Московский физико-технический институт (Государственный университет) Факультет управления и прикладной математики

Моделирование многофазных реагирующих фильтрационных течений с равновесными химическими реакциями.

Выпускная квалификационная работа на степень бакалавра

студента 373 группы

Гринина Виктора Олеговича

Содержание

1	Математическая модель										
	1.1	Уравнения химических реакций	4								
	1.2	Конкретные химические реакции	5								
2	Чис	сленный метод и программный модуль	7								
3	В Результаты										
	3.1	Верификация написанного модуля	9								
	3.2	Применение модуля в симуляторе	10								
4	Вы	волы	13								

Введение

В настоящей работе рассматриваются многофазные фильтрационные течения, в которых наряду с реакциями с конечной кинетикой присутствуют равновесные химические реакции. Для описания данного процесса используются система уравнений, описывающая многофазное фильтрационное течение, и система уравнений, описывающая процесс установления химического равновесия. Системы решаются последовательно на каждом шаге по времени. Сначала, с помощью симулятора многофазных фильтрационных течений, решается первая из них. Полученные результаты используются в качестве начальных приближений для второй системы.

Цель работы заключалась в написании модуля для решения задачи о фазовом равновесии и добавлении его к имеющемуся программному комплексу, для проведения численных экспериментов.

1 Математическая модель

1.1 Уравнения химических реакций

Основными уравнениями, которые описывают течение многофазной многокомпонентной среды являются уравнения балансов количества вещества и энергии, имеющие вид

$$\frac{\partial N_i}{\partial t} + \operatorname{div} \mathbf{Q}_i = \mathbf{S}_i,$$
$$\frac{\partial E}{\partial t} + \operatorname{div} \mathbf{J} = \mathbf{R}.$$

Здесь N_i — молярные концентрации компонент, E — плотность энергии среды. Химические реакции учитываются в математической модели течения многофазной многокомпонентной среды в виде источников количества вещества S_i и энергии R.

Для реакций с конечной скоростью обычно используется закон Арениуса, когда скорость реакции пропорциональна концентрациям реагирующих веществ в степенях их стехеометрических коэффициентов. В случае равновесной химической реакции вместо скорости реакции имеется равновесное соотношение

$$F(N_i) = 0,$$

выражающее собой равенство скоростей прямой и обратной химических реакций.

Если записать равновесную химическую реакцию в виде

$$\sum \nu_i X_i \rightleftharpoons 0,$$

где X_i — реагирующие вещества, а ν_i — их стехеометрические коэффициенты в реакции, то для такой реакции принимается верным закон действующих масс:

$$K = \prod_{i} N_i^{\nu_i}.$$

Здесь предполагается, что ν_i для продуктов реакции положительны, а для реагентов — отрицательны. В качестве функции F для данной реакции

можно взять

$$F = \ln K + \sum \nu_i \ln N_i.$$

Пусть в силу некоторых причин, например из-за переноса продуктов реакции течением, данное равновесие оказалось нарушено. Пусть начальные концентрации N_i^0 . Тогда из-за данной реакции концентрации изменяются по закону

$$\Delta N_i = \xi \nu_i$$

где ξ — величина, характеризующая глубину реакции, одинаковая для всех участвующих компонент.

Задача определения нового равновесия заключается в поиске такого значения ξ , что $F(N_i)=0$. При этом, можно сделать очевидное обобщение на случай нескольких реакций

$$N_i = N_i^0 + \sum_{j=1}^M \xi_j \nu_{i,j}$$

$$F_j(N_i) = \ln(K_j) + \sum_{i=1}^M \nu_{i,j} \ln N_i = 0$$

1.2 Конкретные химические реакции

При проведении расчётов использовалась следующая система химических реакций

 $R1: OH^- + H^+ \rightleftharpoons H_2O,$

 $R2: \operatorname{HCO}_3^- + \operatorname{H}^+ \rightleftharpoons \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2,$

 $R3: \operatorname{CaCO}_3 + 2\operatorname{H}^+ \rightleftharpoons \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2 + \operatorname{Ca}^{2+}.$

Эта система может быть записана в матрично-векторной форме $V^TY \rightleftharpoons$

0, где

$$V^{T} = \begin{vmatrix} -1 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 & 1 & -2 & 1 \end{vmatrix}, \quad Y = \begin{vmatrix} OH^{-} \\ HCO_{3}^{-} \\ CaCO_{3} \\ H_{2}O \\ CO_{2} \\ H^{+} \\ Ca^{2+} \end{vmatrix}$$

Или в виде таблицы Мореля

	H ₂ O	H^+	CO_2	Ca ²⁺	$\lg K$
OH-	1	-1	0	0	-14
HCO_3^-	1	-1	1	0	-5.928
CaCO ₃	1	-2	1	1	-8.094

2 Численный метод и программный модуль

Для решения системы, которая описывает установление химического равновесия, использовался метод Ньютона. Были рассмотренные различные способы записи данной системы и был выбран оптимальный.

Запишем приведённую раньше систему в матричной форме

$$\mathbf{F}(\boldsymbol{\xi}) = \ln \mathbf{K} + V^T \ln (\mathbf{N}^0 + V\boldsymbol{\xi}) = 0$$

Продифференцируем эту функцию по $\boldsymbol{\xi}$

$$\frac{\partial \mathbf{F}}{\partial \boldsymbol{\xi}} = V^T \operatorname{diag}^{-1} (\mathbf{N}^0 + V \boldsymbol{\xi}) V$$

Метод Ньютона принимает вид

$$\boldsymbol{\xi}^{k+1} = \boldsymbol{\xi}^k - \alpha^{(k)} [V^T \operatorname{diag}^{-1}(\mathbf{N}^0 + V\boldsymbol{\xi})V]^{-1} (\ln \mathbf{K} + V^T \ln (\mathbf{N}^0 + V\boldsymbol{\xi})) \quad (1)$$

Для обычного метода Ньютона параметр α следует брать равным единице, однако итерации с $\alpha^{(k)}=1$ могут привести к попаданию в область нефизических значений. В этом случае можно делать лишь часть шага метода Ньютона, выбирая параметр α из промежутка [0,1].

При применении данного метода для численных расчётов возникает несколько проблем. Нужно выбирать начальное приближение $\boldsymbol{\xi}^0$ так, чтобы выражение под логарифмом было положительным $\mathbf{N}^0 + V\boldsymbol{\xi} > 0$. Для чего нужно решать систему неравенств. Кроме того на каждой итерации следует задавать параметр $\alpha^{(k)} \in [0,1]$ так, чтобы неравенства этой системы не нарушались.

```
def choose_a(NO, V, reactionDepth, C):
    safe = 0.5
    a = 1 / safe
    N = NO + V.dot(reactionDepth)
    dN = V.dot(C)
    for i in range(len(N)):
        if (N[i] + a * dN[i] < 0):
        a = -N[i]/dN[i]
    return a * safe</pre>
```

Перепишем систему в другом виде, для этого введём дополнительные переменные

$$\mathbf{p} = \ln\left(\mathbf{N}^0 + V\boldsymbol{\xi}\right)$$

При этом получаем расширенную систему

$$\begin{cases} \mathbf{F} = \ln \mathbf{K} + V^T \mathbf{p} = 0, \\ \exp(\mathbf{p}) = \mathbf{N}^0 + V \boldsymbol{\xi}; \end{cases}$$

$$\begin{cases} \ln \mathbf{K} + V^T \mathbf{p} = 0, \\ \mathbf{N}^0 + V \boldsymbol{\xi} - \exp(\mathbf{p}) = 0; \end{cases}$$

Эта система полностью эквивалентна исходной. Её можно записать в виде $\Phi(\mathbf{x})=0$, где $\mathbf{x}=[\boldsymbol{\xi},\mathbf{p}]$

Тогда метод Ньютона принимает вид

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha^{(k)} \left(\frac{\partial \mathbf{\Phi}}{\partial \mathbf{x}} \right)^{-1} \mathbf{\Phi}(\mathbf{x}^k) \quad (2)$$

где

$$\frac{\partial \mathbf{\Phi}}{\partial \mathbf{x}} = \begin{vmatrix} 0 & V^T \\ V & -\operatorname{diag}(\exp(\mathbf{p})) \end{vmatrix}$$

Использование метода Ньютона переписанного в такой форме, уже не встречает проблем, характерных предыдущей версии. Как показывает эксперимент он сходится из любого начального приближения, при любых начальных концентрациях. Кроме того в данном случае можно выбрать $\alpha^{(k)}=1$, что обеспечивает большую скорость сходимости.

Модуль, реализующий метод Ньютона в такой форме, был включён в симулятор многофазных фильтрационных течений.

3 Результаты

3.1 Верификация написанного модуля

Приведём результаты расчётов системы из трёх химических реакций

 $R1: OH^- + H^+ \rightleftharpoons H_2O$,

 $R2: \operatorname{HCO}_3^- + \operatorname{H}^+ \rightleftharpoons \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2,$

 $R3: \operatorname{CaCO}_3 + 2\operatorname{H}^+ \rightleftharpoons \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2 + \operatorname{Ca}^{2+}.$

Будем считать, что начальные концентрации всех ионов равнялась нулю и вектор концентраций химических веществ имел вид

$$\mathbf{N}_0^T = [0, 0, 1, 1, 1, 0, 0]$$

Для метода Ньютона записанного в форме (1) начальное приближение искомых глубин реакции выбираем так, чтобы выполнялось условие

$$\mathbf{N}^0 + V\boldsymbol{\xi} > 0.$$

Пусть например

$$\boldsymbol{\xi}_0^T = [-0.5, -0.7, 0.5]$$

Таблица 1: Концентрации веществ и выбираемый параметр α на соответствующей итерации метода Ньютона записанного в форме (1).

	OH-	HCO_3^-	$CaCO_3$	H ₂ O	CO_2	H^{+}	Ca ²⁺	α
1	0	0	1	1	1	0	0	0.05
2	0.5	0.7	0.5	0.3	0.8	0.06	0.2	0.06
4	0.12	0.75	0.60	0.51	0.63	0.09	0.39	0.06
8	$7.8\cdot 10^{-3}$	$6.4 \cdot 10^{-1}$	$6.9 \cdot 10^{-1}$	$6.6 \cdot 10^{-1}$	$6.6 \cdot 10^{-1}$	$3.4 \cdot 10^{-2}$	$3.1 \cdot 10^{-1}$	0.09
16	$1.5 \cdot 10^{-5}$	$3.6 \cdot 10^{-1}$	$8.2 \cdot 10^{-1}$	$8.2 \cdot 10^{-1}$	$8.2 \cdot 10^{-1}$	$3.3 \cdot 10^{-3}$	$1.8 \cdot 10^{-1}$	0.88
30	$5.9 \cdot 10^{-10}$	$6.7 \cdot 10^{-2}$	$9.7 \cdot 10^{-1}$	$9.7 \cdot 10^{-1}$	$9.7 \cdot 10^{-1}$	$1.6 \cdot 10^{-5}$	$3.4 \cdot 10^{-2}$	1

Видим что в результате химических реакций концентрации исходных веществ немного уменьшаются, в результате чего образуются все входящие в реакции ионы.

На начальных итерациях выбирается $\alpha < 1$. Это говорит о том, что метод Ньютона пытается выйти за допустимую область. В результате ограничения шага, в этом случае сходимость является линейной и метод Ньютона работает как метод простой итерации.

Для расширенной системы, как уже говорилось, α выбирается равным единице. Начальные значения ξ_i можно выбрать произвольными. Пусть они будут таким же как в предыдущем случае.

Таблица 2: Концентрации веществ на соответствующей итерации метода Ньютона записанного в форме (2).

	OH-	HCO_3^-	$CaCO_3$	H ₂ O	CO_2	H ⁺	Ca ²⁺
1	0	0	1	1	1	0	0
2	0.7	1.9	0.3	0.8	0.5	1.0	1.0
4	$6.0\cdot10^{-9}$	1.7	3.6	4234.8	2.3	$7 \cdot 10^{-3}$	2.2
8	$2.6\cdot10^{-9}$	$2.6 \cdot 10^{-1}$	$8.7 \cdot 10^{-1}$	78.1	$8.7 \cdot 10^{-1}$	$3.1 \cdot 10^{-4}$	$1.5 \cdot 10^{-1}$
12	$7.6 \cdot 10^{-10}$	$8.6 \cdot 10^{-2}$	$9.6 \cdot 10^{-1}$	2.1	$9.6 \cdot 10^{-1}$	$2.7 \cdot 10^{-5}$	$4.3 \cdot 10^{-2}$
16	$5.9\cdot10^{-10}$	$6.7 \cdot 10^{-2}$	$9.7 \cdot 10^{-1}$	$9.7 \cdot 10^{-1}$	$9.7 \cdot 10^{-1}$	$1.6 \cdot 10^{-5}$	$3.4 \cdot 10^{-2}$

Оба варианта метода Ньютона сходятся к одному и тому же значению. При этом второй из них требуется меньшее количество итераций.

3.2 Применение модуля в симуляторе

Разработанный алгоритм был включён в симулятор и использован для моделирования многофазных фильтрационных течений с химическими реакциями.

Одним из расчётных сценариев стала следующая задача. В ней рассматривается вытеснение углекислым газом воды из пористой области, скелет которой составляет углекислый кальций.

Геометрия задачи такова

Имеется область длины L=500 м. Поперечное сечение области $S=10\times 100$ м². Пунктирной линией схематично показаны поры скелета, занятые водой. На концах области находятся скважины: слева - нагнетающая (inj), справа - добывающая (prod).

В области присутствуют две подвижные фазы: газовая фаза и водная фаза. Предполагается следующее распределение компонентов по фазам:

Водная фаза: H_2O , CO_2 , и ионы OH^- , HCO_3^- , H^+ , Ca^{2+} ,

Газовая фаза: CO_2 .

Кроме того существует только одна неподвижная фаза, описывающая скелет и состоящая из углекислого кальция $CaCO_3$.

При таком подходе пористость является производным параметром — отношением объема подвижных фаз к суммарному объему всех фаз. Для рассматриваемой задачи задаётся начальная пористость $\omega = 0.05$.

Вязкости фаз считаются постоянными. Вязкость воды - $\eta_W = 4.5 \cdot 10^{-3} \; \Pi \text{a} \cdot \text{c}$, вязкость газа - $\eta_G = 2.09 \cdot 10^{-5} \; \Pi \text{a} \cdot \text{c}$.

Относительные фазовые проницаемости задаются простым степенным законом

$$k_{\alpha} = s_{\alpha}^2$$

где s_{α} - насыщенность подвижной фазы.

Начальная температура в области равна $20^{\circ}C$, начальное давление — 100 атмосфер. При чём температура в области в течении всего времени расчёта остаётся практически постоянной, т.е. течение является изотермическим.

Нагнетающая скважина закачивает в область углекислый газ с постоянным расходом 10^4 м 3 /сут (на поверхности, при 1 атмосфере), который постепенно вытесняет из области воду и частично растворяется в ней. Перенос жидкости и газа сопровождается химическими реакциями описанными в предыдущих пунктах, в результате чего скелет растворяется, образуя ионы, которые вымываются из области. На рисунке 1 представлен график пористости в области в момент времени t=70 дней. Видно, что часть скелета растворилась, образовав дополнительный поровый объем.

Значительная часть газа вступает в реакцию со скелетом, это хорошо заметно на графике 2, на котором приведена газонасыщенность в расчете с включенными реакциями (красный график) и без них (синий график).

Рис. 1: Пористость в различных участках области

Рис. 2: Газонасыщенность в области (с включенными реакциями и без)

4 Выводы

Список использованных источников