INSTITUTO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE MONTERREY CAMPUS ESTADO DE MÉXICO

Applied Computer Science Masters in Nanotechnology

Manuel Valenzuela Rendón

Optimization

Antonio Osamu Katagiri Tanaka Bruno González Soria

(A01212611) (A01169284)

Due date: April 11, 2019, 15:59PM

MATLAB Script and Implemented Functions

```
% * AUTHOR(S):
    Bruno Gonz�lez Soria
                               (A01169284)
응 *
     Antonio Osamu Katagiri Tanaka (A01212611)
응 *
% * FILENAME :
응 *
   HW01.m
응 *
% * DESCRIPTION :
% * Computación Aplicada (Ene 19 Gpo 1)
응 *
     Homework on Optimization
응 *
% * NOTES :
응 *
응 *
% * START DATE :
% * 10 Apr 2019
warning('off')
clc;
clear all;
close all;
% Problem 1:
% Solve the following problem using the optimization toolbox:
                     2 x 1 |
% min f(x) = | 4 - 2.1 x_1 + ---- | x_1 + x_1 x_2 + (-4 + 4 x_2) x_2
% for
% \times 1 >= -3; \times 1 <= 3
% x^{2} >= -2; x^{2} <= 2
% Use function fmincon to solve the problem
% Upload to Blackboard a pdf file that contains a MATLAB script, any MATLAB
% functions that you implemented, and required results.
fun = @(x) (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 +
4*x(2)^2)*x(2)^2;
x0 = [-3, -2];
x = fmincon(fun, x0, [], [], [], [], [-3 -2], [3 2]);
disp("Problem 1:");
disp(strcat("Find the minimum value starting from the point
[", num2str(x0(1)), ", ", num2str(x0(2)), "]"));
disp(strcat("x_1 = ", num2str(x(1))));
disp(strcat("x^2 = ", num2str(x(2))));
disp(" ");
% Problem 2:
% Using function fminsearch minimize Braninï;½s function:
% f(x) = a (x 2 - b x 1 + c x 1 - r) + s (1 - t) cos(x 1) + s
% where
```

```
a = 1;
b = 5.1/(4*pi^2);
c = 5/pi;
r = 6;
s = 10;
t = 1/(8*pi);
% for
% \times 1 >= -5; \times 1 <= 10
% x^{2} >= 0; x^{2} <= 15
% Upload to Blackboard a pdf file that contains a MATLAB script, any MATLAB
% functions that you implemented, and required results.
fcnMin = @(x) a*(x(2) - b*x(1)^2 + c*x(1) - r)^2 + s*(1 - t)*cos(x(1)) + s;
x guess = [rand*15-5 rand*15]';
xmin = fminsearch(fcnMin, x quess);
disp("Problem 2:");
disp(strcat("Minimize the function with starting point
[", num2str(x guess(1)), ", ", num2str(x guess(2)), "]"));
disp(strcat("x 1 = ", num2str(xmin(1))));
disp(strcat("x^2 = ", num2str(xmin(2))));
disp(" ");
```

Results

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

Problem 1:

```
Find the minimum value starting from the point [-3,-2] x_1 = -0.089842 x_2 = 0.71266
```

Problem 2:

```
Minimize the function with starting point [4.8361,0.53568] x_1 = 3.1416 x_2 = 2.275
```