# Homework #2 – Numeric Computing

Problem 2(a)

# Tejas Harishchandra Acharya

## 08/08/2025

```
In [1]: # Imports
         import numpy as np
         import matplotlib.pyplot as plt
         import re
         import csv
         from scipy.cluster.vq import kmeans
         from sklearn.metrics import confusion matrix, ConfusionMatrixDisplay
In [15]: # Constants
         MICKEY FILENAME = "../../data/input/mickey.csv"
         PATTERN = "^#"
         CLASS DICT = { 'Head':1, 'Ear left':0, 'Ear right':2}
         COLOR DICT = {'Head':'b', 'Ear left':'r', 'Ear right':'g'}
         K = 3
         KMEANS CENTROIDS FILENAME = "../../data/output/kmeans centroids.txt"
         KMEANS LABELS FILENAME = "../../data/output/kmeans labels.txt"
In [3]: mickey_X = []
         mickey label = []
         with open(MICKEY_FILENAME, "r") as file:
             for i in csv.reader(file):
                 if not re.search(PATTERN, i[0]):
                     x1, x2, label = i[0].split()
                     mickey_X.append([float(x1), float(x2)])
                     mickey_label.append(label)
         mickey_X = np.array(mickey_X)
```

```
mickey_label = np.array(mickey_label)

mickey_X_true_head = mickey_X[mickey_label == "Head"]
mickey_X_true_ear_left = mickey_X[mickey_label == "Ear_left"]
mickey_X_true_ear_right = mickey_X[mickey_label == "Ear_right"]

mickey_Y = list(map(lambda x: CLASS_DICT[x], mickey_label))
mickey_Y = np.array(mickey_Y)

In [4]:

plt.figure()
plt.scatter(mickey_X_true_head[:, 0], mickey_X_true_head[:, 1], c='b')
plt.scatter(mickey_X_true_ear_left[:, 0], mickey_X_true_ear_left[:, 1], c='r')
plt.scatter(mickey_X_true_ear_right[:, 0], mickey_X_true_ear_right[:, 1], c='g')
plt.ylabel("Y1")
plt.ylabel("X2")
plt.title("Mickey_Data_with_True_Labels")
plt.show()
```

### Mickey Data with True Labels



```
In [5]: centroids, _ = kmeans(mickey_X, K)
    centroids = centroids[centroids[:, 0].argsort()]

In [17]: np.savetxt(KMEANS_CENTROIDS_FILENAME, centroids)

In [6]: plt.figure()
    plt.scatter(mickey_X_true_head[:, 0], mickey_X_true_head[:, 1], c='b')
    plt.scatter(mickey_X_true_ear_left[:, 0], mickey_X_true_ear_left[:, 1], c='r')
    plt.scatter(mickey_X_true_ear_right[:, 0], mickey_X_true_ear_right[:, 1], c='g')
    plt.scatter(centroids[:, 0], centroids[:, 1], c='k', s=100)
    plt.legend(["Head", "Ear_left", "Ear_right", "K-Means Centroids"])
    plt.xlabel("X1")
    plt.ylabel("X2")
```

```
plt.title("Mickey Data with True Labels")
plt.show()
```



```
In [7]: kmeans_y_hat = []
for i in mickey_X:
    distances = list(map(lambda x: np.linalg.norm(i - x), centroids))
    kmeans_y_hat.append(np.argmin(distances))

kmeans_y_hat = np.array(kmeans_y_hat)

mickey_X_pred_head = mickey_X[kmeans_y_hat == 1]
  mickey_X_pred_ear_left = mickey_X[kmeans_y_hat == 0]
  mickey_X_pred_ear_right = mickey_X[kmeans_y_hat == 2]
```

```
In [8]: plt.figure()
  plt.scatter(mickey_X_pred_head[:, 0], mickey_X_pred_head[:, 1], c='b')
  plt.scatter(mickey_X_pred_ear_left[:, 0], mickey_X_pred_ear_left[:, 1], c='r')
  plt.scatter(mickey_X_pred_ear_right[:, 0], mickey_X_pred_ear_right[:, 1], c='g')
  plt.scatter(centroids[:, 0], centroids[:, 1], c='k', s=100)
  plt.legend(["Head", "Ear_left", "Ear_right", "K-Means Centroids"])
  plt.xlabel("X1")
  plt.ylabel("X2")
  plt.title("Mickey Data with K-Means Labels with K=3")
  plt.show()
```

### Mickey Data with K-Means Labels with K=3



In [19]: np.savetxt(KMEANS\_LABELS\_FILENAME, kmeans\_y\_hat, fmt='%d')

```
In [21]: c_matrix_kmeans = confusion_matrix(mickey_Y, kmeans_y_hat)

plt.figure()
    c_mat_disp = ConfusionMatrixDisplay(confusion_matrix=c_matrix_kmeans, display_labels=['Ear_left', 'Head', 'Ear_right c_mat_disp.plot()
    plt.title("Confusion Matrix for the K-Means Labels")
    plt.show()
```

<Figure size 640x480 with 0 Axes>

