МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №7 по дисциплине «Искусственные нейронные сети»

Студент гр. 8383	 Переверзев Д.Е
Преподаватель	Жангиров Т.Р.

Санкт-Петербург

Цель работы

Классификация последовательностей - это проблема прогнозирующего моделирования, когда у вас есть некоторая последовательность входных данных в пространстве или времени, и задача состоит в том, чтобы предсказать категорию для последовательности.

Проблема усложняется тем, что последовательности могут различаться по длине, состоять из очень большого словарного запаса входных символов и могут потребовать от модели изучения долгосрочного контекста или зависимостей между символами во входной последовательности.

В данной лабораторной работе также будет использоваться датасет IMDb, однако обучение будет проводиться с помощью рекуррентной нейронной сети.

Задачи

- Ознакомиться с рекуррентными нейронными сетями
- Изучить способы классификации текста
- Ознакомиться с ансамблированием сетей
- Построить ансамбль сетей, который позволит получать точность не менее 97%

Ход работы

Для выполнения работы использовались модели двух типов: первый тип содержит сверточный слой, второй такового не содержит.

П	leрва	я мо	одель:
---	-------	------	--------

Layer (type)	Output Shape	Param #
embedding (Embedding	g) (None, 500, 3	320000
conv1d (Conv1D)	(None, 500, 32)	3104
max_pooling1d (MaxPe	pooling1D) (None, 25	50, 32) 0
dropout (Dropout)	(None, 250, 32)	0
lstm (LSTM)	(None, 64)	24832
dense (Dense)	(None, 1)	65
=======================================		

Total params: 348,001 Trainable params: 348,001 Non-trainable params: 0

Вторая модель:

Layer (type) Output Shape Param #

embedding_1 (Embedding) (None, 500, 32) 320000

| Stm_1 (LSTM) (None, 500, 64) 24832

| Stm_2 (LSTM) (None, 32) 12416

| dense_1 (Dense) (None, 1) 33

Total params: 357,281 Trainable params: 357,281 Non-trainable params: 0

Проверка сети на собственных данных

1. Текст из файла «1»

оценка: *отрицательная* Результат: отрицательный

2. Текст из файла «2»

оценка: *положительная* Результат: положительный

3. Текст из файла «3»

оценка: *отрицательная* Результат: отрицательный

4. Текст из файла «4»,

оценка: *положительная* Результат: положительный

Результаты правильные, сеть работает правильно.

Выводы

В ходе лабораторной работы был реализован прогноз успеха фильмов по обзорам. Также был изучен и применен метод ансамблирования моделей для более точного семантического анализа текста.