- **1.** Let $P \subset A$ be prime, then it will suffice to show that A/P is a field which is equivalent to maximality of P by the correspondence theorem. Consider $0 \neq x \in A/P$, then choose $n \geq 2$ such that $x^n = x$, it follows that $x(1-x^{n-1}) = x-x = 0$, and since P is prime A/P is a domain which implies that $1 x^{n-1} = 0$, so that $x^{n-1} = 1$ in A/P.
- **2.** Suppose that M is not flat, then we can fix modules A, B, such that

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B$$

is exact, but

$$0 \longrightarrow A \otimes M \xrightarrow{f_*} B \otimes M$$

is not. It follows that there is some $0 \neq \sum_{1}^{n} a_i \otimes x_i \in A \otimes M$, such that $f_*(\sum_{1}^{n} a_i \otimes x_i) = 0$. It claim that $M_0 = (x_1, \dots, x_n)$ is the desired submodule. To see this, note $(f \times 1)|_{A \times M_0} = f \times 1_{M_0}$, and if j is the map $A \times M \to A \otimes M_0$ in the definition of the tensor, then $j|_{A \times M_0}$ is equal the map $A \times M_0 \to A \otimes M_0$ in the definition of the tensor. It follows that for any $v \in A \otimes M_0$, $v = j|_{A \times M_0}(u), u \in A \times M_0$, so that

$$f \otimes 1_{M_0}(v) = f \otimes 1_{M_0} j|_{A \times M_0}(u) = f \times 1_{M_0}(u) = f \times 1_M(u) = f_* j(u)$$

and hence $f \otimes 1_{M_0} j|_{M_0}(\sum_1^n (a_i, x_i)) = f_* j(\sum_1^n (a_i, x_i)) = f_*(\sum_1^n a_i \otimes x_i) = 0$, where $0 \neq \sum_1^n a_i \otimes x_i = j(\sum_1^n (a_i, x_i)) = j|_{A \times M_0}(\sum_1^n (a_i, x_i))$ which suffices to show that $f \otimes 1_{M_0}$ is not injective, and hence M_0 is not flat, with the following sequence as witness.

$$0 \longrightarrow A \otimes M_0 \xrightarrow{f \otimes 1_{M_0}} B \otimes M_0 \quad \square$$

3. Since C[X] is a PID, it satisfies Bezout's identity. So assume f_1, f_2 are coprime polynomials, it follows that there exist $g, h \in \mathbb{C}[X]$, such that $f_1h + f_2g = 1$. Now let $m \otimes n \in M_1 \otimes M_2$, it follows that

$$m \otimes n = (f_1 h + f_2 g)(m \otimes n) = f_1 h(m \otimes n) + f_2 g(m \otimes n) = h(f_1 m \otimes n) + g(m \otimes f_2 n)$$
$$= h(0 \otimes n) + g(m \otimes 0) = 0$$

Conversely, let $a \in \mathbb{C}$, such that $f_1(a) = f_2(a) = 0$. Let I = (X - a) and consider the map multiplication map

$$m: \mathbb{C}[X] \times \mathbb{C}[X] \to \mathbb{C}[X]/(X-a), (f,g) \mapsto fg + I$$

To see that this defines a bilinear map $M_1 \times M_2 \to \mathbb{C}[X]/I$ it will suffice to check that m is well defined on cosets so that we can take the induced bilinear map

$$\overline{m}: M_1 \times M_2 \to \mathbb{C}[X]/I, (f+(f_1), g+(f_2)) \mapsto fg+I$$

Let $g_1, g_2, h_1, h_2 \in \mathbb{C}[X]$, then

$$m(g_1 + h_1 f_1, g_2 + h_2 f_2) = g_1 g_2 + g_1 h_2 f_2 + g_2 h_1 f_1 + h_1 h_2 f_1 f_2 + I = g_1 g_2 + I$$

the last equality following since both $f_i \in I$. It follows that $\overline{m}: M_1 \times M_2 \to \mathbb{C}(X)/I$ is a nonzero (since $(1,1) \mapsto 1$) bilinear map, so $\overline{m} = \eta j$ where j is the map from the definition of the tensor product and $\eta: M_1 \otimes M_2 \to \mathbb{C}[X]/I$. Since \overline{m} is non-zero, it follows that η is nonzero and hence $M_1 \otimes M_2 \neq 0$ since $\eta \notin \{0\} = \text{Hom}(0, \mathbb{C}[X]/I)$.

4. Consider the exact sequence of A modules

$$0 \longrightarrow (t) \stackrel{\iota}{\longrightarrow} A$$

Where $\iota:t\mapsto t$, injectivity and therefore exactness is clear. To see N is not flat, tensor the above sequence to get

$$0 \longrightarrow (t) \otimes_A N \xrightarrow{\iota_*} A \otimes_A N$$

We find that

$$\iota_* t \otimes e_2 = \iota_* t \otimes t e_1 = \iota_* t (t \otimes e_1) = \iota_* (t^2 \otimes e_1) = \iota_* (0) = 0$$

Now it will suffice to check that $0 \neq t \otimes e_2 \in \mathbb{R} \otimes_A N$. Simply consider the multiplication map $m:(a,b)\mapsto ab$, then $0 \neq te_2 = m(t,e_2)$, since this map is bilinear, it factors through j, so that $t\otimes e_2 \stackrel{\text{def}}{=} j(t,e_2) \neq 0$ which suffices to show that $\ker \iota_* \neq 0$ so that the tensored sequence is not exact and hence N is not flat.

5. Suppose that $r \leq n$, and g_1, g_2, \ldots, g_r generate I as an A module. It is immediate that I^2 is the ideal generated by all degree 2 monomials of A, it follows that by assumption each monomial in $f_1, \ldots f_m$ is divisible by some element of I^2 , and hence $(f_i)_1^m/I^2 = 0$. $\overline{g_1}, \ldots, \overline{g_r}$ generate I/I^2 as an A-module, now note that no element of I has a term with degree 0, hence each monomial of g_i (and hence $\overline{g_i}$) has degree at least one. Since all monomials degree larger than or equal to 2 are annihilated in I/I^2 we may conclude that each $\overline{g_i}$ is a polynomial consisting of only monomial terms.

Applying the third isomorphism theorem,

$$A/I \cong \frac{\mathbb{R}[X_1, \dots, X_n]/I}{(f_1, \dots, f_m)/I} \cong \mathbb{R}[X_1, \dots, X_n]/I \cong \mathbb{R}$$

is a field, and $(X_1, \ldots, X_r)/I^2 = I/I^2$ as an A-module implies that

$$\bigoplus_{1}^{r} A/I \cong (X_1, \dots, X_r)/J/(X_1, \dots, X_r)I = I/J/I^2 \cong \bigoplus_{1}^{n} A/I$$

since the rank of isomorphic vectorspaces must be equal this implies that r = n.

6. $A[X] = \bigoplus_{0}^{\infty} AX^{i}$ as an A-module, since $A[X^{i}] \otimes_{A} M \cong A \otimes_{A} M \cong M$, it is immediate that AX^{i} is flat for each i, assume for contradiction that $\bigoplus_{0}^{\infty} AX^{i} \cong \bigoplus_{0}^{\infty} A$ is not flat, then applying problem 2, there is some finitely generated submodule M_{0} , such that M_{0} is not flat. Since submodules of free modules are free, we know that $M_{0} \cong \bigoplus_{1}^{n} A$, implying that $\bigoplus_{1}^{n} A$ is not flat, but this is a contradiction, since this is only the case if

$$0 \longrightarrow K \stackrel{f}{\longrightarrow} L$$

is exact, but the following sequence is not

$$0 \longrightarrow K \otimes \bigoplus_{1}^{n} A \xrightarrow{f \otimes 1_{\bigoplus_{1}^{n} A}} L \otimes \bigoplus_{1}^{n} A$$

but this is equivalent to the following sequence not being exact

$$0 \longrightarrow \bigoplus_{1}^{n} K \otimes A \stackrel{\bigoplus_{1}^{n} f \otimes 1_{A}}{\longrightarrow} \bigoplus_{1}^{n} L \otimes A$$

which once again is equivalent to the following not being exact

$$0 \longrightarrow \bigoplus_{1}^{n} K \xrightarrow{\oplus_{1}^{n} f} \bigoplus_{1}^{n} L$$

where
$$\bigoplus_{1}^{n} f$$
 is injective since f is.