#### Compressing Self-Supervised Models

Tzu-Quan Lin<sup>1</sup>, Chun-Yao Chang<sup>1</sup>, Huan Yang<sup>1</sup>, Guang-Ming Chen<sup>1</sup>, Tzu-Hsun Feng<sup>1</sup>, Hao Tang<sup>2</sup>, Hung-yi Lee<sup>1</sup>

<sup>1</sup>National Taiwan University, <sup>2</sup>The University of Edinburgh

#### Universality

Self-supervised models enable semi-supervised learning for various downstream tasks.

#### Universality

Self-supervised models enable semi-supervised learning for various downstream tasks.

#### Usage

- Feature extraction
- Fine-tuning

#### Goal

Can we find small networks (e.g., subnetworks) that enjoy the same universality?

#### Goal

Can we find small networks (e.g., subnetworks) that enjoy the same universality?

#### Approach

- Low-rank approximation
- Pruning
  - Weight pruning
  - Head pruning
  - Layer pruning
- Distillation
- Other architectures
- Anytime inference

# **Progress**

- Baseline (Tzu-Quan Lin)
- FLASH (Chun-Yao Chang)
- Structured pruning (Huan Yang)
- Weight pruning (Tzu-Hsun Feng)
- Low-rank approximation (Guang-Ming Chen)

### **Progress**

- Baseline (Tzu-Quan Lin)
- FLASH (Chun-Yao Chang)
- Structured pruning (Huan Yang)
- Weight pruning (Tzu-Hsun Feng)
- Low-rank approximation (Guang-Ming Chen)

# $\ell_1$ norm of the heads



# **Pruning algorithm**

- ullet Prune heads based on  $\ell_1$
- Fine-tune

# **Training loss**



#### **Downstream tasks**



#### Plan

- Before the workshop
  - MelHuBERT on 360 hours of LibriSpeech
  - Head pruning
  - Low-rank approximation
- During the workshop
  - Weight pruning
  - Scaling up to 960 hours of LibriSpeech
  - Distillation
  - Anytime inference

### **Scientific questions**

- Is there a subnetwork that can match the self-superised loss?
- Does the subnetwork enjoy the same universality?
- Should we prune based on the downstream tasks?