2. Gyengesav disszociációs állandójának meghatározása vezetés mérésével

2.1. Bevezetés

Az elektromos ellenállás anyagi tulajdonság. Ohm törvénye értelmében egy anyagon átfolyó elektromos áram erősége (I) és az áramot létrehozó feszültség (U) között egyenes arányosság van:

$$U = I \cdot R \tag{2.1}$$

ahol az R arányossági tényezőt az illető anyag ellenállásának nevezzük, mértékegysége az ohm (Ω) . Fajlagos ellenálláson az 1 m hosszú, 1 m² (a gyakorlatban 1 mm²) keresztmetszetű vezetőn az 1 amper intenzitású áram létrehozásához szükséges feszültség és az áram hányadosát értjük.

Az elektrokémiában több szempontból előnyös, ha a fenti mértékegységek reciprokait használjuk: az ellenállás reciprokát vezetésnek (mértékegysége a Siemens, S = $1/\Omega$), a fajlagos ellenállás reciprokát fajlagos vezetésnek nevezzük.

Elektrolitok oldatainak fajlagos vezetésén (κ) az 1 cm távolságban, párhuzamos, 1-1 cm² felületű elsőrendű (inert fém, pl. arany vagy gyakrabban platina) vezetőből készült elektródok között elhelyezkedő folyadékkocka vezetését értjük, mértékegysége S · cm⁻¹. A fajlagos vezetés függ az elektrolit anyagi minőségétől, koncentrációjától, valamint a hőmérséklettől. Moláris fajlagos vezetésen (Λ_m) a fajlagos vezetés és a koncentráció hányadosát értjük. Ez alapján

$$\Lambda_m = \frac{\kappa 1000}{c} = \kappa V \tag{2.2}$$

ahol c az oldat koncentrációja (mol·dm⁻³) és V a hígítás. Mivel egy biner elektrolitban mind az anionok, mind a kationok hozzájárulnak a vezetéshez, erős elektrolitok híg oldatainak fajlagos moláris vezetését az *ionok független vándorlásának törvénye* írja le:

$$\Lambda_m^0 = \lambda_a^0 \nu_a z_a + \lambda_k^0 \nu_k z_k \tag{2.3}$$

ahol z_a, z_k : ionok töltésszáma; ν_a, ν_k : sztöchiometriai konstansok; λ_a^0 illetve λ_k^0 az anionok és a kationok végtelen hígításra vonatkozó moláris fajlagos vezetése. Gyengeelektrolitok vezetése

$$\lambda_c = \alpha \lambda_0 \tag{2.4}$$

formában adható meg, ahol α a disszociáció foka, λ_0 a végtelen hígítású oldat moláris fajlagos vezetése. Egy AH gyengesav disszociációs állandója (K_d) kiszámítható a koncentráció és a disszociáció fokának ismeretében

$$K_d = \frac{\alpha^2 c}{1 - \alpha} \tag{2.5}$$

Érdemes megjegyezni azonban, hogy a disszociációs állandó adott hőmérsékleten függ - a Debye-Hückel elmélet alapján - a közeg permittivitásától is. Ha a 2.4 egyenlet α -ra rendezett alakját behelyettesítjük ez utóbbi egyenletbe, a gyengeelektrolitok disszociációjára Ostwald által megállapított összefüggéshez jutunk (Ostwald féle hígítási törvény):

$$K_d = \frac{\lambda_c^2 c}{\lambda_0^2 - \lambda_0 \lambda_c} \tag{2.6}$$

A disszociációs állandó értékét tehát vezetésméréssel meghatározhatjuk. λ_c közvetlenül mérhető, míg λ_0 értékét az alábbiak szerint határozhatjuk meg: A 2.6 egyenlet átrendezésével

$$\frac{1}{\lambda_c} = \lambda_c c \frac{1}{K_d \lambda_0^2} + \frac{1}{\lambda_0} \tag{2.7}$$

kifejezést kapjuk. Ha ábrázoljuk $1/\lambda_c$ -t $\lambda_c c$, azaz κ függvényében, egyenest kapunk, melynek tengelymetszete $1/\lambda_0$. λ_c és λ_0 ismeretében pedig K_d értéke már kiszámítható. A mérések kivitelezésekor a következőket kell figyelembe vennünk:

- (a) Az oldat mért vezetéséhez az oldott anyag mellett az oldószer is hozzájárul. Híg oldatok esetén ezért külön méréssel meghatározzuk az oldószer vezetését $(G_{\text{oldószer}})$ és ezt az értéket levonjuk az oldat esetében mért vezetés értékéből.
- (b) Az újabban használatos elektródok geometriája és elrendezésük eltérnek a fajlagos vezetés definíció szerinti meghatározásánál leírtaktól, ezért a mérőelektródot kalibrálni kell. Az eltérés a mérést nem befolyásolja, mivel az eltérés az úgynevezett cellaállandó mint kalibrációs paraméter segítségével figyelembe vehető. A cellaállandó (jele C, egysége m⁻¹ vagy cm⁻¹) megmutatja egy ismert fajlagos vezetésű oldat (κ_{ref}) és az adott mérőcellával ezen oldaton mért vezetés ($G_{\text{mért}}$) közötti kapcsolatot:

$$C = \kappa_{\text{ref}}/G_{\text{mért}} \tag{2.8}$$

Ezek alapján az oldat hozzájárulását a vezetéshez a következőképpen kapjuk meg: $\kappa_{\text{korr}} = (G_{\text{oldat}} - G_{\text{oldószer}})C$, ahol κ_{korr} az oldatnak a cellaállandóval és az

2.1. ábra. Végtelen higítású oldat vezetésének (λ_0) meghatározása.

oldószer fajlagos vezetésével korrigált értéke, C a cellaállandó (nem tévesztendő össze a koncentrációval, melyet c-vel jelölünk). Ezek alapján a gyengesav oldat moláris vezetése:

$$\lambda = \kappa_{korr} V \tag{2.9}$$

ahol V a hígítás.

2.2. A gyakorlat leírása

A konduktométer harangelektródját többször (4 - 5) öblítsük át desztillált vízzel majd kis részlet 1 μ S/cm-nél kisebb fajlagos vezetésű vízzel, melyet külön edényben a technikustól kell kérni. A gyakorlatvezető által kijelölt alkohollal (metanol, etanol vagy propanol) készítsünk 20 v/v%-os oldatot. A kijelölt 1 mol·dm⁻³ koncentrációjú gyengesav törzsoldatából pipettázzunk két száraz 100 cm³-es mérőlombikba 2.00 cm³-t, majd töltsük jelre az első lombikot vezetőképességi vízzel, a másikat a 20%-os alkohol oldattal. A mérést mérőhengerben végezzük.

Töltsük először a vizes hígítású oldatot a mérőedénybe, és mérjük meg a vezetését. Ezután 25 cm³-t pipettázzunk ki az oldatból és 50 cm³-es mérőlombikban hígítsuk kétszeresére. Az elektród gondos leöblítése után mérjük ezen oldat vezetését is. A kétszeres hígítást még 3-4-szer megismételjük, minden alkalommal mérve a vezetést.

Ismételjük meg a méréseket az alkoholt tartalmazó oldatokkal is úgy, hogy a hígítások során bidesztillált víz helyett a mérőlombikot az alkoholos oldattal töltjük mindig jelre.

2.2. ábra. Vezetőképesség mérésére szolgáló cella felépítése. 1 - harangelektród, 2 - Pt korommal bevont gyűrűk, 3 - elektromos elvezetés, 4 - kettős falú temperálható edény, 5 - mágneses keverő.

Minden esetben jegyezzük fel a mért oldat hőmérsékletét is (a vezetőképességmérő írja az elektródba épített hőmérő által mért hőmérsékletet).

Végül mérjük meg mind a hígításokhoz használt vezetőképességi víz, mind az alkohol oldat vezetését, melyekkel mérési eredményeinket korrigálnunk kell. Ezután határozzuk meg 0.1 és 0.01 M KCl oldatok felhasználásával a cellaállandó értékét úgy, hogy cellakonstansként a két mérésből számolt értékek átlagát fogadjuk el.

A 2.2. ábra egy vezetőképesség mérésére szolgáló cella felépítését mutatja. A mérendő oldatba egy geometriailag jól definiált, indifferens elektródpárt merítünk és az ezen létrejövő feszültségesést mérjük. A konduktometria gyakorlatban az elektrolízis, ill. az elektromos polarizáció csökkentése, ill. kiküszöbölése érdekében váltóárammal végezzük a mérést.

2.3. A mérési eredmények kiértékelése

1. Számítsuk ki a cellaállandó értékét. A mérési eredményeket a vizes és az alkoholos sorozatnál is foglaljuk táblázatba:

$c \text{ (mol} \cdot dm^{-3})$	$G_{m ext{\'e}rt}$	$\kappa_{\rm korr} ({\rm S \cdot cm^{-1}})$	λ_c	$1/\lambda_c$	$\lambda_c c$	α	K_d
		•••					

2. Határozzuk meg grafikusan λ_0 értékét, λ_c és λ_0 ismeretében pedig minden koncentrációra számítsuk ki α és K_d értékeit.