上海财经大学《高等数学(经管类)I》课程考试卷(A)答案

2019 ——2020 学年第一学期

- 一、单选题(每小题2分,共计10分)
- 1. 设 $\{a_n\},\{b_n\},\{c_n\}$ 均为非负数列, $\lim_{n\to\infty}a_n=0$, $\lim_{n\to\infty}b_n=1$, $\lim_{n\to\infty}c_n=+\infty$.则必有 (D).

 - A. $\forall n \in \mathbb{N}^+$, 成立 $a_n < b_n$. B. $\forall n \in \mathbb{N}^+$, 成立 $b_n < c_n$.

 - C. 极限 $\lim_{n\to\infty} a_n c_n$ 不存在. D. 极限 $\lim_{n\to\infty} b_n c_n$ 不存在.
- 2. $\Im f(x) = \frac{\ln |x|}{|x-1|} \sin x$, $\Im f(x) = 4$
 - A. 1 个可去间断点, 1 个跳跃间断点; B. 1 个可去间断点, 1 个无穷间断点;

- C.2 个跳跃间断点;
- D. 2 个无穷间断点.
- 3. 设 y = f(x) 二阶可导,且 f'(x) > 0, f''(x) > 0, Δx 为自变量 x 在 x_0 处的增量,

A. $0 < dy < \Delta y$ B. $0 < \Delta y < dy$ C. $dy < \Delta y < 0$ D. $\Delta y < dy < 0$

 Δy , dy 分别为 f(x) 在 x_0 处对应的函数值增量和函数微分. 若 $\Delta x > 0$,则 (A).

- 4. 若连续函数在闭区间上有极大值和极小值,则(C)
 - A. 极大值一定是最大值, 且极小值一定是最小值.
 - B. 极大值一定是最大值, 或极小值一定是最小值.
 - C. 极大值不一定是最大值, 且极小值不一定是最小值.
 - D. 极大值必大于极小值.
- 5. 设 g(x) 是可微函数 f(x) 的反函数, 其中 x > 0,且恒有 $\int_1^{f(x)} g(t) dt = \frac{1}{3} (x^{\frac{3}{2}} 8)$,

则 f(x) = (B).

- A. \sqrt{x} B. $\sqrt{x} 1$ C. $\frac{3}{2}\sqrt{x}$ D. $\sqrt{x} 2$
- 二、填空题(每小题 2 分, 共计 10 分)

6.
$$\lim_{n \to \infty} \left(\frac{1^2}{n^3 + 1^2} + \frac{2^2}{n^3 + 2^2} + \dots + \frac{n^2}{n^3 + n^2} \right) = \frac{1}{3}.$$

7. 设 y = y(x) 是由方程 $xe^{f(y)} = e^y$ 确定的,其中 f 可导,且 $f' \neq 1$.则

$$dy = \frac{e^{f(y)}}{e^{y} - xe^{f(y)}f'(y)}dx \, \underline{\vec{x}} \frac{1}{x[1 - f'(y)]}dx.$$

- 8. $f'(\sin^2 x) = \cos 2x + \tan^2 x, x \in (0,1)$ $\iint f(x) = \frac{-\ln(1-x) x^2 + C}{-\ln(1-x) x^2 + C}$
- 9. 如果当 $x \to 0$ 时, $F(x) = \int_0^x (x^2 t^2) f'(t) dt$ 的导数F'(x)与 x^2 是等价无穷小,则

$$f'(0) = \underline{\frac{1}{2}}$$

三、计算题(每小题6分, 共计60分)

11. 己知
$$f(x) = a^{x^3}, (a > 0),$$
 计算 $\lim_{n \to \infty} \frac{1}{n^4} \ln[f(1)f(2)\cdots f(n)].$

解: 原式=
$$\lim_{n\to\infty}\frac{1}{n^4}\ln a\sum_{i=1}^n i^3 = \ln a\lim_{n\to\infty}\sum_{i=1}^n \left(\frac{i}{n}\right)^3\frac{1}{n} = \ln a\int_0^1 x^3 dx = \frac{\ln a}{4}$$
.

12.已知
$$\arctan \frac{x-y}{x+y} = \ln \sqrt{x^2 + y^2}$$
,求 $\frac{d^2 y}{dx^2}$

解: 两边求导:
$$\frac{1}{1+\left(\frac{x-y}{x+y}\right)^2} \cdot \left(\frac{x-y}{x+y}\right)' = \frac{1}{\sqrt{x^2+y^2}} \cdot \left(\sqrt{x^2+y^2}\right)'$$

$$\frac{y - xy'}{x^2 + y^2} = \frac{x + yy'}{x^2 + y^2} \Rightarrow y - xy' = x + yy' \Rightarrow y' = \frac{y - x}{x + y}.$$

$$\frac{d^2 y}{dx^2} = \frac{(y'-1)(x+y) - (y-x)(1+y')}{(x+y)^2} = -2\frac{x^2 + y^2}{(x+y)^3}.$$

13. 己知
$$\begin{cases} x = \arcsin \frac{t}{\sqrt{1+t^2}}; \\ y = \arccos \frac{1}{\sqrt{1+t^2}}, \end{cases} (t < 0), \ \ \stackrel{?}{x} \frac{\mathrm{d}y}{\mathrm{d}x}.$$

$$\widehat{\mathbb{H}}: \ \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{\sqrt{1 - \frac{t^2}{1 + t^2}}} \cdot \frac{\sqrt{1 + t^2} - t \cdot \frac{t}{\sqrt{1 + t^2}}}{1 + t^2} = \frac{1}{1 + t^2}.$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{1}{\sqrt{1 - \frac{1}{1 + t^2}}} \cdot \frac{-\frac{t}{\sqrt{1 + t^2}}}{1 + t^2} = -\frac{1}{1 + t^2}.$$

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = -1.$$

解:由于f(x)为偶函数,则其奇数阶导数都为奇函数,则 $f^{(2019)}(0)=0$ 。 也可以使用莱布尼兹公式计算。

15. 计算
$$\lim_{x\to 0} \frac{\sin(\sin x) - \sin(\sin(\sin x))}{\sin x \cdot \sin(\sin x) \cdot \sin(\sin(\sin x))}$$
.

解: 令
$$t = \sin x$$
, 则原式= $\lim_{t\to 0} \frac{\sin t - \sin(\sin t)}{t^3} = \lim_{t\to 0} \frac{1 - \cos(\sin t)}{3t^2} = \lim_{t\to 0} \frac{\frac{\sin^2 t}{2}}{3t^2} = \frac{1}{6}$.

16. 求曲线
$$y = (x+2)e^{\frac{1}{x}}$$
的渐近线.

解: 由于
$$\lim_{x\to\infty} (x+2)e^{\frac{1}{x}} = \infty$$
,则其无水平渐近线。

$$\lim_{x\to +0}(x+2)e^{\frac{1}{x}}=+\infty, 则其有垂直渐近线 x=0;$$

$$\lim_{x \to \infty} \frac{(x+2)e^{\frac{1}{x}}}{x} = 1, \quad \lim_{x \to \infty} \left[(x+2)e^{\frac{1}{x}} - x \right] = \lim_{x \to \infty} \left[\frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} + 2e^{\frac{1}{x}} \right] = 3,$$

有斜渐近线 y = x + 3.

17. 计算
$$\int \frac{\sqrt{x+1} - \sqrt{x-1}}{\sqrt{x+1} + \sqrt{x-1}} dx$$
.

解:由于
$$\int \sqrt{x^2 - 1} dx = x\sqrt{x^2 - 1} - \int \frac{x^2}{\sqrt{x^2 - 1}} dx = x\sqrt{x^2 - 1} - \int \frac{x^2 - 1 + 1}{\sqrt{x^2 - 1}} dx$$

$$= x\sqrt{x^2 - 1} - \int \sqrt{x^2 - 1} dx - \int \frac{1}{\sqrt{x^2 - 1}} dx,$$
所以 $\int \sqrt{x^2 - 1} dx = \frac{1}{2} x\sqrt{x^2 - 1} - \frac{1}{2} \ln|x + \sqrt{x^2 - 1}| + C$,
因此原式 = $\int (x - \sqrt{x^2 - 1}) dx = \frac{1}{2} x^2 - \frac{1}{2} x\sqrt{x^2 - 1} + \frac{1}{2} \ln|x + \sqrt{x^2 - 1}| + C$

18. 设连续函数
$$f(x)$$
 满足 $f(x) = x + x^2 \int_0^1 f(x) dx + x^3 \int_0^2 f(x) dx$,求 $f(x)$.

解: 记
$$A = \int_0^1 f(x) dx$$
, $B = \int_0^2 f(x) dx$,则
$$f(x) = x + Ax^2 + Bx^3 \Rightarrow$$

$$A = \int_0^1 f(x) dx = \int_0^1 (x + Ax^2 + Bx^3) dx \Rightarrow 8A - 3B = 6 + \dots (1)$$

$$B = \int_0^2 f(x) dx = \int_0^2 (x + Ax^2 + Bx^3) dx \Rightarrow 8A + 9B = -6 + \dots (2)$$

$$A = \frac{3}{8}, \quad B = -1.$$

19. 计算积分
$$\int_0^1 x \sqrt{\frac{x}{2-x}} dx$$
.

$$\Re \left\{ \int_0^1 x \sqrt{\frac{x}{2-x}} dx = \int_0^1 \frac{x^2}{\sqrt{2x-x^2}} dx = \int_0^1 \frac{x^2}{\sqrt{1-(x-1)^2}} dx \right\} = \int_{-\frac{\pi}{2}}^0 (1+\sin t)^2 dt$$

$$= \int_0^{t=-u} \int_0^{\frac{\pi}{2}} (1-\sin u)^2 du = \int_0^{\frac{\pi}{2}} (1-2\sin u + \sin^2 u) du = \frac{3}{4}\pi - 2$$

20. 计算积分
$$\int_0^1 (\ln \frac{1}{x})^n dx$$
, n 为正整数.

$$\Re : \ \diamondsuit t = -\ln x, x = e^{-t}, dx = -e^{-t}dt$$

原式=
$$\int_{+\infty}^{0} t^{n} (-e^{-t} dt) = \int_{0}^{+\infty} t^{n} e^{-t} dt = \Gamma(n+1) = n!$$
.

四、(本题 7 分) 求函数 $f(x) = \sqrt[3]{(x-1)^2(x+1)}$ 的极值,单调区间,凹凸区间和拐点。

解:
$$y = \sqrt[3]{(x-1)^2(x+1)}$$
 定义域为 $(-\infty, +\infty)$ 。 $y' = \frac{x + \frac{1}{3}}{\sqrt[3]{x-1} \cdot \sqrt[3]{(x+1)^2}}$,

$$y'' = \frac{-8}{9\sqrt[3]{(x-1)^4} \cdot \sqrt[3]{(x+1)^5}}$$
,则 $f'(-\frac{1}{3}) = 0$, $x = \pm 1$, $f'(x)$, $f''(x)$ 不存在,因此

$$x$$
 $(-\infty,-1)$ -1 $(-1,-\frac{1}{3})$ $-\frac{1}{3}$ $(-\frac{1}{3},1)$ 1 $(1,+\infty)$ y' + 无 + 0 - 无 + 定 y'' + 定 y'' + 以 - y 单増下凹 単域下凹 単増下凹 (拐点) (极大) (极小) $(-1,0)$ $\frac{2}{3}\sqrt[3]{4}$ 0

综上: $x = -\frac{1}{3}$ 为其极大值点,极大值为 $f(-\frac{1}{3}) = \frac{2}{3}\sqrt{4}$, x = 1为其极小值点,极小值为 f(1) = 0; 单调增区间为 $(-\infty, -\frac{1}{3})$, $(1, +\infty)$,单调减区间为 $(-\frac{1}{3}, 1)$; 上凹区间为 $(-\infty, -1)$,下凹区间为 $(-\frac{1}{3}, +\infty)$; (-1, 0) 是曲线拐点。

五、(本題 7 分) 已知商品的价格函数为 $p(x) = \frac{5}{1+x^2}$, 且最大需求量为 5 单位, 这里 x 表示需求量, p 表示价格. 求:

- (1) 该商品的收益函数和边际收益.
- (2) 使收益最大时的需求量,最大收益和相应价格.
- (3) 最大需求量时的收益弹性, 并解释其经济意义.

解:记收益函数为R(x),则

(1)
$$R(x) = xp(x) = \frac{5x}{1+x^2}$$
, 边际收益 $R'(x) = \frac{5(1-x^2)}{(1+x^2)^2}$

(2) $R'(x) = 0 \Rightarrow x = 1.R(1) = \frac{5}{2}, p(1) = \frac{5}{2}$. 产量为 1 个单位时,收益最大,此时最大收益为 $\frac{5}{2}$,对应价格为 $\frac{5}{2}$.

(3)
$$\frac{ER}{Ep}\Big|_{x=5} = \frac{p}{R} \frac{dR}{dp}\Big|_{x=5} = \frac{p(5)}{R(5)} \frac{dR/dx}{dp/dx}\Big|_{x=5} = \frac{1}{5} \cdot \frac{\frac{5(1-x^2)}{(1+x^2)^2}}{\frac{10x}{(1+x^2)^2}}\Big|_{x=5} = 0.48$$

意义:商品价格每上涨(下跌)1%,收益上涨(下跌)0.48%.此时属收益低弹性.

六、(本题 6 分) 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导, 且 f(a) = 0, f(b) = 1,

证明:
$$\exists \xi \in (a,b), \eta \in (a,b), \xi \neq \eta$$
, 使得 $\frac{1}{f'(\xi)} + \frac{1}{f'(\eta)} = 2(b-a)$.

证: :: f(x) 是[a,b] 上的连续函数, :: 由闭区间上连续函数的介值定理可知: $\exists c \in (a,b)$,

使得 $f(c) = \frac{1}{2}$. 在 [a,c] 与 [c,b] 上分别使用 Lagrange 中值定理,可得:

 $\exists \xi \in (a,c) \subset (a,b), \eta \in (c,b) \subset (a,b)$,使得

$$f(c) - f(a) = f'(\xi)(c - a), \quad f(b) - f(c) = f'(\eta)(b - c)$$

$$\Rightarrow c - a = \frac{f(c) - f(a)}{f'(\xi)}, \quad b - c = \frac{f(b) - f(c)}{f'(\eta)},$$

从而有

$$b-a = (c-a) + (b-c) = \frac{\frac{1}{2}}{f'(\xi)} + \frac{\frac{1}{2}}{f'(\eta)},$$

即

$$\frac{1}{f'(\xi)} + \frac{1}{f'(\eta)} = 2(b-a), \qquad \xi, \eta \in (a,b), \xi \neq \eta$$