

7. Übungsblatt

Präsenzaufgaben für die Woche vom 02. bis 06.12.2019

A Handelt es sich bei den folgenden Relationen um Funktionen? Falls ja, sind sie injektiv, surjektiv oder bijektiv?

B (a) Untersuchen Sie, ob die folgenden Funktionen $\mathbf{R} \to \mathbf{R}$ injektiv, surjektiv oder bijektiv sind:

$$f(x) = 3x - 5$$
, $g(x) = 10^x$, $h(x) = x^4$

(b) Geben Sie eine Funktion an, die surjektiv, aber nicht injektiv ist.

Hausaufgaben für die Woche vom 09. bis 13.12.2019

1 Die Relation "x ist Vater von y" sei durch

$$R = \{(Max, Anna), (Max, Hans), (Moritz, Max)\}$$

gegeben.

- (a) Wie viele Kinder hat Max? Wie stehen Moritz und Anna zueinander?
- (b) Außerdem sei die Relation "x ist verheiratet mit y" durch

gegeben. Listen Sie R o S explizit auf. Wie könnte man R o S in Worten beschreiben? Wie stehen Petra und Anna zueinander?

- 2 Untersuchen Sie, ob es sich bei den folgenden Relationen um Äquivalenzrelationen handelt.
 - (a) $\mathbf{R} = \{(x, y) \in \mathbf{R} \times \mathbf{R} \mid x^2 = y^2\},\$
 - (b) $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + y = 42\},\$
 - (c) $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + y \text{ ist gerade} \},$
 - (d) $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x \cdot y \text{ ist gerade}\},\$
 - (e) $R = \{(1,1), (1,-1), (-1,1), (-1,-1), (2,2), (2,-2), (-2,2), (-2,-2)\}$ auf der Menge $\{-2,-1,1,2\}$.

3 Bestimmen Sie Relationen $R \subseteq \mathbf{R} \times \mathbf{R}$, deren grafische Darstellungen den grauen Flächen in der Abbildung entsprechen.

Worüber Mathematiker lachen

Behauptung: Jede natürliche Zahl ist interessant.

Beweis: *Angenommen*, es gäbe eine uninteressante natürliche Zahl. Dann gäbe es auch eine *kleinste* uninteressante natürliche Zahl: Dies macht diese Zahl aber wirklich interessant! Also ist dies doch eine interessante Zahl.

Dieser Widerspruch zeigt, dass es keine uninteressante Zahl gibt