for variables, functions,

del x

modules, classes... names

a...zA...Z_ followed by a...zA...Z_0...9

language keywords forbidden

diacritics allowed but should be avoided

```
Base Types
integer, float, boolean, string, bytes
   int 783 0 -192
                           0b010 0o642 0xF3
float 9.23 0.0
                           binary
                                   octal
                                           hexa
                       -1.7e-6
 bool True False
                             ×10<sup>-6</sup>
   str "One\nTwo"
                             Multiline string:
       escaped new line
                               """X\tY\tZ
                               1\t2\t3"""
         'I<u>\</u>m'
         escaped '
                                  escaped tab
bytes b"toto\xfe\775"
             hexadecimal octal
                                      immutables
```

Identifiers

```
Container Types
• ordered sequences, fast index access, repeatable values
           list [1,5,9]
                               ["x",11,8.9]
                                                          ["mot"]
                                                                               ,tuple (1,5,9)
                                  11, "y", 7.4
                                                           ("mot",)
                                                                               ()
 Non modifiable values (immutables)
                                 * str bytes (ordered sequences of chars / bytes)
                                                                               11/11
                                                                             b""
• key containers, no a priori order, fast key access, each key is unique
dictionary dict {"key":"value"}
                                              dict(a=3,b=4,k="v")
                                                                              { }
(key/value associations) {1:"one", 3:"three", 2:"two", 3.14:"π"}
            set {"key1", "key2"}
                                                                          set()
                                              {1,9,3,0}

    keys=hashable values (base types, immutables...)

    keys=hashable values (base types, immutables...)
                                              frozenset immutable set
                                                                             empty
```

```
□ lower/UPPER case discrimination
      © a toto x7 y_max BigOne
      8 8y and for
                   Variables assignment
 assignment ⇔ binding of a name with a value
 1) evaluation of right side expression value
 2) assignment in order with left side names
x=1.2+8+\sin(y)
a=b=c=0 assignment to same value
y, z, r=9.2, -7.6, 0 multiple assignments
a, b=b, a values swap
a, *b=seq \ unpacking of sequence in
*a, b=seq | item and list
                                          and
x+=3
           increment \Leftrightarrow x=x+3
x - = 2
           decrement \Leftrightarrow x=x-2
                                           /=
                                          용=
x=None « undefined » constant value
```

remove name x

```
type (expression)
                                                                            Conversions
int ("15") \rightarrow 15
                                   can specify integer number base in 2^{nd} parameter
int("3f",16) \rightarrow 63
int (15.56) \rightarrow 15
                                   truncate decimal part
float ("-11.24e8") \rightarrow -1124000000.0
round (15.56, 1) \rightarrow 15.6
                                   rounding to 1 decimal (0 decimal \rightarrow integer number)
bool (x) False for null x, empty container x, None or False x; True for other x
str(x) \rightarrow "..." representation string of x for display (cf. formatting on the back)
chr(64) \rightarrow '@' \quad ord('@') \rightarrow 64
                                             code \leftrightarrow char
repr (\mathbf{x}) \rightarrow "..." literal representation string of \mathbf{x}
bytes([72,9,64]) \rightarrow b'H\t@'
list("abc") \rightarrow ['a', 'b', 'c']
dict([(3,"three"),(1,"one")]) \rightarrow \{1:'one',3:'three'\}
set(["one", "two"]) → {'one', 'two'}
separator str and sequence of str \rightarrow assembled str
    ':'.join(['toto','12','pswd']) → 'toto:12:pswd'
str splitted on whitespaces \rightarrow list of str
    "words with spaces".split() \rightarrow ['words','with','spaces']
\mathtt{str} splitted on separator \mathtt{str} \to \mathtt{list} of \mathtt{str}
    "1,4,8,2".split(",") \rightarrow ['1','4','8','2']
sequence of one type \rightarrow list of another type (via list comprehension)
    [int(x) for x in ('1', '29', '-3')] \rightarrow [1, 29, -3]
```

```
Sequence Containers Indexing
                                        for lists, tuples, strings, bytes...
                    -5
                           -4
                                   -3
                                          -2
                                                   -1
                                                                Items count
                                                                                     Individual access to items via lst [index]
  negative index
   positive index
                    0
                            1
                                    2
                                            3
                                                            len (lst) \rightarrow 5
                                                                                     lst[0] → 10
                                                                                                         \Rightarrow first one
                                                                                                                           1st[1]→20
          lst=[10,
                           20,
                                   30,
                                                   50]
                                           40
                                                                                     1st [-1] → 50 \Rightarrow last one
                                                                                                                           1st [-2] \rightarrow 40
                                                               positive slice
                  0
                        1
                                       3
                                               4
                                                                                      On mutable sequences (list), remove with
                                                              (here from 0 to 4)
                               -3
   negative slice
                                                                                      del 1st[3] and modify with assignment
                                                                                      1st[4]=25
Access to sub-sequences via lst [start slice: end slice: step]
                                                                                                                lst[:3] \rightarrow [10, 20, 30]
lst[:-1] \rightarrow [10,20,30,40] lst[::-1] \rightarrow [50,40,30,20,10] lst[1:3] \rightarrow [20,30]
                                                                                 lst[-3:-1] \rightarrow [30,40] lst[3:] \rightarrow [40,50]
lst[1:-1] \rightarrow [20,30,40]
                                     lst[::-2] \rightarrow [50, 30, 10]
                                     lst[:] \rightarrow [10, 20, 30, 40, 50] shallow copy of sequence
lst[::2] \rightarrow [10, 30, 50]
```

Missing slice indication \rightarrow from start / up to end.

On mutable sequences (list), remove with del lst[3:5] and modify with assignment lst[1:4]=[15, 25]

```
Comparisons: < > <= >==!= (boolean results) ≤ ≥ = ≠ a and b logical and both simultaneously a or b logical or one or other or both

† pitfall: and and or return value of a or of b (under shortcut evaluation).

⇒ ensure that a and b are booleans.
```

Boolean Logic

not a logical not

True
False
True and False constants

parent statement:

statement block 1...

parent statement:

parent statement:

parent statement:

parent statement block2...

inext statement after block 1

2 configure editor to insert 4 spaces in place of an indentation tab.

```
angles in radians

from math import sin, pi...
sin (pi/4)→0.707...
cos (2*pi/3)→-0.4999...
sqrt (81)→9.0
log (e**2)→2.0
ceil (12.5)→13
floor (12.5)→12
modules math, statistics, random,
decimal, fractions, numpy, etc. (cf. doc)
```

```
module truc⇔file truc.py Modules/Names Imports
from monmod import nom1, nom2 as fct

→direct access to names, renaming with as
import monmod →access via monmod.nom1 ...

½ modules and packages searched in python path (cf sys.path)
```

statement block executed only

if bool(x) ==False: ⇔ if not x:

if a condition is true

Conditional Statement

state="Active"

```
from collections import namedtuple Named Tuples

Construction:

Nt = namedtuple("Nt",["field1","field2"])

Creation:

nt = Nt(1,2)

Replacement:

nt = nt_replace(field1=3)

Access:

nt.field1

nt[0]

nt[-1]
```

```
Conditional Loop Statement | statements block executed for each | Iterative Loop Statement
   statements block executed as long as
                                                                                 item of a container or iterator
   condition is true
infinite loops:
      while logical condition:
                                                                                              for var in sequence:
                                                                       Loop Control
                                                                                                                                                 finish
            statements block
                                                                         immediate exit
                                                                                                    statements block
                                                          break
                                                          continue next iteration
                                                                                           Go over sequence's values
   s = 0 initializations before the loop
                                                               ₫ else block for normal
ф
  i = 1 condition with a least one variable value (here i)
                                                               loop exit.
                                                                                          s = "Some text" initializations before the loop
beware
                                                                                          cnt = 0
                                                                Algo:
                                                                                                                                                    good habit : don't modify loop variable
   while i <= 100:
                                                                      i = 100
                                                                                            loop variable, assignment managed by for statement or c in s:
                                                                       \sum_{i}^{2} i^{2}
        s = s + i**2
                                                                                          for
                                                                                                if c == "e":
        i = i + 1
                           print("sum:",s)
                                                                                                     cnt = cnt + 1
                                                                                                                                  number of e
                                                                                          print("found", cnt, "'e'")
                                                                                                                                  in the string.
                                                                     Display
                                                                                  loop on dict/set ⇔ loop on keys sequences
 print("v=", 3, "cm : ", x, ", ", y+4)
                                                                                  use slices to loop on a subset of a sequence
                                                                                  Go over sequence's index
      items to display: literal values, variables, expressions

    modify item at index

 print options:
                                                                                  □ access items around index (before / after)
 □ sep=" "
                           items separator, default space
                                                                                 lst = [11, 18, 9, 12, 23, 4, 17]
 end="\n"
                           end of print, default new line
                                                                                 lost = []
 □ file=sys.stdout print to file, default standard output
                                                                                                                            Algo: limit values greater
                                                                                  for idx in range(len(lst)):
                                                                                       val = lst[idx]
                                                                                                                            than 15, memorizing
                                                                        Input
 s = input("Instructions:")
                                                                                       if val > 15:
                                                                                                                            of lost values.
                                                                                            lost.append(val)
    input always returns a string, convert it to required type
                                                                                  lst[idx] = 15
print("modif:",lst,"-lost:",lost)
        (cf. boxed Conversions on the other side).
len (c) → items count
                                    Generic Operations on Containers
                                                                                  Go simultaneously over sequence's index and values:
min(c) max(c) sum(c)
                                             Note: For dictionaries and sets, these
                                                                                  for idx,val in enumerate(lst):
sorted(c) → list sorted copy
                                              operations use keys.
val in c \rightarrow boolean, membership operator in (absence not in)
                                                                                                                              Integer Sequences
                                                                                    range ([start,] end [,step])
enumerate (\mathbf{c}) \rightarrow iterator on (index, value)
                                                                                  ₫ start default 0, end not included in sequence, step signed, default 1
zip (c1, c2...) \rightarrow iterator on tuples containing c<sub>i</sub> items at same index
                                                                                  range (5) \rightarrow 0 1 2 3 4
                                                                                                                range (2, 12, 3) \rightarrow 25811
all (c) → True if all c items evaluated to true, else False
                                                                                  range (3, 8) \rightarrow 3 4 5 6 7
                                                                                                                range (20, 5, -5) \rightarrow 20 15 10
any (c) → True if at least one item of c evaluated true, else False
                                                                                  range (len (seq)) \rightarrow sequence of index of values in seq
Specific to ordered sequences containers (lists, tuples, strings, bytes...)
                                                                                  reversed (c) \rightarrow inversed iterator c*5\rightarrow duplicate
                                                         c+c2→ concatenate
                                                                                                                              Function Definition
                                     c. count (val) \rightarrow events count
                                                                                  function name (identifier)
c.index (val) \rightarrow position
import copy
                                                                                              named parameters
copy.copy (c) → shallow copy of container
                                                                                   def fct(x, y, z):
                                                                                                                                            fct
copy . deepcopy (c) → deep copy of container
                                                                                          """documentation"""
                                                                                          # statements block, res computation, etc.
                                                      Operations on Lists
return res ← result value of the call, if no computed
lst.append(val)
                               add item at end
                                                                                                               result to return: return None
                               add sequence of items at end
lst.extend(seq)
                                                                                   lst.insert(idx, val)
                              insert item at index
                                                                                   variables of this block exist only in the block and during the function
lst.remove(val)
                               remove first item with value val
                                                                                   call (think of a "black box")
                                                                                   Advanced: def fct(x,y,z,*args,a=3,b=5,**kwargs):
1st . pop ([idx]) \rightarrow value
                              remove & return item at index idx (default last)
lst.sort() lst.reverse() sort / reverse liste in place
                                                                                     *args variable positional arguments (\rightarrow tuple), default values,
                                                                                     **kwares variable named arguments (\rightarrow dict)
     Operations on Dictionaries
                                                       Operations on Sets
                                          Operators:
                                                                                   \mathbf{r} = \mathbf{fct}(3, \mathbf{i} + 2, 2 * \mathbf{i})
                                                                                                                                     Function Call
                       d.clear()
d[key] = value
                                            I → union (vertical bar char)
                                                                                   storage/use of
                                                                                                        one argument per
                       del d[key]
d[key] \rightarrow value
                                                                                   returned value
                                                                                                        parameter
                                               → intersection
d. update (d2) { update/add associations

    - ^ → difference/symmetric diff.

                                                                                                                                               fct
                                                                                  this is the use of function
                                                                                                                Advanced:
                                            < <= > >= → inclusion relations
d.keys()
                                                                                  name with parentheses
                                                                                                                 *sequence
d.values() 

d.items() 

→iterable views on 
keys/values/associations
                 →iterable views on
                                          Operators also exist as methods.
                                                                                  which does the call
                                                                                                                **dict
                                          s.update(s2) s.copy()
d. pop (key[,default]) \rightarrow value
                                                                                                                          Operations on Strings
                                                                                  s.startswith(prefix[,start[,end]])
d.popitem() \rightarrow (key, value) d.get(key[, default]) \rightarrow value
                                          s.add(key) s.remove(key)
                                                                                  s.endswith(suffix[,start[,end]]) s.strip([chars])
                                          s.discard(key) s.clear()
                                          s.pop()
                                                                                  s.count(sub[,start[,end]]) s.partition(sep) \rightarrow (before,sep,after)
d. setdefault (key[,default]) \rightarrow value
                                                                                  s.index(sub[,start[,end]]) s.find(sub[,start[,end]])
                                                                        Files
                                                                                  s.is...() tests on chars categories (ex. s.isalpha())
 storing data on disk, and reading it back
                                                                                  s.upper() s.lower()
                                                                                                                s.title() s.swapcase()
     f = open("file.txt", "w", encoding="utf8")
                                                                                  s.casefold()
                                                                                                    s.capitalize() s.center([width,fill])
file variable
                name of file
                                  opening mode
                                                                                  s.ljust([width,fill]) s.rjust([width,fill]) s.zfill([width])
                                                            encoding of
for operations
                on disk
                                     'r' read
                                                            chars for text
                                                                                                          s.split([sep]) s.join(seq)
                                                                                  s.encode (encoding)
                                  □ 'w' write
                                                            files:
                (+path...)
cf. modules os, os.path and pathlib ....'+' 'x'
                                                                                     formating directives
                                                                                                                   values to format
                                                            utf8
                                                                    ascii
                                                                                                                                       Formatting
                                                'b' 't' latin1 ...
                                                                                   "modele{} {} {}".format(x,y,r)—
                                 🖆 read empty string if end of file
                                                                      reading
                                                                                   "{selection: formatting!conversion}"
 f.write("coucou")
                                 f.read([n])
                                                       \rightarrow next chars
                                                                                  □ Selection :
                                                                                                               "{:+2.3f}".format(45.72793)
                                      if n not specified, read up to end!
 f.writelines (list of lines)
                                 f.readlines ([n]) \rightarrow list of next lines f.readline () \rightarrow next line
                                                                                     2
                                                                                                               →'+45.728'
                                                                                                              "{1:>10s}".format(8,"toto")

→' toto'
                                                                                     nom
                                f.readline()
                                                                                     0.nom
          🖠 text mode t by default (read/write str), possible binary
                                                                                     4 [key]
                                                                                                               "{x!r}".format(x="I'm")
          mode b (read/write bytes). Convert from/to required type!
                                                                                     0[2]
                                                                                                              \rightarrow'"I\'m"'
                    dont forget to close the file after use!
f.close()
                                                                                   □ Formatting :
                                    f.truncate([size]) resize
f.flush() write cache
                                                                                   fill char alignment sign mini width . precision~maxwidth type
                                                                                   <> ^ = + - space
reading/writing progress sequentially in the file, modifiable with:
                                                                                                           0 at start for filling with 0
f.tell() \rightarrow position
                                    f.seek (position[,origin])
                                                                                   integer: b binary, c char, d decimal (default), o octal, x or X hexa...
 Very common: opening with a guarded block
                                                 with open (...) as f:
                                                                                   float: e or E exponential, f or F fixed point, g or G appropriate (default),
 (automatic closing) and reading loop on lines
                                                    for line in f :
                                                                                   string: s ..
 of a text file:
                                                       # processing of line
                                                                                   □ Conversion: s (readable text) or r (literal representation)
```