LiteBIRD r statistics

Aditya Rotti

Case	Moments	Parameters
NILC	$f_{ m CMB}$	1
cMILC01	$f_{ m CMB} \; ; \; f_{ m sync}$	2
cMILC02	$f_{ m CMB} \; ; \; f_{ m dust}$	2
cMILC03	$f_{ m CMB} \; ; f_{ m sync} \; ; f_{ m dust}$	3
cMILC04	$f_{ m CMB} \; ; \; f_{ m dust} \; ; \; rac{df_{ m dust}}{deta}$	3
${\rm cMILC05}$	$f_{ m CMB} \; ; f_{ m sync} \; ; f_{ m dust} \; ; \; rac{df_{ m sync}}{deta}$	4
cMILC06	$f_{ m CMB} \; ; f_{ m sync} \; ; f_{ m dust} \; ; \; rac{df_{ m dust}}{deta}$	4
cMILC07	$f_{\mathrm{CMB}} \; ; f_{\mathrm{sync}} \; ; f_{\mathrm{dust}} \; ; \; rac{df_{\mathrm{sync}}}{deta} \; ; \; rac{df_{\mathrm{dust}}}{deta}$	5
cMILC08	$f_{\rm CMB}$; $f_{\rm sync}$; $f_{ m dust}$; $\frac{df_{ m sync}}{d\beta}$; $\frac{df_{ m dust}}{d\beta}$; $\frac{df_{ m dust}}{dT}$	6

		$r_{ m bias}$	σ_r	r_{95}	SNR
Case	Alens				
NILC	0.0	0.00320	0.00039	NaN	8.24044
	0.4	0.00273	0.00065	NaN	4.21145
	1.0	0.00246	0.00097	NaN	2.52708
cMILC01	0.0	0.00259	0.00051	NaN	5.03593
	0.4	0.00239	0.00074	NaN	3.22960
	1.0	0.00227	0.00104	NaN	2.17046
cMILC02	0.0	0.00305	0.00040	NaN	7.59528
	0.4	0.00252	0.00066	NaN	3.78731
	1.0	0.00216	0.00099	NaN	2.17620
cMILC03	0.0	0.00234	0.00054	NaN	4.33218
	0.4	0.00206	0.00077	NaN	2.69266
	1.0	0.00186	0.00107	0.00406	1.73285
cMILC04	0.0	0.00246	0.00091	NaN	2.70917
	0.4	0.00232	0.00112	NaN	2.06621
	1.0	0.00220	0.00142	0.00511	1.55282
cMILC05	0.0	0.00570	0.00191	NaN	2.98028
	0.4	0.00545	0.00212	NaN	2.56826
	1.0	0.00514	0.00243	NaN	2.11111
cMILC06	0.0	0.00069	0.00116	0.00307	0.59561
	0.4	0.00073	0.00135	0.00350	0.54309
	1.0	0.00080	0.00162	0.00412	0.49428
cMILC07	0.0	0.00121	0.00381	0.00903	0.31916
	0.4	0.00122	0.00398	0.00940	0.30630
	1.0	0.00123	0.00425	0.00995	0.28857
cMILC08	0.0	0.00034	0.01593	0.03303	0.02105
	0.4	0.00034	0.01601	0.03320	0.02099
	1.0	0.00034	0.01613	0.03345	0.02083