Approved by

D' a Da L	
First Reader	Bennett B. Goldberg, Ph.D. Professor of Physics
Second Reader	
	Anna K. Swan, Ph.D. Associate Professor of Electrical and Computer Engineering, Physics, Materials Science and Engineering, and Photonics

Contents

1	Intr	roduction		
2 Unmodified band structure			ed band structure	3
	2.1	Graph	nene's lattice and Brillouin zone	3
	2.2	Tight	binding motivation	6
	2.3	Tight	binding in graphene	8
		2.3.1	Nearest neighbor tight binding	8
		2.3.2	Low energy approximation	10
	2.4	Dirac-	Weyl electrons	13
3	Stra	train-induced vector potentials: Lattice-corrections and engineered		
pseudomagnetic fields			gnetic fields	16
	3.1	Deriva	ation of the pseudovector potentials	17
		3.1.1	Qualitative argument	19
		3.1.2	Strain altered lattice vectors	21
		3.1.3	Strain altered hopping energies	23
		3.1.4	Hamiltonian of strained graphene	24
		3.1.5	Pseudovector potentials	26
	3.2	Pseud	ovector potential discussion	28
	3 3	Proud	amagnatia fields	20

		3.3.1	Contribution of lattice-corrections to the pseudomagnetic field	33
		3.3.2	Pressurized graphene sealed microchambers: pseudomagnetic	
			field test bed	34
		3.3.3	Large, localized, plasmonically enhanced pseudomagnetic fields	39
		3.3.4	The necessity of proper continuum modeling	42
	3.4	Conclu	ısion	47
4	Hov	v grap	hene slides: Graphene's anomalous macroscopic friction	50
	4.1	Ramai	n G band strain response	53
	4.2	Experi	imental Design	55
		4.2.1	Pressure trapped in microchambers	57
	4.3	Qualit	ative results	60
	4.4	Contin	nuum model of strain distributions	64
		4.4.1	Detailed derivation of the extended Hencky model	68
		4.4.2	Detailed description of the Atomistic model	75
	4.5	Fitting	g Raman spectra to the continuum model	79
	4.6	Measu	red frictional dependencies	83
	4.7	Summ	ary	86
5	The	thern	nal conductivity of strained graphene	88
	5.1	Past n	neasurements of graphene's thermal conductivity	88
		5.1.1	Theoretical background	90
	5.2	Heat t	ransport model	93
6	Pho	onon in	iduced band gap in graphene	100
	6.1	Theor	y	100
		6.1.1	Kekulé geometry	101

		6.1.2	Zone folding	105
		6.1.3	Altered hoppings	109
		6.1.4	Tight binding of the expanded Kekulé lattice	111
	6.2	Exper	imental design	113
		6.2.1	Phonon excitation	113
		6.2.2	Estimation of the band gap	113
		6.2.3	Band gap measurements	116
7	Con	clusio	n	119
\mathbf{A}	The	e first 1	Brillouin zone of strained graphene	120
В	Slov	wly var	rying approximation	12 4
\mathbf{C}	C Global fitting algorithm			127
D	Нор	ping e	energies in the Kekulé geometry	143
${f E}$	Elec	ctrical	transport experimental design	146
Cı	ırric	ուհութ չ	Vitae	162

List of Tables

4.1	Summary of the Grüneisen parameter and shear deformation potential			
	as measured on different substrates	81		

List of Figures

2.1	Geometry of intrinsic graphene	4
2.2	Electronic dispersion of intrinsic graphene	11
3.1	Geometry of strained graphene	20
3.2	Lattice-corrected strain-induced pseudovector potentials	31
3.3	Pseudomagnetic fields in a pressurized, triangular, graphene sealed mi-	
	crochamber	36
3.4	Effect of crystallographic orientation on the pseudomagnetic field $$. $$	38
3.5	Plasmonic enhancement in hourglass microchambers	41
3.6	Large, localized pseudomagnetic fields in a pressurized, hourglass, gra-	
	phene sealed microchamber	43
3.7	Pseudomagnetic fields predicted by different continuum models	45
3.8	Comparison of pseudomagnetic field calculated based on an atomistic	
	model and based on the extended Hencky model	48
4.1	Schematic of devices used to measure graphene's macroscopic friction	52
4.2	Comparison of Raman spectra measured using circularly and linearly	
	polarized light	54
4.3	Beam waste determination	56
4.4	Characteristic ambient pressure behavior of FLG sealed microchambers	58
4.5	Qualitative observations of graphene sliding	62

4.6	Discrimination of strain split Raman modes using linearly polarized light	63
4.7	Raman map of pressurized graphene sealed microchamber	65
4.8	Continuum model of pressurized, graphene sealed, circular microcham-	
	bers	67
4.9	Forces acting on suspended, pressurized graphene	70
4.10	Forces acting on supported, pressurized graphene	72
4.11	Boundary conditions at the microchamber edge	74
4.12	Numerical solutions to the continuum model	76
4.13	Schematic diagram of the atomistic simulation	77
4.14	Determination of the Grüneisen parameter and shear deformation po-	
	tential	80
4.15	Fit line scan spectra	82
4.16	The dependencies of sliding friction for FLG	84
4.17	The sliding friction for trilayer graphene	85
5.1	Summary of the reported values of the room temperature thermal con-	
	ductivity of monolayer graphene	91
5.2	Expected temperature distribution in a graphene sealed microchamber	
	heated by a centered laser	99
6.1	Snapshots of the Kekulé phonon mode	102
6.2	The geometry of the Kekulé lattice	104
6.3	The zone foldings introduced by the Kekulé distortion	106
6.4	Diagram of the hoppings in the expanded Kekulé unit cell	107
6.5	Surface plots of the folded electronic dispersion of the Kekulé lattice .	109
6.6	Gapped electronic dispersion of the Kekulé lattice	112
6 7	Neon scattering geometry	114

6.8	Side view of a back gated graphene device	117
A.1	The construction of the BZ for a hexagonal lattice	122
C.1	Global fitting algorithm flow chart	129
C.2	Global fit for microchambers with radii less than 1.5 microns	133
С.3	Laser excitation profile overlaid on strain distribution	135
C.4	Goodness of fit metric used to determine friction	141
E.1	Circuit diagram for graphene electrical transport measurements	148
E.2	Simplified circuit diagram of four probe AC transport measurements .	149