第七章习题 1,2 参考答案

7-1 试计算核素⁴⁰Ca和⁵⁶Fe的结合能和比结合能.

分析:此题可采用两种算法,一是按核结合能公式;另一是按魏扎克核质量计算公式.

一.按核子结合能公式计算

解: 1) 对于核素⁴⁰Ca, A=40, Z=20, N=20 由结合能公式 B= Zm_p + Zm_e -M

 $= (20 \times 1.007277 + 20 \times 1.008665 - 39.9625)u$

=0.35625u×931.5MeV/u=331.846MeV

比结合能 B/A=331.846/40MeV=8.296MeV

2)对于核素⁵⁶Fe, A=56, Z=26, N=30

由结合能公式 $B=Zm_p+Zm_e-M$

 $= (26 \times 1.007277 + 30 \times 1.008665 - 55.9349)u$

 $=0.514252u\times931.5MeV/u=479.025MeV$

比结合能 B/A=479.025/56MeV=8.554MeV

二.按魏扎克公式计算

对于题目中所给的 40Ca 和 56Fe 都是偶偶核.

依B= a_V A- a_s A^{2/3}- a_c Z²A^{-1/3}- a_{sys} (Z-N)²+ a_p A^{1/2}+ B_{\hbar} ,代入相应常数计算也可.

7-2 $1 mg^{238} U$ 每分钟放出 740 个 α 粒子,试证明: $1 g^{238} U$ 的放射性活度为 0.33 微居, $^{238} U$ 的半衰期为 $4.5 x 10^9 a$.

证: $1 \text{mg}^{238} \text{U}$ 每分钟放出 740 个 α 粒子, $1 \text{g}^{238} \text{U}$ 的放射性活度为 $A=740\times1000/60$ 贝克=1.233× 10^4 贝克=1.233× 10^4 贝克/0.33 微居

衰变常数
$$\lambda = A/N = \frac{\frac{740}{60}}{\frac{1}{238} \times 6.022 \times 10^{23}} = 4.874 \times 10^{-21}$$

半衰期 $T_{1/2}=0.693/\lambda=0.693/4.874\times10^{-21}$ 秒 =1.42×10²⁰ 秒 =4.5×10⁹a.

得证.

第七章习题 3,4 参考答案

7-3 活着的有机体中,¹⁴C对¹²C的比与大气中是相同的,约为 1. 3x10⁻¹². 有机体死亡后,由于¹⁴C的放射性衰变,¹⁴C的含量就不断减少,因此,测量每克碳的衰变率就可计算有机体的死亡时间. 现测得: 取之于某一骸骨的 100g碳的β衰变率为 300 次衰变 / min,试问该骸骨已有多久历史?

解: 100g碳 14 的放射性活度 A=300 次/min=5 次/s,又¹⁴C的半衰期 T_{1/2}=5730a

则
$$\lambda_{C_{14}} = \frac{0.693}{T_{1/2}} = \frac{0.693}{5730 \times 3.1558 \times 10^7}$$
 依 $\mathbf{A} = \lambda \mathbf{N}$

活着的生物体中¹⁴C的个数为N=A/ λ = $\frac{5 \times 5730 \times 3.1558 \times 10^7}{0.693}$ =1.3047×10¹²个

依公式
$$N = N_0 e^{-\lambda \cdot t}$$
 得

$$t = \frac{1}{\lambda} \ln \frac{N_0}{N} = \left(\frac{0.693}{5730}\right)^{-1} \times \ln \frac{\frac{100 \times 0.9889}{12} \times 1.3 \times 10^{-2} \times 6.022 \times 10^{23}}{\frac{5 \times 5730 \times 3.1558 \times 10^{3}}{0.693}} = \left(\frac{0.693}{5730}\right)^{-1} \times 1.598$$
 $= 13216$ $= 13216$

答: 该骸骨已有 13216 年历史。

7-4 一个放射性元素的平均寿命为 10d, 试问在第 5d 内发生衰变的数目是原来的多少?

解: 已知:
$$\tau=10d$$
, 则 $\lambda=\frac{1}{10d}$

依衰变公式 $N = N_0 e^{-\lambda \cdot t}$

第 4 天末放射性元素个数为 $N_4 = N_0 e^{-\frac{4}{10}}$

第5天末放射性元素个数为

$$N_5 = N_0 e^{-\frac{5}{10}}$$

$$\frac{N_5 - N_4}{N} = e^{-\frac{4}{10}} - e^{-\frac{5}{10}} = 0.064$$

第5天内发生的衰变几率为

第七章习题 5.6 参考答案

7-5 试问原来静止的²²⁶Ra核在α衰变中发射的α粒子的能量是多少?

分析要点:目的是计算粒子的动能. $E_0=E_\alpha+E_r$

 \mathfrak{R} : 226 Ra \rightarrow 222 Rn+ 4_2 He

衰变过程中放出的能量为

ΔE=226.0254u-222.0176u-4.002603u=0.005197u=4.8410055MeV 在衰变过程中,由动量守恒定律得:

$$MV+mv=0$$
 $V=-mv/M$

$$\Delta E = \frac{1}{2}MV^2 + \frac{1}{2}mv^2 = \left(1 + \frac{m}{M}\right)E_{\alpha}$$

$$E_{\alpha} = \frac{\Delta E}{1 + \frac{m}{M}}MeV = \frac{4.841055}{1 + \frac{4}{222}}MeV = 4.755 MeV$$

衰变中发射的 α 粒子的能量为 4.755 MeV.

7-6 ²¹⁰po核从基态进行衰变,并伴随发射两组α粒子。其中一组α粒子的能量为 5.30 MeV, 放出这组α粒子后,子核处于基态; 另一组α粒子的能量为 4.50 MeV, 放出这组α粒子后,子核处于激发态. 试计算: 子核由激发态回到基态时放出的γ光子的能量.

分析要点: 母核放出 α 粒子衰变为子核;减小的能量是衰变能,衰变能比 α 粒子的能量要大.因此要用衰变能计算基态和激发态.

解: 依据衰变能计算简便公式

$$E_{00} = \frac{A}{A-4}E_{\alpha 1} = \frac{210}{210-4} \times 5.30 \,\text{MeV} = 5.403 \,\text{MeV}$$

$$E_{01} = \frac{A}{A-4} E_{\alpha 2} = \frac{210}{210-4} \times 4.50 \text{MeV} = 4.584 \text{MeV}$$

$$E_{\nu} = E_{00} - E_{01} = 5.403 - 4.5874 \,\text{MeV} = 0.816 \,\text{MeV}$$

第七章习题 7.8 参考答案

7-7 47 V既可发生 β [†]衰变,也可发生K俘获,已知 β [†]的最大能量为 1.89 MeV,试求K俘获过程中放出的中微子的能量 E_{ν} 。

=1.89 MeV+1.02 MeV=2.91 MeV

由释放的绝大部分能量由中微子所得

$$E_0 = E_i = (M_V - M_{Ti})c_2 = 2.91 \text{MeV}$$

7-8 试计算下列反应的反应能:

(1)
$$\alpha + {}^{14} \text{ N} \rightarrow {}^{17} \text{ O} + \text{P}$$
 (2) $p + {}^{9}\text{Be} \rightarrow {}^{6}\text{Li} + \alpha$

有关核素的质量,可查阅本书附表.

解: (1)
$$\alpha + {}^{14} N \rightarrow {}^{17} O + P$$

$$E = E_{\alpha} + E_{N} - E_{\nu} - E_{p}$$

$$= [M_{\alpha} + M_{N} - M_{O} - M_{P}]c^{2}$$

$$= (4.00263 + 14.00307 - 16.99913 - 1.00783)U$$

=-1.19MeV

(2)
$$p+^9Be \rightarrow ^6Li+\alpha$$

 $E = [M_p+M_{Be}-M_{Li}-M_{\alpha}]c^2$
={1.007825+9.012183-6.015123-4.002603}U
=2.13 MeV

第七章习题 9,10

7-9 试问: 用多大能量的质子轰击固定的氚靶, 才能发生p+³H→n+³He 反应?若入射质子的能量为 3.00 MeV,而发射的中子与质子的入射方向成 90°角,则发射的中子和³He的动能各为多少?

7-10 由原子核的半经验结合能公式,试导出 β 稳定线上的原子核的 Z 和 A 所满足的关系式.

第七章习题 11,12

- 7-11(1)试证明:一个能量为Eo的中子与静止的碳原子核EO次对碰后,其能量近似为(0.72)EO.
- (2) 热中子能有效地使²³⁵U裂变,但裂变产生的中子能量一般较高 (MeV). 在反应堆中用石墨作减速剂,欲使能量为 2.0 MeV的快中子慢化为热中子(0.025 eV),需经过多少次对碰?
- 7-12 轻核¹⁹F在质子轰击下的共振反应,常用作低能加速器的能量定标,例如:

质子能量 E_P / kev	反应	宽度 / kev
224. 4	¹⁹ F (p, <i>y</i>)	1. 0
340. 4	¹⁹ F (p , α	y) 4. 5
873. 5	¹⁹ F (p , α	y) 5. 2
935. 3	¹⁹ F (ρ, α	y) 8.0
1085. 0	¹⁹ F (ρ, α	y) 4.0

- (1) 试确定²⁰Ne的几个激发能级:
- (2) 试求出复合核²⁰Ne相应能级的平均寿命.

第七章习题 13,14

- 7-13 设一个聚变堆的功率为 106 kW,以D+T为燃料,试计算一年要消耗多少氚?这么大功率的电站,若改用煤作燃料,则每年要消耗多少煤(煤的燃烧热约为 3. 3×10^7 J / Ls)?
- 7-14 铁的热中子俘获截面为 2.5b,试问入射热中子经过 1.0 mm 厚的铁块后被吸收掉百分之几?