Math 104 Worksheet 1

UC Berkeley, Summer 2021 Monday, June 21

1.	Prove the following consequences of the field properties	Continue	${\rm from}$	the f	irst	step(s	;)
tha	at have been provided for some of the problems.						

(a) If
$$a + c = b + c$$
, then $a = b$.

Proof. Suppose a + c = b + c. Then

$$a = a + 0 = a + (c + (-c)) = \dots$$

(b) $a \cdot 0 = 0$ for all a.

Proof. $0 + a \cdot 0 = a \cdot 0 = a \cdot (0 + 0) = \dots$

(The result should follow by applying assertion (a).)

(c) (-a)b = -ab for all a, b.

Proof. $ab + (-a)b = \dots$

(The result should follow by applying assertion (a).)

(d)
$$-(-a) = a$$
 for all a .

Proof.

(e)
$$(-a)(-b) = ab$$
 for all a, b .

Proof. (Use assertions (c) and (d).)

(f) If ab = 0, then a = 0 or b = 0 for all a, b.

Proof. Suppose that a and b are both nonzero. (Show that $ab \neq 0$ by using assertion (b).)

2.	Prove the following co	onsequences of the p	properties of an	ordered field.	Continue	from	the
firs	st step(s) that have be	en provided for sor	me of the proble	ems.			

(a) If
$$a \leq b$$
, then $-b \leq -a$.

Proof. Suppose that $a \leq b$. Then

$$-b = (a + (-a)) + (-b) = a + ((-a) + (-b)) \le \dots$$

(b) If $0 \le a$ and $0 \le b$, then $0 \le ab$.

Proof.
$$0 = 0 \cdot b \leq \dots$$

(c) $0 \le a^2$ for all a.

Proof. (Consider the two cases $0 \le a$ and $a \le 0$.)

(d)
$$0 < 1$$
.

Proof. (First justify $0 \le 1$, then justify $0 \ne 1$.)

(e) If
$$0 < a$$
, then $0 < a^{-1}$.

Proof. Let 0 < a, and suppose that $a^{-1} \le 0$. Then $0 \le -a^{-1}$ by assertion (a). (Show that $0 \le -1$, a contradiction.)

(f) If
$$0 < a < b$$
, then $0 < b^{-1} < a^{-1}$.

Proof.