UM 204 (WINTER 2024) - WEEK 4

Examples. Closed intervals are closed sets. E = [0,1) is neither open nor closed. $\overline{E} = [0,1]$, $E^{\circ} = (0,1)$ and $\partial E = \{0,1\}$. Finite sets are always closed. If d is the discrete metric on a set X, then every set is both open and closed.

Proposition 0.1. A set E is closed if and only if its complement, $E^c = X \setminus E$, is open.

Proof. Suppose *E* is closed. Let $z \in X \setminus E$. Since *z* is not an accumulation point of *E*, there is an $\varepsilon > 0$ such that $B(z; \varepsilon) \cap E \supseteq \{z\}$. However, $z \notin E$, so $B(z; \varepsilon) \subseteq X \setminus E$.

Suppose *E* is open. Let $z \in E$. There is an $\varepsilon > 0$ such that $B(z; \varepsilon) \subseteq E$, i.e., $B(z; \varepsilon)$ contains no point of $X \setminus E$. Thus, z is not an accumulation point of $X \setminus E$.

Suppose *E* contains an accumulation point *z* of $X \setminus E$. T

Corollary 0.2. The intersection of an arbitrary collection of closed sets is closed. The union of a finite collection of closed sets is closed.

Proposition 0.3. (i) The closure of a set is closed.

- (ii) If $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.
- (iii) \overline{E} is the smallest closed set containing E, $\overline{E} = \bigcap_{E \subseteq F: F \text{ is closed}} F$.

Proof. (i) Let $z \in X$ be an accumulation point of \overline{E} . Then, for every $\varepsilon > 0$, there is a $w_{\varepsilon} \in \overline{E} \cap B(z; \varepsilon)$ such that $w_{\varepsilon} \neq z$. Either $w_{\varepsilon} \in E$, or $w_{\varepsilon} \in \overline{E} \setminus E$. In the former case, let $u_{\varepsilon} = w_{\varepsilon}$. In the latter case, let $\delta = \varepsilon - d(z, w_{\varepsilon})$. Then, there is some $u_{\varepsilon} \in E \cap B(w_{\varepsilon}; \delta)$. But $B(w_{\varepsilon}; \delta) \subseteq B(z; \varepsilon)$. Thus, for every $\varepsilon > 0$, there is a $u_{\varepsilon} \in E \cap B(z; \varepsilon)$. Thus, $z \in \overline{E}$.

- (ii) We will show the contrapositive. Let $z \in X \setminus \overline{B}$. Then, there is an $\varepsilon > 0$ such that $B(z; \varepsilon) \subseteq B^c \subseteq A^c$. Thus, $z \in \left(\overline{A}\right)^c$.
- (iii) Let's call the intersection E'. By (i) and (ii), we already have that $\overline{E} \subseteq E'$. Conversely, \overline{E} is a closed set containing E, so $E' \subseteq \overline{E}$.

Consider the following two questions:

- (1) Is (0, 1) an open set?
- (2) Is ℚ a closed set?

These questions are ambiguous if you do not state the underlying metric space. For instance, (0,1) is open in the standard metric on \mathbb{R} , but not open in the standard metric on \mathbb{R}^2 .

Definition 0.4. Given a metric space (X, d) and a subsets $E \subset Y$, we say that E is open (closed) relative to Y if E is an open (closed) subset of $(Y, d|_Y)$.

Proposition 0.5. (Relative topology) Let (X, d) be a metric space and $E \subset Y \subset X$. Then E is open (closed) relative to Y if and only if there is an open (closed) set $F \subset X$ such that $F \cap Y = E$.

Proof. Suppose *E* is open in (Y, d). For every $z \in E$, there is an $\varepsilon_Z > 0$ such that

$$B_{d_Y}(z;\varepsilon_Z)=\{y\in Y:d(z,y)<\varepsilon_z\}=B_d(z;\varepsilon_z)\cap Y$$

is contained in E. Let

$$F = \bigcup_{z \in E} B_d(z; \varepsilon_Z).$$

Then, F is open in X, and $E = F \cap Y$. If E is closed, then $Y \setminus E$ is open, and there is some open $G \subset X$ such that $G \cap Y = Y \setminus E$. Now, $F = X \setminus G$ is closed and $F \cap Y = (X \setminus G) \cap Y = Y \setminus (Y \setminus E) = E$.

Conversely, suppose $E = F \cap Y$ for some closed set $F \subset X$. Let $z \in Y$ be an accumulation point of E. Then, clearly z is an acc. point of F, and thus, $z \in F \cap Y = E$. The case when F is open now follows easily (why?).

END OF LECTURE 9

0.1. **Compactness.** A prototypical example of a closed set is the closed interval [0,1]. However, the interval $[0,\infty)$ is also closed, and we know that continuous functions don't behave as well on such intervals as they do on intervals of the form [a,b].

Definition 0.6. A subset $E \subset (X, d)$ is said to be bounded if there is a $p \in X$ and M > 0 such that $E \subseteq B(p; M)$.

We are hoping to extract the essential features of the intervals [a, b], but in general metric spaces, even closed and boundedness doesn't quite cut it.

Definition 0.7. Let $E \subset (X, d)$. An open cover of E in X is a collection $\mathscr{U} = \{U_{\alpha}\}_{{\alpha} \in \Lambda}$ of open sets in X such that $E \subset \bigcup_{{\alpha} \in \Lambda} U_{\alpha}$. The set E is said to be compact if every open cover $\{U_{\alpha}\}_{{\alpha}_{\Lambda}}$ admits a finite subcover, i.e., there exist $\alpha_1, ..., \alpha_n \in \Lambda$ such that $E \subset U_{\alpha_1} \cup \cdots \cup U_{\alpha_n}$.

Examples. 1. Any finite set $E = \{p_1, ..., p_k\}$ is compact (in any metric space). Let $\{U_\alpha\}_{\alpha \in \Lambda}$ be an open cover of E. For each p_j , there is some $\alpha_j \in \Lambda$ such that $p_j \in U_{\alpha_j}$. Thus, $\{U_{\alpha_j}\}_{j=1}^k$ is a finite subcover. 2. (0,1) is not compact space (in the standard metric). Let

$$U_n = \left(\frac{1}{n+1}, \frac{1}{n}\right), \quad n \in \mathbb{N}_+.$$

Then, $(0,1) \subset \bigcup_{n=1}^{\infty} U_n$ (why?) but $\{U_n\}_{n=1}^{\infty}$ admits no finite subcover (why?).

3. [0,1] is compact in the standard metric. In fact, any rectangle $[a_1,b_1] \times \cdots \times [a_n,b_n]$ is compact in \mathbb{R}^n but it takes a bit of effort to prove. The effort is worth it because one then obtains, as a consequence, a part of the following theorem.

Theorem 0.8. Let $E \subset \mathbb{R}^n$. T.F.A.E.

- (1) E is compact.
- (2) E is closed and bounded.
- (3) Every infinite subset of E admits a limit point in E.

Remark The equivalence between (1) and (2) is referred to as the Heine Borel theorem. *Proof.* The proof relies on many results. First, we show that $(1) \Rightarrow (2)$ in any metric space.

Theorem 0.9. Let (X, d) be a metric space and $E \subset X$ be a compact set. Then, E is closed and bounded.

Proof. We will show that E^c is open. Let $p \in E^c$. For any $x \in E$, let $U_x = B_d(x; \frac{1}{2}d(x, p))$. Note that $U_x^c \supset B_d(p; \frac{1}{2}d(x, p))$. Now, $E \subset \bigcup_{x \in E} U_x$. By the compactness of E, there exist $x_1, ..., x_n \in E$ such that $E \subset U_{x_1} \cup \cdots \cup U_{x_n}$. Thus, $E^c \supseteq U_{x_1}^c \cup \cdots \cup U_{x_n}^c \supseteq B_d(p; \delta)$, where $\delta = \min\{d(x_j, p) : j = 1, ..., n\}$.

For boundedness of E, fix $p \in X$, and observe that $E \subset \bigcup_{r>0} B_d(p;r)$. The compactness of E yields an R > 0 such that $E \subset B_d(p;R)$.

Next, we establish that $(2) \Rightarrow (1)$ in \mathbb{R}^n . Our strategy is based on the observation that any bounded set *E* is contained in a rectangle of the form $[0, R]^n$ for some R > 0 (why?). Then, we prove that

Theorem 0.10. All rectangles of the form $[0,R]^n$, R > 0, are compact.

Theorem 0.11. A closed subset of a compact set is compact.

Proof of Theorem 0.10. Fix R > 0 and let $I_0 = [0, R]^n$. Note that

$$diam(I_0) = max\{||x - y|| : x, y \in I_0\} \le \sqrt{n}R.$$

Suppose $\mathscr{U} = \{U_{\alpha}\}$ is an open cover of I_0 that does not contain a finite subcover of I_0 . Now consider a sequence of rectangles $I_0 \supset I_1 \supset I_2 \supset \cdots$ constructed (inductively) as follows. Conider the 2^n rectangles of the form $J_1 \times \cdots \times J_n$, where each J_{ℓ} is either [0,R/2] or [R/2,R]. These rectangles partition I_0 , and at least one of them is not covered by a finite subcover of \mathscr{U} . Call such a rectangle I_1 . Subdividing I_1 further and repeating this process, we obtain rectangles $I_0 \supset I_1 \supset I_2 \supset \cdots$ such that

- (1) no I_i is covered be a finite subcover of \mathcal{U} ,
- (2) diam $(I_j) \le \frac{R\sqrt{n}}{2^j} = 2^{-j}C$, $j \in \mathbb{N}$, which implies that $I_j \subset B(z; 2^{-j}C)$ for all $z \in I_j$.

END OF LECTURE 10

We now use the following fact:

Lemma 0.12. If $I_0 \supset I_1 \supset \cdots$ is a sequence of closed rectangles, then $\bigcap_{j=1}^{\infty} I_j$ is non-empty.

Assuming this fact, we let $a \in \bigcap_{j=0}^{\infty} I_j$. Then, there is some $\alpha \in \Lambda$ such that $a \in U_\alpha$. So, there is some $\varepsilon > 0$ such that $B(a;\varepsilon) \subseteq U_\alpha$. Now, by the Archimedean property of \mathbb{R} , there is some $j \in \mathbb{N}$ such that $2^{-j}C < \varepsilon$. Thus, $I_j \subseteq B(a;2^{-j}C) \subseteq B(a;\varepsilon) \subset U_\alpha$. But I_j was not covered by a finite subcover of \mathscr{U} ! Thus, mathscr U admits a finite subcover of I_0 .

Lemma 0.12 is the higher-dimensional version of the nested interval property discussed in Lecture 16 of UM 101. The proof generalizes easily from the case of \mathbb{R} and is left as an exercise.

Proof of Theorem 0.11. Let $E \subseteq F \subseteq X$, where F is compact in X and E is closed in X. Let $\{U_{\alpha}\}_{{\alpha} \in \Lambda}$ be an open cover of E. Let $V = E^c$. Then, $\mathscr{U} = \{V\} \cup \{U_{\alpha}\}$ is an open cover of E. By the compactness of E, E contains a finite subcover E of E. Either the cover contains E, in which case we throw it out and the rest cover E, or the subcover only consists of finitely many elements from $\{U_{\alpha}\}$, in which case, once again, we get a finite subcover of E.

We will show that $(1) \Rightarrow (3) \Rightarrow (2)$.

For $(1) \Rightarrow (3)$, let $F \subset E$ be an infinite set. Suppose no point of E is a limit point of F. Then, for every $z \in E$, there is a ball $B(z; \varepsilon_z)$ that contains no point from F, other than possibly z. This gives an open cover of E, and each element of F is in exactly one element of this cover. This cover cannot contain a finite subcover.

For (3) \Rightarrow (2), first assume that E is not bounded. Then, we can inductively construct a sequence $\{x_j\}_{j\in\mathbb{N}}\subset\mathbb{R}^n$ such that $\|x_j\|>\|x_{j-1}\|+1$. Such a sequence cannot have a limit point (why?).

Next, assume E is not closed. Let $z \in \overline{E} \setminus E$. There is a subsequence of distinct points $\{x_j\}_{j \in \mathbb{N}} \subset E$ such that $\|z - x_j\| < 1/j$. Thus, $S = \{x_j : j \in \mathbb{N}\}$ is an infinite subset of E. For any $y \in \mathbb{R}^n$ such that $y \neq z$, we have that

$$\|x_j - y\| \ge \|y - x_0\| - \|x_j - x_0\| \ge \|y - x_0\| - \frac{1}{i} > \frac{1}{2}\|y - x_0\|$$

for sufficiently large j. Thus, y is not a limit point of S and the only limit point of S is not in E.

Corollary 0.13. Every bounded infinite subset of \mathbb{R}^n has a limit point in \mathbb{R}^n .

Theorem 0.14. If $\mathcal{K} = \{K_{\alpha}\}_{{\alpha} \in \Lambda}$ is a collection of compact subsets of (X, d) such that every finite subcollection of \mathcal{K} has nonempty intersection, then $\cap_{{\alpha} \in \Lambda} K_{\alpha}$ is nonempty.

Proof. Suppose the claim does not hold. Then, there is some $K = K_{\alpha} \in \mathcal{K}$ such that no element in K is in every other $K_{\beta} \in \mathcal{K}$. I.e.,

$$K \subset \cup_{\alpha \in \Lambda} K_{\alpha}^{c}$$
.

Thus, $\{K_{\alpha}^c\}$ is an open cover of K. By compactness, there exist $\alpha_1,...,\alpha_k \in \Lambda$ such that

$$K \subseteq K_{\alpha_1}^c \cup \cdots \cup K_{\alpha_k}^c = (K_{\alpha_1} \cup \cdots \cup K_{\alpha_k})^c$$
.

But, the finite intersection $K \cap K_{\alpha_1} \cap \cdots \cap K_{\alpha_k}$ is empty, which contradicts the hypothesis on \mathcal{K} .

Corollary 0.15. Suppose $K_0 \supseteq K_1 \supset K_2 \supseteq \cdots$ is a collection of nonempty compact sets in a metric space. Then, $\bigcap_{j=0}^{\infty} K_j = \neq \emptyset$.

Theorem 0.16. Let $E \subset Y \subset (X, d)$. Then, E is compact relative to Y if and only if E is compact in X.

Proof. We will only sketch the idea: every open cover of E in Y extends to an open cover of E in X, and every open cover of E in X restricts to an open cover of E in Y (by the characterization of relatively open sets in Y).

END OF LECTURE 11