Igor de Moraes Sampaio

Relatório de experimentos computacionais: Comparação dos resultados.

O presente relatório apresenta de forma comparativa os resultados de execução de duas implementações para o problemas da Recoloração Convexa tratando do caso especial em que o grafo de entrada é um caminho, sendo elas uma implementação do modelo de programação linear inteira e uma implementação utilizando o algoritmo de branch-and-bound e relaxação linear.

Configurações do hardware utilizado.

Os experimentos computacionais apresentados neste relatório foram realizados na máquina pessoal do aluno Igor de Moraes Sampaio que apresenta as seguintes configurações:

Processador	Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 199GHz					
Memória instalada (RAM)	8,00 GB					
Sistema operacional	Windows 10 Home					
Tipo de sistema	Sistema Operacional de 64 bits, processador com base em x64					

Configurações do programa

A linguagem de programação escolhida foi C# desenvolvido em um aplicativo do console (.NET Core), o motivo da escolha desta linguagem é o fato de ter uma maior experiência do uso desta linguagem inclusive no uso do solver. O solver utilizado no programa é o Gurobi Optimizer versão 9.0.1 utilizando uma licença acadêmica gratuita. Também foi configurado para o programa executar no modo de single threads. O tempo limite (Time Limit) definido para a execução das instâncias foi de 30 minutos (1800 segundos).

Heurística aplicada

A heurística que foi desenvolvida para obter limitantes inferiores segue as seguintes regras: Primeiro escolhe a cor com maior ocorrência no caminho, em caso de empate na quantidade de uma ou mais cores escolhe a que não possui ocorrência nas extremidades do caminho ou caso o empate mantenha escolhe a primeira encontrada; o segundo passo verificar as extremidades a mantém a cor caso seja diferente da cor com maior ocorrência mantendo a cor até aparecer uma diferente, caso a cor das duas extremidades sejam as mesmas é mantida a cor inicial do caminho.

Instâncias e resultados

As instâncias aplicadas foram disponibilizadas pelo professor, as instâncias variam a quantidade de vértices em múltiplos de 10, iniciando em 10 e terminado em 50, já a quantidade de cores várias de 2 a 10 cores para cada quantidade de vértices. A tabela a seguir apresenta comparativamente os resultados do experimento computacional realizado para todas as instâncias nas duas implementações realizadas e a tabela seguinte apresenta dados específicos da implementação utilizando o algoritmo de branch-and-bound e relaxação linear.

Nome da instância	Nº vértices	Nº Cores	Número de coeficientes não nulos na matriz do PL	Temp PLI	o gasto (s) branch-and- bound	Número de nós explorados PLI branch-and- bound		Valor ótimo	e relaxação linear.	Valor da relaxação inicial	GAP entre valor da relaxação inicial e valor ótimo	Valor encontrado pela heurística
rand_10_2	10	2	740	0,0029	0,041	0	1	2	laxe	2	0	2
rand_10_3	10	3	1110	0,0039	0,0049	0	2	2		2	0	4
rand_10_4	10	4	1480	0,0049	0,0074	0	3	3	algoritmo branch-and-bound	3	0	6
rand_10_5	10	5	1850	0,0059	0,0129	0	4	1	-Po	1	0	3
rand_10_6	10	6	2220	0,0089	0,0113	0	9	3	and	3	0	4
rand_10_7	10	7	2590	0,0079	0,0102	0	10	3	Jch-	3	0	5
rand_10_8	10	8	2960	0,0069	0,0088	1	13	3	brar	3	0	6
rand_10_9	10	9	3330	0,0109	0,0287	1	36	4	no	3,5	0,5	5
rand_10_10	10	10	3700	0,0069	0,0134	0	37	2	oriti	2	0	6
rand_20_2	20	2	6880	0,0099	0,0147	0	38	5	algo	5	0	8
rand_20_3	20	3	10320	0,0309	0,05	1	49	8	0 0	7,33	0,67	10
rand_20_4	20	4	13760	0,1236	0,3565	1	110	10	and	8,33	1,67	13
rand_20_5	20	5	17200	0,0229	0,0287	0	111	5	da implementação utilizando o	5	0	12
rand_20_6	20	6	20640	0,0498	0,1272	1	130	8	o ut	7,75	0,25	12
rand_20_7	20	7	24080	0,0917	0,1927	1	157	8	açã	7,5	0,5	14
rand_20_8	20	8	27520	0,1077	0,2921	1	194	9	ent	8,5	0,5	15
rand_20_9	20	9	30960	0,2443	0,5772	1	279	9	lem	8,25	0,75	12
rand_20_10	20	10	34400	0,1076	0,0947	1	288	8	mp	7,5	0,5	14
rand_30_2	30	2	24420	0,0349	0,0443	0	289	9		9	0	9
rand_30_3	30	3	36630	0,5864	0,3834	1	308	14	res	11,66	2,34	16
rand_30_4	30	4	48840	0,4039	0,7597	1	331	14	Valores	12	2	17
rand_30_5	30	5	61050	1,2466	1,8377	1	368	15		12,25	2,75	20
rand_30_6	30	6	73260	0,5964	2,1111	1	401	14		12,25	1,75	21

rand_30_7	30	7	85470	0,5631	8,2575	1	648	14	12,25	1,75	21
rand_30_8	30	8	97680	1,087	1,8927	1	707	14	12,33	1,67	22
rand_30_9	30	9	109890	6,0598	331,04	69	13524	17	12,25	4,75	21
rand_30_10	30	10	122100	0,7939	4,454	1	13639	14	12,5	1,5	22
rand_40_2	40	2	59360	0,4557	0,1498	1	13642	15	13,33	1,67	16
rand_40_3	40	3	89040	0,7968	1,2205	1	13665	17	16	1	26
rand_40_4	40	4	118720	2,5731	14,431	1	13764	21	17	4	26
rand_40_5	40	5	148400	3,6053	38,61	1	13911	21	16,75	4,25	26
rand_40_6	40	6	178080	3,2293	54,944	1	14112	21	17,25	3,75	28
rand_40_7	40	7	207760	27,36	1305,1	54	21677	24	18	6	30
rand_40_8	40	8	237440	4,3643	107,77	1	22038	20	16,5	3,5	31
rand_40_9	40	9	267120	19,684	724,22	1	24557	23	18,25	4,75	32
rand_40_10	40	10	296800	20,806	1477,5	1	27656	21	17,75	3,25	31
rand_50_2	50	2	117700	0,3712	0,4564	0	27657	15	15	0	21
rand_50_3	50	3	176550	7,3926	8,3439	1	27680	24	19,66	4,34	30
rand_50_4	50	4	235400	21,943	76,831	1	27761	27	21,25	5,75	34
rand_50_5	50	5	294250	15,007	442,34	1	28180	27	21	6	32
rand_50_6	50	6	353100	93,736	Time Limit	101	30137	30	22,25	7,75	38
rand_50_7	50	7	411950	97,724	Time Limit	39	30954	30	22,66	7,34	40
rand_50_8	50	8	470800	43,587	Time Limit	1	33127	27	22,75	4,25	38
rand_50_9	50	9	529650	150,08	Time Limit	179	34380	27	21,25	5,75	38
rand_50_10	50	10	588500	41,726	Time Limit	1	37967	27	21,25	5,75	41

Gráficos

A seguir são apresentados apresentados alguns gráficos referentes aos dados obtidos, a fim de obter uma melhor visualização comparativas de alguns pontos importantes como: a relação de tempo gasto tanto para cada instância quando para o agrupamento da mesma em número de vértices e número de cores; o crescimento do problema pelo número de coeficientes não nulos na matriz do PL e número de nós explorados; e o gap entre o valor ótimo e valor da relaxação inicial e também o valor encontrado pela heurística.

Crescimento das instâncias

GAP entre valor ótimo e valor da heurística por instância

GAP entre valor ótimo e valor da relaxação inicial por instância

Relação de tempo

Relação de tempo gasto (s) por cada instância para cada implementação

Média de tempo gasto (s) agrupados por número de vértices

Média de tempo gasto (s) agrupados por número de cores

Conclusão

Partindo da análise gráfica dos dados podemos tirar algumas conclusões. Primeiramente sobre o crescimento das instâncias tanto o número de coeficientes não nulos na matriz do PL quanto o número de nós explorados começam a apresentar um crescimento realmente significativo a partir de instâncias com o número de vértice superior a 30 vértices e também podemos notar que o crescimento é exponencial tendo um crescimento cada vez mais íngreme em relação ao número de cores quando o número de vértices é maior.

Sobre o gap apresentado entre a relação do valor ótimo ao valor da relaxação inicial e também o gap apresentado entre a relação do valor ótimo ao valor encontrado pela heurística, podemos perceber variabilidade semelhante porém com valores muito mais próximos por parte do valor da relaxação inicial, também notamos que por mais o gap entre os valores se torna cada vez maior conforme o tamanho da instância, notamos que em muitos caso o número de vértices não influencia tanto no gap quanto o número de cores tendo caso o que o gap é 0 mesmo com muitos vértices, como na instância "rand_30_2" que apresenta gap 0 tanto para o valor da relaxação inicial quanto para o valor da relaxação inicial.

Por fim em relação ao tempo notamos que o crescimento da média do tempo relacionado ao número de vértices se apresenta bem linear diferente da média do tempo relacionado ao número de cores que é possível notar que a média de tempo relacionado a instância com o número de cores de 6 a 10 possuem uma variação aproximada. Também é possível notar que algumas instâncias com mesmo número de vértices e número de cores próximos podem apresentar grande variação de tempo de execução do algoritmo branch-and-bound.