US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2

Date of Patent

August 19, 2025

Inventor(s)

Yen; Yung-Sung et al.

Method of fabricating semiconductor device with reduced trench distortions

Abstract

A method includes forming a material layer over a substrate, forming a first hard mask (HM) layer over the material layer, forming a first trench, along a first direction, in the first HM layer. The method also includes forming first spacers along sidewalls of the first trench, forming a second trench in the first HM layer parallel to the first trench, by using the first spacers to guard the first trench. The method also includes etching the material layer through the first trench and the second trench, removing the first HM layer and the first spacers, forming a second HM layer over the material layer, forming a third trench in the second HM layer. The third trench extends along a second direction that is perpendicular to the first direction and overlaps with the first trench. The method also includes etching the material layer through the third trench.

Inventors: Yen; Yung-Sung (New Taipei, TW), Lee; Chung-Ju (Hsinchu, TW), Chen; Chun-

Kuang (Hsinchu County, TW), Wu; Chia-Tien (Taichung, TW), Yu; Ta-Ching (Hsinchu County, TW), Chen; Kuei-Shun (Hsinchu, TW), Liu; Ru-Gun (Hsinchu County, TW), Shue; Shau-Lin (Hsinchu, TW), Gau; Tsai-Sheng (HsinChu, TW),

Wu; Yung-Hsu (Taipei, TW)

Applicant: Taiwan Semiconductor Manufacturing Company, Ltd. (Hsinchu, TW)

Family ID: 1000008765330

Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.

(Hsinchu, TW)

Appl. No.: 18/433251

Filed: February 05, 2024

Prior Publication Data

Document IdentifierUS 20240178002 A1

Publication Date
May. 30, 2024

Related U.S. Application Data

continuation parent-doc US 17861586 20220711 US 11894238 child-doc US 18433251 continuation parent-doc US 17080248 20201026 US 11387113 20220712 child-doc US 17861586 continuation parent-doc US 16229339 20181221 US 10818509 20201027 child-doc US 17080248 continuation parent-doc US 14657763 20150313 US 9418868 20160816 child-doc US 15237898 division parent-doc US 15237898 20160816 US 10163654 20181225 child-doc US 16229339

Publication Classification

Int. Cl.: H01L21/311 (20060101); H01L21/033 (20060101); H01L21/3213 (20060101); H01L21/768 (20060101); H10D84/01 (20250101); H10D84/03 (20250101)

U.S. Cl.:

CPC **H01L21/31144** (20130101); **H01L21/0337** (20130101); **H01L21/32139** (20130101); **H01L21/76816** (20130101); H01L21/0332 (20130101); H01L21/0338 (20130101); H10D84/0151 (20250101); H10D84/0188 (20250101); H10D84/038 (20250101)

Field of Classification Search

CPC: H01L (21/3114)

References Cited

IIS DATENT DOCUMENTS

U.S. PATENT DOCUMENTS						
Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC		
8039179	12/2010	Shieh et al.	N/A	N/A		
8202681	12/2011	Lin et al.	N/A	N/A		
8247291	12/2011	Min et al.	N/A	N/A		
8728332	12/2013	Lin et al.	N/A	N/A		
8822243	12/2013	Yan et al.	N/A	N/A		
8916337	12/2013	Arnold et al.	N/A	N/A		
8969206	12/2014	Sel et al.	N/A	N/A		
9054159	12/2014	Huang et al.	N/A	N/A		
9799567	12/2016	Kuo et al.	N/A	N/A		
2006/0091468	12/2005	Liaw	N/A	N/A		
2011/0281208	12/2010	Lin et al.	N/A	N/A		
2012/0108070	12/2011	Kim	257/E21.257	H01L 21/3086		
2012/0278776	12/2011	Lei et al.	N/A	N/A		
2013/0264622	12/2012	Lin et al.	N/A	N/A		
2013/0295769	12/2012	Lin et al.	N/A	N/A		
2013/0313717	12/2012	Holmes et al.	N/A	N/A		
2013/0320451	12/2012	Liu et al.	N/A	N/A		
2014/0017894	12/2013	Tsai	438/694	H01L 21/76816		
2014/0193974	12/2013	Lee et al.	N/A	N/A		
2014/0215421	12/2013	Chen et al.	N/A	N/A		
2014/0242794	12/2013	Lin et al.	N/A	N/A		

2014/0264760	12/2013	Chang et al.	N/A	N/A
2014/0264899	12/2013	Chang et al.	N/A	N/A
2014/0273442	12/2013	Liu et al.	N/A	N/A
2014/0273446	12/2013	Huang et al.	N/A	N/A
2014/0273471	12/2013	Gwak	N/A	N/A
2015/0093902	12/2014	Huang et al.	N/A	N/A
2015/0221549	12/2014	Ponoth et al.	N/A	N/A
2015/0294905	12/2014	Wu et al.	N/A	N/A
2015/0311113	12/2014	Zhang et al.	N/A	N/A
2015/0318209	12/2014	Chang et al.	N/A	N/A
2016/0225768	12/2015	Cheng et al.	N/A	N/A
2016/0358788	12/2015	Yen et al.	N/A	N/A
2017/0263865	12/2016	Liu et al.	N/A	N/A
2019/0122895	12/2018	Yen et al.	N/A	N/A
2021/0057231	12/2020	Yen et al.	N/A	N/A
2022/0344170	12/2021	Yen et al.	N/A	N/A

Primary Examiner: Amer; Mounir S

Attorney, Agent or Firm: HAYNES AND BOONE, LLP

Background/Summary

PRIORITY DATA (1) The present application is a continuation application of U.S. application Ser. No. 17/861,586, filed Jul. 11, 2022, which is a continuation application of U.S. application Ser. No. 17/080,248, filed Oct. 26, 2020, which is a continuation application of U.S. application Ser. No. 16/229,339, filed Dec. 21, 2018, which is a divisional application of U.S. application Ser. No. 15/237,898, filed Aug. 16, 2016, which is a continuation application of U.S. application Ser. No. 14/657,763, filed Mar. 13, 2015, each of which is hereby incorporated by reference in its entirety.

BACKGROUND

(1) The semiconductor integrated circuit (IC) industry has experienced rapid growth. Technological advances in IC design and material have produced generations of ICs where each generation has smaller and more complex circuits than previous generations. In the course of IC evolution, functional density (i.e., the number of interconnected devices per chip area) has generally increased while geometry size (i.e., the smallest component (or line) that can be created using a fabrication process has decreased. When a semiconductor device such as a metal-oxide-semiconductor field-effect transistor (MOSFET) is scaled down through various technology nodes, challenges rise to reduce irregularities/distortions in features/patterns formed over a wafer.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) Aspects of the present disclosure are best understood from the following detailed description when read in association with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features in drawings are not drawn to scale. In fact, the dimensions of illustrated features may be arbitrarily increased or decreased for clarity of discussion.
- (2) FIG. 1 is a flowchart of an example method for fabricating a semiconductor device constructed

- in accordance with some embodiments.
- (3) FIG. **2** is a cross section view of an example of a workpiece of a semiconductor device in accordance with some embodiments.
- (4) FIGS. **3**A and **3**B are schematic views of patterns formed over a resist layer by a lithography process.
- (5) FIGS. **4**A and **4**C are top views of an example of a semiconductor device in accordance with some embodiments.
- (6) FIGS. **4**B and **4**D are cross-sectional views of an example semiconductor device in accordance with some embodiments, along the line A-A in FIGS. **4**A and **4**C, respectively.
- (7) FIG. **5**A is a top view of an example of a semiconductor device in accordance with some embodiments.
- (8) FIG. **5**B is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line A-A in FIG. **5**A.
- (9) FIGS. **6**A and **6**C are top views of an example of a semiconductor device in accordance with some embodiments.
- (10) FIGS. **6**B and **6**D are cross-sectional views of an example semiconductor device in accordance with some embodiments, along the line A-A in FIGS. **6**A and **6**C, respectively.
- (11) FIGS. 7A, 7C, 7E and 7G are top views of an example of a semiconductor device in accordance with some embodiments.
- (12) FIGS. 7B, 7D, 7F and 7H are cross-sectional views of an example semiconductor device in accordance with some embodiments, along the line A-A in FIGS. 7A, 7C, 7E and 7G, respectively.
- (13) FIGS. **8**A, **8**C and **8**E are top views of an example of a semiconductor device in accordance with some embodiments.
- (14) FIGS. **8**B, **8**D and **8**F are cross-sectional views of an example semiconductor device in accordance with some embodiments, along the line A-A in FIGS. **8**A, **8**C and **8**E, respectively.
- (15) FIG. **9**A is a top view of an example of a semiconductor device in accordance with some embodiments.
- (16) FIG. **9**B is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line A-A in FIG. **9**A.
- (17) FIGS. **10**A and **10**C are top views of an example of a semiconductor device in accordance with some embodiments.
- (18) FIGS. **10**B and **10**D are cross-sectional views of an example semiconductor device in accordance with some embodiments, along the line A-A in FIGS. **10**A and **10**C, respectively.
- (19) FIG. **11**A is a top view of an example of a semiconductor device in accordance with some embodiments.
- (20) FIG. **11**B is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line A-A in FIG. **11**A.
- (21) FIGS. **12**A and **12**C are top views of an example of a semiconductor device in accordance with some embodiments.
- (22) FIGS. **12**B and **12**D are cross-sectional views of an example semiconductor device in accordance with some embodiments, along the line B-B in FIGS. **12**A and **12**C, respectively.
- (23) FIGS. **13**A and **13**C are top views of an example of a semiconductor device in accordance with some embodiments.
- (24) FIGS. **13**B and **13**D are cross-sectional views of an example semiconductor device in accordance with some embodiments, along the line B-B in FIGS. **13**A and **13**C, respectively.
- (25) FIG. **13**E is a top view of an example of a semiconductor device in accordance with some embodiments.
- (26) FIG. **13**F is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line A-A in FIG. **13**E.
- (27) FIG. 13G is a cross-sectional view of an example semiconductor device in accordance with

- some embodiments, along the line B-B in FIG. 13E.
- (28) FIG. **13**H is a top view of an example of a semiconductor device in accordance with some embodiments.
- (29) FIG. **13**I is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line B-B in FIG. **13**H.
- (30) FIG. **14**A is a top view of an example of a semiconductor device in accordance with some embodiments.
- (31) FIG. **14**B is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line A-A in FIG. **14**A.
- (32) FIG. **14**C is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line B-B in FIG. **14**A.
- (33) FIG. **14**D is a top view of an example of a semiconductor device in accordance with some embodiments.
- (34) FIG. **14**E is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line B-B in FIG. **14**D.
- (35) FIG. **14**F is a top view of an example of a semiconductor device in accordance with some embodiments.
- (36) FIG. **14**G is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line A-A in FIG. **14**F.
- (37) FIG. **14**H is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line B-B in FIG. **14**F.
- (38) FIG. **14**I is a top view of an example of a semiconductor device in accordance with some embodiments.
- (39) FIG. **14**J is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line B-B in FIG. **14**J.
- (40) FIG. **15**A is a top view of an example of a semiconductor device in accordance with some embodiments.
- (41) FIG. **15**B is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line A-A in FIG. **15**A.
- (42) FIG. **15**C is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line B-B in FIG. **15**A.
- (43) FIG. **15**D is a top view of an example of a semiconductor device in accordance with some embodiments.
- (44) FIG. **15**E is a cross-sectional vies of an example semiconductor device in accordance with some embodiments, along the line A-A in FIG. **15**D.
- (45) FIGS. **16**A and **16**C are top view of an example of a semiconductor device in accordance with some embodiments.
- (46) FIGS. **16**B and **16**D are cross-sectional views of an example semiconductor device in accordance with some embodiments, along the line A-A in FIGS. **16**A and **16**C, respectively.
- (47) FIG. **17**A is a top view of an example of a semiconductor device in accordance with some embodiments.
- (48) FIG. **17**B is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line A-A in FIG. **17**A.
- (49) FIG. **17**C is a cross-sectional view of an example semiconductor device in accordance with some embodiments, along the line B-B in FIG. **17**A.

DETAILED DESCRIPTION

(50) The following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or

- on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
- (51) Further, spatially relative terms, such as "beneath," "below," "lower," "above," "upper" and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
- (52) FIG. **1** is a flowchart of a method **100** of fabricating one or more semiconductor devices in accordance with some embodiments. The method **100** is discussed in detail below, with reference to a workpiece **205** of a semiconductor device **200** shown in FIG. **2** and the semiconductor device **200**, shown in FIGS. **4**A to **17**C.
- (53) Referring to FIGS. 1 and 2, the method 100 starts at step 102 by receiving a workpiece 205 of the semiconductor device 200. The workpiece 205 includes a substrate 210. The substrate 210 may be a bulk silicon substrate. Alternatively, the substrate 210 may comprise an elementary semiconductor, such as silicon (Si) or germanium (Ge) in a crystalline structure; a compound semiconductor, such as silicon germanium (SiGe), silicon carbide (SiC), gallium arsenic (GaAs), gallium phosphide (GaP), indium phosphide (InP), indium arsenide (InAs), and/or indium antimonide (InSb); or combinations thereof. Possible substrates 210 also include a silicon-on-insulator (SOI) substrate. SOI substrates are fabricated using separation by implantation of oxygen (SIMOX), wafer bonding, and/or other suitable methods.
- (54) Some exemplary substrates **210** also include an insulator layer. The insulator layer comprises any suitable material, including silicon oxide, sapphire, and/or combinations thereof. An exemplary insulator layer may be a buried oxide layer (BOX). The insulator is formed by any suitable process, such as implantation (e.g., SIMOX), oxidation, deposition, and/or other suitable process. In some exemplary semiconductor device **200**, the insulator layer is a component (e.g., layer) of a silicon-on-insulator substrate.
- (55) The substrate **210** may also include various p-type doped regions and/or n-type doped regions, implemented by a process such as ion implantation and/or diffusion. Those doped regions include n-well, p-well, light doped region (LDD), doped source and drain (S/D), and various channel doping profiles configured to form various integrated circuit (IC) devices, such as a complimentary metal-oxide-semiconductor field-effect transistor (CMOSFET), imaging sensor, and/or light emitting diode (LED). The substrate **210** may further include other functional features such as a resistor or a capacitor formed in and on the substrate.
- (56) The substrate **210** may also include various isolation features. The isolation features separate various device regions in the substrate **210**. The isolation features include different structures formed by using different processing technologies. For example, the isolation features may include shallow trench isolation (STI) features. The formation of a STI may include etching a trench in the substrate **210** and filling in the trench with insulator materials such as silicon oxide, silicon nitride, or silicon oxynitride. The filled trench may have a multi-layer structure such as a thermal oxide liner layer with silicon nitride filling the trench. A chemical mechanical polishing (CMP) may be performed to polish back excessive insulator materials and planarize the top surface of the isolation features.
- (57) The substrate 210 may also include gate stacks formed by dielectric layers and electrode

- layers. The dielectric layers may include an interfacial layer (IL) and a high-k (HK) dielectric layer deposited by suitable techniques, such as chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD), thermal oxidation, combinations thereof, or other suitable techniques. The electrode layers may include a single layer or multi layers, such as metal layer, liner layer, wetting layer, and adhesion layer, formed by ALD, PVD, CVD, or other suitable process.
- (58) The substrate **210** may also include a plurality of inter-level dielectric (ILD) layers and conductive features integrated to form an interconnect structure configured to couple the various p-type and n-type doped regions and the other functional features (such as gate electrodes), resulting a functional integrated circuit.
- (59) In the present embodiment, the workpiece **205** includes a first material layer **220** (or main layer) over the substrate **210**, a second material layer **230** (or middle layer) over the first material layer **220** and a first hard mask (HM) **310** deposited over the second material layer **230**. The first material layer **220** and the second material layer **230** may include a dielectric layer, such as silicon oxide, silicon nitride, or silicon oxynitride, low-k dielectric material, or other suitable materials. The first material layer **220** may also include a conductive layer such as a polysilicon, a metal layer, or/and other suitable material. In the present embodiment, the second material layer 230 may include a material which is different from the first material layer **220** to achieve etching selectivity during subsequent etch processes. The first HM **310** may include silicon oxide, silicon nitride, oxynitride, silicon carbide, titanium oxide, titanium nitride, tantalum oxide, tantalum nitride, and/or any suitable materials. In the present embodiment, the first HM **310** may include a material which is different from the first material layer 220 and the second material layer 230 to achieve etching selectivity during subsequent etch processes. The first material layer **220**, the second material layer **230** and the first HM **310** may be deposited over the substrate **210** by suitable techniques, such as chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD), thermal oxidation, combinations thereof, or other suitable techniques.
- (60) In the present embodiment, a plurality of features (e.g. trenches) is to be formed in the first material layer **220**. In order to form trenches in the first material layer **220**, it is usually to form a patterned resist layer with openings over the first HM **310** first, then etching the first HM **310** through openings to pattern the first HM **310**, and then etching the first material layer **220** through the patterned first HM **310** to form trenches. The patterned resist layer may be formed by a lithography process equipped with an optical imaging tool.
- (61) FIG. 3A shows an ideal patterned resist layer 330 which includes a first opening 340 having a L-shape, that has a first portion 340A extending along a first direction (Y direction) and a second portion 340B extending along a second direction (X direction), which is perpendicular to the first direction. The first portion 340A connects to the second portion 340B at a location A. The patterned resist layer 330 also includes a second opening 350 having a T-shape that has a third portion 350A and a fourth portion 350B. The third portion 350A extends along the Y direction and spaces from the first portion 340A by a first distance d.sub.1. The fourth portion 350B extends along the X direction and connects to (or intersects) the first portion 340A at a location B. The fourth portion 350B is spaced from the second portion 340B by a second distance d.sub.2. The third portion 350B is located close to an end of the second portion 340B at a location C. It desired that the first and second openings, 340 and 350 remain regular contour (such as a rectangular contour) at each end of the openings. It is also desired that the first portion 340A connects to the second portion 340B with a right angle (90 degree) at the location A and similarly that the third portion 350A connects to the fourth portion 350B and the fourth portion 350B connects to the first portion 340A at the location B with right angle (90 degree) connecting angles.
- (62) However, due to diffraction, resolution and other process effect of the optical imaging tool in a lithography process, irregularities/distortions in resist patterns (openings) may happen. FIG. 3B shows such problems that can occur to patterned resist layer 330. For example, when the first and

second openings, **340** and **350**, are formed over a resist layer, rounded corner distortions may be formed at the locations A and B, instead of right angle connecting angles. Furthermore, when the first and second openings, **340** are **350** locate closely to each other such that a distance between them is smaller than a threshold distance d.sub.th of a lithography exposure process, they may have line end shortening distortions at locations (see e.g. location C of FIG. **3B**). Furthermore, when the first and second distance, d.sub.1 and d.sub.2, are small, challenges raise for overcoming misalignment. If these irregularities/distortions and misalignment are transferred to form features (such as trenches) over a layer (such as the first material layer **220**), it may significantly alter the electrical properties of the semiconductor device **200**. The present discourse provides methods to reduce irregularities/distortions and overcome misalignment in forming features in the first material layer **220**.

- (63) Referring to FIGS. 1 and 4A-4D, once the workpiece 205 is received, method 100 proceeds to step 104 by forming a first trench 425 in the first HM 310. In some embodiment, in order to form the first trench 425, a first patterned resist layer 410 is formed over the first HM 310 by a lithography process. The first patterned resist layer 410 has a first opening 415, which has a rectangular shape and extends along the Y-direction. Respective portions of the first HM 310 are exposed in the first opening 415, as shown in FIGS. 4A-4B. An exemplary lithography process may include forming a resist layer, exposing the resist layer by a lithography exposure process, performing a post-exposure bake process, and developing the resist layer to form the patterned resist layer.
- (64) The first HM **310** is then etched through the first patterned resist **410** to transfer the first opening **415** to the first trench **425**. The etch process may include wet etch, dry etch, or a combination thereof. In some embodiments, the etch process includes an anisotropic dry etch. For example, the etch process is a plasma anisotropic etch. In some embodiments, the etch process is properly chosen to selectively etch the first HM **310** without substantially etching the second material layer **230**. As has been mentioned previously, with an adequate etch selectivity, the second material layer **230** serves as an etch stop layer, which improves etch process window and profile control. A resist strip process is then applied to remove any remaining first patterned resist layer **410**, as shown in FIGS. **4C-4D**.
- (65) Referring to FIGS. 1 and 5A-5B, the method 100 proceeds to step 106 by forming first spacers 430 along sidewalls of the first trench 425. In the present embodiment, the first spacers 430 include a material which is different from the first HM 310 to achieve etching selectivity subsequent etch. The first spacers 430 may be formed by depositing a spacer layer over the first HM 310, and followed by a spacer etch to etch the spacer layer anisotropically. The spacer layer may include silicon oxide, silicon nitride, oxynitride, silicon carbide, titanium oxide, titanium nitride, tantalum oxide, tantalum nitride, or any suitable materials. The spacer layer may be deposited by CVD, ALD, PVD, or other suitable techniques. In one embodiment, the spacer layer is etched by an anisotropic dry etch to form a vertical profile, which will be transferred to a profile of a trench feature later. By controlling the thickness of the spacer layer and spacer etching process, the first spacers 430 are formed to have a first width w.sub.1.
- (66) Referring to FIGS. **1** and **6**A-**6**B, the method **100** proceeds to step **108** by forming a second patterned resist layer **510** over the first HM **310** and within first trench **425**. The second patterned resist layer **510** has a second opening **515**, which extends along the X direction and is parallel to the first trench **425**. A respective portion of the first HM **310** is exposed within the second opening **515**. The second patterned resist layer **510** is formed similarly in many respects to the first patterned resist layer **410** discussed above association with FIGS. **4**A-**4**B.
- (67) In the present embodiment, the second opening **515** is defined by the second patterned resist layer **510** while the first opening **415** has been defined by the first patterned resist layer **410**. Thus line end shortening distortions, induced by threshold distance d.sub.th constrain in the lithography exposing process, are greatly reduced.

- (68) In some embodiments, referring to FIGS. **6**C-**6**D, the second opening is positioned closer to the first trench **425**. Thus, in some embodiments the first HM **310** and a portion of the adjacent first spacer **430** are exposed within the second opening (referred to as **516** as shown in FIGS. **6**C-**6**D). Sometimes the exposure of the adjacent first spacer **430** is caused by adverse process impacts, such as misalignment, pattern irregularities/distortions in the lithography process of forming the second patterned resist layer **510**. In still other embodiments, the second opening **516** has a larger width such that it extends to the adjacent first spacer **430** to obtain advantages, such as relaxing lithography process resolution constrains.
- (69) Referring to FIGS. **1** and **7**A—**7**B (in conjunction with the process described with respect to FIGS. **6**A-**6**B), method **100** proceeds to step **110** by etching the first HM **310** through the second opening **515** to form a second trench **525** in the first HM **310**. A portion of the second material layer **230** is exposed in the second trench **525**. The etch process may include wet etch, dry etch, or a combination thereof.
- (70) As discussed above in reference to FIGS. **6**C-**6**D, in some embodiments the second opening is positioned closer to the first trench **425** such that the first HM **310** and a portion of the adjacent first spacer **430** are exposed within the second opening (referred to as **516** as shown in FIGS. **6**C-**6**D). In such a scenario, the etch process is properly chosen to selectively etch the first HM **310** without substantially etching the first spacer **430**. Thus, the portion of the adjacent first spacer **430** exposed within the second opening **516** serves as a sub-etch-mask (or guards the first trench **425**) during etching the first HM **310** through the second opening **516** to form a third trench **526**, as shown in FIGS. **7**C-**7**D in this alternative embodiment.
- (71) A resist strip process is then applied to remove any remaining second patterned resist layer 510. In conjunction with the process described above with respect to FIGS. 7A-7B, the first trench 425 having the first spacer 430 along its sidewalls and second trench 525 are formed in the first HM 310, as shown in FIGS. 7E-7F after the removal of the second patterned resist layer 510. Alternatively, in conjunction with the process described with respect to FIGS. 7C-7D, the first trench 425 having the first spacer 430 along its sidewalls and third trench 526 are formed in the first HM 310, as shown in the FIGS. 7G-7H after removal of the second patterned resist layer 510. Specifically, the first spacer 430 separates the first trench 425 away from the third trench 526 as shown in FIGS. 7G-7H. Therefore, the spacer 430 ensures a designed minimum space (w.sub.1) between the first trench 425 and the third trench 526 and it is referred to as a first safeguarding-spacer.
- (72) Referring to FIGS. **1** and **8**A-**8**D, the method **100** proceeds to step **112** by etching the second material layer **230** through the first and second trenches, **425** and **525**, (as shown in FIGS. **8**A-**8**B), or through the first and third trenches, **425** and **526** (as shown in FIGS. **8**C-**8**D in the alternative embodiment), to form a fourth trench 530 and a fifth trench 540 in the second material layer 230. In the present embodiment, the etch process is properly chosen to selectively etch the second material layer **230**, but does not substantially etch the first HM **310** and the first spacer **430**. Thus, the first HM **310** and the first spacer **430** serve as an etching-mask. Thereafter, the embodiments described in FIGS. **8**A-**8**B and the embodiment described in FIGS. **8**C-**8**D proceed to removing the first HM **310** and the first spacer **430** by other proper etching processes, as shown in FIGS. **8**E and **8**F. (73) Referring to FIGS. **1** and **9**A-**9**B, the method **100** then proceeds to step **114** by depositing a planarization layer **550** over the second material layer **230** and depositing a second HM **560** over the planarization layer **550**. In the present embodiment, the planarization layer **550** is deposited over the second material layer **230**, including filling in the third and fourth trenches, **530** and **540**, to provide a planar top surface, which is desirable for subsequent lithography process. In some embodiment, a CMP is performed to further planarize the planarization layer **550**. The planarization layer **550** may include spin-on glass, silicon oxide, silicon nitride, oxynitride, silicon carbide, low-k dielectric material, and/or other suitable materials. The second HM **560** may include silicon oxide, silicon nitride, oxynitride, silicon carbide, titanium oxide, titanium nitride, tantalum

oxide, tantalum nitride, and/or any suitable materials. In the present embodiment, the second HM **560** may include a material which is different from the planarization layer **550** to achieve etching selectivity during subsequent etch processes. The second HM **560** carries a planar top surface from the planarization layer **550**. The planarization layer **550** and the second HM **560** may be deposited by CVD, PVD, ALD, spin-on coating, or other suitable techniques.

- (74) Referring to FIGS. 1 and 10A-10B, the method 100 proceeds to step 116 by forming a third patterned resist layer 610 over the second HM 560. The second patterned resist layer 510 is formed similarly in many respects to the first patterned resist layer 410 discussed above association with FIGS. 4A-4B. The second patterned resist layer 610 has a third opening 615 extending along the X direction. By forming on a planar top surface of the second HM 560, uniformity of critical dimension and process window are improved. The third opening 615 overlaps and extends perpendicularly with respect to the third trench 530 at a first location M and the fourth trench 540 at a second location N. In some embodiments, the third opening 615 extends to outside of the third trench 530 at the first location M and outside of the fourth trench 540 at the second location N. (75) Referring to FIGS. 1 and 10C—10D, method 100 proceeds to step 118 by etching the second HM 560 through the third patterned resist layer 610 to form a sixth trench 625 in the second HM 560. The second HM 560 is etched similarly in many respects to the etching process first patterned discussed above association with FIGS. 4C-4D. The etch process is properly chosen to selectively remove the second HM 560 but does not substantially etch the planarization layer 550. A resist strip process is then applied to remove any remaining third patterned resist layer 610.
- (76) Referring to FIGS. **1** and **11**A-**11**B, the method **100** proceeds to step **120** by forming second spacers **630** along sidewalls of the sixth trench **625**. In the present embodiment, the second spacers **630** include a material which is different from the second HM **560** to achieve etching selectivity subsequent etch. The second spacers **630** are formed similarly in many respects to the etching process first patterned discussed above association with FIGS. **5**A-**5**B. The second spacer **630** has a second width w.sub.2.
- (77) Referring to FIGS. **1** and **12**A-**12**B, the method **100** proceeds to step **122** by forming a fourth patterned resist layer **710** over the second HM **560**. The fourth patterned resist layer **710** is formed similarly in many respects to the first patterned resist layer **410** discussed above association with FIGS. **4**A-**4**B. The fourth patterned resist layer **710** has a fourth opening **715**, which extends along the X direction. The fourth opening **715** is parallel to the sixth trench **625**. In some embodiments, the fourth opening **715** overlaps with the fourth trench **530** at a third location O (an end of the fourth trench **530**). A portion of the second HM **560** is exposed within the fourth opening **715**. (78) In the present embodiment, the fourth opening **715** is defined by the fourth patterned resist layer **710** while the third opening **615** is defined by the third patterned resist layer **610**. Thus, line end shortening distortions induced by threshold distance d.sub.th constrain in the lithography exposing process are greatly reduced. The third and fourth openings, **615** and **715**, are formed with regular contours (such as rectangular contours) at their opening ends.
- (79) In some embodiments, referring to FIGS. **12**C-**12**D, the fourth opening is positioned closer to the sixth trench **625**. Thus, in some embodiments the second HM **560** and a portion of the adjacent second spacer **630** is exposed within the fourth opening (referred to as **716** as shown in FIGS. **12**C-**12**D). Sometimes the exposure of the adjacent second spacer **630** is caused by adverse process impacts, such as misalignment, pattern irregularities/distortions in the lithography process of forming the fourth patterned resist layer **710**. In still other embodiments, the fourth opening **716** has a larger width such that it extends to the adjacent second spacer **630** to obtain advantages, such as relaxing lithography process resolution constrains.
- (80) Referring to FIGS. 1 and 13A-13B (in conjunction with the process described with respect to FIGS. 12A-12B), method 100 proceeds to step 124 by etching the second HM 560 through the fourth opening 715 to form a seventh trench 725 in the second HM 560. A portion of the second material layer 230 is exposed in the seventh trench 725. The etch process may include wet etch, dry

etch, or a combination thereof.

- (81) As discussed above in reference to FIGS. **12**C-**12**D, in some embodiments the fourth opening is positioned closer to the sixth trench **625** such that the second HM **560** and a portion of the adjacent second spacer **630** is exposed within the fourth opening (referred to as **716** as shown in FIGS. **12**C-**12**D). In such a scenario, the etch process is properly chosen to selectively etch the second HM **560** without substantially etching the second spacer **630**. Thus, the portion of the adjacent second spacer 630 exposed within the fourth opening 716 serves as a sub-etch-mask (or guars the sixth trench **625**) during etching the second HM **560** through the fourth opening **716** to form an eighth trench **726** as shown in FIGS. **13**C-**13**D in this alternative embodiment. (82) A resist strip process is then applied to remove any remaining fourth patterned resist layer **710**. In conjunction with the process described above with respect to FIGS. **13**A**-13**B, the sixth trench **625** having the second spacer **630** along its sidewalls and the seventh trench **725** are formed in the second HM **560**, as shown in FIGS. **13**E-**13**G after the removal of the fourth patterned resist layer **710**. Alternatively, in conjunction with the process described with respect to FIGS. **13**C-**13**D, the sixth trench **625** having the second spacer **560** along its sidewalls and eighth trench **726** are formed in the second HM **560**, as shown in the FIGS. **13**H**-13**I after the removal of the fourth patterned resist layer **710**. Specifically, the second spacer **560** separates the sixth trench **625** away from the eighth trench **726** as shown in FIGS. **13**H**-13**I. Therefore the second spacer **560** ensures a designed minimum space (w.sub.2) between the sixth trench **625** and the eighth trench **726** and it is referred to as a second safeguarding-spacer.
- (83) Referring to FIGS. 1 and 14A-14E, the method 100 proceeds to step 126 by etching the planarization layer 550 through the sixth and seventh trenches, 625 and 725 to extend the sixth and seventh trenches, 625 and 725 to the planarization layer 550 (as shown in FIGS. 14A-14C), or through the sixth and eighth trenches, 625 and 726 to extend the sixth and eighth trenches, 625 and 727 to the planarization layer 550 (as shown in FIGS. 14D-14E in the alternative embodiment). In the present embodiment, the etch process is properly chosen to selectively etch the planarization layer 550, but does not substantially etch the second HM 560, the second spacer 630 and the second material layer 230. Thus, the second HM 560 and the second spacer 630 serve as an etching-mask.
- (84) Thereafter, the embodiments described in FIGS. **14**A-**14**C and the embodiment described in FIGS. **14**D-**14**E proceed to removing the second HM **560** and the second spacer **630** by other proper etching processes, as shown in FIGS. **14**F-**14**J. The planarization layer **550** carries the sixth and seventh (or eighth) trenches, **625** and **725** (or **726**), and portions of the second material layers **230** are exposed within the sixth and seventh/or eighth trenches, **625** and **725** (or **726**).
- (85) Referring to FIGS. 1 and 15A-15C, the method 100 proceeds to step 128 by removing the second material layer 230 within the sixth and seventh (or eighth) trenches, 625 and 727 (or 726). In the present embodiment, the etch process is properly chosen to selectively etch the second material layer 230, but does not substantially etch the planarization layer 550 and the first material layer 220. Thus, the planarization 550 serve as an etching-mask and the first material layer 220 serves as an etch-stop layer. The planarization layer 550 is then removed by other proper etching processes, as shown in FIGS. 15D and 15E.
- (86) Referring again to FIGS. **15**D**-15**E, thus the second material layer **230** has the fourth, fifth, sixth and seventh (or eighth) trenches, **530**, **540**, **625** and **725** (or **726**), such that the fourth and fifth trenches are parallel to each other, along the Y direction and the sixth and seventh (or eighth) trenches are parallel to each other, along the X direction. The fourth trench **530** connects to the seventh trench **725** at the location O with a first connecting angle θ to form a L-shape trench **810**, the sixth trench **625** connects to the fourth trench **530** at location M with a second connecting angle θ and the sixth trench **625** connects to the fifth trench **540** at locations N with a third connecting angle θ to form a T-shape trench **820**. Since the fourth, fifth, sixth and seventh (or eighth) trenches, **530**, **540**, **625** and **725** (or **726**) are defined by the first, second, third and fourth patterned resist

- layers, **410**, **510**, **610** and **710**, respectively, rounded corner distortions induced in the lithography exposing process are greatly reduced. The first, second and third connecting angles, θ , α and β , are about 90 degree.
- (87) FIGS. **15**D-**15**E also show that, in some embodiments, the sixth trench **625** is formed to have trench ends **625**A and **625**B extending outside the fourth trench **530** and fifth trench **540**, respectively, and the seventh (or eighth) trench **725** (or **726**) has a trench end **725**A extending outside the fourth trench **530**. All these trench ends provide insurance-like portions for reducing adverse impacts of line end shortening distortion.
- (88) Referring to FIGS. 1 and 16A-16B, the method 100 proceeds to step 130 by etching the first material layer 220, using the material layer 230 as an etch mask, to transfer the fifth, sixth and seventh (or eighth) trenches, 530, 540, 625 and 725 (or 726) to the first material layer 220, with 90-degree connecting angles θ and regular line-end contour (such as a rectangular contour). In some embodiment, respective portions of the substrate 210 are exposed in the fifth, sixth and seventh (or eighth) trenches, 530, 540, 625 and 725 (or 726). In present embodiment, the etch process is properly chosen to selectively etch the first material layer 220 but does not substantially etch the second material layer 230. The etch process includes an anisotropic dry etch. For example, the etch process is a plasma anisotropic etch. The second material layer 230 is then removed by a proper etch process, as shown in FIGS. 16C-16D.
- (89) Additional steps can be provided before, during, and after the method **100**, and some of the steps described can be replaced, eliminated, or moved around for additional embodiments of the method **100**. Other alternatives or embodiments may present without departure from the spirit and scope of the present disclosure. For example, in some embodiments, in step **126**, not only the planarization layer **550** but also the second material layer **230** is etched through the sixth and seventh trenches, **625** and **725** to the planarization layer **550**, as shown in FIGS. **17A-17C**. The etch process is properly chosen to selectively etch the planarization layer **550** and the second material layer **230**, but does not substantially etch the second HM **560** and the second spacer **630**. Thus, the second HM **560** and the second spacer **630** are then removed by other proper etching processes, as shown in FIGS. **15D-15**E.
- (90) The semiconductor device **200** may undergo further CMOS or MOS technology processing to form various features and regions known in the art. For example, subsequent processing may form metal lines in the fifth, sixth and seventh (or eighth) trenches, **530**, **540**, **625** and **725** (or **726**). For another example, various contacts/vias and multilayers interconnect features (e.g., interlayer dielectrics) over the substrate **210**, configured to connect the various features or structures of the semiconductor device **200**.
- (91) Based on the above, it can be seen that the present disclosure provides methods of forming L-shape and T-shape trenches and trenches which have small space between each other. The method employs forming a L-shape or T-shape trench by two sub-trenches formed by two individual lithography/etch cycles. The two sub-trenches are formed extending along two directions perpendicular to each other. The method also employs guarding-spacers to ensure a space between trenches. The method demonstrates reducing rounded corner distortion in forming the L-shape or T-shape trench. The method also demonstrates reducing line end shortening distortion and overcoming misalignment in forming trenches having small spacing between each other.

 (92) The present disclosure provides many different embodiments of fabricating a semiconductor device that provide one or more improvements over existing approaches. In one embodiment, a method for fabricating a semiconductor device includes forming a material layer over a substrate, forming a first hard mask (HM) layer over the material layer, forming a first trench in the first HM layer. The first trench extends along a first direction. The method also includes forming first

spacers along sidewalls of the first trench, forming a second trench in the first HM layer parallel to

the first trench, by using the first spacers to guard the first trench. The method also includes etching the material layer through the first trench and the second trench, removing the first HM layer and the first spacers, forming a second HM layer over the material layer, forming a third trench in the second HM layer. The third trench extends along a second direction that is perpendicular to the first direction. The third trench overlaps with the first trench. The method also includes etching the material layer through the third trench.

- (93) In another embodiment, a method includes forming a material layer over a substrate, forming a first hard mask (HM) layer over the material layer, forming a first trench in the first HM layer. The first trench extends along a first direction. The method also includes forming first spacers along sidewalls of the first trench, forming a second trench in the first HM layer parallel to the first trench, by using the first spacers to guard the first trench. The method also includes etching the material layer through the first trench and the second trench, removing the first HM layer and the first spacers, forming a planarization layer over the material layer, including filling in the first trench and the second trench. The method also includes forming a second HM layer over the planarization layer, forming a third trench in the second HM layer. The third trench extends along a second direction that is perpendicular to the first direction and overlaps with the first trench at an end of the first trench. The method also includes transferring the third trench to the planarization layer, removing the second HM layer and the second spacers and etching the material layer through the third trench in the planarization layer.
- (94) In yet another embodiment, a method includes forming a material layer over a main layer, forming a first hard mask (HM) layer over the material layer, forming a first trench in the first HM layer. The first trench extends along a first direction. The method also includes forming first spacers along sidewalls of the first trench, forming a second trench in the first HM layer parallel to the first trench, by using the first spacers to guard the first trench. The method also includes etching the material layer through the first trench and the second trench, removing the first HM layer and the first spacers, forming a planarization layer over the material layer, including filling in the first trench and the second trench. The method also includes forming a second HM layer over the planarization layer, forming a third trench in the second HM layer. The third trench extends along a second direction that is perpendicular to the first direction and overlaps with the first trench at an end of the first trench. The method also includes etching the planarization layer and the material layer through the third trench, removing the second HM layer, second spacers and the planarization layer and etching the main layer by using the material layer, which has the first, second and third trenches, as an etch mask to transfer the first trench, the second trench and third trench to the main layer.
- (95) The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.

Claims

1. A method comprising: forming a first trench and a second trench in a first material layer disposed over a substrate, wherein, in a top view, the first trench comprising a length extending along a first direction and a width smaller than the length; forming a second material layer in the first trench and the second trench; removing a first portion of the second material layer to form a third trench that exposes a portion of the first material layer, wherein the third trench extends lengthwise along a

second direction that is different than the first direction, wherein the third trench at least partially overlaps the first trench; and removing the portion of the first material layer through the third trench.

- 2. The method of claim 1, wherein the second direction is substantially perpendicular to the first direction.
- 3. The method of claim 1, further comprising forming a first hard mask layer directly on the second material layer; and performing a first patterning process on the first hard mask layer to expose the first portion of the second material layer.
- 4. The method of claim 3, further comprising performing a second patterning process on the first hard mask layer to expose a second portion of the second material layer.
- 5. The method of claim 4, wherein the removing of the first portion of the second material layer to form the third trench includes removing the second portion of the second material layer.
- 6. The method of claim 4, forming a spacer layer directly on the second portion of the second material layer prior to the removing of the first portion of the second material layer to from the third trench that exposes the portion of the first material layer.
- 7. The method of claim 6, wherein the spacer layer is disposed directly on the second portion of the second material layer after the removing of the first portion of the second material layer to from the third trench that exposes the portion of the first material layer.
- 8. The method of claim 6, further comprising removing the spacer layer to expose the second portion of the second material layer after the removing of the first portion of the second material layer to from the third trench that exposes the portion of the first material layer.
- 9. A method comprising: forming a first material layer over a substrate; forming a second material layer over the first material layer; forming a first trench in the second material layer, wherein the first trench extends along a first direction; forming a second trench in the second material layer, wherein the first and second trenches are separated from each other by a remaining portion of the second material layer; removing a first portion of the first material layer to extend the first material layer and removing a second portion of the first material layer to extend the second trench into the first material layer thereby forming a patterned first material layer; forming a third material layer over the patterned first material layer; forming a third trench extending through the third material layer to thereby form a patterned third material layer, wherein the third trench extends along a second direction that is different than the first direction, wherein the third trench overlaps the extended first trench; and removing a third portion of the patterned first material layer through the third trench.
- 10. The method of claim 9, further comprising: forming a fourth material layer over the substrate prior to forming the first material layer over the substrate, and after the removing of the third portion of the patterned first material layer through the third trench, patterning the fourth material layer while using the patterned first material layer as a mask.
- 11. The method of claim 10, wherein the fourth material layer includes a conductive material.
- 12. The method of claim 10, further comprising removing the patterned third material layer prior to the patterning of the fourth material layer while using the patterned first material layer as a mask.
- 13. The method of claim 9, further comprising forming a spacer layer directly on the third material layer prior to the forming of the third trench extending through the third material layer to thereby form the patterned third material layer.
- 14. The method of claim 13, further comprising removing the spacer layer prior to the removing of the third portion of the patterned first material layer through the third trench.
- 15. The method of claim 9, wherein the forming of the third material layer over the patterned first material layer includes forming the third material layer in the extended first trench.
- 16. A method comprising: forming a first material layer over a substrate; forming a second material layer over the first material layer; forming a first trench in the second material layer, wherein the first trench extends along a first direction; forming a second trench in the second material layer,

wherein the second trench extends along the first direction; removing a first portion of the first material layer to extend the first trench into the first material layer and removing a second portion of the first material layer to extend the second trench into the first material layer thereby forming a patterned first material layer; forming a third material layer over the patterned first material layer and within the extended first trench and the extended second trench; forming a spacer layer directly on the third material layer; forming a third trench through the spacer layer and into the third material layer to thereby form a patterned third material layer, wherein the third trench extends along a second direction that is different than the first direction, wherein the third trench overlaps the extended first trench; and removing a third portion of the patterned first material layer through the third trench.

- 17. The method of claim 16, further comprising removing any remaining portion of the second material layer after removing the first portion of the first material layer to extend the first trench into the first material layer and removing the second portion of the first material layer to extend the second trench into the first material layer thereby forming the patterned first material layer.
- 18. The method of claim 16, further comprising forming a patterned fourth material layer directly on a first portion of the third material layer, the patterned fourth material layer defining an opening exposing a second portion of the third material layer, and wherein the forming of the spacer layer directly on the third material layer includes forming the spacer layer within the opening and directly on the second portion of the third material layer.
- 19. The method of claim 18, further comprising removing the patterned fourth material layer and the spacer layer prior to the removing of the third portion of the patterned first material layer through the third trench.
- 20. The method of claim 18, further comprising removing any remaining portion of the patterned third material layer after removing the third portion of the patterned first material layer through the third trench.