WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification /:		(11) International P
C12N 15/12, 15/19, 15/57, 15/62, C07K 16/18, 16/28, 16/24, 16/40, C12Q 1/68, G01N 33/566, 33/68, A61K 38/17, 38/19, 38/48	A2	(43) International P

Publication Number:

WO 00/01817

Publication Date:

13 January 2000 (13.01.00)

(21) International Application Number:

PCT/US99/12366

(22) International Filing Date:

6 July 1999 (06.07.99)

(30) Priority Data:		
09/110,938	6 July 1998 (06.07.98)	US
09/114.466	13 July 1998 (13.07.98)	US
60/093,897	23 July 1998 (23.07.98)	US
09/132.968	12 August 1998 (12.08.98)	US
09/136.214	18 August 1998 (18.08.98)	US
60/099,999	11 September 1998 (11.09.98)	US

- (71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
- (72) Inventors: BATES, Elizabeth, Esther, Mary; 4, place Gabriel Rambaud, F-69001 Lyon (FR). LEBECQUE, Serge, J., E.; 514, Chemin du Marand, F-69380 Civrieux d'Azergue (FR). MURPHY, Erin, E.; 180 Emerson Street, Palo Alto, CA 94301 (US). MATTSON, Jeanine, D.; 559 Alvarado Street, San Francisco, CA 94114 (US). GORMAN, Daniel, M.; 6371 Central Avenue, Newark, CA 94560 (US). HEDRICK, Joseph, A.; 52-08 Quail Ridge Drive, Plainsboro, NJ 08536 (US). WANG, Luquan; 21 Hollis Road, East Brunswick,

NJ 08816 (US). ZLOTNIK, Albert; 507 Alger Drive, Palo Alto, CA 94306 (US). MURGOLO, Nicholas, J.; 99 Rolling Hill Drive, Millington, NJ 07946 (US). GREENE, Jonathan, R.; 457 Tillou Road, South Orange, NJ 07079 (US). JOHNSTON, James, A.; 205 Mary Alice Drive, Los Gatos, CA 95032 (US). BAZAN, Jose, Fernando; 775 University Drive, Menlo Park, CA 94025 (US). MAHONY, Daniel; 330 East 39th Street #21-A, New York, NY 10016 (US). LEES, Emma, M.; 3107 Washington Street, San Francisco, CA 94115 (US).

- (74) Agents: THAMPOE, Immac, J. et al.; Schering-Plough Corporation, Patent Dept., K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
- (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MD, MG, MK, MN, MX, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: MAMMALIAN GENES; DENDRITIC CELL PROSTAGLANDIN-LIKE TRANSPONDER (DC-PGT), HDTEA84. HSLJD37R AND RANKL, HCC5 CHEMOKINE, DEUBIQUITINATING 11 AND 12 (DUB11, DUB12), MD-1, MD2 AND CYCLIN E2. RELATED REAGENTS AND METHODS

(57) Abstract

Purified genes from a mammal, reagents related thereto including purified proteins, specific antibodies, and nucleic acids encoding the polypeptides are provided. Methods of using said reagents and diagnostic kits are also provided. Characterization of genes and products relating to DC-PGT (Dendritic cell prostaglandin-like transporter), HDTEA84, HSLJD37R and RANKL (related to TNF receptor family), HCC5 chemokine, Dub 11 and Dub 12 (Deubiquitinating 11 and 12), MD-1 and MD-2 (proteins which exhibit properties of ligands for proteins exhibiting a leucine-rich protein motif (LRR)) and cyclin E2.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	. LS	Lesotho	SI	Slovenia
AM	Armenia .	Fl	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΔÜ	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	CH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ιE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Ītaly	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	. Niger	. VN	Viet Nam
CC	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe ·
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		•
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		•
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DÈ	Germany	니	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden	•	
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/01817 PCT/US99/12366

MAMMALIAN GENES: DENDRITIC CELL PROSTAGLANDIN-LIKE TRANSPONDER (DC-PGT), HDTEA84, HSLJD37R AND RANKL, HCC5 CHEMOKINE, DEUBIQUITINATING 11 AND 12 (DUB11, DUB12), MD-1, MD2 AND CYCLIN E2, RELATED REAGENTS AND METHODS

FIELD OF THE INVENTION

The present invention pertains to compositions related to proteins which: function in cellular physiology, development, and differentiation of mammalian cells; exhibit sequence similarity to TNF receptors which function in controlling activation and expansion of mammalian cells, e.g., cells of a mammalian immune system; or function in controlling the cell cycle and growth. 10 particular, it provides purified genes, proteins, antibodies, and related reagents useful, e.g., to separate or identify particular cell types, or to regulate activation, development, differentiation, and function of various cell types, including 15 hematopoietic cells; which exhibit high structural similarity to proteins that exhibit the biological capacity to serve as a carrier mediated transporters of charged organic anions across cellular membranes, which typically can be used in prostaglandin and thromboxane physiology, e.g., transportation, influx, efflux, clearance, or degradation; which regulate or evidence development, differentiation, and function of various cell types, including hematopoietic cells; or to regulate cell division and proliferation of various cell types, including tumor cells.

BACKGROUND OF THE INVENTION

25

35

Prostaglandins (PGs) and thromboxanes (TXs) play widespread physiological, and therapeutic roles in health and disease such as glaucoma; pregnancy, labor, delivery, and abortion; gastric protection and peptic ulcer formation; intestinal fluid secretion; liver protection and damage; airway resistance and asthma; blood pressure control; and modulation of inflammatory cells.

PGs are charged anions at physiological pH that diffuse poorly across biological membranes. This limited simple diffusion appears to be augmented by carrier mediated transport in many diverse tissues such as the lung, choroid plexus, liver, anterior chamber of the eye, vagina, uterus, and placenta.

Understanding the role of prostaglandins in the development and functioning of the immune system is presently incomplete. Specifically, the influence of prostaglandins (PGs) on antigen presenting cells (APCs) of the immune system (e.g., dendritic cells) is, as yet, poorly understood.

Dendritic cells (DCs) are the most potent of antigen presenting cells. See, e.g., Paul (ed. 1993) <u>Fundamental</u>

<u>Immunology</u> 3d ed., Raven Press, NY. DCs are highly responsive to inflammatory stimuli such as bacterial lipopolysaccharides (LPS) and cytokines such as tumor necrosis factor alpha (TNFα). The presence of cytokines and LPS can induce a series of phenotypic and functional changes in DC that are collectively referred to as maturation. See, e.g., Banchereau and Schmitt <u>Dendritic Cells in Fundamental and Clinical Immunology</u> Plenum Press, NY.

15 Maturational changes in DCs include, e.g., silencing of antigen uptake by endocytosis, upregulation of surface molecules related to T cell activation, and active production of a number of cytokines including TNFα and IL-12. Upon local accumulation of TNFα, DCs migrate to the T cell areas of secondary lymphoid organs to activate antigen specific T cells.

Recent data indicate that DCs secrete PGs. See, e.g., Cormann, et al. (1986) Ann. Inst. Pasteur 137:369-382.

Furthermore, PGE2 has been shown to have an influence on DC maturity and the production of cytokines by DCs. Seem e.g.,

Kalinski, et al. (1997) J. Immunol. 159:28-35; Kuhn, et al. (1997)

Eur. J. Immunol. 27:3135-3142; and Rieser, et al. (1997) J. Exp.

Med. 186:1603-1608.

Currently, a need exists to understand the manner in which PGs influence cells of the immune system. It seems likely that 30 PGs, like cytokines, effect immune system development and activation. The present invention contributes to satisfying that need and is directed generally to a novel mammalian gene encoding a prostaglandin-like transporter (PGT).

In other aspects, the activation of resting T cells is critical to most immune responses and allows these cells to exert

their regulatory or effector capabilities. See, e.g., Paul (ed. 1993) Fundamental Immunology 3d ed., Raven Press, N.Y. Increased adhesion between T cells and antigen presenting cells (APC) or other forms of primary stimuli, e.g.; immobilized monoclonal antibodies (mAb), can potentiate the T-cell receptor signals. Tcell activation and T cell expansion depends upon engagement of the T-cell receptor (TCR) and co-stimulatory signals provided by accessory cells. See, e.g., Jenkins and Johnson (1993) Curr. Opin. Immunol. 5:361-367; Bierer and Hahn (1993) Semin. Immunol. 10 5:249-261; June, et al. (1990) Immunol. Today 11:211-216; and Jenkins (1994) Immunity 1:443-446. A major, and well-studied, costimulatory interaction for T cells involves either CD28 or CTLA-4 on T cells with either B7 or B70 (Jenkins (1994) Immunity 1:443-446). Recent studies on CD28 deficient mice (Shahinian, et al. (1993) Science 261:609-612; Green, et al. (1994) Immunity 1:501-15 508) and CTLA-4 immunoglobulin expressing transgenic mice (Ronchese, et al. (1994) J. Exp. Med. 179:809-817) have revealed deficiencies in some T-cell responses though these mice have normal primary immune responses and normal CTL responses to .20 lymphocytic choriomeningitis virus and vesicular stomatitis virus. As a result, both these studies conclude that other co-stimulatory molecules must be supporting T-cell function. However, identification of these molecules which mediate distinct

Tumor Necrosis Factor (TNF) is the prototypic member of an emerging family of cytokines that function as prominent mediators of immune regulation and the inflammatory response. These ligands are typically type II membrane proteins, with homology at the carboxy terminus. A proteolytic processed soluble protein often 30 is produced. See, e.g., Smith, et al. (1994) Cell 76-959-962; Armitage (1994) Current Opinion in Immunology 6:407-413; Gruss and Dower (1995) Blood 85:3378-3404; Wiley, et al. (1995) Immunity 3:673-682; and Baker and Reddy (1996) Oncogene 12:1-9. Crucial roles for these family members are evidenced by a number of studies, and they are implicated in regulation of apoptosis, peripheral tolerance, Ig maturation and isotype switching, and

costimulatory signals has been difficult.

25

35

20

25

30

general B cell and T cell functions. See, e.g., Thomson (ed. 1994) The Cytokine Handbook Academic Press, San Diego, CA; Naismith and Sprang (1998) Trends Biochem. Sci. 23:74-79; Lucas, et al. (1997) <u>J. Leukoc. Biol.</u> 61:551-558; Reddi (1997) <u>Cell</u> 89:159-161; Van Deventer (1997) Gut 40:443-448; Jablonska (1997) Postepy, Hig. Med. Dosw. 51:567-575; Hill and Lunec (1996) Mol. Aspects Med. 17:455-509; Aderka (1996) Cytokine Growth Factor Rev. 7:231-240; Lotz; et al. (1996) <u>J. Leukoc. Biol.</u> 60:1-7; and Gruss and Dower (1995) Cytokines Mol. Ther. 1:75-105. These imply fundamental roles in immune and developmental networks relevant to 10 human therapeutic needs. The identification of ligands and cell surface receptors allow determination of pairs, which will be useful in modulating such signal transduction.

The discovery of new cell markers is always potentially useful. Moreover, the inability to modulate activation signals prevents control of inappropriate developmental or physiological responses in the immune system. The present invention provides at least one alternative costimulatory molecule, which will be useful as a marker for cell types, and agonists and antagonists of which will be useful in modulating a plethora of immune conditions or responses.

The circulating component of the mammalian circulatory system comprises various cell types, including red and white blood cells of the erythroid and myeloid cell lineages. See, e.g., Rapaport (1987) Introduction to Hematology (2d ed.) Lippincott, Philadelphia, PA; Jandl (1987) Blood: Textbook of Hematology, Little, Brown and Co., Boston, MA.; and Paul (ed. 1993) Fundamental Immunology (3d ed.) Raven Press, N.Y.

For some time, it has been known that the mammalian immune response is based on a series of complex cellular interactions, called the "immune network." Recent research has provided new insights into the inner workings of this network. While it remains clear that much of the response does, in fact, revolve around the network-like interactions of lymphocytes, macrophages, 35 granulocytes, and other cells, immunologists now generally hold the opinion that soluble proteins, known as lymphokines,

30

cytokines, or monokines, play a critical role in controlling these cellular interactions. Thus, there is considerable interest in the isolation, characterization, and mechanisms of action of cell modulatory factors, an understanding of which should lead to significant advancements in the diagnosis and therapy of numerous medical abnormalities, e.g., immune system and other disorders.

Lymphokines apparently mediate cellular activities in a variety of ways. They have been shown to support the proliferation, growth, and differentiation of the pluripotential hematopoietic stem cells into vast numbers of progenitors comprising diverse cellular lineages making up a complex immune system. These interactions between the cellular components are necessary for a healthy immune response. These different cellular lineages often respond in a different manner when lymphokines are administered in conjunction with other agents.

The chemokines are a large and diverse superfamily of proteins. The superfamily is subdivided into two classical branches, based upon whether the first two cysteines in the chemokine motif are adjacent (termed the "C-C" branch), or spaced by an intervening residue ("C-X-C"). A more recently identified branch of chemokines lacks two cysteines in the corresponding motif, and is represented by the chemokines known as lymphotactins. Another recently identified branch has three intervening residues between the two cysteines, e.g., CX3C chemokines. See, e.g., Schall and Bacon (1994) Current Opinion in Immunology 6:865-873; and Bacon and Schall (1996) Int. Arch. Allergy & Immunol. 109:97-109.

Because the physiology mediated by these soluble molecules is so important, the discovery of novel chemokines will be important, both in diagnostic and therapeutic contexts.

In addition, while the general importance of the regulation of protein synthesis is universally accepted, the general importance of protein degradation has not been fully appreciated. One mechanism of protein degradation is via ubiquitination signals and degradation pathways. Ubiquitin (Ub) is a highly conserved 76 amino acid polypeptide that plays an important role in the regulation of protein degradation, cell-cycle progression, gene

transcription and signal transduction. The ubiquitination pathway is fine tuned and controlled, in part, by deubiquitination enzymes, which remove ubiquitin from proteins. Misregulation of the ubiquitination pathway may contribute problems in the protein quantity regulation, which may be associated, e.g., with malignant transformation, and oncogenesis through oncogenic counterparts of normally processed ubiquitinated proteins. Other clinical problems will often result from excessive or insufficient protein levels. Therefore, understanding the ubiquitination roles, e.g., in immune function, will increase our understanding of cell biology, which should have relevance, e.g., to malignant transformation.

10

35

Furthermore, growth of normal resting B cells (also referred to as "B lymphocytes") involves two distinct steps. First, the resting cells are activated to pass from the G_0 to G_1 phase of the 15 cell cycle. See, e.g., Alberts, et al. (eds. 1989) Molecular Biology of the Cell Garland Publ., NY; and Darnell, et al. (1990) Molecular Cell Biology Freeman, NY. Next, the activated cells are induced to proliferate. See, e.g., Paul, ed. (1989) Fundamental 20 Immunology, 2nd ed., Raven Press, NY; and the third edition. Several factors have been identified that induce growth of B cells, including interleukin-1 (IL-1), IL-2, IL-4, IL-10, and IL-In addition, antibodies against certain B cell surface molecules have been demonstrated to promote B cell proliferation. 25 T cells (also referred to as "T lymphocytes") are also induced to proliferate by certain factors, which include phytohemagglutinin, anti-T cell receptor monoclonal antibodies, anti-CD3 monoclonal antibodies, and other agents.

B7 (CD80) and B70 (CD86) are the second "group" of molecules 30 which strongly mediate B and T cell interaction. These molecules, on B cells, interact with their ligands CD28 and CTLA-4 on T cells. These interactions are major co-stimulatory signals for activation of both B and T cells.

During the last 15 years, it has become apparent that B7 (CD80) and B70 (CD86) play fundamental functions in T cell and B cell activation Numerous in vitro and in vivo experiments have demonstrated that these two pairs of molecules represent important

targets for immunosuppression. See, e.g., Banchereau, et al. (1994) Ann. Rev. Immunol. 12:881-922; van Kooten, et al. (1996) Adv. Immunol. 61:1-77; Linsley and Ledbetter (1993) Ann. Rev. Immunol. 11:191-212).

In 1995, another molecule called RP105 was cloned from mouse splenic cells. See Miyake, et al (1995) J. Immunol. 154:3333-3340. Monoclonal antibodies against RP105 also induce strong proliferation of mouse B cells and protects mouse B cells from irradiation-induced apoptosis in a similar fashion to anti-CD40 10 antibody or CD40-ligand. See Miyake, et al. (1994) J. Exp. Med. 180:1217-1224.

` The RP105 molecule and its ligand MD-1 may be an additional pair of molecules that play key roles in the activation of T cells and B cells. See Miyake, et al. (1998) <u>J. Immunol.</u> 161:1349-1353; and Chan, et al., (1998) J. Exp. Med. 188:93-101 However, the

15 human sequence of MD-1, has remained undetermined. The present invention provides this and also provides a previously undescribed second human homolog of mouse MD-1, (i.e., MD-2).

20

30

35

Many factors have been identified which influence the differentiation process of precursor cells, or regulate the physiology or migration properties of specific cell types. These observations indicate that other factors exist whose functions in immune function were heretofore unrecognized. These factors provide for biological activities whose spectra of effects may be 25 distinct from known differentiation or activation factors. absence of knowledge about the structural, biological, and physiological properties of the regulatory factors which regulate cell physiology in vivo prevents the modulation of the effects of such factors. Thus, medical conditions where regulation of the development or physiology of relevant cells is required remains unmanageable.

Thus, significant therapeutic needs exist in the areas of cytokine regulation of physiology, protein degradation, and B cell signaling. The present invention provides important insights and developments in these areas.

Cancer can occur in many tissues of the body. from a change in certain cells that causes them to evade the

agents.

normal growth limiting mechanisms, e.g., to escape the feedback controls that normally stop cellular growth and reproduction after a given number of such cells have developed. Cell division and transcription are highly coordinated processes that play important roles in this feedback control. See, e.g., Beeson, et al. (eds. 1979) Textbook of Medicine, 15th ed., W.B. Saunders Co., Philadelphia, PA.; DeVita, et al. (eds. 1997) Cancer: Principles and Practice of Oncology, 5th ed., Lippincott, Philadelphia, PA; Neal and Hoskin (1997) Clinical Oncology: Basic Principles and Practice Oxford University Press, NY; Kastan (1997) Checkpoint Controls and Cancer CSH Press, NY; and Thomas (ed. 1996) Apoptosis and Cell Cycle Control in Cancer: Basic Mechanisms and Implications for Treating Malignant Disease BIOS Scientific, Oxford.

Molecules which function to regulate cell division play important roles in the controlled growth of various types of cells. Aberrations in these controls can lead to various disease states, e.g., oncogenesis, improper wound healing, developmental abnormalities, and metabolic problems.

20 The cell cycle can be divided into four phases: the presynthetic phases (G0 and G1); the phase of DNA synthesis (S); and the postsynthetic phase (G2). See, e.g., Guyton (ed. 1976) Textbook of Medical Physiology, 5th ed., W.B. Saunders Co., Philadelphia, PA.; Alberts, et al. (eds. 1994) Molecular Biology 25 of the Cell, 3rd ed., Garland Publishing, New York, NY; and Darnell, et al. (eds. 1990) Molecular Cell Biology, 2nd ed., W.H. Freeman, New York, NY. Effective chemotherapeutic agents are often those which target diseased cells in the S phase, e.g., choriocarcinoma, acute lymphocytic leukemia, lyphocytic lymphosarcoma, Burkitt's lymphoma, Hodgkin's disease, testicular 30 neoplasms, Wilm's tumor, and Ewing's sarcoma. Unfortunately, oncogenic cells not actively dividing are less sensitive to these

The lack of knowledge regarding the control of the cell cycle has hampered the ability of medical science to specifically regulate cell division or immune responses. The present invention

provides compositions which will be important in the control of cell division and transcription.

SUMMARY OF THE INVENTION

5

10

25

30

The present invention is based, in part, upon the characterization of the genes and products relating to the DC-PGT, HDTEA84, HSLJD37R, RANKL, HCC5 chemokine, Dubl1, Dubl2, MD-1, MD-2, and cyclin E2. It provides nucleic acids, polypeptides, antibodies, and methods for making and using such compositions.

In the DC-PGT embodiments, the invention provides an isolated or recombinant antigenic polypeptide comprising: a plurality of distinct segments, wherein each segment has identity to at least 12 contiguous amino acids from the mature SEQ ID NO: 2; or at

least 17 contiguous amino acids from the mature SEQ ID NO: 2. In certain embodiments, the plurality of segments includes one of at least 19 contiguous amino acids; or two of at least 15 contiguous amino acids. Other polypeptides include those wherein the polypeptide: comprises the mature SEQ ID NO: 2; binds with specificity to a polyclonal antibody which specifically binds to

specificity to a polyclonal antibody which specifically binds to SEQ ID NO: 2; or the polypeptide: is a natural allelic variant of SEQ ID NO: 2; is at least 30 amino acids in length; exhibits at least two non-overlapping epitopes specific for SEQ ID NO: 2; is a synthetic polypeptide; is attached to a solid substrate; or is a

5-fold or less conservative substitution from SEQ ID NO: 2. Fusion polypeptides are also provided, e.g., comprising first and second portions, the first portion comprising a sequence as described and the second portion comprising a detectable marker. Pharmaceutical compositions are made available, e.g., comprising a sterile polypeptide, as described, in a pharmaceutically acceptable carrier.

Polynucleotide embodiments include an isolated or recombinant polynucleotide encoding a described polypeptide. Preferred forms will be such a polynucleotide which: comprises the mature polypeptide coding portion of SEQ ID NO: 1; or encodes the mature SEQ ID NO: 2. Preferred embodiments include wherein the polynucleotide is: a PCR product; a hybridization probe; a

mutagenesis primer; or made by chemical synthesis. Alternatively, the polynucleotide is: detectably labeled; a deoxyribonucleic acid; or double stranded. Also provided is an expression vector: comprising the described polynucleotide, including wherein the polypeptide specifically binds polyclonal antibodies generated against an immunogen of mature SEQ ID NO: 2; which selectively hybridizes under stringent hybridization conditions to a target polynucleotide sequence having at least 60 contiguous nucleotides. from SEQ ID NO: 1; encodes a polypeptide having at least 50 contiguous amino acid residues from mature SEQ ID NO: 2; or is suitable for transfection into a prokaryote or eukaryote host cell. Preferably, the host cell is: a mammalian cell; a bacterial cell; an insect cell; a prokaryote; a eukaryote; or a COS cell. A method is provided, e.g., of making a polypeptide comprising expressing the vector in the host cell.

10

15

Other polynucleotides include an isolated or recombinant polynucleotide which hybridizes to the coding portion of SEQ ID NO: 1 under stringent hybridization and wash conditions of at least 50°C, a salt concentration of less than 400 mM, and 50% formamide. Such a nucleic acid may be an expression vector, which may hybridize to the coding portion of SEQ ID NO: 1 under stringent hybridization and wash conditions of at least 60°C, a salt concentration of less than 200 mM, and 50% formamide. Preferably, the vector encodes a polypeptide which specifically binds an antibody generated against a mature SEQ ID NO: 2. Another embodiment will be such a polynucleotide which hybridizes to SEQ ID NO: 1, wherein the polynucleotide is: a PCR product; a hybridization probe; a mutagenesis primer; or made by chemical synthesis.

Methods are provided, e.g., of modulating the physiology or development of a cell, comprising contacting the cell with an agonist or antagonist of a described polypeptide; of detecting the presence of a complementary polynucleotide in a sample, comprising contacting a described polynucleotide that selectively hybridizes with the complementary polynucleotide in the sample to form a detectable duplex; thereby indicating the presence of the polynucleotide in the sample; or for identifying a compound that

20

30

binds to a described polypeptide, comprising: incubating components comprising the compound and the polypeptide under conditions sufficient to allow the components to interact; and measuring the binding of the compound to the polypeptide.

In TNF receptor-like embodiments, the invention further provides an isolated or recombinant polynucleotide encoding an antigenic polypeptide comprising at least 17 contiguous amino acids from: the mature polypeptide from SEQ ID NO: 6; the mature polypeptide from SEQ ID NO: 8; the mature polypeptide from SEQ ID 10 NO: 10; the mature polypeptide from SEQ ID NO: 12; the mature polypeptide from SEQ ID NO: 17; the mature polypeptide from SEQ ID NO: 19; the mature polypeptide from SEQ ID NO: 21; or the mature polypeptide from SEQ ID NO: 23. In preferred embodiments, such polynucleotide will encode all of the polypeptide of: signal processed SEQ ID NO: 6; signal processed SEQ ID NO: 8; signal processed SEQ ID NO: 10; signal processed SEQ ID NO: 12; signal processed SEQ ID NO: 17; SEQ ID NO: 19; SEQ ID NO: 21; or SEQ ID NO: 23. Other embodiments include such a polynucleotide, which hybridizes at 55°C, less than 500 mM salt, and 50% formamide to the: mature protein coding portion of SEQ ID NO: 5; signal processed coding portion of SEQ ID NO: 7; signal processed coding portion of SEQ ID NO: 9; signal processed coding portion of SEQ ID NO: 11; mature protein coding portion of SEQ ID NO: 16; polypeptide coding portion of SEQ ID NO: 18; polypeptide coding portion of SEQ ID NO: 20; or polypeptide coding portion of SEQ ID NO: 22. Other forms include those polynucleotides, comprising at least 35 contiguous nucleotides of: mature protein coding portion of SEQ ID NO: 5; signal processed coding portion of SEQ ID NO: 7; signal processed coding portion of SEQ ID NO: 9; signal processed coding portion of SEQ ID NO: 11; mature protein coding portion of SEO ID NO: 16; polypeptide coding portion of SEQ ID NO: 18; polypeptide coding portion of SEQ ID NO: 20; or polypeptide coding portion of SEQ ID NO: 22. Various expression vectors are provided comprising such a polynucleotide. The invention also provides a host cell containing the expression vector, including a eukaryotic cell.

Methods are provided, e.g., making an antigenic polypeptide comprising expressing a recombinant polynucleotide; for detecting a polynucleotide, comprising contacting the polynucleotide with a probe that hybridizes, under stringent conditions, to at least 25 contiguous nucleotides of the: mature protein coding portion of SEQ ID NO: 5; signal processed coding portion of SEQ ID NO: 7; signal processed coding portion of SEQ ID NO: 9; signal processed coding portion of SEQ ID NO: 11; mature protein coding portion of SEQ ID NO: 16; polypeptide coding portion of SEQ ID NO: 18; 10 polypeptide coding portion of SEQ ID NO: 20; or polypeptide coding portion of SEQ ID NO: 22; to form a duplex, wherein detection of the duplex indicates the presence of the polynucleotide. Kits are provided, e.g., for the detection of a described polynucleotide, comprising a compartment containing a probe that hybridizes, under stringent hybridization conditions, to at least 17 contiguous nucleotides of a described polynucleotide to form a duplex. Preferably, the probe is detectably labeled.

Binding compounds are provided, including antibodies, comprising an antibody binding site which specifically binds to a polypeptide comprising at least 17 contiguous amino acids from: signal processed SEQ ID NO: 6; signal processed SEQ ID NO: 8; signal processed SEQ ID NO: 10; signal processed SEO ID NO: 12; signal processed SEQ ID NO: 17; SEQ ID NO: 19; SEQ ID NO: 21; or SEQ ID NO: 23. Preferably, the antibody binding site is: selectively immunoreactive with the: signal processed SEQ ID NO: 25 6; signal processed SEQ ID NO: 8; signal processed SEQ ID NO: 10; signal processed SEQ ID NO: 12; signal processed SEQ ID NO: 17; SEQ ID NO: 19; SEQ ID NO: 21; or SEQ ID NO: 23; raised against a purified or recombinantly produced human HDTEA84 protein; raised 30 against a purified or recombinantly produced human HSLJD37R protein; or in a monoclonal antibody, Fab, or F(ab)2; or the binding compound is: an antibody molecule; a polyclonal antiserum; detectably labeled; sterile; or in a buffered composition.

Such compositions allow various methods, including using the binding compound, comprising contacting the binding compound with a biological sample comprising an antigen, thereby forming a binding compound:antigen complex. Preferably, the biological

WO 00/01817

10

15

20

25

30

35

13

PCT/US99/12366

sample is from a human, and the binding compound is an antibody. Such also allow for production of a detection kit comprising the binding compound, and: instructional material for the use of the binding compound for the detection; or a compartment providing segregation of the binding compound.

Polypeptides are also made available, e.g., a substantially pure or isolated antigenic polypeptide, which binds to the described binding composition, and further comprises at least 17 contiguous amino acids from: signal processed SEQ ID NO: 6; signal processed SEQ ID NO: 8; signal processed SEQ ID NO: 10; signal processed SEQ ID NO: 12; signal processed SEQ ID NO: 17; SEQ ID NO: 19; SEQ ID NO: 21; or SEQ ID NO: 23. Preferred polypeptides include those which: comprise at least a fragment of at least 25 contiguous amino acid residues from: a primate HDTEA84 protein; a primate HSLJD37R protein; or a rodent or primate RANKL protein; or are soluble polypeptides; are detectably labeled; are in a sterile composition; are in a buffered composition; bind to an sialic acid residue; are recombinantly produced; or have a naturally occurring polypeptide sequence. In other embodiments, the polypeptide comprises at least 17 contiguous amino acids from the: signal processed SEQ ID NO: 6; signal processed SEQ ID NO: 8; signal processed SEQ ID NO: 12; signal processed SEQ ID NO: 17; SEQ ID NO: 19; SEQ ID NO: 21; or SEQ ID NO: 23.

Methods are provided, including a method of modulating a precursor cell physiology or function comprising a step of contacting the cell with: a binding compound which binds to a described polypeptide; an HDTEA84 polypeptide; an HSLJD37R polypeptide; or a RANKL polypeptide. The method may be one wherein the contacting is in combination with a TNF family ligand, or an antagonist of the TNF family ligand.

In other embodiments, the present invention provides compositions related to other chemokine, Dub, or surface protein genes. Polypeptide embodiments include: a substantially pure or recombinant HCC5 polypeptide exhibiting identity over a length of at least 12 amino acids to SEQ ID NO: 25; an isolated natural sequence HCC5 of mature SEQ ID NO: 25; a fusion protein comprising HCC5 sequence; a substantially pure or recombinant Dub11

polypeptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 32 or 34; an isolated natural sequence Dub11 of mature SEQ ID NO: 32 or 34; a fusion protein comprising Dubl1 sequence; a substantially pure or recombinant Dub12 polypeptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 36 or 38; an isolated natural sequence Dub12 of mature SEQ ID NO: 36 or 38; a fusion protein comprising Dub12 sequence; a substantially pure or recombinant MD-1 polypeptide exhibiting identity over a length of at least about 12 10 amino acids to SEQ ID NO: 42; an isolated natural sequence MD-1 of mature SEQ ID NO: 42; a fusion protein comprising primate MD-1 sequence; a substantially pure or recombinant MD-2 polypeptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 44 or 46; an isolated natural sequence MD-2 of mature SEQ ID NO: 44 or 46; a fusion protein comprising primate MD-2 sequence; a substantially pure or recombinant MD-2 polypeptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 48 or 49; an isolated natural sequence MD-2 of mature SEQ ID NO: 48; or a fusion protein comprising 20 murine MD-2 sequence. Preferred embodiments include substantially pure or isolated polypeptides which match the sequences over a stretch of at least 17 amino acids; more preferably over a stretch of at least 21 amino acids; over 25, 30, 35, 50, 75 or more. other preferred embodiments, the HCC5 polypeptide: is from a primate, including a human; comprises at least one polypeptide 25 segment of SEQ ID NO: 25; exhibits a plurality of portions exhibiting the identity; is a natural allelic variant of HCC5; has a length at least about 30 amino acids; exhibits at least two nonoverlapping epitopes which are specific for a primate HCC5; 30 exhibits a sequence identity over a length of at least 35 amino acids to a HCC5; is glycosylated; is a synthetic polypeptide; is attached to a solid substrate; is conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a natural sequence; or the 35 Dubl1 polypeptide: is from a primate, including a human; comprises at least one polypeptide segment of SEQ ID NO: 32 or 34; exhibits a plurality of portions exhibiting the identity; is a natural

allelic variant of Dubl1; has a length at least about 30 amino acids; exhibits at least two non-overlapping epitopes which are specific for a primate Dubl1; exhibits a sequence identity over a length of at least about 35 amino acids to a Dub11; is glycosylated; is a synthetic polypeptide; is attached to a solid substrate; is conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a natural sequence; or the Dub12 polypeptide: is from a primate, including a human; comprises at 10 least one polypeptide segment of SEQ ID NO: 36 or 38; exhibits a plurality of portions exhibiting the identity; is a natural allelic variant of Dub12; has a length at least about 30 amino acids; exhibits at least two non-overlapping epitopes which are specific for a primate Dub12; exhibits a sequence identity over a length of at least about 35 amino acids to a Dub12; is 15 glycosylated; is a synthetic polypeptide; is attached to a solid substrate; is conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a natural sequence; or the primate MD-1 20 polypeptide: is from a human; comprises at least one polypeptide segment of SEQ ID NO: 42; exhibits a plurality of portions exhibiting the identity; is a natural allelic variant of primate MD-1; has a length at least about 30 amino acids; exhibits at least two non-overlapping epitopes which are specific for a primate MD-1; exhibits a sequence identity over a length of at 25 least about 35 amino acids to a primate MD-1; is glycosylated; is a synthetic polypeptide; is attached to a solid substrate; is conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion 30 variant from a natural sequence; or the primate MD-2 polypeptide: is from a human; comprises at least one polypeptide segment of SEQ ID NO: 44 or 46; exhibits a plurality of portions exhibiting the identity; is a natural allelic variant of primate MD-2; has a length at least about 30 amino acids; exhibits at least two nonoverlapping epitopes which are specific for a primate MD-2; 35 exhibits a sequence identity over a length of at least about 35 amino acids to a primate MD-2; is glycosylated; is a synthetic

polypeptide; is attached to a solid substrate; is conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a natural sequence; or the rodent MD-2 polypeptide: is from a mouse; comprises at least one polypeptide segment of SEQ ID NO: 48 or 49; exhibits a plurality of portions exhibiting the identity; is a natural allelic variant of rodent MD-2; has a length at least about 30 amino acids; exhibits at least two non-overlapping epitopes which are specific for a rodent MD-2; exhibits a sequence 10 identity over a length of at least about 35 amino acids to a rodent MD-2; is glycosylated; is a synthetic polypeptide; is attached to a solid substrate; is conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a natural sequence. Sterile compositions comprising such polypeptides are also provided, along with those comprising: the HCC5 polypeptide and: à carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration; another chemokine. including one selected from the group of HCC1, HCC2, HCC3, and 20 HCC4; or an antibody antagonist for a chemokine, including one selected from the group of HCC1, HCC2, HCC3, and HCC4; the Dub11 polypeptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral 25 administration; the Dubl2 polypeptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration; the MD-1 polypeptide and a carrier, 30 wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration; the MD-2 polypeptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration. 35

Fusion proteins are provided, e.g., comprising: mature protein sequence of SEQ ID NO: 25; mature protein sequence of SEQ

ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36 or SEQ ID NO: 38; mature protein sequence of SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, or SEQ ID NO: 49; a detection or purification tag, including a FLAG, His6, or Ig sequence; or sequence of another chemokine protein with the chemokine polypeptide Kits are provided, e.g., comprising a described polypeptide and: a compartment comprising the polypeptide; and/or instructions for use or disposal of reagents in the kit.

Binding compounds, including antibodies, are provided, e.g., 10 comprising an antigen binding portion from an antibody, which specifically binds to a natural: HCC5 polypeptide, wherein the antibody: is raised against a peptide sequence of a mature HCC5 polypeptide sequence of SEQ ID NO: 25; is raised against a mature HCC5; is raised to a purified HCC5; is immunoselected; is a polyclonal antibody; binds to a denatured HCC5; or exhibits a Kd 15 to HCC5 antigen of at least 30 µM; or Dubl1 polypeptide, wherein the antibody: is raised against a peptide sequence of a mature Dub11 polypeptide sequence of SEQ ID NO: 32 or SEQ ID NO: 34; is raised against a mature Dubl1; is raised to a purified Dubl1; is immunoselected; is a polyclonal antibody; binds to a denatured 20 Dubl1; or exhibits a Kd to Dubl1 antigen of at least 30 μM; or Dub12 polypeptide, wherein the antibody: is raised against a peptide sequence of a mature Dub12 polypeptide sequence of SEQ ID NO: 36 or SEQ ID NO:38; is raised against a mature Dub12; is 25 raised to a purified Dubl2; is immunoselected; is a polyclonal antibody; binds to a denatured Dubl2; or exhibits a Kd to Dubl2 antigen of at least 30 µM; or a primate MD-1 polypeptide, wherein the antibody: is raised against a peptide sequence of a mature polypeptide sequence of SEQ ID NO: 42; is raised against a mature MD-1; is raised to a purified MD-1; is immunoselected; is a 30 polyclonal antibody; binds to a denatured MD-1; or exhibits a Kd to MD-1 antigen of at least 30 µM; or a primate MD-2 polypeptide, wherein the antibody: is raised against a peptide sequence of a mature MD-2 polypeptide sequence of SEQ ID NO: 44, or SEQ ID NO: 46; is raised against a mature MD-2; is raised to a purified MD-2; 35 is immunoselected; is a polyclonal antibody; binds to a denatured

MD-2; or exhibits a Kd to MD-2 antigen of at least 30 µM; or a rodent MD-2 polypeptide, wherein the antibody: is raised against a peptide sequence of a mature MD-2 polypeptide sequence of SEQ ID NO: 48, or SEQ ID NO: 49; is raised against a mature rodent MD-2; is raised to a purified rodent MD-2; is immunoselected; is a polyclonal antibody; binds to a denatured rodent MD-2; or exhibits a Kd to antigen of at least 30 μM . In certain embodiments, the binding composition will be one wherein: the polypeptide is from a primate or rodent; the binding compound is an Fv, Fab, or Fab2 fragment; the binding compound is conjugated to another chemical moiety; is attached to a solid substrate, including a bead or plastic membrane; is in a sterile composition; or is detectably labeled, including a radioactive or fluorescent label.

10

15

20

30

Kits are provided comprising the binding compound, and: a compartment comprising the binding compound; a compartment comprising purified antigen; and/or instructions for use or disposal of reagents in the kit. Methods are provided for producing an antigen:antibody complex, comprising contacting an antibody and: a primate HCC5 polypeptide; a primate Dub11 polypeptide; a primate Dub12 polypeptide; a primate MD-1 polypeptide; a primate MD-2 polypeptide; or a rodent MD-2 polypeptide; thereby allowing the complex to form. Other compositions are provided, e.g., the binding compound and: a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, 25 nasal, topical, or parenteral administration; or an antibody antagonist for another chemokine, including one selected from the group of HCC1, HCC2, HCC3, and HCC4.

Nucleic acid embodiments include, e.g., an isolated or recombinant nucleic acid encoding a polypeptide or fusion protein described, wherein: the HCC5: polypeptide is from a primate, including a human; or nucleic acid: encodes an antigenic HCC5 peptide sequence of SEQ ID NO: 25 encodes a plurality of antigenic HCC5 peptide sequences of SEQ ID NO: 25; exhibits identity over at least 25 nucleotides to a natural cDNA encoding the HCC5 segment; is a hybridization probe for a gene encoding the HCC5 polypeptide;

or further encodes another chemokine, including one selected from the group of HCC1, HCC2, HCC3, and HCC4; or the Dubl1: polypeptide is from a primate, including a human; or nucleic acid: encodes a Dubl1 antigenic peptide sequence of SEQ ID NO: 32; or SEQ ID NO: 34; encodes a plurality of antigenic peptide sequences of SEO ID NO: 32 or SEQ ID NO: 34; exhibits identity over at least 25 nucleotides to a natural cDNA encoding the Dubl1 segment; or is a hybridization probe for a gene encoding the Dubl1 polypeptide; the Dub12: polypeptide is from a primate, including a human; or 10 nucleic acid: encodes an antigenic Dub12 peptide sequence of SEO ID NO: 36 or SEQ ID NO: 38; encodes a plurality of antigenic peptide sequences of SEQ ID NO: 36 or SEQ ID NO: 38; exhibits identity over at least 25 nucleotides to a natural cDNA encoding the DUB12 segment; is a hybridization probe for a gene encoding 15 the Dub12 polypeptide; or the primate MD-1: polypeptide is from a primate, including a human; or nucleic acid: encodes an antigenic MD-1 peptide sequence of SEQ ID NO: 42; encodes a plurality of antigenic peptide sequences of SEQ ID NO: 42; exhibits identity over at least 25 nucleotides to a natural cDNA encoding the MD-1 20 segment; is a hybridization probe for a gene encoding the Dub11 polypeptide; or the primate MD-2: polypeptide is from a human; or nucleic acid: encodes an antigenic MD-2 peptide sequence of SEQ ID NO: 44, or SEQ ID NO: 46; encodes a plurality of antigenic peptide sequences of SEQ ID NO: 44, or SEQ ID NO: 46; exhibits identity 25 over at least 25 nucleotides to a natural cDNA encoding the segment; is a hybridization probe for a gene encoding the primate MD-2 polypeptide; or the rodent MD-2: polypeptide is from a mouse; or nucleic acid: encodes an antigenic MD-2 peptide sequence of SEO ID NO: 48, or SEQ ID NO: 49; encodes a plurality of antigenic 30 peptide sequences of SEQ ID NO: 48, or SEQ ID NO: 49; exhibits identity over at least 25 nucleotides to a natural cDNA encoding the MD-2 segment; or is a hybridization probe for a gene encoding the rodent MD-2 polypeptide. Other nucleic acid embodiments include the described, which: is an expression vector; further comprises an origin of replication; is from a natural source; comprises a detectable label; comprises synthetic nucleotide sequence is less than 6 kb, preferably less than 3 kb; is from a

15

20

25

30

primate, including a human; comprises a natural full length coding sequence; or is a PCR primer, PCR product, or mutagenesis primer.

Various cells are provided, including a cell or tissue comprising a described recombinant nucleic acid, including wherein the cell is: a prokaryotic cell; a eukaryotic cell; a bacterial cell; a yeast cell; an insect cell; a mammalian cell; a mouse cell; a primate cell; or a human cell.

Kits are provided, e.g., comprising a described nucleic acid, and: a compartment comprising the nucleic acid; a compartment comprising a nucleic acid encoding another chemokine, including HCC1, HCC2, HCC3, and HCC4; or instructions for use or disposal of reagents in the kit.

Alternative nucleic acids include those which: hybridize under wash conditions of 45° C and less than 2M salt to the polypeptide coding portion of SEQ ID NO: 24; hybridize under wash conditions of 45° C and less than 2M salt to the polypeptide coding portions of SEQ ID NO: 31 or 33; hybridize under wash conditions of 45° C and less than 2M salt to the coding portions of SEQ ID NO: 35 or 37; hybridize under wash conditions of 45° C and less than 2M salt to the coding portion of SEQ ID NO: 41; hybridize under wash conditions of 45° C and less than 2M salt to the coding portion of SEQ ID NO: 43 or 45. or hybridize under wash conditions of 45° C and less than 2M salt to the coding portion of SEQ ID NO: 47. Preferably, the wash conditions are at 55° C and/or 500 mM salt; or at 65° C and/or 150 mM salt.

Additionally, methods are provided, e.g., of modulating physiology or development of a cell or tissue culture cells comprising exposing the cell to an agonist or antagonist of HCC5, primate MD-1, primate MD-2, or rodent MD-2. Others include methods of detecting specific binding to a compound, comprising: contacting the compound to a composition selected from the group of: an antigen binding site which specifically binds to: an HCC5 chemokine; a Dub11; a Dub12; a primate MD-1; a primate MD-2; a rodent MD-2; or an expression vector encoding: an HCC5 chemokine or fragment thereof; a Dub11 or fragment thereof; a Dub12 or fragment thereof; a primate MD-1 or fragment thereof; a primate

25

30

35

substantially pure protein which is specifically recognized by the antigen binding site of the described antigen binding sites; a substantially pure HCC5 chemokine or peptide thereof, or a fusion protein comprising a 30 amino acid sequence portion of HCC5 chemokine sequence; a substantially pure Dubl1 or peptide thereof, or a fusion protein comprising a 30 amino acid sequence portion of Dub11 sequence; a substantially pure Dub12 or peptide thereof, or a fusion protein comprising a 30 amino acid sequence portion of Dubl1 sequence; a substantially pure primate MD-1 or peptide 10 thereof, or a fusion protein comprising a 30 amino acid sequence portion of primate MD-1 sequence; a substantially pure primate MD-2 or peptide thereof, or a fusion protein comprising a 30 amino acid sequence portion of primate MD-2 sequence; a substantially pure rodent MD-2 or peptide thereof, or a fusion protein 15 comprising a 30 amino acid sequence portion of rodent MD-2 sequence; and then detecting binding of the compound to the composition.

Particular polynucleotide embodiments include an isolated or recombinant polynucleotide which: encodes at least 17 contiguous amino acid residues of SEQ ID NO: 54; encodes at least two distinct segments of at least 10 contiguous amino acid residues of SEQ ID NO 54; or comprises one or more segments at least 21 contiguous nucleotides of SEQ ID NO: 53. Such polynucleotides allow methods of making: a polypeptide comprising expressing a described expression vector, thereby producing the polypeptide; a duplex nucleic acid comprising contacting a polynucleotide with a complementary nucleic acid, thereby resulting in production of the duplex nucleic acid; a synthetic polynucleotide, comprising chemically polymerizing nucleotides to produce the polynucleotide; or a polynucleotide comprising using a PCR method.

Cyclin polypeptide embodiments include an isolated or recombinant antigenic polypeptide comprising at least: one segment comprising at least 17 contiguous amino acids from SEQ ID NO: 54; or at least two distinct segments of at least 11 contiguous amino acids from SEQ ID NO: 54. Such polypeptide may: comprise at least one segment comprising at least 17 contiguous amino acids from SEQ ID NO: 54; and exhibit at least two non-overlapping epitopes which

35

are selective for primate protein of SEQ ID NO: 54. Other embodiments include those wherein the polypeptide: is a 5-fold or less substitution from a natural sequence; is a deletion or insertion variant from a natural sequence; or comprises at least two distinct segments of at least 11 contiguous amino acids from SEQ ID NO: 54. Preferably the polypeptide is antigenic, and will typically comprise at least one sequence from (SEO ID NO: 54) KESRYVHD (residues 120-127), DKHFEVLH (residues 127-134), HSDLEPOM (residues 134-141), QKDINKNM (residues 177-184), YAPKLQEF 10 (residues 203-210), SEEDILRM (residues 219-226), LRMELIIL (residues 224-231), ELCPVTII (residues 237-244), and LFLOVDAL (residues 249-256); and/or the segments of at least 11 contiguous amino acids comprise one the segment with at least 14 contiquous amino acids from SEQ ID NO: 54. Such polypeptides may further 15 exhibit at least two non-overlapping epitopes which are selective for primate protein of SEQ ID NO: 54; and/or may: comprise a mature sequence of SEQ ID NO: 2; bind with selectivity to an antibody generated against an immunogen of SEQ ID NO: 54; comprise a plurality of polypeptide segments of 17 contiquous amino acids . 20 of SEQ ID NO: 54; or be a natural allelic variant of SEQ ID NO: 54. The polypeptide may: be in a sterile composition; have a length at least 30 amino acids; be not glycosylated; be denatured; be a synthetic polypeptide; be attached to a solid substrate; or be a fusion protein with a detection or purification tag, 25 including a FLAG, His6, or Ig sequence. Other embodiments include those wherein the polypeptide: is a 5-fold or less substitution from a natural sequence; or is a deletion or insertion variant from a natural sequence.

Various kits are provided, e.g., which comprise such polypeptides and instructions for the use or disposal of the polypeptide or other reagents of the kit.

Methods are provided, e.g., to label the polypeptide, comprising labeling the polypeptide with a radioactive label; to separate the polypeptide from another polypeptide in a mixture, comprising running the mixture on a chromatography matrix, thereby separating the polypeptides; to identify a compound that binds selectively to the polypeptide, comprising incubating the compound

with the polypeptide under appropriate conditions; thereby causing the component to bind to the polypeptide; to conjugate the polypeptide to a matrix, comprising derivatizing the polypeptide with a reactive reagent, and conjugating the polypeptide to the matrix; or inducing an antibody response to the polypeptide, comprising introducing the polypeptide as an antigen to an immune system, thereby inducing the response.

Binding compounds are provided, e.g., antibodies, comprising an antigen binding portion from an antibody which binds with selectivity to described polypeptides. Methods are made available for evaluating the selectivity of binding of a compound to cyclin E2, comprising contacting the compound to a recombinant cyclin E2 polypeptide and at least one other cyclin; and comparing binding of the compound to the cyclins.

15

10

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

24

PCT/US99/12366

All references cited herein are incorporated herein by reference to the same extent as if each individual publication or 5 patent application was specifically and individually indicated to be incorporated by reference.

I. General

30

35

It is to be understood that this invention is not limited to 10 the particular compositions, methods, and techniques described herein, as such compositions, methods, and techniques may vary. It is to be understood that the terminology used herein is for the purpose of describing particular embodiments, and is not intended to limit the scope of the present invention which is to be limited 15 by the appended claims.

As used herein, including the appended claims, singular forms of words such as "a," "an," and "the" include their corresponding plural referents unless the context clearly dictates otherwise. Thus, e.g., reference to "a polynucleotide" includes one or more 20 different polynucleotides, reference to "a composition" includes one or more of such compositions, and reference to "a method" includes reference to equivalent steps and methods known to a person of ordinary skill in the art, and so forth.

Unless otherwise defined, technical and scientific terms used 25 herein have the same meaning as commonly understood by a person of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references discussed above are provided for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the invention is not entitled to antedate any such disclosure by virtue of its prior invention.

The present invention also provides amino acid sequences and DNA sequences encoding various mammalian proteins, e.g., which are polypeptides produced by selected cells. Among these proteins are

those which: mediate uptake of substrates, e.g., prostaglandinlike molecules, modulate or mediate, e.g., induce or prevent trafficking, proliferation, or differentiation of, interacting cells, or are intracellular proteins which are important in 5 various cellular processes, e.g., deubiquitination of proteins or cell cycle regulation.

The Prostaglandin-like Transporter (PGT) of the present invention is expressed particularly in antigen presenting cells of the immune system, e.g., dendritic cells. As such, the transporter is designated a dendritic cell prostaglandin-like transporter (DC-PGT). Consequently, the DC-PGT of the present invention offers the means to establish fundamental understanding on the role of PG influence on immune function.

10

20

30

The present invention provides DNA sequence encoding a mammalian protein that exhibits structural features characteristic 15 of functionally significant proteins, particularly which serve as organic anion transporters. This family of organic anion transporters includes: the prostaglandin transporters of man (Lu, et al. (1996) J. Clin. Invest. 98:1142-1149) and rat; organic anion transporters in man and rat; brain digoxyin transporters and Matrin F/G of rat (Kanai, et al. (1995) Science 268:866-869).

Transporters of this family typically are 12 transmembrane proteins of approximately 650 amino acids in length. Characteristic of this group of proteins is a cysteine rich region located in one of the extracellular loops, which resembles a zinc finger motif. It is not entirely certain whether these polypeptides mediate primarily the influx or efflux of prostaglandins and organic anions, and they may, under different circumstances produce influx or efflux depending, e.g., on the intracellular concentration of the organic anions concerned.

The DC PGT protein of the present invention is closest in homology to the prostaglandin transporters and it is probable that a prostaglandin is the major anion transported. The human gene embodiment described herein, isolated as designate DC-PGT or clone 240, contains an open reading frame encoding a presumptive protein of about 709 amino acids. This protein exhibits intracellular, transmembrane, and extracellular protein segments, revealing novel

aspects of organic anion transport that may be relevant during mammalian development, e.g., development of dendritic cells of the immune system.

The introduction of evolutionary information in the form of sequence homologs simplifies the structural analysis considerably 5 for related molecules which share a common structural framework in spite of considerable sequence divergence, see, e.g., Chothia and Lesk (1986) EMBO J. 5:823-826. This concept can be effectively extended to the strong prediction of TM regions across an aligned 10 protein family, whereas any single sequence may provide an uncertain topology. See Persson and Argos (1994) J. Mol. Biol. 237:182-192; and Rost, et al. (1995) Protein Sci. 4:521-533. For the DC PGT, a number of sequence homologs were first assembled by comparative matching to protein and translated nucleotide databases (Altschul, et al. (1994) Nature Genet. 6:119-129; 15 Koonin, et al. (1994) EMBO J. 13:493-503). These relatives of DC-PGT include a ubiquitously expressed PGT from primate, e.g., human (GenBank: locus HSU70867, accession U70867), and a PGT from rodent, e.g., rat (prostaglandin transporter - rat, GenBank Acc. No. 1083766; Kanai, et al. (1995) Science 268:866-869). These sequences were subjected to parallel analyses by a suite of computer programs that have greatly improved on the initial Kyte and Doolittle (1982) hydropathic profile as a means of predicting the topology of integral membrane proteins. Four algorithms 25 (ALOM, MTOP, MEMSAT and TopPredII) (Klein, et al. (1985) Biochim. Biophys. Acta 815:468-476; Hartmann, et al. (1989) Proc. Nat'l Acad. Sci. USA 86:5786-5790; Jones, et al. (1994) Biochem. 33:3038-3049; and Claros and von Heijne (1994) Comp. Applic. Biosci. 10:685-686) were used to individually predict TM 30 extensions and orientations; these predictions were pooled and mapped onto the multiple sequence alignment produced by ClustalW and MACAW (Thompson, et al. (1994) Nucl. Acids Res. 22:4673-4680; and Schuler, et al. (1991) <u>Proteins</u> 9:180-190). Furthermore, these multiply aligned sequence files were used as input to PHD 35 and TMAP (Rost, et al. (1995) Protein Sci. 4:521-533; Persson and

SUBSTITUTE SHEET (rule 26)

Argos (1994) J. Mol. Biol. 237:182-192) for a familial prediction

of shared TM regions. Structural features that persisted in this two-step analysis are likely to be shared topological traits present in all members of this organic anion transporter family.

HDTEA84, HSLJD37R, and RANKL genes and proteins are also provided, which are related to the TNF signaling pathways. antigens HDTEA84, HSLJD37R, and RANKL, and fragments, or antagonists will be useful in physiological modulation of cells expressing receptors for, e.g., ligands of the TNF family. of these antigens appear to lack a membrane spanning segment, 10 suggesting that they are soluble forms of receptor. This suggests that the soluble proteins can serve as antagonists of the TNF-like ligands. In addition, it is likely that membrane spanning forms exist, which serve as signaling receptors mediating cellular response to the ligands.

The HDTEA84 gene has been detected in cDNA libraries derived form Hodgkin's lymphoma, endothelial cells, keratinocytes, prostrate, and cerebellum. It exhibits significant sequence similarity to the osteoprotegerin ligand receptor reported by Lacey, et al. (1998) Cell 93:165-176. The HDTEA84 will likely modulate proliferation or development by antagonizing its 20 respective ligand. Membrane associated forms should exist, likely alternatively spliced transcription products.

The HSLJD37R exhibits like similarity to receptors for TNF. While the first embodiment is an incomplete sequence, the available portion currently lacks an identified transmembrane segment. Additional efforts provide a full length sequence, and an alternative splice variant.

The rodent 427152#4 Rank-like (RANKL) was detected in a rodent cDNA library panel probed with Mouse 427152#4 (204 bp). Positive signals were detected in CH12 (B cell line); rag-1 thymus; rag-1 heart; rag-1 brain (best signal); rag-1 testes; rag-1 liver; normal lung; rag-1 lung; asthmatic lung; tolerized and challenged lung; Nippo-infected lung; Nippo IL-4 K.O. lung; Nippo anti-IL-5 treated lung; influenza lung; guinea pig allergic lung; 35 w.t. stomach; and w.t. colon on a 3 day exposure at -80° C with an intensifier screen. On a 2 week exposure at -80° C with screen, signals were also detected in the following libraries: Mel14+

naive; Mel14+ Th1; Mel14+ Th2; Th1 3 week Bl/6; large B cell; bEnd3 + $TNF\alpha$ + IL-10, guinea pig normal lung; and Rag Hh- colon.

The primate, e.g., human, Rank-like (RANKL) homologs of rodent 427152#4 were detected in a human cDNA library panel probed with mouse 427152#4 (204 bp). Signals were detected in monkey asthma lung 4 h (1.6-2.0 kb) and adult placenta (2.5-3.0 kb) on a 3 day exposure at -80° C with screen. On a 2 week exposure at -80° C with screen, signals were also detected in the following libraries: CD1a+ 95% DC activated CHA (kidney epithelial carcinoma cell line); monkey lung normal; psoriasis skin; fetal lung; fetal ovary; fetal testes; and fetal spleen.

Each of these proteins will also be useful as antigens, e.g., immunogens, for raising antibodies to various epitopes on the protein, linear and/or conformational epitopes. The molecules may be useful in defining various cell subsets, either by the molecules produced by, or by expression of membrane forms of the receptors. Such cells should be responsive to the respective ligands. Soluble forms of the receptors should serve as antagonists of the ligand, binding to the ligand and preventing interaction with membrane forms, which would mediate signaling.

Both genes express proteins which exhibit structural motifs characteristic of a member of the TNF receptor family. SEQ ID NO: 5 and SEQ ID NO: 6, respectively, provide the nucleic acid and predicted amino acid sequences for primate, e.g., human, HDTEA84. SEQ ID NO: 7 and SEQ ID NO: 8, respectively, provide the nucleic acid and predicted amino acid sequences for primate, e.g., human, HSLJD37R.

25

30

Interesting features of the HDTEA84 include: signal sequence from about 1-11; TNF receptor Cys rich domains I (about 32-72), II (about 73-113), III (about 114-150), and IV (about 151-193); and unique region from about 194-300. Features for the HSLJD37R (SEQ ID NO: 10 form), partly based on alignment with HDTEA84: signal sequence from about 1-41; TNF receptor Cys rich domains I (about 42-90), II (about 91-131), III (about 132-168), and IV (about 169-211); transmembrane segment from about 354-370. Similar alignment of the other variants will identify similar features. Segments including combinations or excluding such segments may be desired.

15

20

25

30

35

The structural homology of HDTEA84, HSLJD37R, and RANKL to members of the TNF receptor family suggests related function of these molecules. See, e.g., Lacey, et al. (1998) Cell 93:165-176. The sequences, however, mostly lack a transmembrane segment, suggesting that the proteins are soluble receptor forms. They may well also have membrane bound forms resulting, e.g., from alternatively spliced transcript variants. The soluble forms are likely to be antagonists of the ligand, e.g., blocking the binding of ligand to a membrane bound form of signaling receptor. Thus, these molecules may be useful in the treatment of abnormal immune or developmental disorders.

The natural antigens should be capable of modulating various biochemical responses which lead to biological or physiological responses in target cells. The embodiments characterized herein are from primate, e.g., human, but other species variants almost surely exist, e.g., rodents, etc. See below. The descriptions below are directed, for exemplary purposes, to primate HDTEA84, HSLJD37R, or RANKL, but are likewise applicable to related embodiments from other species.

The HDTEA84, HSLJD37R, and RANKL clones were assembled through the careful analysis of ESTs present in various databases, e.g., Merck-WashU public database. These genes exhibit structural motifs characteristic of a member of the TNF receptor family. Compare, e.g., with the TNF receptor, NGF-receptor, and FAS receptor. Table 3 discloses the nucleic acid and predicted amino acid sequences for primate, e.g., human, HDTEA84. The ESTs were identified from several different libraries.

SEQ ID NO: 7 AND SEQ ID NO: 8, respectively, disclose partial nucleic acid and predicted amino acid sequences for primate, e.g., human, HSLJD37R. The ESTs were identified from several different libraries derived from: smooth muscle, pancreas tumor, adipocytes, HUVEC cells, adult pulmonary, endothelial cells, prostate cell line PC3, microvascular endothelial cells, fetal heart, and dendritic cells. Other sequences were detected in libraries from: multiple sclerosis lesions, breast, kidney, and germinal center B cells.

20

25

30

SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20 and SEQ ID NO: 22 provide the sequences of various mammalian genes designated RANKL.

Interesting features of the rodent RANKL include: signal sequence from about 1-29; TNF receptor Cys rich domain I (about 33-74), II (about 75-114), and III (about 115-135). Interesting features of the primate RANKL include: TNF receptor Cys rich domain I (about 1-43), II (about 44-83), and III (about 84-104); transmembrane segment from about 139-155. Alignment with other TNF receptors will identify additional interesting corresponding features. Segments with boundaries at these positions may be especially interesting.

Hybridization signals with RANKL were detected with rodent, e.g., mouse sequence, in CH12 (B cell line), rag-1 thymus, rag-1 heart, rag-1 brain (strongest signal), rag-1 testes, rag-1 liver, normal lung, rag-1 lung, asthmatic lung, tolerized and challenged lung, Nippo-infected lung, Nippo IL-4 K.O. lung, Nippo anti-IL-5 lung, influenza lung, guinea pig allergic lung, w.t. stomach, and w.t. colon on a 3 day exposure at -80° C with a screen. On a 2 week exposure at -80° C with screen, signals were also detected in the following libraries: Mel 14+ naive, Mel14+ Th1, Mel14+ Th2, Th1 3 week B1/6, large B cell, bEnd3 + TNF α + IL-10, guinea pig normal lung, and Rag Hh- colon. Probes of human libraries with rodent sequence provided: detectable signals in Monkey asthma lung 4 h (1.6-2.0 kb) and adult placenta (2.5-3.0 kb) on a 3 day exposure at -80° C with screen. On a 2 week exposure at -80° C with screen, signals were also detected in the following libraries: CD1a+ 95% DC activated, CHA (kidney epithelial carcinoma cell line), monkey lung normal, psoriasis skin, fetal lung, fetal ovary, fetal testes, and fetal spleen.

In another embodiment, the invention provides a chemokine. For a review of the chemokine family, see, e.g., Lodi, et al. (1994) <u>Science</u> 263:1762-1767; Gronenborn and Clore (1991) <u>Protein</u> Engineering 4:263-269; Miller and Kranger (1992) Proc. Nat'l Acad. Sci. USA 89:2950-2954; Matsushima and Oppenheim (1989) Cytokine 1:2-13; Stoeckle and Baker (1990) New Biol. 2:313-323; Oppenheim, 35 et al. (1991) Ann. Rev. Immunol. 9:617-648; Schall (1991) Cytokine 3:165-183; and Thomson (ed. 1994) The Cytokine Handbook 2d ed. Academic Press, NY.

The new chemokine described herein is designated HCC5 which is a CC chemokine. See SEQ ID NO: 24 and SEQ ID NO: 25. The descriptions are directed, for exemplary purposes, to the human HCC5 natural allele described, but are likewise applicable to allelic and/or polymorphic variants, e.g., from other individuals, as well as splicing variants, e.g., natural forms. Based on sequence analysis of the chemokine protein sequences described below, it is apparent that HCC5 belongs to the CC chemokine family. See, e.g., stem cell mobilizing chemokine (CKbeta-1) from Kreider, et al. (1997) Patent WO 9715594 (SEO ID NO: 26) and GenBank Accession number 97P-W17659; macrophage inflammatory protein-1-gamma (MIP-1) from Adams, et al. (1995) Patent WO 15 9517092 (SEQ ID NO: 27) and GenBank Accession number 95P-R76128; human MIP-4, a chemoattractant for leukocytes from Adams, et al. (1997) Patent WO 9634891 (SEQ ID NO: 28) and GenBank Accession number 96P-W07203; pituitary expressed chemokine (PGEC) from Bandman, et al., Patent WO 9616979 (SEQ ID NO: 29) and GenBank 20 Accession number 96P-R95691; and human chemokine HCC-1 from Forsmann, et al. (1998) Patent WO 9741230 (SEQ ID NO: 30) and GenBank Accession number 97P-W38171.

The HCC5 chemokine was discovered through searches and careful analysis of database sequences. The HCC5 sequence was 25 discovered in a cDNA library from pooled bulk breast tumor tissue. Absence of overlapping sequences from other sources suggests extremely specific tissue expression, or highly regulated expression. Amino acid homology analysis suggests that the HCC5 gene encodes a member of a group of related family of chemokines. The primate, e.g., human, HCC5 chemokine is most closely related 30 in sequence to the chemokines, human chemokine HCC1; human pituitary expressed chemokine (PGEC); human MIP-4 (a chemoattractant for leukocytes); human macrophage inflammatory protein-1-gamma (MIP-1γ); and human stem cell mobilizing chemokine 35 (CKbeta-1).

The HCC5 chemokine is seemingly specifically expressed, since its sequence has not appeared from many sources. The structural

30

similarity to other chemokines suggests that signals important in inflammation, cell differentiation, and development are mediated by it.

It is possible that the HCC5 may actually be an antagonist of one, some, or all, of many related chemokines. In such case, combination compositions may be desired. For example, a combined group of functional agonists and antagonists for specific receptors may be called for, e.g., a combination of chemokines and antibody antagonists of others. In addition, HCC5 may be useful to block HIV or HTLV infection, which viruses may use the respective receptors for infection.

The HCC5 chemokine exhibits limited similarity to portions of known chemokines. See, e.g., Matsushima and Oppenheim (1989)

Cytokine 1:2-13; Oppenheim, et al. (1991) Ann. Rev. Immunol.

- 9:617-648; Schall (1991) <u>Cytokine</u> 3:165-183; and Gronenborn and Clore (1991) <u>Protein Engineering</u> 4:263-269. Other features of comparison are apparent between the HCC5 chemokine and chemokine families. See, e.g., Lodi, et al. (1994) <u>Science</u> 263:1762-1766. In particular, β -sheet and α -helix residues can be determined
- using, e.g., RASMOL program, see Sayle and Milner-White (1995)

 TIBS 20:374-376; or Gronenberg, et al. (1991) Protein Engineering
 4:263-269; and other structural features are defined in Lodi, et
 al. (1994) Science 263:1762-1767. These secondary and tertiary
 features assist in defining further the C, CC, CXC, and CX3C

 structural features, along with spacing of appropriate cysteine
 residues.

Antagonists might be created by N-terminal modification, e.g., either truncation of addition of an N-terminal methionine. Since HCC5 is structurally related to the HCC chemokines, it may well exhibit similar behaviors and functions.

The distribution of the HCC5 chemokines, especially in dendritic cells, or in Th1 T cells, B cells, and macrophages, suggest roles in immune functions, e.g., it will likely attract T cells and monocytes. Thus, the HCC5 chemokine is likely to recruit these cell types in vivo, thereby enhancing the immune response mediated by these cell types. The expression patterns

.10

15

20

25

35

appear consistent with a functional importance of the ligands in a TH1/TH2 regulation and/or response, including, e.g., in a cancer therapy. Thus, ligands and homologs are identified as possible immune adjuvants, e.g., for cellular responses, but also as possible adjuvants to modulate soluble antigen responses, e.g., vaccines.

The invention further provides mammalian, e.g., primate, DNA sequences encoding proteins which exhibit structural properties of likely intracellular deubiquitinating protein enzymes. These proteins are designated deubiquitinating 11 (Dub11) and deubiquitinating 12 (Dub12). For a review of the superfamily of deubiquitinating enzymes see, e.g., Hochstrasser (1995) Curr.

Opin. Cell Biol. 7:215-223; Wilkinson, et al. (1995) Biochemistry 34:14535-14546; Baker, et al. (1992) J. Biol. Chem. 267:23364-23375; and Papa and Hochstrasser (1993) Nature 366:313-319. However, the deubiquitinating enzymes have also been reported to have additional functions besides deubiquitination. See, e.g., Hochstrasser (1996) Cell 84:813-815; Hicke and Riezman (1996) Cell 84:277-287; and Chen, et al. (1996) Cell 84:853-862.

The descriptions typically are directed, for exemplary purposes, to the human Dubl1 and human Dubl2 natural alleles described, but are likewise applicable to allelic and/or polymorphic variants, e.g., from other individuals, as well as splicing variants, e.g., natural forms, and species variants from other primates or other species. These genes will allow isolation of other primate genes encoding proteins related to this, further extending the family beyond the specific embodiments described.

The Dub11 or Dub12 proteins (naturally occurring or recombinant), fragments thereof, and antibodies thereto, along with compounds identified as having binding affinity to Dub11 or Dub12, may be useful in the treatment of conditions associated with abnormal physiology or development, such as, e.g., uterine carcinoma associated with p53 dysregulation associated with human papilloma virus or mental retardation of Angelman syndrome (AS) due to disruption of the 5' end of the UBE3A (E6-AP) gene which codes for a disubiquitination protein. Pharmacological intervention which alters the half-lives of cellular proteins

15

20

30

35

associated with these diseases may have wide therapeutic potential. Specifically, prevention of p53 ubiquitination (and subsequent degradation) in human papilloma virus positive tumors, and perhaps all tumors retaining wild-type p53 but lacking the retinoblastoma gene function, could lead to programmed cell death. Additionally, specific inhibitors of p27 and cyclin B ubiquitination are predicted to be potent antiproliferative agents. Inhibitors of IkappaB ubiquitination should prevent NFkappaB activation and may have utility in a variety of autoimmune and inflammatory conditions. Finally, deubiquitination enzymes may be novel, potential drug targets as they also appear to regulate cell proliferation. These conditions or disease states may be modulated by appropriate therapeutic treatment using the deubiquitination compositions provided herein.

Conversely, methods for blocking the enzymatic activities should have the opposite effects. Small molecule drug screening to block enzymatic activity of the protein can be performed to identify entities which will block the deubiquitination, thereby affecting protein degradation pathways, as appropriate.

The T cell growth factor interleukin-2 (IL-2) regulates lymphocyte proliferation by inducing the expression of growth promoting genes. HTLV-1 transformed cell lines derived from Adult T-cell Leukemia (ATL) can exhibit constitutive activation of the IL-2-induced JAK/STAT pathway. See Migone, et al. (1998) Proc. Nat'l Acad. Sci. USA 95:3845-3850. ATL cell lines were examined for expression of IL-2 induced genes. It was found that the deubiquitinating enzyme Dub2 is constitutively expressed. See Zhu, et al. (1997) <u>J. Biol. Chem.</u> 272:51-57. Moreover, Dub2 expression conferred cytokine-independent proliferation on the interleukin-3-dependent murine Ba/F3 hematopoietic cell line. SCID mice (n = 18) subcutaneously injected with Ba/F3 cells expressing Dub2, (but not a C to S inactive mutant of Dub2) developed tumors with a six week latency. Cells derived from these tumors exhibited constitutive tyrosine phosphorylation of STAT5 and also mimicked the ATL cell lines by exhibiting downregulation of the protein tyrosine phosphatase SHP-1. These

findings strongly indicate that Dubl2 is an oncogene that, when

30

35

constitutively expressed, can induce cytokine-independent growth in lymphocytes and may be implicated in leukemogenesis. It is likely that Dub2 controls cell growth by regulating the ubiquitindependent proteolysis or the ubiquitin-dependent state of a 5 critical intracellular substrate. Functional similarity of the Dubl1 and Dub12 would be expected. Thus, the biological role of Dub2 suggests similar important roles for the other Dub family members.

Screening for inhibitors of the DUB enzymes can also be easily accomplished using the known assays for activity. Such assays can be developed into high throughput screening efforts, testing, particularly, compounds known to affect protein turnover, or similar enzymatic sites. Small molecule antagonists of the enzymes, which will be membrane permeable, would be particularly desirable therapeutically. 15

In the MD embodiments of the present invention, mammalian, e.g., primate, and rodent, e.g., mouse, DNA sequences are provided encoding proteins which exhibit structural properties of ligands for proteins exhibiting a leucine-rich protein motif (LRR) that is 20 important, e.g., in immune function. These proteins are designated herein human MD-1, human MD-2, and murine MD-2. human MD-1 is a primate homolog of the previously described rodent MD-1, see, e.g., Miyake, et al. (1998) J. Immunol. 161:1348-1353, while human MD-2 and mouse MD-2 are newly discovered MD-1 homolog. For a general review of LRR proteins, see, e.g., Kobe and 25 Deisenhofer (1994) Trends Biochem. Sci. 19:412. For the role of LRR in specific immune defenses, see, e.g., Jones, et al. (1994) Science 266:789; Dixon, et al. (1996) Cell 84:451; and Baker, et al. (1997) Science 276:726.

Similar sequences for proteins in other species should also be available. The descriptions below are directed, for exemplary purposes, to the primate, e.g., human, MD-1 and MD-2, and rodent, e.g., mouse, MD-2 natural alleles described, but are likewise applicable to allelic and/or polymorphic variants, e.g., from other individuals, as well as splicing variants, e.g., natural forms, and species variants.

The MD-1 or MD-2 proteins (naturally occurring or recombinant), fragments thereof, and antibodies thereto, along with compounds identified as having binding affinity to MD-1 or MD-2, should be useful in the treatment of conditions associated with abnormal physiology or development, such as, e.g., the recognition of specific pathogenic molecules and the activation of B cell physiology. As indicated above, MD-1 and MD-2 exhibit structural motifs characteristic of ligands for the RP105 or BAS-1 surface receptors. Thus, soluble forms, antibodies, or small molecule drugs which disrupt intercellular signaling mediated by these receptors, will find use in modulating cellular response. These responses will be important in normal or abnormal clinical situations.

36

PCT/US99/12366

The matching of the MD and RP105 may also be easily tested.

15 Identification of the counter receptor for the MD-2 may include testing both the RP105 and BAS-1 genes, along with other screening methods, as described. The likely counter receptor structure for the MDs are RP105, BAS-1, and related genes. Associated proteins which bind to these, including the DUB proteins, may be identified using these techniques, among others.

Another aspect of the invention provides members of the cyclin proteins. The cyclins and their partner catalytic subunits, the cyclin-dependent kinases (Cdks), play key roles in the regulation of eukaryotic cell cycle events. See, e.g., Draetta (1994) Curr. Opin. Cell Biol. 6:842-846; Sherr (1994) Cell 79:551-555; and Ohtsubo, et al. (1995) Mol. Cell. Biol. 15:2612-2624. Cyclins were first identified in marine invertebrates on the basis of their dramatic cell cycle periodic expression during meiotic and mitotic divisions.

A large family of cyclins, designated cyclins A-H, bind and activate different Cdks which are serine/threonine kinases essential for cell cycle progression. The timing of the expression of the various cyclins is key in determining at which phase of the cell cycle (S, G0, G1, or G2) their associated Cdk is active. D-type cyclins are synthesized early in G1 and bind and activate CDK4 and CDK6. Cyclin E-Cdk2 and Cyclin A-Cdk2 complexes form later in G1 as cells prepare to begin DNA synthesis. Cyclin

30

35

B-cdc2 is active during G₂ and mitosis. See, e.g., Lees (1995) <u>Curr. Opin. Cell Biol.</u> 7:773-780.

Other Cyclin-Cdk complex associated proteins are critical for modulation of cyclin activity. Proteins that co-immunoprecipitated with cyclin E were visualized by SDS-PAGE. However, viability of the cyclin E "knockout" mouse, suggested the existence of redundancy. Moreover, work in other species also suggested that a homolog might exist in human.

Cdks can also exert control on cell division and proliferation by phosphorylating specific intracellular target proteins. This phosphorylation event can induce the cellular transition from the G1 to the S phase of the cell cycle. See, e.g., Strahler, et al. (1992) <u>Biochem. Biophys. Res. Comm.</u>
185:197-203; Brattsand, et al. (1994) <u>Eur. J. Biochem.</u> 220:359-368; and Li, et al. (1996) <u>Cell</u> 85:319-329. Regulation of the cell cycle machinery is important in development and control of cellular proliferation. Misregulation may lead to proliferative disorders, e.g., neoplastic conditions and cancer. See, e.g., Sherr (1998) <u>Science</u> 274:1672-1677.

The novel cyclin gene, designated cyclin E2, exhibits about 49% structural identity to the known human cyclin E. See, e.g., Lew, et al. (1991) Cell 66:1197-1206; and NCBI Entrez accession number M74093. The new variant cyclin E2 sequences are provided in SEQ ID NO: 52 and SEQ ID NO: 53. Notable features on the E2 sequence include the cyclin box running from about residue 120-254; and a putative phosphorylation site at thr392. The phosphorylation site is trigger in cyclin E for ubiquitin dependent degradation. See Clurman, et al. (1996) Genes and Development 10:1979-1990. Particularly interesting segments include, e.g., from about 93-100; 98-106; 104-113; 107-121; 120-128; 124-134; 131-137; 172-177; 176-185; 189-193; 196-202; 200-210; 218-223; 228-232; 236-242; 240-245; and 248-252.

The structural homology of these genes to identified families suggests related function of these molecules. For example, PGT homologs should function in transport across cell membranes; TNF receptor family antagonists, or agonists, may act as a co-

WO 00/01817 PCT/US99/12366

38

stimulatory molecule for regulation of T cell mediated cell activation, and may in fact, cause a shift of T helper cell types, e.g., between Th1 and Th2; chemokines have recognized functional properties; intracellular Dubs have been described and the role in oncogenesis established; membrane associated or soluble forms of signaling proteins such as the MDs are well known; and the role of cyclins in cell cycle regulation are recognized. Alternatively, the ligands or binding structures for the cell surface antigens may serve to regulate cell proliferation or development.

10 For the TNF ligand molecules, they typically modulate cell proliferation, viability, and differentiation. For example, TNF and FAS can kill cells expressing their respective receptors, including fibroblasts, liver cells, and lymphocytes. Some members of this class of ligands exhibit effects on cellular proliferation of cells expressing their respective receptors, e.g., B cells expressing CD40. These effects on proliferation may also effect subsequent differentiation steps, and may lead, directly or indirectly, to changes in cytokine expression profiles.

The members of the TNF ligand family also exhibit costimulation effects, which may also regulate cellular differentiation or apoptosis. Receptor expressing cells may be protected from activation induced cell death (AICD) or apoptosis. For example, CD40 ligand can have effects on T and B lymphocytes.

The embodiments characterized herein are mostly from human, but additional sequences for proteins in other mammalian species, e.g., primates and rodents, will also be available. See below. In particular, with the polypeptide sequences provided, reverse translation, e.g., using the genetic code, software is available, which will indicate what nucleic acid sequences could encode them.

See, e.g., MacVector, Oxford Molecular Group Software. Thus, artificial genes, or redundant oligonucleotides may be selected to isolate natural variants or species counterparts.

II. Purified Protein

Primate, e.g., human, DC-PGT polypeptide sequence is shown in SEQ ID NO: 2; primate, e.g., human, HDTEA84 polypeptide sequence is shown in SEQ ID NO: 6; primate, e.g., human, HSLJD37R

WO 00/01817 PCT/US99/12366

39

polypeptide sequences are shown in SEQ ID NO: 8, 10, and 12; rodent, e.g., murine, RANKL polypeptide sequence is shown in SEQ ID NO: 17; primate forms of RANKL polypeptide sequence are shown in SEQ ID NO: 19, 21, and 23; primate, e.g., human, HCC5 chemokine polypeptide sequence is shown in SEQ ID NO: 25; primate, e.g., human, Dubl1 polypeptide sequences are shown in SEQ ID NO: 32 and 34; primate, e.g., human, Dubl2 polypeptide sequences are shown in SEQ ID NO: 36 and 38; primate, e.g., human, MD-1 polypeptide sequence is shown in SEQ ID NO: 42; primate, e.g., human, MD-2 polypeptide sequence is shown in SEQ ID NO: 44 and 46; rodent, e.g., mouse, MD-2 polypeptide sequences are shown in SEQ ID NO: 48 and 49; and primate, e.g., human, cyclin E2 is shown in SEO ID NO: 54.

These amino acid sequences, provided amino to carboxy, are 15 important in providing sequence information in the antigen allowing for distinguishing the protein from other proteins and exemplifying numerous variants. Moreover, the peptide sequences allow preparation of peptides to generate antibodies to recognize such segments, and nucleotide sequences allow preparation of oligonucleotide probes, both of which are strategies for detection 20 or isolation, e.g., cloning, of genes or cDNAs encoding such sequences.

The purified protein, or proteins will typically comprise a plurality of distinct, e.g., nonoverlapping, segments of the specified length. Typically, the plurality will be at least two, more usually at least three, and preferably 5, 7, or even more. While the length minima are provided, longer lengths, of various sizes, may be appropriate, e.g., one of length 7, and two of length 12. Such peptides are useful for generating antibodies by standard methods, as described herein. Synthetic peptides or purified protein can be presented to an immune system to generate a specific binding composition, e.g., monoclonal or polyclonal antibodies. See, e.g., Coligan (1991) Current Protocols in Immunology Wiley/Greene; and Harlow and Lane (Current ed.)

25

. 30

35

For example, the specific binding composition could be used for screening of an expression library made from a cell line which

Antibodies: A Laboratory Manual Cold Spring Harbor Press.

expresses a clone encoding, e.g., a prostaglandin transporter. The screening can be standard staining of surface expressed protein, or by panning. Screening of intracellular expression can also be performed by various staining or immunofluorescence procedures. The binding compositions could be used to affinity purify or sort out cells expressing the protein. The binding compositions may also be useful in determining qualitative and quantitative expression levels of the proteins in various biological samples, including, e.g., cell types or tissues.

10

15

25

30

35

As used herein, the term, e.g., "human DC-PGT", shall encompass, when used in a protein context, a protein having amino acid sequence shown in SEQ ID NO: 2. Significant polypeptide fragments of such a protein should preserve some of the properties, biological or physical, of the full length protein. Other essentially identical or equivalent proteins may be found in other primates or related species. In addition, binding components, e.g., antibodies, typically bind to, e.g., a DC-PGT, with high affinity, e.g., at least about 100 nM, usually better than about 30 nM, preferably better than about 10 nM, and more 20 preferably at better than about 3 nM. Homologous proteins would be found in mammalian species other than human, e.g., primates or rodents. Non-mammalian species should also possess structurally or functionally related genes and proteins, e.g., birds or amphibians. Similar meanings apply in reference to HDTEA84, HSLJD37R, RANKL, HCC5, Dub11, Dub12, MD-1, MD-2, and cyclin E2.

The term polypeptide, as used herein, includes a significant fragment or segment, and encompasses a stretch of amino acid residues of at least about 8 amino acids, generally at least 10 amino acids, more generally at least 12 amino acids, often at least 14 amino acids, more often at least 16 amino acids, typically at least 18 amino acids, more typically at least 20 amino acids, usually at least 22 amino acids, more usually at least 24 amino acids, preferably at least 26 amino acids, more preferably at least 28 amino acids, and, in particularly preferred embodiments, at least about 30 or more amino acids. The segments may have lengths of at least 37, 45, 53, 61, 70, 80, 90, etc., and often will encompass a plurality of such matching sequences.

25

30

35

specific ends of such a segment will be at any combinations within the protein. In certain embodiments, there will be a plurality of distinct, e.g., nonoverlapping, segments of the specified length. Typically, the plurality will be at least two, more usually at 5 least three, and preferably 5, 7, or even more. While the length minima are provided, longer lengths, of various sizes, may be appropriate, e.g., one of length 7, and two of length 12.

The term "binding composition" refers to molecules that bind with specificity to the respective protein or polypeptide, e.g., DC-PGT, e.g., in a cell adhesion pairing type fashion, or an antibody-antigen interaction. Other compounds include, e.g., proteins, which specifically associate with DC-PGT, including in a natural physiologically relevant protein-protein interaction, either covalent or non-covalent. The molecule may be a polymer, 15 or chemical reagent. A functional analog may be an antigen with structural modifications, or it may be a molecule which has a molecular shape which interacts with the appropriate binding determinants. The compounds may serve as agonists or antagonists of the binding interaction, see, e.g., Goodman, et al. (eds. 1990) 20 Goodman & Gilman's: The Pharmacological Bases of Therapeutics (8th ed.) Pergamon Press.

Substantially pure, in the polypeptide context, typically means that the protein is free from other contaminating proteins, nucleic acids, and other biologicals derived from the original source organism or cell. Purity may be assayed by standard methods, and will ordinarily be at least about 40% pure, more ordinarily at least about 50% pure, generally at least about 60% pure, more generally at least about 70% pure, often at least about 75% pure, more often at least about 80% pure, typically at least about 85% pure, more typically at least about 90% pure, preferably at least about 95% pure, more preferably at least about 98% pure, and in most preferred embodiments, at least 99% pure. The analysis may be weight or molar percentages, evaluated, e.g., by gel staining, spectrophotometry, or terminus labeling. Carriers or excipients will often be subsequently added.

Solubility of a polypeptide or fragment depends upon the environment and the polypeptide. Many parameters affect

PCT/US99/12366

polypeptide solubility, including temperature, electrolyte environment, size and molecular characteristics of the polypeptide, and nature of the solvent. Typically, the temperature at which the polypeptide is used ranges from about 4° C to about 65° C. Usually the temperature at use is greater than about 18° C. For diagnostic purposes, the temperature will usually be about room temperature or warmer, but less than the denaturation temperature of components in the assay. For therapeutic purposes, the temperature will usually be body temperature, typically about 37° C for humans and mice, though under certain situations the temperature may be raised or lowered in situ or in vitro.

10

15

20

25

30

35

The size and structure of the polypeptide should generally be in a substantially stable state, and usually not in a denatured state. The polypeptide may be associated with other polypeptides in a quaternary structure, e.g., to confer solubility, or associated with lipids or detergents in a manner which approximates natural lipid bilayer interactions.

The solvent and electrolytes will usually be a biologically compatible buffer, of a type used for preservation of biological activities, and will usually approximate a physiological aqueous solvent. Usually the solvent will have a neutral pH, typically between about 5 and 10, and preferably about 7.5. On some occasions, one or more detergents will be added, typically a mild non-denaturing one, e.g., CHS (cholesteryl hemisuccinate) or CHAPS (3-[3-cholamidopropyl)dimethylammonio]-1-propane sulfonate), or a low enough concentration as to avoid significant disruption of structural or physiological properties of the protein.

Solubility is reflected by sedimentation measured in Svedberg units, which are a measure of the sedimentation velocity of a molecule under particular conditions. The determination of the sedimentation velocity was classically performed in an analytical ultracentrifuge, but is typically now performed in a standard ultracentrifuge. See, Freifelder (1982) Physical Biochemistry (2d ed.), W.H. Freeman; and Cantor and Schimmel (1980) Biophysical Chemistry, parts 1-3, W.H. Freeman & Co., San Francisco; each of which is hereby incorporated herein by reference. As a crude

WO 00/01817

35

determination, a sample containing a putatively soluble polypeptide is spun in a standard full sized ultracentrifuge at about 50K rpm for about 10 minutes, and soluble molecules will remain in the supernatant. A soluble particle or polypeptide will typically be less than about 30S, more typically less than about 15S, usually less than about 10S, more usually less than about 6S, and, in particular embodiments, preferably less than about 4S, and more preferably less than about 3S.

The human complimentary DNA and deduced amino acid sequence 10 provided here for DC-PGT contains sequences corresponding to twelve putative transmembrane (TM) segments, based upon a hydropathicity and structural analysis of DC-PGT. A TopPredII (Claros and von Heijne (1994) Comp. Applic. Biosci. 10:685-686) profile of the DC-PGT sequence showing peaks that reach beyond 'putative' or 'certain' baselines. The 12 transmembrane segments 15 correspond to hydrophobic stretches which run approximately from amino acids 47-68 (TM1); 88-107 (TM2); 117-136 (TM3); 188-208 (TM4); 225-244 (TM5); 279-294 (TM6) 367-386 (TM7); 412-431 (TM8); 450-474 (TM9); 561-578 (TM10); 597-616 (TM11); and 651-675 (TM12). Charged amino residues located within the transmembrane domains 20 are: glutamine at amino residues 59, 62, 196, 207, 380, 469, 602, 655, and 675; glutamic acid at residue 95; and arginine at residues 607 and 674. Extracellular loops correspond approximately to amino acid residues 69-87, 137-187, 295-366, 432-25 449, 579-596, and 617-650. Putative N-glycosylation sites in the exposed, extracellular face of the molecule are located in the second and fifth extracellular loops at Asn-X-Ser/Thr motifs (e.g., 146-148; 176-178; and 538-540). Intracellular portions correspond approximately to amino acid residues 1-46, 108-116, 30 209-224, 295-366, 432-449, 579-596, and 676-709. These boundaries will often be the boundaries of segments of interest, which be include multiple described segments.

Transporters of this family are typically 12 transmembrane proteins of approximately 650 amino acids in length and include the organic anion transporters in man and rat, prostaglandin transporters of man (Lu, et al. (1996) <u>J. Clin. Invest.</u> 98:1142-1149) and rat; brain digoxyin transporters and Matrin F/G of rat

(Kanai, et al. (1995) <u>Science</u> 268:866-869). Characteristic of this family of organic anion transporter proteins is a cysteine rich region located in one of the extracellular loops, which resembles a zinc finger motif. The DC-PGT cysteine rich region is located in extracellular loop 5 with cysteines approximately at positions 489, 493, 495, 504, 516, 520, 539, 541, 554, and 557.

Other particularly interesting segments of the TNF receptors, Dubs, MDs, and cyclin E are pointed out. These may also be segments of comparison with other proteins or genes.

10

15

20

25

30

35

III. Physical Variants

This invention also encompasses proteins or peptides having substantial amino acid sequence homology with the amino acid sequences of the described proteins. The variants include species and polymorphic variants, e.g., naturally occurring forms.

Amino acid sequence homology, or sequence identity, is determined by optimizing residue matches, if necessary, by introducing gaps as required. See also Needleham, et al. (1970) <u>J. Mol. Biol.</u> 48:443-453; Sankoff, et al. (1983) Chapter One in Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA; and software packages from IntelliGenetics, Mountain View, CA; and the University of Wisconsin Genetics Computer Group, Madison, WI. Sequence identity changes when considering conservative substitutions as matches. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. Homologous amino acid sequences are typically intended to include natural polymorphic or allelic and interspècies variations in each respective protein sequence. Typical homologous proteins or peptides will have from 25-100% identity (if gaps can be introduced), to 50-100% identity (if conservative substitutions are included) with the amino acid sequence of the HDTEA84. Identity measures will be at least about 35%, generally at least about 40%, often at least about 50%,

SUBSTITUTE SHEET (rule 26)

typically at least about 60%, usually at least about 70%,

preferably at least about 80%, and more preferably at least about 90%.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. 5 using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.

Optical alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Nat'l Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by visual 20 inspection (see generally Ausubel et al., supra).

10

30

One example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments to show relationship and percent sequence identity. It also plots a tree or dendrogram showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng and Doolittle (1987) J. Mol. Evol. 35:351-360. The method used is similar to the method described by Higgins and Sharp (1989) CABIOS 5:151-153. The program can align up to 300 sequences, each of a maximum length of 5,000 nucleotides or amino acids. The multiple alignment procedure begins with the pairwise alignment of the two most similar sequences, producing a cluster of two aligned sequences. This cluster is then aligned to the next most related sequence or cluster of aligned sequences. Two clusters of sequences are aligned by a simple extension of the pairwise alignment of two individual sequences. The final

alignment is achieved by a series of progressive, pairwise alignments. The program is run by designating specific sequences and their amino acid or nucleotide coordinates for regions of sequence comparison and by designating the program parameters.

For example, a reference sequence can be compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10), and weighted end gaps.

Another example of algorithm that is suitable for determining 10 percent sequence identity and sequence similarity is the BLAST algorithm, which is described Altschul, et al. (1990) J. Mol. Biol. 215:403-410. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http:www.ncbi.nlm.nih.gov/). This algorithm involves 15 first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score 20 threshold (Altschul, et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extension of the word hits in 25 each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. BLAST program uses as defaults a wordlength (W) of 11, the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Nat'l Acad. Sci. USA 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands.

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul

15

20

30

35

(1993) Proc. Nat'l Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more preferably less than about 0.01, and most preferably less than about 0.001.

A further indication that two nucleic acid sequences of polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules hybridize to each other under stringent conditions, as described below.

The isolated DC-PGT, HDTEA84, HSLJD37R, RANKL, HCC5, Dub, MD-1, MD-2, or cyclin E2 DNAs can be readily modified by nucleotide substitutions, nucleotide deletions, nucleotide insertions, and inversions of nucleotide stretches. These modifications result in novel DNA sequences which encode these antigens, their derivatives, or proteins having similar physiological, immunogenic, antigenic, or other functional activity. These modified sequences can be used to produce mutant antigens or to enhance expression. Enhanced expression may involve gene amplification, increased transcription, increased translation, and other mechanisms. For example, "Mutant HDTEA84" encompasses a polypeptide otherwise falling within the sequence identity definition of the HDTEA84 as set forth above, but having an amino acid sequence which differs from that of HDTEA84 as normally found in nature, whether by way of deletion, substitution, or insertion. This generally includes proteins having significant identity with a protein having sequence of SEQ ID NO: 6, and as sharing various

biological activities, e.g., antigenic or immunogenic, with those

sequences, and in preferred embodiments contain most of the full length disclosed sequences. Full length sequences will typically be preferred, though truncated versions, e.g., soluble constructs and intact domains, will also be useful, likewise, genes or proteins found from natural sources are typically most desired. Similar concepts apply to different HDTEA84 proteins, particularly those found in various warm blooded animals, e.g., mammals and birds, or fish. These descriptions are generally meant to encompass all HDTEA84 proteins, not limited to the particular human embodiment specifically discussed. Similar concepts apply to the other polypeptides provided.

DC-PGT, HDTEA84, HSLJD37R, RANKL, HCC5, Dub, MD-1, MD-2, or cyclin E2 mutagenesis can also be conducted by making amino acid insertions or deletions. Although site specific mutation sites are predetermined, mutants need not be site specific. Protein mutagenesis can be conducted by making amino acid insertions or deletions, or combinations may be generated to arrive at a final construct. Insertions include amino- or carboxy- terminal fusions. Random mutagenesis can be conducted at a target codon and the expressed mutants can then be screened for the desired activity. Methods for making substitution mutations at predetermined sites in DNA having a known sequence are well known in the art, e.g., by M13 primer mutagenesis or polymerase chain reaction (PCR) techniques. See, e.g., Sambrook, et al. (1989); Ausubel, et al. (1987 and Supplements); and Kunkel, et al. (1987)

15

25

35

The mutations in the DNA normally should not place coding sequences out of reading frames and preferably will not create complementary regions that could hybridize to produce secondary mRNA structure such as loops or hairpins.

The present invention also provides recombinant proteins, e.g., heterologous fusion proteins using segments from these proteins. A heterologous fusion protein is a fusion of proteins or segments which are naturally not normally fused in the same manner. Thus, the fusion product of an immunoglobulin with a polypeptide is a continuous protein molecule having sequences fused in a typical peptide linkage, typically made as a single

15

20

translation product and exhibiting properties derived from each source peptide. A similar concept applies to heterologous nucleic acid sequences.

The present invention also provides recombinant proteins, e.g., heterologous fusion proteins using segments from these proteins. A heterologous fusion protein is a fusion of proteins or segments which are naturally not normally fused in the same manner. A similar concept applies to heterologous nucleic acid sequences. Fusion proteins will be useful as sources for cleaving, separating, and purifying portions thereof.

In addition, new constructs may be made from combining similar functional domains from other proteins. For example, target-binding or other segments may be "swapped" between different new fusion polypeptides or fragments. See, e.g., Cunningham, et al. (1989) <u>Science</u> 243:1330-1336; and O'Dowd, et al. (1988) <u>J. Biol. Chem.</u> 263:15985-15992.

The phosphoramidite method described by Beaucage and Carruthers (1981) <u>Tetra. Letts.</u> 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence, e.g., PCR techniques.

25 IV. Functional Variants

The blocking of physiological response with, e.g., HDTEA84, HSLJD37R, RANKL, HCC5 chemokine, MD-1, or MD-2, may result from the inhibition of binding of the respective ligand to signaling form of receptor or binding counterstructure, e.g., through competitive inhibition. In others, binding affinity to substrate may be modifiable or competed with, e.g., DC-PGT, Dubs, or cyclin E2. Thus, in vitro assays of the present invention will often use isolated protein, soluble fragments comprising ligand or substrate binding segments of these proteins, or forms attached to solid phase substrates. These assays will also allow for the diagnostic determination of the effects of either binding segment mutations

35

and modifications, or antigen mutations and modifications, e.g., HDTEA84, HSLJD37R, RANKL, MD-1, or MD-2 analogs.

This invention also contemplates the use of competitive drug screening assays, e.g., where neutralizing antibodies to antigen or binding fragments compete with a test compound for binding to the protein, e.g., of natural protein sequence. This is applicable to substrate binding, e.g., competitive inhibitors, and in receptor interaction, where the protein has a binding counterstructure.

"Derivatives" of , e.g., receptor, antigens include amino acid sequence mutants from naturally occurring forms, glycosylation variants, and covalent or aggregate conjugates with other chemical moieties. Covalent derivatives can be prepared by linkage of functionalities to groups which are found in receptor amino acid side chains or at the N- or C- termini, e.g., by standard means. See, e.g., Lundblad and Noyes (1988) Chemical Reagents for Protein Modification, vols. 1-2, CRC Press, Inc., Boca Raton, FL; Hugli (ed. 1989) Techniques in Protein Chemistry, Academic Press, San Diego, CA; and Wong (1991) Chemistry of

Protein Conjugation and Cross Linking, CRC Press, Boca Raton, FL.

In particular, glycosylation alterations are included, e.g., made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing, or in further processing steps. See, e.g., Elbein (1987) Ann. Rev. Biochem. 56:497-534.

Also embraced are versions of the peptides with the same primary amino acid sequence which have other minor modifications, including phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.

Fusion polypeptides between these proteins and other homologous or heterologous proteins are also provided. Many cytokine receptors or other surface proteins are multimeric, e.g., homodimeric entities, and a repeat construct may have various advantages, including lessened susceptibility to proteolytic cleavage. Typical examples are fusions of a reporter polypeptide, e.g., luciferase, with a segment or domain of a protein, e.g., a receptor-binding segment, so that the presence or location of the fused ligand may be easily determined. See, e.g., Dull, et al.,

25

30

35

U.S. Patent No. 4,859,609. Other gene fusion partners include bacterial ß-galactosidase, trpE, Protein A, ß-lactamase, alpha amylase, alcohol dehydrogenase, yeast alpha mating factor, and detection or purification tags such as a FLAG sequence of His6 sequence. See, e.g., Godowski, et al. (1988) <u>Science</u> 241:812-816. Of particular interest are fusion constructs of receptor with a membrane attachment domain.

Fusion peptides will typically be made by either recombinant nucleic acid methods or by synthetic polypeptide methods.

Techniques for nucleic acid manipulation and expression are described generally, e.g., in Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed.), vols. 1-3, Cold Spring Harbor Laboratory; and Ausubel, et al. (eds. 1993) Current Protocols in Molecular Biology, Greene and Wiley, NY. Techniques for synthesis of polypeptides are described, e.g., in Merrifield (1963) J. Amer. Chem. Soc. 85:2149-2156; Merrifield (1986) Science 232: 341-347; Atherton, et al. (1989) Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford; and Grant (1992) Synthetic Peptides: A User's Guide, W.H. Freeman, NY.

This invention also contemplates the use of derivatives of the proteins other than variations in amino acid sequence or glycosylation. Such derivatives may involve covalent or aggregative association with chemical moieties. Covalent or aggregative derivatives will be useful as immunogens, as reagents in immunoassays, or in purification methods such as for affinity purification of binding partners, e.g., other antigens. The desired proteins can be immobilized by covalent bonding to a solid support such as cyanogen bromide-activated SEPHAROSE, by methods which are well known in the art, or adsorbed onto polyolefin surfaces, with or without glutaraldehyde cross-linking, for use in the assay or purification of antibodies or an alternative binding composition. The protein can also be labeled with a detectable group, e.g., for use in diagnostic assays. Purification may be effected by an immobilized antibody or complementary binding partner. Conversely, immunoabsorption or immunodepletion techniques may be developed.

15

20

25

- 30

A solubilized protein or fragment of this invention can be used as an immunogen for the production of antisera or antibodies specific for binding to the antigen or fragments thereof. Purified antigen can be used to screen monoclonal antibodies or 5 antigen-binding fragments, encompassing antigen binding fragments of natural antibodies, e.g., Fab, Fab', F(ab)2, etc. Purified protein can also be used as a reagent to detect antibodies generated in response to the presence of elevated levels of the antigen or cell fragments containing the antigen, both of which may be diagnostic of an abnormal or specific physiological or disease condition. This invention contemplates antibodies raised against amino acid sequences encoded by nucleotide sequences described, or fragments of proteins containing it. In particular, this invention contemplates antibodies having binding affinity to or being raised against specific fragments, e.g., which are predicted to lie outside of the lipid bilayer, both extracellular or intracellular.

The present invention contemplates the isolation of additional closely related species variants. Southern and Northern blot analysis should establish that similar genetic entities exist in other mammals. It is likely that these proteins are widespread in species variants, e.g., rodents, lagomorphs, carnivores, artiodactyla, perissodactyla, and primates.

The invention also provides means to isolate a group of related antigens displaying both distinctness and similarities in structure, expression, and function. Elucidation of many of the physiological effects of the molecules will be greatly accelerated by the isolation and characterization of additional distinct species variants of them. In particular, the present invention provides useful probes for identifying additional homologous genetic entities in different species.

The isolated genes will allow transformation of cells lacking expression of a corresponding protein, e.g., either species types or cells which lack corresponding antigens and exhibit negative background activity. This should allow analysis of the function of genes in comparison to untransformed control cells.

30

35

Dissection of critical structural elements which effect the various activation or differentiation functions mediated through these antigens is possible using standard techniques of modern molecular biology, particularly in comparing members of the related class. See, e.g., the homolog-scanning mutagenesis technique described in Cunningham, et al. (1989) Science 243:1339-1336; and approaches used in O'Dowd, et al. (1988) J. Biol. Chem. 263:15985-15992; and Lechleiter, et al. (1990) EMBO J. 9:4381-4390.

The invention also provides, in the context of the DC-PGT, means to isolate a group of related organic anion transporters, e.g., other vertebrate prostaglandin transporters, displaying both distinctness and similarities in structure, expression, and function. Elucidation of many of the physiological effects of the antigens will be greatly accelerated by the isolation and characterization of distinct species variants. In particular, the present invention provides useful probes for identifying additional homologous genetic entities in different species. The results described above indicate that sufficiently homologous genes exist in other species that cross-species hybridization is likely to allow successful cloning.

The isolated genes will allow transformation of cells lacking expression of a described gene, e.g., prostaglandin transporter. Various species types or cells which lack corresponding proteins can be isolated, and should exhibit negative background activity. Expression of transformed genes will allow isolation of antigenically pure cell lines, with defined or single specie variants. This approach will allow for more sensitive detection and discrimination of the physiological effects of the gene, e.g., prostaglandin transporters. Subcellular fragments, e.g., cytoplasts or membrane fragments, can be isolated and used.

The DC-PGT genes may also be useful to increase the rate of transport of desired prostaglandins into transformed cells. Thus, the transporter may be transformed into cells for targeting of incorporation of desired substrates or analogs. For instance, it may be useful to incorporate specific modified prostaglandins into those cells, which may become more susceptible to other

treatments, or directly affected. Thus, specific dendritic cell subsets may be transformed to become more sensitive to prostaglandins or specific substrates. Conversely, such cells may be useful screening targets to identify entities which can block transport, thereby preventing uptake of substrate.

, 5

10

15

20

25

30

35

Structural studies of the transporter will lead to design of new variants, particularly analogs exhibiting modified binding affinity, or perhaps, altered rate of transporter activity. This can be combined with previously described screening methods to isolate variants exhibiting desired spectra of activities. Alternatively, many different prostaglandins and analogs thereof may be screened for either transporter binding affinity or transporter transfer. The transporter may require a direct energy source, e.g., ATP or other nucleotide triphosphate, or may depend upon an ion gradient, as described above.

In the context of the Dubs and cyclin E2, intracellular functions would probably involve segments of the antigen which are normally accessible to the cytosol, as would segments of the receptors. However, protein internalization may occur under certain circumstances, and interaction between intracellular components and "extracellular" components may occur. The specific segments of interaction of protein with other intracellular components may be identified by mutagenesis or direct biochemical means, e.g., cross-linking or affinity methods.

Structural analysis by crystallographic or other physical methods will also be applicable. Further investigation of the mechanism of signal transduction will include study of associated components which may be isolatable by affinity methods or by genetic means, e.g., complementation analysis of mutants.

Further study of the expression and control of the proteins will be pursued. The controlling elements associated with the antigens should exhibit differential physiological, developmental, tissue specific, or other expression patterns. Upstream or downstream genetic regions, e.g., control elements, are of interest. In particular, physiological or developmental variants, e.g., multiple alternatively processed forms of the antigen might be found. Thus, differential splicing of message may lead to an

assortment of membrane bound forms, soluble forms, and modified versions of antigen.

Structural studies of the antigens will lead to design of new antigens, particularly analogs exhibiting agonist or antagonist properties on the molecule. This can be combined with previously described screening methods to isolate antigens exhibiting desired spectra of activities.

V. Antibodies

20

25

10 Antibodies can be raised to the various described polypeptides, including species, polymorphic, or allelic variants, and fragments thereof, both in their naturally occurring forms and in their recombinant forms. Additionally, antibodies can be raised to the proteins in either their active forms or in their inactive forms, including native or denatured versions. Antiidiotypic antibodies are also contemplated.

Antibodies, including binding fragments and single chain versions, against predetermined fragments of the antigens can be raised by immunization of animals with conjugates of the fragments with immunogenic proteins. Monoclonal antibodies are prepared from cells secreting the desired antibody. These antibodies can be screened for binding to normal or defective polypeptide, or screened for agonistic or antagonistic activity. Antibodies may be agonistic or antagonistic, e.g., by sterically blocking partner or substrate binding. These monoclonal antibodies will usually bind with at least a $K_{\rm D}$ of about 1 mM, more usually at least about 300 μ M, typically at least about 100 μ M, more typically at least about 30 μ M, preferably at least about 10 μ M, and more preferably at least about 3 μ M or better. More preferred embodiments may have even higher affinities, e.g., at least 300 nM, 30 nM, 3 nM, or perhaps even picomolar affinity.

The term "binding composition" refers to molecules that bind with affinity and selectivity to, e.g., the DC-PGT, e.g., in an antibody-antigen interaction. However, other compounds, e.g., accessory proteins, may also specifically and/or selectively associate with the antigen to the exclusion of other molecules. Typically, the association will be in a natural physiologically

relevant protein-protein interaction, either covalent or noncovalent, and may include members of a multiprotein complex, including carrier compounds or dimerization partners. molecule may be a polymer, or chemical reagent. No implication as to whether an antigen is necessarily a convex shaped molecule, e.g., the ligand or the receptor of a ligand-receptor interaction, is necessarily represented, other than whether the interaction exhibits similar specificity, e.g., specific or selective affinity. A functional analog may be a polypeptide with structural modifications, e.g., a mutein, or may be a wholly unrelated molecule, e.g., which has a molecular shape which interacts with the appropriate ligand binding determinants. The ligands may serve as agonists or antagonists of the receptor, see, e.g., Goodman, et al. Goodman & Gilman's: The Pharmacological 15 Bases of Therapeutics (current edition) Pergamon Press, Tarrytown, N.Y.

The term "binding agent:antigen complex", as used herein, refers to a complex of a binding agent and antigen, e.g., a DC-PGT protein, that is formed by specific binding of the binding agent to antigen. Specific or selective binding of the binding agent 20 means that the binding agent has a specific binding site, e.g., antigen binding site, that recognizes a site on the antigen. For example, antibodies raised to a DC-PGT protein and recognizing an epitope on the protein are capable of forming a binding agent:DC-PGT protein complex by specific selective binding. Typically, the formation of a binding agent: DC-PGT protein complex allows the qualitative or quantitative measurement of DC-PGT protein in a mixture of other proteins and biologics. The term "antibody:DC-PGT protein complex" refers to an embodiment in which the binding agent, e.g., is the antigen binding portion from an antibody. The antibody may be monoclonal, polyclonal, or a binding fragment of an antibody, e.g., an Fab or F(ab)2 fragment. The antibody will preferably be a polyclonal antibody for cross-reactivity testing purposes.

The phrase "specifically binds to an antibody" or "specifically immunoreactive with", when referring to a protein or peptide, refers to a binding reaction which is determinative of

20

25

30

35

the presence of the protein in the presence of a heterogeneous population of other proteins and other biological components. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein and do not significantly bind other proteins present in the sample. Specific binding to an antibody under such conditions may require an antibody that is selected for its specificity or selectivity for a particular protein. Often, the serum can be immunoselected or immunodepleted, to minimize crossreactivity with a specific target protein.

A DC-PGT polypeptide that specifically binds to, or that is specifically immunoreactive with, an antibody, e.g., such as a polyclonal antibody, generated against a defined immunogen, e.g., such as an immunogen consisting of an amino acid sequence of SEQ ID NO: 2, or fragments thereof, or a polypeptide generated from the nucleic acid of SEQ ID NO: 1 is typically determined in an immunoassay. Included within the metes and bounds of the present invention are those nucleic acid sequences described herein, including functional variants, that encode polypeptides that selectively bind to polyclonal antibodies generated against the prototypical DC-PGT polypeptide as structurally and functionally defined herein. The immunoassay typically uses a polyclonal antiserum which was raised, e.g., to a protein of SEQ ID NO: 2. This antiserum is selected to have low crossreactivity against appropriate other PGT family members, preferably from the same species, and any such crossreactivity is removed by immunoabsorption prior to use in the immunoassay. Appropriate selective serum preparations can be isolated, and characterized.

The purified protein or defined peptides are useful for generating antibodies by standard methods, as described above. Synthetic peptides or purified protein can be presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g., Coligan (1991) <u>Current Protocols in Immunology</u> Wiley/Greene; and Harlow and Lane (1989) <u>Antibodies: A Laboratory Manual</u>, Cold Spring Harbor Press. Alternatively, the HDTEA84 can be used as a specific binding reagent, and advantage can be taken

of its specificity of binding, much like an antibody would be used.

For example, the specific binding composition could be used for screening of an expression library made from a cell line which expresses an HDTEA84, HSLJD37R, or RANKL. The screening can be standard staining of surface expressed antigen constructs, or by panning. Screening of intracellular expression can also be performed by various staining or immunofluorescence procedures. The binding compositions could be used to affinity purify or sort out cells expressing the protein.

10

15

20

30

In order to produce antisera for use in an immunoassay, the protein, e.g., of SEQ ID NO: 2, is isolated as described herein. For example, recombinant protein may be produced in a mammalian cell line. An appropriate host, e.g., an inbred strain of mice such as Balb/c, is immunized with the protein of SEO ID NO: 2 using a standard adjuvant, such as Freund's adjuvant, and a standard mouse immunization protocol (see Harlow and Lane). Alternatively, a substantially full length synthetic peptide derived from the sequences disclosed herein can be used as an immunogen. Polyclonal sera are collected and titered against the immunogen protein in an immunoassay, e.g., a solid phase immunoassay with the immunogen immobilized on a solid support. Polyclonal antisera with a titer of 10^4 or greater are selected and tested for their cross reactivity against other PGT family members, e.g., human or rat PGT, using a competitive binding immunoassay such as the one described in Harlow and Lane, supra, at pages 570-573. Preferably at least two PGT family members are used in this determination in conjunction with the target. These PGT family members can be produced as recombinant proteins and isolated using standard molecular biology and protein chemistry techniques as described herein. Thus, antibody preparations can be identified or produced having desired selectivity or specificity for subsets of PGT family members.

Immunoassays in the competitive binding format can be used for the crossreactivity determinations. For example, the protein of SEQ ID NO: 2 can be immobilized to a solid support. Proteins added to the assay compete with the binding of the antisera to the

.10

15

20

immobilized antigen. The ability of the above proteins to compete with the binding of the antisera to the immobilized protein is compared to the protein of SEQ ID NO: 2. The percent crossreactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% crossreactivity with each of the proteins listed above are selected and pooled. The cross-reacting antibodies are then removed from the pooled antisera by immunoabsorption or immunodepletion with the above-listed proteins.

The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein to the immunogen protein. In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required is less than twice the amount of the protein of, e.g., SEQ ID NO: 2 that is required, then the second protein is said to specifically bind to an antibody generated to the immunogen.

The antibodies of this invention can also be useful in diagnostic applications. As capture or non-neutralizing antibodies, they can be screened for ability to bind to the antigens without inhibiting binding by a partner. As neutralizing antibodies, they can be useful in competitive binding assays. They will also be useful in detecting or quantifying a described protein or its binding partners. See, e.g., Chan (ed. 1987)

Immunology: A Practical Guide, Academic Press, Orlando, FL; Price and Newman (eds. 1991) Principles and Practice of Immunoassay, Stockton Press, N.Y.; and Ngo (ed. 1988) Nonisotopic Immunoassay,

30 Plenum Press, N.Y. Cross absorptions or depletions and other tests will identify antibodies which exhibit various spectra of specificities, e.g., unique or shared species specificities.

Further, the antibodies, including antigen binding fragments, of this invention can be potent antagonists that bind to the antigen and inhibit functional binding or inhibit the ability of a binding partner to elicit a biological response. They also can be useful as non-neutralizing antibodies and can be coupled to toxins

or radionuclides so that when the antibody binds to antigen, a cell expressing it, e.g., on its surface, is killed. Further, these antibodies can be conjugated to drugs or other therapeutic agents, either directly or indirectly by means of a linker, and may effect drug targeting. They may be labeled for histology evaluation.

Antigen fragments may be joined to other materials, particularly polypeptides, as fused or covalently joined polypeptides to be used as immunogens. An antigen and its fragments may be fused or covalently linked to a variety of immunogens, such as keyhole limpet hemocyanin, bovine serum albumin, tetanus toxoid, etc. See Microbiology, Hoeber Medical Division, Harper and Row, 1969; Landsteiner (1962) Specificity of Serological Reactions, Dover Publications, New York; Williams, et al. (1967) Methods in Immunology and Immunochemistry, vol. 1, Academic Press, New York; and Harlow and Lane (1988) Antibodies: A Laboratory Manual, CSH Press, NY, for descriptions of methods of preparing polyclonal antisera.

10

30

In some instances, it is desirable to prepare monoclonal
antibodies from various mammalian hosts, such as mice, rodents,
primates, humans, etc. Description of techniques for preparing
such monoclonal antibodies may be found in, e.g., Stites, et al.
(eds.) Basic and Clinical Immunology (4th ed.), Lange Medical
Publications, Los Altos, CA, and references cited therein; Harlow
and Lane (1988) Antibodies: A Laboratory Manual, CSH Press;
Goding (1986) Monoclonal Antibodies: Principles and Practice (2d
ed.), Academic Press, New York; and particularly in Kohler and
Milstein (1975) in Nature 256:495-497, which discusses one method
of generating monoclonal antibodies.

Other suitable techniques involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors. See, Huse, et al. (1989) "Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda," Science 246:1275-1281; and Ward, et al. (1989) Nature 341:544-546. The polypeptides and antibodies of the present invention may be used

15

20

with or without modification, including chimeric or humanized antibodies. Frequently, the polypeptides and antibodies will be labeled by joining, either covalently or non-covalently, a substance which provides for a detectable signal. A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. Suitable labels include radionuclides, enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, magnetic particles, and the like. Patents, teaching the use of such labels include U.S. Patent Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. Also, recombinant immunoglobulins may be produced, see Cabilly, U.S. Patent No. 4,816,567; Moore, et al., U.S. Patent No. 4,642,334; and Queen, et al. (1989) Proc. Nat'l Acad. Sci. USA 86:10029-10033.

The antibodies of this invention can also be used for affinity chromatography in isolating the protein. Columns can be prepared where the antibodies are linked to a solid support, e.g., particles, such as agarose, Sephadex, or the like, where a cell lysate may be passed through the column, the column washed, followed by increasing concentrations of a mild denaturant, whereby the purified protein will be released. See, e.g., Wilchek et al. (1984) Meth. Enzymol. 104:3-55.

Antibodies raised against each protein will also be useful to raise anti-idiotypic antibodies. These will be useful in detecting or diagnosing various immunological conditions related to expression of the respective antigens.

VI. Nucleic Acids

The described peptide sequences and the related reagents are useful in detecting, isolating, or identifying a DNA clone encoding, e.g., the DC-PGT, HDTEA84, HSLJD37R, RANKL, HCC5, Dub11, Dub12, MD-1, MD-2, or cyclin E2 polypeptides, e.g., from a natural source. Typically, the nucleic acids, particularly natural genes, will be useful in isolating a gene from mammal, and similar procedures will be applied to isolate genes from other species, e.g., warm blooded animals, such as birds and mammals. They will

be useful for isolating genes from domestic pets, e.g., dogs and cats, and livestock, e.g., horse, pigs, cattle, sheep, chickens, turkeys, fish, etc. Cross hybridization will allow isolation of respective counterpart genes from other species. A number of different approaches should be available to successfully isolate a suitable nucleic acid clone.

The peptide sequences allow preparation of peptides to generate antibodies to recognize such segments, and various different methods may be used to prepare such peptides. As used 10 herein, e.g., the term prostaglandin transporter shall encompass, when used in a protein context, a protein having an amino acid sequence shown in Table 1, or a significant fragment of such a protein. It also refers to a vertebrate, e.g., mammal, including human, derived polypeptide which exhibits similar biological 15 function, e.g., antigenic, or interacts with prostaglandin transporter specific binding components, e.g., specific antibodies. These binding components, e.g., antibodies, typically bind to a prostaglandin transporter with high affinity, e.g., at least about 100 nM, usually better than about 30 nM, preferably better than about 10 nM, and more preferably at better than about 3 nM. Still higher affinities are possible, e.g., 100 pM, 30 pM, 100 fM, etc.

This invention contemplates use of isolated DNA or fragments of the present invention to encode a structurally related, e.g., antigenically related, or biologically active protein, e.g., 25 substrate binding or transporting, prostaglandin transporter, TNF receptor-like proteins, chemokine, Dubs, surface receptors, or cell cycle regulatory proteins, or polypeptide fragments thereof. In addition, this invention covers isolated or recombinant DNA which encodes a structurally related or biologically active protein or polypeptide and that is capable of hybridizing under appropriate conditions with the DNA sequences described herein. Said biologically active protein or polypeptide can be an intact antigen, or fragment, and have an amino acid sequence as disclosed 35 in Tables 1-13. Further, this invention covers the use of isolated or recombinant DNA, or fragments thereof, which encode proteins which are homologous to the respective genes or which

WO 00/01817

10

15

25

30

35

were isolated using cDNA encoding the proteins as a probe. Preferably such homologous genes or proteins will be natural forms isolated from other vertebrates, e.g., warm blooded animals, including mammals, such as primates. The isolated DNA can have the respective regulatory sequences in the 5' and 3' flanks, e.g., promoters, enhancers, poly-A addition signals, and others.

An "isolated" nucleic acid is a nucleic acid, e.g., an RNA, DNA, or a mixed polymer, which is substantially separated from other components which naturally accompany a native sequence, e.g., ribosomes, polymerases, and flanking genomic sequences from the originating species. The term embraces a nucleic acid sequence which has been removed from its naturally occurring intracellular environment, and includes recombinant or cloned DNA isolates and chemically synthesized analogs or analogs biologically synthesized by heterologous systems. A substantially

pure molecule includes once or currently isolated forms of the molecule. Alternatively, a purified species may be separated from host components from a recombinant expression system.

Generally, the nucleic acid will be in a vector or fragment less than about 50 kb, usually less than about 30 kb, typically less

than about 10 kb, and preferably less than about 6 kb.

An isolated nucleic acid will generally be a homogeneous composition of molecules, but will, in some embodiments, contain minor heterogeneity. This heterogeneity is typically found at the polymer ends or portions not critical to a desired biological function or activity.

The peptide segments can also be used to predict appropriate oligonucleotides to screen a library. The genetic code, e.g., reverse translation, can be used to select appropriate oligonucleotides useful as probes for screening. See, e.g., SEQ ID NO: 1, 5, 7, 9, 11, 16, 18, 20, 22, 24, 31, 33, 35, 37, 41, 43, 47, or 53. In combination with polymerase chain reaction (PCR) techniques, synthetic oligonucleotides will be useful in selecting correct clones from a library. Complementary sequences will also be used as probes, primers, or antisense strands. Various fragments should be particularly useful, e.g., coupled with

PCT/US99/12366 WO 00/01817

64

anchored vector or poly-A complementary PCR techniques or with complementary DNA of other peptides.

This invention contemplates use of isolated DNA or fragments to encode a biologically active corresponding polypeptide. addition, this invention covers isolated or recombinant DNA which encodes a biologically active protein or polypeptide which is capable of hybridizing under appropriate conditions with the DNA sequences described herein. Said biologically active protein or polypeptide can be an intact antigen, or fragment, and have an amino acid sequence disclosed in, e.g., SEQ ID NO: 2, 6, 8, 10, 12, 17, 19, 21, 23, 25, 32, 34, 36, 38, 42, 44, 46, 48, 49, or 54. Further, this invention covers the use of isolated or recombinant DNA, or fragments thereof, which encode proteins which are homologous to a described protein or which was isolated using cDNA encoding such protein as a probe. The isolated DNA can have the respective regulatory sequences in the 5' and 3' flanks, e.g., promoters, enhancers, poly-A addition signals, and others.

10

15

20

25

35

A "recombinant" nucleic acid is defined either by its method of production or its structure. In reference to its method of production, e.g., a product made by a process, the process is use of recombinant nucleic acid techniques, e.g., involving human intervention in the nucleotide sequence, typically selection or production. Alternatively, it can be a nucleic acid made by generating a sequence comprising fusion of two fragments which are not naturally contiguous to each other, but is meant to exclude products of nature, e.g., naturally occurring mutants. Thus, e.g., products made by transforming cells with any unnaturally occurring vector is encompassed, as are nucleic acids comprising sequence derived using any synthetic oligonucleotide process. Such is often done to replace a codon with a redundant codon encoding the same or a conservative amino acid, while typically introducing or removing a sequence recognition site.

Alternatively, it is performed to join together nucleic acid segments of desired functions to generate a single genetic entity comprising a desired combination of functions not found in the commonly available natural forms. Restriction enzyme recognition sites are often the target of such artificial manipulations, but

25

other site specific targets, e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features may be incorporated by design. A similar concept is intended for a recombinant, e.g., fusion, polypeptide.

Specifically included are synthetic nucleic acids which, by genetic code redundancy, encode polypeptides similar to fragments of these antigens, and fusions of sequences from various different species variants.

A significant "fragment" in a nucleic acid context is a contiguous segment of at least about 17 nucleotides, generally at least about 22 nucleotides, ordinarily at least about 29 nucleotides, more often at least about 35 nucleotides, typically at least about 41 nucleotides, usually at least about 47 nucleotides, preferably at least about 55 nucleotides, and in particularly preferred embodiments will be at least about 60 or more nucleotides.

A DNA which codes for a DC-PGT, HDTEA84, HSLJD37R, RANKL, HCC5, Dub, MD-1, MD-2, or cyclin E2 protein will be particularly useful to identify genes, mRNA, and cDNA species which code for related or homologous proteins, as well as DNAs which code for homologous proteins from different species. There are likely homologs in other species, including primates, rodents, birds, and fish. Various such proteins should be homologous and are encompassed herein. However, even genes encoding proteins that have a more distant evolutionary relationship to the antigen can readily be isolated under appropriate conditions using these sequences if they are sufficiently homologous. Primate proteins are of particular interest.

Recombinant clones derived from the genomic sequences, e.g., containing introns, will be useful for transgenic studies, including, e.g., transgenic cells and organisms, and for gene therapy. See, e.g., Goodnow (1992) "Transgenic Animals" in Roitt (ed.) Encyclopedia of Immunology, Academic Press, San Diego, pp. 1502-1504; Travis (1992) Science 256:1392-1394; Kuhn, et al.

35 (1991) <u>Science</u> 254:707-710; Capecchi (1989) <u>Science</u> 244:1288;
Robertson (1987 ed.) <u>Teratocarcinomas and Embryonic Stem Cells: A</u>

PCT/US99/12366

Practical Approach, IRL Press, Oxford; and Rosenberg (1992) J. Clinical Oncology 10:180-199.

Substantial homology in the nucleic acid sequence comparison context means either that the segments, or their complementary strands, when compared, are identical when optimally aligned, with appropriate nucleotide insertions or deletions, in at least about 50% of the nucleotides, generally at least about 58%, ordinarily at least about 65%, often at least about 71%, typically at least about 77%, usually at least about 85%, preferably at least about 95 to 98% or more, and in particular embodiments, as high as about 99% or more of the nucleotides. Alternatively, substantial homology exists when the segments will hybridize under selective hybridization conditions, to a strand, or its complement, typically using a sequence of DC-PGT, e.g., in SEQ ID NO: 1. Typically, selective hybridization will occur when there is at 15 least about 55% homology over a stretch of at least about 30 nucleotides, preferably at least about 75% over a stretch of about 25 nucleotides, and most preferably at least about 90% over about 20 nucleotides. See, Kanehisa (1984) Nuc. Acids Res. 12:203-213. The length of homology comparison, as described, may be over

10

25

30

35

20 longer stretches, and in certain embodiments will be over a stretch of at least about 17 nucleotides, usually at least about 28 nucleotides, typically at least about 40 nucleotides, and preferably at least about 75 to 100 or more nucleotides.

Stringent conditions, in referring to homology in the hybridization context, will be stringent combined conditions of salt, temperature, organic solvents, and other parameters, typically those controlled in hybridization reactions. Stringent temperature conditions will usually include temperatures in excess of about 30° C, usually in excess of about 37° C, typically in excess of about 55° C, preferably in excess of about 70° C. Stringent salt conditions will ordinarily be less than about 1000 mM, usually less than about 400 mM, typically less than about 250 mM, preferably less than about 150 mM. However, the combination of parameters is much more important than the measure of any single parameter. See, e.g., Wetmur and Davidson (1968) J. Mol. Biol. 31:349-370. Hybridization under stringent conditions should

15

20

25

give a background of at least 2-fold over background, preferably at least 3-5 or more.

DC-PGT, HDTEA84, HSLJD37R, RANKL, HCC5, Dub11, Dub12, MD-1, MD-2, or cyclin E2 from other mammalian species can be cloned and isolated by cross-species hybridization of closely related species. Homology may be relatively low between distantly related species, and thus hybridization of relatively closely related species is advisable. Alternatively, preparation of an antibody preparation which exhibits less species specificity may be useful in expression cloning approaches.

VII. Making Proteins; Mimetics

Nucleic acids which encodes the described proteins, or fragments thereof, can be obtained by chemical synthesis, screening cDNA libraries, or screening genomic libraries prepared from a wide variety of cell lines or tissue samples. Okayama and Berg (1982) Mol. Cell. Biol. 2:161-170; Gubler and Hoffman (1983) Gene 25:263-269; and Glover (ed. 1984) DNA Cloning: A Practical Approach, IRL Press, Oxford. Alternatively, the sequences provided herein provide useful PCR primers or allow synthetic or other preparation of suitable genes encoding a receptor; including, naturally occurring embodiments.

DNA can be expressed in a wide variety of host cells for the synthesis of a full-length protein, or fragments, which can in turn, e.g., be used to generate polyclonal or monoclonal antibodies; for binding studies; for construction and expression of modified molecules; for structure/function studies; and for controls in detection assays. Each antigen or its fragments can be expressed in host cells that are transformed or transfected with appropriate expression vectors. These molecules can be substantially purified to be free of protein or cellular contaminants, other than those derived from the recombinant host, and therefore are particularly useful in pharmaceutical compositions when combined with a pharmaceutically acceptable 35 carrier and/or diluent. The antigen, or portions thereof, may be expressed as fusions with other proteins.

30

Vectors, as used herein, comprise plasmids, viruses, bacteriophage, integratable DNA fragments, and other vehicles which enable the integration of DNA fragments into the genome of See, e.g., Pouwels, et al. (1985 and Supplements) the host. 5 Cloning Vectors: A Laboratory Manual, Elsevier, N.Y.; and Rodriguez, et al. (1988 eds.) Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Buttersworth, Boston, MA. Expression vectors are typically self-replicating DNA or RNA constructs containing the desired antigen gene or its fragments, usually operably linked to suitable genetic control elements that are recognized in a suitable host cell. These control elements are capable of effecting expression within a suitable host. specific type of control elements necessary to effect expression will depend upon the eventual host cell used. Generally, the genetic control elements can include a prokaryotic promoter system 15 or a eukaryotic promoter expression control system, and typically include a transcriptional promoter, an optional operator to control the onset of transcription, transcription enhancers to elevate the level of mRNA expression, a sequence that encodes a suitable ribosome binding site, and sequences that terminate 20 transcription and translation. Expression vectors also usually contain an origin of replication that allows the vector to replicate independently of the host cell.

For purposes of this invention, DNA sequences are operably linked when they are functionally related to each other. For example, DNA for a presequence or secretory leader is operably linked to a polypeptide if it is expressed as a preprotein or participates in directing the polypeptide to the cell membrane or in secretion of the polypeptide. A promoter is operably linked to a coding sequence if it controls the transcription of the polypeptide; a ribosome binding site is operably linked to a coding sequence if it is positioned to permit translation. Usually, operably linked means contiguous and in reading frame, however, certain genetic elements such as repressor genes are not 35 contiguously linked but still bind to operator sequences that in turn control expression. See e.g., Rodriguez, et al., Chapter 10, pp. 205-236; Balbas and Bolivar (1990) Methods in Enzymol. 185:1437; and Ausubel, et al. (1993) <u>Current Protocols in Molecular Biology</u>, Greene and Wiley, NY.

Representative examples of suitable expression vectors include pCDNA1; pCD, see Okayama, et al. (1985) Mol. Cell Biol. 5:1136-1142; pMClneo Poly-A, see Thomas, et al. (1987) Cell 51:503-512; and a baculovirus vector such as pAC 373 or pAC 610. See, e.g., Miller (1988) Ann. Rev. Microbiol. 42:177-199. Usually, expression vectors are designed for stable replication in their host cells or for amplification to greatly increase the total number of copies of the desirable gene per cell. It is not 10 always necessary to require that an expression vector replicate in a host cell, e.g., it is possible to effect transient expression of the antigen or its fragments in various hosts using vectors that do not contain a replication origin that is recognized by the host cell. It is also possible to use vectors that cause integration of a gene or its fragments into the host DNA by recombination, or to integrate a promoter which controls expression of an endogenous gene.

Adenovirus techniques are available for expression of the
20 genes in various cells and organs. See, e.g., Hitt, et al. (1997)

Adv. Pharmacol. 40:137-195; and literature from Quantum

Biotechnologies, Montreal, Canada. Animals may be useful to
determine the effects of the gene on various developmental or
physiologically functional animal systems.

25

30

35

Suitable host cells include prokaryotes, lower eukaryotes, and higher eukaryotes. Prokaryotes include both gram negative and gram positive organisms, e.g., E. coli and B. subtilis. Lower eukaryotes include yeasts, e.g., S. cerevisiae and Pichia, and species of the genus Dictyostelium. Higher eukaryotes include established tissue culture cell lines from animal cells, both of non-mammalian origin, e.g., insect cells, and birds, and of mammalian origin, e.g., human, primates, and rodents.

Prokaryotic host-vector systems include a wide variety of vectors for many different species. As used herein, E. coli and its vectors will be used generically to include equivalent vectors used in other prokaryotes. A representative vector for amplifying DNA is pBR322 or many of its derivatives. Vectors that can be

15

20

30

35

used to express the prostaglandin transporter or its fragments include, but are not limited to, such vectors as those containing the lac promoter (pUC-series); trp promoter (pBR322-trp); Ipp promoter (the pIN-series); lambda-pP or pR promoters (pOTS); or hybrid promoters such as ptac (pDR540). See Brosius et al. (1988) "Expression Vectors Employing Lambda-, trp-, lac-, and Ipp-derived Promoters", in Rodriguez and Denhardt (eds.) Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Buttersworth, Boston, Chapter 10, pp. 205-236, which is incorporated herein by reference.

Lower eukaryotes, e.g., yeasts and Dictyostelium, may be transformed with vectors encoding vertebrate prostaglandin transporters. For purposes of this invention, the most common lower eukaryotic host is the baker's yeast, Saccharomyces cerevisiae. It will be used to generically represent lower eukaryotes although a number of other strains and species are also available. Yeast vectors typically consist of a replication origin (unless of the integrating type), a selection gene, a promoter, DNA encoding the desired protein or its fragments, and sequences for translation termination, polyadenylation, and transcription termination. Suitable expression vectors for yeast include such constitutive promoters as 3-phosphoglycerate kinase and various other glycolytic enzyme gene promoters or such inducible promoters as the alcohol dehydrogenase 2 promoter or metallothionine promoter. Suitable vectors include derivatives of 25 the following types: self-replicating low copy number (such as the YRp-series), self-replicating high copy number (such as the YEpseries); integrating types (such as the YIp-series), or minichromosomes (such as the YCp-series).

Higher eukaryotic tissue culture cells are the preferred host cells for expression of the functionally active prostaglandin transporter. In principle, most higher eukaryotic tissue culture cell lines are workable, e.g., insect baculovirus expression systems, whether from an invertebrate or vertebrate source. However, mammalian cells are preferred, in that the processing, both cotranslationally and posttranslationally is more likely to simulate natural forms. Transformation or transfection and

PCT/US99/12366 WO 00/01817

71

propagation of such cells has become a routine procedure. Examples of useful cell lines include HeLa cells, Chinese hamster. ovary (CHO) cell lines, baby rat kidney (BRK) cell lines, insect cell lines, bird cell lines, and monkey (COS) cell lines.

- Expression vectors for such cell lines usually include an origin of replication, a promoter, a translation initiation site, RNA splice sites (if genomic DNA is used), a polyadenylation site, and a transcription termination site. These vectors also usually contain a selection gene or amplification gene. Suitable
- 10 expression vectors may be plasmids, viruses, or retroviruses carrying promoters derived, e.g., from such sources as from adenovirus, SV40, parvoviruses, vaccinia virus, or cytomegalovirus. Representative examples of suitable expression vectors include pCDNA1; pCD, see Okayama et al. (1985) Mol. Cell
- Biol. 5:1136-1142; pMC1neo Poly-A, see Thomas et al. (1987) Cell 15 51:503-512; and a baculovirus vector such as pAC 373 or pAC 610.

20

It will often be desired to express a DC-PGT, HDTEA84, HSLJD37R, RANKL, HCC5, Dub11, Dub12, MD-1, MD-2, or cyclin E2 polypeptide in a system which provides a specific or defined glycosylation pattern. See, e.g., Luckow and Summers (1988) Bio/Technology 6:47-55; and Kaufman (1990) Meth. Enzymol. 185:487-511. Preferred prokaryotic forms lack eukaryotic glycosylation patterns. However, the pattern will be modifiable by exposing the polypeptide, e.g., an unglycosylated form, to appropriate

glycosylating proteins introduced into a heterologous expression system. For example, the desired gene may be cotransformed with one or more genes encoding mammalian or other glycosylating enzymes. Using this approach, certain mammalian glycosylation patterns will be achievable or approximated in prokaryote or other 30 cells.

The DC-PGT, HDTEA84, HSLJD37R, RANKL, HCC5, Dub11, Dub12, MD-1, MD-2, or cyclin E2, or a fragment thereof, may be engineered to be phosphatidyl inositol (PI) linked to a cell membrane, but can be removed from membranes by treatment with a phosphatidyl

inositol cleaving enzyme, e.g., phosphatidyl inositol phospholipase-C. This releases the antigen in a biologically active form, and allows purification by standard procedures of

protein chemistry. See, e.g., Low (1989) <u>Biochim. Biophys. Acta</u> 988:427-454; Tse, et al. (1985) <u>Science</u> 230:1003-1008; and Brunner, et al. (1991) <u>J. Cell Biol.</u> 114:1275-1283.

Transformed cells include cells, preferably mammalian, that

have been transformed or transfected with vectors containing a
prostaglandin transporter gene, typically constructed using
recombinant DNA techniques. Transformed host cells usually
express the antigen or its fragments, but for purposes of cloning,
amplifying, and manipulating its DNA, do not need to express the

protein. This invention further contemplates culturing
transformed cells in a nutrient medium, thus permitting the
protein, or soluble fragments, to accumulate in the culture.
Soluble protein can be recovered, either from the culture or from
the culture medium, and membrane associated proteins may be

prepared from suitable cell subfractions.

Now that the genes have been characterized, fragments or derivatives thereof can be prepared by conventional processes for synthesizing peptides. These include processes such as are described in Stewart and Young (1984) Solid Phase Peptide 20 Synthesis, Pierce Chemical Co., Rockford, IL; Bodanszky and Bodanszky (1984) The Practice of Peptide Synthesis, Springer-Verlag, New York; and Bodanszky (1984) The Principles of Peptide Synthesis, Springer-Verlag, New York. For example, an azide process, an acid chloride process, an acid anhydride process, a mixed anhydride process, an active ester process (for example, p-25 nitrophenyl ester, N-hydroxysuccinimide ester, or cyanomethyl ester), a carbodiimidazole process, an oxidative-reductive process, or a dicyclohexylcarbodiimide (DCCD)/additive process can be used. Solid phase and solution phase syntheses are both 30 applicable to the foregoing processes.

The proteins, fragments, or derivatives are suitably prepared in accordance with the above processes as typically employed in peptide synthesis, generally either by a so-called stepwise process which comprises condensing an amino acid to the terminal amino acid, one by one in sequence, or by coupling peptide fragments to the terminal amino acid. Amino groups that are not

being used in the coupling reaction are typically protected to prevent coupling at an incorrect location.

If a solid phase synthesis is adopted, the C-terminal amino acid is bound to an insoluble carrier or support through its 5 carboxyl group. The insoluble carrier is not particularly limited as long as it has a binding capability to a reactive carboxyl group. Examples of such insoluble carriers include halomethyl resins, such as chloromethyl resin or bromomethyl resin, hydroxymethyl resins, phenol resins, tert-alkyloxycarbonylhydrazidated resins, and the like.

An amino group-protected amino acid is bound in sequence through condensation of its activated carboxyl group and the reactive amino group of the previously formed peptide or chain, to synthesize the peptide step by step. After synthesizing the 15 complete sequence, the peptide is split off from the insoluble carrier to produce the peptide. This solid-phase approach is generally described by Merrifield et al. (1963) in J. Am. Chem. Soc. 85:2149-2156, which is incorporated herein by reference.

The prepared protein and fragments thereof can be isolated and purified from the reaction mixture by means of peptide separation, e.g., by extraction, precipitation, electrophoresis and various forms of chromatography, and the like. The proteins of this invention can be obtained in varying degrees of purity depending upon its desired use. Purification can be accomplished by use of the protein purification techniques disclosed herein or by the use of the antibodies herein described in immunoabsorbent affinity chromatography. This immunoabsorbent affinity chromatography is carried out by first linking the antibodies to a solid support and then contacting the linked antibodies with 30 solubilized lysates of appropriate source cells, lysates of other cells expressing the protein, or lysates or supernatants of cells producing the desired protein as a result of DNA techniques, see below. Detergents may be necessary to include in the methods to maintain protein solubility.

35

10

20

VIII. Uses

15

20

30

The present invention provides reagents which will find use in diagnostic applications as described elsewhere herein, e.g., in the general description for cell mediated conditions, or below in the description of kits for diagnosis. The genes will be useful in forensic analyses, e.g., to identify species, or to diagnose different cell subsets or types.

If DC-PGT is used to clear prostaglandins (PGs) and other metabolically active organic anions from the body (in the liver, fetal liver, lung and placenta) it is easy to suppose that an alteration in the capacity of this mechanism could augment the allergic response. Prostaglandin PGF $_{2\alpha}$ and PGD $_{2}$, and PGG $_{2}$ and thrombaxane A $_{2}$ can cause airway obstruction, particularly in the peripheral lung, while PGE $_{2}$ and PGI $_{2}$ are bronchodilators. Use of the transporter of the invention could help transport or remove these prostaglandins to modulate airway obstruction.

Additionally, prostaglandins play an important role in secondary immunosuppression seen following surgical stress. Alexander (1990) J. Trauma 30:S70; Faist, et al. (1987) J. Trauma 27:837; Ninneman, et al. (1984) <u>J. Trauma</u> 24:201; Wood, et al. (1987) Arch. Surg. 122:179; Polk, et al. in Eremin and Sewell (eds. 1992) The Immunological Basis of Surgical Science and Practice, Oxford U. Press. In particular, PGE2 inhibits lymphocyte proliferation, decreases IL-2 release, decreases response to IL-2, inhibits natural killer cells, and activates supressor cells. Major injury has been shown to result in increased production of PGE2 from inhibitory macrophages, with a resulting decrease in production of IL-1 and IL-2. This effect may persist for 7 to 10 days after major injury. Other studies have shown no increase in circulating PGE2 following burns but did find increased local production with increased sensitivity of lymphocytes to the action of PGE2.

Prostaglandin E2, through locally produced vasodilatory effects, may play a role in rheumatoid arthritis by promoting the entry of inflammatory cells into the joint. Once in the synovial fluid, polymorphonuclear leukocytes can ingest immune complexes, which, in turn, cause neutrophils to produce reactive oxygen

metabolites and other inflammatory mediators to further enchance an inflammatory cascade. Henson, et al. (1987) J. Clin. Invest. 79:699.

Accordingly, it is possible to use the present invention to modulate prostaglandins in a subject suffering from trauma, injury, disease or in post-surgical treatments.

Immune system cells may be synthesizing PGs and thus using DC-PGT in an efflux role for removing PGs from the intracellular space may be useful. Equally, DC-PGT might transport a specific 10 organic anion. Abnormal proliferation, regeneration, degeneration, and atrophy may be modulated by appropriate therapeutic treatment using the compositions provided herein. For example, a disease or disorder associated with abnormal function of a prostaglandin transporter should be a likely target for a substrate or blocking substrate. Alternatively, the transporter may be a useful means for supplying important metabolites or metabolite blockers to the respective cells.

15

25

30

35

For example, transformation with the transporter may increase availability of the substrate to the cell. In certain situations, 20 a prostaglandin analog might be advantageously supplied to the cell. The prostaglandin analog might confer high susceptibility to further treatment, e.g., radiation sensitivity or otherwise, or may directly affect normal metabolism, e.g., nucleic acid related enzymes. Alternatively, the transporter may be useful to screen for antagonists or inhibitors, which might be effective in blocking the normal availability to the cell of the natural substrate. Screening methods for such prostaglandin analogs are provided.

Screening using prostaglandin transporter for binding metabolites or compounds having binding affinity to the transporter can be performed, including isolation of associated components. Subsequent biological assays can then be utilized to determine if the compound has intrinsic biological activity and is therefore an agonist or antagonist in that it blocks an activity of the transporter. In particular, prostaglandin analogs may be useful in blocking binding of the natural target or otherwise blocking transporter activity. Alternatively, various other

35

analogs may be useful in blocking an ion transporter, or organic anion source. This invention further contemplates the therapeutic use of antibodies to prostaglandin transporter as antagonists. This approach should be particularly useful with other prostaglandin transporter species variants and other members of the family.

Antagonists of the transporter activity, e.g., antibodies which block the transport, may be useful in various medical conditions. These would include immune, inflammatory or allergic abnormalities, all of which are important where transfer of organic anions take place. Certain congenital diseases of prostaglandin physiology will be susceptible to such a therapeutic approach.

The HDTEA84, HSLJD37R, RANKL, HCC5, MD-1, or MD-2 (naturally 15 occurring or recombinant), fragments thereof, and antibodies thereto, along with compounds identified as having binding affinity to them, should be useful in the treatment of conditions associated with abnormal physiology or development, including abnormal proliferation, e.g., cancerous conditions, or degenerative conditions. In particular, modulation of development of lymphoid cells will be achieved by appropriate therapeutic treatment using the compositions provided herein. For example, a disease or disorder associated with abnormal expression or abnormal signaling by a ligand or receptor should be a likely target for an agonist or antagonist of the antigen. The antigen . 25 plays a role in regulation or development of hematopoietic cells, e.g., lymphoid cells, which affect immunological responses, e.g., autoimmune disorders.

In particular, the antigen may provide a costimulatory signal to cell activation, or be involved in regulation of cell proliferation or differentiation. Thus, the HDTEA84, HSLJD37R, RANKL, HCC5, MD-1, or MD-2 will likely modulate cells which possess a receptor therefor, e.g., T cell mediated interactions with other cell types. These interactions would lead, in particular contexts, to modulation of cell growth, cytokine synthesis by those or other cells, or development of particular effector cells.

35

Moreover, the HDTEA84, HSLJD37R, RANKL, HCC5, MD-1, or MD-2 or antagonists could redirect T cell responses, e.g., between Th1 and Th2 polarization, or with Th0 cells, or may affect B cells or other lymphoid cell subsets. Among these agonists should be various antibodies which recognize the appropriate epitopes, e.g., which mimic binding of ligand or receptor to its partner. Alternatively, they may bind to epitopes which sterically can block receptor binding. Bone morphogenesis may be regulated by these receptor segments.

The ligands or receptors may provide a selective and powerful way to modulate immune responses in abnormal situations, e.g., autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosis (SLE), Hashimoto's autoimmune thyroiditis, as well as acute and chronic inflammatory responses in which T cell activation, expansion, and/or immunological T cell memory play an important role. See also Samter, et al. (eds) Immunological Diseases vols. 1 and 2, Little, Brown and Co. Regulation of bone morphogenesis, T cell activation, expansion, and/or cytokine release by the naturally occurring secreted form of HDTEA84, HSLJD37R, RANKL, HCC5, MD-1, or MD-2, or an antagonist thereof, may be effected.

In addition, certain combination compositions with other modulators of signaling would be useful, especially with the TNF receptor-like genes. Such other signaling molecules might include, e.g., TCR reagents, CD40, CD40L, CTLA-8, CD28, SLAM, FAS, osteoprotegerin, and their respective antagonists, including antibodies.

Cyclin E2 nucleotides, e.g., human cyclin E2 DNA or RNA, may be used as a component in a forensic assay. For instance, the nucleotide sequences provided may be labeled using, e.g., ³²P or biotin and used to probe standard restriction fragment polymorphism blots, providing a measurable character to aid in distinguishing between individuals. Such probes may be used in well-known forensic techniques such as genetic fingerprinting. In addition, nucleotide probes made from cyclin E2 sequences may be used in in situ assays to detect chromosomal abnormalities. For instance, rearrangements in the human chromosome encoding a cyclin

E2 gene may be detected via well-known in situ techniques, using cyclin E2 probes in conjunction with other known chromosome markers. The cyclin E2 gene may have useful prognostic utility in various cancers, e.g., breast, etc.

Antibodies and other binding agents directed towards cyclin E2 proteins or nucleic acids may be used to purify the corresponding cyclin E2 molecule. As described in the Examples below, antibody purification of cyclin E2 protein components is both possible and practicable. Antibodies and other binding agents may also be used in a diagnostic fashion to determine whether cyclin E2 protein components are present in a tissue sample or cell population using well-known techniques described herein. The ability to attach a binding agent to a cyclin E2 protein provides a means to diagnose disorders associated with 15 cyclin E2 protein misregulation. Antibodies and other cyclin E2 protein binding agents may also be useful as histological markers. As described in the examples below, cyclin E2 protein expression is limited to specific tissue types. By directing a probe, such as an antibody or nucleic acid to a cyclin E2 protein it is possible to use the probe to distinguish tissue and cell types in situ or in vitro.

10

This invention also provides reagents with significant therapeutic value. The cyclin E2 protein (naturally occurring or recombinant), fragments thereof, and antibodies thereto, along with compounds identified as having binding affinity to a cyclin E2 protein, can be useful in the treatment of conditions associated with abnormal physiology or development, including abnormal proliferation, e.g., cancerous conditions, or degenerative conditions. Abnormal proliferation, regeneration, 30 degeneration, and atrophy may be modulated by appropriate therapeutic treatment using the compositions provided herein. For example, a disease or disorder associated with abnormal expression or abnormal signaling by a cyclin E2 protein is a target for an agonist or antagonist of the protein. The proteins likely play a role in regulation or development of neuronal or hematopoietic cells, e.g., lymphoid cells, which affect immunological responses.

Various abnormal conditions are known in each of the cell types shown to possess, e.g., HDTEA84, mRNA by Northern blot analysis. See Berkow (ed.) The Merck Manual of Diagnosis and Therapy, Merck & Co., Rahway, NJ; Thorn, et al. Harrison's Principles of Internal Medicine, McGraw-Hill, NY; and Weatherall, et al. (eds.) Oxford Textbook of Medicine, Oxford University Press, Oxford. Many other medical conditions and diseases involve T cells or are T cell mediated, and many of these may be responsive to treatment by an agonist or antagonist provided herein. See, e.g., Stites and Terr (eds; 1991) Basic and Clinical Immunology Appleton and Lange, Norwalk, CT; and Samter, et al. (eds) Immunological Diseases Little, Brown and Co. These problems should be susceptible to prevention or treatment using compositions provided herein.

Specific, or selective, antibodies can be purified and then administered to a patient, veterinary or human. These reagents can be combined for therapeutic use with additional active or inert ingredients, e.g., in conventional pharmaceutically acceptable carriers or diluents, e.g., immunogenic adjuvants, along with physiologically innocuous stabilizers, excipients, or preservatives. These combinations can be sterile filtered and placed into dosage forms as by lyophilization in dosage vials or storage in stabilized aqueous preparations. This invention also contemplates use of antibodies or binding fragments thereof, including forms which are not complement binding.

15

20

25

30

35

Drug screening using proteins or fragments thereof can be performed to identify compounds having binding affinity to or other relevant biological effects on antigen functions, including isolation of associated components. Subsequent biological assays can then be utilized to determine if the compound has intrinsic stimulating activity or is a blocker or antagonist in that it blocks the activity of the antigen, e.g., mutein antagonists. Likewise, a compound having intrinsic stimulating activity can activate the signal pathway and is thus an agonist in that it overcomes any blocking activity of these soluble forms of receptors. This invention further contemplates the therapeutic use of blocking antibodies to ligands or receptors as agonists or

antagonists and of stimulatory molecules, e.g., muteins, as agonists. This approach should be particularly useful with other soluble receptor species variants.

Another therapeutic approach included within the invention involves direct administration of reagents or compositions by any conventional administration techniques (e.g., but not restricted or administered systemically), to local injection, inhalation, to the subject with an immune, allergic, or trauma disorder. The reagents, formulations, or compositions included within the bounds 10 and metes of the invention may also be targeted to specific cells or transporters by methods described herein. The actual dosage of reagent, formulation, or composition that modulates an immune, allergic, or trauma disorder depends on many factors, including the size and health of an organism, however one of ordinary skill in the art can use the following teachings describing the methods and techniques for determining clinical dosages. See, e.g., Spilker (1984) Guide to Clinical Studies and Developing Protocols, Raven Press Books, Ltd., New York, pp. 7-13, 54-60; Spilker (1991) Guide to Clinical Trials, Raven Press, Ltd., New York, pp. 93-101; 20 Craig and Stitzel (eds. 1986) Modern Pharmacology, 2d ed., Little, Brown and Co., Boston, pp. 127-33; Speight (ed. 1987) Avery's Drug Treatment: Principles and Practice of Clinical Pharmacology and Therapeutics, 3d ed., Williams and Wilkins, Baltimore, pp. 50-56; Tallarida, et al. (1988) Principles in General Pharmacology, 25 Springer-Verlag, New York, pp. 18-20). Generally, the dose will be in the range of about between 0.5 fg/ml and 500 μ g/ml, inclusive, final concentration administered per day to an adult in a pharmaceutically acceptable carrier.

The quantities of reagents necessary for effective therapy
30 will depend upon many different factors, including means of
administration, target site, physiological state of the patient,
and other medicants administered. Thus, treatment dosages should
be titrated to optimize safety and efficacy. Typically, dosages
used in vitro may provide useful guidance in the amounts useful
35 for in situ administration of these reagents. Animal testing of
effective doses for treatment of particular disorders will provide

further predictive indication of human dosage. Various considerations are described, e.g., in Gilman, et al. (eds. 1990) Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, 5 17th ed. (1990), Mack Publishing Co., Easton, Penn. Methods for administration are discussed, e.g., for oral, intravenous, intraperitoneal, or intramuscular administration, transdermal diffusion, and others. Pharmaceutically acceptable carriers will include water, saline, buffers, and other compounds described, 10 e.g., in the Merck Index, Merck & Co., Rahway, New Jersey. Dosage ranges would ordinarily be expected to be in amounts lower than 1 mM concentrations, typically less than about 10 µM concentrations, usually less than about 100 nM, preferably less than about 10 pM (picomolar), and most preferably less than about 1 fM 15 (femtomolar), with an appropriate carrier. Slow release formulations, or a slow release apparatus will often be utilized for continuous or long term administration. See, e.g., Langer (1990) Science 249:1527-1533.

Ligands, receptors, enzymes, fragments thereof, and 20 antibodies to it or its fragments, antagonists, and agonists, may be administered directly to the host to be treated or, depending on the size of the compounds, it may be desirable to conjugate them to carrier proteins such as ovalbumin or serum albumin prior to their administration. Therapeutic formulations may be 25 administered in many conventional dosage formulations. While it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical formulation. Formulations typically comprise at least one active ingredient, as defined above, together with one or more acceptable carriers thereof. Each carrier should be both pharmaceutically and physiologically acceptable in the sense of being compatible with the other ingredients and not injurious to the patient. Formulations include those suitable for oral, rectal, nasal, topical, or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. The formulations may 35 conveniently be presented in unit dosage form and may be prepared by methods well known in the art of pharmacy. See, e.g., Gilman,

35

et al. (eds. 1990) Goodman and Gilman's: The Pharmacological
Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's
Pharmaceutical Sciences, 17th ed. (1990), Mack Publishing Co.,
Easton, Penn.; Avis, et al. (eds. 1993) Pharmaceutical Dosage

Forms: Parenteral Medications, Dekker, New York; Lieberman, et al.
(eds. 1990) Pharmaceutical Dosage Forms: Tablets, Dekker, New
York; and Lieberman, et al. (eds. 1990) Pharmaceutical Dosage
Forms: Disperse Systems, Dekker, New York. The therapy of this
invention may be combined with or used in association with other
agents, e.g., other modulators of cell activation, e.g., CD40,
CD40 ligand, CD28, CTLA-4, B7, B70, SLAM, T cell receptor
signaling entities, or their respective antagonists.

Both the naturally occurring and the recombinant forms of the proteins of this invention are particularly useful in kits and assay methods which are capable of screening compounds for binding activity to the proteins. Several methods of automating assays have been developed in recent years so as to permit screening of tens of thousands of compounds in a short period. See, e.g., Fodor, et al. (1991) Science 251:767-773, which describes means for testing of binding affinity by a plurality of defined polymers synthesized on a solid substrate. The development of suitable assays can be greatly facilitated by the availability of large amounts of purified, soluble proteins or nucleic acids as provided by this invention.

Other methods can be used to determine the critical residues in the substrate, ligand, or receptor binding interactions.

Mutational analysis can be performed, e.g., see Somoza, et al. (1993) J. Exp. Med. 178:549-558, to determine specific residues critical in the interaction and/or signaling. This will allow study of both extracellular domains, involved in the soluble ligand interaction, or intracellular domain of a transmembrane form, which provides interactions important in intracellular signaling.

For example, antagonists can normally be found once the antigen has been structurally defined, e.g., by tertiary structure data. Testing of potential interacting analogs is now possible

15

upon the development of highly automated assay methods using a purified protein. In particular, new agonists and antagonists will be discovered by using screening techniques described herein. Of particular importance are compounds found to have a combined binding affinity for a spectrum of protein molecules, e.g., compounds which can serve as antagonists for species variants of the antigens.

One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant DNA molecules expressing desired protein. Cells may be isolated which express a selected protein in isolation from other molecules. Such cells, either in viable or fixed form, can be used for standard binding partner binding assays. See also, Parce, et al. (1989) Science 246:243-247; and Owicki, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:4007-4011, which describe sensitive methods to detect cellular responses.

Another technique for drug screening involves an approach which provides high throughput screening for compounds having suitable binding affinity to a desired target protein, and is described in detail in Geysen, European Patent Application 84/03564, published on September 13, 1984. First, large numbers of different small peptide test compounds are synthesized on a solid substrate, e.g., plastic pins or some other appropriate surface, see Fodor, et al. (1991). Then the pins are reacted with solubilized, unpurified or solubilized, purified target protein, and washed. The next step involves detecting bound protein.

Rational drug design may also be based upon structural studies of the molecular shapes of the protein and other effectors or analogs. Effectors may be other proteins which mediate other functions in response to binding, or other proteins which normally interact. One means for determining which sites interact with specific other proteins is a physical structure determination, e.g., x-ray crystallography or 2 dimensional NMR techniques. These will provide guidance as to which amino acid residues form molecular contact regions. For a detailed description of protein structural determination, see, e.g., Blundell and Johnson (1976) Protein Crystallography, Academic Press, New York.

IX. Kits

10

15

25

30

This invention also contemplates use of the proteins, fragments thereof, peptides, and their fusion products in a variety of diagnostic kits and methods for detecting, e.g., the presence of protein or binding partner. Typically the kit will have a compartment containing either a described polypeptide or gene segment or a reagent which recognizes one or the other, e.g., fragments or antibodies. Alternatively, kits may be nucleic acid based.

A kit for determining the binding affinity of a test compound to, e.g., an HDTEA84, would typically comprise a test compound; a labeled compound, for example a binding partner or antibody having known binding affinity for HDTEA84; a source of HDTEA84 (naturally occurring or recombinant); and a means for separating bound from free labeled compound, such as a solid phase for immobilizing the molecule. Once compounds are screened, those having suitable binding affinity to the antigen can be evaluated in suitable biological assays, as are well known in the art, to determine whether they act as agonists or antagonists to the HDTEA84 signaling pathway. The availability of recombinant HDTEA84 polypeptides also provide well defined standards for calibrating such assays.

A preferred kit for determining the concentration of, e.g., an HDTEA84 in a sample would typically comprise a labeled compound, e.g., binding partner or antibody, having known binding affinity for the antigen, a source of antigen (naturally occurring or recombinant) and a means for separating the bound from free labeled compound, e.g., a solid phase for immobilizing the HDTEA84. Compartments containing reagents, and instructions, will normally be provided.

Antibodies, including antigen binding fragments, specific for, e.g., the HDTEA84 or fragments, are useful in diagnostic applications to detect the presence of elevated levels of HDTEA84 and/or its fragments. Such diagnostic assays can employ lysates, live cells, fixed cells, immunofluorescence, cell cultures, body fluids, and further can involve the detection of antigens related

to the antigen in serum, or the like. Diagnostic assays may be homogeneous (without a separation step between free reagent and antigen-binding partner complex) or heterogeneous (with a separation step). Various commercial assays exist, such as radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), enzyme-multiplied immunoassay technique (EMIT), substrate-labeled fluorescent immunoassay (SLFIA), and the like. See, e.g., Van Vunakis, et al. (1980) Meth Enzymol. 70:1-525; Harlow and Lane (1980) Antibodies: A Laboratory Manual, CSH Press, NY; and Coligan, et al. (eds. 1993) Current Protocols in Immunology, Greene and Wiley, NY.

10

Anti-idiotypic antibodies may have similar use to diagnose presence of antibodies against a described protein, as such may be diagnostic of various abnormal states. Overproduction of prostaglandin transporter may reflect various medical conditions, which may be diagnostic of abnormal physiological states, particularly in proliferative cell conditions such as cancer or abnormal differentiation. For example, leukemias and lymphomas may exhibit altered transporter expression, which may reflect their altered physiology and may provide means to selectively 20 target. Alternatively, overproduction of HDTEA84, HSLJD37R, RANKL, HCC5, MD-1, or MD-2 may result in production of various immunological reactions which may be diagnostic of abnormal physiological states, particularly in proliferative cell 25 conditions such as cancer or abnormal activation or differentiation. Expression levels of DC-PGT, Dubs, or cyclin E2 may likewise be diagnostic of specific therapeutic conditions, advantageous or disadvantageous.

Frequently, the reagents for diagnostic assays are supplied in kits, so as to optimize the sensitivity of the assay. For the subject invention, depending upon the nature of the assay, the protocol, and the label, either labeled or unlabeled antibody or binding partner, or labeled HDTEA84 is provided. This is usually in conjunction with other additives, such as buffers, stabilizers, materials necessary for signal production such as substrates for enzymes, and the like. Preferably, the kit will also contain instructions for proper use and disposal of the contents after

30

35

use. Typically the kit has compartments for each useful reagent. Desirably, the reagents are provided as a dry lyophilized powder, where the reagents may be reconstituted in an aqueous medium providing appropriate concentrations of reagents for performing the assay.

Many of the aforementioned constituents of the drug screening and the diagnostic assays may be used without modification or may be modified in a variety of ways. For example, labeling may be achieved by covalently or non-covalently joining a moiety which directly or indirectly provides a detectable signal. In these assays, the binding partner, test compound, HDTEA84, or antibodies thereto can be labeled either directly or indirectly. Possibilities for direct labeling include label groups: radiolabels such as 125I, enzymes (U.S. Pat. No. 3,645,090) such 15 as peroxidase and alkaline phosphatase, and fluorescent labels (U.S. Pat. No. 3,940,475) capable of monitoring the change in fluorescence intensity, wavelength shift, or fluorescence polarization. Possibilities for indirect labeling include biotinylation of one constituent followed by binding to avidin coupled to one of the above label groups.

There are also numerous methods of separating the bound from the free polypeptide, or alternatively the bound from the free test compound. The polypeptide can be immobilized on various matrixes followed by washing. Suitable matrices include plastic such as an ELISA plate, filters, and beads. See, e.g., Coligan, et al. (eds. 1993) <u>Current Protocols in Immunology</u>, Vol. 1, Chapter 2, Greene and Wiley, NY. Other suitable separation techniques include, without limitation, the fluorescein antibody magnetizable particle method described in Rattle, et al. (1984) <u>Clin. Chem.</u> 30:1457-1461, and the double antibody magnetic particle separation as described in U.S. Pat. No. 4,659,678.

Methods for linking proteins or their fragments to the various labels have been extensively reported in the literature and do not require detailed discussion here. Many of the techniques involve the use of activated carboxyl groups either through the use of carbodiimide or active esters to form peptide bonds, the formation of thioethers by reaction of a mercapto group

15

25

30

with an activated halogen such as chloroacetyl, or an activated olefin such as maleimide, for linkage, or the like. Fusion proteins will also find use in these applications.

Another diagnostic aspect of this invention involves use of oligonucleotide or polynucleotide sequences taken from the sequence of a described protein. These sequences can be used as probes for detecting levels of the message in samples from patients suspected of having an abnormal condition, e.g., cancer or developmental problem. Since the antigen is a marker for activation, it may be useful to determine the numbers of activated T cells to determine, e.g., when additional suppression may be called for. The preparation of both RNA and DNA nucleotide sequences, the labeling of the sequences, and the preferred size of the sequences has received ample description and discussion in the literature. See, e.g., Langer-Safer, et al. (1982) Proc.

Nat'l. Acad. Sci. 79:4381-4385; Caskey (1987) Science 236:962-967; and Wilchek, et al. (1988) Anal. Biochem. 171:1-32.

Alternatively, antibodies may be employed which can recognize specific duplexes, including DNA duplexes, RNA duplexes, DNA-RNA hybrid duplexes, or DNA-protein duplexes. The antibodies in turn may be labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. The use of probes to the novel anti-sense RNA may be carried out in any conventional techniques such as nucleic acid hybridization, plus and minus screening, recombinational probing, hybrid released translation (HRT), and hybrid arrested translation (HART). This also includes amplification techniques such as polymerase chain reaction (PCR).

Diagnostic kits which also test for the qualitative or quantitative presence of other markers are also contemplated. Diagnosis or prognosis may depend on the combination of multiple indications used as markers. Thus, kits may test for combinations of markers. See, e.g., Viallet, et al. (1989) <u>Progress in Growth Factor Res.</u> 1:89-97. Other kits may be used to evaluate T cell subsets.

X. Methods for Isolating Substrates/Specific Partners The DC-PGT should interact with its substrate target. The substrate will be similar to the organic molecules which are subject to transport. The Dubs and cyclin E2 will also be 5 screened for substrate identification.

The HDTEA84, HSLJD37R, and RANKL protein should interact with a TNF ligand, based, e.g., upon its similarity in structure and function to other cell surface antigens exhibiting similar structure and cell type specificity of expression. The MD-1 and MD-2 antigens are related to known proteins, which interact with B cell antigens. Methods to isolate a ligand are made available by the ability to make purified protein for screening programs. Similar techniques will be applicable to the HCC5 chemokine, and the MD-1 and MD-2 surface receptors.

Sequences provided herein will allow for screening or isolation of specific ligands. Many methods exist for expression cloning, panning, affinity isolation, or other means to identify a ligand. A two-hybrid selection system may also be applied making appropriate constructs with the available sequences, as appropriate. See, e.g., Fields and Song (1989) Nature 340:245-246.

The broad scope of this invention is best understood with reference to the following examples, which are not intended to limit the invention to specific embodiments.

EXAMPLES

General Methods

Some of the standard methods are described or referenced. e.g., in Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed.), vols. 1-3, CSH Press, NY; Ausubel, et al., Biology, Greene Publishing Associates, Brooklyn, NY; or Ausubel, et al. (1987 and Supplements) Current Protocols in Molecular Biology, Greene and Wiley, New York; Innis, et al. (eds. 1990) PCR Protocols: A Guide to Methods and Applications, Academic Press, N.Y. Methods for protein purification include such methods as ammonium sulfate precipitation, column chromatography, electrophoresis, centrifugation, crystallization, and others. See, e.g., Ausubel, et al. (1987 and periodic supplements); Deutscher (1990) "Guide to Protein Purification" in Methods in Enzymol. vol. 182, and other volumes in this series; and manufacturer's literature on use of protein purification products, e.g., Pharmacia, Piscataway, N.J., or Bio-Rad, Richmond, CA. Combination with recombinant techniques allow fusion to appropriate segments, e.g., to a FLAG sequence or an equivalent which can be fused via a protease-removable sequence. See, e.g., Hochuli (1990) "Purification of Recombinant Proteins with Metal Chelate Absorbent" in Setlow (ed.) Genetic Engineering, Principle and Methods 12:87-98, Plenum Press, N.Y.; and Crowe, et al. (1992) OIAexpress: The High Level Expression & Protein Purification System QIAGEN, Inc., Chatsworth, CA. Cell culture techniques are described in Doyle, et al. (eds. 1994) Cell and Tissue Culture: Laboratory Procedures, John Wiley and Sons, NY.

30 Standard immunological techniques are described, e.g., in Hertzenberg, et al. (eds. 1996) Weir's Handbook of Experimental Immunology vols. 1-4, Blackwell Science; Coligan (1991) Current Protocols in Immunology Wiley/Greene, NY; and Methods in Enzymology volumes. 70, 73, 74, 84, 92, 93, 108, 116, 121, 132, 150, 162, and 163.

15

FACS analyses are described in Melamed, et al. (1990) Flow Cytometry and Sorting Wiley-Liss, Inc., New York, NY; Shapiro (1988) Practical Flow Cytometry Liss, New York, NY; and Robinson, et al. (1993) Handbook of Flow Cytometry Methods Wiley-Liss, New York, NY. Fluorescent labeling of appropriate reagents was performed by standard methods.

The FASTA (Pearson and Lipman, 1988) and BLAST (Altschul, et al. (1990) J. Mol. Biol. 215:403-410) programs were used to comb nonredundant protein and nucleotide databases (Benson, et al. (1994) Nucl. Acids Res. 22:3441-3444; Bairoch and Boeckmann (1994) Nucl. Acids Res. 22:3578-3580) with the resultant cDNA and encoded protein sequences. The sensitive search strategies of Altschul, et al. (1994) Nature Genet. 6:119-129; and Koonin, et al. (1994) EMBO J. 13:493-503; served as examples of how to locate distant structural homologues of protein chains. Multiple alignments of collected homologues were carried out with ClustalW (Thompson, et al. (1994) Comp. Applic. Biosci. 10:19-29) and MACAW (Schuler, et al. (1991) Proteins 9:180-190).

The membrane topologies of proteins, e.g., DC-PGT, and a 20 cohort of putative homologues were analyzed by a variety of methods that sought to determine the consensus number of domains, e.g., hydrophobic membrane-spanning helices and the likely cytoplasmic or extracellular exposure of the hydrophilic connecting loops. For single sequence analysis, the ALOM and MTOP 25 (Klein, et al. (1985) <u>Biochim. Biophys. Acta</u> 815:468-476; and Hartmann, et al. (1989) <u>Proc. Natl. Acad. Sci. USA</u> 86:5786-5790) programs were accessed from the PSORT World-Wide Web site (Nakai and Kanehisa (1991) Proteins 11:95-110; and Nakai and Kanehisa (1992) Genomics 14:897-911); in turn, the TopPredII program 30 (Claros and von Heijne (1994) Comp. Applic. Biosci. 10:685-686; MacIntosh PPC version) was used to parse chains into probable hydrophobic transmembrane and loop regions of DC-PGT, and further predict the localization of these latter regions by prevalence of charged residue types (von Heijne (1992) J. Mol. Biol. 225:487-35 494; and Sippos and von Heijne (1993) Eur. J. Biochem. 213:1333-

1340). MEMSAT (Jones, et al. (1994) <u>Biochem.</u> 33:3038-3049; MS-DOS PC version) was likewise used to fit individual sequences into statistically-based topology models that render judgment on membrane spanning and loop chain segments. Two Web-accessible programs that are able to make use of evolutionary data by analyzing multiply aligned sequences are PHD (Rost, et al. (1994) <u>Comp. Applic. Biosci.</u> 10:53-60; and Rost, et al. (1995) <u>Protein Sci.</u> 4:521-533) and TMAP (Persson and Argos (1994) <u>J. Mol. Biol.</u> 237:182-192); the former utilizes a neural network system to accurately predict the shared location of helical transmembrane segments in a protein family. Similar analysis of other proteins can be performed.

I. Generation of Dendritic Cells

Human CD34+ cells are obtained as follows. See, e.g., Caux, et al. (1995) pages 1-5 in Banchereau and Schmitt Dendritic Cells in Fundamental and Clinical Immunology Plenum Press, NY.

Peripheral or cord blood cells, sometimes CD34+ selected, are cultured in the presence of Stem Cell Factor (SCF), GM-CSF, and

TNF-α in endotoxin free RPMI 1640 medium (GIBCO, Grand Island, NY) supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS; Flow Laboratories, Irvine, CA), 10 mM HEPES, 2 mM L-glutamine, 5 X 10⁻⁵ M 2-mercaptoethanol, penicillin (100 μg/ml). This is referred to as complete medium.

25 CD34+ cells are seeded for expansion in 25 to 75 cm² flasks (Corning, NY) at 2 x 10^4 cells/ml. Optimal conditions are maintained by splitting these cultures at day 5 and 10 with medium containing fresh GM-CSF and TNF- α (cell concentration: 1-3 x 10^5 cells/ml). In certain cases, cells are FACS sorted for CD1a expression at about day 6.

In certain situations, cells are routinely collected after 12 days of culture, eventually adherent cells are recovered using a 5 mM EDTA solution. In other situations, the CD1a+ cells are activated by resuspension in complete medium at 5 x 10^6 cells/ml and activated for the appropriate time (e.g., 1 or 6 h) with 1

μg/ml phorbol 12-myristate 13-acetate (PMA, Sigma) and 100 ng/ml ionomycin (Calbiochem, La Jolla, CA). These cells are expanded for another 6 days, and RNA isolated for cDNA library preparation. Other specific cell types may be similarly isolated.

5

- II. RNA Isolation and Library Construction Total RNA is isolated using, e.g., the guanidine thiocyanate/CsCl gradient procedure as described by Chirgwin, et al. (1978) <u>Biochem.</u> 18:5294-5299.
- Alternatively, poly(A) + RNA is isolated using the OLIGOTEX mRNA isolation kit (QIAGEN). Double stranded cDNA are generated using, e.g., the SUPERSCRIPT plasmid system (Gibco BRL, Gaithersburg, MD) for cDNA synthesis and plasmid cloning. The resulting double stranded cDNA is unidirectionally cloned, e.g., into pSport1 and transfected by electroporation into ELECTROMAX DH10BTM Cells (Gibco BRL, Gaithersburg, MD).

III. Sequencing

DNA isolated from randomly picked clones, or after subtractive hybridization using inactivated cells, are subjected 20 to nucleotide sequence analysis using standard techniques. Alternatively, selected isolated clones can be selected. A Taq DiDeoxy Terminator cycle sequencing kit (Applied Biosystems, Foster City, CA) can be used. The labeled DNA fragments are separated using a DNA sequencing gel of an appropriate automated sequencer. Alternatively, the isolated clone is sequenced as described, e.g., in Maniatis, et al. (Current ed.) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook, et al. (Current ed.) Molecular Cloning: A Laboratory Manual, (2d ed.), vols. 1-3, CSH Press, NY; 30 Ausubel, et al., Biology, Greene Publishing Associates, Brooklyn, NY; or Ausubel, et al. (Current ed., and Supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York. Chemical sequencing methods are also available, e.g., using Maxim and Gilbert sequencing techniques. 35

IV. Recombinant gene constructs

Poly(A) + RNA is isolated from appropriate cell populations, e.g., using the FastTrack mRNA kit (Invitrogen, San Diego, CA). Samples are electrophoresed, e.g., in a 1% agarose gel containing formaldehyde and transferred to a GeneScreen membrane (NEN Research Products, Boston, MA). Hybridization is performed, e.g., at 65°C in 0.5 M NaHPO4 pH 7.2, 7% SDS, 1 mM EDTA, and 1% BSA (fraction V) with 32p-dCTP labeled DC gene cDNA at 107 cpm/ml. After hybridization, filters are washed three times at 50°C in 0.2X SSC, 0.1% SDS, e.g., for 30 min, and exposed to film for 24 h. A positive signal will typically be 2X over background, preferably 5-25X.

The recombinant gene construct may be used to generate a probe for detecting the message. The insert may be excised and used in the detection methods described above. Various standard methods for cross species hybridization and washes are well known in the art. See, e.g., Sambrook, et al. and Ausubel.

V: Gene Cloning

10

The HDTEA84 was assembled by careful analysis of ESTs found in various databases. These ESTs were from cDNA libraries derived from Hodgkin's lymphoma, endothelial cells, keratinocytes, prostate, and cerebellum. PCR primers are designed and synthesized and a PCR product is obtained from any of these libraries. This product is used as a hybridization clone to screen these libraries for a full length clone, which may include a transmembrane segment.

Likewise, the HSLJD37R was identified from sequences derived from cDNA libraries from: smooth muscle, pancreas tumor,

- adipocytes, HUVEC cells, adult pulmonary, endothelial cells, prostate cell line PC3, microvascular endothelial cells, fetal heart, and dendritic cells. A GenBank report by Pan, et al. has been submitted. See GenBank Accession 3549263. Other sequences were detected in libraries from: multiple sclerosis lesions,
- breast, kidney, and germinal center B cells. RT-PCT showed signal in B cells, PBL, granulocytes, T cells, monocytes, dendritic cell subpopulations including PMA/ionomycin treated, U937 cells, JY

cells, MRC5 cells, CHA, Jurkat, and YC1 cells. This suggests that the transcript is widely expressed.

RANKL was also identified in cDNA libraries from specific tissues, as described. Likewise, the HCC5 chemokine sequence was identified. The Dubl1 and Dubl2 genes were identified, in part, from their similarity to known Dub1 and Dub2 genes. The MD-1 and MD-2 were identified, in part, from their similarity to the ligand for the RP105 gene. The cyclin E2 was identified based upon its similarity to cyclin E.

10

VI. Expression Profile

To examine DC-PGT mRNA expression standard Northern Blot Analysis using a RT-PCR fragment of DC-PGT were carried out against human tissue, e.g., Northern blots containing approximately 10 to 20 µg of total RNA are run in formaldehyde gels and transferred to Nytran membranes (Schleicher & Schuell, Keene, NH) by standard methods, and blots were hybridized with a labeled PCR fragment of DC-PGT and washed at 65°C. cDNA can be isolated from cells, embryonic tissues, and adult organs using RNAzol solution (Tel-test, Inc., Friendswood, TX) according to 20 manufacturer's instructions. Large amounts of plasmid DNA containing differential display PCR products are prepared using the QIAGEN Plasmid Maxi Kit (QIAGEN) following the manufacturer's instructions. Plasmid DNA is cut with EcoRI (Boehringer Mannheim) 25 or BstXI (NE Biolabs, Mass.), gel extracted with the QIAEX gel extraction kit (QIAGEN) and random primed with [32p]dCTP (Amersham) using the Prime-It II kit (Stratagene, La Jolla, CA), all in accordance with manufacturer's instructions. Various primers may be used to quantitate expression of message. Means to block DNA hybridization signal, or RNA isolation, will be 30 applicable to quantitate roughly the amount of expression of appropriate RNAs.

The results revealed mRNA of one band at approximately 9.0 kB, another band at approximately 3.0 kB, and a 4.4 kB size which is consistent with the size predicted for the SEQ ID NO: 1 nucleic acid. The smaller mRNA product band could be an alternatively spliced form of SEQ ID NO: 1. DC-PGT is highly expressed in both

PCT/US99/12366 WO 00/01817

95

activated and non-activated dendritic cells (DC), activated monocytes, activated granulocytes and adult lung. No expression was found in T or PBL cells (either activated or non-activated). Minor expression was detected in B cell (both activated and nonactivated) and limited expression was detected in the brain. results of the northern analysis suggests an expression in macrophages, rather than monocytes (Kuppfer cells in the liver, microglial cells in the brain, alveolar macrophages in the lung) particularly as there is no expression in PBL. Southern expression analysis carried out using common techniques confirmed the expression pattern revealed in the Northern analysis.

For example, the DC-PGT tissue distribution seems to have highest mRNA levels in kidney, placenta, liver, bone marrow, thymus, spleen, lung, and some in testis. This distribution 15 corresponds to organs with especially important ion exchange features, e.g., Na, K, or Ca, or in hematopoietic organs. Generally, the expression is higher in fibroblast and hematopoietic cells compared to neuronal cells.

20

25

30

35

A probe specific for cDNA encoding the HDTEA84, HSLJD37R, or RANKL is used to determine tissue distribution of message encoding the antigen. Standard hybridization probes may be used to do a Northern analysis of RNA from appropriate sources, either cells, e.g., stimulated, or in various physiological states, in various tissues, e.g., spleen, liver, thymus, lung, etc., or in various species. Southern analysis of cDNA libraries may also provide valuable distribution information. Standard tissue blots or species blots are commercially available. Similar techniques will be useful for evaluating diagnostic or medical conditions which may correlate with expression in various cell types.

PCR analysis using appropriate primers may also be used. Antibody analysis, including immunohistochemistry or FACS, may be used to determine cellular or tissue distribution.

Southern blot analysis of primate cDNA libraries is performed on, e.g.,: U937 premonocytic line, resting (M100); elutriated monocytes, activated with LPS, IFNY, anti-IL-10 for 4, 16 h pooled (M106); elutriated monocytes, activated with LPS, IFNY, IL-10 for 4, 16 h pooled (M107); elutriated monocytes, activated LPS for 1 h

(M108); elutriated monocytes, activated LPS for 6 h (M109); dendritic cells (DC) 30% CD1a+, from CD34+ GM-CSF, TNFα 12 days, resting; DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days, resting (D101); DC 70% CD1a+, from CD34+ GM-CSF, TNF α 12 days, activated with PMA and ionomycin for 1 hr (D102); DC 70% CD1a+, from CD34+ GM-CSF, TNF α 12 days, activated with PMA and ionomycin for 6 hr (D103); DC 95% CD1a+, from CD34+ GM-CSF, TNFα 12 days activated with PMA and ionomycin for 1 or 6 hr, pooled; DC from monocytes GM-CSF, IL-4 5 days, resting (D107); DC from monocytes GM-CSF, IL-10 4 5 days, resting (D108); DC from monocytes GM-CSF, IL-4 5 days, activated TNF α , monocyte supe for 4, 16 h pooled (D110); EBV transfected B cell lines, resting; spleenocytes, resting; spleenocytes, activated with PMA and ionomycin; 20 NK clones resting, pooled; 20 NK clones activated with PMA and ionomycin, pooled; NKL clone, IL-2 treated; NK cytotoxic clone, resting; adipose tissue fetal 28 wk male (0108); brain fetal 28 wk male (0104); gallbladder fetal 28 wk male (0106); heart fetal 28 wk male (0103); small intestine fetal 28 wk male (0107); kidney fetal 28 wk male (0100); liver fetal 28 wk male (0102); lung fetal 28 wk 20 male (0101); ovary fetal 25 wk female (0109); adult placenta 28 wk (O113); spleen fetal 28 wk male (O112); testes fetal 28 wk male (0111); uterus fetal 25 wk female (0110); THO clone Mot 72, resting (T102); T cell, THO clone Mot 72, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T103); T cell, THO clone Mot 72, anergic treated with specific peptide for 2, 7, 12 h pooled (T104); ThO subtraction of resting from activated; T cell, TH1 clone HY06, resting (T107); T cell, TH1 clone HY06, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T108); T cell, TH1 clone HY06, anergic treated with specific peptide for 2, 6, 12 h pooled (T109); Th1 subtraction of resting from activated; T cell, TH2 clone HY935, resting (T110); T cell, TH2 clone HY935, activated with anti-CD28 and anti-CD3 for 2, 7, 12 h pooled (T111); and Th2 subtraction of resting from activated. Samples for mouse mRNA distribution may include, e.g.,:

SUBSTITUTE SHEET (rule 26)

resting mouse fibroblastic L cell line (C200); Braf:ER (Braf

fusion to estrogen receptor) transfected cells, control (C201); T cells, TH1 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IFN- γ and anti IL-4; T200); T cells, TH2 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 5 days with IL-4 and anti-IFN- γ ; T201); T cells, highly TH1 polarized (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 16 h pooled; T202); T cells, highly TH2 polarized (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 16 h pooled; T203); CD44- CD25+ pre T cells, sorted from thymus (T204); TH1 T cell clone D1.1, resting for 3 weeks after last stimulation with antigen (T205); TH1 T cell clone D1.1, 10 μ g/ml ConA stimulated 15 h (T206); TH2 T cell clone CDC35, resting for 3 weeks after last stimulation with antigen (T207); TH2 T cell clone CDC35, 10 $\mu g/ml$ ConA stimulated 15 h (T208); Mel 14+ naive T cells from spleen, resting (T209); Mel14+ T cells, polarized to Th1 with IFN-γ/IL-12/anti-IL-4 for 6, 12, 24 h pooled (T210); Mel 14+ T cells, polarized to Th2 with IL-4/anti-IFN-γ for 6, 13, 24 h pooled (T211); unstimulated mature B cell leukemia cell line A20 (B200); unstimulated B cell line CH12 20 (B201); unstimulated large B cells from spleen (B202); B cells from total spleen, LPS activated (B203); metrizamide enriched dendritic cells from spleen, resting (D200); dendritic cells from bone marrow, resting (D201); monocyte cell line RAW 264.7 activated with LPS 4 h (M200); bone-marrow macrophages derived with GM and M-CSF (M201); macrophage cell line J774, resting (M202); macrophage cell line J774 + LPS + anti-IL-10 at 0.5, 1, 3, 6, 12 h pooled (M203); macrophage cell line J774 + LPS + IL-10 at 0.5, 1, 3, 5, 12 h pooled (M204); aerosol challenged mouse lung tissue, Th2 primers, aerosol OVA challenge 7, 14, 23 h pooled (see 30 Garlisi, et al. (1995) Clinical Immunology and Immunopathology 75:75-83; X206); Nippostrongulus-infected lung tissue (see Coffman, et al. (1989) Science 245:308-310; X200); total adult lung, normal (O200); total lung, rag-1 (see Schwarz, et al. (1993) Immunodeficiency 4:249-252; O205); IL-10 K.O. spleen (see Kuhn, et

15

al. (1991) Cell 75:263-274; X201); total adult spleen, normal (0201); total spleen, rag-1 (0207); IL-10 K.O. Peyer's patches (0202); total Peyer's patches, normal (0210); IL-10 K.O. mesenteric lymph nodes (X203); total mesenteric lymph nodes, normal (0211); IL-10 K.O. colon (X203); total colon, normal (0212); NOD mouse pancreas (see Makino, et al. (1980) Jikken Dobutsu 29:1-13; X205); total thymus, rag-1 (0208); total kidney, rag-1 (0209); total heart, rag-1 (0202); total brain, rag-1 (0203); total testes, rag-1 (0204); total liver, rag-1 (0206); rat normal joint tissue (0300); and rat arthritic joint tissue (X300). A. Direct protein detection by antibodies

Various cells, tissues, and developmental stages are stained with labeled antibodies. The detection may be immuno-histochemical for solid tissue, by FACS in disperse cells, and by other appropriate methods for other sample types. Antibodies specific for the various forms may be used to distinguish between membrane associated and soluble fragments. Various amplification means may be coupled to increase sensitivity.

B. Functional detection

Specific neutralizing antibodies should provide means to specifically block the biological activity of the prostaglandin transporter. Activities related to prostaglandin binding, or to prostaglandin transport may be measured by sensitive means based upon knowledge of the normal biological function of the various forms.

Further testing of populations of cells, e.g., hematopoietic progenitors, or of other cell or tissue types will be useful to further determine distribution and likely function. Other tissue types, at defined developmental stages, and pathology samples may be screened to determine whether pathological states or stages may be advantageously correlated with the biological activity of the transporter.

VII. Protein Expression

35 PCR is used to make a construct comprising the open reading frame, preferably in operable association with proper promoter, selection, and regulatory sequences. The resulting expression

20

25

plasmid is transformed into an appropriate cell type, e.g., the Topp5, E. coli strain (Stratagene, La Jolla, CA). Ampicillin resistant (50 $\mu g/ml$) transformants are grown in Luria Broth (Gibco) at 37°C until the optical density at 550 nm is 0.7.

Recombinant protein is induced with 0.4 mM isopropyl-βD-thiogalacto-pyranoside (Sigma, St. Louis, MO) and incubation of the cells continued at 20°C for a further 18 hours. Cells from a 1 liter culture are harvested by centrifugation and resuspended, e.g., in 200 ml of ice cold 30% sucrose, 50 mM Tris

HCl pH 8.0, 1 mM ethylenediaminetetraacetic acid. After 10 min on ice, ice cold water is added to a total volume of 2 liters. After 20 min on ice, cells are removed by centrifugation and the supernatant is clarified by filtration via a 5 μ M Millipak 60 (Millipore Corp., Bedford, MA).

The recombinant protein is purified via standard purification methods, e.g., various ion exchange chromatography methods.

Immunoaffinity methods using antibodies described below can also be used. Affinity methods may be used where an epitope tag is engineered into an expression construct.

Similar methods are used to prepare expression constructs and cells in eukaryotic cells. Eukaryotic promoters and expression vectors may be produced, as described above.

Further study of the expression and control of prostaglandin transporter will be pursued. The controlling elements associated with the antigens may exhibit differential developmental, tissue specific, or other expression patterns. Upstream or downstream genetic regions, e.g., control elements, are of interest.

Multiple transfected cell lines are screened for one which expresses the antigen, membrane bound, or soluble forms, at a high level compared with other cells. Various cell lines are screened and selected for their favorable properties in handling. Natural protein can be isolated from natural sources, or by expression from a transformed cell using an appropriate expression vector. Purification of the expressed protein is achieved by standard procedures, or may be combined with engineered means for effective purification at high efficiency from cell lysates or supernatants. FLAG or His6 segments can be used for such purification features.

VIII. Protein Purification

The prostaglandin transporter is isolated by a combination of affinity chromatography using the prostaglandin transporter specific binding compositions, e.g., antibody, as a specific binding reagent in combination with protein purification techniques allowing separation from other proteins and contaminants. Various detergent combinations may be tested to determine what combinations will retain biological activity while solubilizing contaminants. The purification may follow biological activity, e.g., prostaglandin binding or transport into membranes, or by ELISA or other structural binding reagents.

Similar methods are applied for purification of other polypeptides.

15

25

35

10

IX. Isolation of Homologous Genes

The described genes, e.g., cDNA, can be used as a hybridization probe to screen a library from a desired source, e.g., a primate cell cDNA library. Many different species can be screened both for stringency necessary for easy hybridization, and for presence using a probe. Appropriate hybridization conditions will be used to select for clones exhibiting specificity of cross hybridization.

cDNA libraries from the desired species are collected, from appropriate cell types. Screening by hybridization or PCR using degenerate probes based upon the peptide sequences will also allow isolation of appropriate clones. Alternatively, use of appropriate primers for PCR screening will yield enrichment of appropriate nucleic acid clones.

Similar methods are applicable to isolate either species, polymorphic, or allelic variants. Species variants are isolated using cross-species hybridization techniques based upon isolation of a full length isolate or fragment from one species as a probe.

Alternatively, antibodies raised against proteins will be used to screen for cells which express cross-reactive proteins from an appropriate, e.g., cDNA library. The purified protein or defined peptides are useful for generating antibodies by standard

WO 00/01817 PCT/US99/12366

101

methods, as described above. Synthetic peptides or purified protein are presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g., Coligan (1991) <u>Current Protocols in Immunology Wiley/Greene</u>; and Harlow and Lane (1989) <u>Antibodies: A Laboratory Manual Cold Spring Harbor Press. The resulting antibodies are used, e.g., for screening, panning, or sorting.</u>

X. Antibody Preparation

- Synthetic peptides or purified protein, natural or recombinant, are presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g., Coligan (1991)

 Current Protocols in Immunology Wiley/Greene; and Harlow and Lane (1989) Antibodies: A Laboratory Manual Cold Spring Harbor
- 15 Press. Polyclonal serum, or hybridomas may be prepared. In appropriate situations, the binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods.

20 XI. Chromosome Mapping

30

35

DNA isolation, restriction enzyme digestion, agarose gel electrophoresis, Southern blot transfer and hybridization are performed according to standard techniques. See Jenkins, et al. (1982) <u>J. Virol.</u> 43:26-36. Blots may be prepared with Hybond-N

nylon membrane (Amersham). The probe is labeled with ³²P-dCTP; washing is done to a final stringency, e.g., of 0.1% SSC, 0.1% SDS, 65°C.

Alternatively, a BIOS Laboratories (New Haven, CT) mouse somatic cell hybrid panel may be combined with PCR methods. See Fan, et al. (1996) <u>Immunogenetics</u> 44:97-103.

Chromosome spreads are prepared. In situ hybridization is performed on chromosome preparations obtained from phytohemagglutinin-stimulated human lymphocytes cultured for 72 h. 5-bromodeoxyuridine is added for the final seven hours of culture (60 μ g/ml of medium), to ensure a posthybridization chromosomal banding of good quality.

WO 00/01817 PCT/US99/12366

102

A PCR fragment, amplified with the help of primers, is cloned into an appropriate vector. The vector is labeled by nick-translation with ³H. The radiolabeled probe is hybridized to metaphase spreads at final concentration of 200 ng/ml of hybridization solution as described in Mattei, et al. (1985) <u>Hum. Genet.</u> 69:327-331.

After coating with nuclear track emulsion (KODAK NTB2), slides are exposed. To avoid any slipping of silver grains during the banding procedure, chromosome spreads are first stained with buffered Giemsa solution and metaphase photographed. R-banding is then performed by the fluorochrome-photolysis-Giemsa (FPG) method and metaphases rephotographed before analysis.

Using these techniques, the DC-PGT gene was mapped to marker SHGC-3911 on chromosome 11q13 with a resulting lod score of 1000.0. Other markers in the SHGC-3911 region at chromosome 11q13 include the Fc&RI receptor which is alleged to be associated with allergic conditions. In comparison to the location of DC-PGT, the ubiquitously expressed human PGT homologue of Lu et al., (described above) is localized to chromosome 7.

20

30

XII. Biochemical Characterization

Constructs for the expression of, e.g., DC-PGT are made with a tag (FLAG) sequence (Hopp, et al. (1988) <u>Biotechnology</u> (NY) 6:1205-1210) introduced in the protein. The open reading frame of the DC-PGT cDNA of SEQ ID NO: 1 is amplified by appropriate PCR primers using standard methods to introduce the FLAG peptide sequence (IBI, New Haven, CT) at the C-terminus of the protein. For example, a PFU enzyme (Stratagene) with 12 cycles PCR: 94° C 30 sec; 55° C 1 min; 72° C 4 min. PCR constructs are cloned into a PME18X vector (DNAX) using XhoI and XbaI sites incorporated into the 5° and 3° primers, respectively.

COS-7 cells are maintained in DMEM, 10% FCS, 4 mM L-glutamine (JRH Biosciences, Lenexa, KS), 100 U/ml penicillin, and 100 μ g/ml streptomycin. Plasmid DNA is transfected by electroporation (BIORAD, Hercules, CA) (20 μ g / 1 x 10⁷ cells) and plated into tissue culture dishes. The medium is replaced after 24 hours and

cell lysates and media are collected three days after transfection. Lysis buffer (25 mM Hepes pH 7.5, 2 mM EDTA, 1.0% NP-40, 150 mM NaCl, 0.01% Aprotinin (Sigma, St. Louis, MO), 0.01% Leupeptin (Sigma)) is added to the plates. Plates are kept on ice for 45 minutes. Lysates are centrifuged for 15 minutes to eliminate cell debris. Supernatants of centrifuged cell lysates and sterile-filtered media from cultured cells are incubated with anti-FLAG M2 Affinity Gel (IBI) at 4°C overnight and washed four times with PBS. Immunoprecipitates are eluted in a Econocolumn (BIORAD) with 2.5 M Glycine, pH 2.5. Eluates are neutralized with 10 Hepes, pH 7.4 (JRH Biosciences) and concentrated by precipitation with 24% TCA and 2% deoxycholic sodium salt (Sigma). Pellets eluted in 2 x Sample Buffer (NOVEX, San Diego, CA), electrophoresed on 4-20% tris-glycine gels (Novex) and transferred to PVDF membranes (Immobilon-P, Millipore Corporation, Bedford, Membranes are exposed to 3% non-fat milk for 1 h at 37° C. Anti-FLAG M2 antibody is used as recommended (IBI). Anti-mouse Ig horseradish peroxidase conjugate (Amersham) is used at 1:2,000 dilution and the peroxidase detection is performed with ECL 20 detection reagents (Amersham).

Other fusion proteins can be produced, e.g., a recombinant prostaglandin transporter construct is prepared, e.g., as a fusion product with a useful affinity reagent, e.g., FLAG peptide. peptide segment may be useful for purifying the expression product of the construct. See, e.g., Crowe, et al. (1992) OIAexpress: The High Level Expression & Protein Purification System QUIAGEN, Inc. Chatsworth, CA; and Hopp, et al. (1988) Bio/Technology 6:1204-1210. Membranes comprising the transporter are assayed to determine the natural prostaglandin substrate. Most likely the prostaglandin will be a uracil related prostaglandin, but may also include, at various levels of efficiency of binding or transport, pyrimidine or purine analogs. See, e.g., Goodman and Gilman (Current ed.), The Pharmacological Basis of Therapeutics; Lukovics and Zablocka Nucleoside Synthesis: Organosilicon Methods Ellis Horwood, N.Y.; Townsend, Chemistry of Nucleosides and Nucleotides, vols. 1-3, Plenum Press, N.Y.; Munch-Pertson (1983) Metabolism of Nucleotides, Nucleosides, and Prostaglandins in Microorganisms

Academic Press, NY; Gehrke (1990) Chromatography & Modification of Nucleosides vols. A, B, and C, Elsevier; Bloch (1975) Chemistry,
Biology, & Clinical Uses of Nucleoside Analogs Annals NY Acad.
Sci.; and Ulbricht (1964) Purines, Pyrimidines, & Nucleotides
Franklin Co.

XIII. Expression Cloning; Partner Screening

A. Antibodies and flow-cytometric sorting

Expression cloning of cells transformed with an appropriate cDNA library may be sorted by FACS using antibody reagents described above. The sorted cells are isolated and expanded, and subjected to multiple selection cycles, leading to a high proportion of cells expressing the desired DNA.

B. Antibodies and staining

25

- The antibodies to, e.g., DC-PGT, are used for screening of a library made from a cell line which expresses the polypeptide. Standard staining techniques are used to detect or sort intracellular or surface expressed ligand, or surface expressing transformed cells are screened by panning. Screening of
- intracellular expression is performed by various staining or immunofluorescence procedures. See also McMahan, et al. (1991) EMBO J. 10:2821-2832.

For example, on day 0, precoat 2-chamber permanox slides with 1 ml per chamber of fibronectin, 10 ng/ml in PBS, for 30 min at room temperature. Rinse once with PBS. Then plate COS cells at $2\text{--}3 \times 10^5$ cells per chamber in 1.5 ml of growth media. Incubate overnight at 37° C.

On day 1 for each sample, prepare 0.5 ml of a solution of 66 µg/ml DEAE-dextran, 66 µM chloroquine, and 4 µg DNA in serum free 30 DME. For each set, a positive control is prepared, e.g., of huIL-10-FLAG cDNA at 1 and 1/200 dilution, and a negative mock. Rinse cells with serum free DME. Add the DNA solution and incubate 5 hr at 37° C. Remove the medium and add 0.5 ml 10% DMSO in DME for 2.5 min. Remove and wash once with DME. Add 1.5 ml growth medium and incubate overnight.

WO 00/01817 PCT/US99/12366

105

On day 2, change the medium. On days 3 or 4, the cells are fixed and stained. Rinse the cells twice with Hank's Buffered Saline Solution (HBSS) and fix in 4% paraformaldehyde (PFA)/glucose for 5 min. Wash 3X with HBSS. The slides may be 5 stored at -80° C after all liquid is removed. For each chamber, 0.5 ml incubations are performed as follows. Add HBSS/saponin (0.1%) with 32 μ l/ml of 1M NaN3 for 20 min. Cells are then washed with HBSS/saponin 1X. Soluble antibody is added to cells and incubate for 30 min. Wash cells twice with HBSS/saponin. Add 10 second antibody, e.g., Vector anti-mouse antibody, at 1/200 dilution, and incubate for 30 min. Prepare ELISA solution, e.g., Vector Elite ABC horseradish peroxidase solution, and preincubate for 30 min. Use, e.g., 1 drop of solution A (avidin) and 1 drop solution B (biotin) per 2.5 ml HBSS/saponin. Wash cells twice with HBSS/saponin. Add ABC HRP solution and incubate for 30 min. Wash cells twice with HBSS, second wash for 2 min, which closes cells. Then add Vector diaminobenzoic acid (DAB) for 5 to 10 min. Use 2 drops of buffer plus 4 drops DAB plus 2 drops of H2O2 per 5 ml of glass distilled water. Carefully remove chamber and rinse 20 slide in water. Air dry for a few minutes, then add 1 drop of Crystal Mount and a cover slip. Bake for 5 min at 85-90° C.

Alternatively, the antibodies to a selected protein are used to affinity purify or sort out cells expressing the antigen. See, e.g., Sambrook et al. or Ausubel et al, which are incorporated herein by reference. The antigen is typically expressed on the cell surface.

Hybridization approaches may also be utilized to find closely related variants of the antigen based upon nucleic acid hybridization.

30

25

XIV. Screening for DC-PGT Substrate Specificity

The types of organic anions transported by DC-PGT of the present invention can be directly tested using standard methods. For example, DC-PGT cDNAs can be expressed in HeLa cell monolayers or in Xenopus oocytes to determine the ability of DC-PGT to uptake various tracer labeled substrates e.g., prostaglandins such as PGE1, PGE2, PGE2a, PGD2, thrombaxanes such as TxB2 or non-

prostaglandin anionic substrates such as glutathione, p-amino hippurate, taurochoalate, urate, unconjugated and conjugated bilirubin, and estradiol glucouronide. For example, for oocyte expression, water or complementary RNA (cRNA) that has been transcribed in vitro from DC-PGT cDNA and capped is injected into Xenopus oocytes at approximately 50 ng of cRNA per oocyte. Uptake studies are performed 2 to 3 days after injection by washing of oocytes three times in Waymouth's solution, incubating for various periods at 27°C with radioactive substrates (approx. 0.25 µCi/ml; total concentration, approx. 1 nM), washing three times with icecold Waymouth's solution, and lysing in 0.5 ml of 10% SDS. Oocyte-associated radioactivity is determined by liquid scintillation spectroscopy. For HeLa cell expression, cells are grown to approx. 80% confluence on 35 mm dishes then infected with 15 recombinant vaccinia virus vTF7-3 of 10 plaque forming units per cell according to a method of Fuesst, et al.(1986) Proc. Nat'l Acad. Sci. USA 83:8122-8126. Thirty minutes after infection cells are transfected with DC-PGT cDNA (10 $\mu g/ml$) plus lipofectin (20 μ g/ml) according to a method of Blakely, et al. (1991) Anal. Biochem. 194:302-310. After 3 hours of incubation, vaccinia virus an the DNA-lipofectin complex are removed, and the cells are maintained overnight in Dulbecco's modified Eagle's medium supplemented with 5% fetal bovine serum. Uptake studies are performed 19 hours after transfection. Monolayers are washed three times with culture medium without serum and incubated for 25 various times at 27° C with radioactive substrate (0.5 μ Ci/ml per dish; total concentration, approx. 0.2 nM). Uptake is stopped by washing cells once with ice-cold Waymouth's solution containing 5% bovine serum albumin and then four times with Waymouth's solution alone. Cells are scrapped and the associated radioactivity is

XV. Measuring DC-PGT Substrate Uptake Kinetics Competitive tracer uptake kinetics using DC-PGT comparing various prostaglandins or thromboxanes (e.g., PGE1, PGE2, PGE2a, PGD2 or TxB2) are determined using standard competitive transport

measured by liquid scintillation spectroscopy.

35

assays. For example for determining time dependent uptake of tracer labeled prostaglandin uptakes into HeLa cells expressing DC-PGT clones the following ³[H]-PGs final concentrations are used (New England Nuclear, Boston, MA): PGE2: 0.7 nM (176 cpm/fmol); PGE1: 0.6 nM (62 cpm/fmol); PGD2: 0.9 nM (126 cpm/fmol); PGF2 α : 0.6 nM (185 cpm/fmol); TXB2: 1.0 nM (114 cpm/fmol); PGI2 analog ³[H]-iloprost (Amersham Corp., Arlington Heights, IL) at 7.9 nM (14 cpm/fmol).

XVI. Determining DC-PGT uptake inhibition Compositions inhibiting DC-PGT uptake can also be measured. For example to measure the inhibition of tracer PGE₂, uptakes at 10 min intervals (0.2 nM ³[H]-PGE₂) with or without various concentrations of unlabeled prostanoids PGE₂, PGE₁, PGD₂, PGF₂α, TXB2, PGI₂, (100-500 nM; Cayman Chemical, Ann Arbor MI) or inhibitors such as furosemide, probenecid, and indomethacin (10-

100 μ M, Sigma Chemical Co., St. Louis, MO) are determined in duplicate on a given transfection for one or two separate transfections. Since the substrate concentrations are at least 500 times less than the concentration of unlabeled prostanoids an apparent affinity constant, $K_{1/2}$ is determined from the equation: $K_{1/2} = [v_i/(v-v_i)]$ [i] where v = uptake without inhibitor, $v_i = uptake$ with inhibitor, and i = inhibitor concentration as described by Neame and Richards (1972) in <u>Elementary Kinetics of</u>

Membrane Carrier Transport, John Wiley & Sons, New York.

XVII. Screening for Agonists or Antagonists

Using a HeLa or Xenopus system, described above, or a comparable system, one of ordinary skill in the art can use the DC-PGT of the invention to screen for inhibitors or agonists of DC-PGT mediated tracer transport. The efficacy of potential antagonists can be compared with known PG transport inhibitors such as furosemide, probenecid, or indomethacin. Potential agonist or antagonist compositions are incubated, using a system as described above, for a time sufficient to allow binding of the

WO 00/01817 PCT/US99/12366

108

test composition and the DC-PGT transporter. Enhancement or decrement in measures of tracer uptake can be correlated to the specific composition being tested. Accordingly, one can identify compounds or compositions that modulate organic anion transport via the DC-PGT transporter of the invention by assessing the uptake of various anions such as prostaglandins or thrombaxanes in the presence and absence of the compound or compositions being tested. Similar methods may be used to screen for substrates for the enzymes, e.g., Dubs and cyclin E2.

10

30

35

XVIII. Isolation of Ligand for Receptor

A construct for expression of the product can be used as a specific binding reagent to identify its binding partner, e.g., ligand, by taking advantage of its specificity of binding, much like an antibody would be used. A receptor reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods. See also Anderson, et al. (1997) Nature 390:175-179, which is incorporated herein by reference.

The binding composition is used to screen an expression library made from a cell line which expresses a binding partner, e.g., TNF family ligand. Standard staining techniques are used to detect or sort intracellular or surface expressed receptor, or surface expressing transformed cells are screened by panning.

Screening of intracellular expression is performed by various staining or immunofluorescence procedures. See also McMahan, et al. (1991) EMBO J. 10:2821-2832.

Alternatively, receptor reagents are used to affinity purify or sort out cells expressing a receptor. See, e.g., Sambrook, et al. or Ausubel, et al.

Another strategy is to screen for a membrane bound ligand by panning. The cDNA containing ligand cDNA is constructed as described above. The ligand can be immobilized and used to immobilize expressing cells. Immobilization may be achieved by use of appropriate antibodies which recognize, e.g., a FLAG sequence or a receptor fusion construct, or by use of antibodies raised against the first antibodies. Recursive cycles of

selection and amplification lead to enrichment of appropriate clones and eventual isolation of ligand expressing clones.

Phage expression libraries can be screened by receptor. Appropriate label techniques, e.g., anti-FLAG antibodies, will allow specific labeling of appropriate clones.

IX. Chemotaxis Assays

Chemokine proteins are produced, e.g., in COS cells transfected with a plasmid carrying the chemokine cDNA by

10 electroporation. See, Hara, et al. (1992) EMBO J. 10:1875-1884. Physical analytical methods may be applied, e.g., CD analysis, to compare tertiary structure to other chemokines to evaluate whether the protein has likely folded into an active conformation. After transfection, a culture supernatant is collected and subjected to bioassays. A mock control, e.g., a plasmid carrying the luciferase cDNA, is used. See, de Wet, et al. (1987) Mol. Cell. Biol. 7:725-757. A positive control, e.g., recombinant murine MIP-1α from R&D Systems (Minneapolis, MN), is typically used. Likewise, antibodies may be used to block the biological activities, e.g., as a control.

Lymphocyte migration assays are performed as previously described, e.g., in Bacon, et al. (1988) <u>Br. J. Pharmacol.</u> 95:966-974. Other trafficking assays are also available. See, e.g., Quidling-Järbrink, et al. (1995) <u>Eur. J. Immunol.</u> 25:322-327;

25 Koch, et al. (1994) <u>J. Clinical Investigation</u> 93:921-928; and Antony, et al. (1993) <u>J. Immunol.</u> 151:7216-7223. Murine Th2 T cell clones, CDC-25 (see Tony, et al. (1985) <u>J. Exp. Med.</u> 161:223-241) and HDK-1 (see Cherwinski, et al. (1987) <u>J. Exp. Med.</u> 166:1229-1244), made available from R. Coffman and A. O'Garra (DNAX, Palo Alto, CA), respectively, are used as controls.

Ca2+ flux upon chemokine stimulation is measured according to the published procedure described in Bacon, et al. (1995) \underline{J} . Immunol. 154:3654-3666.

Maximal numbers of migrating cells in response to MIP-1 α typically occur at a concentration of 10^{-8} M, in agreement with

original reports for CD4+ populations of human T cells. See Schall (1993) J. Exp. Med. 177:1821-1826. A dose-response curve is determined, preferably giving a characteristic bell shaped dose-response curve.

5 After stimulation with CC chemokines, lymphocytes generally show a measurable intracellular Ca2+ flux. MIP-1 α is capable of inducing immediate transients of calcium mobilization. Typically, the levels of chemokine used in these assays will be comparable to those used for the chemotaxis assays (1/1000 dilution of conditioned supernatants). 10

XX. Biological Activities

30

A robust and sensitive assay is selected as described above, e.g., on immune cells, neuronal cells, or stem cells. Chemokine 15 is added to the assay in increasing doses to see if a dose response is detected. For example, in a proliferation assay, cells are plated out in plates. Appropriate culture medium is provided, and chemokine is added to the cells in varying amounts. Growth is monitored over a period of time which will detect either a direct effect on the cells, or an indirect effect of the chemokine.

Alternatively, an activation assay or attraction assay is used. An appropriate cell type is selected, e.g., hematopoietic cells, myeloid (macrophages, neutrophils, polymorphonuclear cells, etc.) or lymphoid (T cell, B cell, or NK cells), neural cells (neurons, neuroglia, oligodendrocytes, astrocytes, etc.), or stem cells, e.g., progenitor cells which differentiate to other cell types, e.g., gut crypt cells and undifferentiated cell types.

Retroviral infection assays have also been described using, e.g., the CCR1, CCR3, and CCR5 receptors. These receptors, which bind the RANTES and MIP-1 related chemokines, are likely also to be receptors for the HCC5 . Recent description of these chemokine receptors in retroviral infection processes, and the effects by the related RANTES and MIP-1 chemokines, suggest similar effects 35 may exist with the HCC5 . See, e.g., Balter (1996) Science 272:1740 (describing evidence for chemokine receptors as

SUBSTITUTE SHEET (rule 26)

coreceptors for HIV); and Deng, et al. (1996) Nature 381:661-666.

PCT/US99/12366 WO 00/01817

111

Chemokines may also be assayed for activity in hemopoietic assays as described, e.g., by H. Broxmeyer. See Bellido, et al. (1995) J. Clinical Investigation 95:2886-2895; and Jilka, et al. (1995) Expt'l Hematology 23:500-506. They may be assayed for angiogenic activities as described, e.g., by Streiter, et al. (1992) Am. J. Pathol. 141:1279-1284. Or for a role in inflammation. See, e.g., Wakefield, et al. (1996) J. Surgical Res. 64:26-31.

Other assays will include those which have been demonstrated with other chemokines. See, e.g., Schall and Bacon (1994) Current 10 Opinion in Immunology 6:865-873; and Bacon and Schall (1996) Int. Arch. Allergy & Immunol. 109:97-109.

The DUB genes will be screened for the deubiquitinating activities, as described. See, e.g., Hochstrasser (1995) Curr. Opin. Cell Biol. 7:215-223; Wilkinson, et al. (1995) Biochemistry 34:14535-14546; Baker, et al. (1992) <u>J. Biol. Chem.</u> 267:23364-23375; Baek et al. (1998) <u>J. Biol. Chem.</u> 272:25560-25565; and Papa and Hochstrasser (1993) Nature 366:313-319. For example, for an in vitro assay for UBP Activity, ^{125}I -labeled Ub-PESTc is used as a substrate according to the method of Woo, et al. (1995) J. Biol. Chem. 270:18766-18773. Reaction mixtures (0.1 ml) contain the proper amount of the enzyme preparations and 10-30 µg of 125Ilabeled Ub-PESTc in 100 mM Tris-HCl (pH 7.8), 1 mM dithiothreitol, 1 mM EDTA, and 5% glycerol. After incubating the mixtures for appropriate periods, the reaction is terminated by adding 50 ul of 40% (w/v) trichloroacetic acid and 50 μl of 1.2% (w/v) bovine serum albumin. The samples are centrifuged, and the resulting supernatants are counted for their radioactivities using a counter. The enzyme activity is expressed as a percentage of 125I-labeled Ub-PESTc hydrolyzed to acid-soluble products. When assaying the hydrolysis of Ub-NH-carboxyl extension proteins and His-di-Ub, incubations are performed as above but in the presence of 5 µg of the substrate. After incubation for appropriate periods, the samples are subjected to discontinuous gel electrophoresis as described by Baek, et al. (1998) J. Biol. Chem.

272:25560-25565. Proteins in the gels were then visualized by staining with Coomassie Blue R-250 or by exposing to x-ray films (Fuji) at 70° C. To prepare 125I-labeled poly-Ub-NH-lysozyme conjugates, 2 μg of the ^{125}I -labeled lysozyme (5 x 10 5 cpm) are incubated with 10 μg of Ub, 120 μg of fraction II, and an ATPregenerating system consisting of 10 mM Tris-HCl (pH 7.8). 15 units/ml creatine phosphokinase, 6.5 mM phosphocreatine, 1.5 mM ATP, 1 mM dithiothreitol, 0.5 mM MgCl2, and 1 mM KCl in a final volume of 0.05 ml. Incubations are performed for 2 h at 37° C in the presence of 1 mM hemin to prevent proteolysis of the 10 ubiquitinated protein conjugates by the 26 S proteosome. After incubation, the samples are heated for 10 min at 55° C for inactivation of endogenous UBPs. Alternatively, Dub11 or Dub12 can be expressed as a GST fusion protein according to the method of Zhu, et al. (1997) J. Biol. Chem. 272:51-57 by cloning into an 15 appropriate expression vector and subsequently co-transformed with a plasmid encoding Ub-Met- β -gal, in which ubiquitin is fused to the NH2 terminus of β -galactosidase and testing for cleavage.

However, the deubiquitinating enzymes have also been reported to have additional functions besides deubiquitination. See, e.g., Hochstrasser (1996) <u>Cell</u> 84:813-815; Hicke and Riezman (1996) <u>Cell</u> 84:277-287; and Chen, et al. (1996) <u>Cell</u> 84:853-862.

The MD gene products will be screened for cell signaling activities. See, e.g., Miyake, et al. (1998) <u>J. Immunol.</u>
161:1348-1353; Kobe and Deisenhofer (1994) <u>Trends Biochem. Sci.</u>
19:412.

XXI. Antagonizing cyclin E2 proteins

25

The inhibition of cell cycle progression is especially
important for the control of abnormally proliferative diseases,
e.g., cancer. Several methods are available to accomplish this
control. The ability of cyclin binding is inhibited by the use,
e.g., of antibodies raised against the cyclin binding proteins.
Other elements include, e.g., peptidomimetics which are peptides
designed to mimic the binding site of cyclin associated proteins
and disrupt the interaction of these proteins with cyclin. The

WO 00/01817

most effective method to block cell cycle progression is the use of small molecules, e.g., to block the interaction of the associated proteins with cyclin, or to block downstream activity of the associated proteins, as described, e.g., in Hung, et al. (1996) Chemistry and Biology 3:623-639. Exposure of a cell to these permeable small molecules should cause a conditional loss of function of the target protein.

Also included in this category is the use of gene therapy to block the expression of the cyclin associated protein or gene transcription factors. Methods of using gene therapy are described, e.g., in Goodnow (1992) "Transgenic Animals" in Roitt (ed.) Encyclopedia of Immunology, Academic Press, San Diego, pp. 1502-1504; Travis (1992) Science 256:1392-1394; Kuhn, et al. (1991) Science 254:707-710; Capecchi (1989) Science 244:1288; Robertson (1987) (ed.) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, IRL Press, Oxford; and Rosenberg (1992) J. Clinical Oncology 10:180-199. Also included is the use of antisense RNA in gene therapy to block expression of the target gene, or proper splicing of gene transcripts.

20

25

All citations herein are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.

WO 00/01817

114

WHAT IS CLAIMED IS:

- 1. An isolated or recombinant antigenic polypeptide comprising:
- a) a plurality of distinct segments, wherein each said segment has identity to at least 12 contiguous amino acids from the mature SEQ ID NO: 2; or
 - b) at least 17 contiguous amino acids from the mature SEQ ID NO: 2.

The polypeptide of Claim 1, wherein said plurality of

- a) one of at least 19 contiguous amino acids; or
- b) two of at least 15 contiguous amino acids.

15

25

- 3. The polypeptide of Claim 1, wherein said polypeptide:
- a) comprises the mature SEQ ID NO: 2;
- b) binds with specificity to a polyclonal antibody which specifically binds to SEQ ID NO: 2; or
- 20 c) said polypeptide:

segments includes

- i) is a natural allelic variant of SEQ ID NO: 2;
- ii) is at least 30 amino acids in length;
- iii) exhibits at least two non-overlapping epitopes
 specific for SEQ ID NO: 2;
- iv) is a synthetic polypeptide;
 - v) is attached to a solid substrate; or
 - vi) is a 5-fold or less conservative substitution from SEQ ID NO: 2.
- 4. A fusion protein comprising first and second portions, said first portion comprising a polypeptide of Claim 1 and said second portion comprising a detectable marker.
- 5. A pharmaceutical composition comprising a sterile polypeptide of Claim 1 in a pharmaceutically acceptable carrier.
 - 6. An isolated or recombinant polynucleotide encoding a polypeptide of Claim 1.

- 7. The polynucleotide of Claim 6, which:
- a) comprises the mature polypeptide coding portion of SEQ ID
 NO: 1; or
- b) encodes the mature SEQ ID NO: 2.
 - 8. The polynucleotide of Claim 6, wherein said polynucleotide is:
 - a) a PCR product;
- b) a hybridization probe;
 - c) a mutagenesis primer; or
 - d) made by chemical synthesis.
 - 9. The polynucleotide of Claim 6, which is:
- a) detectably labeled;
 - b) a deoxyribonucleic acid; or
 - c) double stranded.
- \$10.\$ An expression vector comprising a polynucleotide of 20 Claim 6.
 - 11. The vector of Claim 10, wherein said polypeptide specifically binds polyclonal antibodies generated against an immunogen of mature SEQ ID NO: 2.

- 12. The vector of Claim 10, which
- a) selectively hybridizes under stringent hybridization conditions to a target polynucleotide sequence having at least 60 contiguous nucleotides from SEQ ID NO: 1;
- 30 b) encodes a polypeptide having at least 50 contiguous amino acid residues from mature SEQ ID NO: 2; or
 - is suitable for transfection into a prokaryote or eukaryote host cell.
- 35 13. The vector of Claim 12, wherein said host cell is:
 - a) a mammalian cell;
 - b) a bacterial cell;

- c) an insect cell;
- d) a prokaryote;
- e) a eukaryote; or
- f) a COS cell.

- 14. A method of making a polypeptide comprising expressing said vector of Claim 13 in said host cell.
- 15. An isolated or recombinant polynucleotide which

 10 hybridizes to the coding portion of SEQ ID NO: 1 under stringent hybridization and wash conditions of at least 50°C, a salt concentration of less than 400 mM, and 50% formamide.
- 16. An expression vector comprising the polynucleotide of 15 Claim 15.
- 17. The vector of Claim 16 which hybridizes to the coding portion of SEQ ID NO: 1 under stringent hybridization and wash conditions of at least 60°C, a salt concentration of less than 20 200 mM, and 50% formamide.
 - 18. The vector of Claim 25, which encodes a polypeptide which specifically binds an antibody generated against a mature SEO ID NO: 2.

25

- 19. The polynucleotide of Claim 15 which hybridizes to SEQ ID NO: 1, wherein said polynucleotide is:
 - a) a PCR product;
 - b) a hybridization probe;
- 30 c) a mutagenesis primer; or
 - d) made by chemical synthesis.
- 20. A method of modulating the physiology or development of a cell, comprising contacting said cell with an agonist or35 antagonist of a polypeptide of Claim 1.

- 21. A method of detecting the presence of a complementary polynucleotide in a sample, comprising contacting a polynucleotide of Claim 6 that selectively hybridizes with said complementary polynucleotide in said sample to form a detectable duplex; thereby indicating the presence of said polynucleotide in said sample.
- 22. A method for identifying a compound that binds to a polypeptide of Claim 1, comprising:
 - a) incubating components comprising said compound and said polypeptide under conditions sufficient to allow the components to interact; and
 - b) measuring the binding of the compound to said polypeptide.

20

25

30

35

- 23. An isolated or recombinant polynucleotide encoding an antigenic polypeptide comprising:
 - a) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 6;
 - b) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 8;
 - c) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 10;
 - d) at least 17 contiguous amino acids from the mature polypeptide from SEO ID NO: 12;
 - e) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 17;
 - f) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 19;
 - g) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 21; or
 - h) at least 17 contiguous amino acids from the mature polypeptide from SEQ ID NO: 23.
 - 24. The polynucleotide of Claim 23, encoding all of the polypeptide of:
 - a) signal processed SEQ ID NO: 6;
 - b) signal processed SEQ ID NO: 8;
 - c) signal processed SEQ ID NO: 10;

WO 00/01817

118

- d) signal processed SEQ ID NO: 12; signal processed SEQ ID NO: 17; f) SEQ ID NO: 19; SEQ ID NO: 21; or g) 5 SEQ ID NO: 23. h) The polynucleotide of Claim 23, which hybridizes at 55° C, less than 500 mM salt, and 50% formamide to the: mature protein coding portion of SEQ ID NO: 5; signal processed coding portion of SEQ ID NO: 7; 10 signal processed coding portion of SEQ ID NO: 9; signal processed coding portion of SEQ ID NO: 11; e) mature protein coding portion of SEQ ID NO: 16; polypeptide coding portion of SEQ ID NO: 18; f) 15 polypeptide coding portion of SEQ ID NO: 20; or g) polypeptide coding portion of SEQ ID NO: 22. 26. The polynucleotide of Claim 25, comprising at least 35 contiguous nucleotides of: 20 mature protein coding portion of SEQ ID NO: 5; a) signal processed coding portion of SEQ ID NO: 7; c) signal processed coding portion of SEQ ID NO: 9; signal processed coding portion of SEQ ID NO: 11; mature protein coding portion of SEQ ID NO: 16; 25 polypeptide coding portion of SEQ ID NO: 18;
- 27. An expression vector comprising the polynucleotide of 30 Claim 23.

polypeptide coding portion of SEQ ID NO: 22.

h)

28. A host cell containing the expression vector of Claim 27, including a eukaryotic cell.

polypeptide coding portion of SEQ ID NO: 20; or

29. A method of making an antigenic polypeptide comprising expressing a recombinant polynucleotide of Claim 23.

30. A method for detecting a polynucleotide of Claim 23, comprising contacting said polynucleotide with a probe that hybridizes, under stringent conditions, to at least 25 contiguous nucleotides of the:

- a) mature protein coding portion of SEQ ID NO: 5;
 - b) signal processed coding portion of SEQ ID NO: 7;
 - c) signal processed coding portion of SEQ ID NO: 9;
 - d) signal processed coding portion of SEQ ID NO: 11;
 - e) mature protein coding portion of SEQ ID NO: 16;
- 10 f) polypeptide coding portion of SEQ ID NO: 18;
 - g) polypeptide coding portion of SEQ ID NO: 20; or
 - h) polypeptide coding portion of SEQ ID NO: 22; to form a duplex, wherein detection of said duplex indicates the presence of said polynucleotide.

15

5

31. A kit for the detection of a polynucleotide of Claim 23, comprising a compartment containing a probe that hybridizes, under stringent hybridization conditions, to at least 17 contiguous nucleotides of a polynucleotide of Claim bl to form a duplex.

20

- 32. The kit of Claim 31, wherein said probe is detectably labeled.
- 33. A binding compound comprising an antibody binding site 25 which specifically binds to a polypeptide comprising at least 17 contiguous amino acids from:
 - a) signal processed SEQ ID NO: 6;
 - b) signal processed SEQ ID NO: 8;
 - c) signal processed SEQ ID NO: 10;
 - d) signal processed SEQ ID NO: 12;
 - e) signal processed SEQ ID NO: 17;
 - f) SEQ ID NO: 19;
 - g) SEQ ID NO: 21; or
 - h) SEQ ID NO: 23.

35

30

- 34. The binding compound of Claim 33, wherein:
- a) said antibody binding site is:

WO 00/01817 PCT/US99/12366

120

- 1) selectively immunoreactive with the: a) signal processed SEQ ID NO: 6; signal processed SEQ ID NO: 8; signal processed SEQ ID NO: 10; c) 5 signal processed SEQ ID NO: 12; d) e) signal processed SEQ ID NO: 17; f) SEQ ID NO: 19; g) SEQ ID NO: 21; or h) SEQ ID NO: 23; 10 2) raised against a purified or recombinantly produced human HDTEA84 protein; 3) raised against a purified or recombinantly produced human HSLJD37R protein; or in a monoclonal antibody, Fab, or F(ab)2; or 15 b) said binding compound is: an antibody molecule; 1) a polyclonal antiserum; detectably labeled; 3) 4) sterile; or 20 in a buffered composition. 5)
- 35. A method using the binding compound of Claim 33, comprising contacting said binding compound with a biological sample comprising an antigen, thereby forming a binding compound:antigen complex.
 - 36. The method of Claim 35, wherein said biological sample is from a human, and wherein said binding compound is an antibody.
- 37. A detection kit comprising said binding compound of 30 Claim 34, and:
 - a) instructional material for the use of said binding compound for said detection; or
 - b) a compartment providing segregation of said binding compound.

A substantially pure or isolated antigenic polypeptide, which binds to said binding composition of Claim 33, and further comprises at least 17 contiguous amino acids from: signal processed SEQ ID NO: 6; 5 signal processed SEQ ID NO: 8; C) signal processed SEQ ID NO: 10; signal processed SEQ ID NO: 12; e) signal processed SEQ ID NO: 17; f) SEQ ID NO: 19; 10 SEQ ID NO: 21; or g) h) SEQ ID NO: 23. 39. The polypeptide of Claim 38, which: a) comprises at least a fragment of at least 25 contiguous 15 amino acid residues from a primate HDTEA84 protein; b) comprises at least a fragment of at least 25 contiquous amino acid residues from a primate HSLJD37R protein; comprises at least a fragment of at least 25 contiguous amino acid residues from a rodent or primate RANKL 20 protein; is a soluble polypeptide; d) is detectably labeled; e) is in a sterile composition; is in a buffered composition; a) 25 binds to an sialic acid residue; is recombinantly produced, or has a naturally occurring polypeptide sequence. The polypeptide of Claim 39, which comprises at least 17 contiguous amino acids from the: 30 signal processed SEQ ID NO: 6; a) b) signal processed SEQ ID NO: 8; C) signal processed SEQ ID NO: 10; d) signal processed SEQ ID NO: 12; signal processed SEQ ID NO: 17; e) 35 f) SEQ ID NO: 19;

SUBSTITUTE SHEET (rule 26)

SEQ ID NO: 21; or

SEQ ID NO: 23.

g)

h)

25

35

- 41. A method of modulating a precursor cell physiology or function comprising a step of contacting said cell with:
 - a) a binding compound which binds to said polypeptide of Claim 38;
 - b) an HDTEA84 polypeptide;
 - c) an HSLJD37R polypeptide; or
 - d) a RANKL polypeptide.
- 10 42. The method of Claim 41, wherein said contacting is in combination with a TNF family ligand, or an antagonist of said TNF family ligand.
 - 43. A composition of matter selected from:
- a) a substantially pure or recombinant HCC5 polypeptide exhibiting identity over a length of at least 12 amino acids to SEQ ID NO: 25;
 - b) an isolated natural sequence HCC5 of mature SEQ ID NO: 25;
- 20 c) a fusion protein comprising HCC5 sequence;
 - d) a substantially pure or recombinant Dub11 polypeptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 32 or 34;
 - e) an isolated natural sequence Dubl1 of mature SEQ ID NO:
 32 or 34;
 - f) a fusion protein comprising Dubl1 sequence;
 - g) a substantially pure or recombinant Dub12 polypeptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 36 or 38;
- 30 h) an isolated natural sequence Dub12 of mature SEQ ID NO: 36 or 38;
 - i) a fusion protein comprising Dub12 sequence;
 - j) a substantially pure or recombinant MD-1 polypeptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 42;
 - k) an isolated natural sequence MD-1 of mature SEQ ID NO: 42;

20

35

- 1) a fusion protein comprising primate MD-1 sequence;
- m) a substantially pure or recombinant MD-2 polypeptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 44 or 46;
- n) an isolated natural sequence MD-2 of mature SEQ ID NO: 44 or 46;
 - o) a fusion protein comprising primate MD-2 sequence;
 - p) a substantially pure or recombinant MD-2 polypeptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 48 or 49;
 - q) an isolated natural sequence MD-2 of mature SEQ ID NO: 48; or
 - r) a fusion protein comprising murine MD-2 sequence.
- 15 44. The composition of Claim 43, which is a substantially pure or isolated:
 - a) a HCC5 polypeptide, wherein said length is at least 17 amino acids;
 - b) a Dubl1 polypeptide, wherein said length is at least 17 amino acids;
 - c) a Dubl2 polypeptide, wherein said length is at least 17 amino acids;
 - d) a primate MD-1 polypeptide, wherein said length is at least 17 amino acids;
- e) a primate MD-2 polypeptide, wherein said length is at least 17 amino acids; or
 - f) a rodent MD-2 polypeptide, wherein said length is at least 17 amino acids.
- 30 45. The composition of Claim 44, which is a substantially pure or isolated:
 - a) a HCC5 polypeptide, wherein said length is at least 21 amino acids;
 - b) a Dubl1 polypeptide, wherein said length is at least 21 amino acids;
 - c) a Dub12 polypeptide, wherein said length is at least 21 amino acids;

d) a primate MD-1 polypeptide, wherein said length is at least 21 amino acids; e) a primate MD-2 polypeptide, wherein said length is at least 21 amino acids; and 5 f) a rodent MD-2 polypeptide, wherein said length is at least 21 amino acids. 46. The composition of matter of Claim 43, wherein said: a) HCC5 polypeptide: 10 i) is from a primate, including a human; ii) comprises at least one polypeptide segment of SEQ ID NO: 25; iii) exhibits a plurality of portions exhibiting said identity; 15 iv) is a natural allelic variant of HCC5; v) has a length at least about 30 amino acids; vi) exhibits at least two non-overlapping epitopes which are specific for a primate HCC5; vii) exhibits a sequence identity over a length of at least 35 amino acids to a HCC5; 20 viii) is glycosylated; ix) is a synthetic polypeptide; x) is attached to a solid substrate; xi) is conjugated to another chemical moiety; 25 xii) is a 5-fold or less substitution from natural sequence; or xiii) is a deletion or insertion variant from a natural sequence; Dub11 polypeptide: - 30 is from a primate, including a human; ii) comprises at least one polypeptide segment of SEQ ID NO: 32 or 34; iii) exhibits a plurality of portions exhibiting said identity; 35 iv) is a natural allelic variant of Dub11;

SUBSTITUTE SHEET (rule 26)

v) has a length at least about 30 amino acids;

	vi) exhibits at least two non-overlapping epitopes
	which are specific for a primate Dubl1;
	vii) exhibits a sequence identity over a length of at
	least about 35 amino acids to a Dub11;
5	viii) is glycosylated;
	ix) is a synthetic polypeptide;
	x) is attached to a solid substrate;
	xi) is conjugated to another chemical moiety;
	xii) is a 5-fold or less substitution from natural
10	sequence; or
•	xiii) is a deletion or insertion variant from a natural
	sequence;
	c) Dub12 polypeptide:
	i) is from a primate, including a human;
15	ii) comprises at least one polypeptide segment of SEQ
	ID NO: 36 or 38;
	iii) exhibits a plurality of portions exhibiting said
	identity;
	<pre>iv) is a natural allelic variant of Dub12;</pre>
20	v) has a length at least about 30 amino acids;
	vi) exhibits at least two non-overlapping epitopes
	which are specific for a primate Dub12;
	vii) exhibits a sequence identity over a length of at
	least about 35 amino acids to a Dub12;
25	viii) is glycosylated;
	<pre>ix) is a synthetic polypeptide;</pre>
	x) is attached to a solid substrate;
	xi) is conjugated to another chemical moiety;
	xii) is a 5-fold or less substitution from natural
30	sequence; or
	xiii) is a deletion or insertion variant from a natural
	sequence;
(d) primate MD-1 polypeptide:
	i) is from a human;
35	ii) cómprises at least one polypeptide segment of SEQ
	ID-NO: 42;

WO 00/01817

126

		<pre>iii) exhibits a plurality of portions exhibiting said identity;</pre>
		<pre>iv) is a natural allelic variant of primate MD-1;</pre>
		v) has a length at least about 30 amino acids;
5		vi) exhibits at least two non-overlapping epitopes
_	•	
		<pre>which are specific for a primate MD-1; vii) exhibits a sequence identity over a length of at</pre>
		least about 35 amino acids to a primate MD-1;
		viii) is glycosylated;
10		ix) is a synthetic polypeptide;
		x) is attached to a solid substrate;
	•	xi) is conjugated to another chemical moiety;
		xii) is a 5-fold or less substitution from natural
		sequence; or
15		xiii) is a deletion or insertion variant from a natural
	_	sequence;
	e)	primate MD-2 polypeptide::
	σ,	i) is from a human;
		ii) comprises at least one polypeptide segment of SEQ
20		ID NO: 44 or 46;
		iii) exhibits a plurality of portions exhibiting said
		identity;
		iv) is a natural allelic variant of primate MD-2;
		v) has a length at least about 30 amino acids;
25	•	vi) exhibits at least two non-overlapping epitopes
		which are specific for a primate MD-2;
		vii) exhibits a sequence identity over a length of at
		least about 35 amino acids to a primate MD-2;
		viii) is glycosylated;
30		ix) is a synthetic polypeptide;
		x) is attached to a solid substrate;
		xi) is conjugated to another chemical moiety;
		xii) is a 5-fold or less substitution from natural
•		sequence; or
35		xiii) is a deletion or insertion variant from a natural
		sequence; or
	f)	rodent MD-2 polypeptide:

PCT/US99/12366

.127

	i) is from a mouse;
	ii) comprises at least one polypeptide segment of SEQ
	ID NO: 48 or 49;
	iii) exhibits a plurality of portions exhibiting said
5	identity;
	<pre>iv) is a natural allelic variant of rodent MD-2;</pre>
	v) has a length at least about 30 amino acids;
	vi) exhibits at least two non-overlapping epitopes
	which are specific for a rodent MD-2;
10	vii) exhibits a sequence identity over a length of at
	least about 35 amino acids to a rodent MD-2;
	viii) is glycosylated;
	ix) is a synthetic polypeptide;
	x) is attached to a solid substrate;
15	xi) is conjugated to another chemical moiety;
	xii) is a 5-fold or less substitution from natural
	sequence; or
	xiii) is a deletion or insertion variant from a natural
	sequence.
20	
)47. A composition comprising a sterile polypeptide of Claim
	43, wherein said polypeptide is:
	a) HCC5 polypeptide;
	b) Dubl1 polypeptide;
25	c) Dub12 polypeptide;
	d) MD-1 polypeptide; or
	e) MD-2 polypeptide.
	48. A composition of Claim 43 comprising:
30	a) said HCC5 polypeptide and:
	<pre>1) a carrier, wherein said carrier is:</pre>
	a) an aqueous compound, including water,
	saline, and/or buffer; and/or
	b) formulated for oral, rectal, nasal,
35	topical, or parenteral administration;
	2) another chemokine, including one selected from the
	group of HCC1, HCC2, HCC3, and HCC4; or

3) an antibody antagonist for a chemokine, including one selected from the group of HCC1, HCC2, HCC3, and HCC4; b) said Dubl1 polypeptide and a carrier, wherein said 5 carrier is a) an aqueous compound, including water, saline, and/or buffer; and/or b) formulated for oral, rectal, nasal, topical, or parenteral administration; 10 c) said Dub12 polypeptide and a carrier, wherein said carrier is: a) an aqueous compound, including water, saline, and/or buffer; and/or b) formulated for oral, rectal, nasal, topical, or 15 parenteral administration; said MD-1 polypeptide and a carrier, wherein said carrier d) is: a) an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or 20 b) parenteral administration; said MD-2 polypeptide and a carrier, wherein said carrier is: an aqueous compound, including water, saline, a) and/or buffer; and/or 25 b) formulated for oral, rectal, nasal, topical, or parenteral administration. 49. The fusion protein of Claim 43 comprising: 30 a) mature protein sequence of Table 7; b) mature protein sequence of Table 9; mature protein sequence of Table 11; c) a detection or purification tag, including a FLAG, His6, or Ig sequence; or 35

in a).

d) sequence of another chemokine protein with said protein

20

30

35

- 50. A kit comprising a polypeptide of Claim 43, and:
- a) a compartment comprising said polypeptide; and/or
- b) instructions for use or disposal of reagents in said kit.
- 5 51. A binding compound comprising an antigen binding portion from an antibody, which specifically binds to a natural:
 - a) HCC5 polypeptide of Claim 43, wherein said antibody:
 - i) is raised against a peptide sequence of a mature polypeptide sequence of Table 7;
 - ii) is raised against a mature HCC5;
 - iii) is raised to a purified HCC5;
 - iv) is immunoselected;
 - v) is a polyclonal antibody;
 - vi) binds to a denatured HCC5; or
- vii) exhibits a Kd to antigen of at least 30 μM;
 - b) Dubl1 polypeptide of Claim 43, wherein said antibody:
 - i) is raised against a peptide sequence of a mature polypeptide sequence of Table 9;
 - ii) is raised against a mature Dub11;
 - iii) is raised to a purified Dub11;
 - iv) is immunoselected;
 - v) is a polyclonal antibody;
 - vi) binds to a denatured Dubl1; or
 - vii) exhibits a Kd to antigen of at least 30 μM;
- 25 c) Dub12 polypeptide of Claim 43, wherein said antibody:
 - i) is raised against a peptide sequence of a mature polypeptide sequence of Table 9;
 - ii) is raised against a mature Dub12;
 - iii) is raised to a purified Dub12;
 - iv) is immunoselected;
 - v) is a polyclonal antibody;
 - vi) binds to a denatured Dub12; or
 - vii) exhibits a Kd to antigen of at least 30 μM;
 - d) a primate MD-1 polypeptide of Claim 43, wherein said antibody:

		i) is raised against a peptide sequence of a mature
		polypeptide sequence of Table 11;
		ii) is raised against a mature MD-1;
		iii) is raised to a purified MD-1;
5		<pre>iv) is immunoselected;</pre>
		<pre>v) is a polyclonal antibody;</pre>
-		vi) binds to a denatured MD-1; or
		vii) exhibits a Kd to antigen of at least 30 μM ;
	e)	a primate MD-2 polypeptide of Claim 43, wherein said
10		antibody:
		i) is raised against a peptide sequence of a mature
		polypeptide sequence of Table 11;
		<pre>ii) is raised against a mature MD-2;</pre>
		iii) is raised to a purified MD-2;
15		<pre>iv) is immunoselected;</pre>
		v) is a polyclonal antibody;
		vi) binds to a denatured MD-2; or
		vii) exhibits a Kd to antigen of at least 30 μM ; or
	f)	a rodent MD-2 polypeptide of Claim 43, wherein said
20		antibody:
		i) is raised against a peptide sequence of a mature
		polypeptide sequence of Table 11;
		<pre>ii) is raised against a mature rodent MD-2;</pre>
		iii) is raised to a purified rodent MD-2;
25		<pre>iv) is immunoselected;</pre>
		v) is a polyclonal antibody;
		vi) binds to a denatured rodent MD-2; or
		vii) exhibits a Kd to antigen of at least 30 μM .
30	52.	The binding composition of Claim 51, wherein:
	a)	said polypeptide is from a primate or rodent;
	b)	said binding compound is an Fv, Fab, or Fab2 fragment;
	c)	said binding compound is conjugated to another chemical
		moiety;
35	d)	is attached to a solid substrate, including a bead or

SUBSTITUTE SHEET (rule 26)

plastic membrane;

WO 00/01817 PCT/US99/12366

131

- e) is in a sterile composition; or
- f) is detectably labeled, including a radioactive or fluorescent label.
- 5 53. A kit comprising said binding compound of Claim 51, and:
 - a) a compartment comprising said binding compound;
 - b) a compartment comprising purified antigen; and/or
 - c) instructions for use or disposal of reagents in said kit.
- 10 54. A method of producing an antigen:antibody complex, comprising contacting an antibody of Claim 51 and:
 - a) a primate HCC5 polypeptide;
 - b) a primate Dubl1 polypeptide;
 - c) a primate Dub12 polypeptide;
- d) a primate MD-1 polypeptide;
 - e) a primate MD-2 polypeptide; or
 - f) a rodent MD-2 polypeptide; thereby allowing said complex to form.
- 55. A composition comprising said binding compound of Claim and:
 - 1) a carrier, wherein said carrier is:
 - a) an aqueous compound, including water, saline, and/or buffer; and/or
- b) formulated for oral, rectal, nasal, topical, or parenteral administration; or
 - 2) an antibody antagonist for another chemokine, including one selected from the group of HCC1, HCC2, HCC3, and HCC4.

30

- 56. An isolated or recombinant nucleic acid encoding a polypeptide or fusion protein of Claim 43, wherein:
- A) said HCC5:
 - a) polypeptide is from a primate, including a human; or
- 35 b) nucleic acid:
 - encodes an antigenic HCC5 peptide sequence of Table
 7.

		ii) encodes a plurality of antigenic peptide sequences
		of Table 7;
		iii) exhibits identity over at least 25 nucleotides to
		a natural cDNA encoding said HCC5 segment;
5		iv) is a hybridization probe for a gene encoding said
		HCC5 polypeptide; or
	,	v) further encodes another chemokine, including one
		selected from the group of HCC1, HCC2, HCC3, and
		HCC4;
10	B) said	Dub11:
	a)	polypeptide is from a primate, including a human; or
	b)	nucleic acid:
		i) encodes an antigenic Dubll peptide sequence of Table
		9;
15		ii) encodes a plurality of antigenic peptide sequences
		of Table 9;
		iii) exhibits identity over at least 25 nucleotides to
		a natural cDNA encoding said Dubl1 segment; or
		iv) is a hybridization probe for a gene encoding said
20		Dubl1 polypeptide;
	C) said	Dub12:
	a)	polypeptide is from a primate, including a human; or
	b)	nucleic acid:
		i) encodes an antigenic Dub12 peptide sequence of Table
25		9;
		ii) encodes a plurality of antigenic peptide sequences
		of Table 9;
		iii) exhibits identity over at least 25 nucleotides to
		a natural cDNA encoding said Dub12 segment;
30		iv) is a hybridization probe for a gene encoding said
		Dub12 polypeptide;
	D) said	primate MD-1:
	a)	polypeptide is from a primate, including a human; or
	b)	nucleic acid:
35		i) encodes an antigenic MD-1 peptide sequence of Table

11;

PCT/US99/12366 WO 00/01817

133

			ii) encodes a plurality of antigenic peptide sequence:
			of Table 11;
			iii) exhibits identity over at least 25 nucleotides to
			a natural cDNA encoding said MD-1 segment;
5			iv) is a hybridization probe for a gene encoding said
			Dubl1 polypeptide;
	E)	said	primate MD-2:
		a)	polypeptide is from a human; or
		b)	nucleic acid:
10			i) encodes an antigenic MD-2 peptide sequence of Table
			11;
			ii) encode's a plurality of antigenic peptide sequences
			of Table 11;
			iii) exhibits identity over at least 25 nucleotides to
15			a natural cDNA encoding said MD-2 segment;
			iv) is a hybridization probe for a gene encoding said
			primate MD-2 polypeptide; or
	F)	said	rodent MD-2:
		a)	polypeptide is from a mouse; or
20		b)	nucleic acid:
			i) encodes an antigenic MD-2 peptide sequence of Table
			11;
			ii) encodes a plurality of antigenic peptide sequences
			of Table 11;
25			iii) exhibits identity over at least 25 nucleotides to
	•		a natural cDNA encoding said MD-2 segment; or
			iv) is a hybridization probe for a gene encoding said
			rodent MD-2 polypeptide.
30		57.	The nucleic acid of Claim 56, which:
		a)	is an expression vector;
		b)	further comprises an origin of replication;

3

- is from a natural source;
- comprises a detectable label;
- comprises synthetic nucleotide sequence; 35
 - is less than 6 kb, preferably less than 3 kb; f)
 - is from a primate, including a human;

- h) comprises a natural full length coding sequence; or
- i) is a PCR primer, PCR product, or mutagenesis primer.
- 58. A cell or tissue comprising a recombinant nucleic acid of Claim 56, including wherein said cell is:
 - a) a prokaryotic cell;
 - b) a eukaryotic cell;
 - c) a bacterial cell;
 - d) a yeast cell;
- 10 e) an insect cell;
 - f) a mammalian cell;
 - g) a mouse cell;
 - h) a primate cell; or
 - i) a human cell.

25

30

- 59. A kit comprising said nucleic acid of Claim 56, and:
- a) a compartment comprising said nucleic acid;
- a compartment comprising a nucleic acid encoding another chemokine, including HCC1, HCC2, HCC3, and HCC4; or
- 20 c) instructions for use or disposal of reagents in said kit.
 - 60. A nucleic acid which:
 - a) hybridizes under wash conditions of 45° C and less than 2M salt to the polypeptide coding portion of SEQ ID NO: 24;
 - b) hybridizes under wash conditions of 45° C and less than 2M salt to the polypeptide coding portions of SEQ ID NO: 31 or 33;
 - c) hybridizes under wash conditions of 45° C and less than 2M salt to the coding portions of SEQ ID NO: 35 or 37;
 - d) hybridizes under wash conditions of 45° C and less than 2M salt to the coding portion of SEQ ID NO: 41;
 - e) hybridizes under wash conditions of 45°C and less than 2M salt to the coding portion of SEQ ID NO: 43 or 45. or
- f) hybridizes under wash conditions of 45° C and less than 2M salt to the coding portion of SEQ ID NO: 47.

20

25

30

35

- 61. The nucleic acid of Claim 57, wherein:
- a) said wash conditions are at 55°C and/or 500 mM salt; or
- b) said wash conditions are at 65° C and/or 150 mM salt.
- 5 62. A method of modulating physiology or development of a cell or tissue culture cells comprising exposing said cell to an agonist or antagonist of HCC5, primate MD-1, primate MD-2, or rodent MD-2.
- 10 63. A method of detecting specific binding to a compound, comprising:
 - a) contacting said compound to a composition selected from the group of:
 - i) an antigen binding site which specifically binds to a HCC5 chemokine;
 - ii) an antigen binding site which specifically binds to Dub11;
 - iii) an antigen binding site which specifically binds
 to Dub12;
 - iv) an antigen binding site which specifically binds to primate MD-1;
 - v) an antigen binding site which specifically binds to primate MD-2;
 - vi) an antigen binding site which specifically binds to rodent MD-2;
 - vii) an expression vector encoding a HCC5 chemokine or fragment thereof;
 - viii) an expression vector encoding a Dub11 or fragment thereof;
 - ix) an expression vector encoding a Dub12 or fragment thereof;
 - x) an expression vector encoding a primate MD-1 or fragment thereof;
 - xi) an expression vector encoding a primate MD-2 or fragment thereof;
 - xii) an expression vector encoding a rodent MD-2 or fragment thereof;

	xiii) a substantially pure protein which is
	specifically recognized by said antigen binding
	site of (i);
	xiv) a substantially pure protein which is specifically
5	recognized by said antigen binding site of (ii);
	xiv) a substantially pure protein which is specifically
	recognized by said antigen binding site of (iii);
	xiv) a substantially pure protein which is specifically
	recognized by said antigen binding site of (iv);
10	xiv) a substantially pure protein which is specifically
•	recognized by said antigen binding site of (v);
	xiv) a substantially pure protein which is specifically
-	recognized by said antigen binding site of (vi);
	ix) a substantially pure HCC5 chemokine or peptide
L5	thereof of Claim 43, or a fusion protein comprising
	a 30 amino acid sequence portion of HCC5 chemokine
	sequence;
	x) a substantially pure Dubl1 or peptide thereof of
	Claim 43, or a fusion protein comprising a 30 amino
20	acid sequence portion of Dubl1 sequence;
	xi) a substantially pure Dub12 or peptide thereof of
•	Claim 43, or a fusion protein comprising a 30 amino
	acid sequence portion of Dubl1 sequence;
	xi) a substantially pure primate MD-1 or peptide
25	thereof of Claim 43, or a fusion protein comprising
	a 30 amino acid sequence portion of primate MD-1
	sequence;
	xi) a substantially pure primate MD-2 or peptide
	thereof of Claim 43, or a fusion protein comprising
30	a 30 amino acid sequence portion of primate MD-2
	sequence;
	xi) a substantially pure rodent MD-2 or peptide thereof
	of Claim 43, or a fusion protein comprising a 30
	amino acid sequence portion of rodent MD-2
35	sequence; and
	b) detecting binding of said compound to said composition.
	64. An isolated or recombinant polynucleotide which:

- a) encodes at least 17 contiguous amino acid residues of SEQ ID NO: 54;
- ,b) encodes at least two distinct segments of at least 10 contiguous amino acid residues of SEQ ID NO 54; or
- c) comprises one or more segments at least 21 contiguous nucleotides of SEQ ID NO: 53.
 - 65. A method of making:
 - a) a polypeptide comprising expressing an expression vector of Claim 64, thereby producing said polypeptide;
 - a duplex nucleic acid comprising contacting a
 polynucleotide of Claim 64 with a complementary nucleic
 acid, thereby resulting in production of said duplex
 nucleic acid;
- 15 c) a synthetic polynucleotide of Claim 64, comprising chemically polymerizing nucleotides to produce said polynucleotide; or
 - d) a polynucleotide of Claim 64 comprising using a PCR method.

5

10

- 66. An isolated or recombinant antigenic polypeptide comprising at least:
 - a) one segment comprising at least 17 contiguous amino acids from SEQ ID NO: 54; or
- b) at least two distinct segments of at least 11 contiguous amino acids from SEQ ID NO: 54.
- 67. The antigenic polypeptide of Claim 66, comprising at least one segment comprising at least 17 contiguous amino acids 30 from SEQ ID NO: 54.
 - 68. The polypeptide of Claim 66, which exhibits at least two non-overlapping epitopes which are selective for primate protein of SEQ ID NO: 54.
- 35 69. The polypeptide of Claim 66, wherein said polypeptide:
 - a) is a 5-fold or less substitution from a natural sequence; or

WO 00/01817 PCT/US99/12366

138

- b) is a deletion or insertion variant from a natural sequence.
- 70. A kit comprising said polypeptide of Claim 66, and 5 instructions for the use or disposal of said polypeptide or other reagents of said kit.
- 71. The antigenic polypeptide of Claim 66, comprising at least two distinct segments of at least 11 contiguous amino acids 10 from SEQ ID NO: 54.
 - 72. The polypeptide of Claim 71:
- a) which comprises at least one sequence from (SEQ ID NO: 54) KESRYVHD (residues 120-127), DKHFEVLH (residues 127-134), HSDLEPQM (residues 134-141), QKDINKNM (residues 177-184), YAPKLQEF (residues 203-210), SEEDILRM (residues 219-226), LRMELIIL (residues 224-231), ELCPVTII (residues 237-244), and LFLQVDAL (residues 249-256); and/or
 - b) wherein said segments of at least 11 contiguous amino acids comprise one said segment with at least 14 contiguous amino acids from SEQ ID NO: 54.
- 73. The polypeptide of Claim 71, which exhibits at least two 25 non-overlapping epitopes which are selective for primate protein of SEQ ID NO: 54.
 - 74. The polypeptide of Claim 71, wherein said polypeptide:
 - a). comprises a mature sequence of SEQ ID NO: 2;
- 30 b) binds with selectivity to an antibody generated against an immunogen of SEQ ID NO: 54;
 - c) comprises a plurality of polypeptide segments of 17 contiguous amino acids of SEQ ID NO: 54; or
 - d) is a natural allelic variant of SEQ ID NO: 54.

35

- 75. The polypeptide of Claim 71, wherein said polypeptide:
- a) is in a sterile composition;

- b) has a length at least 30 amino acids;
- c) is not glycosylated;
- d) is denatured;
- e) is a synthetic polypeptide;
- f) is attached to a solid substrate; or
 - g) is a fusion protein with a detection or purification tag, including a FLAG, His6, or Ig sequence.
- 76. The polypeptide of Claim 71, wherein said 10 polypeptide:
 - a) is a 5-fold or less substitution from a natural sequence;
 or
 - b) is a deletion or insertion variant from a natural sequence.

15

25

30

5

- 77. A kit comprising said polypeptide of Claim 71, and instructions for the use or disposal of said polypeptide or other reagents of said kit.
- 20 78. A method using said polypeptide of Claim 71:
 - a) to label said polypeptide, comprising labeling said polypeptide with a radioactive label;
 - b) to separate said polypeptide from another polypeptide in a mixture, comprising running said mixture on a chromatography matrix, thereby separating said polypeptides;
 - c) to identify a compound that binds selectively to said polypeptide, comprising incubating said compound with said polypeptide under appropriate conditions; thereby causing said component to bind to said polypeptide; or
 - d) to conjugate said polypeptide to a matrix, comprising derivatizing said polypeptide with a reactive reagent, and conjugating said polypeptide to said matrix; or
- e) inducing an antibody response to said polypeptide,

 comprising introducing said polypeptide as an antigen to
 an immune system, thereby inducing said response.

20

25

- 79. A binding compound comprising an antigen binding portion from an antibody which binds with selectivity to a polypeptide of Claim 66.
- 80. A method of evaluating the selectivity of binding of a compound to cyclin E2, comprising contacting said compound to a recombinant cyclin E2 polypeptide and at least one other cyclin; and comparing binding of said compound to said cyclins.
- 10 81. The polypeptide of Claim 67:
 - a) which comprises at least one sequence from (SEQ ID NO: 54) KESRYVHD (residues 120-127), DKHFEVLH (residues 127-134), HSDLEPQM (residues 134-141), QKDINKNM (residues 177-184), YAPKLQEF (residues 203-210), SEEDILRM (residues 219-226), LRMELIIL (residues 224-231), ELCPVTII (residues 237-244), and LFLQVDAL (residues 249-256); and/or
 - b) wherein said segment comprising at least 17 contiguous amino acids exhibits at least 23 contiguous amino acids from SEQ ID NO: 54.
 - 82. The polypeptide of Claim 67, wherein said polypeptide:
 - a) comprises a mature sequence of SEQ ID NO: 54;
 - b) binds with selectivity to an antibody generated against an immunogen of SEQ ID NO: 54;
 - c) comprises a plurality of polypeptide segments comprising at least 17 contiguous amino acids of SEQ ID NO: 54; or
 - d) is a natural allelic variant of SEQ ID NO: 54.
- 30 83. The polypeptide of Claim 67, wherein said polypeptide:
 - a) is in a sterile composition;
 - b) has a length at least 30 amino acids;
 - c) is not glycosylated;
 - d) is denatured;
- 35 e) is a synthetic polypeptide;
 - f) is attached to a solid substrate; or

10

15

- g) is a fusion protein with a detection or purification tag, including a FLAG, His6, or Ig sequence.
- 84. A method using said polypeptide of Claim 67:
- a) to label said polypeptide, comprising labeling said polypeptide with a radioactive label;
- b) to separate said polypeptide from another polypeptide in a mixture, comprising running said mixture on a chromatography matrix, thereby separating said polypeptides;
- c) to identify a compound that binds selectively to said polypeptide, comprising incubating said compound with said polypeptide under appropriate conditions; thereby causing said component to bind to said polypeptide;
- d) to conjugate said polypeptide to a matrix, comprising derivatizing said polypeptide with a reactive reagent, and conjugating said polypeptide to said matrix; or
- e) inducing an antibody response to said polypeptide,
 comprising introducing said polypeptide as an antigen to
 an immune system, thereby inducing said response.

WO 00/01817

1

SEQUENCE LISTING

5	<110> Schering Corporation	
	<120> Mammalian Genes; Related Reagents and Methods	
10	<130> SF0819x(omnibusFF)	
	<140> <141>	
15	<160> 56	
	<170> PatentIn Ver. 2.0	
20	<210> 1 <211> 4064 <212> DNA <213> Unknown	
25	<220> <221> CDS <222> (264)(2390)	
•	<220> <223> Description of Unknown Organism: primate	
30	<400> 1 gtgaccaggg agacaaacac ttggagatac ttggggctga gtttgagcaa gactccctaa	60
•	cctgtgtctg gacaagtctg atgtcctgtg tggcccaaga agaactgacc ccgtgtctgg	120
35	ageteceace gttattgeat ecctgetgtg geteacetge tgetgtetee aggageeect	180
	gagaagattt geeteetete eeetgetaag eteeaggtee tgagattgaa ttaggggetg	240
40	gageteactg cactecagea gte atg gga ece agg ata ggg eca geg ggt gag Met Gly Pro Arg Ile Gly Pro Ala Gly Glu 1 5 10	293
45	gta ccc cag gta cca gac aag gaa acc aaa gcc aca atg ggc aca gaa Val Pro Gln Val Pro Asp Lys Glu Thr Lys Ala Thr Met Gly Thr Glu 15 20 25	341
50	aac aca cct gga ggc aaa gcc agc cca gac cct cag gac gtg cgg cca Asn Thr Pro Gly Gly Lys Ala Ser Pro Asp Pro Gln Asp Val Arg Pro 30 35 40	389
	agt gtg ttc cat aac atc aag ctg ttc gtt ctg tgc cac agc ctg ctg Ser Val Phe His Asn Ile Lys Leu Phe Val Leu Cys His Ser Leu Leu 45 50 55	437
55	cag ctg gcg cag ctc atg atc tcc ggc tac cta aag agc tcc atc tcc Gln Leu Ala Gln Leu Met Ile Ser Gly Tyr Leu Lys Ser Ser Ile Ser 60 65 70	185
60	aca gtg gag aag cgc ttc ggc ctc tcc agc cag acg tcg ggg ctg ctg Thr Val Glu Lys Arg Phe Gly Leu Ser Ser Gln Thr Ser Gly Leu Leu 75 80 85 90	33

5	gcc Ala	tcc Ser	ttc Phe	aac Asn	gag Glu 95	gtg Val	GJA aaa	aac Asn	aca Thr	gcc Ala 100	Leu	act Ile	gtg Val	ttt Phe	gtg Val 105	agc Ser	581
10	tat Tyr	ttt Phe	ggc	agc Ser 110	cgg Arg	gtg Val	cac His	cga Arg	ccc Pro 115	cga Arg	atg Met	att Ile	ggc Gly	tat Tyr 120	ggg Gly	gct	629
15	atc Ile	ctt Leu	gtg Val 125	gcc Ala	ctg Leu	gcg Ala	ggc Gly	ctg Leu 130	Leu	atg Met	act Thr	ctc Leu	ccg Pro 135	cac His	ttc Phe	atc Ile	677
	tcg Ser	gag Glu 140	Pro	tac Tyr	cgc Arg	tac Tyr	gac Asp 145	aac Asn	acc Thr	agc Ser	cct Pro	gag Glu 150	gat Asp	atg Met	cca Pro	cag Gln	725
20	gac Asp 155	ttc Phe	aag Lys	gct Ala	tcc Ser	ctg Leu 160	tgc Cys	ctg Leu	ccc Pro	aca Thr	acc Thr 165	tcg Ser	gcc Ala	cca Pro	gcc Ala	tcg Ser 170	773
25	gcc Ala	ccc Pro	tcc Ser	aat Asn	ggc Gly 175	aac Asn	tgc Cys	tca Ser	agc Ser	tac Tyr 180	aca Thr	gaa Glu	acc Thr	cag Gln	cat His 185	ctg Leu	821
30	agt Ser	gtg Val	gtg Val	ggg Gly 190	atc Ile	atg Met	ttc Phe	gtg Val	gca Ala 195	cag Gln	acc Thr	ctg Leu	ctg Leu	ggc Gly 200	gtg Val	ggc Gly	869
35	ggg Gly	gtg Val	ccc Pro 205	att Ile	cag Gln	ccc Pro	ttt Phe	ggc Gly 210	atc Ile	tcc Ser	tac Tyr	atc Ile	gat Asp 215	gac Asp	ttt Phe	gcc Alá	917
	cac His	aac Asn 220	agc Ser	aac Asn	tcg Ser	ccc Pro	ctc Leu 225	tac Tyr	ctc Leu	ggg Gly	atc Ile	ctg Leu 230	ttt Phe	gca Ala	gtg Val	acc Thr	965
40	atg Met 235	atg Met	Gly ggg	cca Pro	ggc Gly	ctg Leu 240.	gcc Ala	ttt Phe	ggg Gly	ctg Leu	ggc Gly 245	agc Ser	ctc Leu	atg Met	ctg Leu	cgc Arg 250	1013
45	ctt Leu	tat Tyr	gtg Val	gac Asp	att Ile 255	aac Asn	cag Gln	atg Met	cca Pro	gaa Glu 260	ggt Gly	ggt Gly	atc Ile	agc Ser	ctg Leu 265	acc Thr	1061
50												ctg Leu					1109
55	gct Ala	gcc Ala	ggt Gly 285	gca Ala	gtg Val	gcc Ala	ctg Leu	gct Ala 290	gcc Ala	atc Ile	ccc Pro	tac Tyr	ttc Phe 295	ttc Phe	ttc Phe	ccc Pro	1157
												ttt Phe 310					1205
60												aag Lys					1253

5	aag Lys	cag Gln	agc Ser	cct Pro	ggg Gly 335	gag Glu	tcc Ser	acg Thr	aag Lys	aag Lys 340	cag Gln	gat Asp	ggc	cta Leu	gtc Val 345	cag Gln	1301
10	att Ile	gca Ala	cca Pro	aac Asn 350	ctg Leu	act Thr	gtg Val	atc Ile	cag Gln 355	ttc Phe	att Ile	aaa Lys	gtc Val	ttc Phe 360	ccc Pro	agg Arg	1349
15	gtg Val	ctg Leu	ctg Leu 365	cag Gln	acc Thr	cta Leu	cgc Arg	cac His 370	ccc Pro	atc Ile	ttc Phe	ctg Leu	ctg Leu 375	gtg Val	gtc Val	ctg Leu	1397
	tcc Ser	cag Gln 380	gta Val	tgc Cys	ttg Leu	tca Ser	tcc Ser 385	atg Met	gct Ala	gcg Ala	ggc Gly	atg Met 390	gcc Ala	acc Thr	ttc Phe	ctg Leu	1445
20	ccc Pro 395	aag Lys	ttc Phe	ctg Leu	gag Glu	cgc Arg 400	cag Gln	ttt Phe	tcc Ser	atc Ile	aca Thr 405	gcc Ala	tcc Ser	tac Tyr	gcc Ala	aać Asn 410	1493
25	ctg Leu	ctc Leu	atc Ile	ggc Gly	tgc Cys 415	ctc Leu	tcc Ser	ttc Phe	cct Pro	tcg Ser 420	gtc Val	atc Ile	gtg Val	ggc Gly	atc Ile 425	gtg Val	1541
30	gtg Val	ggt Gly	ggc	gtc Val 430	ctg Leu	gtc Val	aag Lys	cgg Arg	ctc Leu 435	cac His	ctg Leu	ggc	cct Pro	gtg Val 440	gga Gly	tgc Cys	1589
35	ggt Gly	gcc Ala	ctt Leu 445	tgc Cys	ctg Leu	ctg Leu	GJÀ aaa	atg Met 450	ctg Leu	ctg Leu	tgc Cys	ctc Leu	ttc Phe 455	ttc Phe	agc Ser	ctg Leu	1637
	ccg Pro	ctc Leu 460	ttc Phe	ttt Phe	atc Ile	ggc Gly	tgc Cys 465	tcc Ser	agc Ser	cac His	cag Gln	att Ile 470	gcg Ala	ggc Gly	atc Ile	aca Thr	1685
40	cac His 475	cag Gln	acc Thr	agt Ser	gcc Ala	cac His 480	cct Pro	ggg Gly	ctg Leu	gag Glu	ctg Leu 485	tct Ser	cca Pro	agc Ser	tgc Cys	atg Met 490	1733
45	gag Glu	gcc Ala	tgc Cys	tcc Ser	tgc Cys 495	cca Pro	ttg Leu	gac Asp	ggc Gly	ttt Phe 500	aac Asn	cct Pro	gtc Val	tgc Cys	gac Asp 505	ccc Pro	1781
50	agc Ser	act Thr	cgt Arg	Val	gaa Glu	Tyr	Ile	Thr	Pro	Cys	cac His	gca Ala	Gly	tgc Cys 520	tca Ser	agc Ser	1829
55					gat Asp												1877
					gtg Val											gac ' Asp	1925
60		Thr			cat His												1973

5	ggc Gly	tcg Ser	gcc Ala	ctg Leu	gcc Ala 575	tgt Cys	ctc Leu	acc Thr	cac His	aca Thr 580	ccc Pro	tcc Ser	ttc Phe	atg Met	ctc Leu 585	atc Ile	2021
10	cta Leu	aga Arg	gga Gly	gtg Val 590	aag Lys	aaa Lys	gaa Glu	gac Asp	aag Lys 595	act Thr	ttg Leu	gct Ala	gtg Val	ggc Gly 600	atc Ile	cag Gln	2069
15	ttc Phe	atg Met	ttc Phe 605	ctg Leu	agg Arg	att Ile	ttg Leu	gcc Ala 610	tgg Trp	atg Met	ccc Pro	agc Ser	ccc Pro 615	gtg Val	atc Ile	cac His	2117
	ggc	agc Ser 620	gcc Ala	atc Ile	gac Asp	acc Thr	acc Thr 625	tgt Cys	gtg Val	cac His	tgg Trp	gcc Ala 630	ctg Leu	agc Ser	tgt Cys	ggg ggg	2165
20	cgt Arg 635	cga Arg	gct Ala	gtc Val	tgt Cys	cgc Arg 640	tac Tyr	tac Tyr	aat Asn	aat Asn	gac Asp 645	ctg Leu	ctc Leu	cga Arg	aac Asn	cgg Arg 650	2213
25	ttc Phe	atc Ile	ggc Gly	ctc Leu	cag Gln 655	ttc Phe	ttc Phe	ttc Phe	aaa Lys	aca Thr 660	ggt Gly	tct Ser	gtg Val	atc Ile	tgc Cys 665	ttc Phe	2261
30	gcc Ala	tta Leu	gtt Val	ttg Leu 670	gct Ala	gtc Val	ctg Leu	agg Arg	cag Gln 675	cag Gln	gac Asp	aaa Lys	gag Glu	gca Ala 680	agg Arg	acc Thr	2309
35	aaa Lys	gag Glu	agc Ser 685	aga Arg	tcc Ser	agc Ser	cct Pro	gcc Ala 690	gta Val	gag Glu	cag Gln	caa Gln	ttg Leu 695.	Leu	gtg Val	tcg Ser	2357
	ggg Gly	cca Pro 700	ggg Gly	aag Lys	aag Lys	cca Pro	gag Glu 705	gat Asp	tcc Ser	cga Arg	gtg Val	tgaç	ıctgt	ct t	gggg	ccca	2410
40																tgggt ggcaa	
45																gcatt	
																gccag	
50																ggtct	
	gcac	tcgc	ct g	gato	acct	t ct	ttga	gcct	tag	ccat	ctc	ctgt	cagg	rta g	gaat	gaact	2830
55	tgcc	agco	tt c	aggo	tcgt	t ca	.gcta	tgac	cat	ctgt	gcg	gtca	gggt	ac a	ctca	gctct	2890
	ccto	ccca	ac t	ccag	cago	c tt	taag	aagt	gto	cctt	tgg	cgcc	ccct	gg a	ggca	gagca	2950
																gggac	
60																gctga	
																cacgg	
	ttga	gggt	ga c	gccc	aaca	c ct	gcct	tagg	gcc	ctgg	gtg	ggca	agto	tg g	gccc	tgggg	3190

5	tagggaggg	a gactcaggcc	cacacttggg	tattttctaa	tttcagacaa	acacacactc	3250
,	agcgcgcact	cactgattcc	tacacattgo	caagatttca	cacatgtgac	caggggccac	3310
	caaagtccct	gtgacctttg	tgactaggat	cctaatttct	ctattttctc	ctgggtgcct	3370
10	gggtctgtgt	cacctggggc	agtgtggata	atgtttagtt	ctgtgacact	gttttttggg	3430
	ggtggcacct	ggttctccga	tgcctgggct	ggtgtcaggc	ccaggactgt	agtgctggga	3490
15	gcagtaaagc	tcagctctgt	gtaatgagtg	atgctatggc	ttgctcgtgt	cttatgatcc	3550
	aatccttttc	tacatcagcc	cttgttttgt	tttatggcta	gtcttatctg	gcctggttat	3610
	ttccttgcgg	ggaggagagg	gtttgctaat	ctgctcccag	cccaacctat	taccacccca	3670
20	cctcgctggg	acctactgct	cgggaggcag	cagacaggga	gccaccagca	gtggcttcct	3730
	ggccctgtgc	tgggggtggg	gggaagctgg	gggcacatgt	ggcccttgcc	ttctgagcag	3790
25	ctcccagtgo	cagggctttg	agactttccc	acatgataaa	agaaaaggga	ggtacagaag	3850
	ttccaattcc	ctttttattt	tgctggttgg	tatctgtaaa	tgtttaataa	atatctgagc	3910
	atgtatctat	caacgccaag	aatttcaaag	tctccttcaa	caatatgagg	cttttaggat	3970
30	gtttatattc	cttcatccct	cttgtttccc	aggttttgca	gggaaaaaag	tctggaatta	4030
	tagatacago	ttattattaa	atttgttctt	gcat			4064
35	<210> 2 <211> 709 <212> PRT <213> Unkn	own					
40	<400> 2 Met Gly Pr 1	o Arg Ile G	ly Pro Ala	Gly Glu Val 10	Pro Gln Val	Pro Asp	
45	Lys Glu Th	r Lys Ala Tl 20	nr Met Gly	Thr Glu Asn 25	Thr Pro Gly		
`		o Asp Pro G	ln Asp Val 40	Arg Pro Ser	Val Phe His 45	Asn Ile	
50	Lys Leu Ph 50	e Val Leu Cy	ys His Ser 55	Leu Leu Gln	Leu Ala Gln 60	Leu Met	
55	Ile Ser'Gl 65		ys Ser Ser 70	Ile Ser Thr 75	Val Glu Lys	Arg Phe 80	
	Gly Leu Se	r Ser Gln Tl 85	nr Ser Gly	Leu Leu Ala 90	Ser Phe Asn	Glu Val 95	
60	Gly Asn Th	r Ala Leu I 100		Val Ser Tyr 105	Phe Gly Ser		
	His Arg Pr	-	le Gly Tyr 120	Gly Ala Ile	Leu Val Ala 125	Leu Ala	

5	Gly	Leu 130	Leu	Met	Thr	Leu	Pro 135	His	Phe	Ile	Ser	Glu 140	Pro	Tyr	Arg	Tyr
10	Asp 145	Asn	Thr	Ser	Pro	Glu 150	Asp	Met	Pro	Gln _.	Asp 155	Phe	Lys	Ala	Ser	Leu 160
	Суз	Leu	Pro	Thr	Thr 165	Ser	Ala	Pro	Ala	Ser 170	Ala	Pro	Ser	Asn	Gly 175	Asn
15	Cys	Ser	Ser	Tyr 180	Thr	Glu	Thr	Gln	His 185	Leu	Ser	Val	Val	Gly 190	Ile	Met
	Phe	Val	Ala 195	Gln	Thr	Leu	Leu	Gly 200	Val	Gly	Gly	Val	Pro 205	Ile	Gln	Pro
20	Phe	Gly 210	Ile	Ser	Tyr	Ile	Asp 215	.Asp	Phe	Ala	His	Asn 220	Ser	Àsn	Ser	Pro
25	Leu 225	Tyr	Leu	Gly	Ile	Leu 230	Phe	Ala	Val	Thr	Met 235	Met	Gly	Pro	Gly	Leu 240
	Ala	Phe	Gly	Leu	Gly 245	Ser	Leu	Met	Leu	Arg 250	Leu	Tyr	Val	Asp	Ile 255	Asn
30	Gln	Met	Pro	Glu 260	Gly	Gly	Ile	Ser	Leu 265	Thr	Ile	Lys	Asp	Pro 270	Arg	Trp
	Val	Gly	Ala 275	Trp	Trp	Leu	Gly	Phe 280	Leu	Ile	Ala	Ala	Gly 285	Ala	Val	Ala
35	Leu	Ala 290	Ala	Ile	Pro	Tyr	Phe 295	Phe	Phe	Pro	Lys	Glu 300	Met	Pro	Lys	Glu
40	Lys 305	Arg	Glu	Leu	Gln	Phe 310	Arg	Arg	Lys	Val	Leu 315	Ala	Val	Thr	Asp	Ser 320
	Pro	Ala	Arg	Lys	Gly 325	Lys	Asp	Ser	Pro	Ser 330	Lys	Gln	Ser	Pro	Gly 335	Glu
45	Ser	Thr	Lys	Lys 340	Gln	Asp	Gly	Leu	Val 345.	Gln	Ile	Ala	Pro	Asn 350	Leu	Thr
	·Val	Ile	Gln 355	Phe	Ile	Lys	Val	Phe 360	Pro	Arg	Val	Leu	Leu 365	Gln	Thr	Leu
50	Arg	His 370	Pro	Ile	Phe	Leu	Leu 375		Val	Leu	Ser	Gln 380	Val	Cys	Leu	Ser
55	Ser 385	Met	Ala	Ala	Gly	Met 390	Ala	Thr	Phe	Leu	Pro 395	Lys	Phe	Leu	Glu	Arg 400
J J	Gln	Phe	Ser	Ile	Thr 405	Ala	Ser	Tyr	Ala	Asn 410	Leu	Leu	Île	Gly	Cys 415	Leu
60	Ser	Phe	Pro	Ser 420	Val	Ile	Val	Gly	Ile 425	Val	Val	Gly	Gly	Val 430	Leu	Val
	Lys	Arg	Leu 435	His	Leu	Gly	Pro	Val 440	Gly	Cys	Gly	Ala	Leu 445	Cys	Leu	Leu

5	Gly	Met 450		Leu	Cys	Leu	Phe 455	Phe	Ser	Leu	Pro	Leu 460	Phe	Phe	Ile	Gly
	Cys 465	Ser	Ser	His	Gln	Ile 470	Ala	Gly	Ile	Thr	His 475	Gln	Thr	Ser	Ala	His 480
10	Pro	Gly	Leu	Glu	Leu 485	Ser	Pro	Ser	Cys	Met 490	Glu	Ala	Cys	Ser	Cys 495	Pro
15	Leu	Asp	Gly	Phe 500	Asn	Pro	Val	Суѕ	Asp 505	Pro	Ser	Thr	Arg	Val 510	Glu	Tyr
	Ile	Thr	Pro 515	Cys	His	Ala	Gly	Cys 520	Ser	Ser	Trp	Val	Val 525	Gln	Asp	Ala
20	Leu	Asp 530	Asn	Ser	Gln	Val	Phe 535	Tyr	Thr	Asn	Cys	Ser 540	Cys	Val	Val	Glu
	Gly 545	Asn	Pro	Val	Leu	Ala 550	Gly	Ser	Cys	Asp	Ser 555	Thr	Cys	Ser	His	Leu 560
25	Val	Val	Pro	Phe	Leu 565	Leu	Leu	Val	Ser	Leu 570	Gly	Ser	Ala	Leu	Ala 575	Cys
30	Leu	Thr	His	Thr 580	Pro	Ser	Phe	Met	Leu 585	Ile	Leu	Arg	Gly	Val 590	Lys	Lys
50	Glu	Asp	Lys 595	Thr	Leu	Ala	Val	Gly 600	Ile	Gln	Phe	Met	Phe 605	Leu	Arg	Ile
35	Leu	Ala 610	Trp	Met	Pro	Ser	Pro 615	Val	Ile	His	Gly	Ser 620	Ala	Ile	Asp	Thr
	Thr 625	Cys	Val	His	Trp	Ala 630	Leu	Ser	Cys	Gly	Arg 635	Arg	Ala	Val	Cys	Arg 640
40	Tyr	Tyr	Asn	Asn	Asp 645	Leu	Leu	Arg	Asn	Arg 650	Phe	Ile	Gly	Leu	Gln 655	Phe
45	Phe	Phe	Lys	Thr 660	Gly	Ser	Val	Ile	Cys 665	Phe	Ala	Leu	Val	Leu 670	Ala	Val
40	Leu	Arg	Gln 675	Gln	Asp	Lys	Glu	Ala 680	Arg	Thr	Lys	Glu	Ser 685	Arg	Ser	Ser
50	Pro	Ala 690	Val	Glu	Gln	Gln	Leu 695	Leu	Val	Ser	Gly	Pro 700	Gly	Lys	Lys	Pro
	Glu 705	Asp	Ser	Arg	Val				•							
55	<210)> 3 [·]						•								
	<212	.> 64 ?> PF		m												
60	<220)>			on of	Unk	nown	n Org	anis	m:pr	imat	e				

	<40	0> 3														
5	Met 1	Gly	Leu	Leu	Pro 5	Lys	Leu	Gly	Val	Ser 10	Gln	Gly	Ser	Asp	Thr 15	Ser
10	Thr	Ser	Arg	Ala 20	Gly	Arg	Суз	Ala	Arg 25	Ser	Val	Phe	Gly	Asn 30	Ile	Lys
	Val	Phe	Val 35	Leu	Суѕ	Gln	Gly	Leu 40	Leu	Gln	Leu	Cys	Gln 45	Leu	Leu	Tyr
15	Ser	Ala 50	Tyr	Phe	Lys	Ser	Ser 55	Leu	Thr	Thr	Ile	Glu 60	Lys	Arg	Phe	Gly
	Leu 65	Ser	Ser	Ser	Ser	Ser 70		Leu	Ile	Ser	Ser 75	Leu	Asn	Glu	Ile	Ser 80
20	Asn	Ala	Ile	Leu	Ile 85	Ile	Phe	Val	Ser	Туг 90	Phe	Gly	Ser	Arg	Val 95	His
25	Arg	Pro	Arg	Leu 100	Ile	Gly	Ile	Gly	Gly 105	Leu	Phe	Leu	Ala	Ala 110	Gly	Ala
	Phe	Ile	Leu 115	Thr	Leu	Pro	His	Phe 120	Leu	Ser	Glu	Pro	Tyr 125	Gln	Tyr	Thr
30	Leu	Ala 1:30	Ser	Thr	Gly	Asn	Asn 135	Ser	Arg	Leu	Gln	Ala 140	Glu	Leu	Cys	Gln
	Lys 145	His	Trp	Gln	Asp	Leu 150	Pro	Pro	Ser	Lys	Cys 155	His	Ser	Thr	Thr	Gln 160
35	Asn	Pro	Gln	Lys	Glu 165	Thr	Ser	Ser	Met	Trp 170	Gly	Leu	Met	Val	Val 175	Ala
10	Gln	Leu	Leu	Ala 180	Gly	Ile	Gly	Thr	Val 185	Pro	Ile	Gln	Pro	Phe 190	Gly	Ile
	Ser	Tyr	Val 195	Asp	Asp	Phe	Ser	Glu 200	Pro	Ser	Asn	Ser	Pro 205	Leu	Tyr	Ile
15	Ser	Ile 210	Leu	Phe	Ala	Ile	Ser 215	Val	Phe	Gly	Pro	Ala 220	Phe	Gly	Tyr	Leu
	Leu 225	Gly	Ser	Ile	Met	Leu 230	Gln	Ile	Phe	Val	Asp 235	Tyr	Gly	Arg	Val	Asn 240
50	Thr	Ala	Ala	Val	Asn 245	Leu	Val	Pro	Gly	Asp 250	Pro	Arg	Trp	Ile	Gly 255	Ala
55	Trp	Trp	Leu	Gly 260	Leu	Leu	Ile	Ser	Ser 265	Ala	Leu	Leu	Val	Leu 270	Thr	Ser
,,	Phe	Pro	Phe 275	Phe	Phe	Phe	Pro	Arg 280	Ala	Met	Pro	Ile	Gly 285	Ala	Lys	Arg
50	Ala	Pro 290	Ala	Thr	Ala	Asp	Glu 295	Ala	Arg	Lys	Leu	Glu 300	Glu	Ala	Lys	Ser
	Arg	Gly	Ser	Leu	Val	Asp	Phe	Ile	Lys	Arg	Phe	Pro-	Cys	Ile	Phe	Leu

5	Arg	Leu	Leu	Met	Asn 325	Ser	Leu	Phe	Val	Leu 330	Val	Val	Leu	Ala	Gln 335	Cys
	Thr	Phe	Ser	Ser 340	Val	Ile	Ala	Gly	Leu 345	Ser	Thr	Phe	Leu	Asn 350	Lys	Phe
10	Leu	Glu	Lys 355	Gln	Tyr	Gly	Thr	Ser 360	Ala	Ala	Tyr	Ala	Asn 365	Phe	Leu	Ile
15	Gly	Ala 370	Val	Asn	Leu	Pro	Ala 375	Ala	Ala	Leu	Gly	Met 380	Leu	Phe	Gly	Gly
	Ile 385	Leu	Met	ŗÃ	Arg	Phe 390	Val	Phe	Ser	Leu	Gln 395	Thr	Ile	Pro	Arg	Ile 400
20	Ala	Thr	Thr	Ile	Ile 405	Thr	Ile	Ser	Met	Ile 410	Leu	Суз	Val	Pro	Leu 415	Phe
	Phe	Met	Gly	Cys 420	Ser	Thr	Pro	Thr	Val 425	Ala	Glu	Val	Tyr	Pro. 430	Pro	Ser
25	Thr	Ser	Ser 435	Ser	Ile	His	Pro	Gln 440	Ser	Pro	Ala	Cys	Arg 445	Arg	Asp	Cys
30	Ser	Cys 450	Pro	Asp	Ser	Ile	Phe 455	His	Pro	Val	Cys	Gly 460	Asp	Asn	Gly	Ile
	Glu 465	Tyr	Leu	Ser	Pro	Cys 470	His	Ala	Gly	Cys	Ser 475	Asn	Ile	Asn	Met	Ser 480
35	Ser	Ala	Thr		Lys 485	Gln	Leu	Ile	Tyr	Leu 490	Asn	Cys	Ser		Val 495	Thr
	Gly	Gly	Ser	Ala 500	Ser	Ala	Lys	Thr	Gly 505	Ser	Суз	Pro	Val	Pro 510	Суз	Ala
40	His	Phe	Leu 515	Leu	Pro	Ala	Ile	Phe 520	Leu	Ile	Ser	Phe	Val 525	Ser	Leu	Ile
45	Ala	Cys 530	Ile	Ser	His	Asn	Pro 535	Leu	Tyr	Met	Met	Val 540	Leu	Arg	Val	Val
	Asn 545	Gln	Glu	Glu	Lys	Ser 550	Phe	Ala	Ile	Gly	Val 555	Gln	Phe	Leu	Leu	Met 560
50	Arg	Leu	Leu	Ala	Trp 565		Pro	Ser	Pro	Ala 570		Tyr	Gly	Leu	Thr 575	Ile
	Asp	His	Ser	Cys 580	Ile	Arg	Trp	Asn	Ser 585	Leu	Cys	Leu	Gly	Arg 590	Arg	Gly
55	Ala	Суѕ	Ala 595	Tyr	Tyr	Asp	Asn	Asp 600	Ala	Leu	Arg	Asp	Arg 605	Tyr	Leu	Gly
60	Leu	Gln 610	Met	Gly	Tyr	Lys	Ala 615	Leu	Gly	Met	Leu	Leu 620	Leu	Cys	Phe	Ile
60	Ser 625	Trp	Arg	Val	Lys	Lys 630	Asn	Lys	Glu	Tyr	Asn 635	Val	Gln	Lys	Ala	Ala 640
	Glv	Leu	Ile													

5	<21 <21	0> 4 1> 6 2> P 3> U	RT	wn												
10	<22 <22		escr	ipti	on o	f Unl	know	n Or	gani	sm:r	oden	t				,
15		0> 4 Gly	Leu	Leu	Leu 5	Lys	Pro	Gly	Ala	Arg 10	Gln	Gly	Ser	Gly	Thr 15	Ser
	Ser	Val	Pro	Asp 20	Arg	Arg	Cys	Pro	Arg 25	Ser	Val	Phe	Ser	Asn 30	Ile	Lys
20	Val	Phe	'Val 35	Leu	Cys	His	Gly	Leu 40	Leu	Gln	Leu	Суѕ	Gln 45	Leu	Leu	Tyr
25	Ser	Ala 50	Tyr	Phe	Lys	Ser	Ser 55	Leu	Thr	Thr	Ile	Glu 60	Lys	Arg	Phe	Gly
د د	Leu 65	Ser	Ser	Ser	Ser	Ser 70	Gly	Leu	Ile	Ser	Ser 75	Leu	Asn	Glu	Ile	Ser 80
30	Asn	Ala	Thr	Leu	Ile 85	Ile	Phe	Ile	Ser	Туг 90	Phe	Gly	Ser	Arg	Val 95	Asn
	Arg	Pro	Arg	Met 100	Ile	Gly	Ile	Gly	Gly 105	Leu	Leu	Leu	Ala	Ala 110	Gly	Ala
35	Phe	Val	Leu 115	Thr	Leu	Pro	His	Phe 120	Leu	Ser	Glu	Pro	Tyr 125	Gln	Tyr	Thr
10	Ser	Thr 130	Thr	Asp	Gly	Asn	Arg 135	Ser	Ser	Phe	Gln	Thr 140	Asp	Leu	Cys	Gln
• •	Lys 145	His	Phe	Gly	Ala	Leu 150	Pro	Pro	Ser	Lys	Cys 155	His	Ser	Thr	Val	Pro 160
15	Asp	Thr	His	Lys _.	Glu 165	Thr	Ser	Ser	Leu	Trp 170	Gly	Leu	Met	Val	Val 175	Ala
	Gln	Leu	Leu	Ala 180	Gly	Ile	Gly	Thr	Val 185	Pro	Ile	Gln	Pro	Phe 190	Gly	Ile
50	Ser	Tyr	Val 195	Asp	Asp	Phe	Ala	Glu 200	Pro	Thr	Asn	Ser	Pro 205	Leu	Tyr	Ile
55	Ser	Ile 210	Leu	Phe	Ala	Ile	Ala 215	Val	Phe	Gly	Pro	Ala 220	Phe	Gly	Tyr	Leu
55	Leu 225	Gly	Ser	Val	Met	Leu 230	Arg	Ile	Phe	Val	Asp 235	Tyr	Gly	Arg	Val	Asp 240
50	Thr	Ala	Thr	Val	Asn 245	Leu	Ser	Pro	Gly	Asp 250	Pro	Arg	Trp	Ile	Gly 255	Ala
	Trp	Trp	Leu	Gly		Leu	Ile		Ser		Phe	Leu	Ile	Val		Ser

5	Leu	Pro	Phe 275	Phe	Phe	Phe	Pro	Arg 280	Ala	Met	Ser	Arg	Gly 285	Ala	Glu	Arg
	Ser	Val 290	Thr	Ala	Glu	Glu	Thr 295	Met	Gln	Thr	Glu	Glu 300	Asp	Lys	Ser	Arg
10	Gly 305	Ser	Leu	Met	Asp	Phe 310	Ile	Lys	Arg	Phe	Pro 315	Arg	Ile	Phe	Leu	Arg 320
15	Leu	Leu	Met	Asn	Pro 325	Leu	Phe	Met	Leu	Val 330		Leu	Ser	Gln	Cys 335	
	Phe	Ser	Ser	Val 340	Ile	Ala	Gly	Leu	Ser 345	Thr	Phe	Leu	Asn	Lys 350		Leu
20	Glu	Lys	Gln 355	Tyr	Gly	Ala	Thr	Ala 360	Ala	Tyr	Ala	Asn	Phe 365	Leu	Ile	Gly
	Ala	Val 370	Asn	Leu	Pro	Ala	Ala 375	Ala	Leu	Gly	Met	Leu 380	Phe	Gly	Gly	Ile
25	Leu 385	Met	Lys	Arg	Phe	Val 390	Phe	Pro	Leu	Gln	Thr 395	Ile	Pro	Arg	Val	Ala 400
30	Ala	Thr	Ile	Ile	Thr 405	Ile	Ser	Met	Ile	Leu 410	Cys	Val	Pro	Leu	Phe 415	Phe
	Met	Gly	Cys	Ser 420	Thr	Ser	Ala	Val	Ala 425	Glu	Val	Tyr	Pro	Pro 430	Ser	Thr
35	Ser	Ser	Ser 435	Ile	His	Pro	Gln	Gln 440	Pro	Pro	Ala	Cys	Arg 445	Arg	Asp	Cys
	Ser	Cys 450	Pro	Asp	Ser	Phe	Phe 455	His	Pro	Val	Cys	Gly 460	Asp	Asn	Gly	Val
40	Glu 465	Tyr	Val	Ser	Pro	Cys 470	His	Ala	Gly	Cys	Ser 475	Ser	Thr	Asn	Thr	Ser 480
45	Ser	Glu	Ala	Ser	Lys 485	Glu	Pro	Ile	Tyr	Leu 490	Asn	Cys	Ser	Cys	Val 495	Ser
	Gly	Gly	Ser	Ala 500	Ser	Gln	Asp	Arg	Leu 505	Met	Pro	His	Val	Leu 510	Arg	Ala
50	Leu	Leu	Leu 515	Pro	Ser	Ile	Phe	Leu 520	Ile	Ser	Phe	Ala	Ala 525	Leu	Ile	Ala
	Cys	Ile 530	Ser	His	Asn	Pro	Leu 535	Tyr	Met	Met	Val	Leu 540	Arg	Val	Val	Asn
55	Gln 545	Asp	Glu	Lys	Ser	Phe 550	Ala	Ile	Gly	Val	Gln 555	Phe	Leu ·	Leu	Met	Arg 560
60	Leu	Leu	Ala	Trp	Leu 565		Ala	Pro	Ser	Leu 570	Tyr	Gly	Leu	Leu	Ile 575	Asp
	Ser	Ser	Cys	Val	Arg	Trp	Asn	Тут	Leu 585		Ser	Gly	Arg	Arg	Gly	Ala

5	Cys A		Tyr 595	Tyr	Asp	Asn	Asp	Ala 600	Leu	Arg	Asn	Arg	Tyr 605	Leu	Gly	Leu	
	Gln M 6	let 10	Val	Tyr	Lys	Ala	Leu 615	Gly	Thr	Leu	Leu	Leu 620	Phe	Phe	Ile	Ser	
10	Trp A 625	rg :	Met	Lys,	Lys	Asn 630	Arg	Glu	Tyr	Ser	Leu 635	Gln	Glu	Asn	Thr	Ser 640	
15	Gly L	eu	Ile										,				
20	<210><211><211><212><213>	11 DN	A	m													
	<220><221><222>	CD:	s		3)			•									,
25	<220><221><222><222><223>	mi:	57)				·i on		d ha	· A gr							
30	<220> <223>											:e					
35	<400> cgcag		ga c	:cggg	iggca	ıa aç	gagg	gtggd	: atg	gtege	gtca	ggca	cago	ag g	gtco	tgtgt:	60
	cgcag	gcg									c at	g ag	ig go	gct	g ga	tgtgt g ggg u Gly 5	
35 40	cgcag	gcgg ctga	ag c	cgcg	retet etg	ctg	tgct	ctg	gtg	iggac ttg	c at Me	g ag et Ar 1	g gc g Al	g ct a Le	g ga u Gl	ng ggg .u Gly 5	
	cgcag	gcgggggggggggggggggggggggggggggggggggg	ag c etg Leu	tcg Ser 10	ctg Leu gta	ctg Leu cgc	tgc Cys gga	ctg Leu	gtg Val 15 gca	ttg Leu	gcg Ala	g aget Ar 1 ctg Leu	g gcg Al	gcc Ala 20	g ga eu Gl ctg Leu	ag ggg u Gly 5 ctg Leu	116
40	cca g Pro G	gc of the state of	ag control	tcg Ser 10 gct Ala	ctg Leu gta Val	ctg Leu cgc Arg	tgc Cys gga Gly	ctg Leu gtg Val 30	gtg Val 15 gca Ala	ttg Leu gaa Glu	gcg Ala aca Thr	g aget Ar 1 ctg Leu ccc Pro	g go g Al cct Pro acc Thr 35	g ct a Le gcc Ala 20 tac Tyr	g ga eu Gl ctg Leu ccc Pro	ng ggg nu Gly 5 ctg Leu tgg Trp	116
40 45	cca g Pro G	gc of	ag control of the con	tcg Ser 10 gct Ala gag Glu	ctg Leu gta Val aca Thr	ctg Leu cgc Arg	tgc Cys gga Gly gag Glu 45	ctg Leu gtg Val 30 cgg Arg	gtg Val 15 gca Ala ctg Leu	ttg Leu gaa Glu gtg Val	gcg Ala aca Thr tgc Cys	g aget Ar 1 ctg Leu ccc Pro gcc Ala 50	cct Pro acc Thr 35 cag Gln	gcc Ala 20 tac Tyr tgc Cys	ctg Leu ccc Pro	ag ggg au Gly 5 ctg Leu tgg Trp cca Pro	116 164 212
40 45	cca g Pro G ccg g Pro V cgg g Arg A	gcgggggggggggggggggggggggggggggggggggg	ag control of the con	tcg Ser 10 gct Ala gag Glu gtg Val	ctg Leu gta Val aca Thr	ctg Leu cgc Arg ggg Gly cgg Arg 60	tgc Cys gga Gly gag Glu 45 ccg Pro	ctg Leu gtg Val 30 cgg Arg	gtg Val 15 gca Ala ctg Leu cgc Arg	ttg Leu gaa Glu gtg Val cga Arg	geg Ala aca Thr tgc Cys gac Asp 65	gg aget Ar 1 ctg Leu cccc Pro gcc Ala 50 agc Ser	g go g Al cct Pro acc Thr 35 cag Gln ccc Pro	g ct a Le gcc Ala 20 tac Tyr tgc Cys	ccc Pro	ag ggg u Gly 5 ctg Leu tgg Trp cca Pro tgt Cys 70 gag	116 164 212 260

5	cgg Arg	gct Ala	tgc Cys 105	cac His	gcc Ala	acc Thr	cac His	aac Asn 110	cgt Arg	gcc Ala	tgc Cys	cgc Arg	tgc Cys 115	cgc Arg	acc Thr	ggc Gly	452
10	ttc Phe	ttc Phe 120	gcg Ala	cac His	gct Ala	ggt Gly	ttc Phe 125	tgc Cys	ttg Leu	gag Glu	cac His	gca Ala 130	tcg Ser	tgt Cys	cca Pro	cct Pro	500
15	ggt Gly 135	gcc Ala	ggc Gly	gtg Val	att Ile	gcc Ala 140	ccg Pro	ggc Gly	acc Thr	ccc Pro	agc Ser 145	cag Gln	aac Asn	acg Thr	cag Gln	tgc Cys 150	548
	cag Gln	ccg Pro	tgc Cys	ccc Pro	cca Pro 155	ggc Gly	acc Thr	ttc Phe	tca Ser	gcc Ala 160	agc Ser	agc Ser	tcc Ser	agc Ser	tca Ser 165	gag Glu	596
20	cag Gln	tgc Cys	cag Gln	ccc Pro 170	cac His	cgc Arg	aac Asn	tgc Cys	acg Thr 175	gcc Ala	ctg Leu	ggc Gly	ctg Leu	gcc Ala 180	ctc Leu	aat Asn	644
25	gtg Val	cca Pro	ggc Gly 185	tct Ser	tcc Ser	tcc Ser	cat His	gac Asp 190	acc Thr	ctg Leu	tgc Cys	acc Thr	agc Ser 195	tgc Cys	act Thr	ggc Gly	692
30	ttc Phe	ccc Pro 200	ctc Leu	agc Ser	acc Thr	agg Arg	gta Val 205	cca Pro	gga Gly	gct Ala	gag Glu	gag Glu 210	tgt Cys	gag Glu	cgt Arg	gcc Ala	740
35	gtc Val 215	atc Ile	gac Asp	ttt Phe	gtg Val	gct Ala 220	ttc Phe	cag Gln	gac Asp	atc Ile	tcc Ser 225	atc Ile	aag Lys	agg Arg	ctg Leu	cag Gln 230	788
												tgg Trp					836
40	agg Arg	gcg Ala	ggc Gly	cgc Arg 250	gcg Ala	gcc Ala	ttg Leu	cag Gln	ctg Leu 255	aag Lys	ctg Leu	cgt Arg	cgg Arg	cgg Arg 260	ctc Leu	acg Thr	884
45												gtg Val					932
50 ·						Arg	Met	Pro		Leu	Glu	cgg Arg 290					980
55	-				gtg Val		tgat	cctg	gc c	ccct	ctta	t tt	atto	taca			1028
-	tcct	tggc	ac c	ccac	ttgc	a ct	gaaa	gagg	ctt	ttt	tta	aata	gaag	aa a	tgag	gtttc	1088
	ttaa	agct	ta t	tttt	ataa	a go	ttt	tcat	aaa	aaaa	aaa	aaaa	aaaa	a			1137
60		> 6 > 30 > PR															

5	<21	.3> C	Inkno	wn												
J		0> 6 Arg		Leu	. Glu 5		Pro	Gly	Leu	Ser 10		Leu	ı Cys	Leu	Val	
10	Ala	Leu	Pro	Ala 20	Leu	Leu	Pro	Val	Pro 25		Val	Arg	Gly	Val 30		Glu
15	Thr	Pro	Thr 35	Tyr	Pro	Trp	Arg	Asp 40		Glu	Thr	Gly	Glu 45		Leu	Val
	Cys	Ala 50	Gln	Cys	Pro	Pro	Gly 55	Thr	Phe	Val	Gln	Arg 60		Cys	Arg	Arg
20	Asp 65	Ser	Pro	Met	Thr	Cys 70		Pro	Cys	Pro	Pro 75	Arg	His	Tyr	Thr	Glr 80
ű	Phe	Trp	Asn	Tyr	Leu 85	Glu	Arg	Cys	Arg	Туг 90	Cys	Tyr	Val	Leu	Cys 95	Gly
25	Glu	Arg	Glu	Glu 100	Glu	Ala	Arg	Ala	Cys 105	His	Ala	Thr	His	Asn 110	Arg	Ala
30	Cys	Arg	Cys 115	Arg	Thr	Gly	Phe	Phe 120	Ala	His	Ala	Gly	Phe 125	Cys	Leu	Glu
	His	Ala 130	Ser	Cys	Pro	Pro	Gly 135	Ala	Gly	Val	Ile	Ala 140	Pro	Gly	Thr	Pro
35 .	Ser 145	Gln	Asn	Thr	Gln	Cys 150	Gln	Pro	Cys	Pro	Pro 155	Gly	Thr	Phe	Ser	Ala 160
	Ser	Ser	Ser	Ser	Ser 165	Glu	Gln	Cys	Gln	Pro 170	His	Arg	Asn	Cys	Thr 175	Ala
10	Leu	Gly	Leu	Ala 180	Leu	Asn	Val	Pro	Gly 185	Ser	Ser	Ser	His	Asp 190	Thr	Leu
15	Cys	Thr	Ser 195	Cys	Thr	Gly	Phe	Pro 200	Leu	Ser	Thr	Arg	Val 205	Pro	Gly	Ala
	Glu	Glu 210	Cys	Glu	Arg	Ala	Val 215	Ile	Asp	Phe	Val	Ala 220	Phe	Gln	Asp	Ile
50	Ser 225	Ile	Lys	Arg	Leu	Gln 230	Arg	Leu	Leu	Gln	Ala 235	Leu	Glu	Ala	Pro	Glu 240
	Gly	Trp	Gly	Pro	Thr 245	Pro	Arg	Ala	Gly.	Arg 250	Ala	Ala	Leu	Gln	Leu 255	Lys
55	Leu	Arg	Arg	Arg 260	Leu	Thr	Glu	Leu	Leu 265	Gly	Ala	Gln	Asp	Gly 270	Ala	Leu
50	Leu	Val	Arg 275	Leu	Leu	Gln	Ala	Leu 280	Arg	Val	Ala	Arg	Met 285	Pro	Gly	Leu
. •	Glu	Arg	Ser	Val	Arg	Glu	Arg	Phe	Leu	Pro	Val	His				

5	<210> 7 <211> 1031 <212> DNA <213> Unknown	
10	<220> <221> CDS <222> (402)(1031)	
15	<220> <223> Description of Unknown Organism:primate <400> 7	
	ccgactcant ccctcgccga ccagtctggg cagcggagga gggtggttgg cagtggctgg 60	
20	aagetteget atgggaagte gtteetttge tetetegege ceagteetee teeetggtte 120)
	tecteageeg etgteggagg agageaeeeg gagaegeggg etgeagtege ggeggettet 180)
	ccccgcctgg gcggccgcgc cgctgggcag gtgctgagcg cccctagagc ctcccttgcc 24()
25	geotecetee tetgecegge egeageagtg cacatggggt gttggaggta gatgggetee 300)
•	cggcccggga ggcggcggtg gatgcggcgc tgggcagaag cagccgccga ttccagctgc 360)
30	consequence consequence constraints of active constraints and consequence cons	;
35	age age age ace gee etc gee tee tge age ege ate gee ege ega gee 464 Ser Ser Ser Thr Ala Leu Ala Ser Cys Ser Arg Ile Ala Arg Arg Ala 10 15 20	i
40	aca gcc acg atg atc gcg ggc tcc ctt ctc ctg ctt gga ttc ctt agc 512 Thr Ala Thr Met Ile Ala Gly Ser Leu Leu Leu Leu Gly Phe Leu Ser 25 30 35	!
40	acc acc aca gct cag cca gaa cag aag gcc tcg aat ctc att ggc aca 560 Thr Thr Thr Ala Gln Pro Glu Gln Lys Ala Ser Asn Leu Ile Gly Thr 40 . 45 50	l
45	ac cgc cat gtt gac cgt gcc acc ggc cag gtg cta acc tgt gac aag 608 Yyr Arg His Val Asp Arg Ala Thr Gly Gln Val Leu Thr Cys Asp Lys 55 60 65	
50	gt cca gca gga acc tat gtc tct gag cat tgt acc aac aca agc tgc 656 Cys Pro Ala Gly Thr Tyr Val Ser Glu His Cys Thr Asn Thr Ser Cys 70 75 80 85	
55	gcg tct ggc agc agt tgc cct gtg ggg acc ttt acc agg cat gag aat 704 Ala Ser Gly Ser Ser Cys Pro Val Gly Thr Phe Thr Arg His Glu Asn 90 95 100	
60	ggc ata gag aaa tgc cat gac tgt agt cag cca tgc cca tgg cca atg 752 Gly Ile Glu Lys Cys His Asp Cys Ser Gln Pro Cys Pro Trp Pro Met 105 110 115	
	att gag aaa tta cct tgt gct gcc ttg act gac cga gaa tgc act tgc 800 Tie Glu Lys Leu Pro Cys Ala Ala Leu Thr Asp Arg Glu Cys Thr Cys 120 125 130	

5															acg Thr	gtg Val	848
10															gag Glu		896
15·															cct Pro 180		944
	agt Ser	gtg Val	atg Met	aac Asn 185	gca Ala	aag Lys	cat His	aca Thr	cag Gln 190	act Thr	gtc Val	tgg Trp	atc Ile	aga Arg 195	acc Thr	tgg Trp	992
20	ttg Leu	gtg Val	atc Ile 200	aag Lys	ccg Pro	GJÀ aaa	gga Gly	cca Pro 205	agg Arg	aga Arg	cag Gln	aca Thr	act Thr 210				1031
25	<213 <213)> 8 L> 21 2> PF 3> Ur		v n		•											
30	<400 Met 1		Thr	Ser	Pro 5	Ser	Ser	Ser	Thr	Ala 10	Leu	Ala	Ser	Cys	Ser 15	Arg	
35	Ile	Ala	Arg	Arg 20	Ala	Thr	Ala	Thr	Met 25	Ile	Ala	Gly	Ser	Leu 30	Leu	Leu	
	Leu	Gly	Phe 35	Leu	Ser	Thr	Thr	Thr 40	Ala	Gln	Pro	Glu	Gln 45	Lys	Ala	Ser	
40	Asn	Leu 50	Ile	Gly	Thr	Ţyr	Arg 55	His	Val	Asp	Arg	Ala 60	Thr	Gly	Gln	Val	
45	Leu 65	Thr	Cys	Asp	Lys	Cys 70	Pro	Ala	Gly	Thr	Tyr 75	Va:1	Ser	Glu	His	Cys 80	
	Thr	Asn	Thr	Ser	Cys 85	Ala	Ser	Gly	Ser	Ser 90	Cys	Pro	Val	Gly	Thr 95	Phe	
50	Thr	Arg	His	Glu 100	Asn	Gly	Ile	Glu	Lys 105	Cys	His	Asp	Cys	Ser 110	Gln	Pro	
	Cys	Pro	Trp 115	Pro	Met	Ile	Glu	Lys 120	Leu	Pro	Суз	Ala	Ala 125	Leu	Thr	Asp	
55	Arg	Glu 130	Cys	Thr	Cys	Pro	Pro 135	Gly	Met	Phe	Gln	Ser 140	Asn	Ala	Thr	Cys	
60	Ala 145	Pro	His	Thr	Val	Cys 150	Pro	Val	Gly	Trp	Gly 155	Val	Arg	Lys	Lys	Gly 160	
J J	Thr	Glu	Thr	Glu	Asp 165	Val	Arg	Cys	Lys	Gln 170	Суз	Ala	Arg	Gly	Tyr 175	Phe	

5	Ser .	Asp	Val	Pro 180	Ser	Ser	Val	Met	Asn 185	Ala	ГЛЗ	His	Thr	Gln 190	Thr	Val	
	Trp	Ile	Arg 195	Thr	Trp	Leu	Val	Ile 200	Lys	Pro	Gly	Gly	Pro 205	Arg	Arg	Gln	
10	Thr	Thr 210			-												
15	<210: <211: <212: <213:	> 28 > DN	Α	m													
20	<220: <221: <222:	> CD		. (23	74)												
25	<220:		scri	.ptic	n of	Unk	cnowr	n Org	ganis	: pı	rimat	:e					•
23	<400: ggca		cc g	acto	agto	c ct	cgcc	gaco	agt	ctgo	gca	gcgg	gagga	agg (gtggt	tggca	60
30	gtgg	tgg	aa g	ctto	gcta	t gg	gaaç	gtcgt	tec	tttc	gctc	tcto	gcgc	cc é	agtco	ctcctc	120
	cctg	gttc	tc c	tcag	ccgc	t gt	cgga	aggaç	g ago	acco	gga	gaco	cggg	jct ç	gcagt	cgcgg	180
	cggct	tct	cc c	cgcc	tggg	rc gg	rccgo	gccg	ctg	ggca	ıggt	gctg	gagco	icc c	ctag	gegeet	240
35	cccti	gcc	gc c	tccc	tcct	c tg	ccc	gccg	cag	cagt	gca	cato	gggt	gt t	ggag	gtaga	300
	tgggd	tcc	cg g	cccg	ggag	ıg cg	gege	jtgga	tgo	ggcg	gctg	ggca	ıgaag	rca c	gccgc	cgatt	360
40	ccago	etgc	cc c	gcgc	gccc	c gg	gege	ecct	gcg	agto	ccc	ggtt	cago			g acc y Thr	418
45	tct o	ecg Pro 5	agc Ser	agc Ser	agc Ser	acc Thr	gcc Ala 10	ctc Leu	gcc Ala	tcc Ser	tgc Cys	agc Ser 15	cgc Arg	atć Ile	gcc Ala	cgc Arg	466
50	cga q Arg A 20																514
	ctt a Leu S																562
55	ggc a																610
60	gac a Asp I																658

5	agc Ser	ctg Leu 85	cgc Arg	gtc Val	tgc Cys	agc Ser	agt Ser 90	tgc Cys	cct Pro	gtg Val	Gly	acc Thr 95	ttt Phe	acc Thr	agg Arg	cat His	706
	gag Glu 100	aat Asn	ggc	ata Ile	gag Glu	aaa Lys 105	tgc Cys	cat His	gac Asp	tgt Cys	agt Ser 110	cag Gln	cca Pro	tgc Cys	cca Pro	tgg Trp 115	754
15	cca Pro	atg Met	att Ile	gag Glu	aaa Lys 120	tta Leu	cct Pro	tgt Cys	gct Ala	gcc Ala 125	ttg Leu	act Thr	gac Asp	cga Arg	gaa Glu 130	tgc Cys	802
	act Thr	tgc Cys	cca Pro	cct Pro 135	ggc Gly	atg Met	ttc Phe	cag Gln	tct Ser 140	aac Asn	gct Ala	acc Thr	tgt Cys	gcc Ala 145	ccc Pro	cat His	850
20	acg Thr	gtg Val	tgt Cys 150	cct Pro	gtg Val	ggt Gly	tgg Trp	ggt Gly 155	gtg Val	cgg Arg	aag Lys	aaa Lys	ggg Gly 160	aca Thr	gag Glu	act Thr	898
25	gag Glu	gat Asp 165	gtg Val	cgg Arg	tgt Cys	aag Lys	cag Gln 170	tgt Cys	gct Ala	cgg Arg	ggt Gly	acc Thr 175	ttc Phe	tca Ser	gat Asp	gtg Val	946
30	cct Pro 180	tct Ser	agt Ser	gtg Val	atg Met	aaa Lys 185	tgc Cys	aaa Lys	gca Ala	tac Tyr	aca Thr 190	gac Asp	tgt Cys	ctg Leu	agt Ser	cag Gln 195	994
35	aac Asn	ctg Leu	gtg Val	gtg Val	atc Ile 200	aag Lys	ccg Pro	GJA Gaa	acc Thr	aag Lys 205	gag Glu	aca Thr	gac Asp	aac Asn	gtc Val 210	tgt Cys	1042
	ggc Gly	aca Thr	ctc Leu	ccg Pro 215	tcc Ser	ttc Phe	tcc Ser	agc Ser	tcc Ser 220	acc Thr	tca Ser	cct Pro	tcc Ser	cct Pro 225	ggc Gly	aca Thr	1090-
40	gcc Ala	atc Ile	ttt Phe 230	cca Pro	cgc Arg	cct Pro	gag Glu	cac His 235	atg Met	gaa Glu	acc Thr	cat His	gaa Glu 240	gtc Val	cct Pro	tcc Ser	1138
45	tcc Ser	act Thr 245	tat Tyr.	gtt Val	ccc Pro	aaa Lys	ggc Gly 250	atg Met	aac Asn	tca Ser	aca Thr	gaa Glu 255	tcc Ser	aac Asn	tct Ser	tct Ser	1186
50	gcc Ala 260	tct Ser	gtt Val	aga Arg	cca Pro	aag Lys 265	Val	ctg Leu	agt Ser	Şer	atc Ile 270	cag Gln	gaa Glu	Gly ggg	aca Thr	gtc Val 275	1234
55	cct Pro	gac Asp	aac Asn	aca Thr	agc Ser 280	tca Ser	gca Ala	agg Arg	ggg Gly	aag Lys 285	gaa Glu	gac Asp	gtg Val	aac Asn	aag Lys 290	acc Thr	1282
					cag Gln												1330
60	cac His	atc Ile	ctg Leu 310	aag Lys	ctg Leu	ctg Leu	ccg Pro	tcc Ser 315	atg Met	gag Glu	gcc Ala	act Thr	ggg Gly 320	ggc Gly	gag Glu	aag Lys	1378

5	tcc Ser	agc Ser 325	acg Thr	ccc	atc Ile	aag Lys	ggc Gly 330	ccc Pro	aag Lys	agg Arg	gga Gly	cat His 335	cct Pro	aga Arg	cag Gln	aac Asn	1426
10	cta Leu 340	cac His	aag Lys	cat His	ttt Phe	gac Asp 345	atc Ile	aat Asn	gag Glu	cat His	ttg Leu 350	Pro	tgg Trp	atg Met	att Ile	gtg Val 355	1474
15	ctt Leu	ttc Phe	ctg Leu	ctg Leu	ctg Leu 360	gtg Val	ctt Leu	gtg Val	gtg Val	att Ile 365	gtg Val	gtg Val	tgc Cys	agt Ser	atc Ile 370	cgg Arg	1522
	aaa Lys	agc Ser	tcg Ser	agg Arg 375	act Thr	ctg Leu	aaa Lys	aag Lys	380 Gl ^A aaa	ccc Pro	cgg Arg	cag Gln	gat Asp	ccc Pro 385	agt Ser	gcc Ala	1570
20	att Ile	gtg Val	gaa Glu 390	aag Lys	gca Ala	Gly ggg	ctg Leu	aag Lys 395	aaa Lys	tcc Ser	atg Met	act Thr	cca Pro 400	acc Thr	cag Gln	aac Asn	1618
25	cgg Arg	gag Glu 405	aaa Lys	tgg Trp	atc Ile	tac Tyr	tac Tyr 410	tgc Cys	aat Asn	ggc Gly	cat His	ggt Gly 415	atc Ile	gat Asp	atc Ile	ctg Leu	1666
30	aag Lys 420	ctt Leu	gta Val	gca Ala	gcc Ala	caa Gln 425	gtg Val	gga Gly	agc Ser	cag Gln	tgg Trp 430	aaa Lys	gat Asp.	atc Ile	tat Tyr	cag Gln 435	1714
35	ttt Phe	ctt Leu	tgc Cys	aat Asn	gcc Ala 440	agt Ser	gag Glu	agg Arg	gag Glu	gtt Val 445	gct Ala	gct Ala	ttc Phe	tcc Ser	aat Asn 450	Gl ^A aaa	1762
	tac Tyr	aca Thr	gcc Ala	gac Asp 455	cac His	gag Glu	cgg Arg	gcc Ala	tac Tyr 460	gca Ala	gct Ala	ctg Leu	cag Gln	cac His 465	tgg Trp	acc Thr	1810
40	atc Ile	cgg Arg	ggc Gly 470	ccc Pro	gag Glu	gcc Ala	agc Ser	ctc Leu 475	gcc Ala	cag Gln	cta Leu	att Ile	agc Ser 480	gcc Ala	ctg Leu	cgc Arg	1858
45	cag Gln	cac His 485	cgg Arg	aga Arg	aac Asn	gat Asp	gtt Val 490	gtg Val	gaig Glu	aag Lys	att Ile	cgt Arg 495	GJĀ āāā	ctg Leu	atg Met	gaa Glu	1906
50	gac Asp 500	acc Thr	acc Thr	cag Gln	ctg Leu	Glu	Thr	gac Asp	aaa Lys	Leu	gct Ala 510	ctċ Leu	ccg Pro	atg Met	agc Ser	ccc Pro 515	1954
55					ccg Pro 520												2002
<i>JJ</i>	aat Asn	tcc Ser	gct Ala	ctc Leu 535	ctg Leu	acg Thr	gtg Val	gag Glu	cct Pro 540	tcc Ser	cca Pro	cag Gln	gac Asp	aag Lys 545	aac Asn	aag Lys	2050
60	ggc Gly	ttc Phe	ttc Phe 550	gtg Val	gat Asp	gag Glu	tcg Ser	gag Glu 555	ccc Pro	ctt Leu	ctc Leu	cgc Arg	tgt Cys 560	gac Asp	tct Ser	aca Thr	2098

5	tcc agc ggc tcc tcc gcg ctg agc agg aac ggt tcc ttt att acc aaa Ser Ser Gly Ser Ser Ala Leu Ser Arg Asn Gly Ser Phe Ile Thr Lys 565 570 575	2146
10	gaa aag aag gac aca gtg ttg cgg cag gta cgc ctg gac ccc tgt gac Glu Lys Lys Asp Thr Val Leu Arg Gln Val Arg Leu Asp Pro Cys Asp 580 595	2194
15	ttg cag cct atc ttt gat gac atg ctc cac ttt cta aat cct gag gag Leu Gln Pro Ile Phe Asp Asp Met Leu His Phe Leu Asn Pro Glu Glu 600 605 610	2242
	ctg cgg gtg att gaa gag att ccc cag gct gag gac aaa cta gac cgg Leu Arg Val Ile Glu Glu Ile Pro Gln Ala Glu Asp Lys Leu Asp Arg 615 620 625	2290
20 	cta ttc gaa att att gga gtc aag agc cag gaa gcc agc cag acc ctc Leu Phe Glu Ile Ile Gly Val Lys Ser Gln Glu Ala Ser Gln Thr Leu 630 635 640	2338
25	ctg gac tct gtt tat agc cat ctt cct gac ctg ctg tagaacatag Leu Asp Ser Val Tyr Ser His Leu Pro Asp Leu Leu 645 650 655	2384
	ggatactgca ttctggaaat tactcaattt agtggcaggg tggtttttta atttccttct	2444
30	gtgtctgatt tttgttgttt ggggtgtgtgt tgtgtgtttg tgtgtgtgtg tgtgtgtg	2504
	tgtgtgtgtg tttaacagag aatatggcca gtgcttgagt tettteteet tetetetet	2564
35	tctttttttt ttaaataact cttctgggaa gttggtttat aagcctttgc caggtgtaac	2624
<i>ڊ</i> د	tgttgtgaaa tacccaccac taaagttttt taagttccat attttctcca tttttgccttc	2684
	ttatgtattt tcaagattat tctgtgcact ttaaatttac tcaacttacc ataaatgcag	2744
10	tgtgactttt cccacacact ggattgtgag gctcttaact tcttaaaagt ataatggcat	2804
	cttgtgaatc ctataagcag tctttatgtc tcttaacatt cacacctact ttttaaaaac	2864
15	aaatattatt act	2877
50	<210> 10 <211> 655 <212> PRT <213> Unknown	
: =	<400> 10 Met Gly Thr Ser Pro Ser Ser Ser Thr Ala Leu Ala Ser Cys Ser Arg 1 5 10 15	
55	Ile Ala Arg Arg Ala Thr Ala Thr Met Ile Ala Gly Ser Leu Leu Leu 20 25 30	
50	Leu Gly Phe Leu Ser Thr Thr Thr Ala Gln Pro Glu Gln Lys Ala Ser 35 40 45	
	Asn Leu Ile Gly Thr Tyr Arg His Val Asp Arg Ala Thr Gly Gln Val 50 55 60	

5	Leu 65	Thr	Cys	Asp	Lys	Cys 70	Pro	Ala	Gly	Thr	Tyr 75	Val	Ser	Glu	His	СУ:
	Thr	Asn	Thr	Ser	Leu 85	Arg	Val	Суѕ	Ser	Ser 90	Cys	Pro	Val	Gly	Thr 95	
10	Thr	Arg	His	Glu 100	Asn	Gly	Ile	Glu	Lys 105	Суз	His	Asp	Cys	Ser 110	Gln	Pro
15	Суѕ	Pro	Trp 115	Pro	Met	Ile	Glu	Lys 120	Leu	Pro	Cys	Ala	Ala 125	Leu	Thr	Ası
	Arg	Glu 130	Cys	Thr	Суѕ	Pro	Pro 135	Gly	Met	Phe	Gln	Ser 140	Asn	Ala	Thr	Суз
20_	Ala 145	Pro	His	Thr	Val	Cys 150	Pro	Val	Gly	Trp	Gly 155	Val	Arg	Lys	Lys	Gl ₃ 160
	Thr	Glu	Thr	Glu	Asp 165	'Val	Arg	Суѕ	Lys	Gln 170	Cys	Ala	Arg	Gly	Thr 175	Phe
25	Ser	Asp	Val	Pro 180	Ser	Seŗ	Val	Met	Lys 185	Cys	Lys	Ala	Tyr	Thr 190	Asp	Cys
3.0	Leu	Ser	Gln 195	Asn	Leu	Val	Val	Ile 200	Lys	Pro	Gly	Thr	Lys 205	Glu	Thr	Asp
	Asn	Val 210	Cys	Gly	Thr	Leu	Pro 215	Ser	Phe	Ser	Ser	Ser 220	Thr	Ser	Pro	Ser
35	Pro 225	Gly	Thr	Ala	Ile	Phe 230	Pro	Arg	Pro	Glu	His 235	Met	Glu	Thr	His	Glu 240
	Val	Pro	Ser	Ser	Thr 245	Tyr	Val	Pro	Lys	Gly 250	Met	Asn	Ser	Thr	Glu 255	Ser
40	Asn	Ser	Ser	Ala 260	Ser	Val	Arg	Pro	Lys 265	Val	Leu	Ser	Ser	Ile 270	Gln	Glu
45	Gly	Thr	Val 275	Pro	Asp	Asn	Thr	Ser 280	Ser	Ala	Arg	Gly	Lys 285	Glu	Asp	Val
	Asn	Lys 290	Thr	Leu	Pro	Asn	Leu 295	Gln	Val	Val	Asn	His 300	Gln	Gln	Gly	Pro
50	His 305	His	Arg	His	Ile	Leu 310	Lys	Leu	Leu	Pro	Ser 315	Met	Glu	Ala	Thr	Gly 320
	Gly	Glu	Lys	Ser	Ser 325	Thr	Pro	Ile	Lys	Gly 330	Pro	Lys	Arg	Gly	His 335	Pro
55	Arg	Gln	Asn	Leu 340	His	Lys	His	Phe	Asp 345	Ile	Asn	Glu	His	Leu 350	Pro	Trp
50	Met	Ile	Val 355	Leu	Phe	Leu	Leu	Leu 360	Val	Leu	Val	Val	Ile 365	Val	Val	Cys
	Ser	Ile 370		Lys	Ser		Arg		Leu	Lys	Lys	Gly	Pro	Arg	Gln	Asp

5	Pro 385	Ser	Ala	Ile	Val	Glu 390	Lys	Ala	Gly	Leu	Lys 395	Lys	Ser	Met	Thr	Pro 400
	Thr	Gln	Asn	Arg	Glu 405	Lys	Trp	Ile	Tyr	Туг 410	Cys	Asn	Gly	His	Gly 415	Ile
10	qzA	Ile	Leu	Lys 420	Leu	Val	Ala	Ala	Gln 425	Val	Gly	Ser	Gln	Trp 430	Lys	Asp
15	Ile	Tyr	Gln 435	Phe	Leu	Cys	Asn	Ala 440	Ser	Glu	Arg	Glu	Val 445	Ala	Ala	Phe
	Ser	Asn 45,0	Gly	Tyr	Thr	Ala	Asp 455	His	Glu	Arg	Ala	Tyr 460	Ala	Ala	Leu	Gln
20	His 465	Trp	Thr	Ile	Arg	Gly 470	Pro	Glu	Ala	Ser	Leu 475	Ala	Gln	Leu	Ile	Ser 480
	Ala	Leu	Arg	Ģln	His 485	Arg	Arg	Asn	Asp	Val 490	Val	Glu	Lys	Ile	Arg 495	Gly
25	Leu	Met	Glu	Asp 500	Thr	Thr	Gln	Leu	Glu 505	Thr	Asp	Lys	Leu	Ala 510	Leu	Pro
30	Met	Ser	Pro 515	Ser	Pro	Leu	Ser	Pro 520	Ser	Pro	Ile	Pro	Ser 525	Pro	Asn	Ala
	Lys	Leu 530	Glu	Asn	Ser	Ala	Leu 535	Leu	Thr	Val	Glu	Pro 540	Ser	Pro	Gln	Asp
35	545					550					555			Leu		560
					565					570				Gly	575	
40		1		580					585					Arg 590		-
45			595					600					605	Phé		
٠.		610					615					620		Glu		-
50	625			,		630					635			Glu		Ser 640
	Gln	Thr	Leu	Leu	Asp 645	Ser	Val	Tyr	Ser	His 650	Leu	Pro	Asp	Leu	Leu 655	
55	<211 <212)> 11 .> 14 !> DN	174	'n									,			
60	<220 <223		scri	ptic	n of	Unk	nown	Org	anis	m:pr	imat	e				
	<220)>												•		

5		1> C 2> (DS 1)	(133	2)												
10	atg	Gly aaa 0> 1	acc	tct Ser	ccg Pro 5	agc Ser	agc Ser	agc Ser	acc Thr	gcc Ala 10	ctc Leu	gcc Ala	tcc Ser	tgc Cys	agc Ser 15	cgc Arg	48
15	atc Ile	gcc Ala	cgc Arg	cga Arg 20	gcc Ala	aca Thr	gcc Ala	acg Thr	atg Met 25	atc Ile	gcg Ala	ggc Gly	tcc Ser	ctt Leu 30	ctc Leu	ctg Leu	96
1.5	ctt Leu	gga Gly	ttc Phe 35	ctt Leu	agc Ser	acc Thr	acc Thr	aca Thr 40	gct Ala	cag Gln	cca Pro	gaa Glu	cag Gln 45	aag Lys	gcc Ala	tcg Ser	144
20	aat Asn	ctc Leu 50	att Ile	ggc Gly	aca Thr	tac Tyr	cgc Arg 55	cat His	gtt Val	gac Asp	cgt Arg	gcc Ala 60	acc Thr	ggc Gly	cag Gln	gtg Val	192
25	cta Leu 65	acc Thr	tgt Cys	gac Asp	aag Lys	tgt Cys 70	cca Pro	gca Ala	gga Gly	acc Thr	tat Tyr 75	gtc Val	tct Ser	gag Glu	cat His	tgt Cys 80	240
30	acc Thr	aac Asn	aca Thr	agc Ser	ctg Leu 85	cgc Arg	gtc Val	tgc Cys	agc Ser	agt Ser 90	tgc Cys	cct Pro	gtg Val	GJÀ aaa	acc Thr 95	ttt Phe	288
) F	acc Thr	agg Arg	cat His	gag Glu 100	aat Asn	ggc Gly	ata Ile	gag Glu	aaa Lys 105	Cys	cat His	gac Asp	tgt Cys	agt Ser 110	cag Gln	cca Pro	336
35	tgc Cys	cca Pro	tgg Trp 115	cca Pro	atg Met	att Ile	gag Glu	aaa Lys 120	tta Leu	cct Pro	tgt Cys	gct Ala	gcc Ala 125	ttg Leu	act Thr	gac Asp	384
10	cga Arg	gaa Glu 130	tgc Cys	act Thr	tgc Cys	cca Pro	cct Pro 135	ggc Gly	atg Met	ttc Phe	Gln	tct Ser 140	aac Asn	gct Ala	acc Thr	tgt Cys	432
15	gcc Ala 145	ccc Pro	cat His	acg Thr	gtg Val	tgt Cys 150	cct Pro	gtg Val	ggt Gly	tgg Trp	ggt Gly 155	gtg Val	cgg Arg	aag Lys	aaa Lys	ggg Gly 160	480
50	aca Thr	gag Glu	act Thr	gag Glu	gat Asp 165	gtg Val	cgg Arg	tgt Cys	aag Lys	cag Gln 170	tgt Cys	gct Ala	cgg Arg	ggt Gly	acc Thr 175	ttc Phe	528
	tca Ser	gat Asp	gtg Val	cct Pro 180	tct Ser	agt Ser	gtg Val	atg Met	aaa Lys 185	tgc Cys	aaa Lys	gca Ala	tac Tyr	aca Thr 190	Asp	tgt Cys	576
55	ctg Leu	agt Ser	cag Gln 195	aac Asn	ctg Leu	gtg Val	gtg Val	atc Ile 200	aag Lys	ccg Pro	ggg Gly	acc Thr	aag Lys 205	gag Glu	aca Thr	gac Asp	624
50.			Cys			Leu						tcc Ser					672

5	cct Pro 225	ggc Gly	aca Thr	gcc Ala	atc Ile	ttt Phe 230	cca Pro	cgc Arg	cct Pro	gag Glu	cac His 235	atg Met	gaa Glu	acc Thr	cat His	gaa Glu 240	720
10	gtc Val	cct Pro	tcc Ser	tcc Ser	act Thr 245	tat Tyr	gtt Val	ccc Pro	aaa Lys	ggc Gly 250	atg Met	aac Asn	tca Ser	aca Thr	gaa Glu 255	tcc Ser	768
15												agt Ser					816
												ggg Gly					864
20	aac Asn	aag Lys 290	acc Thr	ctc Leu	cca Pro	aac Asn	Leu 295	cag Gln	gta Val	gtc Val	aac Asn	cac His 300	cag Gln	caa Gln	ggc Gly	ccc Pro	912
25	His 305	His	Arg	His	Ile	Leu 310	Lys	Leu	Leu	Pro	Ser 315	atg Met	Glu	Ala	Thr	Gly 3,20	960
30												aag Lys					1008
35	aga Arg	cag Gln	aac Asn	cta Leu 340	His	aag Lys	cat His	ttt Phe	gac Asp 345	atc Ile	aat Asn	gag Glu	cat His	ttg Leu 350	ccc Pro	tgg Trp	1056
												gtg Val				-	1104
40	Ser											380 GJA aaa					1152
45												aaa Lys					1200
50												aat Asn					1248
55												ațt Ile					1296
						caa Gln						ggt Gly	tgat	aatt	tt		1342
60	tact	tcad	ccc t	ggga	aggca	ag ca	tagt	gcag	j tga	aagg	gtat	cgat	atco	tg a	agct	tgtag	1402
	cago	ccaa	agt g	gggaa	agcca	ag to	gaaa	agata	tct	atca	igtt	tctt	tgca	at g	rccag	gtgaga	1462
	ggga	aggti	gc t	g													1474

5																
10	<21 <21	0> 1 1> 4 2> P: 3> U:	44 RT	wn												
		0> 1 Gly		Ser	Pro 5	Ser	Ser	Ser	Thr	Ala 10	. Leu	Ala	Ser	Cys	Ser 15	Arg
15	Ile	Ala	Arg	Arg 20	Ala	Thr	Ala	Thr	Met 25	Ile	Ala	Gly	Ser	Leu 30	Leu	Leu
20	Leu	Gly	Phe 35	Leu	Ser	Thr	Thr	Thr 40	Ala	Gln	Pro	Glu	Gln 45	Lys	Ala	Ser
20	Asn	Leu 50	Ile	Gly	Thr	Tyr	Arg 55	His	Val	Asp	Arg	Ala 60	Thr	Gly	Gln	Val
25	Leu 65	Thr	Cys	Asp	Lys	Cys 70	Pro	Ala	Gly	Thr	Туr 75	Val	Ser	Glu	His	Cys 80
	Thr	Asn	Thr	Ser	Leu 85	Arg	Val	Cys	Ser	Ser 90	Cys	Pro	Val	Gly	Thr 95	Phe
30	Thr	Arg	His	Glu 100	Asn	Gly	Ile	Glu	Lys 105	Суѕ	His	Asp	Cys	Ser 110	Gln	Pro
35	Cys	Pro	Trp 115	Pro	Met	Ile	Glu	Lys 120	Leu	Pro	Cys	Ala	Ala 125	Leu	Thr	Asp
	Arg	Glu 130	Cys	Thr	Cys	Pro	Pro 135	Gly	Met	Phe	Gln	Ser 140	Asn	Ala	Thr	Cys
10	Ala 145	Pro	His	Thr	Val	Cys 150	Pro	Val	Gly	Trp	Gly 155	Val	Arg	Lys	Lys	Gly 160
	Thr	Glu	Thr	Glu	Asp 165	Val	Arg	Cys	Lys	Gln 170	Суѕ	Ala	Arg	Gly	Thr 175	Phe
15	Ser	Asp	Val	Pro 180	Ser	Ser	Val	Met	Lys 185	Cys	Lys	Ala	Tyr	Thr 190	Asp	Суѕ
50	Leu	Ser	Gln 195	Asn	Leu	Val	Val	Ile 200	Lys	Pro	Gly	Thr	Lys 205	Glu	Thr	Asp
	Asn	Val 210	Cys	Gly	Thr	Leu	Pro 215	Ser	Phe	Ser	Ser	Ser 220	Thr	Ser	'Pro	Ser
55	Pro 225	Gly	Thr	Ala	Ile	Phe 230	Pro	Arg	Pro	Glu	His 235	Met	Glu	Thr	His	Glu 240
`	Val	Pro	Ser	Ser	Thr 245		Val	Pro	Lys	Gly 250	Met	Asn	Ser	Thr	Glu 255	Ser
50	Asn	Ser	Ser	Ala 260	Ser	Val	Arg	Pro	Lys 265	Val	Leu	Ser	Ser	Ile 270	Gln	Glu
	Gly	Thr	Val	Pro	Asp	Asn	Thr	Ser	Ser	Ala	Arg	Gly	Lys	Glu	Asp	Val

5	Asn	Lys 290		Leu	Pro	Asn	Leu 295	Gln	Val	Val	Asn	His 300	Gln	Gln	Gly	Pro
10	His 305	His	Arg	His	Ile	Leu 310	Lys	Leu	Leu	Pro	Ser 315	Met	Glu	Ala	Thr	Gly 320
_0	Gly	Glu	Lys	Ser	Ser 325	Thr	Pro	Ile	Lys	Gly 330		Ļγs	Arg	Gly	His 335	Pro
15	Ärg	Gln	Asn	Leu 340	His	Lys	His	Phe	Asp 345	Ile	Asn	Glu	His	Leu 350	Pro	Trp
	Met	Ile	Val 355	Leu	Phe	Leu	Leu	Leu 360	Val	Leu	Val	Val	Ile 365	Val	Val	Cys
20	Ser	Ile 370	Arg	Lys	Ser	Ser	Arg 375	Thr	Leu	Lys	Lys	Gly 380	Pro	Arg	Gln	Asp
25	Pro 385	Ser	Ala	Ile	Val	Glu 390	Lys	Ala	Gly	Leu	Lys 395		Ser	Met	Thr	Pro 400
	Thr	Gln	Asn	Arg	Glu 405	Lys	Trp	Ile	Tyr	Tyr 410	Cys	Asn	Gly	His	Gly 415	Pro
30	His	Asp	Glu	Glu 420	Trp	Gly	Leu	Met	Glu 425	Arg	His	Ile	Gln	Asp 430	Ile	Tyr
	Ile	Gln	Arg 435	Ser	Asn	Gln	Asp	Ser 440	Glu	Arg	Trp	Gly				
35	<211 <212)> 13 l> 22 l> PF B> Ur	27	vn.												
40	<220 <223		escri	ptic	on of	Unk	nown	org	ganis	sm:ro	odent					
45)> 13 Ala	-	Ala	Ala 5	Leu	Trp	Val	Ala	Leu 10	Val	Phe	Glu	Leu	Gln 15	Leu
50	Trp	Ala	Thr	Gly 20	His	Thr	Val	Pro	Ala 25	Gln	Val	Val	Leu	Thr 30	Pro	Tyr
30	Lys	Pro	Glu 35	Pro	Gly	Tyr	Glu	Cys 40	Gln	Ile	Ser	Gln	Glu 45	Tyr	Tyr	Asp
5 . 5	Arg	Lys 50	Ala	Gln	Met	Cys	Cys 55	Ala	Lys	Cys	Pro	Pro 60	Gly	Gln	Tyr	Val
	Lys 65	His	Phe	Cys	Asn	Lys 70	Thr	Ser	Asp	Thr	Val 75	Суѕ	Ala	Asp	Cys	Glu 80
60	Ala	Ser	Met	Tyr	Thr 85	Gln	Val	Trp	Asn	Gln 90	Phe	Arg	Thr	Cys	Leu 95	Ser
	Cys	Ser	Ser	Ser 100	Суз	Thr	Thr	Asp	Gln 105	Val	Glu	Ile	Arg	Ala 110	Cys	Thr

Lys Gln Gln Asn Arg Val Cys Ala Cys Glu Ala Gly Arg Tyr Cys Ala Leu Lys Thr His Ser Gly Ser Cys Arg Gln Cys Met Arg Leu Ser Lys 10 Cys Gly Pro Gly Phe Gly Val Ala Ser Ser Arg Ala Pro Asn Gly Asn 150 155 Val Leu Cys Lys Ala Cys Ala Pro Gly Thr Phe Ser Asp Thr Thr Ser 15 Ser Thr Asp Val Cys Arg Pro His Arg Ile Cys Ser Ile Leu Ala Ile 20 Pro Gly Asn Ala Ser Thr Asp Ala Val Cys Ala Pro Glu Ser Pro Thr 200 Leu Ser Ala Ile Pro Arg Thr Leu Tyr Val Ser Gln Pro Glu Pro Thr 215 25 Arg Ser Gln 225 30 <210> 14 <211> 225 <212> PRT <213> Unknown 35 <223> Description of Unknown Organism:primate <400> 14 Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu 40 Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 45 Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 50 Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 55 Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 60 Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 120 Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg

										`					
5	Pro Gl 145	y Phe	Gly	Val	Ala 150	Arg	Pro	Gly	Thr	Glu 155	Thr	Ser	Asp	Val	Val 160
10	Cys Ly	s Pro	Суѕ	Ala 165	Pro	Gly	Thr	Phe	Ser 170	Asn	Thr	Thr	Ser	Ser 175	Thr
	Asp Il	e Cys	Arg 180	Pro	Ḥis	Gln	Ile	Суs 185	Asn	Val	Val	Ala	Ile 190	Pro	Gly
15	Asn Al	a Ser 195	Met	Asp	Ala	Val	Cys 200	Thr	Ser	Thr	Ser	Pro 205	Thr	Arg	Ser
	Met Al 21		Gly	Ala	Val	His 215	Leu	Pro	Gln	Pro	Val 220	Ser	Thr	Arg	Ser
20	Gln. 225														
25	<210><211><211><212><213>	187 PRT	wn												
30	<220> <223>	Descr	ipti	on o:	E Un}	cnowi	ı Org	ganis	sm:pı	rimat	:e				
35	<400> Met As: 1		Leu	Leu 5	Суз	Cys	Ala	Leu	Val 10	Phe	Leu	Asp	Ile	Ser 15	Ile
	Lys Tr	p Thr	Thr 20	Gln	Glu	Thr	Phe	Pro 25	Pro	Lys	Tyr	Leu	His 30	Tyr	Asp
40	Glu Gl	Thr 35	Ser	His	Gln	Leu	Leu 40	Cys	Asp	Lys	Суз	Pro 45	Pro	Gly	Thr
	Tyr Let		Gln	His	Cys	Thr 55	Ala	Lys	Trp	Lys	Thr 60	Val	Суѕ	Ala	Pro
45	Cys Pro 65	o Asp	His	Tyr	Tyr 70	Thr	Asp	Ser	Trp	His 75	Thr	Ser	Asp	Glu	Cys 80
50	Leu Ty	r Cys	Ser	Pro 85	Val	Суз	Lys	Glu	Leu 90	Gln	Tyr	Val	Lys	Gln 95	Glu
	Cys Ası	n Arg	Thr 100	His	Asn	Arg	Val	Суs 105	Glu	Cys	Lys	Glu	Gly 110	Arg	Tyr
55	Leu Gl	Ile 115	Glu	Phe	Суз	Leu	Lys 120	His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe
	Gly Val		Gln	Ala	Gly	Thr 135	Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg
60	Cys Pro	o Asp	Gly	Phe	Phe 150	Ser	Asn	Glu	Thr.	Ser 155	Ser	Lys	Ala	Pro	Cys 160
	Arg Ly	s His	Thr	Asn 165	Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys

5	Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly 180 185	
10	<210> 16 <211> 636 <212> DNA <213> Unknown	
15	<220> <223> Description of Unknown Organism:rodent	
20	<220> <221> CDS <222> (104)(553)	
	<400> 16 ggcacgaggg cgtttggcgc ggaagtgcta ccaagctgcg gaaagcgtga gtctggag	ca 60
25	cagcactggc gagtagcagg aataaacacg tttggtgaga gcc atg gca ctc aag Met Ala Leu Lys 1	115
30	gtc cta cct cta cac agg acg gtg ctc ttc gct gcc att ctc ttc cta Val Leu Pro Leu His Arg Thr Val Leu Phe Ala Ala Ile Leu Phe Leu 5 10 15 20	163
35	ctc cac ctg gca tgt aaa gtg agt tgc gaa acc gga gat tgc agg cag Leu His Leu Ala Cys Lys Val Ser Cys Glu Thr Gly Asp Cys Arg Gln 25 30 35	211
`	cag gaa ttc aag gat cga tct gga aac tgt gtc ctc tgc aaa cag tgc Gln Glu Phe Lys Asp Arg Ser Gly Asn Cys Val Leu Cys Lys Gln Cys 40 50	259
40	gga cct ggc atg gag ttg tcc aag gaa tgt ggc ttc ggc tat ggg gag Gly Pro Gly Met Glu Leu Ser Lys Glu Cys Gly Phe Gly Tyr Gly Glu 55 60 65	307
45	gat gca cag tgt gtg ccc tgc agg ccg cac cgg ttc aag gaa gac tgg Asp Ala Gln Cys Val Pro Cys Arg Pro His Arg Phe Lys Glu Asp Trp 70 75 80	355
50	ggt ttc cag aag tgt aag cca tgt gcg gac tgt gcg ctg gtg aac cgc Gly Phe Gln Lys Cys Lys Pro Cys Ala Asp Cys Ala Leu Val Asn Arg 85	403
55	ttt cag agg gcc aac tgc tca cac acc agt gat gct gtc tgc ggg gàc Phe Gln Arg Ala Asn Cys Ser His Thr Ser Asp Ala Val Cys Gly Asp 105 110 115	451
	tgc ctg cca gga ttt tac cgg aag acc aaa ctg gtt ggt ttt caa gac Cys Leu Pro Gly Phe Tyr Arg Lys Thr Lys Leu Val Gly Phe Gln Asp 120 125 130	499
60	atg gag tgt gtg ccc tgc gga gac cca cct cct ccc tac gaa cca cac Met Glu Cys Val Pro Cys Gly Asp Pro Pro Pro Pro Tyr Glu Pro His 135	547

5	tgt gag tgatgtgcca agtggcagca gacetttaaa aaaaaaagaa aaaaaaacaa Cys Glu 150	603
	асааааасаа аааааааааа ааа	636
10	<210> 17 <211> 150 <212> PRT <213> Unknown	
15	<pre><400> 17 Met Ala Leu Lys Val Leu Pro Leu His Arg Thr Val Leu Phe Ala Ala 1</pre>	
20	Ile Leu Phe Leu Leu His Leu Ala Cys Lys Val Ser Cys Glu Thr Gly 20 25 30	
25	Asp Cys Arg Gln Gln Glu Phe Lys Asp Arg Ser Gly Asn Cys Val Leu 35 40 45	
4	Cys Lys Gln Cys Gly Pro Gly Met Glu Leu Ser Lys Glu Cys Gly Phe 50 60	
30	Gly Tyr Gly Glu Asp Ala Gln Cys Val Pro Cys Arg Pro His Arg Phe 65 70 75 80	
	Lys Glu Asp Trp Gly Phe Gln Lys Cys Lys Pro Cys Ala Asp Cys Ala 85 90 95	
35	Leu Val Asn Arg Phe Gln Arg Ala Asn Cys Ser His Thr Ser Asp Ala 100 105 110	
40	Val Cys Gly Asp Cys Leu Pro Gly Phe Tyr Arg Lys Thr Lys Leu Val 115 120 125	
	Gly Phe Gln Asp Met Glu Cys Val Pro Cys Gly Asp Pro Pro Pro 130 135 140	
4 5	Tyr Glu Pro His Cys Glu 145 150	,
50	<210> 18 <211> 474 <212> DNA <213> Unknown	
55	<220> <223> Description of Unknown Organism:primate	
	<220> <221> CDS <222> (78)(473)	
50	<400> 18	
	cgcgctgagg tggatttgta ccggagtccc atttgggagc aagagccatc tactcgtccg ttaccggcct tcccacc atg gat tgc caa gaa aat gag tac tgg gac caa	60 110

5					М	et A 1	sp C	ys G	ln G	lu A 5	sn G	lu T	yr T	rp A	sp G 10	ln	
10	tgg Trp	gga Gly	cgg Arg	tgt Cys 15	gtc Val	acc Thr	tgc Cys	caa Gln	cgg Arg 20	tgt Cys	ggt Gly	cct Pro	gga Gly	cag Gln 25	Glu	cta Leu	158
	tcc Ser	aag Lys	gat Asp 30	tgt Cys	ggt Gly	tat Tyr	gga Gly	gag Glu 35	ggt Gly	gga Gly	gat Asp	gcc Ala	tac Tyr 40	tgc Cys	aca Thr	gcc Ala	206
15	tgc Cys	cct Pro 45	cct Pro	cgc Arg	agt Ser	aca Thr	aaa Lys 50	gca Ala	gct Ala	Gly	gcc Ala	acc Thr 55	aca Thr	aat Asn	gtc Val	aga Arg	254
20	gtt Val 60	gca Ala	tca Ser	cct Pro	gtg Val	ctg Leu 65	tca Ser	tca Ser	atc Ile	gtg Val	ttc Phe 70	aga Arg	agg Arg	ttc Phe	aac Asn	tgc Cys 75	302
25	aca Thr	gtn Xaa	acc Thr	tct Ser	nat Xaa 80	gct Ala	gtc Val	tgt Cys	GJĀ āāā	gga Gly 85	ngg Xaa	ttt Phe	gcc Ala	caa Gln	gtt Val 90	tct Ser	350
30	aac Asn	cga Arg	aag Lys	aca Thr 95	cgc Arg	cat His	tgg Trp	aag Lys	gct Ala 100	gcc Ala	agg Arg	acc Thr	aag Lys	gat Asp 105	ggc Gly	atc Ile	398
	ccg Pro	tgg Trp	cac His 110	aaa Lys	gnc Xaa	aga Arg	ccc Pro	cca Pro 115	act Thr	tct Ser	gan Xaa	ggt Gly	tnc Xaa 120	aaa Lys	gtg Val	nct Xaa	446
35	ttc Phe	caa Gln 125	ttg Leu	gag Glu	ctt Leu	aat Asn	ggg Gly 130	agg Arg	can Xaa	a							474
40	<211 <212)> 19 l> 13 l> PF l> Ur	32	٧n			,			,			,	,	•		
45)> 19 Asp		Gln	Glu 5	Asn	Glu	Tyr	Trp	Asp 10	Gln	Trp	Gly	Arg	Cys 15	Val	
50	Thr	Cys	Gln	Arg 20	Cys	Gly	Pro	Gly	Gln 25	Glu	Leu	Ser	Lys	Asp 30	Cys	Gly	
	Tyr	Gly	Glu 35	Gly	Gly	Asp	Ala	Tyr 40	Cys	Thr	Ala	Cys	Pro 45	Pro	Arg	Ser	
55	Thr	Lys 50	Ala	Ala	Gly	Ala	Thr 55	Thr	Asn	Val	Arg	Val 60	Ala	Ser	Pro	Val	
60	Leu 65	Ser	Ser	Ile	Val	Phe 70	Arg	Arg	Phe	Asn	Cys 75	Thr	Xaa	Thr	Ser	Xaa 80	
- -	Ala	Val	Cys	Gly	Gly 85	Xaa	Phe	Alà	Gln	Val 90	Ser	Asn	Arg	Lys	Thr 95	Arg-	

5	His Trp Lys Ala Ala Arg Thr Lys Asp Gly Ile Pro Trp His Lys Xaa 100 105 110	1
	Arg Pro Pro Thr Ser Xaa Gly Xaa Lys Val Xaa Phe Gln Leu Glu Leu 115 120 125	1
10	Asn Gly Arg Xaa 130	
15	<210> 20 <211> 546 <212> DNA <213> Unknown	
20	<220> <223> Description of Unknown Organism:primate	
25	<220> <221> CDS <222> (78)(308)	
	<400> 20 cgcgctgagg tggatttgta ccggagtccc atttgggagc aagagccatc tactcgtc	cg 60
30	ttaccggcct tcccacc atg gat tgc caa gaa aat gag tac tgg gac caa Met Asp Cys Gln Glu Asn Glu Tyr Trp Asp Gln 1 5 10	110
35	tgg gga cgg tgt gtc acc tgc caa cgg tgt ggt cct gga cag gag cta Trp Gly Arg Cys Val Thr Cys Gln Arg Cys Gly Pro Gly Gln Glu Leu 15 20 25	158
40	tcc aag gat tgt ggt tat gga gag ggt gga gat gcc tac tgc aca gcc Ser Lys Asp Cys Gly Tyr Gly Glu Gly Gly Asp Ala Tyr Cys Thr Ala 30 35 40	206
	tgc cct cct cgc agg tac aaa agc agc tgg ggc cac cac aaa tgt cag Cys Pro Pro Arg Arg Tyr Lys Ser Ser Trp Gly His His Lys Cys Gln 45 50 55	254
45	agt tgc atc acc tgt gct gtc atc aat cgt gtt cag aag gtc caa ctg Ser Cys Ile Thr Cys Ala Val Ile Asn Arg Val Gln Lys Val Gln Leu 60 65 70 75	302
50	cac agc taacctctna tgctgtctgt ggggatgttt gncccaagtt ctnaccgaaa His Ser	358
	agacacgcca tgggaaggct ggcaggacca ngaatggccn tcccgtggca gaaagcca	ga 418
55	ccccccaacn nctgnaggtt ccaatgtggc cttnccattt ggaagcttan tgggaagg	ca 478
_	gatgncaacc caaagtggcc ccttcaggga ggccaaaatt tgttggcaat gggtgnag	ca 538
	gentacea	546

5	<210> 21 <211> 77 <212> PRT <213> Unknown <400> 21	
10	Met Asp Cys Gln Glu Asn Glu Tyr Trp Asp Gln Trp Gly Arg Cys Val	
15	Thr Cys Gln Arg Cys Gly Pro Gly Gln Glu Leu Ser Lys Asp Cys Gly 20 25 30	
	Tyr Gly Glu Gly Gly Asp Ala Tyr Cys Thr Ala Cys Pro Pro Arg Arg 35 40 45	
20	Tyr Lys Ser Ser Trp Gly His His Lys Cys Gln Ser Cys Ile Thr Cys 50 55 60	
25	Ala Val Ile Asn Arg Val Gln Lys Val Gln Leu His Ser 65 70 75	
30	<210> 22 <211> 932 <212> DNA <213> Unknown	
	<220> <223> Description of Unknown Organism:primate	
35	<220> <221> CDS <222> (78)(770)	
40	<220> <221> misc_feature <222> (782) <223> nucleotide may be A, C, G, or T	
45	<400> 22 cgcgctgagg tggatttgta ccggagtccc atttgggagc aagagccatc tactcgtccg 6	60
	ttaccggcct tcccacc atg gat tgc caa gaa aat gag tac tgg gac caa 1 Met Asp Cys Gln Glu Asn Glu Tyr Trp Asp Gln 1 5 10	.10
50	tgg gga cgg tgt gtc acc tgc caa cgg tgt ggt cct gga cag gag cta 1 Trp Gly Arg Cys Val Thr Cys Gln Arg Cys Gly Pro Gly Gln Glu Leu 15 20 25	.58
55	tcc aag gat tgt ggt tat gga gag ggt gga gat gcc tac tgc aca gcc 2 Ser Lys Asp Cys Gly Tyr Gly Glu Gly Gly Asp Ala Tyr Cys Thr Ala 30 35 40	106
60.	tgc cct cct cgc agg tac aaa agc agc tgg ggc cac cac aaa tgt cag 2 Cys Pro Pro Arg Arg Tyr Lys Ser Ser Trp Gly His His Lys Cys Gln	54

5	agt Ser 60	tgc Cys	atc Ile	acc Thr	tgt Cys	gct Ala 65	gtc Val	atc Ile	aat Asn	cgt Arg	gtt Val 70	cag Gln	aag Lys	gtc Val	aac Asn	tgc Cys 75	302
10												ttg Leu					350
15												gag Glu					398
												gcc Ala					446
20												cag Gln 135					494
25												acc Thr					542
30												aac Asn					590
35												aca Thr					638
33								_	_			agt Ser	_				686
40												ttc Phe 215					734
45			ata Ile									atg Met	tgat	gtco	ac		780
	anga	gcta	at a	ccct	acag	ja to	gggg	atat	cct	atco	cat	ccca	ccag	ag g	attg	attct	840
50	ccat	ttca	ıca a	ıggac	tgat	c to	gago	att	ctt	gctt	ccc	tgtt	gtag	rtc t	gggg	ragcca	900
	gatt	ccac	at t	cato	ggad	t ac	caga	cato	, tt								932
55	<211 <212)> 23 l> 23 l> PF l> Ur	1	m													
60	<400)> 23	3														

Met Asp Cys Gln Glu Asn Glu Tyr Trp Asp Gln Trp Gly Arg Cys Val 1 5 10 15

5	Thr	Cys	Gln	Arg 20	Cys	Gly	Pro	Gly	Gln 25	Glu	Leu	Ser	Lys	Asp 30	Cys	Gly	
10	Tyr	Gly	Glu 35	Gly	Gly	Asp	Ala	Tyr 40	Суѕ	Thr	Ala	Cys	Pro 45	Pro	Arg	Arg	
	Tyr	Lys 50	Ser	Ser	Trp	Gly	His 55	His	Lys	Cys	Gln	Ser 60	Cys	Ile	Thr	Cys	
15	Ala 65	Val	Ile	Asn	Arg	Val 70	Gln	Lys	Val	Asn	Cys 75	Thr	Ala	Thr	Ser	Asn 80	
	Ala	Val	Cys	Gly	Asp 85	Cys	Leu	Pro	Arg	Phe 90	Tyr	Arg	Lys	Thr	Arg 95	Ile	
20	Gly	Gly	Leu	Gln 100	Asp	Gln	Glu	Cys	Ile 105	Pro	Cys	Thr	Lys	Gln 110	Thr	Pro	
25	Thr	Ser	Glu 115	Val	Gln	Суѕ	Ala	Phe 120	Gln	Leu	Ser	Leu	Val 125	Glu	Ala	Asp	
23	Ala	Pro 130	Thr	Val	Pro	Pro	Gln 135	Glu	Ala	Thr	Leu	Val 140	Ala	Leu	Val	Ser	
30	Ser 145	Leu	Leu	Val	Val	Phe 150	Thr	Leu	Ala	Phe	Leu 155	Gly	Leu	Phe	Phe	Leu 160	
	Tyr	Cys	Lys	Gln	Phe 165	Phe	Asn	Arg	His	Cys 170	Gln	Arg	Gly	Gly	Leu 175	Leu	
35	Gln	Phe	Glu	Ala 180	Asp	Lys	Thr	Ala	Lys 185	Glu	Glu	Ser	Leu	Phe 190	Pro	Val	
40	Pro	Pro	Ser 195	Lys	Glu	Thr	Ser	Ala 200	Glu	Ser	Gln	Val	Ser 205	Trp	Ala	Pro	
	Gly	Ser 210	Leu	Ala	Gln	Leu	Phe 215	Ser	Leu	Asp	Ser	Val 220	Pro	Ile	Pro	Gln	
45	Gln 225	Gln	Gln	Gly	Pro	Glu 230	Met				•						
50	<211 <212)> 24 .> 23 !> DN	ia	m													
	<220 <223		scri	.ptic	n of	Unk	nown	Org	anis	m:pr	imat	:e					
55)> 24 jectt		gaco	aago	t tt	tato	atcg	r tca	gtgg	ıgac	ttaa	cctg	rtc t	taaa	agtgc	60
C 0	tgct	tctc	ct a	cact	cgct	c aa	gato	ccga	gto	agct	gta	ttat	ggca	tc c	tatt	agtca	120
60	ggca	gcct	gt g	ctto	aago	c cg	tagt	tgta	ttc	atco	cct	aaag	gggc	ca t	tccg	tttgt	180
	atca	tcac	at c	tcct	cagt	g go	rtcca	itata	tat	atca	agg	acat	gato	cao	ra		232

WO 00/01817 PCT/US99/12366

														-	
5	<210><211><211><212><213>	77 PRT	nown				3	6							
	<220>					•									
10	<223>	Des	cripti	on o	f Un	know	n Or	gani:	sm:p	rima	te				
15	<400> Leu A		eu Gly	Thr 5	Lys	Leu	Leu	Ser	Ser 10	Ser	Val	Gly	Leu	Asn 15	Leu
12	Ser X	aa Ly	ys Cys 20		Phe	Ser	Tyr	Thr 25	Arg	Ser	Arg	Ser	Arg 30	Val	Ser
20	Cys I		et Ala 35	Ser	Tyr	Xaa	Ser 40	Gly	Ser	Leu	Cys	Phe 45	Lys	Pro	Val
	Val Va	al Ph 50	ne Ile	Pro	Xaa	Arg 55	Gly	His	Ser	Val	Суs 60	Ile	Ile	Thr	Cys
25	Pro G	ln Ti	rp Val	His	Val 70	Tyr	Ile	Lys	Asp	Met 75	Met	Gln			
30	<210><211><211><212><213>	72 PRT	nown							a.					
35	<220> <223>	Desc	ripti	on o	f Unl	know	n Org	ganis	sm:pi	rima	:e				
40	<400> Thr Ly 1		ir Glu	Ser 5	Ser	Ser	Arg	Gly	Pro 10	Tyr	His	Pro	Ser	Glu 15	Cys
	Cys Pl	ne Th	r Tyr 20	Thr	Thr	Tyr	Lys	Ile 25	Pro	Arg	Gln	Arg	Ile 30	Met	Asp
45	Tyr Ty		u Thr	Asn	Ser	Gln	Cys 40	Ser	Lys	Pro	Gly	Ile 45	Val	Phe	Ile
	Thr Xa	aa Ar 50	g Gly	His	Ser	Val 55	Cys	Thr	Asn	Pro	Ser 60	Asp	Lys	Trp	Val
50	Gln As 65	T qe	r Ile	Lys	Asp 70	Met	Lys								
55	<210><211><211><212><213>	143 PRT	ıown												
60	<220> <223>	Desc	ripti	on o	f Unl	know	n Org	ganis	sm:pı	rimat	:e				
	<400> Met Ly		Le Ser	Val 5	Ala	Ala	Ile	Pro	Phe 10	Phe	Leu	Leu	Ile	Thr 15	Ile

5	Ala	Leu	Gly	Thr 20	Lys	Thr	Glu	Ser	Ser 25	Ser	Arg	Gly	Pro	Туг 30	His	Pro
	Ser	Glu	Cys 35	Суѕ	Phe	Thr	Tyr	Thr 40	Ţhr	Tyr	Lys	Ile	Pro 45	Arg	Gln	Arg
10	Ile	Met 50	Asp	Tyr	Tyr	Glu	Thr 55	Asn	Ser	Gln	Суз	Ser 60	Lys	Pro	Gly	Ile
15	Val 65	Phe	Ile	Thr	Lys	Arg 70	Gly	His	Ser	Val	Cys 75	Thr	Asn	Pro	Ser	Asp 80
	Lys	Trp	Val	Gln	Asp 85	Tyr	Ile	Lys	Asp	Met 90	Lys	Glu	Asn	Thr	Lys 95	Thr
20	Glu	Ser	Ser	Ser 100	Arg	Gly	Pro	Tyr	His 105	Pro	Ser	Glu	Суз	Cys 110	Phe	Thr
	Tyr	Thr	Thr 115	Tyr	Lys	Ile	Pro	Arg 120	Gln	Arg	Ile	Met	Asp 125	Tyr	Tyr	Glu
25	Thr	Asn 130	Ser	Gln	Суѕ	Ser	Lys 135	Pro	Gly	Ile	Val	Phe 140	Ile	Thr	Xaa	
30	<211 <212)> 28 .> 93 !> PF !> Ur	3	m												
35	<220 <223		escri	.ptic	on of	E Uni	cnowr	org	ganis	m:pr	rimat	:e			,	
	<223	l> De l> 28	3							_			Leu	Ile	Thr 15	Ile
35 4 0	<223 <400 Met	> De > 28 Lys	Ile	Ser	Val 5	Ala	Ala	Ile	Pro	Phe 10	Phe	Leu	Leu Pro		15	
	<223 <400 Met 1 Ala	> De > 28 Lys Leu	Ile Gly	Ser Thr 20	Val 5 Lys	Ala Thr	Ala Glu	Ile Ser	Pro Ser 25	Phe 10 Ser	Phe Arg	Leu Gly		Tyr 30	15 His	Pro
40	<223 <400 Met 1 Ala Ser	> De > 28 Lys Leu Glu	Ile Gly Cys 35	Ser Thr 20 Cys	Val 5 Lys Phe	Ala Thr	Ala Glu Tyr	Ile Ser Thr	Pro Ser 25 Thr	Phe 10 Ser	Phe Arg Lys	Leu Gly Ile	Pro	Tyr 30 Arg	15 His Gln	Pro Arg
40	<223 <400 Met 1 Ala Ser Ile	> De 0> 28 Lys Leu Glu Met 50	Ile Gly Cys 35 Asp	Ser Thr 20 Cys	Val 5 Lys Phe Tyr	Ala Thr Thr	Ala Glu Tyr Thr 55	Ile Ser Thr 40 Asn	Pro Ser 25 Thr	Phe 10 Ser Tyr	Phe Arg Lys Cys	Leu Gly Ile Ser	Pro Pro 45	Tyr 30 Arg Pro	15 His Gln Gly	Pro Arg Ile
40 45 50	<223 <400 Met 1 Ala Ser Ile Val .65	Columber 10 Phe	Ile Gly Cys 35 Asp	Ser Thr 20 Cys Tyr	Val 5 Lys Phe Tyr	Ala Thr Thr Glu Arg 70	Ala Glu Tyr Thr 55 Gly	Ile Ser Thr 40 Asn	Pro Ser 25 Thr Ser	Phe 10 Ser Tyr Gln Val	Phe Arg Lys Cys Cys	Leu Gly Ile Ser	Pro Pro 45 Lys Asn	Tyr 30 Arg Pro	15 His Gln Gly	Pro Arg Ile
40 45	<223 <400 Met 1 Ala Ser Ile Val 65 Lys <210 <211 <212	> Decided to the second	Ile Gly Cys 35 Asp Ile Val	Ser Thr 20 Cys Tyr Thr	Val 5 Lys Phe Tyr Lys	Ala Thr Thr Glu Arg 70	Ala Glu Tyr Thr 55 Gly	Ile Ser Thr 40 Asn	Pro Ser 25 Thr Ser	Phe 10 Ser Tyr Gln Val	Phe Arg Lys Cys Cys	Leu Gly Ile Ser .60	Pro Pro 45 Lys Asn	Tyr 30 Arg Pro	15 His Gln Gly	Pro Arg Ile

Met Lys Ile Ser Val Ala Ala Ile Pro Phe Phe Leu Leu Ile Thr Ile 5 Ala Leu Gly Thr Lys Thr Glu Ser Ser Ser Arg Gly Pro Tyr His Pro 10 Ser Glu Cys Cys Phe Thr Tyr Thr Thr Tyr Lys Ile Pro Arg Gln Arg Ile Met Asp Tyr Tyr Glu Thr Asn Ser Gln Cys Ser Lys Pro Gly Ile 15 Val Phe Ile Thr Lys Arg Gly His Ser Val Cys Thr Asn Pro Ser Asp Lys Trp Val Gln Asp Tyr Ile Lys Asp Met Lys Glu Asn 20 <210> 30 <211> 93 25 <212> PRT <213> Unknown <220> <223> Description of Unknown Organism:primate 30 <400> 30, Met Lys Ile Ser Val Ala Ala Ile Pro Phe Phe Leu Leu Ile Thr Ile 35 Ala Leu Gly Thr Lys Thr Glu Ser Ser Ser Arg Gly Pro Tyr His Pro Ser Glu Cys Cys Phe Thr Tyr Thr Thr Tyr Lys Ile Pro Arg Gln Arg 40 40 Ile Met Asp Tyr Tyr Glu Thr Asn Ser Gln Cys Ser Lys Pro Gly Ile Val Phe Ile Thr Lys Arg Gly His Ser Val Cys Thr Asn Pro Ser Asp 45 Lys Trp Val Gln Asp Tyr Ile Lys Asp Met Lys Glu Asn 50 <210> 31 <211> 1082 <212> DNA <213> Unknown 55 <223> Description of Unknown Organism:primate <220> 60 <221> CDS <222> (1)..(1080) <220> <221> misc_feature

WO 00/01817 PCT/US99/12366

```
<222> (20)
     <223> nucleotide may be G
     <220>
     <221> misc_feature
     <222> (56)
10
     <223> nucleotide may be A, C, G or T
     <220>
     <221> misc_feature
     <222> (103)
15
     <223> nucleotide may be A, C, G, or T
     <220>
     <221> misc_feature
     <222> (130)
20
     <223> nucleotide may be C or T
     <220>
     <221> misc_feature
     <222> (190)
25
     <223> nucleotide may be A or C
     <220>
     <221> misc_feature
     <222> (256)
30
     <223> nucleotide may be C or G
     <400> 31
     atg cct ttc ccc ggc cca cac gca ggt aga tct tcc act cta aag gac
                                                                         48
     Met Pro Phe Pro Gly Pro His Ala Gly Arg Ser Ser Thr Leu Lys Asp
35
                                          10
     acc acc cct cca tcc cac caa ata ttt gga agg ctc ctg gaa gat ctc
                                                                        96
     Thr Thr Pro Pro Ser His Gln Ile Phe Gly Arg Leu Leu Glu Asp Leu
                  20
40
     caa atc caa gtg tct ccc act gcc cac ggc att cca gac act ttt gac
     Gln Ile Gln Val Ser Pro Thr Ala His Gly Ile Pro Asp Thr Phe Asp
              35
                                  40
45
     cct tac ctg gac atc gcc ctg gat atc cag gca gct cag agt gtc cag
     Pro Tyr Leu Asp Ile Ala Leu Asp Ile Gln Ala Ala Gln Ser Val Gln
          50
                             55
     caa gct ttg gaa cag ttg gtg aag ccc gaa gaa ctc aat gga gag aat
                                                                        240
50
     Gln Ala Leu Glu Gln Leu Val Lys Pro Glu Glu Leu Asn Gly Glu Asn
     gcc tat cat tgt ggt ctt tgt ctc cag agg gcg ccg gcc tcc aag acg
                                                                        288
     Ala Tyr His Cys Gly Leu Cys Leu Gln Arg Ala Pro Ala Ser Lys Thr
55
                      85
     tta act tta cac acc tct gcc aag gtc ctc atc ctt gtc ttg aag aga
                                                                        336
     Leu Thr Leu His Thr Ser Ala Lys Val Leu Ile Leu Val Leu Lys Arg
                 100
                                     105
60
     ttc tcc gat gtc aca ggc aac aag att gcc aag aat gtg caa tat cct
                                                                        384
     Phe Ser Asp Val Thr Gly Asn Lys Ile Ala Lys Asn Val Gln Tyr Pro
             115
                                 120
```

5												cag Gln 140					432
10	ctt Leu 145	gtc Val	tat Tyr	gtc Val	ctc Leu	tat Tyr 150	gct Ala	gtg Val	ctg Leu	gtc Val	cac His 155	gct Ala	Gly ggg	tgg Trp	agt Ser	tgt Cys 160	480
15												caa Gln					528
												agc Ser					576
20												cag Gln					624
25						-						gaa Glu 220		_	-		[`] 672
30												gga Gly					720
35												gag Glu					768
	-											aaa Lys					816
40					_					_	-	aaa Lys	_	-			864
45	-			_	-							aaa Lys 300		_	~		912
50		Lys	Asn	His		Pro	Glu	Gln	Gln		Ser	ctg Leu					960
55												act Thr					1008
												aag Lys					1056
60					ctt Leu				tg								1082

5	<21 <21	0> 3 1> 3 2> P 3> U	60	wn												,
10		0> 3 Pro	_	Pro	Gly 5	Pro	His	Ala	Gly	Arg 10	Ser	Ser	Thr	Leu	Lys 15	Asp
15	Thr	Thr	Pro	Pro 20	Ser	His	Gln	Ile	Phe 25	Gly	Arg	Leu	Leu	Glu 30	Asp	Leu
1.0	Gln	Ile	Gln 35	Val	Ser	Pro	Thr	Ala 40	His	Gly	Ile	Pro	Asp 45	Thr	Phe	Asp
20	Pro	Туr 50	Leu	Asp	Ile	Ala	Leu 55	Asp	Ile	Gln	Ala	Ala 60	Gln	Ser	Val	Gln
	Gln 65	Ala	Leu	Glu	Gln	Leu 70	Val	Lys	Pro	Glu	Glu 75	Leu	Asn	Gly	Glu	Asn 80
25	Ala	Tyr	His	Cys	Gly 85	Leu	Cys	Leu	Gln	Arg 90	Ala	Pro	Ala	Ser	Lys 95	Thr
30	Leu	Thr		His 100	Thr	Ser	Ala	Lys	Val 105	Leu	Ile	Leu	Val	Leu 110	Lys	Arg
30	Phe	Ser	Asp 115	Val	Thr	Gly	Asn	Lys 120	Ile	Ala	Lys	Asn	Val 125	Gln	Tyr	Pro
35	Glu	Cys 130	Leu	Asp	Met	Gln	Pro 135	Tyr	Met	Ser	Gln	Gln 140	Asn	Thr	Gly	Pro
	Leu 145	Vạl	Tyr	Val	Leu	Tyr 150	Ala	Val	Leu	Val	His 155	Ala	Gly	Trp	Ser	Cys 160
40	His	Asn	Gly	His	Tyr 165	Phe	Ser	Tyr	Val	Lys 170	Ala	Gln	Glu	Gly	Gln 175	
45	Tyr	Lys	Met	Asp 180	Asp	Ala	Glu	Val	Thr 185	Ala	Ser	Ser	Ile	Thr 190	Ser	Val
43	Leu	Ser	Gln 195	Gln	Ala	Tyr	Val	Leu 200	Phe	Tyr	Ile	Gln	Lys 205	Ser	Glu	Trp
50	Glu	Arg 210	His	Ser	Glu	Ser	Val 215	Ser	Arg	Gly	Arg	Glu 220	Pro	Arg	Ala	Leu
	Gly 225	Ala	Glu	Asp	Thr	Asp 230	Arg	Arg	Ala	Thr	Gln 235	Gly	Glu	Leu	Lys	Arg 240
55	Asp	His	Pro	Cys	Leu 245	Gln	Ala	Pro	Glu	Leu 250	Asp	Glu	His	Leu	Val 255	Glu
60	Arg	Ala	Thr	Gln 260	Glu	Ser	Thr	Leu	Asp 265	His	Trp	Lys	Phe	Leu 270	Gln	Glu
00	Gln	Asn	Lys 275	Thr	Lys	Pro	Glu	Phe 280	Asn	Val	Arg	Lys	Val 285	Glu	Gly	Thr

5	Leu	Pro 290		Asp	Val	Leu	Val 295	Ile	His	Gln	Ser	Lys 300		Lys	Cys	Gly	
	Met 305		Asn	His	His	Pro 310	Glu	Gln	Gln	Ser	Ser 315	Leu	Leu	Asn	Leu	Ser 320	
10	Ser	Thr	Thr	Pro	Thr 325	His	Gln	Glu	Ser	Met 330	Asn	Thr	Gly	Thr	Leu 335	Ala	
15	Ser	Leu	Arg	Gly 340	Arg	Ala	Arg	Arg	Ser 345		Gly	Lys	Asn	Lys 350	His	Ser	
	Lys	Arg	Ala 355	Leu	Leu	Val	Cys	Gln 360									
20	<21:	0> 3: 1> 1: 2> Di 3> Ui	683	WΠ		•											
25	<22 <22		escr	ipti	on o:	f Unl	cnow	n Org	ganis		rimat	e					
3 Ó		L> CI	os i)	(159	0)												
35	atg	0> 3; gag Glu	gac	gac Asp	tca Ser 5	ctc Leu	tac Tyr	ttg Leu	gga Gly	ggt Gly 10	gag Glu	tgg Trp	cag Gln	ttc Phe	aac Asn 15	cac His	48
40	ttt Phe	tca Ser	aaa Lys	ctc Leu 20	aca Thr	tct Ser	tct Ser	cgg Arg	cca Pro 25	gat Asp	gca Ala	gct Ala	ttt Phe	gct Ala 30	gaa Glu	atc Ile	96
,	cag Gln	cgg Arg	act Thr 35	tct Ser	ctc Leu	cct Pro	gag Glu	aag Lys 40	tca Ser	cca Pro	ctc Leu	tca Ser	tct Ser 45	gag Glu	gcc Ala	cgt Arg	144
45	gtc Val	gac Asp 50	ctc Leu	tgt Cys	gat Asp	gat Asp	ttg Leu 55	gct Ala	cct Pro	gtg Val	gca Ala	aga Arg 60	cag Gln	ctt Leu	gct Ala	ccc	192
50	agg Arg 65	gag Glu	aag Lys	ctt Leu	cct Pro	ctg Leu 70	agt Ser	agc Ser	agg Arg	aga Arg	cct Pro 75	gct Ala	gcg Ala	gtg Val	ggg	gct Ala 80	240
55	GJA aaa	ctc Leu	cag Gln	aat Asn	atg Met 85	gga Gly	aat Asn	acc Thr	tgc Cys	tac Tyr 90	gag Glu	aac Asn	gct Ala	tcc Ser	ctg Leu 95	cag Gln	288
60	tgc Cys	ctg Leu	aca Thr	tac Tyr 100	aca Thr	ccg Pro	ccc Pro	ctt Leu	gcc Ala 105	aac Asn	tac Tyr	atg Met	ctg Leu	tcc Ser 110	cgg Arg	gag Glu	336
	cac His	tct Ser	caa Gln 115	aca Thr	tgt Cys	cag Gln	cgt Arg	ccc Pro 120	aag Lys	tgc Cys	tgc Cys	atg Met	ctc Leu 125	tgt Cys	act Thr	atg Met	384

5	caa Gln	gct Ala 130	cac His	atc Ile	aca Thr	tgg Trp	gcc Ala 135	ctc Leu	cac His	agt Ser	cct Pro	ggt Gly 140	cat His	gtc Val	atc Ile	cag Gln	432
10	ccc Pro 145	tca Ser	cag Gln	gca Ala	ttg Leu	gct Ala 150	gct Ala	ggc Gly	ttc Phe	cat His	aga Arg 155	ggc Gly	aag Lys	cag Gln	gaa Glu	gat Asp 160	480
15					ctc Leu 165												528
	ctt Leu	ccc Pro	ggc Gly	cac His 180	aag Lys	cag Gln	gta Val	gat Asp	cat His 185	cac His	tct Ser	aag Lys	gac Asp	acc Thr 190	acc Thr	ctc Leu	576
20	atc Ile	cac His	caa Gln 195	ata Ile	ttt Phe	gga Gly	ggc	tgc Cys 200	tgg Trp	aga Arg	tct Ser	caa Gln	atc Ile 205	aag Lys	tgt Cys	ctc Leu	624
25	cac His	tgc Cys 210	cac His	Gly ggg	att Ile	cca Pro	gac Asp 215	act Thr	ttt Phe	gac Asp	cct Pro	tac Tyr 220	ctg Leu	gac Asp	atc Ile	gcc Ala	672
30	ctg Leu 225	gat Asp	atc Ile	cag Gln	gca Ala	gct Ala 230	cag Gln	agt Ser	gtc Val	aag Lys	caa Gln 235	gct Ala	ttg Leu	gaa Glu	cag Gln	ttg Leu 240	720
35	gtg Val	aag Lys	ccc Pro	gaa Glu	gaa Glu 245	ctc Leu	aat Asn	gga Gly	gag Glu	aat Asn 250	gcc Ala	tat Tyr	cat His	tgt Cys	ggt Gly 255	ctt Leu	768
					gcg Ala												816
40	gcc Ala	aag Lys	gtc Val 275	ctc Leu	atc	ctt Leu	gtm Xaa	ttg Leu 280	aag Lys	aga Arg	ttc Phe	tcc Ser	gat Asp 285	gtc Val	aca Thr	ggc	864
45					aag Lys												912
50	cca Pro 305	Tyr	atg Met	Ser	cag Gln	Gln	Asn	Thr	Gly	cct Pro	Leu	Val	tat Tyr	gtc Val	ctc Leu	tat Tyr 320	960
55	gct Ala	gtg Val	ctg Leu	gtc Val	cac His 325	gct Ala	ggg Gly	tgg Trp	agt Ser	tgt Cys 330	cac His	aac Asn	gga Gly	cat His	tac Tyr 335	ttc Phe	1008
	tct Ser	tat Tyr	gtc Val	aaa Lys 340	gct Ala	caa Gln	gaa Glu	ggc Gly	cag Gln 345	tgg Trp	tat Tyr	aaa Lys	atg Met	gat Asp 350	Asp	gcc Ala	1056
60	gag Glu	gtc Val	acc Thr 355	gcc Ala	tct Ser	agc Ser	atc Ile	act Thr 360	tct Ser	gtc Val	ctg Leu	agt Ser	caa Gln 365	cag Gln	gcc Ala	tac Tyr	1104

5	gtc Val	ctc Leu 370	ttt Phe	tac Tyr	atc Ile	cag Gln	aag Lys 375	agt Ser	gaa Glu	tgg Trp	gaa Glu	aga Arg 380	cac His	agt Ser	gag Glu	agt Ser	1152
10	gtg Val 385	tca Ser	aga Arg	ggc Gly	agg Arg	gaa Glu 390	Pro	aga Arg	gcc Ala	ctt Leu	ggc Gly 395	gca Ala	gaa Glu	gac Asp	aca Thr	gac Asp 400	1200
15	agg Arg	cga Arg	gca Ala	acg Thr	caa Gln 405	gga Gly	gag Glu	ctc Leu	aag Lys	aga Arg 410	gac Asp	cac His	ccc Pro	tgc Cys	ctc Leu 415	cag Gln	1248
,	gcc Ala	ccc Pro	gag Glu	ttg Leu 420	gac Asp	gag Glu	cac His	ttg Leu	gtg Val 425	gaa Glu	aga Arg	gcc Ala	act Thr	cag Gln 430	gaa Glu	agc Ser	1296
20	acc Thr	tta Leu	gac Asp 435	cac His	tgg Trp	aaa Lys	ttc Phe	ctt Leu 440	caa Gln	gag Glu	caa Gln	aac Asn	aaa Lys 445	acg Thr	aag Lys	cct Pro	1344
25	gag Glu	ttc Phe 450	aac Asn	gtc Val	aga Arg	aaa Lys	gtc Val 455	gaa Glu	ggt Gly	acc Thr	ctg Leu	cct Pro 460	ccc Pro	gac Asp	gta Val	ctt Leu	1392
30	gtg Val 465	att Ile	cat His	caa Gln	tca Ser	aaa Lys 470	tac Tyr	aag Lys	tgt Cys	Gly aga	atg Met 475	aag Lys	aac Asn	cat His	cat His	cct Pro 480	1440
35	gaa Glu	cag Gln	caa Gln	agc Ser	tcc Ser 485	ctg Leu	cta Leu	aac Asn	ctc Leu	tct Ser 490	tcg Ser	acg Thr	acc Thr	ccg Pro	aca Thr 495	cat His	1488
	cag Gln	gag Glu	tcc Ser	atg Met 500	aac Asn	act Thr	ggc Gly	aca Thr	ctc Leu 505	gct Ala	tcc Ser	ctg Leu	cga Arg	ggg ggg	agg Arg	gcc Ala	1536
40	agg Arg	aga Arg	tcc Ser 515	aaa Lys	ggg Gly	aag Lys	Asn	aaa Lys 520	cac His	agc Ser	aag Lys	agg Arg	gct Ala 525	ctg Leu	ctt Leu	gtg Val	1584
45	tgc Cys	cag Gln 530	tgat	ctca	igt g	rgaag	tacc	g ac	ccac	acgt	agg	ggtg	cac	acac	acac	gc	1640
50	acac	acac	ag a	caca	caca	t aa	ctac	accc	aga	agcg	cgc	tga					1683
50	<211 <212	> 34 > 53 > PR > Un	0	m													
55	<400 Met 1			Asp	Ser 5	Leu	Tyr	Leu	Gly	Gly 10	Glu	Trp	Gln		Asn 15		
60	Phe	Ser	Lys	Leu 20	Thr	Ser	Ser	Arg	Pro 25	Asp	Ala	Ala	Phe	Ala 30	Glu	Ile	
	Gln	Arg	Thr 35	Ser	Leu	Pro	Glụ	Lys 40	Ser	Pro	Leu	Ser	Ser 45	Glu	Ala	Arg	

5	Val	Asp 50	Leu	Cys	Asp	Asp	Leu 55		Pro	Val	Ala	Arg 60		Leu	Ala	Pro
	Arg 65	Glu	Lys	Leu	Pro	Leu 70	Ser	Ser	Arg	Arg	Pro 75		Ala	Val	Gly	Ala 80
10	Gly	Leu	Gln	Asn	Met 85	Gly	Asn	Thr	Cys	Тут 90		Asn	Ala	Ser	Leu 95	
15				100					105					110		
	His	Ser	Gln 115	Thr	Суѕ	Gln	Arg	Pro 120	Lys	Cys	Суз	Met	Leu 125	Суз	Thr	Met
20	Gln	Ala 130	His	Ile	Thr	Trp	Ala 135	Leu	His	Ser	Pro	Gly 140	His	Val	Ile	Glm
	Pro 145	Ser	Gln	Ala	Leu	Ala 150	Ala	Gly	Phe	His	Arg 155	Gly	Lys	Gln	Glu	Asp 160
25	Ala	His	Glu	Phe	Leu 165	Met	Phe	Thr	Val	Asp 170	Ala	Met	Lys	Lys	Ala 175	Cys
30	Leu	Pro	Gly	His 180	Lys	Gln	Val	Asp	His 185	His	Ser	Lys	Asp	Thr 190	Thr	Leu
	Ile	His	Gln 195	Ile	Phe	Gly	Gly	Суs 200	Trp	Arg	Ser	Gln	Ile 205	Lys	Cys	Leu
35	His	Cys 210	His	Gly	Ile	Pro	Asp 215	Thr	Phe	Asp	Pro	Tyr 220	Leu	Asp	Ile	Ala
	Leu 225	Asp	Ile	Gln	Ala	Ala 230	Gln	Ser	Val	Lys	Gln 235	Ala	Leu	Glu	Gln	Leu 240
40	Val	Lys	Pro	Glu	Glu 245	Leu	Asn	Gly	Glu	Asn 250	Ala	Tyr	His	Cys	Gly 255	Leu
45	Cys	Leu	Gln	Arg 260	Ala	Pro	Ala	Ser	Lys 265	Thr	Leu	Thr	Leu	His 270	Thr	Ser
	Ala	Lys	Val 275	Leu	Ile	Leu	Xaa	Leu 280	Lys	Arg	Phe	Ser	Asp 285	Val	Thr	Gly
50	Asn	Lys 290	Leu	Ala	Lys	Asn	Val 295	Gln	Tyr	Pro	Glu	Cys 300	Leu	Asp	Met	Gln
	Pro 305	Tyr	Met	Ser	Gln	Gln 310	Asn	Thr	Gly	Pro	Leu 315	Val	Tyr	Val	Leu	Tyr 320
55	Ala	Val	Leu	Val	His 325	Ala	Gly	Trp	Ser	Суs 330	His	Asn	Gly	His	Tyr 335	Phe
	Ser	Tyr	Val	Lys 340	Ala	Gln	Glu	Gly	Gln 345	Trp	Tyr	Lys	Met	Asp 350	Asp	Ala
-	Glu	Val	Thr	Ala	Ser	Ser	Ile	Thr	Ser	Val	Leu	Ser	Gln	Gln	Ala	Tyr

5	Val	Leu 370	Phe	Tyr	Ile	Gln	Lys 375	Ser	Glu	Trp	Glu	Arg 380	His	Ser	Glu	Ser
	Val 385	Ser	Arg	Gly	Arg	Glu 390	Pro	Arg	Ala	Leu	Gly 395	Ala	Glu	Asp	Thr	Asp 400
10	Arg	Arg	Ala	Thr	Gln 405	Gly	Glu	Leu	Lys	Arg 410	Asp	His	Pro	Cys	Leu 415	Gln
15	Ala	Pro	Glu	Leu 420	Asp	Glu	His	Leu	Val 425	Glu	Arg	Ala	Thr	Gln 430	Glu	Ser
	Thr	Leu	Asp 435	His	Trp	Lys	Phe	Leu 440	Gln	Glu	Gln	Asn	Lys 445	Thr	Lys	Pro
20	Glu	Phe 450	Asn	Val	Arg	Lys	Val 455	Glu	Gly	Thr	Leu	Pro 460	Pro	Asp	Val	Leu
	Val 465	Ile	His	Gln	Ser	Lys 470	Tyr	Lys	Суз	Gly	Met 475	Lys	Asn	His	His	Pro 480
25	Glu	Gln	Gln	Ser	Ser 485	Leu	Leu	Asn	Leu	Ser 490	Ser	Thr	Thr	Pro	Thr 495	His
30	Gln	Glu	Ser	Met 500	Asn	Thr	Gly	Thr	Leu 505	Ala	Ser	Leu	Arg	Gly 510	Arg	Ala
	Arg	Arg	Ser 515	Lys	Gly	Lys	Asn	Lys 520	His	Ser	Lys	Arg	Ala 525	Leu	Leu	Val
35	Cys	G1n 530														
10	<211 <212)> 35 .> 73 :> DN :> Un	5	m												
15	<220 <223		scri	ptio	n of	Unk	nown	Org	anis	m:pr	imat	e		·		
		> CD)s .)(735)												
50	<222	> mi > (1	sc_f 97) cleo			· be	A or	· C			,					
55	<222	> mi > (5	sc_f 90) cleo			be	A, C	:, G,	or	T.						
50			sc_f 64)	eatu	re	•				_						

5	<220><221><222><223>	(665)			y be	Α,	C, G	, or	т							
10	<220><221><222><223>	(666)			y be	Α,	C, G	, or	T -							
15	<220> <221> <222> <223>	(708)			y be	Α,	C, G	, or	т							
20	<220><221><222><222><223>	(715)			y be	Α,	c, g	, or	T							
25	<400> atg go Met Al	t gtg	cca Pro	agt Ser 5	tgg Trp	atc Ile	gtc Val	aaa Lys	cgc Arg 10	agg Arg	cta Leu	cta Leu	cct Pro	tgg Trp 15	tcc Ser	48
30	atc aa Ile Ly	aa ttt /s Phe	ttg Leu 20	gag Glu	ggt Gly	atc Ile	tca Ser	gat Asp 25	cac His	ggc Gly	gtg Val	aag Lys	tgc Cys 30	tcc Ser	gtg Val	96
35	tgc aa Cys Ly	ag agc /s Ser 35	Val	tcg Ser	gac Asp	acc Thr	tac Tyr 40	gac Asp	ccc Pro	tac Tyr	ttg Leu	gac Asp 45	gtc Val	gcg Ala	ctg Leu	144
40	gag at Glu II	c cgg e Arg	caa Gln	gct Ala	gcg Ala	aat Asn 55	att Ile	gtg Val	cgt Arg	gct Ala	ctg Leu 60	gaa Glu	ctt Leu	ttt Phe	gtg Val	192
	aaa go Lys Al 65	a gat .a Asp	gtc Val	ctg Leu	agt Ser 70	gga Gly	gag Glu	aat Asn	gcc Ala	tac Tyr 75	atg Met	tgt Cys	gct Ala	aaa Lys	tgc Cys 80	240
45	aag aa Lys Ly	g aag s Lys	gtt Val	cca Pro 85	gcc Ala	agc Ser	aag Lys	cgc Arg	ttc Phe 90	acc Thr	atc Ile	cac His	aga Arg	aca Thr 95	tcc Ser	288
_, 50	aac gt Asn Va	c tta 1 Leu	acc Thr 100	ctt Leu	tcc Ser	ctc Leu	aag Lys	cgc Arg 105	ttt Phe	gcc Ala	aac Asn	ttc Phe	agc Ser 110	ggg Gly	Gly aaa	336
55	aag at Lys Il	c acc e Thr 115	aag Lys	gat Asp	gta Val	ggc Gly	tat Tyr 120	ccg Pro	gaa Glu	ttd Phe	ctc Leu	aac Asn 125	ata Ile	cgt Arg	ccg Pro	384
60	tat at Tyr Me	t Ser	cag Gln	aat Asn	aat Asn	ggt Gly 135	gat Asp	cct Pro	gtc Val	atg Met	tat Tyr 140	gga Gly	ctc Leu	tat Tyr	gct Ala	432
30	gtc ct Val Le 145	g gtg u Val	cac His	tcg Ser	ggc Gly 150	tac Tyr	agc Ser	tgc Cys	cat His	gcc Ala 155	ggg ggg	cac His	tat Tyr	tac Tyr	tgc Cys 160	480

5	tac Tyr	gtg Val	aag Lys	gca Ala	agc Ser 165	aat Asn	gga Gly	cag Gln	tgg Trp	tac Tyr 170	cag Gln	atg Met	aat Asn	gat Asp	tcc Ser 175	ttg Leu	528
10	gtc Val	cca Pro	ttc Phe	cag Gln 180	caa Gln	cgt Arg	cca Pro	agt Ser	tgg Trp 185	ttt Phe	ctg Leu	aaa Lys	cca Pro	gca Ala 190	ggc Gly	cta Leu	576
15	agt Ser	ggc Gly	ttg Leu 195	ttc Phe	tca Ser	tcg Ser	gcg Ala	aat Asn 200	ttc Phe	cag Gln	gct Ala	ctc Leu	aag Lys 205	aaa Lys	aat Asn	tcc Ser	624
	cga Arg	agg Arg 210	gcc Ala	tcc Ser	att Ile	ttc Phe	cag Gln 215	gaa Glu	cag Gln	gtt Val	cct Pro	tcc Ser 220	tcc Ser	cct Pro	tcc Ser	cgg Arg	672
20	gcg Ala 225	gcc Ala	cga Arg	att Ile	gtg Val	aat Asn 230	tcc Ser	aga Arg	ttc Phe	att Ile	ccc Pro 235	agc Ser	agg Arg	aac Asn	ctc Leu	ggc Gly 240	720
25		GJÀ aaa	_														735
30	<211 <212	0> 36 L> 24 2> PF 3> Un	5 RT	m													
35)> 36 Ala		Pro	Ser 5	Trp	Ile	Val	Lys	Arg 10	Arg	Leu	Leu	Pro	Trp 15	Ser	.*
40		Lys		20					25	His	Gly	Val	Lys	30	Ser	Val	
	Cys	Lvs	602	Val	Ser	Asp	Thr	T						•			
		•					1111	40	Asp	Pro	Tyr	Leu	Asp 45	Val	Ala	Leu	
45	Glu	Ile 50	35	*.				40					45				
45		Ile	35 Arg	Gln	Ala	Ala	Asn 55	11e	Val	Arg	Ala	Leu 60	45 Glu	Leu	Phe	Val	
4 5	Lys 65	Ile 50	35 Arg Asp	Gln Val	Ala Leu	Ala Ser 70	Asn 55 Gly	Ile Glu	Val Asn	Arg Ala	Ala Tyr 75	Leu 60 Met	45 Glu Cys	Leu Ala	Phe Lys	Val Cys 80	
50	Lys 65 Lys	Ile 50 Ala	35 Arg Asp Lys	Gln Val Val	Ala Leu Pro 85	Ala Ser 70 Ala	Asn 55 Gly Ser	40 Ile Glu Lys	Val Asn Arg	Arg Ala Phe 90	Ala Tyr 75 Thr	Leu 60 Met Ile	45 Glu Cys His	Leu Ala Arg	Phe Lys Thr 95	Val Cys 80 Ser	
	Lys 65 Lys Asn	Ile 50 Ala Lys	Arg Asp Lys	Gln Val Val Thr	Ala Leu Pro 85 Leu	Ala Ser 70 Ala Ser	Asn 55 Gly Ser Leu	40 Ile Glu Lys	Val Asn Arg Arg	Arg Ala Phe 90 Phe	Ala Tyr 75 Thr	Leu 60 Met Ile Asn	45 Glu Cys His	Leu Ala Arg Ser 110	Phe Lys Thr 95 Gly	Val Cys 80 Ser	
50	Lys 65 Lys Asn Lys	Ile 50 Ala Lys Val	Asp Lys Leu Thr	Gln Val Val Thr 100 Lys	Ala Leu Pro 85 Leu Asp	Ala Ser 70 Ala Ser Val	Asn 55 Gly Ser Leu Gly	40 Ile Glu Lys Lys Tyr 120	Val Asn Arg Arg 105 Pro	Arg Ala Phe 90 Phe Glu	Tyr 75 Thr Ala	Leu 60 Met Ile Asn	45 Glu Cys His Phe Asn 125	Leu Ala Arg Ser 110	Phe Lys Thr 95 Gly	Val Cys 80 Ser Gly	

5	Tyr	Val	Lys	Ala	Ser 165	Asn	Gly	Gln	Trp	Tyr 170	Gln	Met	: Asn	Asp	Ser 175	Leu	
	Val	Pro	Phe	Gln 180	Gln	Arg	Pro	Ser	Trp 185	Phe	Leu	Lys	Pro	Ala 190		Leu	
10	Ser	Gly	Leu 195	Phe	Ser	Ser	Ala	Asn 200		Gln	Ala	Leu	Lys 205		Asn	Ser	
15	Arg	Arg 210	Ala	Ser	Ile	Phe	Gln 215		Gln	Val	Pro	Ser 220	Ser	Pro	Ser	Arg	
13	Ala 225	Ala	Arg	Ile	Val	Asn 230	Ser	Arg	Phe	Ile	Pro 235	Ser	Arg	Asn	Leu	Gly 240	
20	Asn	Gly	Asp	Tyr	Phe 245									-			
25	<213 <213	0> 3° 1> 2° 2> Di 3> Ui	244	wn.	•												
30	<220 <223		escr	iptio	on o	f Unl	cnow	n Org	ganis	sm:pi	rima	:e				•	
		L> CI		(2244	1)					•							•
35	atg)> 37 cag Gln	aaa	gcc Ala	tgc Cys 5	ctg Leu	aat Asn	ggc	tgt Cys	gcc Ala 10	aag Lys	ttg Leu	gat Asp	cgt Arg	caa Gln 15	acg Thr	48
40	cag Gln	gct Ala	act Thr	acc Thr 20	ttg Leu	gtc Val	cat His	caa Gln	att Ile 25	ttt Phe	gga Gly	GJA aaa	tat Tyr	ctc Leu (30	aga Arg	tca Ser	96
45	cgc Arg	gtg Val	aag Lys 35	tgc Cys	tcc Ser	gtg Val	tgc Cys	aag Lys 40	agc Ser	gtc Val	tcg Ser	gac Asp	acc Thr 45	tac Tyr	gac Asp	ccc Pro	144
50	tac Tyr	ttg Leu 50	gac Asp	gtc Val	gcg Ala	ctg Leu	gag Glu 55	atc Ile	cgg Arg	caa Gln	gct Ala	gcg Ala 60	aat Asn	att Ile	gtg Val	cgt Arg	192
55	gct Ala 65	ctg Leu	gaa Glu	ctt Leu	ttt Phe	gtg Val 70	aaa Lys	gca Ala	gat Asp	gtc Val	ctg Leu 75	agt Ser	gga Gly	gag Glu	aat Asn	gcc Ala 80	240
- -	tac Tyr	atg Met	tgt Cys	gct Ala	aaa Lys 85	tgc Cys	aag Lys	aag Lys	aag Lys	gtt Val 90	cca Pro	gcc Ala	agc Ser	aag Lys	cgc Arg 95	ttc Phe	288
60	acc Thr	atc Ile	cac His	aga Arg 100	aca Thr	tcc Ser	aac Asn	gtc Val	tta Leu 105	acc Thr	ctt Leu	tcc Ser	ctc Leu	aag Lys 110	cgc Arg	ttt Phe	336
	gcc	aac	ttc	agc	ggg	ggg	aag	atc	acc	aag	gat	gta	ggc	tat	ccg	gaa	384

5	Ala	Asn	Phe	Ser	Gly	Gly	Lys	1le 120		Lys	Asp	Val	Gly 125		Pro	Glu	
10	ttc Phe	ctc Leu 130	aac Asn	ata Ile	cgt Arg	ccg Pro	tat Tyr 135	Met	tcc Ser	cag Gln	aat Asn	aat Asn 140	Gly	gat Asp	cct Pro	gtc Val	432
10	atg Met 145	Tyr	gga Gly	ctc Leu	tat Tyr	gct Ala 150	gtc Val	ctg Leu	gtg Val	cac	tcg Ser 155	Gly	tac Tyr	agc Ser	tgc Cys	cat His 160	480
15	gcc Ala	ggg Gly	cac His	tat Tyr	tac Tyr 165	tgc Cys	tac Tyr	gtg Val	aag Lys	gca Ala 170	agc Ser	aat Asn	gga Gly	cag Gln	tgg Trp 175	Tyr	528
20	cag Gln	atg Met	aat Asn	gat Asp 180	tcc Ser	ttg Leu	gtc Val	cat His	tcc Ser 185	agc Ser	aac Asn	gtc Val	aag Lys	gtg Val 190	gtt Val	ctg Leu	576
25	aac Asn	cag Gln	cag Gln 195	gcc Ala	tac Tyr	gtg Val	ctg Leu	ttc Phe 200	tat Tyr	ctg Leu	cga Arg	att Ile	cca Pro 205	ggc Gly	tct Ser	aag Lys	624
30	aaa Lys	agt Ser 210	ccc Pro	gag Glu	ggc Gly	ctc Leu	atc Ile 215	tcc Ser	agg Arg	aca Thr	ggc	tcc Ser 220	tcc Ser	tcc Ser	ctt Leu	ccc Pro	672
30	ggc Gly 225	cgc Arg	ccg Pro	agt Ser	gtg Val	att Ile 230	cca Pro	gat Asp	cac His	tcc Ser	aag Lys 235	aag Lys	aac Asn	atc Ile	ggc Gly	aat Asn 240	720
35	ggg Gly	att Ile	att Ile	tcc Ser	tcc Ser 245	cca Pro	ctg Leu	act Thr	gga Gly	aag Lys 250	cga Arg	caa Gln	gac Asp	tct Ser	ggg Gly 255	acg Thr	768
40	atg Met	aag Lys	aag Lys	ccg Pro 260	cac His	acc Thr	act Thr	gaa Glu	gag Glu 265	att Ile	ggt Gly	gtg Val	ccc Pro	ata Ile 270	tcc Ser	agg Arg	816
45	aat Asn	ggc Gly	tcc Ser 275	acc Thr	ctg Leu	ggc Gly	ctg Leu	aag Lys 280	tcc Ser	cag Gln	aac Asn	ggc Gly	tgc Cys 285	att Ile	cct Pro	cca Pro	864
50	aag Lys	ctg Leu 290	ccc Pro	tcg Ser	ggg Gly	tcc Ser	cct Pro 295	tcc Ser	ccc Pro	aaa Lys	ctc Leu	tcc Ser 300	cag Gln	aca Thr	ccc Pro	aca Thr	912
30	cac His 305	atg Met	cca Pro	acc Thr	atc Ile	cta Leu 310	gac Asp	gac Asp	cct Pro	gga Gly	aag Lys 315	aag Lys	gtg Val	aag Lys	aag Lys	cca Pro 320	960
55	gct Ala	cct Pro	cca Pro	cag Gln	cac His 325	ttt Phe	tcc Ser	ccc Pro	aga Arg	act Thr 330	gct Ala	cag Gln	GJA aaa	ctg Leu	cct Pro 335	ggg Gly	1008
60	acc Thr	agc Ser	Asn	tcg Ser 340	aat Asn	agc Ser	agc Ser	Arg	tct Ser 345	ggg	agc Ser	caa Gln	agg Arg	cag Gln 350	ggc Gly	tcc Ser	1056
	tgg	gac	agc	agg	gat	gtt.	gtc	ctc	tct	acc	tca	cct	aag	ctc	ctg	gct	1104

5	Trp	Asp	Ser 355	Arg	Asp	Val	Val	Leu 360	Ser	Thr	Ser	Pro	Lys 365	Leu	Leu	Ala	
10	aca Thr	gcc Ala 370	act Thr	gcc Ala	aac Asn	Gly	cat His 375	Gly	ctg Leu	aag Lys	ggg	aac Asn 380	gac Asp	gag Glu	agc Ser	gct Ala	1152
	ggc Gly 385	ctc Leu	gac Asp	agg Arg	agg Arg	ggc Gly 390	tcc Ser	agc Ser	agc Ser	tcc Ser	agc Ser 395	cca Pro	gag Glu	cac His	tcg Ser	gcc Ala 400	1200
15	agc Ser	agc Ser	gac Asp	tcc Ser	acc Thr 405	aag Lys	gcc Ala	ccc Pro	cag Gln	acc Thr 410	ccc Pro	agg Arg	agt Ser	gga Gly	gcg Ala 415	gcc Ala	1248
20	cat	ctc Leu	tgc Cys	gat Asp 420	tct Ser	cag Gln	gaa Glu	acg Thr	aac Asn 425	tgt Cys	tcc Ser	acc Thr	gct Ala	ggc Gly 430	cac His	tcc Ser	1296
25	aaa Lys	acg Thr	ccg Pro 435	cca Pro	agt Ser	gga Gly	gca Ala	gat Asp 440	tct Ser	aag Lys	acg Thr	gtg Val	aag Lys 445	ctg Leu	aag Lys	tcc Ser	1344
30	cct Pro	gtc Val 450	ctg Leu	agc Ser	aac Asn	acc Thr	acc Thr 455	act Thr	gag Glu	cct Pro	gca Ala	agc Ser 460	acc Thr	atg Met	tct Ser	cct Pro	1392
	cca Pro 465	cca Pro	gcc Ala	aaa Lys	aaa Lys	ctg Leu 470	gcc Ala	ctt Leu	tct Ser	gcc Ala	aag Lys 475	aag Lys	gcc Ala	agc Ser	acc Thr	ctg Leu 480	1440
35	tgg Trp	agg Arg	gcg Ala	acc Thr	ggc Gly 485	aat Asn	gac Asp	ctc Leu	cgt Arg	cca Pro 490	cct Pro	ccc Pro	ccc Pro	tca Ser	cca Pro 495	tcc Ser	1488
40	tcc Ser	gac Asp	ctc Leu	acc Thr 500	cac His	ccc Pro	atg Met	aaa Lys	acc Thr 505	tct Ser	cac His	ccc Pro	gtc Val	gtt Val 510	gcc Ala	tcc Ser	1536
45	act Thr	tgg Trp	ccc Pro 515	gtc Val	cat His	aga Arg	gcc Ala	agg Arg 520	gct Ala	gtg Val	tca Ser	cct Pro	gct Ala 525	ccc Pro	caa Gln	tca Ser	1584
50	tcc Ser	agc Ser 530	cgc Arg	ctg Leu	caa Gln	ccc Pro	ccc Pro 535	ttc Phe	agc Ser	ccc Pro	cac His	ccc Pro 540	aca Thr	ttg Leu	ctg Leu	tcc Ser	1632
30	agt Ser 545	acc Thr	ccc Pro	aag Lys	ccc Pro	cca Pro 550	Gly aga	acg Thr	tca Ser	gaa Glu	cca Pro 555	cgg Arg	agc Ser	tgc Cys	tcc Ser	tcc Ser 560	1680
55	atc Ile	tcg Ser	acg Thr	gcg Ala	ctg Leu 565	cct Pro	cag Gln	gtc Val	aac Asn	gag Glu 570	gac Asp	ctt Leu	gtg Val	tct Ser	ctt Leu 575	cca Pro	1728
60	cac His	cag Gln	ttg Leu	cca Pro 580	gag Glu	gcc Ala	agt Ser	Glu	ccc Pro 585	ccc Pro	cag Gln	agc Ser	ccc Pro	tct Ser 590	gag Glu	aag Lys	1776

5	agg Arg	aaa Lys	aag Lys 595	acc Thr	ttt Phe	gtg Val	gga Gly	gag Glu 600	ccg Pro	cag Gln	agg Arg	ctg Leu	ggc Gly 605	tca Ser	gag Glu	acg Thr	1824
10	cgc Arg	ctc Leu 610	cca Pro	cag Gln	cac His	atc Ile	agg Arg 615	gag Glu	gcc Ala	act Thr	gcg Ala	gct Ala 620	Pro	cac His	ggg	aag Lys	1872
15	agg Arg 625	aag Lys	agg Arg	aag Lys	aag Lys	aag Lys 630	aag Lys	cgc Arg	ccg Pro	gag Glu	gac Asp 635	aca Thr	gct Ala	gcc Ala	agc Ser	gcc Ala 640	1920
13	ctg Leu	cag Gln	gag Glu	GJÀ aaa	cag Gln 645	aca Thr	cag Gln	aga Arg	cag Gln	cct Pro 650	GJA aaa	agc Ser	ccc Pro	atg Met	tac Tyr 655	agg Arg	1968
20	agg Arg	gag Glu	ggc Gly	cag Gln 660	gca Ala	cag Gln	ctg Leu	ccc Pro	gct Ala 665	gtc Val	aga Arg	çgg Arg	cag Gln	gaa Glu 670	gat Asp	ggc Gly	2016
25	aca Thr	cag Gln	cca Pro 675	cag Gln	gtg Val	aat Asn	ggc Gly	cag Gln 680	cag Gln	gtg Val	gga Gly	tgt Cys	gtt Val 685	acg Thr	gac Asp	ggc Gly	2064
30	cac His	cac His 690	gcg Ala	agc Ser	agc Ser	agg Arg	aag Lys 695	cgg Arg	agg Arg	agg Arg	aaa Lys	gga Gly 700	gca Ala	gaa Glu	ggt Gly	ctt Leu	2112.
35	ggt Gly 705	gaa Glu	gaa Glu	ggc Gly	ggc Gly	ctg Leu 710	cac His	cag Gln	gac Asp	cca Pro	ctt Leu 715	cgg Arg	cac His	agc Ser	tgc Cys	tct Ser 720	2160
,	ccc Pro	atg Met	ggt Gly	gat Asp	ggt Gly 725	gat Asp	cca Pro	gag Glu	gcc Ala	atg Met 730	gaa Glu	gag Glu	tct Ser	cca Pro	agg Arg 735	aaa Lys	2208
40										ggc Gly	_	-					2244
45	<211 <212)> 38 .> 74 !> PR	8 T	m											٠		
50)> 38 Gln		Ala	Cys 5	Leu	Asn	Gly	Cys	Ala 10	Lys	Leu	Asp	Arg	Gln 15	Thr	
55	Gln	Ala	Thr	Thr 20	Leu	Val	His	Gln	Ile 25	Phe	Gly	Gly	Tyr	Leu 30	Arg	Ser	
	Arg	Val	Lys 35	Суз	Ser	Val	Cys	Lys 40	Ser	Val	Ser	Asp	Thr 45	Tyr	Asp	Pro	
60	Tyr	Leu 50	Asp	Val	Ala	Leu	Glu 55	Ile	Arg	Gln	Ala	Ala 60	Asn	Ile	Val	Arg	
	Ala 65	Leu	Glu	Leu	Phe	Val 70	Lys	Ala	Asp	Val	Leu 75	Ser	Gly	Glu	Asn	Ala 80	

_	_		_		_	_										
5	Tyr	Met	Cys	Ala	Lys 85	Cys	Lys	Lys	Lys	Val 90		Ala	Ser	Lys	Arg 95	
10	Thr	Ile	His	Arg 100	Thr	Ser	Asn	Val	Leu 105	Thr	Leu	Ser	Leu	Lys 110	Arg	Phe
	Ala	Asn	Phe 115	Ser	Gly	Gly	Lys	Ile 120	Thr	Lys	Asp	Val	Gly 125	Tyr	Pro	Glu
15	Phe	Leu 130	Asn	Ile	Arg	Pro	Tyr 135	Met	Ser	Gln	Asn	Asn 140	Gly	Asp	Pro	Val
	Met 145	Tyr	Gly	Leu	Tyr	Ala 150	Val	Leu ·	Val	His	Ser 155	Gly	Тут	Ser	Суѕ	His 160
20	Ala	Gly	His	Tyr	Tyr 165	Cys	Tyr	Val	Lys	Ala 170	Ser	Asn	Gly	Gln	Trp 175	Tyr
25	Gln	Met	Asn	Asp 180	Ser	Leu	Val	His	Ser 185	Ser	Asn	Val	Lys	Val 190	Val	Leu
د ی	Asn	Gln	Gln 195	Ala	Tyr	Val	Leu	Phe 200	Tyr	Leu	Arg	Ile	Pro 205	Gly	Ser	Lys
30	Lys	Ser 210	Pro	Glu	Gly	Leu	Ile 215	Ser	Arg	Thr	Gly	Ser 220	Ser	Ser	Leu	Pro
	Gly 225	Arg	Pro	Ser	Val	Ile 230	Pro	Asp	His	Ser	Lys 235	Lys	Asn	Ile	Gly	Asn 240
35	Gly	Ile	Ile	Ser	Ser 245	Pro	Leu	Thr	Gly	Lys 250	Arg	Gln	Asp	Ser	Gly 255	Thr
10	Met	Lys	Lys	Pro 260	His	Thr	Thr	Glu	Glu 265	Ile	Gly	Val	Pro	Ile 270	Ser	Arg
•0	Asn	Gly	Ser 275	Thr	Leu	Gly	Leu	Lys 280	Ser	Gln	Asn	Gly	Cys 285	Ile	Pro	Pro
15	Lys	Leu 290	Pro	Ser	Gly	Ser	Pro 295	Ser	Pro	Lys	Leu	Ser 300	Gln	Thr	Pro	Thr
	His 305	Met	Pro	Thr	Ile	Leu 310	Asp	Asp	Pro	Gly	Lys 315	Lys	Val	Lys	Lys	Pro 320
50	Ala	Pro	Pro		His 325	Phe	Ser	Pro		Thr 330		Gln	Gly	Leu	Pro 335	Gly
	Thr	Ser	Asn	Ser 340	Asn	Ser	Ser	Arg	Ser 345	Gly	Ser	Gln	Arg	Gln 350	Gly	Ser
55	Trp	Asp	Ser 355	Arg	Asp	Val	Val	Leu 360	Ser	Thr	Ser	Pro	Lys 365	Leu	Leu	Ala
50	Thr	Ala 370	Thr	Ala	Asn	Gly	His 375	Gly	Leu	Lys	Gly	Asn 380	Asp	Glu	Ser	Ala
	Gly 385	Leu	Asp	Arg	Arg	Gly 390	Ser	Ser	Ser	Ser	Ser 395	Pro	Glu	His	Ser	Ala 400

5	Ser	Ser	Asp	Ser	Thr 405	Lys	Ala	Pro	Gln	Thr 410	Pro	Arg	Ser	Gly	Ala 415	Ala
10	His	Leu	Суѕ	Asp 420	Ser	Gln	Glu	Thr	Asn 425	Cys	Ser	Thr	Ala	Gly 430	His	Ser
10	Lys	Thr	Pro 435	Pro	Ser	Gly	Ala	Asp 440	Ser	Lys	Thr	Val	Lys 445	Leu	Lys	Ser
15	Pro	Val 450	Leu	Ser	Asn	Thr	Thr 455	Thr	Glu	Pro	Ala	Ser 460	Thr	Met	Ser	Pro
	Pro 465	Pro	Ala	Lys	Lys	Leu 470	Ala	Leu	Ser	Ala	Lys 475	Lys	Ala	Ser	Thr	Leu 480
20	Trp	Arg	Ala	Thr	Gly 485	Asn	Asp	Leu	Arg	Pro 490	Pro	Pro	Pro	Ser	Pro 495	Ser
25	Ser	Asp	Leu	Thr 500	His	Pro	Met	Lys	Thr 505	Ser	His	Pro	Val	Val 510	Ala	Ser
	Thr	Trp	Pro 515	Val	His	Arg	Ala	Arg 520	Ala	Val	Ser	Pro	Ala 525	Pro	Gln	Ser
30	Ser	Ser 530	Arg	Leu	Gln	Pro	Pro 535	Phe	Ser	Pro	His	Pro 540	Thr	Leu	Leu	Ser
	Ser 545	Thr	Pro	Lys	Pro	Pro 550	Gly	Thr	Ser	Glu	Pro 555	Arg	Ser	Cys	Ser	Ser 560
35	Ile	Ser	Thr	Ala	Leu 565	Pro	Gln	Val	Asn	Glu 570	Asp	Leu	Val	Ser	Leu 575	Pro
40	His	Gln	Leu	Pro 580	Glu	Ala	Ser	Glu	Pro 585	Pro	Gln	Ser	Pro	Ser 590	Glu	Lys
	Arg	Lys	Lys 595	Thr	Phe	Val	Gly	Glu 600	Pro	Gln	Arg	Leu	Gly 605	Ser	Glu	Thr
45	Arg	Leu 610	Pro	Gln	His	Ile	Arg 615	Glu	Ala	Thr	Ala	Ala 620	Pro	His	Gly	Lys
	625					630					635			Ala		640
50	Leu	Gln	Glu	Gly	Gln 645	Thr	Gln	Arg	Gln	Pro 650	Gly	Ser	Pro	Met	Tyr 655	Arg
55	Arg	Glu	Gly	Gln 660	Ala	Gln	Leu	Pro	Ala 665	Val	Arg	Arg	Gln	Glu 670	Asp	Gly
	Thr	Gln	Pro 675	Gln	Val	Asn	Gly	Gln 680	Gln	Val	Gly	Cys	Val 685	Thr	Asp	Gly
60	His	His 690	Ala	Ser	Ser	Arg	Lys 695	Arg	Arg	Arg	Lys	Gly 700	Ala	Glu	Gly	Leu
	Gly 705	Glu	Glu	Gly	Gly	Leu 710	His	Gln	Asp	Pro	Leu 715	Arg	His	Ser	Cys	Ser 720

5	Pro	Met	Gly	Asp	Gly 725	Asp	Pro	Glu	Ala	Met 730	Glu	Glu	Ser	Pro	Arg 735	Ĺys
	Lys	Lys	Lys	Lys 740	Lys	Asn	Ser	Arg	Gly 745	Gly	Pro	Val				
10	<213 <213	0> 3! l> 5: 2> P!	26	·m											•	
15	<220)>	escr:		on of	E Unl	cnow	n Org	ganis	cq:ma	rima	:e				
20)> 39 Val		Ala	Leu 5	Ser	Phe	Pro	Glu	Ala 10	Asp	Pro	Ala	Leu	Ser 15	Ser
25	Pro	Asp	Ala	Pro 20	Glu	Leu	His	Gln	Asp 25	Glu	Ala	Gln	Val	Val 30	Glu	Glu
45	Leu	Thr	Val 35	Asn	Gly	Lys	His	Ser 40	Leu	Ser	Trp	Glu	Ser 45	Pro	Gln	Gly
30	Pro	Gly 50	Cys	Gly	Leu	Glņ	Asn 55	Thr	Gly	Asn	Ser	Cys 60	Tyr	Leu	Asn	Ala
	Ala 65	Leu	Gln	Cys	Leu	Thr 70	His	Thr	Pro	Pro	Leu 75	Ala	Asp	Tyr	Met	Leu 80
35	Ser	Gln	Glu	His	Ser 85	Gln	Thr	Cys	Cys	Ser 90	Pro	Glu	Gly	Cys	Lys 95	Leu
40	Cys	Ala	Met	Glu 100	Ala	Leu	Val	Thr	Gln 105	Ser	Leu	Leu	His	Ser 110	His	Ser
	Gly	Asp	Val 115	Met	Lys	Pro	Sèr	His 120	Ile	Leu	Thr	Ser	Ala 125	Phe	His	Lys
45	His	Gln 130	Gln	Glu	Asp	Ala	His 135	Glu	Phe	Leu	Met	Phe 140	Thr	Leu	Glu	Thr
	Met 145	His	Glu	Ser	Cys	Leu 150	Gln	Val	His	Arg	Gln 155	Ser	Lys	Pro	Thr	Ser 160
50	Glu	Asp	Ser	Ser	Pro 165	Ile	His	Asp	Ile	Phe 170	Gly	Gly	Trp	Trp	Arg 175	Ser
55	Glņ	Ile	Lys	Cys 180	Leu	Leu	Cys	Gln	Gly 185	Thr	Ser	Asp	Thr	Туг 190	Asp	Arg
	Phe	Leu	Asp 195	Ile	Pro	Leu	Asp	Ile 200	Ser	Ser	Ala	Gln	Ser 205	Val	Lys ·	Gln
60	Ala	Leu 210	Trp	Asp	Thr	Glu	Lys 215	Ser	Glu	Glu	Leu	Cys 220	Gly	Asp	Asn	Ala
	Tyr 225	Tyr	Cys	Gly	Lys	Cys 230	Arg	Gln	Lys	Met	Pro 235	Àla	Ser	Lys	Thr	Leu 240

5	His	Val	His	Ile	Ala 245	Pro	Lys	Val	Leu	Met 250	Val	Val	Leu	Asn	Arg 255	Phe
	Ser	Ala	Phe	Thr 260	Gly	Asn	Lys	Leu	Asp 265	Arg	Lys	Val	Ser	Tyr 270	Pro	Glu
10	Phe	Leu	Asp 275	Leu	Lys	Pro	Tyr	Leu 280	Ser	Glu	Pro	Thr	Gly 285	Gly	Pro	Leu
15	Pro	Tyr 290	Ala	Leu	Tyr	Ala	Va1 295	Leu	Val	His	Asp	Gly 300	Ala	Thr	Ser	His
	Ser 305	Gly	His	Tyr	Phe	Cys 310	Cys	Val	Lys	Ala	Gly 315	His	Gly	Lys	Trp	Tyr 320
20	Lys	Met	Asp	Asp	Thr 325	Lys	Val	Thr	Arg	Cys 330	Asp	Val	Thr	Ser	Val 335	Leu
•	Asn	Glu	Asn	Ala 340	Tyr	Val	Leu	Phe	Tyr 345	Val	Gln	Gln	Ala	Asn 350	Leu	Lys
25	Gln	Val	Ser 355	Ile	Asp	Met	Pro	Glu 360	Gly	Arg	Ile	Asn	Glu 365	Val	Leu	Asp
30	Pro	Glu 370	Tyr	Gln	Leų	Lys	Lys 375		Arg	Arg	Lys	Lys 380	His	Lys	Lys	Lys
	Ser 385	Pro	Phe	Thr	Glu	Asp 390	Leu	Gly	Gl _u	Pro	Суs 395	Glu	Asn	Arg	Asp	Lys 400
35	Arg	Ala	Ile	Lys	Glu 405	Thr	Ser	Leu	Gly	Lys 410	Gly	Lys	Val	Leu	Gln 415	Glu
	Val	Asn	His	Lys 420	Lys	Ala	Gly	Gln	Lys 425	His	Gly	Asn	Thr	Lys 430	Leu	Met
10	Pro	Gln	Lys 435	Gln	Asn	His	Gln	Lys 440	Ala	Gly	Gln ,	Asn	Leu 445	Arg	Asn	Thr
15	Glu	Val 450	Glu	Leu	Asp	Leu	Pro 455	Ala	Asp	Ala	Ile	Val 460	Ile	His	Gln	Pro
-	Arg 465	Ser	Thr	Ala	Asn	Trp 470	Gly	Arg	Asp	Ser	Pro 475	Asp	Lys	Glu	Asn	Gln 480
50	Pro	Leu	His	Àsn	Ala 485	Asp	Arg	Leu	Leu	Thr 490	Ser	Gln	Gly	Pro	Val 495	Asn
	Thr	Trp	Gln	Leu 500	Cys .	Arg	Gln	Glu	Gly 505	Arg	Arg	Arg	Ser	Lys 510	Lys	Gly
55	Gln	Asn	Lys 515	Asn	Lys	Gln	Gly	Gln 520	Arg	Leu	Leu	Leu	Val 525	Суѕ		
50	<211 <212)> 40 .> 54 ?> PR }> Un	15 UT	m												
	<220)>														

5	<22	3> D	escr	ipti	on o	f Un	know	m Or	gani	sm:p	rima	te				
•		0> 4		Com		۰	Dh.	D	01			_				
	1				Leu 5					10					15	
10				20			٠		25					30		
15			35		Asp			40					45			
	Pro	Gly 50	Суѕ	Gly	Leu	Gln	Asn 55	Thr	Gly	Asn	Ser	Суs 60		Leu	Asn	Ala
20	Ala 65	Leu	Gln	Суѕ	Leu	Thr 70	His	Thr	Pro	Pro	Leu 75	Ala	Asp	Tyr	Met	Leu 80
	Ser	Gln	Glu	Tÿr	Ser 85	Gln	Thr	Cys	Cys	Ser 90	Pro	Glu	Gly	Cys	Lys 95	Met
25	СЛЗ	Ala	Met	Glu 100	Ala	His	Val	Thr	Gln 105	Ser	Leu	Leu	His	Ser 110	His	Ser
30	Gly	Asp	Val 115	Met	Lys	Pro	Ser	Gln 120	Ile	Leu	Thr	Ser	Ala 125	Phe	His	Lys
	His	Gln 130	Gln	Glu	Asp	Ala	His 135	Glu	Phe	Leu	Met	Phe 140	Thr	Leu	Glu	Thr
35	Met 145	His	Glu	Ser	Cys	Leu 150	Gln	Val	His	Arg	Gln 155	Ser	Glu	Pro	Thr	Ser 160
	Glu	Asp	Ser	Ser	Pro 165	Ile	His	Asp	Ile	Phe 170	Gly	Gly	Leu	Trp	Arg 175	Ser
40	Gln	Ile	Lys	Cys 180	Leu	His	Суѕ	Gln	Gly 185	Thr	Ser	Asp	Thr	Tyr 190	Asp	Arg
45	Phe	Leu	Asp 195	Val	Pro	Leu	Asp	Ile 200	Ser	Ser	Ala	Gln	Ser 205	Val	Asn	Gln
	Ala	Leu 210	Trp	Asp	Thr	Glu	Lys 215	Ser	Glu	Glu	Leu	Arg 220	Gly	Glu	Asn	Ala
50	Tyr 225	Tyr	Cys	Gly	Arg	Суs 230	Arg	Gln	Lys	Met	Pro. 235	Ala	Ser	Lys	Thr	Leu 240
	His	Ile	His	Ser	Ala 245	Pro	ГЛЗ	Val	Leu	Leu 250	Leu	Val	Leu	Lys	Arg 255	Phe
55	Ser	Ala	Phe	Met 260	Gly	Asn	Lys	Leu	Asp 265	Arg	Lys	Val	Ser	Tyr 270	Pro	Glu
60	Phe	Leu	Asp 275	Leu	Lys	Pro	Tyr	Leu 280	Ser	Gln	Pro	Thr	Gly 285	Gly	Pro	Leu
60	Pro	Tyr 290	Ala	Leu	Tyr	Ala	Val	Leu	Val	His	Glu	Gly		Thr	Cys	His

5	Ser 305	Gly	His	Tyr	Phe	Ser 310	Tyr	Val	Lys	Ala	Arg 315	His	Gĵy	Ala	Trp	Tyr 320
	Lys	Met	Asp	Asp	Thr 325	Lys	Val	Thr	Ser	Cys 330	Asp	Val	Thr	Ser	Val 335	Leu
10	Asn	Glu	Asn	Ala 340	Tyr	Val	Leu	Phe	Tyr 345	Val	Gln	Gln	Thr	Asp 350	Leu	Lys
15	Gln	Val	Ser 355	Ile	Asp	Met	Pro	Glu 360	Gly	Arg	Val	His	Glu 365	Val	Leu	Asp
	Pro	Glu 370	Tyr	Gln	Leu	Lys	Lys 375	Ser	Arg	Arg	Lys	Lys 380	His	Lys	Lys	Lys
20	Ser 385	Pro	Cys	Thr	Glu	Asp 390	Ala	Gly	Glu	Pro	Cys 395	Lys	Asn	Arg	Glu	Lys 400
	Arg	Ala	Thr	Lys	Glu 405	Thr	Ser	Leu	Gly	Glu 410	Gly	Lys	Val	Xaa	Gln 415	Glu
25	Lys	Asn	His	Lys 420	Lys	Ala	Gly	Gln	Lys 425	His	Glu	Asn	Thr	Lys 430	Leu	Val
30	Pro	Gln	Glu 435	Gln	Asn	His	Gln	Lys 440	Leu	Gly	Gln	Lys	His 445	Arg	Ile	Asn
	Glu	11e 450	Leu	Pro	Gln	Glu	Gln 455	Asn	His	Gln	Гуs	Ala. 460	Gly	Gln	Ser	Leu
35	Arg 465	Asn	Thr	Glu	Gly	Glu 470	Leu	Asp	Leu	Pro	Ala 475	Asp	Ala	Ile	Val	Ile 480
	His	Leu	Leu	Arg	Ser 485	Thr	Glu	Asn	Trp	Gly 490	Arg	Asp	Ala	Pro	Asp 495	Lys
40	Glu	Asn	Gln	Pro 500	Trp	His	Asn	Ala	Asp 505	Arg	Leu	Leu	Thr	Ser 510	Gln	Asp
1 5	Pro	Val	Asn 515	Thr	Gly	Gln	Leu	Cys 520	Arg	Gln	Glu	Gly	Arg 525	Arg	Arg	Ser
	Lys	Lys 530	Gly	Lys	Asn	Lys	Asn 535	Lys	Gln	Gly	Gln	Arg 540	Leu	Leu	Leu	Val
50	Cys 545															
55	<211 <212	0> 41 L> 89 2> DN 3> Ur	0 JA	vn												
60	<220 <223		escri	ptic	on of	Unk	cnowr	ı Org	ganis	sm:pr	imat	:e	•	•		•
)> L> CI		(500												

5	<220><221><222><222><223>	(53)			y.be	A o	r C									
10 ·	<220> <221> <222> <223>	(123)			/ be	C o	r G				`					
15	<220><221><222><222><223>	(124)			/ be	G o	r T			٠						
20	<220> <221> <222> <223>	(125)		•	/ be	C o	. Т									
25	<220><221><222><222><223>	(525)			, be	Α, (c, G,	, or	т							
30	<220> <221> <222> <223>	(547)			y be	A, (C, G,	, or	т .							
35	<220> <221> <222> <223>	(835)			/ be	Α, (C, G,	, or	т							
40	<400> ggcacg		cacc							act Thr						50
45	ctc at Leu Il															98
50	aca ca Thr Hi															140
55	tgc ga Cys As 45															194
	caa tt Gln Le	a aaa eu Lys	tca Ser	aat Asn 65	atc Ile	aac Asn	att Ile	aga Arg	ttt Phe 70	gga Gly	att Ile	att Ile	ctg Leu	aga Arg 75	gag Glu	243
60	gac at															290

5	tct Ser	gtt Val	ttg Leu 95	aat Asn	ttc Phe	tcc Ser	tat Tyr	ccc Pro 100	atc Ile	tgt Cys	gag Glu	gcg Ala	gct Ala 105	ctg Leu	ccc Pro	aag Lys	338
10	ttt Phe	ser 110	ttc Phe	tgt Cys	gga Gly	aga Arg	agg Arg 115	aaa Lys	gga Gly	gag Glu	cag Gln	att Ile 120	tac Tyr	tat Tyr	gct Ala	GJÀ aaa	386
15	cct Pro 125	gtc Val	aat Asn	aat Asn	cct Pro	gaa Glu 130	ttt Phe	act Thr	att Ile	cct Pro	cag Gln 135	gga Gly	gaa Glu	tac Tyr	cag Gln	gtt Val 140	434
	ttg Leu	ctġ Leu	gaa Glu	ctg Leu	tac Tyr 145	act Thr	gaa Glu	aaa Lys	cgg Arg	tcc Ser 150	acc Thr	gtg Val	gcc Ala	tgt Cys	gcc Ala 155	aat Asn	482
20				atg Met 160			tgad	ctgt	ggg (cctg	ttago	ca aa	aact	caca	a		530
25	gcc	agct	gca t	tete	gtcgg	gg aa	accti	tccaa	a gct	cct	ctga	ctga	acct	ac t	gtg	ggagga	590
	gaag	gcago	etg a	atgad	caga	ga ga	aggct	tctad	c aaa	agaaq	gege	cccc	aaaç	gag t	gcaç	gctgct	650
	aati	ttag	gtc d	ccago	gacca	ag ac	catco	ccag	g act	ccad	aga	tgta	atga	ag t	cccc	gaatg	710
30	tato	etgtt	itc t	aagg	gagco	ct ct	tggd	cagto	ctt	aago	agt	cttg	gaggg	itc o	catíco	etttt	770
	ctct	aatt	gg t	cgc	ctcc	ca co	agad	ctcac	cto	jcttt	tca	actt	ttta	igg a	agtgo	cttcct	830
35	caca	acgtt	ac o	aata	aataa	aa ga	aago	tggd	cad	caaa	aaa	aaaa	ıaaaa	ıaa a	aaaa	aaaaa	890
40	<211 <212)> 42 L> 16 PP PF B> Ur	52	vn										٠		,	
)> 42									,						
45	Met 1		GTĀ	Pne	Thr 5	Ala	Thr	Leu	Phe	Leu 10	Trp	Thr	Leu	Ile	Phe 15	Pro	
* .	Ser	Cys	Ser	Gly 20	Gly	Gly	Gly	Gly	Lys 25	Ala	Trp	Pro	Thr	His 30	Val	Val	
50	Cys	Ser	Asp 35			Leu			Leu	Tyr		Ser		Asp	Pro	Leu	
	Gln	Asp 50	Phe	Gly	Phe	Ser	Val 55	Glu	Lys	Суs	Ser	Lys 60	Gln	Leu	Lys	Ser	
55	Asn 65	Ile	Asn	Ile	Arg	Phe 70	Gly	Ile	Ile	Leu	Arg 75	Glu	Asp	Ile	Lys	Glu 80	
50	Leu	Phe	Leu	Asp	Leu 85	Ala	Leu	Met	Ser	Gln 90	Gly	Ser	Ser	Val	Leu 95	Asn	
	Phe	Ser	Tyr	Pro	Ile	Cys	Glu	Ala	Ala	Leu	Pro	Lys	Phe	Ser	Phe	Cys	

5	Gly Arg Arg Lys Gly Glu Gln Ile Tyr Tyr Ala Gly Pro Val Asn Asn 115 120 125	
	Pro Glu Phe Thr Ile Pro Gln Gly Glu Tyr Gln Val Leu Leu Glu Leu 130 135 140	
10	Tyr Thr Glu Lys Arg Ser Thr Val Ala Cys Ala Asn Ala Thr Ile Met 145 150 155 160	
	Cys Ser	
15		
20	<210> 43 <211> 486 <212> DNA <213> Unknown	
	<220> <223> Description of Unknown Organism:primate	
25	<220> <221> CDS <222> (1)(132)	
30	<400> 43 ccc ctg ttt tct tcc ata ttt act gaa gct cag aag cag tat tgg gtc Pro Leu Phe Ser Ser Ile Phe Thr Glu Ala Gln Lys Gln Tyr Trp Val 1 5 10 15	48
35	tgc aac tca tcc gat gca agt att tca tac acc tac tgt gat aaa atg Cys Asn Ser Ser Asp Ala Ser Ile Ser Tyr Thr Tyr Cys Asp Lys Met 20 25 30	96
40	Caa tac cca att tca att aat gtt aac ccc tgt ata gaattgaaag Gln Tyr Pro Ile Ser Ile Asn Val Asn Pro Cys Ile 35 40	142
	gatccaaagg attattgcac attttctaca ttccaaggag agatttaaag caattatatt	202
15	tcaatctcta tataactgtc aacaccatga atcttccaaa gcgcaaagaa gttatttgcc	262
	gaggatetga tgacgattae tetttttgea gagetetgaa gggagagaet gtgaatacaa	322
	caatatcatt ctccttcaag ggaataaaat tttctaaggg aaaatacaaa tgtgttgttg	382
50	aagctatttc tgggagccca gaagaaatgc tcttttgctt ggagtttgtc atcctacacc	442
	aacctaattc aaattagaat aaattgagta tttaaaaaaa aaaa	486
55	<210> 44 <211> 44 <212> PRT <213> Unknown	
50	<400> 44 Pro Leu Phe Ser Ser Ile Phe Thr Glu Ala Gln Lys Gln Tyr Trp Val 1 5 10 15	

5	Cys	Asn	Ser	Ser 20	Asp	Ala	Ser	: Ile	Ser 25		Thr	туг	Cy:	Ası 30		Met	
	Gln	Туг	Pro 35		Ser	Ile	Asn	Val		Pro	Cys	Il€	•				
10 15	<21 <21	0> 4 1> 4 2> D 3> U	83	wn													
10	<22 <22		escr	ipti	on o	f Un	know	n Or	gani	sm:p	rima	te					
20		1> C		(480)												
25	atg	0> 4 ttc Phe	cca	ttt Phe	ctg Leu 5	ttt Phe	ttt Phe	tcc Ser	acc Thr	ctg Leu 10	ttt Phe	tct Ser	tcc Ser	ata Ile	ttt Phe 15	act Thr	48
30	gaa Glu	gct Ala	cag Gln	aag Lys 20	cag Gln	tat Tyr	tgg Trp	gtc Val	tgc Cys 25	aac Asn	tca Ser	tcc Ser	gat Asp	gca Ala 30	agt Ser	att Ile	96
35	tca Ser	tac Tyr	acc Thr 35	tac Tyr	tgt Cys	gat Asp	aaa Lys	atg Met 40	caa Gln	tac Tyr	cca Pro	att Ile	cca Ser 45	att Ile	aat Asn	gtt Val	144
	aac Asn	ccc Pro 50	tgt Cys	ata Ile	gaa Glu	ttg Leu	aaa Lys 55	gga Gly	tcc Ser	aaa Lys	gga Gly	tta Leu 60	ttg Leu	cac His	att Ile	ttc Phe	192
40	tac Tyr 65	att Ile	cca Pro	agg Arg	aga Arg	gat Asp 70	tta Leu	aag Lys	caa Gln	tta Leu	tat Tyr 75	ttc Phe	aat Asn	ctc Leu	tat Tyr	ata Ile 80	240
45	act Thr	gtc Val	aac Asn	acc Thr	atg Met 85	aat Asn	ctt Leu	cca Pro	aag Lys	cgc Arg 90	aaa Lys	gaa Glu	gtt Val	att Ile	tgc Cys 95	cga Arg	288
50	gga Gly	tct Ser	gat Asp	gac Asp 100	gat Asp	tac Tyr	tct Ser	ttt Phe	tgc Cys 105	aga Arg	gct Ala	ctg Leu	aag Lys	gga Gly 110	gag Glu	act Thr	336
55	gtg Val	aat Asn	aca Thr 115	aca Thr	ata Ile	tca Ser	ttc Phe	tcc Ser 120	ttc Phe	aag Lys	gga Gly	ata Ile	aaa Lys 125	ttt Phe	tct Ser	aag Lys	384
	gga Gly	aaa Lys 130	tac Tyr	aaa Lys	tgt Cys	gtt Val	gtt Val 135	gaa Glu	gct Ala	att Ile	tct Ser	ggg Gly 140	agc Ser	cca Pro	gaa Glu	gaa Glu	432
60	atg Met 145	ctc Leu	ttt Phe	tgc Cys	ttg Leu	gag Glu 150	ttt Phe	gtc Val	atc Ile	cta Leu	cac His 155	caa Gln	cct Pro	aat Asn	tca Ser	aat Asn 160	480
	tag																483

5	<210> 46 <211> 160 <212> PRT <213> Unknown	
10	<400> 46 Met Phe Pro Phe Leu Phe Phe Ser Thr Leu Phe Ser Ser Ile Phe Thr 1 5 10 15	
15	Glu Ala Gln Lys Gln Tyr Trp Val Cys Asn Ser Ser Asp Ala Ser Ile 20 25 30	
	Ser Tyr Thr Tyr Cys Asp Lys Met Gln Tyr Pro Ile Ser Ile Asn Val 35 40 45	
20	Asn Pro Cys Ile Glu Leu Lys Gly Ser Lys Gly Leu Leu His Ile Phe 50 . 55 60	
25	Tyr Ile Pro Arg Arg Asp Leu Lys Gln Leu Tyr Phe Asn Leu Tyr Ile 65 70 75 80	
	Thr Val Asn Thr Met Asn Leu Pro Lys Arg Lys Glu Val Ile Cys Arg 85 90 95	
30	Gly Ser Asp Asp Tyr Ser Phe Cys Arg Ala Leu Lys Gly Glu Thr	
	Val Asn Thr Thr Ile Ser Phe Ser Phe Lys Gly Ile Lys Phe Ser Lys 115 120 125	
35	Gly Lys Tyr Lys Cys Val Val Glu Ala Ile Ser Gly Ser Pro Glu Glu 130 135 140	
10	Met Leu Phe Cys Leu Glu Phe Val Ile Leu His Gln Pro Asn Ser Asn 145 150 155 160	
15	<210> 47 <211> 498 <212> DNA <213> Unknown	
	<220> <223> Description of Unknown Organism:rodent	
50	<220> <221> CDS <222> (53)(394)	
55	<400> 47 gtcgagtccg atggtcttcc tggcgagttt aaagtatcgg agatattaaa tc atg ttg 58 Met Leu 1	3
50	cca ttt att ctc ttt tcg acg ctg ctt tct ccc ata ttg act gaa tct 10 Pro Phe Ile Leu Phe Ser Thr Leu Leu Ser Pro Ile Leu Thr Glu Ser 5 10 15)€
	gag aag caa cag tgg ttc tgc aac tcc tcc gat gca att att tcc tac 19	54

5	Glu	Lys 20	Gln	Gln	Trp	Phe	Cys 25	Asn	Ser	Ser	Asp	Ala 30	Ile	Ile	Ser	Tyr	
10	_		_	-		ttg Leu 40							_		_		202
10	_		_	_		gga Gly							-				250
15		-				aaa Lys									_	-	298
20						ccg Pro											346
25						ttt Phe											394
	taga	aaaa	atio	gagad	etgt	ga at	acat	caat	aco	catto	ctct	ttc	gaggg	gaa 1	tacta	atttcc	454
30	taaq	gggc	cat t	cacaç	gatgt	eg t	gca	gaago	c tat	tgct	ggg	gata	a				498
35	<212 <212	0> 48 l> 13 2> PI 3> Ur	l 4 RT	v n					,								
4 0)> 48 Leu		Phe	Ile 5	Leu	Phe	Ser	Thr	Leu 10	Leu	Ser	Pro	Ile	Leu 15	Thr	
40	Glu	Ser	Glu	Lys 20	Gln	Gln	Trp	Phe	Cys 25	Asn	Ser	Ser	Asp	Ala 30	Ile	Ile	
45	Ser	Tyr	Ser 35	Tyr	Cys	Asp	His	Leu 40	Lys	Phe	Pro	Ile	Ser 45	Ile	Ser	Ser	
	Glu	Pro 50	Суз	Ile	Arg	Leu	Arg 55	Gly	Thr	Asn	Gly	Phe 60	Val	His	Val	Glu	
50	Phe 65	Ile	Pro	Arg	Gly	Asn 70	Leu	Lys	Tyr	Leu	Туг 75	Phe	Asn	Leu	Phe	Ile 80	
55	Ser	Val	Asn	Ser	Ile 85	Glu	Leu	Pro	Lys	Arg 90	Lys	Glu	Val	Leu	Cys 95	His	
-	Gly	His	Asp	Asp 100	Asp	Tyr	Ser	Phe	Cys 105	Arg	Ala	Leu	Lys	Gly 110	Gly	Tyr	
60	Ala	Ile															
		0> 49 1> 14															

5		2> P: 3> U:	RT nknov	wn												
	<22 <22		escr	ipti	on o	f Unl	know	n Or	gani	sm:p	rima	te				
10		0> 4: Leu	9 Pro	Phe	Ile 5	Leu	Phe	Ser	Thr	Leu 10	Leu	Ser	Pro	Ile	Leu 15	Thi
15	Glu	Ser	Glu	Lys 20	Gln	Gln	Trp	Phe	Суs 25		Ser	Ser	Asp	Ala 30	Ile	Ile
	Ser	Tyr	Ser 35	Tyr	Cys	Asp	His	Leu 40	Lys	Phe	Pro	Ile	Ser 45	Ile	Ser	Ser
20	Glu	Pro 50	Сув	Île	Arg	Leu	Arg 55	Gly	Thr	Asn	Gly	Phe 60	Val	His	Val	Glu
25	Phe 65	Ile	Pro	Arg	Gly	Asn 70	Leu	ŗVa	Tyr	Leu	Tyr 75	Phe	Asn	Leu	Phe	Ile 80
23	Ser	Val	Asn	Ser	11e 85	Glu	Leu	Pro	Lys	Arg 90	Lys	Glu	Val	Leu	Cys 95	His
30	Gly	His	Asp	Asp 100	Asp	Tyr	Ser	Phe	Cys 105	Arg	Ala	Leu	Lys	Gly 110	Glu	Thr
	Val	Asn	Thr 115	Ser	Ile	Pro	Phe	Ser 120	Phe	Glu	Gly	Ile	Leu 125	Phe	Pro	Lys
35	Gly	His 130	Tyr	Arg	Cys	Val	Ala 135	Glu	Ala	Ile	Ala	Gly 140	Asp			
40	<211 <212	0> 50 1> 16 2> PF 3> Ur	52	v n												
45	<220 <223		escri	ptic	on of	Unl	cnowi	n Org	ganis	sm:ro	odent	:			•	
50)> 5(Asn	Gly	Val	Ala 5	Ala	Ala	Leu	Leu	Val 10	Trp	Ile	Leu	Thr	Ser 15	Pro
50	Ser	Ser	Ser	Asp 20	His	Gly	Ser	Gľu	Asn 25	Gly	Trp	Pro	Lys	His 30	Thr	Ala
55	Cys	Asn	Ser 35	Gly	Gly	Leu	Glu	Val 40	Val	Tyr	Gln	Ser	Cys 45	Asp	Pro	Leu
	Gln	Asp 50	Phe	Gly	Leu	Ser	Ile 55	Asp	Gln	Cys	Ser	Lys 60	Gln	Ile	Gln	Ser
60	Asn 65	Leu	Asn	Ile	Arg	Phe 70	Gly	Ile	Ile	Leu	Arg 75	Gln	Asp	Ile	Arg	Lys 80
	Leu	Phe	Leu	Asp	Ile 85	Thr	Leu	Met	Ala	Lys 90	Gly	Ser	Ser	Ile	Leu 95	Asn

5 .	Tyr	Ser	Тут	Pro 100	Leu	Cys	Glu	Glu	Asp 105	Gln	Pro	Lys	Phe	Ser 110	Phe	Cys	
	Gly,	Arg	Arg 115	Lys	Gly	Glu	Gln	Ile 120	Tyr	Tyr	Ala	Gly	Pro	Val	Asn	Asn	
10	Pro	Gly 130	Leu	Asp	Val	Pro	Gln 135	Gly	Glu	Tyr	Gln	Leu 140	Leu	Leu	Ğlu	Leu	
15	Tyr 145	Asn	Glu	Asn	Arg	Ala 150	Thr	Val	Ala	Cys	Ala 155	Asn	Ala	Thr	Val	Thr 160	
	Ser	Ser						٠	_								
20	<212 <212)> 51 L> 11 2> DN 3> Ur	158 1 A	vn.													
25	<220 <223		escri	iptio	on of	Unl	cnowi	n Org	ganis	m:av	/ian			,			
30)> L> CI ?> (]		. (490))		-										
35)> 51 :gcaa	acc a		aag a Lys T												49
4 0					gcc Ala												97
4 5		-		_	gag Glú					_	_	_		_		-	145
•3					att Ile 50												193
50					gca Ala												241
55	-	_	-	-	ctg Leu					_		_		_			289
60				_	gga Gly					-					_		337
																	385

	aaa gaa atc cca cag cga gat tac act atc aca gca agg ctg act aac Lys Glu Ile Pro Gln Arg Asp Tyr Thr Ile Thr Ala Arg Leu Thr Asn 130 135 140	433
10	gaa gat cgc gcc act gtt gct tgt gct gat ttt acc gtg aaa aat tat Glu Asp Arg Ala Thr Val Ala Cys Ala Asp Phe Thr Val Lys Asn Tyr 145 150 155	481
15	tta gat tat taagcaaaac aacgcactcg gtccgactcc cttaaaacta Leu Asp Tyr 160	530
	cagattccta aaactattca agcccagtga gctgcttgca tgcttcagtg attctgaagg	590
20	aaagatctcc cgcacggtgg ttctgatgct gttcctcttc gtaattcaac ttttttggag	650
	aagtcactag gccctaccct ctagtggtaa ttttatctcc aaatgcactc tgtagcccac	710
	ttttcgcttt taatatatac agctgcaaat agaaagtatt tgataccaac attctcatct	770
25	caggatgaaa atagtacaaa gcagaagagg cgagagccaa aacagatttt tgcagtaagc	830
	tatggaggta tccatttcta acacaagcta aagaagattg tcatatgtat tatgcagtta	890
2.0	tagcactcaa cattttcagt ttttcacaag gcctgtttgg agcctccatt ggtataaatt	950
30	ttgttgtaac cacagaacaa agaccaaata ggatgaacat ggctccatgt tcagtcactc	1010
	tattcatatc atttaagttt tcatgattct tcttgtatat ttttttttat tctttaatgt	1070
35	ttacagtgat gtgagaatcc ttttgtttaa gctacatgct gttcccgctt gtcaataaat	1130
	ctgcaagaaa aaaaaaaaa aaaaaaaa	1158
40	<210> 52 <211> 160 <212> PRT <213> Unknown	
45	<400> 52	
	Met Lys Thr Leu Asn Val Leu Ala Leu Val Leu Val Leu Cys Ile 1 5 10 15	
50	Asn Ala Ser Thr Glu Trp Pro Thr His Thr Val Cys Lys Glu Glu Asn 20 25 30	
	Leu Glu Ile Tyr Tyr Lys Ser Cys Asp Pro Gln Gln Asp Phe Ala Phe 35 40 45	
55	Ser Ile Asp Arg Cys Ser Asp Val Thr Thr His Thr Phe Asp Ile Arg 50 60	
50	Ala Ala Met Val Leu Arg Gln Ser Ile Lys Glu Leu Tyr Ala Lys Val 65 70 75 80	
	Asp Leu Ile Ile Asn Gly Lys Thr Val Leu Ser Tyr Ser Glu Thr Leu	

5	Cys	Gly	Pro	Gly 100	Leu	Ser	Lys	Leu	Ile 105	Phe	Cys	Gly	Lys	Lys 110	Lys	Gly	
	Glu	His	Leu 115	Tyr	Tyr	Glu	Gly	Pro 120	Ile	Thr	Leu	Gly	Ile 125	Lys	Glu	Ile	
10	Pro	Gln 130	Arg	Asp	Tyr	Thr	Ile 135	Thr	Ala	Arg	Leu	Thr 140	Asn	Glu	Asp	Arg	
15	Ala 145	Thr	Val	Ala	Суз	Ala 150	Asp	Phe	Thr	Val	Lys 155	Asn	Tyr	Leu	Asp	Tyr 160	7
20	<213 <213	0> 53 1> 26 2> DN 3> Un	584 NA	vn				٠								,	
	<221> CDS <222> (45)(1256)																
25	<223	l> CI		. (125	56)												
30		0> 53 ttcgg		gagg	ggcga	ıg gt	ittta	ataca	a cct	gaaa	agaa	gaga	_	: Sei	_	a cga g Arg	56
35		agc Ser															104
40		ccc Pro															152
45		gat Asp															200
43		att Ile															248
50		att Ile 70															296
55		aga Arg															344
60		ttg Leu															392
		tta Leu															440

5	ctg Leu	cat His	tct Ser 135	gac Asp	ttg Leu	gaa Glu	cca Pro	cag Gln 140	atg Met	agg Arg	tcc Ser	ata Ile	ctt Leu 145	cta Leu	gac Asp	tgg Trp	488
10	ctt Leu	tta Leu 150	gag Glu	gta Val	tgt Cys	gaa Glu	gta Val 155	tac Tyr	aca Thr	ctt Leu	cat His	agg Arg 160	gaa Glu	aca Thr	ttt Phe	tat Tyr	536
15	ctt Leu 165	gca Ala	caa Gln	gac Asp	ttt Phe	ttt Phe 170	gat Asp	aga Arg	ttt Phe	atg Met	ttg Leu 175	aca Thr	caa Gln	aag Lys	gat Asp	ata Ile 180	584
					ctt Leu 185												632
20	tcc Ser	aaa Lys	ctt Leu	gag Glu 200	gaa Glu	atc Ile	tat Tyr	gct Ala	cct Pro 205	aaa Lys	ctc Leu	caa Gln	gag Glu	ttt Phe 210	gct Ala	tac Tyr	680
25	gtcʻ Val	act Thr	gat Asp 215	ggt Gly	gct Ala	tgc Cys	agt Ser	gaa Glu 220	gaa Glu	gat Asp	atc Ile	tta Leu	agg Arg 225	atg Met	gaa Glu	ctc Leu	728
30	att Ile	ata Ile 230	tta Leu	aag Lys	gct Ala	tta Leu	aaa Lys 235	tgg Trp	gaa Glu	ctt Leu	tgt Cys	cct Pro 240	gta Val	aca Thr	atc Ile	atc Ile	776
35					ctc Leu												824
					cct Pro 265												872
40	cag Gln	ctt Leu	tta Leu	gat Asp 280	ctg Leu	tgt Cys	att Ile	cta Leu	gcc Ala 285	att Ile	gat Asp	tca Ser	tta Leu	gag Glu 290	ttc Phe	cag Gln	920
4 5					act Thr												968
50	Val		Lys	Lys	gcc Ala	Ser	Gly	Leu	Glu	Trp	Asp	_	Ile		_	_	1016
cc					gta Val												1064
55					act Thr 345											aat T Asn	1112
60		_			aca Thr			-	-	_	-		_	_			1160

5	ata aac Ile Asn	acc Thr 375	Phe	aga (Arg	aaa Lys	gj̇̀λ āāā	gga Gly 380	cag Gln	ttg Leu	tca Ser	cca Pro	gtg Val 385	tgc Cys	aat Asn	gga Gly	1208
10	ggc att Gly Ile 390	atg Met	aca Thr	cca (Pro	ccg Pro	aag Lys 395	agc Ser	act Thr	gaa Glu	aaa Lys	cca Pro 400	cca Pro	gga Gly	aaa Lys	cac His	1256
	taaagaag	at a	aacta	agca	a ac	aagt	tgga	att	caco	aag	atto	ggta	ıga a	actgo	gtatca	1316
15	ctgaacta	ict a	aaagt	ttta	c ag	aaag	tagt	gct	gtga	ttg	attg	jecet	ag d	caat	tcaca	1376
	agttacac	tg d	catt	ctgat	t tt	taaa	actt	aca	attg	gca	ctaa	agaa	ta d	attt	aatta	1436
	tttcctat	gt t	agct	gttaa	a ag	aaac	agca	gga	cttg	rttt	acaa	agat	gto	ttca	ttccc	1496
20	aaggttac	tg g	gatag	aagco	c aa	ccac	agtc	tat	acca	tag	caat	gtt	tt c	cttt	aatcc	1556
	agtgttac	tg t	gttt	atctt	ga.	taaa	ctag	gaa	tttt	gtc	actg	gagt	tt t	ggac	tggat	1616
25	aagtgcta	.cc t	taaa	gggta	a ta	ctaa	gtga	tac	agta	ctt	tgaa	tcta	gt t	gtta	gattc	1676
	tcaaaatt	cc t	acac	tcttg	g ac	tagt	gcaa	ttt	ggtt	ctt	gaaa	atta	aa t	ttaa	acttg	1736
	tttacaaa	gg t	ttag	ttttg	j ta	ataa	ggtg	act	aatt	tat	ctat	agct	gc t	atag	caagc	1796
30	tattataa	aa c	ttga	attto	; ta	caaa	tggt	gaa	attt	aat	gttt	ttta	aa c	tagt	ttatt	1856
	tgccttgc	ca t	aaca	cattt	: tt	taac	taat	aag	gctt	aga	tgaa	catg	gt g	ttca	acctg	1916
35	tgctctaa	ac a	gtgg	gagta	CC	aaag	aaat	tat	aaac	aag	ataa	atgc	tg t	ggct	ccttc	1976
	ctaactgg	gg c	tttc	ttgac	at	gtag	gttg	ctt	ggta	ata	acct	tttt	gt a	tatc	acaat	2036
	ttgggtga	aa a	actt	aagta	CC	cttt	caaa	cta	ttta	tat	gagg	aagt	ca c	ttta	ctact	2096
10	ctaagata	tc c	ctaa	ggaat	tt	tttt	tttt	aat	ttag	tgt	gact	aagg	ct t	tatt	tatgt	2156
	ttgtgaaa	ct g	rttaa	ggtco	: tt	tcta	aatt	cct	ccat	tgt	gaga	taag	ga c	agtg	tcaaa	2216
15	gtgataaa	gc t	taac	acttg	ac	ctaa	actt	cta	tttt	ctt	aagg	aaga	ag a	gtat	taaat	2276
	atatactg	ac t	ccta	gaaat	ct	attt	atta	aaa	aaag	aca	tgaa	aact	tg c	tgta	catag	2336
	gctagcta	tt t	ctaa	atatt	tt	aaat	tagc	ttt	tcta	aaa	aaaa	aatc	ca g	cctc	ataaa	2396
50	gtagatta	ga a	aact	agatt	gc	tagt	ttat	ttt	gtta	tca	gata	tgtg	aa t	ctct	tctcc	2456
	ctttgaag	aa a	ctata	acatt	ta:	ttgt	tacg	gta	tgåa	gtc	ttct	gtat	ag t	ttgt	tttta	2516
55	aactaata	tt t	gttt	cagta	tti	ttgt	ctga	aaa	gaaa	aca	ccac	taat	tg t	gtac	atatg	2576
, ,	tattatat	aa a	ctta	acctt	tta	aata	ctgt	tta	tttt	tag	ccca	tgtt	ta a	aaaa	taaaa	2636
	gttaaaaa	aa t	ttaad	ctgct	aaa	aaaa	aaaa	aaa	aaaa	agt	gcgg	ccgc			•	2684
50	<210> 54 <211> 40< <212> PR'	4														

5	<21	3> U	nkno	wn												
•		0> 5 Ser		Arg	Ser 5	Ser	Arg	Leu	Gln	Ala 10	Lys	Gln	Gln	Pro	Gln 15	Pro
10	Ser	Gln	Thr	Glu 20	Ser	Pro	Gln	Glu	Ala 25	Gln	Ile	Ile	Gln	Ala 30	Lys	Lys
15	Arg	Lys	Thr 35	Thr	Gln	Asp	Val	Lys 40	Lys	Arg	Arg	Glu	Glu 45	Val	Thr	Lys
	`Lys	His 50	Gln	Tyr	Glu	Ile	Arg 55	Asn	Cys	Trp	Pro	Pro 60	Val	Leu	Ser	Gly
20	Gly 65	Ile	Ser	Pro	Cys	Ile 70	Ile	Ile	Glu	Thr	Pro 75	His	Lys	Glu	Ile	Gly 80
•	Thr	Ser	Asp	Phe	Ser 85	Arg	Phe	Thr	Asn	Туг 90	Arg	Phe	Lys	Asn	Leu 95	Phe
25	Ile	Asn	Pro	Ser 100	Pro	Leu	Pro	Asp	Leu 105	Ser	Trp	Gly	Cys	Ser 110	Lys	Glu
30	Val	Trp	Leu 115	Asn	Met	Leu	Lys	Lys 120	Glu	Ser	Arg	Tyr	Val 125	His	Asp	Lys
	His	Phe 130	Glu	Val	Leu	His	Ser 135	Asp	Leu	Glu	Pro	Gln 140	Met	Arg	Ser	Ile
35	Leu 145	Leu	Asp	Trp	Leu	Leu 150	Glu	Val	Cys	Glu	Val 155	Tyr	Thr	Leu	His	Arg 160
	Glu	Thr	Phe	Tyr	Leu 165	Ala	Gln	Asp	Phe	Phe 170	Asp	Arg	Phe	Met	Leu 175	Thr
40	Gln	Lys	Asp'	Ile 180	Asn	Lys	Asn	Met	Leu 185	Gln	Leu	Ile	Gly	Ile 190	Thr	Şer
45	Leu	Phe	Ile 195	Ala	Sèr	Lys	Leu	Glu 200	Glu	Ile	Tyr	Ala	Pro 205	Lys	Leu	Gln
	Glu	Phe 210	Ala	Tyr	Val	Thr	Asp 215	Gly	Ala	Cys	Ser	Glu 220	Glu	Asp	Ile	Leu
50	Arg 225	Met	Glu	Leu	Ile	Ile 230	Leu	Lys	Ala	Leu	Lys 235	Trp	Glu	Leu	Cys	Pro 240
	Val	Thr	Ile	Ile	Ser 245	Trp	Leu	Asn	Leu	Phe 250	Leu	Gln	Val	Asp	Ala 255	Leu
55	Lys	Asp	Ala	Pro 260	Lys	Val	Leu	Leu	Pro 265	Gln	Tyr	Ser	Gln	Glu 270		Phe
60	Ile	Gln	Ile 275	Ala	Gln	Leu	Leu	Asp 280	Leu	Cys	Ile	Leu	Ala 285	Ile	Asp	Ser
	Leu	Glu	Phe	Gln	Tyr	Arg	Ile	Leu	Thr	Ala	Ala	Ala	Leu	Cys	His	Phe

5	Thr 305	Ser	Ile	Glu	Val	Val 310	Lys	Lys	Ala	Ser	Gly 315	Leu	Glu	Trp	Asp	Ser 320	
	Ile	Ser	Glu	Cys	Val 325	Asp	Trp	Met	Val	Pro 330	Phe	Val	Asn		Val 335	Lys	-
10	Ser	Thr	Ser	Pro 340	Val	Lys	Leu	Lys	Thr 345	Phe	Lys	Lys	Ile	Pro 350	Met	Glu	
15	Asp	Arg	His 355	Asn	Ile	Gln	Thr	His 360	Thr	Asn	Tyr	Leu	Ala 365	Met	Leu	Glu	
	Glu	Val 370	Asn	Tyr	Ile	Asn	Thr 375	Phe	Arg	Lys	Gly	Gly 380	Gln	Leu	Ser	Pro	
20	Val 385	Cys	Asn	Gly	Gly	Ile 390	Met	Thr	Pro	Pro	Lys 395	Ser	Thr	Glu	Lys	Pro 400	
	Pro	Gly	Lys	His													
25	<211 <212	0> 5! L> 1: 2> Di 3> Ur	764 NA	v n													
30	<220)>			on of	E Unl	cnow	n Org	ganis	iq:ma	rimat	:e					
35)> L> CI 2> (2		. (121	LO)												
40)> 55 ggatg		aagga	agcgg	gg ac	cacc	atg Met 1	aag Lys	gag Glu	gac Asp	ggc Gly 5	Gly	gcg Ala	gag Glu	ttc Phe	52
45											gtg Val 20						100
50	gat Asp	cca Pro	gat Asp	gaa Glu	gaa Glu 30	atg Met	gcc Ala	aaa Lys	atc Ile	gac Asp 35	agg Arg	acg Thr	gcg Ala	agg Arg	gac Asp 40	cag Gln	148
J 0	tgt Cys	ggg Gly	agc Ser	cag Gln 45	cct Pro	tgg Trp	gac Asp	aat Asn	aat Asn 50	gca Ala	gtc Val	tgt Cys	gca Ala	gac Asp 55	ccc Pro	tgc Cys	196
55											gat Asp						244
60											cca Pro						292
	ctg	cct	gta	ctg	agc	tgg	gca	aat	aga	gag	gaa	gtc	tgg	aaa	atc	atg	340

. 73

5	Leu 90	Pro	Val	Leu	Ser	Trp 95	Ala	Asn	Arg	Glu	Glu 100		Trp	Lys	Ile	Met 105	
10	tta Leu	aac Asn	aag Lys	gaa Glu	aag Lys 110	aca Thr	tac Tyr	tta Leu	agg Arg	gat Asp 115	cag Gln	cac His	ttt Phe	ctt Leu	gag Glu 120	caa Gln	388
10	cac His	cct Pro	ctt Leu	ctg Leu 125	cag Gln	cca Pro	aaa Lys	atg Met	cga Arg 130	gca Ala	att Ile	ctt Leu	Leu	gat Asp 135	tgg Trp	tta Leu	436
15	atg Met	gag Glu	gtg Val 140	tgt Cys	gaa Glu	gtc Val	tat Tyr	aaa Lys 145	ctt Leu	cac His	agg Arg	gag Glu	acc Thr 150	ttt Phe	tac Tyr	ttg Leu	484
20	gca Ala	caa Gln 155	gat Asp	ttc Phe	ttt Phe	gac Asp	cgg Arg 160	tat Tyr	atg Met	gcg Ala	aca Thr	caa Gln 165	gaa Glu	aat Asn	gtt Val	gta Val	532
25	aaa Lys 170	act Thr	ctt Leu	tta Leu	cag Gln	ctt Leu 175	att Ile	ggg Gly	att Ile	tca Ser	tct Ser 180	tta Leu	ttt Phe	att Ile	gca Ala	gcc Ala 185	580
30	aaa Lys	ctt Leu	gag Glu	gaa Glu	atc Ile 190	tat Tyr	cct Pro	cca Pro	aag Lys	ttg Leu 195	cac His	cag Gln	ttt Phe	gcg Ala	tat Tyr 200	gtg Val	628
	aca Thr	gat Asp	gga Gly	gct Ala 205	tgt Cys	tca Ser	gga Gly	gat Asp	gaa Glu 210	att Ile	ctc Leu	acc Thr	atg Met	gaa Glu 215	tta Leu	atg Met	676
35	att Ile	atg Met	aag Lys 220	gcc Ala	ctt Leu	aag Lys	tgg Trp	cgt Arg 225	tta Leu	agt Ser	ccc Pro	ctg Leu	act Thr 230	att Ile	gtg Val	tcc Ser	724
40	tgg Trp	ctg Leu 235	aat Asn	gta Val	tac Tyr	atg Met	cag Gln 240	gtt Val	gca Ala	tat Tyr	cta Leu	aat Asn 245	gac Asp	tta Leu	cat His	gaa Glu	772
45	gtg Val 250	cta Leu	ctg Leu	ccg Pro	cag Gln	tat Tyr 255	ccc Pro	cag Gln	caa Gln	atc Ile	ttt Phe 260	ata Ile	cag Gln	att Ile	gca Ala	gag Glu 265	820
50	ctg Leu	ttg Leu	gat Asp	ctc Leu	tgt Cys 270	gtc Val	ctg Leu	gat Asp	gtt Val	gac Asp 275	tgc Cys	ctt Leu	gaa Glu	ttt Phe	cct Pro 280	tat Tyr	868
	ggt Gly	ata Ile	ctt Leu	gct Ala 285	gct Ala	tcg Ser	gcc Ala	ttg Leu	tat Tyr 290	cat His	ttc Phe	tcg Ser	tca Ser	tct Ser 295	gaa Glu	ttg Leu	916
55	atg Met	caa Gln	aag Lys 300	gtt Val	tca Ser	ggg Gly	tat Tyr	cag Gln 305	tgg Trp	tgc Cys	gac Asp	ata Ile	gag Glu 310	aac Asn	tgt Çys	gtc Val	964
60	aag Lys	tgg Trp 315	atg Met	gtt Val	cca Pro	ttt Phe	gcc Ala 320	atg Met	gtt Val	ata Ile	agg Arg	gag Glu 325	acg Thr	ggg ggg	agc Ser	tca Ser	1012
	aaa	ctg	aag	cac	ttc	agg	ggc	gtc	gct	gat	gaa	gat	gca	cac	aac	ata	1060

74

5	Lys Leu Lys His Phe Arg Gly Val Ala Asp Glu Asp Ala His Asn Ile 330 335 340	
10	cag acc cac aga gac agc ttg gat ttg ctg gac aaa gcc cga gca aag Gln Thr His Arg Asp Ser Leu Asp Leu Leu $_{\ell}$ Asp Lys Ala Arg Ala Lys 350 355 360	1108
20	aaa gcc atg ttg tct gaa caa aat agg gct tct cct ctc ccc agt ggg Lys Ala Met Leu Ser Glu Gln Asn Arg Ala Ser Pro Leu Pro Ser Gly 365 370 375	1156
15	ctc ctc acc ccg cca cag agc ggt aag aag cag agc agc ggg ccg gaa Leu Leu Thr Pro Pro Gln Ser Gly Lys Lys Gln Ser Ser Gly Pro Glu 380 385 390	1204
20	atg gcg tgaccacccc atcettetee accaaagaca gttgegeege tgeteeacgt Met Ala 395	1260
	totottotgt otgttgcago ggaggogtgo gtttgctttt acagatatot gaatggaaga	a 1320
25	gtgtttcttc cacaacagaa gtatttctgt ggatggcatc aaacagggca aagtgtttt	1380
	tattgaatgc ttataggttt tttttaaata agtgggtcaa gtacaccagc cacctccaga	1440
30	caccagtgcg tgctcccgat gctgctatgg aaggtgctac ttgacctaag ggactcccad	1500
30	aacaacaaaa gcttgaagct gtggaggcgc acggtggcgt ggctctcctc gcaggtgttc	: 1560
	tgggctccgt tgtaccaagt ggagcaggtg gttgcgggca agcgttgtgc agagcccata	1620
35	gccagctggg cagggggctg ccctctccac attatcagtt gacagtgtac aatgcctttg	1680
	atgaactgtt ttgtaagtgc tgctatatct atccattttt taataaagct aatactgtt	1740
40	ctttagagca cactggcggg tcgt	1764
45	<210> 56 <211> 395 <212> PRT <213> Unknown	
	<400> 56	
50	Met Lys Glu Asp Gly Gly Ala Glu Phe Ser Ala Arg Ser Arg Lys Arg 1 5 10 15	
	Lys Ala Asn Val Thr Val Phe Leu Gln Asp Pro Asp Glu Glu Met Ala 20 25 30	
55	Lys Ile Asp Arg Thr Ala Arg Asp Gln Cys Gly Ser Gln Pro Trp Asp 35 40 45	
	Asn Asn Ala Val Cys Ala Asp Pro Cys Ser Leu Ile Pro Thr Pro Asp 50 55 60	
60	Lys Glu Asp Asp Asp Arg Val Tyr Pro Asn Ser Thr Cys Lys Pro Arg 65 70 75 80	
	Ile Ile Ala Pro Ser Arg Gly Ser Pro Leu Pro Val Leu Ser Trp Ala 85 90 95	

SUBSTITUTE SHEET (rule 26)

5	Asn	Arg	Glu	Glu 100	Val	Trp	Lys _,	Ile	Met 105	Leu	Asn	Lys	Glu	Lys 110	Thr	Tyr
-	Leu	Arg	Asp 115	Gln	His	Phe	Leu	Glu 120	Gln	His	Pro	Leu	Leu 125	Gln	Pro	Lys
10	Met	Arg 130	Ala	Ile	Leu	Leu	Asp 135	Trp	Leu	Met	Glu	Val 140	Cys	Glu	Val	Tyr
15 .	Lys 145	Leu	His	Arg	Glu	Thr 150	Phe	Tyr	Leu	Ala	Gln 155	Asp	Phe	Phe	Asp	Arg 160
	Tyr	Met	Ala	Thr	Gln 165	Glu	Asn	Val	Val	Lys 170	Thr	Leu	Leu	Gln	Leu 175	Ile
20	Gly	Ile	Ser	Ser 180	Leu	Phe	Ile	Ala	Ala 185	Lys	Leu	Glu	Glu	Ile 190	Tyr	Pro
	Pro	Lys	Leu 195	His	Gln	Phe	Ala	Tyr 200	Val	Thr	Asp	Gly	Ala 205	Cys	Ser	Gly
25	Asp	Glu 210	Ile	Leu	Thr	Met	Glu 215	Leu	Met	Ile	Met	Lys 220	Ala	Leu	Lys	Trp
30	Arg 225	Leu	Ser	Pro	Leu	Thr 230	Ile	Val	Ser	Trp	Leu 235	Asn	Val	Tyr	Met	Gln 240
	Val	Ala	Tyr	Leu	Asn 245	Asp	Leu	His	Glu	Val 250	Leu	Leu	Pro	Gln	Tyr 255	Pro
35	Gln	Gln	Ile	Phe 260	Ile	Gln	Ile	Ala	Glu 265	Leu	Leu	Asp	Leu	Cys 270	Val	Leu
	Asp	Val	Asp 275	Cys	Leu	Glu	Phe	Pro 280	Tyr	Gly	Ile	Leu	Ala 285	Ala	Ser	Ala
40	Leu	Tyr 290	His	Phe	Ser	Ser	Ser 295	Glu	Leu	Met		Lys 300	Val	Ser	Gly	Tyr
45	Gln 305	Trp	Cys	Asp	Ile	Glu 310	Asn	Cys	Val	Lys	Trp 315	Met	Val	Pro	Phe	Ala 320
	Met	Val	Ile	Arg	Glu 325	Thr	Gly	Ser	Ser	Lys 330	Leu	Lys _.	His	Phe	Arg 335	Gly
50	Val	Ala	Asp	Glu 340	Asp	Ala	His	Asn	Ile 345	Gln	Thr	His	Arg	Asp 350	Ser	Leu
	Asp	Leu	Leu 355	Asp	Lys	Ala	Arg	Ala 360	Lys	Lys	Ala	Met	Leu 365	Ser	Glu	Gln
55	Asn	Arg 370	Ala	Ser	Pro	Leu	Pro 375	Ser	Gly	Leu	Leu	Thr 380	Pro ,	Pro	Gln	Ser
60	Gly 385	Lys	Lys	Gln	Ser	Ser 390	Gly	Pro	Glu	Met	Ala 395					

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C12N 15/12, 15/19, 15/57, 15/62, C07K 16/18, 16/28, 16/24, 16/40, C12Q 1/68, G01N 33/566, 33/68, A61K 38/17, 38/19, 38/48 (11) International Publication Number:

WO 00/01817

(43) International Publication Date:

13 January 2000 (13.01.00)

(21) International Application Number:

PCT/US99/12366

A3

(22) International Filing Date:

6 July 1999 (06.07.99)

(30) Priority Data:

Horny Data.		
09/110,938	6 July 1998 (06.07.98)	US
09/114,466	13 July 1998 (13.07.98)	US
60/093,897	23 July 1998 (23.07.98)	US
09/132,968	12 August 1998 (12.08.98)	US
09/136.214	18 August 1998 (18.08.98)	US
60/099,999	11 September 1998 (11.09.98)	US

- (71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
- (72) Inventors: BATES, Elizabeth, Esther, Mary; 4, place Gabriel Rambaud, F-69001 Lyon (FR). LEBECQUE, Serge, J., E.; 514, Chemin du Marand, F-69380 Civrieux d'Azergue (FR). MURPHY, Erin, E.; 180 Emerson Street, Palo Alto, CA 94301 (US). MATTSON, Jeanine, D.; 559 Alvarado Street, San Francisco, CA 94114 (US). GORMAN, Daniel, M.; 6371 Central Avenue, Newark, CA 94560 (US). HEDRICK, Joseph, A.; 52-08 Quail Ridge Drive, Plainsboro, NJ 08536 (US). WANG, Luquan; 21 Hollis Road, East Brunswick,

NJ 08816 (US). ZLOTNIK, Albert; 507 Alger Drive, Palo Alto, CA 94306 (US). MURGOLO, Nicholas, J.; 99 Rolling Hill Drive, Millington, NJ 07946 (US). GREENE, Jonathan, R.; 457 Tillou Road, South Orange, NJ 07079 (US). JOHNSTON, James, A.; 205 Mary Alice Drive, Los Gatos, CA 95032 (US). BAZAN, Jose, Fernando; 775 University Drive, Menlo Park, CA 94025 (US). MAHONY, Daniel; 330 East 39th Street #21-A, New York, NY 10016 (US). LEES, Emma, M.; 3107 Washington Street, San Francisco, CA 94115 (US).

- (74) Agents: THAMPOE, Immac, J. et al.; Schering-Plough Corporation, Patent Dept., K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
- (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MD, MG, MK, MN, MX, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UZ, VN, YU, ZA, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report:
29 June 2000 (29.06.00)

(54) Title: MAMMALIAN GENES; DENDRITIC CELL PROSTAGLANDIN-LIKE TRANSPONDER (DC-PGT), HDTEA84, HSLJD37R AND RANKL, HCC5 CHEMOKINE, DEUBIQUITINATING 11 AND 12 (DUB11, DUB12), MD-1, MD2 AND CYCLIN E2, RELATED REAGENTS AND METHODS

(57) Abstract

Purified genes from a mammal, reagents related thereto including purified proteins, specific antibodies, and nucleic acids encoding the polypeptides are provided. Methods of using said reagents and diagnostic kits are also provided. Characterization of genes and products relating to DC-PGT (Dendritic cell prostaglandin-like transporter), HDTEA84, HSLJD37R and RANKL (related to TNF receptor family), HCC5 chemokine, Dub 11 and Dub 12 (Deubiquitinating 11 and 12), MD-1 and MD-2 (proteins which exhibit properties of ligands for proteins exhibiting a leucine-rich protein motif (LRR)) and cyclin E2.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					•	SI	Slovenia	
AL .	Albania	ES	Spain	LS	Lesotho		*	
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin .	1E	Ireland	MN	Mongolia	UA -	Ukraine .	
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda	
BY	Belanis	1S	Iceland	MW	Malawi	US	United States of America	
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	
CG	Солдо	KE	Келуа	NL	Netherlands	YU	Yugoslavia ·	•
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland		•	
CN	China	KR	Republic of Korea	PT	Portugal		•	
CU	Cuba	KZ	Kazakstan	RO	Romania			
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	u	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			
_								
1								

International Application No PCT, US 99/12366

A CLASSI IPC 7	FICATION OF SUBJECT MATTER C12N15/12 C12N15/19 C12N15 C07K16/28 C07K16/24 C07K16	/40 C12Q1/68	C07K16/18 G01N33/566
	GO1N33/68 A61K38/17 A61K38	•	
	o International Patent Classification (IPC) or to both national classif	CADON AND IPC	
	SEARCHED pourmentation searched (classification system followed by classific	ation symbols)	
IPC 7	CO7K C12N C12Q G01N		
Documenta	tion searched other than minimum documentation to the extent tha	t such documents are included i	n the fields searched
Electronic d	ata base consuited during the international search (name of data I	pase and, where practical, searc	h terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	 	
Category *	Citation of document, with indication, where appropriate, of the	elevant passages	Relevant to claim No.
X	R. LU ET AL.: "Cloning, In vit expression, and tissue distribution human Prostaglandin transporter (hPGT)." THE JOURNAL OF CLINICAL INVESTIVOL. 98, no. 5, 1 September 1996 (1996-09-01), 1142-1149, XP000863207 cited in the application the whole document	tion of a cDNA GATION,	1-22
X Furt	ther documents are listed in the continuation of box C.	X Patent family memb	ers are listed in annex.
	utegories of cited documents :	"T" later document published	after the international filing date
consid	ent defining the general state of the art which is not sered to be of particular relevance document but published on or after the international	cited to understand the invention	n conflict with the application but principle or theory underlying the
filing o	date	cannot be considered n	levance; the claimed invention ovel or cannot be considered to
which	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	"Y" document of particular re	o when the document is taken alone levance; the claimed invention
1	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	document is combined v	involve an inventive step when the with one or more other such docu-
°P° docum	means ent published prior to the international filing date but han the priority date claimed	ments, such combination in the art. *&* document member of the	n being abvious to a person skilled , same patent family
	actual completion of the international search	Date of mailing of the int	
7	January 2000	2 6. 04. 00	
Name and	mailing address of the ISA	Authorized officer	
-	European Patent Office, P.B. 5818 Patentean 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Hix, R	•

International Application No PCT/US 99/12366

		PCL/US 99/12300
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	10
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	D.L. LACEY ET AL.: "Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation." CELL, vol. 93, 17 April 1998 (1998-04-17), pages 165-176, XP002125264 cited in the application the whole document	
A	LODI P J ET AL: "HIGH-RESOLUTION SOLUTION STRUCTURE OF THE BETA CHEMOKINE HMIP-1BETABY MULTIDIMENSIONAL NMR" SCIENCE,US,AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, vol. 263, page 1762-1767 XP002054455 ISSN: 0036-8075 cited in the application the whole document	
Α	WO 96 34891 A (HUMAN GENOME SCIENCES INC) 7 November 1996 (1996-11-07) cited in the application the whole document	
A	WO 95 17092 A (HUMAN GENOME SCIENCES INC) 29 June 1995 (1995-06-29) cited in the application the whole document	
A	HOCHSTRASSER M: "UBIQUITIN, PROTEASOMES, AND THE REGULATION OF INTRACELLULAR PROTEINDEGRADATION" CURRENT OPINION IN CELL BIOLOGY,GB,CURRENT SCIENCE, LONDON, vol. 7, no. 2, page 215-223 XP000670260 ISSN: 0955-0674 cited in the application the whole document	·
A .	K. MIYAKE ET AL.: "Mouse MD-1, a molecule that is physically associated with RP105 and positively regulates its expression." THE JOURNAL OF IMMUNOLOGY, vol. 161, 1998, pages 1348-1353, XP002125265 cited in the application the whole document	

2

International Application No PCT/US 99/12366

A CONTRACTOR CONTRACTOR TO DE CONTRACTOR CON	
Lation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages.	Delevent to all in Ma
and a second and a second and a descriptions, or one research passages	Relevant to claim No.
LEW D J ET AL: "ISOLATION OF THREE NOVEL HUMAN CYCLINS BY RESCUE OF G1 CYCLIN (CLN) FUNCTION IN YEAST" CELL,US,CELL PRESS, CAMBRIDGE, NA, vol. 66, 20 September 1991 (1991-09-20), page 1197-1206 XP002039130 ISSN: 0092-8674 cited in the application the whole document	
US 5 792 851 A (SCHUSTER VICTOR L ET AL) 11 August 1998 (1998-08-11) the whole document	1-22
NAGASE ET AL: "Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro" DNA RESEARCH, JP, UNIVERSAL ACADEMY PRESS, vol. 5, no. 5, page 355-364-64 XP002111974 ISSN: 1340-2838 the whole document	1-22
N. KANAI ET AL.: "Identification and characterization of a Prostaglandin transporter." SCIENCE, vol. 268, 12 May 1995 (1995-05-12), pages 866-869, XP002125266 cited in the application the whole document	1-22
R. LU ET AL.: "Molecular cloning of the gene for human Prostaglandin Transporter hPGT: gene organization, promoter activity, and chromosomal localization." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 246, 1998, pages 805-812, XP002125267 the whole document	1-22
	LEW D J ET AL: "ISOLATION OF THREE NOVEL HUMAN CYCLINS BY RESCUE OF G1 CYCLIN (CLN) FUNCTION IN YEAST" CELL,US,CELL PRESS, CAMBRIDGE, NA, vol. 66, 20 September 1991 (1991-09-20), page 1197-1206 XP002039130 ISSN: 0902-8674 cited in the application the whole document US 5 792 851 A (SCHUSTER VICTOR L ET AL) 11 August 1998 (1998-08-11) the whole document NAGASE ET AL: "Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro" DNA RESEARCH,JP,UNIVERSAL ACADEMY PRESS, vol. 5, no. 5, page 355-364-64 XP002111974 ISSN: 1340-2838 the whole document N. KANAI ET AL.: "Identification and characterization of a Prostaglandin transporter." SCIENCE, vol. 268, 12 May 1995 (1995-05-12), pages 866-869, XP002125266 cited in the application the whole document R. LU ET AL.: "Molecular cloning of the gene for human Prostaglandin Transporter hpGT: gene organization, promoter activity, and chromosomal localization." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 246, 1998, pages 805-812, XP002125267

In. .ational application No. PCT/US 99/12366

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Claims 1-22
Ciaima 1-26
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1-22

An isolated or recombinant polypeptide comprising segments with identity to SEQ ID NO: 2 and polynucleotides which hybridize to the coding portion of SEQ ID NO:1, fusion proteins, pharmaceutical compositions thereof, vectors comprising said polynucleotide and methods of identifying compounds that bind to said polypeptide, designated Dendritic cell prostaglandin-like transporter (DC-PGT).

2. Claims: 23-42 (partly)

Isolated or recombinant polynucleotide encoding antigenic polypeptides comprising at least 17 contiguous amino acids from SEQ ID NO: 6 encoding structural motifs characteristic of a member of the TNF receptor family designated HDTEA84 and polynucleotides which hybridise to the coding portions of SEQ ID NO: 5, expression vectors comprising said polynucleotides, and binding compounds comprising an antibody binding site which binds to said polypeptides and detection kits comprising said binding compound.

3. Claims: 23-42 (partly)

Isolated or recombinant polynucleotide encoding antigenic polypeptides comprising at least 17 contiguous amino acids from SEQ ID NO: 8 and 10 encoding structural motifs characteristic of a member of the TNF receptor family, designated HSLJD37R and polynucleotides which hybridise to the coding portions of SEQ ID NO: 7 and 9 expression vectors comprising said polynucleotides, and binding compounds comprising an antibody binding site which binds to said polypeptides and detection kits comprising said binding compound.

4. Claims: 23-42 (partly)

Isolated or recombinant polynucleotide encoding antigenic polypeptides comprising at least 17 contiguous amino acids from SEQ ID NO: 17, 19, 21, 23 encoding structural motifs characteristic of a member of the TNF receptor family, designated RANKL and polynucleotides which hybridise to the coding portions of SEQ ID NO: 16, 18, 20 and 22, expression vectors comprising said polynucleotides, and binding compounds comprising an antibody binding site which binds to said polypeptides and detection kits comprising said binding compound.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

5. Claims: 43-63 (partly)

Recombinant HCC5 polypeptide with identity over a length of at least 12 amino acids to SEQ ID NO: 25, an isolated natural sequence and fusion proteins and compositions thereof

6. Claims: 43-63 (partly)

Recombinant Dubl1 polypeptide with identity over a length of at least 12 amino acids to SEQ ID NO: 32 or 34, an isolated natural sequence and fusion proteins and compositions thereof

7. Claims: 43-63 (partly)

Recombinant Dub12 polypeptide with identity over a length of at least 12 amino acids to SEQ ID NO: 36 or 38, an isolated natural sequence and fusion proteins and compositions thereof

8. Claims: 43-63 (partly)

Recombinant MD-1 polypeptide with identity over a length of at least 12 amino acids to SEQ ID NO: 42, an isolated natural sequence and fusion proteins and compositions thereof

9. Claims: 43-63 (partly)

Recombinant primate MD-2 polypeptide with identity over a length of at least 12 amino acids to SEQ ID NO: 44 or 46, an isolated natural sequence and fusion proteins and compositions thereof

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

10. Claims: 43-63 (partly)

Recombinant rodent MD-2 polypeptide with identity over a length of at least 12 amino acids to SEQ ID NO: 48 or 49, an isolated natural sequence and fusion proteins and compositions thereof

11. Claims: 64-84

Isolated or recombinant polypeptide encoding at least 17 contiguous amino acid residues of SEQ ID NO: 54, kits comprising said polypeptide, methods of using said polypeptide in the evaluation of the selective binding of a compound to cyclin E2

emation on patent family members

International Application No PCT/US 99/12366

Patent document cited in search report		Publication date		nember(s)	Publication date	
WO 9634891	A	07-11-1996	AU	3134695 A	21-11-1996	
,			CA	2220123 A	07-11-1996	
			CN	1186501 A	01-07-1998	
			EP	0871672 A	21-10-1998	
		ė	JР	11505417 T	21-05-1999	
			US	6001606 A	14-12-1999	
WO 9517092	Α	29-06-1995	US	5556767 A	17-09-1996	
			US	5504003 A	02-04-1996	
	•		AU	684539 B	18-12-1997	
			AU	7549794 A	10-07-1995	
		• •	CA	2179606 A	29-06-1995	
			CN	1143894 A	26-02-1997	
			ΕP	0735818 A	09-10-1996	
			JP	9506774 T	08-07-1997	
			NZ	271756 A	26-02-1998	
		•	ZA	9403442 A	20-11-1995	
			US	6001606 A	14-12-1999	
US 5792851	Α	11-08-1998	NONE			