

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
COMPUTER SO	CIENCE		9608/13
Paper 1 Theory	/ Fundamentals	Oc	tober/November 2018
			1 hour 30 minutes
Candidates ans	wer on the Question Paper.		
No Additional M	laterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

No calculators allowed.

No marks will be awarded for using brand names of software packages or hardware.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The maximum number of marks is 75.

1	A product	designer	18	creating	а	noster
	, i pi oddol	acciquo		oi oatii iq	u	pooto:

(a) The designer creates a 6-colour bitmag	ab image for the boster as snown
--	----------------------------------

Each colour is represented by a letter, for example, R = red, B = blue.

R	R	Р	Р	Р	G
В	R	R	Р	G	G
В	W	В	В	0	0
В	W	W	Р	Р	0
В	В	R	Р	G	0
В	R	R	Р	G	0

(i)	State the minimum number of bits needed to represent each pixel in the image in part (a) .
	[1]
(ii)	Calculate the minimum file size of the image shown in part (a). Show your working.
	Working
	File size[3]
(b) (i)	The designer takes a photograph to put on the poster. The photograph has a resolution of 50 000 pixels by 50 000 pixels. The colours are represented using 4 bytes per pixel.
	Estimate the file size of the photograph in gigabytes. Show your working.
	Working
	Estimated file size[4]

(ii) The photograph needs to be sent by email but the file size is too big. It needs to be compressed.

The table lists several methods of making an image file size smaller.

Tick (\checkmark) one box on each row to indicate whether each method is lossy or lossless.

Compression method	Lossy	Lossless
Cropping the image		
Reducing the resolution of the image		
Using run-length encoding (RLE)		
Reducing the colour depth of the image		

(c)	Explain how run-length encoding would compress the image in part (a).
	[3]

[4]

2 The following table shows assembly language instructions for a processor which has one general purpose register, the Accumulator (ACC) and an Index Register (IX).

Instruction		Evalenation					
Op code	Operand	Explanation					
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC.					
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the Index Register. Copy the contents of this calculated address to ACC.</address>					
LDR	#n	Immediate addressing. Load the number n to IX.					
STO	<address></address>	Store contents of ACC at the given address.					
ADD	<address></address>	Add the contents of the given address to ACC.					
INC	<register></register>	Add 1 to the contents of the register (ACC or IX).					
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX).					
CMP	<address></address>	Compare contents of ACC with contents of <address>.</address>					
JPE	<address></address>	Following compare instruction, jump to <address> if the compare was True.</address>					
JPN	<address></address>	Following compare instruction, jump to <address> if the compare was False.</address>					
JMP	<address></address>	Jump to the given address.					
OUT		Output to the screen the character whose ASCII value is stored in ACC.					
END		Return control to the operating system.					

Relative addressing	
Indexed addressing	
	 [2]

(a) State what is meant by relative addressing and indexed addressing.

(b) The current contents of a general purpose register (X) are:

	X	1	1	1	1	0	0	1	0	
(i)	(i) The contents of X represent an unsigned binary integer.									
	Convert	the valu	e in X in							[1]
(ii)	The con	tents of	X repres	ent an u	nsigned	binary i	nteger.			
	Convert	the valu	e in X in							
(iii)	The contents of X represent a two's complement binary integer.						[1]			
()	Convert the value in X into denary.									
										[1]
(iv)	Show th	e result	on the g	eneral p	urpose r	egister (X) after	the follow	wing inst	ruction is run.
					INC X					
										[1]

(c) The current contents of the main memory, Index Register (IX) and selected values from the ASCII character set are provided with a copy of the instruction set.

Address	Instruction
20	LDD 96
21	CMP 97
22	JPE 32
23	LDX 86
24	CMP 98
25	JPN 27
26	OUT
27	LDD 96
28	INC ACC
29	STO 96
30	INC IX
31	JMP 21
32	END
93	453
94	453
95	452
96	8
97	10
98	453

IX 8

ASCII code	Character
450	<
451	>
452	=
453	&
454	(
455)

Instruction set

Instruction		
Op code	Operand	Explanation
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC.
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the Index Register. Copy the contents of this calculated address to ACC.</address>
LDR	#n	Immediate addressing. Load the number n to IX.
STO	<address></address>	Store contents of ACC at the given address.
ADD	<address></address>	Add the contents of the given address to ACC.
INC	<register></register>	Add 1 to the contents of the register (ACC or IX).
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX).
CMP	<address></address>	Compare contents of ACC with contents of <address>.</address>
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True.</address>
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False.</address>
JMP	<address></address>	Jump to the given address.
OUT		Output to the screen the character whose ASCII value is stored in ACC.
END		Return control to the operating system.

Complete the trace table for the given assembly language program.

Instruction	ACC			Memory	address	S		IX	ОИТРИТ
address	ACC	93	94	95	96	97	98		OUIPUI
		453	453	452	8	10	453	8	
20									

		esents three scenarios. Tick (\checkmark) one box for each scenario to indicate whether son's behaviour is ethical or unethical. Justify your choice.
(a)	Mason is us	ing his work computer to book a holiday whilst at work.
	Ethical	
	Unethical	
	Justification	
		[2
(b)	•	pervising a trainee. The trainee asks Ethan for a reference for another job. Ethan int to lose the trainee, so refuses to give him a reference.
	Ethical	
	Unethical	
		[2
(c)	•	nds that one of her team members has produced some inventive code. She is to her manager, praising the individual by name.
	Ethical	
	Unethical	
	Justification	
		[2

4	Ava needs to view a	website and she	knows the Uniform	Resource Locator	(URL).
-					(/ -

(a)	Comp	lete the	e series	of steps	s that	take	place.

Write the **letter** of the appropriate statement in each space.

A	DNS finds corresponding IP
В	DNS looks up URL in table
С	Ava types the URL into a web browser

	1		
	2	Web browser sends URL to Domain Name Service (DNS)	
	3		
	4		
	5	DNS returns IP address to web browser	[2]
(b)	(i)	An IPv4 address has been entered as 12.258.3	
		Give two reasons why this IP address is invalid.	
		1	
		2	
			 [2]
	(ii)	An IPv6 address has been entered as 15EF:5L63::2014:BB::60AA	[-]
		Give two reasons why this IP address is invalid.	
		1	
		2	
			 [2]

(c) The table shows four descriptions of IP addresses.

Tick (\checkmark) one box in each row to identify whether each description applies to a public or private IP address.

Description	Public	Private
The address can be reached over the Internet.		
The address is more secure.		
The address can only be accessed through the same LAN.		
The address can be duplicated in different networks.		

[4]

Arnold is a software developer. He has created a computer game for people to download over the

5

Inte	rnet.	Arnold is considering releasing the game as a piece of commercial software.
(a)	(i)	Describe what is meant by a commercial licence .
		[2]
	(ii)	Name and describe one other type of licence that Arnold can consider using.
		Licence type
		Description
		[3]
(b)		ers need to enter their name and email address to create an account. The information is red in a database on Arnold's computer.
	Giv	e three ways that Arnold can ensure users' details are kept secure.
	1	
	2	
	3	
		[3]

6

The	efeto	ch-execute (FE) cycle uses special purpose registers.	
(a)	The	e stages in the FE cycle are shown in register transfer notation.	
	MAI	R ← []	
	PC	← PC + 1	
		← [[MAR]]	
		← [MDR]	
	(i)	The steps shown in part (a) are incomplete.	
		Write the missing register names in the spaces in part (a).	[3]
	(ii)	The third instruction [[MAR]] has double brackets.	
		State the purpose of the double brackets.	
			[1]
(b)	On	e stage of the FE cycle includes checking for interrupts.	
	Sta	te what is meant by an interrupt .	
			[2]
(c)	The	ere are two types of RAM: dynamic RAM (DRAM) and static RAM (SRAM).	
	The	e following table shows five statements about DRAM and SRAM.	
	Tic	k (✓) one box in each row to indicate whether the statement applies to DRAM or SRA	M.

Statement	DRAM	SRAM
Does not need to be refreshed as the circuit holds the data while the power supply is on		
Mainly used in cache memory of processors where speed is important		
Has less complex circuitry		
Requires higher power consumption under low levels of access, which is significant when used in battery-powered devices		
Requires data to be refreshed occasionally so it retains the data		

[5]

7		e network manager of a Local Area Network (LAN) has replaced the Ethernet cables veless network.	with a
	(a)	Give three benefits of a wireless network compared to a wired network.	
		1	
		2	
		3	
			[3]
	(b)	Give one drawback of a wireless network compared to a wired network.	
			Fa 1

8 (a) Draw a logic circuit to represent the logic expression:

$$X = (A XOR B) OR (NOT(C AND A))$$

(b) Complete the truth table for the logic expression in part (a).

A	В	С	Working space	X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.