FILING BY "EXPRESS MAIL" UNDER 37 CFR 1.10

FL803557333US

4/3/02 Date of Deposit

Form PTO-1390 US (REV 10-95)	Department of Commerce Patent and Trademark Office	ATTORNEY'S DOCKET NUMBER HF/5-22102/A/PCT						
TRANSMITTAL LETTER TO 1	U.S. APPLICATION NO. (If known, see 37 CFR 1.5)							
DESIGNATED/ELECTED O CONCERNING A FILING UN	10/089852							
INTERNATIONAL APPLICATION NO.	INTERNATIONAL FILING DATE	PRIORITY DATE CLAIMED						
PCT/EP 00/09396	September 26, 2000	October 5, 1999						
TITLE OF INVENTION								
IMPROVED FABRIC SOFTENER COMPOSITIONS								
APPLICANT(S) FOR DO/EO/US								
Petr Kvita, Peter Otto, Mario Dubini, Harald Chrobaczek, Michael Geubtner, Ralf Goretzki, Barbara Weber and								
Emmanuel Martin								

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. ☑	This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.						
2. 🗆	This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.						
3. 🗆	This express request to begin national examination procedures (35 U.S.C. 371(f) at any time rather than delay examination						
	until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39 (1).						
4. ☑	A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.						
5. 🗹	A copy of the International Application as filed (35 U.S.C. 371(c)(2))						
	a. 🗍 is transmitted herewith (required only if not transmitted by the International Bureau).						
	b. 🗹 has been transmitted by the International Bureau. (See attached Form PCT/IB/308)						
	c. ☐ is not required, as the application was filed in the United States Receiving Office (RO/US).						
3. 🗆	A translation of the International Application into English 35.U.S.C. 371(c)(2)).						
7. Ø	Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C.371(c)(3)).						
	a. are transmitted herewith (required only if not transmitted by the International Bureau).						
	b. have been transmitted by the International Bureau.						
	c. have not been made; however, the time limit for making such amendments has NOT expired.						
	d. ☑ have not been made and will not be made.						
в. 🗆	A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371 (c)(3)).						
9. 🗆	An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).						
0. 🗆	A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5))						
-							
tems 1	1. to 16. below concern document(s) or information included.						
1. 🏻	An Information Disclosure Statement under 37 CFR 1.97 and 1.98.						
12. 🗆	An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.						
13. ☑	A FIRST preliminary amendment.						
I 3. 🖭	A SECOND or SUBSEQUENT preliminary amendment.						
	A SECOND OF SUBSEQUENT PROMININGLY AMERICAN						
14. □	A substitute specification.						
15. 🗆	A change of power of attorney and/or address letter.						
16. 🗹	Other items or information: (See attached Form PCT/ISA/210)						

U.S. APPLICATION NO. (If powr) see 37 GFR 15) 5 2 INTERNATIONAL APPLICATION NO. PCT/EP 00/09396 ATTORNEY'S DOCKET NUMBER HF/5-22102/A/PCT								
			CALCULATIONS PTO USE ONLY					
BASIC NATIONAL FE		1)_(5))·		\$670.00	CALCULATION	5 PIO USE ONLY		
BASIC NATIONAL I L								
Search Report has been prepared by the EPO or JPO								
International preliminary examination fee paid to USPTO (37 CFR 1.482)								
\$710.00								
No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2))								
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO\$1040.00								
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4) \$100.00								
ENTER APPROPRIATE BASIC FEE AMOUNT =					\$890.00			
			—					
Surcharge of \$130.00 f months from the earlies		of declaration later than e (37 CFR 1.492(e)).	□ 20	□ 30	\$			
CLAIMS	NUMBER FILE		RA	RATE		•		
Total claims		0 = 0		X \$18.00	\$			
Independent claims		3 = 0		X \$84.00	\$			
MULTIPLE DEPENDE	NT CLAIM(S) (if appli	cable)		+ \$280.00	\$			
		TOTAL OF ABO	VE CAL		\$890.00			
Reduction of 1/2 for fili	ng by small entity if a	pplicable. Verified Small			\$			
be filed (Note 37 CFR		ipplicable. Verifica Omali	Linkly Old	atomont must also	*			
be filed (Note of Cl. IX	1.0, 1.27, 1.20).			SUBTOTAL =	\$890.00			
Processing fee of \$130	\$							
months from the earlies	"							
		ТОТ	AL NAT	IONAL FEE =	\$890.00	-		
Fee for recording the e	nclosed assignment ((37 CFR 1.21(h)). The as	signment	must be	\$			
accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property +								
		TOTA	AL FEE	S ENCLOSED =	\$			
					Amount to be: refunded	\$		
					charged	\$890.00		
a. ☑ Please charge my Deposit Account No. 03-1935 in the amount of \$890.00 to cover the above fees. A duplicate copy of this sheet is enclosed.								
	· / / / / / / / / / / / / / / / / / / /				rea, or creat any o	verpayment to		
Deposit Account No. 03-1935. A duplicate copy of this sheet is enclosed.								
NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.								
PLEASE ASSOCIATE THE ATTACHED APPLICATION WITH CUSTOMER NUMBER 000324 AND SEND ALL CORRESPONDENCE TO: JoAnn Villamizar, Ciba Specialty Chemicals Corporation								
to Ann Villamizar, Ciba Specialty Chemicals Corneration			" " Marsh	wa				
JoAnn Villamizar, Ciba Specialty Chemicals Corporation Patent Department SIGNATURE								
540 White Plains Road P.O. Box 2005 Kevin T. Mansfield								
Tarrytown, NY 10591-9005 NAME				UIM				
				35				
APR (13 200	17/			17cg. 110. 31,0				

CASE HF/5-22102/A/PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE PCT NATIONAL STAGE APPLICATION OF

Group Art Unit:

PETR KVITA ET AL

Examiner:

INTERNATIONAL APPLICATION NO. PCT/EP 00/09396

FILED: SEPTEMBER 26, 2000

FOR: IMPROVED FABRIC SOFTENER

COMPOSITIONS

U.S. APPLICATION NO: UNASSIGNED

35 USC 371 DATE:

Assistant Commissioner for Patents

Washington, D.C. 20231

PRELIMINARY AMENDMENT

Sir:

Kindly amend this application as follows prior to calculation of the filing fee and consideration on the merits.

IN THE CLAIMS

Please cancel claims 1-20.

Please add the following claims.

--21. (new) A method of use of a softener composition for imparting hydrophilicity to textile fibre materials in domestic applications, which comprises treating washed textile fibre materials with a softener composition which comprises:

- A) a fabric softener;
- B) at least one additive selected from the group consisting of
 - a) a polyethylene, or a mixture thereof,
 - b) a fatty acid alkanolamide, or a mixture thereof,
 - c) a polysilicic acid, or a mixture thereof, and
 - d) a polyurethane, or a mixture thereof; and
- C) a dispersed polyorganosiloxane of formula (1)

(1)
$$R^{1} - S_{1} - O + C_{3} + C_{3} + C_{4} + C_{5} + C_{5$$

wherein

R¹ is OH, OR² or CH₃,

R² is CH₃ or CH₂CH₃,

 R^3 is C_1 - C_{20} alkoxy, CH_3 , $CH_2CHR^4CH_2NHR^5$, or $CH_2CHR^4CH_2N(COCH_3)R^5$,

or (4)
$$(CH_2)_3 \longrightarrow N$$
 NR^8

R⁴ is H or CH₃,

 R^5 is H, $CH_2CH_2NHR^6$, $C(=O)-R^7$ or $(CH_2)_Z-CH_3$, z is 0 to 7,

R⁶ is H or C(=O)-R⁷, R⁷ is CH₃, CH₂CH₃ or CH₂CH₂CH₂OH, R⁸ is H or CH₃, and the sum of X and Y is 40 to 4000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5)

(5)
$$(R^9)_V (R^{10})_W \text{Si-A-B}$$

wherein

R⁹ is CH₃, CH₃CH₂ or phenyl,

R¹⁰ is -O-Si or -O-R⁹,

the sum of v and w equals 3, and v does not equal 3,

 $A = -CH_2CH(R^{11})(CH_2)_K$

 $B = -NR^{12}((CH_2)_1-NH)_mR^{12}$ or

n is 0 or 1, when n is 0, U^1 is N, when n is 1, U^1 is CH, I is 2 to 8, k is 0 to 6, m is 0 to 3, R^{11} is H or CH₃, R^{12} is H, C(=0)- R^{16} , CH₂(CH₂)_pCH₃ or

p is 0 to 6,

R¹³ is NH, O, OCH₂CH(OH)CH₂N(butyl), OOCN(butyl)

R¹⁴ is H, linear or branched C₁-C₄alkyl, phenyl or CH₂CH(OH)CH₃,

R¹⁵ is H or linear or branched C₁-C₄alkyl,

 R^{16} is CH_3 , CH_2CH_3 or $(CH_2)_qOH$,

q is 1 to 6, and

U² is N or CH;

or a dispersed polyorganosiloxane of the formula (8)

(8)
$$R^{17} - Si - O = CH_3 - CH_3 -$$

wherein

R³ is as previously defined,

R¹⁷ is OH, OR¹⁸ or CH₃,

R¹⁸ is CH₃ or CH₂CH₃,

 R^{19} is R^{20} -(EO)_m-(PO)_n- R^{21} ,

m is 3 to 25,

n is 0 to 10,

 R^{20} is the direct bond or $CH_2CH(R^{22})(CH_2)_pR^{23}$,

p is 1 to 4,

 R^{21} is H, R^{24} , $CH_2CH(R^{22})NH_2$ or $CH(R^{22})CH_2NH_2$,

R²² is H or CH₃,

R²³ is O or NH.

 R^{24} is linear or branched C_1 - C_8 alkyl or $Si(R^{25})_3$,

R²⁵ is R²⁴, OCH₃ or OCH₂CH₃,

EO is -CH₂CH₂O-.

PO is -CH(CH₃)CH₂O- or -CH₂CH(CH₃)O- and the sum of X₁,Y₁ and S is 20 to 1500;

or a dispersed polyorganosiloxane of the formula (9)

$$(9) \quad H_{3}C = \begin{bmatrix} CH_{3} & CH$$

wherein

R²⁶ is linear or branched C₁-C₂₀alkoxy or CH₂CH(R⁴)R²⁹,

R4 is as previously defined,

R²⁹ is linear or branched C₁-C₂₀alkyl,

 R^{27} is aryl, aryl substituted by linear or branched C_1 - C_{10} alkyl, linear or branched C_1 - C_{20} alkyl substituted by aryl or aryl substituted by linear or branched C_1 - C_{10} alkyl, R^{28} is

(10)
$$(CH_2)_3$$
— O — CH_2 — CH_2 — CH_2 , and

the sum of X^2 , X^3 , X^4 and Y^2 is 20 to 1500, wherein X^3 , X^4 and Y^2 may be independently of each other 0;

or a mixture thereof.

22. (new) A method of use according to claim 21 wherein the polyorganosiloxane is of formula (1):

(1)
$$R^{1}$$
 CH_{3} CH_{3}

wherein

R1 is OH, OR2 or CH3

R² is CH₃ or CH₂CH₃

R³ is C₁-C₂₀alkoxy, CH₃, CH₂CHR⁴CH₂NHR⁵, or

(2)
$$(CH_2)_3O$$
 NR⁸
or (3) $(CH_2)_3NH$ CH

R⁴ is H or CH₃, R⁵ is H, CH₂CH₂NHR⁶, C(=O)-R⁷, R⁶ is H or C(=O)-R⁷, R⁷ is CH₃, CH₂CH₃ or CH₂CH₂CH₂OH, R⁸ is H or CH₃, and the sum of X and Y is 40 to 4000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5);

(5)
$$(R^9)_V (R^{10})_W \text{ Si-A-B}$$

wherein

R⁹ is CH₃ or CH₃CH₂,

R¹⁰ is -O-Si or -O-R⁹,

the sum of v and w equals 3, and v does not equal 3,

 $A = -CH_2CH(R^{11})(CH_2)_K$

B =

(6)
$$-(R^{13})_{n}U^{1}$$
 $U^{2}-R^{14}$ $CH_{2}-C$ R^{15} R^{15} R^{15}

n is 1,

U¹ is CH,

k is 0 to 6,

R¹¹ is H or CH₃,

R¹³ is OOCN(butyl),

R¹⁴ is H, linear C₁-C₄alkyl, phenyl,

R¹⁵ is H or linear C₁-C₄alkyl, and

U² is N:

or a dispersed polyorganosiloxane of the formula (8);

(8)
$$R^{17} - Si - O = CH_3 - CH_3 -$$

wherein

R³ is as previously defined,

R¹⁷ is OH, OR¹⁸ or CH₃,

R¹⁸ is CH₃ or CH₂CH₃,

 R^{19} is R^{20} -(EO)_m-(PO)_n- R^{21} ,

m is 3 to 25,

n is 0 to 10,

R²⁰ is the direct bond or CH₂CH(R²²)(CH₂)_pR²³,

p is 1 to 4,

 R^{21} is H, R^{24} , $CH_2CH(R^{22})NH_2$ or $CH(R^{22})CH_2NH_2$,

R²² is H or CH₃,

R²³ is O or NH.

R²⁴ is linear or branched C₁-C₃alkyl or Si(R²⁵)₃,

R²⁵ is R²⁴, OCH₃ or OCH₂CH₃,

EO is -CH2CH2O-,

PO is -CH(CH₃)CH₂O- or -CH₂CH(CH₃)O- and

the sum of X_1, Y_1 and S is 20 to 1500;

or a dispersed polyorganosiloxane of the formula (9);

(9)
$$H_3C - Si - O = \begin{bmatrix} CH_3 \\ 1 \\ Si - O \end{bmatrix} = \begin{bmatrix} CH_3 \\$$

wherein

R²⁶ is linear C₁-C₂₀alkoxy,

R⁴ is as previously defined,

R²⁹ is linear C₁-C₂₀alkyl,

R²⁷ is CH₂CH(R⁴)penyl,

R²⁸ is

(10)
$$(CH_2)_3$$
— CH_2 — CH_2 — CH_2 , and

the sum of X^2 , X^3 , X^4 and Y^2 is 20 to 1500, wherein X^3 , X^4 and Y^2 may be independently of each other 0;

or a mixture thereof.

23. (new) A method of use according to claim 21 wherein a polyorganosiloxane of formula (1) is used, wherein

R¹ is OH or CH₃,

R³ is CH₃, C₁₀-C₂₀alkoxy or CH₂CHR⁴CH₂NHR⁵,

R⁴ is H,

R⁵ is H or CH₂CH₂NHR⁶,

R⁶ is H or C(=O)-R⁷, and

R⁷ is CH₃, CH₂CH₃ or CH₂CH₂CH₂OH.

24. (new) A method of use according to claim 1 wherein a polyorganosiloxane of formula (8) is used, wherein

R³ is CH₃, C₁₀-C₂₀alkoxy or CH₂CHR⁴CH₂NHR⁵,

R⁴ is H,
R⁵ is H or CH₂CH₂NHR⁶,
R⁶ is H or C(=Q)-R⁷,
R⁷ is CH₂CH₃, CH₂CH₂CH₂OH or CH₃, and
R₁₇ is CH₃ or OH.

25. (new) A method of use according to claim 21 wherein a polyorganosiloxane of formula (9) is used, wherein

R²⁶ is CH₂CH(R⁴)R²⁹,

R⁴ is H, and

R²⁷ is 2-phenylpropyl.

- 26. (new) A method of use according to claim 21 wherein the composition is a liquid aqueous composition.
- 27. (new) A method of use according to claim 21 wherein the composition is used in a tumble dryer sheet composition.
- 28. (new) A method of use according to claim 21 in which the polyorganosiloxane is nonionic or cationic.
- 29. (new) A method of use according to claim 21 in which the composition has a solids content of 5 to 70 % at a temperature of 120°C.
- 30. (new) A method of use according to claim 21 in which the composition contains a water content of 25 to 90 % by weight based on the total weight of the composition.
- 31. (new) A method of use according to claim 21 in which the composition has a pH value from 2 to 7.
- 32. (new) A method of use according to claim 21 in which the nitrogen content of the aqueous emulsion due to the polyorganosiloxane is from 0 to 0.25 % with respect to the silicon content.
- 33. (new) A method of use according to claim 21 wherein the composition comprises a polyethylene, a fatty acid alkanolamide or a polyurethane.

- 34. (new) A method of use according to claim 21 wherein the composition comprises a polyethylene or a fatty acid alkanolamide.
- 35. (new) A method of use according to claim 21 wherein the composition comprises a fatty acid alkanolamide.
- 36. (new) A method of use according to claim 21 wherein the composition comprises a polyethylene.
- 37. (new) A method of use according to claim 21 wherein the composition is prepared by mixing a preformulated fabric softener with an emulsion comprising the polyorganosiloxane and the additive.
- 38. (new) A method of use according to claim 21 wherein composition has a clear appearance.
- 39. (new) A method of use according to claim 21 in which the composition comprises:
- a) 0.01 to 70 % by weight, based on the total weight of the composition, of a polyorganosiloxane, or a mixture thereof;
- b) 0.2 to 15 % by weight based on the total weight of an emulsifier, or a mixture thereof;
- c) 0.01 to 15 % by weight based on the total weight of at least one additive selected from the group consisting of a polyethylene, a fatty acid alkanolamide, a polysilicic acid and a polyurethane, and d) water to 100 %.
- 40. (new) A tumble dryer sheet comprising a composition as defined in claim 21.--

REMARKS

Claims 21-40 are pending. Claims 1-20 have been replaced by added claims 21-40. Claims 3-19 were replaced to correct informalities and reduce filing fees by eliminating multiple dependency. Claim 1 was replaced to provide minor clarification. Claim 20 was replaced to change dependency.

Newly added claims 21-40 are supported by originally filed claims 1-20 and the disclosure at page 7, third full paragraph. No new matter has been added.

Applicants aver that the claims are now in proper form for examination. An Action on the merits of the claims is respectfully awaited.

Ciba Specialty Chemicals Corporation Patent Department 540 White Plains Road P.O. Box 2005 Tarrytown, NY 10591-9005 (914) 785-7127 KTM\22102A

APR 03 2002

Respectfully submitted,

Kevin T. Mansfield Agent for Applicants Reg. No. 31,635 WO 01/25383

10 Rec'd PCI/FTO 0 3 APR 2002 10/089852 PCT/EP00/09396

FABRIC SOFTENER COMPOSITIONS

FIELD OF THE INVENTION

The present invention relates to the use of fabric softener compositions comprising selected polyorganosiloxanes, or mixtures thereof, together with selected additives for the improvement of hydrophilicity properties of textile materials in domestic applications. In particular it relates to textile softening compositions for use in a textile laundering operation to impart excellent hydrophilicity properties on the textile.

-1-

BACKGROUND OF THE INVENTION

The present invention relates to a method for increasing hydrophilicity of a fabric material. More particularly, the invention relates to a method for imparting a durably increased capacity of water absorption and a durably decreased susceptibility to accumulation of static electricity.

Needless to say, fabric materials currently on use both in the clothing use of people and in the industrial applications are in a very large part produced of synthetic fibers or traditional natural fibers. One of the largest differences between the properties of the synthetic and natural fibers is in the hydrophilicity-hydrophobicity behavior of them, the former fibers being of course outstandingly less hydrophilic than the latter. The remarkably small hydrophilicity of synthetic fibers sometimes causes serious problems not encountered in the use of natural fibers.

For example, fabric materials made of synthetic fibers have a very poor capacity of water or sweat absorption, which is advantageous on one hand but disadvantageous on the other, so that wearers of clothes made of synthetic fibers unavoidably have an unpleasant feeling of heavy stuffiness especially when the clothes are underwears worn in contact with or in the proximity of the skin of the wearer in a hot and humid climate.

Another serious problem caused by the poor hydrophilicity of synthetic fibers is the great accumulation of static electricity on the fibers causing unpleasantness to the wearer of clothes of synthetic fibers in such a charged condition.

WO 01/25383 . PCT/EP00/09396

- 2 -

Many attempts have of course been proposed and practiced in the prior art to solve these problems by increasing the hydrophilicity of the fabric materials of synthetic fibers and also natural fibres. For example, the problem of poor water absorption of synthetic fibers can be mitigated by the mixed spinning or mixed weaving with water-absorptive natural fibers. The effectiveness of this method is, however, limited since too much amounts of the natural fibers mixed with the synthetic fibers to attain sufficient hydrophilicity of the fabric material naturally result in the loss of the advantages inherent to synthetic fibers. An alternative method is the treatment of the fabric material of synthetic fibers with a water-absorbent agent to impart hydrophilicity to the surface of the fibers. Extensive investigations have been and are being undertaken in this direction to propose various kinds of water-absorbent agents effective for a particular type of synthetic fibers. For example, the capacity of water absorption of polyester fibers, e.g. polyethylene terephthalate fibers, can be increased by the treatment with a water-soluble polyester resin. Unfortunately, such a method of the treatment of synthetic fibers with a water-soluble resin is defective in several respects of the poor durability of the effects obtained therewith and the adverse influences on the color fastness of dyed fabric materials in many cases.

Limiting the matter to the antistatic treatment or decrease of accumulation of static electricity on the synthetic fibers, various antistatic agents have been proposed hitherto. For example, the above mentioned water-soluble resins including water-soluble polyester resins, polyurethane resins, polyacrylamide resins, polyamide resins and the like are of course effective as an antistatic agent with certain durability. Besides, many compounds are known to be effective as an antistatic agent including inorganic salts such as calcium chloride and lithium chloride, guanidine compounds such as guanidine hydrochloride, surface active agents such as those of the types of quaternary ammonium salts and phosphoric acid esters, acrylic polymers having quaternary cationic groups and the like although the effectiveness of the treatment with these compounds is rather temporary.

The durability of the effects obtained with the above described antistatic agents is, however, not quite satisfactory even with the relatively durable polymeric antistatic agents and the antistatic effects obtained therewith are decreased in the long-run use of the treated fabric materials even by setting aside the other problem of the insufficient effectiveness of the method. Furthermore, the method is also not free from the problem of the decreased color

WO 01/25383 PCT/EP00/09396

- 3 -

fastness of dyed fabric materials giving limitations to the amount and the manner of use of the antistatic agents.

In short, none of the prior art methods by use of a hydrophilic agent, i.e. water-absorbent agent or antistatic agent, is quite satisfactory for imparting hydrophilicity to the fabric materials in respects of the effectiveness and the durability.

As given above one component of the compositions of the present invention are polyorganosiloxanes. Such compounds are known to be used on an industrial scale to finish fabrics by providing them with a permanent or semi-permanent finish aimed at improving their general appearance. Significant for these industrial fabric finishing processes is a co-called curing step generally involving temperatures in excess of 150°C often for periods of one hour or more. The object here is to form a chemical finish which resists destruction during subsequent cleaning/laundering of fabrics. This process of finishing is not carried out in domestic applications and accordingly one would not expect benefits of a comparable nature or magnitude from polyorganosiloxanes included as adjuncts in domestic softeners. Indeed, it is noteworthy that if the compounds of the current invention achieved a permanence associated with industrial textile finishing, problems associated with a cumulative build through the wash cycles could occur such as fabric discoloration and even in extremes an unpleasant feel to the wearer.

Surprisingly, it has been found that the use of selected polyorganosiloxanes, or mixtures thereof, and selected additives in fabric softener compositions provide excellent hydrophilic effects when applied to fabrics during a textile laundry operation.

Similar benefits are noted when compositions of the current invention are incorporated into tumble dryer additives such as impregnates on sheets.

SUMMARY OF THE INVENTION

This invention relates to a method of use of a fabric softener composition for imparting hydrophilicity to textile fibre materials in domestic applications, which softener composition comprises:

A) a fabric softener;

- 4 -

- B) at least one additive selected from the group consisting of
 - a) a polyethylene, or a mixture thereof,
 - b) a fatty acid alkanolamide, or a mixture thereof,
 - c) a polysilicic acid, or a mixture thereof, and
 - d) a polyurethane, or a mixture thereof; and
- C) a dispersed polyorganosiloxane of formula (1)

(1)
$$R^{1} - S_{1} - O = \begin{bmatrix} CH_{3} \\ | \\ | \\ CH_{3} \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ CH_{3} \end{bmatrix} = \begin{bmatrix}$$

wherein

R1 is OH, OR2 or CH3

R² is CH₃ or CH₂CH₃

R³ is C₁-C₂₀alkoxy, CH₃, CH₂CHR⁴CH₂NHR⁵, or CH₂CHR⁴CH₂N(COCH₃)R⁵

(2)
$$(CH_2)_3O$$
 NR^8

or (3) $(CH_2)_3NH$ CH

or (4) $(CH_2)_3$ NR^8

R⁴ is H or CH₃

 R^5 is H, $CH_2CH_2NHR^6$, $C(=O)-R^7$ or $(CH_2)_Z$ - CH_3

z is 0 to 7

 R^6 is H or C(=O)- R^7

R⁷ is CH₃, CH₂CH₃ or CH₂CH₂CH₂OH

R⁸ is H or CH₃

the sum of X and Y is 40 to 4000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5)

(5)
$$(R^9)_V (R^{10})_W \text{Si-A-B}$$

wherein

R9 is CH3, CH3CH2 or Phenyl

the sum of v and w equals 3, and v does not equal 3

 $A = -CH_2CH(R^{11})(CH_2)_K$

 $B = -NR^{12}((CH_2)_I-NH)_mR^{12}$, or

$$R^{15}$$
 R^{15}
 CH_2 C
 $-(R^{13})_n$ U^2 CH_2 C
 CH_2 C
 CH_3 CH_4
 CH_5 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5

n is 0 or 1

when n is 0, U1 is N, when n is 1, U1 is CH

1 is 2 to 8

k is 0 to 6

m is 0 to 3

R¹¹ is H or CH₃

 R^{12} is H, C(=O)- R^{16} , $CH_2(CH_2)_pCH_3$ or

p is 0 to 6

R¹³ is NH, O, OCH₂CH(OH)CH₂N(Butyl), OOCN(Butyl)

- 6 -

 R^{14} is H, linear or branched C_1 - C_4 alkyl, Phenyl or $CH_2CH(OH)CH_3$ R^{15} is H or linear or branched C_1 - C_4 alkyl R^{16} is CH_3 , CH_2CH_3 or $(CH_2)_qOH$ q is 1 to 6 U^2 is N or CH:

or a dispersed polyorganosiloxane of the formula (8)

(8)
$$R^{17} - Si - O = CH_3 - CH_3 -$$

wherein

R3 is as previously defined

R¹⁷ is OH, OR¹⁸ or CH₃

R¹⁸ is CH₃ or CH₂CH₃

 R^{19} is R^{20} -(EO)_m-(PO)_n- R^{21}

m is 3 to 25

n is 0 to 10

R²⁰ is the direct bond or CH₂CH(R²²)(CH₂)_pR²³

p is 1 to 4

R²¹ is H, R²⁴, CH₂CH(R²²)NH₂ or CH(R²²)CH₂NH₂

R²² is H or CH₃

R²³ is O or NH

R²⁴ is linear or branched C₁-C₈ alkyl or Si(R²⁵)₃

R²⁵ is R²⁴, OCH₃ or OCH₂CH₃

EO is -CH₂CH₂O-

PO is -CH(CH₃)CH₂O- or -CH₂CH(CH₃)O-

the sum of X_1, Y_1 and S is 20 to 1500;

or a dispersed polyorganosiloxane of the formula (9)

$$(9) \quad H_{3}C - Si - O = \begin{bmatrix} CH_{3} & CH$$

wherein

R²⁶ is linear or branched C₁ - C₂₀ alkoxy, CH₂CH(R⁴)R²⁹

R⁴ is as previously defined

R²⁹ is linear or branched C₁ - C₂₀ alkyl

 R^{27} is aryl, aryl substituted by linear or branched C_1 - C_{10} alkyl, linear or branched C_1 - C_{20} alkyl substituted by aryl or aryl substituted by linear or branched C_1 - C_{10} alkyl R^{28} is

the sum of X^2 , X^3 , X^4 and Y^2 is 20 to 1500, wherein X^3 , X^4 and Y^2 may be independently of each other 0;

or a mixture thereof.

The composition is preferably used as a liquid rinse conditioner composition. The textile fibre materials are treated for hydrophilicity.

In tumble dryer applications the compositions are usually incorporated into impregnates on non-woven sheets. However, other application forms are known to those skilled in the art.

The fabric softener composition (especially in liquid form) will be used after the textile fibre materials have been washed with a laundry detergent, which may be one of a broad range of detergent types. The tumble dryer sheet will be used after a laundering process. The textile fibre materials may be damp or dry.

The fabric softener composition may also be sprayed directly onto the fabrics prior to or during the ironing or drying of the treated fabrics.

The polyorganosiloxane may be anionic, nonionic or cationic, preferably nonionic or cationic.

-8-

The polyorganosiloxanes, or mixtures thereof, are used in a dispersed form, via the use of an emulsifier. The fabric softener composition is preferably in aqueous liquid form. The water content as a rule is 25 to 90% by weight based on the total weight of the composition.

When the polyorganosiloxane contains a nitrogen atom, the nitrogen content of the aqueous emulsion due to the polyorganosiloxane is preferably from 0.001 to 0.25 % with respect to the silicon content. In general, a nitrogen content from 0.001 to 0.25 % is preferred. The particles of the emulsion as a rule have a diameter of between 5nm and 1000nm.

The fabric softener composition preferably has a solids content of 5 to 70% at a temperature of 120°C.

The fabric softener composition usually has a pH value from 2.0 to 7.0, especially 2.0 to 5.0.

The fabric softener composition may further comprise an additional polyorganosiloxane:

wherein g is

and G is C₁ to C₂₀ alkyl.

This polydimethylsiloxane is cationic, has a viscosity at 25°C of 250 mm²s⁻¹ to 450 mm²s⁻¹, has a specific gravity of 1.00 to 1.02 g/cm³ and has a surface tension of 28.5 mNm⁻¹ to 33.5 mNm⁻¹.

The fabric softener composition may further comprise an additional polyorganosiloxane, such as that known as Magnasoft HSSD, or a polyorganosiloxane of the formula:

-9-

(13)
$$H_3C - Si - O = CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$Si - O = Si - CH_3$$

$$CH_3$$

R is CH₂CH₂CH₂N(R)₂
R is linear or branched C₁-C₄ alkyl
R is (CH₂)_{X''}-(EO)_m-(PO)_n-R
m is 3 to 25
n is 0 to 10
X is 0 to 4
R''' is H or linear or branched C₁-C₄ alkyl
EO is -CH₂CH₂OPO is -CH(CH₃)CH₂O- or -CH₂CH(CH₃)Othe sum of X , Y and S is 40 to 300.

Preferably the compositions comprise dispersed polyorganosiloxanes of formula (1):

(1)
$$R^{1} - S_{1} - O = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ CH_{3} \end{bmatrix} = \begin{bmatrix} CH_{$$

wherein

R¹ is OH, OR² or CH₃

R² is CH₃ or CH₂CH₃

 R^3 is C_1 - C_{20} alkoxy, CH_3 , $CH_2CHR^4CH_2NHR^5$, or

(2)
$$(CH_2)_3O$$

NR⁸

or (3) $(CH_2)_3NH$

CH

R⁴ is H or CH₃

R⁵ is H, CH₂CH₂NHR⁶, C(=0)-R⁷

 R^6 is H or C(=O)- R^7

 \mbox{R}^{7} is $\mbox{CH}_{3},$ $\mbox{CH}_{2}\mbox{CH}_{3}$ or $\mbox{CH}_{2}\mbox{CH}_{2}\mbox{CH}_{2}\mbox{OH}$

R⁸ is H or CH₃

the sum of X and Y is 40 to 4000, especially 40 to 2000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5);

(5)
$$(R^9)_V (R^{10})_W \text{Si-A-B}$$

wherein

R⁹ is CH₃, CH₃CH₂

R¹⁰ is -O-Si or -O-R⁹

the sum of v and w equals 3, and v does not equal 3

 $A = -CH_2CH(R^{11})(CH_2)_K$

B =

(6)

- 11 -

n is 1

U1 is CH

k is 0 to 6

R11 is H or CH3

R¹³ is OOCN(Butyl)

R¹⁴ is H, linear C₁-C₄ alkyl, Phenyl

R¹⁵ is H or linear C₁-C₄ alkyl

U² is N:

or a dispersed polyorganosiloxane of the formula (8);

(8)
$$R^{17} - S_{1} - O = CH_{3} - CH_$$

wherein

R³ is as previously defined

R¹⁷ is OH, OR¹⁸ or CH₃

R¹⁸ is CH₃ or CH₂CH₃

 R^{19} is R^{20} -(EO)_m-(PO)_n- R^{21}

m is 3 to 25

n is 0 to 10

R²⁰ is the direct bond or CH₂CH(R²²)(CH₂)₀R²³

p is 1 to 4

 R^{21} is H, R^{24} , $CH_2CH(R^{22})NH_2$ or $CH(R^{22})CH_2NH_2$

R²² is H or CH₃

R²³ is O or NH

R²⁴ is linear or branched C₁-C₃ alkyl or Si(R²⁵)₃

R²⁵ is R²⁴, OCH₃ or OCH₂CH₃

EO is -CH2CH2O-

PO is -CH(CH₃)CH₂O- or -CH₂CH(CH₃)O-

the sum of X¹,Y¹ and s is 20 to 1500;

or a dispersed polyorganosiloxane of the formula (9);

$$(9) \quad H_{3}C - \bigcup_{CH_{3}}^{CH_{3}} - \bigcup_{R^{26}}^{CH_{3}} \bigcup_{X^{2}}^{CH_{3}} - \bigcup_{R^{27}}^{CH_{3}} \bigcup_{X^{3}}^{CH_{3}} - \bigcup_{R^{28}}^{CH_{3}} \bigcup_{X^{4}}^{CH_{3}} - \bigcup_{R^{26}}^{CH_{3}} \bigcup_{X^{2}}^{CH_{3}} - \bigcup_{R^{28}}^{CH_{3}} \bigcup_{X^{4}}^{CH_{3}} - \bigcup_{R^{28}}^{CH_{3}} - \bigcup_{R^{28}}^{CH_{3}}$$

R²⁶ is linear C₁ - C₂₀ alkoxy,

R4 is as previously defined

R²⁹ is linear C₁ - C₂₀ alkyl

R²⁷ is, CH₂CH(R⁴)Phenyl

R²⁸ is

(10)
$$(CH_2)_3$$
 O $-CH_2$ $-CH_2$ $-CH_2$ O

the sum of X^2 , X^3 , X^4 and Y^2 is 20 to 1500, wherein X^3 , X^4 and Y^2 may be independently of each other 0;

or a mixture thereof.

The fabric softener composition may further comprise an additional polyorganosiloxane:

wherein g is

$$(12) \begin{array}{c} OH \\ | \\ ---CH_2--CH----CH_2--O-(CH_2)_3---- \end{array}$$

and G is C₁ to C₂₀ alkyl.

This polydimethylsiloxane is cationic, has a viscosity at 25°C of 250 mm²s⁻¹ to 450 mm²s⁻¹, has a specific gravity of 1.00 to 1.02 g/cm³ and has a surface tension of 28.5 mNm⁻¹ to 33.5 mNm⁻¹.

As to the polyorganosiloxanes of formula (1) the following preferences apply:

R¹ is preferably OH or CH₃.

R³ is preferably CH₃, C₁₀-C₂₀alkoxy or CH₂CHR⁴CH₂NHR⁵.

R⁴ is preferably H.

R⁵ is preferably H or CH₂CH₂NHR⁶.

 R^6 is preferably H or C(=0)- R^7 .

R⁷ is preferably CH₃, CH₂CH₃ or especially CH₂CH₂CH₂OH.

The sum of X + Y is preferably 100 to 2000.

Preferred are polyorganosiloxanes of formula (1) wherein

R1 is OH or CH3,

R3 is CH3, C10-C20alkoxy or CH2CHR4CH2NHR5,

R⁴ is H,

R⁵ is H or CH₂CH₂NHR⁶,

 R^6 is H or C(=0)- R^7 , and

R⁷ is CH₃, CH₂CH₃ or especially CH₂CH₂CH₂OH.

As to the polyorganosiloxanes of formula (8) the following preferences apply:

R³ is preferably CH₃, C₁₀-C₂₀alkoxy or CH₂CHR⁴CH₂NHR⁵.

R⁴ is preferably H.

R⁵ is preferably H or CH₂CH₂NHR⁶.

 R^6 is preferably H or C(=0)- R^7 .

R⁷ is preferably CH₂CH₃, CH₂CH₂CH₂OH or especially CH₃.

R₁₇ is preferably CH₃ or OH.

R₂₀ is preferably the direct bond.

R₂₁ is preferably H.

Preferred are polyorganosiloxanes of formula (8) wherein

R³ is CH₃, C₁₀-C₂₀alkoxy or CH₂CHR⁴CH₂NHR⁵,

- 14 -

 R^4 is H, R^5 is H or $CH_2CH_2NHR^6$, R^6 is H or $C(=O)-R^7$, R^7 is CH_2CH_3 , $CH_2CH_2CH_2OH$ or especially CH_3 , and R_{17} is CH_3 or OH.

As to the polyorganosiloxanes of formula (9) the following preferences apply: R^{26} is preferably $CH_2CH(R^4)R^{29}$.

R⁴ is preferably H.

R²⁷ is preferably 2-phenyl propyl.

The sum of X^2 , X^3 , X^4 and Y^2 is preferably 40 to 500.

Preferred are polyorganosiloxanes of formula (9) wherein R^{26} is $CH_2CH(R^4)R^{29}$, R^4 is H, and R^{27} is 2-phenyl propyl.

Preferred are polyorganosiloxanes of formulae (1), (8) and (9), especially those of formulae (1) and (8). Very interesting polyorganosiloxanes are those of formula (1).

Emulsifiers used to prepare the polyorganosiloxane compositions include:

- i) Ethoxylates, such as alkyl ethoxylates, amine ethoxylates or ethoxylated alkylammoniumhalides. Alkyl ethoxylates include alcohol ethoxylates or isotridecyl ethoxylates. Preferred alcohol ethoxylates include linear or branched nonionic alkyl ethoxylates containing 2 to 15 ethylene oxide units. Preferred isotridecyl ethoxylates include nonionic isotridecyl ethoxylates containing 5 to 25 ethylene oxide units. Preferred amine ethoxylates include nonionic C10 to C20 alkyl amino ethoxylates containing 4 to 10 ethylene oxide units. Preferred ethoxylated alkylammoniumhalides include nonionic or cationic ethoxylated C6 to C20 alkyl bis(hydroxyethyl)methylammonium chlorides.
- ii) Alkylammonium halides, preferably cationic quaternary ester alkylammonium halides.
- iii) Silicones, preferably nonionic polydimethylsiloxane polyoxyalkylene copolymers
- iv) Saccharides, preferably nonionic alkylpolyglycosides.

A mixture of these emulsifiers may also be used.

WO 01/25383 PCT/EP00/09396

- 15 -

As mentioned previously, the compositions further comprise one or more additives selected from polyethylene, dispersed fatty acid alkanol amide, polysilicic acid and polyurethane. These components are described below.

The emulsifiable polyethylene (polyethylene wax) is known and is described in detail in the prior art (compare, for example, DE-C-2,359,966, DE-A-2,824,716 and DE-A-1,925,993). The emulsifiable polyethylene is as a rule a polyethylene having functional groups, in particular COOH groups, some of which can be esterified. These functional groups are introduced by oxidation of the polyethylene. However, it is also possible to obtain the functionality by copolymerization of ethylene with, for example, acrylic acid. The emulsifiable polyethylenes preferably have a density of at least 0.91 g/cm³ at 20°C., an acid number of at least 5 and a saponification number of at least 10. Emulsifiable polyethylenes which have a density of 0.95 to 1.05 g/cm³ at 20°C, an acid number of 10 to 60 and a saponification number of 15 to 80 are particularly preferred. Polyethylenes which have a drop point of 100-150°C are preferred. This material is generally obtainable commercially in the form of flakes, lozenges and the like. A mixture of these emulsifiable polyethylenes may also be used.

The polyethylene wax is usually employed in the form of dispersions. Various emulsifiers are suitable for their preparation. The preparation of the dispersions is described in detail in the prior art.

Emulsifiers suitable for dispersing the polyethylene component include:

- i) Ethoxylates, such as alkyl ethoxylates or amine ethoxylates. Alkyl ethoxylates include alcohol ethoxylates or isotridecyl ethoxylates. Preferred alcohol ethoxylates include nonionic fatty alcohol ethoxylates containing 2 to 55 ethylene oxide units. Preferred isotridecyl ethoxylates include nonionic isotridecyl ethoxylates containing 6 to 9 ethylene oxide units. Preferred amine ethoxylates include nonionic C10 to C20 alkyl amino ethoxylates containing 7 to 9 ethylene oxide units.
- ii) Alkylammonium halides, preferably cationic quaternary ester alkylammonium halides.
- iii) Ammonium salts, preferably cationic aliphatic quaternary ammonium chloride or sulfate.

A mixture of these emulsifiers may also be used.

Suitable fatty acid alkanolamides are for example those of formula

(14)
$$R_{33} C N R_{34}$$

wherein

R₃₃ is a saturated or unsaturated hydrocarbon radical containing 10 to 24 carbon atoms,

 R_{34} is hydrogen or a radical of formula -CH₂OH, -(CH₂CH₂O)_cH or $\begin{array}{c} O \\ --C-R_{36} \end{array}$ wherein c is a

number from 1 to 10 and R₃₆ is as defined above for R₃₃, and

 R_{35} is a radical of formula -CH₂OH, -(CH₂CH₂O)_cH, —CH₂CH₂—N (CH₂CH₂O)_cH or R_{37}

c is as defined above,

 R_{38} , R_{38} ' and R_{38} " have the same or different meaning and are as defined above for R_{34} , and R_{39} , R_{39} ' and R_{39} " have the same or different meaning and are a radical of formula

$$\begin{array}{c} O \\ \parallel \\ ---C-R_{36} \end{array}$$
 wherein R_{36} is as defined above.

R₃₃ and R₃₆ are preferably a saturated or unsaturated hydrocarbon radical containing 14 to 24 carbon atoms. Preferred are saturated hydrocarbon radicals.

R₃₅ is preferably a radical of formula

$$\begin{array}{c|c} -\text{CH}_2\text{CH}_2 - \text{N} & \text{Or} \\ \\ \text{R}_{37} & \\ \end{array} \\ -\text{CH}_2\text{CH}_2 - \text{N} - \text{CH}_2\text{CH}_2 - \text{N}(\text{R}_{38})\text{R}_{39} \\ \\ \text{C} = \text{O} & \\ \\ \text{R}_{39} \text{"}(\text{R}_{38}\text{"})\text{N-CH}_2\text{CH}_2 - \text{N} - \text{CH}_2\text{CH}_2 - \text{N}(\text{R}_{38}\text{'})\text{R}_{39} \\ \end{array}$$

As to R_{38} , R_{38} and R_{38} " the preferences given above for R_{34} apply.

c is preferably a number from 1 to 5.

Preferred are fatty acid alkanolamides of formula

$$\begin{array}{c} O & R_{34} \\ II & II \\ II & N-CH_2CH_2-N-CH_2CH_2-N(R_{38})R_{39} \\ C=O \\ R_{39}"(R_{38}")N-CH_2CH_2-N-CH_2CH_2-N(R_{38}')R_{39}' \end{array}$$

wherein R₃₃, R₃₄, R₃₈, R₃₈', R₃₈", R₃₉, R₃₉' and R₃₉" are as defined above.

Preferred are fatty acid alkanolamides of formula (15a), wherein R₃₄, R₃₈, R₃₈ and R₃₈ are hydrogen or -CH₂OH.

Furthermore, fatty acid alkanolamides of formula

(15b)
$$R_{33} = C - N R_{34} - (CH_2CH_2O)_CH$$

are preferred, wherein R₃₃, R₃₄, R₃₇ and c are as defined above.

Preferred are fatty acid alkanolamides of formula (15b), wherein

 R_{34} and R_{37} are hydrogen or a radical of formula $\begin{array}{c} O \\ \vdots \\ C - R_{36} \end{array}$. R_{34} is preferably hydrogen.

The above fatty acid alkanolamides can also be present in form of the corresponding ammonium salts.

A mixture of these fatty acid alkanolamides may also be used.

Emulsifiers suitable for dispersing the fatty acid alkanol amide component include:

- i) Ethoxylates, such as alkyl ethoxylates, amine ethoxylates or amide ethoxylates. Alkyl ethoxylates include alcohol ethoxylates or isotridecyl ethoxylates. Preferred alcohol ethoxylates include nonionic fatty alcohol ethoxylates containing 2 to 55 ethylene oxide units. Preferred isotridecyl ethoxylates include nonionic isotridecyl ethoxylates containing 5 to 45 ethylene oxide units. Preferred amine ethoxylates include nonionic C10 to C20 alkyl amino ethoxylates containing 4 to 25 ethylene oxide units. Preferred amide ethoxylates include cationic fatty acid amide ethoxylates containing 2 to 25 ethylene oxide units.
- ii) Alkylammonium halides, preferably cationic quaternary ester alkylammonium halides or cationic aliphatic acid alkylamidotrialkylammonium methosulfates.
- iii) Ammonium salts, preferably cationic aliphatic quaternary ammonium chloride or sulfate.

A mixture of these emulsifiers may also be used.

Examples for polyurethanes are the reaction products of a diol and an ethoxysilate with a disocyanate.

The additives selected from the group consisting of a polyethylene, a fatty acid alkanolamide, a polysilicic acid, and a polyurethane are, as a rule, used in an amount of 0.01 to 25 % by weight, especially 0.01 to 15 % by weight, based on the total weight of the fabric

PCT/EP00/09396

softener composition. An amount of 0.05 to 15 % by weight, especially 0.1 to 15 % by weight, is preferred. Highly preferred is an upper limit of 10 %, especially 5 %.

Preferred as additives are polyethylene, fatty acid alkanolamides and polyurethanes, especially polyethylene and fatty acid alkanolamides. Highly preferred are polyethylene.

A highly preferred fabric softener composition used according to the present invention comprises:

- a) 0.01 to 70 % by weight based on the total weight of the composition of a polyorganosiloxane, or a mixture thereof;
- b) 0.2 to 15 % by weight based on the total weight of an emulsifier, or a mixture thereof;
- c) 0.01 to 25 % by weight, especially 0.01 to 15 % by weight, based on the total weight of at least one additive selected from the group consisting of a polyethylene, a fatty acid alkanolamide, a polysilicic acid, or a polyurethane, and d) water to 100 %.

The fabric softener compositions can be prepared as follows:

Firstly, emulsions of the polyorganosiloxane are prepared. The polyorganosiloxane and polyethylene, fatty acid alkanol amide, polysilicic acid or polyurethane are emulsified in water using one or more surfactants and shear forces, e.g. by means of a colloid mill. Suitable surfactants are described above. The components may be emulsified individually before being mixed together, or emulsified together after the components have been mixed. The surfactant(s) is/are used in customary amounts known to the person skilled in the art and can be added either to the polyorganosiloxane or to the water prior to emulsification. Where appropriate, the emulsification operation can be carried out at elevated temperature. The fabric softener composition according to the invention is usually, but not exclusively, prepared by firstly stirring the active substance, i.e. the hydrocarbon based fabric softening component, in the molten state into water, then, where required, adding further desired additives and, finally, after cooling, adding the polyorganosiloxane emulsion.

The fabric softener composition can, for example, be prepared by mixing a preformulated fabric softener with an emulsion comprising the polyorganosiloxane and the additive.

The fabric softening components can be conventional hydrocarbon based fabric softening components known in the art.

Hydrocarbon fabric softeners suitable for use herein are selected from the following classes of compounds:

(i) Cationic quaternary ammonium salts. The counter ion of such cationic quaternary ammonium salts may be a halide, such as chloride or bromide, methyl sulphate, or other ions well known in the literature. Preferably the counter ion is methyl sulfate or any alkyl sulfate or any halide, methyl sulfate being most preferred for the dryer-added articles of the invention.

Examples of cationic quaternary ammonium salts include but are not limited to:

(1) Acyclic quaternary ammonium salts having at least two C_8 to C_{30} , preferably C_{12} to C_{22} alkyl or alkenyl chains, such as: ditallowdimethyl ammonium methylsulfate, di(hydrogenated tallow)dimethyl ammonium methylsulfate, distearyldimethyl ammonium methylsulfate, dicocodimethyl ammonium methylsulfate and the like. It is especially preferred if the fabric softening compound is a water insoluble quaternary ammonium material which comprises a compound having two C_{12} to C_{18} alkyl or alkenyl groups connected to the molecule via at least one ester link. It is more preferred if the quaternary ammonium material has two ester links present. An especially preferred ester-linked quaternary ammonium material for use in the invention can be represented by the formula:

(16)
$$R^{31}$$
 \downarrow^{-} \downarrow^{-} $(CH_2)e - T - R^{32}$ $(CH_2)e - T - R^{32}$

wherein each R^{31} group is independently selected from C_1 to C_4 alkyl, hydroxyalkyl or C_2 to C_4 alkenyl groups; T is either

- 21 -

and wherein each R^{32} group is independently selected from C_8 to C_{28} alkyl or alkenyl groups; and e is an integer from 0 to 5.

A second preferred type of quaternary ammonium material can be represented by the formula:

A second preferred type of quaternary ammonium material can be represented by the formula:

(19)
$$(R^{31})_3N^+$$
— $(CH_2)_e$ — CH_2OOR^{32}

wherein R³¹, e and R³² are as defined above.

- (2) Cyclic quaternary ammonium salts of the imidazolinium type such as di(hydrogenated tallow)dimethyl imidazolinium methylsulfate, 1-ethylene-bis(2-tallow-1-methyl) imidazolinium methylsulfate and the like;
- (3) Diamido quaternary ammonium salts such as: methyl-bis(hydrogenated tallow amidoethyl)-2-hydroxethyl ammonium methyl sulfate, methyl bi(tallowamidoethyl)-2-hydroxypropyl ammonium methylsulfate and the like;
- (4) Biodegradable quaternary ammonium salts such as N,N-di(tallowoyl-oxy-ethyl)-N,N-dimethyl ammonium methyl sulfate and N,N-di(tallowoyl-oxy-propyl)-N,N-dimethyl ammonium methyl sulfate. Biodegradable quaternary ammonium salts are described, for

example, in U.S. Patents 4,137,180, 4,767,547 and 4,789,491 incorporated by reference herein.

Preferred biodegradable quaternary ammonium salts include the biodegradable cationic diester compounds as described in U.S. Patent 4,137,180, herein incorporated by reference.

- (ii) Tertiary fatty amines having at least one and preferably two C8 to C30, preferably C12 to C22 alkyl chains. Examples include hardened tallow-di-methylamine and cyclic amines such as 1-(hydrogenated tallow)amidoethyl-2-(hydrogenated tallow) imidazoline. Cyclic amines which may be employed for the compositions herein are described in U.S. Patent 4,806,255 incorporated by reference herein.
- (iii) Carboxylic acids having 8 to 30 carbons atoms and one carboxylic group per molecule. The alkyl portion has 8 to 30, preferably 12 to 22 carbon atoms. The alkyl portion may be linear or branched, saturated or unsaturated, with linear saturated alkyl preferred. Stearic acid is a preferred fatty acid for use in the composition herein. Examples of these carboxylic acids are commercial grades of stearic acid and palmitic acid, and mixtures thereof which may contain small amounts of other acids.
- (iv) Esters of polyhydric alcohols such as sorbitan esters or glycerol stearate. Sorbitan esters are the condensation products of sorbitol or iso-sorbitol with fatty acids such as stearic acid. Preferred sorbitan esters are monoalkyl. A common example of sorbitan ester is SPAN 60 (ICI) which is a mixture of sorbitan and isosorbide stearates.
- (v) Fatty alcohols, ethoxylated fatty alcohols, alkyphenols, ethoxylated alkyphenols, ethoxylated fatty amines, ethoxylated monoglycerides and ethoxylated diglycerides.
- (vi) Mineral oils, and polyols such as polyethylene glycol.

These softeners are more definitively described in U.S. Patent 4,134,838 the disclosure of which is incorporated by reference herein. Preferred fabric softeners for use herein are acyclic quaternary ammonium salts. Di(hydrogenated)tallowdimethyl ammonium methylsulfate is most widely used for dryer articles of this invention. Mixtures of the above mentioned fabric softeners may also be used.

- 23 -

The fabric softening composition employed in the present invention contains as a rule about 0.1% to about 95% of the fabric softening component. Preferably from about 2% to about 70% and most preferably from about 2% to about 30% of the fabric softening component is employed herein to obtain optimum softening at minimum cost. When the fabric softening component includes a quaternary ammonium salt, the salt is used in the amount of about 2% to about 70%, preferably about 2% to about 30%.

The fabric softener composition may also comprise additives which are customary for standard commercial liquid rinse conditioners, for example alcohols, such as ethanol, n-propanol, i-propanol, polyhydric alcohols, for example glycerol and propylene glycol; amphoteric and nonionic surfactants, for example carboxyl derivatives of imidazole, oxyethylated fatty alcohols, hydrogenated and ethoxylated castor oil, alkyl polyglycosides, for example decyl polyglucose and dodecylpolyglucose, fatty alcohols, fatty acid esters, fatty acids, ethoxylated fatty acid glycerides or fatty acid partial glycerides; also inorganic or organic salts, for example water-soluble potassium, sodium or magnesium salts, non-aqueous solvents, pH buffers, perfumes, dyes, hydrotropic agents, antifoams, anti redeposition agents, polymeric or other thickeners, enzymes, optical brighteners, antishrink agents, stain removers, germicides, fungicides, antioxidants and corrosion inhibitors.

These fabric softener compositions are traditionally prepared as dispersions containing for example up to 20 % by weight of active material in water. They have a turbid appearance. However, alternative formulations usually containing actives at levels of 5 to 40 % along with solvents can be prepared as microemulsions which have a clear appearance (as to the solvents and the formulations see for example US-A-5,543,067 und WO-A-98/17757). The additives and polyorganosiloxanes of the present invention can be used for such compositions although it will be necessary to use them in microemulsion form to preserve the clear appearance of the fabric softener compositions which are microemulsions.

Another aspect of the invention is a tumble dryer sheet article. The fabric softener composition of the present invention may be coated onto a flexible substrate which carries a fabric conditioning amount of the composition and is capable of releasing the composition at dryer operating temperatures. The conditioning composition in turn has a preferred melting (or softening) point of about 25°C to about 150°C.

- 24 -

The fabric softener composition which may be employed in the invention is coated onto a dispensing means which effectively releases the fabric conditioning composition in a tumble dryer. Such dispensing means can be designed for single usage or for multiple uses. One such multi-use article comprises a sponge material releasably enclosing enough of the conditioning composition to effectively impart fabric softness during several drying cycles. This multi-use article can be made by filling a porous sponge with the composition. In use, the composition melts and leaches out through the pores of the sponge to soften and condition fabrics. Such a filled sponge can be used to treat several loads of fabrics in conventional dryers, and has the advantage that it can remain in the dryer after use and is not likely to be misplaced or lost.

Another article comprises a cloth or paper bag releasably enclosing the composition and sealed with a hardened plug of the mixture. The action and heat of the dryer opens the bag and releases the composition to perform its softening.

A highly preferred article comprises the inventive compositions releasably affixed to a flexible substrate such as a sheet of paper or woven or non-woven cloth substrate. When such an article is placed in an automatic laundry dryer, the heat, moisture, distribution forces and tumbling action of the dryer removes the composition from the substrate and deposits it on the fabrics.

The sheet conformation has several advantages. For example, effective amounts of the compositions for use in conventional dryers can be easily absorbed onto and into the sheet substrate by a simple dipping or padding process. Thus, the end user need not measure the amount of the composition necessary to obtain fabric softness and other benefits. Additionally, the flat configuration of the sheet provides a large surface area which results in efficient release and distribution of the materials onto fabrics by the tumbling action of the dryer.

The substrates used in the articles can have a dense, or more preferably, open or porous structure. Examples of suitable materials which can be used as substrates herein include paper, woven cloth, and non-woven cloth. The term "cloth" herein means a woven or non-woven substrate for the articles of manufacture, as distinguished from the term "fabric"

which encompasses the clothing fabrics being dried in an automatic dryer.

It is known that most substances are able to absorb a liquid substance to some degree; however, the term "absorbent", as used herein, is intended to mean a substrate with an absorbent capacity (i.e., a parameter representing a substrates ability to take up and retain a liquid) from 4 to 12, preferably 5 to 7 times its weight of water.

If the substrate is a foamed plastics material, the absorbent capacity is preferably in the range of 15 to 22, but some special foams can have an absorbent capacity in the range from 4 to 12.

Determination of absorbent capacity values is made by using the capacity testing procedures described in U.S. Federal Specifications (UU-T-595b), modified as follows:

- 1. tap water is used instead of distilled water;
- 2. the specimen is immersed for 30 seconds instead of 3 minutes;
- 3. draining time is 15 seconds instead of 1 minute; and
- 4. the specimen is immediately weighed on a torsion balance having a pan with turned-up edges.

Absorbent capacity values are then calculated in accordance with the formula given in said Specification. Based on this test, one-ply, dense bleached paper (e.g., Kraft or bond having a basis weight of about 32 pounds per 3,000 square feet) has an absorbent capacity of 3.5 to 4; commercially available household one-ply towel paper has a value of 5 to 6; and commercially available two-ply household towelling paper has a value of 7 to about 9.5.

Suitable materials which can be used as a substrate in the invention herein include, among others, sponges, paper, and woven and non-woven cloth, all having the necessary absorbency requirements defined above.

The preferred non-woven cloth substrates can generally be defined as adhesively bonded fibrous or filamentous products having a web or carded fiber structure (where the fiber strength is suitable to allow carding), or comprising fibrous mats in which the fibers or filaments are distributed haphazardly or in random array (i.e. an array of fibers is a carded web wherein partial orientation of the fibers is frequently present, as well as a completely

PCT/EP00/09396

haphazard distributional orientation), or substantially aligned. The fibers or filaments can be natural (e.g. wool, silk, jute, hemp, cotton, linen, sisal, or ramie) or synthetic (e.g. rayon,

cellulose ester, polyvinyl derivatives, polyolefins, polyamides, or polyesters).

- 26 -

The preferred absorbent properties are particularly easy to obtain with non-woven cloths and are provided merely by building up the thickness of the cloth, i.e., by superimposing a plurality of carded webs or mats to a thickness adequate to obtain the necessary absorbent properties, or by allowing a sufficient thickness of the fibers to deposit on the screen. Any diameter or denier of the fiber (generally up to about 10 denier) can be used, inasmuch as it is the free space between each fiber that makes the thickness of the cloth directly related to the absorbent capacity of the cloth, and which, further, makes the non-woven cloth especially suitable for impregnation with a composition by means of intersectional or capillary action. Thus, any thickness necessary to obtain the required absorbent capacity can be used.

When the substrate for the composition is a non-woven cloth made from fibers deposited haphazardly or in random array on the screen, the articles exhibit excellent strength in all directions and are not prone to tear or separate when used in the automatic clothes dryer.

Preferably, the non-woven cloth is water-laid or air-laid and is made from cellulosic fibers, particularly from regenerated cellulose or rayon. Such non-woven cloth can be lubricated with any standard textile lubricant.

Preferably, the fibers are from 5mm to 50mm in length and are from 1.5 to 5 denier. Preferably, the fibers are at least partially orientated haphazardly, and are adhesively bonded together with a hydrophobic or substantially hydrophobic binder-resin. Preferably, the cloth comprises about 70% fiber and 30% binder resin polymer by weight and has a basis weight of from about 18 to 45g per square meter.

In applying the fabric softener composition to the absorbent substrate, the amount impregnated into and/or coated onto the absorbent substrate is conveniently in the weight ratio range of from about 10:1 to 0.5:1 based on the ratio of total conditioning composition to dry, untreated substrate (fiber plus binder). Preferably, the amount of the conditioning composition ranges from about 5:1 to about 1:1, most preferably from about 3:1 to 1:1, by

- 27 -

weight of the dry untreated substrate.

According to one preferred embodiment of the invention, the dryer sheet substrate is coated by being passed over a rotogravure applicator roll. In its passage over this roll, the sheet is coated with a thin, uniform layer of molten fabric softening composition contained in a rectangular pan at a level of about 15g per square yard. Passage for the substrate over a cooling roll then solidifies the molten softening composition to a solid. This type of applicator is used to obtain a uniform homogeneous coating across the sheet.

Following application of the liquefied composition, the articles are held at room temperature until the composition substantially solidifies. The resulting dry articles, prepared at the composition substrate ratios set forth above, remain flexible; the sheet articles are suitable for packaging in rolls. The sheet articles can optionally be slitted or punched to provide a non-blocking aspect at any convenient time if desired during the manufacturing process.

The fabric softener composition employed in the present invention includes certain fabric softeners which can be used singly or in admixture with each other.

Examples of suitable textile fibre materials which can be treated with the fabric softener composition are materials made of silk, wool, polyamide, acrylics or polyurethanes, and, in particular, cellulosic fibre materials of all types. Such fibre materials are, for example, natural cellulose fibres, such as cotton, linen, jute and hemp, and regenerated cellulose. Preference is given to textile fibre materials made of cotton. The fabric softener compositions are also suitable for hydroxyl-containing fibres which are present in mixed fabrics, for example mixtures of cotton with polyester fibres or polyamide fibres.

A better understanding of the present invention and of its many advantages will be had by referring to the following Examples, given by way of illustration. The percentages given in the examples are percentages by weight.

Example 1 (preparation of the rinse conditioners)

The liquid rinse conditioners are prepared by using the procedure described below. This type of fabric rinse conditioners is normally known under the name of "triple strength" or "triple fold" formula.

75 % by weight of the total amount of water is heated to 40°C. The molten fabric softener di-(palmcarboxyethyl-)hydroxyethyl-methylammonium-methosulfate (or Rewoquat WE 38 DPG available from Witco) is added to the heated water under stirring and the mixture is stirred for 1 hour at 40°C. Afterwards the aqueous softener solution is cooled down to below 30°C while stirring. When the solution cools down sufficiently magnesium chloride is added and the pH is adjusted to 3.2 with 0.1 N hydrochloric acid. The formulation is then filled up with water to 100%.

The rinse conditioner formulation as described above was used as a base formulation. In a final step the fabric softener is mixed with a separately prepared polyorganosiloxane /additive emulsion. The fabric softener formulations used in the following examples are listed in the following Table 1.

Table 1 (rinse conditioner formulations used in the application test for 1 kg wash load)

Rinse conditioner	Polyorgano-siloxane	Fabric softener	рН
formulation	emulsion (calculated	Base Formulation	
	on solid content of		
	the emulsion)		
0 (Reference)		13.3 g	3.2
Α	0.2 g of Type I	13.3 g	3.2
В	0.2 g of Type II	13.3 g	3.2
С	0.2 g of Type III	13.3 g	3.2
D	0.2 g of Type IV	13.3 g	3.2
E	0.2 g of Type V	13.3 g	3.2
F	0.2 g of Type VI	13.3 g	3.2
G	0.2 g of Type VII	13.3 g	3.2
Н	0.2 g of Type VIII	13.3 g	3.2
1	0.2 g of Type IX	13.3 g	3.2
J	0.2 g of Type X	13.3 g	3.2
K	0.2 g of Type XI	13.3 g	3.2
L	0.2 g of Type XII	13.3 g	3.2
М	0.2 g of Type XV	13.3 g	3.2

Types of polyorganosiloxane emulsions used

Type I

- Polyorganosiloxane of general formula (1), wherein R₁ is -OH, R₃ is -CH₃,
- X + Y = 300-1500, % nitrogen (with respect to silicone) = 0
- 3.7% of an emulsifier
- 12.5% of an emulsifiable oxidised polyethylene which has a density of 0.95 to 1.05 g/cm³ at 20°C, a drop point of 100-150°C, an acid number of 10 to 60 and a saponification number of 15 to 80
- solid content of the emulsion measured by evaporation at 120°C = 27.0-29.0%
- water content = 71.3%

Type II

- Polyorganosiloxane of general formula (1), wherein R_1 is -OH, R_3 is -CH₂CH₂CH₂NH₂, X + Y = 300-1500, % nitrogen (with respect to silicone) = 0.025
- 4.5% of an emulsifier
- 1% of an emulsifiable oxidised polyethylene which has a density of 0.95 to 1.05 g/cm³ at 20°C, a drop point of 100-150°C, an acid number of 10 to 60 and a saponification number of 15 to 80
- solid content of the emulsion measured by evaporation at 120°C = 37.0-39.0%
- water content = 60.7%

Type III

- Polyorganosiloxane of general formula (1), wherein R₁ is -OH,

 R_3 is $-CH_2CH_2CH_2N(H)(CH_2CH_2NH_2)$, X + Y = 300-1500,

% nitrogen (with respect to silicone) = 0.03

- 3.6% of an emulsifier
- 14% of an emulsifiable oxidised polyethylene which has a density of 0.95 to 1.05 g/cm³ at 20°C, a drop point of 100-150°C, an acid number of 10 to 60 and a saponification number of 15 to 80
- solid content of the emulsion measured by evaporation at 120°C = 23.0-25.0%
- water content = 73.7%

- 30 -

Type IV

- Polyorganosiloxane of general formula (1), wherein R₁ is -OH,

 R_3 is $-CH_2CH_2CH_2N(H)(CH_2CH_2NH_2)$, X + Y = 300-1500,

% nitrogen (with respect to silicone) = 0.11

- 4.3% of an emulsifier
- 0.3% of a fatty acid monoalkanolamide of formula (15b), wherein R_{34} is hydrogen and R_{37} is hydrogen or a radical of formula -C(O) R_{36}
- solid content of the emulsion measured by evaporation at 120°C = 37.0-39.0%
- water content = 60.7%

Type V

- Polyorganosiloxane of general formula (1), wherein R₁ is -OH,

 R_3 is $-CH_2CH_2CH_2N(H)(CH_2CH_2NH_2)$, X + Y = 300-1500,

% nitrogen (with respect to silicone) = 0.11

- 4.4% of an emulsifier
- 0.2% of an emulsifiable oxidised polyethylene which has a density of 0.95 to 1.05 g/cm³ at 20°C, a drop point of 100-150°C, an acid number of 10 to 60 and a saponification number of 15 to 80
- solid content of the emulsion measured by evaporation at 120°C = 37.0-39.0%
- water content = 60.7%

Type VI

- Polyorganosiloxane of general formula (1), wherein R₁ is -CH₃,

 R_3 is $-CH_2CH_2CH_2N(H)(CH_2CH_2NH_2)$, X + Y = 150-300,

% nitrogen (with respect to silicone) = 0.12

- 11% of an emulsifier
- 0.3% of a fatty acid dialkanolamide of formula (15a), wherein R_{34} , R_{38} , R_{38} and R_{38} " are hydrogen or -CH₂OH
- solid content of the emulsion measured by evaporation at 120°C = 24.0-26.0%
- water content = 72.1%

Type VII

- Polyorganosiloxane of general formula (1), wherein R₁ is -CH₃,

 R_3 is $-CH_2CH_2CH_2N(H)(CH_2CH_2NH_2)$, X + Y = 40-150,

- 31 -

% nitrogen (with respect to silicone) = 0.08

- 13.2% of an emulsifier
- 0.23% of an emulsifiable oxidised polyethylene which has a density of 0.95 to 1.05 g/cm³ at 20°C, a drop point of 100-150°C, an acid number of 10 to 60 and a saponification number of 15 to 80
- solid content of the emulsion measured by evaporation at 120°C = 41.0-43.0%
- water content = 44.4%

Type VIII

- Polyorganosiloxane of general formula (1), wherein R_1 is -CH₃, R_3 is -CH₂CH₂CH₂N(H)(CH₂CH₂N(H)(CO)(CH₂CH₂CH₂OH))), X + Y = 300-1500, % nitrogen (with respect to silicone) = 0.1
- 9.8% of an emulsifier
- 0.1% of an emulsifiable oxidised polyethylene which has a density of 0.95 to 1.05 g/cm³ at 20°C, a drop point of 100-150°C, an acid number of 10 to 60 and a saponification number of 15 to 80
- solid content of the emulsion measured by evaporation at 120°C = 20.5-22.5%
- water content = 76.9%

Type IX

- Polyorganosiloxane of general formula (8), wherein R_{17} is -CH₃, R_3 is CH₃, R_{19} is a polyethylenoxide radical, $X^1 + Y^1 + S = 40-150$, % nitrogen (with respect to silicone) = 0
- 2% of an emulsifier
- 0.15% of an emulsifiable oxidised polyethylene which has a density of 0.95 to 1.05 g/cm³ at 20°C, a drop point of 100-150°C, an acid number of 10 to 60 and a saponification number of 15 to 80
- solid content of the emulsion measured by evaporation at 120°C = 23.0-25.0%
- water content = 74.9%

Type X

- Polyorganosiloxane of general formula (8), wherein R_{17} is -CH₃, R_3 is -CH₂CH₂CH₂NH₂, R_{19} is a polyethylene/polypropyleneoxide radical, $X^1 + Y^1 + S = 150-300$

- 32 -

% nitrogen (with respect to silicone) = 0.07

- 3.5% of an emulsifier
- 1.5% of a fatty acid dialkanolamide of formula (15a), wherein R_{34} , R_{38} , R_{38} and R_{38} are hydrogen or -CH₂OH
- solid content of the emulsion measured by evaporation at 120°C = 19.5-21.5%
- water content = 73%

Type XI

- Polyorganosiloxane of general formula (9), wherein R_{26} is C_{12} alkyl, R_{27} is 2-phenylpropyl, R_{28} is an epoxy radical of formula (10), $X^2 + X^3 + X^4 + Y^2 = 40$ -150, % nitrogen (with respect to silicone) = 0
- 2.9% of an emulsifier
- 0.85% of an emulsifiable oxidised polyethylene which has a density of 0.95 to 1.05 g/cm³ at 20°C, a drop point of 100-150°C, an acid number of 10 to 60 and a saponification number of 15 to 80
- solid content of the emulsion measured by evaporation at 120°C = 37.0-39.0%
- water content = 62%

Type XII

- Polyorganosiloxane of general formula (1), wherein R₁ is CH₃, R₃ is C₁₈alkoxy,
- X + Y = 40-150, % nitrogen (with respect to silicone) = 0
- 3.2% of an emulsifier
- 1.5% of an emulsifiable oxidised polyethylene which has a density of 0.95 to 1.05 g/cm³ at 20°C, a drop point of 100-150°C, an acid number of 10 to 60 and a saponification number of 15 to 80
- solid content of the emulsion measured by evaporation at 120°C = 34.0-35.5%
- water content = 61.4%

Type XIII

- Polyorganosiloxane of general formula (1), wherein R₁ is -OH,
- R_3 is $-CH_2CH_2CH_2N(H)(CH_2CH_2NH_2)$, X + Y = 300-1500,
- % nitrogen (with respect to silicone) = 0.1
- 4.2% of an emulsifier

- 6.2% of a fatty acid monoalkanolamide of formula (15b), wherein R_{34} is hydrogen and R_{37} is hydrogen or a radical of formula -C(O) R_{36}
- solid content of the emulsion measured by evaporation at 120°C = 38-40%
- water content = 60%

Type XIV

- Polyorganosiloxane of general formula (8), wherein R_3 is -CH₃ and R_{17} is -CH₂CH₂CH₂NH₂, R_{19} is a polyethyleneoxide radical, $X^1 + Y^1 + S = 40-150$,
- % nitrogen (with respect to silicone) = 0.04
- 7.2% of an emulsifier
- solid content of the emulsion measured by evaporation at 120°C = 54-56%
- water content = 38.1%

Type XV

1 part of emulsion Type XIII and 9 parts of emulsion type XIV

Example 2 Hydrophilicity

The formulated rinse conditioners (see Table 1) are applied according to the following procedure:

Woven cotton swatches of size of 50 cm by 40 cm are washed together with ballast material (cotton and cotton/polyester) in a AEG Oeko Lavamat 73729 washing machine maintaining the washing temperature at 40°C. The total fabric load of 1 kg is washed for 15 minutes with 33 g of ECE Color Fastness Test Detergent 77 (Formulation January 1977, according to ISO 105-CO6). The rinse conditioner formulation as described in Table 1 is applied in the last rinse cycle at 20°C. After rinsing with the formulation the textile swatches are dried on a washing line at ambient temperature.

Evaluation of Hydrophilicity

The water absorption of fabrics treated with the test samples is measured by the wicking test. Test strips are fixed to a frame and dipped about 1mm deep in a colored aqueous solution. The rise of water in the strips is measured after twenty minutes. Water absorption

of fabrics treated with rinse conditioner formulations from Table 1 are compared. The average values of four parallel measurements are given in Table 2.

Table 2

Rinse conditioner sample	Measured water rise
	(cm)
0 (Reference)	8.2
A	9.6
В	10.2
С	9.5
D	9.6
E	9.2
F	9.0
G	9.8
Н	9.1
	9.2
J	9.6
К	9.8
L	9.6
M	9.3

These results show an improved hydrophilicity of the textile fabric material treated with compositions of the present invention.

In all experiments the following textiles have been used:

Cotton woven: 120 g/m2, bleached, with resin finishing:

Cotton/Polyester 66/34 woven: 85 g/m2, bleached.

Both textiles were finished with a resin according to Oekotex Standard 100: 30 g/l of modified dimethyloldihydroxyethylene urea (70% active material) 9 g/l Magnesiumchloride (with 6 H₂O) padding with a pick-up of approximately 80%

WO 01/25383

PCT/EP00/09396

- 35 -

Drying at about 110 - 120 °C in a oven followed by a 4 minute curing step at 145°C.

WHAT IS CLAIMED IS:

- 1. A method of use of a softener composition for imparting hydrophilicity to textile fibre materials in domestic applications, which softener composition comprises:
- A) a fabric softener;
- B) at least one additive selected from the group consisting of
 - a) a polyethylene, or a mixture thereof,
 - b) a fatty acid alkanolamide, or a mixture thereof,
 - c) a polysilicic acid, or a mixture thereof, and
 - d) a polyurethane, or a mixture thereof; and
- C) a dispersed polyorganosiloxane of formula (1)

(1)
$$R^{1} - S_{i} - O = \begin{bmatrix} CH_{3} \\ I \\ S_{i} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ I \\ S_{i} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ I \\ S_{i} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ I \\ S_{i} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ I \\ CH_{3} \end{bmatrix}$$

wherein

R1 is OH, OR2 or CH3

R2 is CH3 or CH2CH3

R³ is C₁-C₂₀alkoxy, CH₃, CH₂CHR⁴CH₂NHR⁵, or CH₂CHR⁴CH₂N(COCH₃)R⁵

(2)
$$(CH_2)_3O$$
 NR⁸

or (3) $(CH_2)_3NH$ CH

or (4) $(CH_2)_3$ NR⁸

R4 is H or CH3

- 37 -

 R^5 is H, $CH_2CH_2NHR^6$, $C(=O)-R^7$ or $(CH_2)_Z-CH_3$ z is 0 to 7 R^6 is H or $C(=O)-R^7$ R^7 is CH_3 , CH_2CH_3 or $CH_2CH_2CH_2OH$ R^8 is H or CH_3 the sum of X and Y is 40 to 4000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5)

(5)
$$(R^9)_V (R^{10})_W \text{Si-A-B}$$

wherein

R9 is CH3, CH3CH2 or Phenyl

R¹⁰ is -O-Si or -O-R⁹

the sum of v and w equals 3, and v does not equal 3

$$A = -CH_2CH(R^{11})(CH_2)_K$$

$$B = -NR^{12}((CH_2)_l-NH)_mR^{12}$$
, or

n is 0 or 1

when n is 0, U1 is N, when n is 1, U1 is CH

1 is 2 to 8

k is 0 to 6

m is 0 to 3

R¹¹ is H or CH₃

 R^{12} is H, C(=O)- R^{16} , CH₂(CH₂)_pCH₃ or

- 38 -

$$OH$$
 (7) CH_2 — CH — CH_2 — O — CH_3

p is 0 to 6

R¹³ is NH, O, OCH₂CH(OH)CH₂N(Butyl), OOCN(Butyl)

R14 is H, linear or branched C1-C4 alkyl, Phenyl or CH2CH(OH)CH3

R15 is H or linear or branched C1-C4 alkyl

R¹⁶ is CH₃, CH₂CH₃ or (CH₂)_qOH

q is 1 to 6

U² is N or CH;

or a dispersed polyorganosiloxane of the formula (8)

(8)
$$R^{17} - Si - O = \begin{bmatrix} CH_3 \\ | \\ | \\ CH_3 \end{bmatrix} = \begin{bmatrix} CH_3 \\ | \\ | \\ CH_3 \end{bmatrix} = \begin{bmatrix} CH_3 \\ | \\ Si - O \end{bmatrix} = \begin{bmatrix}$$

wherein

R³ is as previously defined

R¹⁷ is OH, OR¹⁸ or CH₃

R¹⁸ is CH₃ or CH₂CH₃

 R^{19} is R^{20} -(EO)_m-(PO)_n- R^{21}

m is 3 to 25

n is 0 to 10

R²⁰ is the direct bond or CH₂CH(R²²)(CH₂)₀R²³

p is 1 to 4

R²¹ is H, R²⁴, CH₂CH(R²²)NH₂ or CH(R²²)CH₂NH₂

R²² is H or CH₃

R²³ is O or NH

R²⁴ is linear or branched C₁-C₈ alkyl or Si(R²⁵)₃

R²⁵ is R²⁴, OCH₃ or OCH₂CH₃

EO is -CH2CH2O-

PCT/EP00/09396

- 39 -

PO is $-CH(CH_3)CH_2O$ - or $-CH_2CH(CH_3)O$ the sum of X_1, Y_1 and S is 20 to 1500;

or a dispersed polyorganosiloxane of the formula (9)

wherein

R²⁶ is linear or branched C₁ - C₂₀ alkoxy, CH₂CH(R⁴)R²⁹

R⁴ is as previously defined

R²⁹ is linear or branched C₁ - C₂₀ alkyl

 R^{27} is aryl, aryl substituted by linear or branched C_1 - C_{10} alkyl, linear or branched C_1 - C_{20} alkyl substituted by aryl or aryl substituted by linear or branched C_1 - C_{10} alkyl R^{28} is

the sum of X^2 , X^3 , X^4 and Y^2 is 20 to 1500, wherein X^3 , X^4 and Y^2 may be independently of each other 0;

or a mixture thereof.

2. A method of use according to claim 1 wherein the polyorganosiloxane is of formula (1):

(1)
$$R^{1} - S_{1} - O = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ S_{1} - O \end{bmatrix} = \begin{bmatrix} CH_{3} \\ | \\ CH_{3} \end{bmatrix} = \begin{bmatrix} CH_{$$

wherein

R1 is OH, OR2 or CH3

R² is CH₃ or CH₂CH₃

R³ is C₁-C₂₀alkoxy, CH₃, CH₂CHR⁴CH₂NHR⁵, or

- 40 -

(2)
$$(CH_2)_3O$$
 NR⁸

Or (3) $(CH_2)_3NH$ CH

 R^4 is H or CH₃ R^5 is H, CH₂CH₂NHR⁶, C(=O)-R⁷ R^6 is H or C(=O)-R⁷ R^7 is CH₃, CH₂CH₃ or CH₂CH₂CH₂OH R^8 is H or CH₃ the sum of X and Y is 40 to 4000;

or a dispersed polyorganosiloxane which comprises at least one unit of the formula (5);

(5)
$$(R^9)_V (R^{10})_W \text{Si-A-B}$$

wherein

(6)

 R^9 is CH_3 , CH_3CH_2 R^{10} is -O-Si or -O- R^9 the sum of v and w equals 3, and v does not equal 3 $A = -CH_2CH(R^{11})(CH_2)_K$ $B = -CH_3CH(R^{11})(CH_2)_K$

- 41 -

n is 1

U1 is CH

k is 0 to 6

R11 is H or CH3

R¹³ is OOCN(Butyl)

R¹⁴ is H, linear C₁-C₄ alkyl, Phenyl

R¹⁵ is H or linear C₁-C₄ alkyl

U² is N:

or a dispersed polyorganosiloxane of the formula (8);

(8)
$$R^{17} - Si - O = CH_3$$
 CH_3 CH_3

wherein

R3 is as previously defined

R¹⁷ is OH, OR¹⁸ or CH₃

R¹⁸ is CH₃ or CH₂CH₃

 R^{19} is R^{20} -(EO)_m-(PO)_o- R^{21}

m is 3 to 25

n is 0 to 10

R²⁰ is the direct bond or CH₂CH(R²²)(CH₂)_pR²³

p is 1 to 4

R²¹ is H, R²⁴, CH₂CH(R²²)NH₂ or CH(R²²)CH₂NH₂

R²² is H or CH₃

R²³ is O or NH

R²⁴ is linear or branched C₁-C₃ alkyl or Si(R²⁵)₃

R²⁵ is R²⁴, OCH₃ or OCH₂CH₃

EO is -CH2CH2O-

PO is -CH(CH₃)CH₂O- or -CH₂CH(CH₃)O-

the sum of X_1, Y_1 and s is 20 to 1500;

or a dispersed polyorganosiloxane of the formula (9);

$$(9) \quad H_{3}C = \begin{bmatrix} CH_{3} & CH$$

wherein

R²⁶ is linear C₁ - C₂₀ alkoxy,

R4 is as previously defined

R²⁹ is linear C₁ - C₂₀ alkyl

R²⁷ is, CH₂CH(R⁴)Phenyl

R²⁸ is

(10)
$$(CH_2)_3$$
— O — CH_2 — CH_2 — CH_2

the sum of X^2 , X^3 , X^4 and Y^2 is 20 to 1500, wherein X^3 , X^4 and Y^2 may be independently of each other 0;

or a mixture thereof.

3. A method of use according to claim 1 or 2 wherein a polyorganosiloxane of formula (1) is used, wherein

R1 is OH or CH3,

R³ is CH₃, C₁₀-C₂₀alkoxy or CH₂CHR⁴CH₂NHR⁵,

R⁴ is H.

R⁵ is H or CH₂CH₂NHR⁶,

R⁶ is H or C(=0)-R⁷, and

R⁷ is CH₃, CH₂CH₃ or especially CH₂CH₂CH₂OH.

4. A method of use according to claim 1 or 2 wherein a polyorganosiloxane of formula (8) is used, wherein

 R^3 is CH_3 , C_{10} - C_{20} alkoxy or $CH_2CHR^4CH_2NHR^5$,

- 43 -

 R^4 is H, R^5 is H or $CH_2CH_2NHR^6$, R^6 is H or $C(=O)-R^7$, R^7 is CH_2CH_3 , $CH_2CH_2CH_2OH$ or especially CH_3 , and R_{17} is CH_3 or OH.

5. A method of use according to claim 1 or 2 wherein a polyorganosiloxane of formula (9) is used, wherein

R²⁶ is CH₂CH(R⁴)R²⁹,

R4 is H, and

R²⁷ is 2-phenyl propyl.

- 6. A method of use according to any of claims 1 to 5 wherein the composition is a liquid aqueous composition.
- 7. A method of use according to any of claims 1 to 5 wherein the composition is used in a tumble dryer sheet composition.
- 8. A method of use according to any of claims 1 to 7 in which the polyorganosiloxane is nonionic or cationic.
- 9. A method of use according to any of claims 1 to 8 in which the composition has a solids content of 5 to 70 % at a temperature of 120°C.
- 10. A method of use according to any of claims 1 to 9 in which the composition contains a water content of 25 to 90 % by weight based on the total weight of the composition.
- 11. A method of use according to any of claims 1 to 10 in which the composition has a pH value from 2 to 7.
- 12. A method of use according to any of claims 1 to 11 in which the nitrogen content of the aqueous emulsion due to the polyorganosiloxane is from 0 to 0.25 % with respect to the silicon content.

- 13. A method of use according to any of claims 1 to 12 wherein the composition comprises a polyethylene, a fatty acid alkanolamide or a polyurethane.
- 14. A method of use according to any of claims 1 to 13 wherein the composition comprises a polyethylene or a fatty acid alkanolamide.
- 15. A method of use according to any of claims 1 to 14 wherein the composition comprises a fatty acid alkanolamide.
- 16. A method of use according to any of claims 1 to 14 wherein the composition comprises a polyethylene.
- 17. A method of use according to any of claims 1 to 16 wherein the composition is prepared by mixing a preformulated fabric softener with an emulsion comprising the polyorganosiloxane and the additive.
- 18. A method of use according to any of claims 1 to 17 wherein composition has a clear appearance.
- 19. A method of use according to any of claims 1 to 18 in which the composition comprises:
- a) 0.01 to 70 % by weight, based on the total weight of the composition, of a polyorganosiloxane, or a mixture thereof;
- b) 0.2 to 15 % by weight based on the total weight of an emulsifier, or a mixture thereof;
- c) 0.01 to 15 % by weight based on the total weight of at least one additive selected from the group consisting of a polyethylene, a fatty acid alkanolamide, a polysilicic acid and a polyurethane, and
- d) water to 100 %.
- 20. A tumble dryer sheet comprising a composition as defined in claim 1.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

AIPO OMPI

(43) International Publication Date 12 April 2001 (12.04.2001)

PCT

(10) International Publication Number WO 01/25383 A1

(51) International Patent Classification⁷: 17/04, 3/12, 1/645, 1/62

C11D 3/37,

(21) International Application Number: PCT/EP00/09396

(22) International Filing Date:

26 September 2000 (26.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 99810899.7

5 October 1999 (05.10.1999) E

- (71) Applicants (for all designated States except US): CIBA SPECIALTY CHEMICALS HOLDING INC. [CH/CH]; Klybeckstrasse 141, CH-4057 Basel (CH). CIBA SPEZIALITÄTENCHEMIE PFERSEE GMBH [DE/DE]; Rehlinger Strasse 1, 86462 Langweid a. Lech (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KVITA, Petr [CH/CH]; Binningerstrasse 4D, 4153 Reinach (CH). OTTO, Peter [US/DE]; Ritterstrasse 26, 79618 Rheinfelden (DE). DUBINI, Mario [CH/CH]; Härgelenstrasse 29, CH-4435 Niederdorf (CH). CHROBACZEK, Harald [DE/DE]; Oblatterwallstrasse 38, 86153 Augsburg (DE). GEUBTNER, Michael [DE/DE]; Aggensteinstrasse 5,

86462 Langweid (DE). GORETZKI, Ralf [DE/DE]; Berliner Allce 22B, 86153 Augsburg (DE). WEBER, Barbara [DE/DE]; Schlossweg 1, 79639 Grenzach-Wyhlen (DE). MARTIN, Emmanuel [FR/FR]; 4, Cité Beaulieu, F-68300 Saint Louis Neuweg (FR).

- (74) Common Representative: CIBA SPECIALTY CHEMI-CALS HOLDING INC.; Patentabteilung, Klybeckstrasse 141, CH-4057 Basel (CH).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1/25383 A1

(54) Title: FABRIC SOFTENER COMPOSITIONS

(57) Abstract: The present invention relates to a method of use of a softener composition for imparting hydrophylicity to textile fibre materials in domestic applications, which softener composition comprises: A) a fabric softener; B) at least one additive selected from the group consisting of a) a polyethylene, or a mixture thereof, b) a fatty acid alkanolamide, or a mixture thereof, c) a polysilicic acid, and d) a polyurethane; C) selected polyorganosiloxanes.

US Case HF/5 -22102/US/A

DECLARATION AND POWER OF ATTORNEY FOR U.S. PATENT APPLICATIONS

	Original	☐ Supplemer	ntal 🗆	Substitute	☑ PCT			
As a	As a below named inventor, I hereby declare that:							
Му	My residence, post office address and citizenship are as stated below next to my name.							
orig	I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if more than one name is listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled							
FAB	RIC SOFTE	NER COMPOSITIONS	3					
whic	ch is descrit	oed and claimed in:						
	the attac	ched specification.						
	filed	ification in U.S. Appl , an day/month/year)	lication No. d as amended		(if applicat	ole).		
×	filed	ification in Internatio 26/09/00 day/month/year)	nal Application	No. PCT/E	P 00/09396			
	assigned	d U.S. Application No	o.	(if appl	icable), and as amen	ded		
	□ und	er PCT Article 19 on	(day/montl	(if appl	icable)			
	□ und	er PCT Article 34 on	(day/montl		icable)			
	□ and	further amended on	(day/montl	(if appl	icable)			

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose all information which is known by me to be material to the patentability of this application as defined in 37 C.F.R. § 1.56.

I hereby claim foreign priority benefits under 35 U.S.C. § 119 (a)-(d) of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America relating to this subject matter having a filing date before that of the application on which priority is claimed:

CSC

COUNTRY/REGION (OR PCT)	APPLICATION No		FILING (day/mor			PRI	ORIT	Y CLA	IMED
Europe (designating DE)	99810899.7		05/1	0/99		×	Yes		No
							Yes		No
							Yes		No
							Yes		No
							Yes		No
I hereby claim the ben- application(s) listed be		§ 1	19 (e) of an	y Un	ited Sta	ates	provis	sional	
APPLICATION NO.			FILING DA (day/month/y						
application discloses a copending application, material to patentability filing date of the prior application: U.S. APPLICATION No.	I acknowledge the y as defined in 37 C	duty .F.F	to disclose R. § 1.56 wh	all i	nformat became	tion e ava iona	knowr ailable	by me	e to be en the
NO.	(day/month/year)		Detented	_	Dandi			A la	
			Patented		Pendi	U			doned
			Patented		Pendi	•			doned
			Patented		Pendi	•			doned
			Patented		Pendi	U			doned
			Patented		Pendi	ng		Aband	doned
PCT APPLICATION No. (designating the U.S.)	INTERNATIONAI FILING DATE (day/month/year)	L	U.S. APPL No. (if any)	ICA ⁻	ΓΙΟΝ	ST	ATUS	3	
							Pate	ented	
							Pen	ding	
							Aba	ndone	d

CSC

I hereby appoint the following attorneys and agents, associated with Customer No. 000324, each of them with full power of substitution, revocation and appointment of associates, to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

Luther A. R. Hall (Reg. No. 27,337), JoAnn L. Villamizar (Reg. No. 30,598), Kevin T. Mansfield (Reg. No. 31,635), David R. Crichton (Reg. No. 37,300), Michele A. Kovaleski (Reg. No. 37,865) and Tyler A. Stevenson (Reg. No. 46,388).

Address all correspondence associated with Customer No. 000324 to Ciba Specialty Chemicals Corporation, Patent Department, 540 White Plains Road, P.O. Box 2005, Tarrytown, NY 10591-9005.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. § 1001, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of sole or first joint inventor

Petr KVITA

Inventor's signature

Date

(day/month/year)

Residence

Binningerstrasse 4D

4153 Reinach

Switzerland

Citizenship Swiss

Post Office Address

same as above

	Full name of second joint inventor, if any	Peter OTTO		
	Inventor's signature	P.Oth	Date _	12.3.02 (day/month/year)
200	Residence	Ritterstrasse 26 79618 Rheinfelden Germany		
	Citizenship	American		
	Post Office Address	same as above		
_	Full name of third joint inventor, if any	Mario DUBINI		
A	Inventor's signature		Date <u>/</u>	$\frac{12302}{\text{(day/month/year)}}$
3 ^v	Residence	Härgelenstrasse 29 4435 Niederdorf Switzerland		
	Citizenship	Swiss		
	Post Office Address	same as above		
_	Full name of fourth joint inventor, if any	Harald CHROBACZEK		
	Inventor's signature	M. M. b.	Date _	05-03-02 (day/month/year)
400	Residence	Oblatterwallstrasse 38 86153 Augsburg Germany		
	Citizenship	German		
	Post Office Address	same as above		

	Full name of fifth joint inventor, if any	Michael GEUBTNER		
\ P	Inventor's signature Residence	Aggensteinstrasse 5 86462 Langweid Germany	_ Date	Ob. 01.02 (day/month/year)
)	Citizenship Post Office Address	German same as above		
	Full name of sixth joint inventor, if any	Ralf GORETZKI		<u>, , , , , , , , , , , , , , , , , , , </u>
, P	Inventor's signature	Jonku	Date	Of.O.).O.L (day/month/year)
_O	Residence	Kornstrasse 9a 86391 Stadtbergen Germany		
	Citizenship	German		
	Post Office Address	same as above		
-	Full name of seventh joint inventor, if any	Barbara WEBER		
100	Inventor's signature	B. Webot	Date	/3 03 02 (day/month/year)
	Residence	Schlossweg 1 79639 Grenzach-Wyhlen DEX Germany		
	Citizenship	German		
	Post Office Address	same as above		

Full name of eighth joint inventor, if any

Emmanuel MARTIN

Inventor's signature

Date

(day/month/year)

Residence

4, Cité Beaulieu

68300 Saint Louis Neuweg

Francé

FRX

Citizenship

French

Post Office Address

same as above