MA 238 — Fall 2018 — Dr. Clontz

	Name:					Take-Home Exercise	
	J#:			Team:		rake-nome Exercise	
5	Standard: AM	Assigned:	11-15	Due:	11-20		Mark:

Available to students with credit for S2 by 11-15.

Suppose the population of bluegill and greenfish is modeled by the following system of ODEs:

$$\frac{dB}{dt} = 0.2B - 0.004B^2 - 0.005BG$$

$$\frac{dG}{dt} = 0.24G - 0.003G^2 - 0.008BG$$

Draw the isoclines for this model in the first quadrant of the plane. Then use a phase plane to determine the long-term viability of each species (both survive, both die out, or one survives as the other dies out), assuming the current population is 6 bluegill and 42 greenfish.