Chem Notes

Amy Wilder

July 30, 2025

1 Solubility Rules for Ionic Compounds in Water

Ions	Comments
NH_4^+, Na^+, K^+, Li^+	All common salts of these ions are soluble
NO_3^-, CH_3COO^-	All common salts of these ions are soluble
CI^-,Br^-,I^-	All common salts of these ions are soluble, <code>_except_</code> those of
	$Ag^+, Pb^{2+}, Cu^+, and Hg_2^+.$
SO ₄ ²⁻	Most are soluble $_$ except $$ those containing Ca^{2+} , Sr^{2+} , Ba^{2+} , and
	Pb^{2+} ions
OH^-	All are insoluble, _except_ those with NH ₄ ⁺ ion, Group 1A, and
	the larger members of Group 2A beginning with Ca ²⁺
$CO_3^{2-}, PO_4^{3-}, C_2O_4^{2-}$	All common salts are insoluble, _except_ those of Group 1A and
	NH_{4}^{+}

2 Common ions and their respective charges

Ion Summary: When cations pair up with anions to form neutral ionic compounds, the word "ion" is dropped from both ion's names

Main group metals an Nonmetals: predictable charges based upon their group/column.

Name	Cation	\mathbf{Name}	Cation
Lithium ion	Li ¹⁺	Berylium ion	Be^{2+}
Sodium ion	Na^{1+}	Magnesium io	
Potassium ion	K^{1+}	Calcium ion	Ca^{2+}
Rubidium ion	Rb^{1+}	Strontium ion	$_{ m 1}$ ${ m Sr}^{2+}$
Cesium ion	Cs^{1+}	Barium ion	Ba^{2+}
		Aluminum io	$n ext{Al}^{3+}$
Name	Anion	Name	Anion
Oxide ion	0^{2-}	Bromide ion	Br ¹⁻
Sulfide ion	S^{2-}	Chloride ion	Cl^{1-}
		Fluoride ion	F^{1-}
Nitride ion	N ³⁻ P ³⁻	Fluoride ion Iodine ion	F ¹⁻ I ¹⁻

Transition Metals (and other metals with d orbitals): The charge for many of these can vary. Therefore Roman Numerals are used in their written name to indicate the exact ion. If a transition metal is in the cmpd, then you need to look at the anion to determine the charge of the metal cation.

Name	Cati		Nar	ne	Cation
Cadmium ion	Cd^{2+}		Cob	alt (II) ion	Co^{2+}
Zinc ion	Zn^{2+}		Cob	alt (III) ion	Co^{3+}
Silver ion	Ag^{2+}		Iron	(II) ion	Fe^{2+}
Gold ion	Au^{2+}		Iron	(III) ion	Fe^{3+}
			Chr	omium (III) ion	Cr^{3+}
Name		Cati		Name	Cation
Name Copper (I) ion		Cati Cu ¹⁺		Name Tin (II) ion	Sn ²⁺
					Sn ²⁺ Sn ⁴⁺
Copper (I) ion	ı	Cu ¹⁺ Cu ²⁺ Hg ²⁺		Tin (II) ion	Sn ²⁺ Sn ⁴⁺ Pb ²⁺
Copper (I) ion Copper (II) ion	n on	Cu ¹⁺		Tin (II) ion Tin (IV) ion	Sn ²⁺ Sn ⁴⁺

POLYATOMIC ions. These ions contain covalently bonded atoms with an overall charge. They remain together in a GROUP.

Name	Cation	Name	Anion
Ammonium ion	NH_4^{1+}	Nitrate ion	NH_4^{1-}
		Hydroxide ion	OH_4^{1-}
		Cyanide ion	CN_4^{1-}
Name	Anion	Name	Anion
Name Sulfate ion	SO ₄ ²⁻	Name Phosphate ion	Anion PO ₄ ³⁻
			11111011

Strong Acids are Molecular Compounds (typically the formula starts with "H" followed by an anion).

- \bullet HCl = hydrochloric acid
- $\bullet~\mathsf{HBr} = \mathsf{hydrobromic}$ acid
- $\bullet \ H_2SO_4 = \mathrm{sulfuric\ acid}$
- $\bullet \ \ \mathsf{HNO}_3 = \mathrm{nitric} \ \mathrm{acid}$

More bonds require more energy to break. Shorter bonds require more energy to break (i.e. smaller atoms make stronger bonds).

3 Geometry

sp = linear, sp2 = trigonal planar, sp3 = quadragonal

4 Intermolecular Forces

IMFs

5 Dynamic Equilibrium

When two opposite processes reach the same rate so that there is no gain or loss of material.

- This **does not** mean there are equal amounts of vapor and liquid; it means that they are *changing* by equal amounts.
- •
- •

The pressure exerted by vapor when it is in dynamic equilibrium with its liquid is called the **vapor pressure**.

The weaker the attractive forces between the molecules, the more molecules will be in the vapor. Therefore,

- The weaker the attractive forces, the higher the vapor pressure.
- The higher the vapor pressure, the more volatile the liquid.

Dynamic equilibrium: Rate of vaporization = rate of condensation Volume is increased, pressure falls. More gas vaporizes. Pressure is restored. Volume is decreased, pressure rises. More gas condenses, pressure is restored.

5.1 Vapor pressure vs temperature

$$760 \text{torr} = 1 \text{atm} = 700 \text{mmHg}$$

- Increasing temperature increases the number of molecules able to escape the liquid.
- The net result is that as temperature increases, the vapor pressure increases
- Small changes in temperature can make big changes in vapor pressure.
 - The rate of growth depends omn the strnegth of the intermolecular forces.
 - vapor pressure vs temperature curves graphically represent the relationship