Unique Paths

There is a robot on an m x n grid. The robot is initially located at the **top-left corner** (i.e., grid[0][0]). The robot tries to move to the **bottom-right corner** (i.e., grid[m-1][n-1]). The robot can only move either down or right at any point in time.

Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The test cases are generated so that the answer will be less than or equal to $2 * 10^9$.

Example 1:

Input: m = 3, n = 7

Output: 28

Example 2:

Input: m = 3, n = 2

Output: 3

Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:

1. Right -> Down -> Down

2. Down -> Down -> Right

3. Down -> Right -> Down

Constraints:

• 1 <= m, n <= 100