Review of Lecture 1

Learning is used when

- A pattern exists
- We cannot pin it down mathematically
- We have data on it

Focus on supervised learning

- Unknown target function $y=f(\mathbf{x})$
- Data set $(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_N,y_N)$
- Learning algorithm picks $g \approx f$ from a hypothesis set ${\mathcal H}$

Example: Perceptron Learning Algorithm

• Learning an unknown function?

- Impossible ⊙. The function can assume any value outside the data we have.
- So what now?

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 2: Is Learning Feasible?

Feasibility of learning - Outline

- Probability to the rescue
- Connection to learning
- Connection to real learning
- A dilemma and a solution

A related experiment

- Consider a 'bin' with red and green marbles.

$$\mathbb{P}[\text{ picking a red marble }] = \mu$$

$$\mathbb{P}[$$
 picking a green marble $]=1-\mu$

- The value of μ is <u>unknown</u> to us.
- We pick N marbles independently.
- The fraction of red marbles in sample =
 u

of red marbles

Does ν say anything about μ ?

No!

Sample can be mostly green while bin is mostly red.

Yes!

*if the sample is big enough Sample frequency u is likely close to bin frequency μ .

possible versus probable

What does ν say about μ ?

In a big sample (large N), ν is probably close to μ (within ϵ).

Formally,

$$\mathbb{P}\left[\left|\nu-\mu\right|>\epsilon\right]\leq 2e^{-2\epsilon^2N}$$

This is called Hoeffding's Inequality.

In other words, the statement '' $\mu=
u$ '' is P.A.C.

(probably approximately correct) - this inequality shows that verification is feasible (i.e. the answer from your sample will be close to the population answer)

$$\mathbb{P}\left[\left|\nu - \mu\right| > \epsilon\right] \le 2e^{-2\epsilon^2 N}$$

ullet Valid for all N and ϵ

- ullet Bound does not depend on μ
- ullet Tradeoff: N, ϵ , and the bound.
- $\bullet \quad \nu \approx \mu \implies \mu \approx \nu \quad \odot$

i.e we infer the bin probability mu from the sample nu (it is easy to do it the other way around: of course nu (a variable dependant on mu due to the many possible samples that could be drawn) may be determined by mu as mu is a constant determined by the state of the bin) (C) AM Creator: Yaser Abu-Mostafa - LFD Lecture 2

Connection to learning

The greyed-out bin is the space of all possible points in X. The hypothesis adds the colour according to the below rules The sample is the dataset of x-space points we are given.

Bin: The unknown is a number μ

Learning: The unknown is a function $f:\mathcal{X} \to \mathcal{Y}$

Note: H, the hypothesis set, is determined by the model we are using (perceptron, SVM etc.) while h are essentially all the possible weights/the different boundaries in the plane (referring

to the perceptron Eac example)

Each marble ullet is a point $\mathbf{x} \in \mathcal{X}$

• : Hypothesis got it right $h(\mathbf{x}) = f(\mathbf{x})$

• : Hypothesis got it wrong $h(\mathbf{x}) \neq f(\mathbf{x})$

Back to the learning diagram

The bin analogy:

the input space

However, we are not restricting the possible P's over x and we do not need to know this P - due to Hoeffding, we can bound performance independently of P

Are we done?

Not so fast! h is fixed.

For this h, ν generalizes to μ .

This is equivalent to a...

'verification' of h, not learning

No guarantee u will be small.

We need to **choose** from multiple h's.

We need to search H to find a candidate hypothesis which works well on the data: we analyze the application of each candidate to the data sample and pick the one with least error/most favorable.

Multiple bins

Generalizing the bin model to more than one hypothesis:

Notation for learning

Both μ and u depend on which hypothesis h

u is 'in sample' denoted by $E_{\rm in}(h)$ = in-sample or 'dataset' performance

 μ is 'out of sample' denoted by $E_{\rm out}(h)^{\rm = \, out \, of \, -sample}$ on the input space

The Hoeffding inequality becomes:

$$\mathbb{P}\left[|E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon \right] \leq 2e^{-2\epsilon^2 N}$$

We want a very small prob. of the difference between in- and out-of- sample performance being greater than our tolerance.

Notation with multiple bins

Not so fast!! Hoeffding doesn't apply to multiple bins.

What?

© M Creator: Yaser Abu-Mostafa - LFD Lecture 2

Coin analogy

Question: If you toss a fair coin 10 times, what is the probability that you will get 10 heads?

Answer: $\approx 0.1\%$

Just because one person flipping a coin gets 10 heads in a row, it does not mean that we can apply Hoeffding Ineq. and say that the input space only gives heads (i.e. it is a biased coin). - The ten heads give no indication of the real probability. => For multiple bins, we can not use the standard expression of Hoeffding and assume one sample is representative of the entire input space (see next slide).

Question: If you toss 1000 fair coins 10 times each, what is the probability that <u>some</u> coin will get 10 heads?

Answer: $\approx 63\%$

From coins to learning

Even if something has a small probability of happening, if you try hard enough with enough trials it will happen, but you cannot just apply Hoeffding to this improbable event (ignoring the rest) and say it is representative of the probability.

.

Actual learning requires the testing of multiple hypotheses (multiple bins, since different h means different marbles are red/green) and the application of the new Hoeffding below (as opposed to the vanilla version, only applicable to single hypotheses (which is not learning as we know it - defined as the exploration of multiple hypotheses based on their performance in sample, picking the one with best in sample performance and hoping this generalizes out of sample))

© A Creator: Yaser Abu-Mostafa - LFD Lecture 2

A simple solution - extend Hoeffding to multiple bins (many hypotheses)

g = the hypothesis chosen by the learning process, it is no longer a fixed hypothesis (it is 'loaded') - it corresponds to/relies on the many hypotheses we have trialled (hence Hoeffding does not apply in its initial form)

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \leq \mathbb{P}[|E_{\mathsf{in}}(h_1) - E_{\mathsf{out}}(h_1)| > \epsilon$$

$$\mathbf{or} |E_{\mathsf{in}}(h_2) - E_{\mathsf{out}}(h_2)| > \epsilon$$

P(chosen hyp. is bad) <= P(h1 is bad or h2 is bad or ... or hM is bad) ••

$$\mathbf{or} |E_{\mathsf{in}}(h_M) - E_{\mathsf{out}}(h_M)| > \epsilon]$$

$$\leq \sum_{m=1}^{M} \mathbb{P}[|E_{\mathsf{in}}(h_m) - E_{\mathsf{out}}(h_m)| > \epsilon]$$

The final verdict

$$\mathbb{P}[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \leq \sum_{m=1}^{M} \mathbb{P}[|E_{\mathsf{in}}(h_m) - E_{\mathsf{out}}(h_m)| > \epsilon]$$

$$\leq \sum_{m=1}^{M} 2e^{-2\epsilon^2 N}$$

In a genuine learning scenario, where we try find g (in our example, the bin with a sample with as much green as possible - or test each hypothesis and find the one with the best performance on our sample dataset), the resultant Hoeffding expression ends up depending on the number of candidate hypotheses M

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

So, with a more sophisticated model (M very large), the 'looser' the in sample performance will track the out of sample - it is possible to memorize in-sample and not generalize well out of sample because there are so many parameters to work with.