Master of Computer Applications

CAPOL403R01: Computer Organization & Architecture

Unit V: Lecture 2 Programmed IO

Dr. D. MURALIDHARAN
School of Computing
SASTRA Deemed to be University

Techniques for IO

- Programmed IO
- Interrupt driven IO
- Direct Memory Access

.

	No Interrupts	Use of Interrupts
I/O-to-memory transfer through processor	Programmed I/O	Interrupt-driven I/O
Direct I/O-to-memory transfer		Direct memory access (DMA)

Programmed I/O

- 10 instructions are a part of the program
- Processor executes the IO instruction to the appropriate IO module
- The IO module will perform the requested action
- The IO module will set the appropriate bits in the IO status register
- The IO module won't alert the processor
- Processor has to check the status of IO module periodically to know the completion of the operation

I/O Commands

Control

- This command is used to activate a peripheral
- It instructs the IO module what to do
- These commands are tailored to the particular type of peripheral device
- For example, a printer may receive commands like paper size, layout, printing details etc.,

Test

- This command is used to test various status conditions associated with an IO module and its peripherals
- The processor will want to know that the peripheral of interest is powered on and available for use
- It will also want to know if the most recent I/O operation is completed and if any errors occurred

I/O Commands

Read

- This command causes the I/O module to obtain an item of data from the peripheral and places it in an internal buffer
- The processor can then obtain the data item by requesting that the I/O module place it on the data bus

Write

- This command asks the I/O module to take an item of data (byte or word) from the data bus
- The IO module transmits that data item to the peripheral

Memory write operation

Memory mapped IO

ADDRESS	INSTRUCTION	OPERAND	COMMENT
200	Load AC	"1"	Load accumulator
	Store AC	517	Initiate keyboard read
202	Load AC	517	Get status byte
	Branch if Sign = 0	202	Loop until ready
	Load AC	516	Load data byte

Isolated IO

- Special instructions are used for IO communication
- Two sets of read/write instructions are available
- Let's assume the keyboard is connected to the address '5'
- An example for memory write (or IO read) is given below

ADDRESS	INSTRUCTION	OPERAND	COMMENT
200	Load I/O	5	Initiate keyboard read
201	Test I/O	5	Check for completion
	Branch Not Ready	201	Loop until complete
	In	5	Load data byte

Thank you