Piyush Rai

CS5350/6350: Machine Learning

November 10, 2011

(Passive) Supervised Learning

raw unlabeled data x_1, x_2, x_3, \dots

supervised learner induces a classifier

expert / oracle analyzes experiments to determine labels

1

(Passive) Supervised Learning

supervised learner induces a classifier

expert / oracle analyzes experiments to determine labels

(Passive) Supervised Learning

induces a classifier

expert / oracle analyzes experiments to determine labels

Semi-supervised Learning

semi-supervised learner induces a classifier

expert / oracle analyzes experiments to determine labels

raw unlabeled data x_1, x_2, x_3, \dots

active learner induces a classifier

expert / oracle analyzes experiments to determine labels

expert / oracle analyzes experiments to determine labels

Active Learning vs Random Sampling

- Passive Learning curve: Randomly selects examples to get labels for
- Active Learning curve: Active learning selects examples to get labels for

Learning Curves

A Naïve Approach

Suppose the unlabeled data looks like this.

Then perhaps we just need five labels!

• Of course, thing could go wrong..

(CS5350/6350)

Types of Active Learning

Largely falls into one of these two types:

Stream-Based Active Learning

- Consider one unlabeled example at a time
- Decide whether to query its label or ignore it

Pool-Based Active Learning

- Given: a large unlabeled pool of examples
- Rank examples in order of informativeness
- Query the labels for the most informative example(s)

Query Selection Strategies

Any Active Learning algorithm requires a query selection strategy

Some examples:

- Uncertainty Sampling
- Query By Committee (QBC)
- Expected Model Change
- Expected Error Reduction
- Variance Reduction
- Density Weighted Methods

How Active Learning Operates

- Active Learning proceeds in rounds
- Each round has a current model (learned using the labeled data seen so far)
- The current model is used to assess informativeness of unlabeled examples
 - using one of the query selection strategies
- The most informative example(s) is/are selected
- The labels are obtained (by the labeling oracle)
- The (now) labeled example(s) is/are included in the training data
- The model is re-trained using the new training data
- The process repeat until we have budget left for getting labels

Uncertainty Sampling

- Select examples which the current model θ is the most uncertain about
- Various ways to measure uncertainty. For example:
 - Based on the distance from the hyperplane
 - Using the label probability $P_{\theta}(y|\mathbf{x})$ (for probabilistic models)
- Some typically used measures based on label probabilities:
 - Least Confident: $x_{tC}^* = \operatorname{argmax}_x 1 P_{\theta}(\hat{y}|x)$ where \hat{y} is the most probable label for x under the current model θ
 - Smallest Margin: $x_{SM}^* = \operatorname{argmin}_x P_{\theta}(y_1|x) P_{\theta}(y_2|x)$ y_1 , y_2 are the two most probable labels for x under the current model
 - Label Entropy: choose example whose label entropy is maximum

$$x_{LE}^* = \underset{x}{\operatorname{argmax}} - \sum_{i} P_{\theta}(y_i|x) \log P_{\theta}(y_i|x)$$

where y_i ranges over all possible labels

4 D > 4 M > 4 B > 4 B > B 9 9 9

Uncertainty Sampling

A simple illustration of uncertainty sampling based on the distance from the hyperplane (i.e., margin based)

Uncertainty Sampling based on Label-Propagation

(1) Build neighborhood graph

(3) Propagate labels

(2) Query some random points

(4) Make query and go to (3)

Query By Committee (QBC)

- QBC uses a committee of models $C = \{\theta^{(1)}, \dots, \theta^{(C)}\}\$
- ullet All models trained using the currently available labeled data ${\cal L}$
- How is the committee constructed? Some possible ways:
 - Sampling different models from the model distribution $P(\theta|\mathcal{L})$
 - Using ensemble methods (bagging/boosting, etc.)
- All models vote their predictions on the unlabeled pool
- The example(s) with maximum disagreement is/are chosen for labeling
- One way of measuring disagreement is the Vote Entropy
 - Vote Entropy

$$x_{VE}^* = \underset{x}{\operatorname{argmax}} - \sum_{i} \frac{V(y_i)}{C} \log \frac{V(y_i)}{C}$$

 y_i ranges over all possible labels, $V(y_i)$: number of votes received to label y_i

• Each model in the committee is re-trained after including the new example(s)

(CS5350/6350) Active Learning November 10, 2011

4 D > 4 B > 4 B > 4 B >

Effect of Outlier Examples

(CS5350/6350)

- Uncertainty Sampling or QBC may wrongly think an outlier to be an informative example
- Such examples won't really help (and can even be misleading)

- Other robust query selection methods exist to deal with outliers
- Idea: Instead of using the confidence of a model on an example, see how a labeled example affects the model itself (various ways to quantify this)
 - The example(s) that affects the model the most is probably the most informative

Active Learning

November 10, 2011

Other Query Selection Methods

Expected Model Change

 Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

Expected Error Reduction

- Select example that reduces the expected generalization error the most
- .. measured w.r.t. the remaining unlabeled examples (using the expected labels)

Variance Reduction

- Select example(s) that reduces the model variance by the most
- .. by maximizing Fisher information of model parameters (e.g., by minimizing the trace or determinant of the inverse Fisher information matrix)
- Fisher information matrix: computed using the log-likelihood

Density Weighting

- Weight the informativeness of an example by its average similarity to the entire unlabeled pool of examples
- An outlier will not get a substantial weight!

A Perceptron Based Active Learner

Based on Selective Sampling (looking at one example at a time)

- ullet Input: Parameter b>0 (dictates how aggressively we want to query labels)
- Initialization: $\mathbf{w} = [0 \ 0 \ 0 \dots 0]$
- For n = 1 : N
 - **1** Get \mathbf{x}_n , compute $p_n = \mathbf{w}^{\top} \mathbf{x}_n$

 - **③** Draw Bernoulli random variable $Z \in \{0,1\}$ with probability $\frac{b}{b+|p_n|}$
 - If Z == 1, query the true label y_n
 - If $y_n \neq \hat{y}_n$ then update w, else don't update w
 - **Solution** Else if Z == 0, ignore the example \mathbf{x}_n and don't update \mathbf{w}

Comments:

- $|p_n|$ is the absolute margin of \mathbf{x}_n
- Large $|p_n| \Rightarrow$ Small label query probability
- \bullet Expected number of labels queried $=\sum_{n=1}^{N}\mathbb{E}[\frac{b}{b+|p_n|}]$

November 10, 2011

Concluding Thoughts...

- Active Learning: Label efficient learning strategy
- Based on judging the informativeness of examples
- Several variants possible. E.g.,
 - Different examples having different labeling costs
 - Access to multiple labeling oracles (possibly noisy)
 - Active Learning on features instead of labels (e.g., if features are expensive)
- Being "actively" used in industry (IBM, Microsoft, Siemens, Google, etc.)
- Some questions worth thinking about (read the Active Learning survey)
 - Can I reuse an actively labeled dataset to train a new different model?
 - Sampling is biased. The actively labeled dataset doesn't reflect the true training/test data distribution. What could be the consequences? How could this be accounted for?

(CS5350/6350) Active Learning November 10, 2011

4 D > 4 P > 4 P > 4 P >