Tarea 2

Anchi Duenas, Hairton. 1

¹Facultad de Ciencias Universidad Nacional de Ingeniería

Septiembre 2020

Tabla de Contenidos

Introducción

Anchi, Hairton (UNI) Leslie Septiembre 2020 2

Algoritmo

$$T(n) = egin{cases} T(rac{n}{2}) + 1 & ext{for } n > 1 \\ 1 & n \leq 1 \end{cases}$$

Analisis

$$T(n) = T(\frac{n}{2}) + 1$$

$$T(\frac{n}{2}) = T(\frac{n}{2^2}) + 1$$

$$T(n) = [T(\frac{n}{2^2}) + 1] + 1$$

Analisis

$$T(n) = [T(\frac{n}{2^2}) + 1] + 1$$
$$T(n) = T(\frac{n}{2^2}) + 2$$
$$T(n) = T(\frac{n}{2^3}) + 3$$

Entonces se tiene que :

$$T(n) = T(\frac{n}{2^k}) + k$$

Analisis

$$T(n)=T(rac{n}{2^k})+k$$
 Asumiendo que : $rac{n}{2^k}=1$ Entonces : $n=2^kyk=log(n)$
$$T(n)=T(1)+log(n)$$

$$T(n)=1+log(n)$$
 $\mathcal{O}(log(n))$

