

[1]: import pandas as pd import seaborn as sns

Рубежный контроль №1

Обухов Антон Александрович ИУ5-65Б Вариант 13

Тема: Технологии разведочного анализа и обработки данных.

Варианты заданий.

```
Номер варианта - 13
Номер задачи - 2
Номер набора данных, указанного в задаче - 5
```

Для студентов группы ИУ5-65Б - для набора данных построить "парные диаграммы".

Задача №2.

Для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака.

Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали?

Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему?

Выполнение:

[2]: df = pd.read_csv('./Admission_Predict.csv', sep = ',')

[3]: df.head()

.1.	01.11000()									
3]:		Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
	0	1	337	118	4	4.5	4.5	9.65	1	0.92
	1	2	324	107	4	4.0	4.5	8.87	1	0.76
	2	3	316	104	3	3.0	3.5	8.00	1	0.72
	3	4	322	110	3	3.5	2.5	8.67	1	0.80
	4	5	314	103	2	2.0	3.0	8.21	0	0.65

```
[4]: df.dtypes
                              int64
int64
int64
int64
float64
[4]: Serial No.
      GRE Score
TOEFL Score
      University Rating
      SOP
      LOR
                               float64
      CGPA
                              float64
int64
      Research
      Chance of Admit
dtype: object
                              float64
[5]: df.isnull().sum()
[5]: Serial No.
       GRE Score
      TOEFL Score 0
University Rating 0
      SOP
LOR
                               0
      CGPA
      Research
      Chance of Admit
dtype: int64
                              0
      Так как у нет пропусков, запустим в холостую.
[6]: df.shape
[6]: (400, 9)
[7]: df = df.dropna(subset=['TOEFL Score', 'GRE Score'])
[8]: df.shape
[8]: (400, 9)
[9]: df.isnull().sum()
[9]: Serial No.
      GRE Score
      TOEFL Score 0
University Rating 0
      SOP
LOR
CGPA
                              0
       Research
      Chance of Admit
dtype: int64
      Как мы видим, пропусков не появилось :)
```

Как мы видим, пропусков не появилось :)

Далее, если мы используем признаки GRE Score, TOEFL Score, University Rating, SOP, LOR, CGPA, Research построить модели, рассчитывающие шанс допуска к обучению в аспирантуре.

```
[10]: df = df.drop(columns=['Serial No.','GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'CGPA', 'Research'])
```

[11]: df.isnull().sum()

[11]: LOR Chance of Admit dtype: int64

[12]: sns.pairplot(df)

[12]: <seaborn.axisgrid.PairGrid at 0x1a7159374d0>

