第八章自测题参考答案

一、 填空题

- 1. 设 $\vec{a} = 2\vec{i} + \vec{j} 3\vec{k}, \vec{b} = \vec{i} 2\vec{j} + \vec{k}$,则 $\vec{a} \cdot \vec{b} =$ ____(-3)
- 2. 设向量 $\vec{a} = x\vec{i} + \vec{j}$, $\vec{b} = 3\vec{i} 2\vec{j} + \vec{k}$, 向量 $\vec{a} = 5\vec{b}$ 垂直,则 $x = 2\vec{j} = 5\vec{k}$
- 3. 设向量 $\vec{a} = \vec{i} \vec{k}$, $\vec{b} = 2\vec{i} + \vec{j} + \vec{k}$, 则 $\vec{a} \times \vec{b} =$ _______。 $\{1, -3, 1\} = \vec{i} 3\vec{j} + \vec{k}$ 。
- 4. 己知 $\vec{a} = \vec{i} + 4\vec{j} + 5\vec{k}$, $\vec{b} = \vec{i} + \vec{j} + 2\vec{k}$, 则使 $(\vec{a} + \lambda \vec{b}) \perp (\vec{a} \lambda \vec{b})$ 的正数 $\underline{\lambda} = \sqrt{7}$.
- 5. 设未知向量 \vec{x} 与向量 $\vec{a}=2\vec{i}-\vec{j}+2\vec{k}$ 共线,且满足 $\vec{a}\cdot\vec{x}=-18$,则向量 $\vec{x}=-4\vec{i}+\vec{2}j-\vec{4}$ 。
- 6. 已知向量 \vec{a} , \vec{b} ,且 $|\vec{a}|$ =3, $|\vec{b}|$ =26, $|\vec{a} \times \vec{b}|$ =72,则点积 $|\vec{a} \cdot \vec{b}|$ =±30.
- 二、求通过两平面 2x + y 4 = 0 与 y + 2z = 0 的交线及点 M_0 (2,-1,-1) 的平面方程.
- 解 过两平面交线的平面束方程为

$$(2x + y - 4) + \lambda(y + 2z) = 0$$

由 M_0 在此平面上可得 $\lambda = -\frac{1}{3}$,代入上式的所求平面的方程为

$$3x + y - z - 6 = 0$$
.

三、已知平面 π : x+y+z+1=0和直线 l: $\begin{cases} y+z+1=0 \\ x+2z=0 \end{cases}$, 在平面 π 内求一条

直线,使得它通过 π 与l的交点,且与l垂直.

解 直线与平面的交点满足
$$\begin{cases} x+y+z+1=0 \\ y+z+1=0 \\ x+2z=0 \end{cases}$$
 解得交点为
$$\begin{cases} x=0 \\ y=-1 \\ z=0 \end{cases}$$

将已知直线转化为: $\frac{x}{-2} = \frac{y+1}{-1} = z$.

所以该直线的方向矢量为: (-2,-1,1).

所求直线垂直于平面的法矢量(1, 1, 1), 垂直于已知直线的方向矢量(-2,-1, 1).

所以所求直线的方向矢量为:
$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & -1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = -2\vec{i} + 3\vec{j} - \vec{k}$$

于是所求直线为: $\frac{x}{-2} = \frac{y+1}{3} = \frac{z}{-1}$.

四、求经过三点 $P_1(1,1,1),P_2(2,0,1),P_3(-1,-1,0)$ 的平面方程.

解: 法一:
$$\overline{P_1P_2} = (1, -1, 0), \overline{P_1P_3} = (-2, -2, -1)$$

$$\mathbb{R} \vec{n} = \overline{P_1 P_2} \times \overline{P_1 P_3} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 0 \\ -2 & -2 & -1 \end{vmatrix} = (1, 1, -4),$$

平面方程为
$$(x-1)+(y-1)-4(z-1)=0$$
,

整理得
$$x+y-4z+2=0$$
.

法二: 所求平面的方程为
$$\begin{vmatrix} x-1 & y-1 & z-1 \\ 1 & -1 & 0 \\ -2 & -2 & -1 \end{vmatrix} = 0$$

整理得
$$x+y-4z+2=0$$
.

五、求过点 $M_0(0,2,4)$,且与两个平面 π_1 : x+y-2z-1=0, π_2 : x+2y-z+1=0都平行的直线方程.

解 设所求直线的方向向量为 \vec{s} ,根据题设条件知, \vec{s} 与平面 π_1 和 π_2 的法向量 \vec{n}_1 , \vec{n}_2 都

垂直,可取
$$\vec{s} = \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & -2 \\ 1 & 2 & -1 \end{vmatrix} = 3\vec{i} - \vec{j} + \vec{k}$$
,

由点向式知, 所求直线的方程为: $\frac{x}{3} = \frac{y-2}{-1} = \frac{z-4}{1}$.

六、求经过点 A(-1,2,3),垂直于直线 L: $\frac{x}{4} = \frac{y}{5} = \frac{z}{6}$ 且与平面 $\Pi:7x+8y+9z+10=0$ 平行的直线方程.

解法 1 设所求直线 L_1 的方向向量是 $ec{s}_1$,由于 $L \perp L_1$,即 $ec{s} \perp ec{s}_1$,由于 $L_1 \parallel \Pi$ 即 $ec{n} \perp ec{s}_1$,

$$\vec{s} = (4, 5, 6), \ \vec{n} = (7, 8, 9)$$

所以,
$$\vec{s}_1 = \vec{s} \times \vec{n} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = -3\vec{i} + 6\vec{j} - 3\vec{k}$$

故所求的直线方程为

$$\frac{x+1}{1} = \frac{y-2}{-2} = \frac{z-3}{1}.$$

解法 2 因所求直线在过点 A 以 L 的方向向量 \vec{s} 为法向量的平面 Π_1 上,也在过点 A 以 Π 的法向量 \vec{n} 为法向量的平面 Π_2 上.

$$\vec{s} = (4, 5, 6), \ \vec{n} = (7, 8, 9)$$

$$\Pi_1: 4(x+1)+5(y-2)+6(z-3)=0$$

$$\Pi_2:7(x+1)+8(y-2)+9(z-3)=0$$

所求直线的一般式方程为
$$\begin{cases} 4x + 5y + 6z - 24 = 0, \\ 7x + 8y + 9z - 36 = 0. \end{cases}$$