RKIVS

API 参考

瑞芯微电子股份有限公司 图形计算平台中心

免责声明

本文档按"现状"提供, 瑞芯微电子股份有限公司("本公司", 下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。 本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 **© 2022 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园 A 区 18 号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

文档适用对象

- 软件开发工程师
- 技术支持工程师

适用平台

- RV1103
- RV1106

版本记录

版本信息	版本说明	日期	作者
V1.0	初始版本	2022.05.06	李煌

目录

前言	3
文档适用对象	3
适用平台	3
版本记录	3
1. 概述	5
1.1. IVS 概述	5
1.2. IVS 概念	5
2. API 参考	6
RK_IVS_MD_Init	7
RK_IVS_MD_Exit	8
RK_IVS_MD_CreateChn	9
RK_IVS_MD_DestroyChn	10
RK_IVS_MD_GetBg	11
RK_IVS_MD_Process	12
3. MD 数据类型	15
MD_ALG_MODE_E	15
MD_ATTR_S	
4. 参考示例	17
说明	17

1.1. IVS 概述

RKIVS(Rockchip Intelligent Video Surveillance)是瑞芯微媒体处理芯片解决方案中比 IVE(Intelligent Video Engine,智能加速引擎)更高层次的智能视频监控应用 API。用户基于 IVS 可以快速开发出相关智能应用。当前 IVS 支持的智能应用有: MD (Motion Detection,移动侦测)。

1.2. IVS 概念

● MD 算法

MD 算法包含帧差法(MD_ALG_MODE_REF)和背景法(MD_ALG_MODE_BG)两种。

● 帧差法(MD_ALG_MODE_REF)

直接以用户指定的图像为参考帧,得出视频侦测分析结果的算法,称为帧差法。

● 背景法(MD_ALG_MODE_BG)

在 MD 处理的过程中,将产生当前视频的背景图像。然后以背景图像为参考帧,得出视频侦测分析结果的算法,称为背景法。

● 背景更新权重

当 MD 算法选择为背景法时,每次 MD 处理都会产生静止部分图像,这部分图像和背景会作一次像素值叠加,新背景 = (静止部分图像的叠加权重 uOq16X×静止部分图像 + 动态部分图像的叠加权重 uOq16Y× 旧背景) >> 16。

2. API 参考

RKIVS 提供以下功能接口:

- RK_IVS_MD_Init: 初始化。
- RK_IVS_MD_Exit: 退出。
- RK_IVS_MD_CreateChn: 创建 MD 通道。
- RK_IVS_MD_DestroyChn: 销毁 MD 通道。
- RK_IVS_MD_GetBg: 获取背景。
- RK_IVS_MD_Process: 侦测处理。

RK_IVS_MD_Init

【描述】

移动侦测初始化。

【语法】

RK_S32 RK_IVS_MD_Init();

【参数】

无

【返回值】

返回值	描述
0	成功。
非0	失败,参见错误码。

【引用】

头文件	ivs_md.h rk_md.h
库文件	libivs.a libive.a

【注意】

- 外部应用使用 IVS 一系列调用前, 在程序初始化部分调用该接口, 以完成 IVS 上下文创建及必要的初始化工作。

- 在结束 IVS 相关功能使用后,必须调用 RK_IVS_MD_Exit 进行反初始化,避免系统资源未被释放。

RK_IVS_MD_Exit

【描述】

移动侦测退出。

【语法】

RK_S32 RK_IVS_MD_Exit();

【参数】

无

【返回值】

返回值	描述
0	成功。
非 0	失败,参见错误码。

【引用】

头文件	ivs_md.h rk_md.h
库文件	libivs.a libive.a

【注意】

- 必须先调用 RK_IVS_MD_Init 初始化才能调用此接口退出, 否则返回错误。

RK_IVS_MD_CreateChn

【描述】

创建 MD 通道。会根据传入的参数申请一些必须的辅助内存。

【语法】

RK_S32 RK_IVS_MD_CreateChn(MD_CHN MdChn, MD_ATTR_S *pstMdAttr);

【参数】

参数名称	描述	输入/输出
MdChn	通道号 (暂时没有用处,赋值 0 即可)	输入
pstMdAttr	通道信息指针。	输入
	不能为空	

【返回值】

返回值	描述
0	成功。
非0	失败,参见错误码。

【引用】

头文件	ivs_md.h rk_md.h
库文件	libivs.a libive.a

【注意】

- 必须先调用 RK_IVS_MD_Init 初始化才能调用此接口退出, 否则返回错误。

RK_IVS_MD_DestroyChn

【描述】

销毁 MD 通道。释放 CreateChn 创建的一些必须的辅助内存。

【语法】

RK_S32 RK_IVS_MD_DestroyChn(MD_CHN MdChn);

【参数】

参数名称	描述	输入/输出
MdChn	通道号 (暂时没有用处,赋值 0 即可)	输入

【返回值】

返回值	描述
0	成功。

非0	失败,参见错误码。
----	-----------

【引用】

头文件	ivs_md.h rk_md.h
库文件	libivs.a libive.a

【注意】

- 必须先调用 RK_IVS_MD_Init 初始化才能调用此接口退出, 否则返回错误。
- 必须和 RK_IVS_MD_CreateChn 匹配调用, 否则可能造成内存泄漏。

RK_IVS_MD_GetBg

【描述】

获取移动侦测背景。

【语法】

RK_S32 RK_IVS_MD_GetBg(MD_CHN MdChn, IVE_DST_IMAGE_S *pstBg);

【参数】

参数名称	描述	输入/输出
MdChn	通道号(暂时没有用处,赋值0即可)	输入
pstBg	背景图像指针.	输出

【返回值】

返回值	描述
0	成功。
非 0	失败,参见错误码。

【引用】

头文件	ivs_md.h rk_md.h
库文件	libivs.a libive.a

【注意】

- 必须先调用 RK_IVS_MD_Init 初始化才能调用此接口退出, 否则返回错误。
- 必须和 RK_IVS_MD_CreateChn 匹配调用, 否则可能造成内存泄漏。

RK_IVS_MD_Process

【描述】

移动侦测处理

【语法】

RK_S32 RK_IVS_MD_Process(MD_CHN MdChn, IVE_SRC_IMAGE_S *pstCur, IVE_SRC_IMAGE_S *pstRef, IVE_DST_IMAGE_S *pstSad, IVE_DST_MEM_INFO_S *pstBlob);

【参数】

参数名称	描述	输入/输出
MdChn	通道号(暂时没有用处,赋值0即可)	输入
pstCur	当前帧图像指针. 不能为空。	输入
pstRef	参考帧图像指针 用于第一帧输入背景或者更新背景用,可以为 NULL	输入
pstSad	Sad 指针 (暂不支持) 根据 pstMdAttr->enSadOutCtrl, 若需要输出则不能为空	输出
pstBlob	区域信息指针不能为空	输出

参数名称	支持图像类型	地址对齐	分辨率
pstCur	U8C1	16 byte	64 x 64 ~ 1920 x 1080
pstRef	U8C1	16 byte	64 x 64 ~ 1920 x 1080
pstSad	U8C1	16 byte	根据 pstMdAttr→enSadMode, 对应 4x4、 8x8、 16x16 分块模式, 高、宽分别为 pstCur 的 1/4、 1/8、1/16。
pstBlob	-	16 byte	-

【返回值】

返回值	描述
-----	----

0	成功。
非0	失败,参见错误码。

【引用】

头文件	ivs_md.h rk_md.h
库文件	libivs.a libive.a

【注意】

- 必须先调用 RK_IVS_MD_Init 初始化才能调用此接口退出,否则返回错误。
- 必须先调用 RK_IVS_MD_CreateChn, process 需要辅助内存才能使用。
- 最多输出区域信息个数为 254, 区域信息请参见"RKIVE API 参考第 3 章 节数据类 型中的 IVE_CCBLOB_S"。IVE_CCBLOB_S 的成员 u16CurAreaThr 是分块后的面 积阈值信息。在这里输出的连通区域信息是连续储存。

3. MD 数据类型

MD_ALG_MODE_E

【描述】

定义 MD 算法模式

【定义】

```
typedef enum hiMD_ALG_MODE_E
{
    MD_ALG_MODE_BG = 0x0,/*Base on background image*/
    MD_ALG_MODE_REF = 0x1,/*Base on reference image*/
    MD_ALG_MODE_BUTT
}MD_ALG_MODE_E;
```

【成员】

成员名称	描述
MD_ALOG_MODE_BG	背景法
MD_ALOG_MODE_REF	帧差法

MD_ATTR_S

【描述】

定义 MD 通道属性

【定义】

```
typedef struct rkMD_ATTR_S {

MD_ALG_MODE_E enAlgMode; /*Md algorithm mode*/
IVE_SAD_MODE_E enSadMode; /*Sad mode*/
```

```
/*Sad Output ctrl*/
   IVE_SAD_OUT_CTRL_S enSadOutCtrl
   RK_U32
                          u32Width;
                                         /*Image width*/
   RK_U32
                          u32Height;
                                         /*Image height*/
                                         /*Sad thresh*/
   RK_U16
                          u16SadThr
   IVE_CCL_CTRL_S
                                         /*Ccl ctrl*/
                          stCclCtrl
                                         /*Add ctrl*/
   IVE_ADD_CTRL_S
                          stAddCtrl
}
```

【成员】

成员名称	描述
enAlgMode	算法模式,参见 <u>MD_ALG_MODE_E</u>
enSadMode	Sad 模式, (暂不支持)
enSadOutCtrl	Sad 输出控制 (暂不支持)
u32Width	图像宽,必须为宏块宽的整数倍,范围: [64,1920]
u32Height	图像宽,必须为宏块高的整数倍,范围: [64,1920]
u16SadThr	Sad 阈值。(暂不支持)
stCclCtrl	Ccl 控制参数,参见"RKIVE API 参考第 2 章数据类型中的IVE_CCL_CTRL_S"。Ccl 控制参数成员信息都是针对分块后的图。
stAddCtrl	Add 控制参数,参见"RKIVE API 参考第 2 章数据类型中的IVE_CCL_CTRL_S"。目前仅在帧差法内使用。

4. 参考示例

说明

具体 demo 代码位于 ivs/tests 目录,支持 simulater 使用 opencv 演示效果。示例 demo 主要包括以下几个部分:

- 初始化: 调用 RK_IVS_MD_Init 进行初始化。
- 内存分配: 调用 RK_IVS_MD_CreateChn 设置 MD 通道属性, 内部会自动申请必须的辅助内存 (通过 MMZ)
- 运行:调用 RK_IVS_MD_Process 对当前输入的图像帧进行 MD 处理。并输出 Ccl Blob (连通区域标记)。需要注意的是,第一帧及更新背景的时候,参考帧不能为空。
- 后处理: 对连通区域的处理。比如画框等。
- 结束:调用 RK_IVS_MD_DestoryChn 释放之前分配的辅助内存,调用 RK_IVS_MD_Exit 进行反初始化。