

José Arnold Pineda

Coordinador Programa de Agronomía - IHCAFE

Ingeniero agrónomo, hondureño, ha desarrollado su carrera en el Instituto Hondureño del Café (IHCAFE) desde 1990. Es un experto con una larga trayectoria en investigación y desarrollo cafetalero, habiendo liderado varios centros experimentales. Desde 2011 es Jefe del Centro de Investigación y Capacitación "José Virgilio Enamorado" en Santa Bárbara, especializándose en investigaciones que potencian la producción del cultivo de café.

EVALUACIÓN DE LA COSECHA SEMIMECÁNICAZADA COMO OPCIÓN ANTE LA CRISIS DE ESCASES DE MANO DE OBRA EN HONDURAS.

Jose Arnold Pineda Rodríguez Coordinador Programa de Agronomia

- ** Alex Reyes ***Nelson Donaire **** Julio Hernández ***** Laboratorio Control de calidad ****** Tecnicos de extensión Ihcafe R1 ****** Productores de café.
- **Jefe centro experimental CIC-JVE. Linderos, Santa Bárbara.
- ***Jefe centro Experimental CIC-LL, Florida, San Jose, La Paz
- *** *Programa Post Cosecha
- *****Laboratorio Control de calidad, San Pedro Sula, Cortes
- ******Regional(R1), Santa Bárbara
- ******Productores de café, Honduras.

Tabla de contenido

01 Introducción

02 Objetivo

03 Metodología

04 Resultados

05 Conclusión

Optimización de la productividad de ,mano de obra

Proponer alternativas tecnológicas innovadoras que mejoren la eficiencia y productividad de la mano de obra en las principales actividades agronómicas

3 opciones de recoleccion manual + 4 opciones mecanizadas

Elección del método (rendimiento versus eficiencia)

Comparación de métodos manuales vs Mecanizados vs variedad

INTRODUCCION

área Cultivada (426,347 Mz) lo cual representa el 91% de la producción agrícola

68.9%...Emergentes caficultores **24.5**%... Medianos productores

6.6%.... Grandes productores

Según Proceso Digital (2024)
Escases de mano de obra

Esta situación se debe a varios factores, entre ellos la migración, 2022 (19.3 % de Migración) el crecimiento del trabajo informal la falta de capacitación.

Es necesario la búsqueda de **alternativas viables**y económicas de la mecanización de varias
labores agrícolas en el rubro café

Para la actividad de la recolección del total de los costos es el 57.85 %. Actualmente (2025)

01

Impulsar alternativas que mejoren la eficiencia y productividad de la mano de obra en el cultivo de café, avanzando de forma progresiva hacia una caficultura más mecanizada y rentable

Especificos

- 02
- "Cosechar más en menos tiempo"...Evaluar y usar las mejores herramientas (manuales y mecanizadas) para hacer más rápida y eficiente la recolección del café
- 03
- "Un cafetal pensado para el futuro"...Rediseñar la forma de establecer y manejar el cafetal para aprovechar mejor la mano de obra y facilitar el uso de maquinaria.
- 04
- "La gente es la fuerza del café"... Asegurar y motivar la mano de obra mediante incentivos, capacitación y mejores condiciones laborales.

MATERALES Y METDOS

Modia do

- 1.Tratamientos evaluados 6 en total: 4 equipos motorizados (derribadoras con lonas), métodos manuales con lonas y 1 testigo (canastos/tumbillas).
- 2.Diseño experimental Bloques completos al azar (DBCA).
- 3. 12 plantas por método, con 3 repeticiones.
- 4. Cobertura y condiciones Realizado en 4 fincas por año, durante 4 años.
- Se evaluaron 4 variedades en lotes puros y 2 mezcladas.
- Consideró diferentes pisos altitudinales y pendientes.
- 4. Análisis de datos Procesados con SAS, Infostat y R Studio para mayor confiabilidad.

Cuadro 1. Ubicación delas fincas donde se realizó la investigacion. Ihcafe 2025

Productore	Ubicación parcela	Municipio	Altitud (msnm)		Coordenada (y)	12 plantas	Tuk	
Darlin Barrien	itos El cedral	La Union.L	1378	14.850021	-88.448531	101.69	a	
Yerin Rodrigu	ez San Antonio	Atima	1277	14.869590	-88.463990	99.09	a	
Rony Madrid	Rio Frio	Atima	1187	14.917584	-88.415783	92.75	a	
Ricardo Enamo	rado Doratorio	Nuevo Celila	1092	14.938125	-88.432528	85.71	a	
CIC-Lagunas	Florida	San Jose	1427	14.215580	-87.951190	44.10	b	
Marcos Muño	z Las Flores	San Nicolas	1187	14.917584	-88.415793	38.45	b	1
CIC-Linderos	Linderos	San Nicolas	1121	14.925526	-88.417744	22.49	b	

MATERALES Y METDOS

variedades	frecuencia variedad	Media de 12 plantas	TuK
evaluadas	(n)	(lb)	· arx
Anacafe -14	54	93.39	a
Mezcla 1	78	52.20	b
Mezcla 2	33	46.99	b
Obata	15	37.32	b
Parainema	9	35.89	b
Paraiso	18	7.67	c
	207	45.58	
		<u> </u>	

variedades	frecuencia	Media de			Plantacion (año)	(Lb)		a metodos (n)	(%)		metodos (n)	(Lb)	
evaluadas	variedad	12 plantas	TuK		4.30	99.09	а	18.00	49.10	а	18.00	101.69	
evaluadas	(n)	(lb)			4.00	93.70	ab	36.00	54.43	ab	18.00	99.09	
Anacafe -14	54	93.39	a		3.00	67.00	bc	18.00	54.67	ab	18.00	92.75	
Mezcla 1	78	52.20	b		7.50	64.32	bcd	27.00	22.17	ab	18.00	85.71	
					10.00	57.90	cd	18.00	36.33	bc	18.00	67.00	
Mezcla 2	33	46.99	b		9.50	46.56	cde	9.00	21.67	cd	33.00	46.99	
Obata	15	37.32	b		7.00	37.32	cdef	15.00	35.00	cd	9.00	46.56	
Dawainama	9	35.89	b		9.00	36.07	def	15.00	55.16	cde	15.00	37.32	
Parainema	-		<u>0</u>		2.50	25.37	ef	15.00	36.50	cde	9.00	35.89	
Paraiso	18	7.67	c		4.50	22.98	ef	18.00	28.75	de	15.00	25.37	
	207	45.58			3.50	7.67	f	18.00	44.27	de	18.00	22.98	
5.89 50.73 18.82 34.50 f 18.00 7.67										7.67			
Evaluaciones Efectuadas Dpto de Lempira ; la Paz y Santa Barbara													
Entre otras,	Entre otras, se estimó tiempo (min) de todas las actividades que conlleva la evaluación para estimar los costos:										3:		

Media Tuk Frecuenci Pendiente Tuk Frecuencia

Tiempo total de recolección, (**Totoreco**), se mide en minutos que tarda el operador en realizar los pases de la recolección.

Tiempo de clasificación (Totoclasif); limpieza del café recolectado para dejar solo las cerezas sin material extraño (palos, hojas, otros)

Tiempo de colocar lona (totocolona); actividad de dos operarios en colocar las lonas adheridas a la base del árbol.

Tiempo de quitar la lona (**Totoquitarlona**); recoger la lona adherida al árbol con los frutos desprendidos. Tiempo vaciar en saco (**Totovaciarsaco**); la lona con frutos desprendidos y luego colocar estos en sacos.

Tiempo total de toda la actividad (**Totoactiv)**: suma de todos l<mark>os tiempos que conllevo realizar cada labor</mark>

Evaluación de grado de maduracion en campo

Donde:

P = Producción Lb uva /planta

NR = Número de ramas (Promedio) con producción

Nuf = Número de nudos (promedio) con frutos por rama

FNu = Número de frutos (promedio) por nudo

**PF = Peso por fruto. se estima en 1.8 gr. Ya maduro.

Flbu= frutos por libras uva

FC = Factor de conversión de café cereza a café pergamino seco (cc /cps)

total fruto /bandola	verde	Total maduro	% maduracion	% Verde
60	22	38	63.33	36.67
120	47	73	60.83	39.17
86	14	72	83.72	16.28
88.67	27.67	61.00	69.30	30.70

Descripción de Tratamientos.

- 1. Cosecha Manual uso de "canastos" o "Tumbillas".
- 2. Optimización de la mano de obra, "desgrane" o "derribo" de los frutos. Usar Ionas.
- 3. Tratamiento manual tipo "Ordeña" o "Chollado"; usar Lonas.
- 4. Tratamiento Equipos. Brudden DSC18 (horquilla) y DC26 (garra DCM-11).
- 5. Tratamiento. (KA 85 R) STHIL Motor Multifuncional uso (garra KM85R)
- 6. Tratamiento MC3021BK-S Multifuncional uso (garra (sp))

Caje RESULTADOS

- •STHIL (KA85R): mayor rendimiento en café cosechado y bajo tiempo de recolección.
- Maruyama (MC321BKS): rendimiento medio, pero mayor consumo de combustible.
- •Brudden (DSC-18): menor eficiencia en tiempo y mayor esfuerzo por surco.
- . Brudden (DC-26) Un equipo equilibrado: buen rendimiento en cosecha, consumo moderado de combustible y tiempo de recolección relativamente corto
- ·Variedad Obata: fue la más productiva en café cosechado (94 lb).
- •Variedad Paraíso: la menos productiva (7.6 lb).

- el menor fue con manual + tumbilla.

 Materia extraña: Los métodos manuales con tumbilla presentaron la menor materia extraña, los equipos motorizados más grande.
- Maduración: El café más maduro se obtuvo con manual + tumbilla (68 %), y el menos maduro con manual + lona (ordeña) (52 %).
- manual + Iona (ordeña) (52 %).

 Relación cantidad-calidad: Los equipos motorizados recolectan más café, pero con más impurezas; los métodos manuales dan granos más limpios y maduros.
- Elección de método: Para alta producción rápida, los equipos motorizados; para calidad y granos maduros, métodos manuales.

- El consumo menor de combustible en términos de eficiencia fue stihl (T1) con un promedio de 121.67 ml, al igual en la variable por planta (convspta) con 10.47 ml/pta.
- La variedad Obata presentó la mayor recolección de frutos (94.31 lb), mientras que Paraíso tuvo la menor (7.67 lb) por estar en la fase ultima de recolección.
- En términos de tiempo de recolección, Obata requirió el mayor tiempo (61.35 min), mientras que Paraíso fue la más rápida (8.70 min).

Evaluacion de metodos de recoleccion y sus costos de operación .IHC-2024/2025

			,					
EQUIPO EVALUADO	Modelo	Ptas /Trata	X Lb uva cos/trata	Gasto Combus. (ml)	ToTotal act. (min)	Costo total L /lb cosechada		
STHIL	KA85R	12	78.95	121.67	30.53	0.26		
Maruyama	MC321BKS	12	58.39	208.70	34.92	0.43		
Brudden	DSC-18	12	49.82	197.12	50.01	0.67		
Brudden	DC-26	12	68.14	152.67	40.37	0.39		
Manual + tumbilla	Manual	12	34.04		67.80	1.12		
Manual + Lona (desgrane)	Manual	12	45.14		73.23	0.91		
Manual + Lona (Ordeña)	Manual	12	81.89		63.45	0.43		
Moneda N	lacional Lem	pira (L)		1 \$ USD	=L.25.69			

- STIHL KA 85R se destacó por su bajo consumo de combustible (121.67 ml) y menor costo total (3.28 L).
- Brudden DC-18 presentó el menor desempeño (0.67 L/lb), al igual en tiempo total en recolección (50.01 min) y libras uva derribada (49.82 lb).
- Brudden DC- 26 alcanzo a derribar (68.14 Lb) y un consumo intermedio de 152.67 ml);
- Maruyama alcanzó el 10.25% y mayor consumo de combustible (208.70 ml).
- Estos valores indican que una menor inversión en combustible no siempre se traduce en mayor rentabilidad por libra cosechada.

IJ.	Asumimos ingreos e eficiencia de optimizar la mano de obra en jornal/dia									
۲,	METODO EVALUADO	Modelo	recolecto	ingreso/	capacidad	dias de	Mano	Costo		
			lb /mz/dia	jornal /dia (L)	qq uva /ha	cosecha	obra.produ.	/productor		
L						(ha)	(reemplazo)	con equipo (L)		
	STHIL	KA 85R	930.83	2243.30	328.96	35.34	5.15	240.87		
	Maruyama	MC321BKS	601.96	1450.72	243.27	40.41	3.33	260.65		
	Brudden	DSC-18	358.63	864.31	207.58	57.88	1.98	240.47		
I	Brudden	DC-26	607.67	1464.48	283.92	46.72	2.74	238.98		
ľ	Manual + tumbilla	Tradicional	180.77	435.65	141.85	78.47	1.00	201.67		
/	<mark>anual + L</mark> ona (desgrane	Innovacion	221.90	534.78	188.08	84.76	1.23	203.56		
	manual +lona (ordeña)	innovacion	464.58	1119.65	341.20	73.44	2.57	203.30		
	1 ha= 1.42 Mz									

1 ha= 1.43 Mz *asumimos 6 horas de trabajo /dia (360 min) ** lata (20lts) peso C. Cereza = 29 lb

** 1 qq C.p.s=100 Lb

- Nuestra investigación muestra que los equipos mecanizados (como STIHL y Brudden DC-26) incrementan drásticamente los volúmenes de recolección y reducen los días de cosecha.
- Esto los convierte en los métodos más rentables, generando mayores ingresos por jornada laboral en comparación con las técnicas manuales tradicionales.
- Sin embargo, para los emergentes y medianos productores, los métodos manuales optimizados pueden ser más accesibles y sostenibles.
- ❖ Esto sugiere un futuro donde la mecanización y las mejoras manuales coexistan, permitiendo que cada productor elija la mejor opción para maximizar su producción y rentabilidad

CONCLUSIONES

- La cosecha mecanizada es rápida y eficiente, pero sacrifica calidad al recolectar impurezas y frutos verdes.
- La Calidad gana en La cosecha manual, aunque más lenta, asegura calidad superior al permitir seleccionar solo frutos maduros.
- La Decisión es Clave La elección del método de cosecha impacta directamente la calidad del café. Si buscas eficiencia, usa máquinas. Si buscas calidad, opta por el método manual.
- Es fundamental elegir el método y la variedad según el objetivo: (rendimiento vs. eficiencia). si se prioriza eficiencia en tiempo, se recomiendan equipos mecánicos; si se busca calidad y madurez del fruto, se recomienda la recolección manual

teraccion Variedad X Proceso en nota final d <mark>e ca</mark> t										
		Uva								
	verde	general	Uva s <mark>in</mark>							
Variedad	proceso	proceso	depsulpar							
Obata	83.21	76.17	58.92							
Parainema	60.19	63.41	64.81							
Mezcla	32.00	32.50	33.50							

*Mejor combinacion : Obta +verde proceso
**Peor combinacion Mezcla en todos los procesos

- 1. Definir claramente el objetivo productivo (calidad vs. eficiencia) antes de seleccionar el método de cosecha y la variedad de café.
- 2. Capacitar al personal en recolección manual selectiva cuando se busque calidad en taza, especialmente en lotes con alto potencial comercial o de exportación.
- 3. Mejorar el manejo poscosecha de los métodos mecanizados, implementando una etapa de separación y selección para reducir el impacto de los frutos verdes recolectados.
- 4. Socializar los resultados para el tema de adopción, en el sector productor de café y optimizar la productividad de la mano de obra en la etapa de recoleccion.

Bibliografía

- Alviar López, C. F., et al. (2020). Factores que originan la escasez de mano de obra para la recolección o café en el municipio de Belén de Umbría. Universidad Católica de Pereira, Facultad de Ciencias Económicas Administrativas, Programa Administración de Empresas.
- Análisis sobre el impacto del COVID-19 en la caficultura del Triángulo Norte Centroamericano. (2021).
- Aristizábal, T. I. D., et al. (2000). Avances técnicos: Cosecha mecánica de café aplicando vibraciones circulares al tallo del cafeto. Gerencia Técnica / Programa de Investigación Científica, Fondo Nacional de Café, Cenicafé, 51(1), 41-53.
- Banco Mundial Honduras. (2022, octubre 4). Honduras. Panorama General https://www.bancomundial.org/es/country/honduras/overview#:~:text=Honduras%20sigue%20siendo%20unow20de,las%20lineas%20de%20pobreza%20oficiales.
- Cenicafé. (2018). Lonas para asistir la cosecha manual de café. Artículo técnico 487.
- Cenicafé. (2018). Retención de pases: Una opción para mejorar la productividad de la mano de obra en cosecha de café. Artículo técnico 488, Gerencia Técnica / Programa de Investigación Científica, Fond Nacional del Café.
- **Duque, O. H., et al. (2004).** Productividad de la mano de obra en la cosecha de café en cuatro municipios de la región cafetalera central de Caldas. *Cenicafé, 55*(3), 246-258.

¡Gracias!

