ASTROMER Model: Formal Pseudocode

Shivam Tyagi

Positional Encoding

Algorithm 1 Positional Encoding

Input: $t \in \mathcal{R}$, observation times in MJD

Output: $z \in \mathcal{R}^{d_{pe}}$, positional encoding vector representation

Parameters: d_{pe} dimension of positional embedding, l_{max} maximum length for observation times, base = 1000

1. $\forall i: z[2i-1] \leftarrow \sin(\frac{t}{\text{base}^{2i/d_{pe}}})$ 2. $\forall i: z[2i] \leftarrow \cos(\frac{t}{\text{base}^{2i/d_{pe}}})$

3. return z

Feed-Forward Network (FNN) for Magnitudes

Algorithm 2 Feed-Forward Network for Magnitudes

Input: $e_t \in \mathcal{R}^{d_e}$, vector representation of the magnitude

Output: $z_t \in \mathcal{R}^{d_{pe}}$, transformed magnitude vector representation Parameters: $W_{mlp} \in \mathcal{R}^{d_{pe} \times d_e}$, $b_{mlp} \in \mathcal{R}^{d_{pe}}$, MLP parameters

1. $z_t \leftarrow W_{mlp} \cdot e_t + b_{mlp}$

2. return z_t

Multi-Head Attention (MHA)

Encoder

Decoder (Pre-Training Phase)

Algorithm 3 Multi-Head Attention

Input: $E \in \mathcal{R}^{d_e \times l_{max}}$, embedded vectors Output: $A \in \mathbb{R}^{d_e \times l_{max}}$, attention output

Parameters: Attention block parameters

 $W_q \in \mathcal{R}^{d_{attn} \times d_e}, W_k \in \mathcal{R}^{d_{attn} \times \hat{d_e}}, W_v \in \mathcal{R}^{d_{out} \times d_e}, W_o \in \mathcal{R}^{d_{out} \times d_e}$

- 1. $\forall t: q_t \leftarrow W_q \cdot E_t$
- $2. \ \forall t: k_t \leftarrow W_k \cdot E_t$
- 2. $\forall t : k_t \leftarrow W_t \leftarrow E_t$ 3. $\forall t : v_t \leftarrow W_v \cdot E_t$ 4. $\forall t, t' : \alpha_{t,t'} \leftarrow \frac{\exp(q_t^\top k_{t'} / \sqrt{d_{attn}})}{\sum_u \exp(q_t^\top k_u / \sqrt{d_{attn}})}$ 5. $\forall t : a_t \leftarrow \sum_{t'} \alpha_{t,t'} \cdot v_{t'}$ 6. $A \leftarrow W_o \cdot A$

- 7. $\mathbf{return}\ A$

Algorithm 4 Encoder

Input: $z \in \mathcal{R}^{d_{pe} \times l_{max}}$, positional encoding

Input: $e_t \in \mathcal{R}^{d_e}$, vector representation of the magnitude

Output: $E \in \mathcal{R}^{d_e \times l_{max}}$, encoded representations

Parameters: L, number of encoder layers, H, number of attention heads

- 1. $E \leftarrow z + \text{FNN}(e_t)$
- 2. $\forall l \in [1, L] : E \leftarrow \text{LayerNorm}(E + \text{MultiHeadAttention}(E))$
- 3. $\forall l \in [1, L] : E \leftarrow \text{LayerNorm}(E + \text{FeedForward}(E))$
- 4. return E

Algorithm 5 Decoder (Pre-Training Phase)

Input: $E \in \mathcal{R}^{d_e \times l_{max}}$, encoded representations

Output: Reconstructed Magnitudes $\in \mathcal{R}^{1 \times l_{max}}$

Parameters: $W_d \in \mathcal{R}^{d_e \times d_{out}}, b_d \in \mathcal{R}^{d_{out}}$

- 1. $\forall t : \text{Reconstructed}_t \leftarrow W_d \cdot E_t + b_d$
- 2. return Reconstructed Magnitudes

Self-Supervised Pre-Training Task

Algorithm 6 Self-Supervised Pre-Training Task

Input: Magnitudes $\in \mathcal{R}^{1 \times l_{max}}$, original magnitudes

Output: Loss, reconstruction loss for masked magnitudes

Parameters: p_{mask} (probability of masking)

- 1. $\forall t : \text{MaskedMagnitudes}_t \leftarrow \text{Mask}(Magnitudes}_t, p_{mask})$
- 2. $E \leftarrow \text{Encoder}(\text{PositionalEncoding}(Times), \text{FeedForward}(\text{MaskedMagnitudes}))$
- 3. Reconstructed \leftarrow Decoder(E)
- 4. Loss \leftarrow MSE(Reconstructed, Magnitudes)
- 5. return Loss

Method	Complexity	Memory Usage	Accuracy	Best Use Case	Drawbacks
Standard Self- Attention	O(n²)	High	High (Exact Attention)	Short to moderate sequence lengths	Unscalable for long sequences
FlashAttention	O(n²)	Reduced (Optimized for GPUs)	High (Exact Attention)	Long sequences in modern hardware	Requires specialized hardware (e.g., modern GPUs)
Linformer	O(n)	Low	Medium (Approximate Attention)	Long sequences with memory constraints	Approximation error in attention weights
Performer	O(n)	Low	High (Near Exact Attention)	Long sequences, large datasets	Kernel-based approximation complexity
Reformer	O(n log n)	Low	Medium (Approximate Attention)	Very long sequences, sparse attention	Some loss of accuracy, only effective for sparse data
Grouped Query Attention (GQA)	O(n²)	Reduced (due to query grouping)	Medium (Attention on Groups)	Tasks with repeated queries	Loss of fine- grained query details