- DFS&BFS, Cycle, DAG, SCC, and Biconnectivity

hengxin0912@gmail.com

May 19, 2016

1 / 18

- Overview
- 2 DFS and BFS
- Cycle
- 4 DAG

### Contents of Tutorials

- 1. Graph <del>Traversal</del> Decomposition
- 2. MST (Greedy Algorithm) & Path
- 3. DP: Dynamic Programming

Graph decomposition vs. Graph traversal



3 / 18

- Overview
- ② DFS and BFS
- Cycle
- 4 DAG

# Classifying edges

### Definition (Classifying edges)

### Given a dfs/bfs traversal:

- ► Tree edge
- ► Back edge
- ► Forward edge
- ► Cross edge

#### Remarks:

- ► Applicable to both DFS and BFS
- ► With respect to DFS/BFS trees

## Classifying edges [Problem: 3.4.1]



(a) DFS on directed graph.



(c) BFS on directed graph.



(b) DFS on undirected graph.



(d) BFS on undirected graph.

# Classifying edges

DFS tree and BFS tree coincide [Problem: 3.4.30]

$$G = (V, E), v \in V$$
. DFS tree  $T = BFS$  tree  $T'$ .

- G is an undirected graph  $\Rightarrow G = T$ .
- ▶ G is a digraph  $\Rightarrow$ ? G = T.

#### Solution.

- ▶ T: tree + back; T': tree + cross
- ightharpoonup T: tree + back + forward + cross; T': tree + back + cross

## Distance constraints for BFS

Distance constraints for BFS [Problem: 3.4.4]

BFS on digraph:

BFS on undirected graph:

TE: 
$$d[v] = d[u] + 1$$

TE: 
$$d[v] = d[u] + 1$$

$$\mathsf{BE} \colon \ 0 \leq d[v] \leq d[u]$$

$$\mathsf{CE} \colon \, d[v] = d[u] \vee d[v] = d[u] + 1$$

 $\mathsf{CE} \colon d[v] \le d[u] + 1$ 

Solution to "CE in BFS on undirected graph".

- b d[v] = d[u], d[v] = d[u] + 1
- b d[v] < d[u], d[v] > d[u] + 1

#### Remark.

- ▶ BFS tree defines a *shortest-path* from its root to every other node.
- ► Layers in BFS on *undirected* graph ⇒ bipartite testing [Problem: 3.4.26]

- Overview
- 2 DFS and BFS
- Cycle
- 4 DAG

# Cycle detection

### Table: Cycle detection [Problem: 3.4.21]

|     | Digraph                        | Undirected graph        |
|-----|--------------------------------|-------------------------|
| DFS | back edge ←⇒ cycle             | back edge ⇔ cycle       |
| BFS | $back\;edge \Rightarrow cycle$ | cross edge $\iff$ cycle |
|     | cycle ⇒ back edge              |                         |

### Remark.

- cycle in undirected graphs
- cycle in digraphs
  - DAG
  - ► SCC

8 / 18

## Orientation of undirected graph

Orientation of undirected graph [Problem: 3.4.13]

Undirected (connected) graph G, edge oriented s.t.  $\forall v, \mathsf{in}[v] \geq 1$ .

### Solution.

orientation  $\iff \exists$  cycle; DFS



# Bipartite graph

Bipartite graph [Problem: 3.4.26; 3.4.32]

To test bipartiteness of an undirected graph.

### Solution.

## BFS + Coloring:

- ightharpoonup pick any s, c[s] = 0
- $u \leftarrow \mathsf{Dequeue}(Q)$
- $ightharpoonup \forall (u,v)$ :
  - tree edge
  - cross edge: check

### Proof.

Check cross edge (u, v):

- ▶ (∃) d[v] = d[u] ⇒ the same layer ⇒ odd cycle ([Problem: 3.4.17]; EX) ⇒ non-bipartite
- ▶  $(\forall)$   $d[v] = d[u] + 1 \Rightarrow$  different layers  $\Rightarrow$  different colors



- Overview
- 2 DFS and BFS
- Cycle
- DAG

## **DAG**

no back edge  $\iff$  DAG  $\iff$   $\exists$  topo. ordering

### Topo. sorting

DFS on digraph,  $u \rightarrow v$ :

- ▶ back edge: f(u) < f(v)
- ▶ others: f(u) > f(v)

$$u \to v \Rightarrow u \prec v$$
  
 $u \to v \Rightarrow f(u) > f(v)$ 

Topo. sorting: sort vertices in *decreasing* order of their *finish* times.



## Digraph as DAG

Digraph as DAG [Problem: 3.4.6]

#### **Theorem**

Every digraph is a dag of its SCCs.

#### Remark.

- SCC algorithm
- ► SCC: reachability/connectivity equivalence class
- two tiered structure of digraphs

# Kahn's toposort algorithm

Kahn's toposort algorithm (1962) [Problem: 3.4.19]

- queue for source vertices (in[v] = 0)
- ightharpoonup repeat: dequeue v, delete it, output it

### Solution.

#### Lemma

Every DAG has at least one source and at least one sink vertex.

#### Remark

DFS on DAG:

- ▶  $arg max_v f(v) \Rightarrow source (used in SCC algorithm)$
- $ightharpoonup \arg\min_{v} f(v) \Rightarrow \sinh$

# Hamiltonian path in DAG

### Hamilton path in DAG [Problem: 3.4.16]

- ightharpoonup DAG G
- path visiting each vertex once

### Solution.

- general digraph: NP-hard
- ▶ dag: ∃ HP ⇔ ∃! topo. ordering
  - $\blacktriangleright \Leftarrow$ : By contridiction.  $\exists u \sim v : u \nrightarrow v$ ; swap

### Algorithm:

- toposort, check edges
- ▶ the Kahn toposort algorithm



## Semi-connected DAG

### Definition

Semi-connected digraph  $\forall u, v : u \leadsto v \lor v \leadsto u$ 

Semi-connected DAG [Problem: 3.4.21 (c) + (d)]

To test whether a DAG is semi-connected.

### Solution.

dag:  $\exists$  HP  $\iff$   $\exists$ ! topo. ordering  $\iff$  semi-connected

### Proof.

- $\blacktriangleright \Leftarrow$ : by contradiction; total order  $(\forall u, v : u \prec v \lor v \prec u)$
- **▶** ⇒: ∃*HP*



### Minimum cost reachable

Minimun cost reachable [Problem: 3.4.22]

Compute 
$$cost[u] = min\{cost[v] \mid u \leadsto v\}.$$

### Solution.

- dag: reverse topo. ordering
  - ▶ backtracking:  $cost[u] = min_{u \to v} \{cost[v]\}$
- ► digraph: dag of scc

## Line up

### Line up [Problem: 3.4.29]

- ▶ i hates j:  $i \prec j$
- ▶ i hates j: #i < #j

### Solution.

```
i hates j: i \rightarrow j;
```

- ► DAG?
- ▶ longest path; critical path



# One-to-all reachability

One-to-all reachability [Problem: 3.4.28]

- ▶ given  $v:v \leadsto^? \forall u$
- $ightharpoonup \exists ?v: v \leadsto \forall u$

### Solution.

- ▶ DFS/BFS
- ▶ SCC;  $\exists$ ! source vertex  $v \iff v \leadsto \forall u$

### Proof.

- ightharpoonup  $\Rightarrow$ : By contradiction.  $\exists u: v \nrightarrow u \land \operatorname{in}[u] > 0 \Rightarrow \exists u' \to u \land v \nrightarrow u'$ . Cycle.
- $\blacktriangleright \Leftarrow : (1) \text{ source}; (2) \exists !$

