

Retrieval-Augmented Generation(RAG) for Knowledge-Intensive NLP Tasks

GDGoC Al Seminar

Member 홍은진

기존 언어모델의 한계

Parametric 모델?

모델 내부 파라미터에 저장

ex) GPT, BERT, BART

같은 언어모델은 학습할 때 파라미터(가중치)에 세상의 지식을 저장

그들의 한계

- 정보를 수정하거나 확장하기 어렵고
- 왜 그렇게 예측했는지 쉽게 설명하지 못하며
- 사실이 아닌 내용을 만들어낼 수 있다.

파라미터 기반 메모리 + 검색 기반 메모리와 결합

Retrieval-Augmented Generation(RAG)

Figure 1: Overview of our approach. We combine a pre-trained retriever (*Query Encoder + Document Index*) with a pre-trained seq2seq model (*Generator*) and fine-tune end-to-end. For query x, we use Maximum Inner Product Search (MIPS) to find the top-K documents z_i . For final prediction y, we treat z as a latent variable and marginalize over seq2seq predictions given different documents.

Figure 1: Overview of our approach. We combine a pre-trained retriever ($Query\ Encoder + Document\ Index$) with a pre-trained seq2seq model (Generator) and fine-tune end-to-end. For query x, we use Maximum Inner Product Search (MIPS) to find the top-K documents z_i . For final prediction y, we treat z as a latent variable and marginalize over seq2seq predictions given different documents.

질문 → 검색기(DPR) → 문서 → 생성기(BART) → 답변

문서를 어떻게 찾을까?

Retriever: DPR(Dense Passage Retrieval)

질문 $(x) \rightarrow query encoder \rightarrow q(x)$

문서 $(z) \rightarrow doc encoder \rightarrow d(z)$

내적 $(q(x) \cdot d(z)) \rightarrow Top-K$ 문서 선택 (MIPS)

질문은 어떻게 만들까?

Generator: BART (Bidirectional and Auto-Regressive Transformers)

입력: 질문 + 선택된 문서(z) (concat, 이어붙이기)

구조: seq2seq encoder-decoder

(입력 문장을 전체 의미를 요약해서 벡터로 저장하고, 그걸 기반으로 새로운 문장을 하나씩 만들어내는 것)

ex) 입력: "I am a student"

인코더: 이 입력을 벡터로 변환

디코더: 벡터를 기반으로 출력 시퀀스를 생성

→"나는 학생이다."

출력: 정답 문장 y 생성

답을 어떻게 고를까?

RAG-Sequence

전체 출력 문장을 생성할 때 하나의 문서를 참고

문서별 beam search → 후보 문장 Y

각 문서별 확률 합쳐서 최종 선택

RAG-Token

출력 문장의 <mark>단어(토큰)마다 다른 문서</mark>를 참고

단어 하나를 만들 때, 여러 문서에서 나온 확률을 평균내어 가장 가능성 높은 단어를 생성하고, 이를 반복해 문장을 만들어낸다.

방식

- Thorough Decoding 모든 문서에 대해 다시 다 계산하는 방식
- Fast Decoding
 너무 느리니까, 문서에서 한 번도 안
 나온 문장은 무시(확률 0) 하는 방식

실험 구성

데이터: 위키백과 (100단어 단위로 쪼개서 2100만 문서)

● Top-5, Top-10 문서 검색 실험

• 인덱스

FAISS 벡터 기반 MIPS 인덱스 구축

FAISS

Facebook에서 만든 벡터 검색 라이브러리로 어떤 벡터와 가장 비슷한 벡터들을 빠르게 찾는 도구

MIPS

어떤 문서 벡터 d(z)와 질문 벡터 q(x) 사이의 내적 (inner product)을 계산해서 가장 값이 큰 문서들을 찾는 문제

실험 결과

Open-Domain QA

- NQ, TQA, WQ, CT
 모두에서 최고 성능
- 기존 extractive QA,
 closed-book QA보다
 우수
- 정답 문서에 없어도 스스로 정답 생성 가능 (NQ에서 11.8%)

문장 생성 (Abstractive QA / Jeopardy QG)

- RAG는 기존 언어모델 (BERT)보다 BLEU, ROUGE, Q-BLEU 모두 높음
- 더 사실적이고 구체적이며, 덜 헛소리함
- 사람이 보기에도 RAG 질문이 사실적이고 구체적

Fact Verification (FEVER)

● RAG는 검색 + 분류도 잘함

● 검색 정확도: Top-1 = 71%, Top-10 = 90%

Conclusion

핵심 성과

- parametric + non-parametric
 memory 결합한 "하이브리드 생성
 모델"
- RAG: 기존 모델보다 더 사실적이고 구체적인 문장 생성

파라메트릭 메모리

- 모델의 파라미터 에 지식 저장
- 모델이 훈련 중 얻은 지식은 훈련 이후 변경 X
- 지식의 업데이트 : 모델 재훈련

논파라메트릭 메모리

- **외부 메모리**를 사용하여 실시간으로 정보 검색 -> 결과 생성
- 파라미터 : 고정 / 외부 지식 :동적으로 추가

향후 연구 방향

 다양한 NLP 작업에 확장 적용 기대

Broader Impact

팩트 기반 생성 → 위키 기반 지식을 활용하여 헛소리(hallucination) 줄임

해석 가능성(Interpretability) → 검색한 문서 확인 가능 → 더 투명한 AI

응용 가능성 의료, 교육, 업무지원 등 전문 분야 인덱스만 붙이면 바로 활용 가능

Broader Impact

편향된 지식 사용 위험 → 위키 자체도 완벽하지 않음

악용 가능성

- 가짜 뉴스, 피싱, 사칭 등에 악용 가능
- 일자리 대체 가능성 존재

Negative