Roll	Numb	CTT		

Thapar Institute of Engineering and Technology, Patiala

School of Mathematics

Makeup Mid Semester Test

B.E. (Sem: IV, VI,VIII)	Course Code: UMA035		
	Course Name: Optimization Techniques		
Time: 2 Hours, M. Marks: 25	Name of Coordinators: NK, RJD		

Note:

- (1) Attempt all the questions.
- (2) Attempt all parts of a question at one place.
- (a) A firm manufactures three products A, B and C. Time to manufacture product A is twice that for B and thrice that for C and if the entire labour is engaged in making product A, 1600 units of this product can be produced. These products are to be produced in the ratio 3:4:5. There is demand for at least 300, 250 and 200 units of products A, B and C and the profit earned per unit is 90, 40 and 30 respectively. Formulate the model as linear programming problem (LPP).
 - (b) Find the optimal solution of following LPP by algebraic method:

$$Max Z = 3x_1 + 4x_2$$

Subject to $x_1 + x_2 \le 450$; $2x_1 + x_2 \le 600$; $x_1, x_2 \ge 0$.

[3 marks]

(a) Solve the following LPP using two phase method.

$$Max Z = 5x_1 - 4x_2 + 3x_3$$

Subject to
$$2x_1 + x_2 - 6x_3 = 20$$
; $6x_1 + 5x_2 + 10x_3 \le 76$; $8x_1 - 3x_2 + 6x_3 \le 50$; $x_1, x_2, x_3 \ge 0$.

[3 marks]

(b) Solve the following LPP using graphical method and also write its standard form.

$$Max Z = -x_1 + 2x_2$$

Subject to
$$x_1 - x_2 \le -1$$
; $-0.5x_1 + x_2 \le 2$; $x_1, x_2 \ge 0$.

[2+1 marks]

(c) Check graphically whether the set $\{(x,y) \in \Re^2 : xy \leq 1\}$ is convex or not.

[2 marks]

(a) Consider the following LPP as primal problem:

$$Max Z = 5x_1 + 8x_2 + 10x_3$$

Subject to
$$x_1 + x_2 + 2x_3 \le 120$$
; $3x_1 - 2x_2 - x_3 \ge 90$; $2x_1 + 4x_2 + 2x_3 = 100$; $x_1, x_2, x_3 \ge 0$.

Write the dual of above LPP. Using complementary slackness theorem, find the optimal solution of dual and it is given that s_1 (slack variable in first constraint), x_1 and x_3 are the basic variables in the primal optimal table. [3 marks]

(b) State and prove Weak duality theorem.

[3 marks]

4. Consider the following LPP:

$$Max Z = 5x_1 + 12x_2 + 4x_3$$

Subject to
$$x_1 + 2x_2 + x_3 \le 5$$
; $2x_1 - x_2 + 3x_3 = 2$; $x_1, x_2, x_3 \ge 0$.

Introducing s_1 (slack variable in the first constraint) and a_2 (artificial variable in second constraint) as starting basic variables respectively, the optimal table of given LPP is as follows:

B.V.	x_1	x_2	x_3	s_1	a_2	Solution
$z_j - c_j$	0	0	3 5	29 5	$M - \frac{2}{5}$	141
x_2	0	1	$-\frac{1}{5}$	2 5	$-\frac{1}{5}$	8 5
x_1	1	0	$\frac{7}{5}$	<u>1</u>	2 5	9 5

(a) Using post optimality analysis, find optimal solution if R.H.S. is changed in the given LPP from $[5,2]^T$ to $[3,9]^T$.

2.5 marks

(b) Discuss the effect on the optimal solution if one more variable with column $[1,1]^T$ and cost 3 is added in the above given LPP. [1.5 marks]

