HAI722I — **TD**s

Ivan Lejeune

9 septembre 2025

Table	des	matières
labic	ues	matieres

TD1										2
Convexité : ensembles et fonctions.										2

TD1

Convexité : ensembles et fonctions

Exercice 1.1 Convexité. Exercise 1 content

Solution. Exercice solution

Exercice 1.2 Combinaison convexe. Exercise 2 content

Solution. Exercice solution

Exercice 1.3 Ensembles convexe. Montrer qu'étant donné un sous-ensemble convexe C et deux réels positifs α et β alors on a

$$\alpha C + \beta C = (\alpha + \beta)C.$$

Solution. Commencons par montrer l'inclusion $(\alpha + \beta) C \subset \alpha C + \beta C$. Soit $x \in (\alpha + \beta) C$. Alors, il existe $x_0 \in C$ tel que

$$x = (\alpha + \beta) x_0 = \alpha x_0 + \beta x_0.$$

Donc $x \in \alpha C + \beta C$.

Montrons maintenant l'inclusion $\alpha C + \beta C \subset (\alpha + \beta) C$. Soit $x \in \alpha C + \beta C$. Alors, il existe $x_1, x_2 \in C$ tels que

$$x = \alpha x_1 + \beta x_2 = (\alpha + \beta) \left(\frac{\alpha}{\alpha + \beta} x_1 + \frac{\beta}{\alpha + \beta} x_2 \right).$$

Exercise 1.4 Ensembles convexes. Exercise 2 content

Solution. Exercice solution

Exercice 1.5 Ensembles convexes. Exercise 2 content

Solution. Exercice solution

Exercice 1.6 Ensembles convexes. Exercise 2 content

Solution. Exercice solution

Exercice 1.7 Fonction convexe.

- 1. Est-ce qu'une combinaison linéaire à coefficients positifs de fonctions convexes est convexe ?
- 2. Est-ce que le produit de deux fonctions convexes est convexe?
- 3. Si f_1 et f_2 sont deux fonctions convexes, est-ce que max (f_1, f_2) est convexe?
- 4. Montrer que la fonction $f: x \mapsto x^2$ est une fonction convexe sur \mathbb{R} .

Solution.

1. Oui. On pose $g(x) = \sum_{i \in I} \alpha_i f_i(x)$. Alors

$$g(\lambda x + (1 - \lambda)y) = \sum_{i \in I} \alpha_i f_i(\lambda x + (1 - \lambda)y)$$

$$\leq \sum_{i \in I} \alpha_i (\lambda f_i(x) + (1 - \lambda)f_i(y))$$

$$= \lambda g(x) + (1 - \lambda)g(y).$$

2. Non. Par exemple, $f_1(x) = x$ et $f_2(x) = x^2$ sont convexes mais $f_1(x)f_2(x) = x^3$ n'est pas convexe.

2

3. Oui. On pose $g(x) = \max(f_1(x), f_2(x))$. Alors $g(\lambda x + (1 - \lambda)y) = \max(f_1(\lambda x + (1 - \lambda)y), f_2(\lambda x + (1 - \lambda)y))$ $\leq \max(\lambda f_1(x) + (1 - \lambda)f_1(y), \lambda f_2(x) + (1 - \lambda)f_2(y))$ $\leq \lambda \max(f_1(x), f_2(x)) + (1 - \lambda)\max(f_1(y), f_2(y))$ $= \lambda g(x) + (1 - \lambda)g(y).$

Exercise 1.8 Optional title 2. Exercise 2 content

Solution. Exercice solution