复旦大学计算机科学技术学院

2012-2013 学年第二学期《代数结构与数理逻辑》期末考试试卷

B卷 共2页

课程代码: COMP130005.01 考试形式: □ 开卷 □ 闭卷 **2013 年 9 月** (本试卷答卷时间为 120 分钟,答案必须写在试卷上,做在草稿纸上无效)

题 号	_	11	111	四	五	六	七	总分
得 分								

本试卷涵盖整个一学期的内容,包括代数结构,数理逻辑。与期终考试试卷内容有所区别,这是因为期终考试试卷在总成绩中占 40%,期中 40%,作业和平时测验各占 10%,故期终试卷中不单独考核期中考试已考过的内容,而补考则仅以本卷子为惟一依据,因此要覆盖整个学期的内容。

说明:7大题,共2页

- 一、判断下列结论是否正确, 并说明理由(24%)。.
- 1.设[G;*]为有限群,对 G 中任意元素 g,定义子集 σ_x ={g|x=g⁻¹xg,g∈G},则[σ_x ;*]为[G;*]的子群。
- 2.商环 $Z_3[x]/(x^5+1)$ 一定存在零因子。
- 3.设 $A \subseteq P(Y)$, $p \in P(Y)$,若 $A \cup \{\neg p\}$ 协调,则 $p \notin Ded(A)$
- 4.项 $f_2^{-1}(x_1,x_2)$ 对谓词合式公式 $\exists x_3(R_2^{-1}(x_1,x_2) \rightarrow \forall x_2R_3^{-1}(x_1,x_2,x_3)) \rightarrow \forall x_1 \neg R_2^{-2}(x_1,x_2)$ 中的自由变元 x_1 是自由的。
- 二、设G是交换群,N是G的所有阶数有限的元素全体构成的集合,证明: 1.N是G的正规子群。(10%)
- 2.商群 G/N 除单位元外,其他所有元素的阶都是无限的。(6%)
- 三、在整数集 Z 上定义如下运算"&"和"。",

 $a\&b=a+b-1; a\circ b=a+b-a*b$

其中"+,-,*"为普通加法.减法和乘法。证明[Z; &, o]是有单位元的可交换环。(10%)

四、1.证明 $x^5+x^3+x^2+x+1$ 是 Z_2 上的本原多项式。(6%)

2.求出 Z_2 上的所有 5 次本原多项式。(6%)

五、设 L 是有界分配格,S 是 L 中所有具有补元的元素构成的集合,则 S 是 L 的子格。(10%)

六、求命题合式公式 $((x_2\lor x_3)\leftrightarrow x_1)\rightarrow (x_1\land \neg x_2)$ 的标准析取范式和标准合取范式。 (10%)

七、1.用解释赋值的方法证明 $\models \exists x(p \rightarrow q) \rightarrow (\forall xp \rightarrow q) \quad x \notin var(q)$ (8%) 2 用公理集 A 证明 $\models \exists x(p \rightarrow q) \rightarrow (\forall xp \rightarrow q) \quad x \notin var(q)$ (10%)

可使用演绎定理, MP 规则和 G 规则, 以及下述 4 个定理:

T1:
$$\vdash$$
(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p),

T2:
$$\vdash \neg (p \rightarrow q) \rightarrow p$$
,

T3:
$$\vdash \neg (p \rightarrow q) \rightarrow \neg q$$

T4:
$$p \rightarrow (\neg q \rightarrow \neg (p \rightarrow q))$$

但除此之外不能使用其他定理。

这里 $A=A_1\cup A_2\cup A_3\cup A_4\cup A_5$,

$$A_1 = \{p \rightarrow (q \rightarrow p) | p, q \in P(Y)\};$$

$$A_2 = \{(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r)) | p, q, r \in P(Y)\};$$

$$A_3=\{\neg\neg p\rightarrow p|p\in P(Y)\};$$

$$A_4 = \{ \forall x(p \rightarrow q) \rightarrow (p \rightarrow \forall xq) | p,q \in P(Y), x \notin var(p) \};$$

$$A_5=\{\forall xp(x)\rightarrow p(t)|p(x)\in P(Y),项t 对 p(x)中的x 是自由的\}.$$