Номера страниц и тем по терверу в файле (main_4.pdf)

1.	1 лава	1. ьазовые понятия теории случаиных процессов. Основные классы слчаи	иных
	процес		Стр.1
	a.	1.1 Случайные процессы и их основные характеристики	Стр.1
	b.	1.2 Конечномерные распределения случайных процессов	Стр.2
	c.	1.3 Моментные характеристики случайных процессов	Стр.3
		i. 1.3.1 Действительный случайный процесс	Стр.3
		іі. 1.3.2 Комплексный случайный процесс	Стр.6
	d.	• 1 1 5 1 1	Стр.7
		i. 1.4.1 Гауссовский случайный процесс	Стр.7
		ii. 1.4.2 Винеровский случайный процесс (броуновское движение)	Стр.9
		ііі. 1.4.3 Процесс Пуассона	Стр.11
		iv. 1.4.4 Процесс Коши	Стр.12
		v. 1.4.5 Процесс Маркова	Стр.12
		vi. 1.4.6 Диффузионный процесс	Стр.14
	e.	1.5 СП с некоррелированными, ортогональными и независимыми прира	щениями
			Стр.14
	f.	1.6 Стационарные случайные процессы	Стр.16
	g.	1.7 Спектральные характеристики случайных процессов	Стр.17
	h.	1.8 Каноническое разложение случайного процесса	Стр.20
2.	Глава	2. Элементы стохастического анализа случайных процессов	Стр.22
	a.	2.1 Сходимость случайных процессов	Стр.22
	b.	2.2 Непрерывность случайных процессов	Стр.23
	c.	2.3 Дифференцируемость случайных процессов	Стр.25
	d.	2.4 Интегрируемость случайных процессов	Стр.26
	e.	2.5 Действия линейного оператора на СП	Стр.28
		i. 2.5.1 ЛОО дифференцирования с постоянными коэффициентам	<i>и</i> Стр.29
		іі. 2.5.2 ЛОО интегрирования	Стр.29
	f.	2.6 Дифференциальные уравнения со случайной правой части	Стр.30
	g.	2.7 Эргодические случайные процессы	Стр.31
3.	Глава	3. Сохастические интегралы	Стр.34
	a.	3.1 Стохастические интегралы от неслучайных функций	Стр.34
	b.	3.2 Спектральное представление стационарных в широком смысле СП	Стр.35
	c.	3.3 Стационарное линейное преобразование стационарных СП	Стр.35
		i. 3.3.1 Линейное преобразование в спектральной (частотной) ф	орме
			Стр.35
		іі. 3.3.2 Применение спектральных представлений к исследовани	ю СП
			Стр.37
		iii. 3.3.3 Линейные преобразования во временной области	Стр.37
	d.	3.4 Линейное прогнозирование ССП	Стр.39
		i. 3.4.1 Прогнозирование стационарных случайных последовател	<i>ъностей</i>
			Стр.39
		ii. 3.4.2 Прогнозирование стационарных случайных процессов	Стр.41
	e.	3.5 Модели авторегрессии и скользящего среднего	Стр.41
	f.	3.6 Стохастический интеграл Ито	Стр.42
4.	Глава	4. Цепи Маркова с дискретным временем	Стр.45
	a.	4.1 Основные понятия	Стр.45
	b.	4.2 Классификация состояний однородной ЦМ	Стр.46
	c.	4.3 Периодичность	Стр.46
		4.4 Возвратность	Стр.47
		4.5 О существовании предельных и стационарных распределении	Стр.48

Глава 1

Базовые понятия теории случайных процессов. Основные классы случайных процессов.

1.1 Случайные процессы и их основные характеристики

Пусть $\{\Omega, \mathcal{F}, \mathcal{P}\}$ – вероятностное пространство.

Определение 1. Случайным процессом (вероятностным процессом, стохастическим процессом, стохастической функцией) $\xi(t,\omega), t \in T, \omega \in \Omega$ называется система случайных величин $\{\xi(t,\omega), t \in T\}$, определённая на одном и том же вероятностном пространстве, где T – параметрическое множество.

Определение 2. Случайный процесс $\xi(t)$ называется *действительным*, если $\xi(t) \in \mathbb{R}$ (система действительных случайных величин). Случайный процесс $\xi(t)$ называется *комплексным*, если $\xi(t) = \xi_1(t) + i \cdot \xi_2(t)$, $\xi_{1,2}(t)$ – действительные СП.

Определение 3. Если T – дискретное множество, то случайный процесс $\xi(t)$ называется случайным процессом с дискретным временем (случайная последовательность, временной ряд). Если $T \subset \mathbb{R}$, то СП $\xi(t)$ – случайный процесс с непрерывным временем.

Определение 4. Случайный процесс $\xi(t) = \{\xi_a(t), a = \overline{1,r}\}$ называется r-мерным $C\Pi, t \in T, r \in \mathbb{N}$. Если $t = (t_1, \ldots, t_n)$, то $\xi(t)$ называется n-мерным случайным полем . Случайные поля также делятся на непрерывные и дискретные.

Зафиксируем $t_0 \in T$, $\omega_0 \in \Omega$.

Определение 5. Случайная величина $\xi(t_0, \omega)$ называется сечением (отсчётом) СП $\xi(t)$ в точке t_0 . Неслучайная функция $\xi(t, \omega_0)$ называется траекторией (реализацией), соответствующей исходу ω_0 .

Пример 1. Пусть $\xi(t) = t \cdot X$, $X \sim R[0; 1]$. Описать множество сечений и реализацией СП.

Решение. $\xi(t_0,\omega) = t_0 \cdot X(\omega) \sim R[0;t_0], \ \xi(t,\omega_0) = t \cdot X(w_0)$ – прямая, проходящая через (0;0), со случайным угловым коэффициентом от 0 до 1.

1.2 Конечномерные распределения случайных процессов

Способы задания случайных процессов:

- 1. аналитический: $\xi(t,\omega) = g(t,\eta_1(\omega),\eta_2(\omega),\dots,\eta_k(\omega))$
- 2. рекуррентный: $\xi(n) = a\xi(n-1) + \varepsilon(n)$
- 3. с помощью конечномерных распределений
- 4. моментами первого и второго порядков

Определение 1. Для $\forall n \geqslant 1, \ \forall t_1, \dots, t_n \in T$ определяется n-мерная функция распределения случайного процесса $\xi(t)$

$$F_{\xi}(x_1, \dots, x_n; t_1, \dots, t_n) = \mathcal{P}\{\xi(t_1) < x_1, \dots, \xi(t_n) < x_n\}, x_i \in \mathbb{R}$$
 (1.1)

Определение 2. Совокупность функций (1.1) $\forall n \in \mathbb{N} \ \forall t_i \in T, \ i = \overline{1,n}$ называется семейством конечномерных распределений.

Свойства функции распределения:

- 1. $0 \leqslant F_{\xi}(x_1, \ldots, x_n; t_1, \ldots, t_n) \leqslant 1;$
- 2. $F_{\xi}(x;t)$ непреревна слева по любой компоненте x_i в совокупности;
- 3. $F_{\xi}(x;t)$ неубывающая $(\Delta_1 \dots \Delta_n F_{\xi}(x;t) \geqslant 0)$;
- 4. $\exists x_i \to -\infty \Rightarrow F_{\xi}(x;t) \to 0; \quad \forall x_i \to +\infty \Rightarrow F_{\xi}(x;t) \to 1;$
- 5. Для любой перестановки $\pi=(k_1,\ldots,k_n)$ следует, что $F_\xi(x;t)=F_\xi(\pi(x);\pi(t));$
- 6. $\forall 1 \leq k \leq n \ F_{\varepsilon}(x_1, \ldots, x_k; t_1, \ldots, t_k) = F_{\varepsilon}(x_1, \ldots, x_k, \infty, \ldots, \infty; t_1, \ldots, t_k, \infty, \ldots, \infty)$

Теорема 1 (Колмогорова). Если $F = \{F_{\xi}(x;t), x \in \mathbb{R}^n, t \in T\}$ удовлетворяет свойствам 1-6, то существует вероятностное пространство $\{\Omega, \mathcal{F}, \mathcal{P}\}$ и случайный процесс $\xi(t), t \in T$, определённый на этом вероятностном пространстве, такие, что семейство конечномерных распределений случайного процесса $\xi(t)$ совпадает с F.

Определение 3. Пусть существует неотрицательная функция

$$p_{\xi}(u,t), t \in T^n : F_{\xi}(x,t) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_k} p_{\xi}(u,t) du_1 \dots du_n$$

Тогда функция $p_{\xi}(u,t)$ называется n-мерной плотностью распределения СП $\xi(t)$

Свойства плотности:

- 1. $p_{\xi}(u,t) \geqslant 0$;
- $2. \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} p_{\xi}(u,t) du_1 \dots du_n = 1;$
- 3. $\frac{\partial^n F_{\xi}(u,t)}{\partial u_1 \dots \partial u_n} = p_{\xi}(u,t)$

Пример 1. $\xi(t) = \phi(t) \cdot U$, U – случайная величина с функцией распределения $F_u(x)$, $\phi(t)$ – неслучайная величина. Найти семейство конечномерных распредлений.

Решение.

$$\mathcal{P}\{\xi(t_{1}) < x_{1}, \dots, \xi(t_{n}) < x_{n}\} = \mathcal{P}\{\phi(t_{1}) \cdot U < x_{1}, \dots, \phi(t_{n}) \cdot U < x_{n}\} =$$

$$= \mathcal{P}\left\{U < \frac{x_{1}}{\phi(t_{1})}, \dots, U < \frac{x_{n}}{\phi(t_{n})}\right\} = \mathcal{P}\left\{U < \min_{k=1}^{n} \frac{x_{k}}{\phi(t_{k})}\right\} = F_{u}\left(\min_{k=1}^{n} \frac{x_{k}}{\phi(t_{k})}\right)$$

Пример 2. Сечения случайного процесса $\xi(n), n \in \mathbb{N}$ независимы в совокупности и имеют одинаковую функцию распределения F(x). Найти семейство конечномерных распределений.

Pemenue.
$$\mathcal{P}\{\xi(t_1) < x_1, \dots, \xi(t_n) < x_n\} = \prod_{k=1}^n \mathcal{P}\{\xi(t_k) < x_k\} = \prod_{k=1}^n F(x_k)$$

Определение 4. Случайные процессы $\xi(t)$, $\eta(t)$, $t \in T$ называются стохастически эквивалентными в широком смысле, если СКР $\xi(t) \equiv$ СКР $\eta(t)$. Процессы стохастически эквивалентны (эквивалентны), если $\forall t \in T \Rightarrow \mathcal{P} \{ \xi(t) = \eta(t) \} = 1$.

Если процессы эквивалентны, то они стохастически эквивалентны в широком смысле.

Определение 5. Любой случайный процесс $\eta(t) \sim \xi(t)$ называется модификацией (версией) случайного процесса $\xi(t)$.

Утверждение 1 (Колмогорова). Пусть для случайного процесса $\xi(t), t \in T = [a; b]$

$$\exists r, \alpha, c > 0 \colon \forall s, t \in T \Rightarrow \mathcal{M} \{ |\xi(t) - \xi(s)|^r \} < c|t - s|^{1+\alpha}$$

Тогда существует случайный процесс $\eta(t) \sim \xi(t)$, обладающий непрерывными траекториями.

Замечание: если $\xi(t)$ - случайный процесс, определённый на неограниченном промежутке времени, то для существования непрерывной модификации достаточно, чтобы утверждение Колмогорова выполнялось для $\forall t,s \Rightarrow |t-s| \leqslant h,\ h>0$

Определение 6. Случайные процессы $\xi(t)$, $\eta(t)$ называются тожедественными (неразличимыми), если $\mathcal{P}\{\omega \colon \xi(t,\omega) = \eta(t,\omega) \ \forall t \in T\} = 1$.

Для случайных последовательностей понятия эквивалентности и тождествености совпадают.

Пример 3. T = [0; 1] и $\tau(\omega) \sim R[0; 1]$. Рассмотрим следующую ситуацию:

$$\xi(t,\omega) \equiv 0, \ t \in T, \quad \eta(t,\omega) = \begin{cases} 1, \ t = \tau(\omega) \\ 0, \ t \neq \tau(\omega) \end{cases} \Rightarrow \mathcal{P}\left\{\xi(t) \neq \eta(t)\right\} = \mathcal{P}\left\{t = \tau\right\} = 0$$

Случайные процессы эквивалентны стохастически, но не тождественны.

1.3 Моментные характеристики случайных процессов

1.3.1 Действительный случайный процесс

Пусть $\xi(t), t \in T$ - действительный случайный процесс.

Определение 1. Неслучайная функция $m_{\xi}(t) = \mathcal{M}\{\xi(t)\} = \int_{\mathbb{R}} x \, dF_{\xi}(x;t)$ называется математическим ожиданием $\xi(t)$.

В дискретном случае формула переписывается в виде $m_{\xi}(t) = \sum_{i=1}^{\infty} x_i(t) \mathcal{P} \left\{ \xi(t) = x_i(t) \right\}$

Свойства МО:

- 1. $\mathcal{M}\{f(t)\}=f(t), f(t)$ неслучайная функция;
- 2. $\mathcal{M}\left\{f(t)\cdot\xi(t,\omega)\right\}=f(t)\cdot\mathcal{M}\left\{\xi(t,\omega)\right\}$;
- 3. $\mathcal{M}\left\{\xi(t,\omega)\pm\eta(t,\omega)\right\}=m_{\xi}(t)\pm m_{\eta}(t).$

Определение 2. Случайный процесс $\xi(t)$ называется *центрированным*, если $m_{\xi}(t) = 0 \ \forall t \in T$.

Определение 3. Неслучайная функция $\mathcal{D}\{\xi(t)\}$, $t \in T$ следующего вида называется $\partial ucnepcue \tilde{u}$ $C\Pi \xi(t)$:

$$\mathcal{D}\left\{\xi(t)\right\} = \mathcal{M}\left\{\xi(t) - m_{\xi}(t)\right\}^{2} = \int\limits_{\mathbb{R}} (x - m_{\xi}(t))^{2} dF_{\xi}(x; t) = \int\limits_{\mathbb{R}} x^{2} dF_{\xi}(x; t) - m_{\xi}^{2}(t) = \mathcal{M}\left\{\xi(t)\right\}^{2} - m_{\xi}^{2}(t)$$

Cреднеквадратическим отклонением называют величину $\sigma_{\xi}(t) = \sqrt{\mathcal{D}\left\{\xi(t)\right\}}$

Свойства дисперсии:

- 1. $\mathcal{D}\{f(t)\}=0, f(t)$ неслучайная функция;
- 2. $\mathcal{D}\left\{f(t)\cdot\xi(t,\omega)\right\}=f^2(t)\cdot\mathcal{D}\left\{\xi(t,\omega)\right\};$
- 3. $\mathcal{D}\left\{\xi(t,\omega)\pm f(t)\right\} = \mathcal{D}\left\{\xi(t,\omega)\right\}$

Определение 4. Неслучайная функция $R_{\xi}^{0}(t,s) = \mathcal{M}\left\{\xi(t)\xi(s)\right\} = \int_{\mathbb{R}^{2}} x_{1}x_{2} dF_{\xi}(x_{1},x_{2};t_{1},t_{2})$ называется корреляционной функцией.

Неслучайная функция $R_{\varepsilon}(t,s)$ следующего вида называется ковариционной функцией:

$$R_{\xi}(t,s) = cov\{\xi(t),\xi(s)\} = \mathcal{M}\{(\xi(t) - m_{\xi}(t))(\xi(s) - m_{\xi}(s))\} = \mathcal{M}\{\xi(t)\xi(s)\} - \mathcal{M}\{\xi(t)\}\mathcal{M}\{\xi(s)\} = R_{\xi}^{0}(t,s) - m_{\xi}(t)m_{\xi}(s)$$

Свойства ковариционной функции:

- 1. $m_{\xi}(t) = 0 \Rightarrow R_{\xi}^{0}(t,s) = R_{\xi}(t,s);$
- 2. $\eta(t,\omega) = \xi(t,\omega) + f(t) \Rightarrow R_{\eta}(t,s) = R_{\xi}(t,s);$
- 3. $\eta(t,\omega) = \xi(t,\omega) \cdot f(t) \Rightarrow R_{\eta}(t,s) = f(t) \cdot f(s) \cdot R_{\xi}(t,s)$

Определение 5. Нормированной ковариционной функцией случайного процесса $\xi(t)$ называется функция $\rho_{\xi}(t,s) = \frac{R_{\xi}(t,s)}{\sqrt{\mathcal{D}_{\xi}(s)\mathcal{D}_{\xi}(t)}}$

Свойства нормированной ковариционной функции:

- 1. $|\rho_{\xi}(t,s)| \leq 1$;
- 2. $\rho_{\varepsilon}(t,t) = 1;$
- 3. $\rho_{\varepsilon}(t,s) = \rho_{\varepsilon}(s,t)$

Определение 6. Взаимной ковариационной функцией случайного процесса $\xi(t)$ называется функция $R_{\xi\eta}(t,s) = cov\{\xi(t),\,\eta(s)\} = \mathcal{M}\left\{(\xi(t)-m_{\xi}(t))(\eta(s)-m_{\eta}(s))\right\} = \mathcal{M}\left\{\xi(t)\eta(s)\right\} - m_{\xi}(t)m_{\eta}(s)$ Два случайных процесса некоррелированы, если $R_{\xi\eta}(t,s) = 0$

Свойства взаимной ковариционной функции:

- 1. $R_{\xi\eta}(t,s) = R_{\eta\xi}(s,t);$
- 2. $\xi(t,\omega) = \xi_1(t,\omega) + f(t), \ \eta(t,\omega) = \eta_1(t,\omega) + g(t) \Rightarrow R_{\xi\eta}(t,s) = R_{\xi_1\eta_1}(t,s);$
- 3. $\xi(t,\omega) = \xi_1(t,\omega) \cdot f(t), \ \eta(t,\omega) = \eta_1(t,\omega) \cdot g(t) \Rightarrow R_{\xi\eta}(t,s) = f(t) \cdot g(s) \cdot R_{\xi_1\eta_1}(t,s);$
- 4. $R_{\xi\eta}(t,s) \neq 0 \Rightarrow R_{\xi+\eta}(t,s) = R_{\xi}(t,s) + R_{\eta}(t,s) + R_{\xi\eta}(t,s) + R_{\eta\xi}(t,s)$ (коррелруемые СП);
- 5. $R_{\xi\eta}(t,s) = 0 \Rightarrow R_{\xi+\eta}(t,s) = R_{\xi}(t,s) + R_{\eta}(t,s)$ (некоррелируемые СП)

Определение 7. Совместная ковариационная функция случайных процессов $\xi(t)$, $\eta(t)$ определяется как матрица 2×2 вида $\begin{bmatrix} R_{\xi\xi}(t,s) & R_{\xi\eta}(t,s) \\ R_{\eta\xi}(t,s) & R_{\eta\eta}(t,s) \end{bmatrix}$

Определение 8. Смешанным моментом k-го порядка называется величина

$$m_{\xi}(t_1,\ldots,t_k) = \mathcal{M}\left\{\xi(t_1)\cdot\ldots\cdot\xi(t_k)\right\} = \int_{\mathbb{R}^k} x_1\ldots x_k \, dF_{\xi}(x_1,\ldots,x_k;t_1,\ldots,t_k)$$

Существование смешанного момента k-го порядка гарантирует существованием смешанных моментов меньших порядков.

Определение 9. Характеристической функцией к-мерного распределения называется функция

$$\Phi_{\xi}(z_1,\ldots,z_k;t_1,\ldots,t_k) = \mathcal{M}\left\{exp\left(i\sum_{j=1}^k z_j\xi(t_j)\right)\right\} = \int_{\mathbb{D}_n} exp\left(i\sum_{j=1}^k z_jx_j\right) dF_{\xi}(x_1,\ldots,x_k;t_1,\ldots,t_k)$$

Определение 10. Смешанным семиинвариантом k-го порядка случайного процесса $\xi(t)$ называется функция

$$cum\{\xi(t_1), \dots, \xi(t_k)\} = c_{\xi}(t_1, \dots, t_k) = i^{-k} \frac{\partial^k \ln \Phi_{\xi}(z_1, \dots, z_k; t_1, \dots, t_k)}{\partial z_1 \dots \partial z_k} \bigg|_{z_1 = \dots = z_k = 0}$$

$$m_{\xi}(t_1) = c_{\xi}(t_1)$$

$$m_{\xi}(t_1, t_2) = c_{\xi}(t_1, t_2) = R_{\xi}^0(t_1, t_2)$$

$$m_{\xi}(t_1, t_2, t_3, t_4) = c_{\xi}(t_1, t_2, t_3, t_4) + c_{\xi}(t_1, t_2) \cdot c_{\xi}(t_3, t_4) + c_{\xi}(t_1, t_3) \cdot c_{\xi}(t_2, t_4) + c_{\xi}(t_1, t_4) \cdot c_{\xi}(t_2, t_3)$$
 (1.2)

Теорема 2. Ковариационная функция $R_{\xi}(t,s)$ действительного случайного процесса $\xi(t)$ обладает следующими свойствами:

- 1. $R_{\xi}(t,t) = \mathcal{D}\{\xi(t)\} \ge 0;$
- 2. $R_{\xi}(t,s) = R_{\xi}(s,t);$
- 3. $|R_{\xi}(t,s)|^2 \leq |R_{\xi}(t,t) \cdot R_{\xi}(s,s)|$

Доказательство. Первые два пункты следуют из определения ковариционной функции, докажем третий.

$$|R_{\xi}(t,s)|^{2} = |\mathcal{M}\left\{(\xi(t) - m_{\xi}(t))(\xi(s) - m_{\xi}(s))\right\}|^{2} \leqslant [\text{неравенство Коши-Буняковского}] \leqslant \\ \leqslant \mathcal{M}\left\{\xi(t) - m_{\xi}(t)\right\}^{2} \mathcal{M}\left\{\xi(s) - m_{\xi}(s)\right\}^{2} = \mathcal{D}\left\{\xi(t)\right\} \mathcal{D}\left\{\xi(s)\right\}$$

Теорема 3. Функция $R_{\xi}(t,s)$ является ковариционной функцией действительного случайного процесса $\xi(t)$ тогда и только тогда, когда она является симметричной и неотрицательно определённой¹.

Доказательство необходимости. Симметричность очевидна из теоремы 1. Докажем неотрицательную определённость.

$$\sum_{i,j=1}^{n} z_{i}z_{j}R_{\xi}(t_{i},t_{j}) = \sum_{i,j=1}^{n} z_{i}z_{j}\mathcal{M}\left\{(\xi(t_{i}) - m_{\xi}(t_{i}))(\xi(t_{j}) - m_{\xi}(t_{j})\right\} =$$

$$= \mathcal{M}\left\{\sum_{i=1}^{n} z_{i}(\xi(t_{i}) - m_{\xi}(t_{i}))\sum_{j=1}^{n} z_{j}(\xi(t_{j}) - m_{\xi}(t_{j}))\right\} = \mathcal{M}\left\{\sum_{i=1}^{n} z_{i}(\xi(t_{i}) - m_{\xi}(t_{i}))\right\}^{2} \geqslant 0$$

Доказательство достаточности. В силу свойства 2 ковариационной функции достаточно рассмотреть случай центрированного случайного процесса.

Зафиксируем произвольные $t_1, \ldots, t_k \in T$ и рассмотрим симметрическую неотрицательно определённую матрицу $R = ||R_{\xi}(t_i, t_j)||$. Для любой симметрической неотрицательно определённой матрицы R существует матрица Q такая, что $QQ^T = E \Rightarrow Q^T R Q = D = diag\{d_j\}$. Отсюда следует, что $R = QDQ^T = (QB)(B^TQ^T), B = diag\{\sqrt{d_j}\}$. Полагая A = QB, получаем $R = AA^T$.

Пусть η_1, \ldots, η_k - случайные независимые величины, $\eta_j \sim N(0;1), j = \overline{1,k}$. Обозначим вектор $\eta = (\eta_1, \ldots, \eta_k)^T$. Для вектора-столбца $\xi = A\eta$ вычислим матрицу ковариаций:

$$cov\{\xi, \xi^T\} = \mathcal{M}\left\{\xi\xi^T\right\} = \mathcal{M}\left\{(A\eta)(A\eta)^T\right\} = A\mathcal{M}\left\{\eta\eta^t\right\}A^T = AEA^T = R$$

Таким образом, распределние η при любых значиениях $t_1, \dots, t_k \in T$ задаёт конечномерное распределение гауссовского случайного процесса.

Проверим условия согласования:

- 1. Если $t_i \leftrightarrow t_j$, то *i* и *j* столбцы поменяются местами, а также *i* и *j* строки;
- 2. Любой подвектор гауссовского вектора является гауссовским и соответствует левой верхнеугольной подматрице в R

1.3.2 Комплексный случайный процесс

Рассмотрим случайный процесс $\xi(t) = \xi_1(t) + i \cdot \xi_2(t)$.

Определение 11. Если $\mathcal{M}\{|\xi(t)|^2\} = \mathcal{M}\{\xi(t) \cdot \overline{\xi(t)}\} = \mathcal{M}\{\xi_1(t)^2 + \xi_2(t)^2\} < +\infty$, то случайный процесс $\xi(t)$ называется комплексным процессом с конечным вторым моментом.

$$\mathcal{M}\left\{\xi(t)\right\} = \mathcal{M}\left\{\xi_1(t)\right\} + i\mathcal{M}\left\{\xi_2(t)\right\}$$

$$\mathcal{D}\left\{\xi(t)\right\} = \mathcal{M}\left\{\left(\xi(t) - m_{\xi}(t)\right)\overline{\left(\xi(t) - m_{\xi}(t)\right)}\right\}$$

$$R_{\xi}(t,s) = \mathcal{M}\left\{\left(\xi(t) - m_{\xi}(t)\right)\overline{\left(\xi(s) - m_{\xi}(s)\right)}\right\}$$

$$R_{\xi\eta}(t,s) = \mathcal{M}\left\{\left(\xi(t) - m_{\xi}(t)\right)\overline{\left(\eta(s) - m_{\eta}(s)\right)}\right\}$$

Теорема 4. Ковариационная функция $R_{\xi}(t,s)$ комплексного случайного процесса $\xi(t), t \in T$ обладает следующими свойствами:

- 1. $R_{\xi}(t,t) = D_{\xi}(t) \geqslant 0;$
- 2. $R_{\xi}(t,s) = \overline{R_{\xi}(s,t)};$
- 3. $|R_{\xi}(t,s)|^2 \leq R_{\xi}(t,t) \cdot R_{\xi}(s,s)$

Теорема 5. Функция $R_{\xi}(t,s)$ является ковариационной функцией комплексного переменного $\xi(t)$ тогда и только тогда, когда она эрмитова и неотрицательно определена.

Доказательство необходимости. Симметричность очевидна из теоремы 1. Докажем неотрицательную определённость.

$$\sum_{i,j=1}^{n} z_{I} \bar{z}_{j} R_{\xi}(t_{i}, t_{j}) = \sum_{i,j=1}^{n} z_{i} \bar{z}_{j} \mathcal{M} \left\{ (\xi(t_{i}) - m_{\xi}(t_{i})) \overline{(\xi(t_{j}) - m_{\xi}(t_{j}))} \right\} =$$

$$= \mathcal{M} \left\{ \sum_{i=1}^{n} z_{i} (\xi(t_{i}) - m_{\xi}(t_{i})) \sum_{j=1}^{n} \bar{z}_{j} \overline{(\xi(t_{j}) - m_{\xi}(t_{j}))} \right\} = \mathcal{M} \left\{ \left| \sum_{i=1}^{n} z_{i} (\xi(t_{i}) - m_{\xi}(t_{i})) \right| \right\}^{2} \geqslant 0$$

Доказательство достаточности. Аналогично случаю действительного случайного процесса.

Утверждение 1. Пусть $R_{\xi_1}(t,s)$, $R_{\xi_2}(t,s)$ - ковариационные функции некоторых случайных процессов, определённых на одном множестве T. Тогда $\alpha_1 R_1(t,s) + \alpha_2 R_2(t,s)$, $\alpha_{1,2} \geqslant 0$ также ковариационная функция некоторого случайного процесса.

Утверждение 2. Пусть $\{R_{\xi_n}(t,s), n \in \mathbb{N}\}$ - последовательность ковариационных функций некоторых случайных процессов, определённых на одном множестве T.

Если $R_{\xi_n}(t,s) \xrightarrow[n \to \infty]{} R_{\xi}(t,s)$, то $R_{\xi}(t,s)$ также ковариационная функция некоторого случайного процесса.

Пример 1. $\xi(t) = X(\omega) \cdot \phi(t)$, $\mathcal{M}\{X\} = m_x$, $\mathcal{D}\{X\} = D_x$, $\phi(t)$ - неслучайная функция на T. Найти математическое ожидание, дисперсию, ковариационную функцию, стандартное отклонение и нормированную ковариационную функцию.

Решение.

$$\mathcal{M}\left\{\xi(t)\right\} = \mathcal{M}\left\{X \cdot \phi(t)\right\} = \phi(t) \cdot m_x$$

$$R_{\xi}(t,s) = cov\{\xi(t), \xi(s)\} = cov\{X\phi(t), X\phi(s)\} = \phi(t)\phi(s)cov\{X, X\} = \phi(t)\phi(s)D_x$$

$$\mathcal{D}\left\{\xi(t)\right\} = \phi^2(t)D_x \qquad \sigma_{\xi}(t) = \phi(t) \cdot \sqrt{D_x} \qquad \rho_{\xi}(t,s) = \frac{R_{\xi}(t,s)}{\sigma_{\xi}(t) \cdot \sigma_{\xi}(s)} = 1$$

1.4 Примеры случайных процессов

1.4.1 Гауссовский случайный процесс

Определение 1. Случайный процесс $\xi(t,\omega)$, $t\in T$ называется $\mathit{rayccosckum}$, если его любые конечномерные законы распределения являются гауссовскими.

$$\Phi_{\xi}(z_1, \dots, z_k; t_1, \dots, t_k) = exp\left(i \sum_{i=1}^k z_j m_{\xi}(t_j) - \frac{1}{2} \sum_{i=1}^k \sum_{j=1}^k z_i z_j R_{\xi}(t_i, t_j)\right), z_j \in \mathbb{R}, t_j \in T$$

Совместное распределение сечений $\{\xi(t_1),\ldots,\xi(t_k)\}$ имеет плотность тогда и только тогда, когда матрица $R_{\xi}(t_i,t_i)$ невырожденная.

$$p_{\xi}(x;t) = \frac{1}{(2\pi)^{\frac{k}{2}} (\det R_{\xi})^{\frac{1}{2}}} \cdot e^{-\frac{1}{2}(x-m_{\xi})^{T} R_{\xi}^{-1}(x-m_{\xi})}, x = \begin{bmatrix} x_{1} \\ \cdots \\ x_{k} \end{bmatrix}, m_{\xi} = \begin{bmatrix} m_{\xi}(t_{1}) \\ \cdots \\ m_{\xi}(t_{k}) \end{bmatrix}$$

Семейство конечномерных распределений однозначно определяется вектором математических ожиданий и матрицей ковариационной функции.

Семиинварианты порядка p > 2 равны нулю.

Утверждение 1. Для любой функции m(t) и любой симметричной и неотрицательно определённой функции R(t,s) существует действительный гауссовский случайный процесс с матожиданием m(t) и ковариационной функцией R(t,s).

Доказательство. Смотри доказательство теоремы 2 (стр. 6). □

Пример 1. Найти плотность одномерного распределения гауссовского случайного процесса $\xi(t) = X + t, \, t \geqslant 0, \, X \sim N(0; \sigma^2)$. Показать, что $\xi(t)$ не имеет плотности распределения второго и выше порядков.

Доказательство.

$$\mathcal{M}\left\{\xi(t)\right\} = \mathcal{M}\left\{X + t\right\} = t$$

$$\mathcal{D}\left\{\xi(t)\right\} = \mathcal{D}\left\{X\right\} = \sigma^2 \Rightarrow \xi \sim N(t, \sigma^2) \qquad p_{\xi}(x; t) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x - t)^2}{\sigma^2}}$$

$$cov\{\xi(t_1), \, \xi(t_2)\} = cov\{X + t_1, \, X + t_2\} = \sigma^2 \Rightarrow cov \; matrix = \begin{bmatrix} \sigma^2 & \sigma^2 \\ \sigma^2 & \sigma^2 \end{bmatrix}$$

$$\xi(t_1) = X + t_1, \, \xi(t_2) = X + t_2 \Rightarrow X = \xi(t_1) - t_1 \Rightarrow \underbrace{\xi(t_2) = \xi(t_1) + t_2 - t_1}_{\text{сечения лин. Зависимы}}$$

Совместное распределение $\xi(t_1)$, $\xi(t_2)$ на плоскости происходит на множестве $\{(x_1,x_2)\colon x_2=x_1+t_2-t_1\}$, обладающей нулевой мерой Лебега. Следовательно, не существует плотности распределения второго порядка.

Аналогично для третьего и высших порядков.

Свойства из будущего:

1. Гауссовский случайный процесс с некоррелированными приращениями является случайным процессом с независимыми приращениями;

- 2. Для действительного гауссовского случайного процесса понятия стационарности в узком и широком смысле эквивалентны;
- 3. Если $\xi(t)$ СК-дифференцируемый гауссовский случайный процесс, то его СК-производная $\xi'(t)$ также гауссовский случайный процесс с математическим ожиданием и ковариационной функцией, определёнными равенствами (2.2);
- 4. Если $\xi(t)$ гауссовский случайный процесс, то СК-интеграл $\int_a^b \xi(t) dt$ гауссовская случайная величина со средним I_1 и дисперсией I_2 , определяемыми (2.5).

1.4.2 Винеровский случайный процесс (броуновское движение)

Определение 2. Случайный процесс $\omega(t), t \in T = [0; +\infty)$ называется винеровским, если он обладает следующими свойствами:

- 1. $\omega(0) = 0$ почти наверное;
- 2. $\forall \ 0 \leq t_1 < t_2 < \ldots < t_n$ случайные величины $\omega(t_1) \omega(t_0), \ \omega(t_2) \omega(t_1), \ldots, \ \omega(t_n) \omega(t_{n-1})$ независимы в совокупности;
- 3. $\omega(t) \omega(s) \sim N(0, \sigma^2(t-s)), \ 0 \leqslant s \leqslant t; \ \sigma^2$ коэффициент диффузии

Если $\omega(0) = x$, то говорят, что процесс выходит из точки x.

Винеровский случайный процесс с единичным коэффициентом диффузии называется cman-дартным винеровским случайным процессом.

$$\frac{\omega(t)}{\sigma} \sim N(0, t - s)$$

Свойства винеровского процесса:

1. $\omega(t) \sim N(0; t)$;

2.
$$p_{\omega}(x_1, \dots, x_k; t_1, \dots, t_k) = \prod_{j=1}^k \frac{1}{\sqrt{2\pi(t_j - t_{j-1})}} \cdot e^{-\frac{(x_j - x_{j-1})^2}{2(t_j - t_{j-1})}}, 0 = t_0 < t_1 < \dots < t_n$$

Решение. Пусть $\eta_1 = \omega(t_1) - \omega(t_0), \ldots, \eta_k = \omega(t_k) - \omega(t_{k-1}).$

$$A = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix} \Rightarrow \eta = A\omega, \ \det A = 1$$

$$t_0 = 0 \Rightarrow \omega(t_0) = 0, \ \omega(t_1) = \eta_1, \ \omega(t_2) = \eta_1 + \eta_2, \dots, \ \omega(t_k) = \eta_1 + \eta_2 + \dots + \eta_k$$

Пусть $p_{\eta}(\ldots)$ – плотность распределения $\eta = (\eta_1, \ldots, \eta_k)^T$, тогда

$$p_{\eta}(x_1, \dots, x_k; t_1, \dots, t_k) = \prod_{j=1}^k \frac{1}{\sqrt{2\pi(t_j - t_{j-1})}} \cdot e^{-\frac{x_j^2}{2(t_j - t_{j-1})}}$$

$$p_{\omega}(x;t_1,\ldots,t_k) = p_{\eta}(Ax;t_1,\ldots,t_k) \cdot \underbrace{|Ax|}_{=1} = p_{\eta}(x_1-x_0,\ldots,x_k-x_{k-1};t_1,\ldots,t_k),$$
 ч.т.д.

3. Ковариационная функция имеет вид $R_{\omega}(t,s) = \sigma^2 \min\{t,s\}$, где σ^2 - коэффициент диффузии.

Решение.

$$R_{\omega}(t,s) = \mathcal{M}\left\{\omega(t)\omega(s)\right\} - \mathcal{M}\left\{\omega(t)\right\} \mathcal{M}\left\{\omega(s)\right\} = [t > s] = \mathcal{M}\left\{(\omega(t) - \omega(s) + \omega(s))\omega(s)\right\} = \mathcal{M}\left\{(\omega(t) - \omega(s))(\omega(s) - \omega(0))\right\} + \mathcal{M}\left\{\omega^{2}(s)\right\} = \mathcal{M}\left\{\omega(s) - \omega(0)\right\}^{2} = \mathcal{D}\left\{\omega(s) - \omega(0)\right\} = \sigma^{2} \cdot s$$

4. Гауссовский случайный процесс $\omega(t),\,t\geqslant0,\,$ обладающий следующими характеристиками, называется винеровским

$$\omega(0) = 0, \mathcal{M}\{\omega(t)\} = 0, R_{\omega}(t,s) = \sigma^2 \min\{t,s\}, t,s \ge 0$$

5. От винеровского процесса можно перейти к эквивалетному процессу, обладающему непрерывной траекторией.

Решение. (а) Рассмотрим винеровский СП на [0;1].

$$\mathcal{M}\left\{|\omega(t)-\omega(s)\right\}^{4} = [(\mathbf{1.2})] = cum_{\{\underbrace{\omega(t)-\omega(s)|,\ldots,|\omega(t)-\omega(s)|}_{\text{4 раза}}\}} + 3(cum\{|\omega(t)-\omega(s)|,|\omega(t)-\omega(s)|\})^{2} = [\text{семиинвариант 4 порядка нулевой}] = \\ = 3(\mathcal{M}\left\{|\omega(t)-\omega(s)|\right\}^{2})^{2} = 3(\mathcal{D}\left\{\omega(t)-\omega(s)\right\})^{2} = 3|t-s|^{2}$$

По утверждению Колмогорова с параметрами $c=3, r=4, \alpha=1$ существует модификация винеровского СП с непрерывной траекторией.

(b) $[0;\infty) = \bigsqcup_{i\in\mathbb{N}_0} [i;i+1)$. Пусть $\omega_i(t),\,t\in[0;1]$ – независимые непрерывные модификации ВСП на i-ом отрезке. Рассмотрим следующий процесс $\omega(t)$:

$$\omega(t) = \begin{cases} \omega_0(t), \ t \in [0; 1] \\ \sum_{j=0}^{i} \omega_j(1) + \omega_{i+1}(t-i), \ t \in (i; i+1], \ i \in \mathbb{N} \end{cases}$$

 $\omega(t)$ является непрерывным в силу непрерывности модификацией $\omega_i(t)$ и гауссовым, т.к. процесс есть объединение нескольких гауссовых векторов, соответствующих $\omega_i(t)$. Пусть $s < t, s \in (j; j+1], t \in (i; i+1]$. Рассмотрим ковариационную функцию:

$$cov\{\omega(s),\omega(t),\} = cov\{\omega(s),\omega(1)+\ldots+\omega_i(1)+\omega_{i+1}(t-i)\} = [cov\{\omega_i(t),\omega_j(t)\} = 0 \ i \neq j] = \\ = cov\{\omega(s),\omega_{j+1}(1)\} = \min\{s,1\} = s; \qquad s>t \Rightarrow cov\{\omega(s),\omega(t),\} = t \\ R_\omega(t,s) = \min\{t,s\} \Rightarrow \text{ по свойству 4 процесс } \omega(t) \text{ винеровский.}$$

6.
$$a = t_0 < t_1 < \ldots < t_n = b \Rightarrow \sum_{k=0}^{n-1} (\omega(t_{i+1}) - \omega(t_i))^2 \xrightarrow[\max\{t_i - t_{i-1}\} \to 0]{h \to \infty} b - a$$

Доказательство.

$$\mathcal{M}\left\{\sum_{k=0}^{n-1} (\omega(t_{i+1}) - \omega(t_i))^2\right\} = \sum_{k=0}^{n-1} \mathcal{M}\left\{\omega(t_{i+1}) - \omega(t_i)\right\}^2 = \sum_{k=0}^{n-1} \mathcal{D}\left\{\omega(t_{i+1}) - \omega(t_i)\right\} = b - a$$

$$\mathcal{D}\left\{\sum_{k=0}^{n-1} (\omega(t_{i+1}) - \omega(t_i))^2\right\} = \sum_{k=0}^{n-1} \mathcal{D}\left\{(\omega(t_{i+1}) - \omega(t_i))^2\right\} = \sum_{k=0}^{n-1} \left(\mathcal{M}\left\{\omega(t_{i+1}) - \omega(t_i)\right\}^4 - \left(\mathcal{M}\left\{\omega(t_{i+1}) - \omega(t_i)\right\}^2\right)^2\right) = [(\mathbf{1}.\mathbf{2})] = \sum_{k=0}^{n-1} \left(3(t_{i+1} - t_i)^2 - (t_{i+1} - t_i)^2\right) = 2\sum_{k=0}^{n-1} (t_{i+1} - t_i)^2 \leqslant 2\max\{t_{i+1} - t_i\}\sum_{k=0}^{n-1} (t_{i+1} - t_i) \xrightarrow[n \to \infty]{n \to \infty} 0$$

7. Винеровский СП описывает симметричное блуждание частицы:

$$\mathcal{P}\left\{\omega(t) > 0\right\} = \mathcal{P}\left\{\omega(t) < 0\right\} = \frac{1}{2}$$

Если τ_x - случайный момент первого пересечения траекторией $\omega(t)$ уровня x, то

$$\mathcal{P}\left\{\omega(t) > x \middle| \tau_x < t\right\} = \mathcal{P}\left\{\omega(t) < x \middle| \tau_x < t\right\} = \frac{1}{2}$$

Определение 3. Броуновским мостом называют процесс $w^0(T) = \omega(t) - t \cdot \omega(1), \, t \in [0;1]$

$$w^{0}(0) = w^{0}(1) = 0, \mathcal{M}\left\{w^{0}(t)\right\} = 0$$

$$R_{w^{0}}(t,s) = \mathcal{M}\left\{(\omega(s) - s\omega(1))(\omega(t) - t\omega(1))\right\} = \dots = \sigma^{2}(\min\{t,s\} - ts), \mathcal{D}\left\{w^{0}(t)\right\} = \sigma^{2}t(1-t)$$

1.4.3 Процесс Пуассона

Определение 4. Случайный процесс $\xi(t), t \geqslant 0$ называется *процессом Пуассона* с параметром $\lambda > 0$, если

- 1. $\xi(0) = 0$ почти наверное;
- 2. $\forall \ 0 \leqslant t_1 < t_2 < \ldots < t_n$ случайные величины $\xi(t_1) \xi(t_0), \ \xi(t_2) \xi(t_1), \ldots, \ \xi(t_n) \xi(t_{n-1})$ независимы в совокупности;
- 3. $\xi(t) \xi(s) \sim P(\lambda(t-s))$, λ интенсивность, т.е. если $0 \leqslant s \leqslant t$, то

$$\mathcal{P}\left\{\xi(t) - \xi(s) = k\right\} = \frac{(\lambda(t-s))^k}{k!} \cdot e^{-\lambda(t-s)}, \ k \in \mathbb{N}_0$$

Траектория процесса Пуассона – монотонная неубывающая кусочно-постоянная функция со единичным скачком и точками скачка t_i .

Свойства пуассоновского процесса:

- 1. $\xi(t) \sim P(\lambda t)$;
- 2. $\mathcal{M}\left\{\xi(t)\right\} = \mathcal{D}\left\{\xi(t)\right\} = \lambda t$:
- 3. $\xi(t)$ принимает целые неотрицательные значения

Вычислим ковариационную функцию процесса Пуассона:

$$\xi(s) = \xi(s) - \xi(0), \xi(t) = \xi(t) - \xi(s) + \xi(s), t > s$$

$$\mathcal{M}\{\xi(t)\xi(s)\} = \mathcal{M}\{\xi(s)(\xi(t) - \xi(s) + \xi(s))\} = \mathcal{M}\{\xi(s)\}^{2} + \mathcal{M}\{(\xi(s) - \xi(0))(\xi(t) - \xi(s))\} =$$

$$= (\mathcal{D}\{\xi(s)\} + (\mathcal{M}\{\xi(s)\})^{2}) + \mathcal{M}\{\xi(s) - \xi(0)\} \cdot \mathcal{M}\{\xi(t) - \xi(s)\} = \lambda s + (\lambda s)^{2} + \lambda s(\lambda t - \lambda s) = \lambda s + \lambda^{2} s t$$

$$R_{\xi}(t,s) = \mathcal{M}\{\xi(t)\xi(s)\} - \mathcal{M}\{\xi(t)\} \mathcal{M}\{\xi(s)\} = \lambda s = \lambda \min\{t,s\}$$

1.4.4 Процесс Коши

Определение 5. Случайный процесс $\xi(t)$, $t \in T = [0; +\infty)$ называется *процессом Коши*, выходящим из нуля, если он обладает следующими свойствами:

- 1. $\xi(0) = 0$ почти наверное;
- 2. $\forall \ 0 \leqslant t_1 < t_2 < \ldots < t_n$ случайные величины $\xi(t_1) \xi(t_0), \ \xi(t_2) \xi(t_1), \ldots, \ \xi(t_n) \xi(t_{n-1})$ независимы в совокупности;
- 3. $\xi(t+h) \xi(t)$ имеет распределение с плотностью $p(x) = \frac{h}{\pi(h^2 + x^2)}$

Данный процесс не имеет конечных моментов первого и второго порядков.

Плотность распределения процесса выглядит следующим образом:

$$p_{\xi}(x_1, \dots, x_k; t_1, \dots, t_k) = \prod_{j=1}^k \frac{t_j - t_{j-1}}{\pi \left((t_j - t_{j-1})^2 + (x_j - x_{j-1})^2 \right)}$$

Доказательство. Пусть $\eta_1 = \omega(t_1) - \omega(t_0), \ldots, \, \eta_k = \omega(t_k) - \omega(t_{k-1}).$

$$A = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix} \Rightarrow \eta = A\omega, \det A = 1$$

 $t_0 = 0 \Rightarrow \omega(t_1) = \eta_1, \ \omega(t_2) = \eta_1 + \eta_2, \dots, \ \omega(t_k) = \eta_1 + \eta_2 + \dots + \eta_k$ Пусть $p_{\eta}(\dots)$ – плотность распределения $\eta = (\eta_1, \dots, \eta_k)^T$, тогда

$$p_{\eta}(x_1, \dots, x_k; t_1, \dots, t_k) = \prod_{j=1}^k \frac{t_j - t_{j-1}}{\pi \left((t_j - t_{j-1})^2 + x_j^2 \right)}$$

$$p_{\omega}(x;t_1,\ldots,\,t_k)=p_{\eta}(Ax;t_1,\ldots,\,t_k)\cdot |Ax|=p_{\eta}(x_1-x_0,\ldots,\,x_k-x_{k-1};t_1,\ldots,\,t_k),$$
 ч.т.д.

1.4.5 Процесс Маркова

Определение 6. Процесс $\xi(t)$, $t \in T$ называтся *процессом Маркова*, если процесс обладает свойством отсутствия последействия.

$$\forall k \in \mathbb{N} \ \forall t_j \in T \colon t_0 < t_1 < \ldots < t_k, \ j = \overline{0,k}, \ \forall B \in B(\mathbb{R}) \Rightarrow$$
$$\Rightarrow \mathcal{P} \left\{ \xi(t_k) \in B | \xi(t_0), \ldots, \xi(t_{k-1}) \right\} = \mathcal{P} \left\{ \xi(t_k) \in B | \xi(t_{k-1}) \right\}$$

Состояние процесса x_k в момент времени t_k зависит только от того состояния, в котором находился процесс в момент времени t_{k-1} .

$$\mathcal{P}\left\{\xi(t_k) = x_k | \xi(t_0) = x_0, \dots, \, \xi(t_{k-1}) = x_{k-1}\right\} = \mathcal{P}\left\{\xi(t_k) = x_k | \xi(t_{k-1}) = x_{k-1}\right\}$$

$$\forall B_1, B_2 \in B(\mathbb{R}), s < u < t \Rightarrow \mathcal{P} \{ \xi(s) \in B_1, \xi(t) \in B_2 | \xi(u) \} = \mathcal{P} \{ \xi(s) \in B_1 | \xi(u) \} \cdot \mathcal{P} \{ \xi(t) \in B_2 | \xi(u) \}$$

Определение 7. *Переходной функцией (переходной вероятностью)* марковского процесса называется функция

$$P(s,x,t,B) = \mathcal{P}\left\{\xi(t) \in B | \xi(s) = x\right\}, \ t \geqslant s, \ x \in R, B \in B(\mathbb{R})$$

Переходная функция является решением уравнения Колмогорова-Чепмена:

$$P(s,x,t,B) = \int_{\mathbb{R}} P(s,x,u,dy) \cdot P(u,y,t,B), \quad s \leqslant u \leqslant t$$

Доказательство.

$$\mathcal{P}\left\{\xi(t) = z | \xi(s) = x\right\} = \frac{\mathcal{P}\left\{\xi(t) = z, \, \xi(s) = x\right\}}{\mathcal{P}\left\{\xi(s) = x\right\}} \Rightarrow \mathcal{P}\left\{\xi(t) = z, \, \xi(s) = x\right\} = \mathcal{P}\left\{\xi(t) = z | \xi(s) = x\right\} \cdot \mathcal{P}\left\{\xi(s) = x\right\}$$

$$\mathcal{P}\left\{\xi(s) = x, \, \xi(u) = y, \, \xi(t) = z\right\} = \mathcal{P}\left\{\xi(s) = x\right\} \cdot \mathcal{P}\left\{\xi(u) = y | \xi(s) = x\right\} \cdot \mathcal{P}\left\{\xi(t) = z | \xi(u) = y\right\}$$

Проинтегрируем последнее равенство по y:

$$\frac{\mathcal{P}\left\{\xi(s) = x, \ \xi(t) = z\right\}}{\mathcal{P}\left\{\xi(s) = x\right\}} = \int_{\mathbb{R}} \mathcal{P}\left\{\xi(u) = y | \xi(s) = x\right\} \cdot \mathcal{P}\left\{\xi(t) = z | \xi(u) = y\right\} dy$$
$$P(s, x, t, z) = \int_{\mathbb{R}} P(s, x, u, dy) \cdot P(u, y, t, z)$$

Пусть $\pi(B) = \mathcal{P}\left\{\xi(t_0) \in B\right\}$ – вероятностная мера, тогда k-мерная функция распределения выглядит следующим образом:

$$\mathcal{P}\left\{\xi(t_0) < x_0, \dots, \xi(t_k) < x_k\right\} = \int_{-\infty}^{x_0} \pi(dx_0) \int_{-\infty}^{x_1} P(t_0, x_0, t_1, dx_1) \dots \int_{-\infty}^{x_k} P(t_{k-1}, x_{k-1}, t_k, dx_k)$$

Таким образом, чтобы определить семейство конечномерных распределений марковского процесса, достаточно знать переходную вероятность и распределение в начальный момент времени.

Определение 8. Если существует функция p(s,x,t,y): $P(s,x,t,B) = \int_B p(s,x,t,y) \, dy$, то она называется nepexodhoй nnomhocmbio pacnpedenehus марковского процесса.

Свойства переходной плотности распределения:

- 1. $p(s,x,t,y) \ge 0$;
- 2. $\int p(s,x,t,y) dy = 1$;
- 3. Переходная плотность распределния удовлетворяет уравнению Колмогорова-Чепмена.

Утверждение 2. Центрированный гауссовский СП $\xi(t)$, $t \in T$, является марковским тогда и только тогда, когда $R_{\varepsilon}(t,s)$, $x,t \in T$ при $t_1 \leqslant t_2 \leqslant t_3$ удовлетворяет равенству

$$R_{\xi}(t_1, t_3) = \frac{R_{\xi}(t_1, t_2) R_{\xi}(t_2, t_3)}{R_{\xi}(t_2, t_2)}$$

T	дискретное множество состояний х	непрерывное множество
		состояний х
дискретное	цепь Маркова с дискретным	марковская последовательность
время	временем	
непрерывное	цепь Маркова с непрерывным	марковский СП
время	временем	

Определение 9. Марковский процесс однородный, если $\mathcal{P}\left\{\xi(T)\in B|\xi(s)=x\right\}=\underbrace{P(0,x,t-s,B)}_{P(x,t-s,B)}$

1.4.6 Диффузионный процесс

Определение 10. Случайный n-мерный одноодный марковский процесс $\xi(t), t \in \mathbb{R}$ называется $\partial u \phi \phi y з u o n + u m n p o u e c o n e p e v o n e v o n e v o n e p e v o n e p e v o n e p e v o n e v o$

$$\lim_{t\to 0}\frac{1}{t}\int\limits_{|y-x|<\delta}P(x,t,dy)=0,\ x\text{ - начальное состояние, }|y-x|\text{ - приращение процесса}$$

$$\lim_{t\to 0}\frac{1}{t}\int\limits_{|y-x|<\delta}(y-x)P(x,t,dy)=a(x)\text{ - условное матожиданиe}$$

$$\lim_{t\to 0}\frac{1}{t}\int\limits_{|y-x|<\delta}(y-x)(y-x)^TP(x,t,dy)=\Sigma(x)\text{ - условное матожидание момента 2 порядка}$$

Замечание: первое условие - достаточное условие для существования марковского семейства с данными переходными вероятностями и непрерывными траекториями. Функция a(x) характеризует среднюю скорость смещения за малое время из состояния $\xi(0)=x$ и называется вектором сноса (дрейфа). Функция $\Sigma(x)$ характеризует отклонение процесса от его усреднённого движеия, определяемого вектором сноса, и называется матрицей диффузии.

Когда a(x) = 0, $\Sigma(x) = 1$, процесс $\xi(t)$ совпадает со стандартным винеровским процессом.

1.5 СП с некоррелироваными, ортогональными и независимыми приращениями

Рассмотрим действительный СП $\xi(t), t \in T \subset \mathbb{R}, \mathcal{M}\{|\xi(t)|^2\} < \infty$. На пространстве $\{\Omega, \mathcal{F}, \mathcal{P}\}$ определим скалярное произведение: $(\xi, \eta) = \mathcal{M}\{\xi\bar{\eta}\}$

Определение 1. Приращением СП $\xi(t)$ на [s;t) называется случайная величина

$$\Delta \xi(s,t) = \xi(t) - \xi(s)$$

Определение 2. Случайный процесс $\xi(t), t \in T$, называется процессом с некоррелированными приращениями, если для $\forall t_0 < t_1 \leqslant t_2 < t_3$ выполняется $cov\{\Delta \xi(t_0,t_1), \Delta \xi(t_2,t_3)\} = 0$

Из некоррелированости приращений не следует независимость соответствующих приращений.

Определение 3. Случайный процесс $\xi(t)$, $t \in T$, называется процессом c ортогональными приращениями, если для $\forall t_0 < t_1 \leqslant t_2 < t_3$ выполняется $\mathcal{M}\left\{\Delta \xi(t_0,t_1) \cdot \Delta \xi(t_2,t_3)\right\} = 0$

Утверждение 1. Если $\xi(t)$ имеет некоррелированные приращения, то процесс

$$\xi_1(t) = \xi(t) - \mathcal{M}\left\{\xi(t)\right\}$$

является процессом с некоррелированными ортогональными приращениями.

Доказательство. $\xi_1(t)$ является центрированным процессом. Для такого процеса понятия некоррелированности и ортогональности совпадают.

$$cov\{\Delta\xi_{1}(t_{0}, t_{1}), \Delta\xi_{1}(t_{2}, t_{3})\} = \mathcal{M}\{\Delta\xi_{1}(t_{0}, t_{1}) \cdot \Delta\xi_{1}(t_{2}, t_{3})\} =$$

$$= \mathcal{M}\{(\xi(t_{1}) - \xi(t_{0}) - \mathcal{M}\{\xi(t_{1}) - \xi(t_{0})\}) (\xi(t_{3}) - \xi(t_{2}) - \mathcal{M}\{\xi(t_{3}) - \xi(t_{2})\})\} =$$

$$= cov\{\Delta\xi(t_{0}, t_{1}) \cdot \Delta\xi(t_{2}, t_{3})\} = 0$$

Пример 1. Доказать, что для любого центрированного процесса $\xi(t)$ с ортогональными приращениями справедливо равенство $R_{\xi}(t,s) = \mathcal{D}\left\{\xi(\min\{t,s\})\right\}$

Доказательство. Рассмотрим $\tilde{\xi}(t) = \xi(t) - \xi(0), \ \tilde{\xi}(0) = 0.$

 $\Delta \xi(t,s) = \xi(s) - \xi(0) - \xi(t) + \xi(0) = \Delta \xi(t,s)$. Следовательно, свойства приращений одинаковы; предположим, что $\xi(t)$ выходит из нуля.

Вычислим ковариацонную функцию. Пусть $t \geqslant s$ (для второго случая аналогично), тогда

$$R_{\xi}(t,s) = cov\{\xi(t), \, \xi(s)\} = cov\{\xi(t) - \xi(s) + \xi(s), \, \xi(s)\} = \underbrace{cov\{\xi(t) - \xi(s), \, \xi(s) - \xi(0)\}}_{=0} + cov\{\xi(s), \, \xi(s)\} = \mathcal{D}\left\{\xi(s)\right\} = \mathcal{D}\left\{\xi(\min\{t,s\})\right\}$$

Определение 4. $\xi(t)$, $t \in T$, называется процессом с независимыми приращениями, если для $\forall n \in \mathbb{N}, \forall t_0 < t_1 < t_2 < \ldots < t_{n-1} < t_n$ случ. величины $\xi(t_1) - \xi(t_0), \xi(t_2) - \xi(t_1), \ldots, \xi(t_n) - \xi(t_{n-1})$ независимы в совокупности.

Распределение случайного процесса с независимыми приращениями в любой момент времени однозначно определяется распределением процесса в начальный момент времени и распределением произвольного приращения.

Замечания:

- 1. случайный процесс с независимыми приращениями является процессом с некоррелированными приращениями;
- 2. гауссовский случайный процесс с некоррелированными приращениями является случайным процессом с независимыми приращениями;
- 3. любой случайный процесс с независимыми приращениями является марковским.

Определение 5. Случайный процесс $\xi(t), t \in T$, называется процессом со стационарными приращениями в узком смысле, если у него не меняются при сдвиге на h совместное распределение приращений.

$$Law(\xi(t_1) - \xi(t_0), \dots, \xi(t_n) - \xi(t_{n-1})) = Law(\xi(t_1 + h) - \xi(t_0 + h), \dots, \xi(t_n + h) - \xi(t_{n-1} + h))$$

Определение 6. Случайный процесс $\xi(t), t \in T$, называется процессом со стационаримый приращениями в широком смысле, если для $\forall h$ выполняется:

- 1. $\mathcal{M}\left\{\xi(t_1)-\xi(t_2)\right\}=f(t_1-t_2),\, f$ некоторая детерминированная функция;
- 2. $\mathcal{M}\{\xi(t_1) \xi(t_2)\}^2 < \infty;$

3.
$$\mathcal{M}\left\{ (\xi(t_1) - \xi(t_2))\overline{(\xi(t_3) - \xi(t_4))} \right\} = \mathcal{M}\left\{ (\xi(t_1 + h) - \xi(t_2 + h))\overline{(\xi(t_3 + h) - \xi(t_4 + h))} \right\}$$

Определение 7. Случайный процесс $\xi(t)$, $t \ge 0$, называется однородным, если для $\forall h > 0$ распределение приращения $\xi(t+h) - \xi(t)$ зависит только от h (процесс Пуассона, броуновское движение).

Утверждение 2. Характеристическая функция $\Phi_{\xi}(z,t)$ однородного СП $\xi(t)$, $t \geqslant 0$, $\xi(0) = 0$ с независимыми приращениями удовлетворяет соотношению:

$$\Phi_{\xi}(z,t+s) = \Phi_{\xi}(z,t) \cdot \Phi_{\xi}(z,s), t,s > 0$$

Доказательство.

$$\begin{split} \Phi_{\xi}(z,t+s) &= \mathcal{M}\left\{e^{iz\xi(t+s)}\right\} = \mathcal{M}\left\{e^{iz(\xi(t+s)-\xi(s)+\xi(s)-\xi(0))}\right\} = \mathcal{M}\left\{e^{iz(\xi(t+s)-\xi(s))}\right\} \cdot \mathcal{M}\left\{e^{iz(\xi(s)-\xi(0))}\right\} = \\ &= \mathcal{M}\left\{e^{iz\xi(t)}\right\} \cdot \mathcal{M}\left\{e^{iz\xi(s)}\right\} = \Phi_{\xi}(z,t) \cdot \Phi_{\xi}(z,s) \end{split}$$

1.6 Стационарные случайные процессы

Определение 1. Случайный процесс $\xi(t), t \in T$, называется *стационарным в узком смысле*, если

$$\forall n \in \mathbb{N}, \, \forall x \in \mathbb{R}^n, \, \forall t_j \in T, \, \forall \tau \colon t_j + \tau \in T, \, j = \overline{1,n} \Rightarrow \begin{bmatrix} F_{\xi}(x; t_1, \dots, t_n) = F_{\xi}(x; t_1 + \tau, \dots, t_n + \tau) \\ p_{\xi}(x; t_1, \dots, t_n) = p_{\xi}(x; t_1 + \tau, \dots, t_n + \tau) \end{bmatrix}$$

Утверждение 1. Если для случайного процесса, стационарного в узком смысле, существует конечное математическое ожидание, то оно постоянно и $\mathcal{M}\{\xi(t)\} = \mathcal{M}\{\xi(0)\}$

Доказательство.

$$\mathcal{M}\{\xi(t)\} = \int_{\mathbb{R}} x \, dF_{\xi}(x;t) = \int_{\mathbb{R}} x \, dF_{\xi}(x;t-t) = \int_{\mathbb{R}} x \, dF_{\xi}(x;0) = \mathcal{M}\{\xi(0)\}$$

Утверждение 2. Если для случайного процесса, стационарного в узком смысле, существует конечный момент второго порядка, то $\exists R_{\xi}(t,s) = R_{\xi}(t-s)$

Доказательство.

$$R_{\xi}(t,s) = \iint_{\mathbb{R}^2} x_1 x_2 dF_{\xi}(x_1, x_2; t, s) - \int_{\mathbb{R}} x_1 dF_{\xi}(x_1, t) \cdot \int_{\mathbb{R}} x_2 dF_{\xi}(x_2, s) =$$

$$= \iint_{\mathbb{R}^2} x_1 x_2 dF_{\xi}(x_1, x_2; t - s) - \int_{\mathbb{R}} x_1 dF_{\xi}(x_1, t - s) \cdot \int_{\mathbb{R}} x_2 dF_{\xi}(x_2, 0) = R_{\xi}(t - s)$$

Определение 2. Случайный процесс $\xi(t), t \in T$, называется стационарным в широком смысле, если $\mathcal{M}\{|\xi(t)|^2\} < \infty$ и выполняются два условия:

- 1. $m_{\varepsilon}(t) = \mathcal{M}\{\xi(t)\} = const;$
- 2. $R_{\varepsilon}(t,s) = R_{\varepsilon}(t-s)$

Замечания:

- 1. Если случайный процесс стационарный в узком смысле и для него существует конечный второй момент, то случайный процесс является стационарным в широком смысле, но не наоборот;
- 2. Для действительного гауссовского случайного процесса понятия стационарности в узком и широком смысле эквивалентны.

Теорема 6. Ковариационная функция $R_{\xi}(t)$, $t \in T$ стационарного в широком смысле случайного процесса $\xi(t)$, $t \in T$ обладает следующими свойствами:

- 1. $R_{\xi}(0) = \mathcal{D}\{\xi(t)\} \geqslant 0;$
- 2. $R_{\xi}(t) = \overline{R_{\xi}(-t)};$
- 3. $|R_{\xi}(t)| \leqslant R_{\xi}(0);$
- 4. $R_{\xi}(t)$ является неотрицательно определённой функцией.

Следствие 1. Нормированная ковариационная функция $p_{\xi}(t) = \frac{R_{\xi}(t)}{\mathcal{D}\{\xi\}}$, $t \in T$, стационарного в широком смысле случайного процесса $\xi(t)$ обладает свойствами:

- 1. $p_{\xi}(0) = 1$;
- 2. $p_{\xi}(t) = p_{\xi}(-t);$
- 3. $|p_{\xi}(t)| \leq 1$;
- 4. $p_{\xi}(t)$ неотрицательно определённая функция.

Определение 3. Пусть случайный процесс $\xi(t), t \in \mathbb{R}$, стационарен в широком смысле с абсолютно интегрируемой ковариационной функцией, тогда временем корреляции случайного процесса $\xi(t)$ называется величина

$$t_0 = \frac{1}{R_{\xi}(0)} \int_{0}^{+\infty} |R_{\xi}(t)| dt$$

Сечения $\xi(s+t)$ и $\xi(s)$, отстоящие друг от друга на расстояние $t>t_0$, считают некоррелированными.

Определение 4. Случайные процессы $\xi(t), \eta(t), t \in T$, называются стационарно связанными, если $R_{\xi\eta}(t,s) = R_{\xi\eta}(t-s)$

Два нестационарных процесса могут быть стационарно связаны. Два стационарных процесса могут не быть стационарно связанными.

1.7 Спектральные характеристики случайных процессов

Определение 1. Спектральной плотностью случайной последовательности $\xi(n), n \in \mathbb{Z}$ при условии, что $\sum_{n_1,n_2\in\mathbb{Z}}|R_{\xi}(n_1,n_2)|<\infty$, называется функция

$$f_{\xi}(\lambda_1, \lambda_2) = \frac{1}{4\pi^2} \sum_{n_1, n_2 \in \mathbb{Z}} R_{\xi}(n_1, n_2) e^{-i(\lambda_1 n_1 + \lambda_2 n_2)}, \ \lambda_{1,2} \in [-\pi; \pi]$$

Определение 2. Спектральной плотностью случайного процесса $\xi(t), t \in \mathbb{R}$, при условии, что $\iint_{\mathbb{R}^2} |R_{\xi}(t,s)| \, dt ds < \infty$, называется функция

$$f_{\xi}(\lambda_1, \lambda_2) = \frac{1}{4\pi^2} \iint_{\mathbb{R}^2} R_{\xi}(t, s) e^{-i(\lambda_1 t + \lambda_2 s)} dt ds, \ \lambda_{1,2} \in \mathbb{R}$$

Определение 3. Взаимной спектральной плотностью случайных последовательностей $\xi(n)$, $\eta(n), n \in \mathbb{Z}$ при условии, что $\sum_{n_1,n_2 \in \mathbb{Z}} |R_{\xi\eta}(n_1,n_2)| < \infty$, называется функция

$$f_{\xi\eta}(\lambda_1, \lambda_2) = \frac{1}{4\pi^2} \sum_{n_1, n_2 \in \mathbb{Z}} R_{\xi\eta}(n_1, n_2) e^{-i(\lambda_1 n_1 + \lambda_2 n_2)}, \ \lambda_{1,2} \in [-\pi; \pi]$$

Определение 4. Взаимной спектральной плотностью случайных процессов $\xi(t)$, $\eta(t)$, $t \in \mathbb{R}$, при условии, что $\iint\limits_{\mathbb{R}^2} |R_{\xi\eta}(t,s)| \, dt ds < \infty$, называется функция

$$f_{\xi\eta}(\lambda_1,\lambda_2) = \frac{1}{4\pi^2} \iint_{\mathbb{R}^2} R_{\xi\eta}(t,s) e^{-i(\lambda_1 t + \lambda_2 s)} dt ds, \ \lambda_{1,2} \in \mathbb{R}$$

Определение 5. Спектральной функцией случайного процесса $\xi(t), t \in \mathbb{Z}$ $(t \in \mathbb{R})$ называется функция

$$\bar{f}_{\xi}(\lambda_{1}, \lambda_{2}) = \int_{-\pi(-\infty)}^{\lambda_{1}} \int_{-\pi(-\infty)}^{\lambda_{2}} f_{\xi}(\nu_{1}, \nu_{2}) d\nu_{1} d\nu_{2}, \ \lambda_{1,2} \in [-\pi; \pi] \ (\lambda_{1,2} \in \mathbb{R})$$

Определение 6. Спектральной плотностью стационарного случайной последовательности $\xi(n), n \in \mathbb{Z}$, при условии, что $\sum_{n \in \mathbb{Z}} |R_{\xi}(n)| < \infty$, называется функция

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} R_{\xi}(n) e^{-i\lambda n}, \ \lambda \in \mathbb{R}$$

Определение 7. Спектральной плотностью стационарного случайного процесса $\xi(t), t \in \mathbb{R}$, при условии, что $\int\limits_{\mathbb{R}} |R_{\xi}(t)| \, dt < \infty$, называется функция

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \int_{\mathbb{R}} R_{\xi}(t) e^{-i\lambda t} dt, \ \lambda \in \mathbb{R}$$

Определение 8. Спектральной функцией стационарного случайного процесса $\xi(t), t \in \mathbb{Z}$ $(t \in \mathbb{R})$ называется функция

$$\bar{f}_{\xi}(\lambda) = \int_{-\pi(-\infty)}^{\lambda_1} f_{\xi}(\nu) d\nu, \, \lambda \in [-\pi; \pi] \, (\lambda \in \mathbb{R})$$

Определение 9. Нормальной спектральной плотностью стационарного случайного процесса $\xi(t), \, t \in \mathbb{Z} \, (t \in \mathbb{R}),$ называется функция $f_{\xi}^{\text{норм}} = \frac{f_{\xi}(\lambda)}{\mathcal{D}\{\xi\}}$

Определение 10. Взаимной спектральной плотностью двух стационарных и стационарно связанных случайных последовательностей $\xi(n), \ \eta(n), \ n \in \mathbb{Z}, \$ при условии, что $\sum_{n \in \mathbb{Z}} |R_{\xi\eta}(n)| < \infty$, называется функция

$$f_{\xi\eta}(\lambda) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} R_{\xi\eta}(n) e^{-i\lambda n}, \ \lambda \in [-\pi; \pi]$$

Определение 11. Взаимной спектральной плотностью двух стационарных и стационарно связанных случайных процессов $\xi(t)$, $\eta(t)$, $t \in \mathbb{R}$, при условии, что $\int_{\mathbb{R}} |R_{\xi\eta}(t)| \, dt < \infty$, называется функция

$$f_{\xi\eta}(\lambda) = \frac{1}{2\pi} \int_{\mathbb{R}} R_{\xi\eta}(t) e^{-i\lambda t} dt, \ \lambda \in \mathbb{R}$$

Теорема 7. Последовательность $R_{\xi}(n)$, $n \in \mathbb{Z}$, является чётной и неотрицательно определённой тогда и только тогда, когда для $\forall n \in \mathbb{Z}$ она представима в виде

$$R_{\xi}(n) = \int_{-\pi}^{\pi} e^{i\lambda n} d\bar{f}_{\xi}(\lambda),$$

где $\bar{f}_{\xi}(\lambda),\ \lambda\in[-\pi;\pi]$ – однозначно определённая неубывающая веществ. ϕ ункция, $\bar{f}_{\xi}(-\pi)=0$

Доказательство достаточности. Чётность очевидна, докажем неотрицательную определённость:

$$\sum_{l=1}^{k} \sum_{j=1}^{k} z_{l} \bar{z}_{j} R_{\xi}(n_{l} - n_{j}) = \sum_{l=1}^{k} \sum_{j=1}^{k} z_{l} \bar{z}_{j} \int_{-\pi}^{\pi} e^{i\lambda(n_{l} - n_{j})} d\bar{f}_{\xi}(\lambda) = \int_{-\pi}^{\pi} \sum_{l=1}^{k} z_{l} e^{i\lambda n_{l}} \sum_{j=1}^{k} \bar{z}_{j} e^{-i\lambda n_{j}} d\bar{f}_{\xi}(\lambda) = \int_{-\pi}^{\pi} \left| \sum_{l=1}^{k} z_{l} e^{i\lambda n_{l}} \right|^{2} d\bar{f}_{\xi}(\lambda) \ge 0$$

Доказательство необходимости. Пусть существует $R_{\xi}(n)$ – последовательность чётных и неотрицательно определённых функций. Любая неотрицательно определённая функция является ковариационной функцией, следовательно, $R_{\xi}(n)$ – $K\Phi$.

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} e^{-i\lambda n} R_{\xi}(n) \Leftrightarrow \int_{-\pi}^{\pi} f_{\xi}(\lambda) e^{i\lambda p} d\lambda = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n \in \mathbb{Z}} e^{i\lambda(p-n)} R_{\xi}(n) d\lambda =$$

$$= \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} R_{\xi}(n) \int_{-\pi}^{\pi} e^{i\lambda(p-n)} d\lambda = \left[\int_{-\pi}^{\pi} e^{i\lambda s} d\lambda = \begin{cases} 2\pi, s = 0 \\ 0, s \neq 0 \end{cases} \right] = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} 2\pi R_{\xi}(n) \Big|_{n=p} = R_{\xi}(p)$$

Применяем определение спектральной функции и получаем спектральное представление как в формулировке теоремы.

Теорема 8 (Бохнера-Хинчина). Непрерывная функция $R_{\xi}(t)$, $t \in \mathbb{R}$, чётная и неотрицательно определённая тогда и только тогда, когда она представима в виде

$$R_{\xi}(t) = \int_{\mathbb{R}^2} e^{i\lambda t} d\bar{f}_{\xi}(\lambda),$$

где $\bar{f}_{\xi}(\lambda),\ \lambda\in[-\pi;\pi]$ – однозначно определённая монотонная неубывающая веществ. функция, $\bar{f}_{\xi}(-\infty)=0$

Следствие 1. Ковариационная функция стацион. случайного процесса $\xi(n), n \in \mathbb{Z} \ (n \in \mathbb{R}),$ имеет вид

$$R_{\xi}(n) = \int_{-\pi}^{\pi(+\infty)} e^{i\lambda n} f_{\xi}(\lambda) d\lambda, \ n \in \mathbb{Z} \ (n \in \mathbb{R}),$$

где $f_{\xi}(\lambda),\ \lambda\in[-\pi;\pi]\ (\lambda\in\mathbb{R})$ - спектральная плотность $\xi(n)$

Замечание: на практике спектральная плотность используется в основном для определения периода $T^* = \frac{2\pi}{\lambda^*}$, $\lambda^* = \arg\max_{\lambda \in [0;\pi]} f_\xi(\lambda)$. Величина T^* называется главным периодом и в некоторых случаях достаточно адекватно характеризует промежуток времени через которые свойства случайных процессов «статически повторяются».

Свойства спектральной плотности $f_{\xi}(\lambda)$:

- 1. $f_{\xi}(\lambda) \geqslant 0$, что равносильно неотрицательной определённости ковариационной функции;
- 2. $f_{\xi}(-\lambda) = f_{\xi}(\lambda)$

3.
$$f_{\xi}(\lambda) = \frac{1}{\pi} \int_{0}^{\infty} R_{\xi}(t) \cos \lambda t \, dt = \frac{R_{\xi}(0)}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} R_{\xi}(n) \cos \lambda n;$$

4.
$$R_{\xi}(t) = 2 \int_{0}^{\pi(\infty)} f_{\xi}(\lambda) \cos \lambda t \, d\lambda, \quad t \in \mathbb{Z} \ (t \in \mathbb{R});$$

$$\mathcal{D}\left\{\xi\right\} = R_{\xi}(0) = 2 \int_{0}^{\pi(\infty)} f_{\xi}(\lambda) \, d\lambda$$

Определение 12. Шириной спектра называется величина

$$L = \frac{1}{f_{\xi}(0)} \int_{0}^{\infty} f_{\xi}(\lambda) \, d\lambda = \frac{R_{\xi}(0)}{2f_{\xi}(0)}$$

Ширина спектра - полоса, в которой сосредоточена основная энергия процесса (90–95 %) Временем корреляции называется величина

$$t_0 = \frac{1}{R_{\xi}(0)} \int_0^{\infty} |R_{\xi}(t)| dt; \qquad t_0 \geqslant \frac{\pi f_{\xi}(0)}{R_{\xi}(0)} \Longrightarrow t_0 \geqslant \frac{\pi}{2L} \Leftrightarrow t_0 \cdot L \geqslant \frac{\pi}{2}$$

Последнее неравенство называется неравенством неопределённости.

Пример 1. Случайный процесс $\xi(t), t \in [0, \infty), R_{\xi}(t) = \sigma^2 e^{-\alpha|t|}, \alpha > 0$ – степень корреляции между сечениями. Найти спектральную плотность $\xi(t)$.

Решение.

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \int\limits_{\mathbb{D}} R_{\xi}(t) e^{-i\lambda t} dt = \frac{\sigma^2}{2\pi} \int\limits_{\mathbb{D}} e^{-\alpha|t| - i\lambda t} dt = \frac{\alpha \sigma^2}{\pi (\alpha^2 + \lambda^2)}$$

Данный процесс – цветной шум.

Пример 2. $\{\varepsilon_n\}$ – последовательность некоррелированных случайных величин, $\mathcal{M}\{\varepsilon_n\} = 0$, $\mathcal{D}\{\varepsilon_n\} = D > 0$. Доказать, что последовательность стационарна в широком смысле и найти её моментные и спектральные характеристики.

Доказательство. $\mathcal{M}\left\{\varepsilon_{n}\right\}=0,\ \mathcal{D}\left\{\varepsilon_{n}\right\}=D,\ cov\left\{\varepsilon_{n+k},\ \varepsilon_{k}\right\}=\begin{cases} D,\ n=0\\ 0,\ n\neq 0 \end{cases}=R_{\varepsilon}(n).$ Выполнены все три условия стационарности в широком смысле.

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} e^{-i\lambda n} R_{\varepsilon}(n) = \frac{1}{2\pi} R(0) = \frac{D}{2\pi}$$

Данная последовательность называется белым шумом; если D=1, то это cmandapmnый белый шум.

1.8 Каноническое разложение случайного процесса

Простейший случайный процесс определяется как $X(t) = X \cdot \phi(t)$, где X - случайная величина с математическим ожиданием m_x и дисперсией D_x , $\phi(t)$ - любая неслучайная функция.

$$m_X(t) = \phi(t) \cdot m_x; \quad R_X(t_1, t_2) = \mathcal{M}\{X(t_1)X(t_2)\} = \phi(t_1)\phi(t_2)\mathcal{M}\{X^2\} = \phi(t_1)\phi(t_2)D_x$$

Если $m_x = 0$, то случайный процесс элементарный.

Центрированный случайный процесс $\xi^0(t)$ можно представить суммой взаимно некоррелируемых элементарных случайных процессов:

$$\xi^{0}(t) = \sum_{n=1}^{N} X_{n} \phi_{n}(t), N \leq \infty$$

$$\mathcal{M}\left\{\xi^{0}(t)\right\} = \sum_{n=1}^{N} \mathcal{M}\left\{X_{n}\right\} \phi_{n}(t) = 0; \quad R_{\xi^{0}}(t_{1}, t_{2}) = \sum_{n=1}^{N} \phi_{n}(t_{1}) \phi_{n}(t_{2}) \mathcal{D}\left\{X_{n}\right\}$$
(1.3)

Определение 1. Любой нецентрированный случайный процесс можно представить в виде κa нонического разложения:

$$\xi(t) = m_{\xi}(t) + \xi^{0}(t) = m_{\xi}(t) + \sum_{n=1}^{N} X_{n} \phi_{n}(t)$$
(1.4)

Математическое ожидание $m_{\xi}(t)$, каноническая функция вида (1.3). Случайные величины X_n – коэффициенты разложения, $\phi_n(t)$ – координатные функции разложения (базис разложения).

Пример 1. Найти математическое ожидание, ковариационную функцию , дисперсию случайного процесса $\xi(t)=3t+t^2+2\xi_1t^3+3t^4\xi_2+4\xi_3t^5; \ \mathcal{D}\left\{\xi_1\right\}=1, \ \mathcal{D}\left\{\xi_2\right\}=2, \ \mathcal{D}\left\{\xi_3\right\}=0.1$

Решение.

$$\mathcal{M}\left\{\xi(t)\right\} = 3t + t^{2}$$

$$R_{\xi}(t,s) = 2t^{3} \cdot 2s^{3} \cdot \mathcal{D}\left\{\xi_{1}\right\} + 3t^{4} \cdot 3s^{4} \cdot \mathcal{D}\left\{\xi_{2}\right\} + 4t^{5} \cdot 4s^{5} \cdot \mathcal{D}\left\{\xi_{3}\right\} = 4t^{3}s^{3} + 18t^{4}s^{4} + 1.6t^{5}s^{5}$$

$$\mathcal{D}\left\{\xi(t)\right\} = 4t^{6} + 18t^{8} + 1.6t^{1}0$$

Замечание: каноническое разложение стационарных случайных процессов называется $cne\kappa$ -*тральным разложением* и имеет вид

$$\xi(t) = m_{\xi}(t) + \sum_{n=0}^{\infty} (u_n \cos \lambda_n t + v_n \sin \lambda_n t); \ R_{\xi}(t) = \sum_{n=0}^{\infty} D_n \cos \lambda_n t, \ \mathcal{D}\{\xi(t)\} = \sum_{n=0}^{\infty} D_n \cos \lambda_n t$$

где u_n , v_n - центрированные некорреллированные случайные величины с попарно равными дисперсиями $\mathcal{D}\{u_n\} = \mathcal{D}\{v_n\} = D_n$, $\lambda_n = const$

Глава 2

Элементы стохастического анализа случайных процессов.

2.1 Сходимость случайных процессов

Пусть $\xi(t), t \in T \subset \mathbb{R}$ - действительный случайный процесс, $\mathcal{M}\{|\xi(t)|^2\} < \infty, t \in T$.

Определение 1. Случайный процесс $\xi(t)$ сходится в среднеквадратическом (СК) смысле к случайной величине η при $t \to t_0 \in T$, если $\lim_{t \to t_0} \mathcal{M}\{|\xi(t) - \eta|^2\} = 0$.

Обозначение:

$$\eta = \lim_{t \to t_0} \xi(t) \tag{2.1}$$

Критерий Коши: предел (2.1) существует тогда и только тогда, когда

$$\exists \lim_{t,s \to t_0} \mathcal{M} \left\{ |\xi(t) - \xi(s)|^2 \right\} = 0$$

Теорема 1. Предел (**2.1**) существует тогда и только тогда, когда существует конечный предел $\lim_{t,s\to t_0} \mathcal{M}\left\{\xi(t)\xi(s)\right\}$

Доказательство необходимости. Если предел (2.1) существует, то

$$\exists \lim_{t \to t_0} \mathcal{M}\left\{ |\xi(t)|^2 \right\} = \lim_{s \to s_0} \mathcal{M}\left\{ |\xi(s)|^2 \right\},\,$$

значит, предел в критерии Коши будет нулевым.

Доказательство достаточности. Т.к. случайный процесс с конечным моментом второго порядка, то пределы снова совпадают.

В случае комплексного случайного процесса существование предела (2.1) равносильно существованию конечного предела функции $\mathcal{M}\left\{\xi(t)\overline{\xi(s)}\right\},\,t,s\to t_0.$

Следствие 1. Предел (2.1) существует тогда и толко тогда, когда существуют конечные пределы $\lim_{t\to t_0} \mathcal{M}\left\{\xi(t)\right\} = m_0, \ \lim_{t,s\to t_0} R_{\xi}(t,s) = R_0$

Доказательство. Из определения ковариационной функции и теоремы 1 имеем

$$R_{\xi}(t,s) = \mathcal{M}\left\{\xi(t)\xi(s)\right\} - \mathcal{M}\left\{\xi(t)\right\} \mathcal{M}\left\{\xi(s)\right\}$$

Теорема 2. Существует предел $\xi(t)$ в смысле сходимости по вероятности при $t \to t_0$ тогда и только тогда, когда существует конечный предел двумерных распределений в смысле слабой сходимости $F_{\xi}(x_1, x_2; t, s), t, s \to t_0$.

Замечание: из сходимости в СК-смысле $\xi(t)$ к случайной величине η следует сходимость по вероятности и по определению.

2.2 Непрерывность случайных процессов

Определение 1. Случайный процесс $\xi(t)$ называется cmoxacmuчecku непрерывным в точке t_0 , если

$$\xi(t) \xrightarrow[t \to t_0]{\mathcal{P}} \xi(t_0)$$

Теорема 3. Случайный процесс $\xi(t)$, $t \in T$ стохастически непрерывен тогда и только тогда, когда двумерное распределение $F_{\xi}(x_1, x_2; t, s)$ слабо непрернывно по паре (t, s) на множестве $T \times T$.

Примеры: процессы Пуассона, Коши.

Определение 2. Случайный процесс $\xi(t)$ называется непрерывным в CK-смысле в точке t_0 , если

$$\exists 1. i. m. \xi(t) = \xi(t_0),$$

иначе процес называется разрывным в CK-смысле в точке t_0 .

Если процесс $\xi(t)$ является непрерывным в СК-смысле в $\forall t \in T$, то его называют непрерывным на всём T.

Примеры: процесс Пуассона является непрерывным в СК-смысле, процесс Коши не являтся непрерывным в СК-смысле.

Пример 1. Доказать, что винеровский процесс $\omega(t), t \in T = [0, \infty)$ является СК-непреревным на T.

Доказательство. l.i.m.
$$\omega(t) = \lim_{t \to t_0} \mathcal{M}\{|\omega(t) - \omega(t_0)|^2\} = \lim_{t \to t_0} \sigma^2 |t - t_0| = 0$$

Теорема 4. $\xi(t)$ непрерывен в СК-смысле на T тогда и только тогда, когда непрерывна по (t,s) на $T \times T$ функция $\mathcal{M}\left\{\xi(t)\overline{\xi(s)}\right\}$.

Теорема 5. Случайный процесс $\xi(t)$ СК-непрерывен в точке t_0 тогда и только тогда, когда $\mathcal{M}\{\xi(t)\}$ непрерывна в t_0 , а $R_{\xi}(t,s)$ непрерывна в точке (t_0,t_0) .

Следствие 1. Стационарный случайный процесс непрерывен в СК-смысле в тике t_0 (в широком смысле) тогда и только тогда, когда его ковариационная функция непрерывна в точке t=0.

Доказательство. Следует из определения стационарности в широком смысле и теоремы 5. \square

Это также равносильно для непрерывности в CK-смысле на T для стационарности в широком смысле.

Следствие 2. Если $R_{\varepsilon}(t,s)$ непрерывна в t=s, то она непрерывна во всех точках.

Теорема 6. $\xi(t)$ непрерывен в СК-смысле на T тогда и только тогда, когда $\mathcal{M}\{\xi(t)\}$ непрерывна на T, а $R_{\xi}(t,s)$ непрерывна на $T \times T$

Доказательство необходимости.

$$|\mathcal{M}\left\{\xi(t)\right\} - \mathcal{M}\left\{\xi(t_0)\right\}| = |\mathcal{M}\left\{\xi(t) - \xi(t_0)\right\}| \leqslant \mathcal{M}\left\{|\xi(t) - \xi(t_0)|\right\} \leqslant \mathcal{M}\left\{|\xi(t) - \xi(t_0)|^2\right\} \xrightarrow[t \to t_0]{} 0$$

Т.к. это выполняется $\forall t_0$, то $\mathcal{M}\{\xi(t)\}$ непрерывна на T.

Докажем непрерывность ковариационной функции.

$$\begin{split} |R_{\xi}(t,s) - R_{\xi}(t_{0},s_{0})| &= |\mathcal{M}\left\{\xi(t)\xi(s)\right\} - \mathcal{M}\left\{\xi(t)\right\} \mathcal{M}\left\{\xi(s)\right\} - \mathcal{M}\left\{\xi(t_{0})\xi(s_{0})\right\} + \mathcal{M}\left\{\xi(t_{0})\right\} \mathcal{M}\left\{\xi(s_{0})\right\}| = \\ &= |\mathcal{M}\left\{\xi(t)\xi(s)\right\} - \mathcal{M}\left\{\xi(t)\xi(s_{0})\right\} + \mathcal{M}\left\{\xi(t)\xi(s_{0})\right\} - \\ &- \mathcal{M}\left\{\xi(t)\right\} \mathcal{M}\left\{\xi(s)\right\} - \mathcal{M}\left\{\xi(t_{0})\xi(s_{0})\right\} + \mathcal{M}\left\{\xi(t_{0})\right\} \mathcal{M}\left\{\xi(s_{0})\right\}| = \\ &= |\mathcal{M}\left\{\xi(t)(\xi(s) - \xi(s_{0}))\right\} + \mathcal{M}\left\{\xi(s_{0})(\xi(t) - \xi(t_{0}))\right\} + \mathcal{M}\left\{\xi(t_{0})\right\} \mathcal{M}\left\{\xi(s_{0})\right\} - \mathcal{M}\left\{\xi(t)\right\} \mathcal{M}\left\{\xi(s)\right\}| \leq \\ &\leq [\text{KBIII}] \leqslant \sqrt{\mathcal{M}\left\{\xi^{2}(t)\right\} \mathcal{M}\left\{(\xi(s) - \xi(s_{0}))^{2}\right\}} + \sqrt{\mathcal{M}\left\{\xi^{2}(s_{0})\right\} \mathcal{M}\left\{(\xi(t) - \xi(t_{0}))^{2}\right\}} + \\ &+ |\mathcal{M}\left\{\xi(t_{0})\right\} \mathcal{M}\left\{\xi(s_{0})\right\} - \mathcal{M}\left\{\xi(t)\right\} \mathcal{M}\left\{\xi(s)\right\}| \xrightarrow{\text{CK-Heffp.}} 0 \end{split}$$

В силу произвольности точки (t_0, s_0) $R_{\xi}(t, s)$ непрерывна на $T \times T$.

Доказательство достаточности. Пусть $\mathcal{M}\{\xi(t)\}$ и $R_{\xi}(t,s)$ непрерывны на T и $T\times T$ соответственно.

$$\lim_{t \to t_0} \mathcal{M}\left\{ |\xi(t) - \xi(t_0)|^2 \right\} = \lim_{t \to t_0} \left(R_{\xi}(t, t) + R_{\xi}(t_0, t_0) - 2R_{\xi}(t, t_0) + |\mathcal{M}\left\{\xi(t)\right\} - \mathcal{M}\left\{\xi(t_0)\right\}|^2 \right) = 0$$

Замечание: из СК-непрерывности случайного процесса $\xi(t)$ в силу теоремы 6 следует, что $\mathcal{D}\left\{\xi(t)\right\} = R_{\xi}(t,t)$ – непрерывная функция.

Определение 3. Пусть $\xi(t,\omega), t \in T$. Некоторая траектория $\xi(t)$ случайного процеса $\xi(t)$ называется непрерывной на T, если $\mathcal{P}\{\omega \colon \xi(t,\omega) \in C(T)\} = 1$. Обозначается $\xi(t) \xrightarrow[t \to 0]{\text{п.н.}} \xi(t_0)$

Пример 2. Случайный процесс $\xi(t) = \sum_{k=1}^{n} \nu_k \phi_k(t)$, $t \in T$, где $\{\nu_k\}$ - некоррелируемые случайные величины, $\mathcal{M}\{\nu_k\} = m_k$, $\mathcal{D}\{\nu_k\} = D_k$, $\{\phi_k(t)\}$ - непрерывные на T неслучайные функции. Исследовать на непрерывность.

Решение. Рассмотрим варианты.

- 1. потраекторная непрерывность: $\xi(t,\omega) = \sum_{k=1}^{n} \nu_k(\omega) \phi_k(t)$ является как линейная комбинаия непрерывных функций;
- 2. СК-непрерывность и стохастическая непрерывность:

$$\mathcal{M}\{\xi(t)\} = \sum_{k=1}^{n} m_k \phi_k(t); \qquad R_{\xi}(t,s) = cov\{\xi(t), \xi(s)\} = \sum_{k=1}^{n} \sum_{l=1}^{n} \phi_k(t) \phi_l(s) cov\{\nu_k, \nu_l\} = \sum_{k=1}^{n} \phi_k(t) \phi_k(s) D_k$$

Из теоремы 6 следует СК- и стохастическая непрерывности.

2.3 Дифференцируемость случайных процессов

Определение 1. Случайный процесс $\xi(t)$ называется дифференцируемым в СК-смысле в точке t_0 , если

$$\exists \xi'(t_0) : \lim_{t \to t_0} \mathcal{M} \left\{ \left| \frac{\xi(t) - \xi(t_0)}{t - t_0} - \xi'(t_0) \right|^2 \right\} = 0$$

Из дифференцируемости в СК-смысле следует непрерывность в СК-смысле.

Если $\xi(t)$ СК-дифференцируем в любой точке множества T, то $\xi(t)$ СК-дифференцируем на T, а семейство случайных величин $\{\xi'(t), t \in T\}$ - СК-производная случайного процесса $\xi(t)$ на T.

Теорема 7. Действительный случайный процесс $\xi(t)$ непрерывно дифференцируем в СК-смысле на T тогда и только тогда, когда $\mathcal{M}\left\{\xi(t)\overline{\xi(s)}\right\}$ обладает на множестве $T\times T$ непрерывной смешанной производной второго порядка по t u s.

Теорема 8. Случайный процесс $\xi(t)$ СК-дифференцируем в точке t_0 , а для случайной величины $\xi'(t_0)$ существует математическое ожидание и ковариационная функция тогда и только тогда, когда $\exists \frac{d\mathcal{M}\left\{\xi(t)\right\}}{dt}$ и $\exists \frac{\partial^2 R_{\xi}(t,s)}{\partial t\partial s}\bigg|_{t=s=t_0}$

Следствие 1. Если $\xi(t)$ СК-дифференцируем на T, то его СК-производная $\xi'(t)$ имеет следующие характеристики:

$$\mathcal{M}\left\{\xi'(t)\right\} = \frac{dM_{\xi}(t)}{dt}, \ R_{\xi'}(t,s) = \frac{\partial^2 R_{\xi}(t,s)}{\partial t \partial s} = \frac{\partial^2 R_{\xi}(t,s)}{\partial s \partial t}$$
(2.2)

Совместная ковариационная функция процесса и его производной выглядит следующим образом:

$$\begin{bmatrix} R_{\xi\xi}(t,s) & R_{\xi\xi'}(t,s) \\ R_{\xi'\xi}(t,s) & R_{\xi'\xi'}(t,s) \end{bmatrix} = \begin{bmatrix} R_{\xi}(t,s) & \frac{\partial R_{\xi}(t,s)}{\partial s} \\ \frac{\partial R_{\xi}(t,s)}{\partial t} & \frac{\partial^2 R_{\xi}(t,s)}{\partial t \partial s} \end{bmatrix}$$

Для стационарного процесса совместная ковариационная функция процесса и его производной выглядит следующим образом:

$$\begin{bmatrix} R_{\xi\xi}(t) & R_{\xi\xi'}(t) \\ R_{\xi'\xi}(t) & R_{\xi'\xi'}(t) \end{bmatrix} = \begin{bmatrix} R_{\xi}(t) & -R'_{\xi}(t) \\ R'_{\xi}(t) & -R''_{\xi}(t) \end{bmatrix}$$

Определение 2. $\xi(t)$ – $\partial u \phi \phi e p e h u u p y e m u u n o m p a e k m o p h o н a <math>T$, если почти все его траектории $\xi(t,\omega)$ – дифференцируемые функции, т.е. $\mathcal{P}\left\{\omega \colon \xi(t,\omega) \in D(T)\right\} = 1$

Если $\xi'(t),\ t\in T$ - СК-производная случайного процесса $\xi(t),\ a\ \dot{\xi}(t),\ t\in T$ - потраекторная производная, то $\mathcal{P}\left\{\xi'(t)=\dot{\xi}(t)\right\}=1$, т.е. СК- и потраекторная производные стохастически эквивалентны.

Пример 1. $\xi(t) = \sum_{k=1}^{n} V_k \phi_k(t) \ t \in T, \{\phi_k(t)\}$ – неслучайные дифференцируемые функции, $\{V_k\}$ – случайные величины, $\mathcal{M}\{V_k\}^2 < \infty, \ k = \overline{1,n}$. Найти СК-производную $\xi'(t)$.

Решение. Рассмотрим траекторию $\xi(t,\omega) = \sum_{k=1}^{n} V_k(\omega) \phi_k(t)$. Продифференцируем потраекторно: $\dot{\xi}(t,\omega) = \sum_{k=1}^{n} = \sum_{k=1}^{n} V_k(\omega) \phi'(t)$. Найдём характеристики $\xi(t)$:

$$\mathcal{M}\{\xi(t)\} = \sum_{k=1}^{n} m_k \phi_k(t), \quad R_{\xi}(t,s) = \sum_{k=1}^{n} \sum_{l=1}^{n} \phi_k(t) \phi_l(s) cov\{V_k, V_l\}$$

Обе характеристики дифференцируемы, значит, $\dot{\xi}(t,\omega) = \xi'(t)$

Пример 2. $\xi(t) = \sum k = 1^n a_k \xi_k(t)$, где a_k – численные коэффициенты, $\xi_k(t)$ - СК-дифференцируемые процессы. Вычислить СК-производную.

Решение.

$$\frac{\xi(t+\tau) - \xi(t)}{\tau} = \frac{1}{\tau} \sum_{k=1}^{n} a_k (\xi_k(t+\tau) - \xi_k(t)) \xrightarrow[\tau \to 0]{\text{c.k.}} \sum_{k=1}^{n} a_k \xi_k'(t)$$

Замечание: если детерминированная функция $\phi(t)$ дифференцируема на T и случайный процесс $\xi(t)$ СК-дифференцируем на T, то случайный процесс $\eta(t) = \phi(t)\xi(t)$ имеет СК-производную $\eta'(t) = \phi(t)\xi'(t)$.

Если $\xi(t)$ – СК-дифференцируемый гауссовский случайный процесс, то его СК-производная $\xi'(t)$ также гауссовский случайный процесс с математическим ожиданием и ковариационной функцией, определёнными равенствами (2.2).

2.4 Интегрируемость случайных процессов

$$\xi(t), t \in T = [a; b], \ a = t_0 \leqslant t_1 \leqslant \ldots \leqslant t_n = b, \ \tau_i \in [t_{i-1}; t_i], \ t = \overline{1, n}$$

Определение 1. Если при $n \to \infty$ и $\max_{i \overline{1,n}} (t_i - t_{i-1}) \to 0 \; \exists \; \lim \sum_{i=1}^n \xi(\tau_i)(t_i - t_{i-1}) = \eta$, не зависящий от способа разбиения $\{t_i\}$ и выбора точек $\{\tau_i\}$, то случайный процесс $\xi(t)$ - CK-интегрируемый на [a;b], а случайный процесс η - его CK-интеграл: $\eta = \int_a^b \xi(t) \, dt$

Теорема 9. Для существования СК-интеграла $\int_a^b \xi(t) dt$ необходимо и достаточно двух условий:

$$\exists I_1 = \int_a^b m_{\xi}(t) dt = \mathcal{M} \{ \eta \}$$
 (2.3)

$$\exists I_2 = \int_a^b \int_a^b R_{\xi}(t,s) \, dt ds \tag{2.4}$$

Теорема 10. Пусть $\xi(t)$ - CK-непрерывный случайный процесс, тогда

$$\mathcal{M}\left\{\int_{a}^{b} \xi(t) dt\right\} = \int_{a}^{b} m_{\xi}(t) dt, \quad cov\left\{\int_{a}^{b} \xi(t) dt, \, \xi(s)\right\} = \int_{a}^{b} R_{\xi}(t,s) dt, \, s \in T$$

$$cov\left\{\int_{a}^{b} \xi(t) dt, \, \int_{c}^{d} \xi(s)\right\} = \int_{a}^{b} \int_{c}^{d} R_{\xi}(t,s) dt ds, \, [c;d] \subset T, \quad \mathcal{D}\left\{\int_{a}^{b} \xi(t) dt\right\} = \int_{a}^{b} \int_{a}^{b} R_{\xi}(t,s) dt ds$$

$$(2.5)$$

Следствие 1. Формулы (2.5) справедливы и для несобственных интегралов.

Следствие 2. Если случайные процессы $\xi(t)$, $t \in [a;b]$, $\eta(t)$, $t \in [c;d]$ СК-интегрируемы на соответствующих отрезках, а $\phi(t)$, $\psi(t)$ – некоторые неслучайные функции, то

$$cov\left\{\int_{a}^{b} \phi(t)\xi(t) dt, \int_{c}^{d} \psi(t)\eta(r)\right\} = \int_{a}^{b} \int_{c}^{d} \phi(t)\overline{\psi(s)}R_{\xi\eta}(t,s) dtds$$

Если $\xi(t)$ – гауссовский случайный процесс, то СК-интеграл $\int_a^b \xi(t) dt$ – гауссовская случайная величина со средним I_1 и дисперсией I_2 , определяемыми (2.5).

Любой случайный процесс $\xi(t)$, СК-непрерывный на конечном промежутке [a;b], является СК-интегрируемым на [a;b].

Кусочно-непрерывная на отрезке функция СК-интегрируема на нём.

Пример 1. Пусть случайный процесс $\xi(t), t \ge 0$, имеет $m_{\xi}(t) = mt$, $R_{\xi}(t,s) = Dts$, D > 0. Вычислить матожидание и ковариационную функцию случайной функции $\eta(t) = \int_0^t \xi(s) \, ds$, t > 0.

Решение. m_{ξ} , R_{ξ} – непрерывны, следовательно, $\exists \eta(t); \ \xi(t)$ – СК-непрерывна, следовательно, СК-интегриреума

$$\mathcal{M} \{ \eta(t) \} = \mathcal{M} \left\{ \int_{0}^{t} \xi(s) \, ds \right\} = \int_{0}^{t} ms \, ds = \frac{mt^{2}}{2}$$

$$R_{\xi}(t,s) = cov \left\{ \int_{0}^{t} \xi(l) \, dl, \int_{0}^{s} \xi(p) \, dp \right\} = \int_{0}^{t} \int_{0}^{s} R_{\xi}(l,p) \, dl dp = \int_{0}^{t} \int_{0}^{l} Dlp \, dl dp = \frac{Dt^{2}s^{2}}{4}$$

$$\mathcal{D} \{ \eta(t) \} = \frac{Dt^{4}}{4}$$

Свойства СК-интеграла:

- 1. линейность: $\int_T \sum a_k \xi_k(t) dt = \sum a_k \int_T \xi_k(t) dt$;
- 2. формулы интегрирования по частям;
- 3. формула Барроу: $\eta(t) = \int_0^t \xi(s) ds \Rightarrow \eta'(t) = \xi(t)$

Определение 2. $\xi(t), t \in T = [a;b]$ – интегрируемый в СК-смысле на множестве T с весом $\phi(t,s), t,s \in T$, где $\phi(t,s)$ – неслучайная функция, если независимо от способа разбиения $\{s_i\}$ и выбора точек $\{\tau_i\}$

$$\exists \xi(t), t \in T : \exists \sum_{i=1}^{n} \phi(t, \tau_i) \xi(\tau_i) (s_i - s_{i-1}) \xrightarrow[\substack{n \to \infty \\ i = 1, n}}^{\text{c.k.}} \eta(t)$$

Обозначается $\eta(t) = \int_a^b \phi(t,s)\xi(s) \, ds, \, t \in T$

В частности:

1.
$$\phi(t,s) = c = const \Rightarrow \int_a^b \phi(t,s)\xi(s) ds = c \int_a^b \xi(s) ds = \eta(\omega);$$

2.
$$\phi(t,s) = I(t,s) = \begin{cases} 1, t > s \\ 0, t \leqslant s \end{cases}$$
 $\Rightarrow \int_a^b \phi(t,s)\xi(s) ds = \int_a^t \xi(s) ds = \eta(t)$

Теорема 11. Случайный процесс $\xi(t)$, $t \in T = [a;b]$, является СК-интегрируемым на множестве T с весом $\phi(t,s)$ тогда и только тогда, когда на T с весом $\phi(t,s)$ интегрируемо его математическое ожидание и на $T \times T$ с весом $\phi(t,s_1) \cdot \phi(t,s_2)$ интегрируема его ковариационная функция.

$$\mathcal{M}\left\{\eta(t)\right\} = \int_{a}^{b} \phi(t,s) m_{\xi}(s) \, ds, \ R_{\eta}(t_{1},t_{2}) = \iint_{T \times T} \phi(t_{1},s_{1}) \phi(t_{2},s_{2}) R_{\eta}(s_{1},s_{2}) \, ds_{1} ds_{2}$$

$$\mathcal{D}\left\{\eta(t)\right\} = \iint_{T \times T} \phi(t,s_{1}) \phi(t,s_{2}) R_{\xi}(s_{1},s_{2}) \, ds_{1} ds_{2}, \ R_{\xi\eta}(t_{1},t_{2}) = \int_{T} R_{\xi}(t_{1},s) \phi(t_{2},s) \, ds_{1} ds_{2}$$

Доказательство.

$$\begin{split} R_{\xi\eta}(t_1, t_2) &= \mathcal{M} \left\{ (\xi(t_1) - m_{\xi}(t_1)) (\eta(t_2 - m_{\eta}(t_2))) \right\} = \\ &= \mathcal{M} \left\{ (\xi(t_1) - m_{\xi}(t_1)) \left(\int_T \phi(t_2, s) \xi(s) \, ds - \int_T \phi(t_2, s) m_{\xi}(s) \, ds \right) \right\} = \\ &= \mathcal{M} \left\{ (\xi(t_1) - m_{\xi}(t_1)) \int_T \phi(t_2, s) (\xi(s) - m_{\xi}(s)) \, ds \right\} = \\ &= \mathcal{M} \left\{ \int_T \phi(t_2, s) (\xi(t_1) - m_{\xi}(t_1)) (\xi(s) - m_{\xi}(s)) \, ds \right\} = \int_T \phi(t_2, s) R_{\xi}(t_1, s) \, ds \end{split}$$

Пример 2. Пусть $\omega(t), t \in T = [0; +\infty)$, стандартный винеровский процесс, выходящий из нуля. Доказать, что он интегрируем на T с весом $\phi(t,s) = I(t,s)$.

Доказательство.

$$\eta(t) = \int_{T} \phi(t,s)\omega(s) ds = \int_{0}^{t} \omega(s) ds, \, \mathcal{M}\{\omega(t)\} = 0, \, R_{\omega}(t_{1},t_{2}) = \min\{t_{1},t_{2}\};$$

$$\mathcal{M}\{\eta(t)\} = \mathcal{M}\left\{\int_{0}^{t} \omega(s) ds\right\} = 0, \, \mathcal{D}\{\eta(t)\} = \int_{0}^{t} \int_{0}^{t} R_{\omega}(s_{1},s_{2}) ds_{1}ds_{2} = \int_{0}^{t} \int_{0}^{t} \min\{s_{1},s_{2}\} ds_{1}ds_{2} = \frac{t^{3}}{3}$$

Определение 3. Пусть почти все реализации $\xi(t,\omega)$ случайного процесса $\xi(t)$ интегрируемы по Риману на множестве T, т.е. $\mathcal{P}\left\{\omega \colon \eta(\omega) = \int_T \xi(t,\omega) \, d\omega\right\}$ Тогда η – потраекторный интеграл.

Если существуют потраекторный и СК- интегралы, то они всегда совпадают.

2.5 Действия линейного оператора на ${ m C}\Pi$

Определение 1. Линейный однородный оператор L_o удовлетворяет двум требованиям:

- 1. $L_o[c\xi(t)] = c \cdot L_o[\xi(t)], c = const;$
- 2. $L_o[\xi_1(t) + \xi_2(t)] = L_o[\xi_1(t)] + L_o[\xi_2(t)]$

Определение 2. Линейный неоднородный оператор L_H – это сумма ЛОО L_o и некоторой заданной неслучайной функции.

Остальные операторы нелинейные.

Пример 1. Линейные однородные операторы: $a(t)\xi(t)$, $a(t)\xi'(t)$, оператор интегрирования, оператор математического ожидания.

Линейные неоднородные операторы: $a(t)\xi(t) + b(t)$, $a(t)\xi'(t) + b(t)$

Нелинейные: $\cos \xi(t) + b(t)$, оператор дисперсии.

Если $\xi(t)$ – случайный процесс с математическим ожиданием $m_{\xi}(t)$ и ковариационной функцией $R_{\xi}(t,s)$ преобразуется линейным однородным оператором L_o в случайный процесс $\eta(t)$, т.е. $\eta(t) = L_o[\xi(t)]$, то его математическое ожидание и ковариационная функция вычисляются следующим образом:

$$m_{\eta}(t) = L_o[m_{\xi}(t)], R_{\eta}(t,s) = L_o^s[L_o^t[R_{\xi}(t,s)]] = L_o^t[L_o^s[R_{\xi}(t,s)]]$$
(2.6)

Если $\xi(t)$ – случайный процесс с математическим ожиданием $m_{\xi}(t)$ и ковариационной функцией $R_{\xi}(t,s)$ преобразуется линейным неоднородным оператором L_H , соответствующим однородному оператору L_o в случайный процесс $\eta(t)$, т.е. $\eta(t) = L_H[\xi(t)]$, то его математическое ожидание и ковариационная функция вычисляются следующим образом:

$$m_{\eta}(t) = L_H[m_{\xi}(t)] = L_o[m_{\xi}(t)] + \phi(t), R_{\eta}(t,s) = L_o^s[L_o^t[R_{\xi}(t,s)]]$$

2.5.1 ЛОО дифференцирования с постоянными коэффициентами

$$P\left(\frac{d}{dt}\right) = \sum_{k=0}^{n} a_k \frac{d^t}{dt^k}$$

Рассмотрим действительный случайный процесс $\xi(t)$ с конечным моментом второго порядка. Пусть $\xi(t), t \in T$, стационарен в широком смысле, тогда $\mathcal{M}\{\xi(t)\} = m_{\xi}, R_{\xi}(t,s) = R_{\xi}(t-s)$. Будем получать стационарный в широком смысле процесс $\eta(t) = P\left(\frac{d}{dt}\right)\xi(t)$

$$\mathcal{M}\left\{\eta(t)\right\} = P\left(\frac{d}{dt}\right) \mathcal{M}\left\{\xi(t)\right\} = a_0 m_\xi;$$

$$R_{\eta\eta}(t-s) = P\left(\frac{d}{dt}\right) P\left(\frac{d}{ds}\right) R_{\xi\xi}(t-s) \Rightarrow R_{\eta\eta}(t) = P\left(\frac{d}{dt}\right) P\left(-\frac{d}{dt}\right) R_{\xi\xi}(t)$$

$$R_{\eta\xi}(t-s) = P\left(\frac{d}{dt}\right) R_{\xi\xi}(t-s) \Rightarrow R_{\eta\xi}(t) = P\left(\frac{d}{dt}\right) R_{\xi\xi}(t), \text{ где } P\left(\frac{d}{dt}\right) = \sum_{k=0}^{n} \bar{a}_k \frac{d^k}{dt^k};$$

$$R_{\xi\eta}(t) = P\left(-\frac{d}{dt}\right) R_{\xi\xi}(t)$$

Пусть
$$P(\frac{d}{dt}) = 1 + \frac{d}{dt} + \frac{d^2}{dt^2}$$
, тогда $\mathcal{M}\{\eta(t)\} = a_0 \cdot m_\xi = m_\xi$; $P(x) = 1 + x + x^2$, $\bar{P}(-x) = P(-x) = 1 - x + x^2 \Rightarrow P(x) \cdot P(-x) = 1 + x^2 + x^4 \Rightarrow R_\eta(t) + R_\xi(t) + R_\xi''(t) + R_\xi^{(IV)}(t)$

2.5.2 ЛОО интегрирования

Применим к действительным СК-интегрируемым случайным процессам $\xi(t), t \in T = [a; b],$ с весом A(t,s):

$$\eta(t) = A[\xi(t)] = \int_a^b A(t,s)\xi(t) \, ds; \quad \overline{A[\xi(t)]} = \int_a^b \overline{A(t,s)}\xi(s) \, ds$$

$$m_{\eta}(t) = \mathcal{M} \left\{ \int_{a}^{b} A(t,s)\xi(s) \, ds \right\} = \int_{a}^{b} A(t,s)\mathcal{M} \left\{ \xi(s) \right\} \, ds = A[m_{\xi}(t)];$$

$$R_{\eta}(t,s) = cov\{\eta(s), \, \eta(s)\} = cov \left\{ \int_{a}^{b} A(t,t_{1})\xi(t_{1}) \, dt_{1}, \, \int_{a}^{b} A(s,s_{1})\xi(s_{1}) \, ds_{1} \right\} =$$

$$= \int_{a}^{b} \int_{a}^{b} A(t,t_{1})\overline{A(s,s_{1})}R_{\xi}(t_{1},s_{1}) \, dt_{1}ds_{1} = \overline{A^{s}}[A^{t}[R_{\xi}(t,s)]];$$

$$R_{\eta\xi}(t,s) = cov \left\{ \int_{a}^{b} A(t,t_{1})\xi(t_{1}) \, dt_{1}, \, \xi(s) \right\} = \int_{a}^{b} A(t,t_{1})R_{\xi}(t_{1},s) \, dt_{1} = A^{t}[R_{\xi}(t,s)]$$

Пример 2. $\xi(t)$ – СК-непрерывный стационарный случайный процесс с $\mathcal{M}\{\xi(t)\}=m\neq 0$. Доказать, что не существует случайной величины η такой, что процесс $\eta+\int\limits_0^t \xi(s)\,ds$ является стационарным.

Доказательство.

$$\nu(t) = \eta + \int_{0}^{t} \xi(s) \, ds, \, \nu'(t) = \xi(t) \Rightarrow \mathcal{M} \{ \nu'(t) \} = \mathcal{M} \{ \xi(t) \} = m \neq 0$$

 $\nu(t)$ не является стационарным в широком смысле, что и требовалось доказать.

2.6 Дифференциальные уравнения со случайной правой частью

$$\eta'(t) = a(t)\eta(t) + b(t)\xi(t), t \ge 0$$
 (2.7)

$$\eta(0) = \nu \tag{2.8}$$

 $\eta'(t)$ – СК-производная $\eta(t)$, $\xi(t)$ – СК-непрерывная случайная функция, a(t),b(t) – непрерывные неслучайные функции, ν – некоторая случайная величина.

$$\eta(t) = \nu + \int_0^t a(\tau)\eta(\tau) d\tau + \int_0^t b(\tau)\xi(\tau) d\tau$$

Алгоритм поиска решения (2.7):

1. Вводим вспомогательную неслучайную функцию

$$\begin{cases} \theta'(t) = \theta(t)a(t), \ t \geqslant 0 \\ \theta(0) = 1 \end{cases}$$
 (2.9)

2. Решаем эту систему, $\theta(t)$ - решение (2.9);

3. Общее решение дифференциального уравнения (2.7) с начальным условием (2.8)

$$\eta(t) = \theta(t)\nu + \theta(t) \int_{0}^{t} \theta^{-1}(\tau)b(\tau)\xi(\tau)d\tau$$
 (2.10)

4. Найдём $\eta'(t)$:

$$\eta'(t) = \frac{d}{dt} \left[\theta(t)\nu + \theta(t) \int_0^t \theta^{-1}(\tau)b(\tau)\xi(\tau) d\tau \right] =$$

$$= \theta'(t)\nu + \theta'(t) \int_0^t \theta^{-1}(\tau)b(\tau)\xi(\tau) d\tau + \theta(t) \frac{d}{dt} \left[\int_0^t \theta^{-1}(\tau)b(\tau)\xi(\tau) d\tau \right] =$$

$$= a(t) \left(\theta(t)\nu + \theta(t) \int_0^t \theta^{-1}(\tau)b(\tau)\xi(\tau) d\tau \right) + \theta(t)\theta^{-1}(t)b(t)\xi(t) = a(t)\eta(t) + b(t)\xi(t)$$

5. Проверим начальные условия: $\theta(0) = 1 \Rightarrow eta(0) = \nu$; решение найдено.

2.7 Эргодические случайные процессы

Рассмотрим действительный случайный процесс с конечным моментом второго пордка, который представлен совокупностью траекторий. Появление любой траектории равновероятно, откуда имеем

$$m_{\xi}(t) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \xi_k(t); \ R_{\xi}^0(t, t + \tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \xi_k(t) \xi_k(t + \tau)$$

По сути, происходит осреднение вдоль траектории формул

$$m_{\xi_i} = \lim_{l \to \infty} \frac{1}{l} \int_0^l \xi_k(t) dt; \quad R_{\xi_i}^0(\tau) = \lim_{l \to \infty} \frac{1}{l} \int_0^l \xi_k(l) \xi_k(t+\tau) dt$$

Определение 1. Если $\xi(t)$ стационарен в узком смысле и указанные характеристики одинаковые для любой траектории процесса, то $\xi(t)$ – эргодический случайный процесс.

Эргодический случайный процесс характеризуется следующим свойством: какую бы траекторию не брали, она отлично подойдёт в качестве представителя всего процесса.

Для проверки на эргодичность достаточно проверить на стационарность в широком смысле.

Определение 2. Случайный процесс $\xi(t)$, СК-интегрируемый на T с весом $\frac{1}{l}$ и с константным математическим ожиданием, называется эргодическим по отношению к матожиданию, если

$$\exists \text{l.i.m. } \frac{1}{l} \int_{0}^{l} \xi(t) dt = m_{\xi} \Leftrightarrow \exists \lim_{l \to \infty} \mathcal{M} \left\{ \left| \frac{1}{l} \int_{0}^{l} \xi(t) dt - m_{\xi} \right|^{2} \right\} = 0$$

Теорема 12. Пусть $\xi(t)$ – CK-интегрируемый случайный процесс на T с весом $\rho(t)$, где $\rho(t)$ есть некоторая неслучайная интегрируемая на T функция. $\xi(t)$ является эргодическим относительно матожидания тогда и только тогда, когда

$$\lim_{l \to \infty} \int_{0}^{l} \int_{0}^{l} \rho(t_1) \rho(t_2) R_{\xi}(t_1, t_2) dt_1 dt_2 = 0$$

Доказательство. Из условий теоремы следует, что

$$\exists \eta(\omega) = \int_{T} \rho(t)\xi(t,\omega) dt$$
 (2.11)

$$m_{\eta} = \int_{T} \rho(t) m_{\xi}(t) dt \tag{2.12}$$

$$D_{\eta} = \iint_{T \times T} \rho(t_1) \rho(t_2) R_{\xi}(t_1, t_2) dt_1 dt_2$$
 (2.13)

 $\mathcal{D}\left\{\eta\right\} = \mathcal{M}\left\{\left|\eta(\omega) - \mathcal{M}\left\{\eta(\omega)\right\}\right|^{2}\right\} = \mathcal{M}\left\{\left|\int_{T=[0;l]} \rho(t)\xi(t) dt - \int_{T} \rho(t)m_{\xi}(t) dt\right|^{2}\right\} =$ $= \mathcal{M}\left\{\left|\int_{T} \rho(t)(\xi(t) - m_{\xi}(t)) dt\right|^{2}\right\}$

Приравниваем два результата для дисперсии, устремляем $l \to \infty$ и получаем доказательство теоремы.

Следствие 1. Если в условии теоермы $\rho(t) = \frac{1}{l}, \ t \in T = [0; l],$ то условие эргодичности процесса относительно матожидания примет вид

$$\lim_{l \to \infty} \frac{1}{l^2} \int_0^l \int_0^l R_{\xi}(t_1, t_2) dt_1 dt_2 = 0$$
 (2.14)

Теорема 13. Пусть случайный процесс $\xi(t)$ СК-интегрируем на T с весом $\frac{1}{l}$ и имеет постоянное математическое ожидание. Тогда для его эргодичности относительно матожидания достаточно следующего условия:

$$\exists \lim_{|t_1 - t_2| \to 0} R_{\xi}(t_1, t_2) = 0 \tag{2.15}$$

Доказательство. Для $\forall \varepsilon > 0 \; \exists \, l_0 \colon |t_2 - t_1| > l_0 \Rightarrow |R_\xi(t_1, t_2)| < \varepsilon$ Обозначим $G_1 = \{(t_1, t_2) \in T \times T \colon |t_2 - t_1| > l_0\}, \; G_2 = T \times T \setminus G_1$. Если $N = \max_T \mathcal{D} \left\{ \xi(t, \omega) \right\} = \max_{T \in T} R_\xi(t_1, t_2)$, а $m(G_1), \; m(G_2)$ есть площади соотвествующих множеств, то

$$\left| \frac{1}{l^2} \int_0^l \int_0^l R_{\xi}(t_1, t_2) dt_1 dt_2 \right| = \frac{1}{l^2} \left| \iint_{G_1} R_{\xi}(t_1, t_2) dt_1 dt_2 + \iint_{G_2} R_{\xi}(t_1, t_2) dt_1 dt_2 \right| \leqslant$$

$$\leqslant \frac{1}{l^2} \left(\iint_{G_1} |R_{\xi}(t_1, t_2)| dt_1 dt_2 + \iint_{G_2} |R_{\xi}(t_1, t_2)| dt_1 dt_2 \right) \leqslant \frac{\varepsilon m(G_1)}{l^2} + \frac{Nm(G_2)}{l^2} \leqslant$$

$$\leqslant [m(G_1) < l^2, m(G_2) = l^2 - (l - l_0)^2 = 2ll_0 l_0^2 < 2ll_0] \leqslant \varepsilon + 2N \frac{l_0}{l}$$

Таким образом, из (2.15) следует (2.14) при $l \to \infty$.

Замечания:

1. Необходимым и достаточным условием для эргодичности относительно матожидания стационарного случайного процесса является следующее:

$$\lim_{l \to \infty} \frac{1}{l} \int_{0}^{l} \left(1 - \frac{t}{l} \right) R_{\xi}(t) dt = 0$$

2. Достаточным условием для эргодичности относительно матожидания стационарнго случайного процесса является следующее:

$$\lim_{|t| \to \infty} R_{\xi}(t) = 0$$

Пример 1. Пусть z(t) = x(t) + y, $t \in T = [0; l]$, где x(t) - стационарный эргодический случайный процесс, y - случайная величина, некоррелируемая с x(t). Является ли z(t) эргодическим по отношению к матожиданию?

Решение. $m_z(t) = m_x + m_y$; $R_z(t,s) = R_x(t,s) + cov\{y,y\} = R_x(t-s) + D_y$. Отсюда видно, что z(t) – стационарный случайный процесс. Достаточное условие не выполняется, проверим критерий:

$$\frac{1}{l^2} \int_{0}^{l} \int_{0}^{l} R_z(t,s) \, dt ds = \frac{1}{l^2} \int_{0}^{l} \int_{0}^{l} R_x(t-s) \, dt ds + \int_{0}^{l} \int_{0}^{l} D_y \, dt ds \xrightarrow{|t_1 - t_2| \to \infty} D_y$$

Замечание: пусть $\xi(t,\omega)$ - известная реализация эргодического по отношению к матожиданию процесса $\xi(t)$. Тогда в качестве оценки матожидания можно использовать $\widetilde{m}_{\xi} = \frac{1}{l} \int_{0}^{l} \xi(t,\omega) \, dt$.

Определение 3. $\xi(t)$, СК-интегрируемый на с весом $\frac{1}{l}$ называется эргодическим по отношнению к некоторой функции f(x), если

$$\exists \lim_{l \to \infty} \frac{1}{l} \int_{0}^{l} f(\xi(t)) dt = \mathcal{M} \{ f(\xi(t)) \}$$

Определение 4. Стационарный случайный процесс $\xi(t), t \in T = [0; l]$, СК-интегрируемый на T с весом $\frac{1}{l}$ и обладающий константными математическим ожиданием и дисперсией, называется эргодическим по отношению к дисперсии, если

$$\exists 1. i. m. \frac{1}{l \to \infty} \int_{0}^{l} (\xi(t) - m_{\xi})^{2} dt = D_{\xi}$$

Если $\xi(t)$ эргодический по отношению к дисперсии D_{ξ} , то случайный процесс

$$\eta(t) = (\xi(t) - m_{\xi})^2$$

эргодический относительно своего математического ожидания $\mathcal{M}\{\eta(t)\}=D_{\xi}$. Таким образом, условие (2.14) является необходимым и достаточным, а условие (2.15) – достаточным для эргодичности исходного случайного процесса $\xi(t)$ относительно дисперсии.

Для надёжного определения искомых характеристик по одной реализации необходимо брать интервал усреднения l во много раз больше, чем время корреляции

$$t_0 = \frac{1}{R_{\xi}(0)} \int_{0}^{\infty} |R_{\xi}(t)| dt$$

Глава 3

Стохастические интегралы

3.1 Стохастические интегралы от неслучайных функций

Стохастический интеграл: $\int_a^b f(t) \, d\xi(t)$

Пусть $\xi(t), t \in T = [a; b]$ – центрированный случайный процесс с некоррелированными приращениями. Докажем, что существует неубывающая функция $F(t), t \in T$ такая, что случайная величина $\xi(t) - \xi(s), s < t, s, t \in T$ имеет дисперсию F(t) - F(s)

Доказательство. Зафиксируем t_0 и определим функцию F(t) следующим образом:

$$F(t) = \begin{cases} \mathcal{M} \{ |\xi(t) - \xi(t_0)|^2 \}, t > t_0 \\ 0, t = t_0 \\ -\mathcal{M} \{ |\xi(t) - \xi(t_0)|^2 \}, t < t_0 \end{cases}$$

1)
$$t_0 \leqslant s < t \Rightarrow F(t) = \mathcal{M} \left\{ |\xi(t) - \xi(t_0)|^2 \right\} = \mathcal{M} \left\{ |\xi(t) - \xi(s)|^2 \right\} + \mathcal{M} \left\{ |\xi(s) - \xi(t_0)|^2 \right\} + \mathcal{M} \left\{ (\xi(s) - \xi(t_0)) \overline{(\xi(t) - \xi(s))} \right\} = [\text{некорр. приращения}] = \mathcal{M} \left\{ |\xi(t) = \xi(s)|^2 \right\} + F(s);$$
2) $s < t \leqslant t_0 \Rightarrow -F(s) = \mathcal{M} \left\{ |\xi(t_0) - \xi(s)|^2 \right\} = \mathcal{M} \left\{ |\xi(t_0) - \xi(t)|^2 \right\} + \mathcal{M} \left\{ |\xi(t) - \xi(s)|^2 \right\} = -F(t) + \mathcal{M} \left\{ |\xi(t) - \xi(s)|^2 \right\};$
3) $s < t_0 \leqslant t \Rightarrow \mathcal{M} \left\{ |\xi(t) - \xi(s)|^2 \right\} = \mathcal{M} \left\{ |\xi(t) - \xi(t_0)|^2 \right\} + \mathcal{M} \left\{ |\xi(t_0) - \xi(s)|^2 \right\} = F(t) - F(s)$

Обозначим через $I(f) = \int_a^b f(t) \, d\xi(t)$ и воспользуемся принципом Римана построения стохастических интегралов.

Пусть $a=t_0 < t_1 < \ldots < t_{n+1} = b, t_k < \tau_k \leqslant t_{k+1}$. Если при $\max_k (t_{k+1}-t_k) \xrightarrow[n \to \infty]{n} 0$

 $\exists 1. i. m. \sum_{k=0}^{n} f(\tau_k)(\xi(t_{k+1}) - \xi(t_k)) = I(f), \text{ то } I(f) \text{ есть стохастический интеграл.}$

Пусть
$$f(\tau_k) = f_k$$
, тогда $\sum_{k=0}^n f_k(\xi(t_{k+1}) - \xi(t_k)) \approx I(f)$.

 $\mathcal{M}\{I(f)\} \approx \sum_{k=0}^{n} f_k \mathcal{M}\{\xi(t_{k+1}) - \xi(t_k)\} = 0$, т.к. процесс центрированный.

$$\mathcal{M}\{|I(f)|^2\} \approx \sum_{k=0}^n \sum_{m=0}^n f_k \bar{f}_m \mathcal{M}\{(\xi(t_{k+1}) - \xi(t_k))(\xi(t_{m+1}) - \xi(t_m))\} = \sum_{k=0}^n f_k \bar{f}_k \mathcal{D}\{\xi(t_{k+1}) - \xi(t_k)\} = \sum_{k=0}^n |f_k|^2 (F(t_{k+1}) - F(t_k))$$

Для общего случая:

$$\mathcal{M}\left\{I(f)\right\} = 0; \quad \mathcal{M}\left\{|I(f)|^2\right\} = \int_a^n |f(t)|^2 dF(t); \quad \mathcal{M}\left\{I(f)\overline{I(g)}\right\} = \int_a^b f(t)\overline{g(t)} dF(t)$$
 (3.1)

Верно равенство: $I(c_t f_1 + c_2 f_2) = c_1 I(f_1) + c_2 I(f_2)$

3.2 Спектральное представление стационарных в широком смысле ${\rm C}\Pi$

Теорема 1. Пусть $\xi(n), n \in \mathbb{Z}$ – центированный стационарный в широком смысле СП с ковариационной функцией $R_{\xi}(n) = \int_{\Pi} e^{in\lambda} dF_{\xi}(\lambda)$. Тогда существует СП $Z_{\xi}(\lambda), \lambda \in \Pi = [-\pi; \pi]$ с нулевым МО и ортогональными приращениями, $\mathcal{M}\{|Z_{\xi}(\lambda)|^2\} = F_{\xi}(\lambda)$ и

$$\xi(n) = \int_{\Pi} e^{i\lambda n} dZ_{\xi}(\lambda) \tag{3.2}$$

(3.2) — спектральное представление стационарной в широком смысле случайной последовательности.

Теорема 2. Пусть $\xi(n), n \in \mathbb{R}$ – центированный стационарный в широком смысле СП с ковариационной функцией $R_{\xi}(n) = \int_{\mathbb{R}} e^{in\lambda} dF_{\xi}(\lambda)$. Тогда существует СП $Z_{\xi}(\lambda), \lambda \in \mathbb{R}$ с нулевым МО и ортогональными приращениями, $\mathcal{M}\{|Z_{\xi}(\lambda)|^2\} = F_{\xi}(\lambda)$ и

$$\xi(n) = \int_{\mathbb{R}} e^{i\lambda n} dZ_{\xi}(\lambda) \tag{3.3}$$

(3.3) – спектральное представление стационарного в широком смысле случайного процесса.

3.3 Стационарное линейное преобразование стационарных ${\rm C}\Pi$

3.3.1 Линейное преобразование в спектральной (частотной) форме

Определение 1. Случайная величина η является линейным преобразованием $CC\Pi$ $\xi(t)$, если она является линейной комбинацией сечений случайного процесса $\xi(t)$ или пределом в СК-смысле таковых $(\eta(t) \in \mathbb{H}(\xi))$

Теорема 3. Пусть случайная величина $\eta \in \mathbb{H}(\xi)$, где $\xi(n), n \in \mathbb{Z}$ – $CC\Pi$, имеющий спектральное представление (**3.2**) и спектральную функцию $F_{\xi}(\lambda)$. Тогда существует такая фукнция $\phi(\lambda), \lambda \in \Pi$, что

$$\eta = \int_{\Pi} \phi(\lambda) dZ_{\xi}(\lambda)$$

$$\int_{\Pi} |\phi(\lambda)|^2 dF_{\xi}(\lambda) < \infty$$
(3.4)

Определение 2. $\phi(\lambda)$ – частотная характеристика линейного преобразованя. Условие (3.4) означает, что $\mathcal{M}\{|\eta|^2\} = \int_{\Pi} |\phi(\lambda)|^2 dF_{\xi}(\lambda) < \infty$

Определение 3. Пусть $\xi(n).n \in \mathbb{Z}$, имеет представление (3.2). Если последовательность $\eta(n)$ допускает представление

$$\eta(n) = \int_{\Pi} e^{i\lambda n} \phi(\lambda) dZ_{\xi}(\lambda)$$
 (3.5)

с некоторой функцией $\phi(\lambda)$, удовлетворяющей условию (3.4), то говорят, что последовательнсть $\eta(n)$ получена из ССП $\xi(t)$ с помощью стационарного линейного преобразования.

$$\mathcal{M}\left\{\eta(n)\right\} = \mathcal{M}\left\{\int_{\Pi} e^{i\lambda n}\phi(\lambda) dZ_{\xi}(\lambda)\right\} = 0;$$

$$R_{\eta}(n,m) = cov\left\{\int_{\Pi} e^{i\lambda n}\phi(\lambda) dZ_{\xi}(\lambda), \int_{\Pi} e^{i\lambda m}\phi(\lambda) dZ_{\xi}(\lambda)\right\} =$$

$$= \mathcal{M}\left\{\int_{\Pi} e^{i\lambda n}\phi(\lambda) dZ_{\xi}(\lambda) \cdot \int_{\Pi} e^{i\lambda m}\phi(\lambda) dZ_{\xi}(\lambda)\right\} = [(\mathbf{3.1})] = \int_{\Pi} e^{i\lambda n}\phi(\lambda)\overline{e^{i\lambda m}\phi(\lambda)} dF_{\xi}(\lambda) =$$

$$= \int_{\Pi} e^{i\lambda(n-m)}|\phi(\lambda)|^{2} dF_{\xi}(\lambda) \quad (\mathbf{3.6})$$

 $\eta(n)$ стационарен, т.к. момент второго порядка конечен по (3.4).

Теорема 4. Последовательность $\eta(n)$, полученная из ССП $\xi(n)$ с помощью линейного преобразования (3.5), является стационарной со спектральной функцией $F_{\eta}(\lambda)$, ковариационной функцией $R_{\eta}(n)$ и дисперсией $D_{\eta}(n)$:

$$f_{\eta}(\lambda) = \int_{-\pi}^{\lambda} |\phi(\lambda)|^2 dF_{\xi}(\lambda); \quad R_{\eta}(n) = \int_{\Pi} e^{i\lambda n} |\phi(\lambda)|^2 dF_{\xi}(\lambda); \quad \mathcal{D}\left\{\eta(n)\right\} = \int_{\Pi} |\phi(\lambda)|^2 dF_{\xi}(\lambda) = D_{\eta}(n)$$

Пусть СП $\xi(t), t \in \mathbb{R}$, имеет представление (3.3), $F_{\xi}(\lambda)$ – его спектральная функция. Пусть задана некоторая комплексная функция

$$\phi(\lambda), \lambda \in \mathbb{R} : \int_{\mathbb{R}} |\phi(\lambda)|^2 dF_{\xi}(\lambda) < \infty$$
 (3.7)

Если случайный процесс $\eta(t), t \in \mathbb{R}$, допускает представление

$$\eta(t) = \int_{\mathbb{R}} e^{i\lambda t} \phi(\lambda) dZ_{\eta}(\lambda), \tag{3.8}$$

где $\phi(\lambda)$ удовлетворяет условию $({\bf 3.7}),$ то говорят что процесс $\eta(t)$ получен из ССП $\eta(t)$ с помощью стационарного линейного преобразования.

$$\mathcal{D}\left\{\eta(t)\right\} = \int_{\mathbb{R}} |\phi(\lambda)|^2 dF_{\xi}(\lambda) = D_{\eta}; \quad F_{\eta}(\lambda) = \int_{-\infty}^{\lambda} |\phi(\nu)|^2 dF_{\xi}(\nu), \lambda \in \mathbb{R}$$
$$R_{\eta}(t) = \int_{\mathbb{R}} e^{i\lambda t} |\phi(\lambda)|^2 dF_{\eta}(\lambda); \quad f_{\eta}(\lambda) = |\phi(\lambda)|^2 f_{\xi}(\lambda), \lambda \in \mathbb{R}$$

Замечание: если линейного преобразованию подтвергается гауссовский СП $\xi(t)$, то результатом является также гауссовский СП $\eta(t)$.

3.3.2 Применение спектральных представлений к исследованию СП

Если для стационарных СП $\xi(t), t \in \mathbb{R}, \int_{\mathbb{R}} \lambda^2 dF_{\xi}(\lambda) < \infty$, то $\xi(t)$ дифференцируем в СК-смысле, и его производная есть линейное преобразование $\xi(t)$ с частотной характеристикой $\phi(\lambda) = i\lambda$

$$\xi'(t) = \lim_{h \to 0} \frac{\xi(t+h) - \xi(t)}{h} = \lim_{h \to 0} \int_{\mathbb{R}} \frac{e^{i\lambda(t+h)} - e^{i\lambda t}}{h} dZ_{\xi}(\lambda) = \int_{\mathbb{R}} e^{i\lambda t} i\lambda dZ_{\xi}(\lambda)$$

Распишим предел в СК-смысле по определению:

$$\mathcal{M}\left\{\left|\int_{\mathbb{R}} \frac{e^{i\lambda(t+h)} - e^{i\lambda t}}{h} dZ_{\xi}(\lambda) - \int_{\mathbb{R}} e^{i\lambda t} i\lambda dZ_{\xi}(\lambda)\right|^{2}\right\} = \mathcal{M}\left\{\left|\int_{\mathbb{R}} e^{i\lambda t} \left(\frac{e^{i\lambda h} - 1}{h} - i\lambda\right) dZ_{\xi}(\lambda)\right|^{2}\right\} =$$

$$= [(\mathbf{3.1})] = \int_{\mathbb{R}} \left|e^{i\lambda t} \left(\frac{e^{i\lambda h} - 1}{h} - i\lambda\right)\right|^{2} dF_{\xi}(\lambda) \xrightarrow[h \to 0]{} 0$$

Полагая $W(\lambda) = \int_{(-\infty;\lambda]} i\mu \, dZ_{\xi}(\mu)$, получим $\xi'(t) = \int_{\mathbb{R}} e^{i\lambda t} \, dW(\lambda)$.

$$F_{\xi'}(\lambda) = \mathcal{M}\left\{|W(\lambda)|^2\right\} = \mathcal{M}\left\{\left|\int_{-\infty}^{\lambda} i\mu \, dZ_{\xi}(\mu)\right|^2\right\} = \int_{-\infty}^{\lambda} |i\mu|^2 \, dF_{\xi}(\mu)$$

3.3.3 Линейные преобразования во временной области

Пусть $\xi(n)$ – СП с $\mathcal{M}\{\xi(n)\}=m_{\xi}(n)$ и ковариационной функцией $R_{\xi}(n,m), n,m \in \mathbb{Z}$.

Определение 4. СП $\eta(n), n \in \mathbb{Z}$, называется линейным преобразованием СП $\xi(n), n \in \mathbb{Z}$, с весовой последовательностью (импульсной переходной функцией) $h(n), n \in \mathbb{Z}$, если

$$\forall n \in \mathbb{Z} \Rightarrow \eta(n) = \sum_{m \in \mathbb{Z}} h(n-m)\xi(m)$$
 (3.9)

Процесс $\eta(n)$ существует тогда и только тогда, когда сходятся числовые ряды

$$\underbrace{I_1(n) = \sum_{m \in \mathbb{Z}} h(n-m) m_{\xi}(m);}_{\text{MO отклика}} \quad \underbrace{I_2(n) = \sum_{m,l \in \mathbb{Z}} h(n-m) \overline{h(n-l)} R_{\xi}(m,l)}_{\text{дисперсия отклика}}$$

На практике просто накладывают ограничение:

$$\mathcal{M}\left\{|\xi(n)|^2\right\}\leqslant K^2; \quad \mathcal{D}\left\{\xi(n)\right\}=\sigma^2\xi(n)=\mathcal{M}\left\{\xi^2(n)\right\}+(\mathcal{M}\left\{\xi(n)\right\})^2\Rightarrow |\sigma\xi(n)|\leqslant K, |m_\xi(n)|\leqslant K$$
 Тогда для существования $\eta(n)$ достаточно условия $\sum\limits_{m\in\mathbb{Z}}|h(n-m)|<\infty$

Доказательство.

$$|I_{1}(n)| = \left| \sum_{m \in \mathbb{Z}} h(n-m)m_{\xi}(n) \right| \leqslant K \cdot \sum_{m \in \mathbb{Z}} |h(n-m)| < \infty;$$

$$|I_{2}(n)| = \left| \sum_{m,l \in \mathbb{Z}} h(n-m)\overline{h(n-l)}R_{\xi}(m,l) \right| = \left| \sum_{m,l \in \mathbb{Z}} h(n-m)\overline{h(n-l)}cov\{\xi(m),\xi(l)\} \right| \leqslant$$

$$\leqslant \sum_{m,l \in \mathbb{Z}} |h(n-m)| \cdot |\overline{h(n-l)}|\sigma\xi(m)\sigma\xi(l) = \left(\sum_{m \in \mathbb{Z}} |h(n-m)| \cdot \sigma\xi(m) \right)^{2} \leqslant K^{2} \left(\sum_{m \in \mathbb{Z}} |h(n-m)| \right)^{2} < \infty$$

Пусть $\xi(n)$ – действительный стационарный СП с характеристиками $\mathcal{M}\left\{\xi(n)\right\}=m_{\xi}, R_{\xi}(n),$ $R_{\xi}(0)=D_{\xi}>0, n\in\mathbb{Z}.$

Случайный процесс $\xi(n), n \in \mathbb{Z}$, называется фильтром (стационарным линейным преобразованием) СП $\xi(n), n \in \mathbb{Z}$, с весовой последовательностью $h(m), m \in \mathbb{Z}$, если

$$\forall n \in \mathbb{Z} \Rightarrow \eta(n) = \sum_{m \in \mathbb{Z}} h(m)\xi(n-m)$$
 (3.10)

Существование (3.10) эквивалентно утверждению

$$\sum_{m \in \mathbb{Z}} |h(m)| < \infty \tag{3.11}$$

Замечание: если h(m) = 0 при всех m < 0, то (3.10), имеющее вид $\eta(n) = \sum_{m \in \mathbb{N}_0} h(m) \xi(n-m)$, называется физически осуществимым фильтром.

Докажем, что $\eta(n)$ – стационарный в широком смысле.

Доказательство.

$$\mathcal{M}\left\{\eta(n)\right\} = \mathcal{M}\left\{\sum_{m\in\mathbb{Z}}h(m)\xi(n-m)\right\} = \sum_{m\in\mathbb{Z}}h(m)m_{\xi}(n-m) = m_{\xi}\sum_{m\in\mathbb{Z}}h(m) = [(\mathbf{3.11})] = m_{\eta}$$

$$R_{\eta}(n,k) = \sum_{m \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} h(m) \overline{h(l)} cov\{\xi(n-m), \xi(k-l)\} =$$

$$= \sum_{m \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} h(m) \overline{h(l)} R_{\xi}(n-m-(k-l)) = R_{\eta}(n-k) \quad (3.12)$$

$$\mathcal{D}\left\{\eta\right\} = R_{\eta}(0) = \sum_{l,m \in \mathbb{Z}} h(m)\overline{h(l)}R_{\xi}(l-m) = D_{\eta} \geqslant 0; \qquad |R_{\eta}(0)| \leqslant R_{\eta}(0) \left(\sum_{m \in \mathbb{Z}} |h(m)|\right)^{2} < \infty$$

Комплексная функция $\phi(\lambda)$, $\lambda \in \Pi = [-\pi; \pi]$, определяемая соотношением $\phi(\lambda) = \sum_{m \in \mathbb{Z}} h(m) e^{-i\lambda m}$, называется $vacmomhoù xapakmepucmukoù линейного стационарного преобразования (3.10). <math>\phi(\lambda)$ существует, если выполнено (3.11), т.е.

$$|\phi(\lambda)| = \left| \sum_{m \in \mathbb{Z}} h(m) e^{-i\lambda m} \right| \leqslant \sum_{m \in \mathbb{Z}} |h(m)| \cdot |e^{-i\lambda m}| \leqslant \sum_{m \in \mathbb{Z}} |h(m)| < \infty;$$

$$\eta(n) = \sum_{m \in \mathbb{Z}} h(m) \xi(n-m) \stackrel{\text{(3.2)}}{=} \sum_{m \in \mathbb{Z}} h(m) \int_{\Pi} e^{i\lambda(n-m)} dZ_{\xi}(\lambda) = \int_{\Pi} e^{i\lambda n} \phi(\lambda) dZ_{\xi}(\lambda),$$

где $\phi(\lambda) = \sum_{m \in \mathbb{Z}} h(m) e^{-i\lambda m}$

Пусть $\xi(n), n \in \mathbb{Z}$, имеет спектральную плотность $f_{\xi}(\lambda), \lambda \in \Pi$.

$$f_{\eta}(\lambda) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} R_{\eta}(n) e^{-i\lambda n} \stackrel{\textbf{(3.12)}}{=} \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \sum_{m,l \in \mathbb{Z}} h(m) \overline{h(l)} R_{\xi}(n-m+l) \cdot e^{-i\lambda n} =$$

$$= [n-m+l=p] = \sum_{m,l \in \mathbb{Z}} h(m) h(m) \overline{h(l)} e^{-i\lambda m} e^{i\lambda l} \cdot \frac{1}{2\pi} \sum_{p \in \mathbb{Z}} R_{\xi}(p) e^{-i\lambda p} = \phi(\lambda) \overline{\phi(\lambda)} f_{\xi}(\lambda) = |\phi(\lambda)|^2 f_{\xi}(\lambda)$$

Если на вход фильтра с частотной характеристикой $\phi(\lambda)$ подаётся стандартной белый шум e(n), то на выходе фильтра наблюдается стационарная последовательность скользящего среднего

$$\eta(n) = \sum_{m \in \mathbb{Z}} h(m)e(n-m) \tag{3.13}$$

со спектральной плотностью $f_{\eta}(\lambda) = \frac{|\phi(\lambda)|^2}{2\pi}$

Теорема 5. Пусть $\eta(n), n \in \mathbb{Z}$, стационарный СП со спектральной плотностью $f_{\eta}(\lambda)$. Тогда можно найти такую последовательность $e(n), n \in \mathbb{Z}$, являющихся стандартным белым шумом, и такой фильтр, что справедливо (3.13).

Следствие 1. Пусть $f_{\eta}(\lambda) > 0, f_{\eta}(\lambda) = \frac{|\phi(\lambda)|^2}{2\pi}, \ \textit{rde } \phi(\lambda) = \sum_{m \in \mathbb{N}_0} h(m) e^{-i\lambda m}, \sum_{m \in \mathbb{N}_0} |h(m)|^2 < \infty.$

Tогда $\eta(n)$ допускает представление в виде одностороннего скользящего среднего:

$$\eta(n) = \sum_{m \in \mathbb{N}_0} h(m)e(n-m)$$

3.4 Линейное прогнозирование ССП

3.4.1 Прогнозирование стационарных случайных последовательностей

Пусть $\xi(n), n \in \mathbb{Z}$ – центрированная ССП с ковариационной функцией $R_{\xi}(n)$.

Рассмотрим пространство $\mathcal{H}(\xi)$ и введём скалярное произведение $(\xi, \gamma) = \mathcal{M}\{\xi\bar{\gamma}\}$. Пусть известны $\xi(m), \xi(m-1), \ldots$ и сформируем по ним пространство $\mathcal{H}(\xi^m) \subseteq \mathcal{H}(\xi)$. Задача: оценить $\xi(m+n)$ на n>0 вперёд по наблюдаемой части $\xi(s), s\leqslant m$.

Под оценкой понимаем функцию $\xi(m+n)=g(\xi(s),s\leqslant m)$, для которой

$$\sigma_n^2 = \mathcal{M}\left\{ |\xi(m+n) - \tilde{\xi}(m+n)|^2 \right\} \to \min$$

Определение 1. Наилучшим линейным СК-прогнозом для $\xi(m+n), n>0$ по наблюдениям $\xi(s), s\leqslant m$, называется случайная величина $\eta\in\mathcal{H}(\xi^m)$ такое, что

$$\mathcal{M}\left\{|\xi(m+n)-\eta|^2\right\} \leqslant \mathcal{M}\left\{|\xi(m+n)-\gamma|^2\right\}, \forall \gamma \in \mathcal{H}(\xi^m)$$

Наилучшим линейным прогнозом будем обозначать $\tilde{\xi}(m+n)$, точность характеризуется СК-погрешностью σ_n^2 .

Теорема 6. СК-оптимальная оценка имеет вид условного математического ожидания:

$$\tilde{\xi}(m+n) = \mathcal{M}\left\{\xi(m+n)|F_{\leq m}\right\},\,$$

где $F_{\leqslant m}$ – σ -алгебра, порождённая конечным набором $\xi(m), \xi(m-1), \ldots$

Определение 2. Центированная стационарная случайная последовательность $\xi(n)$ называется сингулярной (детерминированной), если $\sigma_n^2 = 0, \forall n > 0.$

Если
$$\sigma_n^2 \xrightarrow[n \to \infty]{} D_{\xi} = R_{\xi}(0)$$
, то ССП называется регулярной.

Замечание: сингулярность $\xi(n)$ означает, что последовательность абсолютно точно прогнозируется на любое число шагов по своему прошлому; регулярность последовательность означает, что при $n \to \infty$ прогноз становится тривиальным. **Теорема 7.** Центрированая $CC\Pi \ \xi(n)$ единственным образом представляется в виде суммы сингулярной и регулярной $CC\Pi$

$$\xi(n) = \xi^s(n) + \xi^r(n), \ cov\{\xi^s(n), \xi^r(m)\} = 0, \forall n, m; \quad \mathcal{H}((\xi^r)^n) \subseteq \mathcal{H}(\xi^n), \mathcal{H}((\xi^s)^n) \subseteq \mathcal{H}(\xi^n) \quad (3.14)$$

Это разложение называется разложением Вальда.

Определение 3. Центрированный стандартный белый шум $e(n), n \in \mathbb{Z}$, называется обновляющим процессом для ССП $\xi(n)$, если $\forall n \Rightarrow \mathcal{H}(\xi^n) = \mathcal{H}(\{e(n), e(n-1), \ldots\})$

Теорема 8. Центрированная ССП $\xi(n)$ регулярна тогда и только тогда, когда существует обновляющий процесс e(n) и коэффициенты $a_k, k \in \mathbb{N}_0$ такие, что

$$\xi(n) = \sum_{k=0}^{\infty} a_k e(n-k), \sum_{k=0}^{\infty} |a_k|^2 < \infty$$

Теорема 9. Центрированная $CC\Pi \ \xi(n)$ регулярна тогда и только тогда, когда её спектральная плотность $f_{\xi}(\lambda)$ удовлетворяет условию

$$\int_{-\pi}^{\pi} \ln f_{\xi}(\lambda) \, d\lambda > -\infty$$

Пример 1. ССП $\xi(n)$: $\xi(n) = a\xi(n-1) + e(n)$, где |a| < 1. Доказать, что $\xi(n)$ регулярна.

Доказательство.

$$e(n) = \xi(n) - a\xi(n-1) \Rightarrow \mathcal{H}(e^n) \subseteq \mathcal{H}(\xi^n)$$

$$\xi(n) = \sum_{k=0}^{\infty} a^k e(n-k), \sum_{k=0}^{\infty} |a^k|^2 = \frac{1}{1-|a|^2} < \infty \Rightarrow \mathcal{H}(\xi^n) \subseteq \mathcal{H}(e^n) \Rightarrow \xi(n) \text{ регулярна.}$$

Теорема 10. Пусть $\Pi_{\mathcal{H}(\xi^m)}$ – оператор ортогонального проектирования на подпространство $\mathcal{H}(\xi^m)$, тогда

$$\tilde{\xi}(m+n) = \Pi_{\mathcal{H}(\xi^m)} \xi(m+n) \tag{3.15}$$

является CK-оптимальным линейным прогнозом для $\xi(m+n)$ по наблюдениям $\xi(s), s \leqslant m$. Иначе проектирование можно записать так:

$$\left(\xi(m+n) - \tilde{\xi}(m+n), \nu\right) = 0 \Leftrightarrow \mathcal{M}\left\{\left(\xi(m+n) - \tilde{\xi}(m+n)\right)\bar{\nu}\right\} = 0 \ \forall \nu \in \mathcal{H}(\xi^m)$$

Пример 2. $\xi(n) = \sum_{k=0}^{\infty} a_k e(n-k), e(n)$ – обновляющий. Показать, что $\tilde{\xi}(m+n) = \sum_{k=n}^{\infty} a_k e(m+n-k),$ найти σ_n^2 .

Pewenue. Предполагаем, что наблюдение до момента 0, а не до момента m.

$$\xi(n) = \sum_{k=0}^{\infty} a_k e(n-k) = \sum_{k=0}^{n-1} a_k e(n-k) + \sum_{k=n}^{\infty} a_k e(n-k) = \xi^{(1)}(n) + \xi^{(2)}(n)$$

$$\xi^{(1)}(n) \perp \mathcal{H}(e^0), \xi^{(2)}(n) \in \mathcal{H}(e^0), \mathcal{H}(\xi^0) = \mathcal{H}(e^0) \Rightarrow \xi^{(1)}(n) \perp \mathcal{H}(\xi^0)$$

$$\xi^{(1)}(n) = \left(\xi(n) - \xi^{(2)}(n)\right) \perp \mathcal{H}(\xi^0) \Rightarrow \xi^{(2)}(n) = \tilde{\xi}(n)$$

$$\sigma_n^2 = \mathcal{M}\left\{ \left| \xi(n) - \tilde{\xi}(n) \right|^2 \right\} = \mathcal{M}\left\{ \left| \xi(n) - \xi^{(2)}(n) \right|^2 \right\} = \mathcal{M}\left\{ \left| \xi^{(1)}(n) \right|^2 \right\}$$

3.4.2 Прогнозирование стационарных случайных процессов

Рассмотрим $\xi(s)$, $s \in \mathbb{R}$ – СК-непрерывный процесс с нулевым математическим ожиданием и ковариационной функцией $R_{\xi}(s)$ и пространство $\mathcal{H}(\xi)$.

Пусть $\xi(s), s\leqslant t$ наблюдается. Вводим $\mathcal{H}(\xi^t)\subseteq\mathcal{H}(\xi)$. Нужно оценить $\xi(t+h), h>0$, по наблюдаемой реализации.

Под оценкой понимается функция $\tilde{\xi}(t+h) = g(\xi(s), s \leqslant t)$ для которой

$$\sigma_n^2 = \mathcal{M}\left\{ \left| \xi(t+h) - \tilde{\xi}(t+h) \right|^2 \right\} = \min_{\gamma \in \mathcal{H}(\xi^t)} \mathcal{M}\left\{ \left| \xi(t+h) - \gamma \right|^2 \right\}$$

Определение 4. Наилучшей в СК-смысле оценкой будет $\tilde{\xi}(t+h) = \mathcal{M}\{\xi(t+h)|F_{\leqslant t}\}$. Если $\mathcal{M}\left\{\left(\xi(t+h) - \tilde{\xi}(t+h)\right)\bar{\gamma}\right\} = 0 \ \forall \gamma \in \mathcal{H}(\xi^k)$, то случайная величина $\tilde{\xi}(t+h)$ является оптимальной в СК-смысле оценкой.

 \mathcal{A} оказательство. Рассмотрим $\hat{\xi} \in \mathcal{H}(\xi^t)$, тогда

$$\sigma_{n}^{2} = \mathcal{M}\left\{\left|\xi(t+h) - \hat{\xi}\right|^{2}\right\} = \left[\pm\tilde{\xi}(t+h)\right] = \mathcal{M}\left\{\left|\xi(t+h) - \tilde{\xi}(t+h)\right|^{2}\right\} + \mathcal{M}\left\{\left|\tilde{\xi}(t+h) - \hat{\xi}\right|^{2}\right\} + \mathcal{M}\left\{\left(\xi(t+h) - \tilde{\xi}(t+h)\right)\overline{\left(\tilde{\xi}(t+h) - \xi\right)}\right\} + \mathcal{M}\left\{\left(\xi(t+h) - \tilde{\xi}(t+h)\right)\overline{\left(\xi(t+h) - \xi\right)}\right\} + \mathcal{M}\left\{\left(\xi(t+h) - \xi\right)\overline{\left(\xi(t+h) -$$

Заметим, что

$$\mathcal{M}\left\{\left(\xi(t+h) - \tilde{\xi}(t+h)\right)\overline{\xi(s)}\right\} = 0, s \leqslant t \Leftrightarrow R_{\xi}(t+h-s) = \mathcal{M}\left\{\tilde{\xi}(t+h)\overline{\xi(s)}\right\}$$
(3.16)

Пример 3. Центрированный ССП $\xi(t)$ имеет КФ $R_{\xi}(t) = e^{-|t|}$. Показать, что оценкой случайной величины $\xi(t+h)$ является $\tilde{\xi}(t+h) = e^{-h}\xi(t)$, если известны $\xi(s), s \leqslant t$.

Решение.

$$\mathcal{M}\left\{\xi(s)\tilde{\xi}(t+h)\right\} = \mathcal{M}\left\{\xi(s)e^{-h}\tilde{\xi}(t)\right\} = e^{-h}\mathcal{M}\left\{\xi(s)\xi(t)\right\} = R_{\xi}(s-t+h)$$

3.5 Модели авторегрессии и скользящего среднего

Пусть ССП $\varepsilon(n), n \in \mathbb{Z}$ – стандартный белый шум.

Определение 1. Случайная последовательность $\xi(n)$ называется последовательностью авторегрессии порядка $p \geqslant 1$ (AP(p)), если

$$\sum_{k=0}^{p} b_k \xi(n-k) = \varepsilon(n),$$

где $\{b_1, \ldots, b_p\}$ – числовые параметры модели авторегрессии.

Алгебраическое уравнение $x_p + \sum_{k=1}^p b_k x^{p-k} = 0$ называется xapaк mepuc muческим уравнением AP-модели.

AP-модель называется *асимптотически устойчивой*, если все решения характеристического уравнения по модулю не превосходят единицы.

41

Определение 2. СП $\eta(n)$ называется последовательностью *скользящего среднего* порядка $q \geqslant 1$, если она удовлетворяет уравнению

$$\eta(n) = \sum_{k=0}^{q} a_k \varepsilon(n-k),$$

где $\{a_0,\ldots,a_q\}$ – числовые параметры СС-модели.

Если все решения $\{z_i\}$ характеристического уравнения СС-модели $a_0z^q + \sum_{k=1}^q a_kz^{q-k} = 0$ удовлетворяют условия $|z_i| < 1$, то СС-модель называется минимально фазовой.

Определение 3. СП $\xi(n)$ называется последовательностью авторегрессии-скользящего средне-го, если она удовлетворяет уравнению

$$\xi(n) + \sum_{k=1}^{p} b_k \xi(p-k) = a_0 \varepsilon(n) + \sum_{k=1}^{q} a_k \varepsilon(q-k),$$

где $\{b_0,\ldots,b_p\},\ \{a_0,\ldots,a_q\}$ — числовые параметры АРСС-модели, p — порядок авторегрессии, q — порядок скользящего среднего.

Замечание: если $\varepsilon(n)$ – гауссовский белый шум, то APCC-последовательность также называется гауссовской.

3.6 Стохастический интеграл Ито

Пусть $\omega(t), t \in \Delta = [0; L]$ – стандартный винеровский СП. Зафиксируем $t \in \Delta$ и построим σ -алгебру событий F_t , порождённую $\{\omega(s), s \leqslant t\}$.

$$\forall t \in \Delta \Rightarrow \{f(t) \in B\} \in F_t, \forall B \in B(\mathbb{R})$$

Случайная функция f(t) называется неупреждающей, если поведение процесса f(s), s > t, не зависит от того, какие значения принимает $f(s), s \leq t$.

Пусть интервал Δ разбит на промежутки:

$$\Delta = \sum_{k=1}^{n} \Delta_k, \Delta_1 = [t_1, t_2], \Delta_2 = (t_2, t_3], \dots, \Delta_n = (t_n, t_{n+1}]$$

Определение 2. Случайная функция f(t) называется npocmoй, если она имеет вид

$$f(t) = \sum_{k=1}^{n} \xi_k I_{\Delta_k}(t), I_{\Delta_k}(t) = \begin{cases} 1, t \in \Delta_k \\ 0, t \notin \Delta_k \end{cases}$$

где ξ_k – центрированная СВ с $\mathcal{M}\left\{|\xi_k|^2\right\} = D_k < \infty, \forall k = \overline{1,n}$

Определение 3. Стохастическим интегралом Ито от простой неупреждающей функции f(t) по винеровскому процессу $\omega(t), t \in \Delta$, называется случайная величина

$$I(f) = \int_{\Delta} f(t) d\omega(t) = \sum_{k=1}^{n} \xi_k \Delta \omega_k, \quad \Delta \omega_k = \omega(t_{k+1}) - \omega(t_k)$$
 (3.17)

Свойства стохастического интеграла:

- 1. Линейность по функции: $I(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 I(f_1) + \alpha_2 I(f_2)$, где $\alpha_{1,2}$ неслучайные числа, а $f_{1,2}$ простые неупреждающие функции;
- 2. Линейность по области интегрирования: если a < c < b, то $\int_a^b f \, d\omega = \int_a^c f \, d\omega + \int_c^b f \, d\omega$;
- 3. $\mathcal{M}\{I(f)\}=0$

Доказательство.

$$\mathcal{M}\left\{I(f)\right\} = \sum_{k=1}^{n} \mathcal{M}\left\{\xi_{k}\Delta(w_{k})\right\}; \quad \mathcal{M}\left\{\xi_{k}\Delta\omega_{k}\right\} = \mathcal{M}\left\{\mathcal{M}\left\{\xi_{k}\Delta\omega_{k}|F_{t_{k}}\right\}\right\} =$$

$$= \mathcal{M}\left\{\xi_{k}\mathcal{M}\left\{\Delta\omega_{k}|F_{t_{k}}\right\}\right\} = \mathcal{M}\left\{\xi_{k}\right\}\mathcal{M}\left\{\Delta\omega_{k}\right\} = 0$$

4. $\mathcal{M}\{|I(f)|^2\} = \int_{\Lambda} \mathcal{M}\{|f(t)|^2\} dt < \infty$

Доказательство.

$$\mathcal{M}\left\{|\xi_{k}\Delta\omega_{k}|^{2}\right\} = \mathcal{M}\left\{|\xi_{k}|^{2}\right\} \mathcal{M}\left\{|\Delta\omega_{k}|^{2}\right\} = D_{k}(t_{k+1} - t_{k});$$

$$\mathcal{M}\left\{\xi_{k}\Delta\omega_{k} \cdot \xi_{l}\Delta\omega_{l}\right\} = \mathcal{M}\left\{\xi_{k}\Delta\omega_{k}\xi_{l}\right\} \mathcal{M}\left\{\Delta\omega_{l}\right\} = 0, k < l;$$

$$\mathcal{M}\left\{|I(f)|^{2}\right\} = \mathcal{M}\left\{\left|\sum_{k=1}^{n} \xi_{k}\Delta\omega_{k}\right|^{2}\right\} = \sum_{k=1}^{n} D_{k}(t_{k-1} - t_{k}) = \sum_{k=1}^{n} \mathcal{M}\left\{|\xi_{k}|^{2}\right\} (t_{k+1} - t_{k}) = \int_{\Delta} \mathcal{M}\left\{|f(t)|^{2}\right\} dt < \infty$$

5. $\mathcal{M}\left\{\int_{\Delta} f(t) d\omega(t) \cdot \int_{\Delta} \psi(t) d\omega(t)\right\} = \int_{\Delta} \mathcal{M}\left\{f(t)\psi(t)\right\} dt$

Доказательство.

$$I(\psi) = \int_{\Delta} \psi(t) \, d\omega(t) = \sum_{l=1}^{k} \eta_{l} \Delta \omega_{l}; \quad k < l : \mathcal{M} \left\{ \int_{\Delta} f(t) \, d\omega(t) \int_{\Delta} \psi(t) \, d\omega(t) \right\} =$$

$$= \mathcal{M} \left\{ \sum_{k,l=1}^{n} \xi_{k} \eta_{l} \Delta \omega_{k} \Delta \omega_{l} \right\} = \sum \mathcal{M} \left\{ \xi_{k} \eta_{l} \Delta \omega_{k} \right\} \mathcal{M} \left\{ \Delta \omega_{l} \right\} = 0$$

$$\mathcal{M} \left\{ \int_{\Delta} f(t) \, d\omega(t) \cdot \int_{\Delta} \psi(t) \, d\omega(t) \right\} = \mathcal{M} \left\{ \sum_{k=1}^{n} \xi_{k} \eta_{k} (\Delta \omega_{k})^{2} \right\} = \sum \mathcal{M} \left\{ \xi_{k} \eta_{k} \right\} \mathcal{M} \left\{ (\Delta \omega_{k})^{2} \right\} =$$

$$= \sum \mathcal{M} \left\{ \xi_{k} \eta_{k} (t_{k+1} - t_{k}) \right\} = \int_{\Delta} \mathcal{M} \left\{ f(t) \psi(t) \right\} dt$$

Теорема 11. Пусть $f(t), t \in \Delta$ – СК-непрерывная функция.

1. Если f(t) – неупреждающая, то существует такая последовательность простых неупреждающих функций $\{f_n(t)\}$, что

$$\int_{\Lambda} \mathcal{M}\left\{ |f(t) - f_n(t)|^2 \right\} dt \xrightarrow[n \to \infty]{} 0$$
 (3.18)

2. Имеет место CK-сходимость последовательности стохастических интегралов $I(f_n)$:

$$I(f_n) \xrightarrow[n \to \infty]{c.\kappa.} I(f)$$
 (3.19)

Определение 4. Случайная величина $I(f) = \int_{\Delta} f(t) d\omega(t)$, определённая в (**3.19**), называется *стохастическим интегралом Ито* от случайной неупреждающей функции f(t).

$$\mathcal{M}\left\{|I(f_n) - I(f)|^2\right\} = \mathcal{M}\left\{\left|\int_{\Delta} f_n(t) \, d\omega(t) - \int_{\Delta} f(t) \, d\omega(t)\right|^2\right\} = \mathcal{M}\left\{\left|\int_{\Delta} (f_n(t) - f(t)) \, d\omega(t)\right|^2\right\} = \int_{\Delta} \mathcal{M}\left\{|f_n(t) - f(t)|^2\right\} \, dt \xrightarrow[n \to \infty]{} 0$$

Теорема 12. Если $f(t), t \in \Delta$ – СК-непрерывная неупреждающая функция, то стохастический интерал $I(f) = \int_{\Delta} f(t) d\omega(t)$ существует и обладает свойствами:

- 1. Линейность по функции: $I(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 I(f_1) + \alpha_2 I(f_2)$, где $\alpha_{1,2}$ неслучайные числа, а $f_{1,2}$ простые неупреждающие функции;
- 2. Линейность по области интегрирования: если a < c < b, то $\int_a^b f \, d\omega = \int_a^c f \, d\omega + \int_c^b f \, d\omega$;
- 3. $\mathcal{M}\{I(f)\}=0$;
- 4. $\mathcal{M}\{|I(f)|^2\} = \int_{\Lambda} \mathcal{M}\{|f(t)|^2\} dt < \infty;$
- 5. $\mathcal{M}\left\{\int_{\Delta} f(t) d\omega(t) \cdot \int_{\Delta} \psi(t) d\omega(t)\right\} = \int_{\Delta} \mathcal{M}\left\{f(t)\psi(t)\right\} dt$

Пусть $\Delta = \bigcup_{k=1}^n \Delta_k$ – разбиение интервала Δ на n подинтевалов Δ_k длины $h = \frac{L}{n}, t_k$ – точки разбиения.

Обозначим:

$$I_n(f) = \sum_{k=1}^n f(t_k) \Delta \omega_k, \quad \Delta \omega_k = \omega(t_{k+1} - t_k)$$
(3.20)

Теорема 13. Пусть $f(t), t \in \Delta$, – СК-непрерывная неупреждающая функция, тогда

$$I_n(f) \xrightarrow[n \to \infty]{c.\kappa.} I(f),$$

 $rde\ I_n(f)$ – интегрируемые суммы вида (3.20).

Замечание: в (3.20) выбор точки t_k (левой границы промежутка Δ_k) для вычисления f(t) на Δ_k является принципиальным. Если выбрать $\theta \in [0;1]$, положить $t_k^\theta = (1-\theta)t_k + \theta t_{k+1}$ и составить интегральную сумму $I_n^\theta(f) = \sum_{k=1}^n f(t_k^\theta) \Delta \omega_k$, то в условиях предыдущей теоремы справедливо следующее:

$$I_n^{\theta}(f) \xrightarrow[n \to \infty]{\text{c.k.}} I^{\theta}(f)$$

Определение 5. Предельная величина $I^{\theta}(f)$ называется стохастическим θ -интегралом и зависит от θ . Если $\theta = 0$, то $I^{0}(f)$ – интеграл Ито, если $\theta = 0.5$, то $I^{\frac{1}{2}}(f)$ – интеграл Стратоновича.

Рассмотрим $\eta(t) = \int_0^t f(s) \, d\omega(s), t \in [0; L]$. Справедливы утверждения:

- 1. $\eta(t)$ измерима относительно F_t ;
- 2. $\eta(t)$ непрерывный центрированный СП с ортогональными приращениями, дисперсия которого имеет вид:

$$\mathcal{D}\left\{\eta(t)\right\} = \int_{0}^{t} \mathcal{M}\left\{f(s)\right\}^{2} ds$$

Глава 4

Цепи Маркова с дискретным временем

4.1 Основные понятия

Определение 1. Марковский СП $\xi(t), t \in \mathbb{N}$, принимающий значения из дискретного множества $\mathcal{X} = \{x_1, \dots, x_n, \dots\}, x_i \neq x_j, i \neq j$, называется дискретной цепью Маркова (дискретной ЦМ).

ЦМ в момент времени t находится в состоянии x_k , если произошло событие

$$A_t = \{\omega \colon \xi(\omega, t) = x_k\}$$

Определение 2. Вероятность $\pi_k(t) = \mathcal{P}\{A_t\} = \mathcal{P}\{\omega : \xi(\omega, t) = x_k\}, x_k \in \mathcal{X}$, называется вероятностью состояния x_k в момент времени $t \geqslant 0$, а вектор $\pi(t) = \{\pi_1(t), \pi_2(t), \ldots\}^T$ – распределением вероятностей состояний ЦМ в момент t.

Набор вероятностьей $\pi_k(0) = \mathcal{P} \{\omega \colon \xi(\omega,0) = x_k\}$ называется начальным распределением.

Число $p_{lk}(t) = \mathcal{P}\left\{\omega \colon \xi(\omega,t) = x_k | \xi(\omega,t-1) = x_l \right\}$ называется вероятностью перехода из состояния x_l в момент времени t-1 в состояние x_k в момент времени t за один шаг.

Матрица $P(t) = ||p_{lk}(t)||$ называется матрицей переходных вероятностей за один шаг в момент времени t.

Справедливо равенство:

$$\pi(t) = P^{T}(t)\pi(t-1), \quad t > 0$$

Определение 3. Если переходные вероятности $p_{lk}(t)$ не зависят от t, то ЦМ называется однородной.

В матричной форме $P(t) = P = ||p_{lk}||$. Очевидно, что $\sum_{k} p_{lk} = 1$.

Определение 4. Матрицы, удовлетворяющие свойству $\sum\limits_{k} p_{lk} = 1, \forall l, k = 1, 2, \ldots,$ и имеющие неотрицательные элементы, называются cmoxacmuveckumu.

Если к тому же матрица является симметричной, то она называется дважды стохастической.

Для однородной ЦМ распределение $\pi(t), t \geqslant 1$, полностью определяется переходной матрицей P и начальным распределением вероятностей состояний $\pi(0)$:

$$pi(t) = P^T(t)\pi(t-1) \Rightarrow \pi(1) = P^T\pi(0) \Rightarrow \pi(2) = P^T\pi(1) = (P^T)^2\pi(0) \Rightarrow \pi(t) = (P^T)^t\pi(0), \forall t \geqslant 1$$

Определение 5. Обозначим через $p_{kl}(n) = \mathcal{P}\{\xi(n) = x_k | \xi(0) = x_l\} = \mathcal{P}\{\xi(n+s) = x_k | \xi(s) = x_l\}$ вероятность $nepexoda\ 3a\ n\ maros\ us\ состояния\ x_l\ в\ состояния\ x_k.$

Заметим, что $\sum_{k} p_{lk}(n) = 1, \forall n \geqslant 0.$

Теорема 1 (Формула Маркова).

$$\forall s, n \in \mathbb{N}_0 \Rightarrow p_{lm}(n+s) = \sum_{k=1}^{\infty} p_{lk}(n) p_{km}(s)$$
(4.1)

Обозначим $P(n) = ||p_{lk}(n)||$, тогда P(0) = 1, P(1) = P. Соотношение (4.1) в матричных обозначениях переписывается следующим образом: P(n+s) = P(n)P(s).

Из (4.1) следует, что $\forall n \geqslant 1 \ P(n) = P^n$.

Частные случаи (**4.1**):

- обратное уравнение: $p_{lm}(n+1) = \sum_{k=1}^{\infty} p_{lk}(1) p_{km}(n);$
- прямое уравнение: $p_{lm}(n+1) = \sum_{k=1}^{\infty} p_{lk}(n) p_{km}(1)$

4.2 Классификация состояний однородной ЦМ

Определение 1. Состояние $x_k \in \mathcal{X} \coprod M$ называется несущественным, если

$$\exists x_j \in \mathcal{X}, n \in \mathbb{N} : p_{kj}(n) > 0, p_{jk}(m) = 0, \quad \forall m > 0$$

Остальные состояния называются несущественными.

Состояние $x_k \in \mathcal{X}$ называется достижимым из состояния $x_i \in \mathcal{X}$, если $n \in \mathbb{N}$: $p_{ik}(n) > 0$.

Если x_k достижимо из x_i и x_i достижимо из x_k , то x_i и x_k называются сообщающимися $(x_i \leftrightarrow x_k)$.

Отношение \leftrightarrow является отношением эквивалентности.

Множество \mathcal{X} состояний ЦМ может быть разбито на классы N_1, N_2, \ldots таким образом, что

$$\begin{cases} x_i \in N_k, x_j \in N_k \Rightarrow x_i \leftrightarrow x_j, \forall k \\ x_i \in N_k, x_j \in N_l \Rightarrow x_i \nleftrightarrow x_j, \forall k \neq l \end{cases}$$

Очевидно, что $N_k \cap N_l = \emptyset$, если $k \neq l$. Такие классы множества состояний называются неразложимыми (эргодическими).

Определение 2. Если ЦМ содержит только один эргодический класс, то она является *нераз*ложимой (неприводимой).

Конечная ЦМ называется *неразложимой*, если $X = X_0 \cup X_1$, где X_0 – класс несущественных состояний, а X_1 – класс существуенных сообщающихся состояний. В противном случае ЦМ называется *разложимой*. Если неразложими класс состоит только из одного состояния, то оно называется *поглощающим*.

Каноническая вид матрицы вероятностей перехода: $P = \left(\frac{B_1}{B_2}\right)$, где B_1 – блочно-диагональная матрица, соответствующая классам N_1, N_2, \ldots , а B_2 – подматрица с ненулевыми элементами.

4.3 Периодичность

Состояние x_i имеет период d = d(i), если d есть общий наибольший делитель всех положительных n, удовлетворяющих условию $p_{ii}(n) > 0$.

Определение 1. ЦМ, каждое состояние которой имеет период d(i) = 1, называется anepuodu-ueckoŭ.

Если $p_{ii}(n) = 0 \forall n > 0$, то полагаем d(i) = 0.

Свойства периода состояния:

- 1. Если $x_i \leftrightarrow x_i$, то d(i) = d(j);
- 2. Если x_i имеет период d(i), то $\exists n_i : \forall n \geqslant n_i \ p_{ii}(nd(i)) > 0$;
- 3. Если $p_{ji}(m) > 0$, то $p_{ji}(m + nd(i)) > 0$ для всех достаточно больших n

Доказательство. Доказательство следует из теоремы Маркова или уравнения Колмогорова-Чепмена. □

Неразложимая ЦМ будет апериодической, если хотя бы одно из её состояний апериодическое.

Определение 2. Состояние x_i называется нулевым, если $p_{ii}(n) \xrightarrow[n \to \infty]{} 0$.

Множества всех состояний:

- 1. несущественные;
- 2. существенные
 - неразложимые классы;
 - циклические подклассы

Пусть B – эргодический класс состояний с периодом d. Выберем в нём состояние x_k и выделим из B состояния, которые достижимы из x_k за число rd шагов. ОБозначим это подмножество B_0 .

Выделим из $B \setminus B_0$ состояния, которые достигаются из x_k за rd+1 шагов. Обозначим это подмножество B_1 .

Из $B \setminus (B_0 \cup B_1)$ выделим все состояния, достижимые из x_k за rd+2 шагов. Обозначим это подмножество B_2 и т.д.

Множество состояний B с периодом d будет разбито на d непересекающихся подмножеств.

Определение 3. B_l , определённые выше, называются *циклическими подклассами* эргодического класса B.

4.4 Возвратность

Через $q_{ij}(n)$ обозначим вероятность того, что однородная ЦМ в момент времени t+n впервые придёт в состояние x_j при условии, что в момент времени t она находилась в состоянии x_i .

Теорема 2. Справедливо равенство

$$q_{ij}(n) = p_{ij}(n) - \sum_{k=1}^{n-1} q_{ij}(k) p_{jj}(n-k), n > 1$$
(4.2)

Доказательство. Пусть $A(n) = \{ \coprod M \text{ из } x_i \text{ перешла в } x_j \text{ за } n \text{ шагов, не обязательно впервые} \}.$

 $A_p(n) = \{ \coprod M, \text{ находясь в состоянии } x_j \text{ в момент времени } t, \text{ окажется в этом же состоянии в момент времени } t+n \}.$

 $A_q(n) = \{ \coprod M \text{ из } x_i \text{ впервые перейдёт в } x_j \text{ за } n \text{ шагов} \}.$

Очевидно, что $A_q(n)$ и $A_q(m)$ несовместны для $n \neq m$.

$$A(n) = A_q(n) \cup (A_q(n-1) \cap A_p(1)) \cup (A_q(n-2) \cap A_p(2)) \cup \ldots \cup \\ \cup (A_q(2) \cap A_p(n-2)) \cup (A_q(1) \cap A_p(n-1))$$

$$p_{ij} = q_{ij}(n) + \sum_{k=1}^{n-1} q_{ij}(k) p_{jj}(n-k)$$
(4.3)

Обозначим $q_{ij} = \sum_{n=1}^{\infty} q_{ij}(n)$ – вероятность того, что цепь когда-либо возвратится в состояние x_i .

Определение 1. Состояние x_i называется возвратным, если $q_i = 1$. Состояние x_i называется невозвратным, если $q_i < 1$.

Теорема 3 (Критерий возвратности). Для того, чтобы состояние x_i было возвратным, необходимо и достаточно, чтобы $\sum_{n=1}^{\infty} p_{ii}(n) = \infty$. Для того, чтобы x_i было невозвратным, необходимо и достаточно, чтобы $\sum_{n=1}^{\infty} p_{ii}(n) < \infty$

Доказательство. Рассмотрим (4.3).

$$\sum_{n=1}^{\infty} p_{ii}(n) = \sum_{n=1}^{\infty} q_i(n) + \sum_{n=1}^{\infty} \sum_{k=1}^{n-1} q_{ii}(k) p_{ii}(n-k) = \sum_{n=1}^{\infty} q_i(n) + \sum_{k=1}^{\infty} q_{ii}(k) \sum_{n=k+1}^{\infty} p_{ii}(n-k)$$

Сделаем замену s = n - k, тогда

$$\sum_{n=1}^{\infty} p_{ii}(n) = \sum_{n=1}^{\infty} q_i(n) + \sum_{k=1}^{\infty} q_{ii}(k) \sum_{s=1}^{\infty} p_{ii}(s)$$

Пусть $a_i = \sum_{n=1}^{\infty} p_{ii}(n)$, тогда

$$a_i = q_i + a_i q_i \Rightarrow a_i = \frac{q_i}{1 - q_i}, q_i = \frac{a_i}{1 + a_i}$$

Если $q_i < 1$, то $a_i < \infty$ и наоборот. Если $q_i = 1$, то $a_i = \infty$; $q_i \xrightarrow[a_i \to \infty]{} 1$.

Теорема 4. Если состояние x_j невозвратно, то $\forall x_i \Rightarrow \sum_{k=1}^{\infty} p_{ij}(n) < \infty$

 \mathcal{A} оказательство. Из предыдущей теормы $\sum_{n=1}^{\infty} p_{jj}(n) < \infty$. Просуммируем (4.3) по n от 1 до ∞ :

$$\sum_{n=1}^{\infty} p_{ij}(n) = \sum_{n=1}^{\infty} q_{ij}(n) + \sum_{k=1}^{\infty} q_{ij}(k) \sum_{n=k+1}^{\infty} p_{jj}(n-k) = q_{ij}(1+a_j)$$

Т.к $q_{ij} \leqslant 1$, а для невозвратности состояния $a_j < \infty$, то $\sum_{n=1}^{\infty} p_{ij}(n) < \infty$

Следствие 1. Если x_j – невозвратное состояние, то $\lim_{n\to\infty} p_{ij}(n)=0$.

Теорема 5. Если $x_i \leftrightarrow x_j$ и x_i – возвратное состояние, то x_j также возвратное состояние.

Следствие 1. Если $x_i \leftrightarrow x_j$ и x_i – возвратное состояние, то $\lim_{n \to \infty} p_{ij}(n) = 0$

4.5 О существовании предельных и стационарных распределений

Для однородной ЦМ при определёных условиях выполняется $\pi(n) \xrightarrow[n \to \infty]{} \pi$, причём предельное распределение π не зависит от начального распределения $\pi(0)$, а определяется лишь переходной матрицей P.

Распределение вероятностей $\pi=(\pi_0,\pi_1,\ldots,\pi_n,\ldots)$ стационарно, если оно удовлетворяет уравнению $\sum_i \pi_i p_{ij}=\pi_j$ при условии $\sum_j \pi_j=1$.

Распределение вероятностей стационарного ЦМ не зависит от времени.

Теорема 6. Для того, чтобы конечная ЦМ была эргодической, необходимо и достаточно, чтобы она была неразложимой и апериодической.

Алгоритм вычисления стационарного распределения π для конечной эргодической ЦМ

- 1. Составить систему уравнения $\pi = P^T \pi$;
- 2. Заменить в построенной системе одно из уравнений на условие нормировки $\sum_i \pi_i = 1;$
- 3. Решить систему и определить π .