ASSIGNMENT 04 & EE 523, SPRING 2023 ARYAN RITWATEET JHA

6

1.	Type	1	Mad	el
	(2)	5		
E = Adjaceny list	(2)	6		
	(3)	17		
	4>	10		
	(5)	١,	6	
	(6)	2,	5,7	
	(3)	6,	8	
	8	7,5)	
	(3)	8,19	0	
	♦	4, 9	,11	
	(I)	3, 19	٥	
		_	_	

ENote: of implies that the variables are sitted [12] giver (Pmi, Xdi, Xdi, Xvi, Xqi, Yik, Tik, Akk KDi, Ws, EALI, M. tedized, my writing form flow Pz Pgz - Poz - Pz = 0 (Not, 8k for rangen buses) Vd2 Td2 + Va2 Ta2 - Pp2 - IV2 [Y2k Vul cos (Y2k+8k-82) $|V_2|\sin(\theta_2-\delta_2)\cdot\begin{cases} \frac{\text{Ear}-V_2\cos(\theta_2-\delta_2)}{\text{Xdz'}} \end{cases}$ $+ |V_2| \cos(\theta_2 - \delta_2) \cdot \left\{ \frac{E_{d_2} - V_2 \sin(\theta_2 - \delta_2)}{-X_{q_2}^{\prime}} \right\}$ - PPZ $- \left[\frac{G_{22} |V_2|^2}{= 0} + |Y_{25} |V_5 |V_2| \cos(\frac{\pi^2}{25} + \delta_5 - \delta_2) \right]$ $Q_{Q_1} - Q_{Q_2} - Q_2 = 0$ $\left| \frac{1}{2} \right| \left| \frac{1}{2} \right| \cos \left(\frac{1}{2} - \frac{1}{2} \right) \left\{ \frac{1}{2} \left| \frac{1}{2} \right| \frac{1}{2} \left| \frac{1}{2} \left| \frac{1}{2} \right| \frac{1}{2} \left| \frac{1}{2} \right| \frac{1}{2} \left| \frac{1}{2} \left| \frac{1}{2} \right| \frac{1}{2} \left| \frac{1}{2} \left| \frac{1}{2} \right| \frac{1}{2}$ $-|V_2|\sin(0z-\delta z)$ $= \frac{\text{Ed}_2 - V_2\sin(0z-\delta z)}{-X_{N_2}}$ - B221V212 - 1725 V5 V2) suis (725 + 65 - SL) = 0

Similarly, for buses

$$|V_{3}| \text{ ain } (\theta_{3} - \delta_{3}) \cdot \left\{ \frac{\text{Eq}_{3} - V_{3} \cos (\theta_{3} - \delta_{3})}{\text{xd}_{3}} \right\}$$

$$+ |V_{3}| \cos (\theta_{3} - \delta_{3}) \cdot \left\{ \frac{\text{Eq}_{4} + \text{Ed}_{3}' - V_{3} \sin (\theta_{3} - \delta_{3})}{-\text{xd}_{3}'} \right\}$$

$$- P_{03}''$$

$$- \left[C_{33} |V_{3}|^{2} + |V_{3}| |V_{11}| |V_{3}| \cos (\gamma_{3,11} + \delta_{11} - \delta_{3}) \right]$$

$$= 0$$

$$|V_{3}| \cos(\theta_{3} - \delta_{3}) \cdot \begin{cases} \frac{E_{\eta_{3}} - V_{3} \cos(\theta_{3} - \delta_{3})}{X_{d_{3}}} \end{cases}$$

$$= |V_{3}| \sin(\theta_{3} - \delta_{3}) \cdot \begin{cases} \frac{E_{d_{3}} - V_{3} \sin(\theta_{3} - \delta_{3})}{-X_{\eta_{3}}} \end{cases}$$

$$- Q_{0_{3}}$$

$$- [-B_{33}|V_{3}|^{2} - |Y_{3}|^{2}] \sin(Y_{3}|^{2} + \delta_{11} - \delta_{3})$$

$$= 0$$

93

24

$$+ |V_4| \cos(\theta_4 - \delta_4)$$
. $\left\{ \frac{\text{Edy} - V_4 \sin(\theta_4 - \delta_4)}{-x_{q'q'}} \right\}$

$$-\rho_{DS} = -\left[G_{SS} |V_{S}|^{2} + |Y_{SK} V_{1} V_{5}| \cos(8751 + \delta_{1} - \delta_{5})^{\frac{2}{5}} + |Y_{56} V_{6} V_{5}| \cos(7656 + \delta_{6} - \delta_{5})^{\frac{2}{5}} \right] = 0$$

Qqs - Qpr - Q5 = 0

$$-P_{06} - \left[G_{66} \left|V_{6}\right|^{2} + \left|Y_{62} V_{2} V_{6}\right| \cos\left(Y_{62} + \delta_{2} - \delta_{6}\right) + \left|Y_{65} V_{5} V_{6}\right| \cos\left(Y_{65} + \delta_{5} - \delta_{6}\right) + \left|Y_{67} V_{7} V_{6}\right| \cos\left(Y_{67} + \delta_{7} - \delta_{6}\right)\right] = 0$$

```
-PD7 - [G77 |V4|2 + 1776 V6 V7 | Con (8776+86-87)
                            + 1778 V8 V7 Con ( 278+80-87) =0
-007 - [-B77 |V7] = 1776 V6 V7) AGE (876+ 86-57)
+ 1778 V8 V7) AGE (878+68-67)
                          * 1 778 V8 V7) ava (278 + 88 - 87)] = 0
```

$$\left[-\frac{1}{128} - \left[\frac{1}{128} |V_8|^2 + \frac{1}{1287} |V_7|^2 |V_8| \cos(787 + 87 - 88) \right] = 0$$

$$+ \left[\frac{1}{1289} |V_9|^2 \cos(789 + 89 - 88) \right] = 0$$

217

218

-QDII - [-BIII | VII] + | YII,3 V3 VII | Dim (811,3 + 83 - 811)

= 0

(923)

H 1= 2,3 and 4

$$\theta_i = (\omega_i - 1) \omega_s$$

$$\dot{\omega}_{i} = \frac{1}{2H_{i}^{2}} \left\{ P_{m_{i}}^{*} - \left[\forall x_{i} \forall x_{i} (\theta_{i} - \delta_{i}) \right] \left\{ \frac{E_{q_{i}} - V_{i} co(\theta_{i} - S_{i})}{X_{d_{i}}^{*}} \right\} \right\}$$

$$+ V_{i} \cos(\theta_{i} - \delta_{i}) \cdot \begin{cases} \frac{E_{d_{i}} - V_{i} \sin(\theta_{i} - \delta_{i})}{-\chi_{q_{i}}} \end{cases}$$

$$E_{\alpha'i} = \frac{1}{T_{do'i}} \left[-E_{\alpha'i} - (X_{di} - X_{di}) \left\{ \frac{E_{\alpha'i} - V_i c_{\sigma}(o_i - s_i)}{X_{di}} \right\} \right]$$

$$\dot{E}_{di} = \frac{1}{T_{q'o,i}} - E_{di} - (\times_{q'i} - \times_{q'i}) \left\{ \frac{E_{d'i} - V_i \sin(o_i - S_i)}{-X_{q'i}} \right\}$$

Again, 1= 2,3,4.

Thus,
$$\begin{pmatrix} g(n,y)=0 \\ = 20x_1 \\ 29 \end{pmatrix} = \begin{pmatrix} 33 \\ 29 \\ 29 \end{pmatrix}$$
supresent the
$$\begin{cases} f_1 + f_4 \text{ are } f_1 = 2 \\ f_2 + f_3 \text{ are } f_2 = 3 \\ 20x_1 + f_3 \text{ are } f_4 = 4 \\ 20x_1 + f_4 = 4 \\ 2$$

Type II Model

For Type II model we first need to create type Ynet by: odding and

1) Adding entera buses at the terminal of every PV bus, and incomporating the every PV bus, and incomporating the generates impedance in the newly created becameter.

menty carents

Note: En Type II malel, he egnere salveny,
se nd;=nq;= n; = ndiougus + nqiougus

(2) Converting all toads inte un constant impedances.

23

(5). Edentify Ygg, Ygg, Yang and Yere Juan Ynet.

Ygg = Ynet [1: Npv+1, 1: Npv+1]

Ygg = Ynet [1: Npv+1, Npv+2: end]

Ygg = Ynet [Npv+2: end, 1: Npv+1)

Yan = Ynet [Npv+2: end, Npv+2: end]

Yan = Ynet [Npv+2: end, Npv+2: end]

6 Form Ygen:

Ygen = 799 - Yga Yan Yng 4x4 4x4 10x4

F Now we can from the Type II model

 $\Theta_i = \{\omega_i - 1\} \omega_s$ \forall buses $i = 1 + N_{PV} + 1$ $\psi_i = \frac{1}{2\pi i} \left\{ P_{m_i} - P_{\alpha_i} - K_{P_i}(\omega_i - 1) \right\}$

 $E_{q'_{i}} = \frac{1}{T_{d_{0}'_{i}}} \left\{ E_{q'_{i}} - (n_{d_{i}} - n_{d_{i}}) T_{d_{i}} + E_{f_{d_{i}}} \right\}$

Fd: = 1 { -Ed: + (ng; nd) Ini}

Pa; = Xyenik EKE; coo(Vik+VK-7i)

where $E_{i}' = \sqrt{E_{q_{i}}'^{2} + E_{d_{i}}'^{2}}$

 $\gamma_i = \tan^2\left(\frac{Eq_i}{Ed_i}\right) + \left(\theta_i - \frac{\pi}{2}\right)$

Idi = - E Ygenin En sin (Ox 8 k + 8ik)

Ivi = Prv+1 Ygmin En cos (Vik + VK-0)

 $n'_{i} = \frac{n_{q_{i}} + n_{d_{i}}}{2}$

Ron't confuse internal Walty angle Vi/VK with the Yegen ix angle ViK.

