Skaitļu teorija NMS juniori

Mājasdarbs #2

2020./2021.m.g.

2020.gada 15.novembris

Iesniegšanas termiņš: 2020.g. 5.decembris

Kam iesūtīt: kalvis.apsitis, domēns gmail.com

Uzdevums 2.1: Regulāra n-stūra virsotnes savienotas ar slēgtu lauztu līniju, kurai ir n posmi.

- (A) Pierādīt, ka jebkuram pāra skaitlim $n \geq 4$, lauztajai līnijai ir vismaz divi paralēli posmi.
- (B) Pierādīt, ka jebkuram nepāra skaitlim n > 3 nav iespējams, ka lauztajai līnijai ir tieši divi paralēli posmi (t.i. divi posmi ir paralēli, bet nekādi citi nav šiem diviem paralēli, vai arī paralēli savā starpā).

Uzdevums 2.2: Dots pirmskaitlis p un naturāli skaitļi $a \ge 2$, $m \ge 1$. Zināms, ka $a^m \equiv 1 \pmod{p}$ un $a^{p-1} \equiv 1 \pmod{p^2}$.

- (A) Pierādīt, ka $a^m \equiv 1 \pmod{p^2}$.
- (B) Atrast kādu pirmskaitli p > 10 un a, m, kam minētie apgalvojumi izpildās.

Uzdevums 2.3: Vai var atrast piecus tādus pirmskaitļus p, q, r, s, t, ka $p^3 + q^3 + r^3 + s^3 = t^3$?

Uzdevums 2.4: Atrast visus pirmskaitļus p un q, kuriem izpildās vienādība

$$p + q = (p - q)^3.$$

Uzdevums 2.5: Dots nepāra vesels skaitlis a. Pierādīt, ka $a^{2^n} + 2^{2^n}$ un $a^{2^m} + 2^{2^m}$ ir savstarpēji pirmskaitļi visiem naturāliem n un m, kam $n \neq m$.

 $Piez\bar{\imath}me$. Pieraksts a^{b^c} vienmēr nozīmē $a^{(b^c)}$, t.i. darbību locekļus saliktās pakāpēs grupē no labās puses uz kreiso, nevis no kreisās uz labo. (Savukārt $(a^b)^c$ ir cita izteiksme, tā ir $a^{b \cdot c}$.)

NMS gatavošanās materiāli

- https://bit.ly/2Ur4gLs: Kongruences, Pretrunas modulis.
- https://bit.ly/2H3LSFF: Vienādojumi veselos skaitļos.
- https://bit.ly/3pyitoa: Skaitļu dalāmība un kongruences

Definīcija. Dots naturāls skaitlis m > 1. Veselus skaitļus a, b sauc par kongruentiem pēc m moduļa, ja tie dod vienādus atlikumus, dalot ar m (citiem vārdiem, starpība a - b dalās ar m). Pieraksts: $a \equiv b \pmod{m}$.

 $Piez\overline{i}me$. Apzīmējumu "mod" izmanto arī veselo skaitļu aritmētikas darbībai: atlikuma iegūšanai. Piemēram, 19 mod 7 = 5 un (-19) mod 7 = 2.

Atlikums vienmēr pieder intervālam $\{0, \ldots, m-1\}$.

 $(a \mod m) = (b \mod m)$ ir patiess **tad un tikai tad**, ja $a \equiv b \pmod m$.

Ar kongruencēm pēc noteikta moduļa m var veikt algebrā pazīstamas darbības (tās var saskaitīt, atņemt, reizināt, pārnest locekļus uz otru pusi ar pretēju zīmi, utml.) Reizēm drīkst arī abas puses saīsināt ar to pašu nenulles reizinātāju k:

Teorēma par saīsināšanu kongruencēs (1). Ja p ir pirmskaitlis, $ka \equiv kb \pmod{p}$ un $k \not\equiv 0 \pmod{p}$, tad $a \equiv b \pmod{p}$.

 $Piez\overline{i}me$. Ja m nav pirmskaitlis, tad šādi sa \overline{i} sin \overline{i} t nevar. Piem \overline{i} ram, ja m=10, tad $2 \cdot 1 \equiv 2 \cdot 6 \pmod{10}$, bet $1 \not\equiv 6 \pmod{10}$.

Teorēma par saīsināšanu kongruencēs (2). Ja m ir jebkurš skaitlis, bet k ir savstarpējs pirmskaitlis ar m, tad saīsināt drīkst: No $ka \equiv kb \pmod{p}$ seko $a \equiv b \pmod{p}$.

Definīcija. Inversais jeb apgrieztais elements.

Mazā Fermā teorēma. Ja p ir pirmskaitlis un a nedalās ar p, tad $a^{p-1} \equiv 1 \pmod{p}$.

Definīcija. Katram naturālam skaitlim n definējam $Eilera funkciju \varphi(n)$: Visu to veselo skaitļu skaits $k \in [1; n]$, kas ir savstarpēji pirmskaitļi ar n. Sk. https://bit.ly/38LCKRo.

Eilera teorēma. Ja m > 1 ir jebkurš vesels skaitlis un a ar m ir savstarpēji pirmskaitļi, tad $a^{\varphi(n)} \equiv 1 \pmod{m}$.

 $Piez\bar{\imath}me$. Var uzskatīt, ka Mazā Fermā teorēma ir atsevišķs gadījums Eilera teorēmai, jo katram pirmskaitlim p ir spēkā $\varphi(p) = p - 1$.

Definīcija. Par n-to Fermā skaitli sauc $F_n = 2^{2^n} + 1$, kur $n \ge 0$ ir vesels nenegatīvs. Pirmie Fermā skaitļi ir

$$F_0 = 3$$
, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$, $F_5 = 4294967297$.

(Pirmie pieci šīs virknes locekļi F_0, \ldots, F_4 ir pirmskaitļi. Izpētīti arī daudzi citi, bet to vidū citi pirmskaitļi pagaidām nav atrasti. Piemēram, Fermā skaitlis F_5 dalās reizinātājos: 4294967297 = $641 \cdot 6700417$.)

Apgalvojums. Katri divi Fermā skaitļi F_m un F_n ir savstarpēji pirmskaitļi, ja $m \neq n$. Sk. pamatojumu iepriekšējās lekcijas bildēs: https://bit.ly/32MHClt.