Optimal Binary Search Trees

Textbook Reading:

Section 8.3 Optimal Binary Search Trees, pp. 339-348.

Example Binary Search Tree

The binary search tree has keys 'Ann', 'Joe', 'Pat', 'Ray'. The internal nodes correspond to the successful searches $X = \text{'Ann'}, X = \text{'Joe'}, X = \text{'Pat'}, X = \text{'Ray'}, and the leaf nodes correspond to the unsuccessful searches}$

X < 'Ann', 'Ann' < X < 'Joe', 'Joe' < X < 'Pat', 'Pat' < X < 'Ray', 'Ray' < X.

Pseudocode for Searching a Binary Search Tree

```
procedure BinSrchTreeSearch(Root, X, Location, Found)
Input:
             Root (\rightarrowBinaryTreeNode) //points at root of a binary search tree
             X (KeyType)
Output: Location (\rightarrowBinaryTreeNode) //points at occurrence of X, if any
        Found(Boolean) //.false. if X not in tree, .true. otherwise
             Found \leftarrow .false.
             Location ← null
             Current ← Root
             while Current ≠ null .and. .not. Found do
                   Location ← Current
                   if X = Current \rightarrow Key then
                          Found ← .true.
                   else
                          if X < Current \rightarrow Key then
                                   Current ← Current→LeftChild
                          else
                                   Current ← Current→RightChild
                          endif
                   endif
             endwhile
end BinSrchTreeSearch
```

Average number of comparisons

Let p_0, p_1, p_2, p_3 be the probability that X = 'Ann', X = 'Joe', X = 'Pat', X = 'Ray', respectively, and let q_0, q_1, q_2, q_3, q_4 , denote the probability that

$$X < \text{'Ann'}$$
, 'Ann' $< X < \text{'Joe'}$, 'Joe' $< X < \text{'Pat'}$, 'Pat' $< X < \text{'Ray'}$, 'Ray' $< X$,

The average (expected) number of comparisons made by *BinSrchTreeSearch* for the binary search tree above is

$$3p_0 + 2p_1 + p_2 + 2p_3 + 3q_0 + 3q_1 + 2q_2 + 2q_3 + 2q_4$$
.

General Binary Search Tree

n internal nodes correspond to n keys

$$K_0 < K_1 < \dots < K_{n-1}$$

with associated probabilities $\mathbf{p} = (p_0, p_1, ..., p_{n-1})$

n + 1 leaf nodes correspond to the n + 1 intervals

$$I_0: X < K_0, I_1: K_0 < X < K_1, ..., I_{n-1}: K_{n-2} < X < K_{n-1}, I_n: X > K_{n-1}$$

with associated probabilities $\mathbf{q} = (q_0, q_1, ..., q_n)$.

Number of comparisons performed by BinSrchTreeSearch

- Let d_i denote the depth of the internal node corresponding to K_i , i = 0,...,n-1.
- Let e_i denote the depth of the leaf node corresponding to the interval I_i , i = 0, 1,...,n.
- If $X = K_i$, then BinSrchTreeSearch traverses the path from the root to the internal node corresponding to K_i .
- Thus, it terminates after performing d_i + 1 comparisons.
- On the other hand, if X lies in I_i , then BinSrchTreeSearch traverses the path from the root to the leaf node corresponding to I_i and terminates after performing e_i comparisons.

Formula for average number of comparisons

It follows from the previous slide that the average number of comparisons performed by *BinSrchTreeSearch* is given by:

$$A(T, n, \mathbf{p}, \mathbf{q}) = \sum_{i=0}^{n-1} p_i (d_i + 1) + \sum_{i=0}^{n} q_i e_i$$

Optimal Binary Search Tree

The problem we need to solve is to

minimize
$$A(T, n, \mathbf{p}, \mathbf{q})$$

over all binary search trees T for n keys $K_0 < K_1 < ... < K_{n-1}$ and associated probabilities $\mathbf{p} = (p_0, p_1, ..., p_{n-1})$ and $\mathbf{q} = (q_0, q_1, ..., q_n)$.

The binary search tree T that realizes the minimum is called an **optimal binary search tree**.

Combine Formula

Let

$$A(T) = A(T, n, \mathbf{p}, \mathbf{q})$$

$$\sigma(i,j) = p_i + ... + p_j + q_i + ... + q_{j+1}$$

L and R be the left and right subtrees of T.

Observing that the depth of *L* and *R* are both one less than the depth of *T*, it follows that

$$A(T) = A(L) + A(R) + \sigma(i,j).$$

Note that the sum of the p and q probabilities in L and R will not sum to 1, although, this is true for the initial input tree. We drop this constraint in the design of our algorithm.

Principle of Optimality

PSN. Prove that the Principle of Optimality holds.

Optimal Binary Search Trees Involving Subset of the Keys

Let T_{ij} be an optimal search tree involving keys

$$K_i < K_{i+1} < ... < K_j$$
.

Principle of Optimality Holds

Principle of Optimality:

 T_{ij} is optimal implies L and R are both optimal, i.e., $L = T_{i,j-1}$ and $R = T_{k+1,j}$

Recurrence Relation

If the root of T_{ij} is k, then

$$A(T_{ij}) = A(T_{i,k-1}) + A(T_{k+1,j}) + \sigma(i,j)$$

Thus,

$$A(T_{ij}) = \min_{k \in \{i, i+1, \dots, j\}} \{A(T_{i,k-1}) + A(T_{k+1,j})\} + \sigma(i, j).$$

Initial Condition: $A(T_{ii}) = \sigma(i,i) = p_i + q_i + q_{i+1}$

Action for an example

$$T_{00} = \bigcirc \qquad T_{11} = \bigcirc \qquad T_{22} = \bigcirc \qquad T_{33} = \bigcirc$$

$$A(T_{00}) = .25$$
 $A(T_{11}) = .15$ $A(T_{22}) = .25$ $A(T_{33}) = .45$

$$min \{0 + .15 = .15, .25 + 0 = .25\} + .35 = .5$$

$$\begin{cases} \boxed{1} \\ \boxed{2} \end{cases}, \boxed{1} \end{cases} \Rightarrow T_{12} = \boxed{1} \qquad \boxed{A(T_{12}) = .55}$$

$$min \{0 + .25 = .25, .15 + 0 = .15\} + .4 = .55$$

Continued

Example continued

 $nin \{0 + .45 = .45, .25 + 0 = .25\} + .65 = .9$

 $\min \{0 + .55 = .55, .25 + .25 = .5, .5 + 0 = .5\} + .6 = 1.1$

in $\{0 + .9 = .9, .15 + .45 = .6, .55 + 0 = .55\} + .8 = 1.35$

in {0 + 1.35 = 1.35, .25 + .9 = 1.15, .5 + .45 = .95, 1.1 + 0 = 1.1} + 1 = 1.95

$$\Rightarrow T_{03} = 0$$
3 $A(T_{03}) = 1.95$

```
procedure OptimalSearchTree(P[0:n-1],Q[0:n],Root[0:n-1,0:n-1],A[0:n-1,0:n-1])
Input:
           P[0:n-1] (an array of probabilities associated with successful searches)
           Q[0:n] (an array of probabilities associated with unsuccessful searches)
Output: Root[0:n-1,0:n-1] (Root[i,j] is the key of the root node of T_{ii})
           A[0:n-1,0:n-1] (A[i,j] \text{ is } A(T_{ii}))
                 for i \leftarrow 0 to n-1 do
                      Root[i,i] \leftarrow i
                       Sigma[i,i] \leftarrow p[i] + q[i] + q[i+1]
                      A[i,i] \leftarrow Sigma[i,i]
                 endfor
                 for Pass \leftarrow 1 to n-1 do
                        for i \leftarrow 0 to n-1 – Pass do
                                i \leftarrow i + Pass
                   //Compute \sigma(p_i,...,p_i,q_i,...q_{i+1})
                               Sigma[i,i] \leftarrow Sigma[i,i-1] + p[i] + q[i+1]
                                Root[i,j] \leftarrow i
                                Min \leftarrow A[i+1,i]
                                for k \leftarrow i + 1 to i \neq k
                                        Sum \leftarrow A[i,k-1] + A[k+1,i]
                                        if Sum < Min then
                                               Min ← Sum
                                               Root[i,i] \leftarrow k
                                       endif
                                endfor
                               A[i,j] \leftarrow Min + Sigma[i,j]
                         endfor
                 endfor
```

PSN. Solve action of *OptimalSearchTree* for following instance. Instead of drawing trees compute Root[i,j] each stage

i	0	1	2	3
p_i	.25	.25	.05	
q_i	.2	0	0	.25

Complexity Analysis

In pseudocode for OptimalSearchTree

- Pass varies from 1 to n-1
- *i* varies from 0 to n-1-Pass
- k varies from i + 1 to i + Pass

Setting t = Pass, it follows that W(n) is given

$$\sum_{t=1}^{n-1} \sum_{i=0}^{n-1-t} \sum_{k=i+1}^{i+t} 1$$

$$= \sum_{t=1}^{n-1} (n-t)t$$

$$= n \sum_{t=1}^{n-1} t - \sum_{t=1}^{n-1} t^2$$

$$= n \left[(n-1) \frac{n}{2} \right] - \left[(n-1)n \frac{(2n-1)}{6} \right] \in \Theta(n^3).$$

How can you identify a dogwood tree?

By its bark.

