

Developing a physiological map as a framework to study chemical-induced liver steatosis

<u>Luiz Carlos Maia Ladeira</u>¹, Alessio Gamba¹, Raphaëlle Lesage², Anouk Verhoeven³, Jian Jiang³, Jonas van Ertvelde³, Ramiro Jover⁴, Tamara Vanhaecke³, Mathieu Vinken³, Liesbet Geris^{1,2,5}, Bernard Staumont¹

¹Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, Belgium; ²Skeletal Biology and Engineering Research Center, KU Leuven, Belgium; ³Vrije Universiteit Brussel, Belgium; ⁴University of Valencia, Spain. ⁵Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Belgium;

Introduction

Physiological Maps (PMs) are conceptual that integrate knowledge as constructs mechanistic representations of biological processes [1]. PMs can be used qualitatively quantitatively as a mechanistic background in Adverse Outcome Pathways (AOP) creation and refinement, supporting model rationale, and develop to different computational models serving purposes.

We developed a liver lipid metabolism PM to serve as a framework to improve a steatosis AOP network and build an ontology [1] for the study of chemicalinduced steatosis.

Roadmap for Toxicological Ontologies establishment:

Methods

We adapted the workflow from the Disease Maps project [2] to construct our PMs.

- First, relevant physiological literature was curated with the help of domain experts.
- fundamental • Next, listed mechanisms to be mapped and screened online databases (e.g. Wikipathways, Reactome, KEGG) for previously described pathways.
- Finally, we integrated pathways and data from the literature using the CellDesigner software, exported as **SBML** (Systems Biology Markup Language) and displayed them using the MINERVA platform [3].

Results

- Expert-curated;
- Human physiology-oriented network;
- Qualitative and Quantitative layers;
- glycolysis (as input);

Future steps

Graphical concept of the ONTOX liver ontology

PMs are cornerstones to create ontologies, integrating different layers of pathological, toxicological, and chemical information, and quantitative kinetic data.

They will contribute to:

An example of part of the

Physiological Map for Liver Lipid

Metabolism.

- (1) better understand organ- and disease-specific pathways in response to chemicals;
- visualize omics datasets;
- develop quantitative methods for disease modelling and for predicting toxicity;
- (4) set up an in vitro & in silico test battery to detect a specific type of toxicity;
- (5) develop new animal-free approaches for generation risk assessment.

These tools will be continuously updated, resulting from expert curation and revision in an open community effort.

References

- [1] Vinken, M. et al. 2021 <u>10.1016/j.tox.2021.152846</u>.
- [2] Mazein, A. et al. 2018 <u>10.1038/s41540-018-0059-y</u>.
- [3] Hoksza, D. et al. 2019) <u>10.1093/bib/bbz067</u>.
- Hanspers, K. et al. 2021 <u>10.1371/journal.pcbi.1009226</u>.
- Martens, M. et al. 2021 10.1093/nar/gkaa1024.

Further information:

Icladeira@uliege.be B.Staumont@uliege.be Liesbet.Geris@uliege.be

https://ontox-project.eu/

