Introduction to Computer Science Lecture 9: Computer 3D Graphics

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)

Department of Electrical Engineering

National Taiwan University

tianliyu@cc.ee.ntu.edu.tw

Slides made by Tian-Li Yu, Jie-Wei Wu, and Chu-Yu Hsu

Parallel vs. Prospective Projection

Simple Projection

Suppose camera is fixed at (0, 0, d).

Projection plane is fixed at z = d - 1

Usually keep z information

Parallel projection

$$(x,y,z) \rightarrow (x,y,z)$$

Prospective projection

$$(x,y,z) \rightarrow (\frac{x}{d-z},\frac{y}{d-z},z)$$

Translations & Rotations

Translations

- Simply add a vector.

Rotations

$$R_X(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$R_Y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_Z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Modeling

Typically use triangles and quadrangles.

Easy to compute the normal vector.

How to increase resolution?

- Spline and Bézier curves

Bézier Curves

May be defined on different degree of polynomials.

Here we introduce the cubic one with 4 control points:

$$((1-t)+t)^3 = (1-t)^3 + 3t(1-t)^2 + 3t^2(1-t) + t^3$$

$$P(t) = (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2(1-t) P_2 + t^3 P_3$$

Recursive Subdivision

A cubic Bézier curve can be subdivided into two cubic curves.

Given any t (0.4),

$$-P_{11} = (1-t)P_0 + tP_1$$

$$-P_{21} = (1-t)P_1 + tP_2$$

$$-P_{31} = (1-t)P_2 + tP_3$$

$$-P_{12}=(1-t)P_{11}+tP_{21}$$

-
$$P_{22} = (1-t)P_{21} + tP_{31}$$

-
$$P_{13} = (1-t)P_{12} + tP_{22}$$

 P_0 , P_{11} , P_{12} , P_{13} forms one curve. P_{13} , P_{22} , P_{31} , P_{3} forms the other.

Recursive Subdivision

Lighting 光源

d: distance between light source and target.

*l*_a: intensity of ambient light.

Shading

 \vec{n} : normal vector of plane.

7: normal vector of light.

 \vec{c} : normal vector of camera.

 \vec{r} : normal vector of reflection.

Phong model

- Ambient + Diffusion + Specular

Diffusion: $\vec{n} \cdot \vec{l}$

Specular: $(\cos \theta)^s$

- Higher s → more mirror-like surface

Specular

$$\vec{l} + \vec{r} = 2(\vec{l} \cdot \vec{n})\vec{n}$$

$$\vec{r} = 2(\vec{l} \cdot \vec{n})\vec{n} - \vec{l}$$

$$\cos \theta = \vec{r} \cdot \vec{c} = (2(\vec{l} \cdot \vec{n})\vec{n} - \vec{l}) \cdot \vec{c}$$

Put It All Together

$$C = I_a \cdot C_o + \frac{1 - I_a}{1 + \alpha d + \beta d^2} \left(k_d \cdot \vec{n} \cdot \vec{l} \cdot C_o + (1 - k_d) \cos^s \theta \cdot C_l \right)$$

Summary of Parameters

Properties of light			
la	Ambient light intensity (0~1)		
α, β	Degree of point lighting		
C_{l}	Color of light		
Ī	Normal vector of light direction		

Properties of object				
k _d	Diffusion coefficient ($k_d = 1 - k_s$: specular coefficient)			
S	Shininess: how mirror-like			
Co	Color of the object			
п	Normal vector of the plane			

Flat, Gouraud, and Phong Shadings

Flat: one triangle, one color.

Gouraud: interpolation of vertices colors.

Phong: interpolation of vertices normal vectors.

Vertex normal

$$(1-c)((1-a)v_1+av_2)+c((1-b)v_1+bv_3)$$

Flat, Gouraud, and Phong Shadings

Flat Gouraud Phong

License

Page	File	Licensing	Source/ author
5			" Mitsubishi EVO".,Author:Arbiter, Source: http://www.3-d-models.com/3d-model_files/371m729.htm, Date:2013/06/29, Fair use under copyright law 46,52,65.