

CS 590: Algorithms Sorting and Order Statistics II: Counting Sort / Radix Sort / Bucket Sort

Outline

- 5.1. Counting Sort
- 5.2. Radix Sort
- 5.3. Bucket Sort
- 5.4. Conclusion

- Counting sort: Non-comparison sorting algorithm.
- Assumption: The input array, A, has n-many integers, and they are from a set $\{0, 1, ..., k\}$.
- Input: A[1,...,n] where $A[j] \in \{0,...,k\}$ for j = 1,...,n.
- Suppose the array A values, n and k, are given parameters.
- Output: A sorted array B[1,...,n] has an already allocated parameter from an auxiliary storage C[0,...,k].

$$A = [2, 5, 3, 0, 2, 3, 0, 3]$$


```
Counting-Sort (A,B,n,k)
  create new array C[0,...,k]
2 for (0 \le i \le k) do
        C[i] = 0
  for (i <= j <= n) do
        C[A[j]] = C[A[j]] + 1
   for (1 <= i <= k) do
         C[i] = C[i] + C[i - 1]
8
   for (n >= j >= 1) do
9
         B[C[A[j]]] = A[j]
10
         C[A[j]] = C[A[j]] -1
```


- The counting sort is stable.
 - keys with the same value appear in the same order in the output as in the input.
- The last loop in the algorithm ensures this property.
- Insertion sort and merge sort are stable sorting algorithms.

Analysis:

- Running time $T(n) = \Theta(n+k)$.
- If k = n, the running time becomes $\Theta(n)$.

Is it practical?

- Not a good idea to use it to sort 32-bit or 16-bit values.
- Probably a good idea for an 8-bit or 4-bit value.
- It is strongly depends on the number of values n.

Memory consumption can be a problem.

- The auxiliary storage C necessary for goes from 0 to k.
- For the 32-bit integers, we need 16 GB of auxiliary storage.
- We need a 32-bit counter for each integer from 0 to k, $2^{32} 1$.
- \Rightarrow We will use counting sort within radix sort.

- 5.1. Counting Sort
- 5.2. Radix Sort
- 5.3. Bucket Sort
- 5.4. Conclusion

- It goes back to IBM and the census in early 1900.
- Assume the input is integers with multiple digits, e.g., 112, 241, etc.
- A random integer with d digits is generated. There are 9*10^(d-1) different ways.
- If an input is a string, then a n-length string will have 26ⁿ different ways to make.

Consider an array A=[326, 453, 608, 835, 751, 435, 704, 690].

Correctness:

- We use induction on the number of passes (loop variable j).
- Suppose that the digits 1,..., j-1 are sorted.
- Then, a stable sorting algorithm on digit j leaves the digits 1,..., j-1 sorted.
 - o If two digits on j are different, ordering by position j is correct.
 - o Positions 1,..., j-1 are irrelevant.
 - o If two digits in position j are equal, then the numbers are already in the right order (by inductive hypothesis).
 - o The stable sort on digit j leaves them in the right order.

Analysis:

- Assume that the counting sort is used as the intermediate sort.
- Running time $\Theta(n + k)$ per pass (digits in range 0, ..., k).
- The for-loop passes d many times.
- The total running time is $T(n) = \Theta(d(n + k))$.
 - If k = n, then $T(n) = \Theta(dn)$.

Break values into digits:

- Suppose we have n words with b bits per word.
- We break into r-bit digits, then the digits are $d = \left| \frac{b}{r} \right|$.
- We use counting sort with $k = 2^r 1$.
- Example: 32-bit words, 8-bit digits.
 - $b = 32, r = 8, d = 4, k = 2^8 1 = 255.$
- Running time: $\Theta\left(\frac{b}{r}(n+2^r)\right)$ for Radix sort.

How do we choose r?

- We have to balance $\frac{b}{r}$ and $n+2^r$.
- Choose $r \approx \lg n \Rightarrow \Theta\left(\frac{b}{\lg n}(n+n)\right) = \Theta\left(\frac{bn}{\lg n}\right)$ running time.
- Choose $r < \lg n$, then $\frac{b}{r} > \frac{b}{\lg n}$ and the term $n + 2^r$ does not improve.
- Choose $r > \lg n$, then the term $n + 2^r$ increases. For $r = 2 \lg n$ we get $2^r = 2^{2 \lg n} = \left(2^{\lg n}\right)^2 = n^2$.

Example: If we sort 2^{16} numbers of size 32-bit, we use $r = \lg 2^{16} = 16$ bits. We perform $\left[\frac{b}{r}\right] = 2$ passes.

How does radix sort compare to merge sort and quicksort?

- For 1 million ($\approx 2^{20}$) 32 bit integers.
- Radix sort performs $\left[\frac{32}{20}\right] = 2$ passes, whereas merge or quicksort perform $\lg n = 20$ passes.
- One radix sort is really 2 passes \Rightarrow one to take and one to move data.

How radix sort violates comparison sort rules?

- Using counting sort allows us to gain information without directly comparing 2 keys.
- Use the keys as array indices.

- 5.1. Counting Sort
- 5.2. Radix Sort
- 5.3. Bucket Sort
- 5.4. Conclusion

Bucket Sort

We assume the input is generated randomly and the elements are distributed uniformly over [0,1).

Idea:

- We divide the interval [0,1) into n equal-sized buckets.
- We distribute the *n* input values into the buckets.
- We sort each bucket afterward.
- And then, we go through the buckets in order, listing the elements in each one.

Bucket Sort


```
RADIX-SORT (A, d)
    create new array B[0,..,n-1] of lists
 2 for (0 \le i \le n-1) do
 3
         let B[i] be an empty list
 4
    for (1 <= i <= n) do
 5
         put (insert) A[i] into bucket
 6
    B[floor(nA[i])]
    for (0 \le i \le n-1) do
 8
         sort list B[i] with insertion sort
 9
    concatenate list B[0],...,B[n-1] together in order
 10
    return concatenated list
```

Bucket Sort

Correctness:

- We consider A[i], A[j] (assume $A[i] \le A[j]$).
- $[n \cdot A[i]] \le [n \cdot A[j]]$ follows.
- A[i] is placed in same or in bucket with lower index than A[j].
 - \circ same bucket \Rightarrow insertion sort fixes order.
 - \circ earlier bucket \Rightarrow concatenation of list ensures order.

Example:

A[1...10]=[0.89, 0.13, 0.45, 0.2, 0.54, 0.53, 0.7, 0.85, 0.51, 0.49]

- Initialize B[0...9]=0,...,0
- Put A[i] into the 10 buckets:

B[0]	B[1]	B[2]	B[4]	B[5]
0	0.13	0.2	0.45, 0.49	0.54, 0.53, 0.51
B[6]	B[7]	B[8]	B[9]	
0	0.7	0.89, 0.85	0	

• Sort each of the 10 buckets:

B[0]	B[1]	B[2]	B[4]	B[5]
0	0.13	0.2	0.45, 0.49	0.51, 0.53, 0.54
B[6]	B[7]	B[8]	B[9]	
0	0.7	0.85, 0.89		

• Concatenate all of the buckets: B[0...9]=0.13, 0.2, 0.45, 0.51, 0.53, 0.54, 0.7, 0.85, 0.89

Analysis:

- The algorithm relies on the fact that no bucket is getting too many values (uniformly distributed).
- The total running time (except the insertion sort) is $\Theta(n)$.
- Intuition: Each bucket gets a constant number of elements. Sorting then takes constant time for each bucket.
- Using our intuition, we then get O(n) sorting time for all buckets.
- On average, we have 1 element per bucket. \Rightarrow we expect each bucket to have a few elements.
- ⇒ We need to do a careful analysis.