Geometry and Topology

Solve every problem.

Problem 1. Let S^n be the unit sphere in \mathbb{R}^{n+1} .

(a) Find a 6-form α on $\mathbb{R}^7 \setminus \{0\}$ such that

$$d\alpha = 0$$
, and $\int_{S^6} \alpha = 1$.

(b) For any smooth map $f: S^{11} \to S^6$, show that there exists a 5-form φ on S^{11} such that

$$f^*\alpha = d\varphi. \tag{1}$$

(c) Let

$$H(f) = \int_{\mathbb{S}^{11}} \varphi \wedge d\varphi.$$

Show that H(f) is independent of the choice of φ satisfying (1).

(d) Show that H(f) is an even integer, for any smooth map $f: S^{11} \to S^6$.

Problem 2. For any $h \in C^{\infty}(\mathbb{R}^2)$ and h > 0 on \mathbb{R}^2 , define the Ricci curvature Ric(h) associated with h by

$$\operatorname{Ric}(h) = \frac{1}{h} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \log h,$$

where (x, y) are the standard Cartesian coordinates in \mathbb{R}^2 . Either construct a positive smooth function h_1 such that $\text{Ric}(h_1) = 1$, or show that no such function h_1 exists.

Problem 3. Let M be an n-dimensional Riemannian manifold, and $p \in M$. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of the tangent space T_pM , and let $\{x^1, \ldots, x^n\}$ be a coordinate system of M centered at p such that

$$\exp_p^{-1}(q) = \sum_{j=1}^n x^j(q)e_j,$$

where \exp_p denotes the exponential map. Let $\gamma(t) = \exp_p(te_1)$, $0 \le t \le \delta$, where δ is a positive constant less than 1.

(a) For $2 \le \alpha \le n$, which one of the following,

$$t \frac{\partial}{\partial x^{\alpha}} \Big|_{\gamma(t)}$$
 or $\frac{\partial}{\partial x^{\alpha}} \Big|_{\gamma(t)}$,

is a Jacobi field along $\gamma(t)$? Prove your assertion.

(b) Denote

$$g_{ij} = \left\langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right\rangle, \quad 1 \le i, j \le n.$$

Compute

$$\frac{\partial^2 g_{22}}{\partial x^1 \partial x^1} \quad \text{at the point } p.$$

(c) Show that

$$\max_{0 \le t \le \delta} \left| \frac{\partial g_{22}}{\partial x^1} (\gamma(t)) \right| \le C \delta A,$$

where C > 0 is a constant depending only on n, and A is the C^0 -bound of the curvature tensor of M along $\gamma(t)$, for $0 \le t \le \delta$.

Problem 4. Let SO(n) be the set of $n \times n$ orthogonal real matrices with determinant equal to 1. Endow SO(n) with the relative topology as a subspace of Euclidean space \mathbb{R}^{n^2} .

- (a) Show that SO(n) is compact.
- (b) Is SO(3) homeomorphic to the real projective space \mathbb{RP}^3 ? Prove your assertion.
- (c) Compute the fundamental group of SO(2020).

Problem 5. Let X be a topological space and $\pi : \mathbb{R}^2 \to X$ a covering map. Let K be a compact subset of X and B the closed unit ball centered at the origin in \mathbb{R}^2 .

- (a) Suppose $\pi: \mathbb{R}^2 \setminus B \to X \setminus K$ is a homeomorphism. Show that $\pi: \mathbb{R}^2 \to X$ is a homeomorphism.
- (b) Suppose $\mathbb{R}^2 \setminus B$ is homeomorphic to $X \setminus K$, where the homeomorphism may not be π . Is X necessarily homeomorphic to \mathbb{R}^2 ? Prove your assertion.

Problem 6. Let F_n be the free group of rank n,

- (a) Give an example of a finite connected graph such that its fundamental group is F_2 .
- (b) Does F_2 contain a proper subgroup isomorphic to F_2 ?
- (c) Does F_2 contain a proper finite index subgroup isomorphic to F_2 ?