Análisis Estadístico con R

Víctor Morales-Oñate 17 de marzo de 2018

Contents

Procedimientos Gráficos	1
Funciones Gráficas	1
Funciones gráficas de alto nivel	1
Funciones gráficas de bajo nivel	6
Práctica :	10

Procedimientos Gráficos

- Una de las grandes potencialidades en R es la calidad gráfica. Su potencialidad es del mismo nivel e incluso superior al de muchos software comerciales.
- Resultaría un curso exclusivo de graficación en R para poder dar a conocer todas las posibilidades de graficación en la herramienta. Para ilustrar algunas posibilidades:

demo(graphics)

Funciones Gráficas

- El resultado de una función gráfica no puede ser asignado a un objeto sino que es enviado a un dispositivo gráfico. Un dispositivo gráfico es una ventana gráfica o un archivo.
- Existen dos tipos de funciones gráficas:
 - Funciones de gráficas de alto nivel: Crean una nueva gráfica
 - Funciones de gráficas de bajo nivel: agregan elementos a una gráfica existente
- Las gráficas se producen con respecto a *parámetros gráficos* que están definidos por defecto y pueden ser modificados con la función par.

Funciones gráficas de alto nivel

Función	Descripción
plot(x)	graficar los valores de x (en el eje y) ordenados en el eje x
<pre>plot(x,y)</pre>	gráfico bivariado de x (en el eje x) y y (en el eje y)
pie(x)	gráfico circular tipo pie
<pre>boxplot(x)</pre>	Gráfico de caja y bigotes
hist(x)	histograma de las frecuencias de x
<pre>barplot(x)</pre>	histograma de los valores de x

- Las opciones de cada unas de las funciones se pueden ver en la ayuda de R.
- Las principales son:

Opción	Descripción	
add=FALSEes TRUE superpone el gráfico en el ya existente		
	(si existe)	
axes=TRMEes FALSE no dibuja los ejes ni la caja del gráfico		
type="p	" especifica el tipo de gráfico; "p": puntos, "1":	
	líneas, "h": líneas verticales, "s": escaleras, los	
datos se representan como la parte superior de las		
	líneas verticales, entre otros	
<pre>xlim=,</pre>	especifica los límites inferiores y superiores de los	
ylim=	ejes; por ejemplo con xlim=c(1, 10) o	
	<pre>xlim=range(x)</pre>	
main=	Título principal; debe ser de tipo caracter	
sub=	sub-título (escrito en una letra más pequeña)	

La función plot(x)

```
x <- seq(10,20,1)
plot(x)</pre>
```


La función plot(x,y)

```
y <- seq(30,40,1)
plot(x,y)
```


Boxplot

• También se le llama gráfico de caja y bigotes, refleja gráficamente el resumen de estadísticas principales (Min,Q1,Mediana,Q3,Max, Outlayers). Importa los datos Mundo.csv y...

```
boxplot(PNB_PC)
boxplot(log(PNB_PC))
```

• Exácto! Es muy probable que hayas obtenido un error (¿Por qué?). Hay dos formas de solucionarlo. Una de las formas sería:

• Mmmm, algo anda mal, la variable no se puede apreciar muy bien. Tratemos visualizarla haciendo una transformación logarítmica:

boxplot(log(datos\$PNB_PC))

En general, si al aplicar el boxplot sobre una variable se tiene problemas para visualizarla, se debe usar el lograritmo de la variable para una mejor lectura de la variable.

• Otra forma de solucionar el problema anterior es usando el comando attach. Esta función es utilizada para poder *ingresar* a las variables de un data frame sin el operador \$. Así

attach(datos)

• Realicemos varios boxplot a la vez.

boxplot(log(PNB_PC)~REGION, col=rainbow(5))

• Agreguemos etiquetas:

fregion <- factor(REGION,labels=c("Africa","America","Asia","Europa","Oceania"))
boxplot(log(PNB_PC)~fregion, col=rainbow(5))</pre>

Pie

 $\bullet\,$ Realiza un gráfico de PIE de los datos (tiene sentido cuando son datos de suma 100)

```
z.pie <- c(20,40,10,30)
pie(z.pie)</pre>
```


• Con etiquetas

```
names(z.pie) <- c("Soltero", "Casado", "Viudo", "Divorciado")
pie(z.pie)</pre>
```


• Con colores elegidos (más opciones de colores puedes encontrarlos aquí)

- Juguemos un poco con las opciones:
 - Realizar un plot de x e y (ya creados) con las siguientes opciones:
 - Título: Gráficas en R
 - Subtítulo: Centro de Estudios Fiscales
 - Etiquetas en ejes: "Eje X", "Eje Y" Respectivamente
 - Gráfico tipo escalera
 - Color Azul

Funciones gráficas de bajo nivel

Función	Descripción
points(x, y)	Agrega puntos
. 0	Mismo que points pero con líneas una línea desde el punto (x_0,y_0) hasta el
уО,	punto (x_1,y_1)
x1, y1)	
abline (dai/bu)ja	una línea con pendiente b e intercepto a

Curve

Sirve para graficar funciones, el formato es

curve(expr, from, to, add=FALSE,...)

Por ejemplo:

 $curve(x^3-3*x,-2,2)$

Micro práctica

• Realiza una gráfica del conjunto de datos women (women es una base de datos *precargada* en R, se accede a ella con data(women)). Coloque "Altura" como etiqueta en el eje x y "Peso" en el y. Como título ponga "Valores promedio de altura y peso", subtitulo: "Mujeres de 30 a 39 años". El gráfico debe lucir así:

Valores promedio de altura y peso

• Haga una gráfica de la función cos(3x) de 0 a 3, de color azul. Superponga la gráfica de sin(2x) de color rojo. La gráfica debe lucir así:

• Cerremos esta primera parte gráfica con un ejemplo en 3D:

```
library(rgl)
r <- 1
a <- runif(1000,0,2*pi)</pre>
```

```
u <- runif(1000,-r,r)

x <- cos(a)*sqrt(1-u^2)
y <- sin(a)*sqrt(1-u^2)
z <- u
plot3d(x,y,z,col="blue")</pre>
```

• Hasta el momento hemos cubierto formas básicas de hacer gráficos. Existen opciones más avanzas como lattice, ggplot2 y ggvis. Hagamos un breve paseo por ggplot y luego hacemos una práctica:

ggplot2

Un gráfico básico (usando lo aprendido hasta ahora)

Usando ggplot:

```
ggplot(diamonds, aes(carat, price, col = color, shape = cut)) +
   geom_point()
```


Práctica

- Abra los datos de R cars. Es una buena práctica el conocer los nuestros datos. Mira la ayuda de cars.
- Ejecuta head(cars). Para tener una mejor idea de nuestros datos, podemos usar funciones como: dim(), names(), head(), tail() y summary().
- Hagamos un gráfico básico plot(cars)
 - R nota que el data frame tiene sólo dos columnas, por lo que asume que deseas graficar una columna vs la otra.
- Además, ya que no se proporcionan etiquetas para los ejes, R utiliza los nombres de las columnas.
- Ahora, ejecuta plot(x = cars\$speed, y = cars\$dist). ¿Notas alguna diferencia con el gráfico anterior?
- Ten en cuenta que hay otras maneras de usar el comando plot, esto es, utilizando el interfaz de "fórmula". Por ejemplo, tenemos gráfico similar al anterior con plot(dist ~ speed, cars). Sin embargo, vamos a usar más tarde en la práctica antes de utilizar la interfaz de fórmula.
- Hagamos un gráfico de cars con dist en el eje x y speed en el eje y.
- En el gráfico anterior, agrega la etiqueta "Speed" en el eje x.
- En el gráfico anterior, agrega la etiqueta "Stopping Distance" en el eje y.
- Ahora, agrega el título "My Plot".
- Agrega el subtítulo "My Plot Subtitle".

- Agrega la opción col=2
- Limita los ejes usando la opción xlim = c(10,15)
- $\bullet\,$ Podemos cambiar la forma de los puntos, trata con la opción pch = 2.
- Carga los datos mtcars. Usa boxplot() con la fórmula = mpg ~ cyl y data = mtcars.
- Finalmente, realiza un histograma de mtcars\$mpg con la función hist.