Deep Learning

Yan-Fu Kuo

Dept. of Biomechatronics Engineering National Taiwan University

Google Colab

Colab is a hosted Jupyter notebook service that requires no setup to use, while providing free access to computing resources including GPUs.

Upload 12DeepLearning.ipynb to Google Colab

Setting Free GPU

Edit > Notebook settings > Change runtime type and select GPU as Hardware accelerator.

Contents

01 PyTorch and Tensor

02 Artificial Neural Networks

03 How to Train a Model

04 Convolutional Neural Networks

01 PyTorch and Tensor

PyTorch

A replacement for NumPy to use the power of GPUs

A deep learning research platform that provides maximum flexibility and speed

Pytorch -> Get Started

GPU Acceleration

Tensors

Tensors are similar to NumPy's ndarrays, with the addition being that Tensors can also be used on a GPU to accelerate computing.

```
import torch
x = torch.tensor([5.5, 3])
tensor([5.5000, 3.0000])
```

```
import numpy as np
y = np.array([5.5, 3])
[5.5000, 3.0000]
```


Tensors | Operations

Arithmetic

```
x = torch.linspace(1, 10, 10)
y = torch.ones((1, 10))
x + y
```

tensor([[2., 3., 4., 5., 6., 7., 8., 9., 10., 11.]])

Slicing

```
x[:5]
tensor([1., 2., 3., 4., 5.])
```

Resizing

```
x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8)
print(x.shape, y.shape, z.shape)
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
.item()
x = torch.randn(1)
print(x.item())
-0.408441
```

Tensors | Numpy Bridge

NumPy Array → Torch Tensor

```
a = np.ones(5)
b = torch.from_numpy(a)
print(a)
print(b)
```

```
[1. 1. 1. 1. ]
tensor([1., 1., 1., 1., 1.],
dtype=torch.float64)
```

Torch Tensor → NumPy Array

```
a = torch.ones(5)
print(a)
b = a.numpy()
print(b)
```

```
tensor([1., 1., 1., 1., 1.])
[1., 1., 1., 1.]
```


Tensors | CUDA

```
x = torch.randn(1)
if torch.cuda.is_available():
    device = torch.device("cuda")
    y = torch.ones_like(x, device=device)
    x = x.to(device)
    z = x + y
    print(z)
    print(z.to("cpu", torch.double))
```

```
tensor([-0.5981], device='cuda:0')
tensor([-0.5981], dtype=torch.float64)
```

Tensors can be moved onto any device using the .to method.

02 Artificial Neural Networks

Deep Learning Models

Usually refers to neural networks with large numbers in layers and neurons.

Why Deep Learning?

Machine Learning

Deep Learning

Feature Extraction + Classifier

Output

Perceptron (Neuron)

$$y = \begin{cases} 1, & \sum > \text{threshold} \\ 0, & \sum < \text{threshold} \end{cases}$$

Activation Function

Step Function

 $f(x) = \begin{cases} 1, & x > 0 \\ 0, & x \le 0 \end{cases} \qquad f(x) = \frac{1}{1 + e^{-x}} \qquad f(x) = \max(0, x) \qquad f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$

ReLU

$$f(x) = \max(0, x)$$

TanH

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Linear

$$f(x) = x$$

Classification Problem

Matrix Multiplication

$$\begin{bmatrix} 1 & x_1 & x_2 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = X^T W$$

$$(1, 3) \qquad (3, 1) \qquad (1, 1)$$

$$\vdash \text{Equal!}$$

$$\begin{bmatrix} 1 & x_1^1 & x_2^1 \\ 1 & x_1^2 & x_2^2 \\ 1 & x_1^3 & x_2^3 \\ 1 & x_1^4 & x_2^4 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = X^T W$$

$$(4, 3) \qquad (3, 1) \qquad (4, 1)$$

Multilayer Perceptron

Matrix Multiplication

$$[x_1 \quad x_2] \begin{bmatrix} w_{11}^{(1)} & w_{12}^{(1)} \\ w_{21}^{(1)} & w_{22}^{(1)} \end{bmatrix} \begin{bmatrix} w_{11}^{(2)} \\ w_{21}^{(2)} \end{bmatrix} = XW^{(1)}W^{(2)}$$

$$(1, 2) \quad (2, 2) \quad (2, 1)$$

$$\vdash_{\mathsf{Equal!}} \vdash_{\mathsf{Equal!}}$$

Artificial Neural Network

Artificial Neural Network (completed)

Softmax

$$softmax(x_i) = \frac{exp(x_i)}{\sum_{j=0}^{n} exp(x_j)}$$

03 How to Train A Model

Procedure of Training a DL Model

- Step 1 | Arrange data into in "tensor" format
- Step 2 | Define the network
- Step 3 | Define a loss function and an optimizer
- Step 4 | Train the model
- Step 5 | Test the model

MNIST Dataset

Handwritten digits

Define a Model in PyTorch

Error Rate (1-Accuracy)

Model 1 Error rate = 0.25

		Dog	Cat	Snake
lmage 1	Cat	0.3	0.4	0.3
Image 2	Dog	0.5	0.3	0.2
Image 3	Cat	0.6	0.1	0.3
Image 4	Snake	0.3	0.2	0.5

Model 2 Error rate = 0.25

		Dog	Cat	Snake
lmage 1	Cat	0.1	0.8	0.1
lmage 2	Dog	0.9	0.1	0.0
Image 3	Cat	0.4	0.3	0.3
Image 4	Snake	0.2	0.0	8.0

Mean Square Error

$$MSE = \frac{1}{N} \sum_{i} (y_i - \hat{y}_i)^2$$

Cross-Entropy

Model 1 **CE = 0.22**

Model 2 **CE = 0.09**

Solving the Loss Function

Typically we estimate a parameter by minimizing the loss function, and using as the estimator the parameter which minimizes the loss.

$$\min_{w} loss(w)$$

Usually (but not always) the way to solve the loss function is to differentiate it and equate it to zero.

Gradient Descent

Pick a initial value w^0 (randomly)

While True:

$$w^{t+1} \leftarrow w^t - \eta \frac{\partial f}{\partial w}\Big|_{w=w^t}$$
 Learning Rate

Optimizers

04 Convolutional Neural Networks

Challenges with ANN

- ANN loses the spatial features of an image.
- The number of trainable parameters increases drastically with an increase in the size of the image.

Convolutional Neural Networks

Convolution + Artificial Neural Network

Convolution (a review)

Laplacian Filter

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

CNN learns the filters by itself

Convolution Layer

Max Pooling

Max pooling is done by applying a max filter to (usually) non-overlapping subregions of the initial representation.

146	155	144	130	145	151
142	153	150	128	131	151
131	141	142	130	128	148
122	123	125	127	130	135
130	123	107	118	150	154
127	120	125	143	153	161

155	150	151
141	142	148
130	143	161

It reduces the computational cost by reducing the number of parameters to learn and provides basic translation invariance to the internal representation.

This layer requires no training!

Convolutional Layer in PyTorch

```
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
   def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
```

Convolutional Layer in PyTorch

```
def forward(self, x):
    x = self.pool(F.relu(self.conv1(x)))
    x = self.pool(F.relu(self.conv2(x)))
    x = x.view(-1, 16 * 5 * 5)
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return x
```

torch.nn

Deep neural network (DNN) models can be composed just like building LEGO buildings

CNN Architectures | AlexNet

Parameters: 62M

CNN Architectures | VGG

Parameters: 138M

CNN Architectures | GoogLeNet

Inception module

Parameters: 4M

CNN Architectures | ResNet

residual block

Parameters: 11-58M

CNN Architectures | Summery

Computer Vision Tasks

Semantic Segmentation Classification + Localization

Instance Segmentation

Object Detection

TRUNK, CAT, LEAF

Only pixels, No object

CAT

Single Object

CAT, DOG, DOG, CAT

Multiple Objects

CAT, DOG, DOG, CAT

Deep Learning Frameworks

