Getting ready for 10.4

We skip section 10.3 until we finish section 8.8. We will define the **p-series** now and learn the proof later in section 10.3.

Definition: The p-series, given by

$$\sum_{p=1}^{\infty} \frac{1}{n^p}$$

is convergent if p > 1 and divergent if $p \le 1$.

Example #1: Determine whether the following series are convergent or divergent:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^5} \qquad \rho = 5 > 0$$
Converges

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^{0.25}} p = .25 \le 1$$

Diverges

(c)
$$\sum_{n=2}^{\infty} \frac{\sqrt{5}}{(n-1)^{2/3}}$$

$$\sum_{n=1}^{\infty} \frac{\sqrt{5}}{n^{2/3}} \quad P^{=\frac{2}{3}} \stackrel{!}{=} 1$$
Diverges

Harmonic series: $\sum_{n=1}^{\infty} \frac{1}{n}$.

We already know this is divergent using the definition of p-series. We can see that alternatively, using partial sums.

Consider partial sums with index 2^k .

$$s_{1} = \frac{1}{1} = 1$$

$$s_{2} = \frac{1}{1} + \frac{1}{2} = 1 + \frac{1}{2}$$

$$s_{4} = 1 + \frac{2}{2}$$

$$s_8 = 1 + \frac{3}{2}$$

$$s_{16} = 1 + \frac{4}{2}$$

$$S_{2k} = 1 + \frac{k}{2}$$

 $(1 + \frac{k}{2}) \rightarrow \infty$ as $k \rightarrow \infty$
 S_{2k} diverges, so $\sum_{n=1}^{\infty} \frac{1}{n}$ also diverges