Confidence Calibration and one of its applications

Sooyong Jang

STAT 991

Apr 19, 2022

Apr 21, 2022

ML and Confidence

2

Good and bad confidence

Prediction: Tabby (51.60 %)

True label: Egyptian Cat

Prediction: Wallaby (97.96 %)

True label: Egyptian Cat

Prediction: Lynx (96.15 %)

True label: Tiger Cat

Let's make confidence accurate!

ReCal: Recursive Lossy Label-Invariant Calibration

Sooyong Jang, Insup Lee, James Weimer

Improving Classifier Confidence using Lossy Label-Invariant Transformations AISTATS 2021

Key Idea

Lossy Label-Invariant Transformation

0.5x Zoom-out

Ground Truth: Pekinese

Prediction: Pekinese

Confidence: 99.10 %

Ground Truth: Pekinese
Prediction: Pekinese
Confidence: 97.99 %

Prediction **DOES NOT** change Confidence **DOES** decrease

Some transformations yield an expected trend in prediction AND confidence!!!

Grouping Examples by Confidence and Prediction

Given an image and its transform w/ corresponding predictions and confidence ...

... use real-world intuition to form groups

Group-wise Calibration

Temperature Scaling Find c^1

Confidence

Increases

 $\bar{p} \geq \hat{p}$

Confidence

Decreases

$$\bar{p}<\hat{p}$$

Predictions

different

$$\hat{y} \neq \bar{y}$$

inconsistent

needs **most** adjustment

mixed consistency

needs more adjustment

Predictions

same

$$\hat{y} = \bar{y}$$

mixed consistency

needs more adjustment

consistent

needs least adjustment Temperature Scaling Find c^2

Temperature Scaling Find c^3

Temperature Scaling Find c^4

ReCal using Lossy Label-Invariant Transformations

trained on validation data

(1 parameter: c)

- Predictions remain unchanged (i.e., accuracy preserved)
- 4*L parameters to learn (i.e., small confidence model size)

Which Lossy Label-Invariant Transformations?

1. Specify transformations pool

- Transformation Type
 - Zoom-out, Brightness, ...
- Parameter Range
 - (0.1, 0.9), (0.5, 0.9), ...
- Number of Transformation
 - 10, 20, ...

```
E.g., [ (Zoom-out, 0.36), (Zoom-out, 0.7), (Zoom-out, 0.85), (Zoom-out, 0.15)]
```

2. Randomly sample a transformation for each iterations

ReCal – Design Time

Benefits:

- Only need to perform each transformation once
- Only 4 parameters per loop

ReCal – Run Time

Benefits:

• Fast to compute – i.e., scales well

Results: Brier Score

Dataset	Model	Uncal.	TS	VS	MS-ODIR	Dir-ODIR	ReCal (z, .19, 20)	ReCal (z, .59, 10)	ReCal (b, .19, 20)
CIFAR10	DenseNet40	0.013585	0.012330	0.012300	0.012256	0.012296	0.012225	0.012231	0.012324
CIFAR10	LeNet5	0.037836	0.037792	0.037748	0.037745	0.037706	0.037395	0.037403	0.037784
CIFAR10	ResNet110	0.011537	0.010439	0.010378	0.010382	0.010350	0.010322	0.010317	0.010441
CIFAR10	ResNet110 SD	0.015472	0.014395	0.014325	0.014231	0.014302	0.014212	0.014140	0.014425
CIFAR10	WRN 28-10	0.006731	0.006357	0.006380	0.006342	0.006336	0.006300	0.006344	0.006363
CIFAR100	DenseNet40	0.004862	0.004329	0.004346	0.004333	0.004318	0.004304	0.004302	0.004332
CIFAR100	LeNet5	0.007581	0.007588	0.007587	0.007580	0.007567	0.007557	0.007543	0.007581
CIFAR100	ResNet110	0.004521	0.004144	0.004180	0.004178	0.004149	0.004130	0.004119	0.004149
CIFAR100	ResNet110 SD	0.004344	0.004064	0.004046	0.004045	0.004047	0.004035	0.004028	0.004067
CIFAR100	WRN 28-10	0.002929	0.002915	0.002948	0.002901	0.002898	0.002913	0.002913	0.002926
ImageNet	DenseNet161	0.000323	0.000319	0.000316	0.000313	0.000324	0.000318	0.000319	0.000319
ImageNet	ResNet152	0.000305	0.000302	0.000301	0.000299	0.000307	0.000302	0.000302	0.000302

Results: ECE

Dataset	Model	Uncal.	TS	VS	MS-ODIR	Dir-ODIR	ReCal (z, .19, 20)	ReCal (z, .59, 10)	ReCal (b, .19, 20)
CIFAR10	DenseNet40	0.052026	0.007037	0.004438	0.005161	0.003943	0.010143	0.008721	0.005892
CIFAR10	LeNet5	0.018170	0.011963	0.009174	0.014147	0.010525	0.011785	0.010507	0.010669
CIFAR10	ResNet110	0.045646	0.008770	0.009442	0.008829	0.008366	0.008986	0.008206	0.009177
CIFAR10	ResNet110 SD	0.053770	0.011407	0.008552	0.010187	0.009369	0.011973	0.012103	0.012845
CIFAR10	WRN 28-10	0.025076	0.009709	0.009564	0.009175	0.009429	0.009092	0.012459	0.010261
CIFAR100	DenseNet40	0.172838	0.015435	0.026634	0.029628	0.018949	0.015398	0.011713	0.018059
CIFAR100	LeNet5	0.009991	0.021064	0.015524	0.013149	0.014172	0.019196	0.018426	0.019367
CIFAR100	ResNet110	0.142223	0.009101	0.029982	0.034519	0.023109	0.012142	0.008487	0.010614
CIFAR100	ResNet110 SD	0.122932	0.009310	0.035832	0.035478	0.020747	0.009987	0.014375	0.007918
CIFAR100	WRN 28-10	0.053396	0.043703	0.045178	0.035509	0.034604	0.037270	0.035279	0.035435
ImageNet	DenseNet161	0.056384	0.019873	0.023286	0.036785	0.047707	0.013348	0.014474	0.016981
ImageNet	ResNet152	0.049142	0.020069	0.020672	0.034736	0.039748	0.013869	0.013491	0.017483
000000000000000000000000000000000000000		transcount 52	1000 S 1000 S	100-1 2000 3	a money tracely	Arras de Brandas			

ReCal performs very well – AND – Scales!!!

Results: Time for learning calibration function

(Unit: seconds)

					(0	Jilit. Secolius,
Dataset	Model	TS	VS	MS-ODIR	Dir-ODIR	ReCal (z, .19, 20)
CIFAR10	DenseNet40	2.94	31.10	77353.63	43001.99	84.04
CIFAR10	LeNet5	1.86	<u>12.06</u>	42830.58	37001.63	110.79
CIFAR10	ResNet110	2.21	<u>26.65</u>	70702.87	45836.87	38.85
CIFAR10	ResNet110 SD	4.35	26.52	85859.16	54783.42	58.74
CIFAR10	WRN 28-10	7.68	<u>28.22</u>	67955.20	36386.26	49.62
CIFAR100	DenseNet40	14.03	26.31	320284.77	134317.54	136.23
CIFAR100	LeNet5	9.63	<u>26.10</u>	109645.75	83324.48	97.77
CIFAR100	ResNet110	8.63	<u>26.61</u>	300360.19	134317.54	97.29
CIFAR100	ResNet110 SD	13.24	<u>26.73</u>	276767.31	126100.97	604.12
CIFAR100	WRN 28-10	14.23	<u>25.60</u>	161327.35	85532.50	125.84
ImageNet	DenseNet161	865.40	285.73	379487.45	276553.98	50730.17
ImageNet	ResNet152	<u>754.51</u>	342.50	215746.16	229493.41	71254.34

Transformation Selection

Data type decides transformation type.

Zoom-out, Brightness, Blur, Noises, ...

Random Data Drop Data size decides transformation parameter range.

More zoom-out E.g., 0.1-0.9

Less zoom-out E.g., 0.5-0.9

Summary

- ReCal uses Lossy Label-Invariant transformations to group inputs.
- ReCal improves the confidence calibration.

Why do we need calibrated confidence?

Apr 21, 2022

Calibration Low ECE ...

Confidence Calibrated Adversarial Training

David Stutz, Matthias Hein, Bernt Schiele

Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks

ICML 2020

Adversarial Examples

Adversarial Training (AT)

Find $x + \delta$ which maximize loss \mathcal{L} with respect to true label y

$$\min_{\substack{w \ ||\delta||_{\infty} \leq \epsilon}} \mathbb{E}\left[\max_{\substack{\|\delta\|_{\infty} \leq \epsilon}} \mathcal{L}(f(x+\delta;w),y)\right]$$

Find weights ω which minimize loss $\mathcal L$

Key Idea

Low Confidence on adv. examples

Uniform distribution: $\frac{1}{K}$

Target distribution for adv. examples

$$\tilde{y} = \lambda(\delta) \text{ one_hot}(y) + (1 - \lambda(\delta)) \frac{1}{K}$$

Convex combination of one-hot distribution and uniform

$$\lambda(\delta) := \left(1 - \min\left(1, \frac{\|\delta\|_{\infty}}{\epsilon}\right)\right)^{\rho}$$

Another difference - Attack

With respect to ANY OTHER LABEL

$$\max_{\|\delta\|_{\infty} \le \epsilon} \max_{k \ne y} f_k(x + \delta; w)$$

Attack for AT:
$$\max_{\|\delta\|_{\infty} \leq \epsilon} \mathcal{L}(f(x+\delta;w),y)$$

With respect to TRUE LABEL

Algorithm

```
1: while true do
          choose random batch (x_1, y_1), \ldots, (x_B, y_B).
          for b = 1, ..., B/2 do
 3:
              \delta_b := \operatorname{argmax} \max f_k(x_b + \delta) \text{ (Eq. (4))}
                          \|\delta\|_{\infty} < \epsilon \quad k \neq y_b
           \tilde{x}_h := x_h + \delta_h
 5:
                                                                                                             Adv. examples
 6: \lambda(\delta_b) := (1 - \min(1, \|\delta_b\|_{\infty}/\epsilon))^{\rho} (Eq. (6))
              \tilde{y_b} := \lambda(\delta_b) \text{ one\_hot}(y_b) + (1 - \lambda(\delta_b)) \frac{1}{\kappa} \text{ (Eq. (5))}
          end for
 8:
          update parameters using Eq. (3):
 9:
                                                                                                           Clean examples
                  \sum_{b=1}^{B/2} \mathcal{L}(f(\tilde{x}_b), \tilde{y}_b) + \sum_{b=B/2}^{B} \mathcal{L}(f(x_b), \tilde{y}_b)
10:
11: end while
```

How can we use calibrated confidence?

Low confidence on adv. examples

Let us reject low confidence examples

How low is enough? (0.5? 0.3?)

Find Threshold using hold-out set based on TPR

Results - MNIST

MNIST:	Err ↓ in %		confidence-thresholed RErr \downarrow for τ @99%TPR							
	(clean)	(clean)	L_{∞}	L_{∞}	L_2	L_1	L_0	adv.		
	au = 0	99%TPR	$\epsilon = 0.3$	$\epsilon=0.4$	$\epsilon = 3$	$\epsilon = 18$	$\epsilon = 15$	frames		
	(seen)	(seen)	seen	unseen	unseen	unseen	unseen	unseen		
Normal	0.4	0.1	100.0	100.0	100.0	100.0	92.3	87.7		
AT-50%	0.5	0.0	1.7	100.0	81.5	24.6	23.9	73.7		
AT-100%	0.5	0.0	1.7	100.0	84.8	21.3	13.9	62.3		
CCAT	0.3	0.1	7.4	11.9	0.3	1.8	14.8	0.2		
* MSD	1.8	0.9	34.3	98.9	59.2	55.9	66.4	8.8		
* TRADES	0.5	0.1	4.0	99.9	44.3	9.0	35.5	0.2		

Results - SVHN

SVHN:	Err ↓ in %		confidence-thresholed RErr \downarrow for τ @99%TPR							
	(clean)	(clean)	L_{∞}	L_{∞}	L_2	L_1	L_0	adv.		
	$\tau = 0$	99%TPR	$\epsilon = 0.03$	$\epsilon = 0.06$	$\epsilon = 2$	$\epsilon = 24$	$\epsilon = 10$	frames		
	(seen)	(seen)	seen	unseen	unseen	unseen	unseen	unseen		
Normal	3.6	2.6	99.9	100.0	100.0	100.0	83.7	78.7		
AT-50%	3.4	2.5	56.0	88.4	99.4	99.5	73.6	33.6		
AT-100%	5 9	46	48 3	87 1	99 5	99 8	89 4	26.0		
CCAT	2.9	2.1	39.1	53.1	29.0	31.7	3.5	3.7		
* LID	3.3	2.2	91.0	93.1	92.2	90.0	41.6	89.8		
* MAHA	3.3	2.2	73.0	79.5	78.1	67.5	41.5	9.9		

Results – CIFAR10

CIFAR10:	Err ↓ in %		confidence-thresholed RErr \downarrow for τ @99%TPR							
	(clean)	(clean)	L_{∞}	L_{∞}	L_2	L_1	L_0	adv.		
	au = 0	99%TPR	$\epsilon = 0.03$	$\epsilon = 0.06$	$\epsilon = 2$	$\epsilon = 24$	$\epsilon = 10$	frames		
	(seen)	(seen)	seen	unseen	unseen	unseen	unseen	unseen		
Normal	8.3	7.4	100.0	100.0	100.0	100.0	84.7	96.7		
AT-50%	16.6	15.5	62.7	93.7	98.4	98.4	74.4	78.7		
AT-100%	19.4	18.3	59.9	90.3	98.3	98.0	72.3	79.6		
CCAT	10.1	<u>6.7</u>	68.4	92.4	52.2	58.8	23.0	66.1		
* MSD	18.4	17.6	53.2	89.4	88.5	68.6	39.2	82.6		
* TRADES	15.2	13.2	43.5	81.0	70.9	96.9	36.9	72.1		
* AT-Madry	13.0	11.7	45.1	84.5	98.7	97.8	42.3	73.3		
* LID	6.4	4.9	99.0	99.2	70.6	89.4	47.0	66.1		
* MAHA	6.4	4.9	94.1	95.3	90.6	97.6	49.8	70.0		

Conclusions

- CCAT returns low confidence on adversarial examples.
- Using accurate confidence, adversarial examples can be rejected.

Thank you. Any Questions?