### **Background and Objective:**

11/8/20 Objective: to get 4 motors spinning. Upon some contemplation, I have decided that 4 motors are unnecessary for our project; however, I had already started my attempt to get 4 motors spinning with what I had, I finished it.

11/10/20 Objective: Build a prototype chassis to mount motors/wheels.

11/11/20 Objective: Get precise motor spin control.

## Requirements:

| Requirement                                                               | Description                                                                                                                                                                                 |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11/8/20: 4 motors spinning                                                | Using the MCP23017 GPIO extender, connect the Raspberry Pi to 2 TB6612FNG Motor Drivers, then from each motor driver to 2 spinning motors. (Partial Failure, Partial Success)               |
| 11/10/20: Attach wheels, get some semblance of a chassis                  | Attach wheels to motor, build a makeshift chassis to keep the motors mounted (success)                                                                                                      |
| 11/11/20: Try to control forward, backwards, turning left, turning right. | Experiment with the Python code (still the one found online at this point) and try to get movement forwards, backwards, turning left, and turning right. (partial failure, partial success) |

# Issues and Solutions While Testing:

- 1. Using the Raspberry Pi with a monitor proved to be time consuming--Set up VNC.
- 2. Setting up the Pi-GPIO Extender-2 Motor Controller-4 Motors system did not work--In my mind, I had imagined that i could "extend" the GPIO ports of the Raspberry Pi, and thus be able to connect 2 or more motor drivers to the GPIO extender. This was not the case. I am still uncertain whether or not what I had in mind is possible or not, but what I ended up doing (for the sake of getting 4 motors spinning) was to use the same setup I used to get 2 motors spinning (using just one motor driver), and used male-male jumper wires to mirror the connections from the GPIO to the first motor driver to the second motor driver.
  - a. The 2 motors connected to the first motor driver spun normally.
  - b. The 2 motors connected to the second motor driver did not spin normally. I am assuming it is a lack of power (I was only using 1 external voltage source), or there is loss when I mirror the current. I swapped around the motors to make

- sure that it wasn't an issue with the motors, but any 2 motors connected to the first motor driver performed as expected, and the other 2 did not.
- 3. Could get the "rover" to go forward and backwards, but could not get it to turn--the way I set up the "rover", I have one motor for the two front wheels and one motor for the two back wheels. My next step is likely to go from this setup to a front-wheel drive (one motor to power the front axle, one motor to turn the front axle(?)). I could also set it up so that each side (left, right) has one motor, and I could turn by having one side's motor spin forward and the other side's motor spin backwards.

# **System Picture:**

11/8/20: 4 Motors



11/10/20: Wheels and Chassis (Wooden Chopstick)



#### Questions:

- How can we use a GPIO extender (if possible) once we put all of what we're working on together?
- Will we be able to connect (and power) all of our components to one Raspberry Pi?
- Stepper motor suggestions?
- Suggestions for how a good layout for motors and wheels?