billweasley20092@gmail.com

Github: https://github.com/billweasley

Linkedin: https://www.linkedin.com/in/horace-haoxuan-wang

Personal Website: http://shellcottage.me

Work Experience

- 2022.03 Now Machine Learning Engineer, ASR and Language Tech @ Zoom
 - Led experiments on integrating LLMs with ASR models in multimodal settings, significantly improving consistency in ASR decoding. Achieved
 better orthographic WER and rare word WER compared to the production model.
 - Developed LLM-based transcription post-processing pipelines, leveraging N-best lists from Zipformer-Transducer models and customized
 prompts with biasing word lists sent to Claude 3.5 Sonnet. Offline experiments on a medical dataset reduced Rare Word WER from 37.8% to
 17.5%.
 - Designed LLM-driven data augmentation workflows, utilizing Mistral MoE 8x7B to generate diverse dialogue scenarios and numerical reading formats. Resulting datasets improved ASR digit recognition performance (Absolute digit WER reduced by ~0.4%).
 - Built a LAS-S2S Danish ASR model from scratch, achieving an initial WER of ~8% and punctuation/case F1 score of ~70%, outperforming MS Teams' benchmarks after data augmentation.
 - Independently optimized Whisper inference pipelines, integrating in-house VAD models and WhisperX to deliver superior WER and throughput performance compared to OpenAl's implementation.
 - Implemented multi-head attention-based time alignment in LAS/Seq2Seq models to deliver precise word-level timestamps for multilingual transcription. (Patent filed)
 - Maintained and optimized ASR inference pipelines, resolving production-level issues and ensuring smooth operations.
- - Developed an entity-matching pipeline using active learning techniques. Constructed small, externally sourced datasets with fine-tuned BERT models, achieving a 94% F1 score on noisy test datasets. Deployed inference on a distributed DJL-based CPU cluster, processing 6 million pairwise samples in under 1 hour.
 - Applied Informer models for time-series transaction forecasting, enabling accurate predictions of transaction volume and counterfactual financial loss assessments during system downtimes.

Education

2018 - 2019	MSc Web Science and Big Data Analytics @ University College London, Distinction
2016 - 2018	BSc Internet Computing @ University of Liverpool *, First class
2014 - 2016	BSc Information and Computing Science @ Xi'an Jiaotong-Liverpool University *

^{*}Note: 2+2 pathway program (first 2 years in Suzhou, China, final 2 years in Liverpool, UK), dual degree.

Personal Project

2024.06 - Fine-tuning and evaluation of medical record data on Large Language Models (LLMs)

Fine-tuning LLaMA3-instruct, LLaMA3 Chinese-chat, and Qwen2 models on large-scale Chinese medical datasets for tasks such as department classification, medical record summarization, and discharge report generation. It was planned to open-sourcing datasets. Achieved notable improvements:

- Consultation/Discharge Summarization: BLEU (0%-30% → 49%-55%), ROUGE-L (20%-30% → 60%-64%)
- Department Classification: Accuracy (0%-36% → 69%-71%)

Technical Article

"Accelerating Deep Learning on the JVM with Apache Spark and NVIDIA GPUs"

Author: Haoxuan Wang, Qin Lan [AWS], Carol McDonald [Nvidia]; Link: https://www.infoq.com/articles/deep-learning-apache-spark-nvidia-gpu/? itm_source=articles_about_ai-ml-data-eng&itm_medium=link&itm_campaign=ai-ml-data-eng

Early Stage Project

• 2019.06 - 2019.09 Project Internship (Master Degree Thesis) @ Astroscreen

Worked on social media language source identification (e.g., tweets and gabs).

- Implemented a crawler for Gab.com to collect linguistic data.
- Processed data using Regular Expressions and fine-tuned BERT and XLNet models for classification tasks.
- Applied t-SNE visualization and "leave-one-hashtag-out" cross-validation to prevent data leakage.
- · Achieved 86% F1 score on a hashtag-balanced test dataset, demonstrating the importance of avoiding biased splits during training.
- 2019.02 2019.03 Integrated BERT and Embeddings in CommonsenseQA Challenge

Fine-tuned Google BERT for CommonsenseQA Challenge 1.0, integrating ConceptNet Numberbatch and ELMo embeddings. Achieved 68.79% accuracy on validation datasets (BERT only: 67.47%).