DM 4 - Binôme de Newton

À rendre le Lundi 2 novembre 2020.

Le but de se devoir est de montrer la formule suivante, appelée, formule du binôme de Newton(ou formule du binôme)

$$\forall (a,b) \in \mathbb{C}^2, \, \forall n \in \mathbb{N}, \quad (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Formule à connaitre par coeur dès à présent.

Prenez ce DM comme une part du cours. Toutes les formules encadrées sont à connaitre.

I Rappels sur les coefficients binomiaux

I. 1 Rappels sur la factorielle

Définition 1. Soit n un entier naturel.

• Si $n \ge 1$, on appelle factorielle n le nombre :

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$

• Par convention, on a:0!=1

Exemples. • 1! = 1, $2! = 2 \times 1 = 2$, $3! = 3 \times 2 \times 1 = 6$, $4! = 4 \times 3! = 24$

• $(n+1)! = (n+1) \times (n!)$

Exercice 1. Simplifier au maximum les nombres suivants $(n \in \mathbb{N}, n \ge 4)$: $\frac{(n+1)!}{(n-3)!}$ et $\frac{(n!)^2}{(n+2)!(n-1)!}$.

I. 2 Coefficients binomiaux : définition et propriétés

Définition 2. Soit (n,p) deux entiers naturels.

 $\bullet \ \textit{Si p} \in [\![0,n]\!], \ \textit{on appelle coefficient binomial, le nombre}$

$$\binom{n}{p} = \frac{n!}{p!(n-p)!}$$

1

• Par convention si $p \notin [0, n]$: $\binom{n}{p} = 0$

Exemples. • $\binom{n}{0} = \frac{n!}{0!(n)!} = 1$, $\binom{n}{1} = \frac{n!}{1!(n-1)!} = n$, $\binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2}$

•
$$\binom{n}{n} = \frac{n!}{n!(n-n)!} = 1,$$
 $\binom{n}{n-1} = \frac{n!}{(n-1)!(n-(n-1))!} = n,$

$$\binom{n}{n-2} = \frac{n!}{(n-2)!(n-(n-2))!} = \frac{n(n-1)}{2}$$

Remarque. Les coefficients binomiaux seront très utiles en dénombrement : $\binom{n}{p}$ est le nombre de tirages simultanés (sans ordre et sans répétition) de p boules parmi n.

Proposition 3. Soit $(n, k) \in \mathbb{N}^2$.

• Symétrie des coefficients binomiaux :

$$\binom{n}{k} = \binom{n}{n-k}$$

• Triangle de Pascal :

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$

Exercice 2. Faire la preuve de la proposition (pas besoin de récurrence)

Proposition 4. Soit $k \in [0, n]$:

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

En conséquence

$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$$

Exercice 3. Soit $(n, p, k, j) \in \mathbb{N}^4$ avec $k \in [0, n]$ et $j \in [0, k]$. Montrer que $\binom{n}{k} \binom{k}{j} = \binom{n}{j} \binom{n-j}{n-k}$.

II Binôme de Newton

- 1. Vérifier que la formule du binôme est vraie pour n = 0, n = 1, n = 2 (et sur votre brouillon faite n = 3). On va prouver la formule par récurrence. On détaille les différentes étapes dans les prochaines questions :
- 2. Montrer que $\forall (a,b) \in \mathbb{C}^2, \forall n \in \mathbb{N}, :$

$$\sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} = a^{n+1} + \sum_{k=1}^{n} \binom{n}{k-1} a^k b^{n-k+1}.$$

3. Montrer que $\forall (a,b) \in \mathbb{C}^2, \forall n \in \mathbb{N},$

$$(a+b)\left(\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}\right) = a^{n+1} + b^{n+1} + \sum_{k=1}^{n} \left(\binom{n}{k-1} + \binom{n}{k}\right) a^k b^{n-k+1}$$

4. En déduire que

$$(a+b)\left(\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}\right) = \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k}$$

5. Conclure.

Exercice 4 (Application). Soit $n, m \in \mathbb{N}^2$

- 1. Calculer $(1+x)^n(1+x)^m$ et $(1+x)^{n+m}$ à l'aide du binome de Newton.
- 2. En déduire que pour tout $r \leq n + m$ on a :

$$\sum_{j=0}^{r} \binom{n}{j} \binom{m}{r-j} = \binom{n+m}{r}$$