Intro to infectious disease modeling (in R)

Sinead Morris (she/her), PE fellow
Applied Research & Modeling Team (ARM), EPB
run7@cdc.gov

All materials at: github.com/SineadMorris/trainings

Objectives

Background & practical concepts

Construct a simple disease model: SIR example

Extend this model to fit a particular need

Code a model in R

Time for Qs & additional resources

Background & practical concepts

The parents of Infectious Disease Modeling

Hilda Hudson

Ronald Ross

Anderson McKendrick

William Kermack

1915-17 1927-33

Since the 1980/90s the field has been steadily growing

A model is just a

(mathematical)

description of how

we think a disease

spreads

Forecasting / prediction

Scenario analysis

Estimate unknown quantities

Inference / explaining patterns

Forecasting / prediction

(e.g. how many cases will there be next week?)

Ex: FluSight Challenge

Forecasting flu each season (2013+)

Each week teams predicted hospitalizations 1-4+ wks ahead

Uses include: short-term planning / decision-making

Scenario analysis

(e.g. what *could happen* in situation A vs B vs?)

Ex: COVID vax (Bubar et al 2021)

Compare age prioritization High/low transmission

Uses include:

- explore different hypotheses
- long-term planning / assessment

Estimate unknown quantities

(e.g. what is the infectious period?)

Ex: Zika virus (Lourenco et al 2017)

Fit model to case data to estimate parameters

Uses include:

- Understanding disease (e.g. natural history)
- Policy design
- Better inputs for future models

Inference / explaining patterns

(e.g. why are outbreaks seasonal?)

Ex: Shaman et al (2010)

Showed that absolute humidity could be one driver of seasonality

Uses include:

- Understanding drivers/mechanisms of spread
- Policy design
- Building more accurate models

Compartmental models

For a particular pathogen / population:

• Define **general health states** that occur during infection progression e.g. susceptible, then infected & infectious, then recovered

• Assume **people move through states** at certain rates

• Transmission equally likely to occur between anyone ("well-mixed" assumption)

Image source: The Scientist

Basic reproduction number (R_0)

Average # new infections caused by one infected person in a fully susceptible population

```
(# infections / day ) x (# days infectious)
per infected person

e.g. 1 x 4 = 4
```

Effective reproduction number (R_t)

Average # new infections caused by one infected person in a partially susceptible population

```
(# infections / day ) x (# days infectious) x fraction at risk
per infected person
e.g. 1 x 4 x 0.5 = 2
```

How contagious is a disease?

Scientists use "R naught," or RO, to estimate how many other people one sick person is likely to infect

*This estimate is preliminary and likely to change

*An early estimate based on the Colombia outbreak in 2015

SOURCES: Travel Medicine, PLOS One, JAMA Pediatrics, MDPI, NCBI, New England Journal of Medicine, "The Spread and Control of Norovirus Outbreaks Among Hospitals in a Region"

Basic reproduction number (R_0)

Iceland Monitor

How contagious is a disease?

Scientists use "R naught," or RO, to estimate how many other people one sick person is likely to infect

*This estimate is preliminary and likely to change

*An early estimate based on the Colombia outbreak in 2015

*An estimate based on Réunion Island in 2006

SOURCES: Travel Medicine, PLOS One, JAMA Pediatrics, MDPI, NCBI, New England Journal of Medicine, "The Spread and Control of Norovirus Outbreaks Among Hospitals in a Region"

Construct a simple disease model: SIR example

Ordinary differential equations (ODEs)

How much water is in the bath?

Need to know:

- 1. how much we started with, i.e. **n(0)**
- 2. how it changes over time,
 i.e. how much is flowing in (λ) vs flowing out (ο)

$$\frac{dn}{dt} = \lambda - \epsilon$$

Change over time = flow in - flow out

Constructing the SIR model

Model outbreak of influenza during a single season:

- unvaccinated population (of size N)
- assume immediately infectious upon infection
- assume after infection, immune for rest of season

Describe **flows** between compartments

Image source: The Scientist

Constructing the SIR model

Model outbreak of influenza during a single season:

- unvaccinated population (of size N)
- assume immediately infectious upon infection
- assume after infection, immune for rest of season

$$\frac{\mathrm{dS}}{\mathrm{dt}} = -\beta S I$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta S I - \gamma I$$

$$\frac{\mathrm{d}R}{\mathrm{dt}} = \gamma l$$

Constructing the SIR model

Model outbreak of influenza during a single season:

- unvaccinated population (of size N)
- assume immediately infectious upon infection
- assume after infection, immune for rest of season

infections / day x # days infectious per infected person
$$\beta S$$
 x $1/\gamma$

$$R_0 = \beta S \times \frac{1}{\gamma} = \beta N \times \frac{1}{\gamma} = \frac{\beta N}{\gamma}$$
Fully suscept.

$$\frac{\mathrm{dS}}{\mathrm{dt}} = -\beta S I$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta S I - \gamma I$$

$$\frac{\mathrm{d}R}{\mathrm{dt}} = \gamma I$$

$$\gamma = \text{rate of}$$
 $recovery$
 $\frac{1}{\gamma} = \text{time to}$
 $recovery$

Case studies: Adapting the model to different needs

#1 "Have you included latent infection?"

Model outbreak of influenza during a single season:

- unvaccinated population
- assume after infection, immune for rest of season
- period of latent infection before people become infectious

$$\frac{\mathrm{dS}}{\mathrm{dt}} = -\beta S I$$

$$\frac{\mathrm{d}\mathbf{E}}{\mathrm{d}t} = \beta S I - \boldsymbol{\sigma} \mathbf{E}$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \sigma E - \gamma I$$

$$\frac{\mathrm{d}R}{\mathrm{dt}} = \gamma I$$

#2 "...and waning immunity?"

Model outbreak of influenza during multiple seasons:

- unvaccinated population
- period of latent infection before people become infectious
- assume people lose immunity and become fully susceptible again

$$\frac{\mathrm{dS}}{\mathrm{dt}} = -\beta S I + \delta R$$

$$\frac{dE}{dt} = \beta S I - \sigma E$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \sigma E - \gamma I$$

$$\frac{\mathrm{d}R}{\mathrm{dt}} = \gamma I - \delta R$$

#3 "...or vaccination?"

→ SEIRV model

Model outbreak of influenza during a single season:

- assume after infection, immune for rest of season
- period of latent infection before people become infectious
- susceptible people can be vaccinated

Code a model in R

Materials at:

github.com/SineadMorris/trainings

Files in 'intro_to_modeling':

SIR_model.Rmd -- code to simulate the SIR model

SIR_model_extra.Rmd -- same analysis, with a few extra bells & whistles

SEIR_model.Rmd -- code to simulate the SEIR model

SEIRS_model.Rmd -- code to simulate the SEIRS model

SEIRV_model.Rmd -- code to simulate the SEIRV model

(Optional) Exercise

Try adding latent infection to SIR_model.Rmd

(without looking at SEIR model.Rmd!)

Additional Qs & resources

Applied Research & Modeling Team (ARM)

SCBS at CDC

CDC R User Group (RUG)

NCIRD Data Science DOJO

R packages: flumodels, epiestim, tidyverse, patchwork, scico

R tutorials / help: <u>Harvard online</u>, <u>Applied Epi R Handbook</u>, stackoverflow/google

Modeling tutorials: ICI3D lectures & code, Imperial coursera, Penn State coursera

