Results

mcc

3/13/2020

Results

I have studied six different M.L. algorithms using protein amino acid percent composition data from two classes. Class number 1 is Myoglobin proteins, which is the positive control set. While the second class is a control group (0) of human proteins that do not have Fe binding centers.

Group	Class	N of Class	Range of Groups
Controls	0 or (-)	1216	$1, \ldots, 1216$
Myoglobin	1 or $(+)$	1124	$1217, \ldots, 2340$

The Six M.L Algorithms consist of:

Name	Type	Output Used For Graphing
Principal Component Analysis	Unsupervised	Anomalies $> Abs(3\sigma)$
Logistic Regression	Supervised	FP & FN
SVM-linear	Supervised	FP & FN
SVM-polynomial kernel	Supervised	FP & FN
SVM-radial basis function kernel	Supervised	FP & FN
Neural Network	Supervised	FP & FN

Scatter Plots of Anomalies Vs. FP & FN Outputs

To obtain False-Positive (FP) and False-Negatives (FN) from sets:

- 1. False-Postives $\stackrel{\text{def}}{=}$ {obs = 0 \land pred = 1}
- 2. False-Negatives $\stackrel{\text{def}}{=}$ {obs = 1 \land pred = 0}

Anomalies Inner Joined with PC

```
# Load Libraries
Libraries = c("knitr", "readr")
for(p in Libraries){
    library(p, character.only = TRUE)
}
opts_chunk$set(fig.align = "center", cache=TRUE)
```

PCA-Anomalies On PC 1 & 2 Axes

Logit FP/FN On PC 1 & 2 Axes

SVM-Linear FP/FN On PC 1 & 2 Axes

SVM-Polynomial FP/FN On PC 1 & 2 Axes

SVM-RBF FP/FN On PC 1 & 2 Axes

Neural Net FP/FN On PC 1 & 2 Axes

Statistical Learning Method Vs Total Number of FP/FN

Statistical Method	Unique
Principal Componnent Analysis	460
Logit	119
SVM Linear	125
SVM Polynomial	70
SVM Radial Basis Function	58
Deep Learning	79

Comparison of Machine Learning Accuracies

```
# Load Libraries
Libraries <- c("doMC", "knitr", "readr", "caret", "nnet", "caretEnsemble", "e1071", "kernlab")
for (p in Libraries) {
   library(p, character.only = TRUE)
knitr::opts_chunk$set(echo = TRUE, fig.align="center")
# Import data & data handling
c_m_TRANSFORMED <- read_csv("./00-data/02-aac_dpc_values/c_m_TRANSFORMED.csv",</pre>
                            col_types = cols(Class = col_factor(levels = c("0", "1")),
                                              PID = col_skip(),
                                              TotalAA = col_skip()))
# Partition data into training and testing sets
set.seed(1000)
index <- createDataPartition(c_m_TRANSFORMED$Class, p = 0.8, list = FALSE)</pre>
training_set <- c_m_TRANSFORMED[ index,]</pre>
           <- c_m_TRANSFORMED[-index,]</pre>
test_set
Class_test <- as.factor(test_set$Class)</pre>
Stacking Algorithms - Run multiple algorithms in one call.
## Warning in caretList(Class ~ ., data = training_set, trControl = trainControl, :
## Duplicate entries in methodList. Using unquee methodList values.
## # weights: 287
## initial value 1622.518111
## iter 10 value 591.200854
## iter 20 value 331.103547
## iter 30 value 281.561829
## iter 40 value 215.474048
## iter 50 value 179.866748
## iter 60 value 111.221062
## iter 70 value 76.163156
## iter 80 value 55.582062
```

```
## iter 90 value 46.458483
## iter 100 value 39.618132
## final value 39.618132
## stopped after 100 iterations
```

summary(results)

```
##
## Call:
## summary.resamples(object = results)
## Models: glm, nnet, svmLinear, svmPoly, svmRadialCost
## Number of resamples: 10
## Accuracy
##
                      Min.
                              1st Qu.
                                         Median
                                                      Mean
                                                             3rd Qu.
## glm
                 0.8784104\ 0.8954626\ 0.9110056\ 0.9078127\ 0.9184104\ 0.9311981
## nnet
                 0.9098458 \ 0.9208185 \ 0.9281899 \ 0.9286350 \ 0.9334118 \ 0.9525504
                 0.9139466\ 0.9215485\ 0.9288256\ 0.9292275\ 0.9373989\ 0.9454330
## svmLinear
                                                                                   0
                 0.9234875 0.9346085 0.9421534 0.9415091 0.9485244 0.9584816
## svmPoly
                                                                                   0
## svmRadialCost 0.9383155 0.9454330 0.9522539 0.9510603 0.9553610 0.9614243
                                                                                   0
##
## Kappa
                              1st Qu.
                                         Median
##
                      Min.
                                                      Mean
                                                             3rd Qu.
                                                                           Max. NA's
                 0.7561869 0.7905961 0.8215603 0.8152905 0.8365124 0.8619539
## glm
                 0.8193980 0.8411102 0.8560213 0.8569694 0.8665330 0.9048933
## nnet
                                                                                   0
## svmLinear
                 0.8275022\ 0.8422492\ 0.8569400\ 0.8578486\ 0.8743642\ 0.8905356
                                                                                   0
## svmPoly
                 0.8467331\ 0.8688294\ 0.8839959\ 0.8827193\ 0.8967519\ 0.9169053
                                                                                   0
## svmRadialCost 0.8764532 0.8906928 0.9043832 0.9019157 0.9104916 0.9226237
```

Plot the resamples output to compare the models.

Mean Accuracies of M.L. Techniques, n=10

Rank	M.L. Technique	Mean Accuracy
1	SVM-RBF	0.9510603
2	SVM-Poly	0.9415091
3	SVM-Lin	0.9292275
4	NN w 20 Neurons	0.9286350
5	Logit	0.9078127