SUMMARY OF STATISTICAL ANALYSIS OF DECADAL CHANGE

Table 1 lists the chemical constituents that met the criteria for a statistical analysis of decadal-scale changes in concentrations in groundwater between Cycle 1 (1988-2001) and Cycle 2 (2002-2012) of the NAWQA Program. The analysis criteria were:

- 1) Constituents that exceeded a Maximum Contaminant Level or other human-health benchmark in more than 1 percent of public or domestic-supply wells (1,2,3); or
- 2) Constituents that exceeded a Secondary Maximum Contaminant Level in more than 1 percent of public or domestic-supply wells (1,2,3); or
- 3) The five most frequently detected pesticides and VOCs (4,5); or
- 4) Constituents of special or regional interest.

Table 1. Constituents meeting analysis criteria, results mapped

[µg/L, micrograms per liter; mg/L, milligrams per liter; SMCL, Secondary Maximum Contaminant Level]

Constituent name	Constituent class	Benchmark	Units	Why study
Arsenic	inorganic	10	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Boron	inorganic	6,000	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public-supply wells
Chloride	inorganic	250	mg/L	Exceeded SMCL in more than 1 percent of domestic-supply or public-supply wells
Fluoride	inorganic	4	mg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Iron	inorganic	300	μg/L	Exceeded SMCL in more than 1 percent of domestic-supply or public-supply wells
Manganese	inorganic	300	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Molybdenum	inorganic	40	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Nitrate	inorganic	10	mg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public-supply wells
Orthophosphate	inorganic	None	mg/L	Constituent of special or regional interest: Possible source of discharge to surface water bodies
Strontium	inorganic	4,000	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Sulfate	inorganic	250	mg/L	Exceeded SMCL in more than 1 percent of domestic-supply or public-supply wells
Total Dissolved Solids	inorganic	500	mg/L	Exceeded SMCL in more than 1 percent of domestic-supply or public-supply wells
Uranium	inorganic	30	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Atrazine	organic	3	μg/L	One of the five most frequently detected pesticides in the nation
Chloroform	organic	80	μg/L	One of the five most frequently detected volatile organic compounds in the nation
Deethylatrazine	organic	None	μg/L	One of the five most frequently detected pesticides in the nation
Dieldrin	organic	0.002	μg/L	Exceeded human-health benchmark in more than 1 percent of public-supply wells
Methyl tert-butyl ether	organic	20	μg/L	One of the five most frequently detected volatile organic compounds in the nation
Metolachlor	organic	700	μg/L	One of the five most frequently detected pesticides in the nation
Simazine	organic	4	μg/L	One of the five most frequently detected pesticides in the nation
Prometon	organic	400	μg/L	One of the five most frequently detected pesticides in the nation
Tetrachloroethene	organic	5	μg/L	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells
Toluene	organic	1,000	μg/L	One of the five most frequently detected volatile organic compounds in the nation
Trichloroethene	organic	5	μg/L	One of the five most frequently detected volatile organic compounds in the nation

Table 2. Constituents meeting analysis criteria, insufficient data for analysis, not mapped							
Gross Alpha	inorganic	15	picocuries per Liter	Exceeded human-health benchmark in more than 1 percent of domestic or public- supply wells			
Radium 226 plus Radium 228	inorganic	5	picocuries per Liter	Exceeded human-health benchmark in more than 1 percent of domestic or public-			
Radon	inorganic	300 (Alternate 4,000)	picocuries per Liter	Exceeded human-health benchmark in more than 1 percent of domestic or public-			

References

1-DeSimone, L.A., Hamilton, P.A., and Gilliom, R.J., 2009, Quality of Water from Domestic Wells in Principal Aquifers of the United States, 1991-2004 - Overview of Major Findings: Reston, VA, U.S. Geological Survey, p. 48 Circular http://pubs.usgs.gov/circ/circ1332/

2-Toccalino, P.L., and Hopple, J.A., 2010, The quality of our Nation's waters-Quality of water from public-supply wells in the United States, 1993-2007-Overview of major findings, U.S. Geological Survey, p. 58 Circular http://pubs.usgs.gov/circ/1346/

3-Ayotte, J.D. Gronberg, J.M., and Apodaca, L.E., 2011, Trace Elements and Radon in Groundwater Across the United States: U.S. Geological Survey Scientific Investigations Report 2011-5059, 115 p. http://water.usgs.gov/nawqa/trace/pubs/sir2011-5059/

4-Zogorski, J.S., Carter, J.M., Ivahnenko, T., Lapham, W.W., Moran, M.J., Rowe, B.L., Squillace, P.J., and Toccalino, P.L., 2006, The Quality of our Nation's waters--Volatile Organic Compounds in the Nation's Ground Water and Drinking-Water Supply Wells: Reston, VA, U.S. Geological Survey, p. 101 Circular. http://pubs.usgs.gov/circ/circ1292/

5-Gilliom, R.J., Barbash, J.E., Crawford, C.G., Hamilton, P.A., Martin, J.D., Nakagaki, N., Nowell, L.H., Scott, J.C., Stackelberg, P.E., Thelin, G.P., and Wolock, D.M., 2006, The Quality of our Nation's Waters--Pesticides in the Nation's Streams and Ground Water, 1992-2001: Reston, VA, U.S. Geological Survey, p. 172 Circular. http://pubs.usgs.gov/circ/2005/1291/

Details of statistical analysis and data management (6,7).

6-Toccalino, P.L., Gilliom, R.J., Lindsey, B.D., and Rupert, M.G., Pesticides in Groundwater of the United States: Decadal-Scale Changes, 1993-2011, 2014, Groundwater, DOI: 10.1111/gwat.12176

7-Lindsey, B.D., and Rupert, M.G., 2012, Methods for evaluating temporal groundwater quality data and results of decadal-scale changes in chloride, dissolved solids, and nitrate concentrations in groundwater in the United States, 1988–2010: U.S. Geological Survey Scientific Investigations Report 2012–5049, 46 p.