Datum		Třída
18.9.2019	SPŠ Chomutov	A4
Číslo úlohy		Jméno
2	Měření zenerovy diody	PAIKRT

Zadání

Změř parametry zenerovy diody.

Schéma zapojení

Měření kapacity

Měření dynamického odporu

Tabulka použitých přístrojů

Zařízení	Značka	Údaje	Evidenční číslo
Zdroj =	U	AUL 310	LE2 1031
Zdroj ~	G	Siglent SDG1020	LE 5080
Zenerova dioda	D1	8NZ70, Uz=16,2V, Izmax = 70mA	-
Zenerova dioda	D2	KZZ71, Uz=5,8V, Izmax=36mA	-
Miliampérmetr	mA	0-600mA <u> </u>	LE2 2242/6
Voltmetr	V	0-600V <u> </u>	LE2 411/6
Elektronický voltmetr	Ev	1mV-300V , -60dB — 50dB	LE2 1554
Číslicový voltmetr	Čv	Metrix MX 545	LE2 47
Kondenzátor	C1	4μF	-
Vazební Kondenzátor	Cv	TC 210 220/B	-
Kapacitní dekáda	Cn	Tesla 100 - 1100pF	LE1 2234
Odporová dekáda	Rn	0-100kΩ	LE 11833
Vypínač	Vур	-	-
Cívka	L	L = 6H , R = 100Ω	-
Ochranný odpor	Ro	250Ω, 1Α	LE2 438
Reostat	Rp	1450Ω, 0.4Α	LE2 466
Reostat R		100Ω, 1.8Α	LE2 5084

Teorie

Zenerova dioda neboli referenční dioda je polovodičová součástka s PN přechodem, která se užívá především v zapojení ke stabilizaci napětí. Konstrukčně určena k zapojení v závěrném směru, k čemuž je přizpůsobena tím, že její průraz v tomto směru není destruktivní. V propustném směru se chová jako klasická usměrňovací dioda. Dioda se používá převážně v stabilizovaných napěťových zdrojích, jako koncová, výstupní část. Slouží k tomu, aby při velké změně velikosti odebíraného proudu napětí nekolísalo vůbec, nebo jen velmi málo. Může být také součástí ochranných obvodů, kde omezuje napěťové špičky.

Postup měření

- Měření kapacity
 - o Začneme s rozepnutým vypínačem
 - o Nastavíme Cn na maximální hodnotu
 - o Pomocí generátoru uvedeme obvod do rezonance (Max. výchylka na EV)
 - o Sepneme vypínač a pomocí reostatu R nastavíme pracovní bod diody (0 − 0,9Uz)
 - o Pomocí změny kapacity Cn obvod uvedeme opět do rezonance a odečteme kapacitu po uvedení do rezonance
- Měření dynamického odporu
 - o Přepínač budeme mít přepnutý na diodu. Pomocí Rp nastavíme pracovní bod(0,2Imax Imax)
 - o Pomocí frekvence generátoru na ČV nastavíme cca 100mV
 - o Přepneme přepínač na odporovou dekádu
 - o Pomocí dekády dosáhneme opět 100mV
 - o Odečteme nastavený odpor na dekádě

Tabulka hodnot

Měření kapacity

U _F [V]	C _{N1} [pF]	C _{N2} [pF]	C _{ZD} [pF]
2	1100	390	710
4		555	545
6		630	470
8		680	420
10		725	375
12		750	350
14		780	320
16		890	210

Měření dynamického odporu

I _Z [mA]	R _{ZD} [Ω]	
8	21,7	
12	14,7	
16	11,5	
20	9,4	
24	8,0	
28	6,7	
32	6,0	
36	5,4	

Grafy

Měření kapacity

Měření dynamického odporu

Výpočet

$$R_o = \frac{U - U_Z}{I_{Zmax}} - R_{TL} = > U = I_{Zmax} * (R_o + R_{TL}) + U_Z = 36 * 10^{-3} * (250 + 100) + 5,8 = 18,4V$$

$$R_P = \frac{U - U_Z}{0.2 I_{zmax}} - R_o - R_{TL} = \frac{18.4 - 5.8}{0.2 * 36 * 10^{-3}} - 250 - 100 = 1400\Omega$$

Závěr

Charakteristiky vyšli podle předpokladů. Lze z nich vyčíst, že při zvyšování napětí klesá kapacita a při zvyšování proudu klesá odpor zenerovy diody.