MEM 334: Otomatik Kontrol II Güz 2023 <u>Ders 1</u>

Dr. Öğr. Üyesi Gökhan Güngör

Mekatronik Mühendisliği, Mühendislik Fakültesi Karabük Üniversitesi

Dersin Amacı ve Ders Konuları

Ders Konuları	
Hafta	Konu Ön Hazırlık
1	Sistem kararlılığı, kök-yer eğrisi tanımı, kök-yer eğrisi temel özellikleri
2	Kök-yer eğrisi çizimi
3	Kök-yer eğrisi çiziminde ayrılma ve birleşme noktaları hesabı, komplekssıfır/kutup ayrılma/varış açıları hesabı
4	Kök-yer eğrisi çizim örnekleri
5	Kararlı-hal hatasının iyileştirilmesi için aktif ve pasif kompanzatörtasarımları (PI, Lag)
6	Geçici-hal cevabının düzenlenmesine yönelik aktif ve pasif kompanzatör tasarımları (PD, Lead)
7	Hem kararlı-hal hatası hem de geçici cevabın iyileştirilmesine yönelik aktif ve pasif kompanzatör tasarımları (PID, Lag-Lead)
8	Kompanzatörlerin aktif ve pasif devre elemanları kullanılarak gerçekleştirilmesi
9	Kompanzatör tasarımı örnekleri
10	Frekans cevabı tekniklerine giriş
11	Frekans cevabı kutupsal grafiği, asimptotik Bode çizimleri
12	Genlik ve Faz frekans cevabı asimptotik bode çizim uygulamaları
13	Nyquist diyagramı ve çizimi, Nyquist diyagramı ile kararlılık analizleri
14	Bode diyagramları ile kazanç marjini, faz marjini ve kararlılık

Değerlendirme ve Kaynaklar

Dersin Kaynakları

Kaynakları

0

Norman S. Nise, Control Systems Engineering, 6th Ed., John Willey&Sons, 2010. Rowell and Wormley, System Dynamics: An Introduction, Upper Saddle River, NJ: Prentice Hall, 1996. Dorf and Bishop, Modern Control Systems, 7th ed. Reading, MA: Addison-Wesley, 1995. Katsuhiko Ogata, Modern Control Engineering, 3rd ed, Upper Saddle River, NJ: Prentice Hall, 1996.

Kararlılık nedir?

Kararlılık Görsel Örnek

Matematiksel tanımı

$$y(t) = y_h(t) + y_p(t)$$

- Eğer kalıcı durum hatası bir başlangıç değerinde sıfıra gidiyorsa sistemin asimptotik kararlı olduğu söylenir.
- Eğer kalıcı durum hatası bir başlangıç değerinde sıfır yerine uzaklaşıyorsa sistemin kararsız olduğu söylenir.
- Kararlı durum yanıtı sabit veya tamamen salınımlı ise, sistem marjinal olarak kararlı tanımlanır.

Eğri Alan Gösterim Örneği 1

Eğri Alan Gösterim Örneği 2

Matematiksel tanımı

$$y(t) = y_h(t) + y_p(t)$$

- Eğer kalıcı durum hatası bir başlangıç değerinde sıfıra gidiyorsa sistemin asimptotik kararlı olduğu söylenir.
- Eğer kalıcı durum hatası bir başlangıç değerinde sıfır yerine uzaklaşıyorsa sistemin kararsız olduğu söylenir.
- kararlı durum yanıtı sabit veya tamamen salınımlı ise, sistem marjinal olarak kararlı olarak tanımlanır.

Koordinat düzlemdeki tanımı

- Doğrusal bir sistem, yalnızca tüm kutupları negatif gerçek parçalara sahipse kararlı olarak tanımlanır.
- Tamamen sanal olan bir veya daha fazla kutba sahip bir sistem, marjinal olarak kararlı olarak tanımlanır.

Koordinat düzlem: Örnek 1

Aşağıdaki sistemlerin stabil olup olmadığını inceleyiniz.

$$G_1(s) = \frac{15}{s^3 + 2s^2 + 5s + 15}$$

$$G_2(s) = \frac{5}{s^3 + 2s^2 + 5s + 5}.$$

Kapalı Çevrim Gösterimi

Aşağıdaki sistemi düşünerek K katsayısının etkisini düşününüz.

$$G_f(s) = \frac{K}{s^3 + 3s^2 + 5s + 2}$$

$$G_{cl}(s) = \frac{N(s)}{D(s) + N(s)} = \frac{K}{s^3 + 3s^2 + 5s + (2 + K)}$$

Root-Locus Methodu Nedir?

- Kontrol parametreleri değiştikçe kapalı çevrim sistemin kutuplarının da değiştiğini gördük.
- Kök-yer eğrisi, kontrol parametresi değişirken kapalı çevrim kutuplarının izlediği yolların s-düzlemindeki çizimidir.

Koordinat düzlem: Örnek 1

Aşağıdaki basit örneği inceleyerek bu method hakkında kısa bir fikre sahip olmaya çalışalım.

$$G_{cl}(s) = \frac{K}{s + (a + K)}$$

Koordinat düzlem: Örnek 1 devamı

Buradaki kök eğri düzleminde ne olduğunu gözlemleyelim.

Sonuçlar

Referanslar

Bu notlar Prof. Derek Rowella notları kullanılarak hazırlanmıştır. Teşekkür ederim.

