Introduction of this course

李宏毅

Hung-yi Lee

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

人類設定好的天生本能

- E.g. You want to build a Chat-bot ...
 - If there is "turn off" in the input, then "turn off the music" (hand-crafted rules)
 - You can say "Please turn off the music" or "Can you turn off the music?". Smart?
 - What if someone says "Please don't turn off the music"
- Weakness of hand-crafted rules
 - Hard to consider all possibilities
 - 永遠無法超越創造者
 - Lots of human efforts (not suitable for small industry)

人類設定好的天生本能

AI?

http://www.commi tstrip.com/en/201 7/06/07/ai-inside/?

Shared on Yann LeCun's FB

What is Machine Learning?

What is Machine Learning?

Machine Learning ≈ Looking for a Function

Speech Recognition

$$f($$
 $)=$ "How are you"

Image Recognition

Playing Go

Dialogue System

$$f($$
 "Hi" $)=$ "Hello" (what the user said) (system response)

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

A set of function

Model

$$f_1, f_2 \cdots$$

$$f_1($$

$$f_2($$

$$)=$$
 "money"

$$f_1($$

$$f_2($$

$$) =$$
 "snake"

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

Training
Data

function f

function input:

function output: "monkey"

"cat"

"dog"

Image Recognition:

Framework

$$f(\bigcap)=$$
 "cat"

Machine Learning is so simple

就好像把大象放進冰箱

scenario

method

Regression

The output of the target function f is "scalar".

預測 PM2.5

Training Data:

Input:

Input:

9/12 上午 PM2.5 = 30 9/13 上午 PM2.5 = 25

Output:

9/03 上午 PM2.5 = 100

Output:

9/14 上午 PM2.5 = 20

Classification

Binary Classification

Multi-class
 Classification

Class 1, Class 2, ... Class N

Function f

Input

Binary Classification

Multi-class Classification

Classification - Deep Learning

Image Recognition

Training Data

Classification - Deep Learning

Playing GO

Training Data

一堆棋譜

進藤光 v.s. 社清春

黑: 5之五 → 白: 天元 → 黑: 五之5

Classification - Deep Learning

Playing GO

Training Data

一堆棋譜

進藤光 v.s. 社清春

黑: 5之五 → 白: 天元 → 黑: 五之5

Input: 黑: 5之五 天元

Output:

Input:

黑:5之五、白:天元 五之5

Hard to collect a large amount of labelled data

Semi-supervised Learning

Training Data:

Input/output pair of target function

Function output = label

Semi-supervised Learning

For example, recognizing cats and dogs

Labelled data

Unlabeled data

(Images of cats and dogs)

Transfer Learning

For example, recognizing cats and dogs

Labelled data

Data not related to the task considered (can be either labeled or unlabeled)

 Machine Reading: Machine learns the meaning of words from reading a lot of documents

http://top-breaking-news.com/

 Machine Reading: Machine learns the meaning of words from reading a lot of documents

Training data is a lot of text

https://garavato.files.wordpress.com/ 2011/11/stacksdocuments.jpg?w=490

http://ttic.uchicago.edu/~klivescu/MLSLP2016/ (slides of Ian Goodfellow)

Machine Drawing

Structured Learning

- Beyond Classification

長門

實玖瑠

人臉辨識

Reinforcement Learning

Supervised v.s. Reinforcement

Supervised v.s. Reinforcement

Supervised:

Next move: **"**5-5"

Next move: "3-3"

Reinforcement Learning

First move ____ many moves

Alpha Go is supervised learning + reinforcement learning.

scenario

method

Why we need to learn Machine Learning?

AI 即將取代部分的工作? 新工作: AI 訓練師

AI訓練師

機器不是自己會學嗎? 為什麼需要 AI 訓練師

> 戰鬥是寶可夢在打, 為什麼需要寶可夢訓練師?

神奇寶貝第5集尼比市的決鬥

https://www.youtube.com/watch?v=uUOZZb8eJ_k

AI訓練師

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

寶可夢訓練師

- 寶可夢訓練師要挑選適合的寶可夢來戰鬥
 - 寶可夢有不同的屬性

AI訓練師

- AI訓練師要挑選合適的 model, loss function
 - 不同 model, loss function 適合解決不同的問題

神奇寶貝第106集 噴火龍·就決 定是你了

https://www.youtube.com/watch?v=4G_aoKiCDc4

AI訓練師

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

寶可夢訓練師

- 寶可夢訓練師要挑選適合的寶可夢來戰鬥
 - 寶可夢有不同的屬性
- 召喚出來的寶可夢不一定 聽話
 - E.g. 小智的噴火龍
 - 需要有經驗的寶可夢訓練師

AI訓練師

- Al訓練師要挑選合適的 model, loss function
 - 不同 model, loss function 適合解決不同的問題
- 不一定能找出 best function
 - E.g. Deep Learning
 - 需要有經驗的 AI 訓練 師

大家還記得寶可夢的開場嗎?

https://www.youtube.com/watch?v=NyCNkq4ByzY

http://www.gvm.com.tw/webonly_content_10 787.html

AI訓練師

- 厲害的 AI , AI 訓練師功不可沒
- •讓我們一起朝 AI 訓練師之路邁進

