Soutenance de thèse de Quentin Monnet

Directrice:

Prof. Lynda Mokdad

Modèles et mécanismes pour la protection contre les attaques par déni de service dans les réseaux de capteurs sans fil

Vendredi 17 juillet 2015

Présentation

1 Réseaux de capteurs et déni de service Réseaux de capteurs sans fil Sécurité, déni de service

Sélection des capteurs de surveillance Sélection aléatoire Selon l'énergie résiduelle Élection démocratique Résultats

3 Modèles Réseaux de Petri Logique stochastique Jeux quantitatifs

4 Perspectives

Contexte WSNs Sécurité

Énergie résiduelle Élection démocratique Résultats

Mécanismes

Modèles RPGSe LSAH

Jeux quantitatifs
Perspectives

Capteurs

Capteurs (ou *nœuds*) (anglais : *sensors*, *nodes*, *motes*) : de petits appareils

- effectuant des mesures (lumière, CO₂, température, champ magnétique, vibrations, ...)
- communiquant sans fil (ad-hoc)
- reliés à une station de base

Ressources limitées

- Faibles capacités de calcul
- Peu de mémoire disponible
- Énergie limitée (batterie)

Contexte

Sécurité Mécanismes

Sélection aléatoire Énergie résiduelle Élection démocratique Résultats

Modèles RPGSe

LSAH Jeux quantitatifs

Réseaux de capteurs sans fils

Capteurs en réseau : Wireless Sensor Networks (WSNs)

Contexte WSNs Sécurité

Mécanismes Sélection aléatoire Énergie résiduelle

Élection démocratique Résultats

Modèles

RPGSe LSAH

Jeux quantitatifs
Perspectives

Réseaux de capteurs sans fils clusterisés

Quelques problématiques :

- déploiement autonome ; gestion décentralisée
- performances; gestion de l'énergie
- sureté, résilience; sécurité

Notion de clusters :

Contexte WSNs Sécurité

Mécanismes
Sélection aléatoire
Énergie résiduelle
Élection démocratique
Résultats

Modèles

LSAH Jeux quantitatifs

Exemples d'applications

 Milieu urbain : surveillance du trafic routier, « villes intelligentes »

- Environnement : agriculture, suivi d'animaux, mesure du taux de pollution, météo
- Surveillance : activité sismique, départs d'incendie en forêt ou sur site industriel, vidéosurveillance et détection d'intrusions (physiques)
- Particuliers: « Internet des objets », domotique
- Médecine : surveillance d'organes vitaux ou de glycémie, détection de tumeurs
- **Domaine militaire**: renseignement, détection d'agents chimiques / biologiques / radioactifs

Fortes contraintes en sécurité

- Contexte WSNs Sécurité
- Sélection aléatoire Énergie résiduelle Élection démocratique Résultats

Mécanismes

- Modèles

 RPGSe

 LSAH

 Jeux quantitatifs
- Perspectives

Sécurité dans les réseaux de capteurs

Plusieurs composantes :

- Confidentialité des données
- Authentification, intégrité des échanges
- Disponibilité des services
 Dans notre cas : détection des attaques par déni de service (DoS).
 Plusieurs couches (pile TCP/IP) peuvent être visées :
 - couche physique (brouillage)
 - couche MAC (brouillage, comportements égoïstes, privation de sommeil, ...)
 - routage (trous noirs, trous de vers, attaques sur le protocole de routage, ...)
 - couche transport (tempêtes SYN/ACK sur TCP/UDP, ...)
 - applications

- Contexte

 WSNs

 Sécurité

 Mécanismes
- Sélection aléatoire Énergie résiduelle Élection démocratique Résultats

Modèles

RPGSe

LSAH

Jeux quantitatifs

Attaques étudiées

Contexte WSNs Sécurité

Mécanismes
Sélection aléatoire
Énergie résiduelle
Élection démocratique
Résultats

Modèles

RPGSe

LSAH

Jeux quantitatifs

Perspectives

Objectif : détecter des capteurs compromis qui tenteraient de nuire au réseau depuis l'intérieur.

- Les capteurs compromis font partie du réseau (même matériel)
- Ils effectuent des attaques sur les couches MAC (contrôle d'accès au médium) ou de routage IP, par exemple :
 - non retransmission de paquets
 - brouillage, saturation du canal, comportement égoïste

Contrainte : limiter et répartir la consommation en énergie

Détection des attaques

Mécanisme de détection des comportements suspects

- Sous-ensemble de capteurs (cNodes) chargés d'établir une surveillance du trafic
- Application d'un ensemble de règles sur le trafic observé
- Si détection d'un comportement suspect, remontée d'une alarme au cluster head

• Renouvellement périodique des cNodes

Problème posé :

Pour chaque période, comment sélectionner les cNodes?

Contexte WSNs Sécurité

Mécanismes

Sélection aléatoire Énergie résiduelle Élection démocratique Résultats

Modèles RPGSe

LSAH Jeux quantitatifs

Trois méthodes de renouvellement

Contexte WSNs Sécurité

Mécanismes

Sélection aléatoire Énergie résiduelle

Élection démocratique Résultats

Modèles

RPGSe LSAH

Jeux quantitatifs

Perspectives

- Sélection aléatoire
- 2 Sélection selon l'énergie résiduelle
- 3 Élection démocratique

Résultats numériques : simulations

Sélection aléatoire des cNodes

Contexte WSNs Sécurité

Mécanismes

Sélection aléatoire Énergie résiduelle

Élection démocratique Résultats

Modèles

RPGSe

Jeux quantitatifs

Perspectives

- Méthode simple
- Dans la littérature : rien sur le renouvellement de la sélection des cNodes au cours du temps [LAI et CHEN, 2008]
- Ce qui importe : assurer ce renouvellement

Principe

Déterminer la liste des *cNodes* de façon aléatoire, à l'aide d'un générateur de nombres (pseudo-)aléatoires

Sélection aléatoire des cNodes — implémentation

· Ignore la topologie du réseau

Mécanism
Sélection aléat

Contexte

Sélection aléatoire Énergie résiduelle Élection démocratique Résultats

Modèles

RPGSe LSAH

Jeux quantitatifs

Perspectives

Ме́тноде	Avantages	Inconvénients
Sélection par la station de base	Aucun calcul des capteurs Distribution spatiale idéale	Si le CH est compromis, il déclare un cluster vide Perte de l'aspect décentralisé de l'algorithme
Sélection par les cluster heads	Seuls les CH calculent les nombres aléatoires	• Si le CH est compromis, il ne désigne aucun <i>cNode</i>
Auto-sélection	• Très simple	Chaque capteur calcule un nombre aléatoire

• Peu de données de contrôle

Sélection des cNodes selon l'énergie résiduelle

Principe

Les capteurs dont le niveau de charge de batterie est le plus élevé sont sélectionnés en tant que *cNodes*

Algorithme déterministe

Problèmes:

- 1 Comment empêcher les capteurs compromis d'accaparer le rôle de *cNode*?
- 2 Comment être sûr de couvrir tout le cluster?

Perspectives

Jeux quantitatifs

Contexte

Sécurité Mécanismes

Résultats

Modèles

Énergie résiduelle Élection démocratique

Sélection selon l'énergie résiduelle — solutions

Solutions:

- 1 Nouveau type de capteurs : les vNodes
- 2 Chaque capteur surveillé par au moins deux cNodes

Les *vNodes* surveillent la consommation énergétique des *cNodes* à l'aide d'un modèle mathématique

Contexte WSNs Sécurité

Mécanismes Sélection aléatoire

Énergie résiduelle

Élection démocratique Résultats

Modèles

RPGSe LSAH

Jeux quantitatifs

Élection démocratique des cNodes

Principe

Les observations réalisées par les capteurs sur leurs voisins sont utilisées pour élire (auprès du cluster head) les nouveaux *cNodes*

Deux étapes :

- Une phase initiale où tous les capteurs observent leurs voisins
- 2 Puis fonctionnement standard : les *cNodes* envoient leurs observations (leurs « votes ») au cluster head

Le vote peut prendre en compte plusieurs critères :

```
\begin{aligned} \textit{note}_k[i] &= (\alpha \times \acute{e}nergie\_r\acute{e}siduelle_k[i]) + (\beta \times r\acute{e}putation_k[i]) \\ &+ (\gamma \times index\_connectivit\acute{e}_k[i]) + (\delta \times puissance\ du\ signal_k[i]) \\ &+ (\zeta \times dur\acute{e}\_depuis\_derni\grave{e}re\_s\acute{e}lection_k[i]) \end{aligned}
```

Contexte WSNs Sécurité

Mécanismes

Sélection aléatoire Énergie résiduelle Élection démocratique Résultats

Modèles

RPGSe

LSAH

Jeux quantitatifs

Simulations — système simulé

Logiciel utilisé : ns (network simulator) Grille de 100 capteurs

5 cas pour le renouvellement des *cNodes* :

- sans renouvellement
- aléatoire (10 cNodes)
- énergie résiduelle (10 cNodes)
- élec. dém. (10 cNodes)
- élec. dém. (7 cNodes)

Simulations — énergie consommée

Contexte

WSNs

Sécurité

Résultats

Modèles

Jeux quantitatifs
Perspectives

RPGSe

Mécanismes

Sélection aléatoire

Énergie résiduelle

Élection démocratique

Simulations — nombre de capteurs « en vie »

Nombre de capteurs en fonctionnement au cours du temps (énergie initiale : 10 J)

Contexte

Mécanismes Sélection aléatoire

Énergie résiduelle

Résultats Modèles

RPGSe

Jeux quantitatifs

Perspectives

Élection démocratique

WSNs Sécurité

Nombre de capteurs en fonctionnement au cours du temps (énergie initiale : 20 J)

Simulations — détection au cours du temps

Nombre de *cNodes* détectant l'attaque au cours du temps (énergie initiale : 10 J)

Perspectives

Nombre de *cNodes*détectant l'attaque au

cours du temps

(énergie initiale : 20 J)

Contexte

WSNs
Sécurité

Mécanismes

Énergie résiduelle

Résultats

Modèles

RPGSe

Élection démocratique

Avantages et inconvénients

Contexte WSNs Sécurité

Sélection aléatoire Énergie résiduelle Élection démocrati Résultats Modèles RPGSe LSAH Jeux quantitatifs

Ме́тноде	Avantages	Inconvénients
Aucun renou- vellement	 Préservation des nœuds non sélectionnés 	Mauvaise surveillance
Sélection aléatoire	Consommation modérée Simple à mettre en œuvre Pourcentage constant de cNodes Bonne rotation des cNodes; processus aléatoire : pas d'attaques	• Équilibre moyen de la charge • Risque : capteurs non couverts par les <i>cNodes</i> sur certaines phases
Sélection selon l'énergie résiduelle	Bon équilibre de la charge Surveillance de tous les capteurs par au moins deux <i>cNodes</i>	 vNodes contraignants; couteux en énergie et lourds à implémenter Très gourmand en énergie
Élection démocratique	Bon équilibre de la charge Surveillance de tous les capteurs par ≥ 2 cNodes Consommation modérée (après période initiale) Peut prendre en compte d'autres paramètres	• La période initiale consomme beaucoup d'énergie

Recommandations

Contexte WSNs

Mécanismes Sélection aléatoire Énergie résiduelle

Energie résiduelle Élection démocratique Résultats

Modèles

LSAH Jeux quantitatifs

Perspectives

Aucun renouvellement

Déconseillé, sauf si matériel dédié

Sélection aléatoire

Privilégie la longévité à la sécurité; perte de certains capteurs plus tôt que d'autres

Sélection selon l'énergie résiduelle

Préférer l'élection démocratique; sauf en cas de courtes périodes d'activité du cluster

Élection démocratique

Privilégie la sécurité; maintien aussi longtemps que possible de l'intégralité des capteurs en fonctionnement

Différents modèles

Contexte

WSNs Sécurité

Mécanismes Sélection aléatoire

Énergie résiduelle Élection démocratique

Résultats Modèles

RPGSe LSAH

Jeux quantitatifs

Perspectives

Processus de détection et sélection aléatoire

- 1 Réseaux de Petri (RPGSe)
- 2 Logique stochastique (LSAH)

Interactions entre cNodes et capteurs compromis

3 Jeux quantitatifs

Réseaux de Petri

Réseaux de Petri stochastiques généralisés étendus (RPSGe)

- utilisés pour modéliser des processus stochastiques
- transitions immédiates ou minutées (distribuées de façon exponentielle ou déterministe)
- arcs inhibiteurs

Contexte WSNs Sécurité

Mécanismes Sélection aléatoire Énergie résiduelle

Élection démocratique Résultats

Modèles RPGSe

LSAH Jeux quantitatifs

RPGSe : briques de base

capteur simple cluster head $\begin{array}{c|c} \lambda_i & \text{InBuff}_1 \\ \hline TX & \text{InBuff}_j \end{array}$

Contexte WSNs Sécurité

Mécanismes

Sélection aléatoire

Énergie résiduelle Élection démocratique Résultats

Modèles

RPGSe

Jeux quantitatifs

RPGSe: Réseau sans renouvellement des cNodes

Contexte WSNs Sécurité

Mécanismes

Sélection aléatoire Énergie résiduelle Élection démocratique

Résultats

Modèles

RPGSe LSAH

Jeux quantitatifs

RPGSe : Capteurs complets

Contexte

W5Ns Sécurité

Mécanismes

Sélection aléatoire

Énergie résiduelle

Élection démocratique

Résultats

Modèles

RPGSe

Jeux quantitatifs

RPGSe: Réseau avec renouvellement des cNodes

WSNs Sécurité

Mécanismes

Sélection aléatoire

Énergie résiduelle Élection démocratique

Résultats Modèles

RPGSe

Jeux quantitatifs

Logique stochastique avec automates hybrides

Basée sur un modèle RPSGe

Contexte

Sécurité

Résultats

Modèles

RPGSe

Mécanismes Sélection aléatoire

Énergie résiduelle Élection démocratique

Jeux quantitatifs

Perspectives

- Mesures de performances exprimées en logique stochastique
- Une formule de cette logique comprend :
 - un automate linéaire hybride (ALH)
 - une expression construite à partir des variables de l'ALH
- Outils de model checking (COSMOS [BALLARINI et al., 2011]) pour vérifier ces propriétés

$\begin{aligned} & \textit{vrai}, \{ \text{v\'erif_OUI}_i \}, (x_{d_i} := x_{d_i} + 1) \\ & & \\ & & \\ & \overset{\overset{\cdot}{\lambda}_t}{\underset{t}{\lambda_{d_i}}} : 0 \\ & \overset{\cdot}{\lambda_{bf_i}} : \mathcal{M}(bf_i) \\ & \overset{\cdot}{\lambda_{TX_i}} : 0 \\ & & \\ & \textit{vrai}, \{ \mathsf{TX}_i \}, (x_{\mathsf{TX}_i} := x_{\mathsf{TX}_i} + 1) \end{aligned}$

Exemples d'expressions :

$$Z_1 \equiv E(\operatorname{dern}(x_{d_i}))$$

$$Z_2 \equiv E(\operatorname{dern}(x_{d_i} + x_{d_{i'}}))$$

$$Z_3 \equiv E(\operatorname{dern}(x_{\mathsf{TX}_i}))$$

$$Z_4 \equiv E(\operatorname{int}(x_{bf_i}))$$

Jeux quantitatifs

Principe:

- Formule de gain à vérifier pour obtenir la victoire
- Problème de victoire : pour une configuration initiale et une formule de gain, existe-t-il une stratégie permettant d'obtenir la victoire ?
- Problème du crédit initial : existe-t-il une valeur pour le crédit initial pour laquelle le problème de victoire a une réponse positive?

Plusieurs composantes pour les formules de gain : énergie et « gain » (messages envoyés avec succès)

Contexte WSNs Sécurité

Mécanismes
Sélection aléatoire
Énergie résiduelle
Élection démocratique
Résultats

Modèles

RPGSe

LSAH

Jeux quantitatifs

Jeux quantitatifs — graphes

Résultats:

- Cas général indécidable
- Conjonction d'atomes : possibilité de calculer une stratégie, potentiellement à mémoire infinie
- Dans ce dernier cas, possibilité de déterminer une approximation avec mémoire finie

Capteur compromis

Mécanismes

Énergie résiduelle Élection démocratique Résultats

Modèles RPGSe

Jeux quantitatifs
Perspectives

Conclusion et perspectives

Contexte WSNs Sécurité

Mécanismes Sélection aléatoire

Énergie résiduelle Élection démocratique Résultats

Modèles

RPGSe LSAH Jeux quantitatifs

Perspectives

Conclusions

- Détection : trois mécanismes de renouvellement des cNodes
- Les résultats numériques indiquent une bonne répartition de la consommation
- Différents modèles pour représenter ces outils, en déduire des propriétés

Conclusion et perspectives

Travaux futurs

- Poursuivre l'étude du modèle de jeux quantitatifs
- Analyser les systèmes obtenus à l'aide d'outils de model-checking
- Varier les modèles et les solutions, rechercher d'autres méthodes de renouvellement ou même de détection
- Confronter les mécanismes proposés à des applications réelles (plate-forme opérationnelle)

Contexte

WSNs
Sécurité

Mécanismes

Sélection aléatoire Énergie résiduelle Élection démocratique Résultats

Modèles

RPGSe

LSAH

Jeux quantitatifs

Conclusion et perspectives

Travaux futurs

- Poursuivre l'étude du modèle de jeux quantitatifs
- Analyser les systèmes obtenus à l'aide d'outils de model-checking
- Varier les modèles et les solutions, rechercher d'autres méthodes de renouvellement ou même de détection
- Confronter les mécanismes proposés à des applications réelles (plate-forme opérationnelle)

Jeux quantitatifs
Perspectives

Contexte

Sécurité Mécanismes

Sélection aléatoire

Énergie résiduelle Élection démocratique

Modèles

Merci beaucoup!

Questions