Übungsblatt 2

Topologie

Viktor Kleen* Sabrina Pauli[†]

AUFGABE 2.1. Sei X eine Menge. Wir definieren die *kofinite Topologie* auf X, indem wir eine Teilmenge $U \subseteq X$ genau dann offen nennen, wenn das Komplement $U^c = X \setminus U$ endlich ist.

- (i) Zeigen Sie, dass, wenn *X* selbst endlich ist, die kofinite Topologie genau die diskrete Topologie auf *X* ist.
- (ii) Für eine beliebige Menge X und $A \subseteq X$, geben Sie eine Beschreibung der Mengen \overline{A} , A° und ∂A in der kofiniten Topologie.

Aufgabe 2.2. Sei (Y, d_Y) ein metrischer Raum und $X \subset Y$. Die Menge X wird mit der eingeschränkten Metrik $d_X(a, b) = d_Y(a, b)$ für $a, b \in X$ selbst ein metrischer Raum. Zeigen Sie, dass die metrische Topologie τ_{d_X} auf X mit der von Y induzierten Teilraumtopologie τ_{d_X} auf X übereinstimmt.

Aufgabe 2.3. Wir betrachten $\mathbb R$ mit der euklidischen Topologie. Zeigen Sie, dass die Teilraumtopologie auf $\mathbb Z \subseteq \mathbb R$ genau die diskrete Topologie auf $\mathbb Z$ ist.

Aufgabe 2.4. Sei I eine beliebige Indexmenge und X_i ein topologischer Raum für jedes $i \in I$. Zeigen Sie, dass die Familie

$$\left\{ \prod_{i \in I} U_i : U_i \subset X_i \text{ ist offen} \right\}$$

eine Basis für eine Topologie auf $X = \prod_{i \in I} X_i$ ist. Die erzeugte Topologie heißt *Boxtopologie* auf X. Zeigen Sie weiter, dass die Funktion

$$f: \mathbb{R} \longrightarrow \prod_{i \in \mathbb{N}} \mathbb{R}, \quad f(x) = (x, x, x, \dots)$$

bezüglich der Boxtopologie auf $\prod_{i\in\mathbb{N}}\mathbb{R}$ nicht stetig ist¹.

^{*}viktor.kleen@uni-due.de

[†]sabrinp@math.uio.no

¹Ein Hinweis: Die Menge $\prod_{n\in\mathbb{N}}$ (−1/n, 1/n) ist offen.