TRƯỜNG TRUNG HỌC PHỔ THÔNG CHUYÊN HẠ LONG

KIỂM TRA HỌC KÌ II NĂM HỌC 2018 - 2019 Môn thi: TOÁN - LỚP 12

(Chương trình chuẩn và nâng cao)

Thời gian làm bài: 90 phút, không kể thời gian phát đề

(Đề thi có 07 trang)

Họ, tên thí sinh: Số báo danh:

Mã đề thi 102

A. PHẦN KIẾN THỨC CHUNG (gồm 45 câu)

Câu 1. Cho hàm số y = f(x) liên tục trên đoạn [a;b] có đồ thị như hình vẽ dưới đây và $c \in [a;b]$. Gọi S là diện tích của hình phẳng (H) giới hạn bởi đồ thị hàm số y = f(x) và các đường thẳng y = 0, x = a, x = b. Mệnh đề nào sau đây sai?

$$\mathbf{A.} \quad S = \int_{a}^{b} |f(x)| \, \mathrm{d}x \,.$$

B.
$$S = \int_{a}^{c} f(x) dx + \int_{b}^{c} f(x) dx.$$

C.
$$S = \int_{a}^{c} f(x) dx - \int_{a}^{b} f(x) dx.$$

$$D. \quad S = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

Câu 2. Thực hiện phép tính $(1+i)^2 - (2-i)(1+2i)$ ta được kết quả là

Câu 3. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [-1;3], f(-1)=2 và f(3)=5. Tích phân $\int f'(x) dx$ bằng

D. 7.

Câu 4. Cho số phức z = 5 - 7i. Xác định phần thực, phần ảo của số phức z.

A. Phần thực bằng 5, phần ảo bằng -7i.

B. Phần thực bằng 5, phần ảo bằng 7.

C. Phần thực bằng 5, phần ảo bằng 7i.

D. Phần thực bằng 5, phần ảo bằng -7.

Câu 5. Tìm họ các nguyên hàm của hàm số $f(x) = x^3 - 3x^2 + 4$.

A.
$$\int f(x)dx = \frac{x^4}{4} + x^3 + 4x + C.$$

B.
$$\int f(x)dx = \frac{x^4}{4} - x^3 + 4x + C.$$

C.
$$\int f(x)dx = x^4 - x^3 + 4x + C$$
.

D.
$$\int f(x)dx = 3x^2 - 6x + C$$
.

Câu 6. Cho u = u(x) và v = v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a;b]. Khẳng định nào dưới đây là đúng?

A.
$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx.$$
B.
$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)\Big|_{a}^{b} + \int_{a}^{b} u'(x)v(x)dx.$$
C.
$$\int_{a}^{b} u'(x)v(x)dx = u(x)v'(x)\Big|_{a}^{b} - \int_{a}^{b} u(x)v(x)dx.$$
D.
$$\int_{a}^{b} u'(x)v(x)dx = u(x)v(x)\Big|_{a}^{b} + \int_{a}^{b} u(x)v'(x)dx.$$

B.
$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)\Big|_{a}^{b} + \int_{a}^{b} u'(x)v(x)dx$$

C.
$$\int_a^b u'(x)v(x)dx = u(x)v'(x)\Big|_a^b - \int_a^b u(x)v(x)dx.$$

D.
$$\int_a^b u'(x)v(x)dx = u(x)v(x)\Big|_a^b + \int_a^b u(x)v'(x)dx.$$

Câu 7. Tìm nguyên hàm F(x) của hàm số $f(x) = \frac{3}{2x-1}$, biết F(1) = 5.

A.
$$F(x) = -\frac{3}{2} \ln |2x - 1| - 5$$
.

B.
$$F(x) = 3 \ln |2x - 1| - 5$$
.

C.
$$F(x) = \frac{3}{2} \ln |2x - 1| + 5$$
.

D.
$$F(x) = 3 \ln |2x - 1| + 5$$
.

Câu 8. Tìm các số thực x, y thỏa mãn 3x - y + (2x + 1)i = 2x - 4 + (y - 2)i.

A.
$$x = -1, y = -5.$$

B.
$$x = -1, y = 5.$$

C.
$$x = 1, y = 5$$

D.
$$x = 1, y = -5.$$

Câu 9. Tìm f(x), biết hàm số $F(x) = \cos\left(5x - \frac{\pi}{6}\right)$ là một nguyên hàm của hàm số f(x).

$$\mathbf{A.} \ f(x) = -5\sin\left(5x - \frac{\pi}{6}\right).$$

B.
$$f(x) = -5\sin\left(5x - \frac{\pi}{6}\right) + C$$
.

C.
$$f(x) = -\frac{1}{5}\sin\left(5x - \frac{\pi}{6}\right) + C$$
.

D.
$$f(x) = \frac{1}{5} \sin\left(5x - \frac{\pi}{6}\right) + C.$$

Câu 10. Điểm nào trong hình vẽ dưới đây là điểm biểu diễn của số phức z = -4 - 3i?

 $\mathbf{C\hat{a}u}$ 11. Tính thể tích V của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường $y = \sqrt{\sin x + \cos x}$, y = 0, x = 0, $x = \frac{\pi}{3}$ xung quanh trục Ox.

A.
$$V = \frac{6\pi(\sqrt{3}+1)}{12}$$

B.
$$V = \frac{5\pi(\sqrt{3}+1)}{9}$$

C.
$$V = \frac{\pi(\sqrt{3}+1)}{2}$$

A.
$$V = \frac{6\pi(\sqrt{3}+1)}{13}$$
. **B.** $V = \frac{5\pi(\sqrt{3}+1)}{9}$. **C.** $V = \frac{\pi(\sqrt{3}+1)}{2}$. **D.** $V = \frac{10\pi(\sqrt{3}+1)}{19}$.

Câu 12. Cho số phức z = 4 - 3i. Điểm biểu diễn z trong mặt phẳng tọa độ là

B.
$$(4;-3i)$$
.

$$\mathbf{C}.\ (-4;3).$$

D. (4;-3).

Câu 13. Tìm số phức z thỏa mãn (1+2i)z+3-i=1-4i.

A.
$$z = -\frac{8}{5} + \frac{1}{5}i$$
. **B.** $z = \frac{8}{5} + \frac{1}{5}i$. **C.** $z = \frac{8}{5} - \frac{2}{5}i$. **D.** $z = -\frac{8}{5} - \frac{1}{5}i$.

B.
$$z = \frac{8}{5} + \frac{1}{5}i$$

C.
$$z = \frac{8}{5} - \frac{2}{5}i$$
.

D.
$$z = -\frac{8}{5} - \frac{1}{5}i$$
.

Câu 14. Cho $\int_{0}^{1} f(x) dx = 3$ và $\int_{0}^{1} g(x) dx = 4$. Tính $I = \int_{0}^{1} \left[2019e^{2019x} + 5f(x) - 3g(x) \right] dx$. **A.** $I = e^{2019} + 2$. **B.** $I = e^{2019} + 8$. **C.** $I = e^{2019} + 3$. **D.** $I = e^{2019} - 2$.

A.
$$I = e^{2019} + 2$$
.

B.
$$I = e^{2019} + 8$$
.

C.
$$I = e^{2019} + 3$$
.

D.
$$I = e^{2019} - 2$$

Câu 15. Trong các khẳng định sau đây, khẳng định nào sai?

$$\mathbf{A.} \int a^x dx = \frac{a^{x+1}}{x+1} + C \text{ (v\'oi } x \neq -1 \text{)}.$$

$$\mathbf{B.} \int \frac{1}{\cos^2 x} dx = \tan x + C$$

$$\mathbf{C.} \int \sin x dx = -\cos x + C.$$

$$\mathbf{D.} \int \cos x dx = \sin x + C.$$

Câu 16. Cho hình phẳng (H) được giới hạn bởi đồ thị hàm số y = f(x) liên tục trên đoạn [a;b], trục hoành và hai đường thẳng x = a, x = b. Diện tích S của hình phẳng (H) là

$$\mathbf{A.} \ S = \int_{a}^{b} |f(x)| dx.$$

$$\mathbf{B.} \ S = \int_{a}^{b} f(x) dx.$$

A.
$$S = \int_{a}^{b} |f(x)| dx$$
. **B.** $S = \int_{a}^{b} f(x) dx$. **C.** $S = \left| \int_{a}^{b} f(x) dx \right|$. **D.** $S = -\int_{a}^{b} f(x) dx$.

$$\mathbf{D.} \ S = -\int_{a}^{b} f(x) dx.$$

$$\Delta |z| = 5\sqrt{2}$$

pnuc
$$z = (1 - 3)$$

C.
$$I = \frac{13}{4}$$
.

D.
$$I = \frac{11}{3}$$
.

Câu 18. Tính môđun của số phức z = (1-3i)(2+i).

A.
$$|z| = 5\sqrt{2}$$
.

B.
$$|z| = -5\sqrt{2}$$
.

C.
$$|z| = \sqrt{10}$$
.

D.
$$|z| = 2\sqrt{5}$$
.

Câu 19. Biết rằng trong tập hợp số phức phương trình $z^2 - 2z + 3 = 0$ có hai nghiệm z_1, z_2 . Giá trị của biểu thức $P = |z_1| + |z_2|$ là

A.
$$\sqrt{6}$$
.

B.
$$4\sqrt{3}$$
.

C.
$$2\sqrt{3}$$
.

D.
$$3\sqrt{2}$$

Câu 20. Số phức liên hợp của số phức $z = 7 - \sqrt{3}$ là

A.
$$\bar{z} = 7 + \sqrt{3}$$
.

B.
$$\overline{z} = 7 - \sqrt{3}$$
.

C.
$$\overline{z} = 7 - \sqrt{3}i$$
.

C.
$$\overline{z} = 7 - \sqrt{3}i$$
. **D.** $\overline{z} = 7 + \sqrt{3}i$.

Câu 21. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (Q): x-3y+5z-7=0 và điểm M(-2;1;3). Viết phương trình mặt phẳng (P) đi qua M và song song với (Q).

A.
$$(P): x-3y-5z-25=0.$$

B.
$$(P): -x-3y+5z-14=0.$$

C.
$$(P): x-3y+5z-10=0$$
.

D.
$$(P): x-3y+5z-15=0.$$

Câu 22. Trong không gian Oxyz, cho ba điểm A(1;2;-3), B(-4;2;5) và M(m+2;2n-1;1). Điểm M thuộc đường thắng AB khi và chỉ khi

A.
$$m = -7$$
; $n = 3$.

B.
$$m = 7$$
; $n = -3$.

B.
$$m = 7$$
; $n = -3$. **C.** $m = \frac{7}{2}$; $n = -\frac{3}{2}$. **D.** $m = -\frac{7}{2}$; $n = \frac{3}{2}$.

D.
$$m = -\frac{7}{2}$$
; $n = \frac{3}{2}$

Câu 23. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-3}{-2} = \frac{y-1}{2} = \frac{z+1}{1}$ và mặt phẳng (P): 2x-2y+z+4=0. Giá trị cosin góc giữa d và (P) bằng

A.
$$\frac{5\sqrt{2}}{9}$$
.

$$\frac{7}{9}$$
.

C.
$$\frac{4\sqrt{2}}{9}$$
.

D.
$$-\frac{7}{9}$$
.

Câu 24. Trong tập số phức phương trình $(z^3 - 8)(z - 1 + i) = 0$ có tổng các nghiệm là

A.
$$3 + i$$
.

B.
$$3-i$$
.

C.
$$1+i$$
.

D.
$$1-i$$
.

Câu 25. Trong không gian với hệt tọa độ Oxyz, đường thẳng $(d): \frac{x-1}{2} = \frac{y+1}{3} = \frac{z-2}{4}$ có một vecto chỉ phương là

B.
$$(1;-1;2)$$
.

C.
$$(2;3;4)$$
.

D.
$$(-1;1;-2)$$
.

Câu 26. Trong không gian Oxyz, cho điểm M(1;2;3) và đường thẳng $d: \frac{x}{1} = \frac{y}{-1} = \frac{z}{1}$. Mặt phẳng (P) chứa điểm M và đường thẳng d có phương trình là

A.
$$5x + 2y - 3z + 1 = 0$$
.

B.
$$2x + 3y - 5z = 0$$
.

C.
$$5x + 2y - 3z = 0$$
.

D.
$$2x + 3y - 5z + 7 = 0$$
.

Câu 27. Trong không gian Oxyz, cho hai điểm A(1;2;3) và B(3;2;1). Phương trình mặt cầu đường kính AB

A.
$$(x-2)^2 + (y-2)^2 + (z-2)^2 = 2$$
.

B.
$$(x-2)^2 + (y-2)^2 + (z-2)^2 = 4$$
.

C.
$$x^2 + y^2 + z^2 = 2$$
.

D.
$$(x-1)^2 + y^2 + (z-1)^2 = 4$$
.

Câu 28. Biết M(2;-1), N(3;2) lần lượt là hai điểm biểu diễn số phức z_1, z_2 trên mặt phẳng tọa độ phức Oxy. Khi đó số phức $z_1.z_2$ bằng

A.
$$8 - 7i$$

B.
$$8 + 7i$$

C.
$$8 + i$$

D.
$$4 + i$$

Câu 29. Trong không gian Oxyz, phương trình nào dưới đây là phương trình chính tắc của đường thẳng d đi qua điểm M(3;2;1) và có vecto phương $\vec{u} = (-1;5;2)$

A.
$$d: \frac{x-1}{3} = \frac{y+5}{2} = \frac{z+2}{1}$$
.

B.
$$d: \frac{x+3}{-1} = \frac{y+2}{5} = \frac{z+1}{2}$$
.

C.
$$d: \frac{x+1}{3} = \frac{y-5}{2} = \frac{z-2}{1}$$
.

D.
$$d: \frac{x-3}{-1} = \frac{y-2}{5} = \frac{z-1}{2}$$
.

Câu 30. Khoảng cách giữa mặt phẳng (P): 2x - y + 2z + 5 = 0 và đường thẳng $d: \begin{cases} y = 2 + 4t \\ y = 2 + 4t \end{cases}$

A.
$$\frac{10}{3}$$
.

B.
$$\frac{7}{3}$$
.

C.
$$\frac{13}{3}$$
.

D.
$$\frac{11}{3}$$
.

Câu 31. Cho tích phân $I = \int_{1}^{\frac{\pi}{2}} \sin x \cos^2 x dx$ và đặt $t = \cos x$. Khẳng định nào trong các khẳng định sau là **sai**?

A.
$$I = \int_{0}^{1} t^2 dt$$
.

$$\mathbf{B.} \sin x \cos^2 x dx = t^2 dt.$$

C.
$$I = \frac{1}{3}$$
.

D.
$$dt = -\sin x dx$$
.

Câu 32. Trong không gian với hệ toạ độ Oxyz, cho các điểm M(1;-2;3), N(3;0;-1) và điểm I là trung điểm của MN. Mênh đề nào sau đây đúng?

$$\mathbf{A.} \quad \overrightarrow{OI} = 4\overrightarrow{i} - 2\overrightarrow{j} + 2\overrightarrow{k}$$

B.
$$\overrightarrow{OI} = 2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$$

$$\overrightarrow{OI} = 4\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$$

D.
$$\overrightarrow{OI} = 2\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$$

Câu 33. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $(d): \frac{x-1}{4} = \frac{y+1}{-6} = \frac{z-2}{-2}$. Mặt phẳng đi qua

A(5,-4,2) và vuông góc với đường thẳng (d) có phương trình là

A.
$$2x-3y-z-20=0$$
.

B.
$$x-y+2z+13=0$$
.

C.
$$2x-3y-z+8=0$$
.

D.
$$x-y+2z-13=0$$
.

Câu 34. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-4y+3z-2=0. Một vecto pháp tuyến của mặt phẳng (P) là

A.
$$\vec{n_1} = (0; -4; 3)$$
.

B.
$$\overrightarrow{n_2} = (1;4;3)$$
.

C.
$$\overrightarrow{n_4} = (-4;3;-2)$$
.

D.
$$\overrightarrow{n_3} = (1; -4; 3)$$
.

Câu 35. Cho số phức z thỏa mãn |iz-3+2i|=5. Tập hợp các điểm biểu diễn số phức z trên mặt phẳng tọa độ 1à

- **A.** Đường tròn có phương trình $(x-2)^2 + (y-3)^2 = 25$.
- **B.** Đường tròn có phương trình $(x+2)^2 + (y+3)^2 = 25$.
- C. Đường tròn có phương trình $(x+2)^2 + (y+3)^2 = 5$.
- **D.** Đường tròn có phương trình $(x-2)^2 + (y-3)^2 = 25$.

Câu 36. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $\Delta : \frac{x-2}{1} = \frac{y-2}{1} = \frac{z-1}{2}$ và mặt phẳng $(\alpha): x+y+z-1=0$. Gọi d là đường thẳng nằm trong (α) đồng thời cắt đường thẳng Δ và trục Oz. Một vécto chỉ phương của d là

A.
$$\vec{u} = (2;-1;-1)$$
 B. $\vec{u} = (1;1;-2)$ **C.** $\vec{u} = (1;-2;1)$ **D.** $\vec{u} = (1;2;-3)$.

B.
$$\vec{u} = (1;1;-2)$$

C.
$$\vec{u} = (1; -2; 1)$$

D.
$$\vec{u} = (1; 2; -3)$$

 $\mathbf{C\hat{a}u}$ 37. Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật $v(t) = \frac{1}{120}t^2 + \frac{58}{45}t$ (m/s), trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động.

Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 3 giây so với A và có gia tốc bằng a (m/s^2) (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng

Câu 38. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d_1: \frac{x-5}{2^{2019}-1} = \frac{y-3}{3^{2010}+1} = \frac{z+1}{4^{2021}-2}$ và

$$d_2:\begin{cases} x=3+2t\\ y=4-t \end{cases}$$
. Khẳng định nào dưới đây là đúng?
$$z=-2+t$$

A.
$$d_1$$
 và d_2 trùng nhau.

B. d_1 và d_2 cắt nhau.

C.
$$d_1$$
 và d_2 chéo nhau.

D.
$$d_1$$
 và d_2 song song.

Câu 39. Trong không gian với hệ tọa độ Oxyz, cho ba điểm $A(\log 2; \log 5; -\log 5), B(\log 3; -\log 6; \log 4)$, $C(-\log 9; \log 3; \log 6)$. Khoảng cách từ điểm $M(\log 2; \log 20; -\log 2)$ đến mặt phẳng (ABC) bằng

A.
$$\frac{\sqrt{3}}{3}$$

B.
$$\frac{\log 5}{3}$$
.

C.
$$\frac{\sqrt{3}}{2}$$
.

D.
$$\frac{\log 2}{\sqrt{3}}$$
.

Câu 40. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;0), B(0;-1;2). Biết rằng có hai mặt phẳng cùng đi qua hai điểm O, A và cùng cách B một khoảng bằng $\sqrt{3}$. Vecto nào trong các vecto dưới đây là một vectơ pháp tuyến của một trong hai mặt phẳng đó? **A.** $\overrightarrow{n_1} = (1; -1; -1)$. **B.** $\overrightarrow{n_2} = (1; -1; -3)$. **C.** $\overrightarrow{n_3} = (1; -1; 5)$. **D.** $\overrightarrow{n_4} = (1; -1; -5)$.

A.
$$\vec{n_1} = (1; -1; -1)$$
.

B.
$$\overrightarrow{n_2} = (1; -1; -3).$$

C.
$$\overrightarrow{n_3} = (1; -1; 5)$$

D.
$$\overrightarrow{n_4} = (1; -1; -5)$$
.

Câu 41. Biết tích phân $I = \int_{0}^{1} (x-1)e^{2x}dx = a - be^{2}$, trong đó $(a,b \in \mathbb{Q})$. Tính a+b.

A.
$$a+b=1$$
.

B.
$$a+b=\frac{3}{4}$$
. **C.** $a+b=\frac{1}{4}$. **D.** $a+b=\frac{1}{2}$.

C.
$$a+b=\frac{1}{4}$$
.

D.
$$a+b=\frac{1}{2}$$

Câu 42. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-2}{1} = \frac{y-3}{-2} = \frac{z+1}{3}$. Viết phương trình đường thẳng d' là hình chiếu vuông góc của d lên mặt phẳng (Oyz).

A.
$$d': \begin{cases} x = 0 \\ y = 1 - 2t \\ z = 2 + 3t \end{cases}$$
 B. $d': \begin{cases} x = 0 \\ y = 3 - 2t \\ z = 4 + 3t \end{cases}$ **C.** $d': \begin{cases} x = 2 \\ y = 3 - 2t \\ z = 1 + 3t \end{cases}$ **D.** $d': \begin{cases} x = 0 \\ y = 5 - 2t \\ z = 7 + 3t \end{cases}$

B.
$$d': \begin{cases} x = 0 \\ y = 3 - 2t \\ z = 4 + 3t \end{cases}$$

C.
$$d':\begin{cases} x = 2\\ y = 3 - 2t. \\ z = 1 + 3t \end{cases}$$

D.
$$d': \begin{cases} x = 0 \\ y = 5 - 2t \\ z = 7 + 3t \end{cases}$$

Câu 43. Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số $y = \cos 2x$, trục hoành và các đường thắng $x = 0, x = 2019\pi$.

Câu 44. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x}{1} = \frac{y+1}{2} = \frac{z+2}{3}$ và mặt phẳng (P): x+2y-2z+3=0. Tìm điểm M thuộc d, có tọa độ là các số âm, sao cho khoảng cách từ M đến (P)bằng 2.

A.
$$M(-1;-5;-7)$$
.

A.
$$M(-1;-5;-7)$$
. **B.** $M(-2;-5;-8)$. **C.** $M(-2;-3;-1)$. **D.** $M(-1;-3;-5)$.

C.
$$M(-2; -3; -1)$$

D.
$$M(-1;-3;-5)$$

Câu 45. Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;1;0) và đường thẳng d có phương trình $d: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z}{1}$. Phương trình đường thẳng Δ đi qua điểm M, cắt và vuông góc với đường thẳng d là

A.
$$\frac{x-2}{1} = \frac{y-1}{-4} = \frac{z}{-2}$$
.

B.
$$\frac{x-2}{1} = \frac{y-1}{4} = \frac{z}{2}$$
.

C.
$$\frac{x-2}{-3} = \frac{-y+1}{-4} = \frac{z}{-2}$$
.

D.
$$\frac{x-2}{-1} = \frac{y-1}{-3} = \frac{z}{2}$$
.

B. PHẦN DÀNH CHO CÁC LỚP HỌC THEO CHƯƠNG TRÌNH CHUẨN (gồm 5 câu)

Câu 46. Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn $f(x^5 + 4x + 3) = 2x + 1$. Tính $\int_{\mathbb{R}}^{x} f(x) dx$.

A. 10.

Câu 47. Cho số phức z thỏa mãn |z-3-5i|=|z-1-7i|. Tìm mô đun nhỏ nhất của w=(1+2i)z-3+4i.

A. $\frac{3\sqrt{10}}{2}$

B. $\frac{5\sqrt{10}}{2}$. **C.** $\frac{9\sqrt{5}}{2}$.

D. $\frac{7\sqrt{5}}{2}$.

Câu 48. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y - 4z = 0, đường thẳng $d: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{1}$ và điểm A(1;3;1) thuộc mặt phẳng (P). Gọi Δ là đường thẳng đi qua A, nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi $\overrightarrow{u}=(a;b;1)$ là một vecto chỉ phương của đường thẳng Δ . Tính a+2b.

A. a + 2b = 0.

B. a + 2b = 4.

C. a + 2b = -3.

D. a + 2b = 7.

Câu 49. Có bao nhiều số phức z sao cho z^5 và $\frac{512}{z^4}$ là hai số phức liên hợp của nhau?

A. 8.

Câu 50. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d_1: \frac{x-7}{2^{2019}} = \frac{y-3}{1-2^{2020}} = \frac{z+6}{-1+2^{2019}}$ và

 $d_2: \frac{x-3}{-3^{2020}} = \frac{y-1}{2+3^{2019}} = \frac{z-1}{-2+2 \cdot 3^{2019}}$. Tính khoảng cách giữa d_1 và d_2 .

A. $\frac{1}{\sqrt{2}}$.

B. $\frac{4}{\sqrt{3}}$.

C. $\frac{2}{\sqrt{2}}$.

D. $\frac{4}{\sqrt{3}}$.

C. PHẦN DÀNH CHO CÁC LỚP HỌC CHƯƠNG TRÌNH CHUYÊN TOÁN (gồm 5 câu)

Câu 46. Cho hai số phức z_1, z_2 khác nhau cùng thuộc tập hợp các số phức z thỏa mãn |z+5-8i|=5. Biết $|z_1 + z_2 + 10 - 16i| = 8$, khi đó $|z_1 - z_2|$ bằng

D. 9.

Câu 47. Cho phương trình $(1-i)z^2 + (m+i)z + 1 + mi = 0$ ($z \in \mathbb{C}$). Có bao nhiều số nguyên $m \in [-2019; 2019]$ để phương trình đã cho không có nghiệm thực?

A. 2020.

C. 2019.

Câu 48. Tính diện tích hình phẳng giới hạn bởi các đường $y^2 = 2x$ và $27y^2 = 8(x-1)^3$ (tham khảo hình vẽ dưới đây).

A. $\frac{83}{10}$.

B. $\frac{88\sqrt{2}}{15}$.

D. $\frac{14\sqrt{3}}{3}$.

Câu 49. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(4;1;2), B(1;4;2), C(1;1;5) và đường tròn (C) là giao tuyến của mặt phẳng x+y+z-7=0 và mặt cầu (S): $x^2+y^2+z^2-2x-2y-4z-3=0$. Biết rằng có tất cả 3 điểm M thuộc đường tròn (C) sao cho MA + MB + MC đạt giá trị lớn nhất. Tích các cao độ của ba điểm này bằng

A. 6.

B. 4.

C. -12.

D, 0,

Câu 50. Cho hàm số y = f(x) luôn nhận giá trị dương và có đạo hàm liên tục trên đoạn [0,2]. Biết f(0) = 1và $f(x)f(2-x) = e^{2x^2-4x}$, với mọi $x \in [0;2]$. Tính tích phân $I = \int_0^2 \frac{(x^3-3x^2)f'(x)}{f(x)} dx$.

A. $I = \frac{16}{5}$

B. $I = -\frac{17}{5}$ **C.** $I = -\frac{16}{5}$ **D.** $I = \frac{18}{5}$