

FCC PART 22H, PART 24E FCC PART 27

MEASUREMENT AND TEST REPORT

For

Quanzhou Tesunho Electronics Co., Ltd

2#, 5F E-19# Phase 2 Xunmei, Quanzhou, Fujian, China

FCC ID: 2AKS9TH388U

Product Type:

Report Type: IP Trunking Radio Original Report Report Number: RXM180516052-00B **Report Date:** 2018-06-19 Jerry Zhang Jerry Zhang **Reviewed By:** EMC Manager

Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan)

No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	5
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC §1.1310, §2.1093 - RF EXPOSURE	8
APPLICABLE STANDARD	
TEST RESULT	8
FCC §2.1047 - MODULATION CHARACTERISTIC	9
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) & § 27.50 - RF OUTPUT POWER	10
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	16
FCC §2.1053, §22.917 & §24.238 & §27.53 - SPURIOUS RADIATED EMISSIONS	22
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	23
Test Data	23

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

	EUT Name:	IP Trunking Radio
	EUT Model:	TH-388U
M	Sultiple Models:	TH-389U, TH-390U, TH-289U, TH-290U
	FCC ID:	2AKS9TH388U
Rated Input Voltage:		DC 3.63V from battery or DC12V form adapter
	Model:	ZM-01A1210
Adapter Information	Input:	AC 100-240V, 50/60Hz, 0.5A, Max
inioi mation	Output:	DC 12V, 1000mA
External Dimension:		6.2cm(L)*4.5cm(W)*12.7cm(H)
Serial Number:		180516052
EUT	Received Date:	2018.05.16

Note: The series product, models TH-388U, TH-389U, TH-390U, TH-289U, TH-290U are electrically identical, the difference between them please refer to the declaration letter for details. For marketing purpose, we selected TH-388U for fully testing.

Objective

This report is prepared on behalf of *Quanzhou Tesunho Electronics Co., Ltd* in accordance with: Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communications Commission's rules. Part 2, Part 27 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J, as well as the following parts:

Part 22 Subpart H - Public Mobile Services

Part 24 Subpart E - Personal Communication Services

Part 27 – Miscellaneous wireless communications services

Applicable Standards: TIA/EIA 603-D-2010

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp.(Dongguan).

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Unwanted Emissions, radiated	30MHz ~ 1GHz:5.85 dB 1G~26.5GHz: 5.23 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	±1℃
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218,the FCC Designation No. : CN1220.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062D.

Page 4 of 26

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D 2010.

The device build in a certified module, module model number: ME3630, FCC ID: SRQ-ME3630, certified on 2017-08-28.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Universial Radio Communication Tester	CMU200	109038
R&S	Wideband Radio Communication Tester	CMW500	147473
N/A	ANTENNA	N/A	N/A

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC§1.1310, §2.1093	RF Exposure	Compliance
FCC§2.1046; § 22.913 (a); § 24.232 (c); §27.50	RF Output Power	Compliance
FCC§ 2.1047	Modulation Characteristics	Not Applicable
FCC§ 2.1049; § 22.905 § 22.917; § 24.238; §27.53	Occupied Bandwidth	Compliance*
FCC§ 2.1051, § 22.917 (a); § 24.238 (a); §27.53	Spurious Emissions at Antenna Terminal	Compliance*
FCC§ 2.1053 § 22.917 (a); § 24.238 (a); §27.53	Field Strength of Spurious Radiation	Compliance
FCC§ 22.917 (a); § 24.238 (a); §27.53	Out of band emission, Band Edge	Compliance*
FCC§ 2.1055 § 22.355; § 24.235; §27.54	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance*

Note:

Compliance*. Conducted data at antenna port, please refer to the certified LTE module (FCC ID: SRQ-ME3630) granted on 08/11/2017. The applicant (Quanzhou Tesunho Electronics Co. Ltd.) declared that the RF characteristics of LTE module was not changed or modified.

Page 7 of 26

FCC §1.1310 , §2.1093 - RF EXPOSURE

Applicable Standard

FCC§1.1310 and §2.1093

Test Result

Compliant, please refer to the SAR report: RXM180516052-20.

Page 8 of 26

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC \S 2.1047(d), Part 22H & 24E, Part 27 there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Page 9 of 26

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) & § 27.50 - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §24.232 (d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

According to §27.50

- (b)(10) Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP.
- (c) (10) Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP.
- (d), (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.
- (h),(2) Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

Page 10 of 26

Test Procedure

CDMA 1x RTT

Maximum output power is verified on the high, middle and low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. Steps 3 and 4 are measured using Loopback Service Option SO55 with power control bits in "All Up" condition. Step 10 is measured using TDSO/SO32 with power control bits in the "Bits Hold" condition (i.e. alternative Up/Down Bits).

Table 4.4.5.2-1. Test Parameters for Maximum RF Output Power with a Single Traffic Code Channel, Spreading Rate 1

Parameter	Units	Value						
Îor	dBm/1.23 MHz	-104						
$\frac{\text{Pilot E}_{c}}{I_{or}}$	dB	-7						
Teoffic E	ar.	77.4						

Fable 4.4.5.2-2. Test Parameters for Maximum RF Output Power with Multiple Traffic Code Channels, Spreading Rate 1

Parameter	Units	Value
Pilot E _c	dВ	-7
Traffic E _c	dΒ	-7.4

EVDO

Maximum output power is verified on the high, middle and low channels according to procedures in section 3.1.2.3.4 of 3GPP2 C.S0033-0/TIA-866 for Rev. 0, section 4.3.4 of 3GPP2 C.S0033-A for Rev. A.

Maximum output power is measured for Rev. 0 and Rev. A in Subtype 0/1 and Subtype 2 Physical Layer configurations, respectively.

WCDMA-Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

	Loopback Mode	Test Mode 1
WCDMA	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc / βd	8/15

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSDPA	HSDPA	HSDPA	HSDPA		
	Subset	1	2	3	4		
	Loopback Mode			Test Mode 1			
	Rel99 RMC			12.2kbps RM	C		
	HSDPA FRC			H-Set1			
WCDMA	Power Control Algorithm		Algorithm2				
WCDMA General	βς	2/15	12/15	15/15	15/15		
Settings	βd	15/15	15/15	8/15	4/15		
Settings	βd (SF)		64				
	βc/ βd	2/15	12/15	15/8	15/4		
	βhs	4/15	24/15	30/15	30/15		
	MPR(dB)	0	0	0.5	0.5		
	DACK			8			
	DNAK			8			
HSDPA	DCQI			8			
Specific	Ack-Nack repetition			3			
Settings	factor	3					
Settings	CQI Feedback			4ms			
	CQI Repetition Factor			2			
	Ahs=βhs/ βc			30/15			

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA		
	Subset	1	2	3	4	5		
	Loopback Mode	Test Mode 1						
	Rel99 RMC			12.2kbps RMC	7			
	HSDPA FRC			H-Set1				
	HSUPA Test		H	SUPA Loopba	ck			
WCDM	Power Control	Algorithm2						
WCDMA General	Algorithm			ū				
Settings	βс	11/15	6/15	15/15	2/15	15/15		
Settings	βd	15/15	15/15	9/15	15/15	0		
	βес	209/225	12/15	30/15	2/15	5/15		
	βc/ βd	11/15	6/15	15/9	2/15	-		
	βhs	22/15	12/15	30/15	4/15	5/15		
	CM(dB)	1.0	3.0	2.0	3.0	1.0		
	MPR(dB)	0	2	1	2	0		
	DACK			8				
	DNAK	8						
HSDPA	DCQI	8						
Specific	Ack-Nack repetition	3						
Settings	factor							
- Settings	CQI Feedback	4ms						
	CQI Repetition Factor 2							
	Ahs=βhs/βc	_	1	30/15		T		
	DE-DPCCH	6	8	8	5	7		
	DHARQ	0	0	0	0	0		
	AG Index	20	12	15	17	21		
	ETFCI	75	67	92	71	81		
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9		
HSUPA Specific Settings	Reference E_FCls	E-TFCI 11 E E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO23 E-TFCI 75 E-TFCI PO26 E-TFCI 81 E-TFCI PO 27		E-TFCI 11 E-TFCI PO4 E-TFCI 92 E-TFCI PO 18	E-TFCI 11 E E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO23 E-TFCI 75 E-TFCI PO26 E-TFCI PO27			

HSPA+

The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34.121-1

Sub- test	β _c (Note3)	β _d	β _{HS} (Note1)	β_{ec}	β _{ed} (2xSF2) (Note 4)	β _{ed} (2xSF4) (Note 4)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 4)	E-TFCI (Note 5)	E-TFCI (boost)
1	1	0	30/15	30/15	β _{ed} 1: 30/15 β _{ed} 2: 30/15	β _{ed} 3: 24/15 β _{ed} 4: 24/15	3.5	2.5	14	105	105
Note 1	Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .										
Note 2	Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1,0).										
Note 3	Note 3: DPDCH is not configured, therefore the β _c is set to 1 and β _d = 0 by default.										
Note 4: β _{ed} can not be set directly; it is set by Absolute Grant Value.											
Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E- DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH											

DC-HSDPA

The following tests were conducted according to the test requirements in Table C.8.1.12 of 3GPP TS 34.121-1

configurations DPDCH is not allocated. The UE is signalled to use the extrapolation algorithm.

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value		
Nominal	Avg. Inf. Bit Rate	kbps	60		
Inter-TTI	Distance	TTľs	1		
Number of	of HARQ Processes	Proces	6		
		ses	0		
Informati	on Bit Payload (N_{INF})	Bits	120		
Number (Code Blocks	Blocks	1		
Binary Cl	hannel Bits Per TTI	Bits	960		
Total Ava	nilable SML's in UE	SML's	19200		
Number of	of SML's per HARQ Proc.	SML's	3200		
Coding R	Rate		0.15		
Number of	of Physical Channel Codes	Codes	1		
Modulatio			QPSK		
Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table. Note 2: Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and					
	constellation version 0 shall be use		-		

LTE (FDD):

The following tests were conducted according to the test requirements in 3GPP TS36.101

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	Channel bandwidth / Transmission bandwidth (RB)							
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
QPSK	>5	>4	>8	> 12	> 16	> 18	≤ 1		
16 QAM	≤ 5	≤4	≤8	≤ 12	≤ 16	≤ 18	≤ 1		
16 QAM	> 5	>4	>8	> 12	> 16	> 18	≤ 2		

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RS})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
			3	>5	≤ 1
			5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤1
			15	>8	≤1
			20	>10	s 1
NC 04	6.6222	41	5	>6	≤ 1
NS_04	0.0.2.2.2	41	10, 15, 20	See Tab	le 6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤3
NS_09	6.6.3.3.4	21	10, 15	> 40 > 55	≤1 ≤2
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	23'	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
NS_32					

Radiated method:

ANSI/TIA-603-D section 2.2.17

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2017-12-11	2018-12-11
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
Agilent	Spectrum Analyzer	E4440A	SG43360054	2018-01-04	2019-01-04
ETS LINDGREN	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04
Agilent	Signal Generator	E8247C	MY43321350	2017-12-11	2018-12-11
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2016-01-05	2019-01-04
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2017-09-05	2018-09-05
R&S	Universal Radio Communication Tester	CMU200	106 891	2017-12-14	2018-12-14
R&S	Wideband Radio Communication Tester	CMW500	110479	2017-12-11	2018-12-11

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	29.1°C
Relative Humidity:	31 %
ATM Pressure:	102.1kPa

^{*} The testing was performed by Vern Shen & Blake Yang on 2018-05-25.

ERP & EIRP

WCDMA:

		Receiver	Su	bstituted Met	hod	Absolute		
Frequency (MHz)	Polar (H/V)	Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
	WCDMA Band 2							
1880.000	Н	86.54	13.9	11.7	2.7	22.9	33.00	10.1
1880.000	V	89.86	17.4	11.7	2.7	26.4	33.00	6.6
	WCDMA Band 5							
836.600	Н	85.99	11.1	0.0	1	10.1	38.45	28.4
836.600	V	97.31	25.5	0.0	1	24.5	38.45	14.0

LTE Band 2 Middle Channel (1880 MHz):

					Subs	stituted Meth	od		.	
Frequency (MHz)	BW (MHz)	Modulation	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1880.000	1.4		Н	87.20	14.6	11.7	2.7	23.6	33.00	9.4
1880.000	1.4		V	90.15	17.7	11.7	2.7	26.7	33.00	6.3
1880.000	3		Н	87.58	15	11.7	2.7	24.0	33.00	9.0
1880.000	3		V	89.66	17.2	11.7	2.7	26.2	33.00	6.8
1880.000	5		Н	85.34	12.7	11.7	2.7	21.7	33.00	11.3
1880.000	3	QPSK	V	88.12	15.7	11.7	2.7	24.7	33.00	8.3
1880.000	10	QISK	Н	84.45	11.8	11.7	2.7	20.8	33.00	12.2
1880.000	10		V	87.17	14.7	11.7	2.7	23.7	33.00	9.3
1880.000	15		Н	85.68	13.1	11.7	2.7	22.1	33.00	10.9
1880.000	13		V	89.10	16.6	11.7	2.7	25.6	33.00	7.4
1880.000	20		Н	85.76	13.2	11.7	2.7	22.2	33.00	10.8
1880.000	20		V	89.35	16.9	11.7	2.7	25.9	33.00	7.1
1880.000	1.4		Н	86.85	14.2	11.7	2.7	23.2	33.00	9.8
1880.000	1.1		V	89.86	17.4	11.7	2.7	26.4	33.00	6.6
1880.000	3		Н	87.32	14.7	11.7	2.7	23.7	33.00	9.3
1880.000	3		V	89.35	16.9	11.7	2.7	25.9	33.00	7.1
1880.000	_		Н	84.98	12.4	11.7	2.7	21.4	33.00	11.6
1880.000	5	160AM	V	87.83	15.4	11.7	2.7	24.4	33.00	8.6
1880.000	10	16QAM	Н	84.08	11.5	11.7	2.7	20.5	33.00	12.5
1880.000	10		V	86.92	14.5	11.7	2.7	23.5	33.00	9.5
1880.000	1.5		Н	85.24	12.6	11.7	2.7	21.6	33.00	11.4
1880.000	15		V	88.67	16.2	11.7	2.7	25.2	33.00	7.8
1880.000	20		Н	84.58	12	11.7	2.7	21.0	33.00	12.0
1880.000	20		V	88.31	15.8	11.7	2.7	24.8	33.00	8.2

LTE Band 4 Middle Channel (1732.5MHz):

		duic Channe			Sub	stituted Meth	od			
Frequency (MHz)	BW (MHz)	Modulation	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1732.500	1.4		Н	87.43	13.4	10.9	2.5	21.8	30.00	8.2
1732.500	1.4		V	90.58	16.2	10.9	2.5	24.6	30.00	5.4
1732.500	3		Н	86.52	12.5	10.9	2.5	20.9	30.00	9.1
1732.500	3		V	89.86	15.5	10.9	2.5	23.9	30.00	6.1
1732.500	5		Н	85.12	11.1	10.9	2.5	19.5	30.00	10.5
1732.500	3	QPSK	V	88.46	14.1	10.9	2.5	22.5	30.00	7.5
1732.500	10	QLSIK	Н	84.76	10.7	10.9	2.5	19.1	30.00	10.9
1732.500	10		V	87.91	13.5	10.9	2.5	21.9	30.00	8.1
1732.500	15		Н	83.95	9.9	10.9	2.5	18.3	30.00	11.7
1732.500	13		V	87.22	12.9	10.9	2.5	21.3	30.00	8.7
1732.500	20		Н	84.37	10.3	10.9	2.5	18.7	30.00	11.3
1732.500	20		V	88.65	14.3	10.9	2.5	22.7	30.00	7.3
1732.500	1.4		Н	87.08	13	10.9	2.5	21.4	30.00	8.6
1732.500	1.4		V	90.36	16	10.9	2.5	24.4	30.00	5.6
1732.500	2		Н	86.03	12	10.9	2.5	20.4	30.00	9.6
1732.500	3		V	89.41	15	10.9	2.5	23.4	30.00	6.6
1732.500	_		Н	84.95	10.9	10.9	2.5	19.3	30.00	10.7
1732.500	5	160 AM	V	88.13	13.8	10.9	2.5	22.2	30.00	7.8
1732.500	1.0	16QAM	Н	84.28	10.2	10.9	2.5	18.6	30.00	11.4
1732.500	10	15	V	87.73	13.4	10.9	2.5	21.8	30.00	8.2
1732.500			Н	83.46	9.4	10.9	2.5	17.8	30.00	12.2
1732.500	15		V	87.02	12.7	10.9	2.5	21.1	30.00	8.9
1732.500	20		Н	84.05	10	10.9	2.5	18.4	30.00	11.6
1732.500	20		V	87.65	13.3	10.9	2.5	21.7	30.00	8.3

LTE Band 5 Middle Channel (836.5MHz):

					Sub	stituted Meth	od			
Frequency (MHz)	BW (MHz)	Modulation	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
836.500	1.4		Н	87.76	12.8	0.0	1	11.8	38.45	26.7
836.500	1.4		V	97.77	26	0.0	1	25.0	38.45	13.5
836.500	3		Н	89.26	14.3	0.0	1	13.3	38.45	25.2
836.500	3	QPSK	V	97.52	25.7	0.0	1	24.7	38.45	13.8
836.500	5	Qrsk	Н	89.58	14.7	0.0	1	13.7	38.45	24.8
836.500	3		V	97.00	25.2	0.0	1	24.2	38.45	14.3
836.500	10		Н	87.33	12.4	0.0	1	11.4	38.45	27.1
836.500	10		V	97.06	28.3	0.0	1	24.3	38.45	14.2
836.500	1.4		Н	87.93	13	0.0	1	12.0	38.45	26.5
836.500	1.4		V	97.32	25.5	0.0	1	24.5	38.45	14.0
836.500	2		Н	89.78	14.9	0.0	1	13.9	38.45	24.6
836.500	3	160 AM	V	96.86	25.1	0.0	1	24.1	38.45	14.4
836.500	_	16QAM	Н	89.14	14.2	0.0	1	13.2	38.45	25.3
836.500	5		V	97.07	25.3	0.0	1	24.3	38.45	14.2
836.500	10		Н	88.98	14.1	0.0	1	13.1	38.45	25.4
836.500	10		V	97.00	25.2	0.0	1	24.2	38.45	14.3

LTE Band 12 Middle Channel (707.5MHz):

					Sub	stituted Meth	od			
Frequency (MHz)	BW (MHz)	Modulation	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
707.500	1.4		Н	88.95	12.1	0.0	0.9	11.2	34.77	23.6
707.500	1.4		V	100.15	25.7	0.0	0.9	24.8	34.77	10.0
707.500	3		Н	90.20	13.3	0.0	0.9	12.4	34.77	22.4
707.500	3	QPSK	V	101.95	27.5	0.0	0.9	26.6	34.77	8.2
707.500	5	Qrsk	Н	88.66	11.8	0.0	0.9	10.9	34.77	23.9
707.500	3		V	99.73	25.3	0.0	0.9	24.4	34.77	10.4
707.500	10		Н	88.53	11.7	0.0	0.9	10.8	34.77	24.0
707.500	10		V	100.59	26.2	0.0	0.9	25.3	34.77	9.5
707.500	1.4		Н	88.77	11.9	0.0	0.9	11.0	34.77	23.8
707.500	1.4		V	100.54	26.1	0.0	0.9	25.2	34.77	9.6
707.500	3		Н	87.67	10.8	0.0	0.9	9.9	34.77	24.9
707.500	3	16QAM	V	100.12	25.7	0.0	0.9	24.8	34.77	10.0
707.500	_	10QAM	Н	87.67	10.8	0.0	0.9	9.9	34.77	24.9
707.500	5	5	V	100.28	25.9	0.0	0.9	25.0	34.77	9.8
707.500	10		Н	88.50	11.6	0.0	0.9	10.7	34.77	24.1
707.500	10		V	100.20	25.8	0.0	0.9	24.9	34.77	9.9

LTE Band 17 Middle Channel (710MHz):

				D .	Subs	stituted Meth	od		T,	
Frequency (MHz)	BW (MHz)	Modulation	Polar (H/V)	Reading	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
710.000	5		Н	87.28	10.5	0.0	0.9	9.6	34.77	25.2
710.000	3	OPSK	V	98.10	23.7	0.0	0.9	22.8	34.77	12.0
710.000	10	Qrsk	Н	86.98	10.2	0.0	0.9	9.3	34.77	25.5
710.000	10		V	97.93	23.6	0.0	0.9	22.7	34.77	12.1
710.000	5		Н	89.14	12.3	0.0	0.9	11.4	34.77	23.4
710.000	3	160414	V	100.29	25.9	0.0	0.9	25.0	34.77	9.8
710.000	10	16QAM	Н	87.00	10.2	0.0	0.9	9.3	34.77	25.5
710.000	10		V	98.11	23.8	0.0	0.9	22.9	34.77	11.9

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = Substituted Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

FCC §2.1053, §22.917 & §24.238 & §27.53 - SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053, §22.917, § 24.238 and § 27.53.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001) - the absolute level$

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2017-12-11	2018-12-11
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
HP	Amplifier	8447D	2727A05902	2017-09-05	2018-09-05
Agilent	Spectrum Analyzer	E4440A	SG43360054	2018-01-04	2019-01-04
ETS LINDGREN	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04
Agilent	Signal Generator	E8247C	MY43321350	2017-12-11	2018-12-11
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2016-01-05	2019-01-04
MITEQ	Amplifier	AFS42-00101800- 25-S-42	2001271	2017-09-05	2018-09-05
TDK RF	Horn Antenna	HRN-0118	130 084	2016-01-05	2019-01-04
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-02 1304	2016-11-18	2019-11-18
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2016-11-18	2019-11-18
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2017-09-05	2018-09-05
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2017-09-05	2018-09-05
	Universal Radio				

CMU200

CMW500

Test Data

R&S

R&S

Environmental Conditions

Temperature:	29.1°C
Relative Humidity:	31 %
ATM Pressure:	102.1kPa

Communication

Tester Wideband Radio

Communication

Tester

2018-12-14

2018-12-11

Report No.: RXM180516052-00B

2017-12-14

2017-12-11

106 891

110479

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

^{*} The testing was performed by Vern Shen & Blake Yang on 2018-05-25.

EUT Operation Mode: Transmitting

30 MHz-10 GHz:

		D	Su	bstituted Met	hod	Absolute Level (dBm)		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)		Limit (dBm)	Margin (dB)
WCDMA Band V R99,Frequency:836.600 MHz								
1673.200	Н	54.15	-60.1	10.6	0.7	-50.2	-13.0	37.2
1673.200	V	55.68	-59.1	10.6	0.7	-49.2	-13.0	36.2
2509.800	Н	53.26	-59.8	13.1	1.2	-47.9	-13.0	34.9
2509.800	V	54.33	-58.7	13.1	1.2	-46.8	-13.0	33.8
3346.400	Н	51.87	-58.8	13.8	1.6	-46.6	-13.0	33.6
3346.400	V	52.73	-58	13.8	1.6	-45.8	-13.0	32.8
431.510	Н	48.45	-56.2	0.0	0.6	-56.8	-13.0	43.8
396.620	V	48.54	-59.7	0.0	0.6	-60.3	-13.0	47.3

30 MHz-20 GHz:

_		Receiver	Su	bstituted Met	hod	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
Frequency (MHz)	Polar (H/V)	Reading	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)					
WCDMA Band II, R99, Frequency:1880.000 MHz										
3760.000	Н	53.65	-55.2	13.8	1.6	-43.0	-13.0	30.0		
3760.000	V	54.25	-54.4	13.8	1.6	-42.2	-13.0	29.2		
5640.000	Н	52.14	-53.9	14.0	1.3	-41.2	-13.0	28.2		
5640.000	V	53.58	-52.3	14.0	1.3	-39.6	-13.0	26.6		
431.510	Н	48.54	-56.1	0.0	0.6	-56.7	-13.0	43.7		
440.000	V	44.10	-63.7	0.0	0.7	-64.4	-13.0	51.4		

LTE Band 2 (30MHz-20GHz):

		Receiver	Su	bstituted Met	hod	Absolute Level (dBm)		
Frequency (MHz)	• •	Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)		Limit (dBm)	Margin (dB)
QPSK,Frequency:1880.000 MHz								
3760.000	Н	52.18	-56.6	13.8	1.6	-44.4	-13.0	31.4
3760.000	V	54.73	-53.9	13.8	1.6	-41.7	-13.0	28.7
5640.000	Н	51.66	-54.4	14.0	1.3	-41.7	-13.0	28.7
5640.000	V	52.87	-53	14.0	1.3	-40.3	-13.0	27.3
452.230	Н	45.58	-58.9	0.0	0.7	-59.6	-13.0	46.6
450.980	V	38.10	-69.6	0.0	0.7	-70.3	-13.0	57.3

LTE Band 4 (30MHz-20GHz):

		Receiver	Su	bstituted Met	hod	Absolute Level (dBm)		
Frequency (MHz)		Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)		Limit (dBm)	Margin (dB)
QPSK,Frequency:1732.500 MHz								
3465.000	Н	61.57	-48.7	13.9	1.6	-36.4	-13.0	23.4
3465.000	V	66.50	-43.8	13.9	1.6	-31.5	-13.0	18.5
5197.500	Н	52.45	-54	14.0	1.5	-41.5	-13.0	28.5
5197.500	V	54.18	-52.3	14.0	1.5	-39.8	-13.0	26.8
99.840	Н	40.66	-65.8	0.0	0.3	-66.1	-13.0	53.1
53.280	V	38.91	-64.4	-13.4	0.2	-78.0	-13.0	65.0

LTE Band 5 (30MHz-10GHz):

		Receiver Reading (dBµV)	Substituted Method			Absolute			
Frequency (MHz)	Polar (H/V)		Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	
	QPSK,Frequency: 836.500 MHz								
1673.200	Н	54.35	-59.9	10.6	0.7	-50.0	-13.0	37.0	
1673.200	V	58.64	-56.2	10.6	0.7	-46.3	-13.0	33.3	
2509.800	Н	51.37	-61.6	13.1	1.2	-49.7	-13.0	36.7	
2509.800	V	53.25	-59.8	13.1	1.2	-47.9	-13.0	34.9	
3346.400	Н	51.65	-59	13.8	1.6	-46.8	-13.0	33.8	
3346.400	V	52.44	-58.3	13.8	1.6	-46.1	-13.0	33.1	
200.750	Н	52.54	-56.1	0.0	0.5	-56.6	-13.0	43.6	
94.020	V	53.30	-59.6	0.0	0.3	-59.9	-13.0	46.9	

Page 25 of 26

LTE Band 12 (30MHz-10GHz)

Frequency (MHz)		D	Su	bstituted Met	hod	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)				
	QPSK,Frequency:707.5MHz								
1415.000	Н	53.21	-60.3	9.1	1.2	-52.4	-13.0	39.4	
1415.000	V	55.64	-58.4	9.1	1.2	-50.5	-13.0	37.5	
2122.500	Н	51.87	-60.9	11.3	1.1	-50.7	-13.0	37.7	
2122.500	V	53.66	-59.1	11.3	1.1	-48.9	-13.0	35.9	
2830.000	Н	51.02	-61.1	13.3	1.4	-49.2	-13.0	36.2	
2830.000	V	52.48	-59.8	13.3	1.4	-47.9	-13.0	34.9	
200.750	Н	53.54	-55.1	0.0	0.5	-55.6	-13.0	42.6	
49.400	V	43.87	-56.5	-15.5	0.2	-72.2	-13.0	59.2	

LTE Band 17 (30MHz-10GHz)

Frequency (MHz)		D	Su	bstituted Met	hod	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
	Polar (H/V)	Receiver Reading (dBµV)	Substituted Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)			
QPSK,Frequency:710.000 MHz								
1420.000	Н	52.16	-61.4	9.1	1.2	-53.5	-13.0	40.5
1420.000	V	54.63	-59.5	9.1	1.2	-51.6	-13.0	38.6
2130.000	Н	52.34	-60.4	11.2	1.1	-50.3	-13.0	37.3
2130.000	V	53.85	-58.9	11.2	1.1	-48.8	-13.0	35.8
2840.000	Н	51.26	-60.8	13.4	1.4	-48.8	-13.0	35.8
2840.000	V	52.73	-59.6	13.4	1.4	-47.6	-13.0	34.6
738.100	Н	57.64	-42.7	0.0	0.9	-43.6	-13.0	30.6
119.240	V	61.88	-48.7	0.0	0.3	-49.0	-13.0	36.0

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = Substituted Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

***** END OF REPORT *****

Page 26 of 26