MTH 101: Calculus I

Nikita Agarwal

Semester II, 2024-25

Problem Set for Week 4 (Part 2)

1/3

Problems

- 1. By induction on n, prove that for all real numbers x_1, x_2, \ldots, x_n , $|x_1 + x_2 + \cdots + x_n| < |x_1| + |x_2| + \cdots + |x_n|$.
- 2. By induction on n, prove that for all real numbers x_1, x_2, \ldots, x_n ,

$$|x_1 + x_2 + \cdots + x_n| \ge |x_1| - |x_2| - \cdots - |x_n|$$
.

- 3. Consider the sequence $x_n=1/n$, for $n\in\mathbb{N}$. Take it as a fact that x_n converges to 0. For various values of ϵ give below, produce a cut-off N as in the definition of convergence of a sequence.
 - a) $\epsilon = 1/10$.
 - b) $\epsilon = 1/100$.
 - c) $\epsilon = 1$.
 - d) $\epsilon = 2/99$.
- 4. Consider the sequence $x_n = 1/n^2$, for $n \in \mathbb{N}$. Take it as a fact that x_n converges to 0. For various values of ϵ give below, produce a cut-off N as in the definition of convergence of a sequence.
 - a) $\epsilon = 1/25$.
 - b) $\epsilon = 1/100$.
 - c) $\epsilon = 1$.
 - d) $\epsilon = 2/99$.

Problems

5. Consider the sequence $x_n = \frac{(-1)^n}{10}$, for $n \in \mathbb{N}$. List the first 10 terms of the sequence.

For various values of x, ϵ give below, if you can, produce a cut-off N such that

$$x_n \in (x - \epsilon, x + \epsilon).$$

a)
$$x = 0$$
, $\epsilon = 1$.

b)
$$x = 0$$
, $\epsilon = 1/5$.

c)
$$x = 0$$
, $\epsilon = 1/100$.

d)
$$x = 1/10$$
, $\epsilon = 1$.

e)
$$x = 1/10$$
, $\epsilon = 1/5$.

Plotting interval $(x - \epsilon, x + \epsilon)$ on the number line and analyzing the terms of the sequence is helpful. Try!

Nikita Agarwal