Lecture 41 Monte Carlo Simulation, Bootstrapping And Permutation Test

BIO210 Biostatistics

Xi Chen Spring, 2023

School of Life Sciences
Southern University of Science and Technology

Monte Carlo Simulations

Casino de Monte-Carlo, picture taken on 26 Dec 2017.

A Little History About Monte Carlo Simulations

Stanislaw Ulam

John von Neumann

ENIAC

Code name: Monte Carlo

https://en.wikipedia.org/wiki/Monte_Carlo_method

A Monte Carlo Simulation To Calculate π

- Monte Carlo Simulation: a method of solving deterministic problems using a probabilistic analog.
- An example to calculate π using Monte Carlo Simulation.

A Monte Carlo Simulation To Calculate π

Number of dots	Estimated π
10	2.0
100	3.0
1,000	3.124
10,000	3.1276
100,000	3.14112
1,000,000	3.141772
10,000,000	3.14163332
100,000,000	3.141831323

Buffon's Needle

- First Posed by Georges-Louis Leclerc, Comte de Buffon in 1733, and reproduced with solution in 1777.
- Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floor. What is the probability that the needle will lie across a line between two strips?

Buffon's Needle

We have two random variables: $X,\ \Theta$ to describe the position of the needle:

$$0 \leqslant x \leqslant \frac{d}{2}$$
$$0 \leqslant \theta \leqslant \frac{\pi}{2}$$

Marginal PDF of
$$\boldsymbol{X}$$
 and $\boldsymbol{\Theta}$: $f_{\boldsymbol{X}}(x) = \frac{2}{d}, \ f_{\boldsymbol{\Theta}}(\theta) = \frac{2}{\pi}$

Joint PDF of
$$X$$
 and Θ : $f_{X,\Theta}(x,\theta) = f_X(x)f_{\Theta}(\theta) = \frac{4}{\pi d}$

 $A = \{$ the needle lies across a line between two strips $\}$

Event $A\Leftrightarrow \operatorname{red}$ is shorter than blue $\Leftrightarrow 0\leqslant \mathbf{x}\leqslant \frac{l\cdot\sin\theta}{2}$

$$P(A) = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{l \cdot \sin \theta}{2}} f_{\mathbf{X}, \mathbf{\Theta}}(x, \theta) dx d\theta = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{l \cdot \sin \theta}{2}} \frac{4}{\pi d} dx d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \left[\frac{4}{\pi d} \cdot x \right]_{0}^{\frac{l \cdot \sin \theta}{2}} d\theta = \int_{0}^{\frac{\pi}{2}} \frac{2l \cdot \sin \theta}{\pi d} d\theta = \frac{2l}{\pi d} \int_{0}^{\frac{\pi}{2}} \sin \theta d\theta = \frac{2l}{\pi d}$$

Buffon's Needle - Monte Carlo simulations to estimate π

Number of needles	Estimated π
10	3.333333
100	3.125
1,000	3.333333
10,000	3.22684737
100,000	3.13293023
1,000,000	3.14433768
10,000,000	3.14071042
100,000,000	3.14148011

Overlap of Transcription Factors

Overlap of OCT4 And CTCF In mESC

Bootstrapping

- Point/interval estimation of mean/median *etc*. from a population with very little information.
- How? Bootstrapping methods.

parametric bootstraps nonparametric bootstraps weighted bootstraps

Steps of Bootstrapping

- 1. Replace the population with the sample
- 2. Sample with replacement B times. B should be large, say 1,000
- 3. Compute sample means/medians each time, M_i
- 4. Obtain the approximate distribution of the sample mean/median

Bootstrapping Example

Original s	ample ((n =	25

3.58 2.	27 9.	96 13.13	1
1.33 10	.54 10	.02 9.13	
5.02 5 .	17 15	.14 11.14	1
.32 10	.68 17	.42 4.6	
.28 11	.33 21	.92 15.62	2
	1.33 10 6.02 5. 32 10	1.33 10.54 10. 6.02 5.17 15. .32 10.68 17.	1.33 10.54 10.02 9.13 6.02 5.17 15.14 11.14 .32 10.68 17.42 4.6

sampling with replacement with the same sample size n=25

Bootstrapping sample #1 (n=25)

15.62	15.62	17.42	5.17	11.33
2.27	10.02	12.23	15.14	15.62
12.23	11.33	11.33	1.28	12.17
11.33	16.02	4.32	5.17	16.66
11.33	10.68	12.23	5.17	10.02

Bootstrapping sample #2 (n=25)

6.4	21.92	12.23	13.58	9.13
17.42	9.13	6.4	21.92	13.58
16.66	10.54	15.62	9.13	9.13
11.14	10.02	0.11	11.14	4.32
0.11	9.13	17.42	10.02	21.92

.

Bootstrapping sample #10,000 (n = 25) 21.92 15.14 17.42 16.02 4.32 0.11 12.17 10.54 15.14 16.66 15.62 13.11 15.62 11.33 15.62 6.4 15.14 15.62 9.13 15.14

2.27

12.17

16.66

12.23

2.27

Bootstrapping - Point And Interval Estimation

Distribution of Means of 10,000 Bootstrapping Samples

Permutation Tests

$$H_0: \mu_X - \mu_Y = 0$$

 $H_1: \mu_X - \mu_Y \neq 0$

Test statistic: $\bar{x} - \bar{y} = 3.68$

How to assess statistic significance?

Using permutation (shuffle the group labels):

$$\binom{40}{22} = 113,380,261,800$$

Permutation #1
$$d_2 = \overline{x_2} - \overline{y_2}$$

Permutation #1

 $d_3 = \overline{x_3} - \overline{y_3}$

00

000

Permutation Tests - p-value Calculation

Distribution of 10,000 Differences (d_1 to d_{10000})

p-value: probability of seeing the observation or more extreme given that H_0 is true!

$$p_{\rm one\text{-}sided} = \frac{\# \text{ of simulations} \geqslant 3.68}{\text{total } \# \text{ of simulations}}$$

$$p_{\mathrm{two\text{-}sided}} = 2 \times p_{\mathrm{one\text{-}sided}}$$