The Mirrror Effect in SDT

Not another Recognition Memory study

PAPIIT IN307214

One single problem...

Is that the sound of a predator approaching?

Is this food eatable?

Is my mom mad at me?

Does this patient have an Anxiety Disorder?

Is there a bomb in this bag?

One single problem...

Is there a bomb in this bag?

The Reliability of Eyewitness Identifications from Police Lineups Wixted, Miickes, Dunn, Clark & Wells, 2016

Memory Strength

Recognition Memory

Study phase

Incidental

Intentional

Recognition Task

Have I seen this stimulus before?

Memory Strength

Procedures

- 1. Yes | No Task
 - Have you seen this stimulus before?

- 2. Confidence Rating
 - How confident are you about your answer?

0	1	2	3	4	5
HIGH	MEDIUM	LOW	LOW	MEDIUM	HIGH
New	New	New	Old	Old	Old

Yes | No Task p(Hit) p(False Alarm)

2. Confidence Rating

- Sub-criteria

Confidence
Criterionp(Hit)p(FA)D'Old-High1Old-Medium1Old-Low1New-Low1New-Medium1New-High1

Memory Strength

Mirror Effect

 "If there are two classes of stimuli, and one is more accurately recogized than the other, then the superior class is both more accurately recognized as old when old and also more accurately recognized as new when new (...) means that the greater efficiency in recognizing is always twofold"

(Glanzer, Adams, 1990)

Mirror Effect

 The greater efficiency in recognizing is always twofold.

Evidence

Yes/No Procedure

Rate

Confidence Rating

Mean

$$P(BO, BN) < P(BO, AN), P(AO, BN) < P(AO, AN),$$

2AFC:

Preferences

Means for Proportion Yes (False Alarms and Hits) and for Confidence Ratings in an Experiment With Word Frequency as the Variable (Glanzer & Adams, 1990, Experiment 1; N = 16)

Example

	Condition									
	N	ew	Old							
Measure	Low	High	High	.661						
P(yes)	.304	.359	.592							
Confidence rating	3.34	3.76	5.09	5.56						

Means for Proportion Yes (False Alarms and Hits) and for Confidence Ratings in an Experiment With Word Frequency as the Variable (Glanzer & Adams, 1990, Experiment 1; N = 16)

Example

	Condition									
	N	ew		old						
Measure	Low	High	High	Low .661						
P(yes)	.304	.359	.592							
Confidence rating	3.34	3.76	5.09	5.56						

Means for Proportion Yes (False Alarms and Hits) and for Confidence Ratings in an Experiment With Word Frequency as the Variable (Glanzer & Adams, 1990, Experiment 1; N = 16)

Example

	Condition									
	N	ew		old						
Measure	Low	High	High	Low						
P(ves)	304	359	592	661						
Confidence rating	3.34	3.76	5.09	5.56						

Ejemplo (Glanzer and Bowles, 1976)

Table 2
Mean Proportions of Choice in an Experiment With Word Frequency as the Variable,
Using Forced Choice (Glanzer & Bowles, 1976; N = 48)

Choice										
Null	pairs		rd pairs							
P(HN, LN)	P(LO, HO)	P(HO, HN)	P(LO, HN)	P(HO, LN)	P(LO, LN)					
.67	.68	.75	.80	.83	.89					

Note. Columns are arranged to show the mirror inequalities for the standard pairs in the four columns on the right: P(HO, HN) < P(LO, HN), P(HO, LN) < P(LO, LN). The null pairs on the left should both be above .50 when the mirror order holds. P = proportion; HN = high frequency, new; LN = low frequency, new; LO = low frequency, old; HO = high frequency, old. Adapted from "Analysis of the Word-Frequency Effect in Recognition Memory" by M. Glanzer and N. Bowles, 1976, Journal of Experimental Psychology: Human Learning and Memory, 2, p. 24. Copyright 1976 by the American Psychological Association.

2Alternative-ForcedChoice

Standard comparisons

AO – AN - BN

BO – AN - BN

Null Choices

AN - BN

AO - BO

Multiplicity

"The experimenter can produce as many separate mirror orders within a single data set as wished. All that has to be done is to impose effective variables factorially on the presented material and have a sufficient number of items in the study list."

Extensiveness

"When two variables are used in a single experiment (...) produce an array of eight underlying distributions in mirror order".

		Frequency			
		Low Hig			
Concreteness	Concrete	LC	НС		
	Unconcrete	LU	HU		

fa(LCN) < fa(HCN) < fa(LUN) < fa(HUN) < h(HUO) < h(LUO) < h(HCO) < h(LCO).

 The Mirror Effect has only been studied within Recognition Memory.

— Can we find the Mirror Effect in other areas where SDT has been applied?

Experiments

Presiona la barra espaciadora para comenzar con las instrucciones

Instrucciones

En la pantalla se te mostraran dos círculos en color claro cuyo tamaño deberás comparar. El circulo del lado izquierdo permanecerá aislado, como referencia. El circulo del lado derecho aparecerá rodeado de un conjunto de círculos de distinto tamaño

Presiona la <u>Tecla S cuando los círculos claros SÍ sean del</u> mismo tamaño.

Presiona la <u>Tecla N si NO son iguales.</u>

Presiona la barra espaciadora para continuar.

Por ejemplo:

En este caso el circulo claro de la figura derecha (el circulo central) es mas chico que el circulo aislado del lado izquierdo.

Deberias presionar la tecla N porque NO son iguales

Presiona N

Posteriormente, se te presentara una escala como la siguiente:

Deberas teclear el numero 1, 2 o el 3, dependiendo de que tan seguro estas de tu respuesta.

Presiona la barra espaciadora para continuar

Cada pareja a comparar se te mostrará <u>solo por un</u> <u>segundo.</u>

No avanzarás al siguiente ensayo hasta que registres tus respuesta.

Una vez se registren tus respuestas, se te pedirá que indiques con la barra espaciadora cuando estés listo(a) para avanzar al siguiente ensayo.

Los estímulos se te presentaran en varios colores para facilitar la distinción entre ensayos. Los colores no están correlacionados de ninguna forma con nada.

Presiona la barra espaciadora para continuar.

¿Los círculos centrales son del mismo tamaño?

S = Si

N = No

¿Los círculos centrales son del mismo tamaño?

¿Qué tan seguro estás de tu respuesta?

1	2	3
Poco seguro	Más o menos	Muy seguro
(a)	seguro (a)	(a)

Ensayo	Estimulo	Respuesta	Correcto	Aciertos	Errores	Hits	ContadorH	Rechazos	ContadorR	Falsas.al	ContadorF	Omisiones	ContadorM	Confidence	RTime1	RTime1b	RTime2
0	447	S	True	1	0	True	1	False	0	False	0) False	0	4	5.74549	4.244905	2.70672
1	164	n	True	2	0	False	1	True	1	False	0) False	0	1	2.93766	1.436569	1.90496
2	605	n	True	3	0	False	1	True	2	False	0) False	0	2	3.84011	2.339579	1.50382
3	112	S	True	4	0	True	2	False	2	False	0) False	0	6	2.83766	1.336874	2.50649
4	16	S	True	5	0	True	3	False	2	False	0) False	0	5	2.93824	1.437917	1.00411
5	203	n	True	6	0	False	3	True	3	False	0) False	0	3	3.33915	1.838339	1.30351
6	88	S	True	7	0	True	4	False	3	False	0) False	0	4	3.23876	1.737904	1.50368
7	429	n	False	7	1	False	4	False	3	False	0	True	1	2	3.8401	2.339303	1.40358
8	385	S	True	8	1	True	5	False	3	False	0) False	1	5	3.13901	1.638153	2.70653
9	307	n	True	9	1	False	5	True	4	False	0) False	1	1	2.838	1.337316	1.50445
10	558	S	False	9	2	False	5	False	4	True	1	False	1	5	2.83727	1.336863	0.70183
11	87	n	False	9	3	False	5	False	4	False	1	True	2	3	4.24095	2.739905	0.80222
12	71	S	True	10	3	True	6	False	4	False	1	False	2	6	3.13815	1.63787	1.90476
13	607	n	True	11	3	False	6	True	5	False	1	False	2	1	2.53716	1.036293	0.90252
14	98	S	True	12	3	True	7	False	5	False	1	False	2	6	2.43641	0.935281	1.9048
15	137	S	True	13	3	True	8	False	5	False	1	False	2	6	2.83797	1.337504	1.50382
16	100	n	False	13	4	False	8	False	5	False	1	True	3	2	2.7371	1.236629	1.00237
17	449	n	False	13	5	False	8	False	5	False	1	True	4	2	4.04108	2.540127	0.40119
18	493	n	True	14	5	False	8	True	6	False	1	False	4	3	2.33724	0.836374	0.30076
19	295	n	True	15	5	False	8	True	7	False	1	False	4	3	1.83559	0.334703	0.40122
20	194	n	True	16	5	False	8	True	8	False	1	False	4	2	4.24083	2.740342	0.40131
21	165	n	True	17	5	False	8	True	9	False	1	False	4	1	3.13855	1.637405	1.20461
22	532	s	False	17	6	False	8	False	9	True	2	False	4	5	2.43688	0.936097	0.80209

10 False

11 False

AD

ΑE

AF

AG

2 False

2 False

ΑH

ΑI

AJ

3 4.24203 2.741081

1 2.73744 1.236548 0.40107

0.3007

AK

AL

U

23

24

220 n

273 n

True

True

18

19

6 False

6 False

8 True

8 True

٧

W

Х

Z

AA

AB

AC

Looking for the Mirror Effect: A & B

Looking for the Mirror Effect: A & B

A: Fewer External Circles

- 16 pairs (signal)
- 16 pairs (noise)
- 32 trials

B: More external circles

- 16 pairs (signal)
- 16 pairs (noise)
- 32 trials

64 trials

- x10
 - 5 different colors
 - 2 per color
 - Counterbalancing

• 320 type A trials

• 320 type B trials

S = Si

N = No

Two Experiments

Experiment 1: Just one Ebbinghaus Illusion

- 160 AS
- 160 AN
- 160 BS
- 160 BN
- Same procedure

Experiment 2: Two Ebbinghaus Illusions

- 160 AS
- 160 AN
- 160 BS
- 160 BN
- Same procedure

Data!

Individual cases

1st: Looking for Contaminants

1st: Looking for Contaminants

Counters per trial

ConfidenceRate per Trial

Ex1aV2_S101_Frida.csv

1-160

321-480

Tiempo de Respuesta al Estimulo

1st Problem: How do I know if a participant was actually paying attention?

Choice per trial

Confidence Rating

ConfidenceRate per Trial

Ex2a_S10_Jor.csv

1-160

Confidence Rating

ConfidenceRate per Trial

Ex2a_S7_PaoVi.csv

1-160

321-480

161-320

481-640

2nd: Exploring Sequential effects

2nd: Exploring Sequential effects

Aciertos y errores por ensayo

Aciertos y errores por ensayo

Contadores por ensayo

Contadores por ensayo

Response Time to the Stimulus

Response Time to the scale

3rd: Exploring Correlations!

3rd: Exploring Correlations!

4th: Evaluating the pattern

4th: Evaluating the pattern

Confidence Rating

Ex2a_S10_Jor.csv

R(AN)	R(BN)	R(BS)	R(AS)
1.475	1.88125	4.675	5.11875

Confidence Rating

Ex2a S4 DiRoj.csv

R(AN)	R(BN)	R(BS)	R(AS)
1.06875	1.325	4.6625	5.1875

Confidence Rating

Ex2a_S2_Tona.csv				
R(AN)	R(BN)	R(BS)	R(AS)	
1.275	1.51875	5.31875	5.1875	

Ex2a_S11_PauLo.csv				
R(AN)	R(BN)	R(BS)	R(AS)	
2.24375	3.325	5.825	5.6875	

Ambiguity

Confidence Rating

Ex2a_S5_DanFer.csv R(AN) R(BN) R(BS) R(AS) 3.01875 3.275 5.46875 5.475

Yes/No Task

Yes/No Task

Ex2a_S14_Jacq.csv				
R(AN)	R(BN)	R(BS)	R(AS)	
1.50625	1.575	5.43125	5.74375	

Distributions!

Ex2a_S8_IsaAn.csv - 30 53 116 139 - 0.188 0.331 0.725 0.869 AN BN BS AS

Ex2a_S8_IsaAn.csv				
R(AN)	R(BN)	R(BS)	R(AS)	
2.50625	3.15625	4.58125	4.96875	

Mirror Effect

Ex2a_S10_Jor.csv				
R(AN)	R(BN)	R(BS)	R(AS)	
1.475	1.88125	4.675	5.11875	

Mirror Effect

Ex2a_S14_Jacq.csv				
R(AN)	R(BN)	R(BS)	R(AS)	
1.50625	1.575	5.43125	5.74375	

Mirror Effect

Ex2a_S11_PauLo.csv				
R(AN)	R(BN)	R(BS)	R(AS)	
2.24375	3.325	5.825	5.6875	

