LOM3257 - Mecânica Clássica

Classical Mechanics

Créditos-aula: 4 Créditos-trabalho: 0 Carga horária: 60 h Ativação: 15/07/2024

Departamento: Engenharia de Materiais

Curso (semestre ideal): EF (3)

Objetivos

Revisão da dinâmica newtoniana ("mecânica vetorial"). Estrutura geral da mecânica clássica nas formulações lagrangiana e hamiltoniana. Aplicações à problemas de forças centrais e dinâmica de corpos rígidos. Problemas em referenciais não-inerciais.

Docente(s) Responsável(eis)

Desenvolver os fundamentos da Mecânica Clássica com ênfase no formalismo, suas consequências e aplicações. Ao final do curso, o estudante estará apto a aplicar os diversos formalismos da Mecânica Clássica à descrição do movimento de sistemas de partículas e corpos rígidos com alto grau de complexidade.

1. Revisão da Cinemática do ponto: vetores posição, velocidade e aceleração. 2. Forças, força resultante, conservação do momento linear e as Leis de Newton da Dinâmica; 3. Trabalho e energia; energia cinética e energia potencial. Teorema da energia cinética e conservação da energia total. 4. Princípio variacional de Hamilton e a Formulação Lagrangiana da Mecânica: coordenadas generalizadas, Lagrangiana e as equações de Euler-Lagrange. Coordenadas ignoráveis e princípios de conservação. 5. Aplicações: forças centrais; torque e conservação do momento angular; problemas de dois corpos com atração ou repulsão mútua; Gravitação e as leis de Kepler. 6. Referenciais não inerciais linearmente acelerados e em rotação. Forças de inércia: força centrífuga, força de Coriolis. Efeitos das forças de inércia no planeta Terra; Pêndulo de Foucault. 7. Estática e Dinâmica de corpos rígidos; momentos de inércia; torques; Movimento plano de corpos rígidos; teorema dos eixos paralelos . 8. Formulação de Hamilton para a Mecânica Clássica: a Hamiltoniana e as equações de Hamilton

Programa resumido

A avaliação será composta por três provas escritas (P1, P2 e P3).

Programa

A nota final (NF) será a média ponderada de três provas, P1 (peso 1), P2 (peso 1) e P3 (peso 2)

1. Review of point kinematics: position, velocity and acceleration vectors. 2. Forces, resultant force, conservation of linear momentum and Newton's Laws of Dynamics; 3. Work and energy; kinetic energy and potential energy. Kinetic energy theorem and conservation of total energy. 4. Hamilton's variational principle and the Lagrangian Formulation of Mechanics: generalized coordinates, Lagrangian and the Euler-Lagrange equations. Ignorable coordinates and conservation principles. 5. Applications: central forces; torque and conservation of angular

momentum; two-body problems with mutual attraction or repulsion; Gravitation and Kepler's laws. 6. Linearly accelerated and rotating non-inertial frames of reference. Inertia forces: centrifugal force, Coriolis force. Effects of inertia forces on planet Earth; Foucault pendulum. 7. Statics and Dynamics of Rigid Bodies; moments of inertia; torques; Plane motion of rigid bodies; parallel axis theorem. 8. Hamilton's Formulation for Classical Mechanics: the Hamiltonian and Hamilton's equations

Avaliação

Método: Aplicação de uma prova escrita dentro do prazo regimental antes do início do próximo semestre letivo. A nota da segunda avaliação será a média aritmética entre a nota da prova de recuperação e a nota final da primeira avaliação

Critério: TAYLOR, J. R. - Mecânica Clássica, Bookman, 2015.

THORNTON, S. T. MARION, J. B. – Dinâmica Clássica de Partículas e Sistemas, tradução da 5ª edição norte-americana, CENGAGE Learning, 2016.

F.P. BEER, E.R. JOHNSTON, E. RUSSEL. - Mecânica vetorial para engenheiros: Estática, McGraw Hill. 9a Ed., 2012.

BEER, F.P., JOHNSTON Jr., E.R., CLAUSEN, W. E. - Mecânica Vetorial para Engenheiros: Dinâmica, McGraw-Hill. 7^a Ed., 2006.

GOLDSTEIN, H.; POOLE, C.; SAFKO, J. – Classical Mechanics, Addison-Wesley Pub. Co. 2013.

LEMOS, N. A. – Mecânica Analítica, Livraria da Física. 2007.

KOMPANEYETS, A. S. – Theoretical Physics, Peace Publishers. 2012.

LANDAU, L. D.; LIFSHITZ, E. M. – Mechanics, Pergamon Press. 1969

Norma de recuperação: 5840730 - Antonio Jefferson da Silva Machado

Bibliografia

1176388 - Luiz Tadeu Fernandes Eleno

Requisitos

LOB1018 - Física I (Requisito fraco)

LOB1004 - Cálculo II (Requisito fraco)