

Научно-популярный физико-математический журнал "Квант"

(издается с января 1970 года)

<u>МЦНМО</u> Редакция журнала "Квант"

Квант >> 1987 год >> номер 2 Квант >> Статьи по математике

Сосинский А., Конечные группы.

kvant.mccme.ru

КОНЕЧНЫЕ ГРУППЫ

Кандидат физико-математических наук А. Б. СОСИНСКИЙ

Понятие группы, в частности, конечной группы — одно из важнейших понятий математики. И вместе с тем одно из самых распространенных и наиболее полезных для приложений.

Без конечных групп нельзя, например, указать, какие алгебраические уравнения разрешимы в радикалах, а какие — нет, описать, как устроены кристаллы, создавать коды, исправляющие ошибки. Об этом, однако, мы здесь рассказывать не будем, а ограничимся простейшими примерами конечных групп.

Иллюстрации: группы действий

Непустой набор некоторых действий, которые можно последовательно выполнять, называют группой, если в этом наборе для каждого действия обязательно присутствует обратное к нему, а результат последовательного выполнения любых двух действий тоже является действием из этого набора.

В качестве иллюстрации рассмотрим действия солдата, выполняющего команды строевой подготовки (рис. 1). Эти

относительно ее центра (рис. 2). «Ничегонеделание» (в этом случае — поворот на 0°) обозначено через R_0 , а остальные повороты (на 72° , 144° , 216° , 288°) — через R_1 , R_2 , R_3 , R_4 . Здесь $R_2 \circ R_1 = R_1 \circ R_2 = R_3$,

o Ro R1 R2 R3 R4
Ro Ro R1 R2 R3 R4
R1 R1 R2 R3 R4 R0
R2 R2 R3 R4 R0 R1
R3 R3 R4 R0 R1
R4 R4 R0 R1 R2 R3

Puc. 2.

 $R_3 \circ R_3 = R_1$, $R_1 \circ R_4 = R_0$ (последнее означает, что R_4 обратно к R_1) и т. д. Набор $\Pi(\bigstar) = \{R_0, R_1, R_2, R_3, R_4; \circ\}$

образует группу.

Рассмотрим, наконец, «группу надевания носка» (рис. 3), состоящую из следующих действий:

О = «Оставь, как есть»,

П = «Сними и надень на другую ногу»,

В = «Сними, выверни и надень на ту же ногу»,

П' = «Сними, выверни и надень на другую ногу».

Здесь ничегонеделание — это О, далее $\Pi \circ B = \Pi'$, $\Pi \circ \Pi = B \circ B = \Pi' \circ \Pi' = O$, $\Pi' \circ \Pi = B$ и т. д. Снова получается группа $H = \{O, \Pi, B, \Pi' \in A, \Pi' \in A, \Pi' \in B, \Pi' \in A, \Pi' \in A$

Puc. 1.

четыре действия составляют группу $R(\Box) = \{C, \Pi, \Pi, K; o\}$. Так, результат последовательного выполнения действий ПиК (направо и кругом) будет совпадать с результатом действия Л (налево); это записывается в виде равенства К∘П= =Л. Точно так же Л∘Л=П∘П=К, Л∘П= =П∘Л=К∘К=С. Остальные соотношения в группе можно извлечь из ее таблицы умножения, показанной на рисунке 1. Особую роль играет здесь действие С, которое можно назвать «ничегонеделание». (Такое действие обязательно есть в любой группе: мы его получим, выполнив произвольное действие, а затем обратное к нему.) У нас действия П и Л обратны друг к другу, действие К обратно к самому себе, и т. д.

Рассмотрим другую группу, тоже состоящую из поворотов. Именно — группу поворотов пятиконечной звезды П(★)

 Π' ; •), состоящая, как и $R(\square)$, из четырех действий. Группы H и $R(\square)$, однако принципиально разные: у них таблицы умножения отличаются не только обозначением элементов, но и своим строением. Так, по диагонали таблицы умножения H стоит одно и то же действие O, в то время как на этой диагонали у $R(\square)$ стоят разные элементы.

Подозреваю, что у самых серьезных читателей нарастает возмущение: какаято там строевая подготовка, надевание носков — что за глупости такие, не научно это все! Спешу возразить: научно, даже очень. Знаете, как на самом деле называется набор действий солдата? Циклическая группа 4-го порядка или группа вычетов по модулю 4. А наше «надевание носков» — группа Клейна. Повороты же звезды — это одна из так называемых простых конечных групп, о которых в этом номере «Кванта» написана целая статья (см. с. 2), а в других журналах — тысячи статей.

8

kvant.mccme.ru

Группы симметрий геометрических фигур

С каждой геометрической фигурой F можно связать вполне определенную группу S(F), называемую группой самосовмещений или группой симметрий этой фигуры; по определению, ее набор действий состоит из всех перемещений, совмещающих фигуру F саму с собой. Например, S(□) состоит из 8 действий: четырех поворотов квадрата (относительно его центра, в том числе на 0°) и четырех отражений (относительно двух диагоналей и двух «средних линий» квадрата).

В группе $S(\triangle)$ самосовмещений правильного треугольника — 6 действий, в группе $S(\Box)$ прямоугольника — 4.

еще называется *циклической группой n-го порядка и о*бычно обозначается через

Z_n.
В алгебре группы изучают «с точностью до изоморфизма», т. е. не различают изоморфные группы: алгебраисту не интересно, как называется группа и ее действия, ему важно знать структуру таблицы умножения группы.

Группы перестановок и их подгруппы

Рассмотрим конечный набор предметов — скажем, пять. Обозначим предметы цифрами, а весь набор через $N_5 = \{1, 2, 3, 4, 5\}$. Перестановкой $i \in S_5$ этих предметов называется любое взаимно однозначное отображение $i: N_5 \rightarrow N_5$, т. е., попросту говоря,

ражена на рисунке 4.

Puc. 4.

Если сравнить таблицу умножения для группы S(□) с таблицей умножения для группы H, можно заметить, что эти таблицы отличаются только обозначением действий. Если переименовать действия так:

$$0 \rightarrow R_0$$
, $\Pi \rightarrow R_1$, $B \rightarrow S_1$, $\Pi' \rightarrow S_2$,

то одна таблица превратится в другую. Группы с совпадающими (при подходящем переименовании действий) таблицами умножения называются изоморфными. Мы сейчас установили, что группы $S(\Box)$ и Н изоморфны (их обычно в честь Ф. Клейна обозначают буквой K), а ранее заметили, что эти группы не изоморфны группе $R(\Box)$ действий солдата.

Читатель, возможно, догадался, почему мы обозначили группу действий солдата через $R(\square)$: она изоморфна группе поворотов квадрата относительно его центра на углы $2k\pi/4$, k=0, 1, 2, 3. Эта группа — частный случай (при n=4) группы поворотов правильного n-угольника (относительно его центра), которая

i(k) k-го предмета мы будем обозначать через i_k . Для наглядности перестановку i обычно представляют в виде таблицы:

$$i = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ i_1 & i_2 & i_3 & i_4 & i_5 \end{pmatrix}$$
.

Это позволяет легко находить произведение перестановок і и ј. Например, если

$$i = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix}, j = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix},$$

то $k(3) = (i \circ j)(3) = i(j(3)) = i(5) = 2$, так что

$$i \circ j = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 1 & 4 \end{pmatrix}$$

(обратите внимание, что при $k=i \circ j$ сначала выполняется j, а потом i, причем это не все равно: $i \circ j \neq j \circ i$ — проверьте!) Также легко находить обратные перестановки («чтением снизу вверх»):

$$i^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}.$$

Нетрудно проверить, что S_5 образует группу, состоящую из 5! = 120 перестановок. Эта группа называется группой перестановок пяти предметов или симметрической группой пятой степени. Совершенно аналогично определяется симметрическая группа S_n n-й степени для любого натурального n.

Группы перестановок интересны в частности тем, что содержат много *подгрупп* (т. е. частей, которые сами являются группами). В группах перестановок содержатся подгруппы, изоморфные всем нашим ранее рассмотренным группам. Заинтере-

9

kvant.mccme.ru

Пруппа $\mathcal{L}_{H2} = \{\mathcal{B}^{2SI_{H2}} = \mathcal{I}, \mathcal$

kvant.mccme.ru

сованный читатель может в этом убедиться, проштудировав рисунок 5.

Рассматривая этот рисунок, читатель наверняка обратит внимание на красивые преобразований. Но к понятию группы можно подходить с более формальных, общих позиций; группы тогда считаются состоящими из элементов произвольной числовые закономерности, которые на нем проявляются. В частности, если назвать порядком группы число ее элементов, а порядком элемента g — наименьшее число k, для которого $g^k = e$, то можно сформулировать следующую теорему.

Теорема Лагранжа. Порядок любой подгруппы, также как порядок любого элемента группы, является делителем порядка группы.

Доказательство (не очень сложное) мы здесь не приводим.

Взаимоотношения групп: гомоморфизмы

Группы изучают не каждую саму по себе, а в их взаимодействии. Назовем гомоморфизмом $\gamma: G \rightarrow H$ группы G в группу H всякое отображение, ставящее в соответствие каждому действию g из G вполне определенное действие $h = \gamma(g)$ из H, если для любых g и g' из G выполняется

$$\gamma(g \circ g') = \gamma(g) \circ \gamma(g').$$

(Коротко говорят так: гомоморфизм это отображение, сохраняющее операцию ∘.)

Бестолковый солдат, который игнорирует команды «кругом» и «смирно», а в ответ на команды «налево» и «направо» поворачивается кругом, тем самым задает гомоморфизм

$$\beta:R(\square)\rightarrow \mathbb{Z}_2=\{C, K; \circ\}$$

по правилу $\beta(C) = \beta(K) = C$, $\beta(\Pi) = \beta(\Pi) = K$. Задумавшийся солдат, не реагирующий ни на какую команду, определяет тривиальный гомоморфизм в тривиальную группу:

$$\alpha: R(\square) \rightarrow \{e\}.$$

Нетривиальные гомоморфизмы не всегда существуют. Например, любой гомоморфизм $\alpha: \mathbb{Z}_5 \to \mathbb{Z}_2$ или $\beta: \mathbb{Z}_5 \to \mathbb{Z}_6$ — тривиален.

Абстрактные группы и теорема Кэли

До сих пор мы рассматривали вполне конкретные группы, состоящие из действий — поворотов, симметрий и других природы, а умножение — тоже произвольная операция (не обязательно композиция действий). Получается следующее аксиоматическое определение. Множество G элементов произвольной природы, в котором задана бинарная операция * (состоящая в том, что каждой паре элементов $a, b \in G$ ставится в соответствие их произведение c = a * b, тоже являющееся элементом G) называется (абстрактной) группой, если

 1° . операция * *ассоциативна*, т. е. для любых *a*, *b*, *c* \in *G*

$$a*(b*c)=(a*b)*c;$$

 2° . в G имеется единственный нейтральный элемент $e \in G$, для которого

$$a*e=e*a=a$$

при любом $a \in G$;

 3° . для каждого $a \in G$ существует единственный обратный элемент $a^{-1} \in G$ такой, что

$$a^{-1}*a=a*a^{-1}=e$$
.

Это общее определение позволяет сразу получить много новых примеров групп. Так, целые числа Z образуют группу (в качестве * берем операцию +, нейтральный элемент — это 0, а обратным к $a \in Z$ служит (-a)); ненулевые действительные числа $R \{0\}$ образуют группу относительно умножения и т. д.

Однако по существу абстрактный подход ничего нового не дает: оказывается, что любая абстрактная группа изоморфна некоторой группе действий. Мы докажем это здесь лишь для конечных групп.

Теорема Кэли. Всякая конечная группа G изоморфна некоторой подгруппе группы перестановок S_n.

Доказательство. Пусть $G = \{e = g_1, g_2, ..., g_n\}$. Каждому элементу $g_k \in G$ поставим в соответствие перестановку

$$\binom{1 \ 2 \ 3 \dots n}{i_1 \ i_2 \ i_3 \dots i_n}$$
,

где i_1 — номер элемента $g_k*g_1=g_k*e$ (на самом деле $i_1=k$), i_2 — номер элемента g_k*g_2 , ..., i_n — номер элемента g_k*g_n . Тогда все i_s различны (т. е. действительно получается перестановка) и соответствие

$$g_k \!\!\to\!\! \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$

задает гомоморфизм $h: G \rightarrow S_n$ (это следует из ассоциативности), притом h отображает G взаимно однозначно на подгруппу $h(G) \subset S_n$ (это следует из аксиом 2° и 3°).

Рис. 5. Подгруппы циклической группы Z_{12} и групп перестановок S_4 и S_5 . Красным выделены циклические подгруппы Z_k , зеленым — так называемые знакопеременные группы $(A_4$ и $A_5)$. В описании групп S_4 цифры в круглых скобках обозначают циклы, τ . е. перестановки, меняющие цифры по кругу, например (123)= $= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$ $(\tau$. е. $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$, $4 \rightarrow 4$) или $(24) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$, $(13)(24) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$.

Соругіght ©1996-2002 <u>МЦНМО</u>
Пишите нам: <u>kvant@mccme.ru</u>
Проект осуществляется при поддержке <u>Московского комитета образования</u>, <u>Московского Института</u>
Открытого Образования, <u>Электронного журнала "Курьер образования"</u>