

M1.3 Transformaciones e Inferencia Estadística

Integrantes

A01068244 - Jared Andrés Silva Villa

Fecha: 20 de Agosto del 2024

Índice

1 Ejercicio 1	3
a) Haga un análisis exploratorio de estos datos:	4
 a. Calcular e interpretar estadísticas descriptivas de los datos: media, mediana, moda, desviación estándar,coeficiente de variación. 	4
 b. ¿Cuál de las variables tiene mayor variabilidad? ¿Cuál tiene menor variabilidad Explique, ¿cuáles estadísticas son relevantes para ello? y ¿por qué? 	4
 b) Utilizando la Técnica de Análisis Multifactor, obtener cuál debería ser el ranking de cada uno de los empleados para poder definir el reparto de los incentivos. 	5
c) Suponga que se quiere utilizar los datos proporcionados y una regresión lineal par predecir cuáles serían las ventas generadas por 3 empleados nuevos con los siguien valores:	
2 Ejercicio 2	6
a) ¿Qué tipo de variable se está midiendo? ¿Discreta o continua? Explique.	6
b) Haga un análisis exploratorio de estos datos.	7
 a. Realice un histograma con al menos 2 reglas para definir el número de clases utilizar regla empírica). 	(No 7
 b. Realice un diagrama de caja y bigotes. Analice el comportamiento de los datos ¿Existen datos atípicos? ¿Qué se debería hacer al respecto? 	s. 8
c) Estime, con una confianza de 94%, ¿cuál sería la resistencia promedio de los envases?	8
d) Antes del estudio se suponía que la resistencia promedio era de 25kg. Dada la evidencia de los datos, ¿tal supuesto es correcto? ¿Qué tipo de prueba estadístic se debe realizar? Planteé las hipótesis correspondientes y concluya adecuadamente.	
e) Con los datos anteriores estime, con una confianza del 98%, ¿cuál es la desviación estándar poblacional (del proceso)?	9
3Ejercicio 3	9
a) ¿Las muestras son dependientes o independientes? Explique.	
Las muestras son independiente, ya que cada muestra tanto hombres como muje se han hecho de forma separada y no tiene un emparejamiento directo entre las o observaciones, en cuanto a su correlación tiene un valor de 0.374	
 b) ¿La temperatura promedio más confortable es igual para hombre que para mujeres? ¿Qué tipo de prueba estadística se debe realizar? Planteé las hipótesis correspondientes y concluya adecuadamente. 	; 11
 c) ¿Los datos poseen la misma variabilidad? ¿Qué tipo de prueba estadística se debe realizar? Planteé las hipótesis correspondientes y concluya adecuadamente 	e. 11
4Ejercicio 4	11
a) ¿Las muestras son dependientes o independientes? Explique.	12
b) ¿Qué tipo de prueba estadística se debe realizar? Planteé las hipótesis	

correspondientes y concluya adecuadamente.	12
c) ¿Recomienda la adopción del nuevo método? Argumente su respuesta	12

1.- Ejercicio 1

Una pequeña empresa de manufactura estableció un sistema de incentivos para sus empleados basado en diferentes variables tanto de desempeño como de costo para la empresa. La empresa desea conocer cuál sería el ranking de los empleados tomando en cuenta todas las variables. A continuación, se presenta una tabla con los resultados obtenidos por cada empleado en cada uno de los rubros y si "más es mejor" o "menos es mejor"

a) Haga un análisis exploratorio de estos datos:

a. Calcular e interpretar estadísticas descriptivas de los datos: media, mediana, moda, desviación estándar, coeficiente de variación.

Estadísticas

Error
estándar
do la

Variable	Ν	N*	Media	media	Desv.Est.	Varianza	Mínimo	Q1
Salario	10	0	4812.5	58.0	183.5	33656.1	4550.0	4658.3
Costo de Capacitación	10	0	401.2	17.7	56.0	3140.4	330.0	353.0
Producción Generada	10	0	9831.6	62.5	197.8	39123.6	9500.0	9672.5
Satisfacción del Cliente Intern	10	0	7.500	0.500	1.581	2.500	5.000	6.000
Ventas Generadas	10	0	75449	1178	3725	13874148	69000	72500
Ausentismo	10	0	3.600	0.452	1.430	2.044	2.000	2.000

Variable	Mediana	Q3	Máximo
Salario	4799.5	4959.0	5100.0
Costo de Capacitación	387.0	455.0	499.0
Producción Generada	9793.0	10013.3	10100.0
Satisfacción del Cliente Intern	7.500	9.000	10.000
Ventas Generadas	75750	78829	80014
Ausentismo	3.500	5.000	6.000

b. ¿Cuál de las variables tiene mayor variabilidad? ¿Cuál tiene menor variabilidad? Explique, ¿cuáles estadísticas son relevantes para ello? y ¿por qué?

Estadísticas

			es	Error tándar de la				
Variable	Ν	N*	Media	media	Desv.Est.	Varianza	CoefVar	Mínimo
Salario	10	0	4812.5	58.0	183.5	33656.1	3.81	4550.0
Costo de Capacitación	10	0	401.2	17.7	56.0	3140.4	13.97	330.0
Producción Generada	10	0	9831.6	62.5	197.8	39123.6	2.01	9500.0
Satisfacción del Cliente Intern	10	0	7.500	0.500	1.581	2.500	21.08	5.000
Ventas Generadas	10	0	75449	1178	3725	13874148	4.94	69000
Ausentismo	10	0	3.600	0.452	1.430	2.044	39.72	2.000
Variable		Q1	Mediana	Q	3 Máximo			
Salario	465	58.3	4799.5	4959.0	5100.0			
Costo de Capacitación	35	53.0	387.0	455.0	499.0			
Producción Generada	967	72.5	9793.0	10013.3	3 10100.0			
Satisfacción del Cliente Intern	6.	000	7.500	9.000	10.000			
Ventas Generadas	72	500	75750	78829	80014			
Ausentismo	2.	000	3.500	5.000	6.000			

El coeficiente de variación **CoefVar**, es la estadística que es relevante para contestar esta pregunta, esta te permite comparar la variabilidad entre diferentes variables que contengan distintas unidades o escalas.

La variable que cuenta con un coeficiente de variación más alto (por lo que es la que contiene más datos dispersos de su media) es el **Ausentismo**.

La variabi que cuenta con el coeficiente de variación menor es: Produccion Generadas.

b) Utilizando la Técnica de Análisis Multifactor, obtener cuál debería ser el ranking de cada uno de los empleados para poder definir el reparto de los incentivos.

		•				
	Menos	Menos	Más	Más	Más	Menos
	Calada	Costo de	Producci	ión del	Ventas	Ausentis
	Salario	Capacitac	ón	Cliente	Generada	mo
Feederd 4	0.00404040	ión	Generada	Interna	S	0.4
Empleado 1	0.98484848	0.93220339	0.99019802	0.7	0.00700007	0.4
Empleado 2	0.89215686	0.66132265	0.97029703	0.8		0.33333333
Empleado 3	0.05700040			0.6		0.5
Empleado 4	0.95769312	0.70212766	0.99	0.9		0.66666667
Empleado 5	0.93853135	0.86842105		0.7		1
Empleado 6	0.92254663		0.95841584	0.6		0.4
Empleado 7	0.90277778	1		0.8		0.5
Empleado 8	0.97409548		0.95544554	0.5		1
Empleado 9	0.96829113		1	0.9		1
Empleado 10		0.83756345	0.9950495	1		
suma	9.46686676	8.36490129	9.73425743	7.5	9.42942485	6.46666667
	Menos	Menos	Más	Más	Más	Menos
		Costo de		ión del	ventas	Ausentis
	Salario	Capacitac		Cliente	Generada	mo
Familia and and	0.40400400	ión	Generada	Interna	\$ 0.400005404	0.00405507
Empleado 1	0.10403109					
Empleado 2	0.09423993					
Empleado 3	0.10563157					
Empleado 4	0.10116263					
Empleado 5	0.09913854					
Empleado 6	0.09745005					
Empleado 7	0.09536183					
Empleado 8	0.10289524					
Empleado 9	0.10228211					
Empleado 10	0.09780701					
suma	1	1	. 1		l 1	. 1
		Costo de		ión del	Ventas	Ausentis
	Salario	Capacitac	ón	Cliente	Generada	mo
	0.00	ión	Generada	Interna	8	
Importancia	0.06	0.03	0.16	0.25	0.40	0.10
	Menos	Menos	Más	Más	Más	Menos
			Producci	ión del	Ventas	Ausentis
	Salario	Capacitac	ón	Cliente	Generada	mo
	0.0000110=		Generada	Interna	\$	
Empleado 1	0.00624187	0.00334327	0.01627568	0.02333333	0.0424204	0.00618557
Empleado 2	0.0056544	0.00237178	0.01594857	0.02666667	0.03976217	0.00515464
Empleado 3	0.00633789	0.00263004	0.01546035	0.02	0.0365812	0.00773196
Empleado 4	0.00606976	0.00251812	0.01627243	0.03	0.03764152	0.01030928
Empleado 5	0.00594831	0.00311452	0.0158672	0.02333333		0.01546392
Empleado 6	0.005847	0.00319869	0.01575329	0.02		0.00618557
Empleado 7	0.00572171	0.00358641	0.01592579	0.02666667	0.04117134	0.00773196
Empleado 8	0.00617371	0.00338148	0.01570446	0.01666667	0.04161774	0.01546392
Empleado 9	0.00613693	0.00285185	0.0164368	0.03	0.03870184	0.01546392
Empleado 10	0.00586842	0.00300385	0.01635543	0.03333333	0.03923201	0.01030928

V	Salario •	Costo de Capacitación	Producción Generada	Satisfacción del Cliente Interna	Ventas Generadas	Ausentismo	Promedio 🔎
Empleado 9	0.0061369	0.0028518	0.0164368	0.03	0.0387018	0.0154639	0.0182652
Empleado 10	0.0058684	0.0030038	0.0163554	0.0333333	0.039232	0.0103093	0.0180171
Empleado 5	0.0059483	0.0031145	0.0158672	0.0233333	0.0405574	0.0154639	0.0173808
Empleado 4	0.0060698	0.0025181	0.0162724	0.03	0.0376415	0.0103093	0.0171352
Empleado 7	0.0057217	0.0035864	0.0159258	0.0266667	0.0411713	0.007732	0.0168006
Empleado 8	0.0061737	0.0033815	0.0157045	0.0166667	0.0416177	0.0154639	0.0165013
Empleado 1	0.0062419	0.0033433	0.0162757	0.0233333	0.0424204	0.0061856	0.0163
Empleado 2	0.0056544	0.0023718	0.0159486	0.0266667	0.0397622	0.0051546	0.0159264
Empleado 6	0.005847	0.0031987	0.0157533	0.02	0.0423144	0.0061856	0.0155498
Empleado 3	0.0063379	0.00263	0.0154604	0.02	0.0365812	0.007732	0.0147902

c) Suponga que se quiere utilizar los datos proporcionados y una regresión lineal para predecir cuáles serían las ventas generadas por 3 empleados nuevos con los siguientes valores:

Empleados Nuevos	Salario	rio Costo de Producción Satisfacción del Capacitación Generada Cliente Interna		Salario		Ventas Generadas	Ausentismo
Empleado 11	4700	420	9800	8	?	3	
Empleado 12	4900	450	9600	7	?	5	
Empleado 13	4850	380	10000	8	?	4	

Empleados Nuevos	Salario	Costo de Capacitación			Ventas Generadas	Ausentismo
Empleado 11	4700	420	9800	8		3
Empleado 12	4900	450	9600	7		5
Empleado 13	4850	380	10000	8		4
	Menos	Menos	Más	Más	Más	Menos
Empleados Nuevos	Salario	Costo de Capacitación	Producción Generada	Satisfacción del Cliente Interna	Ventas Generadas	Ausentismo
Empleado 11	1	1	0.98	1		1
Empleado 12	0.959183673	0.933333333	0.96	0.875		0.6
Empleado 13	0.969072165	1.105263158	1.105263158 1			0.75
suma	2.92825584	3.03859649	2.94	2.875		2.35
	Menos	Menos	Más	Más	Más	Menos
Empleados N	Salario			Satisfacción		
Empleado 11	0.34150022	0.32909931	0.33333333	0.34782609	0.46017004	0.42553191
Empleado 12	0.32756143	0.30715935	0.32653061	0.30434783	0.46662243	0.25531915
Empleado 13	0.33093835	0.36374134	0.34013605	0.34782609	0.49316664	0.31914894
suma	1	1	1	1	1.41995911	1

Lo intente en Excel profe, tengo unas dudas jaja

		Salario	Costo de	Capacita	ción	Producción	Generada	\
	0	4700			420		9800	
	1	4900			450		9600	
	2	4850			380		10000	
		Satisfac	ción del (Cliente I	nterna	Ausentism	no Ventas	Generadas
	0				8		3 71	178.649796
	1				7		5 72	2703.543875
	2				8		4 78	3412.096115

Python

2.- Ejercicio 2

En la elaboración de envases de plástico es necesario garantizar que cierto tipo de botella en posición vertical tenga una resistencia mínima de 20kg de fuerza. Para garantizar esto,

se aplica fuerza a la botella hasta que ésta cede, y el equipo registra la resistencia que alcanzó la botella. Se obtuvieron los siguientes datos de la resistencia máxima alcanzada de cada botella mediante pruebas destructivas

28.3	26.8	26.6	26.5	28.1	24.8	27.4	26.2	29.4	28.6	24.9	25.2	30.4	27.7	27.0	26.1	28.1
26.9	28.0	27.6	25.6	29.5	27.6	27.3	26.2	27.7	27.2	25.9	26.5	28.3	26.5	29.1	23.7	29.7
26.8	29.5	28.4	26.3	28.1	28.7	27.0	25.5	26.9	27.2	27.6	25.5	28.3	27.4	28.8	25.0	25.3
27.7	25.2	28.6	27.9	28.7												

a) ¿Qué tipo de variable se está midiendo? ¿Discreta o continua? Explique.

Son variables **continuas**, ya que puede tomar cualquier valor dentro de un intervalo específico, entre cada par de valores, siempre puede existir otro valor intermedio.

b) Haga un análisis exploratorio de estos datos.

Estadísticas

						Error tándar						
					es	de la						
Variable	Ν	N*	Me	dia		media	Desv.Est	. Va	rianza	CoefVar	Mínimo	Q1
Resistencia Máxima	56	0	27.	246		0.191	1.430)	2.046	5.25	23.700	26.225
Variable	Μe	edia	na		Q3	Máxim	no Asime	tría				
Resistencia Máxima		27.3	350	28.3	300	30.40	00 -	0.15				

a. Realice un histograma con al menos 2 reglas para definir el número de clases (No utilizar regla empírica).

Regla de Sturges = 6.80735492 Regla de Scott = 1.30446407

b. Realice un diagrama de caja y bigotes. Analice el comportamiento de los datos. ¿Existen datos atípicos? ¿Qué se debería hacer al respecto?

No se presentan datos atípicos, sin embargo si se presentaran dependería del contexto y se decidiría si se eliminan o se conservan para el análisis.

c) Estime, con una confianza de 94%, ¿cuál sería la resistencia promedio de los envases?

Estadísticas descriptivas

Error estándar de la <u>N Media Desv.Est.</u> media IC de 94% para μ 56 27.246 1.430 0.191 (26.879, 27.614)

μ: media de población de Resistencia Máxima

La resistencia promedio de los envases seria de 27.246

d) Antes del estudio se suponía que la resistencia promedio era de 25kg. Dada la evidencia de los datos, ¿tal supuesto es correcto? ¿Qué tipo de prueba estadística se debe realizar? Planteé las hipótesis correspondientes y concluya adecuadamente.

Dado que el valor P es < 0.05 esto significa que tenemos la suficiente evidencia para rechazar la hipótesis nula, por lo que se rechaza la suposición de que la resistencia promedio es 25 kg.

Prueba

Hipótesis nula H_0 : $\mu = 25$ Hipótesis alterna H_1 : $\mu \neq 25$ Valor T Valor p

11.75 0.000

e) Con los datos anteriores estime, con una confianza del 98%, ¿cuál es la desviación estándar poblacional (del proceso)?

Estadísticas descriptivas

Error estándar de la

N Media Desv.Est. media IC de 98% para μ 56 27.246 1.430 0.191 (26.788, 27.704)

μ: media de población de Resistencia Máxima

Con un 98% de confianza, podemos ver que la variable media se encuentra entre 26.788 y 27.704.

3.-Ejercicio 3

En un laboratorio bajo condiciones controladas, se evaluó, para 10 hombres y 10 mujeres, la temperatura que cada persona encontró más confortable. Los resultados en grados Fahrenheit fueron los siguientes:

Mujer	75	77	78	79	77	73	78	79	78	80
Hombre	74	72	77	76	76	73	75	73	74	75

Estadísticas

Error estándar de la

Variable	Ν	N* Media	media	Desv.Est.	Varianza	CoefVar	Mínimo	Q1	Mediana
Mujer	10	0 77.400	0.653	2.066	4.267	2.67	73.000	76.500	78.000
Hombre	10	0 74.500	0.500	1.581	2.500	2.12	72.000	73.000	74.500

Variable	Q3	Maximo	Asimetria
Mujer	79.000	80.000	-1.15
Hombre	76.000	77.000	-0.00

a) ¿Las muestras son dependientes o independientes? Explique.

Las muestras son independiente, ya que cada muestra tanto hombres como mujeres se han hecho de forma separada y no tiene un emparejamiento directo entre las dos observaciones, en cuanto a su correlación tiene un valor de 0.374

Correlaciones

Mujer Hombre 0.374

Esto nos quiere decir que existe una correlación débil, ya que es un número muy bajo.

b) ¿La temperatura promedio más confortable es igual para hombre que para mujeres? ¿Qué tipo de prueba estadística se debe realizar? Planteé las hipótesis correspondientes y concluya adecuadamente.

Para este tipo de problemas, podemos utilizar la prueba t de dos muestras, con el objetivo de hacer la hipótesis nula de si las diferencias de medias son iguales a 0.

Estadísticas descriptivas

				Error
				estándar
				de la
Muestra	Ν	Media	Desv.Est.	media
Mujer	10	77.40	2.07	0.65
Hombre	10	74.50	1.58	0.50

Prueba

Hipótesis nula H_0 : $\mu_1 - \mu_2 = 0$ Hipótesis alterna H_1 : $\mu_1 - \mu_2 \neq 0$

Valor T GL Valor p 3.53 16 0.003 El valor es **p<0.05** por lo que se rechaza la hipótesis nula y nos sugiere que si hay una diferencia significativa.

c) ¿Los datos poseen la misma variabilidad? ¿Qué tipo de prueba estadística se debe realizar? Planteé las hipótesis correspondientes y concluya adecuadamente.

Para este ejercicio se debe hacer pruebas de igualdad de varianza, la hipótesis nula si las dos variables son iguales.

Prueba

Hipótesis nula $H_0: \sigma_1^2 / \sigma_2^2 = 1$ Hipótesis alterna $H_1: \sigma_1^2 / \sigma_2^2 \neq 1$ Nivel de significancia $\alpha = 0.05$ Estadística Método de prueba GL1 GL2 Valor p

 Metodo de prueba GL1 GL2 Valor p

 Bonett
 0.39
 1
 0.530

 Levene
 0.03
 1
 18
 0.860

Dado que las dos pruebas tanto Bonett y Levene tienen un valor P > 0.05 se puede concluir que no hay suficiente evidencia para decir que las varianzas son diferentes.

4.-Ejercicio 4

La prueba actual de un solo disco se tarda 2 minutos. Se supone un nuevo método de prueba que consiste en medir solamente los radios 24 y 57, donde casi es seguro que estará el valor mínimo buscado. Si el método nuevo resulta igual de efectivo que el método actual se podrá reducir en 60% el tiempo de prueba. Se plantea un experimento donde se mide la densidad mínima de metal en 18 discos usando tanto el método actual como el método nuevo. Los resultados están ordenados horizontalmente por disco. Así, 1.88 y 1.87 es el resultado para el primer disco con ambos métodos.

N	/létodo	1.88	1.84	1.83	1.90	2.19	1.89	2.27	2.03	1.96	1.98	2.00	1.92	1.83	1.94	1.94	1.95	1.93	2.01
A	ctual																		
N	/létodo	1.87	1.90	1.85	1.88	2.18	1.87	2.23	1.97	2.00	1.98	1.99	1.89	1.78	1.92	2.02	2.00	1.95	2.05
N	luevo																		

a) ¿Las muestras son dependientes o independientes? Explique.

Los métodos no se relacionan directamente entre sí, lo que quiere decir que uno no depende del otro para funcionar o producir sus resultados, en cuanto a las **mediciones** cada par son **dependientes** del disco que se mida.

b) ¿Qué tipo de prueba estadística se debe realizar? Planteé las hipótesis correspondientes y concluya adecuadamente.

Para este problema, podemos realizar una **prueba t** de dos muestras, esta prueba compara las **medias** de ambos métodos para determinar si hay alguna diferencia significativa entre ellas.

Estadísticas descriptivas

				Error
				estándar
				de la
Muestra	Ν	Media	Desv.Est.	media
Método Actual	18	1.961	0.115	0.027
Método Nuevo	18	1.963	0.112	0.026

Prueba

Hipótesis nula H_0 : $\mu_1 - \mu_2 = 0$ Hipótesis alterna H_1 : $\mu_1 - \mu_2 \neq 0$ Valor T GL Valor p -0.06 33 0.954

Aquí podemos observar un valor p > 0.05, por lo que no se rechaza la hipótesis nula, y podemos concluir que las medias no difieren significativamente.

c) ¿Recomienda la adopción del nuevo método? Argumente su respuesta

Si se recomienda cambiar ya que el texto nos dice "Si el método nuevo resulta igual de efectivo que el método actual se podrá reducir en 60% el tiempo de prueba", ya que los dos métodos son igual de efectivos si se recomienda cambiarlo, ya que aumentaría el 60% el tiempo de prueba.