NOME! FELIDE ANCHONOU DE CUMHO MENDOS
NA: 2252740
DENIVADAS
120111111111111111111111111111111111111
A. T. IN A CONTINUE AND ONE TO
l: I - In la continua em cie I
Ta (1) D (2, B) = 0 (2)
Tg(a) = l(a+h) - l(a)
1- 1- 1/02
L= Lim l(a+h) - l(a)
31
Declaração: A MAZIVADA DA UMA FUNÇÃO
DOFINICÃO: A DORIVORO DO UNO FUNÇÃO 1 6' A FUNÇÃO D' DOFINIDO PON
$\int_{0}^{1}(x) = \lim_{h \to 0} \int_{0}^{1}(x+h) - \int_{0}^{1}(x)$
h +0 h
POND TODO X NO QUAL O CIMITÒ
6×1576
D' & DIRENCNCIONOL GM X = CI
$l'(\alpha) = \lim_{h \to 0} l(\alpha + h) - l(\alpha) = \lim_{x \to 0} l(x) - l(\alpha)$
1-100 h x-00 x-9
X
x- st+ h - h = x-a
A-00 X-0

SÃO DOMINGOS S.A.

DEFINICÍO: SOOD aGI, ONDO I O UM INTERVOLO CONTINO NO DOMINIO DO UMA FUNÇÃO / DIZONOS QUO / O DONIVALOR a DINGITO NO PONTO OI QUINDO l(x) - l(a) = lin l(a+h) - l(a) x - a h + o o aGXISTE, NOTPCÃO: P+(a) OU P'(a+) DIZOMOS QUO & DENIVOLUCE Q (SCLONDO NO PONTO a QUENDO Lim l(x) - l(x) = Lim l(a+h) - l(a) CXISTE. NOTOCOO: (-(a) OU (a=) EXEMPLOS X+12

$\int_{0}^{1}(x) = \lim_{h \to 0} \int_{0}^{1}(x+h) - \int_{0}^{1}(x)$	
h-vo h	
P . [0	
= Lim x+h - x	
2	
P .	A (12)
= Lim ((x+h)(x+12) - x(x+ h+0 h (x+12) (x+12)	(h +16)
h+0 b (x+h+12) (x+12)	
= Lim [L (x2+12x+bx+12b-x2-	x & = x2x)
= Lim 1 (x2+12x+hx+12b-x2- 0-00 0 (x+4+12) (x+12)	
(x=17) (x+12)	
= Lim 1 . 12%	
= Lin 1. 12/ (x+0+12) (x+12)	
	<u> </u>
£ Lim 12 = 12	
how (x+h1) dim (x+h)	112) (X+12)
2+0	
= 42	
(x+12)2	w 31-3
(2,10)	
ENTRO LOS DIFONONCIONGE	POND TODO
x = -12	
XT 70	

BÃO DOMINGOS S.A.

EXEMOCO: $\begin{cases} l(x) = x^2 + 2. & Colculon & Den word DO \end{cases}$ NO PONTO X=1. Lim l(1+h) - l(4) = Lim (1+h)2+2-3 h+0 h = Lim 1+2h+h²-/2 < Lim h²+2h h-0 h h-0 h = Lim h+2 = 2// (XUMPLO:)(X) = 1X/ NOO & DIPONENCIPUEL BM X=0 De FRTC, P'(0) = Lim l'(0+h) - l(0) = Lim 1h1 = Lim - = Lim - = - 1/1
h-0 - h h+0 - a n-0 l'(0) = Lin l(0/h) - l(g) = lim 1h! = lim b = lim 1 = 1//

o DIFORON-TOONOMA! SO UM FUNCAO CIDVOC OM UM PONTO Q G DIP, ONTO & CONTINUE OM Q. Lim P(x) = V(a) DEM : $\lim_{x\to a} l(x) = \lim_{x\to a} \left[\frac{l(x) - l(a)}{(x-a)} \cdot (x-a) + l(a) \right]$ l(x) = l(x) - l(a) + l(a) = l(x) - l(a) (x+a) + l(a) pers X +a (x) - (ca) (x+a) 7 + Rum. = Lim (x-1/a), Lin (x-a) + (ca) $= l'(a) \cdot O + l(a) = l(a)$ 00 5000; Lim (a) = (co, provendo Que CONTINUE GM OI.

REGNOS BOSICOS DE DIFONONCIAÇÃO	
TOONEMA! SE ((x) = C & In, Yx & DID),	
E~700	
$\frac{df(x) = d(c) = 0}{dx}$	
Clx clx	
DEM; Of = Lim ((x+h)- (x) = Lim C-C dx h-00 h h-0 g	
dx hood h hood	
$= \lim_{h \to 0} \left(\frac{0}{h} \right) - \lim_{h \to 0} 0 = 0$	
h-00 h-00	
Examples: $\int (x) = -TT$. $\int (x) = 0$	
2(x)= 5x & de = 0 00 2'(x)=0	
dx	
$M(x) = C^{100}$. $M'(x) = 0$	
TEONEMA : NEGNA DO PUTENCIO	
SE RILIEXA ONDE MEINT, ONTEO	
$\int_{-\infty}^{\infty} (x) = m \times m - L$	
DESOIG X 70 DOND MLO	
VOSIO X 7 O 12 CO	

BÃO DOMINGOS B.A.

GLOMPIO'. D(x)= x5 $cll = 5x^{s-1} = 5x^4$ G GX MMO: y=1 = x-4 y'= (x-4) = -4x-4-1 = -4x-5 ExOMPLO: MIX) = \$ 2 R'(t) = 2tExample: y=x y = x = 1 TOUNOMO: SOODN & G FUNCOES DIFERON-CIDVOIS & CI, & &In. GNTDO CIP + lg & DIRON ON CIDUOL of (al+leg)(x) = a. dl(x) + le dg(x) (al+lg)'(x) = al'(x) + l-g'(x)

Gxammo: (x)= (x+2) (x2-2)
3 x granco
MCX) V(X)
A .
$\ell'(x) = \mu'(x) \cdot \nabla(x) + \mu(x) \cdot \nabla'(x)$
2 (2) = 14 (2) . 0 . 01
$=(x^{-1}+2)'(x^{2}-1)+(x^{-1}+2)(x^{2}-1)'$
- (x +2) (x 2-1) + (x +2) (x 2)
$= (-x^{-2}+2)(x^{2}-1) + (x^{-1}+2)(2x)$
$=(-x^{2}+2)(x^{2}-1)+(x^{2}+2)(2x)$
= 1 + 4×+2 //
I + 4× + L //
X Z
Example. y= 4x(L-x)(x+2)
25(8)
Examplo: $y = 4x(L-x^{-c})(x^2+2)$ $u(x)$ $v(x)$
y'= m'v + u.v'
= [4x(1-x-2)]. (x2+2) + [4x(1-x-2)]. (x2+2)
7 7 7
= [(4x)'(1-x-2) + 4x(1-x-2)'](xc+2) + [4x(1-x-2)](Zx)
= (4x) (1-x) + 4x(1-x) (x · c) [(x · c)] (2x)
7. 20 21 -21
= [32(1-x-2)x-2](x2+2) +8x2(1-x-2)

Denivoro DO QUE	3016~76
, , , , , , , , , , , , , , , , , , , ,	
SOREM POUF	UNCOOS DIFENENCIONOIS ON
x TAL QUE GI(X)	# 0, ENTOD /g & DI-
FONONCIANOL &	· G
$(\mathcal{Q}_{\alpha})(x) = \mathcal{Q}'(x)$	x).g(x) - f(x) · g'(x)
(3)	[g(x)] Z
	0
	M(×)
Examplo: (x)=	- 12-1
	3x-7 V(x)
_	
l'(x) = 11(x) V(x)	- M(x1.V'(x)
L1	T(X)e
= (x²-1), (3x-7)	- (x²-1) (3x-7)
(3×-4)	
= 2×(3×-7)-(x2-1)3
(3×-7)°	
= 6x2 - 14x - 3x2	+ 3
(3+-4) E	
2 2 1/11 1 2	
$= 3x^{2} - 14x + 3$ $(3x - 2)^{2}$	
(3x-7) C	U

BÃO DOMINGOS S.A.

3x6mplo: y= 2x3-3x11 y'= (2x3-3x+1)'(1-4x) - (2x3-3x+1)(1-4x)' $(6x^{2}-3)(1-4x)-(2x^{2}-3x+1)(-4)$ 6x2-3-24x3+6x2-3+12x+8x3-17xx4 -16x3+12x2 ~ 2