IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

Henot et al.

Application No.: 10/561,175

§ 371 Date: February 16, 2006

For: Epitope Composition for

Sublingual, Buccal or Enteric Administration Prepared by Hydrolysis of Antigenic Structures with Chymotrypsin Confirmation No.: 1959

Art Unit: 1615

Examiner: To Be Assigned

Atty. Docket: 2447.0030000/ELE/LMB

Request for Corrected Patent Application Publication Under 37 C.F.R. § 1.221(b)

Attn: Mail Stop PGPUB

Commissioner for Patents PO Box 1450 Alexandria, VA 22313-1450

Sir:

Pursuant to 37 C.F.R. § 1.221(b), Applicants respectfully request that the captioned publication be republished to correct material errors by the USPTO. Specifically, the following correction is requested:

Correction Requested in Publication	Support in Application as Filed
Please replace the specification and drawings in their entirety with the specification and drawings of International Appl. No. PCT/EP2004/006733.	Transmittal Letter to the United States Designated/Elected Office (DO/EO/US) Concerning a Submission Under 35 U.S.C. 371 requesting national examination for International Appl. No. PCT/EP2004/006733 as filed on February 16, 2006.

The captioned application is the U.S. National Phase of International Appl. No. PCT/EP2004/006733. A copy of International Publication No. WO 2004/112833 which corresponds to International Appl. No. PCT/EP2004/006733, and a copy of the

Transmittal Letter to the United States Designated/Elected Office (DO/EO/US)

Concerning a Submission Under 35 U.S.C. 371 requesting national examination for the captioned application as filed on February 16, 2006 are enclosed.

The captioned application published as Publication No. US 2006/0147459 Al on July 6, 2006. The specification and drawings published in US 2006/0147459 Al do not correspond to the specification and drawings of the corresponding International Appl. No. PCT/EP2004/006733. A copy of US 2006/0147459 Al is enclosed with the requested correction noted in red. Republication of the captioned publication to correct material mistakes made by the USPTO is believed proper and issuance thereof is respectfully requested.

This request is being made within two months from the date of the captioned patent application publication. No fee is believed to be due. The Commissioner is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036.

Respectfully submitted.

Sterne, Kessler, Goldstein & FOX P.L.L.C. Len M. Brande

Lori M. Brandes Agent for Applicants Registration No. 57,772

Date: September 6, 2006

1100 New York Avenue, N.W. Washington, D.C. 20005-3934 (202) 371-2600

579275 1.DOC

JS 20060147459A1

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2006/0147459 A1 Henot et al. (43) Pub. Date: Jul. 6, 2006

(54) EPITOPE COMPOSITION FOR SUBLINGUAL, BUCCAL OR ENTERIC ADMINISTRATION PREPARED BY HYDROLYSIS OF ANTIGENIC STRUCTURES WITH CHYMOTRYPSIN

(75) Inventors: Frederic Henot, Bruxelles (BE);
Thierry Legon, Korbeek Lo (BE);
Jean Duchateau, Soignies (BE)

Correspondence Address: STERNE, KESSLER, GOLDSTEIN & FOX PLLC 1100 NEW YORK AVENUE, N.W. WASHINGTON, DC 20005 (US)

- (73) Assignee: Biotech Tools S.A.
- (21) Appl. No.:
 - Appl. No.: 10/561,175
- (22) PCT Filed: Jun. 22, 2004
- (86) PCT No.: PCT/EP04/06733

Related U.S. Application Data

(60) Provisional application No. 60/530,629, filed on Dec. 19, 2003. (30) Foreign Application Priority Data

Publication Classification

- (57) ABSTRACT

In the case of a module (1) for a data carrier (11) designed for contactles communication, the module (1) has a chip (3) with at least two pairs (20, 21) of chip connection connects (4, 5, 6, 7) and with at least two pairs (22, 23) of module connecting plates (4, 25, 26, 27), wherein in a starting position, the shapes of the plate surfaces of the module connecting plates (24, 32, 26, 27) result in a particular plate pattern, and differ with legard to the shape of the plate surfaces such that when all the module connecting plates (24, 32, 42, 32, 32) are rotated squand a mid-point (8) of the module (1), the same plate pattern results respectively after 180°.

Please replace abstract with the attached abstract for above-identified application.

. 0

14 21 28 35 42 49 56

EPITOPE COMPOSITION FOR SUBLINGUAL, BUCCAL OR ENTERIC ADMINISTRATION PREPARED BY HYDROLYSIS OF ANTIGENIC STRUCTURES WITH CHYMOTRYPSIN

[0001] The invention relates to a module with a chip with chip connective contacts, this module having a mid-point and being curvisaged for use in a data carrier designed for contactless communication, this data carrier containing the module with the chip with chip connection contacts an additionally at least the further electrical component connected in an electrically conductive manner with the chip—with component chapecting contacts, wherein the chip—with component chapecting contacts, wherein the celetrically conductive considerion between the chip and the at least one further component and he realized in secondance with two coposed polarities.

[0002] The invention furthermore relates to a data carrier that is designed for contactless communication and which contains a module with a chip with chip vonnection contacts and additionally at least one further electrical component—connected in an electrically conductive manner with the chip—with component connected or the chip—with component connection contacts.

[0003] The invention furthermore relates to a rad frame configuration which is intended for the production of a module as described above in the first paragraph, and which has a mid-point.

[0004] A module in accordance with the design describle, above in the first paragraph and a data carrier in accordance with the design described above in the second paragraph and a lead frame configuration in accordance with the design described above in the second paragraph and lead frame configuration in accordance with the design described above in the third are known from the patent obscument WO 20095673 A.1 In the case of the known solutions, the design is such that the module has a chip with just two chip connection contacts and that the module has just two module connecting plates, wherein each module connecting plate is designed to be electrically conductive and is connected in an electrically conductive manner to a hip connection contact and is envisaged for the electrically conductive connection with a component connection contact of a single further component.

[0005] The known designs thus have an important restriction, namely because these designs are suitable only for the module and the chip contained in this module to work together with a single further component with two component connection contacts, namely with a transfer coil with two coil connection contacts. In the case of the known designs, the two module connecting plates can be brought into contact connection in a non-interchangeable manner only with these two component connection contacts, wherein it is irrelevant with which polarity the further component, i.e. the transmission coil, is connected with the module connecting plates and consequently with the chip connection contacts. The electrically conductive connection between the chip and the further component can thus advantageously be realized in accordance with two opposed polarities, which represents a considerable advantage in the production of a data carrier, since both in the case of module connecting plates located in their starting position as well as in the case of module connecting plates located in a position that is rotated by 180° relative to the starting position, each module can be connected with the single further electrical component.

[0006] It is an object of the invention to eliminate the restriction mentioned above and to realize an improved module and an improved data carrier and an improved lead frame configuration.

[0007] To achieve the object described above, in the case of a module according to the invention, features in accordance with the invention are provided, so that a module according to the invention can be characterized in the manner as stated below, namely:

[0008] A module with a chip with chip connection contacts, this module having a mid-point and being envisaged for use in a data carrier designed for contactless communication, this data carrier containing the module with the chip with chip connection contacts and additionally at least one further electrical component-connected in an electrically conductive manner with the chip-with component connection contacts, wherein the electrically conductive connection between the chip and the at least one further component can be realized in accordance with two opposed polarities, and wherein the module has a chip with at least two pairs of chip connection contacts, and wherein the module has at least two pairs of module connecting plates, wherein the two module connecting plates of each pair are provided for the electrically conductive connection with the component connection contacts of one each of at least two further components, and wherein each module connecting plate has a plate surface with a particular shape and is designed to be electrically conductive and is connected in an electrically conductive manner to a chip connection contact, and wherein the shapes of the plate surfaces of the two module connecting plates of each pair are identical, and wherein the shapes of the plate surfaces of the module connecting plates of different pairs are different, and wherein in a starting position of the module connecting plates, the shapes of the plate surfaces of the module connecting plates result in a particular plate pattern and differ such that when all the module connecting plates are jointly rotated, starting from the starting position, around an axis that runs perpendicular in relation to the plate surfaces and passes through the mid-point, the same plate pattern always results after joint rotation around 180° in each case.

[0009] To achieve the object described above, in the case of a data carrier according to the invention, features in accordance with the invention are provided, so that a data carrier according to the invention can be characterized in the manner described below, namely.

[0010] A data carrier kat is designed for contactes communication and contains a module with a chip with chip connection contacts and additionally at least one further electrical component—connected to the chip in an electrically conductive manner—with Acoponent connection contacts, and wherein the module is videsigned in accordance with the invention and wherein the mydule connecting planes of each pair of module connecting planes of each pair of module connecting planes are connected to the component connection contacts of, in hach case, one of at least two further components.

[0011] To achieve the object described above, in the case of a leaf frame configuration according to be invention, features in accordance with the invention are provided, so that a leaf frame configuration according to the 'avention can be characterized in the manner described below, bunely:

[0012] A lead frame configuration which is provided base the production of a module according to the invention and

which has a mid-point, wherein the lead frame configuration has at least two pairs of module connecting plates, wherein the two module connecting plates of each pair are intended for the electrically conductive connection with the component connection contacts of in each case one of at least two further components, and wherein each module connecting plate has a plate surface with a particular shape and is designed to be electrically conductive and is connected in an electrically conductive manner to a chip connection contact, and wherein the shapes of the plate surfaces of the two module connecting plates of each pair are identical, and wherein the shapes of the plate surfaces of the module connecting plates of different pairs are different, and wherein in a starting position of the module connecting plates, the shapes of the plate surfaces of the module connecting plates yield a particular plate pattern and differ such that, starting from the starting position, when all the module connecting plates are jointly turned around an axis that runs perpendicular in relation to the plate surfaces and passes through the mid-point, the same plate pattern always results after joint turning around 180° in each case.

[0013] Through the provision of the Features in accordance with the invention, in a structurally simple manner and with only very little additional expenditure it is achieved that a module according to the invention is suitable not only for working together with a single further component of a data carrier, but also that a module according to the invention is suitable for working together with at least two further components of a data carrier. The following can be provided as further components: a transmission coil, a displaydevice, for example an LED, a safety switch that can be operated manually, a temperature measuring device, a moisture measuring device, a power supply device with solar cells, and various others. By providing the measures according to the invention, in the connection mentioned above, the advantage is achieved that despite the use of several further components, the electrically conductive connection between the chip and the several further components can be realized in an advantageous manner in the case of each of these components, in accordance with two opposed polarities. Furthermore, in an advantageous manner it is achieved that the module connecting plates can be easily and safely distinguished from one another, since the shapes of the plate surfaces of the module connecting plates of different pair are different. Through this different design of the module connecting plates of different pairs of module connecting places, it is achieved that despite the use of several further components, the possibility of producing a wrong contact connection between the module connecting plates and the component connection contacts is excluded, namely because the several module connecting plates yield a particular plate pattern only in their starting position and in the position opposite the starting position, rotated around 180° in relation to the starting position, and therefore with the aid of-for example-optical means, but also with the aid of mechanical means or by means that work in other ways, it is easily possible to detect the particular plate patterns and to permit and effect a connection of the several module connecting plates to the component connection contacts only when the several module connecting plates are located in their starting position or in the position opposite the starting position rotated around 180° relative to it, and consequently yield the desired particular plate pattern. It is thus always ensured that despite the use of several further components, each component is connected via its component connection contacts with the correct module connecting plates, and consequently with the correct chip connection contacts.

[0014] It may be mentioned that from the patent document U.S. Pat. No. 5,005,282, we know of a module which however is intended for use in a data carrier which is intended and designed exclusively for contact-based communication. Here, the known module has a total of eight module connecting plates, which however are not designed for electrically conductive connection with additional further components, since in the case of the known module this is not necessary and consequently not useful either. The eight module connecting plates have, in part, different plate surfaces which in a starting position likewise yield a particular plate pattern, but the shapes of the plate surfaces differ such that when all the module connecting plates are jointly rotated, starting from the starting position, around an axis that runs perpendicular in relation to the plate surfaces and passes through the mid-point, the same plate pattern results only after joint rotation around 360° in each case, and not after joint rotation around just 180° in each case, so that the production advantages that are made possible by the 180° repetition of the plate pattern cannot be attained in the case of the known solution. In constructional respects, the solution known from the patent document U.S. Pat. No. 5,005,282 is thus clearly different from the solutions according to the invention, and does not offer the advantages of the solutions according to the invention.

[0015] In the case of the solutions according to the invention, the module connecting plates can for example extend away from the mid-point in four directions that run perpendicular to one another. In the case of the solutions according to the invention, it has however been shown to be very advantageous if in addition the features as claimed in claim 2 or claim 9 are provided. In terms of constructional design, such a design comes very close to the previous and known designs which are suitable only for connecting a single further component to a module, so that assembly devices that already exist and have been used to date can also be used for assembling modules according to the invention in a data carrier. Parthermore, such a design is advantageous in respect of a particularly high level of security against wrong connection of module connecting plates and component connection contacts. Such a design is moreover very simple.

[9016] In the case of the solutions eccording to the invasion, which are dealyhed above, the shapes of the pulsa surfaces of two module connecting plates lying next to each other can differ from one another as a consequence of the courses of the circumferendes of these two module connecting plates. It has however been shown to be very advantageous if the shapes of the plate surfaces of two module connecting plates bying next to the another are different as a consequence of the characteristic, of the separation zone separating means to the characteristic, of the separation zone separating these two module connecting plates. This has the characteristic of the separation of the characteristic continuation of the characteristic configuration of the characteristic continuation of the characteristic c

[0017] In the case of the solutions according to the invention, the shape of the separation zone can be used as the characteristic of the separation zone. For example, the

constitution zone can be designed to be are-chaped or survived-shaped or swee-shaped. It has however proved to be very advantageous if in the case of the solutions according to this/uvertion, as characteristic of the separation zone its course \(\frac{1}{2}\) utilized, wherein it is particularly advantageous if a separation zone by the course to the connecting plates that \(\frac{1}{2}\) next to one another runs obliquely to the main direction. This is advantageous in respect of a very simple constructional design and in respect of simple and economical producibility of the separation zone.

[0018] It has been known to be particularly advantageous bere if the separation oner runs in a straight line. This is advantageous because though this, it is made possible for the separation zone to be produced with the aid of different methods and in a simple marker.

[0019] In the case of the solutibue according to the invention, for producing the module and, the module connecting plates one can use a synthetic, for example fiber-rainforced, which is equipped with an electrically conductive layer, wherein the electrically conductive layer, wherein the electrically conductive layer, wherein the module connecting plates. It has however been shown to be very advantageous if the module connecting plates have been produced with the aid of a conductor frame configuration. Such a design is particularly advantageous since a conductor frame configuration is practically not hydrocopie at all, and is consequently very resistant to the influonces of mostitum.

[0020] These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.

[0021] The invention will be described further below, on the basis of seven design examples illustrated in the drawings, without the invention being restricted to these examples.

[0022] In the drawings,

[0023] FIG. 1 shows, in a schematic manner, in a view from above, a module according to a first design example of the invention.

[0024] FIG. 2 shows, in a schematic manner, in a view from above, a data carrier according to the invention with a module according to FIG. 1.

[9025] FIG. 3 shows, in a schematic manner, in a view from above, a part of a lead frame band which contains a number of lead frame configurations, wherein both the lead frame configurations according to a first design example Of the invention as well as lead frame combinations according to the prior att are provided.

[0026] FIG. 4 shows, in a schematic manner, in plan view, a total of six further lead frame configurations in accordance with six further design examples of the invention.

[6027] FIG. 1 shows a module 1. The module 1 is designed to be place-shapet and has an overall height that is as low possible in this case, this is around 220 µm. The overall height can lie within a range of between 190 µm and 400 µm. The module 1 comprises a conductor frame configuration 2 and a chip 3. The chip 3 contains a circuit, not shown, with the sid of which contactless communication can be carried out with a communication station that is suitable for this. The chip 3 has chip connection contacts 4, 5 and 6,

We shall go into further detail about the purpose of the connection contacts 4 to 7 below.

[0028] The module 1 and the lead frame configuration 2 have a mid-point 8 and a main axis 9 that passes through the mid-point 8, and a secondary axis 10 that likewise passes through the mid-point 8.

[0029] The module 1 is intended for use in a data carrier 11 that is designed for contactless communication. The data carrier 11 is shown in FIG. 2. The data carrier 11 contains, as an electrical component, the module 1 with the chip 3 which has the chip connection contacts 4, 5, 6 and 7. Furthermore, the data carrier 111 contains two further electrical components, of which the first further component is formed by a transmission coil 12 for contactless communication, and the second further component is formed by a safety switch 13 for blocking or releasing the functionality of the chip 3 and consequently of the data carrier 11. The first further component, i.e. the transmission coil 12, has two component connection contacts, namely two coil connection contacts 14 and 15. The second further component, i.e. the safety switch 13, likewise has two component connection contacts, namely two switch connection contacts 16 and 17. The coil connection contacts 14 and 15 and the switch connection contacts 16 and 17 are connected to the chip connection contacts 4 and 5 or 6 and 7 in an electrically conductive manner; this will be dealt with in greater detail below. In the case of the data carrier 11, due to the electrical characteristics of the transmission coil 12 and of the safety switch 13, the situation is such that the electrically conductive connection between the chip 3 or the chip connection contacts 4, 5 and 6,7 and the further components, i.e. the cansmission coil 12 and the safety switch 13, can be realized in accordance with two opposed polarities. In the case of the solution illustrated in FIG. 2, the first coil connection contact 14 is connected in an electrically conductive manner to the first chip connection contact 4, and the second coil connection contact 15 to the second chip connection contact 5, and the first switch connection contact 16 to the third chip connection contact 6, and the second switch connection contact 17 to the fourth chip connection contact 7. It could however also be the case that the module 1 and consequently the chip 3 is installed in the data carrier 11 in a position rotated around 180% wherein the second chip connection contact 5 is then connected to the first coil connect to contact 14, and the first chip connection contact 4 to the second coil connection contact 15 second coil connection contact 15 and the fourth chip connection contact 7 to the first switch connection contact 7 to the first switch connection contact 16, and the third chip connection contact 6 to the second switch connection contact 17. Yn the case of this solution too, perfect functioning of the data carriers 11 is ensured.

[0000] As has already been multioned above, the lead frame configuration 2 forms an important constituent component of the module 1. A large number of ruch lead frame configurations 2 is contained in a conductor frame tape 18, which is shown in part in FIG. 3. The lead frame tape 18, which is shown in part in FIG. 3. The lead frame tape 18 and the lead frame tape 18. In addition to the lead frame tong 18. In addition to the lead frame tong 18. In addition to the lead frame tong 18. In addition to the lead frame tape 18 are further lead frames 19 of a design which confirms to the known prior art.

[081] As has also been mentioned above, the chip 3 has for been mentioned above, the chip 3 has foundation contacts 4, 5, 6 and 7 altogether. These four chip connection contacts 4, 5, 6 and 7 form two pairs 20 and 3Q of chip connection contacts there, wherein the first pair 26 cohprises the first chip connection contact 4 and the second chip/connection contact 4 and the second chip/connection contact 4 and the second chip/connection contact 4 and the fourth chip confeccion contact 7.

[0032] In the case of the module 1 and in the case of the lead plate configuration 2, the design is such that the module of module connecting plates 24, 25 and 26, 27. Here, the first module connecting plates 24 and the second module connecting plates 24 and the second module connecting plate 34 and the second module connecting plate 25 form the first pair 22 of module connecting plates. The third module connecting plate 26 and the fourth module connecting plate 27 form the second pair 23 of module connecting plates. The module connecting plates 24 and 25 or 26 and 27 of each pair 22 or 23 are provided for the electrically conductive connection with the component connection contacts 14 and 15 or 16 and 17 of, in each case, one further component, namely the transmission coil 12 or the safety switch 13. The module connecting plates 24, 25, 26 and 27 have thus been produced with the aid of the lead frame configuration 2. This means that the module connecting plates 24, 25, 26 and 27 are designed to be electrically conductive. The module connecting plates 24, 25, 26 and 27 are connected in an electrically conductive manner to the chip connection contacts 4, 5, 6 and 7, and in fact such that the first module connecting plate 24 is connected in an electrically conductive manner via a first bond wire 28 with the first chip connection contact 4, and the second module connecting plate 25 via a second bond wire 29 with the second chip connection contact 5, and the third module connecting plate 26 via a third bond wire 30 with the third chip connection contact 6, and the fourth module connecting plate 27 via a fourth bond wire 31 with the fourth chip connection contact 7.

[6033] In addition to the four module connecting planes 42, 52, 56 and 77, the module 1 and the lead frame configuration 2 have a carrier plate 32 lying between the four module connecting plates, with the chij 3 being finatesed to this carrier plate 32 with the aid of an adhesive bond, not shown. For mechanically holding together the module considerable 15 miles 15 mile

[9034] In the case of the module 1 and the leaf frame configuration 2, each module connecting plate 24, 25, 26 and 27 has a plate surface of with a particular shape. Here, the abapes of the plate surfaces of the two module connecting plates 24, 25 or 26 and 27 of each pair 22 or 23 are identical, and the shapes of the plate surfaces of the module connecting plates 24, 25 or 25, 27 of different pairs 22 and 23 are districted. In a starting position of the module connecting plates 24, 26 or 25, 27 of different pairs 22 and 23 are districted. The starting position of the module connecting the connecting plates 24, 25, 68 and 27 position 27 positions of the four module connecting plates 24, 25, 68 and 31 in the FIGS. 1 and 3. In the FIGS. 2 and 3. In the FIGS. 2 positions of the plate surfaces of the plate

27 vary here such that, starting from the starting position shown in the FIGS. 1, 2 and 3, when all the module connecting plates 24, 25, 26 and 27 are jointly rotated around an axis that runs perpendicular in relation to the plate surfaces and passes through the mid-point 8, the same plate pattern always results after common rotation around 180° in each case.

[0035] Of each pair 22 or 23 of module connecting plates 24, 25 and 26, 27, one module connecting plate 24 or 26 points in a first direction, indicated by the arrow 34, that runs parallel to the main axis 9 and points away from the mid-point 8, and the other module connecting plate 25 or 27 points in a second direction, indicated by the arrow 35, that runs parallel to the main axis 9 and opposite to the first direction 34 and points away from the mid-point 8. Here, the module connecting plates 24 and 26 that point in the first direction 34 lie next to one another and are separated from one another by a separation zone 36. Furthermore, the module connecting plates 25 and 27 that point in the second direction 35 lie next to one another and are separated from one another by a separation zone 37. Advantageously, the shapes of the plate surfaces of two module connecting plates 24, 26 or 25, 27 lying next to one another are different. In the present case, the different shapes of the plate surfaces of two module connecting plates 24, 26 or 25, 27 lying next to one another are achieved as a consequence of the characteristics of the separation zone 36 or 37 that separates these two module connecting plates 24, 26 or 25, 27. In the present case, the characteristic of each separation zone 36 or 37 that is decisive for the different shapes of the plate surfaces is formed by the course of the respective separation zone 36 or 37. As is apparent from FIGS. 1 to 3, the two separation zones 36 and 37 run between the module connecting plates 24, 26 and 25, 27 that lie next to one another run obliquely to the main direction 9, and consequently also obliquely to the secondary direction 10. The two separation zones 36 and 37 run in a straight line here.

19836). It should also be mentioned that provided in the module home-cling planes 24, 25, 26 and 27 are sits a 88, 39, 40, 41, 44, 34, 44 and 45; the purpose of these will not be eath with any further here, since this of no consequence in this connective, it should further be mentioned that provided between the carlier plate 32 on the one hand and the module connecting plate 32 and the one hand and the module connecting plate 32 and 26 that lie next to one another on the other hand, they is an essentially U-shaped first separation all 46, into which first separation sits 46 the separation may be separated as the separation and the separation sits 47 the separation sits 47, into which second separation sits 47 the separation sits 47, into which second separation sits 47 the separation sits 47, into which second separation sits 47 the separation sits 47, into which second separation sits 47 the separation sits 48 the separat

[9037] In the case of the module I abopting to FIG. I, in an advantageous and simple manner it is believed that with the chip 3 of the module I, two further combpents, namely the transmission oil II and the safety switch [3], can be connected, wherein this connection is possible hywo positions of the module I that are rotated around 18% to one another, which is advantageous in respect of produchba of the data carrier II being as simple as possible, since the module I can be introduced into the data carrier II and connected to the data carrier II and the data carrier II and the connected to the data carrier II and the carrier II and the

and 27 differing in pairs in respect of the shape of the plate surfaces, the module connecting plates 24, 25, 26 and 27 and the plate patterns formed by the module connecting plates 24, 25, 26 and 27 can always be perfectly recognized and detected it necessary, so that it is always ensured with certainty that the correct further components are brought together in an electrically conductive connection with the correct module connecting plates 24, 25, 26 and 27 intended for this. This is happortant particularly in the case of automated production of data carriers, since in the case of such automated production, it is possible or it is the practice for modules 1 to be brought together with the data carrier blanks of data carriers in an automated manner, wherein however the undesirable situation can occur that modules 1 are brought together with data carrier blanks in a position that is rotated around the main axis by 180 relative to the starting position shown in FIG. 1, on in a position that is rotated around the secondary axis 10 by 80° relative to the starting position shown in FIG. 1, which in the event of actual installation of a module 1 that had been brought together with a data carrier blank in such a lotated position would result in a non-functional data carries, which however is avoided with certainty on account of the design of module 1 in accordance with the invention, with its module connecting plates that differ in pairs.

[0038] FIG. 4 shows, in a schematic manner, further design variants of lead frame configuration 2 according to the invention.

[0039] In the case of the lead frame configuration 2 shown in the left-hand upper illustration according to FIG. 1, the separation zones 36 and 37 are designed to be wedge-shaped.

[0040] In the case of the lead frame configuration 2 shown in the middle upper illustration according to FIG. 4, the separation zones 36 and 37 are designed in a step-wise manner.

[0041] In the case of the lead frame configuration 2 shown in the right-hand upper illustration, the two separation zones 36 and 37 are designed to be S-shaped. These separation zones 36 and 37 can however also be designed to be wave-shaped, i.e. in a multiple S-shape.

[0042] In the case of the lead frame configuration 2 shown in the left-hand lower illustration according to FIG. 4, the separation zones 36 and 37 are designed in an arc shape.

[0043]. In the case of the leaf fame configuration 2 shows in the middle lower illustration, in addition to the vote separation zones 36 and 37 that are designed in a vedge shape, two further separation zones 48 and 49, running obliquely and in a straight line, are provided, so that in the case of this lead frame configuration 2, air module connecting plates 24, 25, 26, 27, 50 and 51 are provided, wherein the rifth module connecting plates 31 means that in the case of a module connecting plate 51 form a third pair 56 of module connecting plate 51 form a third pair 56 of module connecting plate 50 form senses that in the case of a module that is realized with the sid of this leaf frame configuration 2, a total of three further components can be connected in an electrically conductive manner with this module or with the chirp of this module.

[0044] In the case of the lead frame configurations 2 described above, the course of the envisaged separation zones is selected as a characteristic for the shapes of the

plate surfaces of the module connecting plates that differ in aniar. Instead of the course of the separation zones, one can however also apply the course of the circumferential limitation of the module connecting plates lyping next to one another as the characteristic for the different shapes of the plate surfaces. Such a leaf frame configuration 2, it is shown in the right-land lower illustration according to FIG. 4. In the case of this leaf frame configuration 7, it have module connecting plates 24 and 25 of the first pair 22 each have a module connecting plates 24 and 25 of the first pair 22 each have a module connecting plates 24 and 25 of the first pair 22 each have a module connecting plates 24 and 25 of the first pair 25 each plate 25 and 25 of a step-wise design in their circumferential limitation.

[0045] It should be mentioned that the designs described above, and also other designs of modules and lead finne configurations according to the invention, are also usitable for those data carriers that are usitable not only for contact-less communication but also additionally for contact-less communication and accordingly are equipped with communication contacts, for example with communication contacts in accordance with the international standard ISO 7816-2.

[9046] It should furthermore be mentioned that in the case of a data carrier according to the invention, as a further component one can also use a so-called electrical quadripole, this quadripole having four connections which, with the aid of two pairs of module connecting plates, are connected to chip connection contacts of a chip of this module that are provided for this purpose.

[9047] It should furthermore be mentioned that a data carrier according to the invention can be designed in the form of a card. Such a data carrier according to the invention can however also be a consiltment part of a product, and be accommodated or installed in the product. Such a product can for example be a device from the field of entertainment ejectronics or a communication device such as a mobile before the constraint of the contract o

[0048] It should furthermore be mentioned that in the case of the module 1 or data carrier 11 according to the invention, as described above, a chip 3 is provided in semiconductor technology. A chip of this type can however also be produced on a playmer base.

[0049] It should furthermore be mentioned that in the case of the design examples described above, each module contains only one chip. This does not necessarily need to be the case, since such a module can also contain two, three or even more chips.

1. A module (1) with X-daip (3) with chip connection contacts (4, 5, 6, 7), said module (1) having a mid-point (8); and said module (1) being envloaged for use in a date contact (11) designed for contactless conhumication, that data carrier (11) cotalizing the module (1) with the chip (3) with chip connection contacts (4, 5, 6, 7) and additionally at least one further electrical component (12, 75)—connected in an electrically conductive manner with thic chip (3)—with component connection notacts (14, 15, 16, N2), wherein the electrically conductive connection between the value (3) and electrically conductive connection between the value (3) and wherein the manner of the connection contact (12, 13) can be equilized in accordance with two opposed polarities, and wherein the module (1) has a such (p) with at least two pairs (2, 11) of

thip connection contacts (4, 5, 6, 7), and wherein the module (h) has at least two pairs (22, 23; 22, 23, 56) of module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51), wherein the two module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) of each pair (22, 23; 22, 23, 56) are provided for the electrically conductive connection with the component connection contacts (4, 5, 6, 7) of in each case one of at least two further components (12, 13), and wherein each module connecting plate (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) has a plate surface with a particular shape and is designed to be electrically conductive and is connected in an electrically conductive manner with a chip connection contact (4, 5, 6, 7), and wherein the shapes of the plate surfaces of the two module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) of each pair (22, 23; 22, 23, 56) are identical, and wherein the shapes of the place surfaces of the module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) of different pairs (22, 23; 22, 23, 56) are different, and wherein in a starting position of the module connecting plates, the shapes of the plate surfaces of the module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) result in a particular plate pattern and differ such that when, starting from the starting position, all the module connecting places (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) are jointly rotated around an axis that runs perpendicular in relation to the plate surfaces and that passes through the mid-point (8), the same plate pattern always results after joint rotation around 180° in each case

 A module (1) as claimed in claim 1, wherein the module (1) has a main axis

running through the mid-point (8), and wherein of each pair (22, 23; 22, 23, 56) of module connecting plates, one module connecting plate (24, 26; 24, 26, 50) points in a first direction (34) that runs parallel to the main axis (9) and points away from the mid-point (8), and the other module connecting plate (25, 27; 25, 27, 51) points in a second direction (35) that runs parallel to the main axis (9) and runs opposite to the first direction (34) and points away from the mid-point (8), and wherein the module connecting plates (24, 26; 50, 24, 26) that point in the first direction (34) lie next to one another and are separated from one another by a separation zone (36; 48, 36) in each case, and wherein the module connecting plates (25, 27; 25, 27, 51) that point in the second direction (35) lie next to one another and are separated from one another by a separation zone (37; 49, 37) in each case, and wherein the shapes of the plate surfaces of two module connecting plates (24, 26, 27, 25; 50, 24, 26, 27, 25, 51) lying next to one another are différent

3. A module (1) as claimed in claim 2, wherein the shapes of the plate surfaces of two module connecting plates (24, 26, 27, 25; 59, 24, 26, 27, 25; 51) lying next to one another are different as a consequence of the characteristics of the separation zone (36, 37; 48, 36, 37, 49) that separates these two module connecting plates.

4. A module (1) as claimed in claim 3, wherein at least one separation zone (36, 37, 48, 49) lying between two module connecting plates (24, 26, 27, 25, 50, 26, 25, 51) that lie next to one another runs obliquely to the main direction.

5. A module (1) as claimed in claim 4, wherein the separation zone (36, 37; 48, 49) runs in a straight line.

6. A module (1) as claimed in claim 1, wherein the module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) have been produced with the aid of a conductor frame configuration (2).

7. A data carrier (11) that is designed for contactless communication and contains a module (1) with a chip (3) with chip connection contacts (4, 5, 6, 7) and additionally at least one further electrical component (12, 13)—concate in an electrically conductive manner with the chip (3)—with component connection contacts (14, 15, 16, 17), and wherein the module (1) is designed as claimed in any one of the claims 10 7, and wherein the module connecting plates (24, 25, 26, 27, 24, 25, 26, 27, 50, 51) of each pair (22, 23, 23, 56) of module connecting plates is connected with the component connection contacts (14, 15, 16, 17) of in each case one of at least two further components (21, 13).

8. A lead frame configuration (2) which is provided for the production of a module (1) as claimed in any one of the claims 1 to 7 and which has a mid-point (8), wherein the lead frame configuration (2) has at least two pairs (22, 23; 22, 23, 56) of module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51), wherein the two module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) of each pair (22, 23; 22, 23, 56) are intended for the electrically conductive connection with the component connection contacts (4, 5, 6, 7) of in each case one of at least two further components (12, 13), and wherein each module connecting plate (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) has a plate surface with a particular shape and is designed to be electrically conductive and is connected in an electrically conductive manner to a chip connection contact (4, 5, 6, 7), and wherein the shapes of the plate surfaces of the two module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) of each pair (22, 23; 22, 23, 56) are identical, and wherein the shapes of the plate surfaces of the module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) of different pairs (22, 23; 22, 23, 56) are different, and wherein in a starting position of the module connecting plates, the shapes of the plate surfaces of the module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) yield a particular plate pattern and differ such that, starting from the starting position, when all the module connecting plates (24, 25, 26, 27; 24, 25, 26, 27, 50, 51) are jointly turned around an axis that runs perpendicular in relation to the plate surfaces and passes through the midpoint (8), the same plate pattern always results after joint turning around 180° in each case.

 A lead frame configuration (2) as claimed in claim 8, wherein the lead frame configuration (2) has a main axis (9) that passes through the mid-Roint (8), and wherein of each pair (22, 23; 22, 23, 56) of module connecting plates, one module connecting plate (24, 26, 24, 26, 50) points in a first direction (34) that runs parallel to the main axis (9) and points away from the mid-point (8), and the other module connecting plate (25, 27, 25, 27, 51) points in a second direction (35) that runs parallel to the main axis (9) and runs opposite to the first direction (34) and points away from the mid-point (8), and wherein the module connecting plates (24, 26; 50, 24, 26) that point in the first direction (34) lie next to one another and are separated from one another by a separation zone (36; 48, 36) in each case, and wherein the module connecting plates (25, 27, 25, 27, 51) that point in the second direction (35) lie next to one another and are each separated from one another by a separation zone (37; 49, 37) in each case, and wherein the shapes of the plate surfaces of

two module connecting plates (24, 26, 27, 25; 50, 24, 26, 27, 25, 51) that lie next to one another are different.

10. A lead frame configuration (2) as Chaimed in claim 9, wherein the shapes of the plate surfaces of two module connecting plates (24, 56, 72, 55, 50, 42, 66, 72, 73-53) that lie next to one another are different as a consequence of the characteristics of the separation zone (36, 37, 48, 36, 37, 49) that separates these two module connecting plates.

11. A lead frame configuration (2) as claimed in claim 10, wherein at least one separation zone (36, 37, 48, 49) lying between two module connecting plates (24, 26, 27, 25, 50, 26, 25, 51) that lie next to one another runs obliquely to the main direction.

mann direction.

12. A conductor frame configuration (2) as claimed in claim 11, wherein the separation zone (36, 37; 48, 49) runs in a straight line.

Please replace specification and drawings with the attached specification and drawings for the above-identified application.