Machine Learning

Linear Models

Fabio Vandin

October 21st, 2022

Linear Predictors and Affine Functions

Consider
$$\mathcal{X} = \mathbb{R}^d$$

"Linear" (affine) functions:

$$L_d = \{h_{\mathbf{w},b} : \mathbf{w} \in \mathbb{R}^d, \mathbf{b} \in \mathbb{R}\}$$

where

$$h_{\mathbf{w},\mathbf{b}}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = \left(\sum_{i=1}^{d} w_i x_i\right) + b$$

Note:

- each member of L_d is a function $\mathbf{x} \to \langle \mathbf{w}, \mathbf{x} \rangle + b$
- 🤼 bias

Linear Models

Hypothesis class $\mathcal{H}: \phi \circ L_d$, where $\phi : \mathbb{R} \to \mathcal{Y}$

- $h \in \mathcal{H}$ is $h : \mathbb{R}^d \to \mathcal{Y}$
- ϕ depends on the learning problem

Example

- binary classification, $\mathcal{Y} = \{-1, 1\} \Rightarrow \phi(z) = \operatorname{sign}(z)$
- regression, $\mathcal{Y} = \mathbb{R} \Rightarrow \phi(z) = z$

Equivalent Notation

$$\overrightarrow{W} = \left[W_1, W_2, \dots, W_d \right]$$

Given $\mathbf{x} \in \mathcal{X}$, $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{b} \in \mathbb{R}$, define:

•
$$\mathbf{w}' = (b, w_1, w_2, \dots, w_d) \in \mathbb{R}^{d+1}$$

•
$$\mathbf{x}' = (1, x_1, x_2, \dots, x_d) \in \mathbb{R}^{d+1}$$

Then:

$$h_{\mathbf{w},b}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = \langle \mathbf{w}', \mathbf{x}' \rangle$$
 (1)

 \Rightarrow we will consider bias term as part of **w** and assume $\mathbf{x} = (1, x_1, x_2, \dots, x_d)$ when needed, with $h_{\mathbf{w}}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$

Linear Classification

$$\mathcal{X} = \mathbb{R}^d$$
, $\mathcal{Y} = \{-1, 1\}$, 0-1 loss

 $Hypothesis\ class = \textit{halfspaces}$

Linear Classification

$$\mathcal{X} = \mathbb{R}^d$$
, $\mathcal{Y} = \{-1, 1\}$, 0-1 loss

Hypothesis class = halfspaces

$$HS_d = \operatorname{sign} \circ L_d = \{\mathbf{x} \to \operatorname{sign}(h_{\mathbf{w},b}(\mathbf{x})) : h_{\mathbf{w},b} \in L_d\}$$

Example: $\mathcal{X} = \mathbb{R}^2$

Finding a Good Hypothesis

Linear classification with hypothesis set $\mathcal{H} = \text{halfspaces}$.

How do we find a good hypothesis?

Good = minimizes the training error (ERM)

Finding a Good Hypothesis

Linear classification with hypothesis set $\mathcal{H} = \text{halfspaces}$.

How do we find a good hypothesis?

Good = minimizes the training error (ERM)

Perceptron Algorithm (Rosenblatt, 1958)

Note:

If
$$y_i(\mathbf{w}, \mathbf{x}_i) > 0$$
 for all $i = 1, ..., m$

Production the production of the prod

Finding a Good Hypothesis

Linear classification with hypothesis set $\mathcal{H} = \text{halfspaces}$.

How do we find a good hypothesis?

Good = minimizes the training error (ERM)

⇒ Perceptron Algorithm (Rosenblatt, 1958)

Note:

if $y_i \langle \mathbf{w}, \mathbf{x}_i \rangle > 0$ for all $i = 1, ..., m \Rightarrow$ all points are classified correctly by model $\mathbf{w} \Rightarrow realizability assumption$ for training set

Linearly separable data: there exists w such that: $y_i(\mathbf{w}, \mathbf{x}_i) > 0$

Perceptron

```
×; is misselssited
Input: training set (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)
initialize \mathbf{w}^{(1)} = (0, ..., 0);
for t = 1, 2, ... do
      if \exists i \text{ s.t. } y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0 then \mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + y_i \mathbf{x}_i; else return \mathbf{w}^{(t)}; (ii) correctly classities all points in the training set)
```

Perceptron

```
Input: training set (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)
initialize \mathbf{w}^{(1)} = (0, ..., 0);
for t = 1, 2, ... do
       if \exists i \ s.t. \ y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0 \ \text{then} \ \mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + y_i \mathbf{x}_i;
       else return \mathbf{w}^{(t)};
```

Interpretation of update:

Note that:

$$y_{j}(\mathbf{w}^{(t+1)}, \mathbf{x}_{j}) = y_{i}\langle \mathbf{w}^{(t)} + y_{i}\mathbf{x}_{i}, \mathbf{x}_{i}\rangle$$

$$= y_{i}\langle \mathbf{w}^{(t)}, \mathbf{x}_{i}\rangle + ||\mathbf{x}_{i}||^{2}$$

$$\Rightarrow \text{ update guides } \mathbf{w} \text{ to be more}$$

correct" on (x_i, y_i) .

Perceptron

```
Input: training set (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) initialize \mathbf{w}^{(1)} = (0, \dots, 0); for t = 1, 2, \dots do 
if \exists i \ s.t. \ y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0 then \mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + y_i \mathbf{x}_i; else return \mathbf{w}^{(t)};
```

Interpretation of update:

Note that:

$$y_i \langle \mathbf{w}^{(t+1)}, \mathbf{x}_i \rangle = y_i \langle \mathbf{w}^{(t)} + y_i \mathbf{x}_i, \mathbf{x}_i \rangle$$

= $y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle + ||\mathbf{x}_i||^2$

 \Rightarrow update guides **w** to be "more correct" on (\mathbf{x}_i, y_i) .

Termination? Depends on the realizability assumption!

Perceptron with Linearly Separable Data

If data is linearly separable one can prove that the perceptron terminates.

Proposition

Assume that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ is linearly separable, let:

- $B = \min\{||\mathbf{w}|| : y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \ge 1 \ \forall i, i = 1, \dots, m, \}$, and
- $R = \max_i ||\mathbf{x}_i||$.

Then the Perceptron algorithm stops after at most $(RB)^2$ iterations (and when it stops it holds that $\forall i, i \in \{1, ..., m\} : y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle > 0$).

Perceptron: Notes

- simple to implement (but some details are not described in the pseudocode...)
- for separable data
 - termination is guaranteed
 - may require a number of iterations that is exponential in d...
 other approaches (e.g., ILP Integer Linear Programming)
 may be better to find ERM solution in such cases
 - potentially multiple solutions, which one is picked depends on starting values

Perceptron: Notes

- simple to implement (but some details are not described in the pseudocode...)
- for separable data
 - termination is guaranteed
 - may require a number of iterations that is exponential in d...
 - ⇒ other approaches (e.g., ILP Integer Linear Programming) may be better to find ERM solution in such cases
 - potentially multiple solutions, which one is picked depends on starting values
- non separable data?

Perceptron: Notes

- simple to implement (but some details are not described in the pseudocode...)
- for separable data
 - termination is guaranteed
 - may require a number of iterations that is exponential in d...
 ⇒ other approaches (e.g., ILP Integer Linear Programming) may be better to find ERM solution in such cases
 - potentially multiple solutions, which one is picked depends on starting values
- non separable data?
 - run for some time and keep best solution found up to that point (pocket algorithm)

Perceptron: A Modern View

The previous presentation of the Perceptron is the standard one.

However, we can derive the Perceptron in a different way...

Assume you want to solve a:

- binary classification problem: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, 1\}$
- with linear models

Perceptron: A Modern View

The previous presentation of the Perceptron is the standard one.

However, we can derive the Perceptron in a different way...

Assume you want to solve a:

- binary classification problem: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, 1\}$
- with linear models
- with loss $\ell(\mathbf{w}, (\mathbf{x}, y)) = \max\{0, -y\langle \mathbf{w}, \mathbf{x}\rangle\}$.

Approach: ERM \Rightarrow need to find the model/hypothesis with smallest training error

Note: this is a common framework in all of machine learning!

Gradient Descent (GD)

Gradient Descent (GD)

General approach for *minimizing* a differentiable convex function $f(\mathbf{w})$

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function

Definition

The gradient $\nabla f(\mathbf{w})$ of f at $\mathbf{w} = (w_1, \dots, w_d)$ is

$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d}\right)$$

Intuition: the gradient points in the direction of the greatest rate of increase of f around w