

## FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS 210

### **CERTIFICATION TEST REPORT**

**FOR** 

## **WIRELESS SHOCK SENSOR + CONTACT SENSOR**

MODEL NUMBER: WST-301, TX-E301

FCC ID: XQC-WST301 IC: 9863B-WST301

**REPORT NUMBER: 11625260-E1V4** 

**ISSUE DATE: 3/9/17** 

Prepared for

ECOLINK INTELLIGENT TECHNOLOGY, INC. 2055 CORTE DEL NOGAL CARLSBAD CA, 92011, U.S.A

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 771-1000



# **Revision History**

| Rev. | Issue<br>Date | Revisions                                                                                                                                                                                                                             | Revised By  |
|------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| V1   | 2/28/17       | Initial Issue                                                                                                                                                                                                                         | C. Vergonio |
| V2   | 03/06/17      | Added Section 7.3 & 7.4.<br>Updated Section 5.1 & 5.2.                                                                                                                                                                                | C. Vergonio |
| V3   | 03/08/17      | Added Section 5.2 Model Difference. Updated Section 5.5 worse case mode. Updated Section 5.7, added I/O cables table. Removed QPK limit and only state dBuV/m limit in page 26. Updated the statement in Below 30MHz data in page 30. | C. Vergonio |
| V4   | 03/09/17      | Removed QPK limit from tabular data in Page 27.                                                                                                                                                                                       | C. Vergonio |

**DATE: MARCH 9, 2017** 

# **TABLE OF CONTENTS**

| 1. AT        | TESTATION OF TEST RESULTS         | 4  |
|--------------|-----------------------------------|----|
| 2. TE        | ST METHODOLOGY                    | 5  |
| 3. FA        | CILITIES AND ACCREDITATION        | 5  |
| 4. CA        | ALIBRATION AND UNCERTAINTY        | 6  |
| 4.1.         | MEASURING INSTRUMENT CALIBRATION  | 6  |
| 4.2.         | SAMPLE CALCULATION                | 6  |
| 4.3.         | MEASUREMENT UNCERTAINTY           | 6  |
| 5. EC        | QUIPMENT UNDER TEST               | 7  |
| 5.1.         | DESCRIPTION OF EUT                | 7  |
| 5.2.         | MODEL DIFFERENCE                  | 7  |
| 5.3.         | DESCRIPTION OF AVAILABLE ANTENNAS | 7  |
| <i>5.4</i> . | SOFTWARE AND FIRMWARE             | 7  |
| 5.5.         | WORST-CASE CONFIGURATION AND MODE | 7  |
| 5.6.         | MODIFICATIONS                     | 7  |
| 5.7.         | DESCRIPTION OF TEST SETUP         | 8  |
| 6. TE        | ST AND MEASUREMENT EQUIPMENT      | 9  |
| 7. AN        | NTENNA PORT TEST RESULTS          | 10 |
| 7.1.         | 20 dB AND 99% BW                  | 10 |
| 7.2.         | DUTY CYCLE                        | 13 |
| 7.3.         | SUPERVISION TRANSMISSIONS         | 21 |
| 7.4.         | TRANSMISSION TIME                 | 22 |
| 8. RA        | ADIATED EMISSION TEST RESULTS     | 23 |
| 8.1.         | TX RADIATED SPURIOUS EMISSION     | 23 |
| 9. SE        | TUP PHOTOS                        | 32 |

## 1. ATTESTATION OF TEST RESULTS

**COMPANY NAME:** ECOLINK INTELLIGENT TECHNOLOGY, INC.

2055 CORTE DEL NOGAL CARLSBAD, CA, 92011, U.S.A

**EUT DESCRIPTION:** WIRELESS SHOCK SENSOR + CONTACT SENSOR

MODEL: WST-301, TX-E301

SERIAL NUMBER: 0A0865F & 0A0825F

**DATE TESTED:** FEBRUARY 16 – MARCH 8, 2017

#### **APPLICABLE STANDARDS**

STANDARD TEST RESULTS

FCC PART 15 SUBPART C Pass

INDUSTRY CANADA RSS-210 Issue 9, Annex A Pass

INDUSTRY CANADA RSS-GEN Issue 4 Pass

UL Verification Services Inc tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note**: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc By:

Prepared By:

CHARLES VERGONIO
PROJECT LEAD

UL Verification Services Inc.

JONATHAN HSU LAB ENGINEER

UL Verification Services Inc.

REPORT NO: 11625260-E1V4 **DATE: MARCH 9, 2017** FCC ID: XQC-WST301

### 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 9.

### 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street     | 47266 Benicia Street     |
|--------------------------|--------------------------|
| ☐ Chamber A (IC:2324B-1) | Chamber D (IC:2324B-4)   |
| ☐ Chamber B (IC:2324B-2) | Chamber E (IC:2324B-5)   |
| Chamber C (IC:2324B-3)   | Chamber F (IC:2324B-6)   |
|                          | ☐ Chamber G (IC:2324B-7) |
|                          | ☐ Chamber H (IC:2324B-8) |

The above test sites and facilities are covered under FCC Test Firm Registration # 208313.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

### 4. CALIBRATION AND UNCERTAINTY

#### 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

### 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

## 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Parameter                                           | Uncertainty |
|-----------------------------------------------------|-------------|
| Worst Case Radiated Disturbance, 9KHz to 30 MHz     | 3.15 dB     |
| Worst Case Radiated Disturbance, 30 to 1000 MHz     | 5.36 dB     |
| Worst Case Radiated Disturbance, 1000 to 18000 MHz  | 4.32 dB     |
| Worst Case Radiated Disturbance, 18000 to 26000 MHz | 4.45 dB     |
| Worst Case Radiated Disturbance, 26000 to 40000 MHz | 5.24 dB     |

Uncertainty figures are valid to a confidence level of 95%.

### 5. EQUIPMENT UNDER TEST

#### 5.1. DESCRIPTION OF EUT

The EUT is a Wireless Shock Sensor + Contact Sensor. The WST-301 is a battery-powered wireless sensor for detecting a physical shock and /or the open/closed status of a door or window in a home security or application. The device operates at a single fixed frequency of 319.5MHz, and is powered by a single CR123A lithium battery which provides a nominal operating voltage of 3 volts DC. The device is manually operated; please refer to User Manual for more detailed information.

### 5.2. MODEL DIFFERENCE

Models WST-301 & TX-E301 are electrically identical and the model is for marketing purpose only.

### 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a wire antenna, with a maximum gain of -15dBi which is soldered directly to the circuit board. The antenna is not replaceable by the user.

#### 5.4. SOFTWARE AND FIRMWARE

The typical factory firmware installed in the EUT during testing was ESW1021-03-B01.hex,

The firmware installed in the EUT to allow continuous transmit during testing was ESW1021-TEST.hex.

#### 5.5. WORST-CASE CONFIGURATION AND MODE

The EUT was investigated in each of its three orthogonal axes. All radiated testing was performed in the worse-case axis, which was found to be the "X-axis". See photos for details.

EUT Fundamental was investigated for each mode and wire connected to CON1 was the worst case configuration.

### 5.6. MODIFICATIONS

No modifications were made during testing.

#### 5.7. **DESCRIPTION OF TEST SETUP**

### **SUPPORT EQUIPMENT**

NONE

### **I/O CABLES**

|             | I/O Cable List |                      |                   |            |                   |                                                                                       |  |  |  |
|-------------|----------------|----------------------|-------------------|------------|-------------------|---------------------------------------------------------------------------------------|--|--|--|
| Cable<br>No | Port           | # of identical ports | Connector<br>Type | Cable Type | Cable Length (cm) | Remarks                                                                               |  |  |  |
| 1           | CON1           | 1                    | Wire              | Unshielded | 20                | Transmission is initiated when an external contact connected to CON1 opens or closes. |  |  |  |

### **TEST SETUP**

## **SETUP DIAGRAM FOR TESTS**



**DATE: MARCH 9, 2017** 

REPORT NO: 11625260-E1V4 FCC ID: XQC-WST301

## **6. TEST AND MEASUREMENT EQUIPMENT**

The following test and measurement equipment was utilized for the tests documented in this report:

| Test Equipment List                               |                   |                            |             |            |            |  |  |  |
|---------------------------------------------------|-------------------|----------------------------|-------------|------------|------------|--|--|--|
| Description                                       | Manufacturer      | Model                      | T<br>Number | Cal Date   | Cal Due    |  |  |  |
| Spectrum Analyzer, PXA,<br>3Hz to 44GHz           | Agilent           | N9030A                     | 908         | 4/13/2016  | 4/13/2017  |  |  |  |
| Amplifier, 1 to 18GHz                             | Miteq             | AFS42-00101800-<br>25-S-42 | 1165        | 8/1/2016   | 8/1/2017   |  |  |  |
| Amplifier, 1 to 8 GHz                             | Miteq             | AMF-4D-<br>01000800-30-29P | 1170        | 4/28/2016  | 4/28/2017  |  |  |  |
| Amplifier, 10KHz to 1GHz, 32dB                    | Sonoma            | 310                        | 300         | 11/10/2016 | 11/10/2017 |  |  |  |
| Antenna, Horn 1-18GHz                             | ETS Lindgren      | 3117                       | 711         | 1/30/2017  | 1/30/2018  |  |  |  |
| Antenna, Broadband<br>Hybrid,<br>30MHz to 2000MHz | Sunol<br>Sciences | JB1                        | 130         | 9/23/2016  | 9/23/2017  |  |  |  |
| Loop Antenna                                      | ETS Lindgren      | 6502                       | 757         | 12/22/16   | 12/22/17   |  |  |  |

| Test Software List    |              |        |                          |  |  |  |
|-----------------------|--------------|--------|--------------------------|--|--|--|
| Description           | Manufacturer | Model  | Version                  |  |  |  |
| Radiated Software     | UL           | UL EMC | Ver 9.5, Apr 26, 2016    |  |  |  |
| Conducted Software    | UL           | UL EMC | Ver 9.5, May 26, 2015    |  |  |  |
| Antenna Port Software | UL           | UL RF  | Ver 5.1.1, July 15, 2016 |  |  |  |

**DATE: MARCH 9, 2017** 

REPORT NO: 11625260-E1V4 FCC ID: XQC-WST301

### 7. ANTENNA PORT TEST RESULTS

#### 7.1. 20 dB AND 99% BW

#### **LIMITS**

#### FCC §15.231 (c)

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

#### IC A1.1.3

For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

#### **TEST PROCEDURE**

ANSI C63.10

The transmitter output is connected to the spectrum analyzer.

20dB Bandwidth: The RBW is set to 1% to 5% of OBW. The VBW is set to 3 times the RBW. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier.

99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

**DATE: MARCH 9, 2017** 

### **RESULTS**

No non-compliance noted:

### 20dB Bandwidth

| Frequency | 20dB Bandwidth | Limit  | Margin  |
|-----------|----------------|--------|---------|
| (MHz)     | (kHz)          | (kHz)  | (kHz)   |
| 319.5     | 59.76          | 798.75 | -738.99 |

### 99% Bandwidth

| Frequency | 99% Bandwidth | Limit  | Margin  |
|-----------|---------------|--------|---------|
| (MHz)     | (kHz)         | (kHz)  | (kHz)   |
| 319.5     | 590.98        | 798.75 | -207.77 |

### 20dB & 99% BANDWIDTH



REPORT NO: 11625260-E1V4 FCC ID: XQC-WST301

### 7.2. DUTY CYCLE

#### **LIMITS**

FCC §15.35 (c)

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1MHz and the VBW is set to 1MHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan.

#### **CALCULATION**

Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses \* long pulse width) + (# of short pulses \* short pulse width) / 100 or T

#### RESULTS

No non-compliance noted:

| One    | Long Pulse | # of   | Medium Pulse | # of   | Short Pulse | # of   | Duty  | 20*Log     |
|--------|------------|--------|--------------|--------|-------------|--------|-------|------------|
| Period | Width      | Long   | Width        | Medium | Width       | Short  | Cycle | Duty Cycle |
|        |            |        |              |        |             |        |       |            |
| (ms)   | (ms)       | Pulses | (ms)         | Pulses | (ms)        | Pulses |       | (dB)       |

**DATE: MARCH 9, 2017** 

#### **ONE PERIOD**



#### LONG PULSE WIDTH



#### **NUMBER OF LONG PULSES**



#### **MEDIUM PULSE WIDTH**



REPORT NO: 11625260-E1V4 **DATE: MARCH 9, 2017** IC: 9863B-WST301 FCC ID: XQC-WST301

#### **NUMBER OF MEDIUM PULSES**



#### **SHORT PULSE WIDTH**



#### **NUMBER OF SHORT PULSES**



REPORT NO: 11625260-E1V4 FCC ID: XQC-WST301

### 7.3. SUPERVISION TRANSMISSIONS

### **LIMITS**

FCC §15.35 (a) (3)

Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour

#### Results

- 1. According to manufacturer technical description, the device transmits brief supervisory signal at approximately 70 minutes intervals.
- 2. One pulse stream is 1.335ms\*1 + 0.483ms\* 1 + 0.12ms\*58 = 8.8ms. Base on section 7.4 test plot, one transition contain 16 pulse streams which is 8.8ms \* 16 = 140.8ms

**DATE: MARCH 9, 2017** 

### 7.4. TRANSMISSION TIME

#### **LIMITS**

FCC §15.231 (a) (2)

IC A1.1.1 (b)

A transmitter activated automatically shall cease transmission within 5 seconds after activation.

#### **TEST PROCEDURE**

The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 1MHz and the VBW is set to 1MHz. The sweep time is set to 10 seconds and the span is set to 0 Hz.

#### **RESULTS**

No non-compliance noted:



**DATE: MARCH 9, 2017** 

## 8. RADIATED EMISSION TEST RESULTS

#### TX RADIATED SPURIOUS EMISSION 8.1.

### **LIMITS**

FCC §15.231 (b)

IC A1.1.2

In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following:

| Fundamental frequency (MHz) | Field strength of fundamental (microvolts/meter) | Field strength of spurious emissions (microvolts/meter) |
|-----------------------------|--------------------------------------------------|---------------------------------------------------------|
| 40.66-40.70                 | 2,250                                            | 225                                                     |
| 70-130                      | 1,250                                            | 125                                                     |
| 130-174                     | <sup>1</sup> 1,250 to 3,750                      | <sup>1</sup> 125 to 375                                 |
| 174-260                     | 3,750                                            | 375                                                     |
| 260-470                     | <sup>1</sup> 3,750 to 12,500                     | <sup>1</sup> 375 to 1,250                               |
| Above 470                   | 12,500                                           | 1,250                                                   |

<sup>&</sup>lt;sup>1</sup>Linear interpolation

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                        | MHz                 | MHz             | GHz              |
|----------------------------|---------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423      | 399.9 - 410     | 4.5 - 5.15       |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475 | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67        | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25        | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6           | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2         | 1660 - 1710     | 10.6 - 12.7      |
| 6.26775 - 6.26825          | 108 - 121.94        | 1718.8 - 1722.2 | 13.25 - 13.4     |
| 6.31175 - 6.31225          | 123 - 138           | 2200 - 2300     | 14.47 - 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05      | 2310 - 2390     | 15.35 - 16.2     |
| 8.362 - 8.366              | 156.52475 -         | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.52525           | 2655 - 2900     | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 156.7 - 156.9       | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 162.0125 - 167.17   | 3332 - 3339     | 31.2 - 31.8      |
| 12.51975 - 12.52025        | 167.72 - 173.2      | 3345.8 - 3358   | 36.43 - 36.5     |
| 12.57675 - 12.57725        | 240 - 285           | 3600 - 4400     | ( <sup>2</sup> ) |
| 13.36 – 13.41              | 322 - 335.4         |                 |                  |

**DATE: MARCH 9, 2017** 

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| quency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) |
|--------------|-----------------------------------|-------------------------------|
| 0.009-0.490  | 2400/F(kHz)                       | 300                           |
| 0.490-1.705  | 24000/F(kHz)                      | 30                            |
| 1.705-30.0   | 30                                | 30                            |
| 30-88        | 100**                             | 3                             |
| 88-216       | 150**                             | 3                             |
| 216-960      | 200**                             | 3                             |
| Above 960    | 500                               | 3                             |

<sup>\*\*</sup> Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

#### **TEST PROCEDURE**

The EUT is placed on a non-conducting table 80 cm above the ground plane for below 1GHz and 150 cm for above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and add duty cycle factor for average measurements. Please refer to test report section 7.2 for duty cycle factor information. Note: The pre-scan measurements above 1 GHz the VBW is set to 30 kHz.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

#### **RESULTS**

No non-compliance noted:

### FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 - 1000 MHz)



**DATE: MARCH 9, 2017** 

#### **BELOW 1GHZ RADIATED EMISSIONS**

| Marker | Frequency | Meter   | Det | AF T408 (dB/m) | Amp/Cbl (dB) | Corrected | Limit    | Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|-----|----------------|--------------|-----------|----------|--------|---------|--------|----------|
|        | (MHz)     | Reading |     |                |              | Reading   | (dBuV/m) | (dB)   | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |     |                |              | (dBuV/m)  |          |        |         |        |          |
| 7      | 30.4675   | 36.03   | Pk  | 25             | -27.2        | 33.83     | 40       | -6.17  | 0-360   | 100    | Н        |
| 1      | 39.5625   | 35.31   | Pk  | 18.3           | -27.1        | 26.51     | 40       | -13.49 | 0-360   | 100    | Н        |
| 2      | 319.5     | 95.33   | Pk  | 17.9           | -24.2        | 89.03     | -        | -      | 0-360   | 100    | Н        |
| 4      | 319.5     | 88.71   | Pk  | 17.9           | -24.2        | 82.41     | -        | -      | 0-360   | 200    | V        |
| 3      | 639       | 55.01   | Pk  | 23.7           | -24.1        | 54.61     | -        | -      | 0-360   | 100    | Н        |
| 5      | 639       | 48.13   | Pk  | 23.7           | -24.1        | 47.73     | -        | -      | 0-360   | 300    | V        |
| 6      | 703.1     | 32.94   | Pk  | 24.2           | -23.6        | 33.54     | 46.02    | -12.48 | 0-360   | 200    | V        |

#### **FUNDAMENTAL AND HARMONICS SPURIOUS EMISSIONS**

| Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | AF T408 (dB/m) | Amp/Cbl (dB) | Corrected<br>Reading<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------------------|----------------------------|-----|----------------|--------------|----------------------------------|-------------------|----------------|-------------------|----------------|----------|
| 319.5058           | 90.77                      | Pk  | 17.9           | -24.2        | 84.47                            | 95.89             | -11.42         | 56                | 147            | V        |
|                    |                            | Av  |                |              | 63.34                            | 75.89             | -12.55         |                   |                |          |
| 319.5086           | 95.28                      | Pk  | 17.9           | -24.2        | 88.98                            | 95.89             | -6.91          | 306               | 101            | Н        |
|                    |                            | Av  |                |              | 67.85                            | 75.89             | -8.04          |                   |                |          |
| 639.0106           | 50.8                       | Pk  | 23.7           | -24.1        | 50.4                             | 75.89             | -25.49         | 198               | 126            | V        |
|                    |                            | Av  |                |              | 29.27                            | 55.89             | -26.62         |                   |                |          |
| 639.0158           | 58.25                      | Pk  | 23.7           | -24.1        | 57.85                            | 75.89             | -18.04         | 278               | 131            | Н        |
|                    |                            | Av  |                |              | 36.72                            | 55.89             | -19.17         |                   |                |          |

<sup>\*</sup> Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is -21.13dB

(# of long pulses \* long pulse width) + (# of ,medium pulses \* medium pulse width) + (# of short pulses \* short pulse width) / 100 or T

Refer to section 7.2 for duty cycle factor calculation (-21.13dB)

Note: Radiated peak result is based on 100% duty cycle sample; average reading = peak reading + DCCF

<sup>\*\*</sup> Harmonics of fundamental 319.5MHz

### **HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz**



**DATE: MARCH 9, 2017** 

#### Radiated Emissions

| Frequency | Meter             | Det | AF T119 | Amp/Cbl | Corrected           | Peak Limit | Avg Limit | Peak           | Avg            | Azimuth | Height | Polarity |
|-----------|-------------------|-----|---------|---------|---------------------|------------|-----------|----------------|----------------|---------|--------|----------|
| (GHz)     | Reading<br>(dBuV) |     | (dB/m)  | (dB)    | Reading<br>(dBuV/m) | (dBuV/m)   | (dBuV/m)  | Margin<br>(dB) | Margin<br>(dB) | (Degs)  | (cm)   |          |
| **1.278   | 41.46             | Pk  | 29.7    | -31.8   | 39.36               | 74         | -         | -34.64         | -              | 0       | 319    | Н        |
|           |                   | Av  |         |         | 18.23               | -          | 54        | -              | -35.77         | 0       | 319    | Н        |
| **1.597   | 51.71             | Pk  | 28      | -31.5   | 48.21               | 74         | -         | -25.79         | -              | 116     | 367    | V        |
|           |                   | Av  |         |         | 27.08               | -          | 54        | -              | -26.92         | 116     | 367    | V        |
| **1.598   | 55.8              | Pk  | 28      | -31.5   | 52.3                | 74         | -         | -21.7          | -              | 228     | 135    | Н        |
|           |                   | Av  |         |         | 31.17               | -          | 54        | -              | -22.83         | 228     | 135    | Н        |
| **1.917   | 56.85             | Pk  | 31.4    | -31     | 57.25               | 74         | -         | -16.75         | -              | 225     | 398    | Н        |
|           |                   | Av  |         |         | 36.12               | -          | 54        | -              | -17.88         | 225     | 398    | Н        |
| **1.917   | 55.11             | Pk  | 31.4    | -31     | 55.51               | 74         | -         | -18.49         | -              | 113     | 395    | V        |
|           |                   | Av  |         |         | 34.38               | -          | 54        | -              | -19.62         | 113     | 395    | V        |
| **2.236   | 61.84             | Pk  | 31.7    | -30.9   | 62.64               | 74         | -         | -11.36         | -              | 45      | 388    | V        |
|           |                   | Av  |         |         | 41.51               | -          | 54        | -              | -12.49         | 45      | 388    | V        |
| **2.237   | 64.39             | Pk  | 31.7    | -30.9   | 65.19               | 74         | -         | -8.81          | -              | 163     | 374    | Н        |
|           |                   | Av  |         |         | 44.06               | -          | 54        | -              | -9.94          | 163     | 374    | Н        |
| **2.556   | 63.24             | Pk  | 32.4    | -30.6   | 65.04               | 74         | -         | -8.96          | -              | 337     | 318    | Н        |
|           |                   | Av  |         |         | 43.91               | -          | 54        | -              | -10.09         | 337     | 318    | Н        |
| **2.556   | 61.87             | Pk  | 32.4    | -30.6   | 63.67               | 74         | -         | -10.33         | -              | 186     | 102    | V        |
|           |                   | Av  |         |         | 42.54               | -          | 54        | -              | -11.46         | 186     | 102    | V        |
| **2.876   | 62.92             | Pk  | 32.7    | -30.3   | 65.32               | 74         | -         | -8.68          | -              | 16      | 345    | Н        |
|           |                   | Av  |         |         | 44.19               | -          | 54        | -              | -9.81          | 16      | 345    | Н        |
| **2.876   | 65.54             | Pk  | 32.7    | -30.3   | 67.94               | 74         | -         | -6.06          | -              | 236     | 347    | V        |
|           |                   | Av  |         |         | 46.81               | -          | 54        | -              | -7.19          | 236     | 347    | V        |
| **3.195   | 65.96             | Pk  | 33      | -30.1   | 68.86               | 74         | -         | -5.14          | -              | 273     | 309    | Н        |
|           |                   | Av  |         |         | 47.73               | -          | 54        | -              | -6.27          | 273     | 309    | Н        |
| **3.195   | 65.69             | Pk  | 33      | -30.1   | 68.59               | 74         | -         | -5.41          | -              | 265     | 103    | V        |
|           |                   | Av  |         |         | 47.46               | -          | 54        | -              | -6.54          | 265     | 103    | V        |
| **3.514   | 69.38             | Pk  | 32.8    | -29.7   | 72.48               | 74         | -         | -1.52          | -              | 286     | 112    | V        |
|           |                   | Av  |         |         | 51.35               | -          | 54        | -              | -2.65          | 286     | 112    | V        |
| **3.514   | 70.49             | Pk  | 32.8    | -29.7   | 73.59               | 74         | -         | 41             | -              | 260     | 124    | Н        |
|           |                   | Av  |         |         | 52.46               | -          | 54        | -              | -1.54          | 260     | 124    | Н        |
| **3.834   | 64.24             | Pk  | 33      | -29.5   | 67.74               | 74         | -         | -6.26          | -              | 215     | 335    | Н        |
|           |                   | Av  |         |         | 46.61               | -          | 54        | -              | -7.39          | 215     | 335    | Н        |
| **3.834   | 66.64             | Pk  | 33      | -29.5   | 70.14               | 74         | -         | -3.86          | -              | 237     | 199    | V        |
|           |                   | Av  |         |         | 49.01               | -          | 54        | -              | -4.99          | 237     | 199    | V        |
| **4.154   | 60.92             | Pk  | 33.6    | -29.3   | 65.22               | 74         | -         | -8.78          | -              | 125     | 171    | Н        |
|           |                   | Av  |         |         | 44.09               | -          | 54        | -              | -9.91          | 125     | 171    | Н        |
| **4.154   | 61.34             | Pk  | 33.6    | -29.3   | 65.64               | 74         | -         | -8.36          | -              | 136     | 393    | V        |
|           |                   | Av  |         |         | 44.51               | -          | 54        | -              | -9.49          | 136     | 393    | V        |
| **4.473   | 57.58             | Pk  | 34.1    | -29     | 62.68               | 74         | -         | -11.32         | -              | 203     | 206    | Н        |
|           |                   | Av  |         |         | 41.55               | -          | 54        | -              | -12.45         | 203     | 206    | Н        |
| **4.473   | 58.74             | Pk  | 34.1    | -29     | 63.84               | 74         | -         | -10.16         | -              | 147     | 100    | V        |
|           |                   | Av  |         |         | 42.71               | -          | 54        | -              | -11.29         | 147     | 100    | V        |
| **4.792   | 60.8              | Pk  | 34.2    | -28.5   | 66.5                | 74         | -         | -7.5           | -              | 227     | 101    | Н        |
|           |                   | Av  |         |         | 45.37               | -          | 54        | -              | -8.63          | 227     | 101    | Н        |
| **4.792   | 58.48             | Pk  | 34.2    | -28.5   | 64.18               | 74         | -         | -9.82          | -              | 50      | 200    | V        |
|           |                   | Av  |         |         | 43.05               | -          | 54        | -              | -10.95         | 50      | 200    | V        |

<sup>\*</sup> Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is -21.13dB

(# of long pulses \* long pulse width) +(# of ,medium pulses \* medium pulse width) + (# of short pulses \* short pulse width) / 100 or T

Refer to section 7.2 for duty cycle factor calculation(-21.13dB)

Note: Radiated peak result is based on 100% duty cycle sample; average reading = peak reading + DCCF

<sup>\*\*</sup> Harmonics of fundamental 319.5MHz

### **BELOW 30MHz**



NOTE: KDB 937606 OATS and Chamber Correlation Justification

- Based on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.
- OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

**DATE: MARCH 9, 2017** 

#### **BELOW 30MHz RADIATED EMISSIONS**

### **Trace Markers**

| Marker | Frequency | Meter   | Det | Loop Antenna | Cbl (dB) | Dist Corr 300m | Corrected  | Peak Limit | Margin | Avg Limit | Margin | Azimuth |
|--------|-----------|---------|-----|--------------|----------|----------------|------------|------------|--------|-----------|--------|---------|
|        | (MHz)     | Reading |     | (dB/m)       |          |                | Reading    | (dBuV/m)   | (dB)   | (dBuV/m)  | (dB)   | (Degs)  |
|        |           | (dBuV)  |     |              |          |                | (dBuVolts) |            |        |           |        |         |
| 1      | .02331    | 39.17   | Pk  | 13.5         | .1       | -80            | -27.23     | 60.25      | -87.48 | 40.25     | -67.48 | 0-360   |
| 4      | .03847    | 37.43   | Pk  | 12.3         | .1       | -80            | -30.17     | 55.9       | -86.07 | 35.9      | -66.07 | 0-360   |
| 2      | .33082    | 42.05   | Pk  | 10.7         | .1       | -80            | -27.15     | 37.21      | -64.36 | 17.21     | -44.36 | 0-360   |

#### Pk - Peak detector

| Marker | Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | Loop Antenna<br>(dB/m) | Cbl (dB) | Dist Corr 30m | Corrected<br>Reading<br>(dBuVolts) | Peak Limit<br>(dBuV/m) | Margin<br>(dB) | Avg Limit (dBuV/m) | Margin<br>(dB) | Azimuth<br>(Degs) |
|--------|--------------------|----------------------------|-----|------------------------|----------|---------------|------------------------------------|------------------------|----------------|--------------------|----------------|-------------------|
| 5      | 3.47926            | 20.85                      | Pk  | 10.8                   | .3       | -40           | -8.05                              | 29.54                  | -37.59         | -                  | -              | 0-360             |
| 3      | 10.9295            | 10.71                      | Pk  | 10.8                   | .5       | -40           | -17.99                             | 29.54                  | -47.53         | -                  | -              | 0-360             |
| 6      | 18.95456           | 8.29                       | Pk  | 10.2                   | .6       | -40           | -20.91                             | 29.54                  | -50.45         | -                  | -              | 0-360             |

Pk - Peak detector