Hidrólise Salina

HIDRÓLISE DE SAIS

É a reação entre o sal e a água, produzindo o ácido e a base correspondentes.

Lembrando que:

- um sal é sempre iônico;
- a água é predominantemente molecular;
- um ácido ou base forte é predominantemente iônico;
- um ácido ou base fraca é predominantemente molecular.

Vamos aos exemplos fundamentais:

1º) Hidrólise de um sal de ácido forte e base fraca

$$NH_4Cl + H_2O \hookrightarrow HCl + NH_4OH$$

 $NH_4^+ + Cl + H_2O \hookrightarrow H^+ + Cl + NH_4OH$

$$NH_4^+ + H_2O \stackrel{\leftarrow}{\rightarrow} H^+ + NH_4OH$$
 pH < 7

2º) Hidrólise de um sal de ácido fraco e base forte

$$KCN + H_2O \hookrightarrow HCN + KOH$$

 $K^4 + CN^- + H_2O \hookrightarrow HCN + K^4 + OH^-$

$$CN^- + H_2O \stackrel{\leftarrow}{\rightarrow} HCN + OH^-$$
 pH > 7

3º) Hidrólise de um sal ácido e base, ambos fracos

$$NH_4CN + H_2O \subseteq HCN + NH_4OH$$

$$NH_4^+ + CN^- + H_2O \hookrightarrow HCN + NH_4OH$$

Se o ácido e a base forem igualmente fracos \Rightarrow pH = 7

4º) Sal de ácido e base, ambos fortes, não há hidrólise

EXERCÍCIOS DE APLICAÇÃO

- **O1 (VUNESP-SP)** Quando se adiciona o indicador fenolftaleína a uma solução aquosa incolor de uma base de Arrhenius, a solução fica vermelha. Se a fenolftaleína for adicionada a uma solução aquosa de um ácido de Arrhenius, a solução continua incolor. Quando se dissolve cianeto de sódio em água, a solução fica vermelha após adição de fenolftaleína. Se a fenolftaleína for adicionada a uma solução aquosa de cloreto de amônio, a solução continua incolor.
- a) Explique o que acontece no caso do cianeto de sódio, utilizando equações químicas.
- b) Explique o que acontece no caso do cloreto de amônio, utilizando equações químicas.

- 02 **(UFU-MG)** A água sanitária, utilizada no branqueamento de roupas, como bactericida e em muitas outras aplicações, é uma solução aquosa de hipoclorito de sódio. Essa solução deve
- a) ser má condutora de eletricidade, pois a maior parte do composto se encontra como moléculas não dissociadas.
- b) apresentar pH = 7,0, pois trata-se de um sal derivado do HC ℓ O e NaOH.
- c) apresentar pH < 7,0, porque há formação de HC ℓ O que, sendo ácido fraco, ioniza parcialmente na água, formando H^{+} .
- d) apresentar pH > 7,0, porque o ânion sofre hidrólise em água.

Dados: $HC\ell O$ é ácido fraco, $Ka = 3.5 \cdot 10^{-8}$.

03 (PUC-RS) O quadro abaixo apresenta compostos, nomes comuns e valores de pH, que podem ou não estar corretamente associados.

	Composto	Nome comum	pН
I	Ca(OH) ₂	Soda cáustica	>7,0
II	CaCO ₃	Cal virgem	< 7,0
III	NH ₄ Cl	Sal amoníaco	< 7,0
IV	NH ₄ OH	Amoníaco	>7,0
V	НСООН	Ácido acético	< 7,0

A alternativa que contém as associações corretas é

- a) I II III
- b) II III IV
- c) III IV
- d) III IV V
- e) IV V
- **O4 (VUNESP-SP)** Leia o seguinte trecho de um diálogo entre Dona Benta e seus netos, extraído de um dos memoráveis livros de Monteiro Lobato, Serões de Dona Benta:
-Toda matéria ácida tem a propriedade de tornar vermelho o papel de tornassol.
- A matéria básica não tem gosto ácido e nunca faz o papel tornassol ficar vermelho...
- E os sais?
- Os sais são o produto da combinação dum ácido com uma base. ...
- E de que cor os sais deixam o tornassol?
- Sempre da mesma cor. Não têm nenhum efeito sobre ele. ...
- a) Explique como o papel de tornassol fica vermelho em meio ácido, sabendo que o equilíbrio para o indicador impregnado no papel pode ser representado como:

$$\underbrace{\text{HIn}}_{\text{(vermelho)}} \stackrel{\longleftarrow}{\hookrightarrow} H^+ + \underbrace{\text{In}}_{\text{(azul)}}^-$$

b) Identifique uma parte do diálogo em que há um conceito químico errado. Justifique sua resposta.

05 (FMTM-MG) Cloreto de potássio, ácido acético e bicarbonato de sódio foram, separadamente, dissolvidos em água. Cada uma das soluções resultantes foi colocada em um tubo de ensaio, e o pH de cada uma delas foi medido, encontrando-se os seguintes valores:

Tubo	pН
A	3,0
В	8,0
С	7,0

Baseados nos valores de pH encontrados, pode-se afirmar que os tubos A, B e C contêm, respectivamente,

- a) cloreto de potássio, bicarbonato de sódio e ácido acético.
- b) bicarbonato de sódio, cloreto de potássio e ácido acético.
- c) ácido acético, bicarbonato de sódio e cloreto de potássio.
- d) bicarbonato de sódio, ácido acético e cloreto de potássio.
- e) ácido acético, cloreto de potássio e bicarbonato de sódio.
- **06 (UNIFENAS-MG)** O valor de pH de soluções saturadas de carbonato de amônio, cloreto de cálcio e carbonato de cálcio é, respectivamente,
- a) menor que 7, igual a 7 e em torno de 7.
- b) igual a 7, maior que 7, menor que 7.
- c) maior que 7, em torno de 7, menor que 7.
- d) em torno de 7, igual a 7, maior que 7.
- e) em torno de 7, igual a 7, menor que 7.

07 **(FUVEST-SP)** Deseja-se distinguir, de maneira simples, as substâncias de cada um dos pares abaixo, utilizando-se os testes sugeridos do lado direito da tabela.

Par de substâncias		Teste	
I)	Nitrato de sódio e bicarbonato de sódio	X) Dissolução em água	
II)	Cloreto de sódio e glicose	Y) pH de suas soluções aquosas	
III)	Naftaleno e sacarose	Z) Condutibilidade elétrica de suas soluções aquosas	

As substâncias dos pares I, II e III podem ser distinguidas, utilizando-se, respectivamente, os testes:

- a) X, Y e Z
- b) X, Z e Y
- c) Z, X e Y
- d) Y, X e Z
- e) Y, Z e X

08 (FUVEST-SP) Para se obter uma solução aquosa de pH maior que 7, deve-se di	ssolver em água pura:
a) ácido clorídrico.	
b) bicarbonato de sódio.	
c) cloreto de sódio.	
d) álcool etílico.	

- 09 (VUNESP-SP) Mediu-se o pH de soluções aquosas de NaC ℓ , C₆H₅COONa (benzoato de sódio) e NH₄C ℓ . Os resultados obtidos indicaram que a solução NaC ℓ é neutra, a de C₆H₅COONa é básica e a de NH₄C ℓ é ácida.
- a) Explique por que as soluções apresentam essas características.
- b) Escreva a equação química correspondente à dissolução de cada substância em água, nos casos em que ocorre hidrólise.
- 10 (UEL-PR) Dentre as substâncias abaixo, a única que propicia diminuição de pH quando acrescentada à água é:
- a) NH₄NO₃

e) cloreto de amônio.

- b) CH₄
- c) NH₃
- d) NaOH
- e) NaCH₃COO
- 11 (FUVEST-SP) Carbonato de sódio, quando colocado em água, a 25°C, se dissolve:

$$Na_2CO_3(s) + H_2O(\ell) \rightarrow HCO_3^{-}(aq) + 2 Na^{+}(aq) + X$$

X e o pH da solução devem ser:

- a) CO₂, maior que 7.
- b) OH⁻(aq), maior que 7.
- c) H⁺(aq), igual a 7.
- d) CO₂, igual a 7.
- e) OH⁻(aq), menor que 7.
- 12 (MACKENZIE-SP) Um sal formado por base forte e ácido fraco hidrolisa ao se dissolver em água, produzindo uma solução básica. Esta é uma característica do:
- a) Na₂S
- b) NaCℓ
- c) (NH₄)₂SO₄
- d) KNO₃
- e) NH₄Br
- **13 (PUCCAMP-SP)** Amônia, NH₃, interagindo com HCℓ, ambos no estado gasoso, produz um sal que, em contato com água, origina solução aquosa cujo pH, a 25°C, é:
- a) < 0
- b) = 0
- c) = 7
- d) > 7
- e) maior do que O e menor do que 7.

- 14 (FUVEST-SP) A redução da acidez de solos impróprios para algumas culturas pode ser feita, tratando-os com:
- a) gesso (CaSO₄ $\cdot \frac{1}{2}$ H₂O).
- b) salitre (NaNO₃).
- c) calcário (CaCO₃)
- d) sal marinho (NaC ℓ).
- e) sílica (SiO₂).
- 15 (UFRGS-RS) O sulfato de alumínio (A ℓ_2 (SO₄)₃), usado como floculante no tratamento de água, forma uma solução, na qual:
- a) o pH é ácido, pois se trata de um sal de ácido forte.
- b) o pH é alcalino, pois se forma o hidróxido de alumínio, que é uma base insolúvel.
- c) o pH = 7, pois se trata de uma solução salina, logo neutra.
- d) $[A\ell^{3+}] = [SO_4^{2-}].$
- e) não existe hidrólise, apenas dissociação do sal.
- 16 (UFRGS-RS) A única das espécies, que, ao ser dissolvida em água, resulta em uma solução com pH menor que o do solvente puro é:
- a) NaCℓ
- b) Na₂CO₃
- c) CaC_{ℓ2}
- d) NH₃
- e) (NH₄)₂SO₄
- 17 (UFF-RJ) Assinale a opção correta.
- a) A solução aquosa de KCℓ é básica.
- b) A solução aquosa de NaF é ácida.
- c) A solução aquosa de KCℓ é ácida.
- d) A solução aquosa de CH₃COONa é neutra.
- e) A solução aquosa de NaF é básica.
- 18 (VUNESP-SP) Dissolveu-se separadamente em três tubos de ensaio, contendo volumes iguais de água destilada, 0,1 grama de sal: acetato de sódio, cloreto de sódio e cloreto de amônio.
- a) O pH de cada uma das soluções será ácido, básico ou neutro? Quando o pH observado for diferente do da água pura, escreva a equação da reação correspondente.
- b) Qual é o nome da reação que ocorre nas soluções em que há alteração de pH na dissolução de sais?
- 19 (FCC-SP) O exame dos seguintes dados:
- I. $[H_3CNH_3]^+[CN^-] + HOH \rightarrow HCN + [H_3CNH_3]OH$

Sal Ácido Base

II. Constante de ionização: ácido \rightarrow K₁ = 5 . 10⁻¹⁰, base \rightarrow K₂ = 5 . 10⁻⁴

permite concluir que, na dissolução em água do composto [H₃CNH₃]CN, se obtém uma solução:

- a) básica, porque $K_1 < K_2$.
- b) básica, porque $K_1 > K_2$.
- c) ácida, porque $K_1 < K_2$.
- d) ácida, porque $K_1 > K_2$.
- e) neutra, porque [ácido] = [base].

- **20 (UFBA-BA)** Alguns antiácidos, usados comercialmente para combater a acidez estomacal, contêm bicarbonato de sódio. Em relação a esses antiácidos, considerando-se as reações químicas que ocorrem durante a dissolução em água, a ação sobre a acidez estomacal e os compostos envolvidos, pode-se afirmar que:
- (01) o gás liberado, durante a dissolução, é o hidrogênio.
- (02) o bicarbonato de sódio e classificado como sal básico.
- (04) o bicarbonato de sódio, em solução aquosa, hidrolisa-se, produzindo íons OH⁻(aq).
- (08) ocorre uma reação de oxirredução, quando o antiácido atua sobre a acidez estomacal.
- (16) o ácido carbônico, em solução aquosa, é um ácido forte.
- (32) a ação do antiácido eleva o pH no estômago.
- **21 (UFMG-MG)** Considere os sais NH₄Br, NaCH₃COO, Na₂CO₃, K₂SO₄ e NaCN. Soluções aquosas desses sais, de mesma concentração, têm diferentes valores de pH.

Indique, entre esses sais, um que produza uma solução ácida, um que produza uma solução neutra e um que produza uma solução básica.

22 (UESB-BA) O suor tem, em sua composição, alguns ácidos carboxílicos responsáveis pelos desagradáveis odores da transpiração. A "sabedoria popular" recomenda o uso de leite de magnésia (suspensão de Mg(OH)₂) como desodorante e alguns produtos comerciais que contêm bicarbonato de sódio.

Com base nessa informação e nos conhecimentos de Química, é correto afirmar que:

- I. a ação do leite de magnésia é de neutralização do ácido carboxílico.
- II. o NaHCO₃ é menos eficiente do que o Mg(OH)₂, porque neutraliza o ácido parcialmente.
- III. um mol de Mg(OH)₂ neutraliza duas vezes mais mols de um mesmo ácido monocarboxílico que um mol de NaHCO₃.
- IV. o suor, na presença de fenolftaleína, é incolor.
- V. a liberação de CO₂ ocorre nas duas reações com ácido carboxílico.

Utilize o código:

- (01) somente I e II estiverem corretas.
- (02) somente I, III e IV estiverem corretas.
- (03) somente I, II e V estiverem corretas.
- (04) somente II e IV estiverem corretas.
- (05) somente III, IV e V estiverem corretas.
- 23 (UCG-GO) Explique a afirmação a seguir.

Os solos dos cerrados apresentam acidez elevada, que prejudica o desenvolvimento das plantas. A correção do pH do solo pode ser feita através da adição das seguintes substâncias: calcário (CaCO₃) e cal extinta (Ca(OH)₂). Os nomes químicos desses compostos são: carbonato de cálcio e hidróxido de cálcio, respectivamente.

24 (UNICAMP-SP) As propriedades de um indicador ácido-base estão esquematizadas na equação e na figura abaixo:

$$HInd_{(aq)} \rightleftharpoons H^{+}_{(aq)} + Ind^{-}_{(aq)}$$
(amarelo) (azul)

Que cor apresentará esse indicador quando adicionado a cada uma das soluções aquosas das seguintes substâncias?

- a) Ácido acético
- b) Amônia
- c) Acetato de sódio
- d) Cloreto de hidrogênio
- e) Cloreto de sódio

25 (ITA-SP) Em relação às soluções aquosas de cada um dos seguintes sais: NH₄Cℓ, KNO₃, CuSO₄, fez-se a seguinte afirmação, constituída de três partes:

- I. As três soluções apresentam pH menor do que 7
- II. porque esses sais derivam de ácidos fortes
- III. e porque esses sais derivam de bases fracas.
- a) As três partes da afirmação estão certas.
- b) Somente a parte II está certa.
- c) As três partes estão erradas.
- d) Somente a parte I está certa.
- e) Somente a parte I está errada.

26 (UNICAMP-SP) Alcalose e acidose são dois distúrbios fisiológicos caracterizados por alterações do pH no sangue: a alcalose corresponde a um aumento, enquanto a acidose corresponde a uma diminuição do pH. Essas alterações de pH afetam a eficiência do transporte de oxigênio pelo organismo humano. O gráfico esquemático a seguir mostra a porcentagem de oxigênio transportado pela hemoglobina, em dois pH diferentes em função da pressão do O₂.

- a) Em qual dos dois pH há maior eficiência no transporte de oxigênio pelo organismo? Justifique.
- b) Em casos clínicos extremos pode-se ministrar solução aquosa de $NH_4C\ell$ para controlar o pH do sangue. Em qual destes distúrbios (alcalose ou acidose) pode ser aplicado esse recurso? Explique.
- **27 (UNIRIO-RJ)** As fraldas descartáveis possuem placas de poliacrilato de sódio (apresentado abaixo), um polímero capaz de absorver 800 vezes seu peso em água destilada, provocando o "inchaço" do polímero pela entrada de água.

$$\begin{array}{c} ---\mathrm{CH_2}\mathrm{--CH} - \mathrm{CH_2}\mathrm{---} \\ | \\ \mathrm{C} = \mathrm{O} \\ | \\ \mathrm{O^-Na^+} \end{array}$$

Justifique a absorção de água pelo polímero contido nas fraldas descartáveis, provocando o aumento de seu volume.

- **28 (CESGRANRIO-RJ)** Em três frascos, A, B e C, dissolvemos, em água pura, respectivamente: cloreto de sódio (NaC ℓ), brometo de amônio (NH $_4$ Br) e acetato de sódio (NaC $_2$ H $_3$ O $_2$). Sabendo-se que somente os íons Na $^+$ e C ℓ^- não sofrem hidrólise, podemos afirmar que o (a):
- a) pH da solução do frasco A situa-se entre 8,0 e 10,0.
- b) pH da solução do frasco B situa-se entre 11,0 e 13,0.
- c) pH da solução do frasco C situa-se entre 2,0 e 4,0.
- d) solução do frasco A é mais ácida do que a do frasco B.
- e) solução do frasco B é mais ácida do que a do frasco C.
- 29 (UNIFESP-SP) Os rótulos de três frascos que deveriam conter os sólidos brancos, Na₂CO₃, KCℓ e glicose, não necessariamente nessa ordem, se misturaram. Deseja-se, por meio de testes qualitativos simples, identificar o conteúdo de cada frasco. O conjunto de testes que permite esta identificação é:
- a) condutibilidade elétrica e pH.
- b) solubilidade em água e pH.
- c) adição de gotas de um ácido forte e pH.
- d) aquecimento e solubilidade em água.
- e) adição de gotas de uma base forte e condutibilidade elétrica.

- 30 (UFRJ-RJ) Alguns extintores de incêndio de espuma contêm bicarbonato de sódio NaHCO₃ e ácido sulfúrico em compartimentos separados. Quando o extintor é acionado, estas substâncias entram em contato, produzindo gás carbônico, que sai misturado com uma solução e forma uma espuma que atua apagando o fogo.
- a) Explique como a espuma atua para apagar o fogo.
- b) Escreva a equação da reação do ácido sulfúrico com o bicarbonato de sódio.
- c) O bicarbonato de sódio também é utilizado como antiácido. Explique por que a solução aquosa deste sal apresenta um pH acima de 7.

31 (CESGRANRIO-RJ)

Substância	Concentração (g/L)	
CaSO ₄	0,09	
Ca(HCO ₃) ₂	0,05	
${\rm Mg(HCO_3)_2}$	0,02	
NaHCO ₃	0,14	
NaCl	0,03	

Analise a tabela mostrada com a composição química de uma amostra de água mineral e assinale a opção correta em razão dessas informações.

- a) A espécie bicarbonato se hidrolisa elevando o pH da água.
- b) As espécies sulfato e cloreto se hidrolisam elevando o pH da água.
- c) Os bicarbonatos de cálcio, de magnésio e de sódio possuem caráter ácido.
- d) Os íons sódio e cloro não se dissociam na dissolução do cloreto de sódio.
- e) Todas as substâncias são sais de metais alcalinos em concentrações que diminuem o pH da água.
- **32 (CEFET-MG)** A seguir, estão relacionados alguns produtos comerciais/industriais e as substâncias ativas dos mesmos.

Produtos comerciais/ industriais	Substâncias ativas
Mármore	Carbonato de cálcio
Detergente	Amônia (amoníaco)
Solução de bateria	Ácido sulfúrico
Leite de magnésia	Hidróxido de magnésio
Fertilizante	Nitrato de potássio

Em relação a esses compostos, é incorreto afirmar que:

- a) o detergente amoniacal é ácido.
- b) a solução de bateria tem pH < 7.
- c) o nitrato de potássio é um sal neutro.
- d) o leite de magnésia é uma solução básica.
- e) o mármore reage com HCℓ, liberando CO₂.

33 (UFG-GO) O mar quando quebra na praia é bonito é bonito...

Provavelmente Dorival Caymmi não teria inspiração para compor essa música ao observar a poluição de algumas praias brasileiras. Sobre o mar, é correto afirmar que:

- (01) o sal (cloreto de sódio) dissolvido em suas águas é proveniente da decomposição de material orgânico da fauna marinha.
- (02) as águas do mar Morto são mais densas que as do litoral brasileiro, devido à alta concentração salina.
- (04) podem-se separar os sais de suas águas por destilação simples.
- (08) o cloreto de sódio dissolvido produz uma solução alcalina, que é neutralizada pelas algas marinhas.
- (16) durante um derramamento de petróleo, que traz consequências ambientais incalculáveis, esta mistura de hidrocarbonetos, altamente miscível com a água do mar, produz uma mistura homogênea.

Some os números dos itens corretos.

34 (UFMG-MG) O rótulo de um medicamento utilizado no tratamento da azia e de outros transtornos digestivos indica que, em sua composição química, existem as seguintes substâncias: ácido acetilsalicílico, ácido cítrico, carbonato ácido de sódio e carbonato de sódio.

Quando se coloca um comprimido desse medicamento em água, observa-se uma efervescência.

Com relação ao exposto, assinale a afirmativa falsa.

- a) A efervescência é devida à liberação de CO₂.
- b) As substâncias presentes são compostos orgânicos.
- c) Os ácidos reagem com os carbonatos em solução aquosa.
- d) Os carbonatos presentes revelam comportamento básico.
- **(FESP-PE)** Um determinado indicador HInd apresenta uma constante de dissociação, $K_1 = 1.0 \cdot 10^{-5}$. Admitindo-se que a forma não-ionizada tem a coloração "amarela" e o íon Ind tem a coloração "roxa", é de se esperar que as soluções aquosas de hidróxido de sódio, carbonato de potássio, borato de sódio e cianeto de potássio, quando em contato com algumas gotas do indicador, apresentem respectivamente as colorações:
- a) amarela roxa roxa amarela.
- b) roxa roxa amarela amarela.
- c) amarela amarela amarela.
- d) roxa roxa roxa roxa.
- e) roxa roxa roxa amarela.
- **36 (PUC-SP)** O suco gástrico produzido pelo estômago contém pepsina e ácido clorídrico substâncias necessárias para a digestão das proteínas.
- a) Com base no gráfico abaixo, calcule a concentração ideal em mol \cdot L $^{-1}$ de HC ℓ no suco gástrico.

b) Dispondo-se de leite de magnésia (Mg(OH)₂ no estado coloidal), Na₂CO₃ e HCℓ, indique o que poderá ser usado para corrigir o pH do estômago, se ele for: (1) inferior a 2; (2) superior a 2.

- **37 (UFG-GO)** O ácido clorídrico está presente no estômago, auxiliando o processo da digestão dos alimentos. Sobre esse ácido, é correto afirmar que:
- (01) pode ser neutralizado no estômago, através da ingestão de carbonato ácido de sódio, porque soluções de NaHCO₃ apresentam caráter básico.
- (02) é neutralizado no duodeno pelo suco pancreático, que é rico em carbonatos de metais alcalinos.
- (04) auxilia na digestão de lipídios, porque a hidrólise de ésteres no estômago ocorre em meio ácido.
- (08) para preparar 200 mL de uma solução 2 mol/L, utilizam-se 14,6 g do soluto.
- (16) a ligação química entre os elementos cloro e hidrogênio é do tipo iônica.
- (32) reage com NH₄Cℓ, produzindo uma solução de caráter básico.

Dado: H = 1u; Cl = 35,5 u.

Indique a soma dos números das afirmações corretas.

- **38 (UERJ-RJ)** O cloreto de potássio é uma substância solúvel em água, muito usada como fertilizante e na preparação de outros sais de potássio. Das afirmativas abaixo, aquela cuja informação sobre o cloreto de potássio está correta é:
- a) sua solução aquosa é ácida.
- b) é uma substância em que a menor relação entre os íons é 1:2.
- c) os íons que formam o composto possuem o mesmo número de elétrons.
- d) a eletrólise de uma solução aquosa dessa substância, usando-se eletrodos de grafita, produz o metal potássio no cátodo.

Dados: números atômicos: K(19), $C\ell(17)$.

39 (UFPI-PI) Uma das principais causas de morte na faixa etária de 15 a 35 anos é a ingestão de drogas em doses elevadas. Em situações de emergência, a informação correta sobre o tipo de droga ingerida é fundamental para salvar vidas. No caso de compostos ácidos como fenobarbital (Gardenal) e salicilato (Aspirina), a eliminação é facilitada pela alcalinização da urina (caso I). Para anfetaminas (arrebite), recomendase a acidificação da urina (caso II). Das alternativas a seguir, escolha a que corresponde à melhor indicação para o tratamento em cada caso:

	Caso I	Caso II
a)	NaF	NaHCO ₃
b)	KNO ₃	Na ₂ CO ₃
c)	NaHCO ₃	NH ₄ CI
d)	NH_4NO_3	KCI
e)	Na ₂ CO ₃	NaC ₂ H ₃ O ₂

- **40 (VUNESP-SP)** O uso do bicarbonato de sódio (NaHCO₃) no combate aos sapinhos, à afta, à azia ou a cheiro de suor, devesse ao seu caráter:
- a) básico, que o torna capaz de neutralizar a acidez envolvida em todos esses exemplos.
- b) ácido, que o torna capaz de neutralizar a alcalinidade envolvida em todos esses exemplos.
- c) neutro, que o torna capaz de neutralizar a acidez envolvida em todos esses exemplos.
- d) anfótero, que o torna capaz de neutralizar a acidez e alcalinidade envolvidas em todos esses exemplos.
- e) anfótero, que o torna capaz de neutralizar a alcalinidade envolvida.
- 41 (FUVEST-SP) A criação de camarão em cativeiro exige, entre outros cuidados, que a água a ser utilizada apresente pH próximo de 6. Para tornar a água, com pH igual a 8,0, adequada à criação de camarão, um criador poderia:
- a) adicionar água de cal.
- b) adicionar carbonato de sódio sólido.
- c) adicionar solução aquosa de amônia.
- d) borbulhar, por certo tempo, gás carbônico.
- e) borbulhar, por certo tempo, oxigênio.

- **42 (PUC-RS)** Para o cultivo de azaleias, o pH ideal é entre 4,0 e 5,0. A análise do solo de um jardim mostrou que o mesmo apresenta um pH igual a 6,0. O composto ideal para adequar o solo ao plantio das azaleias é:
- a) $A\ell_2(SO_4)_3$
- b) CaCO₃
- c) CaO
- d) NH₃
- e) NaOH
- **43 (UFPE-PE)** O azul de bromotimol é um indicador ácido-base, com faixa de viragem [6,0 7,6], que apresenta cor amarela em meio ácido e cor azul em meio básico. Considere os seguintes sistemas:
- I. água pura
- II. CH₃COOH 1 mol/L
- III. NH₄Cℓ 1 mol/L

Indique, na tabela que segue, a coluna contendo as cores desses sistemas depois da adição de azul de bromotimol.

	Sistema		
	Água pura	CH ₃ COOH 1 mol/L	NH ₄ Cl 1 mol/L
a)	verde	amarelo	azul
b)	verde	azul	verde
c)	verde	amarelo	verde
d)	verde	amarelo	amarelo
e)	verde	amarelo	azul

- **(VUNESP-SP)** Durante a produção de cachaça em alambiques de cobre, é formada uma substância esverdeada nas paredes, chamada de azinhavre [CuCO₃ · Cu(OH)₂], resultante da oxidação desse metal. Para a limpeza do sistema, é colocada uma solução aquosa de caldo de limão, que, por sua natureza ácida, contribui para a decomposição do azinhavre.
- a) Escreva a equação química para a reação do azinhavre com um ácido fraco, HA, em solução aquosa.
- b) Considerando soluções aquosas de carbonato de sódio, de cloreto de sódio e de hidróxido de sódio, alguma delas teriam o mesmo efeito sobre o azinhavre? Por quê?
- **45 (ITA-SP)** Em quatro copos são colocados 100 cm³ de água e quatro gotas de azul de bromotimol, um indicador que adquire cor amarela em pH < 6,0; verde em pH entre 6,0 e 7,6; azul em pH > 7,6. Adicionando, ao primeiro copo, sulfato férrico; ao segundo, acetato de sódio; ao terceiro, sulfato de sódio e, ao quarto, cloreto de amônio (aproximadamente uma colher de chá do respectivo sólido), indique a cor de cada solução.

- 46 (UFSM-RS) Analise as reações de hidrólise do acetato de sódio (1), do cloreto de amônio (2) e do acetato de amônio (3).
- (1) NaCH₃COO \rightarrow Na⁺ + CH₃COO⁻

CH₃COO⁻ + HOH ← OH⁻ + CH₃COOH

(2) $NH_4C\ell \rightarrow NH_4^+ + C\ell^-$

 $NH_4^+ + HOH \rightleftharpoons H^+ + NH_4OH$

(3) $NH_4CH_3COO \rightarrow NH_4^+ + CH_3COO^-$

 $NH_4^+ + HOH \rightleftharpoons NH_4OH + H^+$

CH₃COO⁻ + HOH ← CH₃COOH + OH⁻

Sabendo que o K_a do CH_3COOH e o K_b do NH_4OH têm o mesmo valor, 1,8 . 10^{-5} , pode-se dizer que o:

- I. NaCH₃COO e o NH₄C ℓ são sais de caráter básico.
- II. NH₄CH₃COO é um sal de caráter neutro.
- III. $NH_4C\ell$ é um sal de caráter básico e o $NaCH_3COO$, um sal de caráter ácido.
- IV. NaCH₃COO é um sal de caráter básico e o NH₄Cℓ, um sal de caráter ácido.

Estão corretas:

- a) apenas I e II.
- b) apenas I e III.
- c) apenas II e III.
- d) apenas II e IV.
- e) apenas III e IV.
- **47 (UFES-ES)** Complete as equações abaixo e classifique as soluções resultantes como ácida, básica ou neutra. Justifique sua resposta.
- a) NaC ℓ (s) + H₂O \rightarrow
- b) $H_3CCOONa(s) + H_2O \rightarrow$
- c) NH₄C ℓ (s) + H₂O \rightarrow
- d) Na(s) + $H_2O \rightarrow$
- 48 (UFC-CE) Dadas três soluções aquosas a 25 °C: NaCℓ (solução I), NaF (solução II) e NH₄Cℓ (solução III).
- a) Apresente a ordem crescente de acidez para estas três soluções.
- b) Justifique sua resposta para o item a através do uso de equações químicas.
- 49 **(UNICAMP-SP)** Naná responde prontamente; afinal a danada é craque em Química. Veja só o experimento e as perguntas que ela propõe a Chuá:
- Quando em solução aquosa, o cátion amônio, NH₄⁺, dependendo do pH, pode originar cheiro de amônia, em intensidades diferentes. Imagine três tubos de ensaio, numerados de 1 a 3, contendo, cada um, porções iguais de uma mesma solução de NH₄Cℓ. Adiciona-se, no tubo 1 uma dada quantidade de NaCH₃COO e agita-se para que se dissolva totalmente. No tubo 2, coloca-se a mesma quantidade em moles de Na₂CO₃ e também se agita até a dissolução. Da mesma forma se procede no tubo 3, com a adição de NaHCO₃. A hidrólise dos ânions considerados pode ser representada pela seguinte equação:

$$X^{n-}(aq) + H_2O(\ell) = HX^{(n-1)-}(aq) + OH^{-}(aq)$$

Os valores das constantes das bases K_b para acetato, carbonato e bicarbonato são, na sequência: $5,6 \cdot 10^{-10}, 5,6 \cdot 10^{-4}$ e $2,4 \cdot 10^{-8}$. A constante K_b da amônia é $1,8 \cdot 10^{-5}$.

- a) Escreva a equação que representa a liberação de amônia a partir de uma solução aquosa que contém íons amônio.
- b) Em qual dos tubos de ensaio se percebe cheiro mais forte de amônia? Justifique.
- c) O pH da solução de cloreto de amônio é maior; menor ou igual a 7,0? Justifique usando equações químicas.

- 50 (VUNESP-SP) Numa estação de tratamento de água, uma das etapas do processo tem por finalidade remover parte do material em suspensão e pode ser descrita como adição de sulfato de alumínio e de cal, seguida de repouso para a decantação.
- a) Quando o sulfato de alumínio $A\ell_2(SO_4)_3$ é dissolvido em água, forma-se um precipitado branco gelatinoso, constituído por hidróxido de alumínio. Escreva a equação balanceada que representa esta reação.
- b) Por que é adicionada cal CaO neste processo? Explique, usando equações químicas.

GABARITO

01-

a)

NaCN é proveniente de base forte e ácido fraco, sendo assim ocorre a hidrólise do ânion em solução aquosa: $CN^- + HOH \rightleftharpoons HCN + OH^-$ (Caráter básico)

b)

 $NH_4C\ell$ é sal proveniente de base fraca e ácido forte, sendo assim ocorre hidrólise do cátion em solução aquosa: $NH_4^+ + HOH \rightleftharpoons NH_4OH + \mathbf{H}^+$ (Caráter ácido)

02- Alternativa D

 $NaC\ell O \rightarrow sal$ de base forte e ácido fraco. Sofre hidrólise o ânion em solução aquosa.

 $C\ell O^- + HOH \rightleftharpoons HC\ell O + OH^-$

Meio básico

03- Alternativa C

 $Ca(OH)_2 = base \rightarrow pH > 7$

 $CaCO_3$ = sal de base forte e ácido fraco \rightarrow pH > 7

 $NH_4C\ell$ = sal de base fraca e ácido forte $\rightarrow pH < 7$

 $NH_4OH = base \rightarrow pH > 7$

 $HCOOH = \acute{a}cido \rightarrow pH < 7$

Soda cáustica = NaOH

Cal virgem = CaO

Sal amoníaco = $(NH_4)_2CO_3$ ou $NH_4C\ell$

Ácido fórmico = HCOOH

04-

- a) Meio ácido, alta [H⁺], desloca o equilíbrio para a esquerda.
- b) Sal não altera a cor do tornassol (errado).

O sal pode sofrer hidrólise tornando o meio ácido ou básico.

05- Alternativa C

Ácido acético \rightarrow meio ácido \rightarrow pH < 7.

 $KCI \rightarrow sal de ácido forte e base forte, não hidrolisa \rightarrow pH = 7.$

NaHCO₃ \rightarrow sal de ácido fraco e base forte, hidrolisa tornando o meio básico \rightarrow pH > 7.

06- Alternativa D

 $(NH_4)_2CO_3 \rightarrow sal$ de ácido fraco e base fraca, hidrolisa, pH em torno de 7.

 $CaC\ell_2 \rightarrow sal$ de ácido forte e base forte, não hidrolisa, pH = 7.

 $CaCO_3 \rightarrow sal$ de ácido fraco e base forte, hidrolisa, pH > 7.

07- Alternativa E

- I) NaNO₃ \Rightarrow não hidrolisa \Rightarrow pH = 7 NaHCO₃ \Rightarrow hidrolisa \Rightarrow pH > 7
- II) NaCl em solução aquosa \Rightarrow conduz eletricidade $C_6H_{12}O_6$ em solução aquosa \Rightarrow não conduz z
- III) Naftaleno = hidrocarboneto = insolúvel em água $\begin{cases} x \end{cases}$

08- Alternativa B

$$HCO_3$$
 + $HOH \rightleftharpoons H_2CO_3 + OH$

$$HCO_3^- + H_2O \rightleftharpoons H_2O + CO_2 + OH^-$$

$$HCO_3$$
 \rightleftharpoons $CO_2 + OH$

Caráter básico

09-

a)

 $NaC\ell \rightarrow sal$ proveniente de ácido forte (HC ℓ) e base forte (NaOH) não sofre hidrólise;

 $C_6H_5COONa \rightarrow sal$ proveniente de ácido fraco (C_6H_5COOH) e base forte (NaOH) ocorre hidrólise do ânion;

 $NH_4C\ell \rightarrow sal$ proveniente de ácido forte ($HC\ell$) e base fraca (NH_4OH) ocorre hidrólise do cátion;

b)

 $C_6H_5COO^- + HOH \rightleftharpoons C_6H_5COOH + OH^-$

 $NH_4^+ + HOH \rightleftharpoons NH_4OH + H^+$

10- Alternativa A

A substância que propicia uma diminuição de pH (aumenta $[H^+]$) apresenta caráter ácido, ou seja, proveniente de base fraca e ácido forte: NH_4NO_3

Hidrólise do cátion em solução aquosa: NH₄+ + HOH ⇌ NH₄OH + H+

11- Alternativa B

O sal Na_2CO_3 é proveniente de base forte e ácido forte, sendo assim ocorre a hidrólise do ânion em solução aquosa: $CO_3^{2-} + HOH \rightleftharpoons HCO_3^{-} + OH^{-}$

Caráter básico

12- Alternativa A

O sal Na_2S é proveniente de base forte (NaOH) e ácido fraco (H_2S), ocorrendo a hidrólise do ânion em solução aquosa: S^{2-} + HOH \rightleftharpoons HS $^-$ + **OH** $^-$

(Caráter básico)

13- Alternativa E

Reação química: $NH_3 + HC\ell \rightarrow NH_4C\ell$

 $NH_4C\ell \rightarrow sal$ proveniente de base fraca e ácido forte, ocorre hidrólise do cátion em solução aquosa:

 $NH_4^+ + HOH \rightleftharpoons NH_4OH + H^+$

Caráter ácido (pH < 7)

14- Alternativa C

A redução da acidez de solos impróprios para algumas culturas pode ser feita com a adição de calcário (CaCO₃) que é um sal proveniente de base forte (Ca(OH)₂) e ácido fraco (H₂CO₃), apresentando caráter básico em solução aquosa, ocorrendo a hidrólise do ânion: $CO_3^{2-} + HOH \rightleftharpoons HCO_3^{-} + OH^{-}$

15- Alternativa A

O sal A ℓ_2 (SO₄)₃ é proveniente de base fraca (A ℓ (OH)₃) e ácido forte (H₂SO₄) sendo assim, apresenta caráter ácido em solução aquosa devido à hidrólise do cátion: A ℓ ³⁺ + 3 HOH \rightleftharpoons A ℓ (OH)₃ + 3 **H**⁺

16- Alternativa E

A única das espécies, que, ao ser dissolvida em água, resulta em uma solução com pH menor que o do solvente puro é o $(NH_4)_2SO_4$ que é um sal proveniente de base fraca (NH_4OH) e ácido forte (H_2SO_4) sendo assim, apresenta caráter ácido em solução aquosa devido à hidrólise do cátion: $NH_4^+ + HOH \rightleftharpoons NH_4OH + H^+$

17- Alternativa E

O sal NaF é proveniente de uma base forte (NaOH) e um ácido moderado (HF) sendo assim, apresenta caráter básico em solução aquosa devido à hidrólise do ânion: F- + HOH \Rightharpoonup HF + **OH**-

18-

a) $CH_3COONa \rightarrow sal$ proveniente de ácido fraco (CH_3COOH) e base forte (NaOH): caráter básico.

Hidrólise do ânion: CH₃COO⁻ + HOH ← CH₃COOH + **OH**⁻

 $NaC\ell \rightarrow sal$ proveniente de ácido forte (HC ℓ) e base forte (NaOH)): caráter neutro.

Não sofre hidrólise.

 $NH_4C\ell \rightarrow sal$ proveniente de ácido forte ($HC\ell$) e base fraca (NH_4OH): caráter ácido

Hidrólise do cátion: $NH_4^+ + HOH \rightleftharpoons NH_4OH + \mathbf{H}^+$

b) Hidrólise salina.

19- Alternativa A

O sal $[H_3CNH_3]^+[CN^-]$ é proveniente de ácido fraco e base fraca. No entanto, como K_2 (base) é maior que K_1 (ácido), neste caso a solução possui caráter levemente básico.

20- Os antiácidos a base de bicarbonato apresentam caráter básico em solução aquosa neutralizando a acidez estomacal devido à presença do HCℓ presente no suco gástrico:

 $HCO_3^- + HOH \rightleftharpoons H_2CO_3 + OH^-$

 $HCO_3^- + H_2O \rightleftharpoons H_2O + CO_2 + OH^-$

 $HCO_3^- \rightleftharpoons CO_2 + OH^-$ (Caráter básico)

(01) o gás liberado, durante a dissolução, é o hidrogênio.

Falso. O gás liberado, durante a dissolução é o CO₂.

(02) o bicarbonato de sódio e classificado como sal básico.

Verdadeiro. Sal proveniente de ácido fraco (H₂CO₃) e base forte (NaOH).

(04) o bicarbonato de sódio, em solução aquosa, hidrolisa-se, produzindo íons OH⁻(aq).

Verdadeiro.

(08) ocorre uma reação de oxirredução, quando o antiácido atua sobre a acidez estomacal.

Falso. Não ocorre modificação no nº de oxidação das espécies envolvidas.

(16) o ácido carbônico, em solução aquosa, é um ácido forte.

Falso. O H₂CO₃ é um ácido fraco e instável.

(32) a ação do antiácido eleva o pH no estômago.

Verdadeiro. O antiácido neutraliza os íons H⁺ do suco gástrico, com isso diminui [H⁺] aumentando o pH do meio.

21-

 $NH_4Br \rightarrow sal$ proveniente de ácido forte (HBr) e base fraca (NH_4OH): caráter ácido

NaCH₃COO → sal proveniente de ácido fraco (CH₃COOH) e base forte (NaOH): caráter básico

 $Na_2CO_3 \rightarrow sal$ proveniente de ácido fraco (H_2CO_3) e base forte (NaOH): caráter básico

 $K_2SO_4 \rightarrow sal$ proveniente de ácido forte (H_2SO_4) e base forte (KOH): caráter neutro

NaCN → sal proveniente de ácido fraco (HCN) e base forte (NaOH): caráter básico

22-02

I. a ação do leite de magnésia é de neutralização do ácido carboxílico.

Verdadeiro. O odor característico da transpiração é devido à ácidos carboxílicos.

II. o NaHCO₃ é menos eficiente do que o Mg(OH)₂, porque neutraliza o ácido parcialmente.

Falso. O ácido proveniente da transpiração é monocarboxílico, sendo neutralizado por 1 mol de íons H⁺, deste modo o ácido não será neutralizado parcialmente.

III. um mol de $Mg(OH)_2$ neutraliza duas vezes mais mols de um mesmo ácido monocarboxílico que um mol de $NaHCO_3$.

Verdadeiro. A hidrólise do íon HCO₃⁻ origina 1 mol de íons OH⁻, enquanto o Mg(OH)₂ origina 2 mols de íons OH⁻, sendo assim mais eficiente na neutralização.

IV. o suor, na presença de fenolftaleína, é incolor.

Verdadeiro. Meio ácido na presença do indicador fenolftaleína apresenta coloração incolor.

V. a liberação de CO₂ ocorre nas duas reações com ácido carboxílico.

Falso. Somente na hidrólise do íon HCO₃-.

23-

O CaCO₃ é um sal proveniente de base forte (Ca(OH)₂) e ácido fraco (H₂CO₃), sendo assim, apresenta caráter básico em solução aquosa, devido à hidrólise do ânion: $CO_3^{2-} + HOH \rightleftharpoons HCO_3^{-} + OH^{-}$

O Ca(OH)₂ é uma base forte e solúvel que em solução aquosa encontra-se dissociado: Ca(OH)₂ \rightarrow Ca²⁺(aq) + 2 OH⁻(aq)

Como os dois compostos apresentam caráter básico em solução aquosa, por isso são utilizados para diminuir a acidez do solo.

24-

- a) Ácido acético → caráter ácido, coloração: amarelo
- b) Amônia → caráter básico, coloração: azul
- c) Acetato de sódio → caráter básico (sal proveniente de ácido fraco (CH₃COOH) e base forte (NaOH), coloração: azul.
- d) Cloreto de hidrogênio → caráter ácido, coloração: amarelo.
- e) Cloreto de sódio \rightarrow caráter neutro (sal proveniente de ácido forte (HC ℓ) e base forte (NaOH) sendo assim não sofre hidrólise, coloração: verde.

25- Alternativa B

 $NH_4C\ell \rightarrow sal$ proveniente de ácido forte ($HC\ell$) e base fraca (NH_4OH), caráter ácido (pH < 7)

 $KNO_3 \rightarrow sal$ proveniente de ácido forte (HNO₃) e base forte (KOH), caráter neutro (pH = 7)

 $CuSO_4 \rightarrow sal$ proveniente de ácido forte (H_2SO_4) e base fraca ($Cu(OH)_2$), caráter ácido (pH < 7,0)

I. As três soluções apresentam pH menor do que 7

Falso.

II. porque esses sais derivam de ácidos fortes

Verdadeiro.

III. e porque esses sais derivam de bases fracas.

Falso.

26-

- a) Para uma mesma pressão de oxigênio, há maior porcentagem de oxigênio transportado no pH 7,6.
- b) $NH_4C\ell \rightarrow sal$ proveniente de base fraca e ácido forte, ocorre hidrólise do cátion em solução aquosa:

$$NH_4^+ + HOH \rightleftharpoons NH_4OH + H^+$$
 (Caráter ácido (pH < 7)

Sendo assim, a solução aquosa deste sal é utilizado na alcalose (alto pH) com a finalidade de abaixar o pH do sangue.

27-

Para que a fralda seja eficiente, ela deverá absorver maior quantidade de H_2O . De acordo com a equação de hidrólise do sal, temos:

28- Alternativa E

Frasco A: NaC $\ell \to \text{sal}$ proveniente de ácido forte (HC ℓ) e base forte (NaOH)): caráter neutro.

Não sofre hidrólise.

Frasco B: $NH_4Br \rightarrow sal$ proveniente de base fraca (NH_4OH) e ácido forte (HBr), ocorre hidrólise do cátion em solução aquosa: $NH_4^+ + HOH \rightleftharpoons NH_4OH + \mathbf{H}^+$: Caráter ácido (pH < 7)

Frasco C: $NaC_2H_3O_2 \rightarrow sal$ proveniente de ácido fraco (CH₃COOH) e base forte (NaOH): caráter básico.

Hidrólise do ânion: $CH_3COO^- + HOH \rightleftharpoons CH_3COOH + OH^-$: Caráter básico (pH > 7)

29- Alternativa A

Para distinguir o conteúdo dos frascos poderemos medir a condutividade das soluções, já que as soluções de Na_2CO_3 e $KC\ell$ conduzem eletricidade e a solução de glicose não conduz eletricidade. Também poderemos medir o pH das soluções aquosas salinas. O Na_2CO_3 é um sal de caráter básico (pH > 7) pois é proveniente de ácido fraco e base forte, enquanto a solução aquosa de $KC\ell$ possui caráter neutro (pH = 7) pois é proveniente de ácido forte e base forte, não sofrendo hidrólise.

30-

- a) A espuma forma uma camada que isola o combustível do comburente (oxigênio), impedindo a reação de combustão. No entanto, a espuma é eletrolítica, ou seja, conduz eletricidade e não pode ser utilizada em fogo proveniente de instalações elétricas pois pode eletrocutar o operador.
- b) 2 NaHCO₃(s) + H₂SO₄(aq) \rightarrow Na₂SO₄(aq) + 2 H₂O(ℓ) + 2 CO₂(g)

c)
$$HCO_3^- + HOH \rightleftharpoons H_2CO_3 + OH^-$$

$$HCO_3 + H_2O \Rightarrow H_2O + CO_2 + OH$$

$$HCO_3$$
 \rightleftharpoons $CO_2 + OH$

Caráter básico

31- Alternativa A

NaHCO₃ \rightarrow sal de ácido fraco e base forte, hidrolisa tornando o meio básico \rightarrow pH > 7

$$HCO_3$$
 + $HOH \rightleftharpoons H_2CO_3 + OH$

$$HCO_3$$
 + H_2O \rightleftharpoons H_2O + CO_2 + OH^-

$$HCO_3^- \rightleftharpoons CO_2 + OH^-$$
 (Caráter básico)

32- Alternativa A

Amoníaco, ou seja, NH₄OH(aq) é uma base fraca e instável, que em solução aquosa apresenta-se:

$$NH_3(g) + H_2O(\ell) \rightleftharpoons NH_4OH(aq) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

Caráter básico

33 - 06 (02 + 04)

(01) o sal (cloreto de sódio) dissolvido em suas águas é proveniente da decomposição de material orgânico da fauna marinha.

Falso. O sal NaCℓ é um composto inorgânico, provavelmente proveniente da dissolução de minerais na água do mar durante o período de formação dos oceanos.

(02) as águas do mar Morto são mais densas que as do litoral brasileiro, devido à alta concentração salina. Verdadeiro.

(04) podem-se separar os sais de suas águas por destilação simples.

Verdadeiro.

(08) o cloreto de sódio dissolvido produz uma solução alcalina, que é neutralizada pelas algas marinhas.

Falso. NaC $\ell \to \text{sal}$ proveniente de ácido forte (HC ℓ) e base forte (NaOH)): caráter neutro.

(16) durante um derramamento de petróleo, que traz consequências ambientais incalculáveis, esta mistura de hidrocarbonetos, altamente miscível com a água do mar, produz uma mistura homogênea.

Falso. Petróleo (mistura de hidrocarbonetos) é apolar e portanto imiscível na água que é polar.

34- Alternativa B

Substâncias encontradas no medicamento: ácido acetilsalicílico \rightarrow orgânico, ácido cítrico \rightarrow orgânico, bicarbonato de sódio \rightarrow inorgânico, carbonato de sódio \rightarrow inorgânico.

35- Alternativa D

 $NaOH \rightarrow base forte$

 $K_2CO_3 \rightarrow$ sal proveniente de base forte (KOH) e ácido fraco (H_2CO_3), solução aquosa com caráter básico $Na_3BO_3 \rightarrow$ sal proveniente de base forte (NaOH) e ácido fraco (H_3BO_3), solução aquosa com caráter básico $KCN \rightarrow$ sal proveniente de base forte (KOH) e ácido fraco (HCN), solução aquosa com caráter básico

36-

- a) Concentração ideal obtida quando a velocidade de digestão proteica é máxima em pH = 2 quando $[H^{+}] = 10^{-2}$ M.
- b) (1) Para elevar o pH, devemos ingerir uma base Mg(OH)₂ ou um sal que se hidrolisa formando solução básica (Na₂CO₃). O Na₂CO₃ aumenta a eructação (arroto).
- (2) Para diminuir o pH, o paciente poderá, de maneira controlada, ingerir $HC\ell$ (diluído em água), pois $HC\ell$ puro é um gás (25°C).

37 - 15(01 + 02 + 04 + 08)

(01) pode ser neutralizado no estômago, através da ingestão de carbonato ácido de sódio, porque soluções de NaHCO₃ apresentam caráter básico.

Verdadeiro.

(02) é neutralizado no duodeno pelo suco pancreático, que é rico em carbonatos de metais alcalinos.

Verdadeiro.

(04) auxilia na digestão de lipídios, porque a hidrólise de ésteres no estômago ocorre em meio ácido. Verdadeiro.

(08) para preparar 200 mL de uma solução 2 mol/L, utilizam-se 14,6 g do soluto.

$$\text{Verdadeiro.} \ 0, 2 \\ \\ \underline{\text{L-solução}}. \\ \frac{2 \\ \text{mol-HC}\ell}{1 \\ \underline{\text{L-solução}}}. \\ \frac{36,5 \\ \text{g HC}\ell}{1 \\ \underline{\text{mol-HC}\ell}} = 14,6 \\ \\ \text{g HC}\ell$$

(16) a ligação química entre os elementos cloro e hidrogênio é do tipo iônica.

Falso. Ligação covalente polar.

(32) reage com NH₄Cℓ, produzindo uma solução de caráter básico.

38- Alternativa C

Os íons K^+ (18 elétrons) e $C\ell^-$ (18 elétrons) são isoeletrônicos (mesmo n° de elétrons).

39- Alternativa C

Caso I \rightarrow substância de caráter básico (alcalinização): NaHCO₃ (sal proveniente de base forte e ácido fraco) Caso II \rightarrow substância de caráter ácido (acidificação): NH₄C ℓ (sal proveniente de base fraca e ácido forte)

40- Alternativa A

O sal bicarbonato de sódio apresentam caráter básico em solução aquosa neutralizando a acidez proveniente do suor, do suco gástrico ou afta (acidez bucal):

 $HCO_3^- + HOH \rightleftharpoons H_2CO_3 + OH^-$

 $HCO_3^- + H_2O \rightleftharpoons H_2O + CO_2 + OH^-$

 $HCO_3^- \rightleftharpoons CO_2 + OH^-$ (Caráter básico)

41- Alternativa D

Para tornar a água, com pH igual a 8,0, adequada à criação de camarão, ou seja, com pH próximo de 6, um criador poderia adicionar uma substância com caráter ácido, com isso aumenta a [H⁺] da solução diminuindo o pH do meio. O gás carbônico em solução apresenta o seguinte equilíbrio:

$$CO_2(g) + H_2O(\ell) \rightleftharpoons H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

42- Alternativa A

Para obtermos um pH = 6 (meio ácido) deveremos adicionar ao solo uma substância com caráter ácido. O sal $A\ell_2(SO_4)_3$ é proveniente de uma base fraca $(A\ell(OH)_3)$ e um ácido forte (H_2SO_4) sendo que sua hidrólise em solução aquosa apresenta caráter ácido (pH < 7)

43- Alternativa D

- I. água pura \rightarrow meio neutro (pH = 7)
- II. CH₃COOH 1 mol/L → solução ácida (pH < 7), presença de ácido acético em solução.
- III. $NH_4C\ell$ 1 mol/L \rightarrow solução ácida (pH < 7), sal proveniente de base fraca (NH_4OH) e ácido forte ($HC\ell$)

44-

- a) $CuCO_3$. $Cu(OH)_2(s) + 4 HA(aq) \rightarrow 2 CuA_2(aq) + CO_2(g) + 3 H_2O(\ell)$
- b) Não, pois nenhuma das soluções consideradas possui natureza ácida.

45-

- 1° copo: amarela; Fe₂(SO₄)₃ \rightarrow sal proveniente de base fraca (Fe(OH)₃) e ácido forte (H₂SO₄), sendo que sua hidrólise em solução aquosa apresenta caráter ácido.
- 2° copo: azul; CH₃COONa \rightarrow sal proveniente de base forte (NaOH) e ácido fraco (CH₃COOH), sendo que sua hidrólise em solução aquosa apresenta caráter básico.
- 3° copo: verde; $Na_2SO_4 \rightarrow sal$ proveniente de base forte (NaOH) e ácido forte (H_2SO_4), sendo assim não ocorre hidrólise do sal em solução aquosa, portanto apresenta caráter neutro.
- 4° copo: amarela; NH₄C $\ell \rightarrow$ sal proveniente de base fraca (NH₄OH) e ácido forte (HC ℓ), sendo que sua hidrólise em solução aquosa apresenta caráter ácido.

46- Alternativa D

- I. Falsa. O cloreto de amônio é um sal de caráter ácido; porém, o acetato de sódio é um sal de caráter básico.
- II. Verdadeira. Amônio e acetato sofrem hidrólise com a mesma intensidade: Ka do ácido acético = Kb do hidróxido de amônio.
- III. Falsa. O cloreto de amônio é um sal de caráter ácido e o acetato de sódio é um sal de caráter básico.
- IV. Verdadeira.

47-

a) $NaC\ell(s) + H_2O(\ell) \rightarrow Na^+(aq) + C\ell^-(aq)$; não é uma reação química. Ocorre apenas a dissociação do sal.

A solução final é neutra, pois não ocorre hidrólise.

b) $H_3CCOONa(s) + H_2O \rightarrow H_3CCOOH(aq) + Na^+(aq) + OH^-(aq)$, ou ainda:

 CH_3 - $COO^-(aq) + H_2O(\ell) \rightleftharpoons CH_3$ - $COOH(aq) + OH^-(aq)$; que deixa a solução básica.

c) $NH_4C\ell(s) + H_2O(\ell) \rightarrow NH_4OH + H^+ + C\ell^-(aq)$, ou ainda:

 $NH_4^+(aq) + H_2O(\ell) \rightleftharpoons NH_4OH(aq) + H^+(aq)$, que deixa a solução ácida.

d) $Na(s)+H_2O(\ell) \rightarrow Na^+(aq) + OH^-(aq) + \frac{1}{2}H_2(g)$, o OH^- deixa a solução básica.

48-

- a) NaF, NaCℓ, NH₄Cℓ
- b) NaC ℓ (s) \rightarrow Na⁺(aq) + C ℓ ⁻(aq)

Não ocorrerá hidrólise de nenhum dos íons, portanto, o meio será neutro.

 $NaF(s) \rightarrow Na^{+}(aq) + F^{-}(aq)$

Ocorrerá a hidrólise do íon F: $F^{-}(aq) + H_2O(\ell) \rightleftharpoons HF(aq) + OH^{-}(aq)$

Portanto, o meio será básico.

 $NH_4C\ell(s) \rightarrow NH_4^+(aq) + C\ell^-(aq)$

Ocorrerá a hidrólise do íon NH_4^+ : $NH_4^+(aq) + H_2O(\ell) \rightleftharpoons NH_4OH(aq) + H^+(aq)$

Portanto, o meio será ácido.

49-

- a) Observe as equações a seguir:
- I. $NH_4^+(aq) + H_2O(\ell) \rightleftharpoons NH_4OH(aq) + H^+(aq)$
- II. $NH_4OH(aq) \rightleftharpoons NH_3(g) + H_2O(\ell)$
- b) Percebe-se cheiro mais forte de amônia no tubo 2.

A adição de Na₂CO₃ torna o meio mais básico (maior K_b), o que provoca maior consumo de H⁺, deslocando o equilíbrio I para a direita e favorecendo a formação de NH₄OH(aq), que por sua vez se decompõe produzindo mais amônia (NH₃).

c) O cloreto de amônio é um sal de caráter ácido, pois é proveniente de um ácido forte (HC ℓ) e uma base fraca (NH $_4$ OH).

Logo a sua hidrólise salina origina uma solução ácida (pH<7): $NH_4^+(aq) + H_2O(\ell) \rightleftharpoons NH_4OH$ (aq) + $H^+(aq)$

50-

- a) Hidrólise do $A\ell_2(SO_4)_3$: $A\ell_2(SO_4)_3 + 6$ HOH $\rightleftharpoons 2$ $A\ell(OH)_3 \downarrow + 6$ H⁺ + 3 SO_4^{2-}
- b) A cal é um óxido de caráter básico e, portanto, reage com água produzindo Ca(OH)2:

 $CaO + H_2O \rightarrow Ca(OH)_2$

O hidróxido de cálcio formado, eleva o pH, pois neutraliza o H^+ , fazendo com que o equilíbrio se desloque para direita, formando mais precipitado de $A\ell$ (OH)₃.