

CS201 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

Generating Functions

We may use generating functions to characterize sequences.

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 3$

$$\sum_{k=0}^{\infty} 3x^k$$

 \diamond The sequence $\{a_k\}$ with $a_k = 2^k$

$$\sum_{k=0}^{\infty} 2^k x^k$$

Generating Functions

We may use generating functions to characterize sequences.

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 3$
$$\sum_{k=0}^{\infty} 3x^k$$

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 2^k$
$$\sum_{k=0}^{\infty} 2^k x^k$$

Definition The *generating funciton* for the sequence $a_0, a_1, \ldots, a_k, \ldots$ of real numbers is the infinite series

$$G(x) = a_0 + a_1 x + \cdots + a_k x^k$$

Problem 2 Find the number of solutions of

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers with $2 \le x_1 \le 5$, $3 \le x_2 \le 6$, $4 \le x_3 \le 7$.

Problem 2 Find the number of solutions of

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers with $2 \le x_1 \le 5$, $3 \le x_2 \le 6$, $4 \le x_3 \le 7$.

Using generating functions, the number is the coefficient of x^{17} in the expansion of

$$(x^2 + x^3 + x^4 + x^5)(x^3 + x^4 + x^5 + x^6)(x^4 + x^5 + x^6 + x^7)$$

Problem 1 How many solutions are there to the equation

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers?

Problem 1 How many solutions are there to the equation

$$x_1 + x_2 + x_3 = 17$$

where x_1, x_2, x_3 are nonnegative integers?

This is **equivalent** to the problem of *r*-combinations from a set with *n* elements when repetition is allowed.

Problem 1 How many solutions are there to the equation

$$x_1 + x_2 + x_3 = 17$$

where x_1, x_2, x_3 are nonnegative integers?

This is **equivalent** to the problem of *r*-combinations from a set with *n* elements when repetition is allowed.

$$C(n+r-1,r)=C(19,17)=C(19,2)$$

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Example Find # multisets of size 17 from the set $\{1, 2, 3\}$.

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Example Find # multisets of size 17 from the set $\{1, 2, 3\}$.

This is equivalent to finding the # nonnegative solutions to $x_1 + x_2 + x_3 = 17$.

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Example Find # multisets of size 17 from the set $\{1, 2, 3\}$.

This is equivalent to finding the # nonnegative solutions to $x_1 + x_2 + x_3 = 17$.

Q: Use generating functions to find the number of r-combinations from a set with n elements when repetition of elements is allowed.

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Example Find # multisets of size 17 from the set $\{1, 2, 3\}$.

This is equivalent to finding the # nonnegative solutions to $x_1 + x_2 + x_3 = 17$.

Q: Use generating functions to find the number of r-combinations from a set with n elements when repetition of elements is allowed.

Read more on pp. 537-548.

Cartesian Product

Let $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$, the Cartesian product $A \times B$ is the set of pairs $\{(a_1, b_1), (a_2, b_2), \dots, (a_1, b_n), \dots, (a_m, b_n)\}$

Cartesian Product

Let $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$, the Cartesian product $A \times B$ is the set of pairs $\{(a_1, b_1), (a_2, b_2), \dots, (a_1, b_n), \dots, (a_m, b_n)\}$

Cartesian product defines a set of all ordered arrangements of elements in the two sets.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

We use the notation a R b to denote $(a, b) \in R$, and aRb to denote $(a, b) \notin R$.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

We use the notation a R b to denote $(a, b) \in R$, and aRb to denote $(a, b) \notin R$.

Example: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$

- \diamond Is $R = \{(a,1),(b,2),(c,2)\}$ a relation from A to B?
- \diamond Is $Q = \{(1, a), (2, b)\}$ a relation from A to B?
- \diamond Is $P = \{(a, a), (b, c), (b, a)\}$ a relation from A to A?

 \blacksquare We can graphically represent a binary relation R as:

if a R b, then we draw an arrow from a to b: $a \rightarrow b$

• We can graphically represent a binary relation R as: if a R b, then we draw an arrow from a to b: $a \rightarrow b$

Example: Let $A = \{0, 1, 2\}$ and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, v), (2, u)\}$. $(R \subseteq A \times B)$

• We can graphically represent a binary relation R as: if a R b, then we draw an arrow from a to b: $a \rightarrow b$

Example: Let $A = \{0, 1, 2\}$ and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, v), (2, u)\}$. $(R \subseteq A \times B)$

• We can also represent a binary relation R by a table showing the ordered pairs of R.

• We can also represent a binary relation R by a table showing the ordered pairs of R.

Example: Let
$$A = \{0, 1, 2\}$$
 and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, u), (2, v)\}$. $(R \subseteq A \times B)$

• We can also represent a binary relation R by a table showing the ordered pairs of R.

Example: Let
$$A = \{0, 1, 2\}$$
 and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, u), (2, v)\}$. $(R \subseteq A \times B)$

R	и	v
0	×	×
1	×	
2		×

Relations and Functions

Relations represent one to many relationships between elements in A and B.

Relations and Functions

Relations represent one to many relationships between elements in A and B.

Relations and Functions

Relations represent one to many relationships between elements in A and B.

What is the difference between a relation and a function from A to B?

■ **Definition**: A relation on the set *A* is a relation from *A* to itself.

■ **Definition**: A relation on the set A is a relation from A to itself.

■ **Definition**: A relation on the set A is a relation from A to itself.

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

■ **Definition**: A relation on the set A is a relation from A to itself.

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

■ **Definition**: A relation on the set A is a relation from A to itself.

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

Number of Binary Relations

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Number of Binary Relations

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Proof

If |A| = n, then the cardinality of the Cartesian product $|A \times A| = n^2$.

Number of Binary Relations

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Proof

If |A| = n, then the cardinality of the Cartesian product $|A \times A| = n^2$.

R is a binary relation on A if $R \subseteq A \times A$ (R is subset)

Number of Binary Relations

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Proof

If |A| = n, then the cardinality of the Cartesian product $|A \times A| = n^2$.

R is a binary relation on A if $R \subseteq A \times A$ (R is subset)

The number of subsets of a set with k elements is 2^k

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Reflexive Relation: A relation R on a set A is called *reflexive* if $(a, a) \in R$ for every element $a \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Reflexive Relation: A relation R on a set A is called *reflexive* if $(a, a) \in R$ for every element $a \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} reflexive?

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} reflexive?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} reflexive?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Yes.
$$(1,1),(2,2),(3,3),(4,4) \in R_{div}$$

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

A relation R is reflexive if and only if MR has 1 in every position on its main diagonal.

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Is *R* reflexive?

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Is *R* reflexive?

No. $(1,1) \notin R$

■ Irreflexive Relation: A relation R on a set A is called irreflexive if $(a, a) \notin R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{\neq} irreflexive?

■ Irreflexive Relation: A relation R on a set A is called irreflexive if $(a, a) \notin R$ for every element $a \in A$.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{\neq} irreflexive?

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

■ Irreflexive Relation: A relation R on a set A is called irreflexive if $(a, a) \notin R$ for every element $a \in A$.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{\neq} irreflexive?

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Yes.
$$(1,1),(2,2),(3,3),(4,4) \notin R_{\neq}$$

Irreflexive Relation

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Irreflexive Relation

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Irreflexive Relation

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

$$MR = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

A relation R is irreflexive if and only if MR has 0 in every position on its main diagonal.

Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} symmetric?

Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} symmetric?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Symmetric Relation: A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} symmetric?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

No. $(1,2) \in R_{div}$ but $(2,1) \notin R$

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Is R_{\neq} symmetric?

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Is R_{\neq} symmetric?

Yes. If $(a, b) \in R_{\neq}$ then $(b, a) \in R_{\neq}$.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

$$MR = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

$$MR = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

A relation R is symmetric if and only if MR is symmetric.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if (b, a) ∈ R and (a, b) ∈ R implies a = b for all a, b ∈ A.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if (b, a) ∈ R and (a, b) ∈ R implies a = b for all a, b ∈ A.

Example: Assume that $R = \{(1, 2), (2, 2), (3, 3)\}$ on $A = \{1, 2, 3, 4\}$.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if (b, a) ∈ R and (a, b) ∈ R implies a = b for all a, b ∈ A.

Example: Assume that $R = \{(1, 2), (2, 2), (3, 3)\}$ on $A = \{1, 2, 3, 4\}$.

Is R antisymmetric?

Antisymmetric Relation: A relation R on a set A is called antisymmetric if (b, a) ∈ R and (a, b) ∈ R implies a = b for all a, b ∈ A.

Example: Assume that $R = \{(1, 2), (2, 2), (3, 3)\}$ on $A = \{1, 2, 3, 4\}$.

Is R antisymmetric?

Yes.

Antisymmetric Relation

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

$$MR = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

$$MR = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

A relation R is antisymmetric if and only if $m_{ij} = 1$ implies $m_{ji} = 0$ for $i \neq j$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} antisymmetric?

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} antisymmetric?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} antisymmetric?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Yes. If a|b and b|a, then a=b.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} antisymmetric?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Yes. If a|b and b|a, then a=b.

Transitive Relation: A relation R on a set A is called *transitive* if (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R for all a, b, c ∈ A.

Transitive Relation: A relation R on a set A is called *transitive* if $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Transitive Relation: A relation R on a set A is called *transitive* if $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} transitive?

Transitive Relation: A relation R on a set A is called *transitive* if $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} transitive?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Transitive Relation: A relation R on a set A is called *transitive* if (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R for all a, b, c ∈ A.

Example: Assume that $R_{div} = \{(a, b) : a|b\}$ on $A = \{1, 2, 3, 4\}$.

Is R_{div} transitive?

$$R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}.$$

Yes. If a|b and b|c, then a|c.

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Is R_{\neq} transitive?

Example: Assume that $R_{\neq} = \{(a, b) : a \neq b\}$ on $A = \{1, 2, 3, 4\}$.

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}.$$

Is R_{\neq} transitive?

No. $(1,2),(2,1)\in R_{\neq}$ but $(1,1)\notin R_{\neq}$.

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Is R transitive?

Example: Assume that $R = \{(1,2), (2,2), (3,3)\}$ on $A = \{1,2,3,4\}$.

Is R transitive?

Yes.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Combining Relations: Since relations are sets, we can *combine* relations via set operations.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Combining Relations: Since relations are sets, we can *combine* relations via set operations.

Set operations: union, intersection, difference, etc.

Example: Let $A = \{1, 2, 3\}$, $B = \{u, v\}$, and $R_1 = \{(1, u), (2, u), (2, v), (3, u)\}$, $R_2 = \{(1, v), (3, u), (3, v)\}$

Example: Let $A = \{1, 2, 3\}$, $B = \{u, v\}$, and $R_1 = \{(1, u), (2, u), (2, v), (3, u)\}$, $R_2 = \{(1, v), (3, u), (3, v)\}$

What is $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, $R_2 - R_1$?

Example: Let $A = \{1, 2, 3\}$, $B = \{u, v\}$, and $R_1 = \{(1, u), (2, u), (2, v), (3, u)\}$, $R_2 = \{(1, v), (3, u), (3, v)\}$

What is $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, $R_2 - R_1$?

We may also combine relations by matrix operations.

■ **Definition**: Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there is a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

■ **Definition**: Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there is a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Example: Let $A = \{1, 2, 3\}$, $B = \{0, 1, 2\}$, and $C = \{a, b\}$

■ **Definition**: Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there is a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Example: Let $A = \{1, 2, 3\}$, $B = \{0, 1, 2\}$, and $C = \{a, b\}$

$$R = \{(1,0), (1,2), (3,1), (3,2)\}$$
$$S = \{(0,b), (1,a), (2,b)\}$$

■ **Definition**: Let R be a relation from a set A to a set B and S be a relation from B to C. The composite of R and S is the relation consisting of the ordered pairs (a, c) where $a \in A$ and $c \in C$ and for which there is a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Example: Let
$$A = \{1, 2, 3\}$$
, $B = \{0, 1, 2\}$, and $C = \{a, b\}$

$$R = \{(1,0), (1,2), (3,1), (3,2)\}$$

$$S = \{(0,b), (1,a), (2,b)\}$$

$$S \circ R = \{(1,b), (3,a), (3,b)\}$$

■ **Example**: Let $A = \{1, 2\}$, $B = \{1, 2, 3\}$, and $C = \{a, b\}$ $R = \{(1, 2), (1, 3), (2, 1)\}$ is a relation from A to B $S = \{(1, a), (3, b), (3, a)\}$ is a relation from B to C $S \circ R = \{(1, b), (1, a), (2, a)\}$

$$S \circ R = \{(1, b), (1, a), (2, a)\}$$

$$M_{R} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$S \circ R = \{(1, b), (1, a), (2, a)\}$$

$$M_{R} = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & M_{S} & = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

$$S \circ R = \{(1, b), (1, a), (2, a)\}$$

$$M_R = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & M_S & = & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$M_R \odot M_S = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

■ **Definition** Let R be a relation on A. The *powers* R^n , for n = 1, 2, 3, ..., is defined inductively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

■ **Definition** Let R be a relation on A. The *powers* R^n , for n = 1, 2, 3, ..., is defined inductively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

■ **Definition** Let R be a relation on A. The *powers* R^n , for n = 1, 2, 3, ..., is defined inductively by

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

$$R^1 = R$$

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

$$R^1 = R$$

$$R^2 = R \circ R = \{(1,3), (1,4), (2,3), (3,3)\}$$

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

$$R^1 = R$$

$$R^2 = R \circ R = \{(1,3), (1,4), (2,3), (3,3)\}$$

$$R^3 = R^2 \circ R = \{(1,3), (2,3), (3,3)\}$$

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

$$R^1 = R$$

$$R^2 = R \circ R = \{(1,3), (1,4), (2,3), (3,3)\}$$

$$R^3 = R^2 \circ R = \{(1,3), (2,3), (3,3)\}$$

$$R^4 = R^3 \circ R = \{(1,3), (2,3), (3,3)\}$$

$$R^1 = R$$
 and $R^{n+1} = R^n \circ R$

Example: Let
$$A = \{1, 2, 3, 4\}$$
, and $R = \{(1, 2), (2, 3), (2, 4), (3, 3)\}$

$$R^1 = R$$

$$R^2 = R \circ R = \{(1,3), (1,4), (2,3), (3,3)\}$$

$$R^3 = R^2 \circ R = \{(1,3), (2,3), (3,3)\}$$

$$R^4 = R^3 \circ R = \{(1,3),(2,3),(3,3)\}$$

$$R^{k} = ? \text{ for } k > 3$$

Theorem The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

■ **Theorem** The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof.

■ **Theorem** The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof.

"if" part: In particular, $R^2 \subseteq R$.

Theorem The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof.

```
"if" part: In particular, R^2 \subseteq R.
```

```
If (a, b) \in R and (b, c) \in R, then by the definition of composition, we have (a, c) \in R^2 \subseteq R.
```


Theorem The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof.

```
"if" part: In particular, R^2 \subseteq R.
```

If $(a, b) \in R$ and $(b, c) \in R$, then by the definition of composition, we have $(a, c) \in R^2 \subseteq R$.

"only if" part: by induction.

Theorem The number of reflexive relations on a set A with |A| = n is $2^{n(n-1)}$.

■ **Theorem** The number of reflexive relations on a set A with |A| = n is $2^{n(n-1)}$.

Proof. A reflexive relation R on A must contain all pairs (a, a) for every $a \in A$.

■ **Theorem** The number of reflexive relations on a set A with |A| = n is $2^{n(n-1)}$.

Proof. A reflexive relation R on A must contain all pairs (a, a) for every $a \in A$.

All other pairs in R are of the form (a, b) with $a \neq b$ s.t. $a, b \in A$.

■ **Theorem** The number of reflexive relations on a set A with |A| = n is $2^{n(n-1)}$.

Proof. A reflexive relation R on A must contain all pairs (a, a) for every $a \in A$.

All other pairs in R are of the form (a, b) with $a \neq b$ s.t. $a, b \in A$.

How many of these pairs are there?

■ **Theorem** The number of reflexive relations on a set A with |A| = n is $2^{n(n-1)}$.

Proof. A reflexive relation R on A must contain all pairs (a, a) for every $a \in A$.

All other pairs in R are of the form (a, b) with $a \neq b$ s.t. $a, b \in A$.

How many of these pairs are there?

How many subsets on n(n-1) elements are there?

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Symmetric Relation: A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Symmetric Relation: A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if $(b, a) \in R$ and $(a, b) \in R$ implies a = b for all $a, b \in A$.

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Symmetric Relation: A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if $(b, a) \in R$ and $(a, b) \in R$ implies a = b for all $a, b \in A$.

Transitive Relation: A relation R on a set A is called *reflexive* if $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$.

■ **Definition** An *n*-ary relation R on sets A_1, \ldots, A_n , written as $R: A_1, \ldots, A_n$, is a subset $R \subseteq A_1 \times \cdots \times A_n$.

■ **Definition** An *n*-ary relation R on sets A_1, \ldots, A_n , written as $R: A_1, \ldots, A_n$, is a subset $R \subseteq A_1 \times \cdots \times A_n$.

— The sets A_i 's are called the *domains* of R.

- **Definition** An *n*-ary relation R on sets A_1, \ldots, A_n , written as $R: A_1, \ldots, A_n$, is a subset $R \subseteq A_1 \times \cdots \times A_n$.
 - The sets A_i 's are called the *domains* of R.
 - The *degree* of R is n.

- **Definition** An *n*-ary relation R on sets A_1, \ldots, A_n , written as $R: A_1, \ldots, A_n$, is a subset $R \subseteq A_1 \times \cdots \times A_n$.
 - The sets A_i 's are called the *domains* of R.
 - The *degree* of R is n.
 - R is *functional* in domain A_i if it contains at most one n-tuple (\cdots, a_i, \cdots) for any value a_i within domain A_i .

 \blacksquare A *relational database* is essentially an *n*-ary relation R.

 \blacksquare A *relational database* is essentially an *n*-ary relation R.

■ A domain A_i is a *primary key* for the database if the relation R is functional in A_i .

- \blacksquare A *relational database* is essentially an *n*-ary relation R.
- A domain A_i is a *primary key* for the database if the relation R is functional in A_i .
- A *composite key* for the database is a set of domains $\{A_i, A_j, \dots\}$ such that R contains at most 1 n-tuple $(\dots, a_i, \dots, a_j, \dots)$ for each composite value $(a_i, a_j, \dots) \in A_i \times A_j \times \dots$

Selection Operators

Let A be any n-ary domain $A = A_1 \times \cdots \times A_n$, and let $C: A \to \{T, F\}$ be any *condition* (predicate) on elements (n-tuples) of A.

Selection Operators

- Let A be any n-ary domain $A = A_1 \times \cdots \times A_n$, and let $C: A \to \{T, F\}$ be any *condition* (predicate) on elements (n-tuples) of A.
- The selection operator s_C is the operator that maps any (n-ary) relation R on A to the n-ary relation of all n-tuples from R that satisfy C.

Selection Operators

- Let A be any n-ary domain $A = A_1 \times \cdots \times A_n$, and let $C: A \to \{T, F\}$ be any *condition* (predicate) on elements (n-tuples) of A.
- The selection operator s_C is the operator that maps any (n-ary) relation R on A to the n-ary relation of all n-tuples from R that satisfy C.

$$- \forall R \subseteq A,$$
 $s_C(R) = R \cap \{a \in A \mid s_C(a) = T\}$ $= \{a \in R \mid s_C(a) = T\}.$

Selection Operator Example

Suppose that we have a domain

 $A = StudentName \times Standing \times SocSecNos$

Selection Operator Example

Suppose that we have a domain

```
A = StudentName \times Standing \times SocSecNos
```

Suppose that we have a domain

```
UpperLevel(name, standing, ssn)
:\equiv [(standing = junior) \lor (standing = senior)]
```


Selection Operator Example

Suppose that we have a domain

```
A = StudentName \times Standing \times SocSecNos
```

Suppose that we have a domain

```
UpperLevel(name, standing, ssn)
:\equiv [(standing = junior) \times (standing = senior)]
```

■ Then, *s_{UpperLevel}* is the selection operator that takes any relation *R* on *A* (database of students) and produces a relation consisting of just the upper-level classes (juniors and seniors).

Projection Operators

Let $A = A_1 \times \cdots \times A_n$ be any *n*-ary domain, and let $\{i_k\} = (i_1, \dots, i_m)$ be a sequence of indices all falling in the range 1 to n.

i.e., where $1 \le i_k \le n$ for all $1 \le k \le m$.

Projection Operators

Let $A = A_1 \times \cdots \times A_n$ be any *n*-ary domain, and let $\{i_k\} = (i_1, \dots, i_m)$ be a sequence of indices all falling in the range 1 to n.

i.e., where $1 \le i_k \le n$ for all $1 \le k \le m$.

■ Then the *projection operator* on *n*-tuples

$$P_{\{i_k\}}:A\to A_{i_1}\times\cdots\times A_{i_m}$$

is defined by

$$P_{\{i_k\}}(a_1,\cdots,a_n)=(a_{i_1},\cdots,a_{i_m})$$

Suppose that we have a tenary domain

$$Cars = Model \times Year \times Color (n = 3)$$

Suppose that we have a tenary domain

$$Cars = Model \times Year \times Color (n = 3)$$

• Consider the index sequence $\{i_k\} = \{1,3\}$ (m=2)

Suppose that we have a tenary domain

$$Cars = Model \times Year \times Color (n = 3)$$

- Consider the index sequence $\{i_k\} = \{1,3\}$ (m=2)
- Then the projection $P_{\{i_k\}}$ simply maps each tuple $(a_1, a_2, a_3) = (model, year, color)$ to its image: $(a_{i_1}, a_{i_2}) = (a_1, a_3) = (model, color)$

Suppose that we have a tenary domain

$$Cars = Model \times Year \times Color (n = 3)$$

- Consider the index sequence $\{i_k\} = \{1,3\}$ (m=2)
- Then the projection $P_{\{i_k\}}$ simply maps each tuple $(a_1, a_2, a_3) = (model, year, color)$ to its image: $(a_{i_1}, a_{i_2}) = (a_1, a_3) = (model, color)$
- This operator can be usefully applied to a whole relation $R \subseteq Cars$ (database of cars) to obtain a list of model/color combinations available.

Join Operator

Puts two relations together to form a sort of combined relation.

Join Operator

Puts two relations together to form a sort of combined relation.

If the tuple (A, B) appears in R_1 , and the tuple (B, C) appears in R_2 , then the tuple (A, B, C) appears in the join $J(R_1, R_2)$.

Join Operator

Puts two relations together to form a sort of combined relation.

If the tuple (A, B) appears in R_1 , and the tuple (B, C) appears in R_2 , then the tuple (A, B, C) appears in the *join* $J(R_1, R_2)$.

• A, B, C can also be sequences of elements rather that single elements.

Join Example

• Suppose that R_1 is a teaching assignment table, relating *Professors* to *Courses*.

Join Example

• Suppose that R_1 is a teaching assignment table, relating *Professors* to *Courses*.

• Suppose that R_2 is a room assignment table relating Courses to Rooms and Times.

Join Example

• Suppose that R_1 is a teaching assignment table, relating Professors to Courses.

• Suppose that R_2 is a room assignment table relating Courses to Rooms and Times.

Then $J(R_1, R_2)$ is like your class schedule, listing (professor, course, room, time).

Next Lecture

■ relation II ...

