Experimental Design: Stratification

ENTMLGY 6707 Entomological Techniques and Data Analysis

Questions to ponder

How does (or should) one balance designing complicated experiments (e.g., lots of treatments) with the ability to interpret the resulting data?

What are some "unwanted" sources of variation in your experiment or study, and how did/will you deal with them?

Learning objectives

- 1. Evaluate pros and cons of stratification in experimental design
- 2. Understand how components of an ANOVA can be influenced by design choice
- 3. Compare and contrast experimental designs

Completely randomized design

In a **completely randomized design**, we assigned treatments to experimental units randomly.

Randomized complete block (RCB)

...but if we expect variation in our response to be influenced by location, time, shipment, etc...

...we can use **blocking** to account for that variation.

Treatments are assigned to blocks, and THEN assigned randomly to experimental units.

RCB simplified

Block 1	Block 2	Block 2 Block 3	
D	D A		C
В	С	О	В
С	Α	С	Α
Α	В	В	D

Linear model for RCB

$$Y_{ij} = \mu + b_i + \tau_j + \varepsilon_{ij}$$

 Y_{ij} is the value for jth observation in the ith level of the treatment. μ is the overall mean (average) across all observations

 b_i is the blocking effect, or the difference between the ith block and the overall average (μ)

 τ_i is the treatment effect, or the difference between the *i*th level of the treatment τ and the overall average (μ)

 ε_{ijk} is the error, or the remaining difference between the kth observation and the mean of observations in the ith block and jth treatment level

Balanced incomplete block design (BIBD)

Not all treatments appear in each block. $\lambda_{ii'}$ =2=number of times treatment *i* and *i'* occur together.

Block 1	Block 2	Block 3	Block 4
D		D	
	С	С	В
С	Α	В	Α
Α	В		D

Unbalanced incomplete block design

Block 1	Block 2	Block 3	Block 4
	D	Α	
			В
С		С	
Α	В		D

Stratification in experimental design

The bottom line: You are trying to increase precision by experimentally and statistically partitioning out variance that is not attributable to your treatments.

Activity (discussion)

Take a moment to think about your (potential) project.

What is the response variable?

What is at least one predictor (treatment)?

Are there any nuisance variables? How will or how did you account for them?

If you don't have a study with response and predictors, try to think of and report a similar study that might fit these criteria.

Randomized complete block

Blocks can be locations in space, points or intervals of time, groups of individuals, etc.

Advantages

- Can increase precision compared with completely randomized design
- No limit to the number of treatments and blocks
- Analysis is straightforward

Disadvantages

- If blocking is not effective, you lose precision AND degrees of freedom
- More treatments -> harder to include them all in a block (e.g., more physical space incorporated could lead to more heterogeneity)
- We assume no interaction between blocks and treatments (i.e., treatments are not having different effects on the response variable based on the block in which they occur). If that's happening, inference may be biased.

Activity

Source	df	SS	MS
Treatment	1	78	78
Error	4	74	18.5
Total	5	152	-

Pretend we added *x* blocks to the design and got the below ANOVA table. How many blocks did we add?

Calculate a new F-ratio for our treatment by filling in the table.

Source	df	SS	MS
Treatment	1	78	78
Block	1		59
Error			
Total	5	152	-

ANOVA

Source	df	SS	MS
Treatment	1	78	78
Block	1	59/1	59
Error	3	74-59=15	5
Total	5	152	-

New *F*-ratio:

$$F_{1,3} = 78/5 = 15.60$$

We added two blocks, which (in a perfect world), accounts for some of that residual variation. The unexplained variation went down, so the denominator in our F-ratio went up.

If our blocks do a bad job of soaking up that variation, we are burning degrees of freedom!

Randomized complete block

Account for a source of variation

Latin squares

Account for two sources of variation (= block in two directions)

Split plots

One of your treatments is difficult or expensive to vary. Establish a whole plot and subplot.

Latin square

Randomized complete block

Block 1	Block 2	Block 3	Block 4	
В	C	D	А	
Α	О	С	В	
В	D	Α	С	
С	В	Α	D	

Latin square (block in two directions)

Latin square

Advantages:

• Account for multiple (two) nuisance factors

<u>Disadvantages</u>:

- The number of treatments needs to equal the number of levels of blocks
- Assumes no interactions between the rows and columns (=blocks) or between the treatment and rows/columns

Latin square

Example: a 5 ×5 forestry experiment in Beddgelert in Wales, to compare varieties of a tree species; designed by Fisher, laid out in 1929, and photographed in about 1945.

1	2	3	4	5
5	3	1	2	4
2	5	4	3	1
4	1	2	5	3
3	4	5	1	2

Linear models

Randomized complete block

$$Y_{ij} = \mu + b_i + \tau_j + \varepsilon_{ij}$$

 Y_{ij} is the value for the ith block and jth level of the treatment μ is the overall mean b_i is the effect of block i τ_j is the effect of the jth level of treatment τ ε_{ij} is the remaining error

Latin square

$$Y_{ijk} = \mu + r_i + c_j + \tau_k + \varepsilon_{ijk}$$

 Y_{ij} is the value for the ith row, jth column, and kth level of the treatment μ is the overall mean r_i is the blocking effect of row i c_j is the blocking effect of column j τ_k is the effect of the kth level of treatment τ ε_{jj} is the remaining error

Note: I've suppressed the subscript identifying individual observations

Split plot

Use when you are interested in two independent variables, but one of them is challenging to vary (e.g., you are limited by space, time, money, etc.).

- 1. Assign levels of the "hard-to-vary" factor to entire plots (= whole plots)
- 2. Within each whole plot, randomly assign levels of the other factor to your experimental units (= **subplots**).

<u>Advantages</u>: Increase in precision on subplot factors when the experiment "works " (= the variation is decreased among subplots grouped into whole plots); cheaper

<u>Disadvantages</u>: Loss in precision of whole plot factor. Difficult to create/design and can be difficult to analyze.

Split plot example

We are interested in the effects of site preparation (presence vs. absence of prescribed fire) and herbicide treatment (none vs. spot treatment) on hardwood regeneration (germinated oak seeds per m²)

Randomize at each step (including, if need be, by randomized blocking)

Linear model for split plot

$$Y_{ijk} = \mu + \alpha_i + w_{(i)j} + \beta_k + \alpha \beta_{ik} + \varepsilon_{ijk}$$

 Y_{ijk} is the measured response of the ith level of the whole plot factor and kth level of the subplot factor within the jth whole plot μ is the overall mean α_i is the effect of the ith level of the whole plot factor $w_{(i)j}$ is whole plot error β_k is the effect of the kth level of the subplot factor $\alpha\beta_{ik}$ is the whole plot by subplot interaction ε_{ijk} is remaining error

Note: I've suppressed the subscript identifying individual observations

Split plot - comparisons

Subplot

Irrigation

A B Fertilizer

Block

Split plot

Split plot design

When some factors are harder to vary than others, a split plot design can be efficient.

Naomi Altman & Martin Krzywinski

VOL.12 NO.3 | MARCH 2015 | NATURE METHODS

F-ratios in split plot designs

Table 1 | Split plot ANOVA table for two-factor split plot designs

	CRD		RCBD			
	d.f.	MS	<i>F</i> -ratio	d.f.	MS	<i>F</i> -ratio
Block, <i>bl</i>				n'	MS_{bl}	MS_{bl}/MS_{wp}
Α	a'	$MS_{\mathcal{A}}$	${\rm MS}_{\rm A}/{\rm MS}_{\rm wp}$	a'	$MS_{\mathcal{A}}$	MS_A/MS_{wp}
Error wp	an'	MS_{wp}	,	n'a'	MS_{wp}	,
В	b'	MS_B	MS_B/MS_{sp}	b'	MS_B	MS_B/MS_{sp}
$A \times B$	a' <i>b</i> '	$MS_{A \times B}$	MS_{AB}/MS_{sp}	a'b'	$MS_{A \times B}$	$MS_{A\times B}/MS_{sp}$
Error sp	ab'n'	MS_{sp}	,	ab'n'	MS_{sp}	•
Total	abn – 1	,		<i>abn</i> – 1	'	

Split plot ANOVA table for two factor split plot designs using CRD (**Fig. 1c**) and RCBD (**Fig. 1d**) with a levels of whole plot factor A and b levels of subplot factor B. For CRD n is measurements per subplot and for RCBD n is number of blocks. Whole plot and subplot errors are indicated by wp and sp subscripts, respectively. For RCBD, interaction between blocking factor bl and B is usually included in the subplot error term. a' = a - 1, b' = b - 1, n' = n - 1. d.f., degrees of freedom; F-ratio, test statistic for F test.