Data Processing

Most Commonly Used Libraries

Getting Started with Python Program

DataFrame

• Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns).

Col1	Col2	Col3		Col n
Row 1				
Row 2				
••••				

DataFrame

• Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns).

```
1 Loan ID, Gender, ApplicantIncome, CoapplicantIncome, Loan Amount, Area, Loan Status
 2 LP001002, ,5849, 0, , urban, Y
 3 LP001003, Male, 4583, , 128, semi, N
 4 LP001005, Male, 3000, 0, 66, , Y
 5 LP001006, Female, 2583, 2358, 120, semi, Y
 6 LP001008, Male, , 0, 141, urban, Y
 7 LP001011, Male, 5417, 4196, 267, semi, Y
 8 LP001013, Male, 2333, 1516, , semi, Y
 9 LP001014, Female, 3036, 2504, 158, semi, N
10 LP001018, Male, 4006, 1526, 168, semi, Y
11 LP001020, Male, 12841, 10968, 349, semi, N
12 LP001024, Female, 3200, 700, 70, urban, Y
13 LP001027, Male, 2500, 1840, 109, urban, Y
14 LP001028, Female, ,8106, ,urban, Y
15 LP001029, Male, 1853, 2840, 114, urban, N
16 LP001030, Male, 1299, 1086, 17, semi, Y
17 LP001032, Male, 4950, 0, 125, semi, Y
18
```

DataFrame

• Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns).

DataFrame – Select the data

iloc [row range, column range]

iloc [from_row_index : to_row_index+1, from_column_index : to_column_index+1]

iloc [0 : 2, 2:5]

DataFrame – Select the data

Alia

2

ST03

Math

dataframeName [["Age", "Study", "Subject"]] [: 2]

5

16

77

Categorical Variables

Mathematics as basis of Machine Learning

Regression

$$Y = a + bX$$

Classification

$$Log(\frac{}{}) = b0 + b1X$$

Categorical Variables

LabelEncoder

```
22
23 # Categorical to Numeric label encoding using Pandas
24 dt.dtypes
25
26 dt[cols] = dt[cols].astype('category')
27 dt.dtypes
28
29 for columns in cols:
30 dt[columns] = dt[columns].cat.codes
```

LP001002	1	5849.00	0.00	140.92	1	1
LP001003	1	4583.00	2509.33	128.00	0	0
LP001005	1	3000.00	0.00	66.00	0	1
LP001006	0	2583.00	2358.00	120.00	0	1
LP001008	1	4103.57	0.00	141.00	1	1
LP001011	1	5417.00	4196.00	267.00	0	1
LP001013	1	2333.00	1516.00	140.92	0	1
LP001014	0	3036.00	2504.00	158.00	0	0
LP001018	1	4006.00	1526.00	168.00	0	1
LP001020	1	12841.00	10968.00	349.00	0	0
LP001024	0	3200.00	700.00	70.00	1	1
LP001027	1	2500.00	1840.00	109.00	1	1
LP001028	0	4103.57	8106.00	140.92	1	1
LP001029	1	1853.00	2840.00	114.00	1	0
LP001030	1	1299.00	1086.00	17.00	0	1
LP001032	1	4950.00	0.00	125.00	0	1

Problem with LabelEncoder ONLY

Area	LabelEncoder
Urban	1
Semi-Urban	2
Rural	3

3 > 2 > 1 Rural > Semi-Urban > Urban

City	LabelEncoder
London	1
New York	2
Delhi	3

$$1 + 2 = 3$$

$$(1+3)/2=2$$

1 + 2 = 3 London + New York = Delhi (1+3)/2 = 2 (London + Delhi)/2 = New York

One-Hot Encoder

City	LabelEncoder	London	New York	Delhi
London	1	1	0	0
New York	2	0	1	0
Delhi	3	0	0	1

Data Normalization

What is Normalization?

"In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging"

--Wikipedia

What is Normalization?

City	Temperature
New York	92 °F
Chicago	87 °F
Boston	94 °F
Detroit	91 °F

City	Temperature
London	28 °C
Paris	24 °C
Delhi	34 °C
Tokyo	31 °C

City	Temperature
New York	92 °F
Chicago	87 °F
Boston	94 °F
Detroit	91 °F
London	82.4 °F
Paris	75.2 °F
Delhi	93.2 °F
Tokyo	87.8 °F

City	Temperature
New York	33.3 °C
Chicago	30.5 °C
Boston	34.4 °C
Detroit	32.8 °C
London	28 °C
Paris	24 °C
Delhi	34 °C
Tokyo	31 °C

What is Normalization?

"In the simplest cases, normalization of ratings means <u>adjusting values</u> measured on <u>different scales</u> to a notionally <u>common scale</u>, often prior to averaging"

--Wikipedia

Why should we normalize the data?

Why should we normalize the data?

Normalization Defined

- A method to standardise the range of independent variables or features of data
- Variables are fitted within a certain range (Generally between 0 and 1)
- Applied on numeric columns

Normalize data – Transformation Methods

ZScore

$$Z = \frac{X - mean(x)}{stdev(x)}$$

<u>MinMax</u>

$$Z = \frac{X - min(x)}{Max(x) - min(x)}$$

Logistic

$$Z = \frac{1}{1 + exp(-x)}$$

Most commonly used transformation methods

Train and Test

Train and Test Data

