Remesov postopek

Remesov postopek določi element najboljše enakomerne aproksimacije $p^* \in \mathbb{P}_n$ za dano funkcijo $f \in \mathcal{C}([a,b])$.

Vhodni podatki: $f, [a, b], n, E_1 = \{x_0, x_1, \dots, x_{n+1}\}.$

Postavimo k = 1 in ponavljamo:

1. Določimo polinom p_k^* kot polinom najboljše enakomerne aproksimacije na E_k , tako da rešimo sistem enačb:

$$f(x_i) - p_k^*(x_i) = (-1)^i m_k, \quad i = 0, 1, \dots n + 1.$$

- 2. Poiščemo $y \in [a,b]$ za katerega je $|f(y) p_k^*(y)| = ||f p_k^*||_{\infty}.$
- 3. Če velja $|f(y)-p_k^*(y)|=|m_k|$ (oz. $|f(y)-p_k^*(y)|-|m_k|<\epsilon$, če računamo numerično), potem končamo in vrnemo $p^*=p_k^*$.
- 4. Sicer zamenjamo ustrezno točko $x_j \in E_k$ z y tako, da ohranimo alternacijo residuala $r_k = f p_k^*$. Dobimo množico

$$E_{k+1} = E_k \setminus \{x_j\} \cup \{y\}.$$

5. Povečamo k za 1.