MA2115 Clase 15: Soluciones de sistemas homogéneos de ecuaciones diferenciales con coeficientes constantes

Elaborado por los profesores Edgar Cabello y Marcos González

1 Valores propios y vectores propios

Supongamos que $\vec{x} = \begin{pmatrix} K_1 \\ K_2 \\ \vdots \\ K_n \end{pmatrix} e^{\lambda t} = \vec{K} e^{\lambda t}$ es un vector solución de $\vec{x}' = A\vec{x}$, entonces

$$\frac{d}{dt} \left(\vec{K} e^{\lambda t} \right) = A \vec{K} e^{\lambda t} \quad \Rightarrow \quad \lambda \vec{K} e^{\lambda t} = A \vec{K} e^{\lambda t}$$

$$\Rightarrow \quad \lambda \vec{K} = A \vec{K} \Rightarrow A \vec{K} - \lambda \vec{K} = 0 \Rightarrow (A - \lambda I) \vec{K} = 0,$$

lo cual es equivalente a

$$\begin{cases} (a_{11} - \lambda)K_1 + a_{12}K_2 + \dots + a_{1n}K_n = 0, \\ a_{21}K_1 + (a_{22} - \lambda)K_2 + \dots + a_{2n}K_n = 0, \\ \vdots & \vdots \dots \vdots \\ a_{n1}K_1 + a_{n2}K_2 + \dots + (a_{1n} - \lambda)K_n = 0. \end{cases}$$

Recordemos que, para que exista una solución no trivial de un sistema homogéneo, el determinante debe ser igual a cero:

$$\det(A - \lambda I) = 0. \tag{1}$$

Los valores de λ que satisfacen la ecuación (1) son llamados valores propios o autovalores. Un vector solución \vec{K} correspondiente a un valor λ es llamado vector propio o autovector. La ecuación (1) es llamada ecuación característica de A.

Teorema 1 Sean $\lambda_1, \lambda_2, \ldots, \lambda_n$ valores propios distintos de la matriz A de los coeficientes del sistema $\vec{x}' = A\vec{x}$ y sean $\vec{K}_1, \vec{K}_2, \ldots, \vec{K}_n$ los correspondientes vectores propios. Entonces, la solución general de $\vec{x}' = A\vec{x}$ está dada por

$$\vec{x} = c_1 \vec{K}_1 e^{\lambda_1 t} + c_2 \vec{K}_2 e^{\lambda_2 t} + \dots + c_n \vec{K}_n e^{\lambda_n t}.$$

Ejemplo 1 Resolver
$$\vec{x}' = A\vec{x}$$
, donde $A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$.

Solución: La ecuación característica de A está dada por

$$0 = \left| \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right| = \left| \begin{array}{cc} -\lambda & 1 \\ -2 & 3 - \lambda \end{array} \right| = \lambda^2 - 3\lambda + 2 = (\lambda - 2)(\lambda - 1),$$

es decir, $(\lambda - 2)(\lambda - 1) = 0$, de donde $\lambda = 1$ o $\lambda = 2$. En otras palabras, los valores propios de A son $\lambda_1 = 1$; $\lambda_2 = 2$.

Veamos ahora cuales son los vectores propios asociados a cada valor propio. Para $\lambda_1 = 1$, el vector propio $\vec{K}_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ satisface

$$(A - \lambda_1 I)\vec{K}_1 = 0 \Rightarrow \begin{pmatrix} -\lambda_1 & 1 \\ -2 & 3 - \lambda_1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & 1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Resolviendo este último sistema de ecuaciones, obtenemos que $x_1 = y_1$, de donde

$$\vec{K}_1 = \left(\begin{array}{c} x_1 \\ y_1 \end{array} \right) = \left(\begin{array}{c} x_1 \\ x_1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \end{array} \right) x_1.$$

Análogamente, para $\lambda_2 = 2$, el vector propio $\vec{K}_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ satisface

$$(A - \lambda_2 I)\vec{K}_2 = 0 \Rightarrow \begin{pmatrix} -\lambda_2 & 1 \\ -2 & 3 - \lambda_2 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -2 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Resolviendo este último sistema de ecuaciones, obtenemos que $2x_2 = y_2$, de donde

$$\vec{K}_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ 2x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} x_2.$$

En suma, tenemos las soluciones del sistema $\vec{x}' = A\vec{x}$ están generadas por las soluciones particulares

$$\vec{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t; \quad \vec{x}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{2t};$$

es decir, la solución general del sistema es

$$\vec{x} = c_1 \vec{x}_1 + c_2 \vec{x}_2 = \begin{pmatrix} c_1 e^t + c_2 e^{2t} \\ c_1 e^t + 2c_2 e^{2t} \end{pmatrix}.$$

Ejemplo 2 Resolver el problema de valores iniciales

$$\vec{x}' = \begin{pmatrix} 1 & 1 & 4 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \vec{x}; \quad \vec{x}(0) = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}.$$

Solución: Cálculo de los autovalores:

$$0 = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 & 4 \\ 0 & 2 - \lambda & 0 \\ 1 & 1 & 1 - \lambda \end{vmatrix} = -\lambda^3 + 4\lambda^2 - \lambda - 6 = -(\lambda + 1)(\lambda - 2)(\lambda - 3) \Rightarrow \lambda = -1, \ 2 \text{ ó } 3.$$

Cálculo de los autovectores: Si $\lambda=-1,$ un autovector $\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$ satisface

$$\begin{pmatrix} 2 & 1 & 4 \\ 0 & 3 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Resolviendo este sistema obtenemos que $x_2=0$ y $x_1=-2x_3$, de donde

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2x_3 \\ 0 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} x_3.$$

Si $\lambda = 2$, un autovector $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ satisface

$$\begin{pmatrix} -1 & 1 & 4 \\ 0 & 0 & 0 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Resolviendo este sistema obtenemos que $x_2 = -\frac{3}{2}x_3$ y $x_1 = \frac{5}{2}x_3$, de donde

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{5}{2}x_3 \\ -\frac{3}{2}x_3 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix} \frac{x_3}{2}.$$

Si $\lambda = 3$, un autovector $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ satisface

$$\begin{pmatrix} -2 & 1 & 4 \\ 0 & -1 & 0 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Resolviendo este sistema obtenemos que $x_2 = 0$ y $x_1 = 2x_3$, de donde

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_3 \\ 0 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} x_3.$$

De esta manera obtenemos que los vectores

$$\begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} e^{-t}, \quad \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix} e^{2t}, \quad \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} e^{3t},$$

forman un sistema fundamental de soluciones para la ecuación $\vec{x}' = A\vec{x}$ y, en consecuencia, la solución general está dada por

$$\vec{x} = c_1 \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix} e^{2t} + c_3 \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} e^{3t}.$$

Usando ahora la condición inicial $\vec{x}(0) = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ obtenemos

$$\begin{pmatrix} 1\\3\\0 \end{pmatrix} = c_1 \begin{pmatrix} -2\\0\\1 \end{pmatrix} + c_2 \begin{pmatrix} 5\\-3\\2 \end{pmatrix} + c_3 \begin{pmatrix} 2\\0\\1 \end{pmatrix},$$

y resolviendo el sistema de ecuaciones tenemos finalmente que $c_1 = -\frac{1}{2}$, $c_2 = -1$ y $c_3 = \frac{5}{2}$. En suma, la solución del problema a valores iniciales está dada por

$$\vec{x} = \begin{pmatrix} 1 \\ 0 \\ -\frac{1}{2} \end{pmatrix} e^{-t} + \begin{pmatrix} -5 \\ 3 \\ -2 \end{pmatrix} e^{2t} + \begin{pmatrix} 5 \\ 0 \\ \frac{5}{2} \end{pmatrix} e^{3t}.$$

Por último, verificamos que las soluciones son linealmente independientes:

$$W(\vec{x}_1, \vec{x}_2, \vec{x}_3) = \begin{vmatrix} e^{-t} & -5e^{2t} & 5e^{3t} \\ 0 & 3e^{2t} & 0 \\ -\frac{1}{2}e^{-t} & -2e^{2t} & \frac{5}{2}e^{3t} \end{vmatrix} = -15e^{-4t} \neq 0.$$

2 Valores Propios Repetidos

Si $(\lambda - \mu)^m$ es un factor repetido de la ecuación característica, se dice que μ es un valor de multiplicadad m. Distinguimos dos posibilidades:

- i) dim $V_{\mu} = m$, es decir, V_{μ} tiene una base de m elementos $\vec{K}_1, \vec{K}_2, \dots, \vec{K}_m$. En este caso, las soluciones asociadas al autovalor μ están dadas por, $\vec{K}_j e^{\mu t}$, para cada $1 \leq j \leq m$. Observemos que se comprota igual que en el caso de autovalores distintos.
- ii) dim $V_{\mu} < m$, es decir, al valor propio μ de multiplicidad m le corresponden solamente r < m vectores propios. Entonces es posible encontrar las m soluciones linealmente independientes asociadas a este autovalor como sigue: tenemos r soluciones $\vec{X}_1, \ldots, \vec{X}_r$, dadas por la fórmula $\vec{K}_j e^{\mu t}$, para cada $1 \le j \le r$, y las m-r soluciones restantes son de la forma

$$\vec{X}_{r+1} = \vec{K}_{11}te^{\mu t} + \vec{K}_{12}e^{\mu t}
\vec{X}_{r+2} = \vec{K}_{21}\frac{t^2}{2}e^{\mu t} + \vec{K}_{22}te^{\mu t} + \vec{K}_{23}e^{\mu t}
\vdots : :
\vec{X}_m = \vec{K}_{m-r,1}\frac{t^{m-r}}{(m-r)!}e^{\mu t} + \vec{K}_{m-r,2}\frac{t^{m-r-1}}{(m-r-1)!}e^{\mu t} + \cdots + \vec{K}_{m-r,m-r}te^{\mu t} + \vec{K}_{m-r,m-r+1}e^{\mu t},$$

donde los \vec{K}_{ij} son vectores columna (al principio desconocidos), y siempre es posible calcular los vectores incognitas \vec{K}_{ij} , substituyendo las soluciones X_{r+i} en la ecuación diferencial $\vec{X}' = A\vec{X}$.

Ejemplo 3 Encuentre la solución general del sistema de ecuaciones diferenciales siguiente:

$$\begin{cases} x' = -3x + z, \\ y' = -3y + z, \\ z' = -3z. \end{cases}$$

Solución: El sistema se puede escribir con notación matricial en la forma:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} -3 & 0 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Hallemos los autovalores de la matriz $A=\begin{pmatrix} -3 & 0 & 1 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{pmatrix}$. El polinomio característico de A está dado por:

$$p_A(\lambda) = \det(A - \lambda I) = \begin{vmatrix} -3 - \lambda & 0 & 1\\ 0 & -3 - \lambda & 1\\ 0 & 0 & -3 - \lambda \end{vmatrix} = (-3 - \lambda)^3 = -(\lambda + 3)^3.$$

Así, el único autovalor de A es $\lambda = -3$, con multiplicidad 3.

Ahora hallamos los autovectores de $\lambda = -3$. Si $\vec{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in V_{-3}$, entonces

$$(A - \lambda I)\vec{v} = \vec{0} \iff (A + 3I)\vec{v} = \vec{0} \iff \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff c = 0,$$

de donde
$$\vec{v} = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 y, en consecuencia, $V_{-3} = \text{gen} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$. De

esta forma obtenemos dos soluciones $\vec{X}_1 = e^{-3t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ y $\vec{X}_2 = e^{-3t} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Para hallar la solución

que falta, debemos encontrar un vector \vec{K} tal que $(A+3I)^2 \vec{K} = 0$, pero $(A+3I) \vec{K} \neq \vec{0}$ (es natural exigir que \vec{K} no sea un autovector). Para esto, observemos que $\vec{P} = (A+3I)\vec{K}$ es un autovector (ya que $(A+3I)\vec{P} = (A+3I)^2\vec{K} = 0$), con lo cual existen $a,b \in \mathbb{R}$, ambos distintos de cero, tales

que
$$\vec{P} = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$$
. Entonces, si $\vec{K} = \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix}$, el sistema no-homogeneo $\vec{P} = (A+3I)\vec{K}$ viene a ser

$$\begin{cases} k_3 = a \\ k_3 = b \end{cases},$$

con lo cual $a = b \neq 0$ (para que el sistema sea compatible), y $\vec{K} = \begin{pmatrix} k_1 \\ k_2 \\ a \end{pmatrix}$. Por lo tanto, eligiendo

$$k_1 = k_2 = 0$$
 y $a = 1$, tenemos que $\vec{K} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ y $\vec{P} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. Ahora tenemos

$$\vec{X}_3 = (\vec{K} + (A+3I)\vec{K}t)e^{3t} = (\vec{K} + \vec{P}t)e^{-3t} = \begin{pmatrix} t \\ t \\ 1 \end{pmatrix}e^{-3t}.$$

Por lo tanto, la solución general del sistema está dada por

$$\vec{X} = c_1 \vec{X}_1 + c_2 \vec{X}_2 + c_3 \vec{X}_3 = c_1 e^{-3t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 e^{-3t} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c_3 e^{-3t} \begin{pmatrix} t \\ t \\ 1 \end{pmatrix} = e^{-3t} \begin{pmatrix} c_1 + c_3 t \\ c_2 + c_3 t \\ c_3 \end{pmatrix}.$$

3 Valores propios complejos

Si A es una matriz $n \times n$ con coeficientes reales y μ es un autovalor complejo no real de A, entonces μ y $\bar{\mu}$ son dos raíces distintas del polinomio característico $p_A(\lambda) = \det(\lambda I - A)$. Queremos construir 2m soluciones linealmente independientes del sistema $\vec{X}' = A\vec{X}$ a partir de μ , donde m es la multiplicidad de μ en $p_A(\lambda) = \det(\lambda I - A)$.

Teorema 2 Sean A una matriz $n \times n$ con coeficientes reales, μ un autovalor complejo (no real) de A, y sea \vec{K} un autovector (complejo) asociado a μ . Si

$$\vec{Z}(t) = e^{\mu t} \vec{K},$$

entonces

$$\vec{Z}' = A\vec{Z}$$
.

Demostración: Como \vec{K} es un autovector asociado a μ ,

$$A\vec{K} = \mu \vec{K}.$$

Por otra parte,

es decir,
$$\vec{Z}'(t) = (e^{\mu t}\vec{K})' = A\left(e^{\mu t}\vec{K}\right) = \mu \vec{K}e^{\mu t} = A\left(e^{\mu t}\vec{K}\right),$$

Observación 1 De acuerdo con el teorema anterior, a partir de un autovalor complejo de A se construye una "solución" \vec{Z} del sistema $\vec{X}' = A\vec{X}$, si A es una matriz $n \times n$ con coeficientes reales. Sin embargo, las componentes de la función vectorial \vec{Z} no son funciones a valores cuando μ es un número complejo no real.

Teorema 3 Sea A una matriz $n \times n$ con coeficientes reales, μ un autovalor complejo no real de A $y \ \vec{K}$ un autovector asociado a μ ($\vec{K} \in \mathbb{C}^n$). Entonces,

$$\vec{X}_1(t) = Re\left(e^{\mu t}\vec{K}\right) \quad y \quad \vec{X}_2(t) = Im\left(e^{\mu t}\vec{K}\right)$$

son soluciones linealmente independientes del sistema $\vec{X}' = A\vec{X}$.

Demostración: Dejamos como ejercicio para el lector demostrar que \vec{X}_1 y \vec{X}_2 son soluciones del sistema dado. Si el conjunto $\{\vec{X}_1, \vec{X}_2\}$ fuese linealmente dependiente en V_A , existiría un $c \in \mathbb{R}$ tal que, por ejemplo, $\vec{X}_1 = c\vec{X}_2$. Si hacemos

$$\vec{K} = \vec{P} + i\vec{Q}$$
 y $\mu = a + bi$,

con $\vec{P}, \vec{Q} \in \mathbb{R}^n$ y $a, b \in \mathbb{R}$, por hipótesis debemos tener que $b \neq 0$. Además, si Q = 0 entonces $\vec{K} \in \mathbb{R}^n$ y $\lambda \vec{K} = A\vec{K} \in \mathbb{R}^n$, lo cual implicaría que $\lambda \in \mathbb{R}$, pero esto no es posible. Por lo tanto, $Q \neq 0$. Ahora bien, tenemos que

$$e^{\mu t} \vec{K} = e^{(a+ib)t} \left(\vec{P} + i\vec{Q} \right)$$

$$= e^{at} e^{ibt} \left(\vec{P} + i\vec{Q} \right)$$

$$= e^{at} \left(\operatorname{sen}(bt) + i \operatorname{cos}(bt) \right) \left(\vec{P} + i\vec{Q} \right)$$

$$= e^{at} \left(\operatorname{sen}(bt) \vec{P} - \operatorname{cos}(bt) \vec{Q} \right) + i e^{at} \left(\operatorname{sen}(bt) \vec{Q} + \operatorname{cos}(bt) \vec{P} \right)$$

Esto nos dice que

$$\operatorname{Re}\left(e^{\mu t}\vec{K}\right) = e^{at}\operatorname{sen}(bt)\vec{P} - e^{at}\cos(bt)\vec{Q}$$

У

$$\operatorname{Im}\left(e^{\mu t}\vec{K}\right) = e^{at}\operatorname{sen}(bt)\vec{Q} + e^{at}\cos(bt)\vec{P}.$$

Substituyendo las funciones \vec{X}_1 y \vec{X}_2 en $\vec{X}_1 = c\vec{X}_2$ tenemos que

$$e^{at} \operatorname{sen}(bt) \vec{P} - e^{at} \cos(bt) \vec{Q} = \vec{X}_1 = c\vec{X}_2 = ce^{at} \operatorname{sen}(bt) \vec{Q} + ce^{at} \cos(bt) \vec{P}$$

y ahora, substituyendo los valores t = 0 y $t = \frac{\pi}{2b}$, se obtienen las ecuaciones

$$\begin{array}{rcl} -\vec{Q} & = & c\vec{P} \\ e^{\frac{a\pi}{2b}}\vec{P} & = & ce^{\frac{a\pi}{2b}}\vec{Q} \Longrightarrow \vec{P} = c\vec{Q}. \end{array}$$

En consecuencia, $-\vec{Q}=c\vec{P}=c^2\vec{Q}$, es decir, $(c^2+1)\vec{Q}=0$, de donde $\vec{Q}=0$. Esto es una contradicción que viene de suponer que el conjunto $\{\vec{X}_1,\vec{X}_2\}$ es linealmente dependiente.

Ejemplo 4 Resolver el sistema de ecuaciones

$$\begin{cases} x' = x - 2z, \\ y' = x + y, \\ z' = y + 2z. \end{cases}$$

Solución: El sistema se puede escribir con notación matricial en la forma:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Hallemos los autovalores de la matriz $A = \begin{pmatrix} 1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$. El polinomio característico de A está dado por:

$$p_{A}(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & -2 \\ 1 & 1 - \lambda & 0 \\ 0 & 1 & 2 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} 1 - \lambda & 0 \\ 1 & 2 - \lambda \end{vmatrix} - 2 \begin{vmatrix} 1 & 1 - \lambda \\ 0 & 1 \end{vmatrix}$$
$$= (1 - \lambda)^{2}(2 - \lambda) = -\lambda^{3} + 4\lambda^{2} - 5\lambda = -\lambda(\lambda^{2} - 4\lambda + 5) = -\lambda((\lambda - 2)^{2} + 1)$$
$$= -\lambda(\lambda - 2 - i)(\lambda - 2 + i)$$

Así, los autovalores son $\lambda_1 = 0$, $\lambda_2 = 2 + i$ y $\lambda_3 = \overline{\lambda}_2$.

Ahora hallamos los autovectores. Para $\lambda_1 = 0$: tenemos que

$$(A - \lambda_1 I)\vec{v} = A\vec{v} = \begin{pmatrix} 1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix},$$

con $\vec{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. Reduciendo la matriz a su forma escalonada obtenemos

$$\begin{pmatrix} 1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Por lo tanto, $A\vec{v} = \vec{0}$ si, y sólo si,

$$\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} a - 2c \\ b + 2c \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} a = 2c \\ b = -2c \end{cases}$$

$$\iff \vec{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 2c \\ -2c \\ c \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} c$$

Así, un autovector asociado a $\lambda_1=0$ es $\begin{pmatrix}2\\-2\\1\end{pmatrix}$ y, en consecuencia, tenemos una solución dada

$$\operatorname{por} \vec{X}_1(t) = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} e^{0t} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}.$$

Por otra parte, para el autovalor $\lambda=2+i$: obtenemos el autovector resolviendo (A-(2+i)I) $\vec{v}=\vec{0}$:

$$\begin{pmatrix} -1-i & 0 & -2 \\ 1 & -1-i & 0 \\ 0 & 1 & -i \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1-i & 0 \\ -1-i & 0 & -2 \\ 0 & 1 & -i \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1-i & 0 \\ 0 & -2i & -2 \\ 0 & 1 & -i \end{pmatrix}$$
$$\longrightarrow \begin{pmatrix} 1 & -1-i & 0 \\ 0 & 1 & -i \\ 0 & 1 & -i \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1-i & 0 \\ 0 & 1 & -i \\ 0 & 0 & 0 \end{pmatrix}$$

Así,

$$(A - (2+i)I) \vec{v} = \vec{0} \iff \begin{pmatrix} 1 & -1 - i & 0 \\ 0 & 1 & -i \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} a - (1+i)b &= 0 \\ b - ic &= 0 \end{cases} \iff \begin{cases} a = (1+i)b \\ b = ic \end{cases}$$

$$\iff \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -1 + i \\ i \\ 1 \end{pmatrix} c$$

Entonces, un autovalor asociado a $\lambda_2 = 2 + i$ es $\begin{pmatrix} -1 + i \\ i \\ 1 \end{pmatrix}$, con lo cual, tenemos dos soluciones

 $\vec{X}_2(t) = \mathrm{Re}(Z(t))$ y $\vec{X}_3(t) = \mathrm{Im}(Z(t)),$ donde

$$Z(t) = e^{(2+i)t} \begin{pmatrix} -1+i \\ i \\ 1 \end{pmatrix} = e^{2t} (\cos t + i \sin t) \begin{pmatrix} -1+i \\ i \\ 1 \end{pmatrix}$$

$$= e^{2t} \begin{pmatrix} -\cos t - \sin t + i \cos t - i \sin t \\ -\sin t + i \cos t \\ \cos t + i \sin t \end{pmatrix}$$

$$= e^{2t} \begin{pmatrix} -\cos t - \sin t \\ -\sin t \end{pmatrix} + ie^{2t} \begin{pmatrix} \cos t - \sin t \\ \cos t \\ \sin t \end{pmatrix}$$

Así, $\vec{X}_2(t) = e^{2t} \begin{pmatrix} -\cos t - \sin t \\ -\sin t \\ \cos t \end{pmatrix}$ y $\vec{X}_3(t) = e^{2t} \begin{pmatrix} \cos t - \sin t \\ \cos t \\ \sin t \end{pmatrix}$. En suma, la solución general del sistema está dada por

$$\vec{X}(t) = C_1 \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} -\cos t - \sin t \\ -\sin t \\ \cos t \end{pmatrix} + C_3 e^{2t} \begin{pmatrix} \cos t - \sin t \\ \cos t \\ \sin t \end{pmatrix}.$$

Correcciones: Boris Iskra

May 13, 2008