We can now write the ratio $\frac{Z_1}{Z_0}$ as

$$\frac{Z_1}{Z_0} = \frac{Z_1}{Z_0} \frac{Z_{\eta_1}}{Z_{\eta_1}} \cdots \frac{Z_{\eta_{n-1}}}{Z_{\eta_{n-1}}}$$

$$= \frac{Z_{\eta_1}}{Z_0} \frac{Z_{\eta_2}}{Z_{\eta_1}} \cdots \frac{Z_{\eta_{n-1}}}{Z_{\eta_{n-2}}} \frac{Z_1}{Z_{\eta_{n-1}}}$$
(18.47)

$$=\frac{Z_{\eta_1}}{Z_0}\frac{Z_{\eta_2}}{Z_{\eta_1}}\cdots\frac{Z_{\eta_{n-1}}}{Z_{\eta_{n-1}}}\frac{Z_1}{Z_{\eta_{n-1}}}$$
(18.48)

$$=\prod_{j=0}^{n-1} \frac{Z_{\eta_{j+1}}}{Z_{\eta_j}} \tag{18.49}$$

Provided the distributions p_{η_j} and p_{η_j+1} , for all $0 \leq j \leq n-1$, are sufficiently close, we can reliably estimate each of the factors $\frac{Z_{\eta_{j+1}}}{Z_{\eta_{j}}}$ using simple importance sampling and then use these to obtain an estimate of $\frac{Z_1}{Z_0}$.

Where do these intermediate distributions come from? Just as the original proposal distribution p_0 is a design choice, so is the sequence of distributions $p_{\eta_1} \dots p_{\eta_{n-1}}$. That is, it can be specifically constructed to suit the problem domain. One general-purpose and popular choice for the intermediate distributions is to use the weighted geometric average of the target distribution p_1 and the starting proposal distribution (for which the partition function is known) p_0 :

$$p_{\eta_j} \propto p_1^{\eta_j} p_0^{1 - \eta_j} \tag{18.50}$$

In order to sample from these intermediate distributions, we define a series of Markov chain transition functions $T_{\eta_i}(\mathbf{x}' \mid \mathbf{x})$ that define the conditional probability distribution of transitioning to x' given we are currently at x. The transition operator $T_{\eta_i}(x' \mid x)$ is defined to leave $p_{\eta_i}(x)$ invariant:

$$p_{\eta_j}(\boldsymbol{x}) = \int p_{\eta_j}(\boldsymbol{x}') T_{\eta_j}(\boldsymbol{x} \mid \boldsymbol{x}') d\boldsymbol{x}'$$
 (18.51)

These transitions may be constructed as any Markov chain Monte Carlo method (e.g., Metropolis-Hastings, Gibbs), including methods involving multiple passes through all of the random variables or other kinds of iterations.

The AIS sampling strategy is then to generate samples from p_0 and then use the transition operators to sequentially generate samples from the intermediate distributions until we arrive at samples from the target distribution p_1 :

• for
$$k = 1 ... K$$

- Sample $\boldsymbol{x}_{\eta_1}^{(k)} \sim p_0(\mathbf{x})$