CAPÍTULO 4 SOLUÇÕES DOS PROBLEMAS

4.1
$$V_v = -kz^2y + C(x,z)$$

4.3
$$v_{\theta} = b sen \theta / r^2 + C(r)$$

4.4
$$\rho(x) = \rho_0/(1 + x/L); x = L/9$$

4.5
$$D_e/D_0 > 0.313$$
; b) $D_e/D_0 > 0.542$

4.6
$$\partial P/\partial x = -24\rho$$
 $(\nabla P = -\rho(8\vec{i} + 16\vec{j}))$

4.7
$$C = \rho g sen\theta/2\mu$$

 $Q = \rho g sen\theta h^3/3\mu$ por unidade
de largura

4.8
$$Q_2 = 16 Q_1$$

4.12
$$-dP/dx = 2\mu V_0/h^2$$

4.14
$$5,15 \times 10^{-3} \text{ kg s m}^{-2}$$

4.16
$$4 \times 10^{-2} \text{ m}^3 \text{ s}^{-1}$$

4.19
$$v_y = 1/2\mu (\rho g + dP/dy) (x^2 - Lx) + v_0x/L$$

4.21
$$v_x = \partial \psi / \partial y = ax^2 - ay^2$$

 $v_y = -\partial \psi / \partial x = -2axy$

4.21 continuação

$$\psi$$
= a(x²y - y³/3)+ C; com C = 0

