

Princípios de Comunicação de Dados

Transmissão de sinal em Banda Base

Técnicas de Codificação							
Padrão de Rede	Velocidade (Mb/s)	Método de Codificação	Banda Usada para Transmissão (MHz)				
IBM Token-Ring	4	M. Diferencial	3,0				
	16	M. Diferencial	12,0				
Ethernet 10Base-T	10	Manchester	7,5				
100Base-TX	100	4B5B/MLT-3	31,25				
100Base-T4	100	8B6T	12,5				
1000Base-T	1000	8B/1Q4/PAM 5	125/83				
ATM	12,96	CAP-2	12,96				
(STS-1)	25,6	4B5B	32				
(STS-3)	51,8	CAP-16	29				
	155	NRZ	77				

Velocidade nominal, banda de passagem e método de codificação

Prof. Adelson de Paula Silva adelson@decom.cefetmg.br

Transmissão Multinível

```
\checkmark "dibit" 2 "bits" 2<sup>2</sup> = 4 níveis
```

 \checkmark "tribit" 3 "bits" 2³ = 8 níveis

Como regra geral, na transmissão multinível é possível transmitir até 2ⁿ W bits/segundo, onde W é a banda passante do meio em MHz.

Tecnologia Gigabit em cabos UTP

Pares	Frequência	Codificação	Таха		
Par 12	83 MHz	Tribit (3 bits)	249 Mbps		
Par 36	83 MHz	Tribit (3 bits)	249 Mbps		
Par 45	83 MHz	Tribit (3 bits)	249 Mbps		
Par 78	83 MHz	Tribit (3 bits)	249 Mbps		
•	996 Mbps ≈ 1 Gbps				

Ethernet – Codificação 4D Pam5

- A frequência de transmissão é de 125 Mhz, ou seja são transmitidos 125 milhões de impulsos por segundo.
- Cada símbolo representa 2 bit, assim 125 X 2 = 250 milhões de bit por segundo ou 250 Mbit/S.
- Cada nível de voltagem representa 2 bit 00, 01,10 ou 11.

Tecnologia Gigabit em cabos UTP

As etapas da digitalização são:

- 1. Amostragem
- 2. Quantização
- 3. Conversão para binário
- 4. Compressão (opcional)
- 5. Criptografia (opcional)

http://www.netbook.cs.purdue.edu/animations/convert% 20analog%20to%20digital.html

Codificação PCM (Pulse Code Modulation) a partir da modulação PAM (Pulse Amplitude Modulation)

Na técnica PCM, a capacidade máxima de um canal na ausência de ruído é dada por:

 $C = 2W \log_2(L)$ bps;

onde

C = capacidade do canal na ausência de ruído;

W = valor da faixa de frequência;

L = número de níveis utilizado na codificação.

De acordo com a tabela abaixo, indique às características do padrão de rede Fast-Ethernet e Gigabit Ethernet.

Velocidade	
Topologia (Lógica e Física)	
Distância Limite	
N° de pares usados para transmissão	
Banda utilizada	1

• Segundo o modelo OSI, os protocolos apresentados estão sendo tratados em qual nível ?

• Explique o processo que está sendo apresentado no esboço acima.

Engenharia da Computação - PCD 2018

- A transmissão indica um processo de comutação, modulação ou multiplexação ?
- •Destaque as características do processo, indicando o protocolo de controle de acesso ao meio e a forma de recuperação para o efeito registrado.

Protocolos de acesso ao meio

• A topologia física descreve a maneira que os fios ou cabos estão dispostos em uma rede, já a topologia lógica descreve como ocorre o fluxo de mensagens dentro da rede.

Protocolos de acesso ao meio

- ◆ São os protocolos (conjunto de regras) responsáveis pelo acesso ao meio físico de uma rede, são eles que devem decidir quando e em que quantidade devem ser transmitidas as informações de uma estação da rede para outra.
- ◆ Cada protocolo foi desenvolvido com certo padrão de rede, mas podem ser utilizados em outros tipos de topologias, tendo maior eficiência em um determinado padrão em particular.

Protocolos de acesso ao meio

- Na avaliação de protocolos de controle de acesso, atributos específicos podem ser usados, tais como:
 - > capacidade;
 - > justiça (fairness);
 - prioridade;
 - > estabilidade em sobrecarga;
 - > retardo de transferência;

Protocolos de acesso ao meio

- ◆ Protocolos de acesso que alocam intervalos separados para cada nó são bastante estáveis e não exibem grandes variações de retardo.
- ◆ Esquemas baseados em contenção têm sua estabilidade bastante dependente da realização, exigindo sofisticações no tratamento de conflitos para tornar o protocolo mais estável.

Protocolos baseados em contenção

- ◆ Sistemas de contenção são projetados para que todos os dispositivos numa rede possam transmitir sempre que desejarem.
- ◆ Não existe uma ordem de acesso e nada impede que dois ou mais nós queiram transmitir simultaneamente.
- ◆ Esta prática, eventualmente, resulta em perda de dados, pois colisões podem vir a ocorrer.
- Para cada novo dispositivo adicionado à rede, o número de colisões aumenta geometricamente.

Protocolos baseados em contenção

- ◆ A vantagem deste tipo de protocolo é que o software é relativamente simples.
- Porém, há as seguintes desvantagens:
 - > Tempo de acesso não é previsto (protocolo probabilístico).
 - > Prioridades não podem ser utilizadas para dar acesso mais rápido a alguns dispositivos.
 - > O número de colisões aumenta geometricamente com a adição de novos dispositivos.

Protocolo CSMA (IEEE 802.3)

- ◆ O protocolo CSMA tem como característica principal o fato de a estação que deseja transmitir verificar o estado do meio de transmissão.
- ◆ Dessa forma, a estação transmissora "ouve" antes o meio para observar se há ou não outras estações transmitindo.
- Caso não haja outras transmissões, a estação inicia a sua transmissão.

Protocolo CSMA

- ◆ Entretanto, se o meio estiver ocupado, a estação aguarda por um período de tempo e verifica novamente o estado do meio.
- ◆ Contudo, não há garantia de que duas estações simultaneamente constatem a inexistência de sinal de transmissão no meio e comecem a transmitir gerando uma colisão.

Protocolo CSMA

- ◆ As estratégias mais aplicadas foram desenvolvidas para aumentar a eficiência da transmissão:
 - > CSMA/CD;
 - > CSMA/CA.

Protocolo CSMA-CD

- No método CSMA/CD (Carrier Sense Multiple Access with Collision Detection) a detecção de colisão é realizada durante a transmissão.
- ◆ Ao transmitir, um nó fica o tempo todo escutando o meio, havendo uma colisão, aborta o processo de transmissão. (Tecnologia LWT – Listen While Talk)
- Detectada a colisão, a estação espera por um tempo aleatório para tentar a retransmissão.

Protocolo CSMA-CD

- Detectada uma colisão a transmissão é interrompida e um sinal é enviado informando a colisão.
- ◆ Espera-se um tempo aleatório entre 0 e o limite.
- O limite é dobrado a cada colisão sucessiva até o número máximo de colisões. Se não conseguir transmitir aborta.
- ◆ O retardo de transmissão é pequeno no começo e aumenta depois para impedir a sobrecarga.
- No padrão IEEE 802.3 o limite dobra até 10 tentativas, depois permanece inalterado até no máximo 16 tentativas.

Quadro mínimo Ethernet, de acordo com as especificações IEEE 802.3: 64 Bytes.

Ethernet

IEEE 802.3

Preamble	SOF	Destination Address	Source Address	Length	802.2 Header	DATA	FCS
7	1	6	6	2	46	-1500	4

Conclusões:

- É preciso haver transmissão para se detectar colisão.
- Taxa Ethernet de 10 Mbps, determina 1 bit a cada 0,1 μs.
- Quadro mínimo Ethernet: 64 Bytes = 512 bits.
- Logo, o tempo para percorrer a maior distância (para tx) entre duas estações quaisquer da rede, deve ser menor do que a metade do tempo de transmissão de 1 quadro mínimo.
- Essa distância é o domínio de colisão: 25,6 µs.
- ✓ Este é o fator limitante do alcance de uma rede Ethernet.

Protocolos sem contenção

- ◆ Ao contrário dos esquemas anteriormente apresentados, vários protocolos são baseados no acesso ordenado ao meio de comunicação, evitando o problema da colisão.
- ◆ Cada método é mais adequado a um determinado tipo de topologia, embora nada impeça seu uso em outras arquiteturas.

Protocolos sem contenção

- ◆ As vantagens são:
 - > Os tempos de acesso são previstos;
 - > Níveis de prioridades podem ser configurados;
 - > As colisões são eliminadas;
 - > Exemplo: Token Pass, Polling, entre outros.

Detecção de Erros

- Fatores como interferências e ruídos podem ocasionar erros de transmissão.
- Existem várias técnicas para detectar erros numa transmissão:
 - > Paridade
 - > CRC
 - > Checksum

Detecção de Erros

- ◆ O método de Paridade consiste em inserir um bit de paridade ao final de cada quadro.
- ◆ O bit de paridade é inserido de forma a deixar todos os caracteres com um número par ou ímpar de bits "1", dependendo se o método utilizado é de paridade par ou ímpar respectivamente.

Detecção de Erros

Exemplo:

- Caractere 1110001 (possui 4 bits "1")
 - Se o método for de paridade par, o bit de paridade será o $0 \rightarrow 11100010$
 - Se o método for de paridade ímpar, o bit de paridade será o $(1 \rightarrow 11100011)$

Detecção de Erros

- ◆ O método Checksum gera um grupo de bits de verificação.
- ◆ Um exemplo é a soma de verificação, no qual os bits da mensagem são divididos em grupos de X bits e somados com aritmética de complemento de um.
- ◆ O resultado da soma é enviado anexado à mensagem, após os bits da mesma.
- ◆ No destino, é feito novamente o cálculo da soma de verificação sobre os bits da mensagem e do *checksum*, se o resultado for apenas bits 1, não ocorreu erro.

Detecção de Erros

- Mensagem: 10101001 00111001
- ◆ Usando Checksum de 8 bits, teremos:

10101001

+ 00111001

11100010 -> Checksum 00011101

Então será enviado o bloco de 24 bits:
 10101001 00111001

Detecção de Erros

 No destino, se somarmos os 3 conjuntos de bits, teremos:

Detecção de Erros

♦ O método CRC (*Cyclic Redundancy Check*), também conhecido como código polinomial, utiliza uma sequência de bits, FCS (*Frame Check Sequence*), que é calculado pelo emissor de tal modo que quando concatenado aos bits de dados, o resultado final seja divisível por um número prédeterminado.

 ◆ Cada sequência de bits é representada como um polinômio, com coeficientes 0 ou 1.

Detecção de Erros

• Os códigos polinomiais usam o tratamento de strings de bits como representações de polinômios com coeficientes 0 e 1. Um quadro de k bits é considerado a lista de coeficientes para um polinômio com k termos, variando desde x^{k-1} até a x^0 . Fala-se que o polinômio é de grau k-1. O bit de mais alta ordem (mais à esquerda) é o coeficiente x^{k-1} , o bit seguinte é o coeficiente de x^{k-2} e assim por diante.

Detecção de Erros

 ◆ Desta forma, uma mensagem binária de n bits, pode ser convertida em um polinômio de ordem (n − 1), como pode ser observado no quadro abaixo:

$$P(x) = 10110 = 1.x^{4} + 0.x^{3} + 1.x^{2} + 1.x^{1} + 0.x^{0} = x^{4} + x^{2} + x$$

$$M(x) = 1101001 = 1.x^{6} + 1.x^{5} + 0.x^{4} + 1.x^{3} + 0.x^{2} + 0.x^{1} + 1.x^{0} = x^{6} + x^{5} + x^{3} + 1$$

$$M(x) = 1011000 = 1.x^{6} + 0.x^{5} + 1.x^{4} + 1.x^{3} + 1.x^{2} + 0.x^{1} + 0.x^{0} = x^{6} + x^{4} + x^{3} + x^{2}$$

Representação polinomial de strings binárias

Detecção de Erros

 ◆ Em redes de computadores, o padrão Ethernet utiliza CRC-32 (CRC de 32 bits).

$$CRC-32 = x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1$$

Exemplo polinômio CRC comum

