

딥러닝 1차 과제

과목명	딥러닝				
담당 교수님	이광엽 교수님				

전공	컴퓨터공학과				
학번	2022307022				
이름	서현은				

제출일	2023.10.11

문제 1>

- 1. 다음 경로를 이용하여 winequality-red.csv를 읽어 red 데이터를 만든다.
- ① 'red' 데이터 처음 세줄(3행)을 print 출력하고 열(column)과 행(row)이 각각 몇 개인지 적으시오.

[Source]

import pandas as pd

#'winequality-red.csv' 파일을 인터넷에서 읽어와 'red' 데이터프레임 생성

red = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';')

print(red.head(3)) #'red' 데이터프레임의 처음 세 줄 출력

print()

print("행: {}".format(len(red.index))) #열(column)의 개수 출력

print("열: {}".format(len(red.columns))) #행(row)의 개수 출력

[Output]

	fixed acidity	volati	ile acidity	citric acid	residual	sugar	chlorides	₩
0	7.4		0.70	0.00		1.9	0.076	
1	7.8		0.88	0.00		2.6	0.098	
2	7.8		0.76	0.04		2.3	0.092	
	free sulfur d	ioxide	total sulf	ur dioxide	density	рН	sulphates	₩
0		11.0		34.0	0.9978	3.51	0.56	
1		25.0		67.0	0.9968	3.20	0.68	
2		15.0		54.0	0.9970	3.26	0.65	
	alcohol qua	lity						
0	9.4	5						
1	9.8	5						
2	9.8	5						
행	: 1599							
열	: 12							

② 열(column)가운데 임의로 5개만 선택하여 'red' 데이터를 다시 만들고 처음 5행을 print 출력한다.

[Source]

import pandas as pd

red = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';')

selected_columns = [1, 3, 5, 7, 9] #임의로 선택할 열(column) 인덱스

red_selected = red.iloc[:, selected_columns] #선택된 열로 새로운 "red" 데이터 생성

print(red_selected.head()) #처음 5행 출력

	volatile acidity	residual sugar	free sulfur dioxide	density	sulphates
0	0.70	1.9	11.0	0.9978	0.56
1	0.88	2.6	25.0	0.9968	0.68
2	0.76	2.3	15.0	0.9970	0.65
3	0.28	1.9	17.0	0.9980	0.58
4	0.70	1.9	11.0	0.9978	0.56

③ ②번에서 선택한 5개 열 가운데 임의로 한 개를 선택하여 본인 영어이름으로 column name을 바꾸고 이 column을 index로 한다. 처음 5행을 print 출력한다.

[Source]

import numpy as np import pandas as pd

red = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';')

 $selected_columns = [1, 3, 5, 7, 9]$

#임의로 선택할 열(column) 인덱스

 $rename_col_index = 2$

#선택할 열(column) 인덱스

red = red.iloc[:, selected_columns]

#선택한 열만 포함하는 데이터프레임 생성

rename_col = red.columns[rename_col_index]

#선택한 열의 이름 가져오기

red.rename(columns={rename_col: 'SeoHyuneun'}, inplace=True) #열의 이름을 변경

red = red.set_index('SeoHyuneun')

#열을 인덱스로 지정

print(red.head())

	volatile acidity	residual sugar	density	sulphates
SeoHyuneu	n			
11.0	0.70	1.9	0.9978	0.56
25.0	0.88	2.6	0.9968	0.68
15.0	0.76	2.3	0.9970	0.65
17.0	0.28	1.9	0.9980	0.58
11.0	0.70	1.9	0.9978	0.56

문제 2>

- 1. column이 3열, row가 5행인 pandas data를 임의로 만든다. 이때, 데이터값은 0~100사이의 임의의 값으로 한다. column name은 임의로 한다. 만들어진 pandas data를 전체 print 출력한다.
- 2. 위 pandas data를 이용하여 다음처럼 split하여 4개의 데이터를 만들고 각각을 전체 print 출력한다. 데이터 이름은 임의로한다.
- ① 1, 2열, 1, 2, 3행 데이터
- ② 3열, 1, 2, 3행 데이터
- ③ 1, 2열, 4, 5행 데이터
- ④ 3열, 4, 5행 데이터

[Source]

```
import pandas as pd
num columns = 3 #column 개수
num rows = 5 #row 개수
column_names = ['A', 'B', 'C'] #column 이름 리스트
#임의의 값을 가진 데이터프레임 생성
data = [
   [10, 20, 30],
   [40, 50, 60],
   [70, 80, 90],
   [15, 25, 35],
   [45, 55, 65]
1
df = pd.DataFrame(data, columns=column_names)
#1번 (전체 데이터프레임 출력)
print(df)
print("=======")
#2번
df_1 = df.iloc[:3,:2] #열: A,B / 행: (1~3)
df_2 = df.iloc[:3,2:3] #열: C / 행: (1~3)
df 3 = df.iloc[3:,:2] #2: A,B / dec{0}: (4~5)
df_4 = df.iloc[3:,2:] #열: C / 행: (4~5)
print(df_1)
print("----") #구분선
print(df_2)
print("----")
print(df_3)
print("----")
print(df_4)
```


- 3 . 1번의 데이터에서 한 column에 있는 5개 숫자의 합(sum)과 평균(average)를 만든다. 3열에 대하여 각각 수행한다. 이 과정을 for문을 이용하여 코딩한다. 계산된 합과 평균을 2행 3열의 pandas 데이터로 만든다.
- 4. 3번의 합과 평균 pandas 데이터를 1번 pandas 데이터와 결합하여 3열 7행의 새로운 pandas 데이터를 만든다. 이때, pandas 의 concat 메서드를 사용한다. 새로운 pandas 전체를 print 출력한다.

[Source]

```
import pandas as pd
import numpy as np
data = [
   [10, 20, 30],
   [40, 50, 60],
   [70, 80, 90],
   [15, 25, 35],
   [45, 55, 65]
]
df = pd.DataFrame(data)
result_data = []
for col in range(3):
   column_sum = df[col].sum() #열의 합 계산
   column_avg = df[col].mean() #열의 평균 계산
   result_data.append([column_sum, column_avg]) #결과 데이터 추가
result_df = pd.DataFrame(result_data) #결과 데이터프레임 생성
result_df.columns = ['Sum', 'Average'] #열 이름 설정
#3번
print(result_df) #결과 출력
print("=======") #구분선
#4번
#두 개의 데이터프레임을 결합하여 새로운 데이터프레임 생성
new_df = pd.concat([df, result_df.T]) #result_df 전치
print(new_df)
```

Sum	Average	
0 180	36.0	
1 230	46.0	
2 280	56.0	
=====	=====	=====
	0	1
0	10.0	20.0
1	40.0	50.0
2	70.0	80.0
3	15.0	25.0
4	45.0	55.0
Sum	180.0	230.0
Average	36.0	46.0

문제 3>

1. 교재 코드 3-16부터 3-20까지 실행한다. 이때 코드3-17에서 교재와 다른 데이터 이미지 5장을 시각화하여 출력한다. 또한, 코드3-20 결과를 출력한다.

[코드 3-16]

#라이브러리 호출 및 데이터 준비

%matplotlib inline

from sklearn.datasets import load digits

digits = load_digits() #숫자 데이터셋(digits)은 사이킷런에서 제공

print("Image Data Shape", digits.data.shape) #digit 데이터셋의 형태(이미지 1797개, 8x8이미지의 64차원을 가짐) print("Label Data Shape", digits.target.shape) #레이블 이미지 1797개가 있음

Image Data Shape (1797, 64)

Label Data Shape (1797,)

[코드 3-17]

#digits 데이터셋의 시각화

import numpy as np

import matplotlib.pyplot as plt

plt.figure(figsize=(20,4))

for index, (image, label) in enumerate(zip(digits.data[6:11], digits.target[6:11])):

plt.subplot(1, 5, index + 1)

plt.imshow(np.reshape(image, (8,8)), cmap=plt.cm.gray)

plt.title('Training: %i₩n' % label, fontsize = 20)

[코드 3-18]

#훈련과 테스트 데이터셋 분리 및 로지스틱 회귀 모델 생성

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.25, random_state=0)

from sklearn.linear_model import LogisticRegression

logisticRegr = LogisticRegression() #로지스틱 회귀 모델의 인스턴스 생성

logisticRegr.fit(x_train, y_train) #모델 훈련

LogisticRegression
 LogisticRegression()

[코드 3-19]

#일부 데이터를 사용한 모델 예측

logisticRegr.predict(x_test[0].reshape(1,-1))

logisticRegr.predict(x_test[0:10])

array([2, 8, 2, 6, 6, 7, 1, 9, 8, 5])

[코드 3-20]

```
#전체 데이터를 사용한 모델 예측
predictions = logisticRegr.predict(x_test)
score = logisticRegr.score(x_test, y_test)
print(score)
```

0.95111111111111111

2. 테스트 이미지 3장을 PC 그림판에서 아래와 같이 만들고 model.predict(X) 실행하여 3장의 accuracy를 출력한다. --> 코드와 테스트 이미지, accuracy를 제출한다.

[Source]

```
import numpy as np
import pandas as pd
from PIL import Image
#이미지 경로 리스트
image_paths = ['/content/1.png', '/content/2.png', '/content/3.png']
X = []
#이미지 경로를 순회하며 이미지 불러오기 및 전처리
for path in image_paths:
    img = Image.open(path).convert("L") #이미지 불러오기 및 흑백 변환
    img = np.array(img) #NumPy 배열로 변환
    img = img / 255.0 #정규화
    flattened_img = []
    for i in range(8):
       for j in range(8):
           flattened_img.append(img[i][j]) #픽셀 값을 리스트에 추가
    X.append(flattened_img) #전처리된 이미지를 X 리스트에 추가
predictions = []
label=[1, 2, 3]
#예측값 계산 및 저장
for x in X:
    prediction=logisticRegr.predict([x])
    predictions.append(prediction)
score=logisticRegr.score(X,label)
print("Predictions =", predictions)
print("Accuracy =", score)
```

```
Predictions = [array([1]), array([2]), array([3])]
Accuracy = 1.0
```

[Image]

Image	•	8	3
Path	/content/1.png	/content/2.png	/content/3.png
Prediction	1	2	3

문제 4>

1. [문제2]에서 만든 pandas 데이터에서 임의로 2개 열을 선택한 후 각각을 x, y로 한다. x, y를 코드 3-24을 이용하여 데이터 간의 관계를 시각화하고 결과를 출력하시오.

[Source]

```
import pandas as pd
import matplotlib.pyplot as plt
#[문제2]에서 생성한 데이터
data = [
    [10, 20, 30],
    [40, 50, 60],
    [70, 80, 90],
    [15, 25, 35],
    [45, 55, 65]
]
df = pd.DataFrame(data)
#x와 y로 선택할 열 지정
x_col = df.columns[0] #첫 번째 열 선택
y_col = df.columns[2] #세 번째 열 선택
#데이터 간의 관계 시각화 및 출력
df.plot(x=x_col, y=y_col, style='o')
plt.title('X vs Y')
plt.xlabel(x_col)
plt.ylabel(y_col)
plt.show()
```


2. 1번 데이터를 이용하여 코드 3-25를 실행한 후 코드 3-27을 이용하여 선형 회귀 예측 결과를 회귀선으로 시각화 하고 결과를 출력하시오. (test_size는 자유롭게 조절 가능함)

[코드 3-25]

#데이터를 독립변수와 종속변수로 분리하고 선형회귀모델 생성 from sklearn.linear_model import LinearRegression X = df[x_col].values.reshape(-1,1) y = df[y_col].values.reshape(-1,1) #데이터의 55%를 훈련 데이터셋으로, 45%를 검증 데이터셋으로 분할 X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.45) regressor = LinearRegression() #선형회귀 클래스를 가져옴

LinearRegression
 LinearRegression()

regressor.fit(X_train,y_train) #fit() 메서드를 사용하여 모델 훈련

[코드 3-27]

#테스트 데이터셋을 사용한 회귀선 표현
plt.scatter(X_test,y_test,color='gray')
plt.plot(X_test,y_pred,color='red',linewidth=2)
plt.show()

