

/ Categorical Encoding

Numeric Features

- <u>Discrete</u> number
 - Age of the person
- Continuous number
 - Height of the person
 - Weight of the person

Categorical Features

- Nominal features
 - Country of the person
 - Name of the person
- Ordinal features
 - Education (school, high school, university)
 - Driver License (A, B, C)
 - Ticket class (Standard, Plus, VIP)

Ordinal Features

(Special case of Categorical Feature)

Real world example:

Titanic Dataset

Nominal Features

(Most Common Categorical Features)

	Passen	gerld S	urvived	Pclass				Name		
0		1	0	3	Braund, Mr. Owen Harris					
1		2	1	1	Cumings, Mrs	John Bradl	ey (Flore	ence Briggs Th		
2		3	1	3		Hei	kkinen,	Miss. Laina		
3		4	1	1	Futrelle, Mrs. J	Jacques He	eath (Lily	y May Peel)		
4		5	0	3	Allen, Mr. William Henry					
5		6	0	3			Moran	, Mr. James		
6		7	0	1	McCarthy, Mr. Timothy J					
7		8	0	3	Palsson, Master. Gosta Leonard					
	Sex	Ag	e SibSp	Parch	Ticket	Fare	Cabin	Embarked		
0	male	22.00000	0 1	0	A/5 21171	7.2500	NaN	S		
1	female	38.00000	0 1	0	PC 17599	71.2833	C85	С		
2	female	26.00000	0 0	0	STON/O2. 3101282	7.9250	NaN	S		
3	female	35.00000	0 1	0	113803	53.1000	C123	S		
4	male	35.00000	0 0	0	373450	8.0500	NaN	S		
5	male	29.69911	8 0	0	330877	8.4583	NaN	Q		
6	male	54.00000	0 0	0	17463	51.8625	E46	S		
7	male	2.00000	0 3	1	349909	21.0750	NaN	S		

Numeric Discrete VS Categorical Ordinal

How to distinguish
Numeric Discrete VS
Categorical Ordinal?

Numeric Discrete VS Categorical Ordinal

Check the distance between consecutive pairs!

- If it is the same → Numerical Discrete
 - Example: Distance between Age 1 and 2 is the same as age 2 and 3
- We don't know → Categorical Ordinal
 - Example: Distance between Pclass 1 and 2 could be different from 2 and 3

Common categorical encodings

Ordinal encoding

Categorical Feature		Numeric
Louise	=>	1
Gabriel	=>	2
Emma	=>	3
Adam	=>	4
Alice	=>	5
Raphael	=>	6
Chloe	=>	7
Louis	=>	8
Jeanne	=>	9
Arthur	=>	10

Binary encoding

			Binary Encoded				
Categorical Feature		=	x1	x2	x4	x8	
Louise	=>	1	1	0	0	0	
Gabriel	=>	2	0	1	0	0	
Emma	=>	3	1	1	0	0	
Adam	=>	4	0	0	1	0	
Alice	=>	5	1	0	1	0	
Raphael	=>	6	0	1	1	0	
Chloe	=>	7	1	1	1	0	
Louis	=>	8	0	0	0	1	
Jeanne	=>	9	1	0	0	1	
Arthur	=>	10	0	1	0	1	

One Hot Encoding

Categorical Feature		f1	f2	f3	f4	f5	f6	f7	f8	f9	f10
Louise	=>	1	0	0	0	0	0	0	0	0	0
Gabriel	=>	0	1	0	0	0	0	0	0	0	0
Emma	=>	0	0	1	0	0	0	0	0	0	0
Adam	=>	0	0	0	1	0	0	0	0	0	0
Alice	=>	0	0	0	0	1	0	0	0	0	0
Raphael	=>	0	0	0	0	0	1	0	0	0	0
Chloe	=>	0	0	0	0	0	0	1	0	0	0
Louis	=>	0	0	0	0	0	0	0	1	0	0
Jeanne	=>	0	0	0	0	0	0	0	0	1	0
Arthur	=>	0	0	0	0	0	0	0	0	0	1

Useful for tree models (Random Forest, GBMs)

Useful for multiplicative models (Linear models, Neural Nets, KNN SVMs)

Ordinal Encoding

Sklearn OrdinalEncoder()

Other methods (not recommended):

- Sklearn LabelEncoder()
- Pandas factorize()

Categorical Feature		Numeric
Louise	=>	1
Gabriel	=>	2
Emma	=>	3
Adam	=>	4
Alice	=>	5
Raphael	=>	6
Chloe	=>	7
Louis	=>	8
Jeanne	=>	9
Arthur	=>	10

Ordinal Encoding: OrdinalEncoder()

sklearn.preprocessing.OrdinalEncoder() (Encodes in alphanumeric order)

Ordinal Encoding: When to use?

- Good for Trees.
- Bad for Multiplicative models

pclass	1	2	3
target	1	0	1

This Encoding is:

- Good for non-Trees Models (data is scaled \rightarrow min=0 and max=1)
- Bad for Trees Models (adds unnecessary complexity)

Categorical Feature		f1	f2	f3	f4	f5	f6	f7	f8	f9	f10
Louise	=>	1	0	0	0	0	0	0	0	0	0
Gabriel	=>	0	1	0	0	0	0	0	0	0	0
Emma	=>	0	0	1	0	0	0	0	0	0	0
Adam	=>	0	0	0	1	0	0	0	0	0	0
Alice	=>	0	0	0	0	1	0	0	0	0	0
Raphael	=>	0	0	0	0	0	1	0	0	0	0
Chloe	=>	0	0	0	0	0	0	1	0	0	0
Louis	=>	0	0	0	0	0	0	0	1	0	0
Jeanne	=>	0	0	0	0	0	0	0	0	1	0
Arthur	=>	0	0	0	0	0	0	0	0	0	1

One Hot Encoding

- Sklearn OneHotEncoder()
- Pandas get_dummies() → Not Recommended

```
>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder(handle_unknown='ignore')
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
OneHotEncoder(handle_unknown='ignore')
>>> enc.categories
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 1], ['Male', 4]]).toarray()
array([[1., 0., 1., 0., 0.],
       [0., 1., 0., 0., 0.]])
>>> enc.inverse transform([[0, 1, 1, 0, 0], [0, 0, 0, 1, 0]])
```


One Hot Encoding: Embeddings

One Hot encoding is usually done in neural networks to produce embeddings.

One Hot Encoding: Feature Combination

Only Useful for Linears Models and KNN

Because it can adjust its predictions for each of the combinations.

How to do it?

- Combine the Strings
- 2. One Hot Encode it

pclass	sex
3	male
1	female
3	female
1	female

1male	1female	2male	2female	3male	3female
				1	
	1				
					1
	1				

Category Encoders package

pip install category_encoders

```
import category encoders as ce
ce.BackwardDifferenceEncoder()
ce.BaseNEncoder()
ce.BinaryEncoder()
ce.CatBoostEncoder()
ce.CountEncoder()
ce.GLMMEncoder()
ce.HashingEncoder()
ce.HelmertEncoder()
ce.JamesSteinEncoder()
ce.LeaveOneOutEncoder()
ce.MEstimateEncoder()
ce.OneHotEncoder() → Already in Sklearn
ce.OrdinalEncoder() → Already in Sklearn
ce.SumEncoder()
ce.PolynomialEncoder()
ce.TargetEncoder()
ce.WOEEncoder()
```


Like ordinal encoding but numbers in a binary format.

			Bir	ary E	nco	ded
Categorical Feature		=	x1	x2	x4	х8
Louise	=>	1	1	0	0	0
Gabriel	=>	2	0	1	0	0
Emma	=>	3	1	1	0	0
Adam	=>	4	0	0	1	0
Alice	=>	5	1	0	1	0
Raphael	=>	6	0	1	1	0
Chloe	=>	7	1	1	1	0
Louis	=>	8	0	0	0	1
Jeanne	=>	9	1	0	0	1
Arthur	=>	10	0	1	0	1

Manually with Pandas:

```
encoding = titanic.groupby("embarked").size()
encoding = encoding/len(titanic)
titanic["enc"] = titanic.embarked.map(encoding)
```

Automatically with category_encoders:

ce.count.CountEncoder(normalize=True)

embarked
S
С
S
S
S
Q
S
S
S
С
S
S

Target Encoding

Also known as Mean Encoding or Likelihood Encoding

Encode each category of a categorical variable with its target mean.

Target Encoding or Mean Encoding

Encode each category of a categorical variable with its target mean.

Color	Target					Color	Target
Yellow	0					0.6	0
Yellow	1		Color	Target Mean		0.6	1
Blue	1		Yellow	0.6		0.5	1
Yellow	1	-	Blue	0.5	-	0.6	1
Red	1		Red	0.66		0.66	1
Yellow	0	_			→	0.6	0
Red	1	(0.66	1
Red	0					0.66	0
Yellow	1	/				0.6	1
Blue	0					0.5	0

Target Encoding or Mean Encoding

Encode each category of a categorical variable with its target mean.

Color	Target					Color	Target
Yellow	0					0.6	0
Yellow	1		Color	Target Mean		0.6	1
Blue	1		Yellow	0.6		0.5	1
Yellow	1		Blue	0.5	-	0.6	1
Red	1		Red	0.66		0.66	1
Yellow	0	_			•	0.6	0
Red	1	As you can imagine, this only works with binary or regression problems. Not with classification.			0.66	1	
Red	0				0.66	0	
Yellow	1				0.6	1	
Blue	0				0.5	0	

Target Encoding (aka Mean Encoding) VS

Ordinal Encoding (aka Label Encoding)

- Ordinal enc. gives a random order. No correlation with target.
- Target enc. helps to separate zeros from ones. Resulting in shorter trees. (Remember in GBM we set a tree_depth limit).

Manually with Pandas:

```
for col in cat_feats:
    means = df_train.groupby(col).target.mean()
    train_encoded[col+"_targetMean"] = df_train[col].map(means)
    valid_encoded[col+"_targetMean"] = df_train[col].map(means)
```

Automatically with category_encoders:

```
target_encoder = ce.TargetEncoder(smoothing=0)
train_encoded = target_encoder.fit_transform(train[cat_feats], target)
valid_encoded = target_encoder.transform(valid[cat_feats])
```

Target Encoding: Regularization

/ With regularization we try to decrease the leakage of target encoding

- Cross Validation inside training data → LeaveOneOutEncoder()
- Smoothing → ce.TargetEncoder(smoothing=1)
- Adding random noise
- Sorting and calculating expanding mean.

- It is intended to overcome target leakage problems inherent in LOO.
- Also Mean Encodes Feature interactions

pclass	sex
3	male
1	female
3	female
1	female

Tai

Target encoding

New categories on test data

/ Sometimes, new categories appears on Test that doesn't exist on Train.

Train data

categorical _feature	target
Α	0
Α	1
Α	1
Α	1
В	0
В	0
D	1

Test data

categorical _feature	target
Α	?
Α	?
В	?
C	?

New categories on test data

/ Count encoding or Frequency encoding can be a solution.

	Train:		Test:			
categorical _feature	categorical _encoded	target	categorical _feature	categorical _encoded	target	
Α	6	0	Α	6	?	
Α	6	1	Α	6	?	
Α	6	1	В	3	?	
Α	6	1	C	1	?	
В	3	0				
В	3	0				
D	1	1				

- Values in ordinal features are sorted in some meaningful order.
- Label encoding maps categories to numbers.
- Frequency encoding maps categories to their frequencies.
- Label and Frequency encodings are often used for tree-based models.
- One-hot encoding is often used for non-tree-based models.
- Interactions of categorical features can help linear models and KNN.

/ Q&A

What are your doubts?

