

Dr Crop Android App Final Year Project Report

Submitted by

Name	Roll Number	Project Role
Muhammad Ibrahim	(1895-2021)	(Team Lead)
Zeeshan Ali	(1505-2021)	(Team Member 2)
Wali Muhammad	(1894-2021)	(Team Member 3)

Supervisor

Teacher: Sir Saifullah Adnan

In partial fulfilment of the requirements for the degree of Bachelor of Science in Software Engineering 2021

Faculty of Engineering Sciences and Technology

Hamdard Institute of Engineering and Technology Hamdard University, Main Campus, Karachi, Pakistan

Certificate of Approval

Faculty of Engineering Sciences and Technology

Hamdard Institute of Engineering and Technology Hamdard University, Karachi, Pakistan

This project $\underline{\textbf{Dr} \ \textbf{Crop Android App}}$ is present	ed by Muhammad Ibrahim, Zeeshan Ali and Wali
<u>Muhammad</u> under the supervision of their pro	ject advisor and approved by the project examination
committee, and acknowledged by the Hamda	rd Institute of Engineering and Technology, in the
fulfillment of the requirements for the Bachelor	degree of BS Software Engineering
Mr.Saifullah Adnan (Project Supervisor)	In-charge FYP-Committee
Mr.Saifullah Adnan	Chairman
(Project Co-Supervisor)	(Department of Computing)
(Dean, FEST	

Authors' Declaration

We declare that this project report was carried out in accordance with the rules and regulations of Hamdard University. The work is original except where indicated by special references in the text and no part of the report has been submitted for any other degree. The report has not been presented to any other University for examination.

Dated	
Daicu	١.

Authors Signatures:

Muhammad Ibrahim

Zeeshan Ali

Wali Muhammad

Plagiarism Undertaking

We, Muhammad Ibrahim, Zeeshan Ali and Wali Muhammad, solemnly declare that the work presented in the Final Year Project Report titled **Dr.Crop Android Application**> has been carried out solely by ourselves with no significant help from any other person except few of those which are duly acknowledged. We confirm that no portion of our report has been plagiarized and any material used in the report from other sources is properly referenced.

Dated:	02-07-2	2025

Authors Signatures:

Muhammad Ibrahim

Zeeshan Ali

Wali Muhammad

Acknowledgments

We would like to extend our heartfelt gratitude to all individuals and organizations who contributed to the successful development of this project.

1. Our Supervisor:

We are deeply grateful to our project supervisor, **Saifullah Adnan**, for their constant guidance, encouragement, and valuable feedback throughout this project.

2. Hamdard University Karachi:

We express our appreciation to the faculty and administration of Hamdard University Karachi for providing the resources and support necessary to complete this project.

3. Agricultural Experts and Collaborators:

We acknowledge the assistance provided by agricultural experts for their insights into plant diseases and their contributions to the disease database.

4. **Development Team:**

Special thanks to our team members—Muhammad Ibrahim, Zeeshan Ali and Wali Muhammad—for their dedication, hard work, and collaboration.

5. Farmers and End-Users:

We are thankful to the farmers who shared their feedback and participated in testing the application, helping us improve its functionality and usability.

6. Resource Contributors:

- Dataset Providers: We acknowledge platforms like Kaggle and other agricultural research institutions for providing datasets critical to training the machine learning model.
- **Technology Providers:** Thanks to cloud service providers like AWS for facilitating reliable hosting and processing capabilities.

7. Family and Friends:

Lastly, we thank our families and friends for their unwavering support, patience, and encouragement during this journey.

Document Information

Table 1: Document Information

Project Title	Dr.Crop Android Application	
Project Code	FYP-002/SP25	
Document Name	Software Requirements Specifications	
Document Version	<1.0>	
Document Identifier	FYO-010/FL24-Project Report	
Document Status	Final	
Author(s)	M.Ibrahim , Zeeshan Ali , Wali Muhammad	
Approver(s)	Saifullah Adnan	
Issue Date		

Definition of Terms, Acronyms, and Abbreviations

Table 2: Definition of Terms, Acronyms, and Abbreviations

Term	Description
Actor	An entity that interacts with the system, e.g., user, external systems.
CNN	Convolutional Neural Network, a type of deep learning algorithm used for image recognition.
API	Application Programming Interface, a set of routines and tools for building software applications.
GUI	Graphical User Interface, a system that allows users to interact with software through graphical elements.
Camera Input	Input method where visual data is captured using a camera for processing.

Abstract

Agriculture plays a pivotal role in sustaining global food security, with cotton and wheat being key staple crops. However, the threat of plant diseases looms large, jeopardizing crop yields and food production. In response to this challenge, this thesis presents an innovative Android application leveraging the power of machine learning for the early detection and identification of diseases in cotton and wheat plants. The primary objective of this research is to develop a user-friendly, accessible, and accurate tool that empowers farmers and agricultural practitioners to diagnose plant diseases swiftly and accurately. The app harnesses the capabilities of deep learning algorithms and computer vision techniques to analyze images of plant leaves, stems, and other relevant parts. Through an extensive review of existing literature and the creation of a robust dataset, our research explores and implements state-of-the-art machine learning models to classify and detect diseases.

The results of this study showcase the effectiveness of our Android app, achieving high accuracy rates in disease identification across diverse environmental conditions and stages of plant growth. These findings not only underscore the app's practical utility but also lay the foundation for more efficient and sustainable agricultural practices. This research contributes to the field by bridging the gap between technology and agriculture, presenting an accessible solution for timely disease management, and ultimately enhancing crop productivity. The implications of this work extend to improved food security and sustainable agricultural practices on a global scale. Furthermore, this study identifies avenues for future research, including the expansion of the app's capabilities and the exploration of additional crops and diseases.

In conclusion, the Android app presented in this thesis represents a significant step towards mitigating the impact of plant diseases on cotton and wheat crops. It demonstrates the potential of machine learning in revolutionizing agriculture, equipping farmers with a valuable tool to protect their livelihoods and contribute to a more resilient and food-secure future.

Table of Contents

Certificate of Approval	2
Authors' Declaration	3
Acknowledgment	5
Document Information	6
Abstract	7
Chapter 1 INTRODUCTION	10
Description about Project	10
Details about the Domain	10
Relevant Background	10
Chapter 2 RELEVANT BACKGROUND & DEFINITIONS	11
Chapter 3 LITERATURE REVIEW & RELATED WORK	12
Literature Review	12
Related Work	12
Gap Analysis	12
Chapter 4 METHODOLOGY	13
Software Engineering Methodology	13
Project Methodology	14
Chapter 5 EXPERIMENTAL EVALUATIONS & RESULTS	15
Evaluation Testbed	15
Results and Discussion	15
Chapter 6 CONCLUSION AND DISCUSSION	16
Limitations and Future Work	16
Reasons for Failure – If Any	16
REFERENCES	17
APPENDICES	18
A0. Copy of Project Registration Form	19
A1a. Project Proposal and Vision Document	20
A1b. Copy of Proposal Evaluation Comments by Jury	21
A2. Requirement Specifications	22
A3. Design Specifications	23
A4. Other Technical Detail Documents	24
Test Cases Document	24

UI/UX Detail Document	24
Coding Standards Document	24
Project Policy Document	24
User Manual Document	24
A5. Flyer & Poster Design	25
A6. Copy of Evaluation Comments	26
Copy of Evaluation Comments by Supervisor for Project – I Mid Semester Evaluation	26
Copy of Evaluation Comments by Supervisor for Project – I End Semester Evaluation	27
Copy of Evaluation Comments by Jury for Project – I End Semester Evaluation	28
Copy of Evaluation Comments by Supervisor for Project – II Mid Semester Evaluation	29
Copy of Evaluation Comments by Jury for Project – II End Semester Evaluation	31
A7. Meetings' Minutes	32
A8. Document Change Record	33
A9. Project Progress	34
A10. Research Paper	35

List of Figures

Figure No	Description	Page No.
FIGURE 1. 1 : SCOPE OF P	ROJECT	2
FIGURE 2. 1 : FACE DETE	CTION	4
FIGURE 2. 2: FACE RECO	GNITION PROCESS	5
FIGURE 4. 1: SYSTEM FLO	OW FOR FACE RECOGNITION	9
FIGURE 4. 2: USE CASE N	MODEL	10
FIGURE 4. 3: USE CASE I	DIAGRAM FOR SETTING	12
FIGURE 5. 1 : DESIGN OF	A SYSTEM	13
FIGURE 6. 1: STEP 1 DOW	NLOADS OPENCV MANAGER	18
FIGURE 6. 2: STEP 2 INST	ALLS APPLICATION	19
FIGURE 6. 3: STEP 3 OPE	N APPLICATION	20
FIGURE 6.4: STEP 4 OPEN	NINBOX	21
FIGURE 6. 5: STEP 5 SELE	CCT MESSAGE	22
FIGURE 6. 6: STEP 6 TEX	T VARIATIONS	23
FIGURE 6.7: STEP 7 REAL	O CONTACTS	24
FIGURE 6.8: STEP 8 FOR	WRITE MESSAGE	25
FIGURE 6.10: STEP 10 SE	TTINGS	26

List of Tables

Table No.	Description	Page No.
TABLE 2.1: COMPARISON TABLE		6
TABLE 3.1: PHASES OF PROJECT		7
TABLE 5.1: TEST CASE 1		16
TABLE 5.2: TEST CASE 2		16
TABLE 5.3: TEST CASE 3		16
TABLE 5.4: TEST CASE 4		17
TABLE 5.5: TEST CASE 5		17
TABLE 5.6: TEST CASE 6		17

CHAPTER 1

INTRODUCTION

1.1 Motivation

Agriculture is the backbone of many economies, and crop health directly affects food security and farmer livelihood. Diseases in wheat crops are often diagnosed late, leading to huge losses in yield. By integrating machine learning with mobile technology, we can empower farmers with a practical, real-time, and offline solution to identify diseases early, take preventive measures, and improve agricultural outcomes.

1.2 Problem Statement

Farmers often struggle to identify wheat diseases in a timely manner, leading to reduced crop yield and increased pesticide misuse. There is a need for a mobile-based, automated detection system that works offline and helps farmers detect diseases accurately through image processing.

1.3 Goals and Objective

- Develop a prototype mobile app for wheat disease detection.
- Utilize a CNN model for accurate image classification.
- Ensure offline compatibility via TensorFlow Lite.
- Design a user-friendly GUI for non-technical users.
- Lay groundwork for adding other crops like cotton in the future.

1.4 Project Scope

The current scope is limited to wheat disease detection using a trained CNN model. It supports image input via camera or gallery, and provides instant predictions offline. Future versions may include other crops such as cotton.

CHAPTER 2

RELEVANT BACKGROUND & DEFINITIONS

Background

In agriculture, early detection of plant diseases is critical. Manual inspection is time-consuming and error-prone. Recent advances in AI, particularly CNNs, have made it possible to automate disease identification from images with high accuracy.

Definitions

- CNN (Convolutional Neural Network): A deep learning model used for image classification.
- TensorFlow Lite: A lightweight version of TensorFlow optimized for mobile devices.
- GUI: Graphical interface for user interaction.
- Image Preprocessing: Techniques used to normalize and resize images before model input.

Key Features

- Offline wheat disease prediction using mobile camera.
- Simple GUI tailored for farmers.
- Use of lightweight CNN with TFLite.
- Expandable to other crops.

CHAPTER 3

LITERATURE REVIEW & RELATED WORK

Literature Review

Several studies have explored the application of CNNs in plant disease detection. Research shows that CNNs can achieve accuracy above 90% when trained with sufficient image data. Papers such as 'PlantVillage' have demonstrated the effectiveness of deep learning models in agricultural settings.

Related Work

Many mobile applications exist, such as Plantix and Leaf Doctor, but they require internet access and are not crop-specific. Our project differentiates by providing an offline, wheat-specific prototype for disease detection.

Gap Analysis

- Most existing systems are online-only.
- General-purpose apps lack crop-specific optimization.
- No local language or farmer-friendly offline GUI in many tools.
- Lack of lightweight inference on mobile devices.

This project addresses these issues through a dedicated wheat disease detection prototype.

References

- TensorFlow Lite Documentation
- CNN-based Plant Disease Detection Research Papers
- Kaggle Wheat Disease Dataset
- Android App Development Resources