# UNIVERSIDADE DO VALE DO ITAJAÍ ENGENHARIA DE COMPUTAÇÃO NICOLE MIGLIORINI MAGAGNIN

## CIRCUITOS ELETRÔNICA BÁSICA - M1

Relatório apresentado como requisito parcial para a obtenção da M1 da disciplina de Eletrônica básica do curso de Engenharia de Computação pela Universidade do Vale do Itajaí da Escola do Mar, Ciência e Tecnologia.

Prof. Walter Antonio Gontijo

#### 1. OBJETIVO

O presente relatório tem como objetivo a representação, cálculo e simulação dos circuitos apresentados em sala durante a primeira média da disciplina de eletrônica básica presente na grade curricular do 6º período do curso de Engenharia de computação. Neste, serão demonstrados cálculos relativos aos conteúdos e as simulações realizadas no software *NI Multisim 14.2*, além de uma comparação de valores entre a teoria e a simulação a fim de perceber a assertividade dos cálculos.

# 3. CIRCUITOS

3.1 – REVISÃO DE ANÁLISE DE CIRCUITOS ELÉTRICOS

# 3.1.1- RESISTÊNCIA EQUIVALENTE

Encontre a resistência equivalente dos circuitos abaixo:



Figura 1 - Circuito 3.1.1 proposto



Figura 2 - Circuito 3.1.1 simulado no Multisim



Figura 3 - Resistência equivalente do circuito 3.1.1 mensurada no Multisim

$$20 \Omega \parallel 20 \Omega + 10 = \frac{20*20}{20+20} = \frac{400}{40} = 10 \Omega$$

#### TABELA COMPARATIVA

| PARÂMETRO               | SIMULADO | TEÓRICO |
|-------------------------|----------|---------|
| Resistência equivalente | 10 Ω     | 10 Ω    |

# 3.1.2- RESISTÊNCIA EQUIVALENTE



Figura 4 - Circuito 3.1.2 proposto



Figura 5 - Circuito 3.1.2 simulado



Figura 6 - Resistência equivalente do circuito 3.1.2 mensurada

$$(20 \Omega \parallel 20 \Omega + 20 \Omega) = \frac{20*20}{20+20} = \frac{400}{40} = 10 \Omega + 20 \Omega$$
$$30 \Omega \parallel 10 \Omega = 7,5 \Omega$$

#### TABELA COMPARATIVA

| PARÂMETRO               | SIMULADO | TEÓRICO      |
|-------------------------|----------|--------------|
| Resistência equivalente | 7,5 Ω    | $7,5 \Omega$ |

#### 3.1.3 - MALHA SIMPLES

Encontre V3 e sua polaridade levando em conta que a corrente I no circuito é de 0,40 A.



Figura 7 - Circuito 3.1.3 proposto

# CÁLCULOS

Req = 
$$20 \Omega + 5 \Omega = 25 \Omega$$
  
-  $50V + 25i + 10 V = 0$   
-  $40 V = -25 i$   
 $i = \frac{40}{25} = 1,6 A$   
 $V = R * I$   
 $Vab = 25 * 0,4 A$   
 $Vab = 10 V$   
 $Vx = 25 * 1,6 A$   
 $Vx = 40 V$ 



Figura 8 - Circuito 3.1.3 simulado

### TABELA COMPARATIVA

| PARÂMETRO            | SIMULADO | TEÓRICO |
|----------------------|----------|---------|
| Corrente no circuito | 0,4 A    | 0,4 A   |
| V3                   | 30 V     | 30 V    |

### 3.1.14 - MALHAS

Encontre os valores de corrente no circuito a seguir:



Figura 9 - Circuito 3.1.4 proposto



Figura 10 - Circuito 3.1.4 simulado

### Malha 1:

$$-20V + 5i1 + 10(i1 - i2) = 0$$

$$5i1 + 10i1 - 10i2 = 20$$

$$15 i1 - 10i2 = 20$$

#### Malha 2:

$$8V - 10(i1-12) + 2i2 = 0$$

$$-10i1 + 10i2 + 2i2 = -8V$$

$$\begin{cases} 15i1 - 10i2 = 20 (*12) \\ -10i1 + 10i2 + 2i2 = -8 (*10) \end{cases}$$

$$\begin{cases} 180i1 - 120 i2 = 240 \\ -100i1 + 100i2 + 20 i2 = -80 \end{cases}$$

$$180i1 - 100i1 - 120i2 + 120 i2 = 240 - 80$$

$$80i1 = 160$$

$$I1 = 2 \text{ A}$$
Substituindo em malha 1:
$$15 * 2 - 10i2 = 20$$

$$30 - 10i2 = 20$$

$$-10i2 = -10$$

$$I2 = 1 \text{ A}$$

$$I3 = I1 - I2$$

$$I3 = 2 - 1$$

$$I3 = 1 \text{ A}$$



Figura 11 - Mensuração no circuito 3.1.4

| PARÂMETRO | SIMULADO | TEÓRICO |
|-----------|----------|---------|
| I1        | 2 A      | 2 A     |
| I2        | 1 A      | 1 A     |
| 13        | 1 A      | 1 A     |

# 3.1.5 - SUPERPOSIÇÃO



Figura 12 - Circuito 3.1.5 proposto

# CÁLCULOS



$$Ix = \frac{20*23}{44,15} = -10,42 A$$

$$V1 = 4 * (-10,42) = -41,68 V$$

V1 ativo V2 inativo:



Req = 
$$(27||27) + 47 = \frac{27*27}{27+27} + 47 = 13,5 + 47 = 60,5 \Omega$$

$$I = \frac{200}{60,5} = 3,31 A$$

$$Ix = \frac{27*3,31}{27+27} = \frac{89,37}{54} = 1,65 A$$

$$V2 = 4 * 1,65 = 6,62$$

$$Vx = 6.62 + (-41.68) = -35.06 \text{ V}$$

$$Vx = 35,06 V$$

### 3.1.6 - THÉVENIN E NORTON

Calcule o equivalente de Thévenin e o equivalente de Norton para o circuito a seguir:



Figura 13 - Circuito 3.1.6 proposto

Thévenin:

Rth = 6 || 3 = 
$$\frac{6*3}{9}$$
 = 2  $\Omega$ 

Rth = 
$$2 + 3 = 5 \Omega$$



$$3i + 6i - 10 V - 20 V = 0$$

$$9i = 30 \text{ V}$$

$$I = 3,33 A$$

$$Vth = R3 * I + V2$$

$$Vth = 6 * 3,33 - 10$$

$$Vth = 9,98 V$$



# 3.2 – DIODOS 3.2.1 – DIODO IDEAL

Calcule ID, IR, VD e VR, para E = 11V. Considere o diodo ideal.



Figura 14 - Circuito 3.2.1 proposto



Figura 15 - Circuito 3.2.1 simulado



Figura 16 - Mensuração circuito 3.2.1

#### TABELA COMPARATIVA

| PARÂMETRO | SIMULADO | TEÓRICO |
|-----------|----------|---------|
| ID        | 4,68 mA  | 5 mA    |
| IR        | 4,68 mA  | 5 mA    |
| VD        | 10,3 V   | 10 V    |
| VR        | 10,3 V   | 10 V    |

## **CÁLCULOS**

$$E - vD - i * R = 0$$

$$E = Vd + i * R$$

$$I = \frac{11V}{2,2k\Omega} = 0,005 = 5 mA$$

$$11 = VD + 0,005 * 2,2k$$

$$VD = 11 - 0,005 * 2,2k$$

$$VD = 11 - 1,1$$

$$VD = 9,9 V$$

$$VD = VR$$

$$VR = 10 V$$

Repita o exercício anterior considerando que a polaridade da fonte E foi invertida.



Figura 17 - Circuito 3.2.1 com a fonte invertida polarmente

### 3.2.2 - DIODO IDEAL

Calcule ID, Vo e VD2. Considere diodo ideal.



Figura 18 - Circuito 3.2.2 proposto



Figura 19 - Circuito 3.2.2 simulado

Figura 20 - Circuito 3.2.2 mensurado



$$Id = \frac{12}{5,6k}$$

$$Id = 0,002143 A = 0,214 mA$$

$$V0 = 0$$

$$Vd2 = 12V$$

### TABELA COMPARATIVA

| PARÂMETRO | SIMULADO | TEÓRICO  |
|-----------|----------|----------|
| ID        | 0,0023 A | 0,0021 A |
| V0        | 0        | 0        |
| VD2       | 11,8 V   | 12 V     |

### 3.2.3 – DIODO IDEAL

Calcule I, VA, VR e Vo. Considere diodo ideal.



Figura 21 - Circuito 3.2.3 proposto



Figura 22 - Circuito 3.2.3 simulado



Figura 23 - Circuito 3.2.3 mensurado

$$I = \frac{12+5}{4,7 k+5,6 k} = \frac{17}{10,3k} = 0,0016A = 1,6 mA$$

$$VA = R * i = 4,7k * 0,0016 = 7,52 V$$

$$VR = 5,6 K * 0,0016 = 8,96 V$$

$$v0 = 10,3k * 0,0016 = 16,48 V$$

### TABELA COMPARATIVA

| PARÂMETRO | SIMULADO | TEÓRICO |  |
|-----------|----------|---------|--|
| I         | 1,59 mA  | 1,6 mA  |  |
| VA        | 7,453 V  | 7,52 V  |  |
| VR        | 8,8 V    | 8,96 V  |  |
| V0        |          |         |  |

### 3.2.4 - FORMA DE ONDA

Obtenha a forma de onda Vo para a entrada mostrada. Considere diodo ideal



Figura 24 - Circuito 3.2.4 proposto



Figura 25 - Circuito 3.2.4 simulado



Figura 26 - Circuito 3.2.4 forma de onda

# 3.2.5 - FORMA DE ONDA CHAVE ABERTA E FECHADA



Figura 27 - Circuito 3.2.5-1 proposto



Figura 28 - Circuito 3.2.5 -1 simulado



Figura 29 - Circuito 3.2.5-1 forma de onda



Figura 30 - Circuito 3.2.5-2



Figura 31 - Circuito 3.2.5 - 2 simulado



Figura 32 - Circuito 3.2.5-2 forma de onda

## **3.2.6 - DC SWEEP**

Gerar a curva de um ou mais diodos utilizando a ferramenta DC Sweep do software Multisim.



Figura 33 - Diodo número 1



Figura 34 - Configurações DC Sweep



Figura 35 - Configurações de saída DC Sweep



Figura 36 - Curva do diodo 1N4002G



Figura 37 - Diodo número 2



Figura 38 - Curva do diodo 1N1199C

# 3.3 – Diodo real X Diodo Ideal 3.3.1 – Diodo ideal



Figura 39 - Circuito 3.3.1 proposto



Figura 40 - Circuito 3.3.1 simulado



Figura 41 - Circuito 3.3.1 mensurado

```
ID = 1mA
VD = 0V
```

## TABELA COMPARATIVA

| PARÂMETRO | SIMULADO | TEÓRICO |
|-----------|----------|---------|
| ID        | 9,29 mA  | 1 mA    |
| VD        | 0 V      | 0 V     |

# 3.3.2 Modelo simplificado



Figura 42 - Circuito 3.3.2 proposto



Figura 43 - Circuito 3.3.2 simulado



Figura 44 - Circuito 3.3.2 mensurado em VD



Figura 45 - Circuito 3.3.2 mensurado em ID

$$I = V * R$$

$$ID = 10V - 0.7V = 9.3 V -> 9.3 * 1k\Omega = 9.3 mA$$

$$VD = 0.7 V$$

### TABELA COMPARATIVA

| PARÂMETRO | SIMULADO | TEÓRICO |
|-----------|----------|---------|
| ID        | 8,59 mA  | 9,3 mA  |
| VD        | 0,710 V  | 0,7 V   |

# 3.3.3 - Modelo linear - Considere que Ravg = 10R



Figura 46 - Circuito 3.3.3 proposto



Figura 47 - Circuito 3.3.3 com VD mensurado



Figura 48 - Circuito 3.3.3 com ID mensurado

$$Vf = VD + ID * Rav + ID * VL$$
 $10 = 0.7 + ID * (RaV + VL)$ 
 $10 = 0.7 + ID (10 + 1000)$ 
 $1.010 ID = 9.3/1.010$ 
 $ID = 9.2 mA$ 
 $Rm\'edia = 9.2 mA * 10$ 
 $Rm\'edia = 0.092 \Omega$ 
 $VD = 0.7 + 0.092$ 
 $VD = 0.792 V$ 

### TABELA COMPARATIVA

| PARÂMETRO | SIMULADO | TEÓRICO |
|-----------|----------|---------|
| ID        | 8,5 mA   | 9,2 mA  |
| VD        | 0,71 V   | 0,792 V |

### 3.3.4 – Diodo real – Análise pela reta de carga

```
import matplotlib.pyplot as mp
import math
import numpy
IS = 1*10**(-16)
Vt = 0.025
passo = 0.001
i = 0.0
#CÁLCULO DE ID
VD = numpy.arange(0, .8, passo)
ID = IS*(numpy.exp(VD/Vt)-1)
#CÁLCULO RETA DE CARGA
Vcc = 10
rs = 2000
id = (-VD + Vcc)/rs
mp.subplot(2,1,1)
mp.plot(VD, ID)
mp.subplot(2,1,1)
mp.plot(VD, id, 'r')
mp.title('Curva do Diodo e reta de carga')
mp.grid()
mp.show()
```

Figura 49 - Código em Python para a impressão da curva do diodo e reta da carga

# Curva do Diodo e reta de carga



Figura 50 - Curva do diodo e reta da carga plotados

# **EXERCÍCIO 1 -**

Considerando a curva Id x Vd de um diodo, calcule: ¶

- a) → O ponto quiescente do diodo p/·Vs = 2,0V·e·Rs = 50Ω¶



 $Figura\ 51\ -\ Análise\ pela\ reta\ da\ carga\ circuito\ 1$ 

### CÁLCULOS

$$Vs = VD + Id * Rs$$

$$ID = \frac{Vs}{Rs} = 40 \text{ mA}$$

$$ID = 0 -> VD = Vs = 2V$$

### Letra a)



Figura 52 - Reta traçada

$$VD = 0.85 V$$

$$Id = 24 mA$$

## Letra b)



Figura 53 - Traçado de Id = 15mA e Id = 30mA

$$Vac = \frac{\Delta Vd}{\Delta Id}$$

$$Vac = \frac{0,88 - 0,82}{15mA} = \frac{0,06}{15mA} = 4V$$

# EXERCÍCIO 2 – Diodo ideal

No circuito calcule a corrente pelos diodos e as tensões VR e VRL.



Figura 54 - Imagem exercício 2



Figura 55 - Circuito simulado

### TABELA COMPARATIVA

| PARÂMETRO | SIMULADO | TEÓRICO |
|-----------|----------|---------|
| I         | 0,0036 A |         |
| V0        | 2,52 V   |         |
| VRL       | 2,52 V   |         |

# EXERCÍCIO 3 - Modelo simplificado do diodo

No circuito calcule a corrente pelos diodos e as tensões VR e VRL.



Figura 56 - Imagem exercício 3



Figura 57 - Circuito 3 simulado

### TABELA COMPARATIVA

| PARÂMETRO | SIMULADO | TEÓRICO |
|-----------|----------|---------|
| I         | 0,0036 A | 0,064 A |
| V0        | 2,52 V   | 3,2 V   |
| VRL       | 2,52 V   | 3,2 V   |

# EXERCÍCIO 4 -

Considere o modelo linear e Ravg = 10R.

No circuito calcule a corrente pelos diodos e as tensões VR e VRL.



Figura 58 - Imagem exercício 4

## EXERCÍCIO 5 -

Considere o circuito abaixo e a especificação para 3 diodos, pede-se:



Figura 59 - Imagem exercício 5

| Diodo¤     | IF·(A)¤      | VRM(V)¤     |
|------------|--------------|-------------|
| <b>A</b> ¤ | <b>0,2</b> ¤ | 100□        |
| B¤         | <b>0,5</b> ¤ | <b>80</b> ¤ |
| C¤         | 1,0¤         | <b>50</b> ¤ |

Figura 60 - Diodos especificados

- a) → Com a polaridade da fonte mostrada na figura, calcule a corrente pelo diodo e indique, se existir, qual diodo se danificará.¶
  b) → Inverta a polaridade da fonte, calcule a tensão sobre o diodo e indique, se existir, qual diodo se danificará.¶

Figura 61 - Enunciado exercício 5

#### **DESAFIO** –

No circuito da figura, considere que os diodos apresentam uma queda de tensão  $V_{\rm D}$  = 0,7 V quando estão conduzindo corrente e que não apresentam corrente de fuga quando estão em corte.



Assim, quando a chave  $\mathbf{S_1}$  for fechada, a tensão na saída  $\mathbf{V_{\chi'}}$  em volts, será

- (A) 9,3
- (B) 6,9 (C) 5,3
- (D) 3,1
- (E) 1,7

Figura 62 – Desafio

#### 3.4 - CEIFADORES

Circuitos ceifadores são circuitos que tem a capacidade de cortar (ceifar) uma parte do sinal, esses podem ser em série ou em paralelo.

#### 3.4.1 – Ceifador em série com fonte

# Ceifador série com fonte, exemplo:



Figura 63 - Ceifador 1 em série



Figura 64 - Ceifador 1 simulado



Figura 65 - Forma de onda ceifador 1

Fica visível que a onda em verde possuí um pico maior que a onda em vermelho, porém ela não possui valores negativos, isso ocorre devido ao circuito ceifador cortar a onda parcialmente quando a fonte V1 atinge valores abaixo de 5V. A soma das fontes V1 e V2 faz com que o diodo seja inversamente polarizado e não permita a passagem de corrente para V0.

#### 3.4.2 – Ceifador em série com fonte

## Ceifador série com fonte:



Figura 66 - Ceifador proposto 2



Figura 67 - Ceifador em série com fonte 2 simulado



Figura 68 - Circuito ceifador em série simulado

A diferença a ser realçada entre o ceifador 1 e o ceifador 2 é apenas dada pelos valores de fonte de tensão presentes no circuito.

## 3.4.3 – Ceifador paralelo com fonte

## Ceifador paralelo com fonte, exemplo:



Figura 69 - Ceifador paralelo com fonte proposto



Figura 70 - Ceifador paralelo simulado



Figura 71 - Circuito ceifador paralelo simulado

Com a forma de onda acima podemos observar que quando a tensão gerada pelo gerador de funções é inferior a 4V, V0 torna-se constantemente 4V, tornando o diodo polarizado diretamente e permitindo a passagem de corrente pelo mesmo.

## 3.4.4 – Ceifadores



Figura 72 - Ceifadores propostos



Figura 73 - Ceifador 3.4.4 simulado



Figura 74 - Ceifador 3.4.4 forma de onda

No circuito ceifador 3.4.4 podemos observar a presença de dois ceifadores opostos um ao outro, desta maneira, quando a fonte de tensão possui um valor de saída positivo sua saída é definida pelo valor de v1, polarizando diretamente a passagem pelo diodo D1. Já quando V2 possui valor negativo, o diodo D1 será polarizado inversamente, fazendo com que a passagem da corrente seja bloqueada e polarizando diretamente D2, permitindo neste ponto a passagem de corrente.

### 3.4.5 – Ceifadores grampeadores

# Circuitos grampeadores:

 Tem a capacidade de grampear um sinal em um valor co diferente.



Figura 75 - Circuito grampeador proposto



Figura 76 - Circuito grampeador simulado



Figura 77 - Circuito grampeador forma de onda

No presente circuito, quando o valor da fonte é negativo o valor da tensão na saída do circuito é equivalente ao dobro da tensão de entrada em função do capacitor presente no circuito.

## 3.4.6 – Grampeadores



Figura 78 - Circuito 3.4.6 proposto



Figura 79 - Circuito 3.4.6 simulado



Figura 80 - Circuito 3.4.6 forma de onda

Este último circuito grampeador possui uma fonte DC adicionada no valor de 5V, diferindo do anterior, além de um resistor de maior valor. Como o diodo é diretamente polarizado, a saída se dará pela tensão do gerador de funções juntamente com a tensão gerada pela fonte DC.

### 3.5 – RETIFICADORES 3.5.1 – RETIFICADOR – MEIA-ONDA

Calcule a tensão eficaz na entrada, de pico e média na saída do circuito abaixo:



Figura 81 - Circuito 3.5.1 proposto



Figura 82 - Circuito 3.5.1 simulado



Figura 83 - Circuito 3.5.1 com tensões mensuradas



Figura 84 - Circuito 3.5.1 mensurado



Figura 85 - Circuito 3.5.1 osciloscópio



Figura 86 - Circuito 3.5.1 forma de onda

$$VRMS = VPK * \frac{1}{\sqrt{2}}$$

$$VRMS = 5 * \frac{1}{\sqrt{2}}$$

$$VRMS = 3,53 V$$

$$VPK (saida) = 5 - 0,7$$

$$VPK (saida) = 4,3 V$$

$$VDC (saida) = \frac{VPK}{\pi}$$

$$VDC (saida) = \frac{4,3}{\pi}$$

$$VDC (saida) = 1,36 V$$

### TABELA COMPARATIVA

| PARÂMETRO   | SIMULADO | TEÓRICO |
|-------------|----------|---------|
| VRMS        | 3,53 V   | 3,53 V  |
| VPK (saída) | 4,38 V   | 4,3 V   |
| VDC (saída) | 1,31 V   | 1,36 V  |

#### 3.5.2 - RETIFICADOR MEIA-ONDA

Calcule a tensão eficaz na entrada, de pico e média na saída do circuito abaixo:



Figura 87 - Circuito 3.5.2 proposto



Figura 88 - Circuito 3.5.2 simulado



Figura 89 - Circuito 3.5.2 mensurado



Figura 90 - Forma de onda circuito 3.5.2

$$VRMS = VPK * \frac{1}{\sqrt{2}}$$

$$VRMS = 100 * \frac{1}{\sqrt{2}}$$

$$VRMS = 70.71 V$$

$$VPK (saida) = 100 - 0.7$$

$$VPK (saida) = 99.3 V$$

$$VDC (saida) = \frac{VPK}{\pi}$$

$$VDC (saida) = \frac{99.3}{\pi}$$

$$VDC (saida) = 31.60 V$$

### TABELA COMPARATIVA

| PARÂMETRO   | SIMULADO | TEÓRICO |
|-------------|----------|---------|
| VRMS        | 70,7 V   | 70,71 V |
| VPK (saída) | 99,4 V   | 99,3 V  |
| VDC (saída) | 31,4 V   | 31,6 V  |

#### 3.5.3 - RETIFICADOR MEIA ONDA

Determine a tensão de pico da saída.

- $n = \frac{1}{2} = 0.5$
- •  $V_{p(sec)}=nV_{p(pri)}=0.5\times170=85\,V$
- $V_{p(out)} = V_{p(sec)} 0.7 = 84.3 V$
- $PIV = V_{p(sec)} = 85 V$

Figura 91 - Circuito 3.5.3 proposto



Figura 92 - Circuito 3.5.3 simulado



 $Figura\ 93\ -\ Circuito\ 3.5.3\ forma\ de\ onda$ 

$$VRMS = VPK * \frac{1}{\sqrt{2}}$$

$$VRMS = 170 * \frac{1}{\sqrt{2}}$$

$$VRMS = 120,20 V$$

$$VPK (sec) = 170 * \frac{1}{2}$$

$$VPK (sec) = 85 V$$

$$VPK (saida) = 85 - 0.7$$

$$VPK (saida) = 84.3 V$$

$$VDC (saida) = \frac{VPK}{\pi}$$

$$VDC (saida) = \frac{84.3}{\pi}$$

$$VDC (saida) = 26.83 V$$

#### TABELA COMPARATIVA

| PARÂMETRO   | SIMULADO | TEÓRICO  |
|-------------|----------|----------|
| VRMS        | 120,20 V | 120,20 V |
| VPK(sec)    | 169 V    | 85 V     |
| VPK (saída) | 84,1 V   | 84,3 V   |
| VDC (saída) | 26,7 V   | 26.83 V  |

## **3.5.4- MEIA ONDA**



Figura 94 - Circuito 3.5.4 proposto

## Considerando os dados ao lado, determine:

- Tensão eficaz no primário de T<sub>1</sub>;
- Tensão eficaz no secundário de T<sub>1</sub>;
- · Tensão média na saída;
- · Tensão de pico na saída;
- · Tensão reversa sobre o diodo;
- Corrente média na saída.

Figura 95 - Enunciado

#### **DADOS**

$$Vf = 311 * sen(377 * t)V$$

$$t = 1$$

$$Vf = 311 * \sqrt{2}$$

$$Vf = 220 V$$

$$D1 = Ideal$$

$$R1 = 5\Omega$$

$$T1: 60: 1$$



Figura 96 - Circuito 3.5.4 simulado



Figura 97 - Forma de onda circuito 3.5.4

$$VPK (sec) = 311 * \frac{1}{60}$$

$$VPK (sec) = 5,18 V$$

$$VPK (saída) = 5,18 - 0,7$$

$$VPK (saída) = 4,48 V$$

$$VDC (saída) = \frac{4,48}{\pi}$$

$$VDC (saída) = 1,43 V$$

$$Tensão reversa no diodo = 3,7 V$$

$$VRMS no secundário = \frac{220}{60} = 3,7 V$$

#### TABELA COMPARATIVA

| PARÂMETRO          | SIMULADO | TEÓRICO |
|--------------------|----------|---------|
| VRMS no primário   | 220 V    | 220 V   |
| VPK(sec)           | 10,4 V   | 5,18 V  |
| VPK (saída)        | 4,35 V   | 4,48 V  |
| VDC (saída)        | 1,26 V   | 1,43 V  |
| VRMS no secundário | 3,67 V   | 3,7 V   |
| VD                 | 3,67 V   | 3,7 V   |

#### 3.5.5- ONDA COMPLETA - CENTER TAP



Figura 98 - Circuito 3.5.6 proposto

#### **DADOS**

$$VRMS = 100 * \frac{1}{\sqrt{2}}$$

$$VRMS = 70.71 V$$



Figura 99 - Circuito 3.5.6 simulado

A escolha do transformador com TAP central de 4:1:1 se deu para que a tensão passada fosse em proporção 4:1, fazendo com que cara transformação recebesse 25 V, como o proposto no enunciado.



Figura 100 - Forma de onda do circuito 3.5.6

$$PIV = Vp(sec) - 0.7$$

$$Vpk(sec - entrada) = 100 * \frac{1}{2}$$

$$Vpk(sec - entrada) = 50 V$$

$$PIV = 50 - 0.7$$

$$PIV = 49.3 V$$

$$Vpk(sec - saída) = \frac{50}{2} - 0.7$$

$$Vpk(sec - saída) = 24.3 V$$

$$Vpk(sec - saída) = 24.3 V$$

$$VDC(saída) = \frac{2 * 24.3}{\pi}$$

$$VDC(saída) = 15.47 V$$

#### TABELA COMPARATIVA

| PARÂMETRO          | SIMULADO | TEÓRICO |
|--------------------|----------|---------|
| VPK(sec) – Entrada | 49,9 V   | 50 V    |
| VPK (sec) - Saída  | 23,3 V   | 24,3 V  |
| VDC (saída)        | 15, 4 V  | 15,47 V |
| PIV                | 49,8 V   | 49,3 V  |



Figura 101 - Circuito 3.5.6 proposto

Considerando os dados ao lado, determine:

- Tensão eficaz no primário de T<sub>1</sub>;
- Tensão eficaz no secundário de T1;
- · Tensão média na saída;
- · Tensão de pico na saída;
- · Tensão reversa sobre os diodos;
- · Corrente média na saída.

$$v_f(t) = 311 \cdot sen(377 \cdot t)V;$$

$$R_1 = 5 \Omega;$$

$$D_{1_2} = ideais;$$

$$T_1 = \begin{cases} 10:1 \\ 10:1 \end{cases}$$

Figura 102 - Dados e questionamentos circuito 3.5.6



Figura 103 - Circuito 3.5.6 simulado



Figura 104 - Forma de onda circuito 3.5.6

$$VRMS = 220 \text{ V}$$

$$VPK (sec) = 311 * \frac{1}{10}$$

$$VPK (sec) = 31,1 \text{ V}$$

$$VPK (saida) = \frac{31,1}{2} - 0,7$$

$$VPK (saida) = 14,85 \text{ V}$$

$$VDC (saida) = \frac{2 * 14,85}{\pi}$$

$$VDC (saida) = 9,45 \text{ V}$$

$$PIV = 31,1 - 0,7$$

$$PIV = 30,4 \text{ V}$$

$$VRMS \text{ no secundário } = \frac{220}{20} = 11 \text{ V}$$

$$Iavg = \frac{9,45}{5}$$

$$Iavg = 1,89 \text{ A}$$

#### TABELA COMPARATIVA

| PARÂMETRO   | SIMULADO | TEÓRICO |
|-------------|----------|---------|
| VPK(sec)    | 31,1 V   | 31,1 V  |
| VPK (saída) | 14,85 V  | 14,7 V  |

| VDC (saída) | 4,54 V | 9,45 V |
|-------------|--------|--------|
| PIV         | 31,1 V | 30,4 V |
| Iavg        | 1 A    | 1,89 A |