Subset calibration report: conditional odds ratio

2024-09-27

Contents

Κe	esults
	(Base case) MAR: 12% outcome proportion, 40% missingness proportion
	MAR: 12% outcome proportion, 80% missingness proportion
	MAR: 5% outcome proportion, 40% missingness proportion
	MAR: 5% outcome proportion, 80% missingness proportion
	MNAR: 12% outcome proportion, 40% missingness proportion
	MNAR: 12% outcome proportion, 80% missingness proportion
	MNAR: 5% outcome proportion, 40% missingness proportion
	MNAR: 5% outcome proportion, 80% missingness proportion
	Other scenarios

The tables in this section contain performance for estimating the conditional odds ratio (cOR).

Results

(Base case) MAR: 12% outcome proportion, 40% missingness proportion

Table 1: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and simple MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.001	-0.001	0.073	0.07	0.075	0.07	0.075	0.940	0.950	1.000	100
Complete-	-0.191	-0.189	0.12	0.119	0.118	0.225	0.223	0.637	0.646	0.442	100
case											
Confounded	0.204	0.205	0.069	0.067	0.07	0.214	0.217	0.142	0.158	1.000	100
model											
IPW	-0.001	0.002	0.129	0.13	0.128	0.13	0.128	0.953	0.950	0.884	100
Raking	0	0.000	0.082	0.078	0.083	0.078	0.083	0.938	0.950	0.999	100
(vanilla)											
MICE	0.001	-0.001	0.079	0.076	0.08	0.076	0.08	0.939	0.949	1.000	100
MI-XGB	-0.006	-0.007	0.081	0.077	0.081	0.077	0.082	0.935	0.946	0.999	100
MI-RF	0.005	0.004	0.082	0.074	0.082	0.074	0.082	0.923	0.945	0.999	100
IPCW-	-0.015	-0.013	0.132	0.136	0.129	0.137	0.13	0.953	0.949	0.835	100
TMLE-M											
IPCW-	-0.015	-0.013	0.131	0.134	0.129	0.135	0.13	0.953	0.946	0.842	100
TMLE-MTO											

Table 2: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and simple MAR scenario. The value of the estimand is 0.406. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.001	-0.001	0.073	0.07	0.075	0.07	0.075	0.950	0.940	1.000	100
model											
Complete-	-0.191	-0.189	0.12	0.119	0.118	0.225	0.223	0.646	0.636	0.442	100
case											
Confounded	0.203	0.205	0.069	0.067	0.07	0.214	0.216	0.158	0.143	1.000	100
model											
IPW	-0.001	0.002	0.129	0.13	0.128	0.13	0.128	0.950	0.953	0.884	100
Raking	0	0.000	0.082	0.078	0.083	0.078	0.083	0.950	0.938	0.999	100
(vanilla)											
MICE	0.001	-0.001	0.079	0.076	0.08	0.076	0.08	0.949	0.939	1.000	100
MI-XGB	-0.006	-0.007	0.081	0.077	0.081	0.077	0.082	0.946	0.935	0.999	100
MI-RF	0.005	0.004	0.082	0.074	0.082	0.074	0.082	0.945	0.923	0.999	100
IPCW-	-0.015	-0.014	0.132	0.136	0.129	0.137	0.13	0.949	0.953	0.835	100
TMLE-M											
IPCW-	-0.015	-0.014	0.131	0.134	0.129	0.135	0.13	0.946	0.953	0.842	100
TMLE-MTO											

Table 3: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and simple MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.001	0.001	0.08	0.08	0.08	0.08	0.08	0.954	0.952	0.999	100
model											
Complete-	-0.233	-0.235	0.123	0.122	0.122	0.263	0.265	0.514	0.518	0.292	100
case^*											
Confounded	-0.314	-0.313	0.069	0.068	0.07	0.321	0.321	0.006	0.006	0.271	100
model^*											
IPW^*	-0.04	-0.042	0.13	0.13	0.133	0.136	0.139	0.940	0.940	0.801	100
Raking	-0.033	-0.032	0.081	0.081	0.08	0.088	0.086	0.932	0.931	0.996	100
$(vanilla)^*$											
MICE*	0.041	0.041	0.083	0.083	0.083	0.092	0.092	0.926	0.923	1.000	100
MI-XGB*	0.008	0.008	0.08	0.08	0.08	0.08	0.08	0.948	0.947	0.999	100
MI-RF*	-0.026	-0.026	0.082	0.079	0.082	0.083	0.086	0.925	0.937	0.998	100
IPCW-	-0.056	-0.058	0.134	0.135	0.135	0.147	0.147	0.936	0.931	0.737	100
$TMLE-M^*$											
IPCW-	-0.04	-0.040	0.125	0.123	0.128	0.129	0.134	0.933	0.941	0.842	100
$TMLE-MTO^*$											
IPCW-a-	-0.058	-0.062	0.134	0.135	0.138	0.147	0.151	0.931	0.933	0.728	100
$TMLE-M^*$											
IPCW-a-	-0.041	-0.041	0.126	0.122	0.13	0.129	0.136	0.928	0.943	0.838	100
$TMLE-MTO^*$											

Table 4: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and simple MAR scenario. The value of the estimand is 0.371. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.002	0.002	0.071	0.072	0.07	0.072	0.07	0.950	0.953	1.000	100
Complete- case	-0.199	-0.201	0.123	0.122	0.122	0.234	0.235	0.635	0.630	0.292	100
Confounded model	-0.28	-0.279	0.069	0.068	0.07	0.288	0.288	0.017	0.016	0.271	100
IPW	-0.006	-0.008	0.13	0.13	0.133	0.13	0.133	0.956	0.954	0.801	100
Raking (vanilla)	0.001	0.002	0.081	0.081	0.08	0.081	0.08	0.950	0.950	0.996	100
MICE	0.075	0.075	0.083	0.083	0.083	0.112	0.112	0.856	0.860	1.000	100
MI-XGB	0.043	0.042	0.08	0.08	0.08	0.091	0.09	0.912	0.917	0.999	100
MI-RF	0.008	0.008	0.082	0.079	0.082	0.079	0.082	0.948	0.942	0.998	100
IPCW- TMLE-M	-0.022	-0.024	0.134	0.135	0.135	0.137	0.137	0.948	0.948	0.737	100
IPCW- TMLE-MTO	-0.006	-0.006	0.125	0.123	0.128	0.123	0.128	0.951	0.946	0.842	100
IPCW-a- TMLE-M	-0.024	-0.028	0.134	0.135	0.138	0.137	0.141	0.949	0.951	0.728	100
IPCW-a- TMLE-MTO	-0.007	-0.007	0.126	0.122	0.13	0.122	0.13	0.953	0.943	0.838	100

Table 5: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and complex MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.001	-0.002	0.072	0.07	0.073	0.07	0.073	0.942	0.948	1.000	100
Complete- case	0.214	0.215	0.092	0.092	0.095	0.234	0.235	0.358	0.354	1.000	100
Confounded model	0.201	0.201	0.068	0.067	0.068	0.212	0.212	0.150	0.165	1.000	100
IPW	0.14	0.140	0.096	0.097	0.098	0.17	0.171	0.706	0.690	1.000	100
Raking	0	-0.001	0.077	0.073	0.076	0.073	0.076	0.938	0.951	1.000	100
(vanilla)											
MICE	-0.002	-0.001	0.075	0.073	0.075	0.073	0.075	0.944	0.947	1.000	100
MI-RF	-0.01	-0.010	0.076	0.073	0.077	0.074	0.077	0.939	0.948	1.000	100
IPCW-	0.052	0.052	0.094	0.106	0.095	0.118	0.108	0.957	0.919	0.998	100
TMLE-M											
IPCW-	0.055	0.056	0.094	0.105	0.096	0.118	0.111	0.950	0.914	0.997	100
TMLE-MTO											
IPCW-a-	0.049	0.049	0.096	0.107	0.097	0.117	0.109	0.955	0.924	0.996	100
TMLE-M											
IPCW-a- TMLE-MTO	0.053	0.053	0.096	0.105	0.098	0.117	0.111	0.946	0.920	0.997	100

Table 6: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and complex MAR scenario. The value of the estimand is 0.406. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.001	-0.002	0.072	0.07	0.073	0.07	0.073	0.948	0.942	1.000	100
model											
Complete-	0.214	0.215	0.092	0.092	0.095	0.233	0.235	0.354	0.359	1.000	100
case											
Confounded	0.201	0.201	0.068	0.067	0.068	0.212	0.212	0.165	0.151	1.000	100
model											
IPW	0.14	0.140	0.096	0.097	0.098	0.17	0.171	0.691	0.706	1.000	100
Raking	0	-0.001	0.077	0.073	0.076	0.073	0.076	0.950	0.939	1.000	100
(vanilla)											
MICE	-0.002	-0.001	0.075	0.073	0.075	0.073	0.075	0.947	0.944	1.000	100
MI-RF	-0.01	-0.010	0.076	0.073	0.077	0.074	0.077	0.947	0.939	1.000	100
IPCW-	0.051	0.051	0.094	0.106	0.095	0.118	0.108	0.919	0.958	0.998	100
TMLE-M											
IPCW-	0.055	0.055	0.094	0.105	0.096	0.118	0.111	0.914	0.950	0.997	100
TMLE-MTO											
IPCW-a-	0.049	0.048	0.096	0.107	0.097	0.117	0.109	0.924	0.955	0.996	100
TMLE-M											
IPCW-a-	0.053	0.052	0.096	0.105	0.098	0.117	0.111	0.920	0.946	0.997	100
TMLE-MTO											

Table 7: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and complex MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		$_{ m pleted}$
Benchmark	0	0.002	0.079	0.08	0.081	0.08	0.081	0.958	0.954	0.999	100
model											
Complete-	0.136	0.136	0.09	0.093	0.092	0.165	0.164	0.691	0.667	1.000	100
case*											
Confounded	-0.316	-0.315	0.068	0.068	0.067	0.323	0.322	0.006	0.005	0.257	100
model*											
IPW^*	0.053	0.052	0.095	0.096	0.097	0.109	0.11	0.916	0.918	0.998	100
Raking	-0.027	-0.026	0.075	0.073	0.079	0.078	0.083	0.926	0.938	0.999	100
$(vanilla)^*$											
MICE*	0.02	0.021	0.076	0.077	0.08	0.079	0.083	0.947	0.947	1.000	100
MI-RF*	-0.031	-0.031	0.075	0.076	0.079	0.083	0.085	0.937	0.934	0.999	100
IPCW-	0.032	0.033	0.093	0.103	0.094	0.108	0.1	0.959	0.932	0.995	100
$TMLE-M^*$											
IPCW-	0.017	0.016	0.088	0.093	0.09	0.094	0.091	0.955	0.944	0.997	100
$TMLE-MTO^*$											
IPCW-a-	0.042	0.042	0.095	0.103	0.095	0.111	0.104	0.951	0.921	0.998	100
$TMLE-M^*$											
IPCW-a-	0.023	0.021	0.09	0.092	0.092	0.095	0.094	0.946	0.941	0.997	100
$TMLE-MTO^*$											

Table 8: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and complex MAR scenario. The value of the estimand is 0.371. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0	0.000	0.069	0.072	0.07	0.072	0.07	0.953	0.964	1.000	100
model											
Complete-	0.171	0.170	0.09	0.093	0.092	0.194	0.193	0.525	0.555	1.000	100
case											
Confounded	-0.282	-0.281	0.068	0.068	0.067	0.29	0.289	0.015	0.015	0.257	100
model											
IPW	0.087	0.086	0.095	0.096	0.097	0.129	0.13	0.849	0.850	0.998	100
Raking	0.007	0.008	0.075	0.073	0.079	0.074	0.079	0.951	0.946	0.999	100
(vanilla)											
MICE	0.054	0.055	0.076	0.077	0.08	0.094	0.097	0.894	0.899	1.000	100
MI-RF	0.003	0.003	0.075	0.076	0.079	0.076	0.079	0.950	0.953	0.999	100
IPCW-	0.066	0.067	0.093	0.103	0.094	0.122	0.116	0.884	0.923	0.995	100
TMLE-M											
IPCW-	0.051	0.050	0.088	0.093	0.09	0.106	0.103	0.906	0.923	0.997	100
TMLE-MTO											
IPCW-a-	0.077	0.076	0.095	0.103	0.095	0.128	0.121	0.871	0.904	0.998	100
TMLE-M											
IPCW-a-	0.057	0.055	0.09	0.092	0.092	0.109	0.107	0.899	0.910	0.997	100
TMLE-MTO											

MAR: 12% outcome proportion, 80% missingness proportion

Table 9: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and simple MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.004	0.003	0.069	0.07	0.069	0.07	0.069	0.950	0.948	1.000	100
model											
Complete-	-0.109	-0.103	0.23	0.231	0.233	0.255	0.254	0.930	0.923	0.264	100
case											
Confounded	0.207	0.206	0.065	0.067	0.065	0.217	0.216	0.114	0.107	1.000	100
model											
IPW	abs >	0.002	abs >	abs >	0.27	abs >	0.27	0.946	1.000	0.326	100
	ln(10)		ln(10)	ln(10)		$\ln(10)$					
Raking	0.003	0.005	0.109	0.106	0.105	0.106	0.105	0.944	0.945	0.947	100
(vanilla)											
MICE	0.005	0.006	0.095	0.095	0.092	0.095	0.092	0.948	0.948	0.982	100
MI-RF	0.061	0.063	0.096	0.079	0.091	0.1	0.111	0.824	0.906	0.998	100
IPCW-	-0.03	-0.031	0.275	0.277	0.277	0.279	0.279	0.953	0.949	0.264	100
TMLE-M											
IPCW-	-0.029	-0.027	0.275	0.268	0.285	0.269	0.286	0.944	0.950	0.289	100
TMLE-MTO											

Table 10: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and simple MAR scenario. The value of the estimand is 0.406. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.004	0.003	0.069	0.07	0.069	0.07	0.069	0.949	0.950	1.000	100
Complete-	-0.109	-0.103	0.23	0.231	0.233	0.255	0.254	0.923	0.930	0.264	100
case											
Confounded model	0.207	0.206	0.065	0.067	0.065	0.217	0.216	0.108	0.114	1.000	100
IPW	abs >	0.002	abs >	abs >	0.27	abs >	0.27	1.000	0.946	0.326	100
	ln(10)		ln(10)	ln(10)		ln(10)					
Raking	0.002	0.005	0.109	0.106	0.105	0.106	0.105	0.945	0.944	0.947	100
(vanilla)											
MICE	0.005	0.006	0.095	0.095	0.092	0.095	0.092	0.948	0.948	0.982	100
MI-RF	0.061	0.063	0.096	0.079	0.091	0.1	0.11	0.906	0.825	0.998	100
IPCW-	-0.03	-0.032	0.275	0.277	0.277	0.279	0.279	0.949	0.953	0.264	100
TMLE-M											
IPCW-	-0.029	-0.028	0.275	0.268	0.285	0.269	0.286	0.950	0.944	0.289	100
TMLE-MTO											

Table 11: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and simple MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.002	-0.001	0.082	0.08	0.079	0.08	0.079	0.938	0.942	0.998	100
model											
Complete-	-0.196	-0.192	0.243	0.237	0.24	0.308	0.308	0.875	0.874	0.158	100
$case^*$											
Confounded	-0.317	-0.316	0.069	0.068	0.069	0.325	0.324	0.003	0.003	0.263	100
$model^*$											
IPW*	abs >	-0.058	abs >	abs >	0.278	abs >	0.284	0.928	0.998	0.277	100
	ln(10)		ln(10)	$\ln(10)$		$\ln(10)$					
Raking	-0.037	-0.037	0.121	0.118	0.122	0.124	0.127	0.929	0.936	0.877	100
$(vanilla)^*$											
MICE*	0.068	0.070	0.125	0.119	0.128	0.138	0.145	0.914	0.916	0.984	100
MI-RF*	-0.027	-0.028	0.112	0.086	0.114	0.09	0.117	0.851	0.942	0.972	100
IPCW-	-0.087	-0.088	0.283	0.274	0.286	0.287	0.3	0.934	0.940	0.220	100
$TMLE-M^*$											
IPCW-	-0.056	-0.057	0.275	0.25	0.282	0.256	0.287	0.915	0.944	0.312	100
$TMLE-MTO^*$											

Table 12: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and simple MAR scenario. The value of the estimand is 0.371. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.002	-0.002	0.072	0.072	0.072	0.072	0.073	0.948	0.950	0.999	100
model											
Complete-	-0.162	-0.158	0.243	0.237	0.24	0.288	0.288	0.897	0.899	0.158	100
case											
Confounded	-0.283	-0.282	0.069	0.068	0.069	0.291	0.291	0.014	0.013	0.263	100
model											
IPW	abs >	-0.023	abs >	abs >	0.278	abs >	0.279	0.998	0.932	0.277	100
	ln(10)		ln(10)	ln(10)		$\ln(10)$					
Raking	-0.003	-0.003	0.121	0.118	0.122	0.118	0.122	0.953	0.945	0.877	100
(vanilla)											
MICE	0.102	0.104	0.125	0.119	0.128	0.157	0.165	0.875	0.878	0.984	100
MI-RF	0.008	0.006	0.112	0.086	0.114	0.086	0.114	0.946	0.870	0.972	100
IPCW-	-0.053	-0.054	0.283	0.274	0.286	0.279	0.291	0.949	0.943	0.220	100
TMLE-M											
IPCW-	-0.022	-0.023	0.275	0.25	0.282	0.251	0.283	0.952	0.925	0.312	100
TMLE-MTO											

Table 13: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and complex MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0	0.000	0.071	0.07	0.071	0.07	0.071	0.948	0.950	1.000	100
model											
Complete-	0.634	0.634	0.149	0.156	0.149	0.653	0.652	0.017	0.014	1.000	100
case											
Confounded	0.203	0.202	0.068	0.067	0.067	0.213	0.213	0.155	0.166	1.000	100
model											
IPW	0.361	0.361	0.183	0.181	0.188	0.404	0.407	0.488	0.496	0.988	100
Raking	0.004	0.006	0.098	0.1	0.097	0.1	0.097	0.957	0.952	0.981	100
(vanilla)											
MICE	0.003	0.005	0.085	0.084	0.089	0.084	0.089	0.954	0.956	0.998	100
MI-RF	-0.006	-0.005	0.087	0.078	0.09	0.079	0.09	0.929	0.954	0.999	100
IPCW-	0.098	0.102	0.157	0.185	0.162	0.21	0.191	0.958	0.910	0.817	100
TMLE-M											
IPCW-	0.126	0.129	0.159	0.18	0.162	0.22	0.207	0.924	0.875	0.866	100
TMLE-MTO											

Table 14: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and complex MAR scenario. The value of the estimand is 0.406. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0	0.000	0.071	0.07	0.071	0.07	0.071	0.950	0.946	1.000	100
model											
Complete-	0.634	0.634	0.149	0.156	0.149	0.653	0.651	0.014	0.017	1.000	100
case											
Confounded	0.202	0.202	0.068	0.067	0.067	0.213	0.213	0.167	0.155	1.000	100
model											
IPW	0.361	0.361	0.183	0.181	0.188	0.404	0.407	0.496	0.488	0.988	100
Raking	0.004	0.006	0.098	0.1	0.097	0.1	0.097	0.952	0.957	0.981	100
(vanilla)											
MICE	0.003	0.005	0.085	0.084	0.089	0.084	0.089	0.956	0.954	0.998	100
MI-RF	-0.006	-0.005	0.087	0.078	0.09	0.079	0.09	0.954	0.930	0.999	100
IPCW-	0.098	0.101	0.157	0.185	0.162	0.21	0.191	0.910	0.958	0.817	100
TMLE-M											
IPCW-	0.126	0.128	0.159	0.18	0.162	0.22	0.207	0.875	0.924	0.866	100
TMLE-MTO											

Table 15: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and complex MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.001	-0.002	0.081	0.08	0.082	0.08	0.082	0.950	0.950	1.000	100
model											
Complete-	0.46	0.456	0.152	0.162	0.15	0.488	0.48	0.167	0.135	0.999	100
$case^*$											
Confounded	-0.315	-0.314	0.069	0.068	0.068	0.322	0.321	0.003	0.004	0.269	100
$model^*$											
IPW*	0.134	0.132	0.175	0.173	0.174	0.219	0.218	0.882	0.880	0.888	100
Raking	-0.005	-0.007	0.108	0.108	0.107	0.109	0.108	0.952	0.951	0.970	100
$(vanilla)^*$											
MICE^*	0.151	0.148	0.105	0.098	0.104	0.18	0.181	0.670	0.715	1.000	100
MI-RF*	0.051	0.047	0.098	0.086	0.097	0.1	0.108	0.882	0.923	0.999	100
IPCW-	0.066	0.064	0.154	0.181	0.147	0.193	0.16	0.968	0.926	0.779	100
$TMLE-M^*$											
IPCW-	0.049	0.046	0.15	0.164	0.145	0.171	0.152	0.953	0.934	0.816	100
$TMLE-MTO^*$											

Table 16: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and complex MAR scenario. The value of the estimand is 0.371. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.001	-0.001	0.072	0.072	0.071	0.072	0.071	0.949	0.952	1.000	100
model											
Complete-	0.494	0.490	0.152	0.162	0.15	0.52	0.512	0.090	0.118	0.999	100
case											
Confounded	-0.281	-0.280	0.069	0.068	0.068	0.289	0.288	0.016	0.016	0.269	100
model											
IPW	0.168	0.166	0.175	0.173	0.174	0.241	0.24	0.839	0.844	0.888	100
Raking	0.029	0.027	0.108	0.108	0.107	0.112	0.111	0.945	0.951	0.970	100
(vanilla)											
MICE	0.185	0.182	0.105	0.098	0.104	0.209	0.21	0.594	0.541	1.000	100
MI-RF	0.085	0.081	0.098	0.086	0.097	0.121	0.127	0.866	0.812	0.999	100
IPCW-	0.1	0.098	0.154	0.181	0.147	0.207	0.176	0.902	0.956	0.779	100
TMLE-M											
IPCW-	0.083	0.080	0.15	0.164	0.145	0.183	0.166	0.915	0.938	0.816	100
TMLE-MTO											

MAR: 5% outcome proportion, 40% missingness proportion

Table 17: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and simple MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.003	0.004	0.104	0.103	0.106	0.103	0.106	0.946	0.946	0.972	100
Complete- case	-0.182	-0.177	0.182	0.178	0.182	0.255	0.254	0.826	0.836	0.249	100
Confounded model	0.218	0.218	0.1	0.099	0.103	0.239	0.242	0.411	0.418	1.000	100
IPW	0.002	0.003	0.201	0.196	0.196	0.196	0.196	0.944	0.948	0.558	100
Raking	0.004	0.002	0.116	0.114	0.115	0.114	0.115	0.951	0.954	0.943	100
(vanilla)											
MICE	0.005	0.006	0.112	0.111	0.113	0.111	0.113	0.950	0.949	0.954	100
MI-RF	0.04	0.041	0.113	0.108	0.113	0.116	0.12	0.928	0.940	0.979	100
IPCW-	-0.016	-0.011	0.204	0.203	0.206	0.204	0.206	0.944	0.942	0.491	100
TMLE-M											
IPCW-	-0.016	-0.012	0.203	0.199	0.206	0.2	0.206	0.938	0.942	0.500	100
TMLE-MTO											
r-IPCW-	-0.016	-0.011	0.203	0.2	0.203	0.2	0.203	0.942	0.945	0.503	100
TMLE-MTO											

Table 18: Synthetic data MAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and simple MAR scenario. The value of the estimand is 0.402. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.007	0.008	0.104	0.103	0.106	0.104	0.106	0.949	0.947	0.972	100
Complete-	-0.179	-0.174	0.182	0.178	0.182	0.252	0.252	0.842	0.830	0.249	100
case											
Confounded	0.221	0.222	0.1	0.099	0.103	0.242	0.245	0.405	0.396	1.000	100
model											
IPW	0.006	0.006	0.201	0.196	0.196	0.196	0.196	0.948	0.944	0.558	100
Raking	0.007	0.006	0.116	0.114	0.115	0.114	0.116	0.954	0.949	0.943	100
(vanilla)											
MICE	0.008	0.010	0.112	0.111	0.113	0.111	0.114	0.950	0.946	0.954	100
MI-RF	0.044	0.044	0.113	0.108	0.113	0.117	0.121	0.938	0.922	0.979	100
IPCW-	-0.013	-0.008	0.204	0.203	0.206	0.204	0.206	0.943	0.945	0.491	100
TMLE-M											
IPCW-	-0.013	-0.009	0.203	0.199	0.206	0.2	0.206	0.943	0.938	0.500	100
TMLE-MTO											
r-IPCW-	-0.013	-0.008	0.203	0.2	0.203	0.2	0.203	0.946	0.942	0.503	100
TMLE-MTO											

Table 19: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and simple MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.001	0.001	0.113	0.117	0.111	0.117	0.111	0.950	0.945	0.942	100
model											
Complete-	-0.226	-0.225	0.171	0.173	0.173	0.285	0.284	0.748	0.731	0.182	100
$case^*$											
Confounded	-0.378	-0.378	0.095	0.096	0.094	0.39	0.39	0.026	0.026	0.062	100
model^*											
IPW^*	-0.035	-0.042	0.182	0.18	0.179	0.183	0.184	0.943	0.942	0.537	100
Raking	-0.032	-0.033	0.113	0.114	0.114	0.119	0.119	0.948	0.944	0.905	100
$(vanilla)^*$											
MICE^*	0.068	0.066	0.114	0.116	0.111	0.135	0.129	0.915	0.909	0.986	100
$MI-RF^*$	-0.016	-0.015	0.111	0.11	0.11	0.111	0.111	0.944	0.948	0.944	100
IPCW-	-0.052	-0.051	0.189	0.187	0.188	0.194	0.195	0.934	0.942	0.478	100
$TMLE-M^*$											
IPCW-	-0.035	-0.038	0.179	0.17	0.176	0.173	0.18	0.929	0.944	0.587	100
$TMLE-MTO^*$											
r-IPCW-	-0.056	-0.057	0.178	0.172	0.176	0.181	0.186	0.921	0.936	0.531	100
$TMLE-MTO^*$											

Table 20: Synthetic data MAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and simple MAR scenario. The value of the estimand is 0.38. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.006	-0.005	0.096	0.102	0.096	0.102	0.096	0.954	0.961	0.969	100
model											
Complete-	-0.201	-0.200	0.171	0.173	0.173	0.266	0.265	0.778	0.794	0.182	100
case											
Confounded	-0.353	-0.353	0.095	0.096	0.094	0.366	0.365	0.048	0.048	0.062	100
model											
IPW	-0.009	-0.017	0.182	0.18	0.179	0.18	0.18	0.949	0.948	0.537	100
Raking	-0.007	-0.008	0.113	0.114	0.114	0.114	0.114	0.950	0.954	0.905	100
(vanilla)											
MICE	0.093	0.092	0.114	0.116	0.111	0.149	0.144	0.872	0.878	0.986	100
MI-RF	0.01	0.010	0.111	0.11	0.11	0.11	0.111	0.950	0.948	0.944	100
IPCW-	-0.027	-0.026	0.189	0.187	0.188	0.189	0.19	0.946	0.943	0.478	100
TMLE-M											
IPCW-	-0.01	-0.013	0.179	0.17	0.176	0.17	0.177	0.948	0.935	0.587	100
TMLE-MTO											
r-IPCW-	-0.031	-0.032	0.178	0.172	0.176	0.175	0.179	0.945	0.934	0.531	100
TMLE-MTO											

Table 21: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and complex MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
bias	bias						cover-	cover-		com-
							age	age		pleted
-0.004	-0.001	0.101	0.103	0.099	0.103	0.099	0.950	0.946	0.969	100
0.231	0.233	0.13	0.135	0.127	0.268	0.265	0.604	0.572	0.998	100
0.212	0.212	0.096	0.099	0.096	0.234	0.233	0.424	0.404	1.000	100
0.153	0.152	0.139	0.141	0.137	0.208	0.204	0.821	0.811	0.978	100
-0.004	-0.002	0.107	0.108	0.107	0.108	0.107	0.950	0.950	0.958	100
-0.004	-0.002	0.104	0.107	0.102	0.107	0.102	0.955	0.946	0.964	100
-0.002	0.001	0.106	0.107	0.105	0.107	0.105	0.950	0.946	0.964	100
0.08	0.084	0.137	0.154	0.138	0.174	0.161	0.950	0.908	0.915	100
0.087	0.091	0.137	0.152	0.139	0.175	0.166	0.938	0.901	0.923	100
0.085	0.087	0.14	0.154	0.139	0.176	0.164	0.947	0.906	0.918	100
0.09	0.092	0.141	0.151	0.141	0.176	0.168	0.934	0.902	0.923	100
0.08	0.084	0.137	0.152	0.139	0.172	0.162	0.947	0.910	0.921	100
	0.231 0.212 0.153 -0.004 -0.004 -0.002 0.08 0.087 0.085	bias bias -0.004 -0.001 0.231 0.233 0.212 0.212 0.153 0.152 -0.004 -0.002 -0.002 0.001 0.08 0.084 0.085 0.087 0.09 0.092	bias bias -0.004 -0.001 0.101 0.231 0.233 0.13 0.212 0.096 0.153 0.152 0.139 -0.004 -0.002 0.107 -0.004 -0.002 0.104 -0.002 0.001 0.106 0.08 0.084 0.137 0.085 0.087 0.14 0.09 0.092 0.141	bias bias -0.004 -0.001 0.101 0.103 0.231 0.233 0.13 0.135 0.212 0.212 0.096 0.099 0.153 0.152 0.139 0.141 -0.004 -0.002 0.107 0.108 -0.004 -0.002 0.104 0.107 -0.002 0.001 0.106 0.107 0.08 0.084 0.137 0.154 0.087 0.091 0.137 0.152 0.085 0.087 0.14 0.154 0.09 0.092 0.141 0.151	bias bias 0.101 0.103 0.099 0.231 0.233 0.13 0.135 0.127 0.212 0.212 0.096 0.099 0.096 0.153 0.152 0.139 0.141 0.137 -0.004 -0.002 0.107 0.108 0.107 -0.004 -0.002 0.104 0.107 0.102 -0.002 0.001 0.106 0.107 0.105 0.08 0.084 0.137 0.154 0.138 0.087 0.091 0.137 0.152 0.139 0.085 0.087 0.14 0.154 0.139 0.09 0.092 0.141 0.151 0.141	bias bias 0.101 0.103 0.099 0.103 0.231 0.233 0.13 0.135 0.127 0.268 0.212 0.212 0.096 0.099 0.096 0.234 0.153 0.152 0.139 0.141 0.137 0.208 -0.004 -0.002 0.107 0.108 0.107 0.108 -0.004 -0.002 0.104 0.107 0.102 0.107 -0.002 0.001 0.106 0.107 0.105 0.107 0.08 0.084 0.137 0.154 0.138 0.174 0.087 0.091 0.137 0.152 0.139 0.175 0.085 0.087 0.14 0.154 0.139 0.176 0.09 0.092 0.141 0.151 0.141 0.176	bias bias 0.101 0.103 0.099 0.103 0.099 0.231 0.233 0.13 0.135 0.127 0.268 0.265 0.212 0.212 0.096 0.099 0.096 0.234 0.233 0.153 0.152 0.139 0.141 0.137 0.208 0.204 -0.004 -0.002 0.107 0.108 0.107 0.108 0.107 -0.004 -0.002 0.104 0.107 0.102 0.107 0.102 -0.004 -0.002 0.0104 0.107 0.105 0.107 0.102 -0.002 0.001 0.106 0.107 0.105 0.107 0.105 0.08 0.084 0.137 0.154 0.138 0.174 0.161 0.087 0.091 0.137 0.152 0.139 0.175 0.166 0.085 0.087 0.141 0.154 0.139 0.176 0.164 0.09 0.092	bias bias coverage -0.004 -0.001 0.101 0.103 0.099 0.103 0.099 0.950 0.231 0.233 0.13 0.135 0.127 0.268 0.265 0.604 0.212 0.212 0.096 0.099 0.096 0.234 0.233 0.424 0.153 0.152 0.139 0.141 0.137 0.208 0.204 0.821 -0.004 -0.002 0.107 0.108 0.107 0.108 0.107 0.950 -0.004 -0.002 0.104 0.107 0.102 0.107 0.102 0.955 -0.002 0.001 0.106 0.107 0.105 0.107 0.105 0.950 0.08 0.084 0.137 0.154 0.138 0.174 0.161 0.950 0.087 0.091 0.137 0.152 0.139 0.175 0.166 0.938 0.095 0.092 0.141 0.151 0.141	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	bias bias coverage coverage coverage -0.004 -0.001 0.101 0.103 0.099 0.103 0.099 0.950 0.946 0.969 0.231 0.233 0.13 0.135 0.127 0.268 0.265 0.604 0.572 0.998 0.212 0.212 0.096 0.099 0.096 0.234 0.233 0.424 0.404 1.000 0.153 0.152 0.139 0.141 0.137 0.208 0.204 0.821 0.811 0.978 -0.004 -0.002 0.107 0.108 0.107 0.108 0.107 0.950 0.950 0.958 -0.004 -0.002 0.104 0.107 0.102 0.107 0.102 0.955 0.946 0.964 -0.002 0.001 0.106 0.107 0.105 0.107 0.105 0.950 0.946 0.964 0.08 0.084 0.137 0.154 0.138 0.174

Table 22: Synthetic data MAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and complex MAR scenario. The value of the estimand is 0.402. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.001	0.002	0.101	0.103	0.099	0.103	0.099	0.947	0.954	0.969	100
model											
Complete-	0.235	0.236	0.13	0.135	0.127	0.271	0.268	0.557	0.592	0.998	100
case											
Confounded	0.215	0.216	0.096	0.099	0.096	0.237	0.236	0.392	0.410	1.000	100
model											
IPW	0.157	0.155	0.139	0.141	0.137	0.211	0.207	0.802	0.813	0.978	100
Raking	-0.001	0.001	0.107	0.108	0.107	0.108	0.107	0.951	0.949	0.958	100
(vanilla)											
MICE	-0.001	0.002	0.104	0.107	0.102	0.107	0.102	0.949	0.956	0.964	100
MI-RF	0.002	0.005	0.106	0.107	0.105	0.107	0.105	0.948	0.950	0.964	100
IPCW-	0.084	0.087	0.137	0.154	0.138	0.175	0.163	0.904	0.946	0.915	100
TMLE-M											
IPCW-	0.09	0.094	0.137	0.152	0.139	0.176	0.168	0.894	0.936	0.923	100
TMLE-MTO											
IPCW-a-	0.088	0.090	0.14	0.154	0.139	0.177	0.166	0.903	0.945	0.918	100
TMLE-M											
IPCW-a-	0.093	0.095	0.141	0.151	0.141	0.178	0.17	0.900	0.929	0.923	100
TMLE-MTO											
r-IPCW-	0.083	0.087	0.137	0.152	0.139	0.173	0.164	0.906	0.945	0.921	100
TMLE-MTO											

Table 23: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and complex MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.002	0.001	0.116	0.117	0.11	0.117	0.11	0.946	0.943	0.932	100
model											
Complete-	0.181	0.182	0.122	0.129	0.122	0.222	0.219	0.712	0.680	0.995	100
$case^*$											
Confounded	-0.383	-0.382	0.097	0.096	0.091	0.395	0.393	0.017	0.019	0.056	100
model^*											
IPW^*	0.07	0.069	0.127	0.129	0.125	0.147	0.143	0.924	0.920	0.958	100
Raking	-0.019	-0.019	0.103	0.101	0.1	0.103	0.101	0.939	0.946	0.962	100
$(vanilla)^*$											
MICE^*	0.046	0.047	0.103	0.107	0.098	0.116	0.108	0.937	0.928	0.988	100
$MI-RF^*$	-0.01	-0.011	0.103	0.107	0.099	0.107	0.1	0.956	0.949	0.960	100
IPCW-	0.08	0.079	0.13	0.14	0.128	0.161	0.15	0.936	0.907	0.949	100
$TMLE-M^*$											
IPCW-	0.06	0.059	0.126	0.125	0.124	0.138	0.137	0.917	0.918	0.959	100
$TMLE-MTO^*$											
IPCW-a-	0.095	0.093	0.133	0.14	0.13	0.169	0.159	0.919	0.891	0.959	100
$TMLE-M^*$											
IPCW-a-	0.071	0.069	0.127	0.125	0.126	0.144	0.143	0.911	0.913	0.964	100
$TMLE-MTO^*$											
r-IPCW-	0.052	0.051	0.125	0.127	0.125	0.137	0.134	0.939	0.927	0.953	100
$TMLE-MTO^*$											

Table 24: Synthetic data MAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and complex MAR scenario. The value of the estimand is 0.38. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.009	-0.009	0.096	0.102	0.096	0.102	0.097	0.950	0.957	0.962	100
model											
Complete-	0.206	0.208	0.122	0.129	0.122	0.243	0.241	0.600	0.636	0.995	100
case											
Confounded	-0.358	-0.357	0.097	0.096	0.091	0.37	0.368	0.038	0.037	0.056	100
model											
IPW	0.095	0.095	0.127	0.129	0.125	0.16	0.157	0.884	0.890	0.958	100
Raking	0.007	0.006	0.103	0.101	0.1	0.101	0.1	0.954	0.950	0.962	100
(vanilla)											
MICE	0.071	0.072	0.103	0.107	0.098	0.128	0.121	0.892	0.906	0.988	100
MI-RF	0.015	0.014	0.103	0.107	0.099	0.108	0.1	0.946	0.955	0.960	100
IPCW-	0.106	0.104	0.13	0.14	0.128	0.175	0.164	0.870	0.905	0.949	100
TMLE-M											
IPCW-	0.085	0.084	0.126	0.125	0.124	0.151	0.15	0.892	0.893	0.959	100
TMLE-MTO											
IPCW-a-	0.12	0.118	0.133	0.14	0.13	0.185	0.175	0.846	0.883	0.959	100
TMLE-M											
IPCW-a-	0.096	0.094	0.127	0.125	0.126	0.158	0.157	0.884	0.881	0.964	100
TMLE-MTO											
r-IPCW-	0.077	0.076	0.125	0.127	0.125	0.148	0.146	0.903	0.918	0.953	100
TMLE-MTO											

MAR: 5% outcome proportion, 80% missingness proportion

Table 25: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and simple MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.002	0.002	0.103	0.103	0.104	0.103	0.104	0.947	0.947	0.971	100
model											
Complete-	-0.113	-0.110	0.357	0.352	0.346	0.37	0.364	0.943	0.936	0.134	100
case											
Confounded	0.218	0.218	0.099	0.099	0.095	0.24	0.238	0.406	0.408	1.000	100
model											
IPW	-0.102	-0.105	0.426	0.401	0.406	0.414	0.419	0.920	0.941	0.119	100
Raking	-0.004	-0.002	0.165	0.19	0.161	0.19	0.161	0.974	0.945	0.581	100
(vanilla)											
MICE	0.002	0.001	0.142	0.139	0.14	0.139	0.14	0.939	0.948	0.818	100
MI-RF	0.121	0.122	0.122	0.112	0.118	0.165	0.17	0.788	0.834	0.989	100
IPCW-	-0.098	-0.101	0.447	0.413	0.426	0.425	0.438	0.919	0.944	0.125	100
TMLE-M											
IPCW-	-0.093	-0.095	0.451	0.401	0.439	0.412	0.449	0.908	0.946	0.145	100
TMLE-MTO											
r-IPCW-	-0.097	-0.099	0.447	0.402	0.43	0.414	0.441	0.913	0.945	0.142	100
TMLE-MTO											

Table 26: Synthetic data MAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and simple MAR scenario. The value of the estimand is 0.402. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.005	0.005	0.103	0.103	0.104	0.104	0.104	0.948	0.948	0.971	100
model											
Complete-	-0.109	-0.107	0.357	0.352	0.346	0.369	0.363	0.936	0.942	0.134	100
case											
Confounded	0.222	0.222	0.099	0.099	0.095	0.243	0.241	0.396	0.392	1.000	100
model											
IPW	-0.099	-0.101	0.426	0.401	0.406	0.413	0.418	0.940	0.920	0.119	100
Raking	-0.001	0.002	0.165	0.19	0.161	0.19	0.161	0.945	0.974	0.581	100
(vanilla)											
MICE	0.006	0.004	0.142	0.139	0.14	0.139	0.14	0.947	0.939	0.818	100
MI-RF	0.125	0.126	0.122	0.112	0.118	0.168	0.172	0.827	0.780	0.989	100
IPCW-	-0.095	-0.098	0.447	0.413	0.426	0.424	0.437	0.944	0.919	0.125	100
TMLE-M											
IPCW-	-0.09	-0.092	0.451	0.401	0.439	0.411	0.448	0.947	0.909	0.145	100
TMLE-MTO											
r-IPCW-	-0.093	-0.096	0.447	0.402	0.43	0.413	0.441	0.946	0.914	0.142	100
TMLE-MTO											

Table 27: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and simple MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.003	0.005	0.116	0.117	0.117	0.117	0.118	0.952	0.952	0.940	100
model											
Complete-	-0.184	-0.177	0.341	0.338	0.331	0.385	0.375	0.937	0.916	0.112	100
$case^*$											
Confounded	-0.378	-0.377	0.098	0.096	0.094	0.39	0.389	0.026	0.027	0.062	100
model^*											
IPW^*	-0.152	-0.148	0.377	0.357	0.379	0.388	0.407	0.915	0.935	0.117	100
Raking	-0.032	-0.028	0.184	0.196	0.186	0.199	0.188	0.956	0.949	0.496	100
$(vanilla)^*$											
MICE^*	0.115	0.114	0.18	0.163	0.177	0.199	0.211	0.876	0.905	0.895	100
$MI-RF^*$	-0.068	-0.069	0.143	0.119	0.145	0.137	0.16	0.854	0.923	0.772	100
IPCW-	-0.148	-0.146	0.399	0.369	0.385	0.397	0.411	0.914	0.937	0.119	100
$TMLE-M^*$											
IPCW-	-0.112	-0.112	0.402	0.345	0.403	0.363	0.419	0.888	0.942	0.181	100
$TMLE-MTO^*$											
r-IPCW-	-0.154	-0.154	0.392	0.355	0.388	0.387	0.417	0.900	0.936	0.131	100
$TMLE-MTO^*$											

Table 28: Synthetic data MAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and simple MAR scenario. The value of the estimand is 0.38. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.006	-0.004	0.098	0.102	0.097	0.102	0.097	0.948	0.955	0.961	100
model											
Complete-	-0.158	-0.152	0.341	0.338	0.331	0.374	0.364	0.926	0.945	0.112	100
case											
Confounded	-0.353	-0.352	0.098	0.096	0.094	0.366	0.364	0.048	0.043	0.062	100
model											
IPW	-0.127	-0.123	0.377	0.357	0.379	0.379	0.398	0.941	0.921	0.117	100
Raking	-0.006	-0.003	0.184	0.196	0.186	0.196	0.186	0.948	0.964	0.496	100
(vanilla)											
MICE	0.14	0.139	0.18	0.163	0.177	0.215	0.225	0.879	0.849	0.895	100
MI-RF	-0.043	-0.044	0.143	0.119	0.145	0.126	0.151	0.936	0.876	0.772	100
IPCW-	-0.122	-0.121	0.399	0.369	0.385	0.388	0.403	0.941	0.920	0.119	100
TMLE-M											
IPCW-	-0.087	-0.087	0.402	0.345	0.403	0.356	0.413	0.943	0.895	0.181	100
TMLE-MTO											
r-IPCW-	-0.128	-0.129	0.392	0.355	0.388	0.377	0.409	0.940	0.912	0.131	100
TMLE-MTO											

Table 29: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and complex MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0	-0.002	0.103	0.103	0.107	0.103	0.107	0.953	0.952	0.980	100
model											
Complete-	0.697	0.699	0.224	0.224	0.222	0.732	0.733	0.126	0.122	0.998	100
case											
Confounded	0.216	0.216	0.097	0.099	0.099	0.237	0.238	0.417	0.404	1.000	100
model											
IPW	0.442	0.443	0.269	0.258	0.268	0.512	0.518	0.604	0.625	0.909	100
Raking	0.005	0.004	0.142	0.15	0.141	0.15	0.141	0.966	0.949	0.794	100
(vanilla)											
MICE	0.002	0.001	0.12	0.121	0.121	0.121	0.121	0.949	0.946	0.921	100
MI-RF	0.032	0.030	0.121	0.112	0.122	0.116	0.125	0.916	0.940	0.965	100
IPCW-	0.127	0.122	0.259	0.266	0.255	0.295	0.282	0.943	0.922	0.519	100
TMLE-M											
IPCW-	0.166	0.162	0.263	0.257	0.268	0.306	0.313	0.904	0.908	0.607	100
TMLE-MTO											
IPCW-a-	0.121	0.114	0.274	0.271	0.274	0.297	0.297	0.941	0.925	0.496	100
TMLE-M											
IPCW-a-	0.171	0.169	0.28	0.26	0.288	0.311	0.334	0.892	0.908	0.600	100
TMLE-MTO											
r-IPCW-	0.125	0.123	0.259	0.26	0.262	0.288	0.289	0.935	0.918	0.533	100
TMLE-MTO											

Table 30: Synthetic data MAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and complex MAR scenario. The value of the estimand is 0.402. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.003	0.001	0.103	0.103	0.107	0.103	0.107	0.953	0.953	0.980	100
model											
Complete-	0.7	0.702	0.224	0.224	0.222	0.735	0.736	0.119	0.122	0.998	100
case											
Confounded	0.219	0.220	0.097	0.099	0.099	0.24	0.241	0.392	0.402	1.000	100
model											
IPW	0.446	0.446	0.269	0.258	0.268	0.515	0.521	0.623	0.600	0.909	100
Raking	0.008	0.007	0.142	0.15	0.141	0.15	0.142	0.949	0.965	0.794	100
(vanilla)											
MICE	0.006	0.005	0.12	0.121	0.121	0.121	0.121	0.947	0.948	0.921	100
MI-RF	0.035	0.034	0.121	0.112	0.122	0.117	0.126	0.938	0.914	0.965	100
IPCW-	0.13	0.125	0.259	0.266	0.255	0.296	0.284	0.920	0.941	0.519	100
TMLE-M											
IPCW-	0.17	0.165	0.263	0.257	0.268	0.308	0.315	0.906	0.903	0.607	100
TMLE-MTO											
IPCW-a-	0.125	0.117	0.274	0.271	0.274	0.298	0.298	0.925	0.940	0.496	100
TMLE-M											
IPCW-a-	0.174	0.172	0.28	0.26	0.288	0.313	0.336	0.906	0.890	0.600	100
TMLE-MTO											
r-IPCW-	0.128	0.126	0.259	0.26	0.262	0.29	0.291	0.915	0.932	0.533	100
TMLE-MTO											

Table 31: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and complex MAR scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.001	-0.004	0.119	0.117	0.12	0.117	0.12	0.949	0.954	0.934	100
model											
Complete-	0.552	0.553	0.209	0.218	0.202	0.593	0.589	0.279	0.247	0.992	100
$case^*$											
Confounded	-0.382	-0.384	0.098	0.096	0.1	0.394	0.397	0.022	0.026	0.066	100
model^*											
IPW*	0.187	0.187	0.228	0.222	0.219	0.29	0.288	0.859	0.869	0.762	100
Raking	0.012	0.007	0.153	0.154	0.152	0.155	0.153	0.955	0.949	0.787	100
$(vanilla)^*$											
MICE^*	0.219	0.218	0.14	0.131	0.135	0.255	0.256	0.620	0.670	0.998	100
$MI-RF^*$	0.095	0.090	0.132	0.118	0.131	0.151	0.159	0.848	0.891	0.984	100
IPCW-	0.133	0.130	0.231	0.242	0.23	0.276	0.264	0.936	0.917	0.609	100
$TMLE-M^*$											
IPCW-	0.123	0.123	0.224	0.215	0.218	0.247	0.25	0.899	0.910	0.689	100
$TMLE-MTO^*$											
IPCW-a-	0.144	0.142	0.239	0.243	0.239	0.283	0.278	0.921	0.912	0.627	100
$TMLE-M^*$											
IPCW-a-	0.144	0.145	0.228	0.217	0.228	0.26	0.27	0.884	0.903	0.699	100
$TMLE-MTO^*$											
r-IPCW-	0.08	0.078	0.225	0.223	0.222	0.236	0.235	0.942	0.940	0.594	100
$TMLE-MTO^*$											

Table 32: Synthetic data MAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and complex MAR scenario. The value of the estimand is 0.38. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.009	-0.007	0.1	0.102	0.096	0.102	0.097	0.946	0.953	0.952	100
model											
Complete-	0.577	0.578	0.209	0.218	0.202	0.617	0.612	0.215	0.244	0.992	100
case											
Confounded	-0.356	-0.359	0.098	0.096	0.1	0.369	0.372	0.051	0.046	0.066	100
model											
IPW	0.212	0.212	0.228	0.222	0.219	0.307	0.305	0.844	0.840	0.762	100
Raking	0.038	0.032	0.153	0.154	0.152	0.159	0.156	0.945	0.948	0.787	100
(vanilla)											
MICE	0.244	0.243	0.14	0.131	0.135	0.277	0.278	0.599	0.545	0.998	100
MI-RF	0.12	0.115	0.132	0.118	0.131	0.168	0.174	0.854	0.800	0.984	100
IPCW-	0.158	0.155	0.231	0.242	0.23	0.289	0.277	0.902	0.922	0.609	100
TMLE-M											
IPCW-	0.148	0.148	0.224	0.215	0.218	0.26	0.263	0.890	0.886	0.689	100
TMLE-MTO											
IPCW-a-	0.169	0.167	0.239	0.243	0.239	0.296	0.291	0.891	0.909	0.627	100
TMLE-M											
IPCW-a-	0.17	0.170	0.228	0.217	0.228	0.275	0.284	0.883	0.858	0.699	100
TMLE-MTO											
r-IPCW-	0.105	0.103	0.225	0.223	0.222	0.246	0.244	0.932	0.932	0.594	100
TMLE-MTO											

MNAR: 12% outcome proportion, 40% missingness proportion

Table 33: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and MNAR-value scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.002	0.000	0.072	0.07	0.072	0.07	0.072	0.944	0.949	1.000	100
Complete-	-0.14	-0.140	0.109	0.11	0.107	0.178	0.176	0.762	0.758	0.681	100
case											
Confounded	0.201	0.203	0.069	0.067	0.068	0.211	0.214	0.158	0.178	1.000	100
model											
IPW	-0.147	-0.147	0.115	0.117	0.116	0.187	0.187	0.756	0.755	0.600	100
Raking	-0.116	-0.113	0.081	0.086	0.079	0.145	0.138	0.750	0.703	0.926	100
(vanilla)											
MICE	-0.115	-0.111	0.08	0.077	0.081	0.138	0.138	0.682	0.703	0.955	100
MI-XGB	-0.116	-0.113	0.081	0.097	0.082	0.151	0.14	0.821	0.711	0.870	100
MI-RF	-0.113	-0.110	0.079	0.075	0.079	0.135	0.136	0.676	0.708	0.968	100
IPCW-	-0.146	-0.148	0.124	0.124	0.122	0.192	0.192	0.779	0.786	0.551	100
TMLE-M											
IPCW-	-0.146	-0.149	0.123	0.122	0.12	0.19	0.192	0.772	0.785	0.565	100
TMLE-MTO											

Table 34: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and MNAR-value scenario. The value of the estimand is 0.406. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.002	0.000	0.072	0.07	0.072	0.07	0.072	0.949	0.944	1.000	100
Complete-	-0.14	-0.140	0.109	0.11	0.107	0.178	0.176	0.758	0.762	0.681	100
case											
Confounded	0.201	0.203	0.069	0.067	0.068	0.211	0.214	0.178	0.158	1.000	100
model											
IPW	-0.147	-0.147	0.115	0.117	0.116	0.187	0.187	0.755	0.755	0.600	100
Raking	-0.116	-0.113	0.081	0.086	0.079	0.145	0.138	0.702	0.749	0.926	100
(vanilla)											
MICE	-0.115	-0.112	0.08	0.077	0.081	0.138	0.138	0.703	0.681	0.955	100
MI-XGB	-0.116	-0.114	0.081	0.097	0.082	0.151	0.14	0.710	0.820	0.870	100
MI-RF	-0.113	-0.110	0.079	0.075	0.079	0.135	0.136	0.707	0.676	0.968	100
IPCW-	-0.146	-0.149	0.124	0.124	0.122	0.192	0.192	0.786	0.779	0.551	100
TMLE-M											
IPCW-	-0.146	-0.150	0.123	0.122	0.12	0.19	0.192	0.784	0.772	0.565	100
TMLE-MTO											

Table 35: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and MNAR-value scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.001	-0.002	0.081	0.08	0.081	0.08	0.081	0.945	0.947	0.998	100
model											
Complete-	-0.177	-0.178	0.116	0.115	0.113	0.211	0.211	0.662	0.663	0.501	100
case^*											
Confounded	-0.316	-0.317	0.069	0.068	0.069	0.323	0.324	0.004	0.004	0.266	100
model^*											
$\overline{\mathrm{IPW}^*}$	-0.17	-0.172	0.121	0.121	0.119	0.208	0.209	0.706	0.714	0.496	100
Raking	-0.505	-0.504	0.086	0.096	0.085	0.514	0.512	0.000	0.000	0.147	100
$(vanilla)^*$											
MICE*	-0.505	-0.507	0.081	0.081	0.081	0.512	0.513	0.000	0.000	0.233	100
MI-XGB*	-0.389	-0.389	0.086	0.091	0.082	0.4	0.398	0.008	0.007	0.043	100
MI-RF*	-0.527	-0.528	0.083	0.081	0.08	0.533	0.534	0.000	0.000	0.317	100
IPCW-	-0.17	-0.168	0.128	0.129	0.127	0.213	0.211	0.736	0.744	0.456	100
$TMLE-M^*$											
IPCW-	-0.145	-0.143	0.124	0.122	0.123	0.189	0.189	0.766	0.784	0.585	100
$TMLE-MTO^*$											
IPCW-a-	-0.17	-0.169	0.128	0.129	0.128	0.213	0.212	0.736	0.743	0.456	100
$TMLE-M^*$											
IPCW-a-	-0.144	-0.142	0.125	0.121	0.123	0.188	0.188	0.764	0.786	0.584	100
$TMLE-MTO^*$											

Table 36: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and MNAR-value scenario. The value of the estimand is 0.371. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0	0.000	0.071	0.072	0.07	0.072	0.07	0.945	0.950	0.999	100
Complete- case	-0.143	-0.144	0.116	0.115	0.113	0.184	0.183	0.777	0.773	0.501	100
Confounded model	-0.282	-0.283	0.069	0.068	0.069	0.29	0.291	0.019	0.016	0.266	100
IPW	-0.136	-0.138	0.121	0.121	0.119	0.181	0.182	0.804	0.791	0.496	100
Raking	-0.471	-0.470	0.086	0.096	0.085	0.481	0.478	0.000	0.000	0.147	100
(vanilla)											
MICE	-0.471	-0.473	0.081	0.081	0.081	0.478	0.479	0.000	0.000	0.233	100
MI-XGB	-0.355	-0.355	0.086	0.091	0.082	0.367	0.365	0.015	0.020	0.043	100
MI-RF	-0.492	-0.494	0.083	0.081	0.08	0.499	0.5	0.000	0.000	0.317	100
IPCW-	-0.135	-0.134	0.128	0.129	0.127	0.187	0.185	0.820	0.813	0.456	100
TMLE-M											
IPCW-	-0.111	-0.109	0.124	0.122	0.123	0.165	0.165	0.855	0.838	0.585	100
TMLE-MTO											
IPCW-a-	-0.135	-0.135	0.128	0.129	0.128	0.187	0.186	0.818	0.813	0.456	100
TMLE-M											
IPCW-a- TMLE-MTO	-0.11	-0.108	0.125	0.121	0.123	0.164	0.164	0.854	0.837	0.584	100

Table 37: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and MNAR-unobserved scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.002	-0.001	0.069	0.07	0.068	0.07	0.068	0.954	0.950	1.000	100
Complete- case	-0.077	-0.079	0.104	0.105	0.103	0.13	0.129	0.894	0.889	0.886	100
Confounded model	0.202	0.202	0.066	0.067	0.065	0.213	0.212	0.140	0.135	1.000	100
IPW	-0.078	-0.080	0.108	0.11	0.107	0.135	0.133	0.894	0.893	0.857	100
Raking	-0.008	-0.008	0.075	0.085	0.075	0.085	0.075	0.972	0.945	1.000	100
(vanilla)											
MICE	-0.008	-0.007	0.073	0.074	0.073	0.075	0.073	0.952	0.946	1.000	100
MI-XGB	-0.014	-0.013	0.075	0.077	0.075	0.079	0.076	0.952	0.946	1.000	100
MI-RF	-0.008	-0.008	0.074	0.073	0.075	0.074	0.075	0.943	0.946	1.000	100
IPCW-	-0.083	-0.083	0.115	0.116	0.111	0.143	0.139	0.886	0.895	0.801	100
TMLE-M											
IPCW-	-0.083	-0.082	0.115	0.114	0.111	0.141	0.138	0.886	0.896	0.812	100
TMLE-MTO											
IPCW-a-	-0.083	-0.083	0.115	0.116	0.111	0.142	0.139	0.886	0.894	0.800	100
TMLE-M											
IPCW-a- TMLE-MTO	-0.082	-0.081	0.115	0.114	0.111	0.14	0.138	0.882	0.897	0.812	100

Table 38: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and MNAR-unobserved scenario. The value of the estimand is 0.406. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.002	-0.001	0.069	0.07	0.068	0.07	0.068	0.951	0.954	1.000	100
Complete- case	-0.077	-0.079	0.104	0.105	0.103	0.131	0.129	0.889	0.894	0.886	100
Confounded model	0.202	0.202	0.066	0.067	0.065	0.212	0.212	0.135	0.141	1.000	100
IPW	-0.078	-0.080	0.108	0.11	0.107	0.135	0.133	0.893	0.894	0.857	100
Raking	-0.008	-0.008	0.075	0.085	0.075	0.085	0.075	0.945	0.972	1.000	100
(vanilla)											
MICE	-0.008	-0.007	0.073	0.074	0.073	0.075	0.073	0.946	0.952	1.000	100
MI-XGB	-0.014	-0.014	0.075	0.077	0.075	0.079	0.076	0.946	0.951	1.000	100
MI-RF	-0.008	-0.008	0.074	0.073	0.075	0.074	0.075	0.946	0.943	1.000	100
IPCW-	-0.083	-0.084	0.115	0.116	0.111	0.143	0.139	0.895	0.885	0.801	100
TMLE-M											
IPCW-	-0.083	-0.083	0.115	0.114	0.111	0.141	0.139	0.896	0.885	0.812	100
TMLE-MTO											
IPCW-a-	-0.083	-0.084	0.115	0.116	0.111	0.143	0.139	0.894	0.884	0.800	100
TMLE-M											
IPCW-a- TMLE-MTO	-0.083	-0.082	0.115	0.114	0.111	0.14	0.138	0.897	0.882	0.812	100

Table 39: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome (unobserved covariate) and MNAR-unobserved scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.001	0.001	0.077	0.075	0.078	0.075	0.078	0.947	0.954	0.999	100
model											
Complete-	-0.075	-0.073	0.11	0.109	0.109	0.133	0.131	0.895	0.895	0.859	100
$case^*$											
Confounded	0.202	0.206	0.072	0.069	0.071	0.214	0.218	0.172	0.195	1.000	100
model^*											
IPW^*	-0.078	-0.076	0.114	0.114	0.111	0.138	0.135	0.893	0.896	0.828	100
Raking	-0.008	-0.007	0.08	0.088	0.082	0.088	0.082	0.966	0.948	0.996	100
(vanilla)*											
MICE*	-0.007	-0.007	0.079	0.077	0.08	0.077	0.08	0.940	0.949	0.999	100
MI-RF*	-0.006	-0.005	0.08	0.076	0.08	0.076	0.08	0.936	0.949	0.998	100
IPCW-	-0.082	-0.082	0.119	0.12	0.117	0.145	0.143	0.894	0.895	0.784	100
$TMLE-M^*$											
IPCW-	-0.082	-0.082	0.118	0.118	0.116	0.144	0.142	0.890	0.896	0.790	100
$TMLE-MTO^*$											
IPCW-a-	-0.082	-0.081	0.119	0.12	0.117	0.145	0.143	0.894	0.896	0.784	100
$TMLE-M^*$											
IPCW-a-	-0.082	-0.080	0.118	0.118	0.117	0.143	0.142	0.889	0.896	0.796	100
$TMLE-MTO^*$											

Table 40: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome (unobserved covariate) and MNAR-unobserved scenario. The value of the estimand is 0.404. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0	0.000	0.075	0.073	0.074	0.073	0.074	0.948	0.942	0.999	100
Complete-	-0.074	-0.072	0.11	0.109	0.109	0.132	0.13	0.895	0.895	0.859	100
case											
Confounded model	0.204	0.207	0.072	0.069	0.071	0.215	0.219	0.188	0.171	1.000	100
IPW	-0.077	-0.075	0.114	0.114	0.111	0.137	0.134	0.896	0.894	0.828	100
Raking	-0.007	-0.006	0.08	0.088	0.082	0.088	0.082	0.949	0.966	0.996	100
(vanilla)											
MICE	-0.006	-0.006	0.079	0.077	0.08	0.077	0.08	0.948	0.942	0.999	100
MI-RF	-0.005	-0.004	0.08	0.076	0.08	0.076	0.08	0.948	0.936	0.998	100
IPCW-	-0.081	-0.081	0.119	0.12	0.117	0.145	0.143	0.896	0.896	0.784	100
TMLE-M											
IPCW-	-0.081	-0.081	0.118	0.118	0.116	0.143	0.142	0.895	0.891	0.790	100
TMLE-MTO											
IPCW-a-	-0.081	-0.080	0.119	0.12	0.117	0.145	0.142	0.897	0.894	0.784	100
TMLE-M											
IPCW-a-	-0.081	-0.079	0.118	0.118	0.117	0.143	0.142	0.897	0.890	0.796	100
TMLE-MTO											

MNAR: 12% outcome proportion, 80% missingness proportion

Table 41: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and MNAR-value scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.002	0.002	0.072	0.07	0.074	0.07	0.074	0.951	0.956	1.000	100
Complete-	-0.143	-0.149	0.212	0.208	0.216	0.252	0.263	0.889	0.900	0.250	100
case											
Confounded	0.204	0.203	0.068	0.067	0.071	0.215	0.215	0.142	0.154	1.000	100
model											
IPW	-0.133	-0.134	0.257	0.247	0.261	0.281	0.293	0.892	0.922	0.195	100
Raking	-0.105	-0.101	0.117	0.124	0.113	0.163	0.151	0.882	0.856	0.696	100
(vanilla)											
MICE	-0.113	-0.111	0.113	0.113	0.111	0.16	0.157	0.807	0.836	0.739	100
MI-XGB	-0.121	-0.118	0.113	0.122	0.109	0.172	0.161	0.860	0.816	0.653	100
MI-RF	-0.095	-0.094	0.102	0.08	0.099	0.124	0.137	0.738	0.848	0.924	100
IPCW-	-0.131	-0.135	0.272	0.26	0.273	0.292	0.305	0.893	0.923	0.177	100
TMLE-M											
IPCW-	-0.13	-0.133	0.271	0.252	0.271	0.284	0.302	0.881	0.924	0.198	100
TMLE-MTO											

Table 42: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and MNAR-value scenario. The value of the estimand is 0.406. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		$_{ m pleted}$
Benchmark	0.001	0.002	0.072	0.07	0.074	0.07	0.074	0.956	0.951	1.000	100
model											
Complete-	-0.143	-0.149	0.212	0.208	0.216	0.252	0.263	0.900	0.889	0.250	100
case											
Confounded	0.204	0.203	0.068	0.067	0.071	0.215	0.215	0.155	0.143	1.000	100
model											
IPW	-0.134	-0.134	0.257	0.247	0.261	0.281	0.293	0.922	0.892	0.195	100
Raking	-0.105	-0.101	0.117	0.124	0.113	0.163	0.152	0.856	0.881	0.696	100
(vanilla)											
MICE	-0.113	-0.111	0.113	0.113	0.111	0.16	0.157	0.835	0.807	0.739	100
MI-XGB	-0.122	-0.118	0.113	0.122	0.109	0.172	0.161	0.815	0.860	0.653	100
MI-RF	-0.095	-0.095	0.102	0.08	0.099	0.124	0.137	0.848	0.738	0.924	100
IPCW-	-0.131	-0.136	0.272	0.26	0.273	0.292	0.305	0.923	0.893	0.177	100
TMLE-M											
IPCW-	-0.131	-0.134	0.271	0.252	0.271	0.284	0.302	0.924	0.881	0.198	100
TMLE-MTO											

Table 43: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and MNAR-value scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		$_{ m pleted}$
Benchmark	0.001	0.002	0.081	0.08	0.081	0.08	0.081	0.948	0.952	0.999	100
model											
Complete-	-0.176	-0.178	0.204	0.202	0.203	0.268	0.27	0.856	0.863	0.207	100
$case^*$											
Confounded	-0.314	-0.314	0.068	0.068	0.071	0.322	0.322	0.003	0.003	0.272	100
model^*											
IPW*	-0.156	-0.155	0.242	0.235	0.242	0.282	0.288	0.876	0.902	0.181	100
Raking	-0.664	-0.663	0.132	0.139	0.132	0.679	0.676	0.002	0.000	0.456	100
$(vanilla)^*$											
MICE*	-0.664	-0.663	0.124	0.115	0.125	0.674	0.675	0.010	0.001	0.621	100
MI-RF*	-0.68	-0.679	0.108	0.093	0.108	0.687	0.688	0.000	0.000	0.812	100
IPCW-	-0.154	-0.159	0.258	0.246	0.258	0.29	0.303	0.882	0.916	0.172	100
$TMLE-M^*$											
IPCW-	-0.147	-0.151	0.254	0.233	0.25	0.275	0.292	0.874	0.914	0.211	100
$TMLE-MTO^*$											
IPCW-a-	-0.155	-0.157	0.257	0.245	0.258	0.29	0.302	0.882	0.917	0.171	100
$TMLE-M^*$											
IPCW-a-	-0.144	-0.149	0.255	0.23	0.256	0.272	0.296	0.866	0.918	0.221	100
$TMLE-MTO^*$											

Table 44: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and MNAR-value scenario. The value of the estimand is 0.371. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.001	0.001	0.07	0.072	0.07	0.072	0.07	0.950	0.957	1.000	100
Complete- case	-0.142	-0.144	0.204	0.202	0.203	0.247	0.249	0.894	0.892	0.207	100
Confounded model	-0.28	-0.280	0.068	0.068	0.071	0.288	0.288	0.011	0.012	0.272	100
IPW	-0.121	-0.121	0.242	0.235	0.242	0.264	0.271	0.922	0.899	0.181	100
Raking (vanilla)	-0.63	-0.629	0.132	0.139	0.132	0.645	0.643	0.001	0.003	0.456	100
MICE	-0.63	-0.629	0.124	0.115	0.125	0.64	0.641	0.002	0.012	0.621	100
MI-RF	-0.646	-0.645	0.108	0.093	0.108	0.653	0.654	0.000	0.000	0.812	100
IPCW- TMLE-M	-0.12	-0.125	0.258	0.246	0.258	0.273	0.287	0.929	0.906	0.172	100
IPCW- TMLE-MTO	-0.112	-0.117	0.254	0.233	0.25	0.259	0.276	0.926	0.897	0.211	100
IPCW-a- TMLE-M	-0.121	-0.123	0.257	0.245	0.258	0.273	0.286	0.931	0.904	0.171	100
IPCW-a- TMLE-MTO	-0.11	-0.115	0.255	0.23	0.256	0.255	0.28	0.931	0.891	0.221	100

Table 45: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and MNAR-unobserved scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.002	-0.001	0.069	0.07	0.069	0.07	0.069	0.952	0.950	1.000	100
Complete- case	-0.064	-0.061	0.21	0.213	0.217	0.223	0.225	0.951	0.945	0.355	100
Confounded model	0.201	0.201	0.065	0.067	0.066	0.212	0.211	0.140	0.132	1.000	100
IPW	-0.064	-0.063	0.247	0.246	0.242	0.254	0.25	0.940	0.942	0.272	100
Raking	-0.008	-0.008	0.107	0.12	0.104	0.12	0.105	0.967	0.944	0.925	100
(vanilla)											
MICE	-0.011	-0.011	0.093	0.092	0.095	0.093	0.095	0.947	0.947	0.982	100
MI-XGB	0.002	0.004	0.107	0.1	0.103	0.1	0.103	0.931	0.950	0.950	100
MI-RF	0.035	0.037	0.095	0.079	0.095	0.087	0.102	0.878	0.937	0.998	100
IPCW-	-0.07	-0.073	0.26	0.256	0.261	0.266	0.271	0.932	0.943	0.243	100
TMLE-M											
IPCW-	-0.068	-0.070	0.259	0.249	0.254	0.258	0.264	0.924	0.942	0.267	100
TMLE-MTO											
IPCW-a-	-0.071	-0.071	0.26	0.256	0.256	0.266	0.266	0.932	0.942	0.246	100
TMLE-M											
IPCW-a- TMLE-MTO	-0.066	-0.068	0.259	0.246	0.252	0.255	0.261	0.924	0.942	0.286	100

Table 46: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and MNAR-unobserved scenario. The value of the estimand is 0.406. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.002	-0.001	0.069	0.07	0.069	0.07	0.069	0.950	0.952	1.000	100
Complete- case	-0.064	-0.061	0.21	0.213	0.217	0.223	0.225	0.945	0.950	0.355	100
Confounded model	0.201	0.201	0.065	0.067	0.066	0.212	0.211	0.132	0.140	1.000	100
IPW	-0.064	-0.063	0.247	0.246	0.242	0.254	0.25	0.942	0.940	0.272	100
Raking	-0.009	-0.008	0.107	0.12	0.104	0.12	0.105	0.945	0.967	0.925	100
(vanilla)											
MICE	-0.011	-0.011	0.093	0.092	0.095	0.093	0.095	0.947	0.947	0.982	100
MI-XGB	0.002	0.004	0.107	0.1	0.103	0.1	0.103	0.950	0.931	0.950	100
MI-RF	0.035	0.037	0.095	0.079	0.095	0.087	0.102	0.937	0.878	0.998	100
IPCW-	-0.07	-0.074	0.26	0.256	0.261	0.266	0.271	0.943	0.932	0.243	100
TMLE-M											
IPCW-	-0.068	-0.071	0.259	0.249	0.254	0.258	0.264	0.942	0.924	0.267	100
TMLE-MTO											
IPCW-a-	-0.071	-0.072	0.26	0.256	0.256	0.266	0.266	0.942	0.932	0.246	100
TMLE-M											
IPCW-a- TMLE-MTO	-0.066	-0.069	0.259	0.246	0.252	0.255	0.261	0.942	0.924	0.286	100

Table 47: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome (unobserved covariate) and MNAR-unobserved scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.002	0.002	0.077	0.075	0.079	0.075	0.079	0.952	0.956	1.000	100
model											
Complete-	-0.067	-0.065	0.22	0.222	0.216	0.232	0.225	0.944	0.938	0.331	100
case^*											
Confounded	0.206	0.205	0.071	0.069	0.073	0.217	0.218	0.158	0.172	1.000	100
model^*											
IPW^*	-0.068	-0.068	0.255	0.255	0.251	0.264	0.26	0.931	0.936	0.252	100
Raking	-0.007	-0.009	0.109	0.124	0.112	0.125	0.112	0.975	0.948	0.908	100
$(vanilla)^*$											
MICE*	-0.01	-0.012	0.098	0.096	0.098	0.097	0.099	0.946	0.949	0.977	100
MI-XGB*	-0.001	0.001	0.103	0.098	0.104	0.098	0.104	0.934	0.950	0.970	100
MI-RF*	0.042	0.043	0.098	0.082	0.1	0.092	0.109	0.867	0.930	0.997	100
IPCW-	-0.07	-0.066	0.271	0.267	0.265	0.276	0.274	0.927	0.940	0.228	100
$TMLE-M^*$											
IPCW-	-0.067	-0.066	0.269	0.259	0.265	0.267	0.274	0.915	0.940	0.251	100
$TMLE-MTO^*$											
IPCW-a-	-0.069	-0.069	0.271	0.267	0.265	0.275	0.274	0.926	0.939	0.224	100
$TMLE-M^*$											
IPCW-a-	-0.066	-0.067	0.269	0.256	0.263	0.264	0.272	0.914	0.938	0.265	100
$TMLE-MTO^*$											

Table 48: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome (unobserved covariate) and MNAR-unobserved scenario. The value of the estimand is 0.404. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.003	0.002	0.075	0.073	0.076	0.073	0.076	0.956	0.951	0.999	100
Complete- case	-0.066	-0.064	0.22	0.222	0.216	0.232	0.225	0.939	0.945	0.331	100
Confounded model	0.207	0.206	0.071	0.069	0.073	0.218	0.219	0.166	0.154	1.000	100
IPW	-0.067	-0.067	0.255	0.255	0.251	0.264	0.26	0.937	0.931	0.252	100
Raking (vanilla)	-0.006	-0.008	0.109	0.124	0.112	0.125	0.112	0.949	0.975	0.908	100
MICE	-0.009	-0.011	0.098	0.096	0.098	0.096	0.098	0.950	0.945	0.977	100
MI-XGB	0	0.002	0.103	0.098	0.104	0.098	0.104	0.950	0.934	0.970	100
MI-RF	0.043	0.044	0.098	0.082	0.1	0.093	0.109	0.930	0.866	0.997	100
IPCW- TMLE-M	-0.069	-0.065	0.271	0.267	0.265	0.275	0.273	0.940	0.927	0.228	100
IPCW- TMLE-MTO	-0.066	-0.065	0.269	0.259	0.265	0.267	0.273	0.941	0.916	0.251	100
IPCW-a- TMLE-M	-0.068	-0.068	0.271	0.267	0.265	0.275	0.274	0.939	0.926	0.224	100
IPCW-a- TMLE-MTO	-0.065	-0.066	0.269	0.256	0.263	0.264	0.271	0.938	0.914	0.265	100

MNAR: 5% outcome proportion, 40% missingness proportion

Table 49: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and MNAR-value scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0	0.000	0.099	0.103	0.096	0.103	0.096	0.961	0.952	0.984	100
Complete-	-0.139	-0.137	0.16	0.164	0.163	0.215	0.213	0.868	0.859	0.370	100
case											
Confounded	0.216	0.214	0.094	0.099	0.092	0.238	0.233	0.404	0.366	1.000	100
model											
IPW	-0.144	-0.142	0.173	0.173	0.172	0.225	0.223	0.857	0.861	0.328	100
Raking	-0.113	-0.115	0.112	0.129	0.11	0.172	0.159	0.902	0.828	0.630	100
(vanilla)											
MICE	-0.115	-0.117	0.11	0.114	0.109	0.161	0.16	0.839	0.821	0.732	100
MI-XGB	-0.114	-0.115	0.111	0.126	0.112	0.17	0.161	0.892	0.820	0.653	100
MI-RF	-0.105	-0.104	0.108	0.109	0.108	0.152	0.15	0.840	0.838	0.782	100
IPCW-	-0.146	-0.143	0.183	0.183	0.179	0.234	0.23	0.864	0.870	0.286	100
TMLE-M											
IPCW-	-0.145	-0.141	0.182	0.18	0.179	0.231	0.228	0.855	0.872	0.298	100
TMLE-MTO											

Table 50: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and MNAR-value scenario. The value of the estimand is 0.402. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.004	0.003	0.099	0.103	0.096	0.103	0.096	0.952	0.963	0.984	100
Complete- case	-0.136	-0.134	0.16	0.164	0.163	0.213	0.211	0.863	0.872	0.370	100
Confounded model	0.22	0.217	0.094	0.099	0.092	0.241	0.236	0.351	0.391	1.000	100
IPW	-0.141	-0.139	0.173	0.173	0.172	0.223	0.221	0.864	0.864	0.328	100
Raking	-0.109	-0.112	0.112	0.129	0.11	0.169	0.157	0.836	0.907	0.630	100
(vanilla)											
MICE	-0.111	-0.113	0.11	0.114	0.109	0.159	0.157	0.832	0.847	0.732	100
MI-XGB	-0.11	-0.112	0.111	0.126	0.112	0.168	0.158	0.834	0.896	0.653	100
MI-RF	-0.102	-0.101	0.108	0.109	0.108	0.149	0.148	0.845	0.848	0.782	100
IPCW-	-0.142	-0.140	0.183	0.183	0.179	0.232	0.228	0.874	0.866	0.286	100
TMLE-M											
IPCW-	-0.141	-0.138	0.182	0.18	0.179	0.229	0.226	0.875	0.857	0.298	100
TMLE-MTO											

Table 51: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and MNAR-value scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.002	0.005	0.117	0.117	0.115	0.117	0.116	0.944	0.946	0.932	100
model											
Complete-	-0.171	-0.173	0.165	0.167	0.159	0.239	0.235	0.829	0.830	0.279	100
case^*											
Confounded	-0.379	-0.376	0.097	0.096	0.097	0.391	0.388	0.021	0.021	0.060	100
model^*											
IPW*	-0.164	-0.165	0.17	0.172	0.166	0.237	0.234	0.834	0.837	0.284	100
Raking	-0.598	-0.598	0.123	0.143	0.123	0.615	0.61	0.005	0.002	0.234	100
$(vanilla)^*$											
MICE*	-0.627	-0.627	0.113	0.114	0.111	0.638	0.636	0.000	0.000	0.495	100
MI-RF*	-0.606	-0.604	0.114	0.112	0.113	0.617	0.615	0.000	0.000	0.431	100
IPCW-	-0.165	-0.167	0.18	0.183	0.176	0.246	0.243	0.852	0.860	0.245	100
$TMLE-M^*$											
IPCW-	-0.139	-0.144	0.176	0.175	0.173	0.223	0.226	0.866	0.882	0.327	100
$TMLE-MTO^*$											
IPCW-a-	-0.165	-0.168	0.179	0.183	0.175	0.246	0.243	0.852	0.855	0.246	100
$TMLE-M^*$											
IPCW-a-	-0.139	-0.141	0.176	0.174	0.172	0.222	0.223	0.858	0.878	0.335	100
$TMLE-MTO^*$											
r-IPCW-	-0.151	-0.155	0.174	0.175	0.173	0.232	0.232	0.852	0.864	0.299	100
$TMLE-MTO^*$											

Table 52: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and MNAR-value scenario. The value of the estimand is 0.38. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.006	-0.007	0.097	0.102	0.097	0.102	0.097	0.949	0.959	0.958	100
model											
Complete-	-0.145	-0.148	0.165	0.167	0.159	0.221	0.217	0.866	0.866	0.279	100
case											
Confounded	-0.354	-0.350	0.097	0.096	0.097	0.367	0.364	0.040	0.036	0.060	100
model											
IPW	-0.139	-0.140	0.17	0.172	0.166	0.221	0.217	0.877	0.868	0.284	100
Raking	-0.573	-0.572	0.123	0.143	0.123	0.59	0.586	0.003	0.009	0.234	100
(vanilla)											
MICE	-0.602	-0.601	0.113	0.114	0.111	0.613	0.612	0.000	0.000	0.495	100
MI-RF	-0.581	-0.579	0.114	0.112	0.113	0.592	0.59	0.000	0.000	0.431	100
IPCW-	-0.14	-0.142	0.18	0.183	0.176	0.23	0.227	0.883	0.876	0.245	100
TMLE-M											
IPCW-	-0.114	-0.119	0.176	0.175	0.173	0.208	0.211	0.906	0.894	0.327	100
TMLE-MTO											
IPCW-a-	-0.14	-0.143	0.179	0.183	0.175	0.23	0.226	0.884	0.878	0.246	100
TMLE-M											
IPCW-a-	-0.114	-0.116	0.176	0.174	0.172	0.208	0.208	0.908	0.891	0.335	100
TMLE-MTO											
r-IPCW-	-0.126	-0.130	0.174	0.175	0.173	0.216	0.216	0.892	0.886	0.299	100
TMLE-MTO											

Table 53: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and MNAR-unobserved scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0	0.000	0.104	0.103	0.104	0.103	0.104	0.948	0.950	0.976	100
model											
Complete-	-0.075	-0.078	0.16	0.158	0.157	0.175	0.176	0.920	0.925	0.545	100
case											
Confounded	0.215	0.216	0.1	0.099	0.101	0.237	0.238	0.410	0.425	1.000	100
model											
IPW	-0.078	-0.080	0.165	0.164	0.164	0.182	0.183	0.914	0.920	0.513	100
Raking	-0.007	-0.007	0.112	0.128	0.111	0.129	0.111	0.977	0.948	0.906	100
(vanilla)											
MICE	-0.007	-0.008	0.11	0.109	0.112	0.109	0.112	0.948	0.948	0.953	100
MI-RF	0.015	0.014	0.11	0.107	0.111	0.108	0.112	0.946	0.948	0.970	100
IPCW-	-0.083	-0.087	0.175	0.173	0.17	0.192	0.191	0.911	0.923	0.456	100
TMLE-M											
IPCW-	-0.083	-0.086	0.174	0.17	0.168	0.189	0.189	0.908	0.924	0.470	100
TMLE-MTO											
IPCW-a-	-0.083	-0.086	0.175	0.173	0.17	0.192	0.19	0.912	0.924	0.457	100
TMLE-M											
IPCW-a-	-0.082	-0.084	0.175	0.169	0.17	0.188	0.19	0.907	0.921	0.475	100
TMLE-MTO											
r-IPCW-	-0.083	-0.086	0.174	0.17	0.17	0.189	0.191	0.909	0.925	0.469	100
TMLE-MTO											

Table 54: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and MNAR-unobserved scenario. The value of the estimand is 0.402. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.003	0.004	0.104	0.103	0.104	0.103	0.104	0.950	0.948	0.976	100
model											
Complete-	-0.072	-0.074	0.16	0.158	0.157	0.174	0.174	0.928	0.922	0.545	100
case											
Confounded	0.219	0.219	0.1	0.099	0.101	0.24	0.241	0.411	0.396	1.000	100
model											
IPW	-0.075	-0.077	0.165	0.164	0.164	0.18	0.181	0.921	0.917	0.513	100
Raking	-0.003	-0.003	0.112	0.128	0.111	0.128	0.111	0.950	0.976	0.906	100
(vanilla)											
MICE	-0.004	-0.005	0.11	0.109	0.112	0.109	0.112	0.950	0.950	0.953	100
MI-RF	0.019	0.017	0.11	0.107	0.111	0.109	0.112	0.947	0.945	0.970	100
IPCW-	-0.08	-0.084	0.175	0.173	0.17	0.19	0.189	0.926	0.915	0.456	100
TMLE-M											
IPCW-	-0.08	-0.083	0.174	0.17	0.168	0.188	0.187	0.928	0.911	0.470	100
TMLE-MTO											
IPCW-a-	-0.08	-0.083	0.175	0.173	0.17	0.19	0.189	0.927	0.914	0.457	100
TMLE-M											
IPCW-a-	-0.079	-0.081	0.175	0.169	0.17	0.187	0.189	0.924	0.908	0.475	100
TMLE-MTO											
r-IPCW-	-0.08	-0.083	0.174	0.17	0.17	0.188	0.19	0.926	0.909	0.469	100
TMLE-MTO											

Table 55: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome (unobserved covariate) and MNAR-unobserved scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.002	-0.001	0.11	0.114	0.108	0.114	0.108	0.958	0.950	0.957	100
$Complete-case^*$	-0.071	-0.068	0.169	0.17	0.169	0.184	0.182	0.928	0.926	0.513	100
Confounded model*	0.219	0.216	0.102	0.106	0.1	0.243	0.238	0.464	0.440	1.000	100
IPW^*	-0.072	-0.070	0.178	0.176	0.175	0.19	0.189	0.921	0.930	0.479	100
Raking (vanilla)*	-0.005	-0.003	0.116	0.138	0.116	0.138	0.116	0.980	0.950	0.872	100
MICE*	-0.005	-0.006	0.113	0.117	0.112	0.117	0.112	0.956	0.949	0.940	100
MI-RF*	0.024	0.023	0.113	0.115	0.112	0.117	0.114	0.946	0.942	0.967	100
IPCW- TMLE-M*	-0.077	-0.076	0.189	0.185	0.185	0.2	0.2	0.917	0.929	0.434	100
IPCW- TMLE-MTO*	-0.076	-0.074	0.189	0.182	0.187	0.197	0.201	0.914	0.929	0.441	100
IPCW-a- TMLE-M*	-0.077	-0.075	0.189	0.184	0.187	0.2	0.201	0.916	0.929	0.435	100
IPCW-a- TMLE-MTO*	-0.076	-0.074	0.189	0.181	0.185	0.197	0.2	0.911	0.930	0.449	100
r-IPCW- TMLE-MTO*	-0.077	-0.076	0.188	0.182	0.185	0.198	0.2	0.914	0.928	0.441	100

Table 56: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome (unobserved covariate) and MNAR-unobserved scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.002	0.000	0.107	0.111	0.106	0.111	0.106	0.952	0.960	0.966	100
Complete- case	-0.07	-0.067	0.169	0.17	0.169	0.184	0.181	0.926	0.928	0.513	100
Confounded model	0.22	0.217	0.102	0.106	0.1	0.244	0.239	0.437	0.462	1.000	100
IPW	-0.071	-0.069	0.178	0.176	0.175	0.19	0.188	0.930	0.920	0.479	100
Raking (vanilla)	-0.004	-0.003	0.116	0.138	0.116	0.138	0.116	0.951	0.980	0.872	100
MICE	-0.004	-0.005	0.113	0.117	0.112	0.117	0.112	0.950	0.957	0.940	100
MI-RF	0.025	0.024	0.113	0.115	0.112	0.117	0.114	0.941	0.946	0.967	100
IPCW- TMLE-M	-0.076	-0.075	0.189	0.185	0.185	0.2	0.199	0.929	0.917	0.434	100
IPCW- TMLE-MTO	-0.076	-0.074	0.189	0.182	0.187	0.197	0.201	0.929	0.914	0.441	100
IPCW-a- TMLE-M	-0.076	-0.075	0.189	0.184	0.187	0.2	0.201	0.930	0.916	0.435	100
IPCW-a- TMLE-MTO	-0.075	-0.074	0.189	0.181	0.185	0.196	0.2	0.930	0.911	0.449	100
r-IPCW- TMLE-MTO	-0.076	-0.076	0.188	0.182	0.185	0.197	0.2	0.929	0.913	0.441	100

MNAR: 5% outcome proportion, 80% missingness proportion

Table 57: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and MNAR-value scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0	-0.001	0.104	0.103	0.107	0.103	0.107	0.955	0.955	0.977	100
Complete-	-0.129	-0.132	0.333	0.316	0.328	0.341	0.353	0.917	0.928	0.136	100
case											
Confounded	0.216	0.216	0.099	0.099	0.102	0.237	0.238	0.424	0.431	1.000	100
model											
IPW	-0.126	-0.135	0.393	0.369	0.394	0.39	0.416	0.910	0.937	0.112	100
Raking	-0.112	-0.111	0.172	0.186	0.173	0.218	0.205	0.932	0.904	0.364	100
(vanilla)											
MICE	-0.119	-0.114	0.16	0.16	0.157	0.2	0.194	0.880	0.879	0.471	100
MI-XGB	-0.101	-0.098	0.162	0.152	0.16	0.183	0.188	0.898	0.900	0.535	100
MI-RF	-0.032	-0.031	0.142	0.117	0.146	0.121	0.149	0.889	0.943	0.834	100
IPCW-	-0.13	-0.143	0.415	0.385	0.412	0.406	0.436	0.902	0.945	0.099	100
TMLE-M											
IPCW-	-0.129	-0.141	0.416	0.373	0.412	0.395	0.436	0.890	0.942	0.122	100
TMLE-MTO											

Table 58: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and MNAR-value scenario. The value of the estimand is 0.402. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.003	0.002	0.104	0.103	0.107	0.103	0.107	0.954	0.955	0.977	100
Complete-	-0.126	-0.128	0.333	0.316	0.328	0.34	0.352	0.929	0.917	0.136	100
case											
Confounded	0.219	0.219	0.099	0.099	0.102	0.24	0.242	0.414	0.408	1.000	100
model											
IPW	-0.123	-0.131	0.393	0.369	0.394	0.389	0.415	0.938	0.910	0.112	100
Raking	-0.109	-0.107	0.172	0.186	0.173	0.216	0.203	0.906	0.933	0.364	100
(vanilla)											
MICE	-0.116	-0.111	0.16	0.16	0.157	0.198	0.192	0.883	0.882	0.471	100
MI-XGB	-0.097	-0.094	0.162	0.152	0.16	0.181	0.186	0.901	0.900	0.535	100
MI-RF	-0.029	-0.027	0.142	0.117	0.146	0.121	0.149	0.946	0.890	0.834	100
IPCW-	-0.126	-0.140	0.415	0.385	0.412	0.405	0.435	0.945	0.904	0.099	100
TMLE-M											
IPCW-	-0.126	-0.138	0.416	0.373	0.412	0.394	0.435	0.942	0.892	0.122	100
TMLE-MTO											

Table 59: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and MNAR-value scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.002	0.000	0.121	0.117	0.119	0.117	0.119	0.938	0.946	0.930	100
model											
Complete-	-0.148	-0.154	0.285	0.283	0.281	0.319	0.321	0.924	0.926	0.144	100
$case^*$											
Confounded	-0.379	-0.378	0.098	0.096	0.097	0.391	0.39	0.024	0.028	0.067	100
$model^*$											
IPW*	-0.139	-0.146	0.33	0.32	0.321	0.349	0.352	0.905	0.926	0.118	100
Raking	-0.824	-0.821	0.194	0.2	0.185	0.848	0.841	0.020	0.011	0.564	100
(vanilla)*											
MICE*	-0.869	-0.867	0.171	0.155	0.174	0.882	0.885	0.004	0.001	0.829	100
$MI-RF^*$	-0.8	-0.799	0.143	0.124	0.145	0.809	0.812	0.000	0.000	0.863	100
IPCW-	-0.138	-0.148	0.347	0.331	0.335	0.359	0.366	0.913	0.930	0.121	100
$TMLE-M^*$											
IPCW-	-0.13	-0.136	0.348	0.319	0.337	0.344	0.364	0.901	0.934	0.145	100
$TMLE-MTO^*$											
IPCW-a-	-0.138	-0.144	0.347	0.331	0.334	0.359	0.364	0.908	0.930	0.120	100
$TMLE-M^*$											
IPCW-a-	-0.128	-0.131	0.346	0.315	0.335	0.34	0.36	0.900	0.930	0.150	100
$TMLE-MTO^*$											
r-IPCW-	-0.138	-0.144	0.346	0.323	0.34	0.351	0.369	0.901	0.934	0.134	100
$TMLE-MTO^*$											

Table 60: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and MNAR-value scenario. The value of the estimand is 0.38. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.004	-0.007	0.1	0.102	0.098	0.102	0.098	0.950	0.954	0.965	100
model											
Complete-	-0.122	-0.129	0.285	0.283	0.281	0.308	0.309	0.934	0.930	0.144	100
case											
Confounded	-0.353	-0.353	0.098	0.096	0.097	0.366	0.366	0.052	0.046	0.067	100
model											
IPW	-0.114	-0.121	0.33	0.32	0.321	0.339	0.343	0.934	0.914	0.118	100
Raking	-0.799	-0.796	0.194	0.2	0.185	0.823	0.817	0.015	0.025	0.564	100
(vanilla)											
MICE	-0.843	-0.842	0.171	0.155	0.174	0.857	0.86	0.001	0.005	0.829	100
MI-RF	-0.774	-0.774	0.143	0.124	0.145	0.784	0.787	0.000	0.000	0.863	100
IPCW-	-0.113	-0.123	0.347	0.331	0.335	0.35	0.357	0.934	0.918	0.121	100
TMLE-M											
IPCW-	-0.105	-0.111	0.348	0.319	0.337	0.336	0.355	0.940	0.909	0.145	100
TMLE-MTO											
IPCW-a-	-0.113	-0.119	0.347	0.331	0.334	0.35	0.355	0.936	0.918	0.120	100
TMLE-M											
IPCW-a-	-0.103	-0.106	0.346	0.315	0.335	0.332	0.352	0.935	0.911	0.150	100
TMLE-MTO											
r-IPCW-	-0.113	-0.119	0.346	0.323	0.34	0.342	0.36	0.936	0.912	0.134	100
TMLE-MTO											

Table 61: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and MNAR-unobserved scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.004	0.006	0.105	0.103	0.105	0.103	0.105	0.952	0.954	0.978	100
model											
Complete-	-0.061	-0.068	0.334	0.327	0.327	0.332	0.334	0.949	0.951	0.178	100
case											
Confounded	0.22	0.221	0.1	0.099	0.102	0.241	0.243	0.397	0.411	1.000	100
model											
IPW	-0.053	-0.065	0.39	0.371	0.383	0.375	0.388	0.936	0.950	0.154	100
Raking	-0.005	-0.002	0.157	0.184	0.156	0.184	0.156	0.975	0.943	0.608	100
(vanilla)											
MICE	-0.007	-0.003	0.138	0.136	0.135	0.136	0.135	0.945	0.951	0.823	100
MI-RF	0.106	0.112	0.122	0.113	0.119	0.155	0.164	0.827	0.866	0.986	100
IPCW-	-0.052	-0.072	0.41	0.387	0.397	0.39	0.404	0.929	0.948	0.145	100
TMLE-M											
IPCW-	-0.048	-0.061	0.412	0.376	0.405	0.379	0.409	0.922	0.948	0.160	100
TMLE-MTO											
IPCW-a-	-0.051	-0.071	0.41	0.386	0.4	0.39	0.406	0.932	0.947	0.146	100
TMLE-M											
IPCW-a-	-0.047	-0.067	0.415	0.371	0.405	0.374	0.411	0.922	0.948	0.179	100
TMLE-MTO											
r-IPCW-	-0.052	-0.069	0.41	0.377	0.403	0.381	0.408	0.925	0.949	0.159	100
TMLE-MTO											

Table 62: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome and MNAR-unobserved scenario. The value of the estimand is 0.402. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.007	0.009	0.105	0.103	0.105	0.104	0.105	0.952	0.950	0.978	100
model											
Complete-	-0.057	-0.065	0.334	0.327	0.327	0.332	0.333	0.952	0.949	0.178	100
case											
Confounded	0.223	0.224	0.1	0.099	0.102	0.244	0.246	0.397	0.386	1.000	100
model											
IPW	-0.05	-0.061	0.39	0.371	0.383	0.375	0.388	0.950	0.936	0.154	100
Raking	-0.002	0.001	0.157	0.184	0.156	0.184	0.156	0.944	0.975	0.608	100
(vanilla)											
MICE	-0.003	0.000	0.138	0.136	0.135	0.136	0.135	0.950	0.945	0.823	100
MI-RF	0.11	0.116	0.122	0.113	0.119	0.157	0.166	0.861	0.818	0.986	100
IPCW-	-0.048	-0.069	0.41	0.387	0.397	0.39	0.403	0.948	0.930	0.145	100
TMLE-M											
IPCW-	-0.045	-0.058	0.412	0.376	0.405	0.379	0.409	0.947	0.923	0.160	100
TMLE-MTO											
IPCW-a-	-0.048	-0.068	0.41	0.386	0.4	0.389	0.405	0.946	0.931	0.146	100
TMLE-M											
IPCW-a-	-0.044	-0.064	0.415	0.371	0.405	0.374	0.411	0.949	0.922	0.179	100
TMLE-MTO											
r-IPCW-	-0.048	-0.066	0.41	0.377	0.403	0.38	0.408	0.948	0.925	0.159	100
TMLE-MTO											

Table 63: Synthetic data MNAR simulation: oracle conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome (unobserved covariate) and MNAR-unobserved scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.001	0.001	0.114	0.114	0.115	0.114	0.115	0.952	0.952	0.948	100
Complete- case*	-0.049	-0.056	0.36	0.353	0.351	0.357	0.356	0.942	0.944	0.168	100
Confounded model*	0.218	0.215	0.106	0.106	0.107	0.243	0.24	0.470	0.470	1.000	100
IPW^*	-0.048	-0.052	0.421	0.4	0.412	0.403	0.415	0.931	0.950	0.141	100
Raking	-0.004	-0.003	0.172	0.2	0.168	0.2	0.168	0.975	0.946	0.538	100
$(vanilla)^*$											
MICE*	-0.005	-0.004	0.148	0.145	0.151	0.145	0.151	0.947	0.950	0.775	100
MI-XGB*	0.054	0.056	0.148	0.134	0.153	0.145	0.163	0.899	0.940	0.889	100
MI-RF*	0.119	0.119	0.127	0.12	0.127	0.168	0.174	0.809	0.843	0.985	100
IPCW-	-0.055	-0.061	0.441	0.414	0.43	0.417	0.434	0.927	0.948	0.125	100
$TMLE-M^*$											
IPCW-	-0.049	-0.052	0.442	0.403	0.433	0.406	0.436	0.918	0.950	0.148	100
$TMLE-MTO^*$											
IPCW-a-	-0.054	-0.061	0.442	0.414	0.431	0.417	0.436	0.926	0.948	0.126	100
$TMLE-M^*$											
IPCW-a- TMLE-MTO*	-0.045	-0.056	0.444	0.399	0.435	0.401	0.439	0.915	0.949	0.154	100

Table 64: Synthetic data MNAR simulation: census conditional odds ratio (cOR), 5% outcome proportion, 80% missing proportion. Comparing estimators under the simple outcome (unobserved covariate) and MNAR-unobserved scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.002	0.000	0.111	0.111	0.11	0.111	0.11	0.950	0.950	0.958	100
Complete- case	-0.049	-0.055	0.36	0.353	0.351	0.357	0.356	0.944	0.942	0.168	100
Confounded model	0.219	0.215	0.106	0.106	0.107	0.243	0.241	0.468	0.468	1.000	100
IPW	-0.047	-0.051	0.421	0.4	0.412	0.403	0.415	0.950	0.931	0.141	100
Raking (vanilla)	-0.004	-0.002	0.172	0.2	0.168	0.2	0.168	0.947	0.975	0.538	100
MICE	-0.004	-0.003	0.148	0.145	0.151	0.145	0.151	0.950	0.947	0.775	100
MI-XGB	0.055	0.057	0.148	0.134	0.153	0.145	0.164	0.939	0.897	0.889	100
MI-RF	0.119	0.120	0.127	0.12	0.127	0.169	0.175	0.841	0.807	0.985	100
IPCW- TMLE-M	-0.054	-0.061	0.441	0.414	0.43	0.417	0.434	0.949	0.927	0.125	100
IPCW- TMLE-MTO	-0.048	-0.052	0.442	0.403	0.433	0.406	0.436	0.950	0.919	0.148	100
IPCW-a- TMLE-M	-0.053	-0.061	0.442	0.414	0.431	0.417	0.436	0.948	0.926	0.126	100
IPCW-a- TMLE-MTO	-0.045	-0.056	0.444	0.399	0.435	0.401	0.439	0.948	0.915	0.154	100

Table 65: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome (no treatment effect) and simple MAR (no dependence on Y) scenario. The value of the estimand is 0. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.003	-0.003	0.075	0.075	0.076	0.075	0.076	0.951	0.949	0.049	100
Complete- case	-0.003	-0.003	0.1	0.099	0.099	0.099	0.099	0.943	0.946	0.057	100
Confounded model	0.218	0.219	0.072	0.071	0.074	0.23	0.231	0.137	0.140	0.863	100
IPW	-0.004	-0.004	0.115	0.115	0.115	0.115	0.115	0.944	0.950	0.056	100
Raking (vanilla)	-0.002	-0.004	0.082	0.081	0.081	0.081	0.082	0.948	0.950	0.052	100
MICE	-0.002	-0.003	0.079	0.078	0.078	0.078	0.079	0.948	0.950	0.052	100
MI-XGB	-0.006	-0.006	0.081	0.082	0.083	0.082	0.083	0.949	0.946	0.051	100
MI-RF	0.008	0.008	0.08	0.079	0.08	0.079	0.081	0.944	0.948	0.056	100
IPCW- TMLE-M	-0.004	-0.003	0.122	0.12	0.121	0.12	0.121	0.946	0.951	0.054	100
IPCW- TMLE-MTO	-0.004	-0.002	0.121	0.118	0.121	0.118	0.121	0.943	0.951	0.057	100
IPCW-a- TMLE-M	-0.004	-0.004	0.121	0.119	0.119	0.12	0.119	0.947	0.950	0.053	100
IPCW-a- TMLE-MTO	-0.004	-0.003	0.121	0.117	0.12	0.117	0.12	0.947	0.951	0.053	100

Table 66: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome (no treatment effect) and simple MAR (no dependence on Y) scenario. The value of the estimand is 0.005. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.008	-0.008	0.075	0.075	0.076	0.076	0.077	0.948	0.950	0.049	100
Complete- case	-0.008	-0.008	0.1	0.099	0.099	0.1	0.099	0.944	0.944	0.057	100
Confounded model	0.213	0.214	0.072	0.071	0.074	0.225	0.226	0.159	0.158	0.863	100
IPW	-0.009	-0.009	0.115	0.115	0.115	0.115	0.115	0.948	0.944	0.056	100
Raking (vanilla)	-0.007	-0.009	0.082	0.081	0.081	0.081	0.082	0.950	0.946	0.052	100
MICE	-0.007	-0.008	0.079	0.078	0.078	0.079	0.079	0.949	0.945	0.052	100
MI-XGB	-0.011	-0.011	0.081	0.082	0.083	0.083	0.084	0.942	0.946	0.051	100
MI-RF	0.003	0.003	0.08	0.079	0.08	0.079	0.08	0.949	0.946	0.056	100
IPCW- TMLE-M	-0.009	-0.008	0.122	0.12	0.121	0.12	0.121	0.950	0.944	0.054	100
IPCW- TMLE-MTO	-0.009	-0.007	0.121	0.118	0.121	0.118	0.121	0.951	0.941	0.057	100
IPCW-a- TMLE-M	-0.009	-0.009	0.121	0.119	0.119	0.12	0.12	0.948	0.944	0.053	100
IPCW-a- TMLE-MTO	-0.009	-0.008	0.121	0.117	0.12	0.117	0.12	0.951	0.944	0.053	100

Table 67: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome (no treatment effect) and simple MAR scenario. The value of the estimand is 0. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.001	0.001	0.075	0.075	0.076	0.075	0.076	0.944	0.944	0.056	100
Complete- case	-0.196	-0.195	0.132	0.129	0.133	0.235	0.236	0.666	0.680	0.334	100
Confounded model	0.22	0.221	0.072	0.071	0.071	0.232	0.232	0.132	0.131	0.868	100
IPW	-0.007	-0.007	0.144	0.142	0.144	0.142	0.144	0.945	0.952	0.055	100
Raking (vanilla)	-0.001	0.000	0.083	0.084	0.082	0.084	0.082	0.950	0.948	0.050	100
MICE	0	0.002	0.08	0.081	0.08	0.081	0.08	0.951	0.948	0.049	100
MI-XGB	-0.003	-0.001	0.082	0.083	0.082	0.083	0.082	0.953	0.948	0.047	100
MI-RF	0.012	0.015	0.082	0.08	0.081	0.081	0.083	0.940	0.947	0.060	100
IPCW-	-0.025	-0.022	0.146	0.148	0.15	0.15	0.152	0.954	0.952	0.046	100
TMLE-M											
IPCW-	-0.025	-0.021	0.146	0.146	0.15	0.148	0.151	0.948	0.950	0.052	100
TMLE-MTO											

Table 68: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome (no treatment effect) and simple MAR scenario. The value of the estimand is 0.005. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.006	-0.004	0.075	0.075	0.076	0.076	0.076	0.944	0.945	0.056	100
Complete-	-0.201	-0.200	0.132	0.129	0.133	0.239	0.24	0.667	0.652	0.334	100
case											
Confounded	0.215	0.216	0.072	0.071	0.071	0.227	0.228	0.149	0.148	0.868	100
model											
IPW	-0.012	-0.012	0.144	0.142	0.144	0.143	0.145	0.950	0.945	0.055	100
Raking	-0.006	-0.005	0.083	0.084	0.082	0.084	0.082	0.949	0.953	0.050	100
(vanilla)											
MICE	-0.005	-0.003	0.08	0.081	0.08	0.082	0.08	0.947	0.952	0.049	100
MI-XGB	-0.008	-0.006	0.082	0.083	0.082	0.083	0.082	0.947	0.951	0.047	100
MI-RF	0.007	0.010	0.082	0.08	0.081	0.08	0.082	0.948	0.942	0.060	100
IPCW-	-0.03	-0.028	0.146	0.148	0.15	0.151	0.153	0.950	0.952	0.046	100
TMLE-M											
IPCW-	-0.03	-0.026	0.146	0.146	0.15	0.149	0.152	0.948	0.946	0.052	100
TMLE-MTO											

Table 69: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and simple MAR (no dependence on Y) scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.002	0.001	0.07	0.07	0.072	0.07	0.072	0.954	0.952	1.000	100
model											
Complete-	0	-0.001	0.094	0.093	0.097	0.093	0.097	0.946	0.948	0.993	100
case											
Confounded	0.204	0.206	0.067	0.067	0.067	0.215	0.216	0.135	0.135	1.000	100
model											
IPW	-0.001	-0.003	0.111	0.107	0.111	0.107	0.111	0.939	0.948	0.970	100
Raking	0.002	0.002	0.076	0.075	0.078	0.075	0.078	0.945	0.950	1.000	100
(vanilla)											
MICE	0.001	0.003	0.073	0.073	0.076	0.073	0.076	0.952	0.953	1.000	100
MI-XGB	-0.004	-0.003	0.075	0.076	0.076	0.076	0.076	0.952	0.950	1.000	100
MI-RF	0.008	0.009	0.074	0.073	0.075	0.074	0.076	0.951	0.952	1.000	100
IPCW-	0	-0.002	0.116	0.112	0.109	0.112	0.109	0.936	0.948	0.962	100
TMLE-M											
IPCW-	0	0.001	0.116	0.11	0.11	0.11	0.11	0.933	0.946	0.962	100
TMLE-MTO											

Table 70: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and simple MAR (no dependence on Y) scenario. The value of the estimand is 0.406. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.002	0.001	0.07	0.07	0.072	0.07	0.072	0.952	0.954	1.000	100
Complete- case	0	-0.001	0.094	0.093	0.097	0.093	0.097	0.948	0.946	0.993	100
Confounded model	0.204	0.206	0.067	0.067	0.067	0.215	0.216	0.136	0.136	1.000	100
IPW	-0.002	-0.003	0.111	0.107	0.111	0.107	0.111	0.948	0.939	0.970	100
Raking	0.001	0.002	0.076	0.075	0.078	0.075	0.078	0.950	0.945	1.000	100
(vanilla)											
MICE	0.001	0.003	0.073	0.073	0.076	0.073	0.076	0.953	0.952	1.000	100
MI-XGB	-0.004	-0.003	0.075	0.076	0.076	0.076	0.076	0.950	0.952	1.000	100
MI-RF	0.008	0.008	0.074	0.073	0.075	0.074	0.076	0.952	0.951	1.000	100
IPCW-	0	-0.002	0.116	0.112	0.109	0.112	0.109	0.948	0.936	0.962	100
TMLE-M											
IPCW-	0	0.000	0.116	0.11	0.11	0.11	0.11	0.946	0.933	0.962	100
TMLE-MTO											

Table 71: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and simple MAR (no dependence on Y) scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.001	0.002	0.072	0.07	0.072	0.07	0.072	0.947	0.953	1.000	100
model											
Complete-	0	-0.003	0.169	0.166	0.166	0.166	0.166	0.945	0.946	0.686	100
case											
Confounded	0.202	0.203	0.068	0.067	0.069	0.213	0.215	0.146	0.157	1.000	100
model											
IPW	abs >	-0.002	abs >	abs >	0.261	abs >	0.261	0.939	0.997	0.372	100
	ln(10)		ln(10)	$\ln(10)$		ln(10)					
Raking	-0.001	-0.001	0.109	0.107	0.109	0.107	0.109	0.943	0.954	0.954	100
(vanilla)											
MICE	-0.001	-0.001	0.088	0.085	0.089	0.085	0.089	0.946	0.952	0.994	100
MI-RF	0.025	0.026	0.092	0.081	0.091	0.085	0.095	0.910	0.940	0.997	100
IPCW-	-0.004	-0.006	0.259	0.25	0.268	0.251	0.268	0.944	0.955	0.365	100
TMLE-M											
IPCW-	0.001	0.001	0.257	0.239	0.267	0.239	0.267	0.933	0.957	0.412	100
TMLE-MTO											

Table 72: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the simple outcome and simple MAR (no dependence on Y) scenario. The value of the estimand is 0.406. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.001	0.002	0.072	0.07	0.072	0.07	0.072	0.954	0.947	1.000	100
Complete- case	0	-0.003	0.169	0.166	0.166	0.166	0.166	0.946	0.945	0.686	100
Confounded model	0.202	0.203	0.068	0.067	0.069	0.213	0.214	0.158	0.146	1.000	100
IPW	abs > ln(10)	-0.002	abs > ln(10)	abs > ln(10)	0.261	ln(10)	0.261	0.997	0.939	0.372	100
Raking (vanilla)	-0.001	-0.001	0.109	0.107	0.109	0.107	0.109	0.954	0.943	0.954	100
MICE	-0.001	-0.002	0.088	0.085	0.089	0.085	0.089	0.952	0.946	0.994	100
MI-RF	0.025	0.026	0.092	0.081	0.091	0.085	0.095	0.940	0.910	0.997	100
IPCW-	-0.004	-0.007	0.259	0.25	0.268	0.251	0.268	0.956	0.944	0.365	100
TMLE-M											
IPCW- TMLE-MTO	0.001	0.000	0.257	0.239	0.267	0.239	0.267	0.957	0.933	0.412	100

Table 73: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR scenario. The value of the estimand is 0. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on Z.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.006	-0.003	0.145	0.142	0.147	0.142	0.147	0.948	0.952	0.052	100
model											
Complete-	0.094	0.097	0.135	0.159	0.129	0.185	0.161	0.945	0.892	0.055	100
$case^*$											
Confounded	0.193	0.192	0.073	0.087	0.07	0.212	0.205	0.376	0.242	0.624	100
model*											
IPW*	0.105	0.105	0.162	0.157	0.159	0.188	0.191	0.893	0.901	0.107	100
Raking	0.108	0.107	0.086	0.086	0.086	0.138	0.138	0.755	0.758	0.245	100
(vanilla)*											
MICE*	0.116	0.117	0.083	0.097	0.082	0.151	0.143	0.812	0.717	0.188	100
MI-XGB*	0.142	0.143	0.085	0.097	0.084	0.172	0.166	0.711	0.616	0.289	100
MI-RF*	0.151	0.150	0.083	0.095	0.081	0.178	0.171	0.664	0.564	0.336	100
IPCW-	0.086	0.083	0.165	0.161	0.163	0.182	0.183	0.919	0.916	0.081	100
$TMLE-M^*$											
IPCW-	0.105	0.103	0.126	0.117	0.123	0.157	0.16	0.849	0.871	0.151	100
$TMLE-MTO^*$											

Table 74: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR scenario. The value of the estimand is 0.115. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on Z.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.005	-0.006	0.076	0.091	0.074	0.091	0.074	0.944	0.980	0.179	100
model											
Complete-	-0.021	-0.018	0.135	0.159	0.129	0.16	0.13	0.944	0.974	0.055	100
case											
Confounded	0.078	0.077	0.073	0.087	0.07	0.117	0.104	0.818	0.902	0.624	100
model											
IPW	-0.011	-0.010	0.162	0.157	0.159	0.157	0.16	0.955	0.940	0.107	100
Raking	-0.007	-0.008	0.086	0.086	0.086	0.086	0.087	0.950	0.952	0.245	100
(vanilla)											
MICE	0.001	0.002	0.083	0.097	0.082	0.097	0.082	0.950	0.980	0.188	100
MI-XGB	0.027	0.028	0.085	0.097	0.084	0.101	0.089	0.932	0.968	0.289	100
MI-RF	0.036	0.035	0.083	0.095	0.081	0.101	0.089	0.926	0.960	0.336	100
IPCW-	-0.029	-0.032	0.165	0.161	0.163	0.163	0.166	0.948	0.931	0.081	100
TMLE-M											
IPCW-	-0.011	-0.012	0.126	0.117	0.123	0.118	0.124	0.944	0.925	0.151	100
TMLE-MTO											

Table 75: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR scenario. The value of the estimand is -0.693. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on Z.

	3.6	3.5.11	DOD	ACE	NAD	DATOR	DATOR	37 . 1	0 1	D	D
Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.006	-0.008	0.152	0.152	0.147	0.152	0.148	0.942	0.941	0.996	100
model											
Complete-	0.572	0.573	0.14	0.168	0.14	0.596	0.59	0.054	0.018	0.064	100
$case^*$											
Confounded	0.646	0.646	0.079	0.092	0.08	0.652	0.651	0.000	0.000	0.044	100
model^*											
IPW^*	0.555	0.556	0.167	0.166	0.165	0.58	0.58	0.082	0.082	0.142	100
Raking	0.561	0.562	0.093	0.09	0.094	0.568	0.57	0.000	0.000	0.314	100
$(vanilla)^*$											
MICE*	0.572	0.571	0.089	0.102	0.088	0.581	0.578	0.000	0.000	0.187	100
MI-XGB*	0.599	0.601	0.091	0.102	0.091	0.608	0.607	0.000	0.000	0.117	100
MI-RF*	0.609	0.608	0.089	0.1	0.088	0.617	0.614	0.000	0.000	0.105	100
IPCW-	0.54	0.541	0.17	0.169	0.17	0.566	0.567	0.102	0.111	0.170	100
$TMLE-M^*$											
IPCW-	0.551	0.550	0.132	0.124	0.129	0.565	0.565	0.010	0.010	0.250	100
$TMLE-MTO^*$											

Table 76: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR scenario. The value of the estimand is -0.127. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on Z.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.004	-0.005	0.082	0.096	0.082	0.096	0.082	0.950	0.976	0.240	100
model											
Complete-	0.006	0.007	0.14	0.168	0.14	0.169	0.14	0.948	0.986	0.064	100
case											
Confounded	0.08	0.080	0.079	0.092	0.08	0.122	0.113	0.825	0.893	0.044	100
model											
IPW	-0.011	-0.010	0.167	0.166	0.165	0.166	0.165	0.949	0.943	0.142	100
Raking	-0.005	-0.004	0.093	0.09	0.094	0.09	0.094	0.950	0.937	0.314	100
(vanilla)											
MICE	0.006	0.005	0.089	0.102	0.088	0.102	0.088	0.951	0.973	0.187	100
MI-XGB	0.033	0.035	0.091	0.102	0.091	0.107	0.097	0.933	0.961	0.117	100
MI-RF	0.043	0.042	0.089	0.1	0.088	0.108	0.098	0.920	0.952	0.105	100
IPCW-	-0.026	-0.025	0.17	0.169	0.17	0.171	0.172	0.945	0.937	0.170	100
TMLE-M											
IPCW-	-0.015	-0.016	0.132	0.124	0.129	0.125	0.13	0.948	0.925	0.250	100
TMLE-MTO											

Table 77: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR scenario. The value of the estimand is 0. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on W.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.002	0.001	0.144	0.143	0.145	0.143	0.145	0.950	0.953	0.050	100
model											
Complete-	0.036	0.038	0.133	0.157	0.133	0.161	0.138	0.970	0.938	0.030	100
case^*											
Confounded	-0.254	-0.254	0.073	0.073	0.073	0.264	0.265	0.066	0.069	0.934	100
$model^*$											
IPW*	0.109	0.110	0.141	0.142	0.138	0.179	0.176	0.885	0.881	0.115	100
Raking	0.118	0.116	0.113	0.109	0.113	0.16	0.162	0.802	0.819	0.198	100
$(vanilla)^*$											
MICE*	0.092	0.091	0.093	0.108	0.094	0.141	0.131	0.906	0.834	0.094	100
MI-XGB*	0.092	0.095	0.117	0.119	0.114	0.151	0.149	0.880	0.880	0.120	100
MI-RF*	0.198	0.197	0.106	0.111	0.107	0.227	0.224	0.573	0.538	0.427	100
IPCW-	0.1	0.100	0.149	0.148	0.145	0.178	0.176	0.897	0.895	0.103	100
$TMLE-M^*$											
IPCW-	0.116	0.114	0.115	0.107	0.116	0.158	0.162	0.786	0.826	0.214	100
$TMLE-MTO^*$											

Table 78: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR scenario. The value of the estimand is 0.116. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on W.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
Listinator	bias	bias		TIDL	WITE	TOVIOL	TIGNISE	cover-	cover-	1 OWC1	com-
	Dias	Dias									pleted
- D 1 1	0	0.000	0.070	0.000	0.070	0.000	0.050	age	age	0.010	
Benchmark	0	0.000	0.079	0.092	0.078	0.092	0.078	0.948	0.977	0.212	100
model											
Complete-	-0.08	-0.078	0.133	0.157	0.133	0.176	0.154	0.916	0.955	0.030	100
case											
Confounded	-0.37	-0.370	0.073	0.073	0.073	0.377	0.378	0.002	0.002	0.934	100
model											
IPW	-0.007	-0.006	0.141	0.142	0.138	0.142	0.138	0.946	0.952	0.115	100
Raking	0.002	0.000	0.113	0.109	0.113	0.109	0.113	0.947	0.942	0.198	100
(vanilla)											
MICE	-0.024	-0.025	0.093	0.108	0.094	0.111	0.098	0.942	0.969	0.094	100
MI-XGB	-0.024	-0.021	0.117	0.119	0.114	0.121	0.116	0.944	0.949	0.120	100
MI-RF	0.082	0.080	0.106	0.111	0.107	0.138	0.134	0.873	0.895	0.427	100
IPCW-	-0.016	-0.016	0.149	0.148	0.145	0.149	0.146	0.949	0.942	0.103	100
TMLE-M											
IPCW-	0	-0.002	0.115	0.107	0.116	0.107	0.116	0.952	0.929	0.214	100
TMLE-MTO											

Table 79: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR scenario. The value of the estimand is -0.693. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on W.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.003	0.002	0.154	0.153	0.154	0.153	0.154	0.949	0.951	0.997	100
model											
Complete-	0.488	0.490	0.138	0.166	0.142	0.515	0.51	0.130	0.062	0.189	100
$case^*$											
Confounded	0.247	0.247	0.077	0.077	0.078	0.258	0.259	0.110	0.104	1.000	100
model^*											
IPW*	0.563	0.560	0.15	0.15	0.15	0.583	0.579	0.040	0.038	0.142	100
Raking	0.568	0.568	0.113	0.114	0.114	0.579	0.58	0.003	0.002	0.198	100
$(vanilla)^*$											
MICE*	0.581	0.580	0.091	0.112	0.089	0.591	0.587	0.000	0.000	0.124	100
MI-XGB*	0.591	0.590	0.117	0.125	0.117	0.604	0.601	0.004	0.002	0.112	100
MI-RF*	0.65	0.651	0.104	0.116	0.107	0.661	0.659	0.000	0.000	0.040	100
IPCW-	0.552	0.550	0.155	0.155	0.153	0.573	0.571	0.060	0.058	0.155	100
$TMLE-M^*$											
IPCW-	0.56	0.560	0.121	0.114	0.122	0.571	0.573	0.004	0.005	0.244	100
$TMLE-MTO^*$											

Table 80: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR scenario. The value of the estimand is -0.128. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on W.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.003	0.003	0.082	0.096	0.081	0.096	0.081	0.953	0.980	0.213	100
model											
Complete-	-0.077	-0.075	0.138	0.166	0.142	0.183	0.16	0.910	0.966	0.189	100
case											
Confounded	-0.318	-0.318	0.077	0.077	0.078	0.328	0.327	0.014	0.013	1.000	100
model											
IPW	-0.002	-0.005	0.15	0.15	0.15	0.15	0.15	0.952	0.951	0.142	100
Raking	0.003	0.003	0.113	0.114	0.114	0.114	0.114	0.950	0.949	0.198	100
(vanilla)											
MICE	0.016	0.016	0.091	0.112	0.089	0.113	0.09	0.944	0.981	0.124	100
MI-XGB	0.026	0.025	0.117	0.125	0.117	0.127	0.12	0.943	0.951	0.112	100
MI-RF	0.086	0.086	0.104	0.116	0.107	0.144	0.137	0.863	0.910	0.040	100
IPCW-	-0.013	-0.015	0.155	0.155	0.153	0.156	0.153	0.944	0.946	0.155	100
TMLE-M											
IPCW-	-0.005	-0.005	0.121	0.114	0.122	0.114	0.122	0.951	0.934	0.244	100
TMLE-MTO											

Table 81: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR (no dependence on Y) scenario. The value of the estimand is -0.693. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on W.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.009	-0.012	0.153	0.153	0.154	0.153	0.154	0.954	0.949	0.998	100
model											
Complete-	0.547	0.546	0.189	0.226	0.183	0.592	0.576	0.286	0.168	0.058	100
$case^*$											
Confounded	0.243	0.244	0.075	0.077	0.076	0.255	0.255	0.115	0.095	1.000	100
model^*											
IPW^*	abs >	0.551	abs >	abs >	0.306	abs >	0.63	0.499	0.996	0.110	100
	ln(10)		ln(10)	ln(10)		ln(10)					
Raking	0.571	0.568	0.237	0.213	0.226	0.609	0.611	0.250	0.330	0.121	100
$(vanilla)^*$											
MICE*	0.399	0.396	0.097	0.127	0.096	0.418	0.408	0.056	0.017	0.686	100
MI-RF*	0.666	0.665	0.149	0.136	0.149	0.679	0.682	0.006	0.006	0.085	100
IPCW-	0.555	0.558	0.319	0.291	0.322	0.627	0.644	0.510	0.589	0.110	100
$TMLE-M^*$											
IPCW-	0.562	0.561	0.271	0.219	0.267	0.603	0.621	0.305	0.457	0.163	100
TMLE-MTO*											

Table 82: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR (no dependence on Y) scenario. The value of the estimand is -0.128. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on W.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.001	0.000	0.08	0.096	0.083	0.096	0.083	0.951	0.980	0.227	100
Complete-	-0.018	-0.018	0.189	0.226	0.183	0.226	0.184	0.946	0.983	0.058	100
case											
Confounded	-0.322	-0.321	0.075	0.077	0.076	0.331	0.33	0.010	0.012	1.000	100
model											
IPW	abs >	-0.014	abs >	abs >	0.306	abs >	0.306	0.996	0.924	0.110	100
	ln(10)		$\ln(10)$	$\ln(10)$		$\ln(10)$					
Raking	0.006	0.003	0.237	0.213	0.226	0.213	0.226	0.949	0.924	0.121	100
(vanilla)											
MICE	-0.166	-0.169	0.097	0.127	0.096	0.209	0.194	0.594	0.778	0.686	100
MI-RF	0.101	0.100	0.149	0.136	0.149	0.169	0.18	0.903	0.869	0.085	100
IPCW-	-0.01	-0.007	0.319	0.291	0.322	0.291	0.322	0.950	0.924	0.110	100
TMLE-M											
IPCW-	-0.003	-0.004	0.271	0.219	0.267	0.219	0.267	0.950	0.871	0.163	100
TMLE-MTO											

Table 83: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR scenario. The value of the estimand is -0.693. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on W.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.006	-0.001	0.155	0.153	0.152	0.153	0.152	0.951	0.953	0.996	100
model											
Complete-	0.587	0.596	0.289	0.327	0.269	0.672	0.654	0.549	0.459	0.034	100
$case^*$											
Confounded	0.243	0.244	0.075	0.077	0.072	0.255	0.254	0.104	0.093	1.000	100
$model^*$											
IPW*	0.528	0.536	0.334	0.306	0.325	0.61	0.627	0.565	0.641	0.102	100
Raking	0.567	0.566	0.221	0.201	0.211	0.602	0.604	0.210	0.266	0.129	100
$(vanilla)^*$											
MICE^*	0.593	0.585	0.14	0.147	0.138	0.611	0.601	0.005	0.004	0.112	100
$MI-RF^*$	0.716	0.712	0.163	0.136	0.167	0.728	0.731	0.002	0.003	0.101	100
IPCW-	0.509	0.507	0.343	0.315	0.325	0.599	0.602	0.618	0.693	0.116	100
$TMLE-M^*$											
IPCW-	0.528	0.527	0.29	0.238	0.277	0.579	0.595	0.401	0.563	0.166	100
$TMLE-MTO^*$											

Table 84: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the semi-complex outcome and simple MAR scenario. The value of the estimand is -0.128. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star. The semi-complex outcome is a function of exponentiated and squared terms on W.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0.002	0.003	0.081	0.096	0.083	0.096	0.083	0.955	0.980	0.222	100
Complete-	0.022	0.031	0.289	0.327	0.269	0.328	0.27	0.950	0.973	0.034	100
case											
Confounded	-0.322	-0.321	0.075	0.077	0.072	0.331	0.329	0.008	0.008	1.000	100
model											
IPW	-0.036	-0.029	0.334	0.306	0.325	0.308	0.326	0.953	0.929	0.102	100
Raking	0.002	0.001	0.221	0.201	0.211	0.201	0.211	0.950	0.926	0.129	100
(vanilla)											
MICE	0.028	0.020	0.14	0.147	0.138	0.15	0.139	0.945	0.959	0.112	100
MI-RF	0.151	0.147	0.163	0.136	0.167	0.203	0.222	0.855	0.767	0.101	100
IPCW-	-0.056	-0.058	0.343	0.315	0.325	0.319	0.33	0.944	0.929	0.116	100
TMLE-M											
IPCW-	-0.037	-0.038	0.29	0.238	0.277	0.241	0.279	0.947	0.886	0.166	100
TMLE-MTO											

Table 85: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and simple MAR scenario. The value of the estimand is 0. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0	-0.001	0.085	0.086	0.084	0.086	0.084	0.956	0.952	0.044	100
Complete- case*	-0.136	-0.136	0.127	0.131	0.128	0.189	0.187	0.838	0.814	0.162	100
Confounded model*	-0.224	-0.225	0.072	0.073	0.072	0.235	0.236	0.134	0.132	0.866	100
IPW^*	0.059	0.063	0.135	0.139	0.135	0.151	0.149	0.939	0.934	0.061	100
Raking (vanilla)*	0.061	0.062	0.084	0.085	0.08	0.105	0.101	0.894	0.888	0.106	100
MICE*	0.132	0.133	0.085	0.087	0.084	0.159	0.157	0.684	0.664	0.316	100
MI-XGB*	0.098	0.097	0.082	0.084	0.077	0.129	0.124	0.798	0.785	0.202	100
MI-RF*	0.074	0.073	0.085	0.083	0.081	0.111	0.109	0.851	0.855	0.149	100
IPCW-	0.042	0.042	0.139	0.145	0.141	0.151	0.147	0.956	0.943	0.044	100
$TMLE-M^*$											
IPCW- TMLE-MTO*	0.053	0.052	0.132	0.132	0.132	0.142	0.142	0.934	0.934	0.066	100

Table 86: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and simple MAR scenario. The value of the estimand is 0.064. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	-0.003	-0.004	0.074	0.077	0.073	0.077	0.074	0.952	0.959	0.118	100
model											
Complete-	-0.2	-0.200	0.127	0.131	0.128	0.239	0.237	0.647	0.669	0.162	100
case											
Confounded	-0.287	-0.288	0.072	0.073	0.072	0.297	0.297	0.021	0.021	0.866	100
model											
IPW	-0.004	-0.001	0.135	0.139	0.135	0.139	0.135	0.952	0.956	0.061	100
Raking	-0.003	-0.002	0.084	0.085	0.08	0.085	0.08	0.950	0.956	0.106	100
(vanilla)											
MICE	0.069	0.069	0.085	0.087	0.084	0.111	0.109	0.874	0.886	0.316	100
MI-XGB	0.035	0.034	0.082	0.084	0.077	0.091	0.084	0.928	0.936	0.202	100
MI-RF	0.01	0.009	0.085	0.083	0.081	0.084	0.082	0.943	0.940	0.149	100
IPCW-	-0.022	-0.022	0.139	0.145	0.141	0.147	0.143	0.949	0.954	0.044	100
TMLE-M											
IPCW-	-0.011	-0.011	0.132	0.132	0.132	0.132	0.132	0.951	0.945	0.066	100
TMLE-MTO											

Table 87: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and complex MAR (no dependence on Y) scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	-0.002	0.000	0.082	0.08	0.08	0.08	0.08	0.947	0.954	0.999	100.00
Complete- case*	-0.068	-0.072	0.158	0.159	0.165	0.173	0.18	0.931	0.931	0.556	100.00
Confounded model*	-0.316	-0.318	0.07	0.068	0.069	0.324	0.325	0.006	0.007	0.261	100.00
IPW*	abs >	0.209	abs >	abs >	abs >	abs >	abs >	0.632	0.926	0.347	100.00
	ln(10)		ln(10)	$\ln(10)$	ln(10)	ln(10)	ln(10)				
Raking	abs >	0.272	abs >	abs >	0.867	abs >	0.909	0.895	0.941	0.193	94.24
$(vanilla)^*$	ln(10)		ln(10)	$\ln(10)$		ln(10)					
MICE*	-0.095	-0.094	0.124	0.105	0.124	0.142	0.156	0.769	0.876	0.826	100.00
MI-RF*	-0.161	-0.157	0.1	0.094	0.102	0.186	0.188	0.584	0.642	0.732	100.00
IPCW-	-0.069	-0.081	0.406	0.367	0.378	0.373	0.387	0.908	0.944	0.158	100.00
TMLE-M*											

Table 88: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 80% missing proportion. Comparing estimators under the complex outcome and complex MAR (no dependence on Y) scenario. The value of the estimand is 0.371. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark model	0	-0.001	0.073	0.072	0.07	0.072	0.07	0.950	0.949	0.999	100.00
Complete- case	-0.034	-0.038	0.158	0.159	0.165	0.163	0.169	0.944	0.947	0.556	100.00
Confounded model	-0.282	-0.284	0.07	0.068	0.069	0.29	0.292	0.016	0.016	0.261	100.00
IPW	abs >	0.243	abs >	0.926	0.636	0.347	100.00				
	ln(10)		ln(10)	ln(10)	ln(10)	ln(10)	ln(10)				
Raking	abs >	0.306	abs >	abs >	0.867	abs >	0.92	0.941	0.897	0.193	94.24
(vanilla)	ln(10)		ln(10)	ln(10)		ln(10)					
MICE	-0.061	-0.060	0.124	0.105	0.124	0.121	0.138	0.919	0.835	0.826	100.00
MI-RF	-0.127	-0.123	0.1	0.094	0.102	0.157	0.16	0.751	0.700	0.732	100.00
IPCW-	-0.035	-0.047	0.406	0.367	0.378	0.369	0.381	0.947	0.919	0.158	100.00
TMLE-M											

Table 89: Synthetic data MAR simulation: oracle conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and simple MAR (no dependence on Y) scenario. The value of the estimand is 0.405. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Nominal	Oracle	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.003	0.002	0.081	0.08	0.079	0.081	0.079	0.950	0.951	0.999	100
model											
Complete-	-0.069	-0.071	0.166	0.162	0.168	0.176	0.183	0.929	0.935	0.544	100
$case^*$											
Confounded	-0.314	-0.313	0.068	0.068	0.066	0.321	0.32	0.004	0.004	0.266	100
$model^*$											
IPW*	abs >	-0.046	abs >	abs >	0.253	abs >	0.257	0.909	0.986	0.344	100
	ln(10)		ln(10)	ln(10)		ln(10)					
Raking	-0.034	-0.035	0.127	0.119	0.126	0.124	0.131	0.922	0.940	0.878	100
$(vanilla)^*$											
MICE*	0.089	0.086	0.107	0.105	0.109	0.138	0.139	0.867	0.860	0.997	100
MI-RF*	-0.022	-0.023	0.1	0.089	0.099	0.092	0.102	0.916	0.948	0.982	100
IPCW-	-0.039	-0.043	0.256	0.24	0.251	0.243	0.254	0.925	0.948	0.344	100
$TMLE-M^*$											
IPCW-	-0.014	-0.021	0.253	0.215	0.248	0.216	0.249	0.898	0.954	0.450	100
TMLE-MTO*											

Table 90: Synthetic data MAR simulation: census conditional odds ratio (cOR), 12% outcome proportion, 40% missing proportion. Comparing estimators under the complex outcome and simple MAR (no dependence on Y) scenario. The value of the estimand is 0.371. The sample size is n = 10000. Maximum observed Monte-Carlo error over the 2500 simulation replications was 0.009 for all summaries besides coverage and 0.012 for coverage. ESE = empirical standard error, ASE = asymptotic standard error, MAD = mean absolute deviation, RMSE = root mean squared error, rRMSE = robust RMSE (using median bias and MAD), Oracle coverage = coverage of a confidence interval based on the ESE, Nominal coverage = coverage of a confidence interval based on the ASE. Estimators that are mismatched with the estimand (i.e., are estimating a different parameter) are emphasized using a star.

Estimator	Mean	Median	ESE	ASE	MAD	RMSE	rRMSE	Oracle	Nominal	Power	Prop.
	bias	bias						cover-	cover-		com-
								age	age		pleted
Benchmark	0.002	0.002	0.071	0.072	0.07	0.072	0.07	0.947	0.951	0.999	100
model											
Complete-	-0.035	-0.037	0.166	0.162	0.168	0.166	0.172	0.947	0.944	0.544	100
case											
Confounded	-0.28	-0.279	0.068	0.068	0.066	0.288	0.287	0.017	0.017	0.266	100
model											
IPW	abs >	-0.012	abs >	abs >	0.253	abs >	0.254	0.986	0.922	0.344	100
	ln(10)		ln(10)	$\ln(10)$		ln(10)					
Raking	0	0.000	0.127	0.119	0.126	0.119	0.126	0.944	0.931	0.878	100
(vanilla)											
MICE	0.123	0.120	0.107	0.105	0.109	0.162	0.162	0.781	0.792	0.997	100
MI-RF	0.012	0.011	0.1	0.089	0.099	0.09	0.1	0.948	0.918	0.982	100
IPCW-	-0.005	-0.009	0.256	0.24	0.251	0.24	0.251	0.949	0.931	0.344	100
TMLE-M											
IPCW-	0.02	0.013	0.253	0.215	0.248	0.216	0.249	0.953	0.898	0.450	100
TMLE-MTO											