Optimization Assignment 1

Kim Paolo Laberinto 2021-02-xx

Contents

1	Q1. 1.1 1.2	Example 1D Optimization Trajectories
2	Q2. 2.1 2.2 2.3	Example Optimization Trajectories
3	Q3. 3.1 3.2 3.3	Gradient Descent
4	Q4. 4.1 4.2 4.3	(Graduate Student)4Proving B_1 and B_1 are both a basis of V 44.1.1 Proof: B_1 is Linearly Independent44.1.2 Proof: B_1 spans V 44.1.3 Proof: B_2 is Linearly Independent44.1.4 Proof: B_2 spans V 4Transformation between B_1 and B_2 4D Derivative Operator44.3.1 Proof: D is linear44.3.2 Matrix Representation of D in the bases B_1 and B_2
5	Q5. 5.1 5.2 5.3 5.4	(Graduate Student) 2 x in full \mathbb{R}^3 standard basis 3 Coordinates of x in B_X 4 Coordinates of y in B_Y using L ($c_y = Lc_x$) 4 y in full \mathbb{R}^4 standard basis 4
6	Q6. 6.1 6.2 6.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
A	A.1 A.2	All Optimization Algorithms (A1Module.jl)

- 1 Q1.
- 1.1 Example 1D Optimization Trajectories
- 1.2 Comparision between Swann's and Powell's Methods
- 2 Q2.
- 2.1 Example Optimization Trajectories
- 2.2 Example 1D Optimizations in Trajectory
- 2.3 (EXTRA) Hooke-Jeeves Result on Rosenbrock
- 3 Q3.
- 3.1 Gradient Descent
- 3.1.1 Objective Function Definition and Gradient Derivation

$$L = \sum_{i} (y_{\text{data}} - y_{\text{model}})^2 \tag{1}$$

$$L = \sum_{i} (y_i - (x_1 + x_2 e^{x_4 t_i} + x_3 e^{x_5 t_i}))^2$$
 (2)

We can now derive the gradient.

$$\nabla L = \nabla \left(\sum_{i} (y_i - (x_1 + x_2 e^{x_4 t_i} + x_3 e^{x_5 t_i}))^2 \right)$$
 (3)

$$\nabla L = \sum_{i} \left(\nabla \left((y_i - (x_1 + x_2 e^{x_4 t_i} + x_3 e^{x_5 t_i}))^2 \right) \right)$$
 (4)

$$\nabla L = \sum_{i} \left(2(y_i - (x_1 + x_2 e^{x_4 t_i} + x_3 e^{x_5 t_i})) \cdot \nabla (y_i - x_1 + x_2 e^{x_4 t_i} + x_3 e^{x_5 t_i}) \right)$$
(5)

$$\nabla L = \sum_{i} \left(2(y_i - (x_1 + x_2 e^{x_4 t_i} + x_3 e^{x_5 t_i})) \cdot \nabla (x_1 + x_2 e^{x_4 t_i} + x_3 e^{x_5 t_i}) \right)$$
 (6)

$$\nabla(x_1 + x_2 e^{x_4 t_i} + x_3 e^{x_5 t_i}) = \begin{bmatrix} 1\\ e^{x_4 t_i}\\ e^{x_5 t_i}\\ x_2 t_i e^{x_4 t_i}\\ x_3 t_i e^{x_5 t_i} \end{bmatrix}$$
(7)

3.2 Hooke-Jeeves

3.3 (EXTRA) Automatic Differentiation Gradient Descent

4 Q4. (Graduate Student)

Let V be the vector space of polynomial functions from $\mathbb{R} \to \mathbb{R}$ which have degree less than or equal to 2.

That is, for all $a, b, c \in \mathbb{R}$ the following polynomial p(x) is in V

$$p(x) = a + bx + cx^2$$

4.1 Proving B_1 and B_1 are both a basis of V

4.1.1 Proof: B_1 is Linearly Independent

- Implication of only way to get 0 vector.

4.1.2 Proof: B_1 spans V

- Show all $v \in V$ can be represented in basis

4.1.3 Proof: B_2 is Linearly Independent

4.1.4 Proof: B_2 spans V

4.2 Transformation between B_1 and B_2

4.3 D Derivative Operator

4.3.1 Proof: D is linear

4.3.2 Matrix Representation of D in the bases B_1 and B_2

5 Q5. (Graduate Student)

5.1 x in full \mathbb{R}^3 standard basis

5.2 Coordinates of x in B_X

5.3 Coordinates of y in B_Y using L ($c_y = Lc_x$)

5.4 y in full \mathbb{R}^4 standard basis

6 Q6. (Graduate Student)

6.1 Df derivation

Let $f: \mathbb{R}^4 \to \mathbb{R}$ be defined as $f(x) = ||Ax - b|| + \lambda ||Cx|| + \gamma ||Eb||$ where $A, C, E \in \mathbb{R}^{4 \times 4}, x, b \in \mathbb{R}^4$ and $\lambda, \gamma \in \mathbb{R}$.

Let D denote the differential operator.

$$\begin{split} Df(x) &= D\left(\|Ax - b\| + \lambda \|Cx\| + \gamma \|Eb\|\right) \\ &= D\left(\|Ax - b\|\right) + \lambda D\left(\|Cx\|\right) + \gamma D\left(\|Eb\|\right) \quad \text{[using linearity of D]} \\ &= D\left(\|Ax - b\|\right) + \lambda D\left(\|Cx\|\right) + 0 \\ &= D\left(\|Ax - b\|\right) + \lambda D\left(\|Cx\|\right) \\ &= \frac{(Ax - b)^T A}{\|Ax - b\|} + \lambda \frac{(Cx)^T C}{\|Cx\|} \quad \text{[using derivations from next sections]} \end{split}$$

The full derivation of $D\left(\|Ax-b\|\right)$ and $D\left(\|Cx\|\right)$ can be found in the following sections.

6.2 $D(\|Cx\|)$ Derivation

$$D(\|Cx\|) = D\left(\sqrt{(Cx)^T(Cx)}\right)$$

$$= D\left(\left((Cx)^T(Cx)\right)^{\frac{1}{2}}\right)$$

$$= \frac{1}{2}\left((Cx)^T(Cx)\right)^{\frac{-1}{2}}D\left((Cx)^T(Cx)\right) \quad \text{[using Chain Rule]}$$

$$= \frac{1}{2\sqrt{(Cx)^T(Cx)}}D\left((Cx)^T(Cx)\right)$$

$$= \frac{1}{2\|Cx\|}D\left((Cx)^T(Cx)\right)$$

$$= \frac{\left((Cx)^TD(Cx)\right) + \left((Cx)^TD(Cx)\right)}{2\|Cx\|} \quad \text{[using Product Rule]}$$

$$= \frac{2\left((Cx)^TD(Cx)\right)}{2\|Cx\|}$$

$$= \frac{2\left((Cx)^TC(Cx)\right)}{2\|Cx\|}$$

$$= \frac{(Cx)^TC}{\|Cx\|}$$

6.3 $D(\|Ax - b\|)$ **Derivation**

$$\begin{split} D\left(\|Ax - b\|\right) &= D\left(\sqrt{(Ax - b)^T (Ax - b)}\right) \\ &= D\left(\left((Ax - b)^T (Ax - b)\right)^{\frac{1}{2}}\right) \\ &= \frac{1}{2}\left((Ax - b)^T (Ax - b)\right)^{\frac{-1}{2}} D\left((Ax - b)^T (Ax - b)\right) \quad \text{[using Chain Rule]} \\ &= \frac{1}{2\sqrt{(Ax - b)^T (Ax - b)}} D\left((Ax - b)^T (Ax - b)\right) \\ &= \frac{1}{2\|Ax - b\|} D\left((Ax - b)^T (Ax - b)\right) \\ &= \frac{\left((Ax - b)^T D (Ax - b)\right) + \left((Ax - b)^T D (Ax - b)\right)}{2\|Ax - b\|} \quad \text{[using Product Rule]} \\ &= \frac{2(Ax - b)^T D (Ax - b)}{2\|Ax - b\|} \\ &= \frac{2(Ax - b)^T A}{2\|Ax - b\|} \\ &= \frac{(Ax - b)^T A}{\|Ax - b\|} \end{split}$$

A Source Code

- A.1 All Optimization Algorithms (A1Module.jl)
- A.2 Plot Generation Script (makeplots.jl)
- A.3 (EXTRA) Automatic Differentiation for Gradient