答案解析(1)—史上最全Transformer面试题: 灵魂20问帮你彻底搞定Transformer

原创 DASOU NLP从入门到放弃 2020-06-21

收录于话题

#NLP基础知识

55个

简单介绍

之前的20个问题的文章在这里:

灵魂20问帮你彻底搞定Transformer面试题系列(一)

其实这20个问题不是让大家背答案,而是为了帮助大家梳理 transformer的相关知识点,所以你注意看会发现我的问题也是有某种顺序的。问题基本上都可以在网上找到答案,所以大家可以先去搜一搜,自己理解一下,我也不会重新把答案回答一遍,而是列出来我看到的比较好的回答,然后加上点自己的注解帮助大家理解,在这里感谢那些大佬回答者,今天整理了其中的五个,剩下的我抽空在整理一下。

这里我先小声说一下,写这些笔记有两个目的。

一个是方便大家,好多题目都太散了,没有人归纳一下。

二个就是方便自己重新复习一遍,所以我也不可能是直接把答案一粘就完事,这对我自己就没啥帮助了。所以没啥别的目的,不是为了博关注粉丝之类的,因为这些如果做不到大V基本没啥用,我也没那时间去经营成为大V,工作忙的要死,就是想要有个一起沟通的渠道而已。

公众号/知乎/github基本同步更新,大家关注哪一个都可以,不过可能微信链接跳转不方便,知乎编辑不方便,github对有些同学不太方便打开。大家看自己情况关注吧。

正文

1.Transformer为何使用多头注意力机制?(为什么不使用一个头)

答案解析参考这里:为什么Transformer 需要进行 Multi-head Attention? https://www.zhihu.c om/question/341222779

注解:简单回答就是,多头保证了transformer可以注意到不同子空间的信息,捕捉到更加丰富的特征信息。其实本质上是论文原作者发现这样效果确实好,我把作者的实验图发在下面:

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	params $\times 10^6$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(D)					16					5.16 25.1	25.1	58
(B)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbedo	ling in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

2.Transformer为什么Q和K使用不同的权重矩阵生成,为何不能使用同一个值进行自身的点乘?

答案解析参考这里: transformer中为什么使用不同的K 和 Q , 为什么不能使用同一个值? - 知 乎https://www.zhihu.com/question/319339652

注解:简单回答就是,使用Q/K/V不相同可以保证在不同空间进行投影,增强了表达能力,提高了泛化能力。

3.Transformer计算attention的时候为何选择点乘而不是加法?两者计算复杂度和效果上有什么区别?

答案解析:为了计算更快。矩阵加法在加法这一块的计算量确实简单,但是作为一个整体计算 attention的时候相当于一个隐层,整体计算量和点积相似。在效果上来说,从实验分析,两者 的效果和dk相关,dk越大,加法的效果越显著。更具体的结果,大家可以看一下实验图(从莲子同学那里看到的,专门去看了一下论文):

Attention	newstest2013	Params
Mul-128	22.03 ± 0.08 (22.14)	65.73M
Mul-256	22.33 ± 0.28 (22.64)	65.93M
Mul-512	21.78 ± 0.05 (21.83)	66.32M
Mul-1024	18.22 ± 0.03 (18.26)	67.11M
Add-128	22.23 ± 0.11 (22.38)	65.73M
Add-256	22.33 ± 0.04 (22.39)	65.93M
Add-512	$22.47 \pm 0.27 (22.79)$	66.33M
Add-1028	22.10 ± 0.18 (22.36)	67.11M
None-State	$9.98 \pm 0.28 (10.25)$	64.23M
None-Input	$11.57 \pm 0.30 (11.85)$	64.49M

Table 5: BLEU scores on newstest2013, varying the type of attention mechanism.

4.为什么在进行softmax之前需要对attention进行scaled (为什么除以 dk的平方根) ,并使用公式推导进行讲解

答案解析参考这里: transformer中的attention为什么scaled? - LinT的回答 - 知乎https://www.zhihu.com/question/339723385/answer/782509914

注解:针对大佬回答的第二个问题,也就是方差的问题,我简单的写了一个代码验证了一下,不愿意看公式推导的同学直接看代码结果就可以。代码在这里:

https://github.com/DA-southampton/NLP_ability

5.在计算attention score的时候如何对padding做mask操作?

答案解析: padding位置置为负无穷(一般来说-1000就可以)。对于这一点,涉及到batch_size之类的,具体的大家可以看一下抱抱脸实现的源代码,位置在这里:

https://github.com/DA-southampton/Read_Bert_Code/blob/0605619582f1bcd27144e2d76f ac93cb16e44055/bert_read_step_to_step/transformers/modeling_bert.py#L607

打完收工,鞠躬感谢,之后没啥情况的话我基本每周一更,每天一更的话实在扛不住 hhhh。