	분야	데이터 유형1)	구축 더	이터량	원천 ⁶ 형4		라벨링	형식3)	라벨링	유형4)
	NIA 기입	텍스트	원천 데이터	1,152, 305개	신호 최적화 데이터	-	신호 최적화 데이터	.csv /.xml	신호 최적화 데이터	텍스트
			라벨링 데이터	651,8 89개	영상 데이터	.jpg	영상 데이터	.csv /.xml	영상 데이터	이미지
	데이터 출처5)	데이터 구축년도	구축기된	관(총괄)	가공	기관	검수	기관		
메타테이블 정보	자체 수집	2022년	(주)유아이	네트웍스	㈜유아이네트웍스 ㈜테스트웍스		㈜유아이네트웍스 한국전자기술연구원			
(다중기업가능)	데이터	기관명	문의담	당자명	전화번호 (유선전화번호기입)		메일주소			
	문의처	㈜유아이네트윅스	전용	년용현 02-586-0461 kipon7@naver.com						
	데이터 소개	AI를 활용하여 도심지 교통량, 교통밀도, 지체도 등 교통량 지표 데이터를 데이터 소개 단위 또는 네트워크 단위의 교통흐름을 개선하기 위한 AI(심층강화학습) 기반화 데이터 구축								
	주요키워드	AI 기반, 신호 최적화, 교통량, 인공지능 학습, 원천데이터, 라벨링데이터, 시뮬레이션							뮬레이션	
카테고리 정의서 첨부의 카테고리] 정의서	엑셀파잌	일에 데이	터카테고	1리 작성	하여 제출	출(예시침	코)

¹⁾ 텍스트, 오디오, 이미지, 비디오,

²⁾ txt, jpg,.....

³⁾ json, csv,...

⁴⁾ 내용요약(텍스트), 번역(자연어), 질의응답(자연어), 바운딩박스(이미지/동영상), 키포인트(이미지/동영상), 세그멘테이션(이미지/동영상), 전자(음성)

^{5) 4}대 언론기사, 자체 수집,,,,,,

	국	AI 기반 신호 최적화를	위한 데이터					
데이터셋명	문 영	Data for Artical Intellig	ranca—basad signal optimization					
	문	Data for Artical Intelligence—based signal optimization						
구축목적	튁	항목 연구분야	요구사항 완전감응형, 반감응형, TOD 신호 최적화 알고리즘 개발 독립교차로, 축단위, 네트워크 단위 신호최적화 모델 연구 통행시간, 통행속도, 통행량 예측 모델 연구 AI를 활용한 교통신호 제어 모형 개발 방법론 연구					
		산업분야	 스마트시티 관련 교통 시스템 개발 및 성능개선 AI 기반 감응형 신호제어기 및 관련 서비스 개발 엣지 시스템을 활용한 네트워크 단위 신호제어시스템 개발 					
		○ 다양한 데이터셋의 구	'성을 통한 신호최적화 연구 활성화					
		- 교통신호에 관한 연구	는 지속적으로 수행되었으며, 앞서, 연구의 배경에도 언급하였듯이 원활한 데이터 수집 및					
		보급이 이루어지지	않는 한계점을 내포하고 있었음					
		- 스마트교차로 보급 및	AI 학습 능력 향상으로 인하여 차량 식별에 대한 정확성이 향상되고 이로 인하여 보다 신					
		호최적화를 위한 데	이터셋 보급이 가능해짐					
		- 따라서 공간적, 시간 ^조 으로 예상됨	범위의 데이터셋의 구성이 가능해져 신호최적화에 대한 다양한 연구가 진행될 수 있을 것					
			병하 및 기도하					
		○ 신호 최적화 연구에 변화 및 고도화 - 기존의 회전교통량 기반의 신호최적화 연구가 대부분인 반면 본 과제를 통하여 제공되는 다양한 형태의 데이터셋						
		(회전교통량 기반, 개별 차량 기반, 기종점 통행량 기반)을 통하여 단일 다중, 축별로의 최적화가 아닌 도시 전체						
<u>ភា</u> ០ រៀ បា	2	를 포괄할 수 있는 연구로 고도화가 가능						
활용서비	<u>~</u>	○ 교차로의 통행시간, 통행량, 통행속도의 예측이 가능하여 네비게이션 기초자료로 활용 가능						
		- 본 사업을 통하여 구축된 데이터셋을 통하여 차량이 이동경로 및 기종점에 대한 정보, 5분 후에 도시 전체의 통						
		행량, 통행속도 등의 예측 및 정체예상 구간도 가능해져 네비게이션의 기초자료로 활용이 가능함 - 교차로 단위의 예측이 가능함에 따라 예측의 정확성 신뢰성을 확보할 수 있으며 궁극적으로 이용자의 통행시간 단						
		축에 기여할 수 있다고 판단됨						
		○ 한국형 데이터셋을 통한 표준화 및 적용성 확대						
		- 교통부문의 AI 학습 데이터셋은 대부분 국외에서 수집된 자료로 국내 실정에 맞는 자료에 구득이 어려움						
		- 신호최적화를 위한 시뮬레이션 대부분 국외 상용프로그램 및 오픈소스를 제공해 국내 데이터와 다소 차이가 발생						
		하는 한계점을 가지	고 있었음					
		- 본 사업에서 구축된 더	이터셋의 프로세스 및 분석, 가공 도구는 오픈소스 기반으로 제작되어 향후 사업 후에도 데					
		이터셋 이용자가 다양한 분석에 활용될 수 있는 기반이 되고, 한국형 신호 최적화 데이터셋의 표준체계 정립도 기반이 되고, 한국형 신호 최적화 데이터셋의 표준체계 정립도 기반이 되고, 한국형 신호 최적화 데이터셋의 표준체계 정립도 기반이 되고, 한국형 신호						
		능할 것으로 예상됨	기기드기나 트레웨데시 마이 버쉬로 시네기커스타 트뤼 스이키 트웨라이 즈키그 시네 그트					
			거리두기는 통행행태에 많은 변화를 아기시켰으며, 특히 승용차 통행량의 증가로 인해 교통 - 변화를 초지참여다. 이에 드시브이 교통호르에 여하의 즉는 교통시호에 대한 브분이 가즈					
		정체를 일부 가중시키는 변화를 촉진하였다. 이에 도심부의 교통흐름에 영향을 주는 교통신호에 대한 부분이되며, 신호최적화를 위한 AI 데이터는 반드시 필요한 자원						
] 대한 관심이 높으며 이에 따른 핵심자원인 데이터 구축은 반드시 필요하며, 혁신성장의 시					
소개			선도국인 대한민국의 초석					
		│ ○ 따라서 아래와 같은 ·	목적으로 데이터 구축					
		- 연구분야는 4가지 측약	변에서 데이터 구축의 목적이 있으며, 4가지는 ① 완전 감응형, 반감응형, TOD 신호 최적화					
		알고리즘 개발, ② 독	립교차로, 축단위, 네트워크 단위 신호 최적화 모델 연구, ③ 통행시간, 통행속도, 통행량 예					
		측모델 연구, ④ AI	를 활용한 교통신호 제어 모형 개발 방법론 연구					

- 산업분야에서는 3가지 측면에서 데이터 구축의 목적이 있으며, 3가지는 ① 스마트시티 관련 교통 시스템 개발 및 성능개선, ② AI 기반 감응형 신호제어기 및 관련 서비스 개발, ③ 엣지 시스템을 활용한 네트워크 단위 신호제어 시스템 개발

1. 데이터 구축 규모

	데이	터 구분	파일 포맷	파일 개수	데	이터 건수	용량	
원천 데이터	영상 데이터	_	.jpg	1,152,305개	1,	152,305개	551.29GB	
	신호	교통량데이터 (개별차량교통량기반)	.csv	68,640개	645,8	356,996,491개	4.49TB	
		교통량데이터 (기종점교통량기반)	.csv	68,640개	3,36	67,774,404개	22.02GB	
라벨링	최적화 데이터	교통량데이터 (회전교통량기반)	.xml	304,837개	137,414,138개		2.45GB	
데이터	데이터	신호데이터	.csv/.xml	137,280개	csv xml	154,021,369개 107,301,504개	4.08GB	
			지표데이터	.csv	68,640개	21	,407,390개	378.85MB
		네트워크데이터	.xml	12개		12개	15.07MB	
	영상	_	.csv/.xml	2 0 4 0 =1]	csv	1,900,992개	106.68MB	
데이터		_	.csv/.xiiii	3,840개	xml	5,757,603개	100.001111	
	합계				649,6	53,726,208개	5.04TB	

2. 데이터 분포

- 구축량은 파일 개수 기준이며, 데이터 건수가 많아 파일 개수 기준으로 산출하였음
- 신호최적화데이터는 서버 데이터를 기초로 가공을 수행하므로, 별도의 원천데이터를 제출하지 않음
- 본 과제의 유효성 모델은 교차로의 신호 시간의 조정을 통하여 네트워크의 통행속도 향상과 지체 길이가 줄어듦을 확인하는 것이 임무임

데이터셋 통계 (구축 규모 및 분포)

 따라서, Training, Validation, Test 데이터로 구분하지 않고, 구축 데이터를 1차 수행결과와 1차 수행 결과로 신규 생성된 신호 데이터를 이용하여 2차 수행한후, 1차 수행 결과값을 비교하는 것으로 유효성 검증이 진행되었음

1) Training > 원천데이터

1차경로	2차경로	파일 포맷	제출 수량			
교차로_14	(방향별_날짜·시간별[5분단위])	.jpg	287,900개			
교차로_15	(방향별_날짜·시간별[5분단위])	.jpg	288,283개			
교차로_16	(방향별_날짜·시간별[5분단위])	.jpg	287,925개			
교차로_17	(방향별_날짜·시간별[5분단위])	.jpg	288,197개			
	총 수량					

2) Training > 라벨링데이터

(1) 신호최적화 데이터

1차 경로	2차 경로	3차 경로	4차 경로	5차 경로	파일 포맷	제출 수량
	교통량데이터 (개별차량 교통량기반)	교차로별 구분	일자별 구분	_	.csv	34,560개
	교통량데이터 (기종점 교통량기반)	교차로별 구분	일자별 구분	_	.csv	34,560개
안양시	교통량데이터 (회전 교통량기반)	교차로별 구분	일자별 구분	_	.xml	171,278개
	신호데이터	교차로별 구분	csv	일자별 구분	.csv	34,560개
	근도에이어	並べ エ き 「 も	xml	일자별 구분	.xml	34,560개
	지표데이터	교차로별 구분	일자별 구분	_	.csv	34,560개

1차 경로	2차 경로	3차 경로	4차 경로	5차 경로	파일 포맷	제출 수량		
	네트워크 데이터	_	_	_	.xml	7개		
	교통량데이터 (개별차량 교통량기반)	교차로별 구분	일자별 구분	_	.csv	34,080개		
	교통량데이터 (기종점 교통량기반)	교차로별 구분	일자별 구분	_	.csv	34,080개		
부천시	교통량데이터 (회전 교통량기반)	교차로별 구분	일자별 구분	_	.xml	133,559개		
	신호데이터	교차로별 구분	CSV	일자별 구분 일자별 구분	.csv	34,080개		
	지표데이터	교차로별 구분	xml 일자별 구분	일사별 구분	.xml	34,080개 34,080개		
	네트워크 데이터	_	_	_	.xml	5개		
	총 합계							

^{*} 교차로 별 구분은 "데이터셋 구성-1. 데이터구성 및 구분정보-(1) 교차로 별 구분자"참고 ** 일자 별 구분은 "데이터셋 구성-1. 데이터구성 및 구분정보-(2) 날짜 별 구분자"참고

(2) 영상 데이터

1차 경로	2차 경로	파일 포맷	구축 수량
CSV	(방향별_날짜·시간별[5분단위])	.csv	1,920개
xml	(방향별_날짜·시간별[5분단위])	.xml	1,920개
	3,840개		

1. 데이터 구성 및 구분정보 1) 신호최적화 데이터

경로 구	분 정보	구분자 정보
1차 경로	지역 구분	안양시/부천시
2차 경로	데이터 종류별 구분	교통량데이터(개별차량기반교통량), 교통량데이터(기종점기반교통량), 교통량데이터(회전교통량), 신호데이터, 지표데이터, 네트워크데이터
3차 경로	교차로별 구분	교차로별 구분자 : 하단 첨부
4차 경로	날짜별 구분	날짜별 구분자 : 하단 첨부

(1) 교차로 별 구분자

경로	구분 정보			구분자 정보(네트워크 교차로 ID)
			단일교차로	3 / 13 / 14 / 15 / 16 / 17 / 18 / 19 / 20
3차 경로	교차로별 구분	안양시	다중교차로	13_14 / 15_16 / 13_19_20 / 14_15_16_17 / 13_14_15_16_17_18_3
70'5	1.5	부천시	단일교차로	26 / 29 / 104 / 105 / 106 / 231 / 233 / 380 / 382
		구센시	다중교차로	26 233 231 / 106 26 29 / 106 105 104 / all

데이터셋 구성

(2) 날짜 별 구분자

경로 -	구분 정보			구분자 정보
4차 경로	날짜별 구분	안양시	단일 교차로 (30개) 다중 교차로 (18개)	20220323 / 20220324 / 20220326 / 20220327 / 20220328 / 20220329 / 20220330 / 20220424 / 20220425 / 20220426 / 20220427 / 20220428 / 20220429 / 20220430 / 20220506 / 20220507 / 20220508 / 20220509 / 20220510 / 20220705 / 20220706 / 20220707 / 20220708 / 20220709 / 20220716 / 20220717 / 20220718 / 20220719 / 20220720 / 20220721
		부천시	단일	20220810 / 20220811 / 20220812 / 20220813 / 20220814 /

경로 구분 정보		구분자 정보				
	교차로 (31개)	20220815 / 20220819 / 20220820 / 20220821 / 20220822 / 20220823 / 20220906 / 20220907 / 20220909 / 20220910 / 20220911 / 20220912 / 20220913 / 20220914 / 20220915 / 20220916 / 20220926 / 20220928 / 20220930 / 20221001 / 20221002 / 20221026 / 20221027 / 20221028 / 20221030 / 20221031				
	다중 교차로 (19개)	20220810 / 20220811 / 20220812 / 20220813 / 20220814 / 20220819 / 20220820 / 20220821 / 20220822 / 20220823 / 20220906 / 20220907 / 20220909 / 20220910 / 20220911 / 20220926 / 20220928 / 20221028 / 20221030				

2) 영상 데이터

경	구분자 정보	
1차 경로	데이터 형식별 구분	csv/xml
2차 경로	방향별_날짜·시간별 구분	(5분단위 구분)

2. 파일명 구성 정보

1) 신호최적화

예시	세부 구성 설명		
40003120220202000000b.csv	교차로(묶음)(1)+교차로(개별)(4)+지역구분(1)+연도(4)+날짜(4)+시간(6)+차량타입(2)csv		
40001120220202000000total.csv	교차로(묶음)(1)+출교차로(개별)(4)+지역구분(1)+연도(4)+날짜(4)+시간(6)+타입(5)		

- 교차로(묶음) : 가장 앞자리 4는 1~18 교차로중 4개의 묶은 개수를 의미함
- 교차로(개별) : 0001은 각각의 개별 교차로를 의미함
- 지역구분 : 안양 1, 부평 2의 지역 코드를 의미함
- 연도 : 이 데이터는 몇 년도에 추출이 되어있는지를 말함
- 날짜 : 데이터 추출 날짜 기입
- 시간 : 이 데이터는 00(시)00(분)00(초)에 End 타입 기준으로 추출을 의미
- 차량 타입: p(승용차), b(버스), st(소형트력), lt(대형트럭), s(특수차), m(오토바이)
- 타입: tra(궤적 trajectory), total(지표)

2) 영상데이터

예시	세부 구성 설명
EW04_20220726071500.xml	방향(2)+교차로번호(2)+연도(4)+날짜(4)+시간(6).xml
EW04_20220726071500.xml	방향(2)+교차로번호(2)+연도(4)+날짜(4)+시간(6).csv

3. 라벨 데이터 파일 내부 구성요소

1) 교통량데이터(기종점기반/개별차량기반)

구분	속성명	타입	필수여부	설명	유효값
1	unix_time	number	Y	이동수집시각	_
2	vhcl_id	string	Y	개별차량OD	_
3	stdr_ymd	number	Y	수집시각 (연월일)	_
4	stdr_hm	number	Y	수집시각(시분)	_
5	stdr_ss	number	Y	수집시각(초)	_
6	lon	number	Y	경도	*하단 참고
7	lat	number	Y	위도	*하단 참고
8	alt	string	Y	고도	_
9	spd	string	N	속도(m/s)	_
10	allowed_spd	string	N	비혼잡속도 (m/s)	_

구분	속성명	타입	필수여부	설명	유효값
11	agl	string	N	진행방향	_
12	slp	string	N	경사	_
13	vhcl_typ	number	Y	차량종류	*하단 참고
14	from_inter_id	string	N	이전통과교차로	_
15	to_inter_id	string	N	목적교차로	_
16	dist2to_inter	string	N	목적교차로까지의 거리	_
17	turn_typ2to_inter	string	N	회전방향	_
18	edge_grp_id	string	N	엣지그룹ID	_
19	edge_id	string	N	엣지ID	_
20	lane_id	string	N	차선ID	_
21	seg_id	string	N	세그먼트ID	_
22	nxt_inter_id	string	N	다음 교차로 ID	_
23	dist2nxt_inter	string	N	다음 교차로까지의 거리	_
24	turn_typ2nxt_inter	string	N	다음교차로 회전방향	_
25	nxt_inter_sig_st	string	N	다음 교차로 현재신호	_
26	nxt_inter_phs_no	string	N	다음 교차로 현시신호	_
27	que_all	string	N	전체 대기행렬관측여부	_
28	que_200	string	N	대기행렬관측여부 (~200m)	_
29	que_200_500	string	N	대기행렬관측여부 (200m~500m)	_
30	que_500	string	N	대기행렬관측여부 (~500m)	_
31	tl	string	N	지체시간	_

* 위도/경도값 범위

지역	구분	lat(위도)**	lon(경도)**
안양시	최소값	37.362	126.943
인장시	최대값	37.401	126.999
부천시	최소값	37.494	126.741
<u></u> 구선시	최대값	37.518	126.780

** 좌표계 : WGS84

* 차량 종류입력 범위

구문규칙	차량종류 (carmodel type)	1	2	3	4	5	6
차종		승용차	버스	트럭	대형트럭	특수차량	오토바이

2) 교통량데이터(회전교통량)

구분	속성명	타입	필수여부	설명	유효값
1	data	object	Y	전체 데이터 묶음	_
2	interval	array	Y	시간 간격	_
3	{}	object	Y	문서	_
4	end	string	Y	종료시간	_
5	id	string	Y	상태값	_
6	begin	string	Y	시작시간	_
7	edgeRelation	object	Y	기종점 노드	_
8	count	number	Y	통과 차량대수(대)	_
9	from	string	Y	시점 노드 ID	_
10	to	string	Y	종점 노드 ID	_

3) 신호데이터(csv)

구분	속성명	타입	필수여부	설명	유효값
1	interid	string	Y	교차로 ID	*하단 참고
2	aringstarttime	number	Y	신호시작시간 (날짜/시분초)	_
3	signalstate	string	Y	SUMO 신호입력값	_
4	unix_time	number	Y	유닉스 타임	_
5	phasepattern	string	N	원본데이터 현시패턴	_

* 교차로 ID 입력 범위

	구문규칙	וים	데이터	ਹੀ ਹਾ
지역명	교차로	교차로명	교차로ID (interid)	좌표* (위도, 경도)
	(개별)		· ·	(112, 782)
			cluster_217833_cluster_216283_2176	
	3	벌말오거리	94_cluster_215007_216164_216616_	37.396608, 126.976359
			217832	
	13	범계사거리	cluster_216196_216197_217930_217 931	37.389058, 126.948116
ال المالية	14	범계역사거리	215147	37.391117, 126.950987
안양시	15	시청사거리	215173	37.392524, 126.955169
	16	관평사거리	215174	37.394078, 126.959660
	17	평촌역사거리	214964	37.395564, 126.964019
	18	열병합사거리	215024	37.396009, 126.968882
	19 방축사거리		215092	37.382793, 126.952703
	20	신기사거리	cluster_216778_217465	37.378211, 126.955200
	26	석천사거리	204820	37.504764, 126.763169
	29	문예사거리	204822	37.503955, 126.769198
	104	화목사거리	201305	37.499997, 126.756811
	105	중동전화국사거리	204920	37.502754, 126.757570
	106	송내대로사거리	cluster_204796_205202	37.505410, 126.758310
부천시	231	부명사거리	201301	37.499322, 126.762051
구선시	233	포도마을사거리	201292	37.502079, 126.762636
	380	중앙공원사거리	201306	37.498523, 126.768089
	382	구터미널사거리	201293	37.501292, 126.768665
	103**	넘말사거리	201330	37.497218, 126.756068
	379**	복사골아파트사거리	201329	37.495748, 126.767516
	414**	영안아파트사거리	201300	37.496535, 126.761483

* 좌표계 : WGS84

** 신호최적화데이터 수집대상 지점에 포함되지않으나, 교차로 연계성을 위해 추가 설정

4) 신호데이터(xml)

구분	속성명	타입	필수여부	설명	유효값
1	tlLogics	object	Y	전체 신호 데이터	_
2	tlLogic	array	Y	교차로별 신호 데이터	_
3	{}	object	Y	문서	_
4	phase	array	Y	신호 패턴	_
5	{}	object	Y	문서	_
6	duration	number	Y	해당 신호가 유지되는 시간(초)	_
7	state	string	Y	신호 상태	_
8	offset	string	Y	연동신호여부	_
9	id	string	Y	교차로 ID	_
10	type	string	Y	형식	_
11	programID	number	N	교차로 순서	_

5) 지표 데이터

구분	속성명	타입	필수여부	설명	유효값
1	edge_grp_id	string	Y	엣지그룹 ID	_
2	avg_spd	number	Y	평균속도(m/s)	_
3	total_time_loss	string	Y	지체시간(초)	_
4	avg_time_loss	string	Y	차량당 평균 지체시간(초)	_
5	avg_travle_time	number	Y	평균 통행시간(초)	_

6) 영상 데이터(csv)

구분	속성명	타입	필수여부	설명	유효값	비고
1	photo_file	String	Y	영상파일 이름 (교차로+시간대)	교차로[4자릿수]_ YYYYMMDDhh mmss	
2	photo_id	String	Y	기준선 통과 이미지 파일의 식별값	교차로[4자릿수]_ YYYYMMDDhh mmssms_nnnn n.jpg	
3	signal_info.movement	String	Y	통과시간의 신호정보	[s,t,l,y,tl,yl]	
4	departure_time	String	Y	영상기준 차량의 교차로 통과 시간	mm:ss:ms	분:초:밀리 초
5	car_type	String	Y	교차로 통과 차량의 종류	[car, bus, small_truck, large_truck, bike, unknown]	
6	lane	String	Y	차량이 지나가는 차로	[1 ~ 10]	
7	car_info.movement	String	Y	차량의 진행 방향	[r,t,l,u]	r: 우회전, t: 직진 l: 좌회전, u: 유턴
8	tracking ID	String	N	추적차량 번호	[0 ~ 10]	

7) 영상 데이터(xml)

구분	속성명	타입	필수여부	설명	유효값	비고
1	annotations	object	Y	어노테이션 정보	_	
2	image	array	Y	이미지 정보	-	
3	{}	object	Y	문서	_	
4	id	string	Y	현재 xml파일 내의 이미지 파일별 고유 식별 숫자(0번부터 시작, 마지막 식별자는 size-1)	-	
5	name string Y 이미지 파일명		이미지 파일명	-		
6	width	string	Y	이미지 파일 가로 해상도	"1920"	
7	height	string	Y	이미지 파일 세로 해상도	"1080"	
8	box	array	N	Bounding-box 객체 정보	-	
9	{}	object	N	문서	_	
10	label	string	N	바운딩박스 가공	"car","bus","sm	

구분	속성명	타입	필수여부	설명	유효값	비고
				객체의 class 정보. 객체 차종은	all_truck","large _truck","bike","u	
				총 6종임	nknown"	
11	occluded	string	N	의미없는 항목 (가려진 차량 판별)	_	
12	z_order	string	N	의미없는 항목 (가공툴에서 산출)	_	
13	xtl	string	N	바운딩박스 가공 객체의 이미지 픽셀을 기준으로 좌측 상단 x좌표	_	
14	ytl	string	N	바운딩박스 가공 객체의 이미지 픽셀을 기준으로 좌측 상단 y좌표	-	
15	xbr	string	N	바운딩박스 가공 객체의 이미지 픽셀을 기준으로 우측 하단 x좌표	_	
16	ybr	string	N	바운당박스 가공 객체의 이미지 픽셀을 기준으로 우측 하단 y좌표	-	
17	attribute	string	N	객체의 속성값	0,1,2,3,4,5,6,7, 8,9,10,"r","l","t", "u"	
18	attribute.name	string	N	attribute태그의 이름 속성	"CID","direction ","lane"	
19	meta	object	Y	meta 정보	_	
20	task	object	Y	task 정보	_	
21	owner	object	N	의미없는 항목(가공업체 정보)	_	
22	email	string	N	의미없는 항목 (가공업체 email정보)	_	
23	username	string	N	의미없는 항목 (가공업체 책임자 정보)	_	
24	flipped	string	N	의미없는 항목 (뒤집힌 이미지 판별)	_	
25	created	string	N	의미없는 항목 (작업생성일)	_	
26	project	string	N	의미없는 항목(과제명)	_	
27	start _frame	string	N	의미없는 항목(시작 프레임)	_	
28	frame _filter	string	N	의미없는 항목 (가공툴상에서 작업화면 페이지 전환 (ex. Step=1: 1장씩, step=2: 2장씩)	_	
29	labels	object	Y	라벨링 대상 task 정보	_	
30	label	array	Y	객체 class 정의 부분	_	
31	{}	object	Y	문서	_	
32	name	string	Y	객체 차종은 총 6종임	"car","bus","sm all_truck","large _truck","bike","u nknown"	

	구분	속성명	타입	필수여	부	설명		유효값	비고
	33	attributes	object	N	1-1-	라벨링 객체 :	속성	一月五以	H132
	34	segments	object	N		의미없는 항 (가공툴상에 라벨링 종류(polygo 가공툴에 Default로 나. 값)	남목 서 on),	_	
	35	segment	object	N		의미없는 항 (가공툴상에 Default로 나 값)	서	-	
	36	stop	string	N		의미없는 항 (가공툴상에 Default로 나오는	서	-	
	37	start	string	N		의미없는 항 (가공툴상에, Default로 나오는	서	_	
	38	id	string	N		라벨링 객체		_	
	39	url	string	N		의미없는 항 (가공툴상에 Default로 나 값)	서	_	
	40	mode	string	N		라벨링 종		_	
	41	overlap	string	N		의미없는 항목(이미지 판별)		-	
	42	size	string	Y		어노테이션 정 포함하고 있 가공 이미지 개수	는	-	
	43	name	string	Y		가공 도구 상에서의 작업단위(Tasi		_	
	44	bugtracker	string	N		의미없는 항 (버그추적		_	
	45	id	string	N		task ID	7-		
	46	stop_frame	string	N		의미없는 항목(프레임) 의미없는 항목(_	
	47	updated	string	N		수정일)		_	
	48	dumped	string	N		(작업 완료 제품 의미없는 항목	출일)		
	49	version	string	N		버전)		_	
	주관기 관	기관명	책임지	명		전화번호 선정화번호기입)	D.	베일주소	담당업무
		㈜유아이네트웍스	전용	현	02-	-586-0461	kipon	7@naver.com	과제 총괄
데이터셋 구축 [수행기관		기관명	담당업			기관명	Ę	남당업무	
1 0/14		㈜라온로드	데이터	수집					

	주관기관	기관명	책임자명	선화번호 (유선전화번호기입)	메일주소	담당업무
	1 6/16	㈜유아이네트웍스	전용현	02-586-0461	kipon7@naver.com	과제 총괄
데이터셋 구축		기관명	담당업무	기관명	담당업무	
수행기관 담당자		㈜라온로드	데이터 수집			
# 8/Y	참여기관	㈜테스트웍스	데이터 정제,가공			
		한국전자기술연구원	데이터 검사			