第四題:奇幻反彈 (Bouncing)

問題敘述

我們有一個無限大的x-y平面和一台神奇的發球機器,對任何整數 $a \cdot b \cdot c$ 和d,只要我們將發球機器置於點(a,b)(其中(a,b)表示x座標為a且y座標為b的點),並設定發球機器將球拋至點(c,d),則發球機器會拋出一顆球至點(c,d),接著該球會反彈至點(ac-bd,bc+ad)並固著於點(ac-bd,bc+ad)上,從此不再移動。我們只允許將發球機器置於x座標和y座標都是整數的點上。

愛麗絲想要讓六顆球分別固著於點 (a_1,b_1) 、 (a_2,b_2) 、 (a_3,b_3) 、 (a_4,b_4) 、 (a_5,b_5) 、 (a_6,b_6) 上,其中對所有 $i \in \{1,2,3,4,5,6\}$, a_i 和 b_i 都是整數且 $(a_i,b_i) \neq (0,0)$ 。但她希望發球機器始終都在同一個點上,也就是她要找到一個置放發球機器的點(p,q)(其中p和q都是整數),使得對所有 $i \in \{1,2,3,4,5,6\}$,皆存在x座標與y座標都是整數的點 (c_i,d_i) ,滿足 $(pc_i-qd_i,qc_i+pd_i)=(a_i,b_i)$,如果滿足上述條件的點(p,q)很多,則愛麗絲要選擇其中距離原點(0,0)最遠的一個點作為(p,q),並將發球機器置於該點(p,q),然後告訴稻草人|p|+|q|的值。

給定 $a_1 \cdot b_1 \cdot a_2 \cdot b_2 \cdot a_3 \cdot b_3 \cdot a_4 \cdot b_4 \cdot a_5 \cdot b_5 \cdot a_6 \cdot b_6$,請算出稻草人被告知的值。

輸入格式

對所有 $i \in \{1,2,3,4,5,6\}$,測資的第i行為 a_i 和 b_i (兩數間以空白區隔)。

輸出格式

請輸出稻草人被告知的值。

輸入範例 1	輸入範例 2	輸入範例3	輸入範例 4	輸入範例 5	輸入範例 6
-60 40	24 -31	4 9	12 -99	81 100	24 -31
-4 32	27 -24	22 -8	33 -81	100 99	27 -24
-28 -16	31 -34	13 4	39 -88	34 56	31 -34
-68 4	36 -32	55 100	13 -1	-3 -87	36 -32
-100 -20	38 -37	66 4	62 41	-15 24	38 -37
12 64	-17 -59	44 -7	68 34	26 27	-17 -59
輸出範例 1	輸出範例 2	輸出範例 3	輸出範例 4	輸出範例 5	輸出範例 6
12	7	1	13	1	7

評分說明

本題共有4組測試題組,條件限制如下所示。每一組可有一或多筆測試資料,該組所有 測試資料皆需答對才會獲得該組分數。

2017年國際資訊奧林匹亞研習營:第四次模擬測驗

子任務	分數	額外輸入限制	
1	6	$-10 \le a_i, b_i \le 10$	
2	13	$-100 \le a_i, b_i \le 100$	
3	35	$-1000 \le a_i, \ b_i \le 1000$	
4	43	$-10^9 \le a_i, b_i \le 10^9$	
5	3	$-10^{15} \le a_i, b_i \le 10^{15}$	