Network Control Plane - Answers

Q1)

3

4 5

FEBDAC

(a) The shortest path routes from F to all the destinations have been shown as thick lines in Figure 1 in the question. The operation of Dijkstra's algorithm is shown in the following table:

6,D

OROS

(b) The destination table for Distance Vector in B is shown below:

5,B

Cost to							
A 1	c 3	D 4	E 5	F 4			

Q2. Consider the network shown in Figure 2 and assume that each node initially knows the costs to each of its neighbours. Consider the distance vector algorithm and show the distance table entries at node z.

Figure 2 Network topology for Q8 https://tutorcs.com

	WeChat. cstutores				
		V	X	Y	
	U	6	4	13	
То	V	5	5	14	
	X	8	2	11	
	Y	9	3	10	

Q3. Consider the count-to-infinity problem in the distance vector routing. Will this problem occur if we decrease the cost of a link? How about if we connect two nodes which do not have a link?

Answer: No, decreasing the cost of a link would not result in the count-to-infinity problem. Connecting two nodes is equivalent to decreasing the link weight from infinite to a finite value.

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs