14

Pseudo-Random Generator (PRG)

G deterministic is PRG if for all seed with |seed| = n:

1.
$$l(n) = |G(s)| > |s| = n$$
 (expansion)

2. $\forall \mathcal{D}$ PPT, $\exists \varepsilon(n)$ negligible such that

$$\mathsf{Adv}^{\mathsf{PRG}}_{\mathcal{D},G}(n) = |\Pr[\mathcal{D}(r) = 1] - \Pr[\mathcal{D}(G(s)) = 1]| \leq \varepsilon(n)$$

where $r \leftarrow \mathbb{R} \{0,1\}^{l(n)}$ and $s \leftarrow \mathbb{R} \{0,1\}^n$ (pseudo-randomness)

 \mathcal{D} : distinguisher

 $\mathcal{D}()$ output: 0 = not random, 1 = random PPT: Probabilistic Polynomial in Time $r \leftarrow \mathbb{R} \{0,1\}^{l(n)} : r \text{ is random on } l(n) \text{ bits } s \leftarrow \mathbb{R} \{0,1\}^n : s \text{ is random on } n \text{ bits}$

Indistinguishability from random

A **unpredictable** PRG is secure (*Theorem Yao'82*) A **predictable** PRG is insecure!

G is PRG (cryptographically strong) if $\forall \mathcal{A}$ PPT, $\exists \varepsilon(n)$ negligible such that:

$$\Pr[\mathsf{Dist}^{\mathsf{PRG}}_{\mathcal{A},G}(n)=1] \leq \frac{1}{2} + \varepsilon(n)$$