PW/TP 17-18: Calculus of Variations

Find the curve Y = y(x) with $y(x_1) = y_1$, and $y(x_2) = y_2$ such that for some given function F(x, y, y'), $\int_{x_1}^{x_2} F(x, y, y') dx$ an extremum is (1)

Euler's Equation: y = y(x) satisfies $\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial F}{\partial y'} \right) - \frac{\partial F}{\partial y} = 0$.

if
$$F(x, y, y') = F(y, y')$$
: $\Leftrightarrow F - y' \frac{\partial F}{\partial y'} = c$

If we want to keep at te same time $\int_{x_1}^{x_2} G(x, y, y') dx$ equal to some constant, (1) can be rewritten as:

$$\int_{x_1}^{x_2} (F + \lambda G) \, \mathrm{d}x$$

Exercise 1. Show that the shortest distance between two points in a plane is a straight line.

Exercise 2. Find the extremals of $I = \int_{x_1}^{x_2} F(x, y, y') dx$ for each case

- 1. $F = (y')^2 + 2y$
- 2. $F = (y')^2 + 4xy'$
- 3. $F = (y')^2 + yy' + y^2$
- 4. $F = x(y')^2 yy' + y$
- 5. $F = (y')^2 y^2$

Exercise 3. The shortest distance between two points on any surface is called a *geodesic* of the surface. Show that the geodesics on the surface of a sphere of radius *a* are the arcs of great circles.

1

Exercise 4. Find the geodesics for

- 1. a right circular cylinder
- 2. a right circular cone

Exercise 5. Find the extremals

1.
$$\int_0^1 y' dx$$
, $y(0) = 0$, $y(1) = 1$

2.
$$\int_0^1 yy' dx$$
, $y(0) = 0$, $y(1) = 1$

3.
$$\int_0^1 (1+x)(y')^2 dx, \qquad y(0) = 0, y(1) = 1$$