

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной Техники (BT)

ОТЧЁТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 2

«Проектирование синхронных цифровых автоматов»

по дисциплине

«Теория автоматов»

Выполнил студент группы	Туктаров Т.А.
ИВБО-11-23	
Принял старший преподаватель	Боронников А.С.
	-
Лабораторная работа выполнена	«»2024 г.
«Зачтено»	«»2024 г.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 ЗАДАЧА	4
1.1 Постановка задачи	4
1.2 Решение	4
2 Задача	6
2.1 Постановка задачи:	6
2.2 Решение	6
3 ЗАДАЧА	8
3.1 Постановка задачи	8
3.2 Решение	8
4 ЗАДАЧА	11
4.1 Постановка задачи	11
4.2 Решение	11
ЗАКЛЮЧЕНИЕ	13
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	14

ВВЕДЕНИЕ

Практическая работа посвящена проектированию синхронных цифровых автоматов.

1 задача: Автоматы распознавания языков. Дефинитный язык.

2 задача: Автоматы распознавания языков. Асинхронный язык.

3 задача: Задача на вычисление минимального из чисел.

4 задача: Задача на вычисление свертки числа по заданному модулю.

1.1 Постановка задачи

Спроектировать синхронный автомат, который повторяет на выходе входные значения, но только установившиеся, т.е. измеренные на фронте синхросигнала и совпадающие не менее двух раз подряд. Первое выходное значение совпадает с первым входным.

1.2 Решение

Спроектируем автомат Мили. Его граф переходов будет выглядеть так(Рисунок 1.1):

Рисунок 1.1 – Граф переходов автомата Мили

Автоматная таблица:

кол	код S	A		
КОД		0	1	
00	S_0	S_0	S_1	
01	S_1	S_0	S ₂ /1	
10	S_2	S ₃ /1	S ₂ /1	
11	S_3	S ₀ /0	S ₂ /1	

Обозначения: S – текущее состояние, A -вход.

Спроектированный автомат в Logisim(Рисунок 1.2):

Рисунок 1.2 – Реализованный в среде Logisim автомат Мили

2.1 Постановка задачи:

Спроектировать автомат с двухразрядным входом и одноразрядным выходом, который подсчитывает четность числа стробов, поглощенных стробами на другой линии.

2.2 Решение

Обозначим возможные символы (сочетания значения сигналов) на входах автомата следующим образом (Рисунок 2.1):

$$\frac{in1}{in2} \quad \frac{0}{0} = a \quad \frac{0}{1} = b \quad \frac{1}{0} = c \quad \frac{1}{1} = d$$

Рисунок 2.1 – Дефинитный язык

Получим дефинитный язык со следующими минимальными последовательностями, приводящими к событию, которое должен распознавать автомат:

Рисунок 2.2 – Последовательности, активирующие выход автомата Автомат Мили задается следующей таблицей (Рисунок 2.2):

Nº	Q/A	а	q	b	С	эквивалентности
0	λ	а	λ	b	λ	
1	а	\$	λ	b	ac	
2	b	а	λ	\$	bc	
3	ac	a/1	λ	b/1	\$	3=4
4	bc	a/1	λ	b/1	\$	3=4

Рисунок 2.2 – Таблица состояний автомата Мили

Автоматную таблицу можно преобразовать к виду(Рисунок 2.3):

Nº	а	q	b	С	код
	00	01	10	11	
S_0	S_1	S_0	S_2	S_0	000
S_1	S_1	S_0	S_2	S_3	001
S_2	S_1	S_0	S_2	S_3	010
S_3	$S_5/1$	S_0	$S_6/1$	S_3	011
S_4	S_5	S_4	S_6	S_4	100
S_5	S_5	S_4	S_5	S_7	101
S_6	S_5	S_4	S_6	S_7	110
S_7	$S_1/0$	S_4	S_2 /0	S_7	111

Рисунок 2.3 – автоматная таблица для четности

Для того, чтобы автомат считал четность, при нахождении поглощения он будет переходить в инвертированное состояние (все выходы инвертированы).

Проектирование автомата в Logisim (Рисунок 2.4)

Рисунок 2.4 – Спроектированный автомат в среде Logisim

3.1 Постановка задачи

Спроектировать синхронный автомат, который вычисляет минимальное число из четырех положительных чисел. Числа поступают одновременно по 4-разрядной шине (каждое число по своей 1 разрядной шине), начиная со старших разрядов, в сопровождении синхросигналов. На одноразрядном выходе синхронно появляется результат: значение разрядов минимального из чисел.

3.2 Решение

Для каждого отдельного числа спроектируем локальный автомат со следующими состояниями: М – число минимальное – значение на выходе равно входному; N – число не минимальное – на выходе автомата 1, т.е. наибольшее значение. Тогда можно сравнить значения на выходе всех автоматов и выдать минимальное, т.е. выполнить конъюнкцию.

Локальный автомат переходит из состояния М в состояние N тогда, когда число перестает быть минимальным, т.е. когда значение входного разряда числа больше значения на выходе конъюнкции. Выходное значение в состоянии М равно входному, в состояние N – максимально возможному, т.е. 1.

Кодирование состояний: M = 0, N = 1.

Автоматная таблица локального автомата(Рисунок 3.1):

S d, m	00	01	11	10
M	M / 0	X	M / 1	N / 1
N	N / 1	N / 1	N / 1	N / 1

Рисунок 3.1 – Автоматная таблица локального автомата

S d, m	00	01	11	10
0	0	X	0	1
1	1	1	1	1

Рисунок 3.2 – Таблица переходов

$$g = s + \bar{d}m$$

S	0	1
0	0	1
1	1	1

Рисунок 3.3 – Таблица выходов

$$f = d + s$$

Схема локального автомата в Logisim (Рисунок 3.4):

Рисунок 3.4 – Схема локального автомата

Рисунок 3.5 – Схема полного автомата

4.1 Постановка задачи

Спроектировать автомат, который вычисляет свертку по mod 5 для положительного числа, поступающего последовательно по одному разряду, начиная с младшего. Текущее значение свертки присутствует на трехразрядном выходе.

4.2 Решение

Для вычисления остатка от деления на число X в двоичной системе счисления необходимо разложить число на группы, длина которых соответствует s в выражении.

$$(2^s)^k mod X = 1$$

Для mod5 s = 4

$$(2^4)^k \mod 5 = 1$$

Для определения разряда в группе в проектируемом автомате дополнительно следует поставить на вход счетчик st по модулю s.

Кол-во состояний – кол-во вариантов выражения $X \mod 5$ (5: 0, 1, 2, 3, 4).

Если на вход in поступает «0», то свертка не изменяется -+0.

Если на вход in поступает «1», то:

- Если очередной разряд на нулевом разряде группы (st=0), то свертка увеличивается на вес разряда $-+1\cdot20(+1)$;
- Если очередной разряд на первом разряде группы (st=1), то свертка увеличивается на вес разряда $-+1\cdot21(+2)$;
- Если очередной разряд на втором разряде группы (st=2), то свертка увеличивается на вес разряда $-+1\cdot22(+4)$;
- Если очередной разряд на третьем разряде группы (st=3), то свертка увеличивается на вес разряда $-+1\cdot23(+8, \text{ т.e. }+3)$;

Q	in						
	0_{+0}	1+1	1+2	1_{+3}	1_{+4}		
0	0	1	2	3	4		
1	1	2	3	4	0		
2	2	3	4	0	1		
3	3	4	0	1	2		
4	4	0	1	2	3		

Рисунок 4.1 – Таблица выходов

Q	in, st							
	000	001	010	011	100	101	110	111
0	0	0	0	0	1	2	4	3
1	1	1	1	1	2	3	0	4
2	2	2	2	2	3	4	1	0
3	3	3	3	3	4	0	2	1
4	4	4	4	4	0	1	3	2

Рисунок 4.2 – Таблица переходов

Обозначения: Q – текущее состояние Q' – следующее состояние in – вход (0 или 1) st – вход (номер разряда группы) Y – выход.

Кодирование состояний: 0 - 000, 1 - 001, 2 - 010, 3 - 011, 4 - 100.

Схема автомата в Logisim (Рисунок 4.3):

Рисунок 4.3 – Схема автомата в Logisim

ЗАКЛЮЧЕНИЕ

В ходе выполнения практической работы различными способами были спроектированы синхронные цифровые автоматы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. В.В. Лозовский Теория автоматов [Электронный ресурс]: Учебное пособие / В.В. Лозовский, Е.Н. Штрекер, А.С. Боронников, Л.В. Казанцева. — М., МИРЭА — Российский технологический университет, 2024. — 454 с.