Some Statistical Issues in Modeling Frailty

Dane Van Domelen January 28, 2019

Outline

- Goals of modeling frailty
- Modeling considerations for frailty...
 - ...as a potential novel risk factor
 - ...to help classify risk
 - ...to control for confounding
- Claims-based frailty indexes

Path to COAH

- · 2005-2009: BS in biomedical engineering, MSOE
- · 2009-2012: Postbaccalaureate research fellow, NIA
- · 2012-2018: PhD in biostatistics, Emory University

Modeling frailty: 4 broad goals

- Study frailty as a clinical syndrome
- Assess frailty as a novel risk factor
- Use frailty to improve risk prediction
- Use frailty to control for confounding

Bandeen-Roche et al. (J Gerontol 2015)

Table 1. Prevalence of Frail Status by Demographic Subgroups: National Health and Aging Trends Study, 2011; n = 7,439

Characteristic	Subgroup Prevalence (%)	Frail Status Prevalence Within Subgroup (%)		
		Robust	Prefrail	Frai
Age***	28.1	51.6	39.5	8.9
65-69	25.0	44.2	45.1	10.7
70-74	19.1	37.2	49.3	13.5
75-79	14.6	29.3	50.6	20.1
80-84	9.0	19.3	47.4	33,3
85-89	4.2	13.4	48.7	37.9
90+				
Sex***				
Male	43.6	43.8	43.3	12.9
Female	56.4	35.6	47.2	17.2
Race/ethnicity***				
White non-Hispanic	81.7	40.8	45.3	13.8
Black non-Hispanic	8.3	31.1	46.0	22.9
Hispanic	6.7	28.8	46.5	24.6
Other	3.4	40.5	45.8	13.7
Residence***				
Community	94.6	40.3	45.2	14.5
Residential care	5.4	19.8	50.7	29.5
Income***				
Lowest quartile	23.6	23.8	50.4	25.8
2nd quartile	24.1	32.4	47.9	19.7
3rd quartile	26.9	43.0	46.1	11.0
Highest quartiles	25.4	56.0	38.1	5.9

Notes: Overall prevalence estimates were 15.3% frail (95% CI: 14.2%, 16.4%), 45.5% prefrail (95% CI: = 44.0%, 46.9%), and 39.2% robust (95% CI: 37.7%, 40.8%). Per characteristic, comparisons were statistically significant at ***p < .001.

Hanlon et al. (Lancet 2017)

Makary et al. (J Am Coll Surg 2010)

Presley et al. (J Gerontol 2018)

Assessing frailty as a novel risk factor

Frailty phenotype as a novel risk factor

- · Individual items:
 - X_1 = Weight loss in past year (lb)
 - X_2 = Grip strength (kg)
 - X_3 = Gait speed (m/s)
 - X_4 = Energy expenditure (kcal/d)
 - X_5 = 1 if exhaustion, else 0
- · Frailty phenotype:

-
$$X^st = I(X_1 > k_1) + I(X_2 < k_2) + I(X_3 < k_3) + I(X_4 < k_4) + X_5$$

- $X = I(X^* \ge 3)$
- · If we fit:
 - $\operatorname{logit}[P(Y=1)] = \beta_0 + \beta_x X + oldsymbol{eta_c}^T oldsymbol{C}$
- · We will almost certainly reject $H_0: \beta_x = 0$

Frailty phenotype as a novel risk factor

- Why is this a problem?
 - In general, functions of risk factors are risk factors.
 - Expect FP correlate with any Y linked to X_1 - X_5 .
 - Known dose-response for gait speed, PA, etc.
- "Frailty is a novel risk factor"
 - How do we prove this?

Notions about frailty

```
"...a critical mass of phenotypic components..."
```

"...an adverse, potentially downward spiral..."

"...collectively often represent an insurmountable burden of disease..."

"...a marker of people who are very vulnerable for short-term mortality, for disability and falling..."

⇒ Sounds like an interaction!

Our burden of proof

- Show that frailty increases risk of outcomes, beyond what we would expect from the underlying items, which are well-established risk factors.
- E.g., HR > additive effects of individual items

The model we have to beat

$$ext{logit}[P(Y=1)] = eta_0 + oldsymbol{eta_c}^T oldsymbol{C} + eta_1 X_1 + \ldots + eta_5 X_5$$

· (This would be too easy!)

$$ext{logit}[P(Y=1)] = eta_0 + oldsymbol{eta_c^TC}$$

Approach #1:

$$ext{logit}[P(Y=1)] = eta_0 + oldsymbol{eta_c}^T oldsymbol{C} + eta_1 X_1 + \ldots + eta_5 X_5 + eta_{x^*} X^*$$

- Test for "frailty is a novel risk factor":
 - $H_0: \beta_{x^*} = 0$
- · Model implies:
 - Each item has (unique) effect on Y
 - In addition, crossing a cutpoint is associated with e^{eta_x} times odds
 - Each deficit has same effect
- · Some problems:
 - Incompatible with notion of extra risk at $X^* \geq 3$
 - Interpretation of eta_{x^*}
 - A contradiction? Effect of each item unique, each deficit constant.

Approach #2:

$$\operatorname{logit}[P(Y=1)] = \beta_0 + \boldsymbol{\beta_c^T C} + \beta_1 X_1 + \ldots + \beta_5 X_5 + \beta_x X$$

- Test for "frailty is a novel risk factor":
 - $H_0: eta_x = 0$
- Model implies:
 - Each item has (unique) linear effect on log-odds of Y
 - In addition, accumulating 3 deficits is associated with e^{eta_x} times odds
- · Some problems:
 - Interpretation of β_x , contradiction

Approach #3:

$$egin{aligned} ext{logit}[P(Y=1)] &= eta_0 + oldsymbol{eta_c^TC} + eta_1 X_1 + \ldots + eta_5 X_5 + \ eta_1^* X_1 X + \ldots + eta_5^* X_5 X + eta_x X \end{aligned}$$

• Test for "frailty is a novel risk factor":

-
$$H_0:eta_1^*=eta_2^*=eta_3^*=eta_4^*=eta_5^*=eta_x=0$$

-
$$H_0^*: \beta_x = 0$$

- Model implies:
 - β_i = effect of item i in non-frail
 - $\beta_i + \beta_i^*$ = effect of item i in frail
- · Plausible?
 - May or may not reflect our thinking about frailty
 - "Different model kicks in" once frail appealing!

Why is this important?

- May dictate whether HR's are ~5 or ~1-1.5
- Could lose associations with certain outcomes
- Will this weaken the evidence base?
 - Yes: associations will be smaller
 - No: rejecting a stronger null is more convincing

Using frailty to improve risk prediction

Using frailty to improve risk prediction

- FP is a highly summarized statistic of (X_1, \dots, X_5)
- · If FP improves risk prediction, (X_1,\ldots,X_5) should improve it even more
- If skip right to FP, likely to underfit
- What does "frailty improves risk prediction" mean?
 - In my opinion, a **significant and informative** interaction

Using frailty to control for confounding

Using frailty to control for confounding

- Three stages of underadjustment:
 - Dichotomize variables with dose-response
 - Convert 5 binary confounders to scalar sum
 - Dichotomize the sum
- Residual confounding ⇒ false positives!

Watch out for Frank Harrell!

"Categorization is a data crime."

"Dichotomization kills."

"We see dichotomization doing untold damage in statistical analysis in all fields."

Claims-based frailty indexes

Basic idea

- Want to model frailty, but don't have frailty items
- Have Medicare claims data
- Many of those variables inform frailty
- Two-step procedure:
 - Build classifier for frailty given claims data
 - Impute frailty variable, and proceed with modeling
- Presumably, goal is to model CFI to similar effect as FP/FI

Two proposed estimation procedures

Med Care. 2017 Jul;55(7):716-722. doi: 10.1097/MLR.000000000000729.

Development of a Claims-based Frailty Indicator Anchored to a Well-established Frailty Phenotype.

Segal JB¹, Chang H-Y, Du Y, Walston JD, Carlson MC, Varadhan R.

J Gerontol A Biol Sci Med Sci. 2018 Jun 14;73(7):980-987. doi: 10.1093/gerona/glx229.

Measuring Frailty in Medicare Data: Development and Validation of a Claims-Based Frailty Index.

Kim DH^{1,2}, Schneeweiss S¹, Glynn RJ^{1,3}, Lipsitz LA^{2,4}, Rockwood K⁵, Avorn J¹.

Segal procedure

- · Reference standard frailty measure:
 - Frailty phenotype
- Fitting imputation model:
 - 312 candidate variables, 21 selected
 - Logistic regression w/ lasso
- · Imputation:
 - \hat{p} = Predicted probability from logistic regression
 - $\hat{X}=I(\hat{p}>0.2)$ (this is the CFI)
- · Modeling: Just use the \hat{X} 's

TABLE 2. Best Model: Variables in Claims-based Frailty Indicator

B-Coefficient	Variables	
1.24	Impaired mobility	
0.54	Depression	
0.50	Congestive heart failure	
0.50	Parkinson disease	
-0.49	White race	
0.43	Arthritis (any type)	
0.33	Cognitive impairment	
0.31	Charlson comorbidity index $(>0, 0)$	
0.28	Stroke	
0.24	Paranoia	
0.23	Chronic skin ulcer	
0.21	Pneumonia	
-0.19	Male sex	
0.18	Skin and soft tissue infection	
0.14	Mycoses	
0.09	Age (in 5 y categories)	
0.09	Admission in past 6 mo	
0.08	Gout or other crystal-induced arthropathy	
0.08	Falls	
0.05	Musculoskeletal problems	
0.05	Urinary tract infection	

FIGURE 1. Receiver operator curve for Claims-based Frailty Indicator.

Kim procedure

- · Reference standard frailty measure:
 - 56-item frailty index
- Fitting calibration model:
 - 580 candidate variables, 93 selected
 - Linear regression w/ lasso
- Imputation:
 - \hat{X} = Predicted values from regression (this is the CFI)
- · Modeling: Just use the \hat{X} 's.

Table 2. Selected Codes Associated with Frailty in Medicare Current Beneficiary Survey

Type	Codes	Description of Claims-Based Variables	Prevalence	Coefficient
HCPCS	E0250-E0373	Hospital beds and associated supplies	0.018	0.086
HCPCS	K0001-K0462 K0669	Wheelchairs, components, and accessories	0.035	0.078
ICD9 Dx	290-294	Organic psychotic conditions	0.052	0.047
ICD9 Dx	330-338	Hereditary and degenerative diseases of the central nervous system	0.086	0.040
HCPCS	E0100-E0159	Walking aids and attachments	0.048	0.028
HCPCS	E1353-E1406	Accessories for oxygen delivery devices	0.051	0.027
HCPCS	A4244-A4290	Other supplies including diabetes supplies and contraceptives	0.125	0.024
HCPCS	A5500-A5513	Diabetic footwear	0.029	0.024
ICD9 Dx	295-299	Other psychoses	0.036	0.021
ICD9 Dx	420-429	Other forms of heart disease	0.375	0.020
ICD9 Dx	890-897	Open wound of lower limb	0.017	0.020
ICD9 Dx	410-414	Ischemic heart disease	0.310	0.019
ICD9 Dx	401-405	Hypertensive disease	0.752	0.017
ICD9 Dx	430-438	Cerebrovascular disease	0.172	0.016
ICD9 Dx	300-316	Neurotic disorders, personality disorders, and other nonpsychotic mental disorders	0.154	0.014
ICD9 Dx	710-719	Arthropathies and related disorders	0.482	0.014
CPT-4	99308	Nursing facility care—subsequent	0.016	0.014
ICD9 Dx	490-496	Chronic obstructive pulmonary disease and allied conditions	0.235	0.013
ICD9 Dx	030-041	Other bacterial diseases	0.031	0.012
ICD9 Dx	451-459	Diseases of veins and lymphatics, and other diseases of circulatory system	0.154	0.012
ICD9 Dx	480-487	Pneumonia and influenza	0.066	0.012
ICD9 Dx	250-259	Diseases of other endocrine glands	0.312	0.011
ICD9 Dx	590-599	Other diseases of urinary system	0.289	0.011
ICD9 Dx	797-799	Ill-defined and unknown causes of morbidity and mortality	0.046	0.011
ICD9 Dx	920-924	Contusion with intact skin surface	0.058	0.011
ICD9 Dx	580-589	Nephritis, nephrotic syndrome, and nephrosis	0.084	0.010
HCPCS	A0021-A0999	Transportation services including ambulance	0.110	0.010

Predictors	Mortality	ADL Disability	IADL Disability
A. Survey-based FI			
Age (per 1 year)	1.06 (1.04, 1.09)	1.05 (1.03, 1.06)	1.07 (1.05, 1.08)
Female (vs. male)	0.68 (0.48, 0.97)	1.20 (1.00, 1.45)	1.18 (1.00, 1.38)
CCI (per 1 point)	1.35 (1.27, 1.43)	1.01 (0.97, 1.06)	1.03 (0.99, 1.08)
FI (per 0.1 point)	1.41 (1.24, 1.59)	4.23 (3.79, 4.74)	4.30 (3.82, 4.86)
C statistic	0.83	0.76	0.70
B. Claims-based FI			
Age (per 1 year)	1.07 (1.04, 1.09)	1.05 (1.04, 1.07)	1.07 (1.05, 1.09)
Female (vs. male)	0.68 (0.48, 0.97)	1.42 (1.11, 1.82)	1.22 (0.98, 1.52)
CCI (per 1 point)	1.30 (1.22, 1.39)	1.01 (0.94, 1.08)	0.98 (0.91, 1.05)
FI (per 0.1 point)	1.82 (1.45, 2.29)	2.53 (1.96, 3.28)	2.30 (1.75, 3.05)
C statistic	0.82	0.69	0.67

Comparison of CFI procedures

	Segal et al.	Kim et al.
Reference standard	Frailty phenotype	56-item frailty index
Number of classifiers	312 (21 selected)	580 (93 selected)
Method to fit classifier	Logistic regression w/ lasso	Linear regression w/ lasso
Imputation Method	$\hat{X} = I(\hat{p} > 0.2)$	\hat{X}

Potential problem with CFI procedures

- · Kim:
 - Regression calibration with 93 surrogates
- · Segal:
 - Somewhere between regression calibration and MI
 - Akin to MI but with Y left out of imputation model

Rationale for regression calibration

$$Y = eta_0 + eta_x X + oldsymbol{eta_c}^T oldsymbol{C} + \epsilon, \ \epsilon \sim (0, \sigma_\epsilon^2)$$

- ullet Problem: Measure X with error; observe "noisy version" W
- ' Solution: Fit model with $\hat{X} = E(X|W, m{C})$ in place of X
- · Typically assume:

$$X = lpha_0 + lpha_w W + oldsymbol{lpha_c}^T oldsymbol{C} + \delta, \ \delta \sim (0, \sigma_\delta^2)$$

$$E(Y|\hat{X}, oldsymbol{C}) = E(eta_0 + eta_x X + oldsymbol{eta_c}^T oldsymbol{C} + \epsilon | \hat{X}, oldsymbol{C}) \ = eta_0 + eta_x \hat{X} + oldsymbol{eta_c}^T oldsymbol{C}$$

What if W informs Y?

$$Y = eta_0 + eta_x X + oldsymbol{eta_c}^T oldsymbol{C} + eta_w W + \epsilon, \ \epsilon \sim (0, \sigma_\epsilon^2)$$

Typically assume:

$$X = lpha_0 + lpha_w W + oldsymbol{lpha_c}^T oldsymbol{C} + \delta, \ \delta \sim (0, \sigma_\delta^2)$$
 $E(Y|\hat{X}, oldsymbol{C}) = E(eta_0 + eta_x X + oldsymbol{eta_c}^T oldsymbol{C} + eta_w W + \epsilon | \hat{X}, oldsymbol{C})$
 $= eta_0 + eta_x \hat{X} + oldsymbol{eta_c}^T oldsymbol{C} + eta_w E(W|\hat{X}, oldsymbol{C})$
 $= eta_0 + eta_x \hat{X} + oldsymbol{eta_c}^T oldsymbol{C} + eta_w (-rac{lpha_0}{lpha_w} + rac{1}{lpha_w} \hat{X} - rac{1}{lpha_w} oldsymbol{lpha_c}^T oldsymbol{C})$
 $= (eta_0 - rac{eta_w lpha_0}{lpha_w}) + (eta_x + rac{eta_w}{lpha_w}) \hat{X} + (oldsymbol{eta_c}^T - rac{eta_w}{lpha_w} oldsymbol{lpha_c}^T) oldsymbol{C}$

 \Rightarrow Actually need to compare to $E(Y|X, C) \dots$

$$egin{aligned} E(Y|X,C) &= k + eta_x X + eta_c C \ E(Y|\hat{X},C) &= k + (1)eta_x \hat{X} + eta_c C \end{aligned}$$

$$E(Y|\hat{X},C) = k + (1)eta_x\hat{X} + eta_cC + \ r(lpha_w)eta_w\hat{X} + eta_cr(lpha_w)eta_wC$$

Regression calibration fails if any of the variables used to inform X, but omitted from the model for Y, truly inform Y

TABLE 2. Best Model: Variables in Claims-based Frailty Indicator

B-Coefficient	Variables		
1.24	Impaired mobility		
0.54	Depression		
0.50	Congestive heart failure		
0.50	Parkinson disease		
-0.49	White race		
0.43	Arthritis (any type)		
0.33	Cognitive impairment		
0.31	Charlson comorbidity index $(>0, 0)$		
0.28	Stroke		
0.24	Paranoia		
0.23	Chronic skin ulcer		
0.21	Pneumonia		
-0.19	Male sex		
0.18	Skin and soft tissue infection		
0.14	Mycoses		
0.09	Age (in 5 y categories)		
0.09	Admission in past 6 mo		
0.08	Gout or other crystal-induced arthropathy		
0.08	Falls		
0.05	Musculoskeletal problems		
0.05	Urinary tract infection		

Table 2. Selected Codes Associated with Frailty in Medicare Current Beneficiary Survey

Type	Codes	Description of Claims-Based Variables	Prevalence	Coefficient
HCPCS	E0250-E0373	Hospital beds and associated supplies	0.018	0.086
HCPCS	K0001-K0462 K0669	Wheelchairs, components, and accessories	0.035	0.078
ICD9 Dx	290-294	Organic psychotic conditions	0.052	0.047
ICD9 Dx	330-338	Hereditary and degenerative diseases of the central nervous system	0.086	0.040
HCPCS	E0100-E0159	Walking aids and attachments	0.048	0.028
HCPCS	E1353-E1406	Accessories for oxygen delivery devices	0.051	0.027
HCPCS	A4244-A4290	Other supplies including diabetes supplies and contraceptives	0.125	0.024
HCPCS	A5500-A5513	Diabetic footwear	0.029	0.024
ICD9 Dx	295-299	Other psychoses	0.036	0.021
ICD9 Dx	420-429	Other forms of heart disease	0.375	0.020
ICD9 Dx	890-897	Open wound of lower limb	0.017	0.020
ICD9 Dx	410-414	Ischemic heart disease	0.310	0.019
ICD9 Dx	401-405	Hypertensive disease	0.752	0.017
ICD9 Dx	430-438	Cerebrovascular disease	0.172	0.016
ICD9 Dx	300-316	Neurotic disorders, personality disorders, and other nonpsychotic mental disorders	0.154	0.014
ICD9 Dx	710-719	Arthropathies and related disorders	0.482	0.014
CPT-4	99308	Nursing facility care—subsequent	0.016	0.014
ICD9 Dx	490-496	Chronic obstructive pulmonary disease and allied conditions	0.235	0.013
ICD9 Dx	030-041	Other bacterial diseases	0.031	0.012
ICD9 Dx	451-459	Diseases of veins and lymphatics, and other diseases of circulatory system	0.154	0.012
ICD9 Dx	480-487	Pneumonia and influenza	0.066	0.012
ICD9 Dx	250-259	Diseases of other endocrine glands	0.312	0.011
ICD9 Dx	590-599	Other diseases of urinary system	0.289	0.011
ICD9 Dx	797-799	Ill-defined and unknown causes of morbidity and mortality	0.046	0.011
ICD9 Dx	920-924	Contusion with intact skin surface	0.058	0.011
ICD9 Dx	580-589	Nephritis, nephrotic syndrome, and nephrosis	0.084	0.010
HCPCS	A0021-A0999	Transportation services including ambulance	0.110	0.010

Some intuition

If we fit:

$$Y=eta_0+eta_x\hat{X}+\epsilon$$

and our imputed variable is:

$$\hat{X} = lpha_0 + lpha_w W$$

effects of W on Y will contribute to $\hat{\beta}_x$.

More broadly...

- · RC proposed by Rosner et al. (*Stat Med* 1989)
 - Just 1 surrogate: the "imprecise version"
- Extension by Weller et al. (*J Stat Plan Inference* 2007)
 - Multiple surrogates
 - Surrogates still have to be surrogates!

Option 1: Bias correction

· Recall:

$$E(Y|\hat{X},m{C}) = (eta_0 - rac{eta_w lpha_0}{lpha_w}) + (eta_x + rac{eta_w}{lpha_w})\hat{X} + (m{eta_c}^T - rac{eta_w}{lpha_w}m{lpha_c}^T)m{C}$$

- Bias in $\hat{\beta}_x$ is $\frac{\beta_w}{\alpha_w}$
- Expect $lpha_w>0$ and probably $eta_w>0$
- · Coefficient on \hat{X} is an **upper bound**

 \Rightarrow This is wrong; bias should be based on *confounded* associations with Y

Option 2: Identify surrogate(s)

- For unbiasedness, W's must not inform Y.
- For precision, W's must substantially inform X.
- What might inform FP but not outcomes given FP?

Even with surrogate, need to be careful

 $\Rightarrow W$ is a surrogate given (X, C), but not given X

Option 3: Standard MI

- · Include Y in imputation model
 - Need internal validation data
 - In other words, assess FP on subsample
- Classifier variables
 - Optional as "auxiliary variables" to improve efficiency
- Abandons notion of CFI; no longer helpful for other studies.
- ⇒ Measuring FP on subset leads to easier estimation problem

Option 4: Don't anchor to FP/FI

- Classify frailty from claims data and theory
- · Claims-based deficit accumulation index feasible (Kim)

Conclusions on CFI

- In my view, 2 options:
 - Measure frailty on subset, use MI (or RC, or ML)
 - Classify frailty directly from claims

Conclusions on regression calibration

- Developed for ME, where surrogacy is no problem
- Applied to missing data, several issues:
 - Need informative surrogate(s)
 - Surrogacy violated if any omitted variable links W to Y

Thanks!