PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-294297

(43) Date of publication of application: 04.11.1998

(51)Int.CI.

H01L 21/304

B24B 49/12

(21)Application number: 09-116534

(71)Applicant: NIKON CORP

(22)Date of filing:

18.04.1997

(72)Inventor: ISHIDA TOMOHISA

USHIO KAJIRO

(54) POLISHING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a polishing device which can always detect the end point of the fix of a polishing object during polishing and inline. SOLUTION: A fixed disk 12 and a wafer 15 are relatively moved in a state where abrasive is laid between a polishing pad 13 on the fixed disk 12 and the wafer 15 as a 'polishing object'. Thus, the polishing device 11 polishing the wafer 15 is provided with a wafer surface measuring device 23 as an 'optical measuring system' measuring the polish state and/or the film thickness of the polish face of the wafer 15, a position detection system detecting the relative position of the wafer surface measuring device 23 and the waver 15 and a control system controlling the wafer surface measuring device 23 and/or the wafer 15 by a signal from the position detection system so that the prescribed end point detection area of the wafer 15 is measured in the wafer surface measuring device 23.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-294297

(43)公開日 平成10年(1998)11月4日

(51) Int.Cl.⁶

識別記号

H01L 21/304 B24B 49/12 321

FΙ

H01L 21/304

B 2 4 B 49/12

321E

審査請求 未請求 請求項の数10 FD (全 13 頁)

(21)出願番号

特願平9-116534

(22)出願日

平成9年(1997)4月18日

(71)出願人 000004112

株式会社ニコン

東京都千代田区丸の内3丁目2番3号

(72)発明者 石田 知久

東京都千代田区丸の内3丁目2番3号株式

会社ニコン内

(72)発明者 潮 嘉次郎

東京都千代田区丸の内3丁目2番3号株式

会社ニコン内

(74)代理人 弁理士 佐野 弘

(54) 【発明の名称】 研磨装置

(57)【要約】

【課題】 研磨中やインラインにおいても常に研磨対象 物の定点の終点検出を行うことができる研磨装置を提供 する。

【解決手段】 定盤12上の研磨パッド13と、「研磨対象物」としてのウエハ15との間に研磨剤を介在させた状態で、定盤12とウエハ15とを相対移動させることにより、ウエハ15を研磨する研磨装置11において、ウエハ15の研磨面の研磨状態及び/又は膜厚を測定する「光学的測定系」としてのウエハ表面測定装置23と、このウエハ表面測定装置23とウエハ15との相対位置を検出する位置検出系と、この位置検出系からの信号により、ウエハ15の所定の終点検出領域をウエハ表面測定装置23及び/又はウエハ15を制御する制御系を有する。

【特許請求の範囲】

【請求項1】 研磨体と研磨対象物との間に研磨剤を介在させた状態で、該研磨体と研磨対象物とを相対移動させることにより、該研磨対象物を研磨する研磨装置において、

前記研磨対象物の研磨面の研磨状態及び/又は膜厚を測定する光学的測定系と、

該光学的測定系と前記研磨対象物との相対位置を検出する位置検出系と、

該位置検出系からの信号により、前記研磨対象物の所定の終点検出領域を前記光学的測定系にて測定するように 該光学的測定系及び/又は前記研磨対象物を制御する制 御系を有することを特徴とする研磨装置。

【請求項2】 前記位置検出系は、前記研磨対象物の研磨面を撮影する撮像装置を有し、該撮像装置からの画像データに基づき、前記光学的測定系と前記研磨対象物との相対位置を検出することを特徴とする請求項1記載の研磨装置。

【請求項3】 前記位置検出系は、単色光源と、該単色 光源から前記研磨対象物の研磨面側に形成された複数の 回折格子に照射された単色光の回折光を検出する検出器 とを有し、該回折光の検出状態に基づき、前記光学的測 定系と前記研磨対象物との相対位置を検出することを特 徴とする請求項1記載の研磨装置。

【請求項4】 前記光学的測定手段と前記単色光源との 光軸が一致していることを特徴とする請求項3記載の研 磨装置。

【請求項5】 前記研磨体の一部に、光学的に透明な検出用窓を設け、前記研磨体の、前記研磨対象物側の表面と反対側の裏面で、前記検出用窓の近傍に発光素子を設け、該発光素子からの光を受けて前記位置検出系を作動させるようにしたことを特徴とする請求項4記載の研磨装置。

【請求項6】 前記研磨対象物の研磨面に照明光を照射する発光装置を設けたことを特徴とする請求項1乃至5の何れか一つに記載の研磨装置。

【請求項7】 前記研磨対象物は、ウエハであり、該ウエハの所定の終点検出領域は、複数のチップの間の切断領域であるスクライブライン上に設けたことを特徴とする請求項1乃至6の何れか一つに記載の研磨装置。

【請求項8】 前記研磨対象物は、ウエハであり、該ウエハの所定の終点検出領域は、チップのデバイス能動領域及びボンディングパッド以外のコーナ部であることを特徴とする請求項1乃至6の何れか一つに記載の研磨装置。

【請求項9】 前記研磨対象物は、ウエハであり、前記 回折格子は、複数のチップの間の切断領域であるスクライプライン上に設けたことを特徴とする請求項3に記載 の研磨装置。

【請求項10】 前記終点検出領域を回折格子としたこ

とを特徴とする請求項8に記載の研磨装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、研磨体に研磨対象物を接触させて相対移動させることにより、研磨対象物を研磨する研磨装置、特に、その研磨対象物の研磨の終点検出を行うことができる研磨装置に関するものである。

[0002]

【従来の技術】半導体製造において微細加工の線幅が細くなるに従って、光リソグラフィの光源波長は短くなり、開口数いわゆるNAも大きくなってきている。また、半導体製造プロセスも工程が増加し、複雑となってきており、半導体デバイスの表面形状は必ずしも平坦ではなくなってきている。

【0003】表面における段差の存在は配線の段切れ、局所的な抵抗値の増大などを招き、断線や電流容量の低下等をもたらし、絶縁膜では耐圧劣化やリークの発生にもつながる。また、こうした段差の存在は半導体露光装置の焦点深度が実質的に浅くなってきていることを示している。言い換えると、歩留まりと信頼性の向上、更に高解像度化のための焦点深度のマージンの増加のために半導体デバイス表面の平坦化が必要になってきた。

【0004】そこで、図16に示すような、研磨装置が提案されている。これは、化学的機械的研磨(Chemical Mechanical Polishing又はChemical Mechanical Plana rization)(以下「CMP」と称す。)技術を用いたものであり、この技術は、シリコンウエハの鏡面研磨法を基に発展してきたものである。すなわち、この研磨装置は、回転駆動する剛性の高い定盤1上に研磨布2(1層又は2層)が貼り付けられる一方、ホルダー3にウエハ4が研磨布2上に接触されている。この状態で、定盤1を回転駆動すると共に、ホルダー3に上方から荷重をかけながら定盤1と同方向に回転させる。かかる動作と共に、研磨剤吐出口5から研磨剤6を研磨布2上に吐出させて、この研磨剤6を研磨面に供給して、ホルダー3に保持されたウエハ4を平坦に研磨するようにしている。

【0005】かかる技術は、半導体デバイス製造の中で、種々の工程に使用されており、その工程によって平坦化研磨する材料や平坦化研磨の終了状態が異なる。例えば、図17に示すウエハ4は、(a)及び(d)に示すように、基板4aに素子分離用の浅い溝4b(シャロートレンチアイソレーション)が形成され、この溝4bが主に酸化膜の充填材料4cで図の(b)に示すように充填される。そして、この充填材料4cが研磨により除去されて、溝4b以外の領域において下地4dが露出した時点で、平坦化研磨が終了状態となる(図17の(c)参照)。

【0006】また、図18のように基板4a上の絶縁膜

4 e に、同図の (a) に示すように、配線領域となる溝 4 f をエッチングにより形成し、この溝 4 f に同図の

(b) に示すように、アルミや銅のような金属配線材料 4 gを埋設するいわゆるダマシン工程において、埋設後に、その金属配線材料 4 gが研磨により除去されて、溝 4 f 以外の配線領域外において絶縁膜 4 e が露出した時点で、平坦化研磨が終了状態となる(図18の(c) 参照)。また、図示していないが、配線間の接続部分(スルーホール或いはピアホールと呼ばれる)をポリシリコン、タングステン或いはアルミ等の導電性材料で充填した後の平坦化研磨工程にもこの研磨装置が用いられ、同様に絶縁膜等が露出した時点で、平坦化研磨が終了状態となる。

【0007】さらに、他のものとして、図19に示すようなものがある。これは同図の(a)に示すように、基板4a上に配線4hが形成され、更に、同図の(b)に示すように、この配線4hが層間絶縁膜4iで覆われている。そして、この層間絶縁膜4iの表面が研磨により平坦化されて、配線4h上の膜厚が予め設定された値T0になった時点で、平坦化研磨が終了状態となる。

【0008】従来から、そのような終点検出を行うのに、定盤1を駆動するモータ(図示せず)のトルクをモニタして検出するようにしたものがある。すなわち、ウエハ4の研磨が進むに従って研磨面の状態が変化し、定盤1を駆動するのに必要なトルクも変化し、例えば一定電圧の下で、定盤1を駆動するモータに供給される電流をモニタしていれば、その変動から平坦化研磨工程の終点を検出することができる。

【0009】そのトルクの変化について、図20を参照して詳しく説明する。例えば、図17に示すように、充填材料4cが研磨され、表面が平坦化された時点において、図20の特性曲線の部位Pに示すようにトルクが略一定となり、変動が小さくなる。この状態から更に研磨され、図17の(c)に示すように、溝4bを残して充填材料4cが除去されると、即ち、研磨終了状態となると、下地4dが露出し、表面状態が変わるため、図20の特性曲線の部位Qに示すようにトルクが一定となり、これを検知することにより、研磨工程の終点を検出することができる。

[0010]

【発明が解決しようとする課題】このようなものにあっては、溝4bの占有率(ウエハ4表面における溝4b部分の面積が占める割合)が小さく、充填材料4cと、溝4b以外の領域の下地4dとの動摩擦係数が異なる場合には、トルクの変動量が大きく研磨工程の終点を比較的検出し易い。しかしながら、一般的には、必ずしも、溝4bの占有面積率が小さいとは限らず、又、充填材料4cと下地4dとの動摩擦係数が異なるとも限らない。溝4bの占有率が大きい場合や充填材料4cと下地4dとの動摩擦係数が略同等の場合には、研磨工程が終了状態

となっても、トルクの変化量が小さく終点検出精度が低下してしまう。状況によっては、終了状態を検出することが困難な場合も生じる。かかる問題点は、図18に示す平坦化工程においても同様に発生する。

【0011】また、図19に示す層間絶縁膜4iの平坦化工程の場合は、その終了時点で、表面形状や表面状態が変化することがないため、基本的にトルク検出方法で終点を検出することができない、という問題点も存在する。

【0012】そこで、例えば、上記の定盤1と研磨布2にスリットを形成し、定盤1の下方に配設されたレーザー光源からそのスリットを介してウエハ4の研磨面にレーザー光を照射し、この反射光を干渉計で検出して、終点を検出するようにしたものが提案されている。

【0013】しかし、かかる方法では、常に同じ終点検出領域を検出するのが望ましいが、ウエハ4や定盤1は回転しているため、常に同じ終点検出領域を検出するのは難しい。

【0014】この発明は、研磨中やインラインにおいて も常に研磨対象物の定点の終点検出を行うことができる 研磨装置を提供することを課題としている。

[0015]

【課題を解決するための手段】かかる課題を達成するために、請求項1に記載の発明は、研磨体と研磨対象物との間に研磨剤を介在させた状態で、該研磨体と研磨対象物とを相対移動させることにより、該研磨対象物を研磨する研磨装置において、前記研磨対象物の研磨面の研磨状態及び/又は膜厚を測定する光学的測定系と、該光学的測定系と前記研磨対象物との相対位置を検出する位置検出系と、該位置検出系からの信号により、前記研磨対象物の所定の終点検出領域を前記光学的測定系にて測定するように該光学的測定系及び/又は前記研磨対象物を制御する制御系を有する研磨装置としたことを特徴としている。

【0016】請求項2に記載の発明は、請求項1に記載の構成に加え、前記位置検出系は、前記研磨対象物の研磨面を撮影する撮像装置を有し、該撮像装置からの画像データに基づき、前記光学的測定系と前記研磨対象物との相対位置を検出することを特徴とする。

【0017】請求項3に記載の発明は、請求項1に記載の構成に加え、前記位置検出系は、単色光源と、該単色光源から前記研磨対象物の研磨面側に形成された複数の回折格子に照射された単色光の回折光を検出する検出器とを有し、該回折光の検出状態に基づき、前記光学的測定系と前記研磨対象物との相対位置を検出することを特徴とする。

【0018】請求項4に記載の発明は、請求項3に記載の構成に加え、前記光学的測定手段と前記単色光源との光軸が一致していることを特徴とする。

【0019】請求項5に記載の発明は、請求項4に記載

の構成に加え、前記研磨体の一部に、光学的に透明な検 出用窓を設け、前記研磨体の、前記研磨対象物側の表面 と反対側の裏面で、前記検出用窓の近傍に発光素子を設 け、該発光素子からの光を受けて前記位置検出系を作動 させるようにしたことを特徴とする。

【0020】請求項6に記載の発明は、請求項1乃至5の何れかに記載の構成に加え、前記研磨対象物の研磨面に照明光を照射する発光装置を設けたことを特徴とする。

【0021】請求項7に記載の発明は、請求項1乃至6の何れかに記載の構成に加え、前記研磨対象物は、ウエハであり、該ウエハの所定の終点検出領域は、複数のチップの間の切断領域であるスクライブライン上に設けたことを特徴とする。

【0022】請求項8に記載の発明は、請求項1乃至6の何れかに記載の構成に加え、前記研磨対象物は、ウエハであり、該ウエハの所定の終点検出領域は、チップのデバイス能動領域及びボンディングパッド以外のコーナ部であることを特徴とする。

【0023】請求項9に記載の発明は、請求項3に記載の構成に加え、前記研磨対象物は、ウエハであり、前記回折格子は、複数のチップの間の切断領域であるスクライプライン上に設けたことを特徴とする。

【0024】請求項10に記載の発明は、請求項8に記載の構成に加え、前記終点検出領域を回折格子としたことを特徴とする。

[0025]

【発明の実施の形態】以下、この発明の実施の形態について説明する。

【0026】[発明の実施の形態1]図1乃至図6には、この発明の実施の形態1を示す。

【0027】まず構成について説明すると、図1中符号 11は、化学的機械的研磨(CMP)技術を用いた研磨 装置で、この研磨装置11は、回転駆動する定盤12上 に「研磨部材」としての研磨パッド13が形成される一方、ホルダー14に「研磨対象物」であるウエハ15が 保持されるようになっている。

【0028】そのホルダー14は、ホルダー支持腕16に支持されて、第1駆動装置17に接続されることにより、この第1駆動装置17にて回転駆動されると同時に、図1中矢印方向に平行移動(以下「揺動」という)可能に設定されている。

【0029】また、図示していないが、研磨中には、研 磨剤用ノズルから研磨剤が研磨パッド13上に吐出され るようになっている。

【0030】さらに、その定盤12の下側(ウエハ15 配設側と反対側)には、終点検出装置18が終点検出装置支持腕19により支持されて配設され、この支持腕1 9を介して第2駆動装置20に接続され、この第2駆動 装置20により終点検出装置18が図1中矢印方向に平 行移動するように設定されている。

【0031】この終点検出装置18には、ウエハ15の研磨面を撮影する撮像装置21が設けられると共に、光学系22を介してウエハ15研磨面の研磨状態或いはウエハ15上の膜厚を光学的に測定する「光学的測定系」としてのウエハ表面測定装置23が設けられ、更に、ウエハ15研磨面を照射する発光装置24が設けられている。その光学系22を調整することにより、撮像装置21の光軸近傍の任意の位置の表面状態或いは膜厚をウエハ表面測定装置23で測定できるようになっている。

【0032】また、前記定盤12及び研磨パッド13で、この発明の構成要件である「研磨体」が構成され、その定盤12及び研磨パッド13の一部には、図2に示すように、透過特性を有する検出用窓25が形成され、この検出用窓25を介して撮像装置21によるウエハ15研磨面の撮影やウエハ表面測定装置23による研磨状態或いは膜厚の測定ができるようになっている。さらに、図5に示すように、定盤12下面には、検出用窓25の手前に発光素子28が配設されており、定盤12回転中に、撮像装置21がこの発光素子28の光を検出することにより、トリガーをかけ、検出用窓25が終点検出装置18の位置と一致した時にパルス光が発光するようになっている。

【0033】一方、ウエハ15は、図4に示すように、 多数のチップ15aが、ウエハ15を切断する領域であ るスクライブライン15bを挟んで形成されている。

【0034】それらチップ15aは、デバイス能動領域 15cの外側に複数のボンディングパッド15dが形成 されていると共に、デバイス能動領域15c以外の非能 動領域であるコーナ部に、サイズが 50μ m口程度の終点検出領域15eが設けられている。

【0035】また、スクライブライン15b(ウエハストリートとも呼ばれる)は、幅が $70\sim100\mu$ m程度で、ここには図示していないがアライメントマーク群が形成されており、又、このスクライブライン15bの縦横が交差する部分の中心に、サイズが 50μ m口程度の終点検出領域15fを形成することもできる。

【0036】そして、その撮像装置21は、図6に示すように、中央処理装置30に接続され、この中央処理装置30が第1、第2駆動装置17、20に接続されることにより、撮像装置21からの信号により第1、第2駆動装置17、20が制御されるようになっている。

【0037】すなわち、ウエハ15研磨面の画像を第1フレームメモリ30aにストアし、この画像と、もう一方の第2フレームメモリ30bにストアされている一つ前の画像とを、画像処理部30cにてパターンの特徴抽出し、比較を行って、終点検出装置18とウエハ15研磨面との相対的な位置関係を求めながら、駆動信号出力部30dから第1,第2駆動装置17,20へ信号を送り、終点検出装置18の位置合わせを行う。

【0038】この位置合わせ操作は、画像データから直接、終点検出領域15e,15fの位置出しを行っても良いが、第1ステップで終点検出領域15e,15f近傍にあるウエハ15の特徴的なパターンの位置合わせを行い、第2ステップで終点検出領域15e,15fの位置合わせを行うというように2ステップで処理することもできる。第1ステップの特徴的なパターンとして、例えばスクライブライン15bに注目すると、チップ15aのコーナ部のパターンは十字になっており、パターン認識が容易で、認識エラーが少なく、第2ステップでの終点検出領域15e,15fの位置合わせ精度が向上する。

【0039】この位置合わせは、揺動によりウエハ15が定盤12上を移動する場合の他に、研磨中にウエハ15がホルダー14内でズレる場合にも必要となる。

【0040】位置合わせが終了すると、終点検出領域15e,15fにてウエハ15研磨面の状態或いは膜厚を検出用窓25を通してウエハ表面測定装置23で測定し、平坦化工程の終了を判定する。図3には、上記一連の工程のフローチャートを示す。

【0041】ここで、ウエハ表面測定装置23においては、平坦化工程の種類によって測定する物量が適宜選択可能となっている。例えば、図17の平坦化工程では、測定量として膜厚を選択し、充填材料4cの膜厚を測定することにより終点を検出することができる。また、図18のダマシン配線工程では、反射率を選択し、金属配線材料4gからの反射率を測定することにより、その変化から終点を検出することができる。さらに、図19のように、トルク検出方法では困難な層間絶縁膜4iの平坦化工程も、この実施の形態ではその層間絶縁膜4iの膜厚を測定すれば、所定の膜厚になった時点で、研磨を終了させることができる。

【0042】このように終点検出領域15e, 15fと終点検出装置18との位置を合わせて、ウエハ表面測定装置23で終点を検出するようにしているため、常に定点の適正な位置検出を行うことができる。

【0043】すなわち、まず、終点検出装置18が静止している場合における、撮像装置21のイメージセンサ上に結像されたウエハ15研磨面の像が、露光時間中に移動する距離について計算する。

【0044】 ここで、ウエハ15と終点検出装置 180 相対速度をV [cm/s]、イメージセンサの露光時間を t [s]、撮像装置 210 の光学系倍率を k、撮像装置 210 観測位置をホルダー14 回転中心から r [c m]、ホルダー15 回転数をR [r p m] とするとき、露光中にイメージセンサ上でウエハ15 研磨面の像が移動する距離L [c m] は、

 $L = k \times V \times t = k \times 2 \pi r R / 6.0 \times t$

となり、各値をk=10、r=10 c m、R=40 r p m、露光時間はイメージセンサの電子シャッタ機能を使

って t = 1/10000 sとした場合、 $L = 10 \times 2\pi 10 \times 40/60 \times 1/10000$ $= 0.0419 cm = 420 \mu m$ となる。

【0045】従って、終点検出領域15e, 15fのサイズと比較すると、像が流れてしまい静止画像が得られないことが分かる。観測位置は、r=10cmとしたが、より外周部を観測する場合やウエハ15o大口径化を考慮すると、Lo値は更に大きくなる。

【0046】そこで、上記のように、まず、所定の終点 検出領域15e, 15fの位置合わせを正確に行って、 像の移動距離しをなるべく抑え、ウエハ15研磨面の精 細な画像を取り込むようにして、終点検出精度を向上さ せている。

【0047】また、像の移動距離しをなるべく抑えるには、倍率 k はそれ程変えられないので、上式より、露光時間 t を短くするか、相対速度 V を下げる必要があることが分かる。しかし、電子シャッタ機能では、略 t=1 $/10000s=100\mu$ s が限界なので、この実施の形態では、例えばパルスレーザのような発光装置 24 を終点検出装置 18 に配設し、露光時間を短くして像の流れを抑えている。

【0048】また、検出用窓25と同期させてパルス光を $t=1~\mu$ s 間発光すれば、像の移動距離を上記値より 2桁小さくできるので、 $L=4~\mu$ m となり実質的に静止 画が得られる。

【0049】ここで、検出用窓25は、研磨均一性を犠牲にして定盤12及び研磨パッド13中に配設しているため、その影響がでない範囲で、サイズや数量について決める必要がある。この実施の形態では、ウエハ15研磨面の撮像領域のサイズを考慮すると、検出用窓25の回転方向の幅は1cm程度あれば良く、この程度の値は研磨特性に影響を与えることはなく何ら問題はない。また、検出用窓25の半径方向の長さや定盤12内の位置或いは数量は、長ければ長いほど、又、検出用窓25の数が多いほど、ホルダー14が揺動した場合でも、ウエハ15内の終点検出可能な範囲が広がるが、研磨均一性への影響がでない範囲で、長さや数量について決める必要がある。

【0050】また、スクライブライン15bやチップ15aのコーナ部は、終点検出領域15e,15fとして利用するのに適している。すなわち、光学的な膜厚を計測する領域として下地にパターンのない平坦な場所を選択すると、簡単な光学的なモデルに基づいて膜厚計算が行え、精度良く容易に計測データから膜厚への変換が可能となる。下地にパターンが形成されていると、段差部分で膜厚が一様でなくなり、測定データの解析も複雑になり、正確な膜厚が求まらない可能性が高くなる。また、反射光を検出して研磨面の表面状態や膜厚を計測する場合、平坦部分だと散乱が発生せず、ノイズの少ない

信号が得られる。してみれば、上記のスクライブライン15bは、通常、特殊なパターン、例えばアライメントマークや特殊チェック用の素子(いわゆるTEG [Test Element Group])以外は形成しないため、平坦部分となっており、終点検出領域15fとして利用するのに適している。また、チップ15aのコーナ部は、通常出領域は平坦部であれば何れでも良い。さらに、終点検出領域は平坦部であれば何れでも良い。さらに、終点検出領域は平坦部であれば何れでも良い。さらに、から言えば、チップ15aのコーナ部は、スクライン15bが十字になっており、特徴抽出から位置合わせまでの一連の処理が行い易い場所であり、十字の交差部やチップ15aのコーナ部は、終点検出領域に15e、15fに適している。

【0051】 [発明の実施の形態2] 図7及び図8には、この発明の実施の形態2を示す。

【0052】この発明の実施の形態2は、終点検出装置 18が第2駆動装置20により図7中矢印方向に平行移 動されると共に回転駆動されるようになっている。

【0053】そして、中央処理装置30により、第1,第2駆動装置17,20が駆動制御されて、終点検出装置18がホルダー14の揺動に同期して平行移動及び回転駆動されるようになっている。

【0054】このように同期させることにより、終点検出装置18とウエハ15との相対速度Vが極めて小さくなり、ウエハ15研磨面の像の移動距離しが小さく、像の流れのない精細な画像を取得することができる。

【0055】また、この終点検出装置18の回転駆動は、常時360°回転させておく必要はなく、発光素子28からの光を検出することにより、トリガーをかけ、検出用窓25がウエハ15を通過する間だけ、検出用窓25及びウエハ15と同期させて円弧状に終点検出装置18を回転移動させて研磨面の撮像と終点検出を行うことができる。

【0056】この場合には、検出用窓25とウエハ15 との相対速度を小さくする方が、定盤12の1回の回転 当たりの撮像及び終点検出測定ができる時間が長くな り、位置合わせ精度及び終点検出精度の向上に有利であ る。

【0057】ウエハ15内の研磨均一性を確保するのに、通常、定盤12とホルダー14との回転方向を同一にしているため、検出用窓25とウエハ15との相対速度を下げるためには、検出用窓25はウエハ15の回転中心より外側となるような位置に設定すると良い。

【0058】一方、検出用窓25の回転方向の幅は、以下のように算出することができる。すなわち、検出用窓25の位置を、定盤12の回転中心からa[cm]、ホルダー14の回転中心からr[cm]とする。また、定盤12とホルダー14の回転数を同一にすると、理想的

にはウエハ15内の研磨不均一性がなくなるので、実際に研磨する場合、両者の回転速度はほぼ等しい値に設定されており、定盤12、ウエハ15及び終点検出装置18の回転数をR[rpm]とした場合、検出用窓25と終点検出装置18が一致してから時間t[s]後には、 $2\pi(a-r)R/60\times t[cm]$ だけ離れる。

【0059】 ここで、a=20 [cm]、r=10 [cm]、R=40 [cm] とすると、イメージセンサの標準的なフレーム読出し時間である t=1/60 s 後には、 $2\pi\times(20-10)\times40/60\times1/60=0$. 7 cmだけ検出用窓25と終点検出装置18がズレる。

【0060】 これから撮像領域のサイズを考慮すると、検出用窓250 幅は、 $1.5\sim2$ c mにすれば良いことが分かる。この程度の値では、研磨特性に影響を与えることなく、何ら問題はない。

【0061】なお、この実施の形態2では、実施の形態1のような発光装置24が設けられていないが、撮像装置21での画像のSN比を上げるためにウエハ15研磨面を照明する発光装置を付加した構成にすることもできる

【0062】 [発明の実施の形態3] 図9乃至図12には、この発明の実施の形態3を示す。

【0063】この発明の実施の形態3は、終点検出装置 18に、「位置検出系」として終点検出位置測定装置3 2が設けられている。

【0064】この終点検出位置測定装置32は、単色光源から単色光のプロープ光33がウエハ15に向けて出射され、ウエハ15表面の予め所定の位置に形成された一対の終点検出位置マーク15g,15iからの光信号を検出器で検出するようになっている。そして、終点検出位置測定装置32は、光軸が、ウエハ表面測定装置23の光軸と一致している。

【0065】その終点検出位置マーク15g,15iは、回折格子から成り、ウエハ15のスクライブライン15b上に形成され、この両終点位置検出マーク15g,15iの間の交差点に終点検出領域15hが形成されている。この終点検出領域15hを回折格子とすることができ、又、その形成位置は、平坦部であれば何れでも良く、例えば、チップ15aのコーナ部等でも良い。【0066】この実施の形態では、第1,第2駆動装置17,20によって、終点検出装置18とウエハ15との相対速度が一定に制御されているため、終点検出位置利定装置32から照射されたプローブ光33が一定速度でウエハ15表面上を走査する。そして、プローブ光33が終点検出位置マーク15g,15iに照射されると、特定の回折光34が生じる。

【0067】終点検出位置マーク15g, 15iの回折格子ピッチd [cm]、プローブ光33の波長入[cm]、ウエハ15表面から終点検出装置18までの距離

b [cm] とすると、プローブ光33が垂直に入射する場合、n次回折光は、 $d \times s$ i $n\theta = n \times \lambda$ の方向に回折され、終点検出装置18では光軸から $b \times t$ a n θ 和た所に一次回折光34が表れる。従って、終点検出位置測定装置32では、ドーナツ型の受光部を有する検出器で、その一次回折光34のみを選択的に検出して、終点検出位置マーク15gを特定することができる。

【0068】そのドーナツ型受光部のおおよその半径は、d=5E-4 [cm]、 $\lambda=633E-7$ [cm]、b=10 [cm] の場合、

b×tanθ=10×tan (sin-1 (633E-75E-4))=1.28cm となる。

【0069】この実施の形態3では、第1,第2駆動装置17,20にて、ウエハ15、検出用窓25、終点検出装置18の相対速度を調整することにより、プローブ光33がウエハ15上の終点検出領域15hを走査する速度と範囲の両方を設定することができる。また、終点検出装置18と検出用窓25との相対速度が小さいほど検出用窓25のサイズを小さくすることができる。但し、図9に示すように、終点位置検出マーク15g,15iからの回折光34が通る空間を検出用窓25に形成する必要がある。

【0070】ここでは、終点検出領域15hからの表面信号を以下のようにして検出する。すなわち、図11に示すように、定盤12の回転中に、この定盤12下面の所定の位置に配設された発光素子28からの光を、ウエハ表面測定装置23が検出すると、トリガーがかかり、終点検出位置測定装置32とウエハ表面測定装置23からの信号が、中央処理装置36の第1メモリ36aと第2メモリ36bの各々にストアされる。

【0071】そして、これにより、回転するウエハ15 研磨面に検出用窓25を通してプローブ光33を照射し、第1及び第2の終点検出位置マーク15gからの回折光34が、図12に示すように、時間t1, t2の位置で検出される。ここで、終点検出位置測定装置32とウエハ表面測定装置23の光軸は一致しているので、終点検出位置抽出回路36cにより2つの回折光34の中間時点tm(時間t1,t2の中間時点tm)を求め、その時の終点検出領域表面信号Rが終点検出領域15hからの信号となる。

【0072】プローブ光33が走査する方向によって対になった回折光34の時間間隔は変化するが、その変化幅は、ある一定の範囲内にある。従って、回折光34の時間間隔が設定範囲外の場合、例えば、一対の一方の終点検出位置マーク15g又は15iしか検出していないような場合は、駆動信号出力部36dへ相対位置修正信号を送り、第1,第2駆動装置17,20によりウエハ15と終点検出装置18との相対位置関係を修正する。【0073】また、この実施の形態のように、終点検出

位置マーク15g、15iを積極的にウエハ15上に作り込む場合に、マーク15g自身も平坦部に形成しないと、決められた方向に回折光34が現れない。従って、この実施の形態では、スクライブライン15b上に終点検出位置マーク15g、15iを形成するのが望ましい。そして、一対の終点検出位置マーク15g、15iの間に、終点検出領域15hを設定する場合には、この終点検出領域15hは、スクライブライン15b上の交差部に設定するのが最適である。

【0074】なお、この実施の形態では、終点検出装置 18に撮像装置 21が含まれていないが、上記実施の形態 1,2に示すように、終点検出装置 18に撮像装置 21を配設し、相対位置の修正に画像処理を利用しても良い。また、終点検出位置マーク 15g,15iとしてウエハ15上に形成した回折格子を使用しているが、露光装置のアライメントマークとして使用している回折格子を終点検出位置マークとして兼用することも可能である。

【0075】 [発明の実施の形態4] 図13及び図14 には、この発明の実施の形態4を示す。

【0076】上記実施の形態1乃至3では、定盤12に 検出用窓25を形成すると共に、この定盤12の下に終 点検出装置18を配置して、研磨中に終点検出を行うよ うにしている。

【0077】これに対して、この発明の実施の形態4では、図13に示すように、終点検出装置18を定盤12の外側近傍に位置させる一方、ホルダー14に保持されたウエハ15を、その終点検出装置18の上側で、定盤12の外側近傍まで移動させることにより、ウエハ15と終点検出装置18との間に、定盤12や研磨剤を介在させることなく、いわゆるインラインで直接終点検出を行うようにしている。

【0078】また、この終点検出装置18とウエハ15との相対位置や相対速度の制御は、上記各実施の形態で記載した方法で、定盤12等の制約を受けずに、任意の複数の終点検出領域15e…の研磨面の状態或いは膜厚を短時間で測定することができる。

【0079】このようなものにあっては、図14に示すように、ウエハ15が研磨装置11に搬入されて研磨工程で研磨され、次いで、終点検出装置18により、表面測定工程で、ウエハ15の研磨面の状態或いは膜厚が測定される。これらのデータが図14中破線で示すように研磨工程にフィードバックされ、この測定結果に基づき、研磨が不十分な場合は、研磨工程に戻って再研磨される。また、フィードバックされた研磨データは、研磨特性の経時変化を把握し、次のウエハ15の研磨の際の研磨工程の再現性の向上に役立てることができる。

【0080】 [発明の実施の形態5] 図15には、この発明の実施の形態5を示す。

【0081】この発明の実施の形態5は、定盤12の側

方位置に、終点検出ステージ38が二次元方向に移動自在に設けられると共に、この終点検出ステージ38の上方に終点検出装置18が設けられている。

【0082】このようなものにあっても、ウエハ15と終点検出装置18との間に、定盤12、研磨パッド13及び研磨剤が介在しないため、これらの制約を受けることなく、いわゆるインラインで、ウエハ15の任意の複数の終点検出領域の研磨面の状態或いは膜厚を短時間で測定することができる。

【0083】他の構成及び作用は実施の形態4と同様である。

【0084】なお、上記実施の形態では、「研磨体」を構成する定盤12や研磨パッド13の一部に検出用窓25を設けたが、これに限らず、研磨体全体を光を透過する物質で形成することにより検出用窓25を廃止することもできる。また、上記実施の形態では、「研磨体」が回転自在な定盤12と、この定盤12上に設けられた研磨パッド13とから構成されているが、これに限らず、

「研磨体」を直線的に移動するベルトで構成し、このベルトを光を透過する物質で形成することもできる。さらに、上記実施の形態では、第1,第2駆動装置17,20を用いて、ホルダー14と終点検出装置18とを駆動制御するようにしているが、これに限らず、第1,第2駆動装置17,20の一方を用いて、ホルダー14と終点検出装置18との一方を駆動制御するようにすることもできる。

[0085]

【発明の効果】以上説明してきたように、各請求項に記載された発明によれば、光学的測定系と研磨対象物との相対位置を位置検出系で検出し、この位置検出系からの信号により、研磨対象物の所定の終点検出領域を光学的測定系にて測定するように光学的測定系及び/又は研磨対象物を制御系にて制御するようにしているため、研磨中又はインラインにおいて、所定の位置の測定を行うことができ、適正な終点検出を行うことができる。

【0086】請求項5に記載された発明によれば、上記効果に加え、発光素子からの光を受けたときのみ位置検出系を作動させ、パルス光を短時間発光させることができ、像の流れをより抑制することができる。

【0087】請求項7又は8に記載された発明によれば、請求項1乃至6の何れかに記載の効果に加え、終点検出領域をスクライブライン上や、チップのデバイス能動領域及びボンディングパッド以外のコーナ部に設けることにより、より正確に終点検出を行うことができる。

【0088】請求項9に記載された発明によれば、請求項3に記載の効果に加え、平坦部のスクライブラインに回折格子を設けることにより、所定の回折光を得ることができる。

【図面の簡単な説明】

【図1】この発明の実施の形態1に係る研磨装置の概略

正面図である。

【図2】同実施の形態1に係る研磨装置の要部を示す概略図である。

【図3】同実施の形態1に係る研磨工程のフローチャートを示す図である。

【図4】同実施の形態1に係る研磨対象物としてのウエ ハを示す図である。

【図5】同実施の形態1に係る定盤の裏面を示す斜視図である。

【図6】同実施の形態1に係る終点検出の作用を示すフローチャート図である。

【図7】この発明の実施の形態2に係る研磨装置の概略 正面図である。

【図8】同実施の形態2に係る研磨装置の要部を示す概略図である。

【図9】この発明の実施の形態3に係る研磨装置の要部を示す概略図である。

【図10】同実施の形態3に係る研磨対象物としてのウエハを示す図である。

【図11】同実施の形態3に係る終点検出の作用を示す フローチャート図である。

【図12】同実施の形態3に係る終点検出位置測定信号 及びウエハ表面測定信号の出力と、時間との等を示すグ ラフ図である。

【図13】この発明の実施の形態4に係る研磨装置を示す概略正面図である。

【図14】同実施の形態4に係る研磨工程等を示すフローチャート図である。

【図15】この発明の実施の形態5に係る研磨装置を示す概略正面図である。

【図16】従来例の研磨装置を示す図で、(a)は概略 平面図、(b)は概略正面図である。

【図17】ウエハの研磨工程を示す説明図である。

【図18】ウエハの研磨工程の他の例を示す説明図である。

【図19】ウエハの研磨工程の更に他の例を示す説明図である。

【図20】ウエハを研磨している状態におけるトルクの 時間変化を示すグラフ図である。

【符号の説明】

- 11 研磨装置
- 12 定盤
- 13 研磨パッド (研磨部材)
- 14 ホルダー
- 15 ウエハ (研磨対象物)
- 15a チップ
- 15b スクライブライン
- 15c デバイス能動領域
- 15d ポンディングパッド
- 15e,15f,15h 終点検出領域

15g 終点検出位置マーク (回折格子)

17 第1駆動装置

18 終点検出装置

20 第2駆動装置

21 撮像装置

23 ウエハ表面測定装置 (光学的測定系)

24 発光装置

25 検出用窓

28 発光素子

30,36 中央処理装置(制御系)

32 終点検出位置測定装置(位置検出系)

33 プローブ光

34 回折光

[図11]

【図12】

【図13】

【図15】

【図14】

【図16】

(a)

【図18】

(a)

【図17】

