BAF510: 채권분석

Homework 2

Spring 2024

- 1. 만기 2년, 액면이자율 10% (연 1회 지급), 액면가 100 인 수의상환채권 callable bond 를 생각하자. 이 채권의 상환액 call price 는 100, 상환기간은 1년부터 (이자지급 이후) 만기까지 이다. 즉, 채권발행자 (기채자, 채무자) 는 상환기간 동안 원하는 때 100으로 채권을 상환할 수 있다.
 1년이 지난 시점에서 만기수익률을 10.05% 라 가정하자. 채권의 가격 P₀ 를 구하시오. 시중금리 변화에 따라 이 만기수익률이 즉각적으로 10bp 상승할 때의 가격 P₊ 를 구하시오. 그리고 만기수익률이 즉각적으로 10bp 하락할 때의 가격 P₋ 를 구하시오. 채권발행자는 채권의 가치가 100을 넘어서면 상환할 인센티브가 있음을 고려하라. 이들 세 값을 바탕으로 우리는 수의상환채권에 대하여 유효한 듀레이션을 ¹/_{P₀} · ^{P₊-P₋}/_{20bps} 로 구할 수 있다. 소수점 네째자리까지 리포트하시오.
- 2. hw2.xlsx 에는 Treasury par yield (% 값) 가 일부 주어져 있다. 이것은 2024년 3월 21일 기준 US Treasury Par Yield Curve 이다. 선형보간법을 이용하여 빈 곳을 채우고, 1년에 2회 이자를 지급하는 기준으로 하여 spot rate 을 구하시오. 단, 0.5년 과 1년 채권은 무이표 채권이다. 제출할 때에는 % 로 소수점 둘째 자리까지 보이시오.
- 3. 위의 문제에서 구한 현물이자율을 이용하여 선도이자율을 구하여라. 이 때 선도이자율은 6개월 구간마다 주어진다. 물론 0 부터 6개월까지의 선도이자율은 6개월 현물이자율과 같다. 선도이자율도 % 로 소수점 둘째 자리까지 구하시오.
- 4. 챕터2 에서 우리는 선도이자율이 구간별로 주어질 수 있음을 배웠다. Semi-annual 베이스로 현물이자율을 정의했을 때, r_1 은 1년 현물이자율, $r_{1.5}$ 는 1년 6개월 현물이자율을 나타낸다. 그리고 6 개월부터 1년까지 기간에 대한 선도이자율은 $(1+r_1/2)^2=(1+r_{0.5}/2)(1+f_{[0.5,1]}/2)$ 를 만족한다. 현물이자율을 연속복리법으로 정의했을 때, 1년 현물이자율을 r_1 이라 놓으면 시작점에서 1 의투자는 e^{r_1} 으로 성장한다. 마찬가지로 시간 t 에 대한 현물이자율을 r_t 라 놓으면 시작점에서의 1의 투자는 e^{tr_t} 로 성장한다. 두 시점 a < b 에 대하여 연속복리법에 의한 현물이자율 r_a, r_b 가주어져 있다. 투자자는 (a,b) 구간에 적용되는 선도거래를 체결하려고 한다. 이 때 중요한 것은

선도이자율인데, 무차익원리에 의한 선도이자율 f(a,b) 를 a,b,r_a,r_b 를 이용하여 나타내시오. 물론 연속복리법을 적용한다.

5. 2024년 3월 15일 호가가 액면 100 당 103-22+ 로 주어진 미 국채가 있다. 이 채권의 만기는 2029 년 10월 15일이고 표면금리는 6.125% 이다. 이자는 매 4월 15일, 10월 15일 지급될 때, full price 를 구하시오. 소수점 여섯째자리까지 반올림하여 나타내시오.

Due date: Mar 29, 5pm

$$\rho_1 = \frac{C + FV}{(1 + \gamma)} = \frac{100}{1.1005} = 99.9546$$

$$y = 0.1005$$

$$y \leftarrow y + 10 \text{ bp}$$

$$\rho_{+} = \frac{110}{1.0015} = \frac{99.8636}{1.0015}$$

y∈y-10bp

$$p_{-} = \frac{10}{10995} = 100.0455$$
 but, Callable (\$100 1/23 3×1 8 %)
∴ $p_{-} = 100$

D=	- .	P+ - P-	=	0.6812	
-	ه۲	20103			

<u></u>	(3)	:	excel	初洼
	ري	-	Ga C	

Θ	frals
o ra	a b

e 1. b = e 1 . e 1 . e 1 . e 1 . e

$$\Gamma_{b} \cdot b = \Gamma_{a} \cdot a + f_{(a,b)} \cdot (b-a),$$

$$\frac{\int_{(\mathbf{Q}_{1}b)} = \frac{\int_{\mathbf{b}} \cdot \mathbf{b} - \int_{\mathbf{Q}} \cdot \mathbf{q}}{\mathbf{b} - \mathbf{a}}$$

6 of 324 convention: actual

2	4	
2.5	5	
3	6	
3.5	7	
4	8	
4.5	9	
5	10	
5.5	11	
6	12	
6.5	13	
7	14	
7.5	15	4.2
8	16	4.2
8.5	17	
0	19	4.2

year	period	par yie ld	par yield 2		zero/spot	inverted pow	forward	forward_r	1+forward/2	product
0.5	1	5.36	5.36%	zero	5.36%	0.973899494	4.66%	[0.5, 1]		1
1	2	5.01	5.01%	zero	5.01%	0.951721543	4.40%	[1,1.5]	1.023302983	1.023303
1.5	3	4.815	4.82%		4.81%	0.931221516	4.01%	[1.5, 2]	1.022014126	1.04583
2	4	4.62	4.62%		4.61%	0.912918519	4.10%	[2,2.5]	1.020048883	1.066798
2.5	5	4.52	4.52%		4.51%	0.894585762	3.89%	[2.5,3]	1.020493013	1.08866
3	6	4.42	4.42%		4.40%	0.87752464	4.12%	[3,3.5]	1.019442327	1.109826
3.5	7	4.38	4.38%		4.36%	0.859803322	4.04%	[3.5,4]	1.020610898	1.1327
4	8	4.34	4.34%		4.32%	0.842795005	3.95%	[4,4.5]	1.020180847	1.155559
4.5	9	4.3	4.30%		4.28%	0.826474693	3.86%	[4.5,5]	1.019746899	1.178378
5	10	4.26	4.26%		4.24%	0.810818449	4.32%	[5,5.5]	1.019309186	1.201131
5.5	11	4.265	4.27%		4.25%	0.798671363	4.33%	[5.5,6]	1.021604768	1.227082
6	12	4.27	4.27%		4.25%	0.776843861	4.34%	[6,6.5]	1 02166137	1.253662
6.5	13	4.275	4.28%		4.26%	0.76033049	4.36%	[6.5,7]	1.021718675	1.28089
7	14	4.28	4.28%		4.27%	0.744125881	4.25%	[7,7.5]	1.021776704	1.308783
7.5	15	4.278333	4.28%		4.27%	0.728638724	4.25%	[7.5,8]	1.021254919	1.336601
8	16	4.276667	4.28%		4.26%	0.71348769	4.24%	[8,8.5]	1.021235172	1.364984
8.5	17	4.275	4.28%		4.26%	0.698665375	4.24%	[8.5,9]	1.021215185	1.393943
9	18	4.273333	4.27%		4.26%	0.684164539	4.23%	[9,9.5]	1.021194954	1.423487
9.5	19	4.271667	4.27%		4.26%	0.669978104	4.23%	[9.5, 10]	1.021174475	1.453629
10	20	4.27	4.27%		4.26%	0.656099151		[10,]	1.021153743	1.484379

 $103-32+ = 103 + \frac{32}{32} + \frac{1}{69} = 103.703125$

$$\Rightarrow$$
 C₁ = $\frac{100.6.125\%}{2}$ = 3.0625

Cr = 6.125% Coupon darles: 4/15, 10/15 (Semi-annual)

accrued interest = $$3.0625 \times \frac{152}{193} = 2.543715