MAL 245: TOPOLOGY AND FUNCTIONAL ANALYSIS

DEPARTMENT OF MATHEMATICS MINOR 1 MAX. MARKS 25

Answer any five. All questions carry equal marks.

- I. Let \mathcal{T} be the topology on \mathbb{Q} generated by subbasic open sets of the form $[a,b] \cap \mathbb{Q}$ for all irrationals a,b.
- a) Determine the closure of the sets:
- (1) $(e,\pi) \cap \mathbb{Q}$
- (2) $\{.9, .99, .999, ...\}$
- (3) $\{\frac{m}{2^n}: m, n \in \mathbb{N}\} \cap (0,1)$ (dyadic rationals in (0,1))
 - b) Is the topology \mathcal{T} second countable? Justify.
- II. For every $n \in \mathbb{Z}$, let

$$a_n = \{2n - 1, 2n, 2n + 1\}$$

Let \mathcal{T} be the topology on \mathbb{Z} generated by basic open sets $\{a_n : n \in \mathbb{Z}\}$. Is the topological space $(\mathbb{Z}, \mathcal{T})$ T_1 ? Hausdorff?, second category? Justify your answer.

- III. Define when $f: X \to Y$ is continuous. Let $X = \{a, b\}$ and $Y = \{a, b, c\}$. Give topologies on X and Y so that
 - (a) every $f: X \to Y$ is continuous.
- (b) no $f: X \to Y$, except the constant function, is continuous.
- \mathbf{W} Let X be a second countable, Hausdorff space. Show that the set of all isolated points in X is either empty or countable.
- V_{\bullet} Let $f: X \to Y$ be continuous. Prove that X is homeomorphic to the graph of f, $G_f = \{(x, f(x)) : x \in X\}$, in $X \times Y$.
- VI. Give examples of:
- 1. topological space with compact subsets that are not closed.
- 2. topological space with closed subsets that are not compact.
 - 3. infinite topological space with every open set compact.
- VII. Define "finite intersection property" and show that in every compact topological space any collection of closed sets with finite intersection property has non empty intersection.

Give an example of a topological space for which a collection of closed sets with finite intersection property has empty intersection.