TO PTO JULY 18, 2003

SEQUENCE LISTING

<110>	DAI, KEN-SHWO											
<120>	HUMAN SMAPK3-RELATED GENE VARIANTS ASSOCIATED WITH CANCERS											
<130>	U 014726-8											
<140> <141>	 2003-07-18											
<160>	8											
<170>	PatentIn version 3.1											
<210> <211> <212> <213>	1 1654 DNA Homo sapiens											
<400>	1						60					
					gggcggggag		60					
ccgagg	gggt	cggcccgggg	gtcccggggg	aggtggagat	ggtgaagggg	cagccgttcg	120					
acgtgg	gccc	gcgctacacg	cagttgcagt	acatcggcga	gggcgcgtac	ggcatggtca	180					
gctcgg	ccta	tgaccacgtg	cgcaagactc	gcgtggccat	caagaagatc	agccccttcg	240					
aacatca	agac	ctactgccag	cgcacgctcc	gggagatcca	gatcctgctg	cgcttccgcc	300					
atgagaa	atgt	catcggcatc	cgagacattc	tgcgggcgtc	caccctggaa	gccatgagag	360					
atgtcta	acat	tgtgcaggac	ctgatggaga	ctgacctgta	caagttgctg	aaaagccagc	420					
agctgag	gcaa	tgaccatatc	tgctacttcc	tctaccagat	cctgcggggc	ctcaagtaca	480					
tccacto	ccgc	caacgtgctc	caccgagatc	taaagccctc	caacctgctc	atcaacacca	540					
cctgcga	acct	taagatttgt	gatttcggcc	tggcccggat	tgccgatcct	gagcatgacc	600					
acaccg	gctt	cctgacggag	tatgtggcta	cgcgctggta	ccgggcccca	gagatcatgc	660					
tgaact	ccaa	gggctatacc	aagtccatcg	acatctggtc	tgtgggctgc	attctggctg	720					
agatgct	tctc	taaccggccc	atcttccctg	gcaagcacta	cctggatcag	ctcaaccaca	780					
ttctgg	ccct	tgacctgctg	gaccggatgt	taacctttaa	ccccaataaa	cggatcacag	840					
tggagga	aagc	gctggctcac	ccctacctgg	agcagtacta	tgacccgacg	gatgagccag	900					
tggccga	agga	gcccttcacc	ttcgccatgg	agctggatga	cctacctaag	gagcggctga	960					
aggagct	tcat	cttccaggag	acagcacgct	tccagcccgg	agtgctggag	gccccctagc	1020					
ccagaca	agac	atctctgcac	cctggggcct	ggacctgcct	cctgcctgcc	cctctcccgc	1080					
cagact	gtta	gaaaatggac	actgtgccca	gcccggacct	tggcagccca	ggccggggtg	1140					
gagcat	gggc	ctggccacct	ctctcctttg	ctgaggcctc	cagcttcagg	caggccaagg	1200					

ccttctcctc	cccacccgcc	ctcccacgg	ggcctcggga	gctcaggtgg	ccccagttca	1260
atctcccgct	gctgctgctg	cgcccttacc	ttccccagcg	tcccagtctc	tggcagttct	1320
ggaatggaag	ggttctggct	gccccaacct	gctgaagggc	agaggtggag	ggtgggggc	1380
gctgagtagg	gactcagggc	catgcctgcc	cccctcatct	cattcaaacc	ccaccctagt	1440
ttccctgaag	gaacattcct	tagtctcaag	ggctagcatc	cctgaggagc	caggccgggc	1500
cgaatcccct	ccctgtcaaa	gctgtcactt	cgcgtgccct	cgctgcttct	gtgtgtggtg	1560
agcagaagtg	gagctggggg	gcgtggagag	cccggcgccc	ctgccacctc	cctgacccgt	1620
ctaatatata	aatatagaga	tgtgtctatg	gctg			1654

<210> 2

<211> 335

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Ala Ala Ala Gln Gly Gly Gly Gly Glu Pro Arg Arg 1 5 10 15

Thr Glu Gly Val Gly Pro Gly Val Pro Gly Glu Val Glu Met Val Lys 20 25 30

Gly Gln Pro Phe Asp Val Gly Pro Arg Tyr Thr Gln Leu Gln Tyr Ile 35 40 45

Gly Glu Gly Ala Tyr Gly Met Val Ser Ser Ala Tyr Asp His Val Arg 50 55 60

Lys Thr Arg Val Ala Ile Lys Lys Ile Ser Pro Phe Glu His Gln Thr 65 70 75 80

Tyr Cys Gln Arg Thr Leu Arg Glu Ile Gln Ile Leu Leu Arg Phe Arg 85 90 95

His Glu Asn Val Ile Gly Ile Arg Asp Ile Leu Arg Ala Ser Thr Leu 100 105 110

Glu Ala Met Arg Asp Val Tyr Ile Val Gln Asp Leu Met Glu Thr Asp 115 120 125

Leu Tyr Lys Leu Leu Lys Ser Gln Gln Leu Ser Asn Asp His Ile Cys 130 135

Tyr Phe Leu Tyr Gln Ile Leu Arg Gly Leu Lys Tyr Ile His Ser Ala

Asn V	/al	Leu	His	Arg 165	Asp	Leu	Lys	Pro	Ser 170	Asn	Leu	Leu	Ile	Asn 175	Thr
Thr C	Суз	Asp	Leu 180	Lys	Ile	Cys	Asp	Phe 185	Gly	Leu	Ala	Arg	Ile 190	Ala	Asp
Pro G	Glu	His 195	Asp	His	Thr	Gly	Phe 200	Leu	Thr	Glu	Tyr	Val 205	Ala	Thr	Arg
Trp 1	Tyr 210	Arg	Ala	Pro	Glu	Ile 215	Met	Leu	Asn	Ser	Lys 220	Gly	Tyr	Thr	Lys
Ser I 225	le	Asp	Ile	Trp	Ser 230	Val	Gly	Cys	Ile	Leu 235	Ala	Glu	Met	Leu	Ser 240
Asn A	Arg	Pro	Ile	Phe 245	Pro	Gly	Lys	His	T yr 250	Leu	Asp	Gln	Leu	Asn 255	His
Ile L	∟eu	Ala	Leu 260	Asp	Leu	Leu	Asp	Arg 265	Met	Leu	Thr	Phe	Asn 270	Pro	Asn
Lys A	Arg	Ile 275	Thr	Val	Glu	Glu	Ala 280	Leu	Ala	His	Pro	Tyr 285	Leu	Glu	Gln
Tyr T	'yr '90	Asp	Pro	Thr	Asp	Glu 295	Pro	Val	Ala	Glu	Glu 300	Pro	Phe	Thr	Phe
Ala M 305	let	Glu	Leu	Asp	Asp 310	Leu	Pro	Lys	Glu	Arg 315	Leu	Lys	Glu	Leu	Ile 320
Phe G	ln	Glu	Thr	Ala 325	Arg	Phe	Gln	Pro	Gly 330	Val	Leu	Glu	Ala	Pro 335	
<210> 3 <211> 1726 <212> DNA <213> Homo sapiens															
<400> 3															
gaggagtgga gatggcggcg gcggcggctc aggggggcgg gggcggggag ccccgt								tagaa							
ccgag	ggg	gt c	ggcc	cggg	g gt	cccg	gggg	agg	ıtgga	gat	ggtg	aagg	gg c	agco	gttcg
acgtg	ggc	cc g	cgct	acac	g ca	igttg	cagt	aca	tcgg	cga	gggc	gcgt	ac g	ıgcat	ggtca
gctcg	gcc	ta t	gaco	acgt	g cg	caag	acto	gcg	rtggd	cat	caag	aaga	tc a	gccc	cttcg

```
aacatcagac ctactgccag cgcacgctcc gggagatcca gatcctqctq cqcttccqcc
                                                                      300
atgagaatgt catcggcatc cgagacattc tgcgggcgtc caccctggaa gccatgagag
                                                                      360
atgtctacat tgtgcaggac ctgatggaga ctgacctgta caagttgctg aaaagccagc
                                                                      420
agctgagcaa tgaccatatc tgctacttcc tctaccagat cctgcggggc ctcaagtaca
                                                                      480
tocactocgo caacgtgoto caccgagato taaagccoto caacctgoto atcaacacca
                                                                      540
cctgcgacct taagatttgt gatttcggcc tggcccggat tgccgatcct gagcatgacc
                                                                      600
acaccggctt cctgacggag tatgtggcta cgcgctggta ccgggcccca gagatcatgc
                                                                      660
tgaactccaa gggctatacc aagtccatcg acatctggtc tgtgggctgc attctggctg
                                                                      720
agatgetete taaceggeee atetteeetg geaageacta eetggateag etcaaceaca
                                                                      780
ttctgggcat cctgggctcc ccatcccagg aggacctgaa ttgtatcatc aacatgaagg
                                                                      840
ecegaaacta ectacagtet etgeceteca agaceaaggt ggettgggee aagettttee
                                                                      900
ccaagtcaga ctccaaagcc cttgacctgc tggaccggat gttaaccttt aaccccaata
                                                                      960
aacggatcac agtggccgag gagcccttca ccttcgccat ggagctggat gacctaccta
                                                                     1020
aggagegget gaaggagete atetteeagg agacageacg etteeageee ggagtgetgg
                                                                     1080
aggcccccta gcccagacag acatetetge accetgggge etggacetge etectgeetg
                                                                     1140
cccctctccc gccagactgt tagaaaatgg acactgtgcc cagcccggac cttggcagcc
                                                                     1200
caggccgggg tggagcatgg gcctggccac ctctctctt tgctgaggcc tccagcttca
                                                                     1260
ggcaggccaa ggccttctcc tccccacccg ccctccccac ggggcctcgg gagctcaggt
                                                                     1320
ggccccagtt caatctcccg ctgctgctgc tgcgccctta ccttccccag cgtcccagtc
                                                                     1380
tctggcagtt ctggaatgga agggttctgg ctgccccaac ctgctgaagg gcagaggtgg
                                                                     1440
agggtggggg gcgctgagta gggactcagg gccatgcctg cccccctcat ctcattcaaa
                                                                     1500
ecceaeceta gttteeetga aggaacatte ettagtetea agggetagea teeetgagga
                                                                    1560
gccaggccgg gccgaatccc ctccctgtca aagctgtcac ttcgcgtgcc ctcgctgctt
                                                                    1620
ctgtgtgtgg tgagcagaag tggagctggg gggcgtggag agcccggcgc ccctqccacc
                                                                     1680
tccctgaccc gtctaatata taaatataga gatgtgtcta tggctg
                                                                    1726
```

<210> 4 <211> 359 <212> PRT <213> Homo sapiens

<400> 4

Met Ala Ala Ala Ala Gln Gly Gly Gly Gly Glu Pro Arg Arg
1 5 10 15

- Thr Glu Gly Val Gly Pro Gly Val Pro Gly Glu Val Glu Met Val Lys 20 25 30
- Gly Gln Pro Phe Asp Val Gly Pro Arg Tyr Thr Gln Leu Gln Tyr Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$
- Gly Glu Gly Ala Tyr Gly Met Val Ser Ser Ala Tyr Asp His Val Arg 50 60
- Lys Thr Arg Val Ala Ile Lys Lys Ile Ser Pro Phe Glu His Gln Thr 65 70 75 80
- Tyr Cys Gln Arg Thr Leu Arg Glu Ile Gln Ile Leu Leu Arg Phe Arg 85 90 95
- His Glu Asn Val Ile Gly Ile Arg Asp Ile Leu Arg Ala Ser Thr Leu 100 105 110
- Glu Ala Met Arg Asp Val Tyr Ile Val Gln Asp Leu Met Glu Thr Asp 115 120 125
- Leu Tyr Lys Leu Leu Lys Ser Gln Gln Leu Ser Asn Asp His Ile Cys 130 135 140
- Tyr Phe Leu Tyr Gln Ile Leu Arg Gly Leu Lys Tyr Ile His Ser Ala 145 150 155 160
- Asn Val Leu His Arg Asp Leu Lys Pro Ser Asn Leu Leu Ile Asn Thr 165 170 175
- Thr Cys Asp Leu Lys Ile Cys Asp Phe Gly Leu Ala Arg Ile Ala Asp 180 185 190
- Pro Glu His Asp His Thr Gly Phe Leu Thr Glu Tyr Val Ala Thr Arg 195 200 205
- Trp Tyr Arg Ala Pro Glu Ile Met Leu Asn Ser Lys Gly Tyr Thr Lys 210 215 220
- Ser Ile Asp Ile Trp Ser Val Gly Cys Ile Leu Ala Glu Met Leu Ser 225 230 235 240
- Asn Arg Pro Ile Phe Pro Gly Lys His Tyr Leu Asp Gln Leu Asn His 245 250 255

Ile Leu Gly Ile Leu Gly Ser Pro Ser Gln Glu Asp Leu Asn Cys Ile

Ile Asn Met Lys Ala Arg Asn Tyr Leu Gln Ser Leu Pro Ser Lys Thr

Lys Val Ala Trp Ala Lys Leu Phe Pro Lys Ser Asp Ser Lys Ala Leu

Asp Leu Leu Asp Arg Met Leu Thr Phe Asn Pro Asn Lys Arg Ile Thr 315

Val Ala Glu Glu Pro Phe Thr Phe Ala Met Glu Leu Asp Asp Leu Pro 325 330 335

Lys Glu Arg Leu Lys Glu Leu Ile Phe Gln Glu Thr Ala Arg Phe Gln

Pro Gly Val Leu Glu Ala Pro 355

<210> 5

<211> 1837

<212> DNA

<213> Homo sapiens

<400>

60 gaggagtgga gatggcggcg gcggcggctc aggggggcgg gggcggggag ccccgtagaa 120 ccgaggggt cggcccgggg gtcccggggg aggtggagat ggtgaagggg cagccgttcg acgtgggccc gcgctacacg cagttgcagt acatcggcga gggcgcgtac ggcatggtca 180 240 gctcggccta tgaccacgtg cgcaagactc gcgtggccat caagaagatc agccccttcg aacatcagac ctactgccag cgcacgctcc gggagatcca gatcctgctg cgcttccgcc 300 atqaqaatqt catcqqcatc cqaqacattc tqcqqqcqtc caccctggaa gccatgagaq 360 atgtctacat tgtgcaggac ctgatggaga ctgacctgta caagttgctg aaaagccagc 420 480 agctgagcaa tgaccatatc tgctacttcc tctaccagat cctgcggggc ctcaagtaca 540 tocactocgo caacgtgoto caccgagato taaagccoto caacctgoto atcaacacca 600 cctgcgacct taagatttgt gatttcggcc tggcccggat tgccgatcct gagcatgacc acaccggctt cctgacggag tatgtggcta cgcgctggta ccgggcccca gagatcatgc 660 720 tgaactccaa gggctatacc aagtccatcg acatctggtc tgtgggctgc attctggctg 780 agatgetete taaceggeee atetteeetg geaageacta eetggateag eteaaceaea ttctgggcat cctgggctcc ccatcccagg aggacctgaa ttgtatcatc aacatgaagg 840

cccgaaacta cctacagtct ctgccctcca agaccaaggt ggcttgggcc aagcttttcc 900 960 ccaagtcaga ctccaaagcc cttgacctgc tggaccggat gttaaccttt aaccccaata aacggatcac agtggaggaa gcgctggctc acccctacct ggagcagtac tatgacccga 1020 cggatgagcc agtggccgag gagcccttca ccttcgccat ggagctggat gacctaccta 1080 aggagegget gaaggagete atetteeagg agacageaeg etteeageee ggagtgetgg 1140 aggececta geccagacag acatetetge accetgggge etggaacaga actggeaaag 1200 aggcaagagg tcactgaggg cctctgtcac ccaggacctg cctcctgcct gcccctctcc 1260 cgccagactg ttagaaaatg gacactgtgc ccagcccgga ccttggcagc ccagqccggg 1320 gtggagcatg ggcctggcca cctctctct ttgctgaggc ctccagcttc aggcaggcca 1380 aggeettete etecceace geetteeca eggggeeteg ggageteagg tggeeceagt 1440 tcaatctccc gctgctgctg ctgcgccctt accttcccca gcgtcccagt ctctggcagt 1500 tctggaatgg aagggttctg gctgccccaa cctgctgaag ggcagaggtg gagggtgggg 1560 ggcgctgagt agggactcag ggccatgcct gccccctca tctcattcaa accccaccct 1620 agtttccctq aaggaacatt ccttagtctc aagggctagc atccctgagg agccaggccg 1680 ggccgaatcc cctccctgtc aaagctgtca cttcgcgtgc cctcgctgct tctgtgtgtg 1740 gtgagcagaa gtggagctgg ggggcgtgga gagcccggcg cccctgccac ctccctgacc 1800 cgtctaatat ataaatatag agatgtgtct atggctg 1837

<210> 6 <211> 379

<212> PRT

<213> Homo sapiens

<400> 6

Thr Glu Gly Val Gly Pro Gly Val Pro Gly Glu Val Glu Met Val Lys 20 25 30

Gly Gln Pro Phe Asp Val Gly Pro Arg Tyr Thr Gln Leu Gln Tyr Ile 35 40 45

Gly Glu Gly Ala Tyr Gly Met Val Ser Ser Ala Tyr Asp His Val Arg 50 55 60

Lys Thr Arg Val Ala Ile Lys Lys Ile Ser Pro Phe Glu His Gln Thr 65 70 75 80

Tyr Cys Gln Arg Thr Leu Arg Glu Ile Gln Ile Leu Leu Arg Phe Arg His Glu Asn Val Ile Gly Ile Arg Asp Ile Leu Arg Ala Ser Thr Leu 100 Glu Ala Met Arg Asp Val Tyr Ile Val Gln Asp Leu Met Glu Thr Asp Leu Tyr Lys Leu Leu Lys Ser Gln Gln Leu Ser Asn Asp His Ile Cys Tyr Phe Leu Tyr Gln Ile Leu Arg Gly Leu Lys Tyr Ile His Ser Ala 145 150 155 Asn Val Leu His Arg Asp Leu Lys Pro Ser Asn Leu Leu Ile Asn Thr Thr Cys Asp Leu Lys Ile Cys Asp Phe Gly Leu Ala Arg Ile Ala Asp Pro Glu His Asp His Thr Gly Phe Leu Thr Glu Tyr Val Ala Thr Arg Trp Tyr Arg Ala Pro Glu Ile Met Leu Asn Ser Lys Gly Tyr Thr Lys 215 Ser Ile Asp Ile Trp Ser Val Gly Cys Ile Leu Ala Glu Met Leu Ser 225 230 235 240 Asn Arg Pro Ile Phe Pro Gly Lys His Tyr Leu Asp Gln Leu Asn His 245 250 Ile Leu Gly Ile Leu Gly Ser Pro Ser Gln Glu Asp Leu Asn Cys Ile 260 270 Ile Asn Met Lys Ala Arg Asn Tyr Leu Gln Ser Leu Pro Ser Lys Thr 275 Lys Val Ala Trp Ala Lys Leu Phe Pro Lys Ser Asp Ser Lys Ala Leu 290 295 300 Asp Leu Leu Asp Arg Met Leu Thr Phe Asn Pro Asn Lys Arg Ile Thr 305 310 315 320 Val Glu Glu Ala Leu Ala His Pro Tyr Leu Glu Gln Tyr Tyr Asp Pro 325 330 335

Thr Asp Glu Pro Val Ala Glu Glu Pro Phe Thr Phe Ala Met Glu Leu 340 345 350

Asp Asp Leu Pro Lys Glu Arg Leu Lys Glu Leu Ile Phe Gln Glu Thr 355 360 365

Ala Arg Phe Gln Pro Gly Val Leu Glu Ala Pro 370 375

<210> 7 <211> 1777 <212> DNA

<213> Homo sapiens

<400> 7

gaggagtgga gatggcggcg gcggcggctc aggggggcgg gggcgggggag ccccgtagaa 60 ccgaggggt cggcccgggg gtcccggggg aggtggagat ggtgaagggg cagccgttcg 120 acgtgggccc gcgctacacg cagttgcagt acatcggcga gggcgcgtac ggcatggtca 180 gctcggccta tgaccacgtg cgcaagactc gcgtggccat caagaagatc agccccttcg 240 300 aacatcagac ctactgccag cgcacgctcc gggagatcca gatcctgctg cgcttccgcc atgagaatgt catcggcatc cgagacattc tgcgggcgtc caccctggaa gccatgagag 360 atgtctacat tgtgcaggac ctgatggaga ctgacctgta caagttgctg aaaagccagc 420 480 agctgagcaa tgaccatatc tgctacttcc tctaccagat cctgcggggc ctcaagtaca 540 tecacteege caacgtgete cacegagate taaageeete caacetgete atcaacacea cctgcgacct taagatttgt gatttcggcc tggcccggat tgccgatcct gagcatgacc 600 acaccggctt cctgacggag tatgtggcta cgcgctggta ccgggcccca gagatcatgc 660 tgaactccaa gggctatacc aagtccatcg acatctggtc tgtgggctgc attctggctg 720 agatgetete taaceggeee atetteeetg geaageaeta eetggateag eteaaceaea 780 840 ttctgggcat cctgggctcc ccatcccagg aggacctgaa ttgtatcatc aacatgaagg cccgaaacta cctacagtct ctgccctcca agaccaaggt ggcttgggcc aagcttttcc 900 960 ccaagtcaga ctccaaagcc cttgacctgc tggaccggat gttaaccttt aaccccaata aacqqatcac aqtqqccqaq qaqcccttca ccttcqccat qqaqctqqat qacctaccta 1020 aggagegget gaaggagete atetteeagg agacageaeg etteeageee ggagtgetgg 1080 aggcccccta gcccagacag acatctctgc accctggggc ctggaacaga actggcaaag 1140

aggcaagagg tcactgaggg cctctgtcac ccaggacctg cctcctgcct qccctctcc 1200 cgccagactg ttagaaaatg gacactgtgc ccagcccgga ccttggcagc ccaggccggg 1260 gtggagcatg ggcctggcca cctctctcct ttgctgaggc ctccagcttc aggcaggcca 1320 aggeettete etecceacce geeeteecca eggggeeteg ggageteagg tggeeccagt 1380 tcaatctccc gctgctgctg ctgcgccctt accttcccca gcgtcccagt ctctggcagt 1440 tctggaatgg aagggttctg gctgccccaa cctgctgaag ggcagaggtg gagggtgggg 1500 ggcgctgagt agggactcag ggccatgcct gccccctca tctcattcaa accccaccct 1560 agtttccctg aaggaacatt ccttagtctc aagggctagc atccctgagg agccaggccq 1620 ggccgaatcc cctccctgtc aaagctgtca cttcgcgtgc cctcgctgct tctgtgtgtg 1680 gtgagcagaa gtggagctgg ggggcgtgga gagcccggcg cccctgccac ctccctgacc 1740 1777 cgtctaatat ataaatatag agatgtgtct atggctg

<210> 8

<211> 359

<212> PRT

<213> Homo sapiens

<400> 8

Met Ala Ala Ala Ala Gln Gly Gly Gly Gly Glu Pro Arg Arg 1 5 10 15

Thr Glu Gly Val Gly Pro Gly Val Pro Gly Glu Val Glu Met Val Lys
20 25 30

Gly Gln Pro Phe Asp Val Gly Pro Arg Tyr Thr Gln Leu Gln Tyr Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gly Glu Gly Ala Tyr Gly Met Val Ser Ser Ala Tyr Asp His Val Arg 50 55 60

Lys Thr Arg Val Ala Ile Lys Lys Ile Ser Pro Phe Glu His Gln Thr 65 70 75 80

Tyr Cys Gln Arg Thr Leu Arg Glu Ile Gln Ile Leu Leu Arg Phe Arg 85 90 95

His Glu Asn Val Ile Gly Ile Arg Asp Ile Leu Arg Ala Ser Thr Leu $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Glu Ala Met Arg Asp Val Tyr Ile Val Gln Asp Leu Met Glu Thr Asp 115 120 125

Leu Tyr Lys Leu Leu Lys Ser Gln Gln Leu Ser Asn Asp His Ile Cys Tyr Phe Leu Tyr Gln Ile Leu Arg Gly Leu Lys Tyr Ile His Ser Ala Asn Val Leu His Arg Asp Leu Lys Pro Ser Asn Leu Leu Ile Asn Thr 165 170 Thr Cys Asp Leu Lys Ile Cys Asp Phe Gly Leu Ala Arg Ile Ala Asp 185 Pro Glu His Asp His Thr Gly Phe Leu Thr Glu Tyr Val Ala Thr Arg 200 Trp Tyr Arg Ala Pro Glu Ile Met Leu Asn Ser Lys Gly Tyr Thr Lys 215 Ser Ile Asp Ile Trp Ser Val Gly Cys Ile Leu Ala Glu Met Leu Ser Asn Arg Pro Ile Phe Pro Gly Lys His Tyr Leu Asp Gln Leu Asn His Ile Leu Gly Ile Leu Gly Ser Pro Ser Gln Glu Asp Leu Asn Cys Ile Ile Asn Met Lys Ala Arg Asn Tyr Leu Gln Ser Leu Pro Ser Lys Thr Lys Val Ala Trp Ala Lys Leu Phe Pro Lys Ser Asp Ser Lys Ala Leu 295 Asp Leu Leu Asp Arg Met Leu Thr Phe Asn Pro Asn Lys Arg Ile Thr 310 315 Val Ala Glu Glu Pro Phe Thr Phe Ala Met Glu Leu Asp Asp Leu Pro 330

Lys Glu Arg Leu Lys Glu Leu Ile Phe Gln Glu Thr Ala Arg Phe Gln 345

Pro Gly Val Leu Glu Ala Pro 355

350