Permit Number 3150

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	Emissio	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY **</u>
AG_D103302	Acid Gas Flare	CO H_2S NO_x SO_2 VOC	4.65 0.63 0.54 61.43 1.19	20.40 2.76 2.38 269.10 5.23
AMINE	Amine Unit Heater 9 MMBtu/hr	CO NO_x PM_{10} SO_2 VOC	0.82 0.98 0.07 0.01 0.05	3.61 4.30 0.33 0.03 0.24
AMINE-1	Amine Unit Heater 9 MMBtu/hr	CO NO_x PM_{10} SO_2 VOC	0.82 0.98 0.07 0.01 0.05	3.61 4.30 0.33 0.03 0.24
CAT1	Caterpillar Engine 2,370-hp	CO NO_x PM_{10} SO_2 VOC	1.31 4.54 0.17 0.01 1.67	5.72 19.90 0.73 0.05 7.32
CAT2	Caterpillar Engine 2,370-hp	CO NO_x PM_{10} SO_2 VOC	1.31 4.54 0.17 0.01 1.67	5.72 19.90 0.73 0.05 7.32

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **
CAT3	Caterpillar Engine 2,370-hp	CO NO _×	1.31 4.54	5.72 19.90
	,σ.σβ	PM{10}	0.17	0.73
		SO ₂	0.01	0.05
		VOC	1.67	7.32
COOL-21	Cooling Tower (5)	VOC	0.17	0.74
D40103	Solar Centaur Turbine	СО	10.66	46.67
	4,100-hp	NO _x	16.07	70.41
		PM ₁₀	0.24	1.07
		SO ₂	0.03	0.13
		VOC	0.09	0.40
D40105	Solar Centaur Turbine	CO	10.66	46.67
	4,100-hp	NO_x	16.07	70.41
	, •	PM_{10}	0.24	1.07
		SO_2	0.03	0.13
		VOC	0.09	0.40
EM_D103301	Emergency Gas Flare	СО	0.02	0.07
	Pilot Fuel Only	NO_x	0.01	0.02
		SO ₂	0.01	0.01
		VOC	0.01	0.01
	Glycol Dehydrator	СО	0.82	3.60
	Regenerator Vent Only	NO _x	0.21	0.92
		VOC	1.34	5.89
GLYCOL	Glycol Reboiler	СО	0.38	1.65
	4 MMBtu/hr	NO_x	0.45	1.96
		PM_{10}	0.03	0.15
		SO ₂	0.01	0.01
		VOC	0.02	0.11
HMH-1	Heat Medium Heater	CO	1.01	4.42
	11.00 MMBTU/hr	NO_x	1.20	5.26

Emission	Source Air Contaminant Ei		Emissi	:mission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **	
		DNA	0.00	0.40	
		PM_{10}	0.09	0.40	
		SO ₂	0.01	0.04	
		VOC	0.07	0.29	
K1A	Cooper Compressor Engi	ne CO	2.39	10.50	
	GMXE 835-hp	NO_x	20.20	88.60	
	·	PM_{10}	0.31	1.37	
		SO_2	0.01	0.02	
		VOC	0.77	3.38	
K1B	Cooper Compressor Engi	ne CO	2.39	10.50	
	GMXE 835-hp	NO_x	20.20	88.60	
	Р	PM_{10}	0.31	1.37	
		SO ₂	0.01	0.02	
		VOC	0.77	3.38	
K1C	Cooper Compressor Engil	ne CO	2.39	10.50	
KIO	GMXE 835-hp	NO _x	20.20	88.60	
	OWIXE 000 Hp	PM_{10}	0.31	1.37	
		SO ₂	0.01	0.02	
		VOC	0.77	3.38	
		VOC	0.77	3.30	
K2A	Cooper Compressor Engil	ne CO	0.72	3.14	
	GMXE 250-hp	NO_x	6.06	26.50	
	·	PM_{10}	0.09	0.41	
		SO_2	0.01	0.01	
		VOC	0.23	1.01	
K2B	Cooper Compressor Engil	ne CO	0.86	3.76	
NZD	GMXE 300-hp		7.27	31.85	
	GMAL 300-Hp	NO _x PM ₁₀	0.11	0.49	
		SO_2	0.11	0.49	
		VOC	0.28	1.22	
K3A	Cooper Compressor Engi	ne CO	2.29	10.00	
	GMXE 800-hp	NO_x	19.40	84.90	
	•	PM_{10}	0.30	1.31	

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **
		SO ₂ VOC	0.01 0.74	0.02 3.24
КЗВ	Cooper Compressor Engin GMXE 800-hp	ne CO NO _x PM ₁₀ SO ₂ VOC	2.29 19.40 0.30 0.01 0.74	10.00 84.90 1.31 0.02 3.24
K4A	Cooper Compressor Engin GMXE 650-hp	ne CO NO _x PM ₁₀ SO ₂ VOC	1.86 15.70 0.24 0.01 0.60	8.15 69.00 1.07 0.02 2.63
K4B	Cooper Compressor Engin GMXE 650-hp	ne CO NO_x PM_{10} SO_2 VOC	1.86 15.70 0.24 0.01 0.60	8.15 69.00 1.07 0.02 2.63
K5A	Cooper Compressor Engin GMXD 800-hp	ne CO NO_x PM_{10} SO_2 VOC	2.64 21.10 0.32 0.01 0.80	11.60 92.60 1.39 0.02 3.51
RGH-N	North Regeneration Gas Heater 9.60		СО	2.19
	24.00 MMBTU/hr	NO_x PM_{10} SO_2 VOC	2.61 0.20 0.02 0.14	11.42 0.87 0.08 0.63
RGH-S	South Regeneration Gas F 7.42	Heater	СО	1.69

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **
	40.55.445.54			0.04
	18.55 MMBTU/hr	NO_x	2.02	8.84
		PM_{10}	0.15	0.67
		SO ₂	0.01	0.06
		VOC	0.11	0.49
FUG-KKK	Process Fugitives (4)	H₂S VOC	0.01 0.65	0.01 2.85
FUG-STATE	Process Fugitives (4)	H ₂ S VOC	0.01 1.49	0.01 6.55

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) CO carbon monoxide
 - H₂S hydrogen sulfide
 - NO_x total oxides of nitrogen
 - PM₁₀ particulate matter (PM) equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no PM greater than 10 microns is emitted.
 - SO₂ sulfur dioxide
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable Special Condition(s) and permit application representations.
 - * Emission rates are based on and the facilities are limited by the following maximum operating schedule:
- ______<u>24</u> Hrs/day <u>7</u> Days/week <u>52</u> Weeks/year
- ** Compliance with annual emission limits is based on a rolling 12-month period.

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **