Séries de Tempo

Aula 4 - Processo não estacionários e raíz unitária

Regis A. Ely

Departamento de Economia Universidade Federal de Pelotas

07 de agosto de 2020

Conteúdo

Processos não estacionários

Passeio aleatório

Passeio aleatório com intercepto

Passeio aleatório com intercepto e tendência

Processo com tendência determinística

Processos integrados ou com raíz unitária

Testes de raíz unitária

Teste ADF

Teste de Zivot e Andrews

Teste de Phillips-Perron

Teste KPSS

Testes de raíz unitária nas diferenças

Raíz unitária sazonal

Processos não estacionários

- Muitas séries de tempo, especialmente em economia, apresentam características não estacionárias, como séries macroeconômicas, preços de ativos, taxas de câmbio e taxas de juros
- Veremos três casos mais comuns de processos não estacionários:
 - 1. Passeio aleatório
 - 2. Processos com tendência determinística
 - 3. Processos integrados ou com raíz unitária

Passeio aleatório

Um passeio aleatório pode ser descrito como¹:

$$Y_t = Y_{t-1} + \varepsilon_t = \varepsilon_1 + \varepsilon_2 + \ldots + \varepsilon_t$$

- Sendo ε_t um processo independente e identicamente distribuído com média μ_{ε} e variância σ_{ε}^2
- Um passeio aleatório corresponde a um processo AR(1) com $\phi=1$ e c=0, embora o intercepto c possa assumir outro valor
- Ao resolvermos esta equação em diferença de primeira ordem recursivamente encontramos que um passeio aleatório é uma soma de ruídos brancos com coeficientes iguais a um

 $^{^{1}}$ A expressão à direita da equação é obtida resolvendo a equação em diferença de primeira ordem e considerando o valor inicial $Y_{0} = 0$.

Momentos de um passeio aleatório

Um passeio aleatório possui os seguintes momentos:

- Valor esperado: $E(Y_t) = t\mu_{\varepsilon}$
- Variância: $\gamma_0 = t\sigma_{\varepsilon}^2$
- Autocovariância: $\gamma(t1,t2) = \sigma_{\varepsilon}^2 \min\{t1,t2\}$

Note que todos os momentos deste processo estocástico dependem do tempo t, caracterizando um processo não estacionário

Passeio aleatório com intercepto

Podemos adicionar um intercepto ao passeio aleatório, de modo a transformar ε_t em um ruído branco com média zero²:

$$Y_t = \mu + Y_{t-1} + \varepsilon_t = t\mu + \varepsilon_1 + \varepsilon_2 + \ldots + \varepsilon_t$$

- Este modelo é conhecido como passeio aleatório com intercepto (random walk with drift)
- O intercepto neste modelo corresponde a inclinação temporal da série de tempo

 $^{^2}$ A expressão à direita da equação é obtida resolvendo a equação em diferença de primeira ordem e considerando o valor inicial $Y_0 = 0$.

Passeio aleatório com intercepto e tendência

Por fim, uma outra alternativa de passeio aleatório inclui intercepto e tendência determinística:

$$Y_t = \mu + Y_{t-1} + \beta t + \varepsilon_t$$

 Este modelo é conhecido como passeio aleatório com intercepto e tendência (random walk with drift and trend)

Vamos simular um passeios aleatórios com e sem *drift* no R através da soma cumulativa de ruídos brancos:

```
set.seed(4210)
e <- rnorm(100)
y1 <- cumsum(e)
y2 <- 0.5 * 1:100 + cumsum(e)
par(mfrow = c(2,1))
ts.plot(y1)
ts.plot(y2)</pre>
```


Podemos simular 100 passeios aleatórios diferentes no R através da função replicate:

```
passeios <- replicate(100, cumsum(rnorm(100)))
par(las = 1, bty= "l")
matplot(passeios, type = "l", lty = 1)</pre>
```

Passeios aleatórios tem formatos completamente diferentes em cada simulação

Diferença de um passeio aleatório

A diferença de um passeio aleatório corresponde a um ruído branco:

$$\Delta Y_t = Y_t - Y_{t-1} = \mu + \varepsilon_t$$

Embora o ruído branco seja estacionário, não há qualquer tipo de regularidade ou autocorrelação a ser modelada, assim dizemos que **um passeio aleatório é imprevisível**

 A dinâmica de preços de ativos costuma ser muito semelhante a um passeio aleatório, sendo difícil a previsão e com isso a criação de estratégias que possibilitem arbitragem nos mercados acionários

Processo com tendência determinística

Um processo com tendência determinística pode ser descrito como:

$$Y_t = c + \beta t + \varepsilon_t$$

Nesse caso temos uma tendência linear³, de modo que o processo se torna estacionário após a remoção da tendência

• Chamamos este tipo de processo de estacionário em tendência

³Processos com tendências polinomiais de graus maiores possuem dinâmica semelhante.

Momentos de um processo com tendência determinística

Um processo com tendência determinística possui os seguintes momentos:

- Valor esperado: $E(Y_t) = c + \beta t$
- Variância: $\gamma_0 = \sigma_{\varepsilon}^2$
- Autocovariância: $\gamma_j = 0$ para j > 0

Note que apenas o valor esperado deste processo estocástico depende do tempo \boldsymbol{t}

Simulação de um processo com tendência determinística

Vamos simular um processo com tendência linear no R e plotar juntamente com a primeira diferença:

```
e <- rnorm(100)
y <- 0.5 + 0.3 * 1:100 + e
par(mfrow = c(2,1))
ts.plot(y)
ts.plot(diff(y))</pre>
```

A primeira diferença deste processo remove a tendência linear, $\Delta Y_t = \beta + \varepsilon_t - \varepsilon_{t-1}$

Simulação de um processo com tendência determinística

Processos integrados ou com raíz unitária

- Quando os modelos ARMA têm raízes da equação característica iguais a um, chamamos eles de modelos ARIMA(p,d,q)
- O d corresponde ao número de diferenças necessárias para tornar o processo estacionário em covariância
- Um modelo ARIMA é não estacionário e com raíz unitária quando alguma das raízes da equação característica é igual a um
- Neste caso, os coeficientes da representação MA deste processo não irão decair no tempo, de modo que os choques passados tem efeitos permanentes

Testes de raíz unitária

- Para identificar se um processo possui raíz unitária, podemos utilizar testes estatísticos de hipótese, sendo os mais comuns:
 - 1. Teste ADF (Augmented Dickey-Fuller)
 - 2. Teste de Zivot e Andrews
 - 3. Teste de Phillips-Perron
 - 4. Teste KPSS (Kwiatkowski-Phillips-Schmidt-Shin)

Séries de tempo econômicas

Nos exemplos a seguir vamos utilizar a base de dados economics, que contém dados da economia dos Estados Unidos

 Também vamos carregar alguns pacotes que utilizaremos e definir a base de dados como um tsibble

```
library(tidyverse)
library(tsibble)
library(feasts)
econ <- tsibble(economics, index = date)</pre>
```

Utilizaremos a série de tempo unemploy, que corresponde ao número de desempregados em milhares

Séries de tempo econômicas

Visualizamos os valores iniciais da base de dados com o comando head:

head(econ)

```
## # A tsibble: 6 x 6 [1D]
##
     date
                          pop psavert uempmed unemploy
                  рсе
##
     <dat.e>
                <dbl>
                        <db1>
                                <dbl>
                                        <dbl>
                                                  <dbl>
## 1 1967-07-01
                 507. 198712
                                 12 6
                                          4.5
                                                   2944
                                 12.6
                                          4.7
   2 1967-08-01 510.
                      198911
                                                   2945
## 3 1967-09-01 516, 199113
                                 11.9
                                          4.6
                                                   2958
## 4 1967-10-01 512 199311
                                 12.9
                                          4.9
                                                   3143
## 5 1967-11-01 517 199498
                                 12.8
                                          4.7
                                                   3066
## 6 1967-12-01 525, 199657
                                 11.8
                                           4.8
                                                   3018
```

Séries de tempo econômicas

Teste ADF

No teste ADF, para verificar a existência de raíz unitária de um processo AR(p) devemos testar H_0 : $\gamma = 0$ (raíz unitária) usando a regressão:

$$\Delta Y_t = c_t + \beta t + \gamma Y_{t-1} + \sum_{i=1}^{p-1} \Delta Y_{t-i} + \varepsilon_t$$

Assim, uma vez definido o número de defasagens p⁴, o teste ADF será dado por:

$$ADF = \frac{\hat{\gamma}}{std(\hat{\gamma})}$$

Onde $\hat{\gamma}$ é a estimativa do coeficiente γ na regressão acima

⁴Utilizamos critérios como o de Akaike para definir o número de lags.

Teste ADF

No R podemos utilizar o pacote urca para calcular o teste ADF⁵:

```
library(urca)
adf_test <- ur.df(
  log(econ$unemploy), type = "none", selectlags = "AIC"
)
summary(adf_test)</pre>
```

No argumento type é possível incluir um intercepto ou uma tendência na regressão estimada através das opções drift ou trend⁶

⁵Vamos aplicar o logaritmo natural nesta série antes para suavizar a variância.

⁶A opção trend inclui tanto um intercepto quanto uma constante, enquanto a opção none não inclui nenhum dos dois termos.

Teste ADF

```
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
        Min
                   10
                        Median
                                               Max
##
## -0.081534 -0.017945 -0.001709 0.017269 0.111692
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## z.lag.1 0.0001700 0.0001323 1.285 0.19942
## z.diff.lag 0.1202234 0.0415900 2.891 0.00399 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02813 on 570 degrees of freedom
## Multiple R-squared: 0.01813. Adjusted R-squared: 0.01469
## F-statistic: 5.263 on 2 and 570 DF, p-value: 0.005433
##
##
## Value of test-statistic is: 1.2847
##
## Critical values for test statistics:
##
        1pct 5pct 10pct
## tau1 -2.58 -1.95 -1.62
```

Teste de Zivot e Andrews

O teste de Zivot e Andrews é um teste de raíz unitária robusto a quebras estruturais e estima a seguinte regressão:

$$\Delta Y_t = c + \beta t + \alpha Y_{t-1} + \gamma DU_t + \theta DT_t + \sum_{i=1}^{p} d_i \Delta Y_{t-i} + \varepsilon_t$$

Onde DU_t é uma dummy para a mudança na média e DT_t é uma dummy para a mudança na tendência, sendo a estatística do teste obtida a partir da estimativa $\hat{\alpha}$

A hipótese nula é a de raíz unitária

Teste de Zivot e Andrews

No R, o teste está presente no pacote urca através da função ur.za:

```
za_test <- ur.za(
  log(econ$unemploy), model = "both", lag = 1
)
summary(za_test)</pre>
```

Neste teste também podemos escolher entre acrescentar um intercepto, uma tendência ou ambos através do argumento model, e o número de lags da regressão através do argumento lag

Teste de Zivot e Andrews

```
## Call:
## lm(formula = testmat)
##
## Residuals:
        Min
                   10
                        Median
                                               Max
## -0.081463 -0.018411 -0.000822 0.016257 0.115192
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.272e-01 3.882e-02
                                    3.276 0.00112 **
## v.l1
          9.858e-01 4.536e-03 217.306 < 2e-16 ***
## trend
              -7.272e-07 1.014e-05 -0.072 0.94287
## v.dl1 6.704e-02 4.151e-02 1.615 0.10679
## du
             3 669e-02 6 924e-03 5 300 1 67e-07 ***
              -6.778e-04 1.275e-04 -5.317 1.52e-07 ***
## 4+
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.02731 on 566 degrees of freedom
    (2 observations deleted due to missingness)
## Multiple R-squared: 0.9941, Adjusted R-squared: 0.9941
## F-statistic: 1.921e+04 on 5 and 566 DF, p-value: < 2.2e-16
##
##
## Teststatistic: -3.1314
## Critical values: 0.01= -5.57 0.05= -5.08 0.1= -4.82
##
```

Teste de Phillips-Perron

- O teste de Phillips-Perron é um teste de raíz unitária não paramétrico
- É construído a partir de uma correção do teste ADF
- É robusto a autocorrelação mal especificada e heteroscedasticidade dos erros
- A hipótese nula é a de raíz unitária e a hipótese alternativa é a de estacionariedade

Teste de Phillips-Perron

Para estimar o teste de Phillips-Perron podemos utilizar a função features aliada a função unitroot_pp do pacote feasts⁷

```
econ %>%
  features(log(unemploy), unitroot_pp)

## # A tibble: 1 x 2

## pp_stat pp_pvalue
## <dbl> <dbl>
## 1 -2.52 0.1
```

 $^{^{7}}$ É essencial definirmos nossa base de dados como um tsibble antes de utilizarmos estas funções.

Teste KPSS

- O teste KPSS tem hipótese nula de estacionariedade e hipótese alternativa de raíz unitária
- Inicialmente, o teste decompõe uma série em três componentes aditivos:
 - 1. Um componente de tendência
 - 2. Um componente de passeio aleatório
 - 3. Um ruído branco
- Os resíduos de uma regressão de Y_t explicado por estes componentes (e_t) são utilizados para a construção do teste:

$$extit{KPSS} = \sum_{t=1}^{T} rac{\sum_{t=1}^{t} e_t^2}{T^2 \hat{\sigma}_e^2}$$

Teste KPSS

Para estimar o teste KPSS podemos utilizar a função features aliada a função unitroot_kpss do pacote feasts⁸

```
econ %>%
  features(log(unemploy), unitroot_kpss)

## # A tibble: 1 x 2
## kpss_stat kpss_pvalue
## <dbl> <dbl>
## 1 3.52 0.01
```

⁸É essencial definirmos nossa base de dados como um tsibble antes de utilizarmos estas funções.

O teste KPSS é utilizado como teste padrão para identificação de raíz unitária nos pacotes feasts e fable⁹, sendo que a função unitroot_ndiffs já nos dá o número de diferenças necessárias para tornar a série estacionária

```
econ %>%
  features(log(unemploy), unitroot_ndiffs)

## # A tibble: 1 x 1

## ndiffs

## <int>
## 1 1
```

⁹Utilizaremos este pacote para estimação de modelos ARIMA.

Vamos tirar a primeira diferença de unemploy e plotar ambas as séries

```
econ <- econ %>%
  mutate(var unemploy = difference(log(unemploy)))
econ %>%
  slice(-1) %>%
 pivot longer(
    c(unemploy, var unemploy),
   names to = "Variável",
   values to = "Valor"
  ) %>%
  autoplot(Valor) +
  facet_wrap("Variável", scales = "free", ncol = 1) +
  theme(legend.position = "none") +
  xlab("")
```

Algumas observações sobre o comando anterior:

- 1. As diferenças são calculadas pela função difference¹⁰
- 2. Passamos o logaritmo natural na série antes de calcularmos a diferença
- 3. Removemos a primeira observação com o comando slice pois perdemos um grau de liberdade ao calcular a primeira diferença
- 4. Organizamos os dados em formato de painel antes de plotarmos através da função pivot_longer
- Criamos dois painéis diferenças com escalas livres através da função facet_wrap

¹⁰O argumento differences especifica o número diferenças, sendo uma diferença o padrão.

1

Podemos agora realizar o teste KPSS na primeira diferença da série de tempo para confirmar que a série é estacionária:

```
econ %>%
  features(var_unemploy, unitroot_ndiffs)

## # A tibble: 1 x 1
## ndiffs
## <int>
```

Raíz unitária sazonal

- Um outro tipo de raíz unitária é conhecido como raíz unitária sazonal, quando observamos persistência dos choques nos períodos sazonais
- Nesse caso, para removermos a raíz unitária é necessário tirar a s-ésima diferença, onde s é o período sazonal (Ex: 12 meses, 7 dias, etc)
- A função unitroot_nsdiffs pode ser utilizada para identificar o número de diferenças sazonais necessárias
- Esta função utiliza uma medida de persistência sazonal calculada através do modelo de decomposição STL

Raíz unitária sazonal

Podemos observar que não é necessária nenhuma diferença sazonal na série do número de desempregados dos Estados Unidos:

```
econ %>%
  features(log(unemploy), unitroot_nsdiffs)

## # A tibble: 1 x 1
## nsdiffs
## <int>
## 1 0
```