机器学习 Machine learning

第六章 聚类分析 Clustering

授课人: 周晓飞 zhouxiaofei@iie.ac.cn 2024-11-1

第六章 聚类分析

- 6.1 概述
- 6.2 序贯方法
- 6.3 层次聚类
- 6.4 K 均值聚类

第六章 聚类分析

- 6.1 概述
- 6.2 序贯方法
- 6.3 层次聚类
- 6.4 K 均值聚类

聚类问题

- 聚类是无监督机器学习问题;
- 目标: 感知样本间的相似度, 进行类别归纳;
- 聚类研究的重要应用: (1)潜在类别预测, (2)数据压缩
- 既可以作为一个单独过程,用于寻找数据内在的分布结构,
- 也可以作为分类、稀疏表示等其他学习任务的前驱过程。

聚类问题

聚类分析,在不同的应用学科有不同的称呼

Unsupervised learning (machine learning, pattern recognition)
numerical taxonomy (in biology, ecology)
typology (in social sciences)
partition (in graph theory)

聚类问题

聚类算法法的种类

- Sequential algorithms
- Hierarchical clustering algorithms
- based on cost function optimization
 - --K-means
 - --Probabilistic clustering algorithms
 - --Fuzzy clustering algorithms
- Density-based clustering
- Other:
 - --Genetic clustering algorithms --Branch and bound clustering algorithms
 - --Subspace clustering algorithms --Kernel-based methods

聚类问题

聚类划分:

样本集 $X = \{x_1, x_2, ..., x_N\}$ 的 m-clustering 划分 $C_1, C_2, ..., C_m$ 满足以下三个条件:

- (1) $C_i \neq \phi, i=1,...,m$
- $(2) \bigcup_{i=1,...m} C_i = X$
- (3) $C_i \cap C_j = \phi, i \neq j, i, j = 1,...,m$

聚类问题

影响聚类结果的因素

- (1) 属性选择导致不同结果;
- (2) 相似性度量是判断样本间、类别间的相似的标准;
- (3) 聚类规则是样本聚集条件,例如,近邻、损失函数。

相似性度量

常用到的相似性度量

- (1) 样本---样本;
- (2) 样本---集合;
- (3) 集合---集合(类间距离);
- (4) 集合内样本间距离(类内距离);

相似性度量

样本--样本

3.3 的向量相似性

•
$$d_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^l w_i |x_i - y_i|^p\right)^{1/p}$$

•
$$s_{\cos ine}(x, y) = \frac{x^T y}{\|x\| \|y\|}$$

•
$$r_{Pearson}(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}_d^T \boldsymbol{y}_d}{\|\boldsymbol{x}_d\| \|\boldsymbol{y}_d\|}$$
 $\boldsymbol{x}_d = [x_1 - \overline{x}, ..., x_l - \overline{x}]^T$ $\boldsymbol{y}_d = [y_1 - \overline{y}, ..., y_l - \overline{y}]^T$

•
$$s_T(x, y) = \frac{1}{1 + \frac{(x - y)^T(x - y)}{x^T y}}$$

相似性度量

样本---集合

(1) 集合为离散点集:

- 到集合最远点距离 $d(x,C) = \max_{y \in C} d(x,y)$
- 到集合最近点距离 $d(x,C) = \min_{y \in C} d(x,y)$
- 到集合平均点距离 $d(x,C) = \frac{1}{|C|} \sum_{y \in C} d(x,y)$

(2) 集合为连续区域

• 集合为平面 $d(x,H) = \min_{z \in H} d(x,z)$

• 集合为圆 $d(x,Q) = \min_{z \in O} d(x,z)$

-11- 中国科学院大学网络安全学院 2024-2025 学年研究生秋季课程

相似性度量

集合---集合(类间距离)

• 集合间最远点距离

$$d_{\max}(C_i, C_j) = \max_{x \in C_i, y \in C_j} d(x, y)$$

• 集合间最近点距离

$$d_{\min}(C_i, C_j) = \min_{x \in C_i, y \in C_j} d(x, y)$$

• 集合间所有点平均距离

$$d_{avg}^{ss}(C_i,C_j) = \frac{1}{|C_i||C_j|} \sum_{x \in C_i, y \in C_j} d(x,y)$$

• 集合表征点间距离(如平均值)

相似性度量

集合内样本间距离 (类内距离)

$$\operatorname{avg}(C) = \frac{2}{|C|(|C|-1)} \sum_{1 \leqslant i < j \leqslant |C|} \operatorname{dist}(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

$$diam(C) = \max_{1 \leq i < j \leq |C|} dist(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

性能度量

聚类性能的外部指标

指通过已知类簇划分,对聚类结果进行评价;判别同类别样本对标签一致与否,避免相同类簇划分,不同标签名称导致的不一致。

对数据集 $D = \{x_1, x_2, ..., x_m\}$,假定通过聚类给出的簇划分为 $C = \{C_1, C_2, ..., C_k\}$,参考模型给出的簇划分为 $C^* = \{C_1^*, C_2^*, ..., C_s^*\}$ 。相应地,令 λ 与 λ^* 分别表示与C和 C^* 对应的簇标记向量。我们将样本两两配对考虑,定义

$$a = |SS|, SS = \{(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) | \lambda_{i} = \lambda_{j}, \lambda_{i}^{*} = \lambda_{j}^{*}, i < j\},$$

$$b = |SD|, SD = \{(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) | \lambda_{i} = \lambda_{j}, \lambda_{i}^{*} \neq \lambda_{j}^{*}, i < j\},$$

$$c = |DS|, DS = \{(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) | \lambda_{i} \neq \lambda_{j}, \lambda_{i}^{*} = \lambda_{j}^{*}, i < j\},$$

$$d = |DD|, DD = \{(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) | \lambda_{i} \neq \lambda_{j}, \lambda_{i}^{*} \neq \lambda_{j}^{*}, i < j\},$$

每个样本对 $(x_i, x_j)(i < j)$ 仅能出现在一个集合中,因此有 a+b+c+d=m(m-1)/2成立。

性能度量

• Jaccard 系数(Jaccard Coefficient, 简称 JC)

$$JC = \frac{a}{a+b+c} .$$

• FM 指数(Fowlkes and Mallows Index, 简称 FMI)

$$ext{FMI} = \sqrt{rac{a}{a+b} \cdot rac{a}{a+c}} \; .$$

• Rand 指数(Rand Index, 简称 RI)

$$RI = \frac{2(a+d)}{m(m-1)} .$$

上述性能度量的结果值均在[0,1]区间, 值越大越好.

性能度量

聚类性能的内部指标

没有已知的类簇划分进行参考,通过聚类具有的类内相似和类间相异的特点进行评价。

• DB 指数(Davies-Bouldin Index, 简称 DBI)

$$ext{DBI} = rac{1}{k} \sum_{i=1}^k \max_{j
eq i} \left(rac{\operatorname{avg}(C_i) + \operatorname{avg}(C_j)}{d_{\operatorname{cen}}(oldsymbol{\mu}_i, oldsymbol{\mu}_j)}
ight) \; .$$

• Dunn 指数(Dunn Index, 简称 DI)

$$DI = \min_{1 \leq i \leq k} \left\{ \min_{j \neq i} \left(\frac{d_{\min}(C_i, C_j)}{\max_{1 \leq l \leq k} \operatorname{diam}(C_l)} \right) \right\} .$$

DBI 的值越小越好, 而 DI 则相反, 值越大越好.

本章内容

本章学习聚类分析方法:

- 序贯方法
- 层次聚类
- K-均值聚类

第六章 聚类分析

- 6.1 概述
- 6.2 序贯方法
- 6.3 层次聚类
- 6.4 K 均值聚类

基本思想

逐一比较单个样本与类簇的相似性,有相似类则归类,无相似类则建立新类。

- 优点:
- 一种简单的,快速算法。

• 相似性的关键度量:

基本思想

逐一比较单个样本与类簇的相似性,有相似类则归类,无相似类则建立新类。

- 优点:
- 一种简单的,快速算法。

• 相似性的关键度量:

基本思想

逐一比较单个样本与类簇的相似性,有相似类则归类,无相似类则建立新类。

- 优点:
- 一种简单的,快速算法。

• 相似性的关键度量:

基本思想

逐一比较单个样本与类簇的相似性,有相似类则归类,无相似类则建立新类。

- 优点:
- 一种简单的,快速算法。

• 相似性的关键度量:

基本思想

逐一比较单个样本与类簇的相似性,有相似类则归类,无相似类则建立新类。

- 优点:
- 一种简单的,快速算法。

• 相似性的关键度量:

基本思想

逐一比较单个样本与类簇的相似性,有相似类则归类,无相似类则建立新类。

- 优点:
- 一种简单的,快速算法。

• 相似性的关键度量:

基础的序贯方法

- \blacksquare m=1
- $C_m = \{x_1\}$
- \blacksquare For i = 2 to N
 - Find C_k : $d(x_i, C_k) = \min_{1 \le i \le m} d(x_i, C_i)$.
 - If $(d(\mathbf{x}_i, C_k) > \Theta)$ AND (m < q) then
 - m = m + 1
 - \circ $C_m = \{x_i\}$
 - Else
 - $\circ C_k = C_k \cup \{x_i\}$

样本分给最相似的类

新建一个类

- Where necessary, update representatives
- End {if}
- End {For}

缺点: 所有样本过滤一遍后才知道类别总数,而先出现的样本不能找到(后出现的)合适类别;

改进算法: 采用两个阶段, 类别确定、分类。

两阶段序贯方法

1: 检测类别个数

- Cluster Determination
- \blacksquare m=1
- $C_m = \{x_1\}$
 - For i = 2 to N

Find C_k : $d(x_i, C_k) = \min_{1 \le j \le m} d(x_i, C_j)$.

• If $(d(x_i, C_k) > \Theta)$ AND (m < q) then • m = m + 1

 $\circ C_m = \{x_i\}$

- End {if}
- End {For}

2: 类别划分

Pattern Classification

- \blacksquare For i = 1 to N
 - If x_i has not been assigned to a cluster, then

 $\circ \operatorname{Find} C_k: d(x_i, C_k) = \min_{1 \le j \le m} d(x_i, C_j)$

只讲行分类

 $\circ C_k = C_k \cup \{x_i\}$

Where necessary, update representatives

- End {if}
- End {For}

缺点: 以上两种方法依赖于阈值 ⊕;

改进方法: 弱化阈值作用,采用两个阈值,形成灰色带。

只新建类别

双阈值序贯方法

```
d(x,C) < \Theta_1, \ x \in C;

d(x,C) > \Theta_2, \ x \in a \text{ new } C

\Theta_1 < d(x,C) < \Theta_2, \ t \text{ake place at later stage}.
```

$$m = 0$$

 $clas(x) = 0, \quad \forall x \in X$
 $prev_change = 0$
 $cur_change = 0$
 $exists_change = 0$

While (there exists at least one feature vector \mathbf{x} with $clas(\mathbf{x}) = 0$) do

- \blacksquare For i = 1 to N
 - if $clas(x_i) = 0$ AND it is the first in the new while loop AND $exists_change = 0$ then

$$m = m + 1$$

$$\circ C_m = \{x_i\}$$

- \circ clas(\mathbf{x}_i) = 1
- o cur_change = cur_change + 1
- Else if $clas(x_i) = 0$ then
 - $\circ \operatorname{Find} d(\mathbf{x}_i, C_k) = \min_{1 \le j \le m} d(\mathbf{x}_i, C_j)$
 - if $d(x_i, C_k) \le \Theta_1$ then

$$- C_k = C_k \cup \{x_i\}$$

$$- clas(x_i) = 1$$

最初的类别的建立,

最后没有归类的,尝

试自成一类

$$d(x,C) < \Theta_1, x \in C$$

```
o else if d(\mathbf{x}_i, C_k) > \Theta_2 then
-m = m + 1
-C_m = \{\mathbf{x}_i\}
-clas(\mathbf{x}_i) = 1
-cur\_cbange = cur\_cbange + 1
d(x, C) > \Theta_2, x \in a \text{ new } C
```

- End {If}
- Else if clas(x_i) = 1 then
 cur_change = cur_change + 1
- End {If}
- End {For}
- exists_change = |cur_change prev_change|
- prev_change = cur_change
- $= cur_change = 0$

End {While}

• 前面的三种算法缺点: (1) 当类别一旦产生,不可变,尽管后来类簇增加,类别很相近也无法合并。(2) 敏感于样本顺序,样本类别未必是最合适的。

增强算法

增强处理 1: 对类别集合进行合并操作

Merging procedure

- (A) Find C_i, C_j (i < j) such that $d(C_i, C_j) = \min_{k,r=1,\dots,m,\ k \neq r} d(C_k, C_r)$
- If $d(C_i, C_j) \le M_1$ then
 - Merge C_i , C_j to C_i and eliminate C_j .
 - Update the cluster representative of C_i (if cluster representatives are used).
 - Rename the clusters C_{j+1}, \ldots, C_m to C_j, \ldots, C_{m-1} , respectively

增强处理 2: 对样本类别重置

Reassignment procedure

- \blacksquare For i = 1 to N
 - Find C_j such that $d(\mathbf{x}_i, C_j) = \min_{k=1,...,m} d(\mathbf{x}_i, C_k)$.
 - Set b(i) = j.
- End {For}
- For j = 1 to m
 - Set $C_j = \{x_i \in X : b(i) = j\}.$
 - Update the representatives (if used).
- End {For}

第六章 聚类分析

- 6.1 概述
- 6.2 序贯方法
- 6.3 层次聚类
- 6.4 K 均值聚类

基本思想

聚类嵌套定义:

 R_1 和 R_2 是样本集 X 上的两种聚类划分,如果 R_1 中所有的类簇都是 R_2 中类簇的子集,则称 R_1 嵌套在 R_2 内,记作 $R_1 \subset R_2$ 。

例子:

$$R_{1} = \{ \{x_{1}, x_{3}\}, \{x_{4}\}, \{x_{2}, x_{5}\} \}$$

$$R_{2} = \{ \{x_{1}, x_{3}, x_{4}\}, \{x_{2}, x_{5}\} \}$$

$$R_{3} = \{ \{x_{1}, x_{4}\}, \{x_{3}\}, \{x_{2}, x_{5}\} \}$$

$$R_{4} = \{ \{x_{1}, x_{2}, x_{4}\}, \{x_{3}, x_{5}\} \}$$

$$R_{1} \subset R_{2}$$

$$R_{1} \subset R_{3}$$

$$R_{1} \subset R_{4}$$

基本思想

层次聚类策略:

类簇之间(依据相似性)不断合并、或不断的分化,直到满足聚类停止条件。

自底向上/归并算法(agglomerative)

$$R_0 \subset R_1 \subset ... \subset R_{N-1}$$

自顶向下/分化算法(divisive)

$$R_{N-1} \subset ... \subset R_1 \subset R_0$$

归并算法

第 i 次迭代: 计算所有两个类簇的相似性;

归并最相似的两个类簇,更新类别划分 Ri

缺点: 没有归并的类簇间相似性,被重复计算

归并算法

Generalized Agglomerative Scheme (GAS)

- Initialization:
 - Choose $\Re_0 = \{C_i = \{x_i\}, i = 1, ..., N\}$ as the initial clustering.
 - t = 0.
- Repeat:
 - t = t + 1
 - Among all possible pairs of clusters (C_r, C_s) in \Re_{t-1} find the one, say (C_i, C_j) , such that

$$g(C_i, C_j) = \begin{cases} \min_{r,s} g(C_r, C_s), & \text{if } g \text{ is a dissimilarity function} \\ \max_{r,s} g(C_r, C_s), & \text{if } g \text{ is a similarity function} \end{cases}$$

- Define $C_q = C_i \cup C_j$ and produce the new clustering $\Re_t = (\Re_{t-1} \{C_i, C_j\}) \cup \{C_q\}$.
- Until all vectors lie in a single cluster.

归并算法

例子 1:

$$\{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}\}$$

$$\{\{x_1, x_2\}, \{x_3\}, \{x_4\}, \{x_5\}\}$$

$$\{\{x_1, x_2\}, \{x_3\}, \{x_4, x_5\}\}$$

$$\{\{x_1, x_2\}, \{x_3, x_4, x_5\}\}$$

$$\{\{x_1, x_2, x_3, x_4, x_5\}\}$$

归并算法

例子 2:

• 数据

归并算法

• 基于 similarity function

归并算法

基于矩阵的归并算法

利用矩阵记录类簇间的相似性

- (a) 删除对应合并的两行和列
- (b) 增加一行和列: 新类簇与其他类簇的相似度

优点: 不必重新计算"没有合并的类簇间"的相似性

归并算法

基于矩阵的归并算法

需要计算的相似性:

合并后类簇相似性矩阵:

归并算法

基于矩阵的归并算法

Matrix Updating Algorithmic Scheme (MUAS)

- Initialization:
 - $\Re_0 = \{\{x_i\}, i = 1, \dots, N\}.$
 - $P_0 = P(X)$.
 - \bullet t=0
- Repeat:
 - t = t + 1
 - Find C_i , C_j such that $d(C_i, C_j) = \min_{r,s=1,...,N, r \neq s} d(C_r, C_s)$
 - Merge C_i , C_j into a single cluster C_q and form $\Re_t = (\Re_{t-1} \{C_i, C_j\}) \cup \{C_q\}$.
 - Define the proximity matrix P_t from P_{t-1} as explained in the text.
- Until \Re_{N-1} clustering is formed, that is, all vectors lie in the same cluster.

分化算法

过程与归并相反;

第 i 次迭代:

在所有类簇的所有划分中,计算所有两个类簇相似性,

选择最不相似的类簇集合划分,更新类别划分 R_i

缺点: 没有划分的类簇间相似性,被重复计算

分化算法

- Initialization
 - Choose $\Re_0 = \{X\}$ as the initial clustering.
 - \bullet t=0
- Repeat
 - t = t + 1
 - For i = 1 to t

类簇数量

对于包含有 n 个样本的类 簇,可能的分化有几种? (2º/2)-1=2º-1-1

- Among all possible pairs of clusters (C_r, C_s) that form a partition of $C_{t-1,i}$, find the pair $(C_{t-1,i}^1, C_{t-1,i}^2)$ that gives the maximum value for g.
- Next i
- From the t pairs defined in the previous step choose the one that maximizes g. Suppose that this is $(C_{t-1,j}^1, C_{t-1,j}^2)$.
- The new clustering is

$$\Re_t = (\Re_{t-1} - \{C_{t-1,j}\}) \cup \{C_{t-1,j}^1, C_{t-1,j}^2\}$$

- Relabel the clusters of \Re_t .
- Until each vector lies in a single distinct cluster.

分化算法

类簇相似性矩阵

分化后类簇相似性矩阵

下一轮,只需计算对增加的类簇,进行分化计算:

例子

数据(《机器学习》, 周志华, 2016, 表 9.1)

表 9.1 西瓜数据集 4.0

编号	密度	含糖率	编号	密度	含糖率	编号	密度	含糖率
1	0.697	0.460	11	0.245	0.057	21	0.748	0.232
2	0.774	0.376	12	0.343	0.099	22	0.714	0.346
3.	0.634	0.264	13	0.639	0.161	23	0.483	0.312
4	0.608	0.318	14	0.657	0.198	24	0.478	0.437
5	0.556	0.215	15	0.360	0.370	25	0.525	0.369
6	0.403	0.237	16	0.593	0.042	26	0.751	0.489
7	0.481	0.149	17	0.719	0.103	27	0.532	0.472
8	0.437	0.211	18	0.359	0.188	28	0.473	0.376
9	0.666	0.091	19	0.339	0.241	29	0.725	0.445
10	0.243	0.267	20	0.282	0.257	30	0.446	0.459

例子

归并过程

图 9.12 西瓜数据集 4.0 上 AGNES 算法生成的树状图(采用 d_{max}). 横轴对应于样本编号, 纵轴对应于聚类簇距离.

如何确定聚类个数?

第六章 聚类分析

- 6.1 概述
- 6.2 序贯方法
- 6.3 层次聚类
- 6.4 K 均值聚类

示例

什么样的聚类算法,能实现类内距离最小?

示例

示例

示例

示例

示例

示例

示例

示例

示例

示例

示例

示例

示例

示例

最优准则

最小化误差平方和

$$Je = \sum_{i=1}^{K} \sum_{y \in C_i} ||y - m_i||^2 = \sum_{i=1}^{K} Je_i$$

 $y ∈ C_i$ 是第 i 个类簇的样本

误差的扩展:也可以采用余弦距离,或其他反映距离和误差的度量。

$$J = -\sum_{i=1}^{K} \sum_{\mathbf{y} \in C_i} \frac{\mathbf{y} \cdot \mathbf{m}_i}{\|\mathbf{y}\| \|\mathbf{m}_i\|}$$

K-means

一般方法: 最近类心原则, 批量划分后修正类心(如示例过程)

For

(1) 类簇划分

$$\lambda_{j} = \underset{i \in \{12,...,k\}}{\operatorname{argmin}} \| \boldsymbol{x}_{j} - \boldsymbol{\mu}_{i} \|_{2}$$
$$C_{\lambda_{j}} = C_{\lambda_{j}} \cup \{\boldsymbol{x}_{j}\}$$

(2) 更新类簇中心

$$\mu_i' = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

End For

存在的问题:

- (1) 可能导致空的类簇
- (2) 批量修正使得划分并不能最好的收敛目标(最小化误差平方和)

K-means

一般性的流程可以如下:

```
输入: 样本集 D = \{x_1, x_2, \ldots, x_m\};
       聚类簇数 k.
过程:
 1: 从 D 中随机选择 k 个样本作为初始均值向量 \{\mu_1, \mu_2, \dots, \mu_k\}
 2: repeat
      \diamondsuit C_i = \varnothing \ (1 \leqslant i \leqslant k)
      for j = 1, 2, ..., m do
         计算样本 x_j 与各均值向量 \mu_i (1 \leq i \leq k) 的距离: d_{ji} = ||x_j - \mu_i||_2;
         根据距离最近的均值向量确定 x_j 的簇标记: \lambda_j = \arg\min_{i \in \{1,2,...,k\}} d_{ji};
 6:
         将样本 x_i 划入相应的簇: C_{\lambda_i} = C_{\lambda_i} \cup \{x_i\};
      end for
      for i = 1, 2, ..., k do
         计算新均值向量: \mu'_i = \frac{1}{|C_i|} \sum_{x \in C_i} x;
         if \mu'_i \neq \mu_i then
11:
           将当前均值向量 \mu_i 更新为 \mu'_i
12:
13:
         else
           保持当前均值向量不变
14:
         end if
15:
      end for
17: until 当前均值向量均未更新
输出: 簇划分 \mathcal{C} = \{C_1, C_2, \dots, C_k\}
```

K-means

改进方法: 单个划分最优原则, 单个划分后修正类心

把 y 从 Γ_i 移到 Γ_k 中;

两个类别由 y 引起的类心变化:

$$\boldsymbol{m}_i = \boldsymbol{m}_i + \frac{1}{N_i - 1} (\boldsymbol{m}_i - \boldsymbol{y})$$

$$\boldsymbol{m}_k = \boldsymbol{m}_k + \frac{1}{N_k + 1} (\boldsymbol{y} - \boldsymbol{m}_k)$$

两个类别由 y 引起的均方误差变化:

$$Je_i = Je_i - \frac{N_i}{N_i - 1} \|\mathbf{y} - \mathbf{m}_i\|^2$$

$$Je_k = Je_k + \frac{N_k}{N_k + 1} \|\mathbf{y} - \mathbf{m}_k\|^2$$

K-means

推导过程

$$\begin{split} Je_{i}^{*} &= \left(\sum_{x \in D_{i}} \|x - m_{i}^{*}\|^{2}\right) - \|y - m_{i}^{*}\|^{2} \\ &= \sum_{x \in D_{i}} \|x - m_{i} - \frac{(m_{i} - y)}{N_{i} - 1}\|^{2} - \|\frac{N_{i}}{N_{i} - 1}(y - m_{i})\|^{2} \\ &= \sum_{x \in D_{i}} \left(\|x - m_{i}\|^{2} + \frac{2}{N_{i} - 1}(x - m_{i})^{T}(y - m_{i}) + \frac{\|y - m_{i}\|^{2}}{(N_{i} - 1)^{2}}\right) - \|\frac{N_{i}}{N_{i} - 1}(y - m_{i})\|^{2} \\ &= Je_{i} + \frac{2}{N_{i} - 1}(m_{i} - y)^{T}\sum_{x \in D_{i}} (x - m_{i}) + \frac{N_{i}\|y - m_{i}\|^{2}}{(N_{i} - 1)^{2}} - \|\frac{N_{i}}{N_{i} - 1}(y - m_{i})\|^{2} \\ &= Je_{i} - \frac{N_{i}\|y - m_{i}\|^{2}}{N_{i} - 1} \end{split}$$

K-means

推导过程

$$\begin{split} Je_{k}^{*} &= \sum_{x \in D_{k}} \| x - m_{k}^{*} \|^{2} + \| y - m_{k}^{*} \|^{2} \\ &= \sum_{x \in D_{k}} \| x - m_{k} - \frac{(y - m_{k})}{N_{k} + 1} \|^{2} + \| \frac{N_{k}}{N_{k} + 1} (y - m_{k}) \|^{2} \\ &= \sum_{x \in D_{k}} \left(\| x - m_{k} \|^{2} - \frac{2}{N_{k} + 1} (x - m_{k})^{T} (y - m_{k}) + \frac{\| y - m_{k} \|^{2}}{(N_{k} + 1)^{2}} \right) + \| \frac{N_{k}}{N_{k} + 1} (y - m_{k}) \|^{2} \\ &= Je_{k} - \frac{2}{N_{k} + 1} (y - m_{k})^{T} \sum_{x \in D_{k}} (x - m_{k}) + \frac{N_{k} \| y - m_{k} \|^{2}}{(N_{k} + 1)^{2}} + \| \frac{N_{k}}{N_{k} + 1} (y - m_{k}) \|^{2} \\ &= Je_{k} + \frac{N_{k} \| y - m_{k} \|^{2}}{N_{k} + 1} \end{split}$$

K-means

For a sample in Class Γ_i :

- (1) 如果 $N_i=1$,则放弃该样本; 否则继续;
- (2) 计算与各类别 Γ_i 的相似度:

$$\rho_{j} = \begin{cases} \frac{N_{j}}{N_{j}+1} \|\mathbf{y}-\mathbf{m}_{j}\|^{2}, & j \neq i \\ \frac{N_{i}}{N_{i}-1} \|\mathbf{y}-\mathbf{m}_{j}\|^{2}, & j = i \end{cases}$$

(3) 根据与各类别的相似性 ρ_j , 将样本划分为最近类簇。若 ρ_k 最小, 把 y 从 Γ_i 移到 Γ_k 中; (4) 修整被调整的两个类的类心 m_i 和 m_k , i=1,2,...,K;

$$\boldsymbol{m}_i = \boldsymbol{m}_i + \frac{1}{N_i - 1} (\boldsymbol{m}_i - \boldsymbol{y})$$

$$\boldsymbol{m}_k = \boldsymbol{m}_k + \frac{1}{N_k + 1} (\boldsymbol{y} - \boldsymbol{m}_k)$$

(5) 计算 Je, 若 N 步后, Je 不变, 算法停止。

$$Je_i = Je_i - \frac{N_i}{N_i - 1} \|\mathbf{y} - \mathbf{m}_i\|^2$$

$$Je_k = Je_k + \frac{N_k}{N_k + 1} \|\mathbf{y} - \mathbf{m}_k\|^2$$

End For

K-means

分析(3)和(5)

$$\rho_{j} = \begin{cases} \frac{N_{j}}{N_{j}+1} \|\mathbf{y}-\mathbf{m}_{j}\|^{2}, & j \neq i \\ \frac{N_{i}}{N_{i}-1} \|\mathbf{y}-\mathbf{m}_{j}\|^{2}, & j = i \end{cases}$$

保证了每个样本迭代后误差越来越小。

例子

表 9.1 西瓜数据集 4.0

编号	密度	含糖率	编号	密度	含糖率	编号	密度	含糖率
1	0.697	0.460	11	0.245	0.057	21	0.748	0.232
2	0.774	0.376	12	0.343	0.099	22	0.714	0.346
3.	0.634	0.264	13	0.639	0.161	23	0.483	0.312
4	0.608	0.318	14	0.657	0.198	24	0.478	0.437
5	0.556	0.215	15	0.360	0.370	25	0.525	0.369
6	0.403	0.237	16	0.593	0.042	26	0.751	0.489
7	0.481	0.149	17	0.719	0.103	27	0.532	0.472
8	0.437	0.211	18	0.359	0.188	28	0.473	0.376
9	0.666	0.091	19	0.339	0.241	29	0.725	0.445
10	0.243	0.267	20	0.282	0.257	- 30	0.446	0.459

例子

(1) 初始化

假定聚类簇数 k=3, 算法开始时随机选取三个样本 x_6 , x_{12} , x_{27} 作为初始均值向量, 即

$$\mu_1 = (0.403; 0.237), \ \mu_2 = (0.343; 0.099), \ \mu_3 = (0.532; 0.472).$$

(2) 样本划分

$$C_1 = \{ oldsymbol{x}_5, oldsymbol{x}_6, oldsymbol{x}_7, oldsymbol{x}_8, oldsymbol{x}_9, oldsymbol{x}_{10}, oldsymbol{x}_{13}, oldsymbol{x}_{14}, oldsymbol{x}_{15}, oldsymbol{x}_{17}, oldsymbol{x}_{18}, oldsymbol{x}_{19}, oldsymbol{x}_{20}, oldsymbol{x}_{23} \};$$
 $C_2 = \{ oldsymbol{x}_{11}, oldsymbol{x}_{12}, oldsymbol{x}_{16} \};$ $C_3 = \{ oldsymbol{x}_1, oldsymbol{x}_2, oldsymbol{x}_{21}, oldsymbol{x}_{22}, oldsymbol{x}_{24}, oldsymbol{x}_{25}, oldsymbol{x}_{26}, oldsymbol{x}_{27}, oldsymbol{x}_{28}, oldsymbol{x}_{29}, oldsymbol{x}_{30} \}.$

例子

(3) 均值更新

$$\mu'_1 = (0.473; 0.214), \ \mu'_2 = (0.394; 0.066), \ \mu'_3 = (0.623; 0.388)$$

重复(2)和(3)样本划分。。。均值更新。。。

例子

Chapter 6 Clustering

参考文献

- 1. 周志华,机器学习,清华大学出版社,2016.
- 2. Duda, R.O. et al. Pattern classification. 2nd, 2003.
- 3. 边肇祺,张学工等编著,模式识别(第二版),清华大学,1999。
- 4. Chris Bishop. Pattern recognition and Machine Learning. Springer, 2006. (PR&ML)