Istanbul Bilgi University CMPE 211 Data Structure and Algorithms 2017-2018 Fall Midterm Exam Answers

Name	:	Department	:
Student No	:	Date	:
		Grade	:

Answers to the midterm questions.

[20P] Q.1 (a) What is the time complexity of the following program. (b) Propose a modification in the code, in order to reduce the time complexity. Then calculate the time complexity of your proposal.

```
public long power(int x, int n){
   if (n == 0) return 1;
   if (n%2 == 0)
\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}
                             return power(x,n/2) * power(x,n/2);
                             return x * power(x,n/2) * power(x,n/2);
```

S.1 (a) T(n) = 1 + 2T(n/2) with T(1) = 1. By induction, we obtain, T(n) = n - 1 + nT(1) = 2n - 1 =O(n). (b) Redundant code: power(x, n/2) is called twice. Better agorithm can be

```
public long power(int x, int n){
   if (n == 0) return 1;
   long p = power(x,n/2);
   if (n%2 == 0) return p*p;
   else return x * p*p;
```

Now, we have T(n) = 1 + T(n/2) with T(1) = 1 which is $O(log_2n)$.

[20P] Q.2 Compare the running times for two algo- S.2 Lets calculate $T_B(n)$ first. $T_B(n) = n +$ rithms T_A and T_B running on different computers Aand B, over input size $n = 10^7$. What is your conclusion?

	Computer Power			
A	10^{10} instructions per sec.			
В	10^7 instructions per sec.			

Algorithm Time

A
$$T_A(n) = n^2$$
B $T_B(n) = n + 2T_B(n/2)$
with base case: $T_B(1) = 1$

 $2T_B(n/2) = 2n + 2^2 T_B(n/2^2) = \dots = kn + 2^k T_B(n/2^k).$ If we assume $n=2^k$ and $T_B(1)=1$, we have $T_B(n)=$ $n + nlog_2n$. Now,

- A requires $n^2 = 10^7 \times 10^7 = 10^{14}$ instructions and it can do 10^{10} instructions per sec. Time required for A is $\frac{10^{14}}{10^{10}}=10000$ sec.
- B requires $n + nlog_2 n = 10^7 + 10^7 log_2(10^7)$ instructions. So, we divide it to its speed and get $\frac{10^7 + 10^7 log_2(10^7)}{10^7} = 1 + log_2(10^7) = 24sec$

Take home message: better algorithms can beat supercomputers.

[20P] Q.3 Max-Heap. (a) Give the array representation of the heap. (b) Insert item Q to the binary heap. Indicate any entries that changed. (c) Remove max and show resulting array and tree.

[20P] Q.4 Suppose you have implemented memory of an agent as an ordered-array. Memory holds information about a set of items. Indicate the worst-case running time of each operations below.

know(item)	does item exist in the set, if so return its in-	
	set, if so return its index.	
	aex.	
learn(item)	add unknown item to its	
	correct place	
forget(item)	delete the given item	
	from the set	
recommend()	return the item who has	
	max value in the set	
rank(item)	return the number of	
	items in the set that are	
	less than given item	

S.3 Results

(a) - X U K G T H A F B R P C Q

(b) - X U Q G T K A F B R P C H

(c) - U T Q G R K A F B H P C -

S.4 Since array is sorted, we can use binary search for **know(item)** and **rank(item)** in $O(log_2(n))$ time. Adding and deleting an item, requires exchanges to keep resulting array ordered. So in the worst case, **forget(item)** and **learn(item)** can be done in O(n) time. **recommend()** is a constant time operation O(1).

${ m know(item)}$	$O(log_2(n))$
learn(item)	O(n)
forget(item)	O(n)
recommend()	O(1)
rank(item)	$O(log_2(n))$

[20P] Q.5 (a) Describe how merge sort operates? (b) What is its main disadvantage compared to quick sort? (c) Write the array content after all intermediate merging steps during the merge-sort.

Original Array	9	2	8	7	1
First Merge					
Second Merge					
Third Merge					
Fourth Merge					
Fifth Merge					

S.5 (a) it divides the array into two halves a[lo..mid] and a[mid+1 .. hi]. Then it recursively sorts the first half then the second half. Finally two halves are merged. (b) Additional memory. (c)

Original Array	9	2	8	7	1
First Merge	2	9	8	7	1
Second Merge	2	8	9	7	1
Third Merge	2	8	9	1	7
Fourth Merge	1	2	7	8	9
Fifth Merge	-	-	-	-	-

Alphabetical Order A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z