RÉPUBLIQUE TUNISIENNE

MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT SESSION 2022

Épreuve : Mathématiques

Sect

Section : Mathématiques

Durée : 4h

Coefficient de l'épreuve : 4

Session principale

N° d'inscription

00000

Le sujet comporte six pages numérotées de 1/6 à 6/6 Les pages 5/6 et 6/6 sont à rendre avec la copie.

<u>Exercice 1</u> (3 points)

Le plan est rapporté à un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

 $Soit \; \theta \in \left] \; 0, \pi \right[. \; \; On \; considère \; dans \; \mathbb{C} \; l'équation \; \; \left(E\right) \colon \; \; z^2 - 2 \, e^{i\theta} \, z + \left(e^{2i\theta} - 4\right) = 0.$

- 1) Résoudre dans \mathbb{C} l'équation (E). On note \mathbf{z}_1 et \mathbf{z}_2 les solutions de (E). \mathbf{z}_1 est tel que $\Re \mathbf{e} \left(\mathbf{z}_1 \right) < 0$.
- 2) On considère les points A,B,I,M $_1$ et M $_2$ d'affixes respectives 1, $-1,\,e^{\mathrm{i}\theta},\,\,z_1$ et $\,z_2$.
 - a) Montrer que I est le milieu du segment $\left[M_1^{}\, M_2^{}\, \right]$
 - b) Vérifier que $\overrightarrow{IM_1} = \overrightarrow{AB}$.
 - c) Dans la **figure 1** de l'annexe jointe, on a placé dans le repère $(O, \overrightarrow{u}, \overrightarrow{v})$, les points A, B et I. Construire les points M_1 et M_2 .
- 3) a) Montrer que les droites (AM_2) et (BM_1) se coupent au point J d'affixe $(-e^{i\theta})$.
 - b) Déterminer la valeur du réel $\theta\,$ telle que l'aire du triangle $J\,M_1\,M_2\,$ soit maximale.

©Exercice 2 (5 points)

Le plan est orienté. Dans la figure 2 de l'annexe jointe,

- OAB est un triangle rectangle et isocèle en O tel que $\left(\overrightarrow{BO}, \overrightarrow{BA}\right) \equiv \frac{\pi}{4} \left[2\pi\right]$.
- CBA est un triangle isocèle en C tel que $\left(\overrightarrow{AC}, \overrightarrow{AB}\right) \equiv \frac{\pi}{12} \left[2\pi\right]$.
- 1) Soit R la rotation de centre B et d'angle $\left(-\frac{\pi}{3}\right)$.
 - a) Vérifier que $\left(\overrightarrow{BC},\overrightarrow{BO}\right) \equiv -\frac{\pi}{3} \left[2\pi\right]$.
 - b) On note D = R(C). Justifier que les points O,D et B sont alignés et construire le point D.
 - c) Montrer que le triangle ACD est rectangle et isocèle en C.

- 2) Soit f la similitude directe telle que f(B) = A et f(O) = C.
 - a) Montrer que f(A) = D.
 - b) Montrer qu'une mesure de l'angle de f est $\left(-\frac{5\pi}{6}\right)$.
 - c) Soit E = f(D). Vérifier que le point E est un point de la droite (AC).
 - d) Montrer que $\left(\overrightarrow{DA}, \overrightarrow{DE}\right) \equiv \frac{\pi}{6} \left[2\pi\right]$ puis construire le point E.
 - e) Soit Ω le centre de f. Montrer que $\left(\overrightarrow{\Omega B}, \overrightarrow{\Omega E}\right) \equiv -\frac{\pi}{2} \left[2\pi\right]$.
- 3) On suppose OA = OB = 1 et on rapporte le plan au repère orthonormé direct $(O, \overrightarrow{OA}, \overrightarrow{OB})$.
- a) On note z_C l'affixe du point C. Montrer que $arg(z_C) \equiv \frac{\pi}{4} [2\pi]$.
- b) Soit z'=az+b l'expression complexe de f où a et b sont deux nombres complexes. Montrer que ai+b=1 et que $z_C=b$.
- c) On note z_{Ω} l'affixe de Ω . Vérifier que $z_{\Omega} \neq 0$ et montrer que $\frac{z_{\Omega} i}{z_{\Omega}} = \frac{1 i}{b}$. En déduire que $\left(\overrightarrow{\Omega O}, \overrightarrow{\Omega B}\right) \equiv -\frac{\pi}{2} \left[2\pi \right]$.
- 4) Montrer que le point Ω est le projeté orthogonal du point B sur la droite (OE) et le construire.

Exercice 3 (5,5 points)

Partie A

Soit dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E): 19u + 11v = 1.

- 1)a) Vérifier que (-4,7) est une solution de (E).
 - b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E).
- 2)a) Montrer que u=7 est l'unique entier appartenant à $\{1,2,...,10\}$ tel que $19u\equiv 1\ (\bmod 11)$.
 - b) Montrer de même que v=7 est l'unique entier appartenant à $\{1,2,...,18\}$ tel que $11v\equiv 1\ (\bmod 19)$.

On considère dans \mathbb{Z} l'équation $(E_{209}): x^2 \equiv x \pmod{209}$.

Partie B

- 1) Vérifier que les entiers 0 et 1 sont des solutions de $\left(\mathbf{E}_{209} \right)$.
- 2) Décomposer 209 en produit de facteurs premiers.
- 3) Montrer que 133 et 77 sont des solutions de (E $_{209}$).

- 4) Soit x une solution de $\left(\mathbf{E}_{209}\right)$.
 - a) Montrer que 19 divise x(x-1) et 11 divise x(x-1).
 - b) Vérifier que \mathbf{x} et $(\mathbf{x} \mathbf{1})$ sont premiers entre eux.
- 5) Soit x une solution de (E $_{209}$) appartenant à {2,3....,208}.
 - a) Montrer que 19 divise x ou 11 divise x.
 - b) On suppose que $x=19\,k$ où k est un entier. Montrer que 11 divise (x-1) puis déduire que x=133.
 - c) On suppose que 11 divise x. Montrer que x = 77.
- 6) Déterminer les solutions de $\left(\mathbf{E}_{209}\right)$ appartenant à $\left\{0,1,...,208\right\}$.

Partie C

Soit y un entier et x son reste modulo 209.

- 1) Montrer que y est une solution de (E_{209}) si et seulement si x est une solution de (E_{209}) .
- 2) Donner alors les solutions dans $\mathbb Z$ de l'équation $\left(E_{209} \right)$.

<u>Exercice 4</u> (6,5 points)

Partie A

Soit f la fonction définie sur $\left]1,+\infty\right[$ par $f(x)=\frac{1}{\ln x}$.

On note (C) sa courbe représentative dans un repère orthonormé (O, \vec{i} , \vec{j}).

- 1) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to 1^+} f(x)$. Interpréter graphiquement.
- 2)a) Montrer pour tout x > 1, $f'(x) = \frac{-1}{x \ln^2 x}$.
 - b) Dresser le tableau de variation de f.
 - c) Tracer (C).
- 3) Montrer que l'équation f(x)=x possède sur $\left]1,+\infty\right[$ une unique solution α et que $\alpha< e$.

Partie B

- 1) Soit $n \in \mathbb{N}^*$. Pour tout x > 1, on pose $F(x) = \int_{\alpha}^{x} (f(t))^n dt$ et $H(x) = \int_{\ln \alpha}^{\ln x} \frac{e^t}{t^n} dt$.
 - a) Montrer que H est dérivable sur $\left]1,+\infty\right[$ et calculer H'(x).
 - b) En déduire que pour tout x > 1, H(x) = F(x).
- 2) On pose pour tout entier $n \ge 1, \ U_n = \int_{\alpha}^{e} \left(f(t) \right)^n \, dt$.
 - a) Vérifier que pour tout $n \geq 1, \ U_n = \int_{\ln\alpha}^1 \frac{e^t}{t^n} \ dt.$
 - b) En déduire que pour tout $n \geq 2$, $\frac{\alpha^n \alpha}{n-1} \leq U_n \leq \frac{e}{n-1} (\alpha^{n-1} 1)$.
 - c) Montrer que $\lim_{n\to +\infty}\frac{\alpha^n}{n}=+\infty\,$ puis déterminer $\lim_{n\to +\infty}U_n$.
 - d) Calculer $\lim_{n\to+\infty} \frac{U_n}{\alpha^n}$.
- 3) Pour tout entier $n \ge 1$, on pose $S_n = \sum_{k=1}^{k=n} (k-2)U_k$.
 - a) En intégrant par parties, montrer que pour tout $n \geq 1,$ $U_n = e \alpha^{n+1} + n \, U_{n+1}$.
 - b) Montrer par récurrence que pour tout $n \geq 1$, $S_n = \frac{\alpha^{n+1} \alpha^2}{\alpha 1} + (1 n)e U_n$.
 - c) Déterminer alors $\lim_{n\to+\infty} \frac{S_n}{\alpha^n}$.

Secti	on:Série:	Signatures des surveillants
Nom	et Prénom :	
Date	et lieu de naissance :	
0.4		

Épreuve : Mathématiques - Section : Mathématiques

Session principale (2022)

Annexe à rendre avec la copie

Figure 1

Ne rien écrire ici

