Lecture 7. Generalisation with Finite VC Dimension

COMP90051 Statistical Machine Learning

Lecturer: Jean Honorio

This lecture

- Motivation
- Growth function
 - Considering patterns of labels possible on a data set
 - Gives good generalisation bounds provided possible patterns don't grow too fast in the data set size
- Vapnik-Chervonenkis (VC) dimension
 - Max number of points that can be labelled in all ways
 - Beyond this point, growth function is polynomial in data set size
 - Leads to famous VC generalisation theorem

Motivation

...from last lecture

A Countably Finite Model Class

• Consider we have 2 features and a countably finite set \mathcal{F} of classifiers, containing:

$$f(x) = \operatorname{sgn}(x_1 + x_2) = \begin{cases} +1, & \text{if } x_1 + x_2 > 0 \\ -1, & \text{if } x_1 + x_2 \le 0 \end{cases}$$

$$f(x) = \operatorname{sgn}(x_1 - x_2)$$

$$f(x) = \operatorname{sgn}(-x_1 + x_2)$$

$$f(x) = \operatorname{sgn}(-x_1 - x_2)$$

$$f(x) = \operatorname{sgn}(x_1)$$

$$f(x) = \operatorname{sgn}(x_1)$$

$$f(x) = \operatorname{sgn}(x_2)$$

$$f(x) = \operatorname{sgn}(-x_2)$$

• Here $|\mathcal{F}| = 8$

Empirical Risk Minimisation

- Training data $D = \{x_1, y_1, ..., x_n, y_n\}$ is a random variable!
 - * (x_i, y_i) i.i.d. with distribution P (unknown)
- The empirical risk of a classifier f for loss l is

$$\widehat{R}_{\mathbf{D}}[\mathbf{f}] = \frac{1}{n} \sum_{i=1}^{n} l(y_i, \mathbf{f}(\mathbf{x}_i))$$

• ERM: \hat{f}_D minimises the empirical risk

$$\hat{f}_{D} = \operatorname{argmin}_{f \in \mathcal{F}} \hat{R}_{D}[f]$$

Go trough all the $|\mathcal{F}| = 8$ classifiers and choose the best for data D

• Given f and n samples in D, we can compute $\hat{R}_{D}[f]$

True Risk

- The true risk is the expected value of the loss l
 - * Intuitively speaking, the true risk is the empirical risk when using an infinite number of samples
- The true risk of a classifier f for loss l is

$$R[f] = \mathbb{E} l(Y, f(X)) = \int l(Y, f(X)) P(X, Y) dX dY$$

aka generalisation error (expected test error) for

$$l(y,y') = \begin{cases} 1, & \text{if } y \neq y' \\ 0, & \text{if } y = y' \end{cases}$$

• Given f, we cannot compute R[f] because the data distribution P is unknown

Generalisation Theorem

• For a finite model class \mathcal{F} , without knowing the data distribution P, with probability $\geq 1 - \delta$ over the choice of the training set D of n i.i.d. samples

$$R[\hat{f}_{D}] \leq \hat{R}_{D}[\hat{f}_{D}] + \sqrt{\frac{\log |\mathcal{F}| + \log(1/\delta)}{2n}}$$
We cannot compute $R[f]$, but we can

The proof-sketch required upper bounding

$$\max_{f \in \mathcal{F}} \varphi_{D}[f] = \max_{f \in \mathcal{F}} (R[f] - \hat{R}_{D}[f])$$

bound it!

Non-(Countably Finite) Model Class?

- Finite model class
 - Bounding uniform deviation with union bound and Hoeffding's inequality
- Consider we have 2 features and an uncountable set \mathcal{F} of classifiers, containing for all $w_1 \in \mathbb{R}$, $w_2 \in \mathbb{R}$:

$$f(x) = \operatorname{sgn}(w_1 x_1 + w_2 x_2)$$

As before, still requires upper bounding

$$\sup_{f \in \mathcal{F}} (R[f] - \hat{R}_{D}[f])$$

Mini Summary

- No good for general (countably infinite and uncountable) cases
- Need another fundamentally new idea

Next: Organising analysis around patterns of labels possible on any data set

Growth Function

Focusing on the size of model families on data samples

• Consider a dataset of 6 samples, each with a single continuous feature (x) and label (y)

\boldsymbol{x}	У
0	+1
4	-1
-2	+1
1	+1
-3	-1
2	-1

• We would like to find a threshold β , and then classify all samples with feature value x above β as +1, and feature value x below β as -1 (or viceversa)

Lets sort with respect to x

\boldsymbol{x}	у
0	+1
4	-1
-2	+1
1	+1
-3	-1
2	-1

X	у
-3	-1
-2	+1
0	+1
1	+1
2	-1
4	-1

Lets use the classifier:

$$f(x) = \operatorname{sgn}(x - \beta) = \begin{cases} +1, & \text{if } x > \beta \\ -1, & \text{if } x \le \beta \end{cases}$$

• How to find the threshold β ? Try all midpoints of x

Lets use the classifier:

$$f(x) = \operatorname{sgn}(x - \beta) = \begin{cases} +1, & \text{if } x > \beta \\ -1, & \text{if } x \le \beta \end{cases}$$

• Count the number of mistakes for all thresholds β

х	у	f(x)				
		β =-2.5	β=-1	β =0.5	β =1.5	β =3
-3	-1	-1	-1	-1	-1	-1
-2	+1	+1	-1	-1	-1	-1
0	+1	+1	+1	-1	-1	-1
1	+1	+1	+1	+1	-1	-1
2	-1	+1	+1	+1	+1	-1
4	-1	+1	+1	+1	+1	+1
# mistal	kes	2	3	4	5	4

Lets use the classifier:

$$f(x) = \operatorname{sgn}(\beta - x) = \begin{cases} +1, & \text{if } x < \beta \\ -1, & \text{if } x \ge \beta \end{cases}$$

• Count the number of mistakes for all thresholds β

x	у	f(x)				
		β =-2.5	β=-1	β =0.5	β =1.5	β =3
-3	-1	+1	+1	+1	+1	+1
-2	+1	-1	+1	+1	+1	+1
0	+1	-1	-1	+1	+1	+1
1	+1	-1	-1	-1	+1	+1
2	-1	-1	-1	-1	-1	+1
4	-1	-1	-1	-1	-1	-1
# mistal	kes	4	3	2	1	2

Thus our best decision stump classifier is

$$f(x) = \operatorname{sgn}(1.5 - x) = \begin{cases} +1, & \text{if } x < 1.5 \\ -1, & \text{if } x \ge 1.5 \end{cases}$$

• We consider all classifiers of the form (for all $\beta \in \mathbb{R}$)

$$f(x) = \operatorname{sgn}(x - \beta) = \begin{cases} +1, & \text{if } x > \beta \\ -1, & \text{if } x \le \beta \end{cases}$$
$$f(x) = \operatorname{sgn}(\beta - x) = \begin{cases} +1, & \text{if } x < \beta \\ -1, & \text{if } x \le \beta \end{cases}$$

• Although these are simple classifiers, the set of decision stump classifiers \mathcal{F} is uncountable (there are as "many" as real values)

Example: Growth function of Decision stumps

Consider all possible ways we can classify data

$$f(x) = \operatorname{sgn}(x - \beta) = \begin{cases} +1, & \text{if } x > \beta \\ -1, & \text{if } x \le \beta \end{cases}$$

$$f(x) = \operatorname{sgn}(x - \beta) = \begin{cases} +1, & \text{if } x > \beta \\ -1, & \text{if } x \le \beta \end{cases} \qquad f(x) = \operatorname{sgn}(\beta - x) = \begin{cases} +1, & \text{if } x < \beta \\ -1, & \text{if } x \ge \beta \end{cases}$$

x	f(x)					
	β=-2.5	β=-1	β=0.5	β=1.5	β=3	β=∞
-3	-1	-1	-1	-1	-1	-1
-2	+1	-1	-1	-1	-1	-1
0	+1	+1	-1	-1	-1	-1
1	+1	+1	+1	-1	-1	-1
2	+1	+1	+1	+1	-1	-1
4	+1	+1	+1	+1	+1	-1

x	f(x)					
	β=-2.5	β=-1	β=0.5	β=1.5	β=3	β=∞
-3	+1	+1	+1	+1	+1	+1
-2	-1	+1	+1	+1	+1	+1
0	-1	-1	+1	+1	+1	+1
1	-1	-1	-1	+1	+1	+1
2	-1	-1	-1	-1	+1	+1
4	-1	-1	-1	-1	-1	+1

- A dichotomy (in blue) is one way of classifying the 6 samples
- We have 12 unique dichotomies

Dichotomies

• Given dataset $X = \{x_1, ..., x_n\}$ of size |X| = n and a classifier $f \in \mathcal{F}$, a **dichotomy** is the pattern of labels (n-dimensional vector of labels) produced by f on X

$$(f(x_1), \dots, f(x_n)) \in \{-1, +1\}^n.$$

• Unique dichotomies: unique patterns of labels possible with all classifiers in the model class \mathcal{F}

$$\mathcal{F}(\mathbf{X}) = \left\{ \left(f(x_1), \dots, f(x_n) \right) : f \in \mathcal{F} \right\}$$

- * Even when \mathcal{F} infinite, $|\mathcal{F}(\mathbf{X})| \leq 2^n$ (why?)
- * For \mathcal{F} countably finite, $|\mathcal{F}(\mathbf{X})| \leq |\mathcal{F}|$ (why?)

Growth Function

The growth function

$$S_{\mathcal{F}}(n) = \sup_{|\mathbf{X}|=n} |\mathcal{F}(\mathbf{X})|$$

- is the maximum number of label patterns achievable by classifiers in the model class \mathcal{F} for any set of n samples.
 - * Even when \mathcal{F} infinite, $S_{\mathcal{F}}(n) \leq 2^n$ (why?)
 - * For \mathcal{F} countably finite, $S_{\mathcal{F}}(n) \leq |\mathcal{F}|$ (why?)

Example: Growth function of Decision stumps

- In general, the set of decision stump classifiers lead to 2n unique dichotomies for n samples
 - * We classify the n samples as -1's followed by +1's
 - * We also classify the n samples as +1's followed by -1's
- Thus, $S_{\mathcal{F}}(n) = 2n$
- More complex classifiers would lead to more than 2n unique dichotomies for n samples

Growth-Function Generalisation Theorem

• For a model class \mathcal{F} with growth function $S_{\mathcal{F}}(n)$, without knowing the data distribution P, with probability $\geq 1 - \delta$ over the choice of the training set D of n i.i.d. samples

$$R[\hat{f}_D] \le \hat{R}_D[\hat{f}_D] + \sqrt{8 \frac{\log S_F(2n) + \log(4/\delta)}{n}}$$

(Proof outside scope of COMP90051)

- * $|\mathcal{F}|$ becomes $S_{\mathcal{F}}(2n)$, and few negligible extra constants
- * If $S_{\mathcal{F}}(n)$ grows exponentially in n, e.g., $S_{\mathcal{F}}(n) = 2^n$ then $\frac{\log S_{\mathcal{F}}(2n)}{n} = 2\log 2$, the bound does not decay with more samples n

Mini Summary

- Better to organise families by possible patterns of labels on a data set: the dichotomies of the model class
- Counting possible dichotomies gives the growth function
- Generalisation bound with growth function potentially tackles general (countably infinite and uncountable) families provided growth function is sub-exponential in data size

Next: VC dimension for a computable bound on growth functions, with the polynomial behaviour we need! Gives our final VC generalisation bound

The VC dimension

Computable, bounds growth function

Vapnik-Chervonenkis dimension

- The VC dimension $VC(\mathcal{F})$ of a model class \mathcal{F} is the largest n such that $S_{\mathcal{F}}(n) = 2^n$.
- Set of samples $X = \{x_1, ..., x_n\}$ are shattered by F if $|F(X)| = 2^n$, that is, if X can be classified in all possible ways
- $VC(\mathcal{F})$ is the size of the largest set of samples shattered by \mathcal{F}

Example: VC Dimension of Decision Stumps

- Recall that for decision stump classifiers $S_{\mathcal{F}}(n) = 2n$
- Find the maximum n for which $2n = 2^n$
- The VC dimension is $VC(\mathcal{F}) = 2$

n	2n	2^n
1	2	2
2	4	4
3	6	8

=2	+1	+1	-1	-1
u=	+1	-1	+1	-1

	+1							
n = 3	+1	+1	-1	-1	+1	+1	-1	-1
`	+1	-1	+1	-1	+1	-1	+1	-1

2 ways $(2^3-2^*3 = 2)$ of classifying (in red) are not -1's followed by +1's, neither +1's followed by -1's

Example 2: Growth function for linear classifiers in 2D

- Black means f(x)=-1
- Yellow means f(x)=1

$$S_{\mathcal{F}}(3) = 8$$

Example 2: Growth function for linear classifiers in 2D

The possible patterns should be

Example 2: Growth function for linear classifiers in 2D

- What about n = 4 points?
- Can never produce the criss-cross (XOR) dichotomy

• In fact $S_{\mathcal{F}}(4) = 14 < 2^4$

Example 2: VC dimension for linear classifiers in 2D

• Example: linear classifiers in \mathbb{R}^2 , $VC(\mathcal{F}) = 3$

• Guess: VC dimension of linear classifiers in \mathbb{R}^d ?

Example 3: VC dimension from dichotomies on whole domain?

x_1	x_2	x_3	x_4
0	0	0	0
0	1	1	0
1	0	0	1
1	1	0	1
0	1	0	0
1	0	1	0
1	1	1	1
0	0	1	1
0	1	0	1
1	1	1	0

Note we're using labels {0,1} instead of {-1,+1}. Why OK?

- Columns are all points in domain
- Each row is a dichotomy on entire input domain
- Obtain dichotomies on a subset of samples $\mathcal{X}' \subseteq \{x_1, ..., x_4\}$ by: drop columns, drop dupe rows
- \mathcal{F} shatters \mathcal{X}' if number of rows is $2^{|\mathcal{X}'|}$

x_1	x_2	x_4
0	0	$\frac{x_4}{0}$
0	1	0
1	0	1
1	1	1
θ	1	θ
1	0	0
1	1	1
0	0	1
0	1	1
1	1	0

This example:

- Dropping column 3
 leaves 8 rows behind:
 \$\mathcal{F}\$ shatters \$\{x_1, x_2, x_4\}\$
- Original table has $< 2^4$ rows: \mathcal{F} doesn't shatter more than 3
- $VC(\mathcal{F}) = 3$

Sauer-Shelah Lemma

• Consider any model class \mathcal{F} with finite $VC(\mathcal{F})$, and any sample size n. Then

$$S_{\mathcal{F}}(n) \leq \sum_{i=0}^{VC(\mathcal{F})} \binom{n}{i}$$

(Proof outside scope of COMP90051)

• Since $\sum_{i=0}^{k} {n \choose i} \leq (n+1)^k$, the above implies

$$\log S_{\mathcal{F}}(n) \le VC(\mathcal{F})\log(n+1)$$

VC Generalisation Theorem

• For a model class \mathcal{F} with VC dimension $VC(\mathcal{F})$, without knowing the data distribution P, with probability $\geq 1 - \delta$ over the choice of the training set D of n i.i.d. samples

$$R[\hat{f}_{D}] \leq \hat{R}_{D}[\hat{f}_{D}] + \sqrt{8 \frac{\text{VC}(\mathcal{F}) \log(2n+1) + \log(4/\delta)}{n}}$$

 Proof-sketch: From the growth-function generalization theorem and since

$$\log S_{\mathcal{F}}(2n) \le VC(\mathcal{F})\log(2n+1)$$

Structural Risk Minimisation

 Choose the model class F with best guarantee of generalisation:

$$\widehat{R}_{D}[\widehat{f}_{D}] + \sqrt{8 \frac{\text{VC}(\mathcal{F}) \log(2n+1) + \log(4/\delta)}{n}}$$

Large for simple classifiers, small for complex classifiers

Small for simple classifiers (small $VC(\mathcal{F})$), large for complex classifiers (large $VC(\mathcal{F})$)

Large for small n (few samples), small for large n (many samples)

Mini Summary

- VC dimension is the size of the largest set of samples shattered by a model class
 - * It is d+1 for linear classifiers in \mathbb{R}^d
- Sauer-Shelah: The growth function grows only polynomially in the set size beyond the VC dimension
- As a result, VC generalisation bounds true risk and empirical risk deviation by $O(\sqrt{(VC(\mathcal{F})\log n)/n})$

Much more...

- Finite VC dimension equivalent to Provably approximately correct (PAC) learning
- VC dimension is not the only tool in learning theory
 - Some problems might have infinite VC dimension
 - Other problems beyond classification
- The generalization of some methods require different complexity measures or analysis frameworks, such as:
 - Fat shattering dimension
 - Provably approximately correct (PAC) Bayes bounds
 - Rademacher complexity