Обучение с учителем. Классификация. Дискриминантный анализ.

Е. Ларин, Ф. Ежов, И. Кононыхин

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Обучение с учителем

Выборка из генеральной случайной величины

- ullet Для задачи регрессии: $\mathbf{X} \in \mathbb{R}^{n \times p}$, $\mathbf{y} \in \mathbb{R}^n$
- ullet Для задачи классификации: $\mathbf{X} \in \mathbb{R}^{n \times p}$, $\mathbf{y} \in \mathbb{A}^n$

Обучение с учителем: формальная постановка

- Вход: **X** выборка ξ , **y** выборка η . Предполагаем, что существует неизвестное отображение $y^*: \xi \to \eta$ (гипотеза непрерывности или компактности)
- Задача: По **X** и **y** найти такое отображение $\hat{y}^*: \boldsymbol{\xi} \to \eta$, которое приблизит отображение y^* .
- *Оценка*: Функция потерь $\mathfrak{L}(y^*(x), \hat{y}^*(x))$. Здесь x реализация $\pmb{\xi}$

Классификация

$$\mathbf{X} \in \mathbb{R}^{n \times p}, \ \mathbf{y} \in \mathbb{A}^n$$
 (1)

<u>Гипотеза комп</u>актности

«Близкие» объекты, как правило, принадлежат одному классу

Понятие близости может быть формализовано, например, так:

$$\rho(\mathbf{x_1}, \mathbf{x_2}) = \left(\sum_{i=1}^{p} w_i | x_1^i - x_2^i |^k\right)^{\frac{1}{k}}$$

Классификация: генеральная постановка

Дано:

- ullet $oldsymbol{\xi} \in \mathbb{R}^p$ вектор признаков
- $\eta \in \mathbb{A}$ классовая принадлежность

Предположение об их зависимсти можно записать в виде 2.

$$\eta = \Phi(\boldsymbol{\xi}, \varepsilon) \tag{2}$$

Обычно на ε накладываются условия

$$E\varepsilon = 0$$
, $D\varepsilon = \sigma^2$, $\boldsymbol{\xi} \perp \varepsilon$

Задача: найти Ф

Классификация: выборочная постановка

Дано:

- ullet $\mathbf{X} \in \mathbb{R}^{n imes p}$ матрица признаков
- ullet $\mathbf{y} \in \mathbb{A}^n$ вектор классовой принадлежности

Предположение имеет вид 3.

$$y_i = \Phi(\mathbf{x}_i, \varepsilon_i), \quad i = 1, \dots, n$$
 (3)

Задача: найти Ф

Классификация: оценка качества

На основе этой матрицы есть большое количество разных метрик: accuracy, recall, precision, F_{β} , $ROC ext{-}AUC$

Классификация: типы классов

- По количеству классов:
 - бинарная классификация
 - многоклассовая классификация
- По пересечению классов
 - пересекающиеся
 - непересекающаяся
 - нечёткие

Классификация: этапы обучения модели

- Выбор модели (класс рассматриваемых Ф из 3)
- Выбор метрики
- Выбор метода обучения (способ подбора параметров для минимизации метрики на обучающем множестве)
- Выбор метода проверки (способ оценки качества модели)

Классификация: задача оптимизации

- ullet \hat{eta} параметры модели
- ullet $\Phi(\mathbf{x},eta)$ функционал классификации
- ullet $\mathfrak{L}(oldsymbol{\Phi}(\mathbf{x},eta),\mathbf{y})$ функция потерь (метрика)

$$\hat{\beta} = \arg\min_{\beta} \mathfrak{L}(\Phi(\mathbf{x}, \beta), \mathbf{y})$$

Классификация: общий подход к решению

Как построить функционал Φ ? Общий подход — построить набор f_i , $i=1,\ldots,K$. Каждая функция $f_i(\mathbf{x})$ показывает меру принадлежности \mathbf{x} классу i. Таким образом,

$$\Phi(\mathbf{x}) = \arg\max_{i} (f_i(\mathbf{x})). \tag{4}$$

Дискриминантный анализ

Примем за функции f_i из 4 оценку вероятности принадлежности к i-му классу.

$$\Phi(\mathbf{x}) = \arg\max_{i} (P(C_i|\mathbf{x})).$$

 C_i — класс, состоящий из одного события: **х** принадлежит i-му классу.

Дискриминантный анализ

Если известны априорные вероятности получения i-го класса (π_i) , применим формулу Байеса

$$P(C_i|\mathbf{x}) = \frac{\pi_i P(\mathbf{x}|C_i)}{\sum_{j=1}^K \pi_j P(\mathbf{x}|C_j)}.$$

Отбросим знаменатель

$$f_i = P(C_i|\mathbf{x}) = \pi_i P(\mathbf{x}|C_i).$$

LDA

Предположение:

$$P(\boldsymbol{\xi}|\eta=A_i)=\mathbb{N}(\boldsymbol{\mu}_i,\boldsymbol{\Sigma})$$

Классифицирующая функция:

$$f_i(\mathbf{x}) = \frac{\pi_i}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)\mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)^{\mathrm{T}}\right)$$

После упрощения:

$$h_i(\mathbf{x}) = -0.5\boldsymbol{\mu}_i \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i^{\mathrm{T}} + \boldsymbol{\mu}_i \boldsymbol{\Sigma}^{-1} \mathbf{x} + \log \pi_i$$

QDA

Предположение:

$$P(\boldsymbol{\xi}|\eta=A_i)=N(\boldsymbol{\mu}_i,\boldsymbol{\Sigma}_i)$$

Классифицирующая функция:

$$f_i(\mathbf{x}) = \frac{\pi_i}{(2\pi)^{p/2} |\mathbf{\Sigma}_i|^{1/2}} exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i) \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)^{\mathrm{T}}\right)$$

После упрощения:

$$g_i(\mathbf{x}) = -0.5(\mathbf{x} - \boldsymbol{\mu}_i)\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)^{\mathrm{T}} - 0.5\log|\boldsymbol{\Sigma}_i| + \log\pi_i$$

Лог. регрессия

Зададим модель логистической регрессии следующим образом:

$$\log \frac{P(\eta = G_i | \boldsymbol{\xi} = \mathbf{x})}{P(\eta = G_K | \boldsymbol{\xi} = \mathbf{x})} = \beta_{i0} + \boldsymbol{\beta}_i^T \mathbf{x}, i = 1, \dots, K - 1.$$

Лог. регрессия

Перейдем от логитов к вероятностям:

$$P(\eta = G_i | \boldsymbol{\xi} = \mathbf{x}) = \frac{e^{\boldsymbol{\beta}_{i0} + \boldsymbol{\beta}_i^T \mathbf{x}}}{1 + \sum_{k=1}^{K-1} e^{\boldsymbol{\beta}_{k0} + \boldsymbol{\beta}_k^T \mathbf{x}}}, i = 1, \dots, K-1,$$

$$P(\eta = G_K | \boldsymbol{\xi} = \mathbf{x}) = \frac{1}{1 + \sum_{k=1}^{K-1} e^{\boldsymbol{\beta}_{k0} + \boldsymbol{\beta}_k^T \mathbf{x}}}.$$

Лог. регрессия: метод максимального правдоподобия

Для оценки параметров воспользуемся методом максимального правдоподобия:

$$I(\theta) = \sum_{i=1}^{N} \log P(\eta = G_k | \boldsymbol{\xi} = \mathbf{x}; \theta),$$

$$\theta = (\beta_{10}, \beta_1^T, \dots, \beta_{(K-1)0}, \beta_{K-1}^T).$$

Iteratively reweighted least squares (IRLS).

Лог. регрессия

Функция потерь.

$$L(M_i(\beta)) = \log(1 + e^{-y_i \beta^T x_i})$$