Informatik C: – Blatt 5

Rasmus Diederichsen

25. Juli 2014

Aufgabe 5.1

Ein NDEA mit Schleifen kann gemäß der folgenden Vorgehensweise in einen schleifenfreien NDEA verwandelt werden.

- 1. $\forall Z_i \in \mathcal{Z}$ mit $\exists \sigma \in \Sigma : \delta(Z_i, \sigma) = Z_i$ ersetze Z_i durch Z_i', Z_i'' .
- 2. Definiere neuen Übergang $\delta(Z_i^{\prime\prime},\varepsilon)=Z_i^\prime.$
- 3. Definiere $\forall \sigma \in \Sigma : \delta(Z_i, \sigma) = Z_k \neq Z_i$ neue Übergänge $\delta(Z_i'', \sigma) = Z_k$.

Grafisch ließe sich dies folgendermaßen veranschaulichen.

Aufgabe 5.2

Trivialerweise ist $w=11\in\mathcal{L}(r)$. Falls $w\in L$ ist offensichtlich auch $w0^*\in L$, da aus $w^{10}\mod 3=0$ auch $2\cdot w^{10}\mod 3=0$ folgt. Wir beweisen nun $\bigcup_{k>0}L_k=\{10\}\{1,00\}^k\{01\}\subseteq L$.

Induktionsanfang

Offensichtlich stimmt die Aussage für k=0,1. Für k=0 ist $w^{10}=9$, für k=1 $w^{10}=21$ oder $w^{10}=33$.

Induktionsschritt

Sei bis k bewiesen. Wir betrachten zunächst den Fall, dass eine 1 an dritter Stelle angefügt wird. In dem Fall gilt für $w=a_n,\ldots,a_0$

$$w_{neu}^{10} = \left(\frac{(w^{10} - (a_1 a_0)^{10})}{2} + 1\right) \cdot 4 + (a_1 a_0)^{10}$$

$$= 2w^{10} + 3 \qquad | (a_1 a_0)^{10} \text{ ist hier immer } 1$$

Dies macht man sich folgendermaßen klar, wir betrachten als Beispiel die Zahl w=1001.

Binär	Operation	Dezimal
1001	-1	9
1000	$\div 2$	
100	+1	
101	$\cdot 4$	
10100	+1	
10101		21

Nach Voraussetzung ist w bereits durch 3 teilbar, mithin auch 2w und daher auch 2w+3.

Falls an dritter und vierter stelle 00 eingehängt wird, so ergibt sich

$$w_{neu}^{10} = (w^{10} - (a_1 a_0)^{10}) \cdot 4 + (a_1 a_0)^{10}$$

= $4w^{10} - 4 + 1$
= $4w^{10} - 3$

Mit derselben Argumentation gilt auch hier $w_{neu} \in L$.

Aufgabe 5.3

a)

Ein NDKA mit Akzeptanz durch leeren Keller kann so ausssehen:

b)

Ein NDKA mit Akzeptanz durch leeren Keller kann so ausssehen:

c)

Ein NDKA mit Akzeptanz durch leeren Keller kann so ausssehen:

Aufgabe 5.4

		c		b	c						
c	a	b	d	b	a	c	d			a	
c		a		b	b		c			c	
a	b	a	a	b	a		c	b	a	d	c
a	a	b	a	b	b	a	b	a	a	b	b

Aufgabe 5.5

$$\begin{array}{ccc} \varepsilon, S/A & \varepsilon, S/AS \\ \varepsilon, S/: \|D & \varepsilon, A/BB \\ \varepsilon, A/CBC & \varepsilon, B/CC \\ \varepsilon, B/ \downarrow & \varepsilon, C/ \downarrow \\ \varepsilon, C/ \supset & \varepsilon, D/S: \| \\ \varepsilon, D/S: \| S \end{array}$$

Wir zeigen, dass $w_1=$ און: יון von diesem Automaten akzeptiert wird.

Übergang	Stack	Wort
	S	: :
$\varepsilon, S/AS$	AS	
$\varepsilon, A/BB$	BBS	
$\varepsilon, B/CC$	BCCS	
$\varepsilon, B/ \mathbf{J}$	${\downarrow}CCS$	
$\mathbf{J},\mathbf{J}/\varepsilon$	CCS]] : -]] :
$\varepsilon, C/ floor$	$\rfloor CS$]] : -]] :
$\mathbf{J},\mathbf{J}/\varepsilon$	CS] : •7;]:
$\varepsilon, C/ floor$	$\rfloor S$] : - 7.]:
$\mathbf{J},\mathbf{J}/\varepsilon$	S	: •7. :
$\varepsilon, S/ \ : D$	$\ \!\!:\! D$: •7:
$\ :,\ :/\varepsilon$	D	♪ }}!
$\varepsilon, D/S \colon \mid \mid$	$S\!:\parallel$	♪ }}!
$\varepsilon, S/A$	$A\!:\parallel$	- ⊅: :
$\varepsilon, A/CBC$	$CBC: \parallel$	♪ }}!
$arepsilon, C/$ \Box	ብ BC : $\ $	♪ } :
$\mathfrak{I},\mathfrak{I}/\varepsilon$	$BC\colon \mid\!\mid$	J .
$\varepsilon, B/ \mathbf{J}$	$\exists C\!: \parallel$	J.
$\mathbf{J},\mathbf{J}/\varepsilon$	$C\!:\parallel$	ן: [
$\varepsilon, C/ floor$	J:	J:
$\mathbf{J},\mathbf{J}/\varepsilon$:	:
$: \parallel, : \parallel/\varepsilon$	$\langle leer \rangle$	ε

Hingegen ist w_2 nicht akzeptabel, da die eizige Möglichkeit, es zu generieren, eine Satzform BC wäre. Diese ist in der Grammatik nicht herleitbar.

Aufgabe 5.6

Wir zeigen die deterministische Kontextfreiheit durch einen DKA-AdEZ.

