Alex Murray

October 13, 2015

Versuchsleiter: Alex Murray

DATUM (Durchführung)	VERSUCH	DATUM	AKZEPTIERT,
(Durchlumung)		ABGABE	NOTE
07.10.2015	C – Auswertung mit Computer	14.10.2015	
21.10.2015	O2 – Lichtgeschwindigkeit	04.11.2015	
18.11.2015	W8 – ???	09.12.2015	

FORMELSAMMLUNG

Alex Murray

13. Oktober 2015

2 FEHLERRECHNUNG

1 Fehler

1.1 Fehlertypen

Es ist zwischen den folgenden Fehlertypen zu unterscheiden.

Systematische Fehler sind kontrollierte Fehler bzw. systematische Unsicherheiten. Sie sind von der Umgebung oder vom Messvorgang selbst verursacht und verursachen entweder eine systematische Abweichung des Messergebnisses vom "wahren Wert" oder lediglich eine Unsicherheit der Messgrösse. Beispiele sind Massstäbe (messen nur bein einer bestimmten Temperatur richtig), Fehler von Messinstrumenten, Eichunsicherheiten oder Eichfehler von Messinstrumenten, oder verborgene, äussere Einflüsse auf das Experiment.

Zufällige Fehler sind unkontrollierte Fehler die sich bei jeder Messung ändern. Sie verursachen, dass die Messwerte bei mehrmaliger Messung statistisch um den "wahren Wert" schwanken. Beispiele sind Rauschen, Streuung, Genauigkeit der Sinnesorgane des Beobachters, Gebäudeschütterungen, Luftströme usw.

1.2 Genauigkeit

Die Anzahl der Ziffer muss übereinstimmen, z.B. $T=(14.38\pm0.15)$ oder $T=(100\pm2)$ und *nicht* $T=(14.36\pm2)$.

Zufällige Fehler werden mit s gekennzeichnet, Unsicherheiten und Abschätzungen werden mit Δ gekennzeichnet.

Beispiele:

- $\bar{T} = 15.6$ s (mittelwert)
- $s_T = 0.5s$ (absoluter Fehler)
- $r_T = \frac{s_T}{T} = \%$ (relativer Fehler)

Relative Fehler können mit %, ‰, oder ppm angegeben werden.

2 Fehlerrechnung

2.1 Unter gleichen Bedinungen widerholt gemessene Grössen

Arithmetischer Mittelwert

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

Standardabweichung

$$s_x = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}}$$
 (2)

Fehler des Mittelwertes

$$s_{\bar{x}} = \frac{s_x}{\sqrt{N}} \tag{3}$$

2.2 Mittelwertbildung mit Gewichten

Durch verschiedene Messmethoden bestimmte Messgrössen

$$x_1 = \bar{x_1} \pm s_{\bar{x_1}}$$

$$x_2 = \bar{x_2} \pm s_{\bar{x_2}}$$

$$\dots$$

$$x_n = \bar{x_n} \pm s_{\bar{x_n}}$$

kann \bar{x} und $s_{\bar{x}}$ folgendermassen bestimmt werden.

Den wahrscheinlichsten Wert von \bar{x}

$$\bar{x} = \frac{\sum_{i=1}^{N} g_{\bar{x}_i} \cdot x_i}{\sum_{i=1}^{N} g_{\bar{x}_i}} \quad \text{mit} \quad g_{\bar{x}_i} = \frac{1}{s_{\bar{x}_i}^2}$$
 (4)

Fehler des gewogenen Mittels

$$s_{\bar{x}} = \frac{1}{\sqrt{\sum_{i=1}^{N} g_{\bar{x_i}}}} \tag{5}$$

3 Fehlerfortpflanzung

3.1 Gesetz von Gauss

In der Mehrzahl der Fälle liefern physikalische Versuche nicht unmittelbar das gesuchte Messergebnis, sondern die Resultatgrösse R ist eine Funktion von mehreren Grössen $R(x,y,z,\ldots)$ wobei

$$x = \bar{x} \pm s_{\bar{x}}$$
$$y = \bar{y} \pm s_{\bar{y}}$$
$$z = \bar{z} \pm s_{\bar{z}}$$

Den Mittelwert \bar{R} erhält man, indem man einfach die Mittelwerte der verschiedenen Messgrössen in der Funktion R einsetzt.

$$\bar{R} = R(\bar{x}, \bar{y}, \bar{z}, \dots) \tag{6}$$

Der mittlere, absolute Fehler $S_{\bar{R}}$ ergibt sich aus dem Gauss'schen Fehlerfortpflanzungsgesetz:

$$S_{\bar{R}} = \sqrt{\left(\frac{\partial R}{\partial x}\Big|_{\bar{R}} \cdot s_{\bar{x}}\right)^2 + \left(\frac{\partial R}{\partial x}\Big|_{\bar{R}} \cdot s_{\bar{x}}\right)^2 + \left(\frac{\partial R}{\partial x}\Big|_{\bar{R}} \cdot s_{\bar{x}}\right)^2 + \dots}$$
(7)

3.2 Häufige Fälle

3.2.1 Addition und Subtraktion

Sie R=x+y oder R=x-y so ergibt sich wegen $\frac{\partial R}{\partial x}=1$ und $\frac{\partial R}{\partial y}=1$ nach Einsetzen ins Fehlerfortpflanzungsgesetz

$$s_{\bar{R}} = \sqrt{s_{\bar{x}}^2 + s_{\bar{y}}^2} \tag{8}$$

4 5 REGRESSION

3.2.2 Multiplikation und Division

Sei $R=x\cdot y$ oder $R=\frac{x}{y}$ so ergeben die partitiellen Ableitungen $\frac{\partial R}{\partial x}=y$ resp. $\frac{\partial R}{\partial y}=x$. nach Einsetzen ins Fehlerfortpflanzungsgesetz

$$s_{\bar{R}} = \sqrt{(y \cdot s_{\bar{x}})^2 + (x \cdot s_{\bar{y}})^2} \qquad \text{resp.} \qquad s_{\bar{R}} = \sqrt{\left(\frac{1}{y} \cdot s_{\bar{x}}\right)^2 + \left(\frac{x}{y^2} \cdot s_{\bar{y}}\right)^2} \tag{9}$$

Für den relativen Fehler von R gilt bei beiden Operationen

$$r_R = \frac{s_{\bar{R}}}{R} = \sqrt{\left(\frac{s_{\bar{x}}}{x}\right)^2 + \left(\frac{s_{\bar{y}}}{y}\right)^2} = \sqrt{r_x^2 + r_y^2}$$

$$\tag{10}$$

3.2.3 Potenzen

Es sei die gemessene Grösse $R=x^n$, so ergibt die partitielle Ableitung $s_R=n\cdot x^{n-1}\cdot s_x=n\frac{s_x}{x}x^n$ und es folgt für den relativen Fehler

$$r_R = \frac{s_R}{R} = n \cdot r_x \tag{11}$$

Dies bedeutet dass z.B. beim Wurzelziehen der relative Fehler kleiner wird, beim Quadrieren wird er verdoppelt. Will man z.B. die Boltzmannkonstante σ aus der spezifischen Emission und der Temperatur eines Hohlraumstrahlers bestimmen ($M_s = \sigma T^4$), so bewirkt ein relativer Fehler von 5% in der Temepraturmessung einen Fehler von 20% in σ !

4 Histogramm

Ein Histogramm verleiht einen Überblick über die Streuung der N Messwerte x_i um den arithmetischen Mittelwert.

$$h(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-x_0)^2}{2\sigma^2}} \quad \text{wobei} \qquad \frac{x_0:}{\sigma:} \quad \text{Erwartungswert}$$

$$\sigma: \quad \text{Standardabweichung für } N \to \infty$$
 (12)

5 Regression

Für eine gegebene Gesetzmässigkeit $f(x, a_0, a_1, ...)$ werden hierzu Messwertpaare (x_i, y_i) gemessen und die Parameter $(a_0, a_1, ...)$ so angepasst, bis die Summe der quadratischen Abweichungen minimal werden.

$$\chi^{2}(a_{1}, a_{2}, \ldots) = \sum_{i=1}^{N} \frac{(y_{i} - f(x_{i}, a_{1}, a_{2}, \ldots))^{2}}{\sigma_{i}^{2}} \to min$$
(13)

Wobei σ_i die Standardabweichung der Einzelmessungen ist. In vielen praktischen Fällen ist σ_i konstant – aber unbekannt. In diesen Fällen kann sie mit folgender Formel nach der Regression berechnet werden.

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (y_i - f(x_i, a_1, a_2, \dots))^2}{N - m}}$$
 (14)

5.1 Lineare Regression

Es sei die lineare Funktion $\bar{y} = b\bar{x} + a$ für die Messpaare (x_i, y_i) gesucht.

$$\sum_{i=1}^{N} (y_i - (a + bx_i))^2 \to min$$
 (15)

b lässt sich mit der folgenden Formel errechnen:

$$b = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$
(16)

a kann danach direkt durch Auflösen der Funktion $\bar{y}=b\bar{x}+a$ berechnet werden, oder sonst über die erste Ableitung der Formel 15 berechnet werden:

$$a = \bar{y} - b\bar{x} = \frac{\sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i}{N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2}$$
(17)

COMPUTERVERSUCH

Alex Murray

October 13, 2015

1 Schallgeschwindigkeit

1.1 Arbeitsgrundlagen

Die Schallgeschwindigkeit c kann mit

$$c = \frac{s}{t} \tag{1}$$

berechnet werden, wobei s die Messstrecke ist und t die Laufzeit.

1.2 Durchführung

Versuchsanordnung

Zur Bestimmung der Schallgeschwindigkeit wurde die Laufzeit eines Schallpulses über eine Strecke der Länge $s=(2.561\pm0.003)m$ mehrfach gemessen (die geschätzte Unsicherheit der Strecke $\pm 3mm$ kommt daher, dass die genaue Lage der Mikrophon-Membran nicht festgestellt werden konnte). Die Temperatur im Experimentierraum betrug $\vartheta=23^{\circ}C$.

Messergebnisse

Die gemessene Grössen sind in der Tabelle 1 ersichtlich.

Table 1: Gemessene Grössen

Messung	Laufzeit t_i	Messung	Laufzeit t_i
1	6.83	11	7.36
2	7.41	12	7.31
3	7.32	13	7.56
4	7.31	14	7.14
5	7.23	15	6.94
6	7.68	16	7.32
7	7.33	17	7.34
8	7.7	18	7.28
9	7.93	19	7.01
10	7.54	20	7.76

Hinweis: Daten wurden vom Auftragsdokument kopiert.

Es soll die mitlere Laufzeit \bar{t} sowie die Schallgeschwindigkeit c (mitsammt Fehler) ermittelt werden.

Mittlere Laufzeit

Die mittlere Laufzeit wird berechnet mit

$$\bar{t} = \frac{1}{20} \sum_{i=1}^{20} t_i = \frac{7.36 + 7.31 + 7.56 + 7.14 + 6.94 + \dots}{20} = 7.37 \text{ms}$$
 (2)

Die Standardabweichung wird berechnet mit

$$s_t = \sqrt{\frac{\sum_{i=1}^{20} (t_i - \bar{t})^2}{20 - 1}} = 0.28$$
 (3)

1.2 Durchführung 3

und der Fehler mit

$$s_{\bar{t}} = \frac{s_t}{\sqrt{20}} = 0.06 \tag{4}$$

Somit ergibt sich die mittlere Laufzeit mit Unsicherheit als $\underline{t} = (7.37 \pm 0.06)$ ms.

Schallgeschwindigkeit

Die Schallgeschwindigkeit wird mit $c=\frac{s}{t}$ berechnet. Wir wissen dass $s=\bar{s}+s_{\bar{s}}=(2.561\pm0.003)\mathrm{m}$ und $t=\bar{t}+s_{\bar{t}}=(7.37\pm0.06)\mathrm{ms}$.

Da die Schallgeschwindigkeit eine Funktion von mehreren Messgrössen ist, muss mit Hilfe der Gauss'schen Fehlerfortpflanzungsgesetzes der Fehler berechnet werden. Dazu wird die Formel $c=\frac{s}{t}$ partitiell abgeleitet nach s und t

$$\frac{\partial c}{\partial s} = \frac{1}{t}$$
 und $\frac{\partial c}{\partial t} = \frac{-s}{t^2}$ (5)

und in die Formel des Fehlerfortpflanzungsgesetzes eingesetzt

$$s_{\bar{c}} = \sqrt{(\frac{1}{t} \cdot s_{\bar{s}})^2 + (\frac{-s}{t^2} \cdot s_{\bar{t}})^2} = 2.86 \frac{\text{m}}{\text{s}}$$
 (6)

Die mittlere Schallgeschwindigkeit berechnet sich mit

$$\bar{c} = \frac{\bar{s}}{\bar{t}} = 347.73 \frac{\mathrm{m}}{\mathrm{s}} \tag{7}$$

Somit ergibt sich die Schallgeschwindigkeit $\underline{c = (347.7 \pm 2.9) \frac{\text{m}}{\text{s}}}$

QtiPlot

Figure 1: Visualisierung der Standardabweichung und Fehler

1.3 Resultate und Diskussion

Das Endresultat von $(347.7\pm2.9)\frac{m}{s}$ ist ein wenig höher als der Literaturwert von $344\frac{m}{s}$. Warscheinlich liegt diese Abweichung daran, dass der Literaturwert bei $\vartheta=20^{\circ}C$ auf Meereshöhe gemessen wurde anstatt bei $\vartheta=23^{\circ}C$ (und höchstwarscheinlich auch auf einer anderen Höhe). Die Schallgeschwindigkeit nimmt ab be höherem Druck und tieferer Temperatur ab.

In der Figur 1 sind die Einzelnen messwerte in einer XY-Scatter-Plot dargestellt. Die Standardabweichung (Violett) sollte die Stelle markieren, wo statistisch 67% aller Messwerte fallen werden. Wenn man nachzählt, wie viele Punkte innerhalb und ausserhalb des Bandes liegen – 13 innerhalb und 8 ausserhalb – so kommt man grob auf $\frac{8}{13} \simeq 67\%$.

¹Horst Kuchling, *Taschenbuch der Physik* (2015) 642.

2 Eisengehalt

2.1 Arbeitsgrundlagen

(Siehe Formelsammlung)

2.2 Durchführung

Versuchsanordnung

Der Eisengehalt in einer Legierung wurde mit verschiedene Messmethoden bestimmt.

Messergebnisse

Table 2: Gemessene Grössen

Messung	Eisengehalt (%)	Absoluter Fehler (%)
1	20.3	1.2
2	21.9	1.3
3	21.1	1.1
4	19.6	0.8
5	19.9	1.3
6	18.0	1.3
7	19.4	1.0
8	22.2	2.0
9	21.6	0.8

Hinweis: Daten wurde vom Auftragsdokument kopiert.

Es soll der einfache sowohl auch der gewichtete Mittelwert berechnet werden. Weiterhin soll auch der einfache und gewichtete Fehler berechnet werden.

Mittelwert

Der einfache Mittelwert berechnet sich mit der Formel

$$\bar{x}_{einfach} = \frac{1}{9} \sum_{i=1}^{9} x_i = \underline{20.4\%}$$
 (8)

wobei x_i das Eisengehalt in Prozent ist.

Der gewichtete Mittelwert lässt sich mit der Formel

$$\bar{x}_{gewichtet} = \frac{\sum_{i=1}^{9} g_{\bar{x}_i} \cdot x_i}{\sum_{i=1}^{9} g_{\bar{x}_i}} = \underline{20.4\%}$$
 (9)

berechnen, wobei

$$g_{\bar{x}_i} = \frac{1}{s_{\bar{x}_i}^2} \tag{10}$$

und x_i der Eisengehalt in Prozent ist und $g_{\overline{x}_i}$ der absoluter Fehler in Prozent ist.

6 2 EISENGEHALT

Fehler

Der einfache Fehler berechnet sich mit der Formel

$$s_{\bar{x}_{einfach}} = \sqrt{\frac{\sum_{i=1}^{9} (x_i - s_{\bar{x}})^2}{9 \cdot (9 - 1)}} = \underline{0.5\%}$$
 (11)

wobei x_i der Eisengehalt in Prozent ist und $s_{\bar{x}}$ der *einfache* Mittelwert ist.

Der gewichtete Fehler berechnet sich mit der Formel

$$s_{\bar{x}_{gewichtet}} = \frac{1}{\sqrt{\sum_{i=1}^{9} g_{\bar{x}_i}}} = \underline{0.4\%}$$
 (12)

wobei $g_{\bar{x}_i}$ wieder mit der Formel 10 berechnet wird.

QtiPlot

Figure 2: XY-Scatter der gemessenen Eisengehalte mit Fehler

2.3 Resultate und Diskussion

Von QtiPlot in der Figur 2 kann der berechnete Wert von $a=(20.4\pm0.4)\%$ ausgelesen werden. Dieser Wert vergleicht sich ganz gut mit den Resultaten der Formeln 9 und 12 von $(20.4\pm0.4)\%$.

3 Federkonstante

3.1 Arbeitsgrundlagen

Eine Stahlfeder kann mit der Formel

$$F = F_0 + kz \tag{13}$$

beschrieben werden, wobei k die Federkonstante ist, z die Auslenkung in meter ist, F_0 die Vorspannung ist, und F die benötigte Kraft ist.

3.2 Durchführung

Versuchsanordnung

Die Kraft und die Distanz einer Stahlfeder wurde bei verschiedenen Auslenkungen gemessen.

Messergebnisse

Table 3: Gemessene Grössen

F(N)	z(m)
3.83	0.20
7.89	0.35
8.08	0.42
9.80	0.46
10.58	0.51
12.33	0.54
12.23	0.59
14.43	0.67
15.51	0.81
17.09	0.80

Hinweis: Daten wurden vom Auftragsdokument kopiert.

Die Federkonstante k und die Vorspannkraft F_0 soll durch lineare Regression ermittelt werden.

Berechnung mit dem Taschenrechner

Es werden zwei unbekannte Grössen k und F_0 in der linearen Funktion $\bar{F} = \bar{z}k + F_0$ für die Messpaare (F_i, z_i) gesucht. k lässt sich mit der Formel

$$k = \frac{\sum_{i=1}^{N} (z_i - \bar{z})(F_i - \bar{F})}{\sum_{i=1}^{N} (z_i - \bar{z})^2} = \underbrace{22.28 \frac{N}{m}}_{(14)}$$

berechnen, wobei F_i und z_i die Messpaare von der Tabelle 3 sind, N=10, und \bar{F} und \bar{z} die Mittelwerte aller Werte F_i und z_i sind. Die Mittelwerte von F_i und z_i können mit der Formel der Formel

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{15}$$

8 3 FEDERKONSTANTE

berechnet werden.

Durch Umformen der linearen Funktion in der Formel 13 kann nun auch F_0 berechnet werden.

$$F_0 = \bar{F} - k\bar{z} = \underline{-0.54\text{N}} \tag{16}$$

QtiPlot

Figure 3: Lineare Regression zur Bestimmung von k und F_0

Figure 4: 95% Confidence- und Prediction-bands sowie Residuals

Figure 5: 66% Confidence- und Prediction-bands sowie Residuals

3.3 Resultate und Diskussion

Die mit dem Taschenrechner erhaltenen Werte stimmen mit den Werten von QtiPlot überein.

Ein Fehler, den ich zuerst gemacht habe, war es, die X und Y Achsen in QtiPlot zu vertauschen, sprich, F_i auf die X-Achse und z_i auf die Y-Achse. Dadurch sind zuerst die falschen Werte von k und F_0 berechnet worden.

4 Offset, Amplitude, Frequenz und Phase eines Pendels

4.1 Arbeitsgrundlagen

Die gedämpfte Schwingung eines Pendels kann mit der Formel

$$y = A \cdot e^{-\Gamma \cdot t} \cdot \sin(2\pi f t - \delta) + y_0 \quad \text{wobei} \quad \begin{array}{c} A: \quad \text{Amplitude} \\ \Gamma: \quad \text{Abklingkonstante} \\ f: \quad \text{Frequenz in Hz} \\ \delta: \quad \text{Phase} \\ y_0: \quad \text{Offset} \end{array}$$
 (17)

beschrieben werden.

4.2 Durchführung

Versuchsanordnung

Die gedämpfte Schwingung eines Pendels wurde mittels Ultraschallsensor vermessen. Die Zeitabhängige Positionsdaten sind in der Tabelle 4 aufgezeichnet.

Messergebnisse

Table 4: Gemessene Grössen

t(s)	y(m)	t(m)	y(m)								
0.5	-0.418	8.0	0.594	15.5	-0.577	23.0	0.417	30.5	-0.132	38.0	0.152
1.0	-0.07	8.5	0.632	16.0	-0.48	23.5	0.423	31.0	-0.123	38.5	0.058
1.5	0.082	9.0	0.435	16.5	-0.414	24.0	0.45	31.5	-0.075	39.0	0.193
2.0	0.19	9.5	0.366	17.0	-0.46	24.5	0.389	32.0	-0.373	39.5	0.070
2.5	0.494	10	0.123	17.5	-0.187	25.0	0.488	32.5	-0.146	40.0	0.235
3.0	0.566	10.5	0.064	18.0	-0.171	25.5	0.317	33.0	-0.176	40.5	0.084
3.5	0.753	11.0	-0.084	18.5	-0.03	26.0	0.344	33.5	-0.193	41.0	0.248
4.0	0.913	11.5	-0.152	19.0	-0.072	26.5	0.363	34.0	-0.138	41.5	0.319
4.5	0.869	12.0	-0.299	19.5	-0.011	27.0	0.218	34.5	-0.259	42.0	0.052
5.0	0.977	12.5	-0.506	20.0	0.082	27.5	0.084	35.0	-0.078	42.5	0.159
5.5	0.956	13.0	-0.479	20.5	0.109	28.0	0.113	35.5	0.018	43.0	0.134
6.0	0.996	13.5	-0.576	21.0	0.25	28.5	0.166	36.0	-0.059	43.5	0.079
6.5	0.971	14.0	-0.662	21.5	0.404	29.0	0.02	36.5	0.056	44.0	0.097
7.0	0.827	14.5	-0.498	22.0	0.272	29.5	-0.032	37.0	0.004	44.5	0.162
7.5	0.784	15.0	-0.654	22.5	0.317	30.0	0.011	37.5	0.042	45.0	0.030

Hinweis: Daten wurden vom Auftragsdokument kopiert.

Die Amplitude A, Abklingkonstante Γ , Frequenz f, Phase δ und Offset y_0 sollen ermittelt werden.

QtiPlot

Figure 6: Nicht-lineare Regression zur Bestimmung von A, Γ , f, δ und y0

Die Formel 17 wird in QtiPlot als Fit-Funktion eingegeben. Die gesuchten Parameter können mittels nicht-linearer Regression ermittelt werden. Angrunt der nicht-linearen Art der Formel müssen vor dem Fitten gute Startwerte von Hand eingestellt werden. Dazu wird der Checkbox "Preview" eingeschalten und mit den Parametern gespielt, bis die Kurve ungefär passt.

4.3 Resultate und Diskussion

Von der Figur 6 können die gesuchten Parameter abgelesen werden. Diese sind:

Amplitude A: (1.29 ± 0.04) Abklingkonstante Γ : (51.7 ± 2.2) E-3Phase δ : (503 ± 23) E-3Frequenz f: (55.3 ± 0.3) E-3Offset y_0 : (41.4 ± 7.4) E-3

5 RC-Glied

5.1 Arbeitsgrundlagen

Gemäss Theorie berechnet sich die Ausgangsspannung U_A mit

$$U_A = U_E \cdot \frac{X_C}{\sqrt{X_C^2 + R^2}} = \frac{U_E}{\omega C \sqrt{\frac{1}{(\omega C)^2} + R^2}} = \frac{U_E}{\sqrt{1 + (\omega C R)^2}}$$
(18)

und die Phase φ mit

$$\varphi = \arctan(-\omega RC) \tag{19}$$

5.2 Durchführung

Versuchsanordnung

Am Eingang eines RC-Tiefpassfilters wurde eine sinusförmige Wechselspannung mit Amplitude $U_E=4V_{pp}$ und variabler Frequenz angelegt. Gemessen wurde die Ausgangsspannung U_A sowie die Phasenverschiebung φ in Funktion der Frequenz f mit Hilfe eines Kathodenstrahloszilloskopes (KO). Der Widerstand R wurde zu $R=500\Omega$ bestimmt. Die Messwerte wurden in der Tabelle 5 aufgezeichnet.

Figure 7: RC-Tiefpassfilter

5 RC-GLIED

Messergebnisse

Table 5: Gemessene Grössen

f(Hz)	$U_a(V)$	ϕ
100	4.000	-3.24
500	3.800	-16.9
1000	3.300	-31.3
1500	2.800	-43.6
5000	1.140	-72.4
10000	0.580	-82.5
100000	0.075	-90.0
1592	2.700	-44.0

Messprotokoll "Tiefpass"

Datum: 1. Okt. 1999

Versuchsleiterin: Ruth Metzler

Hinweis: Daten wurden vom Auftragsdokument

kopiert.

Gesucht ist die Kapazität C.

QtiPlot

Figure 8: Nicht-lineare Regression zur Bestimmung von ${\cal C}$ anhand der Ausgangsspannung

Figure 9: Nicht-lineare Regression zur Bestimmung von C anhand der Phase

Die Kapazität C kann auf zwei Arten ermittelt werden.

- In der Figur 8 wird die Ausgangsspannung U_A in Funktion der Frequenz dargestellt. Durch Regression mit der Formel 18 kann C bestimmt werden. Der Wert beträgt somit $C_1 = (216.7 \pm 0.9)$ nF (aus dem Plot von QtiPlot abgelesen).
- In der Figur 9 wird der Phasenwinkel φ in Funktion der Frequenz dargestellt. Durch Regression mit der Formel 19 kann C auch bestimmt werden. Der Wert beträgt somit $\underline{C_2 = (197.5 \pm 3.1) \text{nF}}$ (aus dem Plot von QtiPlot abgelesen).

5.3 Resultate und Diskussion

Der Wert von C_1 weicht recht stark vom Wert C_2 ab. Es liegen sicher Messungenauigkeiten zugrunde. Die Methode mit der Phase ist sicher ungenauer als die Methode mit der Ausgangsspannung, weil die Phase φ viel grober gemessen wurde. Dies reflektiert sich auch wenn man den Fehler anschaut.

Um an einen genaueren Wert von C zu gelangen könnte man jetzt C_1 und C_2 gewichtet mitteln mit

$$\bar{C} = \frac{\sum_{i=1}^{N} g_{\bar{C}_i} \cdot C_i}{\sum_{i=1}^{N} g_{\bar{C}_i}} = \frac{\frac{1}{0.9^2} \cdot 216.7 + \frac{1}{3.1^2} \cdot 197.5}{\frac{1}{0.9^2} + \frac{1}{3.1^2}} = 215.2 \text{nF}$$
 (20)

und den Fehler des gewogenen Mittels berechnen mit

$$s_{\bar{C}} = \frac{1}{\sqrt{\sum_{i=1}^{N} g_{\bar{C}_i}}} = \frac{1}{\sqrt{\frac{1}{0.9^2} + \frac{1}{3.1^2}}} = 0.9\text{nF}$$
 (21)

Somit ergibt sich der genauere Wert $C = (215.2 \pm 0.9) \text{nF}$

Es ist zu beachten, dass der berechnete Fehler der Kapazität nur den statistischen Fehler darstellt. Als systematischer Fehler müsste noch die Unsicherheit des Widerstandwertes mitberücksichtigt werden.

16 A EXCEL-TABELLEN

Appendices

A Excel-Tabellen

Schallgeschwindigkeit

Messung	L	aufzeit (ms)
	1	6.83
	2	7.41
	3	7.32
	4	7.31
	5	7.23
	6	7.68
	7	7.33
	8	7.7
	9	7.93
	10	7.54
	11	7.36
	12	7.31
	13	7.56
	14	7.14
	15	6.94
	16 17	7.32 7.34
	18	7.34 7.28
	19	7.20
	20	7.76
	20	1.70
Mittelwert Laufzeit		7.37
Std. Laufzeit		0.28
Unsicherheit Laufzeit		0.06
Mittlere Laufzeit in s		0.007365
Unsicherheit Laufzeit in s		6.15223536610881E-005
Mittlere Distanz		2.561
Unsicherheit Distanz		0.003
Mittlere Schallgeschwindigkeit		347.7
Unsicherheit Schallgeschwindigke	eit	2.9

Eisengehalt

Messung	Eis	sengehalt (%)	Absoluter Fehler ((%)	Gewichte
	1	20.3	}	1.2	0.694444444
	2	21.9)	1.3	0.5917159763
	3	21.1	-	1.1	0.826446281
	4	19.6	;	0.8	1.5625
	5	19.9)	1.3	0.5917159763
	6	18	}	1.3	0.5917159763
	7	19.4	1	1	. 1
	8	22.2	<u>.</u>	2	0.25
	9	21.6	5	0.8	1.5625
Einfacher Mittelwert		20.4	1		
Gewichteter Mittelwert		20.4	ļ		
Einfache Unsicherheit		0.5	,		
Gewichtete Unsicherheit		0.4			

Gewichteter Eisengehalt

14.097222222 12.9585798817 17.4380165289 30.625 11.775147929 10.650887574 19.4 5.55 33.75

Federkonstante

F (N)	Z	(m)		Xi^2	•	Yi^2	Xi-x
	3.83	0.2			0.04	14.6689	-0.325
	7.79	0.35			0.1225	60.6841	-0.175
	8.08	0.42			0.1764	65.2864	-0.105
	9.7	0.46	F=k*z+F0		0.2116	94.09	-0.065
	10.58	0.51			0.2601	111.9364	-0.015
	12.33	0.54			0.2916	152.0289	0.015
	12.23	0.59			0.3481	149.5729	0.065
	14.43	0.67			0.4489	208.2249	0.145
	15.51	0.71			0.5041	240.5601	0.185
	17.09	0.8			0.64	292.0681	0.275

k	22.2809615
F0	-0.54050479

Yi-y		(xi-x)(yi-y)	(xi-x)^2	(yi-y)^2	yi*xi
	-7.327	2.381275	0.105625	53.684929	0.766
	-3.367	0.589225	0.030625	11.336689	2.7265
	-3.077	0.323085	0.011025	9.467929	3.3936
	-1.457	0.094705	0.004225	2.122849	4.462
	-0.577	0.008655	0.000225	0.332929	5.3958
	1.173	0.017595	0.000225	1.375929	6.6582
	1.073	0.069745	0.004225	1.151329	7.2157
	3.273	0.474585	0.021025	10.712529	9.6681
	4.353	0.805305	0.034225	18.948609	11.0121
	5.933	1 631575	0.075625	35,200489	13.672

B Handgeschriebenes