3B Modeller için Makine Öğrenmesi Tabanlı bir Görsel Kalite Ölçütü

Zeynep Çipiloğlu Yıldız – Manisa Celal Bayar Üniversitesi A. Cengiz Öztireli – ETH Zurich Tolga Çapın – TED Üniversitesi

Motivasyon

Sıkıştırma, sadeleştirme gibi işlemler 3B meshlerin görsel kalitesini etkilemektedir. Salt geometrik kalite ölçütleri algılanan kaliteyi ölçmede yetersizdir (Şek.1).

Şek.1: (b) ve (c)'deki meshlerin (a)'daki meshe geometrik uzaklıkları eşittir.

Algısal kalite ölçütleri ise insan görme sistemi mekanizmalarını modelleme prensibi üzerine çalışmakta ve çok fazla parametre barındırmaktadır.

Yöntem

Kitle Kaynak ile Veri Toplama

Amazon Mechanical Turk (AMT) üzerinden düzenlenen testte kullanıcılar meshlerin görsel kalitesini karşılaştırmalı olarak değerlendirirler.

Yöntem

Mesh geometrisini tanımlayan bazı öznitelikler çıkarılır: *Eğrilik*, *pürüzlülük*, *şekil endeksi* gibi verteks bazında ölçümlerin *ortalama*, *varyans*, *çarpıklık* ve *basıklık* değerleri olmak üzere toplam 28 öznitelik belirlenmiştir.

Yöntem

Metrik Öğrenme

 $D(X,Y) = \{(f_X - f_Y)^T W(f_X - f_Y)\}^{1/2}$

İki mesh arasındaki uzaklık öznitelik vektörleri arasındaki ağırlıklı Öklit uzaklığı olarak tanımlanmıştır. Bu ağırlıklar eğitim setindeki değerleri gözlemleme olasılığını maksimize edecek şekilde belirlenir. Bu amaçla Sequential Quadratic Programming (SQP) kullanılmaktadır.

Veri Kümesi

- 11 farklı mesh
- 21 seviye geometrik modifikasyon (gürültü ekleme ve yumuşatma)
- 1302 sorgu
- Her sorgu en az 20 kişi tarafından değerlendirilmiştir.

Deneysel Sonuçlar

- Mesh sınıfına göre tek-çıkışlı çapraz doğrulama
- Başarı ölçütü: Tahmin başarı yüzdesi
- Yaygın kullanılan diğer metrikler ile karşılaştırma

Örnek Uygulama

Mesh kuantizasyonu için koordinat başına düşen optimum bit sayısının (bpc) belirlenmesinde kullanılmıştır.

* Kaynakça

- 1. Lavoue, G.: A multiscale metric for 3D mesh visual quality assessment. In: Computer Graphics Forum, vol. 30, pp. 1427-1437. Wiley Online Library (2011)
- 2. Wang, K., Torkhani, F., Montanvert, A.: A fast roughness-based approach to the assessment of 3D mesh visual quality. Computers & Graphics **36**(7), 808-818 (2012)
- 3. Torkhani, F., Wang, K., Chassery, J.M.: A curvaturetensor-based perceptual quality metric for 3D triangular meshes. Machine Graphics and Vision **23**(1-2), 59-82 (2014)