IN THE CLAIMS:

 (Currently Amended) A method for performing time and frequency SNR dependent weighting in speech recognition comprising the steps of:

for each speech frame t, estimating the SNR to get time and frequency SNR information $\eta_{t:f}$ calculating the time and frequency weighting to get weighting coefficient γ_{tf} , wherein γ_{tf} is a function of $\eta_{t:f}$:

using an inverse DCT matrix M^{-1} to transform a cepstral distance $(o_t - \mu)$ associated with the speech frame t, to a spectral distance;

computing a weighted spectral distance by applying time and frequency weighting to the spectral distance employing a time-varying diagonal matrix G_t which represents the weighting coefficient γ_{tf} [[?tf];

transforming the weighted spectral distance to a weighted cepstral distance employing a forward DCT matrix M to get a transformation matrix T;

providing the transformation matrix T_t and the original MFCC feature o_t that contains the information about the SNR to a recognizer including Viterbi decoding; and

performing weighted Viterbi recognition b_j(o_t).

2. (Previously Presented) The method of claim 1 wherein

$$\gamma_{i,f} = \frac{\sqrt{\eta_{z,f}}}{1 + \sqrt{\eta_{i,f}}}$$

which guarantees that γ_{tf} is equal to 0 when $\eta_{t,f}$ =0 and $\gamma_{t,f}$ approaches 1 when $\eta_{t,f}$ is large.

 (Currently Amended) A method for performing time and frequency SNR dependent weighting in speech recognition comprising the steps of: for each time period t_s estimating the SNR to get time and frequency SNR information $\eta_{t,f}$; calculating the time and frequency weighting to get weighting coefficient γ_{tf} , wherein γ_{tf} is a function of $\eta_{t,f}$;

using an inverse DCT matrix M^{-1} to transform a cepstral distance $(o_{i^{-}}\mu)$ associated with the speech time period t to a spectral distance;

computing a weighted spectral distance by applying time and frequency weighting to the spectral distance employing a time-varying diagonal matrix G_t which represents the weighting coefficient γ_{tf} [[?_{tf}]];

transforming the weighted spectral distance to a weighted cepstral distance employing a forward DCT matrix M to get a transformation matrix T;

providing the transformation matrix T_t and the original MFCC feature o_t that contains the information about the SNR to a recognizer including the Viterbi decoding; and performing weighted Viterbi recognition $b_t(o_t)$.

- 4. (Previously Presented) The method of claim 3 wherein the estimating the SNR to get time and frequency SNR information η_{LF} is a pronunciation probability estimation.
- 5. (Previously Presented) The method of claim 3 wherein the estimating the SNR to get time and frequency SNR information $\eta_{t,f}$ is a transmission over a noisy communication channel reliability estimation.
 - 6. (Original) The method of claim 3 wherein

$$\gamma_{t,f} = \frac{\sqrt{\eta_{t,f}}}{1 + \sqrt{\eta_{t,f}}}$$

which guarantees that γ_{tf} is equal to 0 when $\eta_{t,f} = 0$ and $\gamma_{t,f}$ approaches 1 when $\eta_{t,f}$ is large.

 (Currently Amended) A method for performing time and frequency SNR dependent weighting in speech recognition comprising the steps of:

for each speech frame t, estimating SNR to get time and frequency SNR information $\eta_{t,f}$:

calculating the time and frequency weighting to get weighting coefficient γ_{tf} , wherein γ_{tf} is a function of η_{tf} ;

transforming a cepstral distance $(o_t \cdot \mu)$ associated with the speech frame t to a spectral distance:

computing a weighted spectral distance by applying time and frequency weighting to the spectral distance employing a time-varying diagonal matrix that represents the weighting coefficient $\gamma_{\rm rf}$ [[$\gamma_{\rm rf}$]]:

transforming the weighted spectral distance to a weighted cepstral distance to get a transformation matrix $T_{\bf i}$:

providing the transformation matrix T_t and the original MFCC feature o_t that contains the information about the SNR to a recognizer that performs Viterbi decoding; and

performing weighted Viterbi recognition $b_j(o_t)$.

- 8. (Previously Presented) The method of claim 7 wherein the estimating the SNR to get time and frequency SNR information η_{tf} is a pronunciation probability estimation.
- 9. (Previously Presented) The method of claim 7 wherein the estimating the SNR to get time and frequency SNR information η_{tf} is a transmission over a noisy communication channel reliability estimation.