a)

i. Η γραφική παράσταση της $y=g(x)=\frac{1}{2}+\eta\mu x$, με $x\in[0,\pi]$ προκύπτει από κατακόρυφη μετατόπιση της γραφικής παράστασης της $\varphi(x)=\eta\mu x$, με $x\in[0,\pi]$ κατά $\frac{1}{2}$ μονάδες προς τα πάνω.

Επομένως, είναι:

ii. Γνωρίζουμε ότι η f παρουσιάζει ελάχιστο στο σημείο $K\left(\frac{\pi}{2},-\frac{\pi^2}{4}\right)$.

Από την γραφική παράσταση φαίνεται ότι:

Η f είναι γνησίως φθίνουσα στο διάστημα $\left[0,\frac{\pi}{2}\right]$, γνησίως αύξουσα στο διάστημα $\left[\frac{\pi}{2},\pi\right]$ και τέμνει τον άξονα x'x στα σημεία O(0,0) και $A(\pi,0)$.

Στα σημεία αυτά η f παρουσιάζει την μέγιστη τιμή της, που είναι το 0.

Η g είναι γνησίως αύξουσα στο διάστημα $\left[0,\frac{\pi}{2}\right]$, γνησίως φθίνουσα στο διάστημα $\left[\frac{\pi}{2},\pi\right]$ και παρουσιάζει μέγιστο στο σημείο $\Lambda\left(\frac{\pi}{2},\frac{3}{2}\right)$.

Επιπλέον, είναι $g(0) = g(\pi) = \frac{1}{2}$.

Επομένως, η γραφική παράσταση της g τέμνει τον άξονα y'y στο σημείο $B\left(0,\frac{1}{2}\right)$ και το $\frac{1}{2}$ είναι η ελάχιστη τιμή της g, η οποία παρουσιάζεται στις θέσεις $x_1=0$ και $x_2=\pi$.

β) Η ελάχιστη τιμή της παραβολής και η μέγιστη τιμή της τριγωνομετρικής συνάρτησης παρουσιάζονται στην ίδια θέση, για $x_0=\frac{\pi}{2}$.

Επομένως, η μέγιστη κατακόρυφη απόσταση μεταξύ των δύο καμπυλών είναι:

$$|g_{max} - f_{min}| = \left| g\left(\frac{\pi}{2}\right) - f\left(\frac{\pi}{2}\right) \right| = \left| \frac{3}{2} - \left(-\frac{\pi^2}{4}\right) \right| = \frac{3}{2} + \frac{\pi^2}{4}$$

και συνιστά το μήκος του ευθύγραμμου τμήματος ΚΛ.

γ) Επομένως, οι ελάχιστες διαστάσεις που πρέπει να έχει το ορθογώνιο πλακίδιο για να καλύψει πλήρως τη μεμβράνη είναι:

Μήκος ίσο με το μήκος του ευθύγραμμου τμήματος $K\Lambda = \frac{3}{2} + \frac{\pi^2}{4}$.

Πλάτος ίσο με 3, που αποτελεί το πλάτος του διαστήματος [0,3], γιατί η περίμετρος της μεμβράνης καθορίζεται επίσης από τις εξισώσεις x=0 και x=3.

