

School of Mechanical Engineering

Course Code: BME01T1001 Course Name: Engineering Graphics and Introduction to Digital Fabrication

Introduction to Engineering Graphics

Prerequisite/Recapitulations

- Mathematics
- Drawing, Sketching

Objectives

To acquire knowledge about:

- ❖Introduction to Product Design
- Engineering Graphics in Design Process
- Drawing /Graphics vs. Engineering Drawing/Graphics
- Drawing Instruments & Materials
- Drawing Standards
- Drawing Sheets
- **❖** Layout of Drawing Sheets
- Drawing Scales
- Drawing Pencils
- **❖**Types of Lines
- Units of Measure
- Dimensioning

Product Design

- Deals with the conversion of ideas into reality in the form of product.
- Aims to fulfill human needs
- Product development is set of activities beginning with the perception of market opportunity and ending in the production, sale and delivery of product

Engineering Graphics In Design Process

implementation

Drawing / Graphics vs. Engineering Drawing / Graphics

Drawing

- Describing any object/ information diagrammatically
- Graphical representation of an object

Engineering Drawing Manual Drawing CADD

Engineering Drawing

- ❖ Graphical means of expression of technical details without the barrier of a language.
- Universal language for engineers
- A drawing of an object that contains all information like actual shape, accurate size, manufacturing methods, etc., required for its construction.
- ❖No construction/manufacturing of any (man -made) engineering objects is possible without engineering drawing.

Drawing Instruments & Materials

- Drawing board
- Drawing sheet
- Mini-drafter/drafting machine/ T- square
- Instrument box containing compass, divider, etc.
- Scales
- Protractor
- French curves
- Drawing pencils
- Eraser
- Drawing clip/pin/adhesive tape
- Sharpener
- Duster

Drawing Standards

- □ Drawing standards are *set of rules* that govern how technical drawings are represented
- □ Drawing standards are used so that drawings *convey the same meaning* to everyone who reads them.

Standard Code

Country	Code	Full name
USA	ANSI	American National Standard Institute
Japan	JIS	Japanese Industrial Standard
UK	BS	British Standard
Australia	AS	Australian Standard
Germany	DIN	Deutsches Institut für Normung
	ISO	International Standards Organization

Drawing Sheets

- Trimmed paper of a size A0 ~ A4.
- Standard sheet size (JIS)

A4 210 x 297

A3 297 x 420

A2 420 x 594

A1 594 x 841

A0 841 x 1189

(Dimensions in millimeters)

Layout of Drawing Sheets

FOTLAS ERSITY

GALGOTIAS

Drawing Scales

- >Scale is a ratio between the linear dimension of a drawn representation of an object and the actual object.
- Designation of a scale consists of the word "SCALE" followed by the indication of its ratio, as follows

SCALE 1:1 for full size

SCALE X:1(X > 1) for an **enlargement** scales

SCALE 1:X(X > 1) for a **reduction** scales

- ➤ Drawing scale is commonly found in a title block
- ➤ Standard reducing scales are: 1:5, 1:10, 1:20, 1:50, 1:100
- ➤ Standard enlarging scales are: 2:1, 5:1, 10:1, 20:1, 50:1,

100:1

GALGOTIAS

Drawing Pencils

- ✓ Wooden pencils are graded and designated by numbers and letters
- ✓ Mechanical clutch pencils Not allowed
- ✓ 7B, 6B, 5B, 4B, 3B, 2B, B in decreasing order of softness and blackness
- ✓ **HB** to F Medium grade
- **✓• H, 2H,** 3H, 4H, 5H, 6H, 7H, 8H, 9H increasing order of hardness
- ✓ Drawings are done using 2H pencils and finished with H and HB pencils to be practiced in this course.

Types of Lines

Illustration	Application	Pencil
Thick ———	Outlines, visible edges, surface boundaries of objects, margin lines	Н
Continuous thin	Dimension lines, extension lines, section lines leader or pointer lines, construction lines, boarder lines	2H
Continuous thin wavy	Short break lines or irregular boundary lines – drawn freehand	2H
Continuous thin with zig-zag	Long break lines	2H
Short dashes, gap 1, length 3 mm	Invisible or interior surfaces	Н

Illustration	Application	Pencil
Short dashes	Center lines, locus lines Alternate long and short dashes in a proportion of 6:1,	2H
Long chain thick at end and thin elsewhere	Cutting plane lines	H / 2H
Continuous thick border line	Border	НВ

Units of Measure

- •International systems of units (SI) which is based on the meter.
- •Millimeter (mm) The common SI unit of measure on engineering drawing.
- •Individual identification of linear units is not required if all dimensions on a drawing are in the same unit (mm).
- •The drawing shall however contain a note:

ALL DIMENSIONS ARE IN MM. (Bottom left corner outside the title box)

ALL DIMENSIONS ARE IN MM

Dimensioning

Summary

- An engineering drawing helps to convey ideas and convert concepts into reality
- An engineering drawing follows criteria and conventions to eliminate confusion by the standardization of nomenclature and practices, as a way to clearly relay the information to the individual who understands it when it is read, and very importantly, it indicates or hints how something is going to be manufactured.

Questions

- **❖** How do you explain engineering drawings?
- **❖**What are the 4 basic components of dimensioning in engineering drawing?
- **❖** Is Representative Factor (RF) and Scale Factor same?

References

- Engineering Drawing by N. D. Bhatt and V. M. Panchal
- Engineering Graphics by K. C. John
- **ONPTEL**

Thank You