Geometry of Surfaces - Exercises

9. True or False? Justify your answer!

- (a) The curvature of a curve in \mathbb{R}^3 is always ≥ 0 .
- (b) The torsion of a curve in \mathbb{R}^3 is always ≥ 0 .
- (c) A curve in \mathbb{R}^3 with zero curvature everywhere is (part of) a straight line.
- (d) A curve in \mathbb{R}^3 with constant positive curvature is (part of) a circle.

10. Let \mathcal{C} be the curve obtained by intersecting the sphere

$$\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 4\}$$

and the cylinder

$$\{(x, y, z) \in \mathbb{R}^3 \mid (x - 1)^2 + y^2 = 1\}.$$

Verify that

$$\gamma: \mathbb{R} \to \mathbb{R}^3, \ t \mapsto (1 + \cos(2t), \sin(2t), 2\sin(t))$$

is a parametrization of \mathcal{C} and that $p=(1,1,\sqrt{2})$ is a point in \mathcal{C} . Calculate the curvature of \mathcal{C} at p.

11. Let $\gamma:(a,b)\to\mathbb{R}^n$ be a unit speed curve and assume that there exists $t_0\in(a,b)$ such that the distance function $\|\gamma(t)\|$, which measures the distance from 0 to $\gamma(t)$, has a maximum at t_0 . Prove that $\gamma'(t_0)\cdot\gamma(t_0)=0$ and $\kappa(t_0)\geq\frac{1}{\|\gamma(t_0)\|}$. [Hint: Use Cauchy-Schwarz inequality.]

12. In the curve below, roughly mark where the signed curvature is negative and where it is positive. Explain your answer.

13. Consider the curve

$$\gamma: (-1,1) \to \mathbb{R}^2, \ s \mapsto \int_0^s \left(\cos\left(\frac{t^5}{5}\right), \sin\left(\frac{t^5}{5}\right)\right) dt.$$

Show that γ is a unit speed curve with signed curvature s^4 . Find the unit speed curve $\tilde{\gamma}: (-1,1) \to \mathbb{R}^2$ with signed curvature s^4 , $\tilde{\gamma}(0) = (1,2)$ and $\tilde{\mathbf{t}}(0) = (0,1)$.

14. Find all unit speed curves $\gamma: \mathbb{R} \to \mathbb{R}^2$ with signed curvature e^s and $\dot{\gamma}(0) = (0,1)$.

15. Let $\gamma(s) = \left(\cos\left(\frac{s}{\sqrt{5}}\right), \sin\left(\frac{s}{\sqrt{5}}\right), \frac{2s}{\sqrt{5}}\right)$. Compute $\mathbf{t}, \mathbf{n}, \mathbf{b}$. Note that γ is unit speed.

16. A rigid motion $M: \mathbb{R}^3 \to \mathbb{R}^3$ of \mathbb{R}^3 is a rotation followed by a translation, that is, Mv = Rv + a for all $v \in \mathbb{R}^3$, where R is a rotation in \mathbb{R}^3 and $a \in \mathbb{R}^3$. Recall that a rotation satisfy the property $Rv \cdot Rw = v \cdot w$ for all $v, w \in \mathbb{R}^3$. Show that the curvature and torsion of a unit speed curve in \mathbb{R}^3 are invariant under rigid motions.