

#### Theoretische Informatik

Prof. Dr. Juraj Hromkovič Prof. Dr. Emo Welzl

### 1. Zwischenklausur

Zürich, 4. November 2014

#### Aufgabe 1

(a) Konstruieren Sie einen deterministischen endlichen Automaten (in graphischer Darstellung), der die Sprache

$$L_1 = \{ w \in \{a, b, c\}^* \mid (|w|_a + 2|w|_b - 4|w|_c) \bmod 4 = 0 \}$$

akzeptiert und geben Sie die Zustandsklasse  $\mathrm{Kl}(q)$  für jeden Zustand q Ihres Automaten an.

(b) Konstruieren Sie einen nichtdeterministischen endlichen Automaten mit höchstens 7 Zuständen (in graphischer Darstellung) für die Sprache

$$L_2 = \{w \in \{a, b\}^* \mid w \text{ beginnt mit } abb \text{ oder } |w|_a \text{ ist durch } 3 \text{ teilbar}\}$$

und erläutern Sie kurz informell die Idee Ihrer Konstruktion.

5+5 Punkte

## Aufgabe 2

Zeigen Sie, dass die folgenden Sprachen nicht regulär sind.

- (a)  $L_1 = \{www \mid w \in \{0, 1\}^*\},\$
- (b)  $L_2 = \{0^{n \cdot \lceil \log_2 n \rceil} \mid n \in \mathbb{N}\}.$

Hierfür dürfen Sie sich jeweils eine der folgenden drei Beweismethoden aussuchen, jedoch nicht dieselbe für beide Aufgabenteile.

- (i) Mit Hilfe eines angenommenen endlichen Automaten (Verwendung von Lemma 3.3 aus dem Buch oder direkt über den Automaten),
- (ii) mit Hilfe des Pumping-Lemmas oder
- (iii) mit der Methode der Kolmogorov-Komplexität.

Bitte beachten Sie, dass bei Lösungen, die dieselbe Methode für beide Teilaufgaben verwenden, nur Teilaufgabe (a) bewertet wird.

5+5 Punkte

(bitte wenden)

## Aufgabe 3

- (a) Definieren Sie die Sprache  $L_{\text{empty}}$  und beschreiben Sie die Arbeit einer deterministischen Turingmaschine A mit  $L(A) = (L_{\text{empty}})^{\complement}$ .
- (b) Zeigen Sie  $L_{\rm U} \leq_{\rm EE} (L_{\rm empty})^{\complement}$ , indem Sie eine EE-Reduktion angeben und ihre Korrektheit beweisen.

5+5 Punkte

# Aufgabe 4

- (a) Sei  $w_n = 1^{2^{2n}}$  ein Wort über dem Alphabet  $\{0,1\}$  für alle  $n \in \mathbb{N}$ . Geben Sie eine möglichst gute obere Schranke für die Kolmogorov-Komplexität von  $w_n$  an, gemessen in der Länge von  $w_n$ .
- (b) Wir betrachten das folgende Komprimierungsverfahren: Jedes Wort  $w \in \{0,1\}^*$  mit

$$w = 0^{j_1} 1^{j_2} 0^{j_3} 1^{j_4} \dots 0^{j_{2k-1}} 1^{j_{2k}}$$

für irgendwelche  $k, j_1, j_2, \dots, j_{2k} \in \mathbb{N}$  wird zunächst dargestellt als

$$Count(w) = Bin(j_1) #Bin(j_2) # \dots #Bin(j_{2k-1}) #Bin(j_{2k}).$$

Dann wird darauf der Homomorphismus h mit h(0) = 00, h(1) = 11 und h(#) = 01 angewendet, um die Komprimierung Compress $(w) = h(\text{Count}(w)) \in \{0,1\}^*$  zu erhalten.

Sei  $l \in \mathbb{N}$ . Zeigen Sie, dass für mindestens die Hälfte aller Wörter w aus  $\{0,1\}^l$  gilt, dass  $|\operatorname{Compress}(w)| \ge l - 2$ .

5+5 Punkte