Aprenentatge Automàtic 2

GCED

Lluís A. Belanche belanche@cs.upc.edu

Soft Computing Research Group
Dept. de Ciències de la Computació (Computer Science)
Universitat Politècnica de Catalunya

2021-2022

LECTURE 3: From the Perceptron to the Suport vector machine (SVM). The SVM for classification. VC-dimension for the SVMC

Motivation: hyperplanes with a larger (smaller) **margin** have reduced (increased) chances to separate the data ("complexity" is smaller (larger)).

Formalisation reminder

Definition 1 The functional margin γ_i^F of an example (x_i, y_i) wrt an hyperplane ω, b is

$$\gamma_i^F := y_i g(\mathbf{x}_i) = y_i (\boldsymbol{\omega}^\top \mathbf{x}_i + b)$$

We note that $\gamma_i^F > 0$ iff (x_i, y_i) is correctly classified by the hyperplane.

Definition 2 The geometric margin γ_i^G of an example (x_i,y_i) is the functional margin wrt the hyperplane $\frac{\omega}{\|\omega\|}, \frac{b}{\|\omega\|}$.

We note that $\gamma_i^G=d(x_i,\pi)$, where π stands for the hyperplane $\pi:\omega^{\top}x+b=0$. \P

Formalisation reminder

Definition 3 The margin Γ of a dataset D is the maximum geometric margin over all possible hyperplanes:

$$\Gamma(D) := \sup_{(\boldsymbol{\omega},b) \in \mathbb{R}^m \times \mathbb{R}} \min_{i=1,\dots,n} \gamma_i^G(\boldsymbol{\omega},b)$$

Any hyperplane such that:

- 1. it realises Γ on D
- 2. all its functional margins $\gamma_i^F > 0$

is known as a maximum margin hyperplane or MMH.

Formalisation

- We first set for the goal of learning a maximum margin hyperplane.
- It turns out that, if it exists, such a solution hyperplane is not unique (there is again an infinite number!)
- lacksquare Rescaling $m{\omega}, b$ such that $|m{\omega}^{ op} x_i + b| = 1$ for the data points closest to the hyperplane, we obtain $|m{\omega}^{ op} x_i + b| \geq 1$ for all points
- The **support vectors** (SVs) are those data points $\{x_i \text{ for which } |\omega^\top x_i + b| = 1\}$
- We introduce the loss function $L(y, \omega^T x) := \max(1 \gamma_i^F, 0)$ (called the **hinge loss**)

Formalisation

■ The **margin** becomes now twice the distance of any SV to the plane π :

$$2d(x_{\mathsf{SV}},\pi) = \frac{2}{\|\omega\|}, \quad \P$$

since $|g(x_{SV})| = 1$.

■ Therefore we can find the **canonical** MMH by solving

$$\max_{oldsymbol{\omega},b} \left\{ rac{2}{\|oldsymbol{\omega}\|} \ / \ y_i \left(oldsymbol{\omega}^{ op} oldsymbol{x}_i + b
ight) \geq 1, \qquad 1 \leq i \leq n
ight\}$$

Geometrical view of the canonical MMH

A look on what's to come

1. The solution for ω can be expressed as $\omega = \sum_{i=1}^n y_i \alpha_i x_i, \ \alpha_i \geq 0.$

(as a consequence of the versatile Representer theorem)

- 2. A fraction of the training data vectors will have $\alpha_i = 0$ (sparsity, as a consequence of the chosen hinge loss function)
- 3. The x_i for which $\alpha_i > 0$ will coincide with the **support vectors**
- 4. The SVM classifier is written

$$f_{\mathsf{SVM}}(x) = \mathsf{sgn}(\boldsymbol{\omega}^{\top} x + b) = \mathsf{sgn}\left(\sum_{i=1}^{n} y_i \alpha_i x^{\top} x_i + b\right)$$

Formulation

$$egin{array}{ll} \mathbf{minimize} & rac{1}{2} \| oldsymbol{\omega} \|^2 \ & - \end{array}$$

subject to $y_i(\boldsymbol{\omega}^{\top} \boldsymbol{x}_i + b) \ge 1, \qquad 1 \le i \le n$

This is solved (numerically) by QP techniques:

- Quadratic (therefore convex) function subject to linear constraints
- Unique solution (or set of equivalent ones)
- Therefore, no local minima

Formulation

For the set of constraints to be satisfied, the data set must be linsep; this is a very unrealistic requirement in practice ...

- We could aim at minimizing the **number** of violated constraints $|\{n \ / \ y_i (\omega^\top x_i + b) < 1\}|$, but this turns out to be NP-hard ...
- Instead, we can minimize the total **hinge loss**, a convex function of ω :

$$\underset{\boldsymbol{\omega},b}{\text{minimize}} \qquad \frac{1}{2} \|\boldsymbol{\omega}\|^2 + C \sum_{i=1}^n \max(1 - \gamma_i^F, 0), \qquad C > 0$$

Formulation

 L_{01} is the 0/1 loss; L_2 is the square loss; L_h is the hinge loss

Margin violations

■ This problem may be rewritten as another QP, by introducing a set of margin violations ε_i —called **slack** variables in optimization—, for each x_i :

$$\underset{\boldsymbol{\omega},b,\{\varepsilon_i\}}{\text{minimize}} \qquad \frac{1}{2} \|\boldsymbol{\omega}\|^2 + C \sum_{i=1}^n \varepsilon_i$$

subject to
$$y_i(\boldsymbol{\omega}^{\top} \boldsymbol{x}_i + b) \geq 1 - \varepsilon_i$$
 and $\varepsilon_i \geq 0 \ (1 \leq i \leq n)$

- This is a **soft** margin ($\varepsilon_i > 0$ implying x_i would violate the original constraint)
- For a training error to occur, $\varepsilon_i > 1$ and so $\sum_{i=1}^n \varepsilon_i$ is an upper bound on the number of training errors
- The optimal slacks satisfy $\varepsilon_i = \max(1 \gamma_i^F, 0)$

SVM Lagrangian (primal)

We now construct the **Lagrangian**:

$$\mathcal{L} = \frac{1}{2} \|\boldsymbol{\omega}\|^2 - \sum_{i=1}^n \alpha_i \left\{ y_i \left(\boldsymbol{\omega}^\top \boldsymbol{x}_i + b \right) - 1 + \varepsilon_i \right\} + C \sum_{i=1}^n \varepsilon_i - \sum_{i=1}^n \mu_i \varepsilon_i$$

- The $\alpha_i, \mu_i \geq 0$ are the **Lagrange multipliers**; the μ_i ensure that $\varepsilon_i \geq 0$
- The solution is a **saddle point** of \mathcal{L} : minimum w.r.t. ω, b and the ε_i and maximum w.r.t. the α_i and μ_i

Lagrangian form

The gradient of \mathcal{L} with respect to $\boldsymbol{\omega}, b$ and ε_i must vanish:

$$\frac{\partial \mathcal{L}}{\partial b} = \sum_{i=1}^{n} \alpha_i y_i = 0, \qquad \frac{\partial \mathcal{L}}{\partial \boldsymbol{\omega}} = \boldsymbol{\omega} - \sum_{i=1}^{n} \alpha_i y_i \, \boldsymbol{x}_i = 0, \qquad \frac{\partial \mathcal{L}}{\partial \varepsilon_i} = C - \alpha_i - \mu_i = 0$$

In addition, the KKT complementarity conditions must hold:

$$\alpha_i \Big(y_i \left(\boldsymbol{\omega}^\top \boldsymbol{x}_i + b \right) - 1 + \varepsilon_i \Big) = 0 \qquad (1 \le i \le n)$$

Dual formulation

The Lagrangian \mathcal{L} is convex; its optimization is equivalent to the maximization of its concave **dual problem** \mathcal{L}_D :

$$\underset{\boldsymbol{\omega},b,\{\alpha_i\}}{\mathbf{minimize}} \qquad \mathcal{L}_D = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j \, \boldsymbol{x_i}^\top \boldsymbol{x_j}$$

subject to
$$0 \le \alpha_i \le C$$
 $(1 \le i \le n)$, and $\sum_{i=1}^n \alpha_i y_i = 0$

- lacktriangle Neither $\mu_i,arepsilon_i,m{\omega},b$ appear in the dual form; maximization is only w.r.t. the $lpha_i$
- This optimization problem is expressed only in terms of inner products of the data points: the dual lends itself to kernelisation
- \blacksquare How many free parameters? n (independent of data dimension)

Dual formulation

A closer look at the KKT complementarity conditions:

- ullet $\alpha_i = 0$ implies $y_i g(x_i) > 1$ and $\varepsilon_i = 0$ $(x_i \text{ is not a SV})$
- \bullet $\alpha_i \in (0,C)$ implies $y_i g(x_i) = 1$ and $\varepsilon_i = 0$ $(x_i \text{ is a non-bound SV})$
- $\alpha_i = C$ implies $y_i \ g(x_i) < 1$ and $\varepsilon_i > 0$ $(x_i \text{ is a bound SV})$ (in particular, $\varepsilon_i > 1$ implies x_i is a training error)

The SVM goes non-linear

Recall the idea of mapping input data into some Hilbert space (called the **feature space**) via a non-linear mapping $\phi: \mathcal{X} \to \mathcal{H}$

The associated kernel function is $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}, \ x, x' \in \mathcal{X}$

SVM kernelization

- lacktriangle We now substitute $oldsymbol{x}_i$ by $\phi(oldsymbol{x}_i)$, then build the MMH in ${\cal H}$
- The dual of the new QP problem is formulated exactly as before, replacing $x_i^\top x_j$ with $\phi(x_i)^\top \phi(x_j)_\mathcal{H} = k(x_i,x_j)$
- The final SVM classifier becomes:

$$f_{\text{SVM}}(x) = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_i y_i k(x, x_i) + b\right)$$

LOO bounds (II)

Theorem 1 The LOOCV error of a stable $SVM^{(*)}$ on a set of training patterns x_i is bounded by $|\{i/(2\alpha_iR^2+\varepsilon_i)\geq 1\}|/n$, where R^2 is an upper bound on k(x,x) and $k(x,x')\geq 0$.

- This quantity can be extracted easily from the solution
- This LOOCV error is an unbiased estimate of true error

^(*) A SVM is stable if there is at least one non-bound SV (see *Estimating the Generalization Performance of a SVM Efficiently*. T. Joachims; In ICML, 2000)

Final remarks (I)

- The fact that the **MMH** is determined only by the support vectors is most remarkable, since usually this number will be usually small
- The **support vectors** (SVs) are:
 - 1. the only training examples that define the solution
 - 2. the most difficult examples to classify
- This means all the **relevant information** in the data set is summarized by the SVs: we would have obtained the same result by using *only* the SVs from the outset

Final remarks (II)

- The SVM is specially well suited for "large m, low n" problems, because:
 - 1. complexity grows with n (non-parametric model)
 - 2. space requirements (the kernel matrix) also grows with n
 - 3. generalization error does not depend on m (theoretically)
- The "architecture" is determined automatically by the method (not by experimentation, as in neural networks)

VC dimension

For a two-class classifier, the **VC dimension** ϑ is the maximum number of points that can be separated in all possible 2^{ϑ} ways (**shattered**) by using functions representable by the classifier.

- Note it is *sufficient* that one set of ϑ points exists that can be shattered for the VC dimension to be at least ϑ
- If the VC dimension of a class is ϑ , this means there is at least one set of ϑ points that can be shattered by members of the class. It does not mean that every set of ϑ points can be shattered
- If no set of $\vartheta+1$ points can be shattered by members of the class, then the VC dimension of the class is at most ϑ

A basic example

- In \mathbb{R}^2 we can shatter these three points (VC dim is ≥ 3)
- lacktriangle No set of four or more points can be shattered (VC dim is < 4)

Why is the VC dimension relevant?

Theorem 2 (Vapnik and Chervonenkis, 1974). Let D be an i.i.d data sample of size n and \mathcal{Y} a class of parametric binary classifiers. Let ϑ denote the VC dimension of \mathcal{Y} . Take $y \in \mathcal{Y}$ with empirical error $R_n(y)$ on D. For all $\eta > 0$ it holds true that, with probability at least $1 - \eta$, the true error of y is bounded by:

$$R(y) \le R_n(y) + H(n, \vartheta, \eta)$$

where

$$H(n,\vartheta,\eta) := \sqrt{\frac{\vartheta(\ln(2n/\vartheta) + 1) - \ln(\eta/4)}{n}}$$

More than an intuition

- lacksquare Separating hyperplanes in \mathbb{R}^d have VC dimension d+1
- When we use a feature map into a very high dimension $D \in (\mathbb{N} \cup \{\infty\})$, VC dimension will grow accordingly
- If we bound the margin of the hyperplanes, we limit VC dimension (therefore, we have an explicit control on complexity)

More than an intuition

Theorem 3 Consider canonical hyperplanes $f(x) = \operatorname{sgn}(\omega^{\top}x + b)$ and a data set $D = \{(x_1, t_1), \dots, (x_n, t_n)\}$, with $x_i \in \mathbb{R}^m$ and $y_i \in \{-1, +1\}$. The subclass of linear classifiers with margin μ has VC dimension ϑ bounded by

$$\vartheta \leq \min\left(\left\lceil\frac{R^2}{\mu^2}\right\rceil, m\right) + 1$$

where R is the radius of the smallest sphere centered at the origin containing the x_i .