Министерство образования и науки Российской Федерации Севастопольский государственный университет Институт информационных технологий

Кафедра ИС

ОТЧЕТ

по лабораторной работе №3 ИССЛЕДОВАНИЕ ПРИМЕНЕНИЕ АППАРАТА МНОГОМЕРНОЙ ПОЛЕЗНОСТИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ

Выполнил:

ст. гр. ИС/б-21-2-о

Мовенко К. М.

Проверил:

Кротов К.В.

1. ЦЕЛЬ РАБОТЫ

Исследовать применение аппарата теории многомерной полезности при принятии решений по выбору эффективных альтернатив.

2. ЗАДАНИЕ

Вариант 3. Перед ЛПР стоит проблема выбора объекта недвижимости, в который он может вложить средства (покупка дачи). Выбор определяется значением критериев:

 K_1 – качество дачи;

 K_2 – расстояние до города;

 K_3 — цена.

Диапазон значений параметра «качество дачи», на основании которых определяются значения критерия K_1 , задан равным [20;100] (измеряется в процентах). Для определения многомерной функции полезности $U(k_1,k_2,k_3)$ и одномерной функции $U_1(k_1)$ на интервале [20;100] заданы следующие дискретные значения: 20, 40, 60, 80, 100.

Диапазон значений параметра «расстояние до города», на основании которых определяются значения критерия K_2 , задан равным [20;120]. Дискретные значения, для которых определяются значения функций $U(k_1,k_2,k_3)$ и одномерной функции $U_2(k_2)$, заданы следующими: 20, 40, 60, 80, 100, 120 (чем расстояние до города ниже, тем полезность больше).

Диапазон значений параметра «цена», на основании которых определяются значения критерия K_3 , задан в виде [20;70]. Дискретные значения, для которых определяются значения функций $U(k_1,k_2,k_3)$ и одномерной функции $U_3(k_3)$, заданы следующими: 20, 30, 40, 50, 60, 70 (чем цена ниже, тем полезность больше).

Для сформированных диапазонов значений критериев необходимо определить дискретные значения одномерных функций полезности $U_1(k_1)$, $U_2(k_2)$, $U_3(k_3)$.

На основании полученных значений одномерных функций полезности $U_1(k_1)$, $U_2(k_2)$, $U_3(k_3)$ должны быть определены аналитические формы этих функций (для подстановки в них произвольных значений рассматриваемых параметров, характеризующих решения). Для них должны быть заданы следующие аналитические формы: $U_1(k_1) = ak_1 + b$, $U_2(k_2) = ak_2 + b$, $U_3(k_3) = ak_3 + b$. Для определения коэффициентов в приведенных аналитических функциях необходимо применить метод наименьших квадратов.

На основе полученных результатов для заданных в таблице значений параметров определить эффективное решение.

Вормонт рошония	Критерии							
Вариант решения	k_I	k_2	k_3					
x ₁	40	50	30					
\mathbf{x}_2	80	30	50					
X ₃	50	90	45					
X4	75	40	60					
X5	60	80	40					

Рисунок 1 – Таблица решений и их критериев

3. ХОД РАБОТЫ

Была написана программа, производящая все необходимые вычисления. В первую очередь она сопоставляет дискретные значения параметров с ожидаемыми для них значениями полезности, а затем по полученным точкам находит параметры соответствующих одномерных функций полезности.

Рисунок 2 – Графики одномерных функций полезности для критериев

Получив одномерные функции полезности, программа вычисляет для каждого решения полезность соответствующих критериев, а затем агрегирует их, получая тем самым значение трёхмерной функции полезности. При агрегировании учитывается аддитивность структуры предпочтений. Наибольшей общей полезностью обладает решение x_2 .

		k1		k2		k3		U1		U2		U3		U	
x1	Ī	40	1	50	1	30	1	1.00	1	3.50	1	4.00	1	8.50	1
x2	Ī	80	1	30	1	50	1	3.00	1	4.50	1	2.00	1	9.50	1
х3	Ī	50	1	90	1	45	1	1.50	1	1.50	1	2.50	1	5.50	1
χ4	Ī	75	1	40	1	60	1	2.75	1	4.00	1	1.00	1	7.75	1
х5	I	60	Ī	80	Ī	40	Ī	2.00	Ī	2.00	Ī	3.00	Ī	7.00	Ī

Рисунок 3 – Значения одномерных и трёхмерной функции полезности

4. ТЕКСТ ПРОГРАММЫ

```
import numpy as np
import matplotlib.pyplot as plt
# значение аддитивной функции полезности по трём критериям
def findU(k1, k2, k3):
   u1 = a[0] * k1 + b[0]
   u2 = a[1] * k2 + b[1]
   u3 = a[2] * k3 + b[2]
   return u1 + u2 + u3
# множество решений
X = [(40, 50, 30),
     (80, 30, 50),
     (50, 90, 45),
     (75, 40, 60),
     (60, 80, 40)]
# дискретные значения критериев
K1 = [20, 40, 60, 80, 100]
K2 = [20, 40, 60, 80, 100, 120]
K3 = [20, 30, 40, 50, 60, 70]
K = [K1, K2, K3]
                                # множество критериев
inverted = [False, True, True] # "обратность" критериев
               # число решений
m = int(len(K)) # число критериев
crit_names = ['Качество дачи', 'Расстояние до города', 'Цена']
a, b = list(), list() # значения a, b для Ui=ai*ki+bi
# вычисление коэффициентов одномерных Ui и вывод графиков
for i in range(len(K)):
    x = np.array(K[i].copy())
    y = np.array([i for i in range(len(K[i]))])
    if inverted[i]:
        x = x[::-1]
    subplot = plt.subplot(3, 1, i+1)
    sum x = sum(x)
    sum y = sum(y)
    sum xy = sum(x * y)
    sum x sq = sum(x ** 2)
    # метод наименьших квадратов
    a i = (len(x) * sum xy - sum x * sum y) / (len(x) * sum x sq - (sum x **
2))
   b i = (sum y - a i * sum x) / len(x)
    a.append(a i)
   b.append(b i)
    x s = np.linspace(x[0], x[-1])
```

```
# формирование подграфика
    subplot.title.set text("U%i:%10.3f*k+%10.3f" % (i+1, a i, b i))
    subplot.plot(x_s, a_i * x_s + b_i)
subplot.plot(x, y, '.', markersize=5)
    subplot.set xlabel(crit names[i])
    subplot.set ylabel('U%i' % (i+1))
    for y i in y:
        subplot.axhline(y=y i, linestyle='--', alpha=0.2)
    subplot.set xticks(x)
    subplot.set yticks(y)
plt.subplots adjust(hspace=1.2)
plt.show()
# значения многомерной полезности
for i in range(n):
    for j in range(m):
       result = a[j] * X[i][j] + b[j]
       Uk[j].append(result)
       U[i] += result
# ВЫВОД РЕЗУЛЬТАТОВ
# входные данные: решения и частные критерии
print(' k1 k2 k3 U1 U2 U3
for i in range(n):
    print('x%i | %2i | %2i | %2i | %.2f | %.2f | %.2f | %.2f | %
          (i+1, X[i][0], X[i][1], X[i][2], Uk[0][i], Uk[1][i], Uk[2][i],
U[i]))
print()
# матрицы предпочтения
for k3 in K3:
   print('k3 = %i' % k3)
    for k2 in K2:
       for k1 in K1:
           print('%2.0f' % findU(k1, k2, k3), end=' ')
    print()
```

5. ВЫВОД

В ходе работы было исследовано применение аппарата теории многомерной полезности при принятии решений по выбору эффективных альтернатив