AMCNTENCLR1_EL0, Activity Monitors Count Enable Clear Register 1

The AMCNTENCLR1 EL0 characteristics are:

Purpose

Disable control bits for the auxiliary activity monitors event counters, AMEVCNTR1<n> EL0.

Configuration

AArch64 System register AMCNTENCLR1_EL0 bits [31:0] are architecturally mapped to AArch32 System register AMCNTENCLR1[31:0].

AArch64 System register AMCNTENCLR1_EL0 bits [31:0] are architecturally mapped to External register <u>AMCNTENCLR1[31:0]</u>.

This register is present only when FEAT_AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR1 EL0 are undefined.

Attributes

AMCNTENCLR1 EL0 is a 64-bit register.

Field descriptions

63626160595857565554535251504948	47	46	45	44	43	42	41	40 3	39 :	38	37	36	35	34	33	32
RES0																
RES0	P15	P14	P13	P12	P11	P10	P9	P8F	7	P6	P5	P4	P3	P2	P1	Ρ0
31302928272625242322212019181716	15	14	13	12	11	10	a	8	7	6	5	4	٦	<u> </u>	1	$\overline{\cap}$

Bits [63:16]

Reserved, res0.

P < n >, bit [n], for n = 15 to 0

Activity monitor event counter disable bit for <u>AMEVCNTR1<n> EL0</u>.

When N is less than 16, bits [15:N] are RAZ/WI, where N is the value in <u>AMCGCR EL0</u>.CG1NC.

Possible values of each bit are:

P <n></n>	Meaning
0b0	When read, means that
	$\underline{AMEVCNTR1} < n > \underline{EL0}$ is
	disabled. When written, has no
	effect.
0b1	When read, means that
	AMEVCNTR1 <n> EL0 is</n>
	enabled. When written, disables
	$\underline{AMEVCNTR1 < n > \underline{EL0}}$.

The reset behavior of this field is:

• On an AMU reset, this field resets to 0.

Accessing AMCNTENCLR1_EL0

If the number of auxiliary activity monitor event counters implemented is zero, reads and writes of AMCNTENCLR1 EL0 are undefined.

Note

The number of auxiliary activity monitor event counters implemented is zero exactly when <u>AMCFGR ELO</u>.NCG == 0b0000.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, AMCNTENCLR1 EL0

op0	op1	CRn	CRm	op2
0b11	0b011	0b1101	0b0011	0b000

```
'1' then
    AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = AMCNTENCLR1\_EL0;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && CPTR EL3.TAM == '1' then
        UNDEFINED;
    elsif EL2Enabled() && CPTR_EL2.TAM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') && HAFGRTR EL2.AMCNTEN1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = AMCNTENCLR1 ELO;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TAM == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && CPTR_EL3.TAM == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = AMCNTENCLR1\_EL0;
elsif PSTATE.EL == EL3 then
    X[t, 64] = AMCNTENCLR1\_EL0;
```

MSR AMCNTENCLR1_EL0, <Xt>

op0	op1	CRn	CRm	op2		
0b11	0b011	0b1101	0b0011	0b000		

```
if IsHighestEL(PSTATE.EL) then
   AMCNTENCLR1_EL0 = X[t, 64];
else
   UNDEFINED;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.