Prev

Machine Learning > Week 5 > Backpropagation Algorithm

Backpropagation Algorithm

"Backpropagation" is neural-network terminology for minimizing our cost function, just like what we were doing with gradient descent in logistic and linear regression. Our goal is to compute:

 $\min_{\Theta} J(\Theta)$

That is, we want to minimize our cost function J using an optimal set of parameters in theta. In this section we'll look at the equations we use to compute the partial derivative of $J(\Theta)$:

$$\frac{\partial}{\partial \Theta_{i,i}^{(l)}} J(\Theta)$$

To do so, we use the following algorithm:

Backpropagation algorithm

Using
$$\underline{y}^{(i)}$$
, compute $\underline{\delta}^{(L)} = \underline{a}^{(L)} - \underline{y}^{(i)}$ $\underline{\delta}^{(L)} = \underline{a}^{(L)} - \underline{b}^{(i)}$ $\underline{\delta}^{(L)} = \underline{a}^{(L)} + \underline$

Back propagation Algorithm

Given training set $\{(x^{(1)}, y^{(1)}) \cdots (x^{(m)}, y^{(m)})\}$

• Set $\Delta_{i,j}^{(l)}$:= 0 for all (I,i,j), (hence you end up having a matrix full of zeros)

For training example t =1 to m:

1. Set $a^{(1)} := x^{(t)}$

2. Perform forward propagation to compute $a^{(l)}$ for I=2,3,...,L

Gradient computation

Given one training example (x, y):

$$\Rightarrow z^{(3)} = \Theta^{(3)}a^{(3)}$$
 Layer 1 Layer 2 Layer 3 Layer 4
$$\Rightarrow a^{(3)} = g(z^{(3)}) \text{ (add } a_0^{(3)})$$

$$\Rightarrow z^{(4)} = \Theta^{(3)}a^{(3)}$$

$$\Rightarrow a^{(4)} = h_{\Theta}(x) = g(z^{(4)})$$

4. Compute $\delta^{(L-1)}, \delta^{(L-2)}, \dots, \delta^{(2)}$ using $\delta^{(l)} = ((\Theta^{(l)})^T \delta^{(l+1)}) \cdot *a^{(l)} \cdot *(1-a^{(l)})$

The delta values of layer I are calculated by multiplying the delta values in the next layer with the theta matrix of layer I. We then element-wise multiply that with a function called g', or g-prime, which is the derivative of the activation function g evaluated with the input values given by $z^{(l)}$.

The g-prime derivative terms can also be written out as:

$$g'(z^{(l)}) = a^{(l)} \cdot * (1 - a^{(l)})$$

5. $\Delta_{i,j}^{(l)} := \Delta_{i,j}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$ or with vectorization, $\Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)} (a^{(l)})^T$

Hence we update our new Δ matrix.

$$\bullet \ \ D_{i,j}^{(l)} := \frac{1}{m} \left(\Delta_{i,j}^{(l)} + \lambda \Theta_{i,j}^{(l)} \right) \!\! \text{, if j} \neq \!\! 0.$$

•
$$D_{i,j}^{(l)}:=rac{1}{m}\Delta_{i,j}^{(l)}$$
 If j=0

The capital-delta matrix D is used as an "accumulator" to add up our values as we go along and eventually compute our partial derivative. Thus we get $\frac{\partial}{\partial \Theta_{ii}^{(l)}} J(\Theta) = D_{ij}^{(l)}$

Mark as completed