

Oblivious Routing using Learning Methods

Ufuk Usubütün, Murali Kodialam, T.V. Lakshman and Shivendra Panwar

GLOBECOM 2023 – Kuala Lumpur, Malaysia

Making Oblivious Routing Practical

Context

Routing in Networks

High volume, Highly variable traffic

Motivation

Traffic Oblivious Routing

Stable and Robust Routing Solution Far less complex handling of highly varying traffic

Compatible with current day networks

Contribution

Adversarial Learning Method

New, fast and parallelized ways to solve optimization problems Provide performance guarantees

Routing in Networks

How to optimally route flows?

☐ How to satisfy all demands and constraints?

How to optimally route flows?

- How to satisfy all demands and constraints?
 - □ Solve a nice optimization problem if we can forecast what traffic to expect

min (*max* link utilization)

for traffic matrix:

$$\begin{bmatrix} t_{ij} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & \dots & & t_{1N} \\ t_{21} & t_{22} & \dots & & t_{2N} \\ \vdots & \ddots & & \vdots \\ t_{N1} & t_{N2} & \dots & & t_{NN} \end{bmatrix}$$

By assigning routes to flows

Traffic Patterns Today are Highly Variable and Harder to Predict

- High number of users
- Diverse applications
- Failures in adjacent networks
- **Data Centers**
- Edge Clouds
- Virtualization and Migration

How to optimize if we can't forecast traffic?

Over-provisioning without performance guarantees?

Oblivious Routing

with Hose Constraints

We know link capacities

We know one more thing about the network:

We know one more thing about the network:

The capacity of the physical connection of the network with the outside: The Hose

We know one more thing about the network:

The capacity of the physical connection of the network with the outside: The Hose

$$\begin{bmatrix} t_{ij} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & \dots & t_{1N} \\ t_{21} & t_{22} & \dots & t_{2N} \\ \vdots & \ddots & \vdots \\ t_{N1} & t_{N2} & \dots & t_{NN} \end{bmatrix}$$

$$\begin{bmatrix} t_{ij} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & \dots & t_{1N} \\ t_{21} & t_{22} & \dots & t_{2N} \\ \vdots & \ddots & \vdots \\ t_{N1} & t_{N2} & \dots & t_{NN} \end{bmatrix}$$

$$\begin{bmatrix} t_{ij} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & \dots & t_{1N} \\ t_{21} & t_{22} & \dots & t_{2N} \\ \vdots & \ddots & \vdots \\ t_{N1} & t_{N2} & \dots & t_{NN} \end{bmatrix}$$

$$\mathcal{T}(\vec{\mathcal{R}}, \vec{\mathcal{C}}) = \left\{ [t_{ij}] \left| \sum_{j \neq i} t_{ij} \leq R_i \text{ and } \sum_{j \neq i} t_{ji} \leq C_i \ \forall \ i \right. \right\}$$

Find a fixed routing rule by solving for all possible traffic matrices

$$\begin{bmatrix} t_{ij} \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} & \dots & t_{1N} \\ t_{21} & t_{22} & \dots & t_{2N} \\ \vdots & \ddots & \vdots \\ t_{N1} & t_{N2} & \dots & t_{NN} \end{bmatrix}$$

$$\mathcal{T}(\vec{\mathcal{R}}, \vec{\mathcal{C}}) = \left\{ [t_{ij}] \left| \sum_{j \neq i} t_{ij} \leq R_i \text{ and } \sum_{j \neq i} t_{ji} \leq C_i \, \forall \, i \right. \right\}$$

Find a fixed routing rule by solving for all possible traffic matrices

$$\mathcal{T}(\vec{\mathcal{R}}, \vec{\mathcal{C}}) = \left\{ [t_{ij}] \left| \sum_{j \neq i} t_{ij} \leq R_i \text{ and } \sum_{j \neq i} t_{ji} \leq C_i \, \forall \, i \right. \right\}$$

☐ Stable and robust scheme reducing network complexity

Find a fixed routing rule by solving for all possible traffic matrices

$$[t_{ij}] = \begin{bmatrix} t_{11} & t_{12} & \dots & t_{1N} \\ t_{21} & t_{22} & \dots & t_{2N} \\ \vdots & \ddots & \vdots \\ t_{N1} & t_{N2} & \dots & t_{NN} \end{bmatrix}$$

$$\mathcal{T}(\vec{\mathcal{R}}, \vec{\mathcal{C}}) = \left\{ [t_{ij}] \middle| \sum_{j \neq i} t_{ij} \leq R_i \text{ and } \sum_{j \neq i} t_{ji} \leq C_i \ \forall \ i \right\}$$

- Stable and robust scheme reducing network complexity
- However, we need to optimize for infinitely many traffic matrices. A complex optimization problem!

Learning Methods

- High performance, highly parallelized and optimized ways of solving unconstrained optimization problems
 - Using variants of Gradient Descent

- High performance, highly parallelized and optimized ways of solving unconstrained optimization problems
 - Using variants of Gradient Descent
- Challenges to ML methods for Oblivious Routing:
 - Incorporating the **constraints**
 - Representing and solving for **infinitely many** traffic matrices

- High performance, highly parallelized and optimized ways of solving unconstrained optimization problems
 - Using variants of Gradient Descent
- Challenges to ML methods for Oblivious Routing:
 - Incorporating the constraints
 - Representing and solving for infinitely many traffic matrices
- Can we use this toolset to solve our complex routing problem?

- High performance, highly parallelized and optimized ways of solving unconstrained optimization problems
 - Using variants of Gradient Descent
- Challenges to ML methods for Oblivious Routing:
 - Incorporating the constraints
 - Representing and solving for infinitely many traffic matrices
- Can we use this toolset to solve our complex routing problem?
 - Yes!

How?

- ☐ We need flexibility with split choices:
 - ☐ Segment Routing is a recent and widely deployed non-shortest path technique

- We need flexibility with split choices:
 - ☐ Segment Routing is a recent and widely deployed non-shortest path technique
- \square 2-Segment Routing: $i \to k \to j$
 - ☐ Choose an intermediate node k
 - \square Set what fraction of $i \rightarrow j$ should go through k: α_{ij}^k

- We need flexibility with split choices:
 - □ Segment Routing is a recent and widely deployed non-shortest path technique
- \square 2-Segment Routing: $i \rightarrow k \rightarrow j$
 - ☐ Choose an intermediate node k
 - \square Set what fraction of $i \rightarrow j$ should go through k: α_{ij}^k
- We embed constraints into the objective function!
 - ☐ Segment Routing renders paths enumerable!
 - Softmax function trick! (see paper for details!)

Follow an adversarial approach

Follow an adversarial approach

Traffic $i \rightarrow j : 10 \ units$

Follow an adversarial approach

Follow an adversarial approach

Follow an adversarial approach

☐ Follow an adversarial approach

☐ Follow an adversarial approach

Results

The Adversarial Approach converges to the optimal solution

- Worst case utilization of each link on the network is depicted as split fractions are tuned.
- ☐ Adversarial traffic matrices are periodically added.

The Hose-Oblivious Routing problem can be solved using the Adversarial Learning Approach.

The Hose-Oblivious Routing problem can be solved using the Adversarial Learning Approach.

The method scales well with network sizes and is able to handle hundreds of nodes.

- The Hose-Oblivious Routing problem can be solved using the Adversarial Learning Approach.
- The method scales well with network sizes and is able to handle hundreds of nodes.
- For each solution obtained, we have a performance guarantee for the worst-case scenario.

- The Hose-Oblivious Routing problem can be solved using the Adversarial Learning Approach.
- The method scales well with network sizes and is able to handle hundreds of nodes.
- For each solution obtained, we have a performance guarantee for the worst-case scenario.
- Our method is compatible with:
 - Legacy shortest path routing extensions (e.g., MPLS)
 - Software Defined Networking

- The Hose-Oblivious Routing problem can be solved using the Adversarial Learning Approach.
- The method scales well with network sizes and is able to handle hundreds of nodes
- For each solution obtained, we have a performance guarantee for the worst-case scenario.
- Our method is compatible with:
 - Legacy shortest path routing extensions (e.g., MPLS)
 - Software Defined Networking
- Also available in our paper:
 - Two computationally simple relaxations of this problem –providing bounding solutions

Thank You

Oblivious Routing using Learning Methods

Ufuk Usubutun usubutun@nyu.edu

Backup Slides

How do we incorporate 2-Segment Routing into the problem

formulation?

- \square 2-Segment Routing: $i \rightarrow k \rightarrow j$
 - ☐ Choose an intermediate node k
 - \square Set what fraction of $i \rightarrow j$ should go through k

How do we incorporate 2-Segment Routing into the problem

formulation?

- \square 2-Segment Routing: $i \rightarrow k \rightarrow j$
 - ☐ Choose an intermediate node k
 - \square Set what fraction of $i \rightarrow j$ should go through k
- □ Define an indicator function $f_{ij}(e) \in \{0,1\}$ where e is an edge
 - If a link e is on the shortest path from i to j: set $f_{ij}(e)$ to 1
 - \Box Otherwise: set $f_{ij}(e)$ to 0

SP(k,j)

SP(i,k)

Segment Label

How do we incorporate 2-Segment Routing into the problem

formulation?

- \square 2-Segment Routing: $i \rightarrow k \rightarrow j$
 - ☐ Choose an intermediate node k
 - \square Set what fraction of $i \rightarrow j$ should go through k
- Define an indicator function $f_{ij}(e) \in \{0,1\}$ where e is an edge
 - If a link e is on the shortest path from i to j: set $f_{ij}(e)$ to 1
 - \Box Otherwise: set $f_{ij}(e)$ to 0

Define $g_{ij}^k(e) = f_{ik}(e) + f_{kj}(e)$ to accommodate 2-Segment Routing

SP(i,k)

SP(k,j)

ECMP Extension

Fig. 1. Definition of $f_{ij}(e)$ with ECMP. The first number next to the link represents the link weight and the second number is $f_{ij}(e)$. The shortest path length is 4 and there are three shortest paths.

52

ECMP Extension

- □ Define an indicator function $f_{ij}(e) \in \{0,1\}$ where e is an edge
 - ☐ If a link e is on the shortest path from i to j: set $f_{ij}(e)$ to 1
 - \Box Otherwise: set $f_{ij}(e)$ to 0

Fig. 1. Definition of $f_{ij}(e)$ with ECMP. The first number next to the link represents the link weight and the second number is $f_{ij}(e)$. The shortest path length is 4 and there are three shortest paths.

ECMP Extension

- Define an indicator function $f_{ii}(e) \in \{0,1\}$ where e is an edge
 - If a link e is on the shortest path from i to j: set $f_{ij}(e)$ to 1
 - Otherwise: set $f_{ij}(e)$ to 0
- **ECMP Extension**

Fig. 1. Definition of $f_{ij}(e)$ with ECMP. The first number next to the link represents the link weight and the second number is $f_{ij}(e)$. The shortest path length is 4 and there are three shortest paths.

Total traffic from i to j traveling over node k:

 $t_{ij}\alpha_{ij}^k$

Total traffic from i to j traveling over node k:

$$t_{ij}\alpha_{ij}^k$$

The load on a link e caused by traffic from i to j thru k:

$$t_{ij}\alpha_{ij}^kg_{ij}^k(e)$$

Total traffic from i to j traveling over node k:

$$t_{ij}\alpha_{ij}^k$$

The load on a link e caused by traffic from i to j thru k:

$$t_{ij}\alpha_{ij}^kg_{ij}^k(e)$$

 \Box Total traffic from *i* to *j* traveling over node *k*:

$$t_{ij}\alpha_{ij}^k$$

 \Box The load on a link e caused by traffic from i to j thru k:

$$t_{ij}\alpha_{ij}^kg_{ij}^k(e)$$

 \Box The total load on a link e:

$$\sum_{ijk} t_{ij} \alpha_{ij}^k g_{ij}^k(e)$$

Follow an adversarial approach

Follow an adversarial approach

Start with random split fractions α_{ij}^k

☐ Follow an adversarial approach

$$\mathcal{T}(\vec{\mathcal{R}}, \vec{\mathcal{C}}) = \left\{ [t_{ij}] \middle| \sum_{j \neq i} t_{ij} \leq R_i \text{ and } \sum_{j \neq i} t_{ji} \leq C_i \, \forall \, i \right\}$$

Follow an adversarial approach

Follow an adversarial approach

■ Follow an adversarial approach

☐ Follow an adversarial approach.

Optimization step is solved with gradient descent.

Formulating a 2-Segment Oblivious Routing Problem

Formulating a 2-Segment Oblivious Routing Problem

lacktriangle Let the capacity of a given link e is u_e . The optimization problem becomes:

$$\begin{split} \min_{\alpha_{ij}^k} \mu &\text{ s. t. } \\ \sum_{ijk} t_{ij} \alpha_{ij}^k g_{ij}^k(e) \leq \mu u_e \,, \qquad \forall i,j, \forall e, \forall [t_{ij}] \in T(R,C) \\ \sum_k \alpha_{ij}^k = 1 \,, \qquad \forall i,j \\ \alpha_{ij}^k \geq 0 \,, \qquad \forall i,j,k \end{split}$$

Formulating a 2-Segment Oblivious Routing Problem

Let the capacity of a given link e is u_e . The optimization problem becomes:

$$\mathcal{T}(\vec{\mathcal{R}}, \vec{\mathcal{C}}) = \left\{ [t_{ij}] \middle| \sum_{j \neq i} t_{ij} \leq R_i \text{ and } \sum_{j \neq i} t_{ji} \leq C_i \ \forall \ i \right\}$$

How do we work with infinitely many traffic matrices?

The Optimization Step

☐ Reshape the 2-segment routing problem to embed some constraints into the objective function

$$\begin{aligned} \min_{\alpha_{ij}^k} \mu & \text{ s.t.} \\ \sum_{ijk} t_{ij}^{(l)} \alpha_{ij}^k g_{ij}^k(e) & \leq \mu u_e \,, \qquad \forall i,j,\forall l,\forall e \\ \sum_k \alpha_{ij}^k & = 1 \,, \qquad \forall i,j \\ \alpha_{ij}^k & \geq 0 \,, \qquad \forall i,j,k \end{aligned}$$

$$\begin{aligned} & \min_{\alpha_{ij}^k} \{ \max_{e,l} \frac{\sum_{ijk} t_{ij}^{(l)} \alpha_{ij}^k g_{ij}^k(e)}{u_e} \} \text{ s.t.} \\ & \sum_{k} \alpha_{ij}^k = 1, \qquad \forall i, j \\ & \alpha_{ij}^k \geq 0, \qquad \forall i, j, k \end{aligned}$$

The Optimization Step

☐ Reshape the 2-segment routing problem to embed some constraints into the objective function

$$\sum_{ijk} t_{ij}^{(l)} \alpha_{ij}^k g_{ij}^k(e) \leq \mu u_e \,, \qquad \forall i,j,\forall l,\forall e$$

$$\sum_{k} \alpha_{ij}^k = 1 \,, \qquad \forall i,j$$

$$\alpha_{ij}^k \geq 0 \,, \qquad \forall i,j,k$$

$$\sum_{k} \alpha_{ij}^k \geq 0 \,, \qquad \forall i,j,k$$

$$\sum_{k} \alpha_{ij}^k \geq 0 \,, \qquad \forall i,j,k$$

☐ Use the *softmax* function to keep solutions in the feasible set.

$$\alpha_{ij}^k = SM(y_{ij}^k) = \frac{e^{y_{ij}^k}}{\sum_k e^{y_{ij}^k}}, \quad \forall i, j$$

The Optimization Step

☐ Reshape the 2-segment routing problem to embed some constraints into the objective function

$$\sum_{\substack{ijk}} t_{ij}^{(l)} \alpha_{ij}^k g_{ij}^k(e) \leq \mu u_e \,, \qquad \forall i,j,\forall l,\forall e$$

$$\sum_{\substack{k}} \alpha_{ij}^k = 1 \,, \qquad \forall i,j$$

$$\alpha_{ij}^k \geq 0 \,, \qquad \forall i,j,k$$

$$\sum_{\substack{k}} \alpha_{ij}^k \geq 0 \,, \qquad \forall i,j,k$$

$$\sum_{\substack{k}} \alpha_{ij}^k \geq 0 \,, \qquad \forall i,j,k$$

☐ Use the *softmax* function to keep solutions in the feasible set.

$$\alpha_{ij}^k = SM(y_{ij}^k) = \frac{e^{y_{ij}^k}}{\sum_k e^{y_{ij}^k}}, \quad \forall i, j$$

$$\min_{\alpha_{ij}^k} \{ \max_{e,l} \frac{\sum_{ijk} t_{ij}^{(l)} SM \big(y_{ij}^k\big) g_{ij}^k(e)}{u_e} \} \text{ s.t.}$$

Generate worst case matrices:

The Adversarial Step

Given a choice of split fractions α_{ij}^k

Generate one worst case traffic matrix for each link e

Append all new matrices to set \mathcal{L}

$$\begin{split} \left[\mathbf{t}_{ij}\right]^{(l)} &= arg \ max_{\left[t_{ij}\right]} \sum_{ijk} t_{ij} \alpha^k_{ik} g^k_{ij}(e) \ \text{ s.t.} \\ & \sum_i t_{ij} \leq C_j \,, \qquad \forall j \\ & \sum_j t_{ij} \leq R_i \,, \qquad \forall i \\ & t_{ij} \geq 0 \,, \qquad \forall i,j \end{split}$$

NOKIA Bell Labs

