1. How do you assess the statistical significance of an insight?

Statistical significance is assessed to determine whether an observed effect is likely due to chance or represents a real effect in the data. The common steps include:

- Formulating a hypothesis: Define a null hypothesis (H_0) and an alternative hypothesis (H_1) .
- **Selecting a significance level (α\alpha)**: Typically set at 0.05 (5%), it represents the probability of rejecting the null hypothesis when it is true.
- Performing a statistical test: Use tests like t-tests, chi-square tests, or ANOVA, depending on the data and the type of analysis.
- Calculating the p-value: The p-value indicates the probability of observing the data
 if H₀ is true. If p≤αp \leq \alpha, the result is statistically significant.
- Interpreting the results: If statistically significant, the result supports rejecting H_0 in favor of H_1 .

2. What is the Central Limit Theorem? Explain it. Why is it important?

The Central Limit Theorem (CLT) states that:

For a sufficiently large sample size, the sampling distribution of the sample mean will approximate a normal distribution, regardless of the original population's distribution.

Key Points:

- Large sample size: Typically n≥30n \geq 30.
- Mean: The mean of the sampling distribution equals the population mean (µ\mu).
- Variance: The variance of the sampling distribution equals the population variance divided by the sample size (σ2/n\sigma^2/n).

Importance:

- Facilitates hypothesis testing and confidence interval construction for population parameters.
- Allows the use of parametric tests based on the normality assumption, even if the population is not normally distributed.

3. What is the statistical power?

Statistical power is the probability of correctly rejecting the null hypothesis (H_0) when it is false. It is defined as:

Power=1- β \text{Power} = 1 - \beta

Where β \beta is the probability of a Type II error (failing to reject a false H_0).

Factors affecting statistical power:

- Sample size: Larger samples increase power.
- Effect size: Larger effects are easier to detect.
- **Significance level (α\alpha)**: A higher α\alpha increases power but raises the risk of a Type I error.
- Variance in data: Lower variance increases power.

Why is it important?

High statistical power reduces the likelihood of failing to detect a true effect, improving the reliability of study results.

4. How do you control for biases?

Biases are systematic errors that can distort results. They can be controlled through:

- Randomization: Randomly assign participants or data points to groups to minimize selection bias.
- **Blinding**: Implement single- or double-blind designs to reduce observer and participant bias.
- Standardization: Use consistent procedures and protocols for data collection.
- **Matching**: Pair subjects with similar characteristics to control for confounding variables.
- **Statistical adjustments**: Use techniques like regression analysis to control for biases in observational data.

Week 7 Homework - Aishwarya Kandam Vitta

5. What are confounding variables?

A confounding variable is an extraneous factor that influences both the independent variable and the dependent variable, potentially distorting the true relationship.

Example:

In a study on exercise (independent variable) and heart health (dependent variable), age could be a confounding variable since it affects both exercise habits and heart health.

Addressing confounders:

- Randomization: Balances confounders across groups.
- Stratification: Analyze subgroups based on confounding variables.
- Statistical methods: Use regression models to adjust for confounders.

6. What is A/B testing?

A/B testing, also known as split testing, is an experimental method used to compare two versions of a variable to determine which performs better.

Process:

- 1. **Define goals**: Identify the metric to improve (e.g., click-through rate).
- 2. Create variants: Develop version A (control) and version B (treatment).
- 3. **Random assignment**: Assign users randomly to each version.
- 4. **Measure outcomes**: Collect data on the performance of each version.
- 5. **Statistical analysis**: Use hypothesis testing to evaluate differences between groups.

Applications:

- Website optimization
- Marketing campaigns
- Feature testing in software development

7. What are confidence intervals?

Week 7 Homework - Aishwarya Kandam Vitta

A confidence interval (CI) is a range of values derived from sample data that likely contains the population parameter with a specified level of confidence (e.g., 95%).

Formula:

$$CI = \hat{\mu} \pm Z \left(rac{\sigma}{\sqrt{n}}
ight)$$

Where:

- $\hat{\mu}$: Sample mean
- Z: Z-score corresponding to the confidence level (e.g., 1.96 for 95%)
- σ : Population standard deviation (or estimate)
- n: Sample size

Importance:

- · Indicates the reliability of an estimate.
- Helps quantify uncertainty in measurements.
- Widely used in reporting research findings.

For example, a 95% CI of [2.5, 4.0] suggests there is a 95% chance the true parameter lies within that range.