Overview

PART I (Secondary Structure)

- Introduction
 - Motivation.
 - Levels of RNA Structure?
 - Secondary Structure Prediction
 - Representation
- Software
 - Prediction (mfold, vienna, dynalign)
 - Rendering (Annotation s2s, others.)
- Everyones Favorite FIKA!

Overview

PART II (Rigid Block Model)

Rigid Block Model for Nucleic Acids.

Overview

PART III (Practical Workshop-Tutorial)

- Practical Examples.
 - Using paper and pencil alone do Nussinov algorithm to some sequence. This gives you some structure, not necessarily minimal energy I guess.
 - Use computer to go to mfold, or vienna webserver to do prediction for same sequence. (maybe mfold is better because it gives more cartoons)
 - Make A-DNA, B-DNA, Z-DNA. Chromosomal DNA.

•

GCGGAUU UA gCUC AGUUGGGA GAGC gCCAGAC UgAAg APCUGGA GGUC CUGUG uPCGaUC CACAG AAUUCGC ACCA 1234567 89 0123 45678901 2345 6789012 34567 8901234 5678 90123 4567890 12345 6789012 3456

Quick Tour of RNA Secondary Structure Prediction

Mauricio Esguerra Neira Lennart Nilsson Group

http://mesguerra.net

Principles of Nucleic Acid Structure KI Doctoral Course 2430 Torsdag, Februari Två, 2012 13:00 - 16:00 GENOMICS
PROTEOMICS
POST-GENOMICS
EPIGENETICS
RIBONOMICS

Biology's Central Dogma

Thursday, January 26, 2012

RNA is spliced by the spliceosome after transcription.

Non-coding RNA's

- RNApol I rRNA not 5S (~ 50% cell RNA)
- RNApol II precursors of <u>mRNA</u> and most <u>snRNA</u> and <u>microRNA</u>
- RNApol III 5S rRNA, tRNA and other small RNAs
- piwiRNA
- siRNA

•

The RNA Zoo

Structure Determines Function

Types of RNA Structure

Primary Structure

Backbone covalent linked through phosphodiester group with 5' to 3' sense.

```
GCGGAUU UA gCUC AGuuGGGA GAGC gCCAGAC UgAAg APCUGGA GGUC CUGUG uPCGaUC CACAG AAUUCGC ACCA 1234567 89 0123 45678901 2345 6789012 34567 8901234 5678 90123 4567890 12345 6789012 3456
```

Secondary Structure

Hydrogen Bonded Base-Pairs

Two Kinda ThreeTypes of RNA Secondary Structure Prediction

RNA Sequence Covariation (Gutell)

RNA Free Energy Minimization (Tinoco-Uhlenbeck)

RNA Base-Pair Maximization (Nussinov)

Sequence Covariation

- Main Idea is:
- Gutell quite successful in getting rRNA.

Delta G Minimization

- Tinoco-Uhlenbeck Postulate
- Dynamic Programming Nussinov Algorithm

Nussinov Algorithm (Maximum Number of Base-Pairs)

- 1. *i,j* pair
- 2. *i* unpaired
- 3. *j* unpaired

4. Bifurcation

$$D(i,j) = \max \begin{cases} \max_{i < k < j} D(i,k) + D(k+1,j) \\ D(i+1,j-1) + w(i,j) \\ D(i+1,j) \\ D(i,j-1) \end{cases}$$

Initialization

$$D(i,j) = \max \left\{ D(i,i) = 0 \quad \forall i = 1..L \\ D(i,i-1) = 0 \quad \forall i = 2..L \right\}$$

Recursion

$$D(i,j) = \max \begin{cases} D(i,k) + D(k+1,j) & where \ i \le k < j \\ D(i+1,j-1) + w(i,j) \end{cases}$$

Nussinov et al. SIAM J. Appl. Math. 35, 68-82 (1978)

Nussinov and Jacobson PNAS 77, 6309-6313 (1980)

The Algorithm in Action (4 MNBP)

$$D(i,j) = \max \left\{ \begin{array}{ll} D(i,j-1) \\ D(i+1,j-1) + w(i,j) \\ D(i+1,j) \\ \max_{i < k < j} D(i,k) + D(k+1,j) \end{array} \right. \left. \begin{array}{ll} S_{(i,j-1)} \\ S_{(i,j-1)} \\ S_{(i,j-1)} \\ S_{(i,k)} \\ S_{(k+1,j)} \\ S_{(k+1,j)} \\ S_{(k+1,j)} \\ S_{(k+1,j)} \\ S_{(i+1,j-1)} \\$$

S. Eddy, Nature Biotech. 22, 1457-1458 (2004)

$$D(1,1) = \max \begin{cases} i < k < j & NOT \\ D(2,0) + w(1,1) = 0 \\ D(2,1) = 0 \\ D(1,0) = 0 \end{cases}$$

$$D(2,4) = 1$$

$$D(2,5) = \max \begin{cases} D(3,4) + w(2,5) = 0 \\ D(3,5) = 1 \\ k = \{3,4\} \\ max \{ \\ D(2,3) + D(4,5) = 2 \\ D(2,4) + D(5,5) = 1 \\ \} = 2$$

	j	1	2	3	4	5	6	7	8	9	10
		Α	С	G	G	С	Α	Α	C	G	U
1	Α	0	0	1	1	2	2	2	2	3	4
2	С	0	0	1	A	2	2	2	2	3	4
თ	G		0	0	0	1	1	1	2	2	3
4	G			0	0	1	1	1	1	2	3
5	C				0	0	0	0	0	1	2
6	Α					0	0	0	0	1	2
7	Α						0	0	0	1	2
8	C							0	0	1	1
9	G								0	0	0
10	U									0	0

Backtracking to Structure (Counterclockwise)

$$D(i,j) = \begin{cases} D(i,j-1) \\ D(i+1,j) \\ D(i+1,j-1) + w(i,j) \\ for_{i < k < j} do D(i,k) + D(k+1,j) \end{cases}$$

	j	1	2	3	4	5	6	7	8	9	10
i		Α	С	G	G	C	Α	Α	С	G	U
1	Α	0	0	1	1	2	2	2	2	3	4
2	O	0	0	1	1	2	2	2	2	3	4
3	G		0	0	0	1	1	1	2	2	3
4	G			0	0	1	1	1	1	2	3
5	С				0	0	0	0	0	1	2
6	Α					0	0	0	0	1	2
7	Α						0	0	0	1	2
8	O							0	0	1	1
9	G								0	0	0
10	כ									0	0

One Possible Structure With 4 Base-Pairs

ACGGCAACGU (((()..))) but |j-1| > 1 (((....)))

	j	1	2	3	4	5	6	7	8	9	10
i		Α	C	G	G	C	Α	Α	С	G	U
1	A	0	0	1	1	2	2	2	2	3	4
2	C	0	0	1	1	2	2	2	2	3	4
3	G		0	0	0	1	1	1	2	2	3
4	G			0	0	1	1	1	1	2	3
5	O				0	0	0	0	0	1	2
6	Α					0	0	0	0	1	2
7	Α						0	0	0	1	2
8	O							0	0	1	1
9	G								0	0	0
10	U									0	0

One Possible Structure With 4 Base-Pairs

	j	1	2	3	4	5	6	7	8	9	10
i		Α	C	G	G	C	Α	Α	C	G	כ
1	Α	0	0	1	1	2	2	2	2	3	4
2	O	0	0	1	1	2	2	2	2	3	4
3	G		0	0	0	1	1	1	2	2	3
4	G			0	0	1	1	1	1	2	3
5	O				0	0	0	0	0	1	2
6	Α					0	0	0	0	1	2
7	Α						0	0	0	1	2
8	O							0	0	1	1
9	G								0	0	0
10	U									0	0

3'

01/....

dG = -3.90 [Initially -3.40] ACGGCAACGU

Visualization of Secondary Structure

- Standard
- Circular
- Dot Plot

Tertiary Structure

Nobel Prizes and RNA

Classic Papers on Secondary Structure

- Classics
 - Tinoco Uhlenbeck Nature 1971
- Books
 - Tinoco's Book
 - Bioinformatics Book Chapter by Mathews
- Online
- Recent Trends
- People

RNA Secondary Structure Prediction Groups

- Doug Turner University of Rochester (Turner Rules)
- David Mathews University of Rochester (Dynalign)
- Michael Zuker Rensselaer Polytechnic Institute (mfold)
- Ivo Hoffacker Wien (vienna)
- Peter Stadler Leipzig (vienna)
- Francois Major Montreal (mc-sym)
- Tamar Schlick NYU (graph-grammars)
- Ruth Nussinov Tel Aviv (1978 dynamic algorithm)
- Nacho Tinoco (1971 free-energy minimization)