Modeling

$p_{Y|t}^{ heta}\left(Y|X_{t} ight)$ is naturally modeled with a Flow Matching model $u_{s}^{ heta}(Y_{s}|X_{t}).$

Euler_sampling (Y_0, X_t, h) :

$$s \leftarrow 0$$

$$Y_s \leftarrow Y_0$$

While s < 1:

$$Y_{s+h} \leftarrow Y_s + h \ u_s^{\theta}(Y_s | X_t)$$

Return Y_1

 $Y = Y_1$

$$Y_0 \sim \mathcal{N}(0, I)$$

X_t

Modeling

 $p_{Y|t}^{\theta}\left(Y|X_{t}\right)$ is naturally modeled with a Flow Matching model $u_{s}^{\theta}(Y_{s}|X_{t})$.

Modeling

Loss

$$\mathscr{L}(\theta) = \mathbb{E}\left[\|u_s^{\theta}(Y_s|X_t) - \dot{Y}_s\|^2\right],$$

where

$$s \in [0,1],$$

$$Y_s = (1 - s)Y_0 + sY,$$

$$Y_0 \sim \mathcal{N}(0, I)$$
,

 X_t , Y - Supervising process