# Gaussian process regression (part 2)

# Gaussian Process - Weight-Space Perspective



# Gaussian Process - Weight-Space Perspective

Gaussian Process =

Kernelising Bayesian Linear Regression



$$K_{mn} \equiv k(\mathbf{x}_m, \mathbf{x}_n)$$

$$K_{mn} \equiv k(\mathbf{x}_m, \mathbf{x}_n)$$

e.g., 
$$k(\mathbf{x}_{\mathbf{m}}, \mathbf{x}_{\mathbf{n}}) = \mathbf{x}_{\mathbf{m}}^{\mathbf{T}} \mathbf{x}_{\mathbf{n}}$$

$$K_{mn} \equiv k(\mathbf{x}_m, \mathbf{x}_n)$$

e.g., 
$$k(\mathbf{x_m}, \mathbf{x_n}) = \mathbf{x_m^T x_n}$$
  $\phi(\mathbf{x}) = \mathbf{x}$ 

$$K_{mn} \equiv k(\mathbf{x}_m, \mathbf{x}_n)$$
 e.g., 
$$k(\mathbf{x}_m, \mathbf{x}_n) = \mathbf{x}_m^T \mathbf{x}_n \qquad \qquad \phi(\mathbf{x}) = \mathbf{x}$$
 e.g., 
$$k(\mathbf{x}_m, \mathbf{x}_n) = (\mathbf{x}_m^T \mathbf{x}_n)^2$$

e.g.,

$$k_{mn} \equiv k(\mathbf{x}_m, \mathbf{x}_n)$$
 e.g., 
$$k(\mathbf{x}_m, \mathbf{x}_n) = \mathbf{x}_m^T \mathbf{x}_n \qquad \qquad \phi(\mathbf{x}) = \mathbf{x}$$
 ln 2D 
$$\phi(\mathbf{x}) = \left(x_1^T \mathbf{x}_1\right)^2 \qquad \qquad \phi(\mathbf{x}) = \left(x_1^2, \sqrt{2}x_1 x_2, x_2^2\right)$$
 e.g., 
$$k(\mathbf{x}_m, \mathbf{x}_n) = (\mathbf{x}_m^T \mathbf{x}_n)^2 \qquad \qquad \phi(\mathbf{x}) = \left(x_1^2, \sqrt{2}x_1 x_2, x_2^2\right)$$

$$K_{mn} \equiv k(\mathbf{x}_m, \mathbf{x}_n)$$

e.g., 
$$k(\mathbf{x_m}, \mathbf{x_n}) = \mathbf{x_m^T x_n}$$
  $\phi(\mathbf{x}) = \mathbf{x}$ 

e.g., 
$$k(\mathbf{x_m}, \mathbf{x_n}) = (\mathbf{x_m^T x_n})^2$$
  $\rightarrow$   $b \ln 2D$   $\phi(\mathbf{x}) = \left(x_1^2, \sqrt{2}x_1 x_2, x_2^2\right)$ 

e.g., 
$$k(\mathbf{x_m}, \mathbf{x_n}) = \exp\left(-\frac{\|\mathbf{x_n} - \mathbf{x_m}\|_2^2}{2\sigma^2}\right)$$

(Bishop eq 6.23, GP Book eq 2.16)

$$K_{mn} \equiv k(\mathbf{x}_m, \mathbf{x}_n)$$

e.g., 
$$k(\mathbf{x_m}, \mathbf{x_n}) = \mathbf{x_m^T x_n}$$

$$\phi(\mathbf{x}) = \mathbf{x}$$

e.g., 
$$k(\mathbf{x}_{\mathbf{m}}, \mathbf{x}_{\mathbf{n}}) = (\mathbf{x}_{\mathbf{m}}^{\mathbf{T}} \mathbf{x}_{\mathbf{n}})^2$$

e.g., 
$$k(\mathbf{x_m}, \mathbf{x_n}) = (\mathbf{x_m^T x_n})^2$$
  $\rightarrow$   $b \ln 2D$   $\phi(\mathbf{x}) = \left(x_1^2, \sqrt{2}x_1 x_2, x_2^2\right)$ 

e.g., 
$$k(\mathbf{x_m}, \mathbf{x_n}) = \exp\left(-\frac{\|\mathbf{x_n} - \mathbf{x_m}\|_2^2}{2\sigma^2}\right)$$

(Bishop eq 6.23, GP Book eq 2.16)



Infinite dimensional features

$$K_{mn} \equiv k(\mathbf{x}_m, \mathbf{x}_n)$$

Simplifying the process of coming up with "features"

e.g., 
$$k(\mathbf{x_m}, \mathbf{x_n}) = \mathbf{x_m^T x_n}$$

$$\phi(\mathbf{x}) = \mathbf{x}$$

e.g., 
$$k(x_m, x_n) = (x_m^T x_n)^2$$

$$k(\mathbf{x_m}, \mathbf{x_n}) = (\mathbf{x_m^T x_n})^2 \quad \Longrightarrow \quad \lim_{\text{(Bishop eq 6.12)}} \ln 2D$$

$$\phi(\mathbf{x}) = \left(x_1^2, \sqrt{2}x_1 x_2, x_2^2\right)$$

e.g., 
$$k(\mathbf{x_m}, \mathbf{x_n}) = \exp\left(-\frac{\|\mathbf{x_n} - \mathbf{x_m}\|_2^2}{2\sigma^2}\right)$$

(Bishop eq 6.23, GP Book eq 2.16)



Infinite dimensional features

### Gaussian Process



$$p(y^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y})$$

Kernelised:

$$= \mathcal{N}(y^*; m(x^*), \sigma^2(x^*))$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma \mathbf{I})^{-1} \mathbf{y}$$

$$\sigma^2(x^*) = \sigma^2 + k(\mathbf{x}^*, \mathbf{x}^*)$$
 (Bishop eq 6.66)

$$-k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1} k(\mathbf{X}, \mathbf{x}^*)$$

(Bishop eq 6.67)

### Bayesian Linear Regression

$$p(y^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y})$$

$$= \mathcal{N}(y^*; \mu^T \phi(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$

$$\mu = \sigma^{-2} (\sigma_0^{-2} \mathbf{I}_{\mathbf{D}} + \sigma^{-2} \boldsymbol{\Phi}^{\mathbf{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathbf{T}} \mathbf{y}$$

(Bishop eq 3.53)

$$\sigma^{2}(\mathbf{x}^{*}) = \sigma^{2} + \phi(\mathbf{x}^{*})^{T} \mathbf{\Sigma} \phi(\mathbf{x}^{*})$$

$$\Sigma = (\sigma_0^{-2} \mathbf{I_D} + \sigma^{-2} \Phi^{T} \Phi)^{-1}$$
(Bishop eq 3.54)

### Gaussian Process



$$p(y^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y})$$

Kernelised:

$$= \mathcal{N}(y^*; m(x^*), \sigma^2(x^*))$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma \mathbf{I})^{-1}\mathbf{y}$$

$$\sigma^2(x^*) = \sigma^2 + k(\mathbf{x}^*, \mathbf{x}^*)$$
(Bishop eq 6.66)

$$-k(\mathbf{x}^*, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1}k(\mathbf{X}, \mathbf{x}^*)$$

(Bishop eq 6.67)

Inverse of an  $\mathbb{R}^{N\times N}$  matrix

### Bayesian Linear Regression

$$p(y^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y})$$

$$= \mathcal{N}(y^*; \mu^T \phi(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$

$$\mu = \sigma^{-2} (\sigma_0^{-2} \mathbf{I_D} + \sigma^{-2} \mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$
(Bishop eq 3.53)

$$\sigma^{2}(\mathbf{x}^{*}) = \sigma^{2} + \phi(\mathbf{x}^{*})^{T} \mathbf{\Sigma} \phi(\mathbf{x}^{*})$$

$$\Sigma = (\sigma_0^{-2} \mathbf{I_D} + \sigma^{-2} \Phi^{T} \Phi)^{-1}$$
(Bishop eq 3.54)

### Gaussian Process



$$p(y^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y})$$

Kernelised:

$$= \mathcal{N}(y^*; m(x^*), \sigma^2(x^*))$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma \mathbf{I})^{-1}\mathbf{y}$$

$$\sigma^2(x^*) = \sigma^2 + k(\mathbf{x}^*, \mathbf{x}^*)$$
(Bishop eq 6.66)

$$-k(\mathbf{x}^*, \mathbf{X})(k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1}k(\mathbf{X}, \mathbf{x}^*)$$

(Bishop eq 6.67)

Inverse of an  $\mathbb{R}^{N\times N}$  matrix

### Bayesian Linear Regression

$$p(y^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y})$$

$$= \mathcal{N}(y^*; \mu^T \phi(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$

$$\mu = \sigma^{-2} (\sigma_0^{-2} \mathbf{I_D} + \sigma^{-2} \Phi^{T} \Phi)^{-1} \Phi^{T} \mathbf{y}$$
(Bishop eq 3.53)

$$\sigma^{2}(\mathbf{x}^{*}) = \sigma^{2} + \phi(\mathbf{x}^{*})^{T} \mathbf{\Sigma} \phi(\mathbf{x}^{*})$$

$$\Sigma = (\sigma_0^{-2} \mathbf{I_D} + \sigma^{-2} \Phi^T \Phi)^{-1}$$
(Bishop eq 3.54)

Inverse of an  $\mathbb{R}^{D \times D}$  matrix



Gaussian Process =

Making Kernel
Regression "Bayesian"



ullet A Gaussian Process is a probability distribution over functions  $f(\mathbf{x})$ 

such that 
$$\forall (\mathbf{x_1}, ..., \mathbf{x_n}), p(f(\mathbf{x_1}), ..., f(\mathbf{x_n})) = \mathcal{N}$$

ullet A Gaussian Process is a probability distribution over functions  $f(\mathbf{x})$ 

such that 
$$\forall (\mathbf{x_1}, ..., \mathbf{x_n}), p(f(\mathbf{x_1}), ..., f(\mathbf{x_n})) = \mathcal{N}$$

ullet Commonly set mean to zero, due to no prior knowledge of f(x)

ullet A Gaussian Process is a probability distribution over functions  $f(\mathbf{x})$ 

such that 
$$\forall (\mathbf{x_1}, ..., \mathbf{x_n}), p(f(\mathbf{x_1}), ..., f(\mathbf{x_n})) = \mathcal{N}$$

- Commonly set mean to zero, due to no prior knowledge of f(x)
- Fully specified by their covariance function or kernel.

ullet A Gaussian Process is a probability distribution over functions  $f(\mathbf{x})$ 

such that 
$$\forall (\mathbf{x_1}, ..., \mathbf{x_n}), p(f(\mathbf{x_1}), ..., f(\mathbf{x_n})) = \mathcal{N}$$

- ullet Commonly set mean to zero, due to no prior knowledge of f(x)
- Fully specified by their covariance function or kernel.

$$p(\mathbf{f}(\mathbf{x})) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$
(Bishop eq 6.60, GP Book eq 2.17)

ullet A Gaussian Process is a probability distribution over functions  $f(\mathbf{x})$ 

such that 
$$\forall (\mathbf{x_1}, ..., \mathbf{x_n}), p(f(\mathbf{x_1}), ..., f(\mathbf{x_n})) = \mathcal{N}$$

- ullet Commonly set mean to zero, due to no prior knowledge of f(x)
- Fully specified by their covariance function or kernel.

$$p(\mathbf{f}(\mathbf{x})) = \mathcal{N}(\mathbf{f}; \mathbf{0}, \mathbf{K})$$
(Bishop eq 6.60, GP Book eq 2.17)

Assuming the prior "weight"

p(w) to have mean zero

# Function-Space Perspective $p(y^*|y) = \mathcal{N}(m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$

$$p(y^*|y) = \mathcal{N}(m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$



Posterior distribution of functions: "rejecting" functions that do not satisfy the constraints

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1} y$$
  
$$\sigma^2(\mathbf{x}^*) = \sigma^2 + k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1} k(\mathbf{X}, \mathbf{x}^*)$$

# Function-Space Perspective $p(y^*|y) = \mathcal{N}(m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$

$$p(y^*|y) = \mathcal{N}(m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$



Posterior distribution of functions: "rejecting" functions that do not satisfy the constraints

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1} y$$
 The influence depends on the proximity

$$\sigma^{2}(\mathbf{x}^{*}) = \sigma^{2} + k(\mathbf{x}^{*}, \mathbf{x}^{*}) - k(\mathbf{x}^{*}, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^{2}\mathbf{I})^{-1} k(\mathbf{X}, \mathbf{x}^{*})$$

# Function-Space Perspective $p(y^*|y) = \mathcal{N}(m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$

$$p(y^*|y) = \mathcal{N}(m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$



Posterior distribution of functions: "rejecting" functions that do not satisfy the constraints

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1} y$$
 The influence depends on the proximity

$$\sigma^{2}(\mathbf{x}^{*}) = \sigma^{2} + k(\mathbf{x}^{*}, \mathbf{x}^{*}) - k(\mathbf{x}^{*}, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^{2}\mathbf{I})^{-1} k(\mathbf{X}, \mathbf{x}^{*})$$

Uncertainty reduction given the training data, does not depend on y!

Visualising Kernels 
$$k(\mathbf{x_n}, \mathbf{x_m}) = \theta_0 \exp\left(-\frac{\theta_1}{2} ||\mathbf{x_n} - \mathbf{x_m}||^2\right) + \theta_2 + \theta_3 \mathbf{x_n^T} \mathbf{x_m}$$

(Bishop textbook)



Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above each plot denotes  $(\theta_0, \theta_1, \theta_2, \theta_3)$ .

Visualising Kernels 
$$k(\mathbf{x_n}, \mathbf{x_m}) = \theta_0 \exp\left(-\frac{\theta_1}{2}||\mathbf{x_n} - \mathbf{x_m}||^2\right) + \theta_2 + \theta_3 \mathbf{x_n}^T \mathbf{x_m}$$

(Bishop textbook)



Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above each plot denotes  $(\theta_0, \theta_1, \theta_2, \theta_3)$ .

Visualising Kernels 
$$k(\mathbf{x_n}, \mathbf{x_m}) = \theta_0 \exp\left(-\frac{\theta_1}{2}||\mathbf{x_n} - \mathbf{x_m}||^2\right) + \theta_2 + \theta_3 \mathbf{x_n}^T \mathbf{x_m}$$

(Bishop textbook)



Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above each plot denotes  $(\theta_0, \theta_1, \theta_2, \theta_3)$ .

Visualising Kernels 
$$k(\mathbf{x_n}, \mathbf{x_m}) = \theta_0 \exp\left(-\frac{\theta_1}{2}||\mathbf{x_n} - \mathbf{x_m}||^2\right) + \theta_2 + \theta_3 \mathbf{x_n}^T \mathbf{x_m}$$

(Bishop textbook)



Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above each plot denotes  $(\theta_0, \theta_1, \theta_2, \theta_3)$ .

Visualising Kernels 
$$k(\mathbf{x_n}, \mathbf{x_m}) = \theta_0 \exp\left(-\frac{\theta_1}{2}||\mathbf{x_n} - \mathbf{x_m}||^2\right) + \theta_2 + \theta_3 \mathbf{x_n^T} \mathbf{x_m}$$

(Bishop textbook)



Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above each plot denotes  $(\theta_0, \theta_1, \theta_2, \theta_3)$ .

Visualising Kernels 
$$k(\mathbf{x_n}, \mathbf{x_m}) = \theta_0 \exp\left(-\frac{\theta_1}{2} ||\mathbf{x_n} - \mathbf{x_m}||^2\right) + \theta_2 + \theta_3 \mathbf{x_n}^T \mathbf{x_m}$$

(Bishop textbook)



Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above each plot denotes  $(\theta_0, \theta_1, \theta_2, \theta_3)$ .

Visualising Kernels 
$$k(\mathbf{x_n}, \mathbf{x_m}) = \theta_0 \exp\left(-\frac{\theta_1}{2}||\mathbf{x_n} - \mathbf{x_m}||^2\right) + \theta_2 + \theta_3 \mathbf{x_n}^T \mathbf{x_m}$$

(Bishop textbook)



Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above each plot denotes  $(\theta_0, \theta_1, \theta_2, \theta_3)$ .

Visualising Kernels 
$$k(\mathbf{x_n}, \mathbf{x_m}) = \theta_0 \exp\left(-\frac{\theta_1}{2}||\mathbf{x_n} - \mathbf{x_m}||^2\right) + \theta_2 + \theta_3 \mathbf{x_n^T} \mathbf{x_m}$$

(Bishop textbook)



Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above each plot denotes  $(\theta_0, \theta_1, \theta_2, \theta_3)$ .

Visualising Kernels 
$$k(\mathbf{x_n}, \mathbf{x_m}) = \theta_0 \exp\left(-\frac{\theta_1}{2} ||\mathbf{x_n} - \mathbf{x_m}||^2\right) + \theta_2 + \theta_3 \mathbf{x_n}^T \mathbf{x_m}$$

(Bishop textbook)



Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above each plot denotes  $(\theta_0, \theta_1, \theta_2, \theta_3)$ .

Visualising Kernels 
$$k(\mathbf{x_n}, \mathbf{x_m}) = \theta_0 \exp\left(-\frac{\theta_1}{2} ||\mathbf{x_n} - \mathbf{x_m}||^2\right) + \theta_2 + \theta_3 \mathbf{x_n}^T \mathbf{x_m}$$

(Bishop textbook)



Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above each plot denotes  $(\theta_0, \theta_1, \theta_2, \theta_3)$ .

$$p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mathbf{y}^*; m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N)^{-1} \mathbf{y}$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N)^{-1} k(\mathbf{X}, \mathbf{x}^*)$$

$$p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mathbf{y}^*; \mathbf{m}(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) \frac{(k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N)^{-1}}{\mathbf{y}} \mathbf{y}$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N)^{-1} k(\mathbf{X}, \mathbf{x}^*)$$

• 
$$L = \text{Cholesky} (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N)$$

$$k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N = \mathbf{L} \cdot \mathbf{L}^T$$

L lower-triangular

 $N^3/3$  operations



•  $L = \text{Cholesky}(k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N)$ 

$$p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mathbf{y}^*; \mathbf{m}(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) \frac{(k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N)^{-1} \mathbf{y}}{(k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N)^{-1} \mathbf{y}} \mathcal{O}(N^3)$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N)^{-1} k(\mathbf{X}, \mathbf{x}^*)$$

$$k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I}_N = \mathbf{L} \cdot \mathbf{L}^T$$

L lower-triangular

# Why Cholesky?

Cost of some matrix factorizations and decompositions. A is  $n \times n$ , except for QR and  $\nu VD$ , where it is  $m \times n$  ( $m \ge n$ ).

| Factorization/decomposition                        | Number of flops                                              |
|----------------------------------------------------|--------------------------------------------------------------|
| LU factorization with partial pivoting $(PA = LU)$ | $\frac{2n^3/3}{n^2}$                                         |
| LU factorization with partial pivoting of upper    | $n^2$                                                        |
| Hessenberg matrix $(PA = LU)$                      |                                                              |
| Cholesky factorization $(A = R^*R)$                | $n^{3}/3$                                                    |
| Householder QR factorization $(A = QR)$            | $2n^{2}(m-n/3)$ for R;                                       |
|                                                    | $4(m^2n - mn^2 + n^3/3)$ for $m \times m Q$ ;                |
|                                                    | $2n^2(m-n/3)$ for $m \times n Q$ ;                           |
|                                                    | $2np(2m-n)$ for $QB$ with $m \times p$ $B$                   |
|                                                    | and $Q$ held in factored form.                               |
| $SVD^a (A = P\Sigma Q^*)$                          | $14mn^2 + 8n^3 (P(:,1:n), \Sigma, \text{ and } Q)^b$         |
|                                                    | $6mn^2 + 20n^3 (P(:,1:n), \Sigma, \text{ and } Q)^c$         |
| Hessenberg decomposition $(A = QHQ^*)$             | $14n^3/3 \ (Q \text{ and } H), \ 10n^3/3 \ (H \text{ only})$ |
| Schur decomposition <sup>a</sup> $(A = QTQ^*)$     | $25n^3 (Q \text{ and } T), 10n^3 (T \text{ only})$           |
| For Hermitian $A$ :                                |                                                              |
| Tridiagonal reduction $(A = QTQ^*)$                | $8n^3/3 \ (Q \text{ and } T), \ 4n^3/3 \ (T \text{ only})$   |
| Spectral decomposition $(A = QDQ^*)$               | $9n^3 (Q \text{ and } D), 4n^3/3 (D \text{ only})$           |

 $N^3/3$  operations



•  $L = \text{Cholesky}(k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})$ 

$$\bullet \ \alpha = \mathbf{L}^{\mathsf{T}} \setminus (\mathbf{L} \setminus \mathbf{y})$$

$$\bullet \ m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) \cdot \boldsymbol{\alpha}$$

$$\bullet \mathbf{v} = \mathbf{L} \setminus k(\mathbf{X}, \mathbf{x}^*)$$

$$\bullet \ \sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - \mathbf{v}^T \mathbf{v}$$

$$p(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mathbf{y}^*; m(\mathbf{x}^*), \sigma^2(\mathbf{x}^*))$$

$$m(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{X}) \left( k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I} \right)^{-1} \mathbf{y} \quad \mathcal{O}(N^3)$$

$$\sigma^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - k(\mathbf{x}^*, \mathbf{X}) \left( k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I} \right)^{-1} k(\mathbf{X}, \mathbf{x}^*)$$

$$k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I} = \mathbf{L} \cdot \mathbf{L}^T$$

L lower-triangular

$$Ax = b \Rightarrow x = A \setminus b$$

How to choose the characteristic length / smoothness?



How to choose the characteristic length / smoothness?



Kernel hyperparameter

$$p(\mathbf{y} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})$$
 the marginal likelihood



$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\sum_{\mathbf{i}} \ln \mathbf{L}_{\mathbf{i}\mathbf{i}} - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \alpha - \frac{\mathbf{N}}{2} \ln(2\pi)$$

$$L = \text{Cholesky } \hat{\mathbf{K}}$$

$$\alpha = \mathbf{L}^{\mathbf{T}} \setminus (\mathbf{L} \setminus \mathbf{y})$$

Kernel hyperparameter

$$p(\mathbf{y} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})$$
the marginal likelihood

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\frac{1}{2} \ln |\hat{\mathbf{K}}| - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \hat{\mathbf{K}}^{-1} \mathbf{y} - \frac{\mathbf{N}}{2} \ln(2\pi)$$

(Bishop eq 6.69)



$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\sum_{\mathbf{i}} \ln \mathbf{L}_{\mathbf{i}\mathbf{i}} - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \alpha - \frac{\mathbf{N}}{2} \ln(2\pi)$$

$$L = \text{Cholesky } \mathbf{K}$$

$$\alpha = \mathbf{L}^{\mathbf{T}} \setminus (\mathbf{L} \setminus \mathbf{y})$$

Kernel hyperparameter

$$p(\mathbf{y} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})$$
 the marginal likelihood

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\frac{1}{2} \ln |\hat{\mathbf{K}}| - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \hat{\mathbf{K}}^{-1} \mathbf{y} - \frac{\mathbf{N}}{2} \ln(2\pi)$$

(Bishop eq 6.69)

Learning through gradient descent



$$\frac{\partial}{\partial x} \ln |\mathbf{A}| = \operatorname{Tr} \left( \mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial x} \right)$$
$$\frac{\partial}{\partial x} (\mathbf{A}^{-1}) = -\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial x} \mathbf{A}^{-1}$$

(Bishop eq C.21, C.22)

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\sum_{\mathbf{i}} \ln \mathbf{L}_{\mathbf{i}\mathbf{i}} - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \alpha - \frac{\mathbf{N}}{2} \ln(2\pi)$$

$$L = \text{Cholesky } \hat{\mathbf{K}}$$

$$\alpha = \mathbf{L}^{\mathbf{T}} \setminus (\mathbf{L} \setminus \mathbf{y})$$

Kernel hyperparameter

$$p(\mathbf{y} | \mathbf{X}, \theta) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})$$
 the marginal likelihood

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\frac{1}{2} \ln |\hat{\mathbf{K}}| - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \hat{\mathbf{K}}^{-1} \mathbf{y} - \frac{\mathbf{N}}{2} \ln(2\pi)$$

(Bishop eq 6.69)

(Bishop eq 6.70)

Learning through gradient descent

$$\frac{\partial}{\partial \theta_i} \ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\frac{1}{2} \operatorname{Tr} \left( \hat{\mathbf{K}}^{-1} \frac{\partial \hat{\mathbf{K}}}{\partial \theta_i} \right) + \frac{1}{2} \mathbf{y}^{\mathrm{T}} \hat{\mathbf{K}}^{-1} \frac{\partial \hat{\mathbf{K}}}{\partial \theta_i} \hat{\mathbf{K}}^{-1} \mathbf{y}$$

 $\frac{\partial}{\partial x} \ln |\mathbf{A}|$   $\frac{\partial}{\partial x} (\mathbf{A}^{-1})$ 

$$\frac{\partial}{\partial x} \ln |\mathbf{A}| = \operatorname{Tr} \left( \mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial x} \right)$$
$$\frac{\partial}{\partial x} (\mathbf{A}^{-1}) = -\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial x} \mathbf{A}^{-1}$$

 $m(\mathbf{x}_2)$ 

(Bishop eq C.21, C.22)

$$\ln p(\mathbf{y} \mid \mathbf{X}, \theta) = -\sum_{\mathbf{i}} \ln \mathbf{L}_{\mathbf{i}\mathbf{i}} - \frac{1}{2} \mathbf{y}^{\mathrm{T}} \alpha - \frac{\mathbf{N}}{2} \ln(2\pi)$$

$$L = \text{Cholesky } \hat{\mathbf{K}}$$

$$\alpha = \mathbf{L}^{\mathbf{T}} \setminus (\mathbf{L} \setminus \mathbf{y})$$