Detecting In-cylinder Vortex Properties with Comprehensive Clustering Methods

VM458 Project 2 Group 3

Jiajin WU 517370910229 Junxiang ZHANG 517370910064 Weihan FAN 517370910218

Content

Introduction

- In-cylinder flow
- Review on current research
- Data sets
- Clustering methods
 - K-means
 - DBSCAN
 - Gauss
 - Hierarchical Clustering
- Objective

Data processing

- Vortex detection
- Flow chart

Result

- Vortex track
- Cyclic vairation

Discussion

- Understanding on algorithm
- Physical analysis on variation
- Other applications

Conclusion

Introduction

In-cylinder flow

- In-cylinder flow
 - Complex behavior
 - Cyclic variation
- Why properties and behavior of in-cylinder flow is important?
 - Affecting the air-fuel mixture process
 - Affecting the combustion behavior

Review on detecting flow^[1]

How to detect and analyze in-cylinder flow?

- Particle Image Velocimetry (PIV)
- Computational Fluid Dynamics (CFD)

Exhaust

Intake

Air flow with

Spark Injector

[1] Zhao, F., Ge, P., Zhuang, H., and Hung, D. L. S., "Analysis of Crank Angle-Resolved Vortex Characteristics Under High Swirl Condition in a Spark-Ignition Direct-Injection Engine, "JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER, 30 November 2017.

Data sets

Data sets^[1] including:

- Velocity map
- Vortex center location map
- Number of vortex centers

Background:

- Medium swirl ratio
- 100 cycles
- Every 2 crank angle degree (CAD) fr

Fig.1 Swirl in the engine^[3]

^{[1]:} TA Group, 2020, VM458 Project 2: Machine Learning + Automotive Instruction.

^{[2]:} David, H. 2020, VM458 Lecture13.

^{[3]:} J.L. Lumley, Engines An Introduction, P.148-149.

Visualization

Clustering Method^[1]

- Unsupervised machine learning method
- Labeling points into different groups

Method	Requires specified number of clusters	Useful for outlier detection
k-Means Clustering ^[1]	Yes	No
Density-Based Spatial Clustering of Algorithms with Noise (DBSCAN) ^[1]	No	Yes
Gaussian Mixture Model ^[1]	Yes	Yes
Hierarchical Clustering ^[1]	No	No

K-Means

Introduction

- Pre-set cluster number
- Random center points
- Minimizing the sum of distance

Parameter

- Pre-set total cluster number
- Way of calculating direction
- Itration

Pro

- Straightforward parameter
- Single level cluster

Con

- Local optimal choice
- Not able to detect the outlier
- Low accuracy for incorrect cluster number
- Each point assigned to one cluster

Density-Based Spatial Clustering of Algorithms with Noise (DBSCAN)

Introduction

 Automatically find the multilevel clusters with defined neighbor range and minimum points

Parameter

- Neighbor range
- Minimum neighbor points

Pro

- Detecting the core points, border points, and outliers
- Separating different clusters

Con:

Not able to find center

Gaussian Mixture Model (GMM)

Introduction

- Separating clusters based on normal distribution
- Covariance structure

Parameter

- Pre-set total cluster number
- Diagonal state
- Covariance state

Pro

- Each point has chances in different clusters
- Changeable size and direction of cluster distribution ellipse

Con

Not able to detect outlier

Hierarchical Clustering

Introduction

- Comparing each distance pair
- Creating multilevel of clusters

Necessary Parameter

Way of linkage

Pro

 Arbitary shape and number of cluster

Con

Low efficiency

Objective

- Detect vortex property and behavior including:
 - Rotation direction
 - Number of vortex centers
 - Size and track of the vortex
 - Cyclic variation
- Detect vortex property and behavior:
 - From offered data sets
 - With multi clustering methods
- Discuss the advantages and disadvantages of each clustering methods

Data Processing

Vortex Detection

Methods explored

k-Means, DBSCAN, Gaussian Mixture Model

Rotating direction

Provided by data set: 0 for clockwise, 1 for counterclockwise

Elimination of outliers

- Achieved by algorithm
- Can be adjusted according to requirement

Number of clusters (vortex centers)

Algorithm result or provided by data set

Vortex Detection

Trial	Method	Way to find number of clusters	Accuracy and problems	
1	K-Means	Average of given data	Accuracy < 70%	
2	K-Means	Manually picked according to CAD	No defined criteria Not able to eliminate outliers	
3	DBSCAN	DBSCAN	Not able to find centroid	
4	K-Means	DBSCAN	K-Means gives locally-optimum solution	
5	DBSCAN & k-Means	DBSCAN	Accuracy around 90%	
6	DBSCAN & k-Means & GMM	DBSCAN & average of given data	>95% accuracy	

Flow Chart

Results

Vortex Track

- Track of vortex centers with CAD as z-axis & CAD-y plot
 - Clokcwise: blue & green, counterclockwise: yellow

Cyclic Variation

-300 CAD to -180 CAD

- Counterclockwise vortex vanishes
- 2 clockwise vortices start merging, multiple clockwise vortices coexist

Cyclic Variation

-180 CAD to -60 CAD

- Clockwise vortices merge at center
- Single clockwise vortex moves from center to border

Cyclic Variation

- Number of points & max distance
 - C for clockwise, CC for counterclockwise

Discussion

Understanding of algorithm

The most important parameters of clustering algorithms

(a.k.a, the input parameters)

Method	Number of clusters, k	Chosen metric norm	Min neighboring number, n	Neighboring range, ε
K-Means	Yes	Yes	No	No
GMM	Yes	Yes	No	No
DBSCAN	No	Yes	Yes	Yes

Understanding of algorithm

- The selection of "norm": metric norm
 - Euclidian distance -> "City block" distance
- The selection of appropriate cluster number: k
 - DBSCAN can determine k (for reference only)
- The selection of appropriate
 neighboring range: ε and number: n
 - A subtle problem: try and error

Physical analysis of variation

-300 CAD ~ -180 CAD

- Intake valves are open.
- The drawback vortex decays fast.
- The two major vortices begin to merge and move to the center together.
- The flow field is chaotic at the end of intake stroke when the vortices are incompletely merged.

Physical analysis of variation

-180 CAD ~ -60 CAD

- Intake valves are closed.
- The two vortices merge to one vortex after the closure of valves.
- When the compression stroke starts, the vortices begins to merge and the flow field converges in a short time.
- During the compression stroke, the flow field behaves stable.

Physical Analysis of variation

Variation in size

- The size is counted with the number of core points.
- The average size of a clockwise vortex is larger than the counterclockwise's.
- Mean of the average size is about 8 core points, variance of average size is quite large

Physical Analysis of variation

Variation in number

Clockwise:

Mostly 2 vortices at the beginning→

Varying greatly between 1, 2,and 3 vortices at the end of intake stroke→

Mostly 1 vortex after compression stroke begins.

Counter-clockwise:

Mostly 1 vortex at the beginning → Mostly 0 vortex after a short time.

Other applications

Clustering Methods

- The anticipation of motion of cloud and wind for weather forecasts.
- The identification of the state of the machine in predictive maintenance.

The artificial intelligence that can "guess what you like" with big data and

users' profile.

Conclusion

Conclusion

- We have detected:
 - Rotation direction
 - Number of vortex centers
 - Size and track of the vortex
 - Cyclic variation

with three clustering methods, and analyze the physical meaning of the vortex behavior and properties.

- We have discussed the advantages and disadvantages of each clustering methods, and combined them to get better clustering behaviour.
- We have found other potential area to apply this method.

Q&A