Foundations of Machine Learning

Module 6: Neural Network

Part C: Neural Network and

Backpropagation Algorithm

Sudeshna Sarkar IIT Kharagpur

Single layer Perceptron

 Single layer perceptrons learn linear decision boundaries

x: class I (y = 1) o: class II (y = -1)

x: class I (y = 1) o: class II (y = -1)

Boolean OR

input x1	input x2	ouput
0	0	0
0	1	1
1	0	1
1	1	1

input x1	input x2	ouput
0	0	0
0	1	0
1	0	0
1	1	1

input x1	input x2	ouput
0	0	0
0	1	1
1	0	1
1	1	0

Boolean XOR

input x1	input x2	ouput
0	0	0
0	1	1
1	0	1
1	1	0

Representation Capability of NNs

- Single layer nets have limited representation power (linear separability problem). Multi-layer nets (or nets with nonlinear hidden units) may overcome linear inseparability problem.
- Every Boolean function can be represented by a network with a single hidden layer.
- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers.

Multilayer Network

Two-layer back-propagation neural network

Derivation

• For one output neuron, the error function is

$$E = \frac{1}{2}(y-o)^2$$

• For each unit j, the output o_i is defined as

$$o_j = \varphi(net_j) = \varphi(\sum_{k=1}^n w_{kj}o_k)$$

The input net_j to a neuron is the weighted sum of outputs o_k of previous n neurons.

• Finding the derivative of the error: $\partial E = \partial E \partial o_j \partial net_j$

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ij}}$$

For one output neuron, the error function is $E = \frac{1}{2}(y-o)^2$

For each unit
$$j$$
, the output o_j is defined as
$$\begin{aligned} o_j &= \varphi\left(net_j\right) = \varphi\left(\sum_{k=1}^n w_{kj} o_k\right) \\ \frac{\partial E}{\partial w_{ij}} &= \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ij}} \\ &= \sum_l \left(\frac{\partial E}{\partial o_l} \frac{\partial o_l}{\partial net_z} w_{jz_l}\right) \varphi\left(net_j\right) \left(1 - \varphi\left(net_j\right)\right) o_i \\ \frac{\partial E}{\partial w_{ij}} &= \delta_j o_i \end{aligned}$$
 with

with

$$\delta_{j} = \frac{\partial E}{\partial o_{j}} \frac{\partial o_{j}}{\partial net_{j}} = \begin{cases} (o_{j} - y_{j}) o_{j} (1 - o_{j}) & \text{if } j \text{ is an output neuron} \\ (\sum_{Z} \delta_{z_{l}} w_{jl}) o_{j} (1 - o_{j}) & \text{if } j \text{ is an inner neuron} \end{cases}$$

To update the weight w_{ij} using gradient descent, one must choose a learning rate η . $\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}}$

$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}}$$

Backpropagation Algorithm

Initialize all weights to small random numbers. Until satisfied, do

- For each training example, do
 - Input the training example to the network and compute the network outputs
 - For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k)(y_k - o_k)$$

For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k}, \delta_k,$$

• Update each network weight w_i , j

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where
 $\Delta w_{i,j} = \eta \delta_i x_{i,j}$

$$x_d$$
 = input y_d = target output o_d = observed unit output w_{ij} = wt from i to j

Backpropagation

- Gradient descent over entire network weight vector
- Can be generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
- May include weight momentum α

$$\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$$

- Training may be slow.
- Using network after training is very fast

Training practices: batch vs. stochastic

vs. mini-batch gradient descent

- Batch gradient descent:
 - Calculate outputs for the entire dataset
 - 2. Accumulate the errors, backpropagate and update
- Stochastic/online gradient descent:
 - 1. Feed forward a training example
 - 2. Back-propagate the error and update the parameters
- Mini-batch gradient descent:

Too slow to converge
Gets stuck in local minima

Often helps get the system out of local minima

Learning in *epochs*Stopping

- Train the NN on the entire training set over and over again
- Each such episode of training is called an "epoch"

Stopping

- 1. Fixed maximum number of epochs: most naïve
- Keep track of the training and validation error curves.

Overfitting in ANNs

Local Minima

- NN can get stuck in local minima for small networks.
- For most large networks (many weights) local minima rarely occurs.
- It is unlikely that you are in a minima in every dimension simultaneously.

ANN

- Highly expressive non-linear functions
- Highly parallel network of logistic function units
- Minimizes sum of squared training errors
- Can add a regularization term (weight squared)
- Local minima
- Overfitting

Thank You