

Locating Extreme Outliers: Z-Score

3

$$Z = \frac{X - \overline{X}}{S}$$

For a bell-shape (Normal) distribution,

|Z| < 1 for 68% of data

|Z| < 2 for 95% of data

|Z| < 3 for 99.7% of data

So, values X with large |Z| can be outliers.

Locating Extreme Outliers: Z-Score

- Suppose the mean math SAT score is 490, with a standard deviation of 100.
- Compute the Z-score for a test score of 620.

$$Z = \frac{X - \overline{X}}{S} = \frac{620 - 490}{100} = \frac{130}{100} = 1.3$$

A score of 620 is 1.3 standard deviations above the mean and would not be considered an outlier.

General Descriptive Stats Using Microsoft Excel Functions

House Prices		Descriptive Statistics			
\$	2,000,000	Mean	\$	600,000	=AVERAGE(A2:A6)
\$	500,000	Standard Error	\$	357,770.88	=D6/SQRT(D14)
\$	300,000	Median	\$	300,000	=MEDIAN(A2:A6)
\$	100,000	Mode	\$	100,000.00	=MODE(A2:A6)
\$	100,000	Standard Deviation	\$	800,000	=STDEV(A2:A6)
		Sample Variance	64	0,000,000,000	=VAR(A2:A6)
		Kurtosis		4.1301	=KURT(A2:A6)
		Skewness		2.0068	=SKEW(A2:A6)
		Range	\$	1,900,000	=D12 - D11
		Minimum	\$	100,000	=MIN(A2:A6)
		Maximum	\$	2,000,000	=MAX(A2:A6)
		Sum	\$	3,000,000	=SUM(A2:A6)
		Count		5	=COUNT(A2:A6)

Microsoft Excel descriptive statistics output, using the house price data:

House Prices:

\$2,000,000 500,000 300,000 100,000 100,000

House Prices				
Mean	600000			
Standard Error	357770.8764			
Median	300000			
Mode	100000			
Standard Deviation	800000			
Sample Variance	640,000,000,000			
Kurtosis	4.1301			
Skewness	2.0068			
Range	1900000			
Minimum	100000			
Maximum	2000000			
Sum	3000000			
Count	5			

Numerical Descriptive Measures for a Population

- Descriptive statistics discussed previously described a sample, not the population.
- Summary measures describing a population, called parameters, are denoted with Greek letters.
- Important population parameters are the population mean, variance, and standard deviation.

Numerical Descriptive Measures for a Population: The mean µ

The population mean is the sum of the values in the population divided by the population size, N

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N} = \frac{X_1 + X_2 + \Lambda + X_N}{N}$$

Where

 μ = population mean

N = population size

 $X_i = i^{th}$ value of the variable X

Numerical Descriptive Measures For A Population: The Variance σ²

- Average of squared deviations of values from the mean
 - Population variance:

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

Where μ = population mean

N = population size

 $X_i = i^{th}$ value of the variable X

Numerical Descriptive Measures For A Population: The Standard Deviation σ

- Most commonly used measure of variation
- Shows variation about the mean
- Is the square root of the population variance
- Has the same units as the original data

Population standard deviation:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

Sample statistics versus population parameters

Measure	Population Parameter	Sample Statistic
Mean	μ	\overline{X}
Variance	σ^2	S^2
Standard Deviation	σ	S

Quartiles

 Quartiles split the ranked data into 4 segments with an equal number of values per segment

- The first quartile, Q₁, is the value for which 25% of the observations are smaller and 75% are larger
- Q₂ is the same as the median (50% of the observations are smaller and 50% are larger)
- Only 25% of the observations are greater than the third quartile

Quartile Measures: Locating Quartiles

Find a quartile by determining the value in the appropriate position in the ranked data, where

First quartile position: $Q_1 = (n+1)/4$ ranked value

Second quartile position: $Q_2 = (n+1)/2$ ranked value

Third quartile position: $Q_3 = 3(n+1)/4$ ranked value

where n is the number of observed values

Quartile Measures: Calculation Rules

- When calculating the ranked position use the following rules
 - If the result is a whole number then it is the ranked position to use
 - If the result is a fractional half (e.g. 2.5, 7.5, 8.5, etc.) then average the two corresponding data values.
 - If the result is not a whole number or a fractional half then round the result to the nearest integer to find the ranked position.

Quartile Measures Calculating The Quartiles: Example

Sample Data in Ordered Array: 11 12 13 16 16 17 18 21 22

$$(n = 9)$$

 Q_1 is in the (9+1)/4 = 2.5 position of the ranked data,

so
$$Q_1 = (12+13)/2 = 12.5$$

 Q_2 is in the (9+1)/2 = 5th position of the ranked data,

so
$$Q_2 = median = 16$$

 Q_3 is in the 3(9+1)/4 = 7.5 position of the ranked data,

so
$$Q_3 = (18+21)/2 = 19.5$$

 Q_1 and Q_3 are measures of non-central location

Q2 = median, is a measure of central tendency

Interquartile Range (IQR)

- The IQR is Q₃ Q₁ and measures the spread in the middle 50% of the data
- The IQR is also called the midspread because it covers the middle 50% of the data
- The IQR is a measure of variability that is not influenced by outliers or extreme values
- Measures like Q₁, Q₃, and IQR that are not influenced by outliers are called resistant measures

Calculating The Interquartile Range

Example:

The Five-Number Summary

The five numbers that help describe the center, spread and shape of data are:

- X_{smallest}
- First Quartile (Q₁)
- Median (Q₂)
- Third Quartile (Q₃)
- X_{largest}

Five Number Summary and The Boxplot

The Boxplot: A Graphical display of the data based on the five-number summary:

X_{smallest} Q₁ Median Q₃ X_{largest}

 If data are symmetric around the median then the box and central line are centered between the endpoints

A Boxplot can be shown in either a vertical or horizontal orientation

Distribution Shape and The Boxplot

Left-Skewed

H

Symmetric

Right-Skewed

Measures Of The Relationship Between Two Numerical Variables

- Scatter plots allow you to visually examine the relationship between two numerical variables and now we will discuss two quantitative measures of such relationships.
- The Covariance
- The Coefficient of Correlation

The Covariance

- The covariance measures the strength of the linear relationship between two numerical variables (X & Y)
- The sample covariance:

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

- Only concerned with the strength of the relationship
- No causal effect is implied

Interpreting Covariance

Covariance between two variables:

 $cov(X,Y) > 0 \longrightarrow X$ and Y tend to move in the same direction $cov(X,Y) < 0 \longrightarrow X$ and Y tend to move in opposite directions $cov(X,Y) = 0 \longrightarrow X$ and Y are independent

- The covariance has a major flaw:
 - It is not possible to determine the relative strength of the relationship from the size of the covariance

Coefficient of Correlation

- Measures the relative strength of the linear relationship between two numerical variables
- Sample coefficient of correlation:

$$r = \frac{cov(X, Y)}{S_X S_Y}$$

where

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

$$S_X = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

$$S_Y = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}{n-1}}$$

$$S_{X} = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}}$$

$$S_{Y} = \sqrt{\frac{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}{n-1}}$$

Test #1 Score	Test #2 Score	Correlation Coefficient	
78	82	0.7332 =CORREL(A2:A11,B2:B11)	
92	88		
86	91		
83	90		
95	92		
85	85		
91	89		
76	81		
88	96		
79	77		

