Predicting Offline Conversions

— Eugenie Chen

Agenda

• Background

Data

Exploratory Analysis

Modeling and Evaluation

Next Steps

Background

- Trends seen in online media
 - Demand for performance dependent pricing model
 - Accurate response prediction is key to maximize efficiency and revenue
- Challenges and opportunities for offline media
 - Lack of attribution solutions for out-of-home media
 - RTB (real-time bidding) nearly impossible for programmatic out-of-home buyers
 - Opportunity to optimize transaction models as well as to inform media planning

Data

- Age
- Gender
- Education
- Employment

- Venue type
- Date & time
- Targeting strategy
- Screen location

User

features

Content

features

- creative_id
- Formats
 - video vs static

Context

features

Feedback

features

→ Not available today - for next steps

SQL – pulling distance feature

```
--Step 1: add geometry columns to tables
alter table exposure table
add column geom geometry(point, 4326);
update exposure table
set geom = ST SetSRID(ST MakePoint(longitude::float,
latitude::float),4326);
alter table conversion table
add column geom geometry(point, 4326);
update conversion table
set geom = ST SetSRID(ST MakePoint(longitude::float,
latitude::float),4326);
--Step 2: calculate distance between point of exposure
and nearest store location at time of exposure
```

```
a.user id,
          a.latitude as exp lon,
          a.longitude as exp lat,
          b.store id,
          b.latitude as store lat,
          b.longitude as store lon,
          ST Distance(a.geom, b.geom) as dist
INTO exp store dist
FROM
    exposure table a,
          conversion table b
 ORDER BY
    a.geom <->
   b.geom;
SELECT
          a.*
FROM exp store_dist a
JOIN
          (SELECT
                    DISTINCT user id,
                    min(dist::float) AS dist
          FROM exp store dist
GROUP BY 1) b
ON a.user id = b.user id
AND a.dist = b.dist;
```

SELECT

Exploratory Analysis – collinearity

Exploratory Analysis – marital status vs. conversion

Exploratory Analysis – education vs. conversion

Exploratory Analysis – age & gender vs. conversion

Exploratory Analysis – distance

df_raw2['distance']

np.log(df_raw2['distance'])

Exploratory Analysis – distance

Logistic Regression vs. Random Forest

Logistic Regression

• Train score*: 0.64605

• Test score: 0.59888

Random Forest

• Train score: 0.706094

• Test score: 0.608656

• Average AUC: 0.60188

	precision	recall	f1-score	support
converted not-converted	0.97	0.61 0.59	0.75	1794 70
avg / total	0.94	0.61	0.85	1864

	precision	recall	f1-score	support
converted not-converted	0.97	0.79 0.43	0.87	1794 70
avg / total	0.94	0.78	0.84	1864

^{*}roc_auc_score rounded up to the nearest 5 decimal places.

Model Evaluation Summary

	feature_set	penalty	scoring	train score	test score
gs1	1	L1	accuracy	0.50000	0.50000
gs2	1	L1	recall	0.64671	0.58654
gs3	1	L2	recall	0.64564	0.57504
gs4	2	L1	recall	0.64635	0.59146
gs5	3	L1	recall	0.64605	0.59888
gs6	3	L1	roc_auc	0.50000	0.50000
gs7	3	L1	precision	0.64539	0.59090
gs8	4	L1	recall	0.64713	0.58654
gs9	4	L1	precision	0.64713	0.58654
gs10	5	L1	recall	0.64713	0.58654
gs11	5	L2	recall	0.65218	0.57114
gs12	6	L1	recall	0.63097	0.56881
gs13	6	L1	precision	0.63138	0.56222
gs14	6	L2	recall	0.63017	0.56417
gs15	7	L1	recall	0.62976	0.56334
gs16	8	L1	recall	0.63127	0.56473
clf_rf2	3	NA	recall	0.74897	0.58761
gs17	10	L1	recall	0.646851	0.587100
gs18	11	L1	recall	0.650695	0.597205
gs19	12	L1	recall	0.645776	0.598599
clf_rf4	3	NA	recall	0.706094	0.608656

Model Evaluation – cont.

Model Evaluation – cont.

Feature Evaluation

Logistic Regression

Random Forest

Features	Coefficients	Features	Importance Score
relationship_Married	-0.461641	age	0.114709
job_Retired	-0.292666	distance	0.114333
dow_6	-0.217327	relationship_Married	0.069006
education_Finished High School	0.217294	office	0.065727
relationship_Separated/Divorced	-0.209348	dow_6	0.05288
education_Finished College	0.19846	billboard	0.049157
dow_0	-0.173468	education_Some College	0.039842
dow_1	0.164452	dow_0	0.03294
education_Post Graduate Study	0.161412	education_Finished College	0.032064
office	0.160516	relationship_In a relationship	0.0257

Next steps

- Explore other features, including conjunction features
- Refine model using data from other campaigns
- Add feedback features and apply Bayesian logistic regression to all campaign data
- Work with engineering to deploy the model to production