Counting Processes and Asymptotic Theory

Henrique Laureano

http://leg.ufpr.br/~henrique

Last modification on 2020-02-27 18:06:58

Failure Time Models, 5nd chapter of *The Statistical Analysis of Failure Time Data* Kalbfleisch and Prentice, 2002

Outline

- » Counting processes and intensity functions
- » Martingales
 - » Continuous-time counting processes
 - » Discrete-time counting processes
- » Vector-valued martingales

A counting process $N = \{N(t), t \ge 0\}$

is a stochastic process with N(0) = 0 and whose value at time t counts the number of events that have occurred in the interval (0, t].

- » The sample paths of N are nondecrising step functions that jump whenever an event (or events) occur.
- » In continuous time,

no two counting processes can jump at the same time.

» In discrete time, they can.

Number of events that occur in the interval [t, t + dt]? $dN(t) = N(t^- + dt) - N(t^-)$.

Number of events that occur at time t? $\Delta N(t) = N(t) - N(t^{-})$.

And what about more general counting processes where individuals may experience more than one event? Chapters 8, 9, and 10.

leg.ufpr.br/~henrique

Filtration: history of events

observed counting process: $N_i = \{N_i(t), t \geq 0\}$ underlying counting process: $\tilde{N}_i = \{\tilde{N}_i(t), 0 \leq t\}, \quad \tilde{N}_i(t) = \mathbf{1}(T_i \leq t)$ at-risk process: $\{Y_i(t), t \geq 0\}, \quad Y_i(t) = \mathbf{1}(T_i \geq t, C_i \geq t)$

key concept: filtration

$$\mathcal{F}_t = \sigma\{N_i(u), Y_i(u^+), X_i(u^+), i = 1, \dots, n; 0 \le u \le t\}, \quad t > 0,$$

where

$$Y_i(u^+) = \lim_{s \to u^+} Y_i(s);$$

stochastic time-dependent covariate: $X_i(t) = \{x_i(u) : 0 \le u \le t\}$.

The notation $\sigma[\cdot]$ specifies the sigma algebra of events generated by the variables given in the brackets.

Intensity functions

The intensities or rates for the processes N_i are defined with reference to the filtration \mathcal{F}_t . If the censoring process is independent, the intensity model for the counting process N_i is

$$\mathbb{P}[dN_i(t)=1|\mathcal{F}_{t^-}]=Y_i(t)d\Lambda_i(t), \quad i=1,\ldots,n, \quad t>0.$$

The hazard model can be written $d\Lambda_i(t) = \mathbb{P}[d\tilde{N}_i(t) = 1|X_i(t), \tilde{N}_i(t^-) = 0].$

 Λ_i is called the cumulative intensity process of the counting process \tilde{N}_i .

- » In the continuous case, $\mathbb{P}[dN_i(t)=1|\mathcal{F}_{t^-}]=Y_i(t)\lambda_i(t)dt$
- » In the discrete case, $\mathbb{P}[dN_i(a_l)=1|\mathcal{F}_{a_l^-}]=Y_i(a_l)\lambda_{il},\quad l=1,2,\dots$

 $\lambda_i(t)$ and λ_{il} are the corresponding intensity processes.

Martingales: Intro

$$egin{aligned} M_i(t) &= N_i(t) - \int_0^t Y_i(u) \lambda_i(u) du, \quad t \geq 0. \ &= \int_0^t dM_i(u), \ dM_i(t) &= dN_i(t) - Y_i(t) \lambda_i(t) dt. \end{aligned}$$

lf

»
$$\mathbb{E}[dM_i(t)|\mathcal{F}_{t^-}]=0, \quad \forall t; \quad \equiv \quad \mathbb{E}[M_i(t)|\mathcal{F}_s]=M_i(s), \quad \forall s \leq t.$$

Then, $M_i(t)$ is a martingale.

Consequences:

- » $\mathbb{E}[M_i(t)] = 0, \forall t$;
- » the process $M_i(t)$ has uncorrelated increments, i.e., $\mathbb{E}[(M_i(t) M_i(s)) \times M_i(s)] = 0$, $\forall 0 < s < t$.

Decomposing $N_i(t)$ into two processes

$$N_i(t) = \underbrace{\int_0^t Y_i(u) \lambda_i(u) du}_{\text{compensator of the counting process } N_i \text{ wrt the filtration } \mathcal{F}_t \underbrace{\int_0^t Y_i(u) \lambda_i(u) du}_{\text{counting process } martingale \text{ corresponding to } N_i(t)}_{\text{counting process } martingale \text{ corresponding to } N_i(t)$$

$$dN_i(t) = Y_i(t) \lambda_i(t) dt + dM_i(t).$$

In the discrete case, the discrete-time martingale is

$$N_i(t) = \int Y_i(u)d\Lambda_i(u) + M_i(t)$$

 $= \sum_{a_l \leq t} Y_i(a_l)\lambda_{il} + M_i(t),$
 $dN_i(a_l) = Y_i(a_l)\lambda_{il} + dM_i(a_l).$

More about martingales

In essense, a martingale is a process that has no drift and whose increments are uncorrelated.

- » We say that M(t) is a mean zero martingale if $\mathbb{E}[M(0)] = 0$, and hence $\mathbb{E}[M(t)] = 0, \forall t$.
- » The martingale M(t) is said to be square integrable (or have finite variance) if $\mathbb{E}[M^2(t)] = \mathbb{V}[M(t)] < \infty, \forall t \leq \tau$.

It is useful to define two technical terms applied to a stochastic process $U = \{U(t), t \ge 0\}$.

Adapted

U is said to be adapted to the filtration \mathcal{F}_t if U(t) is \mathcal{F}_t measurable for each $t \in [0, \tau]$, i.e., the value of U(t) is fixed once \mathcal{F}_t is given.

Predictable

U is said to be predictable wrt the filtration \mathcal{F}_t if U(t) is \mathcal{F}_{t^-} measurable for all $t \in [0, \tau]$, i.e., the value of U(t) is fixed once \mathcal{F}_{t^-} is given.

More about martingales

The process $\{\bar{M}(t), 0 \leq t \leq \tau\}$ is a submartingale wrt \mathcal{F}_t if it is adapted and satisfies

$$\mathbb{E}[\bar{M}(t)|\mathcal{F}_s] \geq \bar{M}(s) \quad \forall s \leq t \leq \tau.$$

» A counting process N(t) is a submartingale.

Predictable variation process

The predictable variation process of a square-integrable martingale M is

$$\langle M \rangle(t) = \int_0^t \mathbb{V}[dM(u)|\mathcal{F}_{u^-}].$$

Equivalently, $d\langle M\rangle(t) = \mathbb{V}[dM(u)|\mathcal{F}_{u^-}].$

In statistical terms, the primary role of the predictable variation process is that for given t, $\langle M \rangle$ (t) provides a systematic approach to estimating the variance of M(t).

Variance of M(t)

$$\mathbb{V}[M(t)] = \mathbb{E}[M^{2}(t)] = \mathbb{E}[\langle M \rangle (t)]$$

and $\langle M \rangle(t)$ is an unbiased estimator of $\mathbb{V}[M(t)]$.

Usually, $\langle M \rangle$ (t) involves the parameters of the model.

There is an alternative estimator of $\mathbb{V}[M(t)]$ that in some problems is a function of observed quantities only. This is the quadratic variation or optional variation process [M](t).

$$[M](t) = \sum_{s < t} (\Delta M(s))^2.$$

[M](t) also provides an unbiased estimator of V[M(t)].

Continuous-time counting processes

For each i, the process

$$M_i(t) = N_i(t) - \int_0^t Y_i(u)\lambda_i(u)du$$

is a mean zero martingale wrt the filtration \mathcal{F}_t . The corresponding predictable variation process is

$$\langle M \rangle(t) = \int_0^t Y_i(u) \lambda_i(u) du$$

since $d\langle M\rangle(u) = \mathbb{V}[dM(u)|\mathcal{F}_{u^-}] = \mathbb{E}[dN_i(u)|\mathcal{F}_{u^-}] = Y_i(u)\lambda_i(u)du$, $0 \le u \le \tau$. The optional variation process is

$$[M_i](t)=N_i(t).$$

Both $\langle M_i \rangle$ (t) and $[M_i]$ (t) provide unbiased estimates of $\mathbb{V}[M_i(t)]$, but only the latter is a function of the data only.

Discrete-time continuous processes

In discrete time we have

$$\mathbb{P}[dN_i(t) = 1 | \mathcal{F}_{t^-}] = \mathbb{E}[dN_i(t) | \mathcal{F}_{t^-}] = Y_i(t) d\Lambda_i(t),$$

where $\Lambda_i(t) = \sum_{a_l \leq t} \lambda_{il}$ and λ_{il} are the discrete hazard probabilities.

The corresponding martingale is

$$M_i(t) = N_i(t) - \int_0^t Y_i(u) d\Lambda_i(u)$$

and the predictable variation process is

$$\langle M_i \rangle (t) = \sum_{a \leq t} Y_i(a_l)(1 - \lambda_{il})\lambda_{il}.$$

The increment $d \langle M_i \rangle (t)$ at a_l corresponds to $\mathbb{V}[dN_i(a_l)|\mathcal{F}_{t^-}] = Y_i(a_l)(1-\lambda_{il})\lambda_{il}$.

Vector-valued martingales

» Grouped relative risk model:

Discrete baseline cumulative hazard function : $\Lambda_0(t) = \sum_{a_i \le t} \lambda_i$,

this model is the uniquely appropriate one for grouped data from the continuous relative risk model.

» Discrete and continuous relative risk model:

$$d\Lambda(t;x) = \exp(Z^{\top}\beta) d\Lambda_0(t),$$

which retains the multiplicative hazard relationship.

» Discrete logistic model:

$$\frac{\mathsf{d}\Lambda(t;x)}{1-\mathsf{d}\Lambda(t;x)} = \frac{\mathsf{d}\Lambda_0(t)}{1-\mathsf{d}\Lambda_0(t)} \exp(Z^\top\beta),$$

specifies a linear log odds model for the hazard probability at each potential failure time.

