

TextBI: Une plateforme générique pour la visualisation interactive de données multidimensionnelles issues des réseaux sociaux

Maxime Masson, Christian Sallaberry, Marie-Noelle Bessagnet,

Philippe Roose, Annig Le Parc Lacayrelle,

Rodrigo Agerri

Journées du GdR CNRS MAGIS
Atelier AR 7 « Humanités Numériques Spatialisées »

24 novembre 2023Bordeaux, France
Durée: **15 minutes**

Contexte — Contenu généré par les utilisateurs (UGC)

- Croissance significative des sources de données disponibles dans de nombreux domaines
 - O De plus en plus massives et diversifiées
- Contenu Généré par les Utilisateurs (UGC)
 - Réseaux sociaux, blogs, sites d'avis, etc.

Évolution du volume de personnes utilisant les principaux réseaux sociaux, de 2004 à 2019

Source: Our World In Data

Professionnels du tourisme

Offices de tourisme, mairies, organisations de marketing des destinations (DMOs), etc.

- Assistance dans le processus de prise de décision et la planification des infrastructures
- Compréhension des exigences, des pratiques et des attentes des visiteurs (adaptation)

Quels sont des lieux et
activités **méconnus**mais agréables qui
devraient être mis en
avant ?

Quelles sont les pratiques touristiques les plus associées à chaque municipalité ? Quelles plages populaires ont des infrastructures inadéquates ? Quels événements sont les plus populaires pendant la période estivale ?

Identifiés en collaboration avec communauté d'agglomératio du Pays Basque (Bayonne)

Nous faisons l'hypothèse que les réseaux sociaux permettraient de répondre à ces besoins métiers

Motivations — Besoins des touristes

Touristes (visiteurs ou habitants)

Recommendation

- Activités Touristiques
- Point d'Intérêt (POI)
- Itinéraires

Mise en relation d'utilisateurs

- Intérêts Communs
- Intérêts Divergent

Défis — Traitement des publications sur les réseaux sociaux

Les réseaux sociaux présentent de nombreux défis... Textes courts Textes non structurés ou mal structurés ■ Langage informel Présence d'emojis, de hashtags, d'URLs Mal orthographiés et mal ponctués Multilinguisme Très grand nombre de publications Beaucoup de bruit

mais ont aussi des avantages significatifs :
 Données à jour, en temps réel
 Grand volume de données
 Richesse, couvrant divers sujets
 Peu cher, contrairement aux données commerciales.

Framework APs — Vue d'ensemble

- Un nouveau cadre de travail (framework)
 - APs : Augmented Proxemics services
 - Objectif : guider l'analyse des données des réseaux sociaux en utilisant la théorie de la proxémique
- Entièrement générique mais expérimentation dans le domaine du tourisme et la région du Pays Basque.

Framework APs — Cycle de vie

• 4 étapes

- Collecte
- Transformation
- Analyses Proxémiques
- Valorisation

Générique

- Sur la **source** et sur le **domaine**
- Multilingue
- Basé sur les dimensions d'analyse
 - Spatiale (S)
 - Temporelle (T)
 - Thématique (TH)

Modélisation du domaine tourisme

- Projection des trajectoires des utilisateurs sur une carte thématique du tourisme
 - Ontologie, Thésaurus, Dictionnaire
 - Ubiquité
- Basé sur le Thésaurus Tourisme et Loisirs de
 l'Organisation Mondiale du Tourisme (OMT)
 - Terminologie multilingue étendue (FR, EN, ES)
 - Plus de 2 500 concepts thématiques
 - 20 branches principales

1. Collecte

Collecte de données — Techniques Existantes

Pas d'approche de collecte générique de haut niveau. Principalement des implémentations ad hoc.¹⁰

Méthodologie de collecte générique — Caractéristiques

• Conception d'une **méthodologie itérative** pour **construire un jeu de données** sur les réseaux sociaux autour d'un **thème**, d'une **spatialité** et d'une **temporalité** donnés.

Méthodologie de collecte générique — Dimensions

Spatiale

Empreinte Spatiale

Exemple

Le Pays Basque L'Espagne

Boite englobante Toponymes

Temporelle

Période temporelle

Exemple

L'été 2019 Aout 2020

Date et heure Saison, jour de la semaine etc.

Thématique

Sémantique des données

Exemple

Le Tourisme, La Mode, Les Politiques Publiques

> Dictionnaire Thésaurus Ontologie

Collaboration avec l'utilisateur final

Définition du jeu de données

Méthodologie de collecte générique — Processus

- 2 flux de données
 - Publications **géolocalisées** (1 à 2%)
 - Autres publications (> 98%)
- 4 étapes successives de filtrage
 - Pré-filtrage
 - Filtrage temporel
 - Filtrage spatial
 - Filtrage thématique
- Mécanisme de boucle de feedback
 - Aperçu et évaluation du jeu de données
 - Feedback sur le filtrage

Méthodologie de collecte générique

Expérimentation

Côte Basque Française

Été 2019

August 2019					September 2019								
Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
				1	2	3	1	2	3	4	5	6	7
4	5	6	7	8	9	10	8	9	10	11	12	13	14
11	12	13	14	15	16	17	15	16	17	18	19	20	21
18	19	20	21	22	23	24	22	23	24	25	26	27	28
25	26	27	28	29	30	31	29	30					-

Thésaurus du Tourisme et des loisirs de l'OMT

Source: https://www.e- unwto.org/doi/book/10.18 111/9789284404551

Méthodologie de collecte générique

Expérimentation - Processus

2. Transformation

Transformation — Vue d'ensemble

Corpus brute issu de réseaux sociaux – collecté durant la phrase précédente (non structuré)

Collection de **publications** sur les réseaux sociaux et leurs **métadonnées associées**

Batterie de modules de TAL (NLP)

Machine Learning et basés sur des Règles

Modèle APs enrichi (structuré)

Ex: Sentiment, Engagement, Lieux, Thèmes, Dates

Transformation — Tâches

3. Analyses Proxémiques

Proxémique — Introduction

La science qui étudie l'effet de l'espace et des distances sur les interactions et les comportements (Hall, 1966).

Source: Marquardt, Nicolai & Greenberg, Saul. (2012). Informing the Design of Proxemic Interactions. IEEE Pervasive Computing

• Dimensions DILMO (Greenberg, 2011):

- Distance
- Identité
- Localisation
- Mouvement
- Orientation

Niveau d'analyse

- Individuel
- Groupe
- Notion de « centralité »
- Comment cette théorie physique peut-elle être adaptée pour modéliser les interactions sur les réseaux sociaux de manière générique ?

Proxémique — Redéfinition

Redéfinition de la proxémiques pour les réseaux sociaux

Modèle de Trajectoires Proxémique APs — Diagramme de classe

- Modèle de trajectoire générique
- Adaptable à tout domaine d'application
 - Générique
 - Extensible
- Incorpore les 5 dimensions de la proxémique
 - Distance
 - Identité
 - Localisation
 - Mouvement
 - Orientation

Modèle de Trajectoires Proxémique APs - Rôle

Boite à outil pour évaluer la similarité proxémiques

4. Valorisation

Valorisation — Plateforme TextBl

Une **plateforme générique** (de type tableau de bord) permettant de **visualiser** des **corpus de réseaux sociaux annotés.**

TextBI - Utilisateurs

- 2 catégories d'utilisateur
 - O Décideurs du domaine (non-informaticien) :
 - Effectuer des analyses sur leur domaine, aider à la prise de décision
 - **Ex:** office de tourisme cherchent à identifier les activités touristiques dominantes dans une ville
 - Chercheurs (informaticien)
 - Evaluer des processus et modèles de TAL
 - **Ex:** chercheurs en TAL cherche à visualiser la distribution des entités nommées dans un corpus de données issue des réseaux sociaux
- Besoins communs
 - O Distribution, Fréquence, Association, Enchainement, Etc.

TextBI - Inspirations

- Outils « Géomatique »
 - QGIS, ArcGIS, Travaux d'Aline Ménin et de Cécile Saint-Marc
- Outils « Business Intelligence (BI) »
 - Qlik, Tableau, Power Bl ...
- Outils « Traitement Automatique du Langage (TAL) »
 - IRaMuTeQ, Voyant, VOSviewer, SentimentViz

(b) Presence fluctuation per spatial location over time

Source: Aline Menin, eSTIMe : a visualization framework for assisting a multi-perspective analysis of daily mobility data

TextBI - Inspirations

	Outils GIS	Outils BI	Outils TAL
Exemple	QGIS, ArcGIS	Power BI, Tableau Public, QlikView	SpaCy, GATE, TextRazor, IRaMuTeQ, VOSViewer, SentimentViz
Points Forts	 Analyse spatiale poussée Granularités spatiales multiples 	 Exploration de données multidimensionnelles Simple d'utilisation Interactivité inter et intra visuel Filtrages combinés Synchronisation des visuels 	 Statistiques avancées (cooccurrence, fréquences, etc.) Gestion native du texte Visuels plus adaptés au texte : graphes sémantiques, nuages de mot, etc.
Limitations	 Difficile de visualiser des données sans composante spatiale Peuvent être complexe pour des utilisateurs néophytes (non géographes) 	 Nécessite des données structurées (e.g., base de données relationnelle) Principalement pour des données numériques Difficultés à visualiser des données séquentielles 	Complexe, vise principalement des utilisateurs spécialistes du TAL Analyse au niveau des mots ou focus sur une seule dimensions (ex: sentiment)

Démonstration de TextBI

Bilan

Bilan et Perspectives Futures

- Prise en main de TextBI par des utilisateurs finaux (office de tourisme)
- Expérimentation additionnelle sur ...
 - Un autre domaine que le tourisme pour démontrer la généricité de la plateforme
 - **Exemple** : Politiques Publiques
 - Une autre source de données
 - Massive (test de la scalabilité de la plateforme)
 - Autre réseau social :
 - **Exemple**: site d'avis sur les villes
- Ajout du support pour des flux de **données temps-réel** (suivi d'une élection, d'un évènement sportif, etc.)
- Amélioration interface
 - Mode Proxémique
 - Sélection de la granularité
 - Chargement des données
- Mise à disposition de la plateforme à la communauté (open source)

Publications

- [2022] Masson, M. Services augmentés pour le tourisme intelligent et l'analyse des pratiques. In Forum Jeunes Chercheuses Jeunes Chercheurs, INFORSID 2022, Dijon, France (p. 35)
- [2022] Masson, M., Sallaberry, C., Agerri, R., Bessagnet, M. N., Roose, P., & Le Parc Lacayrelle, A. (2022, October). A domain independent method for thematic dataset building from social media: the case of tourism on Twitter. In *International Conference on Web Information Systems Engineering* WISE 2022, Biarritz, France (pp. 11-20). Cham: Springer International Publishing.
- [2023] Masson, M., Roose, P., Sallaberry, C., Agerri, R., Bessagnet, M. N., & Lacayrelle, A. L. P. (2023, April). APs: A Proxemic Framework for Social Media Interactions Modeling and Analysis. In International Symposium on Intelligent Data Analysis IDA 2023, Louvain-La-Neuve, Belgium (pp. 287-299). Cham: Springer Nature Switzerland.
- [2023] Masson, M., Abdelhedi, S., Sallaberry, C., Agerri, R., Bessagnet, M. N., Lacayrelle, A., & Roose, P. Visualisation interactive de trajectoires d'activités touristiques. Workshop Exploration des traces dans un monde du tout numérique : enjeux et perspectives INFORSID 2023, La Rochelle, France, 12.

Challenges Géodata – GéoDataDays 2023

Découvrez les lauréats des Challenges Geodata 2023 :

1er : Visualisation de données issues des réseaux sociaux : une plateforme de type Business intelligence Maxime MASSON, Laboratoire LIUPPA

2ème • prix du public : HedgeTools : une boîte à outils pour extraire et caractériser les haies en milieu agricole - Gabriel MARQUES, Dynafor

3ème : AEROLAB SPACE - Lilian JOLY, Université de Reims Champagne-Ardenne

4ème : Cartographie scénarisée et sensibilisation aux risques naturels - Thomas CANDELA, RisCrises / LAGAM

5ème : Une boîte à outils Python pour utiliser un eye-tracker avec des cartes - Laura WENCLICK, LASTIG, IGN, Univ Gustave Eiffel, ENSG

6ème : MapDraw - un outil pour annoter des cartes interactives et multi-échelles - Justin BERLI, LASTIG, IGN. Univ Gustave Eiffel. ENSG

7ème : Prévision de l'aléa incendie par télédétection optique/thermique haute résolution - Victor PENOT, CESBIO

8ème : Etude de trajectoires de déplacement dans un contexte spatiale et temporelle en relation avec une expertise du domaine - Rouaa WANNOUS, IUT de l'Université de la Rochelle

Merci pour votre attention!

Des questions?

maxime.masson@univ-pau.fr