Microeconometrics Module

Lecture 2: Miscellaneous Concepts

Swapnil Singh Lietuvos Bankas and KTU Course Link

Introduction

- Clarification of some concepts
 - 1. Definition of estimand, estimate, and estimator
 - 2. Different causal estimands
 - 3. Understanding identification

Estimand, Estimate, and Estimator

- **Estimand**: A parameter or a function of the population that we aim to measure.
 - True value that we are interested in knowing
 - Example: The average income of all households in a country.
- **Estimator**: A rule or a formula that tells us how to calculate estimand based on sample data.
- Estimate: The actual value obtained by applying the estimator to a given set of sample data.
 - Example: The calculated value of \$50,000 as the average income from the sample data.

Causal Estimands

Different Causal Estimands

- Three types of estimands are interesting for us:
 - 1. Average treatment effect i.e. τ_{ATE}
 - 2. Average treatment effect on the treated i.e. τ_{ATET}
 - 3. Conditional average treatment effect i.e. τ_{CATE}
- Average treatment effect i.e. \(\tau_{ATE}\)

$$au_{ATE} = \mathbb{E}(au_i)$$

$$= \mathbb{E}[Y_i(1) - Y_i(0)]$$

where $\mathbb{E}(\cdot)$ is the population operator

 Note that until now we are not talking about the type of data we have

Different Causal Estimands

• Average treatment effect on the treated i.e. τ_{ATET}

$$\begin{aligned} \tau_{ATET} &= \mathbb{E}(\tau_i|D_i = 1) \\ &= \mathbb{E}[Y_i(1) - Y_i(0)|D_i = 1] \\ &= \underbrace{\mathbb{E}[Y_i(1)|D_i = 1]}_{observed} - \mathbb{E}[Y_i(0)|D_i = 1] \end{aligned}$$

Different Causal Estimands

Conditional average treatment effect i.e. τ_{CATE}

$$\tau_{CATE}(x) = \mathbb{E}(\tau_i | X_i = x)$$
$$= \mathbb{E}[Y_i(1) - Y_i(0) | X_i = x]$$

where X_i is some observed characteristic

Understanding Identification

Types of identification

- Two types of identification¹:
 - Point identification, or as Prof. Beatrice Cherrier calls in her (X/Twitter post) Ashenfelter-Angrist-Lalonde-Card-Krueger approach
 - 2. Partial identification, see Tamer $(2010)^2$
- This module: point identification
- But, let's first dig into understanding the meaning of identification

¹Lewbel, A. (2019). The Identification Zoo: Meanings of Identification in Econometrics. Journal of Economic Literature, 57 (4): 835-903.

 $^{^2}$ Tamer, E. (2010). Partial identification in econometrics. Annu. Rev. Econ., 2(1), 167-195.

Understanding identification

- Let θ denote an unknown parameter or a set of unknown parameters
- lacksquare Our objective is to learn/estimate heta

Understanding identification

- Let θ denote an unknown parameter or a set of unknown parameters
- ullet Our objective is to learn/estimate heta

Ex: In linear regression models, i.e. $y = \alpha + \beta x + \epsilon$, θ can be α , β

Understanding identification

- Let θ denote an unknown parameter or a set of unknown parameters
- Our objective is to learn/estimate θ

Ex: In linear regression models, i.e. $v = \alpha + \beta x +$

 $y = \alpha + \beta x + \epsilon$, θ can be α , β

Ex: τ_{ATE}

- Identification means, if we knew the population the data is drawn from, can we infer information about θ
- Another way to think:
 - variation in $\theta \implies$ variation in the distribution of data

Point identification

- lacksquare We want to identify and estimate heta
- Assume, there exists ϕ
 - $\bullet \hspace{0.1cm} \phi$ can be learned from the data

Point identification

- We want to identify and estimate θ
- Assume, there exists ϕ
 - ullet ϕ can be learned from the data

Ex. of ϕ : distribution function, conditional means, quantiles, etc.

Point identification

- We want to identify and estimate θ
- Assume, there exists ϕ
 - ullet ϕ can be learned from the data

Ex. of ϕ : distribution function, conditional means, quantiles, etc.

- Essentially, we will leverage ϕ to get to know θ
- To bridge this knowledge, we need a model
- \blacksquare Model puts restriction on what values ϕ can take

Point Identification: Example 1

- Suppose there are two variables y and x
- Our model is that there is a linear relationship between y and x, i.e.

$$y = x\theta + \varepsilon$$
, $\mathbb{E}(x^2) \neq 0$, $\mathbb{E}[ex] = 0$

- Let's say we can learn second moments of (y, x) i.e. we know what ϕ is
- Then, we know

$$\theta = \frac{\mathbb{E}(xy)}{\mathbb{E}(x^2)}$$

- θ is point identified
- However, if we were not able to calculate second moments, then θ is not point identified

Identification of treatment effect

Strong Ignorability

Definition

 D_i is strongly ignorable conditional on X_i if

1. Potential outcomes are independent of treatment, conditional on X_i i.e.

$$Y_i(1), Y_i(0) \perp D_i | X_i$$

2. The treatment is not too rare or common, i.e.

$$\exists \epsilon > 0$$
, s.t. $\epsilon < Pr(D_i = 1 | X_i) < 1 - \epsilon$

ATE Point Identification

Theorem

If D_i is strongly ignorable conditional on X_i , then

$$ATE = \mathbb{E}(\tau_i)$$

$$= \int_{x \in \Omega(X_i)} \left[\mathbb{E}(Y_i | D_i = 1, X_i = x) - \mathbb{E}(Y_i | D_i = 0, X_i = x) \right] f(x) dx$$

Next

Endogeneity

Questions?