

VanillaNet: the Power of Minimalism in Deep Learning

Paper Reading by Zhiying Lu 2023.06.05

- □作者介绍
- □研究背景
- □方法
- □实验效果
- □总结

Hanting Chen

Huawei Noah's Ark Lab Verified email at pku.edu.cn

deep learning machine learning computer vision

	1300
	975
	650
	325
2019 2020 2021 2022 2023	0

Since 2018

8052

Public access

All

8103

Cited by

VIEW ALL

12 articles

CITED BY YEAR TITLE Pre-trained image processing transformer 903 2021 H Chen, Y Wang, T Guo, C Xu, Y Deng, Z Liu, S Ma, C Xu, C Xu, W Gao Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern ... A survey on vision transformer 2022 804 K Han, Y Wang, H Chen, X Chen, J Guo, Z Liu, Y Tang, A Xiao, C Xu, IEEE transactions on pattern analysis and machine intelligence 45 (1), 87-110 **Data-Free Learning of Student Networks** 262 2019 H Chen, Y Wang, C Xu, Z Yang, C Liu, B Shi, C Xu, C Xu, Q Tian

AdderNet: Do we really need multiplications in deep learning?

Proceedings of the IEEE International Conference on Computer Vision, 3514-3522

H Chen. Y Proceedin

ICCV. 3514-3522

Yunhe Wang (王云鹤)

Other names >

H Chen, Y Wang, C Xu, Z Yang, C Liu, B Shi, C Xu, C Xu, Q Tian

Senior Researcher, Huawei Noah's Ark Lab, Huawei Technologies Verified email at huawei.com - Homepage

Deep learning Computer vision Machine learning

TITLE	CITED BY	YEAR
GhostNet: More features from cheap operations K Han, Y Wang, Q Tian, J Guo, C Xu, C Xu CVPR, 1580-1589	1429	2020
Pre-trained image processing transformer H Chen, Y Wang, T Guo, C Xu, Y Deng, Z Liu, S Ma, C Xu, C Xu, W Gao CVPR, 12299-12310	903	2021
A survey on vision transformer K Han, Y Wang, H Chen, X Chen, J Guo, Z Liu, Y Tang, A Xiao, C Xu, IEEE transactions on pattern analysis and machine intelligence 45 (1), 87-110	804 *	2022
Transformer in transformer K Han, A Xiao, E Wu, J Guo, C Xu, Y Wang Advances in Neural Information Processing Systems 34, 15908-15919	717	2021
Data-Free Learning of Student Networks	262	2019

Cited by

Citations

2020

173

FOLLOW

Public access	VIEW ALL
0 articles	65 articles
not available	available
Based on funding mandates	

ntent Computing Lab

Jianyuan Guo

<u>University of Sydney</u> Verified email at uni.sydney.edu.au - <u>Homepage</u>

2020

引用次数

306

A survey on vision transformer	515	2022	
Ocnet: Object context network for scene parsing Y Yuan, L Huang, J Guo, C Zhang, X Chen, J Wang arXiv preprint arXiv:1809.00916	538	2018	
Transformer in transformer K Han, A Xiao, E Wu, J Guo, C Xu, Y Wang Advances in Neural Information Processing Systems 34, 15908-15919	717	2021	
Ghostnet: More features from cheap operations K Han, Y Wang, Q Tian, J Guo, C Xu, C Xu Proceedings of the IEEE/CVF conference on computer vision and pattern	1429	2020	
TITLE	CITED BY	YEAR	

200	
650	
100	.11
550	
0	2019 2020 2021 2022 2023

Public access	VIEW ALL
1 article	15 articles
not available	available

查看全部

Based on funding mandates

Cmt: J Guo Proce

A survey on visual transformer

arXiv preprint arXiv:2012 12556 2 (A)

Dacheng Tao

K Han, Y Wang, H Chen, X Chen, J Guo, Z Liu, Y Tang, A Xiao, C Xu, ... IEEE transactions on pattern analysis and machine intelligence 45 (1), 87-110

K Han, Y Wang, H Chen, X Chen, J Guo, Z Liu, Y Tang, A Xiao, C Xu, ...

The <u>University of Sydney</u> 在 sydney.edu.au 的电子邮件经过验证 - <u>首页</u>

artificial intelligence machine learning computer vision image processing data mining

标题	引用次数	年份
Dehazenet: An end-to-end system for single image haze removal B Cai, X Xu, K Jia, C Qing, D Tao IEEE Transactions on Image Processing 25 (11), 5187-5198	2152	2016
The visual object tracking vot2015 challenge results M Kristan, J Matas, A Leonardis, M Felsberg, L Cehovin, G Fernandez, Proceedings of the IEEE international conference on computer vision	2030	2015
Deep ordinal regression network for monocular depth estimation H Fu, M Gong, C Wang, K Batmanghelich, D Tao Proceedings of the IEEE conference on computer vision and pattern	1435	2018
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge S Bakas, M Reyes, A Jakab, S Bauer, M Rempfler, A Crimi, RT Shinohara, arXiv preprint arXiv:1811.02629	1373	2018

	总计	2018 年至今
引用	98026	70230
h 指数	152	128
10 指数	940	814
		18000
	- 1	13500
	ш	9000
ш	ш	4500
016 2017 2018 20	10 2020 2021	2022 2022 0

开放获取的出版物数量	查看全部	计算实验室
182 篇文章	483 管文音	
	可查看的文章	

- □作者介绍
- □研究背景
- □方法
- □实验效果
- □总结

- CNN和ViT作为模型的backbone部分,承担了基础视觉特征提取任务
- 同时,嵌入式AI芯片逐渐成为主流
- AlexNet、ResNet和ViT,是视觉网络设计的里程碑,提供了网络设计的范式
- 后续提出的网络包含了大量人工设计的模块,在增加网络复杂度的同时, 使网络具有更强的表征能力

- 网络的复杂度虽然能提升表征能力, 但也造成了实际部署的困难
- 例如ResNet中的shortcut就会消耗大量的off-chip memory traffic,
 因为它进行了多层特征的融合
- SwinTrans中的window shift和
 AS-MLP中的axial shift操作需要
 大量工程实现,包括重写CUDA等

Table 1: Max memory (KB) on the mobile NPU Input size 256 384 512 ResNet50 438737 832733 OOM plain-CNN 50 356657 669397 1106989 Reduction 18.7% 19.6%

Horizontal shift

- 因此将网络范式设计精简化很重要
- 类似ResNet网络的设计就偏离了精简化,但是不加shortcut会导致梯度消失问题,单纯增加卷积层的深度提升不如预期
- 简单网络如AlexNet和VGG的设计和优化受到的关注不多,因此该研究点具有较大的价值

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

AlexNet

Image: 224 (height) × 224 (width) × 3 (channels
Convolution with 11×11 kernel+4 stride: 54×54×96
√ ReLu
Pool with 3×3 max. kernel+2 stride: 26×26×96
Convolution with 5×5 kernel+2 pad:26×26×256
√ReLu
Pool with 3×3 max.kernel+2stride:12×12×256
<u> </u>
Convolution with 3×3 kernel+1 pad:12×12×384
√ReLu
Convolution with 3×3 kernel+1 pad:12×12×384
√ReLu
Convolution with 3×3 kernel+1 pad:12×12×256
√ReLu
Pool with 3×3 max.kernel+2stride:5×5×256
√ flatten
Dense: 4096 fully connected neurons
√ ReLu, dropout p=0.5
Dense: 4096 fully connected neurons
√ ReLu, dropout p=0.5
Dancer 1000 fully connected neurons

Output: 1 of 1000 classes

- 随着AI芯片的发展,网络推理速度的瓶颈不再来自于FLOPs和参数量, 因为GPU可以进行并行计算
- 复杂的结构和网络层数的深度在更大程度上限制了网络的推理速度
- 因此本文在设计时,采用极简的网络层数设计,抛弃复杂的操作如 shortcut和attention,以极少的卷积层数和更快地推理速度,达到 SOTA水平

- □作者介绍
- □研究背景
- □方法
- 口实验效果
- □总结

VanillaNet

- 网络遵循一贯的四个stage设计,但是每个stage只包含一层卷积
- 跨stage采用2x2的maxpooling
- 每个卷积层不含batchnorm,不含shortcut
- 每个卷积层都是1x1卷积,激活函数放在卷积后
- 如何训练这样的网络使其达到SOTA效果?

Deep Training Strategy

__

- 在网络训练的初期,通过训练两个卷积层,中间带激活函数
- 训练完成后,将二者参数融合成为单个卷积层,增加推理速度
- 激活函数会随着网络训练过程,逐步退化为identity mapping

$$A'(x) = (1 - \lambda)A(x) + \lambda x, \qquad \lambda = \frac{e}{E}.$$

```
def forward(self, x):
    if self.deploy:
        x = self.conv(x)
    else:
        x = torch.nn.functional.leaky_relu(x,self.act_learn)
        x = self.conv2(x)

x = self.pool(x)
x = self.act(x)
return x
```

```
	ext{LeakyRELU}(x) = egin{cases} x, & 	ext{if } x \geq 0 \ 	ext{negative\_slope} 	imes x, & 	ext{otherwise} \end{cases}
```


Deep Training Strategy

- 网络在训练时,结构为: conv1-bn1-relu-conv2-bn2
- $W_i' = \frac{\gamma_i}{\sigma_i} W_i, B_i' = \frac{(B_i \mu_i)\gamma_i}{\sigma_i} + \beta_i,$ 首先将relu消除得到: conv1-bn1-conv2-bn2
- 再通过重参数化,将BN参数融入conv1中得到:conv1-conv2
- 最后融合两个1x1conv的参数,得到最终的单层conv

$$y = W^{1} * (W^{2} * x) = W^{1} \cdot W^{2} \cdot \operatorname{im2col}(x) = (W^{1} \cdot W^{2}) * X,$$

卷积层与BN层合并的操作如下:

卷积层公式为

$$Conv(x) = W(x) + b$$

而BN层公式为

$$BN(x) = \gamma * \frac{(x - mean)}{\sqrt{var}} + \beta$$

然后我们将卷积层结果带入到BN公式中

$$BN(Conv(x)) = \gamma * \frac{W(x) + b - mean}{\sqrt{var}} + \beta$$

进一步化简为

$$BN(Conv(x)) = rac{\gamma * W(x)}{\sqrt{var}} + (rac{\gamma * (b-mean)}{\sqrt{var}} + eta)$$

这其实就是一个卷积层, 只不过权重考虑了BN的参数 我们令:

$$W_{fused} = rac{\gamma * W}{\sqrt{var}}$$
 $B_{fused} = rac{\gamma * (b-mean)}{\sqrt{var}} + eta$ Jack Chen

重参数化: RepVGG

RepVGG: Making VGG-style ConvNets Great Again

Xiaohan Ding 1* Xiangyu Zhang 2 Ningning Ma 3 Jungong Han ⁴ Guiguang Ding ^{1†} Jian Sun ² ¹ Beijing National Research Center for Information Science and Technology (BNRist); School of Software, Tsinghua University, Beijing, China ² MEGVII Technology ³ Hong Kong University of Science and Technology

⁴ Computer Science Department, Aberystwyth University, SY23 3FL, UK

Deep Training Strategy

实际融合BN的操作,以及1x1卷积参数的融合:

```
if self.deploy:
                                                                     def fuse bn tensor(self, conv, bn):
    self.conv = nn.Conv2d(dim, dim out, kernel size=1)
                                                                         kernel = conv.weight
else:
                                                                         bias = conv.bias
    self.conv1 = nn.Sequential(
                                                                         running mean = bn.running mean
                                                                         running var = bn.running var
        nn.Conv2d(dim, dim, kernel size=1),
                                                                         gamma = bn.weight
        nn.BatchNorm2d(dim, eps=1e-6),
                                                                         beta = bn.bias
                                                                         eps = bn.eps
    self.conv2 = nn.Sequential(
                                                                         std = (running var + eps).sqrt()
        nn.Conv2d(dim, dim out, kernel size=1),
                                                                         t = (gamma / std).reshape(-1, 1, 1, 1)
        nn.BatchNorm2d(dim out, eps=1e-6)
                                                                         return kernel * t, beta + (bias - running mean) * gamma / std
         def switch to deploy(self):
             kernel, bias = self. fuse bn tensor(self.conv1[0], self.conv1[1])
             self.conv1[0].weight.data = kernel
             self.conv1[0].bias.data = bias
             # kernel, bias = self.conv2[0].weight.data, self.conv2[0].bias.data
             kernel, bias = self. fuse bn tensor(self.conv2[0], self.conv2[1])
             self.conv = self.conv2[0]
             self.conv.weight.data = torch.matmul(kernel.transpose(1,3), self.conv1[0].weight.data.squeeze(3).squeeze(2)).transpose(1,3)
             self.conv.bias.data = bias + (self.conv1[0].bias.data.view(1,-1,1,1)*kernel).sum(3).sum(2).sum(1)
             self. delattr ('conv1')
             self. delattr ('conv2')
             self.act.switch to deploy()
             self.deploy = True
```

Series Informed Activation

__

- 一些工作发现,结构简单且层数较浅的网络主要受限于较差的非线性能力
- 有两种路线增强非线性能力: 堆叠非线性层/提升单层的非线性能力
- 本文采取后者, 且采用并行的非线性加权

$$A_s(x) = \sum_{i=1}^n a_i A(x + b_i),$$

• 为增强全局视野(卷积只是1x1大小),进一步扩展到邻域加权

$$A_s(x_{h,w,c}) = \sum_{i,j \in \{-n,n\}} a_{i,j,c} A(x_{i+h,j+w,c} + b_c),$$

Series Informed Activation

def forward(self, x): if self.deploy:

x = self.conv(x)

x = self.conv1(x)

x = self.conv2(x)

x = torch.nn.functional.leaky relu(x,self.act learn)

实际代码如下:

```
else:
class activation(nn.ReLU):
   def init (self, dim, act num=3, deploy=False):
        super(activation, self). init ()
                                                                                        x = self.pool(x)
        self.act num = act num
                                                                                        x = self.act(x)
                                                                                        return x
        self.deploy = deploy
        self.dim = dim
        self.weight = torch.nn.Parameter(torch.randn(dim, 1, act num*2 + 1, act num*2 + 1))
       if deploy:
            self.bias = torch.nn.Parameter(torch.zeros(dim))
        else:
            self.bias = None
            self.bn = nn.BatchNorm2d(dim, eps=1e-6)
       weight init.trunc normal (self.weight, std=.02)
   def forward(self, x):
        if self.deploy:
            return torch.nn.functional.conv2d(
                super(activation, self).forward(x),
                self.weight, self.bias, padding=self.act num, groups=self.dim)
        else:
            return self.bn(torch.nn.functional.conv2d(
                super(activation, self).forward(x),
                self.weight, padding=self.act num, groups=self.dim))
```

其他细节

- 网络所有的卷积层,包括stem和head,均采用deep training方式训练:
- Stem将图像划分成4x4的不重叠区域,即non-overlap patch embedding

```
if self.deploy:
    self.stem = nn.Sequential(
        nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=stride, padding=padding),
        activation(dims[0], act num, deploy=self.deploy)
else:
    self.stem1 = nn.Sequential(
        nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=stride, padding=padding),
        nn.BatchNorm2d(dims[0], eps=1e-6),
    self.stem2 = nn.Sequential(
        nn.Conv2d(dims[0], dims[0], kernel_size=1, stride=1),
        nn.BatchNorm2d(dims[0], eps=1e-6),
        activation(dims[0], act num)
                   if self.deploy:
                       self.cls = nn.Sequential(
                           nn.AdaptiveAvgPool2d((1,1)),
                           nn.Dropout(drop rate),
                           nn.Conv2d(dims[-1], num_classes, 1),
                   else:
                       self.cls1 = nn.Sequential(
                           nn.AdaptiveAvgPool2d((1,1)),
                           nn.Dropout(drop_rate),
                           nn.Conv2d(dims[-1], num classes, 1),
                           nn.BatchNorm2d(num classes, eps=1e-6),
                       self.cls2 = nn.Sequential(
                           nn.Conv2d(num classes, num classes, 1)
```

```
def forward(self, x):
    if self.deploy:
        x = self.stem(x)
    else:
        x = self.stem1(x)
        x = torch.nn.functional.leaky relu(x,self.act learn)
        x = self.stem2(x)
    for i in range(self.depth):
        x = self.stages[i](x)
    if self.deploy:
        x = self.cls(x)
    else:
        x = self.cls1(x)
        x = torch.nn.functional.leaky relu(x,self.act learn)
        x = self.cls2(x)
    return x.view(x.size(0),-1)
```

其他细节

• 网络各种variant, scale-up主要在第三个stage:

	Input	VanillaNet-5 VanillaNet-6 VanillaNet-7/8/9/10/11/12/13
stem	224×224	4×4, 512, stride 4
stage1	56×56	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
stage2	28×28	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
stage3	14×14	[1×1, 4096]×1 [1×1, 4096]×1 [1×1, 4096]×1/2/3/4/5/6/7 MaxPool 2×2 MaxPool 2×2 MaxPool 2×2
stage4	7×7	- [1×1, 4096]×1 [1×1, 4096]×1
classifier	7× 7	AvgPool 7×7 1×1, 1000

Table 6: Detailed architecture specifications.

其他细节

• 使用了较为复杂的数据增强操作(左),对比以往方法(右):

Training Config	VanillaNet-{5/6/7/8/9/10/11/12/13}
weight init	trunc. normal (0.2)
optimizer	LAMB [51]
loss function	BCE loss
base learning rate	3.5e-3 {5,8-13} /4.8e-3 {6-7}
weight decay	0.35/0.35/0.35/0.3/0.3/0.25/0.3/0.3/0.3
optimizer momentum	$\beta_1, \beta_2 = 0.9, 0.999$
batch size	1024
training epochs	300
learning rate schedule	cosine decay
warmup epochs	5
warmup schedule	linear
dropout	0.05
layer-wise lr decay [5, 4]	0 {5,8-12} /0.8 {6-7,13}
randaugment [6]	(7, 0.5)
mixup [54]	0.1/0.15/0.4/0.4/0.4/0.4/0.8/0.8/0.8
cutmix [52]	1.0
color jitter	0.4
label smoothing [41]	0.1
exp. mov. avg. (EMA) [36]	0.999996 {5-10} /0.99992 {11-13}
test crop ratio	0.875 {5-11} /0.95 {12-13}
_	

Table 7: ImageNet-1K training settings.

			olForme	-			
	S12	S24	S36	M36	M48		
Peak drop rate of stoch. depth d_r	0.1	0.1	0.2	0.3	0.4		
LayerScale initialization ϵ	10^{-5}	10^{-5}	10^{-6}	10^{-6}	10^{-6}		
Data augmentation		Aut	oAugme	ent			
Repeated Augmentation			off				
Input resolution			224				
Epochs			300				
Warmup epochs			5				
Hidden dropout			0				
GeLU dropout			0				
Classification dropout	0						
Random erasing prob			0.25				
EMA decay			0				
Cutmix α			1.0				
Mixup α			0.8				
Cutmix-Mixup switch prob			0.5				
Label smoothing			0.1				
Relation between peak learning	$lr = \frac{batch_size}{1024} \times 10^{-3}$						
rate and batch size			1021				
Batch size used in the paper			4096				
Peak learning rate used in the paper	4×10^{-4}						
Learning rate decay	cosine						
Optimizer	AdamW						
Adam ϵ			1e-8				
Adam (β_1, β_2)		(0.	.9, 0.999))			
Weight decay			0.05				
Gradient clipping			None				

Table 7. Hyper-parameters for image classification on ImageNet-1K

- □作者介绍
- □研究背景
- □方法
- □实验效果
- □总结

实验效果—消融实验

Table 1: Ablation study on the number of series.

$n \mid \text{FLOPs (B)} \mid \text{Latency (ms)} \mid \text{Top-1 (\%)}$						
0	5.83	1.96	60.53			
1	5.86	1.97	74.53			
2	5.91	1.99	75.62			
3	5.99	2.01	76.36			
4	6.10	2.18	76.43			

Table 3: Ablation on adding shortcuts.

Type	Top-1 (%)
no shortcut shortcut before act shortcut after act	76.36 75.92 75.72

Table 2: Ablation study on different networks.

Network	Deep train.	Series act.	Top-1 (%)
			59.58
VanillaNet-6	✓		60.53
vanmanet-o		✓	75.23
	✓	✓	76.36
			57.52
AlexNet	✓		59.09
Alexinet		✓	61.12
	✓	✓	63.59
			76.13
ResNet-50	✓		76.16
Resinct-30		✓	76.30
	✓	✓	76.27

Table 4: Comparison on ImageNet. Latency is tested on Nvidia A100 GPU with batch size of 1.

实验效果——效果对比

(a) Accuracy vs. depth

(b) Accuracy v.s. inference speed

实验效果——效果对比

(c)Mis-classified by VanillaNet-9

Table 5: Performance on COCO detection and segmentation. FLOPs are calculated with image size (1280, 800) on Nvidia A100 GPU.

Framework	Backbone	FLOPs	Params	FPS	AP^{b}	AP_{50}^{b}	$\mathrm{AP^b_{75}}$	AP^{m}	$\mathrm{AP_{50}^m}$	$\mathrm{AP^b_{75}}$
RetinaNet [29]	Swin-T [31] VanillaNet-13	245G 397G	38.5M 74.6M		41.5 41.8	62.1 62.8	44.2 44.3	-	-	-
Mask RCNN [46]	Swin-T [31] VanillaNet-13	267G 421G	47.8M 76.3M		42.7 42.9	65.2 65.5	46.8 46.9	39.3 39.6	62.2 62.5	42.2 42.2
(a)Mis-classified by ResNet-50-TNR				(b)Correctly classified by ResNet-50-TNR						

Figure 2: Visualization of attention maps of the classified samples by ResNet-50 and VanillaNet-9. We show the attention maps of their mis-classified samples and correctly classified samples for 益室 comparison.

(d)Correctly classified by VanillaNet-9

- □作者介绍
- □研究背景
- □方法
- 口实验效果
- □总结

总结反思

- 在实际网络部署中,目前GPU对纯卷积网络适应性最好,因此本文设计了纯卷积网络, 并且极致地压缩了网络层数,并摈弃了shortcut操作,进一步简化
- 通过重参数化方法融合BN和多层卷积,将训练时的网络参数重组,得到更简化的推理网络结构,是当今网络轻量化的常见套路
- 通过在网络训练前期引入非线性激活,以及对邻域进行加权,补足了网络的非线性能力

谢谢!