了解自动驾驶,从ADAS开始

导语

随着新基建战略的持续落地,人工智能和汽车行业的飞速发展,无人驾驶技术已步入快车道。然而在实现真正自动驾驶之前,将经历一个高级辅助驾驶(ADAS)时代,接下来让我们从ADAS开始来了解自动驾驶。

01 什么是ADAS?

根据维基百科,ADAS(Advanced Driver Assistance Systems)是高级辅助驾驶系统的缩写。所谓高级辅助驾驶系统,就是帮助人们更好地操控车辆的辅助装置,一般提供更安全的驾驶条件或更舒适的用户体验。

ADAS涉及到12门技术,主要基于三种传感器——摄像头,雷达,激光雷达。在这12门技术中,组合出了感知,控制,决策这自动驾驶三大模块。ADAS的历史最早可以追溯到1948年,机械工程师Ralph Teetor发明了第一款"定速巡航"系统。

目前较为常用的ADAS可以按照功能分类,具体如下:

DAS 功能类别	缩写	中文名称	英文名称	
预警类	LDW	车道偏离预警	Lane Departure Warning	
	PCW	行人碰撞预警	Pedestrian Collision Warning	
	FCW	前方碰撞预警系统	Forward Collision Warning	
	HMW	车距监测&警告	Headway Monitoring&Warning	
	DFMS	疲劳检测系统	Driver Fatigue Monitoring System	
主动控制类	ACC	自适应巡航	Adaptive Cruise Control	
	AEB	自动紧急刹车	Autonomous Emergency Braking	
	LKS	车道保持系统	Lane Keeping Assist	
	ISA	智能车速控制	Intelligent Speed Adaptation	
	AFL	智能大灯控制	Adaptive Front Lights	
	ALC	自适应灯光控制	Adaptive Light Control	
	HDC	下坡控制系统	Hill Descent Control	
	DAC	下坡行车辅助控制系统	Down-hill assist control	
	IHC	远光自动控制	Intelligent Headlight Control	
	APA	自动泊车	Automated Parking Assist	
	AVP	自主泊车	Automated Valet Parking	
	HUD	抬头显示器	Heads-Up Display	
	DMS	驾驶员检测系统	Driver Monitoring System	
	ADB	远近光灯辅助	Adaptive Driving Beam	
	AFS	自适应前照灯系统	Adaptive Front-lighting System	
其他	NVS	汽车夜视系统	Night Vision System	
	SVC	全景泊车停车辅助系统	Surround View Camera	
	ISA	电子警察系统	Intelligent Speed Adaption	
	VCA	车联网	Vehicular Communication System	
	PPS	行人保护系统	Pedestrian Protection System	
	EVW	电动汽车报警系统	Electric Vehicle Warning	
	TMC	实时交通系统	Traffic Message Channel	
	AVM	全车监视系统	Around View Monitoring	
	SVM	全景影像系统	Surround View Monitor	
	BSM	盲区监测系统	Blind Spot Monitoring	
	PDS	行人检测系统	Pediatrician Detection System	
	RSR	道路标志牌识别	Road Sign Recognition	
	TSR	交通标志识别	Traffic Sign Ressurition	

别被上面这些吓到,ADAS的功能还远不止这些,还有许多功能在开发中。比如法雷奥公司目前正在研发的AP&C(Automated Parking&Charging)等。

然而目前的ADAS不等于自动驾驶。ADAS仅仅是辅助驾驶,需要人类主导;而自动驾驶是人工智能主导,简单来说就是不需要人操控方向盘。按照SAE(SAE International, Society of Automotive Engineers国际自动机工程师学会)的分级,自动驾驶技术分为LO-L5共六个等级:

			主体			
分级	称呼	定义	驾驶	观察 周边	支援	系统作 用域
LO	无自动化	由人类驾驶者全权操作汽车,在行 驶过程中可以得到警告和保护系统 的辅助。	人类驾 驶者	人	٨	无
L1	驾驶支援	通过驾驶环境对方向盘和加减速中 的一项操作提供驾驶支援,其他的 驾驶动作都由人类驾驶员进行操作。	人类驾 驶者+ 系统	类驾	类驾	
L2	部分自动化	通过驾驶环境对方向盘和加减速中 的多项操作提供驾驶支援,其他的 驾驶动作都由人类驾驶员进行操作。		驶者	驶	部分
L3	条件自动化	由无人驾驶系统完成所有的驾驶操作。根据系统请求,人类驾驶者提供适当的应答。	-4		者	
L4	高度自动化	由无人驾驶系统完成所有的驾驶操作。根据系统请求,人类驾驶者不一定需要对所有的系统请求作出应答,限定道路和环境条件等。	系统	系统	系	
L5	完全自动化	由无人驾驶系统完成所有的驾驶操作。根据系统请求,人类驾驶者在可能的情况下接管,在任何道路和环境下驾驶。	知]乎 @:	统 虹科自	倉部

目前的ADAS处于L2到L3之间的自动驾驶水平。不过,仅仅是L2到L3级别的自动驾驶,我们也能够感受到这些功能为我们出行带来的便捷。那么 ADAS目前的市场如何?

02 ADAS国内市场

据高工智能汽车研究报告显示,今年上半年,纯电动汽车ADAS搭载率陡增,从2019年的13.57%增长至39.41%。ADAS在纯电动汽车的渗透率首次超过燃油车并超出平均水平。

ADAS功能中,AEB(自动紧急刹车)的搭载率增量最大,从2019年的15.12%增加到30.20%;热门的ACC(自适应巡航)搭载率下滑,全速ACC开始上升,从2019年的2.8%增加到12.41%。 APA(自动泊车)、AVM(全车监视系统)的搭载率增速最小。

03 从热门ADAS应用看ADAS产业链

AEB, ACC, APA, AVM等是目前最热门的ADAS应用。下面将对他们进行详细介绍。

AEB:自动紧急制动(Autonomous EmergencyBraking)

AEB 是一种汽车主动安全技术,主要由3大模块构成:测距模块,决策模块,控制模块。其中测距模块的核心包括微波雷达、激光雷达和视频系统等,它可以提供前方道路安全、准确、实时的图像和路况信息。AEB系统采用雷达测出与前车或者障碍物的距离,然后利用数据分析模块将测出的距离与警报距离、安全距离进行比较,小于警报距离时就进行警报提示,而小于安全距离时即使在驾驶员没有来得及踩制动踏板的情况下,AEB系统也会启动,使汽车自动制动,从而为安全出行保驾护航。

ACC: 自适应巡航控制系统 (Adaptive Cruise Control)

自适应巡航控制系统是一种智能化的自动控制系统,它是在早已存在的巡航控制技术的基础上发展而来的。在车辆行驶过程中,安装在车辆前部的车距传感器(雷达)持续扫描车辆前方道路,同时轮速传感器采集车速信号。当与前车之间的距离过小时,ACC控制单元可以通过与制动防抱死系统、发动机控制系统协调动作,使车轮适当制动,并使发动机输出功率下降,让车辆与前方车辆始终保持安全距离。

自适应巡航系统可根据驾驶员设定的目标速度及与前车的相对距离,自动调整车速。这是通过安装在车辆前部的车距传感器,持续扫描车辆前方道路来得知前车的车速与相对距离,行驶中会自动侦测车速,当与前车的距离越来越小时,会对应调整自身车速,与前方车辆保持安全距离,减少碰撞意外的发生,也就是所谓的高级版自动巡航系统,目前许多车款上都已可看见此系统的踪影。

APA 自动泊车辅助 (Automated Parking Assistance)

泊车辅助系统通过安装在车身上的摄像头,超声波传感器,以及红外传感器,探测停车位置,绘制停车地图,并实时动态规划泊车路径,将汽车指引或者直接操控方向盘驶入停车位置。停车辅助系统又分为2种,分别是主动式与被动式,前者系统自动控制方向盘以帮助驾驶完成停车,当然油门、刹车与档位切换还是要车主自行操控。后者则是以影像(摄影机)与影音(超音波)为感测单元所组成的,提供更多车身周围信息给车主掌握,减少碰撞机会。

AVM 全车监视系统 (Around View Monitor)

通过多个超大广角鱼眼镜头拍摄图像,然后经过数据处理对拍摄图像进行畸变矫正以及拼接,形成周围影象。多用于汽车系统中,为驾驶员提供车身四周的俯视图像,消除驾驶员的视野盲区,泊车时可提供有效的视觉辅助功能。

从上面介绍的4个ADAS应用,我们可以将感知类ADAS应用归纳为"感知—判断—执行"这3个过程。根据这3个过程,就可以对自动驾驶产业链有个初步的认知。

在感知过程中:由于汽车是许多零件拼凑而成的机械件,那么汽车想要感知外界环境,就需要依靠各类的传感器了。传感器搭载的数量越多,汽车就能够收获到更多的信息。

传感器主要应用的是摄像头+雷达的组合,该组合能够实现测距和识别两种功能,且易互补。判断主要依靠软件平台搭载的不同算法。执行则主要依靠车载电子控制平台,智能架构等电子硬件设备。

最后可以见下图来了解ADAS产业链。

