Image Classification: Statistical Reasoning for Deep Learning Methods

Statistical interpretation of the effectiveness of some popular methods used in Deep Learning

Agenda

- 1. Introduction
- 2. Batch Normalization
- 3. Dropout
- 4. Loss Function Selection
- 5. Experiment and Result
- 6. Conclusion
- 7. Q&A

Introduction

Introduction

- Deep Learning is ubiquitous nowadays
- but Interpretability of DL remains challenging
- Engineers tend to use DL models as "magic black boxes"

From Yann LeCun

What society thinks I do

What my friends think I do

What other computer scientists think I do

What mathematicians think I do

What I think I do

What I actually do

Introduction

Models with little interpretability sabotages the reliability of the decision making process it participates, therefore, we aim to:

- Study the mathematical reasoning behind the methods used in DL
- Reason and explain why certain DL components work in a statistical perspective
- Open the "black box" using statistics

Batch Normalization technique

Why Normalization?

- Normalize the data on a similar scale to stabilize the gradient descent step and help the model converge faster.
- Batch Normalization

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

Not just to normalize before the network but also to normalize within the network

Batch Normalization

Internal Covariate Shift

"We refer to the change in the distributions of internal nodes of a deep network, in the course of training, as Internal Covariate Shift." - In Indian India

Layers constantly adapt ——— Slow learning

Method

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}
```

Batch Normalization

Learn parameters γ, β via backpropagation

$$\frac{\partial \ell}{\partial \widehat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}\right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_{i}} = \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2(x_{i} - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}} \cdot \widehat{x}_{i}$$

$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}}$$

Dropout

Dropout Neurons

Sampling

How dropout solves overfitting

1. Avoid Co-adapting

2.Averaging

A neural net with n units, can be seen as a collection of 2ⁿ possible thinned neural networks (Nitish Srivastava 2014).

Bayesian Interpretation

Dropout as a Bayesian Approximation [2]

A neural network with arbitrary depth and Non-linearities

Dropout

Deep Gaussian process

$$\mathcal{L}_{\text{dropout}} := \frac{1}{N} \sum_{i=1}^{N} E(\mathbf{y}_i, \widehat{\mathbf{y}}_i) + \lambda \sum_{i=1}^{L} \left(||\mathbf{W}_i||_2^2 + ||\mathbf{b}_i||_2^2 \right).$$

$$\begin{split} \mathcal{L}_{\text{GP-MC}} & \propto \frac{1}{N} \sum_{n=1}^{N} \frac{-\log p(\mathbf{y}_n | \mathbf{x}_n, \widehat{\boldsymbol{\omega}}_n)}{\tau} \\ & + \sum_{i=1}^{L} \left(\frac{p_i l^2}{2\tau N} ||\mathbf{M}_i||_2^2 + \frac{l^2}{2\tau N} ||\mathbf{m}_i||_2^2 \right) . \end{split}$$
 Setting

 $E(\mathbf{v}_n, \widehat{\mathbf{v}}(\mathbf{x}_n, \widehat{\boldsymbol{\omega}}_n)) = -\log p(\mathbf{v}_n | \mathbf{x}_n, \widehat{\boldsymbol{\omega}}_n) / \tau$

Loss Function Selection

Purpose

- Provide static representation of how your model is performing-they're how your algorithms fit data
- Provide the object function for model optimization
- 3. Since we are solving a multi-class classification problem, we choose softmax as activation function and cross-entropy for loss function

Categorical Cross-Entropy loss

$$CE = -log\left(\frac{e^{s_p}}{\sum_{j}^{C} e^{s_j}}\right)$$

- CNN to output a probability over the C classes for each image
- 2. It is a **Softmax activation** plus a **Cross-Entropy loss**
- 3. There is only one element of the Target vector $\mathbf{t}_{i} = \mathbf{t}_{p}$ which is not zero

Experiment and Result

Experiment Setup

Dataset CIFAR-10

Model Structure

Model Structure (Batch Norm, Dropout)

Model Prediction

Misclassified Example

Accuracy Graph: Training Accuracy vs Testing Accuracy

Experiment Result

Loss without BatchNorm vs Loss with BatchNorm

Experiment Result

Training Accuracy and Testing Accuracy for CNN model without Dropout

Training Accuracy and Testing Accuracy for CNN model with Dropout

Conclusion

Conclusion

Through statistical reasoning, we saw how:

- Batch Normalization mitigates the Internal Covariate Shift which speeds up training
- Random Dropout served as regularization reduces overfitting by averaging and avoiding Co-adapting
- Minimizing the Cross Entropy loss provides a statistical metric to minimizing the difference between:
 - Distribution of model prediction
 - Distribution of the truth values

Conclusion

Why DL interpretability is important:

- For science!
- Helps students learn
- Provide insights for further research and innovation
- Selling convincing stories of reliable models to investors/customers/law makers

Q&A

Group Members

- Hongtao Zhang, 3036047389
- Mengxuan Chen, 3036046282
- Yuexi Dong, 3036046555
- Yiming Huang, 3036101800
- Xinjing Lin, 3035572313