

PFM Step-up DC/DC Converter

Features

• Low start-up voltage: 0.7V (Typ.)

• High efficiency: 85% (Typ.)

• High output voltage accuracy: ±2.5%

Output voltage: 2.7V, 3.0V, 3.3V, 5.0V

· Output current up to 200mA

- Ultra low supply current I_{DD}: 5μA (Typ.)
- · Low ripple and low noise
- Low shutdown current: 0.5μA (Typ.)
- TO92, SOT89, SOT23 and SOT23-5 package

Applications

- · Palmtops/PDAs
- · Portable communicators/Smartphones
- Cameras/Camcorders
- · Battery-powered equipment

General Description

The HT77XXA series is a set of PFM step-up DC/DC converter with high efficiency and low ripple. The series features extremely low start-up voltage and high output voltage accuracy. They require only three external components to provide a fixed output voltage of 2.7V, 3.0V, 3.3V or 5.0V. CMOS technology ensures ultra low supply current and makes them ideal for battery-operated applications powered from one or more cells.

The HT77XXA consists of an oscillator, a PFM control circuit, a driver transistor, a reference voltage unit, and a high speed comparator. They employ pulse frequency modulation (PFM) for minimum supply current and ripple at light output loading. These devices are available in space saving TO92, SOT89, SOT23 and SOT23-5 packages. For SOT23-5 package, it also build-in a chip enable function to reduce power consumption during shutdown mode.

Selection Table

Part No.	Output Voltage	Package	Marking
HT7727A	2.7V	T000	LIT77///A (for TOOO)
HT7730A	3.0V	TO92 SOT89 SOT23	HT77XXA (for TO92) HT77XXA# (for SOT89)
HT7733A	3.3V		7XXA# (for SOT23)
HT7750A	5.0V	SOT23-5	7XXA# (for SOT23-5)

Note: "XX" stands for output voltages.

Only lead free devices are available. "#" stands for lead free devices. For the TO92 package, there will be a "#" mark at the end of the date code.

Block Diagram

Pin Assignment

Pin Description

	Pin	No.		Pin Name Description	Description
TO92	SOT89	SOT23	SOT23-5	Pin Name	Description
_	_	_	1	CE	Chip enable pin, high active
2	2	3	2	VOUT	DC/DC converter output monitoring pin
_	_	_	3	NC	No connection
1	1	1	4	GND	Ground pin
3	3	2	5	LX	Switching pin

Absolute Maximum Ratings

Supply Voltage	V _{SS} -0.3 V to V _{SS} +7V	Storage Temperature50°C	to 125°C
Operating Temperature	40°C to 85°C		

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

Symbol	Parameter	Package	Max.	Unit
		SOT89	300	°C/W
	Thermal Resistance (Junction to Ambient)	TO92	300	°C/W
ANA	θ _{JA} (Assume no ambient airflow, no heat sink)	SOT23	330	°C/W
		SOT23-5	320	°C/W
	P _D Power Dissipation	SOT89	0.33	W
D.		TO92	0.33	W
FD PO		SOT23	0.3	W
		SOT23-5	0.31	W

Note: P_D is measured at Ta= 25°C

Rev 1.30 2 September 24, 2008

Electrical Characteristics

 V_{IN} = V_{OUT} ×0.6; I_{OUT} =10mA; Ta=25°C (Unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage	_	_	_	6	V
V _{OUT}	Output Voltage Tolerance	_	-2.5	_	2.5	%
V _{START}	Start-up Voltage (Fig. 1)	V _{IN} : 0→2V; I _{OUT} =1mA	_	0.7	0.9	V
V _{HOLD}	Minimum Hold-on Voltage (Fig. 1)	V _{IN} : 2→0V; I _{OUT} =1mA	_	_	0.7	V
I _{IN}	No-load Input Current (Fig. 1)	I _{OUT} =0mA	_	13	26	μΑ
I _{DD}	Supply Current (Fig. 2)	V _S =V _{OUT} +0.5V Measured at V _{OUT} pin	_	5	10	μА
I _{SHDN}	Shutdown Current	CE=GND	_	0.5	1	μΑ
V _{IH}	CE High Threshold	_	2	_	_	V
V _{IL}	CE Low Threshold	_	_	_	0.4	V
I _{LEAK}	LX Leakage Current (Fig. 3)	V _S =V _{OUT} +0.5V, V _X =6V Measured at the LX pin	_	_	0.9	μА
fosc	Maximum Oscillator Frequency (Fig. 3)	V _S =V _{OUT} ×0.95, V _X =6V Measured at LX pin	_	200	_	kHz
D _{OSC}	Oscillator Duty Cycle (Fig. 3)	V _S =V _{OUT} ×0.95, V _X =6V Measured at LX pin	65	75	85	%
η	Efficiency	_	_	85	_	%

Note: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed.

Test Circuit

Rev 1.30 3 September 24, 2008

Typical Performance Characteristics

HT7727A Output Voltage v.s Output Current

(C_{IN}=47 μ F-Tantalum, L=47 μ H, C_{OUT}=22 μ F-Tantalum)

HT7727A Ripple Voltage v.s Output Current

(C_{IN}=47 μ F-Tantalum, L=47 μ H, C_{OUT}=22 μ F-Tantalum)

HT7727A Start-up/Hold-on Voltage

(C_{IN}=47 μ F-Tantalum, L=47 μ H, C_{OUT}=22 μ F-Tantalum)

HT7727A Efficiency v.s Output Current

(C_{IN}=47 μ F-Tantalum, L=47 μ H, C_{OUT}=22 μ F-Tantalum)

HT7727A Ripple Voltage v.s Output Current

(C_{IN}=47 μ F-Tantalum, L=100 μ H, C_{OUT}=22 μ F-Tantalum)

HT7730A Output Voltage v.s Output Current $(C_{IN}\text{=}47\mu\text{F-Tantalum},\,L\text{=}47\mu\text{H},\,C_{OUT}\text{=}22\mu\text{F-Tantalum})$

HT7730A Ripple Voltage v.s Output Current $(C_{\text{IN}}\text{=}47\mu\text{F-Tantalum}, \text{L=}47\mu\text{H}, \text{C}_{\text{OUT}}\text{=}22\mu\text{F-Tantalum})$

(C_{IN}=47 μ F-Tantalum, L=47 μ H, C_{OUT}=22 μ F-Tantalum)

HT7730A Efficiency v.s Output Current $(C_{\text{IN}}\text{=}47\mu\text{F-Tantalum},\, L\text{=}47\mu\text{H},\, C_{\text{OUT}}\text{=}22\mu\text{F-Tantalum})$

HT7730A Ripple Voltage v.s Output Current (C_{IN}=47μF-Tantalum, L=100μH, C_{OUT}=22μF-Tantalum)

HT7733A Output Voltage v.s Output Current $(C_{IN}\text{=}47\mu\text{F-Tantalum},\,L\text{=}47\mu\text{H},\,C_{OUT}\text{=}22\mu\text{F-Tantalum})$

HT7733A Ripple Voltage v.s Output Current $(C_{\text{IN}}\text{=}47\mu\text{F-Tantalum}, \, \text{L=}47\mu\text{H}, \, C_{\text{OUT}}\text{=}22\mu\text{F-Tantalum})$

(C_{IN}=47μF-Tantalum, L=47μH, C_{OUT}=22μF-Tantalum)

HT7733A Efficiency v.s Output Current (C_{IN} =47 μ F-Tantalum, L=47 μ H, C_{OUT} =22 μ F-Tantalum)

HT7733A Ripple Voltage v.s Output Current $(C_{IN}\text{=}47\mu\text{F-Tantalum},\,L\text{=}100\mu\text{H},\,C_{OUT}\text{=}22\mu\text{F-Tantalum})$

HT7750A Output Voltage v.s Output Current $(C_{\text{IN}}\text{=}47\mu\text{F-Tantalum}, \, \text{L=}47\mu\text{H}, \, \text{C}_{\text{OUT}}\text{=}22\mu\text{F-Tantalum})$

HT7750A Ripple Voltage v.s Output Current $(C_{\text{IN}}\text{=}47\mu\text{F-Tantalum}, \, \text{L=}47\mu\text{H}, \, C_{\text{OUT}}\text{=}22\mu\text{F-Tantalum})$

(C_{IN}=47 μ F-Tantalum, L=47 μ H, C_{OUT}=22 μ F-Tantalum)

HT7750A Efficiency v.s Output Current $(C_{\text{IN}}\text{=}47\mu\text{F-Tantalum},\, L\text{=}47\mu\text{H},\, C_{\text{OUT}}\text{=}22\mu\text{F-Tantalum})$

HT7750A Ripple Voltage v.s Output Current $(C_{IN}\text{=}47\mu\text{F-Tantalum},\,L\text{=}100\mu\text{H},\,C_{OUT}\text{=}22\mu\text{F-Tantalum})$

Application Circuits

Without CE Pin

With CE Pin

Note: For the SOT23-5 package, when CE is pulled low, the internal blocks of the device, such as the reference band gap, gain block, and all feedback and control circuitry will be switched off. The boost converter's output, V_{OUT}, will be at a value one Schottky diode voltage drop below the input voltage and the LX pin remains in a high impedance condition. The output capacitor and load at V_{OUT} determine the rate at which V_{OUT} decays.

Rev 1.30 8 September 24, 2008

Package Information

3-pin TO92 Outline Dimensions

Cymrh al		Dimensions in mil			
Symbol	Min.	Nom.	Max.		
Α	170	_	200		
В	170	_	200		
С	500	_	_		
D	11	_	20		
E	90	_	110		
F	45	_	55		
G	45	_	65		
Н	130	_	160		
I	8	_	18		
α	4°	_	6°		

Rev 1.30 9 September 24, 2008

3-pin SOT89 Outline Dimensions

Sumb al	Dimensions in mil			
Symbol	Min.	Nom.	Max.	
Α	173	_	181	
В	59	_	72	
С	90	_	102	
D	35	_	47	
E	155	_	167	
F	14	_	19	
G	17	_	22	
Н	_	59	_	
I	55	_	63	
J	14	_	17	

3-pin SOT23 Outline Dimensions

Comple at	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
Α	1.0	_	1.3	
A1	_	_	0.1	
A2	0.7	_	0.9	
b	0.35	_	0.50	
С	0.10	_	0.25	
D	2.7	_	3.1	
E	1.4	_	1.8	
е	_	1.9	_	
Н	2.6	_	3.0	
L	0.37	_	_	
θ	1°	_	9°	

Rev 1.30 11 September 24, 2008

5-pin SOT23-5 Outline Dimensions

Symphol .	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
Α	1.0	_	1.3	
A1	_	_	0.1	
A2	0.7	_	0.9	
b	0.35	_	0.50	
С	0.10	_	0.25	
D	2.7		3.1	
E	1.4	_	1.8	
е	_	1.90	_	
Н	2.6	_	3.0	
L	0.37	_	_	
θ	1°	_	9°	

Product Tape and Reel Specifications

TO92 Reel Dimensions (Unit: mm)

Package Up, Flat Side Up

Package Up, Flat Side Down

Reel Dimensions

SOT89

Symbol	Description	Dimensions in mm
А	Reel Outer Diameter	180.0±1.0
В	Reel Inner Diameter	62.0±1.5
С	Spindle Hole Diameter	12.75 ^{+0.15/-0.00}
D	Key Slit Width	1.90±0.15
T1	Space Between Flange	12.4 ^{+0.2/-0.0}
T2	Reel Thickness	17.0 ^{+0.0/-0.4}

SOT23, SOT23-5

Symbol	Description	Dimensions in mm
А	Reel Outer Diameter	178.0±1.0
В	Reel Inner Diameter	62.0±1.0
С	Spindle Hole Diameter	13.0±0.2
D	Key Slit Width	2.50±0.25
T1	Space Between Flange	8.4 ^{+1.5/-0.0}
T2	Reel Thickness	11.4 ^{+1.5/-0.0}

Rev 1.30 14 September 8, 2008

Carrier Tape Dimensions

TO92

Symbol	Description	Dimensions in mm
I1	Taped Lead Length	(2.5)
Р	Component Pitch	12.7±1.0
P ₀	Perforation Pitch	12.7±0.3
P ₂	Component to Perforation (Length Direction)	6.35±0.40
F ₁	Lead Spread	2.5 ^{+0.4/-0.1}
F ₂	Lead Spread	2.5 ^{+0.4/-0.1}
Δh	Component Alignment	0.0±0.1
W	Carrier Tape Width	18.0 ^{+1.0/-0.5}
W ₀	Hold-down Tape Width	6.0±0.5
W ₁	Perforation Position	9.0±0.5
W ₂	Hold-down Tape Position	(0.5)
H ₀	Lead Clinch Height	16.0±0.5
H ₁	Component Height	Less than 24.7
D ₀	Perforation Diameter	4.0±0.2
t	Taped Lead Thickness	0.7±0.2
Н	Component Base Height	19.0±0.5

Note: Thickness less than 0.38 ± 0.05 mm~0.5mm

P0 Accumulated pitch tolerance: ± 1 mm/20pitches.

() Bracketed figures are for reference only.

Carrier Tape Dimensions

SOT89

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	12.0 ^{+0.3/-0.1}
Р	Cavity Pitch	8.0±0.1
E	Perforation Position	1.75±0.10
F	Cavity to Perforation (Width Direction)	5.50±0.05
D	Perforation Diameter	1.5 ^{+0.1/-0.0}
D1	Cavity Hole Diameter	1.5 ^{+0.1/-0.0}
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	4.8±0.1
В0	Cavity Width	4.5±0.1
K0	Cavity Depth	1.8±0.1
t	Carrier Tape Thickness	0.300±0.013
С	Cover Tape Width	9.3±0.1

SOT23, SOT23-5

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	8.0±0.3
Р	Cavity Pitch	4.0±0.1
E	Perforation Position	1.75±0.10
F	Cavity to Perforation (Width Direction)	3.50±0.05
D	Perforation Diameter	1.5 ^{+0.1/-0.0}
D1	Cavity Hole Diameter	1.5 ^{+0.1/-0.0}
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.00±0.05
A0	Cavity Length	3.15±0.10
В0	Cavity Width	3.2±0.1
K0	Cavity Depth	1.4±0.1
t	Carrier Tape Thickness	0.20±0.03
С	Cover Tape Width	5.3±0.1

Rev 1.30 16 September 24, 2008

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan

Tel: 886-2-2655-7070 Fax: 886-2-2655-7373

Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)

G Room, 3 Floor, No.1 Building, No.2016 Yi-Shan Road, Minhang District, Shanghai, China 201103

Tel: 86-21-5422-4590 Fax: 86-21-5422-4705 http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)

5F, Unit A, Productivity Building, Gaoxin M 2nd, Middle Zone Of High-Tech Industrial Park, ShenZhen, China 518057

Tel: 86-755-8616-9908, 86-755-8616-9308

Fax: 86-755-8616-9722

Holtek Semiconductor Inc. (Beijing Sales Office)

Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031

Tel: 86-10-6641-0030, 86-10-6641-7751, 86-10-6641-7752

Fax: 86-10-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)

709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016

Tel: 86-28-6653-6590 Fax: 86-28-6653-6591

Holtek Semiconductor (USA), Inc. (North America Sales Office)

46729 Fremont Blvd., Fremont, CA 94538

Tel: 1-510-252-9880 Fax: 1-510-252-9885 http://www.holtek.com

Copyright © 2008 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Rev 1.30 17 September 24, 2008