Enperiment 6: Construction of Paedictive Passing Table

Aim To construct the predictive passing table and validate an input string for a guren grammer.

Algorithm:

- 1. Start.
- 2. Get input list of terminals and non-terminals from the user
- 3. Get input list of production rules from the user where # denotes epsilon
- 4. Elminate left secusion and left factoring using previous lab algorithme.
- 5. Generate lest of FIRST and FOLLOW using premions lab algorithms.
- 6. Create a mba matrin of size (number of non termuals × number of terminals + 1) to store predictive passing table.
- 7. For every rule, take this and the (For E → ab)
 - 6. For every symbol in she:
 - yet FIRST of symbol and store in nes - If FIRST contains epsilon (#), take union with FOLLOW and store in res

9. For every character in res, find corresponding natrin position and place rule in matrix (rule mull be lhs -> symbol) starting symbol and # sign and buffer 11. Reverse input strong and store in Suffer 12. hoop through the input string. 13. Take front of suffer and stack and look up corresponding rule in predictive passing table. 14. Append the of gule to stack 15. Pop input if stack symbol and buffer symbol natch. 16. Repeat steps 13, 14, 15 till all symbols match or buffer emplies. 17. Se only & is left in both stack and suffer, then input is valid otherwise it is invalid.

MANUAL WORKING

grammae:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid i \lambda$$

Working:

1. Eliminating lest recursion and lest gactoring

2. Calculate FIRST

FIRST (E) =
$$\frac{2}{5}$$
(, iQ\frac{3}{5})
FIRST(E') = $\frac{5}{5}$ +, $\frac{6}{5}$
FIRST(T) = $\frac{5}{5}$ (, iQ\frac{3}{5})
FIRST(F) = $\frac{5}{5}$ (, iQ\frac{3}{5})

3. Calculate FOLLOW

FOLLOW (E) =
$$\{\$, \}$$

FOLLOW (E') = $\{\$, \}$
FOLLOW (T) = $\{\$, +, \}$
FOLLOW (T') = $\{\$, +, \}$
FOLLOW (F) = $\{\$, *, +, \}$

4. Constauction of table

			Control of the second of the s	St. St. Comments of the St	
T	*	()	id	4
5/2174		E > TE'		E →TE'	
E 7 + (E'			€'→&		E'>E
T' > E	T'->*FT'	T→FT′	· .	T → FT') ————————————————————————————————————
		F -> (F)	T' > E		7' → 6
			,	F→id	
	+ E'→+TE' T'→ E		E → TE' E'→ + TE' T → FT'	$E \rightarrow TE'$ $E' \rightarrow E$ $T' \rightarrow E$ $T' \rightarrow E$ $T' \rightarrow E$	$E \rightarrow TE'$ $E' \rightarrow + TE'$ $T' \rightarrow E$ $T' \rightarrow E$ $T' \rightarrow E$ $T' \rightarrow E$

Rules for table.

For A > &

5 Input Parsing

Buffer Stack \$ 12 + 12 * 12 E \$ 12+12 * 12 TE'S id + id * id FT'E'S \$ id + id * id 12 T'E' \$ \$ 12 + 12 * · T'E'\$ \$ iQ + iQ * * FT'E' \$ \$ i& + i& FT'E'S 4 12 + 12 12 T' 5' \$ \$ 12 + T'E'\$ \$ iQ + E' & \$ i& + +TE'\$ \$ 12 TE' d dia FTIE' & \$ 12 id T'E'\$ \$ T'E' 1 E'\$ \$

Action モラサ 61 TOFT FIR · Pap id T' - * FT' Pap * F>id Pap id 71 -> E E' -+ TE' Pap + T>FT F -> id Pap id T' -> E €' > E Valid

Sashrika Surya RA1911027010092

Section: N2 Lab Batch: 1

Date: 4th March 2022

Compiler Design Lab **Experiment 6: Construction of Predictive Parsing Table**

Code:

```
def removeLeftRecursion(rulesDiction):
  store = \{\}
  for lhs in rulesDiction:
     alphaRules = []
     betaRules = []
    allrhs = rulesDiction[lhs]
     for subrhs in allrhs:
       if subrhs[0] == lhs:
          alphaRules.append(subrhs[1:])
       else:
          betaRules.append(subrhs)
    if len(alphaRules) != 0:
       lhs_{-} = lhs + ""
       while (lhs in rulesDiction.keys()) \
            or (lhs in store.keys()):
          lhs += """
       for b in range(0, len(betaRules)):
          betaRules[b].append(lhs)
       rulesDiction[lhs] = betaRules
       for a in range(0, len(alphaRules)):
          alphaRules[a].append(lhs)
       alphaRules.append(['#'])
       store[lhs ] = alphaRules
  for left in store:
     rulesDiction[left] = store[left]
  return rulesDiction
def LeftFactoring(rulesDiction):
  newDict = \{\}
  for lhs in rulesDiction:
     allrhs = rulesDiction[lhs]
    temp = dict()
    for subrhs in allrhs:
       if subrhs[0] not in list(temp.keys()):
```

```
temp[subrhs[0]] = [subrhs]
       else:
          temp[subrhs[0]].append(subrhs)
     new rule = []
     tempo dict = \{\}
     for term key in temp:
       allStartingWithTermKey = temp[term key]
       if len(allStartingWithTermKey) > 1:
          lhs = lhs + """
          while (lhs_ in rulesDiction.keys()) \
               or (lhs in tempo dict.keys()):
            lhs += """
          new_rule.append([term_key, lhs_])
          ex rules = []
          for g in temp[term key]:
            ex rules.append(g[1:])
          tempo dict[lhs] = ex rules
       else:
          new rule.append(allStartingWithTermKey[0])
     newDict[lhs] = new rule
     for key in tempo dict:
       newDict[key] = tempo dict[key]
  return newDict
def first(rule):
  global rules, nonterm userdef, \
     term userdef, diction, firsts
  if len(rule) != 0 and (rule is not None):
     if rule[0] in term userdef:
       return rule[0]
    elif rule[0] == '#':
       return '#'
  if len(rule) != 0:
     if rule[0] in list(diction.keys()):
       fres = []
       rhs rules = diction[rule[0]]
       for itr in rhs rules:
          indivRes = first(itr)
          if type(indivRes) is list:
            for i in indivRes:
               fres.append(i)
          else:
            fres.append(indivRes)
       if '#' not in fres:
          return fres
       else:
```

```
newList = []
          fres.remove('#')
          if len(rule) > 1:
            ansNew = first(rule[1:])
            if ansNew != None:
               if type(ansNew) is list:
                 newList = fres + ansNew
               else:
                 newList = fres + [ansNew]
            else:
               newList = fres
            return newList
          fres.append('#')
          return fres
def follow(nt):
  global start symbol, rules, nonterm userdef, \
     term userdef, diction, firsts, follows
  solset = set()
  if nt == start symbol:
     solset.add('$')
  for curNT in diction:
    rhs = diction[curNT]
    for subrule in rhs:
       if nt in subrule:
          while nt in subrule:
            index nt = subrule.index(nt)
            subrule = subrule[index nt + 1:]
            if len(subrule) != 0:
               res = first(subrule)
               if '#' in res:
                 newList = []
                 res.remove('#')
                 ansNew = follow(curNT)
                 if ansNew != None:
                    if type(ansNew) is list:
                       newList = res + ansNew
                    else:
                       newList = res + [ansNew]
                 else:
                    newList = res
                 res = newList
            else:
               if nt != curNT:
                 res = follow(curNT)
            if res is not None:
               if type(res) is list:
                 for g in res:
```

```
solset.add(g)
                else:
                   solset.add(res)
  return list(solset)
def computeAllFirsts():
  global rules, nonterm userdef, \
     term userdef, diction, firsts
  for rule in rules:
     k = rule.split("->")
     k[0] = k[0].strip()
     k[1] = k[1].strip()
     rhs = k[1]
     multirhs = rhs.split('|')
     for i in range(len(multirhs)):
        multirhs[i] = multirhs[i].strip()
        multirhs[i] = multirhs[i].split()
     diction[k[0]] = multirhs
  print(f"\nRules: \n")
  for y in diction:
     print(f''\{y\} \rightarrow \{diction[y]\}'')
  print(f"\nAfter elimination of left recursion:\n")
  diction = removeLeftRecursion(diction)
  for y in diction:
     print(f''\{y\} \rightarrow \{diction[y]\}'')
  print("\nAfter left factoring:\n")
  diction = LeftFactoring(diction)
  for y in diction:
     print(f''\{y\} \rightarrow \{diction[y]\}'')
  for y in list(diction.keys()):
     t = set()
     for sub in diction.get(y):
        res = first(sub)
        if res!= None:
           if type(res) is list:
              for u in res:
                t.add(u)
           else:
              t.add(res)
     firsts[y] = t
  print("\nCalculated firsts: ")
  key list = list(firsts.keys())
  index = 0
  for gg in firsts:
     print(f"first({key list[index]}) "
        f"=> {firsts.get(gg)}")
     index += 1
```

```
def computeAllFollows():
  global start_symbol, rules, nonterm userdef,\
     term userdef, diction, firsts, follows
  for NT in diction:
     solset = set()
     sol = follow(NT)
     if sol is not None:
        for g in sol:
          solset.add(g)
     follows[NT] = solset
  print("\nCalculated follows: ")
  key_list = list(follows.keys())
  index = 0
  for gg in follows:
     print(f"follow({key list[index]})"
        f'' \Rightarrow \{follows[gg]\}''\}
     index += 1
def createParseTable():
  import copy
  global diction, firsts, follows, term userdef
  print("\nFirsts and Follow Result table\n")
  mx len first = 0
  mx len fol = 0
  for u in diction:
     k1 = len(str(firsts[u]))
     k2 = len(str(follows[u]))
     if k1 > mx len first:
        mx len first = k1
     if k2 > mx len fol:
        mx len fol = k2
  print(f"{{:<{10}}} "
     f''\{\{:<\{mx_i \text{ len first} + 5\}\}\}"
     f''\{\{:<\{mx \ len \ fol+5\}\}\}''
     .format("Non-T", "FIRST", "FOLLOW"))
  for u in diction:
     print(f"{{:<{10}}} "
        f''\{\{:<\{mx \ len \ first+5\}\}\}"
        f''\{\{:<\{mx \ len \ fol+5\}\}\}''
        .format(u, str(firsts[u]), str(follows[u])))
  ntlist = list(diction.keys())
  terminals = copy.deepcopy(term_userdef)
  terminals.append('$')
  mat = []
```

```
for x in diction:
  row = []
  for y in terminals:
     row.append(")
  mat.append(row)
grammar is LL = True
for lhs in diction:
  rhs = diction[lhs]
  for y in rhs:
     res = first(y)
     if '#' in res:
        if type(res) == str:
          firstFollow = []
          fol op = follows[lhs]
          if fol op is str:
             firstFollow.append(fol op)
          else:
             for u in fol_op:
                firstFollow.append(u)
          res = firstFollow
        else:
          res.remove('#')
          res = list(res) + list(follows[lhs])
     ttemp = []
     if type(res) is str:
        ttemp.append(res)
        res = copy.deepcopy(ttemp)
     for c in res:
        xnt = ntlist.index(lhs)
        yt = terminals.index(c)
        if mat[xnt][yt] == ":
          mat[xnt][yt] = mat[xnt][yt] + f''\{lhs\} -> \{''.join(y)\}''
        else:
          if f''\{lhs\} \rightarrow \{y\}'' in mat[xnt][yt]:
             continue
          else:
             grammar is LL = False
             mat[xnt][yt] = mat[xnt][yt] + f'', {lhs} -> {''.join(y)}"
print("\nGenerated parsing table:\n")
frmt = "{:>12}" * len(terminals)
print(frmt.format(*terminals))
i = 0
for y in mat:
  frmt1 = "{:>12}" * len(y)
  print(f"{ntlist[j]} {frmt1.format(*y)}")
  i += 1
```

```
return (mat, grammar is LL, terminals)
def validateStringUsingStackBuffer(parsing table, grammarll1,
                    table term list, input string,
                    term userdef, start symbol):
  print(f"\nValidate String => {input string}\n")
  if grammarll1 == False:
     return f"\nInput String = " \
       f"\"{input string}\"\n" \
       f"Grammar is not LL(1)"
  stack = [start symbol, '$']
  buffer = []
  input string = input string.split()
  input string.reverse()
  buffer = ['\$'] + input string
  print("{:>20} {:>20} {:>20}".
     format("Buffer", "Stack", "Action"))
  while True:
     if stack == ['\$'] and buffer == ['\$']:
       print("{:>20} {:>20} {:>20}"
          .format(' '.join(buffer),
               ''.join(stack),
               "Valid"))
       return "\nValid String!"
     elif stack[0] not in term userdef:
       x = list(diction.keys()).index(stack[0])
       y = table term list.index(buffer[-1])
       if parsing table [x][y] != ":
          entry = parsing table[x][y]
          print("{:>20} {:>20} {:>25}".
             format(' '.join(buffer),
                 ''.join(stack),
                  f''T[{stack[0]}][{buffer[-1]}] = {entry}'')
          lhs rhs = entry.split("->")
          lhs rhs[1] = lhs rhs[1].replace('#', ").strip()
          entryrhs = lhs rhs[1].split()
          stack = entryrhs + stack[1:]
          return f"\nInvalid String! No rule at Table[{stack[0]}][{buffer[-1]}]."
     else:
       if stack[0] == buffer[-1]:
          print("{:>20} {:>20} {:>20}"
            .format(' '.join(buffer),
                  ''.join(stack),
                  f"Matched: {stack[0]}"))
```

```
buffer = buffer[:-1]
          stack = stack[1:]
       else:
          return "\nInvalid String! " \
            "Unmatched terminal symbols"
diction = \{\}
firsts = \{\}
follows = \{\}
term userdef = []
nonterm userdef = []
rules = []
# Terminals
n1=int(input("Enter no. of terminals: "))
print("Enter terminals:")
for in range(n1):
  term userdef.append(input())
# Non Terminals
n2=int(input("Enter no. of non terminals: "))
print("Enter non terminals:")
for in range(n2):
  nonterm userdef.append(input())
# Production
n3 = int(input("Enter no of productions: "))
print("Enter productions (Sample input: A -> B | c d E) (Epsilon is #):")
for in range(n3):
  rules.append(input())
computeAllFirsts()
start symbol = list(diction.keys())[0]
computeAllFollows()
sample input string="id * id + id"
(parsing table, result, tabTerm) = createParseTable()
if sample input string != None:
  validity = validateStringUsingStackBuffer(parsing table, result,
                           tabTerm, sample input string,
                           term userdef, start symbol)
  print(validity)
else:
  print("\nNo input String detected")
```

Output:

```
(base) Sashrikaslaptop:lab6 sashrikasurya$ python lab6.py
Enter no. of terminals: 5
Enter terminals:
(
)
id
Enter no. of non terminals: 3
Enter non terminals:
E
T
Enter starting symbol: E
Enter no of productions: 3
Enter productions (Sample input: A->B|cdE) (Epsilon is @):
E -> E + T | T
T -> T * F | F
F -> ( E ) | id
Rules:
E->[['E', '+', 'T'], ['T']]
T->[['T', '*', 'F'], ['F']]
F->[['(', 'E', ')'], ['id']]
After elimination of left recursion:
E->[['T', "E'"]]
T->[['F', "T'"]]
F->[['(', 'E', ')'], ['id']]
E'->[['+', 'T', "E'"], ['#']]
T'->[['*', 'F', "T'"], ['#']]
```

```
lab6 - -bash - 92×36
After left factoring:
E->[['T', "E'"]]
T->[['F', "T'"]]
F->[['(', 'E', ')'], ['id']]
E'->[['+', 'T', "E'"], ['#']]
T'->[['*', 'F', "T'"], ['#']]
Calculated firsts:
first(E) => {'(', 'id'}
first(T) => {'(', 'id'}
first(F) => {'(', 'id'}
first(E') => {'+', '#'}
first(T') => {'*', '#'}
Calculated follows:
Calculatea follows:
follow(E) => {'$', ')'}
follow(T) => {'$', ')', '+'}
follow(F) => {'$', ')', '+', '*'}
follow(E') => {'$', ')'}
follow(T') => {'$', ')', '+'}
Firsts and Follow Result table
Non-T
                            FIRST
                                                                       FOLLOW
                                      , 'id'}
, 'id'}
, 'id'}
                            {'C',
{'C',
Ε
                                                                       {'$',
T
F
E'
```

```
Generated parsing table:
                                                                                                     $
                                                 C
                                                                  )
                                                                                  id
                                           E->T E'
T->F T'
                                                                              E->T E'
E
T
F
E'
T'
                                                                              T->F T'
                                          F->( E )
                                                                                 F->id
                                                                 E'->#
       E'->+ T E'
                                                                                                   E'->#
                                                                                                   T'->#
                                                                 T'->#
                       T'->* F T'
              T'->#
Validate String => id * id + id
                    Buffer
                                                   Stack
                                                                               Action
        $ id + id * id
                                                    T[E][id] = E->T E'
T[T][id] = T->F T'
                                                                        T[F][id] = F->id
Matched:id
                                             F T'
                                           id T'
T'
F T'
                                                                 T[T'][*] = T'->* F T'

Matched:*
            $ id + id *
            $ id + id *
               $ id + id
$ id + id
$ id +
$ id +
                                               T'
                                                                        T[F][id] = F->id
Matched:id
                                             F
                                            id T'
                                                                        T[T'][+] = T'->#
                                                                 T[E'][+] = E'->+ T E'
                      id +
                                                                           Matched:+
                      $ id
$ id
$ id
$ id
$ $
                                                 Т
                                                                     T[T][id] = T->F T'
                                             F
                                               T'
                                                                        T[F][id] = F->id
                                            id T'
                                                                         Matched:id
                                                T'
                                                                        T[T'][$] = T'->#
                                                                        T[E'][$] = E'->#
Valid
Valid String!
```

Result:

Hence, the predictive parsing table was constructed and an input string was validated using the table.