

Střední průmyslová škola strojní a elektrotechnická a Vyšší odborná škola, Liberec 1, Masarykova 3

TUXMAN - FPGA

Maturitní/Ročníková práce

Obor Vedoucí práce

Autor

Konzultant práce

Školní rok

Martin Přívozník

Ing. Vladimír Prokeš

Informační technologie

Ing. Petr Socha

2019/2020

Anotace (Resumé)

Tématem práce je návrh arkádové hry na RTL úrovni a její implementace na programovatelném hradlovém poli, tj. FPGA. Uživatelský vstup je zajištěn pomocí PS/2 klávesnice a výstup prostřednictvím VGA. K implementaci je použit jazyk VHDL.

Klíčová slova

RTL, programovatelné hradlové pole, FPGA, PS/2, VGA, VHDL

Summary

The topic of this thesis is designing an arcade game on an RTL level and its implementation on a programmable gate array, i.e. FPGA. User input is provided by PS/2 keyboard and output is shown using VGA. Language called VHDL is used for implementation.

Keywords

RTL, programmable gate array, FPGA, PS/2, VGA, VHDL

Častná za	alalážaná			
Čestné prohlášení Prohlašuji, že jsem předkládanou maturitní/ročníkovou práci vypracoval sám uvedl jsem veškerou použitou literaturu a bibliografické citace.				pracoval sám a
V Liberci dne	e 11. ledna 2020		Martin Přívozník	

Obsah

	Úvo	d	1
1	Ana	alýza	2
	1.1	T	2
		1.1.1 Kombinační obvody	2
		1.1.2 Sekvenční obvody	3
		1.1.3 Synchronní a asynchronní návrh	3
		1.1.4 Jazyk VHDL	3
	1.2	Programovatelná hradlová pole FPGA	3
		1.2.1 Dostupné prostředky	3
		1.2.2 Logická syntéza	3
		1.2.3 Vývojová deska Digilent Basys 2	3
		1.2.4 Prostředí Xilinx ISE	3
	1.3	Rozhraní	3
	1.0	1.3.1 7-segmentový displej	5
		1.3.2 PS/2	5
		1.3.3 VGA	5
	1.4	Hra Pacman	5
	1.1	1.4.1 Princip	5
		1.4.2 Ovládání	5
		1.4.2 Oviadam	0
2	Náv	vrh hry	6
	2.1	Specifikace hry	6
		2.1.1 Cíl a chování hry	6
		2.1.2 Herní mapa	6
		2.1.3 Postavy a jejich chování	6
	2.2	Herní textury	6
		2.2.1 RGB	6
		2.2.2 Textury jako matice barev	6
0	т	1	-
3	-	blementace	7
	3.1	Modul pro čtení z PS/2 klávesnice	7
		3.1.1 Zpracování vstupu	7
		3.1.2 Generování výstupu	7
	3.2	Modul pro výstup na VGA monitor	7

	3.2.1	Časování VGA	8
	3.2.2	Propsání textur na monitor	8
3.3	Herní	logika	8
	3.3.1	Herní mapa	8
	3.3.2	Ovládání postav	8
	3.3.3	Cíle hry	8
			_
4 Test	ování		9
Závě	er		11

$\mathbf{\acute{U}vod}$

Analýza

Tato kapitola obsahuje stručný souhrn znalostí a informací potřebných pro následný návrh a implementaci. V sekci 1.1 je vysvětlen číslicový obvod a postup jeho návrhut. V sekci 1.2 stručně vysvětluji programovatelné hradlové pole a dále vybranou vývojovou desku. Sekce 1.3 se zabývá použitými komunikačními rozhraními, které zajišťují uživatelský vstup a výstup. Na závěr kapitoli, v sekci 1.4 vysvětluji princip a funkčnost hry, jíž je vzorem pro můj návrh.

1.1 Číslicový návrh

V této sekci se věnují tomu, co je číslicový obvod a jak jej navrhnout jak ve schématu, tak v jazyce popisujícím hardware. V podsekci 1.1.1 rozeberu logické funkce, prostředky jejich popisu a realizace pomocí logických hradel. Podsekce 1.1.2 je zaměřená na návrh sekvenčních obvodů a synchronních sekvenčních automatů (FSM), na což naváže podsekce 1.1.3, ve které vysvěluji princip hodinových domén a plně sekvenčního návrhu. V podsekci 1.1.4 stručně ukážu, jak převést schéma číslicového obvodu do kódu v jazyce popisujícím hardware (Hardware Description Language, HDL), v mém případě do jazyka Very High Speed Integrated Circuit Hardware Description Language (VHDL)

1.1.1 Kombinační obvody

Booleovská funkce

Booleovská funkce je funkce N vstupů a M výstupů nad množinou $\{0,1\}$. V případě, kdy má funkce více jak jeden výstup, lze ji rozdělit na M funkcí s jedním výstupem. Pro její reprezentaci můžeme využít kombinatorické struktury, které funkci vyjadřují. Příkladem reprezentace je pravdivostní tabulka, viz. tabulka 1.1, kde in_1 a in_2 jsou vstupní hodnoty a out je výstupní. Tato tabulka obsahuje vždy N^2 řádků, aby reprezentovala výstupní hodnotu pro všechny možné kombinace vstuních hodnot. Dalším podstatným příkladem je

in_1	in_2	out
0	0	f(0, 0)
0	1	f(0,1)
1	0	f(1,0)
1	1	f(1,1)

Tabulka 1.1: Pravdivostní tabulka.

Booleovská formule. K vyjádření formule a zároveň k popisu booleovské funkce používáme nejčastěji tyto základní funkce, viz. tabulka 1.2

Uvážíme-li Booleovu algebru, platí pro OR a AND následující (tabulka 1.3)

- 1.1.2 Sekvenční obvody
- 1.1.3 Synchronní a asynchronní návrh
- 1.1.4 Jazyk VHDL

1.2 Programovatelná hradlová pole FPGA

Tato sekce se zabývá tím, co jsou programovatelná hradlová pole (Field of programmable gate array, FPGA) a jak probíhá práce s těmito hradlovými poli na vývojové desce. V podsekci 1.2.1 popisuji části FPGA, které jsou použity pro implementaci číslicového obvodu. Podsekce 1.2.2 stručně vysvětluje kroky nezbytné pro implementaci samotného číslicového obvodu na základě jeho popisu VHDL kódem. V podsekcích 1.2.3 a 1.2.4 je stručně popsána použitá vývojová deska a vývojové prostředí, které se váže k FPGA, které deska obsahuje.

- 1.2.1 Dostupné prostředky
- 1.2.2 Logická syntéza
- 1.2.3 Vývojová deska Digilent Basys 2
- 1.2.4 Prostředí Xilinx ISE

1.3 Rozhraní

Tato sekce popisuje komunikační rozhraní použitá v návrhu a implementaci, která zajišťují uživatelský vstup a výstup. V podsekci 1.3.1 vysvětluji rozhraní 7-segmentového displeje. Sekce 1.3.2 a 1.3.3 popisují protokoly PS/2 a VGA.

Název	Pravdivostní tabulka	Formule
AND (logický součin)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$out = in_1 * in_2$
NAND (negovaný logický součin)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$out = \overline{in_1 * in_2}$
OR (logický součet)	$ \begin{array}{c cccc} in_1 & in_2 & out \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \end{array} $	$out = in_1 + in_2$
NOR (negovaný logický součet)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$out = \overline{in_1 + in_2}$
NOT (logická negace)	$\begin{array}{c cc} in_1 & out \\ \hline 0 & 1 \\ \hline 1 & 0 \\ \end{array}$	$out = \overline{in_1}$
YES (opakovač)	$\begin{array}{c cc} in_1 & out \\ \hline 0 & 0 \\ \hline 1 & 1 \\ \end{array}$	$out = in_1$
XOR (exkluzivní logický součet)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$out = in_1 \oplus in_2$
XNOR (negovaný exkluzivní logický součet)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$out = \overline{in_1 \oplus in_2}$

Tabulka 1.2: Tabulka nejpoužívanějších základních logických funkcí.

Tabulka 1.3: Tahle tabulka by měla být pod textem "platí pro OR a AND následující:".

- 1.3.1 7-segmentový displej
- 1.3.2 PS/2
- 1.3.3 VGA

1.4 Hra Pacman

Tato sekce vysvětluje hru, již má můj návrh klonovat. Podsekce 1.4.1 popisuje cíl a pravidla hry. V podsekci 1.4.2 vysvětluji ovládání hry.

- 1.4.1 Princip
- 1.4.2 Ovládání

Návrh hry

V této kapitole se zabývám návrhem herní logiky, na základě které je navržen číslicový obvod pro finální implementaci. Sekce 2.1 rozebírá konkrétní prvky hry a návrhy pro jejich řešení. V sekci 2.2 vysvětluji, jak jsou navržené textury, které se zobrazují na výstup.

2.1 Specifikace hry

V této sekci rozebírám konkrétní prvky hry a vysvětluji návrhy pro jejich řešení. V podsekci 2.1.1 popisuji, jak má hra fungovat jako celek a jak dosáhnout cíle hry. Podsekce 2.1.2 vysvětluje návrh herního pole, na kterém se hra odehrává a sekce 2.1.3 poté popisuje, jak se chovají jednotlivé postavy na navrženém herním poli.

- 2.1.1 Cíl a chování hry
- 2.1.2 Herní mapa
- 2.1.3 Postavy a jejich chování

2.2 Herní textury

Tato sekce popisuje návrh textur, které se zobrazují na výstup. V podsekci 2.2.1 vysvětluji způsob použití barev pro výstup. Sekce 2.2.2 se zabývá tím, v jaké podobě jsou textury, které se mají propisovat.

- 2.2.1 RGB
- 2.2.2 Textury jako matice barev

Implementace

Tato kapitola se zabývá návrhem číslicových obvodů pro jednotlivé logicky oddělené bloky na základě herní logiky a jejich implementací. Sekce 3.1 a 3.2 popisují číslicové obvody navržené pro čtení vstupních dat z klávesnice a generování výstupu na monitor. Sekce 3.3 poté vysvětluje vnitřní zapojení jednotlivých bloků zajišťujících logickou funkčnost hry. V sekci ?? je poté popsáno kompletní zapojení všech částí do funkčního celku.

3.1 Modul pro čtení z PS/2 klávesnice

V této sekci vysvětluji číslicový obvod, který jako celek zpracovává vstupní signál z klávesnice a generuje daný výstup. Podsekce 3.1.1 rozebírá číslicový obvod pro zpracování vstupního signálu a podsekce 3.1.2 řeší číslicový obvod pro generování výstupního signálu.

3.1.1 Zpracování vstupu

3.1.2 Generování výstupu

3.2 Modul pro výstup na VGA monitor

Tato sekce popisuje číslicový obvod, který zařizuje funkčnost monitoru a možnost propsání výstupu na něj. V podsekci 3.2.1 popisuji obvod, který zajišťuje funkčnost a v podsekci 3.2.2 vysvětluji, jak propisuji textury na monitor.

3.2.1 Časování VGA

3.2.2 Propsání textur na monitor

3.3 Herní logika

V této sekci popisuji číslicový obvod, který zajišťuje vnitřní funkcionalitu samotné hry. V podsekci 3.3.1 je vysvětlený obvod, který řeší herní plochu, na které se postavy pohybují. Podsekce 3.3.2 popisuje obvod ovládající postavy ve hře a v podsekci 3.3.3 je vysvětlen obvod, který řeší splnění cílů hry.

- 3.3.1 Herní mapa
- 3.3.2 Ovládání postav
- 3.3.3 Cíle hry

Testování

Závěr

Literatura

[1]