

## Exploratory Data Analysis and Cleaning

By Shreyanth S

### The Datasets

The dataset ml\_client\_training\_output.csv named as pco\_output contains:

- id: contact id
- churn: has the client churned over the next 3 months

The dataset ml\_price\_training\_hist\_data.csv named as pco\_hist contains the history of energy and power consumption per client:

- id: contact id
- price date: reference date
- price\_off\_peak\_var: price of energy for the 1st period
- price peak var: price of energy for the 2nd period
- price mid peak var: price of energy for the 3rd period
- price\_off\_peak\_fix: price of power for the 1st period
- price\_peak\_fix: price of power for the 2nd period
- price\_mid\_peak\_fix: price of power for the 3rd period

The dataset ml client training data.csv contains:

- id: contact id
- activity\_new: category of the company's activity. 419 unique values, remove NaN
- campaign\_disc\_elec: code of the electricity campaign the customer last subscribed to. 0 non-null

- channel sales: code of the sales channel
- cons 12m: electricity consumption of the past 12 months
- cons\_gas\_12m: gas consumption of the past 12 months
- cons last month: electricity consupmtion of the last month
- date\_activ: date of activation of the contract
- date\_end: registered date of the end of the contract
- date\_first\_activ: date of first contract of the client
- date\_modif\_prod: date of last modification of the product
- date\_renewal: date of the next contract renewal
- forecast\_base\_bill\_ele: forecasted electricity bill baseline for next month
- forecast\_base\_bill\_year: forecasted electricity bill baseline for calendar year
- forecast\_bill\_12m: forecasted electricity bill baseline for 12 months
- forecast\_cons: forecasted electricity consumption for next month
- forecast\_cons\_12m: forecasted electricity consumption for next 12 months
- forecast\_cons\_year: forecasted electricity consumption for next calendar year
- forecast\_discount\_energy: forecasted value of current discount
- forecast\_meter\_rent\_12m: forecasted bill of meter rental for the next 12 months
- forecast price energy off peak: forecasted energy price for 1st period
- forecast\_price\_energy\_peak: forecasted energy price for 2nd period
- forecast\_price\_pow\_off\_peak: forecasted power price for 1st period
- has gas: indicated if client is also a gas client
- imp cons: current paid consumption
- margin\_gross\_pow\_ele: gross margin on power subscription
- margin\_net\_pow\_ele: net margin on power subscription
- nb prod act: number of active products and services
- net margin: total net margin
- num\_years\_antig: antiquity of the client (in number of years)
- origin\_up: code of the electricity campaign the customer first subscribed to
- pow\_max: subscribed power

## Importing Libraries and Datasets

In this section we import the libraries of interest as well as the datasets.

# Import libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import missingno as msno
from scipy.stats import zscore as zscore
# Read in dataset
url = 'https://raw.githubusercontent.com/ShreyanthBalasubramanian/Boston_Consulting_Group-
url2 = 'https://raw.githubusercontent.com/ShreyanthBalasubramanian/Boston_Consulting_Group
url3 = 'https://raw.githubusercontent.com/ShreyanthBalasubramanian/Boston_Consulting_Group
# list of dates
dt_lst = ['date_activ','date_end','date_first_activ','date_modif_prod','date_renewal']
# data importing
pco_main = pd.read_csv(url, parse_dates=dt_lst)#, index_col= 'date_activ')
pco hist = pd.read csv(url2, parse dates=['price date']) # Yearly history of consumption r
pco output = pd.read csv(url3)
pd.set_option('display.max_columns',None)
```

# Data Exploration

## **▼ The Client Output Dataset**

From the output dataset we can derive a quick insight on customer retention.

```
# Replace the churn column with appropiate labels
pco_output['churn'] = pco_output['churn'].replace({0:'Stayed',1:'Churned'})
# Glimpse
pco_output.head()
```

|   | id                               | churn   |
|---|----------------------------------|---------|
| 0 | 24011ae4ebbe3035111d65fa7c15bc57 | Churned |
| 1 | d29c2c54acc38ff3c0614d0a653813dd | Stayed  |
| 2 | 764c75f661154dac3a6c254cd082ea7d | Stayed  |
| 3 | bba03439a292a1e166f80264c16191cb | Stayed  |
| 4 | 149d57cf92fc41cf94415803a877cb4b | Stayed  |
|   |                                  |         |

```
# What number of customers have churned in the last 3 months?
attrition_count = pco_output['churn'].value_counts()
print('Total Number of Churned Customers:\n', attrition_count)
```

Total Number of Churned Customers:

Stayed 13187 Churned 1419

Name: churn, dtype: int64

# What is the proportion of customer attrition in the last 3 months?
attrition\_rate = pco\_output['churn'].value\_counts() / pco\_output.shape[0] \* 100
print('Attrition rate: \n', attrition\_rate)

Attrition rate:

Stayed 90.284814 Churned 9.715186

Name: churn, dtype: float64

#### **Facts**

- In the last 3 months 1.419 customers have churned
- There are currently 13,187 active clients
- Customer retention is 90% in the last 3 months
- Customer attrition is 10% in the last 3 months

### **Observations**

· Dataset has complete cases

## ▼ The Price History Dataset

This dataset contains 1-year historical data for each client. It provides insights of the yearly activity of each client.

# Display the yearly consumption of energy and power of customers
pco\_hist.head()

|   | id                               | price_date | <pre>price_off_peak_var</pre> | <pre>price_peak_var</pre> |
|---|----------------------------------|------------|-------------------------------|---------------------------|
| 0 | 038af19179925da21a25619c5a24b745 | 2015-01-01 | 0.151367                      | 0.0                       |
| 1 | 038af19179925da21a25619c5a24b745 | 2015-01-02 | 0.151367                      | 0.0                       |
| 2 | 038af19179925da21a25619c5a24b745 | 2015-01-03 | 0.151367                      | 0.0                       |
| 3 | 038af19179925da21a25619c5a24b745 | 2015-01-04 | 0.149626                      | 0.0                       |
| 4 | 038af19179925da21a25619c5a24b745 | 2015-01-05 | 0.149626                      | 0.0                       |



# Examing the structure of the dataframe
pco\_hist.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 193002 entries, 0 to 193001
Data columns (total 8 columns):

|     | /                             |                    |                           |
|-----|-------------------------------|--------------------|---------------------------|
| #   | Column                        | Non-Null Count     | Dtype                     |
|     |                               |                    |                           |
| 0   | id                            | 193002 non-null    | object                    |
| 1   | price_date                    | 193002 non-null    | <pre>datetime64[ns]</pre> |
| 2   | <pre>price_off_peak_var</pre> | 191643 non-null    | float64                   |
| 3   | price_peak_var                | 191643 non-null    | float64                   |
| 4   | <pre>price_mid_peak_var</pre> | 191643 non-null    | float64                   |
| 5   | <pre>price_off_peak_fix</pre> | 191643 non-null    | float64                   |
| 6   | <pre>price_peak_fix</pre>     | 191643 non-null    | float64                   |
| 7   | <pre>price_mid_peak_fix</pre> | 191643 non-null    | float64                   |
| dty | pes: datetime64[ns](1         | .), float64(6), ob | ject(1)                   |
| mer | mory usage: 11.8+ MB          |                    |                           |
|     |                               |                    |                           |

# Examine the descriptive statistics of the dataframe
pco\_hist.describe()

|           | <pre>price_off_peak_var</pre> | <pre>price_peak_var</pre> | <pre>price_mid_peak_var</pre> | price_off_peak_fix p |
|-----------|-------------------------------|---------------------------|-------------------------------|----------------------|
| count     | 191643.000000                 | 191643.000000             | 191643.000000                 | 191643.000000        |
| mean      | 0.140991                      | 0.054412                  | 0.030712                      | 43.325546            |
| std       | 0.025117                      | 0.050033                  | 0.036335                      | 5.437952             |
| min       | 0.000000                      | 0.000000                  | 0.000000                      | -0.177779            |
| 25%       | 0.125976                      | 0.000000                  | 0.000000                      | 40.728885            |
| 50%       | 0.146033                      | 0.085483                  | 0.000000                      | 44.266930            |
| 75%       | 0.151635                      | 0.101780                  | 0.072558                      | 44.444710            |
| max       | 0.280700                      | 0.229788                  | 0.114102                      | 59.444710            |
| <b>**</b> |                               |                           |                               |                      |
| 4         |                               |                           |                               | <b>&gt;</b>          |

# Identify the nullity of the dataframe
missing\_values\_hist = pco\_hist.isna().sum()
print('Total Missing Values:\n', missing\_values\_hist)

Total Missing Values: id 0 price\_date 0 price\_off\_peak\_var 1359 price\_peak\_var 1359 price\_mid\_peak\_var 1359 price\_off\_peak\_fix 1359 price\_peak\_fix 1359 price\_mid\_peak\_fix 1359 dtype: int64

```
# Identify the percentage of nullity in the dataframe for each collumn
missing_values_hist_perc = pco_hist.isnull().mean() * 100
print('Percentage of Missing Values:\n', missing_values_hist_perc)
```

```
Percentage of Missing Values:
id 0.000000
price_date 0.000000
price_off_peak_var 0.704138
price_peak_var 0.704138
price_mid_peak_var 0.704138
price_off_peak_fix 0.704138
price_peak_fix 0.704138
price_mid_peak_fix 0.704138
dtype: float64
```

#### **Facts**

- The average price of energy for the 1st period was: \$0.14
- The average price of energy for the 2nd period was: \$0.05
- The average price of energy for the 3rd period was: \$0.03

The average price of energy was declining in the last year.

- The average power of power for the 1st period was: \$43.32
- The average power of power for the 2nd period was: \$10.69
- The average power of power for the 3rd period was: \$6.45

The average price of power was declining in the last year.

#### **Observations**

- The columns price\_off\_peak\_fix, price\_peak\_fix, and price\_mid\_peak\_fix contain negative values. These negative prices of power do not make sense.
- The dataset pco\_hist contains 1359 rows displaying NaN values on 6 variables except for id and price\_date.
- The price\_...\_var and price\_...\_fix columns are missing **0.704**% of the data in each of them.

Note: Pandas recognizes these NaN values and removes them when displaying descriptives statistics.

Notice how the price of energy has a minimum value of zero. Perhaps some customers churned thereby making the consumption of energy zero.

## ▼ The Main Dataset (Client)

This dataset contain more characteristics about each client's account and activity.

```
# Print header
pco_main.head()
```

|   | id                               | activity_new                     | campaign_disc_el |
|---|----------------------------------|----------------------------------|------------------|
| 0 | 24011ae4ebbe3035111d65fa7c15bc57 | esoiiifxdlbkcsluxmfuacbdckommixw | Nal              |
| 1 | d29c2c54acc38ff3c0614d0a653813dd | NaN                              | Nat              |
| 2 | 764c75f661154dac3a6c254cd082ea7d | NaN                              | Naf              |
| 3 | bba03439a292a1e166f80264c16191cb | NaN                              | Naf              |
| 4 | 149d57cf92fc41cf94415803a877cb4b | NaN                              | Naf              |
| 7 |                                  |                                  |                  |
|   |                                  |                                  |                  |

# printo info
pco\_main.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16093 entries, 0 to 16092
Data columns (total 32 columns):

| Data | columns (cocal 32 columns):               |                |                           |
|------|-------------------------------------------|----------------|---------------------------|
| #    | Column                                    | Non-Null Count | Dtype                     |
|      |                                           |                |                           |
| 0    | id                                        | 14606 non-null | object                    |
| 1    | activity_new                              | 6551 non-null  | object                    |
| 2    | campaign_disc_ele                         | 0 non-null     | float64                   |
| 3    | channel_sales                             | 10881 non-null | object                    |
| 4    | cons_12m                                  | 14606 non-null | float64                   |
| 5    | cons_gas_12m                              | 14606 non-null | float64                   |
| 6    | cons_last_month                           | 14606 non-null | float64                   |
| 7    | date_activ                                | 14606 non-null | <pre>datetime64[ns]</pre> |
| 8    | date_end                                  | 14606 non-null | <pre>datetime64[ns]</pre> |
| 9    | date_first_activ                          | 3508 non-null  | <pre>datetime64[ns]</pre> |
| 10   | date_modif_prod                           | 14606 non-null | <pre>datetime64[ns]</pre> |
| 11   | date_renewal                              | 14606 non-null | <pre>datetime64[ns]</pre> |
| 12   | forecast_base_bill_ele                    | 3508 non-null  | float64                   |
| 13   | forecast_base_bill_year                   | 3508 non-null  | float64                   |
| 14   | forecast_bill_12m                         | 3508 non-null  | float64                   |
| 15   | forecast_cons                             | 3508 non-null  | float64                   |
| 16   | forecast_cons_12m                         | 14606 non-null | float64                   |
| 17   | forecast_cons_year                        | 14606 non-null | float64                   |
| 18   | <pre>forecast_discount_energy</pre>       | 14606 non-null | float64                   |
| 19   | <pre>forecast_meter_rent_12m</pre>        | 14606 non-null | float64                   |
| 20   | <pre>forecast_price_energy_off_peak</pre> | 14606 non-null | float64                   |
| 21   | forecast_price_energy_peak                | 14606 non-null | float64                   |
| 22   | <pre>forecast_price_pow_off_peak</pre>    | 14606 non-null | float64                   |
| 23   | has_gas                                   | 14606 non-null | object                    |
|      |                                           |                |                           |

```
24 imp_cons
                                 14606 non-null float64
25 margin_gross_pow_ele
                                14606 non-null float64
                                14606 non-null float64
26 margin net pow ele
27 nb_prod_act
                                14606 non-null float64
28 net_margin
                                14606 non-null float64
                                 14606 non-null float64
29 num_years_antig
30 origin_up
                                 14606 non-null object
                                 14606 non-null float64
31 pow_max
```

dtypes: datetime64[ns](5), float64(22), object(5)

memory usage: 3.9+ MB

# Identify the percentage of nullity in the dataframe for each collumn
missing\_values\_main\_perc = pco\_main.isnull().mean() \* 100
print('Percentage of Missing Values:\n', missing\_values\_main\_perc)

#### Percentage of Missing Values:

| Percentage of Missing Values:             |            |
|-------------------------------------------|------------|
| id                                        | 9.240042   |
| activity_new                              | 59.292860  |
| campaign_disc_ele                         | 100.000000 |
| channel_sales                             | 32.386752  |
| cons_12m                                  | 9.240042   |
| cons_gas_12m                              | 9.240042   |
| cons_last_month                           | 9.240042   |
| date_activ                                | 9.240042   |
| date_end                                  | 9.240042   |
| date_first_activ                          | 78.201703  |
| date_modif_prod                           | 9.240042   |
| date_renewal                              | 9.240042   |
| forecast_base_bill_ele                    | 78.201703  |
| forecast_base_bill_year                   | 78.201703  |
| forecast_bill_12m                         | 78.201703  |
| forecast_cons                             | 78.201703  |
| forecast_cons_12m                         | 9.240042   |
| forecast_cons_year                        | 9.240042   |
| forecast_discount_energy                  | 9.240042   |
| forecast_meter_rent_12m                   | 9.240042   |
| <pre>forecast_price_energy_off_peak</pre> | 9.240042   |
| <pre>forecast_price_energy_peak</pre>     | 9.240042   |
| <pre>forecast_price_pow_off_peak</pre>    | 9.240042   |
| has_gas                                   | 9.240042   |
| imp_cons                                  | 9.240042   |
| margin_gross_pow_ele                      | 9.240042   |
| margin_net_pow_ele                        | 9.240042   |
| nb_prod_act                               | 9.240042   |
| net_margin                                | 9.240042   |
| num_years_antig                           | 9.240042   |
| origin_up                                 | 9.240042   |
| pow_max                                   | 9.240042   |
| dtype: float64                            |            |

# Examine the descriptive statistics of the main dataset
pco\_main.describe()

|       | <pre>campaign_disc_ele</pre> | cons_12m     | cons_gas_12m | cons_last_month | forecast_base |
|-------|------------------------------|--------------|--------------|-----------------|---------------|
| count | 0.0                          | 1.460600e+04 | 1.460600e+04 | 14606.000000    | 35            |
| mean  | NaN                          | 1.592203e+05 | 2.809238e+04 | 16090.269752    | (             |
| std   | NaN                          | 5.734653e+05 | 1.629731e+05 | 64364.196422    | (             |
| min   | NaN                          | 0.000000e+00 | 0.000000e+00 | 0.000000        | -0            |
| 25%   | NaN                          | 5.674750e+03 | 0.000000e+00 | 0.000000        |               |
| 50%   | NaN                          | 1.411550e+04 | 0.000000e+00 | 792.500000      | ,             |
| 75%   | NaN                          | 4.076375e+04 | 0.000000e+00 | 3383.000000     | (             |
| max   | NaN                          | 6.207104e+06 | 4.154590e+06 | 771203.000000   | 12            |

#### **Facts**

- The average tenure of a client is 5 years
- The average net marging is \$189

#### **Observations**

- The 14 columns contain negative minimum values
- The activity\_new column is missing 59.3% of its data
- The campaign\_disc\_ele column is missing completely
- The channel\_sales column is missing 32.3% of its data
- The date\_end column is missing 9.2% of its data
- The date\_first\_activ\_ column is missing 78.2% of its data
- The date\_modif\_prod column is missing 9.2% of its data
- The date\_renewal column is missing 9.2% of it data
- The marging\_gross\_pow\_ele and margin\_net\_pow\_ele columns are both missing 9.2% of its data
- The net margin column is missing 9.2% of its data
- The origin\_up column is missing 9.2% of its data
- The pow\_max column is missing 9.2% of its data
- The forecast\_base\_bill\_ele, forecast\_base\_bill\_year, forecast\_bill\_12m, and forecast\_cons columns are each missing 78.2% of its data

# Data Cleaning and Imputation

## ▼ Dealing with missing data

### Workflow for treating missing values

- 1. Convert all missing values to null values
- 2. Analyze the amount and type of missingness in the data
- 3. Appropriately delete or impute missing values
- 4. Evaluate & compare the performance of the treated/imputed dataset

The missingno (imported as msno) package is great for visualizing missing data - we will be using:

- msno.matrix() visualizes a missingness matrix
- msno.bar() visualizes a missngness barplot
- plt.show() to show the plot

### Is the data missing at random?

#### Types of missingness

- 1. Missing Completely at Random (MCAR)
  - Missingness has no relationship between any values, observed or missing
- 2. Missing at Random (MAR)
  - There is a systematic relationship between missingness and other observed data, but not the missing data
- 3. Missing Not at Random (MNAR)
  - There is a relationship between missingness and its values, missing or nonmissing

### When and how to delete missing data?

#### Types of deletions

1. Pairwise deletion

Pandas skips NaN whic is equivalent to pairwise deletion. Pairwise deletions minimize the amount of data loss and are hence preferred. However, it is also true that at several instances they might negatively affect our analysis.

#### 2. Listwise deletion

In listwise deletion the incomplete row is deleted, also called complete case analysis. The major disadvantage of listwise deletions is amount of data lost. Example: df.dropna(subset=['column'], how='any',inplace=True)

Note: Both of these deletions are used only when the values are missing completely at random that is MCAR

# **▼ The Price History Dataset**

```
# Identify negative columns
negative_cols = ['price_off_peak_fix','price_peak_fix','price_mid_peak_fix']
# Convert to positive the negative columns in pco_hist
pco_hist[negative_cols] = pco_hist[negative_cols].apply(abs)
pco_hist.describe()
```

|       | <pre>price_off_peak_var</pre> | <pre>price_peak_var</pre> | <pre>price_mid_peak_var</pre> | <pre>price_off_peak_fix</pre> | ŗ           |
|-------|-------------------------------|---------------------------|-------------------------------|-------------------------------|-------------|
| count | 191643.000000                 | 191643.000000             | 191643.000000                 | 191643.000000                 |             |
| mean  | 0.140991                      | 0.054412                  | 0.030712                      | 43.325563                     |             |
| std   | 0.025117                      | 0.050033                  | 0.036335                      | 5.437816                      |             |
| min   | 0.000000                      | 0.000000                  | 0.000000                      | 0.000000                      |             |
| 25%   | 0.125976                      | 0.000000                  | 0.000000                      | 40.728885                     |             |
| 50%   | 0.146033                      | 0.085483                  | 0.000000                      | 44.266930                     |             |
| 75%   | 0.151635                      | 0.101780                  | 0.072558                      | 44.444710                     |             |
| max   | 0.280700                      | 0.229788                  | 0.114102                      | 59.444710                     |             |
| 77.   |                               |                           |                               |                               |             |
| 1     |                               |                           |                               |                               | <b>&gt;</b> |

## Visualizing the amount of missingness

# Visualize the completeness of the dataframe
msno.bar(pco\_hist)



To the untrained eye, it might seem that there's no data missing. However, we estimated that 0.7% of the data in the price columns are missing. We can notice that the value counts at the top of each columns display a different amount.

# Visualize the locations of the missing values of the dataset
sorted = pco\_hist.sort\_values(by = ['id','price\_date'])
msno.matrix(sorted)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f86745d1d50>

A sice part in sice peak yet sice peak yet sice peak yet sice peak yet sice of peak fit sice peak fi

The nullity matrix describes the nullity of the dataset and appears blank wherever there are missing values.

The column on the very right summarizes the general shape of the data completeness and points out the row. Total count of columns at the bottom right.

# Visualize the correlation between the numeric variables of the dataframe msno.heatmap(pco\_hist)



<sup>#</sup> Identify the index of the IDs containing missing values.
hist\_NAN\_index = pco\_hist[pco\_hist.isnull().any(axis=1)].index.values.tolist()

<sup>#</sup> Obtain a dataframe with the missing values

```
pco_hist_missing = pco_hist.iloc[hist_NAN_index,:]
```

# Glimpse at the NaN cases of the pco\_hist dataset
pco\_hist\_missing.head(10)

|          | id                               | price_date | <pre>price_off_peak_var</pre> | price_peak_va |
|----------|----------------------------------|------------|-------------------------------|---------------|
| 75       | ef716222bbd97a8bdfcbb831e3575560 | 2015-01-04 | NaN                           | Na            |
| 221      | 0f5231100b2febab862f8dd8eaab3f43 | 2015-01-06 | NaN                           | Na            |
| 377      | 2f93639de582fadfbe3e86ce1c8d8f35 | 2015-01-06 | NaN                           | Na            |
| 413      | f83c1ab1ca1d1802bb1df4d72820243c | 2015-01-06 | NaN                           | Na            |
| 461      | 3076c6d4a060e12a049d1700d9b09cf3 | 2015-01-06 | NaN                           | Na            |
| 471      | 33bb3af90650ac2e9ecac6ff2c975a6b | 2015-01-04 | NaN                           | Na            |
| 472      | 33bb3af90650ac2e9ecac6ff2c975a6b | 2015-01-05 | NaN                           | Na            |
| 475      | 33bb3af90650ac2e9ecac6ff2c975a6b | 2015-01-08 | NaN                           | Na            |
| 476      | 33bb3af90650ac2e9ecac6ff2c975a6b | 2015-01-09 | NaN                           | Na            |
| 874      | 0e90101b08183cc9548e827e4b256f47 | 2015-01-12 | NaN                           | Na            |
| <b>%</b> |                                  |            |                               |               |

```
# extract the unique dates of missing data
date_lst = pco_hist_missing['price_date'].unique()
id_lst = pco_hist_missing['id'].unique()

# Create a time dataframe with the unique dates
time_df = pd.DataFrame(data=date_lst, columns=['price_date'] )

# Glimpse the time dataframe
time_df.sort_values(by=['price_date'])
```

|    | 1          |  |
|----|------------|--|
| 9  | 2015-01-01 |  |
| 11 | 2015-01-02 |  |
| Ω  | 2015_01_03 |  |

#### **Facts**

- There is high correlation between the missingness in the numeric columns and is values, missing or non-missing
- There are 1359 clients who are missing price data at least in 1 month
  - 3 2015-01-08

#### **Observations**

- After sorting the pco\_hist dataset by id and price\_date, we found that some columns are likely to be MNAR.
- The columns containing prices display strong positive correlation in the missingness suggests a case of MNAR.
- This event suggest that multicolinearity might be present in the dataset.

### **▼** Imputations

Imputing time-series data requires a specialized treatment. Time-series data usually comes with special characteristics such trend, seasonality and cyclicality of which we can exploit when imputing missing values in the data.

In this particular dataset, there's not such thing as seasonality because it only has monthly data for one year.

### ▼ Filling Time Series Data

pco\_hist\_ff.describe()

|       | <pre>price_off_peak_var</pre> | <pre>price_peak_var</pre> | <pre>price_mid_peak_var</pre> | <pre>price_off_peak_fix</pre> | ŗ |
|-------|-------------------------------|---------------------------|-------------------------------|-------------------------------|---|
| count | 193002.000000                 | 193002.000000             | 193002.000000                 | 193002.000000                 |   |
| mean  | 0.141006                      | 0.054376                  | 0.030689                      | 43.326213                     |   |
| std   | 0.025091                      | 0.050040                  | 0.036333                      | 5.431161                      |   |
| min   | 0.000000                      | 0.000000                  | 0.000000                      | 0.000000                      |   |
| 25%   | 0.125976                      | 0.000000                  | 0.000000                      | 40.728885                     |   |
| 50%   | 0.146033                      | 0.085450                  | 0.000000                      | 44.266930                     |   |
| 75%   | 0.151635                      | 0.101780                  | 0.072558                      | 44.444710                     |   |
| max   | 0.280700                      | 0.229788                  | 0.114102                      | 59.444710                     |   |
| 77.   |                               |                           |                               |                               |   |
| 1     |                               |                           |                               | )                             | • |

# Merge output dataset with historical forward fill dataset
pco\_hist\_ff\_merged = pco\_hist\_ff.merge(right=pco\_output,on=['id'])
pco\_hist\_ff\_merged.head()

|   | id                               | price_date | <pre>price_off_peak_var</pre> | price_peak_var |
|---|----------------------------------|------------|-------------------------------|----------------|
| 0 | 038af19179925da21a25619c5a24b745 | 2015-01-01 | 0.151367                      | 0.0            |
| 1 | 038af19179925da21a25619c5a24b745 | 2015-01-02 | 0.151367                      | 0.0            |
| 2 | 038af19179925da21a25619c5a24b745 | 2015-01-03 | 0.151367                      | 0.0            |
| 2 | 038af10170025da21a25610a5a24b745 | 2015 01 04 | N 140626                      | 0.0            |

## ▼ The Main Dataset (Client)



### Visualizing the amount of missingness

# Visualize the completeness of the dataframe
msno.bar(pco\_main)



<sup>#</sup> Visualize the locations of the missing values of the dataset
msno.matrix(pco\_main)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f8673db1690>



sorted\_main = pco\_main.sort\_values('date\_first\_activ')
msno.matrix(sorted\_main)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f8673be2810>



msno.heatmap(pco\_main)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f8673a66e10>



```
# Demonstrate why the date_activ column cannot replace completely date_first_activ
activity = ['date_activ','date_first_activ']

# Filter the columns of interest
pco_activity = pco_main[activity]

# Obtain only the complete cases
pco_activity_cc = pco_activity.dropna(subset=['date_first_activ'],how='any',inplace=False)

# Test whether two objects contain the same elements.
pco_activity_cc.date_activ.equals(pco_activity_cc.date_first_activ)

# Describe it
pco_activity_cc.describe(datetime_is_numeric=True) # Comparing dates in .describe() is dependent.
```

| ·V | date_first_activ              | date_activ                    |       |
|----|-------------------------------|-------------------------------|-------|
| 8  | 3508                          | 3173                          | count |
| 4  | 2011-06-17 13:14:17.924743424 | 2011-01-19 11:27:33.072801792 | mean  |
| 0  | 2001-04-18 00:00:00           | 2003-01-08 00:00:00           | min   |
| 0  | 2010-08-01 00:00:00           | 2010-01-12 00:00:00           | 25%   |
| 0  | 2011-10-25 00:00:00           | 2011-02-12 00:00:00           | 50%   |
| 0  | 2012-06-28 00:00:00           | 2012-04-14 00:00:00           | 75%   |

<sup>#</sup> Drop the column activity\_new and campaign\_disc\_elec
pco\_main\_drop = pco\_main.drop(labels= ['activity\_new','campaign\_disc\_ele'] , axis=1)

msno.matrix(pco\_main\_drop)





### ▼ Observations

- The variable activity\_new is **MCAR** and has very low correlation with any of the variables. We can safely *drop* this column.
- The variable campaign\_disc\_elec is completely missing at random on all rows. We can get rid of this column. This suggests that subscribers are not subscribing through campaings offers.
- The variable date\_first\_activ cannot be replace by the values of the date\_activ variable. MAR
- net\_margin is showing strong correlation between margin\_gross\_pow\_elec and margin\_net\_pow\_ele. Multicolinearity is likely here.
- The variables origin\_up and pow\_max display no correlation with any variable and contain 0.54% and 0.01% of missingness respectively. These are MCAR and can be dropped listwise.
- Forecast\_base\_bill\_ele, forecast\_base\_bill\_year, forecast\_bill\_12m and forecast\_cons variables are highly correlated with the date\_first\_activ variable's missingness. Accounting for 78% of missing values in the formerly mention columns and therfore are MNAR.
- Cannot replace the date\_first\_activ column with the date\_activ column since in some of the cases the dates are not identical.

/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:3641: SettingWithCopyWar A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u self[k1] = value[k2]

|       | cons_12m     | cons_gas_12m | cons_last_month | forecast_cons_12m | forecast_cons |
|-------|--------------|--------------|-----------------|-------------------|---------------|
| count | 1.460600e+04 | 1.460600e+04 | 14606.000000    | 14606.000000      | 14606.0       |
| mean  | 1.592203e+05 | 2.809238e+04 | 16090.269752    | 1868.614880       | 1399.7        |
| std   | 5.734653e+05 | 1.629731e+05 | 64364.196422    | 2387.571531       | 3247.7        |
| min   | 0.000000e+00 | 0.000000e+00 | 0.000000        | 0.000000          | 0.0           |
| 25%   | 5.674750e+03 | 0.000000e+00 | 0.000000        | 494.995000        | 0.0           |

# Convert the has\_gas column to Yes/No
pco\_main\_cc['has\_gas'] = pco\_main\_cc['has\_gas'].replace({'t':'Yes','f':'No'})

# Merge the main dataset with the output dataset
pco\_main\_cc\_merged = pco\_main\_cc.merge(right=pco\_output,on=['id'])

# Convert the churn column to Churned/Stayed
pco\_main\_cc\_merged['churn'] = pco\_main\_cc\_merged['churn'].replace({1:'Churned',0:'Stayed'})

/usr/local/lib/python3.7/dist-packages/ipykernel\_launcher.py:2: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row\_indexer,col\_indexer] = value instead

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/u">https://pandas.pydata.org/pandas-docs/stable/u</a>

pco\_main\_cc\_merged.head()

|   | id                               | cons_12m | cons_gas_12m | cons_last_month | date_a |
|---|----------------------------------|----------|--------------|-----------------|--------|
| 0 | 24011ae4ebbe3035111d65fa7c15bc57 | 0.0      | 54946.0      | 0.0             | 2013-( |
| 1 | d29c2c54acc38ff3c0614d0a653813dd | 4660.0   | 0.0          | 0.0             | 2009-( |
| 2 | 764c75f661154dac3a6c254cd082ea7d | 544.0    | 0.0          | 0.0             | 2010-( |
| 3 | bba03439a292a1e166f80264c16191cb | 1584.0   | 0.0          | 0.0             | 2010-( |
| 4 | 149d57cf92fc41cf94415803a877cb4b | 4425.0   | 0.0          | 526.0           | 2010-( |



# ALE 2 11 EL 2 L1 E C 23

### Data Visualization

Let's visualize what we've found.

### **▼ The Client Output Dataset**

```
# Calculate the zcores of tenure
tenure_zcores = zscore(a=pco_main_cc_merged['num_years_antig'])
# Convert to absolute values
abs_tenure_zscores = np.abs(tenure_zcores)
# Extract Columns of interest
churn_tenure = pco_main_cc_merged[['churn', 'num_years_antig']]
# Add z-score column
churn_tenure['z_score'] = list(abs_tenure_zscores)
# Remove outliers
churned tenure filtered = churn tenure[churn tenure['z score'] < 3]</pre>
# Visualize tenure by retained customer and churner
vio = sns.violinplot( y=churned_tenure_filtered["churn"], x=churned_tenure_filtered["num_y
# Settings
vio.set(xlabel='Years', ylabel='')
vio.set_title("Customer Attrition by Tenure")
plt.show()
```

/usr/local/lib/python3.7/dist-packages/ipykernel\_launcher.py:8: SettingWithCopyWarni A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row\_indexer,col\_indexer] = value instead

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/u">https://pandas.pydata.org/pandas-docs/stable/u</a>



#### **Facts**

- The median age of churners is 4 years
- · Customers are more likely to churn during the 4th year than the 7th year
- The median age of retained customers is 5 years

2 4 6 8 10

### ▼ The Main Dataset

```
# Most popular electricty campaign
ele nm = pco_main_cc_merged.loc[(pco_main_cc_merged['churn']>='Stayed') & (pco_main_cc_mer
ele_nm.value_counts(subset=['origin_up'])
     origin_up
     lxidpiddsbxsbosboudacockeimpuepw
                                          6155
     kamkkxfxxuwbdslkwifmmcsiusiuosws
                                          4002
     ldkssxwpmemidmecebumciepifcamkci
                                          2801
     MISSING
                                            58
     usapbepcfoloekilkwsdiboslwaxobdp
                                             2
     ewxeelcelemmiwuafmddpobolfuxioce
                                             1
     dtype: int64
# Highest netting electricity subscription campaign
print(ele_nm.groupby('origin_up')['net_margin'].agg('sum').sort_values(ascending=False))
     origin up
     lxidpiddsbxsbosboudacockeimpuepw
                                          1230753.01
     kamkkxfxxuwbdslkwifmmcsiusiuosws
                                          627964.96
     ldkssxwpmemidmecebumciepifcamkci
                                           564951.43
     MISSING
                                            16386.00
     usapbepcfoloekilkwsdiboslwaxobdp
                                              250.40
     ewxeelcelemmiwuafmddpobolfuxioce
                                               46.22
```

#### **Facts**

• The most popular electricity campaign is 1xidpiddsbxsbosboudacockeimpuepw which has brought 6,155 current customers.

Name: net margin, dtype: float64

• The electricity campaign attributable to the highest total net margin is lxidpiddsbxsbosboudacockeimpuepw. Netting \$1,230,753.01 in 2015.

### Caveats

# Select current customers with positive net margins
top\_customers = pco\_main\_cc\_merged.loc[(pco\_main\_cc\_merged['churn']>='Stayed') & (pco\_mair
# Top 10 customers by net margin
top\_customers.sort\_values(by=['net\_margin'],ascending=False).head(10)

|       | id                               | num_years_antig | net_margin | 1 |
|-------|----------------------------------|-----------------|------------|---|
| 10718 | d00e8a9951b5551d8f02e45f9ed2b0dd | 3.0             | 10203.50   |   |
| 12348 | 818b8bca0a9d7668252d46b978169325 | 4.0             | 4346.37    |   |
| 7794  | a3a739686fbd5ba8b4a21ec835507b6d | 4.0             | 4305.79    |   |
| 12624 | ee98a86efa759681cc59c7d4e0d0312f | 4.0             | 3407.65    |   |
| 4876  | 9590c7a6100ae76ec078aa177ffb8d0d | 3.0             | 3215.03    |   |
| 3478  | e7bdc7743d73a9bf94cc3c6a293fca93 | 4.0             | 2711.19    |   |
| 4958  | 9a0411074f84ea385f555943f27a2d81 | 3.0             | 2653.59    |   |
| 7236  | 41b7c011f9d87044bb2e297264e95080 | 6.0             | 2625.38    |   |
| 10685 | e5636f7ada7a80747af18b285632767e | 10.0            | 2467.98    |   |
| 9345  | 078b4e5f8ea9a2f5f4c667f2d2236791 | 4.0             | 2340.78    |   |

These are the most profitable customers for PowerCo in terms of net margin. Beware most of them are within the likely tenure of attrition. Time for a marketing campaign!

### Colab paid products - Cancel contracts here

✓ 0s completed at 10:56 PM

×