Mô hình VAR và Holt-Winters và ứng dụng trong bài toán dự đoán nhu cầu sản phẩm

Group 1 Tạ Duy Hải - 20206197 Nguyễn Văn Nghiêm - 20206206 Nguyễn Hoàng Sơn - 20206165

Hanoi, 1/2024

Outline

- Giới thiệu bài toán
- 2 Mô hình VAR
- Mô hình làm mượt Holt-Winters
- 4 Kết quả thực nghiệm
- Kết luận

Outline

- Giới thiệu bài toán
- Mô hình VAR
- 3 Mô hình làm mượt Holt-Winters
- 4 Kết quả thực nghiệm
- 5 Kết luận

Giới thiệu bài toán

Một trong những quyết định quan trọng nhất là quyết định về sản xuất và cung ứng. Để đưa ra quyết định này một cách hiệu quả, doanh nghiệp cần có một dự báo nhu cầu sản phẩm chính xác.

Những mô hình dự báo theo hướng học sâu thường được sử dụng có thể kể đến như ANN, LSTM, ... Tuy nhiên, lớp mạng trên yêu cầu lượng lớn dữ liệu lịch sử trong quá trình huấn luyện để đạt được hiệu quả tốt nhất.

 \vec{D} ể đáp ứng với điều kiện thực tế thiếu thốn dữ liệu, các mô hình được chọn trong báo cáo này bao gồm: mô hình VAR và mô hình làm mượt Holt-Winters.

Outline

- Giới thiệu bài toán
- 2 Mô hình VAR
- 3 Mô hình làm mượt Holt-Winters
- 4 Kết quả thực nghiệm
- 5 Kết luận

Mô hình VAR

Ta có chuỗi thời gian đa biến K chiều T quan sát y_1,\dots,y_T với $y_t=(y_{1t},\dots,y_{Kt})$ là quá trình dừng và công thức chung:

$$y_t = \nu + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t. \tag{2.1}$$

Với $\nu=(\nu_1,\dots,\nu_K)$ là vector hằng số $K\times 1$, A_i là ma trận hệ số $K\times K$ và u_t là nhiễu trắng với ma trận hiệp phương sai Σ_u .

Phương pháp Ordinary Least Squares (OLS)

Phương pháp được trình bày bởi Helmut Lütkepohl ¹. Ta định nghĩa:

$$\begin{split} Y &:= (y_1, \dots, y_T) & (K \times T), \\ B &:= (\nu, A_1, \dots, A_p) & (K \times (Kp+1)), \\ Z_t &:= [1, y_t, \dots, y_{t-p+1}]' & ((Kp+1) \times 1), \\ Z &:= (Z_0, \dots, Z_{T-1}) & ((Kp+1) \times T), \\ U &:= (u_1, \dots, u_T) & (K \times T), \\ \mathbf{y} &:= \text{vec}(Y) & (KT \times 1), \\ \beta &:= \text{vec}(B) & ((K^2p + K) \times 1), \\ \mathbf{u} &:= \text{vec}(U) & (KT \times 1). \end{split}$$

¹Helmut Lütkepohl, *New Introduction to Multiple Time Series Analysis*, Springer Berlin, Heidelberg, 2005

Phương pháp Ordinary Least Squares (OLS)

Khi đó, công thức 2.1 được viết lại thành

$$Y = BZ + U (2.2)$$

Khi đó, ta có:

$$\operatorname{vec}(Y) = \operatorname{vec}(BZ) + \operatorname{vec}(U)$$
 \Leftrightarrow $\operatorname{vec}(Y) = (Z' \otimes I_K)\operatorname{vec}(B) + \operatorname{vec}(U)$ \Leftrightarrow $\mathbf{y} = (Z' \otimes I_K)\beta + \mathbf{u}.$ (2.3)

Phương pháp Ordinary Least Squares (OLS)

Ta cần cực tiểu hàm sau để tìm được ước lượng cho β :

$$S(\beta) = \mathbf{u}' (I_T \otimes \Sigma_u)^{-1} \mathbf{u}. \tag{2.4}$$

Ta thu được nghiệm tối ưu:

$$\hat{\beta} = ((ZZ')^{-1}Z \otimes I_K)\mathbf{y}. \tag{2.5}$$

Whittle (1963) và Robinson (1963) đã khái quát thuật toán Durbin - Levison cho trường hợp chuỗi thời gian đa biến 2 .

Ta có ma trận hiệp phương sai kích thước $K \times K$ với độ trễ j:

$$\hat{R}_{j} = \frac{1}{n} \sum_{t=1}^{n-j} y_{t+j} y_{t}'. \tag{2.6}$$

² Jones. R. H., Multivariate autoregression estimation using residuals. *In Applied Time Series Analysis I* (pp. 139-162). Academic Press, 1978.

Chuỗi AR bậc p có dự đoán tiến:

$$\hat{y_t}^{(f)} = \sum_{k=1}^p A_k^{(p)} y_{t-k}, \tag{2.7}$$

và dự đoán lùi:

$$\hat{y_t}^{(b)} = \sum_{k=1}^p B_k^{(p)} y_{t+k}, \tag{2.8}$$

với $A_k^{(p)}$ và $B_k^{(p)}$ là ma trận $K \times K$.

Giá trị khởi tạo:

$$S_0^{(f)} = S_0^{(b)} = R_0 (2.9)$$

Bước đầu tiên:

$$A_1^{(1)} = R_1 \left[S_0^{(b)} \right]^{-1} \tag{2.10}$$

$$B_1^{(1)} = R_{-1} \left[S_0^{(f)} \right]^{-1} \tag{2.11}$$

với

$$R_{-1} = R_1'$$

Công thức chung:

$$A_p^{(p)} = \left(R_p - \sum_{k=1}^{p-1} A_k^{(p-1)} R_{(p-k)}\right) \left[S_{(p-1)}^{(b)}\right]^{-1}$$
(2.12)

$$B_p^{(p)} = \left(R_p' - \sum_{k=1}^{p-1} B_k^{(p-1)} R_{(p-k)}'\right) \left[S_{(p-1)}^{(f)}\right]^{-1}$$
(2.13)

Công thức cập nhật ma trận:

$$A_k^{(p)} = A_k^{(p-1)} - A_p^{(p)} B_{p-k}^{(p-1)}$$
(2.14)

$$B_k^{(p)} = B_k^{(p-1)} - B_p^{(p)} A_{p-k}^{(p-1)}$$
(2.15)

Dự báo 1 bước tiến và lùi của ma trận hiệp phương sai nhiễu:

$$S_p^{(f)} = (I - A_p^{(p)} B_p^{(p)}) S_{p-1}^{(f)}$$
(2.16)

$$S_p^{(b)} = (I - B_p^{(p)} A_p^{(p)}) S_{p-1}^{(b)}$$
(2.17)

Outline

- Giới thiệu bài toán
- 2 Mô hình VAR
- Mô hình làm mượt Holt-Winters
- 4 Kết quả thực nghiệm
- 5 Kết luận

Phương pháp Holt-Winters là một phương pháp dự báo chuỗi thời gian mạnh mẽ được thiết kế để xử lý các chuỗi có tính xu hướng và tính mùa.

Trong phần này nhóm tác giả trình bày phương pháp Holt-Winters cộng tính và biến thể để sử dụng với chuỗi thời gian đa biến.

Xét chuỗi thời gian đơn biến $\mathbf{y} = \{y_1, \dots, y_t\}$ với tính mùa có chu kỳ p.

Các quan sát này được biểu diễn dưới dạng $y_i=a_{i-1}+b_{i-1}+c_{i-1},\ i=\overline{1,t}$, trong đó a_i là thành phần mức độ, b_i là phần xu thế và c_i là phần mùa.

Phương pháp cộng tính có 3 phương trình làm mượt và một phương trình dự báo như sau:

$$a_i = \alpha (y_i - c_{i-p}) + (1 - \alpha) (a_{i-1} + b_{i-1}), \tag{3.1}$$

$$b_i = \beta (a_i - a_{i-1}) + (1 - \beta) b_{i-1}, \tag{3.2}$$

$$c_i = \gamma (y_i - a_{i-1} - b_{i-1}) + (1 - \gamma) c_{i-p}, \tag{3.3}$$

$$\hat{y}_{t+h|t} = a_t + hb_t + c_{t+h-p(k+1)}. (3.4)$$

Bermúdez và các cộng sự 3 đề xuất sử dụng mô hình hồi quy để ước lượng các tham số α,β,γ và giá trị ban đầu để thực hiện phương pháp cộng tính. Cụ thể các biến ngẫu nhiên Y_i được biểu diễn dưới dạng

$$Y_i = a_{i-1} + b_{i-1} + c_{i-1} + \epsilon_i. (3.5)$$

Trong đó $\epsilon_i \sim \mathcal{N}\left(0, \sigma^2\right)$.

³Bermúdez. J. D., Segura, J. V., & Vercher, E., Holt–Winters forecasting: an alternative formulation applied to UK air passenger data, *Journal of Applied Statistics*, 34(9), 1075-1090, 2007.

Kết hợp 3.5, 3.1, 3.2, 3.3 thu được biểu diễn:

$$Y_{1} = a_{0} + b_{0} + c_{1-p} + \epsilon_{1}$$

$$Y_{2} = a_{0} + 2b_{0} + c_{2-p} + \alpha (1 + \beta) \epsilon_{1} + \epsilon_{2}$$

$$\vdots$$

$$Y_{p+1} = a_{0} + (p+1) b_{0} + c_{1-p} + \gamma \epsilon_{1} + \alpha \sum_{r=1}^{p} (1 + \beta (p+1-r)) \epsilon_{r} + \epsilon_{p+1}$$

. . .

Từ biểu diễn trên, tổng hợp lại thu được biểu diễn dạng ma trận

$$\mathbf{Y} = M\psi + L\epsilon \tag{3.6}$$

Trong đó $\psi=(b_0,c_{1-p},c_{2-p},\ldots,c_0)'$, $a_0=-b_0$ là véc tơ điều kiện ban đầu, M là ma trận cỡ $t\times(p+1)$ với cột đầu tiên là $(0,1,\ldots,t-1)$ và p cột còn lại được tạo bởi các ma trận đơn vị cỡ $p\times p$ xếp từ trên xuống dưới đủ t hàng.

Ma trân L có biểu diễn

$$L = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ l_2 & 1 & 0 & \dots & 0 & 0 \\ l_3 & l_2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ l_{n-1} & l_{n-2} & l_{n-3} & \dots & 1 & 0 \\ l_n & l_{n-1} & l_{n-2} & \dots & l_2 & 1 \end{bmatrix}$$

$$(3.7)$$

với $l_i=\alpha\left(1+(i-1)\,\beta\right)+\gamma\left(i=1\;\mathrm{mod}\;p\right)$. $\epsilon=(\epsilon_1,\ldots,\epsilon_t)$ là véc tơ nhiễu ngẫu nhiên độc lập cùng phân phối chuẩn.

Hàm Log-Likelihood của Y lúc này bằng

$$-\frac{t}{2}\ln\left(\sigma^{2}\right) - \frac{1}{2\sigma^{2}}\left(\mathbf{Y} - M\psi\right)'\left(LL'\right)^{-1}\left(\mathbf{Y} - M\psi\right). \tag{3.8}$$

Các tham số α,β,γ được xác định bằng cực đại hàm hợp lý trên, tương đương với cực tiểu hóa

$$\min_{\alpha,\beta,\gamma} \left(L^{-1} \mathbf{Y} \right)' \left(I - P_X \right) L^{-1} \mathbf{Y}. \tag{3.9}$$

Trong đó $X=L^{-1}M$ và $P_X=X\left(X'X\right)^{-1}X'.$

Sau khi thu được α,β,γ , ta sẽ tính lại \hat{L},\hat{X} , từ đó ước lượng được véc tơ điều kiện ban đầu

$$\hat{\psi} = \left(\hat{X}'\hat{X}\right)^{-1}\hat{X}'\hat{L}^{-1}\mathbf{Y}.\tag{3.10}$$

Với bộ điều kiện ban đầu ψ , ta đã có thể sử dụng phương pháp cộng tính để tính các tham số và đưa ra dự báo. Lưu ý rằng mô hình trên hoạt động với chuỗi thời gian đơn biến.

Xét chuỗi thời gian đa biến $\mathcal{Y}=(\mathbf{Y}_1,\ldots,\mathbf{Y}_n)$ với $\mathbf{Y}_i=(Y_{1i},\ldots,Y_{ti})$. Để mô hình hồi quy trên áp dụng được, nhóm tác giả coi các véc tơ \mathbf{Y}_i đều có biểu diễn

$$\mathbf{Y}_i = M\psi + L\epsilon. \tag{3.11}$$

Hay các chuỗi đều có chung bộ tham số α, β, γ .

Các tham số này được tìm bằng cách cực tiểu hóa

$$\min_{\alpha,\beta,\gamma} \sum_{i=1}^{n} (L^{-1} \mathbf{Y}_i)' (I - P_X) L^{-1} \mathbf{Y}_i.$$
 (3.12)

Các ước lượng điều kiện ban đầu thu được bởi

$$\hat{\psi}_i = \left(\hat{X}'\hat{X}\right)^{-1}\hat{X}'\hat{L}^{-1}\mathbf{Y}_i. \tag{3.13}$$

Ngoài ra nhóm tác giả còn đề xuất cách tìm α,β,γ thông qua cực tiểu hàm bình phương sai số

$$\min_{\alpha,\beta,\gamma} \frac{\sum_{i=1}^{n} w_i \sum_{j=1}^{t} \left(Y_{ji} - \hat{Y}_{ji} \right)^2}{\sum_{i=1}^{n} w_i}.$$
 (3.14)

Với $\hat{Y}_{ji} = a_{j-1,i} + b_{j-1,i} + c_{j-1,i}$.

Outline

- Giới thiệu bài toán
- 2 Mô hình VAR
- 3 Mô hình làm mượt Holt-Winters
- 4 Kết quả thực nghiệm
- 5 Kết luận

Mô tả dữ liệu và bài toán

Trong báo cáo này, nhóm sử dụng bộ dữ liệu của một công ty do Giảng viên TS. Nguyễn Thị Ngọc Anh cung cấp. Bộ dữ liệu này gồm 2 file excel:

- SP Plan: Kế hoạch bán sản phẩm A, B1, B2 trong 12 quý, từ 2021 đến 2023.
- SP_DoiThu: Kế hoạch bán sản phẩm bao gồm cả lượng và giá trị của A, B, C trong 46 tháng, từ 1/2020 đến 10/2023.

Bài toán dự báo kế hoạch 1-4 quý tiếp theo của từng sản phẩm A, B1, B2.

Mô tả dữ liệu và bài toán

Figure: Biểu đồ thể hiện số lượng của sản phẩm A, B1, B2 theo quý.

Mô tả dữ liệu và bài toán

Figure: Biểu đồ thể hiện sản phẩm A, B, C đối thủ theo tháng.

Xử lý dữ liệu

Do kế hoạch bên công ty là theo quý, còn đối thủ là theo tháng. Do đó gộp 3 tháng làm 1 quý và bỏ đi phần kế hoạch năm 2020 và tháng 10/2023 của đối thủ, quý 4 năm 2023 của công ty. Bỏ đi kế hoạch của sản phẩm C, và chỉ lấy phần lượng của mỗi sản phẩm A, B. Còn lại thu được 11 quý từ quý 1/2021 đến quý 3/2023.

Figure: Biểu đồ thể hiện sản phẩm A, B của đối thủ theo quý.

Xây dựng mô hình

Nhóm chia dữ liệu thành 2 tập train và test với train gốm 7 quý đầu, test gồm 4 quý sau. Và xây dựng, thử nghiệm các mô hình sau:

- Sử dụng với 2 trường A, A đối thủ: VAR OLS, VAR Durbin-Levinson.
- Sử dụng với 3 trường B1, B2, B đối thủ: VAR OLS, VAR Durbin-Levinson.
- Sử dụng 5 trường A, B1, B2, A đối thủ, B đối thủ: VAR OLS, VAR -Durbin-Levinson, Holt-Winter tối ưu theo Log-Likelihood, Holt-Winters tối ưu theo MSE.

Kết quả thực nghiệm

Qua quá trình thử nghiệm, nhóm sử dụng độ đo MAE thu được kết quả đánh giá sau:

Mô hình	A và A đối thủ		B1, B2 và B đối thủ			A, B1, B2, A đối thủ và B đối thủ				
WO IIIIII	A	A đối thủ	B1	B2	B đối thủ	Α	B1	B2	A đối thủ	B đối thủ
VAR - OLS	63.608	99694.263	97.616	328.073	6814639.757	163.212	97.505	327.786	41173.739	6811127.587
VAR - Durbin-Levinson	111.328	74709.311	114.633	219.033	1928826.146	103.498	102.971	156.071	60742.338	2158559.805
Holt-Winter tối ưu theo Log-likelihood						245.501	57.501	339.251	97291.501	4844239.125
Holt-Winter tối ưu theo MSE						316.328	98.033	354.922	82337.041	9509946.258

Mô hình VAR - OLS

Table: Kết quả dự báo 4 quý năm 2024 bằng mô hình VAR - OLS.

Quý	A và A đối thủ		B1, B2 và B đối thủ			A, B1, B2, A đối thủ và B đối thủ					
	А	A đối thủ	B1	B2	B đối thủ	Α	B1	B2	A đối thủ	B đối thủ	
1	501.369	430125.909	480.701	835.505	4878039.48	477.249	480.841	835.488	272521.765	4880684.39	
2	704.477	384310.265	480.906	671.971	4877756.56	438.670	481.041	672.221	259961.421	4880244.12	
3	611.613	386588.924	431.586	443.055	4813185.67	345.854	431.746	443.405	233389.177	4817447.48	
4	638.573	429640.797	352.013	451.676	4893416.66	335.253	352.348	451.911	203718.448	4897584.47	

Mô hình VAR - OLS

Figure: Dự đoán 4 quý năm 2024 của mô hình VAR - OLS trên 2 trường A và A đối thủ.

Mô hình VAR - OLS

Figure: Dự đoán 4 quý năm 2024 của mô hình VAR - OLS trên 3 trường B1, B2 và B đối thủ.

Mô hình VAR - OLS

Figure: Dự đoán 4 quý năm 2024 tiếp theo của mô hình VAR - OLS trên cả 5 trường.

Table: Kết quả dự báo 4 quý năm 2024 bằng mô hình VAR - Durbin-Levinson.

Quý	A và A đối thủ		B1, B2 và B đối thủ			A, B1, B2, A đối thủ và B đối thủ				
	A	A đối thủ	B1	B2	B đối thủ	Α	B1	B2	A đối thủ	B đối thủ
1	534.637	260718.824	456.899	757.619	8020657.233	529.176	458.487	760.954	271257.466	7956737.484
2	572.094	236579.687	453.417	734.091	7291676.408	580.709	460.710	747.793	229189.165	7025864.153
3	554.189	248210.334	454.772	741.086	7565733.786	540.675	451.292	741.719	258889.882	7832721.811
4	562.794	242614.486	454.436	740.095	7451979.116	575.599	457.979	741.555	232923.170	7195879.347

Figure: Kết quả dự đoán các quý tiếp theo của mô hình VAR - Durbin-Levinson trên 2 trường A và A đối thủ.

Figure: Kết quả dự đoán các quý tiếp theo của mô hình VAR - Durbin-Levinson trên 3 trường B1, B2 và B đối thủ.

Figure: Kết quả dự đoán các quý tiếp theo của mô hình VAR - Durbin-Levinson trên cả 5 trường.

Mô hình Holt-Winters tối ưu theo hàm Log-Likelihood

Table: Kết quả dự báo 4 quý năm 2024 bằng mô hình Holt-Winters tối ưu theo hàm Log-Likelihood.

Quý	А	B1	B2	A đối thủ	B đối thủ
1	611.179	667.743	945.461	337227.027	3748242.589
2	398.308	557.512	858.160	352909.032	7769289.737
3	458.769	620.615	767.525	285877.371	6748481.551
4	522.308	598.846	934.326	438602.865	7113320.903

Mô hình Holt-Winters tối ưu theo hàm Log-Likelihood

Figure: Kết quả dự đoán 4 quý năm 2024 bằng mô hình Holt-Winters tối ưu theo hàm Likelihood.

Mô hình Holt-Winters tối ưu theo hàm MSE

Table: Kết quả dự báo 4 quý năm 2024 bằng mô hình Holt-Winters tối ưu theo hàm MSE.

Quý	А	B1	B2	A đối thủ	B đối thủ
1	783.931	782.078	1181.535	408328.905	6563700.954
2	549.187	671.608	1103.708	431537.413	10697519.506
3	623.912	726.248	1034.390	354718.765	9344292.680
4	741.065	751.774	1263.108	541828.309	10713969.767

Mô hình Holt-Winters tối ưu theo hàm MSE

Figure: Kết quả dự báo 4 quý năm 2024 bằng mô hình Holt-Winters tối ưu theo hàm MSE.

Outline

- Giới thiệu bài toán
- 2 Mô hình VAR
- 3 Mô hình làm mượt Holt-Winters
- 4 Kết quả thực nghiệm
- Skét luận

Kết luận

Trong phạm vi nội dung của đồ án, một số nội dung mà nhóm chúng em đã đạt được:

- Thành công trong việc giới thiệu 2 mô hình dự đoán chuỗi thời gian VAR và Holt-Winters.
- Ứng dụng được vào bài toán dự báo nhu cầu sản phẩm.
- So sánh được hiệu quả của mô hình VAR và Holt-Winters trong bài toán dự báo nhu cầu sản phẩm.

Với những kết quả đạt được, đồ án có nhiều tiềm năng ứng dụng trong nhiều bài toán khác nhau về chuỗi thời gian. Một số hướng phát triển tiếp theo của đồ án:

- Cải thiện độ chính xác của mô hình và ứng dụng vào nhiều lĩnh vực khác nhau, ví
 dụ: dự báo tỉ lệ người nhiễm covid, dự đoán doanh số bán hàng, v.v...
- Úng dụng các mô hình học sâu để giải quyết bài toán.

Thanks for listening!