Variational inference (VI) finds $q^* := \operatorname{argmin}_{q \in \mathcal{Q}} \operatorname{KL}(q||p)$ for an unknown target p. What should \mathcal{Q} be?

 $\text{Variational inference (VI) finds } q^* := \mathop{\rm argmin}_{q \in \mathcal{Q}} \mathop{\rm KL}\nolimits (q||p) \text{ for an unknown target } p.$

What should ${\mathcal Q}$ be?

Classical VI takes a simple Q. Then $p \notin Q$, but you get computational benefits!

Variational inference (VI) finds $q^* := \operatorname{argmin}_{q \in \mathcal{Q}} \operatorname{KL}(q||p)$ for an unknown target p.

What should ${\mathcal Q}$ be?

Classical VI takes a simple Q. Then $p \notin Q$, but you get computational benefits!

But when $p \notin \mathcal{Q}$, can get poor posterior approximations even in simple cases.

What to do?

Variational inference (VI) finds $q^* := \operatorname{argmin}_{q \in \mathcal{Q}} \operatorname{KL}(q||p)$ for an unknown target p.

What should Q be?

Classical VI takes a simple Q. Then $p \notin Q$, but you get computational benefits!

But when $p \notin Q$, can get poor posterior approximations even in simple cases.

What to do?

- 1. Don't care ("machine learning")
 - Evaluate by other criteria than poterior approximations (e.g. prediction)
 - Maybe fine for some machine learning tasks

Variational inference (VI) finds $q^* := \operatorname{argmin}_{q \in \mathcal{Q}} \operatorname{KL}(q||p)$ for an unknown target p.

What should Q be?

Classical VI takes a simple Q. Then $p \notin Q$, but you get computational benefits!

But when $p \notin \mathcal{Q}$, can get poor posterior approximations even in simple cases.

What to do?

- 1. Don't care ("machine learning")
 - Evaluate by other criteria than poterior approximations (e.g. prediction)
 - Maybe fine for some machine learning tasks
- 2. Make Q more expressive ("modern VI")
 - Strong theoretical guarantees
 - High computational cost!

Variational inference (VI) finds $q^* := \operatorname{argmin}_{q \in \mathcal{Q}} \operatorname{KL}(q||p)$ for an unknown target p.

What should Q be?

Classical VI takes a simple Q. Then $p \notin Q$, but you get computational benefits!

But when $p \notin \mathcal{Q}$, can get poor posterior approximations even in simple cases.

What to do?

- 1. Don't care ("machine learning")
 - Evaluate by other criteria than poterior approximations (e.g. prediction)
 - Maybe fine for some machine learning tasks
- 2. Make Q more expressive ("modern VI")
 - Strong theoretical guarantees
 - High computational cost!
- 3. Try to capture important properties of p with simple $\mathcal Q$
 - Begins with understanding how things go wrong (this paper!)
 - Hope to have our cake and eat it too (e.g. marginals and easy computation)
 - Much harder! But important, with big potential benefits

I would love to see more work like this!

Restricted variational families (mean field) can lead to poor posterior approximations.

Two very common approaches to $\ensuremath{\mathsf{VI}}$ are:

- "Machine learning": Ignore it (evaluate using some other criteria, like prediction)
- "Modern VI": Use more expressive families (at a computational cost)

This paper tries to understand how the restricted family goes wrong. *fire emoji*

Restricted variational families (mean field) can lead to poor posterior approximations.

Two very common approaches to VI are:

- "Machine learning": Ignore it (evaluate using some other criteria, like prediction)
- "Modern VI": Use more expressive families (at a computational cost)

This paper tries to understand how the restricted family goes wrong. *fire emoji*

This paper's most (initially) surprising conclusion is probably this:

Theorem 3.6

Let the target distribution has the constant arepsilon-correlation matrix.

As the dimension n of the matrix goes to infinity:

- ullet Each marginal mean field variance is wrong by arepsilon
- \bullet The per-component entropy gap $\to 0$

Restricted variational families (mean field) can lead to poor posterior approximations.

Two very common approaches to VI are:

- "Machine learning": Ignore it (evaluate using some other criteria, like prediction)
- "Modern VI": Use more expressive families (at a computational cost)

This paper tries to understand how the restricted family goes wrong. *fire emoji*

This paper's most (initially) surprising conclusion is probably this:

Theorem 3.6

Let the target distribution has the constant ε -correlation matrix.

As the dimension n of the matrix goes to infinity:

- ullet Each marginal mean field variance is wrong by arepsilon
- ullet The per-component entropy gap o 0

The key is "per-component entropy gap" means entropy difference / n.

In fact, one can show Entropy gap $= O(\log n) \to \infty$. Why is n the "right" scaling?

Restricted variational families (mean field) can lead to poor posterior approximations.

Two very common approaches to VI are:

- "Machine learning": Ignore it (evaluate using some other criteria, like prediction)
- "Modern VI": Use more expressive families (at a computational cost)

This paper tries to understand how the restricted family goes wrong. *fire emoji*

This paper's most (initially) surprising conclusion is probably this:

Theorem 3.6

Let the target distribution has the constant ε -correlation matrix.

As the dimension n of the matrix goes to infinity:

- ullet Each marginal mean field variance is wrong by arepsilon
- \bullet The per-component entropy gap $\to 0$

The key is "per-component entropy gap" means **entropy difference** / n.

In fact, one can show Entropy gap $= O(\log n) \to \infty$. Why is n the "right" scaling?

Why do the relative values across dimensions of the entropy gap matter?

It's clear why variance is useful. Less so the entropy gap, especially as n changes.