

Apellidos y Nombres:

Quiz 5 Modelo A - Sección 1.06

Instrucciones: Escriba su respuesta dentro de los recuadros. Si no coloca su nombre y apellidos en el espacio indicado no se calificará su evaluación sin opción a reclamo.

- 1. Considere un circuito RLC en serie donde $L = \frac{1}{2}$ h, $R = 10 \Omega$, C = 0.01 f y V(t) = 150 V. Además, inicialmente, q(0) = 1 y i(0) = 0.
 - a) (2 ptos) Al modelar la carga en el condensador se deduce que, q'' + Nq' + Pq = F(t), donde:

F(t) =N =

- La solución homogénea de la ecuación anterior b) **(2** ptos) $q_H = C_1$ $+C_2$
- c) (2 ptos) Mientras que la solución particular resulta ser: $q_P =$
- d) (2 ptos) Ahora, utilizando las condiciones iniciales se deduce que C_1 =

 $y C_2 =$

- e) (2 ptos) Finalmente, halle la carga en el condensador después de mucho tiempo: $q_{\infty} =$
- 2. Al deducir el sistema de ecuaciones diferenciales que describe el movimiento rectilíneo vertical de las masas m_1 y m_2 mostrados en la figura

se obtiene que

$$Ax_1'' = Bx_1 + Cx_2$$
$$Dx_2'' = Ex_1 + Fx_2$$

donde: (no use fracciones y utilice las variables que se muestran en la figura)

a) (2 ptos)
$$A = \boxed{}$$
, $D = \boxed{}$

b) **(8 ptos)**
$$B = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}, E = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}, F = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$$

Quiz 5 Modelo B - Sección 1.06

Apellidos y Nombres:

<u>Instrucciones:</u> Escriba su respuesta dentro de los recuadros. Si no coloca su nombre y apellidos en el espacio indicado no se calificará su evaluación sin opción a reclamo.

- 1. Considere un circuito RLC en serie donde $L=\frac{1}{4}$ h, R=3 Ω , C=0.04f y V(t)=50 V. Además, inicialmente, q(0)=1 y i(0)=2.
 - a) (2 ptos) Al modelar la carga en el condensador se deduce que, q'' + Nq' + Pq = F(t), donde:

donde: $N = \begin{bmatrix} \\ \\ \\ \end{bmatrix}, P = \begin{bmatrix} \\ \\ \\ \end{bmatrix}, F(t) = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$

- b) (2 ptos) La solución homogénea de la ecuación anterior está dada por $q_H = C_1 \boxed{ + C_2}$
- c) (2 ptos) Mientras que la solución particular resulta ser: $q_P =$
- d) (2 ptos) Ahora, utilizando las condiciones iniciales se deduce que $C_1 =$

 $y C_2 =$

e) (2 ptos) Finalmente, halle la carga en el condensador después de mucho tiempo:

 $q_{\infty} =$

2. Al deducir el sistema de ecuaciones diferenciales que describe el movimiento rectilíneo vertical de las masas m_1 y m_2 mostrados en la figura

se obtiene que

$$Ax_1'' = Bx_1 + Cx_2$$
$$Dx_2'' = Ex_1 + Fx_2$$

donde: (no use fracciones y utilice las variables que se muestran en la figura)

- a) (2 ptos) $A = \boxed{}$, $D = \boxed{}$
- b) (8 ptos) $B = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$, $E = \begin{bmatrix} & & \\ & & & \\ & & & \end{bmatrix}$, $F = \begin{bmatrix} & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$

Quiz 5 Modelo A - Sección 2.02

Apellidos y Nombres:

<u>Instrucciones:</u> Escriba su respuesta dentro de los recuadros. Si no coloca su nombre y apellidos en el espacio indicado no se calificará su evaluación sin opción a reclamo.

- 1. Considere un circuito LC en serie donde L=0.1 h, C=0.1 f y $V(t)=10\sin(\omega t)$ V. Además, considere, q(0)=0 y i(0)=0.
 - a) (2 ptos) Al modelar la carga en el condensador se deduce que, Mq'' + Nq' + Pq = F(t), donde:

donde: $M = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, N = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, P = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, F(t) = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$

- b) (2 ptos) La solución homogénea de la ecuación anterior está dada por $q_H = C_1 \boxed{ + C_2}$
- c) (2 ptos) Mientras que para la solución particular, se plantea: $q_P = A \boxed{ + B}$
- d) (4 ptos) Reemplazando en la ecuación original obtenemos que $A=\frac{100}{P(\omega)}$. Escriba el valor de $P(\omega)=$ y = B
- 2. El sistema de ecuaciones diferenciales que modela las las corrientes i_2 y i_3 del siguiente circuito está dado por

$$A\frac{di_2}{dt} = Bi_2 + Ci_3 + E(t)$$
$$D\frac{di_3}{dt} = Mi_2 + Mi_3 + E(t)$$

a) (10 ptos) Escriba el valor de las constantes (no use fracciones y utilice las variables que se muestran en la figura): $A = \begin{bmatrix} & & \\ &$

Quiz 5 Modelo B - Sección 2.02

Apellidos y Nombres:

<u>Instrucciones:</u> Escriba su respuesta dentro de los recuadros. Si no coloca su nombre y apellidos en el espacio indicado no se calificará su evaluación sin opción a reclamo.

- 1. Considere un circuito LC en serie donde L=0.1 h, C=0.4 f y $V(t)=20\cos(\omega t)$ V. Además, considere, q(0)=0 y i(0)=0.
 - a) (2 ptos) Al modelar la carga en el condensador se deduce que, Mq'' + Nq' + Pq = F(t), donde:

donde: $M = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, N = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, P = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}, F(t) = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$

- b) (2 ptos) La solución homogénea de la ecuación anterior está dada por $q_H = C_1 \boxed{ + C_2}$
- c) (2 ptos) Mientras que para la solución particular, se plantea: $q_P = A \boxed{ + B}$
- d) (4 ptos) Reemplazando en la ecuación original obtenemos que $A=\frac{200}{P(\omega)}$. Escriba el valor de $P(\omega)=$ y = B
- 2. El sistema de ecuaciones diferenciales que modela las las corrientes i_2 y i_3 del siguiente circuito está dado por

$$A\frac{di_2}{dt} = Bi_2 + Bi_3 + E(t)$$
$$C\frac{di_3}{dt} = Mi_2 + Ni_3 + E(t)$$

a) (10 ptos) Escriba el valor de las constantes (no use fracciones y utilice las variables que se muestran en la figura): $A = \begin{bmatrix} & & \\ &$

Quiz 5 Modelo A - Sección 1.01

Apellidos y Nombres:

<u>Instrucciones:</u> Escriba su respuesta dentro de los recuadros. Si no coloca su nombre y apellidos en el espacio indicado no se calificará su evaluación sin opción a reclamo.

- 1. Considere un circuito RLC en serie donde: $R=2\Omega,\,L=1$ H, $C=\frac{1}{5}$ F. Considere: q(0)=2C, i(0)=0.
 - a) (1 **pto**) La ED es: q'' + q' + q' + q' = 0.
 - b) (2 ptos) La carga del condensador tendría un comportamiento amortiguado
 - c) (2 ptos) La carga en función del tiempo para el caso anterior es: $q_h =$
 - d) (1 pto) Se además se conecta una fuente externa $V=3\cos(\sqrt{5}t)$, la forma de la solución particular sería: $q_P=A$ +B
 - e) (4 ptos) Reemplazando en la ED, se tendría que la carga estacionaria (estable) es:
- 2. Considere el sistema de ecuaciones diferenciales que modela las corrientes i_1 e i_3 del siguiente circuito. Sugerencia: Plantea las ecuaciones de las mallas chicas.

$$A\frac{di_1}{dt} = Bi_1 + Ci_3 + E(t)$$
$$D\frac{di_3}{dt} = Mi_1 + Ni_3$$

a) (10 ptos) Escriba el valor de las constantes (no use fracciones y utilice las variables que se muestran en la figura): $A = \begin{bmatrix} & & & \\ & &$

Quiz 5 Modelo B - Sección 1.01

Apellidos y Nombres:

<u>Instrucciones:</u> Escriba su respuesta dentro de los recuadros. Si no coloca su nombre y apellidos en el espacio indicado no se calificará su evaluación sin opción a reclamo.

- 1. Considere un circuito RLC en serie donde: $R=4\Omega,\,L=1\mathrm{H},\,C=\frac{1}{8}\mathrm{F}.$ Considere: $q(0)=2\mathrm{C},\,i(0)=0.$
 - a) (1 pto) La ED es: q'' + q'' + q' + q'' + q'
 - b) (2 ptos) La carga del condensador tendría un comportamiento amortiguado
 - c) (2 ptos) La carga en función del tiempo para el caso anterior es: $q_h =$
 - d) (1 pto) Se además se conecta una fuente externa $V=3\sin(3t)$, la forma de la solución particular sería: $q_P=A$ +B
 - e) **(4 ptos)** Reemplazando en la ED, se tendría que la carga estacionaria (estable) es:
- 2. El sistema de ecuaciones diferenciales que modela las corrientes i_1 e i_3 del siguiente circuito,

Está dado por: (Sugerencia, Plantea las ecuaciones de las mallas pequeñas.)

$$A\frac{di_1}{dt} = Bi_1 + Ci_3 + E(t)$$
$$D\frac{di_3}{dt} = Mi_1 + Ni_3$$

a) (10 ptos) Escriba el valor de las constantes (no use fracciones y utilice las variables que se muestran en la figura): $A = \begin{bmatrix} & & & \\ & &$