Le modèle exponentiel

Enseignement Scientifique - Terminale

Doc 1 – Évolution démographique au Niger entre 2011 et 2019

Sources : Banque Mondiale

Palier	Année	Population $u(n)$	Taux de
${f num\'ero}n$			variation
0	2011	17 114 761	
1	2012	17 795 191	
2	2013	18 504 255	
3	2014	19 240 157	
4	2015	20 001 663	
5	2016	20 788 838	
6	2017	21 602 472	
7	2018	22 442948	

On considère une population dont l'effectif évolue par palier, passant de la valeur u(n) au palier n à l'effectif u(n+1) au palier n+1.

Pour $n \in \mathbb{N}$, on appelle taux de variation le quotient

$$\frac{u(n+1) - u(n)}{u(n)}$$

Population	Nombre	Taux de	Nombre de	Taux de	Population	Taux de
au	de décès	mortalité	naissances	natalité	au	variation
01/01/2019	en 2019	en 2019	en 2019	en 2019	01/01/2020	global
23 310 000	186 400			4.6 %		

D'après l'INED, le Niger est le pays d'Afrique qui possède le plus fort taux de natalité.

Doc 2 – Boîte à outils mathématique

On parle d'évolution exponentielle lorsque pour une population, le **taux de variation** est (presque) **constant** d'un palier à l'autre. En notant t ce taux constant, on peut modéliser l'évolution par une suite géométrique de raison q=1+t. En effet, on a $\frac{u(n+1)-u(n)}{u(n)}=t$, soit $u(n+1)=(1+t)\times u(n)$, pour tout $n\in\mathbb{N}$.

Le nombre d'habitants s'exprime en fonction de n par :

$$u(n) =$$

Doc 3 – Modèle exponentiel et temps de doublement

On fait l'hypothèse que la population du Niger augmentera chaque année de 3.8 % à partir de 2020.

Le temps de doublement est le temps nécessaire pour qu'une quantité voie sa valeur initiale doubler.

La croissance démographique du Niger est la plus rapide du monde. De 24,2 millions en 2020, le Niger pourrait voir, selon la présidence du pays, sa population quasiment doubler d'ici à 2040, passant ainsi à près de 50 millions d'habitants.

d'après Le Monde

Questions

- 1. **Doc.** 1 Calculer les taux de variation et compléter ainsi le premier tableau. Commentez.
- 2. Doc. 1 Compléter le deuxième tableau à l'aide des données de l'INED.
- 3. Doc. 2 Comment reconnaître une évolution exponentielle ? Compléter la formule encadrée.
- 4. **Doc. 1, 2 et 3** Proposer une expression de u(n) modélisant la population du Niger. . **Doc. 3** Déterminer le temps de doublement de la population du Niger selon le modèle proposé.