

EVALUASI TENGAH SEMESTER GASAL 2024/2025 DEPARTEMEN MATEMATIKA FSAD ITS PROGRAM SARJANA

Matakuliah : Aljabar Linear

Hari, Tanggal : Kamis, 17 Oktober 2024 Waktu / Sifat : 100 menit / Tertutup

Dosen : Dr. Mahmud Yunus, M.Si. dan Dr. Sunarsini, S.Si, M.Si

HARAP DIPERHATIKAN!!!

Segala jenis pelanggaran (mencontek, kerjasama, dsb) yang dilakukan pada saat ETS/EAS akan dikenakan sanksi pembatalan matakuliah pada semester yang sedang berjalan.

- 1. Diketahui (X, d) ruang metrik dan Y himpunan tertutup di X. Jika (X, d) ruang metrik lengkap, tunjukkan bahwa (Y, d) juga ruang metrik lengkap.
- 2. Misalkan V suatu ruang vektor bernorma dan $\{v_1,v_2,\ldots,v_n\}$ himpunan vektor di V untuk suatu $n\in\mathbb{N}$. Jika terdapat konstanta A>0 sehingga ketaksamaan

$$A\sum_{k=1}^{n} |c_k|^2 \le \left\| \sum_{k=1}^{n} c_k v_k \right\|^2$$

berlaku untuk semua koefisien skalar c_1, \ldots, c_n . Tunjukkan bahwa vektor-vektor $\{v_1, v_2, \ldots, v_n\}$ adalah bebas linear.

3. Pandang ruang vektor bernorma $(C[a,b], \|\cdot\|)$ dengan $\|f\| := \sup\{|f(x)| : x \in [a,b]\}$ untuk $f \in C[a,b]$. Didefinisikan operator $T: C[a,b] \to C[a,b]$ dengan

$$(Tf)(x) := \int_{a}^{x} f(t) dt.$$

- (a) Tunjukkan bahwa T adalah operator linear.
- (b) Tunjukkan bahwa T injektif tetapi tidak surjektif.
- (c) Apakah T isometri? Berikan penjelasan.
- 4. Pandang $V = \{\{x_k\}_{k=1}^{\infty} : x_k \in \mathbb{C}, \forall k \in \mathbb{N}, \text{dan hanya berhingga } x_k \text{ tak-nol}\}$. Tunjukkan bahwa
 - (a) V merupakan sub-ruang dari $\ell^1(\mathbb{N})$,
 - (b) V padat di $\ell^1(\mathbb{N})$,
 - (c) V bukan himpunan tertutup dari $\ell^1(\mathbb{N})$.

SOLUSI

- 1. Misalkan $\{y_n\}$ adalah barisan Cauchy di Y. Karena $Y \subset X$, maka setiap suku barisan y_n adalah elemen di X. Karena (X, d) lengkap, maka pasti terdapat $x \in X$ sehingga $y_n \to x$ di X. Karena Y tertutup, maka haruslah Y memuat semua titik limitnya. Karena y_n konvergen ke x, maka haruslah $x \in Y$. Jadi, setiap barisan Cauchy di Y konvergen ke elemen di Y, sehingga (Y, d) lengkap.
- 2. Himpunan vektor $\{v_1, v_2, \dots, v_n\}$ dikatakan bebas linear jika hanya solusi trivial yang memenuhi persamaan

$$c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0.$$

Misalkan terdapat koefisien skalar c_1, c_2, \ldots, c_n sedemikian sehingga

$$c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0.$$

Dengan menggunakan ketaksamaan yang diberikan, diperoleh

$$A\sum_{k=1}^{n} |c_k|^2 \le \left\| \sum_{k=1}^{n} c_k v_k \right\|^2 = \|0\|^2 = 0.$$

Karena A>0, maka haruslah $\sum_{k=1}^{n}|c_k|^2=0$. Hal ini hanya mungkin terjadi jika setiap $c_k=0$ untuk semua $k=1,2,\ldots,n$. Jadi, hanya solusi trivial yang ada, sehingga himpunan vektor $\{v_1,v_2,\ldots,v_n\}$ adalah bebas linear.

3. (a) Untuk setiap $f, g \in C[a, b]$ dan skalar $\alpha, \beta \in \mathbb{R}$, kita punya

$$T(\alpha f + \beta g)(x) = \int_a^x (\alpha f(t) + \beta g(t)) dt = \alpha \int_a^x f(t) dt + \beta \int_a^x g(t) dt = \alpha (Tf)(x) + \beta (Tg)(x).$$

Jadi, T adalah operator linear.

(b) Untuk menunjukkan bahwa T injektif, misalkan Tf=Tg untuk $f,g\in C[a,b]$. Maka untuk setiap $x\in [a,b]$, kita punya

$$\int_{a}^{x} f(t) dt = \int_{a}^{x} g(t) dt.$$

Menggunakan Teorema Fundamental Kalkulus, kita dapat menurunkan kedua sisi terhadap \boldsymbol{x} untuk mendapatkan

$$\frac{d}{dx}\left(\int_{a}^{x} f(t) dt\right) = \frac{d}{dx}\left(\int_{a}^{x} g(t) dt\right)$$
$$f(x) = g(x).$$

Karena ini berlaku untuk semua $x \in [a, b]$, maka f = g. Jadi, T adalah injektif.

Untuk menunjukkan bahwa T tidak surjektif, kita perlu menemukan fungsi di C[a,b] yang bukan image dari T. Misalkan kita ambil fungsi konstan h(x) = 1 untuk setiap $x \in [a,b]$. Jika ada $f \in C[a,b]$ sehingga Tf = h, maka kita harus memiliki

$$(Tf)(x) = \int_a^x f(t) dt = 1.$$

Namun, ini tidak mungkin karena integral dari fungsi kontinu tidak bisa menjadi konstan kecuali fungsi tersebut adalah nol hampir di mana-mana. Jadi, T tidak surjektif.

(c) T dikatakan isometri jika untuk setiap $f \in C[a, b]$, berlaku

$$||Tf|| = ||f||.$$

Namun, kita punya

$$||Tf|| = \sup_{x \in [a,b]} |(Tf)(x)| = \sup_{x \in [a,b]} \left| \int_a^x f(t) dt \right|.$$

Dengan menggunakan ketaksamaan segitiga untuk integral, kita dapat memperkirakan

$$\left| \int_{a}^{x} f(t) \, dt \right| \le \int_{a}^{x} |f(t)| \, dt \le (b - a) \|f\|.$$

Jadi,

$$||Tf|| = \sup_{x \in [a,b]} |(Tf)(x)| \le (b-a)||f||.$$

Ini menunjukkan bahwa T tidak mempertahankan norma secara tepat, sehingga T bukan isometri.

4. (a) Misalkan $\{x_k\}, \{y_k\} \in V$ dan $\alpha \in \mathbb{C}$. Selanjutnya kita tahu bahwa hanya berhingga x_k dan y_k yang tak-nol, katakanlah sebanyak M dan N berturut-turut $(M, N < \infty)$. Maka, untuk penjumlahan, kita punya

$$\{x_k\} + \{y_k\} = \{x_k + y_k\},\$$

yang juga hanya memiliki paling banyak M+N suku tak-nol, sehingga $\{x_k+y_k\}\in V$. Untuk perkalian skalar, kita punya

$$\alpha\{x_k\} = \{\alpha x_k\},\,$$

yang juga hanya memiliki paling banyak M suku tak-nol, sehingga $\{\alpha x_k\} \in V$. Oleh karena itu, V adalah sub-ruang dari $\ell^1(\mathbb{N})$.

(b) Misalkan $\{y_k\} \in \ell^1(\mathbb{N})$. Kita ingin menunjukkan bahwa untuk setiap $\epsilon > 0$, terdapat $\{x_k\} \in V$ sedemikian sehingga

$$\|\{y_k\} - \{x_k\}\|_1 < \epsilon.$$

Karena $\{y_k\} \in \ell^1(\mathbb{N})$ yang dimana elemen tak nol nya berhingga, maka jumlahan atau deret $\sum_{k=1}^{\infty} |y_k|$ konvergen. Oleh karena itu, terdapat $N \in \mathbb{N}$ sedemikian sehingga

$$\sum_{k=N+1}^{\infty} |y_k| < \epsilon.$$

Sekarang, kita definisikan $\{x_k\} \in V$ sebagai

$$x_k = \begin{cases} y_k, & \text{jika } k \le N, \\ 0, & \text{jika } k > N. \end{cases}$$

Dimana $\{x_k\}$ hanya memiliki paling banyak N suku tak-nol, sehingga $\{x_k\} \in V$. Selanjutnya, kita hitung norma dari selisihnya:

$$\|\{y_k\} - \{x_k\}\|_1 = \sum_{k=1}^{\infty} |y_k - x_k| = \sum_{k=N+1}^{\infty} |y_k| < \epsilon.$$

Jadi, untuk setiap $\epsilon > 0$, kita dapat menemukan $\{x_k\} \in V$ sedemikian sehingga $\|\{y_k\} - \{x_k\}\|_1 < \epsilon$. Oleh karena itu, V padat di $\ell^1(\mathbb{N})$.

(c) Akan kita tunjukkan dengan kontradiksi. Misalkan V adalah himpunan tertutup di $\ell^1(\mathbb{N})$. Karena V padat di $\ell^1(\mathbb{N})$, maka closure dari V adalah $\ell^1(\mathbb{N})$ itu sendiri, yaitu $\overline{V} = \ell^1(\mathbb{N})$. Jika V tertutup, maka $V = \overline{V} = \ell^1(\mathbb{N})$. Namun, ini bertentangan dengan definisi V yang hanya berisi deret dengan elemen tak nol berhingga, sedangkan $\ell^1(\mathbb{N})$ berisi semua deret yang konvergen secara absolut, termasuk yang memiliki elemen tak nol tak berhingga. Oleh karena itu, asumsi bahwa V adalah himpunan tertutup di $\ell^1(\mathbb{N})$ adalah salah. Jadi, V bukan himpunan tertutup dari $\ell^1(\mathbb{N})$.