Please amend the claims as follows:

(twice amended) The method as claimed in claim [1]24, wherein said chelate complex is a complex of a chelant selected from the group consisting of DTPA, EDTA, DTPA-BMA, DO3A, DO7A, HP-DO3A, TMT and DPDP.

- 11. (twice amended) The method as claimed in claim [1]24, wherein said chelate complex is a complex of a chelant selected from the group consisting of porphyrins[and porphyrin-like molecules], phthalocyanins, crown ethers, hemin, heme, chelants having a square planar symmetry, cryptands and cryptates.
- 12. (twice amended) A method as claimed in claim [1]24, wherein said chelate complex is a complex of a chelant selected from compounds of formulae (I), (II), (III), (IV), (V) and (VI):

where each a independently represents an integer between 1 and 3, each R independently represents hydrogen or hydroxy and each R₁ independently represents a carboxylate, phosphate, thioacid, thiol, amino alkoxide or hydroxy group;

$$R_1$$
 R_2 R_3 R_4 R_4 R_5 R_6 R_6

where a and R_1 are as hereinbefore defined and each R_2 independently represents hydrogen, C_{1-6} alkyl or aryl, with the proviso that R_2 is absent when the double bond is present on the same nitrogen;

where a, R and R_2 are as hereinbefore defined, b is an integer between 0-3 and each R_3 independently represents R_1 , $NR-NR_2-COO^\theta$, or $N=N-COO^\theta$ when b is positive or each R_3 independently represents $N=CH-COO^\theta$ or

$$NR_2$$
- CH_2 - COO^{θ} ;

where a, b, \mathbb{R} and \mathbb{R}_1 are as hereinbefore defined;

where a, b, R and R₃ are as hereinbefore defined;

where A is N, CR₄, P, P=O, *cis*, *cis*-1,3,5-trisubstituted-cyclohexane or an N,N',N"-triosubstituted-triaza P to 14 membered macrocyclic ring;

L¹,L²,L³ are linker groups which are independently chosen from C₁₋₄ alkylene, C₄₋₈ cycloalkylene or C₄₋₈ o-arylene;

 Y^1,Y^2,Y^3 are independently chosen from $-NH_2$, -B(=O)OZ, $-N=CR_5-B(=O)OZ$, $-NR_5-CR_6-(=O)OZ$, $-N[CR_6-B(=O)Q]_2$ and $-O-CR_6-B(=O)OZ$ where B is C or PR₆, each Q is independently -OZ or $-NR_6$, and Z is H or a counter-ion; each R₄ and R₅ group is independently chosen from H, C_{1-5} alkyl, C_{1-5} alkoxyalkyl, C_{1-5} aminoalkyl, C_{5-10} aryl or C_{1-6} fluoroalkyl; R₆ is OH, C_{1-6} alkoxyalkyl, C_{1-6} alkoxyalkyl, C_{1-6} fluoroalkyl, C_{1-10} alkoxy or C_{5-10} aryl; with the proviso that at least one of Y^1 , Y^2 and Y^3 is $-N=CR_5-B(=O)OZ$.

13. (twice amended) The method as claimed in claim [1]23, wherein said contrast agent is conjugated to a biological vector capable of targeting said contrast agent to a desired region of the body.

14. (once amended) The method as claimed in claim 13, wherein said biological vector is selected from the group consisting of an antibody, [and]an antibody fragment, and an oligonucleotide binding motif.

Please add new claims 23-32 as follows:

- 23. (new) A method of detecting regions with decreased vascular perfusion in a human or non-human animal subject which comprises
 - a) administering to said subject an effective amount of a magnetic resonance imaging contrast agent comprising a physiologically tolerable Europium (II) compound having a first oxidation state and wherein said Europium (II) compound is oxidized *in vivo* to a Europium (III) compound having a second oxidation state and said oxidation states differ in relaxivity by a factor of at least 5, whereby contrast difference is enhanced in regions with decreased vascular perfusion in which conversion between said oxidation states occurs; and
 - b) generating an image of said subject.
- 24. (new) The method as claimed in claim 23, wherein said Europium (II) compound is a chelate complex of Europium (II) or a physiologically tolerable salt thereof.

- 25. (new) The method as claimed in claim 23, wherein said oxidation states differ in relaxivity by a factor of at least 10.
- 26. (new) The method as claimed in claim/23, wherein said oxidation states differ in relaxivity by a factor of at least 20.
- 27. (new) The method as claimed in claim 23, wherein said oxidation states differ in relaxivity by a factor of at least 100.
- 28. (new) The method as claimed in claim 23, wherein said contrast agent is conjugated to a macromolecule selected from the group consisting of proteins, polymers and liposomes.
- 29. (new) The method as claimed in claim 23, wherein said regions are tumours.
- 30. (new) The method as claimed in claim 23, wherein said regions are cardiac tissue.
- 31. (new) The method as claimed in claim 23, wherein said regions are in the brain.
- 32. (new) The method as claimed in claim 25, wherein the method is used in the evaluation of stroke.