

InertiEAR: Automatic and Device-independent IMU-based Eavesdropping on Smartphones

Ming Gao, Yajie Liu, Yike Chen, Yimin Li, Zhongjie Ba, Xian Xu, Jinsong Han

Side-Channel Eavesdropping

Smartphone Models

Smartphone Sensors

Motion Sensor Threat to Speech Privacy

- [1] Y. Michalevsky, D. Boneh, and G. Nakibly, "Gyrophone: Recognizing speech from gyroscope signals," in USENIX Security Symposium, 2014.
- [2] Z. Ba, T. Zheng, X. Zhang, Z. Qin, B. Li, X. Liu, and K. Ren, "Learning-based practical smartphone eavesdropping with built-in accelerometer," in NDSS, 2020.
- [3] S. A. Anand, C. Wang, J. Liu, N. Saxena, and Y. Chen, "Spearphone: A lightweight speech privacy exploit via accelerometer-sensed reverberations from smartphone loudspeakers," in ACM WiSec, 2021.

Motion Sensor Threat to Speech Privacy

Countermeasure: Lower the volume

Volume Setting		Bottom Speaker		
		20%	60%	100%
Acc	$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$	0.69 4.24 4.84	2.21 5.49 5.07	3.07 5.88 5.19
Gyro	$\begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$	-7.66 -7.01 -6.70	-4.28 -5.04 -6.42	-6.18 -5.63 -5.56

Countermeasure: Sampling rate limitation

Android 12 requires $Fs \le 200Hz$ in inertial sensors!

Our Observations

Our Observations

Smartphones' IMUs can respond to audio signals of up to 6 kHz

Our Vision: InertiEAR

IMU-based eavesdropping on smartphones:

- ✓ Zero-permission
- ✓ Sampling rates within 200 Hz
- ✓ Automatic
- ✓ Device-independent

Challenges

1. How to eavesdrop accurately using IMUs whose sampling rates are limited within 200Hz?

2. How to achieve device-independent eavesdropping?

Sensor Fusion

Noise Elimination

Automatic Segmentation

Automatic Segmentation

Speech Recognition

➤ Data processing: 244 × 244 gray spectrogram-images

- ➤ DenseNet:
 - A dense connection between all the previous layers to the layers behind
 - Less computational cost

Challenges

1. How to eavesdrop accurately using IMUs whose sampling rates are limited within 200Hz?

2. How to achieve device-independent eavesdropping?

Hardware Diversity

$$A(t) = k_l \cdot M \cdot H_a \cdot S_m(t) + N_a$$

Hardware Diversity

$$A(t) = k_l \cdot M \cdot \frac{H_a}{I} \cdot S_m(t) + N_a$$

Axial Energy Rate

Hardware Diversity

$$A(t) = k_l \cdot M \cdot H_a \cdot S_m(t) + N_a$$

Axial Energy Rate

Sampling Rate

Solutions: Dimension Reduction

$$A(t) = k_l \cdot M \cdot H_a \cdot S_m(t) + N_a$$

Axial Energy Rate

Solutions: High-frequency Suppression

$$A(t) = k_l \cdot M \cdot H_a \cdot S_m(t) + N_a$$

Axial Energy Rate

Frequency Response

$$SNR = -20log_{10}(2\pi f \times rms(T_a))$$

Evaluation

Cross-device Performance

Cross-model accuracy

InertiEAR results: Up to 49.8%

V.S.

Previous SOTA results: At most 26%

Impact of Sampling Rate

Even the limitation of 40 Hz sampling rate is still at risk!

Limitations on sampling rates barely work!

Comparison with SOTA attacks

[Gyrophone USENIX Security' 14]	AccelEve [NDSS'20]	Spearphone [WiSec'21]	InertiEAR
Sensor				
Sampling Rate	200 Hz	500 Hz	4 kHz	200 Hz
Speech Recogni	tion 26%	78%	81%	78.8%
Segmentation	Manually	92%	82%	100%
Device Independence	Not learning-based	at most 26%	×	up to 49.8%

Defense

Existing methods:

- Sa V rate limitation
- Filt
- Lamping and isolating

Our suggestion:

- > For users:
 - ✓ Resonant noise
- > For manufacturers:
 - ✓ Oversampling

Conclusions

- ✓ We revisit the threat of IMU-based eavesdropping and realize a side channel attack InertiEAR. It breaks the restriction on sampling rates.
- ✓ A mathematical model is proposed to expand its attack surface and promote its practicality.
- ✓ InertiEAR accomplishes a device-independent eavesdropping attack.