

Introduction to Machine Learning [Fall 2022]

Logistic Regression

September 20, 2022

Lerrel Pinto

Topics for today

- Regression vs. Classification
- Logistic regression

Recap: Linear Regression

https://online.stat.psu.edu/stat462/node/101/

Recap: Linear Regression

- Input data: $X \in \mathbb{R}^{d \times n}$, $Y \in \mathbb{R}^n$, where $(x) \in \mathbb{R}^d$, $y \in \mathbb{R}^1$ corresponds to a data point.
 - $n \rightarrow \#$ of data points, $d \rightarrow \#$ of features / input dim.

Examples of Regression

- R
- Input: poverty rate. Output: birth rate
- Input: sensor reading. Output: robot torque
- Input: humidity. Output: cms of rainfall

$$\mathbb{R}^d \longrightarrow \mathbb{R}$$

Examples of Classification

• Input: sensor reading. Output: Is the torque low (0-1Nm) or high (>1Nm)?

How do you input continuous and output discrete?

• Input data: $X \in \mathbb{R}^{d \times n}$ $Y \in \{0,1\}^n$, where $(\overrightarrow{x} \in \mathbb{R}^d, y \in \{0,1\})$ corresponds to a data point.

Logistic Regression

Deriving the logistic function

The inverse logit / logistic function

$$p(y = 1) = \frac{e^{w^T x}}{1 + e^{w^T x}}$$

The inverse logit / logistic function

Logistic Regression

Additional Reading

https://nhorton.people.amherst.edu/ips9/IPS_09_Ch14.pdf

Questions?