## Problem Set 4: 1.9

## Joshua Ramette & Daniel Halmrast

October 21, 2016

## PROBLEM 2.1

(a) Let U, V, W be vector spaces, with  $\phi: V \times W \to V \otimes W$  the natural mapping,  $l: V \times W \to U$  bilinear.

NTS: exists unique  $\tilde{l}: V \otimes W \to U$  such that  $\tilde{l} \circ \phi = l$ .

Define  $\tilde{l}$  on decomposable tensors of the form  $v \otimes w$  as  $\tilde{l}(v \otimes w) = l(v, w)$  and extend to all of  $V \otimes W$  by linearity.

It is clear that  $\widetilde{l} \circ \phi(v, w) = \widetilde{l}(v \otimes w) = l(v, w)$  and the diagram commutes. Uniqueness: Suppose  $\widetilde{l}'$  is another linear lifting of l. Then, for  $(v_0, w_0)$ ,  $\widetilde{l} \circ \phi(v_0, w_0) = \widetilde{l}(v_0 \otimes w_0) = l(v_0, w_0) = \widetilde{l}' \circ \phi(v_0, w_0) = \widetilde{l}'(v_0 \otimes w_0)$ , and thus  $\widetilde{l}' = \widetilde{l}$ .

(b)

 $V \otimes W \cong W \otimes V$ . Define the isomorphism as, for  $\psi : V \times W \to W \times V$  the canonical isomorphism,  $\psi_0 : V \otimes W \to W \otimes V$ .

Let  $\phi$  be the bilinear map from part (a) of  $V \times W$  into  $V \otimes W$  and  $\phi'$  the bilinear map of  $W \times V$  into  $W \otimes V$ . Then,  $\psi_0 = \phi' \circ \psi$ , with natural inverse  $\psi_0^{-1} = \phi \circ \psi^{-1}$  where  $\psi_0$  is extended to all of  $V \otimes W$  via linearity.

(c)

 $U \otimes (V \otimes W) = (U \otimes V) \otimes W$ . Apply the same lifting as (b) on  $\psi : U \times (V \times W) \to (U \times V) \times W$ .

(d)

 $\alpha$  is injective by linearity  $\alpha(v_1) - \alpha(v_2) = 0 \rightarrow \alpha(v_1 - v_2) = 0$  and triviality of the kernel.

Let  $T: V \to W$  be an element of  $\operatorname{Hom}(V, W)$ .  $T(x_i) = \sum c_j y_j = w_i$ . Then,  $T(V) = T(\sum c_i y_i) = \sum c_i T(x_i) = \sum c_i (\sum (c_j y_j)) = \sum_i w_i$ . Let  $f_i = \pi_i$  be the i-th coordinate projection. Then  $T(V) = \sum f_i(v) w_i = \sum \alpha(f_i \otimes w_i)(v) = \alpha(\sum (f_i \otimes w_i)(v))$ . Then  $\alpha$  is surjective as well.

(e)

Suppose  $(v \otimes w) \in V \otimes W$ ). Then  $(v \otimes w) = (\sum c_i e_i) \otimes (\sum d_j f_j) = \sum_i ((c_i e_i) \otimes (\sum d_j f_j)) = \sum_i c_i (e_i \otimes (\sum d_j f_j)) = \sum_i \sum_j c_i (e_i \otimes (d_j f_j)) = \sum_i \sum_j c_i d_j (e_i \otimes f_j)$ . Thus the desired set is a basis.