Image Quality Assessment -Objective Measures Report

W tej analizie sprawdziłem, jak różne typy zniekształceń wpływają na jakość obrazu i wartości typowych miar obiektywnych. Testowałem kompresję JPEG, rozmycie gaussowskie i szum gaussowski na trzech zdjęciach, zmieniając stopień zniekształcenia od lekkiego do mocnego (5 poziomów).

Dla kompresji JPEG, na najwyższych poziomach jakości (75, 60) praktycznie nie widać zmian - SSIM cały czas był bardzo blisko 1, a pozostałe miary również sugerowały, że różnice są minimalne. Prawdziwy spadek jakości zaczyna się dopiero poniżej 15, co wyraźnie widać już w liczbach (spadek SSIM od 0.9 do 0.82), czego jednak wizualnie nie widać gołym okiem (obraz jest tak samo bardzo lekko popsuty), tylko na plocie Difference.

W przypadku rozmycia gaussowskiego miary jakości spadają równo z powiększaniem maski. Już przy przy rozmyciu 7 obraz robi się mało czytelny, SSIM jest na poziomie 0.77, a pozostałe miary też pokazują duży spadek. Rozmycia, ale bez typowych artefaktów jak przy kompresji - obraz po prostu traci szczegóły. Widać to najbardziej na plotach Difference

Przy szumie gausowskim dla małych wartości alpha (0.1, 0.25) praktycznie nie widać różnicy, ale już od przy 0.6 i 0.8 jakość siada - SSIM spada z 0.81 i 0.73 na najwyższym poziomie szumu. Metryki MSE i NMSE potwierdzają, że znieksztalcenie od szumu jest podobne do efektu rozmycia, chociaż nie widać tego wizualnie w przypadku tego obrazu (wizualnie znieksztalcenia są podobne do JPEG).

Podsumowując, SSIM i IF to miary, które pokazują procentowe podobieństwo obrazów i najlepiej odzwierciedlają to, jak ludzkie oko ocenia jakość dlatego są najbardziej przydatne w tego typu analizach (latwiej je też czytać). Pozostałe miary, jak MSE czy PSNR, są dobre do ilościowej oceny błędów, ale nie zawsze oddają faktyczną wizualną różnicę. Jeśli chodzi o zależności, to w większości przypadków między poziomem zniekształcenia a wartościami metryk występowała zależność liniowa lub prawie liniowa.

Metrics Tables and Plots

 ${\bf Image~1-JPEG~Compression}$

Level	MSE	NMSE	PSNR	IF	SSIM
75	6.5399	0.0609	39.9751	0.9446	0.9900
60	22.7543	0.2120	34.5602	0.8113	0.9554
45	28.8925	0.2692	33.5230	0.7611	0.9293
30	35.2462	0.3284	32.6597	0.7097	0.9013
15	45.8785	0.4274	31.5147	0.6186	0.8219

JPEG COMPRESSION — Metric Trends

Image 2 — Gaussian Blur

Level	MSE	NMSE	PSNR	IF	SSIM
3	49.1378	0.4595	31.2166	0.6017	0.8748
5	58.1898	0.5441	30.4823	0.5309	0.7746
7	64.7648	0.6056	30.0174	0.4798	0.6632
9	68.3667	0.6393	29.7824	0.4524	0.5989
11	71.2194	0.6659	29.6048	0.4311	0.5438

GAUSSIAN BLUR — Metric Trends

Image 3 — Gaussian Noise

Level	MSE	NMSE	PSNR	IF	SSIM
0.1	3.2029	0.0332	43.0754	0.9733	0.9907
0.25	17.6611	0.1829	35.6606	0.8561	0.9502
0.4	39.1957	0.4058	32.1984	0.6838	0.8925
0.6	60.5814	0.6272	30.3074	0.5141	0.8112
0.8	73.1827	0.7577	29.4867	0.4130	0.7349

GAUSSIAN NOISE — Metric Trends

Visual Comparison

Image 1 — JPEG Compression

JPEG Compression, Level=75 — MSE=6.54, NMSE=0.06, PSNR=39.98, IF=0.94, SSIM=0.99

 $\label{eq:JPEG Compression} \textit{JPEG Compression, Level} = 60 - \textit{MSE} = 22.75, \, \textit{NMSE} = 0.21, \, \textit{PSNR} = 34.56, \, \textit{IF} = 0.81, \, \textit{SSIM} = 0.96$

JPEG Compression, Level=45 — MSE=28.89, NMSE=0.27, PSNR=33.52, IF=0.76, SSIM=0.93

JPEG Compression, Level=30 - MSE=35.25, NMSE=0.33, PSNR=32.66, IF=0.71, SSIM=0.90

 $\label{eq:JPEG compression} \textit{JPEG Compression, Level=15-MSE=45.88, NMSE=0.43, PSNR=31.51, IF=0.62, SSIM=0.82}$

Image 2 — Gaussian Blur

 ${\it Gaussian~Blur, Level=3-MSE=49.14, NMSE=0.46, PSNR=31.22, IF=0.60, SSIM=0.87}$

Gaussian Blur, Level=5 — MSE=58.19, NMSE=0.54, PSNR=30.48, IF=0.53, SSIM=0.77

Gaussian Blur, Level=7 — MSE=64.76, NMSE=0.61, PSNR=30.02, IF=0.48, SSIM=0.66

Gaussian Blur, Level=9 — MSE=68.37, NMSE=0.64, PSNR=29.78, IF=0.45, SSIM=0.60

Image 3 — Gaussian Noise

 ${\it Gaussian Noise, Level=0.1-MSE=3.20, NMSE=0.03, PSNR=43.08, IF=0.97, SSIM=0.99}$

Gaussian Noise, Level=0.25 — MSE=17.66, NMSE=0.18, PSNR=35.66, IF=0.86, SSIM=0.95

Gaussian Noise, Level=0.4 — MSE=39.20, NMSE=0.41, PSNR=32.20, IF=0.68, SSIM=0.89

 ${\it Gaussian Noise, Level=0.6-MSE=60.58, NMSE=0.63, PSNR=30.31, IF=0.51, SSIM=0.81}$

Gaussian Noise, Level=0.8 — MSE=73.18, NMSE=0.76, PSNR=29.49, IF=0.41, SSIM=0.73

