Ramsès Djidjou-Demasse

Dynamical Systems, Population Biology of Infectious Diseases

MIVEGEC (CNRS 5290, IRD 224, UM) 911, avenue Agropolis BP 64501 34394 Montpellier Cedex 5, France +33(0)4 67 41 51 05 +33(0)4 67 41 62 99 \times ramses.djidjoudemasse@ird.fr djidjoudemasse.com/

I focus on population dynamics to understand fundamental processes in epidemiology, ecology, and evolution of infectious disease. My works are based on a combination of Mathematical analysis and Modeling with a particular focus on Dynamical Systems.

Research experience & education

- Since 2018 Chargé de recherche IRD, (tenured researcher), Laboratoire MIVEGEC, Montpellier, France.
 - 2018 Post-Doc INSERM-Paris and consulting for the medical aid organization ALIMA, Decision analysis tools to evaluate interventions designed for infectious diseases prevention, control, and care, Mentor: Pr Y. Yazdanpanah, Dr J. Guedj.
- 2015-2017 **Post-Doc, AgreenSkills fellow, INRAe & IMB Bordeaux**, Mathematics applied to theoretical evolutionary epidemiology of plant diseases: data and models to sustainably manage varietal quantitative resistance, Mentor: Dr F. Fabre, Dr J.B. Burie, Pr A. Ducrot.
- 2011-2015 **PhD student Mathematics/Modeling**, *Univ. of Yaoundé 1, Cameroon*, Supervisors: Pr S. Bowong (Univ. Douala, Cameroon), Pr J.J. Tewa (Univ. Yaoundé 1, Cameroon, Reporters: Pr J. Arino (Univ. Manitoba, Canada), Pr G. Ngwa (Univ. Buea, Cameroon), Pr N. Noutchegueme (Univ. Yaoundé 1, Cameroon). Defended: June 25, 2015.
- 2011,2012,2014 **PhD research internship**, Institut Pasteur Paris, Mathematics Institute of Bordeaux, Lab. of Mathematics and Applications, Metz, Mentors: Dr S. Cauchemez, Pr A. Ducrot, Pr G. Sallet.
 - 2009-2011 Magistère in Mathematics, University of Yaoundé 1, Cameroon (Delay differential equations and Applications to ecology).

Teaching

- 2021 **Ouagadougou**, Organizer & Trainer for the Structural Training Projects Mathematics and Modeling, PSF-MOMA.
- 2020 **Bobo-Dioulasso**, Organizer & Trainer of a one-week workshop, Introduction to Mathematical Modeling of Infectious Diseases.
- 2019 Conakry, Trainer during a one-week workshop, Global Changes and Emerging Infectious Risks.
- since 2017 Montpellier, Bordeaux, Paris, Optional teaching on Dynamical Systems and Modelling, Approximately 10h of lecture per year in French Universities.
- 2012-2015 Yaoundé, Monitorat. Higher Teacher's Training College, University of Yaounde 1, Level: Bacherlor degree. Scientific computing, On average, 32 hours of lectures per year (in two years) and 28 hours of practical work per year (in 3 years).
- 2011-2014 Yaoundé, Monitorat. National Advanced School of Engineering, University of Yaounde 1, Mathematical analysis, Statistics-Probability, On average, 100 hours of tutorials per year (in 3 years).

Publications

25 peer reviewed research articles since 2012 all according to the Web of Science and 1 book chapter. List of publications (HAL) or details below.

Mentoring and supervision

- Post-doctoral fellows: Quentin Richard (2019-2021); Moctar Kande (2021); Hyacinthe Ndongmo (2022-); Luther Mann-Manyombe (2022-); Abdoulaye Mendy (2022-).
- PhD Students: Mboya Ba, UCAD, Dakar (2018-2021).
- 5 MSc students supervised and co-supervised since 2016.

Invited speaker at international conferences

2020 COVID-19 Dynamics & Evolution, UC San Diego School of Medicine, Virtual conference.

- 2019 Fifth Conference on Computational and Mathematical Population Dynamics, Florida, USA.
- 2017 Eighth Workshop Dynamical Systems Applied to Biology and Natural Sciences, Evora, Portugal.

Funding

- 2015-2017 AgreenSkills international postdoctoral fellow.
- 2021-2023 Structural Training Projects (PSF-MOMA), Mathematical Modeling in Epidemiology.
- 2022-2024 Young team associated with the IRD (JEAI-DYNAMISM), DYNamique Adaptative des Maladies InfectieuseS, Modélisation Mathématique en Écologie et Évolution.
- 2022-2025 ANR-JCJC QUASAR, QUantitative Antimicrobial resistance, control Strategies and evolutionary Adaptation of parasitical virulence and Resistance.

Conference organisation

2020 Member of the scientific committee of the conference Ecology and Evolution of Infectious Diseases, Montpellier.

Other collective duties

- 2021- Team leader (Population-Community-Dynamics) research group within MIVEGEC
- 2021-2023 Coordinator of the Structural Training Project MOMA on Mathematics and Modelling funded by the IRD for three years
 - 2019- Member of a thesis committee, UCL Belgium
 - 2018- Organiser of the weekly seminars in Modelling of Infectious Diseases, Montpellier

Popular science (in French)

Articles

• R Djidjou-Demasse, C Selinger, MT Sofonea. Épidémiologie mathématique et modélisation de la pandémie de Covid-19 : enjeux et diversité [Mathematical epidemiology and modeling of the Covid-19 pandemic: issues and diversity]. Rev Francoph Lab. 2020(526):63-69. PDF

Interviews

- Science&Vie, Confinement: comment en sortir?, Mar 2020.
- ECHOSCIENCES Occitanie, Casser la propagation du COVID : quelle est la stratégie optimale?
- ECHOSCIENCES Occitanie, COVID-19: décrypter pour endiguer.

List of publications

Accepted, in press and published articles

- 1. (2022-2) B. Reyné, Q. Richard, C. Selinger, M. T. Sofonea, R. Djidjou-Demasse, S. Alizon. Non-Markovian modelling highlights the importance of age structure on Covid-19 epidemiological dynamics. Mathematical Modelling of Natural Phenomena. PDF
- 2. (2022-1) R Djidjou-Demasse, A Ducrot, N Mideo, G Texier. Understanding dynamics of Plasmodium falciparum gametocytes production: Insights from an age-structured model. **Journal of Theoretical Biology**. PDF.
- 3. (2021-7) R. Djidjou-Demasse, M. T. Sofonea, M. Choisy, S. Alizon. Within-host evolutionary dynamics of antimicrobial quantitative resistance. **Peer Community in Mathematical and Computational Biology**. PDF.
- 4. (2021-6) F. Fabre, J.B. Burie, A. Ducrot, S. Lion, Q. Richard, R. Djidjou-Demasse. An epi-evolutionary model for predicting the adaptation of spore-producing pathogens to quantitative resistance in heterogeneous environments. **Evolutionary Applications**. PDF.
- 5. (2021-5) Q. Richard, M. Choisy, T. Lefèvre, R. Djidjou-Demasse. Human-vector malaria transmission model structured by age, time since infection and waning immunity. **Nonlinear Analysis: Real World Applications**. PDF
- 6. (2021-4) M. T. Sofonea, B. Reyné, B. Elie, R. Djidjou-Demasse, C. Selinger, Y. Michalakis, S. Alizon. Memory is key in capturing COVID-19 epidemiological dynamics. **Epidemics**, 2021. PDF
- 7. (2021-3) M. Ba, R. Djidjou-Demasse, M. Lam, J-J Tewa. Optimal intervention strategies of staged progression HIV infections through an age-structured model with probabilities of ART drop out. **Mathematical Modelling of Natural Phenomena**, 16, 2021. PDF
- 8. (2021-2) Q Richard, S. Alizon, M Choisy, M. T. Sofonea, <u>R Djidjou-Demasse</u>. Age-structured non-pharmaceutical interventions for optimal control of COVID-19 epidemic. **PLOS Computational Biology**, 2021. <u>PDF</u>
- 9. (2021-1) R Djidjou-Demasse, Samuel Alizon, Mircea T. Sofonea. Within-host bacterial growth dynamics with both mutation and horizontal gene transfer. **Journal Of Mathematical Biology** 82, 16 (2021). PDF
- 10. (2020-1) G. J. Abiodun, B. O. Adebiyi, R. O. Abiodun, O. Oladimeji, K. E. Oladimeji, A. M. Adeola, O. S. Makinde, K. O. Okosun, R. Djidjou-Demasse, Y. J. Semegni, K. Y. Njabo, P. J. Witbooi, A. Aceves. Investigating the Resurgence of

- Malaria Prevalence in South Africa Between 2015 and 2018: A Scoping Review. The Open Public Health Journal, 13(1). PDF
- 11. (2019-3) R. Djidjou-Demasse, G. Abiodun, A. Adeola, J. Botai. Development and analysis of a malaria transmission mathematical model with seasonal mosquito life-history traits. **Studies in Applied Mathematics**, Wiley-Blackwell. PDF
- 12. (2019-2) J-B Burie, R Djidjou-Demasse, A Ducrot. Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system. **Discrete and Continuous Dynamical Systems Series B**, American Institute of Mathematical Sciences, 2019, 22 (11). PDF
- 13. (2019-1) Abiodun, G.J.; Makinde, O.S.; Adeola, A.M.; Njabo, K.Y.; Witbooi, P.J.; R. Djidjou-Demasse; Botai, J.O. . A Dynamical and Zero-Inflated Negative Binomial Regression Modelling of Malaria Incidence in Limpopo Province, South Africa. International Journal of Environmental Research and Public Health, MDPI, 2019, 16 (11), pp.2000. PDF
- 14. (2018-2) J.B. Burie, R. Djidjou-Demasse, A. Ducrot. Asymptotic and transient behaviour for a nonlocal problem arising in population genetics. European Journal of Applied Mathematics. PDF
- 15. (2018-1) A. Rezgui, J. Vallance, A. Ben Ghnaya-Chakroun, E. Bruez, M. Dridi, R. Djidjou-Demasse, P. Rey, and N. Sadfi-Zouaoui. Study of Lasidiodiplodia pseudotheobromae, Neofusicoccum parvum and Schizophyllum commune, three pathogenic fungi associated with the Grapevine Trunk Disease (GTDs) in the North of Tunisia. European Journal of Plant Pathology, DOI: 10.1007/s10658-018-1458-z, 2018.
- 16. (2017-) R. Djidjou-Demasse, B. Moury, F. Fabre. Mosaics of are a more versatile means of achieving disease control than pyramids in most agricultural landscapes. **New Phytologist**, 216(1), 239-253, 2017. PDF
- 17. (2016-2) R. Djidjou-Demasse, A. Ducrot, F. Fabre. Steady state concentration for a phenotypic structured problem modelling the evolutionary epidemiology of spore producing pathogens. Mathematical Models and Methods in Applied Sciences, 2016. PDF
- 18. (2016-1) R. Djidjou Demasse, J.J. Tewa, S. Bowong, Y. Emvudu. Optimal control of an age-structured model for the transmission of hepatitis B with differential infectivity. **Journal Of Mathematical Biology**, Vol. 73(2):305-33, 2016. PDF
- 19. (2015-) P. Tchinda, R. Djidjou-Demasse, J.J. Tewa, M.A. Aziz-Alaoui. Bifurcation analysis and optimal harvesting of a delayed predator-prey model. **International Journal of Bifurcation and Chaos**, Vol. 25 (1), 2015.
- 20. (2014-) R. Djidjou-Demasse, J.J. Tewa, S. Bowong. Analysis of an Age-structured SIL model with demographics process and vertical transmission, ARIMA Journal, Vol. 17:23-52, 2014. PDF
- 21. (2013-2-) R. Djidjou Demasse, A. Ducrot. An age-structured within-host model for multi-strain malaria infections. **SIAM Journal on Applied Mathematics**, Vol. 73(1):572-593, 2013. PDF
- 22. (2013-1-) Y. Emvudu, R. Djidjou-Demasse, D. Djeudeu. Optimal control using state dependent Riccati equations in a tuberculosis model. Computational and Applied Mathematics, 32(2), 191-210,2013. PDF
- 23. (2012-) J.J.Tewa, R. Djidjou-Demasse, S. Bowong. Predator-prey model with prey harvesting, Holling response function of type III and SIS disease. Biomath 1, 2012. PDF
- 24. (2011-) Y. Emvudu, R. Djidjou-Demasse, D. Djeudeu. Optimal Control of the Lost to Follow Up in a Tuberculosis Model. Computational and Mathematical Methods in Medicine, Vol. 2011. PDF

Book chapter

R. Djidjou-Demasse, A. Mendy, Lam Mountaga, J. J. Tewa. Analysis of an Age-Structured SEIL Model with Demographics Process and Lost of Sight Individuals. R. Brewer (Ed.). (2015). Ordinary and Partial Differential Equations [Chapter 2].

Preprints

- 1. R. Djidjou-Demasse, C. Lemdjo, O. Seydi. Global dynamics of a spore producing pathogens epidemic system with nonlocal diffusion process PDF
- 2. R. Djidjou-Demasse, M. Mann-Manyombe, O. Seydi, I. Yatat-Djeumen. Differential preferences for RBCs is key for Plasmodium species evolutionary diversity within human host PDF
- 3. M T Sofonea, B Reyné, B Elie, R Djidjou-Demasse, C Selinger, Y Michalakis, S Alizon. Epidemiological monitoring and control perspectives: application of a parsimonious modelling framework to the COVID-19 dynamics in France PDF
- 4. R Djidjou-Demasse, Y. Michalakis, M Choisy, M. T. Sofonea, S. Alizon. Optimal COVID-19 epidemic control until vaccine deployment PDF.
- 5. V. Madelain, C. Passaes, A. Millet, V. Avettand-Fenoel, <u>R. Djidjou-Demasse</u>, N. Dereuddre-Bosquet, R. Le Grand, C. Rouzioux, B. Vaslin, A. Saez-Cirion, J. Guedj. Modeling acute <u>SIV</u> infection suggests that early establishment of cytotoxic response drives the virological control, and unravels heterogeneous infected cells populations <u>PDF</u>.