№8,12. Производная и исследование функции. Теория

Связь функции и ее производной

Если производная положительна на промежутке (a; b),

то функция возрастает на промежутке (a; b)

no online

hkolkovo.onlis

Если производная отрицательна на промежутке (a; b),

то функция убывает на промежутке (a; b)

Если производная равна нулю в точке x=a, причем меняет знак с «плюса» на «минус», если смотреть слева направо,

то точка x=a является точкой максимума функции

Если производная равна нулю в точке x = a, причем меняет знак с «минуса» на «плюс», если смотреть слева направо,

то точка x=a является точкой минимума функции

Линейная функция

Для начала вспомним некоторые факты о прямой, так как касательная — это прямая.

- Линейная функция функция вида f(x) = kx + b, где k,b некоторые числа.
- Графиком линейной функции является прямая.
- \bullet Если b=0, то прямая проходит через начало координат.
- Графиком x = a является прямая, параллельная оси Oy.
- Графиком y = c является прямая, параллельная оси Ox.
- Для f(x) = kx + b угловой коэффициент k равен тангенсу угла наклона прямой к положительному направлению оси Ox (сокращенно будем говорить «угол наклона»): $k_1 = \lg \alpha$, $k_2 = \lg \beta$.

Напомним, что тангенс острого угла в прямоугольном треугольнике — это отношение противолежащего катета к прилежащему:

ullet Если две прямые $y=k_1x+b_1$ и $y=k_2x+b_2$: параллельны, то $k_1=k_2$; взаимно перпендикулярны, то

Угол наклона касательной

На рисунке изображены две касательные к графику с углами наклона $\alpha>90^\circ$ и $\beta<90^\circ$ в точках Q и Oсоответственно. Заметим, что $\operatorname{tg} \alpha < 0$, $\operatorname{tg} \beta > 0$.

 $\lg\beta$ не составит труда найти из построенного пря
омугольного треугольника $\triangle BOP.$ А вот с $\lg\alpha$ возникают проблемы. Как их решить?

Так как тангенсы смежных углов противоположны, то искать $\operatorname{tg} \alpha$ мы будем через

$$tg(180^{\circ} - \alpha) = tg \varphi = |tg \alpha| > 0.$$

Найдем $\operatorname{tg}\varphi$ из прямоугольного $\triangle AQH$ и тогда $\operatorname{tg}\alpha = -\operatorname{tg}\varphi$.

Геометрический смысл производной

 \bullet Итак, каков геометрический смысл производной? Если функция в точке x_0 имеет производную, то это значит, что в этой точке можно провести касательную к графику данной функции. Касательная — это некоторая прямая, которая графически выглядит так:

- На чертеже изображены две различные касательные y_{k_1} и y_{k_2} , проведенные к графику функции f(x). Угол наклона первой касательной равен α , угол наклона второй равен β .
- ullet Если нам известно уравнение y=f(x) функции, то, выбрав точку x_0 , в которой мы хотим провести касательную к графику этой функции, можно записать уравнение этой касательной:

$$y_k = f(x_0) + f'(x_0) \cdot (x - x_0)$$

ullet Если переписать уравнение касательной так, чтобы первое слагаемое было kx, второе слагаемое было b, то есть записать в виде $y_k = f'(x_0) \cdot x + f(x_0) - f'(x_0) \cdot x_0$, то видно, что

$$\begin{cases} k = f'(x_0) \\ b = f(x_0) - f'(x_0) \cdot x_0 \end{cases}$$

• Таким образом, мы видим, что, с одной стороны, угловой коэффициент k касательной, как и любой прямой, равен тангенсу угла наклона α , а с другой стороны, если эта прямая касается графика функции f(x) в точке x_0 , то угловой коэффициент k также равен числу $f'(x_0)$:

$$k = \operatorname{tg} \alpha = f'(x_0)$$

Таблица производных shkolkovo.onli

И	щиен	ит k также равен числ $k= \operatorname{tg} lpha =$	
X		1	16000.0,
		Φ ункция y	Производная у'
	1	a	0
ĺ	2	x^a	$a \cdot x^{a-1}$
Ì	3	e^x	e^x
	4	$a^x \ (a>0)$	$a^x \cdot \ln a$
	5	$\ln x$	$\frac{1}{x}$
	6	$\log_a x \ (a > 0, a \neq 1)$	$\frac{1}{x \cdot \ln a}$
	7	$\sin x$	$\cos x$
	8	$\cos x$	$-\sin x$
	9	$\operatorname{tg} x$	$\frac{1}{\cos^2 x}$
	10	$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$
	11	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$ $-\frac{1}{\sqrt{1-x^2}}$
	12	$\arccos x$	$ \begin{array}{c} \sqrt{1-x^2} \\ -\frac{1}{\sqrt{1-x^2}} \\ \underline{1} \end{array} $
	13	$\operatorname{arctg} x$	$\frac{1}{1+x^2}$
	14	$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$

Частные случаи функции (2):

15	x	1
16	$\frac{1}{x}$	$-\frac{1}{x^2}$
17	\sqrt{x}	$\frac{1}{2\sqrt{x}}$

Правила поиска производной функции

- константа.

-				
Функция	Производная			
$a \cdot f(x)$	$a \cdot f'(x)$			
$f(x) \pm g(x)$	$f'(x) \pm g'(x)$			
$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$			
f(x)	$f'(x) \cdot g(x) - f(x) \cdot g'(x)$			
$\overline{g(x)}$	$g^2(x)$			
f(g(x))	$f'(g(x)) \cdot g'(x)$			
62				
0.0				
4100				
The state of the s				

План решения №12

- 1. Взять производную функции, то есть найти f'(x).
- 2. Найти все точки, в которых производная равна нулю либо не существует.
- 3. Найти знаки производной на промежутках между точками из предыдущего пункта с помощью метода интервалов.
- 4. Нарисовать эскиз графика исходной функции (изобразить, на каком промежутке функция возрастает, а на каком убывает) и с его помощью найти точку или значение, которые требуются в задаче.

Пример решения задачи в соответствии с планом

Найдите наибольшее значение функции $y = e^{x-2} \cdot \frac{x-4}{x}$ на отрезке [1;4].

Решение

Обозначим $f(x) = e^{x-2} \cdot \frac{x-4}{x}$.

1. Найдем производную функции:

$$f'(x) = \left(e^{x-2}\right)' \cdot \frac{x-4}{x} + e^{x-2} \cdot \left(\frac{x-4}{x}\right)' = e^{x-2} \cdot \frac{x-4}{x} + e^{x-2} \cdot \frac{(x-4)'x - (x-4)x'}{x^2} = e^{x-2} \cdot \frac{(x-2)^2}{x^2}.$$

- 2. Легко видеть, что первый множитель определен и не равен нулю при любом $x \in \mathbb{R}$. Второй множитель зануляется при x=2 и не определен при x=0.
- 3. Применим метод интервалов для определения знаков производной. Обе критические точки встречаются в четном числе множителей, следовательно, знак в них меняться не будет.

4. Теперь можем нарисовать эскиз графика. На всех промежутках производная положительна, то есть исходная функция будет возрастать (не забываем, что в точке 0 будет разрыв, в ней функция не определена). Выделим на эскизе интересующий нас отрезок [1; 4].

На полученном эскизе отлично видно, что на всем отрезке [1;4] исходная функция f определена и возрастает, следовательно, максимальное значение на отрезке достигается в самой правой его точке x=4. Чтобы решить задачу, осталось найти значение f в точке x=4:

$$f(4) = e^{4-2} \cdot \frac{4-4}{4} = 0.$$