Data Mining (W4240 Section 001) Clustering (part 2)

Giovanni Motta

Columbia University, Department of Statistics

December 2, 2015

Outline

Gaussian Mixture Models

Hierarchical Clustering

Agglomerative Clustering

Hierarchical Clustering Details

Divisive Clustering

Applications

Hierarchical Clustering in R

Outline

Gaussian Mixture Models

Hierarchical Clustering

Agglomerative Clustering

Hierarchical Clustering Details

Divisive Clustering

Applications

Hierarchical Clustering in R

Mixture Models

The Gaussian mixture model: loosely, cluster with soft assignments

To generate data from a GMM:

- ▶ choose cluster with $c_i \sim Categorical(p_1, ..., p_p)$
- generate point x_i with $x_i|c_i=k\sim\mathcal{N}(\mu_k,\Sigma_k)$
- $(\mu_k$ is mean vector, Σ_k is covariance matrix)

As with K-Means, we generated data with:

- observation x_i in cluster c_i
- K clusters
- ▶ Our goal is use data to find μ_k (and Σ_k)

Mixture Models

Mixture models are fit using the following iterative steps:

1. E-step:

$$\mathbb{P}(c_i = k \mid x_i) = \frac{\pi_k N(x_i \mid \mu_k, \Sigma_k)}{\sum_{\ell=1}^K \pi_\ell N(x_i \mid \mu_\ell, \Sigma_\ell)}$$
 π : Prior prob(y==k)

2. M-step: π : Prior prob(y==k

$$\mu_k^{new} = \frac{1}{N_k} \sum_{i=1}^n \mathbb{P}(c_i = k \mid x_i) x_i$$

EM 算法

$$\pi_k^{new} = \frac{1}{N} \sum_{i=1}^n \mathbb{P}(c_i = k \mid x_i)$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{i=1}^n \mathbb{P}(c_i = k \,|\, x_i) (x_i - \mu_k^{new}) (x_i - \mu_k^{new})^\top$$

- (the Expectation-Maximization algorithm)
- ▶ Let's compare this conceptually to K-Means

Clustering with Gaussian Mixture Models

- ▶ have real valued data, $X \in \mathbb{R}^{n \times p}$
- ▶ fit with a mixture of K clusters
- lacktriangle each observation x_i has cluster variable c_i
- \triangleright given cluster k, fit data with a Gaussian distribution

$$x_i \mid c_i = k \sim N(\mu_k, \Sigma_k)$$

density of data is

$$\sum_{k=1}^{K} \pi_k \mathcal{N}(x_i; \mu_k, \Sigma_k)$$

Use iterative procedure to cluster distribution, update parameters, update cluster distribution, update parameters...

Mixture Models

Gaussian mixture model (K = 2):

Mixture Models

Extensions:

 if we have categorical data, we might model this with a multinomial distribution

$$x_i \mid c_i = k \sim Multi(p_{k,1}, \dots, p_{k,M})$$

- actually, we can use any parametric distribution that we like
- creates a flexible model for mixed data types

Important Caveat: clusters need to be well-modeled by components of a mixture

Mixture Models in R

We can use the mclust package in R to fit a mixture model

```
> library(datasets)
```

- > library(mclust)
- > faithful.mm <- Mclust(faithful)</pre>
- > summary(faithful.mm)
- > plot(faithful.mm)
- > faithful.mm2 <- Mclust(faithful,G=2)</pre>

So what about this data?

Fit with K-means:

Fit with a Gaussian mixture model (Mclust in the mclust package):

One of the clusters is not well-modeled by a Gaussian distribution...

Outline

Gaussian Mixture Models

Hierarchical Clustering

Agglomerative Clustering

Hierarchical Clustering Details

Divisive Clustering

Applications

Hierarchical Clustering in R

Hierarchical Clustering

Idea:

- build a <u>binary tree</u> to represent clustering
- successively merge separate groups
- trees are quite useful for visualizing data

Hierarchical Clustering

What do we need for hierarchical clustering?

K-Means needs:

- a number of clusters K
- an initial clustering
- ▶ a distance between points, $\underline{d(x_i, x_i)}$

Hierarchal clustering needs:

▶ a distance between *groups of data points*

Outline

Gaussian Mixture Models

Hierarchical Clustering

Agglomerative Clustering

Hierarchical Clustering Details

Divisive Clustering

Applications

Hierarchical Clustering in R

There are two ways to do hierarchical clustering:

- agglomerative clustering
- divisive clustering

Let's start with agglomerative clustering

Basic algorithm:

- start with all data points in individual groups
- repeat: merge the two <u>"closest"</u> groups
- stop: when all groups have been merged into a single group

cc.small[, 1]

This can be viewed as a tree:

d.list.small hclust (*, "complete")

Representing clustering with a tree:

- each level represents a segmentation of the data
- ▶ the tree represents a sequence of clusterings
- height represents the negative similarity between merged groups
- user must choose best grouping
- great for summarizing algorithm and data

Agglomerative Clustering: data simulated from a 3-class model

Dendogram obtained from hierarchical clustering

Agglomerative Clustering: interpretation of a dendogram

Agglomerative Clustering: interpretation of a dendogram

- ▶ There are 2^{n-1} possible reorderings of the dendrogram, where n is the number of leaves.
- ▶ At each of the n-1 points where fusions occur, the positions of the two fused branches could be swapped without affecting the meaning of the dendrogram.
- ► <u>DO NOT draw conclusions about the similarity of two obs</u> based on their proximity along the *horizontal* axis.
- Draw conclusions about the similarity of two observations based on the location on the *vertical* axis where branches containing those two observations first are fused.

Outline

Gaussian Mixture Models

Hierarchical Clustering

Agglomerative Clustering

Hierarchical Clustering Details

Divisive Clustering

Applications

Hierarchical Clustering in R

Group Similarity

How do we define similarity between groups?

The most popular choices:

▶ <u>Single-linkage</u>: the distance between the closest pair

$$d_{SL}(G, H) = \min_{i \in G, j \in H} d(x_i, x_j)$$

<u>Complete-linkage</u>: the distance of the furthest pair

$$d_{CL}(G, H) = \max_{i \in G, j \in H} d(x_i, x_j)$$

Group-average: the average distance between groups

$$d_{GA}(G,H) = \frac{1}{N_G N_H} \sum_{i \in G} d(x_i, x_j)$$

Metroid: the distance between the means or metroids of groups

$$d_{ME}(G,H) = d(\mu_G, \mu_H)$$

Group Similarity

- single linkage can produce "chaining", where a few close observations can cause early merger of two groups
- complete linkage can cause groups <u>not to merge</u> if there are a few distant observations
- group averaging is a compromise, although it can <u>require</u> <u>scaling</u> of the data/similarities
- Metroids are similar to k-means. Major drawback that an inversion can occur: two clusters are fused at a height below either of the individual clusters in the dendrogram. This can lead to difficulties in visualization as well as in interpretation of the dendrogram.

Agglomerative Clustering: interpretation of a dendogram

FIGURE 10.12. Average, complete, and single linkage applied to an example data set. Average and complete linkage tend to yield more balanced clusters.

Caveats

(Left) Complete linkage dendrogram, (Right) Single linkage

Caveats

Hierarchical clustering has a few issues:

- different similarity metrics can make very different dendrograms (remind you of anything?)
- this method imposes a hierarchical structure on data, even if it does not exist
- ightharpoonup minimal complexity is $\mathcal{O}(n^2)$, not good for large datasets

Back to Original Problem

What sort of clustering should we use?

Back to Original Problem

Back to Original Problem

Outline

Gaussian Mixture Models

Hierarchical Clustering

Agglomerative Clustering

Hierarchical Clustering Details

Divisive Clustering

Applications

Hierarchical Clustering in R

Now on to divisive clustering

Basic algorithm:

- start with all data points in one single group
- repeat: split one cluster
- stop: when all groups only contain individuals

How can we split groups?

Use cuts!

There are many cut-based algorithms, but we will look at one.

Cuts are not the only way to divide data, but they are the simplest.

Inter/Intra Cluster Costs:

Given:

- $U = \{x_1, \dots, x_n\}$ set of all observations
- ▶ A partitioning C_1, \ldots, C_k of the objects

Set:

- $ightharpoonup cutcost(C_p) = \sum_{i \in C_p, j \notin C_p} d(x_i, x_j)$
- $intracost(C_p) = \sum_{i,j \in C_p} d(x_i, x_j)$
- the contribution of each cluster is the ratio of external similarity to internal similarity

$$cost(C_1, \dots, C_k) = \sum_{p=1}^{k} \frac{cutcost(C_p)}{intracost(C_p)}$$

Want to find clustering C_1, \ldots, C_k that minimizes $cost(C_1, \ldots, C_k)$

Heuristic way to find $\min cost(C_1, \ldots, C_k)$

- 1. choose initial partition C_1, \ldots, C_k
- 2. do until change in cost is less than ϵ for outer loop:
 - ightharpoonup active set is $\{1,\ldots,n\}$
 - ightharpoonup for $i=1,\ldots,n$:
 - sample j from active set; remove j
 - ightharpoonup move x_j into cluster that minimizes cost

Note: more computationally demanding than agglomerative clustering

Outline

Gaussian Mixture Models

Hierarchical Clustering

Agglomerative Clustering

Hierarchical Clustering Details

Divisive Clustering

Applications

Hierarchical Clustering in F

Applications of Hierarchical Clustering

Microarray gene expression data:

- "Repeated Observation of Breast Tumor Subtypes in Independent Gene Expression Data Sets" (Sorlie et al., 2003)
- hierarchical clustering is used to create new theories (discover tumor subtypes)
- ...which are then tested in the lab
- hypothesis: "breast tumor subtypes represent biologically distinct disease entities"

Applications of Hierarchical Clustering

Outline

Gaussian Mixture Models

Hierarchical Clustering

Agglomerative Clustering

Hierarchical Clustering Details

Divisive Clustering

Applications

Hierarchical Clustering in R

Hierarchical Clustering in R

We will use the hclust function in the stats package (which is likely automatically loaded)

- let's make a function that plots the clusters as connections between points
- (the output of the following code is precisely the set of agglomerative clustering plots we previously viewed)

```
> # Get data
> library(datasets)
> n.faithful <- length(faithful[,1])
> cc.small <- faithful[sample(1:n.faithful,30),]
> n.small <- length(cc.small[,1])
> d.list.small <- dist(cc.small)
> h.list.small <- hclust(d.list.small, method="single")
> plot(h.list.small)
```

Hierarchical Clustering in R

```
> # Make clusters
> cluster.list <- list()
> merge <- h.list.small$merge
> for (i in 1:(n.small-1)){
   temp.vals <- merge[i,]</pre>
   if (i==1){
   cluster.list[[i]] <- c(-temp.vals)}</pre>
   else{
    # Check to see if negative or positive
    c.temp.1 \leftarrow mat.or.vec(1,1)
    if (temp.vals[1] < 0){
      # if neg, include positive version of index
      c.temp.1 <- -temp.vals[1]}</pre>
    else{
      # if positive, include indices from cluster
      c.temp.1 <- cluster.list[[temp.vals[1]]]}</pre>
    c.temp.2 <- mat.or.vec(1,1)</pre>
    if (temp.vals[2] < 0){
      c.temp.2 <- -temp.vals[2]}</pre>
    else{
      c.temp.2 <- cluster.list[[temp.vals[2]]]}</pre>
    cluster.list[[i]] <- c(c.temp.1,c.temp.2)}}</pre>
```

Hierarchical Clustering in R

Plot the results:

```
for (i in 1:(n.small-1)){
  pdf(paste("AgClustS",i,".pdf",sep=""))
  plot(cc.small[,1],cc.small[,2],ylim=c(-1.5,1.5),xlim=c(-1.5,1.5),
      main=paste("Agglomerative Clustering Step (",i,")",sep=""))
  for (j in 1:i){# plot lines
    temp.vec <- cluster.list[[j]]</pre>
    temp.n <- length(temp.vec)</pre>
    for (k in 1:(temp.n-1)){
      ind.1 <- temp.vec[k]</pre>
      for (ell in (k+1):temp.n){
        ind.2 <- temp.vec[ell]</pre>
        lines(c(cc.small[ind.1,1],cc.small[ind.2,1]),c(cc.small[ind.1,2],
          cc.small[ind.2,2]),col=3,xlab="X1",ylab="X2")
dev.off()
```

Final-esque question

Use hierarchical agglomerative clustering to cluster the following data points with (a) single linkage, then (b) average linkage, and then (c) complete linkage:

x_1	x_2
-1.0	-1.2
-1.2	-1.8
-2.1	-2.4
1.1	1.5
1.5	1.6
1.3	0.7