2023/4/27

关于GS算法的一些问题。

- 1. 我进行了大量的仿真,发现用瑞利-索末菲衍射的GS算法的迭代效果跟许多因素都有关,这些因素如下:
 - 。目标光斑大小
 - 。 衍射面、接收面采样间距
 - 。 衍射面、接收面大小
 - 。波长

具体的一部分仿真记录如图所示:

实验检测波长、目标光斑大小、N对迭代效果的影响					
序号	N	lambda	目标方形光斑边长	相关系数	衍射面与目标面均为10mm边长,衍射距离
1	1000	515nm	200um	发散	z=10mm,入射光为w0=1.5mm的高斯光
2	2000	515nm	200um	0.65	束,目标光斑为方形光斑
3	3000	515nm	200um	0.55	
4	1000	515nm	100um	随迭代减小, 0.74	
5	2000	515nm	100um	0.85	
6	3000	515nm	100um	8.0	
7	1000	515nm	50um	随迭代减小, 0.935	
8	2000	515nm	50um	0.92	
9	3000	515nm	50um	0.9	
10	2000	515nm	1000um	发散	
11	2000	515nm	700um	发散	
12	2000	515nm	500um	发散	
13	2000	515nm	300um	发散	
14	2000	600nm	200um	随迭代减小, 0.67	
15	2000	550nm	200um	0.37	

学长,您以前遇到过这种情况吗?

老师觉得这是因为我的代码还有问题,要我继续研究。但我想用这个求出来相位面然后继续往下做了,光斑小到几个微米的时候,迭代结果还是可以的,那我可以用这个继续进行吗,毕设要做不完了…

2. 在Lumerical官网Metalens的介绍中,在组装形成整体透镜时,可以保存结构不同半径时对应的光通过后的近场图像,再将其拼接起来组成整个超透镜的近场图像,这个近场指的就是在结构1个波长后的地方吗?(学长上次跟我讲测相位是在结构1个波长后的地方测的)