PJ2 命名实体标注 实验报告

李菲菲 18307110500 2022/12/15

1. 背景介绍

NER 实体标注任务: 是一种序列标注任务,实体类别有 4 种:人名 PER,未知 LOC,组织 ORG 和杂项 MISC,每个词的 BIO 格式的标注为 3 种:实体的开头 B,实体非开始词 I,和非实体 O。

序列标注模型: 经典的基于统计的模型有隐式马尔可夫模型 (HMM),最大熵马尔可夫模型 (MEMM),以及条件随机场 (CRF). 常用于学习上下文特征的基本神经网络有 CNN、RNN 及其变体,和基于注意力机制的 Transformer、Bert。

条件随机场(CRF): 基于预定义特征的线性链条件随机场可以形式化表示为

$$P(y|x) = \frac{1}{Z(x)} \exp \sum_{k=1}^{K} w_k f_k(y, x)$$

其中 w_k 为特征函数 f_k 的权重,是可学习参数,Z(x)是归一化因子,保证对数加权和符合概率的定义。直观理解与 HMM 的区别,即所有的可观测随机变量 $x=x_1,...,x_T$ 都可以影响状态 $y=y_1,...,y_T$. 给定 CRF,可以使用维特比算法解码出状态序列和对应概率(状态 y_t 即 tag of word t):

$$v_{i}(t) = \max_{i=1}^{N} v_{t-1}(i) \sum_{k=1}^{K} w_{k} f_{k}(y_{t-1}, y_{t}, X, t);$$
$$\Pr(\{y_{1}, \dots y_{T}\}^{*}) = \max_{i=1.N} v_{i}(T)$$

Character-level representation: 一般只依赖词嵌入和词表征的方法会在 OOV 单词上发生比较大的性能下降,很多工作的实验表明增加字符级别表征能够显著提升序列标

注任务的表现。根据如上图所示^②的模型架构,一般的字符表征的学习方法为: 1) 使用嵌入层,将输入的词序列对应的经过 padding 的字符序列转换为字符嵌入, 2) 学习 CNN 模型得到字符表征, 3) 拼接到词向量中得到字符、词级别的输入向量。然后就可以按照一般的学习方法,将向量送入 RNN 中学习上下文表征、进行序列标注。

使用 CRF 和 LSTM 进行序列标注: 下图所示为[1]BiLSTM-CRF 的模型架构:

对于 CRF 而言,是将手动设计的特征函数改为数据驱动学习的神经网络;对于 LSTM 而言是在输出层通过 CRF 引入了关于 Tag 的先验知识。

超参搜索: 常见的超参搜索方法有网格搜索, 随机搜索和贝叶斯优化。网格搜索尝试 所有超参数的可能组合, 是一种穷举的暴力算法; 随机搜索从定义的搜索空间中随机 选择一组超参进行模型训练; 优化方法如贝叶斯优化方法, 通过预定义一个收益函数, 可以根据已经实验的参数组合预测下一个可能带来最大收益的组合。

上下文自适应的词嵌入 ELMo[4]: 相比于 Word2Vec 和 GloVE 这种静态的词嵌入, ELMo 可以 1) 根据上下文学习到单词的复杂语法/语义特征, 和 2) 建模单词的多义性。模型整体上是字符卷积+双向语言模型+加权求和的 Mixer 的结构, 直接得到 word embedding。

Ⅱ. 实验内容

训练、验证和测试集的样本数、标签数、字符、词的统计信息如表所示

	Train	Valid	Test	Total
#sample	14036	3250	3453	
#tag				11
#char				75
#uniq word				17488

1. 消融实验:

评估 CRF decoder 的作用

模型架构^[1]: 使用 GloVE 词向量嵌入, Bi-LSTM 作为词表征的编码器, CNN 作为字符表征的编码器。空白对照组直接将词表征后接线性层, 输出 19 维中概率最大的标记; 实验组将线性层的输出 logits 喂入 CRF, 由 CRF 输出 seq2seq 标记。

参数: BiLSTM 的隐单元个数为 512, 学习率 1e-3, 丢弃率 0.5, 迭代 20 次; CNN 的 卷积核大小为 3. 实验结果如下表所示, 实验过程的数据如下图所示。

结论: CRF 训练的速度非常慢;测试集上的 F1 略微上升;对比训练曲线, CRF 会更稳定一些。

Char-Word-decoder	Loss	F1 score	Precision	Recall	Time/Epoch
Null-BiLSTM	0.1667	0.7999	0.8542	0.7538	5.54s
Null-BiLSTM-CRF	0.1510	0.8009	0.8580	0.7534	130.98s

评估 char representation 的作用

具体实现[©]: 使用 Char Embedding 和 Char Encoder 层得到字符表征。对于两种结构 Encoder 结构进行实验对比。

参数: 字符嵌入为 30 维, 字符特征为 10 维字符表征; 两个维度均为超参; 词嵌入使用 100 维 Glove。

结论:使用字符卷积和双向 LSTM 学习上下文表征的方法作为 encoder 效果最佳; decoder 使用 CRF 对损失有帮助,但是时间代价太大。

Char-Word-Decoder	Loss	F1 score	Precision	Recall	Time/Epo
Null-BiLSTM	0.1667	0.7999	0.8542	0.7538	5.54s
BiLSTM-CNN	0.1188	0.8275	0.8344	0.8220	16.26s
BiLSTM-BiLSTM	0.1022	0.8529	0.8492	0.8571	15.28s
CNN-BiLSTM	0.1012	<mark>0.8566</mark>	0.8539	0.8601	5.38s
CNN-BiLSTM-CRF	<mark>0.0924</mark>	0.8545	0.8568	0.8544	130.15s

2. 超参搜索

由于使用 CRF 的运行代价较大,因此仅使用 BiLSTM 进行超参搜索;由于网格法比较耗时,因此使用随机搜索

待搜索超参数和搜索空间

```
{
   'dp': [0.1, 0.3, 0.5, 0.6, 0.7], # drop out
   'bs': [10, 32, 64, 128, 256], # batch size
   'lr': [1e-4, 1e-3, 1e-2, 1e-1],
   'dow': [32, 64, 128, 256, 512], # dim of word feature
   'doc': [10, 20, 30, 40, 50], # dim of char feature
   'ks': [3,5], # kernel size of cnn
}
```

随机搜索

随机搜索 20 次的结果如下表,根据训练 5 次得到的最优测试集上的 F1 分数排序,综合考虑训练时间,最终选择 idx=1 的参数组

	T_train/epo	F1 test	Prec test	Rec test	dp	bs	lr	dow	doc	ks
0	32.896852	0.839322	0.849289	0.831880	0.1	32	0.0010	128	10	3
1	31.901880	0.833626	0.835359	0.840172	0.5	128	0.0010	512	10	3
2	24.081874	0.813706	0.833012	0.798636	0.3	128	0.0100	32	50	3
3	6.678991	0.810667	0.836838	0.789804	0.1	256	0.0010	128	30	5
4	32.712935	0.808420	0.813633	0.804612	0.6	32	0.0100	64	10	3
5	42.558396	0.808174	0.827229	0.792345	0.7	64	0.0010	128	20	5
6	90.510471	0.804901	0.810717	0.800904	0.1	10	0.0100	32	50	3
7	18.276210	0.799205	0.825254	0.778414	0.1	256	0.0010	128	30	5
8	66.326919	0.790374	0.824921	0.764346	0.5	10	0.0001	512	30	5
9	53.577368	0.754568	0.809174	0.720752	0.3	10	0.0001	64	20	3
10	53.907791	0.725933	0.802041	0.682211	0.3	10	0.0001	64	20	3
11	56.370221	0.601196	0.809552	0.544043	0.3	32	0.0001	128	30	5
12	72.576573	0.580801	0.743787	0.534276	0.3	64	0.0001	256	40	3
13	60.377568	0.548376	0.739120	0.504204	0.1	128	0.0001	512	50	3
14	44.236082	0.429423	0.577388	0.380614	0.7	64	0.0001	512	20	5
15	24.043629	0.322726	0.571486	0.271703	0.1	256	0.0001	512	20	5
16	32.819953	0.309197	0.325970	0.298737	0.5	32	0.1000	32	10	3
17	53.468475	0.162747	0.147667	0.222553	0.3	10	0.1000	128	20	3
18	52.882480	0.100477	0.091700	0.111111	0.7	10	0.1000	64	20	5
19	43.173185	0.100477	0.091700	0.111111	0.7	10	0.1000	128	10	3

3. 使用 ELMo

将字符嵌入和词嵌入改为由 ELMo 学习得到。实体标记的实验结果如下:

Char-Word-Decoder	Loss	F1 score	Precision	Recall	Time/Epo
Null-BiLSTM	0.1667	0.7999	0.8542	0.7538	5.54s
CNN-BiLSTM	0.1012	0.8566	0.8539	0.8601	5.38s
ELMo-BiLSTM	0.1787	0.7818	0.8292	0.7418	29.35s

ELMo-BiLSTM(无CRF)

Ⅲ. 总结

有效的技巧:

- 比较有效的技巧是选择一组好的超参和引入 Char-level representation。
- 随机搜索方法简单且效果显著,并且可以综合评估运行时间和收敛速度(未列出默认参数和超参搜索选择之后的对比实验,但是可以根据随机搜索的表格中观察得到)
- 字符卷积引入的参数量少,且效果明显:相比于不使用 CNN,验证集上的 F1 score 可以提升 6% (0.7999->0.8566)

关于 CRF:

- CRF 在没有使用 Char 表征时可以提升标注的表现,可以提升 0.1%的 F1 score;
- CRF 缺点在于训练时间耗时比较长,目前还未尝试 CRF 的训练加速方法;
- CRF 在使用了 Char 表征后,F1 score 与不使用时相当,可以减少约 0.9%的损失

关于 ELMo:

- 仅使用 ELMo 而不使用词嵌入时,模型的 F1 大致在 0.1,推测 ELMo 的使用上出现了 bug,还未检查出具体出错位置。
- ELMo 的模型不小,参数量很大,因此无法在显存有限的 GPU 上进行 fine tune。

IV. Reference

- [1] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint arXiv:1508.01991, 2015.
- [2] Ma, Xuezhe and Eduard H. Hovy. "End-to-end Sequence Labeling via Bidirectional LSTM-CNNs-CRF." ArXiv abs/1603.01354 (2016): n. pag.
- [3] Lample, Guillaume, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami and Chris Dyer. "Neural Architectures for Named Entity Recognition." North American Chapter of the Association for Computational Linguistics (2016).
- [4] Peters, Matthew E., Mark Neumann, Mohit lyyer, Matt Gardner, Christopher Clark, Kenton Lee and Luke Zettlemoyer. "Deep Contextualized Word Representations." North American Chapter of the Association for Computational Linguistics (2018).
- [5] https://blog.csdn.net/Magical_Bubble/article/details/89160032