Ingénierie du trafic I & II

S8. Coordination des feux

Séance d'aujourd'hui

Cours Magistral

- Introduction et rappel : régulation par feux
- Carrefour isolé et temps réel
- Axe coordonné : les ondes vertes
- Réseau : Plans de feux coordonnés

Applications

- Coordination, sens unique simple
- Coordination, artère à deux sens

Méthodes de régulation urbaine

- Hiérarchisation du réseau routier (artères, rues)
- Code de la route, panneaux de signalisation, police routière, ...
- Contrôle d'accès (circulation alternée, restriction PL, tarification...)
- Carrefours à feux (séparation dans le temps)

Exemple d'hiérarchisation I

monofonctionnels (1920)

Le Corbusier et les espaces

Illustration 10: Un secteur de Chandigarh (dessin in Mangin, 2004).

Exemple d'hiérarchisation II

Régulation par feux

Objectifs

Historiquement : Sécurité et Fluidité

S'ajoute récemment : Durabilité

→ Favoriser les TC, voire les modes doux (piétons)

Avantages / inconvénients

- automatisation, gestion globale, souplesse, fiabilité
- coûts (investissement & maintenance), maîtrise technique,
 évaluation et suivi des performances

Méthodes de régulation en ville

Régulation en temps fixe

Réglages prédéterminés, appelés plans de feux

Bibliothèque de plans de feux

Durée de cycle constante

Régulation en temps réel

Adaptation à la demande de trafic

Nécessite des capteurs de trafic

Réglages en ligne

Durées de cycle variables

Méthodes de régulation en ville

Catégorie	Temps fixe	Temps réel
Carrefour isolé	Plan de feux local (Webster,)	Algorithmes adaptatifs
Axe	Onde verte	
Réseau maillé	Plans de feux coordonnés	Systèmes temps réel

Carrefour isolé et temps réel

L'adaptation temps réel gère les variations aléatoires et/ou exceptionnelles.

Le plus courant : <u>adaptation d'un plan de feux</u> de base par une technique de <u>micro-régulation</u>.

Modification du cycle en cours (ou du suivant) par :

- Adaptativité de la durée de vert (ex: algorithme intervalle-véhicule)
- Escamotage de phase
- Antiblocage (prolongement de rouge)

Autres méthodes : détermination en continu des futures commutations par <u>optimisation d'un critère type attente</u> (ni plan de feu, ni phasage préétabli). ex: méthode CRONOS (IFSTTAR).

Algorithme intervalle – véhicule

Adaptativité de la durée de vert d'une ou plusieurs phases entre un *min* et un *max* prédéfinis.

Nécessite une boucle sur les entrées adaptatives (env. à 20 m).

Soit I la durée de l'intervalle critique (souvent 3 s)

- 1 Attribution d'une durée de vert initiale (Vert*min* I)
- 2- Ouverture d'un intervalle critique, i.e. prolongement du vert de I secondes
- 3 Tant que le vert max n'est pas atteint Si un véhicule passe sur le capteur avant la fin de l'int. cri., ouverture d'un nouvel int. cri. (go to 2)
- 4 Commutation au jaune puis rouge

Algorithme intervalle – véhicule

Détection des piétons (en attente, en traversée)

- Bouton poussoir
- Capteur infrarouge, radar

Feux PUFFIN (UK)

Prolonge le rouge de dégagement piéton tant que des piétons traversent (avec durée max)

Carrefour isolé et priorité aux TC

- Pour les TC sur site propre ou partagé
- 20-30% du temps de course est perdu en attente aux feux ou en ralentissements
- Emplacement de l'arrêt :

Carrefour isolé et priorité aux TC

- Adaptation *sélective* pour favoriser le passage de bus ou tramway
- Méthodes différentes selon site propre ou partagé
- Nécessite la détection avec <u>identification</u>;
 détection à 200 m par boucle spéciale, balise radio ou hyperfréquence
- Variation de la durée de vert par <u>anticipation de phase</u>:
 la phase de vert *opposée* peut être raccourcie pour donner le vert au bus dès son arrivée au carrefour.

Carrefour isolé et priorité aux TC

Treatment	Description	
Passive Priority		
Adjust cycle length	Reduce cycle lengths at isolated intersections to benefit buses	
Split phases	Introduce special phases at the intersection for the bus movement while maintaining the original cycle length	
Areawide timing plans	Preferential progression for buses through signal offsets	
Bypass metered signals	Buses use special reserved lanes, special signal phases, or are rerouted to non-metered signals	
Adjust phase length	Increased green time for approaches with buses	
	Active Priority*	
Green extension	Increase phase time for current bus phase	
Early start (red truncation)	Reduce other phase times to return to green for buses earlier	
Special phase	Addition of a bus phase	
Phase suppression	Skipped non-priority phases	
	Real-Time Priority*	
Delay-optimizing control	Signal timing changes to reduce overall person delay	
Network control	Signal timing changes considering the overall system performance	
	Pre-emption*	
Pre-emption	Current phase terminated and signal returns to bus phase	

^{*}Any of the listed treatments can be *unconditional* (occur whenever a request is received) or *conditional* (priority is granted if other conditions—schedule status, loading, etc.—are met).

Axe coordonné – onde verte

- On considère des carrefours à feux situés <u>sur</u>
 <u>un axe</u> et partageant une durée de cycle
 commune.
- Une méthode de coordination des carrefours à feux de l'axe consiste à réaliser <u>une onde verte.</u>

Objectif: permettre à un maximum de véhicules de traverser les carrefours de l'axe sans avoir à s'arrêter.

Décalage entre carrefours

• La coordination des carrefours à feux d'un axe se caractérise par une suite de décalages $\boldsymbol{\vartheta}_{ij}$ définis entre les carrefours ($\boldsymbol{\vartheta}_{ij}$ < C).

• ϑ_{ij} : intervalle de temps entre le début de vert (sur l'axe) du carrefour i et le premier début de vert (sur l'axe) du carrefour suivant j.

Bande passante

- On appelle **bande passante** de largeur **b** une période continue durant laquelle un véhicule se déplaçant à une vitesse donnée et constante traverse tous les carrefours sans s'arrêter.
- Une telle période, si elle existe, se répète à chaque cycle.
- S'il en existe plusieurs, c'est la plus grande qui est prise en compte.

Bande passante

 L'efficacité de la bande passante de largeur b vaut eff(b) =b/C

Ex.: 40% est considéré comme bon.

 La capacité de la bande (avec N nombre de voies) représente le volume de véhicules non arrêtés

$$capa(b) = N*S*(b/C)$$

Vitesse de coordination

 La vitesse de coordination est égale à la vitesse moyenne de déplacement des véhicules.

• Elle est liée à la vitesse pratiquée et/ou à la vitesse de régulation souhaitée.

Axe à sens unique

Le décalage θ_{ij} entre deux carrefours à feux i et j correspond au temps de parcours moyen

$$\theta_{ij} = d_{ij}/V_{ij}$$

- d_{ii} = distance entre les carrefours i et j
- V_{ii} = vitesse moyenne de circulation entre i et j.

Exercice 1

Exercice 1 : axe à sens unique

Soit un cycle fixe de 41 s commun à 3 carrefours à feux situés sur une artère à sens unique aux abscisses X1 = 0 m, X2 = 300 m, X3 = 550 m.

Durées de rouge aux feux respectifs : r1 = 23 s, r2 = 20 s, r3 = 22 s.

Déterminer :

- Les décalages entre les carrefours dans le cas d'une coordination, mise en œuvre en situation fluide, avec une vitesse de 36 km/h.
- Le diagramme des feux et onde de coordination.
- La largeur de la bande passante.
- La vitesse de progression de l'onde entre les carrefours successifs.

Exercice: axe à sens unique

Vert réel

•
$$V_1 = C - r_1 = 41 - 23 = 18 s$$

•
$$V_2 = C - r_2 = 41 - 20 = 21 s$$

•
$$V_3 = C - r_3 = 41 - 22 = 19 s$$

Décalages

•
$$\theta = d/V$$

•
$$\theta_{12} = 300/10 = 30 \text{ s}$$

•
$$\theta_{23} = 250/10 = 25 \text{ s}$$

Bande passante maximale

• largeur = minimum durées de vert (18; 21; 19) = 18 s

Exercice: axe à sens unique

Verts réels

- $V_1 = 18 s$
- $V_2 = 21 s$
- $V_3 = 19 s$

Décalages

- $\theta = d/V$
- $\theta_{12} = 300/10 = 30 \text{ s}$
- $\theta_{23} = 250/10 = 25 \text{ s}$

Exercice: axe à sens unique

Bande passante maximale

 largeur = minimum durées de vert (18; 21; 19) = 18 s

Vitesse de progression de l'onde

•
$$v_{12} = d_{12} / \theta_{12} = 300/30 = 10 \text{m/s}$$

•
$$v_{23} = d_{23} / \theta_{23} = 250/25 = 10 \text{m/s}$$

Cas des carrefours saturés

Carrefour j saturé \rightarrow le décalage θ_{ij} doit prendre en compte <u>les véhicules</u> <u>initialement en attente</u>; le carrefour j doit passer au vert **plus tôt**.

Le décalage θ_{ij} est alors : $\theta_{ij} = (d_{ij}/V_{ij}) - [(N_j/S_j) + t_j]$

- N_i = nombre de véhicules en attente au carrefour j ;
- S_i = débit de saturation de l'entrée du carrefour j ;
- t_j = temps perdu au démarrage par les véhicules en attente (par exemple 2 s). Ce temps n'est pris en compte que jusqu'au premier feu en aval (pour le calcul de θ_{12}).

Artère à double sens

Les décalages ϑ_{ij} et ϑ_{ji} sont définis pour chaque sens de circulation, appelé sens **montant** ou **descendant** :

$$\theta_{ij} = (d_{ij}/V_{ij}) - [(N_j/S_j) + t_j]$$

$$\theta_{ji} = (d_{ji}/V_{ji}) - [(N_i/S_i) + t_i]$$

La somme des décalages est égale à la durée du cycle commun. Cette contrainte est rarement satisfaite.

$$\theta_{ij} + \theta_{ji} = C$$

Artère à double sens

Les décalages ϑ_{ii} sont obtenus par un programme d'optimisation sous contraintes.

Exemple - méthode de Little (MIT, 1964): max (b+b*)

- b largeur de la bande passante sens montant
- b* largeur de la bande passante sens descendant
- b > 0 et $b^* > 0$

Données d'entrée

- Position des carrefours
- Durée du cycle commun
- Durées de rouge
- Vitesses entre carrefours par sens
- Débits par sens

Carrefours critiques

Si une coordination maximise b+b*, avec b>0 et b*>0, la propriété suivante est alors vérifiée :

• Si le temps de rouge d'un feu **limite** l'onde verte dans une direction, l'autre bord de ce temps de rouge **limite** l'onde verte dans l'autre direction.

• Un tel carrefour est appelé critique.

Carrefours critiques

Les carrefours critiques peuvent être scindés en deux groupes :

• groupe 1 : le rouge limite le bord gauche de l'onde montante et le bord droit de l'onde descendante.

• groupe 2 : le rouge limite le bord gauche de l'onde descendante et le bord droit de l'onde montante.

Carrefours critiques

Exercice 3

Logiciels de coordination

- Maxband (USA)
- Passer (USA)
- OndeV (tracé assisté d'ondes vertes, France)

Exercice 3 : artère à double sens

Solution *optimale*:

- largeur montante b = 33,7 s
- largeur descendante b* = 23,6 s
- Le carrefour 10 est critique (type 1)

Carrefours	Décalages (en s)
Entre 1 et 2	40,3
Entre 2 et 3	5,4
Entre 3 et 4	35,2
Entre 4 et 5	73,6
Entre 5 et 6	49,1
Entre 6 et 7	78,7
Entre 7 et 8	29,4
Entre 8 et 9	4,2
Entre 9 et 10	38,9

Ondes vertes, conclusions

Conditions de réalisation

- Trafic secondaire faible
- Régime fluide
- Interdistance régulière (autour de 300m)
- Pas de microrégulation

Utilisation pour des ondes vertes modérantes

- Objectif de sécurité : baisser et homogénéiser les vitesses
- Faibles vitesses de coordination et cycles courts
- Bons résultats sur des axes à sens unique

Plan de feux coordonnés

La régulation des carrefours à feux d'un réseau partageant un cycle commun, repose sur l'élaboration de *plans de feux coordonnés*.

Les plans de feux coordonnés sont définis par les triplets :

- 1. durée de cycle
- 2. proportions de vert
- 3. décalages entre carrefours.

Optimisation des plans de feux

Les plans de feux coordonnés sont obtenus par résolution d'un programme d'optimisation : Min [a Σ (du + da)_i + b Σ (Na)_i]

- du = retard uniforme = indicateur du temps de déplacement
- da = retard aléatoire = indicateur de régularité
- Na = nombre d'arrêts = indicateur de confort
- a = coefficient de pondération par catégorie (VP, TC,)
- b = poids d'un arrêt

Logiciels de calcul de plans de feux par méthodes heuristiques

• TRANSYT du TRL (UK) est le plusrépandu

Plan de feux coordonnés

Choix de plan de feux

- Intervention opérateur
- Programmation horaire
- Selon la configuration de trafic en cours

Méthode du vecteur

Comparaison automatique et périodique entre la situation en cours et des situations types pour lesquelles des PF ont été calculés.

Plan de feux coordonnés

La quasi-totalité des villes de plus de 100 000 h sont équipées d'un système de régulation du trafic urbain.

Systèmes cycliques (SCOOT, SCATS) ou acycliques (OPAC, PRODYN, CRONOS).

SCOOT (Split Cycle and Offset Optimisation Technique)

- opérationnel dans une centaine de villes en Grande Bretagne et une trentaine Etats-Unis, Canada, Asie, Afrique du Sud.
- modifie graduellement le plan de feux en cours dans le but de l'adapter aux variations des conditions de circulation; cherche à optimiser un indice global (estimation des files d'attente et du nombre d'arrêts).
- utilisation de boucles magnétiques en amont des carrefours.

Impact des systèmes de régulation

- 1. Temps de parcours : jusqu'à 25%
- 2. Vitesse commerciale des autobus : + 10%
- 3. Diminution des accidents et des collisions
- 4. Réduction de la consommation de 5 à 20%
- 5. Diminution des émissions CO, CO₂, HC

Régulation des feux : un outil

- efficace d'amélioration de l'offre
- perfectible et en évolution constante
- limité pour faire face à la congestion urbaine.

Merci