Improved Complexity Bounds in Wasserstein Barycenter Problem

Darina Dvinskikh, Daniil Tiapkin* Weierstrass Institute, HSE

2021. 3. 19

Outlines

- 1 Introduction
- 2 Problem Statement
- 3 Algorithm 1: Mirror Prox for Wasserstein Barycenter
- 4 Experiments

- 1 Introduction
- 2 Problem Statement
- 3 Algorithm 1: Mirror Prox for Wasserstein Barycenter
- 4 Experiments

OT: Arithmetic calculations problem

- Simplex method or interior point method: $\widetilde{O}(n^3)$
- Sinkhorn algorithm: $\widetilde{O}(n^2 \|C\|_{\infty}^2/\varepsilon^2)$, with ε -precision. C is cost matrix, the regularization parameter before negative entropy is of order ε .
- Accelerated Sinkhorn algorithm: $\widetilde{O}\left(n^{2.5}\|C\|_{\infty}/\varepsilon\right)$. In practice, it has better dependence on ε but not on n.
- All entropy-regularized based approaches are numerically unstable when the regularizer parameter γ before negative entropy is small (this also means that precision ε is high as γ must be selected proportional to ε .

The recent work (Jambulapati et al. (2019)) privides an optimal method: $\widetilde{O}\!\left(n^2\|C\|_\infty/\varepsilon\right)$

- Based on dual extrapolation and area-convexity.
- Without additional penalization.

Wasserstein Barycenter problem

- Iterative Bregman projections (IBP) algorithm: The IBP is an extension of the Sinkhorn's algorithm for m measures, and hence, its complexity is m times more than the Sinkhorn complexity: $\widetilde{O}\left(mn^2\|C\|_{\infty}^2/\varepsilon^2\right)$.
- Accelerated IBP algorithm: $\widetilde{O}(mn^{2.5}||C||_{\infty}/\varepsilon)$.
- Another fast version of IBP, FastIBP: $\widetilde{O}\left(mn^{\frac{7}{3}}\|C\|_{\infty}^{\frac{4}{3}}/\varepsilon^{\frac{4}{3}}\right)$.

Contribution

The first contribution:

- Propose an algorithm which does not suffer from a small value of the regularization parameter.
- Convergence rate: $\widetilde{O}(mn^{2.5}||C||_{\infty}/\varepsilon)$, not worse than the celebrated accelerated IBP.
- Based on mirror prox with specific prox-function.

The second contribution:

- Propose an algorithm that has better complexity than the accelerated IBP.
- Convergence rate: $\widetilde{O}(mn^2||C||_{\infty}/\varepsilon)$.
- Based on rewriting the WB problem as a saddle-point problem and further application of the dual extrapolation scheme under the weaker convergence requirements of area-convexity.

In some sense, the first algorithm can be seen as a simplified version of the second algorithm.

Contribution

Table 1: Algorithms and their rates of convergence for the Wasserstein barycenter problem

Approach	Paper	Complexity
IBP	(Kroshnin et al., 2019)	$\widetilde{O}\left(\frac{mn^2\ C\ _{\infty}^2}{\varepsilon^2}\right)$ $\widetilde{O}\left(\frac{mn^2\sqrt{n}\ C\ _{\infty}}{mn^2\sqrt{n}\ C\ _{\infty}}\right)$
Accelerated IBP	(Guminov et al., 2019)	$\widetilde{O}\left(\frac{mn^2\sqrt{n}\ C\ _{\infty}}{\varepsilon}\right)$
FastIBP	(Lin et al., 2020)	$\widetilde{O}\left(\frac{mn^2\sqrt[3]{n}\ C\ _{\infty}^{4/3}}{\varepsilon\sqrt[3]{\varepsilon}}\right)$
Mirror prox with specific norm	This work	$\widetilde{O}\left(\frac{mn^2\sqrt{n}\ C\ _{\infty}}{\varepsilon}\right)$
Dual extrapolation with area-convexity	This work	$\widetilde{O}\left(\frac{mn^2\ C\ _{\infty}}{\varepsilon}\right)$

- 1 Introduction
- 2 Problem Statement
- 3 Algorithm 1: Mirror Prox for Wasserstein Barycenter
- 4 Experiments

Problem Statement

• Let $\Delta_n = \{ p \in \mathbb{R}^n_+ : \sum_{i=1}^n p_i = 1 \}$ be the probability simplex. Given two histograms $p, q \in \Delta_n$ and ground cost $C \in \mathbb{R}^{n*n}_+$, the OT problem is formulated as follows

$$W(p,q) = \min_{X \in \mathcal{U}(p,q)} \langle C, X \rangle \tag{1}$$

- ullet where X is a transport plan. ${\mathcal U}$ is the transport polytope.
- Let d be vectorized cost matrix of C, x be vectorized transport plan of X, $b = \begin{pmatrix} p \\ q \end{pmatrix}$, and $A = \{0,1\}^{2n \times n^2}$ be an incidence matrix.
- \bullet As $\sum_{i,j=1}^{n} X_{ij} = 1,$ (Jambulapati et al. (2019)) rewrite (1) as

$$W(p, q) = \min_{x \in \Lambda_n 2} \max_{y \in [-1, 1]^{2n}} \left\{ d^{\mathsf{T}} x + 2||d||_{\infty} \left(y^{\mathsf{T}} A x - b^{\mathsf{T}} y \right) \right\}$$
(2)

Problem Statement

• Given histograms $q_1, q_2, ..., q_m \in \Delta_n$, a WB of those measures is a solution of the following problem:

$$p^* = \arg\min_{p \in \Delta_n} \frac{1}{m} \sum_{i=1}^m W(p, q_i)$$
 (3)

• Rewrite (3) using the reformulation (2) of OT as follows:

$$\min_{p \in \Delta_n} \frac{1}{m} \sum_{i=1}^m \min_{x_i \in \Delta_n 2} \max_{y_i \in [-1,1]^{2n}} \left\{ d^{\mathsf{T}} x_i + 2 ||d||_{\infty} \left(y_i^{\mathsf{T}} A x_i - b_i^{\mathsf{T}} y_i \right) \right\}$$
(4)

Problem Statement

• Define spaces $\mathcal{X} \triangleq \prod^m \Delta_{n^2} \times \Delta_n$ and $\mathcal{Y} \triangleq [-1, 1]^{2mn}$, where $\prod^m \Delta_{n^2} \times \Delta_n = \underbrace{\Delta_{n^2} \times \ldots \times \Delta_{n^2}}_{m} \times \Delta_n$. Reweite (4) for column vectors $\mathbf{x} = \left(x_1^{\mathsf{T}}, \ldots, x_m^{\mathsf{T}}, p^{\mathsf{T}}\right)^{\mathsf{T}} \in \mathcal{X}$ and $\mathbf{y} = \left(y_1^{\mathsf{T}}, \ldots, y_m^{\mathsf{T}}\right)^{\mathsf{T}} \in \mathcal{Y}$ as follows:

$$\min_{\mathbf{x} \in \mathcal{X}} \max_{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}, \mathbf{y}) \triangleq \frac{1}{m} \left\{ \mathbf{d}^{\mathsf{T}} \mathbf{x} + 2 ||\mathbf{d}||_{\infty} \left(\mathbf{y}^{\mathsf{T}} \mathbf{A} \mathbf{x} - \mathbf{c}^{\mathsf{T}} \mathbf{y} \right) \right\}$$
(5)

- As objective $F(\mathbf{x}, \mathbf{y})$ in (5) is convex in x and concave in y, problem (5) is a saddle-point problem.
- $\begin{aligned} \bullet & \text{ where } \mathbf{d} = (d^\intercal, \dots, d^\intercal, 0_n^\intercal)^\intercal , \mathbf{c} = \begin{pmatrix} 0_n^\intercal, q_1^\intercal, \dots, 0_n^\intercal, q_m^\intercal \end{pmatrix}^\intercal \text{ and } \\ \mathbf{A} = \begin{pmatrix} \hat{A} & \mathcal{E} \end{pmatrix} \in \{-1, 0, 1\}^{2mn\times(mn^2+n)} \text{ with block-diagonal matrix } \mathbf{A} \text{ of m} \\ & \text{blocks } \hat{A} = \begin{pmatrix} A & 0_{2n\times n^2} & \cdots & 0_{2n\times n^2} \\ 0_{2n\times n^2} & A & \cdots & 0_{2n\times n^2} \\ \vdots & \vdots & \ddots & \vdots \\ 0_{2n\times n^2} & 0_{2n\times n^2} & \cdots & A \end{pmatrix} \text{ and matrix } \\ \mathcal{E}^\intercal = \underbrace{((-I_n & 0_{n\times n})\underbrace{(-I_n & 0_{n\times n})} \cdots \underbrace{(-I_n & 0_{n\times n})}}_{} \cdots \underbrace{(-I_n & 0_{n\times n})}_{}). \end{aligned}$

Zejun Xie

- 1 Introduction
- 2 Problem Statement
- 3 Algorithm 1: Mirror Prox for Wasserstein Barycenter
- 4 Experiments

Setup

- Notation: For a prox-function d(x), define the corresponding Bregman divergence $B(x, y) = d(x) d(y) \langle \nabla d(y), x y \rangle$. For example, the Euclidean \mathbf{l}_2 -norm $\|\mathbf{y}\|_2$, prox-function $d_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{2}\|\mathbf{y}\|_2^2$, and the $B_{\mathbf{y}}(\mathbf{y}, \check{\mathbf{y}}) = \frac{1}{2}\|\mathbf{y} \check{\mathbf{y}}\|_2^2$
- For space $X \triangleq \prod^m \Delta_{n^2} \times \Delta_n$, we choose the following specific norm $\|\mathbf{x}\|_{\mathcal{X}} = \sqrt{\sum_{i=1}^m \|x_i\|_1^2 + m\|p\|_1^2}$ for $\mathbf{x} = (x_1, \dots, x_m, p)^T$. Given X with prox-function $d_X(\mathbf{x}) = \sum_{i=1}^m \langle x_i, \ln x_i \rangle + m \langle p, \ln p \rangle$ and $B_X(\mathbf{x}, \check{\mathbf{x}}) = \sum_{i=1}^m \langle x_i, \ln (x_i/\check{x}_i) \rangle \sum_{i=1}^m \mathbf{1}^\top (x_i \check{x}_i) + m \langle p, \ln (p/\check{p}) \rangle m \mathbf{1}^\top (p \check{p})$.
- Define $R_{\chi}^2 = \sup_{\mathbf{x} \in \chi} d_{\chi}(\mathbf{x}) \min_{\mathbf{x} \in \chi} d_{\chi}(\mathbf{x})$ and $R_{\chi}^2 = \sup_{\mathbf{y} \in \mathcal{Y}} d_{\chi}(\mathbf{y}) \min_{\mathbf{y} \in \mathcal{Y}} d_{\chi}(\mathbf{y}).$
- Definition: $f(\widetilde{\mathbf{x}}, \mathbf{y})$ is $(L_{xx}, L_{xy}, L_{yx}, L_{yy})$ -smooth if for any $x, x' \in X$ and $y, y' \in \mathcal{Y}$ $\|\nabla f(\mathbf{x}, \mathbf{y}) \nabla f(\mathbf{x}', \mathbf{y})\|_{L^{\infty}} \leq L_{x} \|\mathbf{y} \mathbf{y}'\|_{L^{\infty}}$

$$\begin{aligned} &\|\nabla_{\mathbf{x}}f(\mathbf{x},\mathbf{y}) - \nabla_{\mathbf{x}}f(\mathbf{x}',\mathbf{y})\|_{\mathcal{X}^{s}} \leq L_{\mathbf{x}\mathbf{x}} \|\mathbf{x} - \mathbf{x}'\|_{\mathcal{X}}, \\ &\|\nabla_{\mathbf{x}}f(\mathbf{x},\mathbf{y}) - \nabla_{\mathbf{x}}f(\mathbf{x},\mathbf{y}')\|_{\mathcal{X}^{s}} \leq L_{\mathbf{x}\mathbf{y}} \|\mathbf{y} - \mathbf{y}'\|_{\mathcal{Y}}, \\ &\|\nabla_{\mathbf{y}}f(\mathbf{x},\mathbf{y}) - \nabla_{\mathbf{y}}f(\mathbf{x},\mathbf{y}')\|_{\mathcal{Y}^{s}} \leq L_{\mathbf{y}\mathbf{y}} \|\mathbf{y} - \mathbf{y}'\|_{\mathcal{Y}}, \\ &\|\nabla_{\mathbf{y}}f(\mathbf{x},\mathbf{y}) - \nabla_{\mathbf{y}}f(\mathbf{x}',\mathbf{y})\|_{\mathcal{Y}^{s}} \leq L_{\mathbf{y}\mathbf{x}} \|\mathbf{x} - \mathbf{x}'\|_{\mathcal{X}}. \end{aligned}$$

Implementation

• As problem (5) is a saddle-point problem, we will evaluate the quality of an algorithm that outputs a pair of solutions $(\widetilde{\mathbf{x}}, \widetilde{\mathbf{y}}) \in (\mathcal{X}, \mathcal{Y})$ through the so-called duality gap

$$\max_{\mathbf{y} \in \mathcal{Y}} F(\widetilde{\mathbf{x}}, \mathbf{y}) - \min_{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}, \widetilde{\mathbf{y}}) \le \varepsilon \tag{6}$$

• The first algorithm is based on mirror prox (MP) algorithm (Nemirovski, 2004) on space $\mathcal{Z} \triangleq \mathcal{X} \times \mathcal{Y}$ with prox-function $d_{\mathcal{Z}}(\mathbf{z}) = a_1 d_{\mathcal{X}}(\mathbf{x}) + a_2 d_{\mathcal{Y}}(\mathbf{y})$ and $B_{\mathcal{Z}}(\mathbf{z}, \check{\mathbf{z}}) = a_1 B_{\mathcal{X}}(\mathbf{x}, \check{\mathbf{x}}) + a_2 B_{\mathcal{Y}}(\mathbf{y}, \check{\mathbf{y}})$, where $a_1 = \frac{1}{R_{\mathcal{X}}^2}$, $a_2 = \frac{1}{R_{\mathcal{Y}}^2}$, $\left(\begin{array}{c} \mathbf{u}^{k+1} \\ \mathbf{v}^{k+1} \end{array}\right) = \arg\min_{\mathbf{z} \in \mathcal{Z}} \left\{ \eta G(\mathbf{x}^k, \mathbf{y}^k)^{\mathsf{T}} \mathbf{z} + B_{\mathcal{Z}}(\mathbf{z}, \mathbf{z}^k) \right\}$,

Implementation

• Here η is learning rate, $\mathbf{z}^1 = \arg\min_{\mathbf{z} \in \mathcal{Z}} d_{\mathcal{Z}}(\mathbf{z})$ and $G(\mathbf{x}, \mathbf{y})$ is a gradient operator defined as follows

$$G(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} \nabla_{\mathbf{x}} F(\mathbf{x}, \mathbf{y}) \\ -\nabla_{\mathbf{y}} F(\mathbf{x}, \mathbf{y}) \end{pmatrix} = \frac{1}{m} \begin{pmatrix} d + 2||d||_{\infty} \mathbf{A}^{\top} \mathbf{y} \\ 2||d||_{\infty} (\mathbf{c} - \mathbf{A}\mathbf{x}) \end{pmatrix}$$
(7)

• If $F(\mathbf{x}, \mathbf{y})$ is $(L_{xx}, L_{xy}, L_{yx}, L_{yy})$ -smooth, then to satify (6) with $\widetilde{\mathbf{x}} = \frac{1}{N} \sum_{k=1}^{N} \mathbf{u}^{k}, \widetilde{\mathbf{y}} = \frac{1}{N} \sum_{k=1}^{N} \mathbf{v}^{k}$ one needs to perform

$$N = \frac{4}{\varepsilon} \max \left\{ L_{xx} R_{\chi}^2, L_{xy} R_{\chi} R_{y}, L_{yx} R_{y} R_{\chi}, L_{yy} R_{y}^2 \right\}$$
 (8)

• iterations of MP(Bubeck, 2014) with

$$\eta = 1/\left(2\max\left\{L_{xx}R_{\mathcal{X}}^{2}, L_{xy}R_{\mathcal{X}}R_{\mathcal{Y}}, L_{yx}R_{\mathcal{Y}}R_{\mathcal{X}}, L_{yy}R_{\mathcal{Y}}^{2}\right\}\right)$$
(9)

Complexity Bound

- Lemma: Objective $F(\mathbf{x}, \mathbf{y})$ in (5) is $(L_{xx}, L_{xy}, L_{yx}, L_{yy})$ -smooth with $L_{xx} = L_{yy} = 0$ and $L_{xy} = L_{yx} = 2\sqrt{2}||d||_{\infty}/m$.
- Theorem: Assume that $F(\mathbf{x}, \mathbf{y})$ in (5) is $(0, 2\sqrt{2}||d||_{\infty}/m, 2\sqrt{2}||d||_{\infty}/m, 0)$ -smooth and $R_{\mathcal{X}} = \sqrt{3m\ln n}, R_{\mathcal{Y}} = \sqrt{mn}$. Then after $N = 8||d||_{\infty}\sqrt{6n\ln n}/\varepsilon$ iterations, Algorithm 1 with $\eta = \frac{1}{4||d||_{\infty}\sqrt{6n\ln n}}$ outputs a pair $(\widetilde{\mathbf{u}}, \widetilde{\mathbf{v}}) \in (\mathcal{X}, \mathcal{Y})$ such that $\max_{\mathbf{v} \in \mathcal{Y}} F(\widetilde{\mathbf{u}}, \mathbf{v}) \min_{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}, \widetilde{\mathbf{v}}) \leq \varepsilon$.
- The total complexity of Algorithm 1 is $O(mn^2 \sqrt{n \ln n} ||d||_{\infty} \varepsilon^{-1})$. The complexity of one iteration of Algorithm 1 is $O(mn^2)$ as the number of non-zero elements in matrix A is $2n^2$, and m is the number of vector-components in \mathbf{y} and \mathbf{x} . Multiplying this by the number of iterations N, we get the result.
- As d is the vectorized cost matrix of C, we may reformulate the complexity results of Theorem with respect to C as $O(mn^2 \sqrt{n \ln n} ||C||_{\infty} \varepsilon^{-1})$.

Algorithm 1

Algorithm 1 Mirror Prox for Wasserstein Barycenters

Input: measures $q_1, ..., q_m$, linearized cost matrix d, incidence matrix A, step η , starting points $p^1 = \frac{1}{n} \mathbf{1}_n$, $x_1^1 = ... = x_m^1 = \frac{1}{n^2} \mathbf{1}_{n^2}, y_1^1 = ... = y_m^1 = \mathbf{0}_{2n}$

- 1: $\alpha = 2||d||_{\infty} \eta n$, $\beta = 6||d||_{\infty} \eta \ln n$, $\gamma = 3m\eta \ln n$.
- 2: for $k = 1, 2, \dots, N 1$ do
 - 3: for $i = 1, 2, \dots, m \text{ do}$
- 4: $v_i^{k+1} = y_i^k + \alpha \left(Ax_i^k \begin{pmatrix} p^k \\ q_i \end{pmatrix}\right)$,
 - Project v_i^{k+1} onto $[-1, 1]^{2n}$

$$u_i^{k+1} = \frac{x_i^k \odot \exp\left\{-\gamma \left(d + 2\|d\|_{\infty} A^{\top} y_i^k\right)\right\}}{\sum\limits_{l=1}^{n^2} [x_i^k]_l \exp\left\{-\gamma \left([d]_l + 2\|d\|_{\infty} [A^{\top} y_i^k]_l\right)\right\}}$$

6: end for

5:

7:

$$s^{k+1} = \frac{p^k \odot \exp\left\{\beta \sum_{i=1}^m [y_i^k]_{1...n}\right\}}{\sum_{l=1}^n [p^k]_l \exp\left\{\beta \sum_{i=1}^m [y_i^k]_l\right\}}$$

- 8: for $i = 1, 2, \dots, m$ do
- 9: $y_i^{k+1} = y_i^k + \alpha \left(A u_i^{k+1} {s^{k+1} \choose q_i} \right)$
 - Project y_i^{k+1} onto $[-1, 1]^{2n}$

$$x_i^{k+1} = \frac{x_i^k \odot \exp\left\{-\gamma \left(d + 2\|d\|_{\infty} A^{\top} v_i^{k+1}\right)\right\}}{\sum\limits_{l = 1}^{n^2} [x_i^k]_l \exp\left\{-\gamma \left([d]_l + 2\|d\|_{\infty} [A^{\top} v_i^{k+1}]_l\right)\right\}}$$

- 11: end for
- 12:

10:

$$p^{k+1} = \frac{p^k \odot \exp \left\{\beta \sum_{i=1}^m [v_i^{k+1}]_{1...n}\right\}}{\sum_{l=1}^n [p^k]_l \exp \left\{\beta \sum_{i=1}^m [v_i^{k+1}]_l\right\}}$$

- 13: end for
- Output: $\widetilde{\mathbf{u}} = \sum_{k=1}^{N} \begin{pmatrix} u_1^k \\ \vdots \\ u_m^k \\ o_k^k \end{pmatrix}, \widetilde{\mathbf{v}} = \sum_{k=1}^{N} \begin{pmatrix} v_1^k \\ \vdots \\ v_m^k \end{pmatrix}$

- Introduction
- 2 Problem Statement
- 3 Algorithm 1: Mirror Prox for Wasserstein Barycente
- 4 Experiments

MNIST and notMNIST

• The result of IBP with regularizing parameter γ is numberically unstable, as γ must be selected proportional to ε .

Figure 1: WBs of hand-written digit '5' (first row) and of letters 'A' (second row) computed by Algorithm 1 (Mirror Prox for WB), Algorithm 4 (Dual Extrapolation for WB) and the IBP with small values of the regularizing parameter.

Gaussian measures

- To compare the convergence of the proposed algorithms, we randomly generated 10 Gaussian measures with equally spaced support of 100 points in [-10,10], mean from [-5,5] and variance from [0.8,1.8].
- Figure 2 presents the convergence with respect to the function optimality gap $\frac{1}{m} \sum_{i=1}^{m} \mathcal{W}(p, q_i) \frac{1}{m} \sum_{i=1}^{m} \mathcal{W}(p^*, q_i)$. Here p^* is the true bartcenter.

Figure 2: Convergence of Algorithm 1 (Mirror Prox for WB) and Algorithm 4 (Dual Extrapolation for WB) to the true barycenter of Gaussian measures w.r.t the function optimality gap $\frac{1}{m} \sum_{i=1}^{m} \mathcal{W}(p, q_i) - \frac{1}{m} \sum_{i=1}^{m} \mathcal{W}(p^*, q_i)$. Here p^* is the true barycenter.

Gaussian measures

- Algorithm 4 has better complexity bound, Algorithm 1 has better convergence in practice. The slope ration -1 for the convergence of Algorithm 1 in log-scale perfectly fits the theoretical dependence of working time (iteration number N) on the desired accuracy ε ($N \sim \varepsilon^{-1}$ from Theorem).
- For Algorithm 4, this slope ratio −1 is achieved only after a number of iterations but this is due to the need of solving practically computationally costly subproblems.

Figure 2: Convergence of Algorithm 1 (Mirror Prox for WB) and Algorithm 4 (Dual Extrapolation for WB) to the true barycenter of Gaussian measures w.r.t the function optimality gap $\frac{1}{m}\sum_{i=1}^{m} \mathcal{W}(p,q_i) - \frac{1}{m}\sum_{i=1}^{m} \mathcal{W}(p^*,q_i)$. Here p^* is the true barycenter.

Gaussian measures

• Figure 3 illustrates the convergence of the barycenters obtained by Algorithms 1 and 4 to the true barycenter.

Figure 3: Convergence of the barycenters obtained by Algorithm 1 (Mirror Prox for WB) and Algorithm 4 (Dual Extrapolation for WB) to the true barycenter of Gaussian measures.

• Figure 4 illustrates better approximations of the true Gaussian barycenter by Algorithms 1 and 4 compared to the *gamma*-regularized IBP barycenter.

Figure 4: Convergence of the barycenters obtained by Algorithm 1 (Mirror Prox for WB), Algorithm 4 (Dual Extrapolation for WB), and the IBP to the true barycenter of Gaussian measures.