水轮发电机故障及检修探讨

国网西藏电力有限公司发电检修分公司 田本荣

摘要: 水轮发电机是一种常见的发电设备, 在运行过程中会面临各种故障。为了确保发电机的正常运行和高效发电, 必须及时有效地进行故障检修, 并采用行之有效的应对措施, 提高故障检修的成效, 确保电力行业稳定可持续发展。基于此, 本文从水轮发电机常见故障入手, 论述了水轮发电机检修的分类, 进一步探究了水轮发电机故障检修的有效策略。

关键词:水轮发电机;常见故障;检修策略

DOI: 10.12433/zgkjtz.20241324

水轮发电机被广泛应用于水力发电站,利用水流的 动能来驱动涡轮转子,进而产生电能。由于长期运行和 各种因素的影响,会出现安全隐患,发生故障,影响发电的效率和质量。及时有效地检修故障是确保水轮发电机安全、稳定运行的关键。相关行业及人员应对此给予重视与关注,不断创新和完善故障检修的方式和策略,降低故障发生率,保障水轮发电机持续稳定运行,为能源供应做出贡献。

一、水轮发电机常见故障

(一)电气故障

电气故障是水轮发电机常见的故障类型之一,其严重性和不可预测性对电力供应的稳定性构成了挑战。在水轮发电机的电气系统中,各种因素可导致故障发生,如设备老化、环境条件变化、操作失误等。有效识别和及时处理这些故障对于确保发电机的可靠运行至关重要。电气故障包括短路故障、开路故障、保护设备失灵以及控制系统故障等。短路故障是指电路中产生非预期的低阻抗路径,导致电流异常增大,多由于设备绝缘损坏、导线接触不良或过载引起。开路故障则是电路中断,阻碍电流的正常流通,此故障发生在断路器故障、接头松动或线路断裂等情况下。而保护设备的失灵会导致故障判断和隔离的延迟,增加发电机受损的风险。此外,控制系统的故障也会对发电机的稳定性产生负面影响,例如,自动调压装置、自动励磁调节器和自动同步机等在失灵时可能导致频率或电压异常。

(二)机械故障

机械故障会造成发电机运行不稳定甚至停机,对电力供应连续性产生重大影响。机械故障的发生原因

多种多样,包括设备磨损、材料疲劳、设计缺陷等。及时识别并采取有效措施处理机械故障,可保障水轮发电机运行安全。常见的机械故障包括叶轮损坏、轴承故障、异常振动和密封故障。叶轮作为关键的旋转部件,长期运行和环境因素可能导致磨损或损坏,影响发电机的平衡和效率,甚至造成停机。轴承作为支撑部件,长时间运行和不良工况可导致磨损、润滑不良或过热,不平衡和摩擦增大会发生轴断裂和停机。异常振动是因为不平衡、松动或故障引起,会造成机械磨损和其他故障。而密封故障则是由老化、损坏或松动的密封件引起,水泄漏和内部受潮会导致严重损坏和停机。定期维护和合理操作是预防机械故障的关键,可以保障发电机的稳定运行和电力供应的持续性。

(三)励磁系统问题

励磁系统负责生成磁场,使发电机产生电能。励 磁系统问题会造成电压调节不准确、励磁电流异常或 整个发电机无法正常运行。产生问题的原因主要包括 励磁电源故障、调节器故障、励磁线圈损坏或接线问 题等。励磁电源提供励磁线圈所需的直流电源,其故 障的发生是由电源设备故障、电源线路故障或电源控 制电路故障引起。调节器是控制励磁电流的设备,通 常根据负荷需求和电网条件调节励磁电流的大小。此 故障会导致励磁电流过大或过小, 进而影响电压的稳 定性和发电机的正常运行。励磁线圈是产生磁场的关 键部件,如果发生损坏,励磁电流将无法正常通过线 圈,使发电机无法生成足够的电能。励磁线圈损坏是 因为绝缘老化、短路或开路引起。损坏的线圈需要及 时修复或更换,以恢复励磁系统的正常功能。同时,励 磁系统的稳定运行还依赖于正确的接线和连接。错误 的接线会让励磁信号无法传递或失效,影响励磁系统 的调节和运行,应定期检查励磁系统的接线情况,确 保连接的正确性。

二、水轮发电机检修分类

(一)预防性检修

预防性检修是指根据预定的计划和时间表,对水 轮发电机进行定期检查、维护和修复,以预防故障的 发生和确保发电机可靠运行。预防性检修是发电机运 行和维护管理的重要组成部分,能够提前发现潜在问

题,并采取相应的措施,以避免故障的发生或带来更 大的损失及危害。首先,预防性检修的一项重要任务 是定期对水轮发电机进行全面检查。这包括检查机械 部件的磨损、松动或损坏情况,检查电气系统的连接 状态和电气设备是否正常运行,以及检查励磁系统和 调节系统的稳定性和准确性。定期检查可以帮助发现 潜在的故障因素,并及时采取有效的措施进行修复或 更换。其次,对水轮发电机进行常规维护与保养。其 中包括清洁机械部件和电气设备,更换润滑油和滤芯, 紧固螺栓和连接件,以及校准仪表和传感器等。维护 保养的目的是保持设备的良好状态,延长使用寿命, 预防故障发生。最后,在预防性检修过程中,还会进行 必要的维修和修复工作。主要包括更换磨损的机械部 件和损坏的电气设备,修复漏水和密封故障及调整和 校准励磁系统和调节系统等。预防性维修旨在修复已 经存在的问题,以保证设备稳定运行。

(二)突发性检修

突发性检修是在发电机发生突发故障或异常情况 时,紧急进行的修理和维护工作。与预防性检修不同, 突发性检修是在故障发生后才进行,旨在尽快恢复发 电机正常运行。突发故障发生后,需要进行快速而准 确的故障诊断。通过仔细观察发电机运行时的异常现 象,初步判断故障类型和可能的原因,并使用各种测 量仪器和设备,对发电机各部位的参数进行测量,确 定故障的具体位置和程度。同时,还需进行电气测试 来检查电气设备的状态。结合观察、测量和测试的结 果,进行综合分析,找出故障的根本原因。一旦故障 诊断完成,紧急修复工作就需要立即展开。这包括更 换损坏的机械部件、修复或更换故障的电气元件、修 补或更换泄漏的密封件等, 防止进一步的损坏或停机。 在进行突发性检修时,最大限度地缩短停机时间是非 常重要的。需通过合理安排人员和资源,同时执行多 个任务,以高效完成修理和维护工作,尽可能地缩短 水轮发电机停机时间,并以最快速度恢复电力供应。 突发性检修完成后,还需进行验收测试,以确保发电 机恢复正常运行。验收测试主要包括电气性能测试、 机械性能测试和安全性能测试等,以验证修复和维护 工作的有效性与质量。

(三)改讲性检修

改进性检修是通过对水轮发电机进行系统性检查、分析和改进,以提高其性能、可靠性和效率。此工作是在正常运行状态下进行的,旨在优化发电机的功能和运行参数,以满足运行要求和提高发电机的整体性能。首先,改进性检修的第一步是对发电机的性能进行分析。通过收集和分析发电机运行和性能数据,如功率输

出、效率、振动水平等,评估发电机的工作状况和性能指标,找出存在的问题和改进的潜力。在检修过程中,对已知的问题和故障进行整改是关键步骤。这一步骤包括更换老化的部件、修复损坏的电气设备、优化机械轴承和密封系统等。通过解决这些问题,能够提高发电机的安全性和稳定性。其次,改进性检修还包括对发电机进行升级改造,以提高其性能和效率。例如,采用先进的励磁系统和调节系统,优化叶轮和叶片设计等,提升水轮发电机的发电效率和响应能力。同时,通过调整电气参数、机械参数和控制参数,可以实现更好的功率输出、负荷适应性和稳定运行。最后,检修完成后,需要进行测试和验证,确保改进措施的效果。此类测试包括对改进后的发电机进行性能测试、负荷测试和相关安全测试等,以验证改进性检修的成效。

(四)季节性检修

季节性检修是指根据水轮发电机的季节性特点, 按照一定的时间周期进行定期检查、维护和修复。由 于水轮发电机在不同季节面临着不同的运行环境和负 荷条件,季节性检修可以适应这些变化,确保发电机 在不同季节的正常运行和高效发电。春季是水轮发电 机的重要季节性检修时期。在此之前,经历了漫长的 寒冷冬季, 水轮发电机长时间运行在低温环境下, 可 能面临结冰、冻结和腐蚀等问题。春季检修包括对冬 季期间积累的损坏和磨损进行修复,同时做好除冰和 防腐工作等。夏季是水轮发电机受高温和高湿度影响 较大的季节, 检修主要关注发电机的冷却系统和电气 设备的散热问题。检修内容主要包括清洁和检查冷却 系统,确保散热器、冷却风扇和水冷系统正常运行。 秋季是水轮发电机从高负荷运行时期过渡到低负荷运 行时期的季节,需要对发电机进行全面检查,确保其 在高负荷运行期后有足够的时间恢复和维护。这主要 包括对机械部件的磨损情况进行评估, 替换需要更换 的部件;对电气系统进行绝缘测试和接线检查等工作。 冬季是水轮发电机的低负荷运行期,也是进行大规模 检修和维护的重要时期。检修的主要目标是对发电机 进行全面检查和维护, 彻底清洁设备, 检测并修复潜 在的问题,更换老化的部件,以及做好防冻和保温工 作,确保发电机能在寒冷的状态下正常运转。

三、水轮发电机故障检修的有效策略

(一)注重定期维护与保养

定期维护与保养是水轮发电机故障检修的重要策略。具体可以从以下三点开展工作:首先,制定维护计划非常关键。根据发电机的工作条件和使用情况,制定合理的维护计划,明确各项维护任务和周期,确保机器的安全运行,避免潜在故障发生。其次,定期检查

机械部件是必不可少的步骤。定期对水轮发电机的机械部件进行检查,包括轴承、密封件、联接螺栓等。通过检查可以及早发现部件的磨损程度,及时更换或修复,保证机械部件正常运转。另外,需要定期进行彻底清洁,特别是冷却系统和通风孔。清除积尘和杂物,保持良好的通风和散热效果,有效防止过热导致故障。同时,还需对电气系统进行定期的绝缘测试,检查绝缘破损和电气连接是否松动,如发现问题,需要及时进行绝缘修复和接线固定,以防止发生电气故障。最后,定期检查润滑油、冷却液和液压油的质量和性能,及时更换过期或污染的液体,确保水轮发电机正常运行,减少摩擦和磨损,提高设备的使用寿命,降低维修和更换成本。

(二)完善安全管理和规范操作

完善安全管理制度并建立规范的操作流程,可以 增强工作人员的安全意识和操作技能,降低事故和故 障的发生率。具体而言,包括以下三个方面:首先,制 定和落实相关的安全规章制度、操作规程和标准化操 作流程。应明确工作人员的责任和权限,规范工作流 程,确保每个环节都符合安全标准。同时,安全事故 的预防措施和应急处理措施也需要在制度中明确。其 次,对工作人员进行必要的安全培训,包括安全意识 培养、操作技能培训和应急处理培训等,培养其正确 的安全操作习惯和风险识别能力。通过加强培训,能 够深入了解工作环境中存在的潜在风险,并了解应对 措施和紧急处理方法。另外,制定详细的操作流程和 作业指导书,明确每个步骤的要求和操作规范。工作 人员必须遵循规定的程序和要求进行操作,禁止违章 操作和不规范行为。严格执行规范操作可以提高作业 质量和减少事故的发生,确保检修工作安全和高效进 行。最后,定期对设备、工具和工作场所进行安全检查, 发现并排除潜在的安全隐患。同时还要进行风险评估, 识别和评估潜在的安全风险,并建立相应的控制措施, 确保检修工作安全、顺利开展。

(三)强化团队协作和有效沟通

通过建立良好的团队合作机制和有效的沟通渠道,提高工作效率和问题解决能力,确保检修工作顺利进行。具体来说,包括以下三点:首先,需建立高效的团队合作机制。明确团队成员的职责和角色,清晰分工,确保各个环节协调配合。鼓励团队成员之间的合作和互助,形成共同奋斗的团队氛围。其次,设置畅通的沟通渠道,确保团队内部和与其他相关部门之间的信息流通。定期召开例会、工作汇报或沟通会议,及时沟通工作进展、存在的问题和解决方案。同时,鼓励团队成员间的积极交流和经验分享,促进知识和经验

的共享,提高整个团队的综合水平。另外,重视团队建设和培养合作精神。通过组织团队建设活动、培训和培养计划,增强团队成员的凝聚力和团队意识。建立相互信任、支持和合作的良好氛围,激发团队成员的积极性和创造力。最后,团队合作过程中难免出现意见不合、合作冲突等问题,需要及时解决。鼓励成员间开放坦诚沟通,倾听和尊重各种声音,通过妥善处理矛盾和冲突,保持团队的和谐与稳定。

(四)利用现代化的检测与诊断技术

随着科学技术的不断创新与发展,需采用先进的 检测和诊断技术,帮助工作人员准确地检测和诊断故 障,提高检修的效率和精确度,确保设备可靠运行。具 体如下: 首先, 使用先进的检测设备。例如, 采用红外 热像仪可以快速扫描设备表面温度, 检测异常热点, 帮助发现潜在的故障点;超声波检测仪能够探测管道 和容器中的泄漏、腐蚀等问题。利用这些先进的检测 设备,可以实时监测设备的运行状态,及时发现故障 并采取相应的修复措施。其次,采用先进的诊断技术。 例如,应用振动分析技术可以分析设备振动信号的频 谱和波形,判断设备的失衡、松动、磨损等情况;电流 图谱技术是通过监测设备的电流波形和频谱,诊断电 机、继电器等电气设备的运行状况。利用这些先进的 诊断技术,能够准确分析设备的故障原因,指导后续 的修复工作。最后,借助信息技术和数据分析。通过建 立数据采集系统和监测平台,实时采集设备运行数据, 并进行数据分析和建模。同时,还可以将历史数据与 实时数据进行比对分析,寻找设备运行的偏差和异常, 帮助准确定位故障的原因和位置,提高检修的精准度。

四、结语

综上所述,本文通过深入研究水轮发电机故障及 检修的相关内容,得出了有效的方法和策略。在今后 的实践中,应对故障检修工作进行不断完善和改进, 相信在相关工作人员的共同努力下,将最大限度地提 高水轮发电机的安全性、可靠性及稳定性,促进行业 健康可持续发展。

参考文献:

[1] 唐建波.水轮发电机组的故障与检修对策[J].电子技术,2023,52(02):256-257.

[2]黎乾,罗泽文.大型水轮发电机组制动系统故障分析 [J].人民长江,2023,54(S1):138-140.

[3] 贾春雷,张延智,屈伟强,等.浅谈水轮发电机组故障诊断技术[C]//中国大坝工程学会.水库大坝智慧化建设与高质量发展,中国建筑工业出版社,2023:343-348.

[4] 葛彬.水轮发电机组常见故障与维修的关键点研究[J]. 低碳世界,2023,13(02):118-120.