非接触志向型授業の効果的かつ効率的方法の模索

高遠節夫 (KeTCindy センター) 濱口直樹 (長野高専) 北本卓也 (山口大)

2022-3-5

コロナ以前の授業

授業の流れ

- (1) 説明スライド PDF を T_EX で作成
 - 段階的表示
 - ・パラパラ動画も適宜挿入
- (2) ノートをとることを指導
- (3) 印刷課題用紙の配付と回収

例:重積分と極座標

- 説明スライド
- パラパラ動画
- 印刷配付課題

$$I=\int\!\!\int_D (e^{-(x^2+y^2)}+1)dxdy$$
(D は右図)

D は次の不等式で表される

$$0 \le x \le 1, \ 0 \le y \le \sqrt{1-x^2}$$
 1

$$I=\int\!\!\int_D (e^{-(x^2+y^2)}+1)dxdy$$
(D は右図)

D は次の不等式で表される

$$0 \le x \le 1, \ 0 \le y \le \sqrt{1-x^2}$$
 1

• しかし、この積分ができない

$$I=\int\!\!\int_D (e^{-(x^2+y^2)}+1)dxdy$$
(D は右図)

D は次の不等式で表される

$$0 \le x \le 1, \ 0 \le y \le \sqrt{1-x^2}$$
 1

 $ullet I = \int_{\Gamma} 1 \int_{\Gamma} \sqrt{1-x^2}$

$$\int_{0}^{1} ig(\int_{0}^{\sqrt{1-x^2}} (e^{-(x^2+y^2)}+1) dy ig) dx \over \overline{0}$$

• しかし,この積分ができない

$$I=\int\!\!\int_D (e^{-(x^2+y^2)}+1)dxdy$$
(D は右図)

D は次の不等式で表される

$$0 \le x \le 1, \ 0 \le y \le \sqrt{1-x^2}$$
 1

$$\int_{0}^{1} ig(\int_{0}^{\sqrt{1-x^2}} (e^{-(x^2+y^2)}+1) dy ig) dx \over 0$$

• しかし、この積分ができない

$$I=\int\!\!\int_D (e^{-(x^2+y^2)}+1)dxdy$$
(D は右図)

• 極座標では

$$D: 0 \leqq r \leqq 1, \; 0 \leqq heta \leqq rac{\pi}{2}$$

• 被積分関数も

$$e^{-(x^2+y^2)} + 1 = e^{-r^2} + 1$$

• 極座標で計算できないか

$$I=\int\!\!\int_D (e^{-(x^2+y^2)}+1)dxdy$$
(D は右図)

● 極座標では

$$D: 0 \leq r \leq 1, \,\, 0 \leq heta \leq rac{\pi}{2}$$

• 被積分関数も

$$e^{-(x^2+y^2)} + 1 = e^{-r^2} + 1$$

• 極座標で計算できないか

$$I=\int\!\!\int_D (e^{-(x^2+y^2)}+1)dxdy$$
(D は右図)

• 極座標では

$$D: 0 \leq r \leq 1, \,\, 0 \leq heta \leq rac{\pi}{2}$$

• 被積分関数も

$$e^{-(x^2+y^2)} + 1 = e^{-r^2} + 1$$

• 極座標で計算できないか

$$I=\int\!\!\int_D (e^{-(x^2+y^2)}+1)dxdy$$
(D は右図)

● 極座標では

$$D: 0 \leq r \leq 1, \,\, 0 \leq heta \leq rac{\pi}{2}$$

• 被積分関数も

$$e^{-(x^2+y^2)} + 1 = e^{-r^2} + 1$$

● 極座標で計算できないか

5/17

配付課題PDF

https://s-takato.github.io/talks/tex220305/e1_170111.pdf

授業のようす

- オフライン
- ノートを取り終えるのを待つ かなりの時間が必要
- 課題の取り組みではグループで教えあい

コロナ以後

2020年の授業

- 授業開始は6月(対面方式)
- スライドは利用 (脇の教卓から座って操作)
- 机間巡視はしない
- 印刷物の配付回収も休止

2020年の授業

- 授業開始は6月(対面方式)
- スライドは利用 (脇の教卓から座って操作)
- 机間巡視はしない
- 印刷物の配付回収も休止
 - ・代替手法が必要

2020年の授業

- 授業開始は6月(対面方式)
- スライドは利用 (脇の教卓から座って操作)
- 机間巡視はしない
- 印刷物の配付回収も休止
 - ・代替手法が必要
 - =>ネットの利用 学生はほとんどスマホを利用

課題の回収と採点処理に便利

ストリーム 授業 メンバー n102 関数のグラフ 投稿日: 2020/06/05 課題1 (関数のグラフ) 投稿日: 2020/06/05 鋭角の三角比 投稿日: 2020/06/05 課題2 (鋭角の三角比) 最終編集: 2020/06/05 鈍角の三角比の定義 投稿日: 2020/06/05 課題3 (鈍角の三角比) 投稿日: 2020/06/06 投稿日: 2020/06/06 スライド 投稿日: 2020/06/06

課題の回収と採点処理に便利

ストリーム 授業 メンバー n102 1. 資料 関数のグラフ 投稿日: 2020/06/05 課題1 (関数のグラフ) 投稿日: 2020/06/05 1. 資料 鋭角の三角比 投稿日: 2020/06/05 課題2 (鋭角の三角比) 最終編集: 2020/06/05 1. 資料 鈍角の三角比の定義 投稿日: 2020/06/05 課題3 (鈍角の三角比) 投稿日: 2020/06/06 1. 資料 投稿日: 2020/06/06 1. 資料 投稿日: 2020/06/06

課題の回収と採点処理に便利

ストリーム 授業 メンバー n102 1. 資料 関数のグラフ 投稿日: 2020/06/05 2. 課題 課題1 (関数のグラフ) 投稿日: 2020/06/05 1. 資料 鋭角の三角比 投稿日: 2020/06/05 課題2 (鋭角の三角比) 最終編集: 2020/06/05 1. 資料 鈍角の三角比の定義 投稿日: 2020/06/05 課題3 (鈍角の三角比) 投稿日: 2020/06/06 1. 資料 投稿日: 2020/06/06 1. 資料 投稿日: 2020/06/06

課題の回収と採点処理に便利

ストリーム 授業 メンバー n102 1. 資料 関数のグラフ 投稿日: 2020/06/05 2. 課題 課題1 (関数のグラフ) 投稿日: 2020/06/05 1. 資料 鋭角の三角比 投稿日: 2020/06/05 3. 質問 課題2 (鋭角の三角比) 最終編集: 2020/06/05 1. 資料 鈍角の三角比の定義 投稿日: 2020/06/05 3. 質問 課題3 (鈍角の三角比) 投稿日: 2020/06/06 1. 資料 投稿日: 2020/06/06 1. 資料 投稿日: 2020/06/06

「資料」の利用

- スライド
 - ・スマホでは段階的表示やパラパラができない.

「資料」の利用

- スライド
 - ・スマホでは段階的表示やパラパラができない.
 - =>縮約版を配付

「資料」の利用

- スライド
 - ・スマホでは段階的表示やパラパラができない.
 - =>縮約版を配付
- KETCindyJSで作成した動的なHTML教材が使える

GC資料

aの近くにzをとる

- aの近くにzをとる
- [a, z] での平均変化率は

- aの近くにzをとる
- [a, z]での平均変化率はf(z) f(a)

- aの近くにzをとる
- [a, z]での平均変化率はf(z) f(a)z a
- ullet z
 ightarrow aの極限値

- aの近くにzをとる
- [a, z]での平均変化率はf(z) f(a)

ullet z
ightarrow aの極限値

$$f'(a) = \lim_{z o a} rac{f(z) - f(a)}{z - a}$$

- aの近くにzをとる
- [a, z]での平均変化率はf(z) f(a)

ullet z
ightarrow aの極限値

$$f'(a) = \lim_{z o a} rac{f(z)-f(a)}{z-a}$$

a における微分係数

- aの近くにzをとる
- [a, z]での平均変化率はf(z) f(a)

ullet z
ightarrow aの極限値

$$f'(a) = \lim_{z o a} rac{f(z)-f(a)}{z-a}$$

a における微分係数

- aの近くにzをとる
- [a, z]での平均変化率はf(z) f(a)

ullet z
ightarrow aの極限値

$$f'(a) = \lim_{z o a} rac{f(z)-f(a)}{z-a}$$

a における微分係数

f'(a) はa における接線の傾き

- aの近くにzをとる
- [a, z]での平均変化率はf(z) f(a)

ullet z
ightarrow aの極限値

$$f'(a) = \lim_{z o a} rac{f(z) - f(a)}{z - a}$$

aにおける微分係数

f'(a) はa における接線の傾き

課題 0305-1 15 の図で f'(a) は?

● 課題

● 質問

● 課題

課題を Google フォームで作成 提出は一般的に添付ファイル形式 ファイルが大きく,返送ミスも多い

● 質問

● 課題

課題を Google フォームで作成 提出は一般的に添付ファイル形式 ファイルが大きく,返送ミスも多い

● 質問

テキスト記述式 サイズが小さく,送受のミスもない.

● 課題

課題を Google フォームで作成 提出は一般的に添付ファイル形式 ファイルが大きく,返送ミスも多い

● 質問

テキスト記述式 サイズが小さく,送受のミスもない. 数式のやりとりが難しい

• T_EX をベースとした 1 次元数式ルールを作成 fr(a,b), sq(n,a), sin(x), cos(n,x), pi,...

- T_EX をベースとした 1 次元数式ルールを作成 fr(a,b), sq(n,a), sin(x), cos(n,x), pi,...
- ullet 入力すると即時に2次元数式を表示 $rac{a}{b}, \sqrt[n]{a}, \sin x, \cos^2 x, \pi$

- T_EX をベースとした 1 次元数式ルールを作成 fr(a,b), sq(n,a), sin(x), cos(n,x), pi,...
- ullet 入力すると即時に2次元数式を表示 $rac{a}{b}, \sqrt[n]{a}, \sin x, \cos^2 x, \pi$
- 確認してから、GCの回答にペースト

- T_EX をベースとした 1 次元数式ルールを作成 fr(a,b), sq(n,a), sin(x), cos(n,x), pi,...
- ullet 入力すると即時に2次元数式を表示 $rac{a}{b}, \sqrt[n]{a}, \sin x, \cos^2 x, \pi$
- 確認してから、GCの回答にペースト
- KeTMath 初期バージョン

問題点と改良版

- sin(x) を sin x と書く間違い
- 分数の間違い(1/a+b など)
- スマホのキーボードの問題
 - ・iPhone と Andoroid の違い
 - ・入力キーの種類が多すぎる
 - ・特殊記号(√など)を選んで入力してしまう

問題点と改良版

- sin(x) を sin x と書く間違い
- 分数の間違い(1/a+b など)
- スマホのキーボードの問題
 - ・iPhone と Andoroid の違い
 - ・入力キーの種類が多すぎる
 - ・特殊記号(√など)を選んで入力してしまう
- KeTMath にキーボードをつけた改良版作成

改良版

2021年の授業

- 授業開始は4月(対面方式)
- 3回/18回をオンラインの予定
- 実際は、後半9回がすべてオンライン
- 期末試験もオンラインになった

KeTMathの改良

- キーボードの整理
- スマホ用縦型版を作成
 - (1) ketcindy samples で検索 または、ketcindy home で検索
 - (2) ketmath(Japanese) を選択
 - (3) ketmath 縦型を選択

GC質問でのやりとり

② Q1次の関数を微分せよ.

Project KeTCindy • 2021/11/16

10 点

[1] y=sin(x)

[2] y=log(x)

自分の解答

提出済み

[1]

再提出するまで、先生には以前の解答が表示されます。

提出

GC回収と採点

期限なし 0830- 6ax+b型 (10 点満点)	期限なし 0830-02出 欠	期限なし 0830-5指 数対数の (10 点満点)	期限なし 0830-4三 角関数の (10 点満点)	期限なし 0830-3面 積の計算 (10 点満点)	期限なし 0830-2定 積分と面 (10 点満点)	期限なし 0830-1定 積分と面 (10 点満点)
	なし					
/10	提出済み	/10	/10	/10	/10	/10
/10	提出済み	/10	/10	/10	/10	/10
/10	提出済み	/10	/10	/10	/10	/10
/10	提出済み	/10	/10	/10	/10	/10
/10	提出済み	/10	/10	/10	/10	/10
/10	提出済み	/10	/10	/10	/10	/10

GC回収と採点

17

3

提出済み

割り当て済み

すべて

guri don 2021/09/06

fr(x^4+x^2,2)-fr(x^3,3)-5x+c 3ln(x)+2e^x+c -fr(cos(3x+4),3)+c fr(e^2x-1,2)+c

okafu 2021/09/06

 $\frac{x^{4}}{2}-\frac{x^{3}}{3}+\frac{x^{2}}{2}-5x+C$

 $2xe^{z}+3\ln(|x|)+C$

 $-\cos(3x+4)/3+c$

GC 質問 + KeTMath の流れと弱点

- (1) GC の質問をコピー
- (2) KeTMath を立ち上げて入力欄にペースト
- (3) 2次元表示を見て、課題をノートで解く
- (4) KeTMath に入力して2次元表示で確認
- (5) 入力欄をコピー
- (6) GCを立ち上げて解答欄にペースト

GC 質問 + KeTMath の流れと弱点

- (1) GC の質問をコピー
- (2) KeTMath を立ち上げて入力欄にペースト
- (3) 2次元表示を見て,課題をノートで解く
- (4) KeTMath に入力して2次元表示で確認
- (5) 入力欄をコピー
- (6) GCを立ち上げて解答欄にペースト
- スマホの場合,(2)と(6)でソフトを立ち上げ直す必要

課題組み込み HTML

- (1) 課題組み込みの HTML を作成するようにした
 - ・kettask.html としてリンク先を GC 質問で配付

https://s-takato.github.io/talks/tex220305/kettask0305v.html

- (2) 学生は kettask.html を立ち上げ,課題を解いて入力
- (3) GC 質問の解答欄にペーストして提出
- (4) 教員用の ketscore.html を用いて採点
- (5) 成績表の作成もできる

Toolketmath.cdy の開発

課題と学生リストのファイルから html などを作成する

授業での実施報告

濱口さんが長野高専で行った授業について報告

- 新 KeTMath でミスが減り、解答・採点効率が改善
- Maxima による選択的採点も可能
- 数式の表現には改良の余地
 - () の付け方 $\sin(2x^2) = > \sin 2x^2$ or $\sin(2x^2)$? 積分の表現 $\inf(a,b,f(x),x) = > \inf(a,b,f(x),dx)$?
- 多様な出題形式への対応 (図要素の挿入と解答など)
- 課題の配付や答案の収集を GC 以外のサーバーで?
- 協働学習で用いる数式入り文書用アプリの開発

- 新 KeTMath でミスが減り,解答・採点効率が改善
- Maxima による選択的採点も可能
- 数式の表現には改良の余地
 - () の付け方 $\sin(2x^2) = > \sin 2x^2$ or $\sin(2x^2)$? 積分の表現 $\inf(a,b,f(x),x) = > \inf(a,b,f(x),dx)$?
- 多様な出題形式への対応 (図要素の挿入と解答など)
- 課題の配付や答案の収集を GC 以外のサーバーで?
- 協働学習で用いる数式入り文書用アプリの開発

- 新 KeTMath でミスが減り,解答・採点効率が改善
- Maxima による選択的採点も可能
- 数式の表現には改良の余地
 - () の付け方 $\sin(2x^2) = > \sin 2x^2$ or $\sin(2x^2)$? 積分の表現 $\inf(a,b,f(x),x) = > \inf(a,b,f(x),dx)$?
- 多様な出題形式への対応 (図要素の挿入と解答など)
- 課題の配付や答案の収集を GC 以外のサーバーで?
- 協働学習で用いる数式入り文書用アプリの開発

- 新 KeTMath でミスが減り,解答・採点効率が改善
- Maxima による選択的採点も可能
- 数式の表現には改良の余地
 - () の付け方 $\sin(2x^2) = > \sin 2x^2$ or $\sin(2x^2)$? 積分の表現 $\inf(a,b,f(x),x) = > \inf(a,b,f(x),dx)$?
- 多様な出題形式への対応 (図要素の挿入と解答など)
- 課題の配付や答案の収集を GC 以外のサーバーで?
- 協働学習で用いる数式入り文書用アプリの開発

- 新 KeTMath でミスが減り,解答・採点効率が改善
- Maxima による選択的採点も可能
- 数式の表現には改良の余地
 - ()の付け方 $\sin(2x^2) => \sin 2x^2$ or $\sin(2x^2)$? 積分の表現 $\inf(a,b,f(x),x) => \inf(a,b,f(x),dx)$?
- 多様な出題形式への対応 (図要素の挿入と解答など)
- 課題の配付や答案の収集を GC 以外のサーバーで?
- 協働学習で用いる数式入り文書用アプリの開発

- 新 KeTMath でミスが減り,解答・採点効率が改善
- Maxima による選択的採点も可能
- 数式の表現には改良の余地
 - () の付け方 $\sin(2x^2) = > \sin 2x^2$ or $\sin(2x^2)$? 積分の表現 $\inf(a,b,f(x),x) = > \inf(a,b,f(x),dx)$?
- 多様な出題形式への対応 (図要素の挿入と解答など)
- ●課題の配付や答案の収集を GC以外のサーバーで?
- 協働学習で用いる数式入り文書用アプリの開発

- 新 KeTMath でミスが減り,解答・採点効率が改善
- Maxima による選択的採点も可能
- 数式の表現には改良の余地
 - () の付け方 $\sin(2x^2) = > \sin 2x^2$ or $\sin(2x^2)$? 積分の表現 $\inf(a,b,f(x),x) = > \inf(a,b,f(x),dx)$?
- 多様な出題形式への対応 (図要素の挿入と解答など)
- 課題の配付や答案の収集を GC 以外のサーバーで?
- 協働学習で用いる数式入り文書用アプリの開発