CS576 Multimedia System Design Assignment#1

Submission Date: 09/15/2017

Monika Devanga Ravi

USC ID - 3448881178

Theory Questions

- Q.1 A 5-minute video is recorded with 1080i resolution (1920x1080 pixels, interlaced) and 30 Hz frame rate. The color sub sampling scheme is 4:2:0, and each sample of Y, Cr, Cb is quantized with 8 bits.
 - What is the size (MB) of this video without compression? (2 points)

4:2:0 sub sampling on average=
$$(4 \times 8+8+8)/4 = 12$$
 bits per pixel

For 30Hz frame rate =
$$2,073,600 \times 30 \times 12 = 746,496,000 = 746.496$$
Mbits/sec

For 5 mins =
$$746,496,000 \times 5 \times 60 = 223,945,800,000/(8 * 1024 * 1024) = 26,696.4 \text{ MB}$$

• In order to save space, we re-quantize each chrominance (Cr, Cb) signals with only 6 bits per sample. What is the compression ratio needed to store this video in a USB flash drive with 256 MB storage (3 points)?

Pixels per frame = 1920 x 1080 = 2,073,600 pixels/frame

4:2:0 sub sampling scheme of 6 bits = $(4 \times 8 + 6 + 6)/4 = 44/4 = 11$ bits per pixel

For 30 Hz frame rate $2,073,600 \times 11 \times 30 = 684,288,000 \text{ bits/sec}$

For 5 mins = 684,288,000 x 5 x 60 = 205,286,400,000/8*1024*1024 bits = 24,472.04 MB

 $Compression\ ratio = uncompressed\ size\ /\ compressed\ size\ = 24,472.04\ MB/256\ MB$

Compression ratio needed is ~ 95.5

Q.2 Suppose we have a medical imaging that records brain activity and store as gray-scale images. The raw signal in a small region in a moment is given below:

-6.7	0.6	0.8	0.4	0.3	0.5	0.2	-5.7
-0.1	-6.6	0.6	0.3	0.2	0.1	-5.9	0.8
0	1.0	-6.5	0	-0.3	-5.5	0.4	0.5
-0.2	0.8	0.2	-7.0	-5.8	-1.0	0.2	0.6
0.1	0.6	0.3	-6.0	-6.9	-0.6	-0.3	0.1
0.3	0.5	-6.1	0.1	0.2	-6.9	0.2	0.3
0.2	-5.6	-0.1	0	-0.5	-0.1	-6.4	0.2
-6.2	0.7	0.2	0.3	-0.1	0.4	0.6	-6.3

Quantize this data by dividing the interval [-8, 8] into 64 uniformly distributed levels (place the level 0 up to -7.75, the level 1 up to -7.50, and so on. This should simplify your calculations)

• Write down the quantized region above. (5 points)

The entire data range is -8+8=16

There are 64 levels: with level 0: -8 to -7.75 and level 63: 7.75 to 8

The intervals thus correspond to

5	34	35	33	33	33	32	9
31	5	34	33	32	32	8	35
31	35	5	31	30	9	33	33
31	35	32	3	8	27	32	34
32	34	32	7	4	29	30	32
33	33	8	32	32	4	32	33
32	9	31	31	29	31	6	32
6	34	32	33	31	33	34	6

• Down-sample this quantized region to the size 4x4 using a specific sampling. Is there any better way to down-sample this region? (1+2 points)

Using Random/choosing alternate regions sampling

	_	_	
5	35	33	32
31	5	30	33
32	32	4	30
32	31	29	6

Better way of down-sampling this region is by applying some filters like gaussian filter

0	5	34	35	33	33	33	32	9	0
5	5	34	35	33	33	33	32	9	9
31	31	5	34	33	32	32	8	35	35
31	31	35	5	31	30	9	33	33	33
31	31	35	32	3	8	27	32	34	34
32	32	34	32	7	4	29	30	32	32
33	33	33	8	32	32	4	32	33	33
32	32	9	31	31	29	31	6	32	32
6	6	34	32	33	31	33	34	6	6
0	6	34	32	33	31	33	34	6	0

1	2	1	=
2	4	2	1/16
1	2	1	

15	30	32	33	33	31	25	18
23	23	27	31	31	26	23	26
30	26	23	23	24	23	27	32
32	32	24	16	15	23	30	33
33	32	25	16	15	22	32	32
33	27	23	24	23	21	25	31
25	23	26	30	29	25	22	24
16	25	31	32	32	31	25	16

Fill the edges with non-zero values then multiple the value with 3x3 gaussian filter Now down sampling this to 4×4 using average sampling will give better result

22.75	30.75	30.25	23
30	21.5	21.25	30.5
31.25	22	20.25	30
22.25	29.75	29.25	21.75

• What is the size (kB) of this quantized image, if its resolution is 400×400 ? (2 points) 400×400 % / (8 * 1024) = 117.18 kB

Q.3 Temporal aliasing can be observed when you attempt to record a rotating wheel with a video camera. In this problem, you will analyze such effects. Assume there is a car moving at 36 km/h and you record the car using a film, which records at 8 frames per second. The tires have a diameter of 0.4244 meters. Each tire has a white mark to gauge the speed of rotation.

• If you are watching this projected movie, what do you perceive the rate of tire rotation to be in rotations/sec? Explain your result (5 points)

Speed = 36km/h = 10m/s

Diameter = 0.4244m

Circumference = 3.14 * 0.4244 = 1.333m

Rate of rotation = 10 / 1.333 = 7.5 rotations / sec.

Nyquist sampling rate is = 2 * 7.5 = 15 fps

Film is shot at 8 frames per sec: 8 fps < 15 fps hence aliasing is seen

Degree to turn per frame is 7.5*360/8 = 337.5 (360 < 337.5 < 180)

At a speed covering 360 - 337.5 = 22.5

Hence a total turn of 22.5 * 8 / 360 = 0.5 rot/sec in the backward direction

Since there is aliasing the wheel will look rotate in backward direction.

• What is the highest speed of the car so that you perceive the rate of tire rotation correctly? (5 points)

8 fps is standard for digital video.

To perceive the rate of tire rotation correctly, the Nyquist sampling rate should be >=8/2 At this rate, distance covered per second is 4 * 1.333m = 5.33 m/s = 19.19 km/h