Homework:

(1) Sequentially run the following commands in Matlab.

>> RBFCex

>> w

>> c

Indicate the location of the centres in the plot and then determine the formula of resultant RBF classifier.

- (2) Find the solution of min $f(x,y) = x^2 + y 1$, subject to $x + y \ge 5$.
- (3) Verify the results in (2) using quadprog.m function in Matlab.

 (4) Supposing $\mathbf{x} = [x_1, x_2]^T$, $\mathbf{y} = [y_1, y_2]^T$, determine the feature map for $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^2$.
- (5) Determine if $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^2 + \exp(-\|\mathbf{x} \mathbf{y}\|^2)$ is a kernel.
- (6) Consider two class data set

x_1	x_2	t
-1	-1	1
-1	1	-1
1	-1	-1
1	1	1

What is the kernel matrix if $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathrm{T}} \mathbf{y} + 1)^2 + \exp(-\|\mathbf{x} - \mathbf{y}\|^2)$?

(7) For the data set in (5), what is the objective function of support vector machine is dual form in the cases that the kernel is $K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathrm{T}}\mathbf{y} + 1)^2$ or $K(\mathbf{x}, \mathbf{y}) = \exp(-\|\mathbf{x} - \mathbf{y}\|^2)$ respectively?

1