

Agenda

- Fast Model Introduction
- Graphics Fast Model
- Core Technologies
- Performance Data
- ARMv8 Virtual Platform
- Conclusion

Fast Model Introduction

arm

The Traditional SoC Work-Flow

Accelerated with an ESL front-end

SoC Simulation Views

Fast Models from Arm

Fast, functional models of Arm IPs

- Cores and peripherals
- Validated and maintained by Arm
- APM demo 26 hours 11.5 Trillions (> 100 MIPS) instructions executed

Accompanying tools

- System Canvas environment for developing custom models and constructing system
- System Generator backend tool which handles system generation
- Compatible with Arm's other development tools
 - DS-5
 - MDK (Microcontroller Development Kit)
 - Model Debugger
- Integrates into SystemC

Graphics Fast Model

arm

Graphics Register Model (GRM)

⁹ * Graphics Drivers in both kernel and user space can run

GPU Simulation

Big architecture differences between CPU and GPU, e.g.

- GPU has very big number of cores
- CPU has deeper pipeline and bigger cache size

Industry Solutions

- Non-GPU model to help CPU centric study. E.g. NoMali model for GEM5
- Software rendering using CPU through QEMU. E.g. Google Android Emulator
- Cycle models or C model translated from RTL.
- Trace replay to help offline GPU analysis

Goals of Arm[®] Fast Model[™] Solution

- Run commercial graphics benchmarks in subsystem model
- Verify whole software stack integration as early as possible
- Zero Android image change at silicon tape-out time

Generic Graphics Accelerator (GGA)

- Leverages host GPU to accelerate
 OpenGL ES calls in target software
- Side Channel plays a backdoor role of Fast Model
- Mali Emulator can be ignored if graphics APIs can be directly supported by host driver

GPU Fast Model Architecture

Graphics Driver Verification

Error Code Checking

Graphics Driver Verification

- Error Code Checking
- GPU Trace Listing
- Register Dump

Core Technologies

arm

Lazy API Dispatch

Memory Coherence

Native Window Handler Abstraction Layer

Remote Acceleration

Subsystem Architecture With Graphics Supported

Performance

GGA/GRM Performance Data

APIs Execution Time Break-down

ARMv8 Virtual Prototype

arm

Virtual Prototypes for Software Development

Ready-to-use

- ☐ Low cost software development for new Arm technologies
- ☐ Compatible with Arm Versatile Express boards
- ☐ CADI, MTI for debug and trace

Fixed Virtual Platforms

ARMv8-A Foundation Platform

- ☐ Free of charge entry level fixed platform for Linux + GNU maintainers, apps developers etc.
- ☐ Debug with GDB

Model & Platform Development

Fast Model Portfolio

- ARMv7 and ARMv8
- Cortex-A, Cortex-R, Cortex-M
- ARM9, ARM11
- System IP
- Media IP

Platform Assembly

Processor model

☐ Flexible Virtual Platforms
tailored to *any* SoC or system
☐ Extensible, scalable
☐ Integration with Synopsys,
Cadence, Mentor, Arm Cycle
Model, open source and
proprietary TLM simulators

Subsystem Virtual Prototype

Goals

- Full support of software development, debugging, and analysis
- Run whole software stack as early as system IPs' specification is ready
- Create virtual platform models that execute with high simulation speeds

Simulate multiple systems IPs simultaneously

- Hardware solution, E.g. FPGA based emulator
- Pure software implementation. E.g. Arm[®] Fast Model[™], Synopsys [®] VDK

Differences from other VMs like VMware, VirtualBox and QEMU

- Highly customized for SoC
- Low level system IP simulation
- All peripheral devices for a complete subsystem
- Cross architecture execution

Fixed Virtual Prototypes for Armv8-A

Out of the box solutions for productive software development

- Foundation: Armv8-A FVP with simple peripheral set for Linux application development
- Base: dual-cluster Armv8-A FVP with extended peripheral set including PCIe, GIC, SMMU and CCI models
 - Supports the latest public Armv8-A specification

https://developer.arm.com/products/system-design/fixed-virtual-platforms

 System Guidance: Armv8-A FVPs for Mobile and Infrastructure platforms

Foundation Platform, Base Platform, Fast Models

Key Features compared

Foundation Platform	Base Platform (Rev C)	Fast Models	
Fixed Virtual Platform (FVP) for AEMv8-A with minimal peripheral set.	Fixed Virtual Platform (FVP) for AEMv8-A with extended peripheral set including PCIe, GIC, SMMU and interconnect models.	Fully flexible package of models and tools to create customised, extensible platforms including GIC, SMMU, GPU, VP, DP and more.	
Supports published ARMv8-A specifications	Supports published ARMv8-A specifications	Support for NDA architecture features	
Linux application development	Linux/Android support, bare metal software development	Linux/Android support, bare metal software development	
Single cluster, 1-4 cores	Dual cluster, 1-4 cores per cluster	Flexible: single/multi cluster, heterogenous platforms, etc	
Thumb2EE, crypto not supported	Thumb2EE, crypto supported	Thumb2EE, crypto supported	
No SystemC interface	No SystemC interface	SystemC interface	
Limited configurability, not extensible.	All platform/model parameters available, not extensible.	Configurable, editable, extensible platforms	

Software Stack Supported

The Open Embedded filesystem images are provided with three flavors:

- 1) minimal just to get you to a shell prompt
- 2) SDK includes developer tools such as a native GNU toolchain
- 3) LAMP includes MySQL, Apache, and PHP!

```
Total Time: 1m 25s
oot@genericarmv8:~#
oot@genericarmv8:~#_
```


Early Software Development

Factor	Emulator	FPGA	Virtual Prototype
Accuracy	Cycle	Cycle	Instruction
Analysis	Medium	Worst	Best
Availability	Later	Latest	Earliest
Capacity	Medium	Lowest	Highest
Cost	Highest	Higher	Lowest
Debug-ability	Medium	Worst	Best
Ease of Use	Hardest	Medium	Simplest
Flexibility	Lowest	Lowest	Highest
Performance	Lowest	Highest	Higher

^{*} Virtual Prototypes offer the best all-around solution

Software Development Portfolio

Conclusion

arm

Conclusion

- Running commercial graphics benchmark in Arm fast model is amazing
- Great support to full system software stack integration and verification
- Significantly shorten SoC development cycle with subsystem virtual prototype

Thank You! Danke! Merci! 谢谢! ありがとう! **Gracias!** Kiitos!

