RESUMEN: SEMANA 8

ERNESTO MAYORGA SAUCEDO

11. EL PRODUCTO POR ESCALARES EN \mathbb{R}^2

La siguiente "operación" que se introduce en el plano cartesiano completará un sistema algebraico del plano que permite describir objetos geométricos tan importantes como lo son las rectas; más adelante la extrapolación de dicho concepto al espacio cartesiano nos da, también, una forma de describir las rectas y los planos en el espacio.

Además de la descripciones mencionadas, este sistema algebraico da una nueva forma de describir tanto el plano como el espacio cartesiano y sienta las bases para hacer un estudio general de estos; incluyendo familias de lugares geométrico descritos por algunas ecuaciones polinomiales. Conforme se avance en el estudio, se irán aclarando todas estas ideas.

A manera de motivación para la siguiente operación, determinaremos las coordenadas de un punto Q en el plano que pertenece a la recta de que pasa por \mathcal{O} y P, que es diferente de P y \mathcal{O} .

FIGURA 60. Puntos en la recta determinada por P y \mathcal{O}

tal que $\overline{TQ} \parallel \overline{e_1P}$. Para el siguiene $m_{\overline{e_1P}} = m_{\overline{TP}}$ $\frac{y_P}{x_P-1} = \frac{y_Q}{x_Q-t},$ emos $y_Q = \left(\frac{x_Q-t}{x_P-1}\right)y_P,$ Notas de Geometría, Ernesto Mayorga Saucedo \overline{y} Considerando $e_1 := (1,0)$, sea T := (t,0) tal que $\overline{TQ} \parallel \overline{e_1P}$. Para el siguiene análisis suponemos que $x_P \neq 0$ y $x_P \neq 1$.

Por construcción

$$m_{\overline{\mathcal{O}P}} = m_{\overline{\mathcal{O}Q}}$$
 y $m_{\overline{e_1P}} = m_{\overline{TP}}$

lo cual implica

$$\frac{y_P}{x_P} = \frac{y_Q}{x_Q} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \frac{y_P}{x_P-1} = \frac{y_Q}{x_Q-t}$$

respectivamente.

Despejando y_Q de ambas igualdades obtenemos

(11.1)
$$y_Q = \left(\frac{x_Q}{x_P}\right) y_P \qquad \qquad y \qquad \qquad y_Q = \left(\frac{x_Q - t}{x_P - 1}\right) y_P,$$

respectivamente, y por consiguiente si $y_P \neq 0$

$$\frac{x_Q}{x_P} = \frac{x_Q - t}{x_P - 1},$$

de donde

$$\left(\frac{x_P - 1}{x_P}\right) x_Q = x_Q - t,$$

que implica

(11.2)
$$\left(\frac{x_P - 1}{x_P} - 1\right) x_Q = -t,$$

pero

$$\frac{x_P - 1}{x_P} - 1 = -\frac{1}{x_P},$$

así que al sustituir en (11.2) y despejando x_Q obtenemos que

$$x_Q = tx_P$$
.

Sustituyendo en (11.1) se tiene que

$$y_Q = ty_P,$$

y por consiguiente

(11.3)
$$Q = (tx_P, ty_P).$$

Observe que en ningún momento intervienen los signos de las coordenadas de P y Q, de esta manera si R es un punto el la recta determinada por \mathcal{O} y P, como se ilustra en la figura 60, entonces $R = (sx_P, sy_P)$. Además tampoco importa si P está en el segundo, tercer ó cuarto cuadrante.

Para completar este análisis, falta ver qué pasa cuando $x_P = 0$ ó $x_P = 1$.

Si $x_P=0$, como $P\neq \mathcal{O}$, necesariamente $y_P\neq 0$ y de hecho la recta determinada por \mathcal{O} y P es el eje Y, ℓ_Y . Por consiguiente, si Q es un punto en ℓ_Y , necesariamente $Q=(0,y_Q)$ y como $y_P\neq 0$ se tiene que $y_Q=\left(\frac{y_Q}{y_P}\right)y_P,$ y clara mente $x_Q=\left(\frac{y_Q}{y_P}\right)x_P,$ obteniendo también en este caso la identidad 11.3, con $t=\frac{y_Q}{y_P}$. Por otra parte, si $x_P=1$, necesariamente el segmento $\overline{\ell_1P}$ es vertical y por lo tanto el segmento \overline{TQ} también lo es, véase la figura 61. Si $x_P = 0$, como $P \neq \mathcal{O}$, necesariamente $y_P \neq 0$ y de hecho la recta determinada \times

$$y_Q = \left(\frac{y_Q}{y_P}\right) y_P,$$

$$x_Q = \left(\frac{y_Q}{y_P}\right) x_P,$$

FIGURA 61. Puntos en la recta determinada por P y \mathcal{O} , caso $x_P=1$

En esta situación, ya que $m_{\overline{OP}} = m_{\overline{OQ}}$ se tiene que $\frac{y_Q}{t} = \frac{y_P}{1}$ y por consiguiente

$$y_Q = ty_P$$
.

Por otra parte, como \overline{TQ} es vertical se tiene que

$$x_Q = t$$

$$= t1$$

$$= tx_P,$$

y por lo tanto, en este caso también se obtiene la identidad 11.3. Resumimos esta discusión en la siguiente proposición.

Proposición 11.1. Sea P un punto en R^2 , diferente de \mathcal{O} . Si $Q \in \mathbb{R}^2$ está en la recta determinada por \mathcal{O} y P, entonces existe $t \in \mathbb{R}$ tal que

$$Q = (tx_P, ty_P).$$

Nota 11.2. Al terminar de redactar la proposición 11.1, me doy cuenta de que lo que » dice es una consecuencia de la descripción de las rectas ℓ_m , vistas en clase, y que son aquellas rectas determinadas por una ecuación de la forma y = mx. Esto es, vimos que

$$\ell_m = \left\{ (x, mx) \in \mathbb{R}^2 \mid x \in \mathbb{R} \right\}.$$

Luego si $P \in \mathbb{R}^2 - \{\mathcal{O}\}$ y $x_P \neq 0$, entonces la recta ℓ determinada por \mathcal{O} y P tiene la ecta κ determinada por $\mathcal O$ y P tiene la ${
m X},$ ${
m X},$ ${
m R}^2 \mid x \in {
m R} \Big\}$. Notas de Geometría, Ernesto Mayorga Saucedos ecuación

$$y = \left(\frac{y_P}{x_P}\right) x,$$

y de esta manera

$$\ell = \left\{ \left(x, \left(\frac{y_P}{x_P} \right) x \right) \in \mathbb{R}^2 \mid x \in \mathbb{R} \right\}.$$

Luego, si $Q \in \ell$ existe $x_0 \in \mathbb{R}$ tal que $Q = \left(x_0, \left(\frac{y_P}{x_P}\right) x_0\right)$; haciendo uso de la aritmética

$$Q = \left(x_0, \left(\frac{y_P}{x_P}\right) x_0\right)$$

$$= \left(\left(\frac{x_0}{x_P}\right) x_P, \left(\frac{x_0}{x_P}\right) y_P\right)$$

$$= (tx_P, ty_P) \qquad (donde \ t = \left(\frac{x_0}{x_P}\right) \in \mathbb{R})$$

...ni modo, a veces así pasa.

Finalmente, la definición.

Definición 11.3. Sean $P \in \mathbb{R}^2$ y $\lambda \in \mathbb{R}$. El producto por escalares de P por λ es el elemento de \mathbb{R}^2 , que denotamos por $\lambda \cdot P$, dado por

$$\lambda \cdot P = (\lambda x_P, \lambda y_P)$$
.

Nota 11.4. Para consultar sobre "vectores", que en clase corresponde a la suma y producto por escalares en \mathbb{R}^2 , pueden consultar la siguiente bibliografía:

- 1) [P-L], capítulo 3 sección 2; si pueden revisen la sección 1 como lectura adicional, puede ayudar.
- 2) [R], capítulo 3 sección 1.
- 3) [Sp], apéndice I del capítulo 4.
- 4) [Su], capítulo 5 sección 2.

LISTA DE SÍMBOLOS

```
x_P: Abscisa del punto P
```

AB: Arco de A hasta B

arg(P): Argumento de un punto P en el sistema de coordenadas cartesiano

 $\mathcal{C}(O,r)$: Circunferencia con centro O de rádio r

d(P,Q): Distancia de P a Q

 ℓ_X : Eje coordenado equis

 ℓ_Y : Eje coordenado ye

 ℓ_Z : Eje coordenado zeta

 $[x_0, x_1]$: Intervalo determinado por los números x_0 y x_1 con $x_0 < x_1$

 $\angle ABC$: Medida del ángulo $\angle ABC$

 \mathcal{O} : Origen en el espacio \mathbb{R}^n

 y_P : Ordenada del punto P

 $\boldsymbol{u} \parallel \boldsymbol{v}$: u es paralelo a v

 $\Pi_{P_0,XY}$: Plano por P_0 paralelo al plano Π_{XY}

 $\Pi_{P_0,XZ}$: Plano por P_0 paralelo al plano Π_{XZ}

 $\Pi_{P_0,YZ}$: Plano por P_0 paralelo al plano Π_{YZ}

 Π_{XY} : Plano coordenado XY

 Π_{XZ} : Plano coordenado XZ

 Π_{YZ} : Plano coordenado YZ

 $\lambda \cdot P$: Producto por escalares de P por λ

 $s(P)_{O}$: Punto simétrico de P respecto a O

rayOA: Rayo desde O hasta A

 ℓ_m : Recta por el origen con pendiente m

 $\ell_{P_0,X}$: Recta por P_0 con dirección del eje X

 $\ell_{P_0,Y}$: Recta por P_0 con dirección del eje Y

 $\ell_{P_0,Z}$: Recta por P_0 con dirección del eje Z

 $\ell_{P_0,\overline{u}}$: Recta por P_0 con dirección u

 \overline{AB} : Segmento de recta determinado por los puntos A y B

 $V \leq \mathbb{R}^n$: Suespacio vecorial de \mathbb{R}^n

P + Q: Suma (vectorial) de P y Q

 $\{P_0\} + \mathbb{A}$: Trasladado de \mathbb{A} por B

REFERENCIAS

- [E1] Euclid; The Thirteen Books of the Elements, Vol. 1, Segunda Edición; Dover; USA; 2012.
- [E2] The First Six Books of the Elements by John Casey and Euclid scanned by Project Gutenberg.
- [F] Fitzpatrick R.; Euclid's Elements of Geometry; versión otorgada por el autor aquí.
- [P-L] Preston G, Lovaglia A.; Modern analytic geometry; Harper & Row, Publishers; New York; 1971.XII
- [R] Ramirez-Galarza, A. I.; Geometría Analítica: Una introducción a la geometría; México: Las Prensas de Ciencias; 2011.
- [Sp] Spivak M.; Calculus, Fourth Edition; Publish or Perish Inc. Housuton Texas, 2008.
- [Su] Sullivan M.; Trigonometry A Unit Circle Approach; Ninth Edition; Prentice Hall; 2012.
- [W-S] Wentworth J., Smith D. E.; Geometría Plana y del Espacio; Ginn & Company; Boston USA,

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS UNAM, SEPTIEMBRE 2018 Email address: ernestoms@ciencias.unam.mx