Homework 4 Computer Architecture CSCI 361, Fall 2014

Due: November 3, 2014 in class

Problem 1 [20 pts]

Using a table similar to that shown in Figure 3.6, calculate the product of the hexadecimal unsigned 8-bit integers 62 and 12 using the hardware described in Figure 3.5. You should show the contents of each register on each step.

62 in hex : $0x3e \rightarrow binary$: 0011 1110 12 in hex : $0x0c \rightarrow binary$: 1100

operator will be 12 bits to represent all possible values of Mplier and Mcand.

Step	Mplier	Mcand	Result
Initial	1100	0000 0011 1110	0000 0000 0000
1: zero, no op	110 0	0000 0011 1110	0000 0000 0000
2: Shift left Mcand	1100	0000 0111 1100	0000 0000 0000
3: Shift right Mplier	0110	0000 0111 1100	0000 0000 0000
1: zero, no op	011 0	0000 0111 1100	0000 0000 0000
2: Shift left Mcand	0110	0000 1111 1000	0000 0000 0000
3: Shift right Mplier	0011	0000 1111 1000	0000 0000 0000
1: 1=>prod=prod+Mcand	001 1	0000 1111 1000	0000 1111 1000
2: Shift left Mcand	0011	0001 1111 0000	0000 1111 1000
3: Shift right Mplier	0001	0001 1111 0000	0000 1111 1000
1: 1=>prod=prod+Mcand	0001	0001 1111 0000	0010 1110 1000
2: Shift left Mcand	0001	0011 1110 0000	0010 1110 1000
3: Shift right Mplier	0000	0011 1110 0000	0010 1110 1000
Done!			

Final Result = 0010 1110 1000 = 512 + 128 + 64 + 32 + 8 = 744 = 62 * 12 = 744!

Problem 2 [10 pts]

As discussed in the text, one possible performance enhancement is to do a shift and add instead of an actual multiplication. Since 9×6 , for example, can be written $(2 \times 2 \times 2 + 1) \times 6$, we can calculate 9×6 by shifting 6 to the left 3 times and then adding 6 to that result.

Show the best way to calculate $0x33 \times 0x55$ using shifts and adds/subtracts. Assume both inputs are 8-bit unsigned integers.

```
0x33 = (3*16) + 3 = 51 = 0011\ 0011 = 2^5 + 2^4 + 2^1 + 1
0x55 = (5*16) + 5 = 85 = 0101 \ 0101
                                        1 1111 111 (Ones on this line are carry bits)
1: shift 55 left 5 places (because of 2\^5)
                                        = 1010 1010 0000
2: shift 55 left 4 places (2\^4)
                                        = 0101 0101 0000
3: shift 55 left 1 places (2\^1)
                                        = 0000 1010 1010
4: shift 55 left 0 places
                                        = 0000 0101 0101
                                        1 0000 1110 1111
add (1) + (2) + (3) + (4)
1
        0
               0
                      0
                             0
                                            1
                                                   1
                                                          0
                                                                  1
                                     1
                                                                         1
                                                                                1
                                                                                       1
                                                                                2
               1024
                      512
                                                   32
                                                                  8
                                                                         4
4096
        2048
                             256
                                            64
                                                          16
                                                                                       1
                                     128
```

```
result 4096 + 128 + 64 + 32 + 8 + 4 + 2 + 1 = 4335 51 * 85 = 4335 IT WORKED!
```

Problem 3 [20 pts]

Using a table similar to that shown in Figure 3.10, calculate 74 divided by 21 using the hardware described in Figure 3.8. You should show the contents of each register on each step. Assume both inputs are unsigned 6-bit integers.

 $74 = 0100\ 1010$ 74/21 = 3 with a remainder of 74 - 63 = 11 $21 = 0001\ 0101$

Step	Quot	Div	Rem
Initial	0000	0001 0101	0000 1011
1: Rem = Rem - Div	0000	0001 0101	1000 1010 (-10)
2: Rem < 0,+Div,sll Q,Q0=0	0000	0001 0101	0000 1011
3: Shift Div right	0000	0000 1010	0000 1011
1: Rem = Rem - Div	0000	0000 1010	0000 0001
2: Rem >= 0, sll Q, Q0 = 1	0001	0000 1010	0000 0001
3: Shift Div right	0001	0000 0101	0000 0001
1: Rem = Rem - Div	0001	0000 0101	1000 0100 (-4)
2: Rem >= 0, sll Q, Q0 = 1	0010	0000 0101	0000 0001
3: Shift Div right	0010	0000 0010	0000 0001
1: Rem = Rem - Div	0010	0000 0010	1000 0001 (-1)
2: Rem < 0,+Div,sll Q,Q0=0	0100	0000 0010	0000 0001
3: Shift Div right	0100	0000 0001	0000 0001
1: Rem = Rem - Div	0100	0000 0001	0000 0000
DONE			

Final Result = 3 with a remainder of 11

Problem 4 [20 pts]

Consider the value:

0x0C00 0000

(a) Convert the above hex number to a bit pattern.

0	С	0	0	0	0	0	0
0000	1100	0000	0000	0000	0000	0000	0000

0000 1100 0000 0000 0000 0000 0000 0000

(b) What decimal number does the above bit pattern represent if it is an unsigned

integer?

0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				1	6	3	1	8	4	2	1	5	2	1	6	3	1	8	4	2	1	5	2	1	6	3	1	8	4	2	1
				3	7	3	6	3	1	0	0	2	6	3	5	2	6	1	0	0	0	1	5	2	4	2	6				
				4	1	5	7	8	9	9	4	4	2	1	5	7	3	9	9	4	2	2	6	8							
				2	0	5	7	8	4	7	8	2	1	0	3	6	8	2	6	8	4										
				1	8	4	7	6	3	1	5	8	4	7	6	8	4														
				7	8	4	2	0	0	5	7	8	4	2																	
				7	6	3	1	8	4	2	6																				
				2	4	2	6																								
				8																											

134,217,728 + 67,108,864 = **201,326,592**

(c) What decimal number does the above bit pattern if it is a two's complement integer?

201,326,592 no change because the most significant bit is a zero.

(d) If the above bit pattern is placed into the Instruction Register, which MIPS instruction will be executed?

This would execute a jump and link **"jal"** because the opcode is 3 binary or 0x03 hex

(e) What decimal number does the above bit pattern represent if it is a floating point number? Use the IEEE 754 standard.

s				е	<u> </u>															f											
0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+ or	1 2 8	6 4	3 2	1 6	8	4	2	1	.5	2 5	1 2	0 6	0 3																		•
											5	2 5	1 2 5																		

Sign bit: 0

Exponent is: $0001 \ 1000 \ (24) - 127 = -103$

Fraction: 000...000

 $(-1)^s * (1 + f) * 2^e = -1^0 * 1 * 2^-103 = 9.8607613e-32$ so in other words:

0.000...00098607613 or in binary: 0.0...(100 zeros)...01 (102 zeros total and a 1 after all that).

Problem 5 [10 pts]

(a) Write down the binary representation of the decimal number 63.25 assuming the

IEEE 754 single precision format.

	Before	After
Step 1: convert to binary	63.25	0011 1111.01
Step 2: Normalize	0011 1111.01	001.1111 1010 X 2 ⁵
Step 3: Convert the exponent to excess-127 notation	5	5 + 127 = 132
Step 4: Convert the exponent to 8-bit binary notation	132	1000 0100
Step 5: Convert the fraction to "hidden bit" format.	1.1111 1010	1111 1010

Step 6: Identify:

Sign: = 0

Exponent: = 1000 0100

Fraction = 1111 1010 0000 0000 0000 000

Sign	Exponent (8 bits)	Fraction (23 bits)
0	10000100	1111101000000000000000

(b) Write down the binary representation of the decimal number 63.25 assuming the IEEE 754 double precision format.

Same as above except the following: Exponent = 11 bits, Fraction = 52 bits

Sign	Exponent (11 bits)	Fraction (52 bits)	
0	00010000100	111110100000000000000000000000000000000	

Problem 6 [10 pts]

(a) Using the IEEE 754 floating point format single precision, write down the bit pattern that would represent -1/4. Can you represent -1/4 exactly?

$$-1/4 = -0.25 = 0.01$$
 (binary) = 1.000 X 2\(^-2\) (normalized): $-2 + 127 = 125 = 0111$ 1101

Sign	Exponent (8 bits)	Fraction (23 bits)
1	01111101	00000000000000000000

Yes you can represent -1/4 exactly

(b) What do you get if you add -1/4 to itself 4 times? What is $-1/4 \times 4$? Are they the same? What should they be?

$$-1/4 + -1/4 + -1/4 + -1/4 = -4/4 = -1$$

$$-1/4(4) = -1$$

YES They are the same!

What they should be: **Nothing different, they are correct.**

(c) Using the IEEE 754 floating point format single precision, find the bit pattern that would represent 1/3. Can it be represented exactly? If not, round upwards.

Right off the bat we know this is impossible as 1/3 exactly is:

target: 0.33333333....

power: (-2) result: 0

Power	check	Result
-1 (1/2)	0.5 > t	No good
-2 (1/4)	0.25 < t	Ok
-3 (1/8)	.125 + .25 = .3 7 5	No good
-4 (1/16)	.0625 + .25 = .3125	Ok
-5 (1/32)	.3125 + .03125 = .34375	No good
-6 (1/64)	.3125 + .015625 = .328125	Ok
-7 (1/128)	.328125 + .0078125 = .33 5 9375	No good
-8 (1/256)	.328125 + .00390625 = .33203125	Ok
-9 (1/512)	.33203125 + .001953125 = .333 9 84375	No good
-10 (1/1024)	.33203125 + .0009765625 = .3330078125	Ok
-11 2048	Pattern emerging, skip every other, check at end.	Assume No Good
-12 4096	Result: .333251953	Ok
-14 16384	Result: .3333129883	Ok
-16 65536	Result: .3333282471	Ok
-18 262144	Result: .3333320618	Ok
-20 1048576	Result: .3333330154	Ok
-22 4194304	Result: .3333332539	Ok
-23 8388608	Check our assumption: Result: .3333333731	No good

normalize: 1.01 0101 0101 0101 0101 010 X 2^-2

Exponent: -2 + 127 = 125 = 0111 1101Fraction: 0101 0101 0101 0101 0100

Sign	Exponent (8 bits)	Fraction (23 bits)
0	01111101	010101010101010101010

That is the closest we can get to .33333333333...to infinity and beyond... if we were using double, we would set every even bit to 1 and every odd bit to zero in the fraction out to 52.

Problem 7 [10 pts]

IEEE 754-2008 contains a half precision that it is only 16 bits wide. The leftmost bit is still the sign bit, the exponent is 5 bits wide and has a bias of 15, and the mantissa is 10 bits long. A hidden 1 is assumed.

Write down the bit pattern to represent -1.5625×10 -1 assuming a version of this format, which uses an excess-16 format to store the exponent.

Comment on how the range and accuracy of this 16-bit floating point format compares

to the single precision IEEE 754 standard.

	Before	After
Step 1: convert to binary	-0.15625	0.00101
Step 2: Normalize	0.00101	1.01 X 2^-3
Step 3: Convert the exponent to excess-127 notation	-3	-3 + 15 = 12
Step 4: Convert the exponent to 5-bit binary notation	12	0 1100
Step 5: Convert the fraction to "hidden bit" format.	1.01	01

Step 6: Identify:

Sign: = 1

Exponent: = 0 1100

Fraction = 01 0000 0000

Sign	Exponent (5 bits)	Fraction (10 bits)
1	01100	010000000

Our limitations here on decimal values would be between 2^{-1} and 2^{-14} vs the 2^{-23} precision we can achieve with single precision.

Integer values would be limited to between 0 and 2048 exactly, anything larger would be rounded to multiples of 2, 4, 8, 16, and 32.