

2. A

$\begin{array}{ll} Variables & Domains(or unary constraints) \\ C1 & C \end{array}$

C2 B, C C3 A, B.

C3 A, B, CC4 A, B, C

C5 B, C

Constraints:

 $C1 \neq C2$

 $C2 \neq C3$

 $C3 \neq C4$

 $C4 \neq C5$

 $C2 \neq C4$

 $C3 \neq C5$

В.

C.

 $Variable \quad Domain$

C1 C

C2 B

C3 A, C

C4 A, C

C5 B, C

Note that C5 cannot possibly be C, but arc consistency does not rule it out.

D.

C1 = C, C2 = B, C3 = C, C4 = A, C5 = B. One other solution is possible (where C3 and C4 are switched).

- (a) Translate the following sentences in first-order logic.
 - i. Star Trek, Star Wars and The Matrix are science fiction movies.

Answer: $SciFi(StarTrek) \wedge SciFi(StartWars) \wedge SciFi(Matrix)$

ii. Every AI student loves Star Trek or Star Wars.

Answer: $\forall x AIStudent(x) \rightarrow Loves(x, StarTrek) \lor Loves(x, StartWars)$

iii. Some AI students do not love Star Trek.

Answer: $\exists x AIStudent(x) \land \neg Loves(x, StarTrek)$

iv. All AI students who love Star Trek also love The Matrix.

Answer: $\forall x AIStudent(x) \land Loves(x, StarTrek) \rightarrow Loves(x, Matrix)$

v. Every AI student loves some science fiction movie.

Answer: $\forall x AIStudent(x) \rightarrow (\exists y SciFi(y) \land Loves(x,y))$

vi. No science fiction movie is loved by all AI students.

Answer: $\neg(\exists y SciFi(y) \land (\forall x AIStudent(x) \rightarrow Loves(x,y)))$

vii. There is an AI student who loves all science fiction movies.

Answer: $\exists xAIStudent(x) \land (\forall ySciFi(y) \rightarrow Loves(x,y))$

(b) Based on the knowledge base above, prove formally that there exists some AI student who loves Star Wars.

Answer: We can re-write the first statement as:

$$\neg AIStudent(x) \lor Loves(x, StarTrek) \lor Loves(x, StartWars)$$

The second statement can be re-written through skolemization as:

$$AIStudent(X0) \land \neg Loves(X0, StarTrek)$$

By unification and resolution between these two statements, we get:

which proves the conclusion

•	(50	1	_	4 1	· -	• .	T 7	D	41 4	41			
1 (50	nts total	^ 1	nts each) r	v if	Yourselves	Prove	that	the	unicom	19	magical
	00	pus totar,	-	pus caem	,	,	I our serves	. IIOVC	tricit	uic	unicom	10	magical.

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

TT /1		
Use these	propositiona	l variables
Coe miese	proposition.	I THEIR DIES

$\mathbf{H} = \text{unicorn is } \mathbf{H} \mathbf{Y} \text{ threal}$ $\mathbf{H} = \text{unicorn is } \mathbf{H} \text{ orned}$	G = unicorn is moRtal	M = unicorn is a malvimal					
1.a. Convert the English into propositi The first one is done for you as an exan			al form (CNF).				
1.a.1. If the unicorn is mYthical, then it	t is not moRtal.						
S1: Implicative $\underline{Y} \Rightarrow \neg R$	CNF	$(\neg Y \lor \neg R)$	It is OK not				
1.a.2. If the unicorn is not mYthical, then it is moRtal. to put the parentheses							
S2: Implicative $\neg Y \Rightarrow R$	CNF	(Y \leftrightarrow R)	around the				
1.a.3. If the unicorn is not mYthical, then it is a maMmal.							
S3: Implicative $\neg Y \Rightarrow M$	CNF	(Y∨M)	<u>.</u>				
1.a.4. If the unicorn is not moRtal, then it is Horned.							
S4: Implicative $\neg R \Rightarrow H$	CNF	(R∨H)					
1.a.5. If the unicorn is a maMmal, then it is Horned.							
S5: Implicative M => H	CNF	(¬M∨H)	<u>.</u>				
This sentence means the same as, "If the unicorn is maGical if it is Horned."							
S6: Implicative H => G	CNF	(¬H∨G)	<u>.</u>				

expressions from 1.a above to prove that the un	icorn is magical. The first and last steps are done for you.				
1.b.1. The negated goal is S7.	Here you will get full credit if you do				
S7:	the resolution steps correctly based on your answers for the two resolved				
1.b.2. Resolve S6 and S7 to give S8.	sentences (even if those sentences				
S8:	were not correct). I.e., this question asks only that you do the resolution				
1.b.3. Resolve S5 and S8 to give S9.	step correctly, regardless of content.				
S9:					
1.b.4. Resolve S4 and S8 to give S10.					
S10:					
1.b.5. Resolve S3 and S9 to give S11.					
\$11: <u>(Y)</u>					
1.b.6. Resolve S1 and S11 to give S12.					
S12: (¬R)					
1.b.7. Resolve S10 and S12 to give the empty of	lause, thus proving the goal sentence is true.				
S13:					

1.b. (25 pts total, 5 pts each) Resolution Theorem Proving. Use the conjunctive normal form (CNF)