Non-Stationary Markov Decision Processes a Worst-Case Approach using Model-Based Reinforcement Learning

Erwan Lecarpentier Université de Toulouse ONERA Emmanuel Rachelson Université de Toulouse ISAE-SUPAERO

erwan.lecarpentier@isae-supaero.fr

July 3, 2019

Non-Stationary environment

MDP

Definition 1

A Markov Decision Process (MDP) is defined by a 4-tuple $\{S, A, r, p\}$ where,

- S is a state space;
- A is an action space;
- ► r(s, a, s') is a reward function;
- ▶ p(s' | s, a) is the transition probability.

NSMDP

Definition 2

A Non Stationary Markov Decision Process (NSMDP) is defined by a 5-tuple $\{S, \mathcal{T}, A, r, p\}$ where,

- S is a state space;
- ▶ $\mathcal{T} = \{1, 2, ..., N\}$ set of decision epochs, $N \leq +\infty$;
- A is an action space;
- $r_t(s, a, s')$ is a reward function;
- ▶ $p_t(s' \mid s, a)$ is the transition probability.

Two hypotheses

Hypothesis 1: bounded evolution

Hypothesis 1: bounded evolution

Definition 3

An (L_p, L_r) -LC-NSMDP is an NSMDP whose transition and reward functions are respectively L_p -LC and L_r -LC w.r.t. time, i.e., $\forall (t, \hat{t}, s, s', a) \in \mathcal{T}^2 \times \mathcal{S}^2 \times \mathcal{A}$,

$$\begin{cases} W_1(p_t(\cdot \mid s, a), p_{\hat{t}}(\cdot \mid s, a)) & \leq L_p|t - \hat{t}| \\ |r_t(s, a, s') - r_{\hat{t}}(s, a, s')| & \leq L_r|t - \hat{t}|. \end{cases}$$

Hypothesis 2: snapshot

Hypothesis 2: snapshot

Definition 4

The snapshot of an NSMDP $\{\mathcal{S}, \mathcal{T}, \mathcal{A}, (p_t)_{t \in \mathcal{T}}, (r_t)_{t \in \mathcal{T}}\}$ at decision epoch t_0 , denoted by MDP $_{t_0}$, is the stationary MDP defined by the 4-tuple $\{\mathcal{S}, \mathcal{A}, p_{t_0}, r_{t_0}\}$.

So what?

Given a snapshot + the fact that the environment has a bounded evolution, can we find a **robust** plan to **any** evolution of the NSMDP?

Risk Averse Tree-Search

Figure: Tree structure for $A = \{a_1, a_2\}$ and $d_{max} = 2$

Risk Averse Tree-Search

Figure: Tree structure for $A = \{a_1, a_2\}$ and $d_{max} = 2$

Decision node value:

$$V(\nu^{s,t}) = \max_{a \in \mathcal{A}} V(\nu^{s,t,a})$$

Chance node value:

$$V(\nu^{s,t,a}) = \min_{(\rho,R) \in \Delta_{t_0}^t} \left(R(s,a) + \gamma \mathbb{E}_{s' \sim \rho} V(\nu^{s',t+1}) \right)$$

RATS

Algorithm 1 RATS algorithm

```
RATS (s_0, t_0, maxDepth)
\nu_0 = \text{rootNode}(s_0, t_0)
Minimax(\nu_0, maxDepth)
\nu^* = \arg\max_{\nu \text{ in } \nu_0. \text{children}} \nu. \text{value}
return \nu^* action
Minimax (\nu, maxDepth)
if \nu is DecisionNode then
   if \nu.state is terminal or \nu.depth = maxDepth then
      return \nu.value = heuristicValue(\nu.state)
   else
      return \nu.value = \max_{\nu' \in \nu.children Minimax(\nu', maxDepth)
else
   return \nu.value = \min_{(p,R)\in\Delta_{t_0}^t} R(\nu)
                    +\gamma \sum_{\nu' \in \nu \text{ children}} p(\nu' \mid \nu) \text{Minimax}(\nu', \text{maxDepth})
```

Experiments

Figure: Non-Stationary bridge environment

- $\epsilon = 0$ left cells get slippery;
- $\epsilon = 1$ right cells get slippery;
- $\epsilon \in (0,1)$ linear balance between extreme cases.

Experiments

Figure: Discounted return for different values of ϵ .

Experiments

Figure: Discounted return distributions for different values of $\epsilon.$

Supplementary material

Heuristic function

Property 1

Upper bound on the propagated heuristic error within RATS.

Consider an agent executing Algorithm 1 at s_0 , t_0 with a heuristic function H. We note $\mathcal L$ the set of all leaf nodes. Suppose that the heuristic error is uniformly bounded, i.e.

$$\exists \delta > 0, \ \forall \nu^{s,t} \in \mathcal{L}, \ |H(s) - \hat{V}^*_{t_0,t}(s)| \leq \delta.$$

Then we have for every decision and chance nodes $\nu^{s,t}$ and $\nu^{s,t,a}$, at any depth $d \in [0, d_{max}]$:

$$|V(
u^{s,t}) - \hat{V}^*_{t_0,t}(s)| \le \gamma^{(d_{\mathsf{max}}-d)}\delta$$

 $|V(
u^{s,t,a}) - \hat{Q}^*_{t_0,t}(s,a)| \le \gamma^{(d_{\mathsf{max}}-d)}\delta.$

$$H_1(s) = 0$$

Heuristic function

Property 2

Bounds on the snapshots values. Let $s \in \mathcal{S}$, π a stationary policy, MDP_{t_0} and MDP_t two snapshot MDP_s , $t, t_0 \in \mathcal{T}^2$ be. We note $V^\pi_{MDP_i}(s)$ the value of s within MDP_i following π . Then,

$$|V_{MDP_{t_0}}^{\pi}(s) - V_{MDP_t}^{\pi}(s)| \leq |t - t_0| \frac{L_r + L_p}{1 - \gamma}.$$

$$H_2(s) = \widehat{V}_{\mathsf{MDP}_{t_0}}^{\pi}(s) - |t - t_0| \frac{L_r + L_p}{1 - \gamma}$$