Homework 1

Problem 1. Determine whether the following functions f are well-defined:

- (a) $f: \mathbb{Q} \to \mathbb{Z}$ defined by f(a/b) = a.
- (b) $f: \mathbb{Q} \to \mathbb{Q}$ defined by $f(a/b) = a^2/b^2$.

Proof. (a) Here f is not well defined. Note that f(1/2) = 1 and f(2/4) = 2 yet 1/2 = 2/4.

(b) Now f is well defined. Let $a/b, c/d \in \mathbb{Q}$ such that a/b = c/d. We wish to show that f(a/b) = f(c/d). Note that since a/b = c/d, squaring both sides gives $a^2/b^2 = c^2/d^2$ which is the desired equality.

Problem 2. Let $f: A \to B$ be a surjective map of sets. Prove that the relation

$$a \sim b$$
 if and only if $f(a) = f(b)$

is an equivalence relation whose equivalence classes are the fibers of f.

Proof. Clearly \sim is reflexive since f(a) = f(a) for all $a \in A$. Similarly if $a \sim b$ for $a, b \in A$ then f(a) = f(b) and so f(b) = f(a). Thus $b \sim a$ and \sim is symmetric. Finally if $a \sim b$ and $b \sim c$ for $a, b, c \in A$, then f(a) = f(b) and f(b) = f(c). But then f(a) = f(c) and so $a \sim c$. Thus \sim is an equivalence relation.

Consider \overline{a} , the equivalence class of a, and let $b \in \overline{a}$. Then f(b) = f(a) and so $b \in f^{-1}(a)$. Thus $\overline{a} \subseteq f^{-1}(a)$. Conversely, let $b \in f^{-1}(a)$. Then f(b) = f(a) and $b \sim a$. Thus $b \in \overline{a}$ and $f^{-1}(a) \subseteq \overline{a}$. Therefore the equivalence classes of \sim are precisely the fibers of f.

Problem 3. For each of the following pairs of integers a and b, determine their greatest common divisor, their least common multiple, and write the greatest common divisor in the form ax + by for some integers x and y.

- (a) a = 20, b = 13.
- (b) a = 69, b = 372.
 - (a) (20, 13) = 1. The least common multiple of 20 and 13 is 260. 1 = (2)20 + (-3)13.
 - (b) (69,372) = 3. The least common multiple of 69 and 372 is 8556. 3 = (27)69 + (-5)372.

Problem 4. Prove that if n is composite, then there are integers a and b such that n divides ab but n does not divide either a or b.

Proof. Let n be composite. Then $n=p_1^{q_1}p_2^{q_2}\dots p_s^{q_s}$ for primes p_1,\dots,p_s such that there exists i and j where $q_i\geq 1$ and $q_j\geq 1$ (if i=j then $q_i>1$). We can assume $i\leq j$. If i< j let $a=p_1^{q_1}p_2^{q_2}\dots p_i^{q_i}$ and $b=p_i^{q_{i+1}}p_{i+2}^{q_{i+2}}\dots p_s^{q_s}$. Otherwise if i=j let $a=p_1^{q_1}p_2^{q_2}\dots p_i^{q_i-1}$ and $b=p_ip_{i+1}^{q_{i+1}}p_{i+2}^{q_{i+2}}\dots p_s^{q_s}$. Note that since a and b are multiples of prime numbers, both are greater than 1. Clearly $n\mid ab$ since n will divide itself. But since n=ab and a>1, b>1 and n>1, it cannot be that $n\mid a$ or $n\mid b$.

Problem 5. Determine the value $\varphi(n)$ for each integer $n \leq 30$ where ϕ denotes the Euler φ -function.

```
\varphi(1) = 1, \ \varphi(2) = 1, \ \varphi(3) = 2, \ \varphi(4) = 2, \ \varphi(5) = 4, \ \varphi(6) = 2, \ \varphi(7) = 6, \ \varphi(8) = 4, \ \varphi(9) = 6, \ \varphi(10) = 4, \ \varphi(11) = 10, \ \varphi(12) = 4, \ \varphi(13) = 12, \ \varphi(14) = 6, \ \varphi(15) = 8, \ \varphi(16) = 8, \ \varphi(17) = 16, \ \varphi(18) = 6, \ \varphi(19) = 18, \ \varphi(20) = 8, \ \varphi(21) = 12, \ \varphi(22) = 10, \ \varphi(23) = 22, \ \varphi(24) = 8, \ \varphi(25) = 20, \ \varphi(26) = 12, \ \varphi(27) = 18, \ \varphi(28) = 12, \ \varphi(29) = 28, \ \varphi(30) = 8.
```

Problem 6. If p is a prime prove there do not exist nonzero integers a and b such that $a^2 = pb^2$ (i.e. \sqrt{p} is not a rational number).

Homework 1

Proof. Let p be prime and assume nonzero integers a and b exist such that $a^2 = pb^2$. Then $p \mid a^2$ or equivalently $p \mid a \cdot a$. Thus $p \mid a$ and so there exists $c \in \mathbb{Z}$ such that pc = a. Then $p^2c^2 = a^2 = pb^2$ and $pc^2 = b^2$. Consequently $p \mid b^2$ and so $p \mid b$ as well. Then $a_1 = a/p$ and $b_1 = b/p$ are both integers and we have $a_1^2 = pb_1^2$. But the same argument holds and so $p \mid a_1$ and $p \mid b_1$. We can let the integers $a_2 = a_1/p$ and $b_2 = b_1/p$ and continue in this fashion until $b_n^2 = 1$. This forces $a_n^2 = p$, but p is prime and clearly not a perfect square. This is a contradiction and so a and b cannot exist.

Problem 7. Let $f: A \to B$. The map f is injective if and only if f has a left inverse.

Proof. Suppose that f is injective. Let $g: B \to A$ be the function such that for $b \in f(A) \subseteq B$, g(b) = a where a is the unique element of A such that f(a) = b. We know a is unique because f is injective and that such an a exists because b is in the image of A. Define g(c) for $c \in B \setminus f(A)$ to be anything. Then for $a \in A$ we have $g \circ f(a) = g(f(a)) = a$.

Conversely suppose that f has a left inverse. Then there exists $g: B \to A$ such that $g \circ f: A \to A$ is the identity. Consider $x, y \in A$ such that $x \neq y$. Then $g \circ f(x) = g(f(x)) \neq g(f(y)) = g \circ f(y)$ which implies $f(x) \neq f(y)$ (otherwise g(f(x))) would equal g(f(y))). Thus f is injective.

Problem 8. If A and B are finite sets with the same number of elements then $f: A \to B$ is bijective if and only if f is injective if and only if f is surjective.

Proof. Suppose f is bijective, then it is clearly injective. Now suppose f is injective. Let |A| = |B| = n. Since f is injective, two distinct elements of A are mapped by f to two distinct elements of B. There are n distinct elements of A and so |f(A)| = n. But |B| = n as well and so f is surjective. Finally suppose that f is surjective. Then for each $b \in B$ there exists $a \in A$ such that f(a) = b. Since |B| = n there must be at least n distinct elements of A which map to unique values of B. But |A| = n, therefore if $x \neq y$ in A, then $f(x) \neq f(y)$ in B. Thus f is both surjective and injective and so f is a bijection.

Problem 9. Write out the multiplication table for D_6 .

×	I	R_{120}	R_{240}	$\mathbf{F_{T}}$	$\mathbf{F_{L}}$	$\mathbf{F}_{\mathbf{R}}$
I	I	R_{120}	R_{240}	F_T	F_L	F_R
R_{120}	R_{120}	R_{240}	I	F_R	F_T	F_L
R_{240}	R_{240}	I	R_{120}	F_L	F_R	F_T
$\mathbf{F_{T}}$	F_T	F_L	F_R	I	R_{120}	R_{240}
$\mathbf{F_L}$	F_L	F_R	F_T	R_{240}	I	R_{120}
$\mathbf{F}_{\mathbf{R}}$	F_R	F_T	F_L	R_{120}	R_{240}	I

Problem 10. Write out the multiplication table for D_8 .

×	I	R_{90}	$ m R_{180}$	R_{270}	V	H	$\mathbf{D_L}$	$D_{\mathbf{R}}$
I	I	R_{90}	R_{180}	R_{270}	V	H	D_L	D_R
R_{90}	R_{90}	R_{180}	R_{270}	I	D_L	D_R	H	V
R_{180}	R_{180}	R_{270}	I	R_{90}	H	V	D_R	D_L
R_{270}	R_{270}	I	R_{90}	R_{180}	D_R	D_L	V	H
V	V	D_R	H	D_L	I	R_{180}	R_{270}	R_{90}
H	H	D_L	V	D_R	R_{180}	I	R_{90}	R_{270}
$ m D_L$	D_L	V	D_R	H	R_{90}	R_{270}	I	R_{180}
$\overline{\mathrm{D_{R}}}$	D_R	H	D_L	V	R_{270}	R_{90}	R_{180}	I