Problem 1 (2 points) Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$. Compute det A.

Problem 2 (3 points) Let $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \end{pmatrix}$. What does the rank theorem say about this matrix? In other words, how are rank A and dim Nul A related?

Problem 1 (2 points) Let $A = \begin{pmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 1 & 3 \\ 1 & 1 & 0 & 1 \\ 2 & 3 & 1 & 0 \end{pmatrix}$. (i) Compute det A. (ii) Is A invertible?

Problem? (3 points) (i) What aspects of the course have been good in terms of your learning? (ii) What aspects of the course could use improvement? (iii) Any other suggestions or comments?

Problem 1 (2 points) Let $A = \begin{pmatrix} -1 & 0 & 1 \\ -3 & 4 & 1 \\ 1 & 0 & 2 \end{pmatrix}$. Find the characteristic equation of A.

Problem 2 (3 points) Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. $\lambda = 1$ is the only eigenvalue of A. Find the dimension of the eigenspace corresponding to A.

Problem 1 (2 points) Let A be a 3×3 matrix, and $D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Suppose $A = PDP^{-1}$ for some invertible 3×3 matrix P. What is the characteristic polynomial of A?

Problem 2 (3 points) Let $A = \begin{pmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix}$. The eigenvalues of A are 2 and 3. Is A diagonalizable?

Problem 1 (2 points) Let $W = \operatorname{span}\left\{\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}\right\}$. Find the orthogonal decomposition of $v = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$ onto W. In other words, find vectors \hat{v} and z such that \hat{v} is a vector in W, z is a vector orthogonal to W, and $v = \hat{v} + z$.

Problem 2 (3 points) Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. $\lambda = 1$ is the only eigenvalue of A. The dimension of the eigenspace corresponding to $\lambda = 1$ is 2. Find an orthogonal basis of the eigenspace.

Problem 1 (5 points) Show that $A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & -3 & 0 \\ 0 & 0 & 7 \end{pmatrix}$ is diagonalizable, but not orthogonally diagonalizable.