

ZX-Calculus

Manuel Lerchner

01.06.2023

What is ZX-Calculus?

- A way to represent Quantum Circuits
- Graphical language
- Rules for simplifying the Diagram

Applications

- Quantum Circuit Optimization
 - **T-Count Optimization**
- Circuit Compilation

Quantum Circuit Optimization

- Idea: Transform circuits into equivalent circuits:
- Goal: Fewer or simpler Gates

But why use ZX-Calculus for this?

Fig. 2: Circuit Identities


```
B_1 = B_1 B_1 B_2
                                                                                                                                                                                                                                                                                                                                B_1 = B_4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \frac{-S}{B_3} = \frac{-B_3}{B_3} \times \frac{X}{S-S-S-H-S}
-H
                                                                                                                                                                                                                                                                                              -S +S -S +S -S -S -S -S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -\frac{H}{B_{3}} = \frac{B_{3}}{S} \frac{X}{S} \frac{S}{S} \frac{H}{S} - \frac{B_{3}}{S} \frac{S}{H} \frac{H}{S} - \frac{B_{3}}{S} \frac{B}{H} \frac{H}{S} - \frac{B_{3}}{S} \frac{B}{H} \frac{H}{S} - \frac{B_{3}}{S} \frac{B}{H} \frac{H}{S} - \frac{B_{3}}{S} \frac{B}{H} \frac{H}{S} - \frac{B}{S} \frac{B}{H} \frac{B}{S} \frac{B}{H} \frac{B}{S} \frac{B}{H} \frac{B}{S} \frac{B}{S} \frac{B}{H} \frac{B}{S} \frac{B}{H} \frac{B}{S} \frac{B}{S} \frac{B}{S} \frac{B}{H} \frac{B}{S} \frac
                                                                                                             B<sub>2</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      T = TS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           B_1 = B_2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     B_4 = B_4 
                                                                                                               B_1 = B_1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             B_1 = B_1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      B_i = B_i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             B_3 = B_3 + B_3 + B_3 = B_3 + B_3 + B_3 = B_3 + B_3 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   = \frac{H \cdot S \cdot S \cdot H}{S \cdot S \cdot S}
                                                                                        B_2 = A_3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           B_3 = B_3 + B_3 + B_3 + B_3 + B_4 + B_5 + B_4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              B_1 = B_1 X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                B_4 = B_4 X
                                                                                        B_3 = \frac{S}{W} \cdot \omega^7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             B_{i} = B_{i}  B_{i} = B_{i} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      B_{4} = B_{4} = B_{4} = B_{5} = B_{5} = B_{5}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               B_1 = \overline{A_2}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               B_1 = B_2 + H + H
                                                                                        B_1 = B_1 + S + S + \omega^6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               B_3 = B_3
                                                                                        B_{s} = B_{s} \times S \times S - \omega
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 B_1 = B_1 + H
                                                                                     B_1 = B_1
                                                                                        B_1 = B_1 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -X
                                                                                        B_{s} = B \times S \times S \times \omega
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -X----
                                                                                     B_{1} = B_{1} + B_{2} + B_{3} + B_{4} + B_{5} + B_{5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -[S] = -[S] -[S] -[S] -[S]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              * Selinger 2015
```

Fig. 2: Circuit Identities

Fig. 2: Circuit Identities

Fig. 2: Circuit Identities

Compilation of quantum circuits

- Circuits use many abstract gates
- Problems of real quantum computers:

Limited set of gates

Limited connectivity between qubits

Fig. 3: Quantum Compilation

T-Count Optimization

Quantum computers are affected by noise

Fig. 4: Fault tolerant Toffoli Gate

Clifford+T Circuits can be made tolerant to noise

Idea: Introduce Error Correcting Codes

Problem: Many new T-Gates need to be introduced

Difficult to simulate (Hardware Limits)

ZX-Calculus can simplify such circuits

Mathematical Background: Category Theory

- Consists of objects and arrows (Morphisms)
 - Objects: {*A*, *B*, *C*}
 - Morphisms: $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow D$
- Identity: $\forall A \in ob(\mathcal{C})$. $id_A: A \rightarrow A$
- Associative Composition $\circ: g \circ f: A \to C$
 - Composition with id does nothing

IMG SEQ

$$h \circ g \circ f : A \to D$$

Monoidal Category

- Category C with:
 - Bifunctor: $\bigotimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$
 - ⊗ is associative
 - Unit Object: $I \in \mathcal{C}$

IMG PAR With ID

$$f \otimes g \otimes h : A \otimes B \otimes C \rightarrow B \otimes C \otimes D$$

Monoidal Category

- Preparing States:
 - $\nu: I \to A$ (Ket)
- Erasing States:
 - $\phi^{\dagger}: A \to I$ (Bra)
- Combination:
 - $\phi^{\dagger} \circ \nu : I \to I$

IMG Preparing / erasing

Symmetric Monoidal Category

- Monoidal Category C with:
 - Swap-Isomorphism
 - $\sigma_{A.B}: A \otimes B \to B \otimes A$
- $\sigma_{B,A} \circ \sigma_{A,B} = id_{A,B}$
- Operations can be pushed trough

SWAP

Compact Monoidal Category

- Symmetric Monoidal Category C where:
 - Every object A has a dual object A*
 - Morphism Unit: $\eta_A : I \to A^* \otimes A$
 - Morphism Counit: $\epsilon_A : A \otimes A^* \to I$
- Combining them yields id_A

CAP CUP

Graphical Calculus

- Visually combine Elements of the Category
 - Process Theory
- Main Idea of ZX-Calculus:
 - Represent Circuit as Network of Processes
 - Apply Simplifications on the Network
- "Only topology Matters"
 - If it looks like the same graph its the same thing
 - Guaranteed by the rules of the Category

Example Network: CNOT

- 1. Prepare Qubits
- 2. Apply Hadamard
- 3. Apply CNTOT

ZX-Notation

- Circuits can be represented visually
 - Everything is based on mathematical rules
- The representation is very simple:
 - Spiders
 - Lines
- We will see ZX-Calculus is universal

Spiders

- Nodes in the graph
- Arbitrary number of inputs / outputs
- Two Colors:
 - Green (Z-Basis)
 - Red (X-Basis)
- Phase angle α possible

Spiders as linear maps

Each spider is a linear map

•
$$GreenSpider(n,m)_{\alpha} = \underbrace{[0 \dots 0]}_{m} \underbrace{\langle 0 \dots 0|}_{n} + e^{i\alpha} \underbrace{[1 \dots 1]}_{m} \underbrace{\langle 1 \dots 1|}_{n}$$

•
$$RedSpider(n,m)_{\alpha} = \underbrace{\lfloor + \cdots + \rangle \langle + \cdots + \rfloor}_{m} + e^{i\alpha} \underbrace{\lfloor - \cdots - \rangle \langle - \cdots - \rfloor}_{m}$$

- Example:
 - GreenSpider(5,3) is associated with a $2^3 \times 2^5 = 8 \times 32$ matrix
 - Not unitary, not even square

Example Spiders: Basis States

•
$$GreenSpider(0,1)_0 = |0\rangle \cdot 1 + e^{i\cdot 0}|1\rangle \cdot 1 = \begin{bmatrix} 1\\1 \end{bmatrix} \propto |+\rangle$$

•
$$GreenSpider(0,1)_{\pi} = |0\rangle \cdot 1 + e^{i \cdot \pi} |1\rangle \cdot 1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \propto |-\rangle$$

•
$$RedSpider(0,1)_0 = |+\rangle \cdot 1 + e^{i \cdot 0}|-\rangle \cdot 1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \propto |0\rangle$$

•
$$RedSpider(0,1)_{\pi} = |+\rangle \cdot 1 + e^{i \cdot \pi} |-\rangle \cdot 1 = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \propto |1\rangle$$

Example Spiders: Pauli Matrices

•
$$GreenSpider(1,1)_{\pi}=|0\rangle\langle 0|+e^{i\cdot\pi}|1\rangle\langle 1|=\begin{bmatrix}1&0\\0&-1\end{bmatrix}=Z$$

•
$$RedSpider(1,1)_{\pi} = |+\rangle\langle +| + e^{i\cdot\pi}|-\rangle\langle -| = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = X$$

Example Spiders: Identity Matrix

• GreenSpider
$$(1,1)_0 = |0\rangle\langle 0| + e^{i\cdot 0}|1\rangle\langle 1| = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = id_2$$

•
$$RedSpider(1,1)_0 = |+\rangle\langle+|+e^{i\cdot0}|-\rangle\langle-|=\begin{bmatrix}1&0\\0&1\end{bmatrix}=id_2$$

IMG

ID

Red IMG

Example Spiders: Bell State

Spiders can generate entangled States

•
$$GreenSpider(0,2)_0 = |00\rangle \cdot 1 + e^{i\cdot 0}|11\rangle \cdot 1 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} \propto |\Phi^+\rangle$$

Combining Spiders

- Connect output lines of a spider with input lines of another spider
 - Again: Only the topology matters
- The resulting Graph can represent a Quantum Circuit

Evaluating a Graph of Spiders

- We divide the graph into regions
 - Each region must contain exactly one spider
- Like normal quantum circuits:
 - "parallel" Parts are combined using the tensors product (⊗)
 - "serial" Parts are combined using matrix product (o)
- We get a matrix representation of the circuit
- Based on category theory

Example: CNOT

1. Evaluate parallel Sections

- $A = GreenSpider(1,1) \otimes RedSpider(2,1) = id_2 \otimes RedSpider(2,1)$
- B= GreenSpider(1,2) \otimes RedSpider(1,1) = GreenSpider(2,1) \otimes id₂

2. Combine sequential Regions

• $R = A \circ B$

Example: CNOT

Combine parallel Sections:

$$\bullet \quad A = \mathrm{id}_2 \otimes (\ |+\rangle \langle +\ +|+|-\rangle \langle -\ -|\) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Example: CNOT

Combine sequential Sections:

It works! But evaluating the circuit this way is just as bad as a classical matrix approach

Remark: Where to draw Regions?

- For larger Graphs there are multiple ways of drawing the regions
 - · Obvious as you are allowed to move the components around ("Only topology mattes")
- This leads to different matrices in the calculation process
- · But the final matrices are always equivalent up to a scalar factor

Res matrix

Simplification Rules

- We don't want to calculate the graph using its matrix form
- There exist many rules to simplify ZX-Graphs
 - But far fewer rules as for classical circuits
- · We can apply the rules anywhere in the graph aslong:
 - The pattern for the substitution matches
 - The order of the input / output wires of regions are unchanged

Image Sources

- Fig. 1: ZX-Circuit https://upload.wikimedia.org/wikipedia/commons/5/50/Zx-diagram-example.svg
- Fig. 2: Circuit Identities https://www.cs.ox.ac.uk/people/aleks.kissinger/slides/qnlp-40mins.pdf
- Fig. 3: Quantum Compilation https://www.researchgate.net/figure/Quantum-circuit-compilation-47 fig15 348930917
- Fig. 4: Fault tolerant Toffoli Gate https://www.researchgate.net/figure/The-fault-tolerant-Clifford-T-implementations-of-quantum-logic-gates-used-in-this-work_fig1_322049116