Active Damping of Rotating Platforms using Integral Force Feedback

ISMA-USD 2020, September 7-9, 2020

Thomas Dehaeze ^{1,3} Christophe Collette ^{1,2}

¹Precision Mechatronics Laboratory, University of Liege, Belgium

²BEAMS Department, Free University of Brussels, Belgium

³European Synchrotron Radiation Facility, Grenoble, France

Dynamics of Rotating Positioning Platforms

Problem with the Decentralized Integral Force Feedback

Modification of the control law: Add High-Pass Filter

Modification of the Mechanical System: Parallel Stiffness

Dynamics of Rotating Positioning Platforms

Problem with the Decentralized Integral Force Feedback

Modification of the control law: Add High-Pass Filter

Modification of the Mechanical System: Parallel Stiffness

Model of a Rotating Positioning Platform

Fig.: Schematic of the studied System

Simplest model to study the gyroscopic effects on Decentralized IFF

Assumptions:

- Perfect Rotating Stage
- $\dot{\theta}(t) = \Omega = \mathsf{cst}$
- Small displacements
- Position of the mass described by $[d_u \ d_v]$

Two frames:

- ullet Inertial frame $(ec{i}_x, ec{i}_y, ec{i}_z)$
- Uniform rotating frame $(\vec{i}_u, \vec{i}_v, \vec{i}_w)$

Equations of Motion - Lagrangian Formalism

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial D}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i$$

with L=T-V the Lagrangian, D the dissipation function, and Q_i the generalized force associated with the generalized variable.

$$T = \frac{1}{2}m\left(\left(\dot{d}_{u} - \Omega d_{v}\right)^{2} + \left(\dot{d}_{v} + \Omega d_{u}\right)^{2}\right), \quad V = \frac{1}{2}k\left(d_{u}^{2} + d_{v}^{2}\right)$$
$$D = \frac{1}{2}c\left(\dot{d}_{u}^{2} + \dot{d}_{v}^{2}\right), \quad Q_{1} = F_{u}, \quad Q_{2} = F_{v}$$

$$\begin{split} m\ddot{d}_{u} + c\dot{d}_{u} + (k - m\Omega^{2})d_{u} &= F_{u} + 2m\Omega\dot{d}_{v} \\ m\ddot{d}_{v} + c\dot{d}_{v} + (k\underbrace{-m\Omega^{2}}_{\text{Centrif.}})d_{v} &= F_{v}\underbrace{-2m\Omega\dot{d}_{u}}_{\text{Coriolis}} \end{split}$$

Centrifugal forces \iff Negative Stiffness Coriolis Forces \iff Coupling

Transfer Function Matrix the Laplace domain

Fig.: Campbell Diagram : Evolution of the complex and real parts of the system's poles as a function of the rotational speed Ω

Bode Plots of the System's Dynamics

Fig.: Bode Plots for G_d for several rotational speed Ω

For all the numerical analysis, $\omega_0=1\,\mathrm{rad}\,\mathrm{s}^{-1}$, $k=1\,\mathrm{N}\,\mathrm{m}^{-1}$ and $\xi=0.025=2.5\,\%$.

Dynamics of Rotating Positioning Platforms

Problem with the Decentralized Integral Force Feedback

Modification of the control law: Add High-Pass Filter

Modification of the Mechanical System: Parallel Stiffness

Force Sensors and Control Architecture

Fig.: System with added Force Sensor in series with the actuators

Fig.: Control Diagram for decentralized IFF

$$\boldsymbol{K}_F(s) = \begin{bmatrix} K_F(s) & 0\\ 0 & K_F(s) \end{bmatrix}$$

$$K_F(s) = g \cdot \frac{1}{s}$$

Plant Dynamics

$$\begin{bmatrix} f_u \\ f_v \end{bmatrix} = \begin{bmatrix} F_u \\ F_v \end{bmatrix} - (cs + k) \begin{bmatrix} d_u \\ d_v \end{bmatrix}$$

Fig.: Bode plot of the diagonal terms of G_f for several rotational speeds Ω

Decentralized IFF with Pure Integrators

Fig.: Root Locus for Decentralized IFF for several rotating speeds Ω

For $\Omega > 0$, the closed loop system is unstable

Dynamics of Rotating Positioning Platforms

Problem with the Decentralized Integral Force Feedback

Modification of the control law: Add High-Pass Filter

Modification of the Mechanical System: Parallel Stiffness

Modification of the Control Low

Added HPF \iff limit the low frequency gain \iff shift the pole to the left along the real axis \implies stable system for small values of the gain

Effect of ω_i on the attainable damping

Fig.: Root Locus for several HPF cut-off frequencies ω_i , $\Omega=0.1\omega_0$

$$g_{\max} = \omega_i \left(\frac{{\omega_0}^2}{\Omega^2} - 1\right) \qquad \text{small } \omega_i \Longrightarrow \text{increase maximum damping small } \omega_i \Longrightarrow \text{reduces maximum gain } g_{\max}$$

Optimal Control Parameters

Fig.: Attainable damping ratio $\xi_{\rm cl}$ as a function of the ratio ω_i/ω_0 . Corresponding control gain $g_{\rm opt}$ and $g_{\rm max}$ are also shown

Dynamics of Rotating Positioning Platforms

Problem with the Decentralized Integral Force Feedback

Modification of the control law: Add High-Pass Filter

Modification of the Mechanical System: Parallel Stiffness

Stiffness in Parallel with the Force Sensor

Fig.: Studied system with additional springs in parallel with the actuators and force sensors

Intuitive Idea

 k_p is used to counteract the negative stiffness $-m\Omega^2$ when high control gains are used.

$$k_p = \alpha k$$
$$k_a = (1 - \alpha)k$$

with $0 < \alpha < 1$.

The overall stiffness $k=k_a+k_p=\mathrm{cst}\Longrightarrow$ the open-loop poles remains unchanged

Effect of the Parallel Stiffness on the Plant Dynamics

Fig.: Bode Plot of f_u/F_u for $k_p=0,\,k_p < m\Omega^2$ and $k_p>m\Omega^2$, $\Omega=0.1\omega_0$

Fig.: Root Locus for IFF without parallel spring, with parallel springs with stiffness $k_p < m\Omega^2$ and $k_p > m\Omega^2$, $\Omega = 0.1\omega_0$

If $k_p > m\Omega^2$, the poles of the closed-loop system stay in the (stable) right half-plane, and hence the **unconditional** stability of IFF is recovered.

Optimal Parallel Stiffness

Fig.: Root Locus for IFF when parallel stiffness k_p is added, $\Omega=0.1\omega_0$

Large parallel stiffness k_p reduces the attainable damping.

Dynamics of Rotating Positioning Platforms

Problem with the Decentralized Integral Force Feedback

Modification of the control law: Add High-Pass Filter

Modification of the Mechanical System: Parallel Stiffness

Comparison of the Attainable Damping

Fig.: Root Locus for the two proposed modifications of decentralized IFF, $\Omega=0.1\omega_0$

Comparison Transmissibility and Compliance

Fig.: Comparison of the two proposed Active Damping Techniques, $\Omega=0.1\omega_0$

Conclusion & Further work

The two proposed techniques gives almost identical results but are very different when it comes to their implementations

The best technique depends on the application

Amplified Piezoelectric Actuators are a nice way to have an actuator, a force sensors and a parallel stiffness in a compact manner

Actuator Force Sensor

Will be tested on the nano-hexapod