

Survey on Soft Gripper and Manipulator

For RBE 595 Soft Robotics Spring 2018 By Rishi Khajuriwala

Motivation

- Adaptivity
- Lower Cost
- Complex grasping
- Rise of Service Robots
- Combining Soft robotics with Conventional Robotic designs

Inspiration

Inspirations[12]

 Lightweight Underactuated Pneumatic Fingers[1]

Design:

Experiments

Application

A Soft-Robotic Gripper With Enhanced Object Adaptation and Grasping Reliability[2]

Design

Experiments

Experiments

 Haptic Identification of Objects using a Modular Soft Robotic Gripper[3]

Design

Haptic Object Identification

Import previously recorded grasp data, 10 data points per item

for all objects to be grasped do

Grasp item.

Record sensor values.

Calculate Euclidean distances to all recorded points

Find the 5 nearest neighbors.

Output the identity of the object-based voting from the 5 nearest neighbors.

end

Experiments

Fig. 11: All of the objects grasped by the soft gripper.

A Novel, Variable Stiffness Robotic Gripper Based on Integrated Soft Actuating and Particle Jamming [4]

Design

Particle Jamming

Experiments

Soft Robotic Grippers for Biological Sampling on Deep Reefs [5]

Design

Actuators

Experiment

An octopus-bioinspired solution to movement and manipulation for soft robots [6]

Design

Grasping

Active Hose: an Artificial Elephant's Nose with Maneuverability for Rescue Operation [7]

Design

Performance

Robotic Tentacles with Three-Dimensional Mobility Based on Flexible Elastomers [8]

Design

Applications

Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator [9]

Pneu-nets

Planner for Grasp and Place

Results

Soft robots are Future[10]

Soft Robotic Systems	Hard Robotic Systems
Made of soft, flexible, stretchable materials	Made of hard materials with invariable
with reversible and variable properties	properties
Inherent compliance match with its	Smooth contact with its environment
environment	facilitated by advanced feedback control
	strategies and sensors
Continuum topology with infinite degrees of	Discrete topology with a finite DoF
freedom (DoF) seamlessly housing all of its	consisting of rigid elements connected to
essential elements	each other with single DoF joints.
Inherently safe, adaptive and tolerant to	Unsafe and intolerant with limited
operate in unknown environments,	adaptability to operate in unknown
especially for human-machine interaction	environments unless intricate control
	measures are applied.
Flexible and stretchable electronics and	Conventional electronics and power source
power source	
High level of behavioural diversity	Low level of behavioural diversity
High level of bio-inspiration	Low level of bio-inspiration
Low accuracy can be tolerated	High accuracy is required
Low speed and force applications	High speed and force applications
Low weight and cost	High weight and cost

References

- 1. A. Dameitry and H. Tsukagoshi, "Lightweight underactuated pneumatic fingers capable of grasping various objects," 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 2009-2014.
- 2. J. Zhou, S. Chen and Z. Wang, "A Soft-Robotic Gripper With Enhanced Object Adaptation and Grasping Reliability," in IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2287-2293, Oct. 2017. doi: 10.1109/LRA.2017.2716445
- 3. B. S. Homberg, R. K. Katzschmann, M. R. Dogar and D. Rus, "Haptic identification of objects using a modular soft robotic gripper," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, 2015, pp. 1698-1705.
- 4. Y. Wei et al., "A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming," Soft Robot., vol. 3, no. 3,pp. 134–143, 2016.
- 5. K. C. Galloway et al., "Soft robotic grippers for biological sampling on deep reefs," Soft Robot., vol. 3, no. 1, pp. 23-33, 2016.
- 6. Calisti M, Giorelli M, Levy G, et al. An octopus bioinspired solution to movement and manipulation for soft robots. Bioinspiration Biomimetics.2011;6(3):036002
- 7. H. Tsukagoshi, A. Kitagawa and M. Segawa, "Active Hose: an artificial elephant's nose with maneuverability for rescue operation," Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), 2001, pp. 2454-2459 vol.3.
- 8. R. V. Martinez et al., "Robotic tentacles with three-dimensional mobility based on flexible elastomers," Adv. Mater., vol. 25, no. 2, p. 205,2013.
- 9. Katzschmann Robert K., Marchese Andrew D., and Rus Daniela.Soft Robotics.Dec 2015.
- 10. ALICI, G. (2018). Softer is Harder: What Differentiates Soft Robotics from Hard Robotics? MRS Advances, 1-12. doi:10.1557/adv.2018.159
- 11. Mcmahan, William & Jones, Bryan & Walker, Ian & Chitrakaran, V.K. & Seshadri, Arjun & Dawson, Darren. (2011). Robotic manipulators inspired by cephalopod limbs. Proceedings of the Canadian Design Engineering Network Conference. 10.24908/pceea.v0i0.3994.
- 12. https://www.youtube.com/watch?v=949eYdEz3Es