Departamento de Matemáticas

Recinto de Río Piedras

Topology Qualifying Exam

August 2018

Do exactly **five** of the following problems. In order to obtain credit you must show all your work. The passing grade at the M.S. level is 2/3 and at the Ph.D. level is 3/4.

Problem 1. A topological space (X, \mathcal{T}_X) is $pseudocompact \iff$ every continuous function $f: (X, \mathcal{T}_X) \to (\mathbb{R}, \mathcal{T}_{\mathcal{E}^1})$ is bounded. Here $\mathcal{T}_{\mathcal{E}^1}$ is the usual topology over \mathbb{R} .

- (i) (8 points) Show that pseudocompactness is a continuous invariant. Explain.
- (ii) (12 points) Show that if (Y, \mathcal{T}_Y) is compact then (Y, \mathcal{T}_Y) is pseudocompact, but that the converse does not hold.

Problem 2. (20 points) (Kuratowski's closure operator) Let X be a set, $\mathcal{P}(X)$ be its power set and $c: \mathcal{P}(X) \to \mathcal{P}(X)$ be a function that satisfies:

- (i) $c(\emptyset) = \emptyset$.
- (ii) $A \subseteq c(A)$, for all $A \in \mathcal{P}(X)$.
- (iii) c(c(A)) = c(A), for all $A \in \mathcal{P}(X)$.
- (iv) $c(A \cup B) = c(A) \cup c(B)$, for all $A, B \in \mathcal{P}(X)$.

Show that the collection $\mathcal{T} = \{X - c(A) \mid A \in \mathcal{P}(X)\}$ is a topology over X and that in this topology $\bar{A} = c(A)$, for all $A \in \mathcal{P}(X)$. Here \bar{A} is the closure of A in (X, \mathcal{T}) .

Problem 3. (20 points) Let A be a subset of the topological space (X, \mathcal{T}_X) . Show that the following are equivalent:

- $\text{(i) } \inf(\overline{A})=\varnothing.$
- (ii) $X \overline{A}$ is dense in X.
- (iii) $X \overline{(X \overline{A})} = \varnothing$.
- (iv) $A \subseteq \overline{(X \overline{A})}$.

Problem 4. (20 points) A subset of a topological space is a G_{δ} -set, if it is the intersection of countably many open sets. On the other hand, a subset of a topological space is an F_{σ} -set, if it is the union of countably many closed sets.

- (i) Let A be an F_{σ} -set of the topological space (X, \mathcal{T}_X) . Show that there is a nested sequence of closed sets $C_1 \subseteq C_2 \subseteq C_3 \subseteq \cdots$ such that $A = \bigcup_{i=1}^{\infty} C_i$.
- (ii) Show that every closed set in a metric space (X, d) is a G_{δ} -set.

Problem 5. (20 points) Let A, B be two non-empty subsets of \mathbb{R} , with the usual topology. Define

$$C = \{x + y : x \in A \text{ and } y \in B\}.$$

- (a) Show that, if A or B is open, then C is open.
- (b) Show that, if A and B are compact, then C is compact.

Problem 6. (20 points) (Intermediate value theorem) Let $f:(X,\mathcal{T}_X)\to(\mathbb{R},\mathcal{T}_{\mathcal{E}^1})$ be a continuous function, where (X,\mathcal{T}_X) is connected. Show that if a,b are two points in X and if r is a real number lying between f(a) and f(b) then there is a $c\in X$ such that f(c)=r.

Problem 7. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces and suppose $X_1 \times X_2$ has the product topology. For each i = 1, 2 let $A_i \subseteq X_i$. Prove that:

- (i) (10 points) $\overline{A_1 \times A_2} = \overline{A_1} \times \overline{A_2}$.
- (ii) (10 points) int $(A_1 \times A_2) = \text{int}(A_1) \times \text{int}(A_2)$. Here int (S) is the interior of the set S.