CMPT 409/981: Optimization for Machine Learning

Lecture 6

Sharan Vaswani

October 3, 2022

Recap

Gradient Descent: $w_{k+1} = w_k - \eta \nabla f(w_k)$.

Nesterov Acceleration: $w_{k+1} = [w_k + \beta_k(w_k - w_{k-1})] - \eta \nabla f(w_k + \beta_k(w_k - w_{k-1})).$

Nesterov acceleration can be interpreted as doing GD on "extrapolated" points where β_k can be interpreted as the "momentum" in the previous direction $(w_k - w_{k-1})$.

Function class	<i>L</i> -smooth	<i>L</i> -smooth + convex	$\it L$ -smooth + $\it \mu$ -strongly convex
Gradient Descent	$\Theta\left(1/\epsilon ight)$	$O\left(1/\epsilon ight)$	$O\left(\exp\left(-T/\kappa ight) ight)$
Nesterov Acceleration	-	$\Theta\left(1/\sqrt{\epsilon} ight)$	$\Theta\left(\exp\left(-T/\sqrt{\kappa}\right)\right)$

Table 1: Optimization Zoo

For all cases, $\eta = \frac{1}{L}$ for both GD and Nesterov acceleration, and we can use Armijo line-search to estimate L and set the step-size.

Gradient Descent is adaptive to strong-convexity, however, Nesterov acceleration requires knowledge of μ to set β_k .

Heavy-Ball Momentum

Heavy-Ball/Polyak Momentum: $w_{k+1} = w_k - \eta \nabla f(w_k) + \beta_k (w_k - w_{k-1})$.

Nesterov Acceleration: $v_k = w_k + \beta_k(w_k - w_{k-1})$; $w_{k+1} = v_k - \eta \nabla f(v_k)$ i.e. extrapolate and compute the gradient at the extrapolated point v_k .

Polyak Momentum: $v_k = w_k + \beta_k(w_k - w_{k-1})$; $w_{k+1} = v_k - \eta \nabla f(w_k)$ i.e. compute the gradient at w_k and then extrapolate.

Unlike GD, Nesterov acceleration and Polyak momentum are not "descent" methods i.e. it is not guaranteed that $f(w_{k+1}) \le f(w_k)$ for all k.

In order to minimize quadratics: $f(w) = \frac{1}{2} w^{\mathsf{T}} A w - b w + c$ where A is symmetric, positive semi-definite, or equivalently solve linear systems of the form: Aw = b, using Polyak momentum with *optimal* values of (η, β) is equivalent to Conjugate Gradient.

Heavy-Ball Momentum

Brief History: For *L*-smooth + μ -strongly convex functions,

- Quadratics: HB momentum with a specific (η, β) can achieve the accelerated rate and obtain a dependence on $\sqrt{\kappa}$ (only an asymptotic rate). [Polyak, 1964]
- General smooth, SC functions: Using Polyak's (η, β) parameters can result in cycling and HB momentum is not guaranteed to converge. [Lessard et al, 2014]
- General smooth, SC functions: Using a different (η, β) , HB momentum can converge and match the GD rate (no acceleration). [Ghadimi et al, 2014]
- General smooth, SC functions + Lipschitz-continuity of Hessian: Using a different (η, β) , HB momentum matches the GD rate at the beginning, but achieves the accelerated rate after $O(\kappa)$ iterations. [Wang et al, 2022]

Heavy-Ball Momentum

Let us focus on minimizing quadratics: $f(w) = \frac{1}{2}w^{T}Aw - bw + c$, where A is a symmetric positive definite matrix.

Claim: For L-smooth, μ -strongly convex quadratics, HB momentum with $\eta = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$ and $\beta = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$ achieves the following convergence rate:

$$\|w_T - w^*\| \le \sqrt{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} + \epsilon_T \right)^T \|w_0 - w^*\|$$

where $\epsilon_T \geq 0$ and $\lim_{T\to\infty} \epsilon_T = 0$.

HB momentum can also achieve a slightly-worse, but still accelerated non-asymptotic rate [Wang et al, 2021].

$$\|w_T - w^*\| \le 4\sqrt{\kappa} \left(1 - \frac{1}{2\sqrt{\kappa}}\right)^T \|w_0 - w^*\|$$

Minimizing strongly-convex quadratics with GD

As a warm-up, let us first prove the optimal GD rate for smooth, strongly-convex quadratics.

Claim: For *L*-smooth, μ -strongly convex quadratics, GD with $\eta = \frac{2}{\mu + L}$ achieves the following convergence rate:

$$||w_T - w^*|| \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^T ||w_0 - w^*||$$

Proof: For quadratics, $\nabla f(w) = Aw - b$,

$$\begin{aligned} w_{k+1} &= w_k - \eta \nabla f(w_k) = w_k - \eta [Aw_k - b] \\ &\implies \|w_{k+1} - w^*\| = \|w_k - w^* - \eta [Aw_k - b]\| \\ &= \|w_k - w^* - \eta [Aw_k - Aw^*]\| \quad \text{(Since } \nabla f(w^*) = 0 \implies Aw^* = b) \\ &\implies \|w_{k+1} - w^*\| = \|(I_d - \eta A)(w_k - w^*)\| \leq \|I_d - \eta A\|_2 \|w_k - w^*\| \\ \text{(By definition of the matrix norm: for matrix } B, \|B\|_2 = \max \left\{ \frac{\|Bv\|_2}{\|v\|_2} \right\} \text{ for all vectors } v \neq 0, \text{ and)} \end{aligned}$$

We have thus reduced the problem to bounding $||I_d - \eta A||_2$.

Minimizing strongly-convex quadratics with GD

Recall that $\|w_{k+1} - w^*\| = \|I_d - \eta A\|_2 \|w_k - w^*\|$. Since f is L-smooth and μ -strongly convex, $\mu I_d \preceq \nabla^2 f(w) = A \preceq L I_d$.

If $A = U \Lambda U^{\mathsf{T}}$ is the eigen-decomposition of A, and $\lambda_1, \lambda_2, \ldots, \lambda_d$ are the eigenvalues of A, then, $I_d - \eta A = U S U^{\mathsf{T}}$ where $S_{i,i} = 1 - \eta \lambda_i$.

Since U is an orthonormal matrix, $||I_d - \eta A|| = ||S||$. By definition of the matrix norm, for symmetric matrices,

$$\|B\|_{2} = \rho(B) := \max\{|\lambda_{1}[B]|, |\lambda_{2}[B]|, \dots, |\lambda_{d}[B]|\}$$

where $\rho(B)$ is the spectral radius of B.

Hence,

$$\begin{split} \|I_d - \eta A\| &= \|S\| = \rho(S) = \max\{|\lambda_1[S]|\,, |\lambda_2[S]|\,, \dots, |\lambda_d[S]|\} = \max_{\lambda \in [\mu, L]}\{|1 - \eta \lambda|\} \\ \|I_d - \eta A\| &= \max\{|1 - \eta \mu|\,, |1 - \eta L|\} \end{split} \qquad \qquad \text{(Since $1 - \eta \lambda$ is linear in λ)}$$

Minimizing strongly-convex quadratics with GD

Recall that $\|w_{k+1} - w^*\| = \|I_d - \eta A\| \|w_k - w^*\|$ and $\|I_d - \eta A\| = \max\{|1 - \eta \mu|, |1 - \eta L|\}$.

Let us choose a step-size $\eta \in \left[\frac{1}{L}, \frac{1}{\mu}\right]$. Hence,

$$\begin{split} \|I_d - \eta A\| &\leq \max\{1 - \eta \mu, \eta L - 1\} = \frac{L - \mu}{L + \mu} \\ & \text{(By setting } \eta = \frac{2}{\mu + L}, \text{ we minimize } \max\{1 - \eta \mu, \eta L - 1\}) \end{split}$$

Putting everything together,

$$\|w_{k+1} - w^*\| \le \frac{L - \mu}{L + \mu} \|w_k - w^*\| = \frac{\kappa - 1}{\kappa + 1} \|w_k - w^*\|$$

Recursing from k = 0 to T - 1,

$$||w_T - w^*|| \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^T ||w_0 - w^*||.$$

Update: $w_{k+1} = w_k - \eta \nabla f(w_k) + \beta (w_k - w_{k-1})$

Claim: For *L*-smooth, μ -strongly convex quadratics, HB momentum with $\eta = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$ and $\beta = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$ achieves the following convergence rate:

$$\|w_T - w^*\| \le \sqrt{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} + \epsilon_T \right)^T \|w_0 - w^*\|, \text{ where, } \lim_{T \to \infty} \epsilon_T \to 0.$$

Proof:

$$\begin{bmatrix} w_{k+1} - w^* \\ w_k - w^* \end{bmatrix} = \begin{bmatrix} w_k - w^* - \eta \nabla f(w_k) + \beta(w_k - w_{k-1}) \\ w_k - w^* \end{bmatrix}$$

$$= \begin{bmatrix} w_k - w^* - \eta A(w_k - w^*) + \beta(w_k - w^*) - \beta(w_{k-1} - w^*) \\ w_k - w^* \end{bmatrix}$$
(Since $\nabla f(w) = Aw$, $Aw^* = b$)

$$\implies \begin{bmatrix} w_{k+1} - w^* \\ w_k - w^* \end{bmatrix} = \begin{bmatrix} (1+\beta)I_d - \eta A & -\beta I_d \\ I_d & 0 \end{bmatrix} \begin{bmatrix} w_k - w^* \\ w_{k-1} - w^* \end{bmatrix}$$

If $\beta = 0$, we can recover the same equation as GD.

$$\underbrace{\begin{bmatrix} w_{k+1} - w^* \\ w_k - w^* \end{bmatrix}}_{:=\Delta_{k+1} \in \mathbb{R}^{2d}} = \underbrace{\begin{bmatrix} (1+\beta)I_d - \eta A & -\beta I_d \\ I_d & 0 \end{bmatrix}}_{:=\mathcal{H} \in \mathbb{R}^{2d \times 2d}} \underbrace{\begin{bmatrix} w_k - w^* \\ w_{k-1} - w^* \end{bmatrix}}_{:=\Delta_k \in \mathbb{R}^{2d}} \implies \Delta_{k+1} = \mathcal{H} \Delta_k$$

Recursing from k = 0 to T - 1, and taking norm,

$$\|\Delta_T\| = \|\mathcal{H}^T \Delta_0\| \le \|\mathcal{H}^T\| \left\| \begin{bmatrix} w_0 - w^* \\ w_{-1} - w^* \end{bmatrix} \right\|$$
 (By definition of the matrix norm)

Define $w_{-1} = w_0$ and lower-bounding the LHS,

$$\|w_T - w^*\| \le \sqrt{2} \|\mathcal{H}^T\| \|w_0 - w^*\|$$

Hence, we have reduced the problem to bounding $\|\mathcal{H}^T\|$.

Recall that for symmetric matrices, $\|B\|_2 = \rho(B)$. Unfortunately, this relation is not true for general asymmetric matrices, and $\|B\| \ge \rho(B)$.

Gelfand's Formula: For a matrix $B \in \mathbb{R}^{d \times d}$ such that $\rho(B) := \max_{i \in [d]} |\lambda_i|$, then there exists a sequence $\epsilon_k \geq 0$ such that $\lim_{k \to \infty} \epsilon_k = 0$ and,

$$||B^k|| \leq (\rho(B) + \epsilon_k)^k.$$

Using this formula with our bound,

$$\|w_T - w^*\| \le (\rho(\mathcal{H}) + \epsilon_T)^T \|w_0 - w^*\|$$

Hence, we have reduced the problem to bounding $\rho(\mathcal{H})$.

Similar to the GD case, let $A = U\Lambda U^{\mathsf{T}}$ be the eigen-decomposition of A, then, $(1+\beta)I_d - \eta A = USU^{\mathsf{T}}$ where $S_{i,i} = 1 + \beta - \eta \lambda_i$. Hence,

$$\mathcal{H} = \begin{bmatrix} U^{\mathsf{T}} & 0 \\ 0 & U^{\mathsf{T}} \end{bmatrix} \underbrace{\begin{bmatrix} (1+\beta)I_d - \eta \Lambda & -\beta I_d \\ I_d & 0 \end{bmatrix}}_{:=H} \begin{bmatrix} U & 0 \\ 0 & U \end{bmatrix}$$

Since U is orthonormal, $\rho(\mathcal{H}) = \rho(H)$. Hence we have reduced the problem to bounding $\rho(H)$.

Let P be a permutation matrix such that:

$$P_{i,j} = \begin{cases} 1 & i \text{ is odd, } j = i \\ 1 & i \text{ is even, } j = 2d + i \\ 0 & \text{otherwise} \end{cases} \qquad B = P H P^{\mathsf{T}} = \begin{bmatrix} H_1 & 0 & \dots & 0 \\ 0 & H_2 & \dots & 0 \\ \vdots & \ddots & & \\ 0 & & 0 & H_d \end{bmatrix}$$

where,

$$H_i = egin{bmatrix} (1+eta) - \eta \lambda_i & -eta \ 1 & 0 \end{bmatrix}$$

Note that $\rho(H) = \rho(B)$ (a permutation matrix does not change the eigenvalues). Since B is a block diagonal matrix, $\rho(B) = \max_i \left[\rho(H_i) \right]$. Hence we have reduced the problem to bounding $\rho(H_i)$.

For a fixed $i \in [2d]$, let us compute the eigenvalues of $H_i \in \mathbb{R}^{2 \times 2}$ by solving the characteristic polynomial: $det(H_i - uI_2) = 0$ w.r.t u.

$$u^2 - (1 + \beta - \eta \lambda_i)u + \beta = 0 \implies u = \frac{1}{2} \left[(1 + \beta - \eta \lambda_i) \pm \sqrt{(1 + \beta - \eta \lambda_i)^2 - 4\beta} \right]$$

Let us set β such that, $(1 + \beta - \eta \lambda_i)^2 \le 4\beta$. This ensures that the roots to the above equation are complex conjugates. Hence,

$$1 + \beta - \eta \lambda_i \ge -2\sqrt{\beta} \implies (\sqrt{\beta} + 1) \ge \sqrt{\eta \lambda_i} \implies \beta \ge (1 - \sqrt{\eta \lambda_i})^2$$

If we ensure that $\beta \geq (1 - \sqrt{\eta \lambda_i})^2$

$$u = \frac{1}{2} \left[(1 + \beta - \eta \lambda_i) \pm i \sqrt{4\beta - (1 + \beta - \eta \lambda_i)^2} \right]$$

$$\implies |u|^2 = \frac{1}{4} \left[(1 + \beta - \eta \lambda_i)^2 + 4\beta - (1 + \beta - \eta \lambda_i)^2 \right] = \beta \implies |u| = \sqrt{\beta}.$$

Hence, if
$$\beta \geq (1 - \sqrt{\eta \lambda_i})^2$$
, $\rho(H_i) = \sqrt{\beta}$ and $\rho(B) = \max_i [\rho(H_i)] = \sqrt{\beta}$.

Using the result from the previous slide, if we ensure that for all i, $\beta \geq (1 - \sqrt{\eta \lambda_i})^2$, then, $\rho(B) = \sqrt{\beta}$. Hence, we want that,

$$\beta = \max_i \{ (1 - \sqrt{\eta \lambda_i})^2 \} = \max_{\lambda \in [\mu, L]} \{ (1 - \sqrt{\eta \lambda})^2 \} = \max \{ (1 - \sqrt{\eta \mu})^2, (1 - \sqrt{\eta L})^2 \}$$

Similar to GD, we equate the two terms in the max,

$$1 + \eta \mu - 2\sqrt{\eta \mu} = 1 + \eta L - 2\sqrt{\eta L} \implies \eta = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}.$$

With this value of η , $\rho(\mathcal{H}) = \rho(\mathcal{H}) = \rho(\mathcal{B}) \leq \sqrt{\beta} = \sqrt{\left(1 - \frac{2\sqrt{\mu}}{(\sqrt{L} + \sqrt{\mu})}\right)^2} = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}} = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$. Putting everything together,

$$||w_T - w^*|| \le \sqrt{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} + \epsilon_T \right)^T ||w_0 - w^*||$$

