## Differential equations computational practicum Arina Drenyassova BS19-04 a.drenyasova@innopolis.university

### 1 Exact Solution

Github: https://github.com/ease-ln/DE<sub>a</sub>ssignment1.  $\begin{cases} y' = \frac{1}{x} + \frac{2y}{xln(x)} \\ y(2) = 0 \\ x \in (2, 12) \end{cases}$  2. Let's subtract

 $\frac{2y}{xln(x)}$  from both sides, when we have:

$$y' - \frac{2y}{xln(x)} = \frac{1}{x}$$

3. Let's  $m(x) = e^{(\frac{2dx}{xln(x)})} = \frac{1}{ln^2(x)}$  and multiply both sides by m(x):

$$\frac{y'}{\ln^2(x)} - \frac{2y}{x \ln^3(x)} = \frac{1}{x \ln^2(x)}$$

4. We know that  $(\frac{1}{\ln^2(x)})' = \frac{-2}{x \ln^3(x)}$ , so let's substitute:

$$\frac{y'}{ln^2(x)} - (\frac{1}{ln^2(x)})' = \frac{1}{xln^2(x)}$$

5. By reserse production rule we obtaion:

$$\frac{d}{dx}(\frac{y'}{ln^2(x)}) = \frac{1}{xln^2(x)}$$

6. Let intergrate both sides with respect to x:

$$\int \frac{d}{dx} \left(\frac{y'}{\ln^2(x)}\right) dx = \int \frac{1}{x \ln^2(x)} dx$$

7. As result we have:

$$\frac{y}{\ln^2(x)} = -\frac{1}{\ln(x)} + c_1$$

8. Consequently y:

$$y = c_1 \ln^2(x) - \ln(x)$$

9. Let's use y(2) = 0:

$$c_1 = \frac{1}{\ln(2)}$$

10. Exact solution equal to:

$$y = \frac{1}{\ln(2)} \ln^2(x) - \ln(x)$$

Answer:  $y = \frac{1}{\ln(2)} \ln^2(x) - \ln(x)$  with no point of discontinuity on give interval  $x \in (2, 12)$ 

1

# 2 Computational part

For the computation part of the assignment Python programming language was used. For user interface Qt designer. The main window is shown below.



#### 2.1 Requirements

Requirements for building the code from source code are:

- Python 3.6
- PyQt5
- pyqtgraph
- numpy
- scipy.integrate

#### 2.2 Input. For solving IVP and local error

 $x_0$  and  $y_0$  - Initial values for a diff. equation.

X - end point for numerical solutions.

N - number of intervals for numerical solutions.

#### 2.3 Input. For solving total approximation error

 $N_i$  - starting point of intervals.

 $N_f$  - end point of intervals.

#### 2.4 Input Validation

 $x_0, y_0$  and X must be dot-separable rational numbers.

 $N_i, N_f$  must be positive integers where  $N_i < N_f$ .

#### 2.5 GUI components

- **QCheckBox** is an option button that can be switched on (checked) or off (unchecked). QCheckBox has isChecked() that return true or false.
- **QLabel** is used for displaying text or an image. No user interaction functionality is provided.
- **QLineEdit** widget is a one-line text editor. A line edit allows the user to enter and edit a single line of text.
- **Qwidget** is a subclass of QPaintDevice, subclasses can be used to display custom content that is composed using a series of painting operations with an instance of the QPainter class.

### 2.6 Computational code

Exact method:

```
delass Exact_Solution:
    def __init__(self):
        return

def solve(self, de: DE):
    try:
        ysa = []
        xs = [de.x0]
        for i in range(1, de.N + 1):
              xs.append(de.x0 + (i * de.h))
        dydx = eval("lambda y, x :" + de.string)
        ys = odeint(dydx, de.y0, xs)
        for i in range(0, len(ys)):
              ysa.append(ys[i][0])
        return xs, ysa
    except:
    print("Can not find exact solution")
    return [], []
```

Euler method:

```
def __init__(self):
    return

def solve(self, de: DE):
    try:
        xs = [de.x0]
        ys = [de.y0]
        h = (de.x - de.x0) / de.N
        for i in range(1, de.N+1):
             xs.append(de.x0 + (i * h))
             ys.append(ys[i-1] + (h * de.f(xs[i-1], ys[i-1])))
        return xs, ys
    except:
        print("Can not find euler solution")
        return [], []
```

Improved Euler method:

```
def __init__(self):
    return

def solve(self, de: DE):
    try:
        xs = [de.x0]
        ys = [de.y0]
        y_temp = de.y0
        h = (de.x - de.x0) / de.N
        for i in range(1, de.N+1):
            k1 = de.f(xs[i-1], y_temp)
            k2 = de.f(xs[i-1] + h, y_temp + h*k1)
            k = (k1 + k2) / 2
        y_temp += h * k
            xs.append(de.x0 + (i * h))
            ys.append(y_temp)
        return xs, ys
except:
        print("Can not find improved euler solution")
        return [], []
```

Runge–Kutta method:

```
def __init__(self):
    return

def solve(self, de: DE):
    try:
        xs = [de.x0]
        ys = [de.y0]
        h = (de.x - de.x0) / de.N
        for i in range(1, de.N+1):
            xs.append(de.x0 + (i * h))
            k1 = de.fi(ys[i-1], xs[i-1])
            k2 = de.fi(ys[i-1] + k1 * h/2, xs[i-1] + h/2)
            k3 = de.fi(ys[i-1] + k2 * h/2, xs[i-1] + h/2)
            k4 = de.fi(ys[i - 1] + h * k3, xs[i - 1] + h)
            k = h/6 * (k1 + k2*2 + 2*k3 + k4)
            ys.append(ys[i-1] + k)
            return xs, ys

except:
            print("Can not find runge kutta solution")
            return [], []
```

Local Error:

```
def local_calc(self, y: list, appx: list, appy: list):
    try:
    x = []
    err = []
    for i in range(len(appx)):
        x.append(appx[i])
        err.append(math.fabs(appy[i] - y[i]))
    return x, err
except ValueError:
    print("Can not find local error")
    return [], []
```

Total Error:

```
def global_calc(self, ey_appx, appy):
    try:
        g_x, g_y = self.local_calc(ey, appx, appy)
        x = []
        err = []
        for i in range(1, min(len(g_x), len(g_y))):
            x.append(g_x[i])
            err.append(math.fabs(g_y[i] - g_y[i - 1]))
        return x, err
    except ValueError:
    print("Can not find total error")
    return [], []
```

# 3 UML diagram

