Introduction to Statistics and Data Science using eStat

Chapter 10 Nonparametric Testing Hypothesis

10.1 Nonparametric Test for Location of Single Population

10.1.2 Wilcoxon Signed Rank Sum Test

Jung Jin Lee
Professor of Soongsil University, Korea
Visiting Professor of ADA University, Azerbaijan

- 10.1 Nonparametric Test for Location of Single Population 10.1.1 Sign Test
 - 10.1.2 Wilcoxon Signed Rank Sum Test
- 10.2 Nonparametric Test for Comparing Locations of Two Populations
 - 10.2.1 Independent Samples: Wilcoxon Rank Sum Test
 - 10.2.2 Paired Samples: Wilcoxon Signed Rank Sum Test
- 10.3 Nonparametric Test for Comparing Locations of Several Populations
 - 10.3.1 Completely Randomized Design: Kruskal-Wallis Test
 - 10.3.2 Randomized block design: Friedman Test

10.1.2 Wilcoxon Signed Rank Sum Test

[Example 10.1.2] A bag of cookies is marked with a weight of 200g. Ten bags are randomly selected from several retailers and examined their weights.

203 204 197 195 201 205 198 199 194 207

- Can you say that there are as many cookies in the bag as weight marked?
- Test the hypothesis by using the Wilcoxon Signed Rank Sum Test with the significance level of 5%.
- Check the result of the above test using "eStatU...

[Answer of Example 10.1.2]

• Hypothesis $H_0: M = 200, H_1: M \neq 200$

Sample data	203	204	197	195	201	205	198	199	194	207
Sign data	+	+	_	_	+	+	_	-	-	+
data – 200	3	4	3	5	1	5	2	1	6	7
Rank of data – 200	4.5	6	4.5	7.5	1.5	7.5	3	1.5	9	10
Rank sum of '+' sign	$R_+ = 4.5 + 6 + 1.5 + 7.5 + 10 = 29.5$									

[Answer of Example 10.1.2]

• All possible cases of R_+ = 'rank sum of + sign data'

Number of data with + sign	All possible combination of ranks	All possible rank sum of R_+
0	0	0
1	{1}, {2}, , {10}	1, 2,, 10
2	{1,2}, {1,3},, {1,10}, {2,3},, {2,10}, {2,10},	3, 4, , 11, 5, , 12, 19
•••	•••	•••
10	{1,2, ,10}	55

Distribution of Wilcoxon signed rank sum when n = 10

Wilcoxon Signed Rank Sum Distribution n = 10				
X	P(X = x)	P(X x)	P(X x)	
0	0.0010	0.0010	1.0000	
1	0.0010	0.0020	0.9990	
2	0.0010	0.0029	0.9980	
3	0.0020	0.0049	0.9971	
4	0.0020	0.0068	0.9951	
5	0.0029	0.0098	0.9932	
6	0.0039	0.0137	0.9902	
7	0.0049	0.0186	0.9863	
8	0.0059	0.0244	0.9814	
9	0.0078	0.0322	0.9756	
47	0.0059	0.9814	0.0244	
48	0.0049	0.9863	0.0186	
49	0.0039	0.9902	0.0137	
50	0.0029	0.9932	0.0098	
51	0.0020	0.9951	0.0068	
52	0.0020	0.9971	0.0049	
53	0.0010	0.9980	0.0029	
54	0.0010	0.9990	0.0020	
55	0.0010	1.0000	0.0010	

• Since $P(X \le 8) = 0.0244$, $P(X \ge 47) = 0.0244$, the decision rule is:

'If $R_+ \leq 8.5$ or $R_+ \geq 46.5$, then reject H_0 '

• Since $R_+ = 29.5$ in this problem, we can not reject H_0 .

Table 10.1.5 Decision rule of Wilcoxon signed rank sum test

Type of Hypothesis	Decision Rule Test Statistic R_+ = Rank sum of + sign data of $\mid x_i - M_0 \mid$			
1) H_0 : $M = M_0$	If $R_+ > w_+(n)_{\alpha}$, then reject H_0 , else accept H_0			
$H_{\!1}$: M $>$ M_{0}	104 × ω+(π/α , 1 10 , 000 120, 0.00 0.00 με 120			
2) $H_0 : M = M_0$	If $R_+ < w_+(n)_{1-lpha}$, then reject H_0 , else accept H_0			
$H_{\!1} \;:\; M \;<\; M_{\!0}$				
3) $H_0: M = M_0$	If $R_+ < w_+(n)_{1-lpha/2}$ or $R_+ > w_+(n)_{lpha/2}$, then reject			
$H_1: M \neq M_0$	H_0 , else accept H_0			

- $w_+(n)$: Distribution of + rank sum of $|x_i M_0|$
- If any of the observed values has the same value as M_0 , they are not used in test.

Table 10.1.6 Decision rule of Wilcoxon signed rank sum test (large sample case)

,	Type of Hypothesis	Decision Rule $ \label{eq:Decision Rule} $
		If $\dfrac{R_+ - E(R_+)}{\sqrt{V(R_+)}} > z_lpha$, then reject H_0 , else accept H_0
2)	$H_0: M = M_0$ $H_1: M < M_0$	If $rac{R_+ - E(R_+)}{\sqrt{V(R_+)}} < -z_lpha$, then reject H_0 , else accept H_0
3)	$H_0: M = M_0$ $H_1: M \neq M_0$	If $\left rac{R_+ - E(R_+)}{\sqrt{V(R_+)}} ight > z_{lpha/2}$, then reject H_0 , else accept H_0

•
$$E(R_+) = \frac{n(n+1)}{4}$$
, $V(R_+) = \frac{n(n+1)(2n+1)}{24}$

Thank you