Dual of Soft margin SVM (SVM $_{s2'}$):

minimize
$$\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} X^{\top} X \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
subject to
$$\sum_{i=1}^{p} \lambda_{i} - \sum_{j=1}^{q} \mu_{j} = 0$$
$$\sum_{i=1}^{p} \lambda_{i} + \sum_{j=1}^{q} \mu_{j} \geq K_{m}$$
$$0 \leq \lambda_{i} \leq K_{s}, \quad i = 1, \dots, p$$
$$0 \leq \mu_{i} \leq K_{s}, \quad j = 1, \dots, q.$$

If $(w, \eta, \epsilon, \xi, b)$ is an optimal solution of Problem (SVM_{s2'}) with $w \neq 0$ and $\eta \neq 0$, then the complementary slackness conditions yield a classification of the points u_i and v_j in terms of the values of λ and μ . Indeed, we have $\epsilon_i \alpha_i = 0$ for $i = 1, \ldots, p$ and $\xi_j \beta_j = 0$ for $j = 1, \ldots, q$. Also, if $\lambda_i > 0$, then the corresponding constraint is active, and similarly if $\mu_j > 0$. Since $\lambda_i + \alpha_i = K_s$, it follows that $\epsilon_i \alpha_i = 0$ iff $\epsilon_i (K_s - \lambda_i) = 0$, and since $\mu_j + \beta_j = K_s$, we have $\xi_j \beta_j = 0$ iff $\xi_j (K_s - \mu_j) = 0$. Thus if $\epsilon_i > 0$, then $\lambda_i = K_s$, and if $\xi_j > 0$, then $\mu_j = K_s$. Consequently, if $\lambda_i < K_s$, then $\epsilon_i = 0$ and u_i is correctly classified, and similarly if $\mu_j < K_s$, then $\xi_j = 0$ and v_j is correctly classified.

We have the following classification which is basically the classification given in Section 54.1 obtained by replacing δ with η (recall that $\eta > 0$ and $\delta = \eta/\|w\|$).

(1) If $0 < \lambda_i < K_s$, then $\epsilon_i = 0$ and the *i*-th inequality is active, so

$$w^{\top}u_i - b - \eta = 0.$$

This means that u_i is on the blue margin (the hyperplane $H_{w,b+\eta}$ of equation $w^{\top}x = b + \eta$) and is classified correctly.

Similarly, if $0 < \mu_j < K_s$, then $\xi_j = 0$ and

$$w^{\top}v_j - b + \eta = 0,$$

so v_j is on the red margin (the hyperplane $H_{w,b-\eta}$ of equation $w^{\top}x = b - \eta$) and is classified correctly.

(2) If $\lambda_i = K_s$, then the *i*-th inequality is active, so

$$w^{\top}u_i - b - \eta = -\epsilon_i.$$

If $\epsilon_i = 0$, then the point u_i is on the blue margin. If $\epsilon_i > 0$, then u_i is within the open half space bounded by the blue margin hyperplane $H_{w,b+\eta}$ and containing the