Appendix A: **Summations**

EE602

Modified from Prof. Galen Sasaki's slides

Summations

· Reading Assignment: Appendix A

A.1 Basic Summation Formulas and **Properties**

•
$$\sum_{k=1}^{n} a_k = a_1 + a_2 + ... + a_n$$

Convergence and limits

- $\sum_{k=1}^{\infty} a_k$ means $\lim_{n \to \infty} \sum_{k=1}^{n} a_k$
- If the limit exists then it **converges**, otherwise it **diverges**

- $\sum_{k=1}^n (ca_k+b_k)=c\sum_{k=1}^n a_k+\sum_{k=1}^n b_k$
- $\sum_{k=1}^{n} \Theta(f(k)) = \Theta(\sum_{k=1}^{n} f(k))$???
 - The Θ -notation on the left-hand side applies to the variable k
 - The Θ -notation on the right-hand side applies to the variable \emph{n}
 - This equality must be proved using definitions on the $\Theta\text{-}\text{notation}$

Summation Formulas

Arithmetic series

•
$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1) = \Theta(n^2)$$

• Sum of squares and cubes

•
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

• Geometric series

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1}$$
 if $x \neq 1$

•
$$\sum_{k=0}^{n} x^k = \frac{1}{x-1}$$
 if $x \neq 1$
• $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ if $|x| < 1$

• Assume
$$0^0 = 1$$

Summation Formulas

• Harmonic series

•
$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + O(1)$$

Integrating and differentiating series

•
$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$
 if $|x| < 1$
• Differentiating both sides

- $\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$

Telescoping series

- $\begin{array}{l} \bullet \ \, \sum_{k=1}^n (a_k a_{k-1}) = a_n a_0 \\ \bullet \ \, \text{Example:} \ \, \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} \frac{1}{k+1}\right) = 1 \frac{1}{n} \end{array}$

• Products

•
$$lg(\prod_{k=1}^n a_k) = \sum_{k=1}^n \lg(a_k)$$

A.2 Bounding Summations

Mathematical induction

- Please read Appendix A.2
- We have to be careful with asymptotic notation such as O-
- Example: $\sum_{k=1}^{n} k = O(n)$ (which is wrong) Proof: (1) Base step is trivial, for n = 1, the sum is O(1) (2) Induction step. Induction hypothesis $\sum_{k=1}^{n} k = O(n)$ What is $\sum_{k=1}^{n+1} k$?

 - $\begin{array}{ll} \bullet & \sum_{k=1}^{n+1} k = \sum_{k=1}^n k + (n+1) \\ \bullet & \sum_{k=1}^{n+1} k = O(n) + (n+1) \end{array} \xleftarrow{} \text{wrong here} \\ \bullet & \sum_{k=1}^{n+1} k = O(n+1) \end{array}$

 - Problem with the proof is that the "constant" hidden by the big-oh grows with n, which makes it not a constant!

Bounding the Terms with the largest term

- Simple technique → upper bound
 - bound each term with the largest term
 - $\sum_{k=0}^{n} k \leq \sum_{k=1}^{n} n = n^2$:
 - $\sum_{k=0}^{n} a_k \le \sum_{k=1}^{n} a_{max} = n \cdot a_{max}$
- This is a weak method
- We can bound a series by a geometric series

Bounding the Terms with a geometric series

- Bound by a geometric series \rightarrow upper bound
 - Suppose $\frac{a_{k+1}}{a_k} \le r$ or $a_{k+1} \le ra_k$, 0 < r < 1
 - r must a constant in this case
 - Then $a_k \leq a_0 r^k$

•
$$\sum_{k=0}^{n} a_k \leq \sum_{k=0}^{\infty} a_0 r^k = a_0 \sum_{k=0}^{\infty} r^k = a_0 \frac{1}{1-r}$$

- Example: $\sum_{k=1}^{\infty} (k/3^k)$
- $\frac{(k+2)/3^{k+2}}{(k+1)/3^{k+1}} = \frac{1}{3} \frac{k+2}{k+1} \le \frac{2}{3}$ for all $k \ge 0$
- $\sum_{k=1}^{\infty} \frac{k}{3^k} = \sum_{k=0}^{\infty} \frac{k+1}{3^{k+1}} \le \frac{1}{3} \frac{1}{1-2/3} = 1$

Splitting summations

- Split a summation into multiple parts, each part being easier to bound

• Example: Lower bound for
$$\sum_{k=1}^n k$$

• $\sum_{k=1}^n k = \sum_{k=1}^{n/2} k + \sum_{\frac{n}{2}+1}^n k \ge \sum_{k=1}^{n/2} 0 + \sum_{k=\frac{n}{2}+1}^n \binom{n}{2} = (n/2)^2 = \Theta(n^2)$

- Example: Upper bound for $\sum_{k=0}^{\infty} \frac{k^2}{p^k}$ Let's try to bound using a geometric series The ratio of consecutive terms is $\frac{(k+1)^2/2^{k+1}}{k^2/2^k} = \frac{(k+1)^2}{2k^2}$

• The ratio of consecutive terms is
$$\frac{1}{k^2/2^k} = \frac{1}{2k^2}$$
.

• If $k = 0$, the ratio is $1/0$ (!)

• If $k = 1$, the ratio is $9/8$

• If $k \ge 3$, the ratio is $9/8$

• If $k \ge 3$, the ratio is $9/8$

• If $k \ge 3$, the ratio is at most $8/9$ (finally a value of $r < 1$)

• $\sum_{k=0}^{\infty} \frac{k^2}{2^k} = \sum_{k=0}^{\infty} \frac{k^2}{2^k} + \sum_{k=3}^{\infty} \frac{k^2}{2^k} \le \sum_{k=0}^{\infty} \frac{k^2}{2^k} + \frac{9}{8} \sum_{k=0}^{\infty} \left(\frac{8}{9}\right)^k$

• $\sum_{k=0}^{\infty} \frac{k^2}{2^k} + \frac{9}{2^k} \sum_{k=0}^{\infty} \left(\frac{8}{9}\right)^k = \sum_{k=0}^{\infty} \frac{8}{2^k} + \frac{9}{8} \sum_{k=0}^{\infty} \left(\frac{8}{9}\right)^k$

So, we have O(1)

Approximation by Integrals

- For monotonically increasing functions f
- $\int_{m-1}^{n} f(x) dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x) dx$

- For monotonically decreasing functions f
 - Similar to above except limits on the integrals change
- Example

•
$$\int_{1}^{n+1} \frac{dx}{x} \le \sum_{k=1}^{n} \frac{1}{k} \le \int_{1}^{n} \frac{dx}{x} + 1$$

• $\ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k} \le \ln(n) + 1$

