· 机械制图 , 椭圆体 , 。下料计算

设计与工艺类的主义的法

第二讲 椭圆体的下料计算与画法

北京金属结构厂(101101) 孙新铭

TH16=

在机械结构工程中椭圆是常见的,如椭圆罐体、圆柱体斜截断面、锥体斜截断面、椭圆封头模具断面、椭圆封头的垂直断面、特定的椭圆形零部件等。

一、椭圆方程

椭圆图形如图 1 所示,图中:a 为长半轴、b 为短半轴,O 为中心,F₁、F₂ 为焦距,_{T1}T₂ 为焦点半径,M 为椭圆圆周上任一点。

图 1 椭圆图形

椭圆方程式的表述为。

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad (1)$$

二、椭圆的若干几何性质

为说明有关问题,引入几个相关的椭圆基本元素 (见图 1)。

- 1. 焦距 $F_1F_2 = 2C \approx 2 \sqrt{a^2 b^2}$
- 2. 焦点半径和为常数 r₁+r₂=2a

高心率 e=c/a=√1-(b/a)²
 若规定 λ=b/a, 则 e=√1-λ²

三、椭圆方程以y=f(x)形式有几种表达式

在机械工程中经常需解与 x。对应的 y。值,由式(1)可导出如下的椭圆函数式,以满足计算需要。

或
$$y=\pm\lambda \sqrt{a^2-x^2}$$
(3)
(3)

椭圆图形是轴对称的,应用时只要按第一象限处理即可,而不必考虑式(2)、(3)、(4)中的土符号。

图 2 法线 MN 示意图

四、椭圆曲线上任一 点 M(xa,ya)法线的定位

1. 椭圆上任一点 M(x₀, y₀)的法线为 MN(见图 2)。在 M 点参数确定后,只有确定 N 点的位置,方可定位法线 MN。

2. NP---- 次法距

削振动的作用。

五、刀具几何参数的确定

综合考虑到铝合金材料的加工特点以及加工中振 动和切削力所引起的变形,切削刀具选择参数如下。 前角 $\gamma = 25^{\circ} \sim 30^{\circ}$, 后角 $\alpha = 8^{\circ} \sim 10^{\circ}$, 主偏角 $\varphi = 90^{\circ}$, 刃 倾角 $\lambda = 15^{\circ} \sim 20^{\circ}$.

六、加工效果

经生产实践证明,这组夹具结构合理,定位可靠,夹紧力均匀,整体刚度高,通用性好,而且因其轻便、灵活,切削速度提高1倍,达到200m/mm,单入即可轻松地操作,减轻了劳动强度,随着切削速度的提高,还可大幅度降低切削力,改善切削条件。

在生产过程中,各类简体加工完毕后均在机床下 检測。圆度误差稳定控制在 0.15mm 之内,同轴度小于 0.05mm、直线度 0.10mm,一次交检合格率大于 98%, 完全达到了图样设计要求,提高了生产效率,经济效益 十分明显。

《机械工艺师》1996. №8

平面曲线任一点的次法距 NP= |y₁₁·y'₀|

$$y = \frac{b}{a} \sqrt{a^2 - x^2}$$

$$y = -\frac{bx}{a\sqrt{a^2 - x^2}}$$

$$\therefore NP = \left(\frac{b}{a}\right)^2 x_n \quad \cdots \qquad (5)$$

3. 法线与 X 轴的夹角 a

$$\alpha = \arctan \frac{MP}{NP} = \frac{a}{b} \sqrt{\left(\frac{a}{x_0}\right)^2 - 1} \quad \dots \qquad (7)$$

椭圆 a=1000mm, b=600mm, 求椭圆曲线上与 $x_2=300mm$ 的 P 相对应的 M 点的 y_0 及过 M 点的法线——确定 NP 值(见图 3),

$$\alpha \!=\! arctg \; \frac{MP}{NP}$$

图 3 例图

$$=$$
arctg $\frac{572.4}{108}$ = 79.3°

五、椭圆的周长(计算"椭圆周率 π。")

1. 椭圆周长的积分式

椭圆周长的积分式为:

$$L = 4 \int_0^x \sqrt{1 + y^2} dx$$

上式按"勒让德椭圆积分"可写成:

$$L = 4a \int_{0}^{\pi/2} \sqrt{1 - e^{2} \sin^{2}\!\psi} d\psi$$

$$\mathbb{P} L = 4a \int_{0}^{\pi/2} \sqrt{1 - (1 - \lambda^{2}) \sin^{2}\!\psi} d\psi \quad \cdots \quad (8)$$

2. 椭圆周率 π

椭圆参数 a、b 确定后,其周长是确定的,式(8)写成:

$$L = 2a \cdot 2 \int_{0}^{\pi/2} \sqrt{1 - (1 - \lambda^{2})\sin^{2}\psi} d\psi$$

$$L = 2a\pi_{0} \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot (8')$$

相应于圆周率π称π。为"椭圆周率"。

$$\pi_{\rm c} = 2 \int_{1}^{\pi/2} \sqrt{1 - (1 - \lambda^2) \sin^2 \! \psi} d\psi \cdots (9)$$

3. 椭圆周率 元 的数值

式(9)不能用不定积分表得到函数表达式。以"龙贝公式"可以求出足以满足工程计算准确度要求的近侧值

取 λ 间隔 为 0.05, 规定 计算数值的 误差小于 0.0001, 取 4 位小数 (最后一位 4 舍 5 入), 计算的结果 列干表 1。

4. 椭圆周率 π, 的拟合函数式

《机械工艺师 》1996. №8

工程实践中的椭圆,其 λ= b/a 值不一定能与表 1 中的 λ 数据相对应,采用"龙贝公式"计算毕竟颇为麻 烦。为此,将表 1 的数据非线性,规律)作如下的拟合;

式中的 a,b,c 值按表 2 选用。

λ的分段是为了保持一定的计算精度。

利用 π_0 拟合函数式计算的结果与用"龙贝公式" 计算的数值相比较,相差大约在 $0\sim0.0003$ 范围之内。为了说明问题,将最为常用的 $\lambda=0.3\sim0.8$ 范围内两种计算结果及它们的差异一并列于表 3。表中 π_0 是"龙贝公式"的计算值, $\Delta=\pi_0$ — π_0 .

表 1 元。与 λ 对应值

λ	πο	λ	$\pi_{\mathcal{G}}$	λ	ਸ ੂ
0	2	0. 35	2. 2452	0.70	2. 6912
0.05	2. 0115	0.40	2. 3012	0. 75	2.7630
0.10	2, 0320	0.45	2.3603	O. 80	2. 8362
0.15	2.0630	0.50	2. 4221	0.85	2. 9107
0. 20	2. 1010	0.55	2.4863	0.90	2.9867
0. 25	2.1445	0.60	2.5527	0.95	3.0635
0.30	2. 1928	0.65	2. 6211	1. 90	3.1416

賽 2

λ(b/a)	а	Ь	c
0.1~0.3	1. 2802	1.5583	1.9968
0.3~0.6	1.1864	1.4125	1.9761
0.6~0.8	1. 2030	1.3233	1.9408
0.8~1.0	1. 2376	1. 2700	1. 9040

表 3 拟合式计算值 τω 与 τω 的比较

λ	π ο	मद्र	Δ
0.3	2.1928	2. 1929	0.0001
0.3162	2, 2094	2. 2094	0.0000
0.35	2. 2452	2. 2454	0.0002
0.40	2.3012	2. 3013	0.0001
0. 4242	2. 3295	2. 3294	-0.0001
0, 4472	2. 3569	2.3568	-0.0001
0.45	2, 3603	2, 3602	— ŭ. ŭ≎01
0. 4899	2, 4094	2,4091	-0.0003
0.50	2, 4221	2, 4218	-0.0003
0.55	2. 4863	2. 4860	-0.0003
0.60	2. 5527	2.5527	0.0000
0.65	2.6211	2, 6211	0.0000
0.70	3.6912	2, 6912	0,0000
0. 7071	2,7013	2.7013	0. 0000
0.75	2. 7630	2.7629	-0.0001
0.80	2. 8362	2.8362	0,0000

从表 3 的数据可见: π, 拟合函数式(10)计算的准

确度,可满足工程应用要求。

5. 应用举例

一椭圆截面贮槽(见图 4),椭圆参数为:a=1000mm,b=650mm,壁厚t=10mm.

图 4 椭圆罐体示意图

求;周长展开的下料长度 L.

解:下料顶采用"中径"计算(严格地讲,"中径"数据形成的图形,已不是数学意义上的椭圆,但误差甚微,在制造允差范围之内,在机械工程上可仍视为椭圆)。

am, bm 分别为中径上的长、短半轴

 $a_m = 1055 \cdot 2a_m = 2010$

 $b_m = 655.\lambda = 655/1005 = 0.651741.$ $\lambda = 0.6517$

接 π_0 拟合函数式(10)及 λ 值选取表 2 中的 a 、b 、c 数值,则得 π_0 为 : π_0 = 1. 203 · 0. 6517 i 320 + 1. 9408 · - 2. 623445,取 π_0 = 2. 6234

展开周长: $L = 2a_{m}\pi_{n} = 2010 \times 2$. 6234 = 5273(使用计算器求 π_{n} 值的程序(以 SHARP・EL -514 为例)是: $[a] \rightarrow [x] \rightarrow [x] \rightarrow [x] \rightarrow [x] \rightarrow [x] \rightarrow [x]$

六、椭圆的实用画法

工程中胎模具图形、检验样板、局部放大样或有的 制图等均要求绘制准确的椭圆图形。

下面简介四种实用画法,有的已在实践中沿用很久,从原理上讲所画出的图形均是椭圆,而不是椭圆的近似画法。

1. 弦绳(俗称粉线)画图

1)作直角坐标(见图 5)截 AO=BO=a.CO=b, F₁O=F₂O=√a²-b² (即 CF₁=CF₂=a)

2)将弦绳固定在 F₁、F₂和 C 点, 使 F₁、F₂ 下动, C 与可带弦绳移动(最好是做一小巧工具, 使绳准指 C i), C 点的运动轨迹就是 λ=b/a 的椭圆。

图 5 椭圆弦绳画法示意图

- 3)其原理是椭圆焦点半径和为常数 r₁-r₂=2₃
- 2. 利用椭圆画规画图

1)画规结构:它是由 T 形(或十字形)规槽及可在槽内运动的规杆组成(见图 6)。

2 规杆的三点 A、B、C 定位

A 点为基准点,置于 T 形交点处,调 AC=a,BC=b,在 C 点置一画笔。

3)画规的使用

使 T 形规槽与椭圆的坐标重合。如图 6 所示 A 点向下移动、B 点沿规槽向中心移动、C 点的轨迹即为 λ = b/a 的椭圆。

4) 厄理

规杆运动在任一位置(图示中的 $A_1 \setminus B_1 \setminus C_1$)都保持者椭圆的如下函数关系:

$$C_1D = \sqrt{b^2 - (\frac{b}{a}\kappa)^2} = b \sqrt{1 - n^2}$$

 $A : B_1C_1 \Rightarrow BC \Rightarrow b$

 $\therefore B_1D = (B_1C_1/A_1C_1) \cdot AD = (b/a)x$

3. 图解法

这是一般资料中均有介绍的椭圆画法,仅作简单 说明,其画法是:

1)作直角坐标(见图 7),以O 为心,以a, b 为半径作两个同心

图 6 图 7

2)由 O 点做放射线与两圆分别交于 A、B 点,由 A 向 X 轴作垂线 AC,由 B 点向 AC 作垂线 BD,这样可以得到 D、D₁、D₂、···D₄,D 点相连就是 λ =b/a 的椭圆。

3)原理:
$$DC = \lambda AC = \lambda \sqrt{a^2 - x^2}$$

4. 计算绘图

这一方法较为简单,可使误差在量具精度范围之内。

1)利用式(4) $y=b\sqrt{1-n^2}$ 将 $\sqrt{1-n^2}$ 与 n 的对应值求出。表 4 所示为典型数据,只要将给定的长半轴 a、短半轴 b,分别以 $y_0=b\sqrt{1-n_0^2}$, $x_0=an_0$ 计算则可得所需的一系列对应的椭圆曲线坐标点(x_0,y_2)数据。

21作直角坐标,逐一定位曲线点,圆滑连接,则为 一 λ=b/a 的椭圆。

3)举例

(下转第28页)

《机械工艺师》1996. №8