

Algèbre

Les vecteurs IV

La projection de vecteur peut être un peu difficile à comprendre, de même que sont intérêt que nous ne verrons pas tout de suite (éventuellement abordé pendant les ateliers ML ou RDV maths). La projection d'un vecteur s'effectue sur un sous-espace vectoriel ou bien sur un vecteur particulier.

Illustrons d'abord ce qu'est la projection :

Des rayons r arrivant perpendiculaire ment en direction du sol, éclairent un bâton B incliné. L'ombre O est la projection orthogonale de B sur le sol.

Formulé autrement : O est le projeté de B sur le sol.

Dans un cadre plus formel et géométrique, la projection d'un vecteur u sur un vecteur v s'interprète de la même façon :

Le segment gris sur le vecteur \mathbf{v} est la projection orthogonale (faite de manière perpendiculaire) de \mathbf{u} sur \mathbf{v} .

La question que l'on se pose est : doit-on ajouter une flèche à l'extrémité de la projection de ${\bf u}$?

Cela dépend. En effet il existe la **projection scalaire** et la **projection vectorielle**.

- La projection scalaire est une grandeur scalaire (un nombre), seule la longueur de la projection importe / est nécessaire.
- La projection vectorielle est un vecteur, il faut alors ajouter une flèche à la pointe de la projection. Il faut une direction pour le projeté en plus de sa longueur.

méthode

Algèbre

Les vecteurs IV

Projection orthogonale scalaire:

La projection scalaire de ${\bf u}$ sur ${\bf v}$ est donnée par :

$$\mathcal{P}_{\vec{v}}(\vec{u}) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|} = \|\vec{u}\| \cos(\theta) = \frac{\sum_{i=1}^{N} u_i \times v_i}{\sqrt{\sum_{i=1}^{N} v_i^2}}$$

Elle correspond à la longueur de la projection de \mathbf{u} sur \mathbf{v} . On peut voir que cela est lié au produit scalaire.

Projection orthogonale vectorielle:

$$\overrightarrow{\mathcal{P}}_{\vec{v}}(\vec{u}) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v} = \|\vec{u}\| \cos(\theta) \frac{\vec{v}}{\|\vec{v}\|} = \mathcal{P}_{\vec{v}}(\vec{u}) \frac{\vec{v}}{\|\vec{v}\|}$$

Elle correspond au vecteur en vert qui est la longueur de la projection de **u** sur **v** muni de la même direction que v. On peut voir que cela est lié au produit scalaire aussi.

Remarque sur la projection orthogonale et le produit scalaire:

Vous constatez que la projection scalaire et vectorielle sont liées au produit scalaire.

Pour l'instant, vous ne verrez pas tout le potentiel des projections orthogonales, mais nous y reviendrons plus tard...

Exemples:

Soit
$$\vec{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 et $\vec{v} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$

La projection scalaire de \mathbf{u} sur \mathbf{v} puis de \mathbf{v} sur \mathbf{u} sont :

$$\mathcal{P}_{\vec{v}}(\vec{u}) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|} = \frac{4}{\sqrt{8}} = \frac{2}{\sqrt{2}}$$
 $\qquad \qquad \mathcal{P}_{\vec{u}}(\vec{v}) = \frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|} = \frac{4}{\sqrt{10}}$

$$\mathcal{P}_{\vec{u}}(\vec{v}) = \frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|} = \frac{4}{\sqrt{10}}$$

La projection vectorielle de \mathbf{u} sur \mathbf{v} : $\overrightarrow{\mathcal{P}}_{\vec{v}}(\vec{u}) = \mathcal{P}_{\vec{v}}(\vec{u}) \frac{\vec{v}}{||\vec{v}||} = \frac{4}{\sqrt{8}} \frac{\vec{v}}{\sqrt{8}} = \frac{1}{2} \begin{vmatrix} -2 \\ 2 \end{vmatrix}$

propriété

méthode

