Алгоритмы рисования линейных диаграмм

Сергей Евтушенко, НТУУ "КПИ"

Формальный анализ понятий

- Логико-алгебраический метод интеллектуального анализа данных
- Основа возможность однозначного построения по произвольному бинарному отношению полной решетки
- При анализе не происходит потери информации
- Теоретическая база нескольких методов интеллектуального анализа данных

Формальный контекст и линейная диаграмма

	a	b	c	d	e
1	×				
2	×	×		×	×
3	×	×	×		×
4	×	×	×	×	

Общие требования, предъявляемые при рисовании графов

- две вершины не должны быть расположены в одной точке;
- количество пересечений между ребрами должно быть как можно меньше;
- ребро не должны пересекать вершину, не являющуюся ее концом

Требования, специфические для линейных диаграмм

- Все подпонятия какого-либо понятия должны находиться ниже его;
- ребра изображаются в виде прямых линий;
- наглядное представление структуры решетки;
- использование как можно меньшего количества различных направлений;
- максимизация количества параллельных линий.

Классические методы рисования ориентированных графов

- 1. преобразование графа в двухслойный
- 2. минимизация пересечений между соседними слоями при помощи некоторой эвристики;
- 3. расчет положений вершин;
- 4. непосредственное рисование графа.

Задача минимизации пересечений уже для двухслойного графа является NP - трудной

Методы взаимодействия сил (Force-Directed Layout)

- Задается система сил притяжения и отталкивания, действующих между вершинами и ребрами графа
- Находится положение, в котором система имеет минимум энергии (локальный)
- Можно задавать различные системы сил

Эвристика параллелограмма

Каждая четверка элементов а, b, c, d, таких, что a < b & a < c & b < d & c < d изображается как параллелограмм.

Аддитивные линейные диаграммы

Вводятся

- множество представления R
- rep: $L \to Pow(R)$, $x \le y \Rightarrow rep(x) \subseteq rep(y)$ $\forall r \in R \Rightarrow vec_r$

Позиция элемента решетки

$$pos (x) = n + \sum_{r \in rep(x)} vec_r$$

Метод разложения на цепи

- Решетка представляется как произведение цепей
- Для выделения цепей рассчитывается граф отношения порядка между «несводимыми» атрибутами. $m_1 < m_2$, если $\{m_1\}$ ' $\subset \{m_2\}$ '
- Граф отношения порядка является двудольным. В нем находится максимальное паросочетание, из которого и определяются цепи

Сравниваемые алгоритмы

- Проведено сравнение следующих алгоритмов:
- 1. Рисования иерархических графов с минимизацией пересечений
- 2. Разложения решетки на цепи
- 3. Двух методов взаимодействия сил с использования разных моделей сил Для сравнения использовались контексты, которые приводились в публикациях по формальному анализу понятий

B4

FD3

ID4

Отношение студента к предметам

Цвета

Свойства конечных решеток

Треугольники

Репертуарная решетка оценки больным своих знакомых (1)

Репертуарная решетка оценки больным своих знакомых (2)

Метод минимизации пересечений

Достоинства:

высокая наглядность изображения

Недостатки:

не выявляет симметричные части невысокое быстродействие

Метод разложения на цепи

Достоинства

- Высокое быстродействие
- Максимизация параллельности линий

Недостатки

- Плохо работает для недистрибутивных решеток
- Выбор стандартных направляющих векторов не гарантирует отсутствия перекрытия разных вершин
- Проблема «отделенного нулевого элемента»

Методы взаимодействия сил

Достоинства

- Выявляют симметрии
- Работают в 3-х мерном пространстве

Недостатки

- Низкое быстродействие
- Не всегда сходяться к оптимальному решению
- Не обеспечивают максимизацию параллельности линий