Likelihood Hobbs 2015

DRME

December 26, 2023

Probability in Biology: Hobbs 4.1

Example: Tadpole observation in a pond.

Example: Tadpole Observation

Scenario:

- Collecting data on the number of tadpoles per volume of water in a pond.
- Observed 14 tadpoles in a 1 L sample.
- ► TRUE average number of tadpoles per liter of water in the pond is 23.

First Observation:

- ▶ It is Poisson
- Probability of observing 14 tadpoles: $P(y_1 = 14|\lambda = 23) = Poisson(y_1 = 14|\lambda = 23) = 0.0136$.

Second Observation:

Probability of observing 34 tadpoles:

$$P(y_2 = 34|\lambda = 23) = Poisson(y_2 = 34|\lambda = 23) = 0.0069.$$

Joint Probability:

Assuming independence: Joint probability = $0.0136 \times 0.0069 = 9.38 \times 10^{-5}$.

Independence of Observations

- Independence assumption: Knowledge of one observation tells us nothing about the other.
- Joint probability calculation extended to any number of independent observations.

Remarks

- Probability calculations provide insights into the likelihood of observations given a fixed average.
- Independence assumption crucial for joint probability calculations.
- ▶ The Poisson distribution to model catching probabilities.

Probability in Biology: Hobbs 4.2

- Investigating decomposition of leaf litter over time.
- ▶ Using a simple model of exponential decay: $\mu_t = e^{-kt}$.
- ▶ Data: y_t observed proportions, modeled with a beta distribution.
- ▶ Parameters: k (decay rate) and σ^2 (variance).

Beta Distribution for y_t

 \blacktriangleright Model the probability density of y_t with a beta distribution:

$$y_t|\mu_t, \sigma^2 \sim \text{beta}(\alpha_t, \beta_t)$$

▶ Moment matching for α_t and β_t :

$$\alpha_{t} = \mu_{t}^{2} - \mu_{t}^{3} - \mu_{t}\sigma^{2}$$
$$\beta_{t} = \mu_{t} - 2\mu_{t}^{2} + \mu_{t}^{3} - \sigma^{2} + \mu_{t}\sigma^{2}$$

Conditional on Decay Rate k and σ^2

- ► Conditional on known, fixed decay rate $k = 0.01 \, \mathrm{day}^{-1}$ and known, fixed $\sigma^2 = 6 \times 10^{-4}$:
- Calculate parameters for the beta distribution on day 30:

$$\alpha_{30} = 236.33$$
 $\beta_{30} = 82.68$

Probability Density Calculation

▶ Given $y_{30} = 0.7$, calculate the probability density:

$$f(y_{30}=0.7)=4.040$$

▶ Interpretation: The probability that 70% of the mass remains at time t = 30 is 4.040.

Remarks

- ► The beta distribution to model decay over time.
- Moment matching provides a method for estimating distribution parameters.

Introduction to Likelihood

- Likelihood measures the support provided by the observed data for different values of the parameter in a statistical model.
- ► The likelihood function is the foundation of maximum likelihood estimation (MLE).

Likelihood Function

- ▶ The likelihood function, denoted as $L(\theta; \mathbf{x})$, represents the probability of observing the given data \mathbf{x} for various parameter values θ in the model.
- ► The likelihood function is not a probability distribution but provides a basis for estimating parameters.

Likelihood Example: Coin Toss

- ► Consider a simple example: coin toss.
- Let θ be the probability of getting heads $(\theta \in [0,1])$.
- ▶ If we observe *k* heads in *n* tosses, the likelihood function is given by the binomial distribution:

$$L(\theta; k, n) = \binom{n}{k} \theta^{k} (1 - \theta)^{n-k}$$

Interpretation of Likelihood

- Likelihood is not a probability, but it measures the compatibility of the observed data with different parameter values.
- ► Larger likelihood values indicate a better fit of the model to the observed data.
- The goal is to find the parameter values that maximize the likelihood, known as maximum likelihood estimation (MLE).

Likelihood in MLE

- ► Maximum Likelihood Estimation (MLE) aims to find the parameter values that maximize the likelihood function.
- MLE is a common method for estimating parameters in statistical models.
- ▶ It provides point estimates that make the observed data most probable under the assumed model.

Likelihood Example: Population Growth

- Consider a simple population growth model: $N_t = N_0 \cdot e^{rt}$, where N_t is the population size at time t, N_0 is the initial population size, r is the growth rate, and e is the base of the natural logarithm.
- Likelihood function: $L(r|\mathbf{y})$, where \mathbf{y} is the observed population size over time.

Likelihood Example: Phylogenetic Trees

- ▶ In evolutionary biology, likelihood is extensively used in phylogenetic analysis.
- Given a phylogenetic tree and DNA sequence data, the likelihood of observing the given sequences under different substitution models is calculated.
- ► MLE finds the tree and model parameters that maximize the probability of the observed data.