HW2 632

Prashan A. Welipitiya 2/14/2020

Exercise 1

- a. Linearity, Independence, Normality, and Equal Variance. We check if the residuals vs fitted values has constant variance. We can also check if the relationship between x and y is linear.
- b. Outliers are points that dont follow the bulk of the data. In SLR we identify if the interval is outside -2 to 2 or -4 to 4.
- c. Leverage points are points with an x-value that are distant from other x values. In SLR we calculate it using $h_i > 4/n$.

d.

Exercise 2

- a. False, just constant variance.
- b. True
- c. False, transforming one variable works just fine.
- d. True
- e. True

Exercise 3

```
UN11 <- read.csv("https://ericwfox.github.io/data/UN11.csv")
library(ggplot2)
a.</pre>
```

```
ggplot(UN11, aes(x = ppgdp, y = fertility)) + geom_point()
```


We should consider a log transformation because of how heavily right skewed the plot is.

b.

```
ggplot(UN11, aes(x = log(ppgdp), y = log(fertility))) + geom_point() + geom_smooth(method = "lm", se = 1
```


In my opinion the association appears to be reasonably linear.

c.

```
lm1 = lm(log(fertility)~log(ppgdp), data = UN11)
summary(lm1)
```

```
##
## Call:
## lm(formula = log(fertility) ~ log(ppgdp), data = UN11)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
  -0.79828 -0.21639  0.02669  0.23424  0.95596
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.66551
                          0.12057
                                    22.11
                                            <2e-16 ***
                                  -14.79
                                            <2e-16 ***
## log(ppgdp) -0.20715
                          0.01401
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3071 on 197 degrees of freedom
## Multiple R-squared: 0.526, Adjusted R-squared: 0.5236
## F-statistic: 218.6 on 1 and 197 DF, p-value: < 2.2e-16
```

```
d. log(\hat{y}) = -.2log(\hat{x}) + 2.66
```

e. An increase in gross national product per person in US dollars can be associated with a decrease of fertility rate by .2.

f.

```
# new_x = data.frame(UN11\$ppgdp == 1000)
# predict(lm1, newdata = new_x, interval="prediction")
```

g.

```
par(mar=c(4,4,1,1), mfrow=c(1,2))
plot(predict(lm1), resid(lm1), xlab="Fitted values", ylab="Residuals")
abline(h=0)
hist(resid(lm1), main="", xlab="Residuals")
```


The residuals have a normal distribution and the variance looks constant.

h.

```
ind <- which(abs(rstandard(lm1)) > 2)
UN11[ind, ]
```

##		country	region	fertility	ppgdp	lifeExpF	pctUrban
##	4	Angola	${\tt Africa}$	5.135	4321.9	53.17	59
##	23	Bosnia and Herzegovina	Europe	1.134	4477.7	78.40	49
##	58	Equatorial Guinea	${\tt Africa}$	4.980	16852.4	52.91	40
##	118	Moldova	Europe	1.450	1625.8	73.48	48
##	134	North Korea	Asia	1.988	504.0	72.12	60
##	196	Viet Nam	Asia	1.750	1182.7	77.44	31
##	198	Zambia	Africa	6.300	1237.8	50.04	36

I don't think they need to be removed because it is already linear.