Contingency Tables (Lecture 2)

Heather Weaver & Mark Fulginiti September 14, 2017

Bayesian Multinomial Example

Adapted from BDA3 by Gelman eta.

Election Polling Results (n = 1,447)

Obama: $y_1 = 727$

Romney: $y_2 = 583$

Other / NA: $y_3 = 137$

Note: Assuming simple random sampling (i.e. ignoring any biases)

 $(y_1, y_2, y_3 \mid n) \sim Multnomial(\theta_1, \theta_2, \theta_3)$

Estimand:

$$\theta_1 - \theta_2$$

$$H_o: \theta_1 = \theta_2$$

Prior: one choice

$$(y_1, y_2, y_3) \sim Dirichlet(\alpha_1, \alpha_2, \alpha_3)$$

$$\alpha_1 = \alpha_2 = \alpha_3 = 1$$

Posterior:

$$P(\theta_1, \theta_2, \theta_3 \mid \vec{y}) \sim Dirichlet(y_1 + 1, y_2 + 1, y_3 + 1)$$

$$P(\theta_1, \theta_2, \theta_3 \mid \vec{y}) \sim Dirichlet(728, 584, 138)$$

• If a closed form solution exists, we could solve for quantiles, CI bounds, etc.

Computationally:

- 1. Set i = 1
- 2. Draw $\vec{\theta}^{[i]} \sim Dirichlet()$ 3. Calculate $\vec{\theta}_1^{[i]} \vec{\theta}_2^{[i]}$
- 4. set i = i + 1
- 5. If i = 1,000 skip
- 6. Compute summary / quantiles of $(\theta_1 \theta_2)$
- 80% Credible Interval for $(\theta_1 \theta_2)$ [10th percentile, 90th percentile]

Bayesian emample for small-sample cells

• Exact tests are a frequentest solution for low cell counts

Following example from a Wikipedia article on contingency tables, lingpipe blog (Bob Carpenter)

Gender	Left Handed	Right Handed	Total
Male Female	43 44	$y_1 = 9$ $y_2 = 4$	$m_1 = 52$ $m_2 = 48$

• Question: Are men and women equally likely to be left-handed?

$$H_o: P(LH \mid M) = P(LH \mid F)$$

 $H_o: P(\pi_1) = P(\pi_2)$
 $H_o: \pi_1 - \pi_2 = 0$

We could also look at the risk ratio $\frac{\pi_1}{\pi_2}$ or the odds ratio $\frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}$.

 $Y_1 \sim Binomial(n_1, \pi_1)$ the number of men who are left-handed

 $Y_2 \sim Binomial(n_2, \pi_2)$ the number of women who are left-handed

We are assuming Independence of the above variables

Prior: Assume uniform priors

$$\pi_1 \sim Uniform(0,1) = Beta(1,1)$$

$$\pi_2 \sim Uniform(0,1) = Beta(1,1)$$

Posterior for π :

$$\pi_i \mid y_i, n_i \sim Beta(y_i + 1, n - y_i + 1)$$

$$\begin{pmatrix} \pi_{1}^{(1)} \\ \pi_{1}^{(2)} \\ \vdots \\ \pi_{1}^{(k)} \end{pmatrix} - \begin{pmatrix} \pi_{2}^{(1)} \\ \pi_{2}^{(2)} \\ \vdots \\ \pi_{2}^{(k)} \end{pmatrix} \implies \begin{pmatrix} (\pi_{1} - \pi_{2}) & (1) \\ (\pi_{1} - \pi_{2}) & (2) \\ \vdots \\ (\pi_{1} - \pi_{2}) & (k) \end{pmatrix}$$

- Advantage: No assumptions about large sample size needed.
- Disadvantage: Results are sensitive to choice to prior.

Confidence intervals from likelihood ratios

Define a $(1-\alpha)\%$ credible interval/region. The set of Θ for which the Likelihood Ratio Test Statistic (LRST)

$$LRTS(\Theta) < \chi_{df}^2(1-\alpha)$$

$$LRTS(\Theta) = -2[L(\Theta) - L(\hat{\Theta})]$$

where $L(\Theta)$ is the log-likelihood from Θ , across a subset of components of Θ , and $L(\hat{\Theta})$ is the fixed log-likelihood for Θ calculated at the MLE

- $\chi^2_{d\!f}(1-\alpha)$ is the $(1-\alpha)^{th}$ quantile of $\chi^2_{d\!f}$
- The df is the number of parameters varying in Θ

e.g. 1-Parameter CI

$$\Theta = \mu$$

$$\label{eq:energy} \text{LRTS} = -2(L(\mu) - L(\hat{\mu}))$$

• 95% CI for $\mu = \{ \mu : LRTS < \chi_1^2(0.95) \}$

Example

$$\begin{aligned} y_i \sim Poisson(\mu), & i = 1, 2, 3 \\ P(y \mid \mu) &= \frac{(e^{-\mu}\mu^y)}{y!} \\ L(\mu \mid y) &= log \left(\prod_{i=1}^3 \frac{e^{-\mu}\mu^y}{y!} \right) = \sum_{i=1}^3 log \left(\frac{e^{-\mu}\mu^y}{y!} \right) = \\ &= \sum (-\mu + y_i log(\mu) - log(y!)) \propto -n\mu + log(\mu) * \sum y_i + C \\ L(\mu \mid \vec{y}) \propto -3\mu + 7log(\mu) \\ \\ LRTS &= -2(L(\mu) - L(\hat{\mu})) < \chi_1^2(0.95) \\ &\rightarrow (L(\mu) > L(\hat{\mu})) - \frac{\chi_1^2(0.95)}{2} \\ &\frac{\chi_1^2(0.95)}{2} = \frac{3.84}{2} \end{aligned}$$

Example with Multiple parameters

$$\Theta = (\theta_1, \ \theta_2, \ \dots, \ \theta_r, \ \theta_{r+1}, \ \dots, \ \theta_p)$$
 of particular interests are $(\theta_{r+1}, \ \dots, \ \theta_p)$

$$LRST = -2 \left\{ L(\theta_{r+1}, \ \dots, \ \theta_p \mid \hat{\theta}_1, \ \dots, \ \hat{\theta}_r) - L(\hat{\theta}_{r+1}, \ \dots, \ \hat{\theta}_p \mid \hat{\theta}_1, \ \dots, \ \hat{\theta}_r) \right\}$$

Calculate the likelihood on a grid of $(\theta_{r+1}, \ldots, \theta_p) = \theta^*$

There are p - r parameters, so the df is p - r

95 % CI for
$$\theta$$
 * = $\left\{\theta$ * $: LRTS < \chi^2_{\;p-r} \; (0.95)\right\}$

• Note: This whole assumption is based on large sample approximation

Diagnostic Tests

Disease Presence	Test Positive	Test Negative	Total
Yes No	π_{11}	π_{12}	1
	π_{21}	π_{22}	

- Sensitivity: $\Pr(+ \mid D) = \pi_{1\mid 1} = \text{probability the test is positive given that you have the disease}$ Specificity: $\Pr(\mid D^C) = \pi_{2\mid 2} = \text{probability that you test negative given that you do not have the}$

Breast Cancer Example

Cancer Presence	Test Positive	Test Negative	Total
Yes	86	14	$100 = n_1$
No	12	88	$100 = n_2$

Gold standard would be to have $\alpha = 0$, $\beta = 0$.

- Sensitivity: $\Pr(+ | D) = \pi_{1|1} = 86\%$ Specificity: $\Pr(| D^C) = \pi_{2|2} = 88\%$

From a clinical perspective we are much more interested in positive/negative predicted value.

$$P(D \mid + \)$$
 sometimes = $\frac{True\ Positive}{True\ Positive\ + \ False\ Positive}$

e.g. P(Breast Cancer
$$| +) = \frac{86}{86+12}$$

Note: This is only true if $(\frac{n_1}{n_1+n_2}) \approx P(D) = \text{prevalence of the disease}$

$$\begin{split} P(D \mid + \) &= \frac{P(D \cap +)}{P(+)} = \frac{P(\ + \ \mid D) * P(D)}{P(+ \cap D) *} * P(+) \cap D^C \\ &= \frac{Sensetivity * Population \ Prevalance}{P(\ + \ \mid D) P(D) + P(\ + \ \mid D^C) P(D^C)} \end{split}$$

 $Sensetivity*Population\ Prevalance$

 $= \frac{1}{(Sensetivity * Population \ Prevalance) + ((1 - Speciality) * (1 - Population \ Prevalance))}$