Lecture 9: Comparing Groups

What we will do today

- Equivalence between confidence intervals and hypothesis testing
- Chapter 7 (comparing two groups)
 - Comparing means for two groups (e.g., do men get paid more than women)
 - Significance testing
 - Confidence intervals
 - Stata
 - Comparing proportions for two groups (e.g., are women more likely to believe in same-sex marriage than men)
 - Significance testing
 - Confidence intervals
 - Stata

Equivalence between confidence interval and two-sided significance test

Equivalence between confidence interval and two-sided significance test

- 95% confidence interval tells us much of the same information as a **two-sided** significance test with a .05 α (alpha level)
- 99% confidence interval tells us much of the same information as a **two-sided** significance test with a .01 α (alpha level)
- A $(1-\alpha)\%$ confidence interval tells us much of the same information as a two-sided significance test with alpha level= α

Relationship between confidence interval and two-sided significance test

- Show picture
- If p-value<=.05 (i.e., reject H_0)
 - If p-value<=.05 in a two-sided test, a 95% CI for μ does not contain μ_0
 - Equivalently, if 95% CI for μ does not contains μ_0 then we reject H_0
- If p-value>.05 (i.e., do not reject H_0)
 - When p-value>.05 in a two-sided test, the 95% CI for μ contains μ_0 (associated with null hypothesis, H_0)
 - Equivalently, if 95% CI for μ contains μ_0 then we do not reject H_0

CI and significance test

- Application of equivalence between confidence interval and significance testing
- Credit score example
 - Imagine that 95% CI for population mean credit score is 600 to 700
 - Imagine a two-sided hypothesis, alpha level =.05:
 - Would we reject H_0 : $\mu = \mu_0 = 610$?
 - Would we reject H_0 : $\mu = \mu_0 = 720$?

Cls vs. significance tests

- Confidence intervals better than significance tests
 - "Most statisticians believe [significance tests] have been overemphasized in social science research....A test merely indicates whether the particular value in H_0 is plausible. It does not tell us which other potential values are plausible. The confidence interval, by contrast, displays all plausible potential values. It shows the extent to which H_0 may be false by showing whether the values in the interval are far from the H_0 value." (Agresti, p. 164)

Chapter 7: Comparing Groups

What we have done; where we are going

- Where we have been: Chapters 5 and 6
 - What is the value of a population mean (quantitative)
 - Significance testing; confidence intervals
 - What is the value of a population proportion (0/1 variable)
 - Significance testing; confidence intervals
- Where we are going: Chap 7 (comparing two groups)
 - Comparing means for two groups (e.g., do men get paid more than women)
 - Significance testing; Confidence intervals; Stata
 - Comparing proportions for two groups (e.g., are women more likely to believe in same-sex marriage than men)
 - Significance testing; Confidence intervals; Stata

Comparing groups: independent and dependent variable

- We want to know whether the population mean for one group is bigger than the population mean for another group
- Research question:
 - Is the mean number of hours worked by men different than mean number of hours worked by women?
 - What is the dependent variable ("outcome variable")?
 - What is the independent variable (variable that affects the outcome variable?
- Today we learn methods to compare values of dependent variable, when independent variable only has *two* groups
 - E.g., we can't answer whether mean number of hours worked differs across, White, Black, Hispanic, Asian because more than two categories

Independent and dependent variable

- What is independent and dependent variable? Is dependent variable quantitative or 0/1 categorical?
 - Do people who take an SAT prep course have higher SAT scores than people who don't?
 - Are women more likely to vote for Obama than men?
 - Do out-of-state students have higher GPA than in-state students?
 - Does using Old Spice deodorant increase swagger?
 - Does belief in abortion rights differ between democrats and republicans?

Independent vs. Dependent Samples

- Methods for comparing the means or proportions of two groups differ depending on whether you have an "independent" or "dependent" sample
 - an entirely different concept than independent or dependent variable; today we will focus on "independent" samples
- Independent samples (focus of today's class)
 - Observations in one sample are independent of those in other sample; no matching between one sample and the other sample
 - Examples: (A) are Americans more likely to be married than
 French?; (B) do private colleges charge higher tuition than public
- Dependent samples (next class)
 - Natural matching occurs between each subject in one sample and a subject in another sample, often because each sample has same subjects
 - Examples: (A) does cancer treatment work (before and after); (B) does a college have higher tuition in 2010 than 2000;

Comparing two means

(1) Significance tests

(2) Confidence intervals

- Same steps as before
 - (1) Assumptions
 - Dependent variable is quantitative; random sampling; sufficient sample size
 - (2) Hypotheses
 - (3) Test statistic
 - (4) P-value
 - (5) conclusion

- Specific research question:
 - is the population mean number of hours worked for women, μ_1 , different than population mean number of hours worked for men, μ_2 ?
- Null Hypothesis
 - $-H_0$: $\mu_2 = \mu_1$
- Alternative hypothesis (two-sided)
 - $-H_a: \mu_2 \neq \mu_1$
- Show pictures

- What is our general strategy for comparing two means?
 - Instead of thinking of two separate parameters, μ_1 and μ_2 , we think of $(\mu_2 \mu_1)$ as a single parameter.
 - If the parameter $(\mu_2 \mu_1) \neq 0$, then we know that the parameter μ_2 is not equal to the parameter μ_1
- Null Hypothesis
 - $-H_0$: $\mu_2 = \mu_1$
 - Same as this: H_0 : $\mu_2 \mu_1 = 0$
- Alternative
 - H_a : $\mu_2 \neq \mu_1$
 - Same as this: H_a : $\mu_2 \mu_1 \neq 0$

- The parameter μ_1 has a sampling distribution
 - Each observation in the sampling distribution is some sample mean \overline{y}_1
- The parameter μ_2 has a sampling distribution
 - Each observation in the sampling distribution is some sample mean \bar{y}_2
- The parameter $(\mu_2 \mu_1)$ has a sampling distribution
 - What is each observation in this sampling distribution?
- Show picture

Hypothesis testing

- (2) Hypotheses
 - $-H_0$: $\mu_2 \mu_1 = 0$
 - $-H_a$: $\mu_2 \mu_1 \neq 0$
- (3) Test statistic
 - We test the hypotheses under the assumption that the null hypothesis is true
 - What does sampling distribution of $(\mu_2 \mu_1)$ look like assuming H_0 is true?
 - Test:
 - How many standard errors is the sample mean we observed $(\bar{y}_2 \bar{y}_1)$ away from the sample mean associated with the null hypothesis $(\mu_2 \mu_1 = 0)$?
 - What does standard error of $(\bar{y}_2 \bar{y}_1)$ represent?
- Show picture

Comparing two means (test statistic)

Test statistic for value of pop mean (chap 6)

$$-$$
 t $=$ $\frac{\bar{y}-\mu_0}{se}$; (i.e., how many standard errors \bar{y} is from μ_0)

• General test statistic formula (means, proportions)

$$-t = \frac{point\ estimate\ -null\ hypothesis\ value}{standard\ error}$$

Test statistic for comparing two means (chap 7)

$$-t = \frac{(\bar{y}_2 - \bar{y}_1) - 0}{se}$$
; where, $se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

- s_1 = sample std dev for group 1; s_2 = sample std dev for group 2
- n_1 =group 1 sample size; n_2 = group 2 sample size
- What does se represent?

Comparing two means (test statistic)

- Hours worked data
 - Women (group 1): $\bar{y}_1 = 37.60$; $n_1 = 1501$; $s_1 = 13.94$
 - Mean (group 2): $\bar{y}_2 = 43.76$; $n_2 = 1319$; $s_2 = 15.18$
- Test statistic for comparing two means (chap 7)

$$-t = \frac{(\bar{y}_2 - \bar{y}_1) - 0}{se}; \quad where, se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

- s_1 = sample std dev for group 1; s_2 = sample std dev for group 2
- n_1 =group 1 sample size; n_2 = group 2 sample size
- Calculations

$$-se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_1}} = \sqrt{\frac{13.94^2}{1501} + \frac{15.18^2}{1319}} = .5515$$

$$-t = \frac{(\bar{y}_2 - \bar{y}_1) - 0}{se} = \frac{(43.76 - 37.60) - 0}{.5515} = \frac{6.16}{.5515} = 11.2$$

Comparing two means (p-value)

- P-value
 - t = 11.2
 - Two-sided alternative hypothesis:
 - P-value=Probability of randomly choosing a sample mean and having t-score greater than 11.2 + probability of randomly choosing a sample mean and having t-score less than -11.2
 - P-value=pr(t>11.2)+pr(t<-11.2)
 - Use z-score table, probability is essentially 0
 - Show picture
- Conclusion
 - Reject H_0 and accept H_a

Note on standard error

Se for mean, one group (s=sample std. dev)

$$-se = \frac{s}{\sqrt{n}}$$
; therefore, $se^2 = \left(\frac{s}{\sqrt{n}}\right)^2$

For two groups

$$-se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\left(\frac{s_1}{\sqrt{n_1}}\right)^2 + \left(\frac{s_2}{\sqrt{n_2}}\right)^2} = \sqrt{(se_1)^2 + (se_2)^2}$$

- s_1 = sample std dev for group 1; s_2 = sample std dev for group 2
- n_1 =group 1 sample size; n_2 = group 2 sample size

Confidence interval for comparing two means

- Confidence interval for μ
 - e.g., we are 95% confident that the population mean number of hours worked lies somewhere between 39.93 and 41.03
- Confidence interval for $(\mu_2 \mu_1)$
 - e.g., We are 95% confident that the weekly number of hours worked is between 5.09 and 7.24 higher for men than women
- Show pictures

CI for comparing two means

- Confidence interval for μ
 - $-\bar{y} \pm z * se;$
 - where $se = s/\sqrt{n}$;
- Confidence interval for $(\mu_2 \mu_1)$

$$-(\bar{y}_2-\bar{y}_1)\pm z*se$$

$$-where, se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

- s_1 = sample std dev for group 1; s_2 = sample std dev for group 2
- n_1 =group 1 sample size; n_2 = group 2 sample size

CI for comparing two means

- Hours worked data
 - Women (group 1): $\bar{y}_1 = 37.60$; $n_1 = 1501$; $s_1 = 13.94$
 - Mean (group 2): $\bar{y}_2 = 43.76$; $n_2 = 1319$; $s_2 = 15.18$
- Confidence interval for $(\mu_2 \mu_1)$

$$-(\bar{y}_2 - \bar{y}_1) \pm z * se; se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = .55$$
 (last example)

- 95% CI (z=1.96)
 - $-43.76 37.60 \pm 1.96 * .55 = 6.16 \pm 1.078$
 - Lower=6.16-1.078=5.082; upper=6.16+1.078=7.238
 - e.g., We are 95% confident that the weekly number of hours worked is between 5.082 and 7.238 higher for men than women

Note on CI and confidence intervals

- If your confidence interval does not include zero
 - Then you would reject H_0 : $\mu_2 \mu_1 = 0$
 - If confidence level=(1 alpha-level)
 - E.g., 95% and .05 alpha level
- If your confidence interval includes zero
 - Then you would not reject H_0 : $\mu_2 \mu_1 = 0$
 - If confidence level=(1 alpha-level)
 - E.g., 95% and .05 alpha level

In-class exercises

Question

- We sampled SAT score of 400 men ($\bar{y}_1 = 1000$; $s_1 = 100$) and we sampled SAT scores of 484 women($\bar{y}_2 = 1030$; $s_2 = 120$)
- (1) test the alternative hypothesis that mean SAT score is higher for women than men
- (2) Calculate a 99% CI for difference in SAT scores between men and women
- You can assume that the assumptions were satisfied

Answer (significance test)

- (2) hypotheses (men=group 1; women=group2)
 - $-H_0$: $\mu_2 \mu_1 = 0$; H_a : $\mu_2 \mu_1 > 0$
- (3) test statistic

$$-se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{100^2}{400} + \frac{120^2}{484}} = \sqrt{25 + 29.75} = 7.40$$
$$-t = \frac{(\bar{y}_2 - \bar{y}_1) - 0}{se} = \frac{1030 - 1000}{7.4} = \frac{30}{7.4} = 4.05$$

- (4) p-value (one-sided hypothesis)
 - p-value=pr(t>4.05)
 - Using z-score table: pr(z > 4.05) = .0000317
- (5) conclusion
 - P-value of .0000317 is less than alpha level of .05
 - Reject H_0 ; accept H_a : mean SAT score is higher for women than men

Answer (99% confidence interval)

- men=group 1; women=group 2
- Confidence interval for $(\mu_2 \mu_1)$

$$-(\bar{y}_2 - \bar{y}_1) \pm z * se; se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

- 99% CI
 - z=2.58 (from z-score table); se=7.4 (from significance test example)
 - $-(\bar{y}_2 \bar{y}_1) \pm z * se = 1030 1000 \pm 2.58 * 7.4$
 - $= 30 \pm 19.09 = 10.91 to 40.09$
 - We are 99% confident that population mean SAT score is between 10.91 to 40.09 higher for women than men

Comparing two proportions

(1) Significance tests

(2) Confidence intervals

Comparing two proportions (significance tests)

- Significance tests for comparing two proportions
 - (1) assumptions
 - Outcome variable is a 0/1 variable; random assignment; sufficient sample size (at least 10 observations in each category for group 1, at least 10 obs in each category for group 2)
 - (2) hypotheses
 - (3) test statistic
 - (4) p-values
 - (5) conclusion

Comparing two proportions (significance tests)

- Research question:
 - Is the population proportion of men (π_1) who voted for Obama in 2008 equal the population proportion of women (π_2) who voted for Obama in 2008
 - Show sample proportions
- (2) Use two-sided alternative hypothesis, ($\alpha = .05$)
 - $-H_0$: $\pi_1 = \pi_2$ same as H_0 : $\pi_2 \pi_1 = 0$
 - $-H_a$: $\pi_1 \neq \pi_2$ same as H_0 : $\pi_2 \pi_1 \neq 0$
- (3) Testing strategy
 - Think of $(\pi_2 \pi_1)$ as a single parameter; draw sampling distribution assuming $(\pi_2 \pi_1) = 0$; calculate how likely it would be to observe $(\hat{\pi}_2 \hat{\pi}_1)$ if the H_0 was true
 - show picture of sampling dist

(3) Test statistic

•
$$z = \frac{estimate - null \ hypothesis \ value}{null \ standard \ error} = \frac{(\widehat{\pi}_2 - \widehat{\pi}_1) - 0}{se_0}$$

- se_0 = sample standard error assuming H_0 is true
 - If H_0 is true, then there is only one proportion (i.e., $\pi_1 = \pi_2 = \pi$)

$$-se_0 = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n_1} + \frac{\hat{\pi}(1-\hat{\pi})}{n_2}} = \sqrt{\hat{\pi}(1-\hat{\pi})(\frac{1}{n_1} + \frac{1}{n_2})}$$

- $-\hat{\pi} = pooled proportion$
- $-\hat{\pi} = \frac{\text{total "successes" in sample_1 and sample_2}}{\text{total sample size in sample_1 and sample_2}}$

Test statistic, P-value, conclusion

- (3) Test statistic
 - pooled proportion = $\hat{\pi} = \frac{1972}{3378} = .5838$

•
$$se_0 = \sqrt{\hat{\pi}(1-\hat{\pi})(\frac{1}{n_1}+\frac{1}{n_2})} = \sqrt{.5838(1-.5838)(\frac{1}{1,440}+\frac{1}{1,938})}$$

•
$$se_0 = \sqrt{(.2430) * (.00121)} = .01715$$

$$-z = \frac{(\hat{\pi}_2 - \hat{\pi}_1) - 0}{se_0} = \frac{.6161 - .5403}{.01715} = \frac{.0758}{.01715} = 4.42$$

- (4) P-value (two-sided H_a)
 - P-value=pr(z>4.42)+pr(z<-4.42)=.0000034+.0000034
- (5) conclusion
 - P-value is less than .05; reject H_0 ; accept H_a

Confidence intervals, comparing proportions

- Confidence interval for π (one sample)
 - $-\hat{\pi} \pm z(se);$
 - where $se = \sqrt{\frac{\widehat{\pi}(1-\widehat{\pi})}{n}}$
- Confidence interval for $(\pi_2 \pi_1)$ (two samples)
 - $-(\hat{\pi}_2 \hat{\pi}_1) \pm z(se)$

$$-se = \sqrt{\frac{\hat{\pi}_1(1-\hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1-\hat{\pi}_2)}{n_2}} = \sqrt{(se_1)^2 + (se_2)^2}$$

- Note we do not use se_0 because we are not assuming that $\pi_2 \pi_1 = 0$
 - Where, $se_0 = \sqrt{\frac{\widehat{\pi}(1-\widehat{\pi})}{n_1} + \frac{\widehat{\pi}(1-\widehat{\pi})}{n_2}}$

Example: CI comparing proportions

Data

- Group 1=men: $n_1 = 1,440$; $\hat{\pi}_1 = \frac{778}{1440} = .5403$
- Group 2=women: $n_2 = 1,938$; $\hat{\pi}_2 = \frac{1,194}{1,938} = .6161$

$$-se = \sqrt{\frac{\hat{\pi}_1(1-\hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1-\hat{\pi}_2)}{n_2}} = \sqrt{\frac{.5403(1-.5403)}{1,440} + \frac{.6161(1-.6161)}{1,938}}$$

- $-se = \sqrt{.000172 + .000122} = .017162$
- 95% Confidence interval for $(\pi_2 \pi_1)$ (two samples)

$$-(\hat{\pi}_2 - \hat{\pi}_1) \pm z(se) = (.6161 - .5403) \pm 1.96 * .01716$$

- $= .0758 \pm .0336 = .0422 to .1094$
- We are 95% confident that proportion voting for Obama in 2008 is between .0422 to .1094 higher for women than men

(Fictitious) in-class exercise

- Research question
 - 93 out of 186 men (group 1) play video games; 90 out of
 200 women (group 2) play video games
 - Is the population proportion of men who play video games, π_1 , different than proportion of women who play video games, π_2 ?
 - Test using two-sided alternative hypothesis with alpha level=.05

Answer

• (2) Hypotheses

$$-H_0$$
: $\pi_2 - \pi_1 = 0$; H_a : $\pi_2 - \pi_1 \neq 0$

• (3) Test statistic

•
$$\hat{\pi}_1 = \frac{93}{186} = .5; \hat{\pi}_2 = \frac{90}{200} = .45$$

•
$$\hat{\pi} = \frac{\text{total "successes" in } s_1 \text{ and } s_2}{\text{total sample size in } s_1 \text{ and } s_2} = \frac{93+90}{186+200} = .4741$$

•
$$se_0 = \sqrt{\hat{\pi}(1-\hat{\pi})(\frac{1}{n_1}+\frac{1}{n_2})} = \sqrt{.4741(1-.4741)(\frac{1}{186}+\frac{1}{200})} = .0509$$

•
$$z = \frac{(\hat{\pi}_2 - \hat{\pi}_1) - 0}{se_0} = \frac{(.45 - .50) - 0}{.0509} = \frac{-.05}{.0509} = -.98$$

- (4) p-value
 - One-sided p-value with z=-.98 is .1635
 - Two-sided p-value= .1635*2=.327
- (5) Conclusion
 - P-value of .327 is not less than .05; do not reject H_0

Comparing (Independent) groups in Stata

(1) Means

(2) proportions

Comparing two Groups in Stata

- Means (quantitative variables)
 - Significance tests and CIs
- Proportions (0/1 categorical variables)
 - Significance tests and Cis
- Open the dataset in this link:
 - https://www.dropbox.com/s/nxz8zlpf7dj48w8/gss-2010-big-comparing-groups.dta
 - Note: this dataset is different than last week; it will not work if you use the dataset from last week

Comparing means

- Research question:
 - Does mean number of hours worked by women differ than mean number of hours worked by mn?
- Get to know your data
 - describe sex hrs1
 - tab sex
 - sum hrs1
 - sum hrs1 if sex==1
 - sum hrs1 if sex==2
- Side note on "operators"
 - help operators
 - sum hrs1 if age<=25</pre>
 - sum hrs1 if age>25 & age<=65

Comparing means

- Is hours worked different for women and men?
- ttest command syntax (same command as before)
 - Compare one variable for two different groups
 - ttest varname, by(group-varname) [options]
 - Important options
 - unequal: assumes that the two groups have unequal variances
 - level(#): what confidence level on confidence interval (e.g., level(99))
- Conduct significance test
 - ttest hrs1, by(sex) unequal
 - Show output in OneNote
- Conduct significance test (99% CI)
 - ttest hrs1, by(sex) level(99) unequal

Comparing proportions

- Research question
 - Is the proportion of men who voted for Obama in 2008 different than proportion of women who voted for Obama in 2008?
- Get to know your data
 - describe sex male obama08
 - tab sex
 - tab male
 - tab obama08
 - tab obama08 male
 - tab obama08 male, col

Comparing proportions

- Is the proportion of men who voted for Obama in 2008 different than proportion of women who voted for Obama in 2008?
- Compare one variable for two different groups
 - prtest varname, by(group-var-name) [options]
 - Important options:
 - level(#): specify confidence level for confidence interval
- Conduct prtest
 - prtest obama08, by(male)
 - Show output in OneNote
 - prtest obama08, by(male) level(99)
 - prtest obama08, by(sex)

Decisions and Decision Errors

Decisions and Errors

- Type 1 error
 - Probability of rejecting H_0 when H_0 is true
 - Example:
 - Null hypothesis: Amanda Knox is innocent
 - Truth: Amanda Knox is innocent
 - Type 1 error: jury finds Amanda Knox guilty, when in fact she is innocent
- Type 2 error
 - Probability of not rejecting H_0 when H_0 is false
 - Example
 - Null hypothesis: Amanda Knox is innocent
 - Truth: Amanda Knox is guilty
 - Type 1 error: jury finds Amanda Knox innocent, when in fact she is guilty

Decisions and Errors

- Type 1 error
 - Probability of rejecting H_0 when H_0 is true
- Type 2 error
 - Probability of not rejecting H_0 when H_0 is false

Truth (usually unknown)	Decision	
	Reject H ₀	Do not reject H_0
H_0 is true	Type I error	Correct decision
H_0 is false	Correct Decision	Type II error

Type 1 error (optional slide)

- Type 1 error
 - Probability of rejecting H_0 when H_0 is true
- Type 2 error
 - Probability of not rejecting H_0 when H_0 is false
- Prior to conducting test, decide your tolerance for Type 1 error
 - probability of Type 1 error is alpha-level (i.e., rejection region) for test
 - Example: H_0 : proportion of public institutions=.4
 - Alpha=.05, willing to accept 5% chance that we reject H_0 when H_0 is true.

Statistical vs. Practical Significance

t-test

$$-t = \frac{\bar{y} - \mu_0}{se}; se = \frac{sample \ std.dav}{\sqrt{n}}$$
$$-\uparrow n \rightarrow \downarrow se \rightarrow \uparrow t$$

- Example in Stata
 - $-H_0$:Proportion public=.29; (a) population (b) sample
- When you have a big enough sample, every relationship is significant
 - Example of research on English FE Colleges
- Funny business:
 - When sample sizes big, look for "strong" relationships

Statistical vs. Practical Significance

- The too small sample size problem
 - Cannot detect significant relationships even if those relationships are extremely strong in the population
- The too big sample size problem
 - Even the most trivial relationship is significant
 - Growing problem with more "administrative" data
- This is another reason to prefer confidence intervals over significance tests
 - For sample size too small: CI shows population relationship could be quite large
 - For sample size too big: CI shows that population relationship is very small.