Visualizing And Analyzing The Data

Date	01 November 2022
Team ID	PNT2022TMID12860
Project Name	Smart Lender - Applicant Credibility Prediction for
	Loan Approval

IMPORTING THE LIBRARIES

• Import the required libraries for the model to run. The first step is usually importing the libraries that will be needed in the program.

```
import pandas as pd
import numpy as np
import pickle
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import sklearn
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix,f1_score
```

READING THE DATASET

- Our dataset format might be in .csv, excel files, .txt, .json, etc. We can read the dataset with the help of pandas.
- In pandas, we have a function called read_csv() to read the dataset. As a parameter, we have to give the directory of the CSV file.

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	${\tt Credit_History}$	Property_Area	Loan_Status
C	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0	Urban	Υ
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural	N
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban	Υ
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban	Y
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban	Υ
60	9 LP002978	Female	No	0	Graduate	No	2900	0.0	71.0	360.0	1.0	Rural	Y
61	0 LP002979	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	1.0	Rural	Υ
61	1 LP002983	Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	1.0	Urban	Y
61	2 LP002984	Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	1.0	Urban	Υ
61	3 LP002990	Female	No	0	Graduate	Yes	4583	0.0	133.0	360.0	0.0	Semiurban	N

UNIVARIATE ANALYSIS

- Univariate analysis is understanding the data with a single feature. Here we have displayed two different graphs such as distplot and countplot.
- The Seaborn package provides a wonderful function distplot. With the help of distplot, we can find the distribution of the feature. To make multiple graphs in a single plot, we use a subplot.

BIVARIATE ANALYSIS

MULTIVARIATE ANALYSIS

 Multivariate analysis is to find the relation between multiple features. Here we have used a swarm plot from the seaborn package.

DESCRIPTIVE ANALYSIS

• Descriptive analysis is to study the basic features of data with the statistical process. Here pandas have a worthy function called describe. With this describe function we can understand the unique, top, and frequent values of categorical features. And we can find mean, std, min, max and percentile values of continuous features.

Code is uploaded in the following drive link:

https://colab.research.google.com/drive/10YDz5VLr60QmNikdFTSWBxKUMagxPi2w