Jaime A. Riascos

Adaptado de:

https://ocw.mit.edu/courses/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/69b5b28067ecf1769a6143453d77eba1 MIT6 0002F16 lec3.pdf

https://github.com/mauriciotoro/ST0245-Eafit/tree/master

Estructura de Datos

Colección de objetos del mismo tipo con el menor consumo de recursos para un algoritmo

Ejemplos de recursos

tiempo

memoria

Relación entre EDA y Algoritmo

Dependiendo de la estructura de datos

cambia la complejidad del

tiempo

memoria

Operaciones de una Estructura de Datos

Barbara Liskov Inventó las estructuras de datos

Definición de Grafo

Un grafo es una tupla de dos cosas. Primero, una "bolsa" o conjunto de nodos (llamados vértices) y, segundo, una "bolsa" o conjunto de conexiones entre parejas de vértices llamadas aristas.

Un **grafo** se usa para representar problemas en los que hay **objetos** y **conexiones entre los objetos**.

- Conjunto de nodos (vértices) con algunas propiedades asociadas a ellos.
- Conjunto de arcos que consisten en un unir un par de nodos
 - Grafos direccionados (importa la secuencia o dirección), con definición de nodo padre y nodo hijo
 - Grafos no direccionados.
 - Grafos con pesos o sin pesos

- Conjunto de nodos (vértices) con algunas propiedades asociadas a ellos.
- Conjunto de arcos que consisten en un unir un par de nodos
 - Grafos direccionados (importa la secuencia o dirección), con definición de nodo padre y nodo hijo
 - Grafos no direccionados.
 - Grafos con pesos o sin pesos

- Conjunto de nodos (vértices) con algunas propiedades asociadas a ellos.
- Conjunto de arcos que consisten en un unir un par de nodos
 - Grafos direccionados (importa la secuencia o dirección), con definición de nodo padre y nodo hijo
 - Grafos no direccionados.
 - Grafos con pesos o sin pesos

Grafos en videojuegos

Aristas

Aristas

Aristas con pesos

Grafo no dirigido

Grafo dirigido

Grafo completo

¿Por qué usamos Grafos?

- Capturar relaciones útiles entre entidades
 - Metro que une Bello con Itagüí
 - Cómo los átomos de una molécula se relacionan entre sí
 - Relaciones ancestrales (familiares)

 Nuestro mundo está explicado por un sinnúmero de redes basadas en relaciones:

- Redes de computadora
- Redes de transporte
- Redes financieras
- Redes de agua o alcantarillado
- Redes políticas
- Redes criminales
- Redes sociales

Análisis de las interacciones de los personajes en las escenas (tamaño) e interacciones naturales entre personajes (color) – Novela Mago de Oz

- Pero además de capturar las relaciones que existan entre instancias de un problema, los grafos nos permiten crear inferencias sobre esas estructuras:
 - Encontrar si existe o no un camino o secuencia entre A y B
 - Encontrar el camino más corto entre A y B (shortest path problem)
 - Partir el grafo entre un subconjunto de elementos conectados (graph partition problem)
 - Encontrar la forma más eficiente de dividir un conjunto de elementos conectados (min cut-max/max-flow problem)

- Modelando el sistema de transporte usando un digraph
 - Nodos: puntos donde los caminos se unen o terminan
 - Arcos: conexión entre puntos
 - Cada arco tiene un peso donde:
 - Tiempo estimado en ir desde un punto (origen) a otro (destino)
 - Distancia entre origen y destino
 - Velocidad promedio de viaje entre origen y destino
- Resolviendo un problema de optimización
 - Camino más corto entre mi casa y la universidad, considerando los pesos:

¿Desde cuándo se usan los grafos?

• Puentes de Konigsberg (1735)

• ¿Es posible dar un paseo atravesando una sola vez cada uno de los puentes?

¿Desde cuándo se usan los grafos?

• Puentes de Konigsberg (1735)

• ¿Es posible dar un paseo atravesando una sola vez cada uno de los puentes?

Modelo de Leonhard Euler

¿Son los árboles grafos?

¿Son los árboles grafos?

• Si, un tipo especial de grafo direccionado donde cada par de nodos está conectado por un camino único

Representación de grafos direccionados (digraphs)

Grafo direccionado = Arcos pasan en una sola dirección

Matriz de adyacencia:

- Filas: nodos origen
- Columnas: nodos destino
- Celda[i,j] = 1 si hay un arco entre el origen y destino
 - $= 0 \sin no.$
- Matriz asimétrica
- Complejidad de consulta: O(1)

Matrices de adyacencia

https://www.cs.usfca.edu/~galles/visualization/DFS.html

Matrices de adyacencia

Pueden haber vértices aislados en un grafo

¿Cómo se representa un vértice aislado?

Fila de ceros

Columna de ceros

Fila y columna de ceros

No se puede

Aristas con pesos

https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html

Aristas con pesos

¿Cuál es la complejidad de modificar el peso de un arco?

Complejidad en el tiempo

En Matrices de Adyacencia

¿Cuál es la complejidad de insertar un nuevo vértice?

0(1)

Complejidad en el tiempo

En Matrices de Adyacencia

¿Por qué insertar es O(V²)?

1	2	3
4	5	6
7	8	9

¿Por qué insertar es O(V²)?

¿Por qué insertar es O(V²)?

1	2	3	
4	5	6	
7	8	9	

...Tanto **tiempo** pasó desde el día que te fuiste...

Y allí supe que las despedidas son muy tristes

¡Pero necesitamos Memoria y NO Tiempo!

...Tanta memoria pasó desde el día que te fuiste

Y allí supe que las despedidas son muy tristes

¿Cuánta memoria consume una matriz de adyacencia?

O(V)

Complejidad en memoria en la vida real

¿Cuánto ocupa la matriz de adyacencia de Facebook Colombia?

En Matrices de Adyacencia

¿Cuánta memoria consume una matriz de adyacencia con V = 40 M?

1387 TB

1387 MB

1387 KE

1387 GB

Complejidad en memoria en la vida real

https://web2.0calc.com/

Representación de grafos direccionados (digraphs)

Grafo direccionado = Arcos pasan en una sola dirección

Lista de adyacencia:

- Asociar cada nodo a una lista de nodos de destino
- Complejidad de consulta O(n)

Listas de adyacencia

Listas de adyacencia

https://www.cs.usfca.edu/~galles/visualization/DFS.html

Listas de adyacencia

¿Cuál es la complejidad de buscar el peso de un arco?

O(1)

Complejidad en el tiempo

¿Cuál es la complejidad de insertar un nuevo vértice?

0(1)

Complejidad en el tiempo

¿Cómo se representa un vértice aislado?

¿Cómo se representa un vértice aislado?

Lista vacía

Lista de ceros

No se puede

Lista vacía y no aparece en otras listas

¿Cuánta memoria consume una lista de adyacencias?

O(V)

O(V log E)

 $O(V^2)$

 $O(V * E) = O(V^3)$

Complejidad en memoria en la vida real

¿Cuánta memoria consume una lista de adyacencia con V = 40 M?

305 TB

305 MB

305 KB

305 GB

Complejidad en memoria en la vida real

https://web2.0calc.com/

Implementación de un grafo dirigido (digrafo)

Implementación de grafos

- Para implementar y usar grafos necesitaríamos:
 - Nodos
 - Arcos
 - Juntarlos para crear caminos
- Una vez creados los caminos podemos:
 - Buscar el camino más corto
 - Buscar el camino más óptimo

Implementación de grafos – Clase Node

```
class Node(object):
    def __init__(self, name):
        """Assumes name is a string"""
        self.name = name
    def getName(self):
        return self.name
    def __str__(self):
        return self.name
```

Implementación de grafos – Clase Edge

```
class Edge(object):
    def ___init___(self, src, dest):
        """Assumes src and dest are nodes"""
        self.src = src
        self.dest = dest
    def getSource(self):
        return self.src
    def getDestination(self):
        return self.dest
    def ___str__(self):
        return self.src.getName() + '->'\
               + self.dest.getName()
```

Implementación de grafos – Clase Digraph

```
class Digraph(object):
    """edges is a dict mapping each node to a list of
    its children"""
                                       Nodes are represented as
    def __init__(self):
                                        keys in dictionary
        self.edges = \{\}
    def addNode(self, node):
        if node in self.edges:
             raise ValueError('Duplicate node')
                                         destinations as values in list
        else:
                                          associated with a source key
             self.edges[node] = []
    def addEdge(self, edge):
        src = edge.getSource()
        dest = edge.getDestination()
        if not (src in self.edges and dest in self.edges):
             raise ValueError('Node not in graph')
        self.edges[src].append(dest)
```

Implementación de grafos – Clase Digraph

```
def childrenOf(self, node):
    return self.edges[node]
def hasNode(self, node):
    return node in self.edges
def getNode(self, name):
    for n in self.edges:
        if n.getName() == name:
            return n
    raise NameError(name)
def __str__(self):
    result = ''
    for src in self.edges:
        for dest in self.edges[src]:
            result = result + src.getName() + '->'\
                     + dest.getName() + '\n'
    return result[:-1] #omit final newline
```

Implementación de grafos – Clase Graph

```
class Graph(Digraph):
    def addEdge(self, edge):
        Digraph.addEdge(self, edge)
        rev = Edge(edge.getDestination(), edge.getSource())
        Digraph.addEdge(self, rev)
```

Grafo No direccionado: arcos conectan nodos en ambas direcciones

¿Por qué una subclase de Digraph?

Uso de grafos – Algunos problemas clásicos

- Encontrar la ruta más corta entre dos ciudades
- Diseño de redes de comunicación
- Encontrar un camino para una molécula en una estructura química

• ...

Ejemplo

Phoenix:

Ejemplo – Creando el grafo

```
def buildCityGraph(graphType):
    q = graphType()
    for name in ('Boston', 'Providence', 'New York', 'Chicago',
                 'Denver', 'Phoenix', 'Los Angeles'): #Create 7 nodes
        g.addNode(Node(name))
    g.addEdge(Edge(g.getNode('Boston'), g.getNode('Providence')))
    g.addEdge(Edge(g.getNode('Boston'), g.getNode('New York')))
    g.addEdge(Edge(g.getNode('Providence'), g.getNode('Boston')))
    g.addEdge(Edge(g.getNode('Providence'), g.getNode('New York')))
    g.addEdge(Edge(g.getNode('New York'), g.getNode('Chicago')))
    g.addEdge(Edge(g.getNode('Chicago'), g.getNode('Denver')))
    g.addEdge(Edge(g.getNode('Chicago'), g.getNode('Phoenix')))
    g.addEdge(Edge(g.getNode('Denver'), g.getNode('Phoenix')))
    g.addEdge(Edge(g.getNode('Denver'), g.getNode('New York')))
    g.addEdge(Edge(g.getNode('Los Angeles'), g.getNode('Boston')))
```

Ejemplo – Encontrando el camino más corto

- Existen dos alternativas clásicas y simples para esto:
 - Algoritmo de búsqueda por profundidad (Depth-First Search)
 - Algoritmo de búsqueda por anchura (Breadth-First Search)

Ejemplo – Depth-First Search

- Inicia un nodo origen
- Considera todos los arcos que tiene dicho nodo en algún orden
- Continuando con el primer arco, verifica si el nodo destino es el objetivo
- Si no, repita el proceso con el siguiente nodo
- Continúa hasta encontrar el nodo objetivo o quedarse sin opciones
 - Si se queda sin opciones, regresar al nodo previo e intentar con el siguiente arco y repetir el proceso.

Ejemplo – Depth-First Search

```
returning to this point in the
def DFS(graph, start, end, path, shortest, toPrint = False):
    path = path + [start]
                                                             Note how will explore
    if toPrint:
                                                              all paths through first
        print('Current DFS path:', printPath(path))
    if start == end:
                                                               node, before ...
        return path
    for node in graph.childrenOf(start):
        if node not in path: #avoid cycles
           if shortest == None or len(path) < len(shortest):
                newPath = DFS(graph, node, end, path, shortest, toPrint)
                if newPath != None:
                    shortest = newPath
        elif toPrint:
            print('Already visited', node)
    return shortest
def shortestPath(graph, start, end, toPrint = False):
    return DFS(graph, start, end, [], None, toPrint)
       DFS called from a
                                    Gets recursion started properly
       wrapper function:
                                    Provides appropriate abstraction
       shortestPath
```

Ejemplo – Depth-First Search

Ejemplo – Depth-First Search – Chicago a Boston

There is no path from Chicago to Boston

Ejemplo – Depth-First Search – Boston a Phoenix

Current DFS path: Boston

Current DFS path: Boston->Providence

Already visited Boston

Current DFS path: Boston->Providence->New York

Current DFS path: Boston->Providence->New York->Chicago

Current DFS path: Boston->Providence->New York->Chicago->Denver

Current DFS path: Boston->Providence->New York->Chicago->Denver->Phoenix Found path

Already visited New York

Current DFS path: Boston->Providence->New York->Chicago->Phoenix Found a shorter path

Current DFS path: Boston->New York

Current DFS path: Boston->New York->Chicago

Current DFS path: Boston->New York->Chicago->Denver

Current DFS path: Boston->New York->Chicago->Denver->Phoenix Found a "shorter" path

Already visited New York

Current DFS path: Boston->New York->Chicago->Phoenix Found a shorter path

Shortest path from Boston to Phoenix is Boston->New York->Chicago->Denver->Phoenix

Ejemplo – Breadth-First Search

- Inicia un nodo origen
- Considera todos los arcos que tiene dicho nodo en algún orden
- Continuando con el primer arco, verifica si el nodo destino es el objetivo
- Si no, repita el proceso con el siguiente arco del nodo actual
- Continúa hasta encontrar el nodo objetivo o quedarse sin opciones
 - Si se queda sin opciones, regresar al nodo anterior en el mismo nivel del origen y repita
 - Si se queda sin opciones, moverse al siguiente nivel del grafo y repetir.

Ejemplo – Breadth-First Search

```
def BFS(graph, start, end, toPrint = False):
    initPath = [start]
    pathQueue = [initPath]
    while len(pathQueue) != 0:
        #Get and remove oldest element in pathQueue
        tmpPath = pathQueue.pop(0)
        if toPrint:
            print('Current BFS path:', printPath(tmpPath))
        lastNode = tmpPath[-1]
        if lastNode == end:
            return tmpPath
        for nextNode in graph.childrenOf(lastNode):
            if nextNode not in tmpPath:
                newPath = tmpPath + [nextNode]
                pathQueue.append(newPath)
    return None
```

Ejemplo – Breadth-First Search – Boston a Phoenix

Current BFS path: Boston

Current BFS path: Boston->Providence

Current BFS path: Boston->New York

Current BFS path: Boston->Providence->New York

Current BFS path: Boston->New York->Chicago

Current BFS path: Boston->Providence->New York->Chicago

Current BFS path: Boston->New York->Chicago->Denver

Current BFS path: Boston->New York->Chicago->Phoenix

Shortest path from Boston to Phoenix is Boston->New York->Chicago->Phoenix

Ejemplo – Breadth-First Search – Boston a Phoenix

Shortest path from Boston to Phoenix is Boston->New York->Chicago->Phoenix

Codigo:

https://colab.research.google.com/drive/1dywndmekYWE80AJoOLgTk 8F1alGj09Gx?usp=sharing

https://www.youtube.com/watch?v=1n5XPFcvxds https://www.youtube.com/watch?v=cNAkUZaiDo4

