ПЛК 160 Контроллер программируемый логический

руководство по эксплуатации

Содержание

Указания по безопасному применению	3
1 Назначение	7
2 Технические характеристики и условия эксплуатации	9
2.1 Основные технические характеристики	9
2.2 Условия эксплуатации	21
2.3 Помехоустойчивость и помехоэмиссия	22
3 Устройство и особенности конструкции	23
3.1 Конструкция, встроенные интерфейсы	23
3.2 Цифровые входы	
3.3 Цифровые выходы	26
3.4 Аналоговые входы	26
3.5 Аналоговые выходы	26
3.6 Индикация и управление	26
3.7 Часы реального времени	28
3.8 Аккумулятор	28
4 Использование по назначению	30
5 Меры безопасности	35
6 Монтаж и подготовка к работе	36
6.1 Установка контроллера	36
6.2 Монтаж внешних связей	38
6.3 Подключение устройств к интерфейсам ПЛК160	42
6.4 Пробный пуск	48
6.5 Поиск и устранение неисправностей	49
7 Техническое обслуживание	
8 Маркировка	51
9 Транспортирование и хранение	52
10 Комплектность	

11 Гарантийные обязательства	. 53
Приложение А. Габаритные и установочные размеры	. 54
Приложение Б. Расположение контактов для подключения внешних цепей	
Приложение В. Подключение входных устройств и схемы выходных элементов контроллера	-58
Приложение Г. Схемы подключаемых кабелей	
Приложение Д. Отсоединение клеммных колодок	-

Указания по безопасному применению

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ используется для предупреждения о потенциальной/непосредственной угрозе здоровью. Возможные последствия могут включать в себя смерть, постоянную или длительную нетрудоспособность.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ используется, чтобы предупредить о потенциально опасной ситуации. Возможные последствия могут включать в себя незначительные травмы.

ПРЕДУПРЕЖДЕНИЕ | Ключевое слово ПРЕДУПРЕЖДЕНИЕ используется, чтобы предупредить о повреждении имущества и устройств. Возможные последствия могут включать в себя повреждения имущества, например, прибора или подключенных к нему **устройств.**

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ используется для дополнения, уточнения, толкования основного текста раздела/подраздела и/или пояснения специфических аспектов работы с прибором.

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, конструкцией, работой и техническим обслуживанием контроллера программируемого логического ОВЕН ПЛК160 (далее по тексту также именуемого контроллер).

Контроллер соответствует требованиям ТУ 4252-003-46526536-2008 и имеет декларацию соответствия ТР ТС.

Прибор имеет сертификат соответствия ГАЗПРОМСЕРТ.

Контроллер выпускается в различных исполнениях, отличающихся типом встроенных аналоговых выходных элементов, напряжением питания и различными лицензионными ограничениями на размер памяти области ввода-вывода программы контроллера.

Исполнениям контроллера соответствует следующее условное обозначение:

Напряжение питания:

220 - номинальное напряжение питания 120 В и 230 В переменного тока;

24 – номинальное напряжение питания 24 В постоянного тока.

Тип аналоговых выходных элементов:

И – ток от 4 до 20 мА;

У – напряжение от 0 до 10 В;

A – универсальные, ток от 4 до 20мА, напряжение от 0 до 10 В.

Размер лицензионного ограничения на размер памяти области ввода-вывода:

L – искусственное ограничение в 360 байт.

М – ограничение до 25 кбайт.

Примечание — Ограничение до 360 байт распространяется только на размер памяти области ввода-вывода, количество внутренних переменных программы контроллера ограничивается только количеством свободной оперативной памяти.

Габаритный чертеж корпуса контроллера приведен в Приложении А.

Используемые термины и сокращения

CoDeSys (Controllers Development System) – программное обеспечение, специализированная среда программирования логических контроллеров. Торговая марка компании 3S-Software.

DCON – открытый протокол обмена по сети RS-485, разработан компанией Advantech, применяется в модулях ввода/вывода Adam, модулях компании IPC DAS и др.

Modbus – открытый протокол обмена по сети RS-485, разработан компанией ModiCon, в настоящий момент поддерживается независимой организацией Modbus-IDA (www.modbus.org).

Modbus-TCP – версия протокола Modbus, адаптированная к работе в сети TCP/IP.

PLC-Configuration (конфигуратор ПЛК) – редактор CoDeSys, в котором определяется состав аппаратных средств, а так же производится настройка параметров ввода/вывода.

POU (Program Organization Unit) – программный компонент CoDeSys: **программа, функция или функциональный блок**.

Retain-переменные – переменные пользовательской программы, значение которых сохраняется при выключении питания контроллера.

Retain-память – энергонезависимая память для хранения значений Retain-переменных пользовательской программы.

Target-файл (целевой файл) – файл или набор файлов, поставляемых производителем, содержащий информацию о ресурсах контроллера, количестве входов и выходов, интерфейсах и т.д. Инсталлируются в систему CoDeSys для сообщения ей данной информации.

ОЗУ – оперативное запоминающее устройство, оперативная память.

ПЛК – программируемый логический контроллер.

Пользовательская программа – программа, созданная в среде CoDeSys пользователем контроллера (или лицом, производящим его начальное программирование).

ПО – программное обеспечение.

ПК – персональный компьютер.

РП – Руководство по программированию (см. файл «РП ПЛК110.160.pdf», на поставляемом с прибором компакт-диске).

ШИМ – широтно-импульсная модуляция.

Категория используемой нагрузки (по ГОСТ Р 50030.1–2000) для типичной области применения:

АС-15 – для переменного тока: управление электромагнитными нагрузками;

DC-13 – для постоянного тока: управление электромагнитами постоянного тока.

1 Назначение

Контроллер предназначен для:

- измерения аналоговых сигналов тока или напряжения и преобразования их к выбранной пользователем физической величине;
 - измерения дискретных входных сигналов;
 - управление дискретными (релейными) выходами;
 - управление аналоговыми выходами;
 - прием и передачу данных по интерфейсам RS-485, RS-232, Ethernet;
- выполнение пользовательской программы по анализу результатов измерения дискретных и аналоговых входов, управления дискретными входами и выходами, передачи и приему данных по интерфейсам RS-485, RS-232, Ethernet.

Контроллер может применяться для создания систем автоматизированного управления технологическим оборудованием в энергетике, на транспорте, в т.ч. железнодорожном, в различных областях промышленности, жилищно-коммунального и сельского хозяйства.

Контроллер может быть применен на промышленных объектах, подконтрольных ФСЭТАН.

Логика работы контроллера определяется потребителем в процессе программирования контроллера. Программирование осуществляется с помощью программного обеспечения CoDeSys 2.3. При этом поддерживаются все языки программирования, указанные в МЭК 61131-3.

Документация по программированию контроллера и работе с программным обеспечением CoDeSys приведена в руководстве пользователя (РП) на компакт-диске.

Для удобства пользователя на компакт-диске реализована система навигации по структуре пакета пользовательских документов и программных средств для контроллера, позволяющая вызывать и просматривать необходимые документы и устанавливать программное обеспечение, необходимое для функционирования контроллера.

Контроллер может быть использован как:

- специализированное устройство управления выделенным локализованным объектом;
- устройство мониторинга локализованного объекта в составе комплексной информационной сети;
- специализированное устройство управления и мониторинга группой локализованных объектов в составе комплексной информационной сети.

По эксплуатационной законченности относятся к изделиям второго и третьего порядка;

2 Технические характеристики и условия эксплуатации

2.1 Основные технические характеристики

Таблица 2.1 – Общие технические характеристики

Попомото	3	Вначение (свой	іства)
Параметр	ПЛК160-Х.А	ПЛК160-Х.У	ПЛК160-Х.И
Пита	ние		
Напряжение питания, В: ПЛК160-24.X-X ПЛК160-220.X-X	от 22 до 28 постоянного тока (номинальное 2 В). от 90 до 264 переменного тока (номинальное 120/230 В) частотой от 47 до 63 Гц (номинальное		ска (номинальное
	значение 50 Г	<u>-</u> ц)	
Потребляемая мощность, ВА, не более		40	
Пусковой ток, А, не более — при напряжении 90 В — при напряжении 230 В — при напряжении 264 В		8 33 50	
Длительность переходного процесса, мс, не более — при напряжении 90 В — при напряжении 230 В — при напряжении 264 В		3 2 2	
Параметры встроенного источника питания	Выходн	ное напряжение потреблени не более 400	1Я

Попомотп	3н	ачение (свойст	гва)
Параметр	ПЛК160-Х.А	ПЛК160-Х.У	ПЛК160-Х.И
Аккумулятор резервного питания	LIR2477 (срок с	лужбы зависит	от условий
	эксплуатации, но не более 5 лет)		
Цифровые (диск	ретные) входы		
Количество входов	16		
из них быстродействующих	4 (DI1-DI4)		
Тип входов	1и2		
по ГОСТ Р 52931-2008			
Напряжение питания дискретных входов, В		24 ± 3	
MOVEMANDEL III IĂ DVO ELIOĂ TOV EMOVENTUNEO DVO EN	не боле	е 7 мА при пита	нии 24 В,
Максимальный входной ток дискретного входа	не более	e 8,5 мА при пит	ании 27 В
Сигнал «логической единицы», соответствующий	ций		
состоянию «Включено», дискретных входов для	ля от 15 до 30 (ток от 3 до 15 мA)		
постоянного напряжения, В (ток в цепи) Сигнал «логического нуля», соответствующий			
состоянию «Выключено», дискретных входов для	от мин	ус 3 до 5 (ток до	15 MA)
постоянного напряжения, В (ток в цепи)	01 111111	у о до о (ток д	, 10 m, t)
Минимальная длительность импульса,			
воспринимаемого дискретным входом, мс			
– для обычных входов		1	
– для быстродействующих		0,02	

Папамотп	Значение (свойства)		
Параметр	ПЛК160-Х.А	ПЛК160-Х.У	ПЛК160-Х.И
Подключаемые входные устройства	 коммутационные устройства (контакты кнопок, выключателей, герконов, реле и т.п.) 		
	– датчики, имеющие на выходе транзистор r n или		
	p-n-р–типа с открытым коллектором;		соллектором;
	– дискретные сигналы 24±3 В		
Гальваническая развязка	Групповая		
Электрическая прочность изоляции между группой дискретных входов и:			
– цепями питания, В	1780		
– группами цепей дискретных выходов, В	1780		
– группами остальных цепей, В		560	

Попомото	Значение (свойства)		
Параметр	ПЛК160-Х.А	ПЛК160-Х.У	ПЛК160-Х.И
Дискретные выходы (контак	ты электромаг	нитных реле)	
Количество релейных выходных каналов		12	
Гальваническая развязка	Индивидуальная (для DO1-DO8), групповая (DO9-DO10) и групповая (DO11- DO12)		
Электрическая прочность изоляции между группами дискретных выходов и группами остальных цепей, В	1780		
Максимальный ток, коммутируемый контактами реле, A, не более	3 (для переменного напряжения не более 250 частотой 50 Гц и соs φ > 0,4 — нагрузка для категории использования АС-15 по ГОСТ Р 50030.1-2000) 3 (для постоянного напряжения не более 30 нагрузка для категории использования DC-13 ГОСТ Р 50030.1-2000)		
Время переключения контактов реле из состояния «лог. 0» в «лог. 1» и обратно, мс, не более	50) (выходы DO1-D	O12)

Параметр	Значение (свойства) ПЛК160-Х.А ПЛК160-Х.У ПЛК160-Х.		
Параметр	ПЛК160-Х.А	ПЛК160-Х.И	
Механический ресурс реле	– не менее 300 000 циклов переключений при		
	максима	льной коммутиру	емой нагрузке;
	– не менее	500 000 циклов пе	реключений при
		коммутации	
	нагрузки м	иенее половины о	т максимальной
Аналого	вые входы		
Количество аналоговых входов		8	
Тип поддерживаемых унифицированных		Ток от 0 (4) до 20	мА
сигналов		Ток от 0 до 5 м	A
	Н	апряжение от 0 до	o 10 B
Разрядность АЦП, бит		14	
Входное сопротивление:			
В режиме измерения тока		Не более 170 С	М
В режиме измерения напряжения		Не менее 200 кО	Ом
Период опроса аналоговых входов, мс	10		
Предел основной приведенной погрешности преобразования	±0,25 %		

Попомоти	Значение (свойства)		
Параметр	ПЛК160-Х.А ПЛК160-Х.У		ПЛК160-Х.И
Предел дополнительной приведенной		±0,05 %	
погрешности преобразования на каждые 10			
градусов изменения температуры			
Гальваническая изоляция аналоговых входов	Гру	упповая (8 входов)	
Электрическая прочность изоляции между			
группой аналоговых входов и:			
– цепями питания, В		1780	
– группами цепей дискретных выходов, B		1780	
– группами остальных цепей, В		560	
Аналого	вые выходы		
Количество аналоговых выходов		4	
Тип выходного сигнала	Универсальный,	Напряжение	Ток от 4 до
	ток от 4 до 20	от 0 до 10 В	20 мА
	мА, напряжение	ого до то в	
	от 0 до 10 В		
Предел основной приведенной погрешности ЦАП		±0,5 %	
Разрядность ЦАП (бит)	12	10	10
Минимальный период обновления выходов	100 мс		

Параметр	Значение (свойства)			Значение (свойства)		a)
	ПЛК160-Х.А	ПЛК160-Х.У	ПЛК160-Х.И			
Питание аналоговых выходов		Внешнее (24±3 В)				
Гальваническая изоляция аналоговых выходов		Индивидуальная				
Электрическая прочность изоляции между группами аналоговых выходов и группами остальных цепей, В	1780					
Предел допускаемой дополнительной приведенной погрешности аналоговых выходов, вызванной изменением температуры окружающего воздуха от нормальной на каждые 10 °С изменения температуры	не более 0,5 предела допускаемой основной приведенной погрешности аналоговых выходог					
Интерфейсы связи (дополни	тельные парамет	ры см. таблицу 2.	.2)			
RS-485 Количество Гальваническая развязка Электрическая прочность изоляции, В	1 Индивидуальная 1780 (между интерфейсом RS-485 и остальными группами цепей)		остальными			

Попомоти	3	Значение (свойства)		
Параметр	ПЛК160-Х.А	ПЛК160-Х.У	ПЛК160-Х.И	
Ethernet 100 Base-T Количество		1		
Гальваническая развязка		Индивидуальная 1780		
Электрическая прочность изоляции, В	(между инте	1780 (между интерфейсом RS-485 и остальными группами цепей)		
RS-232 **				
Количество		1		
Гальваническая развязка		Отсутствует		
RS-232-Debug **				
Количество		1		
Гальваническая развязка		Отсутствует		
USB-Device **				
Количество		1		
Гальваническая развязка		Отсутствует		

Попомото	Значение (свойства)			
Параметр	ПЛК160-Х.А	ПЛК160-Х.У	ПЛК160-Х.И	
Ресурсы и допо	Ресурсы и дополнительное оборудование			
Центральный процессор	RISC-процессор на базе ядра ARM-9, 32 разряда, 180 МГц			
Объем оперативной памяти (тип памяти)	пользователь	I), из них 1 Мб для ской программы, 1 пользовательской г	28 кб для	
Объем энергонезависимой памяти (тип памяти)	4 Мб (DataFla файлов и арх	,.	ступно для хранения	
Размер Retain-памяти	не более 16 кб (по умолчанию задано значение 4 кб). Подробнее см. в РП			
Время выполнения одного цикла программы	 - Минимальное (нестабилизируемое) – 250 мкс; - Установленное по умолчанию (стабилизированное) – 1 мс (настраивается в окне «Конфигурация ПЛК (PLC Configuration) ПО CoDeSys. Подробнее см. в РП 			
Дополнительное оборудование	аккумуляторн 3 мин в сутки – Встроенны	*);	ность хода – не более звукового сигнала;	

Окончание таблицы 2.1

Парамотр	Значение (свойства)			
Параметр	ПЛК160-Х.А	ПЛК160-Х.У	ПЛК160-Х.И	
Общие сведения				
Габаритные размеры, мм,	$(208 \times 110 \times 73) \pm 1$			
не более				
Масса, кг, не более		0,75		
Степень защиты корпуса по ГОСТ 14254-	ІР20 со сторон передней панели, ІР00 со стороны			
96	клемм			
Индикация на передней панели	Светодиодная			
Средняя наработка на отказ, ч	100 000			
Средний срок службы, лет	10			
±				

^{* –} точность указана без применения программной коррекции.

^{** —} цепи указанных интерфейсов не имеют между собой гальванической изоляции. Электрическая прочность изоляции между группой указанных цепей и:

цепями питания – 1780 В;

⁻ группами цепей дискретных выходов - 1780 B;

⁻ группами остальных цепей - 560 В.

Таблица 2.2 – Интерфейсы связи и программирования

Интерфейсы связи	Протоколы (тип связи и особенности работы)	Формат передачи данных	Скорости передачи	Длина кабеля, м, не более	Тип рекомендуемого кабеля
RS-485	ModBus-RTU, ModBus-ASCII, DCON, OBEH	7 или 8 бит, четность есть \нет\не используется, 1 или 2 стоп бита	2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 бит/с	1000*	КИПЭВ 1×2×0,6 ТУ 16.К99-008- 2001 или аналогичный
RS-232	ModBus-RTU, ModBus-ASCII, DCON, OBEH	7 или 8 бит, четность есть \нет\не используется, 1 или 2 стоп бита	1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 бит/с	3	Кабели, выполненные в соответствии с рекомендациями Приложения Г
RS-232-Debug	ModBus-RTU (только slave), ModBus-ASCII, DCON, GateWay (только для Debug RS-232), OBEH	только 8 нет 1	1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 бит/с	1,8	Кабели, выполненные в соответствии с рекомендациями Приложения Г

Окончание таблицы 2.2

Интерфейсы связи	Протоколы (тип связи и особенности работы)	Формат передачи данных	Скорости передачи	Длина кабеля, м, не более	Тип рекомендуемого кабеля
Ethernet 100 Base-T	ModBus-TCP Gateway TCP-IP, UDP-IP, Codesys Network Variables (over UDP)	-	10, 100 Мбит/с	100	Категория 5 тип UTP (витые пары без экрана), STP или FTP (витые пары в экране)
USB-Device	CDC	ı	115200 бит/с	1,8	Стандартный с разъемами типа А и В
* – Максимальная скорость обмена зависит от длины линии.					

ПРИМЕЧАНИЕ

Суммарное количество ошибок при приеме и передаче не должно превышать 1 %.

2.2 Условия эксплуатации

- 2.2.1 В части требований условий эксплуатации контроллер соответствует ГОСТ Р 51841-2001, раздел 4.
- 2.2.3 **Рабочие условия эксплуатации:** закрытые взрывобезопасные помещения без агрессивных паров и газов, при атмосферном давлении от 84 до 106,7 кПа, с температурой в диапазоне не менее от минус 10 до +55 °C и относительной влажностью не более 95 % при +35 °C и более низких температурах без конденсации влаги.
- 2.2.3 Нормальные условия эксплуатации: закрытые взрывобезопасные помещения без агрессивных паров и газов, при атмосферном давлении от 84 до 106,7 кПа, с температурой воздуха (20 ± 5) °C и относительной влажностью воздуха не более 80 % при +35 °C и более низких температурах без конденсации влаги.
- 2.2.4 По устойчивости к климатическим воздействиям при эксплуатации контроллер соответствует группе исполнения В4 в соответствии с ГОСТ Р 52931-2008.
- 2.2.5 По устойчивости к механическим воздействиям при эксплуатации контроллер соответствует группе исполнения N2 в соответствии с ГОСТ Р 52931-2008 (частота вибрации от 10 до 55 Гц).
- 2.2.6 По устойчивости к воспламенению и распространению пламени FV1 корпус контроллера соответствует ГОСТ Р 51841, разделу 6.
- 2.2.7 Время установления рабочего режима контроллера с аналоговыми входами после включения напряжения питания не более 20 мин при работе с термоэлектрическими преобразователями и не более 5 мин при работе с остальными типами первичных преобразователей.

2.3 Помехоустойчивость и помехоэмиссия

- 2.3.1 Контроллер отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ Р 51841 и ГОСТ Р 51522 для оборудования класса А.
- 2.3.2 По уровню излучения радиопомех (помехоэмиссии) контроллер соответствует нормам, установленным для оборудования класса Б по ГОСТ Р 51318.22 (СИСПР 22–97).
 - 2.3.3 Контроллер устойчив к колебаниям и провалам напряжения питания:
 - для переменного тока в соответствии с требованиями ГОСТ Р 51317.4.11;
- для постоянного тока в соответствии с ГОСТ Р 51841 длительность прерывания до 10 мс включительно, длительность интервала от 1 с и более.
 - 2.3.4 Контроллер устойчив к воздушному электростатическому разряду ± 8 кВ.
- 2.3.5 Контроллер устойчив к радиочастотному электромагнитному полю напряженностью до 10 В/м в полосе частот от 80 до 1000 МГц.
- 2.3.6 Порты питания контроллера устойчивы к наносекундным импульсным помехам напряжением до 2 кВ.
- 2.3.7 Порты ввода-вывода контроллера устойчивы к наносекундным импульсным помехам напряжением до 1 кВ.
- 2.3.8 Порты питания контроллера устойчивы к микросекундным импульсным помехам большой мощности напряжением до 2 кВ.
- 2.3.9 Порты ввода-вывода контроллера устойчивы к микросекундным импульсным помехам большой мощности напряжением до 1 кВ.
- 2.3.10 Порты питания и ввода-вывода контроллера устойчивы к кондуктивным помехам с уровнем 10 В в полосе частот от 150 кГц до 80 МГц.

3 Устройство и особенности конструкции

3.1 Конструкция, встроенные интерфейсы

- 3.1.1 Контроллеры выпускаются в конструктивном исполнении для крепления на DIN-рейке 35 мм или на щите. Габаритный чертеж приведен в Приложении А.
- 3.1.2 На передней панели контроллера под прозрачными откидными крышками расположены съемные клеммные колодки, служащие для подключения дискретных датчиков, исполнительных механизмов, интерфейсов RS-485 и клеммы встроенного источника постоянного напряжения 24 В. Шаг клемм 7.6 мм. Порядок разъединения-соединения клеммной колодки, подключения дискретных датчиков и исполнительных механизмов описан в разделе 6 и в приложениях В и Д.
- 3.1.3 На верхней боковой стороне относительно лицевой панели контроллера расположен соединитель интерфейса Ethernet типа RJ45. Светодиодный индикатор красного (или оранжевого) цвета в соединителе интерфейса Ethernet свидетельствует об установлении связи, работа зеленого светодиода свидетельствует о приеме либо передаче данных.
- 3.1.4 На лицевой панели контроллера расположены соединители интерфейсов RS-232, Debug RS-232.

Порт Debug RS-232 предназначен для программирования контроллера, но также может быть использован для подключения Hayes-совместимых модемов (в том числе GSM), а также устройств, работающих по протоколам Modbus, OBEH или DCON (режимы работы порта указаны в таблице 2.2). Более подробно о подключении таких устройств см. раздел 6 и РП.

3.1.5 На лицевой панели контроллера расположен соединитель интерфейса USB Device.

Рисунок 3.1 - Внешний вид контроллера

3.2 Цифровые входы

- 3.2.1 Контроллер содержит цифровые (дискретные) входы, количество которых равно 16. Обработка значений с входов осуществляется пользовательской программой ПЛК.
- 3.2.2 Входы DI1–DI4 могут быть запрограммированы на работу в качестве счетчиков импульсов, на работу с энкодерами, или переведены в режим обработки по прерыванию высокочастотного таймера (подробнее об этом режиме работы см. в РП). Максимальные частоты входных сигналов, которые могут воспринимать эти входы, приведены в таблице 3.1.

Таблица 3.1

Режим работы дискретного входа	Максимальная частота входного сигнала, кГц	Комментарий	
Простой дискретный вход	до 1,5	Определяется длительностью цикла ПЛК	
Счетчик импульсов	до 10	При коэффициенте заполнения 0,5 (50 %)	
Энкодер	до 3	При отключении фильтрации дребезга контактов	
Обработка по прерыванию высокочастотного таймера	до 25	При коэффициенте заполнения 0,5 (50 %)	

- 3.2.3 Все «быстродействующие» входы объединяются в общую группу (электрические параметры см. в таблице 2.1) и одновременно работают в одном из перечисленных режимов.
- К контроллеру возможно подключить два энкодера, при этом первый энкодер подключаются к входам DI1-DI2, а второй энкодер к входам DI3-DI4, соответственно. Либо есть возможность подключить один энкодер с указателем нулевой метки (ABZ энкодер), при этом энкодер подключается к входам DI1-DI2, а указатель нулевой метки подключается к входу DI3.

3.3 Цифровые выходы

Контроллер содержит цифровые (дискретные) выходы, количество которых равно 12. Управление выходами осуществляется пользовательской программой ПЛК.

3.4 Аналоговые входы

Контроллер содержит аналоговые входы, количество которых равно 8. Обработка значений с входов осуществляется пользовательской программой. Каждый из входов может быть настроен независимо от других входов на работу в одном из следующих режимов:

- измерение тока от 4 до 20 мА;
- измерение тока от 0 до 20 мА;
- измерение тока от 0 до 5 мА;
- измерение напряжения от 0 до 10 В.

Период обновления результатов измерения по каждому входу равен 10 мс.

Результаты измерения каждого канала могут быть независимо отфильтрованы с помощью цифровых фильтров. Более подробные сведения о настройке аналоговых входов изложены в РП.

3.5 Аналоговые выходы

Контроллер содержит аналоговые выходы, количество которых равно 4. Тип аналоговых выходов зависит от исполнения прибора.

3.6 Индикация и управление

- 3.6.1 На переднюю панель контроллера выведена светодиодная индикация о состоянии дискретных входов и выходов, наличии питания, наличии связи со средой программирования CoDeSys и о работе контроллера.
 - 3.6.2 Свечение индикатора «ПИТАНИЕ» отображает наличие питания контроллера.
- 3.6.3 Индикатор «СВЯЗЬ» отображает состояние подключения контроллера к среде программирования CoDeSys. При наличии связи со средой CoDeSys, индикатор светится. Для связи контроллера со средой CoDeSys может использоваться один из каналов RS232

(Debug), Ethernet или USB Device.

- 3.6.4 Индикатор «РАБОТА» отображает состояние пользовательской программы. Индикатор светится, если пользовательская программа выполняется.
- 3.5.5 Индикаторы входов и выходов отображают состояние соответствующих дискретных входов и выходов контроллера. Индикаторы состояния входов светятся, если соответствующий вход замкнут.
 - 3.6.6 На передней панели имеются три кнопки:
- кнопка «F1» может применяться как дополнительный дискретный сигнал контроллера, исполняющий функцию, заданную пользовательской программой. Об использовании кнопки – см. раздел «Special input (Специальный дискретный вход)» в РП;
- кнопка «Старт/Стоп» предназначена для запуска и остановки пользовательской программы контроллера, она также может быть настроена для использования в качестве дополнительного дискретного сигнала контроллера см. раздел «Button (Кнопка)» в РП;
- скрытая кнопка «Сброс» предназначена для перезагрузки контроллера, нажать ее возможно только тонким предметом диаметром не более 3 мм и длиной не менее 10 мм.

примечание

После записи в контроллер пользовательской программы при любом его включении программа начинает выполняться автоматически (нажимать на кнопку «Старт/Стоп» не требуется).

3.6.7 В корпусе контроллера расположен маломощный звуковой излучатель, управляемый пользовательской программой как специальный дискретный выход – см. раздел «Special output (Специальный дискретный выход)» в РП. Излучатель может быть использован, например, для аварийной сигнализации или при отладке программы. Частота и громкость звукового сигнала фиксированы и не подлежат изменению.

3.7 Часы реального времени

Контроллер оснащен встроенными часами реального времени, питание которых осуществляется от автономного источника питания — аккумулятора. Энергии полностью заряженного аккумулятора хватает на непрерывную работу часов реального времени в течение 6 месяцев. В случае износа, неполной зарядке, а также эксплуатации контроллера при температуре на границах рабочего диапазона время работы часов сокращается. Работа с часами реального времени (задание или получение времени из аппаратных часов) — см. раздел «Настройка дополнительных устройств» в РП.

3.8 Аккумулятор

3.8.1 Аккумулятор, используемый для питания часов реального времени, дополнительно является источником аварийного питания микропроцессора контроллера.

При отключении питания контроллер переходит на аварийное питание и сохраняет промежуточные результаты вычислений и работоспособность портов Ethernet и RS-232 на время от 2 до 30 сек, заданное в параметре «Backup working time» в окне Конфигурация ПЛК (PLC Configuration) (см. РП).

При этом питание на входные и выходные элементы контроллера не поступает, и они переводятся в выключенное состояние.

- 3.8.2 Функционирование контроллера на аварийном питании сопровождается миганием светодиода «РАБОТА». При включении питания контроллера, работающего от источника аварийного питания, он сразу приступает к выполнению пользовательской программы, не тратя времени на загрузку ядра CoDeSys, при этом сохраняются все промежуточные результаты вычислений.
- 3.8.3 По истечении времени работы от аварийного источника питания и при отсутствии основного питания, контроллер автоматически записывает Retain-переменные в энергонезависимую память и отключается (правила объявления Retain-переменных см. в РП по CoDeSys), при этом часы реального времени остаются в рабочем состоянии.

ПРЕДУПРЕЖДЕНИЕ При полном разряде аккумулятора возможность записывать retain-переменные и значение текущего времени теряются.

- 3.8.4 Время работы на аварийном питании зависит от окружающей температуры, степени зарядки и износа аккумулятора и может быть автоматически скорректировано контроллером в сторону уменьшения.
- 3.8.5 При включении контроллера после длительного пропадания питания его выходы переводятся в заранее заданное «безопасное состояние», в которых находятся до запуска пользовательской программы.

ПРИМЕЧАНИЕ

«Безопасное состояние» – это состояние выходов контроллера. при котором подключенные к ним исполнительные механизмы находятся в состоянии, наиболее безопасном для объекта управления, приводящим его поломке. «безопасного состояния» выходов задается при конфигурировании области ввода-вывода в окне Конфигурация ПЛК (PLC Configuration).

4 Использование по назначению

Перед использованием контроллер необходимо запрограммировать, т.е. создать пользовательскую программу. После создания пользовательская программа может быть сохранена в энергонезависимой Flash-памяти контроллера и запускаться на выполнение после включения питания или перезагрузки - см. раздел «Сохранение программы в памяти контроллера» в РП.

Программирование осуществляется с помощью ПО CoDeSys 2.3. Для связи со средой программирования CoDeSys может использоваться один из интерфейсов контроллера: RS-232-Debug, USB-Device или Ethernet – см. раздел «Проект. Установка связи с ПЛК» в РП.

На рисунке 4.1 приведен пример подключения контроллера к ПК для программирования через интерфейс RS-232-Debug. При этом используется кабель программирования КС1, входящий в комплект поставки. Кабель включается в гнездо (Debug RS-232), расположенное на лицевой панели контроллера. Ответная часть кабеля подключается к СОМ-порту ПК.

ПРЕДУПРЕЖДЕНИЕ Подключение кабеля программирования КС1 осуществляется при отключенном питании контроллера и ПК (или хотя бы одного из этих устройств). Если отключение питания контроллера и ПК невозможно, то в первую очередь кабель подключается к ПЛК160. затем к СОМ-порту ПК, предварительно следует коснуться металлической частью соединителя кабеля металлического корпуса СОМ-порта ПК для выравнивания электрических потенциалов контроллера и ПК. Невыполнение этих требований может привести к повреждению СОМ-порта ПК.

Подключение контроллера к ПК через порт USB-Device осуществляется стандартным кабелем типа А-В, не входящим в комплект поставки. Длина кабеля не должна превышать 1,8 м. Подключение осуществляется после подачи на контроллер напряжения питания и спустя 3 -5 секунд, необходимых для загрузки контроллера.

П ПРЕДУПРЕЖДЕНИЕ

После программирования контроллера кабель интерфейса USB-Device необходимо отключить, не допускается эксплуатация контроллера с подключенным кабелем. При необходимости осуществления связи используется Ethernet.

Рисунок 4.1 – Подключение контроллера к ПК для программирования

Более подробно программирование контроллера описано в РП.

Время реакции дискретных входов/выходов

Время реакции зависит от типов применяемых входов/выходов. Аналитическое выражение для определения времени полного отклика контроллера (Тоткл) имеет вид

Тоткл = Твх + 2-Тцикла + Твых,

где **Твх** – время реакции входа на изменение физического сигнала (включая фильтрацию). По умолчанию значения для обычных входов – 1,0 мс, для быстродействующих входов – 0,02 мс (в таблице 2.1 данный параметр называется «Минимальная длительность импульса, воспринимаемого дискретным входом»);

Тцикла — время цикла ПЛК. Установленное значение по умолчанию — 1 мс (стабилизированное). Настраивается в окне «Конфигурация ПЛК (PLC Configuration)» ПО CoDeSys. Длительность цикла можно узнать, подключив модуль статистики, — он подробно описан в РП;

Твых – задержка на срабатывание выхода. Значения для релейных выходов — 50 мс; Примеры расчета времени полного отклика контроллера для разных вариантов использования входов и выходов приведены ниже.

Пример 1 – При установке минимального цикла ПЛК и использовании быстрых входов,задержка отклика ПЛК получается равной:

Тоткл = Твх +
$$2$$
-Тцикла + Твых = $0.02 + 2 \cdot 0.25 + 50 = 50.52$ мс.

Пример 2 – При установке фиксированной длительности цикла ПЛК равной 1 мс и использовании обычных входов задержка отклика ПЛК получается равной:

Тоткл =
$$T$$
вх + $2 \cdot T$ цикла + T вых = $1 + 2 \cdot 1 + 50 = 53$ мс.

Время реакции аналоговых входов/выходов

Время задержки аналогового ввода включает в себя следующие составляющие:

- время задержки входного цифрового фильтра, Твх.ф.;
- время задержки выходного фильтра, Твых.ф.;
- период опроса аналоговых входов, 10 мс;
- время передачи результатов измерения в основной контроллер, 2 мс;
- время обработки принятых результатов измерения, 5 мс;
- время цикла ПЛК, **Тц.**

spoint dinoid inti, 12

Время задержки входного фильтра (Твх.ф.) в зависимости от типа фильтра:

- фильтр отключен 0 мс;
- 50 Гц первого порядка 20 мс;
- 50 Гц второго порядка 40 мс;
- 50 Гц четвертого порядка 80 мс;
- 200 Гц первого порядка 20 мс.

Время задержки выходного фильтра (Твых.ф.) в зависимости от типа фильтра:

- скользящего среднего: N⋅5 мс, где N длина фильтра (от 0 до 16);
- экспоненциальный: T⋅7 мс, где T постоянная времени (от 10 до 10000 мс).

Пример 3 – При установке фиксированной длительности цикла ПЛК равной 1 мс, Входного фильтра 50Гц 1 порядка, выходного фильтра скользящего среднего длиной 4, задержка аналогового ввода получается равной:

$$Tin = 20 + 20 + 17 + 1 = 58 \text{ Mc.}$$

Время задержки аналогового вывода состоит из следующих составляющих:

- время цикла ПЛК, **Тц**;
- время передачи значения аналогового выхода из основного контроллера в вспомогательный контроллер, 60 мс;
 - время передачи значения аналогового выхода из вспомогательного контроллера в ЦАП:
 - 20 мс для исполнений «И» и «У»;
 - 2,5 мс для исполнения «А».

Пример 4 – Для контроллера исполнения «А», при установке фиксированной длительности цикла ПЛК равной 1 мс, задержка аналогового вывода получается равной:

Tin =
$$1 + 60 + 2.5 = 63.5$$
 Mc.

5 Меры безопасности

- 5.1 По способу защиты от поражения электрическим током контроллер соответствует классу II по ГОСТ 12.2.007.0-75.
- 5.2 При эксплуатации и техническом обслуживании необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».
- 5.3 Открытые контакты клемм контроллера при эксплуатации находятся под напряжением величиной до 250 В. Любые подключения к контроллеру и работы по его техническому обслуживанию производятся только при отключенном питании контроллера и подключенных исполнительных механизмов.
- 5.4 Не допускается попадание влаги на контакты выходных соединителей и внутренние элементы контроллера. Запрещается использование контроллера при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.
- 5.5 Подключение, регулировка и техническое обслуживание контроллера должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.
- 5.6 При применении контроллеров на объектах, подконтрольных Федеральной службе по экологическому, технологическому и атомному надзору (ФСЭТАН), объектах органов безопасности и охраны правопорядка или иных объектах, потенциально представляющих опасность для жизни и здоровья окружающих, требуется обязательная защита паролем ПЛК.

Требования к паролю:

- длина пароля должна составлять не менее 8 символов и не более 32 символов;
- пароль должен содержать буквы латинского алфавита и цифры.

Рекомендуется периодическая смена пароля (не реже 1 раза в 3 месяца). Не допускается подключать контроллер к локальной сети Ethernet, имеющей выход в сеть Internet, без обеспечения надежных средств межсетевого экранирования. Физический доступ к контроллеру должен быть разрешен только квалифицированному обслуживающему персоналу.

6 Монтаж и подготовка к работе

6.1 Установка контроллера

- 6.1.1 При монтаже контроллеров необходимо учитывать меры безопасности, представленные в разделе 5.
- 6.1.2 При монтаже для контроллера предварительно подготавливается место в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту контроллера от попадания в него влаги, грязи и посторонних предметов.
- 6.1.3 Контроллер закрепляется на DIN-рейку или внутреннюю стену шкафа защелками вниз.

Установка контроллеров на DIN-рейке осуществляется в следующей последовательности:

- производится подготовка на DIN-рейке места для установки контроллера в соответствии с размерами, приведенными в Приложении А;
- контроллер устанавливается на DIN-рейку в соответствии с рисунком 6.1, а) по стрелке 1;
- контроллер с усилием прижимается к DIN-рейке в направлении, показанном стрелкой 2, до фиксации защелки;
- для съема контроллера с DIN-рейки в проушины защелок вставляются острия отверток (см. рисунок 6.1, б), и защелки одновременно отжимаются по стрелке 1, после чего контроллер отводится от DIN-рейки по стрелке 2.

Рисунок 6.1 – Монтаж контроллера с креплением на DIN-рейку

Установка контроллеров на щите управления осуществляется в следующей последовательности:

- производится подготовка на щите управления места для установки контроллера в соответствии с размерами, приведенными в Приложении А;
- контроллер устанавливается на щите управления и закрепляется 2-мя винтами М3, не входящими в комплект поставки. Для крепления используются проушины корпуса контроллера.
- 6.1.4 При монтаже следует оставить зазоры между стенками и корпусом контроллера не менее показанных на рисунке А.4 (Приложение А).

6.2 Монтаж внешних связей

6.2.1 Общие требования к монтажным проводам

Для обеспечения надежности электрических соединений рекомендуется использовать только медные провода. Провод перед соединением необходимо зачистить на длину 5 мм, с таким расчетом, чтобы срез изоляции плотно прилегал к клеммной колодке, т. е. чтобы оголенные участки провода не выступали за ее пределы. Для гибкого (многожильного) провода следует использоваться обжимные вилочные наконечники (например, типа НВИ1,5-3, рисунок 6.2).

Рисунок 6.2 - Подготовка многожильного провода для монтажа с наконечником

Входные цепи управления

Максимальное сечение проводов, подключаемых к клеммам при монтаже жестким или гибким проводом -1 мм^2 (соответствует 18 AWG).

Минимальное сечение проводов, подключаемых к клеммам управления 0,25 мм².

Цепи питания и выходные

Максимальное сечение проводов, подключаемых к клеммам при монтаже жестким проводом -1,5 мм 2 (или $2\times0,75$ мм 2) (соответствует 16 AWG).

Максимальное сечение проводов, подключаемых к клеммам при монтаже гибким проводом -1 мм^2 (соответствует 18 AWG).

Минимальное сечение проводов, подключаемых к клеммам 0,25 мм².

Клеммы контроллера следует затягивать с усилием 1,95 кг/см.

Для удобства подключений клеммные колодки контроллера являются съемными (см. приложение Д). Для отсоединения клеммных колодок необходимо снять крышку контроллера, выкрутить винты и снять колодки в направлении, указанном на рисунке Д.1 стрелками.

ПРЕДУПРЕЖДЕНИЕ Не следует укладывать сигнальные провода в один жгут или короб с силовыми проводами. Для защиты цепей от влияния внешних наводимых помех рекомендуется применять экранированные кабели.

6.2.2 Подключение питания

Питание контроллера ПЛК160-220.Х-Х следует осуществлять от распределенной питающей сети, не связанной непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение контроллера от сети. Не следует осуществлять питание каких-либо устройств от сетевых контактов контроллера.

Питание контроллера ПЛК160-24.Х-Х рекомендуется осуществлять от локального источника подходящей мощности, установленного совместно с контроллером в шкафу электрооборудования. При питании от распределенной сети требуется устанавливать перед контроллером сетевой фильтр, подавляющий микросекундные импульсные помехи.

ПРЕДУПРЕЖДЕНИЕ Контроллеры моделей ПЛК160-24.Х-Х не имеют защиты от переполюсовки питания.

Схемы подключения питания представлены в Приложении Б.

6.2.3 Подключение входов и выходов

- 6.2.3.1 Подключение источников сигналов к дискретным входам, а также подключение исполнительных механизмов к дискретным выходам осуществляются в соответствии со схемами, приведенными в Приложении В.
- 6.2.3.2 Релейные и транзисторные выходы не имеют внутренней защиты от перегрузки. По этой причине следует использовать элементы защиты, показанные на рисунках В.б...В7 (Приложение В).
- 6.2.3.3 Для индуктивных нагрузок, например, при использовании контакторов или магнитных клапанов, управляемых постоянным напряжением, необходимо всегда использовать безнерционные диоды. Эти диоды часто устанавливаются в управляемые устройства заранее. Если же они не установлены, то необходимо обеспечить их монтаж.
- 6.2.3.4 Если индуктивные нагрузки включаются релейными выходами с переменным напряжением, следует предусмотреть RC-цепочку, снижающую пиковое напряжение при включении нагрузки и, благодаря этому, защищающую контакты реле от повреждений при искровом разряде.

6.2.4 Подключение интерфейса RS-485

Подключение выполняется по двухпроводной схеме витой парой проводов с соблюдением полярности. Монтаж следует производить при отключенном напряжении питания всех устройств сети RS-485. Длина линии связи должна быть не более 1200 метров. Провод А подключается к выводу А контроллера, провод В подключается к выводу В контроллера, соответственно

ПРИМЕЧАНИЕ

Обозначение контактов интерфейса RS-485 в производства других фирм может быть следующим: контакту А соответствует обозначение «Data+», контакту В – «Data-».

ПРЕДУПРЕЖДЕНИЕ Контроллер спроектирован так, что он включается в сеть RS-485 как Master (ведущий прибор), и в него встроены резисторы, определяющие состояние линии при отсутствии передачи. В связи с этим не допускается включать в один сегмент сети RS-485 более 6 контроллеров, даже если они настроены на работу в режиме Slave (ведомый прибор). При необходимости включить более 6 контроллеров в сеть RS-485 или разделить сеть на несколько сегментов, или использовать усилители/повторители интерфейса RS-485 типа AC5 (см. рисунок 6.3).

6.3 Подключение устройств к интерфейсам ПЛК160

Способы подключения устройств к прибору приведены в таблице 6.1.

Таблица 8.1

Подключаемое устройство	Порт	Кабель	Номер рисунка	Комментарий
Модули ввода/вывода Мх110, панели индикации, а также любое, поддерживающее RS-485 и протоколы из таблицы 3.2	RS-485	Витая пара	-	Подключение производить при отключенном напряжении питания всех устройств сети RS-485*. Длина линии связи не более 1000 м. Соблюдать полярность.
Панели индикации ИП320, СП270, СП3XX, а также любое устройство, поддерживающее RS-232 и протоколы из таблицы 3.2	RS-232 Debug	KC2	Г.2, Г.3	Подключение необходимо производить при отключенном напряжении питания ПЛК и подключаемого устройства*. Длина кабеля не должна превышать 3 м.
ПК, связь со SCADA-системой	Ethernet	Ethernet UTP Cat 5	Γ.5	Длина кабеля не должна превышать 100 м.
ПК, установка связи со средой программирования CoDeSys	Debug RS-232	KC1	Г.1	Подключение кабеля КС1 осуществляется при отключенном питании ПЛК и персонального компьютера**.

Окончание таблицы 8.1

Подключаемое устройство	Порт	Кабель	Номер рисунка	Комментарий
Модем ПМ01, модемы других производителей	Debug RS-232	кс3	Г.4	При подключении модема к порту Debug RS-232: на КСЗ необходимо установить переключатель в положение "OFF".
ПК, установка связи со средой программирования CoDeSys	USB Device	USB B – USB A	-	Длина кабеля не должна превышать 1,8 м. Подключение осуществляется после подачи на ПЛК напряжения питания и спустя 3 - 5 сек, необходимых для загрузки ПЛК.

ПРЕДУПРЕЖДЕНИЕ

* Если данное условие по каким-либо причинам не может быть выполнено, то необходимо отключить питание хотя бы одного из этих устройств.

**Если отключение питания ПЛК и ПК невозможно, то рекомендуется следующий порядок подключения кабеля:

- в первую очередь, кабель подключается к ПЛК с помощью разъема на передней панели;
- затем кабель необходимо подключить к СОМ-порту компьютера;
 предварительно для выравнивания электрических потенциалов ПЛК и компьютера следует коснуться металлической частью разъема кабеля металлического корпуса СОМ-порта компьютера.

Невыполнение этих требований может привести к повреждению портов устройств!

Рисунок 6.3 – Пример схемы подключений в сеть более шести контроллеров (AC5 – повторитель сигнала разработки OBEH)

6.2.5 Подключение к интерфейсу RS-232

Подключение осуществляется стандартным кабелем КС2 «ПЛК-Панель» (не входит в комплект поставки, приобретается отдельно), кабелем для программирования (кабель КС1 из комплекта поставки) или кабелем, изготовленным по схеме, приведенной в приложении Г. Подключение необходимо производить при отключенном напряжении питания контроллера и подключаемого устройства. Длина кабеля не должна превышать трех метров.

Порт Debug RS-232 в основном предназначен для программирования контроллера через COM порт ПК. В случае необходимости подключения к порту Debug RS-232 иных устройств,

имеющих выходной интерфейс RS-232C, необходимо воспользоваться кабелем КС2 «ПЛК-Панель» (не входит в комплект поставки, приобретается отдельно) или кабелем, самостоятельно изготовленным по схеме, приведенной в Приложении Г.

Порт Debug RS-232 может работать в двух режимах (зависящих от типа используемого кабеля):

- для кабеля КС1 порт работает в режиме обмена по протоколу Gateway:
- для других кабелей порт работает в стандартном режиме.

ПРЕДУПРЕЖДЕНИЕ Определение (детектирование) режима рабо осуществляется при включении питания контроллера. работы порта

Подключение модема к контроллеру осуществляется через последовательный порт Debug RS-232 или через порт RS-232 с помощью кабеля КС3 «ПЛК-Модем» (не входит в комплект приобретается отдельно) или кабелем, самостоятельно изготовленным в соответствии с рисунком Г.3 (Приложение Г). На кабеле КСЗ «ПЛК-Модем» необходимо установить переключатель в положение «ON», если контроллер будет использоваться для связи со средой CoDeSys, и в положение «OFF» в случае работы по остальным протоколам. Протоколы и настройки приведены в таблице 2.2.

Рисунок 6.4 – Пример структуры соединений при использования контроллера в системе управления

6.4 Пробный пуск

- 6.3.1 Если контроллер находился длительное время при температуре ниже минус 10 °C, то перед включением и началом работ с контроллером необходимо выдержать его в помещении с температурой, соответствующей рабочему диапазону (от минус 10 до +55 °C), в течение не менее 30 мин.
- 6.3.2 Перед подачей питания на контроллер следует проверить правильность подключения напряжения и его уровень. Для моделей с питанием переменным током:
- при пониженном напряжении (ниже 90 В) контроллер работать не будет (отключится точный порог отключения не регламентируется);
 - при превышении напряжения (более 264 В) возможен выход контроллера из строя.

Для моделей с питанием от источника постоянного напряжения:

- при напряжении ниже 22 В, работа контроллера не гарантируется (контроллер прекращает функционировать, однако, из строя не выходит);
- при превышении напряжения питания уровня 33 В, возможен выход контроллера из строя.
- 6.3.3 При подаче на контроллер напряжения питания допустимого диапазона на лицевой стороне корпуса начинает светиться зеленым светом индикатор «ПИТАНИЕ». Если напряжение питания слишком низкое, индикатор «ПИТАНИЕ» не будет светиться.
- 6.3.4 После включения питания контроллер перезагрузится, при этом кратковременно включатся звуковой сигнализатор и все элементы индикации. Если в контроллер была загружена пользовательская программа, она сразу начинает исполняться.
- 6.3.5 Если после включения питания выполнение программы не началось, необходимо проверить наличие в памяти контроллера программы и следовать инструкциям раздела 6.4.

6.5 Поиск и устранение неисправностей

- 6.4.1 Состояние контроллера отображают светодиодные индикаторы на его передней панели (см. раздел 3.3), поэтому:
- отсутствие свечения индикатора «ПИТАНИЕ» после подачи питания на контроллер означает, что поданное напряжение слишком низкое или контроллер не исправен, и пользователь должен произвести проверку цепей питания;
- отсутствие свечения индикатора «СВЯЗЬ» означает, что подключение контроллера к среде программирования CoDeSys не реализовано, и пользователь должен произвести проверку подключения контроллера к ПК интерфейсным кабелем, повторно инсталлировать в среду **Target-файл** контроллера, выбрать канал связи и установить необходимые параметры канала связи и т.п. в соответствии с процедурой подключения контроллера к среде CoDeSys (см. РП);
- отсутствие свечения индикатора «РАБОТА» определяет необходимость проведения пользователем комплексной последовательной проверки всех факторов, определяющих функционирование контроллера;
- отсутствие свечения индикаторов входов и выходов (при светящемся индикаторе «РАБОТА») определяет необходимость проверки пользователем подключений соответствующих входных и/или выходных устройств.
- 6.4.2 Проверить работоспособность входов и выходов контроллера можно из среды CoDeSys, задавая состояния соответствующих цепей согласно РП.

Перед подключением контроллера к CoDeSys необходимо инсталлировать в среду **Target-файл** контроллера, выбрать канал связи и установить необходимые параметры канала связи. Подробно процедура подключения контроллера к среде CoDeSys описана в РП.

7 Техническое обслуживание

- 7.1 При выполнении работ по техническому обслуживанию контроллера следует соблюдать меры безопасности, изложенные в разделе 5.
- 7.2 Технический осмотр контроллера проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:
 - очистку корпуса и клеммных колодок контроллера от пыли, грязи и посторонних предметов;
 - проверку качества крепления контроллера на DIN-рейке или стене;
 - проверку качества подключения внешних связей;
 - проверку функционирования аккумулятора (см. п. 7.3).

Обнаруженные при осмотре недостатки следует немедленно устранить.

- 7.3 Проверку функционирования аккумулятора необходимо производить в следующей последовательности:
 - отключить контроллер:
- включить контроллер по истечении времени, превышающего заданное в параметре «Backup working time» в окне Конфигурация ПЛК (PLC Configuration), и проверить значения записанных в энергонезависимую память Retain-переменных;
- признать аккумулятор функционирующим в штатном режиме, если запись Retain-переменных была произведена корректно;
- если запись Retain-переменных не была произведена или была произведена некорректно, произвести зарядку аккумулятора (при непрерывно работающем контроллере) в течение времени не менее трех часов и повторно проверить функционирование аккумулятора;
- снять крышку корпуса контроллера и произвести измерение напряжения аккумулятора (значение должно быть не менее 0,7 В);
- признать аккумулятор выработавшим свой ресурс и подлежащим замене, если запись Retainпеременных не была произведена или была произведена некорректно и/или замеренное напряжение аккумулятора составляет менее 0,7 В после трех часов работы контроллера;
- 7.4 Замена встроенного аккумулятора должна осуществляться в сервис-центре компании-производителя.

8 Маркировка

При изготовлении на прибор наносятся:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару наносятся:

- наименование прибора;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

9 Транспортирование и хранение

- 9.1 Панели транспортируются в закрытом транспорте любого вида. Крепление тары в транспортных средствах производится согласно правилам, действующим на соответствующих видах транспорта.
- 9.2 Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150 при температуре окружающего воздуха от минус 25 до +70 °C с соблюдением мер защиты от ударов и вибраций.
 - 9.3 Перевозку панелей осуществлять в транспортной таре поштучно или в контейнерах.
- 9.4 Условия хранения панелей в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150. В воздухе не должны присутствовать агрессивные примеси. Панели следует хранить на стеллажах.

10 Комплектность

Контроллер ПЛК160	1 шт.
Кабель КС1	1 шт.
Паспорт и Гарантийный талон	1 экз.
Руководство по эксплуатации	1 экз.
Диск с ПО	1 шт.

ПРИМЕЧАНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность изделия.

11 Гарантийные обязательства

Изготовитель гарантирует соответствие панели требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации 24 месяца со дня продажи.

В случае выхода панели из строя в течение гарантийного срока при соблюдении пользователем условий эксплуатации, транспортирования, хранения и монтажа предприятие изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи изделия в ремонт содержатся в паспорте и в гарантийном талоне.

Приложение А. Габаритные и установочные размеры

Рисунок А.1 – Габаритные размеры контроллера

Рисунок А.3 – Разметка для установки на щит

Рисунок А.4 – Расстояние до стенок корпуса контроллера при монтаже для обеспечения вентиляции

Приложение Б. Расположение контактов для подключения внешних цепей

Рисунок Б.1 – Схема расположения и назначение клемм контроллера

Приложение В. Подключение входных устройств и схемы выходных элементов контроллера

Рисунок В.1 – Схема подключения контактных датчиков (S1–Sn) к входам контроллера

Обе схемы равнозначны, может использоваться любая. При применении контактных датчиков совместно с датчиками, имеющими на выходе транзисторный ключ, схема подключения должна определяться типом транзисторных датчиков, согласно рисункам В.2 и В.3.

Рисунок В.2 – Подключение к дискретным входам датчиков (F1-Fn), имеющих на выходе транзисторный ключ n-p-n-типа

Рисунок В.3 – Подключение к дискретным входам датчиков (F1–Fn), имеющих на выходе транзисторный ключ p-n-p-типа

примечание

Суммарный ток потребления всех внешних датчиков и всех подключенных дискретных входов (7 мА на вход) не должен превышать 400 мА. Если потребление датчиков и входов больше указанного, то для питания датчиков следует использовать внешний блок питания требуемой мощности.

Рисунок В.4 – Выходные элементы типа Р контроллера с внешними цепями защиты при активной нагрузке, Rн – пользовательская нагрузка (двигатель, нагреватель, контактор и т.д.)

Рисунок В.5 – Подключение цепей защиты при реактивной нагрузке

Рисунок В.6 – Подключение аналоговых выходов типа «У» и «А»

Рисунок В.7 – Подключение аналоговых выходов типа «И»

Рисунок В.8 – Подключение аналоговых входов

Приложение Г. Схемы подключаемых кабелей

Рисунок Г.1 – Схема кабеля программирования КС1, входящего в комплект поставки

Рисунок Г.2 – Схема кабеля КС2

Рисунок Г.3 – Схема кабеля для подключения к порту RS-232 и Debug RS-232

- 1 Для подключения может использоваться готовый кабель КС2 «ПЛК-Панель», приобретается отдельно.
- 2 Кабель программирования КС1, входящий в комплект поставки, предназначен для подключения к ПК и не может быть использован для подключения к порту Debug RS-232 других устройств. На порт RS-232 это правило не распространяется, и другие устройства могут быть беспрепятственно подключены к нему при помощи кабеля для программирования КС1 из комплекта поставки.

Рисунок Г.3 - Схема кабеля КС3 «ПЛК-Модем»

Переключатель на кабеле устанавливает режим работы: для связи со средой CoDeSys двухпозиционный переключатель кабеля КСЗ «ПЛК-Модем» необходимо установить в положение «ON» (замкнуто), и в положение «OFF» (разомкнуто) в случае типового использования кабеля КСЗ «ПЛК-Модем».

Рисунок Г.4 – Разводка с пересечением (crossover) кабеля для соединения контроллера с компьютером по сети Ethernet напрямую

Приложение Д. Отсоединение клеммных колодок

На рисунке Д.1 показан порядок отсоединения клеммных колодок. Для отсоединения клеммных колодок следует:

- отключить питание контроллера и подключенных к нему устройств;
- снять крышку 2 корпуса 1, для чего поочередно нажать отверткой на защелки 4 на боковых сторонах, приподнимая крышку корпуса вверх;
 - выкрутить два винта 5;
- поддев колодку 3 отверткой с двух боковых сторон, снять в направлении, указанном на рисунке Д.1 стрелкой.

Сборку производить в обратной последовательности.

Рисунок Д.1 – Отсоединение клеммных колодок контроллера

Центральный офис:

111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5 Тел.: (495) 221-60-64 (многоканальный)

Факс: (495) 728-41-45

www.owen.ru

Отдел сбыта: sales@owen.ru Группа тех. поддержки: support@owen.ru

> Рег. № 2688 Заказ