

Fundamentos de Bases de Datos NoSQL

Centro de Servicios y Gestión Empresarial SENA Regional Antioquia

Conceptualización

NoSQL

Las bases de datos **NoSQL** (Not Only SQL) son un modelo de almacenamiento de datos diseñado para manejar grandes volúmenes de información de manera flexible y escalable.

A diferencia de las bases de datos relacionales (SQL), que organizan los datos en tablas con estructuras rígidas, NoSQL permite almacenar información en diferentes formatos; ofreciendo flexibilidad, escalabilidad horizontal y alto rendimiento para gestionar grandes volúmenes de datos.

Conceptos Clave

Esquema Flexible

Se adaptan a diferentes tipos de datos y requisitos cambiantes.

Escalabilidad Horizontal

Se pueden distribuir en múltiples servidores para gestionar grandes volúmenes de datos.

Consistencia Eventual

Equilibran la consistencia de los datos con la disponibilidad, permitiendo un acceso rápido.

Agregados

Almacenan datos relacionados en una sola estructura, mejorando el rendimiento de las consultas.

SQL vs NoSQL

Característica	SQL (Relacionales)	NoSQL (No Relacionales)
Modelo de datos	Basado en tablas con filas y columnas	Documentos, clave-valor, grafos, columnas anchas
Estructura	Fija (esquema predefinido)	Flexible (sin esquema fijo)
Escalabilidad	Vertical (añadir más CPU/RAM)	Horizontal (añadir más servidores)
Transacciones	ACID (Atomicidad, Consistencia, Aislamiento, Durabilidad)	BASE (Básicamente Disponible, Estado Suave, Consistencia Eventual)
Casos de uso	Aplicaciones bancarias, ERP, CRM	Big Data, redes sociales, IoT, comercio electrónico

Tipos de Bases de Datos NoSQL

Documentales

Almacenan datos en formato JSON o BSON, ideales para gestionar información compleja como catálogos de productos.

Clave-Valor

Almacenan pares clave-valor simples, ideales para almacenamiento en caché y gestión de sesiones.

Columnas

Almacenan datos en columnas, ideales para gestionar grandes cantidades de datos, como series temporales.

Grafos

Almacenan datos y relaciones entre ellos, ideales para aplicaciones como redes sociales y sistemas de recomendación.

NoSQL - Documentales

Estructura:

- Almacenan datos en documentos JSON o BSON (MongoDB).
- Permiten almacenar objetos complejos anidados.
- No requieren esquema predefinido.

```
{
    "_id": "001",
    "nombre": "Juan Pérez",
    "edad": 30,
    "compras": [
        {"producto": "Laptop", "precio": 1500},
        {"producto": "Celular", "precio": 800}
]
}
```

NoSQL - Clave-Valor

Estructura:

- Almacenan los datos en pares clave: valor, similar a un diccionario en Python o un objeto en JavaScript.
- No tienen esquema fijo.
- Se usan para almacenamiento en caché, sesiones y configuración rápida.

```
{
  "usuario:1001": "Juan Pérez",
  "usuario:1002": "María Gómez"
}
```

NoSQL - Columnar

Estructura:

- · Basadas en columnas, en lugar de filas como en SQL.
- Permiten consultas eficientes en grandes volúmenes de datos.
- Se usan en Big Data y análisis en tiempo real.

id	cliente	producto	precio	fecha
1a2b3c4d		Laptop	1500	2024-01-01
5f6g7h8i		Celular	800	2024-01-02

NoSQL - Orientadas a Grafos

Estructura:

- Los datos se organizan en nodos y relaciones.
- Se usan para modelar redes, relaciones sociales, recomendaciones y detección de fraudes.

```
CREATE (juan:Persona {nombre: "Juan Pérez", edad: 30})
CREATE (maria:Persona {nombre: "María Gómez", edad: 25})
CREATE (juan)-[:AMIGO_DE]->(maria)

(Juan Pérez) ---[AMIGO_DE]---> (María Gómez)
```


NoSQL - Gestores

Casos de Uso Comunes

Big Data

Gestionan grandes
volúmenes de datos
para análisis en
tiempo real, como el
análisis de
sentimiento en
redes sociales.

Aplicaciones Web

Almacenan datos de usuarios, perfiles y contenido generado por el usuario en plataformas de comercio electrónico.

IoT

Recolectan datos de sensores y dispositivos conectados, como la monitorización de infraestructuras.

Beneficios de las Bases de Datos NoSQL

Escalabilidad

Gestionan grandes volúmenes de datos y tráfico con facilidad.

2

Flexibilidad

Se adaptan a diferentes tipos de datos y requisitos cambiantes.

Rendimiento

Optimizadas para operaciones de lectura y escritura rápidas.

4

Desarrollo Ágil

Facilitan la adaptación a cambios en los requisitos del proyecto.

Limitaciones de las Bases de Datos NoSQL

Consistencia

Posible inconsistencia eventual en los datos.

Madurez

Algunas tecnologías NoSQL son menos maduras que las bases de datos relacionales.

Complejidad

El diseño y la gestión pueden ser más complejos en ciertos escenarios.

Transacciones

Soporte limitado para transacciones ACID en algunos tipos de NoSQL.

Arquitectura y Escalabilidad

1	Escalabilidad		
2	Particionamiento		
3	Replicación		
4	Alta Disponibilidad		
5	CAP Theorem		
	consistencia, disponibilidad y tolerancia a particiones.		

Tendencias Futuras y Conclusiones

1

2

Convergencia

Bases de datos multi-modelo que combinan SQL y NoSQL.

Adopción en la Nube

Mayor uso de NoSQL en servicios de la nube.

3

Seguridad y Gobernanza

Enfoque en la protección y el control de datos.

GRACIAS

Presentó: Alvaro Pérez Niño Instructor Técnico

Correo: aperezn@sena.edu.co

http://centrodeserviciosygestionempresarial.blogspot.com/

Línea de atención al ciudadano: 01 8000 910270 Línea de atención al empresario: 01 8000 910682

www.sena.edu.co