

	SEQUENCE LISTING	
<110>	Urry, DE ARADEMART	
<120>	Injectable Implants For Tissue Augmentation and Restoration	
<130>	BERL-020/04US	
<140> <141>	09/841,321 2001-04-23	
<150> <151>	US 09/258,723 1999-02-26	
<150> <151>	US 60/087155 1998-05-29	
<150> <151>	US 60/076297 1998-02-27	
<160>	65	
<170>	PatentIn version 3.0	
<210><211><211><212><213>	1 180 DNA Artificial Sequence	
<220><221><222><222><223>	misc_feature (1)(180) Synthetic	
<400> gaggat	1 ccga agacaacagg tggtgttccg ggcggcgtac cgggtggcgt accgggcggt	60
ttcccg	ggag gtgtgccggg tggggttcca ggcggtgtac cgggtgggtt tccgggcggt	120
gttccg	ggtg gagtteeggg tggegtgeeg ggeggtttte caggaagtet teggateeag	180
<210><211><212><213>	2 113 DNA Artificial Sequence	
<220><221><222><222><223>		
<400> gaggate	2 ccag gcgttggggt accgggtgtt ggcgtaccgg gtaaaggtgt cccgggcgtt	60
		113

<211><212><213>	33 DNA Artificial Sequ	ence				
<222>	misc_feature (1)(33) Synthetic					
<400> taggggt	3 cacc gggtcgtggt	gactctccgg	gcg			33
	4 33 DNA Artificial Sequ	ence				
<222>	misc_feature (1)(33) Synthetic					
<400> cgcatc	4 ccca tggcccagca	ccactgagag	gcc			33
<212>	5 111 DNA Artificial Sequ	nence				
<222>	misc_feature (1)(111) Synthetic					
<400> gaggat	5 ccag gcgttggggt	accgggtgtt	ggcgtaccgg	gtgttggtgt	cccgggcaaa	60
ggtgtg	ccgg gtgtaggcgt	tccgggtgtg	ggagtcccag	gcgttggatc	С	111
<210><211><212><212><213>	6 345 DNA Artificial Sequ	ience				
	misc_feature (1)(345) Synthetic					
<400> ggcgtt	6 ggtg taccgggtgt	tggtgtgccg	ggtgttggtg	ttccgggcgt	aggcgtaccg	60
ggcgta	ggcg tgccgggcgt	aggcgttccg	ggcgtgggcg	taccgggcgt	gggcgtgccg	120

ggtgtgggcg	tcccgggtgt	aggtgttcca	ggcgtagggg	taccgggtcg	tggtgactct	180
ccgggcgttg	gtgtaccggg	tgttggtgtg	ccgggtgttg	gtgttccggg	cgtaggcgta	240
ccgggcgtag	gcgtgccggg	cgtaggcgtt	ccgggcgtgg	gcgtaccggg	cgtgggcgtg	300
ccgggtgtgg	gcgtcccggg	tgtaggtgtt	ccaggcgttg	gatcc		345
<210> 7 <211> 463 <212> DNA <213> Art	ificial Sequ	ıence				
<222> (1)	c_feature (463) thetic					
<400> 7 ggatccaggc	gttggtgtac	cgggtgttgg	tgtgccgggt	gttggtgttc	cgggcgtagg	60
cgtaccgggc	gtaggcgtgc	cgggcgtagg	cgttccgggc	gtgggcgtac	cgggcgtggg	120
cgtgccgggt	gtgggcgtcc	caggtgtagg	cgttccgggt	gtgggtgtag	ctccgggtgt	180
tggcgttgca	ccgggcgtag	gtgttgctcc	gggcgttggc	gtggcgccgg	gtgttggtgt	240
tgctccgggt	gtaggcgttg	ctccgggcgt	tggtgttgcc	ccaggtgtag	gtgtggcacc	300
gggcgttggt	gtaccgggtg	ttggtgtgcc	gggtgttggt	gttccgggcg	taggcgtacc	360
gggcgtaggc	gtgccgggcg	taggcgttcc	gggcgtgggc	gtaccgggcg	tgggcgtgcc	420
gggtgtgggc	gtcccgggtg	taggtgttcc	aggcgttgga	tcc		463
<210> 8 <211> 111 <212> DNA <213> Art		uence				
<220> <221> mis <222> (1) <223> Syn						
<400> 8 gaggatccag	gegttggggt	accgggtgtt	ggcgtaccgg	gtgaaggtgt	cccgggcgtt	60
ggtgtgccgg	gtgtaggcgt	tccgggtgtg	ggagtcccag	gcgttggatc	С	111
<210> 9 <211> 48 <212> PRI <213> Art	rificial Seg	uence				

```
<220>
<221> PEPTIDE
<222> (1)..(48)
<223> Synthetic
<400> 9
Gly Gly Val Pro Gly Gly Val Pro Gly Gly Val Pro Gly Gly Phe Pro
Gly Gly Val Pro Gly Gly Val Pro Gly Val Pro Gly Phe Pro
Gly Gly Val Pro Gly Gly Val Pro Gly Gly Val Pro Gly Gly Phe Pro
<210> 10
<211>
      30
<212>
      PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222>
      (1)..(30)
<223> Synthetic
<400> 10
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly
Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro
<210> 11
<211>
       11
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222>
       (1)..(11)
<223> Synthetic
<400> 11
Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly
<210> 12
<211>
       30
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222>
       (1)..(30)
<223> Synthetic
```

```
<400> 12
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly
Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro
<210>
      13
<211>
      111
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222>
      (1)..(111)
<223> Synthetic
<400> 13
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly
Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val
Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val
Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro
                                105
<210>
       14
<211>
       148
<212>
       PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222>
       (1)...(148)
<223>
       Synthetic
<400> 14
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly
Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val
```

į.

T.

20 25 30

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 35 40 45

Val Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val 50 55 60

Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro 65 70 75 80

Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val 85 90 95

Ala Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val
100 105 110

Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro
115 120 125

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 130 135 140

Val Gly Val Pro 145

<210> 15

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(30)

<223> Synthetic

<400> 15

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly 1 5 10 15

Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 20 25 30

<210> 16

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(4)

<223> Synthetic

<400> 16

Val Pro Gly Gly

1

```
<210> 17
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<221>
      PEPTIDE
<222>
      (1)..(5)
      Synthetic
<223>
<400> 17
Val Pro Gly Val Gly
<210>
      18
<211>
       1255
<212>
      PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222>
       (1)..(1255)
<223>
      Synthetic
<400> 18
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly
Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val
Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val
Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly
Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val
Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
        115
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val
Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro
145
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly
```

Val Gly Val Pro Gly Val Gly Val Pro 225 Gly Val Gly Val Pro Gly Val Pro Gly Val 345 Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 355 Val Pro Gly Val Gly Val Gly Val Pro Gly Val Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val 615 Pro Gly Val Gly Val 775 Pro Gly Val Gly Val Pro Gly Val

			820					825					830		
Gly	Val	Pro 835	Gly	Val	Gly	Val	Pro 840	Gly	Val	Gly	Val	Pro 845	Gly	Val	Gly
Val	Pro 850	Gly	Val	Gly	Val	Pro 855	Gly	Val	Gly	Val	Pro 860	Gly	Val	Gly	Val
Pro 865	Gly	Val	Gly	Val	Pro 870	Gly	Val	Gly	Val	Pro 875	Gly	Val	Gly	Val	Pro 880
Gly	Val	Gly	Val	Pro 885	Gly	Val	Gly	Val	Pro 890	Gly	Val	Gly	Val	Pro 895	Gly
Val	Gly	Val	Pro 900	Gly	Val	Gly	Val	Pro 905	Gly	Val	Gly	Val	Pro 910	Gly	Val
Gly	Val	Pro 915	Gly	Val	Gly	Val	Pro 920	Gly	Val	Gly	Val	Pro 925	Gly	Val	Gly
Val	Pro 930	Gly	Val	Gly	Val	Pro 935	Gly	Val	Gly	Val	Pro 940	Gly	Val	Gly	Val
Pro 945	Gly	Val	Gly	Val	Pro 950	Gly	Val	Gly	Val	Pro 955	Gly	Val	Gly	Val	Pro 960
Gly	Val	Gly	Val	Pro 965	Gly	Val	Gly	Val	Pro 970	Gly	Val	Gly	Val	Pro 975	Gly
Val	Gly	Val			Val		Val	Pro	Gly	Val	Gly	Val	Pro 990	Gly	Val

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 995 1000 1005

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1010 1015

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1025 1030, 1035

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1040 1045 1050

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1055 1060 1065

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1070 1075 1080

Val Pro Gly Val Glý Val Pro Gly Val Gly Val Pro Gly Val Gly 1085 1090 1095

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1100 1105 1110

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1115 1120 1125

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1130 1135 1140

```
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
                        1150
    1145
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
                        1165
    1160
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
                        1180
    1175
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
                        1195
    1190
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
                        1210
    1205
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
                         1225
    1220
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
                        1240
    1235
Val Pro Gly Val Gly Val Pro
    1250
<210> 19
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<221> VARIANT
<222>
       (4)..(4)
<223> the amino acid residue at position 4 is any
       amino acid that is modified to have an
       electroresponsive side chain
<220>
<221> PEPTIDE
<222>
       (1)..(5)
<223> Synthetic
<400> 19
Val Pro Gly Xaa Gly
<210> 20
<211> 5
 <212> PRT
 <213> Artificial Sequence
<220>
 <221> PEPTIDE
 <222> (1)..(5)
 <223> Synthetic
 <400> 20
```

```
Gly Val Gly Val Pro
<210> 21
<211> 166
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
      (1)..(166)
<222>
<223> Synthetic
<400> 21
Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro
Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro
Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro
Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro
Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro
Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro
Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro
Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro
                            120
        115
Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro
                        135
Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro Gly Gly Ala Pro
                                       155 .
                    150
Gly Arg Gly Asp Ser Pro
                165
 <210>
       22
 <211>
       25
 <212> PRT
 <213> Artificial Sequence
 <220>
 <221>
       PEPTIDE
       (1)..(25)
 <222>
 <223> Synthetic
```

```
<400> 22
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly
Val Gly Val Pro Gly Glu Gly Val Pro
<210>
      23
      100
<211>
<212> PRT
<213> Artificial Sequence
<220>
      PEPTIDE
<221>
<222>
       (1)..(100)
<223>
      Synthetic
<400> 23
Gly Ala Gly Gly Ala Thr Cys Cys Gly Ala Ala Gly Ala Cys Ala Ala
Cys Ala Gly Gly Thr Gly Thr Gly Thr Thr Cys Cys Gly Gly Gly
Cys Gly Gly Cys Gly Thr Ala Cys Cys Gly Gly Gly Thr Gly Gly Cys
Gly Thr Ala Cys Cys Gly Gly Gly Cys Gly Gly Thr Thr Cys Cys
Cys Gly Gly Ala Gly Gly Thr Gly Thr Gly Cys Cys Gly Gly Gly
Thr Gly Gly Gly Thr Thr Cys Cys Ala Gly Gly Cys Gly Gly Thr
Gly Thr Ala Cys
            100
 <210>
       24
       100
 <211>
 <212> DNA
 <213> Artificial Sequence
 <220>
       misc_feature
 <221>
       (1)..(100)
 <222>
       Synthetic
 <223>
 <400> 24
ctggatccga agacttcctg gaaaaccgcc cggcacgcca cccggaactc cacccggaac
                                                                      60
                                                                     100
 accgcccgga aacccacccg gtacaccgcc tggaacccca
```

<210> 25 <211> 635

```
<212> PRT
```

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(635)

<223> Synthetic

<400> 25

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly 1 5 10 15

Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val 20 25 30

Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly 35 40 45

Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val 50 55 60

Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro 65 70 75 80

Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly 85 90 95

Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val
100 105 110

Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly 115 120 125

Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe 130 135 140

Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 145 150 155 160

Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly 165 170 175

Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys 180 185 190

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly 195 200 205

Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val 210 215 220

Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro 225 230 230 235

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly 245 250 255

Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val 260 265 270

Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro 310 Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 390 Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val 535 Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val

Gly	Phe	Pro 595	Gly	Phe	Gly	Phe	Pro 600	Gly	Val	Gly	Val	Pro 605	Gly	Val	Gly		
Val	Pro 610	Gly	Lys	Gly	Val	Pro 615	Gly	Val	Gly	Val	Pro 620	Gly	Val	Gly	Phe		
Pro 625	Gly	Phe	Gly	Phe	Pro 630	Gly	Val	Gly	Val	Pro 635							
<210 <211 <212 <213	L> (2>]	26 56 DNA Arti:	ficia	al Se	equei	nce											
	L> 1 2>	misc (1). Syntl	. (66))													
<400 gagg)> gatc	26 cag	gcgt	tggg	gt a	ccgg	gtgt	t gg	cgat	ccgg	gta	aagg	tgt	cccg	gggttg	•	б0
gtgi	tgc															,	66
<210 <211 <211 <211	1> 2>	27 66 DNA Arti	fici	al S	eque:	nce											
<22	1> 2>	misc (1). Synt	(66)													
<40 ctg		27 caa	cgcc	tggg	aa t	ccga	aacc	c gg	aaag	ccta	cac	ccgg	cac	acca	acgccc		60
a aa	aca																66
<21	1> 2>	28 6 PRT Arti	fici	al S	eque	nce											
	1>	PEPT (1). Synt	. (6)	.c													
<40	0>	28															
Gly 1	Arg	g Gly	Asp	Ser 5	r Pro	•	•										
<21 <21		29 50									,						

```
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222>
      (1)..(50)
<223> Synthetic
<400> 29
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly
Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val
Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
Val Pro
    50
<210> 30
<211>
      22
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222>
       (1)..(22)
<223> Synthetic
<400> 30
                                                                      22
ctggatccag accatgggcg tt
<210> 31
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
       (1)..(36)
<222>
<223> Synthetic
<400> 31
                                                                      36
ggcgttggtg taccgtaagc ttgaattcgg atccag
<210> 32
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(22)
```

<223	> 5	yntne	etic											\			
<400: gacct			ggta	cccg	c aa											2	,2
<210: <211: <212: <213:	> 3 > D	6 NA	icia	l Se	quen	ce											
<220 <221 <222 <223	> m > ((36)														
<400 ccgc			tggc	attc	g aa	ctta	agcc	tag	gtc							3	3 6
<210 <211 <212 <213	> 2 > P	003 RT	icia	ıl Se	quen	.ce											
<220 <221 <222 <223	> F > (EPTI 1) Synth	(200														
<400	> 3	4															
Gly 1			Val	Pro 5	Gly	Val	Gly	Val	Pro 10	Gly	Val	Gly	Val	Pro 15	Gly		
Val	Gly	Val	Pro 20	Gly	Val	Gly	Val	Pro 25	Gly	Val	Gly	Val	Pro 30	Gly	Val		
Gly	Val	Pro 35	Gly	Val	Gly	Val	Pro 40	Gly	Val	Gly	Val	Pro 45	Gly	Val	Gly		
Val	Pro 50	Gly	Val	Gly	Val	Pro 55	Gly	Arg	Gly	Asp	Ser 60	Pro	Gly	Val	Gly		
Val 65	Pro	Gly	Val	Gly	Val 70	Pro	Gly	Val	Gly	Val 75	Pro	Gly	Val	Gly	Val 80		
Pro	Gly	Val	Gly	Val 85	Pro	Gly	Val	Gly	Val 90	Pro	Gly	Val	Gly	Val 95	Pro		
Gly	Val	Gly	Val 100	Pro	Gly	Val	Gly	Val 105	Pro	Gly	Val	Gly	Val 110	Pro	Gly		
Val	Gly	Val 115	Pro	Gly	Val	Gly	Val 120	Pro	Gly	Val	Gly	Val 125	Pro	Gly	Val		
Gly	Val 130	Pro	Gly	Val	Gly	Val 135	Pro	Gly	Val	Gly	Val 140	Pro	Gly	Val	Gly		

Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val 170 Pro Gly Val Gly Val Pro Gly Val Gly 235 Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 250 Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro 280 Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro Gly Val Gly 425 Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 435 440 Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 450 455 460

Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro Gly 565 Val Gly Val Pro Gly Val Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro Gly Val Gly 615 Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Gly Val Pro Gly Val 780 Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly

785					790					795					800	
Val	Pro	Gly	Val	Gly 805	Val	Pro	Gly	Val	Gly 810	Val	Pro	Gly	Val	Gly 815	Val	
Pro	Gly	Val	Gly 820	Val	Pro	Gly	Val	Gly 825	Val	Pro	Gly	Val	Gly 830	Val	Pro	
Gly	Arg	Gly 835	Asp	Ser	Pro	Gly	Val 840	Gly	Val	Pro	Gly	Val 845	_	Val	Pro	
Gly	Val 850	Gly	Val	Pro	Gly	Val 855	Gly	Val	Pro	Gly	Val 860	Gly	Val	Pro	Gly	
Val 865	Gly	Val	Pro	Gly	Val 870	Gly	Val	Pro	Gly	Val 875	Gly	Val	Pro	Gly	Val 880	
Gly	Val	Pro	Gly	Val 885	Gly	Val	Pro	Gly	Val 890	Gly	Val	Pro	Gly	Val 895	Gly	
Val	Pro	Gly	Val 900	Gly	Val	Pro	Gly	Val 905	Gly	Val	Pro	Gly	Val 910	Gly	Val	
Pro	Gly	Val 915	Gly	Val	Pro	Gly	Val 920	Gly	Val	Pro	Gly	Val 925	Gly	Val	Pro	
Gly	Val 930	Gly	Val	Pro	Gly	Val 935	Gly	Val	Pro	Gly	Val 940	Gly	Val	Pro	Gly	
Arg 945	Gly	Asp	Ser	Pro	Gly 950	Val	Gly	Val	Pro	Gly 955	Val	Gly	Val	Pro	Gly 960	
Val	Gly	Val	Pro	Gly 965	Val	Gly	Val	Pro	Gly 970	Val	Gly	Val	Pro	Gly 975	Val	
Gly	Val	Pro	Gly 980	Val	Gly	Val	Pro	Gly 985	Val	Gly	Val	Pro	Gly 990	Val	Gly	
Val	Pro	Gly 995	Val	Gly	Val	Pro	Gly 1000		l Gly	y Val	l Pr	0 Gl 10		al G	ly Val	
Pro	Gly 1010		l Gly	√ Va]	l Pro	101		al G	ly Vá	al Pi		ly 020	Val (Gly	Val	
Pro	Gly 1025		l Gly	v Val	L Pro	103		al G	ly Va	al Pi		ly 035	Val (Gly	Val	
Pro	Gly 1040		l Gly	v Val	l Pro	Gly 104		al G	ly Va	al Pi		ly 050	Val (Gly	Val	
Pro	Gly 1055	_	g Gly	/ Asp	Ser	100		ly Va	al G	ly Va		ro 065	Gly '	Val	Gly	
Val	Pro 1070	-	y Val	l Gly	y Val	Pro 107		ly Va	al G	ly Va		ro 080	Gly '	Val	Gly	
	Pro 1085	5			y Val	109	90	_		_	1	095			_	
Val	Pro 1100		/ Val	. Gly	/ Val	Pro 110		ly Va	al G	ly Va		ro 110	Gly '	Val	Gly	

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1115 Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1135 1130 Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1150 1145 Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val 1170 1165 1160 Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 1180 Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 1195 1190 Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 1210 Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 1225 1220 Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 1240 Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 1255 1250 Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Arg 1270 Gly Asp Ser Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 1285 1280 Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 1300 Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 1315 1320 1310 Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 1330 Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 1350 1345 1340 Val Gly Val Pro Gly 1380 1375 1370 Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro 1390 Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 1410 1405 1400

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 1425 1415 Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 1435 1430 Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 1450 Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 1465 Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 1480 Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser 1495 Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 1515 1510 Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 1525 Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 1545 1540 Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 1555 Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 1570 1575 1565 Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 1585 Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 1605 1600 1595 Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro Gly Val Gly 1615 Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1635 1630 1625 Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1640 Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1665 1660 1655 Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1670 Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1695 1690 1685 Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val

	1715					1720					1725			
Gly	Val 1730	Pro	Gly	Val	Gly	Val 1735	Pro	Gly	Val	Gly	Val 1740	Pro	Gly	Val
Gly	Val 1745	Pro	Gly	Val	Gly	Val 1750	Pro	Gly	Val	Gly	Val 1755	Pro	Gly	Val
Gly	Val 1760	Pro	Gly	Val	Gly	Val 1765	Pro	Gly	Val	Gly	Val 1770	Pro	Gly	Val
Gly	Val 1775	Pro	Gly	Val	Gly	Val 1780	Pro	Gly	Val	Gly	Val 1785	Pro	Gly	Val
Gly	Val 1790	Pro	Gly	Val	Gly	Val 1795	Pro	Gly	Val	Gly	Val 1800	Pro	Gly	Val
Gly	Val 1805	Pro	Gly	Val	Gly	Val 1810	Pro	Gly	Val	Gly	Val 1815	Pro	Gly	Val
Gly	Val 1820	Pro	Ģly	Val	Gly	Val 1825	Pro	Gly	Val	Gly	Val 1830	Pro	Gly	Arg
Gly	Asp 1835	Ser	Pro	Gly	Val	Gly 1840	Val	Pro	Gly	Val	Gly 1845	Va1	Pro	Gly
Val	Gly 1850	Val	Pro	Gly	Val	Gly 1855	Val	Pro	Gly	Val	Gly 1860	Val	Pro	Gly
Val	Gly 1865	Val	Pro	Gly	Val	Gly 1870	Val	Pro	Gly	Val	Gly 1875	Val	Pro	Gly
Val	Gly 1880	Val	Pro	Gly	Val	Gly 1885	Val	Pro	Gly	Val	Gly 1890	Val	Pro	Gly
Val	Gly 1895	Val	Pro	Gly	Val	Gly 1900	Val	Pro	Gly	Val	Gly 1905	Val	Pro	Gly
Val	Gly 1910	Val	Pro	Gly	Val	Gly 1915	Val	Pro	Gly	Val	Gly 1920	Val	Pro	Gly
Val	Gly 1925	Val	Pro	Gly	Val	Gly 1930	Val	Pro	Gly	Val	Gly 1935	Val	Pro	Gly
Val	Gly 1940	Val	Pro	Gly	Arg	Gly 1945	Asp	Ser	Pro	Gly	Val 1950	Gly	Val	Pro
Gly	Val 1955	Gly	Val	Pro	Gly	Val 1960	Gly	Val	Pro	Gly	Val 1965	Gly	Val	Pro
Gly	Val 1970	Gly	Val	Pro	Gly	Val 1975	Gly	Val	Pro	Gly	Val 1980	Gly	Val	Pro
Gly	Val 1985	Gly	Val	Pro	Gly	Val 1990	Gly	Val	Pro	Gly	Val 1995	Gly	Val	Pro
Gly	Val 2000	Gly	Val	Pro										
<210 <210		5 085												

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(1085)

<223> Synthetic

<400> 35

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 1 5 10 15

Lys Gly Val Pro Gly Val Gly Val Gly Val Pro Gly Val 20 25 30

Gly Val Pro Gly Val Gly Val Gly Val Bro Gly Lys Gly 35 40 45

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Gly Val Gly Val 50 55 60

Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro 65 70 75 80

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 85 90 95

Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val
100 105 110

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
115 120 125

Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val 130 135 140

Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 145 150 155 160

Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly 165 170 175

Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 180 185 190

Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
195 200 205

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 210 220

Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 225 230 235 240

Gly Val Gly Val Pro Gly Val Gly Val Gly Val Pro Gly Val Pro Gly 245 250 255

Lys Gly Val Pro Gly Val Gly Val Gly Val Pro Gly Val 260 265 270

Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 565 Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val 580 585

Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly 650 Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro 870 875 Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly 890 Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val 905

Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly

915 920 925

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 930 935 940

Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 945 950 955 960

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 965 970 975

Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 980 985 990

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly 995 1000 1005

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1010 1015

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly 1025 1030 1035

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1040 1045

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly 1055 1060 1065

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1070 1075 1080

Val Pro 1085

<210> 36

<211> 635

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(635)

<223> Synthetic

<400> 36

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly
1 5 10 15

Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val

Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly 35 40 45

Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val 50 55 60

Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro

	65					70					75					80
	Gly	Val	Gly	Phe	Pro 85	Gly	Phe	Gly	Phe	Pro 90	Gly	Val	Gly	Val	Pro 95	Gly
•	Val	Gly	Val	Pro 100	Gly	Lys	Gly	Val	Pro 105	Gly	Val	Gly	Val	Pro 110	Gly	Val
	Gly	Phe	Pro 115	Gly	Phe	Gly	Phe	Pro 120	Gly	Val	Gly	Val	Pro 125	Gly	Val	Gly
	Val	Pro 130	Gly	Lys	Gly	Val	Pro 135	Gly	Val	Gly	Val	Pro 140	Gly	Val	Gly	Phe
	Pro 145	Gly	Phe	Gly	Phe	Pro 150	Gly	Val	Gly	Val	Pro 155	Gly	Val	Gly	Val	Pro 160
	Gly	Lys	Gly	Val	Pro 165	Gly	Val	Gly	Val	Pro 170	Gly	Val	Gly	Phe	Pro 175	Gly
				Pro 180					185					190		
	Gly	Val	Pro 195	Gly	Val.	Gly	Val	Pro 200	Gly	Val	Gly	Phe	Pro 205	Gly	Phe	Gly
		210	-	Val	-		215	_		_		220	_	-	_	
	225			Gly		230	_		_		235	_		_		240
	_		_	Val	245	_		_		250	-	-	_		255	
		-		Pro 260	_		_		265					270	-	
	_		275	Gly		_		280	_	_			285	_		
		290	_	Val	-		295					300				
	305	_		Gly		310	_	_	_		315	_		_		320
				Phe -	325	_				330					335	
		_		Pro 340	_	-	_		345	_		-		350	_	
	_		355	Gly		_		360	_		_		365	_		-
		370		Lys			375					380			-	
	Pro 385	Gly	Phe	Gly	Phe	Pro 390	Gly	Val	Gly	Val	Pro 395	Gly	Val	Gly	Val	Pro 400

Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly 405 410 415

Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys 420 425 430

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly 435 440 445

Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val 450 460

Pro Gly Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro 465 470 475 480

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly 485 490 495

Val Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val 500 505 510

Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly 515 520 525

Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val 530 540

Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro 545 550 560

Gly Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly 565 570 575

Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val 580 590

Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly 595 $\,$ 600 $\,$ 605

Val Pro Gly Lys Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Phe 610 615 620

Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro 625 630 635

<210> 37

<211> 782

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(782)

<223> Synthetic

<400> 37

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 1 5 10 15

Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro Gly Val 120 Gly Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro 280 Gly Val Gly Val Pro Gly Val 310 315 Gly Val Pro Gly Val Gly Val Gly Val Pro Gly Val Gly

330

335

325

Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val 345 Pro Gly Val Gly Val Pro Gly 375 Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val 410 Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 425 Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro 455 Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 470 Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val 490 Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro 645 650 Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 660 665 670

Val Gly Val Pro Gly Val Gly Val Gly Val Pro Gly Val
675 680 685

Gly Val Pro Gly Val Gly Val Gly Val Gly Val Pro Gly Val Gly 690 695 700

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val
705 710 715 720

Pro Gly Arg Gly Asp Ser Pro Gly Val Gly Val Pro Gly Val Gly Val
725 730 735

Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro 740 745 750

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 755 760 765

Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 770 775 780

<210> 38

<211> 745

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(745)

<223> Synthetic

<400> 38

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly
1 10 15

Val Gly Val Pro Gly Val Gly Val Gly Val Pro Gly Val 20 25 30

Gly Val Pro Gly Val Gly Val Gly Val Gly Val Gly Val Gly 35 40 45

Val Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val 50 55 60

Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro 65 70 75 80

Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val 85

Ala Pro Gly Val Gly Val Pro Gly Val Gly Val Gly Val Gly Val 100 110

Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro 115 120 125

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly

130	135	140

Val 145	Gly	Val	Pro	Gly	Val 150	Gly	Val	Pro	Gly	Val 155	Gly	Val	Pro	Gly	Val 160
Gly	Val	Pro	Gly	Val 165	Gly	Val	Pro	Gly	Val 170	Gly	Val	Pro	Gly	Val 175	Gly
Val	Pro	Gly	Val 180	Gly	Val	Pro	Gly	Val 185	Gly	Val	Pro	Gly	Val 190	Gly	Val
Pro	Gly	Val 195	Gly	Val	Pro	Gly	Val 200	Gly	Val	Ala	Pro	Gly 205	Val	Gly	Val
Ala	Pro 210	Gly	Val	Gly	Val	Ala 215	Pro	Gly	Val	Gly	Val 220	Ala	Pro	Gly	Val
Gly 225	Val	Ala	Pro	Gly	Val 230	Gly	Val	Ala	Pro	Gly 235	Val	Gly	Val	Ala	Pro 240
Gly	Val	Gly	Val	Ala 245	Pro	Gly	Val	Gly	Val 250	Pro	Gly	Val	Gly	Val 255	Pro
Gly	Val	Gly	Val 260	Pro	Gly	Val	Gly	Val 265	Pro	Gly	Val	Gly	Val 270	Pro	Gly
Val	Gly	Val 275	Pro	Gly	Val	Gly	Val 280	Pro	Gly	Val	Gly	Val 285	Pro	Gly	Val
Gly	Val 290	Pro	Gly	Val	Gly	Val 295		Gly	Val	Gly	Val 300	Pro	Gly	Val	Gly
Val 305		Gly	. Val	Gly	Val 310	Pro	Gly	Val	Gly	Val 315	Pro	Gly	Val	Gly	Val 320
Pro	Gly	Val	Gly	Val 325		Gly	· Val	Gly	Val 330	Pro	Gly	Val	Gly	Val	Pro
Gly	Val	Gly	Val 340		Gly	Val	Gly	Val 345	Pro	Gly	· Val	Gly	Val 350	Ala	Pro
Gly	√al	Gly 355	val	Ala	Pro	Gly	7 Val 360		val	. Ala	Pro	Gly 365	Val	Gly	Val
Ala	Pro 370	Gly	v Val	Gly	val	Ala 375	Pro	Gly	v Val	Gly	7 Val 380	Ala	Pro	Gly	val
Gl _y 385		. Ala	a Pro	Gly	7 Val 390		v Val	Ala	a Pro	395	val	. Gly	v Val	. Pro	Gly 400
Va]	L Gly	v Val	L Pro	Gl _y 405		. Gly	/ Val	Pro	Gl _y 410	y Val	. Gly	v Val	Pro	Gly 415	v Val
Gly	y Val	Pro	Gly 420		L Gly	√ Va]	L Pro	Gly 425	y Val	l Gly	v Val	Pro	Gl ₃ 430	v Val	Gly
Va.	l Pro	Gly 43!	y Val	L Gly	y Val	l Pro	Gly 440	y Val	l Gly	y Val	Pro	Gl ₃ 445	y Val	l Gly	y Val
Pro	o Gly 450		l Gly	y Val	l Pro	Gly 459		l Gly	y Val	l Pro	Gly 460	y Val	l Gly	y Val	l Pro

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 465 470 475 480

Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val
485 490 495

Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro 500 510

Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val
515 520 525

Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val
530 540

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 545 550 560

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val
565 570 575

Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro
580 590

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 595 600 605

Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val
610 615 620

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 625 630 635 640

Val Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val 645 650 655

Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro 660 665 670

Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val 675 680 685

Ala Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 690 695 700

Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 705 710 715 720

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 725 730 735

Val Gly Val Pro Gly Val Gly Val Pro 740 745

<210> 39

<211> 1085

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(1085)

<223> Synthetic

<400> 39

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 1 5 10 15

Glu Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 20 25 30

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly 35 40 45

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 50 55 60

Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro 65 70 75 80

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 85 90 95

Val Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly Val 100 105 110

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
115 120 125

Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val 130 135 140

Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 145 150 160

Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly 165 170 175

Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 180 185 190

Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 195 200 205

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 210 215 220

Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 225 230 235 240

Gly Val Gly Val Pro Gly Val Gly Val Gly Val Gly Val Pro Gly 245 250 255

Glu Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 260 265 270

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly
275
280
285

Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly 410 Val Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly 600 Val Pro Gly Val Gly Val Pro Gly Glu Gly Val Pro Gly Val Gly Val

610 615	620
---------	-----

Pro 625	Gly	Val	Gly	Val	Pro 630	Gly	Val	Gly	Val	Pro 635	Gly	Val	Gly	Val	Pro 640
Gly	Val	Gly	Val	Pro 645	Gly	Glu	Gly	Val	Pro 650	Gly	Val	Gly	Val	Pro 655	Gly
Val	Gly	Val	Pro 660	Gly	Val	Gly	Val	Pro 665	Gly	Val	Gly	Val	Pro 670	Gly	Val
Gly	Val	Pro 675	Gly	Glu	Gly	Val	Pro 680	Gly	Val	Gly	Val	Pro 685	Gly	Val	Gly
Val	Pro 690	Gly	Val	Gly	Val	Pro 695	Gly	Val	Gly	Val	Pro 700	Gly	Val	Gly	Val
Pro 705	Gly	Glu	Gly	Val	Pro 710	Gly	Val	Gly	Val	Pro 715	Gly	Val	Gly	Val	Pro 720
Gly	Val	Gly	Val	Pro 725	Gly	Val	Gly	Val	Pro 730	Gly	Val	Gly	Val	Pro 735	Gly
Glu	Gly	Val	Pro 740	Gly	Val	Gly	Val	Pro 745	Gly	Val	Gly	Val	Pro 750	Gly	Val
Gly	Val	Pro 755	Gly	Val	Gly	Val	Pro 760	Gly	Val	Gly	Val	Pro 765	Gly	Glu	Gly
Val	Pro 770		Val	Gly	Val	Pro 775		Val	Gly	Val	Pro 780	Gly	Val	Gly	Val
Pro 785		Val	Gly	Val	Pro 790	Gly	Val	Gly	Val	Pro 795	Gly	Glu	Gly	Val	Pro 800
Gly	Val	Gly	· Val	Pro 805		Val	Gly	Val	Pro 810	Gly	Val	Gly	Val	Pro 815	Gly
Val	Gly	· Val	Pro 820		Val	Gly	Val	Pro 825	Gly	Glu	Gly	Val	Pro 830	Gly	Val
Gly	Val	Prc 835		val	. Gly	· Val	Pro 840	Gly	Val	Gly	Val	Pro 845	Gly	Val	Gly
Val	Pro 850		val	. Gly	r Val	Pro 855	Gly	Glu	Gly	val	Pro 860	Gly	val	Gly	Val
Pro 865		v Val	Gly	v Val	Pro 870		v Val	. Gly	val	Prc 875	Gly	Val	. Gly	Val	Pro 880
Gl	v Val	Gl3	/ Val	885		7 Gli	ı Gly	r Val	Pro 890	o Gly	v Val	Gly	v Val	Pro 895	Gly
Va]	r Gl	y Val	l Pro		/ Val	l Gl	y Val	905	Gly	y Val	Gly	val	910	Gly	val
Gly	/ Val	l Pro 91		y Glu	ı Gly	y Vai	l Pro 920		y Val	L Gly	y Val	Pro 925	Gly	v Val	. Gly
Va.	l Pro		y Val	l Gly	y Val	l Pro		y Val	L Gly	y Val	Pro 940	Gly	/ Val	Gly	v Val

Pro Gly Glu Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 945 950 955 960

Gly Val Gly Val Pro Gly Val Gly Val Gly Val Gly Val Pro Gly 975

Glu Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 980 985 990

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly 995 1000 1005

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1010 1015 1020

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly 1025 1030 1035

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
1040 1045 1050

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Glu Gly 1055 1060 1065

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 1070 1075 1080

Val Pro 1085

<210> 40

<211> 605

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(605)

<223> Synthetic

<400> 40

Gly Val Gly Val Pro Gly Val Gly Val Gly Val Gly Val Pro Gly
1 5 10 15

Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 20 25 30

Gly Val Pro Gly Val Gly Val Gly Val Gly Val Pro Gly Val Gly 35 40 45

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Gly Val Gly Val 50 55 60

Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 65 70 75 80

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly 85 90 95

Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro 150 Gly Val Gly Val Pro Gly Val Gly Val 215 Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 230 Gly Val Gly Val Pro Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Pro Gly Val Gly Val Pro Gly 405

<222>

(1)..(4)<223> Synthetic

```
Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val
Gly Val Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val
Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly
                                   490
Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val
Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly
Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val
Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Pro
                   550
Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly
                                   570
Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val
Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro
<210> 41
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (1)..(4)
<223> Synthetic
<400> 41
Gly Gly Val Pro
<210> 42
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
```

```
<400> 42
Gly Gly Phe Pro
<210> 43
<211> 5
<211> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (1)..(5)
<223> Synthetic
<400> 43
Gly Lys Gly Val Pro
<210> 44
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (1)..(5)
<223> Synthetic
<400> 44
Gly Val Gly Phe Pro
 <210> 45
 <211> 5
 <212> PRT
 <213> Artificial Sequence
 <220>
 <221> PEPTIDE
 <222>
        (1)..(5)
 <223> Synthetic
 <400> 45
 Gly Phe Gly Phe Pro
 <210> 46
 <211>
 <212> PRT
 <213> Artificial Sequence
 <220>
```

```
<221> PEPTIDE
<222> (1)..(6)
<223> Synthetic
<400> 46
Gly Arg Gly Asp Ser Pro
 <210> 47
 <211> 6
<212> PRT
<213> Artificial Sequence
 <220>
 <221> PEPTIDE
<222> (1)..(6)
<223> Synthetic
 <400> 47
 Gly Val Gly Val Ala Pro
 <210> 48
<211> 5
<212> PRT
<213> Artificial Sequence
 <220>
 <221> PEPTIDE
 <222> (1)..(5)
<223> Synthetic
 <400> 48
 Gly Glu Gly Val Pro
 <210> 49
 <211>
         5
 <212> PRT
  <213> Artificial Sequence
  <220>
 <221> PEPTIDE
         (1)..(5)
  <222>
  <223> Synthetic
  <400> 49
  Gly Phe Gly Val Pro
  <210> 50
  <211> 4
  <212> PRT
```

```
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (1)..(4)
<223> Synthetic
<400> 50
Gly Gly Ala Pro
<210> 51
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE <222> (1)..(5)
<223> Synthetic
<400> 51
Gly Val Gly Ile Pro
<210> 52
<211> 6
.<212> PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
 <222> (1)..(6)
 <223> Synthetic
 <400> 52
 Val Gly Val Ala Pro Gly
 <210> 53
 <211> 106
 <212> PRT
 <213> Artificial Sequence
 <220>
 <221> PEPTIDE
 <222> (1)..(106)
<223> Synthetic
 <400> 53
 Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly
```

Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val 20 25 30

Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly 35 40 45

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 50 55 60

Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 65 70 75 80

Gly Val Gly Val Pro Gly Val Gly Val Gly Val Pro Gly 85 90 95

Val Gly Val Pro Gly Arg Gly Asp Ser Pro 100 105

<210> 54

<211> 25

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(25)

<223> Synthetic

<400> 54

Gly Val Gly Val Pro Gly Val Pro Gly Lys Gly Val Pro Gly 1 5 10 15

Val Gly Phe Pro Gly Phe Gly Phe Pro 20 25

<210> 55

<211> 1300

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(1300)

<223> Synthetic

<400> 55

Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly 1 5 10 15

Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val 20 25 30

Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly
35 40 45

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile 50 55 60

Pro Gly Val Gly Ile 1.35 Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro 150 Gly Val Gly Ile Pro Gly Val 185 Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 200 Ile Pro Gly Val Gly 360 Ile Pro Gly Val Gly Ile Pro Gly 410 Val Gly Ile Pro Gly Val Gly 520 Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile 535 Pro Gly Val Gly Ile Pro Gly Val Gly Ile

Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro

705					710					715					720	
Gly	Val	Gly	Ile	Pro 725	Gly	Val	Gly	Ile	Pro 730	Gly	Val	Gly	Ile	Pro 735	Gly	
Val	Gly	Ile	Pro 740	Gly	Val	Gly	Ile	Pro 745	Gly	Val	Gly	Ile	Pro 750	Gly	Val	
Gly	Ile	Pro 755	Gly	Val	Gly	Ile	Pro 760	Gly	Val	Gly	Ile	Pro 765	Gly	Val	Gly	
Ile	Pro 770	Gly	Val	Gly	Ile	Pro 775	Gly	Val	Gly	Ile	Pro 780	Gly	Val	Gly	Ile	
Pro 785	Gly	Val	Gly	Ile	Pro 790	Gly	Val	Gly	Ile	Pro 795	Gly	Val	Gly	Ile	Pro 800	
Gly	Val	Gly	Ile	Pro 805	Gly	Val	Gly	Ile	Pro 810	Gly	Val	Gly	Ile	Pro 815	Gly	
Val	Gly	Ile	Pro 820	Gly	Val	Gly	Ile	Pro 825	Gly	Val	Gly	Ile	Pro 830	Gly	Val	
Gly	Ile	Pro 835	Gly	Val	Gly	Ile	Pro 840	Gly	Val	Gly	Ile	Pro 845	Gly	Val	Gly	
Ile	Pro 850	Gly	Val	Gly	Ile	Pro 855	Gly	Val	Gly	Ile	Pro 860	Gly	Val	Gly	Ile	
Pro 865	Gly	Val	Gly	Ile	Pro 870	Gly	Val	Gly	Ile	Pro 875	Gly	Val	Gly	Ile	Pro 880	
Gly	Val	Gly	Ile	Pro 885	Gly	Val	Gly	Ile	Pro 890	Gly	Val	Gly	Ile	Pro 895	Gly	
Val	Gly	Ile	Pro 900	Gly	Val	Gly	Ile	Pro 905	Gly	Val	Gly	Ile	Pro 910	Gly	Val	
Gly	Ile	Pro 915	Gly	Val	Gly	Ile	Pro 920	Gly	Val	Gly	Ile	Pro 925	Gly	Val	Gly	
Ile	Pro 930	Gly	Val	Gly	Ile	Pro 935	Gly	Val	Gly	Ile	Pro 940	Gly	Val	Gly	Ile	
Pro 945	Gly	Val	Gly	Ile	Pro 950	Gly	Val	Gly	Ile	Pro 955	Gly	Val	Gly	Ile	Pro 960	
Gly	Val	Gly	Ile	Pro 965	Gly	Val	Gly	Ile	Pro 970	Gly	Val	Gly	Ile	Pro 975	Gly	
Val	Gly	Ile	Pro 980	Gly	Val	Gly	Ile	Pro 985	Gly	Val	Gly	Ile	Pro 990	Gly	Val	
Gly	Ile	Pro 995	Gly	Val	Gly	Ile	Pro 1000	-	y Val	l Gl	y Ile	9 Pro		ly Va	al Gly	?
Ile	Pro 1010		y Val	l Gly	y Ile	Pro 101		ly Va	al G	ly I		ro (020	Gly V	Val (3ly	
Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1025 1030 1035																

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1070 1075

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1085 1090 1095

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1100 1105 1110

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1115 1120 1125

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1130 1135 1140

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1145 1150 1155

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1160 1165 1170

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1175 1180 1185

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1190 1195 1200

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1205 1210 1215

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1220 1225 1230

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1235 1240 1245

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1250 1260

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1265 1270 1275

Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 1280 1285 1290

Ile Pro Gly Val Gly Ile Pro 1295 1300

<210> 56

<211> 50

<212> PRT

<213> Artificial Sequence

<220>

```
<221> PEPTIDE
<222>
      (1)..(50)
<223> Synthetic
<400> 56
Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly
Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val
Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly
Ile Pro
   50
<210> 57
<211> 111
<212> PRT
<213> Artificial Sequence
<220>
<221>
      PEPTIDE
<222>
      (1)...(111)
<223> Synthetic
<400> 57
Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly
Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val
Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly
Ile Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly
Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile
Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro
Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro
            100
                                105
<210> 58
<211>
      111
<212>
      PRT
<213> Artificial Sequence
<220>
<221> PEPTIDE
<222> (1)..(111)
```

<223> Synthetic

<400> 58

Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly 1 5 10 15

Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val
20 25 30

Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 35 40 45

Ile Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly 50 55 60

Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val 65 70 75 80

Pro Gly Val Gly Val Pro Gly Val Pro Gly Val Gly Val Pro 85 90 95

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Val Gly Val Pro
100 105 110

<210> 59

<211> 45

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(45)

<223> Synthetic

<400> 59

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Phe Gly Val Pro Gly 1 5 10 15

Val Gly Val Pro Gly Val Gly Val Pro Gly Phe Gly Val Pro Gly Val 20 25 30

Gly Val Pro Gly Val Gly Val Pro Gly Phe Gly Val Pro

<210> 60

<211> 111

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(111)

<223> Synthetic

<400> 60

Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly 1 5 10 15

Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val 20 25 30

Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly Ile Pro Gly Val Gly 35 40

Ile Pro Gly Val Gly Val Pro Gly Arg Gly Asp Ser Pro Gly Val Gly
50 55 60

Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Phe 65 70 75 80

Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val Gly Val Pro 85 90 95

Gly Lys Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly Phe Pro 100 $$ 105 $$ 110

<210> 61

<211> 25

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(25)

<223> Synthetic

<400> 61

Gly Val Gly Val Pro Gly Val Gly Val Gly Val Gly Val Pro Gly 1 5 10 15

Val Gly Val Pro Gly Lys Gly Val Pro 20 25

<210> 62

<211> 50

<212> PRT

<213> Artificial Sequence

<220>

<221> PEPTIDE

<222> (1)..(50)

<223> Synthetic

<400> 62

Gly Val Gly Val Pro Gly Val Gly Val Pro Gly Lys Gly Val Pro Gly
1 10 15

Val Gly Phe Pro Gly Phe Gly Phe Pro Gly Val Gly Val Pro Gly Val
20 25 30

Gly Val Pro Gly Lys Gly Val Pro Gly Val Gly Phe Pro Gly Phe Gly
35 40 45

```
Phe Pro
   50
<210>
       63
      30
<211>
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(30)
<223> Synthetic
<400> 63
                                                                      30
ttcggattcc cgggcgtagg cgtaccgggt
<210> 64
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<222> (1)..(30)
<223> Synthetic
 <400> 64
                                                                       30
aagcctaagg gcccgcatcc gcatggccca
 <210> 65
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 <220>
 <221> PEPTIDE
 <222> (1)..(10)
 <223> Synthetic
 <400> 65
 Phe Gly Phe Pro Gly Val Gly Val Pro Gly
```