Reg. No.															
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

B.Tech. DEGREE EXAMINATION, NOVEMBER 2016

Fifth Semester

MA1005 - PROBABILITY AND STATISTICS

(For the candidates admitted during the academic year 2013 – 2014 and 2014 -2015) (Statistical tables and graph sheets for SQC are to be provided)

Note:

(i) **Part - A** should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.

(ii) Part - B and Part - C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions

1. The probability that a manager will travel by train is $\frac{1}{5}$ and by plane is $\frac{2}{3}$. What is the probability of his travelling by train on plane?

(A) $\frac{2}{15}$

(B) 13

(C) 15

(D) $\frac{15}{4}$

2. The distribution function of a continuous random variable X is $F(x) = 1 - (1+x)e^{-x}$, $x \ge 0$, then the pdf of X is

(A) xe^{-x}

(B) xe^x

(C) e^x

(D) e^{-x}

3. The expectation of the number on a die when thrown is

 $(A) \quad \frac{1}{6}$

(B) 2

(C) 3

(D) $\frac{7}{2}$

4. If $E(x^2) = 8$ and E(x) = 2, then Var(X) is

(A) 16

(B) 8

(C) 4

(D) 2

5. The moment generating function of the binomial distribution is

(A) $(p+qe^t)^n$

(B) $(q + pe^t)^n$

(C) $(p-qe^t)^n$

(D) $(q - pe^t)^n$

6. If X is a Poisson variate such that $E(x^2) = 6$ find E(x)

(A) 1

(B) 2

(C) 0

(D) 6

- 7. The variance of geometric distribution whose pmf is q^{r-1} . p for r = 1,2,3,... is

- 8. X is a normal random variate with mean 16 and S.D. 3. The $(X \ge 19)$ is
 - (A) 0.1587

(B) 0.8413

(C) 0.3413

- (D) 0.6587
- 9. In large samples the $|Z_{\alpha}|$ -value for two tailed test at $\alpha = 1\%$ level of significance is
 - (A) 1.96

(B) 1.645

(C) 2.58

- (D) 2.33
- 10. In test of significance for single S.D, the Z-test static value is
 - (A)

(C) $\frac{s+\sigma}{\left(\frac{\sigma}{\sqrt{2}}\right)}$

- 11. Given observed frequencies are 882, 313, 287, 118 and the expected frequencies are 900, 300, 300, 100. Then the Chi-square test statistic value is
 - (A) 0.61

(B) 1.10

(C) 1600

- (D) 4.73
- 12. The test statistic for paired t-test is defined as
 - (A) $\overline{d} + S_d \sqrt{n-1}$

(B) $\overline{d} - S_d \sqrt{n-1}$ (D) $\frac{S}{\sqrt{n}}$

(C) $\frac{\overline{d}}{\left(\frac{S_d}{\sqrt{n-1}}\right)}$

- 13. The range of F-distribution is
 - (A) 0 to ∞

(B) $-\infty$ to ∞

(C) -1 to ∞

- (D) 1 to ∞
- 14. In two way ANOVA classification, the degrees of freedom for residuals with h-rows and kcolumns is
 - (A) (h-1)/(k-1)

(B) (h-1)(k-1)

(C) (h-1)+(k-1)

- (D) (h-1)-(k-1)
- 15. The Spearman's formula for rank correlation coefficient between X and Y is, (where D is the difference of ranks)

(A) $1 - \frac{6\Sigma(D)^2}{n(n^2 - 1)}$ (C) $1 - \frac{6\Sigma(D)^2}{n(n^2 + 1)}$

(B) $1 + \frac{6\Sigma(D)^2}{n(n-1)}$ (D) $1 + \frac{6\Sigma(D)^2}{n(n^2+1)}$

16. If $b_{xy} = -0.8$ and $b_{yx} = -0.2$, then the value of correlation coefficient is (A) +0.16(B) -0.16(C) +0.4(D) -0.417. The technique of control charts was pioneered by (A) Gusset (B) Robert (C) W.A. Shewhart (D) R.A. Fisher 18. The lower control limit for the sample range chart, if n = 4, $\overline{R} = 1.33$, $D_3 = 0$ and $D_4 = 2.282$ (A) 0 (B) 3.04 (C) 1.33 (D) 2.282 19. The upper control limit for the sample S.D s-charts, if n = 4, $\overline{s} = 4.02$, $B_3 = 0$, $B_4 = 2.266$ (A) 4.02 (B) 0 (C) 9.11 (D) 2.28 20. The upper control limit for np-cahrt, where n = 100, and $\overline{p} = 0.085$ is (A) 0.134 (B) 16.867 (C) 0 (D) 8.500 $PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions If An and B are two events such that $P(A \cup B) = \frac{3}{4}$, $P(A \cap B) = \frac{1}{4}$, $P(\overline{A}) = \frac{2}{3}$. Determine 21. the value of P(B). 22. Assuming that the number of cars passing a junction obeys a Poisson distribution if the probability of no cars pass in 1 minute is 0.20, what is the mean of the distribution?

24. Define the terms

23.

(i) Parameters and statistics

probability that his 10th throw is his 5th hit.

- (ii) Type I and Type II errors
- 25. A random sample of 10 students gave a mean weight of 58 kgs with S.D of 4 kgs. Find the 95% confidence limits for the population mean.

A boy is throwing stores at a target at any trial with probability is 0.5. What is the

- 26. The two lines of regression are x + 2y 5 = 0; and 2x + 3y 8 = 0. Find the mean values of x and y.
- 27. Find the lower and upper control limits for the C-chart when $\overline{C} = 6$.

$PART - C (5 \times 12 = 60 Marks)$

Answer ALL Questions

28. a. A random variable X has the following probability limitation

x:	-2	-1	0	1	2	3
P(x):	0.1	k	0.2	2k	0.3	3k

- (i) Find the value of k
- (ii) Evaluate P(X<2) and P(-2<x<2)
- (iii) Obtain the cumulative distribution of X:F(x) and
- (iv) Determine the mean of X.

(OR)

b. The amount of bread (in hundreds of kgs) that a certain bakery is able to sell in a day is

random variable X with a pdf is given by
$$f(x) = \begin{cases} Ax, & \text{if } 0 \le x < 5 \\ A(10 - x), & \text{if } 5 \le x < 10 \\ 0 & \text{otherwise} \end{cases}$$

- (i) Determine the value of A
- (ii) Find the probability that in a day the sales in more than 500 kgs
- (iii) Obtain the probability that in day the sales is between 250 and 750 kgs.
- 29. a. Obtain the Moment Generating Function of Exponential distribution, and hence find its mean and variance.

(OR)

- b. In a normal distribution 31% of the items are under 45 and 8% are over 64. Compute the mean and variance of the normal distribution.
- 30. a.i. 15.5 percent of a random sample of 1600 under graduates were smokes, where as 20% of a random sample of 900 post graduates were smokers in a state. Use at 1% level of significance, can we conclude that less number of undergraduates are smokers than the post graduates?
 - ii. The S.D of a random sample of 1000 is found to be 2.6 and the S.D of another random sample of 500 is 2.7. Assuming the samples to be independent, use at 1% of significance, test whether the two samples could have come from population with the same S.D?

(OR)

b. The following table gives for a sample of married women, the level of education and the marriage adjustment score

		Marriage adjustment								
ų u		Very low	Low	High	Very high	Total				
Level of equation	College	24	97	62	58	241				
eve	High school	22	28	30	41	121				
T &	Middle school	32	10	11	20	73				
8	Total	78	135	103	119	435				

Can you conclude from the above data that the levels of education and the marriage adjustment are independent?

31. a. From the following data:

x:	22	26	29	30	31	31	34	35
y:	20	20	21	29	27	24	27	31

- (i) Obtain the equations of regression lines and hence
- (ii) Calculate the correlation coefficient between X and Y
- (iii) Estimate the value of Y, when X = 38, and X, when Y = 18.

(OR)

b. Using TWO-WAY ANOVA, analyze your data and state your conclusion

Machine types										
		A	В	C	D					
	1	44	38	47	36					
Workers	2	46	40	52	43					
	3	34	36	44	32					
	4	43	38	46	33					
	5	38	42	49	39					

32. a. Given below are the values of sample mean \overline{X} and sample range R for 10 samples, each of size %. Draw the approximate sample mean $(\overline{\overline{X}})$ and sample Range (\overline{R}) charts (in graph sheets) and comment on the state of control of the process

	100									
Sample number:	1	2	3	4	5	6	.7	8	9	10
Sample mean:	43	49	37	44	45	37	51	46	43	47
Sample range:	5	6	5	7	7	4	8	6	4	6

(OR)

b. 10 samples each of the size 50 were inspected and the number of defective in the inspection were: 2,1,1,2,3,5,5,1,2,3. Draw the $n\overline{p}$ -chart (in graph sheet) for defective, and comment on the state od control.

* * * * *