EE618(Zele) CMOS Analog IC Design

Course Project - I. Deadline :15th October 2019 01:55 PM Total Marks : 50

Specifications

Design an Ultra Low Power Operational Transconductance Amplifier in SCL 180nm technology (fully differential input, single ended output) to meet the following specifications:

- DC gain $\geq 110 \text{ dB}$
- Unity gain frequency $\geq 70 \text{ MHz}$
- Output voltage swing $\geq 1 V_{p-p}$
- Slew rate $\geq 40 \text{ V/}\mu\text{s}$
- Phase Margin $\geq 60^{\circ}$
- Input referred spot noise (at 1 MHz) $\leq 25 \text{ nV}/\sqrt{Hz}$
- Input referred spot noise (at 0.1 MHz) $\leq 35 \text{ nV}/\sqrt{Hz}$
- Input Common mode voltage = 0.9 V
- Output load capacitance = 1 pF (From analogLib)
- VDD = 1.8 V
- Power consumption $\leq 0.3 \text{ mW}$

Note: A Viva voce will be held after the submission deadline. Students must explain the design flow and the results that they obtain and show the simulations on laptops.

Simulations to be performed

Tabulate the Opamp Specifications in typical corner as shown below: [Typical corner: TT, 27^{0} C]

Parameters	Value (Unit)
DC gain	
Unity Gain frequency	
Phase Margin	
Slew rate	
Output Swing $(\nabla p - p)$	
Settling Time (1% accuracy)	
Input referred spot noise (at 1 MHz)	
Input referred spot noise (at 100 KHz)	
CMRR	
PSRR Pluse	
PSRR Minus	
ICR (Input Common Mode Range)	
Power	

Tabulate the following specifications in the corners specified in the table below.

Corner	SS		\mathbf{SS}		TT		FF
Temperature (⁰ C)	0	100	27	0	100		
DC Gain							
Unity Gain Frequency							
Phase Margin							

Grading

• Initial design/Hand Calculation : 10 Marks

• Simulation Results : 20 Marks

ullet Quality of the report : 5 Marks

• Viva voce : 15 Marks

• Bonus points (Based on architecture)

- MOSFET-C tracking : 5 Marks

– [1] M. G. Degrauwe, J. Rijmenants, E. A. Vittoz, and H. J. De Man, "Adaptive biasing CMOS amplifiers," IEEE J. Solid-State Circuits, vol. SSC-17,no. 3, pp. 522–528, Jun. 1982. : 10 Marks

- [2] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier and J. H. Huijsing, "A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries," in IEEE Journal of Solid-State Circuits, vol. 29, no. 12, pp. 1505-1513, Dec. 1994. : 10 Marks
- [3] K. Bult and G. J. G. M. Geelen, "A fast-settling CMOS op amp for SC circuits with 90-dB DC gain," in IEEE Journal of Solid-State Circuits, vol. 25, no. 6, pp. 1379-1384, Dec. 1990: 12.5 Marks
- [4] D. Y. Yoon, H.-S. Lee, and J. Gealow, "Power-efficient amplifier frequency compensation for continuous-time delta-sigma modulators," in IEEE International Midwest Symposium on Circuits and Systems, pp. 562-565, Aug 2013: 12.5 Marks

Variation in one of the specs is allowed for [1]-[4] only with prior sanction from TAs.

Project-2(Layout) bonus will be decided on architecture complexity.