Bootstrap

Erik Helmers

$March\ 24,\ 2023$

Contents

1	Minimal calculus			
	1.1	Syntax	2	
	1.2	Context		
	1.3	Evaluation	2	
	1.4	Typing	3	
2	Interlude : booleans			
	2.1	Syntax	4	
	2.2	Evaluation	5	
	2.3	Typing	5	
3	Enumerations			
	3.1	Syntax	6	
	3.2	Evaluation	6	
	3.3	Typing	7	

1 Minimal calculus

1.1 Syntax

where e, σ, κ represent general expressions, types and kinds respectively.

1.2 Context

$$\Gamma ::= \epsilon \qquad \text{empty context}$$

$$\mid \Gamma, x : \tau \qquad \text{adding a variable}$$

$$\frac{\text{valid}(\epsilon)}{\text{valid}(\Gamma)} \frac{\text{valid}(\Gamma) \qquad \Gamma \vdash \tau \Leftarrow \star}{\text{valid}(\Gamma, x : \tau)}$$

1.3 Evaluation

$$\frac{e \Downarrow \nu}{\lambda x \mapsto e \Downarrow \lambda x \mapsto \nu} \text{ (LAM)} \qquad \frac{e \Downarrow \nu}{(e,e')(\Downarrow,\nu)\nu'} \text{ (TUPLE)}$$

$$\frac{e \Downarrow \lambda x \mapsto \nu}{e e' \Downarrow \nu'} \text{ (APP)} \qquad \frac{e \Downarrow n \quad e' \Downarrow \nu'}{e e' \Downarrow n \nu'} \text{ (NAPP)}$$

$$\frac{e \Downarrow (\nu,\nu')}{\text{fst } e \Downarrow \nu} \text{ (FST)} \qquad \frac{e \Downarrow (\nu,\nu')}{\text{snd } e \Downarrow \nu'} \text{ (SND)} \qquad \frac{e \Downarrow n}{\text{fst } e \Downarrow \text{fst } n} \text{ (NFST)}$$

$$\frac{e \Downarrow n}{\text{snd } e \Downarrow \text{snd } n} \text{ (NSND)} \qquad \frac{\sigma \Downarrow \tau \quad \sigma' \Downarrow \tau'}{\Pi(x:\sigma).\sigma' \Downarrow \Pi(x:\tau).\tau'} \text{ (PI)}$$

1.4 Typing

In the following, $e \Rightarrow \tau$ is an expression whose type synthezises to τ while $e \Leftarrow \tau$ is checkable.

$$\frac{\Gamma \vdash e \Rightarrow \tau}{\Gamma \vdash e \Leftarrow \tau} \text{ (CHK)} \qquad \frac{\Gamma \vdash \sigma \Leftarrow \star \quad \sigma \Downarrow \tau \quad \Gamma \vdash e \Leftarrow \tau}{\Gamma \vdash (e : \sigma) \Rightarrow \tau} \text{ (Ann)}$$

$$\frac{\Gamma \vdash e \Rightarrow \tau}{\Gamma \vdash \star e \Leftarrow \tau} \text{ (STAR)} \qquad \frac{\Gamma(x) = \tau}{\Gamma \vdash x \Rightarrow \tau} \text{ (VAR)}$$

$$\frac{\Gamma \vdash e \Leftrightarrow \tau}{\Gamma \vdash \lambda x \mapsto e \Leftarrow \Pi(x : \tau) \cdot \tau'} \text{ (LAM)}$$

$$\frac{\Gamma \vdash e \Leftrightarrow \tau}{\Gamma \vdash (e, e') \Leftrightarrow \Sigma(x : \tau) \cdot \tau'} \text{ (TUPLE)}$$

$$\frac{\Gamma \vdash e \Rightarrow \Pi(x : \tau) \cdot \tau'}{\Gamma \vdash e \Leftrightarrow \varphi} \frac{\Gamma \vdash e' \Leftrightarrow \tau}{\Gamma \vdash e \Leftrightarrow \varphi} \text{ (Tight)}$$

$$\frac{\Gamma \vdash e \Rightarrow \Sigma(x : \tau) \cdot \tau'}{\Gamma \vdash \text{ fst } e \Rightarrow \tau} \text{ (FST)}$$

$$\frac{\Gamma \vdash e \Rightarrow \Sigma(x : \tau) \cdot \tau'}{\Gamma \vdash \text{ snd } e \Rightarrow \tau''} \text{ (SND)}$$

$$\frac{\Gamma \vdash \sigma \Leftrightarrow \star \quad \sigma \Downarrow \tau \quad \Gamma, x : \tau \vdash \sigma' \Leftrightarrow \star}{\Gamma \vdash \Pi(x : \sigma) \cdot \sigma' \Leftrightarrow \star} \text{ (PI)}$$

$$\frac{\Gamma \vdash \sigma \Leftrightarrow \star \quad \sigma \Downarrow \tau \quad \Gamma, x : \tau \vdash \sigma' \Leftrightarrow \star}{\Gamma \vdash \Sigma(x : \sigma) \cdot \sigma' \Leftrightarrow \star} \text{ (SIGMA)}$$

2 Interlude: booleans

2.1 Syntax

$$e, \sigma, \kappa$$
 ::= ...
| true
| false
| cond e [$x.\sigma$] e' e'' condition
| bool type of a bool

2.2 Evaluation

2.3 Typing

$$\frac{1}{\text{true} \Leftarrow \text{bool}} \text{ (True)} \qquad \frac{1}{\text{false} \Leftarrow \text{bool}} \text{ (False)}$$

$$\frac{\Gamma \vdash e \Leftarrow \text{bool} \qquad \Gamma, x : \text{bool} \vdash B \Leftarrow \star \qquad B[x \mapsto e] \Downarrow \tau}{\Gamma \vdash \text{cond} \ e \ [x.B] \ e' \ e'' \Rightarrow \tau} \text{ (Cond)}$$

$$\frac{1}{\text{bool} \Leftarrow \star} \text{ (BoolTy)}$$

3 Enumerations

3.1 Syntax

3.2 Evaluation

$$\frac{l \Downarrow \text{nil}}{\text{record } l \text{ as } x \text{ return } B \Downarrow \text{unit}} \text{ (RecordNil)}$$

$$\frac{l \Downarrow [t \ l']}{B[x \mapsto 0] \Downarrow \tau \quad \text{record } l' \text{ as } x \text{ return } B[x \mapsto 1 + x] \Downarrow \tau'}$$

$$\frac{B[x \mapsto 0] \Downarrow \tau \quad \text{record } l \text{ as } x \text{ return } B \Downarrow \Sigma(\underline{} : \tau).\tau'}{\text{record } l \text{ as } x \text{ return } B \Downarrow \Sigma(\underline{} : \tau).\tau'}$$

$$\frac{l \Downarrow n}{\text{record } l \text{ as } x \text{ return } B \Downarrow \text{record } n \text{ as } x \text{ return } B} \text{ (NRecord)}$$

$$\frac{e \Downarrow 0 \quad \text{ fst cs} \Downarrow \nu}{\text{case } e \text{ as } x \text{ return } B \text{ with cs} \Downarrow \nu} \text{ (CaseZe)}$$

$$\frac{e \Downarrow 1 + e'}{\text{case } e' \text{ as } x \text{ return } B[x \mapsto 1 + x] \text{ with cs'} \Downarrow \nu}{\text{case } e \text{ as } x \text{ return } B \text{ with cs} \Downarrow \nu} \text{ (CaseSuc)}$$

$$\frac{e \Downarrow n \qquad \text{cs} \Downarrow \nu}{\text{case e as x return B with $c$$} \Downarrow \text{case n as x return B with ν}} \text{ (CaseZe)}$$

3.3 Typing