mm 大学 2021—2022 学年第 二 学期

《大学物理 A(上)》期中考试试题参考答案及评分标准

一、单选题 (每小题 2 分, 共 20 分)

二、填空题(每小题 4 分, 共 16 分)

11. $2R\overline{i}$

 πR

12. 3cm

400J

13.
$$2t^2\vec{i} + 2\vec{j} (\text{m/s})$$
 $\frac{2}{3}t^3\vec{i} + 2t\vec{j}$ (m)

14. 20J 4J

三、计算题(共52分)

15. **解:** (1) 由牛顿运动定律 F = ma 得

$$-kv^2 = m \frac{\mathrm{d}v}{\mathrm{d}t}$$
, 分离变量 $-\frac{k}{m} \mathrm{d}t = \frac{\mathrm{d}v}{v^2}$

两边积分
$$\int_0^t -\frac{k}{m} dt = \int_{\nu_0}^{\nu} \frac{d\nu}{\rho^2}$$
 (r 分)

(r分)

速率随时间变化的规律为
$$\boldsymbol{v} = \frac{1}{\frac{1}{\boldsymbol{v}_0} + \frac{\boldsymbol{k}}{\boldsymbol{m}} t}$$
 (r 分)

(2) 由位移和速度的积分关系 $\mathbf{x} = \int_0^t \mathbf{v} d\mathbf{t} + \mathbf{x}_0$, 设 $\mathbf{x}_0 = 0$

积分
$$x = \int_0^t \mathbf{v} dt = \int_0^t \frac{1}{\frac{1}{\mathbf{v}_0} + \frac{\mathbf{k}}{\mathbf{m}} t} dt = \frac{\mathbf{m}}{\mathbf{k}} \ln(\frac{1}{\mathbf{v}_0} + \frac{\mathbf{k}}{\mathbf{m}} t) - \frac{\mathbf{m}}{\mathbf{k}} \ln\frac{1}{\mathbf{v}_0}$$
 (d 分)

路程随时间变化的规律为
$$x = \frac{m}{k} \ln \left(1 + \frac{k}{m} v_0 t\right)$$
 (d 分)

16. **解:** 设两根绳子的张力分别为 T_1 、 T_2 ; m_2 、 m_3 相对 B 轮的加速度大小为 a_2' ; m_1 、 m_2 、

 m_3 的加速度大小分别为 a_1 、 a_2 、 a_3 。

根据牛顿运动定律

$$m_1 g - T_1 = m_1 a_1 \tag{d } \mathcal{H})$$

$$m_2g - T_2 = m_2a_2 = m_2(a_2' - a_1)$$
 (d \mathcal{H})

$$m_3g - T_2 = m_3(-a_3) = m_3(-a_2' - a_1)$$
 (d \mathcal{H})

$$2T_2 - T_1 = 0 \tag{d 分)}$$

由以上六式解得

$$a_1 = \frac{1}{5}g = 2(m/s^2)$$
 方向竖直向下 $a_2' = \frac{2}{5}g = 4(m/s^2)$ $a_2 = \frac{1}{5}g = 2(m/s^2)$ 方向竖直向下 $a_3 = \frac{3}{5}g = 6(m/s^2)$ 方向竖直向上 $T_1 = 0.16g = 1.6(N)$ $T_2 = 0.08g = 0.8(N)$ (d分)

17. 解:(1)应用角动量守恒定律

$$m\upsilon \cdot \frac{3}{4}l = \frac{1}{3}Ml^2\omega + m\left(\frac{3}{4}l\right)^2\omega \tag{d}$$

得
$$\omega = \frac{\frac{3}{4}m\upsilon}{\left(\frac{1}{3}M + \frac{9}{16}m\right)l} = \frac{\frac{3}{4} \times 8 \times 10^{-3} \times 200}{\left(\frac{1}{3} \times 1.5 + \frac{9}{16} \times 8 \times 10^{-3}\right) \times 0.4} = 5.95(rad/s)$$
 (d 分)

(2) 应用机械能守恒定律

$$\frac{1}{2} \left[\frac{1}{3} M l^2 + m \left(\frac{3}{4} l \right)^2 \right] \omega^2 - M g \frac{l}{2} - m g \frac{3l}{4} = -M g \frac{l}{2} \cos \theta - m g \frac{3l}{4} \cos \theta$$
 (d $\frac{4}{3}$)

得
$$\cos \theta = 1 - \frac{\frac{2}{3}M + \frac{9}{8}m}{2M + 3m} \cdot \frac{l}{g}\omega^2 = 0.52$$
 $\theta = 58.6^{\circ}$ (d 分)

18 **解**:设小球和圆弧形槽的速度分别为 v_1 和 v_2

(1)由动量守恒定律
$$m\upsilon_1 + M\upsilon_2 = 0$$
 (d 分)

由机械能守恒定律
$$\frac{1}{2}mv_1^2 + \frac{1}{2}Mv_2^2 = mgR$$
 (d 分)

由上面两式解得

$$\upsilon_1 = \sqrt{\frac{2MgR}{m+M}} = M\sqrt{\frac{2gR}{(m+M)M}}$$
 $\upsilon_2 = -m\sqrt{\frac{2gR}{(m+M)M}}$ (d $\dot{\mathcal{D}}$)

(2)小球相对槽的速度为 $\vec{v} = \vec{v}_1 - \vec{v}_2$

$$\upsilon = \upsilon_1 - \upsilon_2 = (M + m)\sqrt{\frac{2gR}{(m+M)M}}$$
 (d $\dot{\mathcal{T}}$)

竖直方向应用牛顿运动第二定律

$$N - mg = m\frac{v^2}{R} \tag{d \%}$$

$$N' = N = mg + m\frac{v^2}{R} = mg + (M + m)^2 \frac{2mg}{(m+M)M} = 3mg + \frac{2m^2g}{M}$$
 (d $\%$)

四、证明题(共12分)

19. 证:两小球碰撞过程中,机械能守恒,动量守恒

$$\frac{1}{2}m\upsilon_0^2 = \frac{1}{2}m\upsilon_1^2 + \frac{1}{2}m\upsilon_2^2 \qquad \qquad \upsilon_0^2 = \upsilon_1^2 + \upsilon_2^2 \qquad (1) \qquad (d \, \hat{\pi})$$

$$m\vec{\upsilon}_0 = m\vec{\upsilon}_1 + m\vec{\upsilon}_2 \qquad \qquad \vec{\upsilon}_0 = \vec{\upsilon}_1 + \vec{\upsilon}_2 \qquad (2)$$

由(2)式可以作出矢量三角形,又由(1)式可知三矢量大小满足勾股定理定理,且 \vec{v}_0 为

斜边,因此 \bar{v}_1 与 \bar{v}_2 是互相垂直的 (4分)

