Merkblatt Theo 2 - Matr.: Name:

Berechenbarkeit

LOOP-Berechenbar

LOOP x_i DO P END und Zeichen ;, :=, +, - (mod. Subtstrak.) P wird mit initialem Wert x_i oft ausgeführt. Alle Variablen x_i , $i \in \mathbb{N}$, sind mit 0 initialisiert. x_0 ist Ausgabe. Parameter $f(x_1, x_2, ...)$ werden in Var. $x_1, x_2, ...$ geschrieben

= Primitive Rek.

Grundfunktionen:

- $k: \mathbb{N}^l \to \mathbb{N}$ konstante Funktion
- $\Pi_i^l: \mathbb{N}^l \to \mathbb{N}$ Projektion auf i-tes Element $(x_1,...,x_l) \to x_i$
- -s(n) = n + 1 Nachfolger
- Einsetzen mit $g: \mathbb{N}^m \to \mathbb{N}, \ h_i: \mathbb{N}^l \to \mathbb{N}$
- $\Rightarrow \mathbb{N}^l \to \mathbb{N} \ (x_1, ..., x_l) \mapsto g(h_1(x_1, ..., x_l), ..., h_m(x_1, ..., x_l))$
- $\begin{array}{ll} & \text{Primitive Rekursion}: f(n,x_1,...,x_k) = \\ & \begin{cases} g(x_1,...,x_k), & n=0 \\ h(f(n-1,x_1,...,x_n),n,x_1,...,x_k), & sonst \\ g(x) = 0 & h(z,n,x) = \operatorname{add}(z,x) & \Rightarrow f(y,x) = y \cdot x \\ & \operatorname{even}(0) = 1 = c_1^0 \\ & \operatorname{even}(x+1) = \operatorname{zero}(\operatorname{even}(x)) = \operatorname{zero}(\Pi_1^2(\operatorname{even}(x),x)) \end{array}$

\subseteq WHILE-, GOTO-Berechenbar

(da Ackermannfunktion oder nirgends definierte Funktion nicht LOOP-berch.)

WHILE $x_i \neq 0$ DO P END

= Turing-Berechenbar

TM M_i exisitiert für $f(n_i,...,n_k) = m$. M_i hält mit m auf Ausgabe-band, wenn Eingabe das Tupel $(n_1,...,n_k)$ war.

$= \mu$ -Berechenbar (μ -Rekursiv)

```
\begin{split} & \text{mit } f: \mathbb{N}^{k+1} \rightarrow \mathbb{N} \quad \mu f: \mathbb{N}^k \rightarrow \mathbb{N} \\ & \mu f(x_1,...,x_k) = \\ & \text{min} \left\{ \left. n \mid f(n,x_1,...,x_k) = 0 \right. \wedge \left. \forall m < n : f(m,x_1,...,x_k) > 0 \right\} \right. \\ & \text{Für } f(x,y) = 2 \text{ ist } \mu f \text{ nirgends def.} \end{split}
```

Sei f $\mu\text{-Rekursiv.s}$ Dann exist. p,qals (k+1)-stellige prim. rekursive Funktionen mit :

```
f(x_1,...,x_k) = p(x_1,...,x_k,\mu q(x_1,...,x_k))
```

- ~ Satz von Kleene
- \Rightarrow Eine einzige While-Schleife kann das gleiche berechnen, wie ein Programm mit mehren Schleifen.

= Arithmetisch Repräsentierbar

Terme t_1, t_2, \dots bilden Formeln zB : $t_1 = t_2$

Formeln: $\neg F, F \land G, \dots$ Quantoren \exists, \forall, \in erzeugen gebundene Var. Belegungen mit zB $\Phi(x)=3, \ \Phi(y)=3, \dots$ führen zu wahren/falschen Aussagen $\Phi(F)$

 $f:\mathbb{N}^k \to \mathbb{N}$ ist arithmetisch repräsentierbar, falls F existiert mit :

$$F(n_1, ..., n_k, m) \Leftrightarrow f(n_1, ..., n_k) = m$$

 $f(x, y) = x \cdot y \text{ a.r. mit } F(x, y, z) \Leftrightarrow ((x \cdot y) = z)$

Element: $x \ge 1 \implies \exists k : k+1 = x$

Danach Korrektheit beweisen : F wahr $\Leftrightarrow \dots = f$

Church'sche These

Alle diese letzten Modelle beschreiben das gleiche, wie der intuitive Berechenbarkeitsbegriff.

Wachstum

von Programm P werden alle Var aufsummiert : $f_p(n) = \max \left\{ \sum_{i \geqslant 0} n_i' \mid \sum_{n_i \geqslant 0} n_i \leqslant n \right\}$ Bei LOOP : $\exists k : \forall n : f_p(n) < a(k,n)$

Entscheidbarkeit

Menge ist ${\bf Entscheidbar},$ wenn für Menge Acharakteristische

Funktion
$$\chi_A$$
 be
rechenbar ist. $\chi_A(w) = \begin{cases} 1, & w \in A \\ 0, & w \notin A \end{cases}$

Aentscheidbar $\Leftrightarrow A, \bar{A}$ semi-entscheidbar

Menge ist **Semi-Entscheidbar**, wenn χ_A' wahr für $w \in A$ zurück

gibt (also hält).
$$\chi_A(w) = \begin{cases} 1, & w \in A \\ \text{undef.}, & w \notin A \end{cases}$$

Semi-Entscheidbar ist äquivalent zu :

- rekursiv Aufzählbar : $\exists f : \mathbb{N} \to \Sigma^* : A = \{f(n) | n \in \mathbb{N}\}\$
- -A ist Typ 0
- \exists Turing Maschine M: A = T(M)
- χ' ist berechenbar
- A ist Definitions- oder Zielbereich von berechenbarer Funktion.

Halteproblem

spezielles Halteproblem $K = \{w \in \{0,1\}^* \mid M_w \text{ hält auf Eingabe } w\}$ Halteproblem $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$ Halteproblem $H_0 = \{w \mid M_w \text{ hält auf Eingabe } \epsilon\}$

Satz von Rice

Nicht-triviale Aussagen über die Spracheigenschaften von TM sind unentscheidbar.

 $S \subseteq R$ turing-berechenbare Funk. mit $\emptyset \neq S \neq R$

 $C(s) = \{w \mid M_w \text{ berechnet eine Funktion aus } S\}$ ist unentscheidbare Menge

Nur für Sprachen verwenden, deren Elemente kodierte TMs sind! Verwendung im Beweis:

- Zeigen : Sprache ist semantisch (z.B : Hängt nur von T(M) ab)
- Zeigen : Sprache ist nicht trivial. (Beispiele von Eingaben, für die Sprache ieweils wahr/falsch)

Komplexität

Alle deterministischen Klassen sind gegen Komplement abgeschlossen.

 $zB : A \in DTIME(\mathcal{O}(\log(n)))$

Zeitklassen

DTIME ist gegen Komplement abgeschlossen NTIME nicht.

${\bf P}$ - Polynomial zeit

durch LOOP-Programme entscheidbar

NP - Nichtdeterministische Polynomialzeit

NP-hart $\forall L \in \text{NP} : L \leqslant_n A$

NP-vollständig NP-hart und Sprache $A \in NP$

 $A \leq_p B \land B \in (N)P \Rightarrow A \in (N)P$

Beweis $A \in NP$ oft mit guess & check

EXPTIME - Exponentialzeit

 $2^{p(n)}$ mit Polynom p

Platzklassen

SPACE und NSPACE sind gegen Komplement abgeschlossen, wenn $f \in \Omega(\log(n))$ \Rightarrow NSPACE(f) = coNSPACE(f)

Wird x viel Platz nicht verlassen, endet die Maschine nach spätestens $|x| \cdot |Z| \cdot |\Gamma|^{(|x|+1)}$ in einer Schleife

L = LOGSPACE - $logarithmischer\ Platz$

 ${\bf NL} \text{ - } nicht deterministischer \ log. \ Platz$

PSPACE - polynomieller Platz

 $=\bigcup_{k\geqslant 1} \mathrm{DSPACE}(n^k) = \bigcup_{k\geqslant 1} \mathrm{NSPACE}(n^k)$

Zeit- / Platzrelationen

 $DTIME(f) \subseteq DTIME_{2-Band}(f \log f)$

 \sim Satz von Hennie und Stearns (wenn $\epsilon>0$ mit

 $\forall n : f(n) \ge (1 + \epsilon)n \text{ existient}$

 $DNSPACE(f) = DNSPACE_{1-Band}(f)$

~ Zeit-/Platz-kompressionssatz

$$\begin{split} & \operatorname{DTIME}(f) \subseteq \operatorname{NTIME}(f) \subseteq \operatorname{DSPACE}(f) \ \, \forall f: \mathbb{N} \to \mathbb{N}, \forall n: f(n) \geqslant n \\ & \operatorname{DSPACE}(f) \subseteq \operatorname{NSPACE}(f) \subseteq \operatorname{DTIME}(2^{\mathcal{O}(f)}) \ \, \forall f: \mathbb{N} \to \mathbb{N}, \end{split}$$

 $\forall n : f(n) \ge \log(n)$ - exponentieller Blowup $\Rightarrow \text{DSPACE}(f) \subseteq \text{DTIME}(2^{\mathcal{O}(f)})$

 $NSPACE(s) \subseteq DSPACE(s^2) \text{ mit } s \in \Omega(\log n)$

~ Satz von Savitch

Zeit- / Platzkonstruierbar

Deterministische TM existiert, die bei unär kodierter Eingabe a^n der Länge n, f(n) viel Platz/Zeit braucht.

__-Hierarchiesatz

Platz : Sei

 $s_1,s_2:\mathbb{N}\to\mathbb{N}$, $s_1\notin\Omega(s_2)$, $s_2\in\Omega(\log n)$, s_2 platzkonstruierbar DSPACE(s_2)\DSPACE(s_1) $\neq\varnothing$

Beweis für $s_1 \notin \Omega(s_2)$: $\forall c > 0 : \exists a \in \mathbb{N} : s_1(a) < c \cdot s_2(b)$ Aufstellen und a suchen, für das Gleichung stimmt.

 \Rightarrow DSPACE(log) \subsetneq DSPACE(log²)

Zeit : Sei

 $t_1,t_2:\mathbb{N}\to\mathbb{N}$, $t_1\log(t_1)\notin\Omega(t_2)$, $t_2\in\Omega(n\log(n))$, t_2 zeitkonstruierbar

 $DTIME(t_2)\backslash DTIME(t_1) \neq \emptyset$

 \Rightarrow DTIME($\mathcal{O}(n)$) \subsetneq DTIME($\mathcal{O}(n^2)$)

Sei r total und berechenbar. $\forall n: r(n) \ge n$ $\Rightarrow \exists$ totale Funktion $s: \mathbb{N} \to \mathbb{N}$ $s(n) \ge n+1$ mit

 $DTIME(s) = DTIME(r \circ s)$

 \sim Satz von Borodim

(s ist nicht zeitkonstruierbar)

Probleme

Zeit, Platz

PCP - Post-Korrespondenz-Problem

 χ_{PCP} ist berechenbar \Rightarrow PCP ist rek. aufzählbar. \Leftrightarrow semi-entscheidbar.

PCP ist aber unentscheidbar (für $\Sigma \ge 2$) H \le MPCP \le PCP

SAT - Satisfiablity

NP-vollständig

 $SAT = \{F \mid F \text{ ist erfullbar}\}\$ Algos aktuell bei $2^{c \cdot n}$ (also $\in E$)

Allgemein äquivalent zu

3KNF-SAT, beide NP-vollständig

 $2KNF-SAT \in P \& NL-vollständig$

CLIQUE

NP-vollständig

Graph $G = (V, E), k \in \mathbb{N}$

 $V' \subseteq V$ ist Clique, falls $\forall u, v \in V' : u \neq v \implies (u, v) \in E$

CLIQUE ∈ NP durch guess & check.

NP-Vollständigkeit durch 3KNF·SAT≤CLIQUE mittels Graph mit $E = \{\{(r,s), (p,q)\} | r \neq p \land z_{rs} \not\equiv \neg z_{pq}\}$ (Alle Literale, die sich nicht gegenseitig ausschließen)

FÄRBBARKEIT

NP-vollständig

 $\varphi: V \to \{1, ..., k\}$ für Graph $G = (V, E), k \in \mathbb{N}$, Knotenfärbung mit k Farben : $\forall (u, v) \in E : \varphi(u) \neq \varphi(v)$ FÄRBBARKEIT ∈ NP durch guess & check. NP-Vollständigkeit durch 3KNF≤3-Färbbarkeit

GAP - Grapherreichbarkeit

NL-vollständig

Auf Graph $G = (V, E), k \in \mathbb{N}$ und 2 Knoten : $s, t \in V$ Kann man über Kanten $\in E$ von s zu t gelangen? $DSPACE(\log^2 n)$ $GAP \in NP, da$: WHILE $v \neq t$ DO { Wähle nicht-det, $w \in V$, aus $(v, w) \in E$ v = wRETURN 1

CVP - Circuit Value Problem

P-vollständig Bei Schaltkreisen können (Teil)formeln wiederverwendet werden.

QBF - Quantifizierbare Boolsche Formeln

PSPACE-vollständig

TSP - Traveling Salesman Problem

$\in NP$

VC - Vertex Cover

Allgemeines

TM $M = (Z, \Sigma, \Gamma, \delta, z, \square, E)$ - Z : Zustandsmenge, Γ : Bandalphabet, Übertragungsfunktion $\delta(z_i, a) = (z_i, a', L), z$: Startzustand $a, a' \in \Gamma$, statt L auch L,R,N Sprache T(M)

TM ist äquivalent zu Mehrband-TMs und nicht det. TM

Grammatik : $G = (V, \Sigma, P, S)$ mit $P \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$

Disjunktion : \vee , Konjunktion \wedge , DNF : $\bigvee_i \bigwedge_i (\neg) x_{ij}$ Bestimmte Verknüpfung der Unterterme.

 $\dot{}$ Modifizierte Differenz : $\max\{0, a - b\} = \min(a, b)$

Belegung \mathscr{A} passt zu Formel F, wenn jede vorkommende atomare Variable einen Wert zugewiesen bekommt.

Belegung \mathscr{A} ist Modell, wenn passend und $\mathscr{A}(F) = 1$.

Formel F ist gültig, wenn für alle \mathscr{A} , die zu F passen, $\mathscr{A}(F) = 1$ gilt (Tautologie). "Ungültig" existiert nicht

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k}$$

Nirgends definierte Funktion Σ (berechenbar)

Ackermann-Funktion A(n) = a(n, m)

$$a(0,y) = y + 1$$

$$a(x,0) = a(x-1,1)$$

$$a(x,y) = a(x-1,a(x,y-1))$$

$$y < a(x,y)$$

$$a(x,y) < a(x,y+1)$$

$$a(x,y+1) \le a(x+1,y)$$

$$a(x,y) < a(x+1,1)$$

Bijektion $\mathbb{N}^2 \to \mathbb{N}$

Kodieren von Tupeln:

$$c(x,y) = {x+y+1 \choose 2} + x = add(f(s(add(x,y))), x)$$

Dove-Tailing

- $\Sigma^* = \{w_1, w_2, ...\}$ Längenlexikographisch Anordnen
- FOR i = 0, 1, 2, ... DO

Simuliere i Schritte von M_w auf Eingabe e(i)..Kriterium..

Translationstechnik

Padding einer Sprache mit $\$ \notin \Sigma$

 $\operatorname{Pad}_{f}(L) = \{ w \$^{\hat{f}(|w|) - |w|} \mid w \in L \}$

Zeit: $\operatorname{Pad}_f(L) \in \operatorname{DNTIME}(\mathcal{O}(g)) \Leftrightarrow \operatorname{L} \in \operatorname{DNTIME}(\mathcal{O}(g \circ f))$

mit f, q zeitkonstruierbar, $q(n), f(n) \ge n$

Platz : $\operatorname{Pad}_f(L) \in \operatorname{DNSPACE}(\mathcal{O}(g)) \Leftrightarrow \operatorname{L} \in \operatorname{DNSPACE}(\mathcal{O}(g \circ f))$

mit $q \in \Omega(\log)$, $\forall n : f(n) \ge n$ berechenbar

\Rightarrow DSPACE $(n) \neq P$

Aufzählbar / Abzählbar

rekursiv Aufzählbar	Abzählbar
totale Funktion $f: \mathbb{N} \to \Sigma^*$	
f berechenbar	

Mit $A \subseteq B$ folgt NICHT:

B rekursiv aufzählbar $\Rightarrow A$ rek. aufzählbar. Nur A abzählbar

Reduktion

Aist auf Breduzierbar $A \leqslant B,$ wenn totale & berechenbare Funktion $f: \Sigma^* \to \Gamma^*$ existiert mit: $x \in A \Leftrightarrow f(x) \in B$

 \leqslant unbeschränkt \leqslant_p polynomialzeit \leqslant_{log} Logspace (f ist logspace-berechenbar)

 $A \leq B$ und B (semi-)entscheidbar \Rightarrow A (semi-)entscheidbar

Landau-Symbole

 $f \in \mathcal{O}$: f wächst nicht wesentlich schneller als ...

 $f \in \Omega$: f wächst nicht wesentlich langsamer als ...

Beweis $f(n) \in \mathcal{O}(b(n))$: $\exists c \exists n_0 \ \forall (n \ge n_0)$: $b(n) \le c \cdot f(n)$

Relationen

 $L \subseteq NL \subseteq P \subseteq PSPACE \subseteq EXPTIME$

 \Rightarrow DSPACE(log n) \subseteq NSPACE(log n) \subseteq DTIME($2^{\mathcal{O}(\log n)}$) = P

$G(a,b,i,\cdot)$ -Prädikat

$$G(a,b,i,y) \Leftrightarrow y = a \mod (1+(i+1) \cdot b)$$

$$\Rightarrow y \leq (i+1)b \quad (1+(i+1)b \% (a-y)) = 0$$

$$a,b \text{ zwei Werte, die endliche Folge } (n_0,...,n_k) \text{ kodieren.}$$

$$i \text{ Index, } y \text{ Wert. Es gilt für alle } i \leq k:$$

$$n_i = y \Leftrightarrow G(a,b,i,y)$$

$$\forall k \forall (n_0,...,n_k) \in \mathbb{N}^{k+1} \exists a,b \in \mathbb{N} \ \forall i \in \{0,...,k\}: G(a,b,i,n_i)$$