Лабораторная работа № 2.

«Детерминированные циклические вычислительные процессы с управлением по аргументу».

Цель: разработать и научиться использовать алгоритмы, основанные на детерминированных вычислительных процессах, управление которыми осуществляется по аргументу.

Оборудование: ПК, среда разработки «PascalABC»

Задание 1

Постановка задачи: вычислить n!, где n вводится с клавиатуры.

Математическая модель:

$$N! = 1 * 2 * 3 * ... * n$$

Блок схема:

Список идентификаторов:

Название	Тип	Функция
N	Integer	Введенное значение
S	Integer	Произведение n!
I	Integer	Переменная

Программа:

```
Program lr21
Var
s,n,i: integer;
begin
writeln('vvedite chislo n');
readln(n);
s:=1;
for i:=1 to n do
begin
s:=s*i;
end;
writeln('n!=', s);
end.
```

Результаты выполненной работы:

N!=120

Анализ результатов вычисления:

Данный результат получен путем повторного умножения переменной і, целочисленного типа, на переменную s, тоже целочисленного типа, в цикле.

Задание 2

Постановка задачи: рассчитать значения для построения диаграммы направленности антенны в вертикальной плоскости:

$$f(Q) = \frac{(1 + \sin(Q)) \cdot \cos\left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)}{\left(\frac{\pi}{2}\right)^2 - \left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)^2}$$

Q меняются в диапазоне от 0 до 90 градусов с шагом 1 градус, а = 13,5, 1 = 3 см

Математическая модель:

$$f(Q) = \frac{(1 + \sin(Q)) \cdot \cos\left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)}{\left(\frac{\pi}{2}\right)^2 - \left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)^2}$$

Блок схема:

Список идентификаторов:

Имя	Смысл	Тип
Q	Q	integer
L	лямбда	integer

Α	альфа	real
С	результат произведения	real
F	значение	Real
	функции	
D	переменная	Real
Н	переменная	Real

Программа:

```
program c1;
var
Q,l:integer;
a,c,f,D,H:real;
begin
1:=3;
a := 13.5;
D:=(Pi*a/l*cos(Q));
H:=(1+\sin(Q))*\cos(D)/\operatorname{sqr}(Pi/2) - \operatorname{sqr}(D);
for Q:= 0 to 90 do begin
c := D;
f:=H;
writeln(f);
end;
readln;
end.
end.
```

Результат:

```
0.54215593950996

-146.506549350029

-160.215826014301

-2.43533120106459

-120.565776149566

-179.903323723149

-13.1842967556796

-93.111363945589

-193.590164952712

-29.4039445930315

-64.8918711826893

-199.605339340292

-51.568430041688

-39.3591848708776
```

Анализ результатов вычисления:

Итоговый результат был получен путем выполнения одних и тех же математических операций, но с разными значениями.

Задание 3

Задача

Вычислить значение выражения

выражение	n	x
$y = x + 2 \sum_{k=1}^{n} 0.5^{k} coskx$	25	1,2

Математическая модель:

$$y = x + 2 \sum_{k=1}^{n} 0.5^{k} \cos kx$$

Блок-схема:

Список идентификаторов:

Имя	Смысл	Тип
K	параметр цикл	integer
N	n	Integer
Y	результат	Real
Z	результат формулы Е	Real
С	Сумма	Real
X	X	Real

Программа:

```
program F;
var
k,n:integer;
y,z,c,x:real;
begin
n:=25;
x:=1.2;
c:=0;
for k:=1 to n do begin
z:=exp(k*ln(0.5))*cos(k*x);
c:=c+z;
end;
y:=x+2*c;
writeln(y);
end.
```

Результат:

1.04493496898189

Анализ результатов вычисления:

Ответ данной задачи получен благодаря применению ДЦВП.

Задание 4

Постановка задачи:

Вычислить

Математическая модель:

$$y = \frac{3 \cdot \sum_{i=2}^{n} i^2 + \prod_{i=2}^{n} \frac{i}{i+2}}{\prod_{i=2}^{n} i^2 + 2 \cdot \sum_{i=2}^{n} \frac{i}{i+2}}$$

Блок схема:

Список идентификаторов:

Имя	Тип	Смысл
y	real	Искомое значение
Pr1	real	произведение
Pr2	real	произведение
Sum1	real	Сумма
Sum2	real	Сумма
i	integer	Параметр цикла
n	integer	Входные данные

Программа:

```
program zadanie4;
var
 y,pr1,pr2,sum1,sum2 : real;
 i,n: integer;
begin
writeln('Vvedite N');
readln(n);
pr1 := 1;
pr2 := 1;
sum1 := 0;
sum2 := 0;
for i = 2 to n do begin
sum1 := sum1 + i*i;
pr1 := pr1*i/(i+2);
sum2 := sum2 + i/(i+2);
pr2 := pr2*i*i;
end;
y := (3*Sum1+pr1)/(pr2+2*Sum2);
writeln('y = ',y:2:5);
readln();
end.
```

Результаты выполненной работы:

Vvedite N 5 y = 0.01126

Анализ результатов вычисления:

Наша программа выводит получает в качестве входных данных число N. После чего, присвоив соответственно суммам и произведениям значения 0 и 1, начинаются вычисления. После выхода из цикла, подставляем значения в формулу и выводим ответ на экран.

Вывод: Применение детерминированных циклических вычислительных процессов в данных задач обусловлено тем, что в них требуется многократное, но при этом указанное, выполнение однотипных вычислений. В случае даже если финальный результат не вычисляется в цикле, то наличие цикла все равно необходимо, так как без его использования программа потеряет всякую рациональность.