

آزمایشگاه مدارهای منطقی

دانشکده مهندسی کامپیوتر دانشگاه صنعتی شریف تابستان ۱۴۰۲

کروه شماره ۱

سعید فراتی کاشانی - ۴۰۱۱۰۲۲۹۹

معین آعلی - ۲۰۱۱٬۵۵۲۱ -

حورا عابدین - ۴۰۱۱۰۷۲۰۹

گزارشکار آزمایش شماره ۴ **آزمایشگاه مدارهای منطقی - گروه شماره ۱** فهرست عناوين هدف از انجام آزمایش :...... ۳. پياده سازى مدار اوليه :........ ۲.۳. لود کردن ۱۰۱۰ در رجیستر :....... ساخت شمارنده جانسون :..... شيفت رجيستر ٢ طرفه :..... شیفترجیستر دو طرفه با استفاده از تراشه ی ۷۴۹۵ :

آزمایشگاه مدارهای منطقی - گروه شماره ا

١. هدف از انجام آزمایش:

هدف از این آزمایش ، پیاده سازی یک شیفترجیستر با استفاده از تراشه ۷۴۹۵ میباشد .

۲. تراشه و قطعات استفاده شده:

- برد بورد
- فلیپفلاپ
- تراشه ۷۴۹۵
 - مقاومت
 - گیت OR
 - گیت NOT

۳. شرح آزمایش:

۳/۱. پیاده سازی مدار اولیه :

مداری که میخواهید طراحی کنیم به شکل زیر است :

شكل مدار داخل نرم افزار پروتئوس به اين شكل است :

همچنین پیاده سازی مدار در fritzing به این شکل است:

توجه : گروه ما به جای این بخش ، بخشی از آزمایش α را انجام داد و شما فرمودید که نمره آن را جایگزین این بخش میکنید و نمره کامل میدهید .

گزارش آن بخش آزمایش ۵ در انتهای این فایل قرار دارد ...

آزمایشگاه مدارهای منطقی - گروه شماره ا

۳/۲. لود کردن ۱۰۱۰ در رجیستر:

برای اینکه مقدار ۱۰۱۰ را در رجیستر ذخیره کنیم ، به ورودی همین مقدار را میدهیم و بیت Mode را برابر یک قرار داده تا رجیستر Load شود . برای این کار کافیست تا یک بار دکمه ی Clock را فشرده و رها کنیم . (این کار در تصویر بالا انجام شده است !)

٣/٣. ساخت شمارنده جانسون:

: ورودی های مدار متصل کرده و داریم Q'

آزمایشگاه مدارهای منطقی - گروه شماره ۱

مدار شبیه سازی شده در fritzing :

آزمایشگاه مدارهای منطقی - گروه شماره ا

۳/۴. شیفت رجیستر ۲ طرفه:

مدار اوليه :

مدار پیاده سازی شده در پروتئوس:

آزمایشگاه مدارهای منطقی - گروه شماره ۱

طبق دستور کار شیفت رجیستر ما باید موقعی که mode برار صفر است مدار ما شیفت به راست و موقعی که mode برابر یک است مدار ما به چپ شیفت کند.

۰/۳. شیفترجیستر دو طرفه با استفاده از تراشه ی ۷۴۹۵:

تراشه ۷۴۹۵ یک شیفت رجیستر آماده میباشد . در شکل زیر از آن استفاده کردهایم . در این مدار ، زمانی که Mode صفر باشد ، با رسیدن Clock بی که SR یک SL صفر باشد ، با رسیدن Clock در SR شیفت به راست و با رسیدن Clock در SR در SR را به یک Clock متصل میکنیم .

مدار پیاده سازی شده در شبیه ساز:

شکل مدار اصلی :

٤. بخش از آزمایش شماره ۵:

ساخت شمارنده ی BCD مود ۶۴:

با توجه به این که تراشه ۷۴۱s۹۰ یک شمارنده BCD با قابلیت شمارش رو به بالا و رو به پایین و مقدار دهی اولیه است، با کنار هم قرار دادن ۲ تراشه ۷۴۱s۹۰ مدار مورد نظر را طراحی می کنیم. (خروجی شمارنده ها را با نمایشگرهای ۷ قطعه ای مشاهده می کنیم.)

در این آزمایش طبق رشته هایی که داشتیم جدول کارنو آن را کشیدیم تا گیت های مورد نیاز را بتوانیم رسم کنیم.

Q٢	Q١	Q·	X = •			X = 1			J۲		K۲		1/		K١		J٠		K٠	
			Q٢	Q١	Q٠	Q٢	Q١	Q٠	X = •		X = \		X = •		X = 1		X = •		X = 1	
•	٠	٠	١	٠	١	٠	١	١	١	×	•	×	٠	×	١	×	١	×	١	×
٠	•	١	١	١	•	١	•	•	١	×	١	×	١	×	٠	×	×	١	×	١
•	١	•	١	١	١	١	•	١	١	×	١	×	×	٠	×	١	١	×	١	×
•	١	١	•	٠	•	١	١	•	٠	×	١	×	×	١	×	٠	×	١	×	١
١	•	•	•	•	١	١	١	١	×	١	×	•	•	×	١	×	١	×	١	×
١	•	١	•	١	•	•	•	•	×	١	×	١	١	×	٠	×	×	١	×	١
١	١	•	•	١	١	•	•	١	×	١	×	١	×	•	×	١	١	×	١	×
١	١	١	١	٠	٠	٠	١	٠	×	٠	×	١	×	١	×	٠	×	١	×	١

سپس، با رسم جدول کارنو، هر یک از J و Jها را به دست می آوریم. (جداول کارنو در چرک نویس رسم شده اند و در اینجا صرفا جواب نهایی آمده است .)

شکل مدار پیاده سازی شده در پروتئوس:

به دلیل خراب بودن نمایش دهنده های Seven-Segment ، اعداد شمانده به صورت یک عدد ۴ بیتی با LED نشان داده شد :

