Homework 4 - Quantum Mechanics I

NAME:	 SCORE:	

Deadline: Thursday 27th July 2023 by 10:00am (submission only on paper)

Credits: 20 points Number of problems: 5

Type of evaluation: Formative Evaluation

- This homework includes problems on units 3 and 4 of the QM course.
- This assignment should be submitted individually by the deadline.
- Please justify all calculations and highlight your answers.

1. (3 points) Formalism

Consider a quantum particle in the ground state of the harmonic oscillator.

- (a) Compute its momentum-space wave function, $\Phi(p,t)$.
- (b) Calculate the probability that a measurement of momentum, p, returns a value outside the classical range for the same energy, E.

2. (4 points) Angular momentum

- (a) Let L_x , L_y , and L_z be the components of the orbital angular momentum operator \vec{L} . Calculate the value of the commutator: $[L_xL_y, L_z]$.
- (b) Suppose we have a spin- $\frac{1}{2}$ particle, whose quantum state can be represented by the eigenstates $|\uparrow\rangle$ and $|\downarrow\rangle$ of the S_z operator. Using the Pauli matrix σ_x , calculate a normalised eigenstate of the S_x operator with an eigenvalue $-\frac{\hbar}{2}$.
- (c) Calculate the normalised spin eigenfunctions of a system with two spin- $\frac{1}{2}$ particles. These are called singlet and triplet states, why?
- (d) Calculate the orbital angular momentum eigenfunction $Y_{\ell}^{m}(\theta, \phi)$ in a quantum state for which the operator \mathbf{L}^{2} has an eigenvalue $6\hbar^{2}$ and the operator \mathbf{L}_{z} has an eigenvalue $-\hbar$.

3. (4 points) Spin

Consider an electron in the spin state:

$$\chi = C \begin{bmatrix} 1 - 3i \\ 2 \end{bmatrix}$$

- (a) Determine the normalisation constant C.
- (b) Find the expectation values of S_x , S_y , and S_z .
- (c) Find the uncertainties σ_{S_x} , σ_{S_y} , and σ_{S_z} .
- (d) Are the results consistent with all three uncertainty principles?

4. (4 points) Spherical harmonics

- (a) A quantum system is known to be in the (unnormalised) state described by the wave function $\psi(\theta,\phi) = 5Y_4^3 + Y_6^3 2Y_6^0$, where the $Y_\ell^m(\theta,\phi)$ are the spherical harmonics. What is the probability of finding the system in a state with quantum number m=3?
- (b) Construct all the possible spherical harmonics, $Y_{\ell}^{m}(\theta, \phi)$, for $\ell = 3$.
- (c) Using your favourite programming language, make 3D plots of all of them.
- (d) Choose two of the spherical harmonics constructed in part (b), and prove that they are normalised and orthogonal.

5. (5 points) Hydrogen atom

- (a) Construct all the possible spatial wave functions, $\psi_{nlm}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell}^{m}(\theta,\phi)$, of the hydrogen atom for $(n,\ell,m) = (4,2,m)$.
- (b) Using your favourite programming language, make density plots of all of these states.
- (c) Calculate the energy level of these states in units of eV.
- (d) In terms of the Bohr radius, find $\langle r \rangle$, $\langle x \rangle$, $\langle r^2 \rangle$ and $\langle x^2 \rangle$ for an electron in the ground state of hydrogen.
- (e) Find $\langle x^2 \rangle$ in the state $(n, \ell, m) = (4, 2, m)$ with the highest possible value of m that is allowed. How different is the result with respect to that calculated in part (d) for the ground state of hydrogen?