Bartik instruments

Vasily Rusanov

January 29, 2019

- ► General setup and definition (using Borusyak et al. notation)
- Some examples
- Growth rates as instruments (Borusyak et al.)
- Industry shares as instruments (Goldsmith-Pinkham et al.)
- Conclusion

General setup

- $y_l = \beta x_l + \omega_l' \gamma + \varepsilon$, possibly a panel
- $ightharpoonup x_l$ is the endogenous regressor of interest, scalar at "locations" l

Vasily Rusanov Bartik January 29, 2019 3 / 12

- $y_l = \beta x_l + \omega_l' \gamma + \varepsilon$, possibly a panel
- $ightharpoonup x_l$ is the endogenous regressor of interest, scalar at "locations" l
- ▶ Suppose we can decompose $x_l = \sum_{n=1}^N s_{ln}g_{ln}$, over "industries" n
- ▶ If $g_{ln} = g_n + \tilde{g}_{ln}$, then intuitive instrument: $z_l = \sum_n s_{ln} g_n$.
- lacktriangle Often not feasible: g_n is not observed. Use Leave-One-Out estimators.
- Decomposition $x_l = \sum_n s_{ln} g_{ln}$ is nice for intuition, but not necessary. Bartik is whenever the instrument is a weighted average: $z_l = \sum_n s_{ln} g_n$

Simple example: Acemoglu & Linn, Market Size in Innovation

• $y_l = \beta x_l + \omega'_l \gamma + \varepsilon$, instrument $z_l = \sum_n s_{ln} g_n$.

Simple example: Acemoglu & Linn, Market Size in Innovation

- $y_l = \beta x_l + \omega'_l \gamma + \varepsilon$, instrument $z_l = \sum_n s_{ln} g_n$.
- ▶ y_l : Number of new drugs approved in category l x_l : growth in consumption of drugs in l in the US
- Decompose $x_l = \sum_{n=1}^{N} s_{ln} g_{ln}$ s_{ln} is the share of spending on drug in category l by age group n g_{ln} is the growth in spending of age group n on drug category l.

Vasily Rusanov Bartik January 29, 2019 4 / 12

Simple example: Acemoglu & Linn, Market Size in Innovation

- $y_l = \beta x_l + \omega_l' \gamma + \varepsilon$, instrument $z_l = \sum_n s_{ln} g_n$.
- ▶ y_l : Number of new drugs approved in category l x_l : growth in consumption of drugs in l in the US
- ▶ Decompose $x_l = \sum_{n=1}^{N} s_{ln}g_{ln}$ s_{ln} is the share of spending on drug in category l by age group n g_{ln} is the growth in spending of age group n on drug category l.
- ▶ Can decompose $g_{ln} = g_n + g_{ln}$, where g_n is simply the growth of population in group n.
- ▶ Plain Bartik is often not feasible as: g_n is not observed. Here, $g_l n$ is not observed either, but it's ok!

Vasily Rusanov Bartik January 29, 2019 4 / 12

Famous example: Autor Dorn Hansen, China shock

- $y_l = \beta x_l + \omega'_l \gamma + \varepsilon$, instrument $z_l = \sum_n s_{ln} g_n$.
- ▶ y_l : % change in manufacturing employment x_l : % change in import exposure (employment-weighted change in US imports)

Famous example: Autor Dorn Hansen, China shock

- $y_l = \beta x_l + \omega'_l \gamma + \varepsilon$, instrument $z_l = \sum_n s_{ln} g_n$.
- ▶ y_l : % change in manufacturing employment x_l : % change in import exposure (employment-weighted change in US imports)
- ▶ By definition, $x_{lt} = \sum_{n=1}^{N} s_{lnt}g_{nt}$, where s_{lnt} is the share of people in state l who work in industry n at time t g_{nt} is the growth of imports to the US (not location specific)

Vasily Rusanov Bartik January 29, 2019 5 / 12

Famous example: Autor Dorn Hansen, China shock

- $y_l = \beta x_l + \omega'_l \gamma + \varepsilon$, instrument $z_l = \sum_n s_{ln} g_n$.
- ▶ y_l : % change in manufacturing employment x_l : % change in import exposure (employment-weighted change in US imports)
- ▶ By definition, $x_{lt} = \sum_{n=1}^{N} s_{lnt}g_{nt}$, where s_{lnt} is the share of people in state l who work in industry n at time t g_{nt} is the growth of imports to the US (not location specific)
- ▶ Instrument x_l with $z_{lt} = \sum_{n=1}^{N} s_{lnt-1} \hat{g}_{nt}$, where \hat{g}_{nt} is the growth of Chinese imports in industry n to 8 other countries.
- Note that $\sum_{n} s_{lnt} \neq 1$ because some people work in non-manufacturing (but still tradeables).

Vasily Rusanov Bartik January 29, 2019 5 / 1:

How to understand Bartik

lacksquare It's very broad; any instrument that has a structure $z_l = \sum_n s_{ln} g_n$ is Bartik

How to understand Bartik

- lacktriangle It's very broad; any instrument that has a structure $z_l = \sum_n s_{ln} g_n$ is Bartik
- ▶ We have s_{ln} and g_n . The assumptions required can be roughly classified into "shares are exogenous" or "growth rates" are exogenous.

How to understand Bartik

- lacksquare It's very broad; any instrument that has a structure $z_l = \sum_n s_{ln} g_n$ is Bartik
- ▶ We have s_{ln} and g_n . The assumptions required can be roughly classified into "shares are exogenous" or "growth rates" are exogenous.
- ▶ Turns out, using $z_l = \sum_n s_{ln} g_n$ (a scalar) is numerically equivalent to using a vector g_n or a vector of $s_l n$ in weighted regressions, which motivates two sets of restrictions.

Vasily Rusanov Bartik January 29, 2019 6 / 12

▶ To tackle the controls, denote the matrix of k controls as D, and $M_D = I_{L \times k} - D(D'D)D$, and residualized outcomes as $Y^{\perp} = M_D Y$

▶ To tackle the controls, denote the matrix of k controls as D, and $M_D = I_{L \times k} - D(D'D)D$, and residualized outcomes as $Y^{\perp} = M_D Y$

► The Bartik IV estimator is $\hat{\beta} = \frac{\frac{1}{L} \sum_{l} z_{l} y_{l}^{\perp}}{\frac{1}{L} \sum_{l} z_{l} x_{l}^{\perp}}$

- ▶ To tackle the controls, denote the matrix of k controls as D, and $M_D = I_{L \times k} D(D'D)D$, and residualized outcomes as $Y^{\perp} = M_D Y$
- ▶ The Bartik IV estimator is $\hat{\beta} = \frac{\frac{1}{L} \sum_{l} z_{l} y_{l}^{\perp}}{\frac{1}{L} \sum_{l} z_{l} x_{l}^{\perp}}$
- $\hat{\beta}_{Bartik} = \frac{\frac{1}{L} \sum_{l} z_{l} y_{l}^{\perp}}{\frac{1}{L} \sum_{l} z_{l} x_{l}^{\perp}} = \frac{\sum_{n} g_{n} \left(\frac{1}{L} \sum_{l} s_{ln} y_{l}^{\perp}\right)}{\sum_{n} g_{n} \left(\frac{1}{L} \sum_{l} s_{ln} x_{l}^{\perp}\right)}$
- ▶ $\frac{1}{L} \sum_{l} s_{ln} y_l^{\perp}$ is the industy's n average residualized outcome, weighted by its importance in all locations l. Not a simple average.

- ▶ To tackle the controls, denote the matrix of k controls as D, and $M_D = I_{L \times k} D(D'D)D$, and residualized outcomes as $Y^{\perp} = M_D Y$
- ▶ The Bartik IV estimator is $\hat{\beta} = \frac{\frac{1}{L} \sum_{l} z_{l} y_{l}^{\perp}}{\frac{1}{L} \sum_{l} z_{l} x_{l}^{\perp}}$
- $\hat{\beta}_{Bartik} = \frac{\frac{1}{L} \sum_{l} z_{l} y_{l}^{\perp}}{\frac{1}{L} \sum_{l} z_{l} x_{l}^{\perp}} = \frac{\sum_{n} g_{n} \left(\frac{1}{L} \sum_{l} s_{ln} y_{l}^{\perp}\right)}{\sum_{n} g_{n} \left(\frac{1}{L} \sum_{l} s_{ln} x_{l}^{\perp}\right)}$
- ▶ $\frac{1}{L} \sum_{l} s_{ln} y_{l}^{\perp}$ is the industy's n average residualized outcome, weighted by its importance in all locations l. Not a simple average.
- ▶ Often $\sum_n s_{ln} = 1$. We usually don't think that $\sum_l s_{ln} = 1$.

Vasily Rusanov Bartik January 29, 2019 7 / 12

- ▶ To tackle the controls, denote the matrix of k controls as D, and $M_D = I_{L \times k} D(D'D)D$, and residualized outcomes as $Y^{\perp} = M_D Y$
- ▶ The Bartik IV estimator is $\hat{\beta} = \frac{\frac{1}{L} \sum_{l} z_{l} y_{l}^{\perp}}{\frac{1}{L} \sum_{l} z_{l} x_{l}^{\perp}}$
- $\hat{\beta}_{Bartik} = \frac{\frac{1}{L} \sum_{l} z_{l} y_{l}^{\perp}}{\frac{1}{L} \sum_{l} z_{l} x_{l}^{\perp}} = \frac{\sum_{n} g_{n} \left(\frac{1}{L} \sum_{l} s_{ln} y_{l}^{\perp}\right)}{\sum_{n} g_{n} \left(\frac{1}{L} \sum_{l} s_{ln} x_{l}^{\perp}\right)}$
- ▶ $\frac{1}{L} \sum_{l} s_{ln} y_l^{\perp}$ is the industy's n average residualized outcome, weighted by its importance in all locations l. Not a simple average.
- ▶ Often $\sum_n s_{ln} = 1$. We usually don't think that $\sum_l s_{ln} = 1$.
- ▶ Bartik is num. equivalent to $\bar{y}_n^{\perp} = \beta \bar{x}_n^{\perp} + \varepsilon^{\perp}$, where $\bar{y}_n = \sum_l s_{ln} y_l / \sum_l s_{ln}$ and the regression is weighted by \hat{s}_n

Vasily Rusanov Bartik January 29, 2019 7 / 12

Consistency when growth rates are instruments

- ▶ Under shocks-as-instruments approach, $\hat{\beta}_{Bartik}$ is consistent iff $\sum_n s_n g_n \phi_n \to 0$, where $s_n = \mathbb{E}(s_{ln})$ and $\phi_n = \mathbb{E}(s_{ln}\varepsilon_l)/\mathbb{E}(s_{ln})$. I don't understand it.
- ▶ The authors show that this holds under two assumptions:

Consistency when growth rates are instruments

- ▶ Under shocks-as-instruments approach, $\hat{\beta}_{Bartik}$ is consistent iff $\sum_n s_n g_n \phi_n \to 0$, where $s_n = \mathbb{E}(s_{ln})$ and $\phi_n = \mathbb{E}(s_{ln}\varepsilon_l)/\mathbb{E}(s_{ln})$. I don't understand it.
- ▶ The authors show that this holds under two assumptions:

A1
$$\mathbb{E}(g_n|\phi_n) = \mu$$
, $\forall n$

A2 1)
$$\mathbb{E}[(g_n - \mu)(g_m - \mu)|\phi_n, \phi_m] = 0$$
, $\forall n$ 2) $\sum_n s_n^2 \xrightarrow[L,N\to\infty]{} 0$

(shocks are random and no industry is too important)

Consistency when growth rates are instruments

- ▶ Under shocks-as-instruments approach, $\hat{\beta}_{Bartik}$ is consistent iff $\sum_n s_n g_n \phi_n \to 0$, where $s_n = \mathbb{E}(s_{ln})$ and $\phi_n = \mathbb{E}(s_{ln}\varepsilon_l)/\mathbb{E}(s_{ln})$. I don't understand it.
- ▶ The authors show that this holds under two assumptions:

A1
$$\mathbb{E}(g_n|\phi_n) = \mu$$
, $\forall n$

A2 1)
$$\mathbb{E}[(g_n - \mu)(g_m - \mu)|\phi_n, \phi_m] = 0$$
, $\forall n$ 2) $\sum_n s_n^2 \xrightarrow[L,N\to\infty]{} 0$

(shocks are random and no industry is too important)

- ▶ This can be modified to have clusters with random assignment within clusters and to the case where $\sum_{n} s_{ln} \neq 1$
- Similar for panel data.

• $y_l = \beta x_l + \omega_l' \gamma + \varepsilon$, instrument $z_l = \sum_n s_{ln} g_n$.

- $y_l = \beta x_l + \omega_l' \gamma + \varepsilon$, instrument $z_l = \sum_n s_{ln} g_n$.
- $\begin{array}{c} \blacktriangleright \text{ Vectorize } \underbrace{S}: \text{ matrix of shares, } \underbrace{G}: \text{ vector of growth rates, } \underbrace{Y}: \\ \text{outcomes. Then } \underbrace{B}_{L\times 1} = ZG \text{ is the Bartik instrument.} \\ \end{array}$

- $y_l = \beta x_l + \omega'_l \gamma + \varepsilon$, instrument $z_l = \sum_n s_{ln} g_n$.
- $\begin{array}{c} \blacktriangleright \text{ Vectorize } \underbrace{S}: \text{ matrix of shares, } \underbrace{G}: \text{ vector of growth rates, } \underbrace{Y}: \\ \text{outcomes. Then } \underbrace{B}_{L\times 1} = ZG \text{ is the Bartik instrument.} \\ \end{array}$
- $\qquad \qquad \text{We have } \hat{\beta}_{Bartik} = \frac{B'Y^{\perp}}{B'X^{\perp}} = \frac{G'Z'Y^{\perp}}{G'Z'X^{\perp}} = \underbrace{\overbrace{X^{\perp'}ZG}G'Z'Y^{\perp}}_{X^{\perp'}ZGG'Z'X^{\perp}}$
- ▶ Using Barik is the same as running GMM with weight matrix W = GG' and industry shares as instruments!

- ▶ This can be extended to a panel, but notation is long
- ► They provide several consistency conditions similar to Borusyak et al., but this doesn't give much intuition
- ▶ Key contribution: the GMM estimator gives way to Rotemberg weights.

 \blacktriangleright Let $\hat{C}(\hat{W}) = \hat{W}Z'X^{\perp}$ and $\hat{c}_n(\hat{W}) = \hat{W}_nZ'X^{\perp}$

▶ Let $\hat{C}(\hat{W}) = \hat{W}Z'X^{\perp}$ and $\hat{c}_n(\hat{W}) = \hat{W}_nZ'X^{\perp}$

$$\text{Let } \hat{\beta}(\hat{W}) = \frac{\hat{C}(\hat{W})'Z'Y^{\perp}}{\hat{C}(\hat{W})'Z'X^{\perp}}, \ \hat{\alpha}_k(\hat{W}) = \frac{\hat{c}_k(\hat{W})'Z'_kX^{\perp}}{\hat{c}_k(\hat{W})'Z'_kX^{\perp}} \ \text{and}$$

$$\hat{\beta}_k = (Z'_kX^{\perp})^{-1}Z'_kY^{\perp}$$

▶ Let $\hat{C}(\hat{W}) = \hat{W}Z'X^{\perp}$ and $\hat{c}_n(\hat{W}) = \hat{W}_nZ'X^{\perp}$

▶ Let
$$\hat{\beta}(\hat{W}) = \frac{\hat{C}(\hat{W})'Z'Y^{\perp}}{\hat{C}(\hat{W})'Z'X^{\perp}}$$
, $\hat{\alpha}_k(\hat{W}) = \frac{\hat{c}_k(\hat{W})'Z'_kX^{\perp}}{\hat{c}_k(\hat{W})'Z'_kX^{\perp}}$ and $\hat{\beta}_k = (Z'_kX^{\perp})^{-1}Z'_kY^{\perp}$

▶ Then $\hat{\beta}(\hat{W}) = \sum_{n=1}^{N} \hat{\alpha}_k(\hat{W}) \hat{\beta}_k$

- ▶ Let $\hat{C}(\hat{W}) = \hat{W}Z'X^{\perp}$ and $\hat{c}_n(\hat{W}) = \hat{W}_nZ'X^{\perp}$
- ▶ Let $\hat{\beta}(\hat{W}) = \frac{\hat{C}(\hat{W})'Z'Y^{\perp}}{\hat{C}(\hat{W})'Z'X^{\perp}}$, $\hat{\alpha}_k(\hat{W}) = \frac{\hat{c}_k(\hat{W})'Z'_kX^{\perp}}{\hat{c}_k(\hat{W})'Z'_kX^{\perp}}$ and $\hat{\beta}_k = (Z'_kX^{\perp})^{-1}Z'_kY^{\perp}$
- ▶ Then $\hat{\beta}(\hat{W}) = \sum_{n=1}^{N} \hat{\alpha}_k(\hat{W}) \hat{\beta}_k$
- ▶ For the Bartik instruments, the weights are $\hat{\alpha}_k(\hat{W}) = \frac{\hat{X}_k^{Bartik} X^{\perp}}{\hat{X}^{Bartik} X^{\perp}}$ where \hat{X}^{Bartik} is the residualized X after the first stage.
- ► This is a way to see whether some industries are more important than others. It also allows to estimate the bias.

Vasily Rusanov Bartik January 29, 2019 11 / 12

Conclusion

► Little "theory" is needed to use Bartik. It's an empirical tool, not a modeling technique.

Conclusion

- ► Little "theory" is needed to use Bartik. It's an empirical tool, not a modeling technique.
- ➤ You need those two papers to justify your instrument, not to define it. They way they define Bartik is the same.
- ▶ It's bad if one industry *n* gives a significant part of variation (under both approaches).