03/01/2022, 03:12

Quiz-6

Question 1. 1.

Determine the the infimum of the set $E = \left\{ \sqrt{n+1} - \sqrt{n} : n \in \mathbb{N} \right\}$.

2. Question 2.

> Which of the following functions is injective on [-1, 1] and differentiable at x =0?

$$(A) \ f(x) = \begin{cases} x^2 & \text{if } x \ge 0 \\ -x^2 & \text{if } x < 0 \end{cases}$$
 diff at 0 with f'() = 0, and injective in [-1,1] by the size ontol Qine test

Quiz-6

(B)
$$f(x) = \begin{cases} x & \text{if } x \ge 0 \\ \sin x & \text{if } x < 0 \end{cases}$$
 diff. at 0 with $f'(0) = 1$, and leaving injective on [-1,1]

(C)
$$f(x) = \cos|x| \leftarrow \text{diff. at } x = 0 \text{ with } f(0) = 0, \text{ but not injective since } GS |1| = GS |-1|.$$

(D)
$$f(x) = \begin{cases} 0 & \text{if } x \ge 0 \\ x & \text{if } x < 0 \end{cases}$$
 neither Diff at 0 (LH limit=1, RH limit=0)

Mark only one evaluer row

Mark only one evaluer row

Mark only one oval per rov

	Yes	No
А		
В	\checkmark	
С		
D		

3. Question 3. 4 points

Let $\{a_n\}_n$ be a sequence. Which of the following statements is/are always true?

- (A) If $a_n \to 1$ and if $\{a_n^n\}_n$ is convergent, then $a_n^n \to 1$
- (B) If $a_n \to 1/2$, then $\{a_n^n\}$ is a null sequence
- (C) If $a_n > 0$, and $a_n \to 1$, then $\sqrt[n]{a_n} \to 1$
- (D) If $(n!)a_n \to 1$, then $2^n a_n \to 1$

Mark only one oval	A	
Yes	No	

1+	h →1	tud	(1+1)	$)_{\mathcal{I}} \rightarrow$	e > 1
021,	$\frac{1}{n^{1/n}}$	1 b	ut (Intr		→ O .

- Α В С
- D

(C) $a_n \rightarrow 1 \Rightarrow \exists n_0 \text{ s.t. } \frac{1}{2} \langle a_n \langle 2 \vee n_{\geq n_0} \rangle$

(B) $\alpha_n \rightarrow k \Rightarrow \exists n_0 \text{ set. } \frac{1}{4} < \alpha_n < \frac{3}{4} + n \ge n_0$

- =) 2x < an < 2/2 + n > no
- Which of the following inequalities hold for all sufficiently large n? (That is, there is a threshold n_0 such that the left hand side is less than the right hand side for $n \ge n$
- (A) $3^n + 4^n + 5^n < \frac{6^n}{\ln n}$
- (B) $\sqrt{n} + \sqrt[3]{n+2} < \sqrt{n+1}$
- (C) $n! < 10^{10n}$

D

Question 4.

- (A) To show: <u>Inn</u> + <u>Inn</u> + <u>Inn</u> < 1
 - Since $\frac{nn}{2^n} \rightarrow 0$, $\frac{nn}{1.5^n} \rightarrow 0$ $\frac{2nn}{1.2^n} \rightarrow 0$ $\frac{2n}{1.2^n} \rightarrow 0$ $\frac{2n}{1.5^n} \rightarrow 0$ $\frac{2nn}{1.5^n} \rightarrow 0$
- (D) $\ln(n+1) + \ln(n+2) + \ln(n+3) < \ln(n^2+1)$
- Mark only one oval per row.

Pnn (3) hence Jone!

	Yes	No
А		
В		\bigcirc
С		

- (B) $\sqrt{n+1} \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2} < \sqrt[3]{n+2}$
 - (c) $\frac{10^{10}n}{n!} = \left(\frac{10^{10}}{n!}\right)^n \rightarrow 0$, hence No.
 - $\frac{n^2+1}{(n+1)(n+2)(n+3)} \rightarrow 0 , \text{ hence}$ n^2+1 n^2+1 $\frac{n^2+1}{(n+1)(n+2)(n+3)}$

5. Question 5. 4 points

Identify the convergent series.

$$(A) \sum_{n=1}^{\infty} (-1)^{n+1} \sin\left(\frac{1}{n}\right) \longleftarrow \begin{array}{c} \text{Sin} \mathcal{R} & \text{is increasing in } \mathbb{C}^{\bullet}, \mathbb{J} \end{array}, \text{ hence } \\ & \text{Sin} \frac{1}{n} \end{array}$$

(B)
$$\sum_{n=1}^{\infty} \sqrt{\frac{1}{n^2} + \frac{1}{(n+1)^2}}$$
 hence convg. by Leibniz Test (Alt. Series Test)

1 non ≤ 1 + n≥ e2.

98.

n=1Mark only one oval per row.

	Yes	No	and 2 hz convas
Α			and Znz
В		\checkmark	
С			n < nsinn + n & IN.
D			$= \sum \frac{1}{n^{s_{in}}} \sum \frac{1}{n} \rightarrow \infty$

6. Question 6. 4 points

If $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series, then $\sum_{n=1}^{\infty} a_n \sin n$ is absolutely convergent. Mark only one oval.

7. Question 7. 4 points

Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Which of the following sets is always closed?

(A)
$$\{x \in \mathbb{R} : f(x) > 0\}$$

(B)
$$\{x \in \mathbb{R} : f(x) > 0\}$$

(C)
$$\{x \in \mathbb{R} : f(x) \neq 0\}$$

(D)
$$\{x \in \mathbb{R} : f(x) = 0\}$$

Mark only one oval per row.

	Yes	No
А		
В		
С		
D		

(A) Supp.
$$f(c) > 0$$
, then f -cont
=> $f(c) > 0$, is open.

(B) Let
$$E = \{ x \in \mathbb{R} : f(x) \ge 0 \}$$
.

If $E' = \emptyset$, then lone, else

If $P \in E$, $\exists \{ x_n \}_n \text{ with } x_n \in E \le 1 \}$.

 $x_n \to P$
 $f = \{ x_n \}_n = \{ x_n \}_n \}$
 $f = \{ x_n \}_n = \{ x_$

(D) Same as (B) - f(x) -> f(P) Hence f(P) = 0 and PEE.

8. Question 8.

Consider the function
$$f: [-1,1] \to \mathbb{R}$$
 defined as
$$f(x) = \begin{cases} \frac{1}{x \lfloor \frac{1}{x} \rfloor} & \text{if } x \neq 0 \\ a & \text{if } x = 0. \end{cases} \quad \text{and} \quad \text{and}$$

What value of a would make f(x) continuous at x = 0? By Some with Thus,

9. Question 9.

Suppose f(x) is differentiable everywhere on \mathbb{R} with $f\left(\frac{1}{n}\right) = \frac{n^2}{1+n^2}$. $f(x) = f(x) \text{ is differentiable everywhere on } \mathbb{R} \text{ with } f\left(\frac{1}{n}\right) = \frac{n^2}{1+n^2}.$ $f(x) = f(x) \text{ is differentiable everywhere on } \mathbb{R} \text{ with } f\left(\frac{1}{n}\right) = \frac{n^2}{1+n^2}.$ $f(x) = f(x) \text{ is differentiable everywhere on } \mathbb{R} \text{ with } f\left(\frac{1}{n}\right) = \frac{n^2}{1+n^2}.$ $f(x) = f(x) \text{ is differentiable everywhere on } \mathbb{R} \text{ with } f\left(\frac{1}{n}\right) = \frac{n^2}{1+n^2}.$ $f(x) = f(x) \text{ is differentiable everywhere on } \mathbb{R} \text{ with } f\left(\frac{1}{n}\right) = \frac{n^2}{1+n^2}.$ $f(x) = f(x) \text{ is differentiable everywhere on } \mathbb{R} \text{ with } f\left(\frac{1}{n}\right) = \frac{n^2}{1+n^2}.$ Then f'(0) = ?since f'(0) exists, $f'(0) = \lim_{n \to \infty} f(\frac{n}{n}) - f(0) = \lim_{n \to \infty} \frac{f(\frac{n}{n}) - f(0)}{n} = \lim_{n$

03/01/2022, 03:12 Quiz-6

> 10. Question 10. 4 points

Determine the number of real solutions of $e^x + x^3 + x + 1 = 0$.

This content is neither created nor endorsed by Google.

Google Forms

Let
$$f(x) = e^{x} + x^3 + x + 1$$

FOR neIN

$$\lim_{n \to -\infty} \left(e^{n} + n^{3} + n + 1 \right) = \lim_{n \to \infty} \left(e^{-n} - n^{3} - n + 1 \right)$$

$$= \lim_{n \to \infty} \left(-n^{3} \right) \left(\frac{-1}{n^{3}} e^{n} + 1 + \frac{1}{n^{2}} - \frac{1}{n^{3}} \right) = -\infty$$

=> => = m + IN s.t. f(-m) < 0

Sim. 3 m' EIN s.t. f(m')>0

Since, f cont on [-m, m'], by IVP,

3 a c e (-m, m') s.t. f(c) =0

i.e. $e^{c} + c^{3} + c + 1 = 0$

If there is another so Dution e, then f(c') = 0, and by MVT on (c, c') (or (c', c))

de (c, c) s+

$$0 = f(c) - f(c') = f'(d).$$

But f'(d) = e+307-1

ed > 0

so that f'(d) > 0.

5/5