A STUDY OF ALTERNATIVE QUANTILE ESTIMATION METHODS IN NEWSBOY-TYPE PROBLEMS

Yong-u Sok

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A STUDY OF ALTERNATIVE QUANTILE ESTIMATION METHODS IN NEWSBOY-TYPE PROBLEMS

by

Yong-u Sok

March 1980

Thesis Advisor:

G.F. Lindsay

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (Phen Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
T REPORT HUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
A Study of Alternative Quantile Estimation Methods in Newsboy-Type Problems		5. TYPE OF REPORT & PERIOD COVERED Master's Thesis; March 1980	
		6. PERFORMING ORG. REPORT NUMBER	
Yong-u Sok		8. CONTRACT OR GRANT NUMBER(s)	
Naval Postgraduate School Monterey, California 93940		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
II CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
Naval Postgraduate School Monterey, California 93940		March 1980	
Monteley, California 93940		59	
4. MONITORING AGENCY NAME & ADDRESS(II dillerent	t from Controlling Office)	Unclassified	
		186. DECLASSIFICATION/DOWNGRADING	

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sherrect entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Newsboy Problem

Ouantile Estimation Method

20. ABSTRACT (Continue on reverse side if necessary and identify by black number)

The newsboy problem solutions under the conditions of risk and of uncertainty about demand are well known. The former is the case where the distribution of demand is known or estimated, and the latter is the case where it is not known but the range of demand is given.

Minimizing the expected cost under risk and the minimax approach under uncertainty are well-known methods to solve the problem. The

DD | FORM | 1473 | (Page 1)

EDITION OF 1 NOV 68 IS OBSOLETE S/N 0102-014-6601; UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/When Date Entered

#20 - ABSTRACT - CONTINUED

situation is considered where demand frequency data is acquired, one observation per decision period. For the expected value solution, this study presents five candidate estimators based on the order statistics and evaluates them by comparing costs with those achieved using the minimax rule under uncertainty. This is done by simulation; the results also provide information about the switching period from the minimax rule to the proposed quantile estimators.

Approved for public release; distribution unlimited.

A Study of Alternative Quantile Estimation Methods in Newsboy-Type Problems

by

Yong-u Sok Lieutenant Colonel, Korean Air Force B.S., Korea Seoul National University, 1970

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
March 1980

ABSTRACT

The newsboy problem solutions under the conditions of risk and of uncertainty about demand are well known. The former is the case where the distribution of demand is known or estimated, and the latter is the case where it is not known but the range of demand is given.

Minimizing the expected cost under risk and the minimax approach under uncertainty are well-known methods to solve the problem. The situation is considered where demand frequency data is acquired, one observation per decision period. For the expected value solution, this study presents five candidate estimators based on the order statistics and evaluates them by comparing costs with those achieved using the minimax rule under uncertainty. This is done by simulation; the results also provide information about the switching period from the minimax rule to the proposed quantile estimators.

TABLE OF CONTENTS

I.	INT	RODUCTION	6
II.	STA	TEMENT OF THE PROBLEM	8
	Α.	THE NEWSBOY PROBLEM	8
	в.	THE NEWSBOY PROBLEM SOLUTIONS UNDER RISK	9
	C.	THE NEWSBOY PROBLEM SOLUTIONS UNDER UNCERTAINTY	10
	D.	QUANTILE ESTIMATION AND THE DECISION RULE SWITCHING POINT FOR THE NEWSBOY PROBLEM	12
III.	II. DEVELOPMENT OF THE ESTIMATORS ON THE BASIS OF ORDER STATISTICS		
	Α.	ESTIMATORS USING ORDER STATISTICS	15
	В.	RATIONALE FOR THE ESTIMATORS	17
		1. The First Candidate Estimator; \hat{X}_{q}	18
		2. The Second and Third Candidate Estimators; \tilde{X}_q , $\tilde{\tilde{X}}_q$	19
		3. The Fourth Candidate Estimator; \overline{X}_q	20
		4. The Fifth Candidate Estimator; $\overline{\overline{X}}_q$	20
IV.	EVA	LUATION OF THE CANDIDATE ESTIMATORS	23
	Α.	DESIGN FOR SIMULATION	23
	в.	DISTRIBUTIONS AND PARAMETERS	24
	C.	ALGORITHM FOR SIMULATION	26
	D.	DISCUSSION OF THE SIMULATION RESULTS	27
	E.	DISCUSSION OF SWITCHING RULES	33
V.	CON	CLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK -	41
APPENDIX: Program Listing of the Simulation			43
LIST OF REFERENCES			58
INITIAL DISTRIBUTION LIST			59

I. INTRODUCTION

The newsboy problem was described by Morse and Kimball early in 1950 [1]. This problem has been presented in the literature under a variety of names, including newsvendor problem, christmas tree problem, and high-fashion apparel This kind of problem may be described in the following way: The newsboy has to decide how many papers to purchase for resale. If he buys too many papers he will incur loss due to left-over papers (little salvage cost). If, on the other hand, he buys too few, he should also incur an opportunity cost due to lost sales. To determine the optimal order quantity, it is necessary to balance two opposing costs. Solutions to the newsboy problem under both conditions of risk and uncertainty are well known. determination or estimation of the demand distribution is critical in dealing with this problem. Optimal solutions to the newsboy problem which minimize expected cost require information about a particular quantile of the demand distributions. If the demand follows some known distribution the problem can be solved by decision making under risk, as is also the case when the key quantile is known. With only information concerning the range of demand, optimal solutions can be found by some procedure such as the minimax rule under uncertainty.

The purpose of this study may be summarized as follows. We are concerned with decision policies during a period when

demand data is being acquired at the rate of one observation per decision period, starting with no data except an estimate of the maximum demand. To find the optimal expected value decision rule, five candidate quantile estimators will be proposed on the basis of order statistics. They will be evaluated by comparing their performance with each other and with the well-known minimax rule under uncertainty. An estimator which has the smallest relative cost deviation to the risk cost solution (ideal case) will be proposed as optimal. We shall also examine the switching time to change from the uncertainty rule to applying the proposed estimator.

In Chapter II, we shall review the newsboy problem solutions under conditions of both risk and uncertainty, and then suggest alternative approaches for demand estimation, and for the switching period from uncertainty to risk. For estimation, five quantile estimators will be proposed in Chapter III. In Chapter IV, candidate quantile estimators will be evaluated by simulation. The performance of the estimators, and candidate switching periods will be discussed in Chapter V. Conclusions and recommendations, for further work, will be given in the final chapter.

II. STATEMENT OF THE PROBLEM

In this section we shall briefly describe the well-known newsboy problem, illustrating its optimal solutions under both risk and uncertainty with respect to demand. Then we shall describe the quantile estimation problem we wish to solve.

A. THE NEWSBOY PROBLEM

The problem may be generalized in the following way.

The decision maker selects a number (the newsboy's order quantity) but the actual demand (the number of papers his customers will want to purchase) may have a randomly determined value. If the decision maker's number is greater than this he pays a cost proportional to the difference, or he pays a cost proportional to the amount by which his number is smaller than this. His cost is zero only if his number is the same as the actual demand.

Let demand D be a continuous random variable and let quantity S be the number the decision maker selects to have on hand. The newsboy cost equation may be formulated as a two-piece continuous linear function in the following manner.

$$C(S) = \begin{cases} C_S(S-D) & \text{if } 0 \leq D \leq S \\ \\ C_O(D-S) & \text{if } D > S, \end{cases}$$
 (1)

where C_S is unit cost of surplus when S exceeds D, and C_O is unit cost of outage or shortage when D exceeds S. The cost function is shown in Figure 1.

Figure 1. The Newsboy Cost Function

B. THE NEWSBOY PROBLEM SOLUTIONS UNDER RISK

For our case where demand is a continuous random variable D with probability density function f(D), and S is a decision variable whose value the decision maker is trying to find over D, the expected cost may be represented as:

$$E[C(S)] = C_{S} \int_{0}^{S} (S - D) f(D) dD + C_{O} \int_{S}^{\infty} (D - S) f(D) dD.$$
(2)

We wish to find quantity S, which minimizes the expected cost. The optimum (minimum in this case) value of S may be found by differentiating the expected cost function (2) with respect to S, setting the derivative to zero, and solving for the optimum value S*:

$$\frac{dE[C(S)]}{dS} = C_{S_0} \int_0^S f(D) dD - C_{O_S} \int_S^\infty f(D) dD = 0. (3)$$

From this we obtain the optimal value S* using the cumulative distribution function

$$F(X) = \int_{0}^{X} f(D) dD,$$

and the result is the well-known result,

$$F(S^*) = \frac{C_0}{C_S + C_0}. \tag{4}$$

Differentiating Equation (3) with respect to S to get the second derivative at S*,

$$\frac{d^{2}E[C(S)]}{dS^{2}}\Big|_{S=S^{*}} = (C_{S} + C_{O}) f(S^{*}).$$

Hence, S^* is the minimum expected cost solution since $(C_S^+ + C_O^-) f(S^*)$ is positive.

To summarize, the optimal solution S^* to minimize the expected cost is the $[C_0/(C_S+C_0)]$ th quantile of the demand distribution, as shown in Figure 2, and the crucial information we need about the distribution is that quantile.

C. THE NEWSBOY PROBLEM SOLUTIONS UNDER UNCERTAINTY The decision maker may be confronted with a newsboy

problem without knowing or being able to estimate the

Figure 2. Minimum Expected Cost Solution

probability distribution of demand. The problem of deciding on S in this situation is called a decision under uncertainty. The decision maker may be able to estimate an upper bound for the demand value. In this case we say that all we know about demand is that demand D is such that $0 \le D \le D_{\text{max}}$.

Three well known approaches to decision making under uncertainty are Laplace solution under assumption of a uniform distribution of demand, minimax cost solutions and minimax regret solutions [2]. For the newsboy problem, these all lead to the same rule to find the optimal solution. We shall discuss only the minimax cost approach. This approach is to choose S so that the worst possible cost will be minimized, that is, to minimize maximum cost. The maximum cost occurs at D = 0 or at D = D_{max} , depending on the cost coefficients. This can be seen from Figure 1. If maximum cost occurs at D = 0, we would want to reduce S

while, if maximum cost occurs at $D = D_{max}$, we would want to increase S to reduce cost. We can minimize the maximum cost when S is chosen so that the cost at D = 0 is equal to the cost at $D = D_{max}$. Equating these, we obtain:

$$C_s S^* = C_o(D_{max} - S^*)$$

or

$$S^* = \left(\frac{C_o}{C_s + C_o}\right) D_{\text{max}} . \tag{5}$$

So far, we have introduced the minimum expected cost solution under both risk and uncertainty conditions. The minimax approach is tied to our initial estimate of D_{max} , and thus the optimal value S* from the minimax rule will be in error to the extent that our estimation of D_{max} is in error. This error will continue over many decision periods unless our estimate of D_{max} is revised.

D. QUANTILE ESTIMATION AND A DECISION RULE SWITCHING POINT FOR THE NEWSBOY PROBLEM

We are interested in finding a quantile estimator which gives better results than the minimax approach under conditions of limited demand data, and also in finding the switching period which is the time at which we switch from the minimax rule to the expected cost rule using the quantile estimator. The purposes of this study are to find the "best"

quantile estimator among five candidate estimators, and to obtain information about the switching period.

We recall that we wish to find the quantile of the cumulative distribution function, F(D). The optimal S^* is found by an inverse mapping of the $[C_O/(C_S+C_O)]$ th quantile of F(D) into demand D under risk condition. Let $q=C_O/(C_S+C_O)$, then we have:

$$S^* = F^{-1}(q) .$$

Although we don't know the demand distribution, each successive decision period provides another observation from the demand distribution, and we will assume that an observation of demand is indeed obtained each period. As we acquire more data we might be able to estimate $\hat{S}^* = \hat{F}^{-1}(q)$ as a function of the given data. Two kinds of approachs are:

- a parameteric approach to hypothesizing the form of demand distribution,
- 2. a non-parametric approach to find the quantile.

For the first case, the normal, and exponential distributions have been found to be of considerable value in describing demand distributions. The normal distribution has been found to describe many demand functions at the factory level; the exponential, at the wholesale and retail levels [3]. Of course, these distributions should not be automatically applied to any demand distribution. Statistical

tests should establish the basis for any standard assumption concerning a demand function.

We are directing our attention to the case where the expected value solution is not applicable because of lack of available information. Further, if we had enough information for a fit of a distribution, we should have a good estimate of the quantile we seek. Hence, the second case, the non-parametric approach, will be considered to find the optimal S* and switching period.

III. DEVELOPMENT OF THE ESTIMATORS ON THE BASIS OF ORDER STATISTICS

As mentioned in the previous chapter, we are subject to find the optimum (minimum cost solution) of a newsboy problem without knowing the q-th quantile of the demand distribution. Consequently a non-parametric or distribution-free approach is suggested to find the solution. In this chapter, we will introduce the notion of order statistics as a basis for estimating this quantile, and suggest five candidate quantile estimators which may be used in newsboy solutions.

A. ESTIMATORS USING ORDER STATISTICS

The non-parametric approach we shall follow is on the basis of order statistics and although it is applicable to both continuous and discrete random variables, we shall direct our attention to the continuous case. We are interested in the case where the population is not known, but we have a random sample of size n from its unknown cumulative distribution function F(X). Let X_1, X_2, \ldots, X_n be a random sample. Then $X(1) \leq X(2) \leq \ldots \leq X(n)$, where the X(i) are arranged in order of increasing magnitudes, and are defined to be the order statistics. Let X_q be the q-th quantile of the population. The estimate of X_q can be expressed as a function of X_1, X_2, \ldots, X_n , i.e.,

Estimate of $X_q = f(X_1, X_2, \dots, X_n)$.

We shall consider now a function $F_n(x)$ which is constructed from the sample values of X_1, X_2, \dots, X_n . The function $F_{n}(x)$ is called empirical cumulative distribution function. Let x_1, x_2, \ldots, x_n denote the observed values of X_1, X_2, \ldots, X_n . Then for each number $x(-\infty < x < \infty)$, the value of $F_n(x)$ is defined to be the proportion of observed values in the sample which are less than or equal to x. It follows from the Glivenko-Cantelli Theorem that, as n approaches infinity the empirical cumulative distribution function $F_n(x)$ converges uniformly to F(x). Since we are concerned with an unknown cumulative distribution function F(x) which is continuous, some type of smoothed curve of F_n(x) might yield a reasonable estimator of F(x). Let q be the $[C_0/(C_s+C_0)]$ th quantile, where we wish to find the estimate of X so that F(estimate of X_q) = q. This is represented in Figure 3. Now, we are interested in the estimator which gives us minimum cost, but we have no information about it yet. Let us turn our attention to the expected cost as the function of the estimate of X_q . Let perturbation be the difference between the estimate of X_q and true value of X_q . Then the expected cost of perturbation is proportional to the variance of the given unbiased estimator [4]. The properties of unbiasedness

Figure 3. Estimate of X on the Smoothed Curve of Empirical CDF, $F_n(x)$

and minimum variance should be considered for selecting estimators.

B. RATIONALE FOR THE ESTIMATORS

In this section, we shall suggest five different quantile estimators on the basis of order statistics. In a statistical evaluation of these estimators, it is desirable to use the uniform (0,1) distribution, since the expectation and variance of its order statistics are simple and exact.

Investigating these properties of order statistics using other distributions is not easy. If we have a distribution similar to the uniform, or if we have a large number of observations, some approximations may be possible. Three points which are near each other can be assumed to be linear and some estimator using order statistics would be approximately unbiased.

We shall examine the properties of the order statistics from the uniform (0,1) distribution, and we shall consider three neighboring order statistics. Let $X_{(r-1)}$, $X_{(r)}$, and $X_{(r+1)}$ be the (r-1)th, r-th, and (r+1)th order statistics respectively. Define the value r as:

$$r = [nq + 0.5],$$
 (6)

where [X] denotes the largestinteger of X. Let us consider an estimate of $\mathbf{X}_{\mathbf{q}}$ as the linear combination of those;

(estimate of
$$X_q$$
) = $aX_{(r-1)} + bX_{(r)} + cX_{(r+1)}$

where a, b, and c are nonnegative and sum to unity. There can be many possible ways to take estimators, but we shall examine typical ones considering the unbiasedness and the magnitude of variance.

1. The First Candidate Estimator: \hat{X}_q First of all, the estimator should be unbiased,
i.e., $E[\hat{X}_q] = X_q$. If we take the r-th order statistic, $X_{(r)}$ as the first candidate estimator, i.e.,

$$\hat{x}_{q} = x_{(r)} , \qquad (7)$$

this is an unbiased estimator since $E[X_{(r)}] = r/(n+1)$ for the r-th order statistic. The coefficients are a = c = 0 and

b = 1 in this case. The first candidate estimator is represented in Figure 4.

Figure 4. The First Candidate Estimator, \hat{X}_{CI}

2. The Second and Third Candidate Estimators: \tilde{X}_q , $\tilde{\tilde{X}}_q$ We shall propose (r-1)th and (r+1)th order statistics as the second and third candidate estimators:

$$\tilde{X}_{q} = X_{(r-1)}, \qquad (8)$$

and

$$\tilde{x}_{q} = x_{(r+1)}. \tag{9}$$

Even though these are not unbiased estimators, we are not certain which one gives us better performance since we are considering the properties on the uniform distribution and there is some round up error for taking the value r.

3. The Fourth Candidate Estimator: \overline{X}_{G}

We shall propose an equally weighted linear combination of the (r-1)th and (r+1)th order statistics as the fourth candidate estimator:

$$\overline{X}_{q} = \frac{1}{2} [X_{(r-1)} + X_{(r+1)}].$$
 (10)

This estimator is an unbiased estimator, since

$$E[\overline{X}_{q}] = \frac{1}{2}[\frac{r-1}{n+1} + \frac{r+1}{n+1}] = \frac{r}{n+1},$$

and has the minimum variance using

$$cov[X_{(r)}, X_{(s)}] = \frac{r(n-s-1)}{(n+1)^2(n+2)}$$

of the uniform distribution [5]. The variance of this estimator is given as follows:

$$Var[\overline{X}_q] = Var[\frac{X(r-1) + X(r+1)}{2}] = \frac{(n-r)(2r-1) + (r-1)}{2(n+1)^2(n+2)}$$
.

This estimator is represented in Figure 5.

4. The Fifth Candidate Estimator: $\overline{\overline{X}}_{G}$

We shall propose an equally weighted linear combination of the (r-1)th, r-th, and (r+1)th order statistics as the fifth candidate estimator, or

Figure 5. The Fourth Candidate Estimator, \overline{X}_{q}

$$\overline{\overline{X}}_{q} = \frac{1}{3} [X_{(r-1)} + X_{(r)} + X_{(r+1)}].$$
 (11)

This is also an unbiased estimator and the variance of this estimator is given by:

$$Var [\overline{X}_q] = \frac{(n-r)(9r-4) + (5r-4)}{9(n+1)^2(n+2)}$$

The difference in variance between the fourth estimator and the fifth estimator is equal to $\frac{1}{18(n+1)(n+2)}$. When n=1 and n=10 this difference is approximately 0.09 and 4×10^{-4} , respectively. The difference converges rapidly to zero as n increases. Since the quantity difference may be assumed to be negligible and the variance is only concerned with uniform distribution, it is hard to say which estimator gives us better performance.

In summary, although there may be many possible candidate estimators depending upon different forms of linear combination, it may be reasonable to examine five previously proposed estimators. They can be shown with properties as:

- 1) The First Estimator: $\hat{X}_q = X_{(r)}$ (unbiased)
- 2) The Second Estimator: $\tilde{X}_q = X_{(r-1)}$ (biased)
- 3) The Third Estimator: $\tilde{\tilde{X}}_q = X_{(r+1)}$ (biased)
- 4) The Fourth Estimator: $\overline{X}_q = \frac{1}{2}[X_{(r-1)} + X_{(r+1)}]$ (unbiased min. variance)
- 5) The Fifth Estimator: $\overline{X}_{q} = \frac{1}{3}[X_{(r-1)} + X_{(r)} + X_{(r+1)}]$ (unbiased).

Having proposed these quantile estimators, it is of interest to see how well they perform in the context of newsboy decision making, under cost criteria. This is the subject of the next chapter.

IV. EVALUATION OF THE CANDIDATE ESTIMATORS

In this chapter, the five candidate estimators will be tested and investigated for their performance in the newsboy problem for several demand distributions. As performance measures, two kinds of costs, namely an average cumulative cost and a mixed cost which we shall introduce later on, will be obtained during the simulation and then the performance of the candidate estimator will be evaluated using the relative cost deviation to the ideal cost.

A. DESIGN FOR SIMULATION

A newsboy simulation will consist of 50 replications, each of which simulates 50 decision periods for a given demand distribution. The quantile value $(q = C_{O}/(C_{S} + C_{O}))$ for each distribution is varied from 0.1 to 0.9 in increments of 0.2.

To find the value r and consequently to find the estimate of X_q , some modification of the method of determining r is necessary during the first and the last few periods, since there is an insufficient amount of data to apply the candidate estimators. For example, if the value r for finding the estimate is equal to zero, then $X_{(1)}$ will be chosen as the estimate of \hat{X}_q , and if r = n, then the estimate of \hat{X}_q will be $X_{(n)}$ and so forth.

For each period, the average cumulative cost and the mixed cost are computed for seven different cases which are

represented as follows:

- 1) Risk case (Ideal solution),
- 2) Uncertainty case using the minimax rule,
- 3) A case using the estimator \hat{X}_q ,
- 4) A case using the estimator \tilde{X}_{α} ,
- 5) A case using the estimator $\tilde{\tilde{X}}_q$,
- 6) A case using the estimator \overline{X}_{α} , and
- 7) A case using the estimator $\overline{\overline{X}}_q$.

The cost for each period is averaged over 50 replications, and then the average cumulative cost at period k is computed by cumulating the average cost from the first period to k-th period. The mixed cost at k-th period is given by summing the average cost using the minimax rule up to (k-1)th period and the average cost using an estimator from the k-th period to the last period.

B. DISTRIBUTION AND PARAMETERS

As mentioned previously, one source has suggested that the normal distribution may be considered as the demand distribution at the factory level and the exponential distribution may be considered as the demand distribution at the wholesale and retail levels, and so on. Five characterized forms of demand distributions including symmetric, right-skewed,

and left-skewed will be selected to test the performance of the candidate estimators for generality, and are shown in Figure 6.

Figure 6. Characterized Forms of Demand Distributions

Demand distributions used in the simulation and their parameters are shown in Table I. The parameters for the normal distribution were selected so that negative demand should not be generated.

Table I. Distributions and Their Parameters

Distribution	Parameters					
Uniform	The Range over [0,30]					
Normal	Mean 35 and Variance 100					
Exponential	Mean 20					
Gamma	α = 2 and λ = 0.1					
Beta	A = 15 and $B = 5$					

For each demand distribution, the 99.9th percentile of demand except uniform distribution will be adopted as D_{max} to apply the minimax rule under uncertainty. Quantile values $q = C_O/(C_S + C_O)$ will be 0.1, 0.3, 0.5, 0.7, and 0.9 for each distribution.

C. ALGORITHM FOR SIMULATION

The program steps are ordered in the following way:

- 1. Define a new demand distribution.
- 2. Assign the quantile value and maximum demand.
- 3. Compute the optimum in cases of uncertainty and risk.
- 4. Generate three random deviates from the specified demand distribution, representing demand for the first three periods.
- 5. Obtain the order statistics.
- 6. Compute the estimates using the candidate estimators.
- 7. Generate a random deviate for the specified demand distribution for the next period, compute the cost for the period and save it.
- 8. If the period is beyond the final period, go to Step 9; otherwise go to Step 5.
- 9. If the number of replications is greater than the maximum, go to Step 10; Otherwise go to Step 4.
- 10. Find the average cost for each period over total replications.
- 11. Compute the average cumulative cost, the mixed cost, and their relative cost deviation to the risk cost. Then tabulate the results.

- 12. If quantile value is greater than 0.9, go to Step 13; otherwise go to Step 2.
- 13. If we want to try another demand distribution go to Step 1; otherwise stop.

D. DISCUSSION OF THE SIMULATION RESULTS

In this section, the simulation results will be displayed and evaluated. As mentioned previously, the simulation run was performed over 50 replications, each of which consisted of 50 consecutive demand periods. From these trials, the average cumulative costs and the mixed costs were computed for various estimators.

Table II shows the average cumulative cost for 50 periods for the given quantile values and specified demand distribution. Errors in estimating D_{\max} were not considered. This performance of quantile estimation may be compared directly with "best case" minimax results. Within a distribution we may conclude one estimator is better than the other but it is not easy to conclude for all distributions using Table II.

Now, a measure of effectiveness (MOE) to evaluate the performance of the estimators for all distributions is needed. Let us define the relative cost deviation of an estimator as follows:

Relative cost deviation (to the risk cost) = (cost using estimator) - (risk cost)

Table II

Average Cumulative Costs for 50
Periods and 50 Replications

Desc Dist'n	Estimator			Quantile	(g)	
		0.1	0.3	0.5	0.7	0.9
	Risk	5.498	12.737	15.038	12.456	5.310
Uniform	Minimax	5.498	12.737	15.038	12.456	5.310
(0,3)	x q	5.778	13.624	16.468	13.833	6.290
	X	5.846	14.095	17.397	15.117	7.702
	$\tilde{\tilde{X}}_{G}$	5.782	13.369	15.935	13.174	7.253
	X ≅ X q X q -q	5.672	13.366	16.195	13.541	7.011
	x -3	5.687	13.376	16.205	13.580	6.604
	Risk	7.128	14.015	15.997	13.805	6.937
Normal	Minimax	11.511	19.943	16.648	15.399	9.426
(35,100)	x _a	8.272	15.686	17.818	15.120	8.006
	χ̈́	8.790	16.870	19.473	16.892	9.417
	$\tilde{\tilde{X}}_{G}^{q}$	7.755	14.724	16.868	14.577	9.474
	\overline{X}_{d}^{G}	7.934	15.288	17.586	15.010	8.835
	X q	7.944	15.232	17.502	14.980	8.329
	Risk	7.444	19.657	27.541	28.892	18.642
Exponen-	Minimax	11.705	42.088	60.824	57.014	26.512
tial (Mean =	x	7.958	20.447	28.589	30.453	20.906
20)	x X	7.949	20.425	28.853	30.434	21.114
	Ž Ž	8.389	21.623	29.833	33.840	25.094
	$\frac{x}{d}$	8.045	20.576	28.591	30.746	20.950
	$\overline{\overline{x}}_{q}^{q}$	8.046	20.568	28.547	30.447	20.072
	Risk	6.714	16.287	21.141	20.748	12.496
Gamma	Minimax	7.024	23.094	36.970	37.240	18.098
$(\alpha = 2)$ $\lambda = 0.1$	x P	7.253	16.963	22.275	22.141	13.649
$\lambda = 0.1)$	x q	7.303	17.180	22.496	22.442	14.138
	x X	7.641	17.761	22.861	23.690	15.932
	\overline{X}_{G}^{4}	7.305	17.067	22.100	21.992	13.863
	$\begin{bmatrix} \tilde{x} \\ \frac{\tilde{x}}{q} \\ \frac{\overline{x}}{q} \end{bmatrix}$	7.297	17.043	22.098	21.964	13.299
	L					

Table II (Continued)

Desc		Quantile (q)					
Dist'n	Estimator	0.1	0.3	0.5	0.7	0.9	
	Risk	0.071	0.140	0.154	0.129	0.059	
Beta	Minimax	0.260	0.545	0.520	0.246	0.059	
(A = 15) B = 5)	$\hat{\mathbf{x}}_{\mathbf{q}}$	0.079	0.147	0.162	0.135	0.064	
	\tilde{X}^{q}	0.079	0.150	0.167	0.141	0.070	
	\tilde{X}_{q}	0.082	0.150	0.163	0.136	0.082	
	\overline{X}_{a}^{C}	0.078	0.147	0.161	0.135	0.071	
	$\frac{\overline{X}}{q}$	0.078	0.147	0.161	0.135	0.067	

This relative cost deviation may be used as an MOE to evaluate the performance of an estimator. The best performance was given by the risk solution during the simulation, an expected result with regard to theoretical considerations.

Table III exhibits the relative cost deviation for quantile values from 0.1 to 0.9 for each demand distribution investigated. As a special case, if we pursue the uniform demand distribution in Tables II and III, the risk and minimax approach would match each other because the risk cost solution X_q such that $F(X_q) = C_0/(C_s + C_0)$ is the same as the minimax cost solution given by $[C_0/(C_s + C_0)]D_{max}$ whenever the maximum demand D is determined exactly. we read through the third column of overall distribution in Table III, an estimator, \overline{X}_{q} shows the best performance among candidate estimators at quantile 0.1. Also, \hat{X}_{q} did better at quantile 0.9. Excluding these two points, the estimator $\overline{\overline{X}}_{q}$ gave the best performance at all other quantiles. Within the uniform distribution the minimax approach shows the best performance (since it is identical to the risk solution), but it shows the worst performance in the other distribution. Similarly, we can say which estimator represents the best performance within a distribution by reading through row by row, and which estimator shows the best performance at a quantile by reading through column by column.

We are interested in the estimator which gives us the best performance for all quantiles over all distributions.

Table III

Relative Cost Deviation From The Average Cumulative Cost

Desc. Dist'n	Estimator	0.1	Qu 0.3	antile (q) 0.7	0.9	Overall Quantile
<u> </u>							
	Risk	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Uniform (0.30)	Minimax	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
(0.50)	X P	0.0509	0.0696	0.0949	0.1105	0.1845	0.5104
	X P	0.0634	0.1066	0.1569	0.2136	0.4505	0.9909
	$\mathbf{p}^{ ilde{\mathbf{X}}}$	0.0517	0.0496	0.0597	0.0576	0.3658	0.5844
	\bar{X}_{q}	0.0318	0.0493	0.0770	0.0871	0.3203	0.5655
	Xq Xq Xq Xq Xq Xq	0.0345	0.0502	0.0776	0.0902	0.2435	0.4960
	Risk	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Normal	Minimax	0.6149	0.4229	0.0405	0.1154	0.3589	1.5526
(35,100)	x _G	0.1605	0.1192	0.1136	0.1962	0.1542	0.6427
	X X	0.2331	0.2037	0.2173	0.2236	0.3576	1.2353
	$\tilde{\tilde{X}}_{G}^{q}$	0.0879	0.0505	0.0544	0.0559	0.3658	0.6145
	\overline{X}_{q}	0.1130	0.0908	0.0994	0.0782	0.2736	0.6640
	Xq Xq Xq Xq Xq Xq	0.1145	0.0868	0.0941	0.0850	0.2008	0.5812
	Risk	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Exponen-	Minimax	0.5724	1.1411	1.2085	0.9733	0.4222	4.3175
tial (Mean =	x _G	0.0690	0.0402	0.0381	0.0540	0.1215	0.3228
20)	$\begin{bmatrix} X \\ q \\ \tilde{X} \\ \frac{\tilde{q}}{X} \\ \frac{q}{X} \end{bmatrix}$	0.0678	0.0391	0.0476	0.0603	0.1326	0.3474
	Ž,	0.1269	0.1000	0.0832	0.1713	0.3461	0.8275
	$\frac{\overline{x}}{q}$	0.0806	0.0467	0.0381	0.0642	0.1238	0.3534
	$\begin{bmatrix} \overline{\overline{X}} \\ q \end{bmatrix}$	0.0809	0.0463	0.0365	0.0538	0.0767	0.2942
	Risk	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Gamma	Minimax	0.0412	0.4180	0.7488	0.7949	0.4483	2.4562
$\begin{array}{c} (\alpha = 2 \\ \lambda = 0.1) \end{array}$	x _G	0.0803	0.0415	0.0536	0.0671	0.0922	0.3347
7 (1)	χ̈́	0.0878	0.0548	0.0641	0.0817	0.1314	0.4198
	Ž	0.1381	0.0905	0.0814	0.1418	0.2749	0.7267
	\bar{x}_{a}	0.0881	0.0479	0.0454	0.10600	0.1094	0.3508
	X q x̃ q x̃ q X q X q X q	0.0869	0.0464	0.0453	0.0586	0.0642	0.3014

Table III (Continued)

Desc. Dist'n	Estimator	0.1	Overall Quantile				
Beta (A = 15 B = 5)	Risk Minimax X q X q X q X q x q x q x q x q x q	0.0000 2.6322 0.1023 0.1123 0.1481 0.0916 0.0917	0.0000 2.9002 0.0519 0.0753 0.0736 0.0508 0.0481	0.0000 2.3714 0.0549 0.0877 0.0558 0.0459 0.0462	0.0000 0.9108 0.0481 0.0952 0.0575 0.0468 0.0451	0.0000 0.0085 0.0864 0.1823 0.3852 0.2019 0.1307	0.0000 8.8291 0.3436 0.5528 0.7202 0.4368 0.3618
Overall Dist'ns	Risk Minimax \hat{X}_q	0.0000 3.8657 0.4630 0.5644 0.5527 0.4049 0.4085	0.0000 4.8822 3.3224 0.4795 0.3642 0.2855 0.2771	0.0000 4.3752 0.3551 0.5736 0.3345 0.3058 0.2997	0.0000 2.7944 0.3749 0.6744 0.4841 0.3453 0.3327	0.0000 1.2379 0.6388 1.2543 1.7378 1.0290 0.7159	0.0000 17.1554 2.1542 3.5462 3.4733 2.3705 2.0346

One way to compare is to note that the performance of an estimator overall quantiles over all distributions can be represented as the total sum of the relative cost deviations. Looking at the last column for overall quantiles over all distributions it may be concluded that the best performance (minimum sum) is given by the estimator $\overline{X}_q = \frac{1}{3}[X_{(r-1)} + X_{(r)} + X_{(r+1)}]$ for all quantiles over all distributions as shown in Table III, because the minimum relative cost deviation is the closest to the risk cost (ideal cost solution). For specific quantiles, of course, occasionally other estimators performed better. In an application of the newsboy problem under initial uncertainty, one has information about the quantile q but often not about the form of the distribution. Accordingly, the information at the foot of Table III may provide information in selecting an estimator.

E. DISCUSSION OF SWITCHING RULES

When solving a newsboy problem repeatedly under uncertainty conditions we should probably use the minimax rule for the first period since there is no applicable amount of data to use in quantile estimation. Each successive decision period provides an additional piece of demand data which will contribute to quantile estimation. Therefore we are interested in the number of decision periods that should elapse before we apply the proposed estimator $\overline{\overline{X}}_q$ in place of the minimax rule. From the simulation results, Table IV shows the mixed cost with switching at period 25, the middle

Table IV

The Mixed Cost for the 25-th Period

Desc.								
Dist.	Estimator	Quantile (q)						
		0.1	0.3	0.5	0.7	0.9		
	Risk	274.879	636.863	751.893	622.810	265.514		
Uniform	Minimax	274.879	636.863	751.893	622.810	265.514		
(0.30)	\hat{x}_{q}	280.729	643.679	761.937	634.742	272.186		
	\tilde{X}_{G}^{q}	282.951	648.889	766.665	640.032	277.903		
	$\tilde{\tilde{X}}_{\alpha}^{q}$	280.185	641.266	759.937	631.729	269.095		
	\overline{X}_{G}^{1}	279.242	643.131	760.970	633.978	271.334		
	X	279.595	643.109	761.187	634.082	271.463		
	Risk	356.404	700.766	799.844	690.275	346.833		
Normal	Minimax	575.550	997.144	832.229	769.934	471.301		
(35,100)	x q	461.583	828.894	820.863	738.497	413.906		
	χ̈́α	477.707	835.620	825.044	742.866	420.868		
	χ̈́α	455.163	825.489	819.134	736.412	410.975		
	\bar{X}_{a}	460.505	828.510	820.079	737.839	412.314		
	x q q q X X q q X q q X q q X q q X q q X q q X q q X q q X q q X q q q q	460.535	828.517	820.258	737.909	412.595		
	Risk	372.210	982.875	1377.038	1444.599	932.085		
Exponen-	Minimax	585.271	2104.407	3041.196	2850.687	1325.620		
tial (Mean =	x q	458.956	1453.137	2073.317	2028.197	1118.620		
20)	χ̈́α	458. 6 97	1453.506	2075.067	2027.887	1115.982		
	xq xq xq xq x	461.103	1456.723	2076.325	2036.363	1146.552		
	\bar{X}_{q}	458.524	1453.449	2072.446	2027.401	1121.038		
	$\begin{bmatrix} \mathbf{d} \\ \mathbf{x} \end{bmatrix}$	458.556	1453.220	2072.413	2027.286	1119.067		
	Risk	335.684	814.349	1057.038	1037.387	624.824		
Gamma	Minimax	351.179	1154.714	1848.499	1861.989	904.908		
$(\alpha = 2)$ $\lambda = 0.1$	x q	344.370	983.554	1414.183	1400.872	759.497		
	χ̈́α	344.799	985.234	1415.761	1402.143	759.026		
	χ̈́q	348.497	983.682	1410.905	1406.584	768.769		
	\overline{X}_{q}	344.654	982.802	1410.740	1400.742	754.786		
	xq xq xq xq xq xq	344.504	982.942	1411.690	1400.479	755.480		

Table IV (Continued)

Desc.	Estimator			Quantile	(g)	
		0.1	0.3	0.5	0.7	0.9
	Risk	3.573	6.993	7.699	6.437	2.948
Beta	Minimax	12.988	27.275	26.003	12.299	2.973
$\begin{array}{c c} (A = 15 \\ B = 5) \end{array}$	x _G	7.691	15.796	15.779	9.190	3.021
3,	χ̈́	7.726	15.789	15.779	9.250	3.056
	X	7.723	15.840	15.809	9.214	3.015
	$\bar{X}_{\alpha}^{\alpha}$	7.680	15.788	15.781	9.191	3.014
	X Q X X X X X Z X Q X Z X Q X Q	7.678	15.789	15.779	9.190	3.015

period in our fifty-period simulation. The mixed costs here are the sum of costs for the first 24 periods given by the minimax rule and the costs given by an estimator from the 25-th to the last period. When we examine various distributions in Table IV the minimum mixed cost is obtained by the risk approach, which is to be expected, and the proposed estimator, $\overline{\overline{x}}_q$, appears to provide the minimum mixed cost among candidate estimators, although by a narrow margin.

Now, we wish to find the number of periods to retain the minimax rule before applying the proposed estimator $\overline{\overline{X}}_q$. Mixed costs were computed for various switching periods to find the period which gives the minimum mixed cost for each quantile of every distribution except uniform distribution, since the proposed estimator $\overline{\overline{X}}_q$ doesn't give better results than the minimax rule for the uniform distribution. Table V shows the best switching periods (minimax to estimator $\overline{\overline{X}}_q$) for the quantiles and distributions used in the simulation during 40 periods.

Table V Best Switching Periods Using the Proposed Estimator $\overline{\overline{X}}_{qq}$

Distribution	0.1	0.3	Quanti 0.5	le (q) 0.7	0.9
Normal	4	7	27	11	11
Exponential	6	4	4	4	4
Gamma	13	5	4	4	6
Beta	4	4	4	4	48

Looking at Table V, we see that the best switching period is 27 at quantile 0.5 of the normal distribution. This result is caused by the fact that the minimax rule behaves well around the median when demand has a symmetric distribution. The occurrence of switching period 48 at quantile 0.9 of the beta distribution can be explained by the fact that with the beta distribution used in the simulation, the optimal S* obtained by the minimax rule is close to the ideal S* at this quantile, i.e., the minimax S* at 0.9 is equal to 0.8767 and the ideal S* is 0.8660.

We shall suggest 6 periods, 4, 5, 6, 7, 11, and 13 as the candidates for the switching period for all quantiles over all distributions. Later periods are not included in the candidates since the estimator $\overline{\overline{\mathbf{x}}}_{\mathbf{q}}$ shows much better performance (with reference to the foot of Table III for nearly all quantiles over all distributions). Table IV shows the mixed costs obtained by the estimator $\overline{\overline{\overline{x}}}_{\sigma}$ for the 25th period. Similar tables (not shown) were computed for various other periods, and showed that the mixed costs increased as the period increased. We propose the relative mixed cost deviation for a candidate period using the estimator \overline{X}_{α} as an MOE. It may be reasonable to conclude that the period giving the minimum is the most preferable. Table VI shows the relative mixed cost deviation at each candidate period for all quantiles over all distributions using the estimator $\overline{\overline{X}}_{G}$.

Table VI Relative Mixed Cost Deviation Using the Estimator $\overline{\overline{\mathbf{X}}}_{\mathbf{q}}$

Switching								
Period	Distribution	Estimator	0.1	0.3	Quan 0.5	tile (q		Mo+-1
	Uniform		.0345	.0502	.0776	.0902	.2435	Total .4960
	Normal		.1145	.0868	.0941	.0880	.2008	.5812
4	Exponential	$\frac{\overline{x}}{q}$.0809	.0463	.0365	.0538	.0767	.2942
-	Gamma	[^] q	.0869	.0464	.0453	.0586	.0642	.3014
	Beta		.0917	.0481	.0462	.0451	1307	.3618
	Overall		.4085	.2778	.3327	.3327		2.0346
	Overall		.4005	•2770	. 5527	.5527	• 1133	2.0340
	Uniform		.0324	.0471	.0675	.0762	.1720	.3952
	Normal		.1201	.0868	.0751	.0673	.1462	.4955
5	Exponential	$\frac{\overline{x}}{q}$.0708	.0548	.0561	.0669	.0851	.3337
	Gamma	71	.0576	.0422	.0555	.0713	.0708	.2971
	Beta		.1235	.1003	.0902	.0570	.0868	.4578
	Overall		.4044	.3312	.3444	.3387	.5606	1.9793
	Uniform		.0317	.0457	.0626	.0693	.1229	.3322
	Normal		.1255	.0863	.0663	.0644	.1145	.4570
6	Exponential	$\overline{\overline{x}}_q$.0657	.0697	.0742	.0765	.0894	.3755
	Garrma	q	.0491	.0427	.0675	.0814	.0774	.3181
	Beta		.1715	.1591	.1400	.0790	.0608	.6104
	Overall		.4435	.4035	.4106	.3706	.4650	2.0932
	Uniform		.0300	.0420	.0547	.0601	.1020	.2888
	Normal		.1311	.0846	.0533	.0572	.1084	. 4346
7	Exponential	$\overline{\overline{x}}_q$.0738	.0924	.0980	.0944	.0987	.4573
	Gamma	q	.0423	.0487	.0754	.0924	.0847	.3435
	Beta		.2306	.2237	.1935	.0973	.0481	. 7932
	Overall		.5078	.4914	.4749	.4014	.4419	2.3174

Table VI (Continued)

Switching Period	Distribution	Estimator	0.1	0.3	Quanti 0.5	le (q) 0.7	0.9	Total
	The i Comm							
	Uniform		.0262	.0323	.0384	.0422	.0502	.1891
	Normal		.1727	.0952	.0368	.0526	.0988	.4561
11	Exponential	$\overline{\overline{X}}_{q}$.0859	.1641	.1779	.1594	.1292	.7165
	Gamma	7	.0194	.0797	.1253	.1384	.1041	.4669
	Beta		.4119	.4456	.3793	.1705	.0375	1.4448
	Overall		.7161	.8169	.7577	.5631	.4196	3.2734
	Uniform		.0247	.0280	.0323	.0383	.0446	.1679
	Normal	$\overline{\overline{x}}_q$.1916	.1047	.0322	.0544	.1070	.4899
13	Exponential		.1057	.2066	.2228	.1932	.1413	.8696
	Gamma		.0910	.0930	.1502	.1627	.1158	.6127
	Beta		.5236	.5666	.4823	.2166	.0362	1.8253
	Overall		.9366	.9989	.9198	.6652	.4449	3.9654

The relative mixed cost deviation at each candidate period is shown in Table VII. The minimum deviation is given at period five and the deviation is increasing as the period increases from the fifth period. Using this result we may propose that the switching period from the minimax rule to applying the estimator $\overline{\overline{X}}_q$ should be the fifth period.

Table VII

The Relative Mixed Cost Deviation
At Each Candidate Period

Period	Cost Deviation			
4	2.0346			
5	1.9793	(minimum)		
6	2.0932			
7	2.3174			
11	3.2734			
13	3.9654			

V. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

The minimax approach is a well known approach to decision making under uncertainty. For a newsboy-type problem, we developed five candidate estimators which could be used as data aggregates, and evaluated them by comparing with the minimax rule. These candidate estimators were tested for quantiles, 0.1, 0.3, 0.5, 0.7, and 0.9 of several distributions: uniform, normal (symmetric), exponential, gamma (right-skewed) and beta (left-skewed). Since all possible quantiles and other kinds of distributions were not covered, there may be some amount of loss of generality.

With these limitations, as discussed in Chapter IV, the estimator $\overline{\overline{X}}_q = \frac{1}{3}[X_{(r-1)} + X_{(r)} + X_{(r+1)}]$ developed on the basis of order statistics showed the best performance among those considered. The simulation results suggest that if a single decision procedure over all quantiles is needed, the estimator $\overline{\overline{X}}_q$ is recommended and the time for switching to this estimator should be at the fifth period. The proposed procedure may be summarized in the following way:

- (1) Estimate D_{max}.
- (2) Compute the quantile $q = C_0/(C_S + C_0)$.
- (3) Apply the minimax rule $S^* = q \cdot D_{max}$ for the first four periods.
- (4) Compute the value r such that r = [nq + 0.5] from the fifth period where n is the period at which we wish

- to estimate the demand and [X] denotes the largest integer of X.
- (5) Compute the order statistics $X_{(r-1)}$, $X_{(r)}$, and $X_{(r+1)}$ and apply the proposed estimator \overline{X}_q :

$$\overline{\overline{X}}_{q} = \frac{1}{3} [X_{(r-1)} + X_{(r)} + X_{(r+1)}]$$
.

In this study, it was implicitly assumed that the value of demand for each period was obtainable even if D > S. For further study, the case when demand data greater than the quantity S is not available is worthy of investigation.

Also, a non-parametric approach which can handle extreme quantiles (e.g., 0.01 or 0.99) and extremely skewed distributions could be investigated. The comparison between a parametric approach when the demand data are assumed to fit a probability distribution and non-parametric approach is also recommended. Finally, future simulation work on this problem should also record cost variances, so that a statistical analysis could be made of the simulation results.

HH.

O.F

STING

CGRAP

```
ر المسود منوايسو المنوايسو ومنواد من يمنواد من ومنوالمنوا ومنوالمنوا ومنوالمنوالمنوالمنوالمنوالمنوامنوام
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             m.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ZX
                                                                                                                                                                                                                                                                                                              FNH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ACXH2(
                                                                                                                                                                                                                                                    AINTY
                                                                                                                                                                                      STIMATOR
                                                                                                                                                                                                                                                                                                              oc
U.: ►
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           xxxxx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 AN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      w
                                                                                                                                                                                                                                               LNCERTA
D FORTA
F DIFFE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 برن
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            TOPP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CXI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     53
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ELLILI
CHILLIA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      XHAT3(50,53
                                                                                                                                                          20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 OA ZAMAMAHTOOH

OA ZAMAMAHTOOH

OA AAAAAAAA

OHXXCOCOOH

OHXXXCOOH

OHXXXCOOH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    TRA
                                                                                                                                                                                                                                                                                ロンー
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          MIN
                                                                                                                                                          LUT
DA T
                                                                                                                                                                                                                                                    PHEY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    •×
                                                                                                                                                                                                                                                  Walte
                                                                                                                                                                                                                                                  MERN
NARN
NARN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00
                                                                                                                                                                                                                                                                                                                                                                                                                                             U1---
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       MAM
                                                                                                                                                          SO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       - -10
                                                                                                                                                             AN
                                                                                                                                                                                                                                                  Z < W
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          m--
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IMH
                                                                                                                                                                                                                                               DIMOX
SP
                                                                                                                                                                                                                                                                                                                                                                                                                                          ACRIGATION AND THE TOTAL CONTROL AND AND THE TOTAL CONTROL CON
                                                                                                                                         THE CRAMING TO CONTRACT TO CON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -XUI
                                                                                                                                                          AU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CXHICE
CXHICE
CXHICE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           mm ra-m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         12 - MIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         トロドリロX
大らころは
トローラー
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           XXXXCO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   PPOUD-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        m -0 -000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         W1-111 ---
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          U?
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              וחוח – ושוח
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ACCUSONO CANCER 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            MUUXUU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ·IIII
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ANDUTITITY OCCUPANT O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            見出というこういうこう
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               U-1U242424
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               EMELL WHILL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Ø
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FJZZZZZZZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ZOOPHHEIMH
```



```
GENERATE A RANDCP CFPANC CEVIATE DEPENCING UPON DISTRIBUTION FORP AND FIND THE ESTIMATE.
                                                                                                                                                                                                                                                                                                                                         MAX PERICD.
                                                                                                                                                                                                                                                                                                                                        AT EACH FERIOD UNTIL
                                                                                                     IF(KINE.NE.1) GG TC 7C

X(J,K)=[*26.
GG TG EC

GG TG EC

CALL GGNVL(CSEED.1; L)

X(J,K)=NL+(*SIG

GG TC 71

CALL GGNVL(SEED.1; L)

X(J,K)=(*C EC)

CALL GGNVL(SEEC.XV, 1; U)

X(J,K)=(*C EC)

CALL BETA (BE, DSEED)

X(J,K)=(*C EC)

CALL BETA (BE, DSEED)

X(J,K)=(*C EC)

CALL BETA (BE, DSEED)
                                                                                                                                                                                                                                                                                                                                                                      IF(00.6E.C.) GC TO 3C5
CQU(J.K)=(C*(C-CU)
GO TC 2C6
CQU(J.K)=(C*(CU-D)
IF(GF.GE.C.) GC TO 3C7
CQR(J.K)=(C*(D-QR)
                                                                                                                                                                                                                                                                                                                                                                                                                                             CQR(J, K) = CS*(CR-D)
IF(XF1.6E.D) GO TO ECCXF1(J, K) = CC*(D-XF1)
GO TC = 12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       •K)=CS*(XH1-D)
•GE•E) GO TO 313
                                                                                                                                                                                                                                                                                                                                        FINC THE COST
XHATS(J,K)=XHS
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CX + 1
             304
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       303
                                                                                                                                                                                                                                                                                                                                                                                                     305
306
                                                                                                                                                                                                                                                                                                                                                                                                                                              308
                                                                                                                                                                                                                                                                                                3
                                                                                                                                                 70
                                                                                                                                                                                         11
                                                                                                                                                                                                                                                                                                                      000000
                        000000000
```



```
CVER 50 REPLICATION*,
X**, F7.3/
OST*, 5X,
                                                                                                                                                                                                                                                                      ..... PRINT CLT FEADING CEPENDING UPON DISTRIBUTION FCRM.
                                                                                                                                                                                                                                                                                                                                                                          CCST FOR EACH PERIOD (
ILE = ' F6 33' AND CMA)
J-A VG-CCST' 5X' R-A VG-CCST' 5X' E3-AV-CCST' 5X' E3-AV-CCST' 7X' E3-AV-CC
                                                                                                                                                                                                                                                                                                                                                                                                                                            .. CCMPLIE THE TOTAL CCST AT EACH PERICO.
                                                                                                             XF4.6E.C.) GO TO 317
4 (J.K)=(G*(D-XH4)
TC 316
4 (J.K)=(S*(XH4-D)
XF5.6E.D) GO TC 219
5 (J.K)=(C*(D-XH5)
CX+2(J,K)=CQ*(D-X+2)

GQ TC 314

CX+2(J,K)=CS*(XH2+D)

IF(X+3.6E.C) GQ TQ 315

CXH3(J,K)=CC*(D-XH3)
                                                                                                                                             CXF4 (1, K) = CS* (XH4-D)

IF (XF5.CE.D) GO TC = 1

CXH5 (1, K) = CC* (D-XH5)

GC TC = 20

CXH5 (1, K) = CS* (XH5-D)

CXH5 (1, K) = CS* (XH5-D)
                                                                                    5 316
(J,k)=CS*(XH3-E)
[NUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DO 120 K=1, MAXP
TCCU=0.
                                                                                                                                                                                                                   CALL SCRT(J,K)
R=K*C+.5
CONTIN(E
CONTIN(E
                                                                                                                                                                                                                                                                                            250
                     315
                                                                                                                                                                                                                                                                                                                                                     212
                                                                                                                                                                                     318
326
                                                                                           315
                                                                                                                                            315
                                                                                                                                                                                                                                                            0
                                                    000
```



```
3X, C5-C0ST(C5T0CR) '//)
                                                                                                                                                                                                                                                               ACQU(K) = TCCU/WAXREP

ACXH1 (K) = TCXP1/MAXREP

ACXH2 (K) = TCXP2/MAXREP

ACXH3 (K) = TCXP3/MAXREP

ACXH3 (K) = TCXH4/MAXREP

ACXH4 (K) = TCXH4/MAXREP

ACXH5 (K) = TCXH4/MAXREP

ACXH5 (K) = TCXH5/MAXREP

ACXH5 (K) = TCXH5/MAXREP

ACXH5 (K) = TCXH5 (K), ACXH1 (K), ACXH3(K),
                                                                                                                                                                                                                                                                                                                                                                                                                                               CALL PRI(KIND)

WRITE(6.160) G, DMAX

FORMAT(

1 IN CASE CF QUANTILE = 'F6.3' AND DMAX=', F7.3/,

21x, UF TC'3x' CU-CCST (CCTCCR)', 3x', CR-CCST (CRTCCR)',

32x' C1-CCST (CTCCR)', 3x', C2-CCST (CATCCR)',

43x, C3-CCST (C3TCR)', 3x', C4-CCST (C4TCCR)',
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PERIOD.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Ø
                                                                                                                                                                                                                              OUT.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            d
D
                                                                                                                                                                                                                                                                                                                                                                                                              FORMAT (12x,12,7x,6(F10,3,5x),F10,3
CCNTINLE
                                                                                                                                                                                                                               PRINT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           COST
                                                                                                                                                                                                                               AND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           AVERAGE
                                                                                                                                                                                                                             CCST
                                                                                CO 130 (1) NAXREP
TCCC=TCCC+CCC(1,K)
TCCR+TCCR+CQR(1,K)
TCXH2=TCXH1+CXH1(1,K)
TCXH2=TCXH2+CXH2(1,K)
TCXH3=TCXH2+CXH2(1,K)
TCXH3=TCXH3+CXH3(1,K)
TCXH5=TCXH4+CXH4(1,K)
TCXH5=TCXH5+CXH4(1,K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          TOTAL
                                                                                                                                                                                                                              AVERAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          THE
                                                                                                                                                                                                                              3+1
MFLT
                                                                                                                                                                                                                              FIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          )) •••••
                                                                                                                                                                                                                                 • |
                                                                                                                                                                                                                                    141
                                                                                                                                                                                 m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          16
                                                                      ပ
                                                                                                                                                                                                                                                                                                                                                                           000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SOU
```



```
COST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   - メ ス ス ス ス
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CACGR(K)
CACGR(K)
CACGR(K)
CACGR(K)
CACGR(K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CLMPULATIVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ~ ス ス ス ス ス
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           - a a a a a
                                                                                                                                                                                                                                                                                                                                                                                                       25000
20000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         فاقافاقاتاها
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            KACGL(K) = 14CCL/K
CACGR(K) = 14CCL/K
CACCR(K) = 14CCR/K
CACX+1(K) = 14CCR/K
CACX+4(K) = 14CX+11/K
CACX+4(K) = 14CX+11/K
CACX+5(K) = 14CX+14/K
CACX+5(K) = 14CX+14/K
CACX+5(K) = 14CX+14/K
CACX+16CCR = 16CCCR
CATCCR = 16CCR = 16CCCR
CATCCR = 16CCR = 16CCCR
CATCCR = 16CCR = 16CCCR
CATCCCR = 16CCR = 16CCCR = 16CCR = 16CCCR = 16C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3000000
                                                                                                                                                                                                                                                                                                                     1F (K • LE • 2) GC TO 155

DO 151 KC=4 * K

TACCL=1 LCCU+ACCU (KC)

TACXF1=TACCF+ACOR (KC)

TACXF2=1 LCXF1+ACXF1 (FT)

TACXF2=1 LCXF2+ACXF2 (FT)

TACXF4=T LCXF2+ACXF2 (FT)

TACXF4=T LCXF4+ACXF3 (FT)

TACXF5=TACXF3 (FT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         E i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          RA
                  PAXAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          AVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         UJ |
                  土
                                                                                   . . . . . . . . . .
                FIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      × UUUUUUUUUUUUUU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    u١
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   .
\circ
                                                                                                                                                                                                                                                                                                       C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C
```



```
RI) .,
                                                                   FFI(KINE)

FE(6,165) Q,DMAX

AT (5X, TOTAL OF AVG COST FOR FINDING TRANSITION PERICO.

CASE CF GUANTILE G=',F6,3' AND CMAX=',F7.3/

CNCERTAINTY CCST LP TO (I-1) TH PERIOD',

+ ESTIMATCR COST FROM I-TH PERIOD UNTIL 53RD PERIOD)'//

NHEN' 55X'UN-TR-CCST(UN TO RI)',5X'RI-TR-CCST(RI TO RI)',

E1-TR-COST(E1 TC RI)',5X'E2-TR-COST(E2 TO RI)',
                     ACOR (K), CRTCCR,
R, CACX+5 (K), C5TOCR
1, 2X), F8.3, (', F6.4,')
                                                                                                                                 -
                                                                                                                              CCST
          ₽ į
         COS
                                                                                                                               i u:
                     CR,CR
ZTOCF
4TCCF
6.4,
                                                                                                                              X
          CUMULATIVE
                                                                                                                              ANIVIA)
                                                                                                                                                                                                             NCCST+ACCU (KA)
1CCST+ACCR (KA)
1CCST+ACCR (KA)
2CCST+ACCR (KA)
2CCST+ACCR (KA)
4CCST+ACCR (KA)
5CCST+ACCR (KA)
                                                                                                                              CCST
                    *).ClTCCR,CACX
K),ClTCCR,CACX
K),C3TGCR,CACX
jx,I2,4X,6(FE.
                                                                                                                                                                                                                                                                      an un
                                                                                                                                                                                                                                                                       ××
                                                                                                                                                                                                                                                                     ACOU
          AVERAG
                                                                                                                                  MIXED
                                                                                                                                                                                                                                                                 m++
                                                                                                                                                    G)
                                                                                                                                                   41
                                                                                                                                                                                                                                                                ANC RICK
          CLI
                                                                                                                               I IU
                                                                                                                                                  4
                                                                                                                              1=
                     LCACX+1(K)
3CACX+3(K)
3CACX+3(K)
1 FORMAT(1X
                                                                                                                                                                                                                                                                      INI
                                                                   FINE
                                                                                                                                                                                                                                                                 ことてて
                                                                                                                                                                                                                                                                ו-טוטי
                                                                                                                                                                                                                                                                COOL
RICCO
          FR
                                                                                     るようようち
                                                                                                                                                                                                                                                     171
                                                                               16
                                       150
دندن
                                                   SOU
                                                                                                                       ပပဲပပဲပ
```



```
(',F6.4,')',2X),F8.3,'(',F6.4,')')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CN DISTRIBLTION.
                                                                                                                                                                                                                                                                                                                                               ATICN TO THE RISK SCLUTION
FERENT DISTRIBUTIONS.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ,45X, ,30) DISTRIBUTION CASE (//45X,32(1F*)///)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 *RICOST, RITRI, 3COST, ESTRI,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FEACING DEPENDING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    REGENT CONTROLL CONTR
                                                                                                                                                                                                                                                                                                                                                   HL
                                                                                                                                                                                                                                                                                                                                            FIND THE RELATIVE DEV
FOR CUANTILES OVER CI
E1C0 ST=E1CC ST+ACXH1 (KB1
E2CC ST=E2CCST+ACXH2 (KB1
E3CC ST=E2CC ST+ACXH3 (KE1
E4CC ST=E4CC ST+ACXH4 (KB1
E5CC ST=E5CC ST+ACXH5 (KB1)
   自由自由自由
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              .1) GC TC 1C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    A TALL COOCOOON

THE HERE

TO COOCOOON

THE HERE

THE COOCOOON

THE COOCOON

THE COOCOO

THE COOCO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PRI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SUERCUTINE
IFICKINC:NE
WRITE(41)
I FOFMAT(111)
FETURN (C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PGP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CONTINCE
STOP
END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           100 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          10CC CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                • • • •
      யய்யய்ய
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   173
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         u ነ
u ነ
                                                                                                                                                                                                                    172
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ហ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ပပ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SOS
                                                                                                                                                                                                                                                                000000
```



```
1C IF(KIND.NE.2) GC TC 2C

RETURN
2C FORMAT(1F1,45X,
1.NOFMAT(1F1,45X,
2C IF(KINC.NE.3) GO TC 3O

RETURN
3C IF(XINC.NE.4) GO TC 3O

RETURN
3C IF(XINC.NE.4) GO TC 4C

A FORMAT(1F1,45X,
1.GAMMA(F=2,LANCA=.1) CISTRIBUTION'//45X,33(1+*)///)

RETURN
4C WRITE(6,5)
1.BETA (A=15, B=5) CISTRIBUTION'//45X,33(1+*)///)

RETURN
4C RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                .... SUB PGM 10 GENERATE GAMMA DEVIATE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .... SUE FGM TO GET ORDER STATISTICS.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SUBRCUTINE SORT(J,K)

K1=K-1

COMPCN X(5C,53)

K1=K-1

CO 20 KA=1,K1

KB=KA+1

CO 20 KS=KB,K

IF(X(J,KA).LE.X(J,KS)) GC TO 20

X(J,KA)=X(J,KS)

X(J,KS)=1

CONTINUE

RETURN

ENC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SUBRGUTINE GAMMA (GA, DSEED)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0
```


GAMMA. SUBRCLTINE NCR(Q,QR)

YU=35

SIG=1C.

IF(ABS(C-0.1).GE.EPS) GC TO 14

ZO=-0.524

GO TC 15

GO TC 18 90 10 0 FIND RISK SCL (0-C.1).GE.EPS) GD 09 Ü 0.0 e. SUBRCUTINE GAM (0,0R)

IF (ABS (Q-C.1) . GE . EPS) G

GO TC 15

GO 10 FGR SUE 16 0000000


```
Ø
                        BET
      19
(ABS(G-C.55).GE.EFS) GC TG 1
*6C*
TINLE
                                                          15
                                                    17
                        i
L
                        J
                                  i
U
                                        G
G
                                                    09
                                              CC
                                                          C
C
                        S
                              RISK
                        FIND
                        FGP
     CANDER CHICAL
                        SUB
                         • |
          Ů٠
                                              41
                                        14
                         .
                                                                    ပ
                00000000
```


LIST OF REFERENCES

- 1. Morse, Philip, and G. Kimball, Methods of Operations Research, Wiley, 1951.
- 2. Morris, W. T., The Analysis of Management Decisions, Irwin, 1964.
- 3. Tersine, Richard J., <u>Material Management and Inventory</u> Systems, Elsevier North Holland Inc., 1976.
- 4. Kader, Sagdic, A Decision Procedure for the Transition from Uncertainty to Risk in A Single Period Problem,
 M. S. Thesis, Naval Postgraduate School, Monterey,
 CA, September 1978.
- 5. Craig, Allan T., and Robert V. Hogg, <u>Introduction to Mathematical Statistics</u>, Macmillan Co., 1970.
- 6. Mood, Graybill and Boes, <u>Introduction to the Theory of Statistics</u>, McGraw-Hill Co., 1974.
- 7. Gaver, Donald P., and Gerald D. Thompson, <u>Programming</u> and <u>Probability Models in Operations Research</u>, <u>Brooks/Cole Publishing Co.</u>, 1973.

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
3.	Department Chairman, Code 55 Zo Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
4.	Professor G.F. Lindsay, Code 55Ls Department of Operations Research Naval Postgraduate School Monterey, California 93940	2
5.	LCDR C.F. Taylor, Jr., SC, USN Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
6.	Lt. Col. Yong-u Sok, Korean Air Force Faculty Board of Air Force Academy Seoul, Korea	5
7.	Air Force Central Library Seoul, Korea	1

Thesis
S663918 Sok
c.1

A study of alternative quantile
estimation methods
in newsboy-type
problems.

Thesis \$663918 c.1

Sok

187122

A study of alternative quantile estimation methods in newsboy-type problems. thesS663918
A study of alternative quantile estimati

3 2768 001 00795 8
DUDLEY KNOX LIBRARY