Controlli Automatici T
 Progetto gruppo AO — traccia 3c

Giacomo Romanini Guglielmo Palaferri Luca Tacinelli

Pietro Girotti 30 giugno 2021

1 Linearizzazione nell'intorno di (x_e, u_e)

Il sistema del motore ad elica assegnato è descritto dalle seguenti equazioni:

$$\dot{\theta} = \omega$$

$$(m_i e_i^2 + I_e) \dot{\omega} = -\beta \omega - \mu_d m_i \omega^2 e_i^2 + \tau$$
(1)

dove si considerano

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} \theta(t) \\ \omega(t) \end{bmatrix}$$
$$u(t) = \tau(t)$$
$$y(t) = \omega(t)$$

Sostituendo i parametri è possibile ottenere le equazioni di stato:

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{\beta}{(m_i e_i^2 + I_e)} x_2(t) - \frac{\mu_d m_i e_i^2}{(m_i e_i^2 + I_e)} x_2^2(t) + \frac{1}{(m_i e_i^2 + I_e)} u(t)$$
(2)

Inoltre, poiché la dinamica di θ è ininfluente per l'evoluzione del sistema, si conosce $x_e = \begin{pmatrix} 0 \\ 10000/2\pi \end{pmatrix}$ e $y_e = \omega_e = 10000/2\pi$