Projet 4 : Anticipez les besoins en consommation électrique de bâtiments

Lancelot Leclerco

15 décembre 2021

Sommaire

- 1. Introduction
- 2. Nettoyage du jeu de données
- 3. Étapes des modélisations
- 4. Modélisation des émissions de carbone
- 5. Modélisation de la consommation énergétique
- 6. Conclusion

Introduction

Introduction

Problématique

- Objectif de la ville de Seattle : atteindre la neutralité en émissions de carbone
- La ville s'intéresse aux émissions des batiments non destinés à l'habitation
- Pour cela des relevés de consommation ont été réalisés mais ils sont couteux à obtenir
- Est-il possible de prédire les émissions et de la consommation d'énergie pour des batiments pour lesquels les relevés n'ont pas été réalisé à partir des relevés déjà obtenus

Jeu de données

- Base de données issue de l'initiative de la ville de Seattle de proposer ses données en accès libre (Open Data)
- Données concernant les batiments de la ville, caractérise :
 - le type,
 - la surface,
 - le nombre d'étages,
 - la consomation énergétique,
 - les émissions de carbone.
 - -
- Données des années 2015 et 2016

Nettoyage du jeu de données

Nettoyage du jeu de données

Nettoyage du jeu de données

Étapes des modélisations

Étapes des modélisations

Étapes des modélisations

Modélisation émissions

Modélisation émissions

Modèle Ridge

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle Ridge()

Modèle Lasso

Variable non modifiée

Modèle ElasticNet

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle ElasticNet()

Modèle kNeighborsRegressor

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle KNeighborsRegressor()

Modèle RandomForestRegressor

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle RandomForestRegressor()

Modèle AdaBoostRegressor

Variable non modifiée

Modèle GradientBoostingRegressor

Variable non modifiée

Comparaison des résultats selon que la variable est au log ou non

Influence de l'EnergyStar score sur la prédiction des Émissions

Modélisation consommation

Modélisation consommation

Modèle Ridge

Variable non modifiée

Modèle Lasso

Variable non modifiée

Modèle ElasticNet

Variable non modifiée

Visualisation des données de SiteEnergyUse prédites par le modèle ElasticNet() vs les données test

Modèle kNeighborsRegressor

Variable non modifiée

Modèle RandomForestRegressor

Variable non modifiée

Modèle AdaBoostRegressor

Variable non modifiée

Modèle GradientBoostingRegressor

Variable non modifiée

Conclusion

Conclusion

Conclusion