Assignment 1 MAT 315

O3a:

Let P(n) denote $\sum_{k=1}^{n} k^3 = \left(\frac{(n)(n+1)}{2}\right)^2$. We proceed by induction on n. When n=1,

$$\sum_{k=1}^{1} 1^3 = \left(\frac{(1)(2)}{2}\right)^2 = 1$$

. Thus P(1) is true. Now suppose the formula holds for n. We compute

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^n k^3 + (n+1)^3$$

$$= \left(\frac{(n)(n+1)}{2}\right)^2 + (n+1)^3$$
(by induction hypothesis)
$$= (n+1)^2 \left[\frac{n^2}{4} + (n+1)\right]$$

$$= (n+1)^2 \left(\frac{n^2 + 4n + 4}{4}\right)$$

$$= (n+1)^2 \frac{(n+2)^2}{4}$$

$$= \left(\frac{(n+1)(n+2)}{2}\right)^2$$

We have that P(1) is true and $P(n) \implies P(n+1)$. By the principle of induction, P(n) is true for all $n \in \mathbb{N}$. Q3b:

Let P(n) denote $n \leq 2^n$. We proceed by induction on n. P(1) corresponds to $1 \leq 2$. This is clearly true. Now Suppose that P(n) is true, i.e. $n \leq 2^n$, Multiplying by 2, we have that $2n \leq 2^{n+1}$. For $n \geq 1$, $n+1 \leq 2n$, so we will have $n+1 \leq 2^{n+1}$. We have P(1) true and $P(n) \implies P(n+1)$ so by the principle of induction P(n) is true for all n.

Let P(n) = "n has a binary representation". We proceed by strong induction on n. We see that $P(1) = 2^0 = 1$. Now suppose that $P(1) \dots P(n)$ each have binary representations. We will consider 2 separate cases, one in which n is even and one in which n is odd. First, when n is even, we know that 2^0 is not included in our representation, since it is the only odd power of 2. Hence n+1 is represented as $n+2^0$. If n is odd, then n+1 will be even and will be represented in the following way. n+1 even implies n+1=2k for some k < n. By assumption k will have a binary representation, say $k = 2^{i_1} + \dots 2^{i_j}$ for unique natural $i_1 \dots i_j$. We have that $2k = 2(2^{i_1} + \dots 2^{i_j}) = 2^{i_1+1} \dots 2^{i_j+1} = n+1$. Since We translate the list $i_1 \dots i_j$ by 1 at each point, we preserve the uniqueness. Thus, n+1 will have a binary representation. Since P(1) is true, and $P(1) \dots P(n) \implies P(n+1)$, P(n) is true for all $n \in \mathbb{N}$ by the principle of Strong Induction.