

Включил Юджин запись ли пы

Правила вебинара

Активно участвуем

Задаем вопрос в чат

Вопросы вижу в чате, могу ответить не сразу

Маршрут вебинара

Буферный кэш

Журнал предзаписи

Контрольная точка

Настройки журнала

Цели вебинара После занятия вы сможете

1 Настраивать журналирование

2 Корректно настроить схему контрольных точек

Смысл Зачем вам это уметь

Обеспечить высокую надежность

Обеспечить оптимальную производительность

Буферный кэш

Буферный кэш. Зачем?

Ускоряем работу всей системы.

• Оперативная память очень быстра, но ее мало.

• ЖД огромный, но медленный.

Буферный кэш. Состав

Каждый буфер состоит из одной страницы данных и заголовка. Размер по умолчанию 8 кб. Заголовок содержит:

- расположение страницы на диске (файл и номер страницы в нем),
- число обращений к буферу (счетчик увеличивается каждый раз, когда процесс читает или изменяет буфер, максимально значение 5),
- признак того, что данные на странице изменились и рано или поздно должны быть записаны на диск (грязный буфер).

Изначально кэш содержит:

- пустые буферы, и все они связаны в список свободных буферов,
- указатель на «следующую жертву» при вытеснении старых буферов,
- также используется хеш-таблица, чтобы быстро находить нужную страницу в кэше.

Размер буферного кэша задается параметром **shared_buffers**. Его изменение **требует перезапуска** сервера.

в какой-то момент все свободные блоки заканчиваются.. Что делать дальше?

Буферный кэш. Массовое вытеснение

Буферное кольцо

часть буферного кэша, выделенная для одной операции предотвращает вытеснение кэша «одноразовыми» данными

операция	кол-во страниц	грязные буферы
последовательное чтение (несколько операций одновременно)	32	исключаются из кольца
очистка (VACUUM)	32	вытесняются на диск
массовая запись (COPY, CTAS)	≤2048	вытесняются на диск

Буферный кэш. Настройка

По умолчанию shared_buffers = 128MB

Буферный кэш должен содержать «активные» данные:

- при меньшем размере постоянно вытесняются полезные страницы
- при большем размере бессмысленно растут накладные расходы начальная рекомендация **25**% ОЗУ

Нужно учитывать двойное кэширование - если страницы нет в кэше СУБД, она может оказаться в кэше ОС, но алгоритм вытеснения ОС не учитывает специфики базы данных.

Буферный кэш. Временные таблицы

Данные временных таблиц

- видны только одному сеансу нет смысла использовать общий кэш
- существуют в пределах сеанса не жалко потерять при сбое

Используется локальный буферный кэш

- не требуются блокировки
- память выделяется по необходимости в пределах temp_buffers
- обычный алгоритм вытеснения

Буферный кэш. Разогрев кэша

- pg_prewarm
- используется после рестарта кластера
- заполняет кэш указанными таблицами

Буферный кэш. Практика

практика

11: 65.4. Карта видимости : Компания Postgres Professional

Postgres Pro Standard : Документация: 12: 65.3. Карта свободного пространства

WAL в PostgreSQL: 1. Буферный кэш / Блог компании Postgres Professional / Хабр

Буферный кэш && WAL

Write ahead log - WAL

Основная задача

• возможность восстановления согласованности данных после сбоя

Механизм

- при изменении данных действие также записывается в журнал журнальная запись попадает на диск раньше измененных данных
- восстановление после сбоя повторное выполнение потерянных операций с помощью журнальных записей

Что туда попадает

- изменение любых страниц в буферном кэше
- фиксация и отмена транзакций буферы ХАСТ
- НЕ ПОПАДАЮТ временные и нежурналируемые таблицы

WAL. Устройство

\$/usr/lib/postgresql/13/bin/pg_waldump -r list - список менеджеров

WAL. Восстановление

при старте сервера после сбоя

(состояние кластера в pg_control отличается от «shut down»):

- 1. для каждой журнальной записи:
- определить страницу, к которой относится эта запись
- применить запись, если ее LSN больше, чем LSN страницы
- 2. перезаписать нежурналируемые таблицы init-файлами

Зачем она нужна?

можно же с самого начала накатить все wal?

Зачем она нужна?

можно же с самого начала накатить все wal

- очень большой объем информации хранить
- большое время восстановления
- сколько может страница измененная лежать в буферном кэше?

checkpoint_completion_target = 0.8

- 1. сначала сбрасываются буферы ХАСТ
- 2. помечаются грязные буферы

- 1. в журнале создается запись о завершении контрольной точки с указанием момента ее начала
 - L. в файл \$PGDATA/global/pg_control записывается LSN контрольной точки ...

Latest checkpoint location: 0/12B35EBB

•••

С какой точки произойдет восстановление и за какой период нужны будут wal файлы?

При старте сервера после сбоя

- 1. найти LSN0 начала последней завершенной контрольной точки
- 2. применить каждую запись журнала, начиная с LSN0 , если LSN записи больше, чем LSN страницы
- 3. перезаписать нежурналируемые таблицы init-файлами
- 4. выполнить контрольную точку

Настройка частоты срабатывания:

- checkpoint_timeout = 5min
- max_wal_size = 1GB

Сервер хранит журнальные файлы необходимые для восстановления:

- (2 (1 с 12 версии) + checkpoint_completion_target) * max_wal_size
- еще не прочитанные через слоты репликации
- еще не записанные в архив, если настроена непрерывная архивация
- не превышающие по объему минимальной отметки

Настройки

- max_wal_size = 1GB
- min_wal_size = 100MB
- wal keep segments = 0

Контрольная точка. Процесс фоновой записи

Контрольная точка. Процесс фоновой записи

Настройки

- bgwriter_delay = 200ms
- bgwriter_lru_maxpages = 100bgwriter_lru_multiplier = 2.0

Алгоритм

- уснуть на bgwriter_delay
- если в среднем за цикл запрашивается N буферов, то записать
 N * bgwriter Iru multiplier ≤ bgwriter Iru maxpages грязных буферов

Контрольная точка. Практика

Уровни журнала

Minimal

восстановление после сбоя

Replica

восстановление из резервной копии, репликация

+ операции массовой обработки данных, блокировки

Logical

логическая репликация

+ информация для логического декодирования

Настройка

wal_level = replica

Настройка записи на диск

Синхронизация с диском

данные должны дойти до энергонезависимого хранилища через многочисленные кэши

СУБД сообщает операционной системе способом, указанным в wal_sync_method надо учитывать аппаратное кэширование

Настройки

fsync = on show fsync; show wal_sync_method; утилита pg_test_fsync помогает выбрать оптимальный способ

Повреждение данных

Контрольные суммы журнальных записей включены всегда, CRC-32

Контрольные суммы страниц (накладные расходы)

По умолчанию отключены. До 12 версии можно включить только при инициализации кластера.

pg_createcluster --data-checksums

Настройки

```
show data_checksums;
```

ignore_checksum_failure = off

wal_log_hints = off (записывает все содержимое каждой страницы при измениях даже инф.бит, неявно on при контрольных суммах страниц) wal_compression = off

https://postgrespro.ru/docs/postgrespro/13/app-pgchecksums

Характер нагрузки

Постоянный поток записи

- характер нагрузки отличается от остальной системы
- последовательная запись, отсутствие случайного доступа
- при высокой нагрузке размещение на отдельных физических дисках (символьная ссылка из \$PGDATA/pg_wal)

Редкое чтение

- при восстановлении
- при работе процессов walsender, если реплика не успевает быстро получать записи

Режимы записи

- синхронный режим
- асинхронный режим

Режим синхронной записи

Алгоритм

- при фиксации изменений сбрасывает накопившиеся записи, включая запись о фиксации
- ждет commit_delay, если активно не менее commit_siblings транзакций

Характеристики

- гарантируется долговечность
- увеличивается время отклика

Настройки

- synchronous_commit = on
- commit_delay = 0
- commit_siblings = 5

Режим асинхронной записи

Алгоритм

- циклы записи через wal_writer_delay
- записывает только целиком заполненные страницы
- но если новых полных страниц нет, то записывает последнюю до конца

Характеристики

- гарантируется согласованность, но не долговечность
- зафиксированные изменения могут пропасть (3 × wal_writer_delay)
- уменьшается время отклика

Настройки

- synchronous_commit = off (можно изменять на уровне транзакции)
- wal_writer_delay = 200ms

Вопросы?

• Кто что запомнил за сегодня?

• Сколько контрольных точек рекомендовано хранить для гарантированного восстановления?

• Как вам баланс между теорией и практикой?

ДЗ

- 1. Настройте выполнение контрольной точки раз в 30 секунд.
- 2. 10 минут с помощью утилиты pgbench подавайте нагрузку.
- 3. Измерьте, какой объем журнальных файлов был сгенерирован за это время. Оцените, какой объем приходится в среднем на одну контрольную точку.
- 4. Проверьте данные статистики: все ли контрольные точки выполнялись точно по расписанию. Почему так произошло?
- 5. Сравните tps в синхронном/асинхронном режиме утилитой pgbench. Объясните полученный результат.
- 6. Создайте новый кластер с включенной контрольной суммой страниц. Создайте таблицу. Вставьте несколько значений. Выключите кластер. Измените пару байт в таблице. Включите кластер и сделайте выборку из таблицы. Что и почему произошло? как проигнорировать ошибку и продолжить работу?

