Matrix Theory in a Simple Quantum Adder

Huan Q. Bui

Matrix Analysis

Professor Leo Livshits

CLAS, May 2, 2019

Presentation layout

- Quantum what?
- 2 Matrix Theory
- Simulation on IBM-Q
- 4 Recap

Quantum what?

Some ideas about quantum mechanics.
Bits and qubits. Quantum states. Measurement. Collapsing. Reversible.
Quantum computation? Information?
The big picture.

Terminology

Physics terms and math terms.

Discrete and Quantum Fourier Transform

Constructing a DFT matrix. Properties of this matrix. Orthonormal basis.

CLAS, May 2, 2019

Control-phase gate

Again?

CLAS, May 2, 2019

Simulation on IBM-Q

Recap

What did we learn on the show tonight, Craig? Q-circuit user guide [EF04] quantum addition of classical numbers [CC16] Mike and Ike [NC02] Handbook of Linear Algebra [?] addition on quantum computer [Dra00]

References

- AV Cherkas and SA Chivilikhin, *Quantum adder of classical numbers*, Journal of Physics: Conference Series, vol. 735, IOP Publishing, 2016, p. 012083.
- Thomas G Draper, *Addition on a quantum computer.*, arXiv preprint quant-ph/0008033 (2000).
- Bryan Eastin and Steven T Flammia, *Q-circuit tutorial*, arXiv preprint quant-ph/0406003 (2004).
- Michael A Nielsen and Isaac Chuang, Quantum computation and quantum information, 2002.

