

PVsyst - Simulation report

Grid-Connected System

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

Trackers single array, with backtracking

System power: 114 kWp

Thessaloniki/Livadákion - Greece

PVsyst TRIAL

PVsyst TRIAL

Author

PVsyst V7.2.16

VC0, Simulation date: 15/07/22 00:38 with v7.2.16

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

Project summary

Geographical Site

Thessaloniki/Livadákion

Greece

Situation

40.52 °N Latitude 22.97 °E Longitude

Altitude Time zone 4 m

UTC+2

Project settings

Near Shadings

Linear shadings

Albedo

0.20

Meteo data

Thessaloniki/Livadákion

Meteonorm 8.0 (1994-2006), Sat=14% - Synthetic

System summary

Grid-Connected System

Trackers single array, with backtracking

PV Field Orientation

Orientation

Tracking plane, horizontal N-S axis Axis azimuth

Tracking algorithm

Astronomic calculation Backtracking activated

System information

PV Array

Inverters 216 units

Nb. of modules Pnom total

114 kWp

Nb. of units Pnom total

1 unit 111 kWac

Pnom ratio 1.031

User's needs Unlimited load (grid)

Results summary

Produced Energy

199.9 MWh/year

Specific production

1746 kWh/kWp/year Perf. Ratio PR

82.95 %

Table of contents

Project and results summary	2
General parameters, PV Array Characteristics, System losses	3
Horizon definition	5
Near shading definition - Iso-shadings diagram	6
Main results	7
Loss diagram	8
Special graphs	9

PVsyst V7.2.16

VC0, Simulation date: 15/07/22 00:38 with v7.2.16

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

General parameters

Trackers single array, with backtracking

PV Field Orientation

Grid-Connected System

Orientation Tracking plane, horizontal N-S axis

Axis azimuth

Tracking algorithm

Astronomic calculation Backtracking activated **Backtracking array**

Nb. of trackers 4 units

Single array

Sizes

Tracker Spacing 50.0 m 4.57 m Collector width Ground Cov. Ratio (GCR) 9.1 % -/+ 60.0 ° Phi min / max.

Backtracking strategy

Phi limits +/- 79.9 ° Backtracking pitch 50.0 m Backtracking width 4.57 m

Models used

Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate

Horizon Average Height 7.4 ° **Near Shadings** Linear shadings

User's needs

Unlimited load (grid)

PV Array Characteristics

PV module Inverter

Manufacturer Generic JKM-530M-72HL4-V Model

(Custom parameters definition)

Unit Nom. Power 530 Wp Number of PV modules 216 units Nominal (STC) 114 kWp Modules 8 Strings x 27 In series

At operating cond. (50°C)

Pmpp 104 kWp U mpp 1002 V 104 A I mpp

Total PV power

Loss Fraction

Nominal (STC) 114 kWp Total 216 modules Module area 557 m²

Manufacturer Model

(Original PVsyst database) Unit Nom. Power

Number of inverters Total power Operating voltage

1 unit 111 kWac 780-1450 V

1.03

Total inverter power

Pnom ratio (DC:AC)

Total power Number of inverters Pnom ratio

1 unit 1.03

111 kWac

Array losses

Array Soiling Losses Thermal Loss factor

1.5 %

Module temperature according to irradiance

Uc (const) 29.0 W/m²K Uv (wind)

0.0 W/m²K/m/s

106 mΩ

Generic

SG111-HV

111 kWac

Loss Fraction 1.0 % at STC

DC wiring losses

Global array res.

Module Quality Loss

Module mismatch losses

Loss Fraction 0.0 % Loss Fraction 0.6 % at MPP

15/07/22 PVsyst Evaluation mode Page 3/9

Project. r

Project: Kopellis_ 1 Axis

Variant: 114 kW 1 axis

PVsyst V7.2.16

VC0, Simulation date: 15/07/22 00:38 with v7.2.16

Array losses

IAM loss factor

Incidence effect (IAM): Fresnel, AR coating, n(glass)=1.526, n(AR)=1.290

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.999	0.987	0.962	0.892	0.816	0.681	0.440	0.000

System losses

Auxiliaries loss

Proportionnal to Power 4.0 W/kW

0.0 kW from Power thresh.

AC wiring losses

Inv. output line up to MV transfo

Inverter voltage 540 Vac tri
Loss Fraction 0.21 % at STC

Inverter: SG111-HV

Wire section (1 Inv.) Copper 1 x 3 x 240 mm 2 Wires length 70 m

AC losses in transformers

MV transfo

Grid voltage 20 kV

Operating losses at STC

Nominal power at STC 113 kVA
Iron loss (24/24 Connexion) 0.11 kW
Loss Fraction 0.10 % at STC

Coils equivalent resistance $3 \times 25.76 \text{ m}\Omega$ Loss Fraction 1.00 % at STC

PVsyst TRIAL

Variant: 114 kW 1 axis

PVsyst V7.2.16

VC0, Simulation date: 15/07/22 00:38 with v7.2.16

Horizon definition

Horizon from PVGIS website API, Lat=39°37"58', Long=22°13"41', Alt=153m

Average Height	7.4 °	Albedo Factor	0.31
Diffuse Factor	0.82	Albedo Fraction	100 %

Horizon profile

Azimuth [°]	-180	-173	-165	-158	-143	-135	-128	-120	-113	-105	-98	-90
Height [°]	1.9	3.4	4.6	5.7	7.3	6.5	4.6	4.2	5.3	6.1	5.7	5.3
Azimuth [°]	-83	-75	-68	-60	-53	-45	-38	-30	-23	-15	0	8
Height [°]	4.6	4.2	3.4	3.1	2.3	1.9	0.4	1.1	1.5	1.1	1.1	3.4
Azimuth [°]	15	23	38	45	135	143	150	158	165	173	180	
Height [°]	6.5	11.5	11.5	14.9	14.9	8.0	8.0	5.3	1.9	1.5	1.9	

Sun Paths (Height / Azimuth diagram)

Variant: 114 kW 1 axis

Near shadings parameter Perspective of the PV-field and surrounding shading scene North East South

Variant: 114 kW 1 axis

PVsyst V7.2.16

VC0, Simulation date: 15/07/22 00:38 with v7.2.16

Main results

System Production

199.9 MWh/year Produced Energy

Specific production Performance Ratio PR

1746 kWh/kWp/year 82.95 %

Normalized productions (per installed kWp)

Balances and main results

Jan

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
January	52.6	29.21	4.95	74.5	61.7	7.08	6.83	0.800
February	76.4	39.36	6.71	104.2	91.1	10.36	10.05	0.843
March	118.0	57.36	9.91	158.9	144.0	16.10	15.65	0.861
April	150.3	77.02	13.73	193.3	178.1	19.57	19.03	0.860
May	195.0	84.41	19.52	258.1	239.7	25.56	24.87	0.842
June	218.4	75.24	24.54	291.3	274.7	28.53	27.75	0.832
July	214.7	82.15	27.83	286.3	268.3	27.58	26.85	0.819
August	194.0	76.29	27.71	267.4	245.8	25.40	24.73	0.808
September	144.2	53.93	21.67	201.5	183.8	19.52	18.98	0.823
October	94.1	43.87	16.53	131.5	116.2	12.77	12.39	0.823
November	57.9	29.79	11.46	80.1	68.4	7.66	7.39	0.807
December	43.4	24.96	6.66	58.0	48.9	5.57	5.34	0.806
Year	1559.1	673.58	15.99	2104.9	1920.9	205.71	199.87	0.829

Legends

GlobHor Global horizontal irradiation DiffHor Horizontal diffuse irradiation T_Amb **Ambient Temperature**

GlobInc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings **EArray** E_Grid PR

Effective energy at the output of the array

Energy injected into grid

Performance Ratio

Variant: 114 kW 1 axis

VC0, Simulation date: 15/07/22 00:38 with v7.2.16

Variant: 114 kW 1 axis

with v7.2.16 Special graphs Daily Input/Output diagram 1200 0 1000 Energy injected into grid [kWh/day] 800 600 400 200 10 12 6 Global incident in coll. plane [kWh/m²/day] **System Output Power Distribution** 6000 Values from 01/01 to 31/12 5000 Energy injected into grid [kWh / Bin] 4000 3000 2000 1000 0 100