Non-Negative Matrix Factorization

Clayton W. Schupp

Galvanize

NMF Overview

What is NMF

- A group of algorithms that takes a large dimensional matrix and factors into 2 (or more) smaller dimensional matrices
- The matrices are all non-negative
 - Often inherent in the data being considered
 - Makes the resulting matrices easier to inspect and interpret
- This smaller dimension makes the matrices easier to store

NMF Overview

Matrix
$$V_{m \times n}$$
 where each entry $v_{ij} \ge 0$

$$W * H = V_{m \times n}$$

$$= V_{m \times n}$$

r is set by the user and can be substantially smaller than either (m, n)

NMF Overview

The columns of V are linear combinations of the columns of W weighted by the corresponding column in H

$$v_i = W * h_i$$

where v_i and h_i are the i^{th} column vectors of V and H respectively

Text Mining Example

- Let *V* be the input matrix with 10000 rows and 500 columns, where
 - words are rows
 - documents are columns
- Assume we want to find 10 hidden features. Want to generate:
 - W with 10000 rows and 10 columns
 - H with 10 rows and 500 columns

Column in W:

- document archetype
- word's cell value establishes it's rank for that latent feature

Column in H:

- Original document
- Cell value is document's rank for that latent feature

Recall $v_i = W * h_i$, so v_i :

- is rebuilding a particular document
- linear combination of document archetypes weighted by how important they are

Algorithm

Want to minimize RMSE

$$\label{eq:with respect to W and H} \begin{aligned} & \text{Minimize} & ||V-WH||^2 & \text{with respect to W and H} \\ & \text{subject to W, H ≥ 0} \end{aligned}$$

- Lee and Seung's multiplicative update rules
 - good compromise between speed and ease of implementation
- Additive update rules such as gradient descent
 - easiest to implement but convergence can be slow
 - convergence is sensitive to choice of step size

Algorithm

Minimize
$$||V-WH||^2$$
 with respect to \textit{W} and \textit{H} subject to \textit{W} , $\textit{H} \ge \textit{0}$

Multiplicative Update Steps:

- Start with some random W and H
- Repeatedly adjust W and H to make RMSE smaller

$$H_{a\mu} \longleftarrow H_{a\mu} \frac{(W^T V)_{a\mu}}{(W^T W H)_{a\mu}} \qquad W_{ia} \longleftarrow W_{ia} \frac{(V H^T)_{ia}}{(W H H^T)_{ia}}$$

Stop when some threshold is met