Asymmetric Velocity Logic

by Sven Nilsen, 2020

In this paper I present a logic based on asymmetric velocity reference frames.

Galilean invariance means that physical laws look the same in all velocity reference frames. A way to picture this is that when the observer is moving in one direction relative to a stationary object, it looks to the observer as if the stationary object is moving in the opposite direction.

What if there was a universe where the object observed could do the following:

- 1. stay (looks as if it is stationary)
- 2. push (can not move closer)
- 3. pull (can not move away)
- 4. follow (keeps same distance)

When an object `a` is an observer, it is written `a`.

When an object \hat{a} is not an observer, it is written $\neg a$.

For any two objects `a` and `b`, there are two binary relations `a $\land \neg b$ ` and `¬a $\land b$ `.

The relation $a \wedge \neg b$ is interpreted as a can move away from b.

In matrix form, these 2-relations are defined as:

stay	a b	push	a b	pull	a b	follow	a b
$\neg a$	0 0	$\neg a$	0 0	$\neg a$	0 1	¬a	0 1
¬b	0 0	¬b	1 0	¬b	0 0	¬b	1 0

If `a` is an observer and can not move away from `b`, then the analogue of Galiliean invariance means that from the perspective of `b`, it looks as if it "pushes" `a`, relative to stationary objects.

Therefore, the truth value is the same for both observers, since it depends on the direction of motion.

There is a natural way of assigning every 2-relation a function of type 'bool \rightarrow bool':

\false	<=>	stay	random motion results in random distances
not	<=>	push	random motion increases distance between two objects
id	<=>	pull	random motion brings two objects together
\true	<=>	follow	random motion results in constant distance

In one dimensional asymmetric velocity logic, there are two operations on functions `bool → bool`:

 $f_0 \wedge f_1$ **join** end point of one path to the start point of another path $f_0 \vee f_1$ **meet** two paths in higher dimensions with same start and end points