Instituto Mauá de Tecnologia Núcleo de Sistemas Eletrônicos Embarcados - NSEE

Simulador motor BLDC

Juliano Tusi Amaral Laganá Pinto julianotusi@gmail.com

21 de outubro de 2014

Sumário

1	Introdução					
	1.1	Objetivo	4			
	1.2	Sistema de interesse	4			
	1.3	Hipóteses	5			
	1.4	Modelo matemático	5			
2	Implementação					
	2.1	Bloco BLDC	7			
		Bloco BLDC com lógica de comutação em blocos				
3	Ferramentas para medição de posição e velocidade					
	3.1	Medição de posição	9			
		Medição de velocidade				

Revision History

Revision	Date	Author(s)	Description
0.0.1	14.10.14	Juliano Laganá	Criação do documento

1 Introdução

1.1 Objetivo

O objetivo desse documento é disponibilizar um manual de uso da biblioteca "BLDC.slx" para simulação do motor DC sem escovas (BLDC).

1.2 Sistema de interesse

O sistema de interesse é um motor DC sem escovas acoplado à uma carga constante. A figura 1.1 ilustra um modelo simplificado do sistema. Os torques mostrados no desenho são:

- \bullet T_e : Torque elétrico gerado pelo motor.
- T_d : Torque de atrito viscoso no mancal.
- T_l : Torque da carga.

Figura 1.1: Modelo simplificado do sistema

1.3 Hipóteses

- Todas as fases de alimentação do BLDC tem a mesma resistência.
- Todas as fases de alimentação do BLDC tem a mesma indutância.
- Todos as partes do sistema são consideradas corpos rígidos.
- O atrito no mancal é diretamente proporcional à velocidade angular do rotor em relação ao estator.
- A força contraeletromotriz gerada em cada fase de alimentação tem o formato trapezoidal.

1.4 Modelo matemático

• Dinâmica mecânica:

$$J.\frac{d^2\theta_m}{dt^2} = T_e - T_l - K_d.\frac{d\theta_m}{dt}$$

• Dinâmica elétrica de cada fase:

$$V_a = L.\frac{di_a}{dt} + e_a + R.i_a$$

$$V_b = L.\frac{di_b}{dt} + e_b + R.i_b$$

$$V_c = L.\frac{di_c}{dt} + e_c + R.i_c$$

• Forças contraeletromotrizes geradas em cada fase:

$$e_a = \frac{f_a(\theta_e).K_e}{2} \cdot \frac{d\theta_m}{dt}$$

$$e_b = \frac{f_b(\theta_e).K_e}{2} \cdot \frac{d\theta_m}{dt}$$

$$e_c = \frac{f_c(\theta_e).K_e}{2} \cdot \frac{d\theta_m}{dt}$$

• Torque gerado por cada fase e torque elétrico total:

$$T_a = \frac{f_a(\theta_e).K_t.i_a}{2}$$

$$T_b = \frac{f_b(\theta_e).K_t.i_b}{2}$$

$$T_c = \frac{f_c(\theta_e).K_t.i_c}{2}$$

$$T_e = T_a + T_b + T_c$$

• Relação entre ângulo elétrico e ângulo mecânico:

$$\theta_e = \theta_m \cdot \frac{P}{2}$$

- J = Inércia do sistema motor+carga
- K_d = Coeficiente de atrito viscoso do mancal
- K_e = Constante de força contraeletromotriz
- $K_t = \text{Constante de torque}$
- P = Número de pólos
- $\theta_m = \text{Ângulo do rotor em relação ao estator}$
- $\theta_e = \text{\^Angulo el\'etrico}$
- L = Indutância de cada fase
- R = Resistência de cada fase
- V_a = Tensão na fase a
- $V_b = \text{Tensão na fase } b$
- V_c = Tensão na fase c
- i_a = Corrente na fase a
- i_b = Corrente na fase b
- i_c = Corrente na fase c
- \boldsymbol{e}_a = Força contraeletromotriz gerada na fase a
- e_b = Força contraeletromotriz gerada na fase b
- e_c = Força contraeletromotriz gerada na fase c
- T_a = Torque elétrico gerado pela fase a no rotor
- T_b = Torque elétrico gerado pela fase b no rotor
- T_c = Torque elétrico gerado pela fase c no rotor
- T_e = Torque elétrico total aplicado no rotor
- $f_a(\theta_e)=$ Função que reproduz o comportamento trapezoidal da força contraeletromotriz na fase a
- $f_b(\theta_e)$ = Função que reproduz o comportamento trapezoidal da força contraeletromotriz na fase b
- $f_c(\theta_e)$ = Função que reproduz o comportamento trapezoidal da força contraeletromotriz na fase c

2 Implementação

2.1 Bloco BLDC

O modelo matemático apresentado na seção 1.4 foi implementado no bloco "BLDC" ilustrado na figura 2.1. Todos os parâmetros do motor podem ser alterados clicando-se duas vezes em cima do bloco.

Figura 2.1: Bloco simulink para simulação do BLDC

• Entradas

- 1. Va Tensão na fase a [V]
- 2. Vb Tensão na fase b [V]
- 3. Vc Tensão na fase c [V]
- 4. Tl Torque da carga [N.m]

• Saídas

- 1. Theta_m Ângulo entre o rotor e o estator (θ_m) [rad]
- 2. w_m Velocidade angular entre o rotor e o estator $(\frac{d\theta_m}{dt})$ [rad/s]
- 3. internal Sinal multiplexado [4x1] composto pelos seguintes sinais:
 - Correntes [3x1] i_a , i_b e i_c [A]
 - Torques [3x1] $T_a,\,T_b$ e T_c [N.m]
 - FCEMs [3x1] $e_a,\,e_b$ e e_c [V]

- Torque total - T_e [N.m]

2.2 Bloco BLDC com lógica de comutação em blocos

Para o devido funcionamento do BLDC é necessário comutar a tensão entre cada fase periodicamente. O bloco apresentado na figura 2.2 implementa internamente a estratégia de comutação em blocos através da utilização de três sensores de efeito hall separados por 120 graus. Todos os parâmetros do motor podem ser alterados clicando-se duas vezes em cima do bloco.

Figura 2.2: Bloco simulink para simulação do BLDC utilizando comutação em blocos

• Entradas

- 1. V Tensão aplicada nas fases [V]
- 2. Tl Torque da carga [N.m]

• Saídas

- 1. Theta_m Ângulo entre o rotor e o estator (θ_m) [rad]
- 2. w_m Velocidade angular entre o rotor e o estator $\left(\frac{d\theta_m}{dt}\right)$ [rad/s]
- 3. internal Sinal multiplexado [4x1] composto pelos seguintes sinais:
 - Correntes [3x1] i_a , i_b e i_c [A]
 - Torques [3x1] T_a , T_b e T_c [N.m]
 - FCEMs [3x1] e_a , e_b e e_c [V]
 - Torque total T_e [N.m]
 - Hall [3x1] H_1 , H_2 e H_3 (Níveis lógicos de cada sensor Hall acoplado ao motor)

3 Ferramentas para medição de posição e velocidade

3.1 Medição de posição

Para medição de posição angular do rotor foi desenvolvido um bloco que simula o funcionamento de um encoder de quadratura, ilustrado na figura 3.1. O número de pulsos por revolução pode ser configurado clicando-se duas vezes no bloco.

Figura 3.1: Bloco simulink para simulação de um encoder de quadratura

- Entradas
 - 1. Theta Ângulo mecânico entre o rotor e o estator. [graus]
- Saídas
 - 1. Theta_amostrado Ângulo mecânico entre o rotor e o estator, amostrado pelo encoder de quadratura simulado. [graus]
- Restrições
 - 1. Para o correto funcionamento desse bloco, o step size da simulação deve ser configurado para nunca exceder $\frac{360}{4.N_r.V_{m\acute{a}x}}$ segundos; onde N_r é o número de pulsos por rotação do encoder (especificado clicando-se duas vezes em cima do bloco) e $V_{m\acute{a}x}$ é o valor máximo da derivada da entrada Theta em graus/s. Exemplo: Para a correta simulação de um encoder com $N_r=300$, amostrando um BLDC cuja velocidade angular atinge no máximo 1200 graus/s (portanto o valor máximo da derivada da entrada Theta também é 1200 graus/s), faz-se necessário configurar a simulação para que o step size nunca exceda $2,5.10^{-4}$ segundos.

3.2 Medição de velocidade

O algoritmo M/T para estimação de velocidade [1] foi implementado no simulink e está ilustrado na figura 3.2

Figura 3.2: Bloco que implementa o algoritmo de estimação de velocidade M/T

• Entradas

1. Posicao - Essa entrada deve ser conectada à saída "Theta_amostrado" do bloco simulador de encoder de quadratura. [graus]

• Saídas

1. Velocidade - Velocidade estimada pelo algorimo M/T. [graus/s]

Referências Bibliográficas

[1] Tsutomu Ohmae, Toshihiko Matsuda, Kenzo Kamiyama, and Makoto Tachikawa. A microprocessor-controlled high-accuracy wide-range speed regulator for motor drives. *IEEE Transactions on industrial electronics*, IE-29(3):207–211, August 1982.