

Traitement du signal analogique en temps discret

Electronique des Systèmes d'Acquisition ELEC 101

Site web: https://c2s.telecom-paristech.fr/ELEC101/

Plan

- Principe des capacités commutées
- Exercices

Introduction

■ Filtres discrets RLC

■ Filtres actifs RC

Capacités commutées

...

Intégration monolithique

Limitations des montages actifs RC

■ Un exemple : Intégrer une constante de temps : $\tau = R_1 \cdot C_2 = 10^{-4}$ s (bande vocale)

- Si C₂ = 10 pF, alors R₁ = 10 M Ω ; $fc = \frac{1}{2\pi R_1 C_2} = 1,59 \text{ KHz}$
- Précision absolue des capacités et résistances ~ 15 %.
 Vu que les variations de R et C ne sont pas corrélées,
 le produit R₁C₂ peut varier ~ ±30 %
 1,22 KHz < fc < 2,27 KHz
- La valeur des résistances dépend de la température

Montages élémentaires

Phase paire : n.Te

Phase impaire : (n+1/2).Te

Phase paire : (n+1).Te

Hypothèses de calcul

- Charges et décharges instantanées
 - Capacités parfaites
 - Commutateurs parfaits
 - Les phases sont des impulsions

Pas de fuite de charges

Bilan des charges des capacités en phase I

Bilan des charges des capacités en phase P

Conservation des charges dans le réseau :

• En phase I : C₂ est isolée.

$$Q_2^I[(n-1/2)T_e] = Q_2^P[(n-1)T_e]$$

• En phase P : C₁et C₂ sont isolées.

$$-Q_{1}^{P}(nT_{e})+Q_{2}^{P}(nT_{e})=-Q_{1}^{I}[(n-1/2)T_{e}]+Q_{2}^{I}[(n-1/2)T_{e}]^{IIIIII}$$

Equation aux différences finies

$$-Q_{1}^{P}(nT_{e})+Q_{2}^{P}(nT_{e})=-Q_{1}^{I}[(n-1/2)T_{e}]+Q_{2}^{P}[(n-1)T_{e}]$$

$$-C_{1}\left[V_{e}^{P}(nT_{e})-V_{s}^{P}(nT_{e})\right]+C_{2}V_{s}^{P}(nT_{e})=0+C_{2}V_{s}^{P}\left[(n-1)T_{e}\right]$$

$$(C_2 + C_1)V_s^P(nT_e) - C_2V_s^P[(n-1)T_e] = C_1V_e^P(nT_e)$$

Application de la transformée en Z

Equation aux différences finies :

$$(C_2 + C_1)V_s^P(nT_e) - C_2V_s^P[(n-1)T_e] = C_1V_e^P(nT_e)$$

Application de la transformée en Z :

$$(C_2 + C_1)V_s^P(Z) - C_2 Z^{-1}V_s^P(Z) = C_1 V_e^P(Z)$$

Fonction de transfert en Z :

$$T^{PP}(Z) = \frac{V_s^P(Z)}{V_e^P(Z)} = \frac{1}{1 + \frac{C_2}{C_1}(1 - Z^{-1})}$$

Rapport capacitif

Fonction de transfert en fréquence

Changement de variable : $Z = e^{+j\omega T_e} = e^{2\pi j F/F_e}$

$$T^{PP}(\omega) = \frac{V_s^P(\omega)}{V_e^P(\omega)} = \frac{1}{1 + \frac{C_2}{C_1} \left(1 - e^{-j\omega T_e}\right)}$$

Hypothèse de sur-échantillonnage : F_e >> F_{max}

$$T^{PP}(\omega) = \frac{V_s^P(\omega)}{V_e^P(\omega)} \cong \frac{1}{1 + j\frac{C_2}{C_1 F_e} \omega} \qquad avec: e^{-j\omega T_e} \cong 1 - j\frac{\omega}{F_e}$$

$$avec:e^{-j\omega T_e} \cong 1-j\frac{\omega}{F_e}$$

Avantages et Inconvénients

Avantages:

- Meilleur précision (~0.1 % vs ~30 %) car la constante de temps est fixée par un rapport capacitif (Les variations sur C1 et C2 sont corrélées)
- La constante peut être modifiée en ajustant Fe:

C1= 1 pF; C2 =10 pF; Fe=100 KHz
$$\tau$$
= 10⁻⁴ s C1= 1 pF; C2 =10 pF; Fe=200 KHz τ = 0.510⁻⁵ s

Inconvénients:

 Contraintes plus importantes sur les amplificateurs opérationnels car le temps de charge effectif est 2 (pour 2 phases) fois moins important

- Question 1. Déterminer la fonction de transfert du circuit
- Question 2 Quelle est la fonction réalisée par le montage ?
- Question 3 Proposer une implémentation temps continu équivalente à ce montage dans laquelle vous remplacerez les commutateurs et capacité(s) par des résistances dont vous déterminerez les expressions.

- Question 1. Déterminer la fonction de transfert du circuit
- **Question 2**. Démontrer que la fonction de transfert dans le domaine fréquentiel peut s'exprimer sous la forme ci-dessous pour C1 = C3 et $\omega << 1/Te$:

$$H(j\omega) = -\frac{j\frac{\omega}{\omega c}}{1 + j\frac{\omega}{\omega c}}$$

Question 3 Tracer le diagramme de Bode du module et de la phase de H(jω). Quelle est la fonction réalisée par le circuit ?

