Hochschule Karlsruhe

University of Applied Sciences

Fakultät für

Elektro- und Informationstechnik

Linear Principal Components Analysis

- + Principal components analysis (PCA) refers to the process by which principal components are computed, and the subsequent use of these components in understanding the data.
- + PCA is an unsupervised approach, since it involves only a set of input variables $x_1, x_2,...,x_m$, without considering the target variable
- + Some applications:
 - + Reducing data dimensionality
 - + Producing new input variables to be used in supervised learning problems (feature extraction)
 - + Visualizing and exploring data
 - + Clustering
 - + Data compression

- + Principal components analysis identifies directions of maximum variance in a dataset with m dimensions
- + Procedure leads to a coordinate transformation in which the new basis vectors (principal components PC_1 , PC_2 ,.... PC_m) are orthogonal to each other and map less and less variance in the data set with increasing order.

- + Principal components analysis identifies directions of maximum variance in a dataset with m dimensions
- + Procedure leads to a coordinate transformation in which the new basis vectors are orthogonal to each other and map less and less variance in the data set with increasing order

- + Principal components analysis identifies directions of maximum variance in a dataset with m dimensions
- + Procedure leads to a coordinate transformation in which the new basis vectors are orthogonal to each other and map less and less variance in the data set with increasing order

Introduction

+ Principal components analysis identifies directions of maximum variance in a dataset with m dimensions

+ Procedure leads to a coordinate transformation in which the new basis vectors are or and less variance in the data set with increasing order.

- + Principal components analysis identifies directions of maximum variance in a dataset with m dimensions
- + Procedure leads to a coordinate transformation in which the new basis vectors are orthogonal to each other and map less and less variance in the data set with increasing order.

- + Principal components analysis identifies directions of maximum variance in a dataset with m dimensions
- + Procedure leads to a coordinate transformation in which the new basis vectors are orthogonal to each other and map less and less variance in the data set with increasing order

- + Principal components analysis identifies directions of maximum variance in a dataset with m dimensions
- + Procedure leads to a coordinate transformation in which the new basis vectors are orthogonal to each other and map less and less variance in the data set with increasing order.

- + Essentially, we are looking for vectors that they are orthogonal to each other and associated with a value. That value should represent where the data is spread the most.
- + So, we can think about the eigenvectors and the eigenvalues of a matrix. The eigenvectors of a matrix is associated with the eigenvalues
- + But of which matrix? This matrix should be a symmetrical matrix to have orthogonal eigenvectors.
- + Considering the fact that the sum of eigenvalues of a squared Matrix is always equal to its trace (that is, the sum of the diagonal elements)
- + So we search for a matrix that is squared, symmetrical and the sum of its diagonal elements represents the variance of the input variables.
- + What about the matrix of the input variables? But it can be unsquared or asymmetrical
- + What about the covariance matrix of the input variable?

- + It is useful to have a measure to find out how much the input variables vary from the mean with respect to each other.
- + Covariance is such a measure. Covariance is always measured between 2 variables. If you calculate the covariance between one variable and itself, you will get the its variance.
- + So, if there is a 3-dimensional dataset x_1 , x_2 , x_3 then the covariance between the x_1 and x_2 variables, the x_1 and x_3 variables, and the x_2 and x_3 variables could be measured.
- + Measuring the covariance between x_1 and x_1 or x_2 and x_3 or x_3 and x_3 would give you the variance of the x_1 , x_2 and x_3 variables respectively.

+
$$Cov(x_1, x_2) = \frac{\sum_{i=1}^{n} (x_{1i} - \overline{X_1})(x_{2i} - \overline{X_2})}{n-1}$$

+
$$Cov(x_1, x_1) = \frac{\sum_{i=1}^{n} (x_{1i} - \overline{X_1})(x_{1i} - \overline{X_1})}{n-1} = \frac{\sum_{i=1}^{n} (x_{1i} - \overline{X_1})^2}{n-1} = Var(x_1)$$

Introduction

+ For a dataset of input variables $x_1, x_2,...,x_m$, without considering the target variable, the covariance matrix of transposed input variables matrix X^T , which has a dimension of $(m \times n)$, is as follow:

$$Cov(X^{T}) = \begin{bmatrix} Var(x_{1}) & \dots & Cov(x_{m}, x_{1}) \\ \vdots & & \vdots \\ Cov(x_{1}, x_{m}) & \dots & Var(x_{m}) \end{bmatrix} = \begin{bmatrix} \frac{\sum_{i=1}^{n}(x_{1i} - X_{1})^{2}}{n-1} & \dots & \frac{\sum_{i=1}^{n}(x_{mi} - X_{m})(x_{1i} - X_{1})}{n-1} \\ \vdots & & \vdots \\ \frac{\sum_{i=1}^{n}(x_{1i} - \overline{X_{1}})(x_{mi} - \overline{X_{m}})}{n-1} & \dots & \frac{\sum_{i=1}^{n}(x_{mi} - \overline{X_{m}})^{2}}{n-1} \end{bmatrix}$$

- + For m input variables and n observations, the $Cov(X^T)$ has a dimension of (m x m)
- + Covariance matrix is a squared and symmetrical matrix as $Cov(x_m, x_1)$ equals $Cov(x_1, x_m)$
- + If the mean values of the input variables are zero because of the standardization or the centering of the dataset, the expression is simplified to

$$Cov(X_{std}^{T}) = \begin{bmatrix} \frac{\sum_{i=1}^{n} (x_{1i})^{2}}{n-1} \dots & \frac{\sum_{i=1}^{n} (x_{mi})(x_{1i})}{n-1} \\ \vdots & \vdots & \vdots \\ \frac{\sum_{i=1}^{n} (x_{1i})(x_{mi})}{n-1} \dots & \frac{\sum_{i=1}^{n} (x_{mi})^{2}}{n-1} \end{bmatrix} = \frac{1}{n-1} \begin{bmatrix} \frac{\text{Var}(\mathbf{x}_{1})}{\sum_{i=1}^{n} (x_{1i})^{2}} \dots & \sum_{i=1}^{n} (x_{mi})(x_{1i}) \\ \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} (x_{1i})(x_{mi}) \dots & \sum_{i=1}^{n} (x_{mi})^{2} \end{bmatrix} = \frac{1}{n-1} X_{std}^{T} X_{std}$$

+ The sum of the diagonal elements is the sum of each input variable variance (is 1 after data standardization) and that represents the total variance in the dataset

- + The eigenvectors of this matrix $\frac{1}{n-1}X_{std}^TX_{std}$ are unit length vectors, orthogonal to each other and associated with a distinct eigenvalue that represents a ratio of the total variance in the dataset.
- + Therefore, the approaches of computing the principle components depend on calculating the eigenvectors and the eigenvalues of that matrix.
- + The eigenvector, which is associated with the highest eigenvalue, is the first principle component. The second principle component is associated with the second highest eigenvalue and so on.
- + Principal Components Analysis (PCA) can be conducted through two primary mathematical approaches:
 - Using the eigendecomposition of the covariance matrix of the standardized or centered data
 - Applying Singular Value Decomposition (SVD) directly to the standardized or centered data matrix itself.
- + Both methods will yield the same principal components and can be used to perform PCA, but they differ in their computational properties and ease of use.

- 1- Eigendecomposition of the Covariance Matrix
- + This approach can be conducted by the following steps:
 - 1. Standardize the data: each input variable with zero mean and one as standard deviation
 - Calculate the covariance matrix of the standardized data
 - 3. Calculate eigenvectors and eigenvalues of that covariance matrix
 - 4. Order the eigenvectors with respect to their eigenvalues λ , highest to lowest (in descending order) $\overrightarrow{v_1}$, $\overrightarrow{v_2}$,, $\overrightarrow{v_m}$, where $\lambda_1 > \lambda_2 > \dots \dots \lambda_m$
 - 5. Construct a projection matrix (you can choose a number of principle components to reduce the original dimension of the data. Assuming the new dimension is p, the projection matrix will be as follows:

Projection Matrix = V =
$$(\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_p})$$

6. Data transformation

Transformed data=
$$X_{std}$$
.V ,

where X_{std} has a dimension of (n x m), V has a dimension of (m x p) and the transformed data has a dimension of (n x p)

Eigendecomposition of the Covariance Matrix — Example

- + This approach can be conducted by the following steps:
 - 1. Standardize the data:

Eigendecomposition of the Covariance Matrix — Example

- + This approach can be conducted by the following steps:
 - 1. Standardize the data:
 - 2. Calculate the covariance matrix:

$$Cov(X_{std}^T) = \begin{bmatrix} 1 & 0.7469 \\ 0.7469 & 1 \end{bmatrix}$$

Eigendecomposition of the Covariance Matrix — Example

- + This approach can be conducted by the following steps:
 - 1. Standardize the data.
 - 2. Calculate the covariance matrix
 - 3. Calculate eigenvectors and eigenvalues
 - Eigenvalues result from the equation

$$\det(\mathbf{X}^{\mathsf{T}} \cdot \mathbf{X} - \lambda \cdot \mathbf{I}) = 0$$

$$eigen_vals = [1.7469 \ 0.2531]$$

- For every eigenvalue $\lambda_{\text{i}}\,$ there is an eigenvector, it is calculated by the equation

$$(\mathbf{X}^T \cdot \mathbf{X} - \lambda_i \cdot \mathbf{I}) \overrightarrow{v_i} = 0$$

eigen_vecs =
$$\begin{bmatrix} 0.7071 & -0.7071 \\ 0.7071 & 0.7071 \end{bmatrix}$$

Eigendecomposition of the Covariance Matrix — Example

- + This approach can be conducted by the following steps:
 - 1. Standardize the data: each input variable with zero mean and one as standard deviation
 - 2. Calculate the covariance matrix: calculate the covariance matrix of the standardized data.
 - 3. Calculate eigenvectors and eigenvalues of the covariance matrix
 - 4. Order the eigenvectors with respect to their eigenvalues λ , highest to lowest

$$\overrightarrow{v_1}$$
, $\overrightarrow{v_2}$,, $\overrightarrow{v_m}$, where $\lambda_1 > \lambda_2 > \dots \dots \lambda_m$

$$\overrightarrow{v_1} = \begin{bmatrix} 0.7071 \\ 0.7071 \end{bmatrix}$$
 is associated with $\lambda_1 = 1.7469$

$$\overrightarrow{v_2} = \begin{bmatrix} -0.7071 \\ 0.7071 \end{bmatrix}$$
 is associated with $\lambda_2 = 0.2531$

Eigendecomposition of the Covariance Matrix — Example

- + This approach can be conducted by the following steps:
 - 1. Standardize the data: each input variable with zero mean and one as standard deviation
 - 2. Calculate the covariance matrix: calculate the covariance matrix of the standardized data.
 - 3. Calculate eigenvectors and eigenvalues of the covariance matrix
 - 4. Order the eigenvectors with respect to their eigenvalues λ , highest to lowest

$$\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}, \text{ where } \lambda_1 > \lambda_2 > \dots \dots \lambda_m$$

5. Construct a projection matrix (you can choose a number of principle components to reduce the original dimension of the data. Assuming the new dimension is p, the projection matrix will be as follows:

Projection Matrix = V =
$$(\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_p})$$

$$V = \begin{bmatrix} 0.7071 & -0.7071 \\ 0.7071 & 0.7071 \end{bmatrix}$$
, as p=2

Eigendecomposition of the Covariance Matrix — Example

- + This approach can be conducted by the following steps:
 - 1. Standardize the data
 - Calculate the covariance matrix
 - 3. Calculate eigenvectors and eigenvalues of the covariance matrix
 - 4. Order the eigenvectors with respect to their eigenvalues λ , highest to lowest
 - Construct a projection matrix (you can choose a number of principle components to reduce the original dimension of the data.
 - 6. Data transformation

Transformed data= X_{std} .V , where X_{std} has a dimension of (200 x 2), V has a dimension of (2 x 2) and the transformed data has a dimension of (200 x 2)

Eigendecomposition of the Covariance Matrix — Example

- + This approach can be conducted by the following steps:
 - 1. Standardize the data: each input variable with zero mean and one as standard deviation
 - 2. Calculate the covariance matrix: calculate the covariance matrix of the standardized data.
 - 3. Calculate eigenvectors and eigenvalues of the covariance matrix
 - 4. Order the eigenvectors with respect to their eigenvalues λ , highest to lowest

$$\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}, \text{ where } \lambda_1 > \lambda_2 > \dots \dots \lambda_m$$

5. Construct a projection matrix (you can choose a number of principle components to reduce the original dimension of the data. Assuming the new dimension is p, the projection matrix will be as follows:

Projection Matrix = V =
$$(\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_p})$$

$$V = \begin{bmatrix} 0.7071 \\ 0.7071 \end{bmatrix}$$
, as p=1

Eigendecomposition of the Covariance Matrix — Example

- + This approach can be conducted by the following steps:
 - 1. Standardize the data
 - Calculate the covariance matrix
 - 3. Calculate eigenvectors and eigenvalues of the covariance matrix
 - 4. Order the eigenvectors with respect to their eigenvalues λ , highest to lowest
 - 5. Construct a feature vector (you can choose a number of principle components to reduce the original dimension of the data.
 - 6. Data transformation

Transformed data= X_{std} .V , where X_{std} has a dimension of (200 x 1), V has a dimension of (2 x 1) and the transformed data has dimension of (200 x 1)

Eigendecomposition of the Covariance Matrix — Example

Explained Variance:

- + How many principal components should you keep for the new feature space?
- + A useful measure is the so-called "explained variance", which can be calculated from the eigenvalues, indicating how much information (variance) can be assigned to each principal component.
- + Variance that is explained by $\lambda_1 = \frac{\lambda_1}{\sum_{i=1}^m \lambda_i} = \frac{\lambda_1}{\lambda_1 + \lambda_2} \simeq 0.87$
- + Variance that is explained by $\lambda_2 = \frac{\lambda_2}{\sum_{i=1}^m \lambda_i} = \frac{\lambda_2}{\lambda_1 + \lambda_2} \simeq 0.13$
- + Principle component 1 can represent 87% of the total variance
- + Principle component 2 can represent 13% of the total variance

Correlation Between Original Input Variables and λ of Covariance Matrix

$$Cov(X_{std}) = \begin{bmatrix} 1 & 0.3687 \\ 0.3687 & 1 \end{bmatrix}$$

eigen_values = [1.3687 0.6313]

$$Cov(X_{std}) = \begin{bmatrix} 1 & 0.6206 \\ 0.6206 & 1 \end{bmatrix}$$

eigen_values = [1.6206 0.3794]

$$Cov(X_{std}) = \begin{bmatrix} 1 & 0.9366 \\ 0.9366 & 1 \end{bmatrix}$$
 eigen_values = [1.9366 0.0634]

Variance explained by
$$\lambda_1 = \frac{\lambda_1}{\sum_{i=1}^m \lambda_i} \simeq 0.6844$$

Variance explained by
$$\lambda_2 = \frac{\lambda_2}{\sum_{i=1}^m \lambda_i} \simeq 0.3165$$

$$\simeq 0.8103$$

$$\simeq 0.1897$$

$$\simeq 0.9683$$

$$\simeq 0.0317$$

Correlation Between Original Input Variables and λ of Covariance Matrix

Variance explained by $\lambda_2 = \frac{\lambda_2}{\nabla m - \lambda} \simeq 0.3165$

 $\simeq 0.1897$

Eigendecomposition of the Covariance Matrix — IRIS-Dataset

Explained Variance:

- + How many principal components should you keep for the new feature space?
- + Variance that is explained by $\lambda_1 = \frac{\lambda_1}{\sum_{i=1}^m \lambda_i} = \frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4} \simeq 72.77$
- + Variance that is explained by $\lambda_2 = \frac{\lambda_2}{\sum_{i=1}^m \lambda_i} = \frac{\lambda_2}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4} \simeq 23.03$
- + Variance that is explained by $\lambda_3 = \frac{\lambda_2}{\sum_{i=1}^m \lambda_i} = \frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4} \simeq 3.68$
- + Variance that is explained by $\lambda_4 = \frac{\lambda_2}{\sum_{i=1}^m \lambda_i} = \frac{\lambda_4}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4} \simeq 0.52$
- + The most (72.77 %) of the variance can be explained by the first principal component alone
- + The second principal component still contains some information (23.03 %), while the third and fourth principal components can be safely dropped without losing too much information.

Hochschule Karlsruhe

University of Applied Sciences

Fakultät für

Elektro- und Informationstechnik

www.h-ka.de

