HW6 solution

Problem 1 (Analytical Problem, Optional). 3.8

Problem 2 (Analytical Problem). In class, we argue that when t is small, we have $e^{\left(\mu-\frac{\sigma^2}{2}\right)t+\sigma W_t} \approx 1+\mu t+\sigma W_t$. Show that the linear approximation of $\mathbb{E}[S_t|S_0]$ and $Var(S_t|S_0)$ would match the conditional expectation and variance of the approximation $1+\mu t+\sigma W_t$.

Problem 3 (Analytical Problem). Verify the Black-Scholes formula for the put option by evaluating $\widetilde{\mathbb{E}}\left[e^{-r(T-t)}\max(K-S_T,0)|S_t\right]$ by integral.

Problem 4 (Analytical Problem). Show that Vega of the call option is $S_0N'(d_+)\sqrt{T-t}$.

Problem 5 (Coding Problem). Denote X_t and $V(t, S_t)$ the portfolio and call option price at time t. Numerically verify that we can let $X_T = V_T$ through Delta hedging. Suppose the expiration date T = 1, strike price K = 100, interest rate r = 0, initial stock price $S_0 = 100$, and the stock price follows the geometric Brownian motion $S_t = S_0 e^{\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t}$, whereas W_t is the Brownian motion, $\mu = 0.08$ and $\sigma = 0.16$. By Delta hedging, if we let $\Delta(t, x) = \frac{\partial}{\partial x}V(t, x)$, where V(t, x) is the Black-Scholes formula and then $dX_t = \Delta(t, S_t)dS_t$, then we have $X_T = V_T$. To verify, generate M sequence of stock prices. For each sequence, do the simulation as follows:

- Generate S_0, \ldots, S_n for M (e.g., M=1000) times for a large choice of n (e.g., n = 2520). For each sequence,
 - Simulate the geometric Brownian motion $S_i = S_0 e^{\left(\mu \frac{\sigma^2}{2}\right)t_i + \sigma W_i}$
 - Correspondingly, generate the portfolio by $X_{i+1} = X_i + \Delta(t_i, S_i)(S_{i+1} S_i)$
 - At the expiration date T, verify that $X_T \approx V_T$