



## TCP:

TCP(Transfer Control Protocol)是面向连接的传输层协议,采用字节流传输数据。所谓面向连接,就是当计算机双方通信时必需经过先建立连接,然后传送数据,最后拆除连接三个过程。

## • TCP报文段格式

TCP报文段包括协议首部和数据两部分,协议首部的固定部分有20个字节,首部的固定部分后面是选项部分。



报文段首部各个字段的含义。

- 1. 源端口号以及目的端口号,各占2个字节,端口是传输层和应用层的服务 接口,用于寻找发送端和接收端的进程,一般来讲,通过端口号和IP地址,可以唯一确定一个TCP连接,在网络编程中,通常被称为一个socket接口。
- 2. 序号,占4字节,用来标识从TCP发送端向TCP接收端发送的数据字节流。
- 3. 确认序号,占4字节,包含发送确认的一端所期望收到的下一个序号,因此,确认序号应该是上次已经成功收到数据字节序号加1.
- 4. 数据偏移,占4位,用于指出TCP首部长度,若不存在选项,则这个值为20字节,数据偏移的最大值为60字节。
- 5. 保留字段占6位,暂时可忽略,值全为0
- 6. 标志位

URG(紧急):为1时表明紧急指针字段有效

ACK(确认):为1时表明确认号字段有效

PSH(推送):为1时接收方应尽快将这个报文段交给应用层

RST(复位):为1时表明TCP连接出现故障必须重建连接

SYN(同步):在连接建立时用来同步序号

FIN (终止): 为1时表明发送端数据发送完毕要求释放连接

- 7. 接收窗口占2个字节,用于流量控制和拥塞控制,表示当前接收缓冲区的大小。在计算机网络中,通常是用接收方的接收能力的大小来控制发送方的数据发送量。TCP连接的一端根据缓冲区大小确定自己的接收窗口值,告诉对方,使对方可以确定发送数据的字节数。
- 8. 校验和占2个字节,范围包括首部和数据两部分。
- 9. 选项是可选的,默认情况是不选。

#### 三次握手

连接建立、数据传送和连接释放。



第一步,是请求端(客户端)发送一个包含SYN即同步 (Synchronize)标志的TCP报文,SYN同步报文会指明客户端使用的端口 以及TCP连接的初始序号。并进入SYN\_SENT状态,等待服务器确认。

第二步,服务器收到客户端的SYN报文后,同意连接将返回一个SYN+ACK的确认报文,**并为该TCP连接分配TCP缓存和变量。**同时TCP序号被加一,ACK即确认。

第三步,客户端也返回一个确认报文ACK给服务器端,并且 也要给该连接分配缓存和变量。此包发送完毕,客户端和服务器进入 ESTABLISHED (TCP连接成功)状态。同样TCP序列号被加一,到此 一个TCP连接完成。

#### • 四次挥手



由于TCP连接是全双工的,因此每个方向都必须单独进行关闭。这原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接

在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。

- 1. TCP客户端发送一个FIN,用来关闭客户到服务器的数据传送。
- 2. 服务器收到这个FIN,它发回一个ACK,确认序号为收到的序号加1。和SYN一样,一个FIN将占用一个序号。
- 3. 服务器关闭客户端的连接,发送一个FIN给客户端。
- 4. 客户端发回ACK报文确认,并将确认序号设置为收到序号加 1。

## UDP:

是TCP/IP协议簇中无连接的运输层协议。

#### • UDP协议格式格式



由两部分组成:首部和数据。首部仅有8个字节,包括源端口和目的端口,长度(UDP用于数据报的长度)、校验和。

1. TCP (传输控制协议)是面向连接的,传输数据安全,稳定,效率相对较低。

2. UDP (用户数据报协议)是面向无连接的,传输数据不安全,效率较高。

UDP方式的同一个网络连接对象,可以发送到达不同服务器端IP或端口的数据包,这点是TCP方式无法做到的。

# HTTP协议:

超文本传输协议。互联网上应用最广泛的网络协议,是应用层协议。基于TCP协议之上的请求/响应式协议,即客户端和服务端建立连接后,向服务端发送请求,服务器接到请求后,给予相应的响应信息。默认端口号80。

## • HTTP报文

HTTP协议是基于TCP协议之上的请求/响应式协议 请求报文格式:



▼ Response Headers view parsed HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: text/html;charset=utf-8

Content-Length: 38

Date: Thu, 28 Jul 2016 03:14:14 GMT

HTTP请求报文由请求行、首部行和实体主体组成,由浏览器发送给服务器。上面这张图中 SP表示空格, cr If表示回车和换行。

## 响应报文格式:



▼ Request Headers view parsed

GET /testssm/user/usertest HTTP/1.1

Host: 115.159.149.87:8080

Connection: keep-alive

Cache-Control: max-age=0

Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.106 Safari/537.36

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,\*/\*;q=0.8

Accept-Encoding: gzip, deflate, sdch
Accept-Language: zh-CN,zh;q=0.8

## 由状态行、首部行和实体主体组成。

## • HTTP请求方法和响应状态码

| 方法 (操作) | 含义                  |  |
|---------|---------------------|--|
| OPTION  | 请求一些选项的信息           |  |
| GET     | 请求读取由 URL 所标志的信息    |  |
| HEAD    | 请求读取由 URL 所标志的信息的首部 |  |
| POST    | 给服务器添加信息            |  |
| PUT     | 在指明的 URL 下存储一个文档    |  |
| DELETE  | 删除 URL 指明的资源        |  |
| TRACE   | 进行环回测试的请求报文         |  |
| CONNECT | 用于代理服务器             |  |

| 状态码 | 含义    | 例子                 |
|-----|-------|--------------------|
| 1xx | 通知信息  | 请求收到了或正在处理         |
| 2xx | 成功    | 接受或知道了             |
| 3xx | 重定向   | 表示要完成的请求还要采取进一步的动作 |
| 4xx | 客户差错  | 请求中有语法错误或不能完成      |
| 5xx | 服务器差错 | 服务器失效、无法响应或完成请求    |

#### HTTPS和HTTP

HTTPS(全称: Hyper Text Transfer Protocol over Secure Socket Layer),是以安全为目标的HTTP通道。即HTTP下加入SSL层,HTTPS的安全基础是SSL,加密的详细内容就需要SSL。它是一个URI scheme(抽象标识符体系),句法类同http:体系。用于安全的HTTP数据传输。https:URL表明它使用了HTTP,但HTTPS存在不同于HTTP的默认端口及一个加密/身份验证层(在HTTP与TCP之间)。超文本传输协议HTTP协议被用于在Web浏览器和网站服务器之间传递信息。HTTP协议以明文方式发送内容,不提供任何方式的数据加密,如果攻击者截取了Web浏览器和网站服务器之间的传输报文,就可以直接读懂其中的信息,因此HTTP协议不适合传输一些敏感信息,比如信用卡号、密码等。

为了解决HTTP协议的这一缺陷,需要使用另一种协议:安全套接字层超文本传输协议 HTTPS。为了数据传输的安全,HTTPS在HTTP的基础上加入了SSL协议,SSL依靠证书来 验证服务器的身份,并为浏览器和服务器之间的通信加密。

#### HTTPS和HTTP的区别主要为以下四点:

- 1、https协议需要到ca申请证书,一般免费证书很少,需要交费。
- 2、http是超文本传输协议,信息是明文传输,https 则是具有安全性的ssl加密传输协议。
- 3、http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后者是443。
- 4、http的连接很简单,是无状态的;HTTPS协议是由SSL+HTTP协议构建的可进行加密传输、身份认证的网络协议,比http协议安全。

数据封装(Data Encapsulation)是指将协议数据单元(PDU)封装在一组协议头和协议尾中的过程。在OSI七层参考模型中,每层主要负责与其它机器上的对等层进行通信。该过程是在协议数据单元(PDU)中实现的,其中每层的PDU一般由本层的协议头、协议尾和数据封装构成。



## • 数据发送处理过程

- (1)应用层将数据交给传输层,传输层添加上TCP的控制信息(称为TCP头部),这个数据单元称为段(Segment),加入控制信息的过程称为封装。然后,将段交给网络层。
- (2)网络层接收到段,再添加上IP头部,这个数据单元称为包(Packet)。然后,将包交给数据链路层。
- (3) 数据链路层接收到包,再添加上MAC头部和尾部,这个数据单元称为帧(Frame)。然后,将帧交给物理层。
- (4)物理层将接收到的数据转化为比特流,然后在网线中 传送。

## • 数据接收处理过程

- (1)物理层接收到比特流,经过处理后将数据交给数据链路层。
- (2)数据链路层将接收到的数据转化为数据帧,再除去 MAC头部和尾部,这个除去控制信息的过程称为解封,然后将包交给网 络层。
- (3) 网络层接收到包,再除去IP头部,然后将段交给传输层。
- (4)传输层接收到段,再除去TCP头部,然后将数据交给应用层。

## IP地址:

用来标识网络中的一个通信实体的地址。IPv4协议,该协议规定每个IP地址由4个0-255之间的数字组成,例如10.0.120.34。

- 1. 127.0.0.1 本机地址
- 2. 192.168.0.0—192.168.255.255为私有地址,属于非注 册地址,专门为组织机构内部使用。

#### • 环回地址

环回地址是主机用于向自身发送通信的一个特殊地址(也就是一个特殊的目的地址)。IPv4的环回地址为: 127.0.0.0到127.255.255.255都是环回地址(只是有两个特殊的保留),此地址中的任何地址都不会出现在网络中。网络号为127的地址根本就不是一个网络地址(因为产生的IP数据报就不会到达外部网络接口中,是不离开主机的包)

可以这么说:同一台主机上的两项服务若使用环回地址而非分配的主机地址,就可以绕开TCP/IP协议栈的下层。(也就是说:不用再通过什么

链路层,物理层,以太网传出去了,而是可以直接在自己的网络层,运输层进行处理了)

#### 127.0.0.1

当操作系统初始化本机的TCP/IP协议栈时,设置协议栈本身的IP地址为127.0.0.1 (保留地址),并注入路由表。当IP层接收到目的地址为127.0.0.1 (准确的说是:网络号为127的IP)的数据包时,不调用网卡驱动进行二次封装,而是立即转发到本机IP层进行处理,由于不涉及底层操作。因此,ping 127.0.0.1一般作为测试本机TCP/IP协议栈正常与否的判断之一。

所以说: 127.0.0.1是保留地址之一,只是被经常的使用,来检验本机 TCP/IP协议栈而已。

如果我们可以ping通的话,就说明:本机的网卡和IP协议安装都没有问题。(跟我们当前主机有没有联网没有一点关系)

```
doubi@doubi-Inspiron-3421:~$ ping 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.044 ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.060 ms

64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.054 ms

64 bytes from 127.0.0.1: icmp_seq=4 ttl=64 time=0.067 ms

64 bytes from 127.0.0.1: icmp_seq=5 ttl=64 time=0.061 ms
```

## localhost

localhost首先是一个域名(如同:www.baidu.com),也是本机地址,它可以被配置为任意的IP地址(也就是说,可以通过hosts这个文件进行更改的),不过通常情况下都指向:(如下)

IPv4:表示 127.0.0.1

IPv6: 表示 「::1]

整个127.\*网段通常被用作loopback网络接口的默认地址,按照惯例通常设置为127.0.0.1。我们当前这个主机上的这个地址,别人不能访

问,即使访问,也是访问自己。因为每一台TCP/IP协议栈的设备基本上都有local/127.0.0.1

```
lo Link encap:本地环回
inet 地址:127.0.0.1 掩码:255.0.0.0
inet6 地址: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 跃点数:1
接收数据包:62310 错误:0g丢弃d0 过载:0帧数:0
发送数据包:62310 错误:0 丢弃:0 过载:0 载波:0
碰撞:0 发送队列长度:0
接收字节:8813653 (8.8 MB) 发送字节:8813653 (8.8 MB)
```

#### • 本机IP

本机IP, 我们可以理解为本机有三块网卡,一块网卡叫做loopback(虚拟网卡),一块叫做ethernet(有线网卡),一块叫做wlan(你的无线网卡),

联网,网卡传输,受防火墙和网卡限制用于本机和外部访问

## 端口:

IP地址用来标识一台计算机,但是一台计算机上可能提供多种网络应用程序,用到端口区分这些不同的程序。端口号的范围是0到65536,但是0到1024是为特权服务保留的端口号。域名:

Domain Name System,域名系统。一个IP地址可以对应多个域名,一个域名只能对应一个IP地址。在网络中传输的数据,全部是以IP地址作为地址标识,所以在实际传输数据以前需要将域名转换为IP地址,实现这种功能的服务器称之为DNS服务器,叫做域名解析。例如当用户在浏览器输入域名时,浏览器首先请求DNS服务器,将域名转换为IP地址,然后将转换后的IP地址反馈给浏览器,然后再进行实际的数据传输。当DNS不正常工作时,只能通过IP地址访问设备。所以IP地址的使用要比域名通用一些。

#### URL:

IP地址唯一标识了Internet上的计算机,而URL则标识了这些计算机上的资源。类 URL 代表一个统一资源定位符,在www上,每一信息资源都有统一且唯一的地址,该地址就叫URL(Uniform Resource Locator),它是www的统一资源定位符。URL由4部分组成:协议、存放资源的主机域名、资源文件名和端口号。如果未指定该端口号,则使用协议默认的端口。例如http 协议的默认端口为 80。 在浏览器中访问网页时,地址栏显示的地址就是URL。

http://mail.163.com/index.html

- 1) http://:这个是协议,也就是HTTP超文本传输协议,也就是网页在网上传输的协议。
- 2) mail: 这个是服务器名,代表着是一个邮箱服务器,所以是mail.
- 3)163. com:这个是域名,是用来定位网站的独一无二的名字。
- 4) mail. 163. com: 这个是网站名,由服务器名+域名组成。
- 5)/:这个是根目录,也就是说,通过网站名找到服务器,然后在服务器存放网页的根目录
- 6:) index.html:这个是根目录下的默认网页(当然,163的默认网页是不是这个我不知道,只是大部分的默认网页,都是index.html)
- 7) http://mail.163.com/index.html:这个叫做URL,统一资源定位符,全球性地址,用于定位网上的资源。