Ideas for Citizen Science in Astronomy

PHIL MARSHALL, 1,2 LEIGH FLETCHER, 2 AND CHRIS LINTOTT 2

- ¹ Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 20450, MS 29, Stanford, CA 94309, USA.
- ² Department of Physics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford, OX1 3RH, UK.

Abstract

We review the relatively new, internet-enabled, and rapidly evolving field of citizen science, focusing on ideas from which astronomy either has benefited, or could benefit in the future. We consider contributions to science in the form of observations, instrumentation, data processing, data modeling and the design of new scientific inquiries. Engaging a large and diverse community of both professionals and citizens, we digest and present their suggestions for ideas for citizen astronomy in the future. The limits to this approach to scientific investigation are not yet known, but we make some rough estimates for astronomy in particular.

CONTENTS

Introduction (2 pages)	3
Data Acquisition: Citizen Observing (5 pages)	Ę
Active Observing (Leigh, Chris to edit, 3 pages)	Ę
Passive Observing (Phil to finish, Chris to comment, 1 page)	14
Data Aquisition in Other Fields (Chris, Phil. 1 page)	16

Annu. Rev. Astron. Astrophys. 2014

Limits to access	34
Concluding Remarks (1 page)	35
Litaratura Citad	35

1 Introduction (2 pages)

The term "Citizen Science" refers to the activities of people who are not paid to carry out scientific research, but nevertheless make intellectual contributions to scientific research in their spare time. These contributions are diverse, both in type and research area. The people who make those contributions can, and do, come from all walks of life. This review is about the science projects they have participated in to date, the tasks they have performed, and how astronomy has benefited – and could benefit further – from their efforts.

Citizen involvement in science pre-dates the profession itself, and there is a long and honourable tradition of amateur observers making important discoveries and significant sustained contributions. However, the advent of the world wide web has changed the face of professional and amateur collaboration, providing new opportunities and accelerating the sharing of information. People are now connected to each other in a way that has never happened before. Professional scientists can interact with citizens via a range of web-based media, including purpose-built citizen science websites which increase the potential for shared data analysis and exploration as well as data collection. Meanwhile, communities of citizens have sprung into existence as like-minded people have been able to find and talk to each other in a way that is almost independent of their geographical location. The result has been an exponential increase in citizen involvement

in science. The field is evolving very quickly, with more and more professional scientists becoming aware of the possibilities offered by collaborating with, for example, specialists operating outside the usual parameters of professional astronomical observation, or tens of thousands of people eager to perform analysis in their lunch hours via microtasking. Our aim in this review is to review the scientific literature as it stands for ideas implemented in citizen science projects, primarily in astronomy but also in other fields, and then produce a summary of successful project characteristics for future research groups to learn from.

As our title states, this is a review of ideas for astronomy. We will look forward as well as back, and try to answer the questions: How can the full potential of citizen science be realised in astronomy? What are the particular niches that citizen science can fill, in our field? How might it contribute to the solutions of the Big Data problem in astronomy?

This review is organised as follows. We survey the contributions to science that citizens have made to date, organized according to the stage of the scientific enquiry that those contributions fell into. Astronomy research typically starts with observations: so do we, in Section 2. We then proceed through a discussion of citizen instrumentation, data processing, data modeling and finally citizen-led enquiry in Sections 2.4–5. With this overview in place, we review in Section 6 the literature on, and the collected experience of, the population of citizens who have taken part, or are currently taking part, in scientific research, before summarizing progress in citizen science to date in Section 7. In the second part of this review, we turn to the future. We first report a variety of suggestions for how citizens might contribute to astronomy there in Section 8. Then, in Section 9 we consider possible limits to citizen science, including challenges associated with data rates

and volumes, data complexity, the difficulties of large-scale collaboration, and finally the barriers to accessibility. Finally, we give some concluding remarks in Section 10.

2 Data Acquisition: Citizen Observing (5 pages)

Typically, data in astronomy is aquired with some sort of telescope. In the 21st century there certainly is an active community of well-equipped amateur observers making observations of great utility. There are also many other citizens observing the night sky with less sophisticated equipement, and/or less enthusiasm – and as we shall see, there are plenty of citizens making astronomical observations almost inadvertently. What astronomical data are the citizenry taking, and what is it being used for?

2.1 Active Observing (Leigh, Chris to edit, 3 pages)

The steady improvements and increasing affordability of digital technology, in addition to the ease of data sharing and communications, have considerably expanded the realm of amateur astronomy in the past two decades. Observers have always been passionate about their pastime, from painstakingly recorded hand drawings of the planets and their positions in the night sky, to hours devoted to the monitoring and tracking of astronomical events. There is a long and proud history of contributions from ?amateurs? to the field, driven by a desire to share the results of their hobby with others. But it has only been in the past few decades that regular and systematic pipelines have been in place to share data between amateurs and professionals, enticing passionate observers to shape their observations to address scientific questions. In this section, we review some of

the citizen contributions to active observations of the night sky. Passive contributions, via data mining and web-based studies, will be described in Section ??.

Why is active citizen observing beneficial to professional astronomers? The key advantage is time? the very core of astronomy is observational, and intense competition for resources means that professional astronomers are unable to continuously monitor all the objects of interest in the night sky. Indeed, professional observatories are always oversubscribed, with resources concentrated on one area of sky, or one astronomical question. Observations from professional telescopes, space-based observatories and visiting planetary missions are often sparse and poorly sampled due to extreme competition for resources. Such observations are rarely tuned to the optimum timescales for scientific enquiry? for example, determinations of meteor frequencies on short timescales (minutes), or slow evolution of giant planets on longer timescales (years and decades). Amateur observations can be frequent and repetitive to provide monitoring of astronomical targets, and are naturally well sampled across the globe during an exciting event of interest.

The second, related, advantage is that of flexibility? whenever a new phenomenon is discovered (e.g., a new comet, or anything changing the appearance of the familiar planetary discs), observers will be keen to catch a glimpse irrespective of the scientific value of their observations. This reaction can be near instantaneous, compared to the need to allocate telescope resources among the professional community. The third benefit is contextual? global maps of an object's visible albedo provide useful additional constraints on a process of interest, especially when near-simultaneous professional observations occur in a vastly different wavelength range (e.g., UV or infrared); over a narrow spatial

region (e.g., close-in studies by spacecraft); or employ spectroscopic techniques that don?t yield images. Comparisons with the visible albedo provided by citizen scientists can therefore play an extremely useful role in planetary missions, both for context and for observation planning. Active observation by enthusiastic citizens contributing directly to scientific progress, combined with the excellent communication channels that have opened up in the past two decades, and the digital technology that allows astrophotographers to shine, is beginning to plug this observational gap.

As a result of these benefits, a few professionals are very closely linked with the amateur community, organising publications and assisting in observation planning to maximise science return. New planetary missions frequently involve scientists to serve as an interface with the amateur community (this is particularly true to the 2016-17 Juno mission to Jupiter). In return, amateurs trigger alerts through online forums or emails to professional networks, announcing a tentative new discovery to the world for scrutiny and follow-up. The benefits of strong professional-amateur collaboration will be repeated in the following examples where active observations have contributed directly to our understanding of our place in the universe. We do not intend a complete review of all examples of Pro-Am collaboration, but a few representative examples. For a detailed review of the methodology employed by amateur observers, the reader is referred to ?). Within our solar system, active observations fall into two interconnected categories: Discovery and Monitoring, where each will almost certainly lead to the other.

2.1.1 DISCOVERY-CLASS SCIENCE Discovery-class citizen science is enabled by the quantity of data obtained and the extreme familiarity of citizen astronomers

with a particular region, planet or nebula, allowing them to immediately identify peculiarities or new features (e.g., meteorological activity on giant planets, ?). Solar system objects moving against the fixed-star background can be detected in a set of CCD frames either by eye or by automated software. The position of this new object is then compared to existing catalogues, and if no existing details are found then the new discovery and its ephemerides can be reported to the IAU Minor Planet Centre¹. If observations are repeated for at least two nights by one or several observers, then a new denomination is provisionally assigned to the discovery. An electronic circular then reports the discovery to the wider world. Suitable targets for these searches include near-earth asteroids (NEAs, with orbits intersecting those of the terrestrial planets), main belt asteroids between Mars and Jupiter, and comets making their journey towards the Sun from the outer solar system.

The recent close flyby of asteroid 2012 DA14 on February 15th 2013 was initially reported by a team of amateur observers affiliated with the La Sagra Sky Survey at the Astronomical Observatory of Mallorca. Amateur observers still contribute to the discovery and photometric imaging of comets, and many amateurs have managed to become associated with new cometary discoveries, including David Levy, part of the team that discovered Shoemaker-Levy 9 before its spectacular impact with Jupiter. As with asteroids, the majority of new comet discoveries are made by automated surveys, but a small and stable number of discoveries come from amateurs with small telescopes, typically in regions poorly covered by survey telescopes (e.g., regions close to the Sun). C/2011 W3 Lovejoy, a Kreutz sungrazer comet, is one such example. C/2012 S1 ISON was spotted

¹http://www.minorplanetcenter.net

by A. Novichonok and V. Gerke in images from the International Scientific Optical Network. One might imagine that, as observing technology improves, citizen discoveries via active observation might extend out to the distant Kuiper Belt, although many of these targets are so dim that they are unavailable to all but the largest of apertures.

Although survey telescopes provide the vast majority of modern discoveries, citizen observations allow detailed characterisation of physical and orbital characteristics of these newly discovered solar system bodies, and amateur-led contributions are published online². There is a need to continuously track Near Earth Asteroids as gravitational effects can significantly alter orbital trajectories over time, and this astrometry for both asteroids and comets can be provided to the Minor Planet Centre for collation and use in computing orbital trajectories. Amateur monitoring of a comet?s coma, dust and plasma tails and their photometric parameters can reveal dynamic structures and determine the locations of active venting regions. Photometric monitoring of comets over time of the magnitude and tail characteristics provides insights into the levels of activity as the comet moves along its trajectory, and can also reveal outbursts and other events associated with the outgassing. Photometric monitoring of an asteroid as it rotates provides information on the physical parameters, such as the shape, rotation rate and orientation. Observations of mutual encounters can also yield information on the density, and hence the composition of the asteroids.

Amateurs are also contributing to the search for a sub-category of objects with a detectable cometary coma within the asteroid belt. Recent discoveries of these Main Belt Comets, which appear to be asteroids that are actively venting their

²http://www.minorplanet.info/mpbdownloads.html

volatiles at perihelion, are beginning to blur the distinction between asteroids and comets. The T3 project, a collaboration between the University of Rome and several amateur observers, began in 2005 with the detection of a coma around asteroid 2005 SB216 (?), and has gone on to detect at least eight main belt comets (?). Comae may be detected as an extended FWHM of the asteroid compared to the background stars, or visually distinctive cometary comae. Recent discoveries of cometary activity can be found here: http://schiaparelli204.wordpress.com/

Beyond our solar system, amateurs have contributed to exoplanetary transit

discoveries, attempting to measure the 1planet transits in front of its parent star.

?) points out three methods where amateurs can contribute to characterising exoplanetary systems? (i) by frequent observations of known transits to refine ephemeris; (ii) searching for transit time variations that can reveal additional planets in a system; and (iii) searching for previously unidentified transits in known planetary systems (e.g., the discovery of the transit of HD 80606b from a 30 cm telescope near London, ?).

2.1.2 Long Baseline Monitoring The diverse and dynamic environments of our solar system are tantalising targets for amateur observations, both due to their ease of identification and the chance that some unusual, neverbefore-seen phenomenon might present itself before your eyes. Long-term quasicontinuous monitoring of these objects is highly desirable, but impossible to achieve from over-burdened professional telescopes. Citizen science is able to plug that gap, providing an expanding dataset of observations to trace the day-to-day evolution of the inner and outer planets.

Jupiter?s size and colourful cloud contrasts, with its striped appearance and large vortices, make it an ideal first target for budding astronomers. Winds,

waves, storms and plumes shape the day-to-day appearance, with cloud structures being blown east and west by powerful zonal jets. The jet velocities, and the dispersion of cloud material, reveals processes at work beneath the visible ammonia ice clouds, and serve as a probe of the fluid dynamics at work. Tracking the motion of features requires correlation of images obtained night after night; with filters sounding in and out of strong jovian methane absorption features providing a three dimensional view of the planet?s cloud decks. Both colour composites and raw filtered images are uploaded to online servers, organised by date and time, such as the Planetary Virtual Observatory and Laboratory (PVOL, http://www.pvol.ehu.es/pvol) maintained for the International Outer Planets Watch (IOPW) (?). The global distribution of giant planet observers permits global monitoring of Jupiter and Saturn as they rotate over 10 hours. Descriptive records of morphological changes and events are maintained and continuously updated by organisations such as the British Astronomical Association (BAA) and Association of Lunar and Planetary Observers (ALPO). Those images can be used by amateurs and professionals alike to quantitatively study the zoology of activity; from measuring wind speeds (?); investigating the strength and changes to the large vortices (e.g., the 2006 reddening of Oval BA, ?); to determining the life cycle of the belt/zone structure (??).

Similar monitoring studies are underway for Saturn, Uranus and Neptune, with increasing levels of difficulty. Saturn's appearance is typically more subdued than that of Jupiter, but 20-30 cm diameter telescopes are capable of resolving small convective cloud activity. A close collaboration between amateurs and Cassini spacecraft scientists allows correlation of lightning-related radio emissions detected by the spacecraft with visible cloud structures on the disc (known as Saturn

Storm Watch) (e.g., ?), which would not be possible with the targeted regional views provided by Cassini's cameras alone. This provides insights into the moist convective processes thought to power the dynamics of the giant planet, and is a good example of how citizen science can support an international planetary mission. Amateur observations of Uranus and Neptune are in their infancy and require telescopes with diameters exceeding 25 cm, but there have been confirmed reports of atmospheric banding and discrete cloud features when near-infrared filters are used to maximise contrast between white clouds and the background and long exposure times of tens of minutes.

Active citizen observing also provides long-term monitoring in the inner solar system. Venus? photochemical smog shields the planet's surface from view, but discrete cloud features can be used to study the super-rotation of the Venusian atmosphere and the occurrence of a mysterious ultraviolet absorber high in the planet?s atmosphere (i.e., using near-UV filters). The Venus Ground-Based Image Active Archive was created by ESA to provide contextual observations supporting the Venus Express mission (?). Near-infrared imaging can be used to sample thermal emission from the Venusian surface on the nightside (?). The Martian atmosphere, with its ephemeral clouds, seasonal CO2 polar ice cycles and dust storms, continues to prove popular among citizen observers, although these typically supplement the wealth of high-resolution information being returned by orbital and surface missions to the red planet. As with other planetary targets, amateur observations provide the long temporal records for the evolution of atmospheric features. Groups such as the International Society of Mars Observers (IMSO, http://www.mars.dti.ne.jp/cmo/ISMO.html), the British Astronomical Association (BAA) and the International Mars Watch program quantitatively

and qualitatively assess these amateur images.

2.1.3 REACTIVE TO UNEXPECTED EVENTS Long-term monitoring exercises prove most fruitful in response to new and unexpected events, including eruptions of gigantic plumes (??), changes to giant ovals (?) and impact debris produced by asteroidal and cometary collisions (?). An impact scar near Jupiter?s south polar region was first discovered in imaging by Australian amateur Anthony Wesley on July 19th, 2009, and led to an international campaign of professional observations to understand the asteroidal collision that had created the scar (e.g., ??). As observers use video imaging to capture their images (see Section ??), those videos have also been used to identify flashes due to meteors in the jovian atmosphere. At least three flashes were confirmed between 2010 and 2012, and the light curves used to determine the sizes and frequency of objects colliding with Jupiter (e.g., ?).

Closer to home, citizen scientists play a crucial role in the recording of rare and unpredictable events such as the fireballs from meteoroid impacts, such as the February 2013 Chelyabinsk meteor. Video footage of the fireball and shockwave were essential to scientifically characterise the impactor and its likely origins. These reconstructed trajectories even permit the recovery of meteorites from a strewn field (i.e., when the meteor survives the intense heat of atmospheric entry and reaches the ground). These objects are the remnant debris left over from the epoch of planetary formation, and fragments left over from comets and asteroids, so their numbers, sizes and composition provide a window onto the earliest evolutionary stages of our solar system. The statistics of these impacts can only be obtained via a global network of enthusiastic citizen scientists, sharing and publicising their observations of meteors via the International Meteor

Organisation (IMO, www.imo.net). Beyond Earth, transient impact flashes due to lunar impacts are recorded by video monitoring of the non-illuminated fraction of the Moon, aiming to determine the impact hazard at the lunar surface. These quantitative studies of impacts in the Earth-Moon system allow scientists to understand the meteoritic streams threading our solar system; identify previously unrecognised meteor showers; and determine the statistics of potentially hazardous encounters with this extra-terrestrial material.

Short case studies:

- Impacts on planets, the Moon.
- International Meteoroid Association, world coverage.
- Planetary observations: JUPOS observers, nightly monitoring. Martian meteorology?
- Cometary monitoring.
- Asteroid and TNO searching.
- Variable nebulae.
- Supernova detection.

2.2 Passive Observing (Phil to finish, Chris to comment, 1 page)

While amateur astronomers have aquired a great deal of very useful data, the general population is better equipped than ever to image the sky and make that data available for scientific analysis. This has been demonstrated by two recent professionally-led studies, that made use of a largely passive observing community connected via online social networks not usually associated with astronomy.

• The Orbit of Comet Holmes from the Photographs Uploaded to Flickr.

?)

used N images scraped from the photo sharing website Flickr as inputs to a reconstruction of the orbit of Comet Holmes. This comet was bright enough to be visible with the naked eye in XX, 20XX, and a large number of photographs were taken of it, and uploaded to the Flickr site. ? were able to astrometrically calibrate the images that contained enough detectable stars in the background using their automatic image registration software, astrometry.net. This had been enabled as a Flickr "bot," crawling over all images submitted to the astrometry.net group and sending the photos' owners messages showing them where on the sky their images were taken. The calibrated images trace out the trajectory of the comet over N nights, allowing a refinement of the comet's orbit of ... As the authors point out ... While in this case the photographers did not realize they were participating in a scientific study, the potential of combining powerful calibration software with large amounts of citizen-supplied imaging data is made clear.

• Detecting Meteor Showers with Twitter. By saving a nightly (?) log of all tweets submitted to the web service Twitter, ?) were able to detect several new meteor showers simply by searching for the text string "meteor." Unwitting naked-eye observers had spotted shooting stars and tweeted about them, giving rise to a detectable signal in the steam of tweets that night. The detected sample is incomplete/unlocalised/etc... However, this work illustrates the potential both of Twitter as a communication system for connecting large numbers of observers with a science team, and of networks of unequipped observers for doing very bright object transient astronomy.

2.3 Data Aquisition in Other Fields (Chris, Phil, 1 page)

Case studies:

- Ecology?
- Social science?
- Others?

2.4 Citizen Instrumentation (Leigh, Phil to edit, 1 pages)

Instrumentation built and used by citizen scientists have increased in sophistication: complex personal observatories with large-aperture motorised telescope, multiple filters, high precision low-light cameras have become *de rigeur*. Increasingly sophisticated software is also now available to aid in the reduction and quantitative analysis of amateur imaging, as described in Section ?? below. Vibrationally-damped mounts; advanced CCD and CMOS detectors; a GOTO system to mechanically move to a set of celestial coordinates and track that location, all serve to optimise the amount of time the observer actually gets to spend looking at the sky, and paves the way for fully robotic observatories. The reader is referred to ?) for a thorough review of instrumentation currently in use for solar system studies.

The instrumentation and software must necessarily be tuned to the phenomenon of interest, with many active observers choosing to use video monitoring to capture images in moment of excellent seeing, a technique known as lucky imaging. The best images at moments of clear seeing from the high-resolution video frames are selected, extracted and stacked together in a software programme. Some software also allows corrections of the distortions associated with telescope optics and

residual atmospheric seeing. These techniques are commonly employed in observations of planetary atmospheres (e.g., Venus, Jupiter) to provide high-resolution images, and have the added benefit of providing time-sampled observations for impact flash detection (e.g., ?). The science contributed has been driven by the instrumentation available to the citizens, but in some cases amateur observers have undertaken their own customisation work to contribute new information to the field.

3 Data Processing (6 pages)

Building, instrumenting and maintaining a telescope, and then observing the night sky with it, are perhaps the most familiar activities to amateur astronomers. Professional astronomers spend far longer working with the data they have taken after their observing run, reducing and exploring images and spectra, and detecting and characterising objects and features. This data processing phase is an essential part of the scientific process; it results in a set of summary statistics or descriptors of the data, that can be more conveniently propagated through to the interpretation phase. That is, data processing involves distillation of data into knowledge – but stops short of the generation of understanding. What sorts of data processing have citizens been actively engaged in? We include the word "actively" here, to differentiate between the data processing that astronomers carry out, and computing jobs that can be farmed out to grids of computers owned by citizens.

3.1 Image Processing (Leigh, Phil to edit, 1 page)

Visual classification is by no means the only activity in which citizens have been participating. One area where visual classification and software development has translated directly into new knowledge is in the monitoring of giant planet meteorology, both using images provided by active observers, and images acquired and archived by professional facilities and spacecraft. Images are regularly qualitatively described by a number of organisations, including the British Astronomical Association?s Jupiter section³, by a team of amateurs with substantial expertise in Jupiter?s appearance (?). Their regular bulletins describe the changing appearance of the banded structure, the emergence of new turbulent structures and weather phenomena, and keep a record of the long-term atmospheric changes. However, recent software developments have provided a much more quantitative angle on these observations. The WinJUPOS software⁴ was developed by a team of amateurs led by G. Hahn. This allows multiple images to be stacked with a correction for the rapid (once per ten hour) rotation of Jupiter or Saturn, then reprojected onto a latitude-longitude coordinate system, so that the precise positional details of atmospheric features can be determined via ?point-and-click.? By doing this over many nights surrounding Jupiter?s opposition, the team builds up enormous drift charts (tens of thousands of positional measurements) for features, ranging from the tiniest convective feature being moved by the jet streams, to the largest vortices. The positions can be extrapolated forward in time, enabling targeted observations by professional observatories or even visiting spacecraft. This long-term record of Jupiter?s visible appearance by citizen scientists has

³http://www.britastro.org/jupiter/

⁴http://jupos.privat.t-online.de/

proven invaluable for jovian atmospheric scientists.

As described in Section ??, one of the benefits of the lucky imaging technique for solar system imaging is the hours of video footage of these planets. These enormous datasets can be processed to search for impact flashes to constrain the statistics (and detectability) of collisions with a range of targets, notable Jupiter and the Moon. Software has been written by citizen scientists for distribution to active observers, allowing them to process their own video files to search for impacts in an automated way (e.g., Jupiter impact detections⁵ and LunarScan from the ALPO Lunar Meteoritic Impact Search⁶). This avoids the need for transfer and storage of large datasets on some centralised server. Both positive and negative detections are important to constrain the likelihood of jovian and lunar impacts.

One of the primary drivers for astrophotographers is to create artistic masterpieces, remaining true to scientific accuracy but also generating a product that they are proud to distribute to the broader community. For this reason, many active observers have ventured into the realm of software development to reduce, process and clean their astronomical images. Both commercially available software and freely-distributed home-grown codes have been used to correct for distortions and stack images, including Registax⁷ and Autostakkert⁸, among others. These programmes take the video files saved by the camera from the lucky imaging technique (Section ??) and allow the user to align and stack only the clearest images. Some differences become noticeable when user preferences are introduced? for example, use of wavelets to sharpen images can sometimes?

⁵http://www.pvol.ehu.es/software/

⁶http://alpo-astronomy.org/lunarupload/lunimpacts.htm

⁷www.astronomie.be/registax

⁸www.autostakkert.com

process? the image and introduce artefacts. Colour images are put together and tuned using commercial packages like Adobe Photoshop, and the balance between red, green and blue is at the users discretion, usually with the aim of maximising contrast to show as many features as possible. When such images are used for science (e.g., point to point contrast measurements), it is often desirable to work with the raw, unprocessed images alongside the processed ones, precisely to avoid these artefacts and user biases.

It is not just active observers who have begun using sophisticated image processing techniques. There is a growing community of citizen software specialists who devote their time to processing of raw images from interplanetary missions. Chief among these is the online forum, UnmannedSpaceflight.com, whose stated aim is to ?advance public interest in, and use of, space exploration data.? This includes both raw data provided by the space agencies but not published or officially released (e.g., the Cassini raw data stream of images from Saturn⁹ and those from the Curiosity rover on Mars¹⁰), as well as those images previously released by the agencies but re-processed and colourised by dedicated citizen scientists. Depending on the quality of the original, raw images, this can sometimes produce renderings of old data in new and startlingly beautiful ways. Although not directly used for scientific enquiry, they certainly promote astronomy to the broader public.

Citizen image processing expanded enormously with the ease of high performance personal computing, and the availability of raw images from missions that the professional teams (i.e., those responsible for running the missions) simply don?t have the time or resources to process completely. From quantitative analy-

 $^{^9 \}rm http://saturn.jpl.nasa.gov/photos/raw/$

¹⁰http://mars.jpl.nasa.gov/msl/multimedia/raw/

ses of large datasets, to image processing strategies employed by active observers and armchair explorers, this field relies on software development to move forwards.

3.2 Visual Classification in Astronomy (Chris, Phil, 3 pages)

Visual classification holds something of a central position in astronomy: there is a strong historical tradition of astronomers asking, "What's that?" in response to a new observation, and the first answer is usually (and most usefully) descriptive, rather than explanatory. In the internet age, classification of features in images, spectra and time series can be carried out at enormous scale by crowds of citizens with web browsers. Such web interfaces have come to be known as "zoos," after the first project to engage crowds in this way, Galaxy Zoo. Just as in a zoological park, the visitors are shown various example specimens, and invited to consider what those specimens might be. At the Galaxy Zoo, the visitors are asked to go one step further, and are presented with a questionnaire about each specimen they see.

Case studies:

- Galaxy morphology with Galaxy Zoo
- Surfaces of solar system bodies: Moon Zoo, Moonwatch. Saturn storms.

 JUPOS measurers.
- Time domain astronomy: Supernova Zoo, PlanetHunters
- Rapid-reaction events (jovian/lunar impacts, storm/plume eruptions)
- Data mining for asteroids and TNOs.

3.3 Visual Classification in Other Fields (Chris, Phil, 1 page)

There is now a diverse range of zoo-like citizen science portals online, covering social as well as natural sciences. What can we learn from visual classification projects outside astronomy?

- Annotation in Ancient Lives
- etc.

Phil: I think citizen software belongs here...

3.4 Software development by citizens (Phil, Chris, 1 page)

JUPOS measurers: wind measurement. Impact detection.

PlanetHunters, Galaxy Zoo analysis.

Stumm at astrometry.net.

Collaborative development projects with citizens.

4 Data Modeling: Citizen Analysts (4 pages)

New understanding of the world comes from the interpretation of data in the context of a model. The modeling activity itself often has technical difficulties that computers may find hard to overcome, associated with complex and/or computationally expensive, likelihood functions. Humans, by applying their developed intuition, can often contribute a great deal to the exploration of a model's parameter space by closing in quickly on the model configurations that are fit the data well. This process can be particularly satisfying, rather like solving a puzzle. How have citizen scientists been involved in model making and data fitting in astronomy, to date?

4.1 Data Modeling in Astronomy (Phil, Chris, 2 pages)

A number of web-based citizen astronomy projects include an element of data modeling as part of their set tasks. The Milky Way Project (Simpson et al. 2012) provides volunteers with a fairly flexible set of annulus-drawing tools, for annotating circularly-symmetric "bubble" features in colour-composite (24.0, 8.0 and 4.5μ m) infrared images from surveys carried out by the Spitzer space telescope, which are hypothesised to have been caused by a recently-formed high mass star at the centre of the bubble. The (bubble) model in this case is simple and recognisable, making both the interface constructions and its operation relatively straightforward. The large sample of bubble models have been used to investigate the possibility of further star formation being triggered at the bubble surfaces (Kendrew et al. 2012).

Another Zooniverse project, Space Warps,¹¹ also involves data modeling, but not directly on the interface, which is restricted to enabling identification ("spotting") gravitational lensed images. A fraction of the community is engaged in modeling the identified lens candidates using web-based software developed and supported by the science team.¹²

Perhaps the most advanced attempt at data modeling in astronomical webbased citizen science has been the Galaxy Zoo Mergers project (Holincheck et al. 2010, Wallin et al. 2010). Here, simple N-body simulations of galaxy mergers were performed in a java applet, and the results selected according to visual similarity to images of galaxy mergers (previously identified in the Galaxy Zoo project). A key proposal in this project is that the inspectors of the simulation outputs would

¹¹http://spacewarps.org

 $^{^{12} {}m Lens} \ {
m Labs}$

be able to find matches to the data more readily than a computer could, for two reasons. First is that humans are good at *vague* pattern matching: they do not get distracted by detailed pixel value comparisons but instead have an intuitive understanding of when one object is "like" another. The second is that initialising a galaxy merger simulation requires a large number of parameters to be set – and its this high dimensionality that makes the space of possible models hard to explore for a machine. Humans should be able to navigate the space using their intuition, which is partly physical and partly learned from experience gained from playing with the system. Initial tests on Arp 86 showed the crowd converging on a single location in parameter space, and that the simulated mergers at this location do indeed strongly resemble the Arp 86 system. The authors have since collected thousands of citizen-generated models for a sample of a large number SDSS merging systems (Holincheck et al, in preparation).

The above examples involved modeling infrastructure provided by either the project's developers or science teams. There have also been cases where citizens have carried out modeling analyses using their own tools, or writing their own software. For example, in the PlanetHunters project, a small group [?] of volunteers downloaded full Kepler lightcurve datasets for the best [?] community-selected candidates, and fitted transit lightcurves to them using [?]. [Chris: can you please confirm and extend this?]

Another very interesting case is the Pascal and Kaggle analysis challenges organised by the professional cosmology community. The measurement of weak gravitational lensing by large scale structure ("cosmic shear") relies on the measurement of the shapes of distant, faint galaxies with extreme accuracy. The STEP (Heymans et al. 2006, Massey et al. 2007) and GREAT (Bridle et al. 2010,

Citizen Science in Astronomy

25

Kitching et al. 2012a, 2013) blind galaxy shape estimation challenges have had an enormous impact on the field, revealing biases present in existing techniques, and providing a way for researchers outside the world of professional cosmology to participate. In particular, the GREAT08 challenge saw very successful entries (including the winner) from two (out of a total of 11) teams of researchers from outside the field.

A subsequent, somewhat simplified challenge was hosted at the Kaggle website (Kitching et al. 2012b).

Kaggle challenges: shape estimation, mass clump positioning. GREAT challenge, compare and contrast.

4.2 Data Modeling in Other Fields (Phil, Chris, 2 pages)

Case studies:

- Protein folding with Fold.it. Gamification as a technique.
- Other examples: look around SciStarter.

5 Data Exploration: Citizen Enquiry (3 pages)

The previous sections have focused on specific, and isolated, activities in which citizens have participated. In most cases, the community's involvement has been a contribution to a scientific investigation, while not being involved in the design of the investigation. The most important part of any scientific investigation is the question at the heart of it: what is it we are trying to find out about the world? In this section we look at some cases where the process of enquiry, the science, has been instigated or led by citizens. In principle, this is an area of great potential. Professional scientists can find it very difficult to step back from the technical

details of their work, and see the bigger picture; in contrast, outsiders only see the big picture, and so we might expect them to ask some unusual, surprising and searching questions.

5.1 Individuals in action (Phil to edit, 1 page)

The constraints of funding proposals and management of research groups can often mean that professional scientists focus very narrowly on particular topics of research, using a particular technique for which they become known. Steering away from this course implies taking risks with time management, and allocation of resources to an ultimately fruitless research area can be detrimental to careers. Citizen scientists are largely free of these managerial and budgetary constraints, and are able to devote their attentions to whatever topics interest them. We propose that the creativity of citizen scientists, and the freedom to ask questions and direct scientific enquiry, is nurtured by the creation of communities. These can be online communities, with individuals contributing ideas via discussion groups and challenging one another; or they can be ready-made communities, such as school classes and family groups.

Online forums arguably provide the most direct connection between citizens and professional scientists, and have already been discussed in this review. Examples of individual successes include the ?Saturn Storm Watch? connecting Cassini?s observations of lightning emissions with active amateur observations of convective cloud structures within the giant planet atmosphere; and the tracking of the vertices of Saturn?s bizarre north polar hexagon (?), a 6-sided planet encircling wave that has persisted for at least 30 years but that has only recently been observed by amateur astronomers. In the first case, citizen scientists wished to

Citizen Science in Astronomy

27

identify the source of Saturn?s radio emissions. In the latter case, the long-term

evolution of the hexagon vertices is being used to understand what sort of wave

this is, and to identify its origins.

Astronomy as an educational tool has been used to encourage a whole new

generation of citizen astronomers, and the aid of teachers in guiding and encour-

aging the enquiries of school children is essential for the teaching of the scientific

method. The Faulkes telescope is an excellent example of citizen-led enquiry

? both student-devised and teacher-led investigations can be performed at the

network of robotic observatories in Hawaii and Australia, allowing students to

develop scientific questions using their own data and collaboration with other

students around the world. A selection of some of these projects can be found

here: http://www.faulkes-telescope.com/showcases/schools. Other observatories

around the world have telescopes devoted to citizen enquiry? the Pic-du-Midi

observatory¹³ in the French Pyrenees has a 0.6-m telescope devoted to amateur

observers. For example, in 2013 M. Delacroix used the 1-m observatory to image

details on Uranus and Neptune¹⁴.

Case studies:

• Teacher-led science: Blackawton Bees.

• Families as research groups: Monster eyes.

5.2 Facilitated research groups (Chris, Phil, 2 pages)

Case studies:

• Galaxy Zoo forum. Voorwerp, Green Peas. Lens thread: search and model.

¹³http://www.obs-mip.fr/pic-du-midi

¹⁴http://www.cloudynights.com/ubbthreads/showflat.php/Cat/0/Number/5955129/page/0/view/collapsed/sb/5/o/all/fpart/1/vc/

- Planet Hunters' investigations
- Quench.
- Deep sky obs (variable nebulae etc). Amateur asteroid observations and follow-up.

6 Understanding the Citizens (2 pages)

Having surveyed some of the activities involving citizen scientists, we can now consider some questions about this community itself. Who participates in citizen science, and what motivates them?

6.1 Demographics (Chris to finish, 1/2 page)

Who is participating in citizen astronomy? We might expect the demographics to vary with activity, and with the level of commitment required. We have some understanding of at least the former division from two studies that were carried out approximately simultaneously, one of the community participating in Galaxy Zoo, and another of the American Association of Variable Star Observers (AAVSO). ?) surveyed the Galaxy Zoo volunteer community to investigate their motivations (Section 6.2 below), via a voluntary online questionnaire. The 11,000 self-selected Galaxy Zoo users identified as 80% male, with both genders having an approximately uniform distribution in age between their mid-twenties and late fifties. The authors point out that this is close to the US internet user age distribution, except for slight but significant excesses in numbers of post-50s males, post-retirement people of both genders, and a deficit in males under 30. The survey respondents also tended to be more highly educated than average US internet users, with most holding at least an undergraduate degree, and around

a quarter having a masters or doctorate.

These findings can be compared with a survey of the members of AAVSO: Price & Paxson (2012) received over 600 responses (corresponding to about a quarter of the community of observers and society members). The education levels of the AAVSO repondents matches the Galaxy Zoo community very closely; the AAVSO age distribution is more peaked (in the mid fifties), with a similar post-60 decline but also a marked absence of younger people. The online nature of the Galaxy Zoo project seems to have increased the participation of younger (pre middle-age) people. Likewise, the Galaxy Zoo gender bias, while itself extreme, is less so than at AAVSO, where some 92% of survey respondents were male. One additional piece of information provided by the AAVSO survey is the profession of the variable star observers: most (nearly 60%) of the survey respondents were found to be working in science, computer science, engineering and education.

The Galaxy Zoo and AAVSO communities differ by more than just the nature of their activity. The smaller AAVSO community is arguably more engaged in its research, in the sense that a larger fraction of its membership is active in taking observations and contributing to analyses. It would be very interesting to know how citizen scientist motivation varied with the level of participation: dividing the Galaxy Zoo community into volunteers that contribute to the forum and those who don't could be interesting; perhaps more so would be to repeat the analysis of Raddick et al. over a wide range of projects, and look for trends there. The emergent picture thus far, however, is of a well-educated (and often scientifically trained) but male-dominated citizen science community, whose female and younger membership is likely to have been, at least in part, enabled via projects being hosted online. Continuing to lower the barriers to entry for cur-

rently under-represented demographic groups would seem both important, and within reach.

6.2 Motivation (Chris to finish, 1 page)

What motivates citizen scientists? The two demographic studies referred to above also covered this question; it was the primary motivation for Raddick et al.. Having previously identified 12 categories of motivation in an earlier pilot study (Raddick et al. 2010), Raddick et al. asked the 170,000 volunteers at the time to comment on how motivated they were by each of these categories, and which was their primary motivation. The 6% who responded gave consistent answers to around 900 forum users who responded in a separate appeal, allowing us to draw conclusions about this presumably more engaged sub-population. A desire to contribute to science was found to be the dominant primary motivation, being selected by 40% of respondents. Astronomy, science, vastness, beauty and discovery were all motivation categories that were found to very important to the volunteers, while fun, learning and community were less important.

The AAVSO demographic survey (Price & Paxson 2012) found similar results: over a third of variable star observers cited involvement in science and research as their primary source of motivation. However, a similar number gave an interest in variable stars as theirs, perhaps reflecting a stronger focus on the science questions involved than is present in the Galaxy Zoo community. Both groups of citizen scientists are clearly quite serious in their reasons for taking part: their motivations are actually very close to those of professional scientists, as many readers of this review will recognize.

These surveys reveal a community of people many of whom may have left

academic science behind as soon as they finished their education, but who still maintained a passion for astronomy and the boundaries of knowledge. Their thirst for knew information, and the desire to be part of the scientific process drives them to actively observe the night sky or to participate in analysis of large datasets.

For many people involved in citizen science, being part of a community, albeit a distributed one, that brings great enjoyment and satisfaction. With the connectivity of the internet, there is a social aspect of citizen science that unites people with shared interests. These pastimes and hobbies are often far removed from someone's "normal" life. However, community was not found to be a strong motivator for the Galaxy Zoo volunteers – but it is nevertheless very important for the Galaxy Zoo forum users. More recent Zooniverse projects have sought to widen participation in community discussion, hypothesizing not that it will motivate people better, but because it will help them make better contributions. Citizen scientists, like professional scientists, are primarily motivated by getting science done.

7 Summary: Characteristics of Successful Citizen Science (1 page)

To emerge.

Uncompromising stance on value of citizen contributions: focus on tasks that cannot be done by machines or professionals.

Low barrier to entry, easy to make a contribution.

Emphasis on science that volunteeris to be part of.

Good communication between professionals and citizens.

High level of respect for volunteers: think of citizens as collaborators, research assistants.

The need to understand black box systems – especially if the box is full of people. But: people must be treated as ends in themselves.

8 Ideas for the future (possibly absorbed into sections above?) (4 pages)

Preamble.

Phil: Should these parts be folded into the sections above? This might make for an easier to read article.

8.1 Observations and Instrumentation in the future

Robotic or automated telescopes to feed data to amateur processors/users for immediate analysis. Long term baselines with the same instrument/calibration.

Global telescope networks for continuous monitoring. Distributed stations and networks for stellar occultations by TNOs and KBOs. Mobile observing stations and international coordination?

Video monitoring for meteors from multiple interlinked stations for 3D trajectory reconstruction.

Amateur observing follows professional:

- Deeper field for amateur observations of Uranus and Neptune, particularly near-IR.
- Visible-light and near-IR spectroscopy; long-term datasets, serious photometry. Calibration, calibration, calibration...
- Advanced technologies such as AO for image stabilisation?

Citizen Science in Astronomy

33

Adoption of uniform standards for amateur imaging to be provided to online databases (already underway with PVOL).

8.2 Classification in the future

Live data: task assignment.

Human-computer partnerships. Replacing citizens, see SN Zoo.

8.3 Data modelling in the future

Easily installed apps or browser-based tools enable outsourcing of data modelling.

Operation of code, development of code. Crowd-sourcing of current detailed analyses.

8.4 Scientific enquiry in the future

Huge public databases from wide field surveys: LSST, Euclid, SKA. User interfaces designed for anyone, with social networking enabled.

Provide publishing support, see Letters.

9 The Limits of Citizen Science (3 pages)

We have argued that a critical part of 'citizen science' lies in the ability of the amateur to make an authentic contribution to science. Earlier in this part of the review, we looked forward to a richer future for such interaction, but in this section we consider the potential limits and checks on citizen science.

9.1 Data limits data rates: some worked examples

Problems presented by data volume, and data rates. Case studies: Large samples of lenses? Transients with SKA?

9.2 Limits from complexity

Difficult analyses. Microtasking only suitable for certain parts of the process?

9.3 Limits to collaboration

Collaboration between professional and citizen astronomers. Does it scale? Communication issues: forum, letters. Contrast supervisor to student, with scientist to crowd. Prospects for large collaborations? Collaborations between citizens, eventually linked to professionals?

Relationships between citizens and professionals. Mostly one-way? Examples of two-way interactions: zoo forum, solar system monitoring, spacecraft support.

9.4 Limits to access

Connections between citizen science and open data, and open publishing. Citizens reading papers: accessibility, potential barriers.

International CS. Language barriers, cultural issues.

Fast and reliable access to the internet is a pre-requisite for participation, and active observation typically requires financial investment in equipment, biasing the demographics to the developed world. An alternative is participation in educational projects such as the Faulkes telescope, providing access to world-leading equipment for educational purposes.

10 Concluding Remarks (1 page)

Does astronomy have any sort of special place in citizen science?

Breaking down of boundaries. Professionals are citizens when outside their own field. Citizens turning professional.

Acknowledgments

PJM thanks the Royal Society for financial support in the form of a university research fellowship. CJL is grateful... LDF acknowledges... This work was supported by...

11 Literature Cited

References

- Bridle S, Balan ST, Bethge M, Gentile M, Harmeling S, et al. 2010. MNRAS 405:2044–2061
- 2. Heymans C, Van Waerbeke L, Bacon D, Berge J, Bernstein G, et al. 2006. MN- RAS 368:1323–1339
- 3. Holincheck A, Wallin J, Borne K, Lintott C, Smith A, et al. 2010. In Galaxy Wars: Stellar Populations and Star Formation in Interacting Galaxies, eds. B Smith, J Higdon, S Higdon, N Bastian, vol. 423 of Astronomical Society of the Pacific Conference Series
- 4. Kendrew S, Simpson R, Bressert E, Povich MS, Sherman R, et al. 2012. ApJ 755:71

- Kitching TD, Balan ST, Bridle S, Cantale N, Courbin F, et al. 2012a. MNRAS 423:3163–3208
- 6. Kitching TD, Rhodes J, Heymans C, Massey R, Liu Q, et al. 2012b. *ArXiv* e-prints
- 7. Kitching TD, Rowe B, Gill M, Heymans C, Massey R, et al. 2013. ApJS 205:12
- 8. Massey R, Heymans C, Bergé J, Bernstein G, Bridle S, et al. 2007. MNRAS 376:13–38
- 9. Price CA, Paxson KB. 2012. ArXiv e-prints
- Raddick MJ, Bracey G, Gay PL, Lintott CJ, Cardamone C, et al. 2013. Astronomy Education Review 12:010106
- Raddick MJ, Bracey G, Gay PL, Lintott CJ, Murray P, et al. 2010. Astronomy
 Education Review 9:010103
- 12. Simpson RJ, Povich MS, Kendrew S, Lintott CJ, Bressert E, et al. 2012. MNRAS 424:2442–2460
- 13. Wallin J, Holincheck A, Borne K, Lintott C, Smith A, et al. 2010. In Galaxy Wars: Stellar Populations and Star Formation in Interacting Galaxies, eds. B Smith, J Higdon, S Higdon, N Bastian, vol. 423 of Astronomical Society of the Pacific Conference Series

Figure 1: Examples of image modeling in web-based citizen science projects. Top row: star formation "bubble" identification and interpretation in Spitzer images in the Milky Way Project, with the annotation interface shown on the left, and some example (selected, averaged) bubbles on the right. Images from Simpson et al. (2012). Bottom row: matching N-body simulated merging galaxies to SDSS images in the Galaxy Zoo Mergers project (left), and exploring parameter space two parameters at a time to refine the models (right). Screenshots from Holincheck et al. (2010).