

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

Parametrikus görbék és felületek pontos offsetelése

SZAKDOLGOZAT

Készítette Sandle Nátán Konzulens Salvi Péter

Tartalomjegyzék

1.	. Bevezetés		
	1.1.	CAD/CAM	1
	1.2.	Parametrikus görbék, felületek	1
	1.3.	Polinomok, racionális függvények	1
	1.4.	Kontrollpont-alapú reprezentáció	2
		1.4.1. Bézier görbék	2
		1.4.2. B-Spline	2
		1.4.3. NURBS	3
	1.5.	Parametrikus sebesség	3
2.	\mathbf{PH}	Görbék	4
	2.1.	PH síkgörbék	4
		2.1.1. Alapok	4
		2.1.2. Reprezentáció komplex számokkal	4
		2.1.3. Interpoláció	4
	2.2.	PH térgörbék	4
		2.2.1. Alapok	4
		2.2.2. Reprezentáció kvaterniókkal	4
		2.2.3. Interpoláció	4
3.	PN	felületek	5
4.	\mathbf{PN}	interpoláció \mathbb{C}^1 folytonossággal	6
	4.1.	Feladat	6
		Duális reprezentáció	
	4.3.	Izotróp tér	7
		Irányvektorok meghatározása	
	4.5.	Coons-patch	9
	4.6.	Visszatranszformálás	10
5.	Imp	olementációs részletek	11
		Polinom osztály	
	5.2.	Megjelenítés	11
6.	Ere	dmények	12

HALLGATÓI NYILATKOZAT

Alulírott Sandle Nátán, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2025-05-18	
	$Sandle\ Ncute{a}tcute{a}n$
	hallgató

Bevezetés

1.1. CAD/CAM

a

1.2. Parametrikus görbék, felületek

Compu

1.3. Polinomok, racionális függvények

Amikor geometriai alakzatokat szeretnénk szoftveresen reprezentálni, figyelembe kell vennünk a számítógépek technikai limitációit. A reprezentációban megjelenő matematikai kifejezéseket sokszor ki kell értékelnünk, ennek az időigénye és pontossága pedig drasztikus mértékben függ a kifejezés jellegétől.

Az összeadást, kivonást és szorzást nagyon egyszerű algoritmusokkal, akár 1 CPU-ciklus alatt végre tudjuk hajtani, az eredmény pontossága csak a számok mögötti adatszerkezet (általában floating-point) limitációitól függ.

Azokat a függvényeket, amik kifejezhetők véges sok összeadással, kivonással és szorzással, polinomoknak hívjuk. Egy egyváltozós polinom kanonikus alakja

$$P(x) = \sum_{k=0}^{n} a_k x^k$$

Az osztás egy kissé költségesebb (illetve adott esetben pontatlanabb) művelet. Ha az osztást is megengedjük, az így kifejezhető függvényeket racionális függvényeknek hívjuk. Minden racionális függvény leírható az alábbi alakban

$$R(x) = \frac{A(x)}{B(x)}$$

ahol A(x) és B(x) polinomok. Ez kedvező, mert így egy racionális függvény kiértékelésekor elég csak egyszer osztani.

Sok nevezetes függvényt (például \sqrt{x} , $\sin(x)$, $\ln(x)$) nem lehet kifejezni véges sok alapművelettel, értéküket csak megközelíteni tudjuk. Ezt vagy egy közelítő

polinommal/racionálissal tesszük (pl Taylor-sor, Padé közelítő), vagy ismételt, inkrementálisan közelítő lépéseket hajtunk végre (pl Newton-módszer).

Ebből következik, hogy az ilyen függvények kiértékelése lassabb, pontatlanabb, vagy mindkettő, mint egy alacsony fokú polinom vagy racionális függvény. Így lehetőség szerint el akarjuk őket kerülni egy CAD környezetben.

1.4. Kontrollpont-alapú reprezentáció

Ha egy görbét/felületet meghatározó polinomot a szokásos hatványösszeg alakban írunk le, az együtthatók nem nyújtanak intuitív betekintést a görbe/felület geometriai tulajdonságaiba. A CAD-ben elterjedtek olyan alternatív reprezentációk, melyek.

A kontrollpontok tekinthetők együtthatóknak egy másik bázisban, de léteznek

1.4.1. Bézier görbék

Egy n-ed fokú Bézier görbét n+1 kontrollponttal reprezentálunk. Kiértékelni a De Casteljau algoritmussal tudjuk, ami rekurzív lineáris interpolációra épül. A Béziér kontrollpontok a görbe mögötti polinom együtthatói a Bernstein-bázisban, melynek k-adik eleme

$$b_{k,n}(t) = \binom{n}{k} t^k (1-t)^{n-k}$$

A Béziér görbe t=0-ban áthalad az első kontrollponton, t=1-ben az utolsón, a többit pedig közelíti. Az első illetve utolsó kettő kontrollpontot összekötő egyenes érinti a görbét az első illetve utolsó kontrollpontban. Kifejezetten népszerű a harmadfokú Bézier görbe a graphic design területén, hiszen egyszerűen lehet állítani a görbe irányait a végpontokban.

1.4.2. B-Spline

A B-Spline (Basis-Spline) darabonként definiált bázisfüggvényekből áll, melyeknek szegmenseit úgynevezett "csomópontok" (knots) választják el $(t_0,t_1...t_m)$. A bázisfüggvényeket A Cox-de Boor képlettel tudjuk kiértékelni:

$$B_{i,0}(t) \coloneqq \begin{cases} 1 & \text{ha } t_i \leq t < t_{i+1} \\ 0 & \text{egyébként} \end{cases}$$

$$B_{i,n}(t) \coloneqq \frac{t-t_i}{t_{i+n}-t_i} + \frac{t_{i+n+1}-t}{t_{i+n+1}-t_{i+1}}$$

A B-Spline előnye, hogy "maximális folytonosságot" biztosít a szegmensek között, n-edfokú spline esetén C^{n-1} -et. Azonban általános esetben az egyik kontrollponton sem megy át, csak közelíti őket. Csomópontok ismétlésével elérhető, hogy a görbe átmenjen egy kontrollponton, ez azonban a folytonosság vesztésével jár. Mivel ez nem okoz gondot az első és utolsó kontrollpontban, ott gyakran megteszik (clamping).

1.4.3. NURBS

1.5. Parametrikus sebesség

PH Görbék

- 2.1. PH síkgörbék
- 2.1.1. Alapok
- 2.1.2. Reprezentáció komplex számokkal
- 2.1.3. Interpoláció
- 2.2. PH térgörbék
- 2.2.1. Alapok
- 2.2.2. Reprezentáció kvaterniókkal
- 2.2.3. Interpoláció

PN felületek

PN interpoláció C^1 folytonosság-gal

4.1. Feladat

4.2. Duális reprezentáció

Egy olyan $\mathbf{x}(\mathbf{s})$ racionális felületet keresünk, melynek egységhosszúságú normálvektorait leíró $\mathbf{n}(\mathbf{s})$ függvény szintén racionális. Kézenfekfő lehet "fordítva gondolkozni": először konstruálni egy garantáltan racionális $\mathbf{n}(\mathbf{s})$ -t, majd ebből meghatározni $\mathbf{x}(\mathbf{s})$ -t. Felületünket a szokásos (x,y,z) koordináták helyett reprezentálhatjuk az úgynevezett "duális térben", (n_x,n_y,n_z,h) koordinátákkal. Ezek a koordináták a felület egy pontja helyett a felület egy érintősíkját írják le.

Ha \mathbf{x} a felület egy pontja, \mathbf{n} pedig a felület normálvektora ebben a pontban, az ennek megfelelő pont a duális térben (\mathbf{n}, h) , ahol:

$$\mathbf{x} \cdot \mathbf{n} = h$$

Ha feltételezzük, hogy \mathbf{n} egység hosszúságú, akkor h nem más, mint az érintősík távolsága az origótól. A $h(\mathbf{s})$ függvényt a felület support függvényének hívjuk.

Ezzel a képlettel már át tudjuk transzformálni az interpolálandó adatpontokat a duális térbe. Ahhoz, hogy a végeredményt leírhassuk a "primális" térben, szükségünk lesz az inverzre is, tehát \mathbf{n} -ből és h-ból ki szeretnénk számolni \mathbf{x} -et. Ehhez először fel kell írnunk néhány azonosságot.

 $\mathbf{x}(\mathbf{s})$ parciális deriváltjai párhuzamosak az érintősíkkal

$$\frac{d\mathbf{x}}{d\mathbf{s}}^T\mathbf{n} = \mathbf{0}$$

Így $h(\mathbf{s})$ deriváltja

$$\frac{dh}{ds} = \frac{d}{ds} \mathbf{x}^T \mathbf{n} = \mathbf{x}^T \frac{d\mathbf{n}}{ds}$$

Mivel $\mathbf{n}(\mathbf{s})$ egységhossúságú, egy gömbfelületet ír le. Parciális deriváltjai merőlegesek rá

$$\frac{d}{d\mathbf{s}}\mathbf{n} \cdot \mathbf{n} = 2 \mathbf{n}^T \frac{d\mathbf{n}}{d\mathbf{s}} = \frac{d}{d\mathbf{s}} \mathbf{1} = \mathbf{0}$$
$$\Rightarrow \frac{d\mathbf{n}}{d\mathbf{s}}^T \mathbf{n} = \mathbf{0}$$

 $h\mathbf{n}$ egy pont az érintősíkon, $\frac{d\mathbf{n}}{du}$ és $\frac{d\mathbf{n}}{dv}$ pedig az érintősíkkal párhuzamos vektorok. Így **x**-et ki tudjuk fejezni az alábbi módon

$$\mathbf{x} = h\mathbf{n} + \frac{d\mathbf{n}}{d\mathbf{s}} \cdot \mathbf{r}$$

Szorozva $\frac{d\mathbf{n}}{d\mathbf{s}}^T$ -al

$$\frac{dh}{d\mathbf{s}}^{T} = \frac{d\mathbf{n}}{d\mathbf{s}}^{T} \frac{d\mathbf{n}}{d\mathbf{s}} \cdot \mathbf{r}$$
$$\mathbf{r} = \left(\frac{d\mathbf{n}}{d\mathbf{s}}^{T} \frac{d\mathbf{n}}{d\mathbf{s}}\right)^{-1} \frac{dh}{d\mathbf{s}}^{T}$$

Tehát

$$\mathbf{x} = h\mathbf{n} + \frac{d\mathbf{n}}{d\mathbf{s}} \left(\frac{d\mathbf{n}}{d\mathbf{s}}^T \frac{d\mathbf{n}}{d\mathbf{s}} \right)^{-1} \frac{dh}{d\mathbf{s}}^T$$

4.3. Izotróp tér

Az egységhosszúságú normálvektor előírásával \mathbb{R}^4 -et leszűkítettük \mathcal{B} -re, az úgynevezett Blaschke hengerre. Az interpoláció közben szeretnénk biztosítani, hogy a hengeren maradunk. Ennek érdekében bevezetünk egy új reprezentációt, az izotróp térben. Ezt a reprezentációt úgy állítjuk elő, hogy a $\mathbf{w}=(0,0,1,0)$ pontból az $n_z=0$ hipersíkba vetítünk

$$\mathbf{y}(\mathbf{b}) = \frac{1}{1 - n_z} \begin{pmatrix} n_x \\ n_y \\ h \end{pmatrix}$$

Ennek az inverze

$$\mathbf{b}(\mathbf{y}) = \frac{1}{1 + y_x^2 + y_y^2} \begin{pmatrix} 2y_x \\ 2y_y \\ -1 + y_x^2 + y_y^2 \\ 2y_z \end{pmatrix}$$

Az izotróp térben szabadon interpolálhatunk a transzformált adatpontok között, majd a felületet visszavetítjük a Blaschke hengerre.

Bárhogy is interpoláljuk az adatpontjainkat az izotróp térben, a visszatranszformált felület érintősíkjai meg fognak egyezni az előírtakkal. Ahhoz viszont, hogy

a konkrét térbeli pozíció is megegyezzen, korlátoznunk kell a felület lehetséges deriváltjait az interpolációs pontokban

$$\mathbf{x}^{T} \frac{d\mathbf{n}}{d\mathbf{s}} = \frac{dh}{d\mathbf{s}}$$

$$\mathbf{x}^{T} \frac{d\mathbf{n}}{d\mathbf{y}} \frac{d\mathbf{y}}{d\mathbf{s}} = \frac{dh}{d\mathbf{y}} \frac{d\mathbf{y}}{d\mathbf{s}}$$

$$\underbrace{\left(\mathbf{x}^{T} \frac{d\mathbf{n}}{d\mathbf{y}} - \frac{dh}{d\mathbf{y}}\right)}_{\mathbf{y}} \frac{d\mathbf{y}}{d\mathbf{s}} = \mathbf{0}$$

Ahol

$$\begin{pmatrix} \frac{d\mathbf{n}}{d\mathbf{y}} \\ \frac{dh}{d\mathbf{y}} \end{pmatrix} = \frac{d\mathbf{b}}{d\mathbf{y}} = \frac{2}{\left(1 + y_x^2 + y_y^2\right)^2} \begin{pmatrix} 1 - y_x^2 + y_y^2 & -2y_x y_y & 0 \\ -2y_x y_y & 1 + y_x^2 - y_y^2 & 0 \\ 2y_x & 2y_y & 0 \\ -2y_x y_z & -2y_y y_z & 1 \end{pmatrix}$$

Tehát az izotróp térben kiválasztott kezdeti/végponti deriváltaknak illeszkedniük kell a **v** normálvektorú, origót tartalmazó síkra.

4.4. Irányvektorok meghatározása

Jelenleg rendelkezünk egy négyzetrács szerkezetű ponthálózattal, illetve pontonként egy síkkal. Mivel ezekből még nem következnek egyértelműen a pontokhoz rendelendő deriváltak, heurisztikát fogunk alkalmazni.

Legyen $\mathbf{a}_{i,j}$ a hálózat egy pontja, ahol i a pont "u irányban", j pedig a "v irányban" vett indexe. Legyen továbbá n és m a legmagasabb i, illetve j index. Jelölje $\gamma_{i,j}$ a felület u szerinti deriváltját az $\mathbf{a}_{i,j}$ pontban, $\delta_{i,j}$ pedig a v szerinti deriváltat ugyanitt.

Ha $\mathbf{a}_{i,j}$ a pontháló szélén van

$$egin{aligned} m{\gamma}_{0,j}^* &= \mathbf{a}_{1,j} - \mathbf{a}_{0,j} & m{\delta}_{i,0}^* &= \mathbf{a}_{i,1} - \mathbf{a}_{i,0} \ m{\gamma}_{n,j}^* &= \mathbf{a}_{n,j} - \mathbf{a}_{n-1,j} & m{\delta}_{i,n}^* &= \mathbf{a}_{i,n} - \mathbf{a}_{i,n-1} \end{aligned}$$

Egyébként a két vektort átlagoljuk

$$\gamma_{i,j}^* = \frac{\mathbf{a}_{i+1,j} - \mathbf{a}_{i-1,j}}{2} \qquad \qquad \delta_{i,j}^* = \frac{\mathbf{a}_{i,j+1} - \mathbf{a}_{i,j-1}}{2}$$

A kapott vektorokat még le kell vetítenünk a **v** által meghatározott síkra

$$\mathbf{\gamma}_{i,j} = \mathbf{\gamma}_{i,j}^* - rac{\mathbf{v} \cdot \mathbf{\gamma}_{i,j}^*}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \qquad \qquad \mathbf{\delta}_{i,j} = \mathbf{\delta}_{i,j}^* - rac{\mathbf{v} \cdot \mathbf{\delta}_{i,j}^*}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}$$

4.5. Coons-patch

Vegyünk a ponthálónkból egy kis négyzetet, ennek sarokpontjait nevezzük \mathbf{a}_{00} , \mathbf{a}_{01} , \mathbf{a}_{10} , \mathbf{a}_{11} -nek. Ezek között akarunk interpolálni úgy, hogy a létrejött felületdarab a vele szomszédos felületdarabokra C^1 folytonossággal illeszkedjen. Ehhez egy Coons patch-et fogunk használni.

A Coons patch létrehozásához szükségünk van 4 határgörbére $(\mathbf{c}_0(u), \mathbf{c}_1(u), \mathbf{d}_0(v), \mathbf{d}_0(v))$, ahol

$$\begin{split} \mathbf{c}_0(0) &= \mathbf{d}_0(0) = \mathbf{a}_{00} \\ \mathbf{c}_0(1) &= \mathbf{d}_1(0) = \mathbf{a}_{10} \\ \mathbf{c}_1(0) &= \mathbf{d}_0(1) = \mathbf{a}_{01} \\ \mathbf{c}_1(1) &= \mathbf{d}_1(1) = \mathbf{a}_{11} \end{split}$$

valamint egy 0 és 1 között interpoláló F(t) függvényre. Az egyszerűség kedvéért a függvény tükörképét is nevezzük meg

$$F_0(t) = 1 - F(t)$$
$$F_1(t) = F(t)$$

A Coons patch három részből áll. Az első kettő interpolál az egymással szemben álló görbék között

$$\mathbf{S}_c(u, v) = F_0(v)\mathbf{c}_0(u) + F_1(v)\mathbf{c}_1(u)$$

$$\mathbf{S}_d(u, v) = F_0(u)\mathbf{d}_0(v) + F_1(u)\mathbf{d}_1(v)$$

A harmadik pedig interpolál a sarokpontok között

$$\mathbf{B}(u, v) = F_0(u)F_0(v)\mathbf{a}_{00} + F_0(u)F_1(v)\mathbf{a}_{01} + F_1(u)F_0(v)\mathbf{a}_{10} + F_1(u)F_1(v)\mathbf{a}_{11}$$

Végül

$$\mathbf{y}(u,v) = \mathbf{S}_c(u,v) + \mathbf{S}_d(u,v) - \mathbf{B}(u,v)$$

A képletet értelmezhetjük úgy, hogy \mathbf{S}_c és \mathbf{S}_d összeadásával "kétszer interpoláltunk" a sarokpontok között, ezt kompenzáljuk \mathbf{B} kivonásával.

A Coons patch kifejezhető egy kompaktabb mátrix alakban is

$$\mathbf{y}(u,v) = \begin{pmatrix} F_0(u) & 1 & F_1(u) \end{pmatrix} \cdot \begin{pmatrix} -\mathbf{a}_{00} & \mathbf{d}_{00}(v) & -\mathbf{a}_{01} \\ \mathbf{c}_{00}(u) & 0 & \mathbf{c}_{01}(u) \\ -\mathbf{a}_{10} & \mathbf{d}_{10}(v) & -\mathbf{a}_{11} \end{pmatrix} \cdot \begin{pmatrix} F_0(v) \\ 1 \\ F_1(v) \end{pmatrix}$$

Az interpoláló függvény általában lineáris vagy köbös szokott lenni. Ahhoz, hogy a patch-ek C^1 folytonossággal illeszkedjenek, nekünk köbösre lesz szükségünk

$$F_0(t) = 2t^3 - 3t^2 + 1$$
$$F_0(t) = -2t^3 + 3t^2$$

A határgörbékhez használjunk Hermite interpolációt

$$\begin{split} \mathbf{c}_{0}(u) &= \begin{pmatrix} F_{0}(u) \\ G_{0}(u) \\ F_{1}(u) \\ G_{1}(u) \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a}_{00} \\ \mathbf{\gamma}_{00} \\ \mathbf{a}_{10} \\ \mathbf{\gamma}_{10} \end{pmatrix} \qquad \mathbf{d}_{0}(v) = \begin{pmatrix} F_{0}(v) \\ G_{0}(v) \\ F_{1}(v) \\ G_{1}(v) \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a}_{00} \\ \mathbf{\gamma}_{10} \\ \mathbf{\gamma}_{10} \end{pmatrix} \\ \mathbf{c}_{0}(u) &= \begin{pmatrix} F_{0}(u) \\ G_{0}(u) \\ F_{1}(u) \\ G_{1}(u) \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a}_{00} \\ \mathbf{\gamma}_{00} \\ \mathbf{a}_{10} \\ \mathbf{\gamma}_{10} \end{pmatrix} \qquad \mathbf{d}_{0}(v) = \begin{pmatrix} F_{0}(v) \\ G_{0}(v) \\ F_{1}(v) \\ G_{1}(v) \end{pmatrix} \cdot \begin{pmatrix} \mathbf{a}_{00} \\ \mathbf{\gamma}_{00} \\ \mathbf{a}_{10} \\ \mathbf{\gamma}_{10} \end{pmatrix} \end{split}$$

ahol

$$G_0(t) = t^3 - 2t^2 + t$$
$$G_1(t) = -2t^3 + 3t^2$$

Mivel F_0 és F_1 ugyanaz a Coons patch képletében, mint a határgörbékében, a kettőt összevonva megspórolhatjuk a görbék külön kiszámolását

$$\mathbf{y}(u,v) = \begin{pmatrix} F_0(u) & G_0(u) & F_1(u) & G_1(u) \end{pmatrix} \begin{pmatrix} \mathbf{a}_{00} & \boldsymbol{\delta}_{00} & \mathbf{a}_{01} & \boldsymbol{\delta}_{01} \\ \boldsymbol{\gamma}_{00} & \mathbf{0} & \boldsymbol{\gamma}_{01} & \mathbf{0} \\ \mathbf{a}_{10} & \boldsymbol{\delta}_{10} & \mathbf{a}_{11} & \boldsymbol{\delta}_{11} \\ \boldsymbol{\gamma}_{10} & \mathbf{0} & \boldsymbol{\gamma}_{11} & \mathbf{0} \end{pmatrix} \begin{pmatrix} F_0(v) \\ G_0(v) \\ F_1(v) \\ G_1(v) \end{pmatrix}$$

Mivel nem szorzunk össze azonos változótól függő függvényeket, a deriváltak is hasonlóan néznek ki

$$\begin{split} \frac{d\mathbf{y}}{du} &= \left(F_0'(u) \ G_0'(u) \ F_1'(u) \ G_1'(u)\right) \begin{pmatrix} \mathbf{a}_{00} \ \delta_{00} \ \mathbf{a}_{01} \ \delta_{01} \\ \gamma_{00} \ \mathbf{0} \ \gamma_{01} \ \mathbf{0} \\ \mathbf{a}_{10} \ \delta_{10} \ \mathbf{a}_{11} \ \delta_{11} \\ \gamma_{10} \ \mathbf{0} \ \gamma_{11} \ \mathbf{0} \end{pmatrix} \begin{pmatrix} F_0(v) \\ G_0(v) \\ F_1(v) \\ G_1(v) \end{pmatrix} \\ \frac{d\mathbf{y}}{dv} &= \left(F_0(u) \ G_0(u) \ F_1(u) \ G_1(u)\right) \begin{pmatrix} \mathbf{a}_{00} \ \delta_{00} \ \mathbf{a}_{01} \ \delta_{01} \\ \gamma_{00} \ \mathbf{0} \ \gamma_{01} \ \mathbf{0} \\ \mathbf{a}_{10} \ \delta_{10} \ \mathbf{a}_{11} \ \delta_{11} \\ \gamma_{10} \ \mathbf{0} \ \gamma_{11} \ \mathbf{0} \end{pmatrix} \begin{pmatrix} F_0'(v) \\ G_0'(v) \\ F_1'(v) \\ G_1'(v) \end{pmatrix} \end{split}$$

$$\frac{d\mathbf{y}}{dv} = \begin{pmatrix} F_0(u) & G_0(u) & F_1(u) & G_1(u) \end{pmatrix} \begin{pmatrix} \mathbf{100} & \mathbf{0} & \mathbf{101} & \mathbf{0} \\ \mathbf{a}_{10} & \mathbf{\delta}_{10} & \mathbf{a}_{11} & \mathbf{\delta}_{11} \\ \mathbf{\gamma}_{10} & \mathbf{0} & \mathbf{\gamma}_{11} & \mathbf{0} \end{pmatrix} \begin{pmatrix} G_0(v) & G_1(v) \\ G_1'(v) & G_1'(v) \end{pmatrix}$$

4.6. Visszatranszformálás

Implementációs részletek

- 5.1. Polinom osztály
- 5.2. Megjelenítés

Eredmények