ARYA COLLEGE OF ENGINEERING IMPORTANT QUESTIONS 2FY2-01: ENGINEERING MATHEMATICS-I

BRANCH: Common to All

PART A

PART A		
1	Solve $sinpx cosy = cospx siny + p$	
2	State Rank-Nullity Theorem. Hence find the nullity of $\begin{bmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{bmatrix}$	
3	If $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$ then find the eigenvalues of $3A^3 + 5A^2 - 6A + 2I$	
	Are the following vectors linearly independent?	
4	$x_1 = (1,1,1,3), x_2 = (1,2,3,4), x_3 = (2,3,4,9)$	
5	Define Bernoulli's equation and Clairaut's equation	
6	Define Null space & write Rank Nullity Theorem	
7	Suppose the system AX=B is consistent & A is 5*8 matrix & rank (A) =3 How many parameters does the solution of the system have?	
	Determine the rank of the matrix	
	$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 1 & 6 & 5 \end{bmatrix}$	
8	$\begin{bmatrix} 1 & 4 & 2 \\ 1 & 6 & 5 \end{bmatrix}$	5*3
9	Solve $P^2 - 7p + 12 = 0$	
10	State Cayley Hamilton Theorem.	
11	Find integrating factor for the following equation: - $x \log x \frac{dy}{dx} + y + 2 \log x$	
	$ \frac{x \log x \frac{y}{dx} + y + 2 \log x}{\text{find the rank of matrix}} \begin{bmatrix} -1 & 2 & 3 & -2 \\ 2 & -5 & 1 & 2 \\ 3 & -8 & 5 & 2 \\ 5 & -12 & -1 & 6 \end{bmatrix} $	
12	$\begin{bmatrix} 3 & -8 & 5 & 2 \\ 5 & -12 & -1 & 6 \end{bmatrix}$	
13	Solve the equation :- $p^2 + p(x+y) + xy = 0$	
14	Solve: $(e^y + 1) \cos x dx + e^y \sin x dx = 0$	
15	Define symmetric and skew symmetric matrix with example .	
	Solve: $(y-px)(p-1) = p$	
16		
	PART B	

PART B

	Reduce the matrix	
	$A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$	4*6
1	in its normal form and hence find the rank	
2	For what values of μ and β the system of equations $2x+3y+5z=9$, $7x+3y-2z=8$,	

	$2x+3y+\beta z = \mu$ have i) No Solution , ii) Unique Solution and iii)Infinite many solution.
	Define integrating factor and hence write the integrating factor of
3	i) $(xy \sin xy + \cos xy)ydx + (xy\sin xy - \cos xy)xdy$ ii) $(x^3e^x - my^2) dx + mxydy = 0$
4	Solve $(1+y^2)dx = (tan^{-1}y - x)dy$
5	Solve $\left[y\left\{1+\frac{1}{x}\right\}+\cos y\right]dx + \left[x+\log x - x\sin y\right]dy = 0$
	Solve $\frac{dy}{dx} + \frac{y}{x}logy = \frac{y}{x^2}(logy)^2$
6	
7	Solve; $(1+y^2) + (x - e^{-\tan^{-1}y})\frac{dy}{dx} = 0$
	For what values of K, the equations
	x + y + z = 1
	2x + y + 4z = K
	$4x + 1y + 10z = K^2$
8	Have solution & solve them completely in each case.
	Are the following vectors linearly dependent? If so, express, these as a linear combination form.
9	$X_1(1,1,1,3)$; $X_2 = (1,2,3,4)$; $X_3 = (2,3,4,9)$
10	Solve $\left(1 + e^{\frac{x}{y}}\right)dx + e^{\frac{x}{y}}\left(1 - \frac{x}{y}\right)dy = 0$
11	Solve $y = 2px - p^2$
12	Solve $p^2 + 2py \cot x = y^2$.
13	For what values of k the equations $x + y + z = 1$, $2x + y + 4z = k$, $4x + y + 10z = k^2$ have a solution and solve them completely in each case.
	Are the following vectors linearly dependent? If so express one of these as a linear combination of other two:
14	$x_1 = (1,3,4,2), x_2 = (3,-5,2,2), x_3 = (2,-1,3,2)$
15	solve $\frac{dy}{dx} = \frac{1}{xy(x^2y^2 + 1)}$
16	Solve:
17	$Solve: x^2(y - px) = yp^2$

PART C

1	State Cayley- Hamilton Theorem. Find A^{-1} for $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ by using this theorem. Also find the matrix represented as $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$	2*10.5
2	Diagonalise the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.	

3	Solve: $(x^4y^4 + x^2y^2 + xy)y dx + (x^4y^4 - x^2y^2 + xy)x dy = 0$
	Verify cayley Hamilton theorem for matrix.
4	$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$
	Examine Whether the matrix.
	$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ is diagonalizable.
5	If so obtain the matrix P such that P^{-1} AP is a diagonal matrix.
	Solve the following differential equation.
6	$(x^4y^4 + x^2y^2 + xy)y dx + (x^4y^4 - x^2y^2 + xy)x dy = 0$
7	Find eigen values and eigen vectors of the matrix $A = \begin{bmatrix} -2 & 1 & 1 \\ -11 & 4 & 5 \\ -1 & 1 & 0 \end{bmatrix}$
8	Solve the following: - i) $p^2 + 2px - 3x^2 = 0$
	Find a similarity transformation which will reduce the matrix to diagonal matrix.
	$A = \begin{bmatrix} 2 & -3 & 3 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$
9	
10	Find the Eigen values and Eigen vectors of the following matrices $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ Verify cayley Hamilton theorem for it and find A^{-1} .
11	solve: $(3x + 2y^2)ydx + 2x(2x + 3y^2)dy = 0$