Functional Analysis Homework 7

Deadline: October 28th

1. Problem 1 (8 points)

Let $(X, \|\cdot\|_X)$ be a Banach space. Denote with X^* its dual with the typical dual norm rendering it a Banach space. Given a sequence $(f_n)_{n\in\mathbb{N}}$, denote with $f_n \stackrel{\star}{\to} f$ convergence of f_n against f with respect to the weak topology $\sigma(X^*, X)$. Prove the following statements:

- a) $f_n \xrightarrow{\star} f$ if and only if $f_n(x) \to f(x)$ for every $x \in X$;
- b) if $f_n \xrightarrow{w} f$ then $f_n \xrightarrow{\star} f$;
- c) If $f_n \stackrel{\star}{\to} f$ then f_n is bounded and $||f||_{X^{\star}} \le \liminf ||f_n||$;
- d) if $f_n \xrightarrow{\star} f$ and $x_n \to x$ (strongly) then $\langle f_n, x_n \rangle \to \langle f, x \rangle$.

2. Problem 2 (6 points)

Let $(X, \|\cdot\|_X)$ be a Banach space and X^* its dual. Given a sequence $(x_n)_n$ with $x_n \in X$ and a sequence $(f_n)_n$ with $f_n \in X^*$. Assume that $f_n \xrightarrow{*} f$ and $x_n \xrightarrow{w} x$. Prove or find a counter-example for the following statement:

$$\langle f_n, x_n \rangle \to \langle f, x \rangle.$$

3. Problem 3 (6 points)

Let $(E, \|\cdot\|_E)$ and $(E, \|\cdot\|_F)$ be Banach spaces. Let $T: E \to F$ be a linear surjective isometry. Prove that E is reflexive if and only if F is reflexive.