• 14.5 Let $x_1 = \theta$, $x_2 = \dot{\theta}$, u = T, $a = g/\ell$, b = k/m, $c = 1/m\ell^2$, and $\zeta(t) = h(t)/\ell$, to obtain

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -a\sin x_1 - bx_2 + cu + \zeta(t)\cos x_1$$

Take $s = x_1 + x_2$. Then,

$$\dot{s} = x_2 - a\sin x_1 - bx_2 + cu + \zeta(t)\cos x_1 = c[u + \delta]$$

where

$$\delta = \frac{1}{c} \left[x_2 - a \sin x_1 - b x_2 + \zeta(t) \cos x_1 \right]$$
$$|\delta| \le \left| \frac{a}{c} \right| |x_1| + \left| \frac{1 - b}{c} \right| |x_2| + \left| \frac{\zeta(t)}{c} \right| \le 16.1865 |x_1| + 1.815 |x_2| + 1.1111$$

Take

$$u = -[16.1865|x_1| + 1.815|x_2| + 2] \operatorname{sat}\left(\frac{s}{\epsilon}\right)$$

The trajectory reaches the boundary layer $\{|s| \le \varepsilon\}$ in finite time. Inside the boundary layer, we have $\dot{x}_1 = -x_1 + s$. Taking $V_1 = x_1^2/2$, we obtain

$$\dot{V}_1=-x_1^2+x_1z\leq -x_1^2+|x_1|arepsilon\leq -(1- heta)x_1^2, \ \ orall\ |x_1|\geq rac{arepsilon}{ heta}$$

where $0 < \theta < 1$. Thus, the trajectory reaches the set $\Omega_{\varepsilon} = \{|x_1| \le \varepsilon/\theta, |x_1 + x_2| \le \varepsilon\}$ in finite time. Inside this set,

$$|x_2| = |x_1 + x_2 - x_1| \le |x_1 + x_2| + |x_1| \le (1 + 1/\theta)\varepsilon$$

For $\theta = 0.9$, we have $|x_2| \le 2.11\varepsilon$. Choose ε small enough that $2.11\varepsilon \le 0.01$. In particular, take $\varepsilon = 0.004$.