Dinámica de Operadores de Multiplicación en el Espacio de Hardy de Series de Dirichlet

Matías Andrés Palumbo Universidad Nacional de Rosario

Trabajo en conjunto con:
Santiago Muro (Universidad Nacional de Rosario)
Rodrigo Cardeccia (Instituto Balseiro)

Notamos por $\mathcal{L}(X)$ al conjunto de operadores lineales continuos $T:X\to X$.

Definición

Sea X un espacio de Banach sobre $\mathbb R$ o $\mathbb C$. Dado $T\in\mathcal L(X)$, la T-**órbita** de $x\in X$ es el conjunto

$$O(x,T) = \{ T^n(x) : n \in \mathbb{N} \},$$

donde T^n refiere a la composición de T con sí mismo n veces.

El operador T es **hipercíclico** si existe $x \in X$ tal que la órbita O(x,T) es densa en X.

Notamos por $\mathcal{L}(X)$ al conjunto de operadores lineales continuos $T:X\to X$.

Definición

Sea X un espacio de Banach sobre $\mathbb R$ o $\mathbb C$. Dado $T\in\mathcal L(X)$, la T-**órbita** de $x\in X$ es el conjunto

$$O(x,T) = \{ T^n(x) : n \in \mathbb{N} \},$$

donde T^n refiere a la composición de T con sí mismo n veces.

El operador T es **hipercíclico** si existe $x \in X$ tal que la órbita O(x,T) es densa en X.

Algunos ejemplos de operadores hipercíclicos:

Notamos por $\mathcal{L}(X)$ al conjunto de operadores lineales continuos $T:X\to X$.

Definición

Sea X un espacio de Banach sobre $\mathbb R$ o $\mathbb C$. Dado $T\in\mathcal L(X)$, la T-**órbita** de $x\in X$ es el conjunto

$$O(x,T) = \{ T^n(x) : n \in \mathbb{N} \},\$$

donde T^n refiere a la composición de T con sí mismo n veces.

El operador T es **hipercíclico** si existe $x \in X$ tal que la órbita O(x,T) es densa en X.

Algunos ejemplos de operadores hipercíclicos:

• Los operadores de traslación $T_a(f)(z) = f(z+a)$ en el espacio de funciones enteras $H(\mathbb{C})$.

Notamos por $\mathcal{L}(X)$ al conjunto de operadores lineales continuos $T:X\to X$.

Definición

Sea X un espacio de Banach sobre $\mathbb R$ o $\mathbb C$. Dado $T\in\mathcal L(X)$, la T-**órbita** de $x\in X$ es el conjunto

$$O(x,T) = \{ T^n(x) : n \in \mathbb{N} \},\$$

donde T^n refiere a la composición de T con sí mismo n veces.

El operador T es **hipercíclico** si existe $x \in X$ tal que la órbita O(x,T) es densa en X.

Algunos ejemplos de operadores hipercíclicos:

- Los operadores de traslación $T_a(f)(z) = f(z+a)$ en el espacio de funciones enteras $H(\mathbb{C})$.
- Algunos operadores adjuntos de multiplicación M_{φ}^* en $H_2(\mathbb{D})$, donde $M_{\varphi}(f)=\varphi f$.

Sea X un espacio de Banach y $T \in \mathcal{L}(X)$. Un elemento $x \in X$ es un **punto periódico** de T si existe $n \in \mathbb{N}$ tal que $T^n(x) = x$. Notamos por $\operatorname{Per}(T)$ al conjunto de puntos periódicos de T.

El operador T es caótico si:

- T es hipercíclico,
- $oldsymbol{ iny Per}(T)$ es denso.

Sea X un espacio de Banach y $T \in \mathcal{L}(X)$. Un elemento $x \in X$ es un **punto periódico** de T si existe $n \in \mathbb{N}$ tal que $T^n(x) = x$. Notamos por $\mathrm{Per}(T)$ al conjunto de puntos periódicos de T.

El operador T es **caótico** si:

- T es hipercíclico,
- $oldsymbol{ iny Per}(T)$ es denso.
 - Todo operador caótico es hipercíclico.

Sea X un espacio de Banach y $T \in \mathcal{L}(X)$. Un elemento $x \in X$ es un **punto periódico** de T si existe $n \in \mathbb{N}$ tal que $T^n(x) = x$. Notamos por $\mathrm{Per}(T)$ al conjunto de puntos periódicos de T.

El operador T es caótico si:

- T es hipercíclico,
- extstyle ext
 - Todo operador caótico es hipercíclico.
 - No existen operadores hipercíclicos en espacios de dimensión finita.

Sea X un espacio de Banach y $T \in \mathcal{L}(X)$. Un elemento $x \in X$ es un **punto periódico** de T si existe $n \in \mathbb{N}$ tal que $T^n(x) = x$. Notamos por $\mathrm{Per}(T)$ al conjunto de puntos periódicos de T.

El operador T es caótico si:

- $oldsymbol{0}$ T es hipercíclico,
- extstyle ext
 - Todo operador caótico es hipercíclico.
 - No existen operadores hipercíclicos en espacios de dimensión finita.
 - La hiperciclicidad y caoticidad de operadores $T:X\to X$ y $T_0:X_0\to X_0$ se preserva a través de homeomorfismos $J:X\to X_0$ con imagen densa tales que conmuta

$$X \xrightarrow{T} X$$

$$\downarrow^{J} \qquad \downarrow^{J}$$

$$X_{0} \xrightarrow{T_{0}} X_{0}$$

En dicho caso, T y T_0 son factores.

Series de Dirichlet

Definición

Una serie de Dirichlet es una serie de la forma

$$f(s) = \sum_{n=1}^{\infty} a_n n^{-s},$$

donde $a_n \in \mathbb{C}$, $n \in \mathbb{N}$. Notamos por \mathscr{D} al conjunto de todas las series de Dirichlet.

Series de Dirichlet

Definición

Una serie de Dirichlet es una serie de la forma

$$f(s) = \sum_{n=1}^{\infty} a_n n^{-s},$$

donde $a_n \in \mathbb{C}$, $n \in \mathbb{N}$. Notamos por \mathscr{D} al conjunto de todas las series de Dirichlet.

Un ejemplo conocido es la función zeta de Riemann

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s},$$

convergente si Re(s) > 1.

En general, las series de Dirichlet convergen en semiplanos de la forma

$$\mathbb{C}_{\theta} = \{ s \in \mathbb{C} : Re(s) > \theta \}, \quad \theta \in \mathbb{R}.$$

Existen **abscisas** asociadas a cada serie $f \in \mathcal{D}$.

En general, las series de Dirichlet convergen en semiplanos de la forma

$$\mathbb{C}_{\theta} = \{ s \in \mathbb{C} : Re(s) > \theta \}, \quad \theta \in \mathbb{R}.$$

Existen **abscisas** asociadas a cada serie $f \in \mathcal{D}$.

Un ejemplo es la abscisa de convergencia

$$\sigma_c(f) = \inf\{\theta \in \mathbb{R} : f \text{ converge en } \mathbb{C}_{\theta}\}.$$

Existen abscisas relacionadas a las regiones de convergencia absoluta (σ_a) y uniforme (σ_u) de estas series.

En general, las series de Dirichlet convergen en semiplanos de la forma

$$\mathbb{C}_{\theta} = \{ s \in \mathbb{C} : Re(s) > \theta \}, \quad \theta \in \mathbb{R}.$$

Existen **abscisas** asociadas a cada serie $f \in \mathcal{D}$.

Un ejemplo es la abscisa de convergencia

$$\sigma_c(f) = \inf\{\theta \in \mathbb{R} : f \text{ converge en } \mathbb{C}_{\theta}\}.$$

Existen abscisas relacionadas a las regiones de convergencia absoluta (σ_a) y uniforme (σ_u) de estas series.

$$-\infty \le \sigma_c(f) \le \sigma_u(f) \le \sigma_a(f) \le \infty$$
$$\sup \{\sigma_a(f) - \sigma_c(f) : f \in \mathcal{D}\} = 1$$
$$\sup \{\sigma_a(f) - \sigma_u(f) : f \in \mathcal{D}\} = \frac{1}{2}$$

El espacio de Hardy-Hilbert \mathscr{H}_2 de series de Dirichlet es

$$\mathscr{H}_2 = \left\{ f(s) = \sum_{n=1}^{\infty} a_n n^{-s} \in \mathscr{D} : ||f||_{\mathscr{H}_2}^2 := \sum_{n=1}^{\infty} |a_n|^2 < \infty \right\}.$$

Los elementos de \mathscr{H}_2 son funciones holomorfas en $\mathbb{C}_{1/2}.$

El espacio de Hardy-Hilbert \mathscr{H}_2 de series de Dirichlet es

$$\mathscr{H}_2 = \left\{ f(s) = \sum_{n=1}^{\infty} a_n n^{-s} \in \mathscr{D} : ||f||_{\mathscr{H}_2}^2 := \sum_{n=1}^{\infty} |a_n|^2 < \infty \right\}.$$

Los elementos de \mathscr{H}_2 son funciones holomorfas en $\mathbb{C}_{1/2}$.

Es relevante también el espacio de series de Dirichlet acotadas en $\mathbb{C}_+:=\mathbb{C}_0$:

$$\mathscr{H}_{\infty} = \left\{ f \in \mathscr{D} : \|f\|_{\infty} = \sup_{s \in \mathbb{C}_{+}} |f(s)| < \infty \right\}.$$

Operadores de Multiplicación en \mathcal{H}_2

El **operador de multiplicación** asociado a una función φ se nota por M_φ y actúa de la siguiente manera:

$$M_{\varphi}(f) = \varphi f.$$

Para que $M_{\varphi} \in \mathcal{L}(X)$ esté bien definido debe valer $\varphi f \in X$ para cada $f \in X$.

Operadores de Multiplicación en \mathcal{H}_2

El **operador de multiplicación** asociado a una función φ se nota por M_{φ} y actúa de la siguiente manera:

$$M_{\varphi}(f) = \varphi f.$$

Para que $M_{\varphi} \in \mathcal{L}(X)$ esté bien definido debe valer $\varphi f \in X$ para cada $f \in X$.

Son de interés los operadores **adjuntos** de multiplicación $M_{\varphi}^* \in \mathcal{L}(X^*)$, donde

$$M_{\varphi}^*(x^*)(f) = x^*(M_{\varphi}(f))$$

para $x^* \in X^*$ y $f \in X$. En espacios de Hilbert, los operadores adjuntos se identifican con operadores en $\mathcal{L}(X)$.

Operadores de Multiplicación en \mathcal{H}_2

El **operador de multiplicación** asociado a una función φ se nota por M_{φ} y actúa de la siguiente manera:

$$M_{\varphi}(f) = \varphi f.$$

Para que $M_{\varphi} \in \mathcal{L}(X)$ esté bien definido debe valer $\varphi f \in X$ para cada $f \in X$.

Son de interés los operadores **adjuntos** de multiplicación $M_{\varphi}^* \in \mathcal{L}(X^*)$, donde

$$M_{\varphi}^*(x^*)(f) = x^*(M_{\varphi}(f))$$

para $x^* \in X^*$ y $f \in X$. En espacios de Hilbert, los operadores adjuntos se identifican con operadores en $\mathcal{L}(X)$.

Teorema (Hedenmalm-Lindqvist-Seip)

Una función φ define un operador de multiplicación en \mathcal{H}_2 si y solo si $\varphi \in \mathcal{H}_{\infty}$. En dicho caso,

$$||M_{\varphi}|| = ||\varphi||_{\infty} = \sup_{s \in \mathbb{C}_{+}} |\varphi(s)|.$$

Los operadores de multiplicación en \mathcal{H}_2 no son hipercíclicos, sin embargo lo siguiente indica posibles resultados interesantes sobre sus operadores adjuntos.

Godefroy y Shapiro (1991) caracterizan a los operadores adjuntos de multiplicación hipercíclicos y caóticos en ciertos espacios de Hilbert de funciones analíticas:

Los operadores de multiplicación en \mathcal{H}_2 no son hipercíclicos, sin embargo lo siguiente indica posibles resultados interesantes sobre sus operadores adjuntos.

Godefroy y Shapiro (1991) caracterizan a los operadores adjuntos de multiplicación hipercíclicos y caóticos en ciertos espacios de Hilbert de funciones analíticas:

Teorema (Godefroy-Shapiro)

Sea H un espacio de Hilbert de funciones holomorfas sobre $\Omega \subset \mathbb{C}^N$ tal que los funcionales de evaluación $f \mapsto f(z)$ son continuos. Sea $M_\varphi \in \mathcal{L}(X)$ un operador de multiplicación, con $\varphi \in H(\Omega)$ no constante y $\|M_\varphi\| = \sup_{z \in \Omega} |\varphi(z)|$. Son equivalentes:

- M_{φ}^* es hipercíclico.
- M_{ω}^* es caótico.

Los operadores de multiplicación en \mathcal{H}_2 no son hipercíclicos, sin embargo lo siguiente indica posibles resultados interesantes sobre sus operadores adjuntos.

Godefroy y Shapiro (1991) caracterizan a los operadores adjuntos de multiplicación hipercíclicos y caóticos en ciertos espacios de Hilbert de funciones analíticas:

Teorema (Godefroy-Shapiro)

Sea H un espacio de Hilbert de funciones holomorfas sobre $\Omega \subset \mathbb{C}^N$ tal que los funcionales de evaluación $f \mapsto f(z)$ son continuos. Sea $M_\varphi \in \mathcal{L}(X)$ un operador de multiplicación, con $\varphi \in H(\Omega)$ no constante y $\|M_\varphi\| = \sup_{z \in \Omega} |\varphi(z)|$. Son equivalentes:

- M_{φ}^* es hipercíclico.
- M_{ω}^* es caótico.

Damos una caracterización análoga de los operadores adjuntos de multiplicación hipercíclicos/caóticos M_{φ}^* en \mathscr{H}_2 . Expandimos esta caracterización a los operadores asociados a la restricción de φ a finitos primos.

Si
$$\psi = \sum_{k=1}^{\infty} a_k k^{-s} \in \mathscr{H}_{\infty}$$
, la restricción en cuestión es

$$\psi_n(s) = \sum_{\substack{k = \mathfrak{p}^{\alpha} \\ \alpha \in \mathbb{N}_0^n}} a_k k^{-s}.$$

 ψ_n es la serie resultante de ψ al dejar solo los términos cuyo índice corresponde al producto de a lo sumo los primeros n números primos.

Si
$$\psi = \sum_{k=1}^{\infty} a_k k^{-s} \in \mathscr{H}_{\infty}$$
, la restricción en cuestión es

$$\psi_n(s) = \sum_{\substack{k = \mathfrak{p}^{\alpha} \\ \alpha \in \mathbb{N}_0^n}} a_k k^{-s}.$$

 ψ_n es la serie resultante de ψ al dejar solo los términos cuyo índice corresponde al producto de <u>a lo sumo</u> los primeros n números primos.

Teorema

Sea $\psi \in \mathscr{H}_{\infty}$ no constante. Son equivalentes:

- ① $M_{\psi}^*: \mathscr{H}_2 \to \mathscr{H}_2$ es hipercíclico.
- ② $M_{\eta_0}^*: \mathcal{H}_2 \to \mathcal{H}_2$ es caótico.
- **4** Existe $n \in \mathbb{N}$ tal que $\psi_n(\mathbb{C}_+) \cap \mathbb{T} \neq \emptyset$.
- ⑤ Existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$, $\psi_n(\mathbb{C}_+) \cap \mathbb{T} \neq \emptyset$.

Teorema

Sea $\psi \in \mathscr{H}_{\infty}$ no constante. Son equivalentes:

- ① $M_{\psi}^*: \mathcal{H}_2 \to \mathcal{H}_2$ es hipercíclico.
- ② $M_{\psi}^*: \mathscr{H}_2 \to \mathscr{H}_2$ es caótico.
- **4** Existe $n \in \mathbb{N}$ tal que $\psi_n(\mathbb{C}_+) \cap \mathbb{T} \neq \emptyset$.
- **5** Existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$, $\psi_n(\mathbb{C}_+) \cap \mathbb{T} \neq \emptyset$.

Es decir, para que un operador $M_{\psi}^*: \mathscr{H}_2 \to \mathscr{H}_2$ sea hipercíclico basta con que algún operador resultante de restringir ψ a "finitos primos" sea hipercíclico.

Teorema

Sea $\psi \in \mathscr{H}_{\infty}$ no constante. Son equivalentes:

- ① $M_{\psi}^*: \mathcal{H}_2 \to \mathcal{H}_2$ es hipercíclico.
- ② $M_{\psi}^*: \mathscr{H}_2 \to \mathscr{H}_2$ es caótico.
- **4** Existe $n \in \mathbb{N}$ tal que $\psi_n(\mathbb{C}_+) \cap \mathbb{T} \neq \emptyset$.
- **5** Existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$, $\psi_n(\mathbb{C}_+) \cap \mathbb{T} \neq \emptyset$.

Es decir, para que un operador $M_\psi^*:\mathscr{H}_2\to\mathscr{H}_2$ sea hipercíclico basta con que algún operador resultante de restringir ψ a "finitos primos" sea hipercíclico.

Consideremos $\psi(s)=\frac{1}{2}+2^{-s}$. M_{ψ}^* es hipercíclico, pues $\psi(1)=1\in\mathbb{T}$.

Del resultado anterior, cualquier serie $f \in \mathcal{H}_{\infty}$ que coincida con ψ al restringirla a los primeros k primos también induce un operador hipercíclico.

Un ejemplo es

$$f(s) = \psi(s) + \sum_{n=1}^{\infty} (3^n)^{-s-2}.$$

Herramientas en la Demostración

Fue crucial trabajar con la **transformada de Bohr**, una aplicación ideada por Harald Bohr que relaciona

(series de Dirichlet) $\mathscr{D} \longleftrightarrow \mathfrak{P}$ (series de potencias en infinitas variables)

Herramientas en la Demostración

Fue crucial trabajar con la **transformada de Bohr**, una aplicación ideada por Harald Bohr que relaciona

(series de Dirichlet) $\mathscr{D} \longleftrightarrow \mathfrak{P}$ (series de potencias en infinitas variables)

Las series de potencias en infinitas variables son de la forma

$$\sum_{\alpha \in \mathbb{N}_0^{(\mathbb{N})}} c_{\alpha} z^{\alpha}$$

(con $\mathbb{N}_0^{(\mathbb{N})}:=igcup_{n\in\mathbb{N}}\mathbb{N}_0^n$) y están asociadas a funciones holomorfas en

$$B_{c_0} = \left\{ z = (z_n)_{n \in \mathbb{N}} \in c_0 : \sup_{n \in \mathbb{N}} |z_n| < 1 \right\}.$$

La transformada de Bohr está basada en la factorización en números primos de los números naturales.

Si $\mathfrak{p}=(\mathfrak{p}_n)_{n\in\mathbb{N}}$ es la sucesión de números primos y $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}_0^{(\mathbb{N})}$, la expresión

$$\mathfrak{p}^{\alpha} := \mathfrak{p}_1^{\alpha_1} \cdots \mathfrak{p}_n^{\alpha_n}$$

es la factorización de un número natural.

La transformada de Bohr está basada en la factorización en números primos de los números naturales.

Si $\mathfrak{p}=(\mathfrak{p}_n)_{n\in\mathbb{N}}$ es la sucesión de números primos y $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}_0^{(\mathbb{N})}$, la expresión

$$\mathfrak{p}^{\alpha}:=\mathfrak{p}_{1}^{\alpha_{1}}\cdots\mathfrak{p}_{n}^{\alpha_{n}}$$

es la factorización de un número natural.

Bohr identifica

$$\alpha = (\alpha_1, \dots, \alpha_n) \longleftrightarrow n = \mathfrak{p}_1^{\alpha_1} \cdots \mathfrak{p}_n^{\alpha_n} = \mathfrak{p}^{\alpha}$$

$$(0, 2, 1) \longleftrightarrow 45 = 2^0 \cdot 3^2 \cdot 5^1$$

$$\sum_{\alpha \in \mathbb{N}_0^{(\mathbb{N})}} c_{\alpha} z^{\alpha} \longleftrightarrow \sum_{\substack{n=1\\ n = \mathfrak{p}^{\alpha}}}^{\infty} c_{\alpha} n^{-s}$$

La transformada de Bohr $\mathfrak B$ nos permitió estudiar los operadores de multiplicación inicialmente en espacios de funciones en infinitas variables, y luego trasladar ciertos resultados a series de Dirichlet.

La transformada de Bohr $\mathfrak B$ nos permitió estudiar los operadores de multiplicación inicialmente en espacios de funciones en infinitas variables, y luego trasladar ciertos resultados a series de Dirichlet.

Caracterizamos a los operadores adjuntos de multiplicación hipercíclicos en

$$\mathfrak{P}_2 := H_2(B_{c_0} \cap \ell_2) = \left\{ \sum_{\alpha \in \mathbb{N}_0^{(\mathbb{N})}} c_{\alpha} z^{\alpha} : \sum_{\alpha \in \mathbb{N}_0^{(\mathbb{N})}} |c_{\alpha}|^2 < \infty \right\},\,$$

donde los multiplicadores vienen dados por funciones $\varphi \in H_{\infty}(B_{c_0})$ (holomorfas y acotadas en B_{c_0}).

Es relevante el espacio de Hardy

$$H_2(\mathbb{D}^n) = \left\{ f(z) = \sum_{\alpha \in \mathbb{N}_0^n} a_{\alpha} z^{\alpha} : \|f\|_{H_2(\mathbb{D}^n)}^2 := \sum_{\alpha \in \mathbb{N}_0^n} |a_{\alpha}|^2 < \infty \right\}.$$

Dada $\varphi \in H_{\infty}(B_{c_0})$, notamos por $\varphi_n \in H_{\infty}(\mathbb{D}^n)$ a la restricción de φ a \mathbb{D}^n (primeras n variables).

Teorema

Sea $\varphi \in H_{\infty}(B_{c_0})$ no constante. Son equivalentes:

- ① $M_{\varphi}^*: \mathfrak{P}_2 \to \mathfrak{P}_2$ es hipercíclico.
- $extstyle M_{arphi}^*: \mathfrak{P}_2 o \mathfrak{P}_2 ext{ es caótico.}$
- **4** Existe $n \in \mathbb{N}$ tal que $M_{\varphi_n}^*: H_2(\mathbb{D}^n) \to H_2(\mathbb{D}^n)$ es hipercíclico.
- **Solution** Existe $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$, $M_{\varphi_n}^* : H_2(\mathbb{D}^n) \to H_2(\mathbb{D}^n)$ es hipercíclico.

Los operadores de multiplicación $M_{\varphi} \in \mathcal{L}(\mathfrak{P}_2)$ y $M_{\mathfrak{B}\varphi} \in \mathcal{L}(\mathscr{H}_2)$ son factores a través de \mathfrak{B} , por lo que se preserva la hiperciclicidad/caoticidad.

Abordamos un estudio similar en los espacios de Hardy ($1 \le p < \infty$, no únicamente p=2) de series de Dirichlet y funciones holomorfas en infinitas variables.

Abordamos un estudio similar en los espacios de Hardy ($1 \le p < \infty$, no únicamente p=2) de series de Dirichlet y funciones holomorfas en infinitas variables.

• En infinitas variables: $H_p(\ell_2 \cap B_{c_0})$ está compuesto por funciones holomorfas $f:\ell_2 \cap B_{c_0} \to \mathbb{C}$ que verifican

$$||f||_p := \sup_{n \in \mathbb{N}} \sup_{0 < r < 1} \left(\int_{\mathbb{T}^n} |f(rw_1, \dots, rw_n, 0, \dots)|^p d(w_1, \dots, w_n) \right)^{\frac{1}{p}} < \infty.$$

Abordamos un estudio similar en los espacios de Hardy ($1 \le p < \infty$, no únicamente p=2) de series de Dirichlet y funciones holomorfas en infinitas variables.

• En infinitas variables: $H_p(\ell_2 \cap B_{c_0})$ está compuesto por funciones holomorfas $f:\ell_2 \cap B_{c_0} \to \mathbb{C}$ que verifican

$$||f||_p := \sup_{n \in \mathbb{N}} \sup_{0 < r < 1} \left(\int_{\mathbb{T}^n} |f(rw_1, \dots, rw_n, 0, \dots)|^p d(w_1, \dots, w_n) \right)^{\frac{1}{p}} < \infty.$$

• En series de Dirichlet: se define $\mathscr{H}_p := \mathfrak{B}H_p(\ell_2 \cap B_{c_0}).$

Abordamos un estudio similar en los espacios de Hardy ($1 \le p < \infty$, no únicamente p=2) de series de Dirichlet y funciones holomorfas en infinitas variables.

• En infinitas variables: $H_p(\ell_2 \cap B_{c_0})$ está compuesto por funciones holomorfas $f: \ell_2 \cap B_{c_0} \to \mathbb{C}$ que verifican

$$||f||_p := \sup_{n \in \mathbb{N}} \sup_{0 < r < 1} \left(\int_{\mathbb{T}^n} |f(rw_1, \dots, rw_n, 0, \dots)|^p d(w_1, \dots, w_n) \right)^{\frac{1}{p}} < \infty.$$

• En series de Dirichlet: se define $\mathscr{H}_p := \mathfrak{B}H_p(\ell_2 \cap B_{c_0}).$

Ya generalizamos la caracterización en $\mathcal{H}_2/\mathfrak{P}_2$ a operadores $M_{\varphi}^*:\mathcal{H}_p^* \to \mathcal{H}_p^*$ y $M_{\varphi}^*:H_p(B_{c_0}\cap \ell_2)^* \to H_p(B_{c_0}\cap \ell_2)^*$.

Es un problema abierto la caracterización de \mathscr{H}_p^* y $H_p(B_{c_0} \cap \ell_2)^*$.

Gracias!

