Intermediate Microeconomic Theory

Tools and Step-by-Step Examples

Chapter 8: Cost Minimization

Outline

- Isocost Lines
- Cost-Minimization Problem
- Input Demands
- Cost Functions
- Type of Costs
- Average and Marginal Cost
- Economies of Scale, Scope, and Experience
- Appendix. Cost-Minimization Problem—A Lagrangian Analysis

 An isocost line is the set of input combinations that yield the same total cost for the firm.

That is, the combinations of *L* and *K* for which

$$TC = wL + rK$$
,

where w > 0 is the price of every unit of labor (wage per hour);

r > 0 is the cost of each unit of capital (interest rate);

TC is a given total cost that the firm incurs.

• This figure depicts the isocost line TC = wl + rK or after solving for K, $K = \frac{TC}{r} - \frac{w}{r}L$.

• The firm faces a linear isocost regardless of its production function q = f(L, K), because the isocost line is just a sum of costs.

- An increase in TC produces an increase in both the vertical $\frac{TC}{r}$ and horizontal $\frac{TC}{w}$ intercept, without altering the slope $\frac{w}{r}$.
 - It produces a parallel upward shift in the isocost line.
 - As the firm can incur in larger cost, it can choose among higher input combinations.

- If wages w increase, the vertical intercept $\frac{TC}{r}$ is not affected, but the absolute value of the slope $\left|\frac{w}{r}\right|$ increases.
 - The isocost becomes steeper.
 - The firm can afford to hire fewer workers as their wages increase.

- If the interest rate r increases, the vertical intercept $\frac{TC}{r}$ decreases, and the absolute value of the slope $\left|\frac{w}{r}\right|$ decreases.
 - The isocost becomes flatter.
 - The firm can afford fewer units of capital as its price increases.

- Example 8.1: A particular isocost.
 - Consider a firm facing w=\$10, r=\$15, and incurring TC=\$200.

• Its isocost line would be 200=10L+15K, or after solving for K, $K=\frac{200}{15}-\frac{10}{15}L$.

- We combine the isoquant and the isocost to determine how many units of labor and capital the firm optimally hires.
- This figure depicts an isoquant line where the firm produces 100 units of inputs, with a set of isocosts each with a TC.

The cost-minimization problem (CMP) can be represented as

$$\min_{L,K} TC = wL + rK$$
subject to $100 = f(L, K)$.

• The problem ask the firm:

Choose the input combination that minimizes your total cost TC, reaching an output level of 100 units.

- The CMP entails pushing the isocost inward, and reach the isoquant where q=100.
 - Points B or C cannot be cost minimizing because, while the firm reaches q=100, it does at a cost that could be reduced.
 - At point A, the firm minimizes its total cost and reaches q = 100.
 - At point D, with cheaper combinations of inputs, the firm does not reach the target q=100.

- Combinations of labor and capital minimizing the firm's cost require that the firm's isoquant is tangent to its isocost
- This tangency condition implies that the slope of the isoquant (MRTS) and isocost coincide,

$$\frac{MP_L}{MP_K} = \frac{w}{r},$$

Or after cross-multiplying

$$\frac{MP_L}{w} = \frac{MP_K}{r}.$$

- The condition $\frac{MP_L}{w} = \frac{MP_K}{r}$ states that when minimizing its cost, the firm rearranges inputs until the point where marginal product per \$ spent on additional units of labor coincide with that of capital
 - Bang for the buck must be the same across all inputs.
- If $\frac{MP_L}{w} > \frac{MP_K}{r}$, the firm could decrease its total costs by acquiring fewer units of capital, and using the savings to hire more workers who provide a higher marginal product per \$.

- Tool 8.1. Procedure to solve the Cost-Minimization Problem (CMP):
 - 1. Set the tangency condition $\frac{MP_L}{MP_K} = \frac{w}{r}$. Cross-multiply and simplify.
 - 2. If the expression for the tangency condition:
 - a. Contains both unknowns (L and K), solve for K, and insert the result into the firm's output target q = f(L, K).
 - b. Contains only one unknown (L or K), solve for that unknown, and insert the result into the firm's output target q = f(L, K).

- Tool 8.1. Procedure to solve the Cost-Minimization Problem (CMP) (cont.):
 - 2. If the expression for the tangency condition:
 - c. Contains no input L or K, compare $\frac{MP_L}{w}$ against $\frac{MP_K}{r}$.
 - If $\frac{MP_L}{w} > \frac{MP_K}{r}$, set K = 0 in the output target and solve for L.
 - If $\frac{MP_L}{W} < \frac{MP_K}{r}$, set L = 0 in the output target and solve for K.

- Tool 8.1. Procedure to solve the Cost Maximization Problem (CMP) (cont.):
 - 3. If in step 2, one of inputs is negative (e.g., L=-2), then set the amount of that input equal to 0 on the firm's output target (e.g., q=a0+bK), and solve for the remaining input.
 - 4. If the values for all the unknowns L and K have not been found yet, use the tangency conditions from step 1 to find the remaining unknown.

- Example 8.2: CMP with Cobb-Douglas production functions.
 - Consider a firm with Cobb-Douglas production function

$$q = L^{1/2} K^{1/2},$$

seeking to reach q = 100 and facing w = \$40, and r = \$10.

• Step 1. Set the tangency condition, $\frac{MP_L}{MP_K} = \frac{w}{r}$,

$$\frac{\frac{1}{2}L^{-1/2}K^{1/2}}{\frac{1}{2}L^{1/2}K^{-1/2}} = \frac{40}{10} \implies \frac{K}{L} = 4.$$

• Solving for K, K = 4L.

This result contains both inputs K and L, so we move to step 2a.

- Example 8.2 (continued):
 - Step 2a. Inserting K=4L into the output target, q=100, $100=L^{1/2}K^{1/2}$,

$$100 = L^{1/2} (4L)^{1/2}.$$

Rearranging and solving for L,

$$100 = (4)^{1/2}L,$$

$$L = \frac{100}{(4)^{1/2}} = \frac{100}{2} = 50 \text{ workers.}$$

Because the firm hires a positive number of workers, we move to step 4.

• Step 4. Plugging L=50 into the tangency condition K=4L, we find $K=4\times50=200$ units of capital.

- Example 8.2 (continued):
 - Summary. The cost-minimizing input combination is

$$(L,K) = (50,200).$$

The firm uses more capital than labor because labor is four times as expensive as capital, while their marginal productivities are symmetric.

- Example 8.3: CMP with linear production functions.
 - Consider a firm linear production function

$$q=2L+8K,$$

seeking to reach q = 100 and facing w = \$40, and r = \$10.

• Step 1. Set the tangency condition, $\frac{MP_L}{MP_K} = \frac{w}{r}$,

$$\frac{2}{8} = \frac{40}{10}$$

which cannot hold because each side corresponds to a different number!

As this result contains neither K nor L, we move to step 2c.

- Example 8.3 (continued):
 - Step 2c. We obtained $\frac{2}{8} < \frac{40}{10}$, which entails $\frac{MP_L}{MP_K} < \frac{w}{r}$, or

$$\frac{MP_L}{w} < \frac{MP_K}{r}.$$

The firm increases its purchases of capital as much as possible, leading to a corner solution where the firm only purchases capital but no labor (L=0).

- Example 8.3 (continued):
 - Step 4. Inserting L=0 into the output target of the firm, 100=2L+8K, and solving for K,

$$100 = (2 \times 0) + 8K$$
 $\implies K = \frac{100}{8} = 12.5 \text{ units.}$

• Summary. The cost minimizing input combinations is (L, K) = (0, 12.5).

- We now use the previous analysis in a more general setting, where input prices (w and r) and output target q are not concrete numbers but parameters.
- It allows us to find labor and capital demands and do comparative statics.

- Example 8.4: Finding input demands with Cobb-Douglas production function.
 - Consider a firm with Cobb-Douglas production function

$$q = L^{1/2} K^{1/2},$$

seeking to reach q, and facing input prices w and r.

• Step 1. Set the tangency condition, $\frac{MP_L}{MP_K} = \frac{w}{r}$,

$$\frac{\frac{1}{2}L^{-1/2}K^{1/2}}{\frac{1}{2}L^{1/2}K^{-1/2}} = \frac{w}{r} \qquad \Longrightarrow \frac{K}{L} = \frac{w}{r}$$

• Solving for K, $K = \frac{w}{r}L$.

This result contains both K and L, so we move to step 2a.

- Example 8.4 (continued):
 - Step 2a. Inserting $K = \frac{w}{r}L$ into the output target, $q = L^{1/2}K^{1/2}$,

$$q = L^{1/2} \left(\frac{w}{r} L \right)^{1/2}.$$

Rearranging, and solving for L,

$$q = \left(\frac{w}{r}\right)^{1/2} L,$$

$$L = \frac{q}{\left(\frac{w}{r}\right)^{1/2}} = \frac{q\sqrt{r}}{\sqrt{r}}.$$

- Example 8.4 (continued):
 - Step 4. Plugging labor demand $L=\frac{q\sqrt{r}}{\sqrt{w}}$ into the tangency condition $K=\frac{w}{r}L$, we find that capital demand is

$$K = \frac{w}{r} \frac{q\sqrt{r}}{\sqrt{w}} = \frac{q\sqrt{w}}{\sqrt{r}}.$$

• If we evaluate labor and capital input demands at the parameter values in example 8.3, with q=100 units, w=\$40, and r=\$10, we obtain the same results,

$$L = \frac{100\sqrt{10}}{\sqrt{40}} = 50 \text{ workers,}$$

$$K = \frac{100\sqrt{40}}{\sqrt{10}} = 200$$
 units of capital.

- Comparative statics with input demands from example 8.4.
 (with Cobb-Douglas production function):
 - Labor demand, $L = \frac{q\sqrt{r}}{\sqrt{w}}$:
 - *Increasing in q*. As the firm seeks to produce more units, it needs to hire more workers.
 - Decreasing in w. As it faces higher salaries, it responds hiring less workers.
 - *Increasing in r*. As capital becomes more expensive, labor becomes relatively more attractive, and the firm responds hiring more workers.
 - Capital demand, $K = \frac{q\sqrt{w}}{\sqrt{r}}$:
 - Increasing in q, decreasing in r, but increasing in w.

- Example 8.5: Finding input demands with a linear production function.
 - Consider a firm linear production function

$$q = 2L + 8K,$$

seeking to reach q, and facing input prices w and r.

• Step 1. Set the tangency condition, $\frac{MP_L}{MP_K} = \frac{w}{r}$,

$$\frac{2}{8} = \frac{w}{r}$$
.

As this result contains neither K nor L, we move to step 2c.

- Example 8.5 (continued):
 - Step 2c. Comparing the marginal product per \$ across inputs,

$$\frac{MP_L}{w} < \frac{MP_K}{r} \text{ if } \frac{2}{8} < \frac{w}{r},$$

$$\frac{1}{4} < \frac{w}{r},$$

which induces the firm to hire no workers (L = 0).

Otherwise, the marginal product per \$ spent on labor is now higher than that on capital, entailing that the firm hires no capital (K = 0).

- Example 8.5 (continued):
 - Step 4: If $\frac{1}{4} < \frac{w}{r}$, L = 0.

The demand for capital is found inserting L=0 into output target q=2L+8K and solving for K,

$$q = (2 \times 0) + 8K,$$
$$K = \frac{q}{8},$$

which is increasing in q.

- Example 8.5 (continued):
 - *Step 4* (cont.):
 - If $\frac{1}{4} > \frac{w}{r}$, K = 0. The demand for labor is found inserting K = 0 into output target q = 2L + 8K and solving for L,

$$q = 2L + (8 \times 0)$$
 $\implies L = \frac{q}{2}$, which is also increasing in q .

- Comparative statics with input demands from example 8.5.
 (with linear production function):
 - Labor and capital demands, $L = \frac{q}{2}$ and $K = \frac{q}{8}$, are increasing in the output q the firm seeks to produce.
 - An increase in salary w does not affect any of the input demands, except in one scenario:
 - When $\frac{1}{4} > \frac{w}{r}$, the firm produces using $(L, K) = \left(\frac{q}{2}, 0\right)$; but if w increases enough to yield $\frac{1}{4} < \frac{w}{r}$, the firm changes its input usage to $(L, K) = \left(0, \frac{q}{8}\right)$.

Input Demand-Responses

- Response to changes in its own price.
 - The demand for an input is decreasing in its own price → the input demand has a negative slope.

- Response to changes in its own price.
 - The sensitivity of input demand to variations in its price is measured using its price elasticity,

$$\varepsilon_{L,w} = \frac{\%\Delta L}{\%\Delta w} = \frac{\frac{\Delta L}{L}}{\frac{\Delta w}{w}} = \frac{\Delta L}{\Delta w} \frac{w}{L},$$

or, if the change in salary w is infinitely small, $\varepsilon_{L,w} = \frac{\partial L}{\partial w} \frac{w}{L}$, where $\frac{\partial L}{\partial w}$ represents the slope of the labor demand curve.

- If salaries w increase by 1%, the firm would reduce the number of workers its hires by $\varepsilon_{L,W}\%$.
- Similarly, the elasticity of capital with respect to its price r is $\varepsilon_{K,r}=\frac{\partial K}{\partial r}\frac{r}{K}.$

- Response to changes in its own price.
 - In the case of the fixed-proportion production function, input demand becomes vertical, as the firm does not change its input combination when input prices change.
 - The slope of labor demand is $\frac{\partial L}{\partial w} = -\infty$, yielding $\varepsilon_{L,W} = -\infty$.
 - In the case of a linear production function, its input demand is flat.
 - The slope of labor demand is $\frac{\partial L}{\partial w}=0$, yielding $\varepsilon_{L,W}=0$.

- Response to changes in the price of the other input.
 - The demand for an input increases as we increase the price of the other input, shifting upwards.
 - As labor becomes more expensive (higher w), capital becomes more attractive.
 - In example 8.4,
 - the demand for capital $K=\frac{q\sqrt{w}}{\sqrt{r}}$ increases in salaries, w;
 - the demand for labor $K=\frac{q\sqrt{r}}{\sqrt{r}}$ increases in the price of capital r.
 - Graphically, the demand function for labor (capital) would shift outwards as the price of the other input, capital (labor), becomes more expensive.

- Response to changes output.
 - When the firm increases the demand for inputs to produce more units of q, such input is *normal*.
 - When the firm's input demands decrease in q, the input is inferior.
 - Example: A firm with different types of labor:
 - Chief executive officers, midlevel managers, sellers, accountants, secretaries, information technology personnel, and janitors.
 - While it may initially hire more workers in all categories as it increases in output, it might sign software contracts when output is large enough, and as a result firing some secretaries which would become inferior inputs.

 Total cost. The expenditures that a firm incurs when hiring the optimal amounts of labor and capital identified by its labor and capital demand,

$$TC = wL^* + rK^*.$$

- Example 8.6: Finding TC in the Cobb-Douglas case.
 - Labor and capital demands found in example 8.4 were $L = \frac{q\sqrt{r}}{\sqrt{w}}$ and $K = \frac{q\sqrt{w}}{\sqrt{r}}$.
 - Total cost is

$$TC = w \frac{q\sqrt{r}}{\sqrt{w}} + r \frac{q\sqrt{w}}{\sqrt{r}}$$

$$= qw^{1/2}r^{1/2} + qr^{1/2}w^{1/2}$$

$$= 2q\sqrt{rw}.$$

- Example 8.6 (continued):
 - Total cost

$$TC = 2q\sqrt{rw}$$

increases as q, r, and w increase.

• If w = \$40, r = \$10 and q = 100, total cost simplifies to

$$TC = 2 \times 100 \sqrt{10 \times 40} = $4,000.$$

- Example 8.7: Finding TC in linear production case.
 - Labor and capital demands found in example 8.5 were

	When $\frac{1}{4} < \frac{w}{r} \Longrightarrow r < 4w$	When $\frac{1}{4} < \frac{w}{r} \Longrightarrow r > 4w$
	$L=0$ and $K=rac{q}{8}$	$L=rac{q}{2}$ and $K=0$
• Total cost is	$TC = w0 + r\frac{q}{8} = r\frac{q}{8}$	$TC = w\frac{q}{2} + r0 = w\frac{q}{8}$
	Increasing in q and r . Independent of w .	Increasing in q and w . Independent of r .

• If w increases enough, the condition r > 4w can revert to r < 4w.

Sunk vs. nonsunk costs

- Sunk costs. Costs that cannot be recovered, even if the firm chooses to shut down its operations.
 - Example: The rental a firm pays for the building it uses, if the lease prohibits subletting.
- Nonsunk costs. Costs that can be sold back if the firm were to shut down its operations (recovering a portion of the cost).
 - Example: Most of raw materials.

- In the long run, the firm have enough time to vary the amount of all inputs as much as necessary.
- In the short run, the amount of at least one input is considered to be fixed.
- Example: Faculty positions at universities.
 - Acquiring a new computer (a form of capital) can be done in few hours.
 - Hiring a new professor would require a long process (4-5 months if not longer: posting ads, interviews of candidates, fly-outs, offer to selected candidate, and negotiation.
- Short-run costs are higher (or equal, but never lower) than long-run costs.

- Example 8.8: Comparing long- and short-run costs.
 - Consider a firm with Cobb-Douglas production function $q = L^{1/2}K^{1/2}$.
 - Capital in the short run is fixed at $\overline{K}=150$ units.
 - We find the cost-minimizing units of labor inserting $\overline{K}=150$ into the firm's production function and solving for L,

$$q = L^{1/2}150^{1/2},$$

$$(q)^2 = (L^{1/2}150^{1/2})^2,$$

$$q^2 = 150L \implies L = \frac{q^2}{150}.$$

which increases in q.

- Example 8.8 (continued):
 - In this context, the short-run total cost becomes

$$STC = wL^* + r\overline{K} = w\frac{q^2}{150} + r150.$$

• Considering the same input prices as in example 8.4., w = \$40 and r = \$10,

$$STC = \$1,500 + \frac{4}{15}q^2,$$

which lies above the long-run total cost in example 8.6, TC = 40q.

- Example 8.8 (continued):
 - If q = 150 units, STC = \$7,500, TC = \$6,000.STC(150) > TC(150)
 - If q = 75 units, STC(75) = TC(75)

To produce q=75, the firm has $K=\frac{q\sqrt{w}}{\sqrt{r}}=\frac{75\sqrt{40}}{\sqrt{10}}=150$, which coincides with the fixed amount of capital $\overline{K}=150$ in the short run.

For all other $q \neq 75$, the fixed amount of capital $\overline{K} = 150$, STC(q) = TC(q).

 Average cost (AC). The total cost that the firm incurs per unit of output,

$$AC = \frac{TC}{q}$$
.

- Example: If TC = \$1,000 and q = 20 monitors, $AC = \frac{1000}{20} = \$50$ per monitor.
- Marginal cost (MC). The rate at which total costs increases as the firm produces 1 more unit,

$$AC = \frac{\partial TC}{\partial q}.$$

- Graphically, MC measures the slope of the TC curve:
 - When $TC \uparrow$, its slope must be positive $\rightarrow MC$ is positive.
 - When $TC \downarrow$, its slope must be negative $\rightarrow MC$ is negative.
- The AC and MC curves exhibit a similar relationship than the relationship between average and marginal product, AP and MP.
- The MC curve crosses the AC curve at it minimum.

- Example 8.9: Finding average and marginal cost.
 - Consider a firm with Cobb-Douglas function in example 8.4,

$$q = L^{1/2} K^{1/2}$$

where TC = 40q.

The firm's average cost and marginal cost are

$$AC = \frac{40q}{q} = 40,$$

$$AC = \frac{\partial(40q)}{\partial(40q)} = 40$$

$$MC = \frac{\partial (40q)}{\partial q} = 40.$$

- Hence, AC and MC curves are both constant, and AC = MC.
- Graphically they are depicted by a horizontal line at height \$40.

• Example 8.9: (continued):

- Example 8.9 (continued):
 - In the case of the linear production function in example 8.7,
 - $TC = r \frac{q}{s}$ when r < 4w (i.e., labor is expensive relative to capital).
 - $TC = w \frac{q}{2}$ when r > 4w (i.e., labor is relatively cheap).
 - In this context,
 - When r < 4w, $AC = \frac{r\frac{q}{8}}{q} = \frac{r}{8}$ and $MC = \frac{\partial \left(r\frac{q}{8}\right)}{\partial q} = \frac{r}{8}$. When r > 4w, $AC = \frac{w\frac{q}{2}}{a} = \frac{w}{2}$ and $MC = \frac{\partial \left(w\frac{q}{2}\right)}{\partial a} = \frac{w}{2}$.
 - Hence, AC and MC are constant in q, and AC = MC.
 - Graphically, AC and MC overlap, being a flat line.

- The marginal cost $MC=\frac{\partial TC}{\partial q}$ measures how much total cost increases if the firm increases its output by 1 units.
- However, this measure is not unit-free.
- Consider a firm producing computer monitors in the US, and another firm producing cars in Germany.
 - The MC from the first firm would be in \$/monitor.
 - The MC form the second firm would be in €/car.
- We can apply the definition of elasticity to obtain a unit-free measure of how total cost changes in output.

Output elasticity of total cost is

$$\varepsilon_{TC,q} = \frac{\%\Delta TC}{\%\Delta q} = \frac{\frac{\Delta TC}{TC}}{\frac{\Delta q}{q}} = \frac{\Delta TC}{\Delta q} \frac{q}{TC},$$

or $\varepsilon_{TC,q} = \frac{\partial TC}{\partial q} \frac{q}{TC}$ when the change q is small.

• Because $MC = \frac{\partial TC}{\partial q}$, this elasticity can be rewritten as

$$\varepsilon_{TC,q} = MC \frac{q}{TC}.$$

• As
$$AC = \frac{TC}{q}$$
, its inverse is $\frac{1}{AC} = \frac{q}{TC}$,
$$\varepsilon_{TC,q} = MC \frac{1}{AC} \implies \varepsilon_{TC,q} = \frac{MC}{AC}.$$

- When MC > AC, $\varepsilon_{TC,q} = \frac{MC}{AC}$ satisfies $\varepsilon_{TC,q} > 1$.
 - Total costs increase \emph{more} than proportionally to 1% increase in output.
- When MC < AC, $\varepsilon_{TC,q} = \frac{MC}{AC}$ satisfies $\varepsilon_{TC,q} < 1$.
 - Total costs increase less than proportionally to 1% increase in output.
- When MC = AC, $\varepsilon_{TC,q} = \frac{MC}{AC}$ satisfies $\varepsilon_{TC,q} = 1$.
 - Total costs responds proportionally to 1% increase in output.

- Example 8.10: Output elasticity in the Cobb-Douglas case.
 - Consider the firm with Cobb-Douglas function in example 8.4, $q = L^{1/2}K^{1/2}$

where TC = 40q.

The total elasticity is

$$\varepsilon_{TC,q} = \frac{\partial TC}{\partial q} \frac{q}{TC} = 40 \frac{q}{40q} = 1.$$

• If the firm increases its output by 1%, its total costs also increase by 1%.

- Example 8.10 (continued):
 - In the firm has the linear production function in example 8.7,
 - $TC = r \frac{q}{8}$ when r < 4w.
 - $TC = w \frac{q}{2}$ when r > 4w.
 - When 4r < w, output elasticity becomes

$$\varepsilon_{TC,q} = \frac{\partial TC}{\partial q} \frac{q}{TC} = \frac{r}{8} \frac{q}{r \frac{q}{8}} = \frac{q}{r}.$$

- If the firm seeks to produce 1% more units of output, its total cost increase by $\frac{q}{r}$ %.
- When r > 4w, $\varepsilon_{TC,q} = \frac{q}{w}$.

Economies of Scale, Scope, and Experience

- A firm experiences economies of scale when its average cost, AC, decreases in output q.
 - Examples:
 - Task specialization.
 - Large capital investments spreaded over large output levels.
- A firm suffers from diseconomies of scale when its average cost, AC, increases in output q.
 - Example: Managerial diseconomies.

- Example 8.11: Testing for economies of scale.
 - Consider a firm with $TC = a + bq + cq^2$, where $a, b, c \ge 0$. The average cost is

$$AC = \frac{TC}{q} = \frac{a + bq + cq^2}{q} = \frac{a}{q} + b + cq.$$

This expression reaches its minimum at

$$\frac{\partial AC}{\partial q} = 0,$$

$$-\frac{a}{q^2} + c = 0,$$

$$q = \left(\frac{a}{c}\right)^{1/2}.$$

• Example 8.11 (continued):

- For $q < \left(\frac{a}{c}\right)^{1/2}$, AC curve is decreasing \rightarrow economies of scale. For $q > \left(\frac{a}{c}\right)^{1/2}$, AC curve is increasing \rightarrow diseconomies of scale.

- Example 8.11 (continued):
 - The minimum of the AC curve, $q=\left(\frac{a}{c}\right)^{1/2}$, could alternatively be found by using the property that the MC and AC cross each other at the minimum of the AC curve.
 - First, we find MC,

$$MC = \frac{\partial TC}{\partial q} = b + 2cq.$$

• Second, MC and AV curves cross where MC = AC,

$$b + 2cq = \frac{a}{q} + b + cq.$$

Rearranging and solving for q,

$$\frac{a}{q} = cq \implies q = \left(\frac{a}{c}\right)^{1/2}.$$

- Example 8.11 (continued):
 - Consider the firm's total cost function is

$$TC = 10 + 2q + q^2,$$

which implies that a = 10, b = 2, and c = 1.

• The AC curve becomes

$$AC = \frac{10}{q} + 2 + q,$$

which reaches its minimum at $q = \left(\frac{10}{1}\right)^{1/2} \cong 3.16$ units.

• For al q < 3.16, the firm's AC curve decreases in q, while for all q > 3.16 it increases in q.

 Economies of scope. The situation where a firm incurs a lower total cost producing two different products than the total cost that two firms would incur producing each good separately,

$$TC(q_1, q_2) < TC(q_1, 0) + TC(0, q_2).$$

• Because often TC(0,0) = 0,

$$TC(q_1, q_2) < TC(q_1, 0) + TC(0, q_2) - TC(0, 0).$$

After rearranging,

$$TC(q_1, q_2) - TC(q_1, 0) < TC(0, q_2) - TC(0, 0).$$

The increase in cost from starting to produce one good alone is larger than the additional costs of adding one more good to the firm's product line.

• Example: Television channels in a satellite network.

- Example 8.12: Economies of Scope.
 - Consider a soda company producing 2 types of cola.
 - When the firm only produces regular cola (good 1),

$$TC = (q_1, 0) = 3q_1 + 10.$$

• When the firm only produces diet cola (good 2),

$$TC(0, q_2) = 4q_2 + 10.$$

- Example 8.12 (continued):
 - When it simultaneously produces both types of colas,

$$TC(q_1, q_2) = (3 - \alpha)q_1 + (4 - \alpha)q_2 + (10 + \beta),$$

- where $\alpha>0$ indicates the cost savings effect that producing related products has on the unit cost of both regular and diet cola.
 - $\beta > 0$ represents the increased in fixed costs when producing 2 types of cola rather than 1.

- Example 8.12 (continued):
 - The firm exhibits economies of scope if

$$TC(q_1,q_2) < TC(q_1,0) + TC(0,q_2),$$

$$(3-\alpha)q_1 + (4-\alpha)q_2 + (10+\beta) < [3q_1+10] + [4q_2+10],$$
 which simplifies to

$$\beta < 10 + \alpha(q_1 + q_2).$$

The firm benefits from economies of scope if the increase in the fixed costs from producing both goods (measured by β) is relatively lower than the cost-saving effect from producing both goods (measures by α).

- Economies of experience. The average variable cost (AVC) decreases during the firm's production history.
 - Often emerge because workers learn from previous periods to avoid product defect, because managers arrange workstations to improve work productivity, or achieve higher material yield.
- Economies of experience are expressed as

$$AVC(E) = \frac{A}{E^{\varepsilon}}.$$

where A > 0 denotes the AVC from the 1st unit;

 $E=q_{t-1}+q_{t-2}\dots$, measures experience from production in previous periods;

 $\varepsilon \in (0,1)$ represents experience elasticity.

• Elasticity of experience ε is

$$\varepsilon_{AVC,E} = \frac{\% \Delta AVC}{\% \Delta E}$$

$$= \frac{\frac{\Delta AVC}{AVC}}{\frac{\Delta E}{E}}$$

$$= \frac{\Delta AVC}{\Delta E} \frac{E}{AVC}$$

Or when the change in E is relatively small,

$$\varepsilon_{AVC,E} = \frac{\partial AVC}{\partial E} \frac{E}{AVC}.$$

- Because $AVC(E) = \frac{A}{E^{\varepsilon}}, \frac{\partial AVC}{\partial E} = -A\varepsilon E^{-(1+\varepsilon)}.$
- Then, experience elasticity becomes

$$\varepsilon_{AVC,E} = -A\varepsilon E^{-(1+\varepsilon)} \frac{E}{\frac{A}{E^{\varepsilon}}}.$$

• A 1% increase in the firm's production experience, E, decreases its average variable costs by $\varepsilon\%$.

- Example 8.13: Slope of the experience curve.
 - We can analyze the responsiveness of a firm's average costs (AVC) to its production experience by focusing on the slope of the experience curve,

Slope of the experience curve
$$=\frac{AVC(2E)}{AVC(E)} = \frac{\frac{A}{(2E)^{\mathcal{E}}}}{\frac{A}{E^{\mathcal{E}}}} = \frac{E^{\mathcal{E}}}{2^{\mathcal{E}}E^{\mathcal{E}}} = \frac{1}{2^{\mathcal{E}}}.$$

- This slope measures how much the AVC decreases when cumulative output (E) doubles.
- Because $\varepsilon \in (0,1)$, an increase in ε entails a larger slope of the experience curve.

Appendix. Cost-Minimization— A Lagrangian Analysis

CMP-A Lagrangian Analysis

• The firm's cost-minimization problem is

$$\min_{L \ge 0, K \ge 0} TC = wL + rK$$

subject to $q = f(L, K)$.

- This is a constrained minimization problem, in which the constraint is given by the output target, q = f(L, K).
- This problem has the Lagrangian function

$$\mathcal{L} = wL + rK + \lambda[q - f(L, K)].$$

where λ denotes the Lagrange multiplier associated with the constraint.

CMP-A Lagrangian Analysis

• Differentiating with respect to L,

$$w + \lambda \left[-\frac{\partial f(L,K)}{\partial L} \right] = 0 \text{ or } \frac{w}{MP_L} = \lambda.$$

Differentiating with respect to K,

$$r + \lambda \left[-\frac{\partial f(L,K)}{\partial K} \right] = 0 \text{ or } \frac{r}{MP_K} = \lambda.$$

• Differentiating with respect to λ ,

$$q - f(L, K) = 0 \text{ or } q = f(L, K).$$

which coincides with the constraint.

CMP-A Lagrangian Analysis

• Because the results after differentiating with respect to L and K are both equal to λ ,

$$\frac{w}{MP_L} = \frac{r}{MP_K}.$$

After cross multiplying,

$$\frac{MP_L}{w} = \frac{MP_K}{r}.$$

When minimizing cost, the firm adjusts its inputs until it gets the same bang for the buck across all inputs.

• This result can be rewritten as $\frac{MP_L}{MP_K} = \frac{w}{r}$, which says that the firm hires inputs until the point in which the isoquant is tangent to the isocost.