

Instead of doing this, we can use the *chain rule* to get the derivative in terms of x and y. This is called *implicit differentiation*.

$$x^{2} + y^{2} = 1 \rightarrow 2x + 2yy = 0$$

$$y' = \frac{-1x}{1y} = \frac{x}{y}$$

Ex. 2. Find y' if
$$3x^3y^3 + x^2y + 13x = 12$$

This is not defined anywhere, so the derivative does not exist

$$Ex.4. 2x = x$$

This is only defined at one point (x=0), so since derivatives are really limits, it doesn't make sense to talk about derivatives.

Logarithmic Differentiation

We can use implicit differentiation to differentiate functions of the form $f(x)^g(x)$

Note that = lny = 1, so by the chain rule this	be corres	y'
	W WILES	<u>5</u>
$\frac{b'}{b} = \cos x \ln(\ln x) + \frac{\sin x}{x m x}$ (product rule)		
$\mathcal{T} = (n \times 1 ^{2})^{-1} \times so \mathcal{Y}' = (n \times 1 ^{2})^{-1} \times \left[\cos x n(n(x)) + \frac{1}{2} \right]$	sinx xmx	
Ex. 2. Find y' if y = x arctanx x > 0		
Inly1= arctanx. In(x)		
Note that $\frac{1}{2}m(y) = \frac{1}{2}$		
So by the chain rule, $\frac{y}{y} = \frac{1}{4} \arctan x \cdot n(x) $		
$= \frac{ n \times }{ n \times } + \frac{ \alpha \alpha }{ \alpha }$		
=> y= \left(\frac{\lambda \times}{\chi + \chi \times}\right) \left(\chi \arctan \times) \left(\chi \arctan \times)		
1. Find $\frac{dy}{dx}$ for $\arctan(xy) + y = x$		
= draictan(xy)+ z'		
$\frac{dy}{dx}$ arctan $(xy) = \frac{1}{x^2x^2+1}$.		

$3\gamma + \gamma^3 = \arctan(x) - 1$		
$\Rightarrow \frac{d}{dx} \left(x y + y^3 \right) = \frac{d}{dx} \left[\operatorname{carctan}(x) - 1 \right]$		
$\Rightarrow y + xy' + 3y^2 \cdot y' = \frac{1}{x^2 + 1} - 1$		
$xy' + 3y' \cdot y' = \frac{1}{x^2 + 1} - 1 - y$		
$\gamma'(x+3)^2 = \frac{1}{x^2+1} - 1 - \gamma$		
$y' = \frac{dy}{dx} = \frac{x^2 + 1}{x + 3y^2}$		
$\gamma - \gamma_0 = \frac{2}{3}(\gamma - \gamma_0)$		
9t1 = 3(x-0) > y=-1+ 3x		