## Feedback in Galaxy Clusters



## Feedback in Galaxy Clusters

- Why galaxy clusters and feedback are important
- The cause and effect of cluster feedback mechanisms
- The importance of understanding intracluster gas entropy
- Calculating entropy from observables
- Results of my Chandra archival study

## Importance of Clusters and Feedback

- Cosmology tests
  - Power spectrum
  - Structure growth
  - Observables
- Galaxy formation models
- Feedback affects mass-scaling relations



## Importance of Clusters and Feedback

- Cosmology tests
  - Power spectrum
  - Structure growth
  - Observables
- Galaxy formation models
- Feedback affects mass-scaling relations



## What causes feedback?

- $t_{cool} \sim \Lambda(T,Z) \rho^2$
- Cooling time shorter than Hubble time
- Gas "flows" to bottom of potential well
- Mergers can also provide fuel







# Cooling trickles

Peterson & Fabian

[Sound Waves]

#### The results and effects of feedback

- Star formation
- Active galactic nuclei (AGN)
- Heating of ICM
- Self-similar scaling relations need help?
  - Mass vs. T<sub>X</sub>, L<sub>X</sub>, f<sub>SZE</sub>, ...
- Grassroots:
  - Study cold ICM
  - Understand feedback



**Abell 2052** 



## What is ICM entropy?

- Entropy is a fundamental property of the ICM
- Entropy dictates density in isobaric system
- X-ray observables are manifestation of dark matter halo and entropy structure
- Entropy <u>is</u> the thermal history
  We define entropy as K = Tn<sub>2</sub><sup>-2/3</sup>
- ICM is convectively stable when dS/dr≥0
- Classify clusters by entropy?



Coma Cluster Schuecker et al.

## Feedback in Galaxy Clusters

or: How I Learned to Stop Worrying and Love Radiative Transfer

- Why should you care about galaxy clusters and what I do?
- The cause and effect of clusted feedback mechanisms
- The importance of understand intracluster gas entropy
- Calculating entropy from observables



Results of my Chandra archival study





#### **ACCEPT: Athenæum(?) of Chandra Cluster Entropy Profiles**



#### **Universal entropy pedestal**



## Bimodal entropy distribution







## **Conductive Stability**

- Assume free-free cooling:  $\Lambda \sim T^{1/2}$
- Set radiative losses equal to Spitzer conduction:  $\kappa \sim T^{5/2}$
- Field Length is function of entropy only:  $\lambda_F \sim K^{3/2} \sigma_s^{1/2}$
- Gas cloud smaller than Field length = condensation
- Gas cloud larger than Field lengthevaporation
- K<sub>0</sub> = 20 keV cm<sup>2</sup> is critical length scale
- Maybe AGN push ICM to conductive stability and subsequent mergers up entropy further...



## Where to from here?

- Entropy scaling relations
- Explain bimodality
- Model for conduction
- Low entropy & no feedback
- High entropy & with feedback
- IR and near-UV star formation rates
- Low frequency radio survey
- Radio dating?
- Interferometry SZE to study high-z entropy?
- Test various pre-heating models
- 2D analyses
- Online searchable database