Cálculo del tipo de homotopía de complejos simpliciales

Rafael Villarroel Flores, UAEH

Congreso Virtual SMM 2020

Complejos simpliciales

Los complejos simpliciales proporcionan una manera sencilla de involucrar la topología en diversas construcciones combinatorias.

Complejos simpliciales

Los complejos simpliciales proporcionan una manera sencilla de involucrar la topología en diversas construcciones combinatorias.

Definición (Complejo simplicial)

Un complejo simplicial (X, Δ) consta de un conjunto X de vértices y un conjunto de subconjuntos de X (llamados simplejos), tal que si $\sigma \in \Delta$ y $\tau \subseteq \sigma$, entonces $\tau \in \Delta$.

Complejos simpliciales

Los complejos simpliciales proporcionan una manera sencilla de involucrar la topología en diversas construcciones combinatorias.

Definición (Complejo simplicial)

Un complejo simplicial (X, Δ) consta de un conjunto X de vértices y un conjunto de subconjuntos de X (llamados simplejos), tal que si $\sigma \in \Delta$ y $\tau \subseteq \sigma$, entonces $\tau \in \Delta$.

A cada complejo simplicial se le puede asociar un espacio topológico $|\Delta|$.

Definición (Complejo de vecindades)

Definición (Complejo de vecindades)

Sea G una gráfica sin vértices aislados. Se tiene un complejo simplicial $\mathcal{N}(G)$, donde:

 \blacksquare el conjunto de vértices es V(G),

Definición (Complejo de vecindades)

- \blacksquare el conjunto de vértices es V(G),
- $\sigma \subseteq V(G)$ es un simplejo si los vértices de σ tienen un vecino común.

Definición (Complejo de vecindades)

- \blacksquare el conjunto de vértices es V(G),
- $\sigma \subseteq V(G)$ es un simplejo si los vértices de σ tienen un vecino común.

Definición (Complejo de vecindades)

- \blacksquare el conjunto de vértices es V(G),
- $\sigma \subseteq V(G)$ es un simplejo si los vértices de σ tienen un vecino común.

Figura: Gráfica *G*

Definición (Complejo de vecindades)

- \blacksquare el conjunto de vértices es V(G),
- $\sigma \subseteq V(G)$ es un simplejo si los vértices de σ tienen un vecino común.

Figura: Gráfica G

Figura: Complejo $\mathcal{N}(G)$

Si $|\mathcal{N}(G)|$ es k-conexo, entonces $\chi(G) \ge k + 3$.

Si $|\mathcal{N}(G)|$ es k-conexo, entonces $\chi(G) \ge k + 3$.

■ Un espacio X es k-conexo si toda función continua $S^r \to X$ puede extenderse a la bola cerrada $D^{r+1} \to X$ para r = 0, 1, ..., k

Si $|\mathcal{N}(G)|$ es k-conexo, entonces $\chi(G) \ge k + 3$.

- Un espacio X es k-conexo si toda función continua $S^r \to X$ puede extenderse a la bola cerrada $D^{r+1} \to X$ para r = 0, 1, ..., k
- 0-conexo es ser conexo por trayectorias.

Si $|\mathcal{N}(G)|$ es k-conexo, entonces $\chi(G) \ge k + 3$.

- Un espacio X es k-conexo si toda función continua $S^r \to X$ puede extenderse a la bola cerrada $D^{r+1} \to X$ para r = 0, 1, ..., k
- 0-conexo es ser conexo por trayectorias.
- 1-conexo es ser simplemente conexo (y conexo por trayectorias).

OURNAL OF COMBINATORIAL THEORY, Series A 25, 319-324 (1978)

Note

Kneser's Conjecture, Chromatic Number, and Homotopy

L. Lovász

Bolyai Institute, Jozsef Attila University, H-6720 Szeged, Aradi vértanuk tere 1, Hungary

Communicated by the Editors

Received March 4, 1977

If the simplicial complex formed by the neighborhoods of points of a graph is (k-2)-connected then the graph is not k-colorable. As a corollary Kneser's conjecture is proved, asserting that if all n-subsets of a (2n-k)-element set are divided into k+1 classes, one of the classes contains two disjoint n-subsets.

hom

El complejo de vecindades fue generalizado por Lovász a una construcción hom(H,G), definida para cualquier par de gráficas G,H. Se tiene que $hom(K_2,G) \simeq \mathcal{N}(G)$.

hom

El complejo de vecindades fue generalizado por Lovász a una construcción hom(H,G), definida para cualquier par de gráficas G,H. Se tiene que $hom(K_2,G) \simeq \mathcal{N}(G)$.

Babson y Kozlov demostraron (2003): Si hom (C_{2r+1}, G) es k-conexo para alguna r, entonces $\chi(G) \ge k+4$.

Definición (Complejo de independencia)

Definición (Complejo de independencia)

Sea G una gráfica. Se tiene un complejo simplicial I(G) donde:

 \blacksquare el conjunto de vértices es V(G),

Definición (Complejo de independencia)

- el conjunto de vértices es *V*(*G*),
- $\sigma \subseteq V(G)$ es simplejo si no existen aristas entre vértices de σ .

Definición (Complejo de independencia)

- el conjunto de vértices es *V*(*G*),
- $\sigma \subseteq V(G)$ es simplejo si no existen aristas entre vértices de σ .

Definición (Complejo de independencia)

- el conjunto de vértices es *V*(*G*),
- $\sigma \subseteq V(G)$ es simplejo si no existen aristas entre vértices de σ .

Figura: Gráfica G

Definición (Complejo de independencia)

- \blacksquare el conjunto de vértices es V(G),
- $\sigma \subseteq V(G)$ es simplejo si no existen aristas entre vértices de σ .

Figura: Gráfica G

Figura: Complejo *I*(*G*)

Ehrenborg, Hetyei, 2006

Si G es un bosque, entonces I(G) es homotópico a un punto o a una esfera.

Ehrenborg, Hetyei, 2006

Si G es un bosque, entonces I(G) es homotópico a un punto o a una esfera.

Engström, 2008

Si G es una gráfica libre de garras (*claw-free*) con n vértices y grado máximo d, entonces I(G) es $\lfloor (2n-1)/(3d+2)-1 \rfloor$ -conexo.

Ehrenborg, Hetyei, 2006

Si G es un bosque, entonces I(G) es homotópico a un punto o a una esfera.

Engström, 2008

Si G es una gráfica libre de garras (*claw-free*) con n vértices y grado máximo d, entonces I(G) es $\lfloor (2n-1)/(3d+2)-1 \rfloor$ -conexo.

Van Tuyl, Villarreal, 2008

Si G es cordal, entonces I(G) es encapsulable (shellable), por lo que I(G) es homotópico a una cuña de esferas.

Definición (Complejo de completas)

Definición (Complejo de completas)

Sea G una gráfica. Se tiene un complejo simplicial $\Delta(G)$ donde:

 \blacksquare el conjunto de vértices es V(G),

Definición (Complejo de completas)

- \blacksquare el conjunto de vértices es V(G),
- $\sigma \subseteq V(G)$ es simplejo si σ induce una subgráfica completa de G.

Definición (Complejo de completas)

- \blacksquare el conjunto de vértices es V(G),
- $\sigma \subseteq V(G)$ es simplejo si σ induce una subgráfica completa de G.

Definición (Complejo de completas)

- el conjunto de vértices es *V*(*G*),
- $\sigma \subseteq V(G)$ es simplejo si σ induce una subgráfica completa de G.

Figura: Gráfica G

Definición (Complejo de completas)

- el conjunto de vértices es *V*(*G*),
- $\sigma \subseteq V(G)$ es simplejo si σ induce una subgráfica completa de G.

Figura: Gráfica G

Figura: Complejo $\Delta(G)$

Si G es una gráfica, K(G) es la gráfica de intersección de los clanes de G. G es K-Helly si sus clanes tienen la propiedad de Helly. G es K-convergente si la sucesión de órdenes de las gráficas $\{K^n(G)\}$ es acotada. De lo contrario, decimos que G es K-divergente.

Prisner, 1992

Si G es K-Helly, entonces $\Delta(G) \simeq \Delta(K(G))$.

Prisner, 1992

Si G es K-Helly, entonces $\Delta(G) \simeq \Delta(K(G))$.

Larrión, Pizaña, V., 2013

Prisner, 1992

Si G es K-Helly, entonces $\Delta(G) \simeq \Delta(K(G))$.

Larrión, Pizaña, V., 2013

■ Si S es una superficie compacta diferente del disco D^2 , entonces existe una gráfica G tal que $\Delta(G) \cong S$ y G es K-divergente.

Prisner, 1992

Si G es K-Helly, entonces $\Delta(G) \simeq \Delta(K(G))$.

Larrión, Pizaña, V., 2013

- Si S es una superficie compacta diferente del disco D^2 , entonces existe una gráfica G tal que $\Delta(G) \cong S$ y G es K-divergente.
- Si S es una superficie compacta diferente de la esfera S^2 , el toro, el plano proyectivo y la botella de Klein, entonces existe una gráfica G tal que $\Delta(G) \cong S$ y G es K-convergente.

Complejo de grado acotado

Sean G una gráfica con vértices $V(G)=(v_1,v_2,\ldots,v_n)$ y $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_n)$ una sucesión de enteros no negativos. Se tiene un complejo simplicial $BD^{\lambda}(G)$ donde:

Complejo de grado acotado

Sean G una gráfica con vértices $V(G)=(v_1,v_2,\ldots,v_n)$ y $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_n)$ una sucesión de enteros no negativos. Se tiene un complejo simplicial $BD^{\lambda}(G)$ donde:

 \blacksquare el conjunto de vértices es E(G),

Complejo de grado acotado

Sean G una gráfica con vértices $V(G)=(v_1,v_2,\ldots,v_n)$ y $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_n)$ una sucesión de enteros no negativos. Se tiene un complejo simplicial $BD^{\lambda}(G)$ donde:

- \blacksquare el conjunto de vértices es E(G),
- $H \subseteq E(G)$ es simplejo si el grado de v_i en la gráfica inducida G[H] es menor o igual a λ_i .

Complejo de grado acotado

Sean G una gráfica con vértices $V(G)=(v_1,v_2,\ldots,v_n)$ y $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_n)$ una sucesión de enteros no negativos. Se tiene un complejo simplicial $BD^{\lambda}(G)$ donde:

- el conjunto de vértices es E(G),
- $H \subseteq E(G)$ es simplejo si el grado de v_i en la gráfica inducida G[H] es menor o igual a λ_i .

Si $\lambda = (k, k, ..., k)$, entonces $BD^{\lambda}(G)$ se denota $BD^{k}(G)$. Si k = 1, $BD^{k}(G)$ se llama el complejo de emparejamientos (matching complex) de G.

Ejemplo

Sea
$$\lambda = (1, 2, 2, 1)$$

Ejemplo

Sea
$$\lambda = (1, 2, 2, 1)$$

Figura: Gráfica G

Ejemplo

Sea
$$\lambda = (1, 2, 2, 1)$$

Figura: Gráfica G

Figura: Complejo $BD^{\lambda}(G)$

Marietti, Testa, 2008

Si G es un bosque, entonces $\mathrm{BD}^1(G)$ es contraíble, u homotópico a una cuña de esferas.

Marietti, Testa, 2008

Si G es un bosque, entonces $\mathrm{BD}^1(G)$ es contraíble, u homotópico a una cuña de esferas.

Singh, 2020

Si G es un bosque, entonces $\mathrm{BD}^\lambda(G)$ es contraíble, u homotópico a una cuña de esferas para todo λ .

Marietti, Testa, 2008

Si G es un bosque, entonces $\mathrm{BD}^1(G)$ es contraíble, u homotópico a una cuña de esferas.

Singh, 2020

Si G es un bosque, entonces $BD^{\lambda}(G)$ es contraíble, u homotópico a una cuña de esferas para todo λ .

Bouc, 1984

La homología de $BD^1(K_7)$ contiene torsión.

Subespacio contraíble

Teorema (Subespacio contraíble)

Sea X un espacio y Y un subespacio contraíble tal que la inclusión $Y \hookrightarrow X$ es una cofibración. Entonces $X \simeq X/Y$.

Subespacio contraíble

Teorema (Subespacio contraíble)

Sea X un espacio y Y un subespacio contraíble tal que la inclusión $Y \hookrightarrow X$ es una cofibración. Entonces $X \simeq X/Y$.

En nuestro caso, podemos usar siempre este teorema, ya que si Δ es un complejo simplicial con subcomplejo Δ' , la inclusión $\Delta' \hookrightarrow \Delta$ siempre es una cofibración.

Ejemplos

Ejemplos

Vértices dominados

Para todo complejo simplicial Δ existe una gráfica G tal que de la forma $\Delta \cong \Delta(G)$.

Definición (Vértice dominado)

Un vértice u en la gráfica G es dominado por otro vértice v si $u \sim v$ y $u \sim z$ implica $v \sim z$.

Vértices dominados

Para todo complejo simplicial Δ existe una gráfica G tal que de la forma $\Delta \cong \Delta(G)$.

Definición (Vértice dominado)

Un vértice u en la gráfica G es dominado por otro vértice v si $u \sim v$ y $u \sim z$ implica $v \sim z$.

Teorema (Prisner, 1992)

Si v es dominado, entonces $G \simeq G - v$.

Figura: Desmantelamiento

Figura: Desmantelamiento

Figura: Desmantelamiento

Figura: Desmantelamiento

Figura: Desmantelamiento

18 / 24

Figura: Desmantelamiento

Figura: Desmantelamiento

Teorema (Boulet, Fieux, Jouve, 2010)

Teorema (Boulet, Fieux, Jouve, 2010)

■ Si la vecindad de v es desmantelable, entonces $G \simeq G - v$.

Teorema (Boulet, Fieux, Jouve, 2010)

- Si la vecindad de v es desmantelable, entonces $G \simeq G v$.
- Si $e = \{u, v\}$ es una arista y la vecindad común de u, v es desmantelable, entonces $G \simeq G e$.

Definición (Emparejamiento)

Un emparejamiento en el complejo simplicial Δ es una familia \mathcal{M} de parejas de simplejos $\{\tau, \sigma\} \subseteq \Delta$ tal que:

Definición (Emparejamiento)

Un emparejamiento en el complejo simplicial Δ es una familia \mathcal{M} de parejas de simplejos $\{\tau, \sigma\} \subseteq \Delta$ tal que:

■ si $\{\tau, \sigma\} \in \mathcal{M}$, entonces $\tau \subseteq \sigma$ y $|\sigma - \tau| = 1$,

Definición (Emparejamiento)

Un emparejamiento en el complejo simplicial Δ es una familia \mathcal{M} de parejas de simplejos $\{\tau, \sigma\} \subseteq \Delta$ tal que:

- si $\{\tau, \sigma\} \in \mathcal{M}$, entonces $\tau \subseteq \sigma$ y $|\sigma \tau| = 1$,
- \blacksquare cada $\rho \in \Delta$ está en cuando mucho un par de \mathcal{M} .

Definición (Emparejamiento)

Un emparejamiento en el complejo simplicial Δ es una familia \mathcal{M} de parejas de simplejos $\{\tau, \sigma\} \subseteq \Delta$ tal que:

- si $\{\tau, \sigma\} \in \mathcal{M}$, entonces $\tau \subseteq \sigma$ y $|\sigma \tau| = 1$,
- \blacksquare cada $\rho \in \Delta$ está en cuando mucho un par de \mathcal{M} .

Definición (Emparejamiento)

Un emparejamiento en el complejo simplicial Δ es una familia \mathcal{M} de parejas de simplejos $\{\tau, \sigma\} \subseteq \Delta$ tal que:

- si $\{\tau, \sigma\} \in \mathcal{M}$, entonces $\tau \subseteq \sigma$ y $|\sigma \tau| = 1$,
- cada $\rho \in \Delta$ está en cuando mucho un par de \mathcal{M} .

Si $\sigma \in \Delta$ no pertenece a ninguna pareja de \mathcal{M} , diremos que σ es una cara crítica.

Dado un emparejamiento \mathcal{M} en el complejo simplicial Δ , definimos una gráfica dirigida $D=D(\Delta,\mathcal{M})$ que tiene como conjunto de vértices a Δ , y donde hay una flecha $\tau \to \sigma$ si se da uno de:

Dado un emparejamiento \mathcal{M} en el complejo simplicial Δ , definimos una gráfica dirigida $D=D(\Delta,\mathcal{M})$ que tiene como conjunto de vértices a Δ , y donde hay una flecha $\tau \to \sigma$ si se da uno de:

Dado un emparejamiento \mathcal{M} en el complejo simplicial Δ , definimos una gráfica dirigida $D=D(\Delta,\mathcal{M})$ que tiene como conjunto de vértices a Δ , y donde hay una flecha $\tau \to \sigma$ si se da uno de:

Dado un emparejamiento \mathcal{M} en el complejo simplicial Δ , definimos una gráfica dirigida $D=D(\Delta,\mathcal{M})$ que tiene como conjunto de vértices a Δ , y donde hay una flecha $\tau \to \sigma$ si se da uno de:

Dado un emparejamiento \mathcal{M} en el complejo simplicial Δ , definimos una gráfica dirigida $D = D(\Delta, \mathcal{M})$ que tiene como conjunto de vértices a Δ , y donde hay una flecha $\tau \to \sigma$ si se da uno de:

Decimos que \mathcal{M} es un emparejamiento acíclico si D es una gráfica acíclica.

Teorema (Forman)

Si existe un emparejamiento acíclico \mathcal{M} en el complejo simplicial Δ , entonces existe un espacio X homotópico a Δ , tal que X tiene estructura de complejo CW con una celda de dimensión d por cada cara crítica de dimensión d.

Teorema (Forman)

Si existe un emparejamiento acíclico $\mathcal M$ en el complejo simplicial Δ , entonces existe un espacio X homotópico a Δ , tal que X tiene estructura de complejo CW con una celda de dimensión d por cada cara crítica de dimensión d.

Corolario

Si existe un emparejamiento acíclico en un complejo simplicial Δ tal que las únicas caras críticas consisten de un vértice y las restantes son n caras de dimensión d, entonces Δ es homotópico a $\vee_n S^d$.

Tipo de homotopía

n	G	K(G)	$K^2(G)$	$K^3(G)$	$K^4(G)$
5	<i>S</i> ²	<i>S</i> ²	<i>S</i> ³	?	?

Tipo de homotopía

n	G	K(G)	$K^2(G)$	$K^3(G)$	$K^4(G)$
5	<i>S</i> ²	<i>S</i> ²	S ³	?	?
6	<i>S</i> ²	S ²	∨3 <i>S</i> 3	?	?

Tipo de homotopía

n	G	<i>K</i> (<i>G</i>)	$K^2(G)$	$K^3(G)$	$K^4(G)$
5	S^2	<i>S</i> ²	<i>S</i> ³	?	?
6	<i>S</i> ²	S ²	∨ ₃ S ³	?	?
7	<i>S</i> ²	5 ²	<i>S</i> ²	[1]	?

[1] probablemente $S^3 \vee \vee_2 S^4$

Tipo de homotopía

n	G	K(G)	$K^2(G)$	$K^3(G)$	$K^4(G)$
5	S^2	<i>S</i> ²	<i>S</i> ³	?	?
6	<i>S</i> ²	S ²	∨ ₃ <i>S</i> ³	?	?
7	<i>S</i> ²	S ²	S ²	[1]	?
8	<i>S</i> ²	<i>S</i> ²	<i>S</i> ²	∨ ₇ <i>S</i> ³	?

[1] probablemente $S^3 \vee \vee_2 S^4$

Tipo de homotopía

n	G	K(G)	$K^2(G)$	$K^3(G)$	$K^4(G)$
5	S^2	<i>S</i> ²	S ³	?	?
6	<i>S</i> ²	S ²	∨3 <i>S</i> 3	?	?
7	<i>S</i> ²	<i>S</i> ²	<i>S</i> ²	[1]	?
8	<i>S</i> ²	<i>S</i> ²	<i>S</i> ²	∨ ₇ S³	?
9	<i>S</i> ²	5 ²	<i>S</i> ²	5 ²	[2]

[1] probablemente $S^3 \vee \vee_2 S^4$ [2] probablemente $S^3 \vee \vee_2 S^7$

Gracias

ngithub.com/rvf0068/2020-congreso-smm-virtual

y @rvf0068

rafaelv@uaeh.edu.mx