Nassau County Interscholastic Mathematics League

Solutions Contest # 6

2001-2002

- 25. f(x) = x, so |3x-1| = x, so 3x-1 = x for $x \ge \frac{1}{3}$ and 3x-1 = -x for $x < \frac{1}{3}$. In the first case $x = \frac{1}{2}$ and in the second, $x = \frac{1}{4}$. Both are non-negative.
- 26. If the house is blue, then all three statements are true. If the house is red, then Andy's statement is true, Bill's is true, and Colleen's is false. So it's red.
- 27. Look at $\triangle ABD$. It contains a 40 ° angle and a right angle, so $m \angle BAE = 50^{\circ}$. mBE = 2 (measure of inscribed \angle) = 100°.
- 28. Let x = y = 0 and get f(0) = 2f(0)g(0) and $g(0) = (g(0))^2 (f(0))^2$. Now either f(0) = 0 or $g(0) = \frac{1}{2}$. If f(0) = 0, then $g(0) = (g(0))^2$, so g(0) = 0 or g(0) = 1. If $g(0) = \frac{1}{2}$, then f(0) is not real.
- 29. (x+y)(x-y) = x-y so x+y=1 or x-y=0. So x=y or x=1-y. If x=y, then x=0. So x=1-y. Substituting, $(1-y)y = 1-y-y \rightarrow y-y^2 = 1-2y \rightarrow y^2-3y+1=0$. Solving, $y=\frac{3-\sqrt{5}}{2}$ is the only positive solution and, substituting, $x=\frac{-1+\sqrt{5}}{2}$.
- 30. Method 1: $\triangle ABC$ has area $\frac{\sqrt{3}}{4}$. So $\triangle BEC$ has half that area, $\frac{\sqrt{3}}{8}$. BG:BE = 2:3, so area $\triangle BDC$:area $\triangle BEC$ = 4:9. So DGEC is 5/9 of $\triangle BEC$. The area is $\frac{5}{9} \cdot \frac{\sqrt{3}}{8} = \frac{5\sqrt{3}}{72}$

Method 2: Draw the median from A, intersecting \overline{CB} at Q. The area of the equilateral triangle is $\frac{\sqrt{3}}{4}$, so the area of $\Delta EGC = \frac{1}{6} \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{24}$, using the theorem that the 6 triangles formed by the medians have equal area in any Δ . BG: GE = 2:1 and \overline{GD} \overline{PEC} , so BD: CD = 2:1 by the side splitter theorem. $DC = \frac{1}{3}$ and $QD = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$. That means DC: QD = 2:1. So the area of $\Delta DGC = \frac{2}{3} \cdot \frac{\sqrt{3}}{24} = \frac{\sqrt{3}}{36}$. Adding $\frac{\sqrt{3}}{36} + \frac{\sqrt{3}}{24} = \frac{5\sqrt{3}}{72}$.