Вопрос 1. Логический язык первого порядка. Понятия универса, константы, переменной, функции, терма, предиката. Число всех k-местных предикатов и функций на n-элементном универсе. Синтаксис логического языка первого порядка: описание алфавита, построение переменных, термов и формул, примеры. Понятие подформулы, области действия квантора, связанной и свободной переменной, предложения. Примеры

U – универс (конечный или счетный), являющийся множеством математических объектов.

 $U^k - k$ -ая декартова степень множества U, т.е. множество $\{(x_1, \dots, x_n) | x_1 \in U, x_2 \in U, \dots, x_k \in U\}$. Если $|U| = n \Rightarrow |U^k| = n^k$.

k-местная функция f (местность = арность = кол-во аргументов) — произвольное отображение вида $U^k \to U$, т.е. отображение, ставящее каждому k-местному набору элементов множества U некоторый элемент из U. Общее количество k-местных функций над n элементным универсом равно n^{n^k} . Любые константы из универса U - 0-местные функции.

k-местный предикат P (отношение) — произвольное отношение вида $U^k \to \{0,1\}$ где 0 и 1 — логические константы. Общее количество k-местных предикат над n элементным множеством равно 2^{n^k} . Логические константы 0 и 1-0-местные предикаты.

Пример.
$$U = \{0,1,2,3,4\}, P(x,y,z) = "x + x + y$$
 делить на 3". $(0,2,4) \in P$ или $P(0,2,4) = 1, (1,3,4) \notin P$ или $P(1,3,4) = 0$.

Синтаксис логического языка 1 порядка

- 1. Алфавит языка состоит из трех групп символов:
 - а. Логические символы $\underbrace{\&, \lor, \to, \leftarrow, \neg}_{\text{логические связки}}$, кванторы
 - b. Вспомогательные символы $-\underbrace{(,),[,]}_{\text{скобки}}$

$$x,y,\dots,z_0$$
 ; a_1,a_2,\dots,a_n,\dots ; $0,1$ символы переменных символы констант из универса символы логических констант (возможно с индексом)

- с. Нелогические сигнатуры
- $\sigma = \langle P_1, ..., P_k; f_1, ..., f_s \rangle$ заранее незафиксированный набор предикатов и функциональных символов. По умолчанию предполагается, что среди предикатов всегда содержится предикат равенства.

Тип сигнатуры $\tau_{\sigma} = \langle \nu_1, ..., \nu_k; \mu_1, ..., \mu_s \rangle$, где ν_i – арность P_i и μ_i – арность f_i .

- 2. Правило построения термов (имен)
 - а. Любая константа или переменная из универса U является термой (простейшой термой или именем)
 - b. Если f имя k-местного функционального символа, а t_1, \dots, t_k уже построенные термы, то $f(t_1, \dots, t_k)$ тоже терм
- 3. Правило построения функций
 - а. Если P имя k-местного предикатного символа, а t_1, \dots, t_k уже построенные термы, то $P(t_1, \dots, t_k)$ атомарная формула
 - b. Если A и B уже построенные формулы, то $[A \& B], [A \lor B], [A \to B], [A \leftrightarrow B], \neg A, \neg B$ тоже формулы Приоритет операций в порядке уменьшения: скобки, отрицание, конъюнкция, все остальное с равным приоритетом.
 - с. Если A уже построенная формула, то $(\forall x)A$, $(\exists x)A$ тоже формулы

Подформула – это любая подряд идущая последовательность символов, которая сама по себе является формулой, т.е. корректно построена по правилам (сама формула также является подформулой).

```
Пример. (\exists x)[[x+2<5] \& [3< x+2]], где x, 2, 3, 5, x+2 – термы; x+2<5 и 3< x+2 – атомарные формулы; x+2<5, 3< x+2, [x+2<5] \& [3< x+2], (\exists x)[[x+2<5] \& [3< x+2]] – подформулы; а вот (\exists x)[x+2<5] и (\exists x)[3< x+2] – подформулами не являются.
```

Область действия квантора по переменной x называется подформула непосредственно следующая за символами $(\forall x)$ или $(\exists x)$. Вхождение переменной в формулу называется связанным, если она находится в области действия квантора по данной переменной. В противном случае называется свободным.

Предложением (замкнутой формулой) называется формула, не содержащая свободных вхождений переменных.

Пример. $(\exists x)[P(x)] \lor Q(x)$, где в P(x) x — связанная переменная, а в Q(x) — свободная, т.е. данная формула не является предложением.

 $(\forall x)[R(x,y)]$ – незамкнутая формула (не предложение), т.к. x – связанная переменная, а y – свободная.

 $(\forall x)[P(x) \lor (\exists y)Q(y)]$ – предложение, обе переменные x и y – связанные.