Project 2: Augmenting functional information about human genes using probabilistic phylogenetic modeling

George G. Vega Yon vegayon@usc.edu

Duncan Thomas Paul D. Thomas Paul Marjoram Huaiyu Mi John Morrison

Department of Preventive Medicine University of Southern California

November 14th, 2018

Recap: Model

- 1. A probabilistic model of gene function evolution,
- 2. The probability that the root node has the function is π ,
- 3. Conditional on its parent state, the probabilties that any given node has to either gain or lose a function are (μ_{01}, μ_{10}) ,
- 4. Finally, at the leaf node, the probability that a node with no function is mislabeled as having the function is ψ_{01} . Conversely, the probability that a node with a function is mislabeled as not having the function is ψ_{10} .

Parameter	Probability
π	The root node has the function
μ_{01}	Gaining a function
μ_{10}	Loosing a function
ψ_{01}	Mislabeling a 0
ψ_{10}	Mislabeling a 1

Table 1: Model parameters

Recap: Notation

Symbol	Description
$\Lambda \equiv (\mathcal{N}, \mathcal{E})$	Phylogenetic Tree.
p (n)	Parent of node n.
$\mathbf{O}(n)$	Offspring of node n.
$\mathbf{X} \equiv \{x_n\}_{n \in \mathcal{N}}$	True annotations.
$\mathbf{Z} \equiv \{z_n\}_{n \in \mathcal{N}}$	Experimental annotations.
$D \equiv (\Lambda, \mathbf{X})$	Annotated Phylogenetic Tree.
$\tilde{D}\equiv (\Lambda,\mathbf{Z})$	Experimentally Annotated Phylogenetic Tree.
\tilde{D}_n	Induced Experimentally Annotated Subtree of node <i>n</i> .
\tilde{D}_n^c	Complement of \tilde{D}_n .

Table 2: Mathematical Notation

Changes from last year

From the formal (statistical) stand

- ▶ Prediction function: Right mathematical definition of the model prediction.
- ▶ New set of parameters: Propensity to report a finding.
- Flexible model specification: Definition of the likelihood function for different sets of parameters

By products generated during the implementation

- ► The sluRm R package: A light-weight interface to slurm.
- ▶ Improvements on the amcmc R package, notably: automatic convergence.

Features:

▶ Provides a representation of *annotated* partially ordered trees.

Features:

- Provides a representation of annotated partially ordered trees.
- ▶ Interacts with the ape package (most used Phylogenetics R package with ~25K downloads/month)

Features:

- ▶ Provides a representation of *annotated* partially ordered trees.
- ▶ Interacts with the ape package (most used Phylogenetics R package with ~25K downloads/month)
- ▶ Implements the loglikelihood calculation of our model (with C++ under-the-hood).

Features:

- Provides a representation of annotated partially ordered trees.
- ▶ Interacts with the ape package (most used Phylogenetics R package with ~25K downloads/month)
- ▶ Implements the loglikelihood calculation of our model (with C++ under-the-hood).

Some new features

- Model specification via formula.
- Added he propensity to report discovery parameters.
- ► Two implementations of the prediction function (using a post-order algorithm as suggested by Prof. Suchard), and a brute force method... we use this for unit tests.
- ▶ (in the amcmc R package) Convergence monitoring and automatic stop of the MCMC algorithm

Nice visualizations

Figure 2: Surface of the likelihood of a given annotated tree.

Figure 3: Prediction Accuracy: Observed versus predicted values

Flexible model specification

Automatic specification of the likelihood function, e.g.

- x ~ mu baseline model
- ▶ x ~ mu + psi + Pi model including mislabeling and root node probabilities
- x ~ mu + Pi same as before, but excluding mislabeling
- x ~ mu + psi(1) + Pi mislabeling of 1 is fixed
- x ~ mu + psi(0, 1) + Pi mislabeling of 0s and 1s is fixed

Flexible model specification

```
##
## ESTIMATION OF ANNOTATED PHYLOGENETIC TREE
##
    Call: aphylo_mcmc(model = x ~ mu + psi + Pi, priors = bprior())
    11: -15.1028 ,
    Method used: mcmc (748 iterations)
    Leafs:
    # of Functions 2
            Estimate
                      Std. Err.
            0.0998
                      0.0782
    psi0
            0.0955
                      0.0679
    psi1
    m11O
            0.2379
                      0.0902
   m111
            0.0499
                      0.0379
   Ρi
            0.0888
                      0.0781
```

Results on the new specification (adventure)

The data generating process was $x \sim mu + psi + eta + Pi$ (eta are the propensity to publication parameters).

Figure 4: Correct specification (includes 'eta')

Figure 5: Miss specified model (does not include 'eta'). Missigness is confounded with propensity to fail to report

A parsimonious model of gene functions: easy to apply on a large scale (we already ran some simulations using all 13,000 trees from PantherDB... and it took us less than 1 week hour with $\frac{10}{240}$ processors only).

A parsimonious model of gene functions: easy to apply on a large scale (we already ran some simulations using all 13,000 trees from PantherDB... and it took us less than 1 week hour with $\frac{10}{240}$ processors only).

Already implemented, we are currently in the stage of writing the paper and setting up the simulation study finishing and submiting the paper.

A parsimonious model of gene functions: easy to apply on a large scale (we already ran some simulations using all 13,000 trees from PantherDB... and it took us less than 1 week hour with $\frac{10}{240}$ processors only).

- ► Already implemented, we are currently in the stage of writing the paper and setting up the simulation study finishing and submiting the paper.
- ▶ For the next steps, we are evaluating whether to include or how to include:

A parsimonious model of gene functions: easy to apply on a large scale (we already ran some simulations using all 13,000 trees from PantherDB... and it took us less than 1 week hour with $\frac{10}{2}$ 240 processors only).

- ► Already implemented, we are currently in the stage of writing the paper and setting up the simulation study finishing and submiting the paper.
- ▶ For the next steps, we are evaluating whether to include or how to include:
 - ▶ Type of node: speciation, duplication, horizontal transfer.
 - ► Branch lengths
 - ► Correlation structure between functions
 - Using Taxon Constraints to improve predictions
 - ▶ Hierarchical model: Use fully annotated trees by curators as prior information.
- We are still unsure about how to procede with the software: R journal? Journal of Open Source Software? Journal of Statistical Software? Bioinformatics? etc.

Thank you!

Project 2: Augmenting functional information about human genes using probabilistic phylogenetic modeling

> George G. Vega Yon vegavon@usc.edu

Duncan Thomas Paul D. Thomas Paul Marjoram Huaiyu Mi John Morrison

Department of Preventive Medicine

University of Southern California

November 14th 2018

