FONAMENTS DE COMPUTADORS Pràctica 8

Assemblador: Anàlisi de programes i codificació d'instruccions

Durant la realització de la pràctica al **laboratori** has de respondre les preguntes d'un **examen** de poliformaT. És convenient que visualitzes i contestes a l'examen al mateix temps que avances el treball indicat en aquest butlletí de pràctiques. Si esteu realitzant la pràctica en parella, teniu dues opcions:

- 1. Utilitzeu dos navegadors diferents, per exemple Firefox i IE, i així podreu obrir dues sessions diferents de poliformaT i fer el dos exàmens al mateix temps.
- 2. Fer primer un examen i després l'altre, encara que és possible que no vos done temps a acabar el segon.

Es important que resolgues els exercicis de la pràctica abans d'anar al laboratori. Les preguntes de l'examen estan molt relacionades amb aquests exercicis, i no tindràs temps suficient per a fer-ho tot en el laboratori.

INTRODUCCIÓ I OBJECTIUS

En aquesta última pràctica es torna a fer ús del simulador PCSpim per a l'execució de programes en assemblador. Els objectius perseguits són els següents:

- Analitzar programes amb estructura iterativa, que inclouen instruccions de salt condicional i incondicional.
- Estudiar programes que treballen amb cadenes de caràcters.
- Estudiar programes que realitzen càlculs matemàtics iteratius senzills, amb nombres enters emmagatzemats en memòria.
- Analitzar la codificació d'instruccions de diferents tipus.

TRUNCAMENT DE CADENA DE CARÀCTERS

El codi que es va a emprar és el següent. Escriviu-ho en un arxiu i anomeneu-ho "practica_mips_1.s", carregueu-ho en el PCSPIM i comproveu que es carrega correctament.

```
.data 0x10000000
                                  bucle:
ini: .asciiz "Hola"
                                       beq $9,$0,fi
     .word 3
sel:
                                        lb $12,0($8)
res: .space 4
                                        sb $12,0($10)
tot: .word -1
                                        addi $8,$8,1
                                        addi $9,$9,-1
.text 0x00400000
                                        addi $10,$10,1
.globl __start
                                        addi $11,$11,1
start:
                                        j bucle
     la $8, ini
                                  fi:
     la $9, sel
                                        la $12, tot
     lw $9,0($9)
                                        sw $11,0($12)
     la $10, res
                                  .end
     add $11,$0,$0
```

Codi 1. Truncament d'una cadena de caràcters ASCII (arxiu "practica_mips_1.s")

Pregunta 1. Indiqueu el contingut del segment de dades abans d'iniciar-se l'execució, tenint en compte que les dades s'emmagatzemen en format "little endian". El contingut ha de posar-se en hexadecimal per cada byte de memòria.

31	•••	24	23	 16	15	 8	7	 0	Adreça

Pregunta 2. Indiqueu el contingut del segment de dades una vegada finalitzada l'execució, tenint en compte que les dades s'emmagatzemen en format "little endian". El contingut ha de posar-se en hexadecimal per cada byte de memòria.

31	 24	23	 16	15	 8	7	 0	Adreça

Pregunta 3. Determineu el contingut dels següents registres quan s'haja executat per primera vegada la instrucció j bucle.

Registre	Contingut
\$8	
\$9	
\$10	
\$11	
\$12	

Pregunta 4. Determineu el contingut dels següents registres quan s'haja finalitzat l'execució del programa.

Registre	Contingut
\$8	
\$9	
\$10	
\$11	
\$12	

Escriviu el codi que apareix en el PCSPIM de les instruccions que es detallen, tant en hexadecimal com en binari, separant (en el cas del binari) cada camp.

Pregunta 5. Instrucció tipus R.

Instrucció:	add \$11, \$0, \$0	1	Codi hexadecimal:					
		Codi	binari:					
CO	rs	Rt	rd	Numdesp	Funció			

Pregunta 6. Instrucció tipus I.

	mound of the trip the ri		
Instrucció:	lb \$12, 0(\$8)	Co hexadecim	odi al:
		Codi	oinari:
CO	rs	Rt	Desp/Inm

Pregunta 7. Localitzeu en el PCSPIM els següents codis d'instruccions i determineu amb quines instruccions es corresponen:

Codi	Instrucció
0x3c011000	
0x11200008	
0x08100007	

Examen (si estas al laboratori):

Ara és el moment d'acudir a poliformat i respondre les preguntes relacionades amb el programa "practica mips 1.s"

ANÀLISI DE PROGRAMES

Escriviu el següent codi en un arxiu "practica_mips_2.s", carregueu-ho en el PCSPIM i comproveu que es carrega correctament. A partir de l'execució del mateix, responeu a les següents preguntes.

```
.globl
         start
.data 0x10000000
           .word 3,4,5
vector:
            .word 3
ncomp:
result:
            .space 4
.text 0x00400000
 start:
      la $8, vector
      la $9, ncomp
      lw $9, 0($9)
      addi $10, $0, 0
bucle:
      beq $9, $0, fi
      lw $11, 0($8)
      add $10, $10, $11
      addi $8, $8, 4
      addi $9, $9, -1
      j bucle
fi:
      la $12, result
      sw $10,0($12)
.end
    Codi 2. practica mips 2.s
```

Pregunta 8. De les següents funcions, determineu quina d'elles és implementada pel codi anterior i descriviu com heu arribat a aquesta resposta, tenint en compte que la posició del primer element d'un vector comença per 0.

Codi	Funció				
practica_mips_2.s					

Justificació de la resposta

Examen (si estes al laboratori):
Ara és el moment d'acudir a
poliformat i respondre les preguntes
relacionades amb el programa
"practica_mips_2.s"

Escriviu el codi "practica_mips_3.s", carregueu-ho en el simulador PCSPIM i comproveu que es carrega correctament. A partir de l'execució del mateix, responeu a la següents preguntes.

```
.globl
         start
.data 0 \times 10000000
vector: .word 3,4,5
ncomp:
           .word 3
result:
           .space 4
.text 0x00400000
__start:
      la $8, vector
      la $9, ncomp
      lw $9,0($9)
      addi $10, $0, 0
      addi $12, $0, 1
bucle:
      beq $9, $0, fi
      lw $11,0($8)
      mult $11,$12
      mflo $11
      add $10,$10,$11
      addi $8,$8,4
      addi $9, $9, -1
      addi $12, $12, 1
      j bucle
fi:
      la $12, result
      sw $10,0($13)
.end
    Codi 3. practica_mips_3.s
```

Pregunta 9. Determineu quina és la funció que implementa el codi "practica_mips_3.s".

Codi	Funció
practica_mips_3.s	

Justificació de la resposta		

Pregunta 10. Indiqueu la codificació en binari i hexadecimal de totes les instruccions de salt
que apareixen en el codi "practica_mips_3.s". Justifiqueu la vostra resposta indicant a quines
adreçes es troben associades les etiquetes d'aquests salts.

Examen (si estes al laboratori) : Ara és el moment d'acudir a poliformat i respondre les últimes preguntes de l'examen.

TAULA ASCII

Regular ASCII Chart (character codes 0 – 127)

Д	ъ	н	ω	t)	n	Δ	Μ	×	У	N	Ļ	-	<u>~</u>	ŧ	<
70h	71h	72h	73h	74h	75h	76h	77h	78h	79h	7Ah	7Bh	7Ch	7Dh	7Eh	7Fh
112d	1134	114d	115d	116d	117d	118d	119d	120d	121d	122d	123d	124d	125d	126d	127 d
	В	р	υ	р	Φ	Ŧ	ы	Ч	.н	٦.	ᅜ	П	Ħ	п	O
e0h	61h	62h	63h	64h	65h	99	67h	e8h	469	6Ah	6Bh	ech	6Dh	6Eh	6Fh
p960	097 d	p860	P660	100đ	101d	102d	103d	104d	105d	106d	107 d	108đ	109d	110d	1113
Д	ď	Я	ß	H	D	>	Μ	×	Y	Z		_	_	•	
20h	51h	52h	53h	54h	25h	26h	57h	58h	29h	5Ah	5Bh	2Ch	5Dh	5Eh	5Fh
080 d	081 <i>d</i>	082d	083 <i>d</i>	084 <i>d</i>	085d	p980	087 d	p880	p680	p060	091 <i>d</i>	092 <i>d</i>	093 <i>d</i>	094 <i>d</i>	0954
0	A	В	Ö	Q	ы	ц	G	Н	Н	J	М	П	M	Ν	
40h	41h	42h	43h	44h	45h	46h	47h	48h	49h	4Ah	4Bh	4Ch	4Dh	4Eh	4Fh
064d	065d	p990	p 190	p890	p690	020 d	071 <i>d</i>	072d	0734	074 <i>d</i>	075d	p910	077d	0784	P620
0	1	2	က	4	2	9	7	œ	6		••	~	II	^	۷.
30 h	31h	32h	33h	34h	35h	36h	37h	38h	39 h	3Ah	3Bh	3Ch	3Dh	3Eh	3Fh
048¢	049¢	020 g	0514	052d	053d	054d	055d	056d	057 d	058d	p690	P090	0614	062d	DE34
⊐		=	#	↔	%	28	-	J	^	*	+	,	ı		_
20h	21h	22h	23h	24h	25h	26h	27h	28h	29h	2Ah	2Bh	2Ch	2Dh	2Eh	2Fh
032d	0334	034d	0354	0364	037 d	0384	p680	040 d	0414	042d	043d	044 <i>d</i>	045d	046d	047 d
(dle)	(dc1)	(dc2)	(dc3)	(dc4)	(nak)	(syn)	(etp)	(can)	(em)	(eof)	(esc)	(fs)	(gg)	(rs)	(118)
•	•	+	=:	F	S	ı	↔	←	\rightarrow		ļ	_	‡	•	۰
10h	11h	12h	13h	14h	15h	16h	17h	18h	19h	1Ah	1Bh	1Ch	1Dh	1Eh	1Fh
0164	0174	0184	0194	020d	021d	022d	023d	024d	0254	026d	027d	028d	029d	0309	0314
(nul)	(soh)	(stx)	(etx)	(eot)	(end)	(ack)	(be1)	(ps)	(tab)	(1f)	(vt)	(du)	(cr)	(so)	(si)
m ^{20rd}	③	⊕	>	*	4	•	•	•		0	ъ		٩	E,	¢
400	01h	02h	03h	04h	05h	06h	07h	08h	460	0Ah	0Bh	0Ch	$0D_h$	0Eh	OFh
p000	001d	002d	003d	004d	005d	p900	p 200	p800	p600	010d	011d	012d	013d	014d	015d

c	q
1.0	:
c	q
_	
Ω	
\mathcal{L}	
-	
~	
E	
<	ξ
-	
(in	
1.0	
C	q
0	1
86	Ī
0	
7	j
- 9	
Č	
í	
+	
9	3
ž	
C	Ċ
÷	
,	_
-	
þ	ċ
~	į
=	
Ċ	
Ľ	
Ξ	
7	j
\vec{v}	
-	í
	,
- 5	
5	
- 5	
1	
- 6	
- 5	
-	
Ŧ	

80h	€	144 <i>d</i>	406		160 <i>d</i>	A0h	, marin	176d	B0h	0	192 <i>d</i>	cor	À	208d	p_0h	Ф	224 d	E0h	'n	240 d	F0h	Ø
11h		145 <i>d</i>	91h	,	161 <i>d</i>	A1h		177 d	B1h	+	193d	C1h	Ā	209d	D1h	Ñ	225d	E1h	'n	241d	F1h	ñ
32h	•	146 <i>d</i>	92h	•	162d	A2h	υ	178d	B2h	N	194 <i>d</i>	C2h	Â	210d	D2h	Ō	226d	E2h	ൻ	242d	F2h	,o
33h	£	147 d	93h	;	1634	A3h	4	179 <i>d</i>	B3h	ø	195d	C3h	Ã	211d	D3h	Ó	227 d	E3h	ĭď	243d	F3h	vo
84h	:	148 <i>d</i>	94h	:	164 <i>d</i>	A4h	¤	180 đ	B4h	,	196 <i>d</i>	C4h	Ä	212d	D4h	Û	228d	E4h	:ൻ	244d	F4 h	ó
85h	:	149 <i>d</i>	95h	•	1654	A5h	*	181 <i>d</i>	B5h	ц	197 <i>d</i>	C5h	×	213d	D5h	Õ	229 d	E5h	ಂಡ	245d	F5h	õ
86h	+	150d	496	1	166 <i>d</i>	A6h		182 <i>d</i>	B6h	F	198 <i>d</i>	ceh	压	214d	D6h	:0	230d	E6h	я	246d	F6 h	:0
87h	++	1514	97h	1	167 d	A7h	ဖာ	1834	B7h		199 <i>d</i>	C7h	S	215d	D7h	×	231d	E7h	Un	247 d	F7h	4.
88h	(152d	98 <i>h</i>	ł	168 <i>d</i>	A8h	:	184 <i>d</i>	B8h	1	200d	C8h	ıΉ	216d	D8h	0	232d	E8h	Φ,	248d	F8 h	ĸ
89h	%	1534	η 66	¥	169 <i>d</i>	A9h	0	185d	B9h	н	201d	c_{9h}	ŀΉ	217 d	19h	Ù	233d	E9h	·Φ	249 d	F9h	ņ
8Ah	αx	154d	9Ah	×Ω	170d	AAh	તા	186d	BAh	OI	202d	CAh	ФĪ	218d	DAA	Ú	234d	EAh	ď	250 d	FAh	ú
8Bh	v	155d	9Bh	^	171 <i>d</i>	ABh	¥	187 d	BBh	^	203d	CBh	:Ш	219d	DBh	Û	235d	EBh	:O	251d	FBh	û
8Ch	띰	156d	9Ch	ප	172d	ACh	г	188 <i>d</i>	BCh	H 4	204d	CCh	Ļ	220d	DCh	Ü	236d	ECh	'n	252d	FCh	ü
8Dh		157 d	9Dh		173d	ADh		189 <i>d</i>	BDh	HIC	205d	CDh	Ļ	221d	DDh	Ý	237 d	EDh	ч	253d	FDh	Š
8Eh	Ž	1584	9Eh	'n	174d	AEh	(E)	190 <i>d</i>	BEh	014	206d	CEh	Ü	222d	DEh	Д	238d	EEh	Ç	254d	FEh	q
8Fh		1594	9Fh	:>-	175d	AFh	1	1914	RF h.		2074	CFA	:-	2234	DFA	4	2304	בבא	:-	SEE A	55	:

Hexadecimal to Binary

1100	1101	1110	1111
ပ	Q	ы	щ
1000	1001	1010	1011
œ	6	A	В
0100	0101	0110	0111
4	2	9	7
0000	0001	0010	0011
0	H	2	က

Groups of ASCII-Code in Binary

				(cc) 2009 Michael
	Bit 6	Bit 6 Bit 5 Group	Group	This work is licens
_	0	0	Control Characters	Attribution-None
_	0	1	Digits and Punctuation	or a more a moin of
_	1	0	Upper Case and Special	bttp://creativecon
	1	1	Lower Case and Special	Transfer / / Creative Control

commercial-Share Alike 3.0 License, of this license, visit ommons.org/licenses/by-nc-sa/ nsed under the Creative Commons