■ التمرين رقم 04:

. (O,\vec{u},\vec{v}) المستوى العقدي (P) منسوب إلى معلم متعامد و ممنظم (P) المستوى العقدي العقدي

: نعتبر التحويل $M^{'}(z^{'})$ الذي يربط كل نقطة $M\left(z\right)$ بالنقطة و نكل $m\in\mathbb{C}$ بكن :

$$z' = (im - 1)z + m$$

 f_m نکی یکون التحویل m ازاحة .

. (مركزه فيم m التحي يكون لأجلها التحويل f_m تحاكيا (محددا نسبته و لحق مركزه) .

: کان التحویل f_m یکون دورانا اِذا و فقط اِذا کان : -2

.
$$heta\in\mathbb{R}-\left\{-rac{\pi}{2}+2k\pi/k\in\mathbb{Z}
ight\}$$
 حيث $m=e^{i heta}-i$

ب- نفترض أن : $\theta \equiv 0$ ، اعط العناصر المميزة للدورات f_m ، ثم أكتب التمثيل العقدي للدورات العكسى . f_m^{-1}

. $z^{'}=iz+1-i$: نظم ، $z\in\mathbb{C}$ نکل -(3)

a=-1أ- حدد على الشكل الجبري الجذور المكعبة ل

$$(z')^3 + 1 = 0 \Leftrightarrow z^3 - 3(1+i)z^2 + 6iz + 2 - i = 0$$
 ب بين آن

. (E):
$$z^3 - 3(1+i)z^2 + 6iz + 2 - i = 0$$
 : المعادنة : \mathbb{C} المعادنة : \mathbb{C}

$$(P)$$
 في المستوى العقدي (P) في المستوى العقدي (P) في المستوى العقدي العادلة (P)

بين أن مجموعة النقط M(z) من M(z) بحيث : Iz+(1-i) هي الدائرة المحيطة بالمثلث Φ

. ثم أنشميء فحي المستوى $({
m P})$ المثلث ABC و الدائرة المحيطة به ABC

■ التمرين رقم 05:

: نكل \mathbb{R}_n ، و f_n الدالة المعرفة على الما يلح $n\in\mathbb{N}^*$ بما يلح $r\in\mathbb{N}$

$$(\forall x \in \mathbb{R}); f_n(x) = n(2-x)e^x - 1$$

. $\lim_{x \to -\infty} f_n(x)$ ا بانهایتین بانهایتین بانهایتین انهایتین انهایتین انهایتین انهایتین انهایتین بازی

. f_n ضع جدول تغیرات الداله -

: ڪيث \mathbb{R} غين اُن المعادلة : (E_n) : $f_n(x)=0$ غيث ((E_n) : آ- بين اُن المعادلة : $\alpha_n < 1 < \beta_n < 2$

. \mathbb{R} على على المارة الدالة المالة f_n على -- ضع جدولا تحدد فيه إشارة الدالة

. \mathbb{R} علی $f_{n+1}(x)-f_n(x)$ علی اشارهٔ روس اشارهٔ روس اشارهٔ المارهٔ ال

 $(eta_n)_{n\in\mathbb{N}^*}$ ب المتنتج رقابة كل من المتناليتين بالمتناليتين و المتنتج رقابة كل من المتناليتين

Cours du soir	Session intensive	Devoir Blanc
Secret of success	Avril 2012	2 ^{EM} Bac Sc Mat

■ التمرين رقم 01:

.
$$u_n = \underbrace{11...1}_{s \rightarrow n}$$
: نضع ، $n \in \mathbb{N}^*$ نکل \Leftarrow

.
$$(\forall n \in \mathbb{N}^*)$$
; $9u_n = 10^n - 1$: حقق آن -1

.
$$(\forall n \in \mathbb{N}^*); u_n \equiv 0[7] \Leftrightarrow n \equiv 0[6]$$
 : ثبت آن -(2

. 63 معنى على صحيح طبيعي
$$u_n$$
 يقبل القسمة على u_n

■ ائتمرین رقم 02:

$$p \neq 1$$
: يكن p من \mathbb{Z} بيكن p

.
$$S_{\scriptscriptstyle n}=1+p+p^2+\ldots+p^{\scriptscriptstyle n-1}$$
 : نضع ، $n\in \mathbb{N}^*$ د نکل

.
$$(\forall n \in \mathbb{N}^*); S_n = \frac{1-p^n}{1-p}$$
 : عُقق ان – أ-ر1

.
$$(\forall n \in \mathbb{N}^*)$$
; $p^n \wedge (1-p) = 1$: ب- استنتج أ

.
$$(\mathbf{E}_n)$$
: $p^nx+ig(1-pig)y=p$: نعتبر فی \mathbb{Z}^2 المعادلة (2

أ- تحقق أن مجموعة حلول المعادلة
$$(E_n)$$
 غير فارغة .

$$\left(\mathbb{E}_n
ight)$$
 بــ حل فــي \mathbb{Z}^2 المعادلة

 (\mathbf{F}_n) : $10^n x - 2^{n+2} y = 10 \times 2^{n-1}$: عادلة علموعة حلول المعادلة : -7

■ التمرین رقم 03:

$$I_n = \int_0^1 (1-x^2)^n dx$$
: نضع $n \in \mathbb{N}$ نکن \leftarrow

. أ- بين أن المتنائية
$$\left(I_n\right)_{n\in\mathbb{N}}$$
 تناقصية $-(1$

.
$$0 \leq L \leq 1$$
ب استنتج أن متقاربة نحو عدد حقيقي L متقاربة نحو عدد معتقم المتاتج أن متقاربة عدد متقاربة عدد متقاربة المتاتج أن الم

.
$$a \in]0;1[$$
 يکن –ر2

.
$$(\forall n \in \mathbb{N}^*); I_n \leq a + (1-a)(1-a^2)^n$$
: ناب آن

.
$$L$$
 قيمة ، L أن L قيمة .

$$(\forall n \in \mathbb{N}); I_{n+1} = \frac{2n+2}{2n+3} \times I_n$$
: يين أن – أ-ر3

.
$$(\forall n \in \mathbb{N}); I_n = \frac{2^{2n} \times (n!)^2}{(2n+1)!} : نام استنتج الله المالية المالية$$

.
$$(\forall n \in \mathbb{N}^*)$$
; $2 - \beta_n = \frac{1}{n}e^{-\beta_n}$: أ- نحقق أن -أ-(3

. بين أن المتتالية $\left(eta_n
ight)_{n\in\mathbb{N}^*}$ متقاربة و أحسب نهايتها

). بين أن المتنانية $(lpha_n)_{n\in\mathbb{N}^*}$ غير مصغورة ، ثم إستنتج نهايتها (معللا جوابك) . (4

■ ائتمرین رقم 06:

 \mathbb{R} نتكن F الدالة المعرفة علم \mathbb{R} بما يلم \Leftrightarrow

$$\left(\forall x \in \mathbb{R}^*\right); F\left(x\right) = \int_x^{3x} \frac{\cos t}{t} dt, F\left(0\right) = \ln 3$$

F أدرس زوجية الدالة F .

.
$$F\left(\frac{\pi}{2}\right)$$
 و $F\left(\frac{\pi}{6}\right)$ عداد اشارة كل من -(2

.
$$(\forall x \in \mathbb{R}^{*+}); F(x) = \ln 3 - 2 \times \int_{x}^{3x} \frac{\sin^{2}\left(\frac{t}{2}\right)}{t} dt$$
: بين آن.

.
$$(\forall x \in \mathbb{R}^{+}); -2x^2 \le F(x) - \ln 3 \le 0$$
: ب- استنتج آن

ج- أدرس إتصال و قابلية إشتقاق الدالة F على اليمين في الصفر .

4)- أ- باستعمال مكاملة بالأجزاء ، بين أن:

$$\left(\forall x \in \mathbb{R}^{++}\right); F\left(x\right) = \frac{\sin(3x) - \sin x}{3x} + \int_{x}^{3x} \frac{\sin(t)}{t^{2}} dt$$

$$\lim_{x \to +\infty} F(x)$$
 . ثم أحسب $\left(\forall x \in \mathbb{R}^{*+} \right) ; \left| F(x) \right| \leq \frac{2}{x}$. ب- استنتج أن

 \mathbb{R}^{*+} ا. و أن F . و أن \mathbb{R}^{*+} . و أن F

$$(\forall x \in \mathbb{R}^{+}); F'(x) = \frac{\cos(3x) - \cos x}{x}$$

ب- بين أن المعادنة : F(x)=0 تقبل حلا وحيدا في المجال (E):F(x)=0

🖨 تمرين إضافي :

. نيكن $a \in \mathbb{N}^*$ غير أولى . عندن $a \in \mathbb{N}^*$

. (مکنك استعمال مبرهنة فیرما)
$$\Big(\exists \big(m,n\big)\in \left(\mathbb{N}^*\right)^2\Big); 4a^2+1=\big(4m+1\big) imes (4n+1)$$
 بین آنه :

Bon courage et bonne chance