Some preprocessing and polyhedral results on facility location with preferences

Sergio García University of Edinburgh

3 June 2025 Mixed Integer Programming Workshop 2025

Closest assignment (CA)

Closest assignment (CA)

Closest assignment (CA)

CA situations

Sometimes CA comes with the model itself:

• classical *p*-median facility location problem: minimize distance traveled by the customers (Hakimi, 1964).

In many other situations (i.e. public sector models), CA must be stated explicitly:

- emergency response vehicles;
- schools (school districting);
- polling stations (political districting).

CA situations

- Locator: determines the facility to open.
- Allocator: decides which customers attend which facilities.

They may coincide... or may not.

Preferences

Each customer:

- ranks their preferences for the facilities, and
- they will attend their most preferred open facility.

Notation (1)

 $I = \text{set of customers}, \qquad J = \text{set of facilities}.$

Variables:

 x_{ij} = fraction of demand of node j served by node i

$$y_k = \begin{cases} 1 & \text{if facility } k \text{ is open,} \\ 0 & \text{otherwise.} \end{cases}$$

Constants:

 c_{ij} = cost of serving the whole demand of customer i from facility j;

 f_i = cost of opening a facility at node j.

Notation (2)

Let $i \in I$ and $j, k \in J$.

Facility k is i-worse than facility j, $k <_i j$, if customer i prefers j to k.

$$W(i,j) = \{k \in J / k <_i j\}$$

Formulation

$$(SPLPO) \begin{cases} \text{Min.} & \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} + \sum_{k \in J} f_k y_k \\ \text{s.t.} & \sum_{j \in J} x_{ij} = 1 \quad \forall i \in I, \\ & \sum_{x_{ij}} \leq y_j \quad \forall i \in I, j \in J, \\ & \sum_{k \in W(i,j)} x_{ik} + y_j \leq 1 \quad \forall i \in I, j \in J, \\ & x_{ij} \geq 0 \quad \forall i \in I, j \in J, \\ & y_j \in \{0,1\} \quad \forall j \in J. \end{cases}$$

Strict preferences are assumed.

2-customer preference inequalities (1)

Let $i_1, i_2 \in I$ and $j \in J$.

$$\sum_{k \in W(i_1,j)} x_{i_1k} + \sum_{k \in W(i_2,j) \setminus W(i_1,j)} x_{i_2k} + y_j \le 1$$

This inequality is stronger than

$$\sum_{k \in W(i_1,j)} x_{i_1k} + y_j \le 1$$

2-customer preference inequalities (2)

Particularly, if

$$W(i_1,j)\cap W(i_2,j)=\emptyset$$
,

then

$$\sum_{k \in W(i_1,j)} x_{i_1k} + \sum_{k \in W(i_2,j)} x_{i_2k} + y_j \le 1.$$

One new constraint is stronger than two starting constraints.

Dominance inequalities

Let $i_1, i_2 \in I$ and $j \in J$. If

$$W(i_1,j)\subseteq W(i_2,j),$$

then

$$x_{i_1j}\leq x_{i_2j}.$$

Inequality $x_{ij} \leq y_i$ may not be a facet.

A "tree" of valid inequalities

A "tree" of valid inequalities

$$\sum_{i=1}^{8} |\mathsf{predecessors}(i)| = 3 + 5 + 4 + 3 + 4 + 2 + 1 + 2 = 24.$$

$$x_{1j} \le x_{6j},$$
 $x_{2j} \le x_{9j},$ $x_{4j} \le x_{8j},$ $x_{5j} \le x_{10j},$
 $x_{1j} \le x_{7j},$ $x_{2j} \le x_{10j},$ $x_{4j} \le x_{9j},$ $x_{6j} \le x_{7j},$
 $x_{1j} \le x_{10j},$ $x_{3j} \le x_{4j},$ $x_{4j} \le x_{10j},$ $x_{6j} \le x_{10j},$
 $x_{2j} \le x_{5j},$ $x_{3j} \le x_{8j},$ $x_{5j} \le x_{7j},$ $x_{7j} \le x_{10j},$
 $x_{2j} \le x_{7j},$ $x_{3j} \le x_{9j},$ $x_{5j} \le x_{8j},$ $x_{8j} \le x_{9j},$
 $x_{2j} \le x_{8j},$ $x_{3j} \le x_{10j},$ $x_{5j} \le x_{9j},$ $x_{8j} \le x_{10j}.$

- However, more than half of these inequalities are dominated by other inequalities belonging to this set.
- The non-dominated inequalities are those represented with arcs connecting two nodes which do not accept a longest path.
- There are up to ten such inequalities:

$$x_{1j} \le x_{6j}, \quad x_{5j} \le x_{8j},$$

 $x_{2j} \le x_{5j}, \quad x_{6j} \le x_{7j},$
 $x_{3j} \le x_{4j}, \quad x_{7j} \le x_{10j},$
 $x_{4j} \le x_{8j}, \quad x_{8j} \le x_{9j},$
 $x_{5j} \le x_{7j}, \quad x_{8j} \le x_{10j}.$

• Thus, 14 out of 24 inequalities are redundant.

$$W(i_1,j) \cap W(i_2,j) = \emptyset \quad \Rightarrow \quad \sum_{k \in W(i_1,j)} x_{i_1k} + \sum_{k \in W(i_2,j)} x_{i_2k} + y_j \leq 1$$

$$W(i_1,j) \cap W(i_2,j) = \emptyset \quad \Rightarrow \quad \sum_{k \in W(i_1,j)} x_{i_1k} + \sum_{k \in W(i_2,j)} x_{i_2k} + y_j \leq 1$$

#9:
$$\sum_{k \in W(i_t,j)} x_{i_t k} + y_j \le 1$$
 \longrightarrow #4: $\sum_{i \in A_t} \sum_{k \in W(i,j)} x_{ik} + y_j \le 1$

$$W(i_1,j) \cap W(i_2,j) = \emptyset \quad \Rightarrow \quad \sum_{k \in W(i_1,j)} x_{i_1k} + \sum_{k \in W(i_2,j)} x_{i_2k} + y_j \leq 1$$

#9:
$$\sum_{k \in W(i_t,j)} x_{i_t k} + y_j \le 1 \quad \rightsquigarrow \quad #4: \sum_{i \in A_t} \sum_{k \in W(i,j)} x_{ik} + y_j \le 1$$

$$W(i_1,j) \cap W(i_2,j) = \emptyset \quad \Rightarrow \quad \sum_{k \in W(i_1,j)} x_{i_1k} + \sum_{k \in W(i_2,j)} x_{i_2k} + y_j \leq 1$$

#9:
$$\sum_{k \in W(i_t,j)} x_{i_tk} + y_j \le 1 \quad \leadsto \quad \#4: \sum_{i \in A_t} \sum_{k \in W(i,j)} x_{ik} + y_j \le 1$$

$\overline{Computational\ experience}$

m =100, n =75										
	No preprocessing			Preprocessing			%			
In stance	Time	Nodes	Gap	Time	Nodes	Gap	TR	RPR	NZE	RI
a_100_75_1	2639	1892	21.27	989	554	18.76	63	15.39	55.07	90.53
a_100_75_2	5116	4304	27.19	3577	3192	25.16	30	15.53	55.07	88.92
a_100_75_3	5813	4889	25.97	3375	2855	24.06	42	15.05	55.08	92.19
a_100_75_4	5891	5080	24.57	2438	2079	22.24	59	15.37	55.07	92.80
Ь_100_75_1	29511	41971	31.80	12671	21744	28.49	57	15.15	55.08	92.20
Ь_100_75_2	33593	52725	33.08	12986	22439	30.40	61	15.31	55.07	89.20
Ь_100_75_3	47627	76295	34.47	17477	26785	30.88	63	15.00	55.08	91.95
Ь_100_75_4	13466	18497	28.56	4607	6361	26.94	66	15.53	55.07	91.23
c 100 75 1	18760	26384	32.15	7682	13462	27.74	59	15.40	55.07	89.16
c_100_75_2	24096	41874	31.49	9625	18870	28.19	60	15.93	55.06	88.63
c 100 75 3	15708	27268	32.30	4682	8107	28.86	70	15.45	55.07	92.31
c 100 75 4	25775	44457	32.36	8756	15617	29.33	66	15.69	55.06	92.43
Average	19000	28811	29.60	7405	11839	26.75	58	15.40	55.07	90.96

Table legend

- RPR (Reduced Preference Rows): Reduction in the number of preference constraints (in percentage).
- NZE (Non-Zero Elements): Percentage of non-zero elements in the preprocessed formulation compared to the number of non-zero elements in the non-preprocessed one.
- RI (Reinforced Inequalities): Percentage of inequalities $x_{ij} \leq y_j$ from the non-preprocessed formulation which are replaced with a tighter dominance inequality.
- Time: CPU time in seconds.
- Nodes: Number of nodes of the branching tree;
- Gap: $100(1 z_L/z_I)$, where z_L and z_I are, respectively, the optimal values of the linear relaxation and the integer problem.
- TR (Time Reduction): Reduction (in percentage) in computational time.