

The Maximum Exposure Problem

Neeraj Kumar, Stavros Sintos, Subhash Suri

Set of points *P* in the plane,

Set of points P in the plane, set of rectangular ranges \mathcal{R} covering them, integer parameter k

Set of points P in the plane, set of rectangular ranges $\mathcal R$ covering them, integer parameter k

Set of points P in the plane, set of rectangular ranges \mathcal{R} covering them, integer parameter k

Set of points P in the plane, set of rectangular ranges \mathcal{R} covering them, integer parameter k

Set of points P in the plane, set of rectangular ranges \mathcal{R} covering them, integer parameter k

Motivation

♠ Reliability of coverage: points correspond to clients, ranges correspond to coverage of facilities

Motivation

• Reliability of coverage: points correspond to clients, ranges correspond to coverage of facilities

Which *k* facilities to disable so as to affect maximum number of clients?

Motivation

• Reliability of coverage: points correspond to clients, ranges correspond to coverage of facilities

Which *k* facilities to disable so as to affect maximum number of clients?

Seometric constraint removal: ranges correspond to *constraints*, points correspond to *rewards*

Maximize rewards by removing at most k constraints

- **②** Geometric counterpart of the *densest k-subhypergraph* problem
 - studied recently in (APPROX'16, SODA'17), conditionally hard to approximate within $|V|^{1-\epsilon}$

- Geometric counterpart of the *densest k-subhypergraph* problem
 - studied recently in (APPROX'16, SODA'17), conditionally hard to approximate within $|V|^{1-\epsilon}$
 - ranges \mathcal{R} correspond to vertices of the hypergraph, points P correspond to edges (defined by containment relation)

- Geometric counterpart of the *densest k-subhypergraph* problem
 - studied recently in (APPROX'16, SODA'17), conditionally hard to approximate within $|V|^{1-\epsilon}$
 - ranges \mathcal{R} correspond to vertices of the hypergraph, points P correspond to edges (defined by containment relation)
- With convex polygons, max-exposure is as hard as densest *k*-subhypergraph
 - Hypergraph H = (X, E) can be transformed into max-exposure of convex ranges \mathcal{R} and points P

- Geometric counterpart of the *densest k-subhypergraph* problem
 - studied recently in (APPROX'16, SODA'17), conditionally hard to approximate within $|V|^{1-\epsilon}$
 - ranges \mathcal{R} correspond to vertices of the hypergraph, points P correspond to edges (defined by containment relation)
- With convex polygons, max-exposure is as hard as densest *k*-subhypergraph
 - Hypergraph H = (X, E) can be transformed into max-exposure of convex ranges \mathcal{R} and points P

What about rectangle ranges?

- Geometric counterpart of the *densest k-subhypergraph* problem
 - studied recently in (APPROX'16, SODA'17), conditionally hard to approximate within $|V|^{1-\epsilon}$
 - ranges \mathcal{R} correspond to vertices of the hypergraph, points P correspond to edges (defined by containment relation)
- ullet With convex polygons, max-exposure is as hard as densest k-subhypergraph
 - Hypergraph H = (X, E) can be transformed into max-exposure of convex ranges \mathcal{R} and points P

What about rectangle ranges?

NP-hard and also 'conditionally' hard to approximate within $O(n^{1/4})$ even when rectangles in \mathcal{R} are translates of two fixed rectangles

$$n = |\mathcal{R}|$$

- Geometric counterpart of the *densest k-subhypergraph* problem
 - studied recently in (APPROX'16, SODA'17), conditionally hard to approximate within $|V|^{1-\epsilon}$
 - ranges \mathcal{R} correspond to vertices of the hypergraph, points P correspond to edges (defined by containment relation)
- With convex polygons, max-exposure is as hard as densest *k*-subhypergraph
 - Hypergraph H = (X, E) can be transformed into max-exposure of convex ranges \mathcal{R} and points P

What about rectangle ranges?

NP-hard and also 'conditionally' hard to approximate within $O(n^{1/4})$ even when rectangles in \mathcal{R} are translates of two fixed rectangles

Simple reduction from densest k-subgraph on bipartite graphs (bipartite-DkS)

- Geometric counterpart of the *densest k-subhypergraph* problem
 - studied recently in (APPROX'16, SODA'17), conditionally hard to approximate within $|V|^{1-\epsilon}$
 - ranges \mathcal{R} correspond to vertices of the hypergraph, points P correspond to edges (defined by containment relation)
- ullet With convex polygons, max-exposure is as hard as densest k-subhypergraph
 - Hypergraph H = (X, E) can be transformed into max-exposure of convex ranges \mathcal{R} and points P

What about rectangle ranges?

NP-hard and also 'conditionally' hard to approximate within $O(n^{1/4})$ even when rectangles in \mathcal{R} are translates of two fixed rectangles

Simple reduction from densest k-subgraph on bipartite graphs (bipartite-DkS)

– Assuming Dense Vs Random conjecture, bipartite-DkS is hard to approximate within $O(|V|^{1/4})$

Can we do somewhat better for arbitrary rectangles?

What happens if we only allow translates of a single rectangle?

Can we do somewhat better for arbitrary rectangles?

- \bullet A bicriteria O(k)-approximation for arbitrary rectangles
 - Expose at least $\Omega(1/k)$ of optimal points by removing k^2 rectangles
 - Approximation factor improves to $O(\sqrt{k})$ if rectangles have bounded aspect ratio

What happens if we only allow translates of a single rectangle?

Can we do somewhat better for arbitrary rectangles?

- \bullet A bicriteria O(k)-approximation for arbitrary rectangles
 - Expose at least $\Omega(1/k)$ of optimal points by removing k^2 rectangles
 - Approximation factor improves to $O(\sqrt{k})$ if rectangles have bounded aspect ratio

What happens if we only allow translates of a single rectangle?

- $oldsymbol{\circ}$ There exists a PTAS when $\mathcal R$ consists of translates of a single rectangle
 - Builds upon a polynomial time 2-approximation using shifting techniques

Can we do somewhat better for arbitrary rectangles?

- \bullet A bicriteria O(k)-approximation for arbitrary rectangles
 - Expose at least $\Omega(1/k)$ of optimal points by removing k^2 rectangles
 - Approximation factor improves to $O(\sqrt{k})$ if rectangles have bounded aspect ratio

What happens if we only allow translates of a single rectangle?

- $oldsymbol{\circ}$ There exists a PTAS when $\mathcal R$ consists of translates of a single rectangle
 - Builds upon a polynomial time 2-approximation using shifting techniques
 - Gives a constant approximation if ratio of smallest and longest sidelengths is bounded

rest of this talk

The algorithm is essentially greedy:

 $\mathcal{R}(p)$ = set of ranges that contain point p

The algorithm is essentially greedy:

 $\mathcal{R}(p)$ = set of ranges that contain point p

• Discard all points for which $|\mathcal{R}(p)| > k$

The algorithm is essentially greedy:

 $\mathcal{R}(p)$ = set of ranges that contain point p

- Discard all points for which $|\mathcal{R}(p)| > k$
- **•** Partition P into a set \mathcal{G} of groups:

each group is an equivalence class of points with same $\mathcal{R}(p)$

The algorithm is essentially greedy:

```
\mathcal{R}(p) = set of ranges that contain point p
```

- Discard all points for which $|\mathcal{R}(p)| > k$
- Partition P into a set G of groups: each group is an equivalence class of points with same $\mathcal{R}(p)$
- $oldsymbol{\circ}$ Sort groups in \mathcal{G} by decreasing size and return points in first k groups

The algorithm is essentially greedy:

 $\mathcal{R}(p)$ = set of ranges that contain point p

- Discard all points for which $|\mathcal{R}(p)| > k$
- Partition P into a set G of groups: each group is an equivalence class of points with same $\mathcal{R}(p)$
- $oldsymbol{\circ}$ Sort groups in \mathcal{G} by decreasing size and return points in first k groups

Total deleted ranges is at most $k \cdot \max |\mathcal{R}(p)| = k^2$

The algorithm is essentially greedy:

 $\mathcal{R}(p)$ = set of ranges that contain point p

- Discard all points for which $|\mathcal{R}(p)| > k$
- Partition P into a set \mathcal{G} of groups: each group is an equivalence class of points with same $\mathcal{R}(p)$
- $oldsymbol{\circ}$ Sort groups in \mathcal{G} by decreasing size and return points in first k groups

Total deleted ranges is at most $k \cdot \max |\mathcal{R}(p)| = k^2$

of groups \mathcal{G}^* in optimal \leq # of cells in arrangement of k rectangles $\leq c \cdot k^2$

The algorithm is essentially greedy:

 $\mathcal{R}(p)$ = set of ranges that contain point p

- Discard all points for which $|\mathcal{R}(p)| > k$
- Partition P into a set \mathcal{G} of groups: each group is an equivalence class of points with same $\mathcal{R}(p)$
- $oldsymbol{\circ}$ Sort groups in \mathcal{G} by decreasing size and return points in first k groups

Total deleted ranges is at most $k \cdot \max |\mathcal{R}(p)| = k^2$

of groups \mathcal{G}^* in optimal \leq # of cells in arrangement of k rectangles $\leq c \cdot k^2$

Holds for any polygon with O(1) complexity

First, scale the rectangles so that they become squares

Does not change any point-rectangle containment

Goal now is to compute max-exposure of **unit square ranges**

First, scale the rectangles so that they become squares

Does not change any point-rectangle containment

Goal now is to compute max-exposure of **unit square ranges**

Consider an even simpler problem: all points lie inside a unit square

First, scale the rectangles so that they become squares

Does not change any point-rectangle containment

Goal now is to compute max-exposure of unit square ranges

Consider an even simpler problem: all points lie inside a unit square

Roadmap

Within a unit square → Within a horizontal strip of unit width → PTAS (polytime) (polytime) (shifting techniques)

 \Rightarrow 4-approximation

 \Rightarrow 2-approximation

First, scale the rectangles so that they become squares

Does not change any point-rectangle containment

Goal now is to compute max-exposure of unit square ranges

Consider an even simpler problem: all points lie inside a unit square

Roadmap

Within a unit square Within a horizontal strip of unit width \rightarrow PTAS (polytime) (polytime) (shifting techniques) \Rightarrow 2-approximation

⇒ 4-approximation

Max-Exposure Within a Unit Square

Consider the dynamic programming formulation : **DP-template-0**

Max-Exposure Within a Unit Square

Consider the dynamic programming formulation : **DP-template-0**

– Process points in *P* by increasing *x*-coordinates

Active ranges: ranges that have at least one corner to the right of $x = x_i$

Max-Exposure Within a Unit Square

Consider the dynamic programming formulation : **DP-template-0**

– Process points in *P* by increasing *x*-coordinates

Active ranges: ranges that have at least one corner to the right of $x = x_i$

Consider the dynamic programming formulation : **DP-template-0**

– Process points in *P* by increasing *x*-coordinates

Expose $p_i \Leftrightarrow$ delete all ranges in $\mathcal{R}(p_i)$

Active ranges: ranges that have at least one corner to the right of $x = x_i$

$$S(i, k', \mathcal{R}_d) = \max \left\{$$

do not expose p_i expose p_i

Consider the dynamic programming formulation : **DP-template-0**

– Process points in *P* by increasing *x*-coordinates

Expose $p_i \Leftrightarrow$ delete all ranges in $\mathcal{R}(p_i)$

$$S(i, \underline{k}', \mathcal{R}_d) = \max \left\{$$
 do not expose p_i expose p_i
 \bullet # of ranges that can be deleted to right of $x = x_i \ (0 \le k' \le k)$

Consider the dynamic programming formulation : **DP-template-0**

– Process points in *P* by increasing *x*-coordinates

$$S(i, \underline{k'}, \mathcal{R}_d) = \max \left\{ \begin{array}{c} \text{do not expose } p_i \\ \text{expose } p_i \end{array} \right.$$

Set of active ranges that were already deleted

of ranges that can be deleted to right of $x = x_i \ (0 \le k' \le k)$

Consider the dynamic programming formulation : **DP-template-0**

– Process points in *P* by increasing *x*-coordinates

$$S(i, \underline{k'}, \mathcal{R}_d) = \max \left\{ \begin{array}{c} \text{do not expose } p_i \\ \text{expose } p_i \end{array} \right.$$

$$\bullet \quad \text{Set of active ranges that were already deleted}$$

$$\bullet \quad \text{# of ranges that can be deleted to right of } x = x_i \; (0 \le k' \le k)$$

$$\bullet \quad \text{Optimal solution} : S(0, k, \varnothing)$$

Consider the dynamic programming formulation : **DP-template-0**

– Process points in *P* by increasing *x*-coordinates

Expose $p_i \Leftrightarrow$ delete all ranges in $\mathcal{R}(p_i)$

$$S(i, \underline{k'}, \mathcal{R}_d) = \max \begin{cases} S(i+1, k', \mathcal{R}_d) & \text{do not expose } p_i \\ & \text{expose } p_i \end{cases}$$

Set of active ranges that were already deleted

of ranges that can be deleted to right of $x = x_i \ (0 \le k' \le k)$

Optimal solution: $S(0, k, \emptyset)$

Consider the dynamic programming formulation : **DP-template-0**

– Process points in *P* by increasing *x*-coordinates

Expose $p_i \Leftrightarrow$ delete all ranges in $\mathcal{R}(p_i)$

$$S(i, k', \mathcal{R}_d) = \max \begin{cases} S(i+1, k', \mathcal{R}_d) & \text{do not expose } p_i \\ S(i+1, ,) + 1 & \text{expose } p_i \end{cases}$$

Set of active ranges that were already deleted

of ranges that can be deleted to right of $x = x_i \ (0 \le k' \le k)$

Optimal solution: $S(0, k, \emptyset)$

Consider the dynamic programming formulation : **DP-template-0**

– Process points in *P* by increasing *x*-coordinates

$$S(i, k', \mathcal{R}_d) = \max \begin{cases} S(i+1, k', \mathcal{R}_d) & \text{do not expose } p_i \\ S(i+1, \dots, \mathcal{R}_d \cup \mathcal{R}(p_i)) + 1 & \text{expose } p_i \end{cases}$$

Set of active ranges that were already deleted

of ranges that can be deleted to right of $x = x_i \ (0 \le k' \le k)$

Optimal solution: $S(0, k, \emptyset)$

Consider the dynamic programming formulation : **DP-template-0**

– Process points in *P* by increasing *x*-coordinates

$$S(i, k', \mathcal{R}_d) = \max \begin{cases} S(i+1, k', \mathcal{R}_d) & \text{do not expose } p_i \\ S(i+1, k'-k_i, \mathcal{R}_d \cup \mathcal{R}(p_i)) + 1 & \text{expose } p_i \end{cases}$$

Set of active ranges that were already deleted

of ranges that can be deleted to right of $x = x_i$ ($0 \le k' \le k$)

Optimal solution : $S(0, k, \emptyset)$

How do we keep track of deleted range set \mathcal{R}_d using polynomial space?

How do we keep track of deleted range set \mathcal{R}_d using polynomial space?

Type-0: Unit square ranges that intersect x = 0

How do we keep track of deleted range set \mathcal{R}_d using polynomial space?

Type-0: Unit square ranges that intersect x = 0

Type-1: Unit square ranges that intersect x = 1

How do we keep track of deleted range set \mathcal{R}_d using polynomial space?

Type-0: Unit square ranges that intersect x = 0

Type-1: Unit square ranges that intersect x = 1

Suppose we only had Type-0 ranges:

 R_3 is 'anchored' to ℓ_0

How do we keep track of deleted range set \mathcal{R}_d using polynomial space?

Type-0: Unit square ranges that intersect x = 0

Type-1: Unit square ranges that intersect x = 1

Suppose we only had Type-0 ranges:

 q_0 = Exposed point to left of $x = x_i$ closest to ℓ_0

 R_3 is 'anchored' to ℓ_0 \Rightarrow must contain q_0

How do we keep track of deleted range set \mathcal{R}_d using polynomial space?

Type-0: Unit square ranges that intersect x = 0

Type-1: Unit square ranges that intersect x = 1

Suppose we only had Type-0 ranges:

 q_0 = Exposed point to left of $x = x_i$ closest to ℓ_0

 q_1 = Exposed point to left of $x = x_i$ closest to ℓ_1

 R_3 is 'anchored' to ℓ_0 \Rightarrow must contain q_0

How do we keep track of deleted range set \mathcal{R}_d using polynomial space?

Type-0: Unit square ranges that intersect x = 0

Type-1: Unit square ranges that intersect x = 1

Suppose we only had Type-0 ranges:

 q_0 = Exposed point to left of $x = x_i$ closest to ℓ_0 q_1 = Exposed point to left of $x = x_i$ closest to ℓ_1

$$\mathcal{R}_d = \mathcal{R}(q_0) \cup \mathcal{R}(q_1)$$

 R_3 is 'anchored' to ℓ_0 \Rightarrow must contain q_0

How do we keep track of deleted range set \mathcal{R}_d using polynomial space?

Type-0: Unit square ranges that intersect x = 0

Type-1: Unit square ranges that intersect x = 1

Suppose we only had Type-0 ranges:

 q_0 = Exposed point to left of $x = x_i$ closest to ℓ_0 q_1 = Exposed point to left of $x = x_i$ closest to ℓ_1

$$\mathcal{R}_d = \mathcal{R}(q_0) \cup \mathcal{R}(q_1)$$

 R_3 is 'anchored' to ℓ_0 \Rightarrow must contain q_0

Can keep track of Type-0 deleted ranges by remembering q_0, q_1

Need an alternative dynamic programming formulation : **DP-template-1**

Need an alternative dynamic programming formulation : **DP-template-1**

– Process 'events' in P by increasing x-coordinates x_i

Need an alternative dynamic programming formulation : **DP-template-1**

– Process 'events' in P by increasing x-coordinates x_i

Active Points : with *x*-coordinates $\geq x_i$

Need an alternative dynamic programming formulation : **DP-template-1**

– Process 'events' in P by increasing x-coordinates x_i

Active Points : with *x*-coordinates $\geq x_i$

Maintain set of forbidden points P_f

active points that lie in a range that was not deleted

$$S(i, k', P_f)$$

Need an alternative dynamic programming formulation: **DP-template-1**

– Process 'events' in P by increasing x-coordinates x_i

Active Points : with *x*-coordinates $\geq x_i$

Maintain set of forbidden points P_f

active points that lie in a range that was not deleted

$$S(i, k', P_f) = \begin{cases} S(i+1, k'-1, P_f) & \text{delete range } R_i \\ S(i+1, k', P_f \cup P(R_i)) & \text{do not delete } R_i \end{cases}$$

Need an alternative dynamic programming formulation : **DP-template-1**

– Process 'events' in P by increasing x-coordinates x_i

Active Points : with *x*-coordinates $\geq x_i$

Maintain set of forbidden points P_f

active points that lie in a range that was not deleted

All points contained in $R_{m i}$

$$S(i, k', P_f) = \max \begin{cases} S(i+1, k'-1, P_f) & \text{delete range } R_i \\ S(i+1, k', P_f \cup P(R_i)) & \text{do not delete } R_i \end{cases}$$

Need an alternative dynamic programming formulation : **DP-template-1**

– Process 'events' in P by increasing x-coordinates x_i

Active Points : with *x*-coordinates $\geq x_i$

Maintain set of forbidden points P_f

active points that lie in a range that was not deleted

$$S(i, k', P_f) = \max \begin{cases} S(i+1, k'-1, P_f) & \text{delete range } R_i \\ S(i+1, k', P_f \cup P(R_i)) & \text{do not delete } R_i \end{cases}$$

$$= \max \begin{cases} S(i+1, k', P_f) & \text{if } p_i \in P_f, \text{ cannot expose } p_i \\ S(i+1, k', P_f) + 1 & \text{otherwise, expose } p_i \end{cases}$$
Point p_i

How do we keep track of forbidden points P_f using polynomial space?

 Q_0 = Undeleted range to left of $x = x_i$ farthest from ℓ_0

How do we keep track of forbidden points P_f using polynomial space?

 Q_0 = Undeleted range to left of $x = x_i$ farthest from ℓ_0 Q_1 = Undeleted range to left of $x = x_i$ farthest from ℓ_1

$$P_f = P(Q_0) \cup P(Q_1)$$

if $p \in P_f$, then p must lie in either Q_0 or Q_1

How do we keep track of forbidden points P_f using polynomial space?

 Q_0 = Undeleted range to left of $x = x_i$ farthest from ℓ_0 Q_1 = Undeleted range to left of $x = x_i$ farthest from ℓ_1

$$P_f = P(Q_0) \cup P(Q_1)$$

if $p \in P_f$, then p must lie in either Q_0 or Q_1

Can keep track of forbidden points by remembering Q_0, Q_1

How do we keep track of forbidden points P_f using polynomial space?

 Q_0 = Undeleted range to left of $x = x_i$ farthest from ℓ_0 Q_1 = Undeleted range to left of $x = x_i$ farthest from ℓ_1

$$P_f = P(Q_0) \cup P(Q_1)$$

if $p \in P_f$, then p must lie in either Q_0 or Q_1

Can keep track of forbidden points by remembering Q_0, Q_1

Combine **DP-template-0** and **DP-template-1** to solve wihin a unit square:

Subproblems defined as :
$$S(i, k', q_0, q_1, Q_0, Q_1)$$

updated appropriately at begin-range and point events

 $oldsymbol{\bullet}$ Max-exposure : to expose maximum points by deleting k ranges

- $oldsymbol{\circ}$ Max-exposure : to expose maximum points by deleting k ranges
- Hard to approximate even with restricted rectangular ranges

- $oldsymbol{\circ}$ Max-exposure : to expose maximum points by deleting k ranges
- Hard to approximate even with restricted rectangular ranges
- Exhibits a PTAS for unit-square ranges
 - Gives a constant approximation for rectangles if ratio of smallest and longest sidelengths is bounded

- $oldsymbol{\circ}$ Max-exposure : to expose maximum points by deleting k ranges
- Hard to approximate even with restricted rectangular ranges
- Exhibits a PTAS for unit-square ranges
 - Gives a constant approximation for rectangles if ratio of smallest and longest sidelengths is bounded
- **3** Bi-criteria O(k)-approximation algorithm for rectangles, $O(\sqrt{k})$ for squares

- $oldsymbol{\circ}$ Max-exposure : to expose maximum points by deleting k ranges
- Hard to approximate even with restricted rectangular ranges
- Exhibits a PTAS for unit-square ranges
 - Gives a constant approximation for rectangles if ratio of smallest and longest sidelengths is bounded
- **3** Bi-criteria O(k)-approximation algorithm for rectangles, $O(\sqrt{k})$ for squares
- Does there exist a constant approximation for arbitrary squares?

- $oldsymbol{\circ}$ Max-exposure : to expose maximum points by deleting k ranges
- Hard to approximate even with restricted rectangular ranges
- Exhibits a PTAS for unit-square ranges
 - Gives a constant approximation for rectangles if ratio of smallest and longest sidelengths is bounded
- **3** Bi-criteria O(k)-approximation algorithm for rectangles, $O(\sqrt{k})$ for squares
- Does there exist a constant approximation for arbitrary squares?

Thanks!

Backup: Combined DP

$$S(i, k', q_0, q_1, Q_0, Q_1)$$

Backup: Combined DP

$$S(i, k', q_0, q_1, Q_0, Q_1)$$

begin-range $R_{m{i}}$

$$= \max \begin{cases} S(i+1, \ k', \ q_0, \ q_1, \ Q_0, \ Q_1) & \text{if } p_i \in P_f, \text{ cannot expose } p_i \\ S(i+1, \ k', \ q_0, \ q_1, \ Q_0, \ Q_1) & \text{choose to not expose } p_i \\ S(i+1, \ k'-k_i, \ closer(p_i, q_0), \ closer(p_i, q_1), \ Q_0, \ Q_1) + 1 & \text{otherwise, expose } p_i \end{cases}$$

Backup: Combined DP

 $S(i, k', q_0, q_1, Q_0, Q_1)$

 $S(i+1, \ k', \ q_0, \ q_1, \ Q_0, \ Q_1) \qquad \qquad \text{if } p_i \in P_f, \text{ cannot expose } p_i \\ S(i+1, \ k', \ q_0, \ q_1, \ Q_0, \ Q_1) \qquad \qquad \text{choose to not expose } p_i \\ S(i+1, \ k'-k_i, \ closer(p_i, q_0), \ closer(p_i, q_1), \ Q_0, \ Q_1) + 1 \quad \text{otherwise, expose } p_i \\ \\ S(i+1, \ k'-1, \ q_0, \ q_1, \ Q_0, \ Q_1) \qquad \qquad \text{delete Type-1 range } R_i \\ S(i+1, \ k', \ q_0, \ q_1, \ farther(R_i, Q_0), \ Q_1) \qquad R_i \text{ is not deleted and anchored to } \ell_0 \\ S(i+1, \ k', \ q_0, \ q_1, \ Q_0, \ farther(R_i, Q_1)) \qquad R_i \text{ is not deleted and anchored to } \ell_1$

Point *pi*