Analysing genome-wide SNP data using adegenet 1.3-0

Thibaut Jombart

June 13, 2011

Abstract

Genome-wide SNP data can quickly be challenging to analyse using standard computer. The package adegenet [1] for the R software [2] implements representation of these data with unprecedented efficiency using the classes SNPbin and genlight, which can require up to 60 times less RAM than usual representation using allele frequencies. This vignette introduces these classes and illustrates how these objects can be handled and analyzed in R. It also introduces more advanced features of an API in C language which may be useful to develop new method based on these objects.

Contents

1	Intr	roduction	3
2	Cla	sses of objects	3
	2.1	SNPbin: storage of single genomes	3
	2.2		5
3	Dat	a handling using genlight objects	8
	3.1	Using accessors	8
	3.2	Subsetting the data	10
	3.3		12
		3.3.1 The .snp format	12
		3.3.2 Importing data from PLINK	16
		3.3.3 Extracting SNPs from alignments	16
4	Dat	a analysis using genlight objects	20
	4.1	Simple operations	20
	4.2	Principal Component Analysis (PCA)	20
	4.3	Principal Component Analysis (PCA)	20
		Discriminant Analysis of Principal Components (DAPC)	20
		· · · · · · · · · · · · · · · · · · ·	

1 Introduction

Modern sequencing technologies now make complete genomes more widely accessible. The subsequent amounts of genetic data pose challenges in terms of storing and handling the data, making former tools developed for classical genetic markers such as microsatellite impracticable using standard computers. Adegenet has developed new object classes dedicated to handling genomewide polymorphism (SNPs) with minimum rapid access memory (RAM) requirements.

Two new formal classes have been implemented: SNPbin, used to store genome-wide SNPs for one individual, and genlight, which stored the same information for multiple individuals. Information represented this way is binary: only biallelic SNPs can be stored and analyzed using these classes. However, these objects are otherwise very flexible, and can incorporate different levels of ploidy across individuals within a single dataset. In this vignette, we present these object classes and show how their content can be further handled and content analyzed.

2 Classes of objects

2.1 SNPbin: storage of single genomes

The class SNPbin is the core representation of biallelic SNPs which allows to represent data with unprecedented efficiency. The essential idea is to code binary SNPs not as integers, but as bits. This operation is tricky in R as there is no handling of bits, only bytes – series of 8 bits. However, the class SNPbin handles this transparently using sub-rountines in C language. Considerable efforts have been made so that the user does not have to dig into the complex internal structure of the objects, and can handle SNPbin objects as easily as possible.

Like genind and genpop objects, SNPbin is a formal "S4" class. The structure of these objects is detailed in the dedicated manpage (?SNPbin). As all S4 objects, instances of the class SNPbin are composed of slots accessible using the @ operator. This content is generic (it is the same for all instances of the class), and returned by:

The slots respectively contain:

- snp: SNP data with specific internal coding.
- n.loc: the number of SNPs stored in the object.
- NA.posi: position of the missing data (NAs).
- label: an optional label for the individual.
- ploidy: the ploidy level of the genome.

New objects are created using new, with these slots as arguments. If no argument is provided, an empty object is created:

```
> new("SNPbin")

=== S4 class SNPbin ===
0 SNPs coded as bits
Ploidy: 1
0 (NaN %) missing data
```

In practice, only the snp information and possibly the ploidy has to be provided; various formats are accepted for the snp component, but the simplest is a vector of integers (or numeric) indicating the number of second allele at each locus. The argument snp, if provided alone, does not have to be named:

```
> x <- new("SNPbin", c(0, 1, 1, 2, 0, 0, 1))
> x

=== S4 class SNPbin ===
7 SNPs coded as bits
Ploidy: 2
0 (0 %) missing data
```

If not provided, the ploidy is detected from the data and determined as the largest number in the input vector. Obviously, in many cases this will not be adequate, but ploidy can always be rectified afterwards; for instance:

```
=== S4 class SNPbin ===
7 SNPs coded as bits
Ploidy: 2
0 (0 %) missing data

> ploidy(x) <- 3
> x

=== S4 class SNPbin ===
7 SNPs coded as bits
Ploidy: 3
0 (0 %) missing data
```

The internal coding of the objects is cryptic, and not meant to be accessed directly:

```
> x@snp
```

> x

```
[[1]]
[1] 08
[[2]]
[1] 4e
```

Fortunately, data are easily converted back into integers:

```
> as.integer(x)
[1] 0 1 1 2 0 0 1
```

The main interest of this representation is its efficiency in terms of storage. For instance:

```
> dat <- sample(0:1, 1e+06, replace = TRUE)
> print(object.size(dat), unit = "auto")
3.8 Mb
> x <- new("SNPbin", dat)
> print(object.size(x), unit = "auto")
123.4 Kb
```

here, we converted a million SNPs into a SNPbin object, which turns out to be 32 smaller than the original data. However, the information in \mathtt{dat} and \mathtt{x} is strictly identical:

```
> identical(as.integer(x), dat)
[1] TRUE
```

The advantage of this storage is therefore being extremely compact, and allowing to analyse big datasets using standard computers.

While SNPbin objects are the very mean by which we store data efficiently, in practice we need to analyze several genomes at a time. This is made possible by the class genlight, which relies on SNPbin but allows for storing data from several genomes at a time.

2.2 genlight: storage of multiple genomes

Like SNPbin, genlight is a formal S4 class. The slots of instances of this class are described by:

```
> getClassDef("genlight")
```

```
Class "genlight" [package "adegenet"]

Slots:

Name: gen n.loc ind.names loc.names loc.all
Class: list integer charOrNULL charOrNULL charOrNULL

Name: chromosome position ploidy pop other
Class: factorOrNULL intOrNULL intOrNULL factorOrNULL list
```

As it can be seen, these objects allow for storing more information in addition to vectors of SNP frequencies. More precisely, their content is (see ?genlight for more details):

- gen: SNP data for different individuals, each stored as a SNPbin; loci have to be identical across all individuals.
- n.loc: the number of SNPs stored in the object.
- ind.names: (optional) labels for the individuals.
- loc.names: (optional) labels for the loci.
- loc.all: (optional) alleles of the loci separated by '/' (e.g. 'a/t', 'g/c', etc.).
- chromosome: (optional) a factor indicating the chromosome to which the SNPs belong.
- position: (optional) the position of each SNPs in their chromosome.
- ploidy: (optional) the ploidy of each individual.
- pop: (optional) a factor grouping individuals into 'populations'.
- other: (optional) a list containing any supplementary information to be stored with the data.

Like SNPbin object, genlight object are created using the constructor new, providing content for the slots above as arguments. When none is provided, an empty object is created:

```
> new("genlight")
=== S4 class genlight ===
0 genotypes, 0 binary SNPs
```

The most important information to provide is obviously the genotypes (argument gen); these can be provided as:

- a list of integer vectors representing the number of second allele at each locus.
- a matrix / data.frame of integers, with individuals in rows and SNPs in columns.

• a list of SNPbin objects.

Ploidy has to be consistent across loci for a given individual, but individuals do not have to have the same ploidy, so that it is possible to have hapoid, diploid, and tetraploid individuals in the same dataset; for instance:

As for SNPbin, genlight objects can be converted back to integers vectors, stored as matrices or lists:

In practice, genlight objects can be handled as if they were matrices of integers as the one above returned by as.matrix. However, they offer the advantage of efficient storage of the information; for instance, we can simulate 50 individuals typed for 1,00,000 SNPs each (including occasional NAs):

> object.size(dat)/object.size(x)

61.3365722669428 bytes

here again, the storage if the data is much more efficient in genlight than using integers: converted data occupy 61 times less memory than the original data.

The advantage of this storage is therefore being extremely compact, and allowing to analyse very large datasets using standard computers. Obviously, usual computations demand data to be at one moment coded as numeric values (as opposed to bits). However, most usual computations can be achieved by only converting one or two genomes back to numeric values at a time, therefore keeping RAM requirements low, albeit at a possible cost of increased computational time. This however is minimized by three ways:

- 1. conversion routines are optimized for speed using C code.
- 2. using parallel computation where multicore architectures are available.
- 3. handling smaller objects, thereby decreasing the possibly high computational time taken by memory allocation.

While this makes implementing methods more complicated. In practice, routines are implemented so as to minimize the amount of data converted back to integers, use C code where possible, and use multiple cores if the package *multicore* is installed an multiple cores are available. Fortunately, these underlying technical issues are oblivious to the user, and one merely needs to know how to manipulate genlight objects using a few key functions to be able to analyze data.

3 Data handling using genlight objects

3.1 Using accessors

In the following, we demonstrate how to manipulate and analyse genlight objects. The phylosophy underlying formal (S4) classes in general, and genlight objects in particular, is that internal representation of the information can be complex as long as accessing this information is simple. This is made possible by decoupling storage and accession: the user is not meant to access the content of the object directly, but has to use accessors to retrieve or modify information.

Available accessors are documented in **?genlight**. Most of them are identical to accessors for **genind** and **genpop** objects, such as:

- nInd: returns the number of individuals in the object.
- nLoc: returns the number of loci (SNPs).
- indNames[†]: returns/sets labels for individuals.
- locNames[†]: returns/sets labels for loci (SNPs).
- alleles[†]: returns/sets alleles.
- ploidy[†]: returns/sets ploidy of the individuals.
- pop[†]: returns/sets a factor grouping individuals.
- other[†]: returns/sets misc information stored as a list.

where † indicates that a replacement method is available using <-'; for instance:

In addition, some specific accessors are available for genlight objects:

- NA.posi: returns the position of missing values in each individual.
- chromosome[†]: returns/sets the chromosome of each SNP.
- chr[†]: same as chromosome used as a shortcut.
- position[†]: returns/sets the position of each SNP.

Accessors are meant to be clever about replacement, meaning that they try hard to prevent replacement with inconsistent values. For instance, in object x:

> x

```
=== S4 class genlight ===
3 genctypes, 10 binary SNPs
Ploidy: 2
0 (0 %) missing data
@loc.names: labels of the SNPs
```

if we try to set information about the chromosomes of the SNPs, the instruction:

```
> chr(x) <- rep("chr-1", 7)
```

will generate an error because the provided factor does not match the number of loci (10), while:

```
> chr(x) <- rep("chr-1", 10)
> x

=== S4 class genlight ===
3 genotypes, 10 binary SNPs
Ploidy: 2
0 (0 %) missing data
@chromosome: chromosome of the SNPs
@loc.names: labels of the SNPs

> chr(x)

[1] chr-1 chr-1 chr-1 chr-1 chr-1 chr-1 chr-1 chr-1 chr-1
Levels: chr-1
```

is a valid replacement.

3.2 Subsetting the data

genlight objects are meant to be handled as if they were matrices of allele numbers, as returned by as.matrix. Therefore, subsetting can be achieved using [idx.row , idx.col] where idx.row and idx.col are indices for rows (individuals) and columns (SNPs). For instance, using the previous toy dataset, we try a few classical subsetting of rows and columns:

> x

```
=== S4 class genlight ===
3 genotypes, 10 binary SNPs
Ploidy: 2
0 (0 %) missing data
@chromosome: chromosome of the SNPs
@loc.names: labels of the SNPs

> as.matrix(x)

SNP.1 SNP.2 SNP.3 SNP.4 SNP.5 SNP.6 SNP.7 SNP.8 SNP.9 SNP.10
individual 1 1 0 1 2 1 0 0 0 1 2
individual 2 0 1 0 0 0 2 1 1 1 0
individual 3 2 0 1 2 0 0 2 2 1 1

> as.matrix(x[c(1, 3), ])

SNP.1 SNP.2 SNP.3 SNP.4 SNP.5 SNP.6 SNP.7 SNP.8 SNP.9 SNP.10
individual 1 1 0 1 2 1 0 0 0 1 2
individual 3 2 0 1 2 0 0 2 2 1 1

> as.matrix(x[c(1, 3), ])

SNP.1 SNP.2 SNP.3 SNP.4 SNP.5 SNP.6 SNP.7 SNP.8 SNP.9 SNP.10
individual 1 1 0 1 2 1 0 0 0 1 2
individual 3 2 0 1 2 0 0 2 2 1 1

> as.matrix(x[, c(TRUE, FALSE)])

SNP.1 SNP.3 SNP.5 SNP.7 SNP.9
individual 1 1 1 1 0 1 1
individual 2 0 0 0 1 1
individual 3 2 1 0 2 1

> as.matrix(x[1:2, c(1, 1, 1, 2, 2, 2, 3, 3, 3)])

SNP.1 SNP.1 SNP.1 SNP.1 SNP.2 SNP.2 SNP.2 SNP.3 SNP.3 SNP.3
individual 1 1 1 1 0 0 0 0 1 1 1
individual 2 0 0 0 1 1 1 0 0 0 0
```

Moreover, one can split data into blocks of SNPs using seploc. This can be achieved by specifying either a number of blocks (argument n.block) or the size of the blocks (argument block.size). The function also allows for randomizing the distribution of the SNPs in the blocks (argument random=TRUE), which is especially useful to replace computations that cannot be achieved on the whole dataset with parallelized computations performed on random blocks. For instance:

> x

> as.matrix(x)

```
=== S4 class genlight ===
3 genotypes, 10 binary SNPs
Ploidy: 2
0 (0 %) missing data
@chromosome: chromosome of the SNPs
@loc.names: labels of the SNPs
```

```
individual 1
individual 2 individual 3
> seploc(x, n.block = 2)
$block.1
 === S4 class genlight ===
 3 genotypes, 5 binary SNPs Ploidy: 2
 0 (0 %) missing data
@chromosome: chromosome of the SNPs
@loc.names: labels of the SNPs
$block.2
=== S4 class genlight ===
3 genotypes, 5 binary SNPs
Ploidy: 2
 0 (0 %) missing data
@chromosome: chromosome of the SNPs
@loc.names: labels of the SNPs
> lapply(seploc(x, n.block = 2), as.matrix)
$block.1
                SNP.1 SNP.2 SNP.3 SNP.4 SNP.5
individual 1 individual 2 individual 3
                             0
                     1
$block.2
                SNP.6 SNP.7 SNP.8 SNP.9 SNP.10
individual 1 individual 2 individual 3
                             0 1 2
                                                     0
splits the data into two blocks of contiguous SNPs, while:
> lapply(seploc(x, n.block = 2, random = TRUE), as.matrix)
$block.1
                SNP.8 SNP.5 SNP.2 SNP.6 SNP.1
0 1 0 0 1
1 0 1 2 0
2 0 0 0 2
individual 1
individual 2 individual 3
$block.2
                individual 1
individual 2
individual 3
```

generates blocks of randomly selected SNPs.

3.3 Data conversions

3.3.1 The .snp format

adegenet has defined its own format for storing biallelic SNP data in text files with extension .snp. This format has several advantages: it is fairly compact

(more so than usual non-compressed formats), allows for any information about individuals or loci to be stored, allows for comments, and is easily parsed — in particular, not all information has to be read at a time, again minimizing RAM requirements for import procedures.

An example file of this format is distributed with adegenet. Once the package has been installed, the file can be accessed by typing:

```
> file.show(system.file("files/exampleSnpDat.snp", package = "adegenet"))
```

Otherwise, this file is also accessible from the *adegenet* website (section 'Documents'). A complete description of the .snp format is provided in the comment section of the file.

The structure of a .snp file can be summarized as follows:

- a (possibly empty) comment section
- meta-information, i.e. information about loci or individuals, stored as named vectors
- genotypes, stored as named vectors

The *comment section* can starts with the line:

```
>>>> begin comments - do not remove this line <<<< and ends with the line:
```

```
>>>> end comments - do not remove this line <<<<}
```

While this section can be left empty, these two lines have to be present for the format to be valid. Each *meta-information* is stored using two lines, the first starting as:

>> name-of-the-information

and the second containing the information itself, each item separated by a single space. Any label can be used, but some specific names will be recognized and interpreted by the parser:

- position: the following line contains integers giving the position of the SNPs on the sequence
- allele: character strings representing the two alleles of each loci separated by "/"
- population: character strings indicating a group memberships of the individuals

- ploidy: integers indicating the ploidy of each individual; alternatively, one single integer if all individuals have the same ploidy
- chromosome: character strings indicating the chromosome on which the SNP are located

Each *genotype* is stored using two lines, the first being > label-of-the-individual, and the second being integers corresponding to the number of second allele for each loci, without separators; missing data are coded as '-'.

.snp files can be read in R using read.snp, which converts data into genlight objects. The function reads data by chunks of a several individuals (minimum 1, no maximum besides RAM constraints) at a time, which allows one to read massive datasets with negligible RAM requirements (albeit at a cost of computational time). The argument chunkSize indicates the number of genomes read at a time; larger values mean reading data faster but require more RAM. We can illustrate read.snp using the example file mentioned above. The non-comment part of the file reads:

```
[\ldots]
>> position
1 8 11 43
>> allele
a/t g/c a/c t/a
>> population
Brit Brit Fren monster NA
>> ploidy
> foo
1020
> bar
0012
> toto
10-0
> Nyarlathotep
> an even longer label but OK since on a single line
1100
We read the file in using:
> obj <- read.snp(system.file("files/exampleSnpDat.snp", package = "adegenet"),</pre>
Reading biallelic SNP data file into a genlight object...
Reading comments...
```

```
Reading general information...
 Reading 5 genotypes...
 Checking consistency...
 Building final object...
...done.
> obj
 === S4 class genlight ===
5 genotypes, 4 binary SNPs
Ploidy: 2
1 (0.05 %) missing data
 Opposition: position of the SNPs
Qualleles: alleles of the SNPs
> as.matrix(obj)
                                                                  1.a/t.a/t 8.g/c.g/c
1 0
foo
                                                                             1
bar
Nyarlathotep
an even longer label but OK since on a single line
foo
bar
toto
Nyarlathotep
an even longer label but OK since on a single line
                                                                             NĀ
2
> alleles(obj)
[1] "a/t" "g/c" "a/c" "t/a"
> pop(obj)
[1] Brit Brit Fren Levels: Brit Fren monster NA
                                    monster NA
> indNames(obj)
[1] "foo"
[2] "bar"
[3] "toto"
[4] "Nyarlathotep"
    "foo"
"bar"
[5] "an even longer label but OK since on a single line"
```

Note that system.file is generally useless: it is only used in this example to access a file installed alongside the package. Usual calls to read.snp will ressemble:

```
> obj <- read.snp("path-to-my-file.snp")</pre>
```

3.3.2 Importing data from PLINK

Genome-wide SNP data of diploid organisms are frequently analyzed using PLINK, whose format is therefore becoming a standard. Data with PLINK format (.raw) can be imported into genlight objects using read.PLINK. This function requires the data to be saved in PLINK using the '-recodeA' option (see details section in ?read.PLINK). More information on exporting from PLINK can be found at http://pngu.mgh.harvard.edu/~purcell/plink/dataman.shtml#recode.

Like read.snp, read.PLINK has the advantage of reading data by chunks of a few individuals (down to a single one at a time, no upper limits), which minimizes the amount of memory needed to read information before its conversion to genlight; however, using more chunks also means more computational time, since the procedure has to re-read the same file several time. Note that meta information about the loci also known as .map can also be read alongside a .raw file using the argument map.file. Alternatively, such information can be added to a genlight object afterwards using extract.PLINKmap.

3.3.3 Extracting SNPs from alignments

In many cases, raw genomic data are available as aligned sequences, in which case extracting polymorphic sites can be non-trivial. The biggest issue is again memory: most software extracting SNPs from aligned sequences require all the sequences to be stored in memory at a time, a duty that most common computers cannot undertake. *adegenet* implements a more parsimonious alternative which allows for extracting SNPs from alignment while processing a reduced number of sequences (down to a single) at a time.

The function fasta2genlight extracts SNPs from alignments with fasta format (file extensions '.fasta', '.fas', or '.fa'). Like read.snp and read.PLINK, fasta2genlight processes data by chunks of individuals so as to save memory requirements. It first scans the whole file for polymorphic positions, and then extracts all biallelic SNPs from the alignment.

fasta2genlight is illustrated like read.snp using a toy dataset distributed alongside the package. The file is first located using system.file, and then processed using fasta2genlight:

```
> myPath <- system.file("files/usflu.fasta", package = "adegenet")
> obj <- fasta2genlight(myPath, chunk = 10)

Converting FASTA alignment into a genlight object...

Looking for polymorphic positions...

Extracting SNPs from the alignment...</pre>
```

```
Building final object...
...done.

> obj

=== S4 class genlight ===
80 genotypes, 274 binary SNPs
Ploidy: 1
26 (0 %) missing data
@position: position of the SNPs
@alleles: alleles of the SNPs
```

obj is a genlight object containing SNPs of 80 isolates of seasonal influenza (H3N2) sampled within the US over the last two decades; sequences correspond to the hemagglutinin (HA) segment. Besides genotypes, obj contains the positions of the SNPs and the alleles at each retained loci. Names of the loci are constructed as the combination of both:

> position(obj)

```
62
177
           99
                                                       146
                                                              147
                                                                                                    187
                 105
                         108
                                121
                                       128
                                               140
                                                                      150
                                                                             165
                                                                                             181
                                                                                                            190
                                                                                                                   191
                 196
 [31
[46
         193
295
                         197
                                210
327
                                       216
328
                                               218
365
                                                      219
402
                                                              232
405
                                                                      234
412
                                                                             246
417
                                                                                            255
419
                                                                                                    273
424
                                                                                                                   289
439
                                                                                     249
                                                                                                            286
                 310
                         323
                                                                                     418
                                                                                                            438
 [61]
[76
                         445
                                        450
                                                       460
                                                                      466
                                                                              467
         508
549
                510
563
                        511
                                512
571
                                       513
577
                                               514
                                                      516
591
                                                              518
                                                                     520
604
                                                                             522
                                                                                     524
                                                                                             531
                                                                                                    537
                                                                                                           538
622
                                                                                                                   547
623
                                                              603
                                                                             606
                                                                                     609
                                                                                                    616
                        564
                                               585
                                                                                             614
                                                                      642
706
744
         624
                                628
                                                       636
                                                                             648
106
                                                              638
121
136
         687
722
                689
723
                        690
727
                                693
729
                                       694
732
                                               696
733
                                                      702
734
                                                              705
735
                                                                             712
754
                                                                                     714
759
                                                                                            715
778
                                                                                                    716
780
                                                                                                           717
786
                                                                                                                   721
811
       822
903
1005
                                                                    875
963
1053
151
166
181
                                837
                                       854
               913
1009
                       920 927
1011 1017
                                     930
1023
                                             945
1030
                                                     948
1044
                                                             954
1047
                                                                                   981
1059
                                                                                           983
1080
                                                                                                    988
                                                                            1056
                                                                                                   1087
                                                                                                          1089
                                                                                                                  1092
        1107
               1116
                                              1140
                                                     1146
                                                                    1158
                                                                            1163
                                                                                    1169
211
        1180
               1182
                       1185 1188
                                     1191 1197
                                                     1200
                                                            1201 1205
                                                                                   1218
                                                                                           1221
                                                                                                   1230
                                                                                                          1233
[226]
        1263
               1266
                       1275 1290
                                     1296 1320 1323
                                                            1325 1338
1474 1475
                                                                           1347
                                                                                   1353
                                                                                           1389
                                                                                                  1397
                                                                                                          1401
                                                                                                                  1403
241
        1404
                       1416 1431
                                     1446
                                             1453
                                                     1458
                                                                            1485
               1413
       1683
                      1688 1700
```

> alleles(obj)

```
[1] "a/g" "c/t" "t/c" "t/c" "t/c" "c/a" "t/c" "c/t" "a/g" "c/t" "g/t" "c/a" [13] "a/g" "a/g" "a/g" "c/t" "a/g" "g/a" "c/a" "a/g" "a/g" "a/g" "a/c" "t/c"
                                             "g/a" "c/a" "a/g" "a/g"
              "t/a" "a/g" "t/c" "g/a"
                                                                           "t/c"
                                                     "g/a"
                                                            "a/g"
                                                                   "g/a"
 [25]
                                             "c/t"
                                                                                   "c/t"
                                                                                           "g/a"
                                                            "c/a" "a/g"
 [37]
                      "a/g"
                             "g/a" "a/t"
                                             "t/c"
                                                    "t/g"
                                                                           "g/a"
                                                                                   "g/a"
                                                                                           "a/c'
                      "c/t"
                                                                           "a/g"
"a/t"
 [49]
                              "g/a"
                                     "g/a"
                                             "a/g"
                                                     "a/g"
                                                            "g/a"
                                                                    "a/g"
                                                                                   "c/a"
                     "g/a"
                             "t/c" "g/a"
                                             "a/g"
                                                     "g/t" "t/a" "a/g"
              "g/a"
 [61]
              "c/a"
                                                            "c/t" "a/c"
                                                                           "a/c"
                      "t/c"
                             "t/c"
                                     "g/a"
                                             "c/a"
                                                     "a/c"
 [73]
       "a/c" "a/t" "t/c"
                             "g/a" "c/t"
                                                    "t/c" "g/a" "c/a" "g/a"
                                                                                  "t/c"
                                             "a/t"
 [85]
 [97]
               "g/a" "a/g"
                              "c/t" "g/a"
                                             "g/a"
                                                     "g/a" "a/g" "c/t" "c/t"
              "a/g" "t/c"
                             "t/c" "g/a"
                                             "a/t"
                                                    "g/a" "g/a" "g/a" "a/g"
                                                                                   "g/t"
[109]
                                                     "g/a"
               "t/c" "c/t"
                              "g/a"
                                     "a/g"
                                             "t/c"
                                                            "t/c" "a/g"
                                                                           "t/a"
Γ1217
                                     "t/c"
                                                            "t/c"
                                                                    "a/c"
                                                                           "g/t"
                      "g/a"
                              "g/a"
                                             "t/c"
                                                     "c/t"
[133]
                                     "t/c"
                      "t/c"
                              "g/a"
                                             "c/a"
                                                     "c/t"
                                                            "a/g"
                                                                   "a/g"
[145]
                                                                    "c/t"
                      "a/c"
                              "c/a"
                                             "t/c"
                                                     "c/t"
                                                            "t/c"
                                                                                   "c/t"
[157]
                                     "g/a"
                      "g/a"
                              "c/t" "t/c"
                                             "c/t"
[169]
                                                     "g/a" "a/g"
[181]
                                                      'c/t"
                                                            "c/t" "c/t"
                      "g/a"
                              "a/g"
                                     "g/t"
                                             "a/g"
              "a/g"
"c/t"
                                                            "a/g" "a/t" "t/c"
"c/t" "g/a" "a/g"
"c/t" "t/a" "a/g"
                      "c/t"
                              "c/t"
                                     "a/g"
[193]
                                             "g/a"
                                                     "c/a"
[205]
                      "c/a"
                              "g/a"
                                     "c/t"
                                             "a/g"
                                                     "a/g"
                                                                                   "g/a"
[217]
                      "a/g"
                              "g/a"
                                     "g/a"
                                              'a/g"
                                                                           "a/g"
                                                     'a/g
              "t/c" "c/t"
                             "g/a" "a/g"
                                                    "c/t" "t/c" "g/a"
                                                                                  "a/t" "g/a"
                                             "c/t"
                                                                           "g/a"
[229]
              "g/a" "g/a" "c/t" "c/t"
                                                    "c/t" "g/a" "c/t"
                                             "a/g"
                                                                           "g/a" "t/c" "a/g'
[241]
      "a/g" "c/t" "a/g" "a/g" "c/t" "a/g" "t/c" "g/a" "c/t" "t/c" "a/g" "c/t" "c/t" "t/c" "c/t" "g/a" "c/t" "g/a" "c/t" "g/a" "a/g" "c/t" "t/c" "c/t" "g/a" "a/g" "a/g" "a/g" "g/a"
[253]
```

> locNames(obj)

```
[1] "7.a/g"
                    "12.c/t"
                                 "31.t/c"
                                              "32.t/c"
                                                           "36.t/c"
                                                                        "37.c/a"
  [7] "44.t/c"
                    "45.c/t"
                                 "52.a/g"
                                              "60.c/t"
                                                           "62.g/t"
                                                                         "72.c/a"
 [13] "73.a/g"
                                 "96.a/g"
                                              "99.c/t"
                                                           "105.a/g"
                    "78.a/g"
                                                                        "108.g/a"
                    "128.a/g"
                                 "140.a/g"
                                              "146.a/g"
 Γ197
       "121.c/a"
                                                           "147.a/c"
                                                                        "150.t/c"
      "165.t/c"
                    "177.t/a"
                                 "181.a/g"
                                              "187.t/c"
                                                           "190.g/a"
                                                                         "191.c/t"
 Γ251
      "193.g/a"
                    "196.a/g"
                                 "197.g/a"
                                              "210.t/c"
                                                           "216.c/t"
                                                                        "218.g/a"
 [31]
      "219.a/g"
                    "232.a/g"
                                 "234.a/g"
                                              "246.g/a"
                                                           "249.a/t"
                                                                         "255.t/c"
 [37]
      "273.t/g"
                                 "289.a/g"
"365.c/t"
 [43]
                    "286.c/a"
                                              "295.g/a"
                                                           "310.g/a"
                                                                        "323.a/c"
                    "328.t/c"
      "327.t/c"
                                              "402.g/a"
                                                           "405.g/a"
                                                                         "412.a/g"
 [49]
                                 "419.a/g"
      "417.a/g"
                                              "424.a/g"
                                                                         "439.g/a"
 [55]
                    "418.g/a"
                                                           "438.c/a"
       "441.t/c"
                    "444.g/a"
                                 "445.g/a"
                                              "447.t/c"
                                                           "450.g/a"
                                                                         "451.a/g"
 [61]
       "460.g/t"
                                 "466.a/g"
                                              "467.a/t"
                                                           "472.g/a"
 [67]
                    "462.t/a"
                                                                         "478.g/a"
                                 "499.t/c"
      "479.t/a"
                    "483.c/a"
                                              "508.t/c"
                                                           "510.g/a"
                                                                        "511.c/a"
 [73]
                    "513.c/t"
                                 "514.a/c"
                                              "516.a/c"
                                                           "518.t/c"
 [79]
       "512.a/c"
                                                                         "520.g/a"
 [85]
      "522.a/c"
                    "524.a/t"
                                 "531.t/c"
                                              "537.g/a"
                                                           "538.c/t"
                                                                        "547.a/t"
 [91] "549.t/c"
                    "563.g/a"
                                 "564.c/a"
                                              "571.g/a"
                                                           "577.t/c"
                                                                        "585.t/c"
                                 "604.a/g"
"623.c/t"
                                                           "609.g/a"
 [97]
      "591.g/a"
                    "603.g/a"
                                              "606.c/t"
                                                                        "614.g/a"
[103]
       "616.g/a"
                    "622.a/g"
                                              "624.c/t"
                                                           "625.a/t"
                                                                         "626.g/t"
                                                           "638.g/a"
       "628.c/t"
                    "630.a/g"
                                 "635.t/c"
[109]
                                              "636.t/c"
                                                                         "642.a/t"
                    "650.g/a"
                                                           "671.g/t"
       "648.g/a"
                                 "652.g/a"
                                              "669.a/g"
                                                                        "672.a/g"
[115]
                                 "690.c/t"
                    "689.t/c"
                                              "693.g/a"
                                                           "694.a/g"
[121]
       "687.a/g"
                                                                         "696.t/c"
                    "705.t/c"
                                                           "714.g/a"
[127]
       "702.g/a"
                                 "706.a/g"
                                              "712.t/a"
                                                                        "715.g/a"
                    "717.a/g"
"732.t/c"
       "716.t/g"
[133]
                                 "721.g/a"
                                              "722.g/a"
                                                           "723.t/c"
                                                                        "727.t/c"
                                              "734.g/t"
      "729.c/t"
                                 "733.a/c"
                                                           "735.a/g"
                                                                        "744.c/a"
[139]
       "754.a/t"
                    "759.a/g"
                                 "778.t/c"
                                              "780.g/a"
                                                           "786.t/c"
                                                                         "811.c/a"
[145]
                                 "833.a/g"
"875.a/c"
       "822.c/t"
                    "831.a/g"
                                              "837.g/a"
                                                           "854.g/a"
                                                                         "855.g/a"
[151]
                    "872.g/a"
                                                           "881.g/a"
       "859.g/a"
                                              "876.c/a"
                                                                        "882.t/c"
[157]
                                 "894.c/t"
                                                           "913.c/t"
[163]
       "884.c/t"
                    "885.t/c"
                                              "903.t/c"
                                                                        "920.a/g"
[169]
       "927.t/a"
                    "930.t/c"
                                 "945.g/a"
                                              "948.c/t"
                                                           "954.t/c"
                                                                        "963.c/t"
[175]
       "973.g/a"
                    "981.a/g"
                                 "983.a/c"
                                              "988.c/t"
                                                           "990.g/a"
                                                                        "993.a/g"
      "1005.g/a" "1009.c/a"
                                 "1011.g/a"
                                              "1017.a/g"
                                                           "1023.g/t"
                                                                        "1030.a/g"
[181]
       "1044.c/t" "1047.c/t" "1053.c/t" "1056.a/g" "1059.t/c" "1080.g/a
[187]
      "1087.g/a" "1089.a/g" "1092.c/t" "1107.c/t" "1116.a/g" "1125.g/a" "1128.c/a" "1134.a/g" "1140.a/t" "1146.t/c" "1149.t/c" "1158.t/a"
Γ1937
[199]
      "1163.c/a" "1169.c/t"
                                 "1170.c/a"
                                              "1171.g/a" "1173.c/t"
                                                                        "1176.a/g'
[205]
      "1180.a/g" "1182.c/t" "1185.g/a" "1188.a/g" "1191.g/a" "1197.g/a'
[211]
[217] "1200.a/g" "1201.a/g" "1205.a/g" "1206.g/a" "1218.g/a" "1221.a/g" [223] "1230.a/g" "1233.c/t" "1246.t/a" "1263.a/g" "1266.t/c" "1275.c/t"
[229]
       "1290.a/g" "1296.t/c" "1320.c/t" "1323.g/a" "1325.a/g" "1338.c/t'
[235]
      "1347.c/t" "1353.t/c" "1389.g/a" "1397.g/a" "1401.a/t" "1403.g/a"
      "1404.g/a" "1413.g/a" "1416.g/a" "1431.c/t" "1446.c/t" "1453.a/g"
[241]
       "1458.c/t" "1474.g/a" "1475.c/t" "1485.g/a" "1512.t/c"
                                                                        "1518.a/g"
[247]
[253] "1524.a/g" "1527.c/t" "1530.a/g" "1536.a/g" "1548.c/t" "1557.a/g" [259] "1563.t/c" "1572.g/a" "1574.c/t" "1614.a/g" "1620.c/t" [265] "1627.c/t" "1637.t/c" "1642.c/t" "1644.g/t" "1652.t/c" "1653.c/t"
[271] "1683.g/a" "1687.a/g" "1688.a/g" "1700.g/a"
```

It is usually informative to assess the position of the polymorphic sites within the genome; this is very easily done in R, using density with an appropriate bandewidth:

Location of the SNPs

Note that retaining only biallelic sites may cause minor loss of information, as sites with more than 2 alleles are discarded from the data. It is however possible to ask fasta2genlight to keep track of the number of alleles for each site of the original alignment, by specifying:

```
> obj <- fasta2genlight(myPath, chunk = 10, saveNbAlleles = TRUE,
+ quiet = TRUE)
> obj

=== S4 class genlight ===
80 genotypes, 274 binary SNPs
Ploidy: 1
26 (0 %) missing data
@position: position of the SNPs
@alleles: alleles of the SNPs
@other: a list containing: nb.all.per.loc
```

The output object obj now contains the number of alleles of each position, stored in the other slot:

About 18% of the sites are polymorphic, which is fairly high. This is not entirely surprising, given that the HA segment of influenza is known for its high mutation rate. What is the nature of this polymorphism?

Most polymorphic loci are biallelic, but a few loci with 3 or 4 alleles were lost. We can estimate the loss of information very simply:

```
> temp <- temp[-1]
> temp <- 100 * temp/sum(temp)
> round(temp, 1)

2     3     4
90.4    8.3    1.3
```

In this case, 90.4% of the polymorphic sites were biallelic, the others being essentially triallelic. This is probably a fairly exceptional situation due to the high mutation rate of the HA segment.

4 Data analysis using genlight objects

In the following, we illustrate some methods for the analysis of genlight objects, ranging from simple tools for diagnosing allele frequencies or missing data to recently developed multivariate approaches. Troughout these examples, we use glSim to simulate genlight objects. This simple simulation tool allows for simulating large SNPs data with possibly contrasted structures between two groups of individuals. See <code>?glSim</code> for more details on this tool.

- 4.1 Simple operations
- 4.2 Principal Component Analysis (PCA)
- 4.3 Principal Component Analysis (PCA)
- 4.4 Discriminant Analysis of Principal Components (DAPC)

References

- [1] Jombart, T. (2008) adegenet: a R package for the multivariate analysis of genetic markers. *Bioinformatics* 24: 1403-1405.
- [2] R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.