Chapter 7 Quicksort

The slides for this course are based on the course textbook: Cormen, Leiserson, Rivest, and Stein, *Introduction to Algorithms*, 2nd edition, The MIT Press, McGraw-Hill, 2001.

- Many of the slides were provided by the publisher for use with the textbook. They are copyrighted, 2001.
- These slides are for classroom use only, and may be used only by students in this specific course this semester. They are NOT a substitute for reading the textbook!

Chapter 7 Topics

- What is quicksort?
- How does it work?
- Performance of quicksort
- Randomized version of quicksort

Description of Quicksort

- Quicksort is another divide-and-conquer algorithm.
- Basically, what we do is divide the array into two subarrays, so that all the values on the left are smaller than the values on the right.
- We repeat this process until our subarrays have only 1 element in them.
- When we return from the series of recursive calls, our array is sorted.

Description of Quicksort

- **Divide:** Partition A[p..r] into two (possibly empty) subarrays A[p..q-1] and A[q+1 .. r] such each element of A[p..q-1] \leq A[q] and A[q] \leq each element of A[q+1..r]. Compute the index q as part of this partitioning procedure.
- Conquer: Sort the two subarrays by recursive calls to quicksort.
- Combine: Since the subarrays are sorted in place, no work is needed to combine them: A[p..r] is now sorted.

The Quicksort Algorithm

```
QUICKSORT(A,p,r)

1 if p < r

2 then q ← PARTITION(A,p,r)

3 QUICKSORT(A,p,q-1)

4 QUICKSORT(A,q+1,r)
```

```
Initial call:
QUICKSORT(A,1, length[A])
```

The Partition Algorithm

```
PARTITION(A,p,r)
1 \times \leftarrow A[r]
2 \quad i \leftarrow p - 1
3
    for j \leftarrow p to r-1
       do if A[j] \leq x
          then i \leftarrow i + 1
5
6
                  exchange A[i] \leftrightarrow A[j]
7
    exchange A[i+1] \leftrightarrow A[r]
    return i+1
```


PARTITION(A,p,r)

x ← A[r]

i ← p - 1

for j ← p to r-1

do if A[j] ≤ x

then i ← i + 1

exchange A[i] ↔ A[j]

exchange A[i+1] ↔ A[r]

return i+1

Regions of Subarray Maintained by PARTITION

Each value in $A[p..i] \le x$.

Each value in A[i+1..j-1] > x.

A[r] = x.

A[j..r-1] can take on any values.

Loop Invariant for Partition

- We can prove the correctness of the Partition algorithm by an analysis of its loop invariant conditions:
- At the beginning of each iteration of the loop in lines 3-6, for any array index *k*,
 - 1. if $p \le k \le i$, then $A[k] \le x$.
 - 2. if $i + 1 \le k \le j 1$, then A[k] > x.
 - 3. if k = r, then A[k] = x.

Loop Invariant Correctness

Initialization:

Prior to the first iteration of the loop, i = p - 1, and j = p. There are no values between p and i, and no values between i+1 and j-1, so the first two conditions of the loop invariant are trivially satisfied. The assignment in line 1 satisfies the third condition.

Loop Invariant Correctness

Maintenance:

- There are two cases to consider depending on the outcome of the test in line 4:
- When A[j] > x, the only action in the loop is to increment j. After j is incremented, condition 2 holds for all A[j-1] and all other entries remain unchanged.
- When $A[j] \le x$, i is incremented, A[i] and A[j] are swapped, and then j is incremented. Because of the swap, we now have that $A[i] \le x$, and condition 1 is satisfied. Similarly, we also have that A[j-1] > x, since the item that was swapped into A[j-1] is, by the loop invariant, greater than x.

Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If A[j] > x, the only action is to increment j, which maintains the loop invariant. (b) If $A[j] \le x$, index i is incremented, A[i] and A[j] are swapped, and then j is incremented. Again, the loop invariant is maintained.

Loop Invariant Correctness

Termination:

At termination, j = r. Therefore, every entry in the array is in one of the three sets described by the invariant, and we have partitioned the values in the array into three sets:

those less than or equal to x, those greater than x, and a singleton set containing x.

Performance of Quicksort

- Depends on whether the partitioning is balanced or unbalanced:
 - Balance of partition depends on location of pivot
 - If balanced, runs as fast as Merge sort
 - If unbalanced, runs as slowly as Insertion sort

Worst/Best case partitioning

- Worst case:

- One partition contains n-1 elements
- The other partition contains 1 element

-Best case:

Both partitions are of equal size

Worst case partitioning

Worst Case Performance

Assume we have a maximally unbalanced partition at each step, splitting off just 1 element from the rest each time. This means we will have to call Partition n-1 times.

The cost of Partition is: $\Theta(n)$

So the recurrence for Quicksort is:

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
$$= T(n-1) + \Theta(n)$$

Worst Case Performance

We can solve the recurrence by iteration:

$$T(n) = \Theta(n) + T(n-1)$$

$$= \Theta(n) + \Theta(n-1) + \Theta(n-2) + \dots + \Theta(1)$$

$$= \sum_{k=1}^{n} \Theta(k)$$

$$= \Theta\left(\sum_{k=1}^{n} k\right)$$

$$=\Theta(n^2)$$

Best Case

Best case: Each time the partitioning is done, it splits the array into two regions of equal size. After each call to Partition, each subarray contains n/2 of the elements from the previous call. If we halve the remaining elements each time, we will have to call Partition log₂n times.

Best Case Performance

Best case: Call Partition, which splits the array into two equal-size subarrays. For each of the 2 subarrays, call Partition, which splits ...

Recurrence for Quicksort:

$$T(n) \le 2T(n/2) + \Theta(n)$$

This matches Master Method case 2. Solving the recurrence we get:

$$T(n) = O(n \lg n)$$

Average Case

- Average case analysis is complex and difficult.
- However, we can observe that average-case performance is much closer to best-case than worst case.
- Suppose split is always 9-to-1
- Recurrence:

$$T(n) \le T(9n/10) + T(n/10) + \Theta(n)$$

$$= T(9n/10) + T(n/10) + cn$$

$$= \log_{10/9} n * n = O(n \lg n)$$

Average Case Analysis

Average Case Analysis

- What if we have a 99-1 split?
- We still have a running time of O(n lg n)
- Any split of *constant proportionality* yields a recursion tree of depth $\Theta(\lg n)$, where the cost at each level is O(n).
- So whenever the split is of constant proportionality, Quicksort performs on the order of O(n lg n).

Average Case

• Best case:

$$2T(n/2) + \Theta(n)$$

• Average case example:

$$T(9n/10) + T(n/10) + cn$$

• Worst case:

$$T(n-1) + \Theta(n)$$

Randomized Version of Quicksort

• When an algorithm has an average case performance and worst case performance that are very different, we can try to minimize the odds of encountering the worst case.

• We can:

- Randomize the input
- Randomize the algorithm

Randomized Version of Quicksort

Randomizing the input

With a given set of input numbers, there are very few permutations that produce the worst-case performance in Quicksort.

We can randomly permute the numbers in a n-element array in O(n) time.

For Quicksort, add an initial step to randomize the input array.

Running time is now independent of input ordering.

Randomized Version of Quicksort

Randomizing the algorithm:

In standard Quicksort, the worst case is encountered when we choose a bad pivot.

If the input array is already sorted (or inverse sorted), we will always pick a bad pivot.

But if we pick our pivot randomly, we will rarely get a bad pivot.

So, randomly choose a pivot element in A[p..r].

Running time is now independent of input ordering.

Randomized Partition

```
RANDOMIZED-PARTITION (A, p, r)

1 i ← RANDOM (p, r)

2 exchange A[r] ↔ A[i]

3 return PARTITION (A, p, r)
```

Randomized Quicksort

```
RANDOMIZED-QUICKSORT (A, p, r)

1 if p < r

2 then q ← RANDOMIZED-PARTITION (A, p, r)

3 RANDOMIZED-QUICKSORT (A, p, q-1)

4 RANDOMIZED-QUICKSORT (A, q+1, r)
```

Conclusion

- Quicksort runs $O(n \lg n)$ in the best and average case, but $O(n^2)$ in the worst case.
- Worst case scenarios for Quicksort occur when the array is already sorted, in either ascending or descending order.
- We can increase the probability of obtaining average-case performance from Quicksort by using Randomized-partition.