Package 'file2meco'

October 31, 2024

Type Package
Title Transform Files to 'microtable' Object with 'microeco' Package
Version 0.9.0
Author Chi Liu [aut, cre]
Maintainer Chi Liu liuchi0426@126.com>
Description Transform output files of some tools to the 'microtable' object of 'microtable' class in 'microeco' package. The 'microtable' class is the basic class in 'microeco' package and is necessary for the downstream microbial community data analysis.
<pre>URL https://github.com/ChiLiubio/file2meco</pre>
Depends R (>= 3.5.0)
Imports microeco (>= 1.10.0), ape, magrittr, dplyr, tidyr, yaml, rhdf5, Matrix
Suggests Biostrings, seqinr, phyloseq, readxl, SummarizedExperiment, TreeSummarizedExperiment
License GPL-3
LazyData true
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2024-10-31 06:20:02 UTC
RoxygenNote 7.3.2
Contents
check_match_table 2 check_sample_table 2 CHOCOPhlAn_taxonomy 3 file2meco 3 humann2meco 4 meco2phyloseq 6

2 check_sample_table

	meco2tse
	MetaCyc_pathway_map
	metacyc_pathway_website
	mpa2meco
	ncyc2meco
	ncyc_map
	pcyc_map
	phyloseq2meco
	qiime1meco
	qiime2meco
	tse2meco
	vs2meco
Index	19

check_match_table

Replace the names use match table

Description

Replace the names use match table

Usage

```
check_match_table(match_table = NULL, abund_new = NULL)
```

Arguments

match_table default NULL; character or data.frame; matching table used.

abund_new default NULL; data.frame; the abundance table used.

Value

new abundance table.

check_sample_table

Read sample table

Description

Read sample table

Usage

```
check_sample_table(sample_table = NULL)
```

Arguments

```
sample_table default NULL; character or data.frame; matching table used.
```

Value

sample information table.

CHOCOPhlAn_taxonomy

The CHOCOPhlAn_taxonomy data

Description

The CHOCOPhlAn_taxonomy data is used for the parsing the 'HUMAaN' metagenomic results and add the taxonomy hierarchical information to the 'tax_table'.

Usage

```
data(CHOCOPhlAn_taxonomy)
```

file2meco Introduction to file2meco package (Rhrefhttps://github.com/ChiLiubio/file2mecohttps://github.com/ChiLiubio/file2meco)

Description

For the detailed tutorial on the file2meco package, please follow the tutorial link in the github repository (https://github.com/ChiLiubio/file2meco)

Please open the help document by using help function or by clicking the following links collected:

qiime1meco

qiime2meco

humann2meco

mpa2meco

ncyc2meco

phyloseq2meco

meco2phyloseq

vs2meco

tse2meco

To report bugs or discuss questions, please use Github Issues (https://github.com/ChiLiubio/file2meco/issues). Before creating a new issue, please read the guideline (https://chiliubio.github.io/microeco_tutorial/notes.html#githubissues).

To cite file2meco package in publications, please run the following command to get the reference: citation("file2meco")

4 humann2meco

Reference:

Liu, C., Li, X., Mansoldo, F.R.P., An, J., Kou, Y., Zhang, X., Wang, J., Zeng, J., Vermelho, A.B., Yao, M., 2022. Microbial habitat specificity largely affects microbial co-occurrence patterns and functional profiles in wetland soils. Geoderma 418, 115866.

humann2meco

Transform 'HUMAnN' metagenomic results to 'microtable' object.

Description

Transform 'HUMAnN' metagenomic results to microtable object, reference: Franzosa et al. (2018) <doi:10.1038/s41592-018-0176-y>.

Usage

```
humann2meco(
  feature_table,
  db = c("MetaCyc", "KEGG", "gene")[1],
  sample_table = NULL,
  match_table = NULL,
  ...
)
```

Arguments

feature_table

file path of 'HUMAnN' output abundance table; Please see the example.

db

default "MetaCyc"; one of "MetaCyc", "KEGG" or "gene"; "MetaCyc" or "KEGG" means the input feature table is pathway abundance. "gene" represents the abundance of genes, such as 'eggNOG', 'KO' and 'EC'. When using "gene", the generated tax_table has only taxonomic lineages and gene name, no higher functional levels.

sample_table

default NULL; sample metadata table; If provided, must be one of the several types of formats:

- 1) comma seperated file with the suffix csv or tab seperated file with suffix tsv or txt.
- 2) Excel type file with the suffix xlsx or xls; require readxl package to be installed;
- 3) data.frame object from R.

match_table

default NULL; a two column table used to replace the sample names in feature table; Must be two columns without column names; The first column must be raw sample names same with those in feature table, the second column must be new sample names same with the rownames in sample_table; Please also see the example files. If provided, must be one of the several types of formats:

- 1) comma seperated file with the suffix csv or tab seperated file with suffix tsv/txt:
- 2) Excel type file with the suffix xlsx or xls; require readxl package to be installed;
- 3) data. frame object from R.

humann2meco 5

... parameter passed to microtable\$new function of microeco package, such as auto_tidy parameter.

Value

microtable object.

```
library(file2meco)
library(microeco)
library(magrittr)
sample_file_path <- system.file("extdata", "example_metagenome_sample_info.tsv",</pre>
  package="file2meco")
match_file_path <- system.file("extdata", "example_metagenome_match_table.tsv", package="file2meco")</pre>
# MetaCyc pathway examples
# use the raw data files stored inside the package for MetaCyc pathway database based analysis
abund_file_path <- system.file("extdata", "example_HUMAnN_MetaCyc_abund.tsv", package="file2meco")
# the default db is "MetaCyc"
humann2meco(abund_file_path, db = "MetaCyc")
humann2meco(abund_file_path, db = "MetaCyc", sample_table = sample_file_path,
  match_table = match_file_path)
test <- humann2meco(abund_file_path, db = "MetaCyc", sample_table = sample_file_path,</pre>
  match_table = match_file_path)
test$tidy_dataset()
# rel = FALSE sum original abundance instead of relative abundance
test$cal_abund(select_cols = 1:3, rel = FALSE)
test$taxa_abund$Superclass1 %<>% .[!grepl("unclass", rownames(.)), ]
# use_percentage = FALSE disable percentage for relative abundance
test1 <- trans_abund$new(test, taxrank = "Superclass1", ntaxa = 10, use_percentage = FALSE)
# reassign ylab title instead of default 'Relative Abundance'
test1$ylabname <- "Abundance (RPK)"
# bar_full = FALSE show original abundance instead of normalized 0-1
test1$plot_bar(facet = "Group", bar_full = FALSE)
# select both function and taxa
test$cal_abund(select_cols = c("Superclass1", "Phylum", "Genus"), rel = TRUE)
test1 <- trans_abund$new(test, taxrank = "Phylum", ntaxa = 10, delete_taxonomy_lineage = TRUE)
test1$plot_bar(facet = "Group")
test$taxa_abund$Phylum %<>% .[!grepl("unclass", rownames(.)), ]
test1 <- trans_abund$new(test, taxrank = "Phylum", ntaxa = 10, delete_taxonomy_lineage = FALSE)
test1$plot_bar(facet = "Group")
# functional biomarker
test$cal_abund(select_cols = 1:3, rel = TRUE)
test$taxa_abund$Superclass1 %<>% .[!grepl("unclass", rownames(.)), ]
test$taxa_abund$Superclass2 %<>% .[!grepl("unclass", rownames(.)), ]
test$taxa_abund$pathway %<>% .[!grepl("unclass", rownames(.)), ]
test1 <- trans_diff$new(test, method = "lefse", group = "Group")</pre>
test1$plot_diff_bar(use_number = 1:20)
# taxa biomarker
test$cal_abund(select_cols = 4:9, rel = TRUE)
test$taxa_abund$Phylum %<>% .[!grepl("unclass", rownames(.)), ]
test1 <- trans_diff$new(test, method = "lefse", group = "Group", p_adjust_method = "none")
test1$plot_diff_bar(threshold = 2)
```

6 meco2phyloseq

```
# KEGG pathway examples
abund_file_path <- system.file("extdata", "example_HUMAnN_KEGG_abund.tsv", package="file2meco")
humann2meco(abund_file_path, db = "KEGG")
test <- humann2meco(abund_file_path, db = "KEGG",</pre>
 sample_table = sample_file_path, match_table = match_file_path)
test$tax_table %<>% subset(Level.1 != "unclassified")
test$tidy_dataset()
test$cal_abund(select_cols = 1:3, rel = FALSE)
# use_percentage = FALSE disable percentage for relative abundance
test1 <- trans_abund$new(test, taxrank = "Level.2", ntaxa = 10, use_percentage = FALSE)
# or use ggplot2::ylab to change ylab title
test1$ylabname <- "Abundance (RPK)"
test1$plot_bar(facet = "Group", bar_full = FALSE)
# select both function and taxa
test$cal_abund(select_cols = c("Level.1", "Phylum", "Genus"), rel = TRUE)
test1 <- trans_abund$new(test, taxrank = "Phylum", ntaxa = 10, delete_taxonomy_lineage = FALSE)</pre>
test1$plot_bar(facet = "Group")
# functional biomarker
test$cal_abund(select_cols = 1:3, rel = TRUE)
test1 <- trans_diff$new(test, method = "lefse", group = "Group")</pre>
test1$plot_diff_bar(threshold = 3)
# taxa biomarker
test$cal_abund(select_cols = 4:9, rel = TRUE)
test1 <- trans_diff$new(test, method = "lefse", group = "Group", p_adjust_method = "none")</pre>
test1$plot_diff_bar(threshold = 2)
```

meco2phyloseq

Transform 'microtable' object of 'microeco' package to the 'phyloseq' object of 'phyloseq' package <doi:10.1371/journal.pone.0061217>.

Description

Transform 'microtable' object of 'microeco' package to the 'phyloseq' object of 'phyloseq' package <doi:10.1371/journal.pone.0061217>.

Usage

meco2phyloseq(meco)

Arguments

meco

a microtable object.

Value

phyloseq object.

meco2tse 7

Examples

```
## Not run:
library(microeco)
data("dataset")
meco2phyloseq(dataset)
## End(Not run)
```

meco2tse

Transform 'microtable' object of 'microeco' package to the 'TreeSummarizedExperiment' object of 'TreeSummarizedExperiment' package <doi:10.12688/f1000research.26669.2>.

Description

Transform 'microtable' object of 'microeco' package to the 'TreeSummarizedExperiment' object of 'TreeSummarizedExperiment' package <doi:10.12688/f1000research.26669.2>.

Usage

```
meco2tse(meco, ...)
```

Arguments

meco a microtable object.

parameter passed to TreeSummarizedExperiment function of TreeSummarized-Experiment package, e.g. colTree, rowNodeLab and colNodeLab.

Value

TreeSummarizedExperiment object.

```
## Not run:
library(microeco)
data("dataset")
meco2tse(dataset)
## End(Not run)
```

MetaCyc_pathway_map

The MetaCyc_pathway_map data

Description

The MetaCyc_pathway_map data is a manually curated 'MetaCyc' pathway hierarchical structure data. It is used for the parsing the 'HUMAaN' metagenomic abundance table associated with 'Meta-Cyc' database. Currently, only superclass 1, 2 and the pathway are used in this data.

Usage

```
data(MetaCyc_pathway_map)
```

metacyc_pathway_website

Get the website for a 'MetaCyc' pathway name

Description

Get the website for a 'MetaCyc' pathway name

Usage

```
metacyc_pathway_website(pathway = NULL)
```

Arguments

pathway

default NULL; character vector; one or more MetaCyc pathway names.

Value

character vector.

```
metacyc_pathway_website("FOLSYN-PWY")
```

mpa2meco 9

mpa2meco

Transform metagenomic classification results of 'mpa' format to 'microtable' object.

Description

Transform the classification results of mpa (MetaPhlAn) format to microtable object, such as MetaPhlAn and Kraken2/Bracken results. Kraken2/Bracken results can be obtained by merge_metaphlan_tables.py from MetaPhlAn or combine_mpa.py from KrakenTools (https://ccb.jhu.edu/software/krakentools/). The algorithm of Kraken2 determines that the abundance of a taxon is not equal to the sum of abundances of taxa in its subordinate lineage. So the default tables in taxa_abund of return microtable object are extracted from the abundances of raw file. It is totally different with the return taxa_abund of cal_abund function, which sums the abundances of taxa at different taxonomic levels based on the taxonomic table and the otu_table (i.e., taxa abundance table at a specified level, e.g., 's__').

Usage

```
mpa2meco(
   feature_table,
   sample_table = NULL,
   match_table = NULL,
   use_level = "s__",
   rel = FALSE,
   sel_same = 1,
   sep = "\t",
   ...
)
```

Arguments

rel

feature_table 'mpa' format abundance table, see the example.

sample_table default NULL; sample metadata table; If provided, must be one of the several types of formats: 1) comma seperated file with the suffix csy or tab seperated file

types of formats: 1) comma seperated file with the suffix csv or tab seperated file with suffix tsv/txt; 2) Excel type file with the suffix xlsx or xls; require readxl

package to be installed; 3) data. frame object from R.

match_table default NULL; a two column table used to replace the sample names in abun-

dance table; Must be two columns without column names; The first column must be raw sample names same with those in feature table, the second column must be new sample names same with the rownames in sample_table; Please also see

the example files.

default "s_"; the prefix parsed for the otu_table and tax_table; must be one of 'd_', 'k_', 'p_', 'c_', 'o_', 'f_', 'g_' and 's_'.

default FALSE; Whether convert the original abundance to relative abundance in generated taxa_abund list. If TRUE, all the data.frame objects in taxa_abund

list have relative abundance (0-1).

10 ncyc2meco

default 1; How to select the taxonomic information in tax_table when multiple taxonomic information have same prefix (e.g., "k_Eukaryotalk_Fungil"). 1 represents the first one. 2 denotes the second one. 3 means selecting both. If sel_same = 3, the "|" in the taxonomic information will be replaced with ":". For the taxa_abund list, both names are remained to facilitate subsequent filtering, and the "|" will be also replaced with ":".

sep default "\t"; The separator in provided feature_table.

... parameter passed to microtable\$new function of microeco package, such as auto_tidy parameter.

Value

microtable object.

Examples

```
library(microeco)
library(file2meco)
library(magrittr)
# use Kraken2 file stored inside the package
abund_file_path <- system.file("extdata", "example_kraken2_merge.txt", package="file2meco")
mpa2meco(abund_file_path)
# add sample information table
sample_file_path <- system.file("extdata", "example_metagenome_sample_info.tsv",</pre>
 package="file2meco")
# sample names are different between abund_file_path and sample_file_path;
# use a matching table to adjust them
match_file_path <- system.file("extdata", "example_metagenome_match_table.tsv", package="file2meco")</pre>
test <- mpa2meco(abund_file_path, sample_table = sample_file_path,</pre>
 match_table = match_file_path, use_level = "s__", rel = TRUE)
# make the taxonomy standard for the following analysis
test$tax_table %<>% tidy_taxonomy
test$tidy_dataset()
# calculate taxa_abund with specified level instead of raw kraken results
test1 <- clone(test)</pre>
test1$cal_abund(rel = TRUE)
identical(test$taxa_abund$Kingdom, test1$taxa_abund$Kingdom)
```

ncyc2meco

Transform 'NCycDB' or 'PCycDB' metagenomic abundance to 'microtable' object.

Description

Transform 'NCycDB' or 'PCycDB' metagenomic abundance to microtable object. The function can identify the mapping database according to the gene names of input feature abundance table. Reference: Qichao et al. (2019) <doi: 10.1093/bioinformatics/bty741> and Zeng et al. (2022) <doi: 10.1186/s40168-022-01292-1>.

ncyc2meco 11

Usage

```
ncyc2meco(feature_table, sample_table = NULL, match_table = NULL, ...)
```

Arguments

feature_table 'NCycDB' or 'PCycDB' output abundance table, see the example file.

sample_table default NULL; sample metadata table; If provided, must be one of the several

types of formats: 1) comma seperated file with the suffix csv or tab seperated file with suffix tsv/txt; 2) Excel type file with the suffix xlsx or xls; require readxl package to be installed; 3) data.frame object from R. A file path must be tab

or comma seperated file, generally, a file with suffix "tsv" or "csv".

match_table default NULL; a two column table used to replace the sample names in abun-

dance table; Must be two columns without column names; The first column must be raw sample names same with those in feature table, the second column must be new sample names same with the rownames in sample_table; Please also see the example files. A file path must be tab or comma seperated file, e.g. a file

with suffix "tsv" or "csv".

.. parameter passed to microtable\$new function of microeco package, such as

auto_tidy parameter.

Value

microtable object.

```
# NCycDB
abund_file_path <- system.file("extdata", "example_Ncyc_table.tsv", package="file2meco")
sample_file_path <- system.file("extdata", "example_metagenome_sample_info.tsv",</pre>
 package="file2meco")
match_file_path <- system.file("extdata", "example_metagenome_match_table.tsv", package="file2meco")</pre>
library(microeco)
library(file2meco)
library(magrittr)
ncyc2meco(abund_file_path)
test <- ncyc2meco(abund_file_path, sample_table = sample_file_path,</pre>
 match_table = match_file_path)
test$tidy_dataset()
# use split_group = TRUE to calculate the pathway abundance with multipe map correspondance
test$cal_abund(select_cols = 1, rel = TRUE, split_group = TRUE, split_column = "Pathway")
test$taxa_abund$Pathway %<>% .[!grepl("unclass", rownames(.)), ]
test1 <- trans_abund$new(test, taxrank = "Pathway")</pre>
test1$plot_bar(bar_full = FALSE)
# for gene abundance, no splitting on the Pathway
test$cal_abund(select_cols = 1:2, rel = TRUE, split_group = FALSE)
test$taxa_abund$Gene %<>% .[!grepl("unclass", rownames(.)), ]
test1 <- trans_abund$new(test, taxrank = "Gene")</pre>
test1$plot_bar(bar_full = FALSE)
# PCycDB
```

12 pcyc_map

ncyc_map

The ncyc_map data

Description

The ncyc_map data is used for the parsing the 'NCycDB' metagenomic results and add the N cycle pathway information to the 'tax_table' of 'microtable' object.

Usage

```
data(ncyc_map)
```

pcyc_map

The pcyc_map data

Description

The pcyc_map data is used for the parsing the 'PCycDB' metagenomic results and add the P cycle pathway information to the 'tax_table' of 'microtable' object.

Usage

```
data(pcyc_map)
```

phyloseq2meco 13

phyloseq2meco	Transform the 'phyloseq' object of 'phyloseq' package to 'microtable' object of 'microeco' package.

Description

Transform the 'phyloseq' object of 'phyloseq' package to 'microtable' object of 'microeco' package.

Usage

```
phyloseq2meco(physeq, ...)
```

Arguments

physeq a phyloseq object <doi:10.1371/journal.pone.0061217>.

... parameter passed to microtable\$new function of microeco package, such as

auto_tidy parameter.

Value

microtable object.

Examples

```
## Not run:
library(phyloseq)
data("GlobalPatterns")
phyloseq2meco(GlobalPatterns)
## End(Not run)
```

qiime1meco

Transform 'QIIME' results to 'microtable' object.

Description

Transform 'QIIME' results to microtable object. The QIIME results refer in particular to the files of qiime1 software.

14 qiime1meco

Usage

```
qiime1meco(
  feature_table,
  sample_table = NULL,
  match_table = NULL,
  phylo_tree = NULL,
  rep_fasta = NULL,
  split = "; ",
  ...
)
```

Arguments

feature_table the otu table generated from 'QIIME'. Taxonomic information should be in the end of the file.

sample_table default NULL; sample metadata table; If provided, must be one of the several

types of formats: 1) comma seperated file with the suffix csv or tab seperated file with suffix tsv/txt; 2) Excel type file with the suffix xlsx or xls; require readxl

package to be installed; 3) data. frame object from R.

match_table default NULL; a two column table used to replace the sample names in feature

table; Must be two columns without column names; The first column must be raw sample names same with those in feature table, the second column must be new sample names same with the rownames in sample_table; Please also see the

example files. If provided, must be one of the several types of formats:

1) comma seperated file with the suffix csv or tab seperated file with suffix tsv/txt;

2) Excel type file with the suffix xlsx or xls; require readx1 package to be installed;

3) data. frame object from R.

phylo_tree default NULL; the phylogenetic tree; generally, a file with suffix "tre".

default NULL; the representative sequences; a fasta file, generally with suffix

"fasta" or "fna" or "fa".

split default "; "; character pattern for splitting the taxonomic information.

. parameter passed to microtable\$new function of microeco package, such as

auto_tidy parameter.

Value

microtable object.

rep_fasta

```
## Not run:
# use the raw data files stored inside the package
otu_file_path <- system.file("extdata", "otu_table_raw.txt", package="file2meco")
sample_file_path <- system.file("extdata", "sample_info.csv", package="file2meco")
phylo_file_path <- system.file("extdata", "rep_phylo.tre", package="file2meco")</pre>
```

qiime2meco 15

qiime2meco

Transform 'QIIME2' results to 'microtable' object.

Description

Transform 'QIIME2' qza results to microtable object.

Usage

```
qiime2meco(
  feature_table,
  sample_table = NULL,
  match_table = NULL,
  taxonomy_table = NULL,
  phylo_tree = NULL,
  rep_fasta = NULL,
  ...
)
```

Arguments

feature_table

the ASV abundance data with qza format, such as the 'data2_table.qza' in the example.

sample_table

default NULL; the sample metadata table; four types of formats are available:

- 1) q2-type tab seperated file of QIIME2, such as the 'sample-metadata.tsv' in the example;
- 2) comma seperated file with the suffix csv or tab seperated file with suffix tsv or txt;
- 3) Excel type file with the suffix xlsx or xls; require readxl package to be installed;
- 4) data.frame object from R.

match_table

default NULL; a two column table used to replace the sample names in feature table; Must be two columns without column names; The first column must be raw sample names same with those in feature table, the second column must be new sample names same with the rownames in sample_table; Please also see the example files. If provided, must be one of the several types of formats:

1) comma seperated file with the suffix csv or tab seperated file with suffix tsv or txt;

16 tse2meco

2) Excel type file with the suffix xlsx or xls; require readxl package to be installed;
3) data.frame object from R.

taxonomy_table default NULL; the taxonomy assignment data with qza format, such as the 'taxonomy.qza' in the example.

phylo_tree default NULL; the phylogenetic tree with qza format, such as the 'tree.qza' in the example.

rep_fasta default NULL; the representative sequences with qza format, such as the 'dada2_rep_set.qza' in the example.

... parameter passed to microtable\$new function of microeco package, such as auto_tidy parameter.

Value

microtable object.

Examples

Description

Transform the 'TreeSummarizedExperiment' object to 'microtable' object of 'microeco' package.

object of 'microeco' package.

Usage

```
tse2meco(tse, ...)
```

Arguments

tse a TreeSummarizedExperiment object <doi:10.12688/f1000research.26669.2>. . . . parameter passed to microtable\$new function of microeco package, such as auto_tidy parameter.

vs2meco 17

Value

microtable object.

vs2meco

Transform viromescan results to 'microtable' object.

Description

Transform the results of viromescan software to microtable object. The output of viromescan is single file for each sample. All the results are needed to be merged and adjusted (for several chaotic taxonomy). The input should be the 'count' tables at Species level, i.e. Species_level_results-Counts.txt. For more details, please see the reference <DOI: 10.1186/s12864-016-2446-3>.

Usage

```
vs2meco(input_dir, sample_table = NULL, match_table = NULL, ...)
```

Arguments

input_dir

the input directory, containing all the result folders for each sample. Each folder should be named by the sample name.

sample_table def

default NULL; sample metadata table; If provided, must be one of the several

types of formats:

1) comma seperated file with the suffix csv or tab seperated file with suffix

tsv/txt;

2) Excel type file with the suffix xlsx or xls; require readxl package to be in-

stalled;

3) data. frame object from R.

match_table

default NULL; a two column table used to replace the sample names in abundance table; Must be two columns without column names; The first column must be raw sample names same with those in feature table, the second column must be new sample names same with the rownames in sample_table; Please also see

the example files.

parameter passed to microtable\$new function of microeco package, such as

auto_tidy parameter.

Value

microtable object.

```
library(microeco)
library(file2meco)
# use viromescan directory inside the package
dir_path <- system.file("extdata", "viromescan", package="file2meco")</pre>
```

vs2meco

```
d1 <- vs2meco(dir_path)
d1$cal_abund()
# d1$taxa_abund$Family is same with the percentage output of viromescan at
# Family level, i.e. Family_level_results-%.txt file
d1$cal_abund(rel = FALSE)
# d1$taxa_abund$Family is same with the count output of viromescan at
# Family level, i.e. Family_level_results-Counts.txt file</pre>
```

Index

```
*\ Description
    file2meco, 3
* data.frame
    CHOCOPhlAn_taxonomy, 3
    MetaCyc_pathway_map, 8
    ncyc_map, 12
    pcyc_map, 12
check_match_table, 2
check_sample_table, 2
CHOCOPhlAn_taxonomy, 3
file2meco, 3
humann2meco, 3, 4
meco2phyloseq, 3, 6
meco2tse, 7
MetaCyc_pathway_map, 8
{\tt metacyc\_pathway\_website}, 8
mpa2meco, 3, 9
ncyc2meco, 3, 10
ncyc_map, 12
pcyc_map, 12
phyloseq2meco, 3, 13
qiime1meco, 3, 13
qiime2meco, 3, 15
tse2meco, 3, 16
vs2meco, 3, 17
```