| Subproblemas de SQP - Questous praticas                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                             |
| min $f(x)$ s.a. $h(x) = 0$ , $l \le \chi \le u$ .                                                                                                           |
| ( la parthura)                                                                                                                                              |
| Sul problema:                                                                                                                                               |
| $QP_{\kappa}: \min_{x} \int_{\mathcal{X}} (x-x^{\kappa})^{t} B_{\kappa}(x-x^{\kappa}) + \nabla f(x^{\kappa})^{t} (x-x^{\kappa})$                            |
|                                                                                                                                                             |
| 8.a. $\nabla h(x^k)(x-x^k) - \nabla h(x^k)(x_{mor} - x^k) = 0$                                                                                              |
| 8.a. $\nabla h(x^{k})^{b}(x-x^{k}) - \nabla h(x^{k})^{t}(x_{mor}^{k}-x^{k}) = 0$<br>$1 \le x \le u$ , $\ x-x^{k}\  \le \Delta_{k}$ .                        |
| $\mathcal{L} = \mathcal{L} \setminus \mathcal{L}  ,  \ \mathcal{L} - \mathcal{L}\  \leq \Delta_{K} .$                                                       |
|                                                                                                                                                             |
| Como escolher B.                                                                                                                                            |
| · 0 SQP basico (= Newton sobre o sistema                                                                                                                    |
| UVT LOGGE B - 12/(a/K)                                                                                                                                      |
| (N) sugere que Dx = V L(2, X).                                                                                                                              |
| KKT) sugere que $B_{\kappa} = \nabla^2 L(\alpha^{\kappa}, \lambda^{\kappa})$ .<br>Mas , como vimos , $\nabla^2 L$ pode vião ser definida                    |
| Positua                                                                                                                                                     |
| Possibilidades para $B_{\kappa}$ (definida positiva)<br>1) $B_{\kappa} = \nabla^{2}L(\alpha_{\kappa}^{\kappa})^{\kappa} + \alpha I$ , onde $\kappa \gg 1$ . |
| $1 B_{ij} = \nabla^2 L(x^k)^k + \alpha T, \text{ onde } k \gg 1.$                                                                                           |
|                                                                                                                                                             |





$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| \leq \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| = \sum_{j \neq i} |a_{ij}| |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| |a_{ij}| = \sum_{j \neq i} |a_{ij}| = \sum_{j \neq i} |a_{ij}| = \sum_{j \neq i} |a_{ij}|.$$

$$|\lambda - a_{ii}| \leq \sum_{j \neq i} |a_{ij}| = \sum_{j \neq i}$$



Los adequados a problemas grandes.





ou lipa,

atualização BFGS (Broyden, Gletcher, Goldfarle, Shanno).

- BF65 é una das mais utilizadas, e funciona bem.
- · B<sub>K+1</sub> como BFGS resolve a equação Secante (exercicio)
- · Br simetrica e definido positiva e y s>0, entômo Bren é definida pontiva.



(i) B<sub>K+1</sub> esta lem definida;

(ii) B<sub>k+1</sub> é simétrica;

(iii) Bren é définida positiva.

|   | Duning Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Vrova: Como yts>0, en particular \$ \div.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Cessim stBxs>0 dado que Bx é definida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | portiva. Logo i possivil construir Bru.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | Étrivial mostrar que Bx+1 é invetrica. Esso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | licará como exurcício.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | Vanos mostrar que Britis é définida positiva.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | , in the second |
| _ | Considere o produto n'BK+12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | $\chi^{\dagger}B_{\kappa+1}\chi = \chi^{\dagger}B_{\kappa}\chi + (\chi^{\dagger}y)^{2} - (\chi^{\dagger}B_{\kappa}x)^{2}$ $\chi^{\dagger}B_{\kappa}\chi = \chi^{\dagger}B_{\kappa}\chi + (\chi^{\dagger}y)^{2} - (\chi^{\dagger}B_{\kappa}x)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | yth st B. s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | $= \frac{(x^t y)^2}{y^t x^2} + \frac{(x^t B_k x)(x^t B_k x) - (x^t B_k x)^2}{y^t B_k x}. (*)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | yt x st B <sub>k</sub> s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _ | Como B. é surtica e definida positiva, possui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | fatoração Cholesky, digamos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | · <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | $B_{\kappa} = GG^{\tau}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | com C Triangular inférior com diagonal Toda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _ | portion (=> G é inversivel). Temos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



 $g(x) \leq 0$ :  $\frac{\sqrt{\sqrt{2}}}{\sqrt{2}} \left( \frac{\sqrt{2}}{\sqrt{2}} \right) \left( \frac{\sqrt{$ Ciqui, as direçois de Tortogonais a Vgi(xk) mantin o provimo iterando provimo a viabilidade (g(x) ≈0), mas tambem as direções de que entram no conjunto viavel, isto é, aquelas en que g(x+tdx)<0,0<t≈0. Essas São as direções que fazan um ângulo otituso com Vg: (x²) (reja figura). Cessim, a linearização  $\nabla g(x^{\mu}) dx + g(x^{\mu}) \leq 0$ . O subpoblema barico resultante é ar imin 2 dr Br dr + Vf(x) dr S.a.  $\nabla h(x^k)^t dx + h(x^k) = 0$   $\nabla g(x^k)^t dx + g(x^k) \leq 0$ 

|   | Não podemos aplicar o metodo de Newton ao siste-                            |
|---|-----------------------------------------------------------------------------|
|   | ma KKT dute QPx, como anto, pois agora                                      |
| • | teremos uma designaldade relativa à não-nega-                               |
|   | tiridade des multiplicadores associados à                                   |
|   | Vg(x")tdn+g(x") €O. (ma solução, que ce                                     |
|   | empregada en WORHP, é us er prontes interiores                              |
|   |                                                                             |
|   | en QPx. Cpos adicionar folgas, QPx é                                        |
|   |                                                                             |
|   | resolvido através de una seguir cia de                                      |
|   |                                                                             |
|   | problemas can borreira logaritmica:                                         |
|   | min $\frac{1}{2} d_n^t B_k d_n + \nabla f(x^k)^t d_n - t_k^1 \geq \ln(w_i)$ |
|   |                                                                             |
|   | s.a. $\nabla h(x^{k})^{t} dx + h(x^{k}) = 0$                                |
|   | $\nabla g(x^{k})^{t}d_{x} + g(x^{k}) + w = 0$                               |
|   |                                                                             |
|   | onde, para cada K, ti Cqui,<br>K: indice da iteração SQP                    |
|   | K: indice da iteração SQP                                                   |
|   |                                                                             |
|   | j: indice da iteração de ponto interiores na resolução de QPx.              |
|   |                                                                             |
|   | resourção de XIX.                                                           |

E bon frisar que pontes interiores é aplicado Para resolver 1 subjectiona PR de 5QP. Poderia-se pergentar entar iste vale a pena per que não aplicar pontes interiores direte ao problema original? Ocorre que ha especializações de pontos interiores a problemas quadraticos, como QP, que são extremamente eficientes Cisim, laz sentido a restrategia discrita agin (ela de l'ato é usada no pacole WORHP).