Moja pierwsza prezentacja w Beamer

Aleksandra Ostrowska

2024 rok

Będzie to prezentacja o matematyce dyskretnej

Bedzie to bardzo interesujące, zapraszam do lektury.

Suma i lloczyn

Sprawdzić prawdziwość poniższych równać dla podanych wartości zmiennych, obliczając wartość lewej i prawej strony.

a)
$$\sum_{i=1}^{n} i = (1+n)n/2$$
 dla n=3 i n=6 $\sum_{i=1}^{3} i = 1+2+3=6$, $(1+3)3/2=12/2=6$, prawdziwe $\sum_{i=1}^{6} i = 6+4+5+6=21$, $(1+6)6/2=42/2=21$, prawdziwe

Suma i lloczyn

Sprawdzić prawdziwość poniższych równać dla podanych wartości zmiennych, obliczając wartość lewej i prawej strony.

- a) $\sum_{i=1}^{n} i = (1+n)n/2$ dla n=3 i n=6 $\sum_{i=1}^{3} i = 1+2+3=6$, (1+3)3/2=12/2=6, prawdziwe $\sum_{i=1}^{6} i = 6+4+5+6=21$, (1+6)6/2=42/2=21, prawdziwe
- b) $\prod_{1 < i < 5} i^2 = (5!)^2$ $1^2 * 2^2 * 3^2 * 4^2 * 5^2 = (1 * 2 * 3 * 4 * 5)^2 = (5!)^2$, prawdziwe [1]

Zagnieżdżona suma

a)
$$\sum_{i=1}^{5} \sum_{j=1}^{5} i + j = \sum_{i=1}^{5} (5i + 1 + 2 + 3 + 4 + 5) = \sum_{i=1}^{5} (5i + 15) = \sum_{i=1}^{5} 5(i + 3) = 5(5*3+1+2+3+4+5) = 5*(15+15) = 5*30 = 150$$

Zagnieżdżona suma

a)
$$\sum_{i=1}^{5} \sum_{j=1}^{5} i + j = \sum_{i=1}^{5} (5i + 1 + 2 + 3 + 4 + 5) = \sum_{i=1}^{5} (5i + 15) = \sum_{i=1}^{5} 5(i + 3) = 5(5 * 3 + 1 + 2 + 3 + 4 + 5) = 5 * (15 + 15) = 5 * 30 = 150$$

b) $\sum_{i=1}^{5} \sum_{i=1}^{5} \sum_{i=1}^{5$

b)
$$\sum_{j=1}^{5} \sum_{i=1}^{5} i + j = \sum_{i=1}^{5} \sum_{j=1}^{5} i + j = 150$$

Zagnieżdżony iloczyn w sumie i na odwrót

a)
$$\sum_{i=1}^{3} \prod_{j=1}^{3} j^{i} = \sum_{i=1}^{3} (1 * 2^{i} * 3^{i}) = 6 + 6^{2} + 6^{3} = 6 + 36 + 216 = 258$$

Zagnieżdżony iloczyn w sumie i na odwrót

a)
$$\sum_{i=1}^{3} \prod_{j=1}^{3} j^{i} = \sum_{i=1}^{3} (1 * 2^{i} * 3^{i}) = 6 + 6^{2} + 6^{3} = 6 + 36 + 216 = 258$$

b)
$$\prod_{j=1}^{3} \sum_{i=1}^{3} j^{i} = \prod_{i=1}^{3} (j+j^{2}+j^{3}) = \prod_{i=1}^{3} j(1+j+j^{2}) = (1+1+1)2(1+2+4)3(1+3+9) = 3*2*3*7*13 = 1683$$

Działania na zbiorach

Różnica symetryczna

Dla A = $\{1,2,3\}$ i B = $\{2,4\}$ A \oplus B = $\{1,3,4\}$

Symmetric difference of 3 sets

Różnica symetryczna 3 zbiorów

Dla A =
$$\{1,2,3,4,5\}$$
, B = $\{1,3,5,7\}$ i C= $\{4,5,6,7,8\}$
A \oplus B \oplus C = $\{5,2,8\}$

[3

Dopełnienie zbioru, Uniwersum

The complement of set A, denoted by A', is the set of all elements in the Universal Set that are not in A.

Complement of A

Complement of B

[4]

Dla A =
$$\{1,2,3\}$$
 i U = $\{1,2,3,4,5,6,7\}$
A'= $\{4,5,6,7\}$

Dopełnienie zbioru, iloczyn zbiorów (osobno)

Dla A =
$$\{1,2,3,4,5\}$$
, B = $\{1,3,5,7\}$ i U = N
 $A' \cap B' = N - \{1,2,3,4,5,7\}$

Dopełnienie zbioru, iloczyn zbiorów (razem)

Dla A =
$$\{1,2,3,4,5\}$$
, B = $\{1,3,5,7\}$ i U = N $(A \cap B)' = N - \{1,3,5\}$

Prawa De Morgana

Nazwa Prawa po angielsku	Expressed in Boolean algebra:
De Morgan's Law of Union	$(A \cup B)' = A' \cap B'$
De Morgan's Law of Intersection	$(A \cap B)' = A' \cup B'$

Prawa De Morgana

- Dyskretna Matematyka
- Różnica symetryczna warning
- Różnica 3 zbiorów
- 🔋 Dopełnienie zbioru Universum