Exploratory Data Analysis

Customer Analysis:

- 1. South America => 59
- 2. **Europe => 50**
- 3. North America => 46
- 4. Asia => 45
- Average signup per day: 1
- Max signup per day: 3
- Min signup per day : 1

Product Sales & Profit Analysis

Number of Unique Products: 100

Top 5 Most Sold Products (Count Wise)

F	ProductID	Count	ProductName	Category	Price
F	P059	19	SoundWave Jeans	Clothing	303.20
F	P029	17	TechPro Headphones	Electronics	433.64
F	P062	16	HomeSense Novel	Books	374.16
F	P079	16	ActiveWear Rug	Home Decor	417.37
F	P054	16	SoundWave Cookbook	Books	57.30

Top 5 Least Sold Products (Count Wise)

ProductID	Count	ProductName	Category	Price
P024	5	SoundWave Cookbook	Books	338.66
P014	4	ActiveWear Jacket	Clothing	26.26
P031	4	SoundWave Headphones	Electronics	196.40
P044	4	ActiveWear Running Shoes	Clothing	18.82
P099	4	SoundWave Mystery Book	Books	354.29

Top 5 Most Profitable Products (Profit Wise)

ProductID	Count	ProductName	Category	Price	Total Profit
P029	17	TechPro Headphones	Electronics	433.64	7371.88
P079	16	ActiveWear Rug	Home Decor	417.37	6677.92
P048	15	TechPro Cookbook	Books	416.40	6246.00
P062	16	HomeSense Novel	Books	374.16	5986.56
P083	13	ActiveWear Smartwatch	Electronics	455.72	5924.36

Top 5 Least Profitable Products (Profit Wise)

ProductID	Count	ProductName	Category	Price	Total Profit
P070	6	HomeSense T-Shirt	Clothing	48.69	292.14
P073	10	ComfortLiving Laptop	Electronics	26.99	269.90
P056	8	SoundWave Smartwatch	Electronics	16.08	128.64
P014	4	ActiveWear Jacket	Clothing	26.26	105.04
P044	4	ActiveWear Running Shoes	Clothing	18.82	75.28

Transaction & Product Price Summary

Transaction Value Statistics

Metric	Value
Average Transaction Value	690
Maximum Transaction Value	1991
Minimum Transaction Value	16

Product Price Statistics

Metric	Value
Average Price of Products	273
Maximum Price of Products	498
Minimum Price of Products	16

Customer Spending Analysis

Top 5 Most Spending Customers

CustomerID	Customer Name	Region	Signup Date	Total Spending (\$)
C0141	Paul Parsons	Europe	2023-02-23	10673.87
C0054	Bruce Rhodes	Asia	2024-09-29	8040.39
C0065	Gerald Hines	North America	2024-07-10	7663.70
C0156	William Adams	North America	2023-08-19	7634.45
C0082	Aimee Taylor	South America	2022-05-13	7572.91

Top 5 Least Spending Customers

CustomerID	Customer Name	Region	Signup Date	Total Spending (\$)
C0014	Deborah Wilcox	Europe	2024-06-22	318.66
C0151	Amber Gonzalez	South America	2024-11-22	223.96
C0097	Tina Ford	Asia	2023-12-18	137.54
C0033	Tyler Holt	North America	2024-08-04	132.64
C0060	James Murphy	Europe	2022-04-22	82.36

Spending by Region

Region	Total Spending (\$)
South America	219,352.56
Europe	166,254.63
North America	152,313.40
Asia	152,074.97

Customer Spending Summary

Metric	Value (\$)
Average Spending per Customer	3,467

Most transaction happening regions:

Regional Spending Summary

Assignment Tasks:

Task 1: Exploratory Data Analysis (EDA) and Business Insights

- 1. Perform EDA on the provided dataset.
- 2. Derive at least 5 business insights from the EDA.
 - O Write these insights in short point-wise sentences (maximum 100 words per insight).

Deliverables:

- A Jupyter Notebook/Python script containing your EDA code.
- A PDF report with business insights (maximum 500 words).

Task 2: Lookalike Model

Build a Lookalike Model that takes a user's information as input and recommends 3 similar customers based on their profile and transaction history. The model should:

- Use both customer and product information.
- Assign a similarity score to each recommended customer.

Deliverables:

- Give the top 3 lookalikes with there similarity scores for the first 20 customers (CustomerID: C0001 C0020) in Customers.csv. Form an "Lookalike.csv" which has just one
- A Jupyter Notebook/Python script explaining your model development. Evaluation Criteria:
- Model accuracy and logic.
- Quality of recommendations and similarity scores

Evaluation Criteria:

- Model accuracy and logic.
- Quality of recommendations and similarity scores.

Task 3: Customer Segmentation / Clustering

Perform customer segmentation using clustering techniques. Use both profile information (from Customers.csv) and transaction information (from Transactions.csv). • You have the flexibility to choose any clustering algorithm and any number of clusters in between(2 and 10) • Calculate clustering metrics, including the DB Index(Evaluation will be done on this). • Visualise your clusters using relevant plots.

Deliverables:

- A report on your clustering results, including:
- O The number of clusters formed.
- DB Index value.
- o Other relevant clustering metrics.
- A Jupyter Notebook/Python script containing your clustering code.

Evaluation Criteria:

- Clustering logic and metrics.
- Visual representation of clusters.

Submission Instructions:

- 1. GitHub Link
 - Upload all the PDF and code files in a public GitHub repository.
- 2. File Naming Convention:
 - Use the following naming convention for all your files:
 - FirstName LastName EDA.pdf
 - FirstName_LastName_EDA.ipynb
 - FirstName LastName Lookalike.csv
 - FirstName_LastName_Lookalike.ipynb
 - FirstName_LastName_Clustering.pdf

■ FirstName_LastName_Clustering.ipynb

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('ggplot')
import warnings
warnings.filterwarnings('ignore')

customer=pd.read_csv('Customers.csv')
transactions=pd.read_csv('Transactions.csv')
products=pd.read_csv('Products.csv')
```

customer.isna().sum()

→		0
	CustomerID	0
	CustomerName	0
	Region	0
	SignupDate	0

dtype: int64

customer.describe()

→		CustomerID	CustomerName	Region	SignupDate	
	count	200	200	200	200	ılı
	unique	200	200	4	179	
	top	C0001	Lawrence Carroll	South America	2024-11-11	
	freq	1	1	59	3	

customer.info()

→		as.core.frame.DataFrame'> 200 entries, 0 to 199					
	columns Column	(tota		colun Null-			Dty

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	object
1	CustomerName	200 non-null	object
2	Region	200 non-null	object
3	SignupDate	200 non-null	object

dtypes: object(4)
memory usage: 6.4+ KB

transactions.isna().sum()

→		0
	TransactionID	0
	CustomerID	0
	ProductID	0
	TransactionDate	0
	Quantity	0
	TotalValue	0
	Price	0

dtype: int64

transactions.describe()

→		Quantity	TotalValue	Price
	count	1000.000000	1000.000000	1000.00000
	mean	2.537000	689.995560	272.55407
	std	1.117981	493.144478	140.73639
	min	1.000000	16.080000	16.08000
	25%	2.000000	295.295000	147.95000
	50%	3.000000	588.880000	299.93000
	75 %	4.000000	1011.660000	404.40000
	max	4.000000	1991.040000	497.76000

transactions.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1000 entries, 0 to 999
 Data columns (total 7 columns):

	•	,	
#	Column	Non-Null Count	Dtype
0	TransactionID	1000 non-null	object
1	CustomerID	1000 non-null	object
2	ProductID	1000 non-null	object
3	TransactionDate	1000 non-null	object
4	Quantity	1000 non-null	int64
5	TotalValue	1000 non-null	float64
6	Price	1000 non-null	float64

```
\texttt{dtypes: float64(2), int64(1), object(4)}
```

memory usage: 54.8+ KB

```
products.isna().sum()
```

→		0
	ProductID	0
	ProductName	0
	Category	0
	Price	0

dtype: int64

products.describe()

→		Price	
	count	100.000000	ıl.
	mean	267.551700	
	std	143.219383	
	min	16.080000	
	25%	147.767500	
	50%	292.875000	
	75 %	397.090000	
	max	497.760000	

products.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 4 columns):
  Column Non-Null Count Dtype
                -----
--- -----
0
    ProductID
                100 non-null
                              object
1
    ProductName 100 non-null
                              object
2
                100 non-null
  Category
                              object
3
   Price
                100 non-null
                              float64
dtypes: float64(1), object(3)
memory usage: 3.3+ KB
```

```
customer['SignupDate'] = pd.to_datetime(customer['SignupDate'])
transactions['TransactionDate'] = pd.to_datetime(transactions['TransactionDate'])
```

```
print(customer.describe())
print(transactions.describe())
```

```
\overline{\rightarrow}
                     SignupDate
    count
                             200
            2023-07-19 08:31:12
    mean
            2022-01-22 00:00:00
    min
    25%
            2022-09-26 12:00:00
    50%
            2023-08-31 12:00:00
    75%
            2024-04-12 12:00:00
            2024-12-28 00:00:00
    max
                           TransactionDate
                                                 Quantity
                                                             TotalValue
                                                                               Price
    count
                                       1000
                                              1000,000000
                                                            1000.000000
                                                                          1000.00000
            2024-06-23 15:33:02.768999936
                                                             689.995560
    mean
                                                 2.537000
                                                                           272.55407
    min
                      2023-12-30 15:29:12
                                                 1.000000
                                                              16.080000
                                                                            16.08000
               2024-03-25 22:05:34.500000
    25%
                                                 2.000000
                                                             295.295000
                                                                           147.95000
               2024-06-26 17:21:52.500000
    50%
                                                 3.000000
                                                             588,880000
                                                                           299,93000
    75%
                      2024-09-19 14:19:57
                                                 4.000000
                                                            1011.660000
                                                                           404.40000
                      2024-12-28 11:00:00
                                                                           497.76000
    max
                                                 4.000000
                                                            1991.040000
    std
                                        NaN
                                                 1.117981
                                                             493.144478
                                                                           140.73639
```

Region Of Customers

→ Customers region :

customer

_						
→		CustomerID	CustomerName	Region	SignupDate	\blacksquare
	0	C0001	Lawrence Carroll	South America	2022-07-10	ılı
	1	C0002	Elizabeth Lutz	Asia	2022-02-13	+//
	2	C0003	Michael Rivera	South America	2024-03-07	
	3	C0004	Kathleen Rodriguez	South America	2022-10-09	
	4	C0005	Laura Weber	Asia	2022-08-15	
	195	C0196	Laura Watts	Europe	2022-06-07	
	196	C0197	Christina Harvey	Europe	2023-03-21	
	197	C0198	Rebecca Ray	Europe	2022-02-27	
	198	C0199	Andrea Jenkins	Europe	2022-12-03	
	199	C0200	Kelly Cross	Asia	2023-06-11	
	200 rc	ows × 4 columns	5			

New interactive sheet

```
Next
            Generate code with customer
                                       View recommended plots
 steps:
# Signup count using customers csv
signup counts = customer.groupby('SignupDate').size()
print("Average signup per day : ", round(signup counts.mean()))
print("Max signup per day : ", round(signup_counts.max()))
print("Min signup per day : ", round(signup counts.min()))
    Average signup per day : 1
    Max signup per day : 3
    Min signup per day : 1
# Most & least customer regions
customer.groupby('Region').size().sort values(ascending=False)
\rightarrow
                    0
           Region
     South America
        Europe
                   50
     North America 46
          Asia
                   45
    dtype: int64
```

Customer Insights

 Customers are from four major regions: South and North america, asia & europe.

```
South America: 59
North America: 50
Europe: 46
Asia: 45

2. Average signup per day: 1.1173184
```

2. Average signup per day: 1.1173184357541899

3. Max signup per day:3

4. Min signup per day : 1

transactions.head()

→		TransactionID	CustomerID	ProductID	TransactionDate	Quantity	TotalValue
	0	T00001	C0199	P067	2024-08-25 12:38:23	1	300.68
	1	T00112	C0146	P067	2024-05-27 22:23:54	1	300.68
	2	T00166	C0127	P067	2024-04-25 07:38:55	1	300.68
Next		Generate code witl			w recommended plots	N · · ·	eractive sheet

products.head()

→		ProductID	ProductName	Category	Price	
	0	P001	ActiveWear Biography	Books	169.30	ıl.
	1	P002	ActiveWear Smartwatch	Electronics	346.30	
	2	P003	ComfortLiving Biography	Books	44.12	
	3	P004	BookWorld Rug	Home Decor	95.69	
	4	P005	TechPro T-Shirt	Clothing	429.31	
Next step		Generate	e code with products	View recor	nmended	plots New interactive sheet

Total no. of products

```
Number of unique products 100
     ______ |
    Top 5 most sold products (Count wise):
                                   ProductName Category Price undWave Jeans Clothing 303.20
       ProductID Count
            P059 19 SoundWave Jeans
    0
                      17 TechPro Headphones Electronics 433.64
    1
            P029
       P062 16 HomeSense Novel Books 374.16
P079 16 ActiveWear Rug Home Decor 417.37
P054 16 SoundWave Cookbook Books 57.30
    2
    3
     -----|
    Top 5 least sold products (Count wise):
     -----|
             ProductName Category Price
P024 5 SoundWave Cookbook Books 338.66
P014 4 ActiveWear Jacket Clothing 26.26
        ProductID Count
    95
    96
    97 P014 4 ActiveWear Jacket Ctothing 20.26
97 P031 4 SoundWave Headphones Electronics 196.40
98 P044 4 ActiveWear Running Shoes Clothing 18.82
99 P099 4 SoundWave Mystery Book Books 354.29
    Top 5 most profitable products (Profit wise):
                                        ProductName Category Price \
        ProductID Count
            P029 17
                                 TechPro Headphones Electronics 433.64
    1
                               ActiveWear Rug Home Decor 417.37
    3
                       16
              P079
    6
                       15
                                   TechPro Cookbook Books 416.40
              P048
              P048 15 TechPro Cookbook Books 416.40
P062 16 HomeSense Novel Books 374.16
P083 13 ActiveWear Smartwatch Electronics 455.72
    2
    14
         TotalProfitPerProduct
    1
                          7371.88
    3
                          6677.92
    6
                          6246.00
    2
                          5986.56
                          5924.36
    Top 5 least profitable products (Profit wise):
          -----|
                                      ProductName
HomeSense T-Shirt
        ProductID Count
                                                                Category Price \
             P070 6 HomeSense T-Shirt Clothing 48.69
P073 10 ComfortLiving Laptop Electronics 26.99
P056 8 SoundWave Smartwatch Electronics 16.08
P014 4 ActiveWear Jacket Clothing 26.26
P044 4 ActiveWear Running Shoes Clothing 18.82
    90
    42
    63
    96
    98
         TotalProfitPerProduct
    90
                           292.14
    42
                           269.90
                           128.64
```


	ProductID	Count	ProductName	Category	Price	TotalProfitPerProduct	E
0	P059	19	SoundWave Jeans	Clothing	303.20	5760.80	1
1	P029	17	TechPro Headphones	Electronics	433.64	7371.88	
2	P062	16	HomeSense Novel	Books	374.16	5986.56	
3	P079	16	ActiveWear Rug	Home Decor	417.37	6677.92	
4	P054	16	SoundWave Cookbook	Books	57.30	916.80	

```
Next steps: Generate code with product_analysis  

View recommended plots  

New interactive she
```

Average transaction value & Average price of all products

```
# @title Average transaction value & Average price of all products
print("Average transaction value : ", round(transactions['TotalValue'].mean()))
print("\nMaximum transaction value : ", round(transactions['TotalValue'].max()))
print("\nMinimum transaction value : ", round(transactions['TotalValue'].min()))
print("\n\n-----
# Average price of all products
print("\nAverage price of all products : ", round(transactions['Price'].mean()))
print("\nMaximum price of products : ", round(transactions['Price'].max()))
print("\nMinimum price of products : ", round(transactions['Price'].min()))
→ Average transaction value :
                               690
    Maximum transaction value :
                               1991
    Minimum transaction value :
    Average price of all products: 273
    Maximum price of products :
    Minimum price of products :
# Calculating total spending per customer
customer spending = pd.merge(customer, transactions, on='CustomerID', how='inner'
customer spending value = customer spending.groupby('CustomerID')['TotalValue'].s
customer_spending_value.columns = ['CustomerID', 'TotalValue']
customer spending value = pd.merge(customer, customer spending value , on='Custom
# Finding customers with the highest total spending
# top spenders = customer spending.sort values(ascending=False)
print("\n ============= \n Top 5 most spending customers : \n
print(customer_spending_value.head(5))
print("\n ============ \n Top 5 least spending customers : \
print(customer spending value.tail(5))
print("\n ============== \n Most spending region : \n =======
print(customer_spending_value.groupby('Region')['TotalValue'].sum().sort_values(a
```

```
print(customer spending value.groupby('Region')['TotalValue'].sum().sort values(a
print("\n =================== \n Average spending of customer : ",r
for r in customer spending value['Region'].unique():
 data = customer spending value[customer spending value['Region'] == r ]
 print("\n ======== \n")
 print(f"Average spending of customer in {r} : {round(data['TotalValue'].mean())
 print(f"Maximum spending of customer in {r} : {round(data['TotalValue'].max())}
 print(f"Minimum spending of customer in {r} : {round(data['TotalValue'].min())}
 print("\n ======= \n\n\n")
```

Average spending of customer: 3467 \rightarrow

Average spending of customer in South America: 3718

Maximum spending of customer in South America: 7573

Minimum spending of customer in South America: 224

customer_spending_value

→		CustomerID	CustomerName	Region	SignupDate	TotalValue	##
	140	C0141	Paul Parsons	Europe	2023-02-23	10673.87	ılı
	53	C0054	Bruce Rhodes	Asia	2024-09-29	8040.39	+/
	64	C0065	Gerald Hines	North America	2024-07-10	7663.70	
	155	C0156	William Adams	North America	2023-08-19	7634.45	
	81	C0082	Aimee Taylor	South America	2022-05-13	7572.91	
	13	C0014	Deborah Wilcox	Europe	2024-06-22	318.66	
	150	C0151	Amber Gonzalez	South America	2024-11-22	223.96	
	96	C0097	Tina Ford	Asia	2023-12-18	137.54	
	32	C0033	Tyler Holt	North America	2024-08-04	132.64	
	59	C0060	James Murphy	Europe	2022-04-22	82.36	
	199 rd	ows × 5 columns	;				

→ Most transaction happened region's :

