Elementi di Bioinformatica

Gianluca Della Vedova

Univ. Milano-Bicocca http://gianluca.dellavedova.org

30 novembre 2018

Alberi evolutivi

Gianluca Della Vedova Elementi di Bioinformatica

- Change over generations
- Random mutations

Gianluca Della Vedova

Elementi di Bioinformatica

2/1

Actual Mutation

Gianluca Della Vedova Elementi di Bioinformatica

Gianluca Della Vedova

Elementi di Bioinformatica

Individual Evolution

• Cells accumulate mutations throughout the entire life

Gianluca Della Vedova Elementi di Bioinformatica

Character-based evolution

A possible rule

Each character is gained exactly once in the tree.

Gianluca Della Vedova Elementi di Bioinformatica

Perfect Phylogeny Problem

	A	J	Η	L	V
Scorpion	0	0	0	0	0
Lamprey	0	0	0	0	1
Tuna	0	1	0	0	1
Salamander	0	1	0	1	1
Turtle	1	1	0	1	1
Leopard	1	1	1	1	1

Problem

- Input: a binary matrix M
- Output: a tree explaining M, if it exists

Linear time algorithm (Gusfield, Networks 1991)

- Radix Sort the columns by decreasing number of 1s
- ② Build the tree, inserting the species one at a time

Characters and States

Change of state

- A character c is **gained** \Rightarrow the state of c changes from 0 to 1 in an edge
- A character c is **lost** \Rightarrow the state of c changes from 1 to 0 in an edge (backmutation)

Models of Evolution

Each character *c* is gained **exactly once** in the tree.

- Perfect Phylogeny: No backmutations
- ② Persistent Phylogeny: Each character can be lost at most once in the tree. 012 model
- 3 Dollo parsimony: Unlimited backmutations

Gianluca Della Vedova Elementi di Bioinformatica Gianluca Della Vedova Elementi di Bioinformatica 8/1

Tumors

- A tumor is a mixture of healthy and cancer cells
- A tumor is a mixture of cancer clones

Gianluca Della Vedova

Elementi di Bioinformatica

9/1

Tumor Evolution

Different clones make different fractions of the tumor

10/1

Gianluca Della Vedova

Elementi di Bioinformatica

Tumor Evolution

- A sample is a mixture of clones
- For each sample, we have the **frequency** of each mutation
- frequency matrix F

A 0

 S_1 0.2 0.6 0.6 0.4 0.2 0.0 S_2 0.0 0.4 1.0 0.0 0.0 0.4

Gianluca Della Vedova

Elementi di Bioinformatica

11/1

Tumor Evolution: Compute

Matrix B

representing tree T

Usage matrix *U*

Species 0 0.2 0.2 0 0.2 0.4 0 0.4 0.2

Gianluca Della Vedova

Elementi di Bioinformatica

12/1

Approcci basati su parsimonia.

- Piccola vs grande parsimonia
- Algoritmo di Fitch
- Algoritmo di Sankoff
- Confronto

Gianluca Della Vedova Elementi di Bioinformatica

Piccola parsimonia

Istanza

- Matrice binaria *M* con *n* specie e insieme di caratteri *C*
- Albero *T*, le cui foglie corrispondono alle specie di *M*
- Per ogni carattere $c \in C$, un costo w_c fra ogni coppia di stati

Soluzioni ammissibili

Per ogni carattere $c \in C$, una etichettatura λ_c che assegna ad ogni nodo uno degli stati possibili per C

Funzione obiettivo

 $\min \sum_{c \in C} \sum_{(x,y) \in E(T)} w_c(\lambda_c(x), \lambda_c(y)),$ dove E(T)è l'insieme di lati di

Gianluca Della Vedova Elementi di Bioinformatica

14/1

16/1

Algoritmo Sankoff

Osservazione

Ogni carattere può essere gestito separatamente

Programmazione dinamica

-
 \bullet M[x,z]: soluzione ottimale del sotto
albero di T che ha radice x, sotto la condizione che x abbia etichetta z
- M[x, z] = 0, se x è una foglia con etichetta z
- $M[x,z] = +\infty$, se x è una foglia con etichetta diversa da z
- $M[x, z] = \sum_{f \in F(x)} \min_s \{w(z, s) + M[f, s]\}, \text{ dove } F(x) \text{ è l'insieme}$ dei figli di x in T, se x è un nodo interno
- soluzione ottimale $\min_s \{M[r, s]\}$, dove r è la radice di T

Algoritmo Fitch

Solo per il caso non pesato, albero *T* binario

Algoritmo

- $S(x) = \lambda_c(x)$, se x è una foglia
- $S(x) = S(f_l) \cap S(f_r)$, dove f_l e f_r sono i figli di x in T, se $S(f_l) \cap S(f_r) \neq \emptyset$
- $S(x) = S(f_l) \cup S(f_r)$, dove f_l e f_r sono i figli di x in T, se $S(f_l)\cap S(f_r)=\emptyset$

Unificazione

B(x): insieme degli stati z tali che M[x,z] è minimo. B(x) = S(x)

Come estendere Fitch ad albero generico (sempre caso non pesato)?

Gianluca Della Vedova Elementi di Bioinformatica 15/1 Gianluca Della Vedova Elementi di Bioinformatica Gianluca Della Vedova Elementi di Bioinformatica

17/1

Gianluca Della Vedova Elementi di Bioinformatica

18/1

Alberi e distanze additive.

Proprietà

Sia T un albero binario senza radice e sia D la matrice delle distanze associata a T. Allora D soddisfa la condizione dei 4

Condizione dei 4 punti

Si consideri:

- ② D[v,x] + D[w,y]
- ③ D[v, y] + D[w, x]

Il massimo dei tre valori è ottenuto da esattamente due dei 3 casi

Gianluca Della Vedova Elementi di Bioinformatica

Algoritmo per matrice di distanze additive.

Gianluca Della Vedova Elementi di Bioinformatica

UPGMA

- Unweighted Pair Group with Arithmetic Mean
- ∘ $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$ ∘ All'inizio h = 0 per ogni cluster/specie
- Fondi i due cluster C_1 , C_2 con minimo $D(\cdot, cdot)$, ottenendo C
- \bullet Per ogni cluster $C^* \neq C, D(C,C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i,j)$
- $h(C) \leftarrow \frac{1}{2}D(C_1, C_2)$
- $h(C) h(C_1)$ etichetta (C, C_1) ; $h(C) h(C_2)$ etichetta (C, C_2)
- UPGMA produce ultrametrica

Gianluca Della Vedova Elementi di Bioinformatica

Neighbor Joining.

- $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$
- $u(C) \leftarrow \frac{1}{\text{num. cluster}-2} \sum_{C_3} D(C, C_3)$
- All'inizio h = 0 per ogni cluster/specie
- Fondi i due cluster C_1 , C_2 con minimo $D(C_1, C_2) - u(C_1) - u(C_2)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C,C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i,j)$
- $\frac{1}{2}(D(C_1, C_2) + u(C_1) u(C_2))$ etichetta (C, C_1)
- $\frac{1}{2}(D(C_1, C_2) + u(C_2) u(C_1))$ etichetta (C, C_2)

Gianluca Della Vedova Elementi di Bioinformatica

22/1

24/1

Modelli di evoluzione.

- Probabilità di transizione fra stati (A, C, G, T).
- o dipende dal tempo trascorso fra i due eventi
- tasso istantaneo di mutazione
- probabilità di mutazione in una generazione: somma su ogni
- J. Felsenstein. Theoretical Evolutionary Genetics

Modelli di evoluzione: Jukes-Cantor.

- ogni mutazione è equiprobabile
- 1 μ : nessuna mutazione
- $\mu/3$: mutazione

Gianluca Della Vedova Elementi di Bioinformatica

23/1

Gianluca Della Vedova Elementi di Bioinformatica

Modelli di evoluzione: Kimura 2 parametri

- Distinzione transizioni ($A \leftrightarrow G, C \leftrightarrow T$), transversioni
- 1μ : nessuna mutazione
- $\frac{R}{R+1}\mu$: probabilità transizione
- $\frac{1}{2(R+1)}\mu$: probabilità di trasversione $A\leftrightarrow C$ o $G\leftrightarrow T$
- $\frac{1}{2(R+1)}\mu$: probabilità di trasversione $A \leftrightarrow T$ o $C \leftrightarrow G$
- $R=\frac{R}{R+1}\mu/\left(2\frac{1}{2(R+1)}\mu\right)$: rapporto probabilità di transizioni / probabilità trasversioni

Modelli di evoluzione: General time-reversible

- matrice simmetrica
- o consequenza: alberi senza radice

Gianluca Della Vedova Elementi di Bioinformatica 25/1

Gianluca Della Vedova Elementi di Bioinformatica 26/1

Massima verosimiglianza.

Licenza d'uso

Quest'opera è soggetta alla licenza Creative Commons: Attribuzione-Condividi allo stesso modo 4.0. (https://creativecommons.org/licenses/by-sa/4.0/). Sei libero di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire, recitare e modificare quest'opera alle seguenti condizioni:

- Attribuzione Devi attribuire la paternità dell'opera nei modi indicati dall'autore o da chi ti ha dato l'opera in licenza e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
- Condividi allo stesso modo Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.

Gianluca Della Vedova Elementi di Bioinformatica 27/1 Gianluca Della Vedova Elementi di Bioinformatica 28/