Analysis of a Complex Kind Week 2

Lecture 2: Sequences and Limits of Complex Numbers

Petra Bonfert-Taylor

Sequences of Complex Numbers

Consider the following sequences of complex numbers. What happens far out along the sequence?

• 1,
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$, ..., $\frac{1}{n}$, ... \rightarrow ?

•
$$i, \frac{i}{2}, \frac{i}{3}, \frac{i}{4}, \frac{i}{5}, \frac{i}{6}, \dots, \frac{i}{n}, \dots \rightarrow ?$$

•
$$i, \frac{-1}{2}, \frac{-i}{3}, \frac{1}{4}, \frac{i}{5}, \frac{-1}{6}, \dots, \frac{i^n}{n}, \dots \rightarrow ?$$

Informally, a sequence $\{s_n\}$ converges to a limit s if the sequence eventually lies in any (every so small) disk centered at s.

How do you make this mathematically precise?

Limits

Definition

A sequence $\{s_n\}$ of complex numbers *converges to* $s \in \mathbb{C}$ if for every $\varepsilon > 0$ there exists an index $N \geq 1$ such that

$$|s_n - s| < \varepsilon$$
 for all $n \ge N$.

In this case we write

$$\lim_{n\to\infty} s_n = s.$$

Examples:

$$\lim_{n\to\infty}\frac{1}{n}=0.$$

Examples

•
$$\lim_{n \to \infty} \frac{1}{n^p} = 0$$
 for any $0 .$

•
$$\lim_{n \to \infty} \frac{c}{n^p} = 0$$
 for any $c \in \mathbb{C}$, $0 .$

- $\lim_{n \to \infty} q^n = 0$ for 0 < q < 1.
- $\bullet \lim_{n\to\infty} z^n = 0 \text{ for } |z| < 1.$
- $\bullet \lim_{n\to\infty} \sqrt[n]{10} = 1.$
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Rules for Limits

- 1. Convergent sequences are bounded.
- 2. If $\{s_n\}$ converges to s and $\{t_n\}$ converges to t, then
 - $s_n + t_n \rightarrow s + t$.
 - $s_n \cdot t_n \to s \cdot t$ (in particular: $a \cdot s_n \to a \cdot s$ for any $a \in \mathbb{C}$.)
 - $\frac{s_n}{t_n} o \frac{s}{t}$, provided $t \neq 0$.

Examples

•
$$\frac{3n^2+5}{in^2+2in-1} = \frac{3+\frac{5}{n^2}}{i+\frac{2i}{n}-\frac{1}{n^2}} \to \frac{3}{i} = -3i \text{ as } n \to \infty.$$

•
$$\frac{n^2}{n+1} = \frac{n}{1+\frac{1}{n}}$$
 not bounded.

•
$$\frac{3n+5}{in^2+2in-1} = \frac{\frac{3}{n}+\frac{5}{n^2}}{i+\frac{2i}{n}-\frac{1}{n^2}} \to \frac{0}{i} = 0 \text{ as } n \to \infty.$$

How about ...?

Consider the sequence

$$\left\{\frac{i^n}{n}\right\} = i, \, \frac{-1}{2}, \, \frac{-i}{3}, \, \frac{1}{4}, \, \frac{i}{5}, \, \frac{-1}{6}, \dots$$

This sequence seems to converge to 0, but how do we show this? The previous rules don't seem to apply.

Facts:

- A sequence of complex numbers, $\{s_n\}$, converges to 0 if and only if the sequence $\{|s_n|\}$ of absolute values converges to 0.
- A sequence of complex numbers, $\{s_n\}$, with $s_n = x_n + iy_n$, converges to s = x + iy if and only if $x_n \to x$ and $y_n \to y$ as $n \to \infty$.

Some Facts about Sequence of Real Numbers

Here is a really neat fact, often called the "Squeeze Theorem":

Theorem

Suppose that $\{r_n\}$, $\{s_n\}$ and $\{t_n\}$ are sequences of real numbers such that $r_n \le s_n \le t_n$ for all n. If both sequences $\{r_n\}$ and $\{t_n\}$ converge to the same limit, L, then the sequence $\{s_n\}$ has not choice but to converge to the limit L as well.

And here is the equivalent of a sequence running against a wall:

Theorem

A bounded, monotone sequence of real numbers converges.

Applying These New Facts...

Let's apply the facts that we learned on the last two slides to the sequence $\left\{\frac{i^n}{n}\right\}$.

•
$$\left|\frac{i^n}{n}\right| = \frac{|i|^n}{n} = \frac{1}{n} \to 0$$
 as $n \to \infty$. Thus $\lim_{n \to \infty} \frac{i^n}{n} = 0$. Or:

•
$$\frac{i^n}{n} = x_n + iy_n$$
, $x_n = \frac{1}{n} \begin{cases} 0, & n \text{ odd} \\ 1, & n = 4k \\ -1, & n = 4k + 2 \end{cases}$ and $y_n = \frac{1}{n} \begin{cases} 0, & n \text{ even} \\ 1, & n = 4k + 1. \\ -1, & n = 4k + 3 \end{cases}$

Since $-\frac{1}{n} \le x_n \le \frac{1}{n}$ and $-\frac{1}{n} \le y_n \le \frac{1}{n}$ for all n, the Squeeze Theorem implies that $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0$, hence $\lim_{n \to \infty} \frac{j^n}{n} = 0$.

Limits of Complex Functions

Definition

The complex-valued function f(z) has limit L as $z \to z_0$ if the values of f(z) are near L as $z \to z_0$.

(More formally: $\lim_{z\to z_0} f(z) = L$ if for all $\varepsilon>0$ there exists $\delta>0$ such that

 $|f(z) - L| < \varepsilon$ whenever $0 < |z - z_0| < \delta$.)

Note: Of course f(z) needs to be defined near z_0 for this definition to make sense (but not necessarily at z_0). Examples:

•
$$f(z) = \frac{z^2 - 1}{z - 1}, z \neq 1$$
. Then

$$\lim_{z \to 1} f(z) = \lim_{z \to 1} \frac{(z-1)(z+1)}{z-1} = \lim_{z \to 1} z + 1 = 2.$$

Examples

Let f(z) = Arg z. Then:

•
$$\lim_{z \to i} \operatorname{Arg} z = \frac{\pi}{2}$$
.

- $\bullet \lim_{z \to 1} \operatorname{Arg} z = 0.$
- $\lim_{z \to -1} \operatorname{Arg} z = ?$

Some Facts About Limits of Functions

The previous facts about limits of sequences imply the following facts about limits of functions:

- If f has a limit at z_0 then f is bounded near z_0 .
- If $f(z) \rightarrow L$ and $g(z) \rightarrow M$ as $z \rightarrow z_0$ then
 - $f(z) + g(z) \rightarrow L + M$ as $z \rightarrow z_0$,
 - $f(z) \cdot g(z) \rightarrow L \cdot M$ as $z \rightarrow z_0$,
 - $\frac{f(z)}{g(z)} \to \frac{L}{M}$ as $z \to z_0$, provided that $M \neq 0$.

Continuity

Definition

The function f is continuous at z_0 if $f(z) \to f(z_0)$ as $z \to z_0$.

Note: This definition implicitly says that:

- f is defined at z_0 .
- f has a limit as $z \rightarrow z_0$.
- The limit equals $f(z_0)$.

Examples of continuous functions:

- constant functions
- \bullet f(z) = z
- polynomials
- f(z) = |z|
- $f(z) = \frac{p(z)}{q(z)}$, wherever $q(z) \neq 0$ (p and q are polynomials).