

SEQUENCE LISTING

<110> Covacci, Antonello
 Bugnoli, Massimo
 Telford, John
 Macchia, Giovanni
 Rappuoli, Rino

<120> Helicobacter Pylori CAI Antigen Polynucleotides

<130> CHIR0337

<150> 08/471,491
<151> 1995-06-06

<150> 08/256,848
<151> 1994-10-21

<150> 09/410,835
<151> 1999-10-01

<160> 24

<170> PatentIn version 3.2

<210> 1
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer oligonucleotide

<400> 1
gcaagcttat cgatgtcgac tcgagct 27

<210> 2
<211> 3960
<212> DNA
<213> Helicobacter pylori

<400> 2
aaaaagaaaatg gaaataacaac aaacacaccg caaatcaat cgcctctgg 60
tttctctcgc ttttagtagga gcattagtca gcacacacc gcaacaagt catgccgc 120
tttcacaac cgtgatcatt ccagccattg ttggggatcg ctacacaggc accgctgttag 180
gaacggtctc agggcttctt agctgggggc tcaaacaagc cagaagaagcc aataaaaccc 240
cagataaacc cgataaaatgg tggcgcatcc aagcaggaaa aggcttaat gaattcccta 300
acaaggaata cgacttatac agatccctt tatccagtaa gattgatgga gtttggatt 360
ggggaaatgc cgcttaggcatt tattgggtca aaggcgggca acagaataag cttgaagtgg 420
atatgaaaga cgctgttaggg acttatacct tatcagggtct tagaaacttt actgggtgggg 480
attttagatgt caatatgcaa aaagccactt tacgcttggg ccaattcaat ggcaattctt 540
ttacaagcta taaggatgt gctgatcgca ccacgagagt ggatttcaac gctaaaaata 600
tctcaattga taatttgtta gaaatcaaca atcgtgtggg ttctggagcc gggaggaaag 660
ccagctctac gttttgact ttgcaagctt cagaaggat cactagcgat aaaaacgctg 720
aaatttctt ttatgatggt gccacgctca atttgcttc aagcagcgtt aaattaatgg 780
gtaatgtgtg gatggccgt ttgcaatacg tggagcgtt tttggccct tcatacagca 840

cgataaacac ttcaaaaagta acaggggaag tgaatttaa ccacctcact gttggcgata	900
aaaacgcccgc tcaagcccc attatcgcta ataaaaagac taatattggc acactggatt	960
tgtggcaaag cgccgggtta aacattatcg ctccctccaga aggtggctat aaggataaac	1020
ccaataatac cccttctcaa agtggtgcta aaaacgacaa aaatgaaagc gctaaaaacg	1080
acaaacaaga gagcagtcaa aataatagta acactcaggt cattaaccca cccaatagtg	1140
cgaaaaaac agaagttcaa cccacgcaag tcattgtgg gcctttgcg ggcggcaaag	1200
acacggtgtt caatatcaac cgcataaca ctaacgctga tggcacgatt agagtggag	1260
ggtttaaagc ttctcttacc accaatgcgg ctcatttgca tatcggcaaa ggcgggtca	1320
atctgtccaa tcaagcgagc gggcgctc ttatagtggaa aaatctaact gggaatatca	1380
ccgttgcatttgc ggctttaaga gtgaataatc aagtgggtgg ctatgcatttgc gcaaggatcaa	1440
gcgcgaattt tgagttaag gctggtaacggg ataccaaaaaa cggcacagcc acttttaata	1500
acgatatttag tctggaaaga tttgtgaatt taaaggtggta tgctcatata gctaattttta	1560
aaggatttga tacggtaat ggtggttca acacctttaga ttttagtggc gttacagaca	1620
aagtcaatat caacaagctc attacggctt ccactaatgt ggccgttaaa aacttcaaca	1680
ttaatgaatt gattgttaaa accaatggga taagtgtggg ggaatataact cattttagcg	1740
aagatataagg cagtcaatcg cgcataaca ccgtgcgtt ggaaactggc actaggtcac	1800
ttttctctgg ggggtttaaa tttaaagggtg gcggaaaaattt ggttatagat gagttttact	1860
atagcccttg gaattattttt gacgctagaa atattaaaaa tggtaaaatc accaataaac	1920
ttgctttgg acctcaagggg agtccttggg gcacatcaaa acttatgttc aataatctaa	1980
cccttaggtca aaatgcggtc atggattata gccaattttc aaatttaacc attcaagggg	2040
atttcatcaa caatcaaggc actataact atctggtccg aggtggggaa gtggcaacct	2100
taagcgttagg caatgcagca gctatgtat ttaataatga tatagacagc ggcggcggat	2160
tttacaaacc gctcatcaag attaacagcg ctcaagatct cattaaaaat acagaacatg	2220
ttttattgaa agcgaaaatc attgggtatg gtaatgtttc tacaggtacc aatggcatta	2280
gtaatgttaa tctagaagag caattcaaaag agcgccttagc cctttataac aacaataacc	2340
gcatggatac ttgtgtggcg cggaaaatctg atgacattaa agcatgcggg atggctatcg	2400
gcatcaag catggtaac aaccctgaca attacaagta tcttattcggt aaggcatgga	2460
aaaatataagg gatcagcaaa acagctaattt gctctaaaat ttgggtgtat tatttaggca	2520
attctacgcc tactgagaat ggtggcaata ccacaaaattt acccacaaac accactagca	2580
atgcacgttc tgccaaacaac gcccttgcac aaaacgctcc ttgcgtcaa cctagtgcta	2640
ctccaaattt agtcgtatc aatcagcatg attttggcac tattgaaagc gtgtttgaat	2700
tggctaaaggc ctctaaaggat attgacacgc ttatgcata ctcaggcgct caaggcagg	2760
atctcttaca aactttattt attgatagcc atgatgcggg ttatgcaga aaaaatgattt	2820
atgctacaag cgctaatgaa atcaccaagc aattgaatac ggccactacc actttaaaca	2880
acatagccag tttagagcat aaaaccagcg gcttacaaac tttagcttgc agtaatgcga	2940
tgattttaaa ttctcgaaa gtcaatctct ccaggagaca caccaaccat attgactcg	3000

tcgccaaacg	cttacaagct	ttaaaagacc	aaaaattcgc	ttcttttagaa	agcgccggcag	3060
aagtgttcta	tcaatttgcc	cctaaatata	aaaaacctac	aatgtttgg	gctaacgcta	3120
ttgggggaac	gagcttgaat	aatggctcta	acgcttcatt	gtatggcaca	agcgccggcg	3180
tagacgctta	ccttaacggg	caagtggaa	ccattgtggg	cggttttgga	agctatggtt	3240
atacgcttt	taataatcgt	gcgaactccc	ttaactctgg	ggccaataac	actaattttg	3300
gcgtgtatag	cogtattttt	gccaaccaggc	atgaatttga	cttgaagct	caaggggcac	3360
tagggagcga	tcaatcaagc	ttgaatttca	aaagcgctct	attacaagat	ttgaatcaaa	3420
gctatcatta	cttagcctat	agcgctgaa	caagagcggag	ctatggttat	gacttcgcgt	3480
tttttaggaa	cgttttagtg	ttaaaaccaa	gcgtgggtgt	gagctataac	catttaggtt	3540
caaccaactt	taaaagcaac	agcaccaatc	aagtggcttt	aaaaaatggc	tctagcagtc	3600
agcattttt	caacgctagc	gctaatgtgg	aagcgcccta	ttattatggg	gacacttcat	3660
acttctacat	gaatgctgga	gttttacaag	agttcgctca	tgttggctct	aataacgccc	3720
cgtcttaaa	cacctttaaa	gtgaatgccg	ctcgcaaccc	tttaaataacc	catgccagag	3780
tgtatgtggg	tggggattta	aaattagcta	aagaagtgtt	tttgaatttg	ggcgttggtt	3840
atttgcacaa	tttgatttcc	aatataggcc	atttcgcttc	caattttagga	atgaggtata	3900
gtttctaaat	accgcttta	aaccatgct	caaagcatgg	gtttgaatc	ttacaaaaca	3960

<210> 3
 <211> 1296
 <212> PRT
 <213> Helicobacter pylori

<400> 3

Met Glu Ile Gln Gln Thr His Arg Lys Ile Asn Arg Pro Leu Val Ser
 1 5 10 15

Leu Ala Leu Val Gly Ala Leu Val Ser Ile Thr Pro Gln Gln Ser His
 20 25 30

Ala Ala Phe Phe Thr Thr Val Ile Ile Pro Ala Ile Val Gly Gly Ile
 35 40 45

Ala Thr Gly Thr Ala Val Gly Thr Val Ser Gly Leu Leu Ser Trp Gly
 50 55 60

Leu Lys Gln Ala Glu Ala Asn Lys Thr Pro Asp Lys Pro Asp Lys
 65 70 75 80

Val Trp Arg Ile Gln Ala Gly Lys Gly Phe Asn Glu Phe Pro Asn Lys
 85 90 95

Glu Tyr Asp Leu Tyr Arg Ser Leu Leu Ser Ser Lys Ile Asp Gly Gly
 100 105 110

Trp Asp Trp Gly Asn Ala Ala Arg His Tyr Trp Val Lys Gly Gly Gln
 115 120 125

Gln Asn Lys Leu Glu Val Asp Met Lys Asp Ala Val Gly Thr Tyr Thr
130 135 140

Leu Ser Gly Leu Arg Asn Phe Thr Gly Gly Asp Leu Asp Val Asn Met
145 150 155 160

Gln Lys Ala Thr Leu Arg Leu Gly Gln Phe Asn Gly Asn Ser Phe Thr
165 170 175

Ser Tyr Lys Asp Ser Ala Asp Arg Thr Thr Arg Val Asp Phe Asn Ala
180 185 190

Lys Asn Ile Ser Ile Asp Asn Phe Val Glu Ile Asn Asn Arg Val Gly
195 200 205

Ser Gly Ala Gly Arg Lys Ala Ser Ser Thr Val Leu Thr Leu Gln Ala
210 215 220

Ser Glu Gly Ile Thr Ser Asp Lys Asn Ala Glu Ile Ser Leu Tyr Asp
225 230 235 240

Gly Ala Thr Leu Asn Leu Ala Ser Ser Val Lys Leu Met Gly Asn
245 250 255

Val Trp Met Gly Arg Leu Gln Tyr Val Gly Ala Tyr Leu Ala Pro Ser
260 265 270

Tyr Ser Thr Ile Asn Thr Ser Lys Val Thr Gly Glu Val Asn Phe Asn
275 280 285

His Leu Thr Val Gly Asp Lys Asn Ala Ala Gln Ala Gly Ile Ile Ala
290 295 300

Asn Lys Lys Thr Asn Ile Gly Thr Leu Asp Leu Trp Gln Ser Ala Gly
305 310 315 320

Leu Asn Ile Ile Ala Pro Pro Glu Gly Gly Tyr Lys Asp Lys Pro Asn
325 330 335

Asn Thr Pro Ser Gln Ser Gly Ala Lys Asn Asp Lys Asn Glu Ser Ala
340 345 350

Lys Asn Asp Lys Gln Glu Ser Ser Gln Asn Asn Ser Asn Thr Gln Val
355 360 365

Ile Asn Pro Pro Asn Ser Ala Gln Lys Thr Glu Val Gln Pro Thr Gln
370 375 380

Val Ile Asp Gly Pro Phe Ala Gly Gly Lys Asp Thr Val Val Asn Ile
385 390 395 400

Asn Arg Ile Asn Thr Asn Ala Asp Gly Thr Ile Arg Val Gly Gly Phe

405

410

415

Lys Ala Ser Leu Thr Thr Asn Ala Ala His Leu His Ile Gly Lys Gly
420 425 430

Gly Val Asn Leu Ser Asn Gln Ala Ser Gly Arg Ser Leu Ile Val Glu
435 440 445

Asn Leu Thr Gly Asn Ile Thr Val Asp Gly Pro Leu Arg Val Asn Asn
450 455 460

Gln Val Gly Gly Tyr Ala Leu Ala Gly Ser Ser Ala Asn Phe Glu Phe
465 470 475 480

Lys Ala Gly Thr Asp Thr Lys Asn Gly Thr Ala Thr Phe Asn Asn Asp
485 490 495

Ile Ser Leu Gly Arg Phe Val Asn Leu Lys Val Asp Ala His Thr Ala
500 505 510

Asn Phe Lys Gly Ile Asp Thr Gly Asn Gly Gly Phe Asn Thr Leu Asp
515 520 525

Phe Ser Gly Val Thr Asp Lys Val Asn Ile Asn Lys Leu Ile Thr Ala
530 535 540

Ser Thr Asn Val Ala Val Lys Asn Phe Asn Ile Asn Glu Leu Ile Val
545 550 555 560

Lys Thr Asn Gly Ile Ser Val Gly Glu Tyr Thr His Phe Ser Glu Asp
565 570 575

Ile Gly Ser Gln Ser Arg Ile Asn Thr Val Arg Leu Glu Thr Gly Thr
580 585 590

Arg Ser Leu Phe Ser Gly Gly Val Lys Phe Lys Gly Gly Glu Lys Leu
595 600 605

Val Ile Asp Glu Phe Tyr Tyr Ser Pro Trp Asn Tyr Phe Asp Ala Arg
610 615 620

Asn Ile Lys Asn Val Glu Ile Thr Asn Lys Leu Ala Phe Gly Pro Gln
625 630 635 640

Gly Ser Pro Trp Gly Thr Ser Lys Leu Met Phe Asn Asn Leu Thr Leu
645 650 655

Gly Gln Asn Ala Val Met Asp Tyr Ser Gln Phe Ser Asn Leu Thr Ile
660 665 670

Gln Gly Asp Phe Ile Asn Asn Gln Gly Thr Ile Asn Tyr Leu Val Arg
675 680 685

Gly Gly Lys Val Ala Thr Leu Ser Val Gly Asn Ala Ala Ala Met Met
690 695 700

Phe Asn Asn Asp Ile Asp Ser Ala Thr Gly Phe Tyr Lys Pro Leu Ile
705 710 715 720

Lys Ile Asn Ser Ala Gln Asp Leu Ile Lys Asn Thr Glu His Val Leu
725 730 735

Leu Lys Ala Lys Ile Ile Gly Tyr Gly Asn Val Ser Thr Gly Thr Asn
740 745 750

Gly Ile Ser Asn Val Asn Leu Glu Glu Gln Phe Lys Glu Arg Leu Ala
755 760 765

Leu Tyr Asn Asn Asn Asn Arg Met Asp Thr Cys Val Val Arg Asn Thr
770 775 780

Asp Asp Ile Lys Ala Cys Gly Met Ala Ile Gly Asp Gln Ser Met Val
785 790 795 800

Asn Asn Pro Asp Asn Tyr Lys Tyr Leu Ile Gly Lys Ala Trp Lys Asn
805 810 815

Ile Gly Ile Ser Lys Thr Ala Asn Gly Ser Lys Ile Ser Val Tyr Tyr
820 825 830

Leu Gly Asn Ser Thr Pro Thr Glu Asn Gly Gly Asn Thr Thr Asn Leu
835 840 845

Pro Thr Asn Thr Thr Ser Asn Ala Arg Ser Ala Asn Asn Ala Leu Ala
850 855 860

Gln Asn Ala Pro Phe Ala Gln Pro Ser Ala Thr Pro Asn Leu Val Ala
865 870 875 880

Ile Asn Gln His Asp Phe Gly Thr Ile Glu Ser Val Phe Glu Leu Ala
885 890 895

Asn Arg Ser Lys Asp Ile Asp Thr Leu Tyr Ala Asn Ser Gly Ala Gln
900 905 910

Gly Arg Asp Leu Leu Gln Thr Leu Leu Ile Asp Ser His Asp Ala Gly
915 920 925

Tyr Ala Arg Lys Met Ile Asp Ala Thr Ser Ala Asn Glu Ile Thr Lys
930 935 940

Gln Leu Asn Thr Ala Thr Thr Leu Asn Asn Ile Ala Ser Leu Glu
945 950 955 960

His Lys Thr Ser Gly Leu Gln Thr Leu Ser Leu Ser Asn Ala Met Ile
965 970 975

Leu Asn Ser Arg Leu Val Asn Leu Ser Arg Arg His Thr Asn His Ile
980 985 990

Asp Ser Phe Ala Lys Arg Leu Gln Ala Leu Lys Asp Gln Lys Phe Ala
995 1000 1005

Ser Leu Glu Ser Ala Ala Glu Val Leu Tyr Gln Phe Ala Pro Lys
1010 1015 1020

Tyr Glu Lys Pro Thr Asn Val Trp Ala Asn Ala Ile Gly Gly Thr
1025 1030 1035

Ser Leu Asn Asn Gly Ser Asn Ala Ser Leu Tyr Gly Thr Ser Ala
1040 1045 1050

Gly Val Asp Ala Tyr Leu Asn Gly Gln Val Glu Ala Ile Val Gly
1055 1060 1065

Gly Phe Gly Ser Tyr Gly Tyr Ser Ser Phe Asn Asn Arg Ala Asn
1070 1075 1080

Ser Leu Asn Ser Gly Ala Asn Asn Thr Asn Phe Gly Val Tyr Ser
1085 1090 1095

Arg Ile Phe Ala Asn Gln His Glu Phe Asp Phe Glu Ala Gln Gly
1100 1105 1110

Ala Leu Gly Ser Asp Gln Ser Ser Leu Asn Phe Lys Ser Ala Leu
1115 1120 1125

Leu Gln Asp Leu Asn Gln Ser Tyr His Tyr Leu Ala Tyr Ser Ala
1130 1135 1140

Ala Thr Arg Ala Ser Tyr Gly Tyr Asp Phe Ala Phe Phe Arg Asn
1145 1150 1155

Ala Leu Val Leu Lys Pro Ser Val Gly Val Ser Tyr Asn His Leu
1160 1165 1170

Gly Ser Thr Asn Phe Lys Ser Asn Ser Thr Asn Gln Val Ala Leu
1175 1180 1185

Lys Asn Gly Ser Ser Ser Gln His Leu Phe Asn Ala Ser Ala Asn
1190 1195 1200

Val Glu Ala Arg Tyr Tyr Gly Asp Thr Ser Tyr Phe Tyr Met
1205 1210 1215

Asn Ala Gly Val Leu Gln Glu Phe Ala His Val Gly Ser Asn Asn
1220 1225 1230

Ala Ala Ser Leu Asn Thr Phe Lys Val Asn Ala Ala Arg Asn Pro
1235 1240 1245

Leu Asn Thr His Ala Arg Val Met Met Gly Gly Glu Leu Lys Leu
1250 1255 1260

Ala Lys Glu Val Phe Leu Asn Leu Gly Val Val Tyr Leu His Asn
1265 1270 1275

Leu Ile Ser Asn Ile Gly His Phe Ala Ser Asn Leu Gly Met Arg
1280 1285 1290

Tyr Ser Phe
1295

<210> 4
<211> 5925
<212> DNA
<213> Helicobacter pylori

<400> 4
ctccatTTTA agcaactCCA tagaccACTA aagaaACTTt ttttgaggCT atcttGaaa 60
atctgtCCta ttgatttGtt ttccatTTG tttccatGT ggatcttGt gatcacAAAC 120
gcttaattAT acatgctATA gtaAGcatGA cacacAAACC aaactatTTT tagaacGCTT 180
catgtgCTCA ctttgactAA ccatttCTCC aaccataCTT tagcgttGCA tttgatttCT 240
tcaaaaaAGAT tcatttCTTA tttcttGTTc ttattaaAGT tctttcATT tagcaaATTt 300
ttgttaattG tggtaaaaaA tGTgaatCGT cctagCCTT agacgcCTGC aacgatCggg 360
ctttttCAA tattaATAAT gattaATGAA aaaaaaaaaA aatgcttGAT attGttGtAT 420
aatgagaATG ttcaaAGACA tgaattGACT actcaAGCGT gtagcgATTt ttagcAGtCT 480
ttgacactAA caagataACCG ataggTAgtAA aactAGGTat agtaAGGAGA aacaATGACT 540
aacgaaACCA ttgaccaACA accacAAACC gaagCggCtt ttaacCCGCA gcaatttATC 600
aataatCTC aagttagCTT tcttaaAGTT gataacGCTG tcgcttcATA cgatCCTGAT 660
caaaaaACCA tcgttGATAA gaacgatAGG gataacAGGC aagctttGA aggaatCTCG 720
caattaAGGG aagaataACTC caataaAGCG atcaAAAATC ctaccaAAAAA gaatcAGTAT 780
ttttcAGACT ttatcaATAA gagcaatGAT ttaatcaACA aagacaATCT cattGATGTA 840
gaatcttCCA caaAGAGCT tcagAAATTt ggggatCAGC gttaccGAAT tttcacaAGt 900
tgggtgtccc atcaAAACGA tccgtctAAA atcaACACCC gatcgatCCG aaatTTATG 960
gaaaatATCA tacaACCCCC tatCCTTGAT gataaAGAGA aagcggAGtT tttgaaATCT 1020
gccaaACAAT ctTTTgcagg aatcattATA gggaaTCaaa tccgaACGGa tcaAAAGttC 1080
atgggcgtGT ttgatGAGtC cttgaaAGAA aggcaAGGAAG cagaaaaAAA tggagAGCCT 1140
actgggtgggg attgggtGGA tattttCTC tcatttATAAT ttgacaAAAAA acaatCTTCT 1200
gatgtcaaAG aagcaatCAA tcaagaACCA gttccccatG tccaaCCAGA tataGCCACT 1260
accaccACCG acatacaAGG cttaccGCCT gaagCTAGAG atttacttGA tgaaAGGGt 1320
aattttCTA aattcactCT tggcgatATG gaaatGTTAG atgttGAGGG agtcgctGAC 1380
attgatCCCA attacaAGGT caatcaATTa ttgattcaca ataacgCTCT gtcttCTGtG 1440

ttaatgggaa gtcataatgg catagaacct gaaaaagttt cattgttgta tgggggcaat	1500
ggtgtgcctg gagctaggca tgattgAAC gcCACCGTT gttataaaga ccaacaaggc	1560
aacaatgtgg ctacaataat taatgtgcat atgaaaaacg gcagtggcTT agtcatacg	1620
ggtgtgaga aagggattaa caaccctagt ttttatctc acaaagaaga ccaactcaca	1680
ggctcacaac gagcattaag tcaagaagag atccaaaaca aaatagattt catggaattt	1740
cttgcacaaa ataatgctaa attagacaac ttgagcgaga aagagaagga aaaattccga	1800
actgagatta aagatttcca aaaagactct aaggcttatt tagacgcCTT agggaatgat	1860
cgtattgctt ttgtttctaa aaaagacaca aaacattcag cttaattac tgagtttgt	1920
aatggggatt ttagctacac tctcaaagat tatggaaaa aagcagataa agcttttagat	1980
agggagaaaa atgttactct tcaaggttagc ctaaaacatg atggcgtgat gtttgttgc	2040
tattctaatt tcaaatacac caacgcCTCC aagaatccc ATAAGGGTGT aggCGTTACG	2100
aatggcgTTT cccatTTAGA agtaggCTT aacaaggtag CTATCTTA TTTGCCTGAT	2160
ttaaataatC tcgctatcac tagTTCGTA aggCGGAATT tagaggataa actaaccACT	2220
aaaggattgt cccccacaaga agctaataag CTTATCAAAG ATTTTTGAG CAGCAACAAA	2280
gaattggTTG gaaaaacttt aaacttcaat aaagctgttag CTGACGCTAA AAACACAGGC	2340
aattatgatg aagtggaaaa agctcagaaa gatTTGAAA AATCTCTAAG GAAACGAGAG	2400
CATTTAGAGA aagaagtAGA gaaaaattG gagAGCaaaa GCGGCAACAA AAATAAAATG	2460
gaagcaaaAG CTCAGCTAA CAGCaaaaA gatgagATT TTGCGTTGAT CAATAAGAG	2520
GCTAATAGAG acgcaagAGC aatcgcttAC GCTCAGAATC TAAAGGCAT CAAAAGGGAA	2580
ttgtctgata aacttgaaaa tgtcaacaAG AATTTGAAAG ACTTTGATAA ATCTTTGAT	2640
gaattcaaaa atggcaaaaa taaggattTC agcaaggcAG aagaaacACT AAAAGCCCTT	2700
aaaggTTcgg tgaaagattt aggtatcaat ccagaatGGA TTTCAAAGT TGAAAACCTT	2760
aatgcagCTT tgaatgaatt caaaaatGGC aaaaataAGG ATTCAGCAA GGTAACGCAA	2820
GCaaaaAGCG ACCTGAAAAA TTCCGTTAA GATGTGATCA TCAATCAAAGG GTTAACGGAT	2880
aaagttgata atctcaatCA AGCGGTATCA GTGGCTAAAG CAACGGGTGA TTTCACTTAGG	2940
gtagagcaag CGTTAGCCGA TCTCAAAAT TTCTCAAAGG AGCAATTGGC CCAACAAGCT	3000
caaaaaatG aaagtctcaa TGCTAGAAAA AATCTGAAA TATATCAATC CGTTAAGAAT	3060
GGTGTGAATG GAACCTAGT CGGTAATGGG TTATCTCAAG CAGAAGCCAC AACTCTTCT	3120
aaaaactttt CGGACATCAA GAAAGAGTTG AATGCAAAAC TTGAAATTG CAATAACAAAT	3180
AACAATAATG GACTCAAAAAA CGAACCCATT TATGCTAAAG TTAATAAAAAA GAAAGCAGGG	3240
CAAGCAGCTA GCCTTGAAGA ACCCATTAC GCTCAAGTTG CTTAAAAAGGT AAATGCAAAA	3300
ATTGACCGAC TCAATCAAAT AGCAAGTGGT TTGGGTGTTG TAGGGCAAGC AGCGGGCTTC	3360
CTTTGAAAAA GGCATGATAA AGTTGATGAT CTCAGTAAGG TAGGGCTTC AAGGAATCAA	3420
GAATTGGCTC AGAAAATTGA CAATCTCAAT CAAGCGGTAT CAGAAGCTAA AGCAGGTTT	3480
TTTGGCAATC TAGAGCAACAC GATAGACAAG CTCAAAGATT CTACAAAACA CAATCCCAG	3540

aatctatggg ttgaaaagtgc aaaaaaaagta cctgctagtt tgtcagcgaa actagacaat	3600
tacgctacta acagccacat acgcattaat agcaatatca aaaatggagc aatcaatgaa	3660
aaagcgaccg gcatgctaac gaaaaaaaaac cctgagtggc tcaagctcgtaatgataag	3720
atagttgcgc ataatgttagg aagcgttcct ttgtcagagt atgataaaat tggcttcaac	3780
cagaagaata tgaagagatta ttctgattcg ttcaagtttt ccaccaagtt gaacaatgct	3840
gtaaaagaca ctaattctgg cttagcata accatggatca atgcatttc tacagcatct	3900
tattactgct tggcgagaga aaatgcggag catggatca agaacgttaa tacaaaaggt	3960
ggtttccaaa aatcttaaag gattaaggaa tacaaaaaac gaaaaaccca ccccttgcta	4020
aaagcgaggg gtttttaat actccttagc agaaaatccc atcgtctta gtatttggga	4080
tgaatgctac caattcatgg tatcatatcc ccatacatcc gatatctcg taggaagtgt	4140
gcaaagttac gcctttggag atatgatgtg tgagacctgt agggaatgctg ttggagctca	4200
aactctgtaa aatccctatt ataggacac agagtggagaa ccaaactctc cctacgggca	4260
acatcagcct aggaagccca atcgtctta gcgggtggc acttcacccctt aaaatatccc	4320
gacagacact aacgaaaggc tttgttctt aaagtctgca tggatatttc ctaccccaaa	4380
aagacttaac cctttgctta aaattaagtt tgattgtgct agtgggttc tgctatagtg	4440
cggaaaattaa ttaagggtta taaagagagc ataaactaga aaaaacaagt agctataaca	4500
aagatcaagt tcaaaaaatc atagagctt tagagcaa at tgatcgcgt cttaacccaa	4560
gaaaaatcag aaaaaccata ggaattatca cacctataa tgcccaaaaa agacgcttgc	4620
gatcagaagt gggaaaatac ggcttcaaga attttgatga gctcaaataa gacactgtgg	4680
atgcctttca aggtgaagag gcagatatta ttatatttc caccgtgaaa acttgtggta	4740
atcttcttt ctgtcttagat tctaaacgct tgaatgtggc tatttcttagg gcaaaaagaaa	4800
atctcatttt tgggtttaaa aagtctttct ttgagaattt atgaagcgat gagaagaata	4860
tcttagcgc tattttgcaa gtctgttagat aggtaatctt ttccaaagat aatcattaga	4920
cattttcgc ttcaaaacgc tttcataat ctctctaaag cgctttataa tcaacacaat	4980
acccttatacg tggagctat agcccccttt tggaaattga gttatTTGA cttaaatttt	5040
ttattagcgt tacaatttga gccattttt agcttgggg tctagccaga tcacatcgcc	5100
gctcgcatga aattccactt taggaaatgc gtgtgcattt ttttaaggg cgtatTTTG	5160
ctgcaaatat cctacaatag catgccccga atggatgagt agggggggtg ttgaaaggc	5220
aaaatgctcc ataaaatagc cctcaatttt ttgagcgatt aaggaaaaat gcgtgcaacc	5280
taaaaataatc acttcggaa aatcttaag ggagtgaaat aataacgcatttgc	5340
aacaatttcgc cctctaaaat actttcttca atcaaaggca caaaaagaga agtggctaaa	5400
tgcgaaacat tcaaatacgcc ttgttggttc agggcattgt cataagcgat ggattggatc	5460
gtcgcttttgc tccctagcac taaaataggg gcgttttat ctttacttg tcgcttgc	5520
gctaaaatgc ttggctcaat cacgccaca ataggatTTG tggatgctt ttgcattct	5580
tctaaagcta gagcgctcgc tgtgtgcatttgc cccacaatca ataattcaat ctgggtcggt	5640
ttgaaaaat ccaaagcctc taagccaaat tgcttgcatttgc tagtgggtc tttagtgc	5700

taaggcactc tagccgtatc gccataatag atgatttcat caaataattg cgctttaaa 5760
aggctttta aaacgctaaa ccctccaca ccgctatcaa aaacgcctat tttcatgaca 5820
ctttttaat ttaatggat taatttaggaa ttttattttt cattcattaa gtttaaaaat 5880
tcttcattgt ccttagtttgc ttgcattttt gaatagacaa agctt 5925

<210> 5
<211> 1147
<212> PRT
<213> Helicobacter pylori

<400> 5

Met Thr Asn Glu Thr Ile Asp Gln Gln Pro Gln Thr Glu Ala Ala Phe
1 5 10 15

Asn Pro Gln Gln Phe Ile Asn Asn Leu Gln Val Ala Phe Leu Lys Val
20 25 30

Asp Asn Ala Val Ala Ser Tyr Asp Pro Asp Gln Lys Pro Ile Val Asp
35 40 45

Lys Asn Asp Arg Asp Asn Arg Gln Ala Phe Glu Gly Ile Ser Gln Leu
50 55 60

Arg Glu Glu Tyr Ser Asn Lys Ala Ile Lys Asn Pro Thr Lys Lys Asn
65 70 75 80

Gln Tyr Phe Ser Asp Phe Ile Asn Lys Ser Asn Asp Leu Ile Asn Lys
85 90 95

Asp Asn Leu Ile Asp Val Glu Ser Ser Thr Lys Ser Phe Gln Lys Phe
100 105 110

Gly Asp Gln Arg Tyr Arg Ile Phe Thr Ser Trp Val Ser His Gln Asn
115 120 125

Asp Pro Ser Lys Ile Asn Thr Arg Ser Ile Arg Asn Phe Met Glu Asn
130 135 140

Ile Ile Gln Pro Pro Ile Leu Asp Asp Lys Glu Lys Ala Glu Phe Leu
145 150 155 160

Lys Ser Ala Lys Gln Ser Phe Ala Gly Ile Ile Ile Gly Asn Gln Ile
165 170 175

Arg Thr Asp Gln Lys Phe Met Gly Val Phe Asp Glu Ser Leu Lys Glu
180 185 190

Arg Gln Glu Ala Glu Lys Asn Gly Glu Pro Thr Gly Gly Asp Trp Leu
195 200 205

Asp Ile Phe Leu Ser Phe Ile Phe Asp Lys Lys Gln Ser Ser Asp Val
210 215 220

Lys Glu Ala Ile Asn Gln Glu Pro Val Pro His Val Gln Pro Asp Ile
225 230 235 240

Ala Thr Thr Thr Thr Asp Ile Gln Gly Leu Pro Pro Glu Ala Arg Asp
245 250 255

Leu Leu Asp Glu Arg Gly Asn Phe Ser Lys Phe Thr Leu Gly Asp Met
260 265 270

Glu Met Leu Asp Val Glu Gly Val Ala Asp Ile Asp Pro Asn Tyr Lys
275 280 285

Phe Asn Gln Leu Leu Ile His Asn Asn Ala Leu Ser Ser Val Leu Met
290 295 300

Gly Ser His Asn Gly Ile Glu Pro Glu Lys Val Ser Leu Leu Tyr Gly
305 310 315 320

Gly Asn Gly Gly Pro Gly Ala Arg His Asp Trp Asn Ala Thr Val Gly
325 330 335

Tyr Lys Asp Gln Gln Gly Asn Asn Val Ala Thr Ile Ile Asn Val His
340 345 350

Met Lys Asn Gly Ser Gly Leu Val Ile Ala Gly Gly Glu Lys Gly Ile
355 360 365

Asn Asn Pro Ser Phe Tyr Leu Tyr Lys Glu Asp Gln Leu Thr Gly Ser
370 375 380

Gln Arg Ala Leu Ser Gln Glu Glu Ile Gln Asn Lys Ile Asp Phe Met
385 390 395 400

Glu Phe Leu Ala Gln Asn Asn Ala Lys Leu Asp Asn Leu Ser Glu Lys
405 410 415

Glu Lys Glu Lys Phe Arg Thr Glu Ile Lys Asp Phe Gln Lys Asp Ser
420 425 430

Lys Ala Tyr Leu Asp Ala Leu Gly Asn Asp Arg Ile Ala Phe Val Ser
435 440 445

Lys Lys Asp Thr Lys His Ser Ala Leu Ile Thr Glu Phe Gly Asn Gly
450 455 460

Asp Leu Ser Tyr Thr Leu Lys Asp Tyr Gly Lys Lys Ala Asp Lys Ala
465 470 475 480

Leu Asp Arg Glu Lys Asn Val Thr Leu Gln Gly Ser Leu Lys His Asp
485 490 495

Gly Val Met Phe Val Asp Tyr Ser Asn Phe Lys Tyr Thr Asn Ala Ser

500

505

510

Lys Asn Pro Asn Lys Gly Val Gly Val Thr Asn Gly Val Ser His Leu
515 520 525

Glu Val Gly Phe Asn Lys Val Ala Ile Phe Asn Leu Pro Asp Leu Asn
530 535 540

Asn Leu Ala Ile Thr Ser Phe Val Arg Arg Asn Leu Glu Asp Lys Leu
545 550 555 560

Thr Thr Lys Gly Leu Ser Pro Gln Glu Ala Asn Lys Leu Ile Lys Asp
565 570 575

Phe Leu Ser Ser Asn Lys Glu Leu Val Gly Lys Thr Leu Asn Phe Asn
580 585 590

Lys Ala Val Ala Asp Ala Lys Asn Thr Gly Asn Tyr Asp Glu Val Lys
595 600 605

Lys Ala Gln Lys Asp Leu Glu Lys Ser Leu Arg Lys Arg Glu His Leu
610 615 620

Glu Lys Glu Val Glu Lys Lys Leu Glu Ser Lys Ser Gly Asn Lys Asn
625 630 635 640

Lys Met Glu Ala Lys Ala Gln Ala Asn Ser Gln Lys Asp Glu Ile Phe
645 650 655

Ala Leu Ile Asn Lys Glu Ala Asn Arg Asp Ala Arg Ala Ile Ala Tyr
660 665 670

Ala Gln Asn Leu Lys Gly Ile Lys Arg Glu Leu Ser Asp Lys Leu Glu
675 680 685

Asn Val Asn Lys Asn Leu Lys Asp Phe Asp Lys Ser Phe Asp Glu Phe
690 695 700

Lys Asn Gly Lys Asn Lys Asp Phe Ser Lys Ala Glu Glu Thr Leu Lys
705 710 715 720

Ala Leu Lys Gly Ser Val Lys Asp Leu Gly Ile Asn Pro Glu Trp Ile
725 730 735

Ser Lys Val Glu Asn Leu Asn Ala Ala Leu Asn Glu Phe Lys Asn Gly
740 745 750

Lys Asn Lys Asp Phe Ser Lys Val Thr Gln Ala Lys Ser Asp Leu Glu
755 760 765

Asn Ser Val Lys Asp Val Ile Ile Asn Gln Lys Val Thr Asp Lys Val
770 775 780

Asp Asn Leu Asn Gln Ala Val Ser Val Ala Lys Ala Thr Gly Asp Phe
785 790 795 800

Ser Arg Val Glu Gln Ala Leu Ala Asp Leu Lys Asn Phe Ser Lys Glu
805 810 815

Gln Leu Ala Gln Gln Ala Gln Lys Asn Glu Ser Leu Asn Ala Arg Lys
820 825 830

Lys Ser Glu Ile Tyr Gln Ser Val Lys Asn Gly Val Asn Gly Thr Leu
835 840 845

Val Gly Asn Gly Leu Ser Gln Ala Glu Ala Thr Thr Leu Ser Lys Asn
850 855 860

Phe Ser Asp Ile Lys Lys Glu Leu Asn Ala Lys Leu Gly Asn Phe Asn
865 870 875 880

Asn Asn Asn Asn Asn Gly Leu Lys Asn Glu Pro Ile Tyr Ala Lys Val
885 890 895

Asn Lys Lys Lys Ala Gly Gln Ala Ala Ser Leu Glu Glu Pro Ile Tyr
900 905 910

Ala Gln Val Ala Lys Lys Val Asn Ala Lys Ile Asp Arg Leu Asn Gln
915 920 925

Ile Ala Ser Gly Leu Gly Val Val Gly Gln Ala Ala Gly Phe Pro Leu
930 935 940

Lys Arg His Asp Lys Val Asp Asp Leu Ser Lys Val Gly Leu Ser Arg
945 950 955 960

Asn Gln Glu Leu Ala Gln Lys Ile Asp Asn Leu Asn Gln Ala Val Ser
965 970 975

Glu Ala Lys Ala Gly Phe Phe Gly Asn Leu Glu Gln Thr Ile Asp Lys
980 985 990

Leu Lys Asp Ser Thr Lys His Asn Pro Met Asn Leu Trp Val Glu Ser
995 1000 1005

Ala Lys Lys Val Pro Ala Ser Leu Ser Ala Lys Leu Asp Asn Tyr
1010 1015 1020

Ala Thr Asn Ser His Ile Arg Ile Asn Ser Asn Ile Lys Asn Gly
1025 1030 1035

Ala Ile Asn Glu Lys Ala Thr Gly Met Leu Thr Gln Lys Asn Pro
1040 1045 1050

Glu Trp Leu Lys Leu Val Asn Asp Lys Ile Val Ala His Asn Val
1055 1060 1065

Gly Ser Val Pro Leu Ser Glu Tyr Asp Lys Ile Gly Phe Asn Gln
1070 1075 1080

Lys Asn Met Lys Asp Tyr Ser Asp Ser Phe Lys Phe Ser Thr Lys
1085 1090 1095

Leu Asn Asn Ala Val Lys Asp Thr Asn Ser Gly Phe Thr Gln Phe
1100 1105 1110

Leu Thr Asn Ala Phe Ser Thr Ala Ser Tyr Tyr Cys Leu Ala Arg
1115 1120 1125

Glu Asn Ala Glu His Gly Ile Lys Asn Val Asn Thr Lys Gly Gly
1130 1135 1140

Phe Gln Lys Ser
1145

<210> 6

<211> 546

<212> PRT

<213> Helicobacter pylori

<400> 6

Met Ala Lys Glu Ile Lys Phe Ser Asp Ser Ala Arg Asn Leu Leu Phe
1 5 10 15

Glu Gly Val Arg Gln Leu His Asp Ala Val Lys Val Thr Met Gly Pro
20 25 30

Arg Gly Arg Asn Val Leu Ile Gln Lys Ser Tyr Gly Ala Pro Ser Ile
35 40 45

Thr Lys Asp Gly Val Ser Val Ala Lys Glu Ile Glu Leu Ser Cys Pro
50 55 60

Val Ala Asn Met Gly Ala Gln Leu Val Lys Glu Val Ala Ser Lys Thr
65 70 75 80

Ala Asp Ala Ala Gly Asp Gly Thr Thr Ala Thr Val Leu Ala Tyr
85 90 95

Ser Ile Phe Lys Glu Gly Leu Arg Asn Ile Thr Ala Gly Ala Asn Pro
100 105 110

Ile Glu Val Lys Arg Gly Met Asp Lys Ala Ala Glu Ala Ile Ile Asn
115 120 125

Glu Leu Lys Lys Ala Ser Lys Lys Val Gly Gly Lys Glu Glu Ile Thr
130 135 140

Gln Val Ala Thr Ile Ser Ala Asn Ser Asp His Asn Ile Gly Lys Leu
145 150 155 160

Ile Ala Asp Ala Met Glu Lys Val Gly Lys Asp Gly Val Ile Thr Val
165 170 175

Glu Glu Ala Lys Gly Ile Glu Asp Glu Leu Asp Val Val Glu Gly Met
180 185 190

Gln Phe Asp Arg Gly Tyr Leu Ser Pro Tyr Phe Val Thr Asn Ala Glu
195 200 205

Lys Met Thr Ala Gln Leu Asp Asn Ala Tyr Ile Leu Leu Thr Asp Lys
210 215 220

Lys Ile Ser Ser Met Lys Asp Ile Leu Pro Leu Leu Glu Lys Thr Met
225 230 235 240

Lys Glu Gly Lys Pro Leu Leu Ile Ile Ala Glu Asp Ile Glu Gly Glu
245 250 255

Ala Leu Thr Thr Leu Val Val Asn Lys Leu Arg Gly Val Leu Asn Ile
260 265 270

Ala Ala Val Lys Ala Pro Gly Phe Gly Asp Arg Arg Lys Glu Met Leu
275 280 285

Lys Asp Ile Ala Ile Leu Thr Gly Gly Gln Val Ile Ser Glu Glu Leu
290 295 300

Gly Leu Ser Leu Glu Asn Ala Glu Val Glu Phe Leu Gly Lys Ala Gly
305 310 315 320

Arg Ile Val Ile Asp Lys Asp Asn Thr Thr Ile Val Asp Gly Lys Gly
325 330 335

His Ser Asp Asp Val Lys Asp Arg Val Ala Gln Ile Lys Thr Gln Ile
340 345 350

Ala Ser Thr Thr Ser Asp Tyr Asp Lys Glu Lys Leu Gln Glu Arg Leu
355 360 365

Ala Lys Leu Ser Gly Gly Val Ala Val Ile Lys Val Gly Ala Ala Ser
370 375 380

Glu Val Glu Met Lys Glu Lys Lys Asp Arg Val Asp Asp Ala Leu Ser
385 390 395 400

Ala Thr Lys Ala Ala Val Glu Glu Gly Ile Val Ile Gly Gly Ala
405 410 415

Ala Leu Ile Arg Ala Ala Gln Lys Val His Leu Asn Leu His Asp Asp
420 425 430

Glu Lys Val Gly Tyr Glu Ile Ile Met Arg Ala Ile Lys Ala Pro Leu
435 440 445

Ala Gln Ile Ala Ile Asn Ala Gly Tyr Asp Gly Gly Val Val Val Asn
450 455 460

Glu Val Glu Lys His Glu Gly His Phe Gly Phe Asn Ala Ser Asn Gly
465 470 475 480

Lys Tyr Val Asp Met Phe Lys Glu Gly Ile Ile Asp Pro Leu Lys Val
485 490 495

Glu Arg Ile Ala Leu Gln Asn Ala Val Ser Val Ser Ser Leu Leu Leu
500 505 510

Thr Thr Glu Ala Thr Val His Glu Ile Lys Glu Glu Lys Ala Thr Pro
515 520 525

Ala Met Pro Asp Met Gly Gly Met Gly Gly Met Gly Met Gly Gly
530 535 540

Met Met
545

<210> 7
<211> 1838
<212> DNA
<213> Helicobacter pylori

<400> 7
aagcttgctg tcatgatcac aaaaaacact aaaaaacatt attattaagg atacaaaatg 60
gcaaaaagaaa tcaaattttc agatagtgcg agaaaccttt tatttgaagg cgtgaggcaa 120
ctccatgacg ctgtcaaagt aaccatgggg ccaagaggca ggaatgtatt gatccaaaaa 180
agctatggcg ctccaaggcat caccaaagac ggcgtgagcg tggctaaaga gattgaatta 240
agttgcccag tagctaacat gggcgctcaa ctcgttaaag aagtagcggaa caaaaccgct 300
gatgtgccg gcgtatggcac gaccacagcg accgtgctag cttatagcat ttttaagaa 360
ggtttgagga atatcacggc tggggctaac cctattgaag tgaaacgagg catggataaa 420
gctgtgaag cgatcattaa tgagctaaa aaagcgagca aaaaagttagg cggtaaagaa 480
gaaatcaccc aagtggcgac catttctgca aactccgatc acaatatcg gaaactcatc 540
gctgacgcta tggaaaaagt gggtaaagac ggcgtgatca ccgttgagga agctaaggc 600
attgaagatg aattggatgt cgtagaaggc atgcaattt atagaggcta cctctccct 660
tatttgtaa cgaacgctga gaaaatgacc gctcaattgg ataatgctta catccttta 720
acggataaaa aaatctctag catgaaagac attctccgc tactagaaaa aaccatgaaa 780
gagggcaaac cgctttaat catcgctgaa gacattgagg gcgaagctt aacgactcta 840
gtggtaata aattaagagg cgtgttgaat atcgacggg ttaaagctcc aggcttggg 900
gacagaagaa aagaaatgct caaagacatc gctattttaa ccggcggtca agtcattagc 960
gaagaattgg gcttgagtct agaaaacgct gaagtggagt ttttaggcaa agctggaaagg 1020
attgtgattt acggacaa caccacgatc gtatggca aaggccatag cgatgttgtt 1080

aaagacagag tcgcgcagat caaaaacccaa attgcaagta cgacaaggcgta ttatgacaaa	1140
gaaaaattgc aagaaagatt ggctaaactc tctggcggtg tggctgtat taaagtgggc	1200
gctgcgagtg aagtggaaat gaaagagaaaa aaagaccggg tggatgacgc gttgagcgcg	1260
actaaagcgg cgggtgaaga aggcattgtg attggtggcg gtgcggctct cattcgcg	1320
gctcaaaaag tgcatttgaa tttgcacgat gatgaaaaag tggctatga aatcatcatg	1380
cgcgccatta aagccccatt agctcaaatac gctatcaacg ctggttatga tggcggtgt	1440
gtcgtgaatg aagtagaaaa acacgaaggg cattttggtt ttaacgctag caatggcaag	1500
tatgtggata tgtttaaaga aggatttatt gacccttaa aagtagaaaa gatcgctcta	1560
caaaatgcgg tttcggttc aagcctgctt ttaaccacag aagccaccgt gcatgaaatc	1620
aaagaagaaaa aagcgactcc ggcaatgcct gatatgggtg gcatggcg tatgggaggc	1680
atggcgccca tgatgtAAC ccgcttgctt ttttagtataa tctgctttta aaatcccctc	1740
tctaaatccc cccctttcta aaatctctt tttggggggg tgctttgata aaaccgctcg	1800
cttgtaaaaa catgcaacaa aaaatctctg ttaagctt	1838

<210> 8	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer oligonucleotide	
<400> 8	
gactcgagtc gacatcga	18

<210> 9
<211> 12
<212> PRT
<213> Helicobacter pylori

<400> 9

Glu Phe Lys Asn Gly Lys Asn Lys Asp Phe Ser Lys
1 5 10

<210> 10
<211> 5
<212> PRT
<213> Helicobacter pylori

<400> 10

Glu Pro Ile Tyr Ala
1 5

<210> 11
<211> 102
<212> DNA
<213> Helicobacter pylori

<400> 11	
gggcgatcgg ttagccctga acccatttat gctacgattt atgatctccg gcggaccttt	60
ccctttgaaa ggcataataa agttgtatgtat ctcagtaagg ta	102

<210> 12
<211> 34
<212> PRT
<213> Helicobacter pylori

<400> 12

Gly Arg Ser Val Ser Pro Glu Pro Ile Tyr Ala Thr Ile Asp Asp Leu
1 5 10 15

Gly Gly Pro Phe Pro Leu Lys Arg His Asp Lys Val Asp Asp Leu Ser
20 25 30

Lys Val

<210> 13
<211> 18
<212> DNA
<213> Helicobacter pylori

<400> 13
cctgaaccca tttatgct 18

<210> 14
<211> 6
<212> PRT
<213> Helicobacter pylori

<400> 14

Pro Glu Pro Ile Tyr Ala
1 5

<210> 15
<211> 9
<212> DNA
<213> Helicobacter pylori

<400> 15
gatgatctc 9

<210> 16
<211> 3
<212> PRT
<213> Helicobacter pylori

<400> 16

Asp Asp Leu
1

<210> 17
<211> 15
<212> PRT
<213> Helicobacter pylori

<400> 17

Phe Pro Leu Lys Arg His Asp Lys Val Asp Asp Leu Ser Lys Val
1 5 10 15

<210> 18		
<211> 45		
<212> DNA		
<213> Helicobacter pylori		
<400> 18		
tttcccttg aaaggcatga taaaagttgat gatctcagta aggtta		45
<210> 19		
<211> 36		
<212> DNA		
<213> Helicobacter pylori		
<400> 19		
gaattcaaaa atggcaaaaa taaggatttc agcaag		36
<210> 20		
<211> 15		
<212> DNA		
<213> Helicobacter pylori		
<400> 20		
gaacccattt atgct		15
<210> 21		
<211> 15		
<212> DNA		
<213> Helicobacter pylori		
<400> 21		
gaacccattt acgct		15
<210> 22		
<211> 45		
<212> DNA		
<213> Helicobacter pylori		
<400> 22		
ttcccttgaaaggcatga taaaagttgat gatctcagta aggtta		45
<210> 23		
<211> 6		
<212> PRT		
<213> Helicobacter pylori		
<400> 23		
 Asn Asn Asn Asn Asn Asn 1 5		
<210> 24		
<211> 18		
<212> DNA		
<213> Helicobacter pylori		
<400> 24		
aataacaata acaataat		18