Задача 17.27

Задана формула логики предикатов А и двухэлементное

множество М = {1,2} . Привести формулу А к префиксной нормальной форме.

Является ли формула А на

множестве М: 1) выполнимой; 2) опровержимой; 3) общезначимой; 4) невыполнимой? Вычислить значение

истинности формулы A на множестве M со следующими предикатами, определенными на M.

$$(\exists x)(P(x) \rightarrow (\exists y)(Q(x,y) \rightarrow \neg R(x)))$$

Привести формулу А к префиксной нормальной форме

$$(\exists x)(P(x) \to (\exists y)(Q(x,y) \to \neg \ R(x))) = (\exists x)(\exists y)(P(x) \to (\neg Q(x,y) \ \lor \neg \ R(x)))$$

$$I = M$$

X	у	P(x)	R(x)	Q(x,y)	-Q(x,y) V -R(x)	$P(x) \to (-Q(x,y) \ V - R(x))$
1	1	1	0	1	0	0
1	2	1	0	0	1	1
2	1	0	1	0	0	1
2	2	0	1	0	0	1

Проблема: что ставить???

Элиминация кванторов - квантор существования заменяется на дизъюнкцию подкванторного выражения при всех значениях связанной переменной.

- квантор всеобщности заменяется на конъюнкцию подкванторного выражения при всех значениях связанной переменной.

$$\begin{array}{l} (\exists x)(\exists y)(P(x) \to (-Q(x,y) \ \lor \neg \ R(x))) = \\ (\exists x)(P(x) \to (-Q(x,1) \ \lor \neg \ R(x))) \ \textbf{v} \ (P(x) \to (-Q(x,2) \ \lor \neg \ R(x))) = \\ (P(1) \to (-Q(1,1) \ \lor \neg \ R(1))) \ \textbf{v} \ (P(1) \to (-Q(1,2) \ \lor \neg \ R(1))) \ \textbf{V} \ (P(2) \to (-Q(2,2) \ \lor \neg \ R(2))) \ \textbf{v} \\ \textbf{v} \ (P(2) \to (-Q(2,2) \ \lor \neg \ R(2))) \end{array}$$

Введем обозначения: P(1) = a, P(2) = b, R(1) = c, R(2) = d, Q(1,1) = e, Q(1,2) = f, Q(2,1) = g, Q(2,2) = h.

A =
$$((a \rightarrow (-e \lor -c)) \lor (a \rightarrow (-f \lor -c)) \lor (b \rightarrow (-g \lor -d)) \lor (d \rightarrow (-h \lor -d)) =$$

= $((-a \lor (-e \lor -c)) \lor (-a \lor (-f \lor -c)) \lor (b \lor (-g \lor -d)) \lor (d \lor (-h \lor -d)) =$
= $(-a \lor -e \lor -c) \lor (-a \lor -f \lor -c) \lor (b \lor -g \lor -d) \lor (d \lor -h \lor -d)$

- 1) Формула является выполнимой, а = 0
- 2) Формула является неопровержимой

(-a v -e v -c)
$$\mathbf{v}$$
 (-a v -f v -c) \mathbf{V} (b v -g v -d) \mathbf{v} (d v -h v -d) \neq 0 (-a v -e v -c) \mathbf{v} (-a v -f v -c) \neq 0 \mathbf{u} (b v -g v -d) \mathbf{v} (d v -h v -d) \neq 0

Так как при любых значениях a,b,c,d,e, f значение формулы A = 1

- 3) Формула является общезначимой
- 4) Формула не является невыполнимой, т.к. она выполнима

Вычислить значение истинности формулы А на множестве М со следующими предикатами, определенными на М

A = (P(1)
$$\rightarrow$$
 (-Q(1,1) V \neg R(1))) **v** (P(1) \rightarrow (-Q(1,2) V \neg R(1))) **V**
V (P(2) \rightarrow (-Q(2,1) V \neg R(2))) **v** (P(2) \rightarrow (-Q(2,2) V \neg R(2))) = (1 \rightarrow (0v1)) **v** (1 \rightarrow (1v1)) **V** (0 \rightarrow (1v0)) **v** (0 \rightarrow (1v0)) = 1 **V** 1 = 1

Задача 18.27

$$\frac{P \to \neg M, S \to M, S}{S \& \neg P}.$$

$$(P \rightarrow -M) \& (S \rightarrow M) \& S \rightarrow (S \& -P)$$

S	М	Р	$(P \rightarrow -M)$	$(S \rightarrow M)$	$(P \rightarrow -M) \& (S \rightarrow M)$	$(P \rightarrow -M) \& (S \rightarrow M) \& S$	(S & -P)	F
0	0	0	1	1	1	0	0	1
0	0	1	1	1	1	0	0	1
0	1	0	1	1	1	0	0	1
0	1	1	0	1	0	0	0	1
1	0	0	1	0	0	0	1	1
1	0	1	1	0	0	0	0	1
1	1	0	1	1	1	1	1	1
1	1	1	0	1	0	0	0	1

F = 1 на любом наборе - верно