Optimization vs Epidemics

Paul Beaujean joint work with Cristina Bazgan & Éric Gourdin LAMSADE - Université Paris-Dauphine & Orange Labs

COCOA 2018December 16, 2018

WannaCry (May 2017)

Petya (from early 2016 to June 2017)

VIE EN LIGNE

Le virus Petya a coûté plus d'un milliard d'euros aux entreprises

Des ports de marchandise à l'arrêt, des usines immobilisées et des entreprises ralenties... la facture de ce faux « rançongiciel » est salée, selon un décompte du « Monde ».

SDN: software-defined networking

Poseidon: machine learning for node health

SDN against malware

- transparent and unified data analysis
- network management by algorithms
- opportunity to design autonomous security systems for networks
- our focus: stopping malware epidemics

Networked epidemic models

- undirected graph G = (V, E) represents neighborhood of n := |V| nodes
- a node is either Susceptible or Infected

- Markov chain with 2ⁿ states
- unique absorbing state: every node is S

sufficient condition for $O(\log n)$ time to extinction:

$$\lambda_1(\boldsymbol{G}) < rac{\delta}{eta}$$

[Prakash et al. '12]

From a theorem to a control system

How to achieve
$$\lambda_1(G) < \frac{\delta}{\beta}$$
?

note: β and δ can be inferred in real time with e.g. maximum likelihood estimators [Ruhi et al. '17]

- **A)** deploy software patches to increase δ/β
- ightarrow hand-crafted response against specific malware
- ightarrow hard to predict the effect of a patch on eta and/or δ
- **B)** modify topology to decrease $\lambda_1(G)$
- ightarrow generic response against any epidemic

From a theorem to a control system

How to achieve
$$\lambda_1({\it G})<rac{\delta}{eta}$$
?

note: β and δ can be inferred in real time with e.g. maximum likelihood estimators [Ruhi et al. '17]

- **A)** deploy software patches to increase δ/β
- ightarrow hand-crafted response against specific malware
- ightarrow hard to predict the effect of a patch on eta and/or δ
- **B)** modify topology to decrease $\lambda_1(G)$
- ightarrow generic response against any epidemic

What is $\lambda_1(\mathbf{G})$?

spectrum of the above adjacency matrix:

{ 3.39, 0.19, 0.81, -0.55, -1.57, -2.27 }

The spectral radius of G = (V, E)

• structural param. related to connectivity $\max\left(\sqrt{\Delta(G)}, \frac{2m}{n}\right) \leq \lambda_1(G) \leq \Delta(G)$

• a graph with no edges has $\lambda_1(\mathbf{0}) = 0$

Theorem: λ_1 is monotone if H is a subgraph of G then $\lambda_1(H) \leq \lambda_1(G)$

Theorem: λ_1 is positive homogeneous if $\alpha > 0$ then $\lambda_1(\alpha A) = \alpha \lambda_1(A)$

A natural optimization problem

Problem: Maximum λ -spectral Subgraph

Instance: undirected graph G = (V, E) and spectral threshold $1 \le \lambda < \lambda_1(G)$

Task: find a subgraph H = (V, E') of G with maximum number of edges and $\lambda_1(H) \leq \lambda$

- Set $\lambda = \frac{\delta}{\beta}$ to end a given epidemic
- ullet NP-hard even in graphs with $\Delta \leq 3$

I always have trouble with

$M\lambda$ SSP as a mathematical program

$$\max \sum_{ij \in E} y_{ij}$$
s.t.
$$\sum_{ij \in E} y_{ij} A_{ij} \preceq \lambda I \qquad (\mathcal{P})$$

$$y_{ij} \in \{0, 1\}, \ \forall ij \in E$$

- recall that $M \succeq N \iff \forall i, \ \lambda_i(M-N) \geq 0$
- hence $A \leq \lambda I \iff \lambda_1(A) \leq \lambda$
- binary SDP amenable to MISDP solvers

A polytime solvable relaxation

$$\max \sum_{ij \in E} y_{ij}$$
s.t.
$$\sum_{ij \in E} y_{ij} A_{ij} \leq \lambda I \qquad (S)$$

$$\sum_{j \in \Gamma(i)} y_{ij} \leq \lambda^2, \ \forall i \in V$$

$$y_{ij} \in [0, 1], \ \forall ij \in E$$

- valid inequality because: $\lambda_1 \leq \lambda \Rightarrow \Delta \leq \lambda^2$
- solvable by fast SDP solvers e.g. SuperSCS

Relaxation & randomized rounding

- solve relaxation and let $y^* = \arg S$
- ullet define r.v. $\mathbf{x}_{ij} \sim \mathrm{Bernoulli}(y_{ij}^*/r)$
- let $H = \{ij \in E \mid x_{ij} = 1\}$
- determine r > 1 s.t. H is feasible w.h.p. $\Pr(\lambda_1(\sum \mathbf{x}_{ij}A_{ij}) \leq \lambda) = 1 1/n$
- ▷ randomized *r*-approximation algorithm
- oldie but goodie [Raghavan & Tompson '87]

Approximate maximization

Figure: **alg** is the expected number of edges in *H*

Determining the approx. ratio *r*

- instead of designing algorithms...
- > prove concentration for a random object!
- here: random adjacency matrices
- use concentration inequalities for sum of random matrices $\mathbf{X} = \sum_{e} \mathbf{X}_{e}$ [Tropp '15]

$$\Pr(\lambda_1(\mathbf{X}) \geq a) \leq \min_{t>0} e^{-ta} \operatorname{tr} \exp\left(\sum_e \log\left(\mathbb{E}e^{t\mathbf{X}_e}\right)\right)$$

Matrix Bernstein gives

- ullet for $\mathbf{X} = \sum_{e} \mathbf{X}_{e}$ with $\mathbb{E}\mathbf{X} = \mathbf{0}$ and $\lambda_{1}(\mathbf{X}_{e}) \leq L$
- matrix variance: $\nu(\mathbf{X}) \stackrel{\mathsf{def}}{=} \lambda_1(\sum_{e} \mathbb{E}\mathbf{X}_e^2)$

$$\Pr(\lambda_1(\mathbf{X}) \ge a) \le n \exp\left(-\frac{a^2}{2\nu(\mathbf{X}) + 2La/3}\right)$$

ullet apply to $ar{f A} = \sum {f x}_{ij} {f A}_{ij} - {\mathbb E} {f x}_{ij} {f A}_{ij}$, ${m a} = (1-1/r) \lambda$

Goal: $Pr(H \text{ is infeasible}) \le 1/3$

Matrix Bernstein gives

- ullet for $\mathbf{X} = \sum_{e} \mathbf{X}_{e}$ with $\mathbb{E}\mathbf{X} = \mathbf{0}$ and $\lambda_{1}(\mathbf{X}_{e}) \leq L$
- matrix variance: $v(\mathbf{X}) \stackrel{\mathsf{def}}{=} \lambda_1(\sum_{e} \mathbb{E}\mathbf{X}_e^2)$

$$\Pr(\lambda_1(\mathbf{X}) \ge a) \le n \exp\left(-\frac{a^2}{2\nu(\mathbf{X}) + 2La/3}\right)$$

• apply to $\bar{\mathbf{A}} = \sum \mathbf{x}_{ij} A_{ij} - \frac{y_{ij}^*}{\mathbf{r}} A_{ij}$, $a = (1 - 1/\mathbf{r})\lambda$

Goal: $Pr(H \text{ is infeasible}) \le 1/3 \text{ for } \mathbf{r} = ?$

$$r = O(\log n)$$
 when $\lambda \ge \log n$

- key property: $v(\bar{\mathbf{A}}) \leq \lambda^2/r$ (cf. valid ineq.)
- crank out the math...

Result:
$$Pr(H \text{ is infeasible}) \le 1/3 \text{ for } r = 1 + 3 \log n \text{ if } \lambda \ge \log n$$

• from 1/3 to 1/n with amplification

What about $\lambda \leq \log n$?

ullet spectral ver. of classical result on Δ vs u

$$\nu(\mathbf{G}) \ge \frac{\mathbf{m}}{\lambda_1^2(\mathbf{G}) - 1}$$

ullet implies that a maximum matching is a (λ^2-1) -approximation of M λ SSP

Result: $O(\log^2 n)$ -approx. if $\lambda \le \log n$

Conclusion

- randomized $O(\log^2 n)$ -approximation algorithm
- parallel approximate SDP solver + parallel independent rounding + power method
- super fast in practice, can exploit GPUs

Perspectives

- hardness of approx. (Max k-Cut?)
- Erdös-Rényi graphs limit our approach:

$$\lambda_1(G(n,p)) = \Theta\left(\sqrt{\frac{\log n}{\log\log n}}\right)$$

even when np = O(1) [Krivelevich et al. '01]

- maximum degree-constrained subgraph for $\lambda \leq \log n$ (from λ^2 to λ -approx?)
- better concentration bounds? [Le et al., '15]

Problem variants

 spectral subgraph setting with two parameters: number of edges vs spectral radius

	constraint	objective
v. Mieghem et al. '12	E' =k	$\min \lambda_1$
Saha et al. '15	$\lambda_1 \leq \lambda$	$\min E - E' $
Zhang et al. '15	$ E' \leq k$	$min\lambda_1$
this work	$\lambda_1 \leq \lambda$	max <i>E</i> ′

The Laplacian spectrum

- $\mu \leq \mu_2(H)$ instead of $\lambda_1(H) \leq \lambda$
- related to expander construction:

min
$$\sum_{ij \in \bar{E}} y_{ij}$$

s.t. $L(G) + \sum_{ij \in \bar{E}} y_{ij} L_{ij} \succeq \mu P_{\mathbf{1}^{\perp}} \quad (Q)$
 $y_{ij} \in \{0, 1\}, \ \forall ij \in \bar{E}$

• some results [Ghosh & Boyd '06, Kolla et al. '09]

