Supported Probability Distributions

Discrete Probability Distributions

Name	${ m PMF/CDF}$	Support	Parameters	Mean	Standard deviation
Binomial	$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$ $F_X(x) = \sum_{i=0}^{\lfloor x \rfloor} \binom{n}{i} p^i (1-p)^{n-i}$	$x \in \{0,,n\}$	$n\in\mathbb{N}_0$ $p\in[0,1]$	np	$\sqrt{np(1-p)}$
${f Geometric}$	$p_X(x) = (1-p)^{x-1}p$ $F_X(x) = 1 - (1-p)^x$	$x \in \{1, 2, 3, \ldots\}$	$p \in (0,1]$	$\frac{1}{p}$	$\sqrt{rac{1-p}{p^2}}$
Negative binomial	$p_X(x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$ $F_X(x) = \sum_{i=r}^x {i-1 \choose r-1} (1-p)^{i-r} p^r$	$x \in \{r, r+1, \ldots\}$	$r\in\mathbb{N}$ $p\in(0,1)$	$\frac{r}{p}$	$\sqrt{rac{r(1-p)}{p^2}}$
Poisson	$p_X(x) = \frac{\lambda^x \exp(-\lambda)}{x!} = \frac{(vt)^x \exp(-vt)}{x!}$ $F_X(x) = \exp(-\lambda) \sum_{i=0}^{\lfloor x \rfloor} \frac{\lambda^i}{i!}$	$x \in \{0,1,2,\ldots\}$	$\lambda > 0$ or $v > 0$, $t > 0$	$\lambda = vt$	$\sqrt{\lambda} = \sqrt{vt}$

Continuous Probability Distributions

Name	PDF/CDF	Support	Parameters	Mean	Standard deviation
Exponential	$f_X(x) = \lambda \exp(-\lambda x)$ $F_X(x) = 1 - \exp(-\lambda x)$	$x \in [0, \infty)$	$\lambda > 0$	λ^{-1}	λ^{-1}
Gamma	$f_X(x) = \frac{\lambda^k x^{k-1} \exp(-\lambda x)}{\Gamma(k)}$ $F_X(x) = \frac{\gamma(k, \lambda x)}{\Gamma(k)}$	$x \in [0, \infty)$	$k > 0$ $\lambda > 0$	$\frac{k}{\lambda}$	$\sqrt{rac{k}{\lambda^2}}$
Beta	$f_X(x) = \frac{(x-a)^{\alpha-1}(b-x)^{\beta-1}}{B(\alpha,\beta)(b-a)^{\alpha+\beta-1}}$ $F_X(x) = I_x(\alpha,\beta)$	$x \in (a, b)$	$\alpha > 0$ $\beta > 0$ $(a < b) \in \mathbb{R}$	$\frac{a\beta + b\alpha}{\alpha + \beta}$	$\sqrt{\frac{\alpha\beta(b-a)}{(\alpha+\beta)^2(\alpha+\beta+1)}}$
Gumbel Min	$f_X(x) = \frac{1}{a_n} \exp(z - \exp(z))$ $F_X(x) = \exp(-\exp(z))$ with $z = \frac{x - b_n}{a_n}$	$x \in (-\infty, \infty)$	$b_n \in \mathbb{R}$ $a_n > 0$	$-b_n + a_n \gamma$ $\gamma \approx 0.577216$	$\sqrt{\frac{\pi^2 a_n^2}{6}}$
Gumbel (Max)	$f_X(x) = \frac{1}{a_n} \exp(-z - \exp(-z))$ $F_X(x) = \exp(-\exp(-z))$ with $z = \frac{x - b_n}{a_n}$	$x \in (-\infty, \infty)$	$b_n \in \mathbb{R}$ $a_n > 0$	$b_n + a_n \gamma$ $\gamma \approx 0.577216$	$\sqrt{\frac{\pi^2 a_n^2}{6}}$

Name	PDF/CDF	Support	Parameters	Mean	Standard deviation
Fréchet	$f_X(x) = \frac{k}{a_n} \left(\frac{a_n}{x}\right)^{k+1} \exp\left(-\left(\frac{a_n}{x}\right)^k\right)$ $F_X(x) = \exp\left(-\left(\frac{a_n}{x}\right)^k\right)$	$x\in [0,\infty)$	$a_n \in (0, \infty)$ $k \in (0, \infty)$	$a_n \Gamma\left(1 - \frac{1}{k}\right)$ for $k > 1$	$a_n \left[\Gamma \left(1 - \frac{2}{k} \right) - \right.$ $\Gamma^2 \left(1 - \frac{1}{k} \right) \right]^{1/2}$ for $k > 2$
Weibull	$f_X(x) = \frac{k}{a_n} \left(\frac{x}{a_n}\right)^{k-1} \exp\left(-\left(\frac{x}{a_n}\right)^k\right)$ $F_X(x) = 1 - \exp\left(-\left(\frac{x}{a_n}\right)^k\right)$	$x \in [0, \infty)$	$a_n \in (0, \infty)$ $k \in (0, \infty)$	$a_n\Gamma(1+1/k)$	$a_n \left[\Gamma \left(1 + \frac{2}{k} \right) - \right.$ $\Gamma^2 \left(1 + \frac{1}{k} \right) \right]^{1/2}$
GEV	$f_X(x) = \frac{1}{\sigma} (t(x))^{\xi+1} \exp(-t(x))$ $F_X(x) = \exp(-t(x))$ with $t(x) = \left(1 + \left(\frac{x-\mu}{\sigma}\right)\xi\right)^{-1/\xi}$	$x \in [\mu - \sigma/\xi, \infty)$ $x \in (-\infty, \mu - \sigma/\xi]$	$\mu\in\mathbb{R}$ $\sigma>0$ $\xi\in\mathbb{R}$	$\mu + \sigma \frac{\Gamma(1-\xi) - 1}{\xi}$ for $\xi \neq 0, \xi < 1$	$\sqrt{\sigma^2 (g_2 - g_1^2)/\xi^2}$ for $\xi \neq 0, \xi < 1/2$ where $g_k = \Gamma(1 - k\xi)$
Pareto	$f_X(x) = \frac{\alpha x_{\rm m}^{\alpha}}{x^{\alpha+1}}$ $F_X(x) = 1 - \left(\frac{x_{\rm m}}{x}\right)^{\alpha}$	$x \in [x_m, \infty)$	$x_m > 0$ $\alpha > 0$	$\frac{\alpha x_{\rm m}}{\alpha - 1}$ for $\alpha > 1$	$\sqrt{\frac{x_{\rm m}^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)}}$ for $\alpha > 2$
Rayleigh	$f_X(x) = \frac{x}{\sigma^2} \exp(-x^2/2\sigma^2)$ $F_X(x) = 1 - \exp(-x^2/2\sigma^2)$	$x \in [0, \infty)$	$\sigma > 0$	$\sigma\sqrt{rac{\pi}{2}}$	$\sqrt{rac{4-\pi}{2}\sigma^2}$

Name	$\operatorname{PDF}/\operatorname{CDF}$	Support	Parameters	Mean	Standard deviation
Chi-squared	$f_X(x) = \frac{1}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)} x^{\left(\frac{k}{2}-1\right)} \exp\left(-\frac{x}{2}\right)$ $F_X(x) = \frac{1}{\Gamma\left(\frac{k}{2}\right)} \gamma\left(\frac{k}{2}, \frac{x}{2}\right)$	$x \in [0, \infty)$	$k \in \mathbb{N}_{>0}$	k	$\sqrt{2k}$
Uniform	$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$ $F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a, b) \\ 1 & x \ge b \end{cases}$	$x \in [a, b]$	$-\infty < a < \infty$ $-\infty < b < \infty$	$\frac{1}{2}(a+b)$	$\sqrt{\frac{1}{12}(b-a)^2}$
Standard normal	$\phi(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right)$ $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\left(-t^2/2\right) dt$	$u\in \mathbb{R}$	_	0	1
Normal	$f_X(x) = \frac{1}{\sqrt{2\sigma^2 \pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $F_X(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right]$	$x\in \mathbb{R}$	$\mu \in \mathbb{R}$ $\sigma > 0$	μ	σ
Log-normal	$f_X(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln(x) - \mu)^2}{2\sigma^2}\right)$ $F_X(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left[\frac{\ln x - \mu}{\sqrt{2}\sigma}\right]$	$x \in (0, \infty)$	$\mu \in \mathbb{R}$ $\sigma > 0$	$e^{\mu+(\sigma^2/2)}$	$\sqrt{(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}}$

In order to compute some of the previous expressions the following special functions are required:

• the error function,

 $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) dt$

• The beta function,

 $B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$

• The regularized beta function,

 $I_x(a,b) = \frac{B(x;a,b)}{B(a,b)} = \frac{\int_0^x t^{a-1} (1-t)^{b-1} dt}{B(a,b)}$

• The gamma function,

 $\Gamma(t) = \int_0^\infty x^{t-1} \exp(-x) \, \mathrm{d}x$

• The lower incomplete gamma function,

 $\gamma(s,x) = \int_0^x t^{s-1} \exp(-t) dt$