Algorytmy numeryczne

Zadanie 2 Dawid Bińkuś & Oskar Bir & Mateusz Małecki grupa 1 tester-programista

11 Listopad 2018

1 Operacje na macierzach

Sprawozdanie prezentuje analizę wydajności i poprawności implementacji algorytmu eliminacji Gaussa, dla losowej macierzy kwadratowej A i wektora B w układzie liniowym $A \cdot X = B$. Zaimplementowano następujące warianty algorytmu:

G: bez wyboru elementu podstawowego,

PG: z częściowym wyborem elementu podstawowego,

FG: z peanym wyborem elementu podstawowego.

Dodatkowo, obliczenia zostały wykonane, używając trzech różny typów reprezentujących liczbę rzeczywistą:

TF: typ pojedynczej precyzji: float

TD: typ podwójnej precyzji: double

TC: własna implementacja, przechowująca liczbę w postaci ułamka liczb całkowitych: fraction

Jako współczynniki macierzy A oraz wektora X zostały wylosowane liczby zmiennoprzecinkowe z przedziału: $\{\frac{-2^{16}}{2^{16}}, \frac{2^{16}-1}{2^{16}}\}$ Następnie wektor B został wyliczony wedługo wzoru $B = A \cdot X$. Macierz A i wektor B zostają podane jako parametry do rozwiązania układu równań, wektor X zaś pozostawiamy jako rozwiązanie wzorcowe, za pomocą którego obliczamy błąd wykonanego algorytmu.

Program do realizacji testów został wykonany w języku Java. Typ danych TC został zaimplementowany za pomocą wbudowanego typu całkowitego BigInteger. Testy zostały wykonane na macierzach o rozmiarze 10, 20, ..., 800 (float,double) 10, 20..., 150 (fraction) w ilości prób danych wzorem: $n = 100 \cdot m[m_s[max - i] - 1]/m[i]$, gdzie m = tablica wielkości macierzy, s = indeks w tablicy m, max = ostatnia wartość w tablicy m lub

w ilości prób malejącej, wraz z wykonywaniem testów na coraz to większych macierzach.

2 Analiza hipotez

Rozważmy następujące wykresy (Rysunek??) Prezentują one błąd bezwzględny wartości w skali logarytmicznej (chyba że jest podane inaczej), wyliczonej za pomocą wcześniej wspomnianych algorytmów wobec wektora wzorcowego X.

Cześć z nich prezentuje również czas wykonania algorytmu podany w milisekundach.

2.1 Związek czasu wykonywania z wariantem algorytmu eliminacji Gaussa

Hipoteza 1 Dla dowolnego ustalone rozmiaru macierzy czas działania metody Gaussa w kolejnych wersjach (G,PG,FG) rośnie.

Wniosek 1 Coś...

2.2 Związek błędu obliczeń z wariantem algorytmu eliminacji Gaussa

Hipoteza 2 Dla dowolnego ustalonego rozmiaru macierzy błąd uzyskanego wyniku metody Gaussa w kolejnych wersjach (G,PG,FG) maleje.

Wniosek 2 Coś...

2.3 Poprawność i wydajność własnej arytmetyki

Hipoteza 3 Użycie własnej arytmetyki na ułamkach zapewnia bezbłędne wyniki niezależnie od wariantu metody Gaussa i rozmiaru macierzy.

Wniosek 3 Coś...

3 Pytania

3.1 Dokładność obliczeń (typ podwójnej precyzji)

Pytanie 1 Jak zależy dokładnośc obliczeń (błąd) od rozmiaru macierzy dla dwóch wybranych przez Ciebie wariantów metody Gaussa gdy obliczenia prowadzone są na typie podwójnej precyzji (TD)?

3.2 Zależność czasu działania algorytmu od rozmiaru macierzy oraz typu

Pytanie 2 Jak przy wybranym przez Ciebie wariancie metody Gaussa zależy czas działania algorytmu od rozmiaru macierzy i różnych typów?

4 Wydajność implementacji

Zadanie 1 Podaj czasy rozwiązania układu równań uzyskane dla macierzy o rozmiarze 500 dla 9 testowanych wariantów.

5 Podział pracy

Dawid Bińkuś	Oskar Bir	Mateusz Małecki
Ten coś robił	Ten też coś robił	A ten to w ogóle bardzo dużo