УДК 517.54

РЕФЕРИРОВАНИЕ ХУДОЖЕСТВЕННОЙ ЛИТЕРАТУРЫ ПОСРЕДСТВОМ БОЛЬШИХ ЯЗЫКОВЫХ МОДЕЛЕЙ

 \odot 2025 г. — Д. А. Григорьев 1,* , Д. И. Чернышев 1,**

Представлено кем-то Поступило 16.08.2025 После доработки 20.08.2025 Принято к публикации 31.08.2025

Работа исследует методы сжатия художественных текстов с помощью языковых моделей и предлагает улучшенные подходы для точного реферирования в условиях ограниченного контекста.

Ключевые слова и фразы: LLM, реферирование, литература, книги, краткий пересказ

ВВЕДЕНИЕ

Реферирование художественной литературы Автоматическое реферирование текста — одна из ключевых задач в области обработки естественного языка. Суть этой задачи заключается в создании информативной аннотации исходного текста с сохранением основного смысла содержания. В последние годы, с появлением больших языковых моделей, резко возрос интерес к автоматизации реферирования в самых разных жанрах текстов, включая художественные произведения. В отличие от научных, новостных или технических текстов, художественные произведения характеризуются высокой степенью стилистической и семантической сложности. Нелинейность повествования, образность, метафоричность и стилистические приёмы делают задачу написания краткого содержания особенно трудоёмкой. Ограниченное контекстное окно современных моделей дополнительно осложняет работу с длинными произведениями.

Теоретически автоматическое реферирование может выполняться двумя основными способами: извлекающим (выбор ключевых фрагментов текста) и абстрактивным (генерация нового текста на основе содержания оригинала). Для художественной литературы более уместен второй подход, поскольку он позволяет передать смысл и стиль произведения, не нарушая его целостности.

НАБОР ДАННЫХ

Рис. 1. Гистограмма с количеством слов в текстах

Рис. 2. Гистограмма с количеством слов в аннотациях

На момент начала исследования не существовало открытых и репрезентативных корпусов, предназначенных специально для задачи реферирования художественных текстов на русском языке. С целью проведения экспериментов и оценки различных подходов к генерации аннотаций был создан собственный корпус, состоящий из художественных текстов и соответствующих кратких пересказов. В качестве источника для аннотаций был выбран ресурс «Народный Брифли» [1] — платформа, где пользователи публикуют краткие пересказы литературных произведений. Несмотря на вариативность качества и

 $^{^{1}}$ Московский государственный университет им. М. В. Ломоносова, Москва, Россия

^{*}E-mail: dagrig14@yandex.ru

^{**} E-mail: chdanorbis@yandex.ru

стиля пользовательских аннотаций и наличие нерелевантной информации, такой как учебные вопросы или редакторские замечания, после тщательной предварительной обработки удалось получить достаточно надёжный и чистый набор данных. Художественные тексты были отобраны из электронной библиотеки LibRuSec — одного из крупнейших русскоязычных ресурсов художественной литературы. Отбор произведений осуществлялся на основании наличия аннотаций на выбранном ресурсе [1]. Каждый текст проходил автоматическую предварительную обработку: удалялась метаинформация (например, заголовки, описания глав и технические вставки), после чего текст форматировался в единый стандартизированный вид, подходящий для дальнейшего использования в моделях. Важно отметить, что при создании корпуса использовались только тексты, находящиеся в общественном достоянии или распространяемые свободно с разрешения правообладателей, что обеспечивает соблюдение требований авторского права.

Получившийся корпус включал в себя:

- более 600 пользовательских пересказов с ресурса «Народный Брифли»;
- исходные произведения из электронной библиотеки LibRuSec;

Тексты аннотаций проходили автоматическую очистку от HTML-тегов, комментариев и служебных пометок с помощью LLM Meta-Llama 3-70B-Instruct. Затем производился поиск по датасету LibRuSec и собиралась коллекция, состоящая из пар "текст книги - аннотация". На рисунке 1 показано распределение текстов в зависимотсти от количества слов в них. На рисунке 2 аналогичная информация об аннотациях.

МЕТОДОЛОГИЯ

Базовые и модифицированные стратегии

Wерархический метод Пусть входной текст D имеет длину $L\gg W$, где W — размер контекстного окна LLM, а C< W — длина одного чанка. Обозначим уровень иерархии $l=0,1,\ldots,L$, и гиперпараметр контроля длины на уровне l как G_l .

1. Разбиваем D на $n_0 = \lceil L/C \rceil$ чанков

$$C_i, \quad i = 1, \dots, n_0.$$

2. На уровне l=0 для каждого чанка генерируем локальную аннотацию

$$S_i^{(0)} = \text{Summarize}(C_i), \quad i = 1, \dots, n_0.$$

- 3. Для $l=1,2,\ldots$ до тех пор, пока не останется единственной аннотации:
 - Задаём порог длины

$$T_l = W - G_l$$
.

- Инициализируем $i \leftarrow 1, j \leftarrow 1$.
- Пока $i \leqslant n_{l-1}$:
 - Найдём наибольшее $m \geqslant 1$, такое что

$$\sum_{t=i}^{i+m-1} |S_t^{(l-1)}| \leq T_l.$$

– Объединяем эти аннотации и генерируем

$$S_j^{(l)} \, = \, \mathrm{Summarize} \big(S_i^{(l-1)} \oplus \cdots \oplus S_{i+m-1}^{(l-1)} \big).$$

- Обновляем $i \leftarrow i + m, \ j \leftarrow j + 1.$
- Получаем $n_l = j-1$ аннотаций уровня l.
- 4. Итоговая аннотация единственный элемент $S^{(L)}$.

«Чертёжный» метод (Text-Blueprint) Метод строит промежуточный план в виде вопросов и ответов перед генерацией текста. Для всего текста T или каждого чанка модель последовательно:

- 1. Генерирует список вопросов $\{q_i\}$, охватывающих ключевые элементы сюжета.
- 2. Для каждого q_i формирует краткий ответ a_i .
- 3. Собирает последовательность $(q_1, a_1), \ldots, (q_m, a_m)$ как «чертёж».
- 4. По этому «чертежу» генерирует итоговое резюме:

$$S = LLM((q_1, a_1) \oplus \cdots \oplus (q_m, a_m)).$$

2025

Иерархический метод с фильтрацией узлов Для исключения «воды» и дублирующих фрагментов на каждом уровне иерархии мы теперь выполняем глобальную проверку семантической близости между всеми промежуточными аннотациями. Алгоритм следующий:

- 1. Пусть на текущем уровне имеются аннотации $\{S_i\}_{i=1}^n$.
- 2. Вычисляем эмбеддинги $\mathbf{e}_i = \operatorname{Encoder}(S_i)$ и нормируем их.
- 3. Составляем матрицу косинусных сходств

$$M_{ij} = \frac{\mathbf{e}_i \cdot \mathbf{e}_j}{\|\mathbf{e}_i\| \|\mathbf{e}_i\|}, \quad i, j = 1, \dots, n.$$

4. Для каждой аннотации S_j находим

$$m_j = \max_{i < j} M_{ji},$$

то есть максимальную степень схожести с любой предыдущей в списке.

- 5. Если $m_j < \theta$ (где $\theta = 0.85$), то сохраняем S_j , иначе отбрасываем.
- 6. Гарантируем, что S_1 всегда остаётся, чтобы не получилось пустого уровня.

Эмбеддинги получаются с помощью SentenceTransformer (модель USER-bge-m3) и вычисляются на GPU, что обеспечивает высокую скорость обработки.

«Чертёжный» метод c кластеризацией вопросов Для снижения числа запросов к модели и повышения структурности:

- 1. Для каждого чанка C_i сгенерировать вопросы $Q_i = \{q_{i1}, \dots, q_{im}\}.$
- 2. Вычислить эмбеддинги $E_i = \{\mathbf{e}_{i1}, \dots, \mathbf{e}_{im}\}.$
- 3. Объединить все $\{\mathbf{e}_{ij}\}$ и применить алгоритм K-means на r кластеров.
- 4. Из каждого кластера c случайно выбрать 10–30 вопросов.
- 5. Для кластера c сформировать обобщённый вопрос Q_c^* :

$$Q_c^* = \text{LLM}(\text{concat}(q \in c)).$$

6. Использовать $\{Q_c^*\}$ как чертёж для генерации итоговой аннотации.

Такой подход позволяет уменьшить число обращений к LLM, что позволяет ускорить скорость генераций, как будет показано в таблице 1.

ОЦЕНИВАНИЕ МЕТОДОВ

Для объективного сравнения описанных подходов и моделей в задаче реферирования художественных текстов использовались четыре группы метрик.

 ${f ROUGE-L}$ — основана на длине наибольшей общей подпоследовательности (LCS) между сгенерированной аннотацией S и эталонной R:

$$\begin{aligned} \text{Precision} &= \frac{\text{LCS}(S,R)}{|S|}, \quad \text{Recall} &= \frac{\text{LCS}(S,R)}{|R|}, \\ \text{ROUGE-L} &= \frac{2 \text{ Precision} \cdot \text{ Recall}}{\text{Precision} + \text{ Recall}}. \end{aligned}$$

BERTScore — семантическое качество на уровне токенов. Для каждой пары токенов предсказания и эталона вычисляется косинусное сходство их эмбеддингов в модели USER-bge-m3. Затем:

$$P = \frac{1}{|S|} \sum_{t \in S} \max_{u \in R} \operatorname{maxsim}(e_t, e_u), \quad R = \frac{1}{|R|} \sum_{u \in R} \max_{t \in S} \operatorname{maxsim}(e_u, e_t),$$

$$\operatorname{BERTScore} = \frac{2PR}{P+R}.$$

Полнота покрытия ключевых вопросов (Coverage) — доля заранее сгенерированных по эталонному тексту вопросов, на которые модель «отвечает» в аннотации:

Coverage =
$$\frac{\#\{q_i \colon P(\text{``qa''} \mid q_i, S) > 0.75\}}{N}$$
,

где N — общее число вопросов, а $P(\text{"да"} \mid q_i, S)$ — вероятность наличия ответа на вопрос q_i в тексте S, оцененная LLM.

Совпадение ответов (AnswerSimilarity) — среднее семантическое сходство между сгенерированными ответами a_i^{pred} и эталонными a_i^{ref} на те же ключевые вопросы:

AnswerSimilarity =
$$\frac{1}{N} \sum_{i=1}^{N} \sin(a_i^{\text{pred}}, a_i^{\text{ref}}),$$

где sim — косинусное сходство эмбеддингов, полученных через USER-bge-m3.

Использование нескольких метрик, учитывающих как поверхностное совпадение текста (ROUGE-L), так и глубокое семантическое сходство (BERTScore, AnswerSimilarity), а также степень охвата заранее заданных вопросов (Coverage), обеспечивает всестороннюю и устойчивую оценку качества аннотаций."

РЕЗУЛЬТАТЫ

В таблице 1 приведены сравнительные результаты работы описанных выше методов генерации кратких пересказов художественных текстов. Для каждой из исллдованных моделей измерялись метрики качеств и время выполнеия в зависимости от метода: базовые чертежный и иерархический методы, а также их усовершенствованные версии чертежный метод с кластеризацией вопросов и иерархический метод с фильтрацией узлов.

Таблица 1. Результаты по методам и моделям

Модель	Метрики	Чертежный	Чертежный с кластеризацией	Иерархический	Иерархический с фильтрацией
RuadaptQwen2.5-7B-Lite-Beta	bertscore rouge-l time	56.1 ± 4.9 10.1 ± 3.9 126.84	$54.0 \pm 4.0 \\ 7.7 \pm 2.8 \\ 76.66$	55.4 ± 2.9 8.6 ± 2.5 68.86	55.8 ± 2.9 8.7 ± 2.5 53.59
RuadaptQwen3-32B-Instruct-v2	bertscore rouge-l time	58.9 ± 3.6 10.6 ± 3.2 376.28	$55.3 \pm 3.3 7.8 \pm 2.1 271.42$	57.3 ± 2.9 11.0 ± 2.4 211.72	57.7 ± 3.3 10.7 ± 2.4 159.11
yagpt5lite	bertscore rouge-l time	61.1 ± 3.8 15.8 ± 5.1 113.34	$61.5 \pm 3.3 14.3 \pm 4.4 42.15$	$62.5 \pm 3.5 16.9 \pm 5.1 31.02$	$62.1 \pm 3.2 16.4 \pm 4.7 27.39$
Qwen3-235B-A22B	bertscore rouge-l time	$61.6 \pm 3.3 \\ 15.8 \pm 4.5 \\ 200.30$	59.3 ± 3.4 12.2 ± 3.6 149.11	61.2 ± 3.0 14.9 ± 4.0 103.49	$60.9 \pm 2.7 \\ 14.8 \pm 3.7 \\ 83.06$
DeepSeek V3	bertscore rouge-l time	58.0 ± 4.0 12.6 ± 4.6 315.67	58.4 ± 3.6 11.2 ± 3.9 132.60	$60.0 \pm 3.1 \\ 13.7 \pm 3.9 \\ 196.77$	$60.0 \pm 2.9 \\ 13.5 \pm 3.7 \\ 147.21$
tpro	bertscore rouge-l time	59.0 ± 4.9 14.7 ± 4.9 259.35	58.2 ± 3.7 11.8 ± 3.9 161.33	59.4 ± 3.0 13.8 ± 3.1 276.45	59.5 ± 3.3 13.5 ± 3.0 230.21

Как видно из таблицы 1, модифицированные варианты методов действительно существенно ускоряют обработку: среднее время генерации сокращается в 1.5-3 раза в зависимости от модели (например, DeepSeek V3: $315.67 \implies 132.60$) Однако выигрыш по скорости сопровождается умеренным снижением качества: падение BERTScore и ROUGE-L чаще всего укладывается в 1-2 пункта и находится в пределах стандартных отклонений.

СПИСОК ЛИТЕРАТУРЫ

[1] Народный Брифли. Электронная библиотека кратких пересказов литературных произведений. https://wiki.briefly.ru/ (дата обращения: 16.07.2025).

REFERENCES

[1] Народный Брифли. Электронная библиотека кратких пересказов литературных произведений. https://wiki.briefly.ru/ (дата обращения: 16.07.2025).