COGNOMS:	NOM:
2on Control Arquitectura de Computadors	Curs 2015-2016 Q2

- Temps: 13:30 a 15:30
- Poseu clarament amb LLETRES MAJÚSCULES a cada full els cognoms i el nom

Problema 1. (3 puntos)

Dado el siguiente código escrito en C:

a)	la estructura y el tamaño total del struct.

b)	Dibuja el bloque de activación de la subrutina examen, indicando claramente los desplazamientos y el tamaño de cada uno de los campos.
c)	<pre>Traduce a ensamblador del IA32 la sentencia j = subru(&sin, vc[]);</pre>
d)	La sentencia j = subru(&sin, vc[]); se encuentra dentro de un bucle. Deseamos almacenar la variable
~,	de inducción del bucle (comúnmente conocida como contador del bucle) en un registro durante toda la ejecución del bucle. Indica los registros más adecuados para almacenar el contador del bucle, con el objetivo de minimizar el número de instrucciones ejecutadas.
	de minimizar el namero de mon deciones ejecutudas.
l	

	COGNOMS:	
	2on Control Arquitectura de Computadors Curs 201	5-2016 Q2
•	• Temps: 13:30 a 15:30	
•	Poseu clarament amb LLETRES MAJÚSCULES a cada full els cognoms i el nom	
Pro	Problema 2. (3 puntos)	
a)		entradas para
b)	b) Se dispone de una cache directa de 64 KB con líneas de 16 bytes. Para reducir la tasa de fallos de la decidido implementar un <i>prefecth</i> , para lo cual la cache se ha dividido en 4 bancos de 16KB. Lorganizan de forma que el bloque 0 de memoria se almacena en el banco 0, el bloque 1 en el sucesivamente, de forma que el bloque i se almacena en el banco i módulo 4. Esta organización pe el <i>prefetch</i> sobre un banco mientras se accede a otro bloque en un banco distinto. Los bits usados la memoria cache son los 16 bits de menos peso de la dirección (A15 A0), indica qué bits se uselección de banco y justifica la respuesta.	os bancos se banco 1 y así rmite realizar para indexar

Dado el siguiente código escrito en ensamblador del x86:

```
movl $0, %ebx
movl $0, %esi

for:
    cmpl $512*1000, %esi
    jge end

(a) movl (%ebx, %esi, 4), %eax
(b) addl 2*4*1024(%ebx, %esi, 4), %eax
(c) movl %eax, 3*4*1024(%ebx, %esi, 4)

    addl $2, %esi
    jmp for
end:
```

Sabemos que el código se ejecuta en un sistema con memoria cache y memoria virtual. La memoria virtual utiliza páginas de tamaño 4KB y disponemos de un TLB de 4 entradas y reemplazo LRU. La memoria cache de datos (únicos accesos a memoria que contemplaremos en este problema) es *Write Through + Write No Allocate*, de 2 vías con reemplazo LRU, tamaño 4 KB y 32 bytes por bloque. Responde a las siguientes preguntas:

c) **Calcula,** para cada uno de los accesos etiquetados como (a, b, c), el conjunto de la memoria cache al que se accede en cada una de las 9 primeras iteraciones del bucle

iteración	0	1	2	3	4	5	6	7	8
а									
b									
С									

d)	Calcula la cantidad de aciertos y de fallos de cache, en todo el código.
- \	

 e) Para cada uno de los accesos indicados (etiquetas a, b, c), indica a qué página de la memoria virtual se accede en cada una de las siguientes iteraciones del bucle (recuerda que los accesos son a 4 bytes).

iteración	0	1*512	2*512	3*512	4*512	5*512	6*512	7*512	8*512	9*512
а										
b										
С										

f)	Calcula la cantidad de aciertos y de fallos de TLB, en todo el código.

COGNOMS:	NOM:
2on Control Arquitectura de Computadors	Curs 2015-2016 Q2
Problema 3. (4 punts)	
Tenim una CPU (C1) que te un temps de cicle (Tc) de 1 ns. A l'executa instruccions) en un simulador de C1 on tots els accessos a memòria fan hit a tarda $44,4x10^9$ cicles.	
a) Calcula el CPI ideal (CPIideal) i el temps d'execució en segons (Texec memòria ideal.	c) del programa P en aquest sistema de
Mesurem el número mig de referències per instrucció (nr) i veiem 1.33 manera (1) 1.00 refs/inst a instruccions i (2) 0.33 refs/inst a dades.	refs/instrucció repartides de la següent
Amb una I\$ i una D\$ reals tenim un <i>miss rate</i> de D\$ del 13% i de I\$ del 3%.	
En cas d'encert a la I\$ i a la D\$ el temps de servei es de 1 cicle. En cas de <i>mis</i> s per accedir a la memòria es de 100 cicles.	s a la I\$ o a la D\$ el temps de penalització
La D\$ segueix una política d'escriptura amb <i>Copy Back</i> i <i>Write Allocate</i> , tot i modificats es negligible.	que en el programa P el nombre de blocs
b) Calcula el temps mig d'accés a memòria en cicles pels accessos a instr	uccions (Tmal)
c) Calcula el temps mig d'accés a memòria en cicles pels accessos a dade	es (TmaD)
d) Calcula el temps mig d'accés a memòria en cicles per tots els accessos	s (Tma)
e) Calcula el temps d'execució del programa P a la CPU C1 amb caches I\$	i D\$ reals (TexeR1)

Per a millorar el rendiment del programa P dissenyem una nova CPU (C2) a partir de la CPU C1 descrita anteriorment a la que li hem afegit una cache de segon nivell Unificada (L2\$). Aquesta cache te un temps de servei en cas d'encert de 12 cicles i una penalització en cas de *miss* de 100 cicles. En el simulador mesurem un *miss rate* local de la L2\$ del 53%.

T) Ca	aicula el Temps d'execució del progra	ama P a la CPU C2 amb caches 1\$, D\$	1 LZŞ reais (TexekZ)			
les insti	a de bloc (linea) de totes les caches es ruccions), els accessos a la D\$ son se e de 64 bytes:					
els	alcula el nombre d'accessos, el nomb s elements de la jerarquia: I\$, D\$, L2\$ s respostes.					
	Accesos	Bytes llegits	Ample de banda			
ı\$						
15						
D\$						
L2\$						
MP						
h) Calcula el mínim hit rate local (h) que hauria de tenir la L2\$ per a que un programa s'executi més ràpidament en la CPU C2 que en la C1?						