

Ayudantía 6

8 de mayo de 2020

Profesores C. Riveros - J. Salas

Tamara Cucumides y Bernardo Barías

Pregunta 1

- 1. Sean $\leq_1 y \leq_2$ dos órdenes parciales sobre un conjunto X. Definimos una nueva relación R sobre X tal que xRy si y solo si $x \leq_1 y$ y $x \leq_2 y$. Demuestre que R también es un orden parcial sobre X.
- 2. Suponga que (S, \preccurlyeq_1) y (T, \preccurlyeq_2) son órdenes parciales. Muestre que $(S \times T, \preccurlyeq)$ es un orden parcial, en donde $(s,t) \preccurlyeq (u,v)$ si y solo si $s \preccurlyeq_1 u$ y $t \preccurlyeq_2 v$.
- 3. Demuestre que si (A, R) es un orden parcial entonces el grafo dirigido (A, R) no tiene ciclos de largo ≥ 2 . En otras palabras, el diagrama de Hasse de (A, R) es un grafo dirigido acíclico (DAG).

Pregunta 2

Dado un grafo finito no dirigido G = (V, E) con $V \subseteq \mathbb{N}$, se definen las siguientes operaciones sobre G:

■ Dada una arista $e = \{u, v\} \in E$, se define la operación eliminación de e en G:

$$Delete(e, G) = H$$

donde $H = (V, E - \{e\})$, esto es, H es el grafo al eliminar la arista e de G.

■ Dada una arista $e = \{u, v\} \in E$ con u < v, se define la operación de contracción de e en G:

$$Contract(e, G) = H$$

donde $H = (V - \{u\}, (E - E') \cup E'')$ es un nuevo grafo tal que $E' = \{\{u, x\} \mid \{u, x\} \in E\}$ y $E'' = \{\{v, x\} \mid \{u, x\} \in E \land x \neq v\}$. Es decir, el grafo que se conforma al "fusionar" u en v: se eliminan las aristas asociadas a u y se agregan a v (notar que no se repiten aristas en el grafo H).

Sea \mathcal{G} el conjunto de todos los grafos finitos no dirigidos G = (V, E) con $V \subseteq \mathbb{N}$. Se define la relación binaria \preceq sobre \mathcal{G} tal que $H \preceq G$ si existe una secuencia de operaciones de eliminación o contracción $\mathrm{OP}_1, \mathrm{OP}_2, \ldots, \mathrm{OP}_n \in \{\mathrm{Delete}, \mathrm{Contract}, \epsilon\}$ (ϵ significa no realizar operación) y aristas e_1, e_2, \ldots, e_n tales que:

$$H = \mathrm{OP}_1(e_1, \mathrm{OP}_2(e_2, \ldots, \mathrm{OP}_n(e_n, G) \ldots))$$

En otras palabras, una secuencia de operaciones de eliminación y contracción que transforman a G en H.

- 1. Demuestre que \leq es un orden parcial sobre \mathcal{G} .
- 2. Demuestre que \leq NO es un orden total sobre \mathcal{G} .

Pregunta 3

Un orden total (A, \preceq) se dice bien ordenado si todo conjunto $B \subseteq A$ tiene un elemento mínimo. Una cadena descendiente infinita es una secuencia infinita a_1, a_2, a_3, \ldots en A tal que $a_{i+1} \preceq a_i$ y $a_{i+1} \neq a_i$ para todo $i \geq 1$.

Demuestre que (A, \preceq) está bien ordenado si, y solo si, (A, \preceq) NO tiene cadenas descendientes infinitas.