Simple Linear Regression Examples

Question 1: Predicting House Prices

A real estate company collected data on houses sold in a suburban area. The dataset includes the size of the house in square feet and the selling price in thousands of dollars.

House ID	Size (sqft)	Price (\$1000s)
1	1200	200
2	1500	240
3	1600	250
4	1700	265
5	1850	275
6	1900	295

- a) Fit a simple linear regression model to predict Price from Size.
- b) Interpret the slope and intercept.
- c) Predict the price of a 1800 sqft house.
- d) Calculate the residual for a house of 1500 sqft sold for \$240,000.
- e) Report the R² value and explain the model's fit.
- f) Perform an F-test to determine the model's significance.

Question 2: Analyzing Study Time vs Exam Scores

A group of students recorded the number of hours they studied and their resulting exam scores.

Student	Study Hours	Exam Score
А	2	55
В	4	65
С	6	80
D	8	88
E	10	94
F	12	95

- a) Fit a linear regression model with Study Hours as the predictor.
- b) Interpret model coefficients.
- c) Predict the exam score for a student who studied 9 hours.
- d) Compute the residual for a student who studied 4 hours and scored 65.
- e) What does R² tell you in this case?
- f) Is the relationship statistically significant at the 0.05 level?

Question 3: Marketing Spend vs Customer Acquisition

A marketing team measured how different levels of digital ad spend impacted the number of new customers acquired.

Campaign	Ad Spend (\$100s)	New Customers
1	2	10
2	3	14
3	5	22
4	6	25
5	7	29
6	8	35

- a) Fit a simple linear regression model.
- b) Interpret the intercept and slope.
- c) Predict the number of customers if \$600 is spent.
- d) Calculate the residual for a campaign that spent \$500 and got 22 customers.
- e) Evaluate model strength using R².
- f) Construct an ANOVA table and perform the F-test.

Question 4: Website Load Time and Bounce Rate

A UX team wants to explore whether page load time affects the website's bounce rate (percentage of users who leave immediately).

Website	Load Time (sec)	Bounce Rate (%)
А	1.2	20
В	2.1	35
С	3.0	50
D	4.2	60
Е	5.3	72
F	6.1	81

- a) Create a linear regression model predicting Bounce Rate from Load Time.
- b) Interpret coefficients.
- c) Estimate the bounce rate for a load time of 3.5 seconds.
- d) Calculate the residual for a 2.1-second load time with a 35% bounce rate.
- e) Report R² and comment on predictive strength.
- f) Use the F-test to assess model significance.