Contrast d'Hipòtesi per a μ en una població normal, σ coneguda

A partir de les dades d'una mostra, es plantegem dues hipòtesis, la hipòtesi nul·la H_0 i l'alternativa H_1 , sobre el valor del paràmetre desconegut. Utilitzant l'estadístic apropiat per a la mostra decidirem si acceptem o rebutgem la hipòtesi nul·la. D'entrada suposarem que H_0 és certa.

Suposem que volem fer un contrast d'hipòtesi pel paràmetre μ , la població és normal i σ coneguda. Partim d'una mostra. Veiem quins passos cal fer:

1. Fixem un valor del paràmetre, μ_0 , i establim $\mathbf{H_0}$ i $\mathbf{H_1}$, observant el tipus de contrast:

Cas bilateral
$$H_0: \mu = \mu_0$$
 unilateral superior $H_0: \mu = \mu_0$ unilateral inferior $H_0: \mu = \mu_0$
$$H_1: \mu \neq \mu_0 \qquad \qquad H_1: \mu > \mu_0 \qquad \qquad H_1: \mu < \mu_0$$

2. Triem l'estadístic de contrast adequat, amb les dades de la mostra.

$$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

- 3. Fixem el **nivell de significació**: α .
- 4. Busquem el valor crític: límit de la regió de rebuig de H_0 . Ho fem segons el tipus de contrast:
 - cas bilateral:

La regió de rebuig de H_0 és: $(-\infty, -z_{\alpha/2}) \cup (z_{\alpha/2}, +\infty) \Longrightarrow \text{valor crític: } z_{\alpha/2}$ L'obtenim de: $\Phi(z_{\alpha/2}) = 1 - \alpha/2$ (en R, $z_{\alpha/2} = \text{qnorm}(1 - \alpha/2)$)

• cas unilateral superior:

La regió de rebuig de H_0 és: $(z_{\alpha}, +\infty) \Longrightarrow \text{valor crític: } z_{\alpha}$

L'obtenim de: $\Phi(z_{\alpha}) = 1 - \alpha$ (en R, $z_{\alpha} = \text{qnorm}(1 - \alpha)$)

• cas unilateral inferior:

La regió de rebuig de H_0 és: $(-\infty, -z_{\alpha}) \Longrightarrow \text{valor crític: } -z_{\alpha}$

L'obtenim de: $\Phi(-z_{\alpha}) = \alpha \iff \Phi(z_{\alpha}) = 1 - \alpha$ (en R, $-z_{\alpha} = -\text{qnorm}(1 - \alpha)$)

5. Criteri de decisió basat en el valor crític:

Calculem l'estadístic observat amb les dades de la mostra i suposant H_0 certa.

$$z_{obs} = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

Si cau en la regió de rebuig de H_0 , acceptem H_1 . Altrament, mantindrem H_0 !

- Cas bilateral: $|z_{obs}| > z_{\alpha/2} \Longrightarrow \operatorname{acceptem} H_1$
- Cas unilateral superior $(H_1: \mu > \mu_0)$ $z_{obs} > z_{\alpha} \Longrightarrow \operatorname{acceptem} H_1$
- Cas unilateral inferior $(H_1: \mu < \mu_0)$ $z_{obs} < -z_{\alpha} \Longrightarrow \operatorname{acceptem} H_1$

6. Criteri de decisió basat en el p-valor:

- p-valor $< \alpha \implies$ acceptem H_1
- p-valor $\geq \alpha \implies$ mantenim H_0

Càlcul del p-valor (probabilitat d'obtenir els resultats de la mostra o d'altres més favorables a H_1 , suposant la hipòtesi nul·la certa):

• Cas bilateral:
$$p\text{-valor} = P(|Z| > |z_{obs}|) = 2(1 - \Phi(|z_{obs}|))$$

$$\uparrow$$

$$P(|Z| > |z_{obs}|) = 1 - P(|Z| \le |z_{obs}|) = 1 - (2\Phi(|z_{obs}|) - 1) = 2(1 - \Phi(|z_{obs}|))$$
(en R, $p\text{-valor} = 2 * (1-\text{pnorm}(abs(z_{obs})))$)

- Unilateral superior $(H_1: \mu > \mu_0)$: p-valor= $P(Z > z_{obs}) = 1 \Phi(z_{obs})$ (en R, p-valor=1-pnorm (z_{obs}))
- Unilateral inferior $(H_1: \mu < \mu_0)$: p-valor= $P(Z < z_{obs}) = \Phi(z_{obs})$ (en R, p-valor=pnorm (z_{obs}))