Introduction to Algebra

Carson James

1

Contents

Notation Preface		vii	
		1	
1	Set Theory 1.1 Operations and Relations	3 . 3	
2	Model Theory 2.1 Introduction	. 5	
3	Lattices 3.1 Closure Operators	. 7	
4	Universal Algebra 4.1 Introduction	. 12	
5	Groups 5.0.1 Direct Products 5.1 Rings 5.2 Modules 5.2.1 Introduction 5.3 Fields 5.4 Vector Spaces 5.5 Appendix 5.5.1 Monoids	. 17 . 18 . 18 . 21 . 22	
\mathbf{A}	Summation	23	
В	Asymptotic Notation	25	
\mathbf{C}	Categories	27	
D	Vector Spaces D.1 Introduction	. 30 . 31	

vi *CONTENTS*

Notation

 $\begin{array}{ll} \mathcal{M}_+(X,\mathcal{A}) & \text{ finite measures on } (X,\mathcal{A}) \\ v & \text{ velocity} \end{array}$

viii Notation

Preface

cc-by-nc-sa

2 Notation

Chapter 1

Set Theory

1.1 Operations and Relations

Definition 1.1.0.1.

- We define $[0] := \emptyset$ and for $k \in \mathbb{N}$, we define $[k] := \{1, \dots, k\}$.
- Let S be a set and $k \in \mathbb{N}_0$. We define the **set of** k-tupels with entries in S, denoted S^k , by

$$S^k := \{u : [k] \to S\}$$

• Let S be a set. We define the set of all tuples with entries in S, denoted S^* , by

$$S^* := \bigcup_{k \in \mathbb{N}_0} S^k$$

• Let S be a set and $k \in \mathbb{N}_0$. We define the **set of** k-ary operation on S, denoted $\mathcal{F}^k(S)$, by $\mathcal{F}^k(S) := S^{(S^k)}$. We define the **set of finitary operations on** S, denoted $\mathcal{F}^*(S)$, by

$$\mathcal{F}^*(S) := \bigcup_{k \in \mathbb{N}_0} \mathcal{F}^k(S)$$

• Let S be a set. We define the **operation arity map**, denoted arity: $\mathcal{F}^*(S) \to \mathbb{N}_0$, by

arity
$$f := k$$
, $f \in \mathcal{F}^k(S)$

• Let S be a set, $\mathcal{F} \subset \mathcal{F}^*(S)$ and $k \in \mathbb{N}_0$. We define the k-ary members of \mathcal{F} , denoted \mathcal{F}_k , by

$$\mathcal{F}_k := \mathcal{F} \cap \mathcal{F}^k(S)$$

• Let S be a set and $k \in \mathbb{N}_0$. We define the **set of** k-ary relations on S, denoted $\mathcal{R}^k(S)$, by $\mathcal{R}^k(S) := \mathcal{P}(S^k)$. We define the **set of finitary relations on** S, denoted $\mathcal{R}^*(S)$, by

$$\mathcal{R}^*(S) := \bigcup_{k \in \mathbb{N}_0} \mathcal{R}^k(S)$$

• Let S be a set. We define the **arity map**, denoted arity: $\mathcal{R}^*(S) \to \mathbb{N}_0$, by

arity
$$R := k$$
, $f \in \mathcal{R}^k(S)$

• Let S be a set, $\mathcal{R} \subset \mathcal{R}^*(S)$ and $k \in \mathbb{N}_0$. We define the k-ary members of \mathcal{R} , denoted \mathcal{R}_k , by

$$\mathcal{R}_k := \mathcal{R} \cap \mathcal{R}^k(S)$$

Definition 1.1.0.2. Let S be a set, $\mathcal{F} \subset \mathcal{F}^*(S)$ and $C \subset S$. Then C is said to be \mathcal{F} -closed if for each $k \in \mathbb{N}_0$, $f \in \mathcal{F}_k$ and $a_1, \ldots, a_k \in C$, $f(a_1, \ldots, a_k) \in C$.

Exercise 1.1.0.3. Let S be a set, $\mathcal{F} \subset \mathcal{F}^*(S)$ and $\mathcal{C} \subset \mathcal{P}(S)$. If for each $C \in \mathcal{C}$, C is \mathcal{F} -closed, then $\bigcap_{C \in \mathcal{C}} C$ is \mathcal{F} -closed

Proof. Suppose that for each $C \in \mathcal{C}$, C is \mathcal{F} -closed. Let $k \in \mathbb{N}_0$, $f \in \mathcal{F}_k$, $a_1, \ldots, a_k \in \bigcap_{C \in \mathcal{C}} C$ and $C_0 \in \mathcal{C}$. Since $C_0 \in \mathcal{C}$, we have that

$$a_1, \dots, a_k \in \bigcap_{C \in \mathcal{C}} C$$

$$\subset C_0$$

Since C_0 is \mathcal{F} -closed, we have that $f(a_1,\ldots,a_k)\in C_0$. Since $C_0\in \mathcal{C}$ is arbitrary, we have that for each $C\in \mathcal{C}$, $f(a_1,\ldots,a_k)\in C$. Hence $f(a_1,\ldots,a_k)\in\bigcap_{C\in\mathcal{C}}C$. Since $k\in\mathbb{N}_0$ and $a_1,\ldots,a_k\in\bigcap_{C\in\mathcal{C}}C$ are arbitrary, we have that $\bigcap_{C\in\mathcal{C}}C$ is \mathcal{F} -closed.

Chapter 2

Model Theory

2.1 Introduction

Chapter 3

Lattices

Definition 3.0.0.1. Let L be a set and $\wedge, \vee : L^2 \to L$. Then (L, \wedge, \vee) is said to be a **lattice** if for each $x, y, z \in L$,

- 1. $(x \lor y) \lor z = x \lor (y \lor z)$ and $(x \land y) \land z = x \land (y \land z)$,
- 2. $x \lor y = y \lor x$ and $x \land y = y \land x$,
- 3. $x \lor x = x$ and $x \land x = x$,
- 4. $x \lor (x \land y) = x$ and $x \land (x \lor y) = x$

3.1 Closure Operators

Definition 3.1.0.1. Let A be a set and $C: \mathcal{P}(A) \to \mathcal{P}(A)$. Then C is said to be a **closure operator on** A if for each $X, Y \in \mathcal{P}(A)$,

- 1. $X \subset C(X)$,
- 2. $C^2(X) = C(X)$,
- 3. $X \subset Y$ implies that $C(X) \subset C(Y)$.

Exercise 3.1.0.2. Let A be a set and $C: \mathcal{P}(A) \to \mathcal{P}(A)$. Suppose that C is a closure operator on A. Then for each $(E_j)_{j \in J} \subset \mathcal{P}(A)$,

1.
$$C\left(\bigcap_{j\in J} E_j\right) \subset \bigcap_{k\in J} C(E_k),$$

2.
$$\bigcup_{k \in J} C(E_k) \subset C\left(\bigcup_{j \in J} E_j\right)$$
.

Proof. Let $(E_j)_{j\in J}\subset \mathcal{P}(A)$.

1. Let $k \in J$. Then $\bigcap_{j \in J} E_j \subset E_k$. So $C\left(\bigcap_{j \in J} E_j\right) \subset C(E_k)$. Since $k \in J$ is arbitrary, we have that

$$C\left(\bigcap_{j\in J} E_j\right) \subset \bigcap_{k\in J} C(E_k).$$

2. Let $k \in J$. Then $E_k \subset \bigcup_{j \in J} E_j$. Hence $C(E_k) \subset C\left(\bigcup_{j \in J} E_j\right)$. Since $k \in J$ is arbitrary, we have that

$$\bigcup_{k \in J} C(E_k) \subset C\bigg(\bigcup_{j \in J} E_j\bigg)$$

Definition 3.1.0.3. Let A be a set, $C: \mathcal{P}(A) \to \mathcal{P}(A)$ and $X \subset A$. Suppose that C is a closure operator on A. Then X is said to be C-closed if C(X) = X.

Definition 3.1.0.4. Let A be a set and $C: \mathcal{P}(A) \to \mathcal{P}(A)$. Suppose that C is a closure operator on A. We define the lattice of C-closed subsets of A, denoted $L_C(A) \subset \mathcal{P}(A)$, by

$$L_C(A) := \{X \subset A : X \text{ is } C\text{-closed}\}$$

٠

Exercise 3.1.0.5. Let A be a set and $C: \mathcal{P}(A) \to \mathcal{P}(A)$. Suppose that C is a closure operator on A. Then

- 1. for each $(E_j)_{j\in J}\subset L_C(A), \bigcap_{j\in J}E_j\in L_C(A)$ and $\bigcup_{j\in J}E_j\in L_C(A)$.
- 2. $(L_C(A), \subset)$ is a complete lattice define complete lattice

$$C\bigg(\bigcap_{j\in J} E_j\bigg) = \bigcap_{j\in J} E_j$$

and

$$C\left(\bigcup_{j\in J} E_j\right) = \bigcup_{j\in J} E_j.$$

Proof.

- 1. Let $(E_i)_{i \in J} \subset L_C(A)$.
 - A previous exercise Exercise B.0.0.3 implies that

$$C\left(\bigcap_{j\in J} E_j\right) \subset \bigcap_{k\in J} C(E_k)$$

$$= \bigcap_{k\in J} E_k$$

$$\subset C\left(\bigcap_{k\in J} E_k\right).$$

Hence
$$C\left(\bigcap_{j\in J} E_j\right) = \bigcap_{k\in J} E_k$$
.

• A previous exercise Exercise B.0.0.3 implies that

$$\bigcup_{k \in J} E_k = \bigcup_{k \in J} C(E_k)$$

$$\subset C \bigg(\bigcup_{j \in J} E_j \bigg)$$

$$\subset \bigcap_{k \in J} C(E_k)$$

$$= \bigcap_{k \in J} E_k$$

$$\subset C \bigg(\bigcap_{k \in J} E_k \bigg).$$

Hence
$$C\left(\bigcap_{j\in J} E_j\right) = \bigcap_{k\in J} E_k$$
.

2.

FINISH!!!, don't need to show second part,

Definition 3.1.0.6. then is said to be an algebraic closure operator on A if

10 CHAPTER 3. LATTICES

Chapter 4

Universal Algebra

4.1 Introduction

Definition 4.1.0.1. Let $A \in \text{Obj}(\mathbf{Set})$ be a set and J an index set. Suppose that $A \neq \emptyset$. Let $f \in \mathcal{F}^*(A)^J$. Then (A, f) is said to be an **algebra with universe** A **and basic operations** f.

Definition 4.1.0.2. Let (A, f) be an algebra. Set J := dom f. We define the **similarity type of** f, denoted $\rho^f : J \to \mathbb{N}_0$, by $\rho^f(j) := \text{arity } f_j$.

Definition 4.1.0.3. Let (A, f), (B, g) be algebras. Then (A, f) and (B, g) are said to be **type similar** if $\rho^f = \rho^g$.

Note 4.1.0.4. Set $J_f := \text{dom } f$ and $J_g := \text{dom } g$. Then (A, f) and (B, g) are type similar iff $J_f = J_g$ and for each $j \in J_f$, arity $f_j = \text{arity } g_j$.

maybe define similarity type ρ first and then stipulate algebras belonging to the set of algebras of that type, this way we dont need ρ^f , only ρ .

4.2 Subalgebras

Definition 4.2.0.1. Let (A, f) be an algebra and $B \subset A$. Then B is said to be an f-subuniverse of A if B is f-closed.

Definition 4.2.0.2. Let (A, f) be an algebra and $B \subset A$. Set $S := \{S \subset A : S \text{ is an } f\text{-subuniverse of } A \text{ and } B \subset S\}$. We define the f-subuniverse of A generated by B, denoted Sg(B, f), by

$$\operatorname{Sg}(B,f) := \bigcap_{S \in \mathcal{S}} S$$

Exercise 4.2.0.3. Let (A, f) be an algebra and $B \subset A$. Then

- 1. Sg(B, f) is an f-subuniverse of A
- 2. $B \subset \operatorname{Sg}(B, f)$.

Proof.

- 1. Set $S := \{S \subset A : S \text{ is an } f\text{-subuniverse of } A\}$. By construction, for each $S \in S$, S is f-closed. Since $\operatorname{Sg}(B,f) = \bigcap_{S \in S} S$, Exercise B.0.0.3 A previous exercise in the set theory section implies that $\operatorname{Sg}(B,f)$ is f-closed. Hence $\operatorname{Sg}(B,f)$ is an f-subuniverse of A.
- 2. By construction, for each $S \in S$, $B \subset S$. Thus

$$B \subset \bigcap_{S \in \mathcal{S}} S$$
$$= \operatorname{Sg}(B, f).$$

Exercise 4.2.0.4. Let (A, f) be an algebra. Then $Sg(\cdot, f)$ is an algebraic closure operator on A.

 Γ

Definition 4.2.0.5. Let (A, f), (B, g) be algebras. Suppose that (A, f) and (B, g) are type similar. Set J := dom f and $\rho := \rho^f$. Then (B, g) is said to be a **subalgebra** of (A, f) if

- 1. $A \subset B$
- 2. for each $j \in J$, $f_i|_{B^{\rho(j)}} = g_i$.

Exercise 4.2.0.6. Let (A, f), (B, g) be algebras. Suppose that (A, f) and (B, g) are type similar. If (B, g) is a sub algebra of (A, f), then B is a subuniverse of A.

Proof. Set J := dom f. Suppose that (B, g) is a sub algebra of (A, f). Let $j \in J$. Then for each $a_1, \ldots, a_{\rho^f(j)} \in B$,

$$f_{j}(a_{1},...,a_{\rho^{f}(j)}) = f_{j}|_{B^{\rho^{f}(j)}}(a_{1},...,a_{\rho^{f}(j)})$$

$$= g_{j}((a_{1},...,a_{\rho^{f}(j)}))$$

$$\in B.$$

Since $j \in J$ is arbitrary, we have that B is f-closed. Thus B is a subuniverse of A.

4.3. HOMOMORPHISMS

4.3 Homomorphisms

Definition 4.3.0.1. Let (A, f), (B, g) be algebras and $h: A \to B$. Suppose that (A, f) and (B, g) are type similar and set J := dom f, $\rho := \rho^f$. Then h is said to be a **homomorphism** if for each $j \in J$, and $a_1, \ldots, a_{\rho(j)}$,

$$h(f_j(a_1,\ldots,a_{\rho(j)})) = g_j(h(a_1),\ldots,h(a_{\rho(j)})).$$

Chapter 5

Groups

5.0.1 Direct Products

Definition 5.0.1.1. Let G, H be groups. Define a product $*: (G \times H) \times (G \times H) \to G \times H$ by

$$(x_1, y_1) * (x_2, y_2) = (x_1x_2, y_1y_2)$$

Then $(G \times H, *)$ is called the **direct product of** G **and** H.

Exercise 5.0.1.2. Let G, H be groups. Then the direct product $G \times H$ is a group.

Proof. Clear.

Definition 5.0.1.3. Let G, H be groups. Define $\pi_G : G \times H \to G$ and $\pi_H : G \times H \to H$ by $\pi_G(x, y) = x$ and $\pi_H(x, y) = y$. Then π_G and π_H are respectively called the **projection maps onto** G and H.

Exercise 5.0.1.4. Let G, H be groups. Then

- 1. $\pi_G: G \times H \to G$ and $\pi_H: G \times H \to H$ are homomorphisms
- 2. $\ker \pi_G \cong H$ and $\ker \pi_H \cong G$

Proof.

- 1. Clear
- 2. Define $\iota_G: G \to \ker \pi_H$ by

$$\iota_G(x) = (x, e_H)$$

Then ι_G is an isomorphism. Similarly, we can define $\iota_H: H \to \ker \pi_G$ and show that it is an isomorphism.

Definition 5.0.1.5. Let G, H, K be groups, $\phi \in \text{Hom}(G, K)$ and $\psi \in \text{Hom}(H, K)$. We define $\phi \times \psi : G \times H \to K$ by $\phi \times \psi(x, y) = \phi(x)\psi(y)$

Exercise 5.0.1.6. Let G, H, K be groups, $\phi \in \text{Hom}(G, K)$ and $\psi \in \text{Hom}(H, K)$. If K is abelian, then $\phi \times \psi \in Hom(G \times H, K)$.

Proof. Let $x_1, x_2 \in G$ and $y_1, y_2 \in H$. Then

$$\begin{split} \phi \times \psi [(x_1, y_1)(x_2, y_2)] &= \phi \times \psi (x_1 x_2, y_1 y_2) \\ &= \phi (x_1 x_2) \psi (y_1 y_2) \\ &= \phi (x_1) \phi (x_2) \psi (y_1) \psi (y_2) \\ &= \phi (x_1) \psi (y_1) \phi (x_2) \psi (y_2) \\ &= [\phi \times \psi (x_1, y_1)] [\phi \times \psi (x_2, y_2)] \end{split}$$

П

16 CHAPTER 5. GROUPS

Exercise 5.0.1.7. Let G, H, K be groups and $\phi \in \text{Hom}(G \times H, K)$. Then there exist $\phi_G \in \text{Hom}(G, K)$, $\phi_H \in \text{Hom}(H, K)$ such that $\phi_G \times \phi_H = \phi$.

Proof. Suppose that K is abelian. Define $\iota_G \in \operatorname{Hom}(G, \ker \pi_H)$ and $\iota_H \in \operatorname{Hom}(H, \ker \pi_G)$ as in part (2) of Exercise 5.0.1.4 Define $\phi_G \in \operatorname{Hom}(G, K)$ and $\phi_H \in \operatorname{Hom}(H, K)$ by $\phi_G = \phi \circ \iota_G$ and $\phi_H = \phi \circ \iota_H$. Let $(x, y) \in G \times H$. Then

$$\phi_G \times \phi_H(x, y) = \phi_G(x)\phi_H(y)$$

$$= \phi \circ \iota_G(x)\phi \circ \iota_H(y)$$

$$= \phi(x, e_H)\phi(e_G, y)$$

$$= \phi(x, y)$$

So $\phi = \phi_G \times \phi_H$

5.1. RINGS 17

5.1 Rings

Definition 5.1.0.1. Let R be a set and $+, *: R \times R \to R$ (we write a + b and ab in place of +(a, b) and *(a, b) respectively). Then R is said to be a **ring** if for each $a, b, c \in R$,

- 1. R is an abelian group with respect to +. The identity element with respect to + is denoted by 0.
- 2. R is a monoid with respect to *. The identity element of R with respect to * is denoted 1.
- 3. R is commutative with respect to *.
- 4. * distributes over +.

Definition 5.1.0.2. Let R be a ring and $I \subset R$. Then I is said to be an **ideal** of R if for each $a \in R$ and $x, y \in I$,

- 1. $x + y \in I$
- $2. \ ax \in I$

Definition 5.1.0.3. Let R be a ring and $A, B \subset R$. We define the **product** of A and B, denoted AB, to be

$$AB = \left\{ \sum_{i=1}^{n} a_i b_i : a_i \in A, b_i \in B, n \in \mathbb{N} \right\}$$

Exercise 5.1.0.4. Let R be a ring and $I \subset R$. Then I is an ideal of R iff $RI \subset I$.

Proof. Suppose that $RI \subset I$. Let $a \in R$ and $x, y \in I$. Then by assumption $x + y = 1x + 1y \in I$ and $ax \in I$. So I is an ideal of R

Conversely, suppose that I is an ideal of R. Let $a_1, \dots, a_n \in R$ and $x_1, \dots, x_n \in I$. Then by assumption, for each $i = 1, \dots, n$, $a_i x_i \in I$ and therefore $\sum_{i=1}^n a_i b_i \in I$. Hence $RI \subset I$.

18 CHAPTER 5. GROUPS

5.2 Modules

5.2.1 Introduction

Definition 5.2.1.1. Let R be a ring, M a set, $+: M \times M \to M$ and $*: R \times M \to M$ (we write rx in place of *(r,x)). Then M is said to be an R-module if

- 1. M is an abelian group with respect to +. The identity element of M with respect to + is denoted by 0.
- 2. for each $r \in \mathbb{R}, *(r, \cdot)$ is a group endomorphism of M
- 3. for each $x \in M$, $*(\cdot, x)$ is a group homomorphism from R to M
- 4. * is a monoid action of R on M

Note 5.2.1.2. For the remainder of this section, we assume that R is a commutative ring.

Exercise 5.2.1.3. Let M be an R-module. Then for each $r \in R$ and $x \in M$,

- 1. r0 = 0
- 2. 0x = 0
- 3. (-1)x = -x

Proof. Let $r \in R$ and $x \in M$. Then

1.

$$r0 = r(0+0)$$
$$= r0 + r0$$

which implies that r0 = 0.

2.

$$0x = (0+0)x$$
$$= 0x + 0x$$

which implies that 0x = 0.

3.

$$(-1)x + x = (-1)x + 1x$$
$$= (-1+1)x$$
$$= 0x$$
$$= 0$$

which implies that (-1)x = -x.

Definition 5.2.1.4. Let M an R-module and $N \subset M$. Then N is said to be a **submodule** of M if for each $r \in R$ and $x, y \in N$, we have that $rx \in N$ and $x + y \in N$.

Definition 5.2.1.5. Let M be an R-module. We define $S(M) = \{N \subset M : N \text{ is a submodule of } M\}$.

Exercise 5.2.1.6. Let M be an R-module and $N \in \mathcal{S}(M)$. Then N is a subgroup of M.

Proof. Let $x, y \in M$. Then $x - y = 1x + (-1)y \in N$. So N is a subgroup of M.

Definition 5.2.1.7. Let M be an R-module and $N \in \mathcal{S}(M)$. We define

5.2. MODULES 19

- 1. $M/N = \{x + N : x \in M\}$
- 2. $+: M/N \times M/N \to M/N$ by

$$(x + N) + (y + N) = (x + y) + N$$

3. $*: R \times M/N \to M/N$ by

$$r(x+N) = (rx) + N$$

Under these operations (see next exercise), M/N is an R-module known as the **quotient module** of M by N.

Exercise 5.2.1.8. Let M be an R-module and $N \in \mathcal{S}(M)$. Then

- 1. the monoid action defined above is well defined
- 2. the quotient M/N is an R-module

Proof.

1. Let $r \in R$ and $x + N, y + N \in M/N$. Recall from group theory that x + N = y + N iff $x - y \in N$. Suppose that x + N = y + N. Then $x - y \in N$ and there exists $n \in N$ such that x - y = n. Therefore

$$rx - ry = r(x - y)$$
$$= rn$$
$$\in N$$

So rx + N = ry + N.

2. Properties (1) - (4) in the definition of a module are easily shown to be satisfied for M/N since they are true for M.

Definition 5.2.1.9. Let M and N be R-modules and $\phi: M \to N$. Then ϕ is said to be a **module homomorphism** if for each $r \in R$ and $x, y \in M$

- 1. $\phi(rx) = r\phi(x)$
- 2. $\phi(x+y) = \phi(x) + \phi(y)$

Exercise 5.2.1.10. Let M and N be R-modules and $\phi: M \to N$. Then ϕ is a iff for each $r \in R$ and $x, y \in M$, $\phi(x+ry) = \phi(x) + r\phi(y)$.

Proof. Clear. \Box

Exercise 5.2.1.11. Let M and N be R-modules and $\phi: M \to N$ a homomorphism. Then

- 1. $\ker \phi$ is a submodule of M
- 2. Im ϕ is a submodule of N

Proof. Let $r \in R$, $x, y \in \ker \phi$ and $w, z \in \operatorname{Im} \phi$. Then

1.

$$\phi(rx) = r\phi(x)$$

$$= r0$$

$$= 0$$

So $rx \in \ker \phi$. Group theory tells us that $\ker \phi$ is a subgroup of M, so $x + y \in \ker \phi$. Hence $\ker \phi$ is a submodule of M.

2. Similar.

20 CHAPTER 5. GROUPS

Definition 5.2.1.12. Let M be an R-module and $A \subset M$. We define the **submodule of** M **generated by** A, denoted $\operatorname{span}(A)$, to be

$$\mathrm{span}(A) = \bigcap_{N \in \mathcal{S}(M)} N$$

Exercise 5.2.1.13. Let M be an R-module and $A \subset M$. Then span $(A) \in \mathcal{S}(M)$

Proof. Let $r \in R$ and $x, y \in \text{span}(A)$. Basic group theory tells us that span(A) is a subgroup of M. So $x + y \in \text{span}(A)$. For $N \in \mathcal{S}(M)$, by definition we have $x \in N$ and therefore $rx \in N$. So $rx \in \text{span}(A)$. Hence span(A) is a submodule of M. \square

Exercise 5.2.1.14. Let M be an R-module and $A \subset M$. If $A \neq \emptyset$, then

$$\operatorname{span}(A) = \left\{ \sum_{i=1}^{n} r_i a_i : r_i \in R, a_i \in A, n \in \mathbb{N} \right\}$$

Proof. Clearly

Definition 5.2.1.15. Let M

5.3. FIELDS 21

5.3 Fields

22 CHAPTER 5. GROUPS

5.4 Vector Spaces

5.5 Appendix

5.5.1 Monoids

Definition 5.5.1.1. Let G be a set and $*: G \times G \to G$ (we write ab in place of *(a,b)). Then

- 1. * is called a **binary operation** on G
- 2. * is said to be **associative** if for each $x, y, z \in G$, (xy)z = x(yz)
- 3. * is said to be **commutative** if for each $x, y \in G$, xy = yx

Definition 5.5.1.2. Let G be a set, $*: G \times G \to G$, $e, x, y \in G$. Then e is said to be an **identity element** if for each $x \in G$, ex = xe = x.

Definition 5.5.1.3. Let G be a set and $*: G \times G \to G$. Then G is said to be a **monoid** if

- 1. * is associative
- 2. there exits $e \in G$ such that e is an identity element.

Exercise 5.5.1.4. Let G be a monoid. Then the identity element is unique.

Proof. Let $e, f \in G$. Suppose that e and f are identity elements. Then e = ef = f.

Note 5.5.1.5. Unless otherwise specified, we will denote the identity element of a monoid by e.

Definition 5.5.1.6. Let G be a monoid, X a set and $*: G \times X \to X$ (we write gx in place of *(g,x)). Then * is said to be a **monoid action** of G on X if for each $g, h \in G$ and $x \in X$,

- 1. (gh)x = g(hx)
- $2. \ ex = x$

Appendix A

Summation

Definition A.0.0.1. Let $f: X \to [0, \infty)$, Then we define

$$\sum_{x \in X} f(x) := \sup_{\substack{F \subset X \\ F \text{ finite}}} \sum_{x \in F} f(x)$$

This definition coincides with the usual notion of summation when X is countable. For $f: X \to \mathbb{C}$, we can write f = g + ih where $g, h: X \to \mathbb{R}$. If

$$\sum_{x \in X} |f(x)| < \infty,$$

then the same is true for $g^+,g^-,h^+,h^-.$ In this case, we may define

$$\sum_{x \in X} f(x)$$

in the obvious way.

The following note justifies the notation $\sum_{x \in X} f(x)$ where $f: X \to \mathbb{C}$.

Note A.0.0.2. Let $f: X \to \mathbb{C}$ and $\alpha: X \to X$ a bijection. If $\sum_{x \in X} |f(x)| < \infty$, then $\sum_{x \in X} f(\alpha(x)) = \sum_{x \in X} f(x)$.

Appendix B

Asymptotic Notation

Definition B.0.0.1. Let X be a topological space, Y, Z be normed vector spaces, $f: X \to Y$, $g: X \to Z$ and $x_0 \in X \cup \{\infty\}$. Then we write

$$f = o(g)$$
 as $x \to x_0$

if for each $\epsilon > 0$, there exists $U \in \mathcal{N}(x_0)$ such that for each $x \in U$,

$$||f(x)|| \le \epsilon ||g(x)||$$

Exercise B.0.0.2. Let X be a topological space, Y, Z be normed vector spaces, $f: X \to Y$, $g: X \to Z$ and $x_0 \in X \cup \{\infty\}$. If there exists $U \in \mathcal{N}(x_0)$ such that for each $x \in U \setminus \{x_0\}$, g(x) > 0, then

$$f = o(g) \text{ as } x \to x_0 \quad \text{iff} \quad \lim_{x \to x_0} \frac{\|f(x)\|}{\|g(x)\|} = 0$$

Exercise B.0.0.3. Let X and Y a be normed vector spaces, $A \subset X$ open and $f: A \to Y$. Suppose that $0 \in A$. If $f(h) = o(\|h\|)$ as $h \to 0$, then for each $h \in X$, f(th) = o(|t|) as $t \to 0$.

Proof. Suppose that $f(h) = o(\|h\|)$ as $h \to 0$. Let $h \in X$ and $\epsilon > 0$. Choose $\delta' > 0$ such that for each $h' \in B(0, \delta')$, $h' \in A$ and

$$||f(h')|| \le \frac{\epsilon}{||h|| + 1} ||h'||$$

Choose $\delta > 0$ such that for each $t \in B(0, \delta)$, $th \in B(0, \delta')$. Let $t \in B(0, \delta)$. Then

$$||f(th)|| \le \frac{\epsilon}{||h|| + 1} |t| ||h||$$
$$< \epsilon |t|$$

So f(th) = o(|t|) as $t \to 0$.

Definition B.0.0.4. Let X be a topological space, Y, Z be normed vector spaces, $f: X \to Y$, $g: X \to Z$ and $x_0 \in X \cup \{\infty\}$. Then we write

$$f = O(q)$$
 as $x \to x_0$

if there exists $U \in \mathcal{N}(x_0)$ and $M \geq 0$ such that for each $x \in U$,

$$||f(x)|| \le M||g(x)||$$

Appendix C

Categories

move to notation?

Definition C.0.0.1. We define the category of topological measure spaces, denoted \mathbf{TopMsr}_+ , by

- $\bullet \ \operatorname{Obj}(\mathbf{TopMsr}_+) := \{(X,\mu) : X \in \operatorname{Obj}(\mathbf{Top}) \text{ and } \mu \in M(X)\}$
- $\bullet \ \operatorname{Hom}_{\mathbf{TopMsr}_+}((X,\mu),(Y,\nu)) := \operatorname{Hom}_{\mathbf{Top}}(X,Y) \cap \operatorname{Hom}_{\mathbf{Msr}_+}((X,\mathcal{B}(X),\mu),(Y,\mathcal{B}(Y),\nu))$

Appendix D

Vector Spaces

it might be better to cover some category theory and write everything in terms of $\operatorname{Hom}_{\mathbf{Vect}_{\mathbb{K}}}$ and $\operatorname{Obj}(\mathbf{Vect}_{\mathbb{K}})$

D.1 Introduction

Definition D.1.0.1. Let X be a set, \mathbb{K} a field, $+: X \times X \to X$ and $\cdot: \mathbb{K} \times X \to X$. Then $(X, +, \cdot)$ is said to be a \mathbb{K} -vector space if

1. (X, +) is an abelian group

2.

Definition D.1.0.2. Let $(X, +_X, \cdot_X)$ and $(E, +_E, \cdot_E)$ be vector spaces. Suppose that $E \subset X$. Then $(E, +_E, \cdot_E)$ is said to be a subspace of X if

- 1. $+_E = +_X|_{E \times E}$
- 2. $\cdot_E = \cdot_X|_{\mathbb{K} \times E}$

Exercise D.1.0.3. Let $(X, +_X, \cdot_X)$ and $(E, +_E, \cdot_E)$ be vector spaces. Suppose that $E \subset X$.

Exercise D.1.0.4. Let $(X, +, \cdot)$ be a vector space and $E \subset X$. Then E is a subspace of X

Definition D.1.0.5. Let X be a vector space and $(E_j)_{j\in J}$ a collection of subspaces of X. Then $\bigcap_{j\in J} E_j$ is a subspace of X.

Proof. Set $E := \bigcap_{j \in J} E_j$. Let $x, y \in E$ and $\lambda \in \mathbb{K}$. Then for each $j \in J$, $x, y \in E_j$. Since for each $j \in J$, E_j is a subspace of X, we have that for each $j \in J$, $x + \lambda y \in E_j$. Thus $x + \lambda y \in E$. Since $x, y \in E$ and $\lambda \in \mathbb{K}$ are arbitrary, (cite exercise here) we have that E is a subspace of X.

Definition D.1.0.6. Let X, Y be vector spaces and $T: X \to Y$. Then T is said to be **linear** if for each $x_1, x_2 \in X$ and $\lambda \in \Lambda$,

- 1. $T(x_1 + x_2) = T(x_1) + T(x_2)$,
- 2. $T(\lambda x_1) = \lambda T(x_1)$.

We define $L(X;Y) := \{T : X \to Y : T \text{ is linear}\}.$

Exercise D.1.0.7. Let X, Y be vector spaces and $T: X \to Y$. Then T is linear iff for each $x_1, x_2 \in X$ and $\lambda \in \Lambda$,

$$T(x_1 + \lambda x_2) = T(x_1) + \lambda T(x_2)$$

Proof. Clear. (add details)

Definition D.1.0.8. define addition/scalar multiplication of linear maps

Exercise D.1.0.9. Let X, Y be vector spaces. Then L(X; Y) is a \mathbb{K} -vector space.

Proof. Clear \Box

Definition D.1.0.10. Let X be a vector space over \mathbb{K} and $T: X \to \mathbb{K}$. Then T is said to be a **linear functional on** X if T is linear. We define the **dual space of** X, denoted X^* , by $X^* := \{T: X \to \mathbb{K} : T \text{ is linear}\}$.

Exercise D.1.0.11. Let X be a vector space. Then X^* is a vector space.

Proof. Clear. \Box

D.2 Bases

Definition D.2.0.1. Let X be a vector space and $(e_{\alpha})_{\alpha \in A} \subset X$. Then $(e_{\alpha})_{\alpha \in A}$ is said to be

- linearly independent if for each $(\alpha_j)_{j=1}^n \subset A$, $(\lambda_j)_{j=1}^n \subset \mathbb{K}$, $\sum_{j=1}^n \lambda_j e_{\alpha_j} = 0$ implies that for each $j \in [n]$, $\lambda_j = 0$.
- a Hamel basis for X if $(e_{\alpha})_{\alpha \in A}$ is linearly independent and $\operatorname{span}(e_{\alpha})_{\alpha \in A} = X$.

Exercise D.2.0.2. every vector space has a Hamel basis

Proof.

Exercise D.2.0.3.

Exercise D.2.0.4. Let X be a K-vector space and $x \in X$. Then x = 0 iff for each $\phi \in X^*$, $\phi(x) = 0$.

Proof.

- (\Longrightarrow): Suppose that x=0. Linearity implies that for each $\phi \in X^*$ $\phi(x)=0$.
- (\Leftarrow): Conversely, suppose that $x \neq 0$. Define $\epsilon_x : \operatorname{span}(x) \to \mathbb{K}$ by $\epsilon_x(\lambda x) := \lambda$. Let $u, v \in \operatorname{span}(x)$. Then there exists $\lambda_u, \lambda_v \in \mathbb{K}$ such that $u = \lambda_u x$ and $v = \lambda_v x$. Suppose that u = v. Then

$$(\lambda_u - \lambda_v)x = \lambda_u x - \lambda_v x$$
$$= u - v$$
$$= 0$$

Since $x \neq 0$, we have that $\lambda_u - \lambda_v = 0$ and therefore $\lambda_u = \lambda_v$. Hence

$$\lambda_u = \epsilon_x(u)$$
$$= \epsilon_x(v)$$
$$= \lambda_v.$$

Thus ϵ_x is well defined.

D.3. MULTILINEAR MAPS 31

D.3 Multilinear Maps

Definition D.3.0.1. Let X_1, \dots, X_n, Y be vector spaces and $T : \prod_{j=1}^n X_j \to \mathbb{K}$. Then T is said to be **multilinear** if for each $j_0 \in [n]$ and $(x_j)_{j=1}^n \in \prod_{j=1}^n X_j, T(x_1, \dots, x_{j_0-1}, \cdot, x_{j_0+1})$ is linear.

$$L^{n}(X_{1},\ldots,X_{n};Y) = \left\{ T : \prod_{j=1}^{n} X_{j} \to Y : T \text{ is multilinear} \right\}$$

If $X_1 = \cdots = X_n = X$, we write $L^n(X; Y)$ in place of $L^n(X, \ldots, X; Y)$.

Definition D.3.0.2. define addition and scalar mult of multilinear maps

Exercise D.3.0.3. Let X_1, \dots, X_n, Y be vector spaces. Then $L^n(X_1, \dots, X_n; Y)$ is a \mathbb{K} -vector space.

Proof. content...

Exercise D.3.0.4. Let X_1, \dots, X_n, Y, Z be \mathbb{K} -vector spaces, $\alpha \in L^n(X_1, \dots, X_n; Y)$ and $\phi \in L^1(Y; Z)$. Then $\phi \circ \alpha \in L^n(X_1, \dots, X_n; Z)$.

Proof. Let $(x_j)_{j=1}^n \in \prod_{i=1}^n X_j$ and $j_0 \in [n]$. Define $f: X_{j_0} \to Y$ by

$$f(a) := \alpha(x_1, \dots, x_{j_0-1}, a, x_{j_0+1}, \dots, x_n)$$

Since $\alpha \in L^n(X_1, \dots, X_n; Y)$, f is linear. Since ϕ is linear, and $\phi \circ f$ is linear. Since $(x_j)_{j=1}^n \in \prod_{j=1}^n X_j$ and $j_0 \in [n]$ are arbitrary, we have that $\phi \circ \alpha \in L^n(X_1, \dots, X_n; Y)$.

D.4 Tensor Products

Definition D.4.0.1. Let X,Y and T be vector spaces over \mathbb{K} and $\alpha \in L^2(X,Y;T)$. Then (T,α) is said to be a **tensor product of** X **and** Y if for each vector space Z and $\beta \in L^2(X,Y;Z)$, there exists a unique $\phi \in L^1(T;Z)$ such that $\phi \circ \alpha = \beta$, i.e. the following diagram commutes:

Exercise D.4.0.2. Let X,Y,S,T be vector spaces, $\alpha \in L^2(X,Y;S)$ and $\beta \in L^2(X,Y;T)$. Suppose that (S,α) and (T,β) are tensor products of X and Y. Then S and T are isomorphic.

Proof. Since (T, β) is a tensor product of X and Y, $\beta \in L^2(X, Y; T)$ there exists a unique $f \in L^1(T; T)$ such that $f \ circ\beta = \beta$, i.e. the following diagram commutes:

Since $\operatorname{id}_T \in L^1(T;T)$ and $\operatorname{id}_T \circ \beta = \beta$, we have that $f = \operatorname{id}_T$. Since (S,α) is a tensor product of X and Y, there exists a unique $\phi: S \to T$ such that $\phi \circ \alpha = \beta$, i.e. the following diagram commutes:

$$\begin{array}{c} X \times Y \xrightarrow{\alpha} S \\ \downarrow \phi \\ \uparrow \\ T \end{array}$$

Similarly, since (T, β) is a tensor product of X and Y, there exists a unique $\psi : T \to S$ such that $\psi \circ \beta = \alpha$, i.e. the following diagram commutes:

$$\begin{array}{ccc} X \times Y & \xrightarrow{\beta} & T \\ & \downarrow \psi \\ & \downarrow & \\ S & \end{array}$$

Therefore

$$(\phi \circ \psi) \circ \beta = \phi \circ (\psi \circ \beta)$$
$$= \phi \circ \alpha$$
$$= \beta,$$

i.e. the following diagram commutes:

$$X \times Y \xrightarrow{\alpha} S \Longrightarrow X \times Y \downarrow \phi \circ \psi$$

$$X \times Y \xrightarrow{\alpha} S \longrightarrow X \times Y \downarrow \phi \circ \psi$$

$$T \longrightarrow T$$

By uniqueness of $f \in L^1(T;T)$, we have that

$$id_T = f$$
$$= \phi \circ \psi$$

A similar argument implies that $\psi \circ \phi = \mathrm{id}_S$. Hence ϕ and ψ are isomorphisms with $\phi^{-1} = \psi$. Hence S and T are isomorphic.

D.4. TENSOR PRODUCTS

Definition D.4.0.3. Let X, Y be vector spaces, $x \in X$ and $y \in Y$. We define $x \otimes y : X^* \times Y^* \to \mathbb{K}$ by $x \otimes y(\phi, \psi) := \phi(x)\psi(y)$. **Exercise D.4.0.4.** Let X, Y be vector spaces, $x \in X$ and $y \in Y$. Then $x \otimes y \in L^2(X^*, Y^*; \mathbb{K})$.

Proof. Let $\phi_1, \phi_2 \in X^*, \psi \in Y^*$ and $\lambda \in \mathbb{K}$. Then

$$x \otimes y(\phi_1 + \lambda \phi_2, \psi) = [\phi_1 + \lambda \phi_2(x)]\psi(y)$$
$$= \phi_1(x)\psi(y) + \lambda \phi_2(x)\psi(y)$$
$$= x \otimes y(\phi_1, \psi) + \lambda x \otimes y(\phi_2, \psi)$$

Since $\phi_1, \phi_2 \in X^*, \psi \in Y^*$ and $\lambda \in \mathbb{K}$ are arbitrary, we have that for each $\psi \in Y^*, x \otimes y(\cdot, \psi)$ is linear. Similarly for each $\phi \in X^*, x \otimes y(\phi, \cdot)$ is linear. Hence $x \otimes y$ is bilinear and $x \otimes y \in L^2(X^*, Y^*; \mathbb{K})$.

Definition D.4.0.5. Let X, Y be vector spaces. We define

• the **tensor product of** X **and** Y, denoted $X \otimes Y \subset L^2(X^*, Y^*; \mathbb{K})$, by

$$X \otimes Y := \operatorname{span}(x \otimes y : x \in X \text{ and } y \in Y),$$

• the **tensor map**, denoted $\otimes : X \times Y \to X \otimes Y$, by $\otimes (x,y) := x \otimes y$.

Exercise D.4.0.6. Let X, Y be vector spaces, $(x_j)_{j=1}^n \subset X$ and $(y_j)_{j=1}^n \subset Y$. The following are equivalent:

$$1. \sum_{j=1}^{n} x_j \otimes y_j = 0$$

2. for each
$$\phi \in X^*$$
 and $\psi \in Y^*$, $\sum_{j=1}^n \phi(x_j)\psi(y_j) = 0$

3. for each
$$\phi \in X^*$$
, $\sum_{j=1}^n \phi(x_j)y_j = 0$

4. for each
$$\psi \in Y^*$$
, $\sum_{j=1}^n \psi(y_j)x_j = 0$

Proof.

1.
$$(1) \implies (2)$$
:

Suppose that $\sum_{j=1}^{n} x_j \otimes y_j = 0$. Let $\phi \in X^*$ and $\psi \in Y^*$. Then

$$\sum_{j=1}^{n} \phi(x_j)\psi(y_j) = \phi\left(\sum_{j=1}^{n} \psi(y_j)x_j\right)$$

2.

3.

Exercise D.4.0.7. Let X, Y be vector spaces. Then $(X \otimes Y, \otimes)$ is a tensor product of X and Y.

Proof. Let Z be a vector space and $\alpha \in L^2(X,Y;Z)$. Define $\phi: X \otimes Y \to Z$ by $\phi\left(\sum_{j=1}^n \lambda_j x_j \otimes y_j\right) := \sum_{j=1}^n \lambda_j \alpha(x_j,y_j)$.

• (well defined):

Let $u \in X \otimes Y$. Then there exist $(\lambda_j)_{j=1}^n \subset \mathbb{K}$, $(x_j)_{j=1}^n \subset X$, $(y_j)_{j=1}^n \subset Y$ such that $u = \sum_{j=1}^n \lambda_j x_j \otimes y_j$. Suppose that u = 0. Let $\phi \in Z^*$. Then $\phi \circ \alpha \in L^2(X,Y;Z)$.

Bibliography

- [1] Introduction to Algebra
- [2] Introduction to Analysis
- [3] Introduction to Fourier Analysis
- [4] Introduction to Measure and Integration