UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERÍA DE MINAS, GEOLOGÍA Y CIVIL ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS

PRÁCTICA CALIFICADA

"UNIVERSIDAD LA VIDA"

Docente:

Prof. José Elías Yauri Vidalon

Curso:

REDES DE COMPUTADORAS [IS-441]

Alumno:

PARIONA VILCA, Jhon Wilder.

Ayacucho - Perú 2019

ÍNDICE GENERAL

I	Universidad de la Vida	4_
1.	1 ENUNCIADO	4
II	PROPUESTA DE SOLUCIÓN INICIAL	5_
2.	1 REQUERIMIENTOS	5
	Sede Central Ayacucho	5
	Sucursal Lima	5
	Sucursal Arequipa	6
	Sucursal Huancayo	6
2.		6
	SEGMENTACIÓN DE REDES	6
	LOCALIZACIÓN DE SERVIDORES	6
***		_
III	SOLUCIÓN DEFINITIVA	7_
3.	1 CONEXIÓN PARA CADA UNA DE LAS SEDES	7
3.	2 MARCO CONCEPTUAL	7
	SEDE AYACUCHO	9
	SEDE LIMA	10
	SEDE HUANCAYO	11
	SEDE AREQUIPA	11
3.	3 Tipo de dirección IP pública	12
3.	4 estructura de conexión para la interconexión entre routers	12
3.	5 segmentación de subredes IP	13
	Sede Central Ayacucho	13
3.	6 segmentación de subredes VLAN	18
	Ayacucho	19
	Conexión sucursal Lima	20
	Conexión sucursal Arequipa	21
	Conexión sucursal Huancayo	22

		ď
	-	4
	-	ď
-		,

3.7	¿Le parece acertada la decisión del Jefe de Informática?, Sustente en profun	didad
	su respuesta para cada caso	23
	SEGMENTACIÓN DE REDES	23
	LOCALIZACIÓN DE SERVIDORES	23

CAPÍTULO I

Universidad de la Vida

1.1 ENUNCIADO

La Universidad de la Vida (UV) es una institución dedicada a brindar servicios de educación superior. Inició sus actividades en Ayacucho, donde tiene dos sedes: una sede administrativa ubicada en la zona antigua de Ayacucho, donde tiene una infraestructura colonial (adobe, yeso y tejados) y el campus, donde se encuentran tres edificios, para las facultades de Ingeniería, Sociales y Educación, respectivamente.

Debido a su modelo de negocio competitivo, la UV ha logrado posicionarse entre las mejores universidades del Perú, estableciendo con éxito tres sucursales en Lima: cono sur, cono centro y cono norte, una sucursal en Arequipa y en Junín. Cada una de estas sucursales cuenta con un campus, donde cada campus tiene un edificio. En cada sucursal, se tienen estudiantes de las tres facultades, no obstante, cada facultad tiene sólo una Unidad de Coordinación que rinde cuentas a la Sede Central en Ayacucho.

CAPÍTULO II

PROPUESTA DE SOLUCIÓN INICIAL

2.1 REQUERIMIENTOS

2.1.1 Sede Central Ayacucho

Sede Central Administrativa

- Todas las Unidades Administrativas: 80 computadoras
- Unidad de Informática: 20 computadoras

Campus Universitario

- Facultad de Ingeniería: 160 computadoras
- Facultad de Sociales: 60 computadoras
- Facultad de Educación: 80 computadoras

2.1.2 Sucursal Lima

Sucursal Cono Norte

420 computadoras

Sucursal Cono Centro

240 computadoras

Sucursal Cono Sur

340 computadoras

2.1.3 Sucursal Arequipa

220 computadoras

2.1.4 Sucursal Huancayo

180 computadoras

2.2 PROPUESTA

2.2.1 SEGMENTACIÓN DE REDES

- Qué se adquiera una dirección IP pública y que se utilice segmentación basada en subredes IP para cada una de las sucursales.
- Qué cada una de las Facultades sean segmentadas utilizando VLAN.

2.2.2 LOCALIZACIÓN DE SERVIDORES

- Que la Oficina de Informática en Ayacucho tenga.
 - 01 Servidor de DHCP, que asigne direcciones IP dinámicas a las sedes de Ayacucho, Arequipa y Huancayo.
 - 1 Servidor de DNS.
 - 1 Servidor Web que contenga las páginas web de cada una de las sedes (Ayacucho, Lima, Arequipa y Huancayo).
- Qué la Sede Lima Cono Central tenga: 01 Servidor para servicio de DHCP, que asigne direcciones IP dinámicas a las tres sedes de Lima solamente.

CAPÍTULO III

SOLUCIÓN DEFINITIVA

3.1 CONEXIÓN PARA CADA UNA DE LAS SEDES

3.2 MARCO CONCEPTUAL

Modelo de diseño jerárquico

Se separa en 3 capas:

- Capa de acceso: Es la interfaz con los dispositivos finales. Esta capa de acceso puede incluir routers, switches, puentes, hubs y puntos de acceso inalámbricos. Los switches de la capa de acceso facilitan la conexión de los dispositivos de nodo final a la red. Por esta razón, necesitan admitir características como seguridad de puerto (el switch decide cuántos y qué dispositivos se permiten conectar), VLAN, Fast Ethernet/Gigabit Ethernet, PoE, QOS y agregado de enlaces.
 - En el caso planteado se hará uso de switchs de capa 2 para cumplir esta tarea.
- Capa de distribución: Controla el flujo de tráfico de la red con el uso de políticas y traza los dominios de broadcast al realizar el enrutamiento de las funciones entre las VLANs definidas en la capa de acceso. Presentan disponibilidad y redundancia altas para asegurar la fiabilidad. Los switches de capa de distribución recopilan los datos de todos los switches de capa de acceso y los envían a los switches de capa núcleo.
 - En el caso de estudio presentado se hará uso de switch de capa 3.
- Capa núcleo: Interconecta los dispositivos de la capa de distribución y puede conectarse a los recursos de Internet. El núcleo debe estar disponible y ser redundante. Suelen contar con opciones de refrigeración más sofisticadas (alcanzan mayor temperatura por la carga de trabajo), con hardware que permite el cambio en caliente y QOS.
 - Para el caso presentado se hará uso de routers de capa 3

Diseño jerárquico de la red

Modelo de núcleo colapsado

El modelo de diseño jerárquico es el que implementaremos en el proyecto presente.

3.2.1 SEDE AYACUCHO

Red central

En la red central planteamos diseñar un modelo jerárquico simple (lo adecuado sería agregar redundancia en la capa de distribución). La capa de acceso cuenta con 5 switchs de capa 2(80 host unidad administrativa y 20 unidad informática). 3 switchs serán propios de vlan admi, 1 será compartido y 1 será parcialmente de vlan informática ya que no alcanza a ocupar todos los puertos disponibles(23 ya que 1 está destinado a conectarse al switch central). El switch central nos permite extender la conectividad ya que con el podemos conectar hasta 23 switches en esta red.

Red Campus

En la red del campus se propone hacer una implementación igual a la anterior, para el primer edificio que cuenta con 160 host se hará uso de 160 host que son equivalentes a 7 switchs(23*7), sobrando inclusive 1 puerto.

Para el edificio de sociales se necesitan 60 host para lo cual se hace uso de 3 switchs (3*23), sobrando inclusive 9 puertos.

Para el edificio de educación que requiere de 80 host se hace uso de 4 switchs (4*23) sobrando inclusive 12 puertos.

3.2.2 SEDE LIMA

Red cono sur

Se requiere 240 host por ello, se hace uso de 11 swits (11 * 23), sobrando 13 puertos.

Se requiere 340 host por ello, se hace uso de 15 swits (15*23), sobrando 5 puertos.

Se requiere 420 host por ello, se hace uso de 19 swits (19 * 23), sobrando 17 puertos.

3.2.3 SEDE HUANCAYO

Se requiere 180 host por ello, se hace uso de 8 swits (8*23), sobrando 4 puertos.

3.2.4 SEDE AREQUIPA

Se requiere 220 host por ello, se hace uso de 10 swits (10*23), sobrando 10 puertos.

3.3 Tipo de dirección IP pública

La dirección IP puede ser pública o privada: La dirección IP pública es un número único que identifica nuestra red desde el exterior. La dirección IP privada identifica a un dispositivo conectado en nuestra red interna.

Haremos uso de dos tipos de direcciones:

Dirección externa: Dirección externa para la comunicación de sedes esta dirección es conocida y servirá como seguridad para la salida de cada sede. Cada router permitirá convertir la dirección interna a la externa al comunicarse a otra sede.

Nuestra dirección externa será 209.165.200.0 que es de tipo c y es la que contratamos.

Dirección Interna: Esta dirección es la que segmentaremos para cada sede y esta será una dirección interna.

Nuestra dirección externa será 172.16.0.0 que es de tipo B.

3.4 estructura de conexión para la interconexión entre routers

Se hará una conexión NAT con sobrecarga para poder brindar seguridad a la comunicación entre sedes.

3.5 segmentación de subredes IP

3.5.1 Sede Central Ayacucho

Usaremos la ip INTERNA: 172.16.0.0

Para hallar usaremos el método de VLSM, con el tercer y cuarto octeto.

Entonces tenemos:

IP: 172.16.0.0

ORDENAMOS LOS HOST QUE SE REQUIERE DE CADA SUCURSAL:

• Sede cono-norte: 420 computadoras

• Sede cono-centro: 340 computadoras

• Sede campus-ayacucho: 300 computadoras

• Sede cono-sur: 240 computadoras

• Sede Arequipa: 220 computadoras

• Sede Huancayo: 180 computadoras

• Sede central-ayacucho: 100 computadoras

Para poder hacer la segmentación necesitamos:

	Tercer Octeto								Cua	rto Oct	eto				
128	64	32	16	8	4	2	1	128	64	32	16	8	4	2	1
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1

sabemos que la primera subred es la que nos dan por defecto entonces:

subred	Host	dir sub red	rango ip	broadcast	mascara	/MSR
cono-norte	420	172.16.0.0				
cono-centro	340					
campus-ayacucho	300					
cono-sur	240					
Arequipa	220					
Huancayo	180					
central-Ayacucho	100					

Para hallar la siguiente sub red: vemos que requiere 420 host buscamos este numero en la tabla o un valor mayor. En este caso para 420 es 512; por lo tanto n=2

Quiere decir que la siguiente sub red tendrá un salto de 2, asi tenemos:

subred	Host	dir sub red	rango ip	broadcast	mascara	/MSR
cono-norte	420	172.16.0.0				
cono-centro	340	172.16.2.0				
campus-ayacucho	300					
cono-sur	240					
Arequipa	220					
Huancayo	180					
central-Ayacucho	100					

realizamos el mismo paso para los demás: y nos quedaria:

subred	Host	dir sub red	rango ip	broadcast	mascara	/MSR
cono-norte	420	172.16.0.0				
cono-centro	340	172.16.2.0				
campus-ayacucho	300	172.16.4.0				
cono-sur	240	172.16.6.0				
Arequipa	220	172.16.7.0				
Huancayo	180	172.16.8.0				
central-Ayacucho	100	172.16.9.0				

Para hallar la mascara de sub red lo que hacemos es sumar todos los números que esten a la derecha de n incluido n; es decir para la sub red 135.40.0.0 n=2 entonces sumamos:

128+64+32+16+8+4+2 = 254

Entonces la MSR seria = 255.255.254.0

repetimos para todas las sub redes:

subred	Host	dir sub red	rango ip	broadcast	mascara	/MSR
cono-norte	420	172.16.0.0			255.255.254.0	/23
cono-centro	340	172.16.2.0			255.255.254.0	/23
campus-ayacucho	300	172.16.4.0			255.255.254.0	/23
cono-sur	240	172.16.6.0			255.255.255.0	/24
Arequipa	220	172.16.7.0			255.255.255.0	/24
Huancayo	180	172.16.8.0			255.255.255.0	/24
central-Ayacucho	100	172.16.9.0				

En el caso de la central de ayacucho vemos que se pasa al 4 octeto en ese caso lo que hacemos es buscar ahi un numero >= a 100 entonces n=128 y los que estan a la derecha en el cuarto octeto no seria nadie; por ello quedaria 128

Entonces el MSR seria 255.255.255.128

subred	Host	dir sub red	rango ip	broadcast	mascara	/MSR
cono-norte	420	172.16.0.0			255.255.254.0	/23
cono-centro	340	172.16.2.0			255.255.254.0	/23
campus-ayacucho	300	172.16.4.0			255.255.254.0	/23
cono-sur	240	172.16.6.0			255.255.255.0	/24
Arequipa	220	172.16.7.0			255.255.255.0	/24
Huancayo	180	172.16.8.0			255.255.255.0	/24
central-Ayacucho	100	172.16.9.0			255.255.255.128	/25

Terminamos de llenar las ips y nos quedaria:

subred	Host	dir sub red	gateway	primer ip	ultimo ip	broadcast	mascara	/MSR
cono-norte	420	172.16.0.0	172.16.0.1	172.16.0.2	172.16.1.254	172.16.1.255	255.255.254.0	/23
cono-centro	340	172.16.2.0	172.16.2.1	172.16.2.2	172.16.3.254	172.16.3.255	255.255.254.0	/23
campus-ayacucho	300	172.16.4.0	172.16.4.1	172.16.4.2	172.16.5.254	172.16.5.255	255.255.254.0	/23
cono-sur	240	172.16.6.0	172.16.6.1	172.16.6.2	172.16.6.254	172.16.6.255	255.255.255.0	/24
Arequipa	220	172.16.7.0	172.16.7.1	172.16.7.2	172.16.7.254	172.16.7.255	255.255.255.0	/24
Huancayo	180	172.16.8.0	172.16.8.1	172.16.8.2	172.16.8.254	172.16.8.255	255.255.255.0	/24
central-Ayacucho	100	172.16.9.0	172.16.9.1	172.16.9.2	172.16.9.126	172.16.9.127	255.255.255.128	/25

Para el caso de los Vlans las ip no son lo sufientemente grandes para poder realizar el routing inter vlans y no nos deja crear las subinter-

faces de vlans. Por ello se volvió a realizar el cálculo considerando las VLANs haciendo uso de una herramienta web:

Quedando la tabla como se muestra a continuación:

subred	hosts	Direccion	/MSR	MASCARA	Rango
ing ayacucho	160	172.16.0.0	/ 24	255.255.255.0	172.16.0.1 - 172.16.0.254
coor norte	105	172.16.1.0	/ 25	255.255.255.128	172.16.1.1 - 172.16.1.126
edu norte	105	172.16.1.128	/ 25	255.255.255.128	172.16.1.129 - 172.16.1. <mark>254</mark>
inge norte	105	172.16.2.0	/ 25	255.255.255.128	172.16.2.1 - 172.16.2.126
soc norte	105	172.16.2.128	/ 25	255.255.255.128	172.16.2.129 - 172.16.2.254
coord sur	85	172.16.3.0	/ 25	255.255.255.128	172.16.3.1 - 172.16.3.126
edu sur	85	172.16.3.128	/ 25	255.255.255.128	172.16.3.129 - 172.16.3.254
ing sur	85	172.16.4.0	/ 25	255.255.255.128	172.16.4.1 - 172.16.4.126
soc sur	85	172.16.4.128	/ 25	255.255.255.128	172.16.4.129 - 172.16.4.254
admi	80	172.16.5.0	/ 25	255.255.255.128	172.16.5.1 - 172.16.5.126
edu ayacucho	80	172.16.5.128	/ 25	255.255.255.128	172.16.5.129 - 172.16.5.254
Coor centro	60	172.16.6.0	/ 26	255.255.255.192	172.16.6.1 - 172.16.6.62
edu centro	60	172.16.6.64	/ 26	255.255.255.192	172.16.6.65 - 172.16.6.126
inge centro	60	172.16.6.128	/ 26	255.255.255.192	172.16.6.129 - 172.16.6.190
soc centro	60	172.16.6.192	/ 26	255.255.255.192	172.16.6.193 - 172.16.6.254
soc ayacucho	60	172.16.7.0	/ 26	255.255.255.192	172.16.7.1 - 172.16.7.62
coord arequipa	55	172.16.7.64	/ 26	255.255.255.192	172.16.7.65 - 172.16.7.126
edu arequipa	55	172.16.7.128	/ 26	255.255.255.192	172.16.7.129 - 172.16.7.190
ing arequipa	55	172.16.7.192	/ 26	255.255.255.192	172.16.7.193 - 172.16.7.254
soc arequipa	55	172.16.8.0	/ 26	255.255.255.192	172.16.8.1 - 172.16.8.62
coord huancayo	45	172.16.8.64	/ 26	255.255.255.192	172.16.8.65 - 172.16.8.126
edu huancayo	45	172.16.8.128	/ 26	255.255.255.192	172.16.8.129 - 172.16.8.190
inge huancayo	45	172.16.8.192	/ 26	255.255.255.192	172.16.8.193 - 172.16.8.254
soc huancayo	45	172.16.9.0	/ 26	255.255.255.192	172.16.9.1 - 172.16.9.62
informatica	20	172.16.9.64	/ 27	255.255.255.224	172.16.9.65 - 172.16.9.94
servidor central	3	172.16.9.96	/ 29	255.255.255.248	172.16.9.97 - 172.16.9.102
router arequipa	2	172.16.9.104	/ 30	255.255.255.252	172.16.9.105 - 172.16.9.106
router ayacucho	2	172.16.9.108	/ 30	255.255.255.252	172.16.9.109 - 172.16.9.110
router huancayo	2	172.16.9.112	/ 30	255.255.255.252	172.16.9.113 - 172.16.9.114
router lima	2	172.16.9.116	/ 30	255.255.255.252	172.16.9.117 - 172.16.9.118
servidor lima	1	172.16.9.120	/ 30	255.255.255.252	172.16.9.121 - 172.16.9.122

3.6 segmentación de subredes VLAN

Realizaremos la segmentación por puertos, con las nuevas subredes que hallamos

3.6.1 Ayacucho

sede central administrativa

comprobamos que funciona

Campus Universitario

comprobamos que funciona

3.6.2 Conexión sucursal Lima

sucursal cono norte

ICMP

ICMP

ICMP

0.000

0.000

0.000

Ν

Ν

(edit)

(edit)

(edit)

(delete)

(delete)

(delete)

3.6.3 Conexión sucursal Arequipa

Successful

Successful

Successful

serán de igual manera que de la sucursal de lima.

PC-SOC-SUR

PC-SOC-SUR

PC-EDU-SUR

PC-EDU-SUR

PC-COO-SUR

PC-COO-SUR

comprobamos que funciona

3.6.4 Conexión sucursal Huancayo

Successful

Successful

PC-SOC-HUANC

PC-EDU-HUANC

PC-COO-HUANC

PC-COO-HUANC

ICMP

ICMP

serán de igual manera que de la sucursal de lima.

0.000

0.000

Ν

Ν

4 5 (edit)

(edit)

3.7 ¿Le parece acertada la decisión del Jefe de Informática?, Sustente en profundidad su respuesta para cada caso

3.7.1 SEGMENTACIÓN DE REDES

- Qué se adquiera una dirección IP pública y que se utilice segmentación basada en subredes IP para cada una de las sucursales.
- Qué cada una de las Facultades sean segmentadas utilizando VLAN.

Para este caso la utilización de una ip publica mejora mucho la seguridad de una red ya que al salir hacia una wan o internet estamos propensos a sufrir suplantacion de identidad entre muchas otras cosas.

la ip publica hace que esto sea mas dificil de realizar ya q siempre saldremos al exterior con una ip publica de conocimiento de todos.

NO solo las facultades deben de ser segmentadas en Vlans sino todas las unidades involucradas para poder tener asi un mejor control en la red.

3.7.2 LOCALIZACIÓN DE SERVIDORES

- Que la Oficina de Informática en Ayacucho tenga.
 - 01 Servidor de DHCP, que asigne direcciones IP dinámicas a las sedes de Ayacucho, Arequipa y Huancayo.
 - 1 Servidor de DNS.
 - 1 Servidor Web que contenga las páginas web de cada una de las sedes (Ayacucho, Lima, Arequipa y Huancayo).
- Qué la Sede Lima Cono Central tenga: 01 Servidor para servicio de DHCP, que asigne direcciones IP dinámicas a las tres sedes de Lima solamente.

Lo mas recomendable debería ser tener todos esos servidores en un ambiente más adecuado, ya que no se menciona que la casona cuente con lo requerido para que se cumplan los estándares basicos que se requiere.

Se deberia de separar con una granja de servidores y asi provea servicio a todos; los servidores deberían de estar ubicados todos juntos en un lugar adecuado.