Vectorial Virtual – Taller 3, parte 3: Teoremas de Stokes y Gauss.

Mayo 2020

Problema 11: (Teorema de Stokes)

Sea $H(x,y,z)=x^2y\hat{i}+\frac{x^3}{3}\hat{j}+xy\hat{k}$ y sea C la curva de intersección del paraboloide hiperbólico $z=y^2-x^2$ y el cilindro $x^2+y^2=1$ orientado en la dirección de las manecillas del reloj visto desde arriba:

- I Grafique el paraboloide hiperbólico y el cilindro. Trace la curva de intersección.
- 2 Encuentre una parametrización para la curva C.

Problema 12: (Teorema de Stokes)

Calcule el trabajo hecho por el campo de fuerza

$$F(x, y, z) = (x^{x} + z^{2}, y^{y} + x^{2}, z^{z} + y^{2})$$

cuando una partícula se mueve bajo su influencia alrededor del borde de la parte de la esfera $x^2+y^2+z^2=4$ que se encuentra en el primer octante en dirección contraria a las manecillas del reloj vista desde arriba.

Problema 13: (Teorema de la divergencia)

Considere el campo vectorial H dador por

$$H(x, y, z) = (\sin(x)\cos^2(y), \sin^3(y)\cos^4(z), \sin^5(z)\cos^6(y))$$

- Haga un dibujo del campo vectorial (usando por ejemplo https://www.geogebra.org/m/u3xregNW)
- Calcule el flujo de H hacia adentro del cubo definido por los seis planos x=0, $x=\frac{\pi}{2}$, y=0, $y=\frac{\pi}{2}$, z=0, $z=\frac{\pi}{2}$.

Problema 14:

Considere el campo vectorial $F(x, y, z) = (3xy^2, xe^z, z^3)$ y sea E el volumen encerrado por el cilindro $y^2 + z^2 = 1$ y los planos x = -1 y x = 2.

- I Calcule el flujo de F a través de la frontera de E hacia afuera.
- 2 La frontera de E consiste de tres partes: la superficie cilíndrica S y las "tapas" x=-1 y x=2. Calcule el flujo de F a través de S hacia afuera.

Problema 15: Teorema de Gauss

Sea E el campo eléctrico generado en \mathbb{R}^3 generado por una carga puntual unitaria puesta en el origen

$$E(\vec{x}) = \frac{\vec{x}}{\|\vec{x}\|^3}$$

- Haga un dibujo del campo vectorial, (por ejemplo usando https://www.geogebra.org/m/u3xregNW).
- **2** Verifique que el campo tiene divergencia cero $\nabla \cdot E = 0$.
- 3 Calcule el flujo de *E* a través de la esfera unitaria orientada hacia afuera parametrizando la esfera.
- 4 Calcule el flujo de E hacia adentro del cubo $[-2,2] \times [-2,2] \times [-2,2]$ (sugerencia: Use el Teo de Gauss).
- **5** Es *E* un campo conservativo?

Problema 16: (Verdadero o Falso)

Verdadero o Falso: Para cada una de las siguientes afirmaciones de una justificación (si cree que es V) ó un contraejemplo (si cree que es F).

- I Si $\nabla \cdot H = 0$ entonces el campo vectorial H es conservativo.
- 2 Si $\nabla \times H = 0$ entonces el campo vectorial H es conservativo.
- 3 Si $H = \nabla \times F$ entonces H es conservativo.
- 4 Si $\nabla \cdot F = 0$ entonces el trabajo realizado por F a lo largo de toda curva cerrada es cero.
- 5 $\nabla \times \nabla u = \vec{0}$ para toda funcion escalar diferenciable $u: \mathbb{R}^3 \to \mathbb{R}$.
- 6 Si H es conservativo entonces div(H) = 0.

