NTIN071 A&G: CVIČENÍ 7 – CHOMSKÉHO NORMÁLNÍ FORMA, ALGORITMUS CYK

Cíle výuky: Po absolvování student umí

- uvést formální definici Chomského normální formy a souvisejících pojmů
- převést danou bezkontextovou gramatiku do Chomského normální formy
- vysvětlit algoritmus CYK, aplikovat jej na dané slovo a bezkontextovou gramatiku

Příklady na cvičení

Příklad 1 (O převodu do ChNF). Odpovězte na následující otázky, odpověď zdůvodněte.

- (a) Najděte příklad gramatiky, ve které je nějaký generující neterminál dosažitelný pouze přes negenerující neterminály.
- (b) Které neterminály je při redukci třeba odstranit dříve, negenerující nebo nedosažitelné?
- (c) Může se odstraněním nedosažitelných neterminálů z nějakého dosažitelného generujícího neterminálu stát negenerující?
- (d) Chceme-li rozdělit produkční pravidlo s dlouhým tělem, jaký je minimální počet pravidel v Chomského normální formě, která musíme vytvořit?

Příklad 2 (Převod do ChNF). Následující bezkontextovou gramatiku převeďte do Chomského normální formy:

(a)
$$G_1 = (\{S, A, B\}, \{0, 1\}, S, \mathcal{P}), \text{ kde}$$

 $\mathcal{P} = \{S \to 0AB,$
 $A \to 0A0 \mid 11,$
 $B \to 0\}$
(b) $G_2 = (\{S, A, B\}, \{0, 1\}, S, \mathcal{P}), \text{ kde}$
 $\mathcal{P} = \{S \to 0A10B10,$
 $A \to 1A0 \mid \epsilon,$
 $B \to 1B00 \mid \epsilon\}$

Příklad 3 (Algoritmus CYK). Pomocí algoritmu CYK určete, zda $w \in L(G)$.

(a)
$$w = 0110, G = (\{S, A, B\}, \{0, 1\}, S, \mathcal{P}), \text{ kde}$$

$$\mathcal{P} = \{ S \to 0 \mid AB,$$

$$A \to 1 \mid SA \mid SB,$$

$$B \to AS \mid BA \mid 0 \}$$

- (b) w = 001100, $G = G_1$ je gramatika z Problému ??(a)
- (c) w = 110011, $G = G_1$ je gramatika z Problému ??(a)

K procvičení a k zamyšlení

Příklad 4 (Převod do ChNF). Převeďte následující bezkontextové gramatiky do Chomského normální formy:

(a)
$$G = (\{S, A, B\}, \{0, 1\}, S, \mathcal{P})$$
 (b) $G = (\{S, E, F\}, \{(,), *, +, 1\}, S, \mathcal{P})$
$$\mathcal{P} = \{S \to A \mid 0SA \mid \epsilon, \\ A \to 1A \mid 1 \mid B1, \\ B \to 0B \mid 0 \mid \epsilon\}$$

$$E \to F + F \mid F * F, \\ F \to S \mid 1\}$$

Příklad 5 (Algoritmus CYK). Pomocí algoritmu CYK určete, zda $w \in L(G)$. (a) w = abcbb, $G = (\{S, A, B, C\}, \{a, b, c\}, S, P)$, kde

$$\mathcal{P} = \{S \rightarrow CA \mid CB,$$

$$B \rightarrow CBA \mid CB \mid BA \mid BB,$$

$$C \rightarrow ABC \mid BC,$$

$$A \rightarrow a, B \rightarrow b, C \rightarrow c\}$$

- (b) w = 01010010, $G = G_2$ je gramatika z Problému ??(b)
- (c) w = 01010011, $G = G_2$ je gramatika z Problému ??(b)