lab5-task2

August 28, 2024

0.1 Task 2

```
Su po
           ngamos
            que
            es
           \operatorname{sim-}
            ple
            generar
            vari-
            ables
            aleato-
            rias
            con
            fun-
            ción
            de
           prob-
            a-
            bil-
            i-
            dad
            acu-
            mu-
           lada
           F_i(x)
           para
            i
            de
            1
            a
            n.
            Ten-
            emos
            la
           vari-
           able
            aleato-
            ria
            V
            con
            una
            fun-
            ción
            de
           prob-
            a-
           bil-
            i-
           dad
           acumulada:
```

```
$$ F(
          x)
           _{i=1}^{n}
           p_i
           F_i(x)$$
do
     nd
           e
           p_{i}
           con-
           sti-
           tuye
           una
           dis-
           tribu-
           ción
           probabilística.
1.
           *Describa
2.
           un
           al-
           go-
           ritmo
           para
           generar
           V.**
           *De-
           muestre
           que
           _{\mathrm{el}}
           al-
           go-
           ritmo
           gen-
           era
           ade-
           cuada-
           mente
           V.**
```

nt:** Hi Probablemente le sea de utilidad el método de composición.

0.1.1 1. Descripción del Algoritmo para Generar (V)

El método de composición es una técnica común en simulación para generar una variable aleatoria V cuya función de distribución acumulada F(x) es una combinación de otras distribuciones acumuladas $F_i(x)$ ponderadas por probabilidades p_i .

1. Generación de una variable auxiliar U:

• Genera una variable aleatoria uniforme U en el intervalo [0,1].

2. Selección de la distribución:

- Divide el intervalo [0,1] en n subintervalos según las probabilidades p_i .
- Selecciona el subintervalo donde cae U. Si U cae en el intervalo $[P_{i-1}, P_i)$, entonces selecciona la distribución acumulada $F_i(x)$. Aquí, P_i es la suma acumulativa de p_i , es decir:

$$P_i = \sum_{j=1}^i p_j$$

3. Generación de la variable aleatoria:

- Una vez seleccionada la distribución $F_i(x)$, genera una variable aleatoria V según esta distribución.
- 4. Retornar el valor de V. - -

0.1.2 2. Demostración de que el Algoritmo Genera Adecuadamente (V)

Para demostrar que el algoritmo genera adecuadamente V, mostramos que la distribución acumulada F(x) generada por este método es la correcta.

Distribución acumulada F(x):

- Para un valor de x, $F(x) = P(V \le x)$.
- Esto se puede descomponer como la suma ponderada de las probabilidades de que $V \leq x$ dado que la distribución seleccionada es $F_i(x)$.

$$F(x) = \sum_{i=1}^n p_i \cdot P(V \leq x \mid F_i(x)) = \sum_{i=1}^n p_i \cdot F_i(x)$$

Esto coincide con la función de distribución acumulada F(x) definida en este task. Por lo tanto, el algoritmo genera adecuadamente la variable aleatoria V con la distribución acumulada F(x).

[]: