

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER : 2000341582
PUBLICATION DATE : 08-12-00

APPLICATION DATE : 31-05-99
APPLICATION NUMBER : 11152808

APPLICANT : SONY CORP;

INVENTOR : UEDA KAZUHIKO;

INT.CL. : H04N 5/243

TITLE : IMAGE PICKUP DEVICE AND ITS
METHOD

ABSTRACT : PROBLEM TO BE SOLVED: To generate a natural composite image corresponding to an object image pickup.

SOLUTION: A positional deviation quantity (d), corresponding to the reference image of each image (xS1) other than a reference image (xL1) respectively detected, positional deviation for the reference image of each image other than the reference image, is corrected on the basis of the positional deviation quantity and subsequently, respective images (xS4) are combined other than the reference images and reference images whose positional deviation is corrected. By so doing this, image degradation that takes place when a plurality of images are combined can be avoided, and consequently, a natural composite image corresponding to an object of image pickup can be generated.

COPYRIGHT: (C)2000,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号
特開2000-341582
(P2000-341582A)

(43)公開日 平成12年12月8日(2000.12.8)

(51)Int.Cl.⁷

H 0 4 N 5/243

識別記号

F I

H 0 4 N 5/243

マークコード(参考)

5 C 0 2 2

審査請求 未請求 請求項の数14 ○L (全 25 頁)

(21)出願番号 特願平11-152808

(22)出願日 平成11年5月31日(1999.5.31)

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 緒形 昌美

東京都品川区北品川6丁目7番35号ソニー
株式会社内

(72)発明者 土屋 隆史

東京都品川区北品川6丁目7番35号ソニー
株式会社内

(74)代理人 100082740

弁理士 田辺 恵基

最終頁に続く

(54)【発明の名称】撮像装置及びその方法

(57)【要約】

【課題】本発明は、撮像対象に対応した自然な合成画像を生成し得るようにする。

【解決手段】基準画像($\times L_1$)以外の各画像($\times S_1$)の基準画像に対する位置ずれ量(d)をそれぞれ換出し、当該位置ずれ量に基づいて基準画像以外の各画像の基準画像に対する位置ずれを補正した後、基準画像及び位置ずれが補正された基準画像以外の各画像($\times S_4$)を合成することにより、複数の画像を合成する際に生じる画質の劣化を回避し得、かくして撮像対象に対応した自然な合成画像を生成し得る。

図1 第1の発明の構造によるビデオカメラの構成

【特許請求の範囲】

【請求項1】露光量の異なる複数の画像を撮像して合成する撮像装置において、

上記複数の画像のうちのいずれかを基準画像とし、当該基準画像以外の各画像の上記基準画像に対する位置ずれ量をそれぞれ検出する位置ずれ量検出手段と、

上記位置ずれ量に基づいて上記基準画像以外の各画像の上記基準画像に対する位置ずれをそれぞれ補正する位置ずれ補正手段と、

上記基準画像と位置ずれが補正された上記基準画像以外の各画像とを全て合成する画像合成手段とを具えることを特徴とする撮像装置。

【請求項2】上記位置ずれ量検出手段は、

上記基準画像及び上記基準画像以外の各画像から特徴点をそれぞれ抽出する特徴点抽出手段と、

上記基準画像の特徴点及び上記基準画像以外の各画像の特徴点の位置関係に基づいて、予め用意されている複数の位置ずれ量候補それぞれの上記位置ずれ量としての信頼度を上記基準画像以外の各画像に対して算出する信頼度算出手段と、

上記各位置ずれ量候補のうち上記信頼度が最大となる上記位置ずれ量候補を上記基準画像以外の各画像における上記位置ずれ量として検出することを特徴とする請求項1に記載の撮像装置。

【請求項3】上記信頼度算出手段は、

上記位置ずれ量候補を用いて上記基準画像の特徴点と上記基準画像以外の画像の特徴点との間の位置ずれを補正し、互いに対応する上記特徴点の位置が一致する数をカウントして上記信頼度を算出することにより、上記複数の位置ずれ量候補それぞれにおける上記信頼度を算出することを特徴とする請求項2に記載の撮像装置。

【請求項4】上記特徴点抽出手段は、

上記基準画像及び上記基準画像以外の各画像から複数種類の特徴点を抽出し、

上記信頼度算出手段は、

上記基準画像から抽出された上記複数種類の特徴点及び上記基準画像以外の各画像から抽出された上記複数種類の特徴点の位置関係に基づいて、予め用意されている複数の位置ずれ量候補それぞれの上記位置ずれ量としての信頼度を上記基準画像以外の各画像に対して算出することを特徴とする請求項2に記載の撮像装置。

【請求項5】上記特徴点は、

画素値が急激に変化するエッジを形成する画素でなることを特徴とする請求項2に記載の撮像装置。

【請求項6】上記複数の画像それぞれに対して、水平方向の画素列毎に画素値を積分して垂直方向のデータ列を生成すると共に垂直方向の画素列毎に画素値を積分して水平方向のデータ列を生成する積分手段を具え、上記特徴点抽出手段は、

上記垂直及び水平方向の各データ列を基に上記基準画像

の特徴点及び上記基準画像以外の各画像の特徴点をそれぞれ抽出することを特徴とする請求項2に記載の撮像装置。

【請求項7】上記特徴点抽出手段は、

上記複数の画像に含まれる輝度情報を基に上記基準画像の特徴点及び上記基準画像以外の各画像の特徴点をそれぞれ抽出することを特徴とする請求項2に記載の撮像装置。

【請求項8】露光量の異なる複数の画像を撮像して合成する撮像方法において、

上記複数の画像のうちのいずれかを基準画像とし、当該基準画像以外の各画像の上記基準画像に対する位置ずれ量をそれぞれ検出し、

上記位置ずれ量に基づいて上記基準画像以外の各画像の上記基準画像に対する位置ずれをそれぞれ補正し、

上記基準画像と位置ずれが補正された上記基準画像以外の各画像とを全て合成することを特徴とする撮像方法。

【請求項9】上記基準画像及び上記基準画像以外の各画像から特徴点をそれぞれ抽出し、

上記基準画像の特徴点及び上記基準画像以外の各画像の特徴点の位置関係に基づいて、予め用意されている複数の位置ずれ量候補それぞれの上記位置ずれ量としての信頼度を上記基準画像以外の各画像に対して算出し、

上記各位置ずれ量候補のうち上記信頼度が最大となる上記位置ずれ量候補を上記基準画像以外の各画像における上記位置ずれ量として検出することを特徴とする請求項8に記載の撮像方法。

【請求項10】上記位置ずれ量候補を用いて上記基準画像の特徴点と上記基準画像以外の画像の特徴点との間の位置ずれを補正し、互いに対応する上記特徴点の位置が一致する数をカウントして上記信頼度を算出することにより、上記複数の位置ずれ量候補それぞれにおける上記信頼度を算出することを特徴とする請求項9に記載の撮像方法。

【請求項11】上記基準画像及び上記基準画像以外の各画像から複数種類の特徴点を抽出し、
上記基準画像から抽出された上記複数種類の特徴点及び上記基準画像以外の各画像から抽出された上記複数種類の特徴点の位置関係に基づいて、予め用意されている複数の位置ずれ量候補それぞれの上記位置ずれ量としての信頼度を上記基準画像以外の各画像に対して算出することを特徴とする請求項9に記載の撮像方法。

【請求項12】上記特徴点は、

画素値が急激に変化するエッジを形成する画素でなることを特徴とする請求項9に記載の撮像方法。

【請求項13】上記複数の画像それぞれに対して、水平方向の画素列毎に画素値を積分して垂直方向のデータ列を生成すると共に垂直方向の画素列毎に画素値を積分して水平方向のデータ列を生成し、
上記垂直及び水平方向の各データ列を基に上記基準画像

の特徴点及び上記基準画像以外の各画像の特徴点をそれぞれ抽出することを特徴とする請求項9に記載の撮像方法。

【請求項14】上記複数の画像に含まれる輝度情報を基に上記基準画像の特徴点及び上記基準画像以外の各画像の特徴点をそれぞれ抽出することを特徴とする請求項9に記載の撮像方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は撮像装置及びその方法に関し、例えばビデオカメラに適用して好適なものである。

【0002】

【従来の技術】従来、異なる露光量で撮像された複数の画像を合成してダイナミックレンジの広い画像（明るい領域から暗い領域まで表現された画像）を生成するビデオカメラがある。

【0003】このような露光量の異なる複数の画像を撮像する方法としては、例えば撮像素子として固体撮像素子（CCD：Charge Coupled Device）を用い、当該CCDが有する機能である電子シャッタによって露光時間を変化させることにより、時分割的に複数の画像を撮像する方法がある。この方法では、任意の1フィールド期間において、通常の撮像と同様に電荷の蓄積及び読み出しを行った後、垂直ブランкиング期間を利用して再度電荷の蓄積及び読み出しを行うことにより、1フィールド期間内に露光時間の異なる2枚の画像を得るようになされている。

【0004】また図28に示すように、撮像素子1上の各画素の上に透過率の異なるND（Neutral Density）フィルタ3を配置し、空間分割的に露光量の異なる画像を撮像する方法もある。さらに図29に示すように、例えば撮像素子5A及び5Bのうち撮像素子5Bの前面にNDフィルタ7を配置するように、複数の撮像素子を用意して当該各撮像素子の前面に透過率の異なるNDフィルタを配置することにより、空間解像度を落とすことなく複数の画像を撮像する方法もある。

【0005】

【発明が解決しようとする課題】ところで時分割的に露光量の異なる複数の画像を撮像する方法は、空間分割的に露光量の異なる複数の画像を撮像する方法に比して高解像度の画像を生成することが可能であると共に、複数の撮像素子を用いて露光量の異なる複数の画像を撮像する方法に比して構成が簡易でかつ低コストで済むことから、これら2つの方法に比べて優れた撮像方法であると言える。

【0006】しかしながら時分割的に露光量の異なる複数の画像を撮像する方法では、露光量の異なる各画像の撮像時刻に差があるため、手ぶれなどによって各画像間に位置ずれが生じた場合には、当該撮像された露光量の

異なる各画像を合成する際、その合成画像上に位置ずれによる画質の劣化が生じてしまう問題があった。

【0007】このような各画像間の位置ずれが合成画像の画質を劣化させる様子について図30を用いて説明する。図30（A）は長時間露光によって撮像した画像を1次元的に示すと共に、図30（B）は短時間露光によって撮像した画像を1次元的に示しており、これら2つの画像間には長さDだけの位置ずれが発生している。これら2つの画像を合成すると、図30（C）に示す合成画像のように、エッジ付近において画像の乱れが生じてしまうことになる。

【0008】本発明は以上の点を考慮してなされたもので、撮像対象に対応する自然な合成画像を生成し得る撮像装置及びその方法を提案しようとするものである。

【0009】

【課題を解決するための手段】かかる課題を解決するため本発明においては、露光量の異なる複数の画像を撮像して合成する撮像装置において、複数の画像のうちのいずれかを基準画像とし、当該基準画像以外の各画像の基準画像に対する位置ずれ量をそれぞれ検出する位置ずれ量検出手段と、位置ずれ量に基づいて基準画像以外の各画像の基準画像に対する位置ずれをそれぞれ補正する位置ずれ補正手段と、基準画像と位置ずれが補正された基準画像以外の各画像とを全て合成する画像合成手段とを設けるようにした。

【0010】基準画像以外の各画像の基準画像に対する位置ずれ量をそれぞれ検出し、当該位置ずれ量に基づいて基準画像以外の各画像の基準画像に対する位置ずれをそれぞれ補正した後、基準画像と位置ずれが補正された基準画像以外の各画像とを全て合成することにより、複数の画像を合成する際に生じる画質の劣化を回避し得る。

【0011】

【発明の実施の形態】以下図面について、本発明の一実施の形態を詳述する。

【0012】(1) 第1の実施の形態

図1において、10は全体としてビデオカメラの構成を示し、固体撮像素子（CCD：Charge Coupled Device）12によって時分割的に露光量の異なる2枚の画像を撮像するようになされている。図2に示すように、CCD12は、任意の1フィールド期間において、通常の撮像と同様に電荷の蓄積及び読み出しを行った後、垂直ブランкиング期間を利用して再度電荷の蓄積及び読み出しを行うことにより、1フィールド期間内に露光時間の異なる2枚の画像を生成するようになされている。このようにCCD12は、露光時間の異なる2枚の画像すなわち長時間露光画像xL1及び短時間露光画像xS1を生成し、長時間露光画像xL1をメモリ14に送出すると共に短時間露光画像xS1をメモリ16に送出する。

【0013】メモリ14は、長時間露光画像xL1を一

時的に蓄積し、所定のタイミングで長時間露光画像 $\times L_1$ を読み出してリミッタ 1 S 及び画像合成器 2 O にそれぞれ送出する。メモリ 1 6 は、短時間露光画像 $\times S_1$ を一時的に蓄積し、所定のタイミングで短時間露光画像 $\times S_1$ を読み出してゲイン補正器 2 1 及び位置ずれ補正器 2 3 にそれぞれ送出する。

$$\times S_2(i, j) = \times S_1(i, j) \times g$$

【0016】によって補正し、その結果得られる短時間露光画像 $\times S_2$ をリミッタ 2 R に送出するようになされている。ここで、 g は長時間露光画像 $\times L_1$ と短時間露

$$g = \frac{T_{long}}{T_{short}}$$

【0018】によって与えられる。ここで T_{long} は長時間露光の露光時間であり、 T_{short} は短時間露光の露光時間である。因みに、 $\times S_1(i, j)$ は短時間露光画像 $\times S_1$ 上の位置 (i, j) における画素値を表している。

$$\times S_3(i, j) = \begin{cases} \times S_2(i, j) & \cdots \times S_2(i, j) \leq T_{up} \\ T_{up} & \cdots \times S_2(i, j) > T_{up} \end{cases} \quad \dots (3)$$

【0021】に示すように、短時間露光画像 $\times S_2$ を形成する各画素のうち、画素値が所定のしきい値以下の場合にはその画素値をそのまま出力し、画素値が所定のしきい値を超える場合にはその画素値をしきい値 T_{up} に置き換えて出力することにより、短時間露光画像 $\times S_3$ を得、これを位置ずれ量検出器 2 7 に送出する。

【0022】一方リミッタ 1 8 は、長時間露光画像 $\times L_1$ の各画素値の上限を制限するためのものであり、リミッタ 2 5 の場合と同様に、長時間露光画像 $\times L_1$ を形成する各画素のうち、画素値が所定のしきい値以下の場合にはその画素値をそのまま出力し、画素値が所定のしきい値を超える場合にはその画素値をしきい値 T_{up} に置き換えて出力することにより、長時間露光画像 $\times L_2$ を得、これを位置ずれ量検出器 2 7 に送出する。

【0023】図 3 に示すように、位置ずれ量検出器 2 7 は、長時間露光画像 $\times L_2$ と短時間露光画像 $\times S_3$ の間の位置ずれ量を 2 次元ベクトル $d = (d_x, d_y)$ として検出し、これを位置ずれ補正器 2 3 に送出する。ここで d_x は位置ずれ量の水平成分を示し、 d_y は垂直成分を示す。

【0024】図 4 に示すように、位置ずれ量検出器 2 7 は、リミッタ 1 8 から供給される長時間露光画像 $\times L_2$ を特微点抽出器 3 0 A に入力すると共に、リミッタ 2 5 から供給される短時間露光画像 $\times S_3$ を特微点抽出器 3 0 B に入力する。特微点抽出器 3 0 A は、長時間露光画

【0014】ゲイン補正器 2 1 は、短時間露光画像 $\times S_1$ に対して、撮像時における長時間露光画像 $\times L_1$ との露光量の違いを次式

【0015】

【数 1】

..... (1)

光画像 $\times S_1$ を撮像するときの露光時間比であり、次式

【0017】

【数 2】

..... (2)

【0019】リミッタ 2 5 は、ゲイン補正が施された短時間露光画像 $\times S_2$ の各画素値の上限を制限するためのものであり、次式

【0020】

【数 3】

像 $\times L_2$ から特徴点を抽出することにより特徴点画像 $p L_1$ を生成し、これをメモリ 3 2 A に送出する。特徴点画像 $p L_1$ は、各画素値が 0 又は 1 でなる 2 値画像であり、画素値が 1 の場合には長時間露光画像 $\times L_2$ 上の対応する画素が特徴点であることを示し、画素値が 0 である場合には対応する画素が特徴点でないことを示す。ここで特徴点としては、例えば長時間露光画像 $\times L_2$ のうち空間的に急激に変化するエッジ点が用いられている。

【0025】同様に特徴点抽出器 3 0 B は、短時間露光画像 $\times S_3$ から特徴点を抽出することにより特徴点画像 $p S_1$ を生成し、これをメモリ 3 2 B に送出する。特徴点画像 $p S_1$ は、特徴点画像 $p L_1$ の場合と同様に、各画素値が 0 又は 1 でなる 2 値画像であり、画素値が 1 の場合には短時間露光画像 $\times S_3$ 上の対応する画素が特徴点であることを示し、画素値が 0 である場合には対応する画素が特徴点でないことを示す。

【0026】特徴点抽出器 3 0 A 及び 3 0 B は、それ同様の構成であり、ここでは特徴点抽出器 3 0 A の回路構成についてのみ図 5 を用いて説明する。特徴点抽出器 3 0 A は、リミッタ 1 8 (図 1) から供給される長時間露光画像 $\times L_2$ を 2 次微分型フィルタ 3 5 に入力する。2 次微分型フィルタ 3 5 は、例えばラプラスアン G と呼ばれる次式

【0027】

【数 4】

$$\nabla^2 G(h, k) = \frac{-1}{\pi \sigma^2} \left(1 - \frac{h^2 + k^2}{2 \sigma^2} \right) e^{-\frac{h^2+k^2}{2\sigma^2}} \quad \dots \dots (4)$$

$$h_{min} \leq h \leq h_{max}$$

$$k_{min} \leq k \leq k_{max}$$

【0028】に示すような関数を用いて、次式

【0029】

$$x L 3(i, j) = \sum_{h, k} x(i-h, j-k) \times \nabla^2 G(h, k) \quad \dots \dots (5)$$

【0030】によって置込演算を行うことにより2次微分画像xL3を得、これを2値化器37に送出する。ここで σ は予め設定された定数であり、当該 σ が大きいほど低周波成分のエッジを検出し得る。また h_{min} 、 h_{max} 、 k_{min} 、 k_{max} はラプラシアンGのフィルタの範囲を定義する定数である。

【0031】2値化器37は、2次微分画像xL3の各

$$p(i, j) = \begin{cases} 1 & \dots b(i, j) \neq b(i + d_i, j + d_j) \\ & -1 \leq d_i, d_j \leq 1 \\ 0 & \dots \text{others} \end{cases} \quad \dots \dots (6)$$

【0033】に示すような近傍処理を行って2値パターンの境界点を抽出することにより特徴点画像pL1を生成し、これをメモリ32A(図4)に送出する。すなわち境界点抽出器39は、近傍領域内に異なる値を持つ画素が存在する場合にのみ、その中心位置に特徴点が存在するとして値1を出力する。このように抽出された特徴点は、図6に示すように、ゼロ交差点と呼ばれるもので、画素値が急激に変化するエッジパターンの中心点のことである。

【0034】図4に戻って、メモリ32Aは、特徴点画像pL1を一時的に蓄積した後、所定のタイミングで当該特徴点画像pL1を読み出し、これを信頼度算出器4

$$-d x_{max} \leq d x_n \leq d x_{max}$$

$$-d y_{max} \leq d y_n \leq d y_{max}$$

【0037】のような不等式によって与えられる。ここで $d x_{max}$ は水平方向の最大位置ずれ量の絶対値を示し、 $d y_{max}$ は垂直方向の最大位置ずれ量の絶対値を示す。

【0038】ここで各位置ずれ量候補 $d n$ における信頼度の算出方法について具体的に説明する。信頼度算出器45は、始めに特徴点画像pL1を図7に示すような順序によってスキャンし、画素値が1である画素位置すなわち特徴点の位置を検出する。そして信頼度算出器45

画素において、画素値が0以上である場合には値1を出力し、画素値が0未満である場合には値0を出力することにより2値画像xL4を生成し、これを境界点検出器39に送出する。境界点抽出器39は、2値画像xL4に対して次式

【0032】

【数6】

5に送出する。同様にメモリ32Bは、特徴点画像pS1を一時的に蓄積した後、所定のタイミングで特徴点画像pS1を読み出し、これを信頼度算出器45に送出する。

【0035】信頼度算出器45は、特徴点画像pL1及びpS1に基づいて、予め用意されている複数の位置ずれ量候補 $d n = (d x_n, d y_n)$ のそれぞれに対して、正しい位置ずれ量である信頼度を算出する。この位置ずれ量候補 $d n$ は、例えば発生し得る位置ずれ量の最大値を選定することにより、次式

【0036】

【数7】

..... (7)

は、特徴点画像pL1のうち注目する特徴点の画素位置が(i, j)である場合(図8(A))、複数の位置ずれ量候補 $d n = (d x_n, d y_n)$ それぞれに対応する、特徴点画像pS1上の各位置(i+d x_n, j+d y_n)に特徴点が存在するか否かを調べる。位置ずれ量候補 $d n$ が上述の(7)式のような不等式で与えられる場合には、特徴点画像pS1上における特徴点探索範囲は、図8(B)に示すような領域Rで表される。

【0039】この結果、信頼度算出器45は、特徴点画

像PS1上の位置($i + dxn$, $j + dyn$)に特微点が存在することを検出した場合には、次式

$$cmap(dn) = cmap(dn) + 1$$

【0041】によって位置ずれ量候補dn=(dxn, dyn)の信頼度をインクリメントする。ここでcmap(dn)は各位置ずれ量候補の信頼度を積算するため

$$cmap(dn) = 0$$

for all dn

【0043】のように初期化されている。このように信頼度算出器45は、特微点画像PL1上の全ての特微点に対して信頼度の積算を行うことにより信頼度マップcmap(dn)(n=0, 1, 2, ...)を得、これを最大値検出器47に送出する。

【0044】最大値検出器47は、信頼度マップcmap(dn)のうち、最大の信頼度を持つ位置ずれ量候補

$$|dn|^2 = dxn^2 + dyn^2$$

【0046】によって求められるような位置ずれ量の大きさ $|dn|$ が最も小さい位置ずれ量候補dnを選択するようになされている。

【0047】また最大値検出器47は、検出した信頼度

$$cmax > a \times Tcount$$

$$0.0 \leq a \leq 1.0$$

【0049】の条件を満たさない場合には、十分な信頼度の位置ずれ量が得られないとして位置ずれ補正を行わないようdn=(0, 0)とするようになされている。ここで、aはしきい値を決定するための係数であり、予め設定された値である。またT_{count}は、長時間露光画像XL2から抽出された特徴点の総数を示す。

$$xS4(i, j) = xS1(i - dx, j - dy)$$

【0052】によって平行移動させることにより、長時間露光画像XL1との位置ずれを補正し、その結果得られる短時間露光画像XS4を画像合成器20に送出する。

【0053】画像合成器20は、メモリ14から供給された長時間露光画像XL1と位置ずれ補正器23によって補正された短時間露光画像XS4とを合成することにより、ダイナミックレンジの広い1枚の合成画像X1を生成し、これをダイナミックレンジ圧縮器49に送出する。

【0054】これら長時間露光画像XL1と短時間露光画像XS4を合成する方法としては、撮像された露光量の比に応じた係数を各画像に積算した後、しきい値処理によって各画像を切り替えて出力することにより合成画像X1を生成する方法がある。以下、この画像合成器20による画像合成方法について図9を用いて具体的に説明する。この図9において、横軸はCCD12への入射光量を示し、縦軸はCCD12から出力される出力信号の信号レベルすなわち撮像された画像の画素レベルを示

【0040】

【数8】

..... (8)

の信頼度マップであり、予め次式

【0042】

【数9】

..... (9)

d_{max} を検出し、これを真の位置ずれ量dとして位置ずれ量補正器23(図1)に送出する。因みに、同一の信頼度を有する複数の位置ずれ量候補dnが存在する場合には、最大値検出器47は、次式

【0045】

【数10】

..... (10)

の最大値 d_{max} が所定のしきい値よりも小さい場合、すなわち次式

【0048】

【数11】

..... (11)

【0050】図1に戻って、位置ずれ量補正器23は、位置ずれ量検出器27によって検出された位置ずれ量ベクトルdに基づいて、メモリ16から供給される短時間露光画像XL2を、次式

【0051】

【数12】

..... (12)

している。

【0055】図9に示すように、長時間露光画像XL1は、傾きが大きい直線で表され、入射光量が所定のレベルT_{up}以上ではCCD12の飽和によって出力信号の信号レベルが一定の値となる。一方、短時間露光画像XS4は、その傾きが小さく、CCD12から出力される出力信号は長時間露光画像XL1よりも高い入射光量で飽和する。

【0056】かくして画像合成器20は、始めに、短時間露光画像XS4に対応する出力信号に対して、上述の(2)式で算出された係数 α を積算して直線部分の傾きを合わせる。その後、画像合成器20は、長時間露光画像XL1に対応する出力信号を参照しながら、当該出力信号の信号レベルが所定のしきい値T_{up}以下の場合には長時間露光画像XL1の出力信号を選択し、当該出力信号の信号レベルが所定のしきい値T_{up}より大きい場合には短時間露光画像XS4に対応する出力信号を選択して出力することにより、長時間露光画像XL1及び短時間露光画像XS4の合成画像X1を生成する。

【0057】この画像合成器20による画像合成方法は、次式

$$x \cdot 1 = \begin{cases} x \cdot L_1 & \dots x \cdot L_1 \leq T_H \\ x \cdot S_4 \times g & \dots x \cdot L_1 > T_H \end{cases}$$

【0059】によって表され、短時間露光画像xS4に対応する出力信号に積算される係数gは、各露光時間の比であり、上述の(2)式によって算出されたものである。これにより露光時間の比がN倍の場合には、合成画像x1のダイナミックレンジはN倍に拡大されることになる。

【0060】統いてダイナミックレンジ圧縮器49は、後段に設けられている図示しない伝送系、表示装置、記録装置などのデータ処理能力に応じて合成画像x1のダイナミックレンジを圧縮し、その結果得た圧縮合成画像y1を外部に出力する。具体的にはダイナミックレンジ圧縮器49は、ダイナミックレンジの広い合成画像x1を圧縮する方法として、当該合成画像x1の各画素に対して、その画素レベルを図10に示すような入出力関係を持つ関数(以下、これをレベル変換関数と呼ぶ)で変換する方法(以下、これをレベル変換と呼ぶ)を採用している。

【0061】この図10において、横軸は入力される合成画像x1の画素レベルLを示し、縦軸はレベル変換処理が施された圧縮合成画像y1の画素レベルT(1)を示す。Linmaxは入力される合成画像x1の各画素が取

$$C(1) = \sum_k H(k)$$

【0065】によって累積頻度分布C(1)が生成される。そしてヒストグラムイコライゼーションによる圧縮方法は、この累積頻度分布の縦軸を、次式

$$T(1) = \frac{C(1)}{F_{\max}} \times L_{\text{outmax}}$$

【0067】によって圧縮合成画像y1が取り得るレベル範囲に正規化することにより、レベル変換関数T(1)を生成する。ヒストグラムイコライゼーションによる圧縮方法は、このレベル変換関数T(1)を用いることにより、出現頻度の高いレベルによって構成される領域(面積が大きい領域)のコントラストを確保しながら、全体のダイナミックレンジを圧縮することを可能にしている。

【0068】以上の構成において、位置ずれ量検出器27は、異なる露光時間で撮像された長時間露光画像xL2及び短時間露光画像xS3から特徴点をそれぞれ抽出し、当該抽出した長時間露光画像xL2の各特徴点及び短時間露光画像xS3の各特徴点の位置関係に基づいて、予め用意されている複数の位置ずれ量候補dnのうち最も信頼度の高い位置ずれ量候補を検出し、これを真の位置ずれ量dnとして位置ずれ補正器23に送出す

【0058】
【数13】

..... (13)

り得る最大の画素レベルを示し、Loutmaxは出力される圧縮合成画像y1の各画素が取り得る最大の画素レベルを示す。このレベル変換では、高レベルでのコントラストを犠牲することにより、低レベル及び中間レベルでのコントラストを確保しながら全体のダイナミックレンジを圧縮している。

【0062】また、ダイナミックレンジの広い合成画像x1を圧縮する方法としては、合成画像x1の画素レベルの頻度分布に応じてレベル変換関数を適応的に変化させる方法があり、その代表例としてヒストグラムイコライゼーションと呼ばれる方法がある。図11は、このヒストグラムイコライゼーションの方法の原理を示す。ここで、Fmaxは累積頻度の最大値であり、頻度を算出するため用いる画素の総数である。

【0063】このヒストグラムイコライゼーションによる圧縮方法では、始めに入力される合成画像x1の画素レベルLに関する頻度分布H(1)が生成され、次に次式

【0064】
【数14】

..... (14)

【0066】
【数15】

..... (15)

る。

【0069】位置ずれ量補正器23は、位置ずれ量検出器27から送出された位置ずれ量dに基づいて、短時間露光画像xS1の長時間露光画像xL1に対する位置ずれを補正し、その結果得た短時間露光画像xS4を画像合成器20に送出する。画像合成器20は、長時間露光画像xL1と位置ずれが補正された短時間露光画像xS4とを合成することによりダイナミックレンジの広い1枚の合成画像x1を生成する。

【0070】このように長時間露光画像xL1及び短時間露光画像xS1間の位置ずれを補正した後に合成することにより、位置ずれが生じた状態で合成した合成画像のようにエッジ付近の画質が劣化することはない。

【0071】以上の構成によれば、短時間露光画像xS1の長時間露光画像xL1に対する位置ずれを補正した後、長時間露光画像xL1と位置ずれが補正された短時

間露光画像 $\times S_4$ とを合成して合成画像 $\times 1$ を生成することにより、2つの画像を合成する際に生じる画質の劣化を回避し得、かくして撮像対象に応じた自然な合成画像を生成し得る。

【0072】(2). 第2の実施の形態

図1との対応部分に同一符号を付して示す図1.2において、60は全体として第2の実施の形態によるビデオカメラを示し、位置ずれ量検出器62の構成を除いて、第1の実施の形態によるビデオカメラ10と同様に構成されている。

【0073】図4との対応部分に同一符号を付して示す図1.3は、位置ずれ量検出器62の構成を示し、この位置ずれ量検出器62は、4種類の特徴点を抽出するようになされており、具体的には図6に示したようなゼロ交差点を当該ゼロ交差点の周囲に位置する画素の画素値の符号に基づいて図1.4に示すような特徴点P1～P4に分類する。

【0074】以下、この位置ずれ量検出器62によって行われる位置ずれ量検出について説明する。位置ずれ量検出器62は、リミッタ18から供給される長時間露光画像 $\times L_2$ を特徴点抽出器64A₁～64A₄ に入力すると共に、リミッタ25から供給される短時間露光画像 $\times S_3$ を特徴点抽出器64B₁～64B₄ に入力する。

【0075】特徴点抽出器64A₁は、長時間露光画像 $\times L_2$ から特徴点P1のみを抽出することにより特徴点画像 $\times L_1$ を生成し、これをメモリ66A₁に送出する。一方、特徴点抽出器64B₁は、短時間露光画像 $\times S_3$ から特徴点P1のみを抽出することにより特徴点画像 $\times S_1$ を生成し、これをメモリ66B₁に送出する。以下、同様にして、特徴点抽出器64A₂～64A₄は、長時間露光画像 $\times L_2$ からそれぞれ対応する特徴点P2～P4のみを抽出することにより特徴点画像 $\times L_1$

$$c_{map} (d_n) = \sum_{n=1}^4 c_{map} N (d_n)$$

【0079】によって要素毎に加算することにより、1つの信頼度マップ $c_{map} (d_n)$ を生成し、これを最大値検出器47に送出する。最大値検出器47は、信頼度マップ $c_{map} (d_n)$ のうち、最大の信頼度を持つ位置ずれ量候補 d_{max} を検出し、これを真の位置ずれ量 d として位置ずれ量補正器(図1.2)に送出する。

【0080】以上の構成において、位置ずれ量検出器62は、異なる露光時間で撮像された長時間露光画像 $\times L_2$ 及び短時間露光画像 $\times S_3$ から4種類の特徴点P1～P4をそれぞれ抽出し、当該抽出した特徴点の種類毎に複数の位置ずれ量候補 d_n の信頼度をそれぞれ算出する。そして位置ずれ量検出器62は、特徴点の種類毎に算出された信頼度の合計を各位置ずれ量候補 d_n に対して算出し、当該算出された複数の位置ずれ量候補 d_n のうち信頼度が最も高い位置ずれ量候補 d_n を検出してこ

1.2～pL1.4を生成し、これらを対応するメモリ66A₂～66A₄にそれぞれ送出する。一方、特徴点抽出器64B₂～64B₄は、短時間露光画像 $\times S_3$ からそれぞれ対応する特徴点P2～P4のみを抽出することにより特徴点画像 $\times S_1.2$ ～ $\times S_1.4$ を生成し、これらを対応するメモリ66B₂～66B₄にそれぞれ送出する。

【0076】メモリ66A₁は、特徴点画像 $\times L_1.1$ を一時的に蓄積した後、所定のタイミングで当該特徴点画像 $\times L_1.1$ を読み出し、これを信頼度算出器68₁に送出する。一方、メモリ66B₁は、特徴点画像 $\times S_1.1$ を一時的に蓄積した後、所定のタイミングで当該特徴点画像 $\times S_1.1$ を読み出し、これを信頼度算出器68₁に送出する。以下、同様にして、メモリ66A₂～66A₄は、特徴点画像 $\times L_1.2$ ～ $\times L_1.4$ をそれぞれ一時的に蓄積した後、所定のタイミングでそれぞれ読み出して対応する信頼度算出器68₂～68₄にそれぞれ送出する。メモリ66B₂～66B₄は、特徴点画像 $\times S_1.2$ ～ $\times S_1.4$ をそれぞれ一時的に蓄積した後、所定のタイミングでそれぞれ読み出して対応する信頼度算出器68₂～68₄にそれぞれ送出する。

【0077】信頼度算出器68₁は、特徴点画像 $\times L_1.1$ 及び $\times S_1.1$ に基づいて信頼度マップ $c_{map} 1 (d_n)$ を生成し、これを加算器70に送出する。以下、同様にして信頼度算出器68₂～68₄は、それぞれ信頼度マップ $c_{map} 2 (d_n)$ ～ $c_{map} 4 (d_n)$ を生成し、これらを加算器70に送出する。加算器70は、信頼度マップ $c_{map} 1 (d_n)$ ～ $c_{map} 4 (d_n)$ を、次式

【0078】

【数16】

..... (16)

れを真の位置ずれ量 d として位置ずれ補正器23に送出する。

【0081】位置ずれ量補正器23は、位置ずれ量検出器27から送出された位置ずれ量 d に基づいて、短時間露光画像 $\times S_1$ の長時間露光画像 $\times L_1$ に対する位置ずれを補正し、その結果得た短時間露光画像 $\times S_4$ を画像合成器20に送出する。画像合成器20は、長時間露光画像 $\times L_1$ と位置ずれが補正された短時間露光画像 $\times S_4$ とを合成することによりダイナミックレンジの広い1枚の合成画像 $\times 1$ を生成する。

【0082】このように長時間露光画像 $\times L_1$ 及び短時間露光画像 $\times S_1$ 間の位置ずれを補正した後に合成することにより、位置ずれが生じた状態で合成した合成画像のようにエッジ付近の画質が劣化することはない。

【0083】以上の構成によれば、短時間露光画像 $\times S$

1の長時間露光画像xL1に対する位置ずれを補正した後、長時間露光画像xL1と位置ずれが補正された短時間露光画像xS4とを合成して合成画像x1を生成することにより、2つの画像を合成する際に生じる画質の劣化を回避し得、かくして撮像対象に対応する自然な合成画像を生成し得る。

【0084】また長時間露光画像xL2及び短時間露光画像xS3から複数種類の特徴点を抽出し、当該抽出した複数種類の特徴点を用いて位置ずれ量dを検出することにより、第1の実施の形態の位置ずれ量検出器27に比して一段と正確に位置ずれ量を検出することができる。

【0085】(3) 第3の実施の形態

図1との対応部分に同一符号を付して示す図15において、100は全体として第3の実施の形態によるビデオ

$$xLH1(j) = \sum_{i=0}^{N_x-1} xL2(i, j)$$

$$j = 0, 1, 2, \dots, Ny - 1$$

【0088】によって水平方向の画素値の積分を行うことにより1次元データ列xLH1を生成し、これを位置ずれ量検出器108に送出する。ここで、Nx及びNyは、画像の水平方向及び垂直方向の画素数である。

$$xLV1(i) = \sum_{j=0}^{Ny-1} xL2(i, j)$$

$$i = 0, 1, 2, \dots, Nx - 1$$

【0091】によって垂直方向の画素値の積分を行うことにより1次元データ列xLV1を生成し、これを位置ずれ量検出器109に送出する。同様にして、水平積分器103は、短時間露光画像xS3から1次元データ列xSH1を生成し、これを位置ずれ量検出器108に送出する。これと共に垂直積分器105は、短時間露光画像xS3から1次元データ列xSV1を生成し、これを位置ずれ量検出器109に送出する。

【0092】位置ずれ量検出器108は、長時間露光画像xL2から生成された1次元データ列xLH1と短時間露光画像xS3から生成された1次元データ列xSH1とに基づいて位置ずれ量の垂直成分dyを検出し、これを位置ずれ補正器111に送出する。これと共に位置ずれ量検出器109は、長時間露光画像xL2から生成された1次元データ列xLV1と短時間露光画像xS3から生成された1次元データ列xSV1とに基づいて位置ずれ量の水平成分dxを検出し、これを位置ずれ補正器111に送出する。

【0093】ところで位置ずれ量検出器108及び109は、同様の構成でなることから、ここでは位置ずれ量検出器109の構成についてのみ図16を用いて説明す

カメラの構成を示し、水平積分器102及び103、垂直積分器104及び105、位置ずれ量検出器108及び109、位置ずれ補正器111の構成を除いて、第1の実施の形態によるビデオカメラ10と同様に構成されている。

【0086】このビデオカメラ100は、リミッタ18から送出される長時間露光画像xL2を水平積分器102及び垂直積分器104に供給すると共に、リミッタ25から送出される短時間露光画像xS3を水平積分器103及び垂直積分器105に供給する。水平積分器102は、長時間露光画像xL2に対して、各垂直位置j毎に、次式

【0087】

【数17】

$$\dots\dots (17)$$

【0089】垂直積分器104は、長時間露光画像xL2に対して、各水平位置i毎に、次式

【0090】

【数18】

$$\dots\dots (18)$$

る。位置ずれ量検出器109は、長時間露光画像xL2から生成された1次元データ列xLV1を特徴点抽出器115Aに入力すると共に、短時間露光画像xS3から生成された1次元データ列xSV1を特徴点抽出器115Bに入力する。

【0094】特徴点抽出器115Aは、1次元データ列xLV1の特徴点を抽出することにより1次元の特徴点列pLV1を生成し、これをメモリ117Aに送出する。この特徴点は、図6に示すゼロ交差点であり、1次元データ列xLV1は位置iに特徴点が存在するか否かを示す2値データ列である。同様にして、特徴点抽出器115Bは、1次元データ列xSV1の特徴点を抽出することにより1次元の特徴点列pSV1を生成し、これをメモリ117Bに送出する。

【0095】メモリ117Aは、特徴点列pLV1を一時的に蓄積した後、所定のタイミングで当該特徴点列pLV1を読み出して信頼度算出器119に送出する。同様にメモリ117Bは、特徴点列pSV1を一時的に蓄積した後、所定のタイミングで当該特徴点列pSV1を読み出して信頼度算出器119に送出する。

【0096】信頼度算出器119は、特徴点列pLV1

及び P_{SV1} に基づいて、予め用意されている複数の位置ずれ量候補の水平成分 d_x とそれに対応して、正しい位置ずれ量としての信頼度を算出する。この位置ずれ量候補の水平成分 d_x は、例えば発生し得る位置ずれ量の

$$-d_{x\max} \leq d_x \leq d_{x\max}$$

【0098】のような不等式によって与えられる。

【0099】ここで各位置ずれ量候補の水平成分 d_x における信頼度の算出方法について具体的に説明する。信頼度算出器119は、始めに特徴点列 P_{LV1} をスキャンし、値が1である点の位置すなわち特徴点の位置を検出する。そして信頼度算出器119は、特徴点列 P_{LV1} 上の注目する特徴点の位置が i である場合(図17(A))、複数の位置ずれ量候補の水平成分 d_x とそれに対応する、特徴点列 P_{SV1} 上の位置 $i + d_x$ に特徴点が存在するか否か調べる。位置ずれ量候補の水平成分 d_x が上述の(19)式のような不等式で与えられる場合には、特徴点列 P_{SV1} での特徴点探索範囲は、図17(B)に示すような領域Rで表される。

【0100】この結果、信頼度算出器119は、特徴点列 P_{SV1} 上の位置 $i + d_x$ に特徴点が存在することを検出した場合には位置ずれ量候補の水平成分 d_x の信頼度をインクリメントする。このように信頼度算出器119は、特徴点列 P_{LV1} 上の全ての特徴点に対して信頼度の積算を行うことにより信頼度マップ $cmap(d_x)$ ($n=0, 1, 2, \dots$)を得、これを最大値検出器121に送出する。最大値検出器121は、信頼度マップ $cmap(d_x)$ のうち、最大の信頼度を持つ位置ずれ量候補の水平成分 $d_{x\max}$ を検出し、これを真の位置ずれ量の水平成分 d_x として位置ずれ量補正器111(図15)に送出する。

【0101】図15に戻って、位置ずれ量補正器111は、位置ずれ量検出器109から供給される位置ずれ量の水平成分 d_x と位置ずれ量検出器108から供給される位置ずれ量の垂直成分 d_y とに基づいて、短時間露光画像 S_1 を平行移動させることにより、長時間露光画像 L_1 との位置ずれを補正し、その結果得られる短時間露光画像 S_4 を画像合成器20に送出する。

【0102】以上の構成において、水平積分器102及び103は、長時間露光画像 L_2 及び短時間露光画像 S_3 における水平方向の画素列毎に画素値をそれぞれ積分することにより、垂直方向の1次元データ列 $LH1$ 及び $SH1$ を生成し、これらを位置ずれ量検出器108に送出する。これと共に、垂直積分器104及び105は、長時間露光画像 L_2 及び短時間露光画像 S_3 における垂直方向の画素列毎に画素値をそれぞれ積分することにより、水平方向の1次元データ列 $LV1$ 及び $SV1$ を生成し、これらを位置ずれ量検出器109に送出する。

【0103】位置ずれ量検出器108は、垂直方向の1次元データ列 $LH1$ 及び $SH1$ から特徴点をそれぞ

れ水平成分の最大値を選定することにより、次式

【0097】

【数19】

……(19)

れ抽出し、当該抽出した1次元データ列 $LH1$ の各特徴点及び1次元データ列 $SH1$ の各特徴点の位置関係に基づいて、予め用意されている複数の位置ずれ量候補の垂直成分 d_y のうち最も信頼度の高い位置ずれ量候補の垂直成分を検出し、これを真の位置ずれ量 d_y として位置ずれ補正器111に送出する。同様にして位置ずれ量検出器109は、水平方向の1次元データ列 $LV1$ 及び $SV1$ から特徴点をそれぞれ抽出し、当該抽出した1次元データ列 $LV1$ の各特徴点及び1次元データ列 $SH1$ の各特徴点の位置関係に基づいて位置ずれ量 d_x を検出し、これを位置ずれ補正器111に送出する。

【0104】位置ずれ量補正器111は、位置ずれ量検出器109及び108から送出された位置ずれ量 d_x 及び d_y に基づいて、短時間露光画像 S_1 の長時間露光画像 L_1 に対する位置ずれを補正し、その結果得た短時間露光画像 S_4 を画像合成器20に送出する。画像合成器20は、長時間露光画像 L_1 と位置ずれが補正された短時間露光画像 S_4 とを合成することによりダイナミックレンジの広い1枚の合成画像 X_1 を生成する。

【0105】このように長時間露光画像 L_1 及び短時間露光画像 S_1 間の位置ずれを補正した後に合成することにより、位置ずれが生じた状態で合成した合成画像のようにエッジ付近の画質が劣化することはない。

【0106】以上の構成によれば、短時間露光画像 S_1 の長時間露光画像 L_1 に対する位置ずれを補正した後、長時間露光画像 L_1 と位置ずれが補正された短時間露光画像 S_4 とを合成して合成画像 X_1 を生成することにより、2つの画像を合成する際に生じる画質の劣化を回避し得、かくして撮像対象に対応する自然な合成画像を生成し得る。

【0107】また、短時間露光画像 S_1 の長時間露光画像 L_1 に対する位置ずれ量を水平成分及び垂直成分毎に検出することにより、位置ずれ検出にかかる演算量や回路規模を一段と削減することができる。

【0108】(4) 第4の実施の形態

図1との対応部分に同一符号を付して示す図18において、120は全体として第4の実施の形態によるビデオカメラを示し、CCD122の前面に図19に示すような配列の色フィルタ(補色市松フィルタ)を配置してカラー画像を撮像することにより、図20に示すような輝度信号に周波数変調された色信号が重畠された出力信号である長時間露光画像 L_10 及び短時間露光画像 S_10 を生成する。

【0109】ところでこのビデオカメラ120のゲイン補正器21及びリミッタ18の前段には輝度分離器124及び125が設けられ、画像中の輝度情報を抽出するようになされている。すなわち輝度分離器124は、長

$$x L y 1 = L P F, \quad (x L 1 0)$$

【0111】によって抽出し、これをリミッタ18において輝度情報xLy2を得、これを位置ずれ量検出器27に送出する。ここで、LPFy()は輝度分離用のローパスフィルタである。同様に輝度分離器125は、短時間露光画像xS10から輝度情報xSy1を抽出し、これをゲイン補正器21及びリミッタ25を順次介して輝度情報xSy2を得、これを位置ずれ量検出器27に送出する。

【0112】位置ずれ量検出器27は、長時間露光画像xL10から生成された輝度情報xLy2と短時間露光画像xS10から生成された輝度情報xSy2との間の位置ずれ量dを検出し、これを位置ずれ補正器127に送出する。位置ずれ補正器127は、この位置ずれ量d

$$x S 11(i, j) = x S i p(i - d x, j - d y)$$

【0115】によって位置ずれの補正を行い、その結果得た短時間露光画像xS11を画像合成器20に送出する。ここでxSip(i-dx, j-dy)は、短時間露光画像xS10の位置(i-dx, j-dy)において、近傍の画素値から算出した長時間露光画像xL10(i, j)と同じ色フィルタに対応する画素値である。

$$x S i p(i', j') =$$

$$\frac{x S 10(i' - 1, j' - 1) + x S 10(i' + 1, j' - 1) + x S 10(i' - 1, j' + 1) + x S 10(i' + 1, j' + 1)}{4}$$

$$i' = i - d x, \quad j' = j - d y$$

【0118】によって補間される。すなわち位置ずれ補正器127は、長時間露光画像xL10(i, j)と同一の色フィルタに対応し、かつ位置(i-dx, j-dy)から最も近い画素値を用いて線形補間を行う。

【0119】以上の構成において、位置ずれ量検出器27は、異なる露光時間で撮像された長時間露光画像xL10から生成された輝度情報xLy2及び短時間露光画像xS10から生成された輝度情報xSy2から特徴点をそれぞれ抽出し、当該抽出した輝度情報xLy2の各特徴点及び輝度情報xSy2の各特徴点の位置関係に基づいて、予め用意されている複数の位置ずれ量候補dnのうち最も信頼度の高い位置ずれ量候補を検出し、これを真の位置ずれ量dとして位置ずれ量検出器127に送出する。

【0120】位置ずれ量補正器127は、位置ずれ量検出器27から送出された位置ずれ量dに基づいて、短時間露光画像xS10の長時間露光画像xL10に対する

時間露光画像xL10から輝度情報xLy1を、次式

【0110】

【数20】

$$\dots\dots (20)$$

に基づいて短時間露光画像xS10の位置ずれを補正する。

【0113】ところでこの場合、長時間露光画像xL10及び短時間露光画像xS10を形成する各画素の値は色フィルタ(図19)によって変調されていることから、検出された位置ずれ量dによって対応付けられる長時間露光画像xL10の画素xL10(i, j)と短時間露光画像xS10のxS10(i-dx, j-dy)とが常に同一の色フィルタに対応しているとは限らない。すなわち位置ずれ補正によって色の非対応が生じるおそれがある。そこで位置ずれ補正器127は、次式

【0114】

【数21】

$$\dots\dots (21)$$

【0116】例えば図21に示すように、長時間露光画像xL10(i, j)がYeフィルタに対応する画素であって、かつ位置ずれ量がd=(1, 1)である場合、xSip(i-dx, j-dy)は、次式

【0117】

【数22】

$$\dots\dots (22)$$

位置ずれ補正し、その結果得た短時間露光画像xS11を画像合成器20に送出する。画像合成器20は、長時間露光画像xL10と位置ずれが補正された短時間露光画像xS11とを合成することによりダミックレンジの広い1枚の合成画像x1を生成する。

【0121】このように長時間露光画像xL10及び短時間露光画像xS10間の位置ずれを補正した後に合成することにより、位置ずれが生じた状態で合成した合成画像のようにエッジ付近の画質が劣化することはない。

【0122】以上の構成によれば、短時間露光画像xS10の長時間露光画像xL10に対する位置ずれを補正した後、長時間露光画像xL10と位置ずれが補正された短時間露光画像xS11とを合成して合成画像x1を生成することにより、2つの画像を合成する際に生じる画質の劣化を回避し得、かくして撮像対象に対応する自然な合成画像を生成し得る。

【0123】また、長時間露光画像xL10及び短時間

露光画像 $x S 1$ から輝度情報 $x L y 2$ 及び輝度情報 $x S y 2$ をそれぞれ抽出し、当該輝度情報 $x L y 2$ 及び輝度情報 $x S y 2$ に基づいて位置ずれ量 d を検出することにより、カラー画像に対しても正確に位置ずれ補正を行うことができる。

【0124】(5)他の実施の形態

なお上述の第1乃至第4の実施の形態においては、画像合成器20の内部でゲイン補正を施した場合について述べたが、本発明はこれに限らず、短時間露光画像 $x S 1$ を蓄積するためのメモリ16の前段にゲイン補正器を設けて、画像合成器20の内部で行われるゲイン補正を省略するようにしても良い。

【0125】また上述の第1乃至第4の実施の形態においては、短時間露光画像 $x S 1$ 及び $x S 10$ の位置ずれを補正した場合について述べたが、本発明はこれに限らず、長時間露光画像 $x L 1$ 及び $x L 10$ の位置ずれを補正するようにしても良い。

【0126】また上述の第1乃至第4の実施の形態においては、短時間露光画像 $x S 4$ 及び $x S 11$ に対してゲイン補正を施した場合について述べたが、本発明はこれに限らず、長時間露光画像 $x L 1$ 及び $x L 10$ に対してゲイン補正を施すようにしても良い。この場合、長時間露光画像 $x L 1$ 及び $x L 10$ の各画素値を上述の(2)式によって算出された露光時間比 g で割り算すれば良い。

【0127】また上述の第1乃至第4の実施の形態においては、短時間露光画像 $x S 1$ 及び $x S 10$ のゲイン補正を行った後、位置ずれ量を検出した場合について述べたが、本発明はこれに限らず、図6に示したゼロ交差点のように、その画素位置が露光量に依存しないものを特徴点として用いる場合には、ゲイン補正を行わずに位置

c map (d n)

$$= \sum_{i=0}^{N_x-1} \sum_{j=0}^{N_y-1} p L(i, j) \times p S(i - d_n x, j - d_n y)$$

..... (23)

【0132】に示すように、現在注目している位置ずれ量候補 d_n だけ特徴点画像 $p S 1$ 、 $p S 11 \sim p S 14$ 全体を平行移動させ、対応する特徴点画像 $p L 1$ 、 $p L 11 \sim p L 14$ の特徴点と位置が一致する特徴点の総数を当該位置ずれ量候補 d_n の信頼度 $c map(d_n)$ とするようにしても良い。ここで、 N_x 及び N_y はそれぞれ特徴点画像 $p S 1$ 、 $p S 11 \sim p S 14$ の水平方向及び垂直方向の画素数である。因みに、特徴点画像 $p S 1$ 、 $p S 11 \sim p S 14$ 上に存在しない位置 ($i - d_n x, j - d_n y$) に対しては上述の(23)式に示す加算を行わない。

ずれ量を検出することも可能である。

【0128】また上述の第1乃至第4の実施の形態においては、信頼度算出器45、68、119において長時間露光画像 $x L 2$ に対応する特徴点画像 $p L 1$ 、 $p L 11 \sim p L 14$ 全体をスキャンして特徴点を検出して信頼度を積算した場合について述べたが、本発明はこれに限らず、画枠の近傍に位置する特徴点は、位置ずれの影響によって短時間露光画像 $x S 3$ に対応する特徴点画像 $p S 1$ 、 $p S 11 \sim p S 14$ には現れない可能性が高いことから、図22に示すように特徴点画像 $p L 1$ 、 $p L 11 \sim p L 14$ 上における特徴点のスキャン領域を制限するようにしても良い。

【0129】また上述の第1乃至第4の実施の形態においては、長時間露光画像 $x L 2$ から生成された特徴点画像 $p L 1$ 、 $p L 11 \sim p L 14$ の各特徴点それぞれに対して、短時間露光画像 $x S 3$ から生成された特徴点画像 $p S 1$ 、 $p S 11 \sim p S 14$ 上に対応点が存在するか否か探索した場合について述べたが、本発明はこれに限らず、特徴点画像 $p S 1$ 、 $p S 11 \sim p S 14$ の各特徴点に対して特徴点画像 $p L 1$ 、 $p L 11 \sim p L 14$ 上の対応点を探索するようにしても良い。

【0130】また上述の第1乃至第4の実施の形態においては、信頼度算出器45において、特徴点画像 $p L 1$ 、 $p L 11 \sim p L 14$ をスキャンして特徴点を検出し、当該検出した特徴点を位置ずれ量候補 d_n を用いて補正した位置に特徴点画像 $p S 1$ 、 $p S 11 \sim p S 14$ の対応する特徴点が存在するか否かを調べることにより信頼度を算出した場合について述べたが、本発明はこれに限らず、次式

【0131】

【数23】

【0133】また上述の第1乃至第4の実施の形態においては、最大値検出器47において、信頼度算出器45から送出された信頼度マップ $c map(d_n)$ のうち最大の信頼度を持つ位置ずれ量候補 d_{max} を検出し、これを真の位置ずれ量 d とした場合について述べたが、本発明はこれに限らず、図23に示す位置ずれ量検出器200に示すように、信頼度算出器45及び最大値検出器47間に平滑化器202を設け、当該平滑化器202において、信頼度マップ $c map(d_n)$ を図24に示すような信頼度の値を画素値とする2次元の画像データ $c map(d_x, d_y)$ とみなすことができることを利用し

て、当該画像データ c map (d x, d y) に対して、
次式

$$c \text{ map}' (d x, d y)$$

$$= \sum_{di=-\frac{M}{2}}^{\frac{M}{2}} \sum_{dj=-\frac{K}{2}}^{\frac{K}{2}} c \text{ map} (d x + di, d y + dj) \quad \dots \dots (24)$$

【0135】に示すような平均値フィルタを施すことにより信頼度マップ c map' (d n) を生成するようにしても良く、この場合、一段と安定して正確な位置ずれ量を検出することができる。

【0136】また上述の第1乃至第4の実施の形態においては、信頼度算出器204において、特徴点画像 p L 1 の各特徴点それぞれに対して特徴点画像 p S 1 上の対応点を探索することにより信頼度マップ c map (d n) を生成した場合について述べたが、本発明はこれに限ら

$$c \text{ map} (d n) = c \text{ map} (d n) + s (d n) \quad \dots \dots (25)$$

【0138】によって求める。ここで、s (d n) は特徴点画像 p L 1 及び特徴点画像 p S における画素値の近さを表す量であり、例えば次式

$$s (d n)$$

$$= \begin{cases} 2 \dots & |x L''(i, j) - x S''(i - d n x, j - d n y)| < T 0 \\ 1 \dots & T 0 \leq |x L''(i, j) - x S''(i - d n x, j - d n y)| < T 1 \\ 0 \dots & T 1 \leq |x L''(i, j) - x S''(i - d n x, j - d n y)| \end{cases}$$

..... (26)

【0140】によって算出される。

【0141】また上述の第1乃至第4の実施の形態においては、長時間露光画像 x L 1 及び短時間露光画像 x S 4 を合成した場合について述べたが、本発明はこれに限らず、露光量の異なる3つ以上の画像を合成するようにしても良い。この場合、複数の画像のうちいずれかの画像を基準画像として、当該基準画像以外の画像に対応するように位置ずれ量検出器及び位置ずれ補正器を設けて基準画像に対する位置ずれを補正すれば良い。

【0142】また上述の第1乃至第4の実施の形態においては、長時間露光画像 x L 1 と短時間露光画像 x S 4 を合成した場合について述べたが、本発明はこれに限らず、露光時間が3種類以上ある場合には露光時間の長いものから順に上述の(13)式の合成処理を繰り返し行うようにすれば良い。

【0143】また上述の第2の実施の形態においては、位置ずれ量検出器62において、長時間露光画像 x L 2

【0134】

【数24】

ず、図25に示す位置ずれ量検出器204の信頼度算出器206のように、入力される特徴点画像 p L 1 及び特徴点画像 p S の対応する画素値が近いほど大きな信頼度を加算するようにもしても良く、その際、一段と安定して位置ずれ量を検出することができる。この場合、信頼度算出器206は、信頼度マップ c map (d n) を、次式

【0137】

【数25】

【0139】

【数26】

及び短時間露光画像 x S 3 それぞれから4種類の特徴点 P 1 ~ P 4 を抽出した場合について述べたが、本発明はこれに限らず、要は、複数種類の特徴点を抽出するようすれば良い。

【0144】また上述の第2の実施の形態においては、特徴点画像 p L 1 1 ~ p L 1 4 及び p S 1 1 ~ p S 1 4 をそれぞれ対応するメモリ 66 A₁ ~ 66 A₄ 及び 66 B₁ ~ 66 B₄ に書き込んだ場合について述べたが、本発明はこれに限らず、図26に示す位置ずれ量検出器210のように、特徴点抽出器 74 A₁ ~ 74 A₄ から送出される特徴点画像 p L 1 1 ~ p L 1 4 をメモリ 212 A 書き込むと共に、特徴点抽出器 74 B₁ ~ 74 B₄ から送出される特徴点画像 p S 1 1 ~ p S 1 4 をメモリ 212 B に書き込むことにより、画素値が0から3までの値をとる多値の特徴点抽出画像 p L 2 0 及び p S 2 0 を生成し、当該特徴点抽出画像 p L 2 0 及び p S 2 0 を信頼度算出器 214 に供給して位置ずれ量を検出するよう

にしても良い。

【0145】また上述の第4の実施の形態においては、リミッタ18及びゲイン補正器21の前段に輝度分離器124及び125を設けた場合について述べたが、本発明はこれに限らず、図5に示す特徴点抽出器30Aによって抽出されるゼロ交差点を特徴点とする場合、2次微分型フィルタ35の代わりに、色フィルタによる変調を除去又は軽減するような特性を併せ持つフィルタを用いて、輝度分離器124及び125を省略するようにしても良い。

【0146】また上述の第4の実施の形態においては、CCD122の前面に補色市松フィルタを配置した場合について述べたが、本発明はこれに限らず、例えば原色ストライプフィルタのように、他の種々の色フィルタを

$$d_n x = T_h \times m$$

$$d_n y = T_v \times m$$

【0149】によって制限する。ここでmは任意の整数値である。この制限によって検出される位置ずれ量dは、色フィルタの繰り返し周期の整数の倍になるため、色の非対応を解消することができる。例えば図27に示すような色フィルタを用いる場合には、水平方向及び垂直方向ともに2画素単位の位置ずれ量を検出することができる。

【0150】さらに上述の第1乃至第4の実施の形態においては、本発明をビデオカメラに適用した場合について述べたが、本発明はこれに限らず、例えばスチルカメラ、監視カメラ、車載カメラなどのように、他の種々の撮像装置に本発明を広く適用し得る。

【0151】

【発明の効果】上述のように本発明によれば、基準画像以外の各画像の基準画像に対する位置ずれ量をそれぞれ検出し、当該位置ずれ量に基づいて基準画像以外の各画像の基準画像に対する位置ずれをそれぞれ補正した後、基準画像と位置ずれが補正された基準画像以外の各画像とを全て合成することにより、複数の画像を合成する際に生じる画質の劣化を回避し得、かくして撮像対象に対応した自然な合成画像を生成し得る。

【図面の簡単な説明】

【図1】本発明による第1の実施の形態によるビデオカメラの構成を示すブロック図である。

【図2】時間分割による露光量制御の説明に供する略線図である。

【図3】画像間の位置ずれの説明に供する略線図である。

【図4】位置ずれ量検出器の構成を示すブロック図である。

【図5】特徴点抽出器の構成を示すブロック図である。

【図6】ゼロ交差点の説明に供する略線図である。

【図7】画像の走査方向の説明に供する略線図である。

CCD122の前面に配置するようにしても良く、この場合、当該配置された色フィルタの配列に応じた補間処理を施せば良い。

【0147】また上述の第4の実施の形態においては、位置ずれ補正器23において補間処理を施すことにより色の非対応を解消した場合について述べたが、本発明はこれに限らず、位置ずれ量候補に対して制限を設けることにより、位置ずれ補正によって生じる色の非対応を解消するようにしても良い。すなわち色フィルタの配列における水平方向及び垂直方向への繰り返し周期がTh、Tvである場合、位置ずれ量候補dn = (dnx, dyn) のとり得る値を、次式

【0148】

【数27】

$$\dots\dots (27)$$

【図8】特徴点の探索範囲の説明に供する略線図である。

【図9】画像合成方法の説明に供する略線図である。

【図10】レベル変換関数の説明に供する略線図である。

【図11】ヒストグラムイコライゼーションの説明に供する略線図である。

【図12】第2の実施の形態によるビデオカメラの構成を示すブロック図である。

【図13】位置ずれ量検出器の構成を示すブロック図である。

【図14】ゼロ交差点の分類の説明に供する略線図である。

【図15】第3の実施の形態によるビデオカメラの構成を示すブロック図である。

【図16】位置ずれ量検出器の構成を示すブロック図である。

【図17】特徴点の探索範囲を示すブロック図である。

【図18】第4の実施の形態によるビデオカメラの構成を示すブロック図である。

【図19】単板カラーカメラの色フィルタ配列の例の説明に供する略線図である。

【図20】単板カラーカメラの出力信号の説明に供する略線図である。

【図21】補間処理の説明に供する略線図である。

【図22】特徴点のスキャン領域の説明に供する略線図である。

【図23】他の実施の形態による位置ずれ量検出器の構成を示すブロック図である。

【図24】信頼度マップの説明に供する略線図である。

【図25】他の実施の形態による位置ずれ量検出器の構成を示すブロック図である。

【図26】他の実施の形態による位置ずれ量検出器の構

成を示すブロック図である。

【図27】単板カラーカメラの色配列フィルタの例の説明に供する略線図である。

【図28】空間分割による露光量制御の説明に供する略線図である。

【図29】多板撮像素子による露光量制御の説明に供する略線図である。

【図30】位置ずれの発生の説明に供する略線図である。

【符号の説明】

10、60、100、120……ビデオカメラ、12、
122……CCD、20……画像合成器、23、11
1、127……位置ずれ補正器、27、62、108、
109……位置ずれ量検出器、30、64、115……
特微点抽出器、45、68、119……信頼度算出器、
47、121……最大値検出器、102、103……水
平積分器、104、105……垂直積分器、124、1
25……輝度分離器。

【図1】

【図7】

図7 画像の走査方向

図1 第1の実施の形態によるビデオカメラの構成

【図2】

図2 時間分割による露光量制御

【図3】

図3 画像間の位置ずれ

【図5】

図5 特徴点抽出器の構成

【図19】

Ye	Cy	Ye	Cy
Mg	G	Mg	G
Ye	Cy	Ye	Cy
G	Mg	G	Mg

G:Green
Ye:Yellow
Cy:Cyan
Mg:Magenta

図19 単板カラーカメラの色フィルタ配列の例

【図4】

図4 位置ずれ量検出器の構成

【図8】

図8 特徴点の探索範囲

【図6】

図6 ゼロ交差点の抽出

【図27】

R	G	R	G
G	B	G	B
R	G	R	G
G	B	G	B

R:Red
G:Green
B:Blue

図27 単板カラーカメラの色フィルタ配列の例

【図9】

図9 画像合成方法

【図10】

図10 レベル変換関数の例

【図28】

図28 空間分割による露光量制御

【図11】

図11 ヒストグラムイコライゼーションの原理

【図22】

図22 特徴点のスキャン領域

【図14】

	$x(i+1, j) \geq 0$ かつ $x(i-1, j) < 0$	$x(i-1, j) \geq 0$ かつ $x(i+1, j) < 0$
$x(i, j+1) \geq 0$ かつ $x(i, j-1) < 0$	特徴点 p 1	特徴点 p 2
$x(i, j-1) \geq 0$ かつ $x(i, j+1) < 0$	特徴点 p 3	特徴点 p 4

図14 ゼロ交差点の分類

【図20】

図20 単板カラーカメラの出力信号

【図17】

領域R

i

i-dxmax i i+dxmax

特徴点列 p L V 1

(A)

特徴点列 p S V 1

(B)

図17 特徴点の探索範囲

【図12】

図12 第2の実施の形態によるビデオカメラの構成

【図13】

図13 位置ずれ量検出器の構成

【図15】

図15 第3の実施の形態によるビデオカメラの構成

【図16】

109

図16 位置ずれ量検出器の構成

【図21】

図21 補間処理

【図23】

図23 他の実施の形態による位置ずれ量検出器の構成

【図18】

図18 第4の実施の形態によるビデオカメラの構成

【図24】

図24 信頼度マップの例

【図25】

204

図25 他の実施の形態による位置ずれ量検出器の構成

【図26】

図26 他の実施の形態による位置ずれ量検出器の構成

【図29】

図29 多板撮像素子による露光量制御

【図30】

図30 位置ずれの発生

フロントページの続き

(72)発明者 上田 和彦
東京都品川区北品川6丁目7番35号ソニー
株式会社内

F ターム(参考) 5C022 AA00 AB17 AB19 AB55 AC42
AC69