西安交通大学实验报告

成绩

(双面打印, 左边装订)

课程: <u>热流</u>	体课程实验1_ 交报告日期:	
实验名称:	平板边界层内的流速分布实验	
专业班号:_	姓名:	学号:
同组者:		教师审批签字:

一、 实验目的 (预习) (1分)

二、 实验原理 (预习) (5分)

线

装

订

 \mathbb{C}

三、实验装置(预习)(3分)

实验装置图

四、预习题(预习)(6分)

- 1、本实验需要现场测量哪些物理量?(3分)
- 2、实验时如何判断测量点是否到达边界层外边界? (3分)

五、实验数据处理(45分)

已知数据:

平板模型长×宽为 500mm ×700mm;

毕托管流量系数: K=1, 总压探针半径 r=0.45 mm

1. 数据记录(5分)

大气压强 Pa = Pa,大气温度 $t = ^{\circ}$ C

流场静压 P_j = Pa (机械法),流场静压 P_j = Pa (电测法)

2. 实验数据记录和计算(40分)

表 1 x = 150mm 实验数据

距前缘 x = mm				坐标初值 y ₀ = mm				
雷诺数 $\operatorname{Re}_{x} = \frac{V_{\infty}x}{v} =$				边界层厚度 $\sigma=$ mm				
序号		机械法			电测法			
	边界层内	雷诺数 $\operatorname{Re}_{x} = \frac{V_{\infty}x}{v} =$			雷诺数 $\operatorname{Re}_{x} = \frac{V_{\infty}x}{v} =$			
	距离	边界层厚度 $\sigma = mm$			边界层厚度 σ = mm			
5	(mm)	微压计读 数 Δh ₀	边界层内 流速 <i>u</i>	速度比	压差变送 器读数	边界层内 流速 u	速度比	
		致 Δn ₀ (mm)	初成 <i>u</i> (m/s)	u/V_{∞}	辞以数 (Pa)	が以来 <i>u</i> (m/s)	u/V_{∞}	
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								

表 2 x = 250mm 实验数据

距前缘 x = mm				坐标初值 y ₀ = mm				
雷诺数 $\operatorname{Re}_x = \frac{V_{\infty}x}{v} =$			边界层厚度σ = mm					
序号		机械法			电测法			
	边界层内	雷诺数 $\operatorname{Re}_{x} = \frac{V_{\infty}x}{v} =$			雷诺数 $\operatorname{Re}_{x} = \frac{V_{\infty}x}{v} =$			
	距离	边界层厚度	$\sigma = 1$	mm	边界层厚度 $\sigma = mm$		mm	
7	(mm)	微压计读	边界层内	速度比	压差变送	边界层内	速度比	
		数 Δh_0	流速 u	$u/V_{_{\infty}}$	器读数	流速 u	u/V_{∞}	
		(mm)	(m/s)		(Pa)	(m/s)	u, v∞	
1								
2								
3								

(C)

装

订

线

平板边界层内的流速分布实验

, = , , , , , , , , , , , ,								
4								
5								
6								
7								
8								
9								
10				_	_			

(1) 请以第一个工况为例,给出表中各参数的计算过程.(15分)

(2) 请绘制出两个截面的边界层速度分布曲线(25分)可附页。

六、实验结果结果分析: (25 分)

流态分析

装

订

线

 \bigcirc

(1) 根据雷诺数判断流态(临界雷诺数 $Re_0 = 3 \times 10^5 \sim 3 \times 10^6$); (6分)

(2) 将实验测定的边界层厚度 σ 与近似计算值进行比较,判断流态; (6 分) 层流

$$\sigma = 5\sqrt{\frac{vx}{V_{\infty}}}$$

紊流

$$\sigma = 0.37 \left(\frac{v}{V_{\infty}x}\right)^{1/5} x$$

(3) 根据边界层内的流速分布曲线判断流态(8分) 层流

$$u = \frac{V_{\infty}}{2\delta} \left(3y - \frac{y^3}{\delta^2} \right)$$

紊流

$$u = V_{\infty} \left(\frac{y}{\delta}\right)^{1/7}$$

(4) 总结判断两个截面处边界层的流态,为什么? (5分)

七、思考题(15分)

1、流体的流动状态受哪些因素影响? (7分)

2、为何紊流和层流呈现不同的速度分布规律? (8分)