,p)$ donde $p \in [1/3,2/3]$. Encontrar el estimador de máxima verosimilitud para estimar p. ¿Es insesgado para estimar p?