0.1. Principio de Dirichlet o Método de energía

Buscamos resolver el problema de Poisson

$$\begin{cases} -\Delta u = f &, \text{ en } \Omega &, f \in \mathscr{C}(\Omega) \\ u = g &, \text{ en } \partial \Omega &, g \in \mathscr{C}(\partial \Omega) \end{cases} \tag{\star}$$

Teorema 1.

Si Ω es acotado y $\partial\Omega\in\mathscr{C}^1$, el problema tiene a lo más una solución de clase $\mathscr{C}^2(\Omega)\cap\mathscr{C}(\overline{\Omega})$.

DEMOSTRACIÓN

Principio de Dirichlet Definimos el funcional de energía

$$\mathscr{I}w := \int_{\Omega} (\frac{1}{2} |\nabla u|^2 - wf)$$

con dominio $\mathscr{A} \coloneqq \left\{ w \in \mathscr{C}^2(\Omega) \mid w = g \text{ sobre } \partial \Omega \right\}.$

Teorema 2.

Si $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}(\overline{\Omega})$ es solución del problema (\star) entonces

$$\mathscr{I}u = \min_{w \in \mathscr{A}} \mathscr{I}w.$$

Más aún, si $u \in \mathcal{A}$ cumple la ecuación anterior, entonces u es solución de (\star) .