西南交通大学 2015-2016 学年

第(一)学期考试试卷

课程代码 1271031 课程名称 概率论与数理统计 B (A 卷) 考试时间 120 分钟

题号	_	=	=	四四	五	六	七	八	总成 绩
得分									
阅卷教 师签字						a H			

一、(14分)设二维随机变量(X,Y)的概率分布为

X Y	1	2
. 1	0. 4	0. 3
. 2	0. 2	0. 1

试求 (1) (X,Y) 的分布函数 F(x,y); (2) X, Y 的边缘分布律; (3) Z=X-Y 的概率分布; (4) 概率 P(X>1.2,Y>1.6)。

解 (1) (X,Y)的分布函数为

$$F(x,y) = \begin{cases} 0 & x < 1, \exists y < 1 \\ 0.4 & 1 < x < 2, 1 < y < 2 \\ 0.7 & 1 < x < 2, y \ge 2 \\ 0.6 & x \ge 2, 1 < y < 2 \\ 1 & x \ge 2, y \ge 2 \end{cases}$$

(2) X, Y的边缘分布律分别为

X	1	2
P	0. 7	0.3

Y	1	2
P	0.6	0.4

(3) Z=X-Y的概率分布为

Z = X - Y	-1 -	0	. 1
P	0.3	0. 5	0. 2

(4) 概率 P(X>1.2,Y>1.6)=0.1

二、(12 分)设二维连续型随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} Ax(x+2y), & 0 < x < 1, \ 0 < y < 1 \\ 0, & \vdots \\ \end{cases}$$

试求 (1) 常数 A_{i} (2) 条件概率密度 $f_{x|y}(x|y)$ 和 $f_{y|x}(y|x)$;

(3)
$$P\{Y-X\leq 0\}$$
.

解 (1)
$$1 = \int \int Ax(x+2y)dxdy = A\left[\int \int x^2dxdy + \int \int 2xydxdy\right] = A \times \frac{5}{6}$$

得 $A = \frac{6}{5}$

5
(2)
$$f_{X}(x) = \int_{-\infty}^{\infty} f(x,y) dy = \begin{cases} \int_{0}^{6} \frac{6}{5} x(x+2y) dy = \frac{6}{5} (x^{2}+x) & 0 < x < 1 \\ 0 &$$
其它
$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x,y) dx = \begin{cases} \int_{0}^{6} \frac{6}{5} x(x+2y) dx = \frac{2}{5} (1+3y) & 0 < y < 1 \\ 0 &$$
其它

条件概率密度

三、(12分)设随机变量 X和 Y相互独立,且具有下述概率密度

$$f_X(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases} \qquad f_Y(y) = \begin{cases} 2e^{-2y}, & y > 0 \\ 0, & y \le 0 \end{cases}$$

试求: (1) Z = X + Y的概率密度. (2) $M = \max\{X,Y\}$ 的概率密度;

(3) $N = \min\{X, Y\}$ 的概率密度。

解: (1)
$$Z = X + Y$$
 的概率密度为
$$f_z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx$$

考虑当 $z \le 0$ 时, $f_z(z) = 0$, 当z > 0时,有

$$f_z(z) = \int_z^z e^{-x} 2e^{-2(z-x)} dx = 2(e^{-z} - e^{-2z})$$

$$f_z(z) = \begin{cases} 2(e^{-z} - e^{-2z}) & z > 0 \\ 0 & z \le 0 \end{cases}$$

(2) $M = \max\{X, Y\}$ 的分布函数为

$$F_{y}(z) = F_{x}(z) F_{r}(z)$$

$$\overline{m} \quad F_{x}(x) = \begin{cases} 1 - e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases} \qquad F_{y}(y) = \begin{cases} 1 - e^{-2y}, & y > 0 \\ 0, & y \le 0 \end{cases}$$

$$\overline{m} \quad F_{x}(x) = \begin{cases} (1 - e^{-z})(1 - e^{-2z}) & z > 0 \\ 0 & z \le 0 \end{cases}$$

$$\overline{m} \quad F_{x}(z) = \begin{cases} (1 - e^{-z})(1 - e^{-2z}) & z > 0 \\ 0 & z \le 0 \end{cases}$$

$$\overline{m} \quad F_{x}(z) = \begin{cases} (1 - e^{-z})(1 - e^{-2z}) & z > 0 \\ 0 & z \le 0 \end{cases}$$

(3) $N = \min\{X, Y\}$ 的分布函数为

$$F_N(z) = 1 - [1 - F_X(z)][1 - F_X(z)] = \begin{cases} 1 - e^{-3z} & z > 0 \\ 0 & z \le 0 \end{cases}$$

故 N的概率密度为

$$f_N(z) = \begin{cases} 3e^{-3z} & z > 0 \\ 0 & z \le 0 \end{cases}$$

四、(14 分)设二维随机变量(X,Y)的概率分布为

XY	0	1
0	0.4	а
1	b	0. 1

若随机事件 $\{X=0\}$ 与 $\{X+Y=1\}$ 相互独立,试求

(1) 常数a与b; (2) 协方差 Cov(X,X-Y); (3) $D[1-2(X-Y)^2]$.

解: (1) 由题设可得:

XY	. 0	1	p_{Ω}
0	0.4	а	0.4 + a
1	b	0.1	0.1 + b
$p_{_{\perp j}}$	0.4 + b	a+0.1	1

故
$$1 = \sum_{i=0}^{1} \sum_{j=0}^{1} P\{X = i, Y = j\} = 0.4 + a + b + 0.1$$
, 得 $a + b = 0.5$

又因为
$$P{X=0,X+Y=1}=a$$
, $P{X=0}=0.4+a$,

 $P\{X+Y=1\}=P\{X=0,Y=1\}+P\{X=1,Y=0\}=a+b$,且 $\{X=0\}$ 与 $\{X+Y=1\}$ 相互独立,故有 $P\{X=0,X+Y=1\}=P\{X=0\}P\{X+Y=1\}$,于是得 a=(0.4+a)(a+b)=0.5(0.4+a),所以求得 a=0.4,b=0.5-a=0.1

(2) X, Y的边缘分布律分别为

X	0	1
P	0.8	0. 2

Y	0	1
Р	0. 5	0. 5

$$E(X) = 0.2$$
, $D(X) = 0.16$, $E(Y) = 0.5$, $E(XY) = 0.1$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0.1 - 0.2 \times 0.5 = 0$$

$$Cov(X, X - Y) = Cov(X, X) - Cov(X, Y) = 0.16 - 0 = 0.16$$

(3) 因为 $Z=(X-Y)^2$ 的概率分布为

Z	0	1
P	0. 5	0.5

所以 $D[1-2(X-Y)^2]=4D[(X-Y)^2]=4\times0.5\times0.5=1$

五、 $(12 \, f)$ 将重量为a 的物品,在天平上重复称量n 次,若各次称量的结果 X_1, X_2, \cdots, X_n 相互独立,且 $X_i \sim N(a, 0.2^2)$ $i=1,2,\cdots,n$,则n 的最小值不小于多少时有

$$P\{ |\vec{X} - a| < 0.1 \} \ge 0.95$$
 $(\Phi(1.96) = 0.975)$?

解:由题设知,每次称量的结果 X_1, X_2, \dots, X_n 相互独立,且 $E(X_i) = a$, $D(X_i) = 0.04$,由独立同分布中心极限定理知 $\overline{X} = \frac{1}{n}\sum_{i=1}^{n} X_i$,有渐近正态分布 $N\left(a, \frac{0.04}{n}\right)$,于是

$$P(|\overline{X} - a| < 0.1) = P\left\{\frac{|\overline{X} - a|}{0.2/\sqrt{n}} < \frac{0.1}{0.2/\sqrt{n}}\right\} \approx \Phi\left(\frac{0.1\sqrt{n}}{0.2}\right) - \Phi\left(-\frac{0.1\sqrt{n}}{0.2}\right)$$

$$=2\Phi(0.5\sqrt{n})-1\geq 0.95$$

得 $\Phi(0.5\sqrt{n}) \ge 0.975$,查表得 $0.5\sqrt{n} \ge 1.96$, $n \ge 15.366$ 4 因此至少重复称量 16 次,才能保证 $P\{|\bar{X}-a|<0.1\} \ge 0.95$

六、(12分)设总体 X 服从伽玛分布, 其概率密度函数为:

$$f(x;\alpha,\beta) = \begin{cases} \frac{\beta^{-\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}} & x > 0 \\ 0 & x \le 0 \end{cases} \qquad (\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx)$$

其中 α 是已知正实数,参数 $\beta(\beta>0)$ 未知,若 $X_1,X_2,...,X_n$ 是来自该总体的一个

容量为n的样本,试求参数 β 的极大似然估计量,且问其是否无偏估计?

解: 若总体X的一个样本值为 $x_1,x_2,...,x_n$,则本题总体的似然函数为:

$$L(\beta) = \prod_{i=1}^{n} f(x_i; \beta) = \prod_{i=1}^{n} \frac{\beta^{-\alpha}}{\Gamma(\alpha)} x_i^{\alpha-1} e^{-\frac{x_i}{\beta}} = \left(\frac{\beta^{-\alpha}}{\Gamma(\alpha)}\right)^n \left(\prod_{i=1}^{n} x_i\right)^{\alpha-1} e^{-\frac{1}{\beta} \sum_{i=1}^{n} x_i}$$

取对数得

$$\ln L(\beta) = -n\alpha \ln \beta - n \ln \Gamma(\alpha) + (\alpha - 1) \ln \left(\prod_{i=1}^{n} x_{i} \right) - \frac{1}{\beta} \sum_{i=1}^{n} x_{i}$$

再对 β 求导数,并令其为0:

$$\frac{d \ln L(\beta)}{d \beta} = -\frac{n\alpha}{\beta} + \frac{1}{\beta^2} \sum_{i=1}^{n} x_i = 0$$

解之得参数 β 的极大似然估计值为: $\hat{\beta} = \frac{1}{n\alpha} \sum_{i=1}^{n} x_i = \frac{\bar{x}}{\alpha}$

于是参数 p 的极大似然估计量为: $\hat{\beta} = \frac{\bar{X}}{\alpha}$

而 $X \sim \Gamma(\alpha, 1/\beta)$, 故期望 $E(X) = \alpha\beta$, $E(\bar{X}) = \alpha\beta$, 所以

$$E(\hat{\beta}) = E(\frac{\bar{X}}{\alpha}) = \frac{1}{\alpha}E(\bar{X}) = \frac{1}{\alpha}\alpha\beta = \beta$$
, $p = \frac{\bar{X}}{\alpha}$ 是参数 β 的无偏估计。

七、(12分)从自动车床加工的一批零件中随机抽取 10个,测得其尺寸与规定尺寸的偏差(单位: 微米)分别为:

$$2 \quad 1 \quad -2 \quad 3 \quad 2 \quad 4 \quad -2 \quad 5 \quad 3 \quad 4$$

记零件的尺寸偏差为X,假定 $X \sim N(\mu, \sigma^2)$,试求未知参数 μ 和 σ^2 的置信度为

0.95的区间估计。(
$$t_{0.05/2}(9) = 2.2622$$
, $\chi^2_{0.025}(9) = 19.023$, $\chi^2_{0.975}(9) = 2.7$)

解: (1) 方差未知时,均值 μ 的置信水平为 $1-\alpha=0.95$ 的置信区间为:

$$\left(\overline{x}\pm\frac{s}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$$

由本題中数据得: $\alpha = 0.05$, n = 10, $t_{0.05/2}(9) = 2.2622$, $\bar{x} = 2$, s = 2.4037

故所求置信区间为:

$$\left(2 - \frac{2.4037}{\sqrt{10}} \times 2.2622, 6 + \frac{2.4037}{\sqrt{10}} \times 2.2622\right) = (0.2805, 3.7195)$$

(2) 方差 σ^2 的置信水平为 $1-\alpha=0.95$ 的置信区间为:

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)}\right)$$

由本題中数据得: $\alpha = 0.05$, n = 10, $\chi^2_{0.025}(9) = 19.023$, $\chi^2_{0.975}(9) = 2.7$, $s^2 = 5.7778$ 故所求置信区间为:

$$\left(\frac{9\times5.7778}{19.023}, \frac{9\times5.7778}{2.7}\right) = \left(2.7335, 19.2593\right)$$

八、 $(12\
ho)$ 设某厂生产一种钢索,其断裂强度 $X(kg/cm^2)$ 服从下态分布 $N(\mu, 40)$ 。从中随机选取一个容量为 9 的样本,由观测值计算得平均值 $\bar{x}=780(kg/cm^2)$ 。 能 否 据 此 认 为 这 批 钢 索 的 平 均 断 裂 强 度 为 $800(kg/cm^2)$ ($\alpha=0.05$)? ($z_{0.05/2}=1.96$)

解: 这是正态总体 $N(\mu, \sigma^2)$ 方差 $\sigma^2 = 40^2$ 已知时,关于均值 μ 的双边检验问题。 检验过程如下:

- 1) 根据实际问题提出假设: $H_0: \mu = 800; H_1: \mu \neq 800$
- 2) 选定显著性水平 $\alpha = 0.05$, 确定样本容量n = 9;
- 3) 选择恰当的统计量: $U = \frac{\bar{X} \mu}{\sigma / \sqrt{n}}$, 在 H_0 为真时,检验统计量

$$U = \frac{\bar{X} - 800}{40/\sqrt{9}} \sim N(0,1)$$

4) 查标准正态分布表可得 $z_{0.05/2} = 1.96$ 的值,确定 H_0 的拒绝域为:

$$\left|u\right| = \left|\frac{\overline{x} - 800}{40 / \sqrt{9}}\right| \ge 1.96$$

5) 根据样本值计算 x = 780, 及检验统计量的观测值

$$|u| = \left| \frac{\overline{x} - 800}{40 / \sqrt{9}} \right| = \left| \frac{780 - 800}{40 / \sqrt{9}} \right| = 1.5 < 1.96$$

落在接受域内,所以应接受 H_0 ,即在显著性水平 $\alpha=0.05$ 下可以认为这批钢索的平均断裂强度为 $800(kg/cm^2)$ 。