UNIVERSIDADE ESTADUAL DE CAMPINAS

Experiência 1 Amostragem de Sinais

EA-619 Laboratório de Análise Linear

Transformadas: Escrever sinais como combinações de exponenciais complexas.

1. Transformada de Fourier (FT), para sinais contínuos no tempo:

$$x_c(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_c(\omega) e^{j\omega t} d\omega \quad \Leftrightarrow \quad X_c(\omega) = \int_{-\infty}^{\infty} x_c(t) e^{-j\omega t} dt$$

2. Transformada de Fourier a tempo discreto (DTFT), para sinais discretos no tempo:

$$x_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_d(\Omega) e^{j\Omega n} d\Omega \quad \Leftrightarrow \quad X_d(\Omega) = \sum_{n=-\infty}^{\infty} x_d[n] e^{-j\Omega n}$$

3. Transformada discreta de Fourier a tempo discreto (DFT), para sinais discretos no tempo com N amostras:

$$x_d[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_d[k] e^{\frac{j2\pi kn}{N}} \quad \Leftrightarrow \quad X_d[k] = \sum_{n=0}^{N-1} x_d[n] e^{-\frac{j2\pi kn}{N}}$$

Nota: $\omega \Rightarrow$ frequência contínua. Unidade: rad/s.

 $\Omega \Rightarrow$ frequência discreta. Unidade: rad, ou rad/amostra, ainda que amostra não tenha unidade.

Interpretações para sinais reais:

- Fato: se $x_c(t) \in \Re$, então $X_c(-\omega) = X_c^*(\omega)$.
- Integral envolve $X_c(\omega)e^{j\omega t}$ e $X_c(-\omega)e^{-j\omega t}$. Combinando esses termos e usando identidade de Euler e $X_c(\omega) = X_c^*(-\omega)$,

$$X_c(\omega)e^{j\omega t} + X_c^*(\omega)e^{-j\omega t} = |X_c(\omega)|\cos(\omega t + \angle X_c(\omega))|$$

- $\Rightarrow |X_c(\omega)|$ dá a magnitude com que a frequência ω é usada para construir $x_c(t)$.
- $\Rightarrow \angle X_c(\omega)$ dá a fase com que a frequência ω é usada para construir $x_c(t)$.
- ⇒ A frequência negativa "desaparece" no caso real, ela só existe na notação com exponenciais complexas, e garante que para todo termo complexo vai aparecer também seu complexo conjugado, e no final tudo será real.

Relação entre os espectros de $x_d[n]$ e sua FFT:

• Se $x_d[n] = 0$ para n < 0 ou n > N - 1

$$\Rightarrow X_d[k] = X_d\left(\frac{2\pi k}{N}\right)$$

Relação entre os espectros de $x_c(t)$ e $x_d[n]$

• Amostragem de um tom puro:

$$x_c(t) = e^{j\omega t} \quad \Rightarrow \quad x_d[n] = x_c(nT_s) = e^{j\omega T_s n}.$$

- Após amostragem, frequência analógica ω vira frequência digital $\Omega = \omega T_s$.
- $X_c(\omega)$ dá a magnitude e fase com que a frequência $\Omega = \omega T_s$ é usada para construir $x_d[n]$
- ⇒ Fora um fator de escala, e na ausência de aliasing,

$$X_d(\Omega) = X_c(\Omega/T_s).$$

Juntando os dois resultados,

$$X_d[k] \approx X_c \left(2\pi \frac{kf_s}{N}\right).$$

Ou seja, o elemento k da FFT corresponde à frequência kf_s/N .

Fato: Para qualquer a real, $e^{j(a+2\pi n)} = e^{ja} e^{j2\pi n} = e^{ja}$.

Usando este fato diretamente nas fórmulas, encontramos os seguintes **períodos**:

1.
$$X_d(\Omega + 2k\pi) = X_d(\Omega)$$

2.
$$X_d[k+N] = X_d[k]$$
.

3.
$$e^{j(\Omega_1+2\pi)n}=e^{j\Omega_1n}$$

- \Rightarrow frequências discretas separadas de 2π são indistinguíveis
- \Rightarrow só falamos do intervalo $-\pi < \Omega \le \pi$, ou $0 \le \Omega < 2\pi$.

Nota: Esperamos ver frequências negativas, pois $e^{j\Omega n}$ tem que se combinar com $e^{-j\Omega n}$ para dar um número real. Pela periodicidade, estas aparecem entre π e 2π também. Para a FFT, o componente em -k aparece também no termo N-k.

Aliasing: relação entre espectros de $x_c(t)$ e $x_d[n]$:

- $x_c(t) = e^{j\omega t} \implies x_d[n] = x_c(nT_s) = e^{j\omega T_s n}$.
 - Frequência analógica ω vira frequência digital $\Omega = \omega T_s$.
- $x_c(t) = e^{j(\omega + 2\pi f_s)t}$ \Rightarrow $x_d[n] = e^{j(\omega + 2\pi f_s)T_s n} = e^{j\omega T_s n}$.
 - Usa $f_s T_s = 1$.
 - Usa $e^{2\pi n} = 1$
 - Consequência: frequências analógicas separadas de f_s são indistinguíveis após amostragem.
 - Alias (codinome, pseudônimo): Após amostragem, uma frequência analógica aparece com um codinome, em uma outra frequência digital.

Exemplos de *aliasing*: Efeito estroboscópico, roda de carros em filmes que parecem não rodar.

https://www.youtube.com/watch?v=uENITui5_jU

https://www.youtube.com/watch?v=2SgG99QKLFE&t=513s

https://www.youtube.com/watch?v=mPHsRcI5LLQ

- $x_c(t) = e^{j\omega t} + e^{j(\omega + 2\pi f_s)t} \Rightarrow$ $x_d[n] = e^{j\omega T_s n} + e^{j(\omega + 2\pi f_s)T_s n} = 2e^{j\omega T_s n}.$
 - Consequência: Componente de $x_d[n]$ na frequência $\Omega = \omega T_s$ é combinação de $x_d(t)$ nas frequências $\omega + 2k\pi f_s$.
- $X_d(\Omega) = f_s \sum_{k=-\infty}^{\infty} X_c (\Omega f_s + 2k\pi f_s)$. $X_c(\Omega f_s)$ é $X_c(\omega)$ "esticado" ou "encurtado", de forma que $\omega = 2\pi f_s$ seja levado em $\Omega = 2\pi$

Exemplo:

Se $\omega_m < 2\pi f_s$, ou $f_s > f_m/2$, $x_c(t)$ não tem duas frequências separadas de $f_s \Rightarrow$ sem aliasing

Com aliasing

Condição para evitar aliasing: $\Omega_m T_s < \pi$, ou $\Omega_m < \omega_s/2$ Nesse caso, $X_d(\Omega) = X_c(\Omega f_s)$ para $|\Omega| < \pi$.

Roteiro

O objetivo desta experiência é explorar as relações entre as frequências dos diversos sinais numa operação de amostragem. Para isto, use os comandos do Matlab wavread ou audioread para carregar o sinal de áudio disponibilizado. Estes comandos criam duas variáveis:

- y: amostras do sinal de áudio.
- Fs: taxa de amostragem.
- 1. Considerando o valor de Fs, qual a maior frequência do sinal original podemos recuperar a partir do sinal amostrado?
- O que ocorreu com as frequências maiores do que esse valor?

O comando fft no Matlab calcula, de forma computacionalmente eficiente, a DFT de um sinal. (Nota: o Matlab começa um vetor com o índice 1!) Assim, seja Y = fft(y);. Trace seu gráfico, usando o comando plot, de forma a ressaltar os componentes em frequência mais relevantes. Observe que o vetor Y é complexo. Para ver como determinar a relevância de um componente a partir desse número complexo, por favor, veja a interpretação da transformada de Fourier para sinais reais mostrada na parte inicial deste documento.

Indique no gráfico onde estão as frequências negativas, o como pode ser observada a simetria que existe porque o sinal de áudio é real.

Observe que há dois grupos de frequências que são particularmente importantes para a construção do sinal. Usando o botão DataCursor (), que aparece na barra de ferramentas do gráfico, determine a principal

frequência de cada grupo.

Crie agora o vetor x = y(1:7:end); que toma as amostras de y de sete em sete.

- 3. Vendo x como uma amostragem do sinal de áudio, determine a taxa de amostragem usada para obter x.
- 4. Para eliminar o aliasing, podemos passar o sinal por um filtro passa baixas antes de fazer a subamostragem. Vamos aqui fazer algo diferente: vamos eliminar diretamente os componentes em frequância que sofrerão aliasing apś a subamostragem. Para fazer isso, gere primeiramente a DFT do sinal original, e use um comando do tipo DFT[K_inicial:K_final] = 0 para zerar os componentes relevantes. Recupere agora o sinal no tempo através da DFT inversa, e depois faça a subamostragem. Notas:
 - Observe que você deve tomar cuidados ao zerar componentes em frequência para preservar as simetrias necessárias para obter, no final, um sinal real.
 - Mesmo com esse cuidado, o sinal final terá um pequeno componente imaginário, por questões numéricas. Se esse componente for muito pequeno, da ordem de 10⁻¹⁶, isso significa que você fez tudo certo. Nesse caso, essa parte imaginária desprezível deve ser eliminada tomando apenas a parte real do sinal.
 - No relatório, identifique claramente os índices K_inicial e K_final que foram usados para zerar a DFT, com uma breve justificativa.
- 5. Ouça os sinais y, x e o sinal z subamostrado, e observe a necessidade de uma filtragem anti-aliasing antes da amostragem. A diferença aqui será sutil.