Moserのツイストの定理

まるげり

2025年9月11日

Levi-Moser[1] のノート. 面積保存ツイスト写像の母関数に解析性を課すが, ツイスト定理の証明としては一番読みやすいと思う.

1 背景: 面積保存ツイスト写像, 母関数

アニュラス $\mathbb{A}=\mathbb{S}^1 \times \mathbb{R}$ 上の面積保存ツイスト写像 $\varphi(x_1,y_1)=(x_2,y_2)$ とは、面積保存性 $\varphi^*(dy_2 \wedge dx_2)=dy_1 \wedge dx_1$ とツイスト性 $\frac{\partial x_2}{\partial y_1}>0$ を持つものである.

記号の濫用で、 $\mathbb{S}^1 \times \mathbb{R}$ の普遍被覆 \mathbb{R}^2 上の元もまた (x,y) のように書き、また φ の \mathbb{R}^2 への持ち上げも φ と書くことにすると、面積保存ツイスト写像 φ が特に \mathbb{A} 上の完全シンプレクティック写像 $(\varphi^*(ydx)-ydx)$ が \mathbb{A} 上の完全形式になる)とき、 φ の母関数と呼ばれる、次の性質を満たす関数 $h:\mathbb{R}^2 \to \mathbb{R}$ が存在する:

 h_1, h_2 をそれぞれ h の第 1 成分、第 2 成分での偏微分としたときに、 $h(x_1+1, x_2+1) = h(x_1, x_2), h_{12} < 0$ であり、さらに

$$\begin{cases} h_1(x_1, x_2) = -y_1 \\ h_2(x_1, x_2) = y_2 \end{cases} \iff \varphi(x_1, y_1) = (x_2, y_2)$$

となる.

(たぶん, \mathbb{R}^2 で考える以上はポアンカレの補題から閉形式 $\varphi^*(ydx) - ydx$ が完全形式になることが保証されるけど, アニュラス \mathbb{A} 上でもなお h が意味を持つためには別で \mathbb{A} 上で完全形式になることを保証しないといけない... のだと思う.) 特に φ が母関数 h を持つなら, (x_1,y_1) が与えられた下で, $\{(x_n,y_n)\}_n$ が軌道 $\{\varphi^n(x_1,y_1)\}_n$ になることと

$$h_2(x_{i-1}, x_i) + h_1(x_i, x_{i+1}) = 0, \ y_i = -h_2(x_i, x_{i+1}) \quad (\forall i \in \mathbb{Z})$$

が同値であることがわかる.

2 不変曲線と差分方程式への簡約化

面積保存ツイスト写像 φ の不変曲線 $\gamma \subset \mathbb{A}$ とは, φ の不変集合であって \mathbb{R}^2 上への持ち上げを $w(\theta) = (u(\theta), v(\theta))$ としたときに $u(\theta) - \theta$ および $v(\theta)$ が周期 1 の周期関数となるものである.これは, $u(\theta+1) - (\theta+1) = u(\theta) - \theta$ より $u(\theta+1) - u(\theta) = 1$ より,アニュラス \mathbb{A} を x 方向に一周して戻ってくる曲線であることを意味している.

さて、ある回転数 ω についての不変曲線 γ 、つまり

$$\varphi(w(\theta)) = w(\theta + \omega)$$

を見つけたい. これはラグランジュ方程式と呼ばれることもある次の2階差分方程式

$$E[u(\theta)] = h_1(u(\theta), u(\theta + \omega)) + h_2(u(\theta), u(\theta - \omega)) \equiv 0$$
(2.1)

が解ければ、 $v(\theta)=-h_1(u(\theta),u(\theta+\omega))$ とおくことで不変曲線を見つけることができる. 以下、 $u^+(\theta)=u(\theta+\omega),u^-(\theta)=u(\theta-\omega)$ とする.

Remark 1. あとで使うので, $u_{\theta}E[u]$ の平均値 $\int_{0}^{1} (u_{\theta}E[u])(\theta)d\theta = 0$ を計算しておく.

$$\frac{\partial h}{\partial \theta}(u, u^+) = u_{\theta}(h_1(u, u^+) + h_2(u, u^+))$$

より, $\nabla f := f(\theta + \omega) - f(\theta)$ と表記すれば,

$$\frac{\partial h}{\partial \theta}(u, u^{+}) - u_{\theta} h_{2}(u^{-}, u) = u_{\theta}(h_{1}(u, u^{+}) + h_{2}(u, u^{+}) - h_{2}(u, u^{+}) + h_{2}(u^{-}, u))$$

$$= u_{\theta}(h_{1}(u, u^{+}) + h_{2}(u^{-}, u))$$

$$= u_{\theta} E[u]$$

したがって,

$$u_{\theta}E[u] = \frac{\partial h}{\partial \theta}(u, u^{+}) - u_{\theta}h_{2}(u^{-}, u)$$

と表すことができる.ここで, $h(x_1+1,x_2+1)=h(x_1,x_2)$ であることと, $f(\theta)$ が周期 1 の周期関数であれば $\int_0^1 (\nabla f)(\theta)d\theta=\int_0^1 (f(\theta+\omega)-f(\theta))d\theta=0$ であることから,結局

$$\int_0^1 (u_\theta E[u])(\theta) d\theta = 0$$

である.

Example 1 (standard map). S(x) を周期関数として, $\varphi(x_1, y_1) = (x_2, y_2)$ を

$$x_2 = x_1 + y_1 + S'(x_1),$$

 $y_2 = y_1 + S'(x_1)$

で定める. 母関数 h は

$$h(x_1, x_2) = \frac{1}{2}(x_1 - x_2)^2 + S(x_1)$$

である. これに対するラグランジュ方程式 (2.1) は

$$u(\theta + \omega) - 2u(\theta) + u(\theta - \omega) = S'(u(\theta))$$

と書ける.

3 ツイスト定理

ツイスト定理は, ω がディオファントス数であるときに, $E[u_0]\approx 0$ なる $u_0(\theta)$ から始めて $E[u]\equiv 0$ となる $u(\theta)$ の存在を示す定理である.

$$W_r := \left\{ f: \mathbb{C} \to \mathbb{C} \middle| f: \mathbb{E}\mathbf{M}\mathbf{H}\mathbf{H}, \ f(\theta+1) = f(\theta), \ |f|_r := \sup_{|\mathrm{Im}\theta| \le r} |f(\theta)| < \infty \right\}$$

する.

複素領域 $\mathcal{D} \subset \mathbb{C}^2$ を考え、その R-近傍を $\mathcal{D}_R := \{z \in \mathcal{D} | \sup_{y \in \mathcal{D}} |y - z| \}$ と書くことにする.

h に関する仮定:

 $h(x_1, x_2)$ が $(x_1, x_2) \in \mathcal{D}$ で解析的, $(x_1, x_2) \in \mathcal{D} \cap \mathbb{R}^2$ で実, $h(x_1 + 1, x_2 + 1) = h(x_1, x_2)$ を満たす. また, ある定数 $\kappa > 0$, M > 0 により,

$$\min_{\mathcal{D}} |h_{12}| > \kappa, \tag{3.1}$$

$$|h|_{C^3(\mathcal{D})} < M. \tag{3.2}$$

u₀ に関する仮定:

ある $r \in (0,1)$ に対して, $u_0(\theta) - \theta \in W_r$ である. さらに, ある (十分大きな) $N_0 > 0$ に対し,

$$(u_0, u_0^+) \in \mathcal{D}_R \quad (|\operatorname{Im}\theta| < r), \tag{3.3}$$

$$|(u_0)_{\theta}|_r < N_0, \quad |(u_0)_{\theta}^{-1}|_r < N_0.$$
 (3.4)

Theorem 1 (ツイスト定理). ω がディオファントス数, つまり, ある $K>0,\sigma>0$ が存在して, 任意の $p,q\in\mathbb{Z}\backslash\{0\}$ について

 $|\omega - \frac{p}{q}| \ge \frac{K}{q^{2+\sigma}}$

であるとする.

 h,u_0 が上の仮定を満たすとする.このとき,ある定数 $\delta=\delta(r,h,M,N_0,K,\sigma,\kappa)$ が存在し,もし $|E(u_0)|_r<\delta$ であれば ラグランジュ方程式 $E[u]\equiv 0$ の解 u で, u_0 に近く, $u(\theta)-\theta\in W_{r/2}$ を満たし, $u(\theta)-\theta$ の $\theta\in\mathbb{S}^1$ での平均値が 0 になる ものがただ一つ存在する.

Example 2. 摂動を受けたツイスト写像

$$x_2 = x_1 + y_1 + \epsilon f(x_1, y_1, \epsilon)$$

 $y_2 = y_1 + \epsilon g(x_1, y_1, \epsilon)$

が領域 $\mathcal{D} := \{(x_1, x_2) \in \mathbb{C}^2 | a < \operatorname{Re}(x_1 - x_2) < b, |\operatorname{Im} x_1| < 1, |\operatorname{Im} x_2| < 1\}$ 上で定義された母関数 $h(x_1, x_2) = \frac{1}{2}(x_1 - x_2)^2 + \epsilon H(x_1, x_2, \epsilon)$ を持つとする. $(|H|_{C^3(\mathcal{D})})$ が有界まで要りそう.)

ディオファントス数 $\omega\in(a,b)$ と $u_0(\theta)=\theta$ を選ぶ。いま, ϵ を十分小さく取れば, $|h_{12}|=|-1+\epsilon H_{12}|>1-O(\epsilon)$ より (3.1) は ok. $|h_i|\leq|x_1-x_2|+\epsilon|H_1|< b+2+O(\epsilon), |h_{ii}|=|1+\epsilon H_{ii}|<1+O(\epsilon), |h_{ijk}|<\epsilon|H_{ijk}|<O(\epsilon)$ より (3.2) も ok. $R=\min\left\{\frac{1}{2\sqrt{2}}(b-\omega),\frac{1}{2\sqrt{2}}(\omega-a),r\right\}$ として, $(u_0,u_0^+)=(\theta,\theta+\omega)\in D_R$ ($|\mathrm{Im}\theta|< r$)より (3.3) は ok. $u_0=(u_0)^{-1}=\theta$ なので $N_0=\max\{-a,b\}+r$ とすれば (3.4) も ok.

以上から、ツイスト定理が使えて、不変曲線の存在が証明できる.

4 homological equation

ツイスト定理の証明のカギは、初期解 u_0 から始めて"修正ニュートン法"によってE[u]の零点を探すことである。 $\tilde{u}=u+v$ として、 $E[\tilde{u}]$ は

$$E[u+v] = E[u] + E'[u]v + Q(v)$$

と書ける.ここで,Q は剰余項であり,E'[u]v はガトー微分である.具体的に計算すると, $h_{ij}^- = h_{ij}(u^-,u)$ として,

$$E'[u]v = (h_{11} + h_{22}^{-})v + h_{12}v^{+} + h_{12}^{-}v^{-}$$

と書き下すことができる.

ふつうのニュートン法では、v に関する方程式

$$E'[u]v = -E[u] \tag{4.1}$$

の解としてvを定める.

今回は、(4.1) の代わりに、両辺に u_{θ} を掛けて左辺から $v_{d\theta}^{\ d}E[u] = vE'[u]u_{\theta}$ を引いた方程式

$$u_{\theta}E'[u]v - vE'[u]u_{\theta} = -u_{\theta}E[u] \tag{4.2}$$

の解として v を与える. もちろんこれは (4.1) とは等価ではない式だが, この場合の更新則 $u\mapsto u+v$ でも E[u] の零点へ収束することを後に示す. (4.2) のままだと扱いにくいので, 少し変形する. 左辺が

$$u_{\theta}E'[u]v - vE'[u]u_{\theta} = h_{12}(u_{\theta}v^{+} - u_{\theta}^{+}v) + h_{12}^{-}(u_{\theta}v^{-} - u_{\theta}^{-}v)$$

であることに注意して、新変数 $w := \frac{v}{v_0}$ を導入すれば、

$$h_{12}(u_{\theta}v^{+} - u_{\theta}^{+}v) + h_{12}^{-}(u_{\theta}v^{-} - u_{\theta}^{-}v) = h_{12}u_{\theta}u_{\theta}^{+}(w^{+} - w) - h_{12}^{-}u_{\theta}^{-}u_{\theta}(w - w^{-}) = \nabla^{*}(h_{12}u_{\theta}u_{\theta}^{+}\nabla w)$$

となる. ただし,

$$\nabla f(\theta) := f(\theta + \omega) - f(\theta), \quad \nabla^* f(\theta) := f(\theta) - f(\theta - \omega)$$

と表記した.

まとめると、wに関する関数方程式

$$\nabla^*(h_{12}u_\theta u_\theta^+ \nabla w) = -u_\theta E[u]$$

の解としてwを選び,更新則

$$\tilde{u} = u + v, \quad v = u_{\theta} w$$

を考える. 初期解 u_0 から始めて最終的に u が E[u] の零点に収束することを示す.

5 homological equation の求解

u を既知, w を未知の関数とする.

TO DO: ツイスト定理の証明をまとめる

参考文献

[1] M. Levi and J. Moser, A Lagrangian proof of the invariant curve theorem for twist mappings, Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math. **69**, 733-746, Amer. Math. Soc., Providence, RI, 2001