Ch. 7: Parameter estimation

- ► Suppose we want to fit an ARMA model to a time series of interest: how to estimate the parameters of the ARMA model?
- ▶ Material part I: Ch.7.1-7.3 (7.2 is optional).

Overview of parameter estimation methods

▶ Given an observed time series $Y_1, ..., Y_n$, and an assumed ARMA model for the data, e.g.

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + e_{t} -\theta_{1}e_{t-1} - \theta_{2}e_{t-2} - \dots - \theta_{q}e_{t-q},$$

how to estimate the ϕ 's and the θ 's?

- Various approaches:
 - Method of moments (MoM) (Ch. 7.1)
 - Least-squares (LS) estimation (Ch. 7.2, optional)
 - Maximum likelihood (ML) estimation (Ch. 7.3)
 - Bayesian inference Unfortunately not covered in this book, maybe covered if we have sufficient time.
- ► Easy example for illustration: For an AR(1) model $Y_t = \phi Y_{t-1} + e_t$, there are two unknown parameters ϕ and σ_e^2 . How can we estimate those parameters?

Method of moments (MoM)

- ► A very general/simple estimation method.
- ► As the name suggests: Estimate parameters by setting the sample moments equal to theoretical moments.
- ▶ Given a time series, we can estimate
 - the variance γ_0 by the sample mean s^2 :

$$\hat{\gamma}_0 = s^2 = \frac{1}{n-1} \sum_{t=1}^n (Y_t - \bar{Y})^2,$$

- ▶ the ACF ρ_k by the sample ACF r_k , and use those estimates to estimate model parameters.
- Example:
 - For an AR(1) model $Y_t = \phi Y_{t-1} + e_t$, the unknown parameters ϕ and σ_e^2 relate to the variance and ACF as follows: $\rho_1 = \phi$ and $\sigma_e^2 = (1 \rho^2)\gamma_0$.
 - MoM estimation for the AR(1) model: Set $\hat{\phi} = \hat{\rho}_1 = r_1$ and $\hat{\gamma}_0^2 = s^2$ to obtain $\hat{\sigma}_e^2 = (1 - r_1^2)s^2$.

MoM for an AR(p) model

▶ Remember the Yule-Walker equations from Ch.4:

$$\begin{split} \rho_1 &= \phi_1 + \phi_2 \rho_1 + \phi_3 \rho_2 + \dots + \phi_p \rho_{p-1} \\ \rho_2 &= \phi_1 \rho_1 + \phi_2 + \phi_3 \rho_1 + \dots + \phi_p \rho_{p-2} \\ &\vdots \\ \rho_p &= \phi_1 \rho_{p-1} + \phi_2 \rho_{p-2} + \phi_3 \rho_{p-3} + \dots + \phi_p \end{split}$$

• Using $\hat{\rho}_k = r_k$, we can find estimates $\hat{\phi}_1, \hat{\phi}_3, \dots, \hat{\phi}_p$ by solving

For σ_e^2 we know that

$$\sigma_e^2 = (1 - \phi_1 \rho_1 - \phi_2 \rho_2 - \dots - \phi_p \rho_p) \gamma_0,$$

thus how to obtain $\hat{\sigma}_{\mathbf{g}}^2$?

MoM for MA-models

- ▶ For MA-models, it's more work to derive MoM estimates.
- ▶ Also, for a given sample autocorrelation function, you may end up with a non-invertible solution, so you will have to figure out which one is the invertible solution and use that one.
- Main drawback: the MoM estimator is not very efficient for MA models (it has a larger sampling variance than other estimators).

Illustration of performance of MoM estimators

- ► Table below shows for a number of AR and MA models
 - the true parameters that were used in simulating a time series from that model,
 - ▶ the sample size *n* used in the simulation,
 - ▶ the parameter estimates obtained with MoM estimation.
- Conclusion?
- Note: For the MA(1), we discussed that $|\rho_1| < 0.5$. For an observed time series with $|r_1| > 0.5$, we cannot find (real) parameter estimates for the MA(1) model.

	True Parameters			Method-of-Moments Estimates				
Model	θ	ϕ_1	ϕ_2	θ	ϕ_1	ϕ_2	n	
MA(1)	-0.9			-0.554			120	
MA(1)	0.9			0.719			120	
MA(1)	-0.9			NA^{\dagger}			60	
MA(1)	0.5			-0.314			60	
AR(1)		0.9			0.831		60	
AR(1)		0.4			0.470		60	

6/15

Maximum likelihood (ML) estimation

- Note: so far we did not make any assumptions about the probability distribution of Y_t ; we only used information on its moments.
- ▶ The advantages of ML estimators are:
 - We use all information in the data (not just the information on the first and second moments),
 - We can use large sample results for ML estimators,
 - ML estimators turn out to perform better than MoM estimators for MA-processes, and have the same large sample properties for AR-processes.
- To use ML estimation, we do need to specify probability distributions.
- We will assume that white noise and the Y_t 's are normally distributed unless otherwise specified.

Brief review on ML estimation

- Definition of a likelihood function L given a data set: L = Joint probability density function for obtaining the data actually observed.
 - ▶ E.g., if $Z_i \sim N(\mu, \sigma^2)$, independent for i = 1, ..., n, then the likelihood function based on observded $z_1, z_2, ..., z_n$ is given by

$$f(z_1, \dots, z_n) = \prod_{i=1}^n f(z_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (z_i - \mu)^2\right) (1)$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (z_i - \mu)^2\right), \tag{2}$$

where $f(z_1, ..., z_n)$ refers to the joint probability density function for all the Z's combined, and $f(z_i)$ to the density function for Z_i .

For parameter estimation, we consider L as a function of the unknown parameters, given the observed data, $L(\mu, \sigma^2) = f(z_1, \dots, z_n)$.

Brief review on ML estimation (ctd)

- For parameter estimation, we consider L as a function of the unknown parameters, given the observed data, $L(\mu, \sigma^2) = f(z_1, \ldots, z_n)$, and the values for the unknown parameters that maximize $L(\mu, \sigma^2)$ are called the ML estimates.
- ▶ Interpretation: ML estimates are those values of the parameters for which the data actually observed are most likely.

ML estimation for time series

- ▶ The idea is simple: given $Y_1, ..., Y_t$, we want to find those parameters of the ARMA(p, q) model that maximize the likelihood function $f(y_1, ..., y_n)$.
- ▶ However, dealing with the Y_t 's directly is complicated because of the autocorrelation: $f(y_1, ..., y_n) \neq \prod_{i=1}^n f(y_i)$.
- We can always write down the joint distribution for $(Y_1, Y_2, ..., Y_n)$ but it turns out that calculating the covariance matrix and its inverse can be avoided; simpler forms for the likelihood function are available.
- We discuss one approach for the AR(1) model with mean $E(Y_t) = \mu$.

ML estimation for the AR(1)-model

▶ Some info to start with: remember that we can always write

$$f(y_2, y_1) = f(y_2|y_1)f(y_1),$$

$$f(y_2, y_2, y_1) = f(y_3, y_2|y_1)f(y_1),$$

$$= f(y_3|y_2, y_1)f(y_2|y_1)f(y_1),$$

•

etc., even if the Y's are dependent.

▶ E.g., when n = 4:

$$f(y_4,...,y_1) = f(y_4,...,y_2|y_1)f(y_1),$$

$$= f(y_4,y_3|y_2,y_1)f(y_2|y_1)f(y_1),$$

$$= f(y_4,y_3|y_2,y_1)f(y_2|y_1)f(y_1),$$

$$= f(y_4|y_3,y_2,y_1)f(y_3|y_2,y_1)f(y_2|y_1)f(y_1).$$

► How does that help us to write down the likelihood function for the AR(1) model?

ML estimation for the AR(1)-model

▶ For AR(1) with mean μ :

$$Y_{t+1} = \mu + \phi(Y_t - \mu) + e_{t+1}, \tag{3}$$

$$Y_{t+1}|(Y_t = y_t, Y_{t-1} = y_{t-1}, \ldots) = \mu + \phi(y_t - \mu) + e_{t+1},$$
 (4)

$$|Y_{t+1}|(Y_t = y_t, Y_{t-1} = y_{t-1}, ...) \sim N(\mu + \phi(y_t - \mu), \sigma_e^2),$$
 (5)

thus for any t > 1:

$$f(y_{t+1}|y_t, y_{t-1}, ...) = \frac{1}{\sqrt{2\pi\sigma_e^2}} \exp\left(-\frac{1}{2\sigma_e^2}(y_{t+1} - \mu - \phi(y_t - \mu))^2\right)$$
 (6)

For Y_1 , we know

$$Y_1 \sim N(\mu, \sigma_e^2/(1 - \phi^2)),$$
 (7)

$$f(y_1) = \frac{1}{\sqrt{2\pi\sigma_e^2/(1-\phi^2)}} \exp\left(\frac{-1}{2\sigma_e^2/(1-\phi^2)}(y_1-\mu)^2\right).$$
 (8)

ML estimation for the AR(1)-model

▶ Putting the equations together:

$$f(y_t, \dots, y_1) = f(y_t | y_{t-1}, \dots, y_1) \cdots f(y_2 | y_1) f(y_1),$$

$$f(y_{t+1} | y_t, y_{t-1}, \dots, y_1) = \frac{1}{\sqrt{2\pi\sigma_e^2}} \exp\left(-\frac{1}{2\sigma_e^2} (y_{t+1} - \mu - \phi(y_t - \mu))^2\right)$$

$$f(y_1) = \frac{1}{\sqrt{2\pi\sigma_e^2/(1-\phi^2)}} \exp\left(\frac{-1}{2\sigma_e^2/(1-\phi^2)} (y_1 - \mu)^2\right),$$

gives

$$\begin{split} L(\phi,\mu,\sigma_e^2) &= \prod_{t=2}^n f(y_t|y_{t-1},y_{t-2},\dots,y_1)f(y_1), \\ &= (2\pi\sigma_e^2)^{-n/2}(1-\phi^2)^{1/2}\exp\left(-\frac{1}{2\sigma_e^2}S(\phi,\mu)\right), \text{ with} \\ S(\phi,\mu) &= (1-\phi^2)(y_1-\mu)^2 + \sum_{t=2}^n ((y_t-\mu)-\phi(y_{t-1}-\mu))^2. \end{split}$$

ML estimation for the AR(1)-model (ctd)

From previous slide:

$$L(\phi, \mu, \sigma_e^2) = (2\pi\sigma_e^2)^{-n/2} (1 - \phi^2)^{1/2} \exp\left(-\frac{1}{2\sigma_e^2} S(\phi, \mu)\right), \text{ with}$$

$$S(\phi, \mu) = (1 - \phi^2)(y_1 - \mu)^2 + \sum_{t=2}^n ((y_t - \mu) - \phi(y_{t-1} - \mu))^2.$$

- ▶ $S(\phi, \mu)$ is called the sum-of-squares function (specifically, the unconditional sum-of-squares function because it is not conditional on Y_1).
 - ▶ Note typo in book Eq 7.3.5 on p.159 (misses a square).
- ▶ The ML estimates $\hat{\phi}, \hat{\sigma}_e$ and $\hat{\mu}$ can be found by maximizing the log-likelihood function. There is no-closed form expression for $\hat{\phi}$ and $\hat{\mu}$ so numeric optimization techniques are used.

Summary Ch.7 - part I

- ► We discussed the MoM approach to estimate the parameters of ARMA models, and the ML estimation method for the AR(1) model.
- ▶ You can obtain the likelihood function for AR(p) models in a similar way, by conditioning on $Y_0, Y_{-1}, \ldots, Y_{p-1}$. However, obtaining the likelihood function for an ARMA(p,q) process is a bit more challenging (see Ch.9).
- Outlook part II:
 - Standard errors of parameter estimates.
 - How to obtain parameter estimates in R.