The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Iowa State University

May 22, 2013

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental

Outline

Common Experimental Designs

Randomized Complete Block Design

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Common Experimental Designs

Sample units are randomly assigned to treatment levels.

Example: metallurgy

 Test the effect of different additives on the corrosion. rate of steel.

Sample: 12 pieces of raw iron

Treatment: additive (A, B, or C).

► Treatment groups: A (units 1-4), B (units 5-8), and C (units 9-12)

Sample unit	Additive	Sample unit	Additive
1	А	7	В
2	A	8	В
3	A	9	C
4	A	10	C
5	В	11	C
6	В	12	С

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Common Experimental Designs Completely Randomized Design Factorial Design

 Each sample unit is randomly assigned to a combination of treatment levels

► Example: metallurgy: a 3 × 2 factorial version

Treatment 1: additive (A, B, or C).

Treatment 2: temperature (high or low)

► Treatment groups: A high (units 1-2), A low (units 3-4), B high (units 5-6), B low (units 7-8), C high (units 9-10), C low (units 11-12),

Unit	Additive	Temp	Unit	Additive	Temp
1	Α	high	7	В	low
2	Α	high	8	В	low
3	Α	low	9	C	high
4	Α	low	10	C	high
5	В	high	11	C	low
6	В	high	12	С	low

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Common Experimental Designs Factorial Design

Metallurgy example: a 2³ factorial version

Sample: 16 pieces of iron.

Treatments:

Treatment 1: additive (A or B)

Treatment 2: temperature (high or low)

Treatment 3: smelting time (long or short)

► Treatment groups: A high long (units 1-2) A high short (units 3-4), ..., B low short (units 11-12).

Unit	Add	Temp	Smelt	Unit	Add	Temp	Smelt
1	Α	high	long	9	В	high	long
2	Α	high	long	10	В	high	long
3	Α	high	short	11	В	high	short
4	Α	high	short	12	В	high	short
5	Α	low	long	13	В	low	long
6	Α	low	long	14	В	low	long
7	Α	low	short	15	В	low	short
8	Α	low	short	16	В	low	short

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental Designs Factorial Design

Randomized Complete Block Design

Randomized Complete Block Design

- an experimental design with one or more treatment variable and at least one blocking variable.
- Within each block separately, sample units are assigned to treatment groups
- Example: metallurgy
 - Treatment: additive (A, B, or C).
 - Blocking variable: pig iron supplier (Amset or Miller and Co.)

Unit	Supplier	Add	Unit	Supplier	Add
1	Amset	Α	7	Miller	Α
2	Amset	Α	8	Miller	Α
3	Amset	В	9	Miller	В
4	Amset	В	10	Miller	В
5	Amset	C	11	Miller	C
6	Amset	C	12	Miller	C

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Common Experimental Designs Randomized Complete

Block Design

Outline

Randomized Complete Block Design

Simple Random Sampling

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental Designs

Simple Random Sampling

Simple Random Sampling

- ▶ **Simple Random Sampling**: drawing a sample of *n* units from a finite population of N units such that every possible *n*-sized subset of the population has an equal chance of being selected.
- Use either a computerized random number generator or a table of random digits.

Random Digits

12159	66144	05091	13446	45653	13684	66024	91410	51351	22772
30156	90519	95785	47544	66735	35754	11088	67310	19720	08379
59069	01722	53338	41942	65118	71236	01932	70343	25812	62275
54107	58081	82470	59407	13475	95872	16268	78436	39251	64247
99681	81295	06315	28212	45029	57701	96327	85436	33614	29070

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental Designs

Common

Simple Random Sampling

Steps of Simple Random Sampling

- Let M be the number of digits in the number N-1, where N is the population size. (If N = 1000 then M = 3 digits.)
- Give each member of the population an M-digit index, i (say, $i = 000, 001, \dots, 999$
- 3. Move through the table of random digits from left to right, top to bottom, selecting population members for the sample when you encounter their indices (ignoring indices that have already been chosen) until you have selected *n* units for the sample.

Random Digits

12159	66144	05091	13446	45653	13684	66024	91410	51351	22772
30156	90519	95785	47544	66735	35754	11088	67310	19720	08379
59069	01722	53338	41942	65118	71236	01932	70343	25812	62275
54107	58081	82470	59407	13475	95872	16268	78436	39251	64247
99681	81295	06315	28212	45029	57701	96327	85436	33614	29070

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Common Experimental Designs

Simple Random Sampling

Using the table of random digits below, take a simple random sample of 12 units of pig iron out of a shipment of 90 units.

12159	66144	05091	13446	45653
30156	90519	95785	47544	66735
59069	01722	53338	41942	65118
54107	58081	82470	59407	13475
99681	81295	06315	28212	45029

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental

Designs

Simple Random

Sampling

Solution:

- ▶ Indexed the members of the population from 00 to 89.
- Selected units 12, 15, 61, 44, 5, 9, 11, 34, 46, 45, 65, and 33 for the sample.

12159	66144	05091	13446	45653
30156	90519	95785	47544	66735
59069	01722	53338	41942	65118
54107	58081	82470	59407	13475
99681	81295	06315	28212	45029

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental Designs

Simple Random Sampling

Outline

Randomized Complete Block Design

Randomization

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental Designs

- Randomization: assigning sample units to treatment groups in an experiment such that every set of assignments is equally likely.
- Steps to randomize n sample units to t treatment groups, each of size s (n = ts):
 - Use the table of random digits to select s units for treatment group 1 from the experimental sample of n units.
 - 2. Continuing from your last spot in the table, select s units for treatment group 2 from the remaining n-s units in the experimental sample.
 - 3. Continue this process until you have selected t-1 treatment groups. The remaining units will belong to the last treatment group.

Randomize our experimental sample of 12 units of pig iron to thee treatment groups (for additives A, B, and C).

12159	66144	05091	13446	45653
30156	90519	95785	47544	66735
59069	01722	53338	41942	65118
54107	58081	82470	59407	13475
99681	81295	06315	28212	45029

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental Designs

Randomization without blocks

Solution:

- Units 05, 09, 11, and 01 for group A (blue).
- ▶ Units 06, 07, 08, and 02 for group B (green).
- ▶ Units 03, 04, 10, and 00 for group C (leftover).

12159	66144	05091	13446	45653
30156	90519	95785	47544	66735
59069	01722	53338	41942	65118
54107	58081	82470	59407	13475
99681	81295	06315	28212	45029

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental Designs

Randomization without blocks

For randomization in factorial studies, know your treatment groups.

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Common
Experimental
Designs
Completely
Randomized Design
Factorial Design

Simple Random

Randomization

Randomization without blocks Randomization with Blocks

- **Example:** metallurgy: a 3×2 factorial version
 - ▶ Sample: n = 12 units
 - ► Treatment 1: additive (A, B, or C).
 - ► Treatment 2: temperature (high or low).
- 1. How many treatment groups do we have?
- 2. How many units of the experimental sample should I randomize to each treatment group?

Know you treatment groups: answers

- 1. $3 \times 2 = 6$ treatment groups.
- Each treatment group has 12/6 = 2 units of pig iron.

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental Designs

Randomization without blocks

Randomization with blocks

▶ Randomize units to treatments within each block.

Unit	Supplier	Add	Unit	Supplier	Add
1	Amset	Α	7	Miller	Α
2	Amset	Α	8	Miller	Α
3	Amset	В	9	Miller	В
4	Amset	В	10	Miller	В
5	Amset	C	11	Miller	C
6	Amset	C	12	Miller	C

- ► For the metallurgy block design:
 - Randomize all Amset units to treatments A, B, and C
 - ► Then, picking up where you left off in the table of random digits, randomize all *Miller units* to treatments A, B, and C.

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental
Designs
Completely
Randomized Design

Simple Random

Randomization

Randomization without blocks Randomization with Blocks

Your turn: metallurgy block design

- Given:
 - 2 blocks (Amset and Miller).
 - ▶ 3 treatment levels (A, B, and C).
- Randomize the 12 units of pig iron to treatment groups

12159	66144	05091	13446	45653
30156	90519	95785	47544	66735
59069	01722	53338	41942	65118
54107	58081	82470	59407	13475
99681	81295	06315	28212	45029

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental Designs

Randomization with Blocks

The Amset Block

- ▶ Index the 6 Amset units of pig iron from 0 to 5.
- Using the table of random digits, select:
 - Units 1 and 2 for group A (blue).
 - Units 5 and 4 for group B (green).
 - Units 0 and 3 for group C (leftover).

12159	66144	05091	13446	45653
30156	90519	95785	47544	66735
59069	01722	53338	41942	65118
54107	58081	82470	59407	13475
99681	81295	06315	28212	45029

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental Designs

Randomization with Blocks

The Miller Block

- ▶ Index the 6 Miller units of pig iron from 0 to 5.
- Using the table of random digits, select:
 - ▶ Units 4 and 0 for group A (orange).
 - Units 5 and 1 for group B (red).
 - Units 2 and 3 for group C (leftover).

12159	66144	05091	13446	45653
30156	90519	95785	47544	66735
59069	01722	53338	41942	65118
54107	58081	82470	59407	13475
99681	81295	06315	28212	45029

The Design of Statistical Studies (Ch 1-2)

Dason Kurkiewicz

Experimental Designs

Randomization with Blocks