

Goi Eskola Politeknikoa

Análisis Exploratorio

Fundamentos del Aprendizaje Automático

Data Science Process

Análisis exploratorio

Análisis exploratorio

Mondragon Unibertsitatea Goi Eskola Politeknikoa

- EDA = Exploratory Data Analysis
- Empezó a coger fuerza en 1977 con un libro de Tukey

- ¿Qué problemas estamos tratando de resolver?
 - Validar o invalidar una hipótesis
- ¿Qué clase de datos tenemos?
- ¿Cómo son los datos?
 - Preproceso
 - Datos faltantes, normalización, reducción de dimensionalidad...
 - Outlayers o datos atípicos
- Análisis de características o atributos
 - ¿Sobran?
 - ¿Podemos deducir nuevos atributos?

• . . .

EDA: elementos de datos estructurados

• Tipos de	Tipo de variable	Descripción	Sinónimos
Datos	Continua	Datos que pueden tener cualquier valor dentro de un intervalo	Intervalo, float, numérico
Númericos	Discreta	Datos que solo pueden tener valores enteros	Integer, count
Datos	Categórica	Un dato que suele puede tener un número de valores específicos que representen una categoría. Atributo color: rojo, amarillo	Enums, factors, nominal
categóricos	Binaria Caso especial del dato categoríco donde solo existen dos categorías: 0/1, true/false		Boolean, lógica
22.09.19	Ordinal	Datos categóricos que tienen un orden especial	Ordered factor

EDA: datos rectangulares

- La estructura de referencia para el análisis en la ciencia de datos es un objeto de datos rectangulares
- Conceptos clave:

Tipo de variable	Descripción	Sinónimos
Data Frame	Dato rectangular (parecido a un spreadsheet). Es la estructura básica para estádistica y modelos de machine learning	
Feature (columna)	Las columnas de una tabla se denominan como feature	Atribute, input, predictor, variable
Outcome (output)	Muchos proyectos de ciencia de datos requieren predecir una respuesta:	Dependent variable, response, target, output
Records (filas)	Cada fila de la tabla se denomina como registro o record	Example, insntance, observation, pattern, sample

Mondragon Unibertsitatea Goi Eskola Politeknikoa

import **pandas** as pd

In [33]: data Out[33]: Area Area Item Element Item Element latitude longitude ... Y2004 Y2005 Y2006 Y2007 Code Code Abbreviation Code Wheat and AF 2 Afghanistan 2511 5142 Food 33.94 ... 3249.0 3486.0 3704.0 4164.0 4252.0 0 products tonnes Rice (Milled 1 AF 2 Afghanistan 2805 5142 Food 33.94 419.0 445.0 546.0 455.0 490.0 415.0 Equivalent) tonnes Barley and 2 AF 2 Afghanistan 2513 5521 Feed 33.94 67.71 58.0 236.0 262.0 263.0 230.0 379.0 products tonnes Barley and 1000 5142 Food 3 AF 2 Afghanistan 2513 33.94 185.0 43.0 44.0 48.0 62.0 55.0 tonnes products Maize and 1000 AF 2 Afghanistan 2514 5521 Feed 33.94 120.0 208.0 233.0 249.0 247.0 195.0 4 products tonnes Maize and 1000 AF 5 5142 33.94 67.0 82.0 67.0 69.0 2 Afghanistan 2514 Food 231.0 71.0 products tonnes Millet and 1000 AF 5142 33.94 67.71 ... 19.0 6 2 Afghanistan 2517 Food 15.0 21.0 11.0 21.0 18.0 products tonnes 1000 7 AF Cereals, Other 5142 Food 33.94 2.0 1.0 1.0 0.0 0.0 2 Afghanistan 0.0 tonnes Potatoes and 1000 33.94 8 AF 2 Afghanistan 2531 5142 Food 276.0 294.0 294.0 260.0 242.0 250.0 products tonnes AF 9 2 Afghanistan 2536 Sugar cane 5521 Feed 33.94 50.0 29.0 61.0 65.0 54.0 114.0 tonnes 1000 AF 2537 5521 33.94 67.71 ... 0.0 0.0 0.0 0.0 0.0 0.0 10 2 Afghanistan Sugar beet Feed tonnes

- Media:
 - La suma de todos los valores dividida por el número de valores

$$Mean = \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

- Números = $\{3 5 1 2\}$
- Media Números = 3 + 5 + 1 + 2 / 11 = 2.75

EDA: Medidas de posición

- Media recortada
 - Una variedad de la media, donde se hace el cálculo de la media eliminando un número determinado de valores en los extremos.
 - Partiendo de un grupo de valores ordenados $x_{(1)}, x_{(2)}, x_{(3)}, \dots x_{(n)}$

Trimmed mean =
$$\bar{x} = \frac{\sum_{i=p+1}^{n-p} x_{(i)}}{n-2p}$$

- Ejemplo:
 - Salto (natación):
 - "For a five-judge panel, the highest and lowest scores are discarded and the middle three are summed and multiplied by the Degree of Difficulty"

EDA: Medidas de posición

- Media ponderada:
 - La suma de todos los valores multiplicados por un peso dividida por la suma de todos los pesos

Weighted mean =
$$\bar{x}_w = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$$

- Motivación:
 - Algunos valores pueden ser intrínsecamente más variables que otras
 - Menos peso
 - Ejemplo: un sensor de menor precisión
 - Los datos no representan de forma equitativa a todos los grupos
 - Ejemplo: experimento online donde el dataset no refleja de forma precisa los usuarios de la bbdd => podríamos dar mayor peso a los grupos subrepresentados

EDA: Medidas de posición

- Mediana:
 - El valor de la variable de posición central en un conjunto de datos ordenados
 - Muy dependiente de los valores centrales
 - Menos sensitivo a los outliers
 - Ejemplo

- Mediana:
 - Muy dependiente de los valores centrales

Ejemplo:

```
import pandas as pd
from scipy.stats import trim_mean
import numpy as np

df = pd.read_csv("./../data/report.csv")

print(df["population"].mean())
print(trim_mean(df["population"].values, 0.1))
print(df["population"].median())
```

795698.0891304348 620192.463576159 536614.5

 La media es mayor que la media recortada, ya que en esta última hemos eliminado el 10% de valores de cada extremo.

- Variabilidad, esencial en la estadística
 - ¿Cómo se mide?
 - ¿Cómo reducirla?
 - ¿Cómo distinguir la aleatoriedad de la variabilidad?

EDA: Medidas de variabilidad

- Desviación estándar y estimadores relacionados
 - Diferencias o desviaciones entre un estimador de posición y el dato observado
 - Ejemplo:
 - $\{1, 4, 4\} =$ media = 3, mediana = 4
 - Desviación de la media = 1-3, 4-3, 4-3 = -2,1,1
 - Estas desviaciones nos dicen como de dispersos están los datos respecto al valor central
 - Calcular variabilidad:
 - Calcular valor típico para estas desviaciones
 - ¿Media?

Desviación media absoluta

Mean absolution deviation =
$$\frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$

Varianza

Variance =
$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

Desviación estándar

Standard deviation =
$$s = \sqrt{\text{Variance}}$$

- La desviación estándar es más fácil de interpretar que la varianza
 - Misma escala que los datos originales
- Medidas no robustas frente a outliers

- MAD (Median absolute deviation from the median)
 - Más robusto frente a valores extremos

Median absolute deviation = Median $(|x_1 - m|, |x_2 - m|, ..., |x_N - m|)$

- Estimadores basados en percentiles
- Definiciones:
 - Estadísticos de orden: estadísticas basadas en datos ordenados
 - Rango: diferencia entre el mayor y el menor valor
 - Percentil núm. P:
 - Valor donde al menos el P% de los valores tiene un valor menos y un (100 P)% de los valores tienen un valor igual o mayor

EDA: Medidas de variabilidad

- Una medida común de variabilidad:
 - Rango intercuartil (IQR): Diferencia entre el percentil núm. 25 (Q1) y el percentil núm. 75 (Q3)
 - {3,1,5,3,6,7,2,9} Ordenar {1,2,3,3,5,6,7,9}
 - Percentil 25 => 8 x 25 / 100 o 8 + 1 /4 (No hay uniformidad) => 2.5
 - Percentil 75 => 6.5
 - IQR = 6.5 2.5 = 4

EDA: medidas de variabilidad

Estimadores de variabilidad de la población

	report_year	agency_code	agency_jurisdiction	population	violent_crimes	homicides	rapes	assaults	robberies	months_reported	crimes_percapita	ho
	0 1975	NM00101	Albuquerque, NM	286238.0	2383.0	30.0	181.0	1353.0	819.0	12.0	832.52	
	1 1975	TX22001	Arlington, TX	112478.0	278.0	5.0	28.0	132.0	113.0	12.0	247.16	
	2 1975	GAAPD00	Atlanta, GA	490584.0	8033.0	185.0	443.0	3518.0	3887.0	12.0	1637.44	
	3 1975	CO00101	Aurora, CO	116656.0	611.0	7.0	44.0	389.0	171.0	12.0	523.76	
	4 1975	TX22701	Austin, TX	300400.0	1215.0	33.0	190.0	463.0	529.0	12.0	404.46	
282	4 2015	OK07205	Tulsa, OK	401520.0	3628.0	55.0	365.0	2354.0	854.0	NaN	903.57	
282	5 2015	VA12800	Virginia Beach, VA	452797.0	626.0	19.0	103.0	234.0	270.0	NaN	138.25	
282	6 2015	DCMPD00	Washington, DC	672228.0	8084.0	162.0	494.0	4024.0	3404.0	NaN	1202.57	
282	7 2015	KS08703	Wichita, KS	389824.0	3839.0	27.0	349.0	2730.0	733.0	NaN	984.80	
282	8 2015	NaN	United States	NaN	1197704.0	15696.0	NaN	NaN	NaN	NaN	372.60	

```
import pandas as pd

Q1 = df['population'].quantile(0.25)
Q3 = df['population'].quantile(0.75)

stdDev = df['population'].std()
IQR = Q3 - Q1 #también se puede calcular directamente con scipy

d = abs(df['population'] - df['population'].median())
MAD = d.median()
```

```
print(stdDev)
print(IQR)
print(MAD)
```

1012450.5695786542 438924.75 180837.5

EDA: correlación

- La correlación describe como se relaciona una variable con otra
 - ¿Existen relación entre ellas?
 - ¿Existe causalidad?
 - Hacer predicciones

Mondragon Unibertsitatea Goi Eskola Politeknikoa

 Temperatura vs producción de helados

Scatter plot

$$-$$
 PCC = 0.72

- Coeficiente de correlación
 - PCC = Pearson's correlation coefficient
 - Desde -1 a 1

- Paradoja de Simpson
 - Pregunta: ¿Qué alumnos son más agradables?

Territorio	Núm. alumnos	Media de núm de amigos
Gipuzkoa	101	8.2
Bizkaia	103	6.4

- Paradoja de Simpson
 - Pregunta: ¿Qué alumnos son más agradables?

Territorio	Grado	Núm. alumnos	Media de núm. de amigos
Gipuzkoa	Infor	35	3.1
Bizkaia	Infor	70	3.2
Gipuzkoa	Teleco	66	10.9
Bizkaia	Teleco	33	13.4

KNOW YOUR DATA!!!

EDA: correlación

- Correlación y causalidad
 - "Correlation doesn't imply causation"
 - Ejemplo:
 - Producción de helados Venta de trajes de baño
 - Otros ejemplos: https://www.datasciencecentral.com/profiles/blogs/spurious-correlations-15-examples

Aitor Agirre aaguirre@mondragon.edu