x = 54. Le développement de la fonction $f(x) = 9^x$ par la formule de Mac

Laurin est une suite dont le
$$8^e$$
 terme a pour coefficient :

1. $\frac{\ln^8 9}{8!}$ 2. $\frac{\ln^7 9}{8!}$ 3. $\frac{\ln^7 9}{7!}$ 4. $\frac{\ln^8 9}{7!}$ 5. $\frac{\ln^7 9}{9!}$

💉 55. La valeur numérique du terme en x³ du développement en série par Mac

(B. 99)

La valeur numérique du terme en
$$x^3$$
 du développement en serie par Mac
- Laurin de $f(x) = e^x$. $ln(1+x)$ pour $x=3$ est :
1. 0 2. 9 3. 13/12 4. 1/3 5. 6 (M. 2000)

56. La dérivée première de la fonction $f(x) = e^{3x} \ln 2x$ est la fonction

66. La dérivée première de la fonction
$$f(x) = e^{-x} \ln 2x$$
 est la fonction $f(x) = e^{-x} \ln 2x$ est la fonction $f(x) = e^{-x} \ln 2x$ for $f(x) = \frac{e^{3x} + 1}{x \ln 2x}$ for $f(x) = e^{3x} (\ln 2x - \frac{1}{x})$ for $f(x) = e^{3x} (\ln 2x - \frac{1}{$

7. 57. Le développement de l'expression exth par la formule de Mac - Laurin est une suite dont les trois premiers termes forment un trinôme du deuxième degré si h = 2. La somme des coefficients est égale à : 2. $5/e^2$ 3. 5/2 4. 5 e/2 5. $5/e^2$ (M. 2001)

1.
$$5 e^2/2$$
 2. $5/e^2$ 3. $5/2$ 4. $5 e/2$ 5. $5/e^3$ (W. 2001)

58. Lorsqu'on considère les trois premiers termes non nuls du développement en série de la fonction f définie par $f(x) = (1 + x)^{1/2}$, on obtient $\sqrt{1+x} = g(x)$. Dans ce cas $g(4)$ vaut:

1. -3 2. 3. 4. 5 5. 1 (B. 2001)

¥ 59. Du développement en série selon Mac-Laurin de la fonction $f(x) = xe^{-x}$, on calcule 33! fois le terme x32 et l'on trouve : 1. $-930x^{32}$ 2. $-1056x^{32}$ 3. $992x^{32}$ 4. $870x^{32}$ 60. Soit la fonction $f(x) = x^2 \cdot e^{-x}$. D'après le développement en série de

Soit la fonction
$$f(x) = x^2$$
. e^{-x} . D'après le developpement di serve de Mac – Laurin, le coefficient du terme en x^3 est :

1. $-1/6$ 2. -1 3. -6 4. $-5/6$ 5. 2 (B. 2002)

www.ecoles-rdc.net

1.
$$\left(\frac{\ln x}{\lg x} + \ln x \lg x + \frac{\ln \lg x}{x}\right)^{\ln x} dx$$

2. $\left(\frac{\ln x}{\cot g x} - \ln x \cot g x + \frac{\ln \lg x}{x}\right) (\lg x)^{\ln x} dx$

61. Si $y = (tg x)^{\ln x}$, alors dy =