

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்விக் கிணைக்களக்குடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, நவம்பர் - 2019

Conducted by Field Work Centre, Thondaimanaru **In Collaboration with Provincial Department of Education** Northern Province

Term Examination, November - 2019

கரம் :- 13 (2020)

நேரம் : மூன்று மணித்தியாலம் பத்து நிமிடம்

சுட்டெண்			

அநிவுநுத்தல்கள்

இணைந்த கணிதம் I - A

- வினாக்களுக்கும் பகுதி - A இன் எல்லா ഖിതെ∟ எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தേவைப்படுமெனின், மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- வினாக்களில் விரும்பிய வினாக்களுக்குமாத்திரம் பகுதி இல் உள்ள 5 ഖിഥെ ഒഥ്രുച്ചുക.
- ஒதுக்கப்பட்டநேரம் / В யிர்கு மேலே முடிவடைந்ததும் பகுதி ஆனது பகுதி இருக்கக்கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திர<mark>ம் பரீட்</mark>சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

இணைந்தகணிதம் I						
பகுதி	வினாஎண்	கிடைத்த புள்ளிகள்				
	1					
	2					
	3					
	4					
A	5					
A	6	7-60				
	7					
	8					
	9					
	10					
	11					
	12					
	13					
В	14					
	15					
	16					
	17					
வினாத	ந்தாள் I இன்					
(மொத்தம்					

இணைந்த கணிதம் I	
இணைந்த கணிதம் II	
இறுதிப் புள்ளிகள்	

கணிதத்தொகுத்த இனால் வகுபடு			டைப்	பயன்படுத்	ந்தி எ	ல்லா	$n \in \mathbb{Z}^+$	இற்கும்	3 ⁿ - 1	ஆனத
	• • • • • • • • • • • • • • • • • • • •									
					٠٠٠٠٠٠٠					
சமனிலி 2x -				ிப்படுத்து ம்	x	இன்	மெய்ப்	QUIMILOTTO		_
							5 ,232,2	ிப்பிறா ம்! 6	ர ங்களை	க் கா
இதிலிருந்து, சம	னிலி 2	x-1 < .	х ஐத்					OILIJJILI 6	ຫங்களை	க் கா
இதிலிருந்து, சம	ാങ്ങിலി 2 	x-1 <	x ஐத்						னங்களை 	க் கா
இதிலிருந்து, சம 	ാങ്ങിலി 2 	x-1 <	<i>х</i> ஐத்						ຫங்களை 	க் கா
இதிலிருந்து, சம 	න්න්න් 2 	x-1 <	х ஐ த்			8		УИД	எங்களை	· · · · · · · · · · · · · · · · · · ·
இதிலிருந்து, சம	ാങിலി 2	x-1 <	x æģ		35)	8		о стурите	னங்களை 	· · · · · · · · · · · · · · · · · · ·
இதிலிருந்து, சம	oனிலி 2 	x-1 <	х ஐத்		35)	8			எங்களை	· · · · · · · · · · · · · · · · · · ·
இதிலிருந்து, சம	ഞ്ഞിலി 2	x-1 <	х аў		35)				எங்களை	· · · · · · · · · · · · · · · · · · ·
இதிலிருந்து, சம	oodlob 2	x-1 <	х ஐத்		35)	8			எங்களை	· · · · · · · · · · · · · · · · · · ·
இதிலிருந்து, சம	oனிலி 2 	x-1 <	х ფѣ						எங்களை	
இதிலிருந்து, சம	oණ්න් 2	x-1 <	х ஐத்						எங்களை	· · · · · · · · · · · · · · · · · · ·
இதிலிருந்து, சம	oனிலி 2	x-1 <	х ფѣ						எங்களை	
இதிலிருந்து, சம	oණ් හි 2	x-1 <	х ფჭ						எங்களை	· · · · · · · · · · · · · · · · · · ·
இதிலிருந்து, சம	oனிலி 2	x-1 <	х						எங்களை	
இதிலிருந்து, சம	oனிலி 2		х ფѣ						எங்களை	· · · · · · · · · · · · · · · · · · ·
இதிலிருந்து, சம	oodles) 2		х ფѣ						னங்களை 	· · · · · · · · · · · · · · · · · · ·
இதிலிருந்து, சம	oனிலி 2		х ფѣ						னங்களை	
இதிலிருந்து, சம	oனிலி 2		х ფѣ						னங்களை 	ж жто

<i>x</i> , y, <i>z</i> € R ⁺ இற்கு	$\frac{\log x}{3} = \frac{\log y}{4}$	$=rac{\log z}{7}$ எனின் .	x^2 $z^2=y^5$ என	ாக் காட்டுக.		
				•••••		
				•••••		
k ≠ o இற்கு f(x) மெய்மூலங்கள் இ					ன்ற சமன்பாட்டி	ற்கு நேரான
					ன்ற சமன்பாட்டி	ற்கு நேரான
					ன்ற சமன்பாட்டி	ற்கு நேரான
					ன்ற சமன்பாட்டி	ற்கு நேரான
					ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ				ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான			ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான			ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான	ங்களைக் கா		ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான	ங்களைக் கா		ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான	ங்களைக் கா		ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான	ங்களைக் கா		ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான	ங்களைக் கா		ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான	ங்களைக் கா		ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான	ங்களைக் கா		ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான	ங்களைக் கா		ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான	ங்களைக் கா		ன்ற சமன்பாட்டி	ற்கு நேரான
	இருப்பின் k இ	ன் பெறுமான	ங்களைக் கா		ன்ற சமன்பாட்டி	ற்கு நேரான

$x \rightarrow 0$	$rac{3x-tanx]sin3x}{x^2}=0$ எனின் மாறிலி a யின் பெறுமானத்தைக் காண்க.	
		• • • •
		• • • •
	$rac{x^2}{a^2}+rac{y^2}{b^2}=1$ மீதுள்ள புள்ளி $P(x_1,y_1)$ இல் வரையப்படும் தொடலியின் a	சம
	$rac{x^2}{a^2}+rac{y^2}{b^2}=1$ மீதுள்ள புள்ளி $P(x_1,y_1)$ இல் வரையப்படும் தொடலியின் எனக் காட்டுக. இங்கு a,b,ϵ R^+	சம <i>்</i>
		ச ம ்
		ச ம ச
		சம
		#D00
		#De
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	எனக் காட்டுக. இங்கு a, b, € R ⁺	#ID6
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	எனக் காட்டுக. இங்கு a, b, ∈ R ⁺	
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	எனக் காட்டுக. இங்கு a, b, ∈ R ⁺	#D00
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	எனக் காட்டுக. இங்கு a, b, ∈ R ⁺	年 D6
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	எனக் காட்டுக. இங்கு a, b, ∈ R ⁺	#D00
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	எனக் காட்டுக. இங்கு a, b, ∈ R ⁺	#D6
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	எனக் காட்டுக. இங்கு a, b, ∈ R ⁺	#ID0
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	எனக் காட்டுக. இங்கு a, b, ∈ R ⁺	#D00
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	எனக் காட்டுக. இங்கு a, b, ∈ R ⁺	#D00
$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	எனக் காட்டுக. இங்கு a, b, ∈ R ⁺	#ID6

$\frac{d}{dx} \left\{ ln \left(x + \sqrt{x^2 + 4} \right) \right\} = \frac{1}{\sqrt{x^2 + 4}}$ எனக் காட்டுக. இதிலிருந்து $\int \frac{x + \sqrt{x^2 + 4}}{\sqrt{x^2 + 4}} \mathrm{d}x$ ஐப் பெறுமான கணிக்க.
$y=4-x^2$ என்னும் வளையியை பரும்படியாக வரைக. இவ் வளையியினாலும் x அச்சினாலு
$y = 4 - x^2$ என்னும் வளையியை பரும்படியாக வரைக். இவ வளையியனாலும் x அச்சனாலு உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.
உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவை x அச்சைப்பற்றி நான்கு செங்கோணங்களினூடாக சுழற்றும்போது பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{512}{15}$ π கன அலகுகள் எனக் காட்டுக.

9.	0	<	<i>x</i> <	1	இதற்	கு செ	பாருத்த	தமான	பிரதியி	பீட்டைப்		பன்படுத்	ந்துவதன்	மூல	ம் உ	அல்லது
	ලෙ	വ്വാഖ	ழியா	55 Si		$\left(\frac{2x}{+x^2}\right)$	⊦ tan-¹ ($\left(\frac{2x}{1-x^2}\right)$	$=\frac{2\pi}{3}$ என்	னும் சப	மன்பாட	ட்டைத்	தீர்க்க.			
															• • • • • •	
										24					• • • • • •	
															• • • • • • •	
													sin (P	C) 1	2 2	
10.				ஒரு	முக்	கோணி	ABC	யில்	வழமைய	பான கு	5றியீடு	களுட	$\sin \frac{\sin (B)}{\sin A}$	$\frac{c}{c} = \frac{r}{c}$	$\frac{a^2}{a^2}$	எனக்
	கா	ட்டுக	i.													
					<u>(2)</u>	\		<u> </u>								
						2	V		<i></i>	///						
													,			

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, நவம்பர் - 2019

Conducted by Field Work Centre, Thondaimanaru In Collaboration with Provincial Department of Education Northern Province

Term Examination, November - 2019

தரம் :- 13 (2020<u>)</u>

இணைந்த கணிதம் I - B

சுட்டெண்	
----------	--

- 11. a) i) $\lambda \in \mathbb{R}$ எனவும் $f(x) = x^2 (\lambda 5) x + (3\lambda 20)$ எனவும் கொள்வோம் f(x) = 0 என்னும் சமன்பாட்டின் மூலங்கள் α , β என்பன $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = 1$ ஆகுமாறுள்ளன. மேற்படி சமன்பாடானது λ இல் ஓர் இருபடிச்சமன்படாக ஒடுங்குமெனக் காட்டுக. இச்சமன்பாட்டின் மூலங்கள் λ_1 , λ_2 எனின் $\lambda_1^3 + \lambda_2^3 = 2014$ எனக்காட்டுக.
 - ii) f(x)=0 எனும் சமன்பாடானது கற்பனை மூலங்களைக் கொண்டிருப்பின் λ இன் பெறுமான வீச்சைக் காண்க.
 - b) $G(x) = x^4 4x^3 + 10x^2 12x + 5$ என்க G(x) இன் ஒரு காரணி (x 1) எனக்காட்டுக. G(x) = (x 1) h(x) ஆகுமாறு h(x)ஐக் காண்க. (x 1) என்பது h(x)இன் காரணி எனக் காட்டுக. $h(x) = (x 1) \phi(x)$ ஆகுமாறு $\phi(x)$ ஐக் காண்க. x இன் எல்லா மெய்ப்பெறுமானங்களுக்கும் $G(x) \ge 0$ என்பதை உய்த்தறிக.
- 12. a) முதற் தத்துவத்திலிருந்து x குறித்து tanx இன் வகையீட்டுக் குணகத்தைக் காண்க. இதிலிருந்து x குறித்து tan⁻¹x இன் வகையீட்டுக் குணகத்தைக் காண்க. பின்வரும் சார்புகளை x குறித்து வகையிட்டுச் சுருக்குக.
 - i) tanx ln(tanx)
 - ii) $\tan^{-1} \sqrt{\frac{1-x}{1+x}}$; @rig -1< x <1
 - b) $x=a(2\theta+sin2\theta)$ $y=a(1-cos2\theta)$ எனக் கொள்வேம்; இங்கு a ஒரு மாறிலி $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ ஆகியவற்றை θ இன் சார்பில் காண்க.
 - c)y = x + tanx எனின் $cos^2x \frac{d^2y}{dx^2} 2y + 2x = 0$ எனக் காட்டுக

13. a) $f(x) = \frac{1}{4}x^4 - x^3$ எனக் கொள்வோம்.

$$f'(x) = x^2(x-3)$$
 எனவும்

$$f''(x) = 3x(x-2)$$
 எனவும்

காட்டுக.

இங்கு f'(x), f''(x) என்பன முறையே f(x) இன் முதலாம், இரண்டாம் பெறுதிகளாகும். திரும்பற் புள்ளி, விபத்திப்புள்ளிகள் ஆகியவற்றைக் காட்டி y=f(x) இன் வரைபை பரும்படியாக வரைக.

b) புத்தகமொன்றின் பக்கம் ABCD ஆனது உருவில் காட்டப்பட்டுள்ளது. AB = acm ஆகும் உச்சி B ஆனது விளிம்பு AD ஐத் தொடக்கூடியவாறு மடிக்கப்பட்டுள்ளது. PB = x, $B\hat{P}Q = \theta$ எனக் கொள்வோம். $x = \frac{a}{2} \, \csc^2 \theta$ எனக்காட்டுக. மடிக்கப்பட்ட பகுதியின் பரப்பளவு A ஆனது $A = \frac{a^2}{8} \, \csc^3 \theta \, \sec \theta$ இனால் தரப்படுமெனக் காட்டுக. $x = \frac{2a}{3}$ ஆகும்போது A இழிவெனக் காட்டுக.

- 14) a) $\frac{32}{x^4-16}$ ஐப் பகுதிப்பின்னங்களாக எடுத்துரைத்து , இதிலிருந்து $\int \frac{32}{x^4-16} \; \mathrm{d}x$ ஐக் காண்க.
 - b) i) $\int \frac{1}{\sqrt{5-4x-x^2}} dx$ ஐக் காண்க.
 - ii) $\frac{d}{dx}$ $(\sqrt{5-4x-x^2})$ ஐக் கண்டு இதிலிருந்து $\int \frac{x+2}{\sqrt{5-4x-x^2}} \mathrm{d}x$ ஐக் காண்க. மேற்குறித்த தொகையீடுகளைப் பயன்படுத்தி $\int \frac{x+3}{\sqrt{5-4x-x^2}} \mathrm{d}x$ ஐக்காண்க.
 - c) பகுதிகளாக தொகையிடலைப்பயன்படுத்தி $\int_1^{10} x^2 \ln x \, \mathrm{d}x$ ஐக்காண்க.
- 15) a) $u_1 \equiv a_1x + b_1y + c_1 = 0$, $u_2 \equiv a_2x + b_2y + c_2 = 0$ ஆகிய நேர்கோடுகள் இடைவெட்டும் புள்ளியினூடு செல்லும் நேர்கோடொன்றின் பொதுச் சமன்பாடு $u_1 + \lambda u_2 = 0$ எனக் காட்டுக. இங்கு λ ஒரு பரமானம்
 - b) ஒரு முக்கோணியின் பக்கங்களின் சமன்பாடுகள் முறையே $x-3y+5=0,\ x+y+1=0,$ 5x+y-7=0 ஆகும். முக்கோணியின் உச்சியின் ஆள்கூறுகளைக் கணிக்காமல் முக்கோணியின் நிமிர்மையத்தின் ஆள்கூறுகளைக் காண்க.
 - c) u=0 எனும் கோடு நிலைத்த புள்ளி $A\equiv(h,k)$ இனூடு செல்கின்றது. $u=0,\,v=0$ என்பவற்றின் படித்திறன்களின் பெருக்கம் 1 ஆகுமாறு உற்பத்தி O இனூடு செல்லும் நேர்கோடு v=0 ஆனது u=0 ஐ P இல் சந்தித்தால் P இன் ஒழுக்கு $x^2+y^2-hx+ky=0$ எனக்காட்டுக. மேலும் முக்கோணி OAP இன் மையப்போலியின் ஒழுக்கு $x^2+y^2-hx+ky+\frac{2}{\alpha}\left(h^2-k^2\right)=0$ எனவும் காட்டுக.

- $x^2 + y^2 + 2gx + 2fy + c = 0$, $x^2 + y^2 + 2g'x + 2f'y + c' = 0$ என்னும் இருவட்டங்களும் நிமிர்கோண (முறையாக இடைவெட்டுமெனின் 2gg' + 2ff' = c + c' எனக்காட்டுக.
 - a) (3,4) எனும் புள்ளியினூடு செல்லும் வட்டம் S=0 ஆனது $x^2+y^2=a2$ எனும் வட்டத்தை நிமிர்கோண முறையாக இடைவெட்டுமாயின் S=0 இன் மையத்தின் ஒழுக்கு $6x+8y-(a^2+25)=0$ எனக்காட்டுக.
 - புள்ளிகளின் b) (1,0), (-1, 0) எனும் செல்லும் எல்லா வட்டங்களினதும் ஊடாகச் பொதுச்சமன்பாட்டைக் காண்க. இவற்றில் இருவட்டங்கள் 2x-y-3=0 எனும் கோட்டை தொடும் எனநிறுவி அவற்றின் சமன்படுகளைக் காண்க. இவ்விரு வட்டங்களும் ஒன்றுக்கொன்று நிமிர்கோணத்தில் இடைவெட்டும் எனவும் காட்டுக.
- 17) a) $\tan(A + B)$ இன்விரிவை எழுதுக. இதனைப்பயன்படுத்தி $\tan 2\theta = \frac{2tan^2\theta}{1-tan^2\theta}$ எனவும் $\tan 3\theta = \frac{tan\theta + tan2\theta}{1-tan\theta tan2\theta}$ எனவும் காட்டுக. இதனைப்பயன்படுத்தி or வேறுவிதமாக $2\tan 3\theta \tan 2\theta \tan \theta = 0$ இனது தீர்வுகளைக் காண்க.
 - b) சைன்விதி, கோசைன் விதியை எழுதுக. ABCD ஒரு நாற்பக்கல் எனவும் $AB = m \, CD, \, AD = nBC$ எனவும் கொள்வோம். இங்கு $m, \, n > o$ ஆகும். $D\hat{A}B = D\hat{C}B = \theta \, (>o) \, A\hat{D}B = \alpha, D\hat{B}C = \beta$ எனவும் தரப்பட்டுள்ளது. பொருத்தமான முறையில் சைன் விதியைப் பயன்படுத்துவதன் மூலம் $\frac{n sin \alpha}{m sin \beta} = \frac{\sin(\theta + \alpha)}{\sin(\theta + \beta)}$ எனவும் m = n ஆயின் $\alpha = \beta$ எனவும் காட்டுக.
 - c) $\tan^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{5}{3}\right) = \frac{\pi}{2}$ எனக் காட்டுக.

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, நவம்பர் - 2019

Conducted by Field Work Centre, Thondaimanaru In Collaboration with Provincial Department of Education Northern Province

Term Examination, November - 2019

தரம் :- 13 (2020<u>)</u>

இணைந்த கணிதம் II - A

நேரம் : மூன்று மணித்தியாலம் பத்து நிமிடம்

! கூட்டெண ர்					
	l .	ı	l .		

அநிவுநுத்தல்கள்

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 விணக்களில் விரும்பிய 5 விணக்களுக்குமாத்திரம் விடைஎழுதுக.
- ullet ஒதுக்கப்பட்டநேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக்கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்தகணி	தம் II
பகுதி	வினாஎண்	கிடைத்த புள்ளிகள்
	21	
	2	
	3	1 (1)
	4	
A	5	281-
A	6	(0)
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
வினாத	ந்தாள் I இன்	
(மொத்தம்	

இணைந்த கணிதம் I	
இணைந்த கணிதம் II	
இறுதிப் புள்ளிகள்	

1)	கிடைத்தரையில் உள்ள ஒரு புள்ளி P இல் இருந்து நிலைக்குத்ததாக மேல் நோக்கி
	புவியீர்ப்பின் கீழ் ஒரு துணிக்கை எறியப்படும் அதே கணத்தில் P இற்கு நேர்மேலே உள்ள
	புள்ளி Q இல் இருந்து ஒரு துணிக்கை புவியீர்ப்பின் கீழ் சுயாதீனமாக கீழே விழ
	விடப்படுகின்றது. இரு துணிக்கைகளும் புள்ளி R இல் ஒன்றை ஒன்று சந்திக்கும் போது
	அவற்றின் கதிகள் சமன் எனில் இரு துணிக்கைகளுக்குமாக வேக நேரவரைபை ஒரே
	வரிப்படத்தில் வரைந்து வரைபில் இருந்து PR = 3RQ எனக் காட்டுக.
2)	
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் $16km/h$
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் $16km/h$ உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் $32km/h$ உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை பயன்படுத்தி வேகமுக்கோணி வரைவதன் மூலம் கப்பல் A ஆனது எத்தனை மணிக்கு கப்பல்
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை பயன்படுத்தி வேகமுக்கோணி வரைவதன் மூலம் கப்பல் A ஆனது எத்தனை மணிக்கு கப்பல்
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை பயன்படுத்தி வேகமுக்கோணி வரைவதன் மூலம் கப்பல் A ஆனது எத்தனை மணிக்கு கப்பல்
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை பயன்படுத்தி வேகமுக்கோணி வரைவதன் மூலம் கப்பல் A ஆனது எத்தனை மணிக்கு கப்பல்
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை பயன்படுத்தி வேகமுக்கோணி வரைவதன் மூலம் கப்பல் A ஆனது எத்தனை மணிக்கு கப்பல்
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை பயன்படுத்தி வேகமுக்கோணி வரைவதன் மூலம் கப்பல் A ஆனது எத்தனை மணிக்கு கப்பல்
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை பயன்படுத்தி வேகமுக்கோணி வரைவதன் மூலம் கப்பல் A ஆனது எத்தனை மணிக்கு கப்பல்
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை பயன்படுத்தி வேகமுக்கோணி வரைவதன் மூலம் கப்பல் A ஆனது எத்தனை மணிக்கு கப்பல்
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை பயன்படுத்தி வேகமுக்கோணி வரைவதன் மூலம் கப்பல் A ஆனது எத்தனை மணிக்கு கப்பல்
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை பயன்படுத்தி வேகமுக்கோணி வரைவதன் மூலம் கப்பல் A ஆனது எத்தனை மணிக்கு கப்பல்
2)	ஒரு குறித்த நாளில் பிற்பகல் 2.00 மணியளவில் கப்பல் B ஆனது கப்பல் A இற்கு வடக்கே $96\sqrt{3}km$ தூரத்தில் காணப்பட்டது. கப்பல் B ஆனது கிழக்கு நோக்கி சீரான வேகம் 16km/h உடன் செல்லும் அதே வேளை கப்பல் A ஆனது கிழக்குக்கு α வடக்கு திசையில் 32km/h உடன் செல்கின்றது. கப்பல் A ஆனது B ஐ சந்திப்பின் சார்பு வேக கோட்பாட்டை பயன்படுத்தி வேகமுக்கோணி வரைவதன் மூலம் கப்பல் A ஆனது எத்தனை மணிக்கு கப்பல்

3)	முறையே $2kg$, $5kg$ திணிவுள்ள இரு சம ஆரையுள்ள கோளங்கள் A , B என்பன ஓர் ஒப்பமான கிடைமேசை மீது வைக்கப்பட்டு அவற்றின் மையமிணை கோட்டின் வழியே AB திசையில் முறையே $4ms^{-1}$, $2ms^{-1}$ வேகங்கள், கொடுக்கப்படுகின்றன. A , B இன் மோதுகையினால் ஏற்படும் கணத்தாக்கு $5\ Ns$ எனில் இரு கோளங்களுக்கும் இடையிலான மீளமைவுக்
	குணகத்தைக் காண்க.
4)	900kg திணிவுள்ள வண்டி ஒன்று 1200kg திணிவுள்ள காரினால் இலேசான நீளா இழையின் மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே 150N, 240N ஆகவும் இருப்பின். கிடைத்தரையில் இயங்கும் போது காரின் ஆர்முடுகல் ƒ
4)	மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே
4)	மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே 150N, 240N ஆகவும் இருப்பின். கிடைத்தரையில் இயங்கும் போது காரின் ஆர்முடுகல் ƒ
4)	மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே 150N, 240N ஆகவும் இருப்பின். கிடைத்தரையில் இயங்கும் போது காரின் ஆர்முடுகல் ƒ
4)	மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே 150N, 240N ஆகவும் இருப்பின். கிடைத்தரையில் இயங்கும் போது காரின் ஆர்முடுகல் ƒ
4)	மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே 150N, 240N ஆகவும் இருப்பின். கிடைத்தரையில் இயங்கும் போது காரின் ஆர்முடுகல் ƒ
4)	மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே 150N, 240N ஆகவும் இருப்பின். கிடைத்தரையில் இயங்கும் போது காரின் ஆர்முடுகல் ƒ
4)	மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே 150N, 240N ஆகவும் இருப்பின். கிடைத்தரையில் இயங்கும் போது காரின் ஆர்முடுகல் ƒ
4)	மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே 150N, 240N ஆகவும் இருப்பின். கிடைத்தரையில் இயங்கும் போது காரின் ஆர்முடுகல் ƒ
4)	மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே 150N, 240N ஆகவும் இருப்பின். கிடைத்தரையில் இயங்கும் போது காரின் ஆர்முடுகல் ƒ
4)	மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே 150N, 240N ஆகவும் இருப்பின். கிடைத்தரையில் இயங்கும் போது காரின் ஆர்முடுகல் ƒ
4)	மூலம் பிணைக்கப்பட்டு கிடையுடன் α சாய்வுள்ள வீதியில் சீரான வேகத்துடன் மேலே இழுத்துச் செல்லப்படுகின்றது இயக்கத்தின் போது காரின் இஞ்சினின் உஞற்றுவிசை 2700N ஆகவும் கார், வண்டி என்பவற்றின் இயக்கங்களுக்கான மாறா தடைவிசைகள் முறையே 150N, 240N ஆகவும் இருப்பின். கிடைத்தரையில் இயங்கும் போது காரின் ஆர்முடுகல் ƒ

5)	கிடைத்தரையில் உள்ள புள்ளி ஒன்றில் இருந்து கிடை, நிலைக்குத்து வேகங்கள் முறையே U,V ($V>2g$) ஆகுமாறு நிலைக்குத்து தளத்தில் எறியப்படும் துணிக்கை $2~s$ இல் துணிக்கையின் வேகம் கிடையுடன் 45° திசையில் இருப்பின் U,V ஐ கண்டு துணிக்கையின் கிடைவீச்சைக் காண்க. இங்கு துணிக்கையின் எறியக் கோணம் 60° ஆகும்.
6)	5m திணிவுள்ள ஒரு துணிக்கை P ஆ <mark>ன</mark> து ஒரு கரடான மேசைமீது வைக்கப்பட்டு ஓர் இலேசான நீள இழையின் நுனிக்கு இணைக்கப்பட்டு கிடையாக மேசையின் விளிம்பில்
	உள்ள ஓர் சிறிய லேசான ஒப்பமாக கப்பியின் மேலாகச் சென்று 3m திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு
	உள்ள ஓர் சிறிய லேசான ஒப்பமாக கப்பியின் மேலாகச் சென்று 3m திணிவுள்ள
	உள்ள ஓர் சிறிய லேசான ஓப்பமாக கப்பியின் மேலாகச் சென்று $3m$ திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு குணகம் $\frac{2}{5}$ எனில் இழையின் பகுதிகள் இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் துணிக்கைகளின் ஆர்முடுகலையும், இழையில் உள்ள இழுவையையும்
	உள்ள ஓர் சிறிய லேசான ஓப்பமாக கப்பியின் மேலாகச் சென்று $3m$ திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு குணகம் $\frac{2}{5}$ எனில் இழையின் பகுதிகள் இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் துணிக்கைகளின் ஆர்முடுகலையும், இழையில் உள்ள இழுவையையும்
	உள்ள ஓர் சிறிய லேசான ஓப்பமாக கப்பியின் மேலாகச் சென்று $3m$ திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு குணகம் $\frac{2}{5}$ எனில் இழையின் பகுதிகள் இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் துணிக்கைகளின் ஆர்முடுகலையும், இழையில் உள்ள இழுவையையும்
	உள்ள ஓர் சிறிய லேசான ஓப்பமாக கப்பியின் மேலாகச் சென்று $3m$ திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு குணகம் $\frac{2}{5}$ எனில் இழையின் பகுதிகள் இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் துணிக்கைகளின் ஆர்முடுகலையும், இழையில் உள்ள இழுவையையும்
	உள்ள ஓர் சிறிய லேசான ஓப்பமாக கப்பியின் மேலாகச் சென்று $3m$ திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு குணகம் $\frac{2}{5}$ எனில் இழையின் பகுதிகள் இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் துணிக்கைகளின் ஆர்முடுகலையும், இழையில் உள்ள இழுவையையும்
	உள்ள ஓர் சிறிய லேசான ஓப்பமாக கப்பியின் மேலாகச் சென்று $3m$ திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு குணகம் $\frac{2}{5}$ எனில் இழையின் பகுதிகள் இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் துணிக்கைகளின் ஆர்முடுகலையும், இழையில் உள்ள இழுவையையும்
	உள்ள ஓர் சிறிய லேசான ஓப்பமாக கப்பியின் மேலாகச் சென்று $3m$ திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு குணகம் $\frac{2}{5}$ எனில் இழையின் பகுதிகள் இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் துணிக்கைகளின் ஆர்முடுகலையும், இழையில் உள்ள இழுவையையும்
	உள்ள ஓர் சிறிய லேசான ஓப்பமாக கப்பியின் மேலாகச் சென்று $3m$ திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு குணகம் $\frac{2}{5}$ எனில் இழையின் பகுதிகள் இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் துணிக்கைகளின் ஆர்முடுகலையும், இழையில் உள்ள இழுவையையும்
	உள்ள ஓர் சிறிய லேசான ஓப்பமாக கப்பியின் மேலாகச் சென்று $3m$ திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு குணகம் $\frac{2}{5}$ எனில் இழையின் பகுதிகள் இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் துணிக்கைகளின் ஆர்முடுகலையும், இழையில் உள்ள இழுவையையும்
	உள்ள ஓர் சிறிய லேசான ஓப்பமாக கப்பியின் மேலாகச் சென்று $3m$ திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு குணகம் $\frac{2}{5}$ எனில் இழையின் பகுதிகள் இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் துணிக்கைகளின் ஆர்முடுகலையும், இழையில் உள்ள இழுவையையும்
	உள்ள ஓர் சிறிய லேசான ஓப்பமாக கப்பியின் மேலாகச் சென்று $3m$ திணிவுள்ள துணிக்கைக்கு இணைக்கப்பட்டுள்ளது. மேசைக்கும் துணிக்கை P க்கு இடையிலான உராய்வு குணகம் $\frac{2}{5}$ எனில் இழையின் பகுதிகள் இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் துணிக்கைகளின் ஆர்முடுகலையும், இழையில் உள்ள இழுவையையும்

7)	
	P 4m
	Journal 1
	5m / /
	30°
	படத்தில் காட்டப்பட்டவாறு 4m, 5m திணிவுள்ள துணிக்கைகள் P, Q என்பன முறையே ஓர் ஒப்பமான தளம் ஒன்றில் வைக்கப்பட்டு நீள இழையினால் இணைக்கப்பட்டு இழை
	இறுக்கமாக இருக்க தொகுதி ஓய்வில் இருந்து விடுவிக்கப்படின் சக்திக் காப்பு விதியை
	பயன்படுத்துவதன் மூலம் தொகுதியின் ஆர்முடுகலைக் காண்க.
8)	l நீளமுள்ள W நிறையும் உடைய சீரான கோல் AB இன் முனை A ஆனது கிடைத்தரையில்
	உள்ள ஒரு புள்ளிக்கு பிணைக்கப்பட்டு முனை B ஆனது ஓர் இலேசான நீனா இழைக்கு
	இணைக்கப்பட்டு, இழையானது A இற்கு நேர்மேலே $2l$ உயரத்தில் உள்ள ஒப்பமான கப்பி
	${ m C}$ யின் மேலாக சென்று ஒரு நிறை ${ m W}_1$ ஐ தாங்கியவாறு $A\hat{B}\mathcal{C}=90^\circ$ ஆகுமாறு சமநிலையில்
	உள்ளது.
	1. W ₁ ஐ W இல் காண்க. 2. பிணையில் A இல் உள்ள மறுதாக்கத்தை காண்க.
	2. பில்லையில் 71 தில் உள்ள மறுதாக்கத்தை காண்க.

9)	\underline{a} , \underline{b} , \underline{c} என்பன $ \underline{b} =4$ ஆகவும் \underline{a} , \underline{c} அலகுகாவிகளாகவும் இருக்க \underline{a} , \underline{c} க்கு கிடைப்பட்ட கோணம் $ an^{-1}(\sqrt{15})$ ஆகவும், $lpha$ \underline{a} $=$ \underline{b} - $2\underline{c}$ ஆகவும் இருப்பின் $lpha$ இன் பெறுமானத்தைக் காண்க
10)	
10)	AB என்பது 2a நீளமும் W நிறையுமுடைய சீரான கோல் முனை A கரடான நிலைக்குத்து சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது கோலுடனும் சுவருடனும் சமசாய்வு α கோணத்தில் இருப்பின் tanα ≤ μ எனக் காட்டுக.
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது
10)	சுவரில் பொறுத்திருக்க, மறுமுனை B இல் கட்டப்பட்டுள்ள நீளா இழையின் மறு முனை A இற்கு நிலைக்குத்தாக மேலே சுவரிலுள்ள புள்ளி C இற்கு கட்டப்பட்டுள்ளது. இழையானது

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, நவம்பர் - 2019

Conducted by Field Work Centre, Thondaimanaru In Collaboration with Provincial Department of Education Northern Province

Term Examination, November - 2019

கரம் :- 13 (2020)

இணைந்த கணிதம் II - B

- 11) a) ஒரு நேரான பாதையில் இயங்கும் பேருந்து ஒன்று A இல் இருந்து B வரையான முதல் $192\ m$ தூரத்திற்கு சீரான ஆர்முடுகலுடன் இயங்கி B இல் பெற்ற வேகத்துடன் 4s களுக்கு சீரான வேகத்துடன் இயங்கி C ஐ அடைந்து C இல் இருந்து சீரான அமர்முடுகலுடன் 60m தூரம் இயங்கி D இல் ஓய்வடைகின்றது. A இல் பேருந்தின் வேகம் $4ms^{-1}$ ஆகவும் A இல் இருந்து D வரையான இயக்கத்திற்கு எடுத்த மொத்த நேரம் 26s ஆகவும் இருப்பின்
 - அ) A இல் இருந்து D வரையான பேருந்தின் இயக்கத்திற்கான வேகநேர வரைபை வரைக.
 - ஆ) வேக நேர வரைபை உபயோகித்து A இல் இருந்து B ரையான இயக்கத்திற்கும் C இல் இருந்து D வரையான இயக்கத்திற்கும் V இல் இரு கோவைகளை பெற்று V ஐ காண்க.
 - இ) A இல் இருந்து B வரையான இயக்கத்தி<mark>ற்கு பே</mark>ருந்தின் ஆர்முடுகலைக் காண்க.
 - ஈ) $\it C$ இல் இருந்து $\it D$ வரையான இயக்கத்தி<mark>ற்கு பேருந்</mark>தின் அமர்முடுகலைக் காண்க.
 - உ) பேருந்து இயங்கிய மொத்த தூரத்தைக் காண்க.

சமாந்தர நேர்கரைகளை கொண்ட அகலம் $2a\sqrt{3}$ ஆகவுள்ள ஓர் ஆறு சீரான வேகம் u உடன் பாய்கின்றது. A,B,D,E என்பன கரைகளின் மீது உள்ள நான்கு புள்ளிகள் F,C என்பன ஆற்றில் நிலைப்படுத்தப்பட்ட இரு குண்டுகள் ஆகும். படத்தில் காட்டப்பட்டவாறு ABCDEF ஆனது ஓர் ஒழுங்கான அறுகோணி வடிவில் அமைந்துள்ளது. ஆறு சார்பாக சீரான வேகம் V(V>U) உடன் நீந்தக்கூடிய P, Q, R,S என்னும் மனிதர்களை குண்டுகளை செயல்இழக்கச் செய்யும் நோக்குடன் P, Q ஆகியோர் முறையே A, B இல் இருந்து C ஐ நோக்கியும் R, S ஆகியோர் முறையே D, E இல் இருந்து F ஐ நோக்கியும் செல்கின்றனர். குண்டை செயலிழக்கச் செய்வதற்கு இருவர் தேவை எனில் P, Q, R, S ஆகியோரின் இயக்கங்களுக்கான வேகமுக்கோணிகளை சார்புவேக கோட்பாட்டை பயன்படுத்தி ஒரே வரிப்படத்தில் வரைந்து குண்டு C செயல் இழக்கச் செய்யப்பட்டு எவ்வளவு நேரத்தின் பின் குண்டு F செயல் இழக்கச் செய்யப்படும் எனக் காண்க.

உருவில் ABC ஆனது திணவு 4m ஆகவும் $A\hat{B}C = \frac{\pi}{2}$, $A\hat{C}B = \frac{\pi}{6}$ ஆகவும் உள்ள ஓர் ஒப்பமான ஆப்பின் திணிவு மையத்தின் ஊடான நிலைக்குத்து குறுக்கு வெட்டாகும். முகம் BC ஒப்பமான நீளமாக மேசை மீது கிடக்க படத்தில் காட்டப்பட்டவாறு உச்சி A இல் நிலைப்படுத்தப்பட்ட ஓர் ஒப்பமான லேசான சிறிய கப்பியின் மேலாகச் செல்லும் நீட்டமுடியாத l நீளமான இலேசான இழையின் (a < l < 2a) நுனிகளுக்கு முறையே 3m, m திணிவுகளை உடைய P, Q துணிக்கைகள் இணைக்கப்பட்டும் B ற்கு இணைக்கப்பட்ட வேறோர் இலேசான இழையின் மற்றய நுனி மேசை மீது உள்ள 2m திணிவுள்ள துணிக்கை X இற்கும் இணைக்கப்பட்டு இன்னோர் இலேசான நீளா இழையின் ஒரு நுனி X இற்கு இணைக்கப்பட்டு மேசையின் நுனியில் உள்ள இலேசான கப்பியின் மேலாக சென்று படத்தில் காட்டப்பட்டவாறு 4m திணிவுள்ள துணிக்கை Y ஐ தாங்குகிறது. ஆரம்பத்தில் இழைகள் யாவும் இறுக்கமாக இருக்க துணிக்கை Q ஆனது B இற்கு அருகில் பிடிக்கப்பட்டு தொகுதி மெதுவாக விடப்படுகின்றது. இங்கு AC = 2aஆகும்.தொடரும் இயக்கத்தில் இழைகள் இறுக்கமாக இருக்கும் எனக்கொண்டு

- தொகுதியில் தாக்கும் விசைகளையும் ஆப்பு, துணிக்கைகளின் ஆர்முடுகல்களையும் தெளிவாக குறிக்க.
- 2. ஆப்பு, துணிக்கைகள் $P,\,Q,\,X,\,Y$ இன் ஆர்முடுகல்களை துணிவதற்கும் இழைகளில் உள்ள இழுவைகளை காண்பதற்குமான சமன்பாடுகளை பெறுக.
- 3. துணிக்கை Q ஆனது Aஐ அடைய எடுக்கும் நேரத்தைக் காண்க.
- 4. Q ஆனது A ஐ அடையும்போது ஆப்பு இயங்கிய தூரத்தைக் காண்க.
- 13) a) a ஆரையும் w நிறையுமுள்ள ஓர் ஒப்பமான வளையம் ஒருகிடையான மேசையில் நிலைக்குத்தாக நிற்கின்றது. m,m திணிவுகளையுடைய இரு சிறு மோதிரங்கள் வளையத்தில் கோர்க்கப்பட்டு அதியுயர் புள்ளியில் இருந்து விடுவிக்கப்படுகின்றன.
 - ஒவ்வொரு மோதிரமும் θ கோணத்தினுடாக எதிர்த்திசைகளில் திரும்பும்போது வளையத்தால் மோதிரம் ஒன்றில் ஏற்படுத்தப்படும் வெளிநோக்கிய மறுதாக்கத்தைக் காண்க.
 - ii) $mg > \frac{3w}{2}$ எனின் வளையம் மேசையை விட்டு எழும்பும் எனக்காட்டுக.
 - b) M,m திணிவுள்ள சம ஆரையுள்ள ஒப்பமான இரு கோளங்கள் A,B என்பன ஒப்பமான கிடை மேசை மீது எதிர் எதிர் திசைகளில் இயங்கி முறையே U,V வேகங்களுடன் ஒன்றுடன் ஒன்று நேரடியாக மோதுகின்றன. மோதலின் பின் கோளம் B ஆனது ஓய்வடையின் $v(m-em)=M(l+e)\,u$ எனக் காட்டுக. இங்கு e இரு கோணங்களுக்கும் இடையிலான மீளமைவுக்குணகம் ஆகும். மோதலின் பின் கோளம் A இல் செயற்படும் மாறா கிடை விசை காரணமாக கோளம் A ஆனது a தூரம் இயங்கி ஓய்வடைகின்றது. எனின் அவ்விசையின் பருமன் $\frac{Me^2(u+v)^2}{2a}$ எனக்காட்டுக.

- 14) a) O என்ற புள்ளியிலிருந்து கிடையுடன் α ஏற்றக்கோணத்தில் u வேகத்துடன் ஒரு துணிக்கை வீசப்படுக்கின்றது. நேரம் t $\left(\leq \frac{U \sin \alpha}{g} \right)$ இல் O இலிருந்து துணிக்கையின் ஏற்றக்கோணம் β ஆகும்.போது துணிக்கையின் இயக்க திசை கிடையுடன் θ கோணத்தை அமைக்கிறது. $2\tan \beta$ = $\tan \theta$ + $\tan \alpha$ எனக்காட்டுக. O ஊடான கிடைவீச்சு 49m ஆகவும், அதியுயர் புள்ளியில் உள்ளபோது துணிக்கையின் ஏற்றக்கோணம் 45° ஆகவும் இருப்பின் α ஐ கண்டு α இன் அப் பெறுமானத்திற்கு எறியற்கதி u ஐ காண்க. $(g = 10 \text{ms}^{-2})$ எனக்கொள்க)
 - b) 400 தொன்திணிவுள்ள புகையிரதம் கிடையுடன் $sin^{-1}(\frac{1}{200})$ என்ற சாய்வான பாதையில் மேல்நோக்கி $0.2\ ms^{-2}$ ஆர்முடுகலுடன் செல்கிறது. எஞ்சினின் வலு 700kW ஆகும். தடை Rkg /தொன் எனின். கதி $20 {\rm kmh}^{-1}$ ஆக இருக்கையில் R ஐக் காண்க
- - b) 2a நீளமும் w நிறையுமுள்ள சீரான கோல் AB இன் முனை A ஆனது கரடான கிடைத்தரையை தொட்டவாறு கிடையுடன் 45^0 சாய்விலும் கோலிலுள்ள புள்ளி C (AC = 0.75AB)) ஆனது ஓர் ஒப்பமான முளையின் மீது தங்க ஓய்வில் உள்ளது.
 - அ) கோல் எல்லைச் சமநிலையில் இருப்பின் தரைக்கும் கோலுக்கும் இடையிலான உராய்வுக் குணகம் μ ஐக் காண்க.
 - ஆ) B இல் W நிறை ஒன்று கட்டப்படின் சமநிலை சாத்தியமாவதற்கு μ இன் பெறுமானத்தைக் காண்க.
- 16) a) O குறித்து A, C என்றபுள்ளிகளின் தானக்காவிகள் முறையே \underline{a} , \underline{a} + \underline{b} ஆகும். \overrightarrow{OD} = $\frac{3}{2}$ \underline{a} ஆகுமாறு. D ஆனது ஓர் புள்ளி ஆகும் . M என்பது AM : MC = 1 : 2 ஆகுமாறு AC மீதுள்ள புள்ளி ஆகும். OACR இணைகரமாகுமாறு R ஆனது ஓர் புள்ளி ஆகும். OC, RM என்பன K இல் இடைவெட்டுகின்றன. RK = \times RM, OK = μOC எனக் கொண்டு.
 - i) R, M, இன் தானக்காவிகளை \underline{a} , \underline{b} இல் தருக.
 - ii) R, M, D நேர்கோட்டிலுள்ளது எனக்காட்டுக.
 - iii) \overrightarrow{RK} , \overrightarrow{OK} என்பவற்றை \underline{a} , \underline{b} , λ , μ என்பவற்றில் காண்க.. பொருத்தமான காவிக்கூட்ட.லைப் பயன்படுத்தி λ , μ யைக்காண்க
 - OK: KC, RK: KM என்பவற்றைக் காண்க.

- தொகுதி இணைக்கு ஒடுங்குமெனக் காட்டுக.
- \overrightarrow{ii}) தொகுதியுடன் \overrightarrow{FC} வழியே 2P மேலதிக விசை சேர்க்கப்படின் ஒடுங்கும் தனிவிசையின் பருமன், திசை, தாக்கக்கோடு என்பவற்றைக் காண்க.
- ஒவ்வொன்றும் 2a நீளமும் w, 2w நிறையுடைய AB, BC 17) a) என்ற கோல்கள் B ல் ஒப்பமாக மூட்டப்பட்டுள்ளன. நிலைத்த புள்ளியில் முனை ஒரு ஒப்பமாக பிணைக்கப்பட்டுள்ளது. AB, BCநிலைக்குத்துடன் கோணங்கள் முறையே அமைக்கும் α, β ஆகும். படத்தில் உள்ளவாறு \mathbf{C} இல் CB கோணத்தில் பிரயோகிக்கப்படும் $\sqrt{3w}$ என்ற விசையால் சமநிலையில் பேணப்படுகின்றது.. lpha, eta ஐயும் மூட்டு Bஇதுள்ள மறுதாக்கத்தையும் காண்க.

b) 2a

இலேசான Wகோல்களாலான AB, BC, BD, CD, ACஆகிய சட்டப்படல் படத்தில் Di W காட்டப்பட்டுள்ளது. நிலைத்த புள்ளி A இல் ஒப்பமாகப் பிணைக்கப்பட்டுள்ளது. நிறையும் C இல் P என்ற விசையும் பிரயோகிக்கப்படுகின்றன. CD கிடையானது. போவின் குறியீட்டைப் பயன்படுத்தி மூட்டுக்களுக்கு தகைப்புவரிப்படம் வரைக. அதிலிருந்து

- i) கோல்களிலுள்ள இழுவை, உதைப்புகளை வேறுபடுத்திக் காட்டி அவற்றைக் காண்க.
- ii) P இன் பெறுமானத்தை வரைபிலிருந்து காண்க.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- Biology
- C.Maths
- Physics
- Chemistry
 - + more

