Wybrane zagadnienia języków formalnych

Języki formalne i techniki translacji - Wykład 13

Maciek Gębala

14 stycznia 2020

Maciek Gehala

vbrane zagadnienia jezyków formalnych

Dwukierunkowe automaty skończone

Modyfikacja automatu skończonego

Wejście na taśmie na której możemy poruszać się w obie strony. (Akceptacja przez wyjście w prawo poza obszar danych w stanie akceptującym)

Jaką klasę języków rozpoznaje 2DFA (2NFA, 2NFA_€)?

Twierdzenie. Jeśli L jest akceptowany przez 2 DAS , to L jest językiem regularnym.

Dowód na tablicy.

-

Maciek Gębal

Wybrane zagadnienia języków formalnyc

Automaty skończone z wyjściem

Idea: Zamiast akceptacji/odrzucenia wypisujemy na wyjściu słowa nad określonym alfabetem (symbole pojawiają się w trakcie obliczeń).

Automaty Moore'a

Wyjście powiązane ze stanami - wyjście jest generowane przy wejściu do stanów.

Automaty Mealy'ego

Wyjście powiązane z przejściami - przejścia etykietowane symbolem wejściowy i wyjściowym.

Oba podejścia są równoważne. Stosuje się w projektowaniu układów elektronicznych (systemy wbudowane).

Przykład

Dodawanie jedynki do liczby zapisanej binarnie, czytanej od najmniej znaczącego bitu.

Maciek Gębala

Wybrane zagadnienia języków formalnyc

Automaty wielogłowicowe

Automat ma k głowic czytających wejście i wykonujących ruch lub stojące nad danym symbolem. Dodatkowe założenia:

- ruchy jedno lub dwukierunkowe;
- głowice nie widzą się wzajemnie lub wiedzą, że się spotkały.

Automaty wielogłowicowe są silniejsze niż jednogłowicowe.

Przykład 1

 a^nb^n może być rozpoznany przez dwugłowicowy jednokierunkowy automat skończony.

Przykład 2

Palindrom może być rozpoznany przez dwugłowicowy dwukierunkowy automat skończony.

Wybrane zagadnienia iezyków formalny

Notatki
Notatki
Notatki
Notatki

Twierdzenie Myhill-Nerode implikuje R(xz, yz).

Relacja prawostronnie niezmiennicza (względem składania słów)

Relacja równoważności R taka, że dla każdych $x,y,z\in \Sigma^*$ R(x,y)

Twierdzenie. Trzy następujące stwierdzenia są równoważne

- Sbiór L ⊆ Σ* jest akceptowany przez pewien automat skończony.
- ② L jest sumą teoriomnogościową pewnych klas abstrakcji pewnej prawostronnie niezmienniczej relacji o indeksie skończonym.
- Niech R_L będzie relacją równoważności zdefiniowaną następująco: R_L(x, y) wtedy i tylko wtedy, gdy $\forall_{z \in \Sigma^*} xz \in L \iff yz \in L$. Wtedy R_L jest relacją o indeksie skończonym.

Podstawowa własność dotycząca minimalizacji DFA.

Dwukierunkowe automaty ze stosem

Jaką klasę języków rozpoznaje 2*PDA*?

Twierdzenie. Istnieje 2*PDA* akceptujący język $\{ a^n b^n c^n : n \in \mathbf{N} \}$.

Wniosek. 2PDA rozpoznają więcej niż PDA.

Automaty z dwoma stosami

Twierdzenie. Automat z dwoma stosami jest równoważny jednotaśmowej maszynie Turinga.

Wniosek. Większa niż 2 liczba stosów nie powoduje zwiększenia mocy rozpoznawanych języków.

Notatki
Notain
Notatki
Notati
Notatki
Notatki
Notatki
Notatki