

☆Public BlockChain:

Ethereum:

Attribute Details

Blockchain Name Ethereum

Type Public

Consensus Mechanism Proof of Stake (Ethereum 2.0)

Permission Model Open

Speed / Throughput ~15–30 TPS (Layer 1)

Smart Contract Support Yes – Solidity

Token Support Yes – ETH (Native)

Typical Use Case DApps, DeFi, NFTs

Notable Technical Feature Large developer ecosystem & EVM

☆Private BlockChain:

∠Hyperledger Fabric:

Attribute Details

Blockchain Name Hyperledger Fabric

Type Private

Consensus Mechanism Pluggable (e.g., RAFT, Kafka)

Permission Model Permissioned

Speed / Throughput 1,000+ TPS

Smart Contract Support Yes – Go, Java, Node.js

Token Support No native token

Typical Use Case Supply chain, finance, enterprise

logistics

Notable Technical Feature Modular architecture & channel-based

privacy

Consoritum BlockChain:

🙀 Quorum:

Attribute Details

Blockchain Name Quorum

Type Consortium

Consensus Mechanism Istanbul BFT / RAFT

Permission Model Permissioned

Speed / Throughput ~2,000 TPS

Smart Contract Support Yes – Solidity

Token Support Yes – ETH compatible

Typical Use Case Enterprise financial applications

Notable Technical Feature Privacy-enabled smart contracts

Short Report:

This comparison highlights the technical strengths of Ethereum, Hyperledger Fabric, and Quorum each representing a distinct blockchain category.

Ethereum, a public blockchain, is widely adopted for decentralized applications (DApps) due to its open access, strong smart contract support (Solidity), and a vast developer ecosystem. However, it offers relatively low throughput (~15–30 TPS on Layer 1), which may limit its performance for enterprise-scale use without Layer 2 enhancements.

Hyperledger Fabric, a private blockchain, is designed for enterprise environments. It supports modular consensus, high throughput (1,000+ TPS), and smart contracts in multiple languages (Go, Java, Node.js). Its permissioned model and privacy through channels make it ideal for use cases like supply chain management and corporate data sharing.

Quorum, a consortium blockchain, provides a balanced approach with high speed (~2,000 TPS), Ethereum compatibility, and privacy-enabled smart contracts. It suits financial institutions where multiple trusted parties need to collaborate securely.

Platform Choices

DApp Development → *Ethereum* (Open, decentralized, mature ecosystem)

Supply Chain Network → Hyperledger Fabric (Private, high throughput, privacy)

Inter-bank Financial Application → **Quorum** (Permissioned, fast, privacy features)

Each platform serves a unique purpose based on its architecture, performance, and privacy controls.

Short Report with Technical Justification:

This comparison outlines the capabilities of Ethereum (Public), Hyperledger Fabric (Private), and Quorum (Consortium) blockchains.

Ethereum is best suited for **decentralized applications (DApps)** due to its **open access**, decentralized nature, and support for Turing-complete smart contracts written in Solidity. It has a large developer community and widespread adoption, making integration and innovation easier. Although it has limited base-layer throughput (~15–30 TPS), **Layer 2 solutions** like rollups address scalability without compromising decentralization.

Hyperledger Fabric is ideal for a **supply chain network among known partners**. It supports permissioned access, channel-based data privacy, and high performance (1,000+ **TPS)**. Fabric's **pluggable architecture** allows organizations to choose consensus algorithms (e.g., RAFT, Kafka) based on trust models. Its ability to isolate data between specific members of a network ensures confidentiality, which is crucial in supply chains.

Quorum fits perfectly for an **inter-bank financial application**. Built on Ethereum, it supports Solidity-based smart contracts while offering enhanced privacy through private **transactions** and **high throughput (~2,000 TPS)** via consensus mechanisms like Istanbul BFT. It enables fast and secure transactions in a semi-trusted environment, making it suitable for regulated financial ecosystems.

Each choice is made based on performance, trust assumptions, privacy needs, and smart contract capabilities.