# Sistemas distribuidos Comunicación por mensajes

### Sergio Yovine

Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina

Sistemas Operativos, segundo cuatrimestre de 2015

# (2) Problemas

Orden de ocurrencia de los eventos

• Exclusión mutua

Consenso

# (3) Orden de ocurrencia de los eventos: Lamport (1978)

#### Relojes

- Un reloj es una función que asigna un valor a cada evento
- Ese valor representa el momento en que el evento e ocurrió
- Cada proceso (o nodo) i tiene un reloj C<sub>i</sub>.
- El reloj global C es tal que  $C(e) = C_i(e)$  si e ocurre en i.

#### **Eventos**

- $a \rightarrow b$  si a ocurre antes que b.
- ullet ightarrow es un orden parcial no reflexivo.
- Si  $a \rightarrow b$  y  $b \rightarrow c$ , entonces  $a \rightarrow c$ .
- Si  $\neg(a \rightarrow b \lor b \rightarrow a)$ , entonces a y b son concurrentes.

# (4) Orden de ocurrencia de los eventos: Lamport (1978)

#### Propiedad a satisfacer:

- Si a y b ocurren en i y  $a \rightarrow b$ , entonces  $C_i(a) < C_i(b)$ .
- Si  $e = snd_i(m)$  y  $r = rcv_j(m)$ , entonces  $C_i(e) < C_j(r)$ .

#### Algoritmo:

- i incrementa  $C_i$  entre todo par de eventos consecutivos.
- i envía:  $e = snd_i(m, C_i(e))$ .
- j recibe:  $r = rcv_j(m, t), C_j(m) = t' > t$ .





### (5) Exclusión mutua: modelo de proceso

• N. Lynch, Distributed Algorithms, 1996 (Cap. 10)



- Estado:  $\sigma$  :  $[1 \dots n] \mapsto \{R, T, C, E\}$
- Transición:  $\sigma \stackrel{\ell}{\to} \sigma'$ ,  $\ell \in \{\mathit{try}, \mathit{crit}, \mathit{exit}, \mathit{rem}\}$
- Ejecución:  $\tau = \tau_0 \stackrel{\ell}{\rightarrow} \tau_1 \dots$
- Sección crítica:  $CRIT \equiv \{i \mid \sigma(i) = C\}$
- Sección pre-crítica:  $TRY \equiv \{i \mid \sigma(i) = T\}$

## (6) Exclusión mutua: propiedades

### Exclusión mutua (EXCL)

Para toda ejecución  $\tau$  y estado  $\tau_k$ , no puede haber más de un proceso i tal que  $\tau_k(i) = C$ .

$$\square \#CRIT < 1$$

### (7) Exclusión mutua: propiedades

Progreso (PROG) (lock-free)

Para toda ejecución  $\tau$  y estado  $\tau_k$ , si en  $\tau_k$  hay un proceso i en T y ningún proceso en C entonces  $\exists j > k$ , t. q. en el estado  $\tau_i$  algún proceso i' está en C.

$$\square \ (\#TRY \le 1 \land \#CRIT = 0) \implies \lozenge \#CRIT > 0$$

### (8) Exclusión mutua: propiedades

### Progreso global absoluto (WAIT-FREE)

Para toda ejecución  $\tau$ , estado  $\tau_k$  y todo proceso i, si  $\tau_k(i) = T$  entonces  $\exists j > k$ , tal que  $\tau_j(i) = C$ .

$$IN(i) \equiv i \in TRY \implies \Diamond i \in CRIT$$

$$\forall i. \Box IN(i)$$

### (9) Exclusión mutua: propiedades

Progreso global dependiente (G-PROG) (deadlock-, lockout-, o starvation-free)

```
Para toda ejecución \tau, si para todo estado \tau_k y proceso i tal que \tau_k(i) = C, \exists j > k tal que \tau_j(i) = R entonces para todo estado \tau_{k'} y todo proceso i', si \tau_{k'}(i') = T, entonces \exists j' > k', tal que \tau_{j'}(i') = C.
```

$$OUT(i) \equiv i \in CRIT \implies \diamondsuit i \in REM$$
  
 $\forall i. \square \ OUT(i) \implies \forall i. \square \ IN(i)$ 

# (10) Exclusión mutua: comunicación por mensajes

#### Requerimiento

- No se pierden mensajes
- Ningún proceso falla

#### Algoritmos

- Lamport (1978)
  - Orden total (ordenando eventos concurrentes por el pid).
- Token passing
  - Fiber Distributed Data Interface (FDDI)
  - Time-Division Multiple-Access (TDMA)
    - Timed-Triggered Architecture (TTA)

### Propiedades

- EXCL
- G-PROG
- Justicia (fairness)

# (11) Exclusión mutua: Lamport (1978)

#### Acciones proactivas

- $try_i$ : i manda (i, req) a todos y lo guarda
- exit<sub>i</sub>: i borra todos los mensajes (i, req) y envía (i, rel) a todos
- criti:
  - hay un mensaje m = (i, req) en la cola de pedidos de i
  - C(m) < C(m') para todo m' = (i', req) en la cola
  - i recibió todos los mensajes de ack posteriores a m

### Acciones reactivas (invisibles)

- en  $T_i$ , i recibe (j, ack): lo guarda
- i recibe (j, req): lo guarda y manda un (i, ack) a j
- i recibe (j, rel): borra todos los mensajes (j, req)

### (12) Consenso

Todos los procesos tienen que estar de *acuerdo* Si no hay fallas, el problema tiene solución

¿Qué pasa si hay fallas?

- Problema del ataque coordinado o de los Generales Bizantinos
- commit (attack) o abort (don't attack) en una transacción

### Hay tres tipos de fallas

- Falla la comunicación
- Los procesos dejan de funcionar
- Los procesos no son confiables (falla bizantina)



## (13) Consenso: falla la comunicación

#### Descripción

```
Valores V = \{0, 1\}
  Inicio Todos proceso i empieza con in(i) \in V
```

Acuerdo Para todo 
$$i \neq j$$
,  $decide(i) = decide(j)$ 

- Validez Para todo i, si in(i) = 0 entonces decide(i) = 0
  - 2 Para todo i, si in(i) = 1 y ningún mensaje se pierde, entonces decide(i) = 1

Terminación Todo i decide en un número finito de transiciones (wait-free)

#### Teorema

No existe ningún algoritmo para resolver consenso

## (14) Consenso: los procesos dejan de funcionar

### Descripción

```
Valores V = \{0, 1\}
Inicio Todos proceso i empieza con in(i) \in V
Acuerdo \not\exists i \neq j. decide(i) \neq decide(j)
```

Validez Si  $\forall i$ . in(i) = v, entonces  $\not\exists j$ .  $decide(j) \neq v$ 

Terminación Todo *i* que *no falla* decide en un número finito de transiciones

#### Teorema

Si fallan a lo sumo f < n procesos, entonces se puede resolver consenso con  $\mathcal{O}((f+1) \cdot n^2)$  mensajes

## (15) Consenso: los procesos no son confiables

#### Descripción

```
Valores V = \{0, 1\}
```

Inicio Todos proceso i empieza con  $in(i) \in V$ 

Acuerdo  $\forall i \neq j$ , que no fallan,  $decide(i) = decide(j) \in V$ 

Validez Si  $\forall i$ , que *no falla*, in(i) = v, entonces  $\not\exists j$ , que *no falla*, tal que  $out(j) \neq v$ 

Terminación Todo *i* que *no falla* decide en un número finito de transiciones

#### Teorema

Se puede resolver consenso bizantino si y sólo si  $n > 3 \cdot f$  y la *conectividad* es mayor que  $2 \cdot f$ 

Conectividad: conn(G) = mínimo número de nodos N t.q.  $G \setminus N$  no es conexo o es trivial

# (16) Consenso: Elección de líder

- En un anillo sin fallas con comunicación sincrónica
- Le Lann, Chang y Roberts (N. Lynch, Cap. 3 y Cap. 15.1)
  - Para todo  $i \neq j$ ,  $pid(i) \neq pid(j)$
  - Todo proceso i envía su pid pid(i)
  - Cuando i recibe p:
    - Si pid(i) < p, i propaga p
    - Si pid(i) > p, i descarta p
    - Si pid(i) = p, i se declara líder (y envía stop)
- Tiempo
  - Sin fase de stop  $\mathcal{O}(n)$
  - Con fase de stop  $\mathcal{O}(2 \cdot n)$
- Comunicación
  - $\mathcal{O}(n^2)$
  - Cota inferior  $\Omega(n \log n)$ . Algoritmo de Hirschberg y Sinclair.

## (17) Consenso: Commit en una BD distribuida

Descripción (**COMMIT**)

```
Valores V = \{0(abort), 1(commit)\}
Acuerdo \not\exists i \neq j. decide(i) \neq decide(j)
Validez \bullet \exists i. in(i) = 0 \implies \not\exists i. decide(i) = 1
\bullet \forall i. in(i) = 1 \land no fallas <math>\implies \not\exists i. decide(i) = 0
Term. débil Si no hay fallas, todo proceso decide
```

Term. fuerte Todo proceso que no falla decide

## (18) Consenso: Commit en una BD distribuida

### Two-phase commit

- Fase 1
  - $\forall i \neq 1$ : i envía in(i) a 1. Si in(i) = 0, decide(i) = 0.
  - i = 1: Si recibe todos 1, decide(i) = in(i), si no, decide(i) = 0.
- Fase 2
  - $\bullet$  i = 1: Envía decide(i) a todos.
  - ②  $\forall i \neq 1$ : Si *i* no decidió, decide(i) es el valor recibido de 1.

#### Teorema

### Two-phase commit resuelve **COMMIT** con terminación débil

#### Pero

- Two-phase commit no satisface terminación fuerte
- Solución: three-phase commit (N. Lynch, Cap. 7.2 y 7.3)

# (19) Consenso: Otros tipos de acuerdo y applicaciones

#### Acuerdos

• *k*-agreement (o *k*-set agreement)

$$decide(i) \in W$$
, tal que  $|W| = k$ 

Aproximado

$$\forall i \neq j$$
.  $|decide(i) - decide(j)| \leq \epsilon$ 

Probabilístico

$$Pr[\exists i \neq j. \ decide(i) \neq decide(j)] < \epsilon$$

#### **Aplicaciones**

- Sincronización de relojes (NTP, RFC 5905 y anteriores)
- Tolerancia a fallas en sistemas críticos

## (20) Bibliografía extra

- L. Lamport. Time, clocks, and the ordering of events in a distributed system. CACM 21:7 1978.http://goo.gl/ENh2f7
- L. Lamport, R.Shostak, M.Pease. The Bizantine Generals problem. ACM TOPLAS 4:3, 1982.http://goo.gl/DYOQis
- Hermann Kopetz, Günther Bauer: The time-triggered architecture. Proceedings of the IEEE 91(1): 112-126 (2003). http://goo.gl/RPqfas
- R. Jain. FDDI Handbook. Addison Wesley, 1994. http://goo.gl/YZ2Hy1