Rappel de cours

Une matrice $n \times n$ A est diagonalisable $(A = PDP^{-1}0$ si:

- ullet Elle a n vecteurs propres linéairement indépendants, condition pour avoir une matrice P formée des vecteurs propores en colonne qui est inversible.
- Elle a n valeurs propres distinctes, car n valeurs propres génèrent n vecteurs propres linéairement indépendants
- $\sum dim \ E_{sp_n}(A) = n$
- pour chaque valeur propre sp, on a $dim\ E_{sp}(A)=multiplicite\ sp$. La multiplicité de sp le nombre de racine de sp.
- si $\chi_A(X) = P(X)$ et P(X) est un polynome scindé (ie $P(X) = C(X A_1)(X A_2) \dots (X A_{m-1})(X A_m)$).
- si $\chi_A(X) = P(X)$ et P(A) = 0.

Exercice 4

On cherche les λ tel que

$$\begin{vmatrix} 1 & 1 & 1 & \dots & 1 & x_1 \\ 1 & 1 & 1 & \dots & 1 & x_2 \\ 1 & 1 & 1 & \dots & 1 & x_3 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 1 & x_n \end{vmatrix} = \begin{vmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \\ \vdots \\ \lambda x_n \end{vmatrix}$$

$$\begin{cases} x_1 + x_2 + x_3 + \dots + x_n &= \lambda x_1 \\ x_1 + x_2 + x_3 + \dots + x_n &= \lambda x_2 \\ x_1 + x_2 + x_3 + \dots + x_n &= \lambda x_3 \\ \dots &= \lambda x_i \\ x_1 + x_2 + x_3 + \dots + x_n &= \lambda x_n \end{cases}$$

Tous les x_i ne sont pas égale à 0. Donc une première solution est $\lambda = 0$ avec une multiplicité de n-1, car cela correspond à un système de n équations et n inconnues.

La seconde solution est lorsque tous les x_i sont égaux alors on a n équations $nx_i = \lambda x_i$, d'où $\lambda = n$.

Par conséquent, $E_0(A) = \{(-1, 1, 0, 0, \dots, 0), (-1, 0, 1, 0, \dots, 0), (-1, 0, 0, 1, \dots, 0), \dots (-1, 0, 0, 0, \dots, 1)\}$ et $E_1(A) = \{(1, 1, 1, 1, \dots, 1)\}.$

Donc $dim\ E_0(A)=n-1$ et $dim\ E_1(A)=1$. La matrice est diagonalisable. La matrice D la matrice diagonale composé des valeurs propres de A.

$$D = \begin{vmatrix} n & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 \end{vmatrix}$$

On a D = B et $A = PDP^{-1}$ donc les matrcies A et B sont semblables (ie. $A = PBP^{-1}$).

Exercice 7

Exercice 7.1

On cherche les λ tel que

$$\begin{vmatrix} t & 1 & 1 & \dots & 1 \\ 1 & t & 1 & \dots & 1 \\ 1 & 1 & t & \dots & 1 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & 1 & 1 & \dots & t \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{vmatrix} = \begin{vmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \\ \vdots \\ \lambda x_n \end{vmatrix}$$

$$tx_1 + x_2 + x_3 + \dots + x_n = \lambda x_n$$

$$\begin{vmatrix} 1 & 1 & 1 & \dots & t | & |x_n| & |\lambda x_n| \\ tx_1 + x_2 + x_3 + \dots + x_n & = \lambda x_1 \\ x_1 + tx_2 + x_3 + \dots + x_n & = \lambda x_2 \\ x_1 + x_2 + tx_3 + \dots + x_n & = \lambda x_3 \\ \dots & = \lambda x_i \\ x_1 + x_2 + x_3 + \dots + tx_n & = \lambda x_n \end{vmatrix}$$

En prenant $\lambda = t - 1$ on a

$$\begin{cases} tx_1 + x_2 + x_3 + \dots + x_n &= (t-1)x_1 \\ x_1 + tx_2 + x_3 + \dots + x_n &= (t-1)x_2 \\ x_1 + x_2 + tx_3 + \dots + x_n &= (t-1)x_3 \\ \dots &= \lambda(t-1)x_i \\ x_1 + x_2 + x_3 + \dots + tx_n &= (t-1)x_n \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + \ldots + x_n &= 0 \\ x_1 + x_2 + x_3 + \ldots + x_n &= 0 \\ x_1 + x_2 + x_3 + \ldots + x_n &= 0 \\ \ldots &= 0 \\ x_1 + x_2 + x_3 + \ldots + x_n &= 0 \end{cases}$$

Système de n équations à n inconnues qui a donc n solutions. La multiplicité de λ est n-1. On a $E_{t-1}(A) = \{(-1,1,0,0,\ldots,0), (-1,0,1,0,\ldots,0), (-1,0,0,1,\ldots,0), \ldots (-1,0,0,0,\ldots,1)\}$ et $\dim E_{t-1}(A) = n-1$.

Exercice 7.2

$$Tr(a) = \sum_{i=1}^{n} a_{ii} = n.t$$

Relation avec ls spectre???

Exercice 7.3

Oui car $dim\ E_{t-1}(A) = n$.

Exercice 7.4

On a $A.A^{(-1)} = I_n$ et A diagonalisable. Ceci fait $PDP^{-1}A^{-1} = I_n$ donc $A^{-1} = P^{-1}DP$. Donc A inversible si D est inversible.

La matrice D est la matrice diagonale composé des valeurs propres de A.

$$D = \begin{vmatrix} t-1 & 0 & 0 & \dots & 0 & 0 \\ 0 & t-1 & 0 & \dots & 0 & 0 \\ 0 & 0 & t-1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & t-1 & 0 \\ 0 & 0 & 0 & \dots & 0 & t-1 \end{vmatrix}$$

Matrice D est inversible si a_{ii} sont tous différents de 0. Donc il faut que $t \neq 1$.

Exercice 8

Exercice 8.a

On a 2 endomorphismes u et v qui commutent (ie. $u \circ v = c \circ u$). λ une valeur propre de v et $E_{\lambda}(v) = \{p \in E, v(p) = \lambda p\}$. Donc calculons $\lambda u(p)$. $\lambda u(p) = u(\lambda p)$ car u est un endomorphime. $\lambda u(p) = u(v(p))$ car p est un vecteur propre de v de valeur propre λ . $\lambda u(p) = v(u(p))$. On en déduit que $u(p) \in E_{\lambda}(v)$. Ce qui montre que $E_{\lambda}(v)$ est stable par u (ie. $\forall p \in E_{\lambda}(v), u(p) \in E_{\lambda}(v)$).

Exercice 8.b

Pas compris la question

Exercice 8.c

Si u et v sont diagonalisables donc ilv existe $E_{\lambda_u}(u) = \{p_u, u(p_u) = \lambda_u p_u\}$ et $E_{\lambda_v}(v) = \{p_v, v(p_v) = \lambda_v p_v\}$. Donc

$$E_{\lambda u}(u) = \{p_u, u(p_u) = \lambda p_u\}$$

$$E_{\lambda u}(u) = \{p_u, \lambda_v u(p_u) = \lambda_v \lambda_u p_u\}$$

$$E_{\lambda u}(u) = \{p_u, u(\lambda_v p_u) = \lambda_v \lambda_u p_u\}$$

??? QED