

Policy Gradients Methods

Easwar Subramanian

TCS Innovation Labs, Hyderabad

 $Email: easwar.subramanian@tcs.com\ /\ cs5500.2020@iith.ac.in$

October 11, 2022

Overview

Policy Gradient Formulation

2 Variance Reduction Techniques

Policy Based Reinforcement Learning

 \blacktriangleright Last lecture, we parametrized value functions using parameter ϕ

$$V_\phi^\pi(s) = V^\pi(s)$$

$$Q_{\phi}^{\pi}(s,a) = Q^{\pi}(s,a)$$

 \triangleright Policy was directly generated from value functions (greedy or ϵ greedy)

$$\pi_*(a|s) = \begin{cases} 1 & \text{if } a = \arg\max_{a \in \mathcal{A}} Q_*(s, a) \\ 0 & \text{Otherwise} \end{cases}$$

▶ In the next couple of lectures, we will directly parametrize the policy

$$\pi_{\theta}(a|s) = P(a|s,\theta)$$

▶ We will consider model free control with parametrized policies

Why Policy Optimization?

 \blacktriangleright Often policies (π) are simpler than value functions (V or Q)

- \triangleright Computing optimal V is bit of problem (we did not see any control algorithms for V)
- lacktriangle With state-value functions Q, computing arg max over actions gets tricky when action space is large or continuous
- ▶ Better convergence properties
- ► Can learn stochastic policies

RL Algorithms Landscape ²

We will now actually look out for the optimal policies in the stochastic policy space!

Example: Rock-Paper-Scissors

- ► Two player game of rock-paper-scissors
 - ★ Scissors beats paper
 - ★ Rock beats scissors
 - ★ Paper beats rock
- ▶ Consider policies for iterated rock-paper-scissors
 - ★ A deterministic policy is easily exploited
 - ★ A uniform random policy is optimal (i.e. Nash equilibrium)

Example: Aliased Grid World

- ▶ The agent cannot differentiate the grey states
- ▶ For example, state could be represented by features of the following form

$$\psi(s, a) = 1$$
(wall to **S**, a=move **E**)

Example: Aliased Grid World

- ▶ Under aliasing, an optimal deterministic policy will either
 - ★ move W in both grey states (shown as above)
 - ★ move E in both grey states
- ▶ Either way, it can get stuck and never reach the money
- \blacktriangleright Value based RL learns a near deterministic policy (greedy or ϵ greedy)
- ▶ Such a policy will go back and forth on the grid for a long time before hitting money

Example: Aliased Grid World

- ▶ An optimal stochastic policy will randomly move E or W in grey states
- ▶ It will reach the goal state in a few steps with high probability
- ▶ Policy-based RL can learn the optimal stochastic policy

Policy Using Function Approximators

- ▶ If action space is discrete
 - ★ Network could output a vector of probabilities (softmax)
- ▶ If action space is continuous
 - ★ Network could output the parameters of a distribution (For e.g., mean and variance of a Gaussian)

Continuous Action Space: Gaussian Policies

- ▶ Policy is Gaussian
- \blacktriangleright The mean (μ) of the Gaussian could be the output of the neural network
- \triangleright The variance σ of the Gaussian could be constant or can be parametrized.
- ▶ One way to operate in continuous action space is to sample an action from the Gaussian distribution. i.e., $a \sim \mathcal{N}(\mu, \sigma)$
- ▶ Idea can be extended to any parametrized probability distribution (even multi-variable).

Policy Optimization

A policy $\pi(\cdot)$ is parametrized by parameter θ and denoted by π_{θ}

Performance of a policy π_{θ} is given by

$$J(\theta) = V^{\pi_{\theta}}(s) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | s_{0} = s \right]$$

Goal of RL is to find a policy

$$\pi_{\theta}^* = \operatorname*{arg\,max}_{\pi_{\theta}} V^{\pi_{\theta}}(s) = \operatorname*{arg\,max}_{\pi_{\theta}} \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1} | s_0 = s \right]$$

We will look for π_{θ}^* in class of stochastic policies by finding θ that maximizes $J(\theta)$

Policy Gradient

- ▶ Let $J(\theta)$ be the policy objective function
- ▶ Policy gradient algorithms search for a local maximum in $J(\theta)$ by ascending the gradient of the policy, w.r.t. parameters θ

$$\Delta \theta = \alpha \nabla_{\theta} J(\theta)$$

- $\triangleright \nabla_{\theta} J(\theta)$ is the policy gradient and
- \triangleright α is the step size parameter

Policy Gradient Formulation

Policy Gradient: Notation

- ▶ Let policy π be parametrized by θ and denoted by π_{θ}
- ▶ Let $\tau \sim \pi_{\theta}$ denote the state-action sequence given by $s_0, a_0, s_1, a_1, \dots, s_t, a_t, \dots$
- ▶ Then, $P(\tau;\theta)$ be the probability of finding a trajectory τ with policy π_{θ}

$$P(\tau;\theta) = P(s_0) \prod_{t=0}^{\infty} \pi_{\theta}(a_t|s_t) P(s_{t+1}|s_t, a_t)$$

Policy Gradient : Objective Function

We can define $G(\tau)$ discounted cumulative reward obtained by following trajectory τ

$$G(\tau) = \sum_{t=0}^{\infty} \gamma^t r_{t+1}$$

Objective function $J(\theta)$ for policy gradient approach is written as,

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1} | \pi_{\theta} \right] = \sum_{\tau \sim \pi_{\theta}} \left[P(\tau; \theta) G(\tau) \right]$$

Goal is to find θ^* such that

$$\theta^* = \arg\max_{a} J(\theta)$$

Policy Gradient Derivation

$$J(\theta) = \sum \left[P(\tau; \theta) G(\tau) \right]$$

Taking gradient with respect to θ gives

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \left(\sum_{\tau} \left[P(\tau; \theta) G(\tau) \right] \right)$$

$$= \sum_{\tau} \nabla_{\theta} \left[P(\tau; \theta) G(\tau) \right]$$

$$= \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} [\nabla_{\theta} P(\tau; \theta)] G(\tau)$$

$$= \sum_{\tau} \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)} P(\tau; \theta) G(\tau)$$

$$= \sum_{\tau} \nabla_{\theta} \log P(\tau; \theta) P(\tau; \theta) G(\tau) \qquad \left(\because \nabla_{\theta} \log f(x) = \frac{\nabla_{\theta} f(x)}{f(x)} \right)$$

TATA

Policy Gradient : Sample Based Estimate

$$\nabla_{\theta} J(\theta) = \sum_{\theta} \nabla_{\theta} \log P(\tau; \theta) P(\tau; \theta) G(\tau) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\nabla_{\theta} \log P(\tau; \theta) G(\tau) \right]$$

Sample based estimate is given by

$$\nabla_{\theta} J(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} \nabla_{\theta} \log P(\tau^{(i)}; \theta) G(\tau^{(i)})$$

Policy Gradient : Intuition

- ▶ Increase the probability of paths with positive $G(\tau)$
- ▶ Decrease the probability of paths with negative $G(\tau)$
- ► Formalize the notion of 'trial and error'

Policy Gradient: Model Free Formulation

$$\nabla_{\theta} J(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} \nabla_{\theta} \log P(\tau^{(i)}; \theta) G(\tau^{(i)})$$

Is the above formula good enough for implementation?

$$P(\tau;\theta) = P(s_0) \prod_{t=0}^{\infty} \pi_{\theta}(a_t|s_t) P(s_t|s_{t-1}, a_t)$$

$$\nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log \left[\prod_{t=0}^{\infty} \underbrace{P(s_{t+1}^{(i)} | s_{t}^{(i)}, a_{t}^{(i)})}_{\text{dynamics model}} \cdot \underbrace{\pi(a_{t}^{(i)} | s_{t}^{(i)})}_{\text{policy}} \right]$$

$$= \nabla_{\theta} \left[\sum_{t=0}^{\infty} \log P(s_{t+1}^{(i)} | s_{t}^{(i)}, a_{t}^{(i)}) + \sum_{t=0}^{\infty} \log \pi(a_{t}^{(i)} | s_{t}^{(i)}) \right]$$

 $= \nabla_{\theta} \sum_{i=0}^{\infty} \log \pi(a_{t}^{(i)} | s_{t}^{(i)}) = \sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_{t}^{(i)} | s_{t}^{(i)})$

Policy Gradient: Model Free Formulation

The following formulation provides an unbiased estimate of the policy gradient and we can calculate it without using the dynamics model

$$\nabla_{\theta} J(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} \left[\nabla_{\theta} \log P(\tau^{(i)}; \theta) \right] G(\tau^{(i)})$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_{t}^{(i)} | s_{t}^{(i)}) \right] \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t+1}^{(i)} \right]$$

REINFORCE : Monte-Carlo based Policy Gradient

Algorithm REINFORCE: MC based Policy Gradient

- 1: Initialize policy network π with parameters θ_1 and learning rate α
- 2: **for** n = 1 to N **do**
- 3: Sample K trajectories from π_{θ_n}
- 4: Calculate gradient estimate

$$\nabla_{\theta_n} J(\theta_n) \approx \frac{1}{K} \sum_{i=1}^K \left[\sum_{t=0}^{\infty} \nabla_{\theta_n} \log \pi(a_t^{(i)} | s_t^{(i)}) \right] \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1}^{(i)} \right]$$

5: Perform gradient update

$$\theta_{n+1} = \theta_n + \alpha \nabla_{\theta_n} J(\theta_n)$$

6: end for

Connections to Maximum Likelihood

Policy Gradient

$$\nabla_{\theta} J(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_t^{(i)} | s_t^{(i)}) \right] \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1}^{(i)} \right]$$

Maximum Likelihood

$$\nabla_{\theta} J_{ML}(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_t^{(i)} | s_t^{(i)}) \right]$$

(Supervised Learning: Given s_t find a_t)

Issues with Gradient Estimate

- ▶ The gradient estimate, thus calculated, is unbiased but has high variance (reason : we are sampling stochastic paths)
- ▶ Hence the gradient descent is slow to converge
- ▶ Some variance reduction techniques are required in practice

Variance Reduction Techniques

Discount Factor and Variance Reduction

Gradient estimate is given by,

$$\nabla_{\theta} J(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_t^{(i)} | s_t^{(i)}) \right] \left[\sum_{t=0}^{\infty} \gamma^t r_{t+1}^{(i)} \right]$$

One can rewrite the above equation as

$$\nabla_{\theta} J(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_t^{(i)} | s_t^{(i)}) \cdot \left[\sum_{k=0}^{\infty} \gamma^k r_{k+1}^{(i)} \right] \right]$$

- For infinite horizon MDPs having $\gamma < 1$ not only helps in proving convergence of algorithms but also helps reduce variance of the policy gradient estimate
- ▶ Ignoring reward terms 'far' into the future gives us a reasonable approximation to policy gradient but with lower variance

Aside: Score Function

Score function in policy gradient is the term

$$\nabla_{\theta} \log \pi(a_t|s_t)$$

Expectation of the score function is zero

$$\mathbb{E}_{a_t|s_t} \left[\nabla_{\theta} \log \pi(a_t|s_t) \right] = \int_{a_t} \pi(a_t|s_t) \nabla_{\theta} \log \pi(a_t|s_t) \, da_t$$

$$= \int_{a_t} \nabla_{\theta} \pi(a_t|s_t) \, da_t$$

$$= \nabla_{\theta} \int_{a_t} \pi(a_t|s_t) \, da_t$$

$$= \nabla_{\theta} 1 = 0$$

Principle of Causality

Causality: Policy at time t' cannot affect reward at time t when t < t'.

 \blacktriangleright When we take an action at timestep t, it can only affect the rewards from timesteps t and onwards.

Recall that,

$$\nabla_{\theta} J(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_t^{(i)} | s_t^{(i)}) \cdot \left[\sum_{k=0}^{\infty} \gamma^k r_{k+1}^{(i)} \right] \right]$$

Principle of Causality

$$G(\tau) = \sum_{t=0}^{\infty} \gamma^t r_{t+1}$$

Let $\tau_{a:b}$ denote the states and actions visited from time a to b and

$$G_{a:b}(\tau) = \sum_{t=a}^{b} \gamma^t r_{t+1}$$

Therefore for any time t, we have,

$$G(\tau) = G_{0:t-1}(\tau) + G_{t-1:\infty}(\tau)$$
 Figure Source: 29 of 39 Jie-Han-Chen:SlideShare

Temporal Structure

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_{t}|s_{t}) \cdot \left[\sum_{k=0}^{\infty} \gamma^{k} r_{k+1} \right] \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_{t}|s_{t}) G(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_{t}|s_{t}) G_{0:t-1}(\tau) + \sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_{t}|s_{t}) G_{t:\infty}(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_{t}|s_{t}) G_{0:t-1}(\tau) \right]$$

$$+ \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_{t}|s_{t}) G_{t:\infty}(\tau) \right]$$

Temporal Structure

Consider evaluating the expectation of the first term

$$\mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_t | s_t) G_{0:t-1}(\tau) \right] = \left[\sum_{t=0}^{\infty} G_{0:t-1}(\tau) \mathbb{E}_{\pi_{\theta}} \nabla_{\theta} \log \pi(a_t | s_t) \right]$$
$$= \sum_{t=0}^{\infty} G_{0:t-1} \cdot 0 = 0$$

Therefore, the policy gradient estimate with temporal structure is given by

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_{t}|s_{t}) G_{t:\infty}(\tau) \right]$$

Temporal Structure

The sample estimate of the gradient expression is given by

$$\nabla_{\theta} J(\theta) \approx \frac{1}{K} \sum_{i=1}^{K} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi(a_t^{(i)} | s_t^{(i)}) \cdot \left[\sum_{t'=t}^{\infty} \gamma^{t'-t} r_{t'+1}^{(i)} \right] \right]$$

► The above policy gradient estimate with temporal structure is also an unbiased estimate of the true policy gradient but has **lower variance** since it has 'thrown out' a few terms

Need for a Baseline

What if all paths have positive reward sum?

Baseline

Can we subtract a baseline without biasing the gradient?

Let $b(s_t)$ be a baseline that is conditioned on s_t . Then,

$$\mathbb{E}_{a_t|s_t} \left[b(s_t) \nabla_{\theta} \log \pi(a_t|s_t) \right] = b(s_t) \mathbb{E}_{a_t|s_t} \left[\nabla_{\theta} \log \pi(a_t|s_t) \right] = 0$$

Therefore,

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi(a_{t}|s_{t}) \cdot G_{t:\infty}(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi(a_{t}|s_{t}) \cdot G_{t:\infty}(\tau) \right] - \mathbb{E}_{\tau \sim \pi_{\theta}} \left[b(s_{t}) \nabla_{\theta} \log \pi(a_{t}|s_{t}) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi(a_{t}|s_{t}) \cdot \left[G_{t:\infty}(\tau) - b(s_{t}) \right] \right]$$

Need for a Baseline

A good choice for baseline:

$$b = \mathbb{E}(G(\tau)) \approx \frac{1}{K} \sum_{i=1}^{K} G(\tau^{(i)})$$

Slide Credit: Pieter Abeel : Deep

RL Boot Camp

Popular choices of Baseline

► Constant Baseline

$$b = \mathbb{E}(G(\tau)) \approx \frac{1}{K} \sum_{i=1}^{K} G(\tau^{(i)})$$

► Time Dependent Baseline

$$b_t = \frac{1}{K} \sum_{i=1}^K G_{t:\infty}(\tau^{(i)})$$

▶ Optimal Baseline

$$b = \frac{\mathbb{E}_{\tau}(\nabla_{\theta} \log \pi(a_t|s_t)^2 G_{t:\infty}(\tau))}{\mathbb{E}_{\tau}(\nabla_{\theta} \log \pi(a_t|s_t)^2)}$$

► State dependent expected return

$$b(s) = \mathbb{E}_{\pi_{\theta}}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots | s_t = s] = V^{\pi}(s)$$

State dependent expected return

$$b(s) = \mathbb{E}_{\pi_{\theta}}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots | s_t = s] = V^{\pi}(s)$$

Figure Source: Jie-Han-Chen:SlideShare

Vanilla Policy Gradient Algorithm

Algorithm Vanilla Policy Gradient Algorithm

- 1: Initialize policy network π with parameters θ_1 learning rate α and baseline b
- 2: for n = 1 to N do
- 3: Sample K trajectories by executing the policy π_{θ_n}
- 4: At each time step of each trajectory compute $G_t = \sum_{t'=t}^{\infty} \gamma^{t'-t} r_{t+1}$ and advantage estimate $A_t = G_t b(s_t)$
- 5: Calculate gradient estimate

$$\nabla_{\theta_n} J(\theta_n) \approx \frac{1}{K} \sum_{i=1}^K \left[\sum_{t=0}^{\infty} \nabla_{\theta_n} \log \pi(a_t^{(i)} | s_t^{(i)}) A_t \right]$$

6: Perform gradient update

$$\theta_{n+1} = \theta_n + \alpha \nabla_{\theta_n} J(\theta_n)$$

7: end for

Improvements to Vanilla Policy Gradient

- ▶ The REINFORCE and Vanilla policy gradient as described above is on-policy
 - \bigstar There is an off-policy way to do policy gradient algorithms
- ▶ We do learning by Monte-Carlo roll-outs
 - ★ Will be addressed by Actor-Critic method