DSP in VLSI Design

Homework (VI)

Folding Reference Answer

Deadline: April 13

1. Consider the 6-tap FIR filter

$$y(n) = \sum_{i=0}^{5} h_i x(n-i)$$

implemented using data-broadcast form shown in the following figure. This filter $S0=\{MA5, MA4\}$, $S1=\{MA3, MA2\}$, $S2=\{MA1, MA0\}$.

- (a) Design the folded architecture.
- (b) Construct a schedule corresponding to the folded architecture and verify that the folded architecture generated the desired filter output samples.

Fig. 1

(a)

Folding Set: $S0=\{MA5, MA4\}$, $S1=\{MA3, MA2\}$, $S2=\{MA1, MA0\}$ Folding Equations:

_	$D_F(U{\rightarrow}V)$	N*We-Pu+v-u
	$D_F(5\rightarrow 4)$ $D_F(4\rightarrow 3)$ $D_F(3\rightarrow 2)$ $D_F(2\rightarrow 1)$ $D_F(1\rightarrow 0)$	2*1-1+1-0=2 2*1-1+0-1=0 2*1-1+1-0=2 2*1-1+0-1=0 2*1-1+1-0=2

Folded architecture:

(OR)

Folding Set: $S0=\{MA5, MA4\}$, $S1=\{MA3, MA2\}$, $S2=\{MA1, MA0\}$ Folding Equations:

$D_F(U{\rightarrow}V)$	N*We-Pu+v-u
$\begin{array}{c} D_F(5\to 4) \\ D_F(4\to 3) \\ D_F(3\to 2) \\ D_F(2\to 1) \\ D_F(1\to 0) \end{array}$	2*1-1+1-0=2 2*1-1+0-1=0 2*1-1+1-0=2 2*1-1+0-1=0 2*1-1+1-0=2

Lifetime Table:

MA	u+Pu	$u+Pu+Max(D_F(U\rightarrow V))$
5 4 3 2 1 0	1 1 2 1 2	3 2 3 2 3 2 3 2

Lifetime Chart:

Forward-backward Register Allocation:

Folded architecture:

(b) Schedule

time	x(n)	1	2	3	4	5	6	7	8	9	OUT
0	x(0)	0									
1	x(0)		S ₅₀								
2	x(1)	0	S ₄₀	S ₅₀							
3	x(1)	$h_5x(0)=S_{50}$	S ₅₁	S ₅₀							
4	x(2)	0	$h_4x(1)+h_5x(0)=S_{50-41}$	S ₅₁	S ₅₀₋₄₁						
5	x(2)	$h_5x(1)=S_{51}$	S ₅₂	S ₅₁		S ₅₀₋₄₁₋₃₂					
6	x(3)	0	S ₅₁₋₄₂	S ₅₂	S ₅₁₋₄₂		S ₅₀₋₄₁₋₃₂				
7	x(3)	$h_5x(2)=S_{52}$	S ₅₃	S ₅₂	S ₅₀₋₄₁₋₃₂	S ₅₁₋₄₂₋₃₃	S ₅₀₋₄₁₋₃₂				
8	x(4)	0	S ₅₂₋₄₃			S ₅₀₋₄₁₋₃₂₋₂₃		S ₅₀₋₄₁₋₃₂₋₂₃			
9	x(4)								S ₅₀₋₄₁₋₃₂₋₂₃₋₁₄		
10	x(5)							S ₅₁₋₄₂₋₃₃₋₂₄		S ₅₀₋₄₁₋₃₂₋₂₃₋₁₄	
11	x(5)							S ₅₀₋₄₁₋₃₂₋₂₃₋₁₄	S ₅₁₋₄₂₋₃₃₋₂₄₋₁₅	S ₅₀₋₄₁₋₃₂₋₂₃₋₁₄	
12	x(6)								S ₅₀₋₄₁₋₃₂₋₂₃₋₁₄₋₀₅	S ₅₁₋₄₂₋₃₃₋₂₄₋₁₅	
13	x(6)						,				S ₅₀₋₄₁₋₃₂₋₂₃₋₁₄₋₀₅
14	x(7)										
15	x(7)										S ₅₁₋₄₂₋₃₃₋₂₄₋₁₅₋₀₆

The output of the folded architecture is the same as the output of original FIR filter but slow by 2.

- 2. Consider the 4-bit carry propagation adder (CPA) shown in the following figure. Now, we want to derive its bit-serial architecture by using folding technique.
 - (a) Derive the folding set.
 - (b) Design the folded architecture.
 - (c) Construct the schedule to show the architecture can do the same operation as CPA.
 - (d) Similarly, use the same method to derive 2-digit-serial architecture with the folding set, folded architecture, and schedule.

(a) Folding Set: {FA0, FA1, FA2, FA3}

$D_F(U\rightarrow V)$	N*We-Pu+v-u
$\begin{array}{c} D_F(0\rightarrow 1) \\ D_F(1\rightarrow 2) \\ D_F(2\rightarrow 3) \end{array}$	4*0-1+1-0=0 4*0-1+2-1=0 4*0-1+3-2=0

(b) Folded Architecture:

(c) Schedule:

time	1	2	3	4	5	6
0	A0	B0			0	
1	Α1	В1	S0	C0	C0	
2	A2	B2	S1	C1	C1	
3	А3	В3	S2	C2	C2	
4			S3	C3	0	C3

(d) Folding Set: {FA0-FA1, FA2-FA3}

$D_F(U\rightarrow V)$	N*We-Pu+v-u
D _F (01→23)	2*0-1+1-0=0

Folded Architecture:

Schedule:

time	1	2	3	4	5	6	7	8	9
0	A0	В0	A1	B1	0			0	
1	A2	B2	Α3	B3	S0	S1	C1	C1	
2	Α2	B2	S1	C1	S2	S3	C3	0	C3

(OR) Folding Set: {FA0, FA2}, {FA1, FA3}

$D_F(U\rightarrow V)$	N*We-Pu+v-u
$\begin{array}{c} D_F(0{\rightarrow}1) \\ D_F(1{\rightarrow}2) \\ D_F(2{\rightarrow}3) \end{array}$	2*0-0+0-0=0 2*0-1+1-0=0 2*0-0+1-1=0

