Задачки-закачки 1

ЕАИ-упражнения, групи 2 и 3

8 март 2014 г.

регулярни операции и регулярни изрази — нормални задачки

- 1. За кои езици L, итерацията им L^* е краен език?
- 2. Намерете регулярен запис за езика L, където:
 - а) $L=\{w\in\{0,1\}^*\mid w$ е запис на число в двоична бройна система (без водещи нули!) $\}$. $Peшение: L=\{0\}\cup(\{1\}\cdot\{0,1\}^*)$
 - б) $L = \{w \in \{0, 1, \dots, 9\}^* \mid w \text{ е запис на число в десетична бройна система, което се дели на 5, но не и на 25}.$
 - в) $L = \{w \in \{0,1,2\}^* \mid w \text{ е запис на число в троична бройна система с дължина, деляща се на <math>3\}.$
 - г) $L = \{w \in \{a\}^* \mid |w| = 3x + 8y, \,\,$ за някои неотрицателни цели x,y, за които $x+y>2\}.$
 - д) $L = \{w \in \{a, b, c\}^* \mid w$ съдържа точно 3 пъти буквата $a\}$.
 - е) $L = \{w \in \{a, b, c\}^* \mid w$ съдържа точно веднъж буквата a, точно два пъти буквата b и точно три пъти буквата $c\}$.

- 3. Намерете регулярен израз за езика:
 - а) $L = \{w \in \{a, b, c\}^* \mid w \text{ има префикс } abc \text{ и суфикс } ca\}.$
 - б) $L = \{w \in \{a, b, c\}^* \mid w$ не съдържа две последователни еднакви букви $\}$.
 - в) $L = \{w \in \{a, b, c\}^* \mid w$ съдържа три последователни еднакви букви $\}$.
 - г) $L = \{w \in \{a, b, c\}^* \mid w$ съдържа точно веднъж думата $bca\}$.
 - д) $L = \{w \in \{a,b\}^* \mid$ в w има поне две последователни букви b след всяко срещане на буква $a\}.$
 - е) $L = \{w \in \{a,b\}^* \mid w$ съдържа ab и е с четна дължина $\}$.
 - ж) $L = \{w \in \{a, b\}^* \mid B w \text{ има равен брой срещания на } ab и ba\}.$
 - з) $L = \{w \in \{a,b\}^* \mid$ в w се срещат думите ab и ac и последното срещане на думата ab е преди първото срещане на думата $ac\}$.
 - и) $L = \{w \in \{a,b\}^* \mid w$ съдържа всяка възможна дума с дължина 2 точно по веднъж $\}$. $(no-mpy\partial +a)$
- 4. Напишете пълен регулярен израз над азбуката $\{a,b,c\}$ (без да има ... в него), който да се събира на един ред в тетрадката, който:
 - а) Разпознава точно 2 думи. Примерно решение: (a|b).
 - б) Разпознава точно 9 думи, точно 27 думи, точно 81 думи.
 - в) Разпознава точно 16 думи, точно 32 думи, точно 128 думи.
 - г) Разпознава точно 63 думи, точно 64 думи, точно 65 думи.

структурна индукция - по-трудни задачки

5. Да се докаже, че обръщането L^R на регулярен език L е регулярен език.

Доказателство. За примитивните регулярни езици имаме $\{\}^R = \{\}, \{\epsilon\}^R = \{\epsilon\}, \{a\}^R = \{a\}$, което показва, че са регулярни. Нека K^R е регулярен за произволен регулярен език K, имащ регулярен запис с по-малко от k>0 прилагания на регулярните операции.

Нека L е регулярен език, имащ регулярен запис с точно k прилагания на регулярните операции. Възможни се следните случаи за L:

- $L=K_1\cup K_2$, където K_1 и K_2 са регулярни и от индуктивното предположение K_1^R и K_2^R също са регулярни. Тогава $L^R=(K_1\cup K_2)^R=K_1^R\cup K_2^R$ е регулярен, защото е обединение на регулярни езици.
- $L=K_1K_2$, където K_1 и K_2 са регулярни и от индуктивното предположение K_1^R и K_2^R също са регулярни. Тогава $L^R=(K_1K_2)^R=K_2^RK_1^R$ е регулярен, защото е конкатенация на регулярни езици.

• $L = K^*$, където K е регулярен и от индуктивното предположение K^R също е регулярен. Тогава $L^R = (K^*)^R = (K^R)^*$ е регулярен, защото е итерация на регулярен език.

Във всички възможни случаи за L доказахме, че L^R е регулярен. От това по индукция следва, че ако L е регулярен, то и L^R е регулярен.

- 6. Нека $L\subseteq\{0,1\}^*$ е регулярен език. Докажете, че следният език е регулярен: $L'=\{s(w),w\in L\mid s(w)=$ разменяме нулите и единиците в $w\}.$
- 7. Нека L е регулярен език. Докажете, че ако удвоим всяка буква във всяка дума на L, новият език също е регулярен.
- 8. Нека L е регулярен език. Докажете, че езиците $L_{\rm even}$, съставен от думите на L с четна дължина и $L_{\rm odd}$, съставен от думите на L с нечетна дължина, са регулярни.
- 9. Нека A и B са регулярни езици над една и съща азбука Σ . Перфектно картоподреждане $A \clubsuit B$ на A и B наричаме следния език:

$$A \clubsuit B = \{a_1b_1a_2b_2 \dots a_kb_k \mid a_1a_2 \dots a_k \in A, b_1b_2 \dots b_k \in B, a_i \in \Sigma, b_i \in \Sigma\}.$$

Да се докаже, че перфектното картоподреждане на два регулярни езика е регулярен език.

10. Нека L е регулярен език над азбуката Σ . Да се докаже, че перфектните картораздавания на L са регулярни:

$$L_A = \{ a_1 a_2 \dots a_k \mid a_1 b_1 \dots a_k b_k \in L, a_i \in \Sigma, b_i \in \Sigma \}, L_B = \{ b_1 b_2 \dots b_k \mid a_1 b_1 \dots a_k b_k \in L, a_i \in \Sigma, b_i \in \Sigma \}.$$

11. Нека L е регулярен език. Да се докаже, че езикът L_{prefix} , образуван от префиксите на всички думи в L, е регулярен език.

кръстословица

отвесно: 1 с(a*|c*) 2 (at|ta)* 3 a(a*c*t*) водоравно: 4 ac*(a|b*)c* 5 (ba)*c 6 a(ba*|ct*) 7 t*ac*|c*at* 8 a(b*|c*)