Árboles binarios

Contenido

- → Introducción
 - Árboles
 - Conceptos generales
- Árboles binarios
- Recorridos
- Arboles binarios de búsqueda
- → Árboles AVL

5

Árboles AVL

Concepto y operaciones

- Es un árbol binario de búsquedas auto balanceable.
- La razón de mantener este balance es que el crecimiento de una operación de búsqueda se mantenga lo más cercano a $O(log_2n)$.

Factor de equilibrio (FE)

- Es la principal diferencia entre los ABB y los AVL.
- Se recalcula al realizar una inserción o borrado.
- Si el valor absoluto del factor de equilibrio es mayor a 1 se debe hacer el proceso de Rotación.

height = 3 height inv. satisfied

height = 4 height inv. satisfied

height = 5 height inv. violated at 13, 16, 10

height = 4 height inv. restored at 14, 16, 10

Rotaciones

Izquierda Derecha

Rotación Simple a la Derecha

Dado un árbol de raíz r con hijos izquierdo i y d decimos:

Crear un nuevo árbol donde la raíz es i

El sub-árbol derecho de i, tendrá raíz r

El sub-árbol izquierdo de r será el sub-árbol derecho original de i

Rotación Simple a la Derecha

Rotación Simple a la Derecha

Rotación Simple a la Izquierda

Dado un árbol de raíz r con hijos izquierdo i y d decimos:

Crear un nuevo árbol donde la raíz es d

El sub-árbol izquierdo de d, tendrá raíz r

El sub-árbol derecho de r será el sub-árbol izquierdo original de d

Rotación Simple a la Izquierda

Rotación Simple a la Izquierda

Rotación Simple Izquierda

Rotación Doble a la Derecha

- Se da cuando debemos rotar la raíz hacia la derecha, pero el sub-árbol izquierdo tiene un factor de equilibrio +1

 Realizamos 2 rotaciones simples
 - Rotación simple izquierda del sub-árbol izquierdo Rotación simple derecha de la raíz

Rotación Doble a la Derecha

Rotación Doble a la Derecha

Rotación Doble a la Izquierda

- Se da cuando debemos rotar la raíz hacia la izquierda, pero el sub-árbol derecho tiene un factor de equilibrio -1

 Realizamos 2 rotaciones simples
 - Rotación simple derecha del sub-árbol derecho Rotación simple izquierda de la raíz

Rotación Doble a la Izquierda

Rotación Doble a la Izquierda

Construya un árbol AVL con los siguientes números:

1, 2, 3, 5, 6, 4 1, 2, 3, 4, 5, 7, 6

¡Gracias por su atención!

¿Dudas?