

PATIENT Huang, Ching-Mao

PATHOLOGIST Not Provided

TUMOR TYPE Esophagus squamous cell carcinoma (SCC) COUNTRY CODE

REPORT DATE 22 June 2023

ORDERED TEST # ORD-1651472-01

ABOUT THE TEST FoundationOne®Liquid CDx is a next generation sequencing (NGS) assay that identifies clinically relevant genomic alterations in circulating cell-free DNA.

DISEASE Esophagus squamous cell carcinoma (SCC) NAME Huang, Ching-Mao DATE OF BIRTH 23 April 1956

SEX Male

MEDICAL RECORD # 49532561

ORDERING PHYSICIAN Yeh, Yi-Chen MEDICAL FACILITY Taipei Veterans General Hospital ADDITIONAL RECIPIENT None MEDICAL FACILITY ID 205872

SPECIMEN ID CMH 4/23/1956 SPECIMEN TYPE Blood DATE OF COLLECTION 12 June 2023 SPECIMEN RECEIVED 15 June 2023

Biomarker Findings

Blood Tumor Mutational Burden - 3 Muts/Mb Microsatellite status - MSI-High Not Detected Tumor Fraction - Elevated Tumor Fraction Not Detected

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

NF1 H1693fs*2 **PIK3CA** E545K CIC S1503fs*7 RB1 rearrangement exon 17 TP53 V122fs*2

Report Highlights

• Evidence-matched clinical trial options based on this patient's genomic findings: (p. 10)

BIOMARKER FINDINGS

Blood Tumor Mutational Burden -3 Muts/Mb

Microsatellite status -

MSI-High Not Detected

Tumor Fraction -

Elevated Tumor Fraction Not Detected

THERAPY	AND	CLINICAL	I RIAL IMI	PLICATIONS

No therapies or clinical trials. See Biomarker Findings section

MSI-High not detected. No evidence of microsatellite instability in this sample (see Appendix section).

Tumor fraction is considered elevated when ctDNA levels are high enough that aneuploidy can be detected. The fact that elevated tumor fraction was not detected in this specimen indicates the possibility of lower levels of ctDNA but does not compromise confidence in any reported alterations. However, in the setting of a negative liquid biopsy result, orthogonal testing of a tissue specimen should be considered if clinically indicated (see Biomarker Findings section).

GENOMIC FINI	DINGS	VAF%	THERAPIES WITH C (IN PATIENT'S
NF1 -	H1693fs*2	0.10%	None
10 Trials see	p. <u>10</u>		
PIK3CA -	E545K	0.14%	None
10 Trials see	p. <u>12</u>		

THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
None	None
None	None

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

PATIENT Huang, Ching-Mao TUMOR TYPE
Esophagus squamous cell
carcinoma (SCC)
COUNTRY CODE
TW

REPORT DATE 22 June 2023

ORDERED TEST # ORD-1651472-01

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

 CIC - S1503fs*7
 p. 8
 TP53 - V122fs*2
 p. 9

 RB1 - rearrangement exon 17
 p. 8

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the therapies listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and/or exhaustive. Neither the therapies nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies. Therapies contained in this report may have been approved by the US FDA or other national authorities; however, they might not have been approved in your respective country. In the appropriate clinical context, germline testing of APC, ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MEN1, MSH2, MSH2, MSH6, MUTYH, NF1, NF2, PALB2, PMS2, POLE, PTEN, RAD51C, RAD51D, RB1, RET, SDHA, SDHC, SDHD, SMAD4, STK11, TGFBR2, TP53, TSC1, TSC2, VHL, and WT1 is recommended.

Variant Allele Frequency is not applicable for copy number alterations.

Variant Allele Frequency Percentage

(VAF%)

ORD-1651472-01 HISTORIC PATIENT FINDINGS **Blood Tumor** 3 Muts/Mb Mutational Burden Microsatellite status MSI-High Not Detected **Elevated Tumor Fraction Not Detected Tumor Fraction** NF1 H1693fs*2 0.10% PIK3CA 0.14% F545K CIC S1503fs*7 1.6% 0.60% RB1 rearrangement exon 17 **TP53** V122fs*2 1.0%

IMPORTANT NOTE This comparison table refers only to genes and biomarkers assayed by prior FoundationOne®Liquid CDx or FoundationOne®CDx tests. Up to five previous tests may be shown.

For some genes in FoundationOne Liquid CDx, only select exons are assayed. Therefore, an alteration found by a previous test may not have been confirmed despite overlapping gene lists. Please refer to the Appendix for the complete list of genes and exons assayed. Variants reported for prior time points reflect reporting practices at the time of the historical test(s). Changes in variant reporting nomenclature, classification, or handling may result in the appearance of discrepancies across time points. The gene and biomarker list will be updated periodically to reflect new knowledge about cancer biology.

As new scientific information becomes available, alterations that had previously been listed as Variants of Unknown Significance (VUS) may become reportable or reportable variants may become VUS.

Tissue Tumor Mutational Burden (TMB) and blood TMB (bTMB) are estimated from the number of synonymous and non-synonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥0.5%.

 $Not \, Tested = not \, baited, \, not \, reported \, on \, test, \, or \, test \, preceded \, addition \, of \, biomarker \, or \, general \, addition \, or \, baited, \, and \, baited, \, baited \, addition \, or \, baited \, addition \, addition$

Not Detected = baited but not detected on test

Detected = present (VAF% is not applicable)

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

PATIENT Huang, Ching-Mao TUMOR TYPE Esophagus squamous cell carcinoma (SCC) REPORT DATE 22 June 2023

ORDERED TEST # ORD-1651472-01

VAF% = variant allele frequency percentage

 ${\sf Cannot\,Be\,Determined\,=\,Sample\,is\,not\,of\,sufficient\,data\,quality\,to\,confidently\,determine\,biomarker\,status}$

Please note that other aspects of this table may have changed from the previous version to reflect the most up-to-date reporting information.

BIOMARKER FINDINGS

BIOMARKER

Blood Tumor Mutational Burden

RESULT 3 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies –

On the basis of clinical evidence in solid tumors, increased blood tumor mutational burden (bTMB) may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L11-3, anti-PD-13-4, anti-PD-1/CTLA4 therapies5-6, anti-PD-L1/CTLA4 therapies⁷⁻¹⁰. A Phase 2 multi-solidtumor trial showed that bTMB ≥16 Muts/Mb (as measured by this assay) was associated with improved survival from treatment with a PD-1 inhibitor alone or in combination with a CTLA-4 inhibitor⁵. In non-small cell lung cancer (NSCLC), multiple clinical trials have shown patients with higher bTMB derive clinical benefit from immune checkpoint inhibitors following single-agent or combination treatments with either CTLA4 inhibitors or chemotherapy, with reported high bTMB cutpoints ranging from 6 Muts/Mb-16 Muts/Mb^{1,8-10}. In head and neck squamous cell carcinoma (HNSCC), a Phase 3 trial showed that bTMB ≥16 Muts/Mb (approximate equivalency ≥8 Muts/Mb as measured by this assay) was associated with improved survival from treatment with a PD-L1 inhibitor alone or in combination

with a CTLA-4 inhibitor¹¹. In colorectal cancer (CRC), a Phase 2 study showed that bTMB TMB ≥28 Muts/Mb (approximate equivalency ≥14 Muts/Mb as measured by this assay) was associated with improved OS from a PD-L1 inhibitor alone or in combination with a CTLA-4 inhibitor⁷.

FREQUENCY & PROGNOSIS

Average bTMB levels in solid tumors other than NSCLC have not been evaluated (PubMed, Mar 2023). For patients with squamous cell carcinoma (SCC) treated with PD-L1/PD-1 inhibitors, a Kaplan-Meier analysis showed a significant association for patients with high tumor mutational burden (TMB) with longer time to treatment failure (9.9 vs. 4.4 months)12. In the majority of cutaneous SCC cases, high mutational burden has been attributed to UV exposure rather than defective DNA mismatch repair or polymerase activity¹³⁻¹⁴, although one study reported a small number of cutaneous SCC cases (4/39) harboring a mutation signature similar to that of human papillomavirus-positive head and neck SCC14. In patients with non-small cell lung cancer (NSCLC), TMB is similar between cases with squamous and non-squamous histology 15 , and increased TMB is associated with higher tumor grade and poor prognosis¹⁶, as well as with a decreased frequency of known driver mutations in EGFR, ALK, ROS1, or MET (1% of high-TMB samples each) but not BRAF (10%) or KRAS (9.4%)¹⁵. Although some studies have reported a lack of association between smoking and increased TMB in NSCLC16-17, several other large studies did find a strong prognostic

association¹⁸⁻²¹. For patients with gastric cancer, increased TMB is reported to be associated with prolonged OS²²⁻²⁴. One study observed that the OS and disease-free survival (DFS) benefits of postoperative chemotherapy were more pronounced in patients with TMB-low gastric cancer (stage Ib/II) compared to those with TMB-high; however, patients with stage III gastric cancer benefitted regardless of TMB level²⁵. In esophageal cancer, patients with TMB-high who had not received radiotherapy had significantly reduced OS (p=0.038) compared to those with TMB-low²⁶.

FINDING SUMMARY

Blood tumor mutational burden (bTMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations from circulating tumor DNA in blood. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma²⁷⁻²⁸ and cigarette smoke in lung cancer²⁹⁻³⁰, treatment with temozolomide-based chemotherapy in glioma³¹⁻³², mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes³³⁻³⁷, and microsatellite instability $(MSI)^{33,36-37}$. High bTMB levels were not detected in this sample. It is unclear whether the bTMB levels in this sample would be predicted to be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents^{1-2,4}. Depending on the clinical context, TMB testing of an alternate sample or by another methodology could be considered.

BIOMARKER FINDINGS

BIOMARKER

Tumor Fraction

RESULT

Elevated Tumor Fraction Not Detected

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

Specimens with elevated tumor fraction values have high circulating-tumor DNA (ctDNA) content, and thus higher sensitivity for identifying genomic alterations. Such specimens are at a lower risk of false negative results. However, if elevated tumor fraction is not detected, it does not exclude the presence of disease burden or compromise the confidence of reported alterations. Tumor fraction levels currently have limited implications for diagnosis, surveillance, or therapy and should not

be overinterpreted or compared from one blood draw to another. There are currently no targeted approaches to address specific tumor fraction levels. In the research setting, changes in tumor fraction estimates have been associated with treatment duration and clinical response and may be a useful indicator for future cancer management³⁸⁻⁴³.

FREQUENCY & PROGNOSIS

Detectible ctDNA levels have been reported in a variety of tumor types, with higher tumor fraction levels reported for patients with metastatic (Stage 4) tumors compared with patients with localized disease (Stages 1 to 3)⁴⁴. Elevated tumor fraction levels have been reported to be associated with worse prognosis in a variety of cancer types, including pancreatic cancer⁴⁵, Ewing sarcoma and osteosarcoma⁴⁶, prostate cancer⁴¹, breast cancer⁴⁷, leiomyosarcoma⁴⁸, esophageal cancer⁴⁹, colorectal

cancer⁵⁰, and gastrointestinal cancer⁵¹.

FINDING SUMMARY

Tumor fraction provides an estimate of the percentage of ctDNA present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate for this sample is based on the observed level of aneuploid instability. The tumor fraction algorithm utilized for FoundationOne Liquid CDx uses the allele frequencies of approximately 1,000 singlenucleotide polymorphism (SNP) sites across the genome. Unlike the maximum somatic allele frequency (MSAF) method of estimating ctDNA content⁵², the tumor fraction metric does not take into account the allele frequency of individual variants but rather produces a more holistic estimate of ctDNA content using data from across the genome. The amount of ctDNA detected may correlate with disease burden and response to therapy 53-54.

GENOMIC FINDINGS

GENE

NF1

ALTERATION H1693fs*2

HGVS VARIANT

NM_001042492.2:c.5078dup (p.H1693Qfs*2)

VARIANT CHROMOSOMAL POSITION chr17:29653079

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in neurofibromatosis type 1-associated neurofibroma and malignant peripheral nerve sheath tumors⁵⁵⁻⁵⁹, central nervous system tumors including glioma and astrocytoma⁶⁰⁻⁶³, limited clinical evidence for MEK inhibitors in non-small cell lung cancer (NSCLC)⁶³⁻⁶⁴, and in combination with chemotherapy for biliary tract cancers⁶⁵, NF1 inactivation may predict sensitivity to MEK inhibitors such as cobimetinib, trametinib, binimetinib, and selumetinib. On the basis of

limited clinical data⁶⁶⁻⁶⁸ and preclinical data⁶⁹⁻⁷⁰, loss or inactivation of NF1 may predict sensitivity to mTOR inhibitors, including everolimus and temsirolimus. A preclinical study suggests that combined mTOR and MEK inhibition is effective in a model of NF1-deficient malignant peripheral nerve sheath tumors (MPNST)⁷¹. It is not known whether these therapeutic approaches would be relevant in the context of alterations that have not been fully characterized, as seen here.

FREQUENCY & PROGNOSIS

NF1 mutations have been detected in 4.9% of stomach adenocarcinoma cases in 1 study⁷² and were not detected in any of the 151 cases of esophageal adenocarcinoma⁷³ and 57 cases of gastroesophageal junction carcinoma⁷⁴ analyzed in 2 other studies. In 1 study, loss of a chromosomal region that includes NF1 was found in 70% (7/10) of Barrett's adenocarcinoma samples⁷⁵. Published data investigating the prognostic implications of NF1 alterations in esophageal carcinoma are limited (PubMed, Feb 2023). Case reports have reported patients with SCCs with neurofibromatosis type 1⁷⁶⁻⁷⁸.

FINDING SUMMARY

NF1 encodes neurofibromin, a GTPase-activating protein (GAP) that is a key negative regulator of the RAS signaling pathway⁷⁹. Neurofibromin acts as a tumor suppressor by repressing RAS signaling⁸⁰. The consequences of alterations that may leave the GAP-related domain intact, such as seen here, are unclear; however, similar alterations have been previously reported in the context of cancer, which may indicate biological relevance.

POTENTIAL GERMLINE IMPLICATIONS

Germline mutations in NF1 cause the autosomal dominant disorder neurofibromatosis type 1, which is characterized in part by increased risk of developing various tumors, including sarcoma, glioma, breast carcinoma, and neuroendocrine and hematological neoplasms⁸¹⁻⁸³. Estimates for the prevalence of the disorder in the general population range from 1:2,500 to 1:3,000⁸⁴⁻⁸⁵, and in the appropriate clinical context, germline testing of NF1 is recommended.

GENE

PIK3CA

ALTERATION

E545K

HGVS VARIANT NM_006218.2:c.1633G>A (p.E545K)

VARIANT CHROMOSOMAL POSITION

chr3:178936091

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Clinical and preclinical data in various tumor types indicate that PIK₃CA activating alterations may predict sensitivity to therapies targeting PI₃K⁸⁶⁻⁹³, AKT⁹⁴⁻⁹⁵, or mTOR⁹⁶⁻¹⁰³. The Phase 2 NCI-MATCH study of copanlisib for patients with refractory solid tumors harboring PIK₃CA mutations with or without PTEN loss met its primary endpoint with an ORR of 16% (4/25 PRs); responses (PR or SD >6 months) were seen in patients with ameloblastoma, liposarcoma, and carcinomas of the endometrium, ovary, esophagus, lung, and prostate⁹³. However, the Phase 2 study of copanlisib for patients with

endometrial carcinoma harboring PIK3CA hotspot mutations failed to report any objective responses $(n=11)^{92}$. Two other studies of copanlisib for patients with genomically unselected tumors reported 1 CR and 2 PRs (1 unconfirmed) among 16 total patients with PIK3CA-mutated solid tumors with or without PTEN alterations 90-91. In the Phase 2 MATCH trial for patients with PIK3CA-mutated solid tumors, 28% (18/65) of patients experienced PFS lasting at least 6 months after treatment with taselisib; however, no ORs were observed in this study¹⁰⁴. A separate Phase 1b study of taselisib in combination with the CDK4/6 inhibitor palbociclib for patients with PIK3CA-mutated solid tumors reported an ORR of o% (n=12) and a DCR of 17% (2/12)¹⁰⁵. In a Phase 1 trial of the dual PI₃K/ mTOR kinase inhibitor apitolisib, 79% (11/14) of patients with PIK3CA-mutated advanced solid tumors experienced disease control (3 PRs, 8 SDs)106. The PI₃K inhibitor alpelisib is approved as a single agent for the treatment of patients with PIK₃CA-related overgrowth spectrum (PROS)¹⁰⁷, but has shown limited activity as monotherapy for PIK₃CA-mutated solid tumors with a Phase 1a study reporting an ORR of 6.0% (8/134) and a DCR of 58% (78/134)87.

FREQUENCY & PROGNOSIS

PIK3CA mutation, mainly in exons 9 or 20, has been reported in 7-21% of esophageal squamous cell carcinoma (ESCC) cases¹⁰⁸⁻¹¹¹. PIK3CA amplification has been identified in 27-60% of ESCC cases, with copy number increases of six to eight fold detected ^{110,112-114}. In addition, increased PIK3CA mRNA has been observed in 78% of ESCC samples¹¹⁰. Expression of PIK3CA mRNA or p110-alpha protein in esophageal squamous cell carcinoma has been correlated with lymph node metastasis and poor prognosis, while PIK3CA mutation has been associated with longer survival ^{110-111,115}.

FINDING SUMMARY

PIK₃CA encodes p₁₁₀-alpha, which is the catalytic subunit of phosphatidylinositol ₃-kinase (PI₃K). The PI₃K pathway is involved in cell signaling that regulates a number of critical cellular functions, including cell growth, proliferation, differentiation, motility, and survival¹¹⁶⁻¹¹⁷. PIK₃CA alterations that have been characterized as activating, such as observed here, are predicted to be oncogenic¹¹⁸⁻¹³⁹.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

GENOMIC FINDINGS

GENE

CIC

ALTERATION S1503fs*7

HGVS VARIANT

NM_015125.4:c.4506del (p.S1503Pfs*7)

VARIANT CHROMOSOMAL POSITION chr19:42799019-42799020

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

There are no targeted therapies available to address genomic alterations in CIC.

FREQUENCY & PROGNOSIS

CIC mutations have been described in various solid tumors, including 1–10% of sequenced gastric, endometrial, and colorectal carcinomas and melanoma tumors (cBioPortal, COSMIC, Jan 2023)¹⁴⁰⁻¹⁴², although the consequences of CIC mutations in these tumor types have not been studied. CIC mutations have been observed in 58–69% of oligodendrogliomas but are less

common in other gliomas, such as astrocytoma or oligoastrocytoma¹⁴³⁻¹⁴⁵. Published data investigating the prognostic implications of CIC alterations are generally limited (PubMed, Jun 2023). Conflicting data have been reported regarding the prognostic significance of CIC mutation in oligodendroglioma^{144,146-147}.

FINDING SUMMARY

CIC encodes a transcriptional repressor that plays a role in central nervous system (CNS) development¹⁴⁸. CIC inactivation has been reported in various malignancies, and is highly recurrent in oligodendroglioma¹⁴³⁻¹⁴⁴.

GENE

RB1

ALTERATION rearrangement exon 17

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of limited clinical data¹⁴⁹ and strong preclinical data¹⁵⁰⁻¹⁵³, RB1 inactivation may be associated with sensitivity to inhibitors of Aurora kinase A, particularly in small cell lung cancer (SCLC). A clinical study evaluating the Aurora kinase A inhibitor alisertib for patients with prostate cancer did not find an association between RB1 deletion and clinical benefit¹⁵⁴. Other approaches to target RB1 inactivation under

investigation in preclinical studies include inhibitors of BCL-2 family members¹⁵⁵ and activation of the NOTCH pathway¹⁵⁶.

FREQUENCY & PROGNOSIS

RB1 mutations have been reported in 4-8% of esophageal squamous cell carcinomas (ESCC); RB1 loss was not detected among 90 analyzed cases¹⁵⁷⁻¹⁵⁹. Loss of heterozygosity (LOH) of RB1 was reported in 34.7% of ESCC samples analyzed in one study¹⁶⁰. RB1 promoter methylation or LOH, and subsequent loss of Rb protein expression, has been reported in 14% of laryngeal, 5% of cutaneous, 44% of esophageal, and 23% of head and neck SCC cases in the scientific literature¹⁶¹⁻¹⁶⁴. Published data investigating the prognostic implications of RB1 alterations in ESCC are limited (PubMed, Mar 2023). In a study of patients with ESCC, RB1 LOH was not associated with lymph node metastasis¹⁶⁰.

FINDING SUMMARY

RB1 encodes the retinoblastoma protein (Rb), a tumor suppressor and negative regulator of the cell cycle¹⁶⁵⁻¹⁶⁶. Alterations such as seen here may disrupt RB1 function or expression¹⁶⁷⁻¹⁷³.

POTENTIAL GERMLINE IMPLICATIONS

Mutations in RB1 underlie the development of retinoblastoma (RB), a rare tumor that arises at a rate of approximately 1:20,000 live births, with nearly 5,000 new cases worldwide per year¹⁷⁴. Germline mutations in RB1 account for approximately 40% of RB tumors¹⁷⁵ and are associated with an increased risk of developing secondary malignancies that include soft tissue and bone sarcoma and malignant melanoma¹⁷⁶⁻¹⁷⁷. In the appropriate clinical context, germline testing of RB1 is recommended.

GENOMIC FINDINGS

GENE

TP53

ALTERATION

V122fs*2

HGVS VARIANT NM_000546.4:c.363_364insAT (p.V122Mfs*2)

VARIANT CHROMOSOMAL POSITION

chr17:7579323

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies –

There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor adavosertib¹⁷⁸⁻¹⁸¹ or p53 gene therapy such as SGT53¹⁸²⁻¹⁸⁶. In a Phase 1 study, adavosertib in combination with gemcitabine, cisplatin, or carboplatin elicited PRs in 9.7% and SDs in 53% of patients with solid tumors; the response rate was 21% (4/19) for patients with TP53 mutations versus 12% (4/33) for patients who were TP53 wildtype187. A Phase 2 trial of adavosertib in combination with chemotherapy (gemcitabine, carboplatin, paclitaxel, or doxorubicin) reported a 32% (30/94, 3 CR) ORR and a 73% (69/94) DCR for patients with platinumrefractory TP53-mutated ovarian, Fallopian tube, or peritoneal cancer¹⁸⁸. A smaller Phase 2 trial of adavosertib in combination with carboplatin achieved a 43% (9/21, 1 CR) ORR and a 76% (16/21) DCR for patients with platinum-refractory TP53-mutated ovarian cancer¹⁸⁹. The combination of adavosertib with paclitaxel and carboplatin for patients with TP53-mutated ovarian cancer also significantly increased PFS compared with paclitaxel and carboplatin alone¹⁹⁰. In the Phase 2 VIKTORY trial, patients with TP53-mutated metastatic and/or recurrent gastric cancer

experienced a 24% (6/25) ORR with adavosertib combined with paclitaxel¹⁹¹. A Phase 1 trial of neoadjuvant adavosertib in combination with cisplatin and docetaxel for head and neck squamous cell carcinoma (HNSCC) elicited a 71% (5/7) response rate for patients with TP53 alterations¹⁹². The Phase 2 FOCUS4-C trial for patients with TP53- and RAS-mutated colorectal cancer reported improvement in PFS (3.61 vs. 1.87 months, HR=0.35, p=0.0022), but not OS (14.0 vs 12.8 months, p=0.93), following adayosertib treatment compared with active monitoring¹⁹³. In a Phase 1b clinical trial of SGT-53 in combination with docetaxel for patients with solid tumors, 75% (9/12) of evaluable patients experienced clinical benefit, including 2 confirmed and 1 unconfirmed PRs and 2 instances of SD with significant tumor shrinkage¹⁸⁶. Missense mutations leading to TP53 inactivation may be sensitive to therapies that reactivate mutated p53 such as eprenetapopt. In a Phase 1b trial for patients with p53-positive highgrade serous ovarian cancer, eprenetapopt combined with carboplatin and pegylated liposomal doxorubicin achieved a 52% (11/21) response rate and 100% DCR194. A Phase 1 trial of eprenetapopt with pembrolizumab for patients with solid tumors reported an ORR of 10% (3/

FREQUENCY & PROGNOSIS

TP53 mutations have been observed in 61-93% of esophageal squamous cell carcinoma samples^{158-159,196}. While some studies have reported no association between TP53 mutation status and prognosis in patients with esophageal carcinoma or gastroesophageal junction adenocarcinoma¹⁹⁷⁻¹⁹⁸ others have associated TP53 mutation and elevated p53 expression with poor prognosis for patients with esophageal squamous cell carcinoma¹⁹⁹⁻²⁰⁰ or stomach cancer²⁰¹⁻²⁰³.

FINDING SUMMARY

Functional loss of the tumor suppressor p53, which is encoded by the TP_{53} gene, is common in aggressive advanced cancers²⁰⁴. Alterations such as seen here may disrupt TP_{53} function or expression²⁰⁵⁻²⁰⁹.

POTENTIAL GERMLINE IMPLICATIONS

Germline mutations in TP53 are associated with the very rare autosomal dominant disorder Li-Fraumeni syndrome and the early onset of many cancers²¹⁰⁻²¹², including sarcomas²¹³⁻²¹⁴. Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000²¹⁵ to 1:20,000²¹⁴. For pathogenic TP53 mutations identified during tumor sequencing, the rate of germline mutations was 1% in the overall population and 6% in tumors arising before age 30²¹⁶. In the appropriate clinical context, germline testing of TP53 is recommended.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion²¹⁷⁻²²². CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy²¹⁷⁻²¹⁸. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease²²³. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH^{221,224-225}. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

CLINICAL TRIALS

IMPORTANT Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and should be investigated by the physician or

research staff. This is not a comprehensive list of all available clinical trials. There may also be compassionate use or early access programs available, which are not listed in this report. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \Rightarrow Geographical proximity \Rightarrow Later trial phase. Clinical trials are not ranked in order of potential or predicted efficacy for this patient or

in order of level of evidence for this patient's tumor type. Clinical trials listed here may have additional enrollment criteria that may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. However, clinicaltrials.gov does not list all clinical trials that might be available.

NF1

ALTERATION H1693fs*2

RATIONALE

On the basis of clinical evidence and strong preclinical evidence, NF1 inactivation may predict sensitivity to MEK inhibitors. Limited clinical data and strong preclinical data indicate that loss or inactivation of NF1 may also predict sensitivity

to mTOR inhibitors. It is not known whether these therapeutic approaches would be relevant in the context of alterations that have not been fully characterized, as seen here.

NCT03239015	PHASE 2
Efficacy and Safety of Targeted Precision Therapy in Refractory Tumor With Druggable Molecular Event	TARGETS EGFR, ERBB4, ERBB2, PARP, mTOR, MET, ROS1, RET, VEGFRS, BRAF, CDK4, CDK6

LOCATIONS: Shanghai (China)

NCT04803318	PHASE 2
Trametinib Combined With Everolimus and Lenvatinib for Recurrent/Refractory Advanced Solid Tumors	TARGETS mTOR, FGFRs, RET, PDGFRA, VEGFRs, KIT, MEK
LOCATIONS: Guangzhou (China)	

K
K

LOCATIONS: Busan (Korea, Republic of), Seoul (Korea, Republic of), Clayton (Australia), Edegem (Belgium), Oregon, Barcelona (Spain), Madrid (Spain), California, Colorado

NCT05580770	PHASE 1/2
LOCATIONS: Tianjin (China)	
A Study of Sirolimus for Injection (Albumin Bound) in Patients With Advanced Solid Tumors	TARGETS mTOR
NCT05125523	PHASE 1

NCT05580770	PHASE 1/2
Mirdametinib + BGB-3245 in Advanced Solid Tumors	TARGETS BRAF, MEK

LOCATIONS: Waratah (Australia), Melbourne (Australia), California, Ohio, Massachusetts, Texas, Connecticut, Florida

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

PATIENT

TUMOR TYPE Esophagus squamous cell carcinoma (SCC)

PHASE 2

BRAF, SMO

REPORT DATE 22 June 2023

ORDERED TEST # ORD-1651472-01

NCT04551521

FOUNDATIONONE®LIQUID CDx

CLINICAL TRIALS

FLT3, CSF1R, RET, mTOR, ERBB2, MEK,

CRAFT: The NCT-PMO-1602 Phase II Trial	TARGETS PD-L1, AKTs, MEK, BRAF, ALK, RET, ERBB2
LOCATIONS: Lübeck (Germany), Würzburg (Germany), Mainz (Germany), Heidelberg (Germany), Tübingen (Germany)	
NCT03297606	PHASE 2
Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)	

LOCATIONS: Vancouver (Canada), Kelowna (Canada), Edmonton (Canada), Saskatoon (Canada), Regina (Canada), Ottawa (Canada), Montreal (Canada), Toronto (Canada), Kingston (Canada), London (Canada)

NCT04892017	PHASE 1/2
A Safety, Tolerability and PK Study of DCC-3116 in Patients With RAS or RAF Mutant Advanced or Metastatic Solid Tumors.	TARGETS ULK1, ULK2, MEK
LOCATIONS: Oregon, Massachusetts, New York, Texas, Pennsylvania	

NCT05340621	PHASE 1/2
OKI-179 Plus Binimetinib in Patients With Advanced Solid Tumors in the RAS Pathway (Phase 1b) and NRAS-mutated Melanoma (Phase 2)	TARGETS HDACs, MEK

LOCATIONS: California, Michigan, Massachusetts, New York, Tennessee, Virginia, Texas, Georgia, Florida

NCT04720976	PHASE 1/2	
JAB-3312 Activity in Adult Patients With Advanced Solid Tumors	TARGETS MEK, SHP2, PD-1, EGFR, KRAS	
LOCATIONS: Utah, California, Arizona, Minnesota, Illinois, Michigan, Oklahoma, Missouri, Indiana, Connecticut		

CLINICAL TRIALS

GEN	E
PI	КЗСА

ALTERATION E545K

RATIONALE

PIK3CA activating mutations may lead to activation of the PI3K-AKT-mTOR pathway and may therefore indicate sensitivity to inhibitors of

this pathway. Strong clinical data support sensitivity of PIK3CA-mutated solid tumors to the PI₃K-alpha inhibitor alpelisib.

NCT04589845	PHASE 2
Tumor-Agnostic Precision Immuno-Oncology and Somatic Targeting Rational for You (TAPISTRY) Platform Study	TARGETS TRKB, ALK, TRKC, ROS1, TRKA, RET, PD-L1, AKTs, ERBB2, MDM2, PI3K- alpha, RAFs, NRAS

LOCATIONS: Taipei City (Taiwan), Taoyuan County (Taiwan), Shanghai City (China), Shanghai (China), Shatin (Hong Kong), Hong Kong (Hong Kong), Seoul (Korea, Republic of), Xi'an (China), Tianjin (China), Beijing City (China)

NCT03239015	PHASE 2
Efficacy and Safety of Targeted Precision Therapy in Refractory Tumor With Druggable Molecular Event LOCATIONS: Shanghai (China)	TARGETS EGFR, ERBB4, ERBB2, PARP, mTOR, MET, ROS1, RET, VEGFRS, BRAF, CDK4, CDK6
NCT04803318	PHASE 2

NCT04803318	PHASE 2
Trametinib Combined With Everolimus and Lenvatinib for Recurrent/Refractory Advanced Solid Tumors	TARGETS mTOR, FGFRs, RET, PDGFRA, VEGFRs, KIT, MEK
LOCATIONS: Guangzhou (China)	

NCT04526470	PHASE 1/2
Alpelisib and Paclitaxel in PIK3CA-altered Gastric Cancer	TARGETS PI3K-alpha
LOCATIONS: Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of)	

NCT05125523	PHASE 1
A Study of Sirolimus for Injection (Albumin Bound) in Patients With Advanced Solid Tumors	TARGETS mTOR
LOCATIONS: Tianjin (China)	

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

PHASE 1

ORDERED TEST # ORD-1651472-01

NCT03772561

CLINICAL TRIALS

Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients With Advanced or Metastatic Solid Tumor Malignancies	TARGETS PARP, AKTs, PD-L1		
LOCATIONS: Singapore (Singapore)			
NCT04551521	PHASE 2		
CRAFT: The NCT-PMO-1602 Phase II Trial	TARGETS PD-L1, AKTs, MEK, BRAF, ALK, RET,		

NCT03297606	PHASE 2
Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)	TARGETS VEGFRS, ABL, SRC, ALK, ROS1, AXL, TRKA, MET, TRKC, DDR2, KIT, EGFR, PD-1, CTLA-4, PARP, CDK4, CDK6, FLT3, CSF1R, RET, mTOR, ERBB2, MEK, BRAF, SMO

LOCATIONS: Vancouver (Canada), Kelowna (Canada), Edmonton (Canada), Saskatoon (Canada), Regina (Canada), Ottawa (Canada), Montreal (Canada), Toronto (Canada), Kingston (Canada), London (Canada)

NCT04317105	PHASE 1/2
Testing the Addition of an Anti-cancer Drug, Copanlisib, to the Usual Immunotherapy (Nivolumab With or Without Ipilimumab) in Patients With Advanced Solid Cancers That Have Changes in the Following Genes: PIK3CA and PTEN	TARGETS PD-1, CTLA-4, PI3K
LOCATIONS: Toronto (Canada) Tavas Virginia	

PHASE 2
TARGETS PD-L1, VEGFA, ERBB2, ALK, RET, PARP, SMO, TRKB, TRKC, ROS1, TRKA, MEK, BRAF, PI3K-alpha, FGFR1, FGFR2, FGFR3, MET, KIT, ABL

LOCATIONS: Tromsø (Norway), Bodø (Norway), Hamar (Norway), Oslo (Norway), Fredrikstad (Norway), Drammen (Norway), Trondheim (Norway), Skien (Norway), Førde (Norway), Bergen (Norway)

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE Esophagus squamous cell carcinoma (SCC) REPORT DATE 22 June 2023

ORDERED TEST # ORD-1651472-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

AKT3

NM_005465.3: c.1379T>A (p.M460K) chr1:243668612

KMT2D (MLL2)

NM_003482.4: c.14239G>A (p.A4747T) chr12:49422856

PARP3

NM_005485.4: c.1223G>A (p.R408H) chr3:51980306

APC

NM_000038.4: c.2992G>A (p.G998S) chr5:112174283

LTK

NM_002344.5: c.1706G>A (p.R569H) chr15:41797720

PIK3C2G

NM_004570.4: c.56A>G (p.Y19C) chr12:18435071

ARAF

NM_001654.3: c.690C>A (p.N230K) chrX:47426170

NTRK3

NM_002530.2: c.2033G>T (p.R678L) chr15:88472522

RB1

NM_000321.2: c.958C>G (p.R320G) chr13:48941648

EMSY (C110RF30)

NM_020193.3: c.2873C>T (p.P958L) chr11:76255466

PALB2

NM_024675.3: c.3294G>C (p.K1098N) chr16:23619241

APPENDIX

Genes assayed in FoundationOne®Liquid CDx

ORDERED TEST # ORD-1651472-01

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an *); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

ABL1 Exons 4-9	ACVR1B	AKT1 Exon 3	AKT2	AKT3	ALK Exons 20-29, Introns 18, 19	ALOX12B	AMER1 (FAM123B or WTX)	APC
AR	ARAF Exons 4, 5, 7, 11, 13, 15, 16	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BCR* Introns 8, 13, 14	BRAF Exons 11-18, Introns 7-10	BRCA1 D Introns 2, 7, 8, 12, 16, 19, 20	BRCA2 0 Intron 2	BRD4	BRIP1	BTG1
BTG2	BTK Exons 2, 15	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22	CD70	CD74* Introns 6-8	CD79A	CD79B	CD274 (PD-L1)	CDC73
CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B
CDKN2C	СЕВРА	СНЕК1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R
CTCF	CTNNA1	CTNNB1 Exon 3	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1
DDR2 Exons 5, 17, 18	DIS3	DNMT3A	DOT1L	EED	EGFR Introns 7, 15, 24-27	EMSY (C11orf30)	EP300	ЕРНАЗ
ЕРНВ1	ЕРНВ4	ERBB2	ERBB3 Exons 3, 6, 7, 8, 10, 12, 20, 21, 23, 24, 25	ERBB4	ERCC4	ERG	ERRFI1	ESR1 Exons 4-8
ETV4* Intron 8	ETV5* Introns 6, 7	ETV6* Introns 5, 6	EWSR1* Introns 7-13	EZH2 Exons 4, 16, 17, 18	EZR* Introns 9-11	FANCA	FANCC	FANCG
FANCL	FAS	FBXW7	FGF10	FGF12	FGF14	FGF19	FGF23	FGF3
FGF4	FGF6	FGFR1 Introns 1, 5, Intron 17	FGFR2 Intron 1, Intron 17	FGFR3 Exons 7, 9 (alternative designation exon 10), 14, 18, Intron 17		FH	FLCN	FLT1
FLT3 Exons 14, 15, 20	FOXL2	FUBP1	GABRA6	GATA3	GATA4	GATA6	GID4 (C17orf39)	GNA11 Exons 4, 5
GNA13	GNAQ Exons 4, 5	GNAS Exons 1, 8	GRM3	GSK3B	H3-3A (H3F3A)	HDAC1	HGF	HNF1A
HRAS Exons 2, 3	HSD3B1	ID3	IDH1 Exon 4	IDH2 Exon 4	IGF1R	IKBKE	IKZF1	INPP4B
IRF2	IRF4	IRS2	JAK1	JAK2 Exon 14	<i>JAK3</i> Exons 5, 11, 12, 13, 15, 16	JUN	KDM5A	KDM5C
KDM6A	KDR	KEAP1	KEL	KIT Exons 8, 9, 11, 12, 13, 13, 11, 11, 12, 13, 13	KLHL6 7,	KMT2A (MLL) Introns 6, 8-11, Intron 7	KMT2D (MLL2)	KRAS

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

Genes assayed in FoundationOne®Liquid CDx

ORDERED TEST # ORD-1651472-01

FoundationOne Liquid CDx interrogates 324 genes, including 309 genes with complete exonic (coding) coverage and 15 genes with only select non-coding coverage (indicated with an *); 75 genes (indicated in bold) are captured with increased sensitivity and have complete exonic (coding) coverage unless otherwise noted.

LTK	LYN	MAF	MAP2K1 (MEK1) Exons 2, 3	MAP2K2 (MEK2) Exons 2-4, 6,	MAP2K4 7	MAP3K1	MAP3K13	МАРК1
MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MERTK	MET	MITF
MKNK1	MLH1	MPL Exon 10	MRE11 (MRE11A)	MSH2 Intron 5	MSH3	MSH6	MST1R	MTAP
MTOR Exons 19, 30, 39, 40, 43-45, 47, 48, 53, 56	МИТҮН	MYB* Intron 14	MYC Intron 1	MYCL (MYCL1)	MYCN	MYD88 Exon 4	NBN	NF1
NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2 Intron 26	<i>NOTCH3</i>	NPM1 Exons 4-6, 8, 10	NRAS Exons 2, 3
NSD2 (WHSC1 or MMSET)	NSD3 (WHSC1L1)	NT5C2	NTRK1 Exons 14, 15, Introns 8-11	NTRK2 Intron 12	NTRK3 Exons 16, 17	NUTM1* Intron 1	P2RY8	PALB2
PARP1	PARP2	PARP3	PAX5	PBRM1	<i>PDCD1</i> (PD-1)	PDCD1LG2 (PD-L2)	PDGFRA Exons 12, 18, Introns 7, 9, 11	PDGFRB Exons 12-21, 23
PDK1	PIK3C2B	PIK3C2G	PIK3CA Exons 2, 3, 5-8, 10, 14, 19, 21 (Coding Exons 1, 2, 4-7, 9, 13, 18, 20)		PIK3R1	PIM1	PMS2	POLD1
POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI	PRKN (PARK2)	PTCH1
PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RAF1 Exons 3, 4, 6, 7, 10, 14, 15, 17, Introns 4-8	RARA Intron 2	RB1	RBM10	REL	RET Introns 7, 8, Exons 11, 13-16, Introns 9-11
RICTOR	RNF43	ROS1 Exons 31, 36-38, 40, Introns 31-35	RPTOR	RSPO2* Intron 1	SDC4* Intron 2	SDHA	SDHB	SDHC
SDHD	SETD2	SF3B1	SGK1	SLC34A2* Intron 4	SMAD2	SMAD4	SMARCA4	SMARCB1
SMO	SNCAIP	SOCS1	SOX2	SOX9	SPEN	SPOP	SRC	STAG2
STAT3	STK11	SUFU	SYK	TBX3	TEK	<i>TENT5C</i> (FAM46C)	TERC* ncRNA	TERT* Promoter
TET2	TGFBR2	TIPARP	TMPRSS2* Introns 1-3	TNFAIP3	TNFRSF14	TP53	TSC1	TSC2
TYRO3	U2AF1	VEGFA	VHL	WT1	XPO1	XRCC2	ZNF217	ZNF703

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Microsatellite (MS) status Blood Tumor Mutational Burden (bTMB) Tumor Fraction

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

About FoundationOne®Liquid CDx

FoundationOne Liquid CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium. The CE-IVD regulatory status of FoundationOne Liquid CDx is applicable in countries that accept and/or recognize the CE mark.

ABOUT FOUNDATIONONE LIQUID CDX

FoundationOne Liquid CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Liquid CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform highcomplexity clinical testing.

Please refer to technical information for performance specification details.

INTENDED USE

FoundationOne Liquid CDx is a next generation sequencing based in vitro diagnostic device that analyzes 324 genes. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The test also detects the genomic signatures blood tumor mutational burden (bTMB), microsatellite instability (MSI), and tumor fraction. FoundationOne Liquid CDx utilizes circulating cell-free DNA (cfDNA) isolated from plasma derived from the anti-coagulated peripheral whole blood of cancer patients. The test is intended to be used as a companion diagnostic to identify patients who may benefit from treatment with targeted therapies in accordance with the approved therapeutic product labeling. Additionally, FoundationOne Liquid CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with malignant neoplasms.

TEST PRINCIPLES

The FoundationOne Liquid CDx assay is performed exclusively as a laboratory service using circulating cell-free DNA (cfDNA) isolated from plasma derived from anti-coagulated peripheral whole blood from patients with solid malignant neoplasms. The assay employs a single DNA extraction method to obtain cfDNA from plasma from whole blood. Extracted

cfDNA undergoes whole-genome shotgun library construction and hybridization-based capture of 324 cancer-related genes including coding exons and select introns of 309 genes, as well as only select intronic regions or non-coding regions of 15 genes. Hybrid-capture selected libraries are sequenced with deep coverage using the NovaSeq® 6000 platform. Sequence data are processed using a customized analysis pipeline designed to accurately detect genomic alterations, including base substitutions, indels, select copy number variants, and select genomic rearrangements. Substitutions and insertion and deletion alterations (indels) are reported in 311 genes, copy number alterations (CNAs) are reported in 310 genes, and gene rearrangements are reported in 324 genes. The assay also reports tumor fraction, and genomic signatures including MSI and bTMB. A subset of targeted regions in 75 genes is baited for increased sensitivity.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

QUALIFIED ALTERATION CALLS (EQUIVOCAL)

All equivocal calls, regardless of alteration type, imply that there is adequate evidence to call the alteration with confidence. However, the repeatability of equivocal calls may be lower than non-equivocal calls.

RANKING OF THERAPIES AND CLINICAL TRIALS

Ranking of Therapies in Summary Table Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials Pediatric trial qualification → Geographical proximity → Later trial phase.

LIMITATIONS

- 1. For in vitro diagnostic use.
- 2. For prescription use only. This test must be ordered by a qualified medical professional in accordance with clinical laboratory regulations.
- **3.** A negative result does not rule out the presence of a mutation below the limits of detection of the assay. Patients for whom no companion diagnostic alterations are detected should be considered for confirmation with an appropriately validated tumor tissue test, if available.
- 4. The FoundationOne Liquid CDx assay does not detect heterozygous deletions.
- **5.** The test is not intended to provide information on cancer predisposition.
- 6. Performance has not been validated for cfDNA input below the specified minimum input.
- 7. Tissue TMB and blood TMB (bTMB) are estimated from the number of synonymous and nonsynonymous single-nucleotide variants (SNVs) and insertions and deletions (indels) per area of coding genome sampled, after the removal of known and likely oncogenic driver events and germline SNPs. Tissue TMB is calculated based on variants with an allele frequency of ≥5%, and bTMB is calculated based on variants with an allele frequency of ≥0.5%.
- 8. Tumor fraction is the percentage of circulating tumor DNA (ctDNA) present in a cell-free DNA (cfDNA) sample. The tumor fraction estimate is computationally derived from the observed level of aneuploidy in the sample. Tumor fraction is considered elevated when ctDNA levels are high enough that aneuploidy can be detected and is significantly distinct from that typically found in non-tumor samples.
- 9. Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the tumor genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor. The MSI algorithm is based on genome wide analysis of 1765 microsatellite loci and not based on the 5 or 7 MSI loci described in current clinical practice guidelines for solid tissue testing.
- **10.** Genomic findings from circulating cell-free DNA (cfDNA) may originate from circulating tumor DNA fragments, germline alterations, or non-tumor somatic alterations, such as clonal hematopoiesis of indeterminate potential (CHIP). Genes with alterations that may be derived from CHIP include, but are not limited to: ASXL1, ATM, CBL, CHEK2, DNMT3A, JAK2,

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

APPENDIX

About FoundationOne®Liquid CDx

KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, TP53, and U2AF1.

- 11. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. If a reported alteration is suspected to be germline, confirmatory testing should be considered in the appropriate clinical context.
- The test is not intended to replace germline testing or to provide information about cancer predisposition.

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >30%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's

tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, ATM, CBL, CHEK2, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2023. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This report makes no promises or guarantees that a distinguish whether a finding in this patient's particular drug will be effective in the treatment of

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

disease in any patient. This report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Liquid CDx.

TREATMENT DECISIONS ARE THE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this test or the information contained in this

Certain sample of variant characteristics may result in reduced sensitivity. These include: low sample quality, deletions and insertions >4obp, or repetitive/high homology sequences. FoundationOne Liquid CDx is performed using cell-free DNA, and as such germline events may not be reported.

TUMOR TYPE Esophagus squamous cell carcinoma (SCC) REPORT DATE 22 June 2023

APPENDIX

About FoundationOne®Liquid CDx

ORDERED TEST # ORD-1651472-01

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
Muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
ткі	Tyrosine kinase inhibitor

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh37), also known as hg19.

MR Suite Version (RG) 7.9.0

APPENDIX

References

- 1. Gandara DR, et al. Nat. Med. (2018) pmid: 30082870
- 2. Wang Z, et al. JAMA Oncol (2019) pmid: 30816954
- 3. Sturgill EG, et al. Oncologist (2022) pmid: 35274716
- Aggarwal C, et al. Clin. Cancer Res. (2020) pmid:
- 5. Schenker et al., 2022; AACR Abstract CT022
- 6. Saori et al., 2021; ESMO Abstract 80P
- 7. Chen EX, et al. JAMA Oncol (2020) pmid: 32379280
- 8. Rizvi NA, et al. JAMA Oncol (2020) pmid: 32271377
- 9. Si H. et al. Clin Cancer Res (2021) pmid: 33355200
- 10. Leighl NB, et al. J Thorac Oncol (2022) pmid: 34800700
- 11. Li et al., 2020; ASCO Abstract 6511
- 12. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31003990
- South AP, et al. J. Invest. Dermatol. (2014) pmid: 13. 24662767
- 14. Pickering CR, et al. Clin. Cancer Res. (2014) pmid: 25303977
- 15. Spigel et al., 2016; ASCO Abstract 9017
- 16. Xiao D, et al. Oncotarget (2016) pmid: 27009843
- 17. Shim HS, et al. J Thorac Oncol (2015) pmid: 26200269
- 18. Govindan R, et al. Cell (2012) pmid: 22980976
- 19. Ding L, et al. Nature (2008) pmid: 18948947
- 20. Imielinski M, et al. Cell (2012) pmid: 22980975
- 21. Kim Y, et al. J. Clin. Oncol. (2014) pmid: 24323028
- 22. Cai L, et al. Cancer Commun (Lond) (2020) pmid:
- Zhao DY, et al. World J Gastrointest Oncol (2021) pmid:
- Wei XL, et al. Ther Adv Med Oncol (2021) pmid: 24.
- Wang D, et al. Gastric Cancer (2021) pmid: 33687617 25.
- 26. Yuan C, et al. Aging (Albany NY) (2020) pmid:
- 27. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 28. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 29. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 30. Rizvi NA, et al. Science (2015) pmid: 25765070
- 31. Johnson BE, et al. Science (2014) pmid: 24336570
- 32. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 33. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 34. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 35. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 36. Nature (2012) pmid: 22810696
- 37. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- 38. Bronkhorst AJ, et al. Biomol Detect Quantif (2019) pmid: 30923679
- 39. Raja R, et al. Clin. Cancer Res. (2018) pmid: 30093454
- 40. Hrebien S, et al. Ann. Oncol. (2019) pmid: 30860573
- 41. Choudhury AD, et al. JCI Insight (2018) pmid: 30385733 42. Goodall J, et al. Cancer Discov (2017) pmid: 28450425
- 43. Goldberg SB, et al. Clin. Cancer Res. (2018) pmid:
- Bettegowda C, et al. Sci Transl Med (2014) pmid: 44. 24553385
- 45. Lapin M, et al. J Transl Med (2018) pmid: 30400802 46. Shulman DS, et al. Br. J. Cancer (2018) pmid: 30131550
- 47. Stover DG, et al. J. Clin. Oncol. (2018) pmid: 29298117
- 48. Hemming ML, et al. JCO Precis Oncol (2019) pmid: 30793095
- Egyud M, et al. Ann. Thorac. Surg. (2019) pmid: 31059681

- 50. Fan G. et al. PLoS ONE (2017) pmid: 28187169
- 51. Vu et al., 2020; DOI: 10.1200/PO.19.00204
- 52. Li G, et al. J Gastrointest Oncol (2019) pmid: 31602320
- 53. Zhang EW, et al. Cancer (2020) pmid: 32757294
- 54. Butler TM, et al. Cold Spring Harb Mol Case Stud (2019) pmid: 30833418
- 55. Dombi E, et al. N. Engl. J. Med. (2016) pmid: 28029918
- Schalkwijk S, et al. Cancer Chemother Pharmacol (2021) pmid: 33903938
- 57. Hitchen N, et al. Case Rep Oncol (2023) pmid: 36743881
- 58. Nagabushan S, et al. NPJ Precis Oncol (2021) pmid: 33580196
- 59. Hones K, et al. BMJ Case Rep (2022) pmid: 36192032
- 60. Fangusaro J, et al. Lancet Oncol. (2019) pmid: 31151904
- 61. Manoharan N, et al. J Neurooncol (2020) pmid: 32780261
- 62. Awada G, et al. Case Rep Oncol () pmid: 33082744
- 63. Wisinski KB, et al. JCO Precis Oncol (2023) pmid: 37053535
- 64. Middleton G, et al. Nature (2020) pmid: 32669708
- 65. Lowery MA, et al. Clin. Cancer Res. (2019) pmid:
- 66. Lim SM, et al. Oncotarget (2016) pmid: 26859683
- 67. Weiss B, et al. Neuro-oncology (2015) pmid: 25314964
- Janku F, et al. Oncotarget (2014) pmid: 24931142
- Johannessen CM, et al. Curr. Biol. (2008) pmid: 69. 18164202
- Johannessen CM, et al. Proc. Natl. Acad. Sci. U.S.A. (2005) pmid: 15937108
- 71. Malone CF, et al. Cancer Discov (2014) pmid: 24913553
- 72. Nature (2014) pmid: 25079317
- 73. Dulak AM, et al. Nat. Genet. (2013) pmid: 23525077
- **74.** Janjigian YY, et al. Cancer Discov (2018) pmid: 29122777
- 75. Dunn J, et al. Oncogene (1999) pmid: 10023674
- 76. Ishida M, et al. Oncol Lett (2013) pmid: 24137429
- 77. Friedrich RE, et al. Anticancer Res. (2012) pmid: 22593504
- 78. Musella A, et al. Case Rep Obstet Gynecol (2013) pmid: 24167749
- 79. Hattori S, et al. Biochem. Biophys. Res. Commun. (1991) pmid: 1904223
- 80. Morcos P, et al. Mol. Cell. Biol. (1996) pmid: 8628317
- 81. Jett K, et al. Genet. Med. (2010) pmid: 20027112
- 82. Patil S, et al. Oncologist (2012) pmid: 22240541
- 83. Evans DG, et al. Clin Sarcoma Res (2012) pmid: 23036231
- Upadhyaya M, et al. J. Med. Genet. (1995) pmid: 8544190
- 85. Williams VC, et al. Pediatrics (2009) pmid: 19117870
- 86. Fritsch C, et al. Mol. Cancer Ther. (2014) pmid: 24608574
- 87. Juric D, et al. J. Clin. Oncol. (2018) pmid: 29401002
- 88. Gallant JN, et al. NPJ Precis Oncol (2019) pmid: 30793038
- Delestre F, et al. Sci Transl Med (2021) pmid: 34613809
- 90. Morschhauser F. et al. Mol Cancer Ther (2020) pmid:
- 91. Patnaik A, et al. Ann. Oncol. (2016) pmid: 27672108
- 92. Santin AD, et al. Gynecol Oncol Rep (2020) pmid:
- 93. Damodaran S, et al. J Clin Oncol (2022) pmid: 35133871
- 94. André F, et al. N. Engl. J. Med. (2019) pmid: 31091374
- Smyth LM, et al. NPJ Breast Cancer (2021) pmid: 33863913
- 96. Varnier R, et al. Eur J Cancer (2019) pmid: 31351267
- 97. Basse C, et al. JCO Precis Oncol (2018) pmid: 32914004

- 98. Sultova E, et al. Arch Gynecol Obstet (2021) pmid:
- 99. Mackay HJ, et al. Cancer (2014) pmid: 24166148
- 100. Myers AP, et al. Gynecol. Oncol. (2016) pmid: 27016228
- Dhami J, et al. Cold Spring Harb Mol Case Stud (2018) pmid: 29588307
- 102. Harris EJ, et al. Front Oncol (2019) pmid: 30863722
- 103. Hanna GJ, et al. Clin Cancer Res (2018) pmid: 29301825
- 104. Krop et al., 2018; ASCO Abstract 101
- 105. Pascual J, et al. Cancer Discov (2021) pmid: 32958578
- 106. Dolly SO, et al. Clin. Cancer Res. (2016) pmid: 26787751
- 107. Canaud et al., 2021; ESMO Abstract LBA23
- 108. Maeng CH, et al. PLoS ONE (2012) pmid: 22870241
- 109. Phillips WA, et al. Int. J. Cancer (2006) pmid: 16380997
- 110. Akagi I, et al. Int. J. Oncol. (2009) pmid: 19212681
- 111. Shigaki H, et al. Clin. Cancer Res. (2013) pmid: 23532889
- 112. Bandla S, et al. Ann. Thorac. Surg. (2012) pmid: 22450065
- Yen CC, et al. World J. Gastroenterol. (2005) pmid:
- 15761962 114. Yen CC, et al. Int. J. Oncol. (2003) pmid: 12963965
- Wada S, et al. Ann. Surg. Oncol. (2006) pmid: 16788758
- 116. Samuels Y, et al. Cancer Cell (2005) pmid: 15950905
- 117. Nat. Rev. Cancer (2009) pmid: 19629070
- Kang S, et al. Proc. Natl. Acad. Sci. U.S.A. (2005) pmid: 15647370
- Ikenoue T, et al. Cancer Res. (2005) pmid: 15930273
- Gymnopoulos M, et al. Proc. Natl. Acad. Sci. U.S.A. (2007) pmid: 17376864
- **121.** Horn S, et al. Oncogene (2008) pmid: 18317450
- 122. Rudd ML, et al. Clin. Cancer Res. (2011) pmid: 21266528
- 123. Hon WC, et al. Oncogene (2012) pmid: 22120714
- Burke JE, et al. Proc. Natl. Acad. Sci. U.S.A. (2012) pmid:
- 125. Wu H, et al. Proc. Natl. Acad. Sci. U.S.A. (2009) pmid:
- Laurenti R, et al. Rev Saude Publica (1990) pmid: 126.
- 127. Dan S, et al. Cancer Res. (2010) pmid: 20530683
- 128. Oda K. et al. Cancer Res. (2008) pmid: 18829572
- 129. Zhao L, et al. Oncogene (2008) pmid: 18794883 130. Lui VW, et al. Cancer Discov (2013) pmid: 23619167
- 131. Ross RL, et al. Oncogene (2013) pmid: 22430209
- 132. Rivière JB, et al. Nat. Genet. (2012) pmid: 22729224
- 133. Shibata T, et al. Cancer Lett. (2009) pmid: 19394761
- 134. Dogruluk T, et al. Cancer Res. (2015) pmid: 26627007 Croessmann S, et al. Clin. Cancer Res. (2018) pmid:
- 136. Ng PK, et al. Cancer Cell (2018) pmid: 29533785
- 137. Spangle JM, et al. (2020) pmid: 32929011 138. Chen L, et al. Nat Commun (2018) pmid: 29636477
- 139. Jin N, et al. J Clin Invest (2021) pmid: 34779417
- 140. Cerami F. et al. Cancer Discov (2012) pmid: 22588877
- 141. Gao J, et al. Sci Signal (2013) pmid: 23550210 142. Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878
- 143. Bettegowda C, et al. Science (2011) pmid: 21817013
- 144. Yip S, et al. J. Pathol. (2012) pmid: 22072542 Sahm F, et al. Acta Neuropathol. (2012) pmid:
- 22588899 146. Jiao Y, et al. Oncotarget (2012) pmid: 22869205
- 147. Chan AK, et al. Mod. Pathol. (2014) pmid: 24030748 Lee CJ, et al. Brain Res. Mol. Brain Res. (2002) pmid:
- 12393275 149. Owonikoko et al., 2016; ESMO Abstract 14230

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

References

ORDERED TEST # ORD-1651472-01

- **150.** Hook KE, et al. Mol. Cancer Ther. (2012) pmid: 22222631
- **151.** Gong X, et al. Cancer Discov (2019) pmid: 30373917
- 152. Oser MG, et al. Cancer Discov (2019) pmid: 30373918
- 153. Yang W, et al. Kaohsiung J Med Sci (2022) pmid: 34741392
- **154.** Beltran H, et al. Clin. Cancer Res. (2019) pmid: 30232224
- 155. Allaman-Pillet N, et al. Ophthalmic Genet. () pmid: 21955141
- 156. Viatour P, et al. J. Exp. Med. (2011) pmid: 21875955
- 157. Cancer Genome Atlas Research Network, et al. Nature (2017) pmid: 28052061
- 158. Lin DC, et al. Nat. Genet. (2014) pmid: 24686850
- 159. Song Y, et al. Nature (2014) pmid: 24670651
- 160. Harada H, et al. Cancer Res. (1999) pmid: 10446988161. Murao K, et al. Br. J. Dermatol. (2006) pmid: 17034532
- 162. Ling Y, et al. J. Clin. Pathol. (2011) pmid: 21169275
- 162. Ling 1, et al. J. Clin. Fathor. (2011) piniu. 21109275
- 163. Venugopalan M, et al. Cancer Genet. Cytogenet. (1998) pmid: 9666806
- 164. Rafferty M, et al. Eur Arch Otorhinolaryngol (2008) pmid: 18172658
- **165.** Burkhart DL, et al. Nat. Rev. Cancer (2008) pmid: 18650841
- Knudsen ES, et al. Nat. Rev. Cancer (2008) pmid: 19143056
- 167. Berge EO, et al. Mol. Cancer (2010) pmid: 20594292
- 168. Giacinti C, et al. Oncogene (2006) pmid: 16936740
- Otterson GA, et al. Proc. Natl. Acad. Sci. U.S.A. (1997) pmid: 9342358
- Otterson GA, et al. Am. J. Hum. Genet. (1999) pmid: 10486322
- 171. Qin XQ, et al. Genes Dev. (1992) pmid: 1534305
- 172. Rubin SM, et al. Cell (2005) pmid: 16360038
- 173. Sun H, et al. Mol. Cell. Biol. (2006) pmid: 16449662
- 174. Chen Z, et al. Hum. Mutat. (2014) pmid: 24282159

- 175. Yun J. et al. Int J Ophthalmol (2011) pmid: 22553621
- **176.** Houston SK, et al. Int Ophthalmol Clin (2011) pmid: 21139478
- Ng AK, et al. Semin Radiat Oncol (2010) pmid: 19959033
- 178. Hirai H. et al. Cancer Biol. Ther. (2010) pmid: 20107315
- **179.** Bridges KA, et al. Clin. Cancer Res. (2011) pmid: 21799033
- 180. Rajeshkumar NV, et al. Clin. Cancer Res. (2011) pmid: 21389100
- **181.** Osman AA, et al. Mol. Cancer Ther. (2015) pmid: 25504633
- 182. Xu L, et al. Mol. Cancer Ther. (2002) pmid: 12489850
- 183. Xu L, et al. Mol. Med. (2001) pmid: 11713371
- 184. Camp ER, et al. Cancer Gene Ther. (2013) pmid: 23470564
- 185. Kim SS, et al. Nanomedicine (2015) pmid: 25240597
- 186. Pirollo KF, et al. Mol. Ther. (2016) pmid: 27357628
- 187. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27601554
- 188. Moore et al., 2019: ASCO Abstract 5513
- **189.** Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27998224
- **190.** Oza et al., 2015; ASCO Abstract 5506
- 191. Lee J, et al. Cancer Discov (2019) pmid: 31315834
- Méndez E, et al. Clin. Cancer Res. (2018) pmid: 29535125
- 193. Seligmann JF, et al. J Clin Oncol (2021) pmid: 34538072
- 194. Gourley et al., 2016; ASCO Abstract 5571
- 195. Park H, et al. ESMO Open (2022) pmid: 36084396
- 196. Sawada G, et al. Gastroenterology (2016) pmid: 26873401
- 197. Sengpiel C, et al. Cancer Invest. (2009) pmid: 19160092
- 198. Pühringer-Oppermann F, et al. J. Cancer Res. Clin. Oncol. (2006) pmid: 16538517
- 199. Han U, et al. Dis. Esophagus (2007) pmid: 17760650
- 200. Yamasaki M, et al. Ann. Surg. Oncol. (2010) pmid:

- 19941080
- 201. Liu X, et al. PLoS ONE (2012) pmid: 23285001
- 202. Wiksten JP, et al. Anticancer Res. () pmid: 18751407
- **203.** Migliavacca M, et al. J. Cell. Physiol. (2004) pmid: 15254976
- 204. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675
- **205.** Joerger AC, et al. Annu. Rev. Biochem. (2008) pmid:
- **206.** Kato S, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid: 12826609
- 207. Kamada R, et al. J. Biol. Chem. (2011) pmid: 20978130
- 208. Zerdoumi Y, et al. Hum. Mol. Genet. (2017) pmid: 28472496
- 209. Yamada H, et al. Carcinogenesis (2007) pmid: 17690113
- 210. Bougeard G, et al. J. Clin. Oncol. (2015) pmid: 26014290
- 211. Sorrell AD, et al. Mol Diagn Ther (2013) pmid: 23355100
- 212. Nichols KE, et al. Cancer Epidemiol. Biomarkers Prev. (2001) pmid: 11219776
- 213. Kleihues P, et al. Am. J. Pathol. (1997) pmid: 9006316
- **214.** Gonzalez KD, et al. J. Clin. Oncol. (2009) pmid: 19204208
- 215. Lalloo F, et al. Lancet (2003) pmid: 12672316
- 216. Mandelker D, et al. Ann. Oncol. (2019) pmid: 31050713
- 217. Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837
- 218. Genovese G, et al. N. Engl. J. Med. (2014) pmid: 25426838
- 219. Xie M, et al. Nat. Med. (2014) pmid: 25326804
- **220.** Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid: 28669404
- **221.** Severson EA, et al. Blood (2018) pmid: 29678827
- 222. Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212
- 223. Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320
- 224. Chabon JJ, et al. Nature (2020) pmid: 32269342
- 225. Razavi P, et al. Nat. Med. (2019) pmid: 31768066