第三节 动量定理

- 一、质点的动量定理
- 二、质点系动量定理
- 三、动量定理的应用举例

一、质点的动量定理

1. 微分形式
$$\frac{d\vec{p}}{dt} = \vec{F}$$

2. 积分形式

$$Fdt = d\vec{p}$$

$$\rightarrow \mu D$$

$$\Rightarrow d\vec{l} = \vec{F}dt - D$$
的元冲量

$$\int_{t_1}^{t_2} d\vec{I} = \int_{t_1}^{t_2} \vec{F} dt = \int_{\vec{p}_1}^{\vec{p}_2} d\vec{p} = \vec{p}_2 - \vec{p}_1 = \Delta \vec{p}$$

令
$$\vec{I} = \int_{t_1}^{t_2} \mathbf{d}I = \int_{t_1}^{t_2} \vec{F} \mathbf{d}t$$
 一力的冲量 ,则 $\vec{I} = \Delta \vec{p}$

*质点所受合力的冲量等于质点动量的增量思考:冲量的方向?动量增量的方向!

一、质点的动量定理

又:
$$\vec{I} = \int_{t_1}^{t_2} \vec{F} dt = \overline{F} \Delta t (\overline{F}) +$$
为平均冲力)

$$\therefore \vec{I} = \overline{F} \Delta t = \Delta \vec{p}$$
 质点的动量定理
$$\vec{F}_x$$

分量式:

$$I_x = \int_{t_1}^{t_2} F_x dt = \overline{F}_x \Delta t = \Delta p_x (= mv_{2x} - mv_{1x})$$

$$I_{y} = \int_{t_{1}}^{t_{2}} F_{y} dt = \overline{F}_{y} \Delta t = \Delta p_{y} (= mv_{2y} - mv_{1y})$$

$$I_z = \int_{t_1}^{t_2} F_z dt = \overline{F}_z \Delta t = \Delta p_z \quad (= mv_{2z} - mv_{1z})$$

*冲量 I是 F对时间的累积效应,其效果在于改变物体 的动量。

二、质点系动量定理

1. 微分形式
$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}_{\text{h}}, \quad \mathrm{d}\vec{p} = \vec{F}_{\text{h}}\mathrm{d}t$$

2. 积分形式
$$\vec{I}_{f} = \int_{t_1}^{t_2} \vec{F}_{f} dt = \int_{\vec{p}_1}^{\vec{p}_2} d\vec{p} = \Delta \vec{p}$$

质点系所受外力矢量和的冲量等于质点系总动量的增量。

分量式:
$$I_x = \int_{t_1}^{t_2} F_{\beta \mid x} dt = \Delta p_x$$

$$I_y = \int_{t_1}^{t_2} F_{\beta \mid y} dt = \Delta p_y$$

$$I_z = \int_{t_1}^{t_2} F_{\beta \mid z} dt = \Delta p_z$$

注意 1:
$$\vec{F}_{\bowtie} = \sum_{i=1}^{N} \vec{F}_{i\bowtie} \equiv \mathbf{0}$$
 ∴ $\vec{I}_{\bowtie} = \int_{t_1}^{t_2} \vec{F}_{\bowtie} dt \equiv \mathbf{0}$

质点系总动量的变化与内力的冲量无关 思考:内力的冲量起什么作用?

改变质点系总动量在系内各质点间的分配 注意 2:牛顿第二定律反映了力的瞬时效应:

> 动量定理则反映力对时间的累积效应。 加速度——对应—合外力

动量变化——对应——合外力的冲量

注意 3: 质点系动量定理中各质点动量(速度) 应对同一参考系而言。

二、质点系动量定理

三、动量定理的应用举例

例1(P₈₀ 4.7):

已知:
$$m = 1$$
kg $v_0 = 0$ $F = 1.12t$ $\theta = 37^{\circ}$

$$\mu = 0.2$$
 $g \approx 10 \,\mathrm{m}\cdot\mathrm{s}^{-2}$

求: t=3s时 $\vec{v}=?$

解: 受力图和坐标系如下:

$$F_{y} = N - mg + F\sin 37^{\circ} = 0$$

$$N = 10 - 0.672t \tag{1}$$

$$f = \mu N = 2 - 0.1344t$$
 (2)

$$F_x = F\cos 37 - f = 1.03t - 2$$
 (3)

$$\int_0^3 F_x dt = \Delta(mv_x) = mv_3 \quad (4)$$

何时飞离?

正确的解法: 令 10-0.672t=0 得: t=14.9 s

$$\begin{cases} N = 10 - 0.672t & (0 < t < 14.9 \text{ s}) \\ N = 0 & (t > 14.9 \text{ s}) \end{cases}$$

t=3 s时,尚未飞离, \vec{v} 沿x方向。

(2) $f = \mu N = 2 - 0.1344t$?不全对! 静摩擦力达到最大值以前与正压力无关。

物体何时开始运动?

正确的解法:
$$F\cos\theta = \mu N$$
 $0.896t = 2 - 0.1344t$ $t = 1.94s$

$$\begin{cases} f = F\cos\theta = 0.896t & (0 < t < 1.94) \\ f = \mu N = 2 - 0.1344t & (1.94 < t < 14.9) \end{cases}$$
(3) $F_x = F\cos 37^\circ - f = 1.03t - 2$ 不全对!

正确的解法: $F_x = F\cos\theta - f = \begin{cases} 0 & (0 \le t \le 1.94) \\ 1.03t - 2 & (1.94 \le t \le 14.9) \end{cases}$

$$F_{x} = F\cos\theta - f = \begin{cases} 0 & (0 \le t \le 1.94) \\ 1.03t - 2 & (1.94 \le t \le 14.9) \end{cases}$$

$$(4) \int_{0}^{3} F_{x} dt = \Delta m v_{x} = m v_{3} ?$$

$$\int_{0}^{3} F_{x} dt = 0 + \int_{1.94}^{3} (1.03t - 2) dt = m v_{3}$$

$$v_{3} = 0.58 \quad (m \cdot s^{-1})$$

$$\vec{v}_{3} = 0.58 \vec{i} \quad (m \cdot s^{-1})$$

注意:

- 1. 通过本题体会存在变力(随t变化)作用时动量 定理的应用。
- 2. 若F在不同时间段变化规律不同,应分段积分。

例2(P₇₄ 例2):

火箭的运动:火箭依靠排出其内部燃烧室中产生的气体来获得向前的推力。设火箭发射时的质量为 m_0 ,速率为 ν_0 ,燃料烧尽时的时间为t',质量为m',气体相对于火箭排出的速率为 ν_o 。不计空气阻力,求火箭所能达到的最大速率。

解:火箭和燃气组成一个系统。

t时刻:系统总质量为 m系统总动量为 $\vec{p}_1 = m\vec{v}$

t+dt时刻:火箭质量为 m+dm (dm<0)

排出的燃气质量为 -dm

火箭速度为 $\vec{v} + d\vec{v}$ 排出的燃气速度为 $\vec{v}_o + (\vec{v} + d\vec{v})$

$$t+dt$$
时刻系统的总动量为:
$$\vec{p}_2 = (m+dm)(\vec{v}+d\vec{v}) + (-dm)(\vec{v}_e + \vec{v}+d\vec{v})$$
$$= m\vec{v} + md\vec{v} - \vec{v}_e dm$$

 $\mathbf{d}t$ 时间内系统的动量增量为: $\mathbf{d}\vec{p} = \vec{p}_2 - \vec{p}_1 = m\mathbf{d}\vec{v} - \vec{v}_e\mathbf{d}m$ 火箭竖直向上运动时,忽略空气阻力,外力为重力 mg 。由质点系动量定理得:

$$m\vec{g} = \frac{d\vec{p}}{dt}$$
 取向上为正, 得: $-mgdt = mdv + v_edm$

设t=0是开始发射, t'时刻燃料烧尽,对上式两边积分得:

$$-\int_{0}^{t'} g dt = \int_{v_0}^{v_m} dv + v_e \int_{m_0}^{m'} \frac{dm}{m}$$

$$v_{\rm m} - v_0 = v_e \ln \frac{m_0}{m'} - gt'$$

$$\therefore v_{\rm m} = v_0 + v_e \ln \frac{m_0}{m'} - gt'$$

火箭水平飞行时:
$$v_{\rm m} = v_0 + v_e \ln \frac{m_0}{m'}$$

多级火箭: $v_{\rm m} = v_0 + v_{e1} \ln N_1 + v_{e2} \ln N_2 + \dots + v_{en} \ln N_n$

用增大喷气速度和增大质量比的方法可以提高火箭末速度。

设:
$$v_{e1} = v_{e2} = v_{e3} = 2500 \,\mathrm{m \cdot s^{-1}}$$
 $N_1 = N_2 = N_3 = 6$ $v_{\mathrm{m}} = 2500 \cdot \mathrm{ln}6^3 = 13440 \,\mathrm{m \cdot s^{-1}}$ 足以发射人造地球卫星。

作业

- 1. No.2(希望在作业题纸中选择、填空 各题的相应位置处写出其关键步骤);
- 2. 自学本章各例题并完成书上的习题(对照书后的参考答案自己订正)。

第四周星期三交作业

第四节 动量守恒定律

一、动量守恒定律

一、动量守恒定律

质点系: $d\vec{I}_{\text{h}} = \vec{F}_{\text{h}} dt = d\vec{p}_{\text{d}}$

动量守恒定律的第一种表述:

当 $\vec{F}_{\text{A}}=0$ 时: $\mathrm{d}\vec{p}_{\text{A}}=0$ $\vec{p}_{\text{A}}=$ 恒量 — 动量守恒定律

孤立系统:不受外力作用且总质量不变的系统动量守恒定律的第二种表述:

孤立系统的动量不随时间变化。

动量守恒定律的第三种表述:

低速孤立系统的质心作匀速直线运动。

思考:系统动量守恒条件能否为: $\vec{I}_{h} = \int_{t_1}^{t_2} \vec{F}_{h} dt = 0$?

$$\vec{I}_{\gamma} = \int_{t_1}^{t_2} \vec{F}_{\gamma} dt = \vec{P}_{\dot{\mathbb{S}}_{\bar{\mathcal{X}}}} - \vec{P}_{\dot{\mathbb{S}}_{\bar{\mathcal{X}}}} = 0 \longrightarrow \vec{P}_{\dot{\mathbb{S}}_{\bar{\mathcal{X}}}} = \vec{P}_{\dot{\mathbb{S}}_{\bar{\mathcal{X}}}}$$

 $\bar{P}_{\!\scriptscriptstyle R}$ 不一定为恒量,故系统动量不一定守恒!

所以:系统动量守恒条件不能为: $\vec{I}_{\gamma} = \int_{t_1}^{t_2} \vec{F}_{\gamma} dt = 0$ 应为: $\vec{F}_{\gamma} = 0$

注意:(1)当 $\vec{F}_{\text{p}} \neq 0$ 时,系统总动量不守恒,但

$$egin{aligned} F_{
ho_{x}} &= 0$$
时 $p_{x} = \sum_{i} m_{i} v_{ix} =$ 恒量 $F_{
ho_{y}} &= 0$ 时 $p_{y} = \sum_{i} m_{i} v_{iy} =$ 恒量 $F_{
ho_{z}} &= 0$ 时 $p_{z} = \sum_{i} m_{i} v_{iz} =$ 恒量

(2) 若系统内力>>外力,以致外力可以忽略不计时,可以应用动量守恒定律处理问题。

如:冲击、爆炸、碰撞等问题.....

(3) 式中各速度应对同一参考系而言。

二、动量守恒定律的应用 例1(P₇₇ 例1):

 α 粒子散射中,质量为m的 α 粒子与质量为m的静止氧原子核发生"碰撞"。实验测出"碰撞"后, α 粒子沿与入射方向成 θ =72°角方向运动,而氧原子核沿与 α 粒子入射方向成 β =41°角反冲,如图示,求"碰撞"前后 α 粒子速率之比。

高能物理可以用探测器得到粒子径迹

二、动量守恒定律的应用

解:"碰撞":相互靠近,由 于斥力而分离的过程—— 散射。

> 对α粒子和氧原子核系统, 碰撞过程总动量守恒。

二、动量守恒定律的应用

由动量守恒定律得

$$m\vec{v}_1 = m\vec{v}_2 + M\vec{v}$$

直角坐标系中 $mv_1 = mv_2\cos\theta + Mv\cos\beta$ $0 = mv_2\sin\theta - Mv\sin\beta$

解得"碰撞"前后, α粒子速率之比为

$$\frac{v_2}{v_1} = \frac{\sin\beta}{\sin(\theta + \beta)} = \frac{\sin 41^{\circ}}{\sin(72^{\circ} + 41^{\circ})} = 0.71$$

例2(P₈₀ 4.8):一绳跨过一定滑轮,两端分别系有质量 m及M的物体,且M>m。最初M静止在桌上,抬高 m使绳处于松弛状态。当m自由下落距离h后,绳才被拉紧, 求此时两物体的速率v和M所能上升的最大高度(不计滑轮和绳的质量、轴承摩擦及绳的伸长)。

分析运动过程:

当m自由下落距离h,绳被拉紧的瞬间,m和M获得相同的运动速率v,此后m向下减速运动,M向上减速运动。

分两个阶段求解

第一阶段:绳拉紧,求共同速率,

思路:绳拉紧时冲力很大,轮轴反作用力N不能忽略,m+M系统动量不守恒,应分别对它们用动量定理。

解:设绳平均冲力大小为 \overline{F} ,向上为正方向。

$$I_{1} = \int (\overline{F} - Mg) dt = (\overline{F} - Mg) \Delta t = Mv - 0 = Mv$$

$$I_{2} = \int (\overline{F} - mg) dt = (\overline{F} - mg) \Delta t = -mv - (-m\sqrt{2gh})$$

$$\begin{cases} I_1 = (\overline{F} - Mg) \Delta t = Mv \\ I_2 = (\overline{F} - mg) \Delta t = -mv - (-m\sqrt{2gh}) \end{cases}$$

忽略重力,则有 $I_1 = I_2$

$$-mv - (-m\sqrt{2gh}) = Mv$$

$$\therefore v = \frac{m\sqrt{2gh}}{M+m}$$

类似问题:

二、动量守恒定律的应用

第二阶段: 求M运动的最大高度

思路: M与m 有大小相等, 方向相反的加速度a 设绳拉力为T, 画出M与m的受力图:

由牛顿运动定律 T-Mg=-Ma 解得: $a=\frac{(M-m)g}{M+m}$

解得:
$$a = \frac{(M-m)g}{M+m}$$

*M*上升的最大高度为:

$$H = \frac{v^2}{2a} = \left(\frac{m(\sqrt{2gh})^2}{M+m}\right)^2 / \left(\frac{2(M-m)g}{M+m}\right) = \frac{m^2h}{M^2 - m^2}$$