Colles - Semaine 8

I. Série 1

Exercice 1

On considère les matrices $A=\begin{pmatrix}2&\frac{2}{3}\\-\frac{5}{2}&-\frac{2}{3}\end{pmatrix}$ et $P=\begin{pmatrix}-2&-2\\3&5\end{pmatrix}$.

- 1. Les matrices A et P sont-elles inversibles?
- 2. On donne $P^{-1} = \frac{1}{4} \begin{pmatrix} -5 & -2 \\ 3 & 2 \end{pmatrix}$. Calculer $B = P^{-1}AP$.
- 3. En déduire B^n puis A^n pour tout $n \in \mathbb{N}$.
- 4. Déterminer l'ensemble des suites réelles (x_n) et (y_n) qui vérifient : $\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 2x_n + \frac{2}{3}y_n \\ y_{n+1} = -\frac{5}{2}x_n \frac{2}{3}y_n \end{cases}$

Exercice 2

On considère la matrice $A=\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. On pose $B=A-I_3$.

- 1. Soit $n \in \mathbb{N}$. Calculer B^n .
- 2. On donne le résultat suivant : Soit $(M, N) \in (\mathcal{M}_p(\mathbb{R}))^2$ tel que MN = NM, alors

$$\forall n \in \mathbb{N}, \ (M+N)^n = \sum_{k=0}^n \binom{n}{k} M^k N^{n-k}$$

Soit $n \in \mathbb{N}$. En déduire une expression de A^n .

II. Série 2

Exercice 1

On considère la matrice $A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$.

- 1. Calculer $A^2 3A + 2I_2$. En déduire que A est inversible et calculer son inverse.
- 2. On donne le résultat suivant : Soit $(M,N)\in (\mathscr{M}_p(\mathbb{R}))^2$ tel que MN=NM, alors

$$\forall n \in \mathbb{N}, \ (M+N)^n = \sum_{k=0}^n \binom{n}{k} M^k N^{n-k}$$

Prouver l'existence de deux suites (u_n) et (v_n) telles que : $\forall n \in \mathbb{N}, A^n = u_n A + v_n I_2$.

- 3. Que peut-on dire de la suite $(u_n + v_n)$?
- 4. En déduire l'expression de (u_n) , (v_n) et A^n .

Exercice 2

On considère la matrice A définie par $A = \begin{pmatrix} 1 & 0 & 0 \\ 6 & -5 & 6 \\ 3 & -3 & 4 \end{pmatrix}$.

1. Démontrer qu'il existe une suite $(a_n)_{n\in\mathbb{N}}$ telle que pour tout $n\in\mathbb{N}$, on ait :

$$A^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 2a_{n} & 1 - 2a_{n} & 2a_{n} \\ a_{n} & -a_{n} & 1 + a_{n} \end{pmatrix}$$

2. Montrer que la suite (a_n) est arithmético-géométrique. En déduire a_n en fonction de n, puis A^n en fonction de n.

III. Série 3

Exercice 1

Soit M une matrice de $\mathcal{M}_n(\mathbb{R})$ telle que : ${}^tM = -M$. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et $U = {}^tXMX$.

- 1. Quel est la taille de la matrice U? En déduire tU .
- 2. En déduire que U=0.
- 3. Montrer que I + M est inversible. (on pourra supposer (I + M)X = 0 et calculer ${}^{t}(MX)(MX)$ dans ce cas)
- 4. Soit $A = (I M)(I + M)^{-1}$. Montrer que ${}^tA = (I M)^{-1}(I + M)$.
- 5. À quelle condition a-t-on ${}^tA = A^{-1}$? Montrer que cette condition est vérifiée.

Exercice 2

- 1. Soit $A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$. Montrer que $A^3 A^2 A + I = 0$. En déduire que A est inversible et calculer A^{-1} . Montrer ensuite que A^2 est inversible et calculer $(A^2)^{-1}$.
- 2. Soit $C = \begin{pmatrix} -2 & -1 & -1 \\ 3 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Calculer C^3 , en déduire que C n'est pas inversible.